

GRUNDLAGEN DER ELEKTROTECHNIK ET1

Teil 5:

Netzwerkanalyse - Maschenstromverfahren & Knotenpotentialverfahren

GLEICHSTROM

Inhalte der Kapitel 1 – 4: Gleichstrom

2 GLEICHSTROMSCHALTUNGEN

2.1	Zählpfeilsystem	Grundlagen
2.2	Grundlegende Begriffe	
2.3	Kirchhoffsche Gesetze	
2.4	Parallel- und Reihenschaltung von Widerständer	
2.5	Strom- und Spannungsteiler	
2.6	Lineare Quellen	
2.7	Umwandlung in Ersatzquellen	Methoden
2.8	Überlagerungsprinzip	
2.9	Netzwerkanalyse	
2.10	Leistungsanpassung 🗸	Sonstiges
2.11	Nichtlineare Quellen und Verbraucher	
2.12	Gesteuerte Quellen	

REVIEW: BASISVERFAHREN ÜBER ZWEIGSTRÖME

- 1. Zweigströme definieren
- 2. Zweigspannungen definieren (Richtung wie Zweigströme)
- 3. Knoten nummerieren (0 für Masseknoten GND)
- 4. Maschen nummerieren und Umlaufsinn festlegen (für jedes Fenster im Uhrzeigersinn)
- 5. Kirchhoffs Maschenregel für jede Masche anwenden
- 6. Kirchhoffs Knotenregel für k-1 Knoten anwenden (Masseknoten auslassen)

SYSTEMATISCHE NETZWERKANALYSE

Netzwerk mit z Zweigen

- z Zweigströme
- z Zweigspannungen
- ⇒ 2 z Gleichungen erforderlich ←

Systematisch vorgehen, um den Überblick zu behalten!

3 Methoden der Netzwerkanalyse

 Basisverfahren einfache Anwendung der Kirchhoffschen Gesetze

- Maschenstromverfahren
 Reduzierung der Gleichungszahl durch Definition von Maschenströmen
- Knotenpotentialverfahren
 Reduzierung der Gleichungszahl durch Definition von Knotenspannungen (= Spannung des Knotens zu Masse)

MOTIVATION 1

MOTIVATION 2

```
\left\{ \left\{ \text{I1} \rightarrow \frac{\text{Iq6} \left( \text{R2} \left( \text{R3} + \text{R5} \right) + \text{R3} \left( \text{R4} + \text{R5} \right) \right) \, \text{R6} + \left( \text{R4} \, \text{R5} + \text{R3} \left( \text{R4} + \text{R5} \right) + \left( \text{R4} + \text{R5} \right) \, \text{R6} + \text{R2} \left( \text{R3} + \text{R5} + \text{R6} \right) \right) \, \frac{\text{Uq1}}{\text{R3} \, \text{R4} \, \text{R5} + \text{R2} \, \text{R4} \left( \text{R3} + \text{R5} \right) + \text{R3} \left( \text{R4} + \text{R5} \right) \, \text{R6} + \text{R2} \left( \text{R3} + \text{R5} + \text{R6} \right) \right)}, \right.
                   \begin{array}{c} \text{Iq6 (R3 R4-R1 R5) R6+R4 (R3+R5) Uq1+(R4+R5) R6 Uq1} \\ \text{R3 R4 R5+R2 R4 (R3+R5)+R3 (R4+R5) R6+R2 (R3+R4+R5) R6+R1 (R4 R5+R3 (R4+R5)+(R4+R5) R6+R2 (R3+R5+R6))} \end{array}, \\ \end{array} 
                   \begin{array}{c} - \; \; \text{Ig6} \; \left( \text{R2} \; \text{R4} + \text{R1} \; \left( \text{R2} + \text{R4} + \text{R5} \right) \right) \; \text{R6} + \left( \text{R4} \; \text{R5} + \left( \text{R2} + \text{R4} + \text{R5} \right) \; \text{R6} \right) \; \text{Uq1} \\ \hline \text{R3} \; \text{R4} \; \text{R5} + \text{R2} \; \text{R4} \; \left( \text{R3} + \text{R5} \right) + \text{R3} \; \left( \text{R4} + \text{R5} \right) \; \text{R6} + \text{R2} \; \left( \text{R3} + \text{R4} + \text{R5} \right) \; \text{R6} + \text{R1} \; \left( \text{R4} \; \text{R5} + \text{R3} \; \left( \text{R4} + \text{R5} \right) + \left( \text{R4} + \text{R5} \right) \; \text{R6} + \text{R2} \; \left( \text{R3} + \text{R5} + \text{R6} \right) \right) \end{array}, 
                                                                                                                                           Iq6 R2 R3 R6 + Iq6 (R1 + R2 + R3) R5 R6 + R3 R5 Uq1 + R2 (R3 + R5 + R6) Uq1
                 14 \rightarrow \frac{1}{R3 R4 R5 + R2 R4 (R3 + R5) + R3 (R4 + R5) R6 + R2 (R3 + R4 + R5) R6 + R1 (R4 R5 + R3 (R4 + R5) + (R4 + R5) R6 + R2 (R3 + R5 + R6))}{R3 R4 R5 + R2 R4 (R3 + R5) + R3 (R4 + R5) R6 + R2 (R3 + R5 + R6))},
                  = \frac{- \, \mathrm{Ig6} \, \left( \mathrm{R2} \, \mathrm{R3} \, \mathrm{R4} + \mathrm{R1} \, \mathrm{R3} \, \left( \mathrm{R2} + \mathrm{R4} \right) + \left( \mathrm{R2} + \mathrm{R3} \right) \, \mathrm{R4} \, \mathrm{R5} + \mathrm{R1} \, \left( \mathrm{R2} + \mathrm{R3} + \mathrm{R4} \right) \, \mathrm{R5} \right) + \left( \mathrm{R2} \, \left( \mathrm{R3} + \mathrm{R5} \right) + \mathrm{R3} \, \left( \mathrm{R4} + \mathrm{R5} \right) \right) \, \mathrm{Uq1} }{\mathrm{R3} \, \mathrm{R4} \, \mathrm{R5} + \mathrm{R2} \, \mathrm{R4} \, \left( \mathrm{R3} + \mathrm{R5} \right) + \mathrm{R3} \, \left( \mathrm{R4} + \mathrm{R5} \right) \, \mathrm{R6} + \mathrm{R2} \, \left( \mathrm{R3} + \mathrm{R4} + \mathrm{R5} \right) \, \mathrm{R6} + \mathrm{R1} \, \left( \mathrm{R4} \, \mathrm{R5} + \mathrm{R3} \, \left( \mathrm{R4} + \mathrm{R5} \right) + \left( \mathrm{R4} + \mathrm{R5} \right) \, \mathrm{R6} + \mathrm{R2} \, \left( \mathrm{R3} + \mathrm{R5} + \mathrm{R6} \right) \right) } \right) , 
                  Uq6 →
                 \frac{- \, \mathrm{Ig6} \, \left( \mathrm{R2} \, \mathrm{R3} \, \mathrm{R4} + \mathrm{R1} \, \mathrm{R3} \, \left( \mathrm{R2} + \mathrm{R4} \right) + \left( \mathrm{R2} + \mathrm{R3} \right) \, \mathrm{R4} \, \mathrm{R5} + \mathrm{R1} \, \left( \mathrm{R2} + \mathrm{R3} + \mathrm{R4} \right) \, \mathrm{R5} \right) \, \mathrm{R6} + \left( \mathrm{R2} \, \left( \mathrm{R3} + \mathrm{R5} \right) + \mathrm{R3} \, \left( \mathrm{R4} + \mathrm{R5} \right) \right) \, \mathrm{R6} \, \mathrm{Uq1}}{\mathrm{R3} \, \mathrm{R4} \, \mathrm{R5} + \mathrm{R2} \, \mathrm{R4} \, \left( \mathrm{R3} + \mathrm{R5} \right) + \mathrm{R3} \, \left( \mathrm{R4} + \mathrm{R5} \right) \, \mathrm{R6} + \mathrm{R2} \, \left( \mathrm{R3} + \mathrm{R4} + \mathrm{R5} \right) \, \mathrm{R6} + \mathrm{R1} \, \left( \mathrm{R4} \, \mathrm{R5} + \mathrm{R3} \, \left( \mathrm{R4} + \mathrm{R5} \right) + \left( \mathrm{R4} + \mathrm{R5} \right) \, \mathrm{R6} + \mathrm{R2} \, \left( \mathrm{R3} + \mathrm{R5} + \mathrm{R6} \right) \right)} \right\} \right\}
```


DEFINITION MASCHENSTROM

Maschenströme = Ströme in den Verbindungszweigen

DEFINITION MASCHENSTROM

Maschenströme = Ströme in den Verbindungszweigen

DEFINITION MASCHENSTROM

Maschenströme = Ströme in den Verbindungszweigen

MASCHENSTROMVERFAHREN

Grundidee:

• statt z Zweigströme nur m Maschenströme mit m < z (keine I_q !)

 I_1 , I_2 u. I_3 lassen sich durch I_{M1} , IM_2 ausdrücken

MASCHENSTROMVERFAHREN

1. In 5 Schritten ans Ziel:

Netzwerk wo möglich vereinfachen:

- a) Parallele Widerstände zusammenfassen
- b) Lineare Stromquellen in äquivalente Spannungsquellen umwandeln
- 2. Zweigströme definieren
- 3. Maschenstrom in jedem "Fenster" im Uhrzeigersinn definieren
- 4. Zweigströme als Funktion der Maschenströme aufstellen
- 5. Maschenregel anwenden
- 6. LGS vom Rang m für Maschenströme lösen
- 7. Bei Bedarf: Zweigströme aus Maschenströmen berechnen

SCHRITT 1: VEREINFACHEN

- 1. Netzwerk wo möglich vereinfachen:
 - a) Parallele Widerstände zusammenfassen
 - b) Lineare Stromquellen in äquivalente Spannungsquellen umwandeln

SCHRITT 2: ZWEIGSTRÖME

2. Zweigströme definieren

15

SCHRITT 3: MASCHENSTRÖME

3. Maschenstrom in jedem "Fenster" im Uhrzeigersinn definieren

SCHRITT 4: ZWEIGSTRÖME DEFINIEREN

ZWEIGSTRÖME = f(MASCHENSTRÖME)

SCHRITT 5: MASCHENREGEL

5. Maschenregel anwenden

Aus Schritt 4:

 $I_1 = I_{M1}$

 $I_2 = I_{M1} - I_{M2}$

 $I_3 = I_{M1} - I_{M3}$

 $I_4 = I_{M2}$

 $I_5 = -I_{M2} + I_{M3}$

 $I_6 = I_{M3}$

M1:

M2:

M3:

7. Bei Bedarf: Zweigströme aus Maschenströmen berechnen

MASCHENGLEICHUNGEN AUFRÄUMEN

M1:
$$R_1 I_{M1} + R_2 (I_{M1} - I_{M2}) + R_3 (I_{M1} - I_{M3}) = U_{q1}$$

M2:
$$-R_2(I_{M1} - I_{M2}) + R_4 I_{M2} - R_5(-I_{M2} + I_{M3}) = 0$$

$$M3:-R_3(I_{M1}-I_{M3}) + -R_5(I_{M2}-I_{M3}) + R_6I_{M3} = U_{q6}$$

Nach aufsteigendem Index der Maschenströme sortieren:

M1:

M2:

M3:

- 6. LGS vom Rang m für Maschenströme lösen
- 7. Bei Bedarf: Zweigströme aus Maschenströmen berechnen

$$I_{M1}$$
 I_{M2} I_{M3}

M1:
$$(R_1 + R_2 + R_3)I_{M1} - R_2I_{M2} - R_3I_{M3} = U_{q1}$$

M2:
$$-R_2I_{M1} + (R_2 + R_4 + R_5)I_{M2} - R_5I_{M3} = 0$$

M3:
$$-R_3I_{M1}$$
 $-R_5I_{M2}$ $+(R_3+R_5+R_6)I_{M3}$ $=U_{q6}$

MATRIXSCHREIBWEISE

6. LGS vom Rang *m* für Maschenströme lösen

Bei Bedarf: Zweigströme aus Maschenströmen berechnen

$$I_{M1}$$

$$I_{M2}$$

$$I_{M3}$$

M1:
$$(R_1 + R_2 + R_3)$$
 $-R_2$ $-R_3$
M2: $-R_2$ $+ (R_2 + R_4 + R_5)$ $-R_5$
M3: $-R_3$ $-R_5$ $+ (R_3 + R_5 + R_6)$

$$\begin{bmatrix} I_{M1} \\ I_{M2} \\ I_{M3} \end{bmatrix} = \begin{bmatrix} U_{q1} \\ 0 \\ U_{q6} \end{bmatrix}$$

Maschen-Widerstands-Matrix M • Vektor I = Vektor U

Frage:

Woran erinnert diese Gleichung?

VORTEILE DES MASCHENSTROMVERFAHRENS

(oft auch kurz als Maschenanalyse bezeichnet)

1.

2.

Beachte: Maschenstromverfahren bei idealen Stromquellen

Wenn es eine ideale Stromquelle zwischen zwei Knoten ohne Innenwiderstand gibt, kann diese nicht in eine lineare Spannungsquelle umgewandelt werden.

⇒ Basisverfahren anwenden

1. HAUPTDIAGONALE = $\sum R_S$ IN MASCHE

2. ELEMENT $i, k = \sum R$ IN MASCHE i UND k

(positiv wenn Maschenstrom i und k gleichsinnig)

 I_{M1}

 I_{M2}

 I_{M3}

M1:

$$R_1 + R_2 + R_3$$

M2:

 $R_2 + R_4 + R_5$

M3:

 $R_3 + R_5 + R_6$

 $\begin{bmatrix} I_{M1} \\ I_{M2} \\ I_{M3} \end{bmatrix} = \begin{bmatrix} I_{M1} \\ I_{M3} \\ I_{M3} \end{bmatrix}$

3. U-VEKTOR = $\sum U_q$ IN MASCHE i

(positiv wenn u_q entgegengesetzt zu Maschenstrom I_{Mi})

M1:
$$I_{M1}$$
 I_{M2} I_{M3}

M1: $R_1 + R_2 + R_3$ $-R_2$ $-R_3$

M2: $-R_2$ $R_2 + R_4 + R_5$ $-R_5$

M3: $-R_3$ $-R_5$ $R_3 + R_5 + R_6$

M3:
$$-R_3$$

$$-R_5$$
 $R_3 +$

$$\begin{bmatrix} I_{M1} \\ I_{M2} \\ I_{M3} \end{bmatrix} = \begin{bmatrix} \Box \\ \Box \\ \Box \end{bmatrix}$$

ÜBERPRÜFUNG DER MATRIX

Allgemeine Eigenschaften der Maschen-Widerstands-Matrix:

- Matrix ist symmetrisch zur Hauptdiagonale
- · Jedes Element auf der Hauptdiagonalen ist positiv

GRUPPENÜBUNG (2ER GRUPPEN, 15 MIN)

Aufgabe: Stellen Sie die Matrixgleichung auf.

Ziel: Jeder kann es selbst anwenden!

LÖSEN DES LINEAREN GLEICHUNGSSYSTEMS

Ergebnis der Maschenanalyse:

$$\begin{pmatrix} R_2 + R_5 & 0 & -R_2 \\ 0 & R_1 + R_4 & -R_4 \\ -R_2 & -R_4 & R_2 + R_3 + R_4 \end{pmatrix} \cdot \begin{pmatrix} I_{M1} \\ I_{M2} \\ I_{M3} \end{pmatrix} = \begin{pmatrix} U_2 \\ U_1 \\ -U_2 - U_3 \end{pmatrix}$$

$$\begin{pmatrix} 1020\Omega & 0 & -20\Omega \\ 0 & 1100\Omega & -1000\Omega \\ -20\Omega & -1000\Omega & 1030\Omega \end{pmatrix} \cdot \begin{pmatrix} I_{M1} \\ I_{M2} \\ I_{M3} \end{pmatrix} = \begin{pmatrix} 5V \\ 5V \\ -10V \end{pmatrix}$$

GAUB'SCHE ELIMINATION

	IM1	IM2	IM3	U
	1020	0	-20	5
		1100	-1000	5
	-20	-1000	1030	-10
	1	0	-0,0196	0,0049
_		1100	-1000	5
(20)	-20	-1000	1030	-10
		1100	-1000	5
		-1000	1029,608	-9,902
		1	-0,9091	0,0045
(1000)		-1000	1029,608	-9,902
			120,517	-5,357

DIE MATLAB-LÖSUNG

$$\begin{pmatrix} 1020\Omega & 0 & -20\Omega \\ 0 & 1100\Omega & -1000\Omega \\ -20\Omega & -1000\Omega & 1030\Omega \end{pmatrix} \cdot \begin{pmatrix} \mathbf{I}_{M1} \\ \mathbf{I}_{M2} \\ \mathbf{I}_{M3} \end{pmatrix} = \begin{pmatrix} 5V \\ 5V \\ -10V \end{pmatrix}$$

Tipp: ingenieurmäßiges Zahlenformat über: format short eng

SIMULATION IN LTSPICE

Vergleiche mit Matlab-Ergebnis:

```
Υ =
         1020
                                    -20
                      1100
                                  -1000
          -20
                     -1000
                                   1030
U =
     5
   -10
IM =
    0.0040
   -0.0359
   -0.0444
```

SYSTEMATISCHE NETZWERKANALYSE

Netzwerk mit z Zweigen

- z Zweigströme
- z Zweigspannungen
- ⇒ 2 z Gleichungen erforderlich

Systematisch Vorgehen, um den Überblick zu behalten!

3 Methoden der Netzwerkanalyse

- Basisverfahren einfache Anwendung der Kirchhoffschen Gesetze
- Maschenstromverfahren
 Reduzierung der Gleichungszahl durch Definition von Maschenströmen
- Knotenpotentialverfahren Reduzierung der Gleichungszahl durch Definition von Knotenspannungen (= Spannung des Knotens zu Masse)

DEFINITION KNOTENPOTENTIAL

Knotenpotential = Spannungsdifferenz zwischen Knoten und Referenzknoten

KNOTENPOTENTIALVERFAHREN: IDEE

- Ströme in Knotengleichungen mit Ohmschem Gesetz durch Widerstände und Potentialdifferenzen ersetzen
- LGS nur für Knotenpotentiale lösen

KNOTENPOTENTIALVERFAHREN

- 1. Netzwerk wo möglich vereinfachen:
 - a) Parallele Widerstände zusammenfassen
 - b) Lineare Spannungsquellen in äquivalente Stromquellen umwandeln
- 2. Knotenpotentiale definieren: Referenzknoten φ_0 = Masse = 0, Knotenpotential $U_{i0}=\varphi_i$ - φ_0 für jeden Knoten
- 3. Zweigströme definieren und durch Knotenpotentiale ausdrücken
- 4. Knotengleichungen aufstellen
- 5. LGS vom Rang k-1 für Knotenpotentiale lösen
- 6. Bei Bedarf: Zweigströme aus Knotenpotentialen berechnen

SCHRITT 1: NETZWERK VEREINFACHEN

- 1. Netzwerk wo möglich vereinfachen:
 - a) Parallele Widerstände zusammenfassen
 - b) Lineare Spannungsquellen in äquivalente Stromquellen umwandeln

SCHRITT 2A: NUMMERIERUNG DER KNOTEN

2. Knotenpotentiale definieren: Referenzknoten φ_0 = Masse = 0, Knotenpotential $U_{i0} = \varphi_i - \varphi_0$ für jeden Knoten

SCHRITT 2B: KNOTENPOTENTIALE

2. Knotenpotentiale definieren: Referenzknoten φ_0 = Masse = 0, Knotenpotential $U_{i0} = \varphi_i - \varphi_0$ für jeden Knoten

SCHRITT 3: ZWEIGSTRÖME DEFINIEREN

(UND DURCH KNOTENPOTENTIALE AUSDRÜCKEN)

3. Zweigströme definieren und durch Knotenpotentiale ausdrücken

SCHRITT 4: KNOTENGLEICHUNGEN AUFSTELLEN

K1:

K2:

K3:

GLEICHUNGEN LÖSEN

K1:
$$I_{q1} - I_1 - I_2 - I_4 = 0$$

$$K2: I_2 - I_3 - I_5 = 0$$

K3:
$$I_4 + I_5 - I_6 - I_{q6} = 0$$

Durch Einsetzen erhalten wir:

- 5. LGS vom Rang k-1 für Knotenpotentiale lösen
- 6. Bei Bedarf: Zweigströme aus Knotenpotentialen berechnen

Ströme:

$$I_1 = G_1 \varphi_1$$

$$I_2 = G_2 (\varphi_1 - \varphi_2)$$

$$I_3 = G_3 \varphi_2$$

$$I_4 = G_4 (\varphi_1 - \varphi_3)$$

$$I_5 = G_5 (\varphi_2 - \varphi_3)$$

$$I_6 = G_6 \varphi_3$$

K1:
$$I_{q1} - G_1 \varphi_1 - G_2 (\varphi_1 - \varphi_2) - G_4 (\varphi_1 - \varphi_3) = 0$$

K2:
$$G_2(\varphi_1 - \varphi_2) - G_3 \varphi_2 - G_5(\varphi_2 - \varphi_3) = 0$$

K3:
$$G_4(\varphi_1 - \varphi_3) + G_5(\varphi_2 - \varphi_3) - G_6\varphi_3 - I_{q6} = 0$$

POTENTIALE SORTIEREN

K1:
$$(G_1 + G_2 + G_4) \varphi_1 - G_2 \varphi_2 - G_4 \varphi_3$$

K2:
$$-G_2 \varphi_1 + (G_2 + G_3 + G_5) \varphi_2 - G_5 \varphi_3 = 0$$

K3:
$$-G_4 \varphi_1$$
 $-G_5 \varphi_2$ $+ (G_4 + G_5 + G_6) \varphi_3 = -I_{q6}$

 $= I_{q1}$

VORTEILE DES KNOTENPOTENTIALVERFAHRENS

1.

2

Vorsicht:

Kein Knotenpotialverfahren bei idealen Spannungsquellen

Wenn zwischen zwei Knoten eine ideale Spannungsquelle (ohne Widerstand) geschaltet ist, kann diese nicht in eine Stromquelle umgewandelt werden.

⇒ Basisverfahren

BESTIMMUNG DER KNOTEN-LEITWERT-MATRIX

1. jedes Element der **Hauptdiagonalen** $n_{i,i}$ ist die Summe der Leitwerte, die mit dem Knoten i verbunden sind

2. jedes andere Element $n_{i,k}$ ist die negative Summe der Leitwerte, die direkt die Knoten i und k verbinden

3. jedes Element des Quellstromvektors I_i enthält die Stromquellen, die mit dem Knoten i verbunden sind. (positiv, falls der Strom auf den Knoten zufließt und negativ, falls der Strom von dem Knoten wegfließt)

SCHRITT 1: HAUPTDIAGONALE = $\sum G_i$

SCHRITT 2: NEBENDIAGONALE = $-\sum G_{i,k}$

K1:
$$G_1 + G_2 + G_4$$
 φ_1 φ_1 φ_2 φ_3 φ_4 φ_3 φ_3 φ_4 φ_3 φ_3 φ_3 φ_4 φ_5 φ_6 φ_7 φ_8 φ_8

SCHRITT 3: STROMVEKTOR = $\sum I_q$ (+ wenn zufließend)

K1: $G_1 + G_2 + G_4$ $-G_2$ $-G_4$ φ_1 $G_2 + G_3 + G_5$ $-G_5$ φ_2 $G_2 + G_3 + G_5$ $G_4 + G_5 + G_6$ G_3 G_4 G_5 G_6 G_7 G_8 G_8 G_9 G_9

Prof. Dr.-Ing. Martin Lapke

ÜBERPRÜFUNG DER MATRIX

K1:
$$(G_1 + G_2 + G_4)$$
 $-G_2$ $-G_4$ φ_1 φ_2 $= \begin{bmatrix} I_{q1} \\ -G_2 \\ -G_4 \end{bmatrix}$ $+ (G_2 + G_3 + G_5)$ $-G_5$ $+ (G_4 + G_5 + G_6)$ $+ (G_4 + G_5 + G_6)$

- Die Matrix ist symmetrisch zur Hauptdiagonalen.
- Jedes Element auf der Hauptdiagonalen ist positiv.
- · Jedes Element, das nicht auf der Hauptdiagonalen liegt, ist negativ.
- Die Summe aller Elemente in einer Zeile ist die Summe der Leitwerte zwischen dem Knoten i und dem Referenzknoten.

AUFGABE

Stellen Sie mit dem Knotenpotentialverfahren die Matrix-gleichung für das folgende Netzwerk auf:

LÖSUNG

$$\begin{pmatrix} G_2 + G_5 & 0 & -G_5 \\ 0 & G_1 + G_3 & -G_3 \\ -G_5 & -G_3 & G_3 + G_4 + G_5 \end{pmatrix} \cdot \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \end{pmatrix} = \begin{pmatrix} I_{q2} \\ I_{q1} - I_{q2} \\ 0 \end{pmatrix}$$

.op

Fakultät TI

Technik und Informatik

WAS SIE MITNEHMEN SOLLEN...

Basisverfahren über Zweigströme

- verstehen
- Vor- und Nachteile kennen
- anwenden können

Maschenstromverfahren

- verstehen und Vorteile benennen können
- Direktaufstellung der Matrix mit Formelsammlung anwenden können
- Plausibilitätsprüfung des Ergebnisses anwenden

Knotenpotentialverfahren (Standardverfahren)

- verstehen und Vorteile benennen können
- Direktaufstellung der Matrix auswendig beherrschen
- Plausibilitätsprüfung des Ergebnisses anwenden

Anregung:

 Wenden Sie bei Übungsaufgaben die Maschenanalyse an und überprüfen Sie die Ergebnisse mit einem Spice-Simulator.

WANN WELCHES VERFAHREN?

