คำอธิบายจักรกลเรียนรู้ แบบข้อต้านความจริง

(Counterfactual explanations)

้ ศีระกร ลำใย

กลุ่มวิจัยเชิงทฤษฎี ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

ทำไมเราต้องการคำอธิบาย ให้ปัญญาประดิษฐ์

กรณีศึกษา: Apple Card

- Apple Card ให้วงเงินบัตรเครดิต กับผู้ชายมากกว่าผู้หญิง
 กรณีนี้เกิดขึ้นแม้กับคู่ชาย-หญิงที่ใช้ เอกสวุรทางการเงินร่วมกันทั้งหมด
 - ด้วยซ้า
- บริษัท Goldman Sachs ผู้ออก บัตรบอกว่า "In fact, we do not know your gender or marital status during the Apple Card application process."

กรณีศึกษา: ทำไมทั้งกัน

- มาตรการเยียวยา 5,000 บาท ของเราไม่ทิ้งกัน เคลมว่าใช้ Al คัดคน 27 ล้านคน
 - เป็น AI ปริศนา?
 - Dataset มาจากไหน?
 - การคัดแบบนี้ควรจะเป็น data driven จริงๆ หรือ?

(Rights to explanation)

สรุปต้นตอแห่งความ*กระเสือกกระสน*

ความเป็นธรรม

ความเป็นส่วนตัว

ความน่าเชื่อถือ (reliability)

ความเป็นเหตุเป็นผล

ความเชื่อใจ (trust)

ว่าด้วยการอธิบายจักรกลเรียนรู้

เพราะเรา**ตีความ**จักรกลเรียนรู้ได้

- จักรกลเรียนรู้**ไม่ใช่กล่องดำเสมอไป**-บางครั้งคราว เราสามารถ "แงะ" กล่องดำออกมาส่องดูข้างในได้เช่นกัน
- ศาสตร์แห่งจักรกลเรียนรู้ที่ตีความได้มุ่งเน้นศึกษาวิธี "งัด" กล่อง ดำข้างในออกมาดู

การตีความจักรกลเรียนรู้

- ว่าด้วยวิธีการตีความ
 - ภายใน (intrinsic): สร้างข้อจำกัดให้แบบจำลองไม่ซับซ้อนเกินไป จะได้ อธิบายได้
 - ภายหลัง (post-hoc): สร้างๆ แบบจำลองมาก่อน เดี๋ยวค่อยอธิบาย
- ว่าด้วยการนำงั้นตอนวิธีไปใช้
 - ไม่**ขึ้นกับแบบจำลอง (model agnostic):** วิธีนี้ปรับใช้ได้กับแบบจำลองทุก ประเภท
 - **ขึ้นกับแบบจำลอง (model dependent):** วิธีนี้ใช้ได้กับแบบจำลองบาง ประเภทเท่านั้น

ระดับของขั้นตอนวิธีการอธิบาย

คำอธิบายเฉพาะที่บนจุด (local explanation on single data point)

คำอริบายเฉพาะที่บนกลุ่ม (local explanation on group)

คำอริบายครอบคลุม (global explanation)

- ไม่ใช่ว่าทุกคำอธิบายจะมีค่าเท่ากันหมด
 คำอธิบายบางรูปแบบ ใช้อธิบายแบบจำลองได้แค่นิดๆ หน่อย
 คำอธิบายมางรูปแบบ อธิบายได้เฉพาะพฤติกรรมของ instance หนึ่งของ ข้อมลเท่านั้น
- ปัญหาก้ารอธิบายให้ได้ครอบคลุม (เราอยากได้ local explanation ยังคงเป็น ปัญหาที่นักวิจัยพยายามตีให้แตกอยู่เหมือนกัน)

รูปแบบผลการตีความจักรกลเรียนรู้

- ชุดพารามิเตอร์
- ชุดฟีเจอร์
- จุดข้อมูล

คำอธิบาย*ที่ดี*

- บ่งบอกความแตกต่าง
- ถูกเลือกมาเป็นคำอธิบาย
- อิงกับบริบททางสังคม
- อิงกับกรอบวิถีแห่งความปกติ

บาอธิบายแบบจำลองกันเถอะ!

การถดถอยเชิงเส้น (linear regression)

- อธิบายฟีเจอร์ด้วยพารามิเตอร์แบบจำลอง
 - กรณีฟีเจอร์เป็นค่าต่อเนื่อง
 - w_i บอกผลกระทบที่ y จะเปลี่ยนเมื่อ x_i เพิ่มขึ้นหนึ่งหน่วย
 - กรณีฟีเจอร์เป็นข้อมูลหมวดหมู่
 - w_i บอกผลกระทบที่หากมี c_i แล้วทำให้เกิดการเปลี่ยนแปลงของ y_i
 - ไบแอส (b, w₀)
- อธิบายความสำคัญของฟีเจอร์ ผ่านการทดสอบ t-statistic

ต้นไม้ตัดสินใจ (decision tree)

- Rule-based Al คือ Al ที่อธิบาย ได้ในระดับหนึ่ง
- ถ้าเรากำหนดชั้นของ tree น้อยๆ เราก็ย่อมพออธิบาย แบบจำลองของเราผ่านการ แตก tree ได้
 - อย่าลืมว่าจำนวนใบที่เป็นไป ได้มากที่สุด โตเป็น exponential ของจำนวนชั้นของต้นไม้

่งนตอนวิธีการ อธิบายแบบจำลอง

Partial Dependency Plot

- หากมีแบบจำลอง พยายามหา ความเกี่ยวโยงว่าการ เปลี่ยนแปลงค่างองฟีเจอร์หนึ่ง ส่งผลต่อแบบจำลองอย่างไร
- ใช้วิธีการมอนที-คาร์โล ในการ ประมาณฟีเจอร์ตัวที่เราไม่ได้สนใจ

$$\hat{f}_{x_S}(x_S) = \frac{1}{n} \sum_{i=1}^{n} \hat{f}(x_S, x_C^{(i)})$$

การปฏิสัมพันธ์ของฟีเจอร์ (feature interaction)

 Friedman เสนอ H-statistic มา วัดการปฏิสัมพันธ์ของฟีเจอร์ สองตัว

LIME (Local Interpretable Model-Agnostic Explanation)

- คำอธิบายเกิดจากการฝึกสอนแบบจำลอง ที่ซับซ้อนน้อยกว่าและเข้าใจได้ง่ายกว่า
 - พยายาม minimise ค่าสองค่า: loss vอง
 แบบจำลองนั้นรอบจุดที่จะอธิบาย และฟังก์ชัน
 สำหรับพิจารณาความซับซ้อนของแบบจำลอง

• Local explanation: วิษณุ เครื่องาม

- ทำไมเรายังอยู่เฟสสอง อ๋อเพราะเราใช้เกณฑ์ ของเราเอง...
- ทำไมจุด x ตอบแบบนี้ อ๋อเพราะรอบๆ จุด x มัน เป็นแบบนี้...
- ทำไมจุด y ตอบแบบนี้ อ๋อเพราะจริงๆ ถ้าเราดู ใกล้ๆ จุด y...

คำอธิบายข้อต้านความจริง (Counterfactual examples)

คำอธิบายข้อต้านความจริง

"โดนปฏิเสธสินเชื่อเพราะมี เงินเดือน 50,000 บาท ถ้ามี เงินเดือนสัก 70,000 บาทก็ ไม่โดนปฏิเสธแล้ว"

- ให้นึกถึง if clause แบบที่สามใน ไวยากรณ์ภาษาอังกฤษ
 - "ถ้า" กับเรื่องที่ไม่ได้เป็นจริง และ
 "แล้ว" ไม่ได้เกิดขึ้นจริง
- เสนอความขึ้นกัน (dependency)
 กับข้อมูลภายนอก (ในที่นี้คือ
 เงินเดือน) ที่ส่งผลต่อการตัดสินใจ
 ของแบบจำลอง

ผมสร้าง**โลก**ขึ้นมาสองใบ

"โดนปฏิเสธสินเชื่อเพราะมี เงินเดือน 50,000 บาท ถ้ามี เงินเดือนสัก 70,000 บาทก็ ไม่โดนปฏิเสธแล้ว"

- โลกที่เกิดขึ้นจริง (มีเงินเดือน 50,000 บาทจริง) และโลกสมมติ (ที่เรามีเงินเดือน 70,000 บาท)
- โลกสมมติอยู่บนความ เปลี่ยนแปลงที่ทำให้เกิดผลลัพธ์ที่ แตกต่างจากที่เป็นอยู่
- คำอธิบายเสนอได้ทั้ง "โลกที่ใกล้ ที่สุด" และ "โลกที่เป็นไปได้"
 - ผมสร้างโลกขึ้นมาหลายใบ...

บนปรัชญาแห่งความรู้

ผู้รู้ (subject)

ความรู้ (knowledge)

(แต่ผมไม่รู้ว่าเค้าไหน)

บนปรัชญาแห่งความรู้

Propositional knowledge

- ความรู้คือ "ความเชื่อที่เป็นจริง และมีเหตุอันสมควร" (justified true beliefs)
 - Beliefs: ต้องเชื่อ
 - True: สิ่งที่เชื่อต้องเป็นจริง
 - Justified: มีเหตุผลที่ดีในการเชื่อ

Sensitivity

- "ถ้า p เป็นเท็จ S จะไม่เชื่อ p"
 - "ถ้า p เป็นเท็จ" คือคำอธิบายข้อ ต้านความจริง!
 - เสนอ "โลก" ที่ p เป็นเท็จ และ พยายามอริบายโลกนั้นให้ได้

นิยามของคำอธิบายข้อต้านความจริง

นิยามงองคำอริบายต่อต้านความจริง

- Result p was returned because of the values V.
- If V instead had values V' and other variables had remained constant, p' would have been returned.
- จะสังเกตเห็นว่ามีค่า V' มากมายที่เป็นไปได้
 - ถ้ามีเงินเดือน 2.2 ล้านล้านบาทก็ กู้สินเชื่อได้ (แต่ใครมันจะมี?)
- เราสนใจหา "โลกที่ใกล้ที่สุด"
 หรือไม่ก็ "โลกหลายๆ ใบ"

คำอธิบายข้อต้านความจริงบนแบบจำลองการเรียนรู้ แบบเขียนกฎ (rule-based)

- จากต้นไม้ตัดสินใจนี้ เอามาเงียนเป็นกฎได้ว่า "ถ้าเชียร์ลุงตู่ = N และเชียร์ธนาธร = Y แล้ว เป็น ควายสัม"
- คำอธิบายจะอยู่ในรูปแบบคล้ายๆ กับ "ถ้าเชียร์ลุงตู่ = N หรือเชียร์ธนาธร = N ก็ไม่เป็นควายส้ม หรอก"
 - เสนอ "โลกอีกใบ"

การเรียนรู้ประสงค์ร้าย (Adversarial learning)

การเรียนรู้ประสงค์ร้าย 101

https://www.facebook.com/photo?fbid=102186558420 60241&set=gm.3018514041545705

- หมาโดนเงาตกใส่ โดนมองผิด ว่าเป็นเสือ
- เงาคือสัญญาณโจมตี
 (perturbations) ที่ใส่ในหมา
 แล้วทำให้แบบจำลองคืนค่า
 คำตอบที่ไม่ควรเป็น

การคำนวนสัญญาณโจมตี

$$l = 3.14$$
 \bigcirc $l = 1.41$ \bigcirc $l = 0.02$ \bullet $l = 2.71$ \bigcirc

นร้อมของบอร์ม

Given an input to be attacked that lies in an input space...

- Define the "invisibility" measurement
 - Norm or other constraints
- Find the perturbation which maximise such loss function within the constrained norm
 - Optimisation problem
- There exists many perturbations, but their *power* may not be equal

Fast Gradient Sign Method (FGSM)

[Goodfellow+ 2014, arXiv: 1412.6572]

- คำนวนเกรเดียนต์ของข้อมูล รับเข้าเทียบกับฟังก์ชันสูญเสีย
- ฉายไปสุดกรอบของนอร์ม
- เป็นการประมาณการเพิ่มค่า loss ให้สูงที่สุดที่เป็นไปได้
- เวลารันคงที่ ไม่มีกระบวนการ วนซ้ำ (iterative)

Adversarial VS Counterfactual

Szegedy et al. *Intriguing Properties of Neural Networks*. ICLR '14 (https://arxiv.org/abs/1312.6199v4)

- การโจมตีประสงค์ร้ายไม่สามารถ
 ใช้อธิบายอะไรได้เท่าไหร่มากนัก
 - งั้นตอนวิธีไม่ได้ penalise จำนวนตัว แปรที่ถูกแก้ไข ทำให้เกิดการแก้ไขตัว แปรจำนวนเยอะมากๆ
 - ในที่นี้คือแก้พิกเซลของรูปเท่าไหร่ก็ได้
 - การแก้ไขลักษณะนี้ทำให้เสีย คุณลักษณะของการอธิบายได้ไป

คำอธิบายข้อต้านความจริงเพื่อตรวจสอบความยุติธรรม

- คำอธิบายข้อต้านความจริง
 อาจใช้ในการตรวจสอบความ
 เป็นธรรม (fairness) ของ
 ขั้นตอนวิธีได้
 - อย่างน้อยก็ใช้ตรวจสอบการ เลือกปฏิบัติ (discrimination) บน ข้อมูลบางชุด (เช่นเชื้อชาติ) ได้

การสร้างคำอริบาย งอต้านความจริง

เทรนแบบจำลอง

$$\underset{\theta}{\operatorname{argmin}} l(f_{\theta}(x_i), y_i) + p(\theta)$$

หาพารามิเตอร์แบบจำลอง θ ที่ลดผลรวมค่าสูญเสีย (loss) และค่า การปรับปกติ (regularise)

หาโลกอีกใบ

$\underset{x'}{\operatorname{argmin}} \max_{\lambda} \lambda (f_{\theta}(x') - y')^2 + d(x_i, x')$

- อยากได้ x' ที่ $f_{\theta}(x') = y'$
- พยายามหา x' ที่ใกล้กับ x_i มากที่สุดด้วยการใช้ฟังก์ชันระยะทาง d
- เทอม λ ทำอะไร?
 - ยิ่ง λ มาก เทอม $\lambda (f_{\theta}(x') Y)^2$ จะมีค่ามากตาม ดังนั้นระยะทาง d จะต้องน้อย และทำให้ x_i กับ x' ใกล้กันขึ้น
 - ในทางปฏิบัติ อาจทำได้โดยการค่อยๆ เพิ่ม λ แล้ว solve ค่า x' จนถึงจุดที่เพิ่ม λ ไม่ได้แล้ว
 - หรือเพิ่ม λ จนเราได้ x_i, x' ที่ใกล้กันมากพอ
 - เดี๋ยวเรามาพูดถึงกันอีกที

ฟังก์ชันระยะทาง

$$\underset{x_{l}}{\operatorname{argmin}} \max_{\lambda} \lambda (f_{\theta}(x') - y')^{2} + d(x_{i}, x')$$

- ฟังก์ชัน d ควรจะมีความหมายในแง่ใดบ้าง?
 - คิดอะไรไม่ออกบองคิดองู่ใช้นอร์ม L_1
- สมมติพิจารณาฟีเจอร์ k บนข้อมูลของเรา...
 - ถ้าหากว่าฟีเจอร์ k มีความหลากหลาย (vary) บนข้อมูลของเรา จุด x_i และ x' ก็ อาจจะอยู่ใกล้กันได้แม้ว่าค่า k จะต่างกันมากๆ
- เราจะผสานสองตรงนี้กันได้หรือเปล่านะ?

MAD (Median Average Distant)

$$MAD_k = \operatorname{median}_{j \in P} (|X_{j,k} - \operatorname{median}_{l \in P} (X_{l,k})|)$$

• MAD ของฟีเจอร์ k บนเซตของจุด P คำนวนได้จากฟังก์ชันดัง แสดง

Distant Function

$$d(x,x') = \sum_{k \in P} \frac{|x_{i,k} - x'_k|}{\text{MAD}_k}$$

• อย่าลืมว่าเราปรับ distant function ให้เหมาะสมเองได้นะ

การหาคำอธิบาย

$$\underset{x'}{\operatorname{argmin}} \max_{\lambda} \lambda (f_{\theta}(x') - y')^{2} + d(x_{i}, x')$$

- เลือก x_i มาอธิบาย ถามว่าจะทำอย่างไรให้ได้ผลลัพธ์ y'
- ਮਿੱ $\lambda = 0$
- วนซ้ำ...
 - เพิ่มค่า λ
 - Optimise ค่า x'
 - Terminal statement: ไม่สามารถเพิ่มค่า λ ได้อีกแล้ว
- Return x' ตัวล่าสุด (หรือ x' ที่เคยหาได้ทั้งหมด)

Technical implementation

$$\underset{x'}{\operatorname{argmin}} \max_{\lambda} \lambda (f_{\theta}(x') - y')^{2} + d(x_{i}, x')$$

- ถ้าเราสามารถหาเกรเดียนต์ของฟังก์ชันนี้เทียบกับ x' ได้ เรา สามารถใช้ตัว optimiser ที่ขึ้นกับเกรเดียนต์ได้ (ในเปเปอร์แนะนำ Adam–อาห์ ความมหัศจรรย์ของโลก)
- ถ้าเราไม่สามารถหาเกรเดียนต์ดังกล่าวได้ ก็ใช้วิธีอื่น (อย่าง Nelder-Mead)

ู่ ตัวอย่างการตรวจสอบอุคติ ในแบบจำลองการเรียนรู้

LSAT Dataset (แบบตัดทอน)

- พยายามทำนายเกรดนิสิตปีหนึ่งจากแฟกเตอร์สามตัว
 - GPA ก่อนเป็นนิสิต
 - คะแนนสอบเง้า
 - เชื้อชาติ
- ต้องการจะ "อธิบาย" ว่าทำอย่างไรจึงจะได้คะแนน (normalised) เป็น 0?
 - ก็คือทำอย่างไรถึงจะได้คะแนนเป็นค่าเฉลี่ย

แบบจำลอง

- FCNN แบบ hidden layer สาม ชั้น
 - แต่ละชั้นมีนิวรอน 20 ตัว
- จะมีน้ำหนักทั้งหมด 880 ค่า และไบแอสอีก 64 ค่า–รวมเป็น 941 ค่า
 - แค่แบบจำลองที่ไม่ได้ซับซ้อนมาก แบบนี้ ก็ยากที่จะแงะดูข้างในแล้ว

ผลลัพธ์

Score	GPA	LSAT	Race	GPA x'	LSAT x'	Race x'
0.17	3.1	39.0	0	3.1	34.0	0
0.54	3.7	48.0	0	3.7	32.4	0
-0.77	3.3	28.0	1	3.3	33.5	0
-0.83	2.4	28.5	1	2.4	35.8	0
-0.57	2.7	18.3	0	2.7	34.9	0

เกรดไม่เปลี่ยน
คะแนนสอบเข้าเปลี่ยน **เพศเปลี่ยน (ต้องเป็นคนขาว)**

ลองเล่นกับแพคเกจ Alibi ในไพทอน

ทำความรู้จักกับ Alibi

- ไลบรารีไพทอนสำหรับการ ตีความ (interpret) และสำรวจ (inspect) แบบจำลอง
- เน้นการพิจารณาแบบจำลองที่ เป็น black box
- เน้นการอธิบายแบบ instance based

อ้างอิง

- Molnar, C. (2020). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.
- Wachter, S., Mittelstadt, B., & Russell, C. (2018). Counterfactual explanations without opening the black box: Automated decisions and the GDPR. *ArXiv:1711.00399 [Cs]*. http://arxiv.org/abs/1711.00399.