Real Analysis Qualifying Exam – January 09, 2015

Problem 1. Let (X,d) be a metric space. Suppose that K is a compact subset of X and F is a closed subset of X. Assume $K \cap F = \emptyset$. Show that there exists a positive number $\delta > 0$, such that

$$d(x,y) \ge \delta > 0, \ \forall \ x \in K, y \in F.$$

Problem 2. Given $2 \le p < \infty$. Show that for any real-valued functions $f, g \in L^p(\mathbb{R})$, it holds that

$$2\left(\left\|\frac{f}{2}\right\|_{L^{p}}^{p}+\left\|\frac{g}{2}\right\|_{L^{p}}^{p}\right) \leq \left\|\frac{f-g}{2}\right\|_{L^{p}}^{p}+\left\|\frac{f+g}{2}\right\|_{L^{p}}^{p} \leq \frac{1}{2}\left(\|f\|_{L^{p}}^{p}+\|g\|_{L^{p}}^{p}\right).$$

Problem 3. Suppose that $0 < \theta < 1$, $E \subset \mathbb{R}^n$ and $0 < |E| < \infty$, where $|\cdot|$ denotes the Lebesgue measure of E. Show that there is a cube $Q \subset \mathbb{R}^n$ such that

$$\theta|Q| < |E \cap Q|.$$

Problem 4. Suppose that $E \subset \mathbb{R}^n$ with $|E| < \infty$. Let f be a non-negative measurable function on E. Show that the following are equivalent:

- (A) $f \in L^p(E)$;
- (B) $\sum_{k=-\infty}^{\infty} 2^{kp} |\{x \in E : f(x) > 2^k\}| < \infty$.

Problem 5. Let H be a separable infinite dimensional Hilbert space and let $\{u_n\}_{n\in\mathbb{N}}$ be an orthonormal basis for H. Show that if $\{v_n\}_{n\in\mathbb{N}}$ is an orthonormal set in H such that $\sum_n \|u_n - v_n\|^2 < \infty$ then it is also an orthonormal basis for H.

Problem 6. Let (X, \mathbb{M}, μ) be a measure space and let $f, f_n \in L^p$, where $1 \leq p < \infty$. Prove that if $f_n \to f$ a.e., then $||f_n - f||_{L^p} \to 0$ if and only if $||f_n||_{L^p} \to ||f||_{L^p}$.

COMPLEX ANALYSIS QUALIFYING EXAM 09 JANUARY 2015

INSTRUCTIONS. Choose any but EXACTLY 5 of the 6 problems and solve. Justify each step completely! Unreadable answers receive no credits. You may quote named-theorems. The letter z stands for a complex number throughout.

Q-CA1.

- (a) There is a 1-1 conformal map from |z| < 1 onto \mathbb{C} . Prove or disprove this statement.
- (b) If a polynomial P(z) satisfies $|P(z)| \le 1$ for all |z| = 1, show that all its coefficients are bounded by 1 in magnitude.

Q-CA2.

- (a) Find the number of roots of $z^6 5z^4 + 3z^2 1 = 0$ in the unit disk $|z| \le 1$.
- (b) Let f be satisfying all conditions:
 - (i) f analytic in $1 \le |z| \le 2$;
 - (ii) $|f(z)| \le 1$ for |z| = 1;
 - (iii) $|f(z)| \le 4$ for |z| = 2.

Prove that $|f(z)| \leq |z|^2$ throughout the annulus $1 \leq |z| \leq 2$.

Q-CA3.

- (a) Provide an example of a complex function h(z) with a non-isolated singularity.
- (b) Suppose f and g are analytic and nonzero in |z| < 1 and $\frac{f'(1/n)}{f(1/n)} = \frac{g'(1/n)}{g(1/n)}$ for all $n \in \mathbb{N}$. Prove that $\frac{f}{g}$ is identically constant throughout the open disk |z| < 1.
- Q-CA4. Use methods from complex analysis to evaluate the integral

$$\int_0^\infty \frac{\sin x}{x(1+x^2)} \, dx.$$

- **Q-CA5.** Find a conformal map f sending the half-disk $S = \{z \in \mathbb{C} : |z| < 1; \, \Im(z) > 0\}$ onto the upper half-plane \mathbb{H} . Here, $\Im(z) = imaginary \ part \ of \ z$.
- **Q-CA6.** Suppose f(z) = u + iv is a 1-1 conformal map from a domain R onto S. Prove that f preserves the Laplace equation from one domain to the other, i.e.

if some
$$T = T(x, y)$$
 satisfies $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$ in R then $\frac{\partial^2 T}{\partial u^2} + \frac{\partial^2 T}{\partial v^2} = 0$ in S .