

planetmath.org

Math for the people, by the people.

proof of basic criterion for self-adjointness

 ${\bf Canonical\ name} \quad {\bf ProofOfBasicCriterionForSelfadjointness}$

Date of creation 2013-03-22 14:53:05 Last modified on 2013-03-22 14:53:05

Owner Koro (127) Last modified by Koro (127)

Numerical id 5

Author Koro (127) Entry type Proof

Classification msc 47B25

1. $(1 \implies 2)$ If A is self-adjoint and Ax = ix, then

$$|i||x||^2 = (ix, x) = (Ax, x) = (x, A^*x) = (x, Ax) = (x, ix) = \overline{(ix, x)} = -i||x||^2$$

- so x = 0. Similarly we prove that Ax = -ix implies x = 0. That A is closed follows from the fact that the adjoint of an operator is always closed.
- 2. $(2 \implies 3)$ If 2 holds, then $\{0\} = \text{Ker}(A^* \pm i)^* = \text{Ker}(A \mp i)^* = \text{Ran}(A \mp i)^{\perp}$, so that Ran $A \mp i$ is dense in \mathscr{H} . Also, since A is symmetric, for $x \in D(A)$,

$$\|(A+i)x\|^2 = \|Ax\|^2 + \|x\|^2 + (Ax,ix) + (ix,Ax) = \|Ax\|^2 + \|x\|^2$$

- because $(Ax, ix) = (x, iA^*x) = (x, iAx) = -(ix, Ax)$. Hence $||x|| \le ||(A+i)x||$, so that given a sequence $x_n \in D(A)$ such that $(A+i)x_n \to y$, we have that $\{(A+i)x_n\}$ is a Cauchy sequence and thus $\{x_n\}$ itself is a Cauchy sequence. Hence $\{x_n\}$ converges to some $x \in \mathcal{H}$ and since A is closed it follows that $x \in D(A)$ and (A+i)x = y. This proves that $y \in \text{Ran}(A+i)$, so that Ran(A+i) is closed (and similarly, Ran(A-i) is closed. Thus $\text{Ran}(A\pm i) = \mathcal{H}$.
- 3. $(3 \Longrightarrow 1)$ Suppose 3. If $y \in D(A^*)$, then there is $x \in D(A)$ such that $(A+i)x = (A^*-i)y$. Since A is symmetric, $(A+i)x = (A^*+i)x = (A-i)^*x$, so that $(A^*-i)(x-y) = 0$. But since $\operatorname{Ker}(A^*-i) = \operatorname{Ran}(A+i)^{\perp} = \{0\}$, it follows that x = y, so that $y \in D(A)$. Hence $D(A) = D(A^*)$, and therefore A is self-adjoint.