By Wenjie

Graph Traversal

- Objective: Visit every vertex and every edge exactly once
- Purpose: Search for interesting substructures in the graph
- We've done it on trees, but it was easier

Trees	Graphs		
 Ordered → we always go from parents to children. Obvious start → we start at the root node. Notion of completeness → we are done when we reach leaf nodes. 	 Unordered → no notion of children nodes, just neighbours. No obvious start → we can start anywhere. No notion of completeness → we need to know when we have visited all nodes. 		

• BFS Algorithm:

- 1. Add the starting point
- 2. While the queue is not empty
 - a. Dequeue v
 - b. For all of the unlabeled edges adjacent to ${\bf v}$
 - If an adjacent edge "discovers" a new vertex **t**:
 - Label the edge a "discovery edge"
 - Enqueue t, update the information of t (distance = dist(v) + 1, predecessor = v)
 - If an adjacent edge is between two visited vertices
 - Label the edge a "cross edge"
- **Example**: see previous lecture notes / video
- The code

1	BFS(G):
2 3	Input: Graph, G
3	Output: A labeling of the edges on
4	G as discovery and cross edges

By Wenjie

```
foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)
foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)
foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:
BFS(G, v)
//components++;
```

```
14
    BFS(G, v):
       Queue q
       setLabel(v, VISITED)
       q.enqueue(v)
18
       while !q.empty():
          v = q.dequeue()
          foreach (Vertex w : G.adjacent(v)):
             if getLabel(w) == UNEXPLORED:
               setLabel(v, w, DISCOVERY)
24
               setLabel(w, VISITED)
                q.enqueue(w)
             elseif getLabel(v, w) == UNEXPLORED:
               setLabel(v, w, CROSS)
               // cycleExists = true;
```

- Use cases and functionality:
 - Does this code work on a disjoint graph (2 or more separate pieces)?
 - Yes, since line 10 goes through every vertex, regardless of connectedness
 - How do we use the traversal to count the number of components?
 - Every BFS run indicates a connected component, so we can add a counter after a call of BFS (line 13).
 - Can our implementation detect a cycle?
 - Yes, a cross edge indicates a cycle (line 28).

By Wenjie

• Running time:

- Expect: visit every edge and vertex, so O(n+m)
- Looking at specific parts of the code:
 - Second part of the code:
 - Line 19: *O*(*n*)
 - Line 21: O(deg(v))
 - Lines 22-27: *O*(1)
 - This whole chunk is $O(n \times deg(v))$
 - ullet deg(v) is not very informative, but we know that we will have

$$n \times deg(v) = \sum_{i=1}^{n} deg(v) = 2m \implies O(2m)$$

- First part of the code:
 - Lines 6-7: O(n)
 - Lines 8-9: *O*(*m*)
 - Lines 10-12: O(n)
- Total running time is O(n+m).
- This is optimal running time because we know we have to visit every edge and vertex, therefore we cannot do better than O(n+m).
- BFS doesn't give a unique solution, but the properties are guaranteed.

By Wenjie

BFS Observations

key	visited	dist.	pred.	adj. vertices
Α	✓	0	null	CBD
В	✓	1	Α	AEC
С	✓	1	Α	ABDEF
D	✓	1	Α	ACFH
E	✓	2	С	BCG
F	✓	2	С	CDG
G	✓	3	Е	EFH
Н	✓	2	D	D G

- What is the shortest path from A to H?
 - o path along discovery edges: A->D->H
- What is the shortest path from E to H?
 - o Actual: E->G->H
 - o Is not obvious in the BFS result
 - o BFS only finds the shortest paths from the start
 - single source shortest path
- How does a cross edge related to **dist**?
 - Cross edge will never change the **dist** more than 1.
 - BFS keeps thins local: every edge increase / decrease distance by 1.
- What structure is made from discovery edges?
 - o A tree (forest, if the graph is not connected) rooted at the start
 - Further, it's a spanning tree (forest): it connects all vertices in the graph

DFS

- Idea:
 - o similar idea with BFS, but we can use either
 - A stack

By Wenjie

- A recursion
- o Recursive algorithm: we visit a vertex **v**
 - 1. Check all adjacent vertices of \mathbf{v}
 - a. if it's not been discovered, label the edge "discovery edge". Visit the new vertex
 - b. label the edge that leads us to a already discovered vertex "back edge"
 - i. since it usually brings us to a closer vertex
 - ii. the distance difference is unbounded
- Observations
 - The discovery edges make a spanning tree
 - **d** does not find the shortest path
 - the benefit is: it discovers new vertices very quickly
- The code: use system stack as our workstack (recursion)