1 Antibiotic derivatives

1.1 Ciprofloxacin derivative

intro in

1.1.1 Retrosynthesis of ciprofloxacin derivative 92

The retrosynthesis of ciprofloxacin derivative 92 is shown in Scheme 1. The disconnection to an alkynyl piperazine 92 and a commercially available ciprofloxacin precursor 53 was chosen based on a study by Renau et al., who found this route to be "...superior to previous reports which involved alkylation of piperazine with an appropriate alkyl halide.".^{1,2}

It was envisaged that the alkynyl piperazine 92 could be prepared from mono-Boc-protected piperazine 50 and hex-5-ynal 49 using conditions similar to those used by Renau $et\ al.^1$

Unlike the aldehydes and ketones used by Renau *et al.*,¹ hex-5-ynal **49** is not commercially available and so it was hoped that this could be prepared by oxidation of hex-5-ynol **48**.

Scheme 1: The retrosynthesis of 92.

1.1.2 Synthesis of ciprofloxacin derivative 92

The synthesis of ciprofloxacin derivative 92 is shown in Scheme 2. Hex-5-ynal 49 was prepared by PCC oxidation of hex-5-ynol 48 in good yield according to the procedure described by Kocsis $et\ al.^3$

Renau $et\ al.^1$ used sodium cyanoborohydride to facilitate the reductive amination of hex-5-ynal **49** and 1-Boc-piperazine **50**. However, it was decided to attempt this transformation using the less toxic sodium triacetoxyborohydride following a procedure reported by Abdel-Magid $et\ al.^4$ This reaction yielded compound **51** in excellent yield, which was deprotected using TFA using the procedure described by Renau $et\ al.^1$ to give the alkynyl piperazine **52** quantitatively.

The alkynyl piperazine **52** was refluxed in MeCN with the ciprofloxacin precursor **53** according to the procedure described by Renau *et al.*,¹ however the reaction did not proceed. Addition of 2 eq. of NEt₃ did not lead to reaction, however it was found that refluxing in neat NEt₃ led to conversion to the final ciprofloxacin derivative **92**.

With a small sample of the final product in hand, less harsh conditions were sought for a larger-scale version of the final reaction. Mircowave irradiation at 115 °C was used, following a procedure by Reddy *et al.*⁵ DMSO and NMP were tested as solvents, with or without the addition of TEA. The reactions were monitored using LCMS, and NMP without TEA was found to give the highest conversion.

Work-up of this reaction proved difficult, with an unknown dark brown viscous liquid being formed which was difficult to separate from the white solid product. A pure sample was obtained by recrystalisation from EtOAc, but the yield was rather poor (11.8 %). The reaction was observed to stall after a certain point, while still having some of the ciprofloxacin precursor **53** present. The alkynyl piperazine **52** was not observed by TLC despite having been added in two-fold excess, suggesting that it degraded to a by-product before having chance to react.

Further attempts to refine this reaction might involve lower temperatures, higher ratios of the alkynyl piperazine **52** or improvement of the purification, e.g. by finding better precipitation conditions or by using reverse-phase chromatography. A Buchwald-Hartwig coupling or Ullmann reaction could also be attempted, but, as seen later, coordination of ciprofloxacin to Cu can hinder catalysis.

Scheme 2: The synthesis of **92**. a) Pyridinium chlorochromate, CH_2Cl_2 , r.t., 5 h, 72 %. b) NaBH(AcO)₃, 1,2-dichloroethane, r.t., 10.5 h, 99 %. c) TFA, r.t., 1 h, 100 %. d) NMP, microwave, 115 °C 24 h, 11.8 %.

1.2 Trimethoprim derivative

The synthesis of trimethoprim derivative 95 is shown in Scheme 3. Trimethoprim was selectively deprotected using HBr (aq.) using a procedure described by Jing $et\ al.^6$ to form 93. A slightly longer reaction time (40 min

vs 20 min) probably led to the yield being slightly somewhat lower than that obtained by Jing et~al.. The main impurity was asymmetrically di-demethylated trimethoprim, which could be identified by the presence of two aryl peaks at 6.41 (d, J=2.0 Hz, 1 H) and 6.34 (d, J=2.0 Hz, 1 H) and a corresponding methyl peak at 3.82 (s, 3 H) in the crude NMR.

The alkynyl trimethoprim derivative $\bf 95$ was synthesised from the demethylated trimethoprim $\bf 93$ and 6-chloro-1-hexyne $\bf 94$ using a $\rm Cs_2CO_3$ -catalysed $\rm S_N2$ reaction similar to that used by Jing $\it et al..$

weigh

Scheme 3: The synthesis of **95**. a) HBr (aq.), 100 °C, 40 min, 43.4 %. b) Cs_2CO_3 , DMF, 70 °C, 7 h, 19.6 %.

1.3 Methyl 3-oxodecanoate 21/22

Meldrum's acid (9.0 g, 63 mmol, 1 eq.) was dissolved in anhydrous CH_2Cl_2 (150 ml) in an oven-dried flask and cooled to 0 °C. Pyridine (10.2 ml, 126 mmol, 2 eq.) was added dropwise over 20 min. Octanoyl chloride (11.7 ml, 69 mmol, 1.1 eq.) was then added and the mixture was stirred at 0 °C for a further 4 h. The mixture was allowed to warm to r.t., diluted with CH_2Cl_2 (20 ml) and poured into a mixture of ice (~30 g) and HCl (2 N, 90 ml). The solution was washed with NaCl (sat., aq., 150 ml) and dried over $MgSO_4$. The solvent was removed under vacuum to give an orange-brown oil. The oil was refluxed in anhydrous MeOH (150 ml) for 5 h and the solvent was removed under vacuum. The resulting residue was purified by column chromatography (SiO₂, 5 % $Et_2O/40$ -60 P.E.). A tautomeric mixture of **21** and **22** was obtained as a colourless oil (8.34 g, 41.6 mmol, 66 %, 92 % **21** as determined by ¹H NMR).

Keto form 21

TLC $R_f = 0.12 \ (5 \% \ \text{EtO}_2/\text{PE})$

IR (neat) ν_{max} / cm⁻¹ = 2927.8 (C-H), 2856.3 (C-H), 1746.9 (ester C=O), 1716.7 (ketone C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 3.74 (s, 3 H, OC<u>H</u>₃), 3.45 (s, 2 H, C(=O)C<u>H</u>₂C(=O)), 2.53 (t, J = 7.4 Hz, 2 H, C(=O)C<u>H</u>₂CH₂), 1.60 (quin, J = 7.1 Hz, 2 H, C(=O)CH₂C<u>H</u>₂), 1.39 - 1.19 (m, 8 H, C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂CH₃), 0.88 (t, J = 6.8 Hz, 3 H, CH₂C<u>H</u>₃)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 202.3 (CH₃OC(=O)CH₂C(=O)), 167.3 (CH₃OC(=O)CH₂C(=O)), 51.7 (OCH₃), 48.5 (CH₃OC(=O)CH₂C(=O)), 42.5 (C(=O)CH₂CH₂), 31.3 (CH₂), 28.7 (CH₂), 28.6 (CH₂), 23.1 (CH₂), 22.2 (CH₂), 13.6 (CH₂CH₃)

Enol form 22

TLC $R_f = 0.12 \ (5 \% \ EtO_2/PE)$

IR (neat) ν_{max} / cm⁻¹ = 2927.8 (C-H), 2856.3 (C-H), 1653.8 (C=C), 1629.2 (α, β unsaturated C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 12.02 (s, 1 H, CO<u>H</u>), 4.99 (s, 1 H, C(=O)C<u>H</u>=COH), 3.73 (s, 3 H, OC<u>H</u>₃), 2.20 (t, J = 7.4 Hz, 2 H, COHC<u>H</u>₂), 1.76 - 1.72 (m, 2 H, COHCH₂C<u>H</u>₂), 1.39 - 1.19 (m, 8 H, C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂CH₃), 0.88 (t, J = 6.8 Hz, 3 H, CH₂C<u>H</u>₃)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 178.7 (CH₃OC(=O)CH=<u>C</u>OH), 172.7 (CH₃O<u>C</u>(=O)CH=COH), 88.2 (CH₃OC(=O)<u>C</u>H=COH), 50.5 (O<u>C</u>H₃), 37.9 (COH<u>C</u>H₂CH₂), 34.6 (<u>C</u>H₂), 31.2 (<u>C</u>H₂), 29.0 (<u>C</u>H₂), 25.9 (<u>C</u>H₂), 22.3 (<u>C</u>H₂), 13.6 (CH₂<u>C</u>H₃)

Spectroscopic data are consistent with the literature.^{7,8}

1.4 Methyl (E)-3-((4-((tert-butoxycarbonyl)amino)phenyl)amino)dec-2-enoate 24

Methyl 3-oxodecanoate **21** (500 mg, 2.50 mmol, 1.00 eq.) and O-tert-butyl N-(4-aminophenyl)carbamate **90** (520 mg, 2.50 mmol, 1.00 eq.) were dissolved in MeOH (10 ml) and refluxed for 18 h. The solvent was removed under vacuum and the resulting residue was purified by column chromatography (SiO₂, gradient of 0 to 20 % $\rm Et_2O/40$ -60 P.E.). **24** was obtained as a white amorphous solid (0.169 mg, 0.480 mmol, 19 %).

TLC $R_f = 0.30 (30 \% \text{ Et}_2\text{O}/40\text{-}60 \text{ P.E.})$

mp $T / {}^{\circ}\text{C} = 78.8 \text{ (Et}_2\text{O}/40\text{-}60 \text{ P.E.)}$

IR (neat) ν_{max} / cm⁻¹ = 3337.0 (N-H), 2927.7 (C-H), 2857.1 (C-H), 1723.7 (carbamate C=O), 1634.5 (α, β unsaturated C=O), 1610.7 (C=C), 1580.9 (N-H bend)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 171.1 (\underline{C} (=O)CH=C), 164.3 (C(=O)CH= \underline{C}), 152.7 (O \underline{C} (=O)NH), 136.0 (para to NHBoc), 134.1 (\underline{C} NHBoc), 126.3 (meta to NHBoc), 119.1 (ortho to NHBoc), 83.8 (C(=O) \underline{C} H=C), 80.7 (\underline{C} (CH₃)₃), 50.2 (O \underline{C} H₃), 32.2 (\underline{C} H₂), 31.6 (\underline{C} H₂), 29.1 (\underline{C} H₂), 28.8 (\underline{C} H₂), 28.3 (C(\underline{C} H₃)₃), 28.0 (\underline{C} H₂), 22.6 (\underline{C} H₂), 14.0 (\underline{C} H₃)

HRMS (ESI⁺) m/z / Da = 391.2589, [M+H]⁺, [C₂₂H₃₅N₂O₄]⁺ requires 391.2591

Spectroscopic data are consistent with the literature.⁹

1.5 6-Amino-2-heptylquinolin-4-ol 25

Methyl (E)-3-((4-((tert-butoxycarbonyl)amino)phenyl)amino)dec-2-enoate **24** (168 mg, 0.649 mmol, 1 eq.) and polyphosphoric acid (5 g) were heated to 90 °C for 1 h. The reaction mixture was then poured into NaHCO₃ (sat., aq., 50 ml) cooled with ice. The precipitate was collected by vacuum filtration, washed with water (50 ml) and dried under high vacuum. **25** was obtained as a pale yellow amorphous solid (121 mg, 0.468 mmol, 72 %).

mp $T / {}^{\circ}C = 249 (H_2O)$

IR (neat) ν_{max} / cm⁻¹ = 3336.5 (N-H), 2926.5 (C-H), 2856.9 (C-H), 1723.9 (C=O), 1634.5 (aromatic), 1610.8 (aromatic), 1583.3 (aromatic), 1519.1 (aromatic)

¹**H NMR** (400 MHz, DMSO-d₆) δ / ppm = 7.26 (d, J = 8.7 Hz, 1 H, meta to NH₂), 7.15 (d, J = 2.6 Hz, 1 H, ortho to C(=O)), 6.95 (dd, J = 2.7, 8.8 Hz, 1 H, para to C(=O)), 5.74 (s, 1 H, ortho to CH₂), 5.16 (s, 2 H, N<u>H</u>₂), 2.52 (t, J = 7.4 Hz, 2 H, CC<u>H</u>₂), 1.64 (quin, J = 7.6 Hz, 2 H, CCH₂C<u>H</u>₂), 1.36 - 1.19 (m, 8 H, C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂CH₃), 0.86 (t, J = 7.0 Hz, 3 H, <u>H</u>₃)

¹³C NMR (101 MHz, DMSO-d₆) δ / ppm = 176.7 (<u>C</u>(=O)), 151.7 (<u>C</u>CH₂), 145.1 (para to NH₂ or ipso to C(=O)), 132.4 (ipso to NH₂), 126.6 (para to NH₂ or ipso to C(=O)), 121.1 (para to C(=O)), 119.0 (meta to NH₂ and meta to C(=O)), 106.2 (<u>C</u>H=CCH₂), 105.9 (ortho to NH₂ and ortho to C(=O)), 33.6 (<u>C</u>CH₂), 31.6 (<u>C</u>H₂CH₂CH₃), 29.0 (<u>C</u>H₂), 29.0 (<u>C</u>H₂), 28.9 (<u>C</u>H₂), 22.5 (<u>C</u>H₂CH₃), 14.4 (<u>C</u>H₃)

HRMS (ESI⁺) m/z / Da = 259.1810, [M+H]⁺, [C₁₆H₂₃N₂O]⁺ requires 259.1803

Spectroscopic data are consistent with the literature.⁹

1.6 6-Azido-2-heptylquinolin-4-ol 26

6-Amino-2-heptylquinolin-4-ol 25 (50 mg, 0.194 mmol, 1 eq) was dissolved in HCl (conc., aq., 1.20 ml), water (1.80 ml) and MeOH (2.00 ml) and cooled to 0 °C. A solution of NaNO₂ (16.0 mg, 0.232 mmol, 1.2 eq.) in water (0.300 ml) was added dropwise over 10 min and the mixture was stirred for 1 h. A solution of NaN₃ (15.1 mg, 0.232 mmol, 1.2 eq.) in water (0.300 ml) was then added. The mixture was warmed to room temperature and stirred for a further 4 h. The resultant precipitate was filtered off and dried under reduced pressure. **26** was obtained as a pale cream amorphous solid (25.6 mg, 0.0900 mmol, 46.5 %).

TLC $R_f = 0.40 \ (5 \% \text{ MeoH/CH}_2\text{Cl}_2)$

IR (neat)
$$\nu_{max} / \text{cm}^{-1} = ??$$

¹**H NMR** (400 MHz, MeOD) δ / ppm = 7.73 (d, J = 8.6 Hz, 1 H, ortho to NH), 7.71 (d, J = 2.8 Hz, 1 H, ortho to N₃ and ortho to C(=O)), 7.47 (dd, J = 8.9, 2.7 Hz, 1 H, para to C(=O)), 6.24 (s, 1 H, C(=O)C<u>H</u>), 2.69 (t, J = 7.7 Hz, 2 H, CC<u>H</u>₂), 1.68 (quin, J = 7.6 Hz, 2 H, CCH₂C<u>H</u>₂), 1.28 - 1.39 (m, 4 H, CCH₂CH₂C<u>H</u>₂C<u>H</u>₂), 1.18 - 1.28 (m, 4 H, CH₂CH₂CH₃), 0.85 (t, J = 6.8 Hz, 3 H, C<u>H</u>₃)

¹³C NMR (101 MHz, MeOD) δ / ppm = 172.3 (\underline{C} (=O)), 155.5 (NH \underline{C} CH₂), 137.4 (\underline{C} N₃), 135.6 (para to N₃), 124.6 (para to C(=O)), 124.1 (ipso to C(=O)), 120.7 (meta to N₃ and meta to C(=O)), 112.8 (ortho to N₃ and ortho to C(=O)), 107.0 (C(=O) \underline{C} H), 33.3 (NHC \underline{C} H₂), 31.2 (\underline{C} H₂CH₂CH₃), 28.3 - 28.5 (\underline{C} H₂CH₂CH₂CH₂CH₂CH₃), 22.1 (\underline{C} H₂CH₃), 14.0 (\underline{C} H₃)

HRMS (ESI⁺) m/z / Da = ??, [M+H]⁺ found, [??]⁺ requires ??

ger

Spectroscopic data are not consistent with the literature.⁹

????

1.7 Heptyl magnesium bromide 28

Magnesium turnings (352 mg, 14.5 mmol, 1 eq.) were added to an oven-dried flask under argon. THF (15 ml) was added, followed by bromoheptane (2.40 ml, 14.5 mmol, 1 eq.) dropwise. The mixture was stirred at r.t. for 2 h followed by heating to reflux for 2 h to give the Grignard reagent as a pale grey suspension (15 ml, \sim 1 M) which was used without further purification.

1.8 2-Chloro-*N*-methoxy-*N*-methylacetamide 30

N,O-Dimethylhydroxyl amine hydrochloride (6.00 g, 61.5 mmol, 1 eq.) and toluene (75 ml) were added successively to a stirred solution of potassium carbonate (22.4 g, 162 mmol, 2.63 eq.) in water (75 ml) at 0 °C under argon. The mixture was cooled to - 5 °C and chloroacetyl chloride (5.88 ml, 73.8 mmol, 1.20 eq.) was added dropwise over 5 min. The mixture was allowed to warm to r.t. over 30 min, then the organic layer was separated and the aqueous layer was extracted with toluene (3×20 ml). The combined organic extracts were dried with MgSO₄ and the solvent was removed by rotary evaporation followed by high vacuum. **30** was obtained as white, prism-like crystals (7.24 g, 52.6 mmol, 71 %).

mp $T / {^{\circ}C} = 38.8$ (toluene)

IR (neat)
$$\nu_{max}$$
 / cm⁻¹ = 3016.7 (C-H), 2966.4 (C-H), 2946.7 (C-H), 2827.7 (C-H), 1666.2 (C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 4.20 (s, 2 H, ClCH₂C=O), 3.71 (m, 3 H, OCH₃), 3.18 (s, 3 H, NCH₃)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 167.4 (C=O), 61.6 (OCH₃), 40.9 (ClCH₂C=O), 32.6 (NCH₃)

Spectroscopic data are consistent with the literature. 10

1.9 1-Chlorononan-2-one 31

2-Chloro-N-methylacetamide (1.00 g, 7.26 mmol, 1 eq.) was added to a dry flask under argon. THF (20 ml) was added and the flask cooled to 0 °C. Heptyl magnesium bromide (~ 1 M, 15.0 ml, 15.0 mmol, 2.07

eq.) was added dropwise over 5 min, then the mixture was allowed to warm to r.t. and stirred for 15 h. The reaction mixture was then poured into HCl (aq., 2 N, 60 ml) at 0 $^{\circ}$ C and stirred for 10 min. The mixture was extracted with toluene (30 ml) and the aqueous layer discarded. The organic layer was washed with brine and dried with MgSO₄, and the solvent was removed by rotary evaporation. **31** was obtained as a colourless oil (1.23 g, 6.96 mmol, 96 %).

IR (neat) ν_{max} / cm⁻¹ = 2951.7 (C-H), 2925.0 (C-H), 2855.5 (C-H), 1720.4 (C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 4.05 (s, 2 H, ClC<u>H</u>₂C(=O)), 2.54 (t, J = 7.4 Hz, 2 H, C(=O)C<u>H</u>₂CH₂), 1.59 (quin, J = 7.0 Hz, 2 H, C(=O)CH₂C<u>H</u>₂), 1.34 - 1.21 (m, 8 H, C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂CH₃), 0.87 (t, J = 6.8 Hz, 3 H, C<u>H</u>₃)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 202.6 (\underline{C} (=O)), 48.1 (\underline{C} H₂Cl), 39.6 (\underline{C} (=O) \underline{C} H₂CH₂), 31.5 (\underline{C} H₂CH₂ CH₃), 28.9 (\underline{C} H₂), 28.9 (\underline{C} H₂), 23.5 (\underline{C} (=O)CH₂ \underline{C} H₂), 22.5 (\underline{C} H₂CH₃), 13.9 (\underline{C} H₃)

Spectroscopic data are consistent with the literature. ¹⁰

1.10 2-Oxononyl 2-amino-5-nitrobenzoate 33

5-Nitroanthranilic acid **32** (500 mg, 2.75 mmol, 1.38 eq.) and potassium carbonate (270 mg, 2.00 mmol, 1 eq.) were dissolved in DMF (5 ml). The mixture was heated under argon to 90 °C and stirred for 1 h then cooled to r.t.. 1-chlorononan-2-one **31** (353 mg, 2.00 mmol, 1 eq.) was added and the mixture was stirred for 15 h. The solution was poured into Na₂HCO₃ (aq., 10 %, 50 ml) and ice (\sim 20 g). The precipitate was collected by vacuum filtration, washed with water and dried under high vacuum. **33** was obtained as a yellow amorphous solid (0.674 g, 2.00 mmol, 100 %).

mp $T / {}^{\circ}C = 135 (H_2O)$

IR (neat) ν_{max} / cm⁻¹ = 3453.3 (N-H), 3350.5 (N-H), 2924.9 (C-H), 2853.9 (C-H), 1720.1 (ester C=O) 1703.9 (ketone C=O) 1626.1 (N-H bend) 1602.7 (aromatic) 1572.5 (N-O) 1506.6 (N-O)

¹**H NMR** (400 MHz, DMSO-d₆) δ / ppm = 8.66 (d, J = 2.8 Hz, 1 H, ortho to C(=O)), 8.12 (dd, J = 2.8, 9.4 Hz, 1 H, para to C(=O)), 6.93 (d, J = 9.4 Hz, 1 H, meta to C(=O)), 5.05 (s, 2 H, OC $\underline{\text{H}}_2$ C(=O)), 2.49 (t, J = 7.4 Hz, 2 H, C(=O)C $\underline{\text{H}}_2$ CH₂), 1.52 (quin, J = 7.2 Hz, 2 H, C(=O)CH₂C $\underline{\text{H}}_2$), 1.32 - 1.20 (m, 8 H, C $\underline{\text{H}}_2$ CH₂CH₂CH₂CH₃), 0.86 (t, J = 6.8 Hz, 3 H, C $\underline{\text{H}}_3$)

¹³C NMR (101 MHz, DMSO-d₆) δ / ppm = 204.4 (OCH₂C(=O)), 165.6 (C(=O)O), 156.3 (*ipso* to NH₂), 135.7 (*ipso* to NO₂), 129.6 (*para* to C(=O)), 128.9 (*ortho* to C(=O)), 117.4 (*meta* to C(=O)), 107.5 (*ipso* to C(=O)), 68.8 (OCH₂C(=O)), 38.3 (C(=O)CH₂CH₂), 31.6 (CH₂CH₂CH₃), 28.9 (CH₂), 28.9 (CH₂), 23.2 (C(=O)CH₂CH₂), 22.5 (CH₂CH₃), 14.4 (CH₃)

HRMS (ESI⁺) m/z / Da = 323.1610, [M+H]⁺, [C₁₆H₂₃N₂O₅]⁺ requires 323.1607

Spectroscopic data are consistent with the literature.⁹

1.11 6-Nitro-2-heptyl-3-hydroxyquinolin-4(1H)-one 34

2-Oxononyl 2-amino-5-nitrobenzoate (100 mg, 0.340 mmol, 1 eq.) and polyphosphoric acid (300 mg) were stirred for 5.5 h at 90 $^{\circ}$ C under argon. The mixture was then poured into NaHCO₃ (sat., aq., 50 ml) cooled on ice. The precipitate was collected by vacuum filtration, washed with water (50 ml) and dried under high vacuum. **34** was obtained as a yellow-brown amorphous solid (44 mg, 0.145 mmol, 43 %).

mp $T / ^{\circ}C = 223 \text{ (H}_2O, EtOAc)$

IR (neat) ν_{max} / cm⁻¹ = 3436.0 (N-H), 3000.0 (O-H, br), 2955.4 (C-H), 2925.8 (C-H), 2850.9 (C-H), 1648.2 (C=O), 1606.1 (aromatic), 1570.7 (N-O), 1536.4 (N-O)

¹**H NMR** (400 MHz, DMSO-d₆) δ / ppm = 12.00 (s, 1 H, N<u>H</u>), 8.91 (d, J = 2.8 Hz, 1 H, ortho to C=O), 8.29 (dd, J = 2.7, 9.2 Hz, 1 H, para to C=O), 7.70 (d, J = 9.3 Hz, 1 H, meta to C=O), 2.75 (t, J = 7.7 Hz, 2 H, CC<u>H</u>₂), 1.67 (quin, J = 7.3 Hz, 2 H, CCH₂C<u>H</u>₂), 1.36 - 1.23 (m, 8 H, C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂CH₃), 0.85 (t, J = 7.0 Hz, 3 H, C<u>H</u>₃)

¹³C NMR (101 MHz, DMSO-d₆) δ / ppm = 169.7 (\underline{C} =O), 141.9 (para to NO₂), 140.7 (ipso to NO₂), 139.6 (ipso to OH), 137.3 (\underline{C} =COH), 124.3 (para to C=O), 122.3 (ortho to NO₂ and ortho to C=O), 121.5 (ipso to C=O), 120.0 (meta to NO₂ and meta to C=O), 31.6 (\underline{C} H₂CH₂CH₃), 29.2 (\underline{C} H₂), 28.9 (\underline{C} H₂), 28.5 (\underline{C} CH₂), 28.1 (\underline{C} CH₂CH₃), 14.4 (\underline{C} H₃)

HRMS (ESI⁺) m/z / Da = 305.1501, [M+H]⁺, [C₁₆H₂₁N₂O₄]⁺ requires 305.1500

Spectroscopic data are consistent with the literature.⁹

1.12 6-Amino-2-heptyl-3-hydroxyquinolin-4(1H)-one 35

6-Nitro-2-heptyl-3-hydroxyquinolin-4(1H)-one **34** (20 mg, 0.0658 mmol, 1 eq.) and PtO₂ (2 mg, 10 weight %) were stirred in MeOH (1 ml) under a H₂ atmosphere for 45 min at room temperature and pressure. The reaction mixture was then filtered through celite and the solvent was removed under vacuum to give a yellow-brown

amorphous solid (14.5 mg, 0.0529 mmol, 80 %).

 $mp \text{ (MeOH) } T / ^{\circ}C = 176$

IR (neat) ν_{max} / cm⁻¹ = 3000.00 (O-H, br) 2925.41 (C-H), 2854.09 (C-H), 1613.43 (aromatic) 1555.29 (aromatic) 1504.47 (aromatic)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 11.12 (s, 1 H, N<u>H</u>), 7.47 (d, J = 8.9 Hz, 1 H, meta to C=O), 7.40 (d, J = 2.4 Hz, 1 H, ortho to C=O), 7.16 (dd, J = 2.6, 9.0 Hz, 1 H, para to C=O), 2.86 (t, J = 7.5 Hz, 2 H, CC<u>H</u>₂), 1.75 (quin, J = 7.8 Hz, 2 H, CCH₂C<u>H</u>₂), 1.48 - 1.22 (m, J = 5.4 Hz, 8 H, C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂CH₃), 0.89 (t, J = 6.7 Hz, 3 H, C<u>H</u>₃)

¹³C NMR (101 MHz, MeOD) δ / ppm = 166.8 ($\underline{C}(=O)$), 144.8 (para to NH₂ or ipso to C(=O)), 140.5 (ipso to COH), 138.6 ($\underline{C}=$ COH), 132.6 (ipso to NH₂), 124.8 (para to NH₂ or ipso to C(=O)), 123.8 (para to C(=O)), 107.7 (meta to NH₂ and meta to C(=O)), 106.4 (ortho to NH₂ and ortho to C(=O)), 33.0 (\underline{C} H₂CH₂CH₃), 29.5 - 31.0 (\underline{C} CH₂CH₂CH₂), 23.8 (\underline{C} H₂CH₃), 14.5 (\underline{C} H₃)

HRMS (ESI⁺) m/z / Da = 275.1760, [M+H]⁺, [C₁₆H₂₃N₂O₂]⁺ requires 275.1762 Spectroscopic data are not consistent with the literature.⁹ It is possible that Baker's product is a Zn adduct.

1.13 6-Azido-2-heptyl-3-hydroxyquinolin-4(1H)-one 36

6-Amino-2-heptyl-3-hydroxyquinolin-4(1H)-one **35** (18.2 mg, 0.0664 mmol, 1 eq.) was dissolved in HCl (conc., aq., 0.8 ml) and MeOH (0.5 ml) at 0 °C. NaNO₂ (5.0 mg, 0.0725 mmol, 1.09 eq.) in H₂O (0.2 ml) was added dropwise over 2 min and the mixture was stirred at 0 °C for 50 min, during which time the solution turned from yellow to orange. NaN₃ (4.9 mg, 0.0754 mmol, 1.14 eq.) in H₂O (0.2 ml) was then added and the mixture was allowed to warm to r.t. and stirred for 4 h. The reaction mixture was then filtered to give a brown amorphous solid (5.5 mg, 0.0183 mmol, 28 %).

 $mp (H_2O/MeOH) T / ^{\circ}C = pending$

IR (neat) ν_{max} / cm⁻¹ = pending

¹**H NMR** (400 MHz, DMSO-d₆) δ / ppm = 7.74 (s, 1 H, ortho to C=O), 7.65 (d, J = 6.9 Hz, 1 H, meta to C(=O)), 7.32 (d, J = 7.4 Hz, 1 H, para to C(=O)), 2.75 (t, J = 7.5 Hz, 2 H, CC $\underline{\text{H}}_2$), 1.67 (quin, J = 6.4 Hz, 2 H, CCH₂CH₂), 1.43 - 1.13 (m, 8 H, CH₂CH₂CH₂CH₂CH₃), 0.85 (t, J = 6.8 Hz, 3 H, CH₃)

HRMS (ESI⁺) m/z / Da = pending, [M+H]⁺, [C₁₆H₂₁N₄O₂]⁺ requires 301.1659

try?

Spectroscopic data are consistent with the literature.⁹

1.14 (S)-3-Aminodihydrofuran-2(3H)-one hydrobromide 38

L-Methionine (3.04 g, 20.4 mmol, 1 eq.) and bromoacetic acid (3.08 g, 22.2 mmol, 1.09 eq.) were dissolved in i-PrOH (12.5 ml), H₂O (12.5 ml) and AcOH (5 ml). The reaction was refluxed for 15 h then concentrated under vacuum. The resulting brown oil was added to a mixture of i-PrOH (16 ml) and HBr (33 % in AcOH, 4 ml), causing the precipitation of a pale pink amorphous solid. The precipitate was collected by filtration and washed with i-PrOH (20 ml). The filtrate was concentrated under vacuum and precipitated again using the same procedure. The two crops of precipitate were combined. **38** was obtained as a pale pink amorphous solid (1.73 g, 9.50 mmol, 41 % yield).

mp $T / {^{\circ}C} = 242$ (*i*-PrOH/AcOH, gas evolved)

IR (neat) ν_{max} / cm⁻¹ = 2972.1 (N-H), 2877.5 (N-H), 1771.8 (C=O), 1585.1 (N-H bend), 1572.2 (N-H bend)

¹**H NMR** (400 MHz, DMSO-d₆) δ / ppm = 8.59 (br s, 3 H, N<u>H</u>⁺₃), 4.46 (dt, J = 1.3, 8.9 Hz, 1 H, OC<u>H</u>H), 4.37 (dd, J = 8.8, 11.4 Hz, 1 H, C<u>H</u>NH⁺₃), 4.29 (ddd, J = 6.1, 8.8, 10.9 Hz, 1 H, OCH<u>H</u>), 2.57 (dddd, J = 1.2, 6.1, 8.9, 12.3 Hz, 1 H, OCH₂C<u>H</u>H), 2.26 (dtd, J = 9.0, 11.2, 12.2 Hz, 1 H, OCH₂CH<u>H</u>)

¹³C NMR (101 MHz, DMSO-d₆) δ / ppm = 173.3 (C=O), 66.2 (OCH₂), 47.8 (CHNH₃⁺), 27.0 (OCH₂CH₂)

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -30.0 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.0200 \text{ , DMSO})$$

The data are consistent with the literature.¹¹

1.15 (S)-2-Bromo-N-(2-oxotetrahydrofuran-3-yl)acetamide 40

(S)-3-Aminodihydrofuran-2(3H)-one hydrobromide **38** (100 mg, 0.549 mmol, 1.08 eq.) and NaHCO₃ (84.9 mg, 1.01 mmol, 2.00 eq.) were dissolved in CH₂Cl₂ (2 ml) and H₂O (2 ml). Bromoacetyl bromide (44.0 μ L, 102 mg, 0.505 mmol, 1.00 eq.) was then added dropwise. The reaction mixture was stirred for 24 h, after which the CH₂Cl₂ was removed under vacuum. The aqueous phase was extracted with EtOAc (4×10 ml). The combined organic layers were dried with MgSO₄ and the solvent was removed under reduced pressure. **40** was obtained as white, needle-like crystals (88.0 mg, 0.396 mmol, 74 %).

$$mp T / ^{\circ}C = 132 \text{ (EtOAc)}$$

IR (neat) ν_{max} / cm⁻¹ = 3255.7 (N-H), 3066.6 (C-H), 1763.0 (lactone C=O), 1658.0 (amide C=O), 1552.7 (N-H bend)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 6.94 (br s, 1 H, N<u>H</u>), 4.57 (ddd, J = 11.7, 8.6, 5.9 Hz, 1 H, C<u>H</u>NH), 4.51 (td, J = 9.2, 1.0 Hz, 1 H, OC<u>H</u>H), 4.32 (ddd, J = 11.3, 9.4, 5.9 Hz, 1 H, OCH<u>H</u>), 3.93 (s, 1 H, C<u>H</u>HBr), 3.93 (s, 1 H, CH<u>H</u>Br), 2.87 (dddd, J = 12.6, 8.6, 5.9, 1.3 Hz, 1 H, OCH₂C<u>H</u>H), 2.22 (dtd, J = 12.6, 11.5, 11.5, 8.9 Hz, 1 H, OCH₂CH<u>H</u>)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 174.6 (O<u>C</u>=O), 166.4 (<u>C</u>(=O)NH), 66.1 (O<u>C</u>H₂), 49.8 (<u>C</u>HNHC=O), 29.9 (OCH₂<u>C</u>H₂), 28.2 (O=C<u>C</u>H₂Br)

HRMS The compound does not ionise.

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 27.0 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.00740 \ \text{, CHCl}_3)$$

The data are consistent with the literature. 11,12

1.16 (S)-2-Azido-N-(2-oxotetrahydrofuran-3-yl)acetamide 41

$$O \longrightarrow H \longrightarrow N_3$$

(3S)-2-Oxotetrahydrofuran-3-aminium bromide **38** (100 mg, 0.552 mmol, 1.08 eq.), NaN₃ (85.7 mg, 1.32 mmol, 2.61 eq.) and NaHCO₃ (84.9 mg, 1.01 mmol, 2.00 eq.) were dissolved in CH₂Cl₂ (2 ml) and H₂O (2 ml). Bromoacetyl bromide (44.0 μ L, 102 mg, 0.505 mmol, 1.00 eq.) was then added dropwise. The reaction mixture was stirred for 48 h, after which the CH₂Cl₂ was removed under vacuum. The aqueous phase was extracted with EtOAc (4×10 ml). The combined organic layers were dried with MgSO₄ and the solvent was removed under reduced pressure. **41** was obtained as white, needle-like crystals (38.4 mg, 0.209 mmol, 41 %).

$$mp T / ^{\circ}C = 87 \text{ (EtOAc)}$$

IR (neat) ν_{max} / cm⁻¹ = 3283.5 (N-H), 2923.3 (C-H), 2853.0 (C-H), 2129.7 (N₃), 1782.9 (lactone C=O), 1661.4 (amide C=O), 1536.8 (N-H bend)

 $^{1}\mathbf{H} \ \mathbf{NMR} \ (400 \ \mathrm{MHz}, \mathrm{CDCl_{3}}) \ \delta \ / \ \mathrm{ppm} = 7.05 \ (\mathrm{br} \ \mathrm{d}, \ J = 6.5 \ \mathrm{Hz}, \ 1 \ \mathrm{H}, \ \mathrm{N}\underline{\mathrm{H}}), \ 4.64 \ (\mathrm{ddd}, \ J = 11.6, \ 8.7, \ 6.8 \ \mathrm{Hz}, \ 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{NH}), \ 4.48 \ (\mathrm{td}, \ J = 9.1, \ 1.3 \ \mathrm{Hz}, \ 1 \ \mathrm{H}, \ \mathrm{OC}\underline{\mathrm{H}}\mathrm{H}), \ 4.30 \ (\mathrm{ddd}, \ J = 11.2, \ 9.2, \ 6.0 \ \mathrm{Hz}, \ 1 \ \mathrm{H}, \ \mathrm{OC}\mathrm{H}\underline{\mathrm{H}}), \ 4.04 \ (\mathrm{s}, \ 2 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}_2\mathrm{N}_3), \ 2.76 \ (\mathrm{dddd}, \ J = 12.5, \ 8.8, \ 6.0, \ 1.4 \ \mathrm{Hz}, \ 1 \ \mathrm{H}, \ \mathrm{OCH_{2}C}\underline{\mathrm{H}}\mathrm{H}), \ 2.25 \ (\mathrm{dtd}, \ J = 12.5, \ 11.4, \ 11.4, \ 8.9 \ \mathrm{Hz}, \ 1 \ \mathrm{H}, \ \mathrm{OCH_{2}C}\underline{\mathrm{H}}\mathrm{\underline{H}})$

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 174.9 (O<u>C</u>=O), 167.5 (<u>C</u>=ONH), 66.0 (O<u>C</u>H₂), 52.2 (O=C<u>C</u>H₂N₃), 48.9 (<u>C</u>HNHC=O), 29.7 (OCH₂<u>C</u>H₂)

HRMS The compound does not ionise.

$$[\pmb{\alpha}]_D^{20} \ / \ ^{\circ}10^{-1} {\rm cm}^2 {\rm g}^{-1} = \text{-}32.6 \ (c \ / \ {\rm g}(100 \ {\rm ml})^{-1} = 0.0430 \ , \, {\rm DMSO})$$

The data are consistent with the literature.¹¹

1.17 (S)-4-Bromo-N-(2-oxotetrahydrofuran-3-yl)butanamide 44

$$O \longrightarrow H$$

$$O \longrightarrow Br$$

(S)-3-Aminodihydrofuran-2(3H)-one hydrobromide 38 (200 mg, 1.10 mmol, 1.00 eq.) and NaHCO₃ (170 mg, 2.02 mmol, 1.84 eq.) were dissolved in CH₂Cl₂ (2 ml) and H₂O (2 ml). Bromobutyryl chloride (140 μ L, 224 mg, 1.21 mmol, 1.10 eq.) was then added dropwise. The reaction mixture was stirred for 1 h, after which the CH₂Cl₂ was removed under vacuum. The aqueous phase was extracted with EtOAc (7×5 ml) and the combined organic layers were dried with MgSO₄. The solvent was removed under vacuum to give white crystals which were recrystallised from EtOAc. 44 was obtained as white, needle-like crystals (219 mg, 0.878 mmol, 80 %).

$$\mathbf{mp} \ T \ / \ ^{\circ}\mathrm{C} = 105 \ (\mathrm{EtOAc})$$

IR (neat) ν_{max} / cm⁻¹ = 3307.9 (N-H), 3073.9 (C-H), 2948.9 (C-H), 1773.7 (lactone C=O), 1643.5 (amide C=O), 1541.4 (N-H bend)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 6.31 (br d, J = 5.5 Hz, 1 H, N<u>H</u>), 4.59 (ddd, J = 6.2, 8.7, 11.5 Hz, 1 H, C<u>H</u>NH), 4.48 (dt, J = 1.2, 8.9 Hz, 1 H, OC<u>H</u>H), 4.30 (ddd, J = 5.8, 9.3, 11.3 Hz, 1 H, OCH<u>H</u>), 3.49 (t, J = 6.3 Hz, 2 H, C<u>H</u>₂Br), 2.82 (dddd, J = 1.3, 5.9, 8.7, 12.5 Hz, 1 H, OCH₂C<u>H</u>H), 2.47 (t, J = 7.3 Hz, 2 H, C(=O)C<u>H</u>₂), 2.26 - 2.15 (m, 3 H, OCH₂CH<u>H</u> and C<u>H</u>₂CH₂Br)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 175.4 (OC=O), 172.3 (C(=O)NH), 66.1 (OCH₂), 49.3 (CHNHC=O), 33.9 (C(=O)CH₂), 33.1 (CH₂Br), 30.3 (OCH₂CH₂), 27.9 (C(=O)CH₂CH₂)

HRMS The compound does not ionise.

$$[\alpha]_D^{26.6} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -78 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.0833 \text{ , MeOH})$$

The compound has not been reported previously.

1.18 (S)-6-Bromo-N-(2-oxotetrahydrofuran-3-yl)hexanamide 45

$$O \longrightarrow H$$

$$O \longrightarrow B_1$$

(S)-3-Aminodihydrofuran-2(3H)-one hydrobromide **38** (100 mg, 0.549 mmol, 1.00 eq.) and NaHCO₃ (84.9 mg, 1.01 mmol, 1.84 eq.) were dissolved in CH₂Cl₂ (2 ml) and H₂O (2 ml) at r.t.. Bromohexanoyl chloride (93.0 μ L, 130 mg, 0.608 mmol, 1.11 eq.) was then added dropwise. The reaction mixture was stirred for 4 h, after which the CH₂Cl₂ was removed under vacuum. The mixture was then filtered, washed with H₂O (10 ml) and dried under high vacuum. **45** was obtained as white, needle-like crystals (101 mg, 0.362 mmol, 66 %).

$$mp \ T / ^{\circ}C = 106 \ (CH_2Cl_2/H_2O)$$

IR (neat) ν_{max} / cm⁻¹ = 3300.3 (N-H), 3067.6 (C-H), 2937.4 (C-H), 2856.7 (C-H), 1784.8 (lactone C=O), 1639.3 (amide C=O), 1539.9 (N-H bend)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 6.09 (br d, J = 5.7 Hz, 1 H, N<u>H</u>), 4.57 (ddd, J = 5.9, 8.6, 11.6 Hz, 1 H, C<u>H</u>NH), 4.50 (dt, J = 1.3, 9.1 Hz, 1 H, OC<u>H</u>H), 4.31 (ddd, J = 5.9, 9.3, 11.3 Hz, 1 H, OCH<u>H</u>), 3.43 (t, J = 6.7 Hz, 2 H, C<u>H</u>₂Br), 2.88 (dddd, J = 1.3, 5.9, 8.6, 12.6 Hz, 1 H, OCH₂C<u>H</u>H), 2.30 (dt, J = 1.8, 7.5 Hz, 2 H, C(=O)C<u>H</u>₂), 2.16 (dtd, J = 8.9, 11.5, 12.5 Hz, 1 H, OCH₂CH<u>H</u>), 1.90 (quin, J = 7.2 Hz, 2 H, C<u>H</u>₂CH₂Br), 1.71 (quin, J = 7.6 Hz, 2 H, C(=O)CH₂CH₂C), 1.59 - 1.46 (m, 2 H, C(=O)CH₂CH₂CH₂C)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 175.5 (OC=O), 173.3 (C(=O)NH), 66.1 (OCH₂), 49.3 (CHNHC=O), 35.8 (CH₂Br), 33.5 (C(=O)CH₂), 32.3 (CH₂CH₂Br), 30.5 (OCH₂CH₂), 27.6 (C(=O)CH₂CH₂), 24.4 (C(=O)CH₂CH₂) (CH₂CH₂)

HRMS (ESI⁺) m/z / Da = 278.0381, [M+H]⁺, [C₁₀H₁₇BrNO₃]⁺ requires 278.0386

$$[\alpha]_D^{26.6} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -16 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.208 \text{ , MeOH})$$

The compound has not been reported previously.

1.19 (S)-6-Azido-N-(2-oxotetrahydrofuran-3-yl)hexanamide 47

$$O$$
 N_3
 N_3

(S)-6-Bromo-N-(2-oxotetrahydrofuran-3-yl)hexanamide (80 mg, 0.320 mmol, 1.00 eq.) and NaN₃ (26.3 mg, 0.405 mmol, 1.27 eq.) were heated in DMF (0.5 ml) for 5 h at 100 °C. The reaction mixture was then partitioned between $\mathrm{CH_2Cl_2}$ (5 ml) and $\mathrm{H_2O}$ (5 ml). The aqueous phase was extracted twice more with $\mathrm{CH_2Cl_2}$ (2×5 ml) and the organic layers were combined and dried over MgSO₄. The solvent was removed by rotary evaporation followed by high vacuum. 47 was obtained as white, needle-like crystals (42.7 mg, 0.178 mmol, 56 %).

$$mp T / {}^{\circ}C = 90.0 (CH_2Cl_2)$$

IR (neat) ν_{max} / cm⁻¹ = 3314.0 (N-H), 2931.6 (C-H), 2862.9 (C-H), 2095.1 (N₃), 1775.4 (lactone C=O), 1643.1 (amide C=O), 1547.9 (N-H bend)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 5.96 (d, J = 4.2 Hz, 1 H, N<u>H</u>), 4.54 (ddd, J = 11.7, 8.6, 5.7 Hz, 1 H, C<u>H</u>NH), 4.49 (td, J = 9.1, 1.0 Hz, 1 H, OC<u>H</u>H), 4.30 (ddd, J = 11.3, 9.4, 5.8 Hz, 1 H, OCH<u>H</u>), 3.29 (t, J = 6.9 Hz, 2 H, C<u>H</u>₂N₃), 2.88 (dddd, J = 12.5, 8.6, 5.8, 1.1 Hz, 1 H, OCH₂C<u>H</u>H), 2.28 (t, J = 7.5 Hz, 1 H, C(=O)C<u>H</u>H), 2.28 (t, J = 7.4 Hz, 1 H, C(=O)CH<u>H</u>), 2.14 (dtd, J = 12.3, 11.5, 11.5, 8.8 Hz, 1 H, OCH₂C<u>H</u>H), 1.70 (quin, J = 7.6 Hz, 2 H, C<u>H</u>₂CH₂N₃), 1.63 (quin, J = 7.2 Hz, 2 H, C(=O)CH₂C<u>H</u>₂), 1.38 - 1.49 (m, 2 H, C(=O)CH₂CH₂CH₂)

 $^{13}\mathbf{C} \ \mathbf{NMR} \ (101 \ \mathrm{MHz}, \mathrm{CDCl_3}) \ \delta \ / \ \mathrm{ppm} = 175.4 \ (\mathrm{O\underline{C}} = \mathrm{O}), \ 172.2 \ (\underline{\mathrm{C}} (= \mathrm{O}) \mathrm{NH}), \ 66.1 \ (\mathrm{O\underline{C}} +_2), \ 51.2 \ (\underline{\mathrm{C}} +_2 \mathrm{N_3}), \ 49.4 \ (\underline{\mathrm{C}} +_1 \mathrm{N_3}), \ 26.3 \ (\mathrm{C} (= \mathrm{O}) \mathrm{CH_2} +_2), \ 24.8 \ (\mathrm{C} (= \mathrm{O}) \mathrm{CH_2} +_2), \ 24$

HRMS (ESI⁺) m/z / Da = 241.1289, [M+H]⁺, [C₁₀H₁₇N₄O₃]⁺ requires 241.1295

$$[\alpha]_D^{26.6} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -16 (c / \text{g}(100 \text{ ml})^{-1} = 0.208, \text{MeOH})$$

The compound has not been reported previously.

1.20 Hex-5-ynal 49

Pyridinium chlorochromate (14.6 g, 68.1 mmol, 1.50 eq) and DCM (500 ml) were stirred at r.t. under argon. 5-hexyn-1-ol 48 (5.00 ml, 45.4 mmol, 1 eq.) was added and the reaction mixture was stirred for 5 h followed by addition of $\rm Et_2O$ (125 ml) and silica gel (62.5 g). The suspension was stirred for 1 h then filtered through a pad of silica (100 g) and washed with $\rm Et_2O$. The solvent was removed by rotary evaporation. 49 was obtained as a pale yellow-green oil (4.72 g, 49.1 mmol, 72 %).

IR (neat) ν_{max} / cm⁻¹ = 3292.7 (alkyne C-H), 2943.3 (alkane C-H), 2830.9 (aldehyde C-H), 2728.6 (aldehyde C-H), 1720.3 (aldehyde C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 9.80 (s, 1 H, C(=O) $\underline{\text{H}}$), 2.60 (t, J = 7.1 Hz, 2 H, C $\underline{\text{H}}_2$ C(=O)H), 2.26 (dt, J = 2.6, 6.8 Hz, 2 H, HC \equiv CC $\underline{\text{H}}_2$), 1.98 (t, J = 2.7 Hz, 1 H, $\underline{\text{H}}$ C \equiv C), 1.85 (quin, J = 7.0 Hz, 2 H, HC \equiv CCH₂C $\underline{\text{H}}_2$)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 201.6 ($\underline{C}(=O)$), 83.1 (HC $\equiv\underline{C}$), 69.3 (H $\underline{C}\equiv C$), 42.4 ($\underline{C}H_2C(=O)$), 20.7 ($\underline{C}H_2CH_2C(=O)$), 17.6 (HC $\equiv\underline{C}\underline{C}H_2$)

Spectroscopic data are consistent with the literature.³

1.21 tert-Butyl 4-(hex-5-yn-1-yl)piperazine-1-carboxylate 51

Hex-5-ynal 49 (0.407 g, 4.24 mmol, 1.00 eq.) and tert-butyl piperazine-1-carboxylate (0.791 g, 4.24 mmol, 1.00 eq.) were stirred under a N₂ atmosphere in 1,2-dichloroethane (20 ml) for 2.5 h followed by addition of sodium triacetoxyborohydride (6.25 g, 29.5 mmol, 6.96 eq.) in four portions over 4 d. The mixture was stirred for a further day then NaHCO₃ (sat., aq., 120 ml) was added and the product extracted with EtOAc (2×100 ml). The solvent was dried over MgSO₄ and removed by rotary evaporation. 51 was obtained as a colourless liquid (1.12 g, 4.21 mmol, 99 %).

TLC R_f (10 % MeOH/CH₂Cl₂) = 0.55

IR (neat) ν_{max} / cm⁻¹ = 3303.6 (alkyne C-H), 2940.0 (alkane C-H), 2865.2 (C-H), 2810.4 (C-H), 1691.3

(carbamate C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 3.44 (t, J = 5.2 Hz, 4 H, CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 2.39 (t, J = 5.1 Hz, 4 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.37 (t, J = 7.3 Hz, 2 H, CH₂CH₂C<u>H</u>₂N), 2.23 (dt, J = 2.7, 6.8 Hz, 2 H, HC≡CC<u>H</u>₂), 1.96 (t, J = 2.7 Hz, 1 H, <u>H</u>C≡C), 1.65 - 1.53 (m, 4 H, HC≡CCH₂C<u>H</u>₂C<u>H</u>₂), 1.47 (s, 9 H, C<u>H</u>₃)

 $^{13}\mathbf{C} \ \mathbf{NMR} \ (101 \ \mathrm{MHz}, \mathrm{CDCl_3}) \ \delta \ / \ \mathrm{ppm} = 154.7 \ (\mathrm{N\underline{C}}(=\mathrm{O})\mathrm{O}), \ 84.2 \ (\mathrm{HC} = \underline{\mathrm{C}}), \ 79.6 \ (\underline{\mathrm{C}}(\mathrm{CH_3})_3), \ 68.5 \ (\mathrm{H\underline{C}} = \mathrm{C}), \ 60.4 \ (\mathrm{CH_2CH_2CH_2N}), \ 58.0 \ (\mathrm{CH_2CH_2CH_2N}(\underline{\mathrm{CH_2}}) = 154.7 \ (\mathrm{C}(\underline{\mathrm{C}}_{12}) = 154.7 \ (\mathrm{C}(\underline{\mathrm{C}$

HRMS (ESI⁺) m/z / Da = 267.2073, [M+H]⁺, [C₁₅H₂₇N₂O₂]⁺ requires 267.2064

The compound has not been reported previously.

1.22 1-(Hex-5-yn-1-yl)piperazine 52

tert-Butyl 4-(hex-5-yn-1-yl)piperazine-1-carboxylate $\bf 51$ (763 mg, 2.86 mmol) was stirred in TFA (10 ml) at r.t. for 2 h. The TFA was removed under vacuum followed by co-evaporation with $\rm CH_2Cl_2$ (2×20 ml). The oil was diluted with $\rm H_2O$ (10 ml) and the pH adjusted to 14 with NaOH (10 % aq.). This mixture was extracted with $\rm CH_2Cl_2$ (2×20 ml) and the combined organic layers were dried over MgSO₄. The solvent was removed under vacuum and purified by column chromatography (SiO₂ MeOH/CH₂Cl₂ 3:7). $\bf 52$ was obtained as a colourless liquid (476 mg, 2.86 mmol, 100 %).

TLC R_f (30 % MeOH/CH₂Cl₂) = 0.20

IR (neat) ν_{max} / cm⁻¹ = 3295.9 (alkyne C-H), 2941.1 (alkane C-H), 2810.6 (alkane C-H), 1637.2 (N-H bend)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 2.88 (t, J = 4.9 Hz, 4 H, CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 2.39 (m, 4 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.31 (t, J = 7.1 Hz, 2 H, HC \equiv CCH₂CH₂CH₂CH₂CH₂N), 2.20 (dt, J = 2.7, 6.8 Hz, 2 H, HC \equiv CC<u>H</u>₂), 2.05 (br s, 1 H, N<u>H</u>), 1.93 (t, J = 2.7 Hz, 1 H, <u>H</u>C \equiv C), 1.65 - 1.48 (m, 4 H, HC \equiv CCH₂C<u>H</u>₂C<u>H</u>₂CH₂CCH₂N)

HRMS (ESI⁺) m/z / Da = 167.1548, [M+H]⁺, [C₁₀H₁₉N₂]⁺ requires 167.1548

The compound has not been reported previously.

1.23 1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid 92

7-Chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquino-line-3-carboxylic acid **53** (1.27 g, 4.51 mmol, 1 eq.), 1- (hex-5-yn-1-yl)piperazine **52** (1.5 g, 9.02 mmol, 2 eq.) and N-methyl-2-pyrrolidone (10 ml) were stirred in a microwave reactor at 115 °C for 24 h. The reaction mixture was cooled to r.t. and water (80 ml) was added. The mixture was stirred for 3 h and then filtered, and residue was washed with MeOH (50 ml). The resulting solid (0.571 g) was further purified by recrystalisation from EtOAc (50 ml). **92** was obtained as off-white crystals (0.219 g, 0.531 mmol, 11.8 %).

TLC $R_f = 0.02 (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

mp $T / ^{\circ}C = 220$ (MeOH, decomposes)

IR (neat) ν_{max} / cm⁻¹ = 3212.0 (alkyne C-H), 2459.3 (O-H), 1722.6 (carboxylic acid C=O), 1626.8 (quinolone C=O)

¹H NMR (500 MHz, DMSO-d₆) δ / ppm = 15.12 (br s, 1 H, C(=O)O<u>H</u>), 8.69 (s, 1 H, ortho to C(=O)OH), 7.96 (d, J = 13.0 Hz, 1 H, ortho to F), 7.61 (d, J = 7.6 Hz, 1 H, meta to F), 3.82 - 3.92 (m, 3 H, NC<u>H</u>(CH₂)₂ and CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 3.54 - 3.68 (br m, 2 H, CH₂CH₂CH₂N(C<u>H</u>₂)CH₂), 3.45 (br. t, J = 11.6 Hz, 2 H, CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 3.21 - 3.29 (br m, 2 H, CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 3.11 - 3.20 (br m, 2 H, CH₂CH₂CH₂N(CH₂)C<u>H</u>₂), 2.84 (t, J = 2.7 Hz, 1 H, <u>H</u>C≡C), 2.24 (td, J = 7.0, 2.7 Hz, 2 H, HC≡CCH₂), 1.83 (br. quin, J = 7.5 Hz, 2 H, HC≡CCH₂CH₂CH₂), 1.52 (quin, J = 7.4 Hz, 2 H, HC≡CCH₂CH₂), 1.29 - 1.36 (m, 2 H, NCH(C<u>H</u>H)₂), 1.16 - 1.23 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (126 MHz, DMSO-d₆) δ / ppm = 176.4 ($\underline{\mathbf{C}}(=\mathrm{O})\mathrm{CC}(=\mathrm{O})\mathrm{OH}$), 165.8 ($\underline{\mathbf{C}}(=\mathrm{O})\mathrm{OH}$), 152.8 (d, J=248.5 Hz, ipso to F), 148.2 ($\underline{\mathbf{C}}\mathrm{HCC}(=\mathrm{O})\mathrm{OH}$), 143.7 (d, J=11.1 Hz, para to C(=O)), 139.1 (para to F), 119.4 (d, J=6.9 Hz, ipso to C(=O)), 111.2 (d, J=22.5 Hz, ortho to F and ortho to C(=O)), 106.9 (meta to F and meta to C(=O)), 106.9 (C(=O) $\underline{\mathbf{C}}\mathrm{C}(=\mathrm{O})\mathrm{OH}$), 83.9 (HC= $\underline{\mathbf{C}}\mathrm{C}$), 71.8 (H $\underline{\mathbf{C}}$ =C), 55.0 (CH₂CH₂CH₂N), 50.5 (CH₂CH₂CH₂N($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{C}\mathrm{H}_2\mathrm{CH}_2\mathrm{C}\mathrm{H$

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -121.8 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 412.2036, [M+H]⁺, [C₂₃H₂₇N₃O₃F]⁺ requires 412.2030

The compound has not been reported previously.

2 References

- T. E. Renau, J. P. Sanchez, J. W. Gage, J. A. Dever, M. A. Shapiro, S. J. Gracheck and J. M. Domagala. Structure-activity relationships of the quinolone antibacterials against mycobacteria: effect of structural changes at N-1 and C-7. *Journal of Medicinal Chemistry*, 39(3):729-735. 1996.
- [2] D. K. Yung, L. G. Chatten and D. P. MaCleod. Potential antiarrhythmic agents I. Synthesis and pharmacological evaluation of some piperazine and ethylenediamine analogs of procaine amide. *Journal of Pharmaceutical Sciences*, 57(12):2073–2080. 1968.
- [3] L. S. Kocsis, E. Benedetti and K. M. Brummond. A Thermal Dehydrogenative Diels-Alder Reaction of Styrenes for the Concise Synthesis of Functionalized Naphthalenes. *Organic Letters*, 14(17):4430–4433. 2012.
- [4] A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff and R. D. Shah. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures(1). The Journal of Organic Chemistry, 61(11):3849–3862. 1996.
- [5] P. Reddy and S. Baskaran. Microwave assisted amination of quinolone carboxylic acids: an expeditious synthesis of fluoroquinolone antibacterials. *Tetrahedron Letters*, 42(38):6775–6777. 2001.
- [6] C. Jing and V. W. Cornish. A fluorogenic TMP-tag for high signal-to-background intracellular live cell imaging. ACS Chemical Biology, 8(8):1704–12. 2013.
- [7] Y. R. Baker. Novel Affinity Based Probes for Use in Chemical Proteomic Studies. CPGS thesis. University of Cambridge. 2012.
- [8] J. D. Scribner, D. L. Smith and J. A. McCloskey. Meldrum's Acid in Organic Synthesis. 2. A General and Versatile Synthesis of β-Keto Esters. The Journal of Organic Chemistry, 43(10):2087–2088. 1978.
- [9] Y. R. Baker. Investigating quinolone based quorum sensing in Pseudomonas aeruginosa using a chemical proteomics approach. PhD thesis, University of Cambridge. 2015.
- [10] J. T. Hodgkinson. The synthesis of Pseudomonas Quinolone Signal analogues and their effects on quinolone signalling in *Pseudomonas aeruginosa*. PhD thesis, University of Cambridge. 2011.
- [11] D. M. Stacy, S. T. Le Quement, C. L. Hansen, J. W. Clausen, T. Tolker-Nielsen, J. W. Brummond, M. Givskov, T. E. Nielsen and H. E. Blackwell. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators. Organic & Biomolecular Chemistry, 11(6):938–954. 2013.
- [12] T. Persson, T. H. Hansen, T. B. Rasmussen, M. E. Skindersø, M. Givskov and J. Nielsen. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. *Organic & Biomolecular Chemistry*, 3(2):253–262. 2005.

Todo list

put intro in intro	. 1
weigh Y4Tri then discuss	. 3
get	. 7
????	. 7
trv?	. 10