Digitallabor

Versuch: Kombinatorisches und strukturelles VHDL im GAL Baustein

Teil 1 der Ausarbeitung: Vorbereitung des Labortermins

Die Aufgaben auf diesem Blatt dienen der Vorbereitung des Labortermins. Bitte beantworten Sie die Fragen schriftlich und bringen Sie diesen Teil der Ausarbeitung zum Labortermin mit.

1. Frage zu iSPLever

Arbeiten Sie die Bedienungsanleitung zum Versuch durch und beantworten Sie folgende Fragen:

- a) Welche beiden grundsätzlichen Möglichkeiten gibt es, im Simulator die Werte für die Eingänge a,b,c vorzugeben?
- b) In welcher Datei finden Sie nach Ablauf der Synthese das Bild des Chip Pinouts, d.h. der Anschlussvorschrift für die Signale?

2. Funktionstabelle als VHDL Modell

Gegeben sei folgende Funktionstabelle. Übersetzen Sie diese Tabelle in eine vollständige VHDL Beschreibung aus entity und architecture.

D	С	В	Α	Υ
0	0	0	0	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	1
1	0	1	0	1
1	1	1	1	1
Alle anderen Kombinationen von D,C,B,A				0

Aufgabe 1

- a) Die Simulationswerte können manuell im Simulator eingegeben werden oder in der Testbench definiert bzw. als PROCESS angegeben werden.
- b) Die Anschlussvorschriften können im Chip Report nachgeschlagen werden, dieser kann aufgerufen werden in dem man im Source-in-Project-Window den Bausteinauswählt und ihn per doppelklick im Process-for-current-Source-Window auswählt.

Aufgabe 2

```
library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;
use ieee.std logic unsigned.all;
entity Funktionstabelle ent is
 PORT (d, c, b, a: in bit;
y : out bit);
end;
architecture Funktionstabelle_arch of Funktionstabelle_ent is
with bit_vector'(d, c, b, a) select
y <= '1' when "0000",
'1' when "0101",
'1' when "0110",
'1' when "0001",
'1' when "1010",
'1' when "1111",
'0' when others,
end Funktionstabelle_arch;
```

3. Halbaddierer

Geben Sie die Funktionstabelle (in Tabellenform) eines Halbaddierers an. Die Eingänge heißen a und b, die Ausgänge s für das Summenbit und c für den Übertrag.

4. Volladdierer

Skizzieren Sie unter Verwendung von 2 Halbaddierern und einem ODER Gatter das Blockschaltbild eines Volladierers. Die Eingänge heißen ai und bi für das zu addierende Bit und cin für den Übertrags-Eingang. Die Ausgänge heißen sumi für das Summenbit und cout für das Übertragsbit.

5. Serienaddierer

Skizzieren Sie das Prinzip eines Serienaddierers (Carry-Ripple Addierer). Warum hat die Summe ein Bit mehr als die Summanden und wie entsteht das oberste Summenbit in der Schaltung?

Aufgabe 4

