Лабораторная работа №

Тема: «Избыточное кодирование данных в информационных системах. Итеративные коды»

Цель: приобретение практических навыков кодирования/декодирования двоичных данных при использовании итеративных кодов

Задачи:

- 1. Закрепить теоретические знания по использованию итеративных кодов для повышения надежности передачи и хранения в памяти компьютера двоичных данных.
- 2. Разработать приложение для кодирования/декодирования двоичной информации итеративным кодом с различной относительной избыточностью кодовых слов.
- 3. Результаты выполнения лабораторной работы оформить в виде описания разработанного приложения, методики выполнения экспериментов с использованием приложения и результатов эксперимента.

1. Теоретические сведения

1.1.Итеративные коды: определение, принципы построения и использования

Итеративные коды относятся к классу кодов произведения.

Кодом произведения двух исходных (базовых) помехоустойчивых кодов называется такой *многомерный помехоустойчивый код*, кодовыми последовательностями которого являются все двумерные таблицы со строками кода (k_1) и столбцами кода (k_2) .

Итеративные коды могут строиться на основе использования дву-, трехмерных матриц (таблиц) и более высоких размерностей. Каждая из отдельных последовательностей информационных символов кодируется определенным линейным кодом (групповым или циклическим). Получаемый таким образом итеративный код также является линейным.

Простейшим из итеративных кодов является *двумерный* код с проверкой на четность по строкам и столбцам. Итеративные

коды, иногда называемые *прямоугольными* кодами (англ. *rectangular code*) либо *композиционными* (англ. *product code*), являются одними из самых простых (с точки зрения аппаратной реализации) избыточных кодов, позволяющих исправлять ошибки в информационных словах.

Основное достоинство рассматриваемых кодов — простота как аппаратной, так и программной реализации. Основной недостаток — сравнительно высокая избыточность.

В упомянутой двумерной матрице кодовые слова записываются в виде таблицы. Проверочные символы вычисляются исходя из того, что строки и столбцы должны содержать четное (нечетное) число единиц. Например, при кодировании информационного слова $X_k = \mathbf{011101111}$ с помощью таблицы с четностью по строкам и столбцам получим избыточные символы $X_r = X_h$, X_v , $X_{hv} = 0010011$, как показано на рис. 5.1 (информационные символы выделены жирным шрифтом, а проверочные – курсивом).

Рис. 5.1. Пояснение к принципу формирования избыточных символов итеративного кода

В соответствии с рис. 5.1 кодовое слово будет иметь следующий вид: $X_n = 011101111001001$ 1. Как видно, избыточные символы (называемые также паритетами) в приведенном кодовом слове в принятом порядке (X_h , X_v , X_{hv}) записываются сверху вниз, справа налево. Возможен обратный или иной порядок. Важно только, чтобы при декодировании сообщения использовался аналогичный порядок следования паритетов. Символ X_{hv} (паритет паритетов) равен сумме по модулю 2 символов информационного слова X_k , а также проверочных символов X_v и X_h .

Поскольку двумерная матрица формируется как комбинация двух кодов простой четности (по каждому измерению), каждый из

которых характеризуется минимальным кодовым расстоянием $d_{\min} = 2$, то полученный итеративный код $(r = k_1 + k_2)$ будет характеризоваться минимальным кодовым расстоянием, равным произведению d_{\min} по строкам и по столбцам, т. е. 4.

Использование символа X_{hv} обеспечивает минимальное кодовое расстояние такого итеративного кода d_{\min} ($r=k_1+k_2+1$) на единицу больше. В этом легко обнаруживается сходство кода с кодом Хемминга при $d_{\min}=4$.

Нетрудно также представить процесс вычисления проверочных символов кодового слова для примера на рис. 5.1 с помощью проверочной матрицы Хемминга и соотношения (4.4). Для указанного примера проверочная матрица кода с $d_{\min} = 3$ выглядит так:

Передачу символов кода обычно осуществляют последовательно символ за символом, от одной строки к другой, либо параллельно целыми строками.

Как показано на рис. 5.1, проверочный символ есть сверка по модулю 2 информационных символов, записанных в соответствующие строку или столбец матрицы.

Декодирование начинают сразу, не ожидая поступления всего блока информации. Проверка соответствия избыточных символов полученного слова ($Y_r = Y_h$, Y_v , Y_{hv} либо $Y_r = Y_h$, Y_v) при декодировании позволяет обнаружить любое нечетное число искаженных символов, расположенных в одной строке или в одном столбце. Формально такое декодирование осуществляется сравнением принятых (Y_h , Y_v , Y_{hv}) и вновь вычисленных (Y_h , Y_v , Y_{hv}) для полученного слова паритетов. В упрощенной форме это показано на рис. 5.2. Определение местоположения одиночной ошибки по строке указывает на наличие ошибки в этой строке матрицы, а проверка по столбцу — конкретный символ (рис. 5.2, a).

Рис. 5.2. Пояснение к принципу обнаружения местоположения ошибочных битов в принятом сообщении: *a-г* – варианты местоположения ошибок

Однако этим кодом не могут быть установлены местоположения многократных ошибок, имеющих четное число искаженных символов как по строкам, так и по столбцам (рис. 5.2, δ , ϵ). Простейшая необнаруживаемая ошибка содержит четыре искаженных символа, расположенных в вершинах прямоугольника или квадрата (рис. 5.2, ϵ). Это происходит из-за того, что четность (паритет) по строкам и по столбцам матрицы не нарушается. Полезную информацию о кодировании и декодировании информации итеративным кодом можно найти в источниках [10, 11].

5.1.2. Многомерные линейные итеративные коды

Принято считать рассматриваемый код *многомерным*, если количество измерений, по которым вычисляются и анализируются паритеты, не менее 3. Таким образом, простейшим многомерным линейным итеративным кодом является код *техмерный*. Его достаточно подробное описание и особенности использования можно найти в статьях [12–14].

Пример реализации трехмерного случая иллюстрирует рис. 5.3. Дополнительно к двум кодам на основе кодов простой четности (по вертикали и горизонтали) избыточные символы вычисляются по диагонали: X_d .

Приведенную на рис. 5.3 трехмерную структуру итеративных кодов можно дополнить достаточно большим числом разнообразных проверок на четность по диагоналям, тем самым получив набор кодов с высокими корректирующими возможностями.

Рис. 5.3. Принцип формирования избыточных символов для линейного итеративного кода с диагональными проверками

Принцип формирования проверочных символов для кодов, построенных на основе вычисления различных диагональных паритетов, при k=64 бита приведен на рис. 5.4 (пять групп линейно независимых паритетов): в первой плоскости, или матрице, записаны первые 16 битов сообщения, во второй плоскости-матрице — символы с 17 по 32 и т. д. Указанные плоскости располагаются по условной оси Z.

Как показано на рис. 5.4, для информационного сообщения из 64 битов ($X_k = x_1, x_2, ..., x_{64}$) сформировано 80 битов общего избыточного слова, $X_{rr} = x_{r1}, x_{r2}, ..., x_{r80}$:

$$x_{r1} = x_1 + x_2 + x_3 + x_4,$$

 $x_{r2} = x_5 + x_6 + x_7 + x_8, ...,$
 $x_{r5} = x_1 + x_5 + x_9 + x_{13}, ...,$
 $x_{r14} = x_3 + x_8 + x_9 + x_{14}, ...,$
 $x_{r16} = x_1 + x_6 + x_{11} + x_{16},$

$$x_{r17} = x_{17} + x_{18} + x_{19} + x_{20}, ...,$$

 $x_{r37} = x_{33} + x_{37} + x_{41} + x_{45}, ...,$
 $x_{r60} = x_{52} + x_{55} + x_{58} + x_{61}, ...,$
 $x_{r80} = x_{16} + x_{32} + x_{48} + x_{64}.$

на основе многомерного линейного итеративного кода с 5 независимыми группами паритетов:

а-г – плоскости с первой по четвертую соответственно;

д – паритеты в z-плоскости;

1 – информационные биты; 2 – горизонтальные паритеты;

3 – вертикальные паритеты; 4, 5 – соответственно первые и вторые объединенные диагональные паритеты;

6 – z-паритеты; 7 – контрольная сумма (X_{hv})

В табл. 5.1 приведены параметры рассмотренного многомерного итеративного кода, которые можно также отнести к классу низкоплотностных [15].

Таблица 5.1 Параметры некоторых многомерных итеративных кодов

Длина информационной последовательности (бит), k	Пять линейно независимых паритетов		незав	линейно исимых итетов	Девять линейно независимых паритетов	
	Избы- точность (бит), <i>r</i>	Скорость передачи, <i>k</i> /(<i>k</i> + <i>r</i>)	Избы- точность (бит), <i>r</i>	Скорость передачи, <i>k</i> /(<i>k</i> + <i>r</i>)	Избы- точность (бит), <i>r</i>	Скорость передачи, <i>k /(k + r)</i>
64	80	0,44	112	0,36	144	0,31
512	320	0,62	448	0,53	576	0,47
4096	1280	0,76	1792	0,70	2304	0,64

5.2. Практическое задание

Разработать собственное приложение, которое позволяет выполнять следующие операции:

- 1) вписывать произвольное двоичное представление информационного слова X_k (кодируемой информации) длиной k битов в двумерную матрицу размерностью в соответствии с вариантом либо в трехмерную матрицу в соответствии с вариантом (указаны в табл. 5.2);
- 2) вычислять проверочные биты (биты паритетов): а) по двум; б) по трем; в) по четырем направлениям (группам паритетов);
- 3) формировать кодовое слово X_n присоединением избыточных символов к информационному слову;
- 4) генерировать ошибку произвольной кратности (i, i > 0), распределенную случайным образом среди символов слова X_n , в результате чего формируется кодовое слово Y_n ;
- 5) определять местоположение ошибочных символов итеративным кодом в слове Y_n в соответствии с используемыми группами паритетов по пункту (2) и исправлять ошибочные символы (результат исправления слово Y_n);
- 6) выполнять анализ корректирующей способности используемого кода (количественная оценка) путем сравнения соответствующих слов X_n и Y_n ; результат анализа может быть представлен в виде отношения общего числа сгенерированных кодовых слов с ошибками определенной одинаковой кратности (с одной ошибкой, с двумя ошибками и т. д.) к числу кодовых слов, содержащих

ошибки этой кратности, которые правильно обнаружены и которые правильно скорректированы.

Варианты заданий

Таблица 5.2

Вариант	Длина информационного слова (бит), <i>к</i>	<i>k</i> ₁	k 2	Z	Количество групп паритетов
1		4	4	_	2; 3
	10	8	2	_	2; 3
	16	4	2	2	2; 3; 4; 5
		2	4	2	2; 3; 4; 5
2		4	5	_	2; 3
	20	2	10	_	2; 3
		2	5	2	2; 3; 4; 5
		2	2	5	2; 3; 4; 5
3		4	6	-	2; 3
	0.4	3	8	_	2; 3
	24	3	3	4	2; 3; 4; 5
		6	2	2	2; 3; 4; 5
4		4	8	_	2; 3
	32	2	16	_	2; 3
	SZ	8	2	2	2; 3; 4; 5
		4	4	2	2; 3; 4; 5

5	40	5	8	_	2; 3
		4	10	_	2; 3
		5	4	2	2; 3; 4; 5
		2	10	2	2; 3; 4; 5

Пример. Для определенного кодового слова X_n с выбранными группами вычисленных избыточных символов сгенерировано N_1 вариантов этого кодового слова (теперь это слово мы обозначаем Y_n) с 3 ошибками (i=3). Среди N_1 ошибочных кодовых слов в N_2 случаях кратность ошибки идентифицирована правильно ($N_2 \le N_1$) и в N_3 случаях все ошибки скорректированы (слова X_n и Y_n ' совпадают). Нужно вычислить соотношения N_2/N_1 и N_3/N_1 .

ВОПРОСЫ ДЛЯ КОНТРОЛЯ И САМОКОНТРОЛЯ

- 1. Охарактеризовать основные параметры итеративного кода.
- 2. Сравнить основные параметры кодов Хемминга и итеративных кодов.

- 3. Составить проверочные матрицы кодов Хемминга для кодирования 9-битных сообщений по схеме, представленной на рис. 5.1 (с учетом и без учета символа X_{hv}).
- 4. Составить проверочные матрицы кодов Хемминга для кодирования 9-битных сообщений по схеме, представленной на рис. 5.3 (с учетом и без учета символа X_{hv}).
- 5. Составить проверочные матрицы кодов Хемминга для кодирования 9-битных сообщений по схеме, представленной на рис. 5.4 (с учетом и без учета символа X_{hv}).
- 6. Какое максимальное число ошибок может быть обнаружено итеративным кодом? При каком условии?
- 7. Определить, какая геометрическая фигура, являющаяся формой для записи символов информационного слова, обеспечивает наименьшую относительную избыточность кодового слова при фиксированном (каком?) k.
- 8. Результаты оформить в виде отчета по установленным правилам.