Блок-схемы и их применение в анализе неполных данных

Подлеснов Яков Сергеевич, гр. 20.Б04-мм

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент Алексеева Н.П. Рецензент: к.т.н., научный сотрудник Белякова Л. А.

Санкт-Петербург 2024г.

Введение: Постановка задачи

Дисперсионный анализ — метод, позволяющий выявить влияние факторов на зависимую переменную. Модель дисперсионного анализа имеет вид [Дюге, 1972]:

$$x_{ij} = \mu + v_i + b_j + \varepsilon_{ij}, \ \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2), \ i = 1, 2, \dots, v, \ j = 1, 2, \dots, b$$

- ullet μ генеральное среднее,
- ullet v_i дифференциальный эффект фактора v_i
- ullet b_j дифференциальный эффект фактора b,
- ullet $arepsilon_{ij}$ независимые случайные ошибки.

Задача: реализовать алгоритм дисперсионного анализа с помощью блок-схем при неполных данных.

Введение: Блок-схемы

Блок-схема (дизайн) $D(v,b,r,k,\lambda)$ — размещение v элементов по b блокам размера k, что каждый элемент встречается r раз, а каждая пара λ раз.

Симметричный дизайн $D(v,k,\lambda)$ — случай v=b, r=k.

Ниже приведен важный пример симметричной блок-схемы D(7, 3, 1):

```
B_1: 2, 4, 6; B_4: 1, 2, 3; B_2: 1, 4, 5; B_5: 2, 5, 7;
```

$$B_5: 2, 5, 7;$$
 $B_7: 3, 5, 6;$

$$B_3:3,4,7;$$
 $B_6:1,6,7;$

Двойственный дизайн

Если пронумеровать b блоков дизайна и собрать из этих номеров блок-схему таким образом, чтобы в один блок входили номера блоков, содержащие один из v элементов, то мы получим "двойственный" дизайн $D^*(v,b,r,k,\lambda)$ состоящий из v блоков, содержащих r элементов.

Пример построения:

Было:	
D(4,6,3,2,1)	Стало:
$B_1:1,3;$	$D^*(4,6,3,2,1)$
$B_2:1,2;$	$\Gamma_1: 1, 2, 3;$
$B_3:1,4;$	$\Gamma_2: 1, 5, 6;$
$B_4: 3, 4;$	$\Gamma_3: 2, 4, 6;$
$B_5: 2, 4;$	$\Gamma_4: 3, 4, 5;$
$B_6 \cdot 2 \cdot 3$	

Построение блок-схем: матрица Адамара

Матрица Адамара Н — матрица порядка m, элементами которой являются +1 и -1, такая, что $HH^T = mE_m$. Если у H первая строка и столбец состоят из +1, то она нормализованная.

Теорема [Холл, 1970]

Из H порядка m=4t можно построить симметричную блок-схему $D(v, k, \lambda)$:

$$v = 4t - 1, \ k = 2t - 1, \ \lambda = t - 1.$$

[Конструкция Сильвестра] Пусть H — нормализованная матрица Адамара порядка n. Тогда разделенная матрица

$$H_{2^k} = \begin{bmatrix} H_{2^{k-1}} & H_{2^{k-1}} \\ H_{2^{k-1}} & -H_{2^{k-1}} \end{bmatrix}, H_1 = [1], k \in \{1, 2, \dots\}$$

Построение D(7,3,1), используя матрицы Адамара

ullet Получение из нормализованной матрицы Адамара H_8 симметричного дизайна D(7,3,1).

$$H_8 = \begin{bmatrix} & B_1 & B_2 & B_3 & B_4 & B_5 & B_6 & B_7 & \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & a_1 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 0 & a_2 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & a_3 \\ \hline 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & a_4 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & a_5 \\ \hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & a_6 \\ \hline 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & a_7 \end{bmatrix}$$

Например, $B_1=(2,4,6)$, $B_2=(1,4,5)$, $B_3=(3,4,7)$.

Обобщение конструкции Сильвестра

Образующая матрица A для $q=3,\ n=1,$ результирующая матрица K.

 $B_1=(3,6)$, проецируя $B_1=((10)^T,(20)^T)$, элементы равны с точностью домножения на 2, оставляем только первый $B_1=(10)^T$.

Построение D(13,4,1), D(21,4,1), D(31,6,1)

- Получение D(13,4,1) из матрицы Адамара над полем F_3 и n=2,получение D(31,6,1) из матрицы Адамара над полем F_5 и n=2.
- ullet Получение D(21,4,1) из матрицы Адамара над полем F_4 и n=2.

Образующая матрица A для F_4 и F_5 соответственно.

$$A_{F_4} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 3 & 1 \\ 0 & 3 & 1 & 2 \end{bmatrix} \quad A_{F_5} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 1 & 3 \\ 0 & 3 & 1 & 4 & 2 \\ 0 & 4 & 3 & 2 & 1 \end{bmatrix}$$

Исследуемые данные

Для проведения дисперсионного анализа были взяты данные о крысах с различной площадью ожога, измеряемой в течение 36 дней. Объем выборки n=25.

В качестве факторов были взяты:

- Различные виды лечебных препаратов.
- Исходная масса крысы в момент ожога.

Таблица: Дизайн D(4,6,3,2,1)

	≤245	246-247	248	249-251	252-254	≥257
Хитозан йод.	13.4	13.4		_	11.1	_
Хитозан кл.	_	_	_	13.9	12.2	15.2
Травотан	8.1	_	7.4	_	_	8.3
Левомеколь	_	7	10.6	9.4		_
Блоки	13	14	34	24	12	23

Известные результаты, основные статистики и оценки МНК

Пусть β_i - блоки прямого дизайна, а γ_i - блоки двойственного дизайна, тогда [Дюге, 1972]:

•
$$V_i = \sum_{j \in \gamma_i} x_{ij}$$
, $B_j = \sum_{i \in \beta_j} x_{ij}$,

•
$$T_l = \sum_{j \in \gamma_l} B_j$$
, $j = 1, 2, \dots, b$, $i, l = 1, 2, \dots, v$.

С помощью МНК можем получить оценки модели [Дюге, 1972]:

•
$$\hat{v_l} = \frac{kV_l - T_l}{\lambda v}, \ l = 1, 2, \dots, v,$$

$$\bullet \hat{\mu} = \frac{1}{bk} \sum_{i=1}^{v} \sum_{j \in \gamma_i} x_{ij}.$$

Проверка гипотез

- ullet $H_0: v_i = 0$, то есть нет эффекта фактора v.
- ullet $H_0: b_j = 0$, то есть нет эффекта фактора b.

Для проверки значимости эффектов используются статистики [Дюге, 1972]:

$$F_v=rac{S_v^2/df_v}{S_e^2/df_e}\sim \mathcal{F}(df_v,df_e)$$
 и $F_b=rac{S_b^2/df_b}{S_e^2/df_e}\sim \mathcal{F}(df_b,df_e)$, где:

•
$$S_v^2 = \frac{\lambda v}{k} \sum_{i=1}^v \hat{v_i}^2$$
, $df_v = v - 1$,

•
$$S_b^2 = \sum_{j=1}^b k \left(\frac{B_j}{k} - \hat{\mu} \right)^2$$
, $df_b = b - 1$

•
$$S_e^2 = \sum_{(i,j)} \left(x_{ij} - \hat{v}_i + \frac{1}{k} \sum_{l \in \beta_j} \hat{v}_l - \frac{B_j}{k} \right)^2$$
, $df_e = bk - v - b + 1$

Подсчет p-value, перестановка индивидов и блоков

Для формирования дизайна можно использовать разных индивидов в одном и том же блоке или переставить блоки местами, тогда получим разные p-value. Красным - изначальный вариант, синим - новый вариант.

Таблица: Дизайн D(4,6,3,2,1)

	≤245	246-247	248	249-251	252-254	≥257
Хит.йод.	13.4/9.8	13.4/—	_	-/13.9	11.1	_
Хит.кл.	_	-/13.4	_	13.9/-	12.2	15.2
Трав.	8.1	_	7.4	_	_	8.3
Лев.	_	7	10.6	9.4	_	_
Блоки	13	14/24	34	24/14	12	23

Значимость лекарств в случае исходной массы

Выделена дата с наибольшим отличием по виду лечения.

Через 10 дней наблюдается лучшее заживление при использовании антибиотиков или при комплексном лечении Хитозаном с йодом, фибробластами и Травотаном по сравнению с аналогичным лечением, но без усиливающего регенерацию Травотана.

Значимость влияния исходной массы

 Ни один из дней не показал, что исходная масса может быть значимой.

Puc.: p-value для исходной массы

Значимость лекарств в случае фактора текущей массы

- Удалось произвести подсчеты p-value для 5 дней.
- 2 июня вновь оказалось днем, когда лекарства оказали наибольшее воздействие.

Puc.: p-value для лекарств в случае текущей массы

Значимость текущей массы

- 11.06 текущая масса оказалась значимой.
- При меньшей массе средняя площадь ожога была больше.

Реакция организма на ожог проявилась через 19 дней.

Ковариационный анализ

- В качестве зависимой переменной была взята площадь ожога на 2 июня.
- В качестве независимых переменных были взяты все массы крыс с 24 мая до 2 июня включительно.
- ullet Массы 31 мая и 2 июня оказались значимыми при lpha=0.2.
- На остатки регрессии был сделан многофакторный (фактор - лекарство) дисперсионный анализ.

Таблица: Значимость лекарств

Препарат	p-value		
Хитозан с йодом	0.0013		
Хитозан с клетками	0.072		
Травотан	0.009		
Левомеколь	0.002		

Выводы

- Построены дизайны D(7,3,1), D(13,4,1), D(21,4,1), D(31,6,1), обобщена конструкция Сильвестра с поля характеристики 2 на поля характеристики 3,4,5.
- Реализован алгоритм дисперсионного анализа с помощью блок-схем, который позволяет изучить значимость влияния факторов на зависимую переменную при относительно небольшом объеме данных.
- Метод применен для сравнения разных методик лечения ожогов у крыс с учетом динамики фактора организма (массы тела).
- Произведено сравнение полученных результатов со стандартным методом.

Технический слайд: Теорема Зингера

Проективная геометрия P_n^q — пространство векторов $(a_0,a_1,...,a_n)$ размерности n, где $a_i\in F_q$.

Теорема Зингера (Алексеева Н.П., 2012)

Гиперплоскости $P_n^q,\ q=p^r$, как блоки, и точки, как элементы, образуют

 $D(v, k, \lambda)$:

$$v = \frac{q^{n+1} - 1}{q - 1}, \ k = \frac{q^n - 1}{q - 1}, \ \lambda = \frac{q^{n-1} - 1}{q - 1}.$$

Технический слайд: моделирование

Для корректности статистического теста были смоделированы при условии нулевой гипотезы данные при следующих параметрах:

•
$$b_1 = b_2 = b_3 = b_4 = b_5 = b_6 = 0$$
,

•
$$v_1 = -3.5$$
, $v_2 = 9.3$, $v_3 = -10.8$, $v_4 = 5$,

•
$$\mu = 13.5$$
, $\sigma = 19$.

Равномерность p-value проверяется в случае предложенного метода и классического двухфакторного дисперсионного анализа.

Технический слайд: равномерность p-value 1

Ниже представлена функция распределения p-value, полученная с помощью классического двухфакторного дисперсионного анализа.

Технический слайд: равномерность p-value 2

Ниже представлена функция распределения p-value, полученная с помощью двухфакторного дисперсионного анализа, используя блок-схемы.

Технический слайд: Ковариационный анализ

Модель ковариационного анализа имеет вид, если анализируются n наблюдений Y_1, \ldots, Y_n с p сопутствующими переменными $(X=(x^{(1)},\ldots,x^{(p)})),\ k$ возможными типами условий эксперимента $(F = (f_1, \dots, f_k))$:

$$Y_i = \sum_{j=1}^{k} f_{ij}\theta_j + \sum_{j=1}^{p} \beta_j x_i^{(j)} + \varepsilon_{ij}, \ i \in \{1, \dots n\}$$

- \bullet f_{ii} индикаторные переменные f_{ij} равны 1, если j-ое условие эксперимента имело место при наблюдении $Y_{i,}$ и равны 0 в противном случае,
- θ_i коэффициенты определяют эффект влияния j-го условия,
- $x_{i}^{(j)}$ значение сопутствующей переменной $x^{(j)}$, при котором получено наблюдение Y_i ,
- ullet eta_i коэффициенты регрессии Y по $x^{(j)}$