Home / My courses / Organic & Inorganic Chemistry Theory (CY11003) Section 11-17 & Backlog - Spring 2022 / Topic 1

/ Inorganic Class Test

Started on Wednesday, 16 March 2022, 9:03 AM

State Finished

Completed on Wednesday, 16 March 2022, 9:57 AM

Time taken 53 mins 18 secs

Grade 15.00 out of 25.00 (**60**%)

Question **1**

Correct

Mark 2.00 out of 2.00

For O_2 , O_2^+ , O_2^{2-} and O_2^- species, the CORRECT trend of bond order is

 \bigcirc a. $O_2 > O_2^{2-} > O_2 > O_2^+$

 \bigcirc b. $O_2^- > O_2^+ > O_2^{2-} > O_2$

c. $O_2^+ > O_2^- > O_2^- > O_2^{2-}$

 \bigcirc d. $O_2^{2-} > O_2^+ > O_2 > O_2^-$

Your answer is correct.

The correct answer is: $O_2^+ > O_2^- > O_2^{2-}$

Correct

Mark 2.00 out of 2.00

The CORRECT statement(s) about the Frost diagram of manganese given below is(are)

- a. In both acidic and basic conditions, the Mn(V) species is unstable with respect to comproportionation reaction.
- b. The oxidising power of MnO₄ is higher in basic medium as compared to acidic medium
- oc. Mn³⁺ is unstable with respect to disproportionation in acidic medium
- d. Mn in zero oxidation state possesses the most thermodynamic stability among the other oxidation states in both acidic and basic medium

Your answer is correct.

The correct answer is: Mn³⁺ is unstable with respect to disproportionation in acidic medium

Question **3**Correct

Mark 1.00 out of 1.00

Assume $[Cd(NH_3)_4]^{2+}$ is formed by stepwise reaction and it has $K_1 = 10^{2.65}$, $K_2 = 10^{2.10}$, $K_3 = 10^{1.44}$ and $\beta_4 = 10^{7.12}$. Calculate $log_{10}K_4$.

Answer: 0.93 ✓

The correct answer is: 0.93

Question **4**Incorrect

Mark 0.00 out of 2.00

For a low spin t_{2q}^4 configuration, which Jahn-Teller distortion is favoured?

 \bigcirc a. Z-out with $2/3(\delta_2)$

- *

- Ob. Z-out with $1/3(\delta_2)$
- \bigcirc c. Z-in with $2/3(\delta_2)$
- O d. Z-in with $1/3(\delta_2)$

Your answer is incorrect.

The correct answer is: Z-in with $2/3(\delta_2)$

Question ${\bf 5}$

Incorrect

Mark 0.00 out of 1.00

Given that

$$O_2 \to H_2O_2$$
 $E^0 = + 0.76 \text{ V}$

$$O_2 \to H_2O$$
 $E^0 = + 1.23 \text{ V}$

The potential (V) for the $H_2O_2 \rightarrow H_2O$ is 0.47

The correct answer is: 1.7

Question 6

Incorrect

Mark 0.00 out of 1.00

For the complexes $[Cr(NH_3)_6]^{3+}$, $[Cr(H_2O)_6]^{3+}$, $[CrF_6]^{3-}$ and $[Cr(CN)_6]^{3-}$, the CORRECT order of Δ_0 value is

a.
$$[CrF_6]^{3--} < [Cr(NH_3)_6]^{3+} < [Cr(H_2O)_6]^{3+} < [Cr(CN)_6]^{3--}$$

>

- b. $[CrF_6]^{3-} < [Cr(H_2O)_6]^{3+} < [Cr(NH_3)_6]^{3+} < [Cr(CN)_6]^{3-}$
- \bigcirc c. $[Cr(H_2O)_6]^{3+} < [CrF_6]^{3-} < [Cr(NH_3)_6]^{3+} < [Cr(CN)_6]^{3-}$
- Od. $[Cr(H_2O)_6]^{3+} < [Cr(NH_3)_6]^{3+} < [CrF_6]^{3-} < [Cr(CN)_6]^{3-}$

Your answer is incorrect.

The correct answer is: $[CrF_6]^{3-} < [Cr(H_2O)_6]^{3+} < [Cr(NH_3)_6]^{3+} < [Cr(CN)_6]^{3-}$

Question 7	
Correct	
Mark 1.00 out of 1.00	
Which of the following transition metal ion CANNOT form both high- and low-spin octahedral complexes?	
\bigcirc a. Cr^{2+}	
○ b. Mn ²⁺	
	~
○ d. Co ³⁺	
Your answer is correct.	
The correct answer is: V ²⁺	
Question 8	
Correct	
Mark 2.00 out of 2.00	
The value of 'n' and the oxidation state of the metal in $[Mn(CI)(CO)_n(pyridine)_2]$ and $[Fe(H)(CH_2CH_3)(CO)_n]$ are (use the 18-electron rule)	
a. 2 and +1 AND 2 and +1, respectively	
○ b. 1 and +1 AND 2 and +2, respectively	
b. Falla + FAIND 2 and +2, respectively	
c. 3 and +1 AND 4 and +2, respectively	~
d. 3 and 0 AND 2 and +3, respectively	
Your answer is correct.	
The correct answer is: 3 and +1 AND 4 and +2, respectively	

,
Question 9
Correct
Mark 1.00 out of 1.00
In the Monsanto acetic acid catalytic process, the oxidation state of the Rh metal shuttles between
○ b. 0 and +2
○ c. +2 and +4
d. the same oxidation states
Your answer is correct.
The correct answer is: +1 and +3
Question 10
Incorrect
Mark 0.00 out of 2.00
ΔH (hydration) of Fe ²⁺ ion is 50 kJ/mol higher than would be expected if there is no CFSE. Find the magnitude of Δ_0 in kJ/mol for high-spin
complex $[Fe(OH_2)_6]^{2+}$.
Answer: 50

The correct answer is: 125

Question 11	
Correct	
Mark 2.00 out of 2.00	

Which of the following is (are) paramagnetic?

☐ a. C₂

☑ b. B₂

V

~

d. CO

Your answer is correct.

The correct answers are: N₂⁺, B₂

Incorrect

Mark 0.00 out of 2.00

The orbital overlap/s that represents S = 0 is/are

Your answer is incorrect.

The correct answers are: d_{xy} x d_{y}^{2} p_{y} x

Question 13	
Correct	
Mark 1.00 out of 1.00	
The CORRECT statement about Hemoglobin in its <i>Relaxed</i> state	
a. The proximal histidine does not coordinate with Fe-centre	
b. It is diamagnetic	~
oc. Fe ion is high-spin	
Od. Radius of the Fe ion in <i>Relaxed</i> state is higher than the <i>Tensed</i> state	
Your answer is correct.	
The correct answer is: It is diamagnetic	

The correct answer is: It is diamagnetic

Incorrect

Mark 0.00 out of 1.00

In the hydrogenation of alkene using the Wilkinson's catalyst, the intermediate that yields the final product RCH_2CH_3 is

Your answer is incorrect.

×

Correct

Mark 3.00 out of 3.00

Refer to the Latimer diagram of vanadium and manganese in acid pH. The products of the reaction of MnO_4 —with five equivalents of VO^{2+} are

 $VO_2^+ \xrightarrow{+1 \ V} VO^{2+} \xrightarrow{+0.337 \ V} V^{3+} \xrightarrow{-0.255 \ V} V^{2+} \xrightarrow{-1.13 \ V} V$

$$\mathsf{MnO_4} \xrightarrow{+0.9\,\mathrm{V}} \;\; \mathsf{HMnO_4} \xrightarrow{+1.28\,\mathrm{V}} \;\; (\mathsf{H_3MnO_4}) \xrightarrow{+2.9\,\mathrm{V}} \;\;\; \mathsf{MnO_2} \xrightarrow{+0.95\,\mathrm{V}} \;\; \mathsf{Mn}^{3+} \xrightarrow{+1.51\,\mathrm{V}} \;\;\; \mathsf{Mn}^{2+} \xrightarrow{-1.18\,\mathrm{V}} \;\; \mathsf{Mn}$$

- □ a. V³⁺
- ☐ b. MnO₂
- - ~
- ☑ d. VO₂⁺
 - ~

Your answer is correct.

The correct answers are: Mn²⁺, VO₂+

Question 16

Incorrect

Mark 0.00 out of 1.00

A tetrahedral ML₄ complex absorbs light at 568 nm. What is the respective octahedral crystal field splitting (Δ_0) in kJ/mol? [Given h: 6.626 x 10^{-34} J.s; c: 3 x 10^8 m/s]

Answer:

2.1

The correct answer is: 474.5

→ Organic Class Test

Jump to...