Дискретизация уравнения Навье-Стокса по оси у

В данном разделе представлена дискретизация уравнения Навье—Стокса по оси y и описание соответствующей реализации на языке MATLAB.

1. Уравнение Навье—Стокса по оси y

Общая форма уравнения Навье-Стокса в направлении у имеет следующий вид:

$$\rho\left(u_x\frac{\partial u_y}{\partial x}+u_y\frac{\partial u_y}{\partial y}\right)=-\frac{\partial P}{\partial y}+\frac{\partial}{\partial x}\left[\mu\left(\frac{\partial u_y}{\partial x}+\frac{\partial u_x}{\partial y}\right)\right]+\frac{\partial}{\partial y}\left[\mu\left(\frac{4}{3}\frac{\partial u_y}{\partial y}-\frac{2}{3}\frac{\partial u_x}{\partial x}\right)\right]$$

Левая часть — конвективные члены, правая часть — давление и вязкие силы.

2. Свойства среды

В коде переменные плотности ρ и динамической вязкости μ вычисляются на основе фазовой функции:

$$\rho = \rho_{\text{liquid}}(1 - \phi) + \rho_{\text{vapor}}\phi, \quad \mu = \mu_{\text{liquid}}(1 - \phi) + \mu_{\text{vapor}}\phi$$

где ϕ — фазовая переменная.

3. Конвективные слагаемые

$$conv = \rho \left(u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} \right)$$

В коде:

$$conv = rho .* (u_x .* du_y_dx + u_y .* du_y_dy);$$

4. Давление

$$\frac{\partial P}{\partial y}$$

В коде:

dP_dy = getScalarDerivativeFull(P, dx, dy, "y");

5. Вязкие члены

Поперечный сдвиг: дифференцирование по х

$$\frac{\partial}{\partial x} \left[\mu \left(\frac{\partial u_y}{\partial x} + \frac{\partial u_x}{\partial y} \right) \right]$$

В коде:

term_x = du_x_dy + du_y_dx; dvisc_x_dx = getProductDerivative(mu, term_x, dx, dy, "x"); Нормальный сдвиг: дифференцирование по у

$$\frac{\partial}{\partial y} \left[\mu \left(\frac{4}{3} \frac{\partial u_y}{\partial y} - \frac{2}{3} \frac{\partial u_x}{\partial x} \right) \right]$$

В коде:

```
 term_y = (4/3)*du_y_dy - (2/3)*du_x_dx; \\ dvisc_y_dy = getProductDerivative(mu, term_y, dx, dy, "y");
```

6. Общая невязка по у

Собираем все слагаемые:

$$R = \rho \left(u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} \right) + \frac{\partial P}{\partial y} - \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial u_y}{\partial x} + \frac{\partial u_x}{\partial y} \right) \right] - \frac{\partial}{\partial y} \left[\mu \left(\frac{4}{3} \frac{\partial u_y}{\partial y} - \frac{2}{3} \frac{\partial u_x}{\partial x} \right) \right]$$

В коде:

R = conv + dP_dy - dvisc_x_dx - dvisc_y_dy;

Таким образом, функция computeNSResidualY_full возвращает матрицу R, представляющую собой дискретную невязку уравнения Навье–Стокса в y-направлении, учитывающую конвекцию, давление и вязкие напряжения.