CONTINUOUS ASSESMENT

COURSE TITLE: Mathematical Methods 1 (MTH 218)

INSTRUCTION: ANSWER ALL QUESTIONS.

1. Given that $u = x^2 + 2xy - y \ln z$ and $x = s + t^2$, $y = s - t^2$, z = 2t. Find $\frac{\partial u}{\partial s}$

a. $4x + 2y - \ln z$ b. $6s + 2t^2 - \ln 2t$ c. $4t(s - t^2) + 2t \ln 2t - \frac{(s - t^2)}{t}$ d. $4t^2 + 4s - \ln t$ e. none of the above

2. If $x = r \cos \theta$, $y = r \sin \theta$. Evaluate $\frac{\partial(x, y)}{\partial(r, \theta)}$.

a. r b. $\cos\theta$ c. $-r\sin\theta$ d. $\sin\theta$ e. none of the above

3. If $u = e^{xy}$, find the value of $\frac{\partial^2 u}{\partial x \partial y}$

a. xye^{xy} b. $xe^{xy}+1$ c. $xye^{xy}+1$ d. $e^{xy}(xy+1)$. E. none of the above

4. Expand $f(x, y) = \sin x \cos y$ at (0,0) ignoring terms higher than degree 3.

a. $\cos x \cos y + R_3$ b. $1 + R_3$ C. $x + R_3$ d. $0 + R_3$ e. none of the above

5. Simplify $\left(\frac{1+\cos 2\theta + i\sin 2\theta}{1+\cos 2\theta - i\sin 2\theta}\right)^{30}$ a. $\sin 30\theta + \cos 30\theta$ b. $\cos 60\theta + i\sin 60\theta$ c. $\cos 2\theta + i\sin 2\theta$

d. $1 - \cos\theta + i\sin 2\theta$ e. none of the above

6. Investigate the nature of the function $z = x^3 + xy + y^2$ at (0,0).

a. Relative minimum b. Relative maximum c. Saddle point d. none of the above d. all of the above.

 $f(x,y) = x^2 + xz + 2y^2, z = 2xy, \quad \frac{\partial f}{\partial x} \quad 2x + 4xy \quad 4x + 2xy \quad 2x - 4xy$ 7. If $4x - 2xy \quad \text{e. none of the above} \quad \text{d.}$

8. If z = a + ib, then \overline{z} is equal to a. a - ib b. $a + \overline{b}$ c. x + iy d. x - iy e. none of the above

9. Let $z'' = \cos n\theta + i \sin \theta$ and $\overline{z}'' = \cos n\theta - i \sin n\theta$. Find $z'' + \frac{1}{z''}$ a. $-2\cos n\theta$ b. $2\cos n\theta$

 $2\sin n\theta$ $-2\sin n\theta$ e. none of the above

10. Express in polar form, $z = 1 - i\sqrt{3}$. A. $2(\cos\frac{5\pi}{3} + i2\sin\frac{5\pi}{3})$ b. $-2(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3})$ c.

 $2(\cos\frac{5\pi}{3} - i\sin\frac{5\pi}{3})$ d. $2(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3})$ e. none of the above

11. If $z_1 = 2 - 3i$, $z_2 = 4 + 6i$. Find $z_1 - z_2$. a. $z_1 - 2i$ b. -2-9i c. 8+2i d. -8-9i e. none of the above

12. If $z_1 = 2 - 3i$, $z_2 = 4 + 6i$. Find $z_1 z_2$. a. 8+18i b. -8-18i c. 26 d. 2-6i

13. Find $\frac{5-2i}{3-i}$ a. $\frac{17}{10} + \frac{-1}{10}i$ b. $\frac{1}{5} + \frac{1}{5}i$ c. $\frac{2}{5} - \frac{2}{5}i$ d. $\frac{-2}{5} + \frac{1}{5}i$ e. none of the above

14. Find the conjugate of the complex number 2i(-3+8i). a 6+6i b. 6-6i c. 2-6i d. -16+6i e. none of the above

15. Evaluate $\int xe^x dx$ a. $e^x(x-1)+c$ b. x-1+c c. e^x-1+c d. e^x+1+c e. none of the above

16. Evaluate $\int \cos x dx$ a. $\cos x + c$ b. $\sin x + c$ c. $-\sin x + c$ d. $-\cos x + c$ e. none of the above

17. Find the definite integral $\int \sin^2 x dx$ a. $2x - \frac{1}{4}\sin x + c$ b. $x + \frac{1}{4}\sin x + c$ c. $\frac{1}{2}x - \frac{1}{4}\sin 2x + c$ d. $2\sin x - \cos x + c$ e. none of the above

18. Solve $\int \cos^3 x dx$ a. $3\cos 3x + x$ b. $\frac{\cos 3x}{3} + c$ c. $\sin 3x - 3\cos 3x + c$ d. $\sin x - \frac{1}{3}\sin^3 x + c$ e.

19. Evaluate $\frac{(2x+3)}{(x-1)(x-2)(2x-3)}dx$ a. $\ln(2x+3)+c$ b. $\ln\left\{\frac{(x-1)^5(x-2)^7}{(2x-3)^{12}}\right\}+c$ c. $\ln\frac{x-1}{x-2}+c$

 $\frac{(x-1)(x-2)}{2x-3} + c$ e. none of the above

20. Evaluate $\int \log x dx$ a. $\log x + c$ b. $x \log x + c$ c. $\frac{1}{x} + c$ d. $x \log x - x + c$ e. none of the above

21. Evaluate $\int x \sin x dx = -x \cos x + \sin x + c$ b. $\sin x + \cos x + c$ c. $\frac{\cos x}{x} + c$ d. $\sin x \cos x + c$ e. none of the above

22. Expand $f(x, y) = \sin x \cos y$ about the point (0,0) ignoring terms higher than degree3. a. $x + y + R_3$ b. $x^2 + y^2 + R_3$ c. $x + R_3$ d. $\sin x \sin y + R_3$ e. none of the above

23. A function f(x,y) is said to have a relative minimum value at a point $p(x_0,y_0)$ if a. $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}$ b. $\Delta f(x_0 + h, y_0 + k) = 0$ c. $\Delta f(x_0 + h, y_0 + k) < 0$ d. $\Delta f(x_0 + h, y_0 + k) > 0$ e. none of the above

24. At the stationary point (x_0, y_0) , a relative maximum exists if a. $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial x \partial y}$ b.

$$\frac{\partial^2 f}{\partial x^2}(x_0, y_0) < 0 \text{ and } \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} > \left[\frac{\partial^2 f}{\partial x \partial y} \right]^2 \text{ c. } \frac{\partial^2 f}{\partial x^2}(x_0, y_0) < 0 \text{ and } \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} < \left[\frac{\partial^2 f}{\partial x \partial y} \right]^2 \text{ d. } \frac{\partial y}{\partial y} > 0$$

e. none of the above

25. A saddle point exists if a. $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} = \left[\frac{\partial^2 f}{\partial x \partial y} \right]^2 \quad \text{b. } \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} > \left[\frac{\partial^2 f}{\partial x \partial y} \right]^2 \quad \text{c. } \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} \quad \text{d.}$

$$\frac{\partial^2 f}{\partial x^2} = \left[\frac{\partial^2 f}{\partial x \partial y} \right]^2$$
 e. none of the above

26. Determine the nature $f(x, y) = x^2 + 4x^2y^2 - 2x + 2y^2 - 1$ at point (-1,0), a. Relative maximum b. Relative minimum c. Saddle point d. all of the above e. none of the above

27. Evaluate $\int \frac{1}{x} dx$, a. $\ln x + c$ b. $x^2 + c$ c. $\frac{1}{x} + c$ d. $\frac{x}{2} + c$ e. none of the above

28. If z = x + iy and $\overline{z} = x - iy$, find $z\overline{z}$, a. x + y b. r^2 c. 2x + 2y d. x - y e. none of the above

29. Express $\cos^6\theta$ in multiple angles. a. $6\cos6\theta$ b. $\cos^6\theta + 6\cos\theta$ c. $\sin6\theta\cos6\theta$ d. $\frac{1}{32}[\cos6\theta + 6\cos4\theta + 15\cos2\theta + 10]$ e. none of the above

30. Solve $z^4 = -1$ a. $\cos \frac{\pi + 2\pi k}{4} + i \sin \frac{\pi + 2\pi k}{4}$ b. 1 c.0 d. -1 e. none of the above

31. A real valued function f(x) is said to be continuous at a point a if: a. f(x) is defined b. $\lim_{x \to a} f(x)$ exists c. $\lim_{x \to a} f(x) = f(a)$ d. all of the above e. none of the above

32. If $u=e^x\cos y$, find the value of $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial^2 y}$ $e^x\sin y$ $-e^x\cos y$ a. 1 b. 0 c. d. e. none of the above

33. Evaluate $\int e^x dx$. a. $e^x + c$ b. $\frac{e^x}{x} + c$ c. $xe^x + c$ d. $e^{x+1} + c$ e. none of the above

34. Solve $\int x^3 dx$ a. $3x^2 + c$ b. 2x + c c. $\frac{x^4}{4} + c$ d. $x^4 + c$ e. none of the above

35. If $z = \cos\theta + i\sin\theta$ and $\frac{1}{z} = \cos\theta - i\sin\theta$, find $z - \frac{1}{z}$ a. $\sin 2\theta$ b. $2i\sin\theta$ c. $\sin\theta + \cos\theta$ d. $\cos\theta - i\sin\theta$ e. none of the above