Inteligentni sistemi

Prva seminarska naloga

1. Vizualizacija podatkov

V tem poglavju sem narisal nekaj grafov, ki prikažejo korelacijo in odvisnosti atributov. Iz tega sem lahko ugotovil kateri atributi so pomembni pri napovedovanju.

Graf 1 (Korelacija atributov)

Graf 2 (Sprememba globalnega sevanja v odvisnosti od letnega čas)

Graf 3 (Sprememba O3 v odvisnosti od v temperature)

Graf 4 (Sprememba PM10 v odvisnosti od temperature)

Graf 5 (Sprememba PM10 v odvisnosti od hitrosti vetra)

Graf 6 (Sprememba O3 v odvisnosti od vlage)

2. Ocenjevanje atributov

V tem poglavju sem ocenil atribute glede na vizualizacije iz prejšnjega poglavja in s pomočjo algoritmov za ocenjevanje atributov.

Atributi z močno korelacijo:

- Temperatura, sevanje, vlaga in O3
- Hitrost vetra, sunki vetra, temperatura in PM10

Atribut Globalno_sevanje_min je bil neuporaben, ker je vseboval same ničle.

Atribut Datum je bil neuporaben in zato sem iz njega ustvaril dva nova atributa:

- letni čas in
- dan v tednu

3. Klasifikacija

		po dodajanju novih atributov		
Algorithm	O3	O3 ver2	PM10	
Majority class	0.6089588	0.6089588	0.8688458	
DT	CA: 0.7177419	0.7217742	0.8870968	
	Brier: 0.4381122	0.4106455	0.1728015	
DT with cross val.	1-err: 0.7619048	0.7601	0.876	
NB	CA: 0.5994624	0.6169355	0.7768817	
	Brier: 0.6427464	0.6231271	0.3946745	
NB with cross val.	1-err: 0.5960452	0.6067	0.782	
KNN k=5	CA: 0.7473118	0.7392473	0.8978495	
	Brier: 0.3674194	0.3810753	0.1777419	
	1-err:	0.7941	0.8841	
KNN k = 10	CA: 0.7701613	0.7715054	0.9153226	
	Brier: 0.3329301	0.3352957	0.1494892	
		0.7849	0.887	
KNN k = 15	CA: 0.780914	0.7876344	0.9112903	
	Brier: 0.3265352	0.3260573	0.1425209	
KNN cross val.	1-err: 0.7841001	0.7924	0.887	
RF	CA: 0.7903226	0.7889785	0.9233871	
	Brier: 0.3127936	0.3166823	0.1311955	
Rf with cross val.	1-err: 0.81477	0.8206	0.9008	
SVM	CA: 0.7876344	0.7903226	0.9327957	
	Brier: 0.4996265	0.4743393	0.1239688	
	1-err: 0.7964	0.8005	0.8968	
ANN	1-err: 0.801	0.7733564		
Voting SVM, RF, KNN15	CA: 0.796	0.8024194	0.9274194	
Weighted voting SVM, RF, KNN15	CA: 0.7405914	0.7419355	0.8763441	
Boosting	CA: 0.781	0.7688172	0.9005376	

S tabele lahko razberemo rezultate posameznega algoritma in zmagovalec (označene z rdečo barvo pisave.

4. Regresija

	O3				PM10			
Algorithm	MSE	RMSE	MAE	RMAE	MSE	RMSE	MAE	RMAE
				0.4958				
LM	345.0908	0.2686063	5	697	22	796	96	391
Regression tree with			14.521	0.4972	91.722	0.4535	7.5077	0.7464
modelTypeReg = 6 (kNN)	347.4947	0.2704775	2	636	79	23	55	79
Regression tree RReliefF								
and with modelTypeReg =			14.374	0.4922	74.169	0.3667	6.7943	0.6755
6 (kNN)	343.1279	0.2670785	33	34	08	288	17	434
			13.653	0.4675	73.624	0.3640	6.7868	0.6748
RF and MSEofMean	301.5771	0.2347369	03	339	46	359	66	026
			16.403	0.5617	113.39	0.5606	7.8996	0.7854
KNN5	432.513	0.3366527	66	262	46	794	06	397
			15.274	0.5230	97.294	0.4810	7.5203	0.7477
KNN10	378.1599	0.2943462	85	714	82	74	9	352
			14.791	0.5065	93.143	0.4605	7.3945	0.7352
KNN15	354.4875	0.2759204	46	182	44	475	4	223
			13.179	0.4513	70.742	0.3497	6.2420	0.6206
SVM	276.9921	0.2156008	25	098	82	876	65	343

5. Evalvacija modelov

Pri klasifikacija in regresiji se je najboljše iskazal algoritem SVM, razen pri klasifikaciji O3, kjer ga je voting med SVM, RF in KNN15 premagal za 1%. Najboljši algoritem sem izbral s pomočjo klasifikacijske točnosti, Briejeve metode in 10-kratnega prečnega preverjanja za klasifikacijo ter MAE, RMAE, MSE, RMSE za regresijo.

6. Bonus

Pri dodatni nalogi sem ustvaril novo podatkovno množico sestavljeno iz meritev iz več dneh (temperatura za tekoči dan, temperatura za en dan nazaj itn). Pri testiranju sem uporabil algoritem SVM. Novi modeli so imeli nižje ocene za razliko od starih modelov, ki so se ucili na originalni podatkovni mnoziči.

	klasifikacija		regresij a O3			
	O3	PM10	MAE	RMAE	MSE	RMSE
			343.154	0.22180	14.6378	0.46413
2 dni	0.7725437	CA: 0.9286676	8	56	1	46
3 dni	0.7264151	CA: 0.9231806				
5 dni	0.7256757	CA: 0.9094595				

Miloš Kostadinovski, 63160172, VSŠ