# Оптимизация геологоразведочных работ с помощью ИИ

AI Talent Hub

Димитров Владимир

Junir ML RIT Automation

6 июня 2023 г.



### Оглавление

- Введение
- 2 Оптимальный критерий
- Данные
- 4 Модель
- Оптимизация
- 6 Вывод



# Введение



### Введение

Основной задачей нефтегазовых компаний на сегодняшний день является разработка новых и перспективных месторождений, увеличение добычи со зрелых месторождений, а также разработка и внедрение новых технологий для сокращения затрат, связанных с бурением и добычей скважинной продукции. Затраты компаний на бурение скважин являются одними из больших. Ежегодно на бурение компаниями тратиться десятки миллиардов долларов.

### Введение

**Цель работы:** разработка программного обеспечения позволяющего оптимизировать параметры бурения в режиме реального времени

#### Задачи:

- Выбор оптимального критерия
- Первичный анализ и предобработка данных
- Создание моделей для прогнозирование целевых параметров
- Оптимизация параметров контроля
- Создание общего алгоритма

6/27

# Оптимальный критерий

### Оптимальный критерий

- Максимизация скорости проходки
- Минимизация удельной затраты энергии
- Максимизация относительного критерия эффективности
- Смешанный критерий

Димитров Владимир

# Данные



### Данные

- 600 тыс. наблюдений, время 5 секунд
- Данные получены за 3 месяца в течении отработки одной скважины

### Данные

- 600 тыс. наблюдений, время 5 секунд
- Данные получены за 3 месяца в течении отработки одной скважины
- Параметры управления:
  - Частота вращения
  - Осевая нагрузка
  - Расход промывочной жидкости (п.ж.)
- Параметры состояния: давление п.ж., крутящий момент, глубина

10/27

### Разметка и обработка данных

Была произведена разметка пластов и рейсов (рейс - процесс бурения протяженностью до 5 минут)

Данные проверялись на соответствие и на отсутствие отрицательных значений.

Обработка осуществлялась на основе критерий Z-тест, тест IQR Была произведена агрегация (1 минута, 5 минут, 10 минут)

11/27

### Результаты

| Название<br>метода               | Количество<br>выбросов<br>(%) | Время<br>выполнения<br>(мин.) | Ошибка<br>(RMSE)<br>усредненна<br>я по<br>пластам | Максимальн<br>ая ошибка | Стандартно<br>е<br>отклонение |
|----------------------------------|-------------------------------|-------------------------------|---------------------------------------------------|-------------------------|-------------------------------|
| IQR (для<br>всех<br>данных)      | 12                            | 1.3                           | 0.37                                              | 0.91                    | 0.23                          |
| IQR (для пластов)                | 15                            | 5                             | 0.41                                              | 0.8                     | 0.28                          |
| 3-сигм (для<br>всех<br>данных)   | 7,63                          | 1                             | 0.381                                             | 0.78                    | 0.22                          |
| 3-сигм(для пластов)              | 8,76                          | 4                             | 0.37                                              | 1.03                    | 0.368                         |
| z-score (для<br>всех<br>данных)  | 10                            | 0.3                           | 0.32                                              | 0.68                    | 0.19                          |
| z- <u>score</u> (для<br>пластов) | 10.03                         | 1                             | 0.46                                              | 1.1                     | 0.33                          |
| Без очистки                      | 0                             | 0                             | 0.56                                              | 1.6                     | 0.52                          |

### Результаты

С точки зрения бизнес процессов, как мы видим, имеется определенная выгода предобработки данных. Этот процесс повышает общую точность и уменьшает время сходимости алгоритма



13/27

# Модель



# Модели машинного обучения для параметров управления

Были созданы различные модели машинного обучения для различных пластов.

Модели оптимизировались, к данным применялись техники машинного обучения.

В итоге было получено 270 моделей

15/27

### Результаты

|       |                       | Ошибка на трейне | Ошибка на тесте | Время | R2_трейн | R2_тест |
|-------|-----------------------|------------------|-----------------|-------|----------|---------|
| Пласт | Модель                |                  |                 |       |          |         |
| 0     | Байесовская регрессия | 8.025            | 9.506           | 0.042 | 0.139    | 0.095   |
|       | Градиентый бустинг    | 3.101            | 4.092           | 0.798 | 0.871    | 0.832   |
|       | Катбуст               | 2.729            | 3.863           | 1.004 | 0.900    | 0.851   |
|       | Лассо регрессия       | 8.025            | 9.505           | 0.005 | 0.139    | 0.096   |
|       | Линейная регрессия    | 8.025            | 9.507           | 0.040 | 0.139    | 0.095   |
|       | Решающее дерево       | 0.000            | 1.582           | 0.035 | 0.93     | 0.975   |
|       | Ридж регрессия        | 8.025            | 9.507           | 0.042 | 0.139    | 0.095   |
|       | Случайный лес         | 0.853            | 1.452           | 2.134 | 0.990    | 0.979   |

Рис. 1: Метрики качества п.у. для пласта 0



### Результаты

- Пласт 0 Catboost
- Пласт 1 Random Forest
- Пласт 2 Random Forest
- Пласт 3 Gradient Descent
- Пласт 4 Catboost
- Пласта 5 Catboost



17/27

## Оптимизация



### Постановка задачи

Целевая функция:

 $\max v_m$ 

Существует ограничение на:

- Удельный расход энергии
- Значение индекса
- Расход промывочной жидкости

Критерий остановы: число итераций или малое изменение значения целевой функции

Димитров Владимир Junior ML

### Алгоритмы оптимизации

В работе использовались следующие алгоритмы оптимизации:

- Градиентный метод
- Метод имитации отжига
- Рой частиц



20/27

### Результаты

| Метод             | Изменение цел. пар. | Время работы(мин.) |  |  |
|-------------------|---------------------|--------------------|--|--|
| Градиентный метод | 3,1%                | 6                  |  |  |
| PSO               | 5,3%                | 13                 |  |  |
| Имитации отжига   | 4,2%                | 10                 |  |  |

### Общий алгоритм





22/27

# Вывод



### Вывод алгоритмический

- Алгоритм обработки данных для разных типов почв
- Алгоритм оценки целевого параметра для разных типов почв
- Алгоритм условной оптимизации для разных типов почв



24/27

### Вывод геологический

- общая скорость бурения, рассчитанная как средняя за рейс, увеличивается относительно тестовых данных более, чем на 7 процентов
- интервал принятия сокращается относительного того времени, которое наблюдается в тестовых наборах данных
- рабочий режим достигается быстрее и без явных осложнений
- ИИ способен определять и адекватно реагировать на изменение характеристик породы по буримости

### Вывод экономический

- Снизилось время простоя оборудования на 2 процента по сравнению с тестовым набором данных
- Увеличена эффективность потребления материалов
- **3** Уменьшено потребление энергии при сохранении общей эффективности работ
- Уменьшена себестоимость геологоразведочных работ

26/27

### Спасибо за внимание!