Napake

Jih je veliko in so nasploh zelo depresivne in vse metode so slabe.

Nelinearne enačbe

Iščemo ničle α funkcije f. Občutljivost $\frac{1}{f'(\alpha)}$, za dvojno ničlo $\sqrt{\frac{2}{f''(x)}}$.

BISEKCIJA: razpolavljamo interval, na katerem imamo ničlo. Št korakov za natančnost ε : $k \ge \log\left(\frac{|b-a|}{\varepsilon}\right)$.

NAVADNA ITERACIJA: Iščemo fiksno točno $g(\alpha) = \alpha$. Metoda: $x_{r+1} = g(x_r)$. Če je $|g'(\alpha)| < 1$ je točka privlačna, če $|g'(\alpha)| > 1$ je odbojna. Red konvergence je p, če je α p-kratna ničla g.

TANGENTNA METODA: $x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)}$. Konvergenca je za enojne ničle kvadratična, za večkratne ničle linearna.

Če za enostavno ničlo velja $f''(\alpha)=0$ je konvergenca kubična, itn... Vse ničle so privlačne.

SEKANTNA METODA: $x_{r+1} = x_r - \frac{f(x_r)(x_r - x_{r-1})}{f(x_r) - f(x_{r-1})}$. Red konvergence: $\frac{1 + \sqrt{5}}{2}$.

LAGUERROVA METODA za iskanje ničel polinomov: $z_{r+1}=z_r-\frac{np(z_r)}{p'(z_r)\pm\sqrt{(n-1)((n-1)p'^2(z_r)-np(z_r)p''(z_r))}}$

Pri stabilni metodi izberemo predznak tako, da je absolutna vrednost imenovalca največja. Če izbiramo vedno - ali + skonvergiramo k levi oz. desni ničli, če so vse ničle realne. Konvergenca v bližini enostavne ničle je kubična. Metoda najde tudi kompleksne ničle.

REDUKCIJA POLINOMA: Imamo eno ničlo, radi bi jo faktorizirali ven. Poznamo obratno in direktno redukcijo, pri katerih je stabilno izločati ničle v padajočem in naraščajočem vrstnem redu po absolutni vrednosti. V praksi uporabimo kombinirano metodo: do nekega r uporabimo z ene strani obratno, z druge pa direktno. Ta r izberemo tako, da je $|\alpha^r a_{n-r}|$ maksimalen.

DURAND-KERNERJEVA METODA: Iščemo vse ničle naenkrat: $x_k^{(r+1)} = x_k^{(r)} - \frac{p(x_k^{(r)})}{\prod_{\substack{j=1 \ j \neq k}}^{n} (x_k^{(r)} - x_j^{(r)})}$. Kvadratična konver-

genca. Za kompleksne ničle je treba začeti s kompleksnimi približki.

Linearni sistemi

Nelinearni sistemi

Problem najmanjših kvadratov

Lastne vrednosti

Interpolacija

Integriranje