TRIGONOMETRY

CHAPTER 8

Propiedades de las razones trigonométricas de un ángulo agudo

MOTIVATING | STRATEGY

I) <u>RAZONES TRIGONOMÉTRICAS RECÍPROCAS DE</u> <u>UN ÁNGULO AGUDO</u> (RTR)

Para un mismo ángulo agudo α se cumple:

sena. csca =
$$\frac{C\delta}{H}$$
. $\frac{H}{CO}$ = 1

cosa. seca = $\frac{CA}{H}$. $\frac{H}{CA}$ = 1

tana. cota = $\frac{C\delta}{CA}$. $\frac{CA}{CO}$ = 1

Definición de RTR $0^{\circ} < \alpha < 90^{\circ}$ $sen\alpha . csc\alpha = 1$ $cos\alpha . sec\alpha = 1$ $tan\alpha . cot\alpha = 1$

Ejemplo:

$$\mathsf{E} = \frac{7 \operatorname{sen35^{\circ} csc35^{\circ}} - 3 \tan 49^{\circ} \cot 49^{\circ}}{2 \cos 62^{\circ} \sec 62^{\circ}} = \frac{7 (1) - 3 (1)}{2 (1)} = \frac{7 - 3}{2} = \frac{4}{2} = 2$$

II) <u>RAZONES TRIGONOMÉTRICAS DE DOS ÁNGULOS</u> <u>AGUDOS COMPLEMENTARIOS</u> (CO - RT)

En un triángulo rectángulo, los catetos se consideran opuestos ó adyacentes, según sea el ángulo agudo de referencia.

≮	CO	CA	Н
α	а	b	C
β	b	a	C

Luego se cumple:

$$\alpha + \beta = 90^{\circ}$$

$$sen\alpha = \frac{a}{c} = cos\beta$$

$$\sec \alpha = \frac{c}{b} = \csc \beta$$

$$\tan \alpha = \frac{a}{b} = \cot \beta$$

Ejemplos:

$$tan(a + 42^{\circ}) = cot(48^{\circ}-a);$$

) Escriba verdadero (V) ó falso (F) según corresponda.

a)
$$sen10^{\circ}$$
. $csc80^{\circ} = 1$

b) tan(
$$2x - 5^{\circ}$$
).cot($2x - 5^{\circ}$) = 1(\vee)

c)
$$cos40^{\circ} = sen50^{\circ}$$

d)
$$sec(70^{\circ} - y) = csc(20^{\circ} + y)$$

Luego:

b)
$$2x - 5^{\circ} = 2x - 5^{\circ}$$

c)
$$40^{\circ} + 50^{\circ} = 90^{\circ}$$

⇒ por CO - RT es verdadero

d)
$$70^{\circ} - \chi + 20^{\circ} + \chi = 90^{\circ}$$

⇒ por CO - RT es verdadero

RESOLUCIÓN

Recordamos que:

(V)

2) Halle el valor de x si: $sen(2x + 5^{\circ}).csc(3x - 15^{\circ}) = 1$

RESOLUCIÓN

Recordamos que:

Luego:

Por RTR, igualamos las medidas angulares:

$$2x + 5^{\circ} = 3x - 15^{\circ}$$

$$5^{\circ} + 15^{\circ} = 3x - 2x$$

$$\therefore x = 20^{\circ}$$

3) Halle el valor de x si: $tan(x - 10^{\circ}) = cot(2x + 10^{\circ})$

RESOLUCIÓN

Recordamos que:

Luego:

$$x - 10^{\circ} + 2x + 10^{\circ} = 90^{\circ}$$

$$3x = 90^{0}$$

$$x = 30^{\circ}$$

4) Sabiendo que: $tan3x.cot(x + 40^{\circ}) = 1,$ calcule cos3x.

RESOLUCIÓN

Recordamos que:

Luego:

Por RTR, igualamos las medidas angulares:

$$3x = x + 40^{\circ}$$

$$2x = 40^{\circ}$$
 $x = 20^{\circ}$

Luego: $cos3x = cos3(20^{\circ}) = cos60^{\circ}$

Recordamos:

$$\cos\theta = \frac{CA}{H}$$

$$\therefore \quad \cos 3x = \frac{1}{2}$$

5) Sabiendo que : $sen(\alpha + 5^{\circ}) = cos(2\alpha + 40^{\circ})$ $calcule sen2\alpha$.

RESOLUCIÓN

Recordamos que:

Luego:

Por CO - RT:

$$\alpha + 5^{\circ} + 2\alpha + 40^{\circ} = 90^{\circ}$$

 $3\alpha = 45^{\circ}$
 $\alpha = 15^{\circ}$

Luego: $sen2\alpha = sen2(15^{\circ}) = sen30^{\circ}$

Recordamos que:

$$sen \alpha = \frac{CO}{H}$$

$$\therefore \quad \mathbf{sen2}\alpha = \frac{1}{2}$$

- 6) Las edades de Mitsumo y Nicole están dadas por las siguientes relaciones :
 - **⊗** Mitsumo tiene x años .
 - **⊗** Nicole tiene y años.

Donde: $tan2x^{\circ}$. $cot3y^{\circ} = 1$;

 $cosx^{\circ} = sen(x + 30)^{\circ}$

Indique la edad de cada una de ellas.

RESOLUCIÓN

cosx° = sen(x + 30)°
Por CO - RT:

$$x^4 + (x + 30)^2 = 90^2$$

 $2x = 60 \Rightarrow x = 30$

tan2x°. cot3y° = 1

Por RTR:

$$2x^{3} = 3y^{3}$$

2(30) = 3y \Rightarrow y = 20

∴ Mitsumo tiene 30 años y Nicole tiene 20 años

7) Paul y Elizabeth una pareja de RESOLUCIÓN

Paul y Elizabeth una pareja de esposos, viajan a Arequipa por 4 días y para su regreso desean comprar regalos para sus hermanos en Lima. Elizabeth tiene A hermanos y Paul tiene B hermanos.

Calcular el total de regalos que comprarán, si A y B están determinados por las siguientes expresiones:

A = (4 sen2° + 3 cos88°) csc2°
B =
$$\frac{2 \text{ sen}10^{\circ}}{\cos 80^{\circ}}$$
 + $\frac{3 \tan 14^{\circ}}{\cot 76^{\circ}}$

Por CO - RT:

$$2^{\circ} + 88^{\circ} = 90^{\circ}$$
 sen $2^{\circ} = \cos 88^{\circ}$

$$10^{\circ} + 80^{\circ} = 90^{\circ}$$
 \Rightarrow $sen10^{\circ} = cos80^{\circ}$

$$14^{\circ} + 76^{\circ} = 90^{\circ}$$
 tan $14^{\circ} = \cot 76^{\circ}$

Luego reemplazamos en A y B:

$$A = (4 sen2^{\circ} + 3sen2) csc2^{\circ}$$

$$A = 7 sen2^{\circ} . csc2^{\circ} = 7(1) = 7$$

$$B = \frac{2 \frac{\text{sen} 10^{\circ}}{\text{sen} 10^{\circ}} + \frac{3 \frac{\text{tan} 14^{\circ}}{\text{tan} 14^{\circ}}}{\text{tan} 14^{\circ}} = 2 + 3 = 5$$

Calculamos:
$$A + B = 7 + 5$$

∴ Total = 12 regalos