Domácí úkol 2

Jakub Adamec XP01TGR

21. října 2025

Příklad 2.1. Je dán prostý neorientovaný souvislý graf G = (V, E), který má most $e = \{u, v\}$. Určete zda alespoň jeden z vrcholů u, v musí být artikulace anebo oba vrcholy u, v musí být artikulace.

Odpověď pečlivě zdůvodněte.

Řešení 2.1. Pomocné lemma. Vrchol u není artikulace \iff d(u) = 1. Důkaz. Vrchol u není artikulace, pokud graf $G \setminus u$ zůstane souvislý, tj. $k(G \setminus u) = 1$. Graf $G \setminus u$ vytvoříme tak, že z G odstraníme vrchol u a všechny hrany, které z něj vycházejí (včetně mostu $e = \{u, v\}$). Graf $G \setminus u$ se bude skládat ze dvou (potenciálně prázdných) částí:

- (1) Zbytek komponenty C_u po odstranění u, tj. $C_u \setminus \{u\}$.
- (2) Celá komponenta C_v .

Mezi těmito dvěma částmi nevede žádná hrana, protože jediná hrana, která je spojovala, most e, byla odstraněna spolu s vrcholem u. Aby byl graf $G \setminus u$ souvislý, musí být jedna z těchto dvou částí prázdná. Část C_v nemůže být prázdná, protože obsahuje alespoň vrchol v. Tedy část $C_u \setminus \{u\}$ musí být nutně prázdná. A to platí právě tehdy, když komponenta C_u obsahovala pouze vrchol u. To znamená, že vrchol u neměl v G žádného jiného souseda, než v. Tedy u není artikulace $\iff d(u) = 1$.

Najděme protipříklad. Hledejme souvislý graf G s mostem $e = \{u, v\}$, kde d(u) = d(v) = 1. Jediný takový graf je graf se dvěma vrcholy (u, v) a jedinou hranou $(e = \{u, v\})$. Ověřme, že tento graf má všechny námi požadované vlastnosti:

- (a) Je graf prostý, neorientovaný, souvislý? Ano.
- (b) $Je \ e = \{u, v\} \ most?$ Ano. G je souvislý a $G \setminus e$ sestává ze dvou izolovaných vrcholů u, v, takže $k(G \setminus e) = 2$. Počet komponent se zvýšil.
- (c) Je u artikulace? Ne. d(u) = 1. Graf $G \setminus u$ je pouze vrchol v. $k(G \setminus u) = 1$. Počet komponent se nezvýšil.
- (d) $Je\ v\ artikulace$? Ne. Obdobná situace jako pro u.

Našli jsme tedy graf G, která má most $e = \{u, v\}$, ale ani jeden z vrcholů u, v není artikulace. Takže ani jeden vrchol nemusí být artikulace.

Příklad 2.2. Dokažte nebo vyvratte: Každý prostý neorientovaný graf G bez smyček s alespoň dvěma vrcholy obsahuje alespoň dva vrcholy, které nejsou artikulacemi.

Řešení 2.2.

Příklad 2.3. Dokažte nebo vyvraťte: Prostý souvislý neorientovaný graf G bez smyček s alespoň dvěma hranami je 2-souvislý právě tehdy, když každé dvě hrany grafu G leží na společné kružnici.

Řešení 2.3.