MC-Kit Manual

Stephen Tierney

August 15, 2014

1 Introduction

1.1 Classic Matrix Completion

The problem of Matrix Completion (MC) is to recover a matrix **A** from only a small sample of its entries. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be the matrix we would like to know as precisely as possible while only observing a subset of its entries $(i,j) \in \Omega$. It is assumed that observed entries in Ω are uniform randomly sampled. Low-Rank Matrix Completion is a variant that assumes that **A** is low-rank. The tolerance for "low" is dependant upon the size of **A** and the number of sampled entries.

For further explanation let us define the sampling operator $\mathcal{P}_{\Omega}: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ as

$$[\mathcal{P}_{\Omega}(X)]_{ij} = \begin{cases} X_{ij}, & (i,j) \in \Omega, \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

We also define the opposite operator $\mathcal{P}_{\bar{\Omega}}$, which keeps those outside Ω unchanged and sets values inside Ω (i.e. $\bar{\Omega}$) to 0. Since we assume that the matrix to recover is low-rank, one could recover the unknown matrix by solving

$$\min_{\mathbf{A}} \operatorname{rank}(\mathbf{A})$$
s.t. $\mathcal{P}_{\Omega}(\mathbf{A}) = \mathcal{P}_{\Omega}(\mathbf{M})$

where matrix M is the partially observed matrix. In practice this problem is intractable therefore we use the closest convex relaxation i.e. the nuclear norm

$$\min_{\mathbf{A}} \tau \|\mathbf{A}\|_{*}$$
 s.t. $\mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})$

We also consider the case where our observed entries may contain a limited amount of noise. Our corresponding objective is the following

$$\min_{\mathbf{A}} \tau \|\mathbf{A}\|_* + \frac{\lambda}{2} \|\mathcal{P}_{\Omega}(\mathbf{E})\|_F^2$$
s.t. $\mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A}) + \mathcal{P}_{\Omega}(\mathbf{E})$ (4)

2 Singular Value Shrinkage Operator

Central to this work is the **singular value shrinkage operator**. Consider the singular value decomposition (SVD) of a matrix $\mathbf{Y} \in \mathbb{R}^{m \times n}$ with rank r

$$\mathbf{Y} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathbf{T}}, \ \mathbf{\Sigma} = \operatorname{diag}(\{\sigma_i\}_{i=1}^r).$$
 (5)

Then we define the singular value shrinkage operator for any $\tau \geq 0$ as

$$\mathcal{D}_{\tau}(\mathbf{Y}) = \mathbf{U} S_{\tau}(\mathbf{\Sigma}) \mathbf{V}^{T}, \quad S_{\rho}(\mathbf{\Sigma}) = \operatorname{diag}(\{\max(\sigma_{i} - \tau, 0)\}). \tag{6}$$

It has been shown [1] that the operator $\mathcal{D}_{\tau}(\mathbf{Y})$ is the solution to the proximal nuclear norm problem i.e.

$$\mathcal{D}_{\tau}(\mathbf{Y}) = \underset{\mathbf{X}}{\operatorname{argmin}} \ \tau \|\mathbf{X}\|_{*} + \frac{1}{2} \|\mathbf{X} - \mathbf{Y}\|_{F}^{2}$$
 (7)

The implementation of the singular value singular shrinkage operator is implemented by the function $[\mathbf{X}, \mathbf{s}] = \text{nn_prox}(\mathbf{Y}, \tau)$, where \mathbf{s} is the vector of the singular values of \mathbf{X} .

3 Function Listing

Problem	Function	Section
$\frac{\min_{\mathbf{A}} \tau \ \mathbf{A}\ _* + \frac{1}{2} \ \mathbf{A}\ _F^2}{\text{s.t. } \mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})}$	solve_svt	4.1.1
$\min_{\mathbf{A}} \tau \mathbf{A} _*$	solve_ialm	4.1.2
s.t. $\mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})$	solve_lin	4.1.3
$ au \ \mathbf{A}\ _* + rac{\lambda}{2} \ \mathcal{P}_{\Omega}(\mathbf{A}) - \mathcal{P}_{\Omega}(\mathbf{M})\ _F^2$	solve_e_lin	4.2
	solve_e_lin_ext	
	solve_e_lin_acc	
$\frac{\min_{\mathbf{A}, \mathbf{E}} \tau \ \mathbf{A}\ _* + \frac{\lambda}{2} \ \mathcal{P}_{\Omega}(\mathbf{E})\ _F^2}{\text{s.t. } \mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A}) + \mathcal{P}_{\Omega}(\mathbf{E})}$	solve_e_exact	4.3

4 Classic Implementations

4.1 Noise Free Data

4.1.1 SVT

The function

 $[\mathbf{A}, \mathbf{f_values}, \mathbf{stop_vals}] = \text{solve_svt}(\mathbf{M}, \Omega, \tau, \mu, iterations, tol)$

solves the following

$$\min_{\mathbf{A}} \tau \|\mathbf{A}\|_* + \frac{1}{2} \|\mathbf{A}\|_F^2
\text{s.t. } \mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})$$
(8)

as proposed by the authors of [1].

- ullet M matrix with observed entries
- Ω vector of constrained matrix indices
- τ regularisation (optional)
- μ step size (optional)
- iterations maximum number of iterations (optional)
- tol stopping criteria tolerance (optional)

4.1.2 Inexact ALM

The function

$$[\mathbf{A}, \mathbf{f_vals}, \mathbf{stop_vals}] = \text{solve_ialm}(\mathbf{M}, \Omega, \tau, \mu, iterations, tol)$$

solves the following

$$\min_{\mathbf{A}} \tau \|\mathbf{A}\|_{*}$$
 s.t. $\mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})$

as proposed by the authors of [3].

- ullet M matrix with observed entries
- Ω vector of constrained matrix indices
- τ regularisation (optional)
- μ step size (optional)
- iterations maximum number of iterations (optional)
- tol stopping criteria tolerance (optional)

4.1.3 Linearised ALM

The function

$$[\mathbf{A}, \mathbf{f}_\mathbf{vals}, \mathbf{stop}_\mathbf{vals}] = \text{solve_lin}(\mathbf{M}, \Omega, \tau, \mu, \rho, iterations, tol)$$

solves the following

$$\min_{\mathbf{A}} \tau \|\mathbf{A}\|_{*}$$
 s.t. $\mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})$

- ullet M matrix with observed entries
- Ω vector of constrained matrix indices
- τ regularisation (optional)
- μ step size (optional)
- ρ linearisation step size (optional)
- iterations maximum number of iterations (optional)
- tol stopping criteria tolerance (optional)

4.2 Noisey Data Relaxation

The functions

$$\begin{split} [\mathbf{A}, \mathbf{f_vals}, \mathbf{stop_vals}] &= \operatorname{solve_e_lin}(\mathbf{M}, \Omega, \tau, \lambda, \rho, iterations, tol) \\ [\mathbf{A}, \mathbf{f_vals}, \mathbf{stop_vals}] &= \operatorname{solve_e_lin_ext}(\mathbf{M}, \Omega, \tau, \lambda, \rho, iterations, tol) \end{split}$$

 $[\mathbf{A}, \mathbf{f_vals}, \mathbf{stop_vals}] = \text{solve_e_lin_acc}(\mathbf{M}, \Omega, \tau, \lambda, \rho, iterations, tol)$

solve the following

$$\min_{\mathbf{A}} \tau \|\mathbf{A}\|_* + \frac{\lambda}{2} \|\mathcal{P}_{\Omega}(\mathbf{A}) - \mathcal{P}_{\Omega}(\mathbf{M})\|_F^2$$
(11)

with increasing convergence speed based on [2].

- M matrix with observed entries
- $\bullet~\Omega$ vector of constrained matrix indices
- τ regularisation (optional)
- λ regularisation (optional)
- ρ linearisation step size (optional)
- iterations maximum number of iterations (optional)
- tol stopping criteria tolerance (optional)

4.3 Noisey Data Exact

The function

 $[\mathbf{A}, \mathbf{f_vals}, \mathbf{stop_vals}] = \operatorname{solve_e_exact}(\mathbf{M}, \Omega, \tau, \lambda, \rho, iterations, tol)$

solve the following

$$\min_{\mathbf{A}} \tau \|\mathbf{A}\|_* + \frac{\lambda}{2} \|\mathcal{P}_{\Omega}(\mathbf{E})\|_F^2
\text{s.t. } \mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A}) + \mathcal{P}_{\Omega}(\mathbf{E})$$

- ullet M matrix with observed entries
- Ω vector of constrained matrix indices
- τ regularisation (optional)
- λ regularisation (optional)
- ρ linearisation step size (optional)
- ullet iterations maximum number of iterations (optional)
- tol stopping criteria tolerance (optional)

References

- [1] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.
- [2] Shuiwang Ji and Jieping Ye. An accelerated gradient method for trace norm minimization. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pages 457–464. ACM, 2009.
- [3] Zhouchen Lin, Minming Chen, and Yi Ma. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.