Discrete Optimization

Quentin Louveaux

ULg - Institut Montefiore

2016

We consider several concepts that can be well modeled by integer programs

Binary choice

A choice between 2 alternatives is modeled through a 0,1-variable.

Example

The knapsack problem

maximize
$$\sum_{i=1}^n c_i x_i$$

subject to $\sum_{i=1}^n a_i x_i \leq b$
 $x_i \in \{0,1\}$ for all $i=1,\ldots,n$.

Forcing constraints

If decision B is taken then decision A must be taken.

x = 1 if decision A is taken

x = 0 otherwise

y = 1 if decision B is taken

v = 0 otherwise

The constraint reads

 $y \leq x$

Example Facility location problem

Disjunctive constraints

Consider $x \ge 0$, $a \ge 0$, $c \ge 0$. We want to model an OR constraint :

$$a^T x \ge b$$
 or $c^T x \ge d$

We introduce a variable $y \in \{0,1\}$ that represents whether constraint 1 or constraint 2 is satisfied.

$$a^T x \ge yb$$
 and $c^T x \ge (1-y)d$.

2016

Disjunctive constraints

Consider $x \ge 0$, $a \ge 0$, $c \ge 0$. We want to model an OR constraint :

$$a^T x \ge b$$
 or $c^T x \ge d$

We introduce a variable $y \in \{0,1\}$ that represents whether constraint 1 or constraint 2 is satisfied.

$$a^T x \ge yb$$
 and $c^T x \ge (1-y)d$.

Disjunctive constraints

Consider $x \ge 0, a \ge 0, c \ge 0$. We want to model an OR constraint :

$$a^T x \ge b$$
 or $c^T x \ge d$

We introduce a variable $y \in \{0,1\}$ that represents whether constraint 1 or constraint 2 is satisfied.

$$a^T x \ge yb$$
 and $c^T x \ge (1 - y)d$.

Restricted range of values

Suppose we want to formulate $x \in \{a_1, a_2, \dots, a_m\}$.

We introduce m binary variables y_i .

$$x = \sum_{j=1}^{m} a_j y_j, \quad \sum_{j=1}^{m} y_j = 1, \quad y_j \in \{0, 1\}$$

Restricted range of values

Suppose we want to formulate $x \in \{a_1, a_2, \dots, a_m\}$.

We introduce m binary variables y_i .

$$x = \sum_{j=1}^{m} a_j y_j, \quad \sum_{j=1}^{m} y_j = 1, \quad y_j \in \{0, 1\}$$

Arbitrary piecewise linear cost functions

Introduce $y_i \in \{0,1\}$ such that

$$y_i = 1$$
 if $x \in [a_i, a_{i+1}]$
 $y_i = 0$ if $x \notin [a_i, a_{i+1}]$

Arbitrary piecewise linear cost functions

Introduce $y_i \in \{0,1\}$ such that

$$y_i = 1$$
 if $x \in [a_i, a_{i+1}]$

$$y_i = 0$$
 if $x \notin [a_i, a_{i+1}]$

Guidelines for strong formulation

The linear relaxation

Given

min
$$c^T x + d^T y$$

s.t. $Ax + By = b$
 $x, y \ge 0$
 $x \in \mathbb{Z}^n$.

Its linear relaxation is defined as

min
$$c^T x + d^T y$$

s.t. $Ax + By = b$
 $x, y \ge 0$
 $x \in \mathbb{R}^n$.

The linear relaxation gives important information about the optimal value of an integer program.

Reminder: linear programming

If the objective is linear and the constraints are linear, we talk about linear programming (LP) or linear optimization.

LP in standard form

$$\min c^{T} x$$
s.t. $Ax = b$

$$x \in \mathbb{R}_{+}^{n}$$

Definition

A polyhedron is a set $\{x \in \mathbb{R}^n | Ax \ge b\}$

A set of the form $Ax \leq b$ is also a polyhedron.

A set $\{x \in \mathbb{R}^n | Ax = b, x \ge 0\}$ is a polyhedron in standard form.

Reminder: linear programming

If the objective is linear and the constraints are linear, we talk about linear programming (LP) or linear optimization.

LP in standard form

$$\min c^{T} x$$
s.t. $Ax = b$

$$x \in \mathbb{R}_{+}^{n}$$

Definition

A polyhedron is a set $\{x \in \mathbb{R}^n | Ax \ge b\}$

A set of the form $Ax \leq b$ is also a polyhedron.

A set $\{x \in \mathbb{R}^n | Ax = b, x \ge 0\}$ is a polyhedron in standard form.

We can represent a problem in two dimensions graphically.

Example:

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1+2x_2 \le 1 \tag{2}$$

$$-x_1+x_2\leq 0 (3)$$

$$4x_1 + 3x_2 \le 12 \tag{4}$$

$$x_1, \quad x_2 \geq 0 \tag{5}$$

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1+2x_2 \le 1 \tag{2}$$

$$-x_1 + x_2 \leq 0$$
 (3)

$$4x_1 + 3x_2 \le 12 \tag{4}$$

$$x_1, \quad x_2 \ge 0 \tag{5}$$

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1 + 2x_2 \le 1 \tag{2}$$

$$-x_1+ x_2 \leq 0$$
 (3)

$$4x_1+3x_2 \le 12$$
 (4)
 $x_1, x_2 \ge 0$ (5)

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1+2x_2 \le 1 \tag{2}$$

$$-x_1+x_2 \leq 0$$
 (3)

$$4x_1+3x_2 \le 12$$
 (4)
 $x_1, x_2 \ge 0$ (5)

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1+2x_2 \le 1 \tag{2}$$

$$-x_1+ x_2 \leq 0$$
 (3)

$$4x_1+3x_2 \le 12$$
 (4)
 $x_1, x_2 \ge 0$ (5)

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1+2x_2 \le 1 \tag{2}$$

$$-x_1 + x_2 \le 0 (3)$$

$$4x_1+3x_2 \le 12$$
 (4)
 $x_1, x_2 \ge 0$ (5)

Extreme points and vertices

Definition

Let P be a polyhedron. A point $x \in P$ is an extreme point of P if there do not exist two points $y, z \in P$ such that x is a convex combination of y and z.

Definition

Let P be a polyhedron. A point $x \in P$ is a vertex of P if there exists $c \in \mathbb{R}^n$ such that $c^T x < c^T y$ for all $y \in P$ and $y \neq x$.

Extreme points and vertices

Definition

Let P be a polyhedron. A point $x \in P$ is an extreme point of P if there do not exist two points $y, z \in P$ such that x is a convex combination of y and z.

Definition

Let P be a polyhedron. A point $x \in P$ is a vertex of P if there exists $c \in \mathbb{R}^n$ such that $c^T x < c^T y$ for all $y \in P$ and $y \neq x$.

In the example we had a unique solution at a vertex of the polyhedron. Some degenerate cases can lead to different solutions.

11 / 14

$$\max_{\mathbf{x}_1, \mathbf{x}_2 \leq 1} x_1, x_2 \leq 1$$

$$x_1, x_2 \geq 0$$

Bases of a polyhedron

We subdivide the equalities and inequalities into three categories :

$$a_i^T x \ge b_i$$
 $i \in M_{\ge}$
 $a_i^T x \le b_i$ $i \in M_{\le}$
 $a_i^T x = b_i$ $i \in M_{=}$

Definition

Let \bar{x} be a point satisfying $a_i^T \bar{x} = b_i$ for some $i \in M_{\geq}, M_{\leq}$ or $M_{=}$. The constraint i is said to be active or tight.

Bases of a polyhedron

Definition

Let P be a polyhedron and let $\bar{x} \in \mathbb{R}^n$.

- (a) \bar{x} is a basic solution if
 - ▶ all equalities ($i \in M_=$) are active
 - among the active constraints, there are *n* linearly independent
- (b) if \bar{x} is a basic solution that satisfies all constraints, then \bar{x} is a feasible basic solution.

Theorem

Let P be a polyhedron and let $\bar{x} \in P$. The three following statements are equivalent.

- (i) \bar{x} is a vertex
- (ii) \bar{x} is an extreme point
- (iii) \bar{x} is a basic feasible solution

Bases of a polyhedron

Definition

Let P be a polyhedron and let $\bar{x} \in \mathbb{R}^n$.

- (a) \bar{x} is a basic solution if
 - ▶ all equalities ($i \in M_=$) are active
 - among the active constraints, there are *n* linearly independent
- (b) if \bar{x} is a basic solution that satisfies all constraints, then \bar{x} is a feasible basic solution.

Theorem

Let P be a polyhedron and let $\bar{x} \in P$. The three following statements are equivalent.

- (i) \bar{x} is a vertex
- (ii) \bar{x} is an extreme point
- (iii) \bar{x} is a basic feasible solution

• The problem

$$\begin{aligned} & \text{min } c^T x \\ & \text{subject to } a_{(i)}^T x \leq b_{(i)} \qquad i = 1, \dots, m \\ & x \in \mathbb{R}_+^{\kappa} \end{aligned}$$

can be solved efficiently both in theory and in practice.

Problems with thousands of variables and constraints can be solved in seconds.

- An optimal solution can always be found among vertices
- The simplex algorithm always outputs a vertex as an optimal solution.
- If you add a new constraint to the problem, you can reoptimize very quickly using the simplex algorithm.

The problem

$$\begin{aligned} & \text{min } c^T x \\ & \text{subject to } a_{(i)}^T x \leq b_{(i)} \qquad i = 1, \dots, m \\ & x \in \mathbb{R}_+^{\kappa} \end{aligned}$$

can be solved efficiently both in theory and in practice.

Problems with thousands of variables and constraints can be solved in seconds.

- An optimal solution can always be found among vertices
- The simplex algorithm always outputs a vertex as an optimal solution.
- If you add a new constraint to the problem, you can reoptimize very quickly using the simplex algorithm.

14 / 14

The problem

$$\begin{aligned} & \text{min } c^T x \\ & \text{subject to } a_{(i)}^T x \leq b_{(i)} \qquad i = 1, \dots, m \\ & x \in \mathbb{R}_+^{\ltimes} \end{aligned}$$

can be solved efficiently both in theory and in practice.

Problems with thousands of variables and constraints can be solved in seconds.

- An optimal solution can always be found among vertices
- The simplex algorithm always outputs a vertex as an optimal solution.
- If you add a new constraint to the problem, you can reoptimize very quickly using the simplex algorithm.

14 / 14

The problem

$$\begin{aligned} & \text{min } c^T x \\ & \text{subject to } a_{(i)}^T x \leq b_{(i)} \qquad i = 1, \dots, m \\ & x \in \mathbb{R}_+^K \end{aligned}$$

can be solved efficiently both in theory and in practice.

Problems with thousands of variables and constraints can be solved in seconds.

- An optimal solution can always be found among vertices
- The simplex algorithm always outputs a vertex as an optimal solution.
- If you add a new constraint to the problem, you can reoptimize very quickly using the simplex algorithm.