DECISION TREE AND RANDOM FOREST

1

Decision Tree Algorithm

- Similar to how humans make many different decisions
- Decision trees look at one feature/variable at a time

Decision Tree Algorithm										
□ Training dataset										
	Day	Outlook	Temp	Humidity	Wind	Tennis?				
	1	Sunny	Hot	High	Weak	No				
	2	Sunny	Hot	High	Strong	No				
	3	Overcast	Hot	High	Weak	Yes				
	4	Rain	Mild	High	Weak	Yes				
	5	Rain	Cool	Normal	Weak	Yes				
	6	Rain	Cool	Normal	Strong	No				
	7	Overcast	Cool	Normal	Strong	Yes				
	8	Sunny	Mild	High	Weak	No				
	9	Sunny	Cool	Normal	Weak	Yes				
	10	Rain	Mild	Normal	Weak	Yes				
	11	Sunny	Mild	Normal	Strong	Yes				
	12	Overcast	Mild	High	Strong	Yes				
	13	Overcast	Hot	Normal	Weak	Yes				
	14	Rain	Mild	High	Strong	No				

Decision Tree Algorithm

□ How can we build a decision tree given a data set?

5

Decision Tree Algorithm

- □ We will make the best choice at each step
- □ Identify the best feature/attribute for the each node

Decision Tree Algorithm

- □ Identify the best feature/attribute for root node
 - Best split: results of each branch should be as homogeneous (or pure) as possible
 - a feature that reduces impurity as much as possible
 - How do we measure the impurity in a set of examples
 - Entropy from information theory
 - Alternatively, use Gini Index

7

Decision Tree Algorithm

 $\hfill\Box$ Entropy for a distribution over two outcomes

Decision Tree Algorithm

- □ Quantifying the information content of a feature
 - entropy of the examples before testing the feature minus the entropy of the examples after testing the feature - Information Gain

Decision Tree Algorithm

- □ Quantifying the information content of a feature
 - □ Information gain or entropy reduction

InfoGain =
$$I_{\text{before}} - I_{\text{after}}$$

Decision Tree Algorithm

□ Entropy of the examples before we select a feature for the root node

$$\begin{split} H_{\text{before}} &= -\left(\frac{9}{14}\log_2\left(\frac{9}{14}\right) + \frac{5}{14}\log_2\left(\frac{5}{14}\right)\right) \\ &\approx 0.94 \end{split}$$

I	Day	Outlook	Temp	Humidity	Wind	Tennis?
	1	Sunny	Hot	High	Weak	No
	2	Sunny	Hot	High	Strong	No
	3	Overcast	Hot	High	Weak	Yes
	4	Rain	Mild	High	Weak	Yes
	5	Rain	Cool	Normal	Weak	Yes
	6	Rain	Cool	Normal	Strong	No
	7	Overcast	Cool	Normal	Strong	Yes
	8	Sunny	Mild	High	Weak	No
	9	Sunny	Cool	Normal	Weak	Yes
	10	Rain	Mild	Normal	Weak	Yes
	11	Sunny	Mild	Normal	Strong	Yes
	12	Overcast	Mild	High	Strong	Yes
	13	Overcast	Hot	Normal	Weak	Yes
	14	Rain	Mild	High	Strong	No

Generalization

- Classification Goal: Make accurate predictions for new/unseen data - Good Generalization
- □ The model should NOT be tuned to the specific characteristics of the training data — Overfitting
- □ In practice, training data is likely to contain some noise

We are better off with a slightly poorer performance on the training examples if this means that our classifier will have better performance on unseen patterns.

Bias and Variance in Machine Learning

27

- ☐ Bias: The model makes strong assumptions about the training data to simplify the learning process
 - □ Examples: linear regression algorithms or shallow decision trees, which assume simple relationships even when the data patterns are more complex
- □ Variance: The model's sensitivity to fluctuations in the training data (the model's prediction changes as it is trained on different subsets of the training data)

27

Bias and Variance in Machine Learning

28

 Models with high bias have low variance, and models with low bias have high variance (inverse relationship)

☐ Bias-variance trade-off: Minimizing errors caused by oversimplification and excessive complication

Random Forest

33

- □ Base learner, base model, base estimator refers to the individual models in ensemble algorithms
- □ consolidating base learner predictions
 - Majority Voting, Averaging

33

Random Forest

34

- □ Random forest uses bagging to construct ensembles of randomized decision trees
 - □ Bagging bootstrap sampling and aggregation
 - Bootstrap sampling to derive multiple new datasets from one initial training dataset to train multiple base learners

Random Forest

37

- □ Random forest uses bagging to construct ensembles of randomized decision trees
 - considers random subsets of features when splitting a node
 - max_features parameter
- ☐ The greater diversity among combined models, the more accurate the resulting ensemble model

37

Estimating generalization Performance:

Out-of-bag (OOB) error/score

- Out-of-bag samples as unseen data for evaluation
 - Out-of-bag samples are the unique sets of datapoints that are not used for model fitting

Original Dataset | X₁ | X₂ | X₃ | X₄ | X₅ | X₆ | X₇ | X₈ | X₉ | X₁₀

Bootstrap 1 $\begin{bmatrix} x_8 & x_6 & x_2 & x_9 & x_5 & x_8 & x_1 & x_4 & x_8 & x_2 \end{bmatrix}$

 Each bootstrap sample only contains approximately 63.2% of the unique data points from the original dataset

