# Mouvement dans un champ à force constante Cas de la gravitation - Lois de Kepler Planètes et satellites

1. Force centrale conservative - Cas de la gravitation12. Généralités des mouvements à force centrale conservative33. Cas d'une interaction newtonienne54. Mouvement des planètes et lois de Kepler75. Quelques remarques sur les satellites8

# I. Force centrale conservative - Cas de la gravitation

#### 1) Force centrale

On rappelle la définition d'une **force centrale**: une force centrale est une force dont la droite d'action passe toujours par un point fixe:



#### 2) Force conservative

On rappelle la définition d'une **force conservative**: c'est une force  $\vec{f}$  qui dérive d'un potentiel:

$$\vec{f} = - \operatorname{\overline{grad}} E_p$$

Pour montrer qu'une force est conservative, on veut montrer que:

$$\delta W = - dE_n$$

Pour étudier une force centrale, on se place en coordonnées sphériques:

$$\vec{f} = f\vec{u_r}$$

Si on étudie une force conservative de cette forme, on a alors:

$$\vec{f} = - \overline{\operatorname{grad}} \, E_p = - \frac{\mathrm{d} E_p}{\mathrm{d} r} \vec{u_r}$$

#### 3) Exemple de la gravitation

On étudie les points  $M_1$  de masse  $m_1$ , et  $M_2$  de masse  $m_2$ .

On a:

$$\vec{f}_{1\to 2} = -G \frac{m_1 m_2}{\left(M_1 M_2\right)^3} \overrightarrow{M_1 M_2}$$

On place le point  $M_1$  à l'origine O on renomme le point  $M_2$  en point M et on se place en coordonnées sphériques:

$$\vec{f}_{O\rightarrow M} = -G\frac{m_1m_2}{(OM)^3}\overrightarrow{OM} = -G\frac{m_1m_2}{r^2}\vec{u_r}$$

On calcule le trvail élémentaire:

$$\begin{split} \delta W &= \vec{f} \cdot \mathrm{d} \overline{OM} \\ &= -G \frac{m_1 m_2}{r^2} \vec{u_r} \cdot \left( \mathrm{d} r \vec{u_r} + r \, \mathrm{d} \theta \vec{u_\theta} + r \sin \theta \, \mathrm{d} \varphi \overrightarrow{u_\varphi} \right) \\ &= -G \frac{m_1 m_2}{r^2} \, \mathrm{d} r \\ &= - \, \mathrm{d} \left( -G \frac{m_1 m_2}{r} \right) = - \, \mathrm{d} E_p \end{split}$$

Avec:

$$E_p = -G\frac{m_1 m_2}{r} + \text{constante}$$

En générale, on choisit l'origine des potentiels à l'infini. La constante est donc nulle.

## 4) Autres exemples

On peut prendre comme exemple:

• La force de coulomb:

$$q_1 \bullet \qquad \vec{f}_{1 \to 2} \stackrel{q_2}{\longleftarrow}$$
 Avec  $\vec{f}_{1 \to 2} = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r^2} \vec{u_r}$ .

• La force de rappel du ressort:

La force de rappel du ressort: 
$$\overrightarrow{f} = -k\Delta l \overrightarrow{u}_{\rm ext}$$
 
$$\overrightarrow{f} = -k(r-l_0)\overrightarrow{u}_r$$
 
$$\delta W = \overrightarrow{f} \cdot {\rm d}\overrightarrow{OM} = -k(r-l_0)\overrightarrow{u}_r \cdot ({\rm d}r\overrightarrow{u}_r + \ldots)$$
 
$$= -k(r-l_0)\,{\rm d}r$$
 
$$= -\,{\rm d}\left(\frac{1}{2}k(r-l_0)^2\right)$$
 D'où:  $E_p = \frac{1}{2}k(r-l_0)^2 + {\rm constante}$ 

#### II. Généralités des mouvements à force centrale conservative

✓ Tip:

On devra presque toujours redémontrer ces résultats en exercice.

On étudie le système du point M dans un référentiel galiléen. On fait un bilan des forces:

• La force centrale conservative  $\vec{f} = f \vec{u_r}$ 

## 1) Conservation du moment cinétique

On commence par montrer la conservation du moment cinétique. Par le théorème du moment cinétique:

$$\frac{\mathrm{d}\overrightarrow{L_O}(M)}{\mathrm{d}t} = \overrightarrow{\mathcal{M}_O}\left(\overrightarrow{f}\right) = \overrightarrow{OM} \wedge \overrightarrow{f}$$

Or  $\overrightarrow{OM} = r\overrightarrow{u_r}$  et  $\overrightarrow{f} = f\overrightarrow{u_r}$ , donc les deux vecteurs sont colinéaires, donc:

$$\frac{\mathrm{d}\overrightarrow{L_O}(M)}{\mathrm{d}t} = \overrightarrow{OM} \wedge \overrightarrow{f} = 0$$

Le moment cinétique est donc conservé.

#### 2) Mouvement plan

Comme le moment cinétique est conservé, on peut montrer que le point M évolue dans un plan. On a établi que:

$$\overrightarrow{L_O}(M) = \overrightarrow{OM} \wedge m\overrightarrow{v}(M) = \text{constante}$$

Par définition du produit vectoriel,  $\overrightarrow{OM}$  et  $\overrightarrow{v}$  sont perpendiculaires au vecteur  $\overrightarrow{L_O}(M)$ , qui est constant.

- Si  $\overrightarrow{OM}$  et  $\overrightarrow{v}$  sont colinéaires, le mouvement est rectiligne.
- Sinon,  $\overrightarrow{OM}$  et  $\overrightarrow{v}$  forment un plan passant par le point O, et ce plan est perpendiculaire à  $\overrightarrow{L_O}(M)$ .

Dans les deux cas, le point M évolue dans un plan qui reste fixe. On peut donc se placer en coordonnées polaires:

$$\overrightarrow{OM} = r\overrightarrow{u_n}$$

#### 3) Constante des aires

On reprend le moment cinétique:

$$\begin{split} \overrightarrow{L_O}(M) &= r \overrightarrow{u_r} \wedge m \overrightarrow{v} \\ &= m r \overrightarrow{u_r} \wedge \left( \dot{r} \overrightarrow{u_r} + r \dot{\theta} \overrightarrow{u_\theta} \right) \\ &= m r^2 \dot{\theta} \overrightarrow{u_z} \end{split}$$

Le moment cinétique et la masse sont constants, donc la quantité  $r^2\dot{\theta}$  reste constante.

Donc la vitesse angulaire sera beaucoup plus grande proche du centre de la trajectoire que loin.

#### 4) Conservation de l'énergie mécanique

 $\vec{f}$  est une force conservative, donc l'énergie mécanique se conserve.

On peut expliciter la forme prise par l'énergie cinétique:

$$E_c = \frac{1}{2}mv^2$$

En cordonnées polaires:

$$\vec{v} = \dot{r}\vec{u_r} + r\dot{\theta}\vec{u_\theta}$$

Donc:

$$v^2 = \dot{r}^2 + r^2 \dot{\theta}^2$$

D'où:

$$E_c = \frac{1}{2} m \left( \dot{r}^2 + r^2 \dot{\theta}^2 \right)$$

On peut donc exprimer l'énergie mécanique:

 $E_m=E_c+E_{\mathfrak{p}}(r)$  (l'énergie potentielle ne dépend que de r)

$$E_{m} = \frac{1}{2}m\dot{r}^{2} + \frac{1}{2}mr^{2}\dot{\theta}^{2} + E_{p}(r)$$

$$E_m = \frac{1}{2} m \dot{r}^2 + \frac{1}{2} m \frac{1}{r^2} r^4 \dot{\theta}^2 + E_p(r)$$

$$E_m = \frac{1}{2}m\dot{r}^2 + C^2\frac{1}{2}\frac{m}{r^2} + E_p(r)$$
 avec  $C = r^2\dot{\theta}$  constante

On peut donc exprimer l'énergie mécanique en fonction d'un seul paramètre. Super! Les raisonnements énergitiques sont donc super youpi maintenant.

# 5) Énergie potentielle effective et étude qualitative du mouvement

On a maintenant une super intuition qui nous chuchote dans l'oreille d'essayer de séparer les termes en  $\dot{r}$  et en r.

On définit l'énergie potentielle effective. Elle récupère une partie de l'énergie cinétique, mais comme une énergie potentielle normale, elle ne dépend que de la position. Ici:

$$E_{p,\mathrm{eff}} = \frac{1}{2} \frac{mC^2}{r^2} + E_p(r)$$

On reprend l'expression tronquée d'énergie cinétique. On sait que:

$$\frac{1}{2}m\dot{r}^2 \ge 0$$

Donc, à tout moment,

$$E_m \geq E_{n,\text{eff}}(r)$$

Selon l'énergie mécanique originale du système, le mouvement peut donc être **libre** (r peut aller jusqu'a  $+\infty$ ) ou **lié** (r est confiné à un intervalle)



### III. Cas d'une interaction newtonienne

#### 1) Interaction newtonienne

On définit une **interaction newtonienne**  $\vec{f}$  par une force *centrale* d'amplitude proportionelle à  $\frac{1}{r^2}$ :

$$\vec{f} = \frac{K}{r^2} \vec{u_r}$$

On montre qu'elle est conservative:

$$\begin{split} \delta W &= \vec{f} \cdot \mathrm{d} \overrightarrow{OM} \\ &= \left(\frac{K}{r^2} \overrightarrow{u_r}\right) \cdot \left(\mathrm{d} r \overrightarrow{u_r} + r \, \mathrm{d} \theta \overrightarrow{u_\theta} + r \sin \theta \, \mathrm{d} \varphi \overrightarrow{u_\varphi}\right) \\ &= \mathrm{d} r \frac{K}{r^2} = - \, \mathrm{d} \left(\frac{K}{r}\right) = - \, \mathrm{d} E_p \end{split}$$

On prend donc  $E_p = \frac{K}{r} + \text{constante}$  avec la constante nulle pour l'origine des potentiels à l'infini.

## 2) Caractère attractif ou répulsif

- Si  $K>0,\, \vec{f}$  va dans le même sens que  $\vec{u_r}$  et est donc centrifuge (répulsive)
- Si  $K < 0,\, \vec{f}$  va dans le sens inverse de  $\vec{u_r}$  et est donc centripète (attractive)

# 3) Discussion qualitative du mouvement

On reprend l'expression de l'énergie potentielle effective vue précedemment:

$$E_p = \frac{K}{r} \Rightarrow E_{p,\text{eff}} = \frac{1}{2}m\frac{c^2}{r^2} + \frac{K}{r}$$

On dérive:

$$\frac{\mathrm{d}E_{p,\mathrm{eff}}}{\mathrm{d}r} = -\frac{mc^2}{r^3} - \frac{K}{r^2} = -\frac{mc^2 + Kr}{r^3}$$

On a toujours  $mc^2 > 0$  et r > 0.

Dans le cas K > 0,  $mc^2 + Kr > 0$ , donc

$$\frac{\mathrm{d}E_{p,\mathrm{eff}}}{\mathrm{d}r} < 0$$

l'énergie potentielle effective ne s'annule jamais et est une fonction décroissante de r. En regardant les limites pour  $r\to 0$  et  $r\to +\infty$ ,  $E_{p,{\rm eff}}$  est de la forme:



Donc tout système possède un mouvement libre.

Comme  $E_m=E_c+E_p$ , si on trouve une énergie mécanique négative dans l'étude d'une force newtonienne avec K > 0, on sait qu'on s'est

\* Si K<0, alors  $\frac{\mathrm{d}E_{p,\mathrm{eff}}}{\mathrm{d}r}$  s'annule pour  $r_0=-\frac{mc^2}{K}$ . L'énergie potentielle effective est décroissante jusqu'en  $r_0$  puis croissante. Elle admet donc un minimum en  $r_0$ .

On calcule ce minimum:

$$E_{p,\mathrm{eff}}(r_0) = -\frac{K^2}{2mc^2}$$



Dans le cas de la gravitation, les mouvement peuvent être liés ou libres

#### 4) Discussion sur la nature du mouvement

Pour K < 0, la trajectoire du mouvement suivra un conique:

- Pour  $E_m < 0$ , la trajectoire suivie est une ellipse
- Pour  ${\cal E}_m=0$ , la trajectoire suivie est parabolique
- Pour  $E_m > 0$ , la trajectoire suivie est hyperbolique

On définit un paramètre e, l'eccentricité, qui pour chacun des cas respecte e < 1, e = 1 et e > 1, d'équation de trajectoire:

$$r = \frac{p}{-\varepsilon + e\cos(\theta - \theta_0)} \text{ avec } P = \frac{mC^2}{|K|} \text{ et } \varepsilon = \frac{K}{|K|} = \pm 1$$

# IV. Mouvement des planètes et lois de Kepler

# 1) Énoncé des lois de Kepler

#### Θ Théorème:

- 1. Le centre des planètes décrit une ellipse dont l'un des foyers est le Soleil
- 2. Les rayons vecteurs balaient des aires égales pour des intervalles de temps égaux
- 3. Le rapport entre le carré de la période T de révolution de la planète autour du Soleil et le cube du demi grand axe a de la trajectoire est indépendant de la planète

$$\frac{T^2}{a^3} = \text{constante}$$

## 2) Étude la trajectoire circulaire

On suppose que le mouvement étudié est plan donc on utilise les coordonnées polaires.

Donc:

$$\vec{v} = \dot{r}\vec{u_r} + r\dot{\theta}\vec{u_\theta}$$

Par hypothèse de trajectoire circulaire, r = R constant, donc:

$$\vec{v} = r\dot{\theta}\vec{u_{\theta}}$$

Et:

$$\vec{a} = r \left( \ddot{\theta} \vec{u_{ heta}} - \dot{\theta}^2 \vec{u_r} \right)$$

Le mouvement étudié est uniforme, donc:

$$\overrightarrow{L_O}(M) = mr^2 \dot{\theta} \overrightarrow{u_z} = \text{constante}$$

Comme r = R est constant, alors  $\dot{\theta} = \text{constante}$ 

On souhaite obtenir le rayon de la trajectoire à partir de la vitesse:

$$\dot{\theta} = \text{constante}$$

$$\|\vec{v}\| = R\dot{\theta} = \text{constante}$$

On a:

$$mR\dot{\theta}^2 = \frac{GMm}{R^2}$$

$$R\dot{\theta}^2 = \frac{GM}{R^2}$$

Donc:

$$v^2 = R^2 \dot{\theta}^2 = R \frac{GM}{R^2} = \frac{GM}{R} \Rightarrow v = \sqrt{\frac{GM}{R}}$$

De plus, on a:

$$v = R |\dot{\theta}| \Rightarrow |\dot{\theta}| = \frac{v}{R} = \frac{1}{R} \left( \sqrt{\frac{GM}{R}} \right)$$

On en déduit la période de rotation:

$$\omega = \left| \dot{\theta} \right| = \frac{2\pi}{T}$$
 
$$\Rightarrow T = \frac{2\pi}{\left| \dot{\theta} \right|} = 2\pi \sqrt{\frac{R^3}{GM}}$$

On obtient la troisième loi de Kepler:

$$\frac{T^2}{R^3} = \frac{4\pi^2}{GM}$$

Étude énergétique:

$$E_p = -\frac{GMm}{r} + {\rm constante}$$

On prend l'origine des potentiels à l'infini, donc:

$$E_p = -\frac{GMm}{R}$$

$$E_c = \frac{1}{2} m v^2 = \frac{1}{2} m \frac{GM}{R} = \frac{GMm}{2R} = -\frac{1}{2} E_p$$

On en déduit l'énergie mécanique:

$$E_m = E_p + E_c = \frac{1}{2}E_p$$

# 3) Quelques caractéristiques de la trajectoire elliptique

|                                | Circulaire                            | Elliptique                            |
|--------------------------------|---------------------------------------|---------------------------------------|
| $oxed{E_m}$                    | $-\frac{GMm}{2R}$                     | $-\frac{GMm}{2a}$                     |
| 3 <sup>eme</sup> Loi de Kepler | $\frac{T^2}{R^3} = \frac{4\pi^2}{GM}$ | $\frac{T^2}{a^3} = \frac{4\pi^2}{GM}$ |

# V. Quelques remarques sur les satellites

# 1) Vitesse circulaire ou 1ere vitesse cosmique

C'est la vitesse pour se placer en orbite circulaire:

$$v_0 = \sqrt{\frac{GM}{R}}$$

## 2) Vitesse de libération ou 2eme vitesse cosmique

C'est la vitesse nécessaire pour se libérer de l'attraction de l'astre. On regarde le graphe d'énergie mécanique:



 ${\cal E}_m=0$  est la première valeure possible en partant d'un état lié pour obtenir un état libre. On a:

$$E_m = E_c + E_p$$

On se place dans l'hypothèse d'un satellite sur une trajectoire circulaire de rayon R

$$\Rightarrow E_p = \frac{-GMm}{R}$$

Pour avoir:

$$E_c = \frac{1}{2} m v_L^2$$
 avec  $v_L$  la vitesse de libération

$$\frac{1}{2}mv_L^2 - \frac{GMm}{R} = 0 \Rightarrow v_L = \sqrt{2\frac{GMm}{R}} = \sqrt{2}v_0$$

## 3) Satellite géostationnaire

Un satellite géostationnaire tourne à la même vitesse que la vitesse de rotation de la Terre (il reste au-dessus du même point tout le temps).

Il faut donc que la période de rotation T valle  $T=24~\mathrm{H}$ 

On a:

$$\frac{T^2}{R^3} = \frac{4\pi^2}{GM} \Rightarrow R = \sqrt[3]{T^2 \frac{GM}{4\pi^2}}$$