Calculus II Lecture 4

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

- Integration of Rational Functions
 - Building block integrals

Todor Milev 2020

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Integrating arbitrary rational functions

Let $\frac{P(x)}{Q(x)}$ be an arbitrary rational function, i.e., a quotient of polynomials.

Question

Can we integrate
$$\int \frac{P(x)}{Q(x)} dx$$
?

- Yes. We will learn how in what follows.
- The algorithm for integration is roughly:
 - We use algebra to split $\frac{P(x)}{Q(x)}$ into smaller pieces ("partial fractions").
 - We use linear substitutions to transform each piece to one of 3 pairs of basic building block integrals.
 - We solve each building block integral and collect the terms.
- We study the algorithm "from the ground up": we start with the building blocks.

The building blocks

Let *n* be a positive integer.

• (Building block I) The first building block integral is:

$$\int \frac{1}{x^n} dx .$$

• (Building block II) The second building block integral is:

$$\int \frac{x}{(1+x^2)^n} dx.$$
 (Note: $u = 1 + x^2, x dx = \frac{1}{2} du$ transforms II to I).

• (Building block III) The third building block integral is:

$$\int \frac{1}{(1+x^2)^n} \mathrm{d}x \quad .$$

• The case n = 1 is special for each of the building blocks:

$$\int \frac{1}{x} dx$$
, $\int \frac{x}{1+x^2} dx$ and $\int \frac{1}{1+x^2} dx$.

The case n = 1 we call respectively building block Ia, IIa and IIIa.
 The case n > 1 we call respectively building block Ib, IIb and IIIb.
 This "building block" terminology is for our convenience, and is not a part of standard mathematical terminology.

Building block la

Building block la: $\int \frac{1}{x} dx$.

Example

Integrate building block la

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + C$$

Linear substitutions leading to building block la

Building block la: $\int \frac{1}{x} dx = \ln|x| + C.$

Example

Integrate

$$\int \frac{1}{-4x+5} dx = \int \frac{1}{(-4x+5)} \frac{d(-4x)}{(-4)}$$

$$= \int \frac{1}{(-4x+5)} \frac{d(-4x+5)}{(-4)}$$

$$= \int \frac{1}{u} \frac{du}{(-4)}$$

$$= -\frac{1}{4} \int u^{-1} du = -\frac{1}{4} \ln|u| + C$$

$$= -\frac{1}{4} \ln|-4x+5| + C .$$

Lin. subst. leading to building block la: general case

Building block la: $\int \frac{1}{x} dx = \ln|x| + C$.

Example

Integrate

$$\int \frac{1}{ax+b} dx = \int \frac{1}{(ax+b)} \frac{d(ax)}{a}$$

$$= \int \frac{1}{(ax+b)} \frac{d(ax+b)}{a} \qquad | \text{Set } u = ax+b$$

$$= \int \frac{1}{u} \frac{du}{a}$$

$$= \frac{1}{a} \int u^{-1} du = \frac{1}{a} \ln|u| + C$$

$$= \frac{1}{a} \ln|ax+b| + C .$$

Building block lb

Building block lb: $\int \frac{1}{x^n} dx = \int x^{-n} dx$, $n \neq 1$.

Example (Block lb)

$$\int \frac{1}{x^n} dx = \int x^{-n} dx = \frac{x^{-n+1}}{-n+1} + C$$

Linear substitutions leading to building block lb

Building block lb:
$$\int \frac{1}{x^n} dx = \int x^{-n} dx = \frac{x^{-n+1}}{-n+1} + C, n \neq 1.$$

Example

Integrate

$$\int \frac{1}{(3x+5)^3} dx = \int \frac{1}{(3x+5)^3} \frac{d(3x)}{3}$$

$$= \int \frac{1}{(3x+5)^3} \frac{d(3x+5)}{3} \qquad | \text{Set } u = 3x+5$$

$$= \int \frac{1}{u^3} \frac{du}{3}$$

$$= \frac{1}{3} \int u^{-3} du = \frac{1}{3} \frac{u^{-2}}{(-2)} + C$$

$$= -\frac{1}{6(3x+5)^2} + C .$$

Lin. subst. leading to building block lb: general case

Building block lb:
$$\int \frac{1}{x^n} dx = \int x^{-n} dx = \frac{x^{-n+1}}{-n+1} + C, n \neq 1.$$

Example

Let $n \neq 1$. Integrate

$$\int \frac{1}{(ax+b)^n} dx = \int \frac{1}{(ax+b)^n} \frac{d(ax)}{a}$$

$$= \int \frac{1}{(ax+b)^n} \frac{d(ax+b)}{a} \qquad | Set u = ax+b$$

$$= \int \frac{1}{u^3} \frac{du}{a}$$

$$= \frac{1}{a} \int u^{-n} du = -\frac{1}{a} \frac{u^{-n+1}}{(n-1)} + C$$

$$= -\frac{1}{a(n-1)(ax+b)^{n-1}} + C .$$

Building blocks IIa and IIIa

Building block IIa: $\int \frac{x}{1+x^2} dx$. Building block IIIa: $\int \frac{1}{1+x^2} dx$.

Example (Block IIa)

$$\begin{split} \int \frac{x}{1+x^2} \mathrm{d}x &= \int \frac{1}{(1+x^2)} \frac{\mathrm{d}(x^2)}{2} \\ &= \int \frac{1}{1+x^2} \frac{\mathrm{d}(1+x^2)}{2} \\ &= \int \frac{1}{u} \frac{\mathrm{d}u}{2} \\ &= \frac{1}{2} \ln|u| + C = \frac{1}{2} \ln\left(1+x^2\right) + C \quad . \end{split}$$

Example (Block IIIa)

$$\int \frac{1}{1+x^2} dx = \arctan x + C$$

Linear substitutions leading to block IIa

Building block IIa: $\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2) + C$.

"Theoretical way" to solve example below: transform to IIa; this is slow. Feel free to skip slide, we will redo in next slide with a shortcut.

Example

$$\int \frac{x}{2x^2+3} dx = \int \frac{x}{3\left(\frac{2}{3}x^2+1\right)} dx = \int \frac{x}{3\left(\left(\sqrt{\frac{2}{3}}x\right)^2+1\right)} dx$$

$$= \frac{3}{2} \int \frac{\sqrt{\frac{2}{3}}x}{3\left(\left(\sqrt{\frac{2}{3}}x\right)^2+1\right)} d\left(\sqrt{\frac{2}{3}}x\right)$$

$$= \frac{1}{2} \int \frac{u}{u^2+1} du = \frac{1}{4} \ln(1+u^2) + C$$

$$= \frac{1}{4} \ln\left(\frac{1}{3}(2x^2+3)\right) + C$$

$$= \frac{1}{4} \ln(2x^2+3) + \frac{\ln(\frac{1}{3})}{4} + C$$

$$= \frac{1}{4} \ln(2x^2+3) + K$$

Linear substitutions leading to blocks Ila

Building block IIa: $\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2) + C$.

The example below can be done directly, without transforming to block IIa.

Example

$$\int \frac{x}{2x^2 + 3} dx = \int \frac{1}{2x^2 + 3} d\left(\frac{x^2}{2}\right)$$

$$= \int \frac{1}{2x^2 + 3} d\left(\frac{2x^2 + 3}{4}\right) \quad \left| \text{ Set } u = 2x^2 + 3 \right|$$

$$= \frac{1}{4} \int \frac{1}{u} du$$

$$= \frac{1}{4} \ln|u| + C$$

$$= \frac{1}{4} \ln(2x^2 + 3) + C$$

Building block IIIa: $\int \frac{1}{u^2+1} du = \arctan u + C$.

Example

$$\int \frac{1}{x^2 + 2} dx = \int \frac{1}{2\left(\frac{1}{2}x^2 + 1\right)} dx$$

$$= \int \frac{1}{2\left(\left(\frac{x}{\sqrt{2}}\right)^2 + 1\right)} \sqrt{2} d\left(\frac{x}{\sqrt{2}}\right) \qquad \text{Set } \frac{x}{\sqrt{2}} = u$$

$$= \frac{1}{\sqrt{2}} \int \frac{1}{u^2 + 1} du$$

$$= \frac{1}{\sqrt{2}} \arctan(u) + C$$

$$= \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) + C$$

Building block IIIa: $\int \frac{1}{x^2+1} dx = \arctan x + C$. Let a > 0.

Example

$$\int \frac{1}{x^2 + a} dx = \int \frac{1}{a \left(\frac{1}{a}x^2 + 1\right)} dx$$

$$= \int \frac{1}{a \left(\left(\frac{x}{\sqrt{a}}\right)^2 + 1\right)} \sqrt{a} d \left(\frac{x}{\sqrt{a}}\right) \qquad \text{Set } u = \frac{x}{\sqrt{a}}$$

$$= \frac{1}{\sqrt{a}} \int \frac{1}{u^2 + 1} du$$

$$= \frac{1}{\sqrt{a}} \arctan(u) + C$$

$$= \frac{1}{\sqrt{a}} \arctan\left(\frac{x}{\sqrt{a}}\right) + C$$

Building block IIa: $\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2) + C$.

Building block IIIa: $\int \frac{1}{1+x^2} dx = \arctan x + C$.

- Let $ax^2 + bx + c$ have no real roots.
- We can find p, q so that the linear substitution u = px + q transforms the quadratic to:

$$ax^2 + bx + c = r(u^2 + 1)$$

(where *r* is some number to be determined).

- To find p, q, we complete the square.
- In this way, integrals of the form $\int \frac{Ax + B}{ax^2 + bx + c} dx$ are transformed to combinations of building blocks IIa and IIIa.
- We show examples; the general case is analogous and we leave it to the student.

Building block IIa: $\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2) + C$.

Building block IIIa: $\int \frac{1}{1+x^2} dx = \arctan x + C$.

Example

No real roots \Rightarrow complete the square. Let $u = x + \frac{1}{2}$, let $z = \frac{2u}{\sqrt{3}}$.

$$\int \frac{x}{x^2 + x + 1} dx = \int \frac{x}{x^2 + 2 \cdot \frac{1}{2}x + \frac{1}{4} - \frac{1}{4} + 1} dx$$

$$= \int \frac{x + \frac{1}{2} - \frac{1}{2}}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} d\left(x + \frac{1}{2}\right)$$

$$= \int \frac{u - \frac{1}{2}}{u^2 + \frac{3}{4}} du$$

$$= \int \frac{u}{u^2 + \frac{3}{4}} du - \frac{1}{2} \int \frac{1}{u^2 + \frac{3}{4}} du$$

Building block IIa: $\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2) + C$.

Building block IIIa: $\int \frac{1}{1+x^2} dx = \arctan x + C$.

Example

No real roots \Rightarrow complete the square. Let $u = x + \frac{1}{2}$, let $z = \frac{2u}{\sqrt{3}}$.

$$\int \frac{x}{x^2 + x + 1} dx = \int \frac{u}{u^2 + \frac{3}{4}} du - \frac{1}{2} \int \frac{1}{u^2 + \frac{3}{4}} du$$

$$\int \frac{1}{u^2 + \frac{3}{4}} du = \int \frac{1}{\frac{3}{4} \left(\frac{4}{3}u^2 + 1\right)} du$$

$$= \int \frac{1}{\frac{3}{4} \left(\left(\frac{2u}{\sqrt{3}}\right)^2 + 1\right)} \frac{\sqrt{3}}{2} d\left(\frac{2u}{\sqrt{3}}\right)$$

$$= \frac{2\sqrt{3}}{3} \int \frac{1}{z^2 + 1} dz = \frac{2\sqrt{3}}{3} \arctan z + C$$

Building block IIa: $\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2) + C$.

Building block IIIa: $\int \frac{1}{1+x^2} dx = \arctan x + C$.

Example

No real roots \Rightarrow complete the square. Let $u = x + \frac{1}{2}$, let $z = \frac{2u}{\sqrt{3}}$.

$$\int \frac{x}{x^2 + x + 1} dx = \int \frac{u}{u^2 + \frac{3}{4}} du - \frac{1}{2} \int \frac{1}{u^2 + \frac{3}{4}} du$$
$$= \int \frac{u}{u^2 + \frac{3}{4}} du - \frac{1}{2} \frac{2\sqrt{3}}{3} \arctan z + C$$

$$\int \frac{u}{u^2 + \frac{3}{4}} du = \int \frac{1}{u^2 + \frac{3}{4}} d\left(\frac{u^2}{2}\right)$$

$$= \frac{1}{2} \int \frac{1}{u^2 + \frac{3}{4}} d\left(u^2 + \frac{3}{4}\right) = \frac{1}{2} \ln\left(u^2 + \frac{3}{4}\right) + C$$

Building block IIa: $\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2) + C$.

Building block IIIa: $\int \frac{1}{1+x^2} dx = \arctan x + C$.

Example

No real roots \Rightarrow complete the square. Let $u = x + \frac{1}{2}$, let $z = \frac{2u}{\sqrt{3}}$.

$$\int \frac{x}{x^2 + x + 1} dx = \int \frac{u}{u^2 + \frac{3}{4}} du - \frac{1}{2} \int \frac{1}{u^2 + \frac{3}{4}} du$$

$$= \frac{1}{2} \ln \left(u^2 + \frac{3}{4} \right) - \frac{1}{2} \frac{2\sqrt{3}}{3} \arctan z + C$$

$$= \frac{1}{2} \ln \left(\left(x + \frac{1}{2} \right)^2 + \frac{3}{4} \right) - \frac{\sqrt{3}}{3} \arctan \left(\frac{2u}{\sqrt{3}} \right) + C$$

$$= \frac{1}{2} \ln \left(x^2 + x + 1 \right) - \frac{\sqrt{3}}{3} \arctan \left(\frac{2x + 1}{\sqrt{3}} \right) + C$$

Building blocks IIa and IIb

We solve building block IIb. For completeness, we solve block IIa again as well.

Example

$$\int \frac{x}{(x^2+1)^n} dx = \int \frac{1}{(x^2+1)^n} \frac{d(x^2+1)}{2}$$

$$= \frac{1}{2} \int u^{-n} du$$

$$= \begin{cases} \frac{1}{2} \ln(x^2+1) + C & \text{if } n=1\\ \frac{1}{2} \frac{(x^2+1)^{-n+1}}{(-n+1)} + C & \text{if } n \neq 1 \end{cases},$$

where we used the substitution $u = x^2 + 1$.

Building block IIIb: example illustrating main idea

Example

Integrate $\int \frac{dx}{(x^2+1)^2}$. We start with an already known integral:

$$\arctan x + C = \int \frac{1}{x^2 + 1} dx$$

$$= \frac{1}{x^2 + 1} x - \int x d\left(\frac{1}{x^2 + 1}\right)$$

$$= \frac{x}{x^2 + 1} - \int x \left(-\frac{2x}{(x^2 + 1)^2}\right) dx$$

$$= \frac{x}{x^2 + 1} + 2 \int \frac{-1 + x^2 + 1}{(x^2 + 1)^2} dx$$

$$= \frac{x}{x^2 + 1} + 2 \int \frac{1}{x^2 + 1} dx - 2 \int \frac{1}{(x^2 + 1)^2} dx$$

$$= \frac{x}{x^2 + 1} + 2 \arctan x - 2 \int \frac{dx}{(x^2 + 1)^2}$$

Building block IIIb: example illustrating main idea

Example

Integrate $\int \frac{dx}{(x^2+1)^2}$. We start with an already known integral:

$$\arctan x + C = \frac{x}{x^2 + 1} + 2 \arctan x - 2 \int \frac{dx}{(x^2 + 1)^2}$$

Rearrange terms and divide by 2 to get the desired integral:

$$\int \frac{\mathrm{d}x}{(1+x^2)^2} = \frac{1}{2} \left(\frac{x}{x^2+1} + \arctan x \right) + K \quad .$$

Building block IIIb

Building block IIIa:

$$J(1) = \int \frac{1}{(x^2 + 1)} dx = \arctan x + C \quad .$$

Block IIIb:

$$J(n) = \int \frac{1}{(x^2 + 1)^n} \mathrm{d}x$$

- Unlike other cases, IIIb is much harder than IIIa.
- Set $J(n) = \int \frac{1}{(x^2+1)^n} dx$. We are looking for a formula for J(n). We know $J(1) = \arctan x + C$ (this is block IIIa).
- We start by $J(n-1) = \int \frac{1}{(x^2+1)^{n-1}} dx$ and integrate by parts.
- In this way we end up expressing J(n) via J(n-1).
- We work our way from J(n) to J(n-1), from J(n-1) to J(n-2), and so on, until we get to J(1).

Example

Recall that $J(n) = \int \frac{1}{(x^2+1)^n} dx$. We have that:

$$J(n-1) = \int \frac{1}{(x^2+1)^{n-1}} dx$$

$$= \frac{1}{(x^2+1)^{n-1}} x - \int x d\left(\frac{1}{(1+x^2)^{n-1}}\right)$$

$$= \frac{x}{(x^2+1)^{n-1}} - \int x \left(\frac{(-n+1)2x}{(1+x^2)^n}\right) dx$$

$$= \frac{x}{(x^2+1)^{n-1}} + 2(n-1) \int \frac{1+x^2-1}{(1+x^2)^n} dx$$

$$= \frac{x}{(x^2+1)^{n-1}} + 2(n-1) \int \frac{1}{(1+x^2)^n} dx$$

$$-2(n-1) \int \frac{1}{(1+x^2)^n} dx$$

$$= \frac{x}{(x^2+1)^{n-1}} + 2(n-1)J(n-1) - 2(n-1)J(n)$$

Example

Recall that $J(n) = \int \frac{1}{(x^2+1)^n} dx$. We have that:

$$J(n-1) = \frac{x}{(x^2+1)^{n-1}} + 2(n-1)J(n-1) - 2(n-1)J(n) .$$

Rearrange to get:

$$2(n-1)J(n) = \frac{x}{(x^2+1)^{n-1}} + (2n-3)J(n-1)$$

$$J(n) = \frac{x}{(2n-2)(x^2+1)^{n-1}} + \frac{2n-3}{2n-2}J(n-1) .$$

In this way we expressed J(n) using J(n-1). We apply the above formula consecutively:

$$J(n) = \frac{x}{(2n-2)(x^2+1)^{n-1}} + \frac{2n-3}{2n-2} \left(\frac{x}{(2n-4)(x^2+1)^{n-2}} + \frac{2n-5}{2n-4} J(n-2) \right) = \dots$$
 and so on. The above can be used to write a formula for the final result, but that is as complicated as the process above.

23/23

Building block integral summary

III f 1 dy f 1 dy f B dy f B	ı. sub	Type b, lin. s	Type a, lin. sub.	b	а	Type
A = A + A + A + A + A + A + A + A + A +	$_{\overline{n}}dx$	$\int \frac{A}{(ax+b)^n} dx$	$\int \frac{A}{ax+b} dx$	$\int \frac{1}{x^n} dx$	$\int \frac{1}{x} dx$	I
\square	$\frac{1}{(-c)^n} dx$	$\int \frac{A(x+\frac{b}{2a})}{(ax^2+bx+c)^t}$	$\int \frac{A\left(x+\frac{b}{2a}\right)}{ax^2+bx+c} dx$	$\int \frac{x}{\left(x^2+1\right)^n} \mathrm{d}x$	$\int \frac{x}{x^2+1} dx$	П
$\int \frac{1}{x^2+1} dx \int \frac{1}{(x^2+1)^n} dx \int \frac{1}{ax^2+bx+c} dx \int \frac{1}{(ax^2+bx+c)^n} dx$	$\frac{1}{(c)^n} dx$	$\int \frac{B}{(ax^2+bx+c)'}$	$\int \frac{B}{ax^2 + bx + c} dx$	$\int \frac{1}{\left(x^2+1\right)^n} dx$	$\int \frac{1}{x^2+1} dx$	III

where A, B are arbitrary constants and a, b, c are constants with $b^2 - 4ac < 0$. The quadratics in the denominators have no real roots.

- We solved building blocks I, II and III in almost complete detail.
- The types in the remaining columns can be transformed to building block ones:
 - Block I. linear substitutions: done in full detail.
 - Block IIa, IIIa, linear substitutions: done in full detail, by means of completing the square.
 - Block Ilb, IIIb, linear substitutions: done by means of completing the square; computations are analogous and we leave them for exercise.

Todor Miley Lecture 4 2020