

1

(19) JAPANESE PATENT OFFICE (JP)

(11) Laid-Open Patent Application

(12) LAID-OPEN PATENT GAZETTE (A) S60-128486

(43) Date of Publication of Application July 9, 1985

	(51) Int. Cl. ⁴	Domestic Classification Number	Office Reference Number
5	G 09 F 9/30		6615-5C
	H 01 L 27/12		8122-5F
	H 01 L 29/78		8422-5F

Request for examination: Not filed Number of claims: 1 (Total pages: 5)

10 (54) Title of the Invention: DISPLAY APPARATUS

(21) Application Number: S58-236096

(22) Date of Filing: December 16, 1983

(72) Inventor	Sato Susumi
(72) Inventor	Nakamura Takehiro
15 (72) Inventor	Kashida Mitsutaka
(72) Inventor	Hattori Tadashi
(71) Applicant	Nippon Soken Inc.
(74) Agent	Patent Attorney Aoki Akira et al.

20

SPECIFICATION

1. TITLE OF THE INVENTION

DISPLAY APPARATUS

25

2. CLAIM

An active matrix type display apparatus using a thin film transistor as a switching element;
wherein a pixel electrode, a gate pass, and a drain pass are composed of

RECEIVED
SEP 23 2002
TECHNOLOGY CENTER 2800

a transparent conductive layer, and a channel part of the transistor is composed of a semi conductive layer connected with the transparent conductive layer, and a multilayer comprising the transparent conductive layer and the semi conductive layer is interposed by a transparent insulation layer, and an opaque gate electrode connected with the gate pass via a contact hole outside the transparent insulation layer is formed;

5 and in order to achieve the electrical insulation between the gate pass and the drain pass, either of the gate pass or the drain pass is electrically continued at their cross portion via an opaque bridge electrode formed on

10 the outside the transparent insulation layer.

⑩ 日本国特許庁 (JP) ⑪ 特許出願公開
 ⑫ 公開特許公報 (A) 昭60-128486

⑬ Int.Cl. ⁴ G 09 F 9/30 H 01 L 27/12 29/78	識別記号	序内整理番号 6615-5C 8122-5F 8422-5F	⑭ 公開 昭和60年(1985)7月9日 審査請求 未請求 発明の数 1 (全5頁)
--	------	---	---

⑮ 発明の名称 表示装置

⑯ 特 願 昭58-236096
 ⑰ 出 願 昭58(1983)12月16日

⑱ 発明者 佐藤 進 西尾市下羽角町岩谷14番地 株式会社日本自動車部品総合研究所内
 ⑲ 発明者 中村 武宏 西尾市下羽角町岩谷14番地 株式会社日本自動車部品総合研究所内
 ⑳ 発明者 堅田 満孝 西尾市下羽角町岩谷14番地 株式会社日本自動車部品総合研究所内
 ㉑ 発明者 服部 正 西尾市下羽角町岩谷14番地 株式会社日本自動車部品総合研究所内
 ㉒ 出願人 株式会社日本自動車部品総合研究所 西尾市下羽角町岩谷14番地
 ㉓ 代理人 弁理士 青木 朗 外4名

明細書

1. 発明の名称

表示装置

2. 特許請求の範囲

薄膜トランジスタをスイッチ素子とするアクティブラミックス方式表示装置において、画素電極、ゲートバスおよびドレインバスを透明導電層で構成し、トランジスタのチャンネル部を該透明導電層に接続した半導体層で構成し、該透明導電層と該半導体層からなる積層体を透明絶縁層で挟持し、該透明絶縁層の外側にコンタクトホールを介して該ゲートバスと接続した不透明ゲート電極を形成し、かつ、該ゲートバスと該ドレインバスの間の電気的絶縁を達成するために、該ゲートバスと該ドレインバスのいずれか一方をそれらの交差部において該透明絶縁層の外側に形成した不透明ブリッジ電極を介して導通させたことを特徴とする表示装置。

3. 発明の詳細な説明

技術分野

本発明は表示装置、特に薄膜トランジスタアレイによるアクティブラミックス方式表示装置に関する。

従来技術

液晶表示装置などにおいて精細な画像を表示するため、スイッチ素子をマトリックス状に配列したアレイを用いて、液晶等を直接にスイッチ駆動する方法が最近注目されるようになっている。そのスイッチ素子として薄膜トランジスタ(TFT)を用いるとき、特に透過方式の場合、表示特性を向上させるために画素電極はもとよりゲートバス、データバスも導電性透明電極とすることは公知である。一方、半導体部の光導電特性によるTFTのオフ(OFF)抵抗の低下を防ぐためには、ゲート部を不透明電極とし、ライトシールドとすることが有効であることも公知である。

そこで、これら両方の要求を同時に満足させるためには、ゲートラインを2種類の材料で構成し、半導体と重なるゲート電極部には不透明材料を用い、ゲートバス部は透明材料とし、そしてその上

に絶縁層を介して半導体層および透明導電層(画素電極、ソース、ドレイン、ドレインバス)を形成すればよい。しかし、この場合、ゲートラインの形成において工程数が1工程増加する。また、ゲートラインを構成する2種類の材料を連続してパターニングする際、両材料のエッティング特性を考慮する必要がある(例えば、金属によるゲート電極をパターニングした後、酸化錫等の透明導電層をパターニングするためにエッティング液として酸を用いると、ゲート電極もエッティングされてしまう)などの問題がある。

発明の目的

本発明は、上記の如き事情に鑑み、工程を複雑にすることなく、透過特性の向上とライトシールド効果の2つの要求を満足する、TFTをスイッチ素子とするアクティブマトリックス方式表示装置の新しい構成を提供することを目的とする。

発明の構成

上記目的を達成する本発明による薄膜トランジスタをスイッチ素子とするアクティブマトリックス

方式表示装置は、画素電極、ゲートバスおよびドレインバスを透明導電層で構成し、トランジスタのチャンネル部を該透明導電層に接続した半導体層で構成し、該透明導電層と該半導体層からなる積層体を透明絶縁層で挟持し、該透明絶縁層の外側にコンタクトホールを介して該ゲートバスと接続した不透明ゲート電極を形成し、かつ、該ゲートバスと該ドレインバスの間の電気的絶縁を達成するため、該ゲートバスと該ドレインバスのいずれか一方をそれらの交差部において該透明絶縁層の外側に形成した不透明ブリッジ電極を介して接続したことを特徴とする。

この構成により、透明導電膜の加工が1度で済み、工程が簡単化され、また、2種類のゲートラインのエッティングも透明絶縁層が介在しているのでエッティングが容易になる。

発明の実施例

第1図～第4図は、本発明による表示装置の1画素周辺の工程順の平面図および断面図である。第1b, 2b, 3b図および第1c, 2c, 3c

図は、それぞれ、第1a, 2a, 3a図の線分B-BおよびC-Cに沿う断面図である。

第1a, 1b, 1c図を参照すると、コーニング7059(コーニング社の引上げ法による板ガラスの商品名)等のガラス基板1上にニクロム等の導電性不透明材料を厚さ100～200nm程度に蒸着し、周知のフォトリソグラフィ技術等により、パターニングし、ゲート電極2およびブリッジ電極3を形成する。第2a, 2b, 2c図を参照すると、その上に塩化珪素(Si₃N₄)、酸化珪素(SiO₂)等の透明な電気絶縁性薄膜4をCVD法等により全面に厚さ100～150nm程度被着する。次いで、アモルファス(あるいはポリ)シリコン半導体をCVD法等により全面に厚さ300nm程度に被着し、パターニングすることによりスイッチングトランジスタのチャンネル領域となる半導体層8を形成する。この透明絶縁膜4にはゲート電極用6およびブリッジ電極用7のコンタクトホールを形成する。

第3a, 3b, 3c図を参照すると、ITO

(Indium Tin Oxide)、酸化錫等の透明導電材料を厚さ200nm程度にスパッタリング被着し、パターニングし、ゲートバス9, ドレインバス10, 画素電極11を形成する(ソース、ドレイン電極部を含む)。このエッティングでは、透明導電材料の下間に透明絶縁層4が存在するので、透明導電材料と不透明導電性材料層(ゲート電極2およびブリッジ電極3)とのエッティング特性を考慮する必要がなく、パターニングが容易である。ゲートバス9はコンタクトホール6を介してゲート電極2と接続される。また、ゲートバス9はドレインバス10と透明導電性材料の層では交差することなく、しかもゲートバス自体の導通を保つために、ゲートバス9の透明導電性材料層はドレインバス10と交差する位置で切断され、コンタクトホール7を介し、そしてブリッジ電極3を介して導通するようになっている。

こうして作成されるTFTの構成はガラス基板1上にマトリックス状に配列されている。第9a図および第4b図は上記のTFTを液晶パネルに

組込んだ場合の第1a図の線分B-BおよびC-Cに沿った断面図である。上記TFTの透明導電性材料層9, 10, 11のバーニングの後、再びSiO₂等の透明電気絶縁性薄膜12を全面に厚さ100~300nm程度に被着する。次いで、ゲート部をニクロムあるいはアルミニウム等の不透明膜で覆い、オブティカルシールド13とする。このオブティカルシールド13は導電性材料である必要はない、塗料、カーボンブラック等を塗布してもよい。このように半導体層8はゲート電極2およびオブティカルシールド13によって上下両方からオブティカルシールドされているので、透過光、反射光とも遮断される。

オブティカルシールド13および透明絶縁膜12の上は液晶を配向させるためのポリマ配向膜14で全面に覆われている。液晶層15をはさんで対向側は、ガラス基板16の内面に全面の透明導電膜よりなる対向電極17と、更に内面に全面のポリマ配向膜18が形成されている。こうして、両方の基板の間に液晶が封入されている。

インバスの層の4層による構成が可能になる。すなわち、工程数が1工程以上少なくできる。

第5図は本発明の別の実施例を示す。この実施例は前記実施例のゲート電極とブリッジ電極とを一体に構成し(図の21)、ゲートバス22との導通をコンタクトホール7および23を介して取るものである。その他は前記実施例と同様であり、図中の参照数字も同じ部分は同じ数字で示した。この実施例は、ゲート電極とブリッジ電極が分離されている必要がないことを示すものである。

第5図はもう1つの実施例を示し、第6図は第5図の線分W-B-WBに沿った断面図である。この実施例は最初の実施例の上部オブティカルシールド13を形成するニクロム層をゲート電極およびブリッジ電極として利用するものである。最初の実施例と同様の部分は同じ参照数字で示すと、ガラス基板1の上にゲート部のみに下方オブティカルシールド31を例えばニクロム等不透明材料で形成する。次いで、SiO₂等の透明絶縁膜4を全面に被着し、その上に透明導電性層をバーニ-

液晶表示装置の基本的動作は、周知のように、ゲートおよびドレインのバイアス変化に伴うTFTのON-OFFに対応して、画素電極11と対向電極(共通電極)17の間の電圧が変化し、液晶の配向が変化するものである。ここで、ゲート部のアモルファスシリコン等の半導体層はその電気伝導度が光の照射によってある程度変化する性質があるので、光の存在でTFTのOFF抵抗が減少するという問題があり、その対策としてゲート部の半導体層をオブティカルシールドすることを検討してきたわけである。

そして、従来、ゲート部の半導体層をオブティカルシールドし、かつゲートバスおよびドレインバスを透明材料で構成するためには、例えば、(1)不透明ゲート電極、(2)透明ゲートバス、(3)透明絶縁膜、(4)半導体層、(5)透明な画素電極およびドレインバスの層の5層構成が少なくとも必要であったものが、本発明により、(1)不透明なゲート電極およびブリッジ電極の層、(2)透明絶縁膜、(3)半導体層、(4)透明な画素電極、ゲートバスおよびド

レインバス33を形成し、更にその上にアモルファスシリコン等の半導体層8を形成する。第2の透明絶縁膜(SiO₂等)12を全面に被着し、コンタクトホール34, 35を開口した後、ニクロム等の不透明導電性膜をバーニングしてゲート電極36およびブリッジ電極37を形成する。その上にポリマ配向膜14を全面に形成し、以下最初の実施例と同様にする。こうすることによって、最初の実施例と等価な構成が得られる。すなわち、ゲート電極およびブリッジ電極は透明導電性膜の下方でも上方でもよく、さらにそれらは上下両方に分離して形成されてもよいのである(但し、上下両方に分離すると、ライトシールド層はゲート電極とブリッジ電極を形成するために両方とも必ず導電性である必要があり、かつそれらとコンタクトをとるために上下両方の透明絶縁膜にコンタクトホールを形成する必要が生じる)。

さらに、この実施例ではゲートバス32ではなくドレインバス33をブリッジ電極37を介して

導通させている。ゲートバスとドレインバスの交差部でそれらのうちいずれをブリッジ電極を介して導通させるかは、どの実施例においても任意であり、更に同一装置のマトリックスの位置によって変えててもよい。

また、オプティカルシールドは上下両方に形成することが一般的に好ましく、特に透過型ではそうであるが、反射型では上方だけにオプティカルシールドを形成してもよい。

以上の実施例では、本発明によるマトリックス状スイッチ素子(TFT)を液晶表示パネル(LCDパネル)に組み込んだ例を示したが、エレクトロルミネセントパネル(ELパネル)等への応用も可能であり、本発明は光の照射があるマトリックス状駆動回路一般に適用できるものである。

発明の効果

以上の説明から明らかのように、本発明により、TFTをスイッチ素子とするアクティブラマトリックス表示装置において、オプティカルシールドに

より TFT の OFF 抵抗の低下を防止しつつゲートバスおよびドレインバスを透明材料にして表示特性を高め、しかもその製造工程を簡単にすることが可能になる。

4. 図面の簡単な説明

第 1a, 2a, 3a 図は本発明の実施例の表示装置の工程順の平面図、第 1b, 2b, 3b, 4a 図はその線分 B-B に沿った断面図、第 1c, 2c, 3c, 4b 図はその線分 C-C に沿った断面図、第 5 図は第 2 の実施例の平面図、第 6a 図は第 3 の実施例の平面図、第 6b 図はその線分 VI-B-VI-B に沿った断面図である。

1, 16 ……ガラス基板、2 ……ゲート電極(不透明)、3 ……ブリッジ電極(不透明)、4, 12 ……透明絶縁膜、6, 7 ……コンタクトホール、8 ……半導体層、9 ……ゲートバス、10 ……ドレインバス、11 ……面素電極、13 ……ライトシールド(不透明)、14, 18 ……ポリマ配向膜(透明)、15 ……液晶、17 ……対向電極(透明)。

第 1a 図

第 1b 図

第 1c 図

第 2a 図

第 2b 図

第 2c 図

第3a図

第4a図

第3b図

第4b図

第3c図

第5図

第6a図

第6b図

