電子電路實驗 5: Differential Amplifiers

實驗預報

B02901178 江誠敏

April 27, 2015

1 Objectives

- 1. To be familiar with the characteristics of differential amplifiers
- 2. To comprehend the importance of CMRR (Common Mode Rejection Ratio) of an amplifier.

2 Procedures

2.1 Differential Mode Small Signal Analysis

- 1. Use 10 k Ω variable resistance for $R_{C1},R_{C2},R',$ and $R_S1=R_S2=0$ in Fig. 5.
- 2. Provide voltage source $V_{CC}=+12V,$ and $V_{SS}=-6V$ to the circuit.
- 3. Provide voltage source $V_{SS}=-6V$ to pin 13 of each chip of CA3046.
- 4. Oscilloscope ⊳Press the CH1 and CH2 MENU ⊳Coupling ⊳AC.
- 5. Oscilloscope ⊳Press the DISPLAY button ⊳Format ⊳YT mode.
- 6. Oscilloscope \triangleright Press the Measure button \triangleright Observe $V_i(p-p)$ in CH1.
- 7. Use the function generator to provide the input small signal V_i and make sure that $V_i = v_{ac} sin(2\pi ft), \ 2v_{ac} = 20mV(p-p)$, $f=1\sim 5kHz$ is measured from the breadboard by using CH1 of oscilloscope to observe.
- 8. Keep the previous adjustment of V_i constantly, and do not adjust the amplitude tuner in function generator any further.
- 9. Oscilloscope \triangleright Press the Measure button \triangleright Observe V_{O1} (p-p) and V_{O2} (p-p) in CH1 and CH2 at YT mode.
- 10. Adjust the variable resistance of R' so that voltage gain could be as high as possible.

- 11. Adjust the variable resistance of R_{C1} and R_{C2} so that A_{d1} voltage gain could be equal to A d2 .
- 12. If $V_o=0$, that is, there is no output signal, try to generate the input small signal v_i as $v_i=v_{ac}sin(2\pi ft),\ 2v_ac=2V$ (p-p), $f=1\sim 5kHz$, and repeat step (10) (11).
- 13. Record A_d :
- 14. Function generator \triangleright Press the FUNC button \triangleright Reducing Frequency and observe the voltage gain $A_{V_{in}}$ oscilloscope until $A_V=0.707A_d$.
- 15. Function generator \triangleright Press the FUNC button \triangleright Increasingly adjust the Frequency and observe the gain $A_{V_{in}}$ oscilloscope until $A_V = 0.707 A_d$..
- 16. Record the frequency
- 17. Change the frequency of small-signal input voltage, and record the input

2.2 Common Mode Small Signal Analysis

- 1. Keep the previous adjustment of R_{C1}, R_{C2} and R' constantly. Use function generator to provide $v_i = v_{ac} sin(2\pi ft), \ 2v_{ac} = 1 \, {\rm V} \ ({\rm p-p}) \ , \ f = 1 \sim 5 kHz.$
- 2. Oscilloscope \triangleright Press the Measure button \triangleright Observe V_{O1} (p-p) and V_{O2} (p-p) in CH1 and CH2 at YT mode.
- 3. Record A_{cm}
- 4. Function generator \triangleright Press the FUNC button \triangleright Reducing Frequency and observe the voltage gain $A_{V_{in}}$ oscilloscope until $A_V(\text{Low-3dB}) = 0.707 A_{cm}$.
- 5. Function generator \triangleright Press the FUNC button \triangleright Increasingly adjust the Frequency and observe the gain $A_{V_{in}}$ oscilloscope until $A_V(\text{High-3dB}) = 0.707 A_{cm}$.
- 6. Record the frequency.
- 7. Change the frequency of small-signal input voltage, and record the input and output voltage shown in oscilloscope to the following table.

2.3 Completed Mode Small Signal Analysis

- 1. Keep the previous adjustment of R_{C1} , R_{C2} and R' constantly. Use the function generator to provide: (a) $V_{id} = v_{ac} sin(\omega t), 2v_{ac} = 20mV$ (p-p), and (b) $V_i cm = v_{ac} sin(2\pi ft), 2v_{ac} = 1$ V (p-p), $f = 1 \sim 5$ kHz.
- 2. Oscilloscope \triangleright Press the Measure button \triangleright Observe V_{O1} (p-p) and V_{O2} (p-p) in CH1 and CH2 at YT mode.
- 3. Record $A_d, A_{d1}, A_{d2}, A_{cm}, V_{O1}, V_{O2}$
- 4. Function generator \triangleright Press the FUNC button \triangleright Increasingly adjust the Frequency and observe the gain $A_{V_{in}}$ oscilloscope until A_V (High-3dB) = 0.707 A_{cm} .
- 5. Record the frequency.

6.	Change the frequency of small-signal input voltage, and record the input and output voltage shown in oscilloscope to the following table.