Отчет о выполнении лабораторной работы 3.2.2 Резонанс напряжений в последовательном контуре

Выполнил: Дедков Денис, группа Б01-109 19.11.2022

Цель работы

Исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получение амплитудночастотных и фазово-частотных характеристик, определение основных параметров контура.

Оборудование и приборы

Генератор сигналов, источник напряжения, нагрузкой которого является последовательный колебательный контур с переменной ёмкостью, двух-канальный осциллограф, цифровые вольтметры.

Введение

В данной работе изучаются резонансные явления в последовательном колебательном контуре (резонанс напряжений). Схема экспериментального стенда показана на рис. 1. Синусоидальный сигнал от генератора поступает на вход управляемого напряжением источника напряжения, собранного на операционном усилителе.

В колебательный контур установки добавлен постоянный резистор R, снижающий его добротность. Это сделано для упрощения процедур получения и обработки резонансных кривых. Таким образом, суммарное активное сопротивление контура принимается равным

$$R_{\Sigma} = R + R_L + R_S$$

Добротность контуров тем не менее остаётся достаточно высокой, чтобы можно было пользоваться классическими формулами:

$$Q = \frac{\rho}{R_{\Sigma}} = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}} \gg 1$$

При резонансе, когда для высокодобротного контура можно положить $\omega = \omega_0$, выражения для модулей комплексных амплитуд тока и напряжения на ёмкости и их фаз принимают простой вид:

$$I(\omega_0) = \frac{\mathscr{E}}{R_{\Sigma}}, \ \ U_C(\omega_0) = \mathcal{QE}, \ \ U_L(\omega_0) = \mathcal{QE}.$$

Рис. 1: Схема экспериментального стенда

Ход работы

Для контуров с различными ёмкостями C_n , меняя их с помощью переключателя на блоке, измерим резонансные частоты f_0 и напряжения U_C при установленном в напряжении $\mathscr E$ на выходе генератора. Для каждого значения C_n по данным эксперимента проведем расчёт параметров стенда (см. таблицу 1).

Рассчитаем средние значения L и R_L и их случайные погрешности для использования в дальнейшем (см. таблицу 2).

C , н Φ	f_0 , Гц	U_C , B	\mathcal{E} , B	L , мк Γ н	Q	ρ , Om	R_{Σ} ,	R_L , Ом	<i>I</i> , A
33.2	27850	4.56	0.2	983.7	22.8	172.1	7.5	3.9	0.026
47.6	23270	3.94	0.2	982.7	19.7	143.7	7.3	3.7	0.027
57.5	21160	3.65	0.2	983.9	18.2	130.8	7.2	3.5	0.028
68.0	19460	3.39	0.2	983.7	16.9	120.3	7.1	3.5	0.028
102.8	15840	2.83	0.2	982.1	14.2	97.7	6.9	3.3	0.029

Таблица 1: Параметры контура

	Среднее значение	Среднеквадратичное	Случайная погрешность	Погрешность
L , мк Γ н	983.2	0.7	0.8	1.7
R_L , Om	3.6	0.2	0.2	0.2

Таблица 2: Погрешности параметров

Построим графики амплитудно-частотные характеристик $U_C(f)$ для выбранных контуров (см. рис. 2).

Рис. 2: Графики амплитудно-частотные характеристик

Для контуров с двумя разными ёмкостями измерим амплитудно-частотные $U_C(f)$ и фазово-частотные $\varphi(f)$ характеристики (см. таблицу 3).

Построим на одном графике амплитудно-частотные характеристики в безразмерных координатах $x=\frac{f}{f_0},\ y=\frac{U_C}{U_C(f_0)}.$ По ширине резонансных кривых на уровне 0,707 определим добротности $\mathcal Q$ соответствующих контуров:

$$\mathcal{Q}(33.2 \text{ H}\Phi) = 22.6 \pm 0.5$$

 $\mathcal{Q}(68 \text{ H}\Phi) = 16.6 \pm 0.3$

Рис. 3: Графики амплитудно-частотные характеристик в нормированных координатах

Построим на одном графике фазово-частотные характеристики в безразмерных координатах $x=\frac{f}{f_0},\ y=\frac{\varphi}{\pi}.$ По этим характеристикам определим добротности контуров по расстоянию между точками по оси x, в которых y меняется от 1/4 до 3/4:

$$\mathcal{Q}(33.2 \text{ н}\Phi) = 20.7 \pm 0.4$$

 $\mathcal{Q}(68 \text{ н}\Phi) = 14.5 \pm 0.2$

$C=33.2$ н Φ				$C=68$ н Φ					
f_0 , Гц	U_C , B	x, дел.	x_0 , дел.	$\frac{\varphi}{\pi}$, дел.	f_0 , Гц	U_C , B	x, дел.	x_0 , дел.	$\frac{\varphi}{\pi}$, дел.
26400	1.72	2.5	25.8	0.10	18000	1.23	3.5	37.0	0.09
26600	1.94	3.0	25.8	0.12	18200	1.40	4.0	37.0	0.11
26800	2.22	4.0	25.8	0.16	18400	1.60	5.0	37.0	0.14
27000	2.63	5.0	25.8	0.19	18600	1.88	6.0	37.0	0.16
27200	3.11	6.0	25.8	0.23	18800	2.24	8.0	37.0	0.22
27400	3.74	7.5	25.8	0.29	19000	2.68	10.5	37.0	0.28
27600	4.33	10.0	25.8	0.39	19200	3.12	13.5	37.0	0.36
27850	4.56	13.0	25.5	0.51	19460	3.37	18.5	37.0	0.50
28000	4.35	15.0	25.5	0.59	19600	3.22	21.0	37.0	0.57
28200	3.90	17.0	25.5	0.67	19800	2.90	24.0	37.0	0.65
28400	3.39	18.0	25.5	0.71	20000	2.47	25.5	37.0	0.69
28600	2.96	19.0	25.5	0.75	20200	2.11	27.5	37.0	0.74
28800	2.57	20.0	25.5	0.78	20400	1.81	28.0	37.0	0.76
29000	2.25	20.5	25.8	0.80	20600	1.58	29.0	37.0	0.78
29200	2.00	21.0	25.8	0.82	20800	1.38	29.0	37.0	0.78

Таблица 3: Погрешности параметров

Рис. 4: Пробная катушка и ее положение относительно магнита

Вывод

В работе был исследован резонанс напряжений в последовательном колебательном контуре с изменяемой ёмкостью. Также получены амплитудно-

частотные и фазово-частотные характеристики.

Несколькими методами была посчитана добротность контура. Результаты неплохо согласуются друг с другом.