Matemática Discreta I

Primeira Lista de Exercícios

-1	\circ	1			~		•	~	വ
1.	Quais	das	seguintes	sentenças	sao	propo	S19	çое	s:

- (a) Você sairá de carro hoje?
- (b) O número $2^{987654321} + 21$ é primo.
- (c) Eu sou brasileiro se, e somente se, sou inteligente.
- (d) Vá procurar o que fazer!
- (e) Se está frio, então hoje é sexta-feira.
- (f) Todo retângulo é um quadrado, mas 2 + 2 = 5.
- 2. Considere as proposições P: "Está chovendo", Q: "O Sol está brilhando" e R: "Há nuvens". Escreva as sentenças abaixo utilizando operadores lógicos:
 - (a) Se está chovendo, então há nuvens.
 - (b) O Sol brilha quando e apenas quando o céu fica sem nuvens.
 - (c) Choverá se o Sol brilhar ou se o céu estiver com nuvens.
 - (d) A chuva é causa do Sol não brilhar.
- 3. Sendo P, Q e R as proposições dadas no exercício anterior, escreva, na linguagem corrente, as seguintes proposições compostas:

(a)
$$P \to R$$

$$(\mathbf{c})P \to Q$$

(e)
$$P \rightarrow \sim R$$

(b)
$$R \to P$$

(d)
$$R \to \sim P$$

(f)
$$\sim P \vee R$$

4. Suponha que a proposição $P \to Q$ seja falsa. Verifique se é possível determinar o valor-verdade de cada uma das seguintes proposições: (a) $P \land Q$ (b) $P \lor Q$ (c) $Q \to P$. E se $P \to Q$ for verdadeira?

1

5. Detemine o valor-verdade de cada proposição:

(a) Se
$$2+2=4$$
, então $2+4=8$.

(c) Se
$$2+2=4$$
, então $2+4=6$.

(b) Se
$$2+2=5$$
, então $2+4=8$.

(d) Se
$$2+2=5$$
, então $2+4=6$.

- 6. Assuma que as proposições "Darcy é uma menina" e "Darcy tem dez anos" são ambas falsas.

 Determine o valor-verdade de cada proposição abaixo.
 - (a) Se Darcy tem dez anos, então Darcy é menina.
 - (b) Darcy tem dez anos se, e somente se, é menina.
 - (c) Darcy não é uma menina com dez anos.

E se as duas proposições dadas forem ambas verdadeiras?

- 7. Suponha que "Darcy não é baixa" é uma proposição falsa e assuma que as proposições "Darcy ou Maria têm dez anos" e "se Maria tem dez anos, então Darcy não é baixa" são ambas verdadeiras. Quais das seguintes proposições são verdadeiras?
 - (a) Darcy não é baixa.

(c) Darcy tem dez anos.

(b) Maria tem dez anos.

- (d) Ou Darcy ou Maria não tem dez anos.
- 8. Sabendo-se que P e X são proposições falsas e que Y é uma proposição verdadeira, determine o valor-verdade de:

(a)
$$((P \lor X) \land (X \lor Y)) \longrightarrow P$$

(b)
$$\sim (\sim (\sim X \land Y)) \longrightarrow (\sim (\sim P))$$

(c)
$$\sim (\sim (\sim (P \land \sim Y)) \land (\sim P \land \sim X))$$

- 9. Diga quais das seguintes proposições compostas possui apenas uma valor-lógico e determine esse valor. Se não possível atribuir um único valor-lógico para a proposição, explique por quê.
 - (a) $\sim P \longrightarrow (Q \lor \sim R)$, sendo R verdadeira.
 - (b) $P \longrightarrow (Q \land S)$, sendo P verdadeira.
 - (c) $(P \longrightarrow S) \longrightarrow R$, sendo R verdadeira.
 - (d) $(P \longrightarrow R) \wedge S$, sendo R verdadeira.
 - (e) $(P \vee R) \vee (S \longrightarrow Q)$, sendo Q falsa e R verdadeira.
 - (f) $[(P \lor Q) \longleftrightarrow (Q \land P)] \longrightarrow ((R \land P) \lor Q)$, sendo V o valor lógico de Q.
 - (g) $(P \longleftrightarrow Q) \lor (Q \longrightarrow \sim P)$, sendo Q falsa.
 - (h) $[(P \longrightarrow Q) \land P] \longrightarrow \sim P$, sendo P falsa.

- 10. Sejam $P,\ Q$ e R proposições quaisquer, τ uma tautologia e C uma contradição. Construa a tabela-verdade de cada uma das proposições seguintes:
 - (a) $[\sim (P \land Q)] \lor P$

(e) $(P \land \sim Q) \to (P \to Q)$

(b) $(\sim P \longrightarrow R) \land Q$.

(f) $[R \land (P \longleftrightarrow \tau)] \lor [\sim (P \longrightarrow C)]$

(c) $(Q \to P) \longleftrightarrow (P \land Q)$

(g) $[(P \longrightarrow Q) \land \sim P] \longrightarrow \sim Q$

(d) $(P \longleftrightarrow Q) \to (P \lor \sim R)$

- (h) ($\sim [C \longleftrightarrow (Q \longleftrightarrow \tau)]) \land (P \lor R)$
- 11. O conectivo "ou exclusivo" acontece se apenas uma das duas cláusulas componentes for verdadeira. Denote tal conectivo por \oplus . (a) Faça as tabelas-verdade de: $P \oplus Q$, $P \oplus P$, $(P \oplus Q) \oplus R$. (b) Mostre que $P \oplus Q$ equivale a $(P \vee Q) \land \sim (P \land Q)$ e também a $\sim (P \longleftrightarrow Q)$.
- 12. Prove as seguintes equivalências:
 - (a) $P \equiv P \vee P$ (Idempotência)
 - (b) $P \equiv P \wedge P$ (Idempotência)
 - (c) $P \lor Q \equiv Q \lor P$ (Comutatividade)
 - (d) $P \wedge Q \equiv Q \wedge P$ (Comutatividade)
 - (e) $[(P \lor Q) \lor R] \equiv [P \lor (Q \lor R)]$ (Associatividade)
 - (f) $[(P \wedge Q) \wedge R] \equiv [P \wedge (Q \wedge R)]$ (Associatividade)
 - (g) $\sim (P \vee Q) \equiv \sim P \wedge \sim Q$ (De Morgan)
 - (h) $\sim (P \wedge Q) \equiv \sim P \lor \sim Q$ (De Morgan)
 - (i) $[P \lor (Q \land R)] \equiv (P \lor Q) \land (P \lor R)$ (Distributividade)
 - (j) $[P \land (Q \lor R)] \equiv (P \land Q) \lor (P \land R)$ (Distributividade)
 - (k) $P \equiv \, \sim (\sim P) ~~$ (Lei da Dupla Negação)
 - (l) $(P \to Q) \equiv \sim P \lor Q$ (Definição de Condicional)
 - (m) $(P \equiv Q) \equiv (P \rightarrow Q) \land (Q \rightarrow P)$ (Definição de Bicondicional)

- 13. Utilize as equivalências lógicas dadas no exercício anterior para verificar as seguintes regras de equivalência:
 - (a) $(P \to Q) \equiv (\sim Q \to \sim P)$ (Contrapositiva)
 - (b) $P \wedge (P \vee Q) \equiv P$ (Absorção)
 - (c) $P \lor (P \land Q) \equiv P$ (Absorção)
 - (d) $(P \to Q) \equiv \sim [P \land (\sim Q)]$ (Definição de Condicional)
 - (e) $[(P \land Q) \rightarrow R] \equiv [P \rightarrow (Q \rightarrow R)]$ (Exportação)
 - (f) $[(P \to Q) \land (P \to \sim Q)] \equiv \sim P$ (Absurdo)
- 14. Sejam P uma proposição qualquer, C uma contradição e τ uma tautologia. Prove as seguintes regras de equivalência:
 - (a) $P \vee C \equiv P$

(d) $P \lor \sim P \equiv \tau$

(b) $P \wedge C \equiv C$

(e) $P \vee \tau \equiv \tau$

(c) $P \land \sim P \equiv C$

- (f) $P \wedge \tau \equiv P$
- 15. Sejam P, Q, R e S proposições quaisquer. Mostre que as proposições $(P \to R) \lor (Q \to S)$ e $(P \wedge Q) \rightarrow (R \vee S)$ são equivalentes.
- 16. Sejam P, Q e R proposições quaisquer. Utilize as equivalências lógicas dadas nos exercícios anteriores para verificar as seguintes equivalências:

 - (a) $P \to Q \equiv P \to (P \land Q)$ (b) $\sim (P \to Q) \equiv P \land \sim (P \land Q)$

 - (c) $(P \lor Q) \to P \equiv Q \to P$ (d) $P \equiv Q \equiv (P \lor Q) \to (P \land Q)$
 - (e) $\sim (P \land (\sim [Q \lor R])) \equiv \sim R \rightarrow (\sim Q \rightarrow \sim P)$
 - (f) $\sim [(\sim P \rightarrow \sim Q) \land ([Q \land P) \rightarrow \sim P)] \equiv Q$
- 17. Simplifique as proposições abaixo (utilizando regras de equivalência):
 - (a) $[\sim (P \lor Q)] \lor (P \land \sim Q)$ (b) $\sim (P \lor Q) \land P$

- (c) $Q \wedge \sim (P \wedge Q)$
- (d) $P \to (P \lor Q)$
- (e) $(P \wedge Q) \rightarrow (\sim R \rightarrow \sim Q)$ (f) $\sim P \rightarrow [(\sim P \vee Q) \rightarrow (P \wedge Q)]$
- (g) $P \wedge (P \rightarrow Q) \wedge (P \rightarrow Q)$ (h) $(P \vee Q) \rightarrow [(P \wedge Q) \vee (P \wedge Q) \vee (P \wedge Q)]$

- 18. Prove as seguintes implicações:
 - (a) $P \Rightarrow P \lor Q$ (Adição)
 - (b) $P \wedge Q \Rightarrow P$ (Simplificação)
 - (c) $(P \to Q) \land P \Rightarrow Q$ (Modus Ponens)
 - (d) $(P \to Q) \land \sim Q \Rightarrow \sim P$ (Modus Tollens)
 - (e) $(P \lor Q) \land \sim P \Rightarrow Q$ (Silogismo Disjuntivo)
 - (f) $(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$ (Silogismo Hipotético)
- 19. Exibir os nomes de cada um dos seguintes argumentos (a conclusão é o que está abaixo do traço horizontal):

$$\sim (A \lor D) \longrightarrow E$$
Eventually, and $(A \lor D)$

Exemplo: $\frac{\sim (A \lor D)}{E}$

Modus Ponens

$$F \longrightarrow (B \lor D)$$

$$(P \land Q) \lor (\sim Q \land R)$$

(a)
$$\sim (B \vee D)$$
 $\sim F$

(a)
$$\sim (B \lor D)$$
 b) $\sim (P \land Q)$ $\sim F$ $\sim (P \land Q)$ $\sim (P \land Q)$

$$A \longrightarrow \sim B$$

(c)
$$\sim B \longrightarrow (R \lor D)$$

(c)
$$\sim B \longrightarrow (R \lor D)$$
 (d) $(\sim P \lor Q) \land (R \longrightarrow S)$ $(\sim P \lor Q)$

20. Completar cada um dos seguintes argumentos válidos (a conclusão é o que está abaixo do traço horizontal):

$$(R \wedge P) \longrightarrow \sim Q$$

$$A \longrightarrow (B \longrightarrow R)$$

(a)
$$\sim (\sim Q)$$

(b)
$$\frac{?}{\sim A}$$

$$(A \land \sim B) \lor (B \land \sim R)$$

$$A \longrightarrow (B \wedge R)$$

(c)
$$A \wedge \sim B$$

- 21. Verifique que são válidos os argumentos (C representa uma contradição):
 - (a) $P \to \sim Q$, Q, $\sim P \to (R \land S) \vdash R \land S$
 - (b) $G \to H$, $\sim G \to \sim F$, $\sim H \vdash F$
 - (c) $\sim Q \vee S$, $\sim S$, $[\sim (R \wedge S)] \rightarrow Q \vdash R$
 - (d) $(\sim R) \to S$, $R \to T$, $S \to (P \land Q)$, $\sim T \vdash Q$
 - (e) $P \to Q$, $P \lor Q$, $\sim Q \vdash C$
 - (f) $P \to Q$, $R \to S$, $\sim Q \wedge R$, $(\sim P \wedge S) \to X \vdash X$
- 22. Verifique a validade do argumento: "Se eu não especifico as condições iniciais, meu programa não roda. Se eu cometo 'loop infinito', meu programa não termina. Se o programa não roda ou se ele não termina, então o programa falha. Logo, se o programa não falha, então eu especifiquei as condições iniciais e não cometi 'loop'."
- 23. Mostre que os seguintes argumentos são válidos:

(a)
$$P \to S$$
, $P \wedge Q$, $S \wedge R \to \sim T$, $Q \to R \vdash \sim T$

(b)
$$T \to R$$
, $\sim R$, $T \vee S \vdash S$

(c)
$$E \to S$$
, $\sim T \to \sim J$, $E \wedge J \vdash T \wedge S$

(d)
$$(P \lor Q) \land (P \lor R), P \to S, S \to T, Q \land R \to (M \to T), \sim T \vdash \sim M$$

Utilizando a demonstração direta condicional

(e)
$$\sim R \to Q$$
, $\sim T$, $\sim S \to \sim Q \vdash (T \lor \sim S) \to R$

(f)
$$S \to R$$
, $S \lor P$, $P \to Q$, $R \to T \vdash \sim Q \to T$

Utilizando a demonstração por contrapositiva

(g)
$$(P \to Q) \lor R$$
, $S \lor T \to \sim R$, $S \lor (T \land U) \vdash P \to Q$

(h)
$$P \to Q \lor R$$
, $\sim R \vdash P \to Q$

Utilizando a demonstração indireta

(i)
$$T \rightarrow \sim S$$
, $F \rightarrow \sim T$, $S \vee F \vdash \sim T$

(j)
$$S \vee R$$
, $S \rightarrow \sim E$, $R \rightarrow M \vdash \sim E \vee M$

(k)
$$\sim R \lor \sim B$$
, $T \lor S \to R$, $\sim S \lor B$, $\sim T \vdash \sim (T \lor S)$

Utilizando um método dedutivo de sua escolha

(1)
$$T \to A, V \to T, A \to M, \sim M \lor V \vdash A \longleftrightarrow V$$

(m)
$$P \to Q$$
, $\sim R \to \sim Q$, $\sim (\sim P \lor \sim S) \vdash R \land S$

(n)
$$A \to (B \to R)$$
, $(R \land D) \to E$, $F \to (B \land D)$, $\sim (\sim F \lor \sim A) \vdash E$

(o)
$$(P \land \sim Q) \lor (\sim R \land Q), P \to S, \sim S \lor T, \sim T \vdash Q$$

$$(p) \sim (B \wedge R) \rightarrow \sim A, A \rightarrow (\sim B \wedge D) \vdash \sim A$$

$$(q) \sim B \rightarrow \sim A, B \rightarrow (R \lor D) \vdash (A \land \sim R) \rightarrow D$$

$$\text{(r) } A \to (B \to R), \ (A \land D) \lor (A \land E) \ \vdash \sim (\sim B \lor D) \to (R \land E)$$

24. Demonstre, utilizando o método dedutivo, as seguintes implicações:

(a)
$$[(P \to Q) \land (R \to S)] \Rightarrow [(P \land R) \to (Q \land S)]$$

(b)
$$(P \to Q) \Rightarrow [P \to (P \land Q)]$$

25. Considere o argumento $H_1, H_2, H_3, H_4 \vdash T$, onde

 H_1 : "Se ele estuda medicina, então ele se prepara para conseguir uma boa vida".

 H_2 : "Se ele estuda artes, então ele se prepara para conseguir uma vida boa".

 H_3 : "Se ele se prepara para conseguir uma boa vida ou se prepara para viver uma vida boa, então seu colégio não é uma perda de tempo".

 H_4 : "Seu colégio é uma perda de tempo".

T: "Assim, ele não estuda nem medicina e nem artes".

Mostre que esse argumento é válido.

26. Considere os predicados no universo dos inteiros: N(x): "x é um inteiro não-negativo", E(x): "x é par", I(x): "x é impar", P(x): "x é primo". Escreva as proposições abaixo simbolicamente:

(a) Existe um inteiro par.

(d) Todo primo é ímpar.

(b) Todo inteiro é par ou ímpar.

- (e) Se um inteiro não é impar, então é par.
- (c) Todo inteiro primo não é negativo.
- (f) Nem todos os primos são ímpares.

27. Considere os predicados P(x): " $x^3 - 2x = 0$ ", Q(x): "|x + 1| = 2", R(x): " $x^2 - 9 = 0$ ".

Determine o valor-verdade de cada proposição abaixo em cada um dos seguintes universos de

discurso: $A = \{-3, 0, 3\}, \mathbb{N} \in \mathbb{R}.$

- (a) $\exists x (P(x))$ (b) $\forall x (P(x) \lor R(x))$
- (c) $\forall x (R(x) \to Q(x))$

- (d) $\exists x(Q(x))$ (e) $\forall x[\sim Q(x) \land (P(x) \rightarrow R(x))]$ (f) $\exists x(Q(x) \rightarrow R(x))$

- (g) $\exists x (\sim R(x))$ (h) $\forall x (\sim Q(x) \lor \sim R(x))$
- 28. Considere os predicados P(x): " $x^2 1 = 0$ " e Q(x): " $x^2 = 0$ ", no universo $\mathcal{U} = \{-1, 0, 1\}$. Determine o valor-verdade das seguintes proposições:
 - (a) $\forall x (P(x) \lor Q(x))$

- (b) $\forall x P(x) \lor \forall x Q(x)$ (c) $\exists x (P(x) \land Q(x))$ (d) $\exists x P(x) \land \exists x Q(x)$
- 29. Considere os predicados P(x): " $x^2 36 = 0$ ", Q(x): "x é múltiplo de 3", R(x): " $|x| \le 5$ ", S(x): " $x^2 - x - 2 = 0$ " e T(x): " $x^2 = x$ " no universo $\mathcal{U} = \mathbb{Z}$. Determine o valor-verdade das seguintes proposições:
 - (a) $\forall x (P(x) \to Q(x))$

(f) $\forall x (T(x) \rightarrow R(x))$

(b) $\exists x (\sim P(x) \land Q(x))$

(e) $\exists x (\sim T(x) \land R(x))$

(c) $\forall x (S(x) \to R(x))$

(g) $\forall x (\sim R(x) \lor Q(x) \lor T(x))$

(d) $\exists x (\sim R(x) \land S(x))$

- (h) $\exists x (R(x) \leftrightarrow P(x))$
- 30. Se $\forall x P(x)$ é falsa, então existe um sujeito x_0 no universo de discurso tal que $P(x_0)$ é falso. Neste caso, dizemos que x_0 é um contraexemplo da proposição dada. Encontre contraexemplos das sentenças abaixo:
 - (a) Todos os primos são ímpares: $\forall x : [x \in \text{primo} \to x \in \text{impar}]$
 - (b) $\forall x [(x+1)^2 = x^2 + 1]$ (universo: \mathbb{R})
- 31. Considere os predicados P(x): " $x^2 1 = 0$ " e Q(x): " $x^2 = 0$ ", no universo $\mathcal{U} = \{-1, 0, 1\}$. Determine o valor-verdade das seguintes proposições:

 - (a) $\forall x (P(x) \lor Q(x))$ (b) $\forall x P(x) \lor \forall x Q(x)$

 - (c) $\exists x (P(x) \land Q(x))$ (d) $\exists x P(x) \land \exists x Q(x)$
- 32. Mostre que os seguintes argumentos são válidos:
 - (a) "Todos os poetas são ou niilistas ou sonhadores. Afrânio é poeta. Mas ele não é niilista. Logo, há sonhadores " (P: poeta, N: niilista, S: sonhador e a: Afrânio).
 - (b)" Todos os gaúchos gostam de contar estórias. Todos os contadores de estórias são interessantes. O escritor Veríssimo é gaúcho. Logo, alguém é gaucho e interessante" (G: ser gaúcho, C: contar estórias, I: ser interessante, v: Veríssimo).

- (c) "Todos os peixes vivem no mar. Acontece que Pluto é um animal. Pluto não vive no mar. Portanto, há animais que não são peixes.
- 33. Mostre que os seguintes argumentos são válidos:

(a)
$$\exists x (P(x) \land R(x)), \forall x (P(x) \rightarrow Q(x)), \forall x (\sim Q(x) \lor S(x)) \vdash \exists x (R(x) \land S(x))$$

(b)
$$\forall x (R(x) \land I(x)), \forall x (H(x) \rightarrow \sim A(x)), \forall x (I(x) \rightarrow A(x)) \vdash \forall x (\sim R(x) \rightarrow \sim H(x))$$

(c)
$$\exists x (A(x) \land R(x)), \forall x (R(x) \rightarrow L(x)) \vdash \exists x (A(x) \land L(x))$$

- 34. Determine os valores lógicos das proposições (universo: \mathbb{Z}):
 - (a) $\forall m \exists n [2n = m]$
- (b) $\forall m \exists n [2m = n]$
- (c) $\forall m \exists n (\sim [2n = m])$

- (d) $\exists n \forall m [2m = n]$
- (e) $\exists m \forall n [m < n + m]$ (f) $\forall m \exists n [n < n + m]$
- 35. Determine quais das seguintes proposições são verdadeiras (universo de discurso: \mathbb{Z}). Depois considere o conjunto dos números reais como universo.
 - (a) $\forall x \exists y [xy = 0]$ (b) $\forall x \exists y [xy = 1]$ (c) $\exists y \forall x [xy = 1]$ (d) $\exists y \forall x [xy = x]$

- 36. Mostre as afirmações abaixo por indução sobre n.
 - (a) $1+2+2^2+\ldots+2^n=2^{n+1}-1$, para n > 1.
 - (b) $2^n > n$, para n > 1.
 - (c) $1+4+7+\ldots+(3n-2)=\frac{n(3n-1)}{2}$, para $n \ge 1$.
 - (d) $n^2 > 3n$, para $n \ge 4$.
 - (e) $3^{2n} 1$ é divisível por 8, para $n \ge 1$.
 - (f) $n^3 + 2n$ é divisível por 3, para $n \ge 1$.
 - (g) $1+3+5+\ldots+(2n-1)=n^2$, para n > 1.
 - (h) $2^n \le 2^{n+1}$, para $n \ge 1$.
 - (i) $n^2 > n + 1$, para n > 2.
 - (j) $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$, para $n \ge 1$.
- 37. Determine o menor número natural n_o tal que $n_o! > n_o^2$, onde $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$. Prove que $n! > n^2$, para todo $n \ge n_o$.