DISCRETE SEMICONDUCTORS

DATA SHEET

BFG94NPN 6 GHz wideband transistor

Product specification
File under Discrete Semiconductors, SC14

September 1995

BFG94

FEATURES

- High power gain
- Low noise figure
- Low intermodulation distortion
- Gold metallization ensures excellent reliability.

PIN DESCRIPTION 1 emitter 2 base 3 emitter 4 collector

PINNING

DESCRIPTION

NPN transistor mounted in a plastic SOT223 envelope. It is primarily intended for use in communication and instrumentation systems.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	_	15	V
V _{CEO}	collector-emitter voltage	open base	_	_	12	V
I _C	DC collector current		_	_	60	mA
P _{tot}	total power dissipation	up to T _s = 140 °C (note 1)	_	_	700	mW
C _{re}	feedback capacitance	I _C = 0; V _{CE} = 10 V; f = 1 MHz	_	_	0.8	pF
f _T	transition frequency	$I_C = 45 \text{ mA}; V_{CE} = 10 \text{ V}; f = 1 \text{ GHz}; $ $T_{amb} = 25 ^{\circ}\text{C}$	4	6	_	GHz
G _{UM}	maximum unilateral power gain	$I_C = 45 \text{ mA}; V_{CE} = 10 \text{ V}; f = 1 \text{ GHz};$ $T_{amb} = 25 ^{\circ}\text{C}$	11.5	13.5	_	dB
Vo	output voltage	$I_{C} = 45 \text{ mA}; V_{CE} = 10 \text{ V};$ $d_{im} = -60 \text{ dB}; R_{L} = 75 \Omega;$ $f = 800 \text{ MHz}; T_{amb} = 25 ^{\circ}\text{C}$	_	500	_	mV
P _{L1}	output power at 1 dB gain compression	$I_C = 45 \text{ mA}; V_{CE} = 10 \text{ V}; f = 1 \text{ GHz}; $ $T_{amb} = 25 ^{\circ}\text{C}$	_	21.5	_	dBm

Note

1. T_s is the temperature at the soldering point of the collector tab.

Philips Semiconductors Product specification

NPN 6 GHz wideband transistor

BFG94

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	15	V
V _{CEO}	collector-emitter voltage	open base	_	12	V
V _{EBO}	emitter-base voltage	open collector	_	2	V
I _C	DC collector current		_	60	mA
P _{tot}	total power dissipation	up to T _s = 140 °C (note 1)	_	700	mW
T _{stg}	storage temperature		-65	150	°C
Tj	junction temperature		_	175	°C

THERMAL RESISTANCE

SYMBOL	PARAMETER	CONDITIONS	THERMAL RESISTANCE
R _{th j-s}	thermal resistance from junction to soldering point	up to $T_s = 140 ^{\circ}\text{C}$ (note 1)	50 K/W

Note

1. T_s is the temperature at the soldering point of the collector tab.

Product specification Philips Semiconductors

NPN 6 GHz wideband transistor

BFG94

CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = 10 V	_	_	100	nA
h _{FE}	DC current gain	I _C = 30 mA; V _{CE} = 5 V	45	90	_	
		I _C = 45 mA; V _{CE} = 10 V	_	100	_	
C _c	collector capacitance	$I_E = i_e = 0$; $V_{CB} = 10 \text{ V}$; $f = 1 \text{ MHz}$	_	0.9	2	pF
C _e	emitter capacitance	$I_C = i_e = 0$; $V_{EB} = 0.5 \text{ V}$; $f = 1 \text{ MHz}$	_	2.9	4.5	pF
C _{re}	feedback capacitance	$I_C = i_c = 0$; $V_{CE} = 10 \text{ V}$; $f = 1 \text{ MHz}$	_	0.5	0.8	pF
f _T	transition frequency	$I_C = 45 \text{ mA}; V_{CE} = 10 \text{ V}; f = 1 \text{ GHz}; T_{amb} = 25 ^{\circ}\text{C}$	4	_	_	GHz
		$I_C = 30 \text{ mA}; V_{CE} = 5 \text{ V}; f = 1 \text{ GHz}; $ $T_{amb} = 25 \text{ °C}$	4	6	_	GHz
G _{UM}	maximum unilateral power gain (note1)	$I_C = 45 \text{ mA}; V_{CE} = 10 \text{ V}; f = 1 \text{ GHz};$ $T_{amb} = 25 ^{\circ}\text{C}$	11.5	13.5	_	dB
F	minimum noise figure	$\Gamma_{\text{S}} = \Gamma_{\text{opt}}$; $I_{\text{C}} = 45 \text{ mA}$; $V_{\text{CE}} = 10 \text{ V}$; $f = 500 \text{ MHz}$	_	2.7	_	dB
		$\Gamma_{\text{S}} = \Gamma_{\text{opt}}$; $I_{\text{C}} = 45 \text{ mA}$; $V_{\text{CE}} = 10 \text{ V}$; $f = 1 \text{ GHz}$	_	3	_	dB
Vo	output voltage	note 2	_	500	_	mV
d ₂	second order intermodulation distortion	note 3	_	-51	_	dB
P _{L1}	output power at 1 dB gain compression	I_C = 45 mA; V_{CE} = 10 V; R_L = 50 Ω ; T_{amb} = 25 °C; measured at f = 1 GHz	_	21.5	_	dBm
ITO	third order intercept point	note 4	_	34	_	dBm

Notes

1. $\,\,G_{UM}$ is the maximum unilateral power gain, assuming S_{12} is zero and

$$G_{UM} = 10 log \frac{\left|S_{21}\right|^2}{\left(1 - \left|S_{11}\right|^2\right) \left(1 - \left|S_{22}\right|^2\right)} dB.$$

- 2. $d_{im} = -60 \text{ dB (DIN } 45004 \text{B, par } 6.3\text{: } 3\text{-tone}); I_C = 45 \text{ mA; } V_{CE} = 10 \text{ V; } R_L = 75 \Omega; T_{amb} = 25 ^{\circ}\text{C;}$ $V_p = V_O$ at $d_{im} = -60$ dB; $f_p = 795.25$ MHz; $V_q = V_O - 6 \text{ dB}; V_r = V_O - 6 \text{ dB};$ $f_q = 803.25 \text{ MHz}; f_r = 805.25 \text{ MHz};$
 - measured at $f_{(p+q-r)} = 793.25$ MHz.

3. $I_C = 45$ mA; $V_{CE} = 10$ V; $R_L = 75$ Ω ; $T_{amb} = 25$ °C;

- $V_q = V_O = 280 \text{ mV};$ $f_p = 250 \text{ MHz}; f_q = 560 \text{ MHz};$ measured at $f_{(p+q)} = 810$ MHz.
- 4. I_C = 45 mA; V_{CE} = 10 V; R_L = 50 Ω ; T_{amb} = 25 °C; $f_p = 1000 \text{ MHz}; f_q = 1001 \text{ MHz};$ measured at $f_{(2p-q)}$ and $f_{(2q-p)}$.

BFG94

Fig.6 Feedback capacitance as a function of collector-emitter voltage.

collector current.

Philips Semiconductors Product specification

NPN 6 GHz wideband transistor

BFG94

Fig.10 Maximum available stable gain as a function of frequency.

_{JM} = maximum umaterai power gam.

Fig.11 Gain as a function of collector current.

Fig.12 Second order intermodulation distortion as a function of collector current.

function of collector current.

Fig.14 Minimum noise figure as a function of collector current.

BFG94

PACKAGE OUTLINE

Plastic surface mounted package; collector pad for good heat transfer; 4 leads

SOT223

DIMENSIONS (mm are the original dimensions)

UNIT	A	A ₁	bp	b ₁	С	D	E	е	e ₁	HE	Lp	Q	v	w	у
mm	1.8 1.5	0.10 0.01	0.80 0.60		0.32 0.22		3.7 3.3	4.6	2.3	7.3 6.7	1.1 0.7	0.95 0.85	0.2	0.1	0.1

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT223						96-11-11 97-02-28

Product specification Philips Semiconductors

NPN 6 GHz wideband transistor

BFG94

DEFINITIONS

Data Sheet Status						
Objective specification	This data sheet contains target or goal specifications for product development.					
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.					
Product specification	This data sheet contains final product specifications.					
Limiting values						

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.