

Universitatea Tehnică "Gheorghe Asachi" din Iași

FACULTATEA DE AUTOMATICĂ ȘI CALCULATOARE

ELECTRONICĂ DIGITALĂ Proiect

Tema: MODUL ALU-v5

Studenți:

Chihalău Gabriel Eduard

Vasilca Rareș

Cunievici Petru Sebastian

Grupa: 1212B

Coordonator:

Asistent doctorand Ionica Pletea

Tema proiectului:

ALU - v5

1. Specificațiile proiectului:

Să se implementeze în FPGA prin descriere în limbaj VHDL, utilizând programul VIVADO, modulul prezentat în figura 1 care este descris prin urmatoarele specificaţii:

- a) operanzii A și B au dimensiunea de 2 biți
- b) operațiile vor fi stabilite prin portul de intrare OPCODE
- c) lista de operaţii aritmetice: *, /, +, -

Rezultatele vor fi asignate la portul C şi vor fi vizualizate pe Displayul 7 segmente de pe placa de dezvoltare.

Descrierea va fi făcută în mod comportamental.

Fişierul bitstream rezultat în urma procesului de implementare va fi verificat utilizând placa de dezvoltare BASYS3

2. Modulul ALU v5

Modulul ALU_v5 este o unitate aritmetică și logică simplificată, proiectată pentru a efectua operații de bază între doi operanzi de 2 biți. Acesta primește, prin semnalul OPCODE, indicația operației care urmează să fie efectuată, iar rezultatul este redirecționat către ieșirea C. Rezultatul poate avea o lățime mai mare decât operanzii, în special în cazul operațiilor de înmulțire. Afișarea rezultatului se face prin decodificare binar-zecimală pe display-ul cu 7 segmente al plăcii BASYS3.

3. Metoda de implementare

Proiectul este realizat utilizând:

• **FPGA:** Artix-7 (de pe placa BASYS3)

• Limbaj de descriere hardware: VHDL

Mediul de dezvoltare: Xilinx Vivado

• **Descrierea funcțională:** comportamentală (proces sensibil la semnale)

• Testare: prin simulare și implementare directă pe placa FPGA

4. Descrierea (scurtă) a sistemului de dezvoltare BASYS 3

Placa BASYS 3, dezvoltată de Digilent, este o platformă educațională bazată pe FPGA-ul Xilinx Artix-7 XC7A35T. Aceasta oferă multiple resurse pentru proiecte digitale:

- 16 switch-uri, 5 butoane și 16 LED-uri pentru I/O simple
- 4 display-uri cu 7 segmente
- Clock intern de 100 MHz
- Conectori Pmod pentru extensii externe

Este ideală pentru prototiparea și testarea circuitelor digitale în timp real.

5. Editarea fișierului VHDL

```
entity ALU_v5 is

Port (
    A : in STD_LOGIC_VECTOR (1 downto 0);
    B : in STD_LOGIC_VECTOR (1 downto 0);

OPCODE : in STD_LOGIC_VECTOR (1 downto 0);
    C : out STD_LOGIC_VECTOR (3 downto 0)
    );
end ALU_v5;
```

6. Editarea fișierului de constrângeri

```
set_property PACKAGE_PIN W5 [get_ports A[0]]
set_property PACKAGE_PIN V5 [get_ports A[1]]
set_property PACKAGE_PIN W6 [get_ports B[0]]
set_property PACKAGE_PIN U5 [get_ports B[1]]
set_property PACKAGE_PIN V6 [get_ports OPCODE[0]]
set_property PACKAGE_PIN U6 [get_ports OPCODE[1]]
# Display connections
set_property PACKAGE_PIN T10 [get_ports C[0]]
set_property PACKAGE_PIN R10 [get_ports C[1]]
set_property PACKAGE_PIN K16 [get_ports C[2]]
set_property PACKAGE_PIN K16 [get_ports C[3]]
```

7. Descrierea pașilor de sinteză și testarea circuitului rezultat

- Crearea proiectului în Vivado, selectarea plăcii BASYS3
- Adăugarea fișierului VHDL și a fișierului .xdc cu constrângeri
- Verificarea sintaxei și rularea sintezei (Synthesis)
- Implementarea designului (Implementation)
- Generarea fișierului .bit (Generate Bitstream)
- Programarea plăcii FPGA cu fișierul .bit folosind Hardware Manager
- Testarea funcțională prin interacțiunea cu switch-urile şi monitorizarea rezultatului pe display-ul cu 7 segmente

8. Concluzii

Proiectul ALU-v5 a demonstrat implementarea cu succes a unei unități aritmetice simple pe FPGA. Folosirea limbajului VHDL și a mediului Vivado a permis o dezvoltare structurată și eficientă. Afișarea rezultatelor pe display-ul 7 segmente a oferit o modalitate intuitivă de testare și validare a funcționalității. Proiectul oferă o bază solidă pentru extinderea ulterioară cu operații logice sau cu suport pentru operanzi mai mari.

Bibliografie:

- 1. VHDL Reference Manual, http://www.ics.uci.edu/~jmoorkan/vhdlref/Synario%20VHDL%20Manual.pdf
- 2. BASYS 3 Reference Manual, https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual

