

(19) RU (11) 2 071 809 (13) C1
(51) МПК⁶ B 01 D 39/04

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка. 93032436/26, 21.06.1993

(46) Дата публикации. 20.01.1997

(56) Ссылки. 1. Патент США N 4455237, кл. B 01 D 39/18, 1982. 2. Авторское свидетельство СССР N 1710102, кл. B 01 D 39/00, 1989.

(71) Заявитель:
Всесоюзный научно-исследовательский
институт торфяной промышленности

(72) Изобретатель: Колесов Р.И.,
Михайлов А.В., Иванов М.Н., Лугерт
Е.Б., Перепеликин К.Е.

(73) Патентообладатель:
Всесоюзный научно-исследовательский
институт торфяной промышленности

(54) СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА ИЗ ТОРФА

(57) Реферат:

Изобретение относится к способам получения фильтрующих материалов из волокнистых органических наполнителей, используемых для очистки водных и воздушных сред. Способ получения фильтрующего материала из торфа включает предварительную сепарацию торфа от сорных примесей. Дробление отсепарированного торфа с выделением его волокнистой части и формирование полотна. Отсепарированный торф сушат до влажности 15-20%, а после дробления производят разрыхление, трепание и расчесывание его

волокнистой части и формирование полотна торфяной ватки с ориентированными в продольном направлении волокнами с последующим складыванием полотна в продольном и поперечном направлениях и его закрепление иглопробивным способом до получения материала с поверхностной плотностью 80-700 г/м². Закрепление материала производят с частотой пробивки 10-20 игл/см². Для получения фильтрующего материала используют пущице-афганский торф степенное разложение до 15%. 2 з. п. ф-лы, 2 табл.

R U 2 0 7 1 8 0 9 C 1

R U 2 0 7 1 8 0 9 C 1

(19) RU (11) 2 071 809 (13) C1
(51) Int. Cl. 6 B 01 D 39/04

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application. 93032436/26, 21.06.1993

(46) Date of publication. 20.01.1997

(71) Applicant:
Vsesojuznyj nauchno-issledovatel'skij
institut torfjanoy promyshlennosti

(72) Inventor: Koleev R.I.,
Mikheilov A.V., Ivanov M.N., Lugert
E.V., Perepelkin K.E.

(73) Proprietor:
Vsesojuznyj nauchno-issledovatel'skij
institut torfjanoy promyshlennosti

(54) METHOD OF PREPARING FILTERING MATERIAL FROM PEAT

(57) Abstract.

FIELD. filtering materials for water and air media. SUBSTANCE: method includes preliminary separation of peat from litters, crushing of separated peat to produce its fiber component, and formation of fabric. Separated peat is dried to moisture 15-20%, and, after crushing, peat is expanded, beaten, and its fiber fraction is combed to produce a peat-wool fabric with longitudinally oriented fibers. Fabric is

further folded in longitudinal and transverse directions, and thus formed structure is fixed by needle-punching technique until material with surface density 80-700 l/sq.m is obtained. Punch density is chosen within the range 10-20 l/sq.cm. To prepare filtering material, peat with disintegration degree up to 15% is utilized. EFFECT: improved preparation procedure. 3 cl, 2 tbl

RU 2 071 809 C1

RU 2 071 809 C1

Изобретение относится к способам получения фильтрующих материалов из волокнистых органических наполнителей, используемых для очистки водных и воздушных сред.

Известен способ получения фильтрующего материала из волокнистой органической массы, включающий предварительную сепарацию массы от сорных примесей, ее дробление с выделением волокнистой части и формирование фильтрующей среды [1].

Способ предусматривает дробление исходного материала с выделением органической волокнистой массы в присутствии водяного пара при давлении 0,62-0,82 МПа и температуре 165-177°C и формирование фильтрующей среды путем прессования волокнистой массы в листы со случайно ориентированной структурой волокон. Поскольку полученные в результате изменения материала волокна не обеспечивают самосцепления друг с другом без высокой температуры способ сопряжен со значительными тепло- и энергозатратами (до 617 кВт·ч/т), что удороажает стоимость изготовленного материала и ограничивает возможности потребительского спроса.

Известен способ получения фильтрующего материала из торфа, включающий предварительную сепарацию торфа от сорных примесей, дробление отсепарированного торфа с выделением его волокнистой части и формирование полотна [2].

Способ предусматривает обработку измельченного торфа раствором гидроксида натрия с концентрацией 0,09-0,11 моль/л при температуре 85-90°C с последующим использованием полученного материала для очистки сточных вод медно-травильного производства.

Подготовка исходного торфа, заключающаяся лишь в его измельчении в сочетании с последующей обработкой торфа раствором гидроксида натрия, предопределяет фильтрующему материалу узконаправленную область применения, а именно очистку сточных вод медно-травильного производства, что ограничивает возможность его использования. Полученный таким способом фильтрующий материал не может быть достаточно эффективно использован для тонкой очистки водно-воздушных сред от широкого спектра органических и других загрязнителей.

Цель изобретения - расширение технологических возможностей применения получаемого фильтрующего материала за счет повышения удерживающей способности формируемой фильтрующей среды.

Указанный цель достигается тем, что в известном способе получения фильтрующего материала из торфа, включающем предварительную сепарацию торфа от сорных примесей, дробление отсепарированного торфа с выделением его волокнистой части и формирование полотна, отсепарированный торф сушат до влажности 15-20% а после дробления производят разрыхление, трепание и расчесывание его волокнистой части и формирование полотна торфяной ватки с ориентированными в продольном направлении волокнами с

последующим последовательным сложением полотна в продольном и поперечном направлениях и его закрепление иглопробивным способом до получения материала с поверхностной плотностью

5 80-700 г/м².

Закрепление материала производят с частотой пробивки 10-20 игл/см².

Для получения фильтрующего материала используют пущице-афганский торф степенью разложения до 15%

10 Разрыхление, трепание и расчесывание

выделенной волокнистой части торфа и формирование полотна торфяной ватки с ориентированными в продольном направлении волокнами с последующим сложением его в продольном и поперечном направлениях и закрепление полученного материала иглопробивным способом позволяет получить из торфа фильтрующий материал с широким диапазоном поверхностной плотности и высоким показателем удерживающей способности, что обусловлено повышением однородности структуры фильтрующей среды. Полученный данным способом материал может быть эффективно использован для очистки как водных, так и воздушных сред, что расширяет технологические возможности его использования.

Кроме того, возможность введения в материал различного рода добавок или обработка его жидкими реагентами позволит 20 усилить эффект избирательной очистки загрязненных сред.

Использование для получения фильтрующего материала пущице-афганского торфа степенью разложения до 15% и сушка его до влажности

25 15-20% обеспечивает получение сравнительно высокого выхода волокнистой части торфа, что свидетельствует об эффективности данного способа.

Предлагаемый способ получения фильтрующего материала из торфа реализуется следующим образом.

Предварительно отсепарированный от сорных примесей (древесные и металлические включения) верховой торф степенью разложения до 15% сушат до влажности 15-20% после чего производят его дробление с выделением волокнистой части. Выделенную волокнистую часть торфа разрыхляют, треплют и расчесывают до получения торфяной ватки с продольно ориентированными волокнами. При этом от волокнистой части торфа последовательно отделяются все крупинчатые частицы.

Полученную торфяную ватку формируют в полотно, при этом производят последовательное сложение полотна в продольном и поперечном направлениях и его закрепление иглопробивным способом до получения материала с поверхностной плотностью 80-700 г/м². Закрепление материала производят с частотой пробивки

40 10-20 игл/см².

Для получения фильтрующего материала используют, преимущественно, пущице-афганский торф степенью разложения до 15%. Степень разложения и влажность высушенного торфа определяют один из основных показателей технологии выхода волокнистой части торфа, используемой для получения фильтрующего

материала.

В таблице 1 приведены данные о выходе волокнистой части торфа (в от массы) в зависимости от степени разложения и влажности высушенного торфа.

При влажности торфа менее 15% и степени его разложения до 20% выход волокнистой части торфа незначителен, что объясняется его перевесшенною и измельчением части волокнистой составляющей торфа в процессе последующих операций разрыхления, трепания, расчесывания и удаления ее вместе с крупинчатыми частицами торфа в отходы.

При влажности торфа свыше 20% выход волокнистой части также незначителен, поскольку увеличивается выпадение в отходы волокнистых частиц, связанных силой взаимного сцепления с крупинчатыми частицами.

При степени разложения свыше 15% и любой влажности высушенного торфа наблюдается последовательное снижение выхода волокнистой части, обусловленное уменьшением ее содержания в исходном торфе.

Максимальный выход волокнистой части получен на торфах со степенью разложения 15% при влажности 15-20%.

Одним из основных параметров, определяющих фильтрационные свойства материала, является его поверхностная плотность ($\text{г}/\text{м}^2$). В таблице 2 приведены значения коэффициентов воздухопроницаемости ($\text{м}^3/\text{м}^2\text{Pa}$) и водопроницаемости ($\text{м}^3/\text{м}^2 \text{ МПа}$), полученные при опытной проверке образцов фильтрующего материала с различной поверхностной плотностью. Большой диапазон этого показателя был достигнут путем варьирования числа сложений полотна торфяной ватки и частоты пробивки материала.

При поверхностной плотности материала менее $80 \text{ г}/\text{м}^2$, полученного при одном сложении и частоте пробивки 5 $\text{игл}/\text{см}^2$, коэффициенты воздухо-

водопроницаемости максимальны, но низка задерживающая способность полученного фильтрующего материала. Последний имеет рыхкую структуру, не обеспечивающую достаточную степень очистки загрязненных сред.

Материал с поверхностной плотностью выше $700 \text{ г}/\text{м}^2$ (два сложения полотна ватки, 30 $\text{игл}/\text{см}^2$) имеет сравнительно низкие коэффициенты воздухо- и водонапроницаемости, что снижает скорость фильтрации. Наиболее оптимальны показатели коэффициентов воздухо- и водонапроницаемости образцов материала с поверхностной плотностью $80-700 \text{ г}/\text{м}^2$, полученные при 1-2 сложениях и частоте пробивки 10-20 $\text{игл}/\text{см}^2$. Материал с таким диапазоном поверхностной плотности может быть достаточно эффективно использован для очистки водных и воздушных сред от самого широкого спектра загрязнителей.

Формула изобретения:

- Способ получения фильтрующего материала из торфа, включающий предварительную сепарацию торфа от сорных примесей, дробление отсепарированного торфа с выделением его волокнистой части и формирование полотна, отличающейся тем, что отсепарированный торф сушат до влажности 15 - 20% а после дробления производят разрыхление, трепание и расчесывание его волокнистой части и формирование полотна торфяной ватки с ориентированными в продольном направлении волокнами с последующим складыванием полотна в продольном и поперечном направлениях и его закрепление иглопробивным способом до получения материала с поверхностной плотностью $80-700 \text{ г}/\text{м}^2$.
- Способ по п. 1, отличающейся тем, что закрепление материала производят с частотой пробивки 10-20 $\text{игл}/\text{см}^2$.
- Способ по п. 1, отличающейся тем, что для получения фильтрующего материала используют пущево-сфагновый торф со степенью разложения до 15%.

45

50

55

60

Таблица 1

Влажность высушенного торфа, %	Выход волокнистой части торфа, % при степени разложения, %		
	10	15	20
10	21	20	18
15	36	34	29
20	45	42	31
30	30	27	26

Таблица 2

Частота пробивки материала, игл/см ²	Поверхностная плотность, г/м ²	Коэффициент воздухопроницаемости, м ³ /м ² МПа	Коэффициент водопроницаемости, м ³ /м ² МПа
5	60	0,047	58,5
10	80	0,035	47,8
"	200	0,023	42,4
"	400	0,021	37,6
20	600	0,018	34,2
"	700	0,015	31,5
30	800	0,0078	24,2

RU 2071809 C1