Image Digitization: 3 Stages

- 1) Transforming the 3D world into 2D image
 - Perspective Projection (Optics, Continuous)

- Finite number of Pixels
- 3) Quantizing the color/gray-level
 - Finite number of colors (e.g. 8 bits per color)

Pinhole Camera (Camera Obscura (Latin) = Dark Room)

No Image is generated when we place an image plane in the world

 To create an image, each image location should get a ray from a single point. This is done by blocking all rays except one...

Pinhole Camera (Camera Obscura (Latin) = Dark Room)

- Pinhole model:
 - Captures pencil of rays all rays through a single point
 - The point (pinhole) is called Center of Projection (COP)
 - The image is formed on the Image Plane
 - Focal length f is distance from COP to Image Plane

5 Minute Video Clips

- 12) Perspective projection
- 13) Perspective projection: Part 2 the math!

Perspective Projection

- Transforming the 3D world (X, Y, Z) into 2D image (x, y)
 - Continuous Perspective Projection (optics)
 - All rays pass through one point (f = focal length)

Simple case: Aligned World axis (X, Y, Z)and Image axis (x, y)

$$\frac{Y}{Z} = \frac{y}{f}$$

Simila **Triangles**

$$x = \frac{f}{Z}X$$
$$y = \frac{f}{Z}Y$$

Perspective Projection

World to Camera Transformation

$$x = \frac{f}{Z}X$$

$$y = \frac{f}{Z}Y$$

- Only when world axis (X, Y, Z) and Image axis (x, y) are aligned:
 - -X is parallel to x
 - -Y is parallel to y
 - Same units
- In the general case, there is a transformation matrix between world axis and camera axis.

Summary: First Stages of Image Acquisition Analog Light

Spatial Sampling to Pixels

- Sampling the Image Plane
 - Finite number of Pixels
 - Do we always want maximum number of pixels?

5 Minute Video Clips

• 4) Images in 5 minutes

Images in 5 minutes: The Case of the Splotched Van Gogh, Part 1

Graphics in 5 Minutes • 4.4K views • 2 years ago

RGB Inside the Camera

Anatomy of the Active Pixel Sensor Photodiode

Millions of light sensors

Bayer Filter

- In 1975, Bruce Bayer invents the color filter array, used in most digital camera.
- ¼ pixels detect red; ¼ pixels blue; ½ pixels green;
- The camera invents 2 missing colors in pixels. How?

- Demosaicing: Invents missing colors
- Many methods, mostly proprietary
- A possible (bad) method:
 - Average 2 or 4 neighbors

Color/Gray-level Quantization

- Quantizing the color/gray-level
 - Finite number of colors

Digital Pictures

- A Matrix of numbers (Greylevel image)
- A Matrix of triplets (RGB Color, etc.)

2	4	5	6	7	8	9	10	11	12	11	10	9	8	7
3	5	6	7	8	9	10	11	12	13	12	11	10	9	8
4	6	7	8	9	10	11	12	13	14	13	12	11	10	9
5	7	8	9	10	11	12	13	14	15	14	13	12	11	10
6	8	9	10	11	12	13	14	15	16	15	14	13	12	11
7	9	10	11	12	13	14	15	16	17	16	15	14	13	12
8	10	11	12	13	14	15	16	17	18	17	16	15	14	13
9	11	12	13	14	15	16	17	18	19	18	17	16	15	14
10	12	13	14	15	16	17	18	19	20	19	18	17	16	15
9	11	12	13	14	15	16	17	18	19	18	17	16	15	14
8	10	11	12	13	14	15	16	17	18	17	16	15	14	13
7	9	10	11	12	13	14	15	16	17	16	15	14	13	12
6	8	9	10	11	12	13	14	15	16	15	14	13	12	11
5	7	8	9	10	11	12	13	14	15	14	13	12	11	10
4	6	7	8	9	10	11	12	13	14	13	12	11	10	9
3	5	6	7	8	9	10	11	12	13	12	11	10	9	8
2	4	5	6	7	8	9	10	11	12	11	10	9	8	7
1	3	4	5	6	7	8	9	10	11	10	9	8	7	6

Color Spaces

RGB (Camera, Projector - Add), CMYK (Print -Subtract), YIQ (TV)

For Color to B/W TV Y - Luminance	Y	0.299	0.587	0.114	$\lceil R \rceil$
	I =	0.596	-0.275	-0.321	G
Y - Luminance	Q	0.212	-0.523	0.311	$\lfloor B \rfloor$

CIE Chromaticity Diagram (1931) Boundary: Spectral Colors (Single Wavelength)

Point Operations

f

- New pixel value g(x,y) based on the input pixel value f(x,y)
- E.g. g(x,y)=255-f(x,y) (Negative)
- Operation depends only on pixel value (No location...)

Point Operations

- In general, g(x, y) = T(f(x, y))
- T(u) = 255 u

Negative

• $T(u) = \begin{cases} 0 & if \ u < 127 \\ 1 & if \ u > 127 \end{cases}$ Threshold

Point Operations - γ Correction

Gamma Correction is used to overcome non-linear responses of camera, display, and eyes

 $T(u) = Max \cdot \left(\frac{u}{Max}\right)^{\gamma}$

When Max=1: $T(u) = u^{\gamma}$

$$\gamma = 1/2.2$$

Eye Sensitivity

 Eye sensitivity as a function of frequency

Spatial Frequency →

Point Transformation - Look Up Table (LUT)

- LUT efficiently Represent transformations L from N to N (or to other). E.g.
 - L(0)=0
 - L(1)=0
 - -L(2)=0
 - -L(3)=2
 - L(4)=4
 - -L(5)=6
 - -L(6)=7
 - -L(7)=7

Point Operation with LUT

• Stretch

In	0	1	2	3	4	5	6	7
Out	0	0	0	2	4	6	7	7

• Threshold

In	0	1	2	3	4	5	6	7
Out	0	0	0	0	7	7	7	7

Negative

In	0	1	2	3	4	5	6	7
Out	7	6	5	4	3	2	1	0

The Histogram

- Frequency counting of gray levels or colors
- Analogous to PDF Probability Density Function

Gray-Level

Pixel Count	1	2	4	6	8	9	10	8	7	6	5	8	16	6	4	0
Grey Level	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Common Histogram has 256 Grey Levels

Histogram is Invariant to Pixel Location

- Different pictures can give same histograms
- All three pictures below have same histogram. What is it?

Histogram & Exposure

JPG Compression Effects

255

Original Image

Image after JPG compression

Color Histogram Options

3D Histogram RGB Space
3D array
256³~16.8M

22K times more than 3 histograms

Histogram: 1D array of 256 integers 3 colors (RGB): 768 integers

Channel

Cumulative Histogram

• Let h(i) he a histogram.

$$S(i) = \sum_{j=0}^{i} h(j)$$

• S(0) = h(0);

- S(255) = # of pixels in image
- Analogous to CDF Cumulative Density Function

- What is the area under the curve of *h*?
- What is the area under the curve of S?

Histogram Application: Video Scene Cut Detection

- Similar images inside shots having similar histograms
 - Video Shot Cut Detection: same shot → similar histograms
- Compute distance between color histogram of successive frames

Distance Between Histograms (Distributions)

Vector Distance:
$$|h1-h2| =$$

= $|2-1| + |5-6| + |1-2| + |1-0|$
= 4

But in some cases, this simple vector distance does not work:

- All three have equal vector distance |h1-h2| = |h1-h3| = 9+9 = 18
- Seems wrong, since "2" is closer to "1" than "5"

Distance Between Histograms (Distributions)

• A solution: distance between <u>cumulative</u> histograms

$$S(i) = \sum_{j=0}^{n} h(j)$$

• Vector distance is now OK: |S1-S2| = 9

$$|S1 - S3| = 36$$

Histogram Equalization Example (Wikipedia)

Original Image & Histogram

After Histogram Equalization

Histogram Equalization

Equal usage of the gray level range. Integration used.

$$P(g) = \int_0^g p(x)dx$$

$$Q(g) = \int_0^g q(x)dx$$

$$g \Rightarrow P^{-1}(Q(g))$$

Histogram Equalization

• Compute Cumulative Histogram S(i) from Histogram h(i)

$$N$$
 Pixels, grey levels 0 .. K
$$S(i) = \sum_{j=0}^{i} h(j)$$
 $h(i)$ = # pixels at grey level i

- 1. Change every original grey level i to S(i)
- 2. Stretch (linear) new gray levels back to [0 .. K]

$$S(m) \rightarrow 0; \quad S(q) \rightarrow K$$

m is the lowest grey level in input image q is the highest grey level in input image

$$i \Rightarrow K \frac{S(i) - S(m)}{S(q) - S(m)}$$

Equalization Example

Grey Level (k)	# Pixels (n)	Cumulative Histogram	Scaled 0-7	Round	New Histogram
0	790	790	0.00	0	790
1	1023	1813	2.17	2	0
2	850	2663	3.97	4	1023
3	656	3319	5.35	5	0
4	329	3648	6.05	6	850
5	245	3893	6.57	7	656
6	122	4015	6.83	7	329
7	81	4096	7.00	7	448
Total:	4096				4096

Histogram Equalization Steps

Target Range is [0..K], can be different from input range

- 1. Given b/w image I(x,y), create a histogram h:
 - For all pixels x,y: h(I(x,y)) = h(I(x,y)) + 1
- 2. [Hist] Create cumulative histogram S(i):
 - S(0) = h(0); S(i+1) = S(i) + h(i+1);

Let \underline{m} and \underline{q} be the smallest & highest input grey levels

- 1. [Hist] Create Look Up Table (LUT) T(i):
 - $T(i) = round \{K \times [S(i)-S(\underline{m})] / [S(\underline{q})-S(\underline{m})] \}$
- 2. Apply LUT T to image I, get equalized image J:
 - J(x,y) = T(I(x,y))

Example of Equalization (Wikipedia)

Original Image & Histogram

After Histogram Equalization

Properties of Histogram Equalization

- Monotonic Transformation: Does not reverse intensity order
- What happens if we apply Equalization twice?
- New intensity ≈ Cumulative Probability
 - What is the meaning of grey level 127 in an image after equalization to [0..255]?
- Will fail(?) if assumptions are not true.
 - When?

Histogram
Equalization is
invariant to
monotonic point
operations

Histogram Specification

- Change the histogram of input image to any specified histogram
- Input histogram H_1 and cumulative C_1
- Target histogram H_0 and cumulative C_0
- For each input grey level u find the target grey level v such that $C_1(u) = C_0(v)$

Adaptive Histogram Equalization

- Different intensity distributions in an image
 - Example: sunny areas and shadowed areas
- Poor result for Histogram Equalization
 - Work on sunny and shadowed areas separately
 - How to segment?
- Workaround: Compute histogram in local regions around each pixel

Adaptive Histogram Equalization

- For each pixel
 - Compute Equalization LUT in local region
 - Transform by LUT only the center pixel
- Go to next pixel
- How to optimize?

Adaptive Histogram Equalization

Quantization: Reduce # of Colors

• Example: To reduce [0..255] to 32 grey levels [0..31], we use a Quantization LUT

In	0	1	•••	k	•	255
Out	$oxed{q_0}$	q_0	• • •	q_n	• • •	q_{31}

- Uniform Quantization: Every grey level k is mapped to k/8
- To restore the original image, we use a Restoration LUT

In	0	1	•••	k	•••	31
Out	• • •	G_1	• • •	G_k	•••	G_{31}

- Example: Every q is mapped to $q \times 8$ (?)
- When is uniform Quantization not optimal?

Uniform Quantization

- E.g. Every grey level k is mapped to k/8
- To restore the original image every q is mapped to $q \times 8$ (?)

$$0..31 \rightarrow 0 \rightarrow 0$$

 $32..63 \rightarrow 32 \rightarrow 36$
 $64..95 \rightarrow 64 \rightarrow 72$
 $96..127 \rightarrow 96 \rightarrow 108$
 $128..159 \rightarrow 128 \rightarrow 142$
...
 $224..255 \rightarrow 224 \rightarrow 255$

Quantization

- Divide grey level range into fewer segments
- Quantization: A grey level segment is mapped to one index
 - Borders of segments: $z_0=0$, z_1 , z_2 , ..., $z_k=255$
 - All grey levels in segment $[z_{i-1}, z_i]$ are mapped to i-1
- Restoration: Each index i will be restored to intensity q_i
- Uniform Quantization: $z_{i+1} z_i = (z_k z_0)/k$ $q_i = (z_i + z_{i+1})/2$

Quantization Error

- Assume that during quantization grey level g is coded by i,
 and code i is restored as q;
- A <u>Possible</u> quantization error for one pixel p is:

$$E_p^2 = (g - q_i)^2$$

The total error introduced by quantization of all pixels is:

$$E^2 = \sum_{pixels} E_p^2$$
 = $\sum_{i=0}^{255} hist(i)E_i^2$ All pixels with same grey will level will have same quantization error

• Unknown optimal transformations: $g \rightarrow i$, $i \rightarrow q_i$

SSD As a Quantization Error

- SSD (L_2 , Sum of Squared Differences) is a poor error measure compared to human perception
- There are suggestions for other measures, but they are harder to compute and to analyze (E.g. L_1 , Sum of Absolute Values)
- SSD = 0 implies the same image...

 (Best way to compute image similarity is with Neural networks...)

Optimal Quantization - Condition

- Minimize the error:
- Solution (Prove!):

$$\sum_{i=0}^{k-1} \left(\sum_{g=[z_i]+1}^{[z_{i+1}]} (q_i - g)^2 h(g) \right)$$

$$q_{i} = \frac{\sum_{g=\lfloor z_{i}\rfloor+1}^{\lfloor z_{i+1}\rfloor} g \cdot h(g)}{\sum_{g=\lfloor z_{i}\rfloor+1}^{\lfloor z_{i+1}\rfloor} h(g)}$$

$$z_i = \frac{q_{i-1} + q_i}{2}$$

Optimal Quantization - Process

• Find z_i and q_i such that

$$q_{i} = \frac{\sum_{g=|z_{i}|+1}^{|z_{i+1}|} g \cdot h(g)}{\sum_{g=|z_{i}|+1}^{|z_{i+1}|} h(g)} \qquad z_{i} = \frac{q_{i-1} + q_{i}}{2}$$

- This is done iteratively
- Initial guess: find z_i such that for all i there are same number of pixels whose grey level is between z_i and z_{i+1} .
- From initial guess of z_i compute q_i .
- Iterate: computing z_i and than q_i until convergence.

Next: Fourier

- Discrete Fourier Transform in Wikipedia
- http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm
- https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/