MATH 470: Communications and Cryptography

Homework 10

Due date: 29 November 2023 Name: Huy Lai

Problem 1. Check that the points P=(-1,4) and Q=(2,5) are points on the elliptic curve $E:Y^2=X^3+17$ **Subproblem 1.** Compute the points $P\oplus Q$ and $P\ominus Q$ **Solution:**

$$L: y - 4 = \frac{5 - 4}{2 + 1}(x + 1) \to y = \frac{1}{3}x + \frac{13}{3}$$
$$\left(\frac{1}{3}x + \frac{13}{3}\right)^2 = x^3 + 17$$
$$\frac{1}{9}x^2 + \frac{26}{9}x + \frac{169}{9} = x^3 + 17$$
$$x^3 - \frac{1}{9}x^2 - \frac{26}{9}x - \frac{16}{9} = 0$$
$$(x + 1)(x - 2)\left(x + \frac{8}{9}\right) = 0$$
$$R_x = -\frac{8}{9}$$

We plug this into the line equation to find R_y

$$R_y = \frac{1}{3}R_x + \frac{13}{3}$$
$$= \frac{109}{27}$$

$$P \oplus Q = \left(-\frac{8}{9}, -\frac{109}{27}\right)$$

$$L: y - 4 = \frac{-5 - 4}{2 + 1}(x + 1) \to y = -3x + 1$$
$$(-3x + 1)^2 \equiv x^3 + 17$$
$$9x^2 - 6x + 1 \equiv x^3 + 17$$
$$x^3 - 9x^2 + 6x + 16 \equiv 0$$
$$(x + 1)(x - 2)(x - 8) \equiv 0$$

$$R_x = 8$$

We plug this into the line equation to find R_y

$$R_y = -3R_x + 1$$
$$= -23$$

$$P \ominus Q = (8, 23)$$

Subproblem 2. Compute the points 2P and 2Q

Solution:

We first find the implicit derivative

$$y^{2} = x^{3} + 17$$

$$2yy' = 3x^{2}$$

$$y' = \frac{3x^{2}}{2y}$$

$$L: y - 4 = \frac{3(-1)^{2}}{2(4)}(x+1) \to y = \frac{3}{8}x + \frac{35}{8}$$

$$\left(\frac{3}{8}x + \frac{35}{8}\right)^{2} = x^{3} + 17$$

$$\frac{9}{64}x^{2} + \frac{105}{32}x + \frac{1225}{64} = x^{3} + 17$$

$$x^{3} - \frac{9}{64}x^{2} - \frac{105}{32} - \frac{137}{64} = 0$$

$$(x+1)^{2}\left(x - \frac{137}{64}\right) = 0$$

$$137$$

$$R_x = \frac{137}{64}$$

We plug this into the line equation to find R_y

$$R_y = \frac{3}{8}R_x + \frac{35}{8}$$
$$= \frac{2651}{512}$$
$$2P = \left(\frac{137}{64}, -\frac{2651}{512}\right)$$

$$L: y - 5 = \frac{3(2)^2}{2(5)}(x - 2) \to y = \frac{6}{5}x + \frac{13}{5}$$
$$\left(\frac{6}{5}x + \frac{13}{5}\right)^2 = x^3 + 17$$
$$\frac{36}{25}x^2 + \frac{156}{25}x + \frac{169}{25} = x^3 + 17$$
$$x^3 - \frac{36}{25}x^2 - \frac{156}{25}x - \frac{256}{25} = 0$$
$$(x - 2)^2 \left(x + \frac{64}{25}\right) = 0$$
$$R_x = -\frac{64}{25}$$

We plug this into the line equation to find R_y

$$R_y = \frac{6}{5}R_x + \frac{13}{5}$$
$$= -\frac{59}{125}$$
$$2Q = \left(-\frac{64}{25}, \frac{59}{125}\right)$$

Problem 2. Make an addition table for E over \mathbb{F}_p , as we did in Table 6.1

$$E: Y^2 = X^3 + 2X + 3$$
 over \mathbb{F}_7

Solution:

$$E(\mathbb{F}_7) = \{\mathcal{O}, (2,1), (2,6), (3,1), (3,6), (6,0)\}$$

	0	(2,1)	(2,6)	(3,1)	(3,6)	(6,0)
0	0	(2,1)	(2,6)	(3,1)	(3,6)	(6,0)
(2,1)	(2,1)	(3,6)	0	(2,6)	(6,0)	(3,1)
(2,6)	(2,6)	0	(3,1)	(6,0)	(2,1)	(3,6)
(3,1)	(3,1)	(2,6)	(6,0)	(3,6)	0	(2,1)
(3,6)	(3,6)	(6,0)	(2,1)	0	(3,1)	(2,6)
(6,0)	(6,0)	(3,1)	(3,6)	(2,1)	(2,6)	0

Table 1: Addition Table

Problem 3. Let E be an elliptic curve over \mathbb{F}_p and let P and Q be points in $E(\mathbb{F}_p)$. Assume that Q is a multiple of P and let $n_0 > 0$ be the smallest solution to Q = nP. Also let s > 0 be the smallest solution to $sP = \mathcal{O}$. Prove that every solution to Q = nP looks like $n_0 + is$ for some $i \in \mathbb{Z}$. (Hint. Write n as n = is + r for some $0 \le r < s$ and determine the value of r.)

Solution:

Following the hint, we write n = is + r for some $0 \le r < s$.

$$Q = nP$$

$$= (is + r)P$$

$$= i(sP) + rP$$

$$= i\mathcal{O} + rP$$

$$= rP$$

Since n_0P is the smallest multiple of P that is equal to $Q, r \ge n_0$. If $r = n_0$ we are done, so suppose instead that $r > n_0$.

Then

$$\mathcal{O} = Q - Q$$
$$= rP - n_0 P$$
$$= (r - n_0)P$$

We know that sP is the smallest (nonzero) multiple of P that is equal to \mathcal{O} , so $r - n_0 \ge s$. However, this contradicts r < s.

Therefore $r = n_0$, which proves that $n = is + n_0$

Problem 4. Use the double-and-add algorithm (Table 6.3) to compute nP in $E(\mathbb{F}_p)$ for the following curves and points, as we did in Fig. 6.4.

$$E: Y^2 = X^3 + 1828X + 1675, p = 1999, P = (1756, 348), n = 11$$

Solution:

11P = (1068, 1540)

Step i	n	$Q = 2^i P$	R
0	11	(1756, 348)	O
1	5	(1526, 1612)	(1756, 348)
2	2	(1657, 1579)	(1362, 998)
3	1	(1849, 225)	(1362, 998)
4	0	(586, 959)	(1068, 1540)

Table 2: Compute $n \cdot P$ on $E \mod p$

Problem 5. Alice and Bob agree to use elliptic Diffie–Hellman key exchange with the prime, elliptic curve, and point

$$p=2671, E:Y^2=X^2+171X+853, P=(1980,431)\in E(\mathbb{F}_{2671})$$

Subproblem 1. Alice sends Bob the point $Q_A = (2110, 543)$. Bob decides to use the secret multiplier $n_B = 1943$. What point should Bob send to Alice?

Solution:

Bob sends the point $Q_B = n_B P = 1943 P = (1432, 667) \in E(\mathbb{F}_{2671})$ to Alice.

Subproblem 2. What is their secret shared value?

Solution:

Their secret shared value is the x-coordinate of the point

$$n_B Q_A = 1943(2110, 543)$$

= $(2424, 911) \in E(\mathbb{F}_{2671})$

Therefore, their shared secret is x = 2424.

The code to help calculate this point is included at the end of this document.

Problem 6. Use the elliptic curve factorization algorithm to factor each of the numbers N using the given elliptic curve E and point P.

$$N = 26167, E = Y^2 = X^3 + 4X + 128, P = (2, 12)$$

Solution:

n	η	$n! \cdot F$	$P \mod N$
1	P	=	(2,12)
2	$2! \cdot P$	=	(23256, 1930)
3	$3! \cdot P$	=	(21778, 1960)
4	$4! \cdot P$	=	(22648, 14363)
5	$5! \cdot P$	=	(5589, 11497)
6	$6! \cdot P$	=	(7881, 16198)

Table 3: Factor Algorithm

 $26167 = 191 \cdot 137$

The code to help calculate this point is included at the end of this document.

Problem 7. This exercise asks you to compute some numerical instances of the elliptic curve digital signature algorithm described in Table 6.7 for the public parameters

$$E: y^2 = x^3 + 231x + 473, p = 17389, q = 1321, G = (11259, 11278) \in E(\mathbb{F}_p)$$

You should begin by verifying that G is a point of order q in $E(\mathbb{F}_p)$

Subproblem 1. Samantha's private signing key is s = 542. What is her public verification key? What is her digital signature on the document d = 644 using the random element e = 847?

Solution:

Samantha's public verification key is

$$V = sG$$

= 542(11259, 11278)
= (8689, 1726) \in E(\mathbb{F}_p)

Her signature on d = 644 using e = 874 is obtained by first computing

$$eG = (8417, 8276) \in E(\mathbb{F}_p)$$

Then she calculates

$$s_1 = x(eG) \mod q = 491$$
 and $s_2 \equiv (d + ss_1)e^{-1} \equiv 290 \mod q$

Subproblem 2. Tabitha's public verification key is V = (11017, 14637). Is $(s_1, s_2) = (907, 296)$ a valid signature on the document d = 993?

Solution:

Victor computes

$$v_1 \equiv ds_2^{-1} \equiv 106 \mod q$$
 and $v_2 \equiv s_1 s_2^{-1} \equiv 311 \mod q$

Then

$$v_1G + v_2V = (8833, 4526) \in E(\mathbb{F}_p)$$

and

$$x(v_1G + v_2V) \mod q = 8833 \mod 1321 = 907$$

this is equal to to s_1 , so the signature is valid.

Subproblem 3. Umberto's public verification key is V = (14594, 308). Use any method that you want to find Umberto's private signing key, and then use the private key to forge his signature on the document d = 516 using the random element e = 365.

Solution:

To find Umberto's private signing key, we need to find an s such that

$$sG = V$$

Solving the Elliptic Curve Discrete Log Problem gives us that s = 1294

We can then forge a signature on the document d=516 using the ephemeral key e=365 by first computing $eg=(3923,12121)\in E(\mathbb{F}_p)$ and then

$$s_1 = x(eG) \mod q = 1281$$
 and $s_2 \equiv (d + ss_1)e^{-1} \equiv 236 \mod q$

To check that the signature is valid, we compute

$$v_1G + v_2V = (3923, 12121) \in E(\mathbb{F}_p)$$

and

$$x(v_1G + v_2V) \mod q = 3923 \mod 1321 = 1281$$

which is equal to s_1

```
from math import inf, isinf
class Curve:
   a: int
   b: int
   N: int
    def __init__(self, a: int, b: int, N: int):
        assert (4 * a * a * a + 27 * b * b) % N, "Degenerate elliptic curve"
        self.a = a % N
        self.b = b % N
        self.N = N
    def __str__(self) -> str:
        return f"y^2 = x^3 + {self.a}x + {self.b}"
    def __contains__(self, point: "Point") -> bool:
        x, y = point.x, point.y
        return pow(y, 2, self.N) == (x * x * x + self.a * x + self.b) % self.N
    def __eq__(self, other: "Curve") -> bool:
        if not isinstance(other, Curve):
            return False
        if self.N != other.N:
            return False
        return self.a == other.a and self.b == other.b
class Point:
   x: int
   y: int
   curve: Curve
    I: "Point" = None
    def __init__(self, x: float, y: float, curve: Curve):
        self.x = x % curve.N if not isinf(x) else inf
```

```
self.y = y % curve.N if not isinf(x) else inf
    self.curve = curve
def __str__(self) -> str:
    if isinf(self.x) and isinf(self.y):
        return "$\mathcal{0}$"
    return f"$({self.x}, {self.y})$"
def __eq_ (self, other) -> bool:
    if not isinstance(other, Point):
        return False
    if isinf(self.x) ^ isinf(other.x):
        return False
    if isinf(self.x) and isinf(other.x):
        return True
    if self.curve.N != other.curve.N:
        return False
    return self.x == other.x and self.y == other.y
def __add__(self, other: "Point") -> "Point":
    if self == Point.I:
        return other
    if other == Point.I:
        return self
    if self.x == other.x and not ((self.y + other.y) % self.curve.N):
        return Point.I
    if self.x != other.x:
        x1, y1 = self.x, self.y
        x2, y2 = other.x, other.y
        m: int = ((y2 - y1) * pow(x2 - x1, -1,
                  self.curve.N)) % self.curve.N
        x3: int = (m * m - x1 - x2) % self.curve.N
```

```
y3: int = (m * (x1 - x3) - y1) % self.curve.N
        return Point(x3, y3, self.curve)
    else:
        x1, y1, a = self.x, self.y, self.curve.a
        m: int = ((3 * x1 * x1 + a) * pow(y1 << 1, -
                 1, self.curve.N)) % self.curve.N
        x3: int = (m * m - (x1 << 1)) % self.curve.N
        y3: int = (m * (x1 - x3) - y1) % self.curve.N
        return Point(x3, y3, self.curve)
def __rmul__(self, scalar: int) -> "Point":
    current = self
    result = Point.I
   while scalar:
        if scalar & 1:
            result = result + current
        current = current + current
        scalar >>= 1
    return result
```