Droites sécantes, perpendiculaires et parallèles

I) Droites sécantes

Définition

Deux droites sont sécantes si elles se coupent en un point

Exemple:

Les droites (d1) et (d2) sont sécantes en O. Ce qui revient à dire que : O est <u>le point d'intersection</u> des droites (d1) et (d2)

II) Droites perpendiculaires

1) Définition :

Deux droites perpendiculaires sont deux droites sécantes qui se coupent en formant un angle droit

2) Notation:

Les droites (d1) et (d2) sont perpendiculaires en 0. Les droites (d1) et (d2) sont perpendiculaires se notent : (d1) \perp (d2)

3) Tracer deux droites perpendiculaires :

Pour tracer deux droites perpendiculaires on utilise l'équerre :

Exemple:

Tracer la droite (d2) perpendiculaire à la droite (d1) passant par le point E

III) Droites parallèles

1) définition :

Deux droites parallèles sont deux droites qui ne sont pas sécantes

Exemple:

Les droites (d1) et (d2) sont parallèles.

Remarque:

Deux droites sont parallèles lorsqu'elles ne se coupent pas.

2) Notation:

Les droites (d1) et (d2) sont parallèles se notent : (d1) // (d2)

3) Tracer deux droites parallèles :

Pour tracer deux droites parallèles on fait glisser l'équerre sur la règle posée à la base de celle-ci.

Exemple:

Tracer la droite (d2) parallèle à la droite (d1) passant par le point A

IV) Propriétés

1) Première propriété

Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles

On sait que
$$(d1) \perp (d3)$$
 $donc(d1)/(d2)$

2) Deuxième propriété

Si deux droites sont parallèles, toute droite perpendiculaire à l'une est perpendiculaire à l'autre

3) Troisième propriété

Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles

V) Médiatrice d'un segment

1) définition :

La médiatrice d'un segment est la droite perpendiculaire à ce segment et qui le coupe en son milieu.

médiatrice du segment [AB]

2) Première propriété

Tout point de la médiatrice d'un segment est situé à la même distance des extrémités de ce segment

Exemple:

M est sur la médiatrice du segment [AB] alors MA = MB = 4 cm

3) Deuxième propriété

Tout point situé à la même distance des extrémités d'un segment appartient à la médiatrice de ce segment

Exemple:

Tracer le point M tel que MA= MB:

Il suffit de placer le point M n'importe où sur la médiatrice du segment [AB]

4) Construction de la médiatrice d'un segment au compas :

Construire au compas la médiatrice du segment [AB] :

Etape 1: On trace au compas deux arcs de cercle de centre A et de rayon R de part et d'autre du segment (le rayon est choisi arbitrairement mais supérieur à la moitié de la longueur du segment)

Etape 2 : En gardant le même rayon on trace deux arcs de cercle de centre B de part et d'autre du segment

5) Construction de deux droites perpendiculaires à l'aide d'un compas et d'une règle :

Tracer la droite perpendiculaire à la droite (d) passant par le point E

Etape 1: On trace un cercle de centre E qui coupe la droite (d) en deux points M et N (le rayon est choisi arbitrairement)

Etape 2 : On trace un point D situé à la même distance de M et N. (D est le point d'intersection des deux arcs de cercle de centre respectif N et M et de **même rayon**

Etape 3: On trace la droite (DE) qui est bien la droite perpendiculaire à (d) passant par le point E