8.3- Improper Integrals: Infinite Limits of Integration

Name	/ Uid:_	Date:

In this section, we consider evaluating definite integrals on intervals of infinite length, for example,

$$\int_{a}^{\infty} f(x) \ dx.$$

We might naively try to use the FTC and say that this integral should be equal to $F(\infty) - F(a)$, where F is an antiderivative of f. The problem is that the term $F(\infty)$ does not make sense, and so we need to modify our reasoning. While we can't evaluate a function at the 'point' ∞ , we can take the limit of the function at ∞ . It follows that we can make sense of integrating a function over an interval of infinite length if we define the integral in terms of a limit.

Definition. We use the following limits to define the three types of **improper integrals** on intervals of infinite length: For any value a,

•
$$\int_{a}^{\infty} f(x) \ dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \ dx$$

•
$$\int_{-\infty}^{a} f(x) \ dx = \lim_{b \to -\infty} \int_{b}^{a} f(x) \ dx$$

•
$$\int_{-\infty}^{\infty} f(x) \ dx = \lim_{b \to -\infty} \int_{b}^{0} f(x) \ dx + \lim_{b \to \infty} \int_{0}^{b} f(x) \ dx$$

If the limits on the right hand side exist and have finite values, then the improper integral is said to converge. Otherwise, the improper integral diverges

Example 1. Compute the following improper integrals or show that they diverge.

(a)
$$\int_0^\infty e^{-x} dx$$

(b)
$$\int_{2}^{\infty} \frac{1}{x \ln x} \ dx$$

$$(c) \int_{-\infty}^{\infty} \frac{x}{\sqrt{x^2 + 4}} \ dx$$

$$(d) \int_{-\infty}^{2} \frac{1}{4+x^2} \ dx$$

Example 2. For what values of p > 0 does the integral

$$\int_{1}^{\infty} \frac{1}{x^{p}} \ dx$$

converge? Note: This computation will be important for material in Chapter 9.

Solution.