

WEBENCH[®] Design Report

VinMin = 4.5V

VinMax = 17.0VVout = 12.0V lout = 5.0A

Device = LM3481MM Topology = SEPIC Created = 12/7/11 8:44:08 PM BOM Cost = \$6.72 Total Pd = 17.15 W Footprint = 1,244.0 mm2 BOM Count = 29

Design: 1229370/7 LM3481MM Design 7 - LM3481MM

Electrical BOM

#	Name	Manufacturer	Part Number	Qua	anti R rice	Properties	Footprint
1.	Cbp	Kemet	C0603C104K5RACTU Series= X7R	1	\$0.01	Cap= 100.0 nF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0603 10mm2
2.	Ccc	MuRata	GRM155R61A224KE19D Series= X5R	1	\$0.01	Cap= 220.0 nF ESR= 0.0 Ohm VDC= 10.0 V IRMS= 0.0 A	0402 8mm2
3.	Ccomp	MuRata	GRM155C80G184KE01D Series= 379	1	\$0.02	Cap= 180.0 nF ESR= 0.0 Ohm VDC= 4.0 V IRMS= 0.0 A	0402 8mm2
4.	Ccomp2	MuRata	GRM1885C1H162JA01D Series= C0G/NP0	1	\$0.02	Cap= 1.6 nF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0603 10mm2
5.	Cin	TDK	C3225X7R1E106M Series= X7R	3	\$0.18	Cap= 10.0 µF ESR= 2.7 mOhm VDC= 25.0 V IRMS= 3.0 A	1210 23mm2
6.	Cout	Nippon Chemi-Con	APXA160ARA151MJ80G Series= PXA	3	\$0.38	Cap= 150.0 µF ESR= 26.0 mOhm VDC= 16.0 V IRMS= 3.43 A	CAPSMT_62_J80 156mm2
7.	Cramp	Yageo America	CC0805KRX7R9BB561 Series= X7R	1	\$0.01	Cap= 560.0 pF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0805 13mm2

# Name	Manufacturer	Part Number	Qua	nti R rice	Properties	Footprint
3. Csep	TDK	C3225X7R1E106M Series= X7R	4	\$0.18	Cap= 10.0 μF ESR= 2.7 mOhm VDC= 25.0 V IRMS= 3.0 A	1210 23mm2
). D1	Vishay-Semiconductor	12CWQ10FNPBF	1	\$0.69	VF@Io= 950.0 mV VRRM= 100.0 V	DPAK 102mm2
0. Lin	Coilcraft	XAL1060-152MEB	1	\$0.99	L= 1.5 μH DCR= 1.5 mOhm	XAL1060 160mm2
1. Lout	Coilcraft	XAL1010-153MEB	1	\$1.05	L= 15.0 μH DCR= 20.0 mOhm	XAL1010 160mm2
12. M1	Infineon Technologies	BSZ097N04LS G	1	\$0.30	VdsMax= 40.0 V IdsMax= 40.0 Amps	PG-TSDSON-8 29mm2
3. Rbp	Vishay-Dale	CRCW040220R0FKED Series= CRCWe3	1	\$0.01	Res= 20.0 Ohm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
14. Rcomp	Vishay-Dale	CRCW04021K58FKED Series= CRCWe3	1	\$0.01	Res= 1.58 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
5. Rfadj	Vishay-Dale	CRCW040233K2FKED Series= CRCWe3	1	\$0.01	Res= 33.2 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
6. Rfb1	Vishay-Dale	CRCW040210K0FKED Series= CRCWe3	1	\$0.01	Res= 10.0 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
7. Rfb2	Vishay-Dale	CRCW040284K5FKED Series= CRCWe3	1	\$0.01	Res= 84.5 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
8. Rramp	Vishay-Dale	CRCW0402100RFKED Series= CRCWe3	1	\$0.01	Res= 100.0 Ohm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
9. Rsense	Stackpole Electronics Inc	CSNL1206FT2L00 Series= 478	1	\$0.19	Res= 2.0 mOhm Power= 1.0 W Tolerance= 1.0%	1206 19mm2
20. Ruvlo1	Vishay-Dale	CRCW040268K1FKED Series= CRCWe3	1	\$0.01	Res= 68.1 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
21. Ruvlo2	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	1	\$0.01	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
22. U1	Texas Instruments	LM3481MM	1	\$0.95	Switcher	MSOP-10 34mm2

Operating Values

#	Name	Value	Category	Description	
1.	Cin IRMS	723.585 m A	Current	Input capacitor RMS ripple current	
2.	Cout IRMS	9.023 A	Current	Output capacitor RMS ripple current	
3.	Csep IRMS	9.054 A	Current	SEPIC capacitor RMS ripple current	
4.	D1 Irms	10.282 A	Current	D1 Irms	
5.	IC lpk	9.988 m A	Current	Peak switch current in IC	
6.	lin Avg	17.145 A	Current	Average input current	
7.	Lin Ipk	18.33 A	Current	Lin peak current	
8.	Lin Ipp	3.427 A	Current	Peak-to-peak input inductor ripple current	
9.	Lin Irms	16.738 A	Current	Lin ripple current	
10.	Lout lpk	5.13 A	Current	Lout peak current	

#	Name	Value	Category	Description
11.		348.632 m A	Current	Peak-to-peak output inductor ripple current
	Lout Irms	4.982 A	Current	Lout ripple current
13.	M1 Irms	19.129 A	Current	M1 MOSFET Irms
	BOM Count	29.0	General	Total Design BOM count
15.	FootPrint	1.244 k mm2	General	Total Foot Print Area of BOM components
16.	Frequency	580.0 k Hz	General	Switching frequency
17.	IC Tolerance	19.0 m V	General	IC Feedback Tolerance
18.	Mode	CCM	General	Conduction Mode
19.	Total BOM	\$6.72	General	Total BOM Cost
20.	D1 Tj	82.426 degC	Op_Point	D1 junction temperature
21.	SEPIC Resonance Freq	7.004 k Hz	Op_Point	SEPIC Resonance Frequency
22.	V SEPIC damping factor	109.906 m	Op_Point	V SEPIC damping factor
23.	Vin p-p	18.217 m V	Op_Point	Peak-to-peak input voltage
	Vsep p-p	181.908 m V	Op Point	Peak-to-peak sepic voltage
	Cross Freq	2.899 k Hz	Op_point	Bode plot crossover frequency
26.	Duty Cycle	77.5 %	Op_point	Duty cycle
27.	Efficiency	77.77 %	Op_point	Steady state efficiency
28.	Gain Marg	15.163 db	Op_point	Bode Plot Gain Margin
29.	IC Ti	63.959 degC	Op_point	IC junction temperature
30.	IOUT_OP	5.0 A	Op_point	lout operating point
31.		30.3 degC	Op_point	M1 MOSFET junction temperature
32.	Phase Marg	71.067 deg	Op_point	Bode Plot Phase Margin
33.	Phase Shift	71.759 deg	Op_point	Bode Plot Phase Shift
34.	VIN OP	4.5 V	Op_point	Vin operating point
35.	Vout p-p	203.279 m V	Op_point	Peak-to-peak output ripple voltage
36.	Cin Pd	471.218 μ W	Power	Input capacitor power dissipation
37.	Cout Pd	705.635 m W	Power	Output capacitor power dissipation
38.	Csep Pd	55.338 m W	Power	SEPIC capacitor power dissipation
	D1 Pd	4.766 W	Power	Diode power dissipation
40.		4.75 W	Power	Diode conduction losses
41.	D1 PdSw	15.975 m W	Power	Diode switching losses
42.	IC Pd	169.796 m W	Power	IC power dissipation
	Lin Pd	614.829 m W	Power	Lin power dissipation
44.	Lout Pd	498.09 m W	Power	Lout power dissipation
	M1 Pd	6.934 W	Power	M1 MOSFET total power dissipation
-	M1 PdCond	5.358 W	Power	M1 MOSFET conduction losses
47.		1.575 W	Power	M1 MOSFET switching losses
48.	Rsense Pd	731.852 m W	Power	LED Current Rsns Power Dissipation
49.	Total Pd	17.15 W	Power	Total Power Dissipation

Design Inputs

#	Name	Value	Description
1.	lout	5.0 A	Maximum Output Current
2.	lout1	5.0 Amps	Output Current #1
3.	VinMax	17.0 V	Maximum input voltage
4.	VinMin	4.5 V	Minimum input voltage
5.	Vout	12.0 V	Output Voltage
6.	Vout1	12.0 Volt	Output Voltage #1
7.	base_pn	LM3481	National Based Product Number
8.	Ta	30.0 degC	Ambient temperature
9.	UserFsw	580.0 kHz	Customer Selected Frequency

Design Assistance

1. LM3481 Product Folder: http://www.national.com/pf/LM/LM3481.html: contains the data sheet and other resources.

National's WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using National's published specifications as well as the published specifications of other device manufacturers. While National does update this information periodically, this information may not be current at the time the simulation is built. National does not warrant the accuracy or completeness of the specifications or any information contained therein. National does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. National does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of National's WEBENCH simulation tools is subject to National's Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.