Proyecto Final Dia 3

```
1 import pandas as pd
```

1 df_life_expectancy = pd.read_csv('Life_Expectancy_Data-230526-192351.csv')

² df_life_expectancy

	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	BMI	• • •	Polio	Total expenditure	Diphtheria
0	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	19.1		6.0	8.16	65.0
1	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	18.6		58.0	8.18	62.0
2	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	18.1		62.0	8.13	64.0
3	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	17.6		67.0	8.52	67.0
4	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	17.2		68.0	7.87	68.0
2933	2004	Developing	44.3	723.0	27	4.36	0.000000	68.0	31	27.1		67.0	7.13	65.0
2934	2003	Developing	44.5	715.0	26	4.06	0.000000	7.0	998	26.7		7.0	6.52	68.0
2935	2002	Developing	44.8	73.0	25	4.43	0.000000	73.0	304	26.3		73.0	6.53	71.0
2936	2001	Developing	45.3	686.0	25	1.72	0.000000	76.0	529	25.9		76.0	6.16	75.0
2937	2000	Developing	46.0	665.0	24	1.68	0.000000	79.0	1483	25.5		78.0	7.10	78.0

1 sns.heatmap(df_life_expectancy.isnull(), yticklabels=False, cbar=False, cmap='Blues');

1 df_life_expectancy.info()

² import numpy as np

³ import matplotlib.pyplot as plt

⁴ import seaborn as sns

```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 2938 entries, 0 to 2937
     Data columns (total 21 columns):
                                                 Non-Null Count Dtype
     # Column
          -----
                                                 _____
     0 Year
                                                2938 non-null int64
                                               2938 non-null object
     1 Status
                                              2928 non-null float64
2928 non-null float64
2938 non-null int64
      2 Life expectancy
          Adult Mortality
      4 infant deaths
                                           2744 non-null float64
2938 non-null float64
2385 non-null float64
         Alcohol
          percentage expenditure
      6
          Hepatitis B
                                               2938 non-null
2904 non-null
      8 Measles
                                                                   int64
                                                                   float64
           BMI
                                             2938 non-null
      10 under-five deaths
                                                                   int64
                                          2919 non-null float64
2712 non-null float64
2919 non-null float64
2938 non-null float64
2490 non-null float64
      11 Polio
      12 Total expenditure
      13 Diphtheria
           HIV/AIDS
      15 GDP
           Population 2286 non-null float64
thinness 1-19 years 2904 non-null float64
thinness 5-9 years 2904 non-null float64
      16 Population
      17
      18 thinness 5-9 years
      19 Income composition of resources 2771 non-null float64
      20 Schooling
                                                 2775 non-null
                                                                  float64
     dtypes: float64(16), int64(4), object(1)
    memory usage: 482.1+ KB
```

1 df_life_expectancy.describe()

 \overline{z}

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	вмі	under-five deaths
count	2938.000000	2928.000000	2928.000000	2938.000000	2744.000000	2938.000000	2385.000000	2938.000000	2904.000000	2938.000000
mean	2007.518720	69.224932	164.796448	30.303948	4.602861	738.251295	80.940461	2419.592240	38.321247	42.035739
std	4.613841	9.523867	124.292079	117.926501	4.052413	1987.914858	25.070016	11467.272489	20.044034	160.445548
min	2000.000000	36.300000	1.000000	0.000000	0.010000	0.000000	1.000000	0.000000	1.000000	0.000000
25%	2004.000000	63.100000	74.000000	0.000000	0.877500	4.685343	77.000000	0.000000	19.300000	0.000000
50%	2008.000000	72.100000	144.000000	3.000000	3.755000	64.912906	92.000000	17.000000	43.500000	4.000000
75%	2012.000000	75.700000	228.000000	22.000000	7.702500	441.534144	97.000000	360.250000	56.200000	28.000000
max	2015.000000	89.000000	723.000000	1800.000000	17.870000	19479.911610	99.000000	212183.000000	87.300000	2500.000000

1 df_life_expectancy.hist(bins=30, figsize=(20,20), color='g');


```
1 #plt.figure(figsize=(20,20))
2 #sns.pairplot(df_life_expectancy);
```

1 sns.scatterplot(x='Income composition of resources', y='Life expectancy', hue='Status', data=df_life_expectancy);

1 sns.scatterplot(x='Schooling', y='Life expectancy ', hue='Status', data=df_life_expectancy);

1 plt.figure(figsize=(20,20))

2 sns.heatmap(df_life_expectancy.corr(numeric_only=True), annot=True);

0.8

0.6

0.4

0.2

- 0.0

-0.2

-0.4

```
1 df_life_expectancy['Status'].value_counts(dropna=True)
```

⇒ Status

Developing 2426 Developed 512 Name: count, dtype: int64

1 df_life_expectancy = pd.get_dummies(df_life_expectancy, columns=['Status'], dtype=int)

1 df_life_expectancy

 $\overline{\Rightarrow}$

7	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	BMI	under- five deaths	• • •	Diphtheria	HIV/AIDS	GDP
0	2015	65.0	263.0	62	0.01	71.279624	65.0	1154	19.1	83		65.0	0.1	584.259210
1	2014	59.9	271.0	64	0.01	73.523582	62.0	492	18.6	86		62.0	0.1	612.696514
2	2013	59.9	268.0	66	0.01	73.219243	64.0	430	18.1	89	• • •	64.0	0.1	631.744976
3	2012	59.5	272.0	69	0.01	78.184215	67.0	2787	17.6	93		67.0	0.1	669.959000
4	2011	59.2	275.0	71	0.01	7.097109	68.0	3013	17.2	97		68.0	0.1	63.537231
2933	2004	44.3	723.0	27	4.36	0.000000	68.0	31	27.1	42		65.0	33.6	454.366654
2934	2003	44.5	715.0	26	4.06	0.000000	7.0	998	26.7	41		68.0	36.7	453.351155
2935	2002	44.8	73.0	25	4.43	0.000000	73.0	304	26.3	40		71.0	39.8	57.348340
2936	2001	45.3	686.0	25	1.72	0.000000	76.0	529	25.9	39		75.0	42.1	548.587312
2937	2000	46.0	665.0	24	1.68	0.000000	79.0	1483	25.5	39		78.0	43.5	547.358879

¹ null_counts = df_life_expectancy.isnull().sum()
2 null_counts[null_counts != 0]

$\overline{\Rightarrow}$	Life expectancy	10
	Adult Mortality	10
	Alcohol	194
	Hepatitis B	553
	BMI	34
	Polio	19
	Total expenditure	226
	Diphtheria	19
	GDP	448
	Population	652
	thinness 1-19 years	34
	thinness 5-9 years	34
	Income composition of resources	167
	Schooling	163
	dtype: int64	

¹ df_life_expectancy.fillna(df_life_expectancy.mean(), inplace=True)

```
1 df_life_expectancy.info()

<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 2938 entries, 0 to 2937
    Data columns (total 22 columns):
                                           Non-Null Count Dtype
     # Column
     0 Year
                                           2938 non-null int64
     1 Life expectancy
                                          2938 non-null float64
                                         2938 non-null floate
2938 non-null int64
         Adult Mortality
                                                           float64
         infant deaths
     4 Alcohol
                                          2938 non-null float64
                                         2938 non-null
2938 non-null
         percentage expenditure
                                                           float64
        Hepatitis B
                                                           float64
                                          2938 non-null
        Measles
                                                           int64
     8
                                          2938 non-null
                                                           float64
                                        2938 non-null
        under-five deaths
                                                           int64
                                         2938 non-null
2938 non-null
     10 Polio
                                                           float64
     11 Total expenditure
                                                           float64
                                        2938 non-null float64
     12 Diphtheria
                                        2938 non-null float64
2938 non-null float64
2938 non-null float64
     13 HTV/ATDS
     14 GDP
     15 Population
     16 thinness 1-19 years 2938 non-null 17 thinness 5-9 years 2938 non-null
                                                           float64
                                                           float64
     18 Income composition of resources 2938 non-null
                                                           float64
     19 Schooling
                                          2938 non-null
                                                           float64
     20 Status_Developed
                                           2938 non-null
                                                           int32
     21 Status_Developing
                                          2938 non-null int32
    dtypes: float64(16), int32(2), int64(4)
    memory usage: 482.1 KB
1 X = df_life_expectancy.drop(['Life expectancy '], axis=1)
2 y = df life expectancy[['Life expectancy ']]
1 print('X:', X.shape)
2 print('y:', y.shape)
→ X: (2938, 21)
    y: (2938, 1)
1 X = np.array(X).astype('float32')
2 y = np.array(y).astype('float32')
1 from sklearn.model_selection import train_test_split
3 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
1 import xgboost as xgb
3 model = xgb.XGBRegressor(objective='reg:squarederror', learning_rate=0.1, max_depth=30, n_estimators=100)
4 model.fit(X_train, y_train)
\overline{z}
                                                                                (i)
                                     XGBRegressor
     XGBRegressor(base_score=None, booster=None, callbacks=None,
                  {\tt colsample\_bylevel=None,\ colsample\_bynode=None,}
                  colsample_bytree=None, device=None, early_stopping_rounds=None,
                  enable_categorical=False, eval_metric=None, feature_types=None,
                  gamma=None, grow_policy=None, importance_type=None,
                  interaction_constraints=None, learning_rate=0.1, max_bin=None,
                  max_cat_threshold=None, max_cat_to_onehot=None,
                  max_delta_step=None, max_depth=30, max_leaves=None,
                  min_child_weight=None, missing=nan, monotone_constraints=None,
                  multi_strategy=None, n_estimators=100, n_jobs=None,
                  num_parallel_tree=None, random_state=None, ...)
1 model_accuracy = model.score(X_test, y_test)
2 model_accuracy
→ 0.9557170271873474
1 y_predict = model.predict(X_test)
2 y predict
```

```
→ array([72.34404 , 73.6362 , 76.22628 , 82.02471 , 68.35663 , 74.817924,

            80.3385 , 48.211582, 47.817608, 46.588158, 72.30148 , 63.123257,
            75.25701 , 67.22251 , 75.57087 , 71.41098 , 66.90883 , 64.26366 ,
            78.8844 , 72.219284, 71.44145 , 79.41251 , 63.84498 , 45.22156 ,
            68.33219 , 79.537865, 68.029884, 63.440365, 71.299255, 74.69634 ,
            76.94762 , 55.731453 , 81.47984 , 73.69475 , 65.15339 , 72.399254,
            56.082493, 80.464775, 64.07231 , 52.437553, 71.14539 , 65.3044 ,
            68.11952 , 70.44313 , 57.633884 , 49.296715 , 52.15927 , 73.68431 ,
            73.50497 , 64.10023 , 82.21835 , 78.325356, 75.6751 , 73.946846,
            57.704445, 67.98306 , 74.13705 , 59.060413, 81.99794 , 72.565155,
            80.32465 , 80.18442 , 69.86382 , 78.93037 , 73.233345, 78.69052 ,
            48.54511 , 72.36069 , 82.37233 , 82.82037 , 81.73522 , 47.317467,
            74.78615 , 80.49802 , 75.38489 , 64.45316 , 72.53273 , 50.41102 ,
            74.773315, 82.14768 , 79.44498 , 51.94226 , 80.38384 , 78.02773 ,
            66.534546, 54.033016, 53.970276, 81.934616, 64.177574, 62.27521 ,
            76.12829 , 73.12171 , 54.060616, 77.66735 , 55.891727, 81.28307 ,
            79.47828 , 71.81165 , 56.968998, 83.37486 , 64.83048 , 78.18673 ,
            50.32807 , 66.816765, 82.19401 , 81.99499 , 66.86196 , 65.67265 ,
            57.720802,\ 47.481705,\ 64.58998\ ,\ 77.853546,\ 57.973427,\ 61.727688,
            63.603115, 72.17697 , 73.57714 , 83.42852 , 70.82494 , 68.98681 ,
            74.03657 , 70.82701 , 67.689835 ,53.209488 ,72.242 ,69.774864 ,
            78.25067 , 76.1236 , 77.70773 , 63.912518, 73.48328 , 73.65152 ,
            54.906322, 83.15115 , 75.69963 , 76.097755, 73.46032 , 67.18154 ,
            76.57 , 74.44935 , 82.73757 , 73.214905, 72.96752 , 82.68314 ,
            71.183624, 76.34852 , 70.525475, 73.40732 , 74.3284 , 73.577156,
            79.86605 , 74.14464 , 67.9605 , 58.26734 , 66.42389 , 59.588795,
            76.34755 , 82.735344, 72.113556, 80.62812 , 67.55864 , 60.83968 ,
            66.74065 , 74.55515 , 67.78601 , 73.079094, 69.23971 , 66.75159 ,
            71.98704 , 72.741516, 60.78055 , 61.082306, 68.590096, 73.037895,
            73.040634, \ 71.2712 \quad , \ 63.651352, \ 75.58788 \ , \ 57.271393, \ 74.228775,
            81.27091 , 57.16971 , 51.40678 , 69.50811 , 48.301033, 73.174644,
            76.192116, 78.14747 , 68.81092 , 50.41485 , 65.379166, 71.641815,
            73.958046, \ 73.58436 \ , \ 60.09388 \ , \ 72.68704 \ , \ 69.448616, \ 51.77792 \ ,
            56.07046 , 68.94853 , 78.6975 , 59.196037, 79.15002 , 74.3501
            63.202522, 76.66953 , 69.526344, 70.321495, 81.41262 , 54.934452,
           72.9603 , 59.51094 , 58.3834 , 76.19869 , 77.18455 , 73.46268 , 72.53199 , 73.79523 , 70.41163 , 76.54851 , 68.29229 , 75.00961 ,
            74.29511 , 74.79149 , 56.443607, 80.947075, 78.95948 , 81.41397 ,
            83.28882 , 72.654564, 74.31819 , 68.0008 , 76.261215, 72.74644 ,
           59.6883 , 74.58129 , 69.5978 , 70.2261 , 62.339787, 76.53025 , 74.66133 , 71.74152 , 69.24922 , 74.60299 , 73.16254 , 63.533085,
            76.16753 , 64.66317 , 62.33299 , 78.94081 , 68.362274, 64.85788 ,
            60.195007,\ 86.1148\quad,\ 74.783134,\ 73.154305,\ 76.65435\ ,\ 52.692623,
            80.62664 , 82.145546, 82.954575, 83.22169 , 73.385185, 56.11716 ,
            62.668705, 54.335354, 78.91987 , 74.367455, 72.59049 , 63.031864,
            75.29373 , 68.56331 , 73.80562 , 57.24064 , 70.169426, 54.10603 ,
            67.68885 , 73.1696 , 72.85659 , 58.82177 , 64.10812 , 70.02335 ,
            70.10513 , 75.23104 , 67.655624, 64.36277 , 51.31099 , 72.84503 ,
            64.32587 , 71.17091 , 62.808865, 73.1279 , 65.22461 , 76.1162 ,
            80.92714 , 82.034546, 61.63478 , 66.40296 , 72.38784 , 72.30123 ,
            73.210045, 74.074 , 71.65926 , 72.034706, 71.045044, 73.749146,
            75.44628 , 73.366516, 72.65401 , 71.68153 , 49.38367 , 82.56156 ,
            76.05921 , 74.39073 , 80.44011 , 68.8298 , 53.81882 , 52.90916 ,
            52.82172 , 70.25594 , 75.08934 , 47.704327, 52.551476, 72.040085,
            72.96732 , 52.698544, 57.959408, 47.600132, 52.59084 , 60.22685 ,
           58.24155 , 69.43961 , 75.9854 , 74.002075 , 72.572235 , 64.64194 , 78.50521 , 83.38497 , 72.52291 , 64.00236 , 82.81041 , 73.0712 ,
            74.67162 , 78.40395 , 59.941578 , 79.33904 , 73.27477 , 73.219215,
```

1 plt.plot(y test, y predict, '^', color='g');