Спектральный анализ состава атмосфер звёзд и планет

Егор Горяной

19 ноября 2022 г.

Астрономическая спектроскопия

Астрономическая спектроскопия — это раздел астрономии, использующий методы спектроскопии для измерения спектра электромагнитного излучения, в том числе и видимого, которое излучается звездами и другими небесными объектами.

Рис.: Спектр Солнца

Спектр Солнца

Рис.: Спектр Солнца

Виды спектра

- видимый спектр
- радио спектр
- рентгеновский спектр

Рис.: Прозрачность атмосферы Земли

Спектрометр

Рис.: Устройство спектрометра

Рис.: Спектр Меркурия

Рис.: Спектры Венеры, Земли и Марса

Рис.: Спектр Марса в видимом диапазоне

Рис.: Спектр Юпитера

Рис.: Спектр Сатурна и его колец

Рис.: Спектр Сатурна, полученный телескопом Субару

Рис.: Спектр Урана

Рис.: Спектр Нептуна

Концентрация веществ

$$W = \int_{\lambda_1}^{\lambda_2} a_{\lambda} d\lambda$$

- W эквивалентная ширина линии
- $lacktriangleright a_{\lambda}=1-rac{I_{\lambda}}{I_{\lambda}^0}$ глубина линии
- lacktriangle I_{λ} интенсивность излучения на длине волны λ
- $lackbrack I_\lambda^0$ интенсивность в таком же спектре в отсутствии линии
- lacksquare $I_{\lambda}=I_{\lambda}^{0}\exp^{- au}$, где au оптическая толщина
- $ightharpoonup au \propto n$

Кривая роста

Спектр Солнца

Spectrum of Solar Radiation (Earth)

Рис.: Спектр излучения Солнца

Рис.: Спектр оксигенных бактерий на Проксима Центавре в

Рис.: Спектр аноксигенных бактерий на Проксима Центавре b

Рис.: Спектр экзопланеты HD189733b в инфракрасном диапазоне

