Wyklad10, złożoność obliczeniowa algorytmów

Rafał Grot

January 13, 2023

Contents

1	DLI 1.1	Tabelka eksportu	1 2 2
2	Prz	ed deklracją funkcji exportowej	2
3	Złoż	oność obliczeniowa algorytmów	2
	3.1	Złożoność pamięciowa	2
	3.2	Złożoność czasowa	2
	3.3	Typowe funkcjie złożoności obliczeniowej	2
		3.3.1 Funkcja Stała	2
		3.3.2 Funkcja liniowa	3
		3.3.3 Funkcja kwadratowa	3
		3.3.4 Funkcja wielomianowa	3
		3.3.5 Funkcja wykłdnicza	3
		3.3.6 Funkcja silnia wykładnicza	3
4	Klasy		
	4.1	P	4
	4.2	<i>NP</i>	4

1 DLL TSP

Prznieść na pendrive z systemem plików obsługiwanym przez M\$ bloatOS $\rightarrow {\tt FAT}$

tdumb -ee nazwa.dll Nazwisko_Imię_GRXXX.dll

1.1 Tabelka eksportu

FindRoad

1.1.1 A nie:

- _FindRoad
- _FindRoad@12
- FindRoad@12

2 Przed deklracją funkcji exportowej

extern "C" void __stdcall FindRoad...

• w zależności od kompilatora __stdcall trzeba wywalić.

3 Złożoność obliczeniowa algorytmów

3.1 Złożoność pamięciowa

3.2 Złożoność czasowa

Jak szybko rośnie zapotrzebowanie algorytmu wraz ze wzrostem rozmiaru zadania.

N – rozmiar zadania algortymicznego.

f(N) – funkcja złożoności obliczeniowej.

3.3 Typowe funkcjie złożoności obliczeniowej

3.3.1 Funkcja Stała

$$F(N) = A, A = const \\ O(1)$$

1. O(1)

$$O(1) = O(1) + O(1) + \dots + O(1)$$

 $O(1) = A + O(1)$

3.3.2 Funkcja liniowa

$$F(N) = A \cdot N + B, A, B = const$$

$$\alpha = \operatorname{tg} A$$

$$1. \ O(N)$$

$$O(N) = A \cdot O(N)$$

$$O(N) = O(N) + O(N) + \cdots + O(N)$$

$$O(N) = O(1) \cdot O(N)$$

 $O(N) = N \cdot O(1)$

3.3.3 Funkcja kwadratowa

$$F(N) = A \cdot N^2 + B \cdot N + C$$

$$1. \ O(N^2)$$

$$O(N^2) = A \cdot O(N^2)$$

$$O(N^2) = O(N^2) + O(N^2) + \cdots + O(N^2)$$

$$O(N^2) = O(N^2) + O(N)$$

$$O(N^2) = O(N^2) + O(1)$$

$$O(N^2) = N \cdot O(N)$$

$$O(N^2) = O(1) \cdot O(N^2)$$

$$O(N^2) = O(N) \cdot O(N)$$

3.3.4 Funkcja wielomianowa

$$F(N) = A \cdot N^B + \dots + X, A, B, \dots, X = const$$

3.3.5 Funkcja wykłdnicza

$$F(N) = A^N + B^{B_1} + \dots + X$$

3.3.6 Funkcja silnia wykładnicza

$$f(N) = N!$$

4 Klasy

4.1 *P*

Zadania klasy P, są to zadania które są rozwiązywalne przez algorytm w czasie wielomina
owym, przez deterministyczną maszynę Turinga.

4.2 *NP*

Są to zadnia dla których instnieją algorytmy które dają przybliżone rozwiązanie w czasie wielomianowym na niedetermistycznej maszynie Turinga.