Lista de exercícios

Médias Dendrométricas

1. Seja a tabela abaixo com uma sequência de árvores com diâmetros medidos e alturas estimadas (Tabela 1):

Tabela 1 - Lista de diâmetros e alturas.

Árvore	d (cm)	h (m)	
1	22,8	15,4	
2	23,1	15,2	
3	21,1	15,2	
4	24	14,8	
5	24,9	14,1	
6	24,1	16,1	
7	28,2	15	
8	25	14,8	
9	26,1	15,4	
10	27,5	14,8	
11	23,8	14,8	
12	24,6	15,2	
13	24,6	15,9	
14	23,6	16,1	
15	23,6	13,9	
16	25,7	17	
17	30,2	14,3	
18	21,7	15,3	

A partir da tabela fornecida, calcule:

- a. A distribuição diamétrica a partir do método estatístico. Faça a representação tabular e gráfica da distribuição diamétrica resultante. Lembre de incluir limite inferior, centro de classe, limite superior e frequência de indivíduos.
- Calcule a proporção de árvores que recaem nas classificações de Dominante, Co-dominante, Intermediária, Suprimida e Oprimida
- c. Calcule o número de classes a partir das fórmulas de Sturges, Dixon & Kronmal e Velleman. Escolha um desses valores e construa a distribuição diamétric com a representação tabular.
- d. A partir dos dados da Tabela 1, calcule o diâmetro médio (\bar{d}) , diâmetro quadrático médio (d_g) , Diâmetro de Weise (d_w) , diâmetro de área basal mediana $(d_z$ ou $d_{gm})$ e diâmetros de Hohenadl $(d_+$ e $d_-)$

- e. Calcule a altura média (\bar{h}) .
- f. Calcule a altura respectiva de d_g , d_w e d_z utilizando a função

$$h = f(d) = 1.3 + \left(\frac{1}{0.13271 + \frac{1.67671}{d}}\right)^2$$

- g. Calcule a altura de Lorey (h_L)
- h. Calcule a Altura Dominante de Assmann (h_{100}), assuma uma parcela de $800 \mathrm{m}^2$

Utilize a seguinte fórmula para cálculo do desvio-padrão:

$$s = \sqrt{\frac{\sum_{i=1}^{n} x^2 - \frac{(\sum_{i=1}^{n} x)^2}{n}}{n-1}}$$

2. Seja a tabela com dados agrupados de diâmetros e alturas abaixo (Tabela 2)

Tabela 2 - D)istribuição	do	fromiôn	cias d	o uma	floresta
1aveia 2 - L	าเรเทเบนเผน	ue	reguen	cius a	e uma	noresia.

Centro de classe (ci) [cm]	Altura média da classe [h]	Frequência (fi)
15	7,7	230
25	9,2	183
35	13,3	125
45	14,8	89
55	16,9	63
65	19,1	40
75	24,6	27
85	27,5	14
95	31,6	3

A partir da tabela:

- a. Faça a representação gráfica da distribuição diamétrica. Quais seriam os limites inferiores e superiores de cada classe? Pelo formato da distribuição, você consideraria a floresta em questão como plantada ou natural?
- b. Calcule o diâmetro médio (\bar{d}) e o diâmetro quadrático médio (d_g) utilizando as fórmulas de dados agrupados.

