智能水务分析模型

oneboyi

摘要

anchorc

关键词: IQR、非正态分布、箱线图、孤立森林

1 问题重述

1.1 问题背景

供水系统在我们的日程生活中至关重要,但是供水系统有时会发生各种各样的故障,从 而导致漏水的发生,这是一个大问题。在这样的背景下,电磁流量计应运而生,用于测量流 量以及监测漏水,一种方法是获取某一区域输入和输出水流量的插值加以评价。

如今已经有许多基于流量数据的分析方法,但是还有一些挑战存在,比较重要的三个:首先是需要设计一个通用模型来了解流量计的数据模式,然后是如何更加快速地检测流量异常,最后一个挑战是如何应对噪声的影响。[1, C1]

1.2 具体问题

您的团队需要设计一个模型来应对上述挑战,需要对给定数据进行清理,开发异常检测模型,并优化模型,数据是八个不同虚拟区域的输入水流量和输出水流量之差。具体的任务有:

- 分析数据模式,建立检测异常的标准
- 建立通用模型对八个区域进行异常值检测
- 测试模型并解释建模和异常值检测的结果

ok

2 数据模式分析与异常检测标准的确立

2.1 数据概览分析

题目所给的数据来自于八个不同的虚拟地区,每个地区的流量差值是一个与时间相关的变量,这些值中既有正数,也有负数。大部分流量之差的绝对值都在10以内,如果发现绝对值过大,则可初步认为该数据是异常数据。流量数据随着时间的变化而变化,不同地区流量数据随时间变化的规律也各不相同。

首先判断各个地区的数据是否满足正态分布,采用四分位距的方法判断是否满足或者接近于正太分布,如果符合正态分布,则可以使用Z-score判断数据是否异常,如果不符合,则需要考虑其他的方法。

计算可得八个虚拟地区输入和输出水流量之差的四分位距:

region_1	region_2	region_3	region_4	region_5	region_6	region_7	region_8
3.802019768	1.108408668	1.2881612	0.678413944	4.157332959	4.746437346	6.514955518	1.616935081

可见并不满足正态分布的要求,因此不能采用Z-score判断数据是否异常。对于不满足正态分布的数据,可以使用箱线图进行异常数据的检测。

2.2 利用箱线图进行数据分析并检测异常数据

下面是根据八个地区数据所作出的箱线图1,可以初步比较直观地对数据进行分析,也可以看出哪些是异常数据:

图 1: 八个虚拟地区的箱线图

3 建立检测异常的标准

3.1

4 模型假设

anch

- 在经济建设中,主要由劳动人口作出贡献,因此用劳动人口数量和劳动人口的占比这两 组变量来概括劳动人口规模
- 经济发展起点由前一年国内生产总值决定,资源禀赋由耕地面积和工业企业数量决定, 教育水平由教育经费、教育的普及率、入学率和毕业生人数等决定
- 多重共线性检验后得到的模型,如果其在改进后依然存在严重的多重共线性,则进一步 深入分析该模型,判断能不能忽略多重共线性对其的影响
- 该经济增长的回归模型是正确设定的
- 所有自变量的随机误差项满足正态分布且均值为0,且与相应自变量同方差、不序列相关

5 模型主要变量符号及含义

序号	符号	意义		
1	Y1	国内生产总值		
2	Y2	人均国内生产总值		
3	Y3	人均国内生产总值增长率		
4	X1	实际利用外商直接投资金额		
5	X2	年度资源禀赋		
6	X3	年度教育水平		
7	X4	年度劳动人口规模		
8	X5	该年经济发展起点		
9	X6 虚拟变量A1 ¹			
10	X7	虚拟变量A22		
11	\mathbf{t}	年份		

¹ 当年无疫情影响经济增长

hehe

6 模型建立

a

7 模型的检验与修正

对

8 模型求解

dui

9 模型评价

hao

参考文献

[1] 刘冠乔. 智慧水务信息化建设规划与实践. 水利电力技术与应用, 3(9), 2021.

² 当年有疫情影响经济增长

附录

I 程序源代码

hehe

II 支撑材料文件列表

hehe

- 分类原始数据.rar
- 原始数据汇总.xls
- 建模求解分析过程草稿.docx
- 数据处理过程,结果及代码.docx