Claims

ر /	(43)		
,	1	1 .	A system for acquiring seismic data, comprising:
l	2		one or more sensor modules adapted to sense seismic data; and
	3		one or more seismic recorders adapted to record seismic data and
	4		coupled to the sensor module;
	5		wherein the sensor module comprises one or more accelerometers, and
	6		wherein the accelerometers have one or more axes of sensitivity.
	1	2.	An apparatus for sensing seismic energy, comprising:
	2		a sensor adapted to sense seismic energy;
	3		wherein the sensor comprises one or more accelerometers, and
	4		wherein the accelerometers include one or more axes of sensitivity.
	1	3.	An apparatus for sensing seismic energy, comprising;
	2		a sensor adapted to sense seismic energy;
	3		wherein the sensor comprises one or more micro-machined sensor
	4		elements.
	1	4.	An apparatus for synchronizing the operation of a sensor to a common
	2		time base, comprising:
	3		a sensor module adapted to sense seismic energy;
	4		wherein the sensor module comprises one or more sensors, and
	5		wherein the sensor module further comprises a global positioning
	6		system receiver adapted to synchronize the operation of the sensors
	1	5 .	An apparatus for synchronizing the operation of a sensor to a common
	2		time base, comprising:
	3		one or more accelerometers adapted to sense seismic energy; and
	4		a seismic recorder coupled to the accelerometers;
	5		wherein the seismic recorder comprises a global positioning system
	6		receiver adapted to synchronize the sensor.
	1	6.	An apparatus for determining the position of a sensor, comprising:
	2		a sensor module adapted to sense seismic energy;
	3		wherein the sensor module comprises a global positioning system
	4		receiver adapted to determine the location of the sensor module

An apparatus with insensitivity to tilt for sensing seismic energy,
comprising:
a sensor adapted to sense seismic energy;
a feedback control circuit adapted to provide force balanced feedback
coupled to the sensor; and
a controller adapted to monitor the operation of the apparatus coupled
to the sensor.
An apparatus for determining the orientation of a sensor, comprising:
a sensor module adapted to sense seismic energy; and
a controller adapted to control the operation of the apparatus coupled to
the sensor module;
wherein the sensor module comprises a 3-axis magnetometer adapted to
determine the orientation of the sensor module.
An apparatus for determining the coupling between a sensor and the
ground, comprising:
a sensor adapted to sense seismic energy;
a crystal assembly adapted to provide a force in order to measure the
ground coupling of the sensor coupled to the sensor; and
a controller adapted to control the operation of the apparatus coupled to
the sensor.
An apparatus for measuring the vector fidelity of a sensor, comprising:
a sensor adapted to sense seismic energy;
a crystal assembly adapted to provide a force in order to measure the
vector fidelity of the sensor coupled to the sensor; and
a controller adapted to control the operation of the apparatus coupled to
the sensor.
A method of seismic sensing, comprising;
monitoring acceleration in a plurality of directions.
monitoring acceleration in a plurality of directions; and
monitoring pressure variations.

1	13.	A method of operating a sensor adapted to sense seismic energy with
2		insensitivity to tilt, comprising:
3		providing a forced feedback compensation to the sensor.
1	14.	A method of determining the tilt angle of a sensor module adapted to
2		sense seismic energy, comprising:
3		providing a forced feedback compensation to the sensor; and
4		measuring the steady-state gravity field over a predetermined time
5		period.
1	15 .	A method of determining the tilt angle of a sensor module, comprising:
2		calibrating the sensor module to determine tilt information;
3		storing the tilt information within the sensor module; and
4		measuring an effect of gravity on the sensor module.
1	16.	A method of manufacturing a sensor assembly having a plurality of axes of
2		sensitivity, comprising:
3		minimizing cross-axis sensitivity;
4		minimizing the tolerance of the sensitivity; and
5		providing axes of sensitivity that are approximately orthogonal;
6		wherein the sensor assembly operates with a vector fidelity uncertainty
7		less than about 1%.
1	17.	A method for acquiring seismic data, comprising:
2		coupling a seismic recorder to a sensor module including a
3		plurality of accelerometers.
1	18.	A method of determining the orientation of a 3-axis sensor, comprising;
2		performing a 3-dimensional measurement of a gravity field;
3		determining a gravity vector;
4		performing a 3-dimensional measurement of a magnetic field;
5		determining a magnetic vector; and
6		determining the direction of magnetic north and gravity down.
1	19.	A method of sensing seismic energy, comprising:
2		synchronizing the operation of a seismic sensor module;
3		wherein synchronizing the operation of a seismic sensor module

4	`	comprises using a global positioning system signal from a global
5		positioning system receiver within the sensor module.
1	20.	A method of sensing seismic energy, comprising:
2		determining the position of the seismic sensor;
3		wherein determining the position of the seismic sensor comprises using
4		a global positioning system signal from a global positioning system
5		receiver within the sensor module.
1	21.	A method of synchronizing the acquisition of seismic data, comprising:
2		receiving a signal containing time information; and
3		controlling the operation of one or more accelerometers adapted to
4		sense seismic energy and one or more seismic recorders using the
5		signal.
1	22.	A method of determining the location of the acquisition of seismic data,
2		comprising:
3		receiving a signal containing position information; and
4		determining the position of one or more seismic sensors using the
5		signal.
1	2 3.	A method of determining the degree of coupling between a sensor
2		assembly and the ground, comprising:
3		generating a force;
4		recording a response of the sensor assembly to the force; and
5		analyzing the response.
1	24.	A method of determining the vector fidelity of a sensor assembly,
2		comprising:
3		generating a force;
4		recording a response of the sensor assembly to the force; and
5		analyzing the response.
1	25.	A method of determining the orientation of a sensor module, including one
2		or more accelerometers, without direct measurement, comprising:
3		generating a force at a plurality of source points;
4		recording a response of the sensor module to the force; and
5		analyzing the response.

1	26.	A method of determining the state-of-health for a sensor module,
2		including a plurality of accelerometers and a seismic recorder, comprising:
3		sending a bitstream to the sensor module;
4		decoding, capturing, and looping-back the bitstream to the seismic
5		recorder; and
6		capturing and analyzing the bitstream by the seismic recorder,
7		wherein analyzing the bitstream comprises determining a malfunction
8		of the sensor module.
9	27 .	A method of determining the state-of-health for a sensor assembly,
10		including an ASIC coupled to a seismic recorder, comprising:
11		sending a bitstream to the ASIC;
12		decoding, capturing, and looping-back the bitstream to the seismic
13		recorder; and
14		capturing and analyzing the bitstream by the seismic recorder;
15		wherein analyzing the bitstream comprises determining a malfunction
16		of the sensor assembly.
1	28.	A method of determining the state-of-health for a sensor assembly adapted
2		to sense seismic energy, including an ASIC, comprising:
3		reading contents of the ASIC; and
4		validating the contents of the ASIC.
1	2 9.	A method of determining the state-of-health for a sensor assembly adapted
2		to sense seismic energy, including an accelerometer, comprising:
3		operating the accelerometer; and
4		monitoring the operation of the accelerometer;
5		wherein monitoring the operation of the accelerometer comprises
6		monitoring the accelerometer for instability to indicate a
7		malfunction of the accelerometer or an excessive external
8		acceleration.
1	30.	A method of determining the state-of-health for a sensor assembly adapted
2		to sense seismic energy, including an accelerometer, comprising:
3		exciting the accelerometer with a bitstream; and
4		acquiring, analyzing and judging an output signal generated by the

5		accelerometer;
6	`	wherein judging an output signal comprises judging a magnitude of
7		the output signal to indicate a malfunction of the accelerometer.
1	31.	A method of determining the state-of-health for a sensor assembly adapted
2		to sense seismic energy, including an accelerometer, comprising:
3		exciting the accelerometer with a bitstream; and
4		acquiring, analyzing and judging an output signal generated by the
5		accelerometer;
6		wherein judging an output signal comprises judging a phase response of
7		the output signal to indicate a malfunction of the accelerometer.
1	3 2.	A method of determining the state-of-health for a sensor assembly adapted
2		to sense seismic energy, including an accelerometer, comprising;
3		exciting the accelerometer with a bitstream; and
4		acquiring, analyzing and judging an output signal generated by the
5		accelerometer;
6		wherein judging an output signal comprises judging a total harmonic
7		distortion of the output signal to indicate a malfunction of the
8		accelerometer.
1	3 3.	A method of determining the state-of-health for a sensor assembly adapted
2		to sense seismic energy, including an accelerometer, comprising:
3		operating the accelerometer for a period of time; and
4		analyzing an output signal generated by the accelerometer;
5		wherein analyzing an output signal comprises detecting an excessive
6		root-mean-square amplitude response of the output signal to
7		indicate a malfunction of the accelerometer or a noisy environment.
1	34.	A method of determining the state-of-health for a sensor assembly adapted
2		to sense seismic energy, including an accelerometer, comprising:
3		operating the accelerometer; and
4		analyzing an output signal generated by the accelerometer;
5		wherein analyzing an output signal comprises analyzing an offset and a
6		gravity cancellation magnitude of the output signal to detect a
7		change in the inclination of the accelerometer.

8	35.	A method of determining the state-of-health for a sensor assembly adapted
9		to sense seismic energy including three accelerometers, comprising:
10		operating the accelerometers; and
11		monitoring one or more output signals generated by the accelerometers;
12		wherein monitoring one or more output signals generated by the
13		accelerometers comprises monitoring a vector sum of the self-
14		measured coefficients of gravity of the output signals to detect a
15		malfunction of the sensor assembly.
1	36.	A method of determining the state-of-health for a sensor assembly adapted
2		to sense seismic energy, including three accelerometers, comprising:
3		operating the accelerometers;
4		driving two of the accelerometers at a reference frequency;
5		monitoring an output signal generated by the undriven accelerometer; and
6		rotating through all the accelerometers;
7		wherein monitoring an output signal comprises monitoring the
8		magnitude of the reference frequency in the output signal
9		of the undriven accelerometer to detect a malfunction of the sensor
10		assembly.
1	37.	A method of determining the state-of-health for a sensor assembly adapted
2		to sense seismic energy, including one or more accelerometers, comprising
3		operating the accelerometers for a period of time;
4		removing DC offset from one or more output signals generated by the
5		accelerometer to produce one or more resulting signals;
6		transforming the resulting signals from the accelerometers from
7		Cartesian coordinates into polar coordinates; and
8		analyzing the polar coordinates;
9		wherein analyzing the polar coordinates comprises analyzing one or
10		more peak and root-mean-square amplitude results to indicate a
11		malfunction of the sensor assembly or a noisy acquisition
12		environment.
13	38.	A method of determining the state-of-health for a sensor assembly adapted
14		to sense seismic energy including one or more accelerometers, comprising:

15	(a) operating the accelerometers;
16	(b) monitoring one or more output signals generated by the
17	accelerometers;
18	(c) analyzing the output signals;
19	(d) changing the orientation of the sensor assembly; and
20	(e) repeating steps (b), (c) and (d) for a plurality of orientations;
21	wherein analyzing the output signals comprise calculating the sensor's
22	angles with respect to gravity from a vector sum of the self-
23	measured coefficients of gravity in any orientation; and
24	wherein analyzing the output signals further comprises analyzing
25	sensor's angles with respect to gravity to indicate a malfunction of
26	the sensor assembly.
	`