MEG Mastering Angle chasing

Tom Yan

June 2023

1 Introduction

- 1. In $\triangle ABC$, AB = AC and $\angle A = 40^{\circ}$. The bisector from $\angle B$ intersects AC at point D. What is $\angle BDC$?
- 2. (AIMO 2019/3) Let ABCD be a square with side length 24. Let P be a point on side AB with AP=8, and let AC and DP intersect at Q. Determine the area of triangle CQD
- 3. (Angle Bisector theorem) Let ABC be a triangle and D be a point on \overline{BC} so that \overline{AD} is the internal angle bisector of $\angle BAC$. Show that

$$\frac{AB}{AC} = \frac{DB}{DC}.$$

- 4. (AIME 2016/6) In $\triangle ABC$ let I be the center of the inscribed circle, and let the bisector of $\angle ACB$ intersect AB at L. The line through C and L intersects the circumscribed circle of $\triangle ABC$ at the two points C and D. If LI=2 and LD=3, then find IC.
- 5. Let ABC be an acute triangle inscribed in circle Ω . Let X be the midpoint of the arc \widehat{BC} not containing A and define Y, Z similarly. Show that the orthocenter of XYZ is the incenter I of ABC.