Exercices - Applications

Cornou Jean Louis

2 juillet 2025

1 Images

1.1 Extension du cours

Soit $f: E \to F$ une application. Soit $(A_i)_{i \in I}$ une famille de parties de E et $(B_j)_{j \in J}$ une famille de parties de F. Montrer que

1.
$$f\left(\bigcup_{i\in I}A_i\right)=\bigcup_{i\in I}f(A_i)$$
.

3.
$$f^{-1}\left(\bigcup_{j\in J}\mathsf{B}_j\right) = \bigcup_{j\in J}f^{-1}(\mathsf{B}_j)$$
.

2.
$$f\left(\bigcap_{i\in I}A_i\right)\subset\bigcap_{i\in I}f(A_i)$$
.

4.
$$f^{-1}\left(\bigcap_{j\in J}\mathsf{B}_j\right) = \bigcap_{j\in J}f^{-1}(\mathsf{B}_j)$$
.

1.2 Images de segments

Soit $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2 + 3x - 2$. Déterminer les ensembles suivants :

1.
$$f(\mathbb{R})$$
.

3.
$$f^{-1}([-5,-2[).$$

5.
$$f(f^{-1}([-5,-2]))$$
.

2.
$$f^{-1}(\{0\})$$
.

4.
$$f([-1,0])$$
.

6.
$$f^{-1}(f([-1,0]))$$
.

1.3 Une homographie complexe

Soit $f: \mathbb{C}\setminus\{i\} \to \mathbb{C}\setminus\{1\}, z\mapsto \frac{z+i}{z-i}$.

- 1. Vérifier que f est correctement définie.
- 2. Montrer que *f* est bijective.
- 3. Déterminer les ensembles $f(\mathbb{R})$, $f(\mathbb{U}\setminus\{i\})$ et $f(i\mathbb{R}\setminus\{i\})$ où $i\mathbb{R}$ désigne l'ensemble des imaginaires purs.

1.4 Une homographie réelle

On étudie la fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{3x+2}{x+4}$.

- 1. Déterminer le domaine de définition de la fonction f. Il est noté D_f dans tout ce qui suit.
- 2. Étudier le signe de f, ses variations, ses limites aux bords de son ensemble de définition et tracer l'allure de son graphe.
- 3. Montrer que la fonction f est injective.
- 4. Montrer que l'image directe $f(D_f)$ est égale à l'ensemble $\mathbb{R}\setminus\{3\}$.
- 5. Montrer que $f(\mathbb{R}_+) \subset \mathbb{R}_+$.
- 6. Montrer que l'application

$$g: \mathbb{R}\setminus\{-4\} \to \mathbb{R}\setminus\{3\}, x\mapsto \frac{3x+2}{x+4}$$

est une bijection, et expliciter sa réciproque.

- 7. Soit $x \in D_f$ tel que $f(x) \neq x$ et $x \neq -18/7$. Montrer qu'alors $f(f(x)) \neq f(x)$.
- 8. Montrer que l'ensemble $\{x \in D_f | f(x) = x\}$ possède exactement 2 éléments, que l'on explicitera.

2 Composition

2.1 Commutation

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x+y,x-y)$ et $g: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x+y,xy)$. Calculer $f \circ g$ et $g \circ f$. A-t-on l'égalité $f \circ g = g \circ f$?

2.2 Conjugaison

Soit f une application de E dans E, on définit par récurrence la notation suivante : $f^0 = Id_E$, pour tout entier naturel n, $f^{n+1} = f^n \circ f$. Soit $g : E \to F$ une application bijective. Montrer que

$$\forall n \in \mathbb{N}, (g \circ f \circ g^{-1})^n = g \circ f^n \circ g^{-1}$$

2.3 Composition itérée

Soit
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{x}{\sqrt{1+x^2}}$$
.

- 1. Calculer $f \circ f$, puis $f \circ f \circ f$.
- 2. On pose pour tout entier naturel n non nul, $f^n = \underbrace{f \circ \cdots \circ f}_{n \text{ termes}}$. Calculer f^n pour tout $n \in \mathbb{N}^*$.

2.4 Une addition tordue

Pour tout $(x_1, x_2) \in]-1,1[^2$, on pose $x_1 \oplus x_2 = \frac{x_1 + x_2}{1 + x_1 x_2}$. On note de plus A l'application $]-1,1[\to \mathbb{R}, x \mapsto \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$.

- 1. Montrer $\forall (x_1, x_2) \in]-1, 1[^2, x_1 \oplus x_2 \in]-1, 1[$.
- 2. A l'aide d'outils de terminale, montrer que A est une bijection. Déterminer sa réciproque à l'aide de la fonction exponentielle.
- 3. Démontrer que

$$\forall (x_1, x_2) \in]-1,1[^2, A(x_1) + A(x_2) = A(x_1 \oplus x_2)$$

4. En déduire sans calcul

$$\forall (y_1, y_2) \in \mathbb{R}^2, A^{-1}(y_1 + y_2) = \frac{A^{-1}(y_1) + A^{-1}(y_2)}{1 + A^{-1}(y_1)A^{-1}(y_2)}$$

5. Soit $x \in]-1,1[$ et $n \in \mathbb{N}^*$. Établir une formule simple pour déterminer

$$\underbrace{X \oplus X \oplus \cdots \oplus X}_{n \text{ termes}}$$

2.5 Groupe affine

Pour tout $(a, b) \in \mathbb{R}^2$, on note $f_{a,b} : \mathbb{R} \to \mathbb{R}$, $x \mapsto ax + b$.

- 1. Soit $(a,b) \in \mathbb{R}^2$. A quelle condition nécessaire et suffisante sur (a,b), l'application $f_{a,b}$ est-elle une bijection? Le cas échéant, déterminer sa réciproque.
- 2. Soit $(a_1, a_2, b_1, b_2) \in \mathbb{R}^2_* \times \mathbb{R}^2$. Montrer qu'il existe un unique $(\alpha, \beta) \in \mathbb{R}^2$ que l'on précisera tel que

$$f_{a_1,b_1}\circ f_{a_2,b_2}\circ f_{a_1,b_1}^{-1}=f_{\alpha,\beta}$$

- 3. En déduire une condition nécessaire et suffisante sur (a_1, a_2, b_1, b_2) pour que $f_{a_1,b_1} \circ f_{a_2,b_2} = f_{a_2,b_2} \circ f_{a_1,b_1}$.
- 4. Soit $(a, b) \in \mathbb{R}^* \times \mathbb{R}$. On suppose que $f_{a,b}$ vérifie

$$\forall (a',b') \in \mathbb{R}_* \times \mathbb{R}, f_{a',b'} \circ f_{a,b} = f_{a,b} \circ f_{a',b'}$$

Montrer que (a, b) = (1, 0).

3 ...jections

3.1 Une réciproque

Soit $f:]-1,+\infty[\to\mathbb{R},x\mapsto\frac{x}{\sqrt{x+1}}]$. Montrer que f est bijective et déterminer son application réciproque f^{-1} .

3.2 Une autre réciproque

On note sh : $\mathbb{R} \to \mathbb{R}$, $x \mapsto \frac{1}{2} (e^x - e^{-x})$. Cette application est appelée sinus hyperbolique.

- 1. Démontrer que sh est une bijection strictement croissante.
- 2. Soit $(x, y) \in \mathbb{R}^2$. Montrer que $y = \operatorname{sh}(x)$ si et seulement si e^x est racine d'un polynôme du second degré à déteminer dont les coefficients dépendent de y.
- 3. En déduire que $\mathbb{R} \to \mathbb{R}$, $y \mapsto \ln(y + \sqrt{y^2 + 1})$ est la réciproque de sh. On la note dorénavant argsh.
- 4. Démontrer que argsh est une fonction strictement croissante.
- 5. Démontrer que la fonction argsh est impaire.

3.3 Équipotence

On pose $f: \mathbb{N} \to \mathbb{Z}$, $n \mapsto \frac{n}{2}$ si n est pair , $-\frac{n+1}{2}$ sinon . Montrer que f est bijective et déterminer sa réciproque.

3.4 Applications idempotentes

Soit $f: E \rightarrow E$.

- 1. On suppose que $f \circ f = f$. Montrer que les propositions sont équivalentes
 - (a) f est injective.
 - (b) f est surjective.
 - (c) f est bijective.
 - (d) $f = Id_E$.
- 2. On suppose que $f \circ f \circ f = f$. Montrer que les propositions sont équivalentes
 - (a) f est injective.
 - (b) f est surjective.
 - (c) *f* est bijective.

Dans ce dernier cas, est-il vrai que $f = Id_E$?

3.5 Extension du cours

Soit $f: E \to F$ et $g: F \to G$ deux applications.

- 1. Montrer que si $f \circ g$ est surjective alors f est surjective.
- 2. Montrer que si $f \circ g$ est injective alors g est injective.

3.6 Applications dans un produit cartésien

Soit $f: \mathbb{C}^2 \to \mathbb{C}^2$, $(u, v) \mapsto (u^2 + v^2, uv)$.

- 1. *f* est-elle injective?
- 2. f est-elle surjective?
- 3. Déterminer les antécédents de (3-2i,3+i) par f.
- 4. Étudier l'injectivité et la surjectivité de $f_{\mathbb{R}^2}^{\mathbb{R}^2}$.

3.7 Caractérisation ensembliste de l'injectivité

Soit $f : E \to F$ une application. Montrer que f est injective si et seulement si pour toutes parties A,B de E, $f(A \cap B) = f(A) \cap f(B)$.

3.8 Monotonie et injectivité

- 1. Montrer que toute application de $\mathbb R$ dans $\mathbb R$ strictement monotone est injective.
- 2. Démontrer que la réciproque est fausse.

3.9 Fibration

Soit $f: E \to F$ une application. Montrer que la famille $\left(f^{-1}(\{y\})\right)_{y \in F}$ est un recouvrement disjoint de E. À quelle condition nécessaire et suffisante sur f, cette famille est-elle une partition de E?