Inside and outside probabilities in PCFGs

Inside and outside probabilities in **PCFGs**

Outside: $\alpha_j(p,q) = P(w_{1(p-1)}, N^j_{pq}, w_{(q+1)m}|G)$ Inside: $\beta_j(p,q) = P(w_{pq}|N^j_{pq}, G)$

It is parameterized for certain node of the tree.

- So sentence having words W_1 to W_m , N^1 is a non-terminal that derives whole sequence of a words using the grammar.
- Now we can put parameter N^J, that N^J is having non-terminal NP, VP, JJ etc.
- Now assume that N^J is deriving sequence /words W_P to W_O.
- With respect to this assumption we can define inside and outside probability.

Example

Inside Outside Probabilities

 $\alpha_{NP}(4,5)$ for "the building" = $P(\text{The gunman sprayed}, NP_{4,5}, \text{ with bullets } | G)$ $\beta_{NP}(4,5)$ for "the building" = $P(\text{the building } | NP_{4,5}, G)$

Inside Probabilities: Base Step

$$\beta_j(p,q) = P(w_{pq}|N^j_{pq},G)$$

Base case

$$\beta_j(k,k) = P(w_{kk}|N^j_{kk},G)$$

$$\rightleftharpoons P(N^j \to w_k|G)$$

Base case for pre-terminals only

E.g., suppose $N^j = NN$ is being considered and $NN \rightarrow building$ is one of the rules with probability 0.5

$$\beta_{NN}(5,5) = P(building|NN_{5,5},G) = P(NN_{5,5} \rightarrow building|G)$$