

Zarządzanie projektem

Inżynieria Oprogramowania

Cel:

- Wyjaśnienie podstawowych czynności procesuź zarządzania projektem informatycznym
- Wprowadzenie w pojęcia związane z planowaniem projektu i planowaniem procesu
- Omówienie graficznych reprezentacji harmonogramu
- Wprowadzenie w zagadnienia zarządzania ryzykiem
- ... czyli uzmysłowienie sobie dlaczego kierowanie projektami informatycznymi jest tak niewdzięcznym zadaniem

Zarządzenie projektem informatycznym

- Aktywności związane z zapewnianiem, że:
 - oprogramowanie będzie dostarczone zgodnie z harmonogramem
 - Oprogramowanie będzie spełniało wymagania
- Zarządzanie projektem jest potrzebne zawsze
 - Tworzenie oprogramowania jest powiązane z kwestiami ekonomicznymi (budżet, harmonogram)

Problemy PM

- Produkt jest nieuchwytny
- Produkt jest unikatowy
- Inżynieria oprogramowania nie jest tak dobrze rozeznaną dziedziną jak np. mechanika, elektrotechnika
- Proces IO nie jest ustandaryzowany
- Wiele projektów cechuje się jednorazowością

Podstawowe pojęcia zarządzania projektami

Termin	Definicja
Projekt ang. project	Zbiór aktywności wykonywanych w określonym celu np. wytworzenia unikalnego produktu, usługi bądź rezultatu. Aktywności są tymczasowe - mają zdefiniowany początek i koniec. Zakończenie aktywności zachodzi gdy cele zostały osiągnięte lub stało się jasne, że nie zostały lub nie mogą zostać osiągnięte (za: PMI)
Pod-projekt ang. subproject	Zbiór aktywności przypisanych pojedynczej jednostce organizacji projektu w celu podzielenia projektu na łatwiejsze do zarządzania komponenty.
Program ang. program	Grupa powiązanych projektów zarządzana w sposób skoordynowany w celu osiągnięcia większych korzyści oraz kontroli niż w przypadku zarządzania indywidualnego (za: PMI)

Podstawowe pojęcia zarządzania projektami

Termin	Definicja
Zarządzanie projektem ang. project management	Stosowanie wiedzy, zdolności, narzędzi i technik do aktywności projektowych w celu osiągnięcia celów projektu (za: PMI)
Portfel ang. protfolio	Kolekcja programów projektów oraz innych prac, zgrupowanych w celu ułatwienia procesu efektywnego zarządzania nimi dla osiągnięcia strategicznych celów biznesowych (za: PMI)
Zarządzanie portfelem ang. portfolio management	Scentralizowane zarządzanie jednym lub wieloma portfelami z uwzględnieniem identyfikacji, priorytetyzacji, autoryzacji, zarządzania oraz kontroli projektów, programów oraz innych zadań w celu osiągnięcia strategicznych celów biznesowych

Podstawowe pojęcia zarządzania projektami

Termin	Definicja	
Stopniowe dopracowywanie ang. progressive elaboration	Ciągły proces udoskonalania planów wraz z napływem bardziej szczegółowych danych i oszacowań w trakcie trwania projektu. Celem jest iteracyjne opracowywanie bardziej precyzyjnych planów przedsięwzięcia (za: PMI)	
Biuro zarządzania projektem ang. Project Management Office (PMO)	Ciało organizacyjne odpowiedzialne za scentralizowane i skoordynowane zarządzanie podległymi projektami.	
Sponsor	Osoba lub organizacja władna wykonywać, zlecać lub zapewniać ukończenie następujących zobowiązań projektowych: - Formalizacja powiązania z dostawcą rozwiązania - Zatwierdzenie momentu rozpoczęcia procesu i/lub poszczególnych jego faz - Akceptacja efektów projektu - Pokrywanie kosztów projektu, lub jego faz	

Czynności PM

- Definicja systemu
- Planowanie i harmonogramowanie projektu
- Kosztorysowanie projektu
- Monitorowanie i przeglądy
- Wybór i ewaluacja personelu
- Raportowanie i prezentacje

Proces zarządzania projektem (PMP)

- Projekt składa się z procesów
- Proces jest serią aktywności, w efekcie których otrzymujemy rezultat
- Proces zorientowany na produkt powiązany jest z opracowaniem specyfikacji oraz wytworzeniem produktu procesu
- Proces zarządzania projektem oraz proces zorientowany na produkt nakładają się na siebie i współdziałają przez cały czas życia projektu

Cykl Plan-Do-Check-Act

Plan-Do-Check-Act w akcji

- Proces rozwiązywania problemu
 - Plan:
 - Krok 1: Zidentyfikuj problem
 - Krok 2: Dokonaj analizy problemu
 - Do:
 - Krok 3: Opracuj rozwiązanie
 - Krok 4: Zaimplementuj rozwiązanie
 - Check:
 - Oceń rezultaty. Czy osiągnięto cele?
 - Act:
 - Standaryzuj rozwiązanie wykorzystaj (dok. Skapitalizuj/osiągnij korzyści) w innych sytuacjach

Kierownik projektu

- Kierownik projektu reprezentuje pojedynczy punkt kontaktowy w projekcie
- Jest osobiście odpowiedzialny za:
 - Planowanie i organizacje prac zespołu
 - Zarządzanie codziennymi aktywnościami wykonywanymi w ramach projektu
 - Dostarczaniem efektów projektu (do klientów)
 - Identyfikacją "grup zainteresowania"

Wartość kierownika projektu

- Kierownik projektu zwiększa prawdopodobieństwo tego, że projekt:
 - Wytworzy produkty odpowiedniej jakości
 - Zostanie ukończony zgodnie z harmonogramem
 - Zostanie ukończony w ramach budżetu
 - Spełni wymagania klientów
 - Osiągnie sukces

Oczekiwane umiejętności "kierownicze"

- Dalekowzroczność
- Podejmowanie ryzyka
- Jasność celów
- Kreatywność i innowacyjność
- Zespółowe rozwiązywanie problemów
- Systematyczność w myśleniu i planowaniu
- Strategiczność w rozwiązywaniu problemów
 Świadomość ograniczeń politycznych
- Budowanie i rozwój zespołu,
- Asertywność
- Ukierunkowanie na cel
- Delegowanie odpowiedzialności, wydajne zarządzanie zespołem, ...

Personel

- Częstym problemem jest brak możliwości zebrania odpowiedniego zespołu
 - Budżet nie pozwala
 - Brak odpowiednich ludzi
 - Polityka organizacji
- Kierownik projektu musi sobie samodzielnie radzić z takimi problemami

Organizacja

- Struktura:
 - Funkcjonalna
 - Projektowa
 - Macierzowa

Organizacja

- Struktura:
 - Funkcjonalna
 - Projektowa
 - Macierzowa

Organizacja

- Struktura:
 - Funkcjonalna
 - Projektowa
 - Macierzowa

Zespół

 Niewielka grupa osób o uzupełniających się umiejętnościach silnie połączonych wspólnym celem i podejściem do podejmowania skomplikowanych zadań.

Praca zespołowa

- Czynniki wpływające na pracę zespołową
 - Skład grupy
 - Równowaga umiejętności, doświadczenia, osobowości
 - Spójność grupy
 - Grupa -> zespół vs. Grupa -> grupa pracujących osób
 - Komunikacja w grupie
 - Skuteczność porozumiewania
 - Organizacja grupy
 - Zadowolenie z roli w grupie, poczucie dowartościowania

Planowanie projektu

 Najbardziej czasochłonny element zarządzania.

Aktywność ciągła. Regularne aktualizacje.

Potrzeba istnienia wielu planów.

Rodzaje planów

- Plan jakości
 - Procedury oraz standardy jakości wykorzystywane w projekcie
- Plan walidacji
 - Podejście do walidacji, harmonogram, potrzebne zasoby
- Plan zarządzania konfiguracją
 - Procedury i struktury zarządzania konfiguracją
- Plan konserwacji
 - Przewidywania wymagań pielęgnacyjnych, kosztów, nakładu pracy
- Plan zatrudnienia
 - W jaki sposób rozwijane będą umiejętności i doświadczenie zespołu.

Proces planowania projektu

- 1. Określenie ograniczeń projektu
- 2. Zebranie początkowych parametrów projektu
- 3. Zdefiniowanie kamiéni milowych oraż produktów
- 4. Dopóki projekt nie zakończony wykonuj w pętli:
 - a. Narysuj harmonogram projektu
 - b. Zainicjuj aktywności zgodnie z harmonogramem
 - c. Czekaj
 - d. Dokonaj przeglądu projektu
 - e. Przejrzyj oszacowania i parametry projektu
 - f. Zaktualizuj harmonogram
 - g. Re-negocjuj ograniczenia projektu oraz produkty
 - h. Jeżeli pojawi się problem -> rozpocznij przegląd techniczny i dokonaj rewizji projektu

Proces planowania projektu

Struktura planu projektu

- Wprowadzenie
- Organizacja projektu
- Analiza zagrożeń
- Wymagania sprzętowe i narzędziowe
- Podział pracy
- Harmonogram projektu
- Mechanizmy monitorowania i raportowania

Organizacja aktywności projektowych

 Aktywności projektowe powinny być tak zorganizowane aby produkowały jednoznaczne rezultaty w mierzalnej formie.

- Milestones Kamienie milowe końcowe punkty aktywności
- Deliverables Produkty rezultaty projektu dostarczane użytkownikom
 - Kamienie milowe najprościej jest określać na podstawie modelu kaskadowego

Zarządzanie projektem a wymagania

 Produkty – produkty, które muszą zostać dostarczone zgodnie z umową

Struktura podziału pracy (WBS)

re

work Breakdown Structure

- Produktowo zorientowana hierarchiczna dekompozycja pracy wykonywanej przez zespół projektowy dla osiągnięcia celów projektu oraz wytworzenia oczekiwanych produktów.
 - Całkowity opis i definicja zakresu projektu

WBS jest najważniejszą bazą informacji dla potrzeb planowania projektu

Pakiet prac (WP)

work Package

- Składnik zadań projektu na danym poziomie gałęzi WBS. Punkt dla którego koszt i harmonogram pracy może być oszacowany.
 - Zawsze powiązany z celem i dostarczający produkt lub rezultat
 - Ma skończone i weryfikowalne kryteria
 - Może być przypisany jako zadanie dla pojedynczej osoby lub jednostki organizacyjnej

WBS format

LISTA

- 1.1 xxxxxxxxxxxxx
 - 1.1.1 xxxxxxxxx
 - **1.1.2 xxxxxxx**
 - **1.1.3 xxxxxxx**
 - **1.1.4 xxxxxxxx**
 - **1.1.5 xxxxxxx**
- 1.2 xxxxxxxxxxxx
 - **1.2.1** xxxxxxxx
 - **1.2.2 xxxxxxx**
- 1.3 xxxxxxxxxxxx
- 1.4 xxxxxxxxxxxxx
 - **1.4.1 xxxxxxxx**

Szacowanie

- Proces określania wysiłku, czasu trwania oraz kosztów dla elementu WBS
- Proces identyfikacji zasobów potrzebnych dla każdego WP.
- Proces definiowania oczekiwanych kosztów dla każdego zadania i aktywności projektowej

Czym jest szacowanie?

- An estimate is just that--an estimate. The only perfect estimate is the one done after the work is completed ©
 - Określenie prawdopodobieństwa ilościowego rezultatów
 - Zazwyczaj stosowany do nakładów pracy (roboczo-godziny/dni/miesiące) oraz harmonogramu (czas trwania)
 - Określane ze znacznikiem dokładności (np. + n procent)
 - Zazwyczaj prefiksowane modyfikatorem (np.: wstępny, koncepcyjny, osiągalny, końcowy)

Szacowanie – terminologia (1)

- Nakład pracy (ang. effort) liczba jednostek pracy potrzebna do wykonania zadania, wyrażana zazwyczaj w osobo-godzinach [dniach|miesiącach]
- Nakład pracy mierzony czasem (ang. Level of effort LOE)
 aktywności wspierające projekt, które nie mogą być harmonogramowanie.
- Czas trwania (ang. duration) liczba przedziałów czasu pracy (z wyłączeniem świat, itp.) wymaganych do ukończenia aktywności, wyrażania zazwyczaj w dniach/ tygodniach roboczych,

Szacowanie – terminologia (2)

- Dostępność (ang. avaliability) czas w jakim personel jest dostępny i pracuje
- Produktywność (ang. productivity) względna miara pracy w jednostce czasu. Zależna od umiejętności, czynników psychologicznych, itp.
- Wykorzystanie (ang. utilization) wartość będąca stosunkiem czasu, który może być wykorzystany w projekcie do tzw. FTE (Full Time Equivalent)
- Czas pozostały (ang. Working time)
- Czas który minął (ang. Elapsed time)

Szacowanie – receptury

- Cost = (Effort/Productivity) x Unit Cost
 - Koszt = (Nakład pracy/Produktywność) x Jednostki kosztów

- Duration = (Effort/Productivity)/Availability
 - Czas trwania = (Nakład pracy/Produktywność) /Dostępność

Techniki szacowania nakładów pracy (1)

Kategoria	Opis	Zalety	Ograniczenia
Szacowanie przez analogię	Porównuje obecny projekt z podobnym projektami przeprowadzanymi w przeszłości	Estymacje bazują na wcześniejszych doświadczeniach	Musi istnieć baza danych informacji o bardzo podobnych projektach przeprowadzanych w przeszłości

Najprostsza metoda.

Techniki szacowania nakładów pracy (2)

Kategoria	Opis	Zalety	Ograniczenia
Osąd ekspertów (np. metoda Delphi)	Konsultacje z jednym lub kilkoma ekspertami	Dobra metoda dla nowych i unikatowych projektów ze względu na brak wymagań co do posiadania danych historycznych.	Eksperci często są tendencyjni; poziom wiedzy i doświadczenia często pozostawia wiele do życzenia

Metoda Delphi

- Metoda Delphi zakłada użycie kilku niezależnych ekspertów, którzy nie mogą się ze sobą w tej sprawie komunikować i naradzać. Każdy z nich szacuje koszty i nakłady na podstawie własnych doświadczeń i metod. Eksperci są anonimowi. Każdy z nich uzasadnia przedstawione wyniki.
- Koordynator metody zbiera wyniki od ekspertów. Jeżeli znacznie się różnią, wówczas tworzy pewne sumaryczne zestawienie (np. średnią) i wysyła do ekspertów dla ponownego oszacowania. Cykl jest powtarzany aż do uzyskania pewnej zgody pomiędzy ekspertami.

Techniki szacowania nakładów pracy (3)

Kategoria	Opis	Zalety	Ograniczenia
Modelowanie Wstępujące (Bottoms - Up)	Osobno szacuje się poszczególne składniki a otrzymane wyniki są sumowane i wynik jest traktowany jako wynik końcowy	Możliwa jest precyzyjna ocean systemu; promowana odpowiedzialność indywidualna	Metody czasochłonne; szczegółowe dane mogą być niedostępne, zwłaszcza we wstępnej fazie;

 Jest to bardzo użyteczna metoda przy śledzeniu kosztów projektu, kiedy projekt podzielony jest na podzadania, dla których istotny jest jednostkowy koszt.

Techniki szacowania nakładów pracy (4)

Kategoria	Opis	Zalety	Ograniczenia
Modele parametryczne (algorytmiczne)	Wykonywanie całkowitych oszacowań z zastosowaniem parametrów projektowych i algorytmów matematycznych	Modele są zazwyczaj szybkie i łatwe w użyciu, można je stosować we wczesnych fazach projektu; są obiektywne i powtarzalne	Modele mogą być niedokładne, jeśli ich stosowanie nie jest odpowiednio uzasadnione i skalibrowane; istnieje niebezpieczeństwo, że stosowane do kalibracji dane historyczne mogą nie mieć związku z nowym projektem

Parametryczne modele szacowanie kosztów

- Tworzą oszacowania bazując na zależnościach statystycznych.
- Zwykle szacują koszty całego projektu lub jego podsystemów
- Historycznie, podstawą oszacowania jest rozmiar systemu liczony w liniach kodu źródłowego.
- Stosowane przez Departament Obrony USA oraz NASA.

Metoda szacowania kosztów COCOMO

COnstructive COst MOdel

- COCOMO jest oparte na kilku formułach pozwalających oszacować całkowity koszt przedsięwzięcia.
 - Wersje:
 - COCOMO'81 (bazująca na modelu kaskadowym, podstawą oszacowania jest liczba linii kodu).
 - Poziomy: podstawowy, pośredni i szczegółowy
 - COCOMO II (dostosowana do nowoczesnych modeli wytwarzania, podstawą oszacowania jest stopień zaawansowania projektu).
 - Aplication Composition Model, Early Design Model, Post-Architecture Model

Metoda punktów funkcyjnych

Function Point Analysis, FPA

- Szacuje nakłady projektu na podstawie funkcji użytkowych, które system ma realizować
 - czyli funkcje muszą być z grubsza znane.
- Z założenia ma być niezależna od technologii wykonania systemu.
- Metoda jest oparta na zliczaniu ilości wejść i wyjść systemu, miejsc przechowywania danych i innych kryteriów.
 - Dane: Liczba interfejsów zewnętrznych, liczba wewnętrznych plików logicznych,
 - Operacje: liczba wejść, liczba wyjść, liczba zapytań
- Te dane są następnie mnożone przez zadane z góry wagi i sumowane.
 Rezultatem jest liczba "punktów funkcyjnych".
- Punkty funkcyjne mogą być następnie modyfikowane zależnie od dodatkowych czynników złożoności oprogramowania.

Use case points

- Szacowanie nakładów poprzez obliczanie złożoności systemu na podstawie analizy przypadków użycia systemu.
- Złożoność aktorów (prosty, średni, złożony) -UAW
- Złożoność przypadków użycia UUCW
 - Liczba klas analizy, złożoność interfejsu, zakres przetwarzanych danych (liczba encji bazy danych)
- UAW + UUCW = UUCP
- Czynniki techniczne i środowiskowe TCF i EF
- UĆP = UUCP * TCF * EF