L12: Lagrange's Theorem

Lagrange's Hun

Thun | G/H = IHI

Det Let $G \times X \to X$ be a group adion. We define $G \times := \{g \times | g \in G \} \text{ the orbit of } \chi$ $G \times := \{G \times \times | \chi \in \chi\} \text{ the sol of orbits } | \text{ quotient}$ We say that G acts transitively if there is only one orbit.

Convertion We could also define tight actions $X \times G \to X$ and denote the quedient by G/X. However, given a tight action $S_{f}: X \times G \to X$ we can define a left-action by $S_{e}(S, X) = S_{e}(X, g^{-1})$. Moreover X = X/G. Exercise!

Thus we might write X/G for X in cither case.

Prop G/H is the set of orbits of the action H C'G
siren by h.g = gh⁻¹.

Thun Let $G \subset X$ be a stoup addion. Then X is the disjoint union of its orbibly, i.e. $X = U G \times C = G \times C$

If Let xo EX, then xo= e.xo E G:xo E U G.x.

For the second part, suppose that $Gx_1 \wedge Gx_2 \neq \emptyset$ i.e. $\exists g_1, g_2 \in G$ s.t. $g_1x_1 = g_2x_2$. Let us show that $Gx_1 \in Gx_2$ (the other direction works the same). Let $gx_1 \in G$, we write $gx_1 = gg_1^{-1}g_1x_1 = gg_1^{-1}g_2x_2 \in Gx_2$.

Thus Led $H \subseteq G$ be a finite substanp, then $|G/H| = \frac{|G|}{|H|}$.

In part 11+1 divides |G| if |G| is finite.

If Recold that HCG and the arbit through g is given by gH.

We ablain $|G| = \sum_{gH} |gH|$. But $m_g: H \to gH$ addition a bijection.

161 - E 15H1 = E 1H1 = 16/H1. 1H1

Det The number 16/HI is called the index of H in G.

Cor Let X & G be of order k, then k | G |.

Pf let H=1x7 and recall that |H|=1x1.

Cor Led $x \in G$, then $x^{|G|} = e$

Cer II |G|=p is prime, Hen G is cyclic, have G= Z/pZ Pt Led e+x EG. Then 1=|xxx| divides |G| have |xxx|=|G| =' xxx = G.

Ex Subgroups of S_3 $|S_1| = 6$ $|S_2| = 6$ $|S_3| = |S_3| = |S_3| = |S_3| = |S_3| = |S_3|$ $|S_3| = 6$ $|S_3| = |S_3| = |S_3|$

Claim There are no more subgroups.

Please H=G. As $H \neq \{C^2\}$, $\exists c \neq h \in H$.

Hence $(h) \subseteq H$. If $(h) \neq H$ we get $|G| = |G/H| \cdot |H| = |G/H| \cdot |H/A| \cdot |A| \cdot |A|$ = |G/H| = 1- G = H.

Thun Led A be an abelian group and PIAI for a prime p. Then A has an element of order p. Pf We proceed by includion on IAI. Take any etaeA. If pijal we take $x = a^{\frac{101}{7}}$, and obtain |x| = p and are done. If $p \nmid |a|$, then $P \mid A/kax \mid (as p \mid |A| = |(ax)| |G/kax|)$ Since A is abelian, (a) A A and hence A/cas is an abelian group with | A/200 = M/01 < |A|. By the induction hypothesis we obtain syst Alas st. systes From this we get $y \notin (y^p)$ and hence $(y^p) \notin (y^p)$ But $|y^p| = \frac{|y|}{(p,|y|)}$ and thus $(p,|y|) \notin 1$ i.e. p|y|and we proceed as in the first step $(x-y^{\frac{pq}{p}})$.