```
In [ ]: #Social_Network_Ads.csv
```

Importing the libraries

```
In [1]: import numpy as np
  import matplotlib.pyplot as plt
  import pandas as pd
```

Importing the dataset

```
In [2]: data = pd.read_csv('C:/Users/Karthi/Desktop/Social_Network_Ads.csv')
    data
```

Out[2]:		User ID	Gender	Age	EstimatedSalary	Purchased
	0	15624510	Male	19	19000	0
	1	15810944	Male	35	20000	0
	2	15668575	Female	26	43000	0
	3	15603246	Female	27	57000	0
	4	15804002	Male	19	76000	0
	•••					
	395	15691863	Female	46	41000	1
	396	15706071	Male	51	23000	1
	397	15654296	Female	50	20000	1
	398	15755018	Male	36	33000	0
	399	15594041	Female	49	36000	1

400 rows × 5 columns

```
In [4]: X=data.iloc[:,[2,3]].values
    y=data.iloc[:,[4]].values
```

Splitting the dataset into the Training set and Test set

```
In [5]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
```

Feature Scaling

```
In [6]: #feature scaling is for standardizing the range of feature around same range using Standardscaler
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

Fitting Decision Tree Classification to the Training set

```
In [7]: from sklearn.tree import DecisionTreeClassifier
    classifier= DecisionTreeClassifier(criterion='entropy')
    classifier.fit(X_train,y_train)
```

```
Out[7]:
                 DecisionTreeClassifier
       DecisionTreeClassifier(criterion='entropy')
       Predicting the Test set results
In [9]: y_predict=classifier.predict(X_test)
       print(y_predict)
       0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1]
       Making the Confusion Matrix
In [10]: from sklearn.metrics import confusion_matrix
       cm=confusion_matrix(y_test,y_predict)
       print(cm)
       [[62 6]
       [ 3 29]]
       Visualising the Training set results
In [ ]:
       Visualising the Test set results
In [ ]:
```