Report Programming Assignment 3

Answer 1) (30 points)

If some other pre-processing technique is used, describe here.

Plot examples of time-series snippets (windows) from each class. 3 examples from each class (where data is already labeled). Is there a visible difference between these?

Print total number of heartbeats.

Answer 2) (5 points + 5 bonus marks)

Describe the normalization and any other pre-processing added.

Answer 3) (25 points + 10 bonus marks)

- # Show the class imbalance present in the database with the help of plots.
- # Show the autoencoder architecture used and number of rows per class after using it.
- # Compare examples of data augmented time-series snippets of arrhythmia vs given time-series snippets as part of data set. Is there a difference? Is your data augmentation method effective? # Same for Variational autoencoder.

Answer 4) (10 points)

- # Describe the denoising method used and it's advantages.
- # Show plots of a heartbeat before and after this operation is done and discuss the differences.

Answer 5) (5 points)

Which model was used and how was hyperparameter tuning done for it?

Print the metrics.

Answer 6) (10 points)

- # Describe the architecture of the neural network used.
- # Print the metrics.

Answer 7) (40 points)

- # Mention the paper used and the approach taken.
- # Print the metrics.
- # Were you able to get similar scores to the reference paper?

Answer 8) (10 points)

Plot the curves of training, validation and test sets losses and accuracy scores with number of epochs on the x-axis for the previous 2 neural network models used.

Answer 9) (15 points)

- # Which feature was chosen and why?
- # How does the input feature look like now?

Print the accuracy scores and explain the reason for these results.

Answer 10) (10 points)

Print/plot examples or time-series snippets of mis-classified arrhythmia (False positives) and also false negatives. Why might this have happened?