

Positive voltage regulator ICs

Datasheet - production data

Features

- Output current up to 1.5 A
- Output voltages of 5; 6; 8; 8.5; 9; 12; 15; 18; 24 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection
- 2 % output voltage tolerance (A version)
- Guaranteed in extended temperature range (A version)

Description

The L78 series of three-terminal positive regulators is available in TO-220, TO-220FP, D2PAK and DPAK packages and several fixed output voltages, making it useful in a wide range of applications.

These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type embeds internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Contents

1	Diagram 5
2	Pin configuration 6
3	Maximum ratings
4	Test circuits 8
5	Electrical characteristics9
6	Application information
	6.1 Design consideration
7	Typical performance
8	Package mechanical data
9	Packaging mechanical data 52
10	Order codes
11	Revision history

List of tables

Table 1.	Absolute maximum ratings	7
Table 2.	Thermal data	7
Table 3.	Electrical characteristics of L7805A	9
Table 4.	Electrical characteristics of L7806A	. 10
Table 5.	Electrical characteristics of L7808A	. 11
Table 6.	Electrical characteristics of L7809A	. 12
Table 7.	Electrical characteristics of L7812A	. 13
Table 8.	Electrical characteristics of L7815A	. 14
Table 9.	Electrical characteristics of L7824A	. 15
Table 10.	Electrical characteristics of L7805C	. 16
Table 11.	Electrical characteristics of L7806C	
Table 12.	Electrical characteristics of L7808C	. 18
Table 13.	Electrical characteristics of L7885C	. 19
Table 14.	Electrical characteristics of L7809C	. 20
Table 15.	Electrical characteristics of L7812C	. 21
Table 16.	Electrical characteristics of L7815C	
Table 17.	Electrical characteristics of L7818C	
Table 18.	Electrical characteristics of L7824C	. 24
Table 19.	TO-220 (dual gauge) mechanical data	. 39
Table 20.	TO-220 SG (single gauge) mechanical data	. 41
Table 21.	TO-220FP mechanical data	. 43
Table 22.	DPAK mechanical data	. 45
Table 23.	D ² PAK (SMD 2L STD-ST) mechanical data	. 48
Table 24.	D ² PAK (SMD 2L Wooseok-subcon.) mechanical data	. 50
Table 25.	DPAK and D2PAK tape and reel mechanical data	. 54
Table 26.	Order codes	. 55
Table 27.	Document revision history	57

List of figures

Figure 1.	Block diagram	
Figure 2.	Pin connections (top view)	6
Figure 3.	Schematic diagram	6
Figure 4.	Application circuits	7
Figure 5.	DC parameter	8
Figure 6.	Load regulation	8
Figure 7.	Ripple rejection	8
Figure 8.	Fixed output regulator	. 25
Figure 9.	Current regulator	. 26
Figure 10.	Circuit for increasing output voltage	
Figure 11.	Adjustable output regulator (7 to 30 V)	
Figure 12.	0.5 to 10 V regulator	
Figure 13.	High current voltage regulator	
Figure 14.	High output current with short circuit protection	
Figure 15.	Tracking voltage regulator	
Figure 16.	Split power supply (± 15 V - 1 A)	
Figure 17.	Negative output voltage circuit	
Figure 18.	Switching regulator	
Figure 19.	High input voltage circuit (configuration 1)	
Figure 20.	High input voltage circuit (configuration 2)	
Figure 21.	High input and output voltage	
Figure 22.	Reducing power dissipation with dropping resistor	
Figure 23.	Remote shutdown	
Figure 24.	Power AM modulator (unity voltage gain, I _O £ 0.5)	
Figure 25.	Adjustable output voltage with temperature compensation	
Figure 26.	Light controllers (V _{O(min)} = V _{XX} + V _{BE})	
Figure 27.	Protection against input short-circuit with high capacitance loads	
Figure 28.	Dropout voltage vs. junction temperature	
Figure 29.	Peak output current vs. input/output differential voltage	
Figure 30.	Supply voltage rejection vs. frequency	
Figure 31.	Output voltage vs. junction temperature	
Figure 32.	Output impedance vs. frequency	
Figure 33.	Quiescent current vs. junction temp.	
Figure 34.	Load transient response	
Figure 35.	Line transient response	
Figure 36.	Quiescent current vs. input voltage	
Figure 37.	TO-220 (dual gauge) drawing	
Figure 38.	TO-220 SG (single gauge) drawing	
Figure 39.	TO-220FP drawing	
Figure 40.	DPAK drawing	
Figure 41.	DPAK footprint	
Figure 42.	D ² PAK (SMD 2L STD-ST) type A drawing	
Figure 43.	D²PAK (SMD 2L Wooseok-subcon.) drawing	
Figure 44.	D²PAK (SMD 2L Wooseok-subcon.) footprint	
Figure 45.	Tube for TO-220 (dual gauge) (mm.)	
Figure 46.	Tube for TO-220 (dual gauge) (mm.)	
Figure 47.	Tape for DPAK and D ² PAK	
Figure 47.	Reel for DPAK and D ² PAK	. 53

1 Diagram

۷_I V_{0} SERIES PASS ELEMENT CURRENT SOA PROTECTION GENERATOR STARTING REFERENCE ERROR CIRCUIT VOLTAGE AMPLIFIER THERMAL PROTECTION GND CS22280

Figure 1. Block diagram

2 Pin configuration

Figure 2. Pin connections (top view)

Figure 3. Schematic diagram

57

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter		Value	Unit
	DC input voltage	for V _O = 5 to 18 V	35	V
V _I	DC input voltage	for V _O = 20, 24 V	40	V
Io	Output current	Internally limited		
P _D	Power dissipation	Internally limited		
T _{STG}	Storage temperature range		-65 to 150	°C
_	Operating junction temperature range	for L78xxC, L78xxAC	0 to 125	°C
T _{OP}	Operating junction temperature range	for L78xxAB	-40 to 125	C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2. Thermal data

Symbol	Parameter	D²PAK	DPAK	TO-220	TO-220FP	Unit
R _{thJC}	Thermal resistance junction-case	3	8	5	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	100	50	60	°C/W

Figure 4. Application circuits

4 Test circuits

Figure 5. DC parameter

Figure 6. Load regulation

Figure 7. Ripple rejection

577

5 Electrical characteristics

 V_I = 10 V, I_O = 1 A, T_J = 0 to 125 °C (L7805AC), T_J = -40 to 125 °C (L7805AB), unless otherwise specified $^{\rm (a)}$.

Table 3. Electrical characteristics of L7805A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	4.9	5	5.1	V
Vo	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 7.5 \text{ to 18 V}$	4.8	5	5.2	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 18 \text{ to } 20 \text{ V}, T_J = 25^{\circ}\text{C}$	4.8	5	5.2	V
		$V_I = 7.5 \text{ to } 25 \text{ V}, I_O = 500 \text{ mA}, T_J = 25^{\circ}\text{C}$		7	50	mV
AV (1)	Line regulation	V _I = 8 to 12 V		10	50	mV
ΔνΟζ	Line regulation	V _I = 8 to 12 V, T _J = 25°C		2	25	mV
		V _I = 7.3 to 20 V, T _J = 25°C		7	50	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25°C		30	100	mV
		I _O = 250 to 750 mA		8	50	
-	Quiescent current	T _J = 25°C		4.3	6	mA
'q	Quiescent current				6	mA
		$V_{I} = 8 \text{ to } 23 \text{ V}, I_{O} = 500 \text{ mA}$			0.8	mA
ΔI_q	Quiescent current change	V _I = 7.5 to 20 V, T _J = 25°C			0.8	mA
$\begin{array}{c} V_{O} \\ V_{O} \\ \end{array}$		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	$V_1 = 8 \text{ to } 18 \text{ V}, f = 120 \text{ Hz}, I_O = 500 \text{ mA}$		68		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	$T_A = 25$ °C, B =10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output voltage drift			-1.1		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

a. Minimum load current for regulation is 5 mA.

DocID2143 Rev 32 9/58

 $\rm V_I$ = 11 V, $\rm I_O$ = 1 A, $\rm T_J$ = 0 to 125 °C (L7806AC), $\rm T_J$ = -40 to 125 °C (L7806AB), unless otherwise specified $^{(b)}$.

Table 4. Electrical characteristics of L7806A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	5.88	6	6.12	V
Vo	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 8.6 \text{ to 19 V}$	5.76	6	6.24	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 19 \text{ to } 21 \text{ V}, T_J = 25^{\circ}\text{C}$	5.76	6	6.24	V
		$V_I = 8.6 \text{ to } 25 \text{ V}, I_O = 500 \text{ mA}, T_J = 25^{\circ}\text{C}$		9	60	mV
ΔV _O ⁽¹⁾	Line regulation	V _I = 9 to 13 V		11	60	mV
Δνο	Line regulation	V _I = 9 to 13 V, T _J = 25°C		3	30	mV
		V _I = 8.3 to 21 V, T _J = 25°C		9	60	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C		30	100	mV
		I _O = 250 to 750 mA		10	50	
,	Quiescent current	T _J = 25°C		4.3	6	mA
l _q	Quiescent current				6	mA
		V _I = 9 to 24 V, I _O = 500 mA			0.8	mA
Δl_q	Quiescent current change	V _I = 8.6 to 21 V, T _J = 25°C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	$V_1 = 9 \text{ to } 19 \text{ V}, f = 120 \text{ Hz}, I_O = 500 \text{ mA}$		65		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	$T_A = 25$ °C, B =10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output voltage drift			-0.8		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

b. Minimum load current for regulation is 5 mA.

 $\rm V_I$ = 14 V, $\rm I_O$ = 1 A, $\rm T_J$ = 0 to 125 °C (L7808AC), $\rm T_J$ = -40 to 125 °C (L7808AB), unless otherwise specified $^{\rm (c)}$.

Table 5. Electrical characteristics of L7808A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	7.84	8	8.16	V
Vo	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 10.6 \text{ to 21 V}$	7.7	8	8.3	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 21 \text{ to } 23 \text{ V}, T_J = 25^{\circ}\text{C}$	7.7	8	8.3	V
		$V_I = 10.6 \text{ to } 25 \text{ V}, I_O = 500 \text{ mA}, $ $T_J = 25^{\circ}\text{C}$		12	80	mV
ΔV _O ⁽¹⁾	Line regulation	V _I = 11 to 17 V		15	80	mV
		V _I = 11 to 17 V, T _J = 25°C		5	40	mV
		V _I = 10.4 to 23 V, T _J = 25°C		12	80	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_0^{(1)}$	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$		30	100	mV
		I _O = 250 to 750 mA		10	50	
,	Quiescent current	T _J = 25°C		4.3	6	mA
'q	Quiescent current				6	mA
		V _I = 11 to 23 V, I _O = 500 mA			0.8	mA
Δl_{q}	Quiescent current change	V _I = 10.6 to 23 V, T _J = 25°C			0.8	mA
V_{O} V_{O} $\Delta V_{O}^{(1)}$ I_{q}		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz, I _O = 500 mA		62		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	T _A = 25°C, B =10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_O/\Delta T$	Output voltage drift			-0.8		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

c. Minimum load current for regulation is 5 mA.

DocID2143 Rev 32

 $\rm V_I$ = 15 V, $\rm I_O$ = 1 A, $\rm T_J$ = 0 to 125 °C (L7809AC), $\rm T_J$ = -40 to 125 °C (L7809AB), unless otherwise specified $^{\rm (d)}$.

Table 6. Electrical characteristics of L7809A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	8.82	9	9.18	V
V _O	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 10.6 \text{ to } 22 \text{ V}$	8.65	9	9.35	V
V _O	Output voltage	$I_O = 1 \text{ A}, V_I = 22 \text{ to } 24 \text{ V}, T_J = 25^{\circ}\text{C}$	8.65	9	9.35	V
		$V_I = 10.6 \text{ to } 25 \text{ V}, I_O = 500 \text{ mA}, $ $T_J = 25^{\circ}\text{C}$		12	90	mV
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 11 to 17 V		15	90	mV
		V _I = 11 to 17 V, T _J = 25°C		5	45	mV
		V _I = 11.4 to 23 V, T _J = 25°C		12	90	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25°C		30	100	mV
		I _O = 250 to 750 mA		10	50	
	Quiescent current	T _J = 25°C		4.3	6	mA
Iq	Quiescent current				6	mA
		V _I = 11 to 25 V, I _O = 500 mA			0.8	mA
ΔI_q	Quiescent current change	V _I = 10.6 to 23 V, T _J = 25°C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz, I _O = 500 mA		61		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	T _A = 25°C, B =10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output voltage drift			-0.8		mV/°C

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

d. Minimum load current for regulation is 5 mA.

 $\rm V_I$ = 19 V, $\rm I_O$ = 1 A, $\rm T_J$ = 0 to 125 °C (L7812AC), $\rm T_J$ = -40 to 125 °C (L7812AB), unless otherwise specified $^{\rm (e)}$.

Table 7. Electrical characteristics of L7812A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	11.75	12	12.25	V
V _O	Output voltage	$I_O = 5$ mA to 1 A, $V_I = 14.8$ to 25 V	11.5	12	12.5	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 25 \text{ to } 27 \text{ V}, T_J = 25^{\circ}\text{C}$	11.5	12	12.5	V
		$V_I = 14.8 \text{ to } 30 \text{ V}, I_O = 500 \text{ mA}, \\ T_J = 25 ^{\circ}\text{C}$		13	120	mV
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 16 to 12 V		16	120	mV
$\Delta V_{O}^{(1)}$ $\Delta V_{O}^{(1)}$ I_{q} ΔI_{q} SVR		$V_I = 16 \text{ to } 12 \text{ V}, T_J = 25^{\circ}\text{C}$		6	60	mV
		V _I = 14.5 to 27 V, T _J = 25°C		13	120	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25$ °C		30	100	mV
		I _O = 250 to 750 mA		10	50	
1	Quiescent current	T _J = 25°C		4.4	6	mA
' q	Quiescent current				6	mA
		V _I = 15 to 30 V, I _O = 500 mA			0.8	mA
Δl_{q}	Quiescent current change	V _I = 14.8 to 27 V, T _J = 25°C			0.8	mA
l _q		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	$V_1 = 15 \text{ to } 25 \text{ V}, f = 120 \text{ Hz}, I_0 = 500 \text{ mA}$		60		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	$T_A = 25$ °C, B = 10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output voltage drift			-1		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

e. Minimum load current for regulation is 5 mA.

DocID2143 Rev 32

 $\rm V_I$ = 23 V, $\rm I_O$ = 1 A, $\rm T_J$ = 0 to 125 °C (L7815AC), $\rm T_J$ = -40 to 125 °C (L7815AB), unless otherwise specified^(f).

Table 8. Electrical characteristics of L7815A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	14.7	15	15.3	V
V _O	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 17.9 \text{ to 28 V}$	14.4	15	15.6	V
V _O	Output voltage	$I_O = 1 \text{ A}, V_I = 28 \text{ to } 30 \text{ V}, T_J = 25^{\circ}\text{C}$	14.4	15	15.6	V
		$V_I = 17.9 \text{ to } 30 \text{ V}, I_O = 500 \text{ mA},$ $T_J = 25^{\circ}\text{C}$		13	150	mV
ΔV _O ⁽¹⁾	Line regulation	V _I = 20 to 26 V		16	150	mV
		$V_I = 20 \text{ to } 26 \text{ V}, T_J = 25^{\circ}\text{C}$		6	75	mV
		V _I = 17.5 to 30 V, T _J = 25°C		13	150	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$		30	100	mV
		I _O = 250 to 750 mA		10	50	
1	Quiescent current	T _J = 25°C		4.4	6	mA
I _q	Quiescent current				6	mA
		$V_{I} = 17.5 \text{ to } 30 \text{ V}, I_{O} = 500 \text{ mA}$			0.8	mA
Δl_{q}	Quiescent current change	V _I = 17.5 to 30 V, T _J = 25°C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120 Hz, I _O = 500 mA		58		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	T _A = 25°C, B = 10Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output voltage drift			-1		mV/°C

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

f. Minimum load current for regulation is 5 mA.

 $\rm V_I$ = 33 V, $\rm I_O$ = 1 A, $\rm T_J$ = 0 to 125 °C (L7824AC), $\rm T_J$ = -40 to 125 °C (L7824AB), unless otherwise specified $^{(g)}$.

Table 9. Electrical characteristics of L7824A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	23.5	24	24.5	V
Vo	Output voltage	$I_{O} = 5$ mA to 1 A, $V_{I} = 27.3$ to 37 V	23	24	25	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 37 \text{ to } 38 \text{ V}, T_J = 25^{\circ}\text{C}$	23	24	25	V
		$V_{I} = 27 \text{ to } 38 \text{ V}, I_{O} = 500 \text{ mA}, T_{J} = 25^{\circ}\text{C}$		31	240	mV
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 30 to 36 V		35	200	mV
Δνο	Line regulation	V _I = 30 to 36 V, T _J = 25°C		14	120	mV
		V _I = 26.7 to 38 V, T _J = 25°C		31	240	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_0^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25$ °C		30	100	mV
		I _O = 250 to 750 mA		10	50	
,	Quiescent current	T _J = 25°C		4.6	6	mA
Iq	Quiescent current				6	mA
		$V_{I} = 27.3 \text{ to } 38 \text{ V}, I_{O} = 500 \text{ mA}$			0.8	mA
Δl_{q}	Quiescent current change	V _I = 27.3 to 38 V, T _J = 25°C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	$V_1 = 28 \text{ to } 38 \text{ V}, f = 120 \text{ Hz}, I_0 = 500 \text{ mA}$		54		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	T _A = 25°C, B = 10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		20		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output voltage drift			-1.5		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

g. Minimum load current for regulation is 5 mA.

DocID2143 Rev 32

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = 10 V, I $_O$ = 500 mA, C $_I$ = 0.33 $\mu F,$ C $_O$ = 0.1 μF unless otherwise specified $^{(h)}$.

Table 10. Electrical characteristics of L7805C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	4.8	5	5.2	V
Vo	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 7 \text{ to 18 V}$	4.75	5	5.25	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 18 \text{ to } 20\text{V}, T_J = 25^{\circ}\text{C}$	4.75	5	5.25	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 7 to 25 V, T _J = 25°C		3	100	- mV
ΔνΟ, ,	Line regulation	V _I = 8 to 12 V, T _J = 25°C		1	50	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			100	m\/
ΔνΟ, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			50	- mV
I _d	Quiescent current	T _J = 25°C			8	mA
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	m A
Δl_{d}		V _I = 7 to 23 V			0.8	- mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-1.1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		40		μV/V _O
SVR	Supply voltage rejection	V _I = 8 to 18 V, f = 120 Hz	62			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

h. Minimum load current for regulation is 5 mA.

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 11 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified⁽ⁱ⁾.

Table 11. Electrical characteristics of L7806C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	5.75	6	6.25	V
Vo	Output voltage	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 8 \text{ to 19 V}$	5.7	6	6.3	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 19 \text{ to } 21 \text{ V}, T_J = 25^{\circ}\text{C}$	5.7	6	6.3	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 8 to 25 V, T _J = 25°C			120	mV
ΔνΟ, ,	Line regulation	V _I = 9 to 13 V, T _J = 25°C			60	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			120	mV
Δνο, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			60	
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
Δl _d		V _I = 8 to 24 V			1.3	
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		45		μV/V _O
SVR	Supply voltage rejection	V _I = 9 to 19 V, f = 120 Hz	59			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.55		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

i. Minimum load current for regulation is 5 mA.

DocID2143 Rev 32 17/58

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 14 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified^(j).

Table 12. Electrical characteristics of L7808C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	7.7	8	8.3	V
Vo	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 10.5 \text{ to 21 V}$	7.6	8	8.4	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 21 \text{ to } 25 \text{ V}, T_J = 25^{\circ}\text{C}$	7.6	8	8.4	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 10.5 to 25 V, T _J = 25°C			160	- mV
ΔνΟ, ,	Line regulation	V _I = 11 to 17 V, T _J = 25°C			80	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			160	m\/
Δνος	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			80	- mV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
Δl _d		V _I = 10.5 to 25 V			1	
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		52		μV/V _O
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz	56			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		16		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.45		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

j. Minimum load current for regulation is 5 mA.

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 14.5 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified^(k).

Table 13. Electrical characteristics of L7885C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	8.2	8.5	8.8	V
Vo	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 11 \text{ to 21.5 V}$	8.1	8.5	8.9	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 21.5 \text{ to } 26 \text{ V}, T_J = 25^{\circ}\text{C}$	8.1	8.5	8.9	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 11 to 27 V, T _J = 25°C			160	mV
ΔνΟ, ,	Line regulation	V _I = 11.5 to 17.5 V, T _J = 25°C			80	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			160	mV
ΔνΟ, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			80	
I _d	Quiescent current	T _J = 25°C			8	mA
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	m 1
Δl_{d}		V _I = 11 to 26 V			1	- mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		55		μV/V _O
SVR	Supply voltage rejection	V _I = 12 to 22 V, f = 120 Hz	56			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		16		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.45		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

k. Minimum load current for regulation is 5 mA.

DocID2143 Rev 32 19/58

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 15 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified^(I).

Table 14. Electrical characteristics of L7809C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	8.64	9	9.36	V
Vo	Output voltage	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 11.5 \text{ to } 22 \text{ V}$	8.55	9	9.45	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 22 \text{ to } 26 \text{ V}, T_J = 25^{\circ}\text{C}$	8.55	9	9.45	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 11.5 to 26 V, T _J = 25°C			180	mV
Δνοί	Line regulation	V _I = 12 to 18 V, T _J = 25°C			90	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			180	- mV
Δνοί	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			90	
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
Δl _d		V _I = 11.5 to 26 V			1	
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		70		μV/V _O
SVR	Supply voltage rejection	V _I = 12 to 23 V, f = 120 Hz	55			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.40		Α
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

I. Minimum load current for regulation is 5 mA.

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = 19 V, I $_O$ = 500 mA, C $_I$ = 0.33 $\mu F,$ C $_O$ = 0.1 μF unless otherwise specified $^{(m)}$.

Table 15. Electrical characteristics of L7812C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	11.5	12	12.5	V
Vo	Output voltage	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 14.5 \text{ to } 25 \text{ V}$	11.4	12	12.6	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 25 \text{ to } 27 \text{ V}, T_J = 25^{\circ}\text{C}$	11.4	12	12.6	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 14.5 to 30 V, T _J = 25°C			240	mV
ΔνΟ, ,	Line regulation	V _I = 16 to 22 V, T _J = 25°C			120	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			240	mV
ΔνΟ, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			120	
I _d	Quiescent current	T _J = 25°C			8	mA
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	m 1
Δl_{d}		V _I = 14.5 to 30 V			1	- mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		75		μV/V _O
SVR	Supply voltage rejection	V _I = 15 to 25 V, f = 120 Hz	55			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.35		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

m. Minimum load current for regulation is 5 mA.

DocID2143 Rev 32 21/58

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 23 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified⁽ⁿ⁾.

Table 16. Electrical characteristics of L7815C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	14.4	15	15.6	V
Vo	Output voltage	$I_O = 5 \text{ mA to } 1 \text{ A}, V_I = 17.5 \text{ to } 28 \text{ V}$	14.25	15	15.75	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 28 \text{ to } 30 \text{ V}, T_J = 25^{\circ}\text{C}$	14.25	15	15.75	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 17.5 to 30 V, T _J = 25°C			300	mV
ΔνΟ, ,	Line regulation	$V_{I} = 20 \text{ to } 26 \text{ V}, T_{J} = 25^{\circ}\text{C}$			150	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			300	m\/
Δνο, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			150	- mV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Quiescent current change	I _O = 5 mA to 1A			0.5	m Λ
Δl _d		V _I = 17.5 to 30 V			1	- mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100kHz, T _J = 25°C		90		μV/V _O
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120 Hz	54			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.23		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

n. Minimum load current for regulation is 5 mA.

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = 26 V, I $_O$ = 500 mA, C $_I$ = 0.33 $\mu F,$ C $_O$ = 0.1 μF unless otherwise specified $^{(o)}$.

Table 17. Electrical characteristics of L7818C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	17.3	18	18.7	V
Vo	Output voltage	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 21 \text{ to 31 V}$	17.1	18	18.9	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 31 \text{ to } 33 \text{ V}, T_J = 25^{\circ}\text{C}$	17.1	18	18.9	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 21 to 33 V, T _J = 25°C			360	mV
ΔνΟ, ,	Line regulation	V _I = 24 to 30 V, T _J = 25°C			180	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			360	mV
Δνο, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			180	
I _d	Quiescent current	T _J = 25°C			8	mA
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	m 1
Δl _d		V _I = 21 to 33 V			1	- mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		110		μV/V _O
SVR	Supply voltage rejection	V _I = 22 to 32 V, f = 120 Hz	53			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		22		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.20		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

o. Minimum load current for regulation is 5 mA.

DocID2143 Rev 32 23/58

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 33 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified^(p).

Table 18. Electrical characteristics of L7824C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	23	24	25	V
Vo	Output voltage	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 27 \text{ to } 37 \text{ V}$	22.8	24	25.2	V
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 37 \text{ to } 38 \text{ V}, T_J = 25^{\circ}\text{C}$	22.8	24	25.2	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 27 to 38 V, T _J = 25°C			480	- mV
ΔνΟ, ,	Line regulation	V _I = 30 to 36 V, T _J = 25°C			240	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			480	m\/
Δνοί	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			240	- mV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Quiescent current change	I _O = 5 mA to 1 A			0.5	A
Δl _d		V _I = 27 to 38 V			1	- mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1.5		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		170		μV/V _O
SVR	Supply voltage rejection	V _I = 28 to 38 V, f = 120 Hz	50			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		28		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.15		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

p. Minimum load current for regulation is 5 mA.

6 Application information

6.1 Design consideration

The L78 Series of fixed voltage regulators are designed with thermal overload protection that shuts down the circuit when subjected to an excessive power overload condition, internal short-circuit protection that limits the maximum current the circuit will pass, and output transistor safe-area compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with capacitor if the regulator is connected to the power supply filter with long lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33 μF or larger tantalum, mylar or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtained with the arrangement is 2 V greater than the regulator voltage.

The circuit of *Figure 13* can be modified to provide supply protection against short circuit by adding a short circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three terminal regulator Therefore a four ampere plastic power transistor is specified.

Figure 8. Fixed output regulator

- 1. Although no output capacitor is need for stability, it does improve transient response.
- 2. Required if regulator is located an appreciable distance from power supply filter.

Figure 9. Current regulator

Figure 10. Circuit for increasing output voltage

57

V_I ο V_O

0.33μF

0.1μF

10ΚΩ

Figure 11. Adjustable output regulator (7 to 30 V)

 $R_{1} = \frac{V_{BEQ1}}{I_{REQ} \cdot (I_{Q1}/I_{DQ1})}$ $I_{O} = I_{REG} + Q_{1} \cdot (I_{REG} \frac{V_{BEQ1}}{R_{1}})$ Q1 BD536 $R_{1} = \frac{V_{BEQ1}}{I_{REG}} = \frac{V_{BEQ1}}{I_{O1}}$ Q1 BD536 Q2 BD536 Q3 BD536 Q3 BD536 Q3 BD536 Q4 BD536 Q5 BD556 Q5 BD556 Q5 BD556 Q5

Figure 13. High current voltage regulator

Figure 14. High output current with short circuit protection

577

Figure 15. Tracking voltage regulator

Figure 16. Split power supply (± 15 V - 1 A)

^{*} Against potential latch-up problems.

0.1 µF

S-2691/1

L78

Figure 17. Negative output voltage circuit

Figure 19. High input voltage circuit (configuration 1)

V₁ 0.33μF 0.1μF ______ 0.525330

Figure 20. High input voltage circuit (configuration 2)

Figure 21. High input and output voltage

Figure 22. Reducing power dissipation with dropping resistor

Figure 23. Remote shutdown

Figure 24. Power AM modulator (unity voltage gain, $I_{O} \le 0.5$)

Note: The circuit performs well up to 100 kHz.

Figure 25. Adjustable output voltage with temperature compensation

Note:

 Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow rise time of the V_O .

Figure 26. Light controllers $(V_{O(min)} = V_{XX} + V_{BE})$

Figure 27. Protection against input short-circuit with high capacitance loads

Note:

Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see Figure 22 on page 31) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the base-emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

477

7 Typical performance

Figure 28. Dropout voltage vs. junction temperature

Figure 29. Peak output current vs. input/output differential voltage

1_O (A) 2.5
2
1.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5

Figure 30. Supply voltage rejection vs. frequency

Figure 31. Output voltage vs. junction temperature

Figure 32. Output impedance vs. frequency

Figure 33. Quiescent current vs. junction temp.

Figure 34. Load transient response

Figure 35. Line transient response

Figure 36. Quiescent current vs. input voltage

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

øΡ Ε D L20 L30 b1(X3) -- b (X3) 0015988_typeA_Rev_T

Figure 37. TO-220 (dual gauge) drawing

Table 19. TO-220 (dual gauge) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

Figure 38. TO-220 SG (single gauge) drawing

577

Table 20. TO-220 SG (single gauge) mechanical data

Dim		mm	
Dim. —	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	0.51		0.60
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

Н -**-**-B− Dia L6 L2 *L7* L3 F1 F2 L4 Ε 7012510A-H

Figure 39. TO-220FP drawing

47/

Table 21. TO-220FP mechanical data

Dim.		mm.	
	Min.	Тур.	Max.
А	4.40		4.60
В	2.5		2.7
D	2.5		2.75
E	0.45		0.70
F	0.75		1
F1	1.15		1.50
F2	1.15		1.50
G	4.95		5.2
G1	2.4		2.7
Н	10.0		10.40
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
DIA.	3		3.2

E -THERMAL PAD c2 *L2* D1 Η <u>b(</u>2x) R C SEATING PLANE (L1) *V2* GAUGE PLANE 0,25 0068772_K

Figure 40. DPAK drawing

Table 22. DPAK mechanical data

	10010 221 1	mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

Figure 41. DPAK footprint (q)

57/

q. All dimensions are in millimeters

Figure 42. D²PAK (SMD 2L STD-ST) type A drawing

Table 23. D²PAK (SMD 2L STD-ST) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
E	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Figure 43. D²PAK (SMD 2L Wooseok-subcon.) drawing

Table 24. D²PAK (SMD 2L Wooseok-subcon.) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.30		4.70
A1	0		0.20
b	0.70		0.90
b2	1.17		1.37
С	0.45	0.50	0.60
c2	1.25	1.30	1.40
D	9	9.20	9.40
D1	7.50		
Е	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.08
Н	15		15.30
J1	2.20		2.60
L	1.79		2.79
L1	1		1.40
L2	1.20		1.60
R		0.30	
V2	0°		3°

50/58 DocID2143 Rev 32

Figure 44. D²PAK (SMD 2L Wooseok-subcon.) footprint

9 Packaging mechanical data

® <u>5.5</u> MARKING SIDE 11) 532 ±0.5 (c) ±0.2 | 16.3 ±0.2 © (4) (4) (5) (5) 4, 3 13 6.5 ±0.2 6.5 ±0.2 (12) 0.75 ±0.1 (1) PRINTING AREA - SEE SPEC. DOC. Nr. 0062566
PRINT HEIGHT "A" = 3mm. SECTION A-A 17 10 16) 113 (5) 14)

Figure 45. Tube for TO-220 (dual gauge) (mm.)

52/58 DocID2143 Rev 32

Figure 47. Tape for DPAK and D²PAK

Table 25. DPAK and D2PAK tape and reel mechanical data

	Таре			Reel	
Dim.	n	mm		mm	
Dilli.	Min.	Max.	— Dim.	Min.	Max.
A0	6.8	7	А		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			•
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			•
R	40				
Т	0.25	0.35			
W	15.7	16.3			

10 Order codes

Table 26. Order codes

_	Order codes							
Part numbers	TO-220 (single gauge)	TO-220 (dual gauge)	DPAK	D²PAK	TO-220FP	Output voltages		
L7805C	L7805CV		L7805CDT-TR	L7805CD2T-TR	L7805CP	5 V		
		L7805CV-DG				5 V		
L7805AB	L7805ABV			L7805ABD2T-TR	L7805ABP	5 V		
		L7805ABV-DG				5 V		
L7805AC	L7805ACV			L7805ACD2T-TR	L7805ACP	5 V		
		L7805ACV-DG				5 V		
L7806C	L7806CV			L7806CD2T-TR		6 V		
		L7806CV-DG				6 V		
L7806AB	L7806ABV			L7806ABD2T-TR		6 V		
		L7806ABV-DG				6 V		
L7806AC	L7806ACV					6 V		
		L7806ACV-DG				6 V		
L7808C	L7808CV			L7808CD2T-TR		8 V		
		L7808CV-DG				8 V		
L7808AB	L7808ABV			L7808ABD2T-TR		8 V		
		L7808ABV-DG				8 V		
L7808AC	L7808ACV					8 V		
		L7808ACV-DG				8 V		
L7885C	L7885CV					8.5 V		
L7809C	L7809CV			L7809CD2T-TR	L7809CP	9 V		
		L7809CV-DG				9 V		
L7809AB	L7809ABV			L7809ABD2T-TR		9 V		
	L7809ABV-DG					9 V		
L7809AC	L7809ACV					9 V		
L7812C	L7812CV			L7812CD2T-TR	L7812CP	12 V		
		L7812CV-DG				12 V		
L7812AB	L7812ABV			L7812ABD2T-TR		12 V		
		L7812ABV-DG				12 V		
L7812AC	L7812ACV			L7812ACD2T-TR		12 V		
		L7812ACV-DG				12 V		

Table 26. Order codes (continued)

_	Order codes							
Part numbers	TO-220 (single gauge)	TO-220 (dual gauge)	DPAK	D²PAK	TO-220FP	Output voltages		
L7815C	L7815CV			L7815CD2T-TR	L7815CP	15 V		
		L7815CV-DG				15 V		
L7815AB	L7815ABV			L7815ABD2T-TR		15 V		
		L7815ABV-DG				15 V		
L7815AC	L7815ACV			L7815ACD2T-TR		15 V		
		L7815ACV-DG				15 V		
L7818C	L7818CV					18 V		
		L7818CV-DG				18 V		
L7824C	L7824CV			L7824CD2T-TR	L7824CP	24 V		
		L7824CV-DG				24 V		
L7824AB	L7824ABV					24 V		
		L7824ABV-DG				24 V		
L7824AC	L7824ACV					24 V		
		L7824ACV-DG				24 V		

11 Revision history

Table 27. Document revision history

Date	Revision	Changes
21-Jun-2004	12	Document updating.
03-Aug-2006	13	Order codes has been updated and new template.
19-Jan-2007	14	D²PAK mechanical data has been updated and add footprint data.
31-May-2007	15	Order codes has been updated.
29-Aug-2007	16	Added <i>Table 1</i> in cover page.
11-Dec-2007	17	Modified: Table 26.
06-Feb-2008	18	Added: TO-220 mechanical data <i>Figure 38 on page 38</i> , <i>Figure 39 on page 39</i> , and <i>Table 23 on page 37</i> . Modified: <i>Table 26 on page 55</i> .
18-Mar-2008	19	Added: Table 29: DPAK mechanical data on page 50, Table 30: Tape and reel DPAK mechanical data on page 52. Modified: Table 26 on page 55.
26-Jan-2010	20	Modified Table 1 on page 1 and Table 23 on page 37, added: Figure 38 on page 38 and Figure 39 on page 39, Figure 45 on page 52 and Figure 46 on page 52.
04-Mar-2010	21	Added notes Figure 38 on page 38.
08-Sep-2010	22	Modified Table 26 on page 55.
23-Nov-2010	23	Added: $T_J = 25$ °C test condition in ΔV_O on <i>Table 3, 4, 5, 6, 7, 8</i> and <i>Table 9</i> .
16-Sep-2011	24	Modified title on page 1.
30-Nov-2011	25	Added: order codes L7805CV-DG, L7806CV-DG, L7808ABV-DG, L7812CV-DG and L7815CV-DG <i>Table 26 on page 55</i> .
08-Feb-2012	26	Added: order codes L7805ACV-DG, L7805ABV-DG, L7806ABV-DG, L7808CV-DG, L7809CV-DG, L7812ACV-DG, L7818CV-DG, L7824CV-DG <i>Table 26 on page 55.</i>
27-Mar-2012	27	Added: order codes L7812ABV-DG, L7815ABV-DG Table 26 on page 55.
27-Apr-2012	28	Modified: $V_1 = 10.4$ to 23 V ==> $V_1 = 11.4$ to 23 V test conditon value Line regulation <i>Table 6 on page 12</i> .
10-May-2012	29	Added: order codes L7806ACV-DG, L7808ACV-DG, L7815ACV-DG, L7824ABV-DG and L7824ACV-DG <i>Table 26 on page 55.</i>
19-Sep-2012	30	Modified load regulation units from V to mV in Table 3 to Table 9.
12-Mar-2013	31	Modified: V _O output voltage at 25 °C min. value 14.4 V <i>Table 16 on page 22</i> .
04-Mar-2014	32	Part numbers L78xx, L78xxC, L78xxAB, L78xxAC changed to L78. Removed TO-3 package. Updated the description in cover page, Section 2: Pin configuration, Section 3: Maximum ratings, Section 4: Test circuits, Section 5: Electrical characteristics, Section 6: Application information, Section 8: Package mechanical data and Table 26: Order codes. Added Section 9: Packaging mechanical data. Minor text changes.

57/58

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

58/58 DocID2143 Rev 32

