EE4704 IMAGE PROCESSING AND ANALYSIS

Sample Paper $^{1\ 2\ 3\ 4\ 5}$

¹The paper is meant to give you some idea of the types of questions to expect in the final exam.

²Other types of problem questions are to be expected.

³The difficulty level may also be different.

 $^{^4\}mathrm{Some}$ of the questions are extracted from past exam papers. $^5\mathrm{Solutions}$ are not available.

- (a) (i) Obtain $F_1(u, v)$, the Fourier transform of $f_1(x, y) = 10 + 6 \operatorname{rect}(2x, y/3)$.
 - (ii) Sketch the image function $f_2(x,y) = \text{rect}[(x-4)/3,2y-6)]$ and obtain its Fourier tranform $F_2(u,v)$.
- (b) A digital image f(x,y) is of size 1000×1000 . Denoting the DFT of f(x,y) by F(u,v), obtain the DFTs of the following functions in terms of F(u,v):
 - (i) $f_1(x,y) = 2f(x,y)$
 - (ii) $f_2(x,y) = f(x+100,y)$
 - (iii) $f_3(x,y) = f(x,y) + 100$

(18 marks)

Question 2

- (a) State whether you would expect the following noise-removal methods to work well in reducing salt noise in images. Explain your answers.
 - (i) Median filter
 - (ii) Minimum mean-square error (MMSE) filter
 - (iii) Image averaging
- (b) The following tranformation functions are applied to images with gray levels r_k $0, 1, \ldots, 255$. Sketch the transformation functions, and describe in general the effects of each one.

(i)
$$T_1(r_k) = 255 - r_k$$

(ii)
$$T_2(r_k) = \begin{cases} 2r_k & 0 \le r_k \le 127\\ 255 & 128 \le r_k \le 255 \end{cases}$$

(iii) $T_3(r_k) = \begin{cases} 255 & 80 \le r_k \le 100\\ r_k & \text{elsewhere} \end{cases}$

(iii)
$$T_3(r_k) = \begin{cases} 255 & 80 \le r_k \le 100 \\ r_k & \text{elsewhere} \end{cases}$$

(iv)
$$T_4(r_k) = 255(r_k/255)^{0.5}$$

(20 marks)

- (a) Explain why Huffman coding of an image will lead to fewer bits in representing the image.
- (b) The histograms of two 3-bit images, I_1 and I_2 are given in the table below.

Gray level		0	1	2	3	4	5	6	7
Number of	I_1	0	230	160	160	110	110	230	0
pixels	I_2	0	20	400	500	80	0	0	0

- (i) Calculate the entropy of I_1 and I_2 in bits.
- (ii) Huffman coding is applied to I_1 . Calculate the coding efficiency, η_1 , average code word length, \bar{L}_1 , and compression ratio, CR_1 .
- (iii) I_2 is coded using Huffman compression, resulting in compression ratio CR_2 . Without doing any calculations, explain whether CR_2 is greater than, equal to, or less than CR_1 .

(20 marks)

(a) In the applications listed below, what image acquisition device (e.g., 2D CCD camera, scanner, etc) would you use to obtain a digital image of the object of interest? Explain your answer.

S/No.	Object of interest	Application
1	Lateral (side) X-ray of the skull	Analysis of tooth alignment
2	Painting	Virtual art gallery
3	Printed circuit board	Inspection for missing components
4	Machine part moving along a	Inspection for manufacturing
	conveyor belt	defects

- (b) Show the result of applying the Laplacian operator to the image of Figure 1. Explain the use of the Laplacian operator as an edge detector.
- (c) Figure 2 shows an edge map where each "x" indicates an edge point. It is desired to use the Hough transform to detect the straight lines present in the 80×80 image.
 - (i) What is the Hough transform of the circled edge point in ab parameter space?
 - (ii) The accumulator array is set up as follows:

Array size:
$$0 \le a \le 2$$
, $0 \le b \le 80$
Cell size: $\Delta a = 0.1$, $\Delta b = 1$

Assuming that the edge points come from two straight lines, estimate the locations of the accumulator cells with the two highest votes.

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	10	0	0	10	0	0
0	0	10	10	0	0	0	0
0	0	10	10	10	0	0	0
0	0	10	10	10	10	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Figure 1

Figure 2

- (a) Sketch the distance-angle and slope-density functions for the elliptical contour shown in Figure 3.
- (b) A 4-level image contains textures T1 and T2 (Figure 4).
 - (i) Can gray-level histogram statistics be used to classify the two textures? Explain your answer.
 - (ii) Local property statistics may be used to quantify texture. The forward difference in the y direction, represented by the mask

$$\begin{bmatrix} +1 \\ -1 \end{bmatrix}$$

is applied to texture T1. Sketch the histogram of the result.

(iii) Explain why the above local property is not suitable for differentiating between textures T1 and T2. Suggest a suitable local property and explain how the two textures may be classified. Your solution should include the definition of a suitable texture descriptor and the texture values obtained for each of the textures.

(20 marks)

Figure 3

Figure 4