Julian Pfeifle, UPC, 2018

Sheet 2

due on Monday, November 19, 2018

Writing (due November 19)

- (1) (a) Using Gale's Evenness Criterion, explicitly write down all subsets of vertices that make up a facet of the 4-dimensional cyclic polytope $C_4(8)$.
 - (b) Draw the dual graph of $C_4(8)$, i.e. the graph that has the facets of $C_4(8)$ as nodes and an edge between two nodes if the corresponding facets share a ridge. Try to make your drawing as legible as possible. *Hint:* Labeling the nodes with the corresponding vertex sets will help you to get organized.
- (2) Let P be the 24-cell, $P = \text{conv}\{\pm e_i \pm e_j : 1 \le i \ne j \le 4\}$, where (e_1, \ldots, e_4) is the standard basis of \mathbb{R}^4 . Also, consider the simple roots of type F_4 , namely the rows r_1, \ldots, r_4 of the matrix

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix},$$

and the linear hyperplanes H_1, \ldots, H_4 orthogonal to them.

- (a) Count the vertices of P.
- (b) The root system of type F_4 arises from the four simple roots by reflecting them in the H_i , adding all new vectors (and the linear hyperplanes orthogonal to them) obtained in this way to the set of reflecting hyperplanes, and repeating the process until no new normal vectors/hyperplanes are found. Count the number of resulting hyperplanes. Answer: 48
- (c) Show that reflecting the vertices of P in the H_i leaves P invariant.
- (d) Find all vertices of P inside the fundamental cone of F_4 ,

$$C = \{x \in \mathbb{R}^4 : \langle r_i, x \rangle > 0 \text{ for } i = 1, \dots, 4\}.$$

(e) Use this to efficiently describe and count the number of facets of P.