LECTURE 8: DUAL SPACES

We have been talking about coordinates, so let's examine them more closely. Let V be an n-dimensional vector space and fix a basis $B = \{v_1, \ldots, v_n\}$ of V. We can write any vector V in coordinates relative to B as

$$[v]_B = \begin{pmatrix} a_1 \\ \cdots \\ a_n \end{pmatrix}$$
, where $v = a_1 v_1 + \cdots + a_n v_n$.

For any i = 1, ..., n we can define the *i*-th coordinate map by $v_i^* : V \to \mathbb{F}$ given by $v_i^*(v) = a_i$, where a_i is the *i*-th entry of $[v]_B$. These elements v_i^* are linear and are thus in the space $L(V, \mathbb{F})$. This space comes up so much we give it a name:

Definition 0.1. We write $V^* = L(V, \mathbb{F})$ and call it the dual space to V. Elements of V^* will be written f and called linear functionals.

Given any basis $B = \{v_1, \dots, v_n\}$ we call $B^* = \{v_1^*, \dots, v_n^*\}$ the basis of V^* dual to B.

Proposition 0.2. If B is a basis of V then B^* is a basis of V^* .

Proof. The dimension of V^* is n, the dimension of V, so we must show B^* is linearly independent or spanning. We show linearly independent: suppose that

$$a_1 v_1^* + \dots + a_n v_n^* = \vec{0}$$
,

where $\vec{0}$ on the right is the zero transformation from V to \mathbb{F} . Apply both sides to v_i . For $i \neq j$ we get $v_i^*(v_i) = 0$, since the j-th coordinate of v_i is 0. For i = j we get $v_i^*(v_i) = 1$, so

$$a_i = (a_1 v_1^* + \dots + a_n v_n^*)(v_i) = \vec{0}(v_i) = 0$$
.

This is true for all i so B^* is linearly independent and we are done.

It is not surprising that B^* is a basis of V^* . The reason is that each element $f \in V^*$ can be written in its matrix form using the basis B of V and $\{1\}$ of \mathbb{F} . Then then matrix for v_i^* is

$$[v_i^*]_{\{1\}}^B = (0 \cdots 0 \ 1 \ 0 \cdots 0) ,$$

where the 1 is in the *i*-th spot. Clearly these form a basis for $M_{1,n}(\mathbb{F})$ and since the map sending linear transformations to their matrices relative to these bases is an isomorphisms, so should B^* be a basis of V^* .

There is an alternate characterization: each v_i^* is in $L(V, \mathbb{F})$ so can be identified by its action on the basis B:

$$v_i^*(v_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$
.

One nice thing about considering the dual basis B^* is that we can write an arbitrary $f \in V^*$ in terms of the basis B^* quite easily.

Proposition 0.3. Let B be a basis for V and B^* the dual basis for V^* . Then if $f \in V^*$,

$$f = f(v_1)v_1^* + \dots + f(v_n)v_n^*$$
.

Proof. We simply need to check that both sides give the same answer when evaluated at the basis of V. So apply each to v_i : the left side gives $f(v_i)$ and the right gives

$$(f(v_1)v_1^* + \dots + f(v_n)v_n^*)(v_i) = f(v_1)v_1^*(v_i) + \dots + f(v_n)v_n^*(v_i) = f(v_i)v_i^*(v_i) = f(v_i).$$

A nice way to think about linear functionals involves their null spaces. By the rank-nullity theorem, if $f \in V^*$,

$$\dim(N(f)) + \dim(R(f)) = \dim(V) .$$

Because $R(f) \subset \mathbb{F}$, it is at most one-dimensional. Therefore N(f) = V or N(f) is n-1 dimensional, where $n = \dim(V)$. This gives

• If f is not the zero functional, $\operatorname{nullity}(f) = \dim(V) - 1$. A subspace of this dimension is called a *hyperspace*.

Because of the simple structure of the nullspace, we can characterize linear functionals easily.

Proposition 0.4. Two nonzero elements $f, g \in V^*$ are equal if and only if they have the same nullspace N = N(f) = N(g) and they agree at one vector outside N.

Proof. One direction is clear, so suppose that N = N(f) = N(g) and $v \in V \setminus N$ satisfies f(v) = g(v). You can check that if B_N is a basis for N then $B_N \cup \{v\}$ is a basis for V. (The proof is similar to how we proved the one-subspace theorem.) But then f and g agree on $B_N \cup \{v\}$ and must agree everywhere, giving f = g.

Annihilators

As we have seen before, one useful tool for the study of linear transformations is the nullspace. We will consider the dual version of this now: given $S \subset V$, we give a name to those $f \in V^*$ such that $S \subset N(f)$.

Definition 0.5. If $S \subset V$ then the annihilator of S is

$$S^{\perp} = \{ f \in V^* : f(s) = 0 \text{ for all } s \in S \} \ .$$

Note that if $S \subset T$ then $S^{\perp} \supset T^{\perp}$.

Proposition 0.6. Let $S \subset V$ (not necessarily a subspace).

1. S^{\perp} is a subspace of V^* .

- 2. $S^{\perp} = (Span(S))^{\perp}$.
- 3. Let V be finite-dimensional with U a subspace. Let $\{v_1, \ldots, v_k\}$ be a basis for U and extend it to a basis $\{v_1, \ldots, v_n\}$ for V. If $\{v_1^*, \ldots, v_n^*\}$ is the dual basis then $\{v_{k+1}^*, \ldots, v_n^*\}$ is a basis for U^{\perp} .

Proof. For the first item, S^{\perp} contains the zero linear functional, so it is nonempty. If $f, g \in S^{\perp}$ and $c \in \mathbb{F}$ then for any $s \in S$,

$$(cf + g)(s) = cf(s) + g(s) = c \cdot 0 + 0 = 0$$
,

so $cf + g \in S^{\perp}$. Thus S^{\perp} is a subspace of V^* .

Next since $S \subset \operatorname{Span}(S)$, we have $S^{\perp} \supset (\operatorname{Span}(S))^{\perp}$. Conversely, if f(s) = 0 for all $s \in S$ then let $a_1s_1 + \cdots + a_ks_k \in \operatorname{Span}(S)$. Then

$$f(a_1s_1 + \cdots + a_ks_k) = a_1f(s_1) + \cdots + a_kf(s_k) = 0$$
,

so $f \in (\operatorname{Span}(S))^{\perp}$.

For the third item, each of v_{k+1}^*, \ldots, v_n^* annihilates v_1, \ldots, v_k , so they annihilate everything in the span, that is, U. In other words, they are in U^{\perp} , and we already know they are linearly independent since they are part of the dual basis. To show they span U^{\perp} , let $f \in U^{\perp}$ and write f in terms of the dual basis using the previous proposition:

$$f = f(v_1)v_1^* + \dots + f(v_k)v_k^* + f(v_{k+1})v_{k+1}^* + \dots + f(v_n)v_n^* = f(v_{k+1})v_{k+1}^* + \dots + f(v_n)v_n^*$$

$$\in \operatorname{Span}(\{v_{k+1}^*, \dots, v_n^*\}).$$

Corollary 0.7. If V is finite dimensional and W is a subspace,

$$\dim(V) = \dim(W) + \dim(W^{\perp}) \ .$$

Proof. This follows from item 3 above.