Sample Question Paper

B.A / B.Sc. Mathematics Name of Programme:

Semester II

CMA-106 Paper Code

Paper Title **Vector Analysis and Solid Geometry**

Full Marks 80

Pass Marks 35 **Duration: 3 Hours**

> The figures in the margin indicate full marks for the questions Answer all the questions:

1. Choose and rewrite the correct answer for each of the following: $1\times4=4$

- a) If \vec{a} , \vec{b} , \vec{c} and \vec{d} are non-zero vectors, then $(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{a})$ lies in the plane
 - (i) \vec{a} and \vec{b}

(ii) \vec{a} and \vec{d}

(iii) \vec{a} and \vec{c}

- (iv) \vec{c} and \vec{d}
- b) Given that $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and \vec{a} is any constant vector. Then curl $(\vec{r} \times \vec{a})$ is
 - (i) \vec{a}

(ii) $-\vec{a}$

(iii) $2\vec{a}$

- (iv) $-2\vec{a}$
- c) The equation $3x^2 4y^2 2z^2 = 7$ represents
 - (i) an ellipsoid

- (ii) a hyperboloid of one sheet
- (iii) a hyperboloid of two sheet (iv) a hyperboloid paraboloid
- d) The condition that the plane lx + my + nz = p is a tangent plane to the sphere $x^{2} + y^{2} + z^{2} = a^{2}$ is

 - (i) $p^2(l^2 + m^2 + n^2) = a^2$ (ii) $a^2(l^2 + m^2 + n^2) = p^2$ (iv) $p(l^2 + m^2 + n^2) = a^2$

2. Write very short answer for each of the following questions: $1\times5=5$

- a) Define the gradient of a scalar point function.
- b) State Gauss divergence theorem.
- c) Write the equation of the sphere described on the joint of the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ as diameter.
- d) Define a right circular cylinder.
- Name the central conicoid represented by $ax^2 + by^2 = 2z$ when the constants a and b are of opposite signs.

3. Answer the following questions:

 $3 \times 5 = 15$

- a) If $\phi = 2x^3y^2z^2$, then find the value of div.(grad ϕ) at the point (1,-1, 1).
- b) Find the equation of the cone where vertex is (α, β, γ) and the guiding curve is z = 0, $ax^2 + by^2 = 1$.
- c) Find the equation of the sphere passing through the origin and the points A(a,0,0), B(0,b,0) and C(0,0,c).
- Find the generator of the paraboloid $4x^2 y^2 = 8z$ which pass through the point (3,-2,4).
- e) Find the locus of the centres of sections of the conicoid $ax^2 + by^2 + cz^2 = 1$ which touch the conicoid $Ax^2 + By^2 + Cz^2 = 1$.

4. Answer the following questions:

 $4 \times 5 = 20$

a) Evaluate by Green's theorem

$$\oint_{c} \{(\cos x \sin y - xy) dx + \sin x \cos y dy\},$$

where C is the circle $x^2 + y^2 = 1$ in the xy-plane described in the positive sense.

- b) Prove that every section of a right circular cone by a plane perpendicular to its axis is a circle.
- Prove that the enveloping cylinder of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ whose generators are parallel to the line $\frac{x}{0} = \frac{y}{\sqrt{a^2 b^2}} = \frac{z}{c}$ meet the plane z = 0 is circle.
- d) Find the equation of the sphere which touches the sphere $x^2 + y^2 + z^2 = 21$ at the point (1,-2,4) and passes through the point (3,4,0).
- e) Prove that the equation of the right circular cylinder whose axis is $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$ and radius r is $(l^2 + m^2 + n^2)(x^2 + y^2 + z^2 r^2) = (lx + my + nz)^2$.

5. Answer any two of the following questions:

 $6 \times 2 = 12$

- a) Show that the area bounded by a simple closed curve C is given by $\oint_C (xdy ydx)$. Hence obtain the area of ellipse $x = a\cos t$, $y = b\sin t$.
- b) Verify the divergence theorem for the vector function

$$\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$$

taken over the rectangular parallelepiped

$$0 \le x \le a$$
, $0 \le y \le b$, $0 \le z \le c$.

c) Verify Stoke's theorem for

$$\vec{F} = xy\hat{i} + xy^2\hat{j}$$

integrated around the square vertices (1,0,0), (1,1,0), (0,1,0) and (0,0,0) where \hat{i} and \hat{j} are unit vectors along x – axis and y – axis respectively.

6. Answer any two of the following questions:

 $6 \times 2 = 12$

- a) Prove that the plane ax + by + cz = 0 cuts the cone yz + zx + xy = 0 in two perpendicular lines if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$.
- b) Find the equation of the enveloping cylinder of the surface given by $ax^2 + by^2 + cz^2 = 1$, the generators being parallel to the line $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$.
- c) Find the equation of the tangent plane to the paraboloid $ax^2 + by^2 = 2z$ parallel to lx + my + nz = 0.

7. Answer any two of the following questions:

 $6 \times 2 = 12$

- a) Prove that through any point in space, in general, six normals can be drawn to any central conicoid.
- The section of the enveloping cone of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ with P as vertex by the plane z = 0 is a circle. Find the locus of P.
- c) Find the equations of the pair of tangent planes to the conicoid $ax^2 + by^2 + cz^2 = 1$ which passess through the line u = lx + my + nz p = 0 and u' = l'x + m'y + n'z p' = 0.
