Advanced Statistical Inference Bayesian Logistic Regression

Maurizio Filippone Maurizio.Filippone@eurecom.fr

Department of Data Science EURECOM

Classification

- \triangleright A set of N objects with attributes (usually vector) \mathbf{x}_n .
- Each object has an associated response (or label) y_n .
- ▶ Binary classification: $y_n \in \{0,1\}$ or $y_n \in \{-1,1\}$,
 - (depends on algorithm).
- ▶ Multi-class classification: $y_n \in \{1, 2, ..., K\}$.

Classifier is trained on $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^{\top}$ and $\mathbf{y} = (y_1, \dots, y_n)^{\top}$ and then used to classify \mathbf{x}_* .

- Probabilistic classifiers produce a probability of class membership $P(y_* = k | \mathbf{x}_*, \mathbf{X}, \mathbf{y})$
 - e.g. binary classification: $P(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y})$ and $P(y_* = 0 | \mathbf{x}_*, \mathbf{X}, \mathbf{y})$.

Classifier is trained on $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^{\top}$ and $\mathbf{y} = (y_1, \dots, y_n)^{\top}$ and then used to classify \mathbf{x}_* .

- Probabilistic classifiers produce a probability of class membership $P(y_* = k | \mathbf{x}_*, \mathbf{X}, \mathbf{y})$
 - e.g. binary classification: $P(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y})$ and $P(y_* = 0 | \mathbf{x}_*, \mathbf{X}, \mathbf{y})$.
- Non-probabilistic classifiers produce a hard assignment
 - e.g. $v_* = 1$ or $v_* = 0$.

Classifier is trained on $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^{\top}$ and $\mathbf{y} = (y_1, \dots, y_n)^{\top}$ and then used to classify \mathbf{x}_* .

- Probabilistic classifiers produce a probability of class membership $P(y_* = k | \mathbf{x}_*, \mathbf{X}, \mathbf{y})$
 - e.g. binary classification: $P(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y})$ and $P(y_* = 0 | \mathbf{x}_*, \mathbf{X}, \mathbf{y})$.
- Non-probabilistic classifiers produce a hard assignment
 - e.g. $y_* = 1$ or $y_* = 0$.
- Which one to choose depends on the application....

- Probabilities provide us with more information $P(y_* = 1) = 0.6$ is more useful than $y_* = 1$.
 - ► Tells us how **sure** the algorithm is.

- Probabilities provide us with more information $P(y_* = 1) = 0.6$ is more useful than $y_* = 1$.
 - Tells us how sure the algorithm is.
- Particularly important where cost of misclassification is high and imbalanced.
 - e.g. Diagnosis: telling a diseased person they are healthy is much worse than telling a healthy person they are diseased.

- Probabilities provide us with more information $P(y_* = 1) = 0.6$ is more useful than $y_* = 1$.
 - Tells us how sure the algorithm is.
- Particularly important where cost of misclassification is high and imbalanced.
 - e.g. Diagnosis: telling a diseased person they are healthy is much worse than telling a healthy person they are diseased.
- Extra information (probability) often comes at a cost.

Classification syllabus

- ▶ We will study two probabilistic classifiers:
 - Bayes classifier.
 - Logistic regression.

Classification syllabus

- ▶ We will study two probabilistic classifiers:
 - Bayes classifier.
 - Logistic regression.

Some data

Logistic regression

Similarly to regression, we could think about modeling $P(y_* = k | \mathbf{x}_*, \mathbf{w})$ through some $f(\mathbf{x}_*; \mathbf{w})$ with parameters \mathbf{w} .

Logistic regression

- Similarly to regression, we could think about modeling $P(y_* = k | \mathbf{x}_*, \mathbf{w})$ through some $f(\mathbf{x}_*; \mathbf{w})$ with parameters \mathbf{w} .
- ► We've seen $f(\mathbf{x}_*; \mathbf{w}) = \mathbf{w}^{\top} \mathbf{x}_*$ before can we use it here?
 - ▶ No output is unbounded and so can't be a probability.

Logistic regression

- Similarly to regression, we could think about modeling $P(y_* = k | \mathbf{x}_*, \mathbf{w})$ through some $f(\mathbf{x}_*; \mathbf{w})$ with parameters \mathbf{w} .
- ► We've seen $f(\mathbf{x}_*; \mathbf{w}) = \mathbf{w}^{\top} \mathbf{x}_*$ before can we use it here?
 - ▶ No output is unbounded and so can't be a probability.
- But, can use $P(y_* = k | \mathbf{x}_*, \mathbf{w}) = h(f(\mathbf{x}_*; \mathbf{w}))$ where $h(\cdot)$ squashes $f(\mathbf{x}_*; \mathbf{w})$ to lie between 0 and 1 a probability.

$h(\cdot)$

For logistic regression (binary), we use the sigmoid function:

$$P(\mathbf{y}_* = 1 | \mathbf{x}_*, \mathbf{w}) = h(\mathbf{w}^{\top} \mathbf{x}_*) = \frac{1}{1 + \exp(-\mathbf{w}^{\top} \mathbf{x}_*)}$$

Bayesian logistic regression

- Recall the Bayesian ideas from two weeks ago....
- ► In theory, if we place a <u>prior</u> on w and define a <u>likelihood</u> we can obtain a posterior:

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

Bayesian logistic regression

- Recall the Bayesian ideas from two weeks ago....
- ► In theory, if we place a <u>prior</u> on w and define a <u>likelihood</u> we can obtain a posterior:

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

And we can make predictions by taking expectations (averaging over w):

$$P(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathrm{E}_{p(\mathbf{w} | \mathbf{X}, \mathbf{y})} \left[P(y_* = 1 | \mathbf{x}_*, \mathbf{w}) \right]$$

► Sounds good so far....

Defining a prior

► Choose a Gaussian prior:

$$p(\mathbf{w}|\mathbf{s}) = \prod_{d=1}^{D} \mathcal{N}(0, \mathbf{s}).$$

- Prior choice is <u>always</u> important from a data analysis point of view.
- Previously, it was also important 'for the maths'.
- This isn't the case today could choose any prior no prior makes the maths easier!

Defining a likelihood

First assume independence:

$$p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \prod_{n=1}^{N} p(y_n|\mathbf{x}_n,\mathbf{w})$$

Defining a likelihood

First assume independence:

$$p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \prod_{n=1}^{N} p(y_n|\mathbf{x}_n,\mathbf{w})$$

• We have already defined this! If $y_n = 1$:

$$P(\mathbf{y}_n = 1 | \mathbf{x}_n, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^\top \mathbf{x}_n)}$$

ightharpoonup and if $y_n = 0$:

$$P(\mathbf{y}_n = 0 | \mathbf{x}_n, \mathbf{w}) = 1 - P(\mathbf{y}_n = 1 | \mathbf{x}_n, \mathbf{w})$$

Posterior

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}, s) = \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w}|s)}{p(\mathbf{y}|\mathbf{X}, s)}$$

- Now things start going wrong.
- We can't compute $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, s)$ analytically.
 - Prior is not conjugate to likelihood. No prior is!
 - This means we don't know the form of p(w|y, X, s)
 - And we can't compute the marginal likelihood:

$$p(\mathbf{y}|\mathbf{X},s) = \int p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w}|s) d\mathbf{w}$$

$$p(\mathbf{w}|\mathbf{X},\mathbf{y},s) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w}|s)}{p(\mathbf{y}|\mathbf{X},s)}$$

- For simplicity, let's drop the dependence on s
- ▶ We can compute p(y|X, w)p(w)
 - ▶ Define $g(\mathbf{w}) = p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})$

$$p(\mathbf{w}|\mathbf{X},\mathbf{y},s) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w}|s)}{p(\mathbf{y}|\mathbf{X},s)}$$

- For simplicity, let's drop the dependence on s
- ▶ We can compute p(y|X, w)p(w)
 - ▶ Define $g(\mathbf{w}) = p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})$
- Armed with this, we have three options:
 - ► Find the most likely value of w a point estimate.

$$p(\mathbf{w}|\mathbf{X},\mathbf{y},s) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w}|s)}{p(\mathbf{y}|\mathbf{X},s)}$$

- For simplicity, let's drop the dependence on s
- ▶ We can compute p(y|X, w)p(w)
 - ▶ Define $g(\mathbf{w}) = p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})$
- Armed with this, we have three options:
 - ► Find the most likely value of w a point estimate.
 - Approximate $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$ with something easier.

$$p(\mathbf{w}|\mathbf{X},\mathbf{y},s) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w}|s)}{p(\mathbf{y}|\mathbf{X},s)}$$

- For simplicity, let's drop the dependence on s
- We can compute p(y|X, w)p(w)
 - ▶ Define $g(\mathbf{w}) = p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})$
- Armed with this, we have three options:
 - ► Find the most likely value of w a point estimate.
 - Approximate $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$ with something easier.
 - Sample from $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$.

$$p(\mathbf{w}|\mathbf{X},\mathbf{y},s) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w}|s)}{p(\mathbf{y}|\mathbf{X},s)}$$

- For simplicity, let's drop the dependence on s
- ► We can compute p(y|X, w)p(w)
 - ► Define $g(\mathbf{w}) = p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})$
- Armed with this, we have three options:
 - ► Find the most likely value of w a point estimate.
 - Approximate p(w|y, X) with something easier.
 - Sample from $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$.
- ▶ We'll cover examples of each of these in turn....
- These are not the only ways of approximating/sampling!
- ► They are also general not unique to logistic regression.

MAP estimate

- Out first method is to find the value of w that maximizes p(w|y, X) (call it ŵ).
 - $ightharpoonup g(\mathbf{w}) \propto p(\mathbf{w}|\mathbf{y},\mathbf{X})$
 - \triangleright $\hat{\mathbf{w}}$ therefore also maximizes $g(\mathbf{w})$.
- Similar to maximum likelihood but additional effect of prior.
- ► Known as MAP (maximum a posteriori) solution.

MAP estimate

- Out first method is to find the value of w that maximizes p(w|y, X) (call it ŵ).
 - $ightharpoonup g(\mathbf{w}) \propto p(\mathbf{w}|\mathbf{y},\mathbf{X})$
 - \triangleright $\hat{\mathbf{w}}$ therefore also maximizes $g(\mathbf{w})$.
- Similar to maximum likelihood but additional effect of prior.
- Known as MAP (maximum a posteriori) solution.
- ightharpoonup Once we have $\hat{\mathbf{w}}$, make predictions with:

$$P(\mathbf{y}_* = 1 | \mathbf{x}_*, \hat{\mathbf{w}}) = \frac{1}{1 + \exp(-\hat{\mathbf{w}}^{\top} \mathbf{x}_*)}$$

MAP

- ▶ When we met maximum likelihood, we could find $\hat{\mathbf{w}}$ exactly with some algebra.
- ► Can't do that here (can't solve $\nabla_{\mathbf{w}} g(\mathbf{w}) = \mathbf{0}$)

MAP

- Nhen we met maximum likelihood, we could find $\hat{\mathbf{w}}$ exactly with some algebra.
- ► Can't do that here (can't solve $\nabla_{\mathbf{w}} g(\mathbf{w}) = \mathbf{0}$)
- Resort to numerical optimization:
 - 1. Guess ŵ
 - 2. Change it a bit in a way that increases $g(\mathbf{w})$
 - 3. Repeat until no further increase is possible.

MAP

- ► When we met maximum likelihood, we could find $\hat{\mathbf{w}}$ exactly with some algebra.
- ► Can't do that here (can't solve $\nabla_{\mathbf{w}} g(\mathbf{w}) = \mathbf{0}$)
- Resort to numerical optimization:
 - 1. Guess ŵ
 - 2. Change it a bit in a way that increases $g(\mathbf{w})$
 - 3. Repeat until no further increase is possible.
- Many algorithms exist that differ in how they do step 2.
- ► e.g. **Newton-Raphson**
 - Not covered in this course. You just need to know that sometimes we can't do things analytically and there are methods to help us!

MAP – numerical optimization for our data

- Left: Data.
- ▶ Right: Evolution of $\hat{\mathbf{w}}$ in numerical optimization.

Decision boundary

- ightharpoonup Once we have $\hat{\mathbf{w}}$, we can classify new examples.
- Decision boundary is a useful visualization:

▶ Line corresponding to $P(y_* = 1 | \mathbf{x}_*, \hat{\mathbf{w}}) = 0.5$.

Decision boundary

- ▶ Once we have $\hat{\mathbf{w}}$, we can classify new examples.
- Decision boundary is a useful visualization:

▶ Line corresponding to $P(y_* = 1 | \mathbf{x}_*, \hat{\mathbf{w}}) = 0.5$.

$$0.5 = \frac{1}{2} = \frac{1}{1 + \exp(-\hat{\mathbf{w}}^{\top}\mathbf{x}_{*})}.$$

So:
$$\exp(-\hat{\mathbf{w}}^{\top}\mathbf{x}_*) = 1$$
. Or: $\hat{\mathbf{w}}^{\top}\mathbf{x}_* = 0$

Predictive probabilities

- ► Contours of $P(y_* = 1 | \mathbf{x}_*, \hat{\mathbf{w}})$.
- ▶ Do they look sensible?

Roadmap

- ► Find the most likely value of w a point estimate.
- ▶ Approximate p(w|y, X) with something easier.
- Sample from $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$.

- **Approximating** $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$ with another distribution.
- ▶ i.e. Find a distribution q(w|y, X) which is similar.

- **Approximating** p(w|y,X) with another distribution.
- i.e. Find a distribution q(w|y, X) which is similar.
- ▶ What is 'similar'?
 - Mode (highest point) in same place.
 - ► Similar shape?
 - Might as well choose something that is easy to manipulate!

- **Approximating** p(w|y,X) with another distribution.
- i.e. Find a distribution q(w|y, X) which is similar.
- ► What is 'similar'?
 - Mode (highest point) in same place.
 - ► Similar shape?
 - Might as well choose something that is easy to manipulate!
- Approximate $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, s)$ with a Gaussian:

$$q(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{\Sigma})$$

Where:

$$oldsymbol{\mu} = \hat{f w}, \quad oldsymbol{\Sigma}^{-1} = -
abla_{f w}
abla_{f w} \log[g({f w})] igg|_{\hat{f w}}$$

And:

$$\hat{\mathbf{w}} = \operatorname{argmax} \log[g(\mathbf{w})]$$

► We already know ŵ.

- ▶ Justification?
- ▶ Based on Taylor expansion of log[g(w)] around mode (\hat{w}) .
 - Means approximation will be best at mode.
 - Expansion up to 2nd order terms 'looks' like a Gaussian.

Laplace approximation of the Gamma density function:

$$p(y|\alpha,\beta) \propto y^{\alpha-1} \exp(-\beta y)$$

Laplace approximation of the Gamma density function:

$$p(y|\alpha,\beta) \propto y^{\alpha-1} \exp(-\beta y)$$

$$\hat{y} = \frac{\alpha-1}{\beta}$$

▶ Laplace approximation of the Gamma density function:

$$\begin{aligned} p(y|\alpha,\beta) & \propto & y^{\alpha-1} \exp(-\beta y) \\ \widehat{y} & = & \frac{\alpha-1}{\beta} \\ \frac{\partial \log y}{\partial y^2} & = & -\frac{\alpha-1}{y^2} \\ \frac{\partial \log y}{\partial y^2} \Big|_{\widehat{y}} & = & -\frac{\alpha-1}{\widehat{y}^2} \end{aligned}$$

Laplace approximation of the Gamma density function:

$$\begin{aligned} p(y|\alpha,\beta) & \propto & y^{\alpha-1} \exp(-\beta y) \\ \widehat{y} & = & \frac{\alpha-1}{\beta} \\ \frac{\partial \log y}{\partial y^2} & = & -\frac{\alpha-1}{y^2} \\ \frac{\partial \log y}{\partial y^2} \Big|_{\widehat{y}} & = & -\frac{\alpha-1}{\widehat{y}^2} \\ q(y|\alpha,\beta) & = & \mathcal{N}\left(\frac{\alpha-1}{\beta}, \frac{\widehat{y}^2}{\alpha-1}\right) \end{aligned}$$

- ► Solid: true density. Dashed: approximation.
- ▶ Left: $\alpha = 20, \ \beta = 0.5$

- ► Solid: true density. Dashed: approximation.
- ▶ Left: $\alpha = 20, \ \beta = 0.5$
- ▶ Right: $\alpha = 2$, $\beta = 100$

0.1

- Solid: true density. Dashed: approximation.
- ▶ Left: $\alpha = 20, \ \beta = 0.5$
- Right: $\alpha = 2$, $\beta = 100$
- Approximation is best when density looks like a Gaussian (left).
- Approximation deteriorates as we move away from the mode (both).

Laplace approximation for logistic regression

- Not going into the details here.
- Find $\mu = \hat{\mathbf{w}}$ (that maximizes $g(\mathbf{w})$) by Newton-Raphson (already done it MAP).
- ► Find:

$$\mathbf{\Sigma}^{-1} = -
abla_{\mathsf{w}}
abla_{\mathsf{w}} \log[g(\mathsf{w})] \Big|_{\hat{\mathsf{w}}}$$

▶ How good an approximation is it?

Laplace approximation for logistic regression

- ▶ Black approximation. Grey $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$.
- ► Approximation is OK.
- ▶ As expected, it gets worse as we move away from the mode.

- ▶ We have $\mathcal{N}(\mu, \Sigma)$ as an approximation to $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$.
- Can we use it to make predictions?

- ▶ We have $\mathcal{N}(\mu, \mathbf{\Sigma})$ as an approximation to $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$.
- ► Can we use it to make predictions?
- Need to evaluate:

$$\begin{split} P(\mathbf{y}_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) &= & \mathrm{E}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} \left[P(\mathbf{y}_* = 1 | \mathbf{x}_*, \mathbf{w}) \right] \\ &= & \int \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \frac{1}{1 + \exp(-\mathbf{w}^\top \mathbf{x}_*)} \ d\mathbf{w} \end{split}$$

- ▶ We have $\mathcal{N}(\mu, \mathbf{\Sigma})$ as an approximation to $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$.
- Can we use it to make predictions?
- Need to evaluate:

$$\begin{aligned} P(\mathbf{y}_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) &= & \mathrm{E}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} \left[P(\mathbf{y}_* = 1 | \mathbf{x}_*, \mathbf{w}) \right] \\ &= & \int \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \frac{1}{1 + \exp(-\mathbf{w}^\top \mathbf{x}_*)} \ d\mathbf{w} \end{aligned}$$

Cannot do this! So, what was the point?

- ▶ We have $\mathcal{N}(\mu, \mathbf{\Sigma})$ as an approximation to $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$.
- Can we use it to make predictions?
- Need to evaluate:

$$\begin{split} P(\mathbf{y}_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) &= & \mathrm{E}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} \left[P(\mathbf{y}_* = 1 | \mathbf{x}_*, \mathbf{w}) \right] \\ &= & \int \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \frac{1}{1 + \exp(-\mathbf{w}^\top \mathbf{x}_*)} \ d\mathbf{w} \end{split}$$

- Cannot do this! So, what was the point?
- **Sampling from** $\mathcal{N}(\mu, \Sigma)$ is **easy**
 - ▶ And we can approximate an expectation with samples!

▶ Draw S samples $\mathbf{w}_1, \dots, \mathbf{w}_S$ from $\mathcal{N}(\mu, \mathbf{\Sigma})$

$$\mathrm{E}_{\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})}\left[P(\boldsymbol{y}_*=1|\boldsymbol{\mathsf{x}}_*,\boldsymbol{\mathsf{w}})\right] \approx \frac{1}{S} \sum_{s=1}^S \frac{1}{1+\exp(-\boldsymbol{\mathsf{w}}_s^\top \boldsymbol{\mathsf{x}}_*)}$$

▶ Draw S samples $\mathbf{w}_1, \dots, \mathbf{w}_S$ from $\mathcal{N}(\boldsymbol{\mu}, \mathbf{\Sigma})$

$$\mathrm{E}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}\left[P(\boldsymbol{y}_* = 1 | \boldsymbol{\mathsf{x}}_*, \boldsymbol{\mathsf{w}})\right] \approx \frac{1}{S} \sum_{s=1}^{S} \frac{1}{1 + \exp(-\boldsymbol{\mathsf{w}}_s^\top \boldsymbol{\mathsf{x}}_*)}$$

- ► Contours of $P(y_* = 1 | \mathbf{x}_*, \mathbf{y}, \mathbf{X})$.

Point prediction v Laplace approximation

Why the difference?

Point prediction v Laplace approximation

Why the difference?

Summary – roadmap

- Defined a squashing function that meant we could model $P(y_* = 1 | \mathbf{x}_*, \mathbf{w}) = h(\mathbf{w}^\top \mathbf{x}_*)$
- Wanted to make 'Bayesian predictions': average over all posterior values of w.
- Couldn't do it exactly.
- Tried a point estimate (MAP) and an approximate distribution (via Laplace).
- Laplace probability contours looked more sensible (to me at least!)

Summary – roadmap

- Defined a squashing function that meant we could model $P(y_* = 1 | \mathbf{x}_*, \mathbf{w}) = h(\mathbf{w}^\top \mathbf{x}_*)$
- Wanted to make 'Bayesian predictions': average over all posterior values of w.
- Couldn't do it exactly.
- Tried a point estimate (MAP) and an approximate distribution (via Laplace).
- Laplace probability contours looked more sensible (to me at least!)
- ► Next:
 - \triangleright Find the most likely value of \mathbf{w} a point estimate.
 - Approximate $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$ with something easier.
 - **Sample from** $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$.

MCMC sampling

- Laplace approximation still didn't let us exactly evaluate the expectation we need for predictions.
- ▶ But....we could easily sample from it and approximate our approximation.

MCMC sampling

- Laplace approximation still didn't let us exactly evaluate the expectation we need for predictions.
- But....we could easily sample from it and approximate our approximation.
- ► Good news! If we're happy to sample, we can sample directly from $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$ even though we can't compute it!
- i.e. don't need to use an approximation like Laplace.
- ▶ Various algorithms exist we'll use Metropolis-Hastings

- ▶ Produces a sequence of samples $-\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s, \dots$
- ► Imagine we've just produced w_{s-1}

- ▶ Produces a sequence of samples $-\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s, \dots$
- ► Imagine we've just produced w_{s-1}
- ▶ MH firsts proposes a possible \mathbf{w}_s (call it $\widetilde{\mathbf{w}}_s$) based on \mathbf{w}_{s-1} .

- ▶ Produces a sequence of samples $-\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s, \dots$
- ► Imagine we've just produced w_{s-1}
- ▶ MH firsts proposes a possible w_s (call it $\widetilde{w_s}$) based on w_{s-1} .
- \blacktriangleright MH then decides whether or not to accept $\widetilde{\mathbf{w}_s}$
 - ▶ If accepted, $\mathbf{w}_s = \widetilde{\mathbf{w}_s}$
 - $\blacktriangleright \text{ If not, } \mathbf{w}_s = \mathbf{w}_{s-1}$

- ▶ Produces a sequence of samples $-\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s, \dots$
- ► Imagine we've just produced \mathbf{w}_{s-1}
- ▶ MH firsts proposes a possible w_s (call it $\widetilde{w_s}$) based on w_{s-1} .
- \blacktriangleright MH then decides whether or not to accept $\widetilde{\mathbf{w}_s}$
 - ▶ If accepted, $\mathbf{w}_s = \widetilde{\mathbf{w}_s}$
 - $\blacktriangleright \text{ If not, } \mathbf{w}_s = \mathbf{w}_{s-1}$
- ► Two distinct steps proposal and acceptance.

MH – proposal

- ▶ Treat $\widetilde{w_s}$ as a random variable conditioned on w_{s-1}
- ▶ i.e. need to define $p(\widetilde{\mathbf{w}_s}|\mathbf{w}_{s-1})$
 - Note that this does not necessarily have to be similar to posterior we're trying to sample from.
- Can choose whatever we like!

MH – proposal

- ▶ Treat $\widetilde{w_s}$ as a random variable conditioned on w_{s-1}
- ▶ i.e. need to define $p(\widetilde{\mathbf{w}_s}|\mathbf{w}_{s-1})$
 - Note that this does not necessarily have to be similar to posterior we're trying to sample from.
- Can choose whatever we like!
- \triangleright e.g. use a Gaussian centered on \mathbf{w}_{s-1} with some covariance:

$$p(\widetilde{\mathbf{w}_s}|\mathbf{w}_{s-1}, \mathbf{\Sigma}_p) = \mathcal{N}(\mathbf{w}_{s-1}, \mathbf{\Sigma}_p)$$

MH - proposal

- ▶ Treat $\widetilde{\mathbf{w}_s}$ as a random variable conditioned on \mathbf{w}_{s-1}
- ▶ i.e. need to define $p(\widetilde{\mathbf{w}_s}|\mathbf{w}_{s-1})$
 - Note that this does not necessarily have to be similar to posterior we're trying to sample from.
- Can choose whatever we like!
- \triangleright e.g. use a Gaussian centered on \mathbf{w}_{s-1} with some covariance:

$$p(\widetilde{\mathbf{w}_s}|\mathbf{w}_{s-1}, \mathbf{\Sigma}_p) = \mathcal{N}(\mathbf{w}_{s-1}, \mathbf{\Sigma}_p)$$

MH – acceptance

Choice of acceptance based on the following ratio:

$$r = \frac{p(\widetilde{\mathbf{w}}_{s}|\mathbf{y}, \mathbf{X})}{p(\mathbf{w}_{s-1}|\mathbf{y}, \mathbf{X})} \frac{p(\mathbf{w}_{s-1}|\widetilde{\mathbf{w}}_{s}, \mathbf{\Sigma}_{p})}{p(\widetilde{\mathbf{w}}_{s}|\mathbf{w}_{s-1}, \mathbf{\Sigma}_{p})}.$$

MH - acceptance

Choice of acceptance based on the following ratio:

$$r = \frac{p(\widetilde{\mathbf{w}}_{s}|\mathbf{y}, \mathbf{X})}{p(\mathbf{w}_{s-1}|\mathbf{y}, \mathbf{X})} \frac{p(\mathbf{w}_{s-1}|\widetilde{\mathbf{w}}_{s}, \mathbf{\Sigma}_{p})}{p(\widetilde{\mathbf{w}}_{s}|\mathbf{w}_{s-1}, \mathbf{\Sigma}_{p})}.$$

Which simplifies to (all of which we can compute):

$$r = \frac{g(\widetilde{\mathbf{w}_s}; \mathbf{y}, \mathbf{X})}{g(\mathbf{w}_{s-1}; \mathbf{y}, \mathbf{X})} \frac{p(\mathbf{w}_{s-1} | \widetilde{\mathbf{w}_s}, \mathbf{\Sigma}_p)}{p(\widetilde{\mathbf{w}_s} | \mathbf{w}_{s-1}, \mathbf{\Sigma}_p)}.$$

MH - acceptance

Choice of acceptance based on the following ratio:

$$r = \frac{p(\widetilde{\mathbf{w}_s}|\mathbf{y}, \mathbf{X})}{p(\mathbf{w}_{s-1}|\mathbf{y}, \mathbf{X})} \frac{p(\mathbf{w}_{s-1}|\widetilde{\mathbf{w}_s}, \mathbf{\Sigma}_p)}{p(\widetilde{\mathbf{w}_s}|\mathbf{w}_{s-1}, \mathbf{\Sigma}_p)}.$$

Which simplifies to (all of which we can compute):

$$r = \frac{g(\widetilde{\mathbf{w}}_s; \mathbf{y}, \mathbf{X})}{g(\mathbf{w}_{s-1}; \mathbf{y}, \mathbf{X})} \frac{p(\mathbf{w}_{s-1} | \widetilde{\mathbf{w}}_s, \mathbf{\Sigma}_p)}{p(\widetilde{\mathbf{w}}_s | \mathbf{w}_{s-1}, \mathbf{\Sigma}_p)}.$$

- We now use the following rules:
 - ▶ If r > 1, accept: $\mathbf{w}_s = \widetilde{\mathbf{w}}_s$.
 - ▶ If r < 1, accept with probability r.

MH - acceptance

Choice of acceptance based on the following ratio:

$$r = \frac{p(\widetilde{\mathbf{w}_s}|\mathbf{y}, \mathbf{X})}{p(\mathbf{w}_{s-1}|\mathbf{y}, \mathbf{X})} \frac{p(\mathbf{w}_{s-1}|\widetilde{\mathbf{w}_s}, \mathbf{\Sigma}_p)}{p(\widetilde{\mathbf{w}_s}|\mathbf{w}_{s-1}, \mathbf{\Sigma}_p)}.$$

Which simplifies to (all of which we can compute):

$$r = \frac{g(\widetilde{\mathbf{w}}_s; \mathbf{y}, \mathbf{X})}{g(\mathbf{w}_{s-1}; \mathbf{y}, \mathbf{X})} \frac{p(\mathbf{w}_{s-1} | \widetilde{\mathbf{w}}_s, \mathbf{\Sigma}_p)}{p(\widetilde{\mathbf{w}}_s | \mathbf{w}_{s-1}, \mathbf{\Sigma}_p)}.$$

- We now use the following rules:
 - ▶ If $r \ge 1$, accept: $\mathbf{w}_s = \widetilde{\mathbf{w}_s}$.
 - ▶ If r < 1, accept with probability r.
- If we do this enough, we'll eventually be sampling from $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$, no matter where we started!
 - ▶ i.e. for any w₁

MH - flowchart

└MCMC sampling

MH – walkthrough 1

MH – walkthrough 2

What do the samples look like?

▶ 1000 samples from the posterior using MH.

Predictions with MH

- ▶ MH provides us with a set of samples $\mathbf{w}_1, \dots, \mathbf{w}_S$.
- ► These can be used like the samples from the Laplace approximation:

$$\begin{split} P(\mathbf{y}_* = 1 | \mathbf{x}_*, \mathbf{y}, \mathbf{X}) &= & \mathrm{E}_{p(\mathbf{w} | \mathbf{y}, \mathbf{X})} \left[P(\mathbf{y}_* | \mathbf{x}_*, \mathbf{w}) \right] \\ &\approx & \frac{1}{S} \sum_{s=1}^{S} \frac{1}{1 + \exp(-\mathbf{w}_s^\top \mathbf{x}_*)} \end{split}$$

Predictions with MH

- ▶ MH provides us with a set of samples $\mathbf{w}_1, \dots, \mathbf{w}_S$.
- ► These can be used like the samples from the Laplace approximation:

$$\begin{split} P(\mathbf{y}_* = 1 | \mathbf{x}_*, \mathbf{y}, \mathbf{X}) &= & \mathrm{E}_{p(\mathbf{w}|\mathbf{y}, \mathbf{X})} \left[P(\mathbf{y}_* | \mathbf{x}_*, \mathbf{w}) \right] \\ &\approx & \frac{1}{S} \sum_{s=1}^{S} \frac{1}{1 + \exp(-\mathbf{w}_s^\top \mathbf{x}_*)} \end{split}$$

ightharpoonup Contours of $P(y_* = 1 | \mathbf{x}_*, \mathbf{y}, \mathbf{X})$

Laplace v MH

Laplace v MH

Laplace approximation (left) allows some bad boundaries

Laplace v MH

Approximate posterior allows some values of w_1 and w_2 that are very unlikely in true posterior.

Summary

- Introduced logistic regression a probabilistic binary classifier.
- Saw that we couldn't compute the posterior.
- Introduced examples of three alternatives:
 - ▶ Point estimate MAP solution.
 - Approximate the density Laplace.
 - Sample Metropolis-Hastings.
- Each is better than the last (in terms of predictions)....
- ...but each has greater complexity!
- To think about:
 - What if posterior is multi-modal?