asm_forecast

Probabilistic Forecast of the Ancillary Services Market's Results in a Central Dispatching Model

This file contains the instructions to reproduce the analysis and results of the related paper. It is assumed that users have Python 3.11 and R 4.3 or higher installed on their system. The pipeline is composed of notebooks (except one R script) that must be executed in a specific order, and sometimes several times with different parameter values. The execution times are indicative and correspond to a MacBook Pro with

an Apple M2 Pro chip and 16GB of RAM. Reproducing the whole analysis corresponds to a global running time around 10h. I/O operations assume an SSD on which at least 55GB of space is available.

Set-up

Create Python virtual environment

Run the following command in your terminal:

```
python3 -m venv asm_forecast
```

This creates a virtual environment named asm_forecast in the current directory.

Activate virtual environment

```
source asm_forecast/bin/activate
```

Once activated, your terminal prompt will indicate that the virtual environment is active (e.g., it might look like (asm_forecast))

Install packages from requirements.txt

```
pip install -r requirements.txt
```

This installs all the packages listed in requirements.txt into the virtual environment.

Process data

Structural data

Run notebook processing/StructuralDataAnalysis.ipynb (execution time <1m)

Input: Raw structural data

```
data/1_input/1_DatiStrutturali/DatiStrutturali_1822_float.xlsx
```

Output: Principal component scores data/2_processed/PC_strut.pickle

Exogenous, calendar, market data and create consolidated dataset

Run notebook ML_dataset_construction.ipynb (execution time <5m)

Inputs:

- Structural data data/2_processed/PC_strut.pickle
- Exogenous and calendar data: data/1_input/2_exogenous_and_calendar/Dati_per_data_1722.xlsx

- Generating units (GUs) data: data/1 input/3 market/Dati per unita.xlsx
- Market data: data/1_input/3_market/MSD_bids_with_program.parquet

Outputs:

- Downward bids dataset: data/2_processed/ML_dataset_BID.{pkl, csv}
- Upward bids dataset:data/2_processed/ML_dataset_0FF.{pkl, csv}

Train and test model

Benchmark models

Historical prices

Run notebook modeling/benchmark_models/HistoricalPrices.ipynb (execution time <1m) two times, one with scope parameter set to 'OFF' (upward bids) and one with scope parameter set to 'BID' (downward bids)

Input: Bids dataset: data/2_processed/ML_dataset_{scope}.pkl

Output: HPrecal predictions:

modeling/{scope}/model_predictions/HP_predicted_probs_monthly_recal_rolling_12m.
pkl

Logistic Regression

Run R script modeling/benchmark_models/GLM_bernoulli.R (execution time ~1h) two times, one with scope parameter set to 'OFF' (upward bids) and one with scope parameter set to 'BID' (downward bids)

Input: Bids dataset data/2_processed/ML_dataset_{scope}.pkl

Output: GLMrecal predictions

modeling/{scope}/model_predictions/GLM_predicted_probs_monthly_recal_rolling_12m
.pkl'

Main (random forest) model

Train and test model on specific years

Run notebook modeling/ModelTrainTest.ipynb (execution time <5m) for each scope, and for each train_year in [2018, 2019, 2020, 2021]

Input: Bids dataset data/2_processed/ML_dataset_{scope}.pkl

Outputs:

RF{year} predictions

modeling/{scope}/model_predictions/RF_predicted_probs_train_{train_years}_t
est_{test_years}.pkl

 RF{year} model modeling/{scope}/model_dumps/model_trained_{train_years}_{test_years}.jobli

Train and test model with monthly recalibration

Run notebook modeling/ModelTrainTestRecalibration.ipynb (execution time ~2h) for each scope

Input: Bids dataset data/2_processed/ML_dataset_{scope}.pkl

Outputs:

- RFrecal predictions
 modeling/{scope}/model_predictions/RF_predicted_probs_monthly_recal_rolling
 _12m.pkl
- RFrecal monthly snapshot models modeling/OFF/model_dumps/classifier/YYYYMM.joblib

Compare performances of model vs benchmarks

Run notebook modeling/ModelVsBenchmarks.ipynb (execution time <30s) for each scope

Inputs:

- Bids dataset data/2_processed/ML_dataset_{scope}.pkl
- RF predictions for static models (trained on specific years)
 modeling/{scope}/model_predictions/RF_predicted_probs_train_{year}_test_{test_years}.pkl
- RF predictions with monthly recalibration
 modeling/{scope}/model_predictions/RF_predicted_probs_monthly_recal_rolling
 _12m.pkl
- GLM predidctions with monthly recalibration modeling/{scope}/model_predictions/GLM_predicted_probs_monthly_recal_rollin g_12m.csv
- HP predidctions with monthly recalibration modeling/{scope}/model_predictions/HP_predicted_probs_monthly_recal_rolling _12m.pkl

Outputs:

- Figure 3
 - plots/{scope}/models_comparison/RFrecal_GLMrecal_HPrecal_aps_year_{scope}.p
 ng
- Figure 4
 plots/{scope}/models comparison/RF2018 RF2019 RF2

plots/{scope}/models_comparison/RF2018_RF2019_RF2020_RF2021_RFrecal_aps_yea
r_{scope}.png

Post-process model predictions

Calibrate probabilities and evaluate binary predictions

Run notebook modeling/ModelPerformanceAnalysis.ipynb (execution time <30s) for each scope

Inputs:

- Bids dataset data/2_processed/ML_dataset_{scope}.pkl
- RF predictions (with monthly recalibration)
 modeling/{scope}/model_predictions/RF_predicted_probs_monthly_recal_rolling_ _12m.pkl

Outputs:

- RF calibrated probabily predictions
 modeling/{scope}/model_predictions/RF_predicted_probs_monthly_recal_rolling
 _12m_CALIBRATED.pkl
- Fitted isotonic regression models for each month {scope}/model_dumps/calibrator/YYYYMM.joblib
- Figure 5 plots/{scope}/rd_{scope}.png
- Figure 6 plots/{scope}/precision_recall/prf1_{scope}.png

Explain model

Run notebook modeling/ModelExplainer.ipynb (execution time <5m) for each scope

Inputs:

- Bids dataset data/2_processed/ML_dataset_{scope}.pkl
- RF model trained on 2021 modeling/{scope}/model_dumps/model_trained_{scope}_2021.joblib

Outputs:

- Figure 7 plots/{scope}/explainer/shap_{scope}_feature_imp_static.png
- Figure 8 plots/{scope}/explainer/shap_{scope}_feature_imp.png
- Figure 9 plots/{scope}/explainer/pfi_{scope}_test.png
- Figure 10 plots/{scope}/explainer/shap_{scope}_dependence_PriceDiff.png
- Figure 11 plots/{scope}/explainer/shap_{scope}_dependence_BP.png
- Figure 12 plots/{scope}/explainer/shap_{scope}_dependence_Qty.png
- Figure 13 plots/{scope}/explainer/shap_{scope}_dependence_Prov.png

Bid pricing use case and market simulation

Run notebook BidPricing.ipynb (execution time <20m) for each scope

Inputs:

- Bids dataset data/2_processed/ML_dataset_{scope}.pkl
- RF model trained on 2021 modeling/{scope}/model_dumps/model_trained_{scope}_2021.joblib
- Fitted isotonic regression models for each month {scope}/model_dumps/calibrator/YYYYMM.joblib
- RFrecal monthly snapshot models modeling/OFF/model_dumps/classifier/YYYYMM.joblib

• Day-ahead bid prices data/1_input/mgp_bid_prices/mgp_bid_prices.pkl

Outputs:

- Optimal prices for each bid in the test period data/3_output/optimal_prices_{unit}.pkl
- Figure 8 plots/{scope}/pricing/{bid_id}.png
- Figure 9 plots/{scope}/pricing/profits_strategies_{scope}.png
- Table 4 data/3_output/estimated_profits_{scope}.csv