Linear Regression: Preamble

The "best" guess about Y, if we know only the distribution of Y, is E[Y].

If "best" is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y-a)^2]$ is a=E[Y].

Proof:

Let
$$\hat{Y}:=Y-E[Y]$$
.
Then, $E[\hat{Y}]=E[Y-E[Y]]=E[Y]-E[Y]=0$.
So, $E[\hat{Y}c]=0, \forall c$. Now,

$$E[(Y-a)^{2}] = E[(Y-E[Y]+E[Y]-a)^{2}]$$

$$= E[(\hat{Y}+c)^{2}] \text{ with } c = E[Y]-a$$

$$= E[\hat{Y}^{2}+2\hat{Y}c+c^{2}] = E[\hat{Y}^{2}]+2E[\hat{Y}c]+c^{2}$$

$$= E[\hat{Y}^{2}]+0+c^{2}>E[\hat{Y}^{2}].$$

Hence, $E[(Y - a)^2] \ge E[(Y - E[Y])^2], \forall a$.

Motivation

Example 2: 15 people.

We look at two attributes: (X_n, Y_n) of person n, for n = 1, ..., 15:

The line Y = a + bX is the linear regression.

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose E[Y].

Now assume we make some observation *X* related to *Y*.

How do we use that observation to improve our guess about Y?

The idea is to use a function g(X) of the observation to estimate Y.

The simplest function g(X) is a constant that does not depend of X.

The next simplest function is linear: g(X) = a + bX.

What is the best linear function? That is our next topic.

A bit later, we will consider a general function g(X).

LLSE

LLSE[Y|X] - best guess for Y given X.

Theorem

Consider two RVs X, Y with a given distribution

$$Pr[X = x, Y = y]$$
. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var(X)}(X - E[X]).$$
 $E[Y - \hat{Y}] = 0$ by linearity.

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (next slide)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d. Since: $\hat{Y} = \alpha + \beta X$ for some α, β , so $\exists c, d$ s.t. $\hat{Y} - a - bX = c + dX$. Then, $E[(Y-\hat{Y})(\hat{Y}-a-bX)]=0, \forall a,b.$ Now,

$$E[(Y - a - bX)^{2}] = E[(Y - \hat{Y} + \hat{Y} - a - bX)^{2}]$$

= $E[(Y - \hat{Y})^{2}] + E[(\hat{Y} - a - bX)^{2}] + 0 \ge E[(Y - \hat{Y})^{2}].$

This shows that $E[(Y - \hat{Y})^2] \leq E[(Y - a - bX)^2]$, for all (a, b). Thus \hat{Y} is the LLSE.

Linear Regression: Motivation

Example 1: 100 people.

Let (X_n, Y_n) = (height, weight) of person n, for n = 1, ..., 100:

The blue line is Y = -114.3 + 106.5X. (X in meters, Y in kg.)

A Bit of Algebra

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var[X]}(X - E[X]).$$

Best linear fit: Linear Regression.

Hence, $E[Y - \hat{Y}] = 0$. We want to show that $E[(Y - \hat{Y})X] = 0$.

Note that

$$E[(Y - \hat{Y})X] = E[(Y - \hat{Y})(X - E[X])].$$

because $E[(Y - \hat{Y})E[X]] = 0$.

Now,

$$\begin{split} & E[(Y - \hat{Y})(X - E[X])] \\ & = E[(Y - E[Y])(X - E[X])] - \frac{cov(X, Y)}{var[X]} E[(X - E[X])(X - E[X])] \\ & = ^{(+)} cov(X, Y) - \frac{cov(X, Y)}{var[X]} var[X] = 0. \quad \Box \end{split}$$

(*) Recall that cov(X, Y) = E[(X - E[X])(Y - E[Y])] and $var[X] = E[(X - E[X])^2].$