ЧИСЕЛЬНІ МЕТОДИ 43, 44 ПЗ 2016-2017

Тема: Інтерполяція функцій. Чисельне диференціювання

Індивідуальні завдання до лабораторної роботи №3 (ч.1)

"Інтерполяція функцій. Чисельне диференціювання"

Викладач: Васіна Л.С.

Завдання 1.

Функцію f(x) задано таблично (таблиця 1).

Необхідно:

- побудувати інтерполяційний многочлен Лагранжа $L_5(x)$;
- обчислити наближене значення таблично заданої функції в точці \overline{x} за допомогою інтерполяційної формули Лагранжа $f(\overline{x}) \approx L_5(\overline{x})$ (використовуючи програму обробки електронних таблиць Microsoft Excel);
- оцінити похибку побудованого многочлена в точці \bar{x} ;
- обчислити точне значення заданої функції в точці \overline{x} і порівняти фактичну похибку з теоретичною.

!!! Для інтерполяції в таблиці 1 взято такі функції:

Функція $f(x)$	№ варіантів
$\sin x$	1, 6, 11, 16, 21,26
$\cos x$	2, 7, 12 ,17, 22,27
e^x	3, 8, 13, 18, 23
e^{-x}	4, 9, 14, 19, 24
$\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$	5, 10, 15, 20, 25

Таблиця 1

Варіант №1		Варіант №2		Варіант №3		Варіант №4		Варіант №5	
x_i	y_i	x_i	y_i	x_i	y_i	x_i	y_i	x_i	y_i
0,10	0,099833	0,10	0,995004	0,10	1,105170	0,10	0,904837	0,10	0,100167
0,50	0,479426	0,50	0,877583	0,50	1,648720	0,50	0,606531	0,50	0,521000
0,80	0,717356	0,80	0,697707	0,80	2,225540	0,80	0,449329	0,80	0,881060
1,30	0,963558	1,30	0,267499	1,30	3,669300	1,30	0,272532	1,30	1,698380
1,80	0,973848	1,80	-0,227202	1,80	6,049650	1,80	0,165299	1,80	2,942170
$\overline{x} = 1,4$		$=1,4$ $\overline{x}=1,4$		$\overline{x} = 1,4$		$\overline{x} = 1,4$		$\overline{x} = 1,4$	

Baj	ріант №6	Варіант №7		Варіант №8		Варіант №9		Bap	ріант №10	
x_i	y_i	x_i	y_i	x_i	y_i	x_i	y_i	x_i	y_i	
0,10	0,099833	0,10	0,995004	0,10	1,105170	0,10	0,904837	0,10	0,100167	
0,60	0,564642	0,60	0,825336	0,60	1,822120	0,60	0,548812	0,60	0,636654	
1,20	0,932039	1,20	0,362358	1,20	3,320120	1,20	0,301194	1,20	1,509460	
1,80	0,973848	1,80	-0,227202	1,80	6,049650	1,80	0,165299	1,80	2,942170	
2,60	0,515501	2,60	-0,856889	2,60	13,463700	2,60	0,074273	2,60	6,694730	
	$\overline{x} = 1,5$		$\overline{x} = 1,5$	$\overline{x} = 1,5$		$\overline{x} = 1,5$			$\overline{x} = 1,5$	
Bap	Варіант №11 В		Варіант №12		Варіант №13		Варіант №14		Варіант №15	
		-		-						
x_i	y_i	x_i	y_i	x_i	y_i	x_i	y_i	x_i	y_i	
0,30	0,295520	0,30	0,955336	0,30	1,349860	0,30	0,740818	0,30	0,304520	
0,90	0,783327	0,90	0,621610	0,90	2,459600	0,90	0,406570	0,90	1,026520	
1,50	0,997495	1,50	0,070737	1,50	4,481690	1,50	0,233130	1,50	2,129280	
2,00	0,909297	2,00	-0,416147	2,00	7,389060	2,00	0,135335	2,00	3,626860	
2,50	0,598472	2,50	-0,801144	2,50	12,082500	2,50	0,082085	2,50	6,050200	
	$\overline{x} = 1,6$		$\overline{x} = 1,6$		$\overline{x} = 1,6$		$\overline{x} = 1,6$		$\overline{x} = 1,6$	
Bap	Варіант №16		Варіант №17		Варіант №18		іант №19	Bar	ріант №20	
	T									
x_i	y_i	x_i	y_i	x_i	y_i	x_i	y_i	x_i	y_i	
1,00	0,841471	1,00	0,540302	1,00	2,718280	1,00	0,367879	1,00	1,175200	
1,50	0,997495	1,50	0,070737	1,50	4,481690	1,50	0,223130	1,50	2,129280	
2,30	0,745705	2,30	-0,666276	2,30	9,974180	2,30	0,100259	2,30	4,936960	
3,00	0,141120	3,00	-0,989992	3,00	20,085500	3,00	0,049787	3,00	10,017900	
3,60	-0,442520	3,60	-0,896758	3,60	36,598200	3,60	0,273237	3,60 18,285500		
	$\overline{x} = 2,8$	$\overline{x} = 2.8$		$\overline{x} = 2.8$			$\overline{x} = 2,8$	$\overline{x} = 2.8$		
Bap	Варіант №21		Варіант №22		Варіант №23		Варіант №24		оіант №25	
x_i	y_i	x_i	y_i	x_i	y_i	x_i	y_i	x_i	y_i	
1,00	0,841471	1,00	0,540302	1,00	2,718280	1,00	0,367879	1,00	1,175200	
1,60	0,999574	1,60	-0,029200	1,60	4,953030	1,60	0,201897	1,60	2,375570	
2,50	0,598472	2,50	-0,801144	2,50	12,182500	2,50	0,080209	2,50	6,050200	
3,10	0,041581	3,10	-0,999135	3,10	22,198000	3,10	0,045049	3,10	11,076500	
3,80	-0,611858	3,80	-0,790968	3,80	44,701200	3,80	0,022371	3,80	22,339400	
-	$\overline{x} = 2,7$		$\overline{x} = 2,7$		$\overline{x} = 2,7$		$\overline{x} = 2,7$		$\overline{x} = 2,7$	
Варіант №26 Варіант №27				•		•				
x_i	y_i	x_i	y_i	1						
1,00	0,841471	1,00	0,540302	1						
1,50	0,997495	1,60	-0,029200	1						
2,30	0,745705	2,50	-0,801144	1						
3,00	0,141120	3,10	-0,999135	†						
3,60	-0,442520	3,80	-0,790968	1						
	$\frac{1}{x} = 2.5$		$\overline{x} = 2,6$	1						
	Ruvnadau: Racina II C									

Викладач: Васіна Л.С.

Завдання 2.

Значення функції f(x) задано в рівновіддалених вузлах (таблиця 2):

Необхідно:

- за допомогою першого інтерполяційного многочлена Ньютона обислити значення функції в точці \overline{x}_1 ;
- за допомогою другого інтерполяційного многочлена Ньютона обислити значення функції в точці \overline{x}_2 ;
- обчислити значення першої похідної в точці \bar{x}_1 ;
- обчислити значення першої і другої похідних у вузлах інтерполяції x_0 та x_4 .

Таблиця 2

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
B3 0.75 2	2.25
	23
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25
y_i 0.5 2.2 2 1.8 0.5	2.25
B5 x_i 0.5 1 1.5 2 2.5 0.75 2	2.25
$y_i = 0.5$ 2.7 2.33 2 0.25	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	75
y_i 1.5 1.4 1.66 1.45 1.875	2,75
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,75
y_i 1.5 1.9 2 1.65 1.75	2,73
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,75
y_i 1.5 2.9 2.33 1.85 1.62	
x_i 1 1.5 2 2.5 3 1,25 2	2,75
y_i 1.5 2.8 2.6 2 1.5	
B10 x_i 1 1.5 2 2.5 3 1,25 2	2,75
y_i 1.5 3.4 3 2.25 1.25	2,73
B11	3.25
y_i 2.5 2.1 2.3 1.7 2.875	3.43
B12 x_i 1.5 2 2.5 3 3.5 1.75 3	25
y_i 2.5 2.6 2.67 1.2 2.75	3.25

		x_0	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	\overline{x}_1	\overline{x}_2
	x_i	1.5	2	2.5	3	3.5		
B13	y_i	2.5	3.1	3	2.1	2.625	1.75	3.25
	x_i	1.5	2	2.5	3	3.5		3.25
B14	y_i	2.5	3.6	3.33	2.3	2.5	1.75	
D17	x_i	1.5	2	2.5	3	3.5	1.75	2.25
B15	y _i	2.5	4.1	3.66	2.5	2.25		3.25
D16	x_i	2	2.5	3	3.5	4	2.25	2.75
B16	y_i	3	2.8	3	1.95	3.875	2,25	3,75
D17	x_i	2	2.5	3	3.5	4	2 25	2 75
B17	y_i	3	3.3	3.5	2.15	3.75	2,25	3,75
B18	x_i	2	2.5	3	3.5	4	2,25	3,75
D 10	y_i	3	3.8	3.7	2.35	3.625	2,25	3,73
B19	x_i	2	2.5	3	3.5	4	2,25	3,75
Bij	y_i	3	4.3	4	2.55	3.5		
B20	x_i	2	2.5	3	3.5	4	2,25	3,75
220	y _i	3	4.8	4.3	2.75	3.25	2,20	
B21	x_i	1.25	1.75	2.25	2.75	3.25	1,5	3,00
	y_i	4	3.2	3	3.8	4.25	_,_	2,00
B22	x_i	1.25	1.75	2.25	2.75	3.25	1,5	3,00
	y_i	4.	2.8	3.2	3.5	3.1	_,_	
B23	x_i	1.25	1.75	2.25	2.75	3.25	1,5	3,00
	y_i	4	5.1	3.7	2.85	2.2	7-	- , -
B24	x_i	1.25	1.75	2.25	2.75	3.25	1,5	3,00
	y _i	4	2.5	3.68	5.3	4.2	,	ŕ
B25	x_i	1.25	1.75	2.25	2.75	3.25	1,5	3,00
	y_i	3,8	4,6	5,0	4,3	3.6		
B26	x_i	1.75	2,25	2.75	3.25	3.75	2,0	3,50
	y_i	6,7	5.4	3.8	4,3	3,7		
B27	\mathcal{X}_i	1.75	2,25	2.75	3.25	3.75	2,0	3,50
	y_i	5,8	4,6	3.8	4,0	6,1	ууладай: Ва	

Викладач: Васіна Л.С.

Завдання 3.

Використовуючи програми на мові TURBO PASCAL обчислити:

- 1) значення многочлена Лагранжа (завдання 1) в точці \bar{x} ;
- 2) значення першого інтерполяційного многочлена Ньютона (завдання 2) в точці \bar{x}_1 .

Контрольний приклад та програми мовою TURBO PASCAL

1) x_i 1 1,5 2,4 3 3,9 4,5 y_i 0,841471 0,997495 0,675463 0,141120 -0,68776 -0,97753

 $\overline{x} = 1, 2$.

```
program Lagrang;
const m=6; \{m-кількість точок в таблиці значень функції<math>\}
      x:array[1..m] of real=(1.0, 1.5, 2.4, 3.0, 3.9, 4.5);
      y:array[1..m] of real=(0.841471, 0.997495, 0.675463, 0.141120, -0.68776, -0.97753);
var v,w,x1,s:real;
        i,j:integer;
begin
writeln ('введіть х:');
readln(x1);
                      \{ c n o ч a m к y c y м a do da н к i в м н o г o ч л e н h a do p i в н ю <math>\epsilon 0 \}
s = 0;
for i:=1 to m do
                      {цикл по доданках многочленна Лагранжа}
        begin
                      {початкове значення для чисельника}
        v:=1;
        w:=1;
                      {початкове значення для знаменника}
        for j:=1 to m do
                              {цикл по множниках кожного доданка}
                              {за формулою Лагранжа один доданок пропускаємо}
        if i<>i then
             begin
            v:=v*(x1-x[j]);
             w:=w*(x[i]-x[i]);
             end;
     s:=s+v[i]*v/w;
                              {обчислюємо і підсумовуємо доданки}
    end;
writeln ('Значення многочлена в точці x = ', s:8:4)
end.
                                       Тестовий приклад
```

Задано: $x = \overline{x} = 1.2$

Одержано: Значення многочлена в точці x = 0.9312.

2)

X_i	0,25	0,75	1,25	1,75	2,25	\overline{x}_1
y_i	5	3,7	4,7	4,25	3,75	0,5

program Newton;

```
const m=5;
y:array[1..m] of real=(5, 3.7, 4.7, 4.25, 3.75);
var i,k:integer;
x0,x,h,u,s,s1,t:real;
   begin
writeln('введіть x0,h,x:');
readln(x0,h,x);
{формування скінченних різниць}
for k:=1 to m-1 do
      begin
      u:=y[k];
      for i:=k to m-1 do
        begin
        s:=y[i+1]-y[i];
        y[i]:=u;
        u:=s;
        end;
    y[m]:=u;
    end;
  \{ oбчислення наближеного значення функції в точці <math>x = \overline{x}_1 \}
  t := (x - x0)/h;
  u:=1;
  s := y[1];
  for i:=2 to m do
   begin
   u:=u*t/(i-1);
   s:=s+u*y[i];
   t := t-1;
   end;
  writeln('Значення многочлена в точці x дорівнює',s:8:4);
  end.
```

Тестовий приклад

Задано:
$$x_0 = 0.25$$

 $h = 0.5$
 $x = \overline{x}_1 = 0.5$

Одержано: Значення многочлена в точці x дорівнює **3,6269**.

Викладач: Васіна Л.С.

Література

- 1. Бахвалов Н.С. Численные методы.Т1.-М.:Наука,1975
- 2. Ляшенко М.Я., Головань М.С. Чисельні методи. Київ:Либідь,1996
- 3. Овчинников П.П. Вища математика.Т1,2-Київ:Техніка,2000
- 4. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа.-М.:Наука,1967
- 5. Каленюк П.І., Коваленко Т.Г., Анджейчак І.А. Основи числових методів та їх реалізація на мові Паскаль.-Львів: ДУ"Львівська політехніка", 1998
- 6. Анджейчак І.А., Федюк Є.М., Анохін В.Є Практикум з обчислювальної математики. Основні числові методи. Ч1. Львів: ДУ "Львівська політехніка", 2000.
- 7. Анджейчак І.А., Анохін В.Є., Бойко І.М. Практикум з обчислювальної математики. Основні числові методи. Лекції. Львів: ДУ "Львівська політехніка", 2001.