Estudo de caso: Grupo D 3

Gilmar Pereira, Maressa Tavares e Victor Ruela 29 de Outubro, 2019

1 Summary

O presente trabalho realizou o delineamento e executou os testes estatísticos para avaliar o desempenho médio do algoritmo conhecido como Evolução Diferencial [1]. O algoritmo foi desenvolvido no ano de 1997 por Storn e Price e é um algoritmo simples de otimização multimodal, primeiramente desenvolvido para otimização de funções contínuas e variáveis numéricas discretas [2].

Para o presente trabalho o algoritmo DE (Differential Evolution) foi ajustado com duas configurações alterando a forma de recombinação e mutação nos algoritmos. As classes de funções para este experimento foi composta pela função Rosenbrock [3] de dimensões entre 2 e 150. Para analisar os dados utilizou-se da técnica de blocagem determinando a quantidade de blocos e seus tamanhos, assim como o número de amostras por instância.

Realizou-se o cálculo do número de blocos de acordo com [4] e o número de instâncias de acordo com [5]. Para teste das premissas de normalidade utilizou-se a ferramenta qqplot e o teste de shapiro-wilk. O teste F foi utilizado para avaliar a homocedasticidade, e por fim, para comparar os dois algoritmos utilizou-se o teste não paramétrico de Friedman, tendo em vista não validação das premissas da ANOVA.

2 Planejamento do Experimento

Nesta seção é apresentado o planejamento do experimento, descrevendo os objetivos e o delineamento do experimento.

2.1 Objetivo do Experimento

O objetivo deste experimento é analisar se exite alguma diferença entre duas configuração do algoritmo DE dentre as classes de funções, determinando a configuração de melhor desempenho e ressaltando as magnitudes das diferenças encontradas.

2.2 Delineamento

Para o seguinte experimento foram realizadas as seguintes etapas, as quais estão detalhadas nas próximas seções.

- Formulação das hipóteses de teste;
- Cálculo dos tamanhos amostrais, estabelecimento das quantidades de instâncias e número de iterações do algoritmo;
- Coleta e tabulação dos dados,
- Realização dos testes de hipóteses;
- Estimação da magnitude das diferenças;
- Validação das premissas;
- Resultados e Conclusões.

2.3 Hipóteses

Para a análise comparativa entre as configurações do algoritmo DE, determinou-se as seguintes hipóteses a serem testadas.

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{cases}$$

Onde μ_1 e μ_2 são as médias amostrais das configurações 1 e 2 dos algoritmos, respectivamente.

Além disso, foram definidos os seguintes parâmetros experimentais:

- Significância desejada: $\alpha = 0.05$.
- Mínima diferença de importância prática (padronizada): $d^* = \delta^*/\sigma = 0.5$
- Potência mínima desejada $\pi = 1 \beta = 0.8$

2.4 Coleta dos Dados

Neste trabalho, cada amostra consiste em uma execução do algoritmo DE, para cada instância (dimensão da função objetivo) e configuração do algoritmo em questão (níveis). Foram escolhidas N=30 repetições de cada par instância-configuração, recomendado como suficiente por Campelo e Takahashi [5]. A coleta de dados foi dividida em duas etapas, descritas nas seções a seguir. O código utilizado para a coleta de dados está disponível no apêndice deste trabalho.

2.4.1 Geração do arquivo de configuração do experimento

Esta etapa permite gerar um arquivo .csv contendo a configuração descrita a seguir. As rotinas foram implementadas de forma a possibilitar a criação da configuração para quaisquer número de repetições (N), instâncias (I), grupos (b) e níveis (a). Um último passo consiste em randomizar o arquivo de configuração e dividí-lo em 3 arquivos separados, a serem executados por cada membro do grupo. Isso a independência das amostras geradas e que o experimento seja completamente randomizado. Como o algoritmo demora um tempo considerável para sua execução, a divisão entre os participantes permitiu a sua execução em paralelo para otimizar o tempo necessário para gerar todos os dados. A tabela abaixo exibe um exemplo de arquivo de configuração gerado.

Table 1:	Exemplo	de	arquivo	de	configuração

	X	algorithm	replicate	instance	group	result
5	5	1	30	94	28	-1
6	6	1	29	140	42	-1
7	7	2	8	113	34	-1
8	8	2	16	7	3	-1
9	9	1	5	118	35	-1

2.4.2 Execução de arquivo de configuração

Com o arquivo de configuração disponível, o experimento está pronto para ser executado. A rotina desenvolvida carrega um arquivo de configuração (.csv) e executa cada linha em sequência, para os seus respectivos parâmetros. À medida em que uma amostra é finalizada, o resultado é salvo no próprio arquivo de configuração, na coluna result. Isso garante que seja possível continuar a execução do arquivo sem perder as amostras realizadas anteriormente, caso ocorra algum problema.

2.5 Análise Exploratória dos Dados

Nesta seção é apresentado uma análise exploratória dos dados, verificando normalidade, homocedasticidade, independência, que são as premissas que devem ser validadas antes da realização dos testes estatísticos.

Como o estudo consiste na comparação entre os resultados da execução de duas configurações de um algoritmo de otimização, a dimensão da função objetivo é um fator importante. Logo, a análise exploratória foi feita considerando amostras de instâncias de baixa, média e alta dimensão. Inicialmente, os dados do experimento foram carregados, sendo as instâncias 4, 50 e 100 escolhidas para avaliação, e um gráfico boxplot foi criado para a análise preliminar.

```
sample.all <- read.csv('data.all.instances.csv', header = TRUE)
sample.all$configuration <- as.factor(sample.all$algorithm)
sample.all <- sample.all %>% mutate(logresult = log(result))
sample.all.eda <- sample.all %>% filter(instance == 100 | instance == 50 | instance == 4)
```


Através deste gráfico, as seguintes observações podem ser feitas:

- Os valores da função objetivo final possuem magnitudes muito diferentes dependendo da dimensão.
 Portanto, uma normalização dos dados para uma escala comum pode ser necessária para a correta análise dos experimentos.
- Há algumas repetições do algoritmo que poderiam ser considerados outliers. Elas devem ser removidas de forma a não prejudicar os testes de hipótese e validação das premissas.
- A configuração 2 parece obter melhores resultados para dimensões baixas, quase sempre chegando ao mínimo da função. Entretnato, o mesmo não pode ser afirmado para dimensões maiores.

2.6 Cálculo do número de blocos

De acordo com [4], o número de blocos ideal é calculado variando a quantidade de blocos enquanto a relação

$$F(1-\alpha) \le F(\beta, \phi)$$

é respeitada. Onde ϕ é o parâmetro de não-centralidade, definido por:

$$\phi = \frac{b\sum_{i=1}^{a} \tau_i}{a\sigma^2}$$

De acordo com a definição do experimento, temos que a=2, tamanho de efeito normalizado d=0.5, potência desejada de $\pi=0.8$ e significância $\alpha=0.05$. Logo, é possível calcular o número de blocos b de acordo com a rotina abaixo.

```
a <- 2
d <- 0.5
alpha <- 0.05
beta <- 0.2

tau <- c(-d, d, rep(0, a - 2)) # define tau vector
b <- 5

tb <- data.frame(b = rep(-1, 50), ratio = rep(-1,50), phi = rep(-1,50))

for(i in seq(1,40,by=2)){

   b <- i + 5
   f1 <- qf(1 - alpha, a - 1, (a - 1)*(b - 1))
   f2 <- qf(beta, a - 1, (a - 1)*(b - 1), (b*sum(tau^2)/a))
   phi <- b*sum(tau^2)/a

   tb[i, ] = c(b, f1/f2, phi)
}</pre>
```

Portanto, o número mínimo de blocos necessários é de 34. As iterações podem ser vistas na tabela abaixo.

Table 2: Iterações para cálculo do número de blocos

Blocos	Razão	Phi
6	22.3119377	1.5
10	8.3089036	2.5
14	4.3118995	3.5
18	2.7150544	4.5
22	1.9226732	5.5
26	1.4656488	6.5
30	1.1734386	7.5
34	0.9725686	8.5
38	0.8269777	9.5
42	0.7171273	10.5

Portanto, devemos escolher b blocos aleatoriamente das instâncias disponíveis. A figura 2 exibe o gráfico de ridge para as instâncias selecionadas.

Figure 1: Ridge plot dos dados

```
## Picking joint bandwidth of 0.0939
## Picking joint bandwidth of 0.0939
```


Figure 2: Ridge plot dos dados

Pela análise das figuras percebe-se que as duas configurações do algoritmo possuem um comportamento

semelhanto. A exceção é para as instâncias inferiores, nas quais percebe-se um melhor desempenho do algoritmo 2.

2.7 Validação das premissas

Para realizar as inferências estatísticas sobre as duas configurações do algoritmo de otimização é necessário validar as premissas antes de executar o teste. Neste caso, como tratam-se de duas configurações em um espectro amplo de dimensões, existe um fator conhecido e controlável que pode influenciar no resultado do teste. Então, para eliminar o efeito desse fator indesejável uma opção é realizar a blocagem [6]. A seguir são apresentados os testes realizados para validar as premissas exigidas pela blocagem (ANOVA).

A - Normalidade

Para a validação desta premissa, aplicou-se o teste ANOVA aos dados e depois foram avaliados os resíduos obtidos pelo moddelo. O gráfico quantil-quantil e teste de shapiro-wilk também foram utilizados nessa validação, como apresentados a seguir.

```
##
                 Df Sum Sq Mean Sq F value Pr(>F)
## algorithm
                        539
                              539.1
                                       369.3 <2e-16 ***
                   1
## instance
                  43
                      30891
                              718.4
                                       492.2 <2e-16 ***
## Residuals
                       3787
                2595
                                 1.5
                      '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
                   0
```


Figure 3: QQ-plot dos resíduos

<sup>##
##</sup> Shapiro-Wilk normality test

```
##
## data: res.aov$residuals
## W = 0.73488, p-value < 2.2e-16</pre>
```

De acordo o p-valor (2.2e-16), conclui-se que não há evidências de normalidade dos resíduos.

Para se ter uma ideia inicial da normalidade dos dados, o histograma para as instâncias em avaliação é gerado a seguir.

Figure 4: Histograma dos dados

Pelo histograma apresentado, é possível notar que os dados não apresentam, visivelmente, uma distribuição normal. Assim, os gráficos quantil-quantil e os testes de Shapiro-Wilk foram executados para verificar essa observação.

Figure 5: Gráfico quantil-quantil das instâncias avaliadas

Table 3: p-valores dos testes de shapiro-wilk

Instância	Configuração 1	Configuração 2
6	0.0000009	0.9309204
7	0.0000000	0.0952691
8	0.0000000	0.2117700
9	0.0000000	0.7507335
18	0.0000001	0.2972384
32	0.3125588	0.0530113
36	0.5390465	0.0031382

Instância	Configuração 1	Configuração 2
44	0.0823744	0.2327750
45	0.0036558	0.3650279
46	0.0044446	0.9161466
47	0.0839617	0.0385525
51	0.0753235	0.1364449
52	0.0758525	0.0354189
53	0.0091924	0.3830805
58	0.0697282	0.5604240
60	0.0924252	0.2159456
66	0.0265610	0.2110943
70	0.9623741	0.0620700
71	0.0599036	0.7153322
74	0.3792093	0.0002792
76	0.1354236	0.3168043
83	0.7307143	0.2537269
84	0.0918314	0.4150641
88	0.1073720	0.3586552
91	0.0045456	0.4032497
94	0.0153487	0.0844764
97	0.7951191	0.1495584
99	0.7449118	0.3043869
102	0.2267074	0.0152054
104	0.0496420	0.4028618
105	0.0278883	0.3291645
107	0.0139989	0.4737125
112	0.9846658	0.0167655
115	0.1981531	0.0518414
120	0.3541607	0.3607403
126	0.0810109	0.4095614
129	0.0014765	0.6469189
130	0.7114775	0.3090016
132	0.0181213	0.0913901
133	0.0096410	0.0048931
136	0.0155369	0.2518921
137	0.0189678	0.1159964
139	0.3062163	0.3744098
141	0.2011834	0.4393923

Conforme visto anteriormente, não foi possível atestar a normalidade dos dados. Logo, uma transformação logarítmica é aplicada aos dados e os testes de Shapiro-Wilk foram executados novamente.

Table 4: Resultados dos testes de shapiro-wilk com aplicação de transformação logarítimica

Instância	Configuração	p-valor
4	1	0.6439926
4	2	0.0012907
50	1	0.0870792
50	2	0.0065506
100	1	0.1687062
100	2	0.0582035

Pelas tabelas 3 e 4, é possível notar que após a aplicação da transformação logarítmica, há resultados que deixam de ser normais. Portanto, não podemos afirmar que para todas as dimensões e configurações testadas os dados seguem uma distribuição normal.

B - Igualdade de Variância

Table 5: Resultados dos testes de variância

Instância	p-valor
18	0.0000000
70	0.0000212
130	0.8607916

Pela tabela 4, é possível notar que para os

- 1 Replicação por bloco:
- 2 Independência dos blocos:
- 3 Randomização dos blocos:

2.8 Apêndice

2.8.1 Geração de configuração

```
if (!require(ExpDE, quietly = TRUE)){
 install.packages("ExpDE")
}
if (!require(smoof, quietly = TRUE)){
 install.packages("smoof")
if (!require(CAISEr, quietly = TRUE)){
  install.packages("CAISEr")
# RCBD functions -----
set.seed(15632) # set a random seed
instances <- seq(2, 150) # number of instances
N \leftarrow 30 # number of replicates per instance
\verb|rcbd.configuration.generator| <- function(level, b, instances, N){|} \\
 nrows <- length(instances) * N</pre>
  n.instances <- length(instances)</pre>
  instance <- sort(rep(instances, N))</pre>
  groups <- sapply(instance, function(i){ ceiling(i/(n.instances/b)) })</pre>
 X <- data.frame("algorithm" = rep(level, nrows),</pre>
```

```
"replicate" = rep(seq(1,N), n.instances),
                   "instance" = instance,
                  "group" = groups,
                  "result" = rep(-1, nrows))
  return(X)
x.config.1 <- rcbd.configuration.generator(1, b, instances, N)</pre>
x.config.2 <- rcbd.configuration.generator(2, b, instances, N)
x.config.all <- rbind(x.config.1, x.config.2)</pre>
x.config.all.shuffled <- x.config.all[sample(nrow(x.config.all)), ]</pre>
split.size <- (nrow(x.config.all.shuffled)/3)</pre>
x.config.all.shuffled$member <- ceiling((1:nrow(x.config.all.shuffled))/split.size)
x.config.all.shuffled.victor <- x.config.all.shuffled[x.config.all.shuffled$member == 1,1:5]</pre>
x.config.all.shuffled.gilmar <- x.config.all.shuffled[x.config.all.shuffled$member == 2,1:5]</pre>
x.config.all.shuffled.maressa <- x.config.all.shuffled[x.config.all.shuffledsmember == 3,1:5]
write.csv(x.config.all.shuffled.victor, 'rcbd.config.victor.csv', row.names=FALSE)
write.csv(x.config.all.shuffled.gilmar, 'rcbd.config.gilmar.csv', row.names=FALSE)
write.csv(x.config.all.shuffled.maressa, 'rcbd.config.maressa.csv', row.names=FALSE)
```

2.8.2 Execução de configuração

```
# Load packages -----
if (!require(ExpDE, quietly = TRUE)){
  install.packages("ExpDE")
if (!require(smoof, quietly = TRUE)){
 install.packages("smoof")
}
# Execute a RCBD test configuration -----
# Define a class to store the levels configuration
level.config <- function(mp, rp, id) {</pre>
  value <- list(mutparsX = mp, recparsX = rp, id = id)</pre>
  class(value) <- append(class(value), "level.config")</pre>
 return(value)
}
## Equipe D
## Confiq 1
recpars1 <- list(name = "recombination_blxAlphaBeta", alpha = 0.4, beta = 0.4)
mutpars1 <- list(name = "mutation_rand", f = 4)</pre>
## Config 2
recpars2 <- list(name = "recombination_eigen", othername = "recombination_bin", cr = 0.9)
```

```
mutpars2 <- list(name = "mutation_best", f = 2.8)</pre>
config.1 <- level.config(mutpars1, recpars1, 1)</pre>
config.2 <- level.config(mutpars2, recpars2, 2)</pre>
fname = 'rcbd.config.victor.csv'
Z <- read.csv(fname)</pre>
set.seed(15632) # set a random seed
my.ExpDE <- function(mutp, recp, dim){</pre>
  fn.current <- function(X){</pre>
    if(!is.matrix(X)) X <- matrix(X, nrow = 1) # <- if a single vector is passed as Z</pre>
    Y <- apply(X, MARGIN = 1, FUN = smoof::makeRosenbrockFunction(dimensions = dim))
    return(Y)
  }
  assign("fn", fn.current, envir = .GlobalEnv)
  selpars <- list(name = "selection_standard")</pre>
  stopcrit <- list(names = "stop_maxeval", maxevals = 5000 * dim, maxiter = 100 * dim)</pre>
  probpars <- list(name = "fn", xmin = rep(-5, dim), xmax = rep(10, dim))
  popsize = 5 * dim
  out <- ExpDE(mutpars = mutp,</pre>
                recpars = recp,
                popsize = popsize,
                selpars = selpars,
                stopcrit = stopcrit,
                probpars = probpars,
                showpars = list(show.iters = "none"))
  return(list(value = out$Fbest))
for (row in 1:nrow(Z)){
  if(Z[row, "result"] == -1){ # start from the last execution
    dim <- Z[row, "instance"]</pre>
    algo <- Z[row, "algorithm"]</pre>
    replicate <- Z[row, "replicate"]</pre>
    if(algo == 1)
      algo.config <- config.1</pre>
      algo.config <- config.2
    print(paste("Started Instance:", dim, "; Algo:", algo, "; Repetition:", replicate))
    out <- my.ExpDE(algo.config$mutparsX, algo.config$recparsX, dim)</pre>
```

Referências

- [1] R. Storn and K. Price, "Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces," *Journal of global optimization*, vol. 11, no. 4, pp. 341–359, 1997.
- [2] K. V. Price, "Differential evolution," in Handbook of optimization, Springer, 2013, pp. 187–214.
- [3] H. Rosenbrock, "An automatic method for finding the greatest or least value of a function," *The Computer Journal*, vol. 3, no. 3, pp. 175–184, 1960.
- [4] F. Campelo, "Lecture notes on design and analysis of experiments." https://github.com/fcampelo/Design-and-Analysis-of-Experiments, 2018.
- [5] F. Campelo and F. C. Takahashi, "Sample size estimation for power and accuracy in the experimental comparison of algorithms," *CoRR*, vol. abs/1808.02997, 2018.
- [6] D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers, (with cd). John Wiley & Sons, 2007.