

Mining Earth's Digital Strata for Geospatial AI: Bridging Data Collection, Synthesis, and Self-Training for Intelligent Earth Observation

Aswathnarayan "Ash" Radhakrishnan, Advisors: Dr. Jim Davis, Dr. Hari Subramoni {radhakrishnan.39, davis.1719, subramoni.1}@osu.edu

FRAMEWORK OBJECTIVES

Develop a comprehensive framework spanning data collection, synthesis, and model adaptation for Earth observation tasks

- 1. How can we efficiently extract task-specific geospatial data from crowd-sourced resources?
- 2. Can generative models bridge distribution gaps with minimal computational resources?
- 3. How do we design self-training techniques specific to geospatial data uncertainties?

Impact:

Advancing Intelligent and Automated Environmental monitoring pipelines for applications in agriculture, urban planning, disaster response, and climate research

MOTIVATION

Static Framework

Temporal Framework

planet.

Challenges in Geospatial Al

- Task Data Scarcity: Abundant raw imagery but limited task-specific labeled data
- Annotation Noise: Crowd-sourced mapping data contains inconsistencies, gaps, and temporal misalignments.
- **Distribution Gap:** Foundation models trained on web data fail to capture the features of realworld satellite imagery distributions
- Multi-modal Integration: Diverse data types (optical, radar, vector) lack unified analysis frameworks and pipelines for scientific analysis

KEY CHALLENGES

The Paradox of Earth Observation:

Petabytes of data collected daily yet limited actionable intelligence. "Today's petabyte-scale data collection infrastructure has outpaced our manual analytical capabilities"

SATELLITE DATA COLLECTION AND GENERATION FRAMEWORKS

Data Collection Frameworks

Static Object Collection Framework:

- Leverages OpenStreetMap + Satellite Imagery APIs
- Extracts Vectorized Geometries of mapped objects

Temporal Framework for Dynamic Regions:

- Historical OSM data analysis for Change Detection
- Spatio-Temporal Bounds Evolution tracking with configurable sampling frequencies
- Customizable Pre-Processing Pipelines for Time-Series Alignment and GeoRegistration

Data Generation Frameworks FewSatDiff:

Enhanced zero to few-shot image generation pipelines to bridge geospatial data distribution gaps in diffusion models with minimal task data for Domain Adaptation

Resource Adaptable Generation Pipelines:

- 1. Enhanced Zero-Shot Synthesis: Prompt-Augmentation for domain-specific characteristics + CLIP Similarity filtering
- 2. Few-Shot Domain Adaptation: Class-specific + ReferenceImage-Guided InPainting Pipelines
- 3. Domain-Targeted Pretraining: Pretraining pipelines with VLM Autolabeling for captioning Geospatial data properties for usage in high compute resource scenarios

Crafting Worlds: Geospatial Diffusion

Figure 1. Distribution shifts between real-world satellite imagery vs. Stable Diffusion generated synthetic images.

ENHANCED SELF-TRAINING FRAMEWORK

Enhanced Self-Training (EST)

- Weighted SplitBatch Sampler: Separates mini-batches with configurable ratios of labeled vs. pseudo-labeled data
- Dataset-Adaptive Model Calibration: Temperature-scaling optimization to ensure confidence scores reflect true reliability
- Entropy-Based Pseudo-Label Selection: Uses normalized entropy as principled uncertainty measure with ROC-optimized thresholds

OVERVIEW OF KEY RESULTS & CONTRIBUTIONS

- End-to-end Satellite imagery Autolabeling Pipeline reducing annotation burden
- Vector-format Deep Learning Pipelines enabling easy GIS integrations
- Licensed Invention available on GitHub (github.com/osucvl/Construction-Site-Satellite-Imagery-Collection)
- Resource-efficient generative modeling techniques achieving 3.5× lower FID for satellite imagery domains (84.45 \rightarrow 27.77 \downarrow)
- Modular, plug-and-play Pseudo-labeling Teacher-Student Training
 Pipelines
- Dataset-adaptive Parameter Tuning & Open-Set Filtering to handle noise in both real-world and synthetic data

Table 5.1: Performance comparison between related work NoisyStudent (NS) [32] and our Enhanced Self-Training (EST) approach across different datasets.

Table 4.2: Comparison of different pipelines across few-shot settings on EuroSat and UC Merced.

\mathbf{Method}	$\mathbf{Dataset}$	$1 ext{-shot}$	3-shot	$5 ext{-shot}$	$\mid 10 ext{-shot}$
Few-Shot Real only	EuroSat	21.62%	53.04%	68.28%	80.20%
	UC Merced	56.67%	78.10%	88.81%	93.33%
RG + GLIDE	EuroSat	52.60%	69.00%	73.02%	85.16%
	UC Merced	63.10%	85.95%	88.57%	94.76%
DB GSD	EuroSat	53.60%	77.12%	85.92%	97.50%
	UC Merced	80.95%	88.33%	90.71%	96.43%

Table 4.3: Comparison with existing geospatial foundation models on 10-shot classification tasks.

 Method
 EuroSat
 UC Merce

 DiffSat [13] + GeoRSCLIP [34]
 97.80%
 92.48%

CURRENT WORK

Real-World Applications of Unified Frameworks

- Crop Growth Stage Analysis: Working on monocular depth estimation approaches from drone imagery using Image-conditioned Diffusion techniques
- Digital-Twin Modeling: Integrating multi-source multi-modal sensing information to simulate digital twins of real-world large areas of interest such as agricultural farms or solar power plants enabling experimentation on downstream domain-specific tasks in a simulated twin of the real-world environment
- Shallow Water Bathymetry: Working on geospatial physics constrained deep learning techniques for mapping the bottom of the seafloor depths along shallow water coastal regions from multi-modal remote sensing data

Radhakrishnan, A., et al., "A Framework for Collecting and Classifying Objects in Satellite Imagery," ISVC 2019.
 Motlagh, N.K., Radhakrishnan, A., et al., "A Framework for Semi-automatic Collection of Temporal Satellite Imagery for Analysis of Dynamic Regions," ICCV Workshop: Learning to Understand Aerial Imagery 2021.

Invention Disclosure: Automated Time-series Imagery Extraction of Construction Zones Using OpenStreetMap (Ref. No. T2021-034).

(Ref. No. 12021-034).
 Radhakrishnan, A., et al., "Design Choices for Enhancing Noisy Student Self-Training," WACV 2024.