

Session Content

- Informed Search (A*)
- Admissibility of heuristic
- Optimality of A*

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)

- $g(n) = \cos t \sin t \cos r = \cosh n$
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal

Admissible Heuristics

- A heuristic function h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A^* using TREE-SEARCH is optimal

Example

Consistent Heuristic

- h(n) is consistent if
 - for every node n
 - for every successor n' due to legal action a
 - $h(n) \le c(n,a,n') + h(n')$

Proof of Optimality of A*

Assume h() is admissible.
 Say some sub-optimal goal state G₂ has been generated and is on the fronti Let n be an unexpanded state such that n is on an optimal path to the optim goal G.

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$

$$g(G_2) > g(G)$$
 since G_2 is suboptimal

Focus on G:

$$f(G) = g(G)$$
 since $h(G) = 0$

$$f(G_2) > f(G)$$
 substitution

Proof of Optimality of A*

Assume h() is admissible.
 Say some sub-optimal goal state G₂ has been generated and is on the frontier.
 Let n be an unexpanded state such that n is on an optimal path to the optimal goal G.

00

$$f(G) = g(G)$$
 since $h(G) = 0$
 $f(G_2) > f(G)$ substitution

Now focus on n:

$$h(n) \le h^*(n)$$
 since h is admissible $g(n) + h(n) \le g(n) + h^*(n)$ algebra $f(n) = g(n) + h(n)$ definition $f(G) = g(n) + h^*(n)$ by assum $f(n) \le f(G)$ substitution

Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion.

Admissible Heuristics

Admissible Heuristics

E.g., for the 8-puzzle:

- h₁(n) = number of misplaced tiles
- h₂(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Goal State

- $h_1(S) = ? 8$
- $h_2(S) = ? 3+1+2+2+3+3+2 = 18$

- If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1
- h₂ is better for search
- Typical search costs (average number of node expanded):
- d=12 IDS = 3,644,035 nodes
 A*(h₁) = 227 nodes
 A*(h₂) = 73 nodes
- d=24 IDS = too many nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes