Laboratorium 7 Układy równań - metody bezpośrednie

Jan Rajczyk

3 maja 2021

1 Zadania

1.1 Zadania laboratoryjne

Korzystając z przykładu napisz program, który:

- 1. Jako parametr pobiera rozmiar układu równań n
- 2. Generuje macierz układu $A(n \times n)$ i wektor wyrazów wolnych b(n)
- 3. Rozwiązuje układ równań na trzy sposoby:
 - (a) poprzez dekompozycję LU macierzy A: A = LU, posługując się funkcjami GSL: gsl_linalg_LU_decomp() i gsl_linalg_LU_solve(); wydrukować na ekran wyjściową macierz (parametr pierwszy) i wektor (parametr drugi)
 - (b) poprzez odwrócenie macierzy A: $x=A^{-1}b$, posługując się funkcją GSL: gsl_linalg_LU_invert(); sprawdzić czy $AA^{-1}=I$ i $A^{-1}A=I$ (macierz jednostkowa)
 - (c) poprzez dekompozycję QR macierzy A: A = QR, posługując się funkcjami GSL: gsl_linalg_QR_decomp() i gsl_linalg_QR_solve(); wydrukować na ekran wyjściową macierz (parametr pierwszy) i wektor (parametr drugi)
- 4. Sprawdzić poprawność rozwiązania (tj., czy Ax = b)
- 5. Zmierzyć całkowity czas rozwiązania układu do mierzenia czasu można skorzystać z przykładowego programu dokonującego pomiaru czasu procesora spędzonego w danym fragmencie programu.
- 6. Porównać czasy z trzech sposobów: poprzez dekompozycję LU, poprzez odwrócenie macierzy i poprzez dekompozycję QR.

1.2 Zadania domowe

Narysuj wykres zależności całkowitego czasu rozwiązywania układu (LU, QR, odwrócenie macierzy) od rozmiaru układu równań. Wykonaj pomiary dla 5 wartości z przedziału od 10 do 100.

2 Rozwiązania:

Każdy program został napisany w języku C oraz umieszczony w miejscu na zadania obok niniejszego dokumentu.

Do rozwiązania każdego z problemów wykorzystałem odpowiednie funkcje z biblioteki gsl. Co ciekawe mnożenie macierzy nie znajduje się w funkcjach typu gsl_matrix, zaś w gsl_blas. Poniższa tabelka pokazuje czasy działania dla trzech metod rozwiązywania układu oraz pięciu różnych n (10, 25, 50, 75, 100).

LU	Macierz odwrotna	QR	
10	0.000020	0.000015	0.000033
25	0.000019	0.000031	0.000042
50	0.000044	0.000121	0.000092
75	0.000104	0.000348	0.000224
100	0.000224	0.000824	0.000515

Tablica 1: Wyniki dla pięciu pomiarów dla metod: dekompozycji LU, metody macierzy odwrotnej oraz metody QR

Rozkład danych można dobrze zobaczyć na wykresie, który wykonałem poniższym poleceniem w programie .

Rysunek 1: Wykres zależności czasu rozwiązywania równania od ilości zmiennych dla metod LU, macierzy odwrotnej oraz QR

Wnioski: Jak łatwo można zauważyć najszybszą metodą jest metoda dekompozycji LU. Od samego początku widać jej przewagę nad dwiema pozostałymi i jej czas działania jest nawet dwukrotnie mniejszy od czasu działania pozostałych metod. Metody odwróconej macierzy oraz QR mają podobny czas działania, z korzyścią dla tej ostatniej przy większych danych.

3 Bibliografia

Włodzimierz Funika Materiały ze strony

Katarzyna Rycerz Wykład z przedmiotu Metody Obliczeniowe w Nauce i Technice

https://www.wolframalpha.com

https://pl.wikipedia.org/wiki/Rozk%C5%82ad_QR

https://pl.wikipedia.org/wiki/Macierz_odwrotna

https://pl.wikipedia.org/wiki/Metoda_LU