

Without dark matter

With dark matter (edges rotate faster)

Dark Matter from Supersymmetry

Dark Matter from Supersymmetry

Image credit: DESY at Hamburg

Hunting Dark Matter

- Direct Earth-based large inert substance detectors
- Indirect Looking for signs from space
- Collider Producing dark matter at particle colliders

Future Colliders

CEPC-SppC (China)

FCC-hh (CERN)

Increased reach at 100 TeV

Increased reach at 100 TeV

Gori et al - Prospects for Electroweakino Discovery at a 100 TeV Hadron Collider (2014)

Signal

Backgrounds

- Top pair production
- tbW with bW not from an on-shell top
- bbWW with no onshell top quarks

(I TeV Higgsino, I00 GeV Bino)

Razor Variable Kinematical Distributions

Cut-flow table

	Cross s	S/\sqrt{B}				
	tt	tbW	bbWW	Signal	(for 3 ab ⁻¹)	
Before cuts	1,105,698	430,086	12940	0.15	0.007	
Identification	38452	2300	485	0.012	0.003	
Missing energy > 180 GeV	996	459	358	0.011	0.014	
Invariant mass cuts	10	2.7	0.038	0.009	0.145	
M_R	0.006	0.15	0.038	0.009	1.110	
M_T^R	0.004	0.06	0.00	0.009	1.813	

Machine Learning

- We want to optimize our analysis using machine learning.
- One option Boosted Decision Trees

Preliminary ML results

Looks promising!

Conclusion

- A future collider would dramatically increase our ability to discover new particles, including dark matter candidates
- Razor kinematic variables and machine learning techniques can help us efficiently isolate signal events from the background.

Backup slides

Detailed cut-flow table

All cross sections in femtobarns

	tt_full xsection	tbW xsection	bbWW xsection	Signal xsection	S/B	S/sqrt(B)
Original	1105697.629	430086.251	12939.944	0.150	9.685e-08	0.007
2 leptons	448781.081	46761.464	8238.581	0.065	1.291e-07	0.005
SF leptons	227386.012	23661.391	4156.951	0.065	2.547e-07	0.007
OS leptons	227378.344	23657.902	4156.869	0.065	2.548e-07	0.007
N(b) = 2	38452.504	2300.250	485.291	0.012	2.955e-07	0.003
MET	996.055	458.864	358.375	0.011	6.044e-06	0.014
m_SFOS	85.807	21.172	0.814	0.010	9.610e-05	0.055
m_bb	10.101	2.695	0.038	0.009	7.396e-04	0.145
m_R	0.006	0.152	0.038	0.009	4.566e-02	1.110
m_T_R	0.004	0.064	0.000	0.009	1.266e-01	1.813