Optimizing Portfolio Weights with Theory and Machine Learning

MASTERS OF financial insurance

Jiarun Chen University of Toronto

Abstract

If someone has spare money, should they place it in a risk-free account or invest in stocks for potentially higher returns? To address this question, I examine portfolio optimization strategies tailored to different risk tolerances. Backtesting results demonstrate that strategies customized to specific preferences can enhance returns, highlighting the advantages of combining financial theory with machine learning to improve investment decisions in uncertain markets.

Objectives

- Optimize Portfolio Weights Using Advanced Theoretical and Machine Learning Models
- Incorporate Various Real-World Investment
 Constraints and Conduct Thorough Backtesting
- Enhance Returns by Maximizing Expected Utility and Accounting for Risk Aversion Level

Methods

Define	Apply Ct	Estimate Key	
Objective -	Models to	Parameters	
Function	Theoretical TL		Σ,μ
Conduct Backto & Analyze Resi		Incorporate Real-World Constraints	← Obtain ML Model

Results

Monthly Rebalance

Minimizing Portfolio Variance

Objective Function: $\min_{\boldsymbol{\pi}_t}(\boldsymbol{\pi}_t^T\boldsymbol{\Sigma}_t\boldsymbol{\pi}_t)$ subject to $\boldsymbol{1}_m^T\boldsymbol{\pi}_t=1$

$$\pi_t = \frac{\mathbf{\Sigma}_t^{-1} \mathbf{1}_m}{\mathbf{1}_m^{-1} \mathbf{\Sigma}_t^{-1} \mathbf{1}_m}$$
2022.07 – 2023.07 No Short Selling Allow Short Selling

1.66%	4.61%
1.97%	2.02%
No Short Selling	Allow Short Selling
1.99%	2.26%
	No Short Selling

Average Monthly Return Comparisons

1.71%

4.33%

Linear-Quadratic Preference

Maximize the Expected Utility of Wealth, adjusted for the Risk Aversion Level. Objective Function:

$$\begin{aligned} \max_{\boldsymbol{\pi}_t} \, \int_0^T & \left[W_t \left(r + \boldsymbol{\pi}_t^T (\boldsymbol{\mu}_t - r \boldsymbol{1}_m) \right) - \frac{\gamma}{2} W_t \boldsymbol{\pi}_t^T \boldsymbol{\Sigma}_t \boldsymbol{\pi}_t \right] dt \\ \boldsymbol{\pi}_t &= \frac{1}{\gamma} \boldsymbol{\Sigma}_t^{-1} (\boldsymbol{\mu}_t - r \boldsymbol{1}_m) \end{aligned}$$

Average Monthly Return Comparisons

2022.07 – 2023.07	No Short Selling	Allow Short Selling
No Rebalance	3.61%	4.46%
Monthly Rebalance	4.30%	6.42%
2023.07 - 2024.07	No Short Selling	Allow Short Selling
No Rebalance	4.16%	4.79%
Monthly Rebalance	3.10%	5.51%

Real-World Factors and Assumptions

Transaction Fees: 2%		Risk-Free	5% for 2023-2024		
Tax on Gains: 1.5%		Rate r	3.75% for 2022-2023		
Risk Aversion Level γ: 3 (Moderately Risk-Aversion)					
Data	Daily Returns to Estimate the Covariance Matrix Σ				
Frequency	Monthly Returns to Estimate Expectations μ				

Conclusion

- **1. Short Selling Benefits:** it can lead to higher returns by providing more opportunities to capitalize on market movement
- Rebalancing Considerations: while rebalancing incurs transaction costs, it is crucial to adjust portfolios in response to significant market changes to optimize returns
- **3. Variance Minimization Limitations**: a strategy focused on minimizing variance is conservative and may yield lower returns, especially in volatile markets
- 4. Integrating Theory and Machine Learning:
 combining theoretical models with machine learning techniques
 can better adapt to specific market conditions and investor
 preferences, enhancing portfolio performance

References

- [1] DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms. *Management Science* **55**(5), 798–812.
- [2] Goldberg, L. R., Papanicolaou, A., & Shkolnik, A. (2022). The Dispersion Bias. *SIAM Journal on Financial Mathematics* **13**(2), 521–550.