which is never null, and thus, $\mu = 0$, but since $(\overrightarrow{a_0 a_1}, \dots, \overrightarrow{a_0 a_m})$ is a basis of \overrightarrow{E} , we must also have $\lambda_i = 0$ for all $i, 1 \le i \le m$.

Given any element $\langle x, \lambda \rangle \in \widehat{E}$, if

$$x = a_0 + x_1 \overrightarrow{a_0 a_1} + \dots + x_m \overrightarrow{a_0 a_m}$$

over the affine frame $(a_0, (\overrightarrow{a_0a_1}, \dots, \overrightarrow{a_0a_m}))$ in E, in view of the definition of $\widehat{+}$, we have

$$\langle x, \lambda \rangle = \langle a_0 + x_1 \overrightarrow{a_0 a_1} + \dots + x_m \overrightarrow{a_0 a_m}, \lambda \rangle$$
$$= \langle a_0, \lambda \rangle + \lambda x_1 \overrightarrow{a_0 a_1} + \dots + \lambda x_m \overrightarrow{a_0 a_m}, \lambda \rangle$$

which shows that over the basis $(\overline{a_0a_1}, \dots, \overline{a_0a_m}, a_0)$ in \widehat{E} , the coordinates of $\langle x, \lambda \rangle$ are

$$(\lambda x_1, \ldots, \lambda x_m, \lambda).$$

If (x_1, \ldots, x_m) are the coordinates of x w.r.t. the affine frame $(a_0, (\overrightarrow{a_0a_1}, \ldots, \overrightarrow{a_0a_m}))$ in E, then $(x_1, \ldots, x_m, 1)$ are the coordinates of x in \widehat{E} , i.e., the last coordinate is 1, and if u has coordinates (u_1, \ldots, u_m) with respect to the basis $(\overrightarrow{a_0a_1}, \ldots, \overrightarrow{a_0a_m})$ in \overrightarrow{E} , then u has coordinates $(u_1, \ldots, u_m, 0)$ in \widehat{E} , i.e., the last coordinate is 0. Figure 25.3 shows the affine frame (a_0, a_1, a_2) in E viewed as a basis in \widehat{E} .

Figure 25.3: The basis (a_0, a_1, a_2) in \widehat{E} .