pls: Answers to Exercises 2

Security Pro'

60

Answer to exercise 2.2

You were asked to consider the Andrew Protocol:

Msg 1.
$$a - b : a, \{n_a\}$$
 shared (a,b)
Msg 2. $b - a : \{n_a + 1, n_b\}$ shared (a,b)

Msg 3.
$$a \rightarrow b$$
: $\{n_b + 1\}_{shared(a,b)}$

Msg 4.
$$b \rightarrow a$$
: $\{kab, n_{\mathcal{L}}\}$ shared (a,b) .

An attack on the Andrew Protocol

One problem with this protocol is that a receives no guarantee of the freshness of k_{ab} .

component $\{K_{ab}, N_c\}_{shared(A,B)}$ from message 4, and subsequently Suppose the intruder has seen an old run, and remembered the compromised the key. Then he can replay this component in subsequent run:

Msg 1.
$$A \rightarrow B : A, \{N_a\}_{shared(A,B)}$$

Msg 2.
$$B \rightarrow A$$
: $\{N_a + 1, N_b\}$ shared (A,B)

Msg 3.
$$A \rightarrow B$$
: $\{N_b + 1\}$ shared (A,B)

Msg 4.
$$B \rightarrow I_A : \{K'_{ab}, N'_c\}$$
 shared(A,B)

Msg 4'.
$$I_B \rightarrow A$$
: { K_{ab} , N_c } shared(A,B).

Another attack on the Andrew Protocol

Another problem with this protocol is a lack of explicitness. If we that shared(A, B) = shared(B, A) (i.e. A and B use the same key regardless of who initiates the protocol) then the following "mirror attack" is possible: assume

Msg
$$\alpha.1$$
. $A \rightarrow I_B : A, \{N_a\}$ shared (A,B)

Msg
$$\beta.1$$
. $I_B \rightarrow A: B, \{N_a\}$ shared (A,B)

Msg
$$\beta.2$$
. $A \rightarrow I_B$: $\{N_a + 1, N_b\}$ shared (A,B)

Msg
$$\alpha.2$$
. $I_B \rightarrow A: \{N_a+1, N_b\}$ shared (A,B)

Msg
$$\alpha.3$$
. $A \rightarrow I_B$: $\{N_b + 1\}$ shared (A,B)

Msg
$$\beta.3$$
. $I_B \rightarrow A: \{N_b+1\}_{shared(A,B)}$

Msg
$$\beta.4$$
. $A \rightarrow I_B$: { K_{ab} , N_c } shared(A,B)

Msg
$$\alpha.4$$
. $I_B \rightarrow A: \{K_{ab}, N_c\}$ shared (A,B)

the Andrew Protocol **Fixing**

- include the nonce n_a in the key delivery message in place The obvious way to assure a of the freshness of k_{ab} is to of n_c .
- obvious way to prevent the mirror attack is to explictly include an identity in one of the messages. The •

Msg 1.
$$a \rightarrow b$$
: a , $\{n_a, a\}$ shared (a,b)

Msg 2.
$$b \rightarrow a$$
: $\{n_a + 1, n_b\}$ shared(a,b)

Msg 3.
$$a \rightarrow b$$
: $\{n_b + 1\}$ shared (a,b)

Msg 4.
$$b \rightarrow a$$
: { k_{ab} , n_a } shared(a , b)