

The Differential of f

by Sophia

WHAT'S COVERED

In this lesson, you will express linear approximations in terms of differentials. Specifically, this lesson will cover:

- 1. Defining the Differential of *f*
- 2. Calculating the Differential of f

1. Defining the Differential of *f*

From when we first discussed rates of change and the derivative, recall the following quantities:

- $\Delta x =$ change in x (horizontal change)
- $\Delta y =$ change in y (vertical change)

When y = f(x), Δy can be replaced with Δf to show that this is the change in function f. Another goal in linear approximation is to find the change in f for a corresponding change in f.

Consider the image below:

Let Δx = the horizontal change in x-values. This was "x - a" in the linear approximation formula.

Let Δf = the actual change in f when moving from x to $x + \Delta x$. Then, $\Delta f = f(x + \Delta x) - f(x)$.

Now, let A = the approximate change in f along the tangent line, which can be found as follows:

• Slope =
$$\frac{rise}{run} = f'(x) = \frac{A}{\Delta x}$$

• Then, solving for A, we get $A = f'(x) \cdot \Delta x$.

Since A is approximating Δf , we can also say that $\Delta f \approx f'(x) \cdot \Delta x$.

This means that the change in f (when moving from x to $x + \Delta x$) can be approximated by multiplying the slope f'(x) by Δx , the change in x.

This leads to the definition of the differential of f.

Differential of f

df = f'(x)dx for any choice of x and any real number dx.

When y = f(x), we can also write dy = f'(x)dx.

The differential uses the derivative at an x-value to give the approximate change in f when x changes to $x + \Delta x$

When approximating the change in y, we use $dx = \Delta x$, but dy is an approximation of Δy .

2. Calculating the Differential of *f*

 \Leftrightarrow EXAMPLE Given $f(x) = 4x^2 + 7x$, find the differential df.

Since f'(x) = 8x + 7, the differential is df = (8x + 7)dx.

 \Leftrightarrow EXAMPLE Given $y = \ln(x^2 + 3)$, find the differential dy.

Since $\frac{dy}{dx} = \frac{1}{x^2 + 3} \cdot 2x = \frac{2x}{x^2 + 3}$, the differential is $dy = \frac{2x}{x^2 + 3} dx$.

Let $f(x) = x^2 \sin(2x)$.

Find the differential df.

 $df = (2x\sin(2x) + 2x^2\cos(2x))dx$

Here is a video in which we find the differential dy of $y = e^{-4x}\cos(7x)$.

SUMMARY

In this lesson, you learned how to **define and calculate the differential of** f, which is an approximation for the change in f when x changes by dx units.

SOURCE: THIS WORK IS ADAPTED FROM CHAPTER 2 OF CONTEMPORARY CALCULUS BY DALE HOFFMAN.

Д

FORMULAS TO KNOW

Differential of f

df = f'(x)dx for any choice of x and any real number dx.

When y = f(x), we can also write dy = f'(x)dx.