PEU438-Fall2024 Compact Objects and High Energy Astrophysics

Lecturer: Karim Hammam

Due Date: October 26, 2024, 11:30 PM

TA: Abdelrahman Attia

Assignment: Number 2

Problem 1 Consider a sphere of ionized hydrogen plasma that is undergoing spherical gravitational collapse. The sphere is held at constant isothermal temperature T_0 , uniform density and constant mass M_0 during the collapse, and has decreasing radius R(t). The sphere cools by emission of bremsstrahlung radiation in its interior. At $t = t_0$ the sphere is optically thin.

- a. What is the total luminosity of the sphere as a function of M_0 , R(t) and T_0 while the sphere is optically thin?
- b. What is the luminosity of the sphere as a function of time after it becomes optically thick?
- c. Give an implicit relation, in terms of R(t), for the time t_1 when the sphere becomes optically thick.

Problem 2 Suppose X-rays are received from a source of known distance L with a flux F (ergcm⁻² s⁻¹). The X-ray spectrum has the form of the Figure. It is conjectured that these X-rays are due to bremsstrahlung from an optically thin, hot, plasma cloud, which is in hydrostatic equilibrium around a central mass M. Assume that the cloud thickness ΔR is roughly its radius R, $\Delta R \sim R$.

• Find R and the density of the cloud, ρ , in terms of the known observations and conjectured mass M.

Hint: Hydrostatic equilibrium gives constraint on ρ and R. From the virial theorem we know that $2\times$ (kinetic energy/particle) = - (gravitational energy/particle)

Problem 3

- (a) Determine the root-mean-square speed, $v_{\rm rms}$, and corresponding kinetic energy, E_k , of an electron in an HII region of electron temperature, $T_e = 10^4$ K.
- (b) If the electron lost all of its kinetic energy (came to a stop) during an encounter with a nucleus without recombining, what would be the frequency of the resulting emission and in what part of the spectrum does this frequency occur?
- (c) Compare the frequency of part (b) with a typical thermal Bremsstrahlung photon at a radio frequency of $\nu = 5 \times 10^9$ Hz from an HII region. Based on this comparison, what fraction of an electron's kinetic energy has actually been lost during an encounter with a nucleus?

Problem 4

- (a) Consider the volume emissivity of an optically thin plasma emitting thermal bremsstrahlung radiation at temperature T. Integrate the expression for $j_{\nu}(\nu)$ (37) from frequency ν_1 to $f\nu_1$ to obtain the power radiated in a fixed logarithmic frequency interval; if f = 10, your result would give the power in one decade as a function of frequency. Demonstrate that the power drops rapidly at both $h\nu \ll kT$ and $h\nu \gg kT$. Let g = Z = 1.
- (b) Find the frequency at which the power in a fixed logarithmic interval is at a maximum as a function of ν . To obtain a final solution, let the interval factor f become infinitely close to unity, $f = 1 + \varepsilon$ for $\varepsilon \ll 1$. How does $h\nu$ compare with kT at the maximum as $\varepsilon \to 0$?

Problem 5

- (a) Verify the result of the integration of $j_{\nu}(\nu, T)$ to obtain j(T) for g = 1; see (39).
- (b) The Orion nebula, an H II region, is radiating by thermal bremsstrahlung. Consider it to be spherical (radius $R=8\mathrm{LY}$), optically thin, and at temperature $T=8000~\mathrm{K}$ throughout. Let Z=1, g=1, and $n_\mathrm{e}=n_\mathrm{i}=6\times10^8~\mathrm{m}^{-3}$. Find the luminosity (W) of the entire nebula in terms of solar luminosities.
- (c) In what wavelength bands will the power from the Orion nebula be radiated?