Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт информационных технологий и анализа данных

наименование института

Отделение прикладной математики и информатики наимснование отделения Отчет по дисциплине «Вычислительная математика»

по теме:
«Статистическая обработка опытных данных»

Выполнил студент группы	АСУб-20-2 Шифр группы	Подпись	Арбакова А.В. И.О. Фамилия
Проверил преподаватель		Подпись	И.А. Огнёв И.О. Фамилия

Отчет по НИР защищен с оценкой _____

ЗАДАНИЕ

Вариант: 6

Условия задания:

По заданной таблице результирующего признака у и одного из факториальных признаков x_1, x_2, x_3 построить методом наименьших квадратов две различные эмпирические формулы и сравнить качество полученных приближений.

	x3 ·	2,51	3,74	8,70	5,36	1,89	3,01	3,59	2,64	4.77	1,60
x2		1,52	3,24	6,63	7,15	2,96	1,73	7,44	3,70	2,00	2,63
x ₁		9,11	9,35	8,90	9,22	8,74	8,98	-8,77	9,31	8,81	9,14
y		55,65	67,68	105,20	85,02	52,76	58,86	72,19	61,09	70,44	51,67

Рисунок 1 – Задание.

Корреляция

Выбираем для признака Y признак X_1 потому что корреляционная оценка показала, что по теоретическим подсчётам выборка Y зависит от выборки X_3 на 88%, что больше, чем от X_2 и от X_1 .

Корреляция					
	y x1 x2 x3				
У	1				
x1	-0,09454	1			
x2	0,737003	-0,09811	1		
x3	0,978845	-0,1402	0,588451	1	

Рисунок 2 — Корреляция зависимости Y от X_1, X_2, X_3 .

Анализ данных

Используем метод наименьших квадратов. Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b — выборочные оценки истинных параметров.

Рисунок 3 — Линия линейной регрессии с изображенными остатками для каждой точки.

Можно применять регрессионную линию для прогнозирования Y значения по значению X в пределе наблюдаемого диапазона.

Итак, если $X = x_{0+}$ прогнозируем Y, как $Y_0 = bx_0 + a$ или $\sum (-y_i + ax_i + b) = 0$. Используем эту предсказанную величину и ее стандартную ошибку.

Повторение этой процедуры для различных величин х позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Рисунок 4 – Модель линейной регрессии.

Найдём процент отклонения построенной модели с помощью линейной регрессии. Для этого найдём абсолютное значение разности $Y-Y_0$, и посчитаем частное остатка $\Delta Y=Y-Y_0$ и признака Y, получая $\delta(Y)$.

Δ	δ	_
103,8135		3,72%

Рисунок 5 — Процент отклонения построенной модели линейной регрессии.

Аналогично находим следующие регрессии, а также проценты отклонения их регрессионных моделей.

Рисунок 6 – Модель степенной регрессии.

Δ	δ	
149,3166		5,01%

Рисунок 7 — Процент отклонения построенной модели степенной регрессии.

Рисунок 8 – Модель экспоненциальной регрессии.

Δ	δ	
158,7016		4,80%

Рисунок 9 — Процент отклонения построенной модели экспоненциальной регрессии.

Рисунок 10 – Модель логарифмической регрессии.

Δ	δ	
249,788		6,50%

Рисунок 11 — Процент отклонения построенной модели логарифмической регрессии.

Рисунок 12 – Модель квадратичной регрессии.

Рисунок 13 — Процент отклонения построенной модели квадратичной регрессии.

Критерий Фишера

Находим квадрат детерминации, то есть

$$R^{2} = \frac{\sum (y_{\text{эксп}} - y_{\text{cp}})^{2}}{\sum (y_{x} - y_{\text{cp}})^{2}}$$

Где в числителе сумма квадратов отклонений прогнозируемых значений от среднего значения переменной, а в знаменателе общая дисперсия прогнозируемых значений.

После находим экспериментальный критерий Фишера $F_{\phi \text{акт}} = \frac{R^2(n-m-1)}{1-R^2}$ и эмпирический критерий Фишера с помощью F-распределения.

Кр	итерий Фишер	oa .	
	R ²		
Линейная	0,9581	F _{факт} =	182,9308
		F _{табл} =	5,317655
Степенная	0,9331	F _{факт} =	111,5815
		F _{Ta6n} =	5,317655
экспоненциальная	0,9354	F _{факт} =	115,839
		F _{Ta6n} =	5,317655
логарифмическая	0,8993	F _{факт} =	71,44389
		F _{ratin} =	5,317655
квадратичная	0,9589	F=	186,6472
	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	F _{Ta6n} =	5,317655

Рисунок 16 – Критерий Фишера.

Вывод

Решая поставленную задачу, мы удостоверились с коэффициентом корреляции 0,97, что выборка x_3 подходит лучше, чем выборки x_1 и x_2 . Мы построили модели регрессии, а именно: линейной, степенной, экспоненциальной, логарифмической, полиномиальной (квадратичной).

Оказалось, что, полиномиальная регрессия подходит больше всего, как регрессионная модель с процентом отклонения 3,72%. Также мы сделали критерий Фишера, который оценил проверку равенства дисперсий двух выборок и показал, что $F_{\rm факт} > F_{\rm табл}$ — это означает, построенная нами модель является статистически значимой регрессией.