Simultaneous Equation Matrix Inversion with Solution Complex V n and Values 1620-9.

4.015

DR.JOHN MANIOTES
COMPUTER TECHNOLOGY DEPT.
: PURDUE CHIVEFISTY
CALUMET CAMPUS
HAMMOND, IN 46323

DISCLAIMER

Although each program has been tested by its contributor, no warranty, express or implied, is made by the contributor or 1620 USERS Group, as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the contributor or 1620 USERS Group, in connection therewith.

1620 USERS GROUP PROGRAM REVIEW AND EVALUATION

(fill out in typewriter or pencil, do not use ink)

Pr	ogram No.	Date			
Pr	ogram Name:			-	
1.	Does the abstract adequately descrit does? Comment	ribe what the program is and what	Yes	_ No	
2.	Does the program <u>do</u> what the abs		Yes_	No	
3.	Is the Description clear, understa	ndable, and adequate?	Yes_	No	
4.	Are the Operating Instructions understandable and in sufficient detail Comment				
	Are the Sense Switch options adequate the mnemonic labels identified Comment	d or sufficiently understandable?	Yes_ Yes_	-	
5.	Does the source program compile Comment_		Yes_	No	
6.	Does the object program run satis Comment		Yes_	_ No	
7.					
8.	Does the Program Meet the minim Group? Comment	al standards of the 1620 Users	Yes	_ No	
9.	Were all necessary parts of the pr Comment	•	Yes_	_ No	
0.	Please list on the back any sugges. These will be passed onto the authority.	tions to improve the usefulness of the or for his consideration.	progra	am.	
Ple	ase return to:	Your Name			
	Mr. Richard L. Pratt Data Corporation	Company			
	7500 Old Xenia Pike Dayton, Ohio 45432	Address		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		User Group Code			

TO PARTICIPATE IN THIS EVALUATION.

11/09/64

DECK KEY

Simultaneous Equation Solution and Matrix Inversion With Complex Values

- ₩ 1. Object Deck
- * 2. Source Deck
- * 3. Test Data Deck

Author: G.S. Haralampu New England Electric System

441 Stuart St.

Boston, Mass.

Modifications or revisions to this program, as they occur, will be announced in the appropriate Catalog of Programs for IBM Data Processing Systems. When such an announcement occurs, users should order a complete new program from the Program Information Department.

11

iii

PROGRAM No. 14 AND 7014 - NEW ENGLAND ELECTRIC SYSTEM

Title: Simultaneous Equation Solution and Matrix Inversion with Complex Values

Written by: G. S. Haralampu, New England Electric System

Scope: The program has been written for the solution of a maximum of fifteen equations with fifteen unknowns for the basic 1620, with the coefficients, unknowns, and constants being complex numbers. The matrix inversion method is used for the solution of the simultaneous equations. (Note: A 25 x 25 matrix is allowed on the 7010 computer).

Machine Configuration: 20K 1620 with a 1622 card reader and punch, or 80K 7010 computer

Reference: "Numerical Mathematical Analysis" by Scarborough, Fourth Edition, Page 540.

Speed: A 4 x 4 matrix requires 20 seconds for solution. A 16 x 16 matrix requires 12 minutes for solution, on the 1620. The speed on the 7010 is approximately 12 times faster than the 1620.

Analysis: Assume the following h x h matrix is to be inverted:

z ₁₁	z ₁₂	z ₁₃	$z_{1l_{4}}$	
^Z 21	z ₂₂	z ₂₃	Z ₂₄	
z ₃₁	z ₃₂	z ₃₃	All the Z's are complex numb	ers.
Z _{3,7}	2)12	2,3	Z _{hh}	

The following method was used:

A. Place the first column of a unit matrix, equal to the size of the main matrix, to the right of the main matrix. This is shown below:

Mein Metrix				First Column of the Unit Matrix
z ₁₁	z ₁₂	z ₁₃	z_{1k}	1
z ₂₁	z ₂₂	z ₂₃	Z ₂₁₄	0
z ₃₁	z ₃₂	z ₃₃	2 ₃₄	0
z _{l+1}	z ₄₂	z ₄₃	$z_{l_{\downarrow l_{\downarrow}}}$	0

B. By mathematical manipulation, obeying all the rules of matrix handling of rows and columns, obtain the first column of the unit matrix at the left of the main matrix. This will be:

First Column of the Unit Matrix	Intermediate Values of the Main Matrix			
1	Y ₁₂	Y ₁₃	Y114	¥ ₁₅
0	T ₂₂	¥23	Y24	Y ₂₅
0	Y ₃₂	Y33	Y34	¥35
0	Y42	Yu3	Ylala	Y45

C. Shift the intermediate values of the matrix to the left by one column and place the second column of the unit matrix to the right.

Main Me	trix			Second Column of the Unit Matrix
Y ₁₁	Y ₁₂	Y ₁₃	¥114	0
Y ₂₁	¥22	¥23	Y24	1
¥31	¥32	¥33	Y 314	0
APT	Y142	Y43	Yl	0

D. Repeat "B" until we have:

Second Column of the Unit Matrix	Second Intermediate Values of the Main Matrix				
0	¥ ₁₂	Y ₁₃	Yılı	Y ₁₅	
1	Y ₂₂	Y23	Y24	¥25	
0	T 32	Y33	¥34	¥35	
0	Y), 2	Y), 3	Yևև	YLS	

E. Repeat parts B and C until the matrix manipulation has been done for the four columns of the unit matrix. Then the values left in position

Yı	2 T ₁₃	Y114	¥15
Y2	2 ¥23	15t	¥25
Y 3	2 ¥33	¥31,	¥35
Yn ₄	2 Yu3	ΑΓΙΤ	Y45

compose the inverted matrix.

F. Once the matrix is inverted, the unknowns can be found by matrix multiplication. Assume the given equations to be solved are in the form of

$$\begin{bmatrix} z \end{bmatrix} \times \begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} E \end{bmatrix}$$

Equation :

where each bracketed symbol represents a matrix. Solving for the I's we have:

Equation 2

where the Y matrix is the inverse of the Z matrix.

G. If the equations to be solved are as shown below,

$$z_{11}I_1 + z_{12}I_2 + z_{13}I_3 + z_{1h}I_h = E_1$$

$$z_{21}I_1 + z_{22}I_2 + z_{23}I_3 + z_{2h}I_h = E_2$$

$$Z_{h1}I_1 + Z_{h2}I_2 + Z_{h3}I_3 + Z_{hh}I_h = E_h$$

then Equation 1 expanded is as follows:

z ₁₁	z 12	z ₁₃	214	11	E
z ₂₁	z ₂₂	z ₂₃	Z ₂₄	12	E ₂
z ₃₁	z ₃₂	z ₃₃	Z ₃₄	13	E ₃
z ₁₁ z ₂₁ z ₃₁ z ₄₁	z_{l_42}	z_{43}	2 ₁₄ 2 ₂₄ 2 ₃₄ × 2 ₄₄	I ₁ I ₂ I ₃ I ₄	E ₁ E ₂ E ₃ E ₄

and Equation 2 is:

n	ı Eq	ation	2 18:			_	-
	Iı		Y ₁₁	Y ₁₂	¥13	Yılı	El
	12	-	¥21	Y22	¥23	Y21.	E ₂
	13		¥31	¥32	Y33	¥34	E3
	14		¥41	Y ₄₂	Y ₄₃	YLLL	EL

Upon completing the matrix multiplation, the unknown I's are:

$$I_{h} = Y_{h,1}E_{1} + Y_{h,2}E_{2} + Y_{h,3}E_{3} + Y_{h,h}E_{h}$$

USERS' GUIDE

INPUT DATA FOR THE 1620 OR THE 7010

First Card: Title of job with a minus sign in column 72. This will skip to a new page on the 407 for each separate solution.

Second Card: (Right justified in the first five columns). The number of equations to be solved. (Fixed point)

Subsequent Cards: (Floating point) The real part of the coefficient is entered in the first ten columns, and the imaginary part in the next ten columns.

For example, for a three equation solution, the input is:

z ₁₁	Z ₁₂	z ₁₃	E ₁
^Z 21	z ₂₂	z ₂₃	E ₂
z ₃₁	z ₃₂	z ₃₃	E3

and 12 cards are required.

Last Card: (Fixed point; right justified in the first five columns)

a) The value 1 if another case is to follow, and a 9999 if this was the last case.

OUTPUT

See examples in the Appendix.

LIMITATIONS

- 1) Largest matrix handled is a 15 x 15 for the 1620, and 25 x 25 for the 7010.
- 2) No seroes allowed in the main diagonal.
- 3) If a larger than a 15 x 15 on the 1620 (or a 25 x 25 on the 7010) is attempted to be read in, the computer will not solve that case but will print message saying so, and then proceed to the next case.

FOR THE 7010 ONLY

Place the following card ahead of the input data:

(Columns 6-10) MON\$\$

(Columns 16-28) EXEQ HARA, MJB

A Matrix Inversion Subroutine has also been written for the 7010. To make use of this subroutine do the following:

- A. In your main program include the statements:
 - 1. DIMENSION R(25,26), X (25,26)
 - 2. COMMON R.X.K
 - 3. Read K or set K to equal size of matrix to be solved.
 - 4. CALL MATINV(R,X,K)
- B. In front of the input, include the following card before the "MONSS EXEQ " card of your program:

(Columns 16-26) CALL MATINV

OPERATING INSTRUCTIONS

- 1) Clear Memory
- 2) Load Object program in computer with the input for all the cases to be solved.
- 3) When solution is completed for all the cases, the 1620 will PAUSE, and the 7010 will EXIT.

- 7 -

INDEX TO THE APPENDIX

Appendix I - Input and output from the 1620

Appendix II - Fortran listing for the 1620

Appendix III- Output from the 7010

Appendix IV - Fortran listing for the 7010

Appendix V - Fortran listing for the matrix inversion subroutine for the 7010

Appendix VI - Fortren program listing solving simultaneous equations, using the matrix inversion subroutine. This was written to test the MATINV subroutine.

INPUT DATA

APPENDIX I

	IS A 4X4 MATRIX
4	13 A 4A4 MATRIA
0.071	•363
-8.023	-4.031
8.148	4 • 856
8.648	6.323
1.000	0.0
.042	.236
3.217	7•501
-3.311	-7 _• 813
•665	2 • 632
1.000	0.0
-1.452	-5.087
-9.569	-9.686
8.050	4.390
10.167	12.109
i •00	0.0
•097	•564
-8.101	-4.564
8 • 105	4.718
8.715	7.022
1.00	0.0
1	
	IS A 3X3 MATRIX
3	
.0582	•168
•0	-•001 96
•0	000465
•058	-•00502
0.0	00196
•058Z	•168
0.0	-•00196
1102	•0000687
0.0	000465
0.0	00196
•0582	•168
1102	•0000687
9999	Annual registration (Annual Registration of the Control of the Con
	And the second s
	•
	place of the management of the separation of the

COMPUTER

9

APPENDIX II

```
PROGRAM NUMBER 14**NOV 1.1964
₫7070 C
              SIMULTANEOUS EQUATION SOLUTION USING MATRIX INVERSION METHOD
07070 C
              COMPLEX NUMBERS ARE USED
67070 C
              WRITTEN BY G.S. HARALAMPU - NEW ENGLAND ELECTRIC SYSTEM
07070 C
              SIZE IS LIMITED TO A 15X15 MATRIX
07070 C
07070
              DIMENSION R(15,16),X(15,16),ER(15),EI(15),TR(15),TI(15)
07070
        1000 FORMAT(15)
07092
        1001 FORMAT(2F10.4,215)
        1002 FORMAT (/46H THE INVERTED MATRIX ELEMENTS ARE AS FOLLOWS)
1003 FORMAT(// 46H THE SIMULTANEOUS EQUATION SOLUTIONS FOLLOW)
07130
₫7252
        1004 FORMAT (48HMATRIX LARGER THAN 15X15.NEXT CASE TO BE SOLVED.)
07384
07504
        1005 FORMAT (30H REAL
                                          IMAG
                                                  ROW COL)
                                                ELEMENT)
                                          IMAG
7588
        1006 FORMAT(27H
                             REAL
                             AN ELEMENT ON THE MAIN DIAGONAL IS ZERO)
07666
        1007 FORMAT(42H
        1008 FORMAT (49H
07774
07896
        1009 FORMAT(36X,35X,1H-)
07948 C
          55 READ 1008
              READ IN THE SIZE OF THE MATRIX
<u>C</u>7948
<u>C</u>7972
              READ 1000.K
              IF(K-16)103,101,101
₹8040
         103 DO 50 J=1,K
          DO 30 J = 1, K
30 READ 1001, R(1,J),X(1,J)
08052
08064
08256
          50 READ
                       1001, ER(1),EI(1)
              READ IN THE LAST CODE CARD. 1 FOR MORE CASES TO FOLLOW, AND 9999
₫8376 C
              FOR THE LAST CASE
08376 C
08376
              READ 1000 NCODE
08400
              KX = K + 1
08436
              00 33 I = 1, K
68448
              DO 48 L=1,K
          R(L, KX) = 0.0
48 X(L, KX) = 0.0
R(I, KX)=1.0
08460
08544
08664
08748
              1Y = 1
08772
              IF(R(i,1))34,31,34
          31 iF(X(i,1))34,100,34
34 T1=R(i,1)*R(i,1)+X(i,1)*X(i,1)
T1R=R(i,1)
08852
08932
09112
09160
              T1X=X(1,1)
              00 35 J=1,KX
WR=(R(1,J)*T1R+X(1,J)*T1X)/T1
WI=(X(1,J)*T1R-R(1,J)*T1X)/T1
09208
09220
09436
₫9664
              R(I, J) = WR
09748
09868
09892
09916
           35 X(I, J) = WI
              IX =0
              1Y = 2
              IF(I-K)37,38,37
09984
           38 MX=1-1
T0020
              MY=1
              GO TO 39
T0044
T0052
           37 \text{ MY} = 1 + 1
T0088
           39 DO 40 L = MY, MX
T0112
T0124
              IX = IX + 1
```

```
T1 = R(L, 1)
T0160
<u>T</u>0208
              T2 = X(L. 1)
              DO 40 J=1,KX
T0256
             WR = R(I, J)*T1 - X(I, J)*T2

WI = R(I, J)*T2 + X(I, J)*T1
T0268
T0484
          R(L, J) = R(L, J) - WR
40 X(L, J) = X(L, J) - WI
T0688
T0844
T1072
              1Y = 3
              IF(I-1)45,44,45
T1096
          45 IF((K-1)-1X)38,44,38
T1164
T1244
          44 DO 46 L = 1, K
             D0 \ 46 \ J = 1. \ K
T1256
11268
              NU = J + 1
          R(L,J)=R(L,NU)
46 X(L,J)=X(L,NU)
†1304
T1448
          33 CONTINUE
T1664
11700
              DO 53 I=1,K
              TR(1)=0.0
<u>T</u>1712
              TI(1)=0.0
T1760
T1808
              DO 53 J=1.K
             T1=R(I,J)*ER(J)-X(I,J)*EI(J)
T2=X(I,J)*ER(J)+R(I,J)*EI(J)
T1820
T2084
              TR(1)=TR(1)+T1
T2336
          53 TI(1)=TI(1)+T2
T2420
T2576
T2588
              PUNCH 1009
              PUNCH 1008
              PUNCH 1002
T2600
T2612
              PUNCH 1005
              DO 49 1=1.K
T2624
              00 49 J = 1, K
T2636
T2648
          49 PUNCH 1001, R(I,J),X(I,J),I,J
T2900
              PUNCH 1003.
12912
              PUNCH 1006
T2924
              DO 201.1=1,K
         201 PUNCH. 1001, TR(1),TI(1),1
T2936
T3068
         202 IF(NCODE-1)102,55,102
T3136
         102 PAUSE
T3148
              PAUSE
T3160
         100 PRINT 1007
T3172
              GO TO 202
T3180
         101 PRINT 1004
I3192
              DO 2000 . I=1,K
              DO 2001 J=1.K
T3204
T3216
        2001 READ 1001.W.Z
T3288
        2000 READ 1001,W,Z
T3360
              READ 1000 NCODE
T3384
              GO TO 202
T3392
              END
```

T9979 COS T9949 ATANF T9939 EXP T9909 LOGF T9899 SORT T9869 SIGNF T9859 ABS T9999 SIN T9989 SINF T9969 COSF T9959 ATAN T9929 EXPF T9919 LOG T9889 SQRTF T9879 SIGN T9849 ABSF T9839 R

R T7449

17439 T4739 TR T4599 T4429 T001 T4389 T005 T4349 T009 T4309 000 T4269 J T4229 KX T4149 0034 T4109 001 T4069 WR T4029 000 T3989 MX T3949 T2 T3949 T2 T3949 T2 T3969 0201 T3829 7001 LOAD SUBROUTINES	74419 T002 T4379 T006 T4339 T055 T4299 T03 T4259 T030 T4219 T000 T4139 T000 T4139 T1R T4059 T1R T4059 T02 T4019 T00 T3939 MU T3859 MU T3859 T0202 T3819 W	T5039 ER T4899 T4589 TI T4449 T4409 T003 T4369 T007 T4329 K T4289 T101 T4249 J T4209 T003 T4169 T0000000001 T4129 T100 T4089 T1X T4049 T1X T4049 T0037 T3969 T0037 T3969 T0039 T3929 T0045 T3869 T002 T3869 T	T4889 E1 T4749 T4439 T000 T4399 T004 T4359 T008 T4319 T015 T4279 5050 F4239 MC00E T4199 T048 T4159 IY T4119 T1 F4079 5035 T4039 IX T3999 5038 T3959 5040 T3919 5044 T3879 5049 T3839 T000	THIS A 4X4 MATRIX THE INVERTED MATRIX ELEMENTS ARE AS FOLLOWS REAL IMAG ROW COL 1862 1.0951 1 1 0085 .0151 1 2 0343 .1282 1 3 .2154 -1.2256 1 4 .2296 -1.2040 2 1 .02970935 2 2 0062 .0331 2 3 1673 1.1311 2 4 .2177 -1.1513 3 1 00800049 3 2 0056 .0339 3 3 1386 1.0672 3 4 .03270725 4 1 .01970779 4 2 .00540046 4 3 .0175 .0319 4 4
---	---	---	---	--

THE SIMULTANEOUS EQUATION SOLUTIONS FOLLOW
REAL IMAG ELEMENT
-.0137 .0129 1
.0050 -.1333 2
.0654 -.0551 3
.0754 -.1231 4

CUTPUT

THIS IS A 3X3 MATRIX

THE INVER	TED MATRI	X ELE	MENTS	ARE	AS	FULLOWS
REAL	IMAG	ROW	COL			
1.8417	-5.3149	1	1			
-0385	0488	1	2			
.0096	0119	1	3			
-0385	0488	2	1			
1.8422	-5.3153	2	2			
-0385	0488	2	3			
.0096	0119	3	1			
.0385	0488	3	2			
1.8417	-5.3149	3	3			

THE SIMULTANEOUS EQUATION SOLUTIONS FOLLOW REAL IMAG ELEMENT .0748 -3108 1 -2049 .5882 2 -2063 .5904 3

APPENDIX IV

```
c
      PROGRAM NUMBER 14##MAY 1+1964
      SIMULTANEOUS EQUATION SOLUTION USING MATRIX INVERSION METHOD
c
      COMPLEX NUMBERS ARE USED
С
      WRITTEN BY G.S. HARALAMPU - NEW ENGLAND ELECTRIC SYSTEM
С
      SIZE IS LIMITED TO A 25X25 MATRIX
      DIMENSION R(25.26).X(25.26).ER(25).EI(25).TR(25).TI(25)
 1000 FORMAT(15)
 1001 FORMAT(2F10.4.215)
 1002 FORMAT (/46H THE INVERTED MATRIX ELEMENTS ARE AS FOLLOWS)
 1003 FORMAT(///46H THE SIMULTANEOUS EQUATION SOLUTIONS FOLLOW )
 1004 FORMAT (67H THIS MATRIX IS GREATER THAN 25X25. THE NEXT CASE WILL
     1 BE SOLVED.)
 1005 FORMAT (30H
                             IMAG
                                      ROW COL)
 1006 FORMAT (27H
                   REAL
                             IMAG ELEMENT)
 1007 FORMAT (42H
                   AN ELEMENT ON THE MAIN DIAGONAL IS ZERO)
 1008 FORMAT(1X.52H
 3000 FORMAT(1H1)
   55 READ(1.1008)
      READ IN THE SIZE OF THE MATRIX
      READ(1.1000) K
      IF(K.GT.25)GO TO 101
      DO 50 1=1+K
      DO 30 J = 1 · K
   30 READ(1+1001) R(1+J)+X(1+J)
   50 READ (1.1001) ER(1).EI(1)
      READ IN THE LAST CODE CARD. 1 FOR MORE CASES TO FOLLOW. AND 9999
      FOR THE LAST CASE
      READ(1.1000) NCODE
      KX = K + 1
      DO 33 I = 1. K
      DO 48 L=1+K
      R(L. KX) = 0.0
   48 X(L. KX) = 0.0
      R(1.KX)=1.0
      IY = 1
      IF(R(I+1)+NE+0+0)GO TO 34
      IF(X(I+1)+EQ+0+0)GO TO 100
   34 T1=R(I+1)#R(I+1)+X(I+1)#X(I+1)
      T1R=R([+1)
      T1X=X([+1)
      DO 35 J=1.KX
      WR=(R(I+J)+T1R+X(I+J)+T1X)/T1
      1T\(X(I+(U+1)A-R(I+J)*)=IW
      R(I \cdot J) = WR
   35 X(I. J) = WI
      IX =0
      IY = 2
      IF(1.NE.K)GO TO 37
   38 MX=1-1
      MY=1
      GO TO 39
    37 MY = 1 + 1
      MX = K
    39 DO 40 L = MY. MX
      IX = IX + 1
      T1 = R(L + 1)
      T2 = X(L. 1)
```

APPENDIX V

```
FORTRAN LISTING
                                                                                           1410-FU-970
    DO 40 J=1.KX
                                                     SUBROUTINEMATINV
    WR = R(I + J) + T1 - X(I + J) + T2
                                                     DIMENSIONA(25,26),8(25,26)
    WI = R(I + J) + T2 + X(I + J) + T1
                                                     COMMONA,B,M
    R(L. J) = R(L. J) - WR
                                                                  AN ELEMENT ON THE MAIN DIAGONAL IS ZERO)
                                               01007 FORMAT(42H
 40 X(L.J)=X(L.J)-WI
                                                     KX=M+1
    IY = 3
                                                     D0331=1.M
    IF (1.EQ.1)GO TO 44
                                                     DD48L=1.M
    IF ( (K-1 ) . NE . IX ) GO TO 38
                                                     A(L,KX)=0.0
 44 DO 46 L = 1+ K
                                               00048 B(L.KX)=0.0
    DO 46 J = 1 · K
                                                     A(I,KX)=1.0
    NU = J + 1
                                                     [Y=1
    R(L.J)=R(L.NU)
                                                     IF(A(I,1).NE.0.0)GOT034
 46 X(L+ J) = X(L+ NU)
                                                     IF(B(1,1).EQ.0.0)G0T0100
 33 CONTINUE
                                               00034 T1=A(I,1)+A(I,1)+B(I,1)+B(I,1)
    DO 53 I=1.K
                                                     T1R=A(1,1)
    TR(1)=0.0
                                                     T1X=B([,1)
    TI(1)=0.0
                                                     D035J=1.KX
    DO 53 J=1.K
                                                     WR = (A(I,J) + T1R + B(I,J) + T1X)/T1
    T1=R(I.J)#ER(J)-X(I.J)#EI(J)
                                                     WI = (B(I,J) + T1R - A(I,J) + T1X) / T1
    T2=X([,J)#ER(J)+R([,J)#EI(J)
                                                     A(I,J)=WR
    TR([)=TR([)+T1
                                               00035 B(I,J)=WI
 53 TI(1)=TI(1)+T2
                                                     1 X = 0
    WRITE(3.3000)
                                                      [Y=2
    WRITE (3.1008)
                                                     IF(I.NE.M)GOTO37
    WRITE(3-1002)
                                               00038 MX=I-1
    WRITE (3-1005)
                                                     MY=1
    DO 49 I=1.K
                                                     GOTO39
    DO 49 J = 1 · K
                                               00037 MY=I+1
 49 WRITE(3-1001) R(1-J)-X(1-J)-1-J
                                                      MX=M
    WRITE (3-1003)
                                               00039 D040L=MY,MX
    WRITE (3.1006)
                                                     IX=IX+1
    DO 201 1=1.K
                                                     T1=A(L.1)
201 WRITE(3:1001) TR(1):TI(1):1
                                                      T2=B(L,1)
202 IF (NCODE . EQ. 1) GO TO 55
                                                     D040J=1,KX
102 CALL EXIT
                                                      WR=A(I,J)+T1-B([,J)+T2
100 WRITE (3.1007)
                                                      WI=A(I,J)+T2+B(I,J)+T1
     GO TO 202
                                                      A(L,J)=A(L,J)-WR
 101 WRITE (3+1004)
                                               00040 B(L,J)=B(L,J)-WI
     DO 2000 1=1.K
                                                      [Y=3
     DO 2001 J=1.K
                                                      IF(1.EQ.1)G0T044
2001 READ (1.1001) W.Z
                                                      IF((M-1).NE.IX)GOTO38
2000 READ (1-1001) W.Z
                                               00044 D046L=1.M
     READ (1-1000) NCODE
                                                      D046J=1.M
     GO TO 202
                                                      NU=J+1
     END
                                                      A(L,J)=A(L,NU)
                                               00046 B(L,J)=B(L,NU)
                                                00033 CONTINUE
                                                      RETURN
                                               00100 WRITE(3,1007)
                                                      STOP
```

END

```
FORTRAN LISTING
                                          1410-F0-970
      DIMENSIONR(25,26),X(25,26),ER(25),EI(25),TR(25),TI(25)
                                                                                    THIS IS A 4X4 MATRIX
     COMMONR.X.K
01000 FORMAT(15)
                                                                                    THE INVERTED MATRIX ELEMENTS ARE AS FOLLOWS
01001 FDRMAT(2F10.4.215)
                                                                                               IMAG
                                                                                                        ROW COL
                                                                                    REAL
01002 FORMATE /46H THE INVERTED MATRIX ELEMENTS ARE AS FOLLOWS)
                                                                                     -.1862
                                                                                               1.0951
01003 FORMAT!///46H THE SIMULTAMEOUS EQUATION SOLUTIONS FOLLOW )
                                                                                      -.0085
                                                                                                 .0151
01004 FORMATI67H THIS MATRIX IS GREATER THAN 25X25. THE NEXT CASE WILL BE SOLVED.
                                                                                     -.0343
                                                                                                • 1282
                                                                                                               3
01005 FORMAT(30H
                   REAL
                             IMAG
                                      ROW COLI
                                                                                      .2154
                                                                                               -1.2256
01006 FDRMAT(27H
                   REAL
                             IMAG
                                   ELEMENTI
                                                                                       .2296
                                                                                               -1.2040
01007 FORMAT(42H AN ELEMENT ON THE MAIN DIAGONAL IS ZERO)
                                                                                      .0297
                                                                                                -.0935
01008 FORMAT(1X,52H
                                                                                      -.0062
                                                                                                 •0331
03000 FORMAT(IHI)
                                                                                      -.1673
                                                                                                1 • 1311
00055 READ(1,1008)
                                                                                      .2177
                                                                                               -1.1513
                                                                                                          3
      READ IN THE SIZE OF THE MATRIX
                                                                                      -.0080
                                                                                                -.0049
      READ(1,1000)K
                                                                                                 •0339
                                                                                      -.0056
      IF(K.GT.25)G0T0101
                                                                                      -.1386
                                                                                                1.0672
      D0501=1.K
                                                                                       .0327
                                                                                                -.0725
     D030J=1,K
                                                                                                -.0779
                                                                                                               2
                                                                                       .0197
00030 READ(1,1001)R(I,J),X(I,J)
                                                                                       .0054
                                                                                                -.0046
                                                                                                               3
00050 READ(1,1001)ER(1),E1(1)
                                                                                       .0175
                                                                                                 .0319
      READ IN THE LAST CODE CARD. 1 FOR MORE CASES TO FOLLOW, AND 9999
      FOR THE LAST CASE
      READ(1,1000)NCODE
     CALLHATINV
                                                                                     THE SIMULTANEOUS EQUATION SOLUTIONS FOLLOW
      D0531=1.K
                                                                                     REAL
                                                                                               IMAG ELEMENT
      TR(1)=0.0
                                                                                      -.0137
                                                                                                 .0129
      TI(1)=0.0
                                                                                       .0858
                                                                                                --1333
                                                                                                          2
      D053J=1,K
                                                                                       .0654
                                                                                                -.0551
                                                                                                          3
      T1=R(1,J)=ER(J)-X(I,J)=EI(J)
                                                                                       .0754
                                                                                                --1231
      T2=X([,J)+R([,J)+EI(J)
      TR(1)=TR(1)+T1
00053 TI(1)=TI(1)+T2
      WRITE(3,3000)
      WRITE(3,1008)
      WRITE(3.1002)
      WRITE(3,1005)
      D0491=1.K
      D049J=1,K
00049 WRITE(3,1001)R(I,J),X(I,J),I,J
      WRITE(3.1003)
      WRITE(3.1006)
      D02011=1,K
00201 WRITE(3.1001)TR(1).TI(1).I
00202 IF(NCOOE.EQ.1)GOT055
00102 CALLEXIT
00100 WRITE(3,1007)
      GOTO202
00101 WRITE(3,1004)
      GOTO102
      END
```

OUTPUT - CASE 2

THIS IS A 3X3 MATRIX

THE INVER	RTED MATRI	X ELE	MENTS	ARE	AS	FOLLOWS	
REAL	IMAG	ROW	COL	-			
1.8417	-5.3149	1	_ 1				
·0385	0488	1	. 5				
.0096	0119	1	3				
•0385	0488	2	1				
1.8422	-5.3153	2	2				
.0385	0488	2					
•0096	0119	3	1				
•0385	0488	3	2				
1.8417	-5.3149	3	3				

THE SIMULTANEOUS EQUATION SOLUTIONS FOLLOW REAL IMAG ELEMENT --3108 -5882 -5904 .0748 -.2049 -.2063

COMPUTER TECHNOLOGY

E COMPUTER MUSEUM HISTORY CENTER