AutoML challenge winners

Victor Kocheganov

March 21, 2016

The most frequent prize-winners

```
djajetic (Damir Jajetic (Croatia))

4 out of 8 prizes: Final2 (2nd), AutoML3 (only one), Final3 (2nd),
AutoML4 (2nd)
```

```
aad_freiburg Frank Hutter and collaborators (Freiburg, Germany)
7 out of 8 prizes: Final0 (3rd), AutoML1 (1st), Final1 (1st),
AutoML2 (2nd), Final2 (3rd), Final3 (1st), AutoML4 (1st)
```

The most frequent prize-winners

djajetic (Damir Jajetic (Croatia))

4 out of 8 prizes: Final2 (2nd), AutoML3 (only one), Final3 (2nd), AutoML4 (2nd)

aad_freiburg Frank Hutter and collaborators (Freiburg, Germany)

7 out of 8 prizes: Final0 (3rd), AutoML1 (1st), Final1 (1st), AutoML2 (2nd), Final2 (3rd), Final3 (1st), AutoML4 (1st)

ideal.intel.analytics

4 out of 4 code-free prizes: Final0 (1st), Final1 (2nd), Final2 (2nd), Final3 (3rd)

The most frequent prize-winners

djajetic (Damir Jajetic (Croatia))

4 out of 8 prizes: Final2 (2nd), AutoML3 (only one), Final3 (2nd), AutoML4 (2nd)

aad_freiburg Frank Hutter and collaborators (Freiburg, Germany)

7 out of 8 prizes: Final0 (3rd), AutoML1 (1st), Final1 (1st), AutoML2 (2nd), Final2 (3rd), Final3 (1st), AutoML4 (1st)

ideal.intel.analytics

4 out of 4 code-free prizes: Final0 (1st), Final1 (2nd), Final2 (2nd), Final3 (3rd)

djajetic approach

Simple cross validation through models

	- 1				
	linear_model.LogisticRegression				
Ī	naive_bayes.GaussianNB				
Ì	f16.RandomForestClassifier				
Ì	ensemble.GradientBoostingClassifier				
Ì	f16.ExtraTreesClassifier				
Ì	ensemble.AdaBoostClassifier				
ensemble.AdaBoostClassifier (base_estimator=f					
neighbors.KNeighborsClassifier					

djajetic approach

```
models = [
        {"model": 'linear_model.LogisticRegression(random_state=1)',
        "blend_group": "LC",
            "getter": "Lestimators = model last.get params()['penalty']",
            "updater": "tries left = 0",
            "setter": "return in updater will end process",
            "generator": "penalty='12', dual=False, C=1.0 @@ " \
                                 "penalty='l1', dual=False, C=1.0 @@ " \
                                 "penalty='12', dual=False, C=2.0 @@ " \
                                  "penalty='12', dual=False, C=0.5 @@ " \
                                  "penalty='12', dual=True, C=1.0 @@ " \
                                  "penalty='12', dual=True, C=0.5 @@ " \
                                  "penalty='12', dual=False, C=4.0 @@ " \
                                  "penalty='12', dual=False, C=8.0 @@ "
                                  "penalty='12', dual=False, C=1.0 @@ " \
                                  "penalty='l1', dual=False, C=1.0 @@ " \
                                  "penalty='12', dual=False, C=2.0 @@ " \
                                  "penalty='12', dual=False, C=0.5 @@ " \
                                  "penalty='12', dual=True, C=1.0 @@ " \
                                  "penalty='12', dual=True, C=0.5 @@ " \
                                  "penalty='12', dual=False, C=4.0 @@ " \
                                  "penalty='12', dual=False, C=8.0 @@ "
        },
        {"model": 'naive bayes.GaussianNB()'.
        "blend group": "NB".
            "getter": "Lestimators = model last.get params()",
            "updater": "tries left = 0",
             "setter":
            "generator": ""
```

aad freiburg approach

State-of-the-art before this guy (Auto-WEKA):

Data preprocessing

Algorithms that change data values

- Rescaling of inputs
- Imputation of missing values
- Balancing of the target classes

Feature preprocessing

Algorithms that don't change data, but reduce number of features

- PCA
- Linear SVM (non zero model coefficients)
- Feature agglomeration
- Random forest
- Extremly randomized forest
- **6** ...

Feature preprocessing

Well-established classification algorithms

- General linear models
- SVM
- Discriminant analysis
- Nearest neighbors
- Naive Bayes
- Decision trees
- Ensemble methods

Auto-sklearn features result list

name	$\#\lambda$	cat (cond)	cont (cond)
AdaBoost (AB)	3	-	3 (-)
Bernoulli naïve Bayes	2	1 (-)	1 (-)
decision tree (DT)	3	1 (-)	2 (-)
extreml. rand. trees	5	2 (-)	3 (-)
Gaussian naïve Bayes	_		- '
gradient boosting (GB)	6	-	6 (-)
kNN	3	2 (-)	1 (-)
LDA	2		2 (-)
linear SVM	5	3 (-)	2 (-)
kernel SVM	8	3 (-)	5(2)
multinomial naïve Bayes	2	1 (-)	1 (-)
passive aggressive	3	1 (-)	2 (-)
QDA	2		2 (-)
random forest (RF)	5	2 (-)	3 (-)
ridge regression (RR)	2		2 (-)
SGD	9	3 (-)	6 (3)

name	$\#\lambda$	cat (cond)	cont (cond)
extreml. rand. trees prepr.	5	2 (-)	3 (-)
fast ICA	4	3 (-)	1 (-)
feature agglomeration	3	2 (-)	1 (-)
kernel PCA	5	1 (-)	4(3)
rand. kitchen sinks	2		2 (-)
linear SVM prepr.	5	3 (-)	2 (-)
no preprocessing	-		
nystroem sampler	5	1 (-)	4(3)
PCA	2	1 (-)	1 (-)
random trees embed.	4		4 (-)
select percentile	2	1 (-)	1 (-)
select rates	3	2 (-)	1 (-)
imputation	1	1 (-)	-
balancing	1	1 (-)	-
rescaling	1	1 (-)	-

aad freiburg approach

This guy added two more stages:

- Given 140 datasets, compute it's metafeatures (total 38)
 - Simple features (N samples, N features, N classes etc)

- Given 140 datasets, compute it's metafeatures (total 38)
 - Simple features (N samples, N features, N classes etc)
 - Information-theoretic features (entropy of features, Entropy of classes, feature noisiness etc)

- Given 140 datasets, compute it's metafeatures (total 38)
 - Simple features (N samples, N features, N classes etc)
 - Information-theoretic features (entropy of features, Entropy of classes, feature noisiness etc)
 - Statistical metafeatures (Departure from normality, univariate skewness and kurosis etc)

- Given 140 datasets, compute it's metafeatures (total 38)
 - Simple features (N samples, N features, N classes etc)
 - Information-theoretic features (entropy of features, Entropy of classes, feature noisiness etc)
 - Statistical metafeatures (Departure from normality, univariate skewness and kurosis etc)
- Using Bayesian optimizer for each dataset choose ML framework with strongest performance

- Given 140 datasets, compute it's metafeatures (total 38)
 - Simple features (N samples, N features, N classes etc)
 - Information-theoretic features (entropy of features, Entropy of classes, feature noisiness etc)
 - Statistical metafeatures (Departure from normality, univariate skewness and kurosis etc)
- Using Bayesian optimizer for each dataset choose ML framework with strongest performance
- ③ For a new dataset D find k nearest from the given 140 ones $(L_1$ -metric on metafeatures dataset).

- Given 140 datasets, compute it's metafeatures (total 38)
 - Simple features (N samples, N features, N classes etc)
 - Information-theoretic features (entropy of features, Entropy of classes, feature noisiness etc)
 - Statistical metafeatures (Departure from normality, univariate skewness and kurosis etc)
- Using Bayesian optimizer for each dataset choose ML framework with strongest performance
- **3** For a new dataset D find k nearest from the given 140 ones $(L_1$ -metric on metafeatures dataset).
- Warm-start Bayesian optimizer with k found parameters

- Given 140 datasets, compute it's metafeatures (total 38)
 - Simple features (N samples, N features, N classes etc)
 - Information-theoretic features (entropy of features, Entropy of classes, feature noisiness etc)
 - Statistical metafeatures (Departure from normality, univariate skewness and kurosis etc)
- Using Bayesian optimizer for each dataset choose ML framework with strongest performance
- **3** For a new dataset D find k nearest from the given 140 ones $(L_1$ -metric on metafeatures dataset).
- Warm-start Bayesian optimizer with k found parameters

Bayesian optimization reminder

 $(\mu(\cdot) \pm \sigma(\cdot))$

After Bayesian optimization one gets set of ML frameworks:

$$M = \{M_i\}$$

After Bayesian optimization one gets set of ML frameworks:

$$M = \{M_i\}$$

Algorithm:

Start with the empty ensemble

After Bayesian optimization one gets set of ML frameworks:

$$M = \{M_i\}$$

- Start with the empty ensemble
- ② Add to the ensemble the model in the library that maximizes the ensemble's performance to the error metric on a validation set

After Bayesian optimization one gets set of ML frameworks:

$$M = \{M_i\}$$

- Start with the empty ensemble
- Add to the ensemble the model in the library that maximizes the ensemble's performance to the error metric on a validation set
- Repeat Step 2 for a fixed number of iterations or until all the models have been used

After Bayesian optimization one gets set of ML frameworks:

$$M = \{M_i\}$$

- Start with the empty ensemble
- Add to the ensemble the model in the library that maximizes the ensemble's performance to the error metric on a validation set
- Repeat Step 2 for a fixed number of iterations or until all the models have been used
- Return the ensemble from the nested set of ensembles that has maximum performance on the validation set

After Bayesian optimization one gets set of ML frameworks:

$$M = \{M_i\}$$

- Start with the empty ensemble
- Add to the ensemble the model in the library that maximizes the ensemble's performance to the error metric on a validation set
- Repeat Step 2 for a fixed number of iterations or until all the models have been used
- Return the ensemble from the nested set of ensembles that has maximum performance on the validation set

After Bayesian optimization one gets set of ML frameworks:

$$M = \{M_i\}$$

- Start with the empty ensemble
- Add to the ensemble the model in the library that maximizes the ensemble's performance to the error metric on a validation set
- Repeat Step 2 for a fixed number of iterations or until all the models have been used
- Return the ensemble from the nested set of ensembles that has maximum performance on the validation set

With these improvements

 Selection with replacement: adds model only if it increases performance

- Selection with replacement: adds model only if it increases performance
- Sorted Ensemble Initialization: start with non empty ensemble

- Selection with replacement: adds model only if it increases performance
- Sorted Ensemble Initialization: start with non empty ensemble
- Bagged Ensemble Selection: repeat all the above several (20) times for bagged models

- Selection with replacement: adds model only if it increases performance
- Sorted Ensemble Initialization: start with non empty ensemble
- Bagged Ensemble Selection: repeat all the above several (20) times for bagged models

- Selection with replacement: adds model only if it increases performance
- Sorted Ensemble Initialization: start with non empty ensemble
- Bagged Ensemble Selection: repeat all the above several (20) times for bagged models

Auto-sklearn results

