Graphs

sequence/linear (1 to 1)

hierarchical (1 to many)

What is a Graph?

- \bullet A graph is a pair (V, E), where
 - V is a set of nodes, called vertices
 - *E* is a collection of pairs of vertices, called edges
- V(G) and E(G) represent the sets of vertices and edges of G, respectively
- Example:

A tree is a special type of graph!

What is a Graph?

A simple graph, also called a strict graph is an unweighted, undirected graph containing no graph loops or multiple edges

simple graph

nonsimple graph with multiple edges

nonsimple graph with loops

Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram

Edge and Graph Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
- Undirected edge
 - unordered pair of vertices (u,v)
- Directed graph (Digraph)
 - all the edges are directed
 - e.g., route network
- Undirected graph
 - all the edges are undirected
 - e.g., flight network
- Mixed graph
 - some edges are undirected and some edges are directed
 - e.g., a graph modeling a city map

Terminology

- End vertices (or endpoints) of an edge
 - u and v are the endpoints of a
- Edges incident to a vertex
 - a, d, and b are incident to v
- Adjacent vertices
 - u and v are *adjacent*
- Degree of a vertex
 - x has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a *self-loop*

- Outgoing edges of a vertex
 - (a, b) and (a, c) are outgoing edges of vertex a
- Incoming edges of a vertex
 - (b, c), (d, c) and (a, c) are incoming edges of vertex c
- In-degree of a vertex
 - c has in-degree 3
 - b has *in-degree* 1
- Out-degree of a vertex
 - a has out-degree 2
 - b has *out-degree* 1

- Path
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - $P_1=(V, b, X, h, Z)$ is a simple path
 - P₂=(U, c, W, e, X, g, Y, f, W, d, V) is a path that is not simple

Cycle

 A cycle is a path whose start and end vertices are the same

 each edge is preceded and followed by its endpoints

Simple cycle

 A cycle is simple if each edge is distinct and each vertex is distinct, except for the first and the last one

Examples

- C₁=(V, b, X, g, Y, f, W, c, U, a, V) is a simple cycle
- C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is a cycle that is not simple

- Dense graph: $|E| \approx |V|^2$; Sparse graph: $|E| \approx |V|$
- A weighted graph associates weights with either the edges or the vertices
- A complete graph is a graph that has the maximum number of edges
 - for undirected graph with n vertices, the maximum number of edges is n(n-1)/2
 - for directed graph with n vertices, the maximum number of edges is n(n-1)

- A subgraph of G is a graph G' such that
 - V(G') is a subset of V(G) [$V(G') \subseteq V(G)$] and
 - E(G') is a subset of E(G) [$E(G') \subseteq E(G)$]
- A spanning subgraph G' of G is a subgraph of G that contains all the vertices of G, that is
 - V(G') is equal to V(G) [V(G') = V(G)] and
 - E(G') is a subset of E(G) [E(G') ⊆ E(G)]
- A forest is a graph without cycles.
- A (free) tree is a connected forest, that is, a connected graph without cycles.
- A spanning tree of a graph G is a spanning subgraph that is a (free) tree.

A spanning subgraph (tree)

In a graph G, two vertices, v₀ and v₁, are connected if there is a path in G from v₀ to v₁

 \bullet A graph is connected if, for every pair of distinct vertices v_i and v_i , there is a path from v_i to v_i

A component (sometimes referred to as connected component) of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph.

A tree is a graph that is connected and acyclic.

A directed graph is strongly connected if there is a directed path from v_i to v_j and also from v_j to v_i .

A strongly connected component is a maximal subgraph that is strongly connected.
Graphs

12

A graph with three components.

What can we do with graphs?

- Find a path from one place to another
- Find the shortest path from one place to another
- Determine connectivity
- Find the "weakest link" (min cut)
 - check amount of redundancy in case of failures
- Find the amount of flow that will go through them

Property 1

For an undirected graph

$$\Sigma_{v} \deg(v) = 2m$$

Proof: each edge is counted twice

Property 2

For a directed graph

$$\Sigma_{v}$$
 indeg $(v) = \Sigma_{v}$ outdeg $(v) = m$

Proof: each edge is counted once for in-degree and once for out-degree

Property 3

If G is a simple undirected graph, then $m \le n (n-1)/2$, and if G is a simple directed graph, then $m \le n (n-1)$.

Proof: each vertex has degree at most (n - 1). Then use Property 1 and Property 2.

Graphs

Notation

n number of vertices
 m number of edges
 deg(v) degree of vertex v

Properties

Property 4

Let G be an undirected graph with n vertices and m edges. Then we have the following:

- If G is connected, then $m \ge n 1$,
- If G is a tree, then m = n 1,
- If G is a forest, then $m \le n 1$.

Proof: Let G be a connected graph. Delete edges one by one from G keeping G connected. At last there will remain n-1 edges.

Graph Representation

- For graphs to be computationally useful, they have to be conveniently represented in programs
- There are two computer representations of graphs:
 - Adjacency matrix representation
 - Adjacency lists representation

Adjacency Matrix Representation

- Assume $V = \{1, 2, ..., n\}$
- An adjacency matrix represents the graph as a n x n matrix A:
 - A[i, j] = 1 if edge (i, j) \in E (or weight of edge) = 0 if edge (i, j) \notin E

Α	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Adjacency Matrix Representation

Undirected Graph

Directed Graph

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
		0				0
6	0	0	0	0	0	1

The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Adjacency Matrix Representation

Pros:

- Simple to implement
- Easy and fast to tell if a pair (i, j) is an edge: simply check if A[i, j] is 1 or 0
- Can be very efficient for small graphs

Cons:

 No matter how few edges the graph has, the matrix takes O(n²) in memory

Adjacency Lists Representation

- A graph is represented by a one-dimensional array L of linked lists, where
 - L[i] is the linked list containing all the nodes adjacent to node i.
 - The nodes in the list L[i] are in no particular order

Example:

- $Adj[1] = \{2,3\}$
- $Adj[2] = {3}$
- $Adj[3] = {}$
- $Adj[4] = {3}$

Adjacency Lists Representation

Adjacency Lists Representation

Pros:

- Saves on space (memory): the representation takes O(|V|+|E|) memory.
- Good for large, sparse graphs (e.g., planar maps)

Cons:

It can take up to O(n) time to determine if a pair of nodes (i, j) is an edge: one would have to search the linked list L[i], which takes time proportional to the length of L[i].

Graph ADT members?

Graph ADT members?

- Variables
 - int V;
 - LinkedList * E;
 - bool directed;
- Common Methods:
 - AddEdge(u, v);
 - RemoveEdge(u, v);
 - isEdge(u, v);
 - getAdjacentNodes(u);