

CSE322 Finite Automata

Lecture #2

Topics

> Acceptability of a String by a Finite Automaton

> Transition Graph and Properties of Transition Functions

Finite Automaton

Transition Graph

Automaton:

An automaton is defined as a system where

- energy, materials and information are
- transformed, transmitted and used
- for performing some functions without direct participation of man.

Formal Definition of Finite Automaton

$$M = (Q, \Sigma, \delta, q_0, F)$$
 where

O : Finite non-empty set of states

: Finite non empty set of input alphabets

 δ : (direct) transition function that maps $\mathbf{Q} \times \mathbf{\Sigma} \rightarrow \mathbf{Q}$

 q_0 : initial state

F: set of final states

There are numerous applications of Formal languages and Automata Theory like:

- > Text processing, Compilers and Hardware Design
- Motors and Vending machines
- Sensors and Transducers
- Automata Simulators
- And many more

Initial Configuration

a b b a

Reading the Input

Input finished

Rejection

a b a

Input finished

Another Rejection

 λ

Another Example

Input finished

 $a \mid a \mid b \mid$

a a b

Rejection Example

Input finished

Languages Accepted by FAs

FA M

Definition:

The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that bring M to an accepting state}

$$L(M) = \{abba\}$$

M

Example

$$L(M) = \{\lambda, ab, abba\}$$

M

Example

$$L(M) = \{a^n b : n \ge 0\}$$

Transition Function δ

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function δ

δ	а	Ь
q_0	q_1	<i>q</i> ₅
q_1	q ₅	92
92	q_5	q_3
<i>q</i> ₃	q_4	q ₅
<i>q</i> ₄	q ₅	q ₅
q ₅	q ₅	q ₅

Extended Transition Function $\delta^{\,*}$

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta * (q_0, ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Recursive Definition

$$\delta * (q, \lambda) = q$$

$$\delta * (q, w\sigma) = \delta(\delta * (q, w), \sigma)$$

$$\delta^*(q, w\sigma) = q'$$

$$\delta^*(q, w\sigma) = \delta(q_1, \sigma)$$

$$\delta^*(q, w\sigma) = \delta(q, w\sigma) = \delta(\delta^*(q, w\sigma))$$

$$\delta^*(q, w\sigma) = q_1$$

Consider the finite state machine whose transition function δ is given by Table 3.1 in the form of a transition table. Here, $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{0, 1\}, F = \{q_0\}$. Give the entire sequence of states for the input string 110001.

TABLE 3.1 Transition Function Table for Example 3.5

State	Input	
	0	1
$\rightarrow (\widehat{q_0})$	q_2	q _i
$\overset{\smile}{q}$	q_3	q_0
q_2	q_0	q_3
9 3	q_1	q_2

Solution

$$\delta(q_0, 110101) = \delta(q_1, 10101)$$

$$= \delta(q_0, 0101)$$

$$= \delta(q_2, 101)$$

$$= \delta(q_3, 01)$$

$$= \delta(q_1, 1)$$

$$= \delta(q_0, \Lambda)$$

$$= q_0$$

Hence,

$$q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_0 \xrightarrow{0} q_2 \xrightarrow{1} q_3 \xrightarrow{0} q_1 \xrightarrow{1} q_0$$

The symbol \downarrow indicates that the current input symbol is being processed by the machine.