Today's topic

- Derivatives of vector valued functions (Sec 10.7)
 Some more problems
 - come more problem
- Chain rule (Sec 11.5)

55. The curves $\mathbf{r}_1(t) = \langle t, t^2, t^3 \rangle$ and $\mathbf{r}_2(t) = \langle \sin t, \sin 2t, t \rangle$ intersect at the origin. Find their angle of intersection correct to the nearest degree.

Find $\mathbf{r}(t)$ if $\mathbf{r}'(t) = 2t\mathbf{i} + 3t^2\mathbf{j} + \sqrt{t}\mathbf{k}$ and $\mathbf{r}(1) = \mathbf{i} + \mathbf{j}$.

$$\vec{3}(t) = (t^2 + c_1)\hat{2} + (t^3 + c_2)\hat{1} + (\frac{2}{3}t^3 + c_3)\hat{k}$$

use $\gamma(1) = 2+2$ so find C_{1}, C_{2}, C_{3} $C_{1} = 0$ $1 + C_{2} = 1$ $\frac{2}{3} + C_{3} = 0$ $C_{3} = 0$ $C_{3} = -2/3$

If two objects travel through space along two different curves, it's often important to know whether they will collide. (Will a missile hit its moving target? Will two aircraft collide?) The curves might intersect, but we need to know whether the objects are in the same position *at the same time*. Suppose the trajectories of two particles are given by the vector functions

$$\mathbf{r}_{1}(t)=\langle t^{2},7t-12,t^{2}\rangle$$
 $\mathbf{r}_{2}(t)=\langle 4t-3,t^{2},5t-6\rangle$ here must exist a t for $t\geq 0$. Do the particles collide? $\mathbf{r}_{1}(t)=\mathbf{r}_{2}(t)$ i.e. $\mathbf{r}_{2}(t)=\mathbf{r}_{3}(t)$ $\mathbf{r}_{3}(t)=\mathbf{r}_{3}(t)$ $\mathbf{r}_{4}(t)=\mathbf{r}_{3}(t)$ $\mathbf{r}_{4}(t)=\mathbf{r}_{3}(t)$ $\mathbf{r}_{5}(t)=\mathbf{r}_{2}(t)$ $\mathbf{r}_{5}(t)=\mathbf{r}_{5}(t)$ $\mathbf{r}_{5}(t)=\mathbf{r}_{5}(t)$

11.5 THE CHAIN RULE

EXAMPLE I If
$$z = x^2y + 3xy^4$$
, where $x = \sin 2t$ and $y = \cos t$, find dz/dt when $t = 0$.

XAMPLE 1 If
$$z = x^2y + 3xy^4$$
, where $x = \sin 2t$ and $y = \cos t$, find dz/dt when $z = 0$.

$$z = f(x,y) = x^2y + 3xy^4$$

$$z = x(t) = \sin 2t \text{ and } y = \cos t, \text{ find } dz/dt \text{ when } t = 0.$$

$$x = x(t) = \sin(2t)$$

$$x = y(t) = \cos(t)$$

$$z = \frac{\partial z}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

$$z = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

$$z = (2xy + 3y^4) (\cos 2t) + (x^2 + 12xy^3) (-\sin(t))$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

$$= (2xy + 3y^4)(2\omega (2t) + (x^2 + 12xy^3)(-sin(t))$$

$$= 3 - 2 + 0 = 6$$

$$\frac{9\pi}{9t} = \frac{9x}{9t} \frac{9\pi}{9x} + \frac{94}{9t} \frac{8\pi}{9x} + \frac{95}{9t} \frac{9\pi}{95}$$

EXAMPLE 3 If $z = e^x \sin y$, where $x = st^2$ and $y = s^2t$, find $\partial z/\partial s$ and $\partial z/\partial t$.

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$= (e^{x} \sin y) t^{2} + (e^{x} \cos y)(2st)$$

$$= (e^{x} \sin y) t^{2} + (e^{x} \cos y)(2st)$$

$$\frac{\partial Z}{\partial t} = (e^x siny)(2st) + (e^x cosy)(s^2)$$

EXAMPLE 5 If
$$u = x^4y + y^2z^3$$
, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$, find the value of $\partial u/\partial s$ when $r = 2$, $s = 1$, $t = 0$.

find the value of
$$\frac{\partial u}{\partial s}$$
 when $r = 2$, $s = 1$, $t = 0$.

$$x = 2 \qquad y = 2 \qquad z = 0$$

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial t} \frac{\partial y}{\partial s} + \frac{\partial u}{\partial t} \frac{\partial z}{\partial s}$$

$$\frac{\partial U}{\partial S} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial S} + \frac{\partial u}{\partial t} \frac{\partial y}{\partial S} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial S} + \frac{\partial u}{\partial S} \frac{\partial u}{\partial S} + \frac{$$

$$= (4.2) + (16 + 0) + 0$$

$$= (4.2 + 64) = 192$$

EXAMPLE 8 Find y' if $x^3 + y^3 = 6xy$.

$$\frac{dF}{dx} = 0$$

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{\partial A}{\partial x} = 0$$

$$(3x^{2}-6y) + (3y^{2}-6x) \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{(3x^{2}-6y)}{(3y^{2}-6x)}$$

 $(34^{2}-6x)$

EXAMPLE 9 Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ if $x^3 + y^3 + z^3 + 6xyz = 1$.

$$\chi^{3} + \mu^{3} + z^{3} + 6 \times \mu^{2} = 1$$

$$find \frac{\partial z}{\partial x}, \frac{\partial z}{\partial z}$$

$$\frac{\partial F}{\partial \lambda} + \frac{\partial F}{\partial z} = 0$$

$$(3x^2 + 6y^2) + (3z^2 + 6xy) \frac{\partial z}{\partial x} = 0$$

$$\frac{3x^{2}+6xy}{3x^{2}+6yz}$$

$$\frac{93}{95} = -\frac{(33_{5} + 6x_{5})}{(35_{5} + 6x_{5})} / (35_{5} + 6x_{5})$$

$$\frac{35_{5} + 6x_{5}}{35_{5} + 6x_{5}} = -\frac{35_{5} + 6x_{5}}{$$

F(x, y, z(x,5))

29. The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2, 3) = 4$ and $T_y(2, 3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?

34. The voltage V in a simple electrical circuit is slowly decreasing as the battery wears out. The resistance R is slowly increasing as the resistor heats up. Use Ohm's Law, V = IR, to find how the current I is changing at the moment when $R = 400 \Omega$, I = 0.08 A, dV/dt = -0.01 V/s, and $dR/dt = 0.03 \Omega/\text{s}$.

37. If z = f(x, y), where $x = r \cos \theta$ and $y = r \sin \theta$, (a) find $\partial z/\partial r$ and $\partial z/\partial \theta$ and (b) show that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$