FCC RF Test Report

APPLICANT: Essential Products Inc.

EQUIPMENT : Smartphone

BRAND NAME: Essential Products

MODEL NAME : A11

FCC ID : 2ALBB-A11

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION : (NII) Unlicensed National Information Infrastructure

The product was received on Apr. 08, 2017 and testing was completed on Jun. 13, 2017. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 1 of 32

Report No.: FR740822F

Report Issued Date: Jun. 20, 2017
Report Version: Rev. 02

TABLE OF CONTENTS

RE	VISIOI	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Feature of Equipment Under Test	5
	1.4	Modification of EUT	5
	1.5	Testing Location	6
	1.6	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency and Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	6dB and 26dB and 99% Occupied Bandwidth Measurement	12
	3.2	Maximum Conducted Output Power Measurement	15
	3.3	Power Spectral Density Measurement	16
	3.4	Unwanted Emissions Measurement	19
	3.5	AC Conducted Emission Measurement	25
	3.6	Frequency Stability Measurement	27
	3.7	Automatically Discontinue Transmission	28
	3.8	Antenna Requirements	29
4		OF MEASURING EQUIPMENT	
5	UNC	ERTAINTY OF EVALUATION	32
ΑP	PEND	IX A. CONDUCTED TEST RESULTS	
ΑP	PEND	IX B. AC CONDUCTED EMISSION TEST RESULT	
ΑP	PEND	IX C. RADIATED SPURIOUS EMISSION	
ΑP	PEND	X D. RADIATED SPURIOUS EMISSION PLOTS	
ΑP	PEND	IX E. DUTY CYCLE PLOTS	
۸D	DENID	IV E SETUD BUOTOGDABUS	

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 2 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

REVISION HISTORY

Report No.: FR740822F

: 3 of 32

: Rev. 02

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR740822F	Rev. 01	Initial issue of report	Jun. 16, 2017
FR740822F	Rev. 02	Add the test results description of radiated spurious emission below 30MHz in section 3.4.5.	Jun. 20, 2017

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456

Report Issued Date: Jun. 20, 2017 FAX: 886-3-328-4978 Report Version FCC ID: 2ALBB-A11 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.403(i)	6dB, 26dB and 99% Occupied Bandwidth	> 500kHz	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	≤ 30 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	≤ 30 dBm/500kHz	Pass	-
3.4	15.407(b)	Unwanted Emissions	15.407(b)(4)(i) &15.209(a)	Pass	Under limit 3.77 dB at 33.780 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 14.50 dB at 0.518 MHz
3.6	15.407(g)	Frequency Stability	Within Operation Band	Pass	-
3.7	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.8	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 4 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

1 General Description

1.1 Applicant

Essential Products Inc.

380 Portage Ave., Palo Alto, CA 94306

1.2 Manufacturer

FIH Mobile Limited

No.4, Mingsheng St., Tu-Cheng Dist., New Taipei City 23679, Taiwan

1.3 Feature of Equipment Under Test

GSM/WCDMA/CDMA2000/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, NFC, and GPS.

Report No.: FR740822F

Product Specification subjective to this standard					
	WWAN: PIFA Antenna				
	WLAN: Monopole Antenna				
Antenna Type	Bluetooth: Monopole Antenna				
	GPS/Glonass/Galileo/Beidou : Monopole Antenna				
	NFC: Loop Antenna				

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 5 of 32

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID : 2ALBB-A11 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

1.5 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.			
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,			
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.			
rest site Location	TEL: +886-3-327-3456			
	FAX: +886-3-328-4978			
Test Site No.	Sporton S	Site No.		
Test Site NO.	TH05-HY	CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.	
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,	
Test Site Location	Taoyuan City, Taiwan (R.O.C.)	
rest Site Location	TEL: +886-3-327-0868	
	FAX: +886-3-327-0855	
Test Site No.	Sporton Site No.	
rest Site No.	03CH12-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 6 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR740822F

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 7 of 32

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID : 2ALBB-A11 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5725-5850 MHz	151*	5755	159*	5795
Band 4 (U-NII-3)	153	5765	161	5805
(3.411.6)	155#	5775	165	5825

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 8 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

2.2 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates as below table.

Report No.: FR740822F

: 9 of 32

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

	Test Cases					
AC Conducted	AC Conducted Mode 1 : GSM850 Idle + Bluetooth Link + WLAN (5GHz) Link + NFC On + USB Cable					
Emission	Emission (Charging from Adapter)					

	Ch. #		Band IV: 5725-5850 MHz	
	Cn. #	802.11n HT20	802.11n HT40	802.11ac VHT80
L	Low	149	151	-
М	Middle	157	-	155
Н	High	165	159	-

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456 Report Issued Date: Jun. 20, 2017

FAX: 886-3-328-4978 Report Version : Rev. 02 FCC ID: 2ALBB-A11 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, programmed RF utility, "QRCT" installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 10 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Report No.: FR740822F

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 4.2 + 10 = 14.2 (dB)

FAX: 886-3-328-4978 Report Version : Rev. 02
FCC ID: 2ALBB-A11 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

3 Test Result

3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03.
 Section C) Emission bandwidth for the band 5.725-5.85GHz

Report No.: FR740822F

- 2. Set RBW = 100kHz.
- 3. Set the VBW \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup

 SPORTON INTERNATIONAL INC.
 Page Number
 : 12 of 32

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID: 2ALBB-A11 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 13 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 14 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 15 of 32
Report Issued Date : Jun. 20, 2017

Report No.: FR740822F

Report Version : Rev. 02

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

Report No.: FR740822F

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 300 kHz.
- Set VBW ≥ 1 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(500kHz/RBW) to the test result.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 16 of 32

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID: 2ALBB-A11 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.
- 3. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (c): Measure and add 10 log(N_{ANT}) dB.

With this technique, spectrum measurements are performed at each output of the device, but rather than summing the spectra or the spectral peaks across the outputs, the quantity $10 \log(N_{ANT})$ dB is added to each spectrum value before comparing to the emission limit. The addition of $10 \log(N_{ANT})$ dB serves to apportion the emission limit among the N_{ANT} outputs so that each output is permitted to contribute no more than $1/N_{ANT}$ th of the PSD limit.

3.3.4 Test Setup

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 17 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 18 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.4.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5.725-5.85 GHz band: 15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Report No.: FR740822F

EIRP (dBm)	Field Strength at 3m (dBµV/m)
-17	78.3
- 27	68.3

(3) KDB789033 D02 v01r03 G)2)c)

- (i) Section 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and 2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz. However, an out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz dBm/MHz peak emission limit.
- (ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). An alternative to the band emissions mask is specified in Section 15.407(b)(4)(ii). The alternative limits are based on the highest antenna gain specified in the filing. There are also marketing and importation restrictions for the alternative limit.

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 20 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

3.4.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03.
 Section G) Unwanted emissions measurement.

Report No.: FR740822F

- (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
- (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
- (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 21 of 32

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID : 2ALBB-A11 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.4.4 Test Setup

For radiated emissions below 30MHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 22 of 32

Report No.: FR740822F

Report Issued Date: Jun. 20, 2017
Report Version: Rev. 02

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 23 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Report No.: FR740822F

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.4.7 **Duty Cycle**

Please refer to Appendix E.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456 Report Issued Date: Jun. 20, 2017

FAX: 886-3-328-4978 FCC ID: 2ALBB-A11

Report Version : Rev. 02

Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

: 24 of 32

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR740822F

Eroquency of emission (MUz)	Conducted limit (dBμV)						
Frequency of emission (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 25 of 32

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID: 2ALBB-A11 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

3.5.4 Test Setup

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 26 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

3.6 Frequency Stability Measurement

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- To ensure emission at the band edge is maintained within the authorized band, those values shall
 be measured by radiation emissions at upper and lower frequency points, and finally
 compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 27 of 32

Report Issued Date : Jun. 20, 2017

Report No.: FR740822F

Report Version : Rev. 02

3.7 Automatically Discontinue Transmission

3.7.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 28 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

3.8 Antenna Requirements

3.8.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR740822F

3.8.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.8.3 Antenna Gain

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 1	Ant 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band IV	1.30	-7.20	1.30	1.06	0.00	0.00

Power limit reduction = Composite gain - 6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

 SPORTON INTERNATIONAL INC.
 Page Number
 : 29 of 32

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID: 2ALBB-A11 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	0932001	300MHz~40GHz	Sep. 29, 2016	Jun. 08, 2017 ~ Jun. 11, 2017	Sep. 28, 2017	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	0846202	300MHz~40GHz	Sep. 29, 2016	Jun. 08, 2017 ~ Jun. 11, 2017	Sep. 28, 2017	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Jul. 17, 2016	Jun. 08, 2017 ~ Jun. 11, 2017	Jul. 16, 2017	Conducted (TH05-HY)
Temperature Chamber	ESPEC	SH-641	92013720	-40°C ~90°C	Sep. 01, 2016	Jun. 08, 2017 ~ Jun. 11, 2017	Aug. 31, 2017	Conducted (TH05-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890094	1V~20V 0.5A~5A	Oct. 11, 2016	Jun. 08, 2017 ~ Jun. 11, 2017	Oct. 10, 2017	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jun. 06, 2017	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Jun. 06, 2017	Aug. 29, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 29, 2016	Jun. 06, 2017	Nov. 28, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 06, 2016	Jun. 06, 2017	Dec. 05, 2017	Conduction (CO05-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 23, 2017	Jun. 09, 2017 ~ Jun. 13, 2017	Mar. 22, 2018	Radiation (03CH12-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Oct. 20, 2016	Jun. 09, 2017 ~ Jun. 13, 2017	Oct. 19, 2018	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	37059&01	30MHz~1GHz	Oct. 15, 2016	Jun. 09, 2017 ~ Jun. 13, 2017	Oct. 14, 2017	Radiation (03CH12-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 23, 2016	Jun. 09, 2017 ~ Jun. 13, 2017	Dec. 22, 2017	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK BBHA 9120D		9120D-1328	1GHz ~ 18GHz	Oct. 25, 2016	Jun. 09, 2017 ~ Jun. 13, 2017	Oct. 24, 2017	Radiation (03CH12-HY)
Preamplifier	MITEQ AMF-7D-0 1800-30-		1815698	1GHz~18GHz	Dec. 01, 2016	Jun. 09, 2017 ~ Jun. 13, 2017	Nov. 30, 2017	Radiation (03CH12-HY)
Preamplifier	Keysight	83017A	MY53270148	1GHz~26.5GHz	Jan. 12, 2017	Jun. 09, 2017 ~ Jun. 13, 2017	Jan. 11, 2018	Radiation (03CH12-HY)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 30 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Filter	Wainwright	WLJ4-1000-15	SN3	1.53 GHz	Jul. 07, 2016	Jun. 09, 2017 ~	Jul. 06, 2017	Radiation
		30-6000-40ST		Lowpass		Jun. 13, 2017		(03CH12-HY)
		WHKX12-2700				Jun. 09, 2017 ~		Radiation
Filter	Wainwright	-3000-18000-6	SN2	3 GHz Highpass	Jul. 07, 2016	Jun. 13, 2017 ~	Jul. 06, 2017	(03CH12-HY)
		0ST				Juli. 13, 2017		(030112-111)
		WHKX8-5272.				lum 00 2017		Radiation
Filter	Woken	5-6750-18000-	SN2	6.75G Highpass	Dec. 08, 2016	Jun. 09, 2017 ~	Dec. 07, 2017	
		40ST				Jun. 13, 2017		(03CH12-HY)
Antonno Mant	EMEC	AM DC 4500 D	N/A	4 4	NI/A	Jun. 09, 2017 ~	N1/A	Radiation
Antenna Mast	EMEC	AM-BS-4500-B	IN/A	1m~4m	N/A	Jun. 13, 2017	N/A	(03CH12-HY)
Town Table	EMEO	TTOOOO	N1/A	0.000 D	N1/A	Jun. 09, 2017 ~	N1/A	Radiation
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Jun. 13, 2017	N/A	(03CH12-HY)
SHF-EHF Horn	SCHWARZBE	DD114 0470	BBHA917057	40011- 40011-	A 07 0047	Jun. 09, 2017 ~	A 00 0040	Radiation
Antenna	CK	BBHA 9170	6	18GHz ~ 40GHz	Apr. 27, 2017	Jun. 13, 2017	Apr. 26, 2018	(03CH12-HY)
D	MITEO	TTA	4007405	40011- 40011-	0-1-40-0040	Jun. 09, 2017 ~	0-1-40-0047	Radiation
Preamplifier	MITEQ	1840-35-HG	1887435	18GHz ~ 40GHz	Oct. 13, 2016	Jun. 13, 2017	Oct. 12, 2017	(03CH12-HY)
Spectrum	A =:1= ==t	A ii d Noood		211- 44011-	Mar. 00. 0047	Jun. 09, 2017 ~	Mar. 20. 2040	Radiation
Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Mar. 23, 2017	Jun. 13, 2017	Mar. 22, 2018	(03CH12-HY)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALBB-A11 Page Number : 31 of 32
Report Issued Date : Jun. 20, 2017
Report Version : Rev. 02

Report No.: FR740822F

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.70
of 95% (U = 2Uc(y))	2.70

Report No.: FR740822F

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.40
of 95% (U = 2Uc(y))	5.10

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	4.70
of 95% (U = 2Uc(y))	4.70

 SPORTON INTERNATIONAL INC.
 Page Number
 : 32 of 32

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID : 2ALBB-A11 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Allen Lin/Bill Kuo	Temperature:	21~25	°C
Test Date:	2017/6/8~6/11	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 26dB EBW and 99% OBW

	Band IV													
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		9% width Hz)	Band	dB lwidth Hz)	6 dB Bandwidth (MHz)			width Limit	Pass/Fail	
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps	2	149	5745	17.70	17.55	24.70	25.20	16.04	15.48	0.5		Pass	
11a	6Mbps	2	157	5785	17.30	17.45	24.00	24.30	15.16	15.72	0.	5	Pass	
11a	6Mbps	2	165	5825	17.65	17.50	24.70	24.80	15.96	15.16	0.	5	Pass	
HT20	MCS0	2	149	5745	19.00	18.60	26.80	25.10	16.80	15.48	0.	5	Pass	
HT20	MCS0	2	157	5785	18.35	18.65	25.10	25.30	15.16	15.72	0.	5	Pass	
HT20	MCS0	2	165	5825	18.85	18.70	26.40	25.50	16.80	16.00	0.5		Pass	
HT40	MCS0	2	151	5755	36.40	36.60	41.94	42.30	35.44	35.20	0.5		Pass	
HT40	MCS0	2	159	5795	36.70	36.60	41.76	41.94	35.20	35.36	0.5		Pass	
VHT80	MCS0	2	155	5775	75.84	75.84	83.52	83.84	75.52	75.36	0.	5	Pass	

TEST RESULTS DATA Average Power Table

	Band IV																
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)		uty etor B)	Average Conducted Power (dBm)			FCC Conducted Power Limit (dBm)		Conducted Power Limit		Conducted DC Power Limit (dB			Pass/Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2				
11a	6Mbps	1	149	5745	0.24	0.24	11.12	9.41		30.00	30.00	1.30	-7.20		Pass		
11a	6Mbps	1	157	5785	0.24	0.24	11.08	9.30		30.00	30.00	1.30	-7.20		Pass		
11a	6Mbps	1	165	5825	0.24	0.24	11.07	9.29		30.00	30.00	1.30	-7.20		Pass		
HT20	MCS0	1	149	5745	0.26	0.26	11.19	9.49		30.00	30.00	1.30	-7.20		Pass		
HT20	MCS0	1	157	5785	0.26	0.26	11.18	9.37		30.00	30.00	1.30	-7.20		Pass		
HT20	MCS0	1	165	5825	0.26	0.26	11.01	9.47		30.00	30.00	1.30	-7.20		Pass		
HT40	MCS0	1	151	5755	0.47	0.44	11.28	9.46		30.00	30.00	1.30	-7.20		Pass		
HT40	MCS0	1	159	5795	0.47	0.44	11.16	9.43		30.00	30.00	1.30	-7.20		Pass		
VHT20	MCS0	1	149	5745	0.26	0.26	9.17	7.49		30.00	0.00 30.00		-7.20		Pass		
VHT20	MCS0	1	157	5785	0.26	0.26	9.16	7.42		30.00	30.00 30.00		-7.20		Pass		
VHT20	MCS0	1	165	5825	0.26	0.26	9.02	7.16		30.00	30.00	1.30	-7.20		Pass		
VHT40	MCS0	1	151	5755	0.47	0.49	9.29	7.49		30.00	30.00	1.30	-7.20		Pass		
VHT40	MCS0	1	159	5795	0.47	0.49	9.27	7.42		30.00	30.00	1.30	-7.20		Pass		
VHT80	MCS0	1	155	5775	0.59	0.63	9.23	7.20		30.00	30.00	1.30	-7.20		Pass		
11a	6Mbps	2	149	5745	0.24	0.24	11.23	11.68	14.48	30.	30.00 1.30			Pass			
11a	6Mbps	2	157	5785	0.24	0.24	11.22	11.47	14.36	30.	.00	1.3	30		Pass		
11a	6Mbps	2	165	5825	0.24	0.24	11.10	11.29	14.21	30.	.00	1.3	30		Pass		
HT20	MCS0	2	149	5745	0.26	0.26	11.23	11.74	14.50	30.	.00	1.3	30		Pass		
HT20	MCS0	2	157	5785	0.26	0.26	11.21	11.56	14.40	30.	.00	1.3	30		Pass		
HT20	MCS0	2	165	5825	0.26	0.26	11.07	11.49	14.30	30.	.00	1.3	30		Pass		
HT40	MCS0	2	151	5755	0.47	0.52	11.33	11.65	14.50	30.	.00	1.3	30		Pass		
HT40	MCS0	2	159	5795	0.47	0.52	11.15	11.54	14.36	30.	.00	1.3	30		Pass		
VHT20	MCS0	2	149	5745	0.26	0.26	9.25	9.70	12.49	30.	.00	1.3	30		Pass		
VHT20	MCS0	2	157	5785	0.26	0.26	9.19	9.52	12.37	30.	.00	1.3	30		Pass		
VHT20	MCS0	2	165	5825	0.26	0.26	9.31	9.51	12.42	30.	.00	1.3	30		Pass		
VHT40	MCS0	2	151	5755	0.49	0.49	9.43	9.70	12.58	30.	30.00		30		Pass		
VHT40	MCS0	2	159	5795	0.49	0.49	9.35	9.65	12.52	30.	.00	1.3	30		Pass		
VHT80	MCS0	2	155	5775	0.59	0.59	9.24	9.64	12.46	30.	.00	1.3	30		Pass		

TEST RESULTS DATA Power Spectral Density

	Band IV															
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)		10log (500kHz /RBW) Factor (dB)		Average Power Density (dBm/500kHz)		Average PSD Limit (dBm/500kHz)		DG (dBi)		Pass /Fail	
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	2	149	5745	0.24	0.24	2.22				2.30 30.00		00	1.06		Pass
11a	6Mbps	2	157	5785	0.24	0.24	2.22				2.06	30.00		1.06		Pass
11a	6Mbps	2	165	5825	0.24	0.24	2.22				1.27	30.00		1.06		Pass
HT20	MCS0	2	149	5745	0.26	0.26	2.22				1.64	30.00		1.06		Pass
HT20	MCS0	2	157	5785	0.26	0.26	2.22				1.34	30.00		1.06		Pass
HT20	MCS0	2	165	5825	0.26	0.26	2.22				0.88	30.00		1.06		Pass
HT40	MCS0	2	151	5755	0.47	0.52	2.22				-1.46	30.00		1.06		Pass
HT40	MCS0	2	159	5795	0.47	0.52	2.22				-1.65	30.00		1.06		Pass
VHT80	MCS0	2	155	5775	0.59	0.59	2.22				-6.44	30.	00	1.0	06	Pass

Report Number : FR740822F

TEST RESULTS DATA Frequency Stability

	Band IV														
Mod.	Data Rate	INTX CH ' Frequency		Frequency Deviation (MHz)	Frequency Stablility (ppm)	Temperature (°C)	Voltage (V)	Note							
11a	6Mbps	1	149	5745	5745.050	0.050	8.70	50	3.85						
11a	6Mbps	1	149	5745	5745.050	0.050	8.70	-30	3.85						
11a	6Mbps	1	149	5745	5745.050	0.050	8.70	20	4.2						
11a	6Mbps	1	149	5745	5745.050	0.050	8.70	20	3.5						
11a	6Mbps	1	149	5745	5745.050	0.050	8.70	20	3.85						

Appendix B. AC Conducted Emission Test Results

Test Engineer :	Marolyo Ho	Temperature :	24~26 ℃
rest Engineer.	iviaioiwe i io	Relative Humidity :	50~52%

Report No.: FR740822F

SPORTON INTERNATIONAL INC. Page Number : B1 of B1

TEL: 886-3-327-3456 FAX: 886-3-328-4978

EUT Information

 Report NO :
 740822

 Test Mode :
 Mode 1

 Test Voltage :
 120Vac/60Hz

Phase: Line

ENV216 Auto Test FCC Power Bar - L

Final Result 1

Frequency	QuasiPeak	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	40.5	Off	L1	19.6	25.5	66.0
0.174000	39.2	Off	L1	19.6	25.6	64.8
0.206000	35.8	Off	L1	19.6	27.6	63.4
0.518000	35.9	Off	L1	19.6	20.1	56.0
2.862000	29.5	Off	L1	19.5	26.5	56.0
8.030000	32.4	Off	L1	19.9	27.6	60.0
13.558000	31.1	Off	L1	20.2	28.9	60.0
18.510000	29.1	Off	L1	20.5	30.9	60.0

Final Result 2

Frequency (MHz)	Average (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	22.6	Off	L1	19.6	33.4	56.0
0.174000	22.9	Off	L1	19.6	31.9	54.8
0.206000	22.5	Off	L1	19.6	30.9	53.4
0.518000	31.5	Off	L1	19.6	14.5	46.0
2.862000	18.7	Off	L1	19.5	27.3	46.0
8.030000	19.3	Off	L1	19.9	30.7	50.0
13.558000	23.0	Off	L1	20.2	27.0	50.0
18.510000	18.4	Off	L1	20.5	31.6	50.0

EUT Information

Report NO: 740822
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

ENV216 Auto Test FCC Power Bar - N

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	42.1	Off	N	19.5	23.9	66.0
0.398000	31.3	Off	N	19.5	26.6	57.9
0.526000	36.6	Off	N	19.5	19.4	56.0
1.158000	27.6	Off	N	19.6	28.4	56.0
1.934000	29.1	Off	N	19.6	26.9	56.0
13.558000	30.1	Off	N	20.3	29.9	60.0
24.278000	26.2	Off	N	20.9	33.8	60.0

Final Result 2

Frequency	Average	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	25.2	Off	N	19.5	30.8	56.0
0.398000	26.0	Off	N	19.5	21.9	47.9
0.526000	31.2	Off	N	19.5	14.8	46.0
1.158000	21.6	Off	N	19.6	24.4	46.0
1.934000	22.1	Off	N	19.6	23.9	46.0
13.558000	22.9	Off	N	20.3	27.1	50.0
24.278000	17.8	Off	N	20.9	32.2	50.0

Appendix C. Radiated Spurious Emission

Test Engineer :	Peter Liao and Nick Yu	Temperature :	22~23°C
rest Engineer.		Relative Humidity :	54~56%

Band 4 - 5725~5850MHz

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5625.8	49.91	-18.29	68.2	41.81	32.75	6.34	30.99	104	325	Р	Н
		5672.4	49.85	-34.97	84.82	41.63	32.88	6.35	31.01	104	325	Р	Н
		5704.6	51.38	-55.11	106.49	43.06	32.97	6.36	31.01	104	325	Р	Н
		5724.2	54.68	-65.7	120.38	46.3	33.03	6.37	31.02	104	325	Р	Н
	*	5745	101.68	-	-	93.25	33.09	6.37	31.03	104	325	Р	Н
	*	5745	91.04	-	-	82.61	33.09	6.37	31.03	104	325	Α	Н
802.11n													Н
HT20													Н
CH 149		5629.2	49.92	-18.28	68.2	41.81	32.76	6.35	31	163	326	Р	V
5745MHz		5687.8	50.59	-45.61	96.2	42.31	32.93	6.36	31.01	163	326	Р	V
		5707.6	51.06	-56.27	107.33	42.74	32.98	6.36	31.02	163	326	Р	V
		5720.8	50.07	-62.55	112.62	41.7	33.02	6.37	31.02	163	326	Р	V
	*	5745	100.14	-	-	91.71	33.09	6.37	31.03	163	326	Р	V
	*	5745	89.61	-	-	81.18	33.09	6.37	31.03	163	326	Α	V
													V
													٧

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5635.6	49.49	-18.71	68.2	41.36	32.78	6.35	31	101	332	Р	Н
		5653	50.06	-20.37	70.43	41.88	32.83	6.35	31	101	332	Р	Н
		5714.4	49.64	-59.59	109.23	41.3	33	6.36	31.02	101	332	Р	Н
		5724.4	49.58	-71.25	120.83	41.2	33.03	6.37	31.02	101	332	Р	Н
	*	5785	102.06	-	-	93.53	33.2	6.38	31.05	101	332	Р	Н
	*	5785	91.63	-	-	83.1	33.2	6.38	31.05	101	332	Α	Н
		5854.8	51.11	-60.15	111.26	42.36	33.39	6.42	31.06	101	332	Р	Н
		5870	50.43	-56.17	106.6	41.63	33.44	6.43	31.07	101	332	Р	Н
		5909.4	50.92	-28.79	79.71	42	33.55	6.46	31.09	101	332	Р	Н
		5936	51.08	-17.12	68.2	42.07	33.62	6.48	31.09	101	332	Р	Н
802.11n													Н
HT20													Н
CH 157		5602.2	50.34	-17.86	68.2	42.29	32.69	6.34	30.98	172	336	Р	V
5785MHz		5675.4	49.9	-37.14	87.04	41.67	32.89	6.35	31.01	172	336	Р	V
		5701	49.57	-55.91	105.48	41.26	32.96	6.36	31.01	172	336	Р	V
		5721.8	49.4	-65.5	114.9	41.03	33.02	6.37	31.02	172	336	Р	V
	*	5785	99.05	-	-	90.52	33.2	6.38	31.05	172	336	Р	V
	*	5785	88.47	-	-	79.94	33.2	6.38	31.05	172	336	Α	V
		5854.2	50.24	-62.38	112.62	41.49	33.39	6.42	31.06	172	336	Р	V
		5860.2	50.34	-59	109.34	41.58	33.41	6.42	31.07	172	336	Р	V
		5921.8	50.27	-20.29	70.56	41.31	33.58	6.47	31.09	172	336	Р	V
		5935.4	50.96	-17.24	68.2	41.95	33.62	6.48	31.09	172	336	Р	V
													V
													V

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	5825	103.6	-	-	94.95	33.31	6.39	31.05	100	332	Р	Н
	*	5825	92.98	-	-	84.33	33.31	6.39	31.05	100	332	Α	Н
		5850	55.86	-66.34	122.2	47.12	33.38	6.42	31.06	100	332	Р	Н
		5856.4	51.2	-59.21	110.41	42.44	33.4	6.42	31.06	100	332	Р	Н
		5923.4	51.34	-18.04	69.38	42.37	33.59	6.47	31.09	100	332	Р	Н
		5940.2	51.61	-16.59	68.2	42.59	33.63	6.48	31.09	100	332	Р	Н
802.11n													Н
HT20													Н
CH 165	*	5825	100.23	-	-	91.58	33.31	6.39	31.05	182	333	Р	V
5825MHz	*	5825	89.66	-	-	81.01	33.31	6.39	31.05	182	333	Α	V
		5851	50.74	-69.18	119.92	42	33.38	6.42	31.06	182	333	Р	V
		5873	51	-54.76	105.76	42.2	33.44	6.43	31.07	182	333	Р	V
		5895.2	50.8	-39.41	90.21	41.93	33.51	6.44	31.08	182	333	Р	V
		5949.6	50.95	-17.25	68.2	41.9	33.66	6.48	31.09	182	333	Р	V
													V
													V
Remark		other spurious		Peak and	l Average lim	it line.			,			•	<u>, </u>

Band 4 5725~5850MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		11490	48.39	-25.61	74	55.43	40.2	9.82	57.57	100	0	Р	Н
		17235	49.82	-18.38	68.2	52	41.92	12.09	56.83	100	0	Р	Н
802.11n													Н
HT20													Н
CH 149		11490	48.53	-25.47	74	55.57	40.2	9.82	57.57	100	0	Р	V
5745MHz		17235	49.27	-18.93	68.2	51.45	41.92	12.09	56.83	100	0	Р	V
													V
													V
		11570	48.84	-25.16	74	56.01	40.06	9.86	57.6	100	0	Р	Н
		17355	48.64	-19.56	68.2	50.94	42.18	12.19	57.3	100	0	Р	Н
802.11n													Н
HT20													Н
CH 157		11570	48.69	-25.31	74	55.86	40.06	9.86	57.6	100	0	Р	V
5785MHz		17355	48.84	-19.36	68.2	51.14	42.18	12.19	57.3	100	0	Р	V
													V
													V
		11650	47.8	-26.2	74	55.09	39.9	9.9	57.6	100	0	Р	Н
		17475	50.3	-17.9	68.2	52.72	42.44	12.29	57.77	100	0	Р	Н
802.11n													Н
HT20													Н
CH 165		11650	47.74	-26.26	74	55.03	39.9	9.9	57.6	100	0	Р	V
5825MHz		17475	48.65	-19.55	68.2	51.07	42.44	12.29	57.77	100	0	Р	V
													V
													V

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : C4 of C10

Band 4 5725~5850MHz

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		5607.6	50.41	-17.79	68.2	42.36	32.7	6.34	30.99	100	330	Р	Н
		5673.8	50.61	-35.24	85.85	42.38	32.89	6.35	31.01	100	330	Р	Н
		5717.6	54.13	-56	110.13	45.77	33.01	6.37	31.02	100	330	Р	Н
		5721.6	55.72	-58.73	114.45	47.35	33.02	6.37	31.02	100	330	Р	Н
	*	5755	98.47	-	-	90.02	33.11	6.37	31.03	100	330	Р	Н
	*	5755	87.5	-	-	79.05	33.11	6.37	31.03	100	330	Α	Н
		5852.6	51.07	-65.2	116.27	42.32	33.39	6.42	31.06	100	330	Р	Н
		5872.8	50.34	-55.48	105.82	41.54	33.44	6.43	31.07	100	330	Р	Н
		5876	50.67	-53.79	104.46	41.86	33.45	6.43	31.07	100	330	Р	Н
		5937.2	50.16	-18.04	68.2	41.15	33.62	6.48	31.09	100	330	Р	Н
802.11n													Н
HT40													Н
CH 151		5647	49.34	-18.86	68.2	41.18	32.81	6.35	31	164	333	Р	V
5755MHz		5692	50.21	-49.09	99.3	41.92	32.94	6.36	31.01	164	333	Р	V
		5718.6	51.32	-59.09	110.41	42.96	33.01	6.37	31.02	164	333	Р	V
		5722	53.12	-62.24	115.36	44.75	33.02	6.37	31.02	164	333	Р	V
	*	5755	96.45	-	-	88	33.11	6.37	31.03	164	333	Р	V
	*	5755	85.99	-	-	77.54	33.11	6.37	31.03	164	333	Α	V
		5851.8	50.84	-67.26	118.1	42.09	33.39	6.42	31.06	164	333	Р	V
		5859.6	49.88	-59.63	109.51	41.12	33.41	6.42	31.07	164	333	Р	V
		5915.8	50.43	-24.55	74.98	41.49	33.56	6.47	31.09	164	333	Р	V
		5926.4	50.19	-18.01	68.2	41.22	33.59	6.47	31.09	164	333	Р	V
													V
													V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5637.8	49.72	-18.48	68.2	41.58	32.79	6.35	31	100	331	Р	Н
		5696.6	49.36	-53.33	102.69	41.06	32.95	6.36	31.01	100	331	Р	Н
		5711	49.54	-58.74	108.28	41.21	32.99	6.36	31.02	100	331	Р	Н
		5720.2	49.27	-61.99	111.26	40.9	33.02	6.37	31.02	100	331	Р	Н
	*	5795	98.14	-	-	89.58	33.23	6.38	31.05	100	331	Р	Н
	*	5795	88.03	-	-	79.47	33.23	6.38	31.05	100	331	Α	Н
		5852.4	50.83	-65.9	116.73	42.08	33.39	6.42	31.06	100	331	Р	Н
		5866.4	51.33	-56.28	107.61	42.54	33.43	6.43	31.07	100	331	Р	Н
		5896.8	50.63	-38.4	89.03	41.76	33.51	6.44	31.08	100	331	Р	Н
		5943.2	50.61	-17.59	68.2	41.58	33.64	6.48	31.09	100	331	Р	Н
802.11n													Н
HT40													Н
CH 159		5645	49.36	-18.84	68.2	41.2	32.81	6.35	31	152	328	Р	٧
5795MHz		5692.2	49.81	-49.64	99.45	41.52	32.94	6.36	31.01	152	328	Р	٧
		5714.2	50.07	-59.11	109.18	41.73	33	6.36	31.02	152	328	Р	٧
		5723.4	49.71	-68.84	118.55	41.33	33.03	6.37	31.02	152	328	Р	٧
	*	5795	96.38	-	-	87.82	33.23	6.38	31.05	152	328	Р	٧
	*	5795	86.33	-	-	77.77	33.23	6.38	31.05	152	328	Α	٧
		5853	50.17	-65.19	115.36	41.42	33.39	6.42	31.06	152	328	Р	٧
		5871	50.55	-55.77	106.32	41.75	33.44	6.43	31.07	152	328	Р	٧
		5877.2	50.25	-53.32	103.57	41.43	33.46	6.43	31.07	152	328	Р	V
		5932.6	50.46	-17.74	68.2	41.47	33.61	6.47	31.09	152	328	Р	V
													V
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	, ,	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		5632.6	49.94	-18.26	68.2	41.82	32.77	6.35	31	100	328	Р	Н
		5693.6	51.05	-49.43	100.48	42.76	32.94	6.36	31.01	100	328	Р	Н
		5716.4	54.29	-55.5	109.79	45.94	33.01	6.36	31.02	100	328	Р	Н
		5720.8	51.79	-60.83	112.62	43.42	33.02	6.37	31.02	100	328	Р	Н
	*	5775	94.41	-	-	85.9	33.17	6.38	31.04	100	328	Р	Н
	*	5775	83.98	-	-	75.47	33.17	6.38	31.04	100	328	Α	Н
		5852.4	52.18	-64.55	116.73	43.43	33.39	6.42	31.06	100	328	Р	Н
		5865	55.98	-52.02	108	47.2	33.42	6.43	31.07	100	328	Р	Н
		5882.4	51.56	-48.14	99.7	42.72	33.47	6.44	31.07	100	328	Р	Н
		5948.8	50.64	-17.56	68.2	41.59	33.66	6.48	31.09	100	328	Р	Н
802.11ac													Н
VHT80													Н
CH 155		5621.4	49.79	-18.41	68.2	41.7	32.74	6.34	30.99	236	326	Р	V
5775MHz		5693.4	50.59	-49.74	100.33	42.3	32.94	6.36	31.01	236	326	Р	V
		5712.6	53.1	-55.63	108.73	44.76	33	6.36	31.02	236	326	Р	V
		5721.8	50.62	-64.28	114.9	42.25	33.02	6.37	31.02	236	326	Р	V
	*	5775	91.69	-	-	83.18	33.17	6.38	31.04	236	326	Р	V
	*	5775	81.38	-	-	72.87	33.17	6.38	31.04	236	326	Α	V
		5855	50.78	-60.02	110.8	42.03	33.39	6.42	31.06	236	326	Р	V
		5859	52.85	-56.83	109.68	44.09	33.41	6.42	31.07	236	326	Р	V
		5900.6	50.21	-36.01	86.22	41.31	33.52	6.46	31.08	236	326	Р	V
		5939.6	50.54	-17.66	68.2	41.52	33.63	6.48	31.09	236	326	Р	V
													V
													V
		o other spurious	1	1	<u> </u>	<u> </u>	<u> </u>		1		1	1	L

Remark

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : C7 of C10

Emission below 1GHz

5GHz WIFI 802.11n HT20 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		95.07	28.45	-15.05	43.5	42.57	15.42	0.8	30.4	-	-	Р	Н
		180.93	29.09	-14.41	43.5	43	15.12	1.09	30.29	-	-	Р	Н
		211.44	28.03	-15.47	43.5	41.73	15.23	1.19	30.26	-	-	Р	Н
		617.1	27.86	-18.14	46	29.18	26.23	2	29.64	-	-	Р	Н
		754.3	31.24	-14.76	46	30.14	28.22	2.21	29.43	100	0	Р	Н
		995.1	34.48	-19.52	54	29.95	30.73	2.55	28.97	-	-	Р	Н
													Н
													Н
													Н
													Н
5GHz													Н
802.11n													Н
HT20		33.78	36.23	-3.77	40	43.52	22.49	0.48	30.23	100	0	Р	V
LF		62.94	33.23	-6.77	40	51.06	11.89	0.68	30.44	-	-	Р	V
		89.94	30.26	-13.24	43.5	45.01	14.84	0.76	30.41	-	-	Р	V
		729.8	32.42	-13.58	46	31.96	27.65	2.18	29.47	-	-	Р	V
		885.9	34.45	-11.55	46	31.84	29.21	2.42	29.18	-	-	Р	V
		948.9	34.3	-11.7	46	29.84	30.79	2.49	29.06	-	-	Р	V
													V
													V
													V
													V
													V
													V

2. All results are PASS against limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : C8 of C10

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 FAX: 886-3-328-4978

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dB μ V) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Appendix D. Radiated Spurious Emission Plots

Toot Engineer	Peter Liao and Nick Yu	Temperature :	22~23°C
Test Engineer :		Relative Humidity :	54~56%

Note symbol

-L	Low channel location
-R	High channel location

Band 4 - 5725~5850MHz

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Band 4 5725~5850MHz Band Edge @ 3m								
ANT	802.11n HT20 C	H149 5745MHz							
1+2	Horizontal	Fundamental							
Peak	140 Ever (dilutim) 122.5 163.0 175.0 177.0 175	Date: 2917-06-12 105.6 87.7 17.0 106.6 107.0							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz WIFI 802.11n HT40 (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 - 5725~5850MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Emission below 1GHz

5GHz WIFI 802.11n HT20 (LF)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Appendix E. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
1	802.11a	94.52	2070	0.48	1kHz
1	5GHz 802.11n HT20	94.15	1930	0.52	1kHz
1	5GHz 802.11n HT40	89.77	948	1.05	3kHz
1	5GHz 802.11n ac20	94.18	1940	0.52	1kHz
1	5GHz 802.11n ac40	89.77	948	1.05	3kHz
1	5GHz 802.11n ac80	87.2	736	1.36	3kHz
2	802.11a	94.52	2070	0.48	1kHz
2	5GHz 802.11n HT20	94.15	1930	0.52	1kHz
2	5GHz 802.11n HT40	90.29	948	1.05	3kHz
2	5GHz 802.11n ac20	94.18	1940	0.52	1kHz
2	5GHz 802.11n ac40	89.27	948	1.05	3kHz
2	5GHz 802.11n ac80	86.59	736	1.36	3kHz
1+2	5GHz 802.11a for Ant. 1	94.52	2070	0.48	1kHz
1+2	5GHz 802.11n HT20 for Ant. 1	94.18	1940	0.52	1kHz
1+2	5GHz 802.11n HT40 for Ant. 1	89.77	948	1.05	3kHz
1+2	5GHz 802.11n ac20 for Ant. 1	94.18	1940	0.52	1kHz
1+2	5GHz 802.11n ac40 for Ant. 1	89.27	948	1.05	3kHz
1+2	5GHz 802.11n ac80 for Ant. 1	87.2	736	1.36	3kHz
1+2	5GHz 802.11a for Ant. 2	94.52	2070	0.48	1kHz
1+2	5GHz 802.11n HT20 for Ant. 2	94.15	1930	0.52	1kHz
1+2	5GHz 802.11n HT40 for Ant. 2	88.76	948	1.05	3kHz
1+2	5GHz 802.11n ac20 for Ant. 2	94.18	1940	0.52	1kHz
1+2	5GHz 802.11n ac40 for Ant. 2	89.27	948	1.05	3kHz
1+2	5GHz 802.11n ac80 for Ant. 2	87.2	736	1.36	3kHz

TEL: 886-3-327-3456 FAX: 886-3-328-4978

SISO <Ant. 1>

802.11a

Date: 8.JUN.2017 18:54:03

802.11n HT20

Date: 8.JUN.2017 19:07:13

TEL: 886-3-327-3456 FAX: 886-3-328-4978

802.11n HT40

Date: 8.JUN.2017 19:17:46

802.11ac VHT20

Date: 8.JUN.2017 19:21:06

TEL: 886-3-327-3456 FAX: 886-3-328-4978

FCC RF Test Report

802.11ac VHT40

Date: 8.JUN.2017 19:24:31

802.11ac VHT80

Date: 8.JUN.2017 19:30:29

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No.: FR740822F

SISO <Ant. 2>

Date: 8.JUN.2017 18:55:28

802.11n HT20

Date: 8.JUN.2017 19:08:50

TEL: 886-3-327-3456 FAX: 886-3-328-4978

802.11n HT40

Date: 8.JUN.2017 19:16:46

802.11ac VHT20

Date: 8.JUN.2017 19:21:48

TEL: 886-3-327-3456 FAX: 886-3-328-4978

FCC RF Test Report

802.11ac VHT40

Date: 8.JUN.2017 19:25:26

802.11ac VHT80

Date: 8.JUN.2017 19:31:30

TEL: 886-3-327-3456 FAX: 886-3-328-4978

MIMO <Ant. 1>

802.11a

Date: 8.JUN.2017 18:59:45

802.11n HT20

Date: 8.JUN.2017 19:11:55

TEL: 886-3-327-3456 FAX: 886-3-328-4978

802.11n HT40

Date: 8.JUN.2017 19:18:43

802.11ac VHT20

Date: 8.JUN.2017 19:22:28

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No.: FR740822F

802.11ac VHT40

Date: 8.JUN.2017 19:27:04

802.11ac VHT80

Date: 8.JUN.2017 19:32:19

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number

: E-10 of 13

MIMO <Ant. 2>

802.11a

Date: 8.JUN.2017 19:00:26

802.11n HT20

Date: 8.JUN.2017 19:11:09

TEL: 886-3-327-3456 FAX: 886-3-328-4978

802.11n HT40

Date: 8.JUN.2017 19:19:48

802.11ac VHT20

Date: 8.JUN.2017 19:23:09

TEL: 886-3-327-3456 FAX: 886-3-328-4978

802.11ac VHT40

Date: 8.JUN.2017 19:28:02

802.11ac VHT80

Date: 8.JUN.2017 19:32:59

TEL: 886-3-327-3456 FAX: 886-3-328-4978