

Linux

for Bioinformatics

Why to use Linux for Bioinformatics?

- Linux is free
- Most Bioinformatics tools are only available in Linux
- Windows is very slow at processing biological data
- Linux has built-in programming languages
- Creating a biological analysis pipeline can be done easily in Linux

Linux Commans for Bioinformatician

- Navigating the file system
- Locating programs and files:
- Text data manipulation in Linux for Bioinformatics
- Pre-processing biological datasets in Linux

Navigating the File System

PWD: Print Working Directory

pwd

CD: Changing Directories

cd /user/rafiga

MKDIR: Making Directories

mkdir ngs_data_anly

MV: Moving Files, Directories, and Data

mv text.txt ngs_data_anly

RM: Deleting Files and Directories

rm text.txt rm –r ngs_data_anly

Locating Programs and Files

LS: listing Files and directories on Linux

ls Is -Ih

WHICH & WHEREIS: finding installed programs

which R Whereis R

• FIND: locating user-created files

find /user/rafiga -type f -name "*.txt"

Text Data Manipulation in Linux for Bioinformatics

- Cat: visualization and inspection of text data
 - Display file:

cat text.txt

Display the number of lines in the file:

cat -n text.txt

Concatenating files:

cat text1.txt text2.txt > concat.txt

• Create a new file:

cat > new file.txt

Append to the excisting file:

cat > new_file.txt. (+ Crtl+D)

Text Data Manipulation in Linux for Bioinformatics

Head: reading a specified number of lines from the top

head text.txt

head –n 3 text.txt

Tail: reading a specified number of lines from the bottom

tail text.txt

tail –n 3 text.txt

Reading log files in real-time:

tail -f process.log

tail -fn20 process.log

Text Data Manipulation in Linux for Bioinformatics

LESS: visualization of textual data

less text.txt

STAT: retrieving statistics of files and directories

stat text.txt

less /user/rafiga/

Pre-processing Biological Datasets in Linux

WGET: retrieval of genome assemblies

wget http://ftp.sra.ebi.ac.uk/vol1/run/ERR333/ERR3335404/P7741_R1.fastq.gz

CURL: retrieval of Bioinformatics files

curl -O http://ftp.sra.ebi.ac.uk/vol1/run/ERR333/ERR3335404/P7741_R1.fastq.gz

VIM: creation and editing of text files

head text.txt

DIFF: comparing sequence differences in files

fiff text1.txt text2.txt

- 1. Raw Data Quality Control (QC)
- 2. Trimming and Filtering
- 3. Alignment
- 4. Post-Alignment Processing
- 5. Variant calling
- 6. Variant Filtering and Annotation

1. Raw Data Quality Control (QC)

- Purpose: Assess the quality of raw sequencing data to identify any issues early.
- Tools: FastQC, MultiQC
- **Explanation**: This step ensures that the data is of high quality before proceeding. It checks for issues like low-quality reads, adapter contamination, and GC content bias.

2. Trimming and Filtering

- Purpose: Remove low-quality bases and adapter sequences.
- **Tools**: Trimmomatic, Cutadapt
- **Explanation**: Trimming improves the overall quality of the data by removing poor-quality bases and adapter sequences that can interfere with downstream analysis.

3. Alignment

- Purpose: Map the reads to a reference genome.
- Tools: BWA, Bowtie2
- **Explanation**: Alignment is crucial for identifying where each read originates in the genome, which is essential for downstream analyses like variant calling.

4. Post-Alignment Processing

- Purpose: Refine the alignment to correct for errors and prepare for variant calling.
- Tools: SAMtools, Picard
- **Explanation**: This step includes sorting, marking duplicates, and indexing the aligned reads. It ensures that the data is in the correct format and free of artifacts that could affect variant calling.

5. Variant Calling

- Purpose: Identify genetic variants (SNPs, indels) from the aligned reads.
- Tools: GATK, FreeBayes, Deepvariant, Sentieon
- **Explanation**: Variant calling detects differences between the sequenced sample and the reference genome, which can be used for further analysis in research or clinical settings.

6. Variant Filtering and Annotation

- Purpose: Filter out false positives and annotate variants with functional information.
- Tools: VCFtools, bcftools, ANNOVAR, VEP
- **Explanation**: Filtering removes low-confidence variants, and annotation adds biological context, such as gene function and potential impact on protein function.

- https://cloud.wikis.utexas.edu/wiki/spaces/CoreNGSTools/overview
- https://mtbgenomicsworkshop.readthedocs.io/en/latest/material/day3/map pingstats.html
- Koboldt, D.C. Best practices for variant calling in clinical sequencing.
 Genome Med 12, 91 (2020). https://doi.org/10.1186/s13073-020-00791-w
- Austin-Tse, C.A., Jobanputra, V., Perry, D.L. *et al.* Best practices for the interpretation and reporting of clinical whole genome sequencing. *npj Genom. Med.* **7**, 27 (2022). https://doi.org/10.1038/s41525-022-00295-z

