PROBABILITÉS CONDITIONNELLES E05C

EXERCICE N°4 Justifier et utiliser l'indépendance

Ubéric joue à son jeu de plateau préféré avec ses amis et il a presque gagné!

Pour qu'il gagne en deux coups, il faut (et il suffit) que les deux prochains lancers de dés donnent des nombres dans l'ensemble [1; 3; 5; 6].

On considère donc l'expérience aléatoire constituée de ces deux lancers de dés équilibrés à six faces et pour laquelle on regarde le nombre de lancers favorables.

- 1) Pourquoi peut-on considérer que c'est une succession de deux épreuves indépendantes ? A priori, il n'a pas d'influence du 1^{er} lancer sur le second. On peut donc considérer qu'il s'agit bien d'une succession de deux épreuves indépendantes.
- 2) La représenter par un arbre ou un tableau et donner la probabilité que Ubéric gagne en deux coups.

Notons:

 F_1 l'événement : « le premier lancer est favorable »

F₂ l'événement : « le second lancer est favorable »

On a
$$P(F_1) = P(F_2) = \frac{4}{6} = \frac{2}{3}$$

Au choix

1 ^{er} lancer 2 ^e lancer	F_1	$\overline{F_1}$	Total
F_2	<u>4</u> 9	<u>2</u> 9	$\frac{6}{9} = \frac{2}{3}$
$\overline{F_2}$	<u>2</u> 9	<u>1</u> 9	$\frac{3}{9} = \frac{1}{3}$
Total	$\frac{6}{9} = \frac{2}{3}$	$\frac{3}{9} = \frac{1}{3}$	1

$$P(F_1 \cap P_2) = \frac{4}{9}$$

La probabilité que Ubéric gagne en deux coups vaut

4 9