	VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ	Předmět BPGA Programovatelné automaty			
		Jméno	Pastušek Václav		
O BRIVE		Ročník	3.	Studijní skupina	BPC-EKT
		Spolupracoval		Měřeno dne	3.3.2021
Kontroloval		Hodnocení		Dne	
Číslo úlohy	Název úlohy				
2.	Čištění tanku vodou a louhem				

Úkol:

Naprogramujte na simulátoru aplikaci čištění tanku vodou a louhem. Použijte vstupy a výstupy simulátoru.

Popis procesu:

Celé zařízení je elektricky vybaveno ventily V1 – V10, čerpadlem Č, snímačem maximální hladiny v zásobníku čisté vody a snímačem vodivosti C. Snímač vodivosti má analogový převodník s výstupem 4-20 mA. Používá se zde na měření koncentrace louhu. V programu bude nastavena hodnota koncentrace K1. Je to hodnota koncentrace louhu ve vodě, při jejímž překročení už bude použitý čistící roztok pokládán za louh a při jejímž podkročení bude pokládán za použitou vodu.

Funkce:

Výchozí stav: všechny ventily jsou uzavřeny, čerpadlo Č je vypnuto. Čištění tanku se spouští tlačítkem START.

Krok 1 – čištění použitou vodou: Otevřou se ventily V2, V6 a V7 a zapne se čerpadlo Č. Použitá voda cirkuluje přes čištěný tank a vrací se do nádoby použité vody. Tento krok čištění trvá čas T1. Po uplynutí času T1 nastává krok 2.

Krok 2 – čištění louhem: Otevře se ventil V4 a zavře se ventil V2. Voda je tlačena louhem přes tank a vrací se do tanku použité vody. Jakmile snímač C zaznamená hodnotu K1, otevírá se ventil V5 a zavírají se ventily V6 a V7. Louh se vrací do nádoby louhu. Tento krok trvá čas T2. Po uplynutí času T2 nastává krok 3.

Krok 3 – oplach čistou vodou. Otevře se ventil V1 a zavře se ventil V4. Čistá voda tlačí louh přes tank do zpětného potrubí a do nádoby louhu. Jakmile hodnota vodivosti klene pod K1, otevírají se ventily V6 a V7 a zavírá se ventil V5. Současně se otevírá ventil V3, který vypouští použitou vodu do kanálu. Při poklesu vody v nádobě čisté vody pod hodnotu MAX (čidlo se odkryje), se s časovým zpožděním T4 otevírá ventil doplňování čisté vody V10. Ten se zavře při zakrytí čidla MAX. Čištění v kroku 3 trvá čas T3. Pak se cyklus čištění ukončí. Vypne se čerpadlo Č a všechny ventily se uzavřou.

Seznam vstupních a výstupních signálů

START	DI	Tlačítko START	
MAX_HLADINA	DI	Horní hladina v nádobě čisté vody	
K1	AI	Hmotnostní procento	
V1	DO	Otevření ventilu V1	
V2	DO	Otevření ventilu V2	
V3	DO	Otevření ventilu V3	
V4	DO	Otevření ventilu V4	
V5	DO	Otevření ventilu V5	
V6	DO	Otevření ventilu V6	
V7	DO	Otevření ventilu V7	
V10	DO	Otevření ventilu V10	
CERPADLO	DO	Zapnutí čerpadla	

Postup řešení:

- 1) V 2,6,7 T1
- 2) V 4,6,7 do until(hodnota >= K1) V 4,5
- 3) V 1,5 do until(hodnota<K1) V 1,6,7,3 do until(MAX_hladina == 0) T4 V 1,6,7,3,10 T3 clear_all()

Závěr: ventily V8 a V9 nemají vliv na funkčnost, proto byly zanedbány. Naučili jsme se připojit další I/O modul, standardizaci analogových hodnot a porovnávací operace. Byly ošetřeny případy podtečení a přetečení mezí čidla. Bohužel se mi nepovedlo rozjet poslední část automatu. Ladder program viz níže.

2021-03-04 7:28:48

Page 1

Emulator_BPC_PGA:MainTask:MainProgram Total number of rungs in routine: 13

C:\Users\bpc_pga\Documents\Studio 5000\Projects\proj2.ACD

Emulator_BPC_PGA:MainTask:MainProgram Total number of rungs in routine: 13

C:\Users\bpc pga\Documents\Studio 5000\Projects\proj2.ACD

Page 3

C:\Users\bpc_pga\Documents\Studio 5000\Projects\proj2.ACD

