UNIVERSITY OF TORONTO Faculty of Arts and Science

DECEMBER EXAMINATIONS 2018

STA347H1 (L5101, L2501)

(©David Brenner, 2018)

Examination Aids: Non-Programmable Calculators

Instructions

Please show all your work clearly in the space provided; partial credit will be awarded; you may use the back of the pages if necessary but you must remain organized.

There is choice on this exam: Answer any 4 questions of the 8 provided.

All complete questions will be valued equally at (15) each but partial grades are shown in brackets to the right of each part.

Q1	Q2	Q3	Q4	
Q5	$\mathbf{Q6}$	Q7	$\mathbf{Q8}$	total

$egin{array}{lll} Name & ext{SOLUTIONS} & ext{Student Number} \end{array}$	
--	--

- 1. Suppose $X|N \sim bin(N, 3/5)$ and $N \sim geo(2/3)$.
- a) For the variable N obtain both EN and EN(N-1)

We have $P(N=n) = pq^{n-1}$ where p=2/3=1-q.

$$EN = \sum_{n=1}^{\infty} npq^{n-1} = p \sum_{n=1}^{\infty} nq^{n-1} = p \frac{d}{dq} \left(\frac{1}{1-q} \right) = p \frac{1}{(1-q)^2} = \frac{1}{p} = \frac{3}{2}$$

$$EN(N-1) = \sum_{n=2}^{\infty} n(n-1)pq^{n-1} = pq \sum_{n=2}^{\infty} n(n-1)q^{n-2} = pq \frac{d^2}{dq^2} \left(\frac{1}{1-q} \right)$$

$$= pq \frac{2}{(1-q)^3} = \frac{2q}{p^2} = \frac{2/3}{(2/3)^2} = \frac{3}{2}.$$

$$(5)$$

b) Hence or otherwise evaluate both EX and $\sigma(X)$

$$EX = EE(X|N) = EN(3/5) = \frac{3}{5}EN = \frac{3}{5} \times \frac{3}{2} = \frac{9}{10}$$

$$EX^{2} = EE(X^{2}|N) = E(N(6/25) + N^{2}(9/25)) = \frac{6}{25}EN + \frac{9}{25}EN^{2}$$

$$= \frac{6}{25} \times \frac{3}{2} + \frac{9}{25} \times \frac{3}{1} = \frac{36}{25}$$
where
$$EN^{2} = EN(N-1) + EN = \frac{3}{2} + \frac{3}{2} = 3$$
(5)

$$EN^2 = EN(N-1) + EN = \frac{3}{2} + \frac{3}{2} = 3$$

And thus, altogether

$$varX \ = \ \frac{36}{25} - \frac{81}{100} \ = \ \frac{144}{100} - \frac{81}{100} \ = \ \frac{63}{100} \quad \Rightarrow \quad \sigma(X) \ = \ \frac{\sqrt{63}}{10} \quad \stackrel{\text{or}}{=} \ \frac{3\sqrt{7}}{10} \quad \stackrel{\text{or}}{=} \ \frac{$$

c) Determine the correlation coefficient $\rho(X, N)$

$$EXN = EE(XN|N) = ENE(X|N) = EN^{2}(3/5) = \frac{9}{5}$$

$$cov(X,N) = \frac{9}{5} - \frac{9}{10} \times \frac{3}{2} = \frac{36}{20} - \frac{27}{20} = \frac{9}{20}$$
and since
$$varN = EN^{2} - (EN)^{2} = 3 - \frac{9}{4} = \frac{3}{4}$$
thus, altogether
$$\rho(X,N) = \frac{cov(X,N)}{\sigma(X)\sigma(N)} = \sqrt{\frac{3}{7}}. \quad \heartsuit$$
(5)

- 2. Suppose that $(T_n, n \in \mathbb{N})$ is a poisson process with $T_n \sim G(n, 5^{-1})$ and let $U = \frac{T_2}{T_5}$ & $V = \frac{T_2}{T_5 T_2}$. Determine the following.
 - a) EU and $\sigma(U)$.

Since
$$U \sim beta(2,3) \Rightarrow U \stackrel{d}{=} \frac{Z}{T} \ w. \ T = Z + W \ w. \ \frac{Z \sim G(2)}{W \sim G(3)}$$
 \Lambda .

Thus we get

$$EU = \frac{EZ}{ET} = \frac{2}{5}. \quad \heartsuit$$

$$EU^2 = \frac{EZ^2}{ET^2} = \frac{6}{30} = \frac{1}{5}$$
so $varU = \frac{1}{5} - \frac{4}{25} = \frac{1}{25}$ and $\sigma(U) = \frac{1}{5}. \quad \heartsuit$

b) EV and $\sigma(V)$.

In this case $V \stackrel{d}{=} \frac{Z}{W}$

and thus

$$EV = EZEW^{-1} = 2 \cdot \frac{\Gamma(2)}{\Gamma(3)} = 2 \cdot \frac{1}{2} = 1. \quad \heartsuit$$

$$EV^{2} = EZ^{2}EW^{-2} = \frac{\Gamma(4)}{\Gamma(2)} \frac{\Gamma(1)}{\Gamma(3)} = \frac{6}{2} = 3$$
so $varV = 3 - 1 = 2$ and $\sigma(V) = \sqrt{2}$. \heartsuit

c) P(U > 1/2).

$$P(U > 1/2) = P(2T_2 > T_5) = P(T_2 > T_5 - T_2) = P(V > 1) = P(Z > W)$$

$$= EP(Z > W|W) = EP(T_2 > W) = EP(N_W < 2) \quad w. \ N_W \sim poisson(W)$$

$$= Ee^{-W}(1+W) = \frac{1}{2} \int_0^\infty w^2 e^{-2w} dw + \frac{1}{2} \int_0^\infty w^3 e^{-2w} dw$$

$$= \frac{1}{2^4} \int_0^\infty (2w)^2 e^{-2w} d2w + \frac{1}{2^5} \int_0^\infty (2w)^3 e^{-2w} d2w = \frac{2}{16} + \frac{3}{16} = \frac{5}{16}. \quad \heartsuit$$
(5)

(5)

(5)

3. Suppose that $X \sim N(1,1),$ let $Y = X^3,$ and consider the simple linear model

$$Y = \alpha + \beta X + W$$
 w. $EW = 0 = \rho(X, W)$.

a) Evaluate the constants α and β .

 $\frac{\|Y-(\alpha+\beta X)\|}{\|Y-EY\|}.$

Letting X = 1 + Z w. $Z \sim N(0, 1)$

we get
$$\beta = \frac{cov(X,Y)}{varX} = \frac{cov(X,X^3)}{varX}$$

$$= \frac{cov(1+Z,(1+Z)^3)}{var(1+Z)}$$

$$= \frac{cov(Z,1+3Z+3Z^2+Z^3)}{var(Z)}$$

$$= 3varZ + 3cov(Z,Z^2) + cov(Z,Z^3)$$

$$= 3varZ + 0 + cov(Z,Z^3)$$

$$= 3 + EZ^4 = 3 + 3 = 6 \text{ ps}$$

$$\alpha = EY - \beta EX = EX^3 - 6EX = E(1+Z)^3 - 6E(1+Z)$$

= $1 + 3EZ^2 - 6 = -2$.

b) Determine the relative proximity of Y to its closest linear predictor

$$= \sqrt{1 - \rho(X, Y)^2} = \sqrt{1 - \frac{cov(X, Y)^2}{varX \, varY}} = \sqrt{1 - \frac{6^2}{varY}}$$
$$= \sqrt{1 - \frac{6^2}{varY}} = \sqrt{1 - \frac{6^2}{60}} = \sqrt{\frac{4}{10}} \bigcirc$$

where (7)

(8)

$$\begin{array}{lll} varY & = & cov \left(1 + 3Z + 3Z^2 + Z^3, 1 + 3Z + 3Z^2 + Z^3\right) \\ & = & 9varZ + 9varZ^2 + varZ^3 + 18cov(Z, Z^2) + 6cov(Z, Z^3) + 6cov(Z^2, Z^3) \\ & = & 9 + 9(3 - 1) + 15 + 0 + 6 \times 3 + 0 & = & 60 \,. \end{array}$$

4. Let $X \sim exp(1)$, $Y = e^{-X}$, and consider the simple linear model

$$Y = \alpha + \beta X + W$$
 w. $EW = 0 = \rho(X, W)$.

a) Evaluate the constants α and β .

noting that
$$cov(X,Y) = cov(X,e^{-X}) = EXe^{-X} - EXEe^{-X}$$

$$= \int_0^\infty x e^{-x} e^{-x} dx - \int_0^\infty e^{-x} e^{-x} dx$$

$$= \frac{1}{4} \int_0^\infty 2x e^{-2x} d2x - \frac{1}{2} \int_0^\infty e^{-2x} d2x$$

$$= -\frac{1}{4}$$

$$\beta = \frac{cov(X,Y)}{varX} = \frac{cov(X,e^{-X})}{varX} = -\frac{1}{4} \quad \bigcirc$$

$$\alpha = EY - \beta EX = Ee^{-X} + \frac{EX}{4} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \cdot \bigcirc$$
(8)

b) Determine the relative proximity of Y to its closest linear predictor

$$\frac{\|Y - (\alpha + \beta X)\|}{\|Y - EY\|}$$

$$= \sqrt{1 - \rho(X, Y)^2} = \sqrt{1 - \frac{cov(X, Y)^2}{varX varY}}$$

$$= \sqrt{1 - \frac{(1/4)^2}{varY}} = \sqrt{1 - \frac{12}{16}} = \frac{1}{2} \quad \heartsuit$$

where

$$varY = var(e^{-X}) = Ee^{-2X} - (Ee^{-X})^{2}$$
$$= \int_{0}^{\infty} e^{-3x} dx - \left(\int_{0}^{\infty} e^{-2x} dx\right)^{2} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}. \quad \checkmark$$

(7)

- 5. Suppose $WX \mid X \sim gamma(2)$ and $X \sim gamma(3)$.
- a) First determine P(W > 0).

$$P(W>0) = EP(W>0|X) = EP(XW>0|X) = E1 = 1.$$

b) Obtain the joint probability density function f(x, w) for (X, W).

$$xW \mid X = x \sim G(2) \implies f_{W|X}(w|x) = x^2 w e^{-xw} \quad w > 0; x > 0$$

$$X \sim gamma(3) \implies f_X(x) = \frac{x^2}{2} e^{-x} \quad x > 0$$
and thus
$$f(x, w) = f_{W|X}(w|x) f_X(x) = \frac{x^4 w}{2} e^{-x(1+w)} \quad x > 0, w > 0. \quad \heartsuit$$
(4)

(3)

c) Thus obtain the marginal probability density function, $f_W(w)$, of W.

$$f_{W}(w) = \int_{0}^{\infty} f(x, w) dx = \frac{w}{2} \int_{0}^{\infty} x^{4} e^{-x(1+w)} dx \quad w > 0$$

$$= \frac{w}{2(1+w)^{5}} \int_{0}^{\infty} z^{4} e^{-z} dx \quad w > 0$$

$$= \frac{12w}{(1+w)^{5}} \quad w > 0. \quad \heartsuit$$
(4)

d) Hence determine the distribution function $F_W(t)$ of W.

$$F_W(t) = \int_0^t \frac{12w}{(1+w)^5} dw = 12 \left(\int_0^t \frac{1}{(1+w)^4} dw - \int_0^t \frac{1}{(1+w)^5} dw \right)$$

$$= -12 \left(\frac{1}{3(1+w)^3} - \frac{1}{4(1+w)^4} \right) \Big|_0^t = -\frac{4w+1}{(1+w)^4} \Big|_0^t$$

$$= 1 - \frac{4t+1}{(1+t)^4} \quad t > 0. \quad \heartsuit$$

$$\tag{4}$$

- 6. Suppose $WX \mid X \sim gamma(2)$ and $X \sim gamma(3)$.
- a) For any value of $n \in \mathbb{N}$ determine $EX^n e^{-X}$.

$$EX^{n}e^{-X} = \int_{0}^{\infty} x^{n}e^{-x} \frac{x^{2}e^{-x}}{2} d = \frac{1}{2} \int_{0}^{\infty} x^{n+2}e^{-2x} dx$$

$$= \frac{1}{2^{n+4}} \int_{0}^{\infty} (2x)^{n+2}e^{-2x} d2x = \frac{(n+2)!}{2^{n+4}}. \quad \heartsuit$$
(3)

b) Noting that $WX \perp X$, obtain the joint distribution of (1+W)X and W.

Since

$$WX \sim G(2)$$
, $X \sim G(3)$ and $WX \perp \!\!\! \perp X$

it follows that

$$(1+W)X \sim G(5) \quad \mathbf{v} \,, \ \frac{X}{(1+W)X} = \frac{1}{1+W} \sim \mathit{beta}(3,2) \quad \mathbf{v}$$

and
$$(1+W)X \perp W \quad \mathbf{\nabla}$$
 (4)

where

$$\frac{1}{1+W} \; \stackrel{d}{=} \; \frac{X}{X+Y} \quad \Leftrightarrow \quad W \stackrel{d}{=} \; \frac{Y}{X} \; \; w. \quad \begin{array}{c} X \sim G(3) \\ Y \sim G(2) \end{array} \right\} \; \; \rlap{$\perp \hspace{-0.5em} \bot} \; . \quad {\color{red} \bigtriangledown}$$

c) Hence, or otherwise, determine E(X|W) and $\sigma(X|W)$

From b), it is clear that $(1+W)X \mid W \sim G(5)$ and therefore

$$E((1+W)X | W) = 5 = var((1+W)X | W)$$

= $(1+W)^2 var(X | W)$ (4)

in which case

$$E(X|W) = \frac{5}{1+W} \quad \heartsuit \quad \text{and} \quad \sigma(X|W) = \frac{\sqrt{5}}{1+W}. \quad \heartsuit$$

d) Evaluate P(W > 1)

$$P(W > 1) = P(Y > X) = EP(Y > X|X)$$

$$= EP(T_2 > X)$$

$$= EP(N_X < 2) \text{ where } N_X \sim poisson(X)$$

$$= Ee^{-X}(1+X) = \frac{2}{2^4} + \frac{6}{2^5} = \frac{5}{16}. \quad \heartsuit$$
(4)

- 7. Suppose that $X \sim gamma(3)$, $Y \sim gamma(2)$ and $X \perp \!\!\! \perp Y$ and let U = X/(X+Y) and T = X+Y. Determine the following
- a) $E(X^{-1}|U)$ and $\sigma(X^{-1}|U)$.

We know that $U \perp T$ and of course that X = UT and that $T \sim gamma(5)$

Thus
$$E(X^{-1}|U) = E(U^{-1}T^{-1}|U) = U^{-1}E(T^{-1}|U) = U^{-1}ET^{-1}$$

= $\frac{1}{U}\frac{\Gamma(4)}{\Gamma(5)} = \frac{1}{4U}$.

and
$$E(X^{-2}|U) = E(U^{-2}T^{-2}|U) = U^{-2}E(T^{-2}|U) = U^{-2}ET^{-2}$$

= $\frac{1}{U^2}\frac{\Gamma(3)}{\Gamma(5)} = \frac{1}{12U^2}$

(8)

(7)

whence
$$var(X^{-1}|U) = \frac{1}{U^2} \left(\frac{1}{12} - \frac{1}{16}\right) = \frac{1}{U^2} \frac{1}{48}$$

and thence
$$\sigma(X^{-1}|U) = \frac{1}{4\sqrt{3}U} \stackrel{\text{or}}{=} \frac{\sqrt{3}}{12U}$$
.

b) $E(U^{-1} | X)$ and $\sigma(U^{-1} | X)$.

$$\begin{split} E(U^{-1}|\,X) \; &=\; E(X^{-1}T\,|\,X) \; = \; X^{-1}E(T\,|\,X) \; = \; X^{-1}\big(E(X\,|\,X) + E(Y\,|\,X)\big) \\ &=\; \frac{X + EY}{X} \; = \; 1 + \frac{2}{X} \,. \;\; \mathbf{\heartsuit} \end{split}$$

$$\begin{split} E(U^{-2}|\,X) \; &= \; E(X^{-2}T^2|\,X) \; = \; X^{-2}E(X^2 + 2XY + Y^2\,|\,X) \\ &= \; \frac{X^2 + 2XEY + EY^2}{X^2} \; = \; 1 + \frac{4}{X} + \frac{6}{X^2} \end{split}$$

And thus
$$var(U^{-1}|X) = \frac{2}{X^2}$$
 and $\sigma(U^{-1}|X) = \frac{\sqrt{2}}{X}$.

- 8. Suppose $T \mid N \sim gamma(N)$ and $N \sim geometric(1/3)$.
 - a) State P(N = n) and P(T > t | N = n).

$$P(N=n) = (2/3)^{n-1}(1/3)$$
 $n = 1, 2, ...$

$$P(T > t \mid N = n) = P(N_t < n) = e^{-t} \sum_{k=0}^{n-1} t^k / k! \qquad t > 0 \qquad \text{for each } n = 1, 2, \dots$$

$$\mathbf{or} = \int_t^{\infty} \frac{z^{n-1}}{(n-1)!} e^{-z} dz. \quad \mathbf{\heartsuit}$$
(3)

b) Use a) to find P(T > t) as a function of t > 0.

$$P(T > t) = EP(T > t | N) = \sum_{n=1}^{\infty} (2/3)^{n-1} (1/3) \int_{t}^{\infty} \frac{z^{n-1}}{(n-1)!} e^{-z} dz$$

$$= \frac{1}{3} \int_{t}^{\infty} \sum_{n=1}^{\infty} \frac{(2z/3)^{n-1}}{(n-1)!} e^{-z} dz$$

$$= \frac{1}{3} \int_{t}^{\infty} e^{-z/3} dz$$

$$= \int_{t/3}^{\infty} e^{-w} dw$$

$$= e^{-t/3}. \quad \bigcirc$$
(3)

c) Hence, or otherwise, determine ET and $\sigma(T)$.

We obviously have T=3Z where $Z\sim exp\left(1\right)$ Thus immediately ET=3 \heartsuit , varT=9 and $\sigma(T)=3$. \heartsuit

(3)

d) Using the above, or otherwise, obtain the conditional distribution of N|T.

The joint distribution is given by $(2/3)^{n-1}(1/3)\frac{t^{n-1}}{(n-1)!}e^{-t}$

so the conditional probability mass function for N|(T=t) is given by

which means that $N-1 \mid T \sim poisson(2T/3)$ \circ and $T \sim exp(3)$

e) Determine E(N|T) and $\sigma(N|T)$

$$E(N|T) = 2T/3 + 1 \quad \heartsuit$$
and $var(N|T) = var(N-1|T) = 2T/3 \quad \Rightarrow \quad \sigma(N|T) = \sqrt{2T/3} . \quad \heartsuit$
(3)