Scorpion

Explaining Away Outliers in Aggregate Queries

eugene wu and sam madden MIT

Executive Dashboard

SELECT sum(cost)
FROM expenses
GROUPBY country

SELECT sum(cost)
FROM expenses
GROUPBY country

SELECT sum(cost)
FROM expenses
GROUPBY country

SELECT sum(cost)
FROM expenses
GROUPBY country

GivenOutlier and normal results

Understand Why

SELECT sum(cost)
FROM expenses
GROUPBY country

SELECT sum(cost)
FROM expenses
GROUPBY country

USA

China

Italy

Can't Touch This

Proven

MISTERNI SOONER OR LATER WE ALL CROAK

SELECT SUM(cost) FROM sam's bank account

Filter for "most influential"

Faceting

Faceting

Faceting

Dimensionality :(Dealing with multiple outliers?

Faceting

Scorpion!

Faceting

Outlier and normal results

Understand Why

Outlier and normal results

Find

Predicates correlated with outliers

Outlier and normal results

Find

Predicates correlated with outliers

s.t.

Removing predicate from inputs "fixes" outliers & maintains normal results

Outlier and normal results

Find

Predicates correlated with outliers

s.t.

Removing predicate from inputs "fixes" outliers & maintains normal results

Outlier and normal results

Find

Predicates correlated with outliers

s.t.

Removing predicate from inputs "fixes" outliers & maintains normal results

Formalize "influence" as metric

Predicate search heuristics

Some results

p(T)

p(T) ______

p(T)

$$\frac{\Delta \text{output}}{|p(T)|}$$

Influence Metric

$$\Delta f(x)$$
 Sensitivity Δx Analysis

$$\Delta$$
output $|p(T)|$

Influence Metric

 $\frac{\Delta \text{output}}{|p(T)|}$

"High vs Low"

|p(T)|

△ Normal

 $\frac{\Delta \text{output}}{|p(T)|}$

"High vs Low"

 Δ output • V $\frac{1}{|p(T)|}$

|p(T)|

△ Normal

 $\frac{\Delta \text{output}}{|p(T)|}$

"High vs Low"

 Δ output • V $\frac{1}{|p(T)|}$

|p(T)|

 $\frac{\Delta \text{output} \cdot V}{|p(T)|^c}$

△ Normal

 $\frac{\Delta \text{output}}{|p(T)|}$

"High vs Low"

 Δ output • V $\frac{1}{|p(T)|}$

|p(T)|

 Δ output • V $\frac{1}{|p(T)|^c}$

△ Normal

 Δ outlier • V $\frac{\Delta}{|p(T)|^c} - |\Delta Normal|$

 $\frac{\Delta \text{output}}{|p(T)|}$

"High vs Low"

 Δ output • V $\frac{1}{|p(T)|}$

|p(T)|

 Δ output • V $\frac{1}{|p(T)|^c}$

△ Normal

$$\Delta$$
outlier • V
$$\frac{}{|p(T)|^c} - |\Delta Normal|$$

$$\max_{\text{outlier}} \frac{\Delta_{\text{outlier}} \cdot V}{|p(T)|^{c}} - \max_{\text{normal}} |\Delta_{\text{Normal}}|$$

△ output

∆outlier

"High vs Low"

∆outlier • V _____ |P(T)|

influence(p)

△ Normal

$$\Delta$$
outlier • V $= |\Delta$ Hold-out $|$

$$\max_{\text{outlier}} \frac{\Delta_{\text{outlier}} \cdot \forall}{|P(T)|^{c}} - \max_{\text{normal}} |\Delta_{\text{Hold-out}}|$$

Formalize "influence" as metric

Predicate search heuristics

Some results

$$p^* = \underset{p \in \text{ predicates}}{\text{argmax}} \text{ influence(p)}$$

$$p^* = \underset{p \in \text{ predicates}}{\text{argmax}} \text{ influence(p)}$$

$$O(agg(T-p(T)))$$

$$SUM(\{1,2,3,4,5\}) = 15$$

$$p^* = \underset{p \in \text{ predicates}}{argmax} \text{ influence(p)}$$

$$O(agg(T-p(T)))$$

SUM(
$$\{1,2,3,4,5\}$$
) = 15

$$p^* = \underset{p \in predicates}{argmax} influence(p)$$

$$O(agg(T-p(T)))$$

SUM(
$$\{1,2,3,4,5\}$$
) = 15
 $\{4,5\}$

$$p^* = \underset{p \in predicates}{argmax} influence(p)$$

$$O(agg(T-p(T)))$$

SUM(
$$\{1,2,3,4,5\}$$
) = 15
 $\{4,5\}$
SUM($\{1,2,3\}$) = 6

$$p^* = \underset{p \in \text{ predicates}}{\text{argmax}} \text{ influence(p)}$$

$$O(agg(T-p(T)))$$

$$p^* = \underset{p \in predicates}{argmax} influence(p)$$
O(exponential) O(agg(T-p(T)))

Operator Properties

```
p^* = \underset{p \in \text{ predicates}}{argmax} \text{ influence(p)}
```

O(exponential) O(agg(T-p(T)))

```
argmax influence(p)
```

$$\text{SUM}(\{1,2,3,4,5\}) = 15$$

SUM(
$$\{1,2,3,4,5\}$$
) = 15
15 - SUM($\{4,5\}$) = 6

$$p^* = \underset{p \in \text{ predicates}}{\operatorname{argmax}} \text{ influence(p)}$$

$$p^* = \underset{p \in predicates}{argmax} influence(p)$$

 $p^* = \underset{p \in \text{ predicates}}{\operatorname{argmax}} \text{ influence}(p)$

O(exponential) O(agg(p(T)))

Least influence

Most influence

$$p^* = \underset{p \in \text{ predicates}}{\text{argmax}} \text{ influence(p)}$$

O(exponential) O(agg(p(T)))

Independent Incrementally

Least influence

Least influence

Least influence

$$p^* = \underset{p \in \text{ predicates}}{argmax} \text{ influence(p)}$$

Top Down Independent Incrementally

$$p^* = \underset{p \in \text{ predicates}}{argmax} \text{ influence(p)}$$

Top Down Independent Incrementally

$$p^* = \underset{p \in \text{ predicates}}{argmax} \text{ influence(p)}$$

Top Down Independent Incrementally

$$p^* = \underset{p \in \text{ predicates}}{argmax} \text{ influence(p)}$$

Top Down Independent Incrementally

removable

$$p^* = \underset{p \in \text{ predicates}}{\text{argmax}} \text{ influence(p)}$$

Top Down Independent Incrementally

removable

$$p^* = \underset{p \in \text{ predicates}}{argmax} \text{ influence(p)}$$

Top Down Independent Incrementally

removable

$$p^* = \underset{p \in \text{ predicates}}{\text{argmax}} \text{ influence(p)}$$

Top Down Independent Incrementally

removable

$$p^* = \underset{p \in \text{ predicates}}{\text{argmax}} \text{ influence(p)}$$

Top Down Independent Incrementally

removable

Bottom Up

$$p^* = \underset{p \in \text{ predicates}}{\text{argmax}} \text{ influence(p)}$$

Top Down

Independent Incrementally

removable

Bottom Up

$$p^* = \underset{p \in \text{ predicates}}{\operatorname{argmax}} \text{ influence}(p)$$

Top Down Independent Incrementally

removable

Bottom Up

Formalize "influence" as metric Predicate search heuristics

Some results

influence metric

that is

accessible to end-users

for

Data cleaning

Data exploration

Provenance reduction

scorpion

eugenewu@mit.edu

scorpion

scorpion

eugenewu@mit.edu

C-parameter

$$\Delta$$
output • V
 $|p(T)|c$

Low C

High C

