Hidden Markov models and Stochastic Filtering

Introduction

- Hidden Markov models are used in many disciplines
 - statistics, econometrics, engineering, neuroscience, medical & life sciences...
- Sequential Bayesian inference is natural for these models
 - known as (non-linear or stochastic or Bayesian) filtering

Introduction: what is a state space model?

A graphical model:

Hidden Markov Models (HMM)

- ▶ General Model definition: A bivariate Markov Chain $\{X_n, Y_n\}_{n\geq 0}$, where $\{X_n\}_{n\geq 0}$ is a latent part of the stochastic process and $\{Y_n\}_{n\geq 0}$ is the observed part. Each of them are defined on a general state space \mathcal{X} ($\subseteq \mathbb{R}^{n_x}$) and \mathcal{Y} ($\subseteq \mathbb{R}^{n_y}$) respectively.
- We will look at a particular but still very general (and natural) case:
 - ightharpoonup all spaces \mathcal{X},\mathcal{Y} etc. are continuous.
 - ightharpoonup initialisation with distribution $X_0 \sim \eta_{\theta}\left(\cdot\right)$
 - $ightharpoonup X_n$ is a discrete time Markov chain with transition density f_{θ}
 - $ightharpoonup Y_n|X_n$ is i.i.d. with likelihood density g_θ
- In principle, we can extend methodology to more complex model structure cases but will not look at this here.

HMM description

Let $X_{0:n} = (X_0, \dots, X_n)$ and $0 \le n \le T$. We write the model formally as:

$$\begin{array}{l} \mathbb{P}\left[X_{n} \in A | (X_{0:T} = x_{0:T}, Y_{0:T} = x_{0:T})\right] = \int_{A} f_{\theta}(x | x_{n-1}) dx, \\ \mathbb{P}\left[Y_{n} \in B | (X_{0:T} = x_{0:T}, Y_{0:T} = x_{0:T})\right] = \int_{B} g_{\theta}(y | x_{n}) dy, \end{array}$$

(under a canonical probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega = \prod_{n=0}^{\infty} (\mathcal{X} \times \mathcal{Y})^n$ and \mathcal{F} Borel σ algebra.)

HMM description

Let $X_{0:n} = (X_0, ..., X_n)$ and $0 \le n \le T$. We write the model formally as:

$$\begin{array}{l} \mathbb{P}\left[X_{n} \in A | (X_{0:T} = x_{0:T}, Y_{0:T} = x_{0:T})\right] = \int_{A} f_{\theta}(x | x_{n-1}) dx, \\ \mathbb{P}\left[Y_{n} \in B | (X_{0:T} = x_{0:T}, Y_{0:T} = x_{0:T})\right] = \int_{B} g_{\theta}(y | x_{n}) dy, \end{array}$$

(under a canonical probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega = \prod_{n=0}^{\infty} (\mathcal{X} \times \mathcal{Y})^n$ and \mathcal{F} Borel σ algebra.)

Or more casually:

$$X_n \sim f_{\theta}(\cdot|x_{n-1}), Y_n \sim g_{\theta}(\cdot|x_n),$$
 (1)

▶ for the parameter we assume $\theta \in \Theta \subset \mathbb{R}^{n_{\theta}}$, Θ is open.

HMM model parameters

▶ In fact previous equation is more like:

$$X_n \sim f(\cdot|x_{n-1},\theta),$$

$$Y_n \sim g(\cdot|x_n,\theta),$$
(2)

- ightharpoonup heta are static model parameters, i.e. not time varying or dynamic.
- we will usually assume $\theta \in \Theta \subset \mathbb{R}^{n_{\theta}}$, Θ is open.

State Space Models (SSMs)

 This class of models includes many nonlinear and non-Gaussian time series models such as

$$X_{n+1} = \psi_{\theta} \left(X_n, V_{n+1} \right), \ Y_n = \phi_{\theta} \left(X_n, W_n \right), \tag{3}$$

where $\{V_n\}_{n\geq 1}$ and $\{W_n\}_{n\geq 0}$ are arbitrary iid noise sequences and $(\psi_\theta, \phi_\theta)$ are nonlinear functions.

- ightharpoonup heta are model parameters.
- Often these models are time discretisations of continuous time models, e.g. stochastic differential equations.

$$dX_t = b_{\theta}(X_t)dt + \sigma_{\theta}(X_t)dB_t$$

$$dY_t = h_{\theta}(X_t)dt + dV_t$$

with V_t , B_t independent Brownian motions.

Linear Gaussian HMMs

Linear Gaussian State Space Model

$$X_n = \alpha X_{n-1} + \sigma_v V_n,$$

$$Y_n = X_n + \sigma_w W_n,$$

where $W_n, V_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1), X_0 \sim \mathcal{N}(0,1)$ In this case: $\theta = (\alpha, \sigma_v, \sigma_w)$

Multidimensional case:

$$X_n = AX_{n-1} + BW_n,$$

 $Y_n = CX_n + DV_n,$

 W_n , V_n iid zero mean Gaussian vectors. Some constraints need to be placed for A, B, C, D to achieve irreducibility, identifiability etc.

Stochastic volatility

► Stochastic Volatility Model

$$X_n = \alpha X_{n-1} + \sigma_v V_n,$$

$$Y_n = \beta \exp(\frac{X_n}{2}) W_n,$$

where
$$W_n, V_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1), X_0 \sim \mathcal{N}(0,1),$$

▶ In this case: $\theta = (\alpha, \sigma_v, \beta)$

Target tracking models

▶ Trajectory planning for Bearings Only Tracking. Let X_n denote the state of an arbitrary moving target, A_n the position of an observer:

$$\begin{array}{lcl} X_n & = & GX_{n-1} + HW_n, \\ Y_n & = & \tan^{-1}\left(\frac{X_n(1) - A_n(1)}{X_n(3) - A_n(2)}\right) + V_n, \end{array}$$

 W_n, V_n iid zero mean,

$$G = \begin{bmatrix} 1 & T & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & T \\ 0 & 0 & 0 & 1 \end{bmatrix}, H = \begin{bmatrix} \frac{T^2}{2} & 0 \\ T & 0 \\ 0 & \frac{T^2}{2} \\ 0 & T \end{bmatrix}.$$

Stochastic epidemic models

- ► SIR model for population of size *N* in cont. time
- ightharpoonup State $X_t = (S_t, I_t, R_t)$

$$S_{t} = S_{0} - \mathcal{P}^{1} \left(\frac{\lambda}{N} \int_{0}^{t} S(r) I(r) dr \right)$$

$$I_{t} = I_{0} + \mathcal{P}^{1} \left(\frac{\lambda}{N} \int_{0}^{t} S(r) I(r) dr \right) - \mathcal{P}^{2} \left(\gamma \int_{0}^{t} I(r) dr \right)$$

$$R_{t} = R_{0} + \mathcal{P}^{2} \left(\gamma \int_{0}^{t} I(r) dr \right)$$

with $\mathcal{P}^1, \mathcal{P}^2$ independent standard Poisson process

Observe

$$Y_{n\Delta} \sim \text{Bin}(I_{n\Delta}, p)$$

- $\bullet \ \theta = (X_0, \lambda, \gamma, p)$
- Note $\mathcal{R}_0 = \frac{\lambda}{\gamma}$

Stochastic kinetic Lotka-Volterra models

▶ Predator-Prey model: two species X^1 (prey) and X^2 (predator)

$$\begin{split} \mathbb{P}\left[X_{t+\delta}^{1} = x_{t}^{1} + 1, X_{t+\delta}^{2} = x_{t}^{2} \, \middle| \, X_{t}^{1} = x_{t}^{1}, X_{t}^{2} = x_{t}^{2}\right] &= \alpha x_{t}^{1} \delta + o(\delta) \\ \mathbb{P}\left[X_{t+\delta}^{1} = x_{t}^{1} - 1, X_{t+\delta}^{2} = x_{t}^{2} + 1 \, \middle| \, X_{t}^{1} = x_{t}^{1}, X_{t}^{2} = x_{t}^{2}\right] &= \beta x_{t}^{1} x_{t}^{2} \delta + o(\delta) \\ \mathbb{P}\left[X_{t+\delta}^{1} = x_{t}^{1}, X_{t+\delta}^{2} = x_{t}^{2} - 1 \, \middle| \, X_{t}^{1} = x_{t}^{1}, X_{t}^{2} = x_{t}^{2}\right] &= \gamma x_{t}^{2} \delta + o(\delta) \end{split}$$

and observe

$$Y_n = X_{n\Delta}^1 + V_n$$

 V_n iid zero mean Gaussian.

• $\theta = (\alpha, \beta, \gamma)$ are reaction rate constants

State Estimation problem

Assume for the time being that the parameter θ is **known**. We will deal with this later in the course.

Objective: Given observation sequence $y_{0:n}$ estimate $x_{0:n}$ or x_n online

- By on-line we mean:
 - n might eventually become very large, so need to compute estimate recursively
 - ▶ at time n, compute estimate of x_n sequentially as a function of y_n , previous estimates and observations.
 - all this using fixed computational and memory cost per time step.

State Estimation

- One option is using point estimation:
 - quadratic loss functions $L(\theta, Z) = ||X_n Z||^2$ lead to estimating the posterior mean as:

$$\hat{x}_n = \arg\min_{Z} \mathbb{E}\left[\left\| X_n - Z \right\|^2 \middle| Y_{0:n} \right]$$

- ▶ similarly $L(\theta, Z) = \kappa 1_{\|X_n Z\| \ge \epsilon}$ lead to estimating posterior mode.
- **...**
- Alternatively use Bayesian viewpoint: and try to approximate directly full posterior

$$\pi_n(\cdot) = \mathbb{P}\left[X_n \in \cdot | Y_{0:n}\right]$$

and thus quantify uncertainty.

Bayesian Filtering

Objective: Compute posterior $\pi_n(\cdot) = \mathbb{P}[X_n \in \cdot | Y_{0:n}]$ sequence on-line as y_n becomes available.

Aim:

- Approach is Bayesian as objects of interests are probability distributions on unknown variables.
- Note posterior is defined on the the marginal space of the hidden state.
 - \blacktriangleright we are infering $X_n | Y_{0:n}$
- Densities of interest
 - ightharpoonup filtering density $p(x_n|y_{0:n})$
 - ▶ smoothing density $p(x_n|y_{0:T})$, T > n
 - ▶ prediction density $p(x_{n+p}|y_{0:n})$, $p \ge 1$

Bayesian Filtering

- ▶ filtering density $p(x_n|y_{0:n})$
 - useful for tracking hidden signals, navigation, etc.
- ▶ smoothing density $p(x_n|y_{0:T})$, T > n
 - useful for model calibration, backtracking (i.e. when/where did storm start?), etc.
- ▶ prediction density $p(x_{n+p}|y_{0:n}), p \ge 1$
 - useful for generating forecasts, prediction, trading etc.

Alert: Model choice is very critical for performance in real life application. Even perfect Bayesian filtering will not work well for bad models.

What is a filter or a particle filter?

- ▶ Often the distribution $\pi_n(\cdot)$ or its filtering density $p(x_n|y_{0:n})$ are referred to as the *filter*
- ▶ If π_n is known at each time n, then state inference problem is solved
- Problem: one cannot compute it analytically most of the times
 - need numerical approximations
- Some exceptions:
 - finite spaces (integrals are sums)
 - ► linear Gaussian models (Kalman filter)

What is a filter or a particle filter?

- Most successful methods use simulation:
 - ightharpoonup approximate $\pi_n(\cdot)$ using a Monte Carlo approach
- We need to define a procedure that generates samples $\left\{X_n^i\right\}_{i=1}^N$ for each time n and approximate π_n as

$$\hat{\pi}_n(\cdot) = \frac{1}{N} \sum_{i=1}^N \delta_{X_n^i}(\cdot)$$

where $\delta_{X_n^i}(dx)$ is a Dirac point measure centred at X_n^i .

- Particle filters achieve this
 - using importance sampling with resampling to get $\hat{\Pi}_n(\cdot) = \frac{1}{N} \sum_{i=1}^N \delta_{X_{0:n}^i}(\cdot)$

Bayesian Filtering and the path space

In the most general case the object of interest is the whole path $X_{0:n}|Y_{0:n}$ and the **joint filtering distribution**

$$\mathbb{P}\left[X_{0:n} \in \cdot | Y_{0:n}\right]$$

- often statistians call this smoothing distribution
- Marginal can be straight-forwardly derived from path space and marginalisation.
- ► Similarly some densities of interest in path space
 - ightharpoonup joint filtering density $p(x_{0:n}|y_{0:n})$
 - ▶ joint smoothing density $p(x_{0:n}|y_{0:T})$, T > n
 - ▶ joint prediction density $p(x_{0:n+p}|y_{0:n})$, $p \ge 1$

Bayesian Filtering

- ▶ Why do we care on the path space?
 - some applications require it
 - useful for analysis of Monte Carlo numerical schemes as typically algorithms operate on a path space.
- Clarification:
 - we will use terms like joint or path filtering density for $p(x_{0:n}|y_{0:n})$ to distinguish with **marginal** $p(x_n|y_{0:n})$.

Bayesian Filtering

Next part:

- ► Look at filtering recursions
 - these will be used to approximate filter on-line
 - will look separately at marginal and path space case

Bayesian Filtering on the marginals

- From the model we know initial condition:
 - ▶ initial distribution $\eta(\cdot)$ or initial state x_0 (so $\eta = \delta_{x_0}$).
- ► At time *n* say we are given
 - observed data y_{0:n},
 - ▶ the **filter** at time n-1, $p(x_{n-1}|y_{0:n-1})$
- \triangleright inference about the state X_n may done recursively in two steps
 - prediction: Chapman Kolmogorov
 - update: Bayes rule

Filtering: Recursive Formulation

Prediction

$$p_{\theta}(x_{n}|y_{0:n-1}) = \int f_{\theta}(x_{n}|x_{n-1}) p_{\theta}(x_{n-1}|y_{0:n-1}) dx_{n-1}$$
$$= \int p_{\theta}(x_{n},x_{n-1}|y_{0:n-1}) dx_{n-1}$$

Filtering: Recursive Formulation

Prediction

$$p_{\theta}(x_{n}|y_{0:n-1}) = \int f_{\theta}(x_{n}|x_{n-1}) p_{\theta}(x_{n-1}|y_{0:n-1}) dx_{n-1}$$
$$= \int p_{\theta}(x_{n},x_{n-1}|y_{0:n-1}) dx_{n-1}$$

▶ Update

$$p_{\theta}(x_{n}|y_{0:n}) = \frac{p_{\theta}(x_{n}|y_{0:n-1})g_{\theta}(y_{n}|x_{n})}{p_{\theta}(y_{n}|y_{0:n-1})}$$

$$= \frac{p_{\theta}(x_{n}|y_{0:n-1})g_{\theta}(y_{n}|x_{n})}{\int p_{\theta}(x_{n}|y_{0:n-1})g_{\theta}(y_{n}|x_{n})dx_{n}}$$

$$= \frac{p_{\theta}(x_{n},y_{n}|y_{0:n-1})}{p_{\theta}(y_{n}|y_{0:n-1})}$$

Bayesian filtering

- ► Update procedure is Bayesian
 - Prior is predictor $p_{\theta}(x_n|y_{0:n-1})$
 - ightharpoonup Likelihood is $g_{\theta}(y_n|x_n)$
 - $\blacktriangleright \text{ Evidence } p_{\theta}\left(\left.y_{n}\right|\,y_{0:n-1}\right)$
- computation can be done analytically
 - If model is linear and Gaussian (one very special case); this is the Kalman filter.
 - ightharpoonup if \mathcal{X}, \mathcal{Y} are discrete state spaces
 - integrals are sums, densities (row) vectors and kernels matrices.

Bayesian Filtering on the path space

▶ Given observed data $y_{0:n}$, inference about the states $X_{0:n}$ may be based on the following posterior density:

$$p_{\theta}(x_{0:n}|y_{0:n}) = \frac{p_{\theta}(x_{0:n}, y_{0:n})}{p_{\theta}(y_{0:n})}$$
(4)

where

$$p_{\theta}(x_{0:n}, y_{0:n}) = \eta_{\theta}(x_0) \prod_{k=1}^{n} f_{\theta}(x_k | x_{k-1}) \prod_{k=0}^{n} g_{\theta}(y_k | x_k)$$
 (5)

and the marginal likelihood, $p_{\theta}(y_{0:n})$, is given by

$$p_{\theta}(y_{0:n}) = \int p_{\theta}(x_{0:n}, y_{0:n}) dx_{0:n}.$$
 (6)

Filtering recursion in the path space

Prediction

$$p_{\theta}(x_{0:n}|y_{0:n-1}) = f_{\theta}(x_n|x_{n-1})p_{\theta}(x_{0:n-1}|y_{0:n-1})$$

Update

$$p_{\theta}(x_{0:n}|y_{0:n}) = \frac{p_{\theta}(x_{0:n}|y_{0:n-1})g_{\theta}(y_{n}|x_{n})}{\int p_{\theta}(x_{0:n}|y_{0:n-1})g_{\theta}(y_{n}|x_{n})dx_{0:n}}$$
$$= \frac{p_{\theta}(x_{0:n}|y_{0:n-1})g_{\theta}(y_{n}|x_{n})}{p_{\theta}(y_{n}|y_{0:n-1})}$$

Filtering Recursion

► In recursive form:

$$p_{\theta}(x_{0:n}|y_{0:n}) = p_{\theta}(x_{0:n-1}|y_{0:n-1}) f_{\theta}(x_n|x_{n-1}) g_{\theta}(y_n|x_n) \frac{p_{\theta}(y_{0:n-1})}{p_{\theta}(y_{0:n})}$$

► Note

$$p_{\theta}(y_n|y_{0:n-1}) = \frac{p_{\theta}(y_{0:n})}{p_{\theta}(y_{0:n-1})}$$

is the normalising constant in denominator.

The marginal and recursive likelihoods

- Recall some definitions:
 - ▶ the marginal likelihood: $p_{\theta}(y_{0:n})$
 - the predictive or recursive likelihood: $p_{\theta}(y_n|y_{0:n-1})$
- ▶ Both are very important quantity for parameter inference.
- ► Important identity:

$$p_{\theta}(y_{0:n}) = \prod_{k=0}^{n} p_{\theta}(y_k|y_{0:k-1})$$

Discussion

- ► In the heart of filtering lies the problem of numerical integration
 - ▶ The most common solution is to use simulation
 - particle or ensemble methods
 - takes advantage of more computational power available, more suitable for higher dimensions
 - other alternatives: quadrature type methods, Gaussian approximations, projection and assumed density/moments methods, spectral or other numerical methods for (S)PDE