ACM-ICPC Indonesia National Contest 2016

Problem K

Operations on Matrix

Time Limit: 1 second

In this problem, you are given a matrix A of N x M (i.e. A[1 .. N][1 .. M]) and Q queries where each query is one of the following:

rotate cw r c s
Rotate the square submatrix A[r .. r+s][c .. c+s] clockwise.

rotate ccw r c s
Rotate the square submatrix A[r .. r+s][c .. c+s] counterclockwise.

• reflect x r_1 c_1 r_2 c_2 Reflect the submatrix A[r_1 .. r_2][c_1 .. c_2] on x-axis.

• reflect y r_1 c_1 r_2 c_2 Reflect the submatrix A[r_1 .. r_2][c_1 .. c_2] on y-axis.

For example, consider the following matrix of 4 x 5:

1	2	3	4	5	
6	7	8	9	10	
11	12	13	14	15	
16	17	18	19	20	

Supposed there are 4 queries, respectively:

rotate cw 2 1 2
Rotate the square submatrix A[2 .. 2+2][1 .. 1+2], i.e. A[2 .. 4][1 .. 3] clockwise.

1	2	3	4	5		1	2	3	4	5
6	7	8	9	10	rotate clockwise	16	11	6	9	10
11	12	13	14	15		17	12	7	14	15
16	17	18	19	20		18	13	8	19	20

• rotate ccw 1 4 1

Rotate the square submatrix A[1 .. 1+1][4 .. 4+1], i.e. A[1 .. 2][4 .. 5] clockwise.

1	2	3	4	5	rotate counter	1	2	3	5	10
16	11	6	9	10	clockwise	16	11	6	4	9
17	12	7	14	15		17	12	7	14	15
18	13	8	19	20		18	13	8	19	20

• reflect x 2 2 3 5

Reflect the submatrix A[2 .. 3][2 .. 5] on x-axis.

				-							
	1	2	3	5	10	reflect	1	2	3	5	10
	16	11	6	4	9	on x-axis	16	12	7	14	15
Ī	17	12	7	14	15	+	17	11	6	4	9
	18	13	8	19	20		18	13	8	19	20

• reflect y 2 3 4 5

Reflect the submatrix A[2 .. 4][3 .. 5] on y-axis.

						1140 201	0 14.01	or all or lo	On wide		
			•	-	•						
1	2	3	5)	10	reflect	1	2	3	5	10
16	12	7	1	4	15	on y-axis	16	12	15	14	7
17	11	6	4		9		17	11	9	4	6
18	13	8	1	9	20		18	13	20	19	8

Thus, after those queries, the final matrix becomes:

16 12 15 14 17 11 9 4	
17 11 9 4	7
'' '' ' '	6
18 13 20 19	8

Your task is to output the final matrix after all queries are executed sequentially.

Input

The first line of input contains an integer T (T \leq 100) denoting the number of cases. Each case begins with three integers N M and Q (1 \leq N, M \leq 20; 1 \leq Q \leq 20) denoting the matrix size (N x M) and number of queries, respectively. The next N lines, each contains M integers $A_{i,j}$ (1 \leq $A_{i,j}$ \leq 1,000) representing the intial matrix. The next Q lines, each contains a query with one of the following format:

- rotate cw r c s $(1 \le r \le r+s \le N; 1 \le c \le c+s \le M)$
- rotate ccw r c s $(1 \le r \le r+s \le N; 1 \le c \le c+s \le M)$
- reflect x r_1 c_1 r_2 c_2 $(1 \le r_1 \le r_2 \le N; 1 \le c_1 \le c_2 \le M)$
- reflect y r_1 c_1 r_2 c_2 $(1 \le r_1 \le r_2 \le N; 1 \le c_1 \le c_2 \le M)$

Output

For each case, output in a line "Case #X:" where X is the case number, starts from 1. The next N lines in each case, each contains M integers each separated by a single space. These integers represent the final matrix after all queries are executed sequentially.

Sample Input

Output for Sample Input