Assignment Project Exam Help https://eduassistpro.github.

Add Wechat edu_assist_pr

Peter Jimack and David Head

Previous lectures

Assignment Project Exam Help colle

- https://eduassistpro.github.
- Collective communication invol
- one-to-many_many-to-one or many-to

 reactive community tedu_assist_pi point-to-point communications.
- In MPI: MPI_Bcast(), MPI_Scatter(), MPI_Gather().

Today's lecture

Assignment Project Exam Help

Today we will look at a common combination of data

reor

- https://eduassistpro.github.i

- Support for many parallel APIs, including
 Often of mission parallel APIs, including
 Often of many parallel APIs, including
- Binary trees also useful for collective comm

Reminder: Serial reduction

Assignment Project Exam Help

• Apply binary operations to reduce to a smaller set.

https://eduassistpro.github.

```
2 for ( i=0; i<N; i++ )
```

*"Add WeChat edu_assist_pr

Example 2: Finding the maximum element

```
1 max = a[0];
2 for( i=1; i<N; i++ )
3  if( a[i]>max ) max = a[i];
```


Reduction in serial Reduction in parallel MapReduce

Parallel reduction

possible to achieve in practice Add WeChat edu_assist_pr

Any parallel reduction **must** change the sequence of calculations

Some concrete examples will be given later in this lecture.

Recap: Commutativity and associativity

Assignment Project Exam Help

As parallel reduction alters the sequence in which calculations are perfo

https://eduassistpro.github.

If \otimes is only approximately associative

reductAndide Whe Contrattredu_assist_pr

Some parallel reduction algorithms also requir **commutative**:

An operator \otimes is **commutative** if $a \otimes b = b \otimes a$

Reduction in serial Reduction in parallel

Commutativity and associativity (examples)

Assignment Project Exam Help

Ass

https://eduassistpro.github.

Commutative; not associative

Add WeChat edu_assist_pr Neither commutative nor as-Subtraction, division

sociative

¹Only approximately associative. See Worksheet 2 Question 6.

 $^{^{2}}e.g.$ fn(a,b)=(a+b<1?a+b:1) with a=0.8, b=0.5 and c=-0.3.

MapReduce

¹McCool et al., Structured parallel programming (Morgan-Kaufmann, 2012).

Distributed systems example

Assignment Project Exam Help

• Each node has access to part of the full database.

supphttps://eduassistpro.github.

- Each node searches its local database ('map').
- Local results are combined to give the requir WeChat edu_assist_pr

This **MapReduce** was developed by Google and was one of the reasons for their early success.

Example: Vector dot product

Assignment Project Exam Help

In selhttps://eduassistpro.github.

```
float dot=0.0;
for( i=0; i<n; i++ )
dot A=del WeChat edu_assist_pr
```

Note this is a **map** (the multiplication) followed by a **reduction** (the summation).

¹Recall maths indexing starts from 1 but computer indexing starts from 0.

Reduction in OpenMP

Code on Minerva: dotProduct_OpenMP.c

Assignment Perosect Examphelp by the reduction clause:

```
† float do

2 #prafor(https://eduassistpro.github.
```

- Special de Www.echtrattedu_assist_pr
- Compiler and runtime will implement an efficient reduction for the given architecture.
- Details of the implementation **opaque** to the user.

Reduction in MPI

Code on Minerva: dotProduct_MPI.c

```
Assignment fProjectoExams Help
process using MPI_Scatter()1:
```

```
npi_s
https://eduassistpro.github.
```

```
Each process the reducites its own local dot prod assist_product focal_dot=0.0,  

1    float focal_dot=0.0,  

2    for( i=0; i<numPerProc; i++ )
3    local_dot += local_a[i]*local_b[i];
```

¹This step is the same as for vector addition; cf. Lecture 9.

MPI_Reduce()

Assignmento Project un Englante Help

- 2 MPI_R
 - . https://eduassistpro.github.
 - Applied to local_dot on all process

 - Reduced to the comparations are supported to edu_assist_properties. MPI_MIN, logical and binary boolean operators.
 - Implementation opaque to the user, but should be optimised for the system on which it is installed.

Efficient parallel reduction

Assignment impresentor warnied telp their espective standards.

Usua https://eduassistpro.github.

to consider possible implementation details to help understand performance and identify potential issues.

Parallel reduction starts after each of edu_assist_ple processes) have completed their local reduction.

 That is, calculated the partial sums of all the data each processing unit is 'responsible' for.

Binary tree reduction

Binary trees

Assignment Project Exam Help a binary tree:

- https://eduassistpro.github.
 Perform calculations in parallel at each level.
- Reduction time is then $\mathcal{O}(\log_2(p))$ and $\mathcal{O}(\log_2(p))$ and $\mathcal{O}(\log_2(p))$ and $\mathcal{O}(\log_2(p))$ and $\mathcal{O}(\log_2(p))$ and $\mathcal{O}(\log_2(p))$ are $\mathcal{O}(\log_2(p))$ and $\mathcal{O}(\log_2(p))$ and $\mathcal{O}(\log_2(p))$ are $\mathcal{O}(\log_2(p))$ are $\mathcal{O}(\log_2(p))$ and $\mathcal{O}(\log_2(p))$ are $\mathcal{O}(\log_2(p))$ are $\mathcal{O}(\log_2(p))$ and $\mathcal{O}(\log_2(p))$ are $\mathcal{O}(\log_2(p))$ are $\mathcal{O}(\log_2(p))$ and $\mathcal{O}(\log_2(p))$ are $\mathcal{O}($

¹If p is not a power of 2, round up.

Binary tree: Example 1

A Stignment value for a binary of the Help For instance, this version requires that \otimes be associative:

The **indexing**, *i.e.* which processing units are performing the operations at each level, can be performed using bitwise arithmetic.

Binary tree: Example 2

Indexing is easier than the previous example:

- In the first level, units 0 to p/2 perform the operations.
- In the next level, units 0 to p/4 perform the operations.
- . . .

Synchronisation between levels

A syste genting the Perel's jake that in Frage deem Help compared before continuing to the next lever.

This e at behttps://eduassistpro.github. haredu⊥assist_pr

Barriers

Assignment Project Exam Help Most Parallel APIs provide a means to synchronise all processing units

https://eduassistpro.github.

For instance, in OpenMP (in a parallel region):

- *****Add**WeChat edu_assist_pr
 - No processing unit (i.e. thread) will proceed past the barrier command until all units have reached it.

Barrier synchronisation in a binary tree

Synchronisation in MPI

Assignment Project Exam Help MPI also provides a barrier operation:

1 MPI_B

How https://eduassistpro.github.

- ben (set or Weiver Chat edu_assist_pr
- Provides the necessary synchronisation processes.

Binary trees in collective communication

Assignment Project Exam Help Note that MPI_Reduce() is a collective communication:

https://eduassistpro.github.

The binary tree pattern is typically used for all collective communication.

- AddaiWieChat(edu_assist_pr
- Faster than the $\mathcal{O}(p)$ for a loop of send-a
- 'Inverted' in the case of MPI_Bcast() and MPI_Scatter().

Summary and next lecture

Assignment Project Exam Help

- a
- https://eduassistpro.github.
- In MPI, the necessary synchronisation pro blocking communication. Add WeChat edu_assist_pr

Next time we will look at **non-blocking**, or **asynchronous**, communication.