PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

B41F 13/004

A1

(11) Internationale Veröffentlichungsnummer: V

WO 97/11848

13/004

(4

(43) Internationales
Veröffentlichungsdatum:

3. April 1997 (03.04.97)

(21) Internationales Aktenzeichen:

PCT/EP96/04059

(22) Internationales Anmeldedatum:

D-80333 München (DE).

16. September 1996 (16.09.96)

(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Prioritätsdaten:

95115330.3

28. September 1995 (28.09.95) EP

(34) Länder für die die regionale oder internationale Anmeldung eingereicht

unternationale Anmelaung eingereicht worden ist:

DE usw.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2,

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BOHRER, Wolfgang [DE/DE]; Hauptstrasse 44 A, D-96158 Frensdorf (DE). MÖLLER-NEHRING, Walter [DE/DE]; Schießtlstrasse 3, D-91056 Erlangen (DE). ZIMMERMANN, Horst [DE/DE]; Nötherstrasse 20, D-91058 Erlangen (DE). SCHRÖDER, Heiko [DE/DE]; Bei den rauhen Bergen 52 A, D-22927 Ahrensburg (DE).

Veröffentlicht

Mit internationalem Recherchenbericht.

(81) Bestimmungsstaaten: CN, JP, KR, US, europäisches Patent

(54) Title: ROTARY PRINTING PRESS WITHOUT SHAFTING

(54) Bezeichnung: WELLENLOSE ROTATIONSDRUCKMASCHINE

(57) Abstract

The invention concerns a rotary printing press without shafting, the press comprising a number of individually driven printing positions (DS1, ..., DSn) and at least one separately driven folding machine (16, 18). The invention calls for the drives, which work in rotation with one folding machine (16 or 18), to be connected by a control/parameter bus (42) to a drivecontrol unit (52) and connected by a parallel synchronization bus (44) to a device (50) which generates a reference value and a synchronization signal, and each of the drives is connected by a bus interface (46, 48) to the synchronization bus (44). the synchronization bus being designed as a ring bus (54 or 56). This gives a shaftless press which is sufficiently flexible for its printing po-

sitions (14) to be synchronized simply, from one production run to another, with any of the folding machines (16, 18).

(57) Zusammenfassung

Die Erfindung bezieht sich auf eine wellenlose Rotationsdruckmaschine, umfassend eine Anzahl einzeln angetriebener Druckstellen (DS1, ..., DSn) und mindestens einen separat angetriebenen Falzapparat (16, 18). Erfindungsgemäß sind die Antriebe, die in einer Rotation auf einen Falzapparat (16 bzw. 18) arbeiten, mittels eines Steuer-/Parametrierbusses (42) mit einer Antriebssteuerung (52) und mittels eines parallel angeordneten Synchronisierbusses (44) mit einer Einrichtung (50) zur Generierung eines Sollwertes und eines Synchronisiersignales verbunden und die Antriebe sind jeweils mittels einer Busschnittstelle (46, 48) mit dem als Ringbus (54 bzw. 56) ausgebildeten Synchronisierbus (44) verbunden. Somit erhält man eine wellenlose Rotationsdruckmaschine, die so flexibel ist, daß deren Druckstellen (14) von Produktion zu Produktion ohne großen Aufwand auf einen beliebigen Falzappparat (16, 18) synchronisiert werden können.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Osterreich	GE	Georgien	NE	Niger
ΑÜ	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungam	NZ	Neusceland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumanien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	
CZ	Tschechische Republik	LV	Lettland	TJ	Togo Tadschikistan
DE	Deutschland	MC	Monaco	TT	
DK	Dänemark	MD	Republik Moldau	UA	Trinidad und Tobago Ukraine
EE	Estland	MG	Madagaskar	UG	
ES	Spanien	ML	Mali	US	Uganda
FI	Finnland	MN	Mangolei	UZ	Vereinigte Staaten von Amerika
FR	Frankreich	MR	Mauretanien	VN	Usbekistan
GA	Gabon	MW	Malawi	AM	Vietnam

Beschreibung

Wellenlose Rotationsdruckmaschine

5 Die Erfindung bezieht sich auf eine wellenlose Rotationsdruckmaschine gemäß dem Oberbegriff des Anspruchs 1.

Eine Zeitungsoffsetrotationsmaschine, im weiteren Rotationsdruckmaschine bezeichnet, besteht in der Regel aus mehreren

10 produzierenden Einheiten - Rotation genannt -, die gleichzeitig und unabhängig voneinander arbeiten können (maximal 10).

Jede produzierende Einheit besteht unter anderem aus Rollenträgern für die Papierrollen, Zugwalzen zum Ein- und Auszug
der Papierbahn bei den Drucktürmen, Druckstellen, die zusam15 mengefaßt als U- (zwei Druckstellen), Y- (drei Druckstellen)
oder H-Druckwerke (vier Druckstellen) in einem oder mehreren
Drucktürmen arbeiten, Hilfsantrieben an den Druckstellen
(z.B. für Plattenwechsel) und dem Falzapparat.

Die Steuerung einer Rotation erfolgt in der Regel über mehrere SPS-Systeme, die wiederum von übergeordneten Leitständen geführt werden. Um einen leistungsfähigen Datenaustausch zu ermöglichen, werden die Systeme über serielle Bussysteme miteinander vernetzt.

25

Eine Druckstelle besteht im wesentlichen aus einem Gummizylinder, einem Plattenzylinder und einem Farb- und Feuchtwerk.
Mit jeder Druckstelle kann eine Farbe auf einer Seite gedruckt werden. Alle Druckstellen, die auf einen Falzapparat
arbeiten, d.h., deren bedruckte Papierbahnen auf einen Falzapparat geführt werden, gehören zu einer Rotation. Die Druckstellen in einer Maschine sind in Drucktürmen untergebracht;
maximal acht Druckstellen in einem Turm (Achterturm) - zukünftig auch max. zehn Druckstellen in einem Turm

(Zehnerturm) angestrebt -. In einer Rotation können maximal bis zu zwölf Achtertürme auf einen Falzapparat arbeiten.

In der Figur 1 ist eine herkömmliche wellenbehaftete Rotationsdruckmaschine dargestellt. Eine, in manchen Fällen auch zwei mechanische Längswellen 2, die über Getriebe 4 (z.B. Kegelradgetriebe) gekoppelt sind, sowie mechanische Vertikalwellen 6 in den Drucktürmen 8, 10, 12 ermöglichen durch starre Kupplung innerhalb einer Rotation den synchronen Winkelgleichlauf aller Druckstellen 14 untereinander sowie zu einem Falzapparat 16 bzw. 18. Synchronitāt ist immer nur innerhalb einer Rotation notwendig. Die Längswelle 2 durchläuft die gesamte Maschine und wird in der Regel - aus Gründen der Momentenverteilung und der Flexibilität - von mehreren Hauptmoto-15 ren angetrieben. Das Ein- bzw. Auskoppeln der Vertikalwellen 6 bzw. der Druckwerke 20 erfolgt über mechanische Kupplungen 22. Weiterhin müssen zusätzliche Trennkupplungen 24 in die Längswelle 2 eingebaut werden, wenn einzelne Drucktürme 8 bzw. 10 bzw. 12 in unterschiedlichen Rotationen arbeiten sol-20 len. Durch Öffnen der Längswellenkupplung 26 zwischen dem Druckturm 8 und dem Druckturm 10 können zwei Rotationen unabhängig voneinander arbeiten - Druckturm 8 auf Falzapparat 16 und Druckturm 10 und 12 auf Falzapparat 18.

Die flexible Zuordnung der Druckstellen 14 auf mehrere Falzapparate 16 und 18 wird ausschließlich von der Mechanik bestimmt. Jeder Zugewinn an Flexibilität muß mit einem Mehraufwand an mechanischen Komponenten erkauft werden (höhere Anschaffungskosten der Maschine).

30

Nachteile der konventionellen Antriebslösung mit mechanischen Wellen:

- aufwendige und teuere Mechanik (Getriebe, Kupplungen)
- 35 geringe Flexibilität bei der Produktion

30

35

- begrenzte Genauigkeit der Druckbilder durch Getriebespiel,
 Torsion der Wellen, Fertigungstoleranzen der mechanischen
 Komponenten, z.B. bei Zeitungsrotationen ± 50µm im Druck
- Schwingungsneigung durch niedrige mechanische Eigenfrequenzen
 - hoher Aufwand bei Wartung der Mechanik und bei der Inbetriebsetzung.

Seit mehr als 30 Jahren gibt es im Bereich der Druckmaschinenentwicklung immer wieder Bestrebungen, die Synchronisation 10 der Antriebskomponenten über mechanischen Wellen durch eine elektrische Welle zu ersetzen. Dies erfolgt einhergehend mit der Substitution der Gleichstromtechnik durch die Drehstromtechnik. Bereits in den 60er und 70er Jahren wurden in den Entwicklungsabteilungen der Druckmaschinenhersteller Wifag, 15 MAN Roland in Zusammenarbeit mit Elektrofirmen mehrere Versuche unternommen, bei Tiefdruckmaschinen die längswellenlose Antriebstechnik einzuführen. Im Tiefdruckmaschinenbau ist man jedoch über das Versuchsstadium nicht hinausgekommen. Erst Anfang der 90er Jahre wurde das Thema diesmal im Bereich der 20 Rollenoffsetmaschinen für den Zeitungsdruck wieder aufgegriffen. Der japanische Rotationsmaschinenhersteller Hamada Printing Press Co. Ltd. entwickelte eine Maschine ausschließlich mit Drehstrommotoren für jeden Druckzylinder und jede Zugwalze. Die Maschine besaß keine Längswelle und keine Regi-25 sterwalzen mehr.

Seit einigen Jahren gibt es bei den Zeitungsrotationen zunehmende Aktivitäten, die mechanische Wellen, Getriebe und Kupplungen durch eine Antriebslösung mit Einzelantrieb und Synchronisation dieser über eine elektrische Welle zu ersetzen. Die Firma ABB hat in Kooperation mit der Firma Wifag auf der IFRA '94 in München eine wellenlose Rotationsdruckmaschine vorgestellt. In dieser Achterturmmaschine wurden dazu alle Druckstellen mit je einem Drehstrommotor versehen, ebenso al-

le Zugwalzen und der Falzapparat. Alle Långs- und Stehwellen mit Kegelradgetriebe und Kupplung können dadurch entfallen, wodurch Drehschwingungen weitgehend vermieden werden. Die einzelnen Antriebselemente einer Rotation sind nur durch eine schnelle Datenleitung - eine elektrische Welle - miteinander verbunden. Die Gleichlaufregelung erfolgt dezentral im Umrichter. Die Vorgabe der Sollwerte für Umrichter sowie deren Synchronisierung erfolgt dabei über ein sehr schnelles, serielles Feldbussystem. Dabei wird vorwiegend das SERCOS-Bussystem verwendet. Diese Historie ist in dem Aufsatz "Dem långswellenlosen Maschinenantrieb gingen viele Versuche voraus", abgedruckt in der Zeitschrift "PRINT", Band 39, 1994, nachzulesen.

Die Zeitungsrotationen sind die Trendsetter in der Druckindustrie und somit die Wegbereiter für die Einführung neuer Antriebskonzepte. Technologien, die sich hier bewähren, werden auch Eingang finden in andere Druckbereiche, wie Illustrations-, Tief-, Verpackungsdruck usw..

20

10

Trends in der Druckindustrie:

- hōhere Flexibilitāt (Mischproduktion, zielgruppenorientierte Produkte)
- höhere Produktivität (kürzere Rüstzeiten, höhere Produktionsgeschwindigkeit, weniger Makulatur)
 - hõhere Druckqualitāt (Langzeitkonstanz und hõhere Genauigkeit $<\pm$ 20 μ m im Druck)
 - bessere Wirtschaftlichkeit (geringere Betriebskosten)
 - geringere Anschaffungskosten der Maschine

30

Aus der EP 0 567 741 Al ist eine Rotationsdruckmaschine bekannt, bei der die Zylinder und mindestens ein Falzapparat direkt angetrieben werden. Jeweils mehrere Antriebe der Zylinder und deren Antriebsregler sind zu Druckstellengruppen zusammengefaßt, welche auf eine Papierbahn zuordenbar sind.

Die Druckstellengruppen sind untereinander mit dem Falzapparat und mit einer Bedienungs- und Datenverarbeitungseinheit über einen Datenbus verbunden. Innerhalb der Druckstellengruppe sind die Einzelantriebe der Zylinder und deren Antriebsregler über ein schnelles Bussystem verbunden. Die Druckstellengruppen beziehen ihre Positionsdifferenz direkt vom Falzapparat. Das übergeordnete Leitsystem ist nur noch für die Vorgabe von Sollwerten, Sollwertabweichungen und die Verarbeitung von Istwerten verantwortlich. Das übergeordnete Leitsystem ist mittels des Datenbusses, mittels eines An-10 triebssystems und mittels eines schnellen Bussystems mit einer Druckstellengruppe verbunden. Im Antriebssystem wird die Positionierung der Einzelantriebe in Relation zum Falzapparat sowie relativ zueinander geregelt. Zusätzlich wird im Antriebssystem die Anpassung der vom übergeordneten Leitsystem kommenden Daten und Befehle an die für die Antriebsregler benötigte Form vorgenommen. Die globale Regelung über den Datenbus beschränkt sich auf eine Vorgabe von Sollwerten, Sollwertabweichungen und Istwerten sowie die Sollwertführung. Die Berechnung der Parameter für die Feinjustierung der Einzelantriebe wird in jeder Druckstellengruppe separat im Antriebssystem vorgenommen.

Bei dieser Rotationsdruckmaschine können durch die Aufspal-25 tung des gesamten Leitsystems in ein übergeordnetes Leitsystem und autonome Druckstellengruppen nur die Druckstellengruppen als Ganzes von einem Falzapparat bzw. von einem anderen Falzapparat geführt werden. Es ist jedoch nicht möglich, einzelne Druckstellen, die bei einer Produktion auf 30 einen Falzapparat synchronisiert sind, in eine andere Produktion, die in einer anderen Rotation läuft und die auf einem zweiten Falzapparat synchronisiert sind, einzubinden. Somit ist die Flexibilität dieses Antriebskonzeptes beschränkt.

15

Der Erfindung liegt nun die Aufgabe zugrunde, ein Antriebskonzept für eine wellenlose Rotationsdruckmaschine anzugeben, das so flexibel ist, daß deren Druckstellen von Produktion zu Produktion auf einen beliebigen Falzapparat synchronisiert werden können.

Diese Aufgabe wird erfindungsgemäß gelöst durch die kennzeichnenden Merkmale des Anspruchs 1.

- Dadurch, daß jedem Antrieb, der in einer Rotation auf einen 10 Falzapparat arbeitet, mittels eines Steuer-/Parametrierbusses Signale zur Steuerung, Diagnose und Parametrierung und mittels des Synchronisierbusses ausschließlich Informationen, die den synchronen Winkelgleichlauf der Antriebe in einer Rotation sicherstellen sollen, übertragen werden, erhält der 15 Antrieb einer jeden Druckstelle alle Informationen, die zum Betrieb der Druckstelle nötig sind. Somit kann jeder Antrieb als kleinste vollständige Einheit einer wellenlosen Rotationsdruckmaschine betrachtet werden, die in Abhängigkeit eines zu druckenden Produktes zu einer beliebigen Rotation 20 zusammengestellt werden können. Durch die Verwendung von zwei getrennten parallel geführten Bussen bleibt das Grundkonzept einer Rotationsmaschine gemäß Figur 1 erhalten, wobei einer der beiden Busse, nämlich der schnelle Bus, die mechanischen Wellen durch die Realisierung einer elektrischen Welle er-25 setzt. Die Informationsführung zur Steuerung der Antriebe einer derartigen Rotationsdruckmaschine gemäß Figur 1 bleibt erhalten.
- Die flexible Zuordnung der Druckstellen auf mehrere Falzapparate bei einer Rotationsdruckmaschine gemäß Figur 1 wird ausschließlich von der Mechanik bestimmt, wobei jeder Zugewinn
 an Flexibilität durch einen Mehraufwand an mechanischen Komponenten erkauft werden mußte. Bei der erfindungsgemäßen Ausführungsform einer wellenlosen Rotationsdruckmaschine wird

die flexible Zuordnung der Druckordnung der Druckstellen auf mehrere Falzapparate nicht mehr gestört, da jeder Antrieb mittels des Steuer-/Parametrierbusses weiterhin die Information für seinen Betrieb erhält und mittels des Synchronisierbusses in ein Antriebskonzept ohne weiteres eingebunden werden kann.

Basis dieses erfindungsgemäßen Antriebskonzeptes ist die strikte Trennung zwischen Steuer-/Parametrierungsfunktionali-10 tåt und der Funktion der elektrischen Welle am Antrieb. Umgesetzt in die Praxis hat dies zur Folge, daß für Steuer-/ Parametrierungsaufgaben eine Steuerung über einen Steuer-/ Parametrierbus auf den Antrieb zugreifen kann. Parallel dazu existiert für die Realisierung der elektrischen Welle eine Einrichtung zur Generierung eines Sollwertes und eines Syn-15 chronisiersignales, die über einen Synchronisierbus, den Zeittakt und die Sollwerte für einen synchronen Winkelgleichlauf der Antriebe vorgibt. Die elektrische Welle ersetzt somit eins zu eins die Funktion der Synchronisierung von Druck-20 stellen über die Mechanik.

Folgende Vorteile ergeben sich durch diese erfindungsgemäße Ausgestaltung:

- Übersichtlichkeit und einfachere Handhabung des Antriebs im Synchronbetrieb (= Druckstelle ist eingekuppelt und läuft synchron) und im Inselbetrieb (= Druckstelle ist z.B. für Einrichtarbeiten aus einer laufenden Rotation ausgekuppelt). Der Antrieb kann jederzeit auch ohne Betrieb des Synchronisierbusses gesteuert, parametriert und diagnostiziert werden.
- über den Synchronisierbus werden ausschließlich die Informationen übertragen, die den synchronen Winkelgleichlauf
 der Antriebe in einer Rotation sicherstellen. Es werden

keine Steuerungs- oder Parametrierungsdaten übertragen. Damit können mehr als 100 Antriebe in einer Rotation mindestens alle zwei Millisekunden mit individuellen Informationen versorgt werden.

5

10

15

20

25

Bei einer vorteilhaften wellenlosen Rotationsdruckmaschine mit mehreren angetriebenen Druckstellen, von denen einige auf einen ersten Falzapparat und die anderen auf einen zweiten Falzapparat synchronisiert sind, sind wenigstens einige von den in einer ersten Rotation arbeitenden Druckstellen jeweils mittels einer zweiten Busschnittstelle mit dem Synchronisierbus der zweiten Rotation verbunden, wobei in den als Ringbusse ausgebildeten Synchronisierbussen jeweils eine Busweiche angeordnet ist. Dadurch besteht die Möglichkeit, daß bei Ausfall eines Falzapparates einer Rotation die Druckstellen dieser Rotation einfach und ohne zeitliche Verzögerung auf einen benachbarten Falzapparat arbeiten können. Durch die Verwendung von Busweichen besteht die Möglichkeit, alle Druckstellen einer Rotation, die mittels eines Synchronisierbusses miteinander verbunden sind, in einen Synchronisierbus-Ring einer anderen Rotation einzubinden. Dadurch werden die Redundanzanforderungen bei Rotationsdruckmaschinen auf eine einfache Weise gelöst, wobei im Störungsfall die Produktion ohne große zeitliche Verzögerung zumindest im Notbetrieb aufrechterhalten werden kann.

Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in der Ausführungsbeispiele einer wellenlosen Rotationsdruckmaschine schematisch veranschaulicht sind.

- Figur 1 zeigt eine herkömmliche, mit Wellen versehene Rotationsdruckmaschine,
- Figur 2 ist eine wellenlose Rotationsdruckmaschine mit elektrischer Welle dargestellt, in

WO 97/11848

- Figur 3 ist das erfindungsgemäße Antriebskonzept vereinfacht dargestellt, die
- Figur 4 zeigt eine redundant ausgebildete Ausführungsform des erfindungsgemäßen Antriebskonzeptes, wobei in
- 5 Figur 5 zwei Verschaltungsbeispiele einer Busweiche dargestellt sind.

Die Figur 2 zeigt eine wellenlose Rotationsdruckmaschine, bestehend aus zwei Falzapparaten 16 und 18 und drei Drucktürmen 8, 10 und 12. Diese drei Drucktürme 8, 10 und 12 weisen je-10 weils zwei H-Druckwerke 20 auf, die jeweils aus vier Druckstellen 14 bestehen. Jede Druckstelle 14 besteht im wesentlichen aus einem Gummizylinder 28, einem Plattenzylinder 30 und einem Farb- und Feuchtwerk. Mit jeder Druckstelle 14 kann eine Farbe auf einer Seite gedruckt werden. Alle Druckstellen 15 14, die auf einen Falzapparat 16 bzw. 18 arbeiten, d.h., deren bedruckte Papierbahnen 32 und 34 bzw. 36, 38 und 40 auf den Falzapparat 16 bzw. 18 geführt werden, gehören zu einer Rotation. In einer Rotation können maximal bis zu zwölf 20 Drucktürme 8, 10 und 12 mit jeweils maximal acht Druckstellen 14 auf einen Falzapparat 16 bzw. 18 arbeiten.

Jede Druckstelle 14 in der Rotationsdruckmaschine wird durch eine Antriebseinheit, bestehend aus einem Drehstrommotor mit 25 entsprechendem Umrichter, direkt angetrieben. Entsprechendes gilt auch für den Antrieb der Falzapparate 16 und 18. Dabei kann die mechanische Kopplung zwischen Drehstrommotor und Gummizylinder 28 eine direkte oder eine Kopplung über einen Zahnriemen oder ein Getriebe sein. Eine Entscheidung über die 30 mechanische Kopplung hängt im wesentlichen von der geforderten Dynamik des Antriebs ab. Die Winkelgleichlaufregelung der Druckstellen 14 zueinander bzw. zum Falzapparat 16 bzw. 18 erfolgt in jedem Umrichter. Hier ist eine Drehzahl- und Momentenregelung unterlagert. Um die geforderten Genauigkeiten

von \pm 20 μm bei 1 m Zylinderumfang zwischen den einzelnen 35

Druckstellen 14 (Umfangsregister) und den Druckstellen 14 zum Falzapparat 16 bzw. 18 (Schnittregister) von ± 50 µm zu erfüllen, werden Encoder mit beispielsweise 2048 Sinus-/Cosinussignalen verwendet. Die Erfassung des Lageistwertes der Gummiwalze 28 erfolgt durch einen Encoder, der direkt am Zylinder angebaut ist. Damit haben Fehler, die bei der mechanischen Kopplung Motorwelle-Gummizylinder 28 auftreten können, keinen Einfluß auf das Istwertsignal für die Winkelgleichlaufregelung.

10

15

20

25

35

Die eingelesenen Sinus-/Cosinussignale werden in einer Erfassungsschaltung im Umrichter auf ca. 4 Millionen Inkremente pro Umdrehung eingesetzt und der Winkelgleichlaufregelung als hochauflösender Istwert zur Verfügung gestellt. Für die Drehzahl- und Momentenregelung wird ein zweiter, im Motor integrierter Encoder benutzt.

Anstelle der mechanischen Längswelle 2, der Getriebe 4 und der Vertikalwellen 6 der Rotationsdruckmaschine gemäß Figur 1 ist bei der wellenlosen Rotationsdruckmaschine gemäß Figur 2 ein Steuer-/Parametrierbus 42 und ein Synchronisierbus 44 vorgesehen, von denen in dieser Darstellung nur der Synchronisierbus 44 dargestellt ist. Jeder Antrieb einer Druckstelle 14 ist mit dem Synchronisierbus 44 verknüpft. Vom Antrieb einer Druckstelle ist wegen der Übersichtlichkeit nur der Elektromotor M dargestellt.

Bei einem Vergleich des bekannten Antriebssystems einer Rotationsdruckmaschine (Figur 1) mit einem erfindungsgemäßen Antriebskonzept einer Rotationsdruckmaschine (Figur 2) ist zu erkennen, daß die mechanischen Wellen 2 und 6 durch den Synchronisierbus 44 ersetzt worden sind, wobei sich am Antriebskonzept nichts geändert hat. Mit dem Wegfall der Wellen 2 und 6 sind für jede Druckstelle 14 Einzelantriebe vorgesehen, die mittels des Steuer-/Parametrierbusses 42 mit Information ver-

sorgt werden. Dadurch besteht die Möglichkeit, jeden Einzelantrieb zu parametrieren und zu steuern, auch wenn zwischen diesen Einzelantrieben keine elektrische Welle existiert.

Durch die strikte Trennung von Steuer-/Parametrierungsfunktionen und der Funktion der elektrischen Welle kann jeder Antrieb beliebig mit jedem anderen Antrieb des Antriebskonzeptes der Rotationsdruckmaschine mittels des Synchronisierbusses 44 zu einer beliebigen Rotation zusammengefaßt werden, der auf einen Falzapparat 16 bzw. 18 arbeitet, wobei jeder dieser Antriebe mittels des Steuer-/Parametrierbusses 42 parametriert, gesteuert und überwacht wird.

In der Figur 3 ist das erfindungsgemäße Antriebskonzept vereinfacht dargestellt. Dazu sind zwei Antriebe näher darge-15 stellt, die einerseits an den Steuer-/Parametrierbus 42 und andererseits an den Synchronisierbus 44 angeschlossen sind. Der Antrieb umfaßt zwei Busschnittstellen 46 und 48 (Figur 4) für den Synchronisierbus 44, eine Busschnittstelle für den Parametrier/Steuerbus, ein Stromrichtergerät mit integrierter 20 Technologiefunktion, z.B. für Winkelgleichlauf, und den Elektromotor M, der beispielsweise ein Asynchronmotor oder ein Servomotor sein kann. Der Synchronisierbus 44 ist als Ringbus ausgeführt und mit einer Einrichtung 50 zur Generierung eines Sollwertes und eines Synchronisiersignals verbunden. Der 25 Steuer-/Parametrierbus 42 ist mit einer Steuerung 52 verbunden. Diese Steuerung steuert, parametriert und diagnostiziert den Antrieb im synchronen Betrieb genauso wie im Inselbetrieb. Die, den Antriebseinheiten übergeordnete Einrichtung 50, sowie die Steuerung 52 sind über ein weiteres serielles 30 Bussystem, das oftmals redundant ausgeführt ist, in den gesamten Informationsaustausch der Maschine eingebunden (Anlagensteuerung).

Die Synchronisierung der einzelnen Antriebseinheiten an den Druckstellen 14 aufeinander bzw. zur Antriebseinheit im Falzapparat 16 bzw. 18 erfolgt über den seriellen Synchronisierbus 44. Der Synchronisierbus 44 ersetzt funktional die mecha-5 nischen Längs- und Vertikalwellen 2 und 6 der Maschine. Über den Synchronisierbus 44 wird von der Einrichtung 50 aus jedem Antrieb sein individueller Lagesollwert vorgegeben. Der Sollwert besteht aus dem Winkelwert eines Leitzeigers und additiv aus einem für jeden Antrieb individuellen Versatzwinkel. Weiterhin wird über den Synchronisierbus 44 durch ein Synchronisiersignal, d.h. durch ein spezielles Telegramm an alle Teilnehmer (Broadcast), die Bearbeitung der Winkelgleichlauf-, Drehzahl- und Momentenregelung jedes Antriebs auf einen gemeinsamen Startpunkt synchronisiert. Durch strenge zeitzyklische Wiederholung dieses Synchronisiersignals erhält man eine Synchronisation aller Antriebe einer Rotation zueinander.

Der Synchronisierbus arbeitet nach dem Master-Slave-Prinzip. Eine den Antriebseinheiten übergeordnete Einrichtung 50 ist 20 die Master-Station des Synchronisierbusses 44 (Single-Master). Die Antriebseinheiten sind die Slave-Stationen. Der Synchronisierbus 44 wird als Ringbus mittels Lichtwellenleiter aufgebaut. An einem derartigen Synchronisierbus-Ring 54 bzw. 56 können maximal 200 Teilnehmer angeschlossen werden. 25 Die Performance ist so ausgelegt, daß 100 Teilnehmer alle zwei Millisekunden mit individuellen Sollwerten versorgt werden können. Jeder Rotation in der Maschine, d.h. letztendlich jedem Falzapparat 16 bzw. 18, ist eine Einrichtung 50 zugeordnet. Der Falzapparat 16 bzw. 18 ist somit, wie bei der 30 bisherigen Lösung mit mechanischen Wellen auch, die Station, auf die Druckstellen 14 synchronisiert werden. Antriebseinheiten, die unterschiedlichen Einrichtungen 50 zugeordnet sind, sind nicht aufeinander synchronisiert.

10

20

35

Grundlage der elektrischen Welle ist die Erzeugung eines zentralen rotierenden Leitzeigers. Zusätzlich kann in der Einrichtung 50 ein für jeden Antrieb individueller Versatzwinkel auf den Leitzeiger addiert werden. Die jeweils aktuelle Position dieses Winkelwertes (Leitzeiger plus Versatzwinkel) wird zu einem bestimmten Zeitpunkt im Zeittakt des Synchronisiersignals des Synchronisierbusses 44 als Sollwert an den ensprechenden Antrieb über den Synchronisierbus 44 übertragen. Innerhalb der Buszykluszeit (= Zeit zwischen zwei Synchronisiersignalen) werden alle Antriebe in einer Rotation mit ihrem individuellen Winkelwert versorgt. Jeder Antrieb folgt seinem individuellen Winkelsollwert in Position und Geschwindigkeit (Winkelgleichlaufregelung). Die Geschwindigkeit, mit der der Leitzeiger rotiert, wird aus der vorgegebenen Bahngeschwindigkeit der Maschine und dem Umfang der 15 Druckwalzen ermittelt.

Der Versatzwinkel für jeden Antrieb wird im wesentlichen aus der Registrierregelung ermittelt. Über den Versatzwinkel kann jede Gummiwalze in ihrer Position gegenüber den anderen Gummiwalzen bzw. dem Falzapparat 16 bzw. 18 individuell verāndert werden. Durch diese Funktion können die herkömmlichen Registrierwalzen bzw. Registerschlitten entfallen.

Das streng zeitāquidistante Synchronisiersignal wird als ein 25 spezielles Telegramm an alle Teilnehmer (Broadcast) übertragen. Der zeitliche Abstand zwischen zwei Synchronisiersignalen ist parametrierbar. Die Abtastzyklen der Umrichter für die Winkelgleichlauf-, Drehzahl- und Momentenregelung werden auf dieses Synchronisiersignal synchronisiert. 30

Die Steuerung eines jeden Antriebes erfolgt losgelöst vom Synchronisierbus 44 über ein zweites, serielles Bussystem 42. Von der Steuerung 52 aus können über den Steuer-/Parametrierbus 42 ein oder mehrere Antriebe gesteuert, parametriert und

diagnostiziert werden. Als Bussysteme für diesen Steuer-/ Parametrierbus 42 können offene und standardisierte Feldbusse, wie PROFIBUS-DP oder auch firmenspezifische Bussysteme, wie USS-Protokoll oder ARCNET, benutzt werden.

5

15

20

In der Figur 4 ist eine redundant ausgebildete Ausführungsform des erfindungsgemäßen Antriebskonzeptes einer wellenlosen Rotationsdruckmaschine dargestellt. Bei dieser Darstellung sind die mehreren Druckstellen 14 zum Verständnis dieser redundant ausgebildeten Ausführungsform durchnumeriert. Jede Druckstelle DS1,...,DSn,DSn+1,...,DSn+4 weist zwei Schnittstellen 46 und 48 für die Anbindung an die einzelnen Synchronisierbus-Ringe 54, 56 und 58 auf. Die Druckstellen DS1,..., DSn+2 sind im Synchronisierbus-Ring 54 eingebunden, jedoch sind von diesen Druckstellen DS1,...,DSn+2 die Druckstellen DSn+1 und DSn+2 nicht für diesen Synchronisierbus-Ring 54 aktiviert. Die aktivierten Busschnittstellen 46 und 48 sind schwarz ausgezeichnet, d.h., der zugeordnete Antrieb akzeptiert die Sollwertvorgabe und das Synchronisiersignal der Einrichtung 50. Die Druckstellen DS3,...,DSn+4 sind im Synchronisierbus-Ring 56 eingebunden, jedoch sind von diesen Druckstellen DS3,...,DSn+4 die Druckstellen DS3,DSn und DSn+4 nicht für diesen Synchronisierbus-Ring 56 aktiviert. Wie dieser Darstellung zu entnehmen ist, ist der Synchronisierbus-Ring 56 nicht vollständig dargestellt. Ebenso ist der Synchronisierbus-Ring 58 nicht vollständig dargestellt. Die Druckstellen DS1,...,DSn arbeiten auf den Falzapparat 16, wogegen die Druckstellen DSn+1,...,DSn+3 auf den Falzapparat 18 arbeiten.

30

35

Jedem Falzapparat 16 und 18 ist eine Einrichtung 50 zur Generierung eines Sollwertes und eines Synchronisiersignals zugeordnet. Die Anbindung der Synchronisierbus-Ringe 54 und 56 an die zugehörige Einrichtung 50 erfolgt mittels einer Busweiche 60. Der Darstellung der Busweiche 60 ist zu entnehmen,

daß sein Eingang 1E mit dem Ausgang 3A und der Eingang 3E mit dem Ausgang 1A direkt verdrahtet ist. Die anderen Ein- und Ausgänge 2E, 4E und 2A, 4A sind nicht miteinander verdrahtet. Mit dieser Anzahl von Ein- und Ausgängen können 24 5 Kombinationen hergestellt werden. Die Busweiche 60 wird ausschließlich für die Realisierung der Redundanzforderungen bei Zeitungsrotationen benötigt. Die Busweiche 60 hat im wesentlichen die Aufgabe, eine Leitungsführung des Synchronisierbusses 44 zu ermöglichen, damit auf einfache Weise eine 10 Einrichtung 50 einer Rotation auch in einen Synchronisierbus-Ring einer anderen Rotation eingebunden werden kann. Eine Busweiche 60 ist immer direkt einer Einrichtung 50 zugeordnet.

Wie bereits erwähnt, liegt die Erfüllung der Anforderungen, 15 die eine Zeitungsrotation in punkto Flexibilität und Redundanz stellt, in der Konzeption des seriellen Bussystems, mit dem die elektrische Welle realisiert wird. Die Figuren 4 und 5 zeigen das Prinzip der flexiblen Zuordnung der Antriebe sowie das Zusammenschalten von zwei getrennten Synchroni-20 sierbus-Ringen 54 und 56 zu einem einzigen Ring mit einer Einrichtung 50.

Flexibilitāt:

30

25 Eine Druckstelle, beispielsweise die Druckstelle DS3 in Figur 4, ist während einer Produktion auf den Falzapparat 16 synchronisiert. Ohne mechanischen Eingriff muß die Möglichkeit bestehen, diesen Antrieb für eine andere Produktion in eine benachbarte Rotation einzubinden.

Jeder Antrieb, der über eine elektrische Welle mit anderen Antrieben winkelsynchron laufen soll, kann von zwei voneinander unabhängigen Synchronisierbussen 44 synchronisiert werden. Dazu hat jeder Antrieb zwei Busschnittstellen 46 und 48.

Am Beispiel der Druckstelle DS3 ist dieser Antrieb eingebun-

den in die beiden Synchronisierbus-Ringe 54 und 56. Damit kann der Antrieb entweder über die Einrichtung 50 synchron auf den Falzapparat 16 laufen oder er kann im Synchronisierbus-Ring 56 als Teil der zweiten Rotation (synchron auf Falzapparat 18) arbeiten. Durch Parametrierung am Antrieb wird festgestellt, von welcher Einrichtung 50 die Winkelsollwertvorgabe und Synchronisierung erfolgt. Mit diesem Mechanismus kann der Maschinenbetreiber durch einfache Parameterumschaltung am Antrieb die Zuordnung einer Druckstelle auf zwei Falzapparate 16 und 18 realisieren.

Die Einschränkung auf zwei Einrichtungen 50, und somit auf zwei Falzapparate 16 und 18, ist praktisch ausreichend. Eine Synchronisation auf einen dritten Falzapparat erfolgt nur bei Störung einer Rotation, d.h. bei Ausfall eines Falzapparates 16 bzw. 18, und wird durch das Redundanzkonzept mit der Busweiche 60 abgedeckt.

Redundanz:

10

35

Bei Ausfall eines Falzapparates 16 bzw. 18 muß für die Auf-20 rechterhaltung der Produktion ein Notbetrieb in der Form gefahren werden, daß alle Druckstellen dieser ersten bzw. zweiten Rotation auf einen benachbarten Falzapparat 18 bzw. 16 oder einen "stand-by"-Falzapparat geführt werden können. Für einen solchen Notbetrieb müssen sowohl die mechanischen Vor-25 kehrungen getroffen sein (Möglichkeit der Papierbahnführung), als auch die steuerungstechnischen Möglichkeiten bestehen. Die Realisierung eines solchen Notbetriebs stellt an das Konzept der elektrischen Welle die folgenden Forderungen: Mit Ausfall des Falzapparates 16 bzw. 18 verliert auch die Ein-30 richtung 50 des Synchronisierbus-Ringes 54 bzw. 56 seine Funktion. Sollen alle Antriebe dieser ersten bzw. zweiten Rotation auf einen anderen Falzapparat 18 bzw. 16 gelegt werden, so muß der Synchronisierbus-Ring 54 bzw. 56 einer neuen Einrichtung 50 des neuen Falzapparates 18 bzw. 16 zugeordnet

werden. Die Lösung dieser Aufgabe erfolgt mittels der Busweiche 60.

Die Busweiche 60 ist eine Komponente des Synchronisierbusses 44 zur Aufteilung der Leitungsführung des Lichtwellenleiter-Rings 54 bzw 56.

Die Figur 5 zeigt zwei Beispiele der Funktion der Weiche 60.

Die Busweiche 60 ist immer direkt einer Einrichtung 50 eines

10 Falzapparates 16 bzw. 18 zugeordnet. Das Lösungsprinzip wird am nachfolgenden Beispiel erläutert:

Ausgehend von der Konstellation in Figur 4 besteht die Rotationsdruckmaschine aus drei Falzapparaten, von denen die beiden Falzapparate 16 und 18 für die erste und zweite Rotation 15 abgebildet sind. Der Falzapparat 16 fällt in der ersten Produktion aus. Die zweite Produktion wird stillgesetzt. Die beiden Busweichen 60 werden gemäß Figur 5 auf eine andere Leitungsführung umgeschaltet. Dadurch werden alle Antriebe, die vorher in den beiden getrennten Synchronisierbus-Ringen 20 54 und 56 waren, in einem Ring 56 zusammengefaßt. Die Produktion kann nun als Notbetrieb weitergefahren werden. In gleicher Weise kann anstelle der Einbindung der Antriebe in einem Synchronisierbus-Ring 54 bzw. 56 auch die Ablösung des ausgefallenen Falzapparates 16 bzw. 18 durch einen Stand-by-Falz-25 apparat erfolgen. In diesem Fall wird der Synchronisierbus-Ring 54 bzw. 56 durch das Umschalten der Weichen 60 auf eine Einrichtung des Stand-by-Apparates gelegt.

Patentansprüche

- Wellenlose Rotationsdruckmaschine, umfassend eine Anzahl 1. einzeln angetriebener Druckstellen (DS1,...,DSn), wobei die 5 Antriebe mit stromrichtergespeisten Elektromotoren erfolgen, und mindestens einen separat angetriebenen Falzapparat (16), dadurch gekennzeichnet, triebe, die in einer Rotation auf einen Falzapparat (16) arbeiten, mittels eines Steuer-/Parametrierbusses (42) mit einer Antriebssteuerung (52) und mittels eines parallel ange-10 ordneten Synchronisierbusses (44) mit einer Einrichtung (50) zur Generierung eines Sollwertes und eines Synchronisiersignales verbunden sind und daß die Antriebe jeweils mittels einer Busschnittstelle (46,48) mit dem als Ringbus (54,56) ausgebildeten Synchronisierbus (44) verbunden sind.
- 2. Wellenlose Rotationsdruckmaschine nach Anspruch 1 mit weiteren angetriebenen Druckstellen (DSn+1,...,DSn+4) und einem weiteren separat angetriebenen Falzapparat (18), wobei die Antriebe dieser weiteren Druckstellen (DSn+1,...,DSn+4) 20 auf den weiteren Falzapparat (18) arbeiten, dadurch gekennzeichnet, daß die weiteren Antriebe mittels des Steuer-/Parametrierbusses (42) mit der Antriebssteuerung (52) und mittels eines weiteren parallel angeordneten Synchronisierbusses (44) mit einer weiteren Einrichtung (50) zur Generierung eines Sollwertes und eines Synchronisiersignales verbunden sind, daß die Antriebe der Druckstellen (DS1,...,DSn+4) jeweils mit zwei Busschnittstellen (46, 48) versehen sind, daß die in einer Rotation auf einen Falz-30 apparat (16 bzw. 18) arbeitenden Druckstellen (DS1,...,DSn bzw. DSn+1,...,DSn+3) jeweils mittels der ersten bzw. zweiten Busschnittstelle (46,48) mit dem ersten bzw. zweiten als Ringbus (54,56) ausgebildeten Synchronisierbus (44) verbunden sind, daß jeder als Ringbus (54,56) ausgebildete Synchronisierbus (44) mittels einer Busweiche (46,48) mit einer Ein-35

richtung (50) verbunden ist und daß wenigstens ein Teil der angetriebenen Druckstellen (DS3,...,DSn+2) mit beiden als Ringbusse (54,56) ausgebildeten Synchronisierbussen (44) verknüpft ist.

5

- 3. Wellenlose Rotationsdruckmaschine nach Anspruch 1 oder
- 2, dadurch gekennzeichnet, daß als Steuer-/Parametrierbus (42) ein offener Feldbus vorgesehen ist.

10

- 4. Wellenlose Rotationsdruckmaschine nach Anspruch 1 oder
- 2, dadurch gekennzeichnet, daß als Synchronisierbus (44) ein schnelles Bussystem vorgesehen ist.

15

- 5. Wellenlose Rotationsdruckmaschine nach Anspruch 1 oder
- 2, dadurch gekennzeichnet, daß mittels des Synchronisierbusses (44) ausschließlich Informationen übertragen werden, die den synchronen Winkelgleichlauf
- 20 der Antriebe in einer Rotation sicherstellen.
 - 6. Wellenlose Rotationsdruckmaschine nach Anspruch 1 oder
 - 2, dadurch gekennzeichnet, daß mittels des Steuer-/Parametrierbusses (42) Signale zur Steuerung, Diagnose und Parametrierung der Antriebe ein oder mehrerer Rotationen übermittelt werden.
- Wellenlose Rotationsdruckmaschine nach Anspruch 5,
 d a d u r c h g e k e n n z e i c h n e t , daß als
 Information für jeden Antrieb einer Rotation ein Winkelwert
 eines Leitzeigers, ein Versatzwinkel und ein Synchronisiersignal vorgesehen ist.

- 8. Wellenlose Rotationsdruckmaschine nach Anspruch 1 oder
- 2, dadurch gekennzeichnet, daß als Übertragungsleitungen des Synchronisierbusses (44) Lichtwellenleiter vorgesehen sind.

FIG 3

FIG 4

5/5

Ear Aus. ganyu	1E	2E	3E	4E
14			×	
2A		×		
3A				×
48	×			

X: Ein - Ausgang durchgeschaltet

4E				×
36		×		
2E			×	
1E	×			
Enb Aus: gange garge	1A	2A	3A	4A

			101/01/01/01/01	
A. CLASS. IPC 6	IFICATION OF SUBJECT MATTER B41F13/004			
According t	to International Patent Classification (IPC) or to both national class:	fication and IPC		
B. FIELDS	SEARCHED			
	ocumentation searched (classification system followed by classificate B41F	ion symbols)		
Documental	tion searched other than minimum documentation to the extent that	such documents are inc	luded in the fields searched	
Electronic d	lata base consulted during the international search (name of data bas	e and, where practical	search terms used)	
	TENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.	
A	EP.A.O 567 741 (ASEA BROWN BOVERY November 1993 cited in the application	/ AG.) 3		
А	GB,A,2 281 534 (SCM CONTAINER MAC LTD.) 8 March 1995			
A	GB,A,2 261 629 (HEIDELBERGER DRUCKMASCHINEN AG.) 26 May 1993			
A	DE,A,39 06 646 (VEB KOMBINAT POLY "WERNER LAMBERZ" LEIPZIG) 21 Sep 1989			
A	US,A,3 557 692 (HARRIS-INTERTYPE January 1971	CORP.) 26		
_				
Furt	her documents are listed in the continuation of box C.	X Patent family	members are listed in annex.	
* Special car	tegories of ated documents:	"T" later document pu	blished after the international filing date	
	ent defining the general state of the art which is not ered to be of particular relevance	or priority date a cited to understar	nd not in conflict with the application but id the principle or theory underlying the	
	document but published on or after the international	invention "X" document of part	cular relevance; the claimed invention	
"L" docume	ent which may throw doubts on priority claim(s) or	involve an invent	rred novel or cannot be considered to ive step when the document is taken alone	
citation	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	cannot be conside	cular relevance; the claimed invention red to involve an inventive step when the bined with one or more other such docu-	
other s			nination being obvious to a person skilled	
later ti	han the priority date claimed	"&" document member of the same patent family		
Date of the	actual completion of the international search	Date of mailing o	f the international search report	
5	December 1996	20.12.96		
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer		
	NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	DIAZ-M	AROTO, V	

Inter Application No
PCT/EP 96/04059

aformation on patent family members

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-567741	03-11-93	DE-A- AT-T- CA-A- DE-D- JP-A- US-A-	4214394 139935 2094742 59303108 6047905 5309834	04-11-93 15-07-96 31-10-93 08-08-96 22-02-94 10-05-94
GB-A-2281534	08-03-95	NONE		
GB-A-2261629	26-05-93	DE-A- FR-A- JP-A- US-A-	4137979 2683767 5229103 5481971	27-05-93 21-05-93 07-09-93 09-01-96
DE-A-3906646	21-09-89	NONE		~
US-A-3557692	26-01-71	NONE		

INTERNATIONALER RECHERCHENBERICHT

Inte males Aktenzeichen
PCT/EP 96/04059

			PC1/EP 90/04059				
A. KLASS IPK 6	SIFIZIERUNG DES ANMELDUNGSGEGENSTANDES B41F13/004						
Nach der In	ch der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK						
	ERCHIERTE GEBIETE						
Recherchier IPK 6	rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssym B41F	bole)					
Recherchier	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s	soweit diese unter die re	echerchierten Gebiete fallen				
Wahrend de	er internationalen Recherche konsultierte elektronische Datenbank (i	Name der Datenbank u	ind evil. verwendete Suchbegriffe)				
C. ALS WI	ESENTLICH ANGESEHENE UNTERLAGEN						
Kategone*	Bezeichnung der Veroffentlichung, sowat erforderlich unter Anga	the der in Betracht komr	amenden Teile Betr. Anspruch Nr.				
A	EP,A,O 567 741 (ASEA BROWN BOVER 3.November 1993 in der Anmeldung erwähnt	Y AG.)					
A	GB,A,2 281 534 (SCM CONTAINER MACHINERY LTD.) 8.März 1995						
A	GB,A,2 261 629 (HEIDELBERGER DRUCKMASCHINEN AG.) 26.Mai 1993						
Α	DE,A,39 06 646 (VEB KOMBINAT POLYGRAPH "WERNER LAMBERZ" LEIPZIG) 21.September 1989						
A	US,A,3 557 692 (HARRIS-INTERTYPE CORP.) 26.Januar 1971						
Weite enthe	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehrnen	X Siehe Anhang	Patentfamilie				
'A' Veröffe aber ni 'E' älteres I	entlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen	oder dem Prioritäts Anmeldung nicht k	chung, die nach dem internationalen Anmeldedatum isdatum veröffentlicht worden ist und mit der kollidiert, sondern nur zum Verständnis des der deliegenden Prinzips oder der ihr zugrundeliegenden ist.				
Anmele "L" Veröffer scheine anderer	dedatum veröffentlicht worden ist milichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer n im Recherchenbencht genamten Veröffentlichung belegt werden	"X" Veröffentlichung vo kann allem aufgrun erfindenscher Täug	oon besonderer Bedeutung; die beanspruchte Erfindun nd dieser Veröffendichung nicht als neu oder auf gkeit berühend betrachtet werden on besonderer Bedeutung; die beansprüchte Erfindun				
soil odi	er die aus einem anderen besonderen Grund angegeben ist (wie ührt)	kann nicht als auf e werden, wenn die \	erfinderischer Tätigkeit beruhend betrachtet Veröffentlichung mit einer oder mehreren anderen				
ane Be	entlichung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht nüllichung, die vor dem internationalen Anmeldedatum, aber nach	Veröffentlichungen diese Verbindung f	n dieser Kategorie in Verbindung gebracht wird und für einen Fachmann naheliegend ist die Mitglied derselben Patentfamilie ist				
	eanspruchten Prioritätsdatum veröffentlicht worden ist Abschlusses der internationalen Recherche		internationalen Recherchenberichts				
	.Dezember 1996		2 0. 12. 96				
Name und P	Postanschrift der Internationale Recherchenbehörde	Bevollmachtigter B	3ediensteter				
	Europäischer Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	DIAZ-MA	AROTO, V				

Inte males Aktenzeichen
PCT/EP 96/04059

Angaben zu Veröffentlich. "en, die zur selben Patentfamilie gehören

Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP-A-567741	03-11-93	DE-A- AT-T- CA-A- DE-D- JP-A- US-A-	4214394 139935 2094742 59303108 6047905 5309834	04-11-93 15-07-96 31-10-93 08-08-96 22-02-94 10-05-94
GB-A-2281534	08-03-95	KEINE		
GB-A-2261629	26-05-93	DE-A- FR-A- JP-A- US-A-	4137979 2683767 5229103 5481971	27-05-93 21-05-93 07-09-93 09-01-96
DE-A-3906646	21-09-89	KEINE		
US-A-3557692	26-01-71	KEINE		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.