Bonus Question: Does Flexible Incentive Pay Dampen Unemployment Fluctuations?

Meghana Gaur Princeton John Grigsby Princeton, NBER Jonathon Hazell LSE, IZA Abdoulaye Ndiaye NYU Stern, CEPR

July 2023 NBER Summer Institute Impulse & Propagation Mechanisms

Motivation

- ► Sluggish wage adjustment over the business cycle is important in macro
 - ▶ Unemployment dynamics (Hall 2005, Hagedorn & Manovskii 2008, Gertler & Trigari 2009)
 - ► Inflation dynamics (Christiano et al 2005, 2016)

Motivation

- ► Sluggish wage adjustment over the business cycle is important in macro
 - ▶ Unemployment dynamics (Hall 2005, Hagedorn & Manovskii 2008, Gertler & Trigari 2009)
 - ▶ Inflation dynamics (Christiano et al 2005, 2016)
- Recent evidence: estimates of wage adjustment depend on measure (Grigsby, Hurst & Yildirmaz 2021)
 - Base wages are sluggish (rarely change, weakly pro-cyclical)
 - ▶ But bonuses seem flexible (change frequently, strongly procyclical in some studies/contexts)

Motivation

- ► Sluggish wage adjustment over the business cycle is important in macro
 - ▶ Unemployment dynamics (Hall 2005, Hagedorn & Manovskii 2008, Gertler & Trigari 2009)
 - ▶ Inflation dynamics (Christiano et al 2005, 2016)
- Recent evidence: estimates of wage adjustment depend on measure (Grigsby, Hurst & Yildirmaz 2021)
 - ▶ Base wages are sluggish (rarely change, weakly pro-cyclical)
 - ▶ But bonuses seem flexible (change frequently, strongly procyclical in some studies/contexts)
- ▶ This paper: how does flexible incentive pay affect unemployment dynamics?
 - Incentive pay: piece-rates, bonuses, commissions, stock options or profit sharing
 - 30-50% of US workers get incentive pay (Lemieux, McLeod and Parent, 2009; Makridis & Gittelman 2021)
 - ► Including 25-30% of low wage workers

This paper: incentive pay + unemployment dynamics

- ▶ Flexible incentive pay = dynamic incentive contract with moral hazard (Holmstrom 1979; Sannikov 2008)
- ▶ Unemployment = standard labor search model (Mortensen & Pissarides 1994)
- ► Allows flexible + cyclical incentive pay consistent with microdata

This paper: incentive pay + unemployment dynamics

Result #1: Wage cyclicality from incentives does not dampen unemployment fluctuations

Unemployment dynamics first-order identical in two economies calibrated to same steady state:

- 1. Economy #1: labor search model with flexible incentive pay + take-it-or-leave-it offers
- 2. Economy #2: labor search model with perfectly rigid wages as in Hall (2005)

Intuition: lower incentive pay raises profits, but worse incentives reduces effort + lowers profits

▶ **Optimal contract:** effect of wage + effort on profits cancel out

This paper: incentive pay + unemployment dynamics

Result #1: Wage cyclicality from incentives does not dampen unemployment fluctuations

Result #2: Wage cyclicality from bargaining + outside option does dampen unemployment fluctuations

- Similar mechanism to standard model
- → Empirical work should separately measure wage cyclicality due to bargaining vs. incentives

This paper: incentive pay + unemployment dynamics

Result #1: Wage cyclicality from incentives does not dampen unemployment fluctuations

Result #2: Wage cyclicality from bargaining + outside option does dampen unemployment fluctuations

Result #3: Calibrated model: \approx 60% of wage cyclicality due to bargaining + outside option

ightarrow Calibrate simple models without incentive pay to wage cyclicality that is 40% lower than raw data

Static Model

Dynamic Model

Numerical Exercise

Conclusion

Frictional labor markets

- ▶ Measure 1 of workers begin unemployed and search for jobs; remain unemployed if unmatched
- ightharpoonup Firms post vacancies v at cost κ to recruit workers
- ▶ Vacancy-filling rate is $q(\theta) \equiv \Psi \theta^{-\nu}$ for $\theta \equiv v/u$ market tightness

Frictional labor markets

- ▶ Measure 1 of workers begin unemployed and search for jobs; remain unemployed if unmatched
- Firms post vacancies v at cost κ to recruit workers
- lacktriangle Vacancy-filling rate is $q(heta) \equiv \Psi heta^{u}$ for $heta \equiv v/u$ market tightness

Workers' preferences

- lacktriangle Workers derive utility from consumption c and labor effort a with utility u(c,a)
- ightharpoonup Employed workers consume wage w and supply effort a
- ▶ Unemployed workers have value $U \equiv u(b,0)$

Frictional labor markets

- ▶ Measure 1 of workers begin unemployed and search for jobs; remain unemployed if unmatched
- Firms post vacancies v at cost κ to recruit workers
- lacktriangle Vacancy-filling rate is $q(heta) \equiv \Psi heta^{u}$ for $heta \equiv v/u$ market tightness

Workers' preferences

- lacktriangle Workers derive utility from consumption c and labor effort a with utility u(c,a)
- ightharpoonup Employed workers consume wage w and supply effort a
- ▶ Unemployed workers have value $U \equiv u(b,0)$

Technology

- Firm-worker match produces output $y = z(a + \eta)$
 - z: aggregate labor productivity, always common knowledge
 - $ightharpoonup \eta$: i.i.d., mean zero output shock with distribution $\pi(\eta)$
- \triangleright Firms pay workers wage w, earn expected profits from a filled vacancy:

$$J(z) = \mathbb{E}_{\eta} \left[z(a + \eta) - w \right]$$

Employment Fluctuations in Static Model

▶ Free entry to vacancy posting guarantees zero profits in expectation:

$$\kappa = \underbrace{q(v)}_{Pr\{ ext{Vacancy Filled}\}} \cdot \underbrace{J(z)}_{ ext{Value of Filled Vacancy}}$$

Employment fluctuations: Perivation

$$\left| \frac{d \log n}{d \log z} = constant + \left(\frac{1 - \nu}{\nu} \right) \cdot \frac{d \log J(z)}{d \log z} \right|$$

Next: solve for dJ/dz to determine employment fluctuations

First Order Effect of Change in Labor Productivity z

Consider effect of small shock to z on expected profits J(z):

$$\frac{dJ(z)}{dz} = \frac{d\mathbb{E}_{\eta} \left[z(a+\eta) - w \right]}{dz}$$

$$= \mathbb{E}_{\eta} \left[\underbrace{\frac{\partial [z(a+\eta) - w]}{\partial z}}_{\text{Direct Productivity}} + \underbrace{\frac{\partial [z(a+\eta) - w]}{\partial w} \cdot \frac{dw}{dz}}_{\text{Marginal Cost}} + \underbrace{\frac{\partial [z(a+\eta) - w]}{\partial a} \cdot \frac{da}{dz}}_{\text{Incentives}} \right]$$

If labor productivity shocks change effort, incentives can partially offset marginal cost effect

Next: different models of a and w

Two Models of a and w

$$\frac{dJ(z)}{dz} = \mathbb{E}\left[a - \frac{dw}{dz} + z\frac{da}{dz}\right]$$

Model a $w = \frac{dJ(z)}{dz}$

Fixed effort and wage (Hall 2005)

Optimal incentive contract (Holmstrom 1979)

Two Models of a and w

$$\frac{dJ(z)}{dz} = \mathbb{E}\left[\bar{a} - \frac{\frac{dw}{dz}}{\frac{dz}{dz}} + z \frac{\frac{da}{dz}}{\frac{dz}{dz}}\right]$$

Model	а	W	$\frac{dJ(z)}{dz}$
Fixed effort and wage (Hall 2005)	ā	$ar{w}$	ā
Optimal incentive contract (Holmstrom 1979)			

Moral Hazard, Optimal Contract with Incentive Pay

ightharpoonup Moral hazard: firm cannot distinguish effort a from idiosyncratic shock η (Holmstrom 1979)

Moral Hazard, Optimal Contract with Incentive Pay

- Moral hazard: firm cannot distinguish effort a from idiosyncratic shock η (Holmstrom 1979)
- Firm meets worker and offers contract to maximize value of filled vacancy

$$J(z) \equiv \max_{a(z),w(z,y)} \mathbb{E}[z(a(z)+\eta)-w(z,y)]$$

subject to

incentive compatibility constraint: $a(z) \in \arg\max_{\tilde{a}(z)} \mathbb{E}\left[u(w(z,y),\tilde{a}(z))\right]$

participation constraint w/ bargaining: $\mathbb{E}\left[u(w(z,y),a(z))\right] \geq \mathcal{B}(z)$

Moral Hazard, Optimal Contract with Incentive Pay

- \blacktriangleright Moral hazard: firm cannot distinguish effort a from idiosyncratic shock η (Holmstrom 1979)
- Firm meets worker and offers contract to maximize value of filled vacancy

$$J(z) \equiv \max_{a(z), w(z, y)} \mathbb{E}[z(a(z) + \eta) - w(z, y)]$$

subject to

incentive compatibility constraint:
$$a(z) \in \arg\max_{\tilde{a}(z)} \mathbb{E}\left[u(w(z,y),\tilde{a}(z))\right]$$

participation constraint w/ bargaining: $\mathbb{E}\left[u(w(z,y),a(z))\right] \geq \mathcal{B}(z)$

- Properties of the contract:
 - 1. Incentives—pass through of y into w
 - 2. Reduced form "bargaining rule" $\mathcal{B}(z)$ (Michaillat 2011)
 - 3. When $\mathcal{B}(z) = U$ no bargaining power + constant outside option \rightarrow all wage cyclicality due to incentives

Wage Cyclicality from Incentives Does Not Dampen Unemployment Fluct's

$$\frac{dJ(z)}{dz} = \mathbb{E} \left[a + \underbrace{z \frac{da}{dz} - \frac{dw}{dz}}_{\text{= 0}} \right]$$

Model	а	W	$\frac{dJ(z)}{dz}$
Fixed effort and wage (Hall 2005)	ā	$ar{w}$	ā
Incentive contract w/o bargaining or cyclical outside option, $\mathcal{B}(z) = U$	a*(z)	$w^*(z,y)$	a*(z)

Result #1: wage cyclicality from incentives does not dampen unemployment fluctuations

▶ NB: Output dynamics not equivalent

Same Employment Response w/ Rigid Wage or Flexible Incentive Pay

- Fixed effort, fixed wages (Hall)
 - \longrightarrow Large fluctuations in *n* when *z* fluctuates
- Incentive contract with $\mathcal{B}(z) = U$
 - No bargaining or cyclical outside option
 - → Identical to rigid wage economy!

Notimal Contract Details

Parameterization

▶ Full Information Benchmark

▶ Proof Outline

Holds even though average wages can be strongly "pro-cyclical"

Wage Cyclicality from Bargaining Does Dampen Unemployment Fluct's

Result #2: Wage cyclicality from bargaining or outside option does dampen unemployment fluctuations

$$rac{dJ}{dz} = \mathsf{a}^* - \mu^* \mathcal{B}'(z)$$

- Direct productivity effect a*
- ightharpoonup Cyclical utility from bargaining or outside option $\mathcal{B}'(z)$
- ho $\mu^* = Lagrange multiplier on participation constraint$

Wage Cyclicality from Bargaining Does Dampen Unemployment Fluct's

Result #2: Wage cyclicality from bargaining or outside option does dampen unemployment fluctuations

$$rac{dJ}{dz} = a^* - \mu^* \mathcal{B}'(z)$$
 $\mu^* \mathcal{B}'(z) = \underbrace{\mathbb{E}\left[rac{dw^*}{dz} - zrac{da^*}{dz}
ight]}_{ ext{bargained wage cyclicality}}$

- Direct productivity effect a*
- ightharpoonup Cyclical utility from bargaining or outside option $\mathcal{B}'(z)$
- lacksquare $\mu^*=$ Lagrange multiplier on participation constraint
- $ightharpoonup \mu^* \mathcal{B}'(z)$ is bargained wage cyclicality

Intuition: higher wages from bargaining or outside option not accompanied by higher effort

Same mechanism as standard model (e.g. Shimer 2005)

Summary of Static Model

- 1. Wage cyclicality due to incentives does not dampen employment fluctuations
 - ▶ Marginal cost + incentive effects cancel out to a first order on optimal contract
- 2. Wage cyclicality due to bargaining or outside option does dampen employment fluctuations

Static Model

Dynamic Model

Numerical Exercise

Conclusion

Summary of Dynamic Model

Diamond-Mortensen-Pissarides labor market

- lacktriangle Firms post vacancies, match with unemployed in frictional labor market w/ tightness $heta_t$
- ▶ Baseline: exogenous separations, extension w/ endogenous separations

Summary of Dynamic Model

Diamond-Mortensen-Pissarides labor market

- lacktriangle Firms post vacancies, match with unemployed in frictional labor market w/ tightness $heta_t$
- ▶ Baseline: exogenous separations, extension w/ endogenous separations

Dynamic incentive contract (Sannikov 2008)

- ▶ General production and utility functions $f(z_t, \eta_t)$ and $u(w_t, a_t)$, discount factor β
- lacktriangle Unobservable history of effort a^t shifts distribution of observable persistent idiosyncratic shock η_t
- Firm offers dynamic incentive contract:

$$\left\{w_t\left(\eta^t, z^t\right), a_t\left(\eta^{t-1}, z^t\right)\right\}_{\eta^t, z^t, t=0}^{\infty}$$

- 1. Sequence of incentive constraints
- 2. Ex ante participation constraint w/ reduced form bargaining
- 3. Two sided commitment

Summary of Dynamic Model

Diamond-Mortensen-Pissarides labor market

- lacktriangle Firms post vacancies, match with unemployed in frictional labor market w/ tightness $heta_t$
- ▶ Baseline: exogenous separations, extension w/ endogenous separations

Dynamic incentive contract (Sannikov 2008)

- ▶ General production and utility functions $f(z_t, \eta_t)$ and $u(w_t, a_t)$, discount factor β
- lacktriangle Unobservable history of effort a^t shifts distribution of observable persistent idiosyncratic shock η_t
- Firm offers dynamic incentive contract:

$$\left\{w_{t}\left(\eta^{t}, z^{t}\right), a_{t}\left(\eta^{t-1}, z^{t}\right)\right\}_{\eta^{t}, z^{t}, t=0}^{\infty}$$

- 1. Sequence of incentive constraints
- 2. Ex ante participation constraint w/ reduced form bargaining
- 3. Two sided commitment
- ✓ Allows long term contracts (Barro 1977; Beaudry & DiNardo 1991) ▶ Details

Result#1: Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's

Temporarily shut down bargaining power + outside option \rightarrow all wage cyclicality due to incentives

Result#1: Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's

Temporarily shut down bargaining power + outside option \rightarrow all wage cyclicality due to incentives

Assume: (i) proximity to aggregate steady state (ii) production function is h.o.d. 1 in z, (iii) z is driftless random walk (iv) no worker bargaining power + constant outside option. In incentive pay economy

$$rac{d \log heta_0}{d \log z_0} \propto rac{1}{1 - ext{labor share}}, \qquad ext{labor share} = rac{\mathbb{E}_0[ext{present value wages}]}{\mathbb{E}_0[ext{present value output}]}$$

The same equations characterize a rigid wage economy with fixed wages + effort.

Implication: incentive wage cyclicality does not mute unemployment fluctuations

Result#1: Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's

Temporarily shut down bargaining power + outside option \rightarrow all wage cyclicality due to incentives

Assume: (i) proximity to aggregate steady state (ii) production function is h.o.d. 1 in z, (iii) z is driftless random walk (iv) no worker bargaining power + constant outside option. In incentive pay economy

$$rac{d \log heta_0}{d \log z_0} \propto rac{1}{1- ext{labor share}}, \qquad ext{labor share} = rac{\mathbb{E}_0[ext{present value wages}]}{\mathbb{E}_0[ext{present value output}]}$$

The same equations characterize a rigid wage economy with fixed wages + effort.

Implication: incentive wage cyclicality does not mute unemployment fluctuations

Proof sketch: optimal contract + envelope theorem

- \rightarrow No first order effect of wage + effort changes on profits in response to z_0
- $\,\rightarrow\,$ Same profit response as if fixed wages + effort

Introduction Static Model Dynamic Model Numerical Exercise

Result#1: Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's

Temporarily shut down bargaining power + outside option \rightarrow all wage cyclicality due to incentives

Assume: (i) proximity to aggregate steady state (ii) production function is h.o.d. 1 in z, (iii) z is driftless random walk (iv) no worker bargaining power + constant outside option. In incentive pay economy

$$rac{d \log heta_0}{d \log z_0} \propto rac{1}{1- ext{labor share}}, \qquad ext{labor share} = rac{\mathbb{E}_0[ext{present value wages}]}{\mathbb{E}_0[ext{present value output}]}$$

The same equations characterize a rigid wage economy with fixed wages + effort.

Implication: incentive wage cyclicality does not mute unemployment fluctuations

Proof sketch: optimal contract + envelope theorem

Generality: analytical results with general functions, persistent idiosyncratic shocks (Assumptions)

► In paper: same result w/ efficient endogenous separations

Result#1: Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's

Temporarily shut down bargaining power + outside option \rightarrow all wage cyclicality due to incentives

Assume: (i) proximity to aggregate steady state (ii) production function is h.o.d. 1 in z, (iii) z is driftless random walk (iv) no worker bargaining power + constant outside option. In incentive pay economy

$$rac{d \log heta_0}{d \log z_0} \propto rac{1}{1- ext{labor share}}, \qquad ext{labor share} = rac{\mathbb{E}_0[ext{present value wages}]}{\mathbb{E}_0[ext{present value output}]}$$

The same equations characterize a rigid wage economy with fixed wages + effort.

Implication: incentive wage cyclicality does not mute unemployment fluctuations

Proof sketch: optimal contract + envelope theorem

Generality: analytical results with general functions, persistent idiosyncratic shocks Assumptions

Result #2 in paper: bargained wage cyclicality does mute unemployment fluctuations

Static Model

Dynamic Model

Numerical Exercise

Conclusion

Numerical Exercise: Overview

Questions

- How much wage cyclicality due to incentives vs bargaining + outside option?
- ▶ How to calibrate simpler model of wage setting without incentives?

Approach

- 1. Explicit and tractable optimal contract building on Edmans et al (2012) Details
- 2. Reduced form bargaining: take-it-or-leave it with cyclical value of unemployment
- 3. Calibrate parameters targeting micro moments of wage adjustment

Heuristic Identification: Disentangling Bargaining from Incentives

1. Ex post wage pass through informs incentives

- lack to wages, variance of wage growth
- Key parameter: disutility of effort, variance of idiosyncratic shocks
- Conservative choices to reduce role of incentives (e.g. target low pass-through)

2. Ex ante fluctuations in wage for new hires informs bargaining + outside option

- Key moment: new hire wage cyclicality
- ► Key parameter: cyclicality of promised utility
- 3. Externally calibrate standard parameters
 - Separation rate, discount rate, vacancy cost, matching function (Petrosky-Nadeau and Zhang, 2017)
 - ▶ TFP process from Fernald (2014), accounting for capacity utilization of labor + capital

Result#3: Substantial Share of Overall Wage Cyclicality Due to Incentives

Table: Data vs Simulated Model Moments

Moment	Description		Baseline
$\operatorname{std}(\Delta \log w_{it}) \ \partial \mathbb{E}[\log w_0]/\partial u \ \partial \log w_{it}/\partial \log y_{it} \ u_{ss}$	$\partial \mathbb{E}[\log w_0]/\partial u$ New Hire Wage Cyclicality $\partial \log w_{it}/\partial \log y_{it}$ Wage Passthrough: Firm Shocks		0.064 -1.00 0.035 0.060
$std(\log u_t)$ BWC	Std. Dev. of unemployment rate Share of Wage Cyclicality Due to Bargaining	0.157	0.103 0.60

- Good match to targeted moments
- Rationalize about 2/3 of unemployment fluctuations in data
- 60% wage cyclicality due to bargaining, remainder due to incentives

Figure Plots Calculating Bargained Share

User Guide: Calibrate Model w/o Incentives to Less Cyclical Wages

	Model: source of wage flexibility		
Moment		(2) Bargaining only	
$\partial \mathbb{E}[\log w_0]/\partial u$	-1.00	-0.60	
$\partial \log \theta_0 / \partial \log z_0$	13.3	13.0	
$std(\log u_t)$	0.103	0.103	

- ► Calibrate baseline model w/ bargaining + incentives and simple/standard model with bargaining only
- Analytical results suggest:
 - ► Calibrate bargaining + incentives model to overall wage cyclicality
 - ► Calibrate bargaining only model to bargaining wage cyclicality which is less procyclical

User Guide: Calibrate Model w/o Incentives to Less Cyclical Wages

	Model: source of wage flexibility		
Moment	(1) Incentives + Bargaining	(2) Bargaining only	
$\partial \mathbb{E}[\log w_0]/\partial u$	-1.00	-0.60	
$\partial \log \theta_0 / \partial \log z_0$	13.3	13.0	
$std(\log u_t)$	0.103	0.103	

- Bargaining only model calibrated to weakly cyclical wages
- ▶ Has similar employment dynamics to bargaining + incentives model w/ strongly cyclical wages

User Guide: Calibrate Model w/o Incentives to Less Cyclical Wages

	Model: source of wage flexibility		
	(1)	(2)	
Moment	${\sf Incentives} + {\sf Bargaining}$	Bargaining only	
$\partial \mathbb{E}[\log w_0]/\partial u$	-1.00	-0.60	
$\partial \log \theta_0 / \partial \log z_0$	13.3	13.0	
$std(\log u_t)$	0.103	0.103	

Takeaway:

- ► Can study simple models of wage setting without incentives
- ▶ But calibrate to relatively rigid wages

▶ All Wage Cyclicality from Bargaining

Static Model

Dynamic Model

Numerical Exercise

Conclusion

Conclusion

- Does flexible incentive pay dampen unemployment fluctuations?
- ► Incentive effect (effort moves) offsets marginal cost effect (wage moves)

Results:

- 1. Incentive wage cyclicality **does not** dampen unemployment fluctuations
- 2. Bargained wage cyclicality does dampen unemployment fluctuations
 - ▶ Important to separately measure bargaining and incentives
- 3. Numerically: **60%** of wage cyclicality due to bargaining
 - Calibrate simple model without incentives to weakly cyclical wages

Appendix

Free entry into vacancies

$$\kappa = q(v)J(z)$$

Substitute in for q(v) and re-arrange for equilibrium vacancy posting

$$v^* = \left(\frac{\Psi J(z)}{\kappa}\right)^{\frac{1}{\nu}}$$

Now note that n = f(v) (because initial unemployment = 1). Plug in to see

$$f(v) \equiv \frac{m(u,v)}{u} = \Psi v^{1-\nu} \qquad \Longrightarrow \qquad n = \left(\frac{\psi^{\nu+1}}{\kappa}\right)^{\frac{1}{\nu}} J(z)^{\frac{1-\nu}{\nu}}$$

Take logs to obtain result

$$\ln n = constant + \left(\frac{1-\nu}{\nu}\right) \cdot \ln J(z)$$

- ightharpoonup The utility function u is Lipschitz continuous in the compact set of allocations
- \triangleright z_t and η_t are Markov processes
- ► Local incentive constraints are globally incentive compatible
- ▶ The density $\pi(\eta_i^t, z^t | z_0, a_i^t)$ is continuous in the aggregate state z_0

- Firm observes aggregate productivity z and offers contract to worker
- Firm observes worker's effort a and idiosyncratic output shock η after production
- Firm offers contract to maximize profits

$$\max_{a(z,\eta),w(z,\eta)} J(z) = z \left(a(z,\eta) + \eta \right) - w(z,\eta)$$

subject to worker's participation constraint

$$\mathbb{E}_{\eta}\left[u\left(w(z,\eta),a(z,\eta)\right)\right]\geq\mathcal{E}$$

- First order condition implies optimal contract $a^*(z)$, $w^*(z)$
- Yields fluctuations in profits

$$\frac{dJ(z)}{dz} = \mathbb{E}\left[a^*(z) + z\frac{da^*(z)}{dz} - \frac{dw^*(z)}{dz}\right] = a^*(z)$$

Parameterization •

CARA utility

$$u(c,a) = -e^{-r\left(c - \frac{\phi a^2}{2}\right)}$$

Linear contracts

$$w(y) = \alpha + \beta y$$

- $ightharpoonup \alpha$: "Base Pay"
- β : "Piece-Rate" or "Bonus"
- Noise observed after worker's choice of action
- Yields optimal contract

$$eta = rac{z^2}{z^2 \phi r \sigma}, \qquad \quad \alpha = b + rac{eta^2 \left(\phi r \sigma^2 - z^2
ight)}{2 \phi}, \qquad \quad a = rac{eta z}{\phi}$$

Static Model Parameter Values

- ▶ Elasticity of matching function $\nu = 0.72$ (Shimer 2005)
- lacktriangle Matching function efficiency $\psi=0.9$ (Employment/Population Ratio = 0.6)
- Non-employment benefit b = 0.2 (Shimer 2005)
- ▶ Vacancy Creation Cost $\kappa = 0.213$ (Shimer 2005)
- CARA utility

$$u(c,a) = -e^{-r\left(c - \frac{\phi a^2}{2}\right)}$$

with $\phi = 1$ and r = 0.8

Linear contracts

$$w(y) = \alpha + \beta y$$

- $ightharpoonup \alpha$: "Base Pay"
- \triangleright β : "Piece-Rate" or "Bonus"
- Profit shocks $\eta \sim \mathcal{N}(0, 0.2)$

- lacktriangle Frictional labor market: vacancy filling rate $q_t = \Psi \theta_t^{-\nu}$, market tightness $\theta_t \equiv v_t/u_t$
- ▶ Production function $y_{it} = f(z_t, \eta_{it})$
 - ▶ Density $\pi\left(\eta_i^t|z^t,a_i^t\right)$ of idiosyncratic shocks $\eta_i^t=\{\eta_{i0},...,\eta_{it}\}$
 - lacktriangle Affected by **unobservable** action $a_i^t = \{a_{i0},...,a_{it}\} + \mathbf{observable}$ aggregate shocks z^t
- Dynamic incentive contract:

$$\{\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}\} = \{w_{it} (\eta_i^t, z^t; z_0, b_{i0}), a_{it} (\eta_i^t, z^t; z_0, b_{i0}), c_{it} (\eta_i^t, z^t; z_0, b_{i0}), b_{i,t+1} (\eta_i^t, z^t; z_0, b_{i0})\}_{t=0, \eta_i^t, z^t}^{\infty}$$

► Value of filled vacancy at time zero:

$$V \equiv \sum_{t=0}^{\infty} \int \int \left(\beta \left(1-s\right)\right)^{t} \left(f\left(z_{t}, \eta_{it}\right) - w_{it}\left(\eta_{i}^{t}, z^{t}; z_{0}, b_{i0}\right)\right) \pi \left(\eta_{i}^{t}, z^{t} | z_{0}, b_{i0}, a_{i}^{t}\right) d\eta_{i}^{t} dz^{t}$$

s: exogenous separation rate, β : discount factor

$$\begin{aligned} & [\mathsf{PC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(c_{it}, a_{it}\right) + \beta s \mathcal{E}\left(b_{i,t+1}, z_{t+1}\right) | z_0, b_{i0}, a_i^t\right] = \mathcal{E}\left(b_{i0}, z_0\right) \\ \text{s.t.} \quad & b_{i,t+1}(\eta_i^t, z^t) + c_{it}(\eta_i^t, z^t) = w_{it}(\eta_i^t, z^t) + (1+r) \, b_{it}(\eta_i^t, z^t), \quad b_{it}(\eta_i^t, z^t) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \end{aligned}$$

s.t.
$$b_{i,t+1}(\eta_i^t,z^t) + c_{it}(\eta_i^t,z^t) = w_{it}(\eta_i^t,z^t) + (1+r)b_{it}(\eta_i^t,z^t)$$
, $b_{it}(\eta_i^t,z^t) \geq \underline{b}$ assuming r fixed

$$\begin{aligned} & [\mathsf{PC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(c_{it}, a_{it}\right) + \beta s \mathcal{E}\left(b_{i,t+1}, z_{t+1}\right) | z_0, b_{i0}, a_i^t\right] = \mathcal{E}\left(b_{i0}, z_0\right) \\ \text{s.t.} \quad & b_{i,t+1}(\eta_i^t, z^t) + c_{it}(\eta_i^t, z^t) = w_{it}(\eta_i^t, z^t) + (1+r) \, b_{it}(\eta_i^t, z^t), \quad b_{it}(\eta_i^t, z^t) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \end{aligned}$$

▶ Incentive compatibility constraints: for all $\tilde{a}_i^t \in [a, \bar{a}]^t$, $\tilde{c}_i^t \in [c, \bar{c}]^t$, $\tilde{b}_i^{t+1} \geq [b]^t$

$$\begin{aligned} & [\mathsf{PC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(c_{it}, a_{it}\right) + \beta s \mathcal{E}\left(b_{i,t+1}, z_{t+1}\right) | z_0, b_{i0}, a_i^t\right] = \mathcal{E}\left(b_{i0}, z_0\right) \\ \text{s.t.} \quad & b_{i,t+1}(\eta_i^t, z^t) + c_{it}(\eta_i^t, z^t) = \underbrace{w_{it}(\eta_i^t, z^t) + (1+r) b_{it}(\eta_i^t, z^t)}_{t}, \quad b_{it}(\eta_i^t, z^t) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \end{aligned}$$

▶ Incentive compatibility constraints: for all $\tilde{a}_i^t \in [\underline{a}, \overline{a}]^t$, $\tilde{c}_i^t \in [\underline{c}, \overline{c}]^t$, $\tilde{b}_i^{t+1} \geq [\underline{b}]^t$

$$\begin{aligned} & [\mathsf{IC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(\tilde{c}_{it}, \tilde{a}_{it}\right) + \beta s \mathcal{E}\left(\tilde{b}_{i,t+1}, z_{t+1}\right) | z_0, b_{i0}, \tilde{a}_i^t\right] \leq \mathcal{E}\left(b_{i0}, z_0\right) \\ \text{s.t.} \quad & \tilde{b}_{i,t+1}(\eta_i^t, z^t) + \tilde{c}_{it}(\eta_i^t, z^t) = \underbrace{w_{it}(\eta_i^t, z^t) + (1+r)}_{t=t} \tilde{b}_{it}(\eta_i^t, z^t), \quad \tilde{b}_{it}(\eta_i^t, z^t) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \end{aligned}$$

18 / 18

$$\begin{aligned} & [\mathsf{PC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(c_{it}, a_{it}\right) + \beta s \mathcal{E}\left(b_{i,t+1}, z_{t+1}\right) | z_0, b_{i0}, a_i^t\right] = \mathcal{E}\left(b_{i0}, z_0\right) \\ \text{s.t.} \quad & b_{i,t+1}(\eta_i^t, z^t) + c_{it}(\eta_i^t, z^t) = w_{it}(\eta_i^t, z^t) + (1+r) \, b_{it}(\eta_i^t, z^t), \quad b_{it}(\eta_i^t, z^t) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \end{aligned}$$

▶ Incentive compatibility constraints: for all $\tilde{a}_i^t \in [\underline{a}, \overline{a}]^t$, $\tilde{c}_i^t \in [\underline{c}, \overline{c}]^t$, $\tilde{b}_i^{t+1} \geq [\underline{b}]^t$

$$\begin{aligned} & [\mathsf{IC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(\tilde{c}_{it}, \tilde{a}_{it}\right) + \beta s \mathcal{E}\left(\tilde{b}_{i,t+1}, z_{t+1}\right) | z_0, b_{i0}, \tilde{a}_i^t\right] \leq \mathcal{E}\left(b_{i0}, z_0\right) \\ \text{s.t.} \quad & \tilde{b}_{i,t+1}(\eta_i^t, z^t) + \tilde{c}_{it}(\eta_i^t, z^t) = w_{it}(\eta_i^t, z^t) + (1+r)\,\tilde{b}_{it}(\eta_i^t, z^t), \quad \tilde{b}_{it}(\eta_i^t, z^t) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \end{aligned}$$

► Loosely denote constraints as $PC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) = 0$, $IC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) \leq 0$

$$\begin{aligned} & [\mathsf{PC}] \ \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(c_{it}, a_{it}\right) + \beta s \mathcal{E}\left(b_{i,t+1}, z_{t+1}\right) | z_0, b_{i0}, a_i^t\right] = \mathcal{E}\left(b_{i0}, z_0\right) \\ \text{s.t.} \ b_{i,t+1}(\eta_i^t, z^t) + c_{it}(\eta_i^t, z^t) = w_{it}(\eta_i^t, z^t) + (1+r) \, b_{it}(\eta_i^t, z^t), \quad b_{it}(\eta_i^t, z^t) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \end{aligned}$$

▶ Incentive compatibility constraints: for all $\tilde{a}_i^t \in [\underline{a}, \overline{a}]^t$, $\tilde{c}_i^t \in [\underline{c}, \overline{c}]^t$, $\tilde{b}_i^{t+1} \geq [\underline{b}]^t$

$$\begin{aligned} & [\mathsf{IC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(\tilde{c}_{it}, \tilde{a}_{it}\right) + \beta s \mathcal{E}\left(\tilde{b}_{i,t+1}, z_{t+1}\right) | z_0, b_{i0}, \tilde{a}_i^t\right] \leq \mathcal{E}\left(b_{i0}, z_0\right) \\ \text{s.t.} \quad & \tilde{b}_{i,t+1}(\eta_i^t, z^t) + \tilde{c}_{it}(\eta_i^t, z^t) = w_{it}(\eta_i^t, z^t) + (1+r)\,\tilde{b}_{it}(\eta_i^t, z^t), \quad \tilde{b}_{it}(\eta_i^t, z^t) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \end{aligned}$$

Maximized value of a filled vacancy:

$$J(z_0, b_{i0}) \equiv \max_{\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}, \boldsymbol{\mu}, \boldsymbol{\lambda}} \underbrace{V(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0})}_{\text{vacancy value}} + \underbrace{\langle \boldsymbol{\mu}, PC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) \rangle}_{\text{participation}} + \underbrace{\langle \boldsymbol{\lambda}, IC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) \rangle}_{\text{incentive compatibility}}$$

$$\begin{aligned} & [\mathsf{PC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(c_{it}, a_{it}\right) + \beta s \mathcal{E}\left(b_{i,t+1}, z_{t+1}\right) | z_0, b_{i0}, a_i^t\right] = \mathcal{E}\left(b_{i0}, z_0\right) \\ \text{s.t.} \quad & b_{i,t+1}(\eta_i^t, z^t) + c_{it}(\eta_i^t, z^t) = w_{it}(\eta_i^t, z^t) + (1+r) \, b_{it}(\eta_i^t, z^t), \quad b_{it}(\eta_i^t, z^t) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \end{aligned}$$

▶ Incentive compatibility constraints: for all $\tilde{a}_i^t \in [\underline{a}, \overline{a}]^t$, $\tilde{c}_i^t \in [\underline{c}, \overline{c}]^t$, $\tilde{b}_i^{t+1} \geq [\underline{b}]^t$

$$\begin{aligned} & \left[\mathsf{IC}\right] \quad \sum_{t=0}^{\infty} \left(\beta\left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(\tilde{c}_{it}, \tilde{a}_{it}\right) + \beta s \mathcal{E}\left(\tilde{b}_{i,t+1}, z_{t+1}\right) | z_{0}, b_{i0}, \tilde{a}_{i}^{t}\right] \leq \mathcal{E}\left(b_{i0}, z_{0}\right) \\ & \text{s.t.} \quad \tilde{b}_{i,t+1}(\eta_{i}^{t}, z^{t}) + \tilde{c}_{it}(\eta_{i}^{t}, z^{t}) = w_{it}(\eta_{i}^{t}, z^{t}) + (1+r)\,\tilde{b}_{it}(\eta_{i}^{t}, z^{t}), \quad \tilde{b}_{it}(\eta_{i}^{t}, z^{t}) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \end{aligned}$$

Maximized value of a filled vacancy:

$$J(z_0, b_{i0}) \equiv \max_{\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}, \boldsymbol{\mu}, \boldsymbol{\lambda}} \underbrace{V(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0})}_{\text{vacancy value}} + \underbrace{\langle \boldsymbol{\mu}, PC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) \rangle}_{\text{participation}} + \underbrace{\langle \boldsymbol{\lambda}, IC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) \rangle}_{\text{incentive compatibility}}$$

Free entry condition pins down market tightness: $\mathbb{E}_b[J(z_0,b_{i0})]=rac{\kappa}{q(heta_0)}$

Static Model Proof Outline

Firm's value given by Lagrangian

$$J(z) = \mathbb{E}[z(a^*(z) + \eta) - w^*(z, y)] + \lambda \cdot (\mathbb{E}[u(w^*(z, y), a^*(z))] - \mathcal{E}) + \mu \cdot [IC]$$

for λ and μ Lagrange multipliers on PC and IC, respectively.

► Take derivative w.r.t. z

$$\frac{dJ}{dz} = \mathbb{E}[a^*(z)] + z \frac{d\mathbb{E}[a^*(z,y)]}{dz} - \frac{d\mathbb{E}[w^*(z,y)]}{dz} + [PC] \cdot \frac{d\lambda}{dz} + [IC] \cdot \frac{d\mu}{dz} + \lambda \frac{\partial PC}{\partial z} + \mu \frac{\partial IC}{\partial z}$$

- Blue terms sum to zero by envelope theorem
- Red terms equal to zero as z does not appear in them
- ► Thus only direct term left

Intuition for Envelope Result

- Firm is trading off incentive provision and insurance
- ▶ Suppose z rises \Rightarrow changes desired effort
- ▶ If z and a complements (as here), increase desired effort
- ► Incentivize worker ⇒ steeper output-earnings schedule ⇒ expose worker to more risk
- ▶ Must pay worker more in expectation to compensate for more risk
- Mean wage and effort move together
- ▶ Optimal contract ⇒ marginal incentive and insurance motives offset

Aside: Interpretation of Bonus vs. Base Pay in Incentive Model •

What is a bonus payment?

- Incentive contract is $w^*(\eta) = \text{mapping from idiosyncratic shocks to wages}$
- ▶ Base wage = "typical" value of $w^*(\eta)$
- ▶ Bonus wage = $w^*(\eta)$ base wage

Example 1: two values of idiosyncratic shock $\eta \in \{\eta_L, \eta_H\}$

▶ Base = $\min_{\eta} w(\eta)$, Bonus = $w(\eta)$ -Base

Example 2: continuous distribution of η

- ▶ Base = $\mathbb{E}_{\eta}[w(\eta)]$, Bonus = $w(\eta)$ −Base
- \rightarrow Specific form will depend on context but does not affect equivalence results

Isomorphism of Bargaining to TIOLI w/ cyclical unemp. benefit ••

Suppose worker and firm Nash bargain over promised utility ${\mathcal E}$ when meet

$$\mathcal{E}(z) \equiv \arg\max_{E} J(z, E)^{\phi} \cdot (E - U(z))^{1-\phi}$$

Key: firm profits still determine employment fluctuations and defined as

$$J(z, \mathcal{E}) = \max_{\mathbf{a}, \mathbf{w}} EPDV(Profits)$$

s.t. **a** is incentive compatible

Worker's expected utility under contract $> \mathcal{E}$

Under TIOLI contract offers, $\mathcal{E}(z) = \mathcal{U}(z)$ so that

$$\mathcal{E}(z) = U(z) = b(z) + \beta \mathbb{E}[\mathcal{E}(z')|z]$$

whether $\mathcal{E}(z)$ moves due to bargaining or b(z) moves is first-order irrelevant to J(z) and thus unemployment

Wages are a random walk

$$\ln w_{it} = \ln w_{it-1} + \psi h'(a_t) \cdot \eta - \frac{1}{2} (\sigma_{\eta} h'(a_t))^2$$

initialized at

$$w_{-1}(z_0) = \psi\left(Y(z_0) - \frac{\kappa}{q(\theta_0)}\right)$$

for $\psi \equiv (\beta(1-s))^{-1}$ dubbed the "pass-through parameter" and $Y(z_0)$ the EPDV of output

Effort increasing in z_t and satisfies

$$a_t(z_t) = \left[\frac{z_t a_t(z_t)}{\psi\left(Y(z_0) - \frac{\kappa}{q(\theta_0)}\right)} - \frac{\psi}{\varepsilon} (h'(a_t)\sigma_\eta)^2\right]^{\frac{\varepsilon}{1+\varepsilon}}$$

- Worker utility under the contract equals $\mathcal{E}(z_0)$, the EPDV of unemployment utility
 - \triangleright Cyclical $b(z) \implies w_{-1}(z)$ cyclical so influence new hire wages

Quantitative Contract: More Expressions ••

► EPDV of output

$$Y(z_0) \equiv \sum_{t=0}^{\infty} (\beta(1-s))^t \mathbb{E}\left[z_t(a_t+\eta_t)|z_0\right]$$

► Worker utility under contract

$$\frac{\log w_{-1}}{\psi} - \mathbb{E}_0 \left[\sum_{t=0}^{\infty} (\beta(1-s))^{t-1} \left(\frac{\psi}{2} (h'(a_t)\sigma_{\eta})^2 + h(a_t) + \beta s \mathcal{E}(z_{t+1}) \right) | z_0 \right] = \underbrace{\mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \ln b(z_t) | z_0 \right]}_{\mathcal{E}(z_t)}.$$

Identification: Some Equations Optimal Contract

Variance of log wage growth is

$$Var(\Delta \ln w_t) = \psi^2 Var(h'(a)\eta) \approx (\psi h'(a))^2 \sigma_\eta^2$$

Pass through of idiosyncratic firm output shocks to wages is

$$\frac{d \ln w_{it}}{d \ln y_{it}} = \frac{d \ln w}{d\eta} \cdot \left(\frac{d \ln y}{d\eta}\right)^{-1} = \psi h'(a) \cdot \left(\frac{1}{a+\eta}\right)^{-1}$$

Wages martingale \implies new hire wages equal to w_{-1}/ψ in expectation, and $\ln w_{-1}$ equal to outside option:

$$rac{\log w_{-1}}{\psi} - \mathbb{E}_0 \Bigg[\sum_{t=0}^{\infty} (eta(1-s))^{t-1} \Big(rac{\psi}{2} (h'(a_t)\sigma_\eta)^2 + h(a_t) + eta s \mathcal{E}(z_{t+1}) \Big) |z_0 \Bigg] = \mathbb{E}_0 \left[\sum_{t=0}^{\infty} eta^t (\ln \gamma + \chi \ln z_t) |z_0 \right]$$

Differentiating both sides w.r.t. z shows clear relationship between χ (RHS) and d ln $w_{-1}/d \ln z_0$

Externally Calibrated Parameters

Parameter	Description	Value	Source
β	Discount Factor	$0.99^{(1/3)}$	Petrosky-Nadeau & Zhang (2017)
S	Separation Rate	0.031	Re-computed, following Shimer (2005)
κ	Vacancy Cost	0.45	Petrosky-Nadeau & Zhang (2017)
ι	Matching Function	8.0	Petrosky-Nadeau & Zhang (2017)
$ ho_{\sf z}$	Persistence of z	0.966	Fernald (2012)
σ_z	S.D. of z shocks	0.0056	Fernald (2012)

Estimated Parameters ••

Parameter	Description	Estimate	Bargain Estimate	
σ_{η}	Std. Dev. of Noise	0.52	0*	
χ	Elasticity of unemp. benefit to cycle	0.49	0.63	
γ	Steady State unemp. benefit	0.43	0.48	
ε	Effort Disutility Elasticity	3.9	1*	

Calculating Share of Wage Cyclicality due to Bargaining •

- 1. Calculate total profit cyclicality in full model $\frac{dJ}{dz}$
- 2. Calculate direct productivity effect

$$(\mathbf{A}) = \sum_{t=0}^{\infty} (\beta(1-s))^t \mathbb{E}_0 f_z(z_t, \eta_{it}) \frac{\partial z_t}{\partial z_0}$$

3. Calculate "(C) term" as difference between profit cyclicality and direct productivity effect

$$(\mathbf{C}) = \frac{dJ}{dz} - (\mathbf{A})$$

4. Bargained wage cyclicality share is share of profit fluctuations due to (C) term

$$BWS = -\frac{(\mathbf{C})}{dJ/dz}$$

$$[\mathsf{PC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(\mathsf{w}_{it}, \mathsf{a}_{it}\right) + \beta s \mathcal{E}\left(\mathsf{z}_{t+1}\right) | \mathsf{z}_0, \mathsf{a}_i^t\right] = \mathcal{E}\left(\mathsf{z}_0\right)$$

$$[\mathsf{PC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(\mathsf{w}_{it}, \mathsf{a}_{it}\right) + \beta s \mathcal{E}\left(\mathsf{z}_{t+1}\right) | \mathsf{z}_0, \mathsf{a}_i^t\right] = \mathcal{E}\left(\mathsf{z}_0\right)$$

▶ Incentive compatibility constraints: for all $\{\tilde{a}(\eta_i^{t-1}, z^t; z_0)\}_{t=0, \eta_i^t, z^t}^{\infty}$

$$[\mathsf{IC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(\textcolor{red}{w_{it}}, \tilde{s}_{it}\right) + \beta s \mathcal{E}\left(z_{t+1}\right) | z_0, \tilde{s}_i^t\right] \leq \mathcal{E}\left(z_0\right)$$

▶ Loosely denote constraints as $PC(\mathbf{w}, \mathbf{a}; z_0) = 0, IC(\mathbf{w}, \mathbf{a}; z_0) \le 0$

$$[\mathsf{PC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(w_{it}, a_{it}\right) + \beta s \mathcal{E}\left(z_{t+1}\right) | z_{0}, a_{i}^{t}\right] = \mathcal{E}\left(z_{0}\right)$$

▶ Incentive compatibility constraints: for all $\{\tilde{a}(\eta_i^{t-1}, z^t; z_0)\}_{t=0, \eta_i^t, z^t}^{\infty}$

$$[\mathsf{IC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(\textcolor{red}{w_{it}}, \tilde{s}_{it}\right) + \beta s \mathcal{E}\left(z_{t+1}\right) | z_0, \tilde{s}_i^t\right] \leq \mathcal{E}\left(z_0\right)$$

Maximized value of a filled vacancy:

$$J(z_0) \equiv \max_{\mathbf{w}, \mathbf{a}, \mu, \lambda} \underbrace{V(\mathbf{w}, \mathbf{a}; z_0)}_{\text{vacancy value}} + \underbrace{\mu PC(\mathbf{w}, \mathbf{a}; z_0)}_{\text{participation}} + \underbrace{\langle \lambda, IC(\mathbf{w}, \mathbf{a}; z_0) \rangle}_{\text{incentive compatibility}}$$

$$[\mathsf{PC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(w_{it}, a_{it}\right) + \beta s \mathcal{E}\left(z_{t+1}\right) | z_{0}, a_{i}^{t}\right] = \mathcal{E}\left(z_{0}\right)$$

▶ Incentive compatibility constraints: for all $\left\{\tilde{a}\left(\eta_i^{t-1},z^t;z_0\right)\right\}_{t=0,\eta_i^t,z^t}^{\infty}$

$$[\mathsf{IC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(\textcolor{red}{w_{it}}, \widetilde{s}_{it}\right) + \beta s \mathcal{E}\left(z_{t+1}\right) | z_0, \widetilde{s}_i^t\right] \leq \mathcal{E}\left(z_0\right)$$

Maximized value of a filled vacancy:

$$J(z_0) \equiv \max_{\mathbf{w}, \mathbf{a}, \mu, \lambda} \underbrace{V(\mathbf{w}, \mathbf{a}; z_0)}_{\text{vacancy value}} + \underbrace{\mu PC(\mathbf{w}, \mathbf{a}; z_0)}_{\text{participation}} + \underbrace{\langle \lambda, IC(\mathbf{w}, \mathbf{a}; z_0) \rangle}_{\text{incentive compatibility}}$$

Free entry condition pins down market tightness: $J(z_0) = \frac{\kappa}{q(\theta_0)}$

A Dynamic Incentive Contract Equivalence Theorem •

Assume (i) local constraints are globally incentive compatible (ii) unemployment benefits b are constant.

The elasticity of market tightness with respect to aggregate shocks is to a first order

$$\frac{d \log \theta_0}{d \log z_0} = \frac{1}{\nu} \frac{\sum_{t=0}^{\infty} (\beta (1-s))^t E_{0,a^*} f_z(z_t, \eta_{it}) \frac{\partial z_t}{\partial z_0} z_0}{\sum_{t=0}^{\infty} (\beta (1-s))^t (E_{0,a^*} f(z_t, \eta_{it}) - E_{0,a^*} w_{it}^*)},$$

where a_{it}^* and w_{it}^* are effort and wages under the firm's optimal incentive pay contract.

The elasticity of market tightness in a rigid wage economy with $w=\bar{w}$ and $a=\bar{a}$ is

$$\frac{d\log\theta_0}{d\log z_0} = \frac{1}{\nu} \frac{\sum_{t=0}^{\infty} \left(\beta\left(1-s\right)\right)^t E_{0,\bar{s}} f_z\left(z_t,\eta_{it}\right) \frac{\partial z_t}{\partial z_0} z_0}{\sum_{t=0}^{\infty} \left(\beta\left(1-s\right)\right)^t \left(\frac{E_{0,\bar{s}} f\left(z_t,\eta_{it}\right) - E_0 \bar{w}}{1-\epsilon}\right)}.$$

Equivalence in Richer Models

- ▶ Private savings and borrowing constraints (Aiyagari 1993; Krusell et al 2010) ▶
 - Equivalent impact elasticities
- ► Endogenous separations (Mortensen & Pissarides 1994)
 - ► Equivalent impact elasticities

Numerical Results: Assuming All Wage Cyclicality is Bargaining • Return

	Model: source of wage flexibility		
	(1)	(2)	(3)
Moment	${\sf Incentives} + {\sf Bargaining}$	Bargaining Only	Bargaining: BWF only
$\partial \mathbb{E}[\log w_0]/\partial u$	-1.00	-1.00	-0.60
$\partial \log \theta_0 / \partial \log z_0$	13.3	10.4	13.0
$std(\log u_t)$	0.103	0.078	0.103
$std(log\mathbb{E}[y_{it} emp])$	0.07	0.02	0.02
W_0/Y_0	0.96	0.96	0.96
$\partial \log Y_0/\partial \log z_0$	0.68	0.51	0.51
$\partial \log W_0/\partial \log z_0$	0.44	0.32	0.26

Quantitative Results: Graphical Illustration

Literature

- ► Empirics of wage adjustment. Devereux 2001; Swanson 2007; Shin & Solon 2007; Carneiro et al 2012; Le Bihan et al 2012; Haefke et al 2013; Kudlyak 2014; Sigurdsson & Sigurdardottir 2016; Kurmann & McEntarfer 2019; Grigsby et al 2021; Schaefer & Singleton 2022; Hazell & Taska 2022; Bils et al. 2023
 - Contribution: model of wage setting consistent with micro evidence on bonuses
- ▶ Wage adjustment and unemployment dynamics. Shimer 2005; Hall 2005; Gertler & Trigari 2009; Christiano et al 2005; Gertler et al 2009; Trigari 2009; Christiano et al 2016; Gertler et al 2020; Blanco et al 2022
 - Contribution: Flexible incentive pay does not dampen unemployment fluctuations
- ▶ Incentive contracts. Holmstrom 1979; Holmstrom & Milgrom 1987; Sannikov 2008; Edmans et al 2012; Doligalski et al. 2023 Contribution: Characterize aggregate dynamics with general assumptions (E.g. non-separable utility, persistent idiosyncratic shocks, no reliance on "first order approach")
- ► Sales + Rigidity. e.g. Nakamura & Steinsson 2008; Klenow & Kryvtsov 2008; Kehoe & Midrigan 2008; Eichenbaum et al 2011 Contribution: incentive pay does not affect aggregate rigidity even if bonuses are cyclical

- Frictional labor market: vacancy filling rate $q_t \equiv q(\theta_t)$, market tightness $\theta_t \equiv v_t/u_t$
- ▶ Production function $y_{it} = f(z_t, \eta_{it})$
 - ▶ Density $\pi\left(\eta_i^t|a_i^t\right)$ of idiosyncratic shocks $\eta_i^t = \{\eta_{i0},...,\eta_{it}\}$
 - ▶ Affected by **unobservable** action $a_i^t = \{a_{i0}, ..., a_{it}\}, a_{it} \in [\underline{a}, \overline{a}]$
- $\blacktriangleright \text{ Dynamic incentive contract: } \{\mathbf{a},\mathbf{w}\} = \left\{a\left(\eta_i^{t-1},z^t;z_0\right),w\left(\eta_i^t,z^t;z_0\right)\right\}_{t=0,\eta_i^t,z^t}^{\infty}$
- Value of filled vacancy at time zero:

$$V(\mathbf{a},\mathbf{w};z_0) \equiv \sum_{t=0}^{\infty} \int \int \left(\beta \left(1-s\right)\right)^t \left(f\left(z_t,\eta_{it}\right) - w_{it}\left(\eta_i^t,z^t;z_0\right)\right) \pi \left(\eta_i^t,z^t|a_i^t\right) d\eta_i^t dz^t$$

s: exogenous separation rate, β : discount factor

Ex-ante participation constraint: at start of match firm offers worker value of unemployment

$$[PC] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(w_{it}, a_{it}\right) + \beta s U\left(z_{t+1}\right) | z_{0}, a_{i}^{t}\right] = \mathcal{B}\left(z_{0}\right)$$

- "Reduced form" bargaining power if $\mathcal{B}'(z_0) > 0$
- Formulation of bargaining power nests e.g. Nash w/ cyclical outside option, Hall-Milgrom bargaining

Ex-ante participation constraint: at start of match firm offers worker value of unemployment

$$\left[\mathsf{PC}\right] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(w_{it}, a_{it}\right) + \beta s U\left(z_{t+1}\right) | z_{0}, a_{i}^{t}\right] = \mathcal{B}\left(z_{0}\right)$$

- "Reduced form" **bargaining power** if $\mathcal{B}'(z_0) > 0$
- ▶ Incentive compatibility constraints: for all $\left\{\tilde{a}\left(\eta_i^{t-1}, z^t; z_0\right)\right\}_{t=0, \eta^t, z^t}^{\infty}$

$$\mathsf{[IC]} \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(w_{it}, \widetilde{s}_{it}\right) + \beta s U\left(z_{t+1}\right) | z_0, \widetilde{s}_i^t\right] \leq \mathcal{B}\left(z_0\right)$$

▶ Loosely denote constraints as $PC(\mathbf{w}, \mathbf{a}; z_0) = 0$, $IC(\mathbf{w}, \mathbf{a}; z_0) \le 0$

▶ Ex-ante participation constraint: at start of match firm offers worker value of unemployment

$$[\mathsf{PC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(w_{it}, \mathsf{a}_{it}\right) + \beta \mathsf{s} U\left(\mathsf{z}_{t+1}\right) | \mathsf{z}_{0}, \mathsf{a}_{i}^{t}\right] = \mathcal{B}\left(\mathsf{z}_{0}\right)$$

- "Reduced form" bargaining power if $\mathcal{B}'(z_0) > 0$
- ▶ Incentive compatibility constraints: for all $\{\tilde{a}(\eta_i^{t-1}, z^t; z_0)\}_{t=0, \eta^t, z^t}^{\infty}$

$$[\mathsf{IC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(w_{it}, \widetilde{s}_{it}\right) + \beta s U\left(z_{t+1}\right) | z_0, \widetilde{s}_i^t\right] \leq \mathcal{B}\left(z_0\right)$$

Maximized value of a filled vacancy:

$$J(z_0) \equiv \max_{\mathbf{w}, \mathbf{a}, \mu, \lambda} \underbrace{V(\mathbf{w}, \mathbf{a}; z_0)}_{\text{vacancy value}} + \underbrace{\mu PC(\mathbf{w}, \mathbf{a}; z_0)}_{\text{participation}} + \underbrace{\langle \lambda, IC(\mathbf{w}, \mathbf{a}; z_0) \rangle}_{\text{incentive compatibility}}$$

Ex-ante participation constraint: at start of match firm offers worker value of unemployment

$$[PC] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(w_{it}, a_{it}\right) + \beta s U\left(z_{t+1}\right) | z_{0}, a_{i}^{t}\right] = \mathcal{B}\left(z_{0}\right)$$

- "Reduced form" bargaining power if $\mathcal{B}'(z_0) > 0$
- ▶ Incentive compatibility constraints: for all $\{\tilde{a}(\eta_i^{t-1}, z^t; z_0)\}_{t=0, \eta^t, z^t}^{\infty}$

$$[\mathsf{IC}] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \mathbb{E}\left[u\left(w_{it}, \widetilde{s}_{it}\right) + \beta s U\left(z_{t+1}\right) | z_0, \widetilde{s}_i^t\right] \leq \mathcal{B}\left(z_0\right)$$

Maximized value of a filled vacancy:

$$J(z_0) \equiv \max_{\mathbf{w}, \mathbf{a}, \mu, \lambda} \underbrace{V(\mathbf{w}, \mathbf{a}; z_0)}_{\text{vacancy value}} + \underbrace{\mu PC(\mathbf{w}, \mathbf{a}; z_0)}_{\text{participation}} + \underbrace{\langle \lambda, IC(\mathbf{w}, \mathbf{a}; z_0) \rangle}_{\text{incentive compatibility}}$$

► Free entry condition pins down market tightness: $J(z_0) = \frac{\kappa}{a(\theta_0)}$

Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's

Temporarily shut down bargaining power → all wage cyclicality is due to incentives

Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's ••

Temporarily shut down bargaining power ightarrow all wage cyclicality is due to incentives

Assume: (i) proximity to non-stochastic steady state (ii) production function is h.o.d. 1 in z, (iii) contracts offer constant promised utility B. Then in the flexible incentive pay

$$rac{d \log heta_0}{d \log z_0} = rac{1}{
u_0} rac{1}{1 - ext{labor share}}$$

where

$$labor\ share = \frac{\sum_{t=0}^{\infty}\left(\beta\left(1-s\right)\right)^{t}\textit{E}_{0}\textit{w}_{it}}{\sum_{t=0}^{\infty}\left(\beta\left(1-s\right)\right)^{t}\textit{E}_{0,a}\textit{f}\left(\textit{z}_{0},\eta_{it}\right)}$$

The same equations characterize a rigid wage economy with $w_{it} = \bar{w}, a_{it} = \bar{a}$

Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's ••

Temporarily shut down bargaining power ightarrow all wage cyclicality is due to incentives

Assume: (i) proximity to non-stochastic steady state (ii) production function is h.o.d. 1 in z, (iii) contracts offer constant promised utility B. Then in the flexible incentive pay

$$rac{d \log heta_0}{d \log z_0} = rac{1}{
u_0} rac{1}{1 - ext{labor share}}$$

where

$$\textit{labor share} = \frac{\sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \textit{E}_0 \textit{w}_{it}}{\sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \textit{E}_{0,a} \textit{f}\left(\textit{z}_0, \eta_{it}\right)}$$

The same equations characterize a rigid wage economy with $w_{it} = \bar{w}, a_{it} = \bar{a}$

Implications: incentive wage cyclicality does not mute unemployment fluctuations

- ▶ In an incentive pay economy with **flexible** dynamic incentive pay
- Unemployment dynamics behave "as if" wages are rigid

Parameterized Dynamic Incentive Contract Model ••

- ► Linear production
- Normally distributed noise $\eta \sim \mathcal{N}(0, \sigma_{\eta})$, agg. productivity AR(1) in logs
- ► Log and isolastic utility

$$u(c,a) = \ln c - rac{a^{1+1/arepsilon}}{1+1/arepsilon}$$

- ightharpoonup Agent observes η before deciding action
- ▶ Worker's flow consumption during unemployment is $b(z) \equiv \gamma z^{\chi}$
- Firm makes take-it-or-leave-it offers to worker so

$$\mathcal{E}(z_0) = \sum_{t=0}^{\infty} \beta^t \mathbb{E} \left[\ln \gamma + \chi \ln z_t | z_t
ight]$$

- First-order equivalent to fixed b and bargaining over surplus
- \triangleright χ governs cyclicality of promised utility and thus "bargained wage cyclicality"

Regularity Conditions •

1. The distribution of innovations to aggregate productivity does not depend on initial productivity z_0

$$z_t = \mathbb{E}[z_t|z_0] + \varepsilon_t, \qquad \varepsilon^t \sim G_t(\varepsilon^t)$$

- 2. Utility and production functions are differentiable functions of z, a and c
- 3. At least one of the following conditions holds
 - 3.1 The set of feasible contracts is convex and compact. The worker's optimal effort choice is fully determined by the first order conditions to their problem. Finally, idiosyncratic shocks η_{it} follow a Markov process: $\pi_t(\eta_t|\eta^{t-1},a^t)=\pi_t(\eta_t|\eta_{t-1},a_t)$
 - 3.2 Feasible contracts are continuous and twice differentiable in their arguments (z^t, η^t) with uniformly bounded first and second derivatives.