

ME414 - Estatística para Experimentalistas

Parte 13

Dizemos que uma v.a. X possui distribuição normal com parâmetros μ e σ^2 , $\mu \in \mathbb{R}$ e $\sigma^2 > 0$, se a f.d.p. f_X é dada por:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \quad -\infty < x < \infty.$$

Notação: $X \sim N(\mu, \sigma^2)$.

Distribuição mais importante da Estatística. Também conhecida como distribuição Gaussiana.

A esperança e variância de uma v.a. $X \sim N(\mu, \sigma^2)$ são:

$$\mathbb{E}(X) = \mu$$
 e $Var(X) = \sigma^2$.

Distribuição Normal - Esperança e Variância

Esperança:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx = \mu.$$

Variância:

$$Var(X) = \mathbb{E}([X - \mathbb{E}(X)]^2)$$

$$= \int_{-\infty}^{\infty} (x - \mu)^2 \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x - \mu)^2}{2\sigma^2}\right] dx$$

$$= \sigma^2.$$

Gráfico da função de densidade de probabilidade de uma v.a. $X \sim N(\mu, \sigma^2)$:

Função Densidade: "Forma de sino", centrada em μ e escala controlada por σ^2 .

Exemplo: OkCupid

OkCupid é uma rede social para relacionamentos.

Usuários devem colocar características pessoais como, por exemplo, altura.

Será que são sinceros?

Exemplo: OkCupid

Comparação da distribuição das alturas da população adulta norte-americana e a distribuição das alturas dos usuários do site:

Fonte: http://blog.okcupid.com/index.php/the-biggest-lies-in-online-dating/

Exemplo: OkCupid

Fonte: http://blog.okcupid.com/index.php/the-biggest-lies-in-online-dating/

Distribuição Normal Padrão

Propriedade: Se $X \sim N(\mu, \sigma^2)$, então

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1).$$

Dizemos que Z tem distribuição Normal Padrão e sua densidade se reduz a:

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \qquad -\infty < z < \infty.$$

A f.d.a. de uma Normal padrão, que denotaremos por Φ , é:

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt.$$

Distribuição Normal Padrão

Uma universidade americana recebeu inscrição de dois alunos (Pam e Jim) com os respectivos históricos escolares. No entanto, Pam realizou o <u>SAT</u> e tirou 1800, enquanto que o Jim fez o <u>ACT</u> e tirou 24. Como a universidade pode comparar os dois alunos, baseando-se nesses testes?

Precisamos avaliar quão melhor (ou pior) a Pam foi em relação aos demais alunos que realizaram o SAT.

Precisamos avaliar quão melhor (ou pior) o Jim foi em relação aos demais alunos que realizaram o ACT.

A universidade tem acesso à média (1500) e ao desvio-padrão (300) das notas de todos os alunos que realizaram o SAT juntamente com a Pam.

A universidade tem acesso à média (21) e ao desviopadrão (5) das notas de todos os alunos que realizaram o ACT juntamente com a Jim.

Assumindo que as notas dos dois testes seguem uma distribuição normal:

Seja X uma v.a. representando a nota no SAT: $X \sim N(\mu = 1500, \sigma^2 = 300^2)$.

Seja Y uma v.a. representando a nota no ACT: $Y \sim N(\mu = 21, \sigma^2 = 5^2)$.

Seja X uma v.a. representando a nota no SAT: $X \sim N(\mu = 1500, \sigma^2 = 300^2)$.

Padronizando a v.a. das notas do SAT: $Z_1 = \frac{X-1500}{300} \sim N(0, 1)$.

Padronizando a nota da Pam: $\frac{1800-1500}{300} = 1$.

Seja Y uma v.a. representando a nota no ACT: $Y \sim N(\mu = 21, \sigma^2 = 5^2)$.

Padronizando a v.a. das notas do ACT: $Z_2 = \frac{Y-21}{5} \sim N(0, 1)$.

Padronizando a nota do Jim: $\frac{24-21}{5} = 0.6$.

Com as notas padrozinadas, podemos compará-las:

Para calcular as probabilidades, precisamos usar a f.d.a. de $Z \sim N(0, 1)$

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt,$$

que não tem forma fechada, pois e^{-t^2} não tem antiderivada.

Contudo, os valores para $Z \sim N(0, 1)$ e $\phi(z)$ encontram-se tabelados.

Tudo o que precisamos fazer é transformar a variável em N(0,1) e usar os valores tabelados. Ou seja, para $X \sim N(\mu, \sigma^2)$, temos:

$$F_X(a) = P(X \le a) = P\left(\underbrace{\frac{X - \mu}{\sigma}}_{Z} \le \frac{a - \mu}{\sigma}\right) = \Phi\left(\frac{a - \mu}{\sigma}\right).$$

Função de Distribuição Acumulada

Distribuição Normal - Simetria

A distribuição normal é simétrica, portanto

$$P(Z < -z) = P(Z > z).$$

Seja $Z \sim \text{Normal}(0, 1)$, com f.d.a. Φ :

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt.$$

Então,

• $\Phi(0) = 0.5$,

 $\Phi(-\infty) = 0,$

 $\Phi(\infty) = 1,$

· Por simetria:

$$\Phi(x) = P(Z < x) = P(Z > -x)$$

= 1 - P(Z < -x) = 1 - \Phi(-x).

A probabilidade de um intervalo é dada por:

$$P(a < Z < b) = P(Z < b) - P(Z < a)$$
$$= P(Z \le b) - P(Z \le a)$$
$$= \Phi(b) - \Phi(a).$$

Veja a tabela da normal com os valores de $\Phi(1)$ e $\Phi(0)$ destacados:

Tabela I: Distribuição Normal Padrão Acumulada

Fornece $\Phi(z) = P(-\infty < Z \le z)$, para todo z, de 0,01 em 0,01, desde z = 0,00 até z = 3,59 A distribuição de Z é Normal(0;1)

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177

Exercitando com a tabela da Normal:

$$\Phi(0.2) = 0.5793$$

$$\Phi(0.45) = 0.6736$$

$$\Phi(1.28) = 0.8997$$

$$\Phi(-0.45) = 1 - \Phi(0.45)$$
$$= 0.3264$$

Tabela I: Distribuição Normal Padrão Acumulada

Fornece $\Phi(z) = P(-\infty < Z \le z)$, para todo z, de 0,01 em 0,01, desde z = 0,00 até z = 3,59 A distribuição de Z é Normal(0;1)

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177

Exemplo: Se $X \sim N(10, 4)$, calcular:

1.
$$P(8 < X < 10)$$

2.
$$P(9 \le X \le 12)$$

3.
$$P(X > 10)$$

4.
$$P(X < 8 \text{ ou } X > 11)$$

Fonte: Morettin & Bussab, Estatística Básica 5^a edição, pág 182.

Recorde que se $X \sim N(\mu, \sigma^2)$, então $\frac{X-\mu}{\sigma} \sim N(0, 1)$.

Neste problema, sabemos que $\mu=10$ e $\sigma^2=4$, logo $\sigma=2$. Então,

$$Z = \frac{(X - 10)}{2} \sim N(0, 1).$$

Devemos transformar X de modo que o evento 8 < X < 10 permaneça inalterado. Fazemos isso transformando todos os lados da inequação:

$$8 < X < 10 \Leftrightarrow 8 - 10 < X - 10 < 10 - 10$$
$$\Leftrightarrow \frac{8 - 10}{2} < \frac{X - 10}{2} < \frac{10 - 10}{2}$$
$$\Leftrightarrow -1 < Z < 0$$

Então, P(8 < X < 10) = P(-1 < Z < 0).

O valor $\Phi(0)$ está disponível na tabela e é igual a 0.5.

Para obtermos $\Phi(-1)$, devemos usar a simetria da função Φ em torno do zero:

$$\Phi(-z) = 1 - \Phi(z).$$

A tabela nos dá $\Phi(1) = 0.8413$ \Rightarrow $\Phi(-1) = 1 - 0.8413 = 0.1587$.

Concluimos portanto que

$$P(8 < X < 10) = P(-1 < Z < 0)$$

$$= \Phi(0) - \Phi(-1)$$

$$= 0.5 - 0.1587 = 0.3413.$$

Gráfico da curva N(10,4) com a região [8,10] correspondente ao item 1 em destaque:

2.
$$P(9 \le X \le 12) = P\left(\frac{9-10}{2} \le \frac{X-10}{2} \le \frac{12-10}{2}\right)$$

= $P(-1/2 \le Z \le 1) = 0.5328$.

3.
$$P(X > 10) = P\left(\frac{X - 10}{2} > \frac{10 - 10}{2}\right) = P(Z > 0) = 0.5$$
.

4.
$$P(X < 8 \text{ ou } X > 11) = P(X < 8) + P(X > 11)$$

$$= P\left(\frac{X - 10}{2} < \frac{8 - 10}{2}\right) + P\left(\frac{X - 10}{2} > \frac{11 - 10}{2}\right)$$

$$= P(Z < -1) + P(Z > 1/2)$$

$$= 0.1586 + 0.3085 = 0.4671.$$

Exemplo: Se $X \sim N(4, 3^2)$, calcule $P(X \le 7)$ e $P(1 < X \le 7)$.

$$P(X \le 7) = P\left(\frac{X - 4}{3} \le \frac{7 - 4}{3}\right)$$
$$= P(Z \le 1) = \Phi(1) = 0.8413.$$

$$P(1 < X \le 7) = P\left(\frac{1-4}{3} < \frac{X-4}{3} \le \frac{7-4}{3}\right)$$

$$= P(-1 < Z \le 1)$$

$$= \Phi(1) - \Phi(-1)$$

$$= \Phi(1) - [1 - \Phi(1)]$$

$$= 2\Phi(1) - 1 = 2 \times 0.8413 - 1 = 0.6826.$$

Exemplo: $X \sim N(4,3^2)$ e a região correspondente a $P(1 < X \le 7)$ em destaque no gráfico

Regra Empírica

Em uma distribuição normal $X \sim N(\mu, \sigma^2)$, temos o seguinte:

Regra Empírica

Exemplo: Suponha que o QI da população mundial segue uma distribuição normal com média 100 e desvio padrão de 15

Encontre um intervalo que englobe os QI's de 68.3% da população?

E se quisermos 95%? E 99.7%?

Regra Empírica

Como $QI \sim N(100, 15^2)$, pela regra empírica:

68.3% da população: $85 \le QI \le 115$

95% da população: $70 \le QI \le 130$

99.7% da população: $55 \le QI \le 145$

Seja $X \sim Bin(n, p)$.

O que acontece quando o número de ensaios n aumenta?

Seja $X \sim Bin(n,p)$. Se n é suficientemente grande, a distribuição de X pode ser aproximada pela distribuição normal, isto é,

$$X \sim N(np, np(1-p)).$$

Exemplo: Se $X \sim Bin(100, 0.7)$, podemos usar a aproximação $X \sim N(70, 21)$.

Exemplo: Seja X o número de vezes que uma moeda honesta resulta em cara quando é lançada 40 vezes. Então,

$$X \sim Bin(40, 0.5).$$

Encontre P(X=20) usando a fórmula exata e a aproximação normal.

· Binomial:

$$P(X = 20) = {40 \choose 20} (0.5)^{20} (0.5)^{20} = 0.125.$$

Normal:

$$P(X = 20) \approx P(19.5 < X \le 20.5) = 0.1256$$
.

Exemplo: $X \sim Bin(40, 0.5)$.

Em geral, para que a aproximação para a normal seja utilizada:

$$np \ge 10$$

$$n(1-p) \ge 10$$

Ou seja, pelo menos 10 sucessos e pelo menos 10 fracassos na amostra.

Relembrando: Propriedades da Esperança

1. Para qualquer v.a. X e constantes a e b:

$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b.$$

Casos particulares:

- $\cdot \ \mathbb{E}(X+b) = \mathbb{E}(X) + b,$
- $\cdot \mathbb{E}(aX) = a\mathbb{E}(X).$
- 2. Se X_1, X_2, \ldots, X_n são variáveis aleatórias:

$$\mathbb{E}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathbb{E}(X_i).$$

Relembrando: Propriedades da Variância

1. Para qualquer v.a. X e constantes a e b:

$$Var(aX + b) = a^2 Var(X).$$

Casos particulares:

- Var(X+b) = Var(X),
- · $Var(aX) = a^2 Var(X)$.
- 2. Se X_1, X_2, \dots, X_n são variáveis aleatórias independentes:

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i).$$

Propriedades da Normal

Se adicionarmos ou multiplicarmos uma constante a uma v.a. com distribuição Normal, a v.a. resultante continua tendo distribuição normal. Ou seja,

$$X \sim N(\mu, \sigma^2)$$
 \Longrightarrow $aX + b \sim N(a\mu + b, a^2\sigma^2).$

Isso explica que:

$$X \sim N(\mu, \sigma^2)$$
 \iff $Z = \frac{X - \mu}{\sigma} \sim N(0, 1).$

Se X e Y são v.a.'s independentes, tal que $X \sim N(\mu_x, \sigma_x^2)$ e $Y \sim N(\mu_y, \sigma_y^2)$, então

$$X + Y \sim N(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2).$$

Leituras

- Ross: seções 6.3 a 6.7.
- OpenIntro: seções 3.1, 3.2, 3.4.2
- · Magalhães: capítulo 6.

Slides produzidos pelos professores:

- Samara Kiihl
- · Tatiana Benaglia
- Larissa Matos
- · Benilton Carvalho

