11-1

6.2 Cardinality

The Cardinality of a set is the size of the set. (i.e. number of elements in the set)

ex
$$A = \{a, b, c\}$$
 cardinality of A is 3
 $n(A) := Cardinality of A$ $n(A) = 3$

$$ex$$

$$A = 6$$

- · Small simple sets finding the Cardinality is easy.
- . More complex for more complex sets.

$$P = Cardinality of a Union n(AUB) = n(A) + n(B) ?$$

$$P(A) = \{a, b, c\}$$
 $P(A) + n(D) = \{a, b, c, d\}$
 $P(A) = \{a, b, d\}$
 $P(A) = \{a, d\}$
 $P(A) =$

Problem: we double count the duplicates.

$$n(A \cup B) = 8$$

$$n(A) = 85$$

$$n(B) = 5$$

need to subtract the intersection

$$n(AUB) = n(A) + n(B) - n(A \cap B)$$

in above $n(A \cap B) = Z$
 $5 + 5 - 2 = 8$

And Cartinatity of

S= { set of students in this class} = A = { students with dogs } # 70

B = { students with cats} # 40

$$n(A \cap B) = 6$$

 $n(AUB) = n(A) + n(B) - n(A \cap B)$ = 70+40-6 = 104 students have a cat or Q: How many have neither cat or dog? n ((AUB)) = ? * Cardinality of a Complement P S = universal set in our example above its the students in class. n(5) - n(A) = n(A')note: n(S) - n(A') = n(A)set of students without either a cat .-(AUB) = AnB $n((AUB)^{-}) = n(S) - n(AUB)$ = 200 - 104 = 96ex In 2011 we have sales data from Apple of their i Pods, i Phones, i Pads

from QZ, Q3, QU (in millions)

U, Anu, (Anu), Cuu

u': when Sales in Q3 & Q4 note: u'= vvw

ANU: Sales of iPods in Q38 Q4 n(ANU') = 7.5+6.6 $(A \cap U)'$: All sales except i Po-1s in QZ $n((A \cap U)') = n(S) - n(A \cap U)$ = 104.3 - 9.0CUU: Sales in QZ and Det total i Pad sales $n(CUU) = n(C) + n(U) - n(C \cap U)$ = 25.1 + 32.4 - 4.7

	i Pod(A)	iPhone(B)	iPad(c)	Total
(u) 2011 QZ	9.0	18.7	4.7	32,4
(V) 2011 Q3	7,5	20.3	4.3	37.1
(W)2011 Q4	6.6	17.1	11.1	34.8
Total	23.1	56.1	25.1	104.3

$$n(A) = 23.1$$

$$n(V) = 37.1$$

what does BNW represent?

what do these sets describe and what is their Cardinality?

Formula for Triple intersections:

m(AUDUL, = 1/ what are we counting once, when we n(A)+n(B)+n(C)

what are we counting twice? what are me counting three times?

n(AUBUC) = n(A) + n(B) + n(C) -n(ANB) - n(BNC) - n(ANC) + n(ANBNC)

long story short: Using venn diagrams is helpful.

2) 300 students surveyed about three Russian novels.

· 100 have read War & Peace

, 120 have read Crime & Punishment

· 100 have read The Brothers Karamuzov

Also: .40 had only read war & Peace
.70 had read W&P but not BK
.80 had read BK but not C&P
.10 have read all 3.

x = 100 t = 40 t = 40 $t + w = 70 \Rightarrow w = 30$ $t + w + x + y = 100 \Rightarrow y = 70$ $y + u = 80 \Rightarrow u = 60$ $y + x + u + 7 = 100 \Rightarrow 7 = 10$ $y + w + x + 2 = 170 \Rightarrow v = 70$

who hasn't read any of these books?
$$n((140 w2P U8k U(2P))) = ? = 60$$

$$n(S) = 300$$

$$n(w2P U8k U(4P)) = 240$$

$$A = \{a, b, c\}$$

 $B = \{1, 2\}$

$$A \times B = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$$

$$\frac{1}{a}$$

$$n(A \times B) = n(A)n(B)$$

$$n(A \times B \times C) = n(A)n(B)n(C)$$

If we toss a coin 2 times in sequence how many outcomes we there?

$$S = \{ H, T \}$$
 $n(s \times s) = ?$

$$= n(s)n(s) = 2.2 = 4$$

If we toss a coin 10 times in sequence how many out comes are there?

h(5x5x5x5x5x5x5x5x5x5x5x5) = ? 210 = 1024

6.3 Decision Algorithms: Addition & Multiplication Principles In a given scenario how many choices do me have? You go to the Ben & Jerry's Meredith and they have across from 15 ice cream flavors and 5 frozen yogurt flavors. How many options? 15+5=20 Addition Principle when choosing from disjoint alternatives

add the options together ex 15 ice creum flavors 3 sizes of lones. How many options do we have? 3.15 = 45 our set of choices is the catesian product of A-set of flavers B. set of sizes A Multiplication When making a sequence Principle. of choices multiply our

options