Outlines

- Parameter/Function Optimization
- Learning to Simulate
 - ICLR2019, https://arxiv.org/abs/1810.02513
- Simulating, Fast and Slow: Learning Policies for Black-Box Optimization
 - 2024, https://arxiv.org/abs/2406.04261
- Black-Box Optimization with Local Generative Surrogates
 - NeurIPS2020, https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html

• We adjust the parameters x or θ to achieve desired output y.

- We adjust the parameters x or θ to achieve desired output y.
 - x: Input to the function, θ : Mode parameters
 - In some cases, x and θ may be indistinguishable.

- We adjust the parameters x or θ to achieve desired output y.
 - x: Input to the function, θ : Mode parameters
 - In some cases, x and θ may be indistinguishable.
 - y: Function output, t: Desired target

- We adjust the parameters x or θ to achieve desired output y.
 - x: Input to the function, θ : Mode parameters
 - In some cases, x and θ may be indistinguishable.
 - y: Function output, t: Desired target
 - *L*: Loss or objective function
 - Measures the difference between y and t

- Parameter Optimization: Focuses on optimizing $m{ heta}$ to achieve the desired $m{y}$ for a given $m{x}$.
 - Classification: For x = 0 and t = apple, adjust θ so that y = apple.

- Function Optimization: Focuses on finding x such that y is minimized or maximized.
 - Typical optimization problems.
 - t is implicitly given as $\pm \infty$.

$$f(x) = x^2 + 3x + 3$$

- In our case,
 - **f**: A traffic simulator
 - **y**: Simulation output
 - t: Real traffic observation
 - We need to define x, θ and L(y, t).

- Technical Challenge
 - Difficulties arise when f is a black model and non-differentiable with respect to x or θ .

• Minimization of a function.

$$f(x) = x^2 + 3x + 3$$

$$\frac{\partial f}{\partial x} = 2x + 3 = 0$$

$$x = -\frac{3}{2}$$

$$f(x) = x^2 + 3x + 3$$

Gradient Descent/Ascent

$$x_{n+1} = x_n - \lambda \frac{\partial f}{\partial x} \bigg|_{x_n}$$

- There are several approaches to optimize a non-differentiable black box function.
 - Policy Gradient/REINFORCE
 - Bayesian Optimization
 - Local Surrogate-based Approach
 - Genetic Algorithm
 - Particle Swam Optimization

Outlines

- Parameter/Function Optimization
- Learning to Simulate
 - ICLR2019, https://arxiv.org/abs/1810.02513
- Simulating, Fast and Slow: Learning Policies for Black-Box Optimization
 - 2024, https://arxiv.org/abs/2406.04261
- Black-Box Optimization with Local Generative Surrogates
 - NeurIPS2020, https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html

ICLR2019, https://arxiv.org/abs/1810.02513

Figure 1: A high-level overview of our "learning to simulate" approach. A policy π_{ω} outputs parameters ψ which are used by a simulator to generate a training dataset. The main task model (MTM) is then trained on this dataset and evaluated on a validation set. The obtained accuracy serves as reward signal R for the policy on how good the synthesized dataset was. The policy thus learns how to generate data to maximize the validation accuracy.

- Simulator: Traffic Scene Generation
 - Car Counting, Segmentation

Figure 3: Example of rendered traffic scene with CARLA (Dosovitskiy et al., 2017) and the Unreal engine (Epic-Games, 2018).

- A straight road of variable length.
- Either an L, T or X intersection at the end of the road.
- Cars of 5 different types which are spawned randomly on the straight road.
- Houses of a unique type which are spawned randomly on the sides of the road.
- Four different types of weather.

Policy: Determines the simulation setting parameters ψ .

Simulator: Generate a dataset based on parameters ψ .

Main Task Model: Trains on the data generated from the simulator for task like:

Classification, Regression, Segmentation

Reward ψ : The feedback signal is based on the performance of the **Main Task** model (Accuracy/Error).

Sequential Decision Problem

- Generalizes the previous example.
 - State, Action, Reward.
 - Maximize the sum of rewards.
 - Each decision affects subsequent decisions.

- Reinforcement Learning (RL) is overkill for this application.
 - Non-sequential problem
 - The simulation optimization problem is **not a sequential decision-making task**.
 - Since the problem doesn't involve sequential decisions, there's no strong reason to use RL.
 - Challenges with RL
 - **Complex training**: Training an RL agent requires significant care to ensure convergence, avoid overfitting, and balance exploration-exploitation.
 - High computational cost: RL training often involves extensive simulation calls, making it time-consuming and expensive.
 - On-policy constraints: Practical and popular methods like PPO require new simulation samples at each iteration, further increasing cost and complexity.

Outlines

- Parameter/Function Optimization
- Learning to Simulate
 - ICLR2019, https://arxiv.org/abs/1810.02513
- Simulating, Fast and Slow: Learning Policies for Black-Box Optimization
 - 2024, https://arxiv.org/abs/2406.04261
- Black-Box Optimization with Local Generative Surrogates
 - NeurIPS2020, https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html

Simulating, Fast and Slow: Learning Policies for Black-Box Optimization

- 2024, https://arxiv.org/abs/2406.04261
 - Surrogate-based Approach

Figure 1: Schematic view of our approach. (a) We study black-box optimization problem (over parameters ψ), with an emphasis on using gradient information from a fast differentiable surrogate f_{ϕ} (b) To optimize ψ sample-efficiently, we employ a policy π_{θ} to actively determine whether retraining the surrogate is necessary before using the gradient information.

• Wireless Communication: Indoor Transmitting Antenna Placement

Find the transmitting antenna location (ψ) to maximize signal strength (y) at receiver locations (x).

 ψ : Transmitting antenna location.

x: Receiving antenna locations.

y: Signal strength at receiver's locations.

Surrogate Model

Black Box Simulator Slow and non-differentiable $f_{\rm sim}$ $q(\mathbf{x})$ f_{ϕ} Surrogate model Fast and differentiable

- Train a DNN surrogate to approximate the simulator.
- Then, gradients from the surrogate are used for optimizing ψ .

Gradient Descent/Ascent

$$\psi_{n+1} = \psi_n - \lambda \frac{\partial f}{\partial \psi} \bigg|_{\psi_n}$$

Learning Policy to train a surrogate model

- Goal: Minimize # simulation calls
 - When to call a simulation
 - How to sample training data.

Figure 1: Schematic view of our approach. (a) We study black-box optimization problem (over parameters ψ), with an emphasis on using gradient information from a fast differentiable surrogate f_{ϕ} (b) To optimize ψ sample-efficiently, we employ a policy π_{θ} to actively determine whether retraining the surrogate is necessary before using the gradient information.

Learning Policy to train a surrogate model

State

- ψ_t : The current parameter values being optimized.
- t: The current timestep in the optimization process.
- l_t : The number of simulator calls that have already been made during the current episode.
- σ_t : A measure of the uncertainty of the surrogate model, indicating how reliable its predictions are at the current ψ_t .

Note: Agent ≠ Surrogate

Learning Policy to train a surrogate model

Action: Retrain

- 1. Determine the sampling boundary for ψ_t .
- 2. Run simulations
- 3. Collect training data
- 4. Retrain a surrogate model

Note: Agent ≠ Surrogate

Simulating, Fast and Slow: Learning Policies for Black-Box Optimization

- Reinforcement Learning (RL) is overkill for this application.
 - Non-sequential problem
 - The simulation optimization problem is **not a sequential decision-making task**.
 - Since the problem doesn't involve sequential decisions, there's no strong reason to use RL.
 - Challenges with RL
 - **Complex training**: Training an RL agent requires significant care to ensure convergence, avoid overfitting, and balance exploration-exploitation.
 - High computational cost: RL training often involves extensive simulation calls,
 making it time-consuming and expensive.
 - On-policy constraints: Practical and popular methods like PPO require new simulation samples at each iteration, further increasing cost and complexity.

Outlines

- Parameter/Function Optimization
- Learning to Simulate
 - ICLR2019, https://arxiv.org/abs/1810.02513
- Simulating, Fast and Slow: Learning Policies for Black-Box Optimization
 - 2024, https://arxiv.org/abs/2406.04261
- Black-Box Optimization with Local Generative Surrogates
 - NeurIPS2020, https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html

Local Generative Surrogate Optimization

Figure 1: Simulation and surrogate training. *Black:* forward propagation. *Red:* error backpropagation.

Muon Background Reduction

Minimize # muon hits on sensitive area

$$\mathbf{y} = F(\mathbf{x}; \boldsymbol{\psi})$$

Charge (Q)Coordinate (C)

Geometries of 6 Magnets

Hit Coordinate in Sensitive Area

Geometries of 6 Magnets

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k=1,\ldots,K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k=1,\ldots,K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k=1,\ldots,K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- 3: Sample ψ_i' in the region U_{ϵ}^{ψ} , i = 1, ..., N
- 4: For each ψ_i' , sample inputs $\{x_i^i\}_{i=1}^M \sim q(x)$
- 5: Sample $M \times N$ training examples from simulator $\mathbf{y}_{ij} = F(\mathbf{x}_i^i; \boldsymbol{\psi}_i^i)$
- 6: Store $\mathbf{y}_{ij}, \mathbf{x}_j^i, \mathbf{\psi}_i'$ in history H $i = 1, \dots, N; j = 1, \dots, M$
- 7: Extract all y_l, x_l, ψ'_l from history H, iff $d(\psi, \psi'_l) < \epsilon$
- 8: Train generative surrogate model $S_{\theta}(\boldsymbol{z}_{l}, \boldsymbol{x}_{l}; \boldsymbol{\psi}'_{l})$, where $\boldsymbol{z}_{l} \sim \mathcal{N}(0, 1)$
- 9: Fix weights of the surrogate model θ
- 10: Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k = 1, \dots, K$
- 11: $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- 12: $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{x_j^i\}_{j=1}^M \sim q(x)$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k=1,\ldots,K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\mathbf{y}_{ij}, \mathbf{x}_{j}^{i}, \mathbf{\psi}_{i}^{\prime}$ in history H $i = 1, \dots, N; j = 1, \dots, M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k = 1, \dots, K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store y_{ij}, x_j^i, ψ_i' in history H i = 1, ..., N; j = 1, ..., MExtract all y_l, x_l, ψ_l' from history H,
- iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_l') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_{l}, \boldsymbol{x}_{l}; \boldsymbol{\psi}_{l}^{\prime})$, where $\boldsymbol{z}_{l} \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k = 1, \dots, K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{x_j^i\}_{j=1}^M \sim q(x)$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_{l}, \boldsymbol{x}_{l}; \boldsymbol{\psi}_{l}')$, where $\boldsymbol{z}_{l} \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k=1,\ldots,K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

Require: number N of ψ , number M of x for surrogate training, number K of x for ψ optimization step, trust region U_{ϵ} , size of the neighborhood ϵ , Euclidean distance d

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_{l}, \boldsymbol{x}_{l}; \boldsymbol{\psi}_{l}')$, where $\boldsymbol{z}_{l} \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ 10: $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k = 1, \dots, K$
- $abla_{m{\psi}} \, \mathbb{E}[\mathcal{R}(ar{m{y}})] \leftarrow rac{1}{K} \sum_{k=1}^{K} rac{\partial \mathcal{R}}{\partial ar{m{y}}_k} rac{\partial S_{m{ heta}}(m{z}_k, m{x}_k; m{\psi})}{\partial m{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Run the trained generative model and get $\bar{y} = S_{\theta}(z, x; \psi)$.

 ψ_1

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

Require: number N of ψ , number M of x for surrogate training, number K of x for ψ optimization step, trust region U_{ϵ} , size of the neighborhood ϵ , Euclidean distance d

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k=1,\ldots,K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$ 11:
- $\overline{\boldsymbol{\psi}} \leftarrow \operatorname{SGD}(\psi, \nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})])$
- 13: end while

Evaluate a loss function (R, # muon hits) with \bar{y} , and compute the gradient of R w.r.t ψ .

 ψ_1

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k = 1, \dots, K$
- $abla_{m{\psi}} \, \mathbb{E}[\mathcal{R}(ar{m{y}})] \leftarrow rac{1}{K} \sum_{k=1}^{K} rac{\partial \mathcal{R}}{\partial ar{m{y}}_k} rac{\partial S_{m{ heta}}(m{z}_k, m{x}_k; m{\psi})}{\partial m{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k=1,\ldots,K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k = 1, \dots, K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $oldsymbol{y}_{ij} = F(oldsymbol{x}_j^i; oldsymbol{\psi}_i')$
- Store $\mathbf{y}_{ij}, \mathbf{x}_{j}^{i}, \mathbf{\psi}_{i}'$ in history H $i = 1, \dots, N; j = 1, \dots, M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_l') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k=1,\ldots,K$
- $abla_{m{\psi}} \mathbb{E}[\mathcal{R}(ar{m{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial ar{m{y}}_k} \frac{\partial S_{m{ heta}}(m{z}_k, m{x}_k; m{\psi})}{\partial m{\psi}}$
- $\boldsymbol{\psi} \leftarrow \mathrm{SGD}(\psi, \nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k = 1, \dots, K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $oldsymbol{y}_{ij} = F(oldsymbol{x}_j^i; oldsymbol{\psi}_i')$
- Store y_{ij}, x_j^i, ψ_i' in history Hi = 1, ..., N; j = 1, ..., M
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_l') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k=1,\ldots,K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\boldsymbol{\psi} \leftarrow \mathrm{SGD}(\boldsymbol{\psi}, \nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k=1,\ldots,K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $oldsymbol{y}_{ij} = F(oldsymbol{x}_j^i; oldsymbol{\psi}_i')$
- Store y_{ij}, x_j^i, ψ_i' in history Hi = 1, ..., N; j = 1, ..., M
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_l') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k = 1, \dots, K$
- $abla_{m{\psi}} \, \mathbb{E}[\mathcal{R}(ar{m{y}})] \leftarrow rac{1}{K} \sum_{k=1}^{K} rac{\partial \mathcal{R}}{\partial ar{m{y}}_k} rac{\partial S_{m{ heta}}(m{z}_k, m{x}_k; m{\psi})}{\partial m{\psi}}$
- $\boldsymbol{\psi} \leftarrow \mathrm{SGD}(\boldsymbol{\psi}, \nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})])$
- 13: end while

Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

- 1: Choose initial parameter ψ
- 2: while ψ has not converged do
- Sample ψ_i' in the region U_{ϵ}^{ψ} , $i=1,\ldots,N$ For each ψ_i' , sample inputs $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample $M \times N$ training examples from simulator $\boldsymbol{y}_{ij} = F(\boldsymbol{x}_i^i; \boldsymbol{\psi}_i')$
- Store $\boldsymbol{y}_{ij}, \boldsymbol{x}_{j}^{i}, \boldsymbol{\psi}_{i}^{\prime}$ in history H $i=1,\ldots,N; j=1,\ldots,M$
- Extract all y_l, x_l, ψ'_l from history H, iff $d(\boldsymbol{\psi}, \boldsymbol{\psi}_{l}') < \epsilon$
- Train generative surrogate model $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l')$, where $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model θ
- Sample $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$ $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k=1,\ldots,K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_k} \frac{\partial S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\psi \leftarrow \text{SGD}(\psi, \nabla_{\psi} \mathbb{E}[\mathcal{R}(\bar{y})])$
- 13: end while

Q & A