PROGETTO DI FILTRI A RISPOSTA IMPULSIVA FINITA (FIR)

PROPRIETA' DEI FILTRI FIR (Finite Impulse Response)

$$\begin{array}{ccc}
x(n) \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Proprietà e caratteristiche principali

- Filtri FIR sono fra i più usati
- Possono avere una risposta in fase esattamente lineare (assenza di distorsione di fase e di gruppo)

- Sempre stabili
- Strutture più facili da realizzare
- Minore sensibilità nei confronti di una realizzazione con aritmetica a precisione finita
- Possono richiedere un numero di operazioni anche elevato

FUNZIONE DI TRASFERIMENTO E RISPOSTA IN FREQUENZA

$$y(n) = \sum_{m=0}^{N-1} h(m) x(n-m)$$

■ Funzione di trasferimento

$$H(z) = \sum_{n=0}^{N-1} h(n) z^{-n}$$
 solo zeri (escludendo l'origine)

■ Risposta in frequenza

$$H(F) = \sum_{n=0}^{N-1} h(n) e^{-j2\pi F n},$$

$$= A(F) e^{j\varphi(F)}$$

$$F = \frac{f}{f_c} \quad \text{freq. normalizzata}$$

$$A(F)$$
, risposta in ampiezza $\varphi(F)$, risposta in fase

da cui si ottengono:

$$\Delta(F) = -\frac{\varphi(F)}{2\pi F}$$
, ritardo di fase (campioni)

$$\tau(F) = -\frac{1}{2\pi} \frac{d\varphi(F)}{dF}, \quad \text{ritardo di gruppo}$$
(campioni)

■ Fase lineare

$$\varphi(F) = -aF$$

$$\Delta(F) = \tau(F) = \frac{a}{2\pi} = \alpha = costante$$

■ Condizione per la fase lineare (FIR reali)

E. Del Re – Elaborazione Numerica dei segnali

Sfruttando la condizione di simmetria nell'espressione

$$H(F) = \sum_{n=0}^{N-1} h(n) e^{-j2\pi F n}$$

isoliamo i termini simmetrici (N pari)

$$H(F) = \sum_{n=0}^{\frac{N}{2}-1} h(n) e^{-j2\pi F n} + \sum_{n=0}^{\frac{N}{2}-1} h(N-1-n)e^{-j2\pi F (N-1-n)}$$

$$= \sum_{n=0}^{N-1} h(n) e^{-j2\pi F \frac{N-1}{2}} \left[e^{-j2\pi F (n-\frac{N-1}{2})} + e^{j2\pi F (n-\frac{N-1}{2})} \right] =$$

$$= e^{-j2\pi F \frac{N-1}{2}} \sum_{n=0}^{\frac{N}{2}-1} 2h(n) \cos 2\pi F \left(n - \frac{N-1}{2}\right)$$

Analogamente per N dispari

$$H(F) = \begin{cases} e^{-j2\pi F} \frac{N-1}{2} \left\{ h\left(\frac{N-1}{2}\right) + \sum_{n=0}^{\frac{N-3}{2}} 2h(n)\cos\left[2\pi F\left(n - \frac{N-1}{2}\right)\right] \right\} \\ e^{-j2\pi F} \frac{N-1}{2} \left\{ \sum_{n=0}^{\frac{N}{2}} 2h(n)\cos\left[2\pi F\left(n - \frac{N-1}{2}\right)\right] \right\} \\ n = 0 \end{cases}$$

$$\text{N dispari}$$

$$e^{j\varphi(F)} \qquad \text{N pari}$$

$$e^{j\varphi(F)} \qquad \text{A_(F)}$$

la fase $\varphi(F)$ è esattamente lineare e vale

$$\varphi(F) = -2\pi F \frac{N-1}{2}$$

$$H(F) = A_{-}(F) e^{-j2\pi F \frac{N-1}{2}}$$

 $A_{-}(F)$ funzione reale

Ritardo

$$\Delta(F) = \tau(F) = \frac{N-1}{2}$$
 intero (N dispari) intero + 1/2 (N pari)

N dispari

Uscita (ritardata) generata in corrispondenza di istanti di campionamento dell'ingresso

<u>N pari</u>

Uscita (ritardata) generata in corrispondenza di istanti di campionamento traslati di T/2 rispetto all'ingresso

2. h(n) = -h(N-1-n), risposta antisimmetrica

E. Del Re – Elaborazione Numerica dei segnali

Analogamente

$$H(F) = \begin{cases} -je^{-j2\pi} F \frac{N-1}{2} \begin{cases} \frac{N-1}{2} \\ \sum\limits_{n=0}^{\infty} 2h(n) \operatorname{sen} \left[2\pi F \left(n - \frac{N-1}{2} \right) \right] \end{cases} \\ -je^{-j2\pi} F \frac{N-1}{2} \begin{cases} \frac{N}{2} - 1 \\ \sum\limits_{n=0}^{\infty} 2h(n) \operatorname{sen} \left[2\pi F \left(n - \frac{N-1}{2} \right) \right] \end{cases} \\ e^{j\varphi(F)} \qquad A_{-}(F) \qquad \text{N pari} \end{cases}$$

la fase $\varphi(F)$ vale

$$\varphi(F) = -\frac{\pi}{2} - 2\pi F \frac{N-1}{2}$$

$$H(F) = j A_{-}(F) e^{-j2\pi F \frac{N-1}{2}}$$

$$A_{-}(F)$$
 reale

Es.:
$$\begin{cases} derivatori & A_{-}(F) = cF \\ Hilbert & A_{-}(F) = -\operatorname{sgn} F \end{cases}$$

Ritardo

Come nel caso precedente è uguale a

$$\frac{N-1}{2}$$
 campioni

 In più è introdotta una rotazione di fase di ± 90°[a seconda del segno di A_(F)] per ogni componente spettrale.

■ Zeri dei FIR (reali) a fase lineare

Dalle condizioni di simmetria della h(n), segue che se z_0 è uno zero, cioè

$$H(z_0) = \sum_{n=0}^{N-1} h(n) z_0^{-n} = 0$$

anche z_0^{-1} è uno zero. Per filtro con h(n) reale (filtri reali) le posizioni degli zeri sono del tipo:

E. Del Re – Elaborazione Numerica dei segnali

FILTRI FIR "HALF - BAND"

Proprietà utile

N = dispari

- In corrispondenza di multipli pari dal campione centrale la risposta impulsiva è nulla.
 - ~ metà coefficienti uguali a zero

semplificazione realizzativa
 se N = 4P + 1, solo 2P + 1 coefficienti
 sono ≠ 0

```
Per ogni campione d'uscita

2P + 1 moltiplicazioni

(senza sfruttare la simmetria)

P + 1 moltiplicazioni

(sfruttando la simmetria)
```

METODI DI PROGETTO DI FILTRI FIR

METODI DI PROGETTO FILTRI FIR

- Tre metodi fondamentali
 - Metodo delle finestre

Vantaggi

- Semplicità
- A(F) ≅ 0.5 alla frequenza di taglio nominale

Svantaggi

- Funzione nota analiticamente ed integrabile
- Deviazioni massime uguali in banda passante e attenuata
- Oscillazione della deviazione non costante
- N più grande per confrontabili risposte in frequenza

Metodo del campionamento in frequenza

Vantaggi

- applicabile a qualunque risposta in frequenza
- Disponibilità di programmi di progetto

Svantaggi

- Controllo difficile delle deviazioni
- Oscillazione della deviazione non costante
- N più grande per confrontabili risposte in frequenza

Criterio di Chebychev (minmax o equiripple)

Vantaggi

- Criterio ottimo
- N più piccolo per confrontabili risposte in frequenza
- Disponibilità di programmi di progetto

<u>Svantaggi</u>

- Relativa flessibilità rispetto alla risposta in frequenza desiderata
- Progettazione più onerosa dal punto di vista dei tempi di calcolo

METODO DELLE FINESTRE

Data una desiderata $H_0(F)$: per esempio

$$h_0(n) = \int_{-1/2}^{1/2} H_0(F) e^{j2\pi F n} dF - \infty < n < + \infty$$

 troncamento fra 0 ≤ n ≤ N-1
 che dà luogo al fenomeno delle oscillazioni di Gibbs

 finestre w(n) per ridurre le oscillazioni (problema analogo al caso delle stime spettrali)

$$h(n) = h_0(n) w(n), 0 \le n \le N-1$$

Una delle più usate (buon compromesso prestazioni / complessità)

$$w(n) = 0.54 - 0.46 \cos \frac{2\pi n}{N-1} , \quad 0 \le n \le N-1$$

(Hamming)

■ Esempi di finestre $0 \le n \le N-1$

$$0 \le n \le N-1$$

Rettangolare

$$w(n) = 1$$

Bartlett

$$w(n) = \begin{cases} \frac{2n}{N-1}, & 0 \le n \le \frac{N-1}{2} \\ 2 - \frac{2n}{N-1}, & \frac{N-1}{2} \le n \le N-1 \end{cases}$$

Hanning

$$w(n) = \frac{1}{2} \left[1 - \cos \left(\frac{2\pi n}{N-1} \right) \right]$$

Hamming

w(n) =
$$0.54 - 0.46 \cos \left(\frac{2\pi n}{N-1} \right)$$

Blackman

$$w(n) = 0.42 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{4\pi n}{N-1}\right)$$

Kaiser

$$w(n) = \frac{I_0 \left\{ w_{\alpha} \sqrt{\left(\frac{N-1}{2}\right)^2 - \left[n - \left(\frac{N-1}{2}\right)\right]^2} \right\}}{I_0 \left[w_{\alpha} \left(\frac{N-1}{2}\right)\right]}$$

- *I*₀ (•) = funzione di Bessel modificata di ordine zero
- w_{α} = parametro di controllo per la larghezza del lobo principale e per l'ampiezza dei lobi laterali tipicamente $4 < w_{\alpha} \frac{N-1}{2} < 9$

■ Alcuni esempi (fase lineare)

$$\alpha = \frac{N-1}{2}$$

1. Passa banda generalizzato

$$H_0(F) = e^{-j2\pi F \alpha}$$

$$F_1 < |F| < F_2$$

$$h_0(n) = \frac{1}{\pi(n-\alpha)} \{ \operatorname{sen}[2\pi F_2(n-\alpha)] - \\ \operatorname{sen}[2\pi F_1(n-\alpha)] \}, \quad n - \alpha \neq 0$$

$$h_0(n) = 2(F_2 - F_1)$$
, $n - \alpha = 0$ (N dispari)

2. Derivatore generalizzato

$$h_0(n) =$$

$$\frac{1}{2\pi^{2}} \left\{ \frac{2\pi F_{2} \cos[2\pi F_{2}(n-\alpha)] - 2\pi F_{1} \cos[2\pi F_{1}(n-\alpha)]}{n-\alpha} \right\}$$

$$\frac{\operatorname{sen}[2\pi F_2(n-\alpha)] - \operatorname{sen}[2\pi F_1(n-\alpha)]}{(n-\alpha)^2} \right\}, n-\alpha \neq 0$$

$$h_0(n) = 0$$
, $n - \alpha = 0$ (N dispari)

3. Trasformatore di Hilbert generalizzato

$$H_0(F) = -j \operatorname{sgn} F \operatorname{e}^{-j 2\pi F \alpha}$$
 , $F_1 < |F| < F_2$

$$h_0(n) = \frac{1}{\pi(n-\alpha)} \{ \cos[2\pi F_1(n-\alpha)] -$$

$$\cos[2\pi F_2(n-\alpha)]$$
 , $n-\alpha \neq 0$

$$h_0(n) = 0$$
, $n - \alpha = 0$ (N dispari)

METODO DEL CAMPIONAMENTO IN FREQUENZA

 Si campiona la risposta in frequenza desiderata in N punti equispaziati

$$H(k) = H_0(F)|_{F=\frac{k}{N}}, \quad 0 \le k \le N-1$$

Si calcolano

$$h(n) = IDFT_{N} \{ H(k) \}, \qquad 0 \leq n \leq N-1$$

che implica un errore

$$E(F) = H(F) - H_0(F) \neq 0 \qquad F \neq \frac{k}{N}$$

Per ridurre E(F)

si fanno variare i campioni • nella banda di transizione, fino a minimizzare una norma prescelta di E(F). Generalmente due o tre campioni nella banda di transizione sono sufficienti. Soluzione mediante tecniche di programmazione lineare.

Osservazione: applicabile a qualunque risposta in frequenza

CRITERIO DI CHEBYCHEV

Con questo metodo si vuole minimizzare l'errore massimo della risposta in ampiezza ovvero avere uguali deviazioni massime rispetto alla risposta in ampiezza desiderata (minmax, equiripple)

CRITERIO DI CHEBYCHEV

Si parte da specifiche (es. passa-basso)

 δ_{1} deviazione max in banda passante δ_{2} deviazione max in banda attenuata

cinque parametri interdipendenti

N F_1 F_2 δ_1 δ_2

 Programma Parks - Mc Clellan (FIR a fase lineare)

<u>Ingressi</u>

<u>Uscite</u>

Tipo filtro
 (multibanda /
 derivatore / Hilbert)

h(n)

• N

 δ_1 , δ_2

 Estremi bande (passanti e attenuate) (equiripple, minmax)

 Peso relativo deviazione in banda passante e in banda attenuata

■ Formule di progetto per FIR a fase lineare

 Stima di N per passa-basso (errore entro 10%)

$$N \cong \frac{2}{3} \frac{1}{F_2 - F_1} Log_{10} \left(\frac{1}{10\delta_1 \delta_2} \right)$$

 N è inversamente proporzionale alla larghezza della banda di transizione normalizzata (F₂ - F₁) ullet N è meno sensibile a variazioni di $\,\delta_1$ e δ_2

N non dipende da F₁ e da F₂ singolarmente, ma solo da (F₂ - F₁)
 [approssimativamente vero]

 La stima di N si può estendere ragionevolmente anche a filtri di tipo diverso dal passa-basso

STRUTTURE REALIZZATIVE

Rappresentano la struttura realizzativa dell'algoritmo di filtraggio.

Non necessariamente coincide con la struttura realizzativa circuitale.

Diretta

$$H(z) = \sum_{n=0}^{N-1} h(n) z^{-n}, y(n) = \sum_{m=0}^{N-1} h(m) x(n-m)$$

■ Teorema di trasposizione

La funzione di trasferimento del sistema non cambia applicando le regole di trasposizione ad una struttura realizzativa.

Regole di trasposizione

- scambiare ingresso e uscita
- invertire il senso del flusso dei segnali
- punti di diramazione diventano punti di somma e viceversa
- un'operazione di moltiplicazione per una sequenza g(n) si trasforma in una moltiplicazione per g(-n)
- L'operazione di sottocampionamento si trasforma in operazione di incremento della frequenza di campionamento dello stesso fattore e viceversa

Operazioni di trasposizione fra strutture realizzative

■ Trasposta

Complessità

Entrambe richiedono:

N moltiplicazioni

N - 1 somme

■ FIR a fase lineare N dispari

Complessità

Moltiplicazioni:
$$\frac{N+1}{2}$$
 (dispari),

$$\frac{N}{2}$$
 (pari)

Somme:
$$N-1$$

■ FIR a campionamento in frequenza

In alternativa alle strutture precedenti

$$H(z) = \frac{1-z^{-N}}{N} \sum_{k=0}^{N-1} \frac{H(k)}{1-z^{-1}} e^{j\frac{2\pi}{N}k}$$

- Un FIR più N IIR del primo ordine (complessi)
- Struttura conveniente quando pochi H(k) ≠ 0 (filtri a banda stretta)

 I filtri IIR hanno poli sul cerchio unitario: per evitare problemi di instabilità si spostano leggermente all'interno