## ( ) Preliminary Specifications( v ) Final Specifications

| Module     | 15.6" (15.55) HD 16:9 Color TFT-LCD with LED Backlight design |
|------------|---------------------------------------------------------------|
| Model Name | G156XTN02.0                                                   |

| Customer Date                                                 | Approved by Date                                         |
|---------------------------------------------------------------|----------------------------------------------------------|
|                                                               | <u>Sean Lin</u> 2018/02/09                               |
| Checked &<br>Approved by                                      | Prepared by                                              |
|                                                               | Sandy Su 2018/02/09                                      |
| Note: This Specification is subject to change without notice. | General Display Business Unit / AU Optronics corporation |



## **Contents**

| 1. Operating Precautions                                 | 4  |
|----------------------------------------------------------|----|
| 2. General Description                                   | 5  |
| 2.1 Display Characteristics                              | 5  |
| 2.2 Optical Characteristics                              | 6  |
| 3. Functional Block Diagram                              | 11 |
| 4. Absolute Maximum Ratings                              |    |
| 4.1 Absolute Ratings of TFT LCD Module                   | 12 |
| 4.2 Absolute Ratings of Environment                      | 12 |
| 5. Electrical Characteristics                            | 13 |
| 5.1 TFT LCD Module                                       | 13 |
| 5.2 Backlight Unit                                       | 16 |
| 6. Signal Characteristic                                 | 17 |
| 6.1 Pixel Format Image                                   | 17 |
| 6.2 Integration Interface Requirement                    | 18 |
| 6.3 Interface Timing                                     | 20 |
| 6.4 Power ON/OFF Sequence                                | 21 |
| 7. Reliability Test Criteria                             | 24 |
| 7.1 Vibration Test                                       | 24 |
| 7.2 Shock Test                                           | 24 |
| 7.3 Reliability Test                                     | 24 |
| 8. Mechanical Characteristics                            | 25 |
| 8.1 LCM Outline Dimension (Front View)                   | 25 |
| 8.2 LCM Outline Dimension (Rear View)                    | 26 |
| 9. Label and Packaging                                   | 27 |
| 9.1 Shipping Label (on the rear side of TFT-LCD display) | 27 |
| 9.2 Carton Package                                       | 28 |
| 9.3 Handling guide                                       | 29 |
| 10. Appendix: EDID Description                           | 32 |
| 11 Safaty                                                | 35 |



## **Record of Revision**

| Versio | n and Date | Page | Old description                         | New Des   | cripti   | on       |         |
|--------|------------|------|-----------------------------------------|-----------|----------|----------|---------|
| /1.0   | 2018/01/05 | All  | Final Edition for Customer              |           |          |          |         |
|        |            |      | EDID                                    | Update ED | ID       |          |         |
|        |            |      | Address Value Value Value               | Address   | Value    | Value    | Value   |
|        |            |      | 48 DF 11011111 223<br>49 13 00010011 19 | 48        | 00       | 00000000 | 0       |
|        |            |      | 49 13 00010011 19<br>4A 56 01010110 86  | 4A        | 00       | 00000000 | 0       |
|        |            |      | 4B C0 11000000 192                      | 4B        | 0F       | 00001111 | 15      |
|        |            |      | 4C 50 01010000 80                       | 4C        | 00       | 00000000 | 0       |
| .1     | 2018/02/09 | P.33 | 4E 30 00110000 48                       | 4E        | 00       | 00000000 | 0       |
| • •    | 2010/02/03 | P.34 | 4F 30 00110000 48<br>50 08 00001000 8   | 4F<br>50  | 00       | 00000000 | 0       |
|        |            |      | 51 0A 00001010 10                       | 51        | 00       | 00000000 | 0       |
|        |            |      | <b>52</b> 31 00110001 49                | 52        | 00       | 00000000 | 0       |
|        |            |      | <b>54</b> 58 01011000 88                | 54        | 00       | 00000000 | 0       |
|        |            |      | 55 C1 11000001 193<br>56 10 00010000 16 | 55        | 00       | 00000000 | 0       |
|        |            |      | 59 18 00011000 24                       | 56<br>59  | 00<br>20 | 00000000 | 0<br>32 |
|        |            |      | <b>7F</b> EF 11101111 239               | 7F        | FC       | 11111100 | 252     |
|        |            |      |                                         |           |          |          |         |
|        |            |      |                                         |           |          |          |         |
|        |            |      |                                         |           |          |          |         |
|        |            |      |                                         |           |          |          |         |
|        |            |      |                                         |           |          |          |         |

#### 1. Operating Precautions

- 1) Since front polarizer is easily damaged, please be cautious and not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED Reflector edge. Instead, press at the far ends of the LED Reflector edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) TFT-LCD Module is not allowed to be twisted & bent even force is added on module in a very short time. Please design your display product well to avoid external force applying to module by end-user directly.
- 12) Small amount of materials without flammability grade are used in the TFT-LCD module. The TFT-LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950-1 or UL60950-1), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time.
- 14) Continuous operating TFT-LCD Module under high temperature environment may accelerate LED light bar exhaustion and reduce luminance dramatically.
- 15) The data on this specification sheet is applicable when TFT-LCD module is placed in landscape position.
- 16) Continuous displaying fixed pattern may induce image sticking. It's recommended to use screen saver or moving content periodically if fixed pattern is displayed on the screen.

#### **AU OPTRONICS CORPORATION**

#### 2. General Description

G156XTN02.0 is a Color Active Matrix Liquid Crystal Display composed of a TFT-LCD display, a driver circuit, and LED backlight system. The screen format is intended to support 16:9 HD, 1366(H) x768(V) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are eDP (Embedded DisplayPort) interface compatible. G156XTN02.0 is designed for a display unit of notebook style personal computer and industrial machine.

#### 2.1 Display Characteristics

The following items are characteristics summary on the table under 25°C condition:

| Items                                                                                 | Unit                 |                                                            | Specifi  | cations |       |  |  |  |
|---------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------|----------|---------|-------|--|--|--|
| Screen Diagonal                                                                       | [mm]                 | 15.6" (15.55)                                              |          |         |       |  |  |  |
| Active Area                                                                           | [mm]                 | 344.23 x193.5                                              | 4        |         |       |  |  |  |
| Pixels H x V                                                                          |                      | 1366x3(RGB) x 768                                          |          |         |       |  |  |  |
| Pixel Pitch                                                                           | [mm]                 | 0.252X0.252                                                |          |         |       |  |  |  |
| Pixel Format                                                                          |                      | R.G.B. Vertica                                             | l Stripe |         |       |  |  |  |
| Display Mode                                                                          |                      | Normally Whit                                              | е        |         |       |  |  |  |
| White Luminance (I <sub>LED</sub> = 24 mA)<br>(Note: I <sub>LED</sub> is LED current) | [cd/m <sup>2</sup> ] | 220 typ. (5 points average)<br>187 min. (5 points average) |          |         |       |  |  |  |
| Luminance Uniformity                                                                  |                      | 1.25 Max. (5 p                                             | oints)   |         |       |  |  |  |
| Contrast Ratio                                                                        |                      | 400 typ.                                                   |          |         |       |  |  |  |
| Response Time                                                                         | [ms]                 | 8 Typ. / 16 Max.                                           |          |         |       |  |  |  |
| Nominal Input Voltage VDD                                                             | [Volt]               | +3.3 Typ.                                                  |          |         |       |  |  |  |
| Power Consumption                                                                     | [Watt]               | 3.5 (Include Logic and BLU Power)                          |          |         |       |  |  |  |
| Weight                                                                                | [Grams]              | 380 Max.                                                   |          |         |       |  |  |  |
|                                                                                       |                      |                                                            | Min.     | Тур.    | Max.  |  |  |  |
| Physical Size                                                                         | [mm]                 | Length                                                     | 359.0    | 359.5   | 360.0 |  |  |  |
| Include bracket.                                                                      | []                   | Width                                                      | 223.3    | 223.8   | 224.3 |  |  |  |
|                                                                                       |                      | Thickness                                                  |          |         | 3.2   |  |  |  |
| Electrical Interface                                                                  |                      | eDP1.2                                                     |          |         |       |  |  |  |
| Glass Thickness                                                                       | [mm]                 | 0.4                                                        |          |         |       |  |  |  |
| Surface Treatment                                                                     |                      | Anti Glare, hai                                            | dness 3H |         |       |  |  |  |
| Support Color                                                                         |                      | 262K colors ( RGB 6-bit )                                  |          |         |       |  |  |  |
| Temperature Range Operating Storage (Non-Operating)                                   | [°C]<br>[°C]         | 0 to +50<br>-20 to +60                                     |          |         |       |  |  |  |
| RoHS Compliance                                                                       |                      | RoHS Complia                                               | ance     |         |       |  |  |  |



## 2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25℃ (Room Temperature):

| Item                   |               | Symbo                            | Conditions                           | Min.     | Тур.     | Max.  | Unit     | Note     |
|------------------------|---------------|----------------------------------|--------------------------------------|----------|----------|-------|----------|----------|
| White Lumina           | ince          |                                  | ILED=24mA<br>5 points average        | 187      | 220      | -     | [cd/m2]  | 1, 4, 5. |
| Viewing Angle          |               | θ <sub>R</sub><br>θ <sub>L</sub> | Horizontal (Right)<br>CR = 10 (Left) | 40<br>40 | 45<br>45 | -     | [degree] | 4.0      |
| viewing Angle          | Viewing Angle |                                  | Vertical (Upper)<br>CR = 10 (Lower)  | 10<br>30 | 15<br>35 | -     |          | 4,9      |
|                        |               | <b>δ</b> 5P                      | 5 points                             | -        | -        | 1.25  |          | 1, 3, 4  |
| Luminance Uniformity   |               | <b>δ</b> 13P                     | 13 points                            | -        | -        | 1.60  |          | 2, 3, 4  |
| Contrast Ratio         |               | CR                               |                                      | 300      | 400      | -     |          | 4,6      |
| Cross talk             |               | %                                |                                      | -        | -        | 4     | %        | 4,7      |
| Response Time          |               | T <sub>RT</sub>                  | Raising + Falling                    | -        | 8        | 16    | [msec]   |          |
|                        | Red           | Rx                               |                                      | 0.545    | 0.575    | 0.605 |          |          |
|                        |               | Ry                               |                                      | 0.315    | 0.345    | 0.375 |          |          |
| Coloni                 | Green         | Gx                               |                                      | 0.310    | 0.340    | 0.370 |          |          |
| Color/<br>Chromaticity | Green         | Gy                               | (CIE 1931)                           | 0.540    | 0.570    | 0.600 |          |          |
| Coordinates            | Dive          | Bx                               | (OIL 1331)                           | 0.130    | 0.160    | 0.190 |          | 4        |
|                        | Blue          | Ву                               |                                      | 0.105    | 0.135    | 0.165 |          |          |
|                        | White         | Wx                               |                                      | 0.283    | 0.313    | 0.343 |          |          |
|                        | VVIIILG       | Wy                               |                                      | 0.299    | 0.329    | 0.359 |          |          |
| NTSC                   |               | %                                |                                      | 35       | 45       | -     |          |          |



Note 1: 5 points position (Ref: Active area)



Note 2: 13 points position (Ref: Active area)



**Note 3:** The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

|                   | Maximum Brightness of five points     |
|-------------------|---------------------------------------|
| δ <sub>W5</sub> = | Minimum Brightness of five points     |
| 2 - 2             | Maximum Brightness of thirteen points |
| $\delta_{W13} =$  | Minimum Brightness of thirteen points |

#### **AU OPTRONICS CORPORATION**

#### Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.



**Note 5**: Definition of Average Luminance of White (Y<sub>L</sub>):

Measure the luminance of gray level 63 at 5 points  $Y_L = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$ L (x) is corresponding to the luminance of the point X at Figure in Note (1).

Note 6: Definition of contrast ratio (CR): Contrast ratio is calculated with the following formula.

Contrast ratio (CR)=  $\frac{\text{Brightness on the "White" state}}{\text{Brightness on the "Black" state}}$ 



Note 7: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where

Y<sub>A</sub> = Luminance of measured location without gray level 0 pattern (cd/m2)

Y<sub>B</sub> = Luminance of measured location with gray level 0 pattern (cd/m2)



Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.



#### **AU OPTRONICS CORPORATION**

#### Note 9: Definition of viewing angle

Viewing angle is the measurement of contrast ratio  $\geq$  10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as below: 90° ( $\theta$ ) horizontal left and right, and 90° ( $\Phi$ ) vertical high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated to its center to develop the desired measurement viewing angle.



### 3. Functional Block Diagram

The following diagram shows the functional block of the 15.6 inches wide Color TFT/LCD 30 Pin.





#### 4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

#### 4.1 Absolute Ratings of TFT LCD Module

| Item                    | Symbol | Min  | Max  | Unit   | Conditions |
|-------------------------|--------|------|------|--------|------------|
| Logic/LCD Drive Voltage | Vin    | -0.3 | +4.0 | [Volt] | Note 1,2   |

## **4.2 Absolute Ratings of Environment**

| Item                  | Symbol | Min | Max | Unit  | Conditions |
|-----------------------|--------|-----|-----|-------|------------|
| Operating Temperature | TOP    | 0   | +50 | [°C]  | Note 4     |
| Operation Humidity    | HOP    | 5   | 95  | [%RH] | Note 4     |
| Storage Temperature   | TST    | -20 | +60 | [°C]  | Note 4     |
| Storage Humidity      | HST    | 5   | 95  | [%RH] | Note 4     |

Note 1: At Ta (25°℃)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).





#### 5. Electrical Characteristics

#### 5.1 TFT LCD Module

#### 5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenquency under 60Hz.

| Symbol | Parameter                                      | Min | Тур | Max  | Units       | Remark |
|--------|------------------------------------------------|-----|-----|------|-------------|--------|
| VDD    | Logic/LCD Drive<br>Voltage                     | 3.0 | 3.3 | 3.6  | [Volt]      |        |
| PDD    | VDD Power                                      | -   | -   | 0.85 | [Watt]      | Note 1 |
| IDD    | IDD Current                                    | -   | -   | 260  | [mA]        | Note 1 |
| Irush  | LCD Inrush Current                             | -   | 1   | 2000 | [mA]        | Note 2 |
| VDDrp  | Allowable<br>Logic/LCD Drive<br>Ripple Voltage | -   | -   | 100  | [mV]<br>p-p |        |

Note 1: Maximum Measurement Condition: Black Pattern at 3.3V driving voltage. (Pmax=V3.3 x Iblack)

Note 2: Measure Condition





VDD rising time

#### **5.1.2 Signal Electrical Characteristics**

Input signals shall be low or High-impedance state when VDD is off. Signal electrical characteristics are as follows;

#### **Display Port main link signal:**



|                      | Display port main link                     |     |     |      |      |  |  |  |
|----------------------|--------------------------------------------|-----|-----|------|------|--|--|--|
|                      |                                            | Min | Тур | Max  | unit |  |  |  |
| VCM                  | RX input DC Common Mode Voltage            |     | 0   |      | V    |  |  |  |
| VDiff <sub>P-P</sub> | Peak-to-peak Voltage at a receiving Device | 100 |     | 1320 | mV   |  |  |  |

Folow as VESA display port standard V1.1a

G156XTN02.0 rev 1.1

## **Display Port AUX\_CH signal:**



|                      | Display port AUX_CH                            |     |     |     |      |  |  |  |
|----------------------|------------------------------------------------|-----|-----|-----|------|--|--|--|
|                      |                                                | Min | Тур | Max | unit |  |  |  |
| VCM                  | AUX DC Common Mode Voltage                     |     | 0   |     | V    |  |  |  |
| VDiff <sub>P-P</sub> | AUX Peak-to-peak Voltage at a receiving Device | 0.4 | 0.6 | 0.8 | V    |  |  |  |

Follow as VESA display port standard V1.1a.

#### **Display Port VHPD signal:**

|      | Display port VHPD |      |     |     |      |  |  |
|------|-------------------|------|-----|-----|------|--|--|
|      |                   | Min  | Тур | Max | unit |  |  |
| VHPD | HPD Voltage       | 2.25 |     | 3.6 | V    |  |  |

Follow as VESA display port standard V1.1a.



### 5.2 Backlight Unit

#### 5.2.1 LED characteristics

| Parameter                      | Symbol | Min    | Тур | Max  | Units  | Condition                     |
|--------------------------------|--------|--------|-----|------|--------|-------------------------------|
| Backlight Power<br>Consumption | PLED   | -      | -   | 2.65 | [Watt] | (Ta=25°ℂ), Note 1<br>Vin =12V |
| LED Life-Time                  | N/A    | 15,000 | -   | -    | Hour   | (Ta=25°C), Note 2<br>IF=25 mA |

Note 1: Calculator value for reference P<sub>LED</sub> = VF (Normal Distribution) \* IF (Normal Distribution) / Efficiency

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

## 5.2.2 Backlight input signal characteristics

| Parameter                      | Symbol  | Min | Тур  | Max  | Units  | Remark    |
|--------------------------------|---------|-----|------|------|--------|-----------|
| LED Power Supply               | VLED    | 5.0 | 12.0 | 21.0 | [Volt] |           |
| LED Enable Input<br>High Level | VLED_EN | 2.5 | -    | 5.5  | [Volt] |           |
| LED Enable Input<br>Low Level  | *Note 1 | 1   | -    | 0.6  | [Volt] | Define as |
| PWM Logic Input<br>High Level  | VPWM_EN | 2.5 | -    | 5.5  | [Volt] | Connector |
| PWM Logic Input<br>Low Level   | *Note 1 | 1   | 1    | 0.6  | [Volt] | (Ta=25°ℂ) |
| PWM Input Frequency            | FPWM    | 200 | 1K   | 10k  | Hz     |           |
| PWM Duty Ratio                 | Duty    | 5   |      | 100  | %      |           |

Note 1: Recommanded system pull up/down resistor no bigger than 10kohm.

#### **AU OPTRONICS CORPORATION**

## 6. Signal Characteristic

## 6.1 Pixel Format Image

Following figure shows the relationship between input signal and LCD pixel format.

|            | 1     |       |   |   |     | 13 | 866 |
|------------|-------|-------|---|---|-----|----|-----|
| 1st Line   | R G B | R GB  |   | R | 3 B | R  | GB  |
|            |       |       |   |   |     |    |     |
|            |       |       | • |   |     |    | •   |
|            |       |       | • |   |     |    |     |
|            |       | •     |   |   |     |    |     |
|            |       |       |   |   |     |    | •   |
|            | ·     |       | 1 |   |     |    | 1   |
|            | •     |       |   | • |     |    |     |
| 768th Line | R G B | R G B |   | R | 3 B | R  | G B |

#### **Scanning Direction**

The following figures show the image seen from the front view. The arrow indicates the direction of scan.





### **6.2 Integration Interface Requirement**

#### **6.2.1 Connector Description**

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

| Connector Name / Designation | For Signal Connector             |
|------------------------------|----------------------------------|
| Manufacturer                 | JAE or Compatible                |
| Type / Part Number           | JAE HD2S030HA1 or Compatible     |
| Mating Housing/Part Number   | IPEX 20353-030T-11 or Compatible |



Note1: Start from right side.

**Note2:** Input signals shall be low or High-impedance state when VDD is off. Internal circuit of **eDP inputs** are as following.





# Product Specification AU OPTRONICS CORPORATION

#### 6.2.2 Pin Assignment

eDP lane is a differential signal technology for LCD interface and high speed data transfer device.

| PIN NO | Symbol     | Function                    |
|--------|------------|-----------------------------|
| 1      | NC         | NC                          |
| 2      | H_GND      | High Speed Ground           |
| 3      | NC         | NC                          |
| 4      | NC         | NC                          |
| 5      | H_GND      | High Speed Ground           |
| 6      | Lane0_N    | Comp Signal Link Lane 0     |
| 7      | Lane0_P    | True Signal Link Lane 0     |
| 8      | H_GND      | High Speed Ground           |
| 9      | AUX_CH_P   | True Signal Auxiliary Ch.   |
| 10     | AUX_CH_N   | Comp Signal Auxiliary Ch.   |
| 11     | H_GND      | High Speed Ground           |
| 12     | LCD_VCC    | LCD logic and driver power  |
| 13     | LCD_VCC    | LCD logic and driver power  |
| 14     | BIST       | LCD Panel Self Test Enable  |
| 15     | LCD GND    | LCD logic and driver ground |
| 16     | LCD GND    | LCD logic and driver ground |
| 17     | HPD        | HPD signal pin              |
| 18     | BL_GND     | Backlight ground            |
| 19     | BL_GND     | Backlight ground            |
| 20     | BL_GND     | Backlight ground            |
| 21     | BL_GND     | Backlight ground            |
| 22     | BL_Enable  | Backlight ground            |
| 23     | BL PWM DIM | System PWM signal Input     |
| 24     | NC         | NC                          |
| 25     | NC         | NC                          |
| 26     | BL_PWR     | Backlight power             |
| 27     | BL_PWR     | Backlight power             |
| 28     | BL_PWR     | Backlight power             |
| 29     | BL_PWR     | Backlight power             |
| 30     | NC         | No Connect                  |



#### **AU OPTRONICS CORPORATION**

## **6.3 Interface Timing**

#### **6.3.1 Timing Characteristics**

Basically, interface timings should match the 1366x768 /60Hz manufacturing guide line timing.

| Parai                 | meter    | Symbol                | Min.     | Тур.       | Max.        | Unit |
|-----------------------|----------|-----------------------|----------|------------|-------------|------|
| Frame                 | e Rate   | -                     | 48 60 -  |            | -           | Hz   |
| Clock fro             | equency  | 1/ T <sub>Clock</sub> | 65 72 80 |            | 80          | MHz  |
|                       | Period   | T <sub>V</sub>        | 780      | 790        | 768+A       |      |
| Vertical<br>Section   | Active   | $T_VD$                |          | $T_{Line}$ |             |      |
|                       | Blanking | $T_VB$                | 12       | 22         | Α           |      |
|                       | Period   | T <sub>H</sub>        | 1426     | 1426       | 1366+B      |      |
| Horizontal<br>Section | Active   | $T_{HD}$              |          |            | $T_{Clock}$ |      |
|                       | Blanking | T <sub>HB</sub>       | 60       | 96         | В           |      |

Note 1: The above is as optimized setting

Note 2: The maximum clock frequency = (1366+B)\*(768+A)\*60<80MHz



#### 6.4 Power ON/OFF Sequence

#### **Display Port panel power sequence:**



#### Display port interface power up/down sequence, normal system operation

#### **Display Port AUX\_CH transaction only:**



Display port interface power up/down sequence, AUX\_CH transaction only

G156XTN02.0 rev 1.1 21/35



#### **AU OPTRONICS CORPORATION**

#### Display Port panel power sequence timing parameter:

| Timing    | Description                                                    | Dond bu  | Limits |      |       | Notes                                                                                   |
|-----------|----------------------------------------------------------------|----------|--------|------|-------|-----------------------------------------------------------------------------------------|
| parameter | Description                                                    | Reqd. by | Min.   | Тур. | Max.  | Notes                                                                                   |
| T1        | power rail rise time, 10% to 90%                               | source   | 0.5ms  |      | 10ms  |                                                                                         |
| Т2        | delay from LCDVDD to black<br>video generation                 | sink     | 0ms    |      | 200ms | prevents display noise until valid<br>video data is received from the<br>source         |
| Т3        | delay from LCDVDD to HPD high                                  | sink     | 0ms    |      | 200ms | sink AUX_CH must be operational upon HPD high.                                          |
| Т4        | delay from HPD high to link<br>training initialization         | source   |        |      |       | allows for source to read link capability and initialize.                               |
| Т5        | link training duration                                         | source   |        |      |       | dependant on source link to read training protocol.                                     |
| Т6        | link idle                                                      | source   |        |      |       | Min accounts for required BS-Idle pattern. Max allows for source frame synchronization. |
| Т7        | delay from valid video data from<br>source to video on display | sink     | 0ms    |      | 50ms  | max allows sink validate video<br>data and timing.                                      |
| Т8        | delay from valid video data from<br>source to backlight enable | source   |        |      |       | source must assure display video is stable.                                             |
| Т9        | delay from backlight disable to<br>end of valid video data     | source   |        |      |       | source must assure backlight is no longer illuminated.                                  |
| T10       | delay from end of valid video<br>data from source to power off | source   | 0ms    |      | 500ms |                                                                                         |
| T11       | power rail fall time, 905 to 10%                               | source   |        |      | 10ms  |                                                                                         |
| T12       | power off time                                                 | source   | 150ms  |      |       |                                                                                         |

Note1: The sink must include the ability to generate black video autonomously. The sink must automatically enable black video under the following conditions:

-upon LCDVDD power on (with in T2 max)-when the "Novideostream\_Flag" (VB-ID Bit 3) is received from the source (at the end of T9).

-when no main link data, or invalid video data, is received from the source. Black video must be displayed within 64ms (typ) from the start of either condition. Video data can be deemed invalid based on MSA and timing information, for example.

Note 2: The sink may implement the ability to disable the black video function, as described in Note 1, above, for system development and debugging purpose.

Note 3: The sink must support AUX CH polling by the source immediately following LCDVDD power on without causing damage to the sink device (the source can re-try if the sink is not ready). The sink must be able to respond to an AUX\_CH transaction with the time specified within T3 max.

# Product Specification AU OPTRONICS CORPORATION

#### Display Port panel B/L power sequence timing parameter:



Note: When the adapter is hot plugged, the backlight power supply sequence is shown as below.



|     | Min (ms) | Max (ms) |
|-----|----------|----------|
| T13 | 0.5      | 10       |
| T14 | 10       |          |
| T15 | 10       | ii.      |
| T16 | 10       | =        |
| T17 | 10       | _        |
| T18 | 0.5      | 10       |
| T19 | 1*       | -        |
| T20 | 1*       | <u>.</u> |

Seamless change: T19/T20 = 5xT<sub>PWM</sub>\* \*T<sub>PWM</sub>= 1/PWM Frequency

#### **AU OPTRONICS CORPORATION**

#### 7. Reliability Test Criteria

#### 7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

Frequency: 10 - 500Hz Random

30 Minutes each Axis (X, Y, Z) Sweep:

#### 7.2 Shock Test

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2ms

Pulse: X,Y,Z .one time for each side

#### 7.3 Reliability Test

| Items                      | Required Condition                               | Note   |
|----------------------------|--------------------------------------------------|--------|
| Temperature Humidity Bias  | Ta= 40°ℂ, 90%RH, 300h                            |        |
| High Temperature Operation | Ta= 50°C, Dry, 300h                              |        |
| Low Temperature Operation  | Ta= 0°C, 300h                                    |        |
| High Temperature Storage   | Ta= 60°ℂ, 35%RH, 300h                            |        |
| Low Temperature Storage    | Ta= -20°C, 50%RH, 250h                           |        |
| Thermal Shock Test         | Ta=-20°C to 60°C, Duration at 30 min, 100 cycles |        |
| ESD                        | Contact : ±8 KV<br>Air : ±15 KV                  | Note 1 |

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. Self-recoverable. No data lost, No hardware failures. Mura shall be ignored after high temperature reliability test.

#### Note2:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability
- The reliability test is performed only to examine the TFT-LCD module capability. No function failure occurs. Mura shall be ignored after high temperature reliability test.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%



G156XTN02.0

## 8. Mechanical Characteristics

#### 8.1 LCM Outline Dimension (Front View)





#### G156XTN02.0

#### **AU OPTRONICS CORPORATION**

## 8.2 LCM Outline Dimension (Rear View)





### 9. Label and Packaging

### **9.1 Shipping Label** (on the rear side of TFT-LCD display)



Manufactured MM/WW Model No: G156XTN02.0 **AU Optronics** 

C 队 US E204356



MADE IN CHINA (Z83)





G156XTN02.0



Manufactured MM/WW Model No: G156XTN02.0 **AU Optronics** MADE IN CHINA (SD1)









G156XTN02.0





## 9.2 Carton Package





### 9.3 Handling guide

This is a thin and slim LCD model, and please be cautious when pulling it out of package or assembling it onto platform. Careless handlings, e.g. twist, bending, pressing, or collision, will result malfunction of LCD models.

#### (1) Handling method notice



Do not lift and hold the panel with single hand at right or left side from Tray.



Lift and hold the panel up with both hands from tray.

#### (2) On the table notice



Do not press edge of panel to avoid glass broken.



Do not press the surface of the panel to avoid the glass broken or polarizer scratch.





Do not put anything or tool on the panel to avoid the glass broken or polarizer scratch.

### (3) Cable assembly notice



Do not insert the connector with single hand and touching the PCBA.



Insert the connector by pushing right and left edge.

## 9.4 Shipping Package of Palletizing Sequence





10. Appendix: EDID Description

| Address | FUNCTION                                              | Value | Value    | Value | Note |
|---------|-------------------------------------------------------|-------|----------|-------|------|
| HEX     |                                                       | HEX   | BIN      | DEC   |      |
| 00      | Header                                                | 00    | 00000000 | 0     |      |
| 01      |                                                       | FF    | 11111111 | 255   |      |
| 02      |                                                       | FF    | 11111111 | 255   |      |
| 03      |                                                       | FF    | 11111111 | 255   |      |
| 04      |                                                       | FF    | 11111111 | 255   |      |
| 05      |                                                       | FF    | 11111111 | 255   |      |
| 06      |                                                       | FF    | 11111111 | 255   |      |
| 07      |                                                       | 00    | 00000000 | 0     |      |
| 08      | EISA Manuf. Code LSB                                  | 06    | 00000110 | 6     |      |
| 09      | Compressed ASCII                                      | AF    | 10101111 | 175   |      |
| 0A      | Product Code                                          | EC    | 11101100 | 236   |      |
| 0B      | hex, LSB first                                        | 71    | 01110001 | 113   |      |
| 0C      | 32-bit ser#                                           | 00    | 00000000 | 0     |      |
| 0D      |                                                       | 00    | 00000000 | 0     |      |
| 0E      |                                                       | 00    | 00000000 | 0     |      |
| 0F      |                                                       | 00    | 00000000 | 0     |      |
| 10      | Week of manufacture                                   | 16    | 00010110 | 22    |      |
| 11      | Year of manufacture                                   | 1A    | 00011010 | 26    |      |
| 12      | EDID Structure Ver.                                   | 01    | 0000001  | 1     |      |
| 13      | EDID revision #                                       | 04    | 00000100 | 4     |      |
| 14      | Video input def. (digital I/P, non-TMDS, CRGB)        | 95    | 10010101 | 149   |      |
| 15      | Max H image size (rounded to cm)                      | 22    | 00100010 | 34    |      |
| 16      | Max V image size (rounded to cm)                      | 13    | 00010011 | 19    |      |
| 17      | Display Gamma (=(gamma*100)-100)                      | 78    | 01111000 | 120   |      |
| 18      | Feature support (no DPMS, Active OFF, RGB, tmg Blk#1) | 02    | 00000010 | 2     |      |
| 19      | Red/green low bits (Lower 2:2:2:2 bits)               | 50    | 01010000 | 80    |      |
| 1A      | Blue/white low bits (Lower 2:2:2:2 bits)              | 25    | 00100101 | 37    |      |
| 1B      | Red x (Upper 8 bits)                                  | 93    | 10010011 | 147   |      |
| 1C      | Red y/ highER 8 bits                                  | 58    | 01011000 | 88    |      |
| 1D      | Green x                                               | 57    | 01010111 | 87    |      |
| 1E      | Green y                                               | 92    | 10010010 | 146   |      |
| 1F      | Blue x                                                | 29    | 00101001 | 41    |      |
| 20      | Blue y                                                | 22    | 00100010 | 34    |      |
| 21      | White x                                               | 50    | 01010000 | 80    |      |
| 22      | White y                                               | 54    | 01010100 | 84    |      |
| 23      | Established timing 1                                  | 00    | 00000000 | 0     |      |
| 24      | Established timing 2                                  | 00    | 00000000 | 0     |      |
| 25      | Established timing 3                                  | 00    | 00000000 | 0     |      |
| 26      | Standard timing #1                                    | 01    | 0000001  | 1     |      |
| 27      |                                                       | 01    | 00000001 | 1     |      |



|          |                                                      | 1  | 1        | Г   |  |
|----------|------------------------------------------------------|----|----------|-----|--|
| 28       | Standard timing #2                                   | 01 | 0000001  | 1   |  |
| 29       |                                                      | 01 | 0000001  | 1   |  |
| 2A       | Standard timing #3                                   | 01 | 0000001  | 1   |  |
| 2B       |                                                      | 01 | 0000001  | 1   |  |
| 2C       | Standard timing #4                                   | 01 | 00000001 | 1   |  |
| 2D       |                                                      | 01 | 0000001  | 1   |  |
| 2E       | Standard timing #5                                   | 01 | 0000001  | 1   |  |
| 2F       |                                                      | 01 | 0000001  | 1   |  |
| 30       | Standard timing #6                                   | 01 | 0000001  | 1   |  |
| 31       |                                                      | 01 | 00000001 | 1   |  |
| 32       | Standard timing #7                                   | 01 | 0000001  | 1   |  |
| 33       |                                                      | 01 | 0000001  | 1   |  |
| 34       | Standard timing #8                                   | 01 | 0000001  | 1   |  |
| 35       |                                                      | 01 | 0000001  | 1   |  |
| 36       | Pixel Clock/10000 LSB                                | CE | 11001110 | 206 |  |
| 37       | Pixel Clock/10000 USB                                | 1D | 00011101 | 29  |  |
| 38       | Horz active Lower 8bits                              | 56 | 01010110 | 86  |  |
| 39       | Horz blanking Lower 8bits                            | C0 | 11000000 | 192 |  |
| 3A       | HorzAct:HorzBlnk Upper 4:4 bits                      | 50 | 01010000 | 80  |  |
| 3B       | Vertical Active Lower 8bits                          | 00 | 00000000 | 0   |  |
| 3C       | Vertical Blanking Lower 8bits                        | 30 | 00110000 | 48  |  |
| 3D       | Vert Act : Vertical Blanking (upper 4:4 bit)         | 30 | 00110000 | 48  |  |
| 3E       | HorzSync. Offset                                     | 08 | 00001000 | 8   |  |
| 3F       | HorzSync.Width                                       | 0A | 00001010 | 10  |  |
| 40       | VertSync.Offset : VertSync.Width                     | 31 | 00110001 | 49  |  |
| 41       | Horz‖ Sync Offset/Width Upper 2bits                  | 00 | 00000000 | 0   |  |
| 42       | Horizontal Image Size Lower 8bits                    | 58 | 01011000 | 88  |  |
| 43       | Vertical Image Size Lower 8bits                      | C1 | 11000001 | 193 |  |
| 44       | Horizontal & Vertical Image Size (upper 4:4 bits)    | 10 | 00010000 | 16  |  |
| 45       | Horizontal Border (zero for internal LCD)            | 00 | 00000000 | 0   |  |
| 46       | Vertical Border (zero for internal LCD)              | 00 | 00000000 | 0   |  |
| 47       | Signal (non-intr, norm, no stero, sep sync, neg pol) | 18 | 00011000 | 24  |  |
| 48       | Detailed timing/monitor                              | 00 | 00000000 | 0   |  |
| 49       | descriptor #2                                        | 00 | 00000000 | 0   |  |
| 4A       |                                                      | 00 | 00000000 | 0   |  |
| 4B       |                                                      | 0F | 00001111 | 15  |  |
| 4C       |                                                      | 00 | 00000000 | 0   |  |
| 4D       |                                                      | 00 | 00000000 | 0   |  |
| 4E       |                                                      | 00 | 00000000 | 0   |  |
| 4F       |                                                      | 00 | 00000000 | 0   |  |
| 50<br>51 |                                                      | 00 | 00000000 | 0   |  |
| 52       |                                                      | 00 | 00000000 | 0   |  |
| 53       |                                                      | 00 | 0000000  | 0   |  |
| 1        | 1                                                    | 1  |          | 1 - |  |



| 54         |                         | 00 | 00000000 | 0   |   |
|------------|-------------------------|----|----------|-----|---|
| 55         |                         | 00 | 00000000 | 0   |   |
| 56         |                         | 00 | 00000000 | 0   |   |
| 57         |                         | 00 | 00000000 | 0   |   |
| 58         |                         | 00 | 00000000 | 0   |   |
| 59         |                         | 20 | 00100000 | 32  |   |
| 5A         | Detailed timing/monitor | 00 | 00000000 | 0   |   |
| 5B         | descriptor #3           | 00 | 00000000 | 0   |   |
| 5C         |                         | 00 | 00000000 | 0   |   |
| 5D         |                         | FE | 11111110 | 254 |   |
| 5E         |                         | 00 | 00000000 | 0   |   |
| 5F         | Manufacture             | 41 | 01000001 | 65  | Α |
| 60         | Manufacture             | 55 | 01010101 | 85  | U |
| 61         | Manufacture             | 4F | 01001111 | 79  | 0 |
| 62         |                         | 0A | 00001010 | 10  |   |
| 63         |                         | 20 | 00100000 | 32  |   |
| 64         |                         | 20 | 00100000 | 32  |   |
| 65         |                         | 20 | 00100000 | 32  |   |
| 66         |                         | 20 | 00100000 | 32  |   |
| 67         |                         | 20 | 00100000 | 32  |   |
| 68         |                         | 20 | 00100000 | 32  |   |
| 69         |                         | 20 | 00100000 | 32  |   |
| 6A         |                         | 20 | 00100000 | 32  |   |
| 6B         |                         | 20 | 00100000 | 32  |   |
| 6C         | Detailed timing/monitor | 00 | 00000000 | 0   |   |
| 6D         | descriptor #4           | 00 | 00000000 | 0   |   |
| 6E         |                         | 00 | 00000000 | 0   |   |
| 6F         |                         | FE | 11111110 | 254 |   |
| 70         |                         | 00 | 00000000 | 0   |   |
| 71         | Manufacture P/N         | 42 | 01000010 | 66  | В |
| 72         | Manufacture P/N         | 31 | 00110001 | 49  | 1 |
| 73         | Manufacture P/N         | 35 | 00110101 | 53  | 5 |
| 74         | Manufacture P/N         | 36 | 00110110 | 54  | 6 |
| 75         | Manufacture P/N         | 58 | 01011000 | 88  | Х |
| 76         | Manufacture P/N         | 54 | 01010100 | 84  | Т |
| 77         | Manufacture P/N         | 4E | 01001110 | 78  | N |
| 78         | Manufacture P/N         | 30 | 00110000 | 48  | 0 |
| 79         | Manufacture P/N         | 37 | 00110111 | 55  | 7 |
| 7 <b>A</b> | Manufacture P/N         | 2E | 00101110 | 46  |   |
| 7B         | Manufacture P/N         | 31 | 00110001 | 49  | 1 |
| 7C         |                         | 20 | 00100000 | 32  |   |
| 7D         |                         | 0A | 00001010 | 10  |   |
| 7E         | Extension Flag          | 00 | 00000000 | 0   |   |
| 7F         | Checksum                | FC | 11111100 | 252 |   |
|            |                         |    |          |     |   |

#### 11. Safety

#### 11.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

#### 11.2 Materials

#### 11.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

#### 11.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

#### 11.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

#### 11.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to:

UL 60950-1, Second Edition

U.S.A. Information Technology Equipment