

upcomillases

upcomillas

The Time Value of Money

Outline

- Interest, present and future value
 - Future value
 - Interest: simple vs. compound
 - Discount rates and present values
- Multiple cash flows
- Level cash flows: perpetuities and annuities
- Effective annual interest rates
- Inflation and the time value of money

Time Value of Money

Money has a time value. This can be expressed in multiple ways:

A dollar today held in savings will grow.

A dollar received in a year is not worth as much as a dollar received today.

Future Values

Future Value: Amount to which an investment will grow after earning interest.

Let r = annual interest rate

Let t = # of years

Simple Interest

 $FV_{Simple} = Initial investment \times (1 + r \times t)$

Compound Interest

 $FV_{Compound}$ = Initial investment $\times (1+r)^t$

Simple Interest: Example

Interest earned at a rate of 7% for five years on a principal balance of \$100.

Example - Simple Interest

		Today	/	Future Years			
		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	
Interest Earned		7	7	7	7	7	
Value	100	<i>107</i>	114	<i>121</i>	<i>128</i>	<i>135</i>	

Value at the end of Year 5: \$135

Compound Interest: Example

Interest earned at a rate of 7% for five years on the previous year's balance.

Example - Compound Interest

		Today		Future Years		
		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>
Interest Ea	rned	7	7.49	8.01	8.58	9.18
Value	100	107	114.49	122.50	131.08	140.26

Value at the end of Year 5 = \$140.26

The Power of Compounding

Interest earned at a rate of 7% for the first forty years on the \$100 invested using simple and compound interest.

Present Value

What is it? Value today of a future cash flow

$$DF = \frac{1}{(1+r)^t}$$

$$PV = FV \times \frac{1}{(1+r)^t}$$

Recall: t = number of years

Present Value: Example

Always ahead of the game, Tommy, at 8 years old, believes he will need \$100,000 to pay for college. If he can invest at a rate of 7% per year, how much money should he ask his rich Uncle GQ to give him?

$$FV = $100,000$$
 $t = 10 \text{ yrs}$ $r = 7\%$

$$PV = FV \times \frac{1}{(1+r)^t} = \$100,000 \times \frac{1}{(1.07)^{10}} \approx \$50,835$$

Note: Ignore inflation/taxes

Time value of money: (applications)

The PV formula has many applications. Given any variables in the equation, you can solve for the remaining variable.

$$PV = FV \times \frac{1}{(1+r)^t}$$

Present Values: Changing Discount Rates

The present value of \$100 to be received in 1 to 20 years at varying discount rates:

PV of Multiple Cash Flows

The present value of multiple cash flows can be calculated:

Denote:

 C_1 = The cash flow in year 1

 C_2 = The cash flow in year 2

 C_t = The cash flow in year t (with any number of cash flows in between)

$$PV = \frac{C_1}{(1+r)^1} + \frac{C_2}{(1+r)^2} + \dots + \frac{C_t}{(1+r)^t}$$

Multiple cash flows: Example

Your auto dealer gives you the choice to pay \$15,500 cash now or make three payments: \$8,000 now and \$4,000 at the end of the following two years. If your cost of money (discount rate) is 8%, which do you prefer?

PV of
$$C_1 = \frac{4,000}{(1+.08)^1} = 3,703.70$$

*PV of C*₂ =
$$\frac{4,000}{(1+.08)^2}$$
 = 3,429.36

Total PV
$$= $15,133.06$$

Perpetuities

What are they? A stream of level cash payments that never ends.

Let C = Yearly Cash Payment PV of Perpetuity:

$$PV = \frac{C}{r}$$

Recall: r = the discount rate

Perpetuities: Example

In order to create an endowment, which pays \$185,000 per year forever, how much money must be set aside today if the rate of interest is 8%?

$$PV = \frac{185,000}{.08} = $2,312,500$$

What if the first payment won't be received until 3 years from today?

$$PV = \frac{2,312,500}{(1+.08)^2} = $1,982,596$$

Annuities

What are they? Annuities are equally-spaced, level streams of cash flows lasting for a limited period of time.

$$\mathbf{PV} = \mathbf{PMT} \begin{vmatrix} 1 - \frac{1}{(1+r)^t} \\ r \end{vmatrix}$$

are collectively called the "annuity factor."

$$FV = PMT \left\lceil \frac{(1+r)^{t}-1}{r} \right\rceil$$

PMT=yearly cash paymentt=number of years the payment is received

16

The terms within the brackets

Present value of annuities: Example

You are purchasing a home and are scheduled to make 30 annual installments of \$10,000 per year. Given an interest rate of 5%, what is the price you are paying for the house (i.e. what is the present value)?

$$PV = \$10,000 \left[\frac{1}{.05} - \frac{1}{.05(1+.05)^{30}} \right]$$

$$PV = \$153,724.51$$

Future value of annuities: Example

You plan to save \$4,000 every year for 20 years and then retire. Given a 10% rate of interest, how much will you have saved by the time you retire?

$$FV = 4,000 \left[\frac{1.10^{20} - 1}{.10} \right] = 229,100$$

Annuity due

What is it? An annuity whose payment is to be made immediately, rather than at the end of the period.

How does it differ from an ordinary annuity?

$$PV_{AnnuityDue} = PV_{Annuity} \times (1+r)$$

How does the future value differ from an ordinary annuity?

$$FV_{AnnuityDue} = FV_{Annuity} \times (1+r)$$

Recall: r = the discount rate

Annuities due: Example

$$FV_{AD} = FV_{Annuity} \times (1+r)$$

<u>Example</u>: Suppose you invest \$429.59 annually at the beginning of each year at 10% interest. After 50 years, how much would your investment be worth?

$$FV_{AD} = FV_{Annuity} \times (1+r)$$

 $FV_{AD} = (\$500,000) \times (1.10)$
 $FV_{AD} = \$550,000$

Compounding frequency: EAR and APR

- Quoted, or nominal rate called annual percentage rate (APR)
- Rate that incorporates compounding called effective annual rate (EAR)
- Relationship between APR and EAR:

$$EAR = \left(1 + \frac{APR}{m}\right)^m - 1$$

m=compound frequency

Used in situations that do not use yearly time periods

- Semiannual bond payments
- Quarterly stock dividends
- Consumer loans monthly payments

EAR vs. APR Example

- Assumptions:
 - Borrow \$100 today
 - 12% annual interest rate
 - APR: Loan compounds *annually*; you pay 12.00%
 - EARS: Loan compounds monthly; you pay 12.68%
- Formula to convert APR to EAR:

$$EAR = \left(1 + \frac{0.12}{12}\right)^{12} - 1$$

Inflation and real interest

Exact calculation:

$$1 + \text{real interest rate} = \frac{1 + \text{nominal interest rate}}{1 + \text{inflation rate}}$$

Approximation:

Real interest rate ≈ nominal interest rate - inflation rate

Inflation: Example

If the nominal interest rate on your interest-bearing savings account is 2.0% and the inflation rate is 3.0%, what is the real interest rate?

1 + real interest rate =
$$\frac{1+.02}{1+.03}$$

1 + real interest rate = 0.9903

real interest rate = -.0097 or -.97%

Approximation =
$$.02-.03 = -.01 = -1\%$$

Appendix A: Inflation

Annual U.S. Inflation Rates from 1900 - 2010

Source: Bureau of Labor Statistics.

Annual Spain Inflation Rates from 1962 - 2015

30,0