ATTACHMENT B

Marked Up Amended and New Claims

A marked up copy of the amended and new Claims is provided as follows:

Please delete Claims 1, 2, 10-12, 27-30, 35, 36, 37, 40, 41 and 42.

Please amend Claims 3, 4, 6, 7, 13, 14, 31 and 38.

Please add new Claims 43 and 44.

- 3. (Amended) A method for measuring an amount of a peroxide or an amount of a peroxyl ion of a sample comprising the following steps:

 (a) irradiating at least a portion of the sample with a laser light for generating a Raman spectrum of the sample;

 (b) obtaining a Raman spectrum for obtaining at least two measurements at two different wavenumbers, a first measurement related to a Raman intensity related to an amount of a peroxide or an amount of a peroxyl ion, and a second measurement related to the other of an amount of a peroxide and an amount of a peroxyl ion;

 (c) formulating a relationship between a Raman intensity for a peroxide and a Raman intensity for a peroxyl ion by comparing information related to the two measurements for determining the amount of a peroxide or the amount of a peroxyl ion; and,

 (d) [A method as defined in claim 2 further comprising the step of] varying the
- (d) [A method as defined in claim 2 further comprising the step of] varying the amount of a peroxyl ion by varying a pH of [a] the solution, wherein the relationship between the Raman intensity for a peroxide and the Raman intensity for a peroxyl ion is at least one of a product, a ratio, and a sum of the two measurements.
- 4. (Amended) A method as defined in claim 3 wherein an extent of bleaching is determined from the relationship, said extent of bleaching being related to an amount of <u>a</u> peroxide or <u>an amount of a peroxyl</u> ion.

6. (Amended) A method for measuring an amount of a peroxide or an amount of a
peroxyl ion of a sample comprising the following steps:
(a) irradiating at least a portion of the sample with a laser light for generating
a Raman spectrum of the sample;
(b) obtaining a Raman spectrum for obtaining at least two measurements at
two different wavenumbers, a first measurement related to a Raman intensity related to
an amount of a peroxide or an amount of a peroxyl ion, and a second measurement
related to the other of an amount of a peroxide and an amount of a peroxyl ion;
(c) formulating a relationship between a Raman intensity for a peroxide and a
Raman intensity for a peroxyl ion by comparing information related to the two
measurements for determining the amount of a peroxide or the amount of a peroxyl ion;
wherein the relationship between the Raman intensity for a peroxide and the Raman
intensity for a peroxyl ion is at least one of a product, a ratio, and a sum of the two
measurements and,
[A method as defined in claim 2] wherein the Raman intensity for a peroxide is obtained
at approximately 877cm ⁻¹ and the Raman intensity for [the] a peroxyl ion is obtained at
approximately 850 cm ⁻¹ .
7. (Amended) A method for measuring an amount of a peroxide or an amount of a
peroxyl ion of a sample comprising the following steps:
(a) irradiating at least a portion of the sample with a laser light for generating
a Raman spectrum of the sample;
(b) obtaining a Raman spectrum for obtaining at least two measurements at
two different wavenumbers, a first measurement related to a Raman intensity related to
an amount of a peroxide or an amount of a peroxyl ion, and a second measurement
related to the other of an amount of a peroxide and an amount of a peroxyl ion;
(c) formulating a relationship between a Raman intensity for a peroxide and a
Raman intensity for a peroxyl ion by comparing information related to the two
measurements for determining the amount of a peroxide or the amount of a peroxyl ion;

wherein the relationship between the Raman intensity for a peroxide and the Raman intensity for a peroxyl ion is at least one of a product, a ratio, and a sum of the two measurements and,

[A method as defined in claim 2] wherein a characteristic of a pulp or pulp effluent contained in the sample is determined from the relationship, said characteristic being one of pulp brightness, pulp yellowness, and bleaching efficiency.

13. (Amended) A method for determining a property of a sample comprising the steps
<u>of:</u>
(a) irradiating at least a portion of the sample with a laser light for generating
a Raman emitted light from the sample;
(b) obtaining at least two measurements of the Raman emitted light between
200 cm ⁻¹ and 4000 cm ⁻¹ , a first measurement at a first wavenumber and a second
measurement at a second wavenumber; and
(c) determining a non-linear relationship between the at least two
measurements and the property of the sample,
wherein the non-linear relationship is determined by regression methods and,
[A method as defined in claim 12] wherein the non-linear relationship is expressed as at
least one of the following functions between the property of the sample and the first and
second measurement:
property of sample = f (first measurement, first measurement / second measurement);
property of sample = f (first measurement, first measurement * second measurement);
property of sample = f (first measurement, first measurement / (first measurement +
second measurement)); and
property of sample = f (first measurement; (first measurement + second measurement) /
first measurement).
14. (Amended) A method for determining a property of a sample comprising the steps
<u>of:</u>
(a) irradiating at least a portion of the sample with a laser light for generating
a Raman emitted light from the sample;

a processor for receiving and processing data from the detector for determining a non-linear relationship between the at least two measurements and the property of the sample,

wherein the non-linear relationship is determined by regression methods and,

[An apparatus as defined in claim 37] wherein the non-linear relationship is expressed as at least one of the following functions between the property of the sample and the first and second measurement:

property of sample = f (first measurement, first measurement / second measurement);

property of sample = f (first measurement, first measurement * second measurement);

property of sample = f (first measurement, first measurement / (first measurement +

second measurement)); and

property of sample = f (first measurement, (first measurement + second measurement) / first measurement).

- 43. (New) A method as defined in claim 31 wherein the at least two measurements are Raman intensities and wherein at least one of the intensities is an intensity peak.
- 44. (New) A method as defined in claim 31 wherein the relationship is derived from a Nernst equation.