Configuração Atual do Dell PowerEdge T130

Processador: Xeon E3-1220 (3.1 GHz, 4 núcleos)

Memória: 8GB DDR4 2133 MHz (1x)

Armazenamento: 1TB (2x RAID1)

Sistema Operacional: Windows Server 2012 R2 Foundation

Controlador RAID: S130 (integrado)

Upgrades para Windows Server 2019

Upgrade reaproveitando peças

Processador: Xeon E3-1220 (3.1 GHz, 4 núcleos) – reaproveitado

Memória: 16GB DDR4 2133 MHz (2x 8GB) – adicionado mais um pente de

8gb

Armazenamento: 1TB (2x RAID1) - reaproveitado

RAID:

Opção 1 (mais barata): Desative o RAID, use modo AHCI e configure redundância via software (Storage Spaces).

Opção 2: Substitua por um controlador compatível (ex.: Dell PERC H330)

Comprar a licença: Windows Server 2019

Comprando um novo servidor

Dell PowerEdge T140

Upgrade comprando um servidor novo visando longo prazo

Processador: Intel Xeon E-2224 (3.4 GHz, 4 núcleos). É o modelo mais básico da série E-2200, suficiente para o AD.

Memória: 8GB DDR4 3200 MHz (2x)

Armazenamento: 1TB (2x RAID1)

Controlador RAID: Dell PERC H330 (suporte nativo ao Windows Server 2019)

Comprar a licença: Windows Server 2019

Comparação entre os processadores

Relógio	3,4 <u>GHz</u>	0 %	3,1 <u>GHz</u>	(8,8 % ⊙)
Relógio Turbo	4,6 <u>GHz</u>	0 %	3,4 <u>GHz</u>	26,1 % 🕥
Núcleos	4	0 %	4	00%
Tópicos	4	0 %	4	0 %
Potência de projeto térmico (TDP)	71 <u>W</u>	% ⊙	80 <u>W</u>	0 %
ATUAÇÃO	Xeon E-2224		Xeon E3-1220	
Pontuação geral	46220	0 %	39474	(14,6 % ⊙)
À prova de futuro	68 %	0 %	24 %	64,7 % ⊙
Pontuação de referência	4564	0 %	2428	(46,8 % ⊙)
Pontuação de thread único	2554.6	0 %	1546.7	(39,5 % ⊙)
Criptografia de dados	2208.4 MB/s 59,7 s	% ⊙)	5483 MB/s	0 %
Compressão de dados	93.2 MB/s	0 %	61.3 MB/s	34,2 % ⊙
Classificação de objetos de string	12072.1 <u>mil/s</u>	0 %	8344.2 mil/s	30,9 % ⊙
Geração de números primos	41 milhões/s	0 %	29 milhões/s	29,2 % 🕥
Operações matemáticas (inteiro)	19349.4 milhões/s	0 %	13500.8 milhões/s	30,2 % ⊙
Operações matemáticas (float)	16747.1 milhőes/s	0 %	6946.3 milhões/s	(58,5 % ⊙)

Desempenho do PowerEdge t140

ganho de desempenho quando se diz respeito ao processamento

Desempenho especifico:

Single-Core

COMPARAÇÃO ENTRE MEMORIAS RAM

RAM 8GB DDR4 2133 MHz (1x) RAM 16GB DDR4 3200 MHz (2x 8gb)

○ Performance

PONTUAÇÃO FINAL

ATRIBUTOS

Análise entre Soluções On-Premise e Nuvem

Armazenamento de Dados: Desempenho e Custo

Aspecto	Infraestrutura em Nuvem	Ambiente On-Premise
IOPS utilizáveis	63% mais IOPS utilizáveis comparado a on-premise	Base referencial inferior, porém, com possibilidade de otimização direta
Latência em picos operacionais	3.3 vezes menor	Maior latência, mas pode ser otimizada localmente
Picos de IOPS em carga sequencial (leitura/escrita)		Inferior, mas pode ser melhorado via hardware customizado
Otimização de hardware	Limitada a configurações cloud padrão	Alta flexibilidade (ex: discos NVMe em RAID 10)
Throughput em transferências internas (>1PB)	Inferior em ambientes multitenant	18% superior com servidores físicos e conexões 100 Gbps
Latência média de armazenamento	1.5–4 ms em condições normais	0.5–2 ms para armazenamento local

Comparação do Modelo Econômico para Armazenamento de 500 TB em 3 Anos

Aspecto	Nuvem (AWS S3 Standard)	On-Premise	
Custo aproximado total (3 anos)	\$360,000 (exclui custos de egresso de \$0.09/GB)	\$310,000 (inclui energia e manutenção)	
Investimento inicial	Pago mensalmente conforme uso	\$250,000 em servidores NAS enterprise	
Custos adicionais	Taxas de egresso para recuperação de dados	Energia, manutenção já inclusos no custo total	
Ponto de equilíbrio	-	Cerca de 28 meses; mais econômico a longo prazo	
Vantagem econômica por volume	Melhor para volumes abaixo de 200 TB	Mais vantajoso para volumes acima de 200 TB em longo prazo	

Active Directory: Autenticação e Gestão

Aspecto	Active Directory On-Premise	Azure Active Directory (AAD)
Latência de autenticação Kerberos		8-15 ms (devido ao overhead de comunicação cloud)
	Base padrao, menor eficiencia	40% mais eficiente na escalabilidade horizontal durante picos
	consistente para operações	Melhor escalabilidade para grandes volumes e picos de uso

Conclusão

A seleção ótima depende de:

- 1. **Volume de Dados**: Acima de 200 TB favorece on-premise para armazenamento
- 2. **Padrão de Acesso**: Acesso frequente com baixa latência requer infraestrutura física
- 3. **Mobilidade Usuários**: Forças de trabalho distribuídas beneficiam-se de Azure AD
- 4. **Ciclo de Vida Tecnológico**: Organizações com atualizações frequentes preferem modelos cloud

Dados recentes indicam que para armazenamento puro, soluções on-premise superam cloud em performance/custo após 2.5 anos.

Para gestão de identidades, ambientes híbridos apresentam 30-40% maior eficiência operacional que modelos puros. A tendência atual recomenda infraestrutura física para armazenamento primário + Azure AD para gestão de acesso como arquitetura balanceada.