- 1. Construa um autômato finito não determinístico para reconhecer a linguagem $L_1 = \{w \in \{0,1\}^* \mid \text{o antepenúltimo símbolo de } w \notin 1\}.$
- 2. Seja a linguagem $L_2 = \{w \in \{0,1\}^* | w \text{ tem número par de 0's ou exatamente dois 1's}\}$. Mostre um autômato finito não determinístico para reconhecer L_2 .
- 3. Mostre um autômato finito não determinístico para reconhecer $L_3 = \{w \in \{0, 1, 2\}^* |$ o dígito final de w aparece anteriormente em $w\}$.
- 4. Seja N_1 e N_2 dois autômatos finitos não determinísticos quaisquer. Mostre que existe um autômato finito não determinístico N_3 tal que $L(N_3) = L(N_1) \cup L(N_2)$. **Dica**: use transições ϵ na construção de N_3 a partir de N_1 e N_2 .
- 5. Defina um autômato finito não determinístico para reconhecer $L_3 = \{w \in \{a, b\}^* \mid w \text{ tem substring } 0101 \text{ ou não tem substring } 110\}.$
- 6. Mostre um contra-exemplo para a afirmação a seguir. Para quaisquer autômatos finitos não determinísticos $N = (Q, \Sigma, \delta, q_0, F)$ e $N' = (Q, \Sigma, \delta, q_0, Q \setminus F)$, é verdade que $L(N') = \overline{L(N)}$. Observe que o conjunto de estados finais $Q \setminus F$ de N' é o complemento do conjunto de estados finais de N.
- 7. Mostre um autômato finito não determinístico para reconhecer a linguagem $L_4 = \{w \in \{0,1,2\}^* | \text{ o dígito final de } w \text{ não aparece anteriormente na string}\}.$
- 8. Seja o autômato finito não determinístico definido de acordo com a figura. Converta em um autômato finito determinístico usando a construção de subconjuntos.

- 9. Seja M e N duas linguagens. A operação de concatenação entre duas linguagens é definida por $MN = \{xy \mid x \in M \text{ e } y \in N\}$. Prove que se L_1 e L_2 são linguagens regulares então L_1L_2 é uma linguagem regular. **Dica**: mostre como construir um autômato finito para a linguagem L_1L_2 a partir dos autômatos finitos A_1 e A_2 tal que $L(A_1) = L_1$ e $L(A_2) = L_2$.
- 10. Apresente um autômato finito não determinístico para reconhecer $L_5 = \{w \in \{0,1\}^* \mid w = xy \text{ em que o tamanho de } x \text{ é no máximo 5 e toda posição ímpar de } y \text{ é 1}\}.$
- 11. Seja o autômato finito não determinístico definido abaixo. Usando a construção de subconjuntos, converta em um autômato finito determinístico.

12. Mostre um autômato finito não determinístico para reconhecer $L_6 = \{w \in \{0,1\}^* |$ existem dois 1's separados por um número de posições que é múltiplo de 2 ou 3 $\}$.