European Finance Association Meetings, Copenhagen 2012

Discussion of

The Economics of Options-Implied Inflation Probability Density Functions

by Yuriy Kitsul and Jonathan H. Wright

Pavol Povala

University of Lugano Institute of Finance

Pavol Povala 1 / 15

Summary

The paper:

- ☐ Use CPI inflation caps and floors to study the inflation risk-neutral densities
 → more comprehensive description of inflation beliefs
- ☐ Investors require substantial compensation for exposure to inflation tails, pricing kernel U-shaped in inflation
- ☐ Components:
 - 1. Construct Arrow-Debreu securities (integer support) ⇒ approximate the RN density & obtain prob. for tails
 - 2. Combine statistical models for inflation and derivatives \Longrightarrow empirical pricing kernel

My discussion:

- □ Do higher moments if inflation beliefs matter? How?
- ☐ Cash instruments vs. derivatives and risk premia

Pavol Povala

Inflation and the real economy

- ☐ Can we learn more about real-nominal trade-off (Phillips curve) from inflation derivatives?
- \square Biggest moves in prob. of both tails (> 1Y) linked to **financial conditions** (QE,Eurozone) and **real activity** (payrolls,retail sales)

Pavol Povala 3 / 15

Probability of deflation

Table 2: Regression of Implied Probability of Deflation onto Macroeconomic Surprises

	One Year	Three Years	Five Years	Seven Years	Ten Years
CPI	-10.94***	-0.80	-0.63	-0.50	-0.49
	(3.35)	(2.83)	(0.84)	(0.74)	(0.66)
Existing Home Sales	-3.65	-0.43	-0.70***	-0.45***	-0.33**
	(3.83)	(0.32)	(0.25)	(0.17)	(0.15)
FOMC	1.13	-0.06	-0.16	-0.08	-0.13
	(0.80)	(0.19)	(0.19)	(0.13)	(0.17)
GDP (Advance)	-0.48	-0.11	-0.04	0.06	0.05
	(1.09)	(0.44)	(0.31)	(0.26)	(0.25)
Housing Starts	1.41	2.36	-0.36	1.97	1.87
	(5.46)	(1.72)	(1.38)	(1.75)	(1.77)
New Home Sales	-15.87	-9.16	-1.59	-0.27	0.23
	(18.35)	(6.93)	(1.71)	(1.27)	(1.50)
Nonfarm Payrolls	-0.43	-0.20	-0.39*	-0.22*	-0.22**
	(0.53)	(0.17)	(0.21)	(0.12)	(0.10)
PPI	-0.71	-0.84*	-0.56***	-0.49***	-0.16
	(1.05)	(0.50)	(0.19)	(0.17)	(0.14)
Retail Sales	-0.53	-0.34	-0.54**	-0.23**	-0.22**
	(0.38)	(0.26)	(0.22)	(0.12)	(0.10)

Pavol Povala 4 / 15

Probability of high inflation

lable 3: Regression of Implied Probability of High Inflation onto Macroeconomic Surprises

		Duipilisc			
	One Year	Three Years	Five Years	Seven Years	Ten Years
CPI	6.91***	3.50***	-1.42	-2.45	2.21
	(1.74)	(1.06)	(3.71)	(3.94)	(2.85)
Existing Home Sales	1.01	0.29	0.80^{*}	0.71**	0.68
	(1.06)	(0.32)	(0.47)	(0.34)	(0.43)
FOMC	-0.34	0.15	-0.03	0.13	0.34
	(0.28)	(0.16)	(0.37)	(0.26)	(0.36)
GDP (Advance)	0.31	0.01	-0.02	0.09	0.16
	(0.65)	(0.29)	(0.41)	(0.38)	(0.51)
Housing Starts	-1.08	-0.36	0.42	-1.95	-2.87
	(1.66)	(1.31)	(1.96)	(2.17)	(4.12)
New Home Sales	-1.49	-1.72	1.51	2.67	6.40^{**}
	(1.93)	(4.37)	(2.57)	(2.45)	(2.92)
Nonfarm Payrolls	0.02	0.15	0.15	0.23	0.67^{**}
	(0.28)	(0.17)	(0.09)	(0.16)	(0.27)
PPI	0.18	0.15	0.00	0.52	0.52
	(0.51)	(0.38)	(0.16)	(0.33)	(0.56)
Retail Sales	-0.07	0.18	-0.14	0.16	0.61^{**}
	(0.18)	(0.15)	(0.14)	(0.17)	(0.25)

Pavol Povala 5 / 15

Inflation

Inflation expectations converge fast to the local mean

Source: BCFF

Pavol Povala 6 / 15

Unemployment

Predictions of real activity close to RW

Source: SPF

Why are tails of inflation PDFs sensitive to real activity?

Pavol Povala 8 / 15

Why are tails of inflation PDFs sensitive to real activity? (cont'd)

Highest discrepancy between money growth and inflation on record \Longrightarrow inflation expectations sensitive to news on real activity (at some point the multiplier kicks in)

Inflation and asset prices

Bond prices largely reflect the local mean [long term inflation expectations of inflation, see also Ajello, Benzoni, and Chyruk (2012) \Longrightarrow not much short run variation through expectations
Inflation risk premia in nominal bonds seem small in magnitude and close to zero unconditionally, e.g. Grishchenko and Huang (2012)
Taken together, nominal Treasuries provide little information about inflation beyond its long term expectations
Term structure of bond volatilities is informative about the higher moments of inflation
Li and Zhao (2009) find the U-shaped state-price density using LIBOR derivatives, i.e. same interpretation \Longrightarrow use LIBOR instruments to lengthen the sample back to 2000s?

Pavol Povala $10 \ / \ 15$

Stochastic skewness

2010

2011

Probability of high inflation

☐ Skewness likely switches sign

2010

2011

Pavol Povala 11 / 15

Stochastic skewness (cont'd)

Source: Barclays Research

□ Variation in skewness has cleaner economic interpretation compared to other markets

Pavol Povala 12 / 15

Do inflation derivatives square with cash bonds?

Similar situation in inflation derivatives market?

□ Why is the inflation risk premium not fully reflected in nominal bonds?
 □ Why are inflation derivatives non-redundant?
 1. Heterogenous beliefs ⇔ transaction costs
 2. Price discovery ⇔ information sensitivity
 □ Start of inflation derivatives market endogenous ⇒ similar to sovereign CDS market
 □ Discrepancy between sov. CDS and credit risk implied by cash bonds, i.e. basis, negative swap spreads

Pavol Povala 13 / 15

Empirical exercises

☐ Construct the vol surface?

☐ How does it compare to the LIBOR vol curve?

□ Continuous support for SPD?

Pavol Povala 14 / 15

References

AJELLO, A., L. BENZONI, AND O. CHYRUK (2012): "Core and "Crust": Consumer Prices and the Term Structure of Interest Rates," Working paper, Federal Reserve Bank of Chicago.

GRISHCHENKO, O., AND J. Huang (2012): "Inflation Risk Premium: Evidence from the TIPS market," Finance and Economics Discussion Series, Federal Reserve Board.

LI, H., AND F. ZHAO (2009): "Nonparametric Estimation of State-Price Densities Implicit in Interest Rate Cap Prices," Review of Financial Studies, 22, 4335–4376.

Pavol Povala 15 / 15