3.1 Brakujące kawałki dowodu twierdzenia E-F

Niech τ to skończona sygnatura, $\mathfrak A$ to τ -struktura, $\vec a$ to k-elementowa krotka z A, a $\vec x$ to k-elementowa krotka zmiennych. Definiujemy m-tą formulę Hintikki $\varphi^k_{(\mathfrak A, \vec a)}(\vec x)$ indukcyjnie jako:

$$\varphi^0_{(\mathfrak{A},\vec{a})}(\vec{x}) := \underbrace{\bigwedge_{\substack{atomowe \ \lambda, \ \mathfrak{A} \models \lambda(\vec{a}) \\ \text{atomowa harmonia}}}^{\lambda} \lambda \wedge \bigwedge_{\substack{atomowe \ \lambda, \ \mathfrak{A} \not\models \lambda(\vec{a}) \\ \text{atomowa harmonia}}}^{\neg \lambda} \varphi^{m+1}_{(\mathfrak{A},\vec{a})}(\vec{x}) := \underbrace{\bigwedge_{\substack{c \in A \\ \text{tam: odpowiedzi na wyzwania w } \mathfrak{A}}}^{n} \exists x_{k+1} \ \varphi^m_{(\mathfrak{A},\vec{a}c)}(\vec{x},x_{k+1}) \wedge \bigvee_{\substack{c \in A \\ \text{tam: odpowiedzi na wyzwania w } \mathfrak{A}}}^{\forall x_{k+1}} \bigvee_{\substack{c \in A \\ \text{z powrotem: odpowiedzi na wyzwania w } \mathfrak{B}}^{m}$$

Zauważ, że ranga kwantyfikatorowa $\varphi^m_{(\mathfrak{A},\vec{a})}(\vec{x})$ to m. Co więcej, jeśli \mathfrak{A} lub \mathfrak{B} są nieskończone to powyższe formuły są inherentnie nieskończonymi obiektami. Pokażemy jednak, że to nie do końca prawda.

- ▶ Zadanie 3.1. Dla każdej skończonej sygnatury τ , każdych $n, m \in \mathbb{N}$ jest tylko skończenie wiele nie-równoważnych FO[τ]-formuł o randze kwantyfikatorowej m używających zmiennych x_1, x_2, \ldots, x_n . Wywnioskuj, że każda (potencjalnie nieskończona) formuła Hintikki jest logicznie równoważna pewnej skończonej formule.
- ▶ Zadanie 3.2. Niech $m \in \mathbb{N}$, τ to skończona sygnatura, a \mathfrak{A} oraz \mathfrak{B} to (niekoniecznie skończone) struktury. Niech \mathcal{Z} to \subseteq -maximalna m-bisymulacja pomiędzy \mathfrak{A} a \mathfrak{B} . Pokaż, że dla wszystkich $k \leq m$ oraz k-krotek $\vec{a} \in \mathfrak{A}$ oraz $\vec{b} \in \mathfrak{B}$, dla $k \leq m$, mamy $(\vec{a}, \vec{b}) \in \mathcal{Z}$ wtedy i tylko wtedy gdy $\mathfrak{B} \models \varphi_{(\mathfrak{A}, \vec{a})}^{m-k}[\vec{b}]$.

Wywnioskuj stąd, że Duplik \forall tor ma strategię wygrywającąw m-rundowej grze E-F na $\mathfrak A$ i $\mathfrak B$ wtedy i tylko wtedy gdy $\mathfrak A$ i $\mathfrak B$ spełniają dokładnie te same zdania z $\mathsf{FO}_m[\tau]$.

3.2 Gry z kamieniami

▶ Zadanie 3.3. Przeczytaj ze zrozumieniem definicję 11.4 gier z k-kamieniami z książki Libkina.

U Libkina możesz przeczytać, że Duplic \forall tor ma strategię wygrywającą w nieskończenie rundowej grze z k kamieniami na strukturach $\mathfrak{A}, \mathfrak{B}$ wtedy i tylko wtedy gdy \mathfrak{A} i \mathfrak{B} spełniają te same zdania z FO^k (logika FO ograniczona do zdań używających wyłącznie zmiennych x_1, x_2, \ldots, x_k , zmienne możesz oczywiście re-kwantyfikować). Pokaż z ich pomocą, że:

- ▶ Zadanie 3.4. Nie istnieje formula $FO^2[\{E\}]$ mówiąca, że E jest przechodnia.
- ightharpoonup Zadanie 3.5. Nie istnieje formula $FO^2[\{E\}]$ mówiąca, że E jest relacją równoważności.
- ▶ **Zadanie 3.6.** Nie istnieje formuła $FO^2[\{E\}]$ mówiąca, że E jest funkcyjna¹.

¹ dla każdego x nie istnieją różne y, y', że E(x, y) i E(x, y')