Série d'exercices

Exercice 1

- 1 Répondre par vrai ou faux
 - ☐ Les lignes du champ électrostatique créé par un électron sont centripètes
 - ☐ L'intensité de de la force électrostatique créée entre de charges électriques et proportionnelle à la distance qui les sépares.
 - \Box Le travail de la force électrostatique exercée sur une particule chargée se trouvant dans champ électrostatique variable est : $W_{AB}(\vec{F}) = \vec{F} * \overrightarrow{AB}$
 - □ Le potentiel électrostatique créé en un point M par une charge ponctuelle q placée à l'origine O d'un repère $R(0, \vec{i}, \vec{j})$ est : $V = K \frac{q}{QM} + C$
 - ☐ La variation de l'énergie potentielle électrostatique entre deux points A et B est égale au travail de la force électrostatique entre ces deux points.

Exercice 3

La figure ci-contre représente les surfaces équipotentielles

placée à l'origine d'un repère $R(0, \vec{l}, \vec{J})$

1 Calculer la valeur du potentiel électrostatique au points A, B et C. Sachant qu'à l'infinie le potentiel électrostatique est nul $(V \to 0 \ lorsque \ r \to \infty)$

d'une charge électrique ponctuelle $q = 6.4 \times 10^{-6}$ C

- $oldsymbol{2}$ Déduire l'intensité du champ électrostatique en $oldsymbol{\mathcal{C}}$.
- **6** On place une autre charge ponctuelle $q' = -4.8 \times 10^{-6} C$ au point C
 - a Déterminer les caractéristiques la force électrostatique exercée sur la charge q'.
 - b Calculer l'intensité du champ électrostatique créé par la charge q' au point B
 - c Exprimer dans le repère $R(0, \vec{l}, \vec{J})$ le vecteur du champ électrostatique créé au point B par les deux charges q et q'.

Exercice 4

On considère deux charges électriques ponctuelles de

valeur $q = 7 \times 10^{-5} C$, l'une est posée en un point A et

l'autre est posée en un point B tel que AB = 12cm.

La droite (CD) étant le médiateur du segment [AB]

- Monter que le champ créé par les deux charges au point *C* est nul.
- ② Calculer les intensités des champs électrostatiques créés par les deux charges au point D.
- ${f 3}$ Déterminer les caractéristiques du champ électrostatique totale créé au point ${m D}$.

On donne: CD = 4cm.

