

Relatório IA: 1a parte do Projecto - IST @ 2018/2019 Grupo 47

Nesta parte do projecto tivemos de implementar uma solução para a resolução do jogo *Solitaire*.

Passámos a todos os testes à exepção dos testes 30, 31 e 32, provavelmente devido ao facto de não termos conseguido implementar na totalidade as heurísticas que escolhemos e que nos pareceram apropriadas no contexto deste problema.

Escolhemos a soma de 2 heurísticas para a solução do problema :

O número de ilhas

Em que uma ilha corresponde a um berlinde ou a um conjunto de berlindes que não têm moves possíveis, isto é que estão rodeados de posições desocupadas ("_") ou posições bloqueadas ("X").

Uma vez que para executar uma jogada é necessário extrair uma peça da board, vizinha da posição do berlinde a jogar, então quanto maior for o número de ilhas mais difícil será a resolução do problema.

> A distância entre ilhas

Considerando que quanto menor for essa distância, mais próximas estão as ilhas, logo mais difícil seria a resolução do problema.

Apesar do raciocínio explicado em cima, conseguimos apenas aplicar uma heurística semelhante à 1ª, que cálcula se os "cantos" dos boards estão ocupados com berlindes, analogamente se os cantos são ilhas.

Vamos analisar e comparar em cada um dos seguintes tabuleiros, em termos do tempo de execução, número de nós expandidos e número de nós gerados, obtidos por procura em profundidade.

Tabuleiros:

	Tipo de Procura	Tempo (seg)	Nós Expandidos	Nós Gerados
Tabuleiro B1 5x5	DFS	0.001	14	34
Tabuleiro B2 4x4	DFS	0.327	5987	11990
Tabuleiro B3 5x4	DFS	3.777	53637	107301

Em todas as procuras, mantendo as dimensões e aumentando o número de peças ou aumentando as dimensões e mantendo o número de peças, o tempo aumenta pelo facto de haver mais nós a verificar e a expandir, pois há mais opções de jogo.

E em todos os casos a procura em profundidade é a pior, pois a solução encontra-se na ponta oposta à do início da procura.

Como o custo de caminho é c+1, a procura A* acaba por não diferir muito de uma procura greedy em termos de números de nós gerados e expandidos. Assim em termos de eficiência, teoricamente, a DFS seria a pior e a procura greedy e o A* estão muito perto uma da outra.