MIP is a Flexible Tool

- Logistics: Traveling Salesman problem, Vehicle Routing.
- · Inventory (and Production) Planning.
- Facilities Location.
- · Capacity planning: Matching, Assignment Problem.
- Data Mining: Classification, Regression.
- Airline Industry: Schedule Planning, Fleet Assignment, Aircraft Rotation, Crew-pairing.
- Mining and Forestry Industry: Covering Models, partitioning models.
- National Security Planning.
- VLSI Chip Design.
- Computational Biology: Sequence Alignment, Genome Rearrangement.
- Health care: IMRT, Scheduling.
- Sports Scheduling, Timetabling.

Some "Slightly Dated" Applications of Integer Programming

Papers from Interfaces.

Company	Year	Type of Model	Revenue
Air New Zealand	2001	Crew Scheduling	NZ \$15.6 million
AT&T	2000	Network Restoration	Hundreds of
			millions of dollars'
NBC	2002	Product Mix/	\$200 million
		Commercials/Schedule	
Procter & Gamble	2006	Expressive Bidding	\$298.4 million
Schindler Elevator	2003	Routing planning	\$1 million
UPS	2004	Network Design	\$87 million
Ford	2001	Set-covering/	\$250 million
		Product optimization	
Hewlett-Packard	2004	Inventory Optimization	\$130 million
Merrill-Lynch	2002	Integrated Choice	\$80 million
		Strategy	
Motorola	2002	Bidding/	\$200 million
		Supplier Negotiation	

A Natural Way to Solve MIPs

- 1. Enumerate all possible integer solution vectors.
- For each potential solution vectors, check if it is feasible.
- 3. If feasible, then compute objective function value.
- 4. Pick the best solution.

Some Calculations

Suppose we can evaluate 10⁶ potential solution vectors in a second.

Time	0.001 seconds	1 second	16 minutes	11 days	31 years	31,709 years	31,709,791 years
Number of vectors 2 ⁿ	1024	1048576	$\sim 10^9$	$\sim 10^{12}$	$\sim 10^{15}$	$\sim 10^{18}$	$\sim 10^{21}$
Number of binary variables Number of vectors 2 ⁿ	10	20	30	40	20	09	20

This has got "nothing" to do with speed of computers. Every time the speed is doubled \Rightarrow It allows me to solve a problem with 1 extra variable.

However, we routinely solve problems with thousands of integer variables.