Lecture 5: Three More Models Models of Computation

https://clegra.github.io/moc/moc.html

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

July 11, 2025

Course overview

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 - 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro		classic models		additional models
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	$\begin{array}{ll} \lambda\text{-terms, }\beta\text{-reduction,}\\ \lambda\text{-definable functions,}\\ \text{partial recursive}\\ =\lambda\text{-definable}\\ =\text{Turing computable} \end{array}$	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets, Fractran comparing computational power

Some Models of Computation

machine model	mathematical model	sort
Turing machine Post machine register machine	Combinatory Logic \(\lambda\text{-calculus}\) Herbrand-Gödel recursive functions partial-recursive/\(\mu\text{-recursive functions}\) Post canonical system (tag system) Post's Correspondence Problem Markov algorithms Lindenmayer systems	classical
	Fractran	less well known
cellular automata neural networks	term rewrite systems interaction nets logic-based models of computation concurrency and process algebra ς-calculus evolutionary programming/genetic algorithms abstract state machines	modern
hypercomputation		speculative
	quantum computing bio-computing reversible computing	physics-/biology- inspired

Overview

▶ Post's Correspondence Problem (by Emil Post, 1946, [6])

- ► Post's Correspondence Problem (by Emil Post, 1946, [6])
- ► Interaction Nets (by Yves Lafont, 1990, [4])

- ► Post's Correspondence Problem (by Emil Post, 1946, [6])
- ▶ Interaction Nets (by Yves Lafont, 1990, [4])
 - ▶ Lambdascope (Vincent van Oostrom, 2003, [5])

- ► Post's Correspondence Problem (by Emil Post, 1946, [6])
- ► Interaction Nets (by Yves Lafont, 1990, [4])
 - ▶ Lambdascope (Vincent van Oostrom, 2003, [5])
 - ► Lambdascope animation tool (Jan Rochel, 2010, [7])

- ► Post's Correspondence Problem (by Emil Post, 1946, [6])
- ► Interaction Nets (by Yves Lafont, 1990, [4])
 - ▶ Lambdascope (Vincent van Oostrom, 2003, [5])
 - Lambdascope animation tool (Jan Rochel, 2010, [7])
- Compare computational power of models of computation

- ► Post's Correspondence Problem (by Emil Post, 1946, [6])
- ► Interaction Nets (by Yves Lafont, 1990, [4])
 - ▶ Lambdascope (Vincent van Oostrom, 2003, [5])
 - Lambdascope animation tool (Jan Rochel, 2010, [7])
- Compare computational power of models of computation
- Fractran (by John Horton Conway, 1987, [2])

Post's Correspondence Problem (PCP)

Emil Leon Post:

"A Variant of a Recursively Unsolvable Problem" Bulletin of the American Mathematical Society, 1946.

Post's Correspondence Problem (PCP)

Emil Leon Post:

"A Variant of a Recursively Unsolvable Problem" Bulletin of the American Mathematical Society, 1946.

Instance of PCP:

$$I = \{\langle g_1, g_1' \rangle, \dots, \langle g_k, g_k' \rangle \}, \text{ where } k \ge 1, \ g_i, g_i' \in \Sigma^+ \text{ for } i \in \{1, \dots, k\}.$$

Post's Correspondence Problem (PCP)

Emil Leon Post:

"A Variant of a Recursively Unsolvable Problem" Bulletin of the American Mathematical Society, 1946.

Instance of PCP:

$$I = \{\langle g_1, g_1' \rangle, \dots, \langle g_k, g_k' \rangle\},$$
 where $k \ge 1$, $g_i, g_i' \in \Sigma^+$ for $i \in \{1, \dots, k\}$.

Question: Is I solvable?

Do there exist $n \ge 1$, and $i_1, \ldots, i_n \in \{1, \ldots, k\}$ such that:

$$g_{i_1}g_{i_2}\dots g_{i_n}=g'_{i_1}g'_{i_2}\dots g'_{i_n}$$
 ?

Post's Correspondence Problem (PCP)

Emil Leon Post:

"A Variant of a Recursively Unsolvable Problem" Bulletin of the American Mathematical Society, 1946.

Instance of PCP:

$$I = \{\langle g_1, g_1' \rangle, \dots, \langle g_k, g_k' \rangle\}, \text{ where } k \geq 1, g_i, g_i' \in \Sigma^+ \text{ for } i \in \{1, \dots, k\}.$$

Question: Is I solvable?

Do there exist $n \ge 1$, and $i_1, \ldots, i_n \in \{1, \ldots, k\}$ such that:

$$g_{i_1}g_{i_2}\ldots g_{i_n}=g'_{i_1}g'_{i_2}\ldots g'_{i_n}$$
 ?

Theorem

Codings of solvable instances of PCP:

$$\{\left\langle \overbrace{\{\langle g_1,g_1'\rangle,\ldots,\langle g_k,g_k'\rangle\mid k\geq 1,g_i,g_i'\in\Sigma^+\}}^{\textit{PCP instance }I}\right\rangle \mid I \textit{ is solvable}\}$$

form a set that is recursively enumerable, but not recursive.

Interaction Nets

Yves Lafont (1990) [4] (link pdf) proposed:

a programming language with a simple graph rewriting semantics

Interaction Nets

Yves Lafont (1990) [4] (link pdf) proposed:

a programming language with a simple graph rewriting semantics

An interaction net is specified by:

- a set of agents
- a set of interaction rules

Interaction Nets

Yves Lafont (1990) [4] (link pdf) proposed:

a programming language with a simple graph rewriting semantics

An interaction net is specified by:

- a set of agents
- a set of interaction rules

Analogy with:

- electric circuits:
 - ▶ agents [≙] gates,
 - ▶ edges [^] wires

Interaction Nets

Yves Lafont (1990) [4] (link pdf) proposed:

a programming language with a simple graph rewriting semantics

An interaction net is specified by:

- a set of agents
- a set of interaction rules

Analogy with:

- electric circuits:
 - ▶ agents [≙] gates,
 - ▶ edges [≙] wires
- agents as computation entities:
 - interaction rules specify behavior

Models of computation, viewed abstractly

A(n abstractly viewed) model of computation (MoC) is a class \mathcal{M} of machines/systems/... such that every $M \in \mathcal{M}$ it holds:

 \triangleright *M* has a countable set $I_{\mathcal{M}}$ of input objects, and a countable set $O_{\mathcal{M}}$ of output objects that are specific to the MoC \mathcal{M} ;

Models of computation, viewed abstractly

- \triangleright *M* has a countable set $I_{\mathcal{M}}$ of input objects, and a countable set $O_{\mathcal{M}}$ of output objects that are specific to the MoC \mathcal{M} ;
- \triangleright *M* has a set C_M of configurations of *M*, which contains the subset $EC_M \subseteq C_M$ of end-configurations of *M*;

Models of computation, viewed abstractly

- \triangleright *M* has a countable set $I_{\mathcal{M}}$ of input objects, and a countable set $O_{\mathcal{M}}$ of output objects that are specific to the MoC \mathcal{M} ;
- \triangleright *M* has a set C_M of configurations of *M*, which contains the subset $EC_M \subseteq C_M$ of end-configurations of *M*;
- \triangleright *M* has an injective input function $\alpha_M : I_M \to C_M$, which maps input objects of *M* to configurations of *M*; α_M is computable;

Models of computation, viewed abstractly

- \triangleright *M* has a countable set $I_{\mathcal{M}}$ of input objects, and a countable set $O_{\mathcal{M}}$ of output objects that are specific to the MoC \mathcal{M} ;
- \triangleright *M* has a set C_M of configurations of *M*, which contains the subset $EC_M \subseteq C_M$ of end-configurations of *M*;
- \triangleright *M* has an injective input function $\alpha_M : I_M \to C_M$, which maps input objects of *M* to configurations of *M*; α_M is computable;
- \triangleright *M* defines a one-step computation relation \mapsto_M on the set C_M ; the transitive closure of \mapsto_M is designated by \mapsto_M^* ;

Models of computation, viewed abstractly

- \triangleright *M* has a countable set $I_{\mathcal{M}}$ of input objects, and a countable set $O_{\mathcal{M}}$ of output objects that are specific to the MoC \mathcal{M} ;
- \triangleright *M* has a set C_M of configurations of *M*, which contains the subset $EC_M \subseteq C_M$ of end-configurations of *M*;
- \triangleright *M* has an injective input function $\alpha_M : I_M \to C_M$, which maps input objects of *M* to configurations of *M*; α_M is computable;
- \triangleright *M* defines a one-step computation relation \mapsto_M on the set C_M ; the transitive closure of \mapsto_M is designated by \mapsto_M^* ;
- ightharpoonup M has a partial output function $\omega_M : EC_M
 ightharpoonup O_M$, which maps some end-configurations of M to output objects of M; ω_M is computable, and membership of end-configurations in $dom(\omega_M)$ is decidable.

Simulations between models of computation

models $M_1 \in \mathcal{M}_1$ and $M_2 \in \mathcal{M}_2$ simulate each other with respect to computable coding $\cdot \cdot : I_{\mathcal{M}_1} \to I_{\mathcal{M}_2}$ and decoding $\cdot \cdot : O_{\mathcal{M}_2} \to O_{\mathcal{M}_1}$ if:

$$x_1 \in I_{\mathcal{M}_1} \qquad \qquad x_2 \in I_{\mathcal{M}_2} \qquad \qquad x_1 \in I_{\mathcal{M}_1} \qquad \qquad x_2 \in I_{\mathcal{M}_2} \qquad \qquad x_1 \in I_{\mathcal{M}_1} \qquad \qquad x_2 \in I_{\mathcal{M}_2} \qquad \qquad \alpha_{\mathcal{M}_2} \qquad$$

(defines a Galois connection)

▶ Simulation of models of computation $\mathcal{M}_1 = \langle D_1, \mathcal{F}_1 \rangle$, $\mathcal{M}_2 = \langle D_2, \mathcal{F}_2 \rangle$:

Simulation of functions: function f₂ simulates function f₁ via encoding ρ if:

▶ Simulation of models of computation $\mathcal{M}_1 = \langle D_1, \mathcal{F}_1 \rangle$, $\mathcal{M}_2 = \langle D_2, \mathcal{F}_2 \rangle$:

Simulation of functions:
 function f₂ simulates function f₁ via encoding ρ if:

Simulation of functions: function f₂ simulates function f₁ via encoding ρ if:

$$D_1 \xrightarrow{
ho} D_2$$
 $\mathcal{M}_1 \qquad orall f_1 \in \mathcal{F}_1 \qquad f_1 \downarrow \qquad \qquad \downarrow f_2 \qquad \mathcal{M}_2$
 $D_1 \xrightarrow{\rho} D_2$

Simulation of functions: function f₂ simulates function f₁ via encoding ρ if:

Simulation of functions: function f₂ simulates function f₁ via encoding ρ if:

$$\forall f_1 \in \mathcal{F}_1 \ \exists f_2 \in \mathcal{F}_2 \ (f_2 \ \text{simulates} \ f_1 \ \text{via} \ \rho)$$

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

- ▶ informally computable/effective/mechanizable in principle
- computable with respect to a specific model (Turing machine, ...)

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

- ▶ informally computable/effective/mechanizable in principle
- computable with respect to a specific model (Turing machine, ...)

Boker & Dershowitz [1]: want a 'robust definition that does not itself depend on the notion of computability', and therefore suggest as encodings:

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

- ▶ informally computable/effective/mechanizable in principle
- computable with respect to a specific model (Turing machine, ...)

Boker & Dershowitz [1]: want a 'robust definition that does not itself depend on the notion of computability', and therefore suggest as encodings:

- (i) injective functions
- (ii) bijective functions

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

- ▶ informally computable/effective/mechanizable in principle
- computable with respect to a specific model (Turing machine, ...)

Boker & Dershowitz [1]: want a 'robust definition that does not itself depend on the notion of computability', and therefore suggest as encodings:

- (i) *injective* functions
- (ii) bijective functions

Definition (power subsumption pre-order [Boker/Dershowitz 2006 [1]])

- (i) $\mathcal{M}_1 \lesssim \mathcal{M}_2$ if: there is an injective ρ such that $\mathcal{M}_1 \lesssim_{\rho} \mathcal{M}_2$
- (ii) $\mathcal{M}_1 \lesssim_{\text{bijective}} \mathcal{M}_2$ if: there is a bijective ρ such that $\mathcal{M}_1 \lesssim_{\rho} \mathcal{M}_2$

Anomalies for decision models

However, we found anomalies of these definitions.

$$\mathcal{M} = \langle D, \mathcal{F} \rangle$$
 is a decision model if $\{0,1\} \subseteq D$, $\forall f \in \mathcal{F} (f[D] \subseteq \{0,1\})$.

Anomalies for decision models

However, we found anomalies of these definitions.

$$\mathcal{M} = \langle D, \mathcal{F} \rangle$$
 is a decision model if $\{0, 1\} \subseteq D$, $\forall f \in \mathcal{F} (f[D] \subseteq \{0, 1\})$.

Theorem (Endrullis/G/Hendriks, [3])

Let Σ and Γ with $\{0,1\} \subseteq \Sigma$, Γ be alphabets.

Then for every countable decision model $\mathcal{M} = \langle \Sigma^*, \mathcal{F} \rangle$, it holds:

$$\mathcal{M} \lesssim \mathsf{DFA}(\Gamma)$$
 $\mathcal{M} \lesssim_{\mathsf{bijective}} \mathsf{DFA}(\Gamma)$

Anomalies for decision models

However, we found anomalies of these definitions.

$$\mathcal{M} = \langle D, \mathcal{F} \rangle$$
 is a decision model if $\{0, 1\} \subseteq D$, $\forall f \in \mathcal{F} (f[D] \subseteq \{0, 1\})$.

Theorem (Endrullis/G/Hendriks, [3])

Let Σ and Γ with $\{0,1\} \subseteq \Sigma$, Γ be alphabets.

Then for every countable decision model $\mathcal{M} = \langle \Sigma^*, \mathcal{F} \rangle$, it holds:

$$\mathcal{M} \lesssim \mathsf{DFA}(\Gamma)$$
 $\mathcal{M} \lesssim_{\mathsf{bijective}} \mathsf{DFA}(\Gamma)$

 $\mathsf{TMD}(\Sigma)$: class of Turing machine deciders with input alphabet Σ

Anomaly (example)

$$\mathsf{TMD}(\Sigma) \lesssim_{\mathsf{bijective}} \mathsf{DFA}(\Gamma)$$

Anomalies for decision models

However, we found anomalies of these definitions.

$$\mathcal{M} = \langle D, \mathcal{F} \rangle$$
 is a decision model if $\{0, 1\} \subseteq D$, $\forall f \in \mathcal{F} (f[D] \subseteq \{0, 1\})$.

Theorem (Endrullis/G/Hendriks, [3])

Let Σ and Γ with $\{0,1\} \subseteq \Sigma$, Γ be alphabets.

Then for every countable decision model $\mathcal{M} = \langle \Sigma^*, \mathcal{F} \rangle$, it holds:

$$\mathcal{M} \lesssim \mathsf{DFA}(\Gamma)$$
 $\mathcal{M} \lesssim_{\mathsf{bijective}} \mathsf{DFA}(\Gamma)$

 $\mathsf{TMD}(\Sigma)$: class of Turing machine deciders with input alphabet Σ

Anomaly (example)

$$\mathsf{TMD}(\Sigma) \lesssim_{\mathsf{bijective}} \mathsf{DFA}(\Gamma)$$

These anomalies for decision models and bijective encodings:

depend on uncomputable encodings

Anomalies for decision models

However, we found anomalies of these definitions.

$$\mathcal{M} = \langle D, \mathcal{F} \rangle$$
 is a decision model if $\{0, 1\} \subseteq D$, $\forall f \in \mathcal{F} (f[D] \subseteq \{0, 1\})$.

Theorem (Endrullis/G/Hendriks, [3])

Let Σ and Γ with $\{0,1\} \subseteq \Sigma$, Γ be alphabets.

Then for every countable decision model $\mathcal{M} = \langle \Sigma^*, \mathcal{F} \rangle$, it holds:

$$\mathcal{M} \lesssim \mathsf{DFA}(\Gamma)$$
 $\mathcal{M} \lesssim_{\mathsf{bijective}} \mathsf{DFA}(\Gamma)$

 $\mathsf{TMD}(\Sigma)$: class of Turing machine deciders with input alphabet Σ

Anomaly (example)

$$\mathsf{TMD}(\Sigma) \lesssim_{\mathsf{bijective}} \mathsf{DFA}(\Gamma)$$

These anomalies for decision models and bijective encodings:

- depend on uncomputable encodings
- can be extended to some moc's with unbounded output domain

Anomalies for decision models

However, we found anomalies of these definitions.

$$\mathcal{M} = \langle D, \mathcal{F} \rangle$$
 is a decision model if $\{0, 1\} \subseteq D$, $\forall f \in \mathcal{F} (f[D] \subseteq \{0, 1\})$.

Theorem (Endrullis/G/Hendriks, [3])

Let Σ and Γ with $\{0,1\} \subseteq \Sigma$, Γ be alphabets.

Then for every countable decision model $\mathcal{M} = \langle \Sigma^*, \mathcal{F} \rangle$, it holds:

$$\mathcal{M} \lesssim \mathsf{DFA}(\Gamma)$$
 $\mathcal{M} \lesssim_{\mathsf{bijective}} \mathsf{DFA}(\Gamma)$

 $\mathsf{TMD}(\Sigma)$: class of Turing machine deciders with input alphabet Σ

Anomaly (example)

$$\mathsf{TMD}(\Sigma) \lesssim_{\mathsf{bijective}} \mathsf{DFA}(\Gamma)$$

These anomalies for decision models and bijective encodings:

- depend on uncomputable encodings
- can be extended to some moc's with unbounded output domain
- but do not extend to all moc's

Simulations between models of computation

models $M_1 \in \mathcal{M}_1$ and $M_2 \in \mathcal{M}_2$ simulate each other with respect to coding $\cdot \cdot : I_{\mathcal{M}_1} \to I_{\mathcal{M}_2}$ and decoding $\cdot \cdot : O_{\mathcal{M}_2} \to O_{\mathcal{M}_1}$ if:

Simulations between models of computation

models $M_1 \in \mathcal{M}_1$ and $M_2 \in \mathcal{M}_2$ simulate each other with respect to coding $\cdot \cdot : I_{\mathcal{M}_1} \to I_{\mathcal{M}_2}$ and decoding $\cdot \cdot : O_{\mathcal{M}_2} \to O_{\mathcal{M}_1}$ if:

Simulations between models of computation

models $M_1 \in \mathcal{M}_1$ and $M_2 \in \mathcal{M}_2$ simulate each other with respect to coding $: I_{\mathcal{M}_1} \to I_{\mathcal{M}_2}$ and decoding $: O_{\mathcal{M}_2} \to O_{\mathcal{M}_1}$ if:

(defines a Galois connection)

Comparing Computational Power of MoC's

Definition

Let \mathcal{M}_1 and \mathcal{M}_2 be MoC's.

1 The computational power of \mathcal{M}_1 is subsumed by that of \mathcal{M}_2 , denoted symbolically by $\mathcal{M}_1 \leq \mathcal{M}_2$, if:

Comparing Computational Power of MoC's

Definition

Let \mathcal{M}_1 and \mathcal{M}_2 be MoC's.

• The computational power of \mathcal{M}_1 is subsumed by that of \mathcal{M}_2 , denoted symbolically by $\mathcal{M}_1 \leq \mathcal{M}_2$, if:

2 The computational power of \mathcal{M}_1 is equivalent to that of \mathcal{M}_2 , denoted by $\mathcal{M}_1 \sim \mathcal{M}_2$, if both $\mathcal{M}_1 \leq \mathcal{M}_2$ and $\mathcal{M}_2 \leq \mathcal{M}_1$ hold.

Comparing Computational Power of MoC's

Theorem

For all models \mathcal{M}_1 and \mathcal{M}_2 , and encoding and decoding functions $: I_{\mathcal{M}_1} \to I_{\mathcal{M}_2}$ and $: : O_{\mathcal{M}_2} \to O_{\mathcal{M}_1}$ it holds:

$$\mathcal{M}_1 \leq_{(`\cdot,\cdot,\cdot')} \mathcal{M}_2 \implies \mathcal{F}(\mathcal{M}_1) \subseteq \{`\cdot,'\circ f \circ \cdot'\cdot' \mid f \in \mathcal{F}(\mathcal{M}_2)\}.$$

Turing completeness and equivalence

By $\mathcal{TM}(\Sigma)$ we mean the model of Turing machines over input alphabet Σ .

Definition

Let \mathcal{M} a model of computation.

 \mathcal{M} is Turing-complete if $\mathcal{TM}(\Sigma) \leq \mathcal{M}$ for some alphabet Σ with $\Sigma \neq \emptyset$.

 \mathcal{M} is Turing-equivalent if $\mathcal{M} \sim \mathcal{TM}(\Sigma)$ for some alphabet $\Sigma \neq \emptyset$.

se some MoCs ov PCP I-Nets abstract MoCs how compare MoCs? compare MoCs Fractran summ some MoCs course refs

Fractran

John Horton Conway:

- article:
 - FRACTRAN:
 A Simple Universal Programming Language for Arithmetic
- talk video:
 - "Fractran: A Ridiculous Logical Language"

irse some MoCs ov PCP I-Nets abstract MoCs how compare MoCs? compare MoCs Fractran summ some MoCs course refs

Summary

- ► Post's Correspondence Problem (by Emil Post, 1946, [6])
- ► Interaction Nets (by Yves Lafont, 1990, [4])
- Compare computational power of models of computation
- Fractran (by John Horton Conway, 1987, [2])

some MoCs ov PCP I-Nets abstract MoCs how compare MoCs? compare MoCs Fractran summ some MoCs course refs

Some Models of Computation

machine model	sort	
Turing machine Post machine register machine	Combinatory Logic \$\lambda\$-calculus Herbrand-Gödel recursive functions partial-recursive/\(\mu\)-recursive functions Post canonical system (tag system) Post's Correspondence Problem Markov algorithms Lindenmayer systems	classical
	Fractran	less well known
cellular automata neural networks		
hypercomputation		speculative
quantum computing bio-computing reversible computing		physics-/biology- inspired

irse some MoCs ov PCP I-Nets abstract MoCs how compare MoCs? compare MoCs Fractran summ some MoCs course refs

Course overview

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 – 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro	classic models			additional models
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	$\begin{array}{ll} \lambda\text{-terms, }\beta\text{-reduction,}\\ \lambda\text{-definable functions,}\\ \text{partial recursive}\\ = \lambda\text{-definable}\\ = \text{Turing computable} \end{array}$	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets, Fractran comparing computational power

References I

Logic Journal of the IGPL, 14(5):633-647, 10 2006.

John Horton Conway.

FRACTRAN: A Simple Universal Programming Language for Arithmetic.

58(2):345-363, April 1936.

Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks.
Regularity-Preserving but not Reflecting Encodings.
In Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science 2015 (Kyoto, Japan, July 6–10, 2015), pages 535–546, July 2015.

Yves Lafont.

Interaction Nets.

Proceedings of POPL'90, pages 95-108, 1990.

References II

Vincent van Oostrom, Kees-Jan van de Looij, and Marijn Zwitserlood.

Lambdascope.

Extended Abstract, Workshop ALPS, Kyoto, April 10th 2004, 2004.

http://www.phil.uu.nl/~oostrom/publication/pdf/
lambdascope.pdf.

Emil Leon Post.

A Variant of a Recursively Unsolvable Problem.

Bulletin of the American Mathematical Society, 52:264–268, 1946.

rse some MoCs ov PCP I-Nets abstract MoCs how compare MoCs? compare MoCs Fractran summ some MoCs course refs

References III

Jan Rochel.

graph-rewriting-lambdascope: Lambdascope, an optimal evaluator of the lambda calculus.

Haskell package on Hackage, https://hackage.haskell.org/package/graph-rewriting-lambdascope, 2010. Lambdascope interaction-net animation tool.