

American International University- Bangladesh (AIUB) Faculty of Engineering

Course Name :	Electronic Devices	Course Code:	EEE 2103
Semester:	Spring 2020-21	Section:	J
Faculty:	Dr. Md. Rifat Hazari		

Assignment No: 1
Assignment Name: CO2 (POI: P.a.3.C3)

Student Name: NAFINUR LEO Student ID: 20-42195-1

Marking Rubrics (to be filled by Faculty):

Marking Rubrics (to be fined by Faculty):									
Problems	Excellent [5]	Proficient [4]	Good [3]	Acceptable [2]	Unacceptable [1]	No Response [0]	Secured Marks		
Problem 01	Detailed unique response explaining the concept properly and answer is correct with all works clearly shown.	Response with no apparent errors and the answer is correct, but explanation is not adequate/unique.	Response shows understanding of the problem, but the final answer may not be correct.	Partial problem is solved; response indicates part of the problem was not understood clearly.	Unable to clarify the understanding of the problem and method of the problem solving was not correct.	No Response			
Problem 02	Detailed unique response explaining the concept properly and answer is correct with all works clearly shown.	Response with no apparent errors and the answer is correct, but explanation is not adequate/unique.	Response shows understanding of the problem, but the final answer may not be correct	Partial problem is solved; response indicates part of the problem was not understood clearly.	Unable to clarify the understanding of the problem and method of the problem solving was not correct	No Response			
Comments						Total marks (10)			

<u>INSTRUCTIONS:</u> When a question mentions "ID" as a value, you have to use the <u>last two digits of your ID</u> before the hyphen. For example, for 12-34567-8 it would be <u>67</u>. If the last 2 digits of your ID form a number less than 10, then add 10 with the number before using it to solve the problems. If the last 2 digits of your ID form a number greater than or equal to 10, you can use it as it is.

Note: Copied/identical submissions will be graded as 0 for all parties concerned.

Problem 1

Apply the knowledge gained from the ac analysis of BJT to construct the AC equivalent model of the circuit shown in Fig. 1 and calculate \mathbf{Z}_o and \mathbf{A}_v . Given, $\beta = (\mathbf{ID} \times 10)$ and $r_o = \mathbf{ID} \times 10$. [5]

Problem 2

Apply the knowledge gained from the DC biasing of JFET to select appropriate values of R_D and R_S of the circuit shown in Fig. 2, assuming $V_{DD} = (\underline{\mathbf{ID}} \div 5) + 15 \text{ V}$, $I_{DQ} = (\underline{\mathbf{ID}} \div 20) \text{ mA}$. [5]

Name: Nasinus Leo

Id: 20-42195-1

Answer to the Guestion Noll):

Griven that

$$\beta = (95 \times 10)$$

$$= 950$$

1 show I small shorted

Time : Outs / /

Figure of AC Equivalent Model:

Here,

$$V_{B} = \frac{R_{2}}{R_{1}+R_{2}} \times V_{CC}$$

$$= \frac{56}{220+56} \times 20$$

1-526mp

1 SEMA

1.626mA

15-01X 850-E1

RCHP PE

12.038×10-3

28.595 ...

(MANSWEW)

$$V_{8E} = V_{8} - V_{E}$$
 $\Rightarrow V_{E} = V_{8} - V_{8E}$
 $= 4.058 - 0.7$
 $= 3.358$
 $= \frac{V_{E}}{R_{E}}$
 $= \frac{3.358}{2.2}$
 $= 1.526mA$

$$Be = \frac{26mA}{IE}$$

$$= \frac{26mA}{1.526mA}$$

$$= 17.038 SI$$

$$= 17.038 X10^{-3} KSI$$

Answer to the Question No. (2): Saugit troublings

AMRE PERT

Quiven that,

$$V_{DD} = (95 \div 5) \div 15 \vee$$

$$I_{DG} = (95 \div 20) \text{ mA}$$

Given Figure of JFET:

Equivalent Figure:

Here,
$$R_D = \frac{VDD - VD}{IDQ}$$

$$= \frac{(34 - 12) V}{4.75 \text{ mA}}$$

$$= 4.612 \text{ kg}$$

For transfer curve,

$$\begin{array}{r}
\text{II) } V_{QS} = 0.5 V_{P} \\
= 0.5 \times (-3) \\
= -1.5 V
\end{array}$$

$$\begin{array}{r}
\text{I}_{D} = \frac{1055}{4} = \frac{6}{4} = 1.5 \text{ mA}$$

Here, from the figure,

$$RS = \frac{V_{QS} = -0.5V}{-(-V_{QS})}$$

$$= \frac{0.5}{9.75}$$

