

Global United Technology Services Co., Ltd.

Report No.: GTSE15050080201

FCC REPORT

Applicant: AOC

Address of Applicant: 14F-5, No. 258, Liancheng Rd., Zhonghe Dist., New Taipei

City, Taiwan

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: F702

Trade Mark: AOC

FCC ID: 2AEB5-F702

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249:2014

Date of sample receipt: May 15, 2015

Date of Test: May 18-21, 2015

Date of report issued: May 22, 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	May 22, 2015	Original

Prepared By:	Sam. Gao	Date:	May 22, 2015
	Project Engineer		
Check By:	hank. yan	Date:	May 22, 2015
	Reviewer		

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
_	V LIV		
3	CON	ITENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	E
J			
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4 5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	TEST LOCATION	
	5.7	DESCRIPTION OF SUPPORT UNITS	
	5.8	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	Q
•	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	RADIATED EMISSION METHOD	
	7.3.		
	7.3.2	2 Spurious emissions	16
	7.3.3		
	7.4	20DB OCCUPY BANDWIDTH	21
8	TES	T SETUP PHOTO	23
9	FIIT	CONSTRUCTIONAL DETAILS	25

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	ine Conducted 0.15MHz ~ 30MHz + 3.45dB		(1)		
AC Power Line Conducted Emission			(1)		
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.		

Remark: The EUT test according to ANSI C63.4:2009 and ANSI C63.10:2009.

5 General Information

5.1 Client Information

Applicant:	AOC
Address of Applicant:	14F-5, No. 258, Liancheng Rd., Zhonghe Dist., New Taipei City, Taiwan
Manufacturer/Factory:	AOC
Address of Manufacture/Factory:	14F-5, No. 258, Liancheng Rd., Zhonghe Dist., New Taipei City, Taiwan

5.2 General Description of EUT

Product Name:	Tablet PC	
Model No.:	F702	
Operation Frequency:	2402MHz~2480MHz	
Channel numbers:	79	
Channel separation:	1MHz	
Modulation type:	GFSK, Pi/4DQPSK, 8DPSK	
Antenna Type:	PIFA antenna	
Antenna gain:	2dBi (declare by Applicant)	
Power supply:	Adapter: Model No.: K-E30502000U2 Input: AC 100-240V, 50/60Hz, 0.35A Max Output: DC 5.0V, 2000mA or DC 3.7V Li-ion Battery 2600mAh	

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
	::			:		:	:
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.3 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Х	Υ	Z	
Field Strength(dBuV/m)	92.92	96.54	94.72	

Final Test Mode:

The EUT was tested in GFSK, Pi/4 QPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup":

Y axis (see the test setup photo)

5.4 Description of Support Units

None

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

Tel: 0755-27798480 Fax: 0755-27798960

5.7 Description of Support Units

None.

5.8 Other Information Requested by the Customer

None.

6 Test Instruments list

Radi	Radiated Emission:							
Item Test Equipment		Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 28 2015	Mar. 27 2016		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Jul. 01 2014	Jun 30 2015		
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 01 2014	Jun 30 2015		
5	BiConiLog Antenna SCHWARZBECK MESS-ELEKTRONIK		VULB9163	GTS214	Jul. 01 2014	Jun 30 2015		
6	6 Double -ridged SCHWARZBECK waveguide horn MESS-ELEKTRONIK		9120D-829	GTS208	June 27 2014	June 26 2015		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2015	Mar. 26 2016		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2015	Mar. 27 2016		
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016		
11	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016		
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2015	Mar. 27 2016		
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 01 2014	Jun. 30, 2015		
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 01 2014	Jun. 30, 2015		
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 27 2014	June 26 2015		
16	Band filter	Amindeon	82346	GTS219	Mar. 28 2015	Mar. 27 2016		

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	July 01 2014	June 30 2015					
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	July 01 2014	June 30 2015					
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	July 01 2014	June 30 2015					
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	July 01 2014	June 30 2015					
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	July 01 2014	June 30 2015					
6	Coaxial Cable	GTS	N/A	GTS227	July 01 2014	June 30 2015					
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

Gen	General used equipment:										
Item	em Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	Barometer	ChangChun	DYM3	GTS257	July 08 2014	July 07 2015					

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is PIFA antenna, the best case gain of the antenna is 2dBi

7.2 Conducted Emissions

 Oonducted Emissions								
Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2009							
Test Frequency Range:	150KHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	veep time=auto						
Limit:	[[]	Limit (c	dBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithm	of the frequency.						
Test setup:	Reference Plane							
	AUX Filter AC power Equipment E.U.T Equipment Under Test LISN Equipment Under Test LISN Equipment Under Test LISN Ene Impedence Stabilization Network							
Test procedure:	 Test table height=0.8m The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2009 on conducted measurement. 							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Pass							

Measurement data:

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0802RF

Test mode : Bluetooth mode

Test Engineer: Qing

	Freq		LISN Factor					Remark
	MHz	dBuV	dB	dB	dBu₹	dBuV	dB	
1 2 3	0.385 0.963	43.78	0.11 0.14	0.13	46.51 44.05	58.17 56.00	-11.66 -11.95	QP QP
4 5 6	2.309	42.94	0.12 0.13 0.79	0.15	43.22	56.00	-12.78	QP

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0802RF

Test mode : Bluetooth mode

Test Engineer: Qing

	Freq		LISN Factor					Remark
	MHz	dBuV	dB	d₿	dBuV	dBuV	dB	
1 2 3		50. 55 45. 88 43. 61	0.07 0.06 0.08			59.66	-13.62	QP
4 5 6		41.69 41.59 39.16	0.10 0.17 0.68		41.94 41.92 40.08	60.00	-18.08	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Radiated Emission Method

ethod							
	on 15.	209					
ANSI C63.10:2009							
9kHz to 25GHz							
Measurement Distar	nce: 3r	m					
Frequency	De	etector	RBW	VB	W	Value	
9KHz-150KHz	Qua	asi-peak	200Hz	600	Hz	Quasi-peak	
150KHz-30MHz	Qua	asi-peak				Quasi-peak	
30MHz-1GHz						Quasi-peak	
Above 1GHz						Peak	
	F				lz_	Average	
Frequency		Limit	`	@3m)		Remark	
2400MHz-2483.5	2400MHz-2483 5MHz					verage Value	
						Peak Value	
Frequency		Limit (u\	//m)	Value	ı	Measurement Distance	
		2400/F(K	(Hz)	/		300m	
			` '			:30m	
						30m	
						3m	
960IVIHZ-TGHZ							
Above 1GHz		5000		Peak			
harmonics, shall be fundamental or to the whichever is the less	attenu e gene	ated by at eral radiate	least 50	dB belov	w the	level of the	
Antenna Tower Search Antenna Tum Table Ground Plane Above 1GHz							
	FCC Part15 C Section ANSI C63.10:2009 9kHz to 25GHz Measurement Distard Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 2400MHz-2483.5 Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz 88MHz-216MHz 216MHz-960MH 960MHz-1GHz Above 1GHz Emissions radiated of harmonics, shall be fundamental or to the whichever is the lesses Below 1GHz	ANSI C63.10:2009 9kHz to 25GHz Measurement Distance: 3i Frequency 9KHz-150KHz Qua 150KHz-30MHz Qua 30MHz-1GHz Prequency 2400MHz-2483.5MHz Frequency 0.009MHz-0.490MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Emissions radiated outside harmonics, shall be attenufundamental or to the gene whichever is the lesser att Below 1GHz	FCC Part15 C Section 15.209 ANSI C63.10:2009 9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak Above 1GHz Peak Frequency Limit (uv. D.009MHz-0.490MHz 2400/F(k. D.490MHz-1.705MHz 24000/F(k. D.490MHz-1.705MHz 24000/F(k. D.490MHz-1.705MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 5000 Emissions radiated outside of the spharmonics, shall be attenuated by atfundamental or to the general radiate whichever is the lesser attenuation. Below 1GHz	FCC Part15 C Section 15.209 ANSI C63.10:2009 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 9KHz-150KHz Quasi-peak 200Hz 150KHz-30MHz Quasi-peak 120KH Above 1GHz Peak 1MHz Peak 1MHz Frequency Limit (dBuV/m 2400MHz-2483.5MHz 14.00 Frequency Limit (uV/m) 0.009MHz-0.490MHz 2400/F(KHz) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 Above 1GHz 500 Emissions radiated outside of the specified fr harmonics, shall be attenuated by at least 50 fundamental or to the general radiated emiss whichever is the lesser attenuation. Below 1GHz	FCC Part15 C Section 15.209 ANSI C63.10:2009 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VB 9KHz-150KHz Quasi-peak 200Hz 600 150KHz-30MHz Quasi-peak 120KHz 300K- 30MHz-1GHz Peak 1MHz 3MI Peak 1MHz 10F Frequency Limit (dBuV/m @3m) 2400MHz-2483.5MHz 114.00 Frequency Limit (uV/m) Value 0.009MHz-0.490MHz 2400/F(KHz) / 0.490MHz-1.705MHz 24000/F(KHz) QP 1.705MHz-30MHz 30 QP 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 QP Above 1GHz 500 Average Fmissions radiated outside of the specified frequency fundamental or to the general radiated emission limits whichever is the lesser attenuation. Below 1GHz	FCC Part15 C Section 15.209	

	Report No.: GTSE15050080201
	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test mode. Test results:	Pass
restresuits.	L 499

Measurement data:

7.3.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	92.32	27.58	5.39	30.18	95.11	114.00	-18.89	Vertical
2402.00	89.68	27.58	5.39	30.18	92.47	114.00	-21.53	Horizontal
2441.00	90.61	27.55	5.43	30.06	93.53	114.00	-20.47	Vertical
2441.00	88.68	27.55	5.43	30.06	91.60	114.00	-22.40	Horizontal
2480.00	93.48	27.52	5.47	29.93	96.54	114.00	-17.46	Vertical
2480.00	90.27	27.52	5.47	29.93	93.33	114.00	-20.67	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	81.02	27.58	5.39	30.18	83.81	94.00	-10.19	Vertical
2402.00	78.52	27.58	5.39	30.18	81.31	94.00	-12.69	Horizontal
2441.00	79.18	27.55	5.43	30.06	82.10	94.00	-11.90	Vertical
2441.00	76.26	27.55	5.43	30.06	79.18	94.00	-14.82	Horizontal
2480.00	82.26	27.52	5.47	29.93	85.32	94.00	-8.68	Vertical
2480.00	79.05	27.52	5.47	29.93	82.11	94.00	-11.89	Horizontal

7.3.2 Spurious emissions

Note: Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ Below 1GHz Remark: The test was performed at the lowest, middle and highest channel. The data of lowest channel was found as the worst, so only the data of that channel is reported.

was found as the worst, so only the data of that charmer is reported.									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
43.66	33.03	15.56	0.70	30.03	19.26	40.00	-20.74	Vertical	
85.60	35.34	12.60	1.07	29.77	19.24	40.00	-20.76	Vertical	
146.89	45.68	10.24	1.55	29.42	28.05	43.50	-15.45	Vertical	
257.42	37.55	14.06	2.16	29.70	24.07	46.00	-21.93	Vertical	
449.56	34.43	17.57	3.08	29.40	25.68	46.00	-20.32	Vertical	
807.43	35.58	22.15	4.49	29.19	33.03	46.00	-12.97	Vertical	
36.64	25.52	14.73	0.63	30.06	10.82	40.00	-29.18	Horizontal	
78.97	26.68	10.43	1.02	29.80	8.33	40.00	-31.67	Horizontal	
155.36	41.35	10.48	1.60	29.38	24.05	43.50	-19.45	Horizontal	
362.99	40.80	16.45	2.68	29.67	30.26	46.00	-15.74	Horizontal	
543.27	27.46	19.46	3.50	29.30	21.12	46.00	-24.88	Horizontal	
875.25	24.95	22.87	4.76	29.12	23.46	46.00	-22.54	Horizontal	

■ Above 1GHz

Test channel:	Lowest channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	35.72	31.78	8.60	32.09	44.01	74.00	-29.99	Vertical
7206.00	30.78	36.15	11.65	32.00	46.58	74.00	-27.42	Vertical
9608.00	30.54	37.95	14.14	31.62	51.01	74.00	-22.99	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	39.69	31.78	8.60	32.09	47.98	74.00	-26.02	Horizontal
7206.00	32.40	36.15	11.65	32.00	48.20	74.00	-25.80	Horizontal
9608.00	29.81	37.95	14.14	31.62	50.28	74.00	-23.72	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	24.84	31.78	8.60	32.09	33.13	54.00	-20.87	Vertical
7206.00	19.65	36.15	11.65	32.00	35.45	54.00	-18.55	Vertical
9608.00	18.82	37.95	14.14	31.62	39.29	54.00	-14.71	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	28.89	31.78	8.60	32.09	37.18	54.00	-16.82	Horizontal
7206.00	21.72	36.15	11.65	32.00	37.52	54.00	-16.48	Horizontal
9608.00	18.42	37.95	14.14	31.62	38.89	54.00	-15.11	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel:	Middle channel
5	

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	35.56	31.85	8.67	32.12	43.96	74.00	-30.04	Vertical
7323.00	30.68	36.37	11.72	31.89	46.88	74.00	-27.12	Vertical
9764.00	30.44	38.35	14.25	31.62	51.42	74.00	-22.58	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	39.50	31.85	8.67	32.12	47.90	74.00	-26.10	Horizontal
7323.00	32.28	36.37	11.72	31.89	48.48	74.00	-25.52	Horizontal
9764.00	29.70	38.35	14.25	31.62	50.68	74.00	-23.32	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	24.71	31.85	8.67	32.12	33.11	54.00	-20.89	Vertical
7323.00	19.56	36.37	11.72	31.89	35.76	54.00	-18.24	Vertical
9764.00	18.75	38.35	14.25	31.62	39.73	54.00	-14.27	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	28.75	31.85	8.67	32.12	37.15	54.00	-16.85	Horizontal
7323.00	21.62	36.37	11.72	31.89	37.82	54.00	-16.18	Horizontal
9764.00	18.33	38.35	14.25	31.62	39.31	54.00	-14.69	Horizontal
12205.00	*		·			54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Project No.: GTSE150500802RF

Page 18 of 31

Test channel:	Highest channel
l est channel:	

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	35.04	31.93	8.73	32.16	43.54	74.00	-30.46	Vertical
7440.00	30.33	36.59	11.79	31.78	46.93	74.00	-27.07	Vertical
9920.00	30.13	38.81	14.38	31.88	51.44	74.00	-22.56	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	38.87	31.93	8.73	32.16	47.37	74.00	-26.63	Horizontal
7440.00	31.88	36.59	11.79	31.78	48.48	74.00	-25.52	Horizontal
9920.00	29.34	38.81	14.38	31.88	50.65	74.00	-23.35	Horizontal
12400.00	*		·			74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.30	31.93	8.73	32.16	32.80	54.00	-21.20	Vertical
7440.00	19.28	36.59	11.79	31.78	35.88	54.00	-18.12	Vertical
9920.00	18.50	38.81	14.38	31.88	39.81	54.00	-14.19	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	28.28	31.93	8.73	32.16	36.78	54.00	-17.22	Horizontal
7440.00	21.31	36.59	11.79	31.78	37.91	54.00	-16.09	Horizontal
9920.00	18.04	38.81	14.38	31.88	39.35	54.00	-14.65	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

7.3.3 Bandedge emissions

All of the restriction bands were tested, and only the data of worst case was exhibited.

(MHz) (dBuV) (dB/m) (dB) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dB) 2390.00 43.48 27.59 5.38 30.18 46.27 74.00 -27.73 Hor 2400.00 60.35 27.58 5.39 30.18 63.14 74.00 -10.86 Hor 2390.00 44.08 27.59 5.38 30.18 46.87 74.00 -27.13 Ve						
Frequency (MHz) Level (dBuV) Factor (dB/m) Loss (dB) Factor (dB) Level (dBuV/m) Limit (dB) Pola (dB) 2390.00 43.48 27.59 5.38 30.18 46.27 74.00 -27.73 Hor 2400.00 60.35 27.58 5.39 30.18 63.14 74.00 -10.86 Hor 2390.00 44.08 27.59 5.38 30.18 46.87 74.00 -27.13 Ve	Peak value:					
2400.00 60.35 27.58 5.39 30.18 63.14 74.00 -10.86 Hor 2390.00 44.08 27.59 5.38 30.18 46.87 74.00 -27.13 Ve	ization					
2390.00 44.08 27.59 5.38 30.18 46.87 74.00 -27.13 Ve	zontal					
	zontal					
2400 00 62 45 27 58 5 39 30 18 65 24 74 00 -8 76 Ve	rtical					
2100100 02110 21100 0100 00110 00121 1 1100 0110 10	rtical					
Average value:						
Frequency (MHz) Read Level Factor (dBuV) Read Level Factor (dB/m) Read Level (dB/m) Read Level (dB/m) Read Level (dB/m) Read Level (dBuV/m) Read Level (dBuV/m) Factor (dBuV/m) Read Level (dBuV/m)	ization					
2390.00 33.89 27.59 5.38 30.18 36.68 54.00 -17.32 Hori	zontal					
2400.00 45.17 27.58 5.39 30.18 47.96 54.00 -6.04 Hori	zontal					
2390.00 33.88 27.59 5.38 30.18 36.67 54.00 -17.33 Ve	rtical					
2400.00 46.87 27.58 5.39 30.18 49.66 54.00 -4.34 Ve	rtical					

Ī	Test channel:	Highest channel
---	---------------	-----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	45.65	27.53	5.47	29.93	48.72	74.00	-25.28	Horizontal
2500.00	44.71	27.55	5.49	29.93	47.82	74.00	-26.18	Horizontal
2483.50	46.60	27.53	5.47	29.93	49.67	74.00	-24.33	Vertical
2500.00	45.77	27.55	5.49	29.93	48.88	74.00	-25.12	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	36.73	27.53	5.47	29.93	39.80	54.00	-14.20	Horizontal
2500.00	34.64	27.55	5.49	29.93	37.75	54.00	-16.25	Horizontal
2483.50	37.99	27.53	5.47	29.93	41.06	54.00	-12.94	Vertical
2500.00	34.61	27.55	5.49	29.93	37.72	54.00	-16.28	Vertical

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.249/15.215
Test Method:	ANSI C63.10:2009
Limit:	Operation Frequency range 2400MHz~2483.5MHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Test channel	20dB bandwidth(MHz)	Result
Lowest	1.045	Pass
Middle	1.044	Pass
Highest	1.044	Pass

Test plot as follows:

Lowest channel

Middle channel

Highest channel

8 Test Setup Photo

Radiated Emission

Conducted Emissions

9 EUT Constructional Details

-----End-----