Departamento de Matemática da Universidade de Aveiro

Cálculo II - agr. 4

2013/14

2º teste

Duração: 2h00 (+15mn de tolerância)

• Todos os raciocínios devem ser convenientemente justificados e todas as respostas devem ser cuidadosamente redigidas.

1. Estuda a natureza (divergência, convergência simples ou convergência absoluta) das seguintes séries numéricas:

(a)
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n});$$
 (b) $\sum_{n=2}^{\infty} \frac{1+\sqrt{n}}{n^2-n};$ (c) $\sum_{n=1}^{\infty} (\frac{1}{n} - e^{-n^2}).$

(b)
$$\sum_{n=2}^{\infty} \frac{1+\sqrt{n}}{n^2-n}$$
;

(c)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - e^{-n^2} \right)$$

2. Sejam $f(x) = \cos x$ e $n \in \mathbb{N}$.

(a) Verifica que o polinómio de Taylor $(T_{\pi/2}^{2n-1}f)(x)$ de ordem 2n-1 de f no ponto $\frac{\pi}{2}$ é

$$\sum_{k=1}^{n} \frac{(-1)^k}{(2k-1)!} \left(x - \frac{\pi}{2}\right)^{2k-1}.$$

(b) Usando a fórmula de Taylor com resto de Lagrange e o valor de 3,14 para π , determina um majorante para o erro cometido ao aproximar $\cos(0.57)$ por $(T_{\pi/2}^5 f)(0.57).$

3. Obtém uma representação em série de potências para a função f real de variável real x definida por $f(x) = \int_0^x e^{-t^2} dt$.

Informação: Podes raciocinar a partir de uma representação em série de potências para a função exponencial natural que já conheças.]

4. Sabendo que a série de Fourier de g(x) = x, $x \in [-\pi, \pi]$, é $\sum_{n=1}^{\infty} \frac{2}{n} (-1)^{n+1} \sin(nx)$, determina a série de Fourier de $f(x) = x \sin x$, $x \in [-\pi, \pi]$.

Sugestão: No cálculo dos coeficientes de Fourier, tira partido das fórmulas trigonométricas

$$2\sin a \sin b = \cos(a-b) - \cos(a+b), \quad 2\sin a \cos b = \sin(a-b) + \sin(a+b).$$

5. Considera uma série de potências $\sum_{n=0}^{\infty} a_n (x-c)^n$.

- (a) Define raio de convergência, intervalo de convergência e domínio de convergência de uma tal série.
- (b) Mostra que se todos os coeficientes a_n forem diferentes de zero e se existir $\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}$ então o raio de convergência daquela série é igual ao valor desse

Cotação:

2. 5; 3. 4; 4. 2;