UNIOESTE Ciência da Computação

Sistemas Digitais Conceitos Básicos

Prof. Jorge Habib El Khouri Prof. Antonio Marcos Hachisuca

Referências Bibliográficas

- 1. Digital Fundamentals, Thomas L. Floyd; Editora: Pearson; Edição: 11; Ano: 2015;
- Sistemas Digitais Princípios e Aplicações, Ronald J. Tocci; Editora: Pearson; Edição: 11; Ano: 2011;
- 3. Computer Organization and Design, David A. Patterson; Editora: Elsevier; Edição: 1; Ano: 2017
- 4. Digital Design: Principles and Practices, John F. Wakerly; Editora: Pearson; Edição: 5; Ano: 2018;
- 5. Guide to Assembly Language Programming in Linux, Sivarama P. Dandamudi; Editora: Springer; Edição: 1; Ano: 2005.

XOR \boldsymbol{B} \boldsymbol{X}

0

0

Álgebra Booleana

0

0

 $X = A \oplus B$

 $A \oplus A = 0$

 $A \oplus \bar{A} = 1$

 $A \oplus 0 = A$

 $A \oplus 1 = \bar{A}$

OR B X B \boldsymbol{X} 0 0 0 1 0 1

0 0 1 $X = A \cdot B = AB$ $A \cdot A = A$

 $A \cdot \bar{A} = 0$

 $A \cdot 0 = 0$

 $A \cdot 1 = A$

AND

NOT

 $X = \bar{A}$

 $\bar{\bar{A}} = A$

 \overline{A}

0

Valores

Variáveis

Operadores

Expressões

 $V = \{0,1\}$

A, *B*, *CLK*, *RW*, ...

 $NOT(^-), AND(.)$

 $OR(+) e XOR(\oplus)$

 $X = (A + B) \cdot \bar{C}$

0 X = A + BA + A = A $A + \bar{A} = 1$ A + 0 = AA + 1 = 1

Álgebra Booleana

NAND				NOR				XNOR					Negative-AND				D	Negative-OR					
<i>A</i> 0 0	B 0 1	<i>X</i> 1			A 0 0	B 0 1	<i>X</i> 1 0			A 0 0	B 0 1	<i>X</i> 1 0			A 0 0	B 0 1	<i>X</i> 1 0		A)	B 0 1	<i>X</i> 1	
1	0	1			1	0	0			1	0	0			1	0	0		1		0	1	
$X = \overline{A \cdot B}$ $X = \overline{AB}$				$1 1 0$ $X = \overline{A + B}$				$X = \overline{A \oplus B}$				$X = \bar{A} \cdot \bar{B}$ $X = \bar{A}\bar{B}$					$X = \bar{A} + \bar{B}$						
										-0													

Comutativa $A + 0 = A \qquad A \cdot A = A$

A + A = A

 $A + \bar{A} = 1$

 $A \cdot 0 = 0$

Regras Básicas da Álgebra Booleana

 $A \cdot \bar{A} = 0$

A + AB = A

 $A + \bar{A}B = A + B$

(A+B)(A+C) = A+BC

 $\bar{\bar{A}} = A$

A + B = B + A AB = BA A + 1 = 1

(A+B)+C=A+(B+C)

(AB)C = A(BC)

A(B+C) = AB + AC

Associativa

Distributiva

Transformações entre Representações Lógicas

Expressão Lógica Tabela Verdade

Técnica alternativa: Desenvolver a expressão de tal forma que suas parcelas fiquem completas com todas as variáveis. Para isto aplicar as diversas regras.

$$X = (A + B) \cdot \bar{C}$$

$$X = A\bar{C} + B\bar{C}$$

$$X = A\bar{C}(B + \bar{B}) + B\bar{C}(A + \bar{A})$$
$$X = A\bar{C}B + A\bar{C}\bar{B} + B\bar{C}A + B\bar{C}\bar{A}$$

$$X = AB\bar{C} + A\bar{B}\bar{C} + AB\bar{C} + \bar{A}B\bar{C}$$

$$X = AB\bar{C} + A\bar{B}\bar{C} + \bar{A}B\bar{C}$$

Expressão Lógica → Tabela Verdade

 $X = AB\bar{C} + A\bar{B}\bar{C} + \bar{A}B\bar{C}$

 $X = (A + B) \cdot \bar{C}$

Tabela Verdade → Expressão Lógica

Soma dos Produtos - SOP

$$X = f(A, B, C)$$

$$X = \bar{A}B\bar{C} + A\bar{B}\bar{C} + AB\bar{C}$$

Tabela Verdade → Expressão Lógica

Produto das Somas - POS

$$X = (A + B + C)(A + B + \bar{C})(A + \bar{B} + \bar{C})(\bar{A} + B + \bar{C})(\bar{A} + \bar{B} + \bar{C})$$

Tabela Verdade → Expressão Lógica

Soma dos Produtos - SOP

Exemplo

Expressão Lógica Circuito Lógico

Circuito Lógico → Expressão Lógica

Teorema de DeMorgan

$$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$$

$$X \longrightarrow \overline{XY} \equiv X \longrightarrow \overline{X} + \overline{Y}$$

$$NAND \qquad Negative-OR$$

$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

$$X \longrightarrow \overline{X + Y} \equiv X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

Teorema de DeMorgan

$$\overline{X \cdot Y \cdot Z \cdot W} = \overline{X} + \overline{Y} + \overline{Z} + \overline{W}$$

$$\overline{X + Y + Z + W} = \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot \overline{W}$$

Teorema de DeMorgan

Exemplo

$$X = \overline{A + B\overline{C}} + D \cdot (\overline{E + \overline{F}})$$

$$X = (\overline{\overline{A} + B\overline{C}}) \cdot (\overline{D \cdot (\overline{E} + \overline{F})})$$

$$X = (A + B\overline{C}) \cdot (\overline{D} + \overline{E} + \overline{F})$$
$$X = (A + B\overline{C}) \cdot (\overline{D} + E + \overline{F})$$

Exemplo

Simplificação de Expressão Lógica

 $X = A + \overline{A}B$ X = A + B X = A + B

X = A(B+1) + AB $X = AB + AA + A\overline{A} + \overline{A}B$ $X = AB + A + A\overline{A} + A\overline{A}B$ $X = A(A+B) + \overline{A}(A+B)$

X = AB + A + AB X = A(A + B) + A(A + B) $X = (A + B)(\bar{A} + A)$ $X = (A + B)(\bar{A} + A)$

X = AB + AA + AB X = (A + B)(1) X = A + B

Simplificação de Expressões

Exemplo

$$X = (A + B) \cdot \bar{C}$$

$$X = AB\bar{C} + A\bar{B}\bar{C} + \bar{A}B\bar{C}$$

$$X = A\bar{C}(B + \bar{B}) + \bar{A}B\bar{C}$$

$$X = AC(B + B) + ABC$$
$$X = A\bar{C} + \bar{A}B\bar{C}$$

$$X = AC + ABC$$
$$X = \bar{C}(A + \bar{A}B)$$

$$X = \bar{C}(A+B)$$

$$X = (A+B) \cdot \bar{C}$$

Trabalho:

- Formar grupos de 4 ou 5 alunos;
- Cada equipe fará uma aula, apresentação ou palestra sobre alguma ferramenta para elaboração de circuitos digitais:
 - Circuitis, logisim, multisim, TinkerCad, circuits cloud, outros...
- A apresentação deverá abordar pelo menos os seguintes tópicos:
 - Visão geral dos recursos da ferramenta;
 - Exemplo de aplicação: dinâmica para construção de circuitos;
 - Expor dois circuitos problemas, com suas respectivas funções lógicas e tabelas verdade, com as seguintes características
 - 1 Simples: até 4 portas lógicas;
 - 1 Médio: acima de 5 portas lógicas, com pelo menos 1 fonte, 1 resistor e 1 led;
 - *Tempo de 20 a 30 min.*