Digitális technika

VII. Sorrendi hálózatok alapjai, tárolók

7.1. Sorrendi (szekvenciális) hálózat

- időtől függ a hálózat viselkedése
- a kimenet nemcsak a bemenetektől függ, hanem a hálózat állapotától is
- A hálózat pillanatnyi állapotát viszont a régebbi állapotok és a bemeneti kombinációk határozzák meg → az állapotváltozók is logikai függvényekkel adhatók meg!
- A hálózati állapotok tárolására új változók bevezetése (a bemeneti és kimeneti mellé) → gyakori a Q, q vagy Q^{t+1}, Q^t (új állapot, régi állapot), több változó esetén sorszámozva (Q₁, Q₂, Q₃, ..., q₁, q₂, ...) vagy esetleg az Y, y (a kimenet ilyenkor más betűvel jelölve!) → elnevezésük állapotváltozók (vagy szekunder változók)
- két típusuk van ---> aszinkron és szinkron sorrendi hálózat

Az állapot megváltozása azonnal visszajut a bemenetre

Az állapot megváltozása csak meghatározott időpillanatokban juthat vissza a bemenetre → órajellel ütemezve!

7.2. Aszinkron sorrendi hálózat

- Az állapot megváltozása azonnal visszajut a bemenetre → nem biztos hogy a hálózat azonnal nyugalomba kerül!
- Egy bemeneti kombinációnál stabil állapot akkor jön létre haz új állapot megegyezik a jelenlegi (régi) állapottal \rightarrow Q=q $(Q^{t+1}=Q^t)$
- Megvalósítható visszacsatolt kombinációs hálózattal!
- Két stabil állapot között csak egy instabil legyen! Ha nem alakul ki stabil állapot egy bemeneti kombinációnál → a hálózat oszcillál!!

7.3. Szinkron sorrendi hálózat

- Az állapot megváltozása csak órajellel ütemezve jut vissza a bemenetre → a visszacsatoló ágakat periodikusan nyitjuk-zárjuk
- Nincs megkülönböztetve stabil és instabil állapot
- A bemeneti változásoknak követniük kell az órajel ütemét!

Állapottábla (Huffman tábla)

Átmeneti tábla (gerjesztési tábla)

Ütem diagram

Az ütemdiagram az idő diagramhoz hasonló, de nem léptékhelyes

vonal jelzi az 1-es és a vonal hiánya a 0-s szintet

Állapot átmeneti tábla

Milyen állapot-átmenetek esetén hogyan kell vezérelni (mit kell a bemenetekre adni)

	Q ^t	Q ^{t+1}	J	K	
állapot 0 → 0 — →	0	0	0	0	→ J=0 és K=0 vezérlés kell
állapot $0 \rightarrow 1 \longrightarrow$	0	1	1	-	J=1 és K=bármilyen
	1	0	0	1	vezérlés kell
	1	1	-	0	

<u>Állapot diagram</u>

Magyarázat:

7.5. Gyakorló feladatok

1. Add meg az alábbi két állapotú sorrendi hálózat állapot diagramját és állapot tábláját

Α	В	Qt	Q ^{t+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

2. Add meg az alábbi működésű sorrendi hálózat igazságtáblázatát és állapot tábláját

7.5. Gyakorló feladatok

1. Megoldás. Add meg az alábbi két állapotú sorrendi hálózat állapot diagramját

A B Q ^t Q ^{t+1}	alagram
0 0 0 0 AB	
0 0 1 0	
0 1 0 1 AB	1 AB
0 1 1 1	01
1 0 0 1 AB	11
1 0 1 1	
1 1 0 0	
1 1 1	

és állapot tábláját

AB	3			
Qt	00	01	11	10
0	0	1	0	1
1	0	1	1	1

7.5. Gyakorló feladatok

2. Megoldás. Add meg az alábbi működésű sorrendi hálózat igazságtáblázatát

és állapot tábláját

CD Q ^t	00	01	11	10
0	0	0	0	1
1	0	1	0	1

7.6. Tárolók

- Tárolók elemi sorrendi hálózatok (építőelemek)
- két állapotuk van (0,1) → 1 bitet tárolnak! (1 bites memória)

egy állapot változó (Q)

• néhány bemenettel (kettő, három, ..) és egy kimenettel rendelkeznek (a gyakorlatban szokott lenni második, de az az első kimenet negáltja!)

- A kimenetük megegyezik az állapotukkal!
- Lehetnek aszinkron vagy szinkron működésűek
- Típusaik: SR tároló, JK tároló, T tároló, D tároló

7.7. SR tároló

Rajzjele, működése

Példa a működésére (idő diagram)

S – set ---> a tárolót 1-be állítja, ha S=1 R – reset ---> a tárolót 0-ba állítja, ha R=1 Ha S=R=0 ---> a tároló állapota nem változik! S=R=1 nem lehet!!

Állapot diagram

Q^t – jelenlegi kimenet Q^{t+1} – következő kimenet

igazságtáblázata

S	R	Q ^t	Q ^{t+1}	
0	0	0	0	- tárol
0	0	1	1	$Q^{t+1} = Q^t$
0	1	0	0	töröl
0	1	1	0	$Q^{t+1}=0$
1	0	0	1	1-be
1	0	1	1	állít $Q^{t+1} = 1$
1	1	0	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1	1	1		

7.7. SR tároló

Vezérlési táblázat, állapottábla

	lacksquare			SI	₹ 00	01	4.4	4.0	Q (új állapot)
S	R	Q ^{t+1}		q	00	$\overline{01}$	11	10	✓ és kimenet is
0	0	Q ^t	— tárol	0	0	0	-		
0	1	0	— töröl						
1	0	1	1-be	1		0	-		
1	1	-	állít			tahil ál	llanoto	k _ as	zinkron és

szinkron is lehet, mert minden

bemeneti kombinációhoz tartozik

Megvalósítás aszinkron hálózatként

7.8. Gyakorló feladatok

1. Rajzold be az SR tároló kimenetének (Q) változását, az adott bemeneti jelsorozat hatására

2. Add meg az alábbi tároló állapot diagramját, igazságtáblázatát

q AB	00	01	11	10
0	0	0	0	1
1	0	1	1	1

7.8. Gyakorló feladatok megoldásai

1. megoldás

2. megoldás

Α	В	q	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

7.9. JK tároló

Rajzjele, működése

J – set ---> a tárolót 1-be állítja, ha J=1 (és K=0) K – reset ---> a tárolót 0-ba állítja, ha K=1 (és J=0)

Ha J=K=0 ---> a tároló állapota nem változik!

Ha J=K=1 ---> a tároló állapota ellentétesre vált !!

C – clock ---> órajel bemenet Ez a tároló csak szinkron lehet! → Az órajel határozza meg, hogy mikor vált állapotot. Az órajel alapján többféle működésű lehet

Állapot diagram

igazságtáblázata

J	K	Q ^t	Q ^{t+1}	
0	0	0	0	tárol
0	0	1	1	$Q^{t+1} = Q^t$
0	1	0	0	töröl
0	1	1	0	$Q^{t+1}=0$
1	0	0	1	1-be állít
1	0	1	1	$Q^{t+1} = 1$
1	1	0	1	invertál
1	1	1	0	$Q^{t+1} = \overline{Q}^t$

7.9. JK tároló

Állapot tábla

Vezérlési tábla

J	K	Q ^{t+1}
0	0	Qt
0	1	0
1	0	1
1	1	\overline{Q}^{t}

J=K=1 esetén nincs stabil állapot !! → csak szinkron lehet !

Állapot átmeneti tábla

7.10. T tároló

Rajzjele, működése

T=1 ---> a tároló állapotot vált!
T=0 ---> a tároló marad a régi
állapotban

C – clock ---> órajel bemenet Ez a tároló is csak szinkron lehet

> Lényegében egy JK tároló, J és K bemeneteit összekötve, és elnevezve T-vel!

igazságtáblázata

Т	Q ^t	Q ^{t+1}
0	0	0
0	1	1
1	0	1
1	1	0

Állapot diagram

7.11. D tároló

Rajzjele, működése

C – clock ---> órajel bemenet Ez a tároló is csak szinkron lehet, az órajel határozza meg, hogy mikor vált állapotot !!

igazságtáblázata

D	Q ^t	Q ^{t+1}
0	0	0
0	1	0
1	0	1
1	1	1

Állapot diagram

7.12. D latch

D-G tároló (kapuzott D tároló)

Rajzjele, működése

Ha G=1 \rightarrow a kimenet követi a bemenetet \rightarrow Q = D

Ha G=0 \rightarrow tárolja az utolsó állapotát \rightarrow Q = q

D - data

G – gate (esetleg C mint órajel)

Állapot diagram

q DC	00	01	11	10
0	0	0	1	0
1	1	0	1	1

$$Q = D*G + q*\overline{G} + q*D$$

Aszinkron is lehet!

7.13 Gyakorló feladatok

1. Add meg az alábbi működésű tároló igazságtáblázatát

2. Add meg az alábbi tároló állapot diagramját, igazságtáblázatát

q AB	00	01	11	10
0	1	0	0	1
1	1	1	0	0