Lineare Algebra Übung 2

Aufgabe 1

Implementieren Sie in der Programmiersprache Ihrer Wahl die symmetrischen Grupen. Ihre Implementation soll folgendes erfüllen:

Abgabe: Kalenderwoche 12

- Modellieren Sie Permutationen (z.B. als Arrays)
- Implementieren Sie eine Funktion inv, die eine gegebene Permutation invertiert (ihr Inverses zurückgibt).
- Implementieren Sie die Verknüpfung o als zweistellige Funktion, die von zwei gegebenen Permutationen deren Komposition berechnet.
- Implementieren sie zwei Funktionen print und printCyclic, die eine gegebene Permutation als String ausgeben (in der zyklischen Schreibweise bei printCyclic).

Lösung: Siehe Uebungsstunde

Aufgabe 2

Geben Sie alle Verknüpfungen an, die zusammen mit der Menge $\{a,b\}$ eine Gruppe bilden. Skizzieren Sie die Verknüpfungstabellen.

Lösung: Wir geben alle möglichen Verknüpfungen (es gibt deren 2) direkt als Verknüpfungstabelle an.

*	a	b
a	a	b
b	b	a

•	a	b
a	b	a
b	a	b

Bemerkung: Soll die resultierende Struktur eine Gruppe sein (wie in der Aufgabe verlangt), dann bemerken wir, dass die einzige Freiheit, die wir beim ausfüllen der Verknüpfungstabelle

•	a	b
a		
b		

haben, die Wahl des neutralen Elementes ist.

Aufgabe 3

Es seien die folgenden Gruppenstrukturen auf den Menge $\{a,b,c\}$ wie folgt durch Verknüpfungstabellen gegeben:

*	a	b	С
a	a	b	\mathbf{c}
b	b	С	a
С	С	a	b

•	a	b	\mathbf{c}
a	c	a	b
b	a	b	С
С	b	С	a

Geben Sie einen bijektive Gruppenhomomorphismus von $(\{a,b,c\},\star)$ nach $(\{a,b,c\},\bullet)$ an.

Lösung: Es gibt zwei mögliche Lösungen:

$$f_1(a) = b$$

$$f_1(b) = c$$

$$f_1(c) = a$$

und

$$f_2(a) = b$$

$$f_2(b) = a$$

$$f_2(c) = c$$

Aufgabe 4

Es sei $f:(\mathbb{Z},+)\to(\mathbb{Z}/12,+)$ mit $f(x)=[x]_{12}$ gegeben. Bestimmen Sie ker(f).

Lösung:

$$ker(f) = \{x \in \mathbb{Z} \mid f(x) = [0]_{12}\}$$

$$= \{x \in \mathbb{Z} \mid [x]_{12} = [0]_{12}\}$$

$$= \{x \in \mathbb{Z} \mid x = 0 \mod 12\}$$

$$= [0]_{12} = \{\dots, -24, -12, 0, 12, 24, \dots\}$$

Aufgabe 5

Zeigen Sie, Wenn (G, \star) eine Gruppe ist in der jedes Element sein eigenes Inverses ist, dann ist (G, \star) eine kommutative Gruppe.

Lösung: Es seien a, b beliebige Elemente von G. Wir müssen $a \star b = b \star a$ zeigen. Weil jedes Element in G sein egienes Inverses ist, gilt $(a \star b)^{-1} = b \star a$ und somit (wiederum weil jedes Element sein eigenes Inverses ist), dass $a \star b = (a \star b)^{-1} = b \star a$.(

Alternative Lösung:

$$a \star b = e \star (a \star b)$$

$$= \underbrace{((b \star a) \star (b \star a))}_{\text{wegen } (b \star a)^{-1} = b \star a} \star (a \star b)$$

$$= (b \star a) \star ((b \star a) \star (a \star b))$$

$$= (b \star a) \star (b \star (a \star a) \star b)$$

$$= (b \star a) \star (b \star b)$$

$$= b \star a$$