int main()

/*Keep on going never give up*/

第十一届全国大学生数学竞赛十套模拟试题

Math Competition Problem Solving

作者: Hoganbin

Email: hoganbin1995@outlook.com

微信公众号: 八一考研数学竞赛

更新: August 9, 2019

版本: 3.08

只有当自己想去做一件事的时候才能把事情做好!

目 录

1	模拟卷第		1	
2	模拟赛第	2 套	2	
3	模拟赛第	3 套	3	
4	模拟卷第	4 套	4	
5	模拟赛第	5 套	5	
6	模拟赛第	6 套	6	
7	模拟赛第	7 套	7	
8	模拟赛第	8 套	8	
9	模拟卷第	9 套	9	
10	模拟卷第	10 套	10	

第1章 模拟卷第1套

一、 填空题

1.
$$\lim_{x \to \infty} \frac{\sin x - \sin(\sin x)}{x^3} = \underline{\qquad}.$$

2.
$$y = \arctan(x^2) + e^x \tan x$$
, $y' =$

1.
$$\lim_{x \to \infty} \frac{\sin x - \sin(\sin x)}{x^3} =$$
_____.
2. $y = \arctan(x^2) + e^x \tan x$, 则 $y' =$ ____.
3. 设由 $x^y = y^x$ 确定 $y = y(x)$, 则 $\frac{dy}{dx} =$ ____.

4.
$$y = \cos^2 x$$
, $y^{(n)} = ____.$

$$5. \int \frac{1-x}{x^2} e^x \mathrm{d}x = \underline{\qquad}.$$

6.
$$\int_0^1 \frac{x \arctan(x^2)}{1 + x^4} dx = \underline{\qquad}.$$

4.
$$y = \cos^2 x$$
, 则 $y^{(n)} = \underline{\hspace{1cm}}$.

5. $\int \frac{1-x}{x^2} e^x dx = \underline{\hspace{1cm}}$.

6. $\int_0^1 \frac{x \arctan(x^2)}{1+x^4} dx = \underline{\hspace{1cm}}$.

7. 圆 $\begin{cases} 2x + 2y - z + 2 = 0 \\ x^2 + y^2 + z^2 - 4x - 2y + 2z \le 19 \end{cases}$ 的面积为_____.

8. 设 $z = f(2x - y, \frac{x}{y})$, f 可微, $f_1'(3, 2) = 2$, $f_2'(3, 2) = 3$,则 $dz \mid_{(x,y)=(2,1)} = \underline{\hspace{1cm}}$.

8. 设
$$z = f(2x - y, \frac{x}{y})$$
, f 可微, $f_1'(3, 2) = 2$, $f_2'(3, 2) = 3$,则 $dz \mid_{(x,y)=(2,1)} =$

- 二、 设 a 为正常数, 使得 $x^2 \le e^{ax}$ 对一切正数 x 成立, 求常数 a 的最小值.
- 三、 设 f(x) 在 [0,1] 上连续,且

$$\int_0^1 f(x) \mathrm{d}x = \int_0^1 x f(x) \mathrm{d}x$$

求证: 存在 $\xi \in (0,1)$, 使得 $\int_0^{\xi} f(x) dx = 0$

- 四、 过原点作曲线 $y = -\ln x$ 的切线, 求该切线、曲线 $y = -\ln x$ 与 x 轴所围的图形 绕 x 轴旋转一周所得的旋转体的体积.
- 六、 求二重积分

$$\iint\limits_{D} (\cos^2 x + \sin^2 y) \mathrm{d}x \mathrm{d}y$$

其中 $D: x^2 + y^2 \le 1, x \ge 0, y \le 0.$

第2章 模拟赛第2套

一、 若
$$z = f\left(\sqrt{x^2 + y^2}\right)$$
 满足 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$,其中 $f(u)$ 有连续的二阶导数,求 z .

- 二、 求原点到曲面 $(x-y)^2-z^2=1$ 的最短距离
- 三、 当 x > 0, y > 0, z > 0 时, 求函数 $u = \ln x + 2 \ln y + 3 \ln z$ 在球面 $x^2 + y^2 + z^2 = 6r^2$ 上的最大值, 并证明: 对任意正实数 a,b,c 有 $ab^2c^3 \leq 108\left(\frac{a+b+c}{6}\right)^6$ 成立.
- 四、 判断下列级数的敛散性:

$$(1) \sum_{n=1}^{\infty} (-1)^n \frac{n+1}{(n+1)\sqrt{n+1}-1} \qquad (2) \frac{1}{1^p} - \frac{1}{2^q} + \frac{1}{3^p} - \frac{1}{4^q} + \cdots$$

- 设正项级数 $\{a_n\}$, $\{b_n\}$ 满足 $b_n \cdot \frac{a_n}{a_{n+1}} b_{n+1} \ge \delta$ ($\delta > 0$ 为常数), 证明: $\sum_{n=0}^{\infty} a_n$
- 六、 求级数 $\sum_{n=0}^{\infty} \arctan \frac{2}{8n^2 4n 1}$ 的和.

七、 求
$$\sum_{n=1}^{\infty} \frac{n(n+1)}{2^{n-1}} x^{n-1}$$
 的和函数,并求 $\sum_{n=1}^{\infty} \frac{n(n+1)}{2^{n-1}}$

- 八、 把 $f(x) = \frac{1}{2} \ln \sqrt{\frac{1+x}{1-x}} + \frac{1}{2} \arctan x$ 展开成 x 的幂级数. 九、 求解下列微分方程:

$$(1) \left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$$

$$(2) xy' \ln x \cdot \sin y + \cos y \left(1 - x \cos y\right) = 0$$

(3)
$$\begin{cases} x(y'+1) + \sin(x+y) = 0 \\ y|_{x=\frac{\pi}{2}} = 0 \end{cases}$$

十、 求 xov 平面上一曲线, 使其过每点的切线同该点的向径及 ov 轴一起构成一个等腰 三角形.

第3章 模拟赛第3套

- 一、 确定正整数 n ,使极限 $I = \lim \frac{\int_{\sin x}^{0} (1+t^2)^{\frac{1}{\arcsin t}} dt}{e^{-x}\sin^n x}$ 存在,并求出此极限.
- 二、 讨论由 $\ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x}$ 在区域 $D = \left\{ (x, y) \middle| y < \frac{x}{2}, x > 0 \right\}$ 内确定的隐函数 y = f(x) 的极值点的极值,并说明是极大值还是极小值.
- 三、 设 y = f(x) 在 $\left[0, \frac{\pi}{2}\right]$ 上有二阶导数且 f'(0) = 0,证明:存在 $\xi_1, \xi_2, \xi_3 \in \left[0, \frac{\pi}{2}\right]$,使得

$$\frac{\pi}{2}\xi_2 \cdot f''(\xi_3) \cdot \sin(2\xi_1) = f'(\xi_1)$$

- 四、 求极限 $\lim_{n\to\infty}u_n$, 其中 $u_n=\left(1+\frac{1}{n^2}\right)\left(1+\frac{2}{n^2}\right)\cdots\left(1+\frac{n-1}{n^2}\right)\left(1+\frac{n}{n^2}\right)$.
- 五、 若 $z = \int_{xy}^{x^2 + u^2} \sin t \, \mathrm{d}t$, u = u(x, y) 可微,求 $\mathrm{d}z$.
- 六、一质点在力 $\overrightarrow{F}=\overrightarrow{F}(y+z,z+x,x+y+g(x,y))$ 作用下沿曲线 $\Gamma:AB$ 运动,A=A(1,0,0),B=B(2,3,3) 。已知 $\int_{\Gamma}g(x,y)\,\mathrm{d}z=-1$,求这个过程中 \overrightarrow{F} 所做的功 W .
- 七、 平面 π_1 为椭球面 $\frac{x^2}{4} + \frac{y^2}{4} + z^2 = 1$ 在点 $A(1,1,\frac{1}{2})$ 处的切平面,平面 π_2 是此椭球面的另一切面,切点为 B . π_2 平行于 π_1 ,求以点 A, B 及 C(2,0,0) 为顶点的三角形的面积.
- 八、 求级数 $\sum_{n=1}^{\infty} \left(1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + (-1)^{n+1} \frac{1}{n}\right) x^{2n}$ 的收敛半径及其和函数的单调性及凸性.
- 九、 求曲线 $C: y = f(x) = \int_0^1 |x t| \, dt, \ x \in [0, 1]$ 绕 x 轴旋转所成的曲面的表面积
- 十、 函数 f(x) 在 [a,b] 上连续,在 (a,b) 内有二阶导数, $x_0 = \frac{a+b}{2}$, $\left|f''(x)\right| \le 1$, $\forall x \in [a,b]$,估计近似公式 $\int_a^b f(x) \, \mathrm{d}x = f(x_0) \, (b-a)$ 的误差.

第 4 章 模拟卷第 4 套

填空题(每小题 5 分, 共 40 分)

- 1. 设当 $x \to 1$ 时, $1 \frac{m}{1 + x + \cdots x^{m-1}}$ 是 x 1 的等价无穷小,则 $m = \underline{\hspace{1cm}}$
- 2. 设 [x] 表示不超过 x 的最大整数部分,则 $\lim_{x\to 0} \left(\frac{\sin x}{|x|} 2[x]\right) = \underline{\qquad}$
- 3. 已知曲线 y = f(x) 在点 (1,0) 处的切线在 y 轴上的截距为-1,则 $\lim_{n \to \infty} \left[1 + f\left(1 + \frac{1}{n}\right) \right]^n = ____.$
- 4. $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{x^{\frac{\kappa}{n}}}{n+k} = \underline{\qquad}$
- 5. $\lim_{x \to -\infty} \frac{\sqrt{4x^2 + x 1} + x + 1}{\sqrt{x^2 + \sin x}} = \underline{\hspace{1cm}}$ 6. 已知曲线 $\begin{cases} x = e^t \sin t \\ y = e^t \cos t \end{cases}$ 在 (0,1) 处的法线方程 $\underline{\hspace{1cm}}$
- 7. 设 y = f(x) 为连续函数,且 $\int_0^{x^3-1} f(t) dt = x$,则 f(7) =_____.
- 8. $\lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{1}{(n+i+1)^2} + \frac{1}{(n+i+2)^2} + \dots + \frac{1}{(n+i+i)^2} \right] = \underline{\qquad}.$

$$\frac{f''''(\xi)}{6} = \frac{f(1) - f(-1)}{2} - f'(0)$$

设在闭区间上具有连续的二阶导数,证明存在实数,使得

$$\frac{4}{(b-a)^2} \left[f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) \right] = f''(\xi)$$

四、 设 y = f(x) 连续,且 $\lim_{x \to 0} \frac{f(x)}{x} = 2$,令

$$F(x) = \begin{cases} \int_{0}^{1} f(xt) dt & (x > 0) \\ \frac{\int_{0}^{x} \ln(1 + 2t) dt}{x} (x < 0) \\ 0 & (x = 0) \end{cases}$$

求 F'(0).

第5章 模拟赛第5套

一、求
$$\lim_{x\to 1} \frac{\ln\left(1+\sqrt[3]{x-1}\right)}{\arcsin 2\sqrt[3]{x^2-1}}$$

二、讨论 $f(x)=|x|\sin x$ 在 $x=0$ 处二阶导性.

- 三、 求证: $x^n + x^{n-1} + \cdots + x^2 + x = 1$ 在 (0,1) 内必有唯一根 $x_n (n = 2,3,\cdots)$,并 $\vec{\mathcal{R}} \lim_{n \to \infty} x_n$

四、
$$z = uv + \arcsin w$$
, 其中 $u = e^x$, $v = \cos y$, $w = \frac{x}{\sqrt{x^2 + y^2}}$, 求 dz.

五、 设
$$f(x) = \int_{-1}^{x} t |t| dt (x \ge -1)$$
 求 $f(x)$ 与 x 轴围成封闭圆形的面积

六、 在曲面
$$z = \sqrt{2 + x^2 + 4y^2}$$
 上求一点,使它到平面 $x - 2y + 3z = 1$ 的距离最短.

七、 证明:
$$0 < x < 1$$
 时 有 $\sqrt{\frac{1-x}{1+x}} \le \frac{\ln(1+x)}{\arcsin x}$.

- 八、 求幂级数 $\sum_{n=1}^{\infty} n^2 x^n$ 的和函数,并指出其收敛域.
- 九、 设空间曲线 C 是由立方体 $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$ 的表面与平面 $x + y + z = \frac{3}{2}$ 相交面构成, 试计算

$$\left| \oint_c (z^2 - y^2) dx + (x^2 - z^2) dy + (y^2 - x^2) dx \right|$$

十、 设函数 f(x) 在 [a,b] 上连续,在 (a,b) 内可微,试证存在 $\xi,\eta\in(a,b)$ 使

$$f'(\xi) = \frac{a-b}{2\eta} f'(\eta)$$

第6章 模拟赛第6套

- 一、 设 L_1, L_2 为两条直线, L_1 的方程为: $\frac{x-7}{1} = \frac{y-3}{2} = \frac{z-5}{3}$, L_2 过点 (2, -3, -1) 且与 x 轴正向夹角为 $\frac{\pi}{3}$,与 z 轴正向夹锐角,求 L_2 的方程 二、 求椭球面 $x^2 + 2y^2 + 3z^2 = 21$ 上点到平面 x + 4y + 6z = 30 的最远距离和最近距
- 若正项级数 $\{x_n\}$ 单调上升且有上界,试证: $\sum_{n=1}^{\infty} (1 \frac{x_n}{x_{n+1}})$ 收敛 .
- 证明: 若 $\lim_{n\to\infty} \left(n^{2n\sin\frac{1}{n}}a_n\right) = 1$, 则级数 $\sum_{n=1}^{\infty} a_n$ 收敛. 四、
- 五、 设函数 f(x) 可微, 且对任何实数 a,b 满足 $f(a+b) = e^a f(b) + e^b f(a)$, 且 $f'(0) = e \circ \Re f(x) .$
- 六、 求由曲面 $z = x^2 + y^2$, $z = 2(x^2 + y^2)$, y = x, $y = x^2$ 所围立体的体积.
- 七、 求函数 $f(x, y, z) = x^2 + y^2 + z^2$ 在区域 $x^2 + y^2 + z^2 \le x + y + z$ 内的平均值. $\iiint f(x, y, z) dv$ 注: $\frac{\Omega}{V_{\Omega}}$ 称为 f(x, y, z) 在 Ω 内的平均值 求密度为 ρ 的均匀圆柱 $x^2 + y^2 \le a^2, z = \pm h$ 对于直线 x = y = z 的转动惯量.
- 九、 计算

$$\iint_{S} (x - y + z) dy dz + (y - z + x) dz dx + (z - x + y) dx dy$$

其中 S: |x-y+z| + |y-z+x| + |z-x+y| = 1, 外侧为正.

第7章 模拟赛第7套

一、计算

$$I = \iint\limits_{D} \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} \mathrm{d}x \mathrm{d}y$$

其中 $D: \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$

二、 设 p(x) 是 [a,b] 上非负连续函数, f(x),g(x) 在 [a,b] 上连续且单调递增,证明:

$$\int_a^b f(x) \cdot p(x) \mathrm{d}x \cdot \int_a^b g(x) \cdot p(x) \mathrm{d}x \le \int_a^b p(x) \mathrm{d}x \cdot \int_a^b f(x) \cdot g(x) \cdot p(x) \mathrm{d}x$$

三、 求证:

$$\int_{x^2 + y^2 \le 1} \int f(x + y) dx dy = \int_{-\sqrt{2}}^{\sqrt{2}} \sqrt{2 - u^2} \cdot f(u) du$$

四、 计算由曲面 $\Sigma: (a_1x + b_1y + c_1z)^2 + (a_2x + b_2y + c_2z)^2 + (a_3x + b_3y + c_3z)^2 =$ $h^2 \text{ 所围立体的体积, 其中 } h > 0, \Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0$

五、 计算

$$I = \iiint \frac{2z}{\sqrt{x^2 + y^2}} \mathrm{d}v$$

其中 Ω : 由 yoz 面上的区域 D 绕 z 轴旋转一周而成的空间区域,其中 D + $\{(y,z) \, \big| \, y^2 + z^2 \leq 1 \,, z \geq 2y - 1, y > 0, z > 0 \}$.

六、 已知球上任一点的密度与该点到球的距离成正比,求球关于切线的转动惯量.

七、 设 $du = (3x^2 - 2xy + y^2)dx - (x^2 - 2xy + 3y^2)dy$, 求 u(x, y).

八、 证明: 若函数 P(x, y), Q(x, y) 在光滑曲线 C 上连续,则

$$\left| \int\limits_C P \, \mathrm{d}x + Q \, \mathrm{d}y \right| \le M \cdot \bar{s}$$

其中 \bar{s} 是 C 的弧长, $M = \max_{(x,y) \in C} \{ \sqrt{P^2(x,y) + Q^2(x,y)} \}$.

九、计算

$$\int_C x \sqrt{x^2 - y^2} \mathrm{d}s$$

其中 C 为双扭线 $(x^2 + y^2)^2 = h^2(x^2 - y^2)$ 的右半部分 $(x \ge 0)$.

第8章 模拟赛第8套

一、 设 f(x) 在 [a,b] 上连续可导, f(a) = f(b) = 0, 求证:

$$\int_{a}^{b} |f(x)| \mathrm{d}x \le \frac{(b-a)^2}{4} \max_{a \le x \le b} \left| f'(x) \right|$$

二、 设函数在 [0,1] 上连续, 求

$$\lim_{n\to\infty} \left[\int_0^1 |f(x)|^n dx \right]^{\frac{1}{n}}$$

 \equiv , $\vec{x} \int_0^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} \mathrm{d}x$

四、 设函数 f(x,y,z) 在区域 $\Omega: x^2+y^2+z^2 \le 1$ 连续, $\Omega_r: x^2+y^2+z^2 \le r^2 (0 < r \le 1)$,求极限

$$\lim_{r\to 0} \frac{3}{r^3} \iiint\limits_{V_r} f(x,y,z) \mathrm{d} v$$

五、证明: 若 Σ 是光滑闭曲面, \vec{l} 是任意常向量,则有

$$\iint_{\Sigma} \cos(\vec{n}, \vec{l}) ds = 0$$

其中 \vec{n} 是曲面 Σ 的外法线。

六、 试确定 a 值,使方程 $\frac{x^2}{2} - \ln(1 + x^2) = a$ 在 [-1, 1] 上有两个相异的实根.

七、 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内大于零并满足,又曲线 y = f(x) 与 x = 1, y = 0 所围成的图形 S 的面积为 2,求函数 y = f(x) 及图形 S 绕 x 轴旋转一周 所得的旋转体体积。

八、 设函数 f(x) 满足 f(1) = 1,且对 x > 1 时,有 $f'(x) = \frac{1}{x^2 + f^2(x)}$,证明: $(1) \lim_{x \to \infty} f(x) \text{ 存在}, (2) \lim_{x \to \infty} f(x) \le 1 + \frac{\pi}{4}$

九、 设 $f(x) = \frac{1}{1-x-x^2}$, $a_n = \frac{1}{n!} f^{(n)}(0)$, 证明级数 $\sum_{n=0}^{\infty} \frac{a_{n+1}}{a_n a_{n+2}}$ 收敛, 并求其和。

+, $\Re \lim_{n\to\infty} \sum_{k=1}^n \frac{n+k}{n^2+k}$.

第9章 模拟卷第9套

一、 计算下列不定积分
(a).
$$\int \frac{1+\sin x}{1+\sin x + \cos x} dx$$

(b).
$$\int \frac{1}{1+x^2} \arctan\left(\frac{1+x}{1-x}\right) dx$$

(c).
$$\int \arcsin \sqrt{\frac{x}{1+x}} dx$$

(c).
$$\int \arcsin \sqrt{\frac{x}{1+x}} dx$$
二、求下列定积分的值
(a).
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{1+(\tan x)^{\alpha}} dx$$
(其中 α 为任意常数)

(b).
$$\int_0^1 t |t - x| dt$$

(c).
$$\int_{0}^{\pi} t |t - x| dt$$

$$(c). \int_{0}^{\pi} \sin^{n-1} x \cos(n+1) x dx$$

三、 求广义积分

$$\int_0^{+\infty} \frac{1}{(1+x^2)(1+x^{\alpha})} \mathrm{d}x \quad (\sharp \pm \alpha \neq 0)$$

四、 设函数满足: $f'(x) = g(x), g'(x) = 2e^x - f(x), f(0) = 0, g(0) = 2$, 求

$$\int_0^{\pi} \left(\frac{g(x)}{1+x} - \frac{f(x)}{(1+x)^2} \right) dx$$

设 f(x) 连续,且常数 a > 0,证明

$$\int_{1}^{a} f(x^{2} + \frac{a^{2}}{x^{2}}) \frac{1}{x} dx = \int_{1}^{a} f(x + \frac{a^{2}}{x}) \frac{1}{x} dx$$

六、 设 f(x) 在上可导,且 f'(x) > 0,f(a) > 0 。试证: 对图中所示两个面积函数

A(x), B(x), 存在唯一的 $\xi \in [a,b]$, $s.t. \frac{A(\xi)}{B(\xi)} = 2009$.

七、 在平面
$$x + y + z + 1 = 0$$
 内,求一直线,使它通过直线
$$\begin{cases} y + z + 1 = 0 \\ x + 2z = 0 \end{cases}$$
 与平面 的交点,且与已知直线垂直.

第 10章 模拟卷第 10 套

一、 设 f(x) 在 [0,1] 上连续,且单调减少, f(x) > 0 . 证明: 对满足的 $0 < \alpha < \beta < 1$ 任何 α, β ,有:

$$\beta \int_0^{\alpha} f(x) dx > \alpha \int_{\alpha}^{\beta} f(x) dx$$

- 二、 从抛物线 $y = x^2 1$ 上的点 P 引抛物线 $y = x^2$ 的切线,证明该切线与 $y = x^2$ 所围成的面积与 P 点的位置无关。
- 三、 讨论下列级数的敛散性:

$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{(-1)^n}{n^p} \right) (p > 0)$$

- 四、设 a_1, a_2, \dots, a_n 为n个实数,并满足: $a_1 \frac{a_2}{3} + \dots + (-1)^{n-1} \frac{a_n}{2n-1} = 0$,证明: 方程 $a_1 \cos x + a_2 \cos 3x + \dots + a_n \cos (2n-1) x = 0$ 在 $\left(0, \frac{\pi}{2}\right)$ 内至少有一实根
- 五、设 $f(x) = \begin{cases} \frac{2}{x^2} (1 \cos x), x < 0 \\ 1, x = 0 \end{cases}$,讨论 f(x) 在 x = 0 处的连续性与可导性。 $\frac{1}{x} \int_0^x \cos t^2 dt, x > 0$
- 六、 设 m,n 为正整数,且其中至少有一个为奇数,证明: $\int\limits_{x^2+y^2\leq a^2} x^m y^n dx dy = 0$
- 七、 设有一容器内有 100L 溶液, 其中含有 5 kg 的净盐, 若每分钟向容器以匀速注入 3L 净水, 同时以每分钟 2L 的速度放出浓度均匀的溶液。问: 过程开始后一个小时,溶液中还有多少净盐?