SMB – laboratorium

Opis projektów

- Odnaleźć w Internecie informację (manual) dotyczącą narzędzia GNUPLOT systemu wizualizacji danych 2D i 3D (wykresów); zainstalować go w swoim komputerze; przeprowadzić wybrane eksperymenty; eksperymenty opisać w sprawozdaniu (.pdf).
- 2. Zrealizować symulator, który wizualizuje przemieszczanie się na planie ulic miasta pojazdu od punktu początkowego do punktu końcowego:
 - Plan miasta to siatka o rozmiarze L * L (L liczba całkowita parametr symulatora).
 - Punkt początkowy i punkt startowy są losowane lub ustalane deterministycznie.
 - Pojazd porusza się po ulicach miasta od punktu początkowego do punktu końcowego po najkrótszej drodze; przejazd przez dowolną ulicę zajmuje pojedynczą jednostkę czasu.
 - Ulica, w którą próbuje wjechać pojazd może być zablokowana z prawdopodobieństwem p (parametr symulatora); w przypadku blokady ulicy pojazd próbuje wjechać w kolejną ulicę znajdującą się na najkrótszej drodze do celu.
 - Animacja poruszania się pojazdu na mapie miasta.
 - Raportować z użyciem Gnuplota trasę przejazdu i zdarzenia: a) na osi X kolejne jednostki czasu; b) na osi Y – numery skrzyżowań trasy przejazdu z ewentualną informacją o blokadach. ocena: 3 - 4+
- 3. Rozkład równomierny, rozkład Poissona, rozkład wykładniczy generowanie ruchu o zadanym rozkładzie.
- 4. Koncepcja i realizacja symulatora sterowanego zdarzeniami:
 - 4.1 Symulacja ręczna systemu kolejkowego z jednym kanałem; wizualizacja wyników.
 - 4.2 Symulacja ręczna systemu kolejkowego z dwoma kanałami.
 - 4.3 Schemat blokowy systemu kolejkowego z n kanałami.
 - 4.4 Realizacja systemu kolejkowego z n kanałami; należy testować system dla takich samych danych jakich użyto w p. 4.1 ocena: 3.
- 5. Realizacja na bazie systemu kolejkowego symulatora klastra sieci telefonii komórkowej: ocena: 3 4+

Należy stworzyć klaster np. 4 komórek (każda reprezentowana przez system kolejkowy z poprzedniego punktu) zakładając, że długość kolejki w każdej komórce L=0, mamy zadana pulę kanałów obsługi na klaster; trzeba wykonać 2 warianty symulacji:

- a) ustalamy jakieś *lambdy* oraz *mi* dla poszczególnych kanałów, a pulę kanałów rozdzielamy po równo miedzy komórkami obserwujemy jaka jest liczba odrzuceń w każdej komórce.
- b) jak w a), ale staramy się optymalizować rozdział puli kanałów, tak aby minimalizować liczbę odrzuceń zgłoszeń.

Dla wersji a) prosiłbym o użycie następujących danych:

- sumaryczna liczba kanałów w klastrze=10
- T=8
- lambda_1=2; lambda_2=4; lambda_3=6; lambda_4=12;
- mi_1=2; mi_2=2; mi_1=3; mi_4=2;
- I_ba_kan_1=1; I_ba_kan_2=3; I_ba_kan_3=2; I_ba_kan_4=4;

Jeśli chodzi o wyniki to proszę przedstawić tylko wykresy odrzuceń w każdej z 4 komórek klastra. Następnie proszę przeprowadzić eksperyment b), gdzie jest optymalizacja rozmieszczenia kanałów i wyniki proszę przedstawić równie z w postaci wykresów odrzuceń w każdej komórce, tak by można porównać obie wersje.

6.	Symulacja problemu zdarzeniami. na ocen	5-ciu <mark>bdb #</mark>	filozofów taka sama	z użyc ocena pr	iem konce zepisana na	epcji symul regzamin) .	atora	sterowanego