5. Fonctions exponentielles

Terminale STMG

qkzk

Fonctions exponentielles

1. Définition & propriétés

Introduction On considère la suite géométrique de raison a, définie par $u_n = a^n$. Elle est définie pour tout $n \in \mathbb{N}$. On peut prolonger son ensemble de définition à \mathbb{R} tout entier avec $f(x) = a^x$.

On peut ainsi donner une image à des nombres non entiers comme 3.5.

Définition La fonction f, définie sur \mathbb{R} avec a > 0 est la fonction exponentielle de base a.

Exemple La fonction exponentielle de base 2 est définie par $f(x) = 2^x$.

Figure 1: Exponentielle de base 2

Propriétés algébriques

- La fonction exponentielle de base a est toujours positive.
- Pour tout x dans \mathbb{R} , $a^{-x} = \frac{1}{a^x}$.
- $a^0 = 1, a^1 = a$
- $\bullet \quad a^{x+y} = a^x \times a^y$
- $\bullet \ \ a^{x-y} = \frac{a^x}{a^y}$
- $(a^x)^y = a^{xy}$

2. Variations

Si 0 < a < 1 $x \mapsto a^x$ est décroissante sur \mathbb{R}

Figure 2: Expo. décroissante

Si a > 1 $x \mapsto a^x$ est croissante sur \mathbb{R}

Figure 3: Expo. croissante

3. Utiliser une fonction exponentielle

Hz. capitale du monde La population d'Hz. cesse de croitre! L'attrait indéniable de son lycée en fait une des villes les plus attractives du monde.

Suite à des relevés très précis, le maire décide de modéliser la population d'Hz. avec la fonction exponentielle $f(x) = 30000 \times 1.3^x$ où x est le nombre d'année après 2020.

- 1. Quel est le sens de variation de la population d'apèrs ce modèle ?
- 2. Calculer la population d'Hz. en 2021, en 2022
- 3. Calculer les valeurs successives jusqu'à dépasser 100 000 habitants puis 1 000 000

Hz. en force!

- 1. La fonction exponentielle de base 1.3 est croissante, multiplier par 30 000 ne change pas les variations donc la population est croissante.
- 2. En 2021, la population d'Hz. s'élève à $f(1)=30000\times 1.3^1=39000$ En 2022, la population s'élève à $f(2)=30000\times 1.3^2=50700$
- 3. En zappant quelques valeurs intermédiaires on a :

\overline{x}	f(x)
4	85 683
5	111 388
13	908 626
14	1 181 213

La population d'Hz. dépassera 100 000 en 2025 et un million en 2034.

Ce modèle, totalement irréalise, illustre une propriété de la fonction exponentielle de base a>1: elle explose rapidement vers l'infini!

Les bactéries inarrétables Le nombre de bactéries présentes dans un organisme suite à une infection est modélisé par $f(x) = 50000 \times 1.5^x$ où x est en heures.

- 1. Donner un arrondi au millier du nombre de bactéries après 30 minutes et après 1h30
- 2. Déterminer les variations de f sur [0; 10]
- 3. Déterminer le temps nécessaire pour que la population double.

Réponses

- 1. Après 30 minutes, soit 0.5 heures, le nombre de bactéries est f(0.5) = 61000 environ. Après 1h30, soit 1.5 heures, le nombre de bactéries et de f(1.5) = 92000 environ.
- 2. La fonction exponentielle de base 1.5 est croissante donc f aussi.

3. On a remarqué que f(1.5) est presque le double de 50000.

Essayons f(2) = 111000 environ et f(1.71) = 100000 environ.

Il faut donc 1.7 heures = 1h et 0.7×60 minutes, soit 1h42 pour doubler la population (environ...)

Cette modélisation est beaucoup plus réaliste. Elle peut durer jusqu'à une infection complète de l'hôte.

4. Taux d'évolution moyen

Les fonctions exponentielles permettent de modéliser facilement des accélérations.

Exemple Entre 2012 et 2015, le prix du gaz a augmenté de 25%. Calculer le taux d'évolution annuel moyen.

Notons t ce taux, le coefficient multiplicateur d'une augmentation annuelle est $1 + \frac{t}{100}$.

Le coefficient multiplicateur de trois augmentations successives est

$$\left(1 + \frac{t}{100}\right) \left(1 + \frac{t}{100}\right) \left(1 + \frac{t}{100}\right) = \left(1 + \frac{t}{100}\right)^3$$

Une augmentation de 25% correspond à un coefficient multiplicateur de 1.25 donc on peut poser une équation :

$$\left(1 + \frac{t}{100}\right)^3 = 1.25 \iff 1 + \frac{t}{100} = 1.25^{\frac{1}{3}}$$

$$\iff \frac{t}{100} = 1.25^{\frac{1}{3}} - 1 \iff t = 100 \times (1.25^{\frac{1}{3}} - 1)$$

$$\iff t \approx 7.72$$

Le prix du gaz a augmenté d'environ 7.72 par an entre 2012 et 2015.

Remarque On a utilisé la formule suivante :

Pour tout a > 0 et x > 0, on a $a^n = x \iff a = x^{\frac{1}{n}}$

 $x^{\frac{1}{n}}$ est la racine énième de x.