15-213

"The course that gives CMU its Zip!"

Floating Point Arithmetic Feb 17, 2000

Topics

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- · Mathematical properties
- IA32 floating point

class10.ppt

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - -Explain why not true

Assume neither d nor f is NAN

- x == (int)(float) x
- x == (int)(double) x
- f == (float)(double) f
- d == (float) d
- f == -(-f);
- 2/3 == 2/3.0
- d < 0.0 \Rightarrow ((d*2) < 0.0)
- d > f \Rightarrow -f < -d
- d * d >= 0.0
- (d+f)-d == f

class10.ppt

-2-

IEEE Floating Point

IEEE Standard 754

- Estabilished in 1985 as uniform standard for floating point arithmetic
 - -Before that, many idiosyncratic formats
- · Supported by all major CPUs

Driven by Numerical Concerns

- · Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

class10.ppt

-3-

CS 213 S'00

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- · Represents rational number:

$$\sum_{k=-j}^{i} b_k \cdot 2^k$$

class10.ppt

-4-

Fractional Binary Number Examples

Value Representation

5-3/4 101.11₂
2-7/8 10.111₂
63/64 0.111111₂

Observation

- · Divide by 2 by shifting right
- Numbers of form 0.1111111...2 just below 1.0
 - Use notation 1.0ϵ

Limitation

- Can only exactly represent numbers of the form x/2k
- · Other numbers have repeating bit representations

Value Representation

1/3 0.0101010101[01]...2

1/5 0.001100110011[0011]...2

1/10 0.0001100110011[0011]...2

class10.ppt

-5-

CS 213 S'00

Floating Point Representation

Numerical Form

- -1° M 2E
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

Sizes

- Single precision: 8 exp bits, 23 frac bits
 - -32 bits total
- Double precision: 11 exp bits, 52 frac bits
 - -64 bits total

class10.ppt

-6-

"Normalized" Numeric Values

Condition

• $\exp \neq 000...0$ and $\exp \neq 111...1$

Exponent coded as biased value

E = Exp - Bias

- Exp: unsigned value denoted by exp
- Bias: Bias value
 - » Single precision: 127 (*Exp*: 1...254, *E*: -126...127)
 - » Double precision: 1023 (Exp: 1...2046, E: -1022...1023
 - » in general: $Bias = 2^{m-1} 1$, where m is the number of exponent bits

Significand coded with implied leading 1

```
m = 1.xxx...x_2
```

- xxx...x: bits of frac
- -Minimum when 000...0 (M = 1.0)
- -Maximum when 111...1 $(M = 2.0 \varepsilon)$
- -Get extra leading bit for "free"

class10.ppt

-7-

CS 213 S'00

Normalized Encoding Example

Value

Float F = 15213.0;

• $15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$

Significand

 $M = 1.1101101101101_{2}$

Exponent

E = 13

Bias = 127

 $Exp = 140 = 10001100_2$

Floating Point Representation (Class 02):

Hex: 4 6 6 D B 4 0 0

140: 100 0110 0

class10.ppt

-8-

Denormalized Values

Condition

• exp = 000...0

Value

- Exponent value E = -Bias + 1
- Significand value $m = 0.xxx...x_2$
 - -xxx...x: bits of frac

Cases

- exp = 000...0, frac = 000...0
 - -Represents value 0
 - -Note that have distinct values +0 and -0
- exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0
 - -Lose precision as get smaller
 - "Gradual underflow"

Interesting Numbers

interesting numbers			
Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm. • Single ≈ 1.4 X 10 ⁻⁴⁵ • Double ≈ 4.9 X 10 ⁻³²		0001	2- {23,52} X 2- {126,1022}
 Largest Denormalized Single ≈ 1.18 X 10⁻³⁸ Double ≈ 2.2 X 10⁻³⁰ 	3	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. Normalized • Just larger than large			1.0 X 2 ^{- {126,1022}}
One	0111	0000	1.0
 Single ≈ 3.4 X 10³⁸ Double ≈ 1.8 X 10³⁰⁸ 		1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
class10.ppt		_ 10 _	CS 213 S'00

Special Values

Condition

• exp = 111...1

Cases

- exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - -Operation that overflows
 - -Both positive and negative

$$-\text{E.g.}$$
, $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

- exp = 111...1, $frac \neq 000...0$
 - -Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - -E.g., sqrt(-1), $\infty \infty$

class10.ppt

– 11 –

CS 213 S'00

Summary of Floating Point Real Number Encodings

Tiny floating point example

Assume an 8-bit floating point representation where

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac
- Otherwise, the rules are the same as IEEE floating point format (normalized, denormalized, representation of 0, NaN, infinity)

_7	6 3	2 0
s	exp	frac

class10.ppt

- 13 -

CS 213 S'00

Values related to the exponent

Exp	exp	E
0	0000	-6 (denorms)
1	0001	-6
2	0010	- 5
3	0011	-4
4	0100	-3
5	0101	-2
6	0110	-1
7	0111	0
8	1000	1
9	1001	2
10	1010	3
11	1011	4
12	1100	5
13	1101	6
14	1110	7
15	1111	(inf, Nan)

class10.ppt

<u>- 14 - </u>

Dynamic Range					
	exp	E	value		
	0 0000 000	n/a	0		
	0 0000 001	-6	1/512 ← closest to zero		
Denormalized	0 0000 010	-6	2/512		
numbers					
	0 0000 110	-6	6/512		
	0 0000 111	-6	7/512 ← largest denorm		
	0 0001 000	-6	8/512 ← smallest norm		
	0 0001 001	-6	9/512		
	•••				
	0 0110 110	-1	28/32		
Normalized	0 0110 111	-1	30/32 ← closest to 1 below		
numbers	0 0111 000	0	1		
Hullibers	0 0111 001	0	36/32 ← closest to 1 above		
	0 0111 010	0	40/32		
		_	004		
	0 1110 110	7	224		
	0 1110 111	7	240		
	0 1111 000	n/a	ini		
class10.ppt		- 15	- CS 213 S'00		

Special Properties of Encoding

FP Zero Same as Integer Zero

• All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - -Will be greater than any other values
 - -What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations

Conceptual View

- · First compute exact result
- · Make it fit into desired precision
 - -Possibly overflow if exponent too large
 - -Possibly round to fit into frac

Rounding Modes (illustrate with \$ rounding)

		\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
•	Zero	\$1.00	\$1.00	\$1.00	\$2.00	-\$1.00
•	Round down (-∞)	\$1.00	\$1.00	\$1.00	\$2.00	-\$2.00
•	Round up (+∞)	\$2.00	\$2.00	\$2.00	\$3.00	-\$1.00
•	Nearest Even (default)	\$1.00	\$2.00	\$2.00	\$2.00	-\$2.00

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

A Closer Look at Round-To-Even

Default Rounding Mode

- · Hard to get any other kind without dropping into assembly
- · All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places

- · When exactly halfway between two possible values
 - Round so that least signficant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way-round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- Half way when bits to right of rounding position = $100..._2$

Examples

• Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2-3/32	10.000112	10.002	(<1/2—down)	2
2-3/16	10.001102	10.012	(>1/2—up)	2-1/4
2-7/8	10.111002	11.002	(1/2—up)	3
2-5/8	10.101002	10.102	(1/2—down)	2-1/2

class10.ppt

– 19 –

CS 213 S'00

FP Multiplication

Operands

 $(-1)^{s1} M1 \ 2^{E1}$ $(-1)^{s2} M2 \ 2^{E2}$

Exact Result

 $(-1)^s M 2^E$

• Sign s: s1 ^ s2

Significand M: M1 * M2
 Exponent E: E1 + E2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

• Biggest chore is multiplying significands

class10.ppt

- 20 -

Mathematical Properties of FP Add Compare to those of Abelian Group · Closed under addition? **YES** -But may generate infinity or NaN • Commutative? YES · Associative? NO -Overflow and inexactness of rounding • 0 is additive identity? YES · Every element has additive inverse **ALMOST** - Except for infinities & NaNs **Montonicity** • $a \ge b \Rightarrow a+c \ge b+c$? **ALMOST** - Except for infinities & NaNs class10.ppt - 22 -CS 213 S'00

Algebraic Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication?

YES

-But may generate infinity or NaN

Multiplication Commutative? YESMultiplication is Associative? NO

- Possibility of overflow, inexactness of rounding

• 1 is multiplicative identity? YES

Multiplication distributes over addtion?

-Possibility of overflow, inexactness of rounding

Montonicity

• $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$? ALMOST

- Except for infinities & NaNs

class10.ppt

- 23 -

CS 213 S'00

Floating Point in C

C Supports Two Levels

float single precision double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double or float to int
 - -Truncates fractional part
 - -Like rounding toward zero
 - -Not defined when out of range
 - » Generally saturates to TMin or TMax
- int to double
 - Exact conversion, as long as int has ≤ 54 bit word size
- int to float
 - -Will round according to rounding mode

class10.ppt

- 24 -

Answers to Floating Point Puzzles

int x = ...;
float f = ...;
double d = ...;

Assume neither d nor f is NAN

x == (int)(float) x

x == (int)(double) x

f == (float)(double) f

• d == (float) d

• f == -(-f);

2/3 == 2/3.0

 $d < 0.0 \Rightarrow ((d*2) < 0.0)$

• $d > f \Rightarrow -f < -d$

• d * d >= 0.0

• (d+f)-d == f

No: 24 bit significand

Yes: 53 bit significand

Yes: increases precision

No: loses precision

Yes: Just change sign bit

No: 2/3 == 1

Yes!

Yes!

Yes!

No: Not associative

class10.ppt

- 25 -

CS 213 S'00

x86 Floating Point

History

- 8086: first computer to implement IEEE fp
 - -separate 8087 FPU (floating point unit)
- 486: merged FPU and Integer Unit onto one chip

Summary

- · Hardware to add, multiply, and divide
- · Floating point data registers
- · Various control & status registers

Floating Point Formats

- single precision (C float): 32 bits
- double precision (C double): 64 bits
- · extended precision: 80 bits

Instruction decoder and sequencer

Integer Unit

Data Bus

class10.ppt

- 26 -

FPU Data Register Stack

FPU register format (extended precision)

79	78 64	63 0
s	exp	frac

FPU register stack

- · stack grows down
 - wraps around from R0 -> R7
- FPU registers are typically referenced relative to top of stack
 - -st(0) is top of stack (Top)
 - -followed by st(1), st(2),...
- · push: increment Top, load
- · pop: store, decrement Top

absolute view	stack view
R7	st(5)
R6	st(4)
R5	st(3)
R4	st(2)
R3	st(1)
R2	st(0) ← Top
R1	st(7) ·
RO	st(6) +

stack grows down

class10.ppt

– 27 –

CS 213 S'00

FPU instructions

Large number of floating point instructions and formats

- ~50 basic instruction types
- · load, store, add, multiply
- sin, cos, tan, arctan, and log!

Sampling of instructions:

Instruction Effect Description fldz push 0.0 Load zero flds S push S Load single precision real fmuls S st(0) <- st(0)*S Multiply faddp st(1) <- st(0) + st(1); popAdd and pop

class10.ppt

– 28 –

Floating Point Code Example Compute Inner Product of Two Vectors • Single precision arithmetic

- Scientific computing and signal processing workhorse

class10.ppt

```
pushl %ebp
                            # setup
   movl %esp, %ebp
   pushl %ebx
   movl 8(%ebp),%ebx
                            # %ebx=&x
   movl 12(%ebp),%ecx
                            # %ecx=&y
   movl 16(%ebp),%edx
                            # %edx=n
                            # push +0.0
                            # i=0
   xorl %eax,%eax
   cmpl %edx, %eax
                            # if i>=n done
   jge .L3
.L5:
   flds (%ebx,%eax,4)
                            # push x[i]
   fmuls (%ecx,%eax,4)
                            # st(0)*=y[i]
   faddp
                            # st(1)+=st(0); pop
   incl %eax
                            # i++
   cmpl %edx,%eax
                            # if i<n repeat
   jl .L5
.L3:
   movl -4(%ebp),%ebx
                            # finish
   leave
                            \# st(0) = result
   ret
     <del>- 29 -</del>
                            CS 213 S'00
```

