High to High Dimensional Multivariate Mixture Regression

Alex White

4/16/2021

Idea

Goal: Correctly cluster observations & regress in high dimensional X & Y.

- $\triangleright Y_{n\times a}$ Matrix of responses
- \triangleright $X_{n \times p}$ Design matrix
- ► $A_{p \times q}$ Coefficient matrix (sparse in p)
- k clusters

$$f(\mathbf{y}_i \mid \mathbf{x}_i; \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}_q(\mathbf{y}_i; \mathbf{x}_i A_k, \Sigma_k)$$

Parameter space $\theta = \{\pi_k, A_k, \Sigma_k; k = 1...K\}$ solved by general EM using SARRS to compute A_k .

SARRS

- Excellent performance, even in high dimension (> 5000)
- Computationally very fast

Algorithm 1: Subspace Assisted Regression with Row Sparsity (SARRS)

Input: Observed response matrix Y, design matrix X, rank r, initial matrix $V_{(0)}$ and penalty function $\rho(\cdot; \lambda)$ with penalty level λ . Output: Estimated coefficient matrix \widehat{A} .

1 Group penalized regression

$$B_{(1)} = \underset{B \in \mathbb{R}^{p \times r}}{\arg\min} \left\{ \|YV_{(0)} - XB\|_F^2 / 2 + \rho(B; \lambda) \right\},$$

- **2** Compute the left singular vectors of $XB_{(1)}$, denoted by $U_{(1)}$.
- 3 Compute the right singular vectors of $U_{(1)}U'_{(1)}Y$, denoted by $V_{(1)}$.
- 4 Group penalized regression

$$B_{(2)} = \underset{B \in \mathbb{R}^{p \times r}}{\arg \min} \left\{ \|YV_{(1)} - XB\|_F^2 / 2 + \rho(B; \lambda) \right\},\,$$

5 Compute the estimated coefficient matrix by $\widehat{A} = B_{(2)}V'_{(1)}$.

Figure 1: "SARRS Main Algorithm"

HTH Mixture Algorithm

- ▶ Initialize: $\pi_k^{(0)} = \frac{n_k^{(0)}}{n}$
- ▶ Randomly initialize observations into k clusters

While not converged (m = 1, ..., M) do:

- ▶ for k = 1, ..., K apply SARRS on all observations in $C_k^{(m-1)}$ to obtain $A_k^{(m)}$, $\Sigma_k^{(m)}$
- lacksquare compute $\mu_{ik}^{(m)} = \mathcal{N}_p\left(oldsymbol{y_i}; A_k^{(m)} oldsymbol{x_i}, \Sigma_k^{(m)}
 ight)$
- $C_k^{(m)} = \{i | ML \text{ component } k\}$
- $\pi_k^{(m)} = \frac{n_k^{(m)}}{n}$

HTH Mixture Algorithm

- ► Empirically, HTH Mixture reaches local maximum quickly
- ▶ Need to determine method for efficiently exploring the likelihood space with different random initialization.

Likelihood Space Exploration Idea 1

- Mimic the idea of chains from MCMC
- ▶ In parallel, run large number of chains and select the one which reaches the largest likelihood.
- ► This method works well, although not the most efficient way to explore the space.

Likelihood Space Exploration Idea 2

➤ To more efficiently explore the space, when a local maximum is reached, perturb the initialized state by a proportion *p* (e.g. 20%) and rerun.

Data Simulation

- \triangleright X_k consists of iid random vectors sample from $MVN(\mathbf{0}, \Sigma_k)$
- ightharpoonup Σ_k diagonal
- ▶ Noise matrix $Z_k \in \mathbb{R}^{n \times q}$ has iid $N(0, \sigma^2)$ entries

$$A_k = \left(\begin{array}{c} b_k B_{0_k} B_{1_k} \\ 0 \end{array} \right)$$

- ▶ with b > 0, $B_0 \in \mathbb{R}^{s \times r}$, $B_1 \in \mathbb{R}^{r \times q}$
- $Y_k = X_k A_k + Z_k$

Finally, combine X & Y

Simulation

- ► N: 50 400
- ► s: 5 20
- ▶ rank: 1 2
- ▶ B: 1
- p = m = 1000
- Perturb: 20%
- Cluster with equal probability
- ► K: 2
- **σ**: 1
- ► CHains: 500

▶ HTH algorithm consistently reaches local maximum

Figure 2: Weighted Likelihood

 $\qquad \qquad \textbf{Idea} \ 1 \to \textbf{random initialization each time}$

- ightharpoonup Idea 2 ightharpoonup perturb local maximum
- ► Appears to be more efficient

N	S	R	hthmix	kmeans
50	5	1	0.90	0.70
100	5	1	1.00	0.66
200	5	1	1.00	0.51
400	5	1	1.00	0.54
50	10	1	0.84	0.62
100	10	1	0.92	0.50
200	10	1	1.00	0.66
400	10	1	1.00	0.52
50	20	1	0.80	0.72
100	20	1	0.80	0.53
200	20	1	0.98	0.68
400	20	1	1.00	0.51

N	S	R	hthmix	kmeans
50	5	2	1.00	0.64
100	5	2	1.00	0.72
200	5	2	1.00	0.52
400	5	2	1.00	0.64
50	10	2	0.86	0.58
100	10	2	1.00	0.55
200	10	2	1.00	0.53
400	10	2	1.00	0.68
50	20	2	0.84	0.64
100	20	2	0.78	0.53
200	20	2	1.00	0.71
400	20	2	1.00	0.65

Performance

- ► In simulated data, current algorithm clusters well (perfectly in most cases given enough chains)
- Challenges:
 - Likelihood space is explored inefficiently, sometimes requires large number of chains
 - Computationally cumbersome/inefficient