MB&B 562: Exercise 7

Karthik Desingu

P1.1) Capillary:
$$\frac{d\theta_2}{dt} = \omega_2$$

Have Cell: $\frac{d\theta_1}{dt} = \omega_1 - \epsilon \sin(\theta_1 - \theta_2) + \xi(t)$

P1.2) $\frac{d}{dt} \begin{bmatrix} \theta_1 - \theta_2 \end{bmatrix} = (\omega_1 - \omega_2) - \epsilon \sin(\Delta \theta) + \xi(t)$
 $\frac{d(\Delta \theta)}{dt} = \Delta \omega - \epsilon \sin(\Delta \theta) + \xi(t)$

where, $\Delta \omega = \omega_1 - \omega_2$.

P1.2) Given, $\omega_1 = 30$ mad/s

 $\omega_2 = 60$ mad/s

 $\epsilon = \alpha f_0$

Coupling occurs where $\frac{d\theta}{dt} \rightarrow 0$

At that point,

 $\Delta \omega = \epsilon \sin(\Delta \theta) + \xi(t)$
 $= \alpha f_0 \sin(\Delta \theta) + \xi(t)$

Assuming that at coupling onset
$$(t=0)$$
,
there is no noise,
$$4\omega \approx \alpha f_0$$

$$(90-60) \approx \alpha (0.35 \times 10^{-12})$$

$$\alpha \approx 8.57 \times 10^{13} \text{ rad N}^{-1} \text{s}^{-1}$$