MPSI – Physique-chimie

TD3: Transformation chimique

Exercice 1 : ÉQUILIBRER UNE RÉACTION CHIMIQUE

Équilibrer les réactions chimiques suivants :

1. $NH_3 + O_2 \rightleftharpoons NO + H_2O$

2. $CO + Fe_3O_4 \rightleftharpoons CO_2 + Fe$

3. $Cu_2S + Cu_2O \rightleftharpoons Cu + SO_2$

4. $CH_4 + H_2O \rightleftharpoons CO_2 + H_2$

5. $NaCl + H_2SO_4 \Longrightarrow HCl + Na_2SO_4$

Exercice 2 : ÉQUILIBRER UNE AUTRE RÉACTION CHIMIQUE

Équilibrer les réactions chimiques suivants :

1. $H_2SO_4 + H_2O \Longrightarrow H_3O^+ + SO_4^{2-}$

2. $\operatorname{Fe} + \operatorname{H}_3 \operatorname{O}^+ \rightleftharpoons \operatorname{Fe}^{2+} + \operatorname{H}_2 + \operatorname{H}_2 \operatorname{O}$

3. $Cu^{2+} + HO^{-} \rightleftharpoons Cu(OH)_{2}$

4. $Ag^+ + PO_4^{3-} \rightleftharpoons Ag_3PO_4$

Exercice 3 : Constante d'équilibre

Exprimer les constantes d'équilibre des réactions chimiques suivants :

1. $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$

2. $2 \mathrm{C(s)} + 3 \mathrm{H}_2(\mathrm{g}) \rightleftharpoons \mathrm{C}_2 \mathrm{H}_6(\mathrm{g})$

3. $Cu(s) + 2 Ag^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + 2 Ag(s)$

4. $CH_4(g) + 2O_2(g) \rightleftharpoons CO_2(g) + 2H_2O(l)$

5. $2 \text{H}_2\text{O}(1) \rightleftharpoons \text{H}_3\text{O}^+(\text{aq}) + \text{HO}^-(\text{aq})$

Exercice 4 : LA CONSTANTE D'ÉQUILIBRE EST-ELLE CONSTANTE ?

Montrez que, pour la réaction d'équation $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ les données suivantes obtenues à l'équilibre vérifient la constance de l'expression d'un système à l'équilibre. Donner la valeur de la constante d'équilibre.

Expérience	$p(PCl_3)$ (Pa)	$p(\operatorname{Cl}_2)$ (Pa)	$p(PCl_5)$ (Pa)
I	923.7	220.9	9.2
II	602.4	1485.9	40.2
III	3975.9	1887.6	341.4
IV	14698.8	6024.1	4016.1

Exercice 5 : DÉTERMINATION DE L'ÉQUILIBRE

- 1. À 440°C, la constante d'équilibre de la réaction $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$ vaut 49,5. Si l'on place 0,200 mol de H_2 et 0,200 mol de I_2 dans un récipient de 1,00 ℓ et que l'on effectue la réaction à cette température, quelles seront les quantité de matière de chaque substance à l'équilibre? On rappelle que pour un constituant i, le nombre de moles n_i et la pression partielle p_i sont reliés par la loi des gaz parfaits : $p_iV = n_iRT$
- 2. Le gaz NO_2 est un polluant. Il existe en équilibre dans l'air avec $N_2O_4(g)$ selon l'équation ci dessous. À température ambiante, $0.625\,\mathrm{mol}$ de N_2O_4 sont introduites dans un récipient de $5.00\,\ell$. On attend que l'équilibre s'établisse avec NO_2 . On mesure à l'équilibre une concentration de N_2O_4 de $0.075\,\mathrm{mol}\,\ell^{-1}$. Que vaut la constante d'équilibre K de cette réaction?

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

3. On fait réagir 1,00 mol de CO_2 et 1,00 mol de H_2 dans un récipient de 5,00 ℓ selon la réaction ci-dessous. Sachant que la constante d'équilibre est K=0,771 à 750 °C, quelles seront les quantités de matière à l'équilibre de chacun des gaz ?

$$CO_2(g) + H_2(g) \Longrightarrow CO(g) + H_2O(g)$$

4. La constante d'équilibre K, pour la décomposition de la vapeur d'eau à 500° C, a une valeur de $6,00 \times 10^{-28}$. Si l'on place $2,00 \,\mathrm{mol}$ d'eau dans un récipient de $5,00 \,\ell$ à 500° C, quelles seront les concentrations à l'équilibre pour les 3 gaz H_2 , O_2 et $\mathrm{H}_2\mathrm{O}$? On résoudra la problème en faisant l'approximation que la réaction est très peu avancée, puis, en trouvant la solution exacte à l'aide de la calculatrice, on vérifiera que cette approximation est justifiée.

$$2 H_2 O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$$

Exercice 6: OXYDATION DU FER

On introduit de la poudre de fer et de l'eau dans un récipient fermé de volume $V=5\,\ell$, puis on chauffe à une température de 1000 °C, la réaction est la suivante

$$3 \operatorname{Fe(s)} + 4 \operatorname{H}_2 \operatorname{O(g)} \Longrightarrow \operatorname{Fe_3O_4(s)} + 4 \operatorname{H}_2(g) \tag{1}$$

À l'état final, on retrouve du fer, de l'oxyde de fer, 1,10 g de dihydrogène gazeux et 42,5 g de vapeur d'eau.

- 1. Calculer la constante d'équilibre K de la réaction à cette température.
- 2. Quelle quantité minimale de fer métallique doit-on introduire pour que l'état final soit bien un état d'équilibre?

On donne la constante des gaz parfaits $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ et les masses molaires $M(\mathrm{O}) = 16 \,\mathrm{g \, mol^{-1}}, M(\mathrm{H}) = 1 \,\mathrm{g \, mol^{-1}}$

Exercice 7: Fluoration du dioxyde d'uranium

On considère la réaction :

$$UO_2(s) + 4HF(g) = UF_4(s) + 2H_2O(g)$$

On maintient la température égale à 700 K et la pression totale à 1 bar. La constante d'équilibre à 700 K est $K = 6.8 \times 10^4$. Chaque solide constitue une phase solide pure.

- 1. Si on part de 1,0 mol de dioxyde d'uranium UO_2 et de 1,0 mol de fluorure d'hydrogène HF, quelle sera la composition finale du système?
- 2. Même question en partant de 0,10 mol de dioxyde d'uranium et de 1,0 mol de fluorure d'hydrogène.

Exercice 8 : ACIDE ÉTHANOÏQUE ET IONS FLUORURE

On s'intéresse à une solution aqueuse obtenue à 298K par mélange d'acide éthanoïque CH₃COOH (concentration après mélange $c_1 = 0.10 \,\text{mol}\,\ell^{-1}$) et d'ions florure F⁻ (concentration après mélange $c_2 = 0.05 \,\text{mol}\,\ell^{-1}$). La réaction (1) susceptible de se produire s'écrit :

$$CH_3COOH(aq) + F^-(aq) \rightleftharpoons CH_3COO^-(aq) + HF(aq)$$
 (1)

On donne les constantes d'équilibre K_2 et K_3 relatives aux équilibres (2) et (3) suivants à 298 K :

$$CH_3COOH(aq) + H_2O \Longrightarrow CH_3COO^-(aq) + H_3O^+(aq) \qquad K_2 = 10^{-4.8}$$
 (2)

$$HF(aq) + H_2O \Longrightarrow F^-(aq) + H_2O^+(aq) \qquad K_3 = 10^{-3.2}$$
 (3)

- 1. Calculer la constante d'équilibre à 298K, notée K_1 relative à l'équilibre (1) étudié (réaction entre l'acide éthanoïque et les ions fluorure).
- 2. Déterminer l'état d'équilibre (état final) de la solution issue du mélange de l'acide éthanoïque et des ions fluorure.

2023-2024

MPSI – Physique-chimie

Exercice 9 : Synthèse de l'ammoniac

L'ammoniac NH_3 est fabriqué industriellement en très grande quantité. Sa principale application est la fabrication d'engrais azotés. Le procédé de Haber-Bosch consiste à faire réagir du diazote N_2 avec du dihydrogène H_2 (obtenu par vaporeformage du méthane issu du gaz naturel). La réaction est :

$$3 H_2(g) + N_2(g) \Longrightarrow 2 NH_3(g)$$
 (1)

Elle est réalisée en système fermé, à une pression constante $P=100\,\mathrm{bar}$ et une température constante de $400\,^\circ\mathrm{C}$. La constante d'équilibre à cette température est $K=2.9\times10^{-4}$. Initialement, on introduit dans le réacteur N_2 et H_2 en proportions stœechiométriques.

- 1. Soit n_0 la quantité de matière initiale de N_2 . Établir un tableau d'avancement.
- 2. Déterminer l'équation vérifiée par le taux α de N_2 restant, défini comme le rapport de la quantité de N_2 à l'équilibre par la quantité initiale. Résoudre cette équation.
- 3. En déduire le taux de conversion de N_2 . Quel serait ce taux pour une pression P=1,0 bar?

Exercice 10 : LE BÉTON

On étudie quelques constituants du béton. L'hydroxyde de calcium $Ca(OH)_2(s)$ confère au béton ses proprétés basiques. Il se dissout en solution aqueuse selon la réaction (1):

$$Ca(OH)_2(s) \rightleftharpoons Ca^{2+}(aq) + 2HO^-(aq) \qquad K_1 = 10^{-5,2} \text{ à } T = 298K$$
 (1)

1. On introduit en solution aqueuse un net excès d'hydroxyde de calcium (la phase solide est présente en fin d'évolution). Calculer les concentrations de chacun des ions présents à l'équilibre.

Dans certains cas, la pollution urbaine liée à l'humidité entraı̂ne la dissolution du dioxyde de carbone atmosphérique dans l'eau à l'intérieur du béton (sous forme H_2CO_3), provoquant la carbonatation du béton (formation de carbonate de calcium $CaCO_3(s)$ par réaction de l'hydroxyde de calcium $Ca(OH)_2(s)$ avec la forme H_2CO_3).

2. Écrire la réaction (6) mise en jeu dans la carbonatation du béton et calculer sa constante d'équilibre K_6 à 298K. On donne à 298K les constantes d'équilibre des réactions suivantes :

$$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq) \qquad K_2 = 10^{-8.4}$$
 (2)

$$H_2CO_3(aq) + H_2O \Longrightarrow HCO_3^-(aq) + H_3O^+(aq) \qquad K_3 = 10^{-6,4}$$
 (3)

$$HCO_3^-(aq) + H_2O \Longrightarrow CO_3^{2-}(aq) + H_3O^+(aq) \qquad K_4 = 10^{-10,3}$$
 (4)

$$2 H_2 O \Longrightarrow HO^-(aq) + H_3 O^+(aq) \qquad K_5 = 10^{-14}$$
 (5)

En présence de ${\rm H_2CO_3}^-$, le carbonate de calcium évolue par formation d'ions ${\rm Ca^{2+}}$ et d'ions hydrogénocarbonate ${\rm HCO_3}^-$. Cette évolution n'est pas étudiée ici.

page 2/2