Laborato	yfrowej
Ćwiczenie nr: 1 Temat zajęć: Multiplekser	Data wykonania: 27.03.2018
Kierunek/semestr: AiR / 4	Data uruchomienia:
Wykonali: Katarzyna Kowalska	29.03.2018

Zadanie A:

1. Cel zadania / wymagania projektowe

- znalezienie postaci minimalnej funkcji F2/5 (metoda dowolna) i wyznaczenie współczynnika nieokreśloności zmiennych.
- przy pomocy układu M8_1E zbudowanie układu realizującego funkcję F2/5.
- przygotowanie schematu do testowania wykorzystującego generator wymuszeń i podłączenie analizatora stanów (wg przykładu z lab0),
- dokonanie symulacji behawioralnej zaprojektowanego urządzenia.

Tabela funkcji F2/5 wg generatora zadań dla numeru indeksu 132100:

funkcja F2/5(A,B,C,D,E) = 5 7 11 13 15 18 19 20 21 25 27 28

DEC	BIN
5	00101
7	00111
11	01011
13	01101
15	01111
18	10010
19	10011
20	10100
21	10101
25	11001
27	11011
28	11100

DEC	BIN
5	00101
7	00111
11	01011
13	01101
15	01111
18	10010
19	10011
20	10100
21	10101
25	11001
27	11011
28	11100

2. Synteza układu / tablice Karnaugha dla realizowanej funkcji

•
$$Y = \overline{A} \cdot C \cdot E + B \cdot \overline{C} \cdot D \cdot E + A \cdot B \cdot \overline{C} \cdot E + A \cdot \overline{B} \cdot \overline{C} \cdot D + A \cdot \overline{B} \cdot C \cdot \overline{D} + A \cdot C \cdot \overline{D} \cdot \overline{E}$$

C/D/E A/B	000	001	011	010	110	111	101	100
00	0	0	0	0	0	1	1	0
01	0	0	1	0	0	1	1	0
11	0	1	1	0	0	0	0	1
10	0	0	1	1	0	0	1	1

3. Współczynnik nieokreśloności

A	5
В	4
C	6
D	4
E	4

4. Realizacja przy pomocy bramek z biblioteki Xilinx Spartan3

5. Weryfikacja poprawności projektu / wyniki symulacji

• Wymuszenia zdefiniowano zgodnie z poniższym skryptem Tcl:

```
force A 0 Ops, 1 160ps -repeat 320ps
force B 0 Ops, 1 80ps -repeat 160ps
force C 0 Ops, 1 40ps -repeat 80ps
force D 0 Ops, 1 20ps -repeat 40ps
force E 0 Ops, 1 10ps -repeat 20ps
run 320ps
```

• Tablica prawdy weryfikowanej funkcji

```
funkcja F2/5(A,B,C,D,E) = 5 7 11 13 15 18 19 20 21 25 27 28
        00101
  5
        00111
 11
        01011
        01101
 13
 15
        01111
 18
        10010
 19
        10011
 20
        10100
 21
        10101
 25
        11001
 27
        11011
 28
       11100
```

Symulacja w programie modelsim

Wyniki symulacji behawioralnej potwierdzają poprawność wykonania modelu strukturalnego urządzenia. Pojawianie się na wyjściu stanu wysokiego jest zgodne z zawartością tablicy prawdy dla funkcji F2/5.

6. Realizacja przy pomocy multipleksera i bramek z biblioteki Xilinx Spartan3

W oparciu o współczynnik nieokreśloności do sterowania multiplekserem zostały użyte wejścia **A,B,C**.

7. Weryfikacja poprawności projektu / wyniki symulacji

• Wymuszenia zdefiniowano zgodnie z poniższym skryptem Tcl:

force A 0 0ps, 1 160ps -repeat 320ps force B 0 0ps, 1 80ps -repeat 160ps force C 0 0ps, 1 40ps -repeat 80ps force D 0 0ps, 1 20ps -repeat 40ps force E 0 0ps, 1 10ps -repeat 20ps run 320ps • Tablica prawdy weryfikowanej funkcji

funkcja F2/5(A,B,C,D,E) = 5 7 11 13 15 18 19 20 21 25 27 28

DEC	BIN
5	00101
7	00111
11	01011
13	01101
15	01111
18	10010
19	10011
20	10100
21	10101
25	11001
27	11011
28	11100

• Symulacja w programie modelsim

Wyniki symulacji behawioralnej potwierdzają poprawność wykonania modelu strukturalnego urządzenia. Pojawianie się na wyjściu stanu wysokiego jest zgodne z zawartością tablicy prawdy dla funkcji F2/5.

8. Implementacja / testowanie prototypu

• Interfejs testowanego urządzenia (wg schematu):

Port urządzenia testowanego	Sygnał płyty prototypowej	Kanał analizatora stanów
A	Pmod JA1	CH0
В	Pmod JA2	CH1
C	Pmod JA3	CH2
D	Pmod JA4	CH3
E	Pmod JA7	CH4
Y	Pmod JA10	CH7
CE	SW7	-
RST	SW6	-
CLK	Zegar 50MHz	-

Testowanie polega na podaniu na wejścia A,B,C,D,E bloku F2_5 sekwencji 8-bitowych w kodzie NKB i obserwacji zachowania układu przy pomocy analizatora stanów logicznych. Analizator podłączony do układu poprzez port Pmod_JA. Procedura testowania wykorzystuje wewnętrzny licznik binarny 8-bitowy (najmłodszy bit licznika podany na wejście E urządzenia testowanego). Częstotliwość zegara licznika (wejście C dla CB4CE) wynosi ~1kHz.

• Pinout Report

	Pin Number	it =	Pin Usage	Pin Name	Direction	IO Standard	IO Bank Number	Drive (mA)		Termination	IOB Delay	Voltage	Constraint	IO Register	Signal Integrity
1	R17	ce	IBUF	IP	INPUT	LVCMO	1				NO		LOCATED	NO	NONE
2	B8	clk	IBUF	IP_L13P_0/GCLK8	INPUT	LVCMO	0				NO		LOCATED	NO	NONE
3	B18	rst	IBUF	IP	INPUT	LVCMO	1				NO		LOCATED	NO	NONE
4	L15	we0	IOB	IO_L09N_1/A11	OUTPUT	LVCMO	1	12	SL	NONE**			LOCATED	NO	NONE
5	K12	we1	IOB	IO_L11N_1/A9/R	OUTPUT	LVCMO	1	12	SL	NONE**			LOCATED	NO	NONE
6	L17	we2	IOB	IO_L10N_1/VREF_1	OUTPUT	LVCMO	1	12	SL	NONE**			LOCATED	NO	NONE
7	M15	we3	IOB	IO_L07P_1	OUTPUT	LVCMO	1	12	SL	NONE**			LOCATED	NO	NONE
8	K13	we4	IOB	IO_L11P_1/A10/R	OUTPUT	LVCMO	1	12	SL	NONE**			LOCATED	NO	NONE
9	M16	wy0	IOB	IO_L07N_1	OUTPUT	LVCMO	1	12	SL	NONE**			LOCATED	NO	NONE

Zadanie B:

1. Cel zadania / wymagania projektowe

- przy pomocy układu **ROM16X1** zbudowanie układu realizującego funkcję kodera wg tablicy **D2**,
- w przypadku zastosowania pamięci ROM wykorzystanie parametru INIT do inicjalizacji zawartości pamięci na etapie generacji pliku bitowego,
- przygotowanie schematu do testowania wykorzystującego generator wymuszeń i podłączenie analizatora stanów (wg przykładu z lab0),
- dokonanie symulacji behawioralnej zaprojektowanego urządzenia

Tablica **D2** wg generatora zadań dla numeru indeksu 132100:

dekoder D2

we	BIN	wyj	BIN
0	0000	2	0010
1	0001	15	1111
2	0010	11	1011
3	0011	12	1100
4	0100	13	1101
5	0101	7	0111
6	0110	9	1001
7	0111	5	0101
*		0	0000

^{* -} wszystkie pozostale stany

	wej	ścia		wyjścia				
A_3	A_2	A_1	A_0	Y_3	Y_2	Y_1	Y_0	
0	0	0	0	0	0	1	0	
0	0	0	1	1	1	1	1	
0	0	1	0	1	0	1	1	
0	0	1	1	1	1	0	0	
0	1	0	0	1	1	0	1	
0	1	0	1	0	1	1	1	
0	1	1	0	1	0	0	1	
0	1	1	1	0	1	0	1	
1	0	0	0	0	0	0	0	
1	0	0	1	0	0	0	0	
1	0	1	0	0	0	0	0	
1	0	1	1	0	0	0	0	
1	1	0	0	0	0	0	0	
1	1	0	1	0	0	0	0	
1	1	1	0	0	0	0	0	
1	1	1	1	0	0	0	0	

2. Realizacja przy pomocy układu ROM16X1 z biblioteki Xilinx Spartan3

- Inicjalizacja pamięci ROM
 - \circ O0 ROM16X1 = 00f6
 - \circ O1 ROM16X1 = 0027
 - \circ O2 ROM16X1 = 00ba
 - \circ O3 ROM16X1 = 005e

3. Weryfikacja poprawności projektu / wyniki symulacji

• Wymuszenia zdefiniowano zgodnie z poniższym skryptem Tcl:

force A0 0 0ns, 1 10ns -repeat 20ns force A1 0 0ns, 1 20ns -repeat 40ns force A2 0 0ns, 1 40ns -repeat 80ns force A3 0 0ns, 1 80ns -repeat 160ns run 200ns • Tablica prawdy weryfikowanej funkcji:

dekoder D2							
we	BIN	wyj	BIN				
0	0000	2	0010				
1	0001	15	1111				
2	0010	11	1011				
3	0011	12	1100				
4	0100	13	1101				
5	0101	7	0111				
6	0110	9	1001				
7	0111	5	0101				
*		0	0000				

* - wszystkie pozostale stany

• Symulacja w programie ModelSim:

Wyniki symulacji behawioralnej potwierdzają poprawność wykonania modelu strukturalnego urządzenia. Pojawianie się na wyjściu stanu wysokiego jest zgodne z zawartością tablicy dekodera D2.

4. Implementacja / testowanie prototypu

• Interfejs testowanego urządzenia (wg schematu):

Port urządzenia testowanego	Sygnał płyty prototypowej	Kanał analizatora stanów
A_0	Pmod JA1	CH0
A_1	Pmod JA2	CH1
A_2	Pmod JA3	CH2
A_3	Pmod JA4	CH3
O_0	Pmod JA7	CH8
0_1	Pmod JA8	CH9
0_2	Pmod JA9	CH10
0_3	Pmod JA10	CH11
CE	SW7	-
RST	SW6	-
CLK	Zegar 50MHz	-

Testowanie polega na podaniu na wejścia A_0 , A_1 , A_2 , A_3 bloku lab2 sekwencji 4-bitowych w kodzie NKB i obserwacji zachowania układu przy pomocy analizatora stanów logicznych. Analizator podłączony do układu poprzez port Pmod_JA. Procedura testowania wykorzystuje wewnętrzny licznik binarny 4-bitowy (najstarszy bit licznika podany na wejście A_0 urządzenia testowanego). Częstotliwość zegara licznika (wejście C dla CB4CE) wynosi ~1kHz.

• Pinout Report

	Pin Number	ir 🛎	Pin Usage	Pin Name	Direction	IO Standard	IO Bank Number		Slew Rate	Termination
1	L15	A0	IOB	IO_L09N_1/A11	OUTPUT	LVCMOS	1	12	SL	NONE**
2	K12	A1	IOB	IO_L11N_1/A9/RHCLK1	OUTPUT	LVCMOS	1	12	SL	NONE**
3	L17	A2	IOB	IO_L10N_1/VREF_1	OUTPUT	LVCMOS	1	12	SL	NONE**
4	M15	A3	IOB	IO_L07P_1	OUTPUT	LVCMOS	1	12	SL	NONE**
5	K13	00	IOB	IO_L11P_1/A10/RHCLK0	OUTPUT	LVCMOS	1	12	SL	NONE**
6	L16	01	IOB	IO_L09P_1/A12	OUTPUT	LVCMOS	1	12	SL	NONE**
7	M14	02	IOB	IO_L05P_1	OUTPUT	LVCMOS	1	12	SL	NONE**
8	M16	03	IOB	IO_L07N_1	OUTPUT	LVCMOS	1	12	SL	NONE**
9	R17	ce	IBUF	IP	INPUT	LVCMOS	1			
10	B8	clk	IBUF	IP_L13P_0/GCLK8	INPUT	LVCMOS	0			
11	N17	rst	IBUF	IP	INPUT	LVCMOS	1			