(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 4. Januar 2001 (04.01.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/00589 A1

- (51) Internationale Patentklassifikation⁷: C07D 237/04, 401/10, 409/12, 401/12, A61K 31/50, A61P 7/06
- (21) Internationales Aktenzeichen:

PCT/EP00/05564

(22) Internationales Anmeldedatum:

16. Juni 2000 (16.06.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 199 29 782.7 29. Juni 1999 (29.06.1999) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51386 Leverkusen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): STOLTEFUSS, Jürgen [DE/DE]; Parkstr. 20, D-42781 Haan (DE). BRÄUNLICH, Gabriele [DE/DE]; Claudiusweg 9, D-42115 Wuppertal (DE). LÖGERS, Michael [DE/DE]; Niederradenberg 15, D-42327 Wuppertal (DE). SCHMECK, Carsten [DE/DE]; Graf-Adolf-Str. 36, D-42119 Wuppertal (DE). NIELSCH, Ulrich [DE/US]; 20 Pinckney Street, Boston, MA 02114 (US). BECHEM, Martin [DE/DE]; Hans-Böckler-Str. 102, D-42111 Wuppertal (DE). GERDES, Christian [DE/DE]; Christian-Hess-Str. 81, D-51373 Leverkusen (DE). SPERZEL, Michael [DE/DE]; Normannenstr. 31, D-42275 Wuppertal

(DE). LUSTIG, Klemens [DE/DE]; Krummacherstr. 176, D-42115 Wuppertal (DE). STÜRMER, Werner [DE/DE]; Byk-Gulden-Str. 2, D-78467 Konstanz (DE).

- (74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; D-51386 Leverkusen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- Mit internationalem Recherchenbericht.
- Vor Ablauf der f\(\tilde{u}\)r Änderungen der Anspr\(\tilde{u}\)che geltenden Frist; Ver\(\tilde{g}\)flentlichung wird wiederholt, falls \(\tilde{A}\)nderungen eintreffen.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Ansang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: 6-CARBOXYPHENYLDIHYDROPYRIDAZINONE DERIVATIVES AND USE THEREOF
- (54) Bezeichnung: 6-CARBOXYPHENYLDIHYDROPYRIDAZINON-DERIVATE UND IHRE VERWENDUNG

$$O = \begin{pmatrix} A & D & \\ A & D & \\ A & C & C \end{pmatrix}$$

$$R^{2} \qquad G \qquad E \qquad O \qquad (I)$$

- (57) Abstract: The invention relates to the area of erythropoiesis, in particular to substituted 6-carboxyphenyldihydropyridazinone derivatives of general formula (I), to methods for producing them and to their use as medicaments, preferably for preventing and/or treating anaemia.
- (57) Zusammenfassung: Die Erfindung betrifft das Gebiet der Erythropoese. Insbesondere werden substituierte 6-Carboxyphenyldihydropyridazinon-Derivate der allgemeinen Formel (I), Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel, vorzugsweise zur Prophylaxe und/oder Bekämpfung von Anämien, beschrieben.

6-Carboxyphenyldihydropyridazinon-Derivate und ihre Verwendung

5

10

15

20

Die vorliegende Erfindung betrifft das Gebiet der Erythropoese. Insbesondere betrifft die vorliegende Erfindung neue 6-Carboxyphenyldihydropyridazinon-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel, vorzugsweise zur Prophylaxe und/oder Bekämpfung von Anämien.

Anämien, auch als sogenannte Blutarmut bezeichnet, sind durch eine Verminderung von Erythrozytenzahl, Hämoglobinkonzentration und/oder Hämatokrit unter die altersentsprechenden und geschlechtsspezifischen Referenzwerte gekennzeichnet. Die Verminderung eines dieser Parameter ist jedoch nur dann ein Anzeichen für eine Anämie, wenn das Blutvolumen normal ist, nicht aber bei akuten stärkeren Blutverlusten, Exsikkose (Pseudopolyglobulie) oder Hydrämie (Pseudoanämie). (Pschyrembel, Klinisches Wörterbuch, 257. Auflage, 1994, Walter de Gruyter Verlag, Seite 59 ff., Stichwort "Anämie"; Römpp Lexikon Chemie, Version 1.5, 1998, Georg Thieme Verlag Stuttgart, Stichwort "Anämie").

Klinisch ist die Anämie infolge der verminderten Sauerstofftransportkapazität des Bluts unter anderem durch Störung sauerstoffabhängiger Stoffwechsel- und Organfunktionen gekennzeichnet; bei akuter Entwicklung (z.B. infolge Blutverlusts) können sich Symptome eines Schocks zeigen, und bei chronischer Entwicklung tritt oft ein langsam progredienter Verlauf mit Leistungsabfall, Müdigkeit, Dyspnoe und Tachykardie auf.

Eine Einteilung oder Klassifizierung verschiedener Anämieformen kann entweder nach Morphologie und Hämoglobingehalt der Erythrozyten oder aber nach der Ätiologie (z.B. in posthämorrhagische Anämie, Schwangerschaftsanämie, Tumoranämie, Infektanämie oder Mangelanämien) erfolgen. Des weiteren ist eine Einteilung der verschiedenen Anämieformen nach ihrer Pathogenese unter Berücksichtigung der prinzipiell möglichen Ursachen möglich, so beispielsweise in Anämien durch übermäßigen Blutverlust (z.B. akute oder chronische Blutungsanämie), Anämien in-

5

10

15

20

25

30

folge verminderter oder ineffektiver Erythropoese (z.B. Eisenmangelanämien, nephrogene Anämien oder myelopathische Anämien) oder Anämien infolge übermäßigen Erythrozytenabbaus (sogenannte hämolytische Anämien) (Pschyrembel, Klinisches Wörterbuch, 257. Auflage, 1994, Walter de Gruyter Verlag, Seite 59 ff., Stichwort "Anämie"; Roche-Lexikon Medizin, 4. Auflage, 1999, Urban & Schwarzenberg, Stichwort "Anämie").

Die aus dem Stand der Technik bekannten Behandlungsmethoden von Anämien erweisen sich in der Praxis als sehr schwierig und wenig effizient. Meist treten zahlreiche, für den Patienten oftmals gravierende Nebenwirkungen auf.

So werden in der Therapie von Eisenmangelanämien im allgemeinen Eisenpräparate verwendet, die entweder oral oder parenteral appliziert werden. Bei der oralen Applikation werden als Nebenwirkung vor allem Magen-Darm-Störungen beobachtet. Gleichzeitige Gabe von Antacida zur Therapierung der Magen-Darm-Störungen beeinträchtigt die Eisenresorption. Zudem ist die Resorption von Eisen aus dem Intestinaltrakt durch die Fähigkeit der Mucosa, den Durchtritt von Eisen zu erschweren, ohnehin nur sehr beschränkt. Andererseits darf die peroral verabreichte Dosis nicht zu hoch gewählt werden, weil ansonsten Vergiftungserscheinungen auftreten können, schlimmstenfalls sogar eine hämorrhagische Gastroenteritis mit Schocksymptomen und Todesfolge. Bei der parenteralen Eisentherapie, welche sich wegen des nur geringen Eisenbindungsvermögens des Plasmas ebenfalls als schwierig erweist, kann es insbesondere bei Überdosierung zu Übelkeit, Erbrechen, Herz- und Kopfschmerzen, Hitzegefühl sowie starkem Blutdruckabfall mit Kollaps, ferner zu Ablagerung von Eisen in das Retikuloendothel (Hämosiderose) kommen; die Gefäßwände werden durch die intravenöse Injektion geschädigt, auch muß mit einer Thrombophlebitis und Thrombosierung gerechnet werden. Eine Dosierung erweist sich als äußerst diffizil, weil alles Eisen, das bei parenteraler Zufuhr nicht physiologisch gebunden werden kann, toxisch wirkt (Gustav Kuschinsky, Heinz Lüllmann und Thies Peters, Kurzes Lehrbuch der Pharmakologie und Toxikologie, 9. Auflage, 1981, Georg Thieme Verlag Stuttgart, Seiten 139 ff.; Ernst Mutschler, Arzneimittel-

5

10

15

20

25

30

wirkungen, Lehrbuch der Pharmakologie und Toxikologie, Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, 1986, Seite 383 ff.).

Seit etwa mehr als 10 Jahren steht für den therapeutischen Einsatz zur Behandlung schwerer Anämien gentechnologisch hergestelltes, rekombinantes Erythropoetin (rhEPO) zur Verfügung. Es ist nämlich bekannt, daß rekombinantes humanes (rh) EPO die Erythropoese humoral stimuliert, so daß es als Antianämikum in der Therapie von schweren Anämien, insbesondere bei renalen bzw. nephrogenen Anämien, Anwendung gefunden hat. Weiterhin wird rh EPO zur Vermehrung der körpereigenen Blutzellen eingesetzt, um die Notwendigkeit von Fremdbluttransfusionen zu vermindern.

Erythropoetin (EPO) ist ein Glykoprotein mit einem Molekulargewicht von ungefähr 34 000 Da. Über 90 % der EPO-Synthese finden in der Niere statt, und das dort produzierte EPO wird ins Blut sezerniert. Die primäre physiologische Funktion von EPO ist die Regulation der Erythropoese im Knochenmark. Dort stimuliert EPO die Proliferation und Reifung der erythroiden Vorläuferzellen.

Bei der Gabe von rh EPO treten jedoch starke Nebenwirkungen auf. Hierzu gehören die Entstehung und Verstärkung von Bluthochdruck sowie die Verursachung einer Encephalopathie-ähnlichen Symptomatik bis hin zu tonisch-klonischen Krämpfen und cerebralem oder myocardialem Infarkt durch Thrombosen. Ferner ist rh EPO nicht oral verfügbar und muß daher intraperitoneal (i.p.), intravenös (i.v.) oder subcutan (s.c.) appliziert werden, wodurch die Anwendung auf die Therapie schwerer Anämien begrenzt ist (Kai-Uwe Eckardt, "Erythropoietin: Karriere eines Hormons", Deutsches Ärzteblatt 95, Heft 6 vom 6. Februar 1998 (41), Seiten A-285 bis A-290; Rote Liste 1998, Editio Cantor Verlag für Medizin und Naturwissenschaften GmbH, siehe "Epoetin alfa" und "Epoetin beta").

Aufgabe der vorliegenden Erfindung ist nunmehr die Bereitstellung neuer Substanzen, die insbesondere zur effizienteren Behandlung von Anämien geeignet sind und hierbei die Nachteile der aus dem Stand der Technik bekannten Therapiemethoden für Anämien vermeiden.

Die vorliegende Erfindung betrifft somit 6-Carboxyphenyldihydropyridazinon-Derivate der allgemeinen Formel (I)

-4-

$$O = \begin{pmatrix} R^1 & A & D & \\ N-N & A & D & \\ R^2 & G & E & O \end{pmatrix} (I)$$

5

10

in welcher

A, D, E und G gleich oder verschieden sind und

für Wasserstoff, Halogen, Trifluormethyl, Hydroxy oder für (C_1-C_6) -Alkyl oder für (C_1-C_6) -Alkoxy stehen,

 R^1 und R^2 gleich oder verschieden sind und

für Wasserstoff oder für (C1-C6)-Alkyl stehen,

15 R³ für Reste der Formeln -OR⁴ oder -NR⁵R⁶ steht,

worin

20

R⁴ Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeutet oder (C₁-C₈)-Alkyl bedeutet, das gegebenenfalls durch Hydroxy, (C₁-C₆)-Alkoxy, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Halogen, (C₁-C₆)-Alkoxy, Hydroxy oder Trifluormethyl, substituiert sein kann, oder

25

(C₁-C₈)-Alkyl bedeutet, das gegebenenfalls durch eine Gruppe der Formel -NR⁷R⁸ substituiert ist,

worin

5

 R^7 und R^8 gleich oder verschieden sind und Wasserstoff, (C_1-C_6) -Alkyl oder Benzyl bedeuten,

oder

10

R⁴ Vinyl oder Allyl bedeutet,

oder

15

R⁴ Aryl mit 6 bis 10 Kohlenstoffatomen bedeutet, das gegebenenfalls einbis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe, die besteht aus: Halogen, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy oder Hydroxy, substituiert ist,

20

- R⁵ Wasserstoff oder (C₁-C₄)-Alkyl bedeutet,
- R⁶ Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeutet oder einen Rest der Formel

25

Aryl mit 6 bis 10 Kohlenstoffatomen oder einen 5- bis 7-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die hier aufgeführten Ringsysteme gegebenenfalls ein- bis mehrfach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Halogen, Trifluormethyl,

Hydroxy, (C_1-C_6) -Alkoxy, Carboxyl, (C_1-C_6) -Alkoxycarbonyl, (C_1-C_6) -Alkyl und Resten der Formeln $-SO_2$ -NR 9 R 10 und $-(CO)_a$ -NR 11 R 12 , substituiert sein können,

5

worin

 R^9 , R^{10} , R^{11} und R^{12} gleich oder verschieden sind und Wasserstoff oder (C_1-C_6) -Alkyl bedeuten,

10

und

eine Zahl 0 oder 1 bedeutet,

oder

15

R⁶ (C₁-C₈)-Alkyl bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Halogen, Trifluormethyl, Hydroxy, (C₁-C₆)-Alkoxy, Carboxyl, (C₁-C₆)-Alkoxycarbonyl, Aryl mit 6 bis 10 Kohlenstoffatomen und von 5- bis 7-gliedrigen aromatischen Heterocyclen mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, substituiert ist, worin die Ringsysteme gegebenenfalls ein- bis dreifach, gleich oder verschieden durch (C₁-C₆)-Alkyl, Halogen, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkoxycarbonyl, Trifluormethyl oder durch den Rest -CO-NH₂ substituiert sein können,

25

20

oder

R⁵ und R⁶ gemeinsam mit dem Stickstoffatom cyclische Reste der Formeln

WO 01/00589 PCT/EP00/05564

bilden, die ihrerseits gegebenenfalls substituiert sein können,

und deren Salze,

5

jedoch mit Ausnahme der Verbindung N-Methyl-4-(4-methyl-6-oxo-1,4,5,6-tetra-hydropyridazin-3-yl)-benzamid.

Die oben genannte Verbindung N-Methyl-4-(4-methyl-6-oxo-1,4,5,6-tetra-10 hydropyridazin-3-yl)-benzamid ist aus den Publikationen Chem. Abstr. 77, 19664 und DE 21 50 436 (1972) bekannt.

Die erfindungsgemäßen Verbindungen können in Abhängigkeit von dem Substitutionsmuster in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere) oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfindung betrifft sowohl die Enantiomeren oder Diastereomeren als auch deren jeweilige Mischungen. Die Racemformen lassen sich ebenso wie die Diastereomeren in bekannter Weise in die stereoisomer einheitlichen Bestandteile trennen.

20

25

15

Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen können Salze der erfindungsgemäßen Stoffe mit Mineralsäuren, Carbonsäuren oder Sulfonsäuren sein. Besonders bevorzugt sind z.B. Salze mit Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure,

Propionsäure, Milchsäure, Weinsäure, Zitronensäure, Fumarsäure, Maleinsäure oder Benzoesäure.

- 8 -

Als Salze können auch Salze mit üblichen Basen genannt werden, wie beispielsweise Alkalimetallsalze (z.B. Natrium- oder Kaliumsalze), Erdalkalisalze (z.B. Calcium- oder Magnesiumsalze) oder Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen wie beispielsweise Diethylamin, Triethylamin, Ethyldiisopropylamin, Prokain, Dibenzylamin, N-Methylmorpholin, Dihydroabietylamin, 1-Ephenamin oder Methylpiperidin.

10

20

5

(C₃-C₈)-Cycloalkyl steht für Cyclopropyl, Cyclopentyl, Cyclobutyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl. Bevorzugt seien genannt: Cyclopropyl, Cyclopentyl und Cyclohexyl.

15 (C₆-C₁₀)-Aryl steht für einen aromatischen Rest mit 6 bis 10 Kohlenstoffatomen. Bevorzugte Arylreste sind Phenyl und Naphthyl.

(C₁-C₆)-Alkyl steht für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6. Kohlenstoffatomen. Beispielsweise seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert.-Butyl, n-Pentyl und n-Hexyl. Bevorzugt ist ein geradkettiger oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen. Besonders bevorzugt ist ein geradkettiger oder verzweigter Alkylrest mit 1 bis 3 Kohlenstoffatomen.

(C₁-C₆)-Alkoxy steht für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6

Kohlenstoffatomen. Beispielsweise seien genannt: Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, tert.-Butoxy, n-Pentoxy und n-Hexoxy. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 4 Kohlenstoffatomen.

Besonders bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 3 Kohlenstoffatomen.

WO 01/00589 PCT/EP00/05564

(C₁-C₆)-Alkoxycarbonyl steht für einen geradkettigen oder verzweigten Alkoxycarbonylrest mit 1 bis 6 Kohlenstoffatomen. Beispielsweise seien genannt: Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl, n-Butoxycarbonyl, Isobutoxycarbonyl und tert.-Butoxycarbonyl. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 4 Kohlenstoffatomen. Besonders bevorzugt ist ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 3 Kohlenstoffatomen.

-9-

Ein 5- bis 6-gliedriger aromatischer Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, O und/oder N steht beispielsweise für Pyridyl, Pyrimidyl, Pyridazinyl, Thienyl, Furyl, Pyrrolyl, Thiazolyl, Oxazolyl oder Imidazolyl. Bevorzugt sind Pyridyl, Thienyl, Pyridazinyl, Furyl und Thiazolyl.

Bevorzugt sind erfindungsgemäßeVerbindungen der allgemeinen Formel (I),

15

5

in welcher

A, D, E und G gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom oder Trifluormethyl stehen,

20

R¹ und R² gleich oder verschieden sind und für Wasserstoff oder für Methyl stehen,

R³ für Reste der Formeln -OR⁴ oder -NR⁵R⁶ steht,

25

30

worin

R⁴ Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet oder
(C₁-C₆)-Alkyl bedeutet, das gegebenefalls durch Hydroxy, (C₁-C₄)Alkoxy, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden,

- 10 -

durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, (C₁-C₄)-Alkoxy, Hydroxy oder Trifluormethyl, substituiert sein kann, oder

(C₁-C₆)-Alkyl bedeutet, das gegebenenfalls durch eine Gruppe der Formel -NR⁷R⁸ substituiert ist,

worin

R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten,

oder

R6

R⁴ Allyl bedeutet,

R⁵ Wasserstoff oder (C₁-C₃)-Alkyl bedeutet,

Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet oder Phenyl, Thienyl, Thiazolyl, Furyl oder Pyridyl bedeutet, wobei die aufgeführten aromatischen Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, Trifluormethyl, Hydroxy, (C₁-C₃)-Alkoxy, (C₁-C₃)-Alkoxycarbonyl, (C₁-C₄)-Alkyl und Resten der Formeln -SO₂-NR⁹R¹⁰ und -(CO)_a-NR¹¹R¹², substituiert sein können,

worin

 R^9 , R^{10} , R^{11} und R^{12} gleich oder verschieden sind und Wasserstoff oder (C_1-C_4) -Alkyl bedeuten,

30

5

10

15

20

25

und

a eine Zahl 0 oder 1 bedeutet,

oder

5

10

R⁶ (C₁-C₆)-Alkyl bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, Trifluormethyl, Hydroxy, (C₁-C₄)-Alkoxy, (C₁-C₄)-Alkoxycarbonyl, Phenyl, Pyridyl, Naphthyl, Furyl oder Thiazolyl, substituiert sind, wobei die Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Fluor, Chlor, Methyl, Methoxycarbonyl, Trifluormethyl oder durch einen Rest der Formel -CO-NH₂, substituiert sein können,

15 oder

R⁵ und R⁶ gemeinsam mit dem Stickstoffatom cyclische Reste der Formeln

20 und deren Salze,

jedoch mit Ausnahme der Verbindung N-Methyl-4-(4-methyl-6-oxo-1,4,5,6-tetra-hydropyridazin-3-yl)-benzamid.

Besonders bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I).

in welcher

A, D, E und G für Wasserstoff stehen,

5

R¹ und R² gleich oder verschieden sind und für Wasserstoff oder für Methyl stehen,

R³ für Reste der Formeln -OR⁴ oder -NR⁵R⁶ steht,

10

15

worin

R⁴ Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet oder

(C₁-C₅)-Alkyl bedeutet, das gegebenenfalls durch (C₁-C₄)-Alkoxy,
Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl substituiert ist, das
seinerseits ein- bis zweifach, gleich oder verschieden, durch
Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, (C₁-C₄)Alkoxy, Hydroxy oder Trifluormethyl, substituiert sein kann, oder

(C₁-C₄)-Alkyl bedeutet, das gegebenenfalls durch eine Gruppe der
Formel -NR⁷R⁸ substituiert ist,

20

25

worin

R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff, Benzyl oder Methyl bedeuten,

oder

R⁴ Allyl bedeutet,

30

R⁵ Wasserstoff oder (C₁-C₃)-Alkyl bedeutet,

Phenyl, Naphthyl, Thienyl, Thiazolyl, Furyl oder Pyridyl bedeutet, wobei die aufgeführten Ringsysteme gegebenenfalls ein -bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, Trifluormethyl, (C₁-C₃)-Alkoxy, (C₁-C₃)-Alkoxycarbonyl, (C₁-C₃)-Alkyl und Resten der Formeln -SO₂-NR⁹R¹⁰ und -(CO)₂-NR¹¹R¹², substituiert sind,

worin

 R^9 , R^{10} , R^{11} und R^{12} gleich oder verschieden sind und Wasserstoff oder (C_1 - C_4)-Alkyl bedeuten,

15 und

a eine Zahl 0 oder 1 bedeutet,

oder

20

5

10

R⁶ (C₁-C₆)-Alkyl bedeutet, das gegebenenfalls durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Trifluormethyl, (C₁-C₃)-Alkoxy, (C₁-C₃)-Alkoxycarbonyl, Phenyl, Pyridyl, Naphthyl, Furyl, Thienyl oder Thiazolyl, substituiert ist, wobei die Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Fluor, Chlor, Methyl, Methoxycarbonyl, Trifluormethyl oder durch einen Rest der Formel -CO-NH₂ substituiert sind,

oder

30

25

R⁵ und R⁶ gemeinsam mit dem Stickstoffatom cyclische Reste der Formeln

und deren Salze,

jedoch mit Ausnahme der Verbindung N-Methyl-4-(4-methyl-6-oxo-1,4,5,6-tetra-hydropyridazin-3-yl)-benzamid.

Ganz besonders bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I),

10

in welcher

A, D, E und G für Wasserstoff stehen,

- 15 R^3 für den Rest –NR⁵R⁶ mit R⁵ = H oder Methyl und R⁶ wie zuvor definiert steht und die übrigen Reste die zuvor angegebene Bedeutung haben.
- Gegenstand der vorliegenden Erfindung sind auch Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I), wobei
 - [A] im Fall, daß in der obigen allgemeinen Formel (I) R³ für den Rest der Formel -OR⁴ steht,
- Verbindungen der allgemeinen Formel (II)

$$O = \begin{array}{c} R^1 \\ N-N \\ R^2 \end{array}$$
 CO_2H (II),

in welcher

A, D, R1 und R2 die oben angegebene Bedeutung haben,

zunächst durch Umsetzung mit carbonsäureaktivierenden Reagenzien, wie z.B. Thionylchlorid oder Carbonyldiimidazol, nach üblichen Methoden in die Verbindungen der allgemeinen Formel (IV)

$$O$$
 $N-N$
 $CO-L$
 (IV) ,

10

5

in welcher

A, D, R1 und R2 die oben angegebene Bedeutung haben

15 und

L für einen aktivierenden Rest, vorzugsweise für Chlor oder Imidazolyl, steht,

überführt werden

20

und in einem zweiten Schritt Verbindungen mit Verbindungen der allgemeinen Formel (III)

in welcher

R⁴ die oben angegebene Bedeutung hat,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base, umgesetzt werden,

oder

5

15

10 [B] im Fall, daß in der obigen allgemeinen Formel (I) R³ für den Rest der Formel
-NR⁵R⁶ steht,

Verbindungen der allgemeinen Formel (II) zunächst durch Umsetzung mit carbonsäureaktivierenden Reagenzien, wie z.B. Thionylchlorid oder Carbonyldiimidazol, nach üblichen Methoden in die Verbindungen der allgemeinen Formel (IV)

$$O = \begin{pmatrix} R^1 & A & D \\ N-N & CO-L \\ R^2 & (IV), \end{pmatrix}$$

in welcher

20 A, D, R¹ und R² die oben angegebene Bedeutung haben

und

L für einen aktivierenden Rest, vorzugsweise für Chlor oder Imidazolyl, steht,

überführt werden

25

WO 01/00589 PCT/EP00/05564

- 17 -

und in einem zweiten Schritt mit Amiden der allgemeinen Formel (V)

 HNR^5R^6 (V),

5 in welcher

R⁵ und R⁶ die oben angegebene Bedeutung haben,

in inerten Lösemitteln umgesetzt werden.

10

15

20

25

Als carbonsäureaktivierende Reagenzien im Sinne der vorliegenden Erfindung eignen sich insbesondere Carbodiimide wie beispielsweise Diisopropylcarbodiimid, Dicyclohexylcarbodiimid oder N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimid-Hydrochlorid oder Carbonylverbindungen wie Carbonyldiimidazol oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5-phenyl-1,2-oxazolium-3-sulfonat oder Propanphosphorsäureanhydrid oder Isobutylchloroformat oder Benzotriazolyloxytris-(dimethylamino)phosphonium-hexyfluorophosphat oder Phosphonsäurediphenylesteramid oder Methansulfonsäurechlorid, gegebenenfalls in Anwesenheit von Basen wie Triethylamin oder N-Ethylmorpholin oder N-Methylpiperidin oder Dicyclohexylcarbodiimid und N-Hydroxysuccinimid. Ebenfalls geeignet ist Thionylchlorid. Bevorzugte carbonsäureaktivierende Reagenzien sind Carbonyldiimidazol (CDI) und Thionylchlorid.

Die erfindungsgemäßen Verfahren können durch folgende Formelschemata beispielhaft erläutert werden:

[A]

$$O = \bigvee_{CH_3} - CO_2H$$

$$O = \bigvee_{CH_3} - CO - N + \bigvee_{CH_3} - CO - O - \bigvee_{CH_3} - CO - O$$

[B]

$$O = \begin{pmatrix} H_{2}N - \\ -CO - CI \end{pmatrix}$$

$$O = \underbrace{\begin{array}{c} H \\ N-N \\ CH_3 \end{array}} - CO - \underbrace{N}_F - \underbrace{\begin{array}{c} \\ \\ \end{array}}$$

5

10

15

[B]

Als Lösemittel eignen sich hierbei organische Lösemittel, die unter den Reaktionsbedingungen inert sind. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethylen oder Trichlorethylen, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan oder Cyclohexan, Ether wie Diethylether, Dioxan, THF sowie Dimethylformamid, Acetonitril, Aceton oder Hexamethylphosphorsäuretriamid. Besonders bevorzugt sind Dichlormethan, DMF und Dioxan. Ebenso ist es möglich, Lösemittelgemische einzusetzen.

Als Basen eignen sich die üblichen anorganischen oder organischen Basen. Hierzu gehören bevorzugt Alkalihydroxide, wie beispielsweise Natrium- oder Kalium-hydroxid oder Alkalicarbonate wie Natrium- oder Kaliumcarbonat oder Natrium- oder Kaliummethanolat oder Natrium- oder Kaliumethanolat oder Kalium-tert.-butylat oder Amide wie Natriumamid, Lithium-bis-(trimethylsilyl)amid oder Lithiumdiisopropylamid oder metallorganische Verbindungen wie Butyllithium oder

Pyridin, Triethylamin, wie organische Basen Phenyllithium sowie 1-8-Diazobicyclo[5.4.0]undec-7-en(DBU), 1,5-Diaza-Dimethylaminopyridin, bicyclo[4.3.0]non-5-en (DBU) oder N-Methylmorpholin. Bevorzugt sind Pyridin und Triethylamin.

5

Die Base kann hierbei in einer Menge von 1 bis 5 Mol, bevorzugt von 1 bis 2 Mol, bezogen auf 1 Mol der Verbindungen der allgemeinen Formel (II), eingesetzt werden.

10

Die Reaktion erfolgt im allgemeinen in einem Temperaturbereich von -78°C bis zur Rückflußtemperatur, bevorzugt im Bereich von -78°C bis +20°C.

Die Umsetzung kann bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt

werden (z.B. im Bereich von 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

20

15

Die Verbindungen der allgemeinen Formeln (II), (III) und (V) sind an sich bekannt oder nach publizierten Verfahren herstellbar [vgl. zu Verbindungen der Formel (II) J. Med. Chem. 17, (273-281), 1974].

Die Verbindungen der allgemeinen Formel (IV) sind teilweise neu und können beispielsweise wie oben beschrieben hergestellt werden.

25

Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) zeigen ein nicht vorhersehbares, wertvolles pharmakologisches Wirkspektrum und sind daher insbesondere zur Prophylaxe und/oder Behandlung von Erkrankungen geeignet.

Sie können bevorzugt eingesetzt werden in Arzneimitteln zur Prophylaxe und/oder Behandlung von Anämien, wie beispielsweise bei Frühgeborenen-Anämien, bei nephrogenen bzw. renalen Anämien wie etwa Anämien bei chronischer Niereninsuf-30

5

10

15

20

25

fizienz, bei Anämien nach einer Chemotherapie und bei der Anämie von HIV-Patienten, d.h. also insbesondere zur Behandlung von schweren Anämien.

Auch bei völlig intakter endogener EPO-Produktion kann durch die Gabe der erfindungsgemäßen Verbindungen eine zusätzliche Stimulation der Erythropoese induziert werden, was insbesondere bei Eigenblutspendern ausgenutzt werden kann.

Für die Applikation der erfindungsgemäßen Verbindungen kommen alle üblichen Applikationsformen in Betracht. Vorzugsweise erfolgt die Applikation oral, transdermal oder perenteral. Ganz besonders bevorzugt ist die orale Applikation, worin ein weiterer Vorteil gegenüber der aus dem Stand der Technik bekannten Therapie von Anämien mit rhEPO liegt.

Die erfindungsgemäßen Verbindungen wirken insbesondere als Erythropoetin-Sensitizer. Als "Erythropoetin-Sensitizer" werden Verbindungen bezeichnet, die in der Lage sind, die Wirkung des im Körper vorhandenen EPO so effizient zu beeinflussen, daß die Erythropoese gesteigert, insbesondere die Sauerstoffversorgung verbessert wird. Sie sind überaschenderweise auch oral wirksam, wodurch die therapeutische Anwendung unter Ausschluß oder Reduktion der bekannten Nebenwirkungen wesentlich verbessert und gleichzeitig vereinfacht wird.

Gegenstand der vorliegenden Erfindung ist somit auch die Verwendung von EPO-Sensitizern zur Stimulation der Erythropoese, insbesondere zur Prophylaxe und/oder Behandlung von Anämien, vorzugsweise schweren Anämien wie beispielsweise Frühgeborenen-Anämie, Anämie bei chronischer Niereninsuffizienz, Anämie nach Chemotherapie oder auch Anämie bei HIV-Patienten. Besonders bevorzugt ist die orale Applikation dieser sogenannten EPO-Sensitizer für die zuvor genannten Zwecke.

30 Somit ermöglichen die erfindungsgemäßen Verbindungen eine effiziente Stimulation der Erythropoese und folglich eine Prophylaxe bzw. Therapie von Anämien, die noch

vor dem Stadium eingreift, in welchem die herkömmlichen Behandlungsmethoden mit EPO einsetzen. Denn die erfindungsgemäßen Verbindungen erlauben eine wirksame Beeinflussung des körpereigenen EPO, woduch die direkte Gabe von EPO mit den damit verbundenen Nachteilen vermieden werden kann.

5

10

Weiterer Gegenstand der vorliegenden Erfindung sind also Arzneimittel und pharmazeutische Zusammensetzungen, die mindestens eine erfindungsgemäße Verbindung der allgemeinen Formel (I) zusammen mit einem oder mehreren pharmakologisch unbedenklichen Hilfs- oder Trägerstoffen enthalten, sowie deren Verwendung zur Stimulation der Erythropoese, insbesondere zu Zwecken der Prophylaxe und/oder Behandlung von Anämien, wie z.B. Frühgeborenenanämie, Anämien bei chronischer Niereninsuffizienz, Anämien nach einer Chemotherapie oder Anämien bei HIV-Patienten.

Die vorliegende Erfindung wird an den folgenden Beispielen veranschaulicht, die die Erfindung jedoch keinesfalls beschränken.

A Bewertung der physiologischen Wirksamkeit

20

25

30

1. Allgemeine Testmethoden

a) Testbeschreibung (in vitro)

Zellproliferation von humanen erythroiden Vorläuferzellen

20 ml Heparin-Blut wurden mit 20 ml PBS (phosphate-buffered saline) verdünnt und für 20 min (220xg) zentrifugiert. Der Überstand wurde verworfen, die Zellen wurden in 30 ml PBS resuspendiert und auf 17 ml Ficoll Paque® (d=1.077g/ml, Pharmacia) in einem 50-ml-Röhrchen pipettiert. Die Proben wurden für 20 min bei 800xg zentrifugiert. Die mononukleären Zellen an der Grenzschicht wurden in ein neues Zentrifugenröhrchen überführt, mit dem 3fachen Volumen an PBS verdünnt und für 5 min bei 300xg zentrifugiert. Die CD34-positiven Zellen aus dieser Zellfraktion

wurden mittels eines kommerziellen Aufreinigungsverfahrens (CD34 Multisort Kit von Miyltenyi) isoliert. Die CD34-positiven Zellen (6000-10000 Zellen/ml) wurden in Stammzellmedium (0.9% Methylzellulose, 30% Kälberserum, 1% Albumin (Rind), $100\mu M$ 2-Mercaptoethanol und 2 mM L-Glutamin) von StemCell Technologies Inc. resuspendiert. 10 mU/ml humanes Erythropoietin, 10 ng/ml humanes IL-3 (Interleukin-3) und 0- $10\mu M$ Testsubstanz wurden zugesetzt. 500 μl /Vertiefung (Mikrotiterplatt mit je 24 Vertiefungen) wurden für 14 Tage bei $37^{\circ}C$ in 5% $CO_2/95\%$ Luft kultiviert.

Die Kulturen wurden mit 20 ml 0.9%w/v NaCl-Lösung verdünnt, für 15 min bei 600xg zentrifugiert und in 200 μl 0,9%w/v NaCl resuspendiert. Zur Bestimmung der Zahl der erythroiden Zellen wurden 50μl der Zellsuspension zu 10μl Benzidin-Färbelösung (20μg Benzidin in 500 μl DMSO, 30μl H₂O₂ und 60 μl konzentrierter Essigsäure) pipettiert. Die Zahl der blauen Zellen wurde mikroskopisch ausgezählt.

Bei Zusetzen der Testsubstanzen gemäß der vorliegenden Erfindung wird jeweils ein signifikanter Anstieg der Zellproliferation erythroider Vorläuferzellen beobachtet.

20 <u>b) Testbeschreibung Hämatokrit-Maus</u>

5

10

25

30

Normale Mäuse werden mit Testsubstanzen über mehrere Tage behandelt. Die Applikation erfolgt intraperitoneal, subkutan oder per os. Bevorzugte Lösungsmittel sind Solutol/DMSO/Sacharose/NaCl-Lösung oder Glycofurol.

Vom Tag 0 (vor der ersten Applikation) bis zu ca. 3 Tagen nach der letzten Applikation werden mehrfach ca. 70 µl Blut durch Punktion des retroorbitalen Venenplexus mit einer Hämatokritkapillare entnommen. Die Proben werden zentrifugiert und der Hämatokrit durch manuelle Ablesung bestimmt. Primärer Parameter ist der Hämatokritanstieg gegenüber dem Ausgangswert der behandelten Tiere im Vergleich zur Veränderung des Hämatokrits in der Placebo-Kontrolle (zweisach normierter Wert).

5

10

15

20

25

- 24 -

Die verabreichten Testsubstanzen gemäß der vorliegenden Erfindung führen zu einem signifikanten Anstieg des Hämatokrits.

Die neuen Wirkstoffe können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulate, Aerosole, Sirupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von etwa 0,5 bis 90-Gew.-% der Gesamtmischung vorhanden sein, d.h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

Die Formulierungen werden beispielsweise hergestellt durch Verstrecken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei z.B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfslösungsmittel verwendet werden können.

Die Applikation erfolgt in üblicher Weise, vorzugsweise oral, transdermal oder parenteral, insbesondere perlingual oder intravenös.

Im allgemeinen hat es sich als vorteilhaft erwiesen, bei intravenöser Applikation Mengen von etwa 0,01 bis 10 mg/kg, vorzugsweise etwa 0,1 bis 10 mg/kg Körpergewicht, zur Erzielung wirksamer Ergebnisse zu verabreichen.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. von der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, von der Art der Formulierung und von dem Zeitpunkt bzw. Intervall, zu welchem die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muß. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

B Herstellungbeispiele

Beispiel I: Herstellung der Ausgangsverbindung

4-(1,4,5,6-Tetrahydro-6-oxo-3-pyridazinyl)-benzoylchlorid

5

10 mmol (2,2 g) 4-(1,4,5,6-Tetrahydro-6-oxo-3-pyridazinyl)-benzoesäure werden in 50 ml Dichlormethan suspendiert, mit 1,5 ml (20 mmol) Thionylchlorid versetzt und unter leichtem Sieden 24 Stunden gerührt. Es wird abgekühlt, vom Unlöslichen abgesaugt und gut eingeengt. Der Eindampfrückstand wird mit Toluol verrührt und abgesaugt.

Man erhält 2,0 g eines Rohproduktes, welches ohne Reinigung weiter umgesetzt wird.

15

10

Beispiel II: Herstellung der Ausgangsverbindung

4-(4-Methyl-1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)-benzoesäureimidazolid

20

25

4,7 g (20,24 mmol) 4-(4-Methyl-1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)-benzoesäure werden in 120 ml THF (wasserfrei) suspendiert und mit 3,97 g (24,50 mmol) Carbonyldiimidazol versetzt. Es entsteht eine Lösung, aus der sich ein Schmier abscheidet. Es wird filtriert. das Filtrat wird noch 3 Stunden gerührt. Es wird

eingeengt, mit wenig THF verrührt, der Feststoff wird abgesaugt und mit THF gewaschen. Man erhält 3,9 g nahezu farblose Kristalle vom Schmelzpunkt: 171 – 174°C.

5

Beispiel 1

4-(4-Methyl-1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)-benzoesäure-2-(2-thienylethyl)-amid

$$O = \bigcup_{CH_3}^{H} \bigcup_{O}^{H} \bigcup_{S}^{N}$$

10

15

282 mg (1 mmol) 4-(4-Methyl-1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)-benzoesäure-imidazolid aus Beispiel II werden in 3 ml Dioxan mit 254 mg (2 mmol) 2-Thienyl-ethylamin 5 Stunden bei 100°C gerührt. Es wird abgekühlt, in Dichlormethan gelöst, zweimal mit 1 N Salzsäure, mit Wasser, Natriumhydrogencarbonat-Lösung und wieder Wasser gewaschen, getrocknet und eingeengt. Der Eindampfrückstand wird mit Essigester kristallisiert. Man erhält 218 mg (63,8% d.Th.) farblose Kristalle vom Schmelzpunkt 163-164°C.

20 Beispiel 2

4-(4-Methyl-1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)-benzoesäurecyclopentylester

$$O = \bigvee_{CH_3} O - \bigvee_{CH_3} O$$

200 mg (0,71 mmol) 4-(4-Methyl-1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)-benzoe-säureimidazolid aus Beispiel II werden in 2 ml Dioxan mit 2 ml Cyclopentanol 24 Stunden bei 100°C gerührt. Es wird so weit wie möglich eingeengt und über eine Säule getrennt. Die sauberen Fraktionen kristallisieren mit Ether/Heptan. Man erhält 53 mg farblose Kristalle vom Schmelzpunkt 120-122°C.

Beispiel 3

6-[4-(2-Fluorphenylaminocarbonyl)-phenyl]-4,5-dihydro-3(2H)-pyridazinon

10

5

120 mg (0,5 mmol) 4-(1,4,5,6-Tetrahydro-6-oxo-3-pyridazinyl)-benzoylchlorid aus Beispiel I werden in 5 ml THF mit 56 mg (0,5 mmol) 2-Fluoranilin und 0,1 ml Pyridin 2 Stunden bei 60°C gerührt. Es wird abgekühlt und eingeengt. Der Eindampfrückstand wird über eine Kieselgelsäule gereinigt. Die sauberen Fraktionen werden vereint, eingeengt, mit Methanol kristallisiert, abgesaugt und mit Methanol gewaschen. Man erhält 60 mg farblose Kristalle vom Schmelzpunkt 242-244°C.

20

15

In Analogie zu den o.a. Vorschriften der Beispiele 1 bis 3 werden die in der folgenden Tabelle aufgeführten Substanzen hergestellt. Bei den Strukturen der

folgenden Tabelle, die den oder die Reste beinhalten, ist stets eine Funktion gemeint.

25

BspNr.	Struktur	MG	Schmp.:
4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	273,34	217-218
5		297,32	208-210
6	о—СН, о—СН,	232,24	203-205
7		307,36	208-209
8	0 C C C C C C C C C C C C C C C C C C C	362,22	>250
9	O—————————————————————————————————————	260,30	155-156
10		321,38	223-226
11	0=\(\bigcup_{\cup}\)	257,29	248-50
12	0—N-N-CH ₃	246,27	157-159
13	0=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	293,33	>250

BspNr.	Struktur	MG	Schmp.:
14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	231,26	233-234
15	о— <mark>N—N—Сн,</mark>	245,28	228-230
16		357,42	258-260
17		308,34	228-230
18	CI	327,77	209-210
19	0=\(\bigcup_{N-N}\)	285,35	182-184
20	-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	308,34	220-223
21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	307,36	>250
22	0=\(\bigcup_{\circ}\)\(\circ_{\circ}\)	327,77	>250
23		321,38	242-243

BspNr.	Struktur	MG	Schmp.:
24		341,33	>260
25		333,39	215-216
26	0=\(\big ^N-N\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	316,38	>260
27		299,38	249-250
28		361,33	229-230
29	0=\(\bigver_{\text{N}}\)	287,32	202-203
30		376,25	208-209
31	0—————————————————————————————————————	260,30	283-284
32	о————————————————————————————————————	274,32	259-260

BspNr.	Struktur	MG	Schmp.:
33	O=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	274,32	120-122
34		272,31	158-159
35	0=\\ __\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	286,33	167-169
36	O	258,28	131-133
37		365,44	90-91
38	OCH,	286,33	104-105
39		322,37	146-148
40	0=N-N	286,33	155-156
41	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	308,34	156-157

BspNr.	Struktur	MG	Schmp.:
42	0=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	307,36	208-209
43		339,37	189-190
44		327,41	215-216
45		329,31	278-279
46	∞ N-N - O - F	311,32	260 Z
47	0-N-N-S	342,38	>250
48	0=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	336,35	283 Z
49	0-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	325,35	186-7
50	N-N S CH,	316,38	>260

BspNr.	Struktur	MG	Schmp.:
51	NH ₂	336,35	>250
52	H,N 0	342,38	>250
53	0=\(\begin{picture}(100,0) & \text{CH}_3 &	308,00	267-268
54	O-CH,	357,00	266-267
55	CH ₅	357,00	271-272
56	0=\(\begin{picture}(10,0) & \cdot & \	347,00	>260
57	0=\(\begin{picture}(100,0) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	271,00	216-217
58	0=\(\begin{picture}(10,0) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	301,00	152-153

BspNr.	Struktur	MG	Schmp.:
59		411,00	186-187
60		365,00	245-246
61		365,00	164-165
62	OH, OH, OH, OH,	287,00	166-167
63	CH, CH, CH,	395,00	146-147

PCT/EP00/05564

Patentansprüche

1. 6-Carboxyphenyldihydropyridazinon-Derivate der allgemeinen Formel (I)

5

10

in welcher

A, D, E und G gleich oder verschieden sind und für Wasserstoff, Halogen, Trifluormethyl, Hydroxy oder für (C₁-C₆)-Alkyl oder für (C₁-C₆)-Alkoxy stehen,

 R^1 und R^2 gleich oder verschieden sind und für Wasserstoff oder für $(C_1\text{-}C_6)$ -Alkyl stehen,

15 R³ für Reste der Formeln -OR⁴ oder -NR⁵R⁶ steht,

worin

20

R⁴ Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeutet oder (C₁-C₈)-Alkyl bedeutet, das gegebenenfalls durch Hydroxy, (C₁-C₆)-Alkoxy, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Halogen, (C₁-C₆)-Alkoxy, Hydroxy oder Trifluormethyl, substituiert sein kann, oder

25

(C₁-C₈)-Alkyl bedeutet, das gegebenenfalls durch eine Gruppe der Formel -NR⁷R⁸ substituiert ist,

worin

5

 R^7 und R^8 gleich oder verschieden sind und Wasserstoff, (C_1-C_6) -Alkyl oder Benzyl bedeuten,

oder

10

R⁴ Vinyl oder Allyl bedeutet,

oder

15

R⁴ Aryl mit 6 bis 10 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe, die besteht aus: Halogen,
(C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy oder Hydroxy, substituiert ist,

20

R⁵ Wasserstoff oder (C₁-C₄)-Alkyl bedeutet,

R⁶

Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeutet oder einen Rest der Formel

25

Aryl mit 6 bis 10 Kohlenstoffatomen oder einen 5- bis 7gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die hier
aufgeführten Ringsysteme gegebenenfalls ein- bis mehrfach,
gleich oder verschieden, durch Substituenten, ausgewählt aus

der Gruppe: Halogen, Trifluormethyl, Hydroxy, (C₁-C₆)-Alkoxy, Carboxyl, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-Alkyl und Resten der Formeln -SO₂-NR⁹R¹⁰ und -(CO)_a-NR¹¹R¹², substituiert sein können,

5

worin

R⁹, R¹⁰, R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff oder (C₁-C₆)-Alkyl bedeuten,

10

und

a eine Zahl 0 oder 1 bedeutet,

15

20

oder

R⁶

25

(C₁-C₈)-Alkyl bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Halogen, Trifluormethyl, Hydroxy, (C₁-C₆)-Alkoxy, Carboxyl, (C₁-C₆)-Alkoxycarbonyl, Aryl mit 6 bis 10 Kohlenstoffatomen und einen 5- bis 7-gliedrigen aromatischen Heterocyclen mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O, substituiert ist, worin die Ringsysteme gegebenenfalls ein- bis dreifach, gleich oder verschieden durch (C₁-C₆)-Alkyl, Halogen, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkoxycarbonyl, Trifluormethyl oder durch den Rest -CO-NH₂ substituiert sein können,

oder

PCT/EP00/05564

R⁵ und R⁶ gemeinsam mit dem Stickstoffatom cyclische Reste der Formeln

bilden, die ihrerseits gegebenenfalls substituiert sein können,

5

und deren Salze,

jedoch mit Ausnahme der Verbindung N-Methyl-4-(4-methyl-6-oxo-1,4,5,6tetrahydropyridazin-3-yl)-benzamid.

10

6-Carboxyphenyldihydropyridazinon-Derivate der allgemeinen Formel (I) 2. gemäß Anspruch 1,

in welcher

15

A, D, E und G gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom oder Trifluormethyl stehen,

R1 und R2 gleich oder verschieden sind und für Wasserstoff oder für Methyl stehen,

20

für Reste der Formeln -OR4 oder -NR5R6 steht, \mathbb{R}^3

worin

25

Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet oder R^4

(C₁-C₆)-Alkyl bedeutet, das gegebenefalls durch Hydroxy, (C₁-C₄)-Alkoxy, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, (C₁-C₄)-Alkoxy, Hydroxy oder Trifluormethyl, substituiert sein kann, oder

(C₁-C₆)-Alkyl bedeutet, das gegebenenfalls durch eine Gruppe der Formel -NR⁷R⁸ substituiert ist,

worin

R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten,

oder

R⁴ Allyl bedeutet,

R⁵ Wasserstoff oder (C₁-C₃)-Alkyl bedeutet,

Phenyl, Thiazolyl, Furyl oder Pyridyl bedeutet, wobei die aufgeführten aromatischen Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, Trifluormethyl, Hydroxy, (C₁-C₃)-Alkoxy, (C₁-C₃)-Alkoxycarbonyl, (C₁-C₄)-Alkyl und Resten der Formeln -SO₂-NR⁹R¹⁰ und -(CO)₂-NR¹¹R¹², substituiert sein können,

30

worin

10

5

15

20

 R^9 , R^{10} , R^{11} und R^{12} gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten,

5

und

a eine Zahl 0 oder 1 bedeutet,

oder

10

15

R⁶ (C₁-C₆)-Alkyl bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, Trifluormethyl, Hydroxy, (C₁-C₄)-Alkoxy, (C₁-C₄)-Alkoxycarbonyl, Phenyl, Pyridyl, Naphthyl, Furyl oder Thiazolyl, substituiert sind, wobei die Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Fluor, Chlor, Methyl, Methoxycarbonyl, Trifluormethyl oder durch einen Rest der Formel –CO-NH₂ substituiert sein können,

20

oder

R⁵ und R⁶ gemeinsam mit dem Stickstoffatom cyclische Reste der Formeln

und deren Salze,

jedoch mit Ausnahme der Verbindung N-Methyl-4-(4-methyl-6-oxo-1,4,5,6-tetrahydropyridazin-3-yl)-benzamid.

5

3. 6-Carboxyphenyldihydropyridazinon-Derivate der allgemeinen Formel (I) gemäß Anspruch 1,

in welcher

10

A, D, E und G für Wasserstoff stehen,

R¹ und R² gleich oder verschieden sind und für Wasserstoff oder für Methyl stehen,

15

R³ für Reste der Formeln -OR⁴ oder -NR⁵R⁶ steht,

worin

R⁴

20

Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet oder (C₁-C₅)-Alkyl bedeutet, das gegebenenfalls durch (C₁-C₄)-Alkoxy, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, (C₁-C₄)-Alkoxy, Hydroxy oder Trifluormethyl, substituiert sein kann, oder

25

(C₁-C₄)-Alkyl bedeutet, das gegebenenfalls durch eine Gruppe der Formel -NR⁷R⁸ substituiert ist,

30

worin

- 42 -

R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff, Benzyl oder Methyl bedeuten,

5 oder

R⁴ Allyl bedeutet,

R⁵ Wasserstoff oder (C₁-C₃)-Alkyl bedeutet,

10

R⁶ Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet oder Naphthyl, Phenyl, Thienyl, Thiazolyl, Furyl oder Pyridyl bedeutet, wobei die Ringsysteme gegebenenfalls ein -bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, Trifluormethyl, (C₁-C₃)-Alkoxy, (C₁-C₃)-Alkoxycarbonyl, (C₁-C₃)-Alkyl und Resten der Formeln -SO₂-NR⁹R¹⁰ und -(CO)_a-NR¹¹R¹², substituiert sind,

20

15

worin

 R^9 , R^{10} , R^{11} und R^{12} gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten,

25

und

a eine Zahl 0 oder 1 bedeutet,

oder

R⁶ (C₁-C₆)-Alkyl bedeutet, das gegebenenfalls durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Trifluormethyl, (C₁-C₃)-Alkoxy, (C₁-C₃)-Alkoxycarbonyl, Phenyl, Pyridyl, Naphthyl, Furyl, Thienyl oder Thiazolyl, substituiert ist, wobei die Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Fluor, Chlor, Methyl, Methoxycarbonyl, Trifluormethyl oder durch einen Rest der Formel -CO-NH₂, substituiert sind,

10 oder

R⁵ und R⁶ gemeinsam mit dem Stickstoffatom cyclische Reste der Formeln

15

und deren Salze,

jedoch mit Ausnahme der Verbindung N-Methyl-4-(4-methyl-6-oxo-1,4,5,6-tetrahydropyridazin-3-yl)-benzamid.

20

4. 6-Carboxyphenyldihydropyridazinon-Derivate der allgemeinen Formel (I) gemäß Anspruch 1

in welcher

25

A, D, E und G für Wasserstoff stehen

- R^3 für den Rest -NR⁵R⁶ mit R⁵ = H oder Methyl und R⁶ wie zuvor definiert steht
- 5 und die übrigen Reste die zuvor angegebene Bedeutung haben.
 - 5. Verfahren zur Herstellung von 6-Carboxy-phenyl-dihydropyridazinon-Derivaten gemäß Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man
- 10 [A] im Fall, daß in der obigen allgemeinen Formel (I) R³ für den Rest der Formel -OR⁴ steht,

Verbindungen der allgemeinen Formel (II)

$$O = \begin{pmatrix} A & D \\ N-N & CO_2H \end{pmatrix}$$
 (II),

15

in welcher

A, D, R1 und R2 die oben angegebene Bedeutung haben,

zunächst durch Umsetzung mit carbonsäureaktivierenden Reagenzien nach üblichen Methoden in die Verbindungen der allgemeinen Formel (IV)

in welcher

- 45 -

A, D, R1 und R2 die oben angegebene Bedeutung haben

und

5

10

für einen aktivierenden Rest, vorzugsweise für Chlor oder Imidazolyl, L steht,

überführt, und in einem zweiten Schritt mit Verbindungen der allgemeinen Formel (III)

> HO-R⁴ (III),

in welcher

die oben angegebene Bedeutung hat, R⁴

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base, umsetzt,

oder

20

25

15

im Fall, daß in der obigen allgemeinen Formel (I) R3 für den Rest der [B] Formel -NR5R6 steht,

Verbindungen der allgemeinen Formel (II) zunächst durch Umsetzung mit carbonsäureaktivierenden Reagenzien nach üblichen Methoden in die Verbindungen der allgemeinen Formel (IV)

$$O = \bigcup_{D^2} A \longrightarrow D$$
 CO-L (IV),

in welcher

und

A, D, R¹ und R² die oben angegebene Bedeutung haben

5

10

L für einen aktivierenden Rest, vorzugsweise für Chlor oder Imidazolyl, steht,

überführt, und in einem zweiten Schritt mit Amiden der allgemeinen Formel (V)

HNR^5R^6 (V),

in welcher

R5 und R6 die oben angegebene Bedeutung haben,

in inerten Lösemitteln umsetzt.

- 6. Arzneimittel oder pharmazeutische Zusammensetzung, enthaltend mindestens eine Verbindung gemäß Ansprüchen 1 bis 4 sowie einen oder mehrere pharmakologisch unbedenkliche Hilfs- und Trägerstoffe.
- 7. Arzneimittel oder pharmazeutische Zusammensetzung gemäß Anspruch 6 zur Prophylaxe und/oder Behandlung von Anämien.

- 8. Arzneimittel oder pharmazeutische Zusammensetzung gemäß Anspruch 6 oder 7 zur Behandlung von Frühgeborenen-Anämien, Anämien bei chronischer Niereninsuffizienz, Anämien nach einer Chemotherapie und Anämien bei HIV-Patienten.
- Arzneimittel oder pharmazeutische Zusammensetzung nach Anspruch 6 zur Stimulation der Erythropoese von Eigenblutspendern.
- 10. Verwendung von 6-Carboxyphenyldihydropyridazinon-Derivaten der allge-10 meinen Formel (I)

$$O = \begin{pmatrix} A & D & C - R^3 & \\ R^2 & G & E & O \end{pmatrix}$$
 (I)

in welcher

- A, D, E und G gleich oder verschieden sind und für Wasserstoff, Halogen, Trifluormethyl, Hydroxy oder für (C₁-C₆)-Alkyl oder für (C₁-C₆)-Alkoxy stehen,
- R¹ und R² gleich oder verschieden sind und

 für Wasserstoff oder für (C₁-C₆)-Alkyl stehen,
 - R³ für Reste der Formeln -OR⁴ oder -NR⁵R⁶ steht,

worin

25

R⁴ Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeutet oder

10

15

20

25

30

(C₁-C₈)-Alkyl bedeutet, das gegebenenfalls durch Hydroxy, (C₁-C₆)-Alkoxy, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Halogen, (C₁-C₆)-Alkoxy, Hydroxy oder Trifluormethyl, substituiert sein kann, oder

(C₁-C₈)-Alkyl bedeutet, das gegebenenfalls durch eine Gruppe der Formel -NR⁷R⁸ substituiert ist,

worin

R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff, (C₁-C₆)-Alkyl oder Benzyl bedeuten,

oder

R⁴ Vinyl oder Allyl bedeutet,

oder

R⁴ Aryl mit 6 bis 10 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe, die besteht aus: Halogen, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy oder Hydroxy, substituiert ist,

 R^5 Wasserstoff oder (C_1-C_4) -Alkyl bedeutet,

R⁶ Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeutet oder

WO 01/00589

einen Rest der Formel

Aryl mit 6 bis 10 Kohlenstoffatomen oder einen 5- bis 7gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die hier
aufgeführten Ringsysteme gegebenenfalls ein- bis mehrfach,
gleich oder verschieden, durch Substituenten, ausgewählt aus
der Gruppe: Halogen, Trifluormethyl, Hydroxy, (C₁-C₆)Alkoxy, Carboxyl, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-Alkyl und
Resten der Formeln -SO₂-NR⁹R¹⁰ und -(CO)_a-NR¹¹R¹², substituiert sind,

worin

R⁹, R¹⁰, R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff oder (C₁-C₆)-Alkyl bedeuten,

und

a eine Zahl 0 oder 1 bedeutet,

oder

R⁶ (C₁-C₈)-Alkyl bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Halogen, Trifluormethyl, Hydroxy, (C₁-C₆)-Alkoxy, Carboxyl, (C₁-C₆)-Alkoxycarbonyl, Aryl mit 6 bis 10 Kohlenstoffatomen oder einen 5- bis 7-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N

5

10

15

20

10

und/oder O bedeutet, substituiert sind, worin die Ringsysteme gegebenenfalls ein- bis dreifach, gleich oder verschieden durch (C₁-C₆)-Alkyl, Halogen, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkoxy-carbonyl, Trifluormethyl oder durch den Rest –CO-NH₂ substituiert sind,

oder

R⁵ und R⁶ gemeinsam mit dem Stickstoffatom cyclische Reste der Formeln

bilden, die ihrerseits gegebenenfalls substituiert sind,

und deren Salzen

15

zur Herstellung von Arzneimitteln oder pharmzeutischen Zusammensetzungen zur Prophylaxe und/oder Behandlung von Anämien.

Verwendung von 6-Carboxyphenyldihydropyridazinon-Derivaten der allgemeinen Formel (I) gemäß Anspruch 10,

in welcher

A, D, E und G gleich oder verschieden sind und

für Wasserstoff, Fluor, Chlor, Brom oder Trifluormethyl stehen,

- 51 -

R¹ ur	d R ² gleich oder verschieden sind und	
	für Wasserstoff oder für Methyl stehe	n

für Reste der Formeln -OR4 oder -NR5R6 steht, \mathbb{R}^3

worin

5

10

15

30

Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet oder R4 (C1-C6)-Alkyl bedeutet, das gegebenefalls durch Hydroxy, (C1-C₄)-Alkoxy, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, (C₁-C₄)-Alkoxy, Hydroxy oder Trifluormethyl, substituiert sein kann, oder

> (C1-C6)-Alkyl bedeutet, das gegebenenfalls durch eine Gruppe der Formel -NR7R8 substituiert ist,

20 worin

> R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten,

25 oder

- R^4 Vinyl oder Allyl bedeutet,
- R⁵ Wasserstoff oder (C₁-C₃)-Alkyl bedeutet,

Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet oder R^6

Phenyl, Thienyl, Thiazolyl, Furyl oder Pyridyl bedeutet, wobei die aufgeführten aromatischen Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, Trifluormethyl, Hydroxy, (C₁-C₃)-Alkoxy, (C₁-C₃)-Alkoxy-carbonyl, (C₁-C₄)-Alkyl und Resten der Formeln -SO₂-NR⁹R¹⁰ und -(CO)_a-NR¹¹R¹², substituiert sind,

worin

10

5

 R^9 , R^{10} , R^{11} und R^{12} gleich oder verschieden sind und Wasserstoff oder (C_1-C_4) -Alkyl bedeuten,

und

a

15

eine Zahl 0 oder 1 bedeutet,

oder

R⁶

20

(C₁-C₆)-Alkyl bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, Trifluormethyl, Hydroxy, (C₁-C₄)-Alkoxy, (C₁-C₄)-Alkoxycarbonyl, Phenyl, Pyridyl, Naphthyl, Furyl oder Thiazolyl, substituiert sind, wobei die Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Fluor, Chlor, Methyl, Methoxycarbonyl, Trifluormethyl oder durch einen Rest der Formel –CO-NH₂ substituiert sind,

25

30

oder

R⁵ und R⁶ gemeinsam mit dem Stickstoffatom cyclische Reste der Formeln

bilden, die ihrerseits gegebenenfalls substituiert sind,

5

und deren Salzen

zur Herstellung von Arzneimitteln oder pharmzeutischen Zusammensetzungen zur Prophylaxe und/oder Behandlung von Anämien.

10

12. Verwendung von 6-Carboxyphenyldihydropyridazinon-Derivaten der allgemeinen Formel (I) gemäß Anspruch 10,

in welcher

15

A, D, E und G für Wasserstoff stehen,

R¹ und R² gleich oder verschieden sind und für Wasserstoff oder für Methyl stehen,

20

R³ für Reste der Formeln -OR⁴ oder -NR⁵R⁶ steht,

worin

25

R⁴ Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet oder

(C₁-C₅)-Alkyl bedeutet, das gegebenenfalls durch (C₁-C₄)-Alkoxy, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, (C₁-C₄)-Alkoxy, Hydroxy oder Trifluormethyl, substituiert sein kann, oder

(C1-C4)-Alkyl bedeutet, das gegebenenfalls durch eine Gruppe der Formel -NR7R8 substituiert ist,

10

worin

R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff, Benzyl oder Methyl bedeuten,

15

5

oder

 R^6

R⁴ Allyl bedeutet,

20

Wasserstoff oder (C1-C3)-Alkyl bedeutet, R⁵

NR¹¹R¹², substituiert sind.

Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet oder Naphthyl, Phenyl, Thienyl, Thiazolyl, Furyl oder Pyridyl bedeutet, wobei die Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Substituenten, ausgewählt aus der Gruppe: Fluor, Chlor, Brom, Trifluormethyl, (C_1-C_3) -Alkoxy, (C_1-C_3) -Alkoxycarbonyl, (C_1-C_3) -Alkyl und Resten der Formeln -SO2-NR9R10 und -(CO)a-

30

25

worin

R⁹, R¹⁰, R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff oder (C_1-C_4) -Alkyl bedeuten,

5

und

eine Zahl 0 oder 1 bedeutet, a

oder

10

(C1-C6)-Alkyl bedeutet, das gegebenenfalls durch Substi-R⁶ tuenten, ausgewählt aus der Gruppe: Fluor, Chlor, Trifluormethyl, (C₁-C₃)-Alkoxy, (C₁-C₃)-Alkoxycarbonyl, Phenyl, Pyridyl, Naphthyl, Furyl, Thienyl oder Thiazolyl, substituiert sind, wobei die Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden, durch Fluor, Chlor, Methyl, Methoxycarbonyl, Trifluormethyl oder durch einen Rest der Formel -CO-NH₂, substituiert sind,

20

25

15

oder

R⁵ und R⁶ gemeinsam mit dem Stickstoffatom cyclische Reste der Formeln

bilden, die ihrerseits gegebenenfalls substituiert sind,

und deren Salzen

zur Herstellung von Arzneimitteln oder pharmzeutischen Zusammensetzungen zur Prophylaxe und/oder Behandlung von Anämien.

- 13. Verwendung von 6-Carboxyphenyldihydropyridazinon-Derivaten der allgemeinen Formel (I) gemäß Anspruch 10,
- in welcher
 - A, D, E und G für Wasserstoff stehen
 - R³ für den Rest -NR⁵R⁶ mit R⁵ = H oder Methyl und R⁶ wie zuvor definiert steht

und die übrigen Reste die zuvor angegebene Bedeutung haben,

und deren Salzen

20

15

zur Herstellung von Arzneimitteln oder pharmzeutischen Zusammensetzungen zur Prophylaxe und/oder Behandlung von Anämien.

Verwendung gemäß einem der Ansprüche 10 bis 13 zur Herstellung von Arzneimitteln oder pharmazeutischen Zusammensetzungen zur Prophylaxe und/oder Behandlung von Frühgeborenen-Anämien, Anämien bei chronischer Niereninsuffizienz, Anämien nach einer Chemotherapie und Anämien bei HIV-Patienten.

- 57 -

- 15. Verwendung gemäß einem der Ansprüche 10 bis 13 zur Herstellung von Arzneimitteln oder pharmazeutischen Zusammensetzungen zur Stimulation der Erythropoese von Eigenblutspendern.
- 5 16. Verwendung von Erythropoetin-Sensitizern zur Herstellung von Arzneimitteln oder pharmazeutischen Zusammensetzungen zur Prophylaxe und/oder Behandlung von Anämien.
- 17. Verwendung nach Anspruch 16 zur Herstellung von Arzneimitteln oder pharmazeutischen Zusammensetzungen zur Prophylaxe und/oder Behandlung von Frühgeborenen-Anämien, Anämien bei chronischer Niereninsuffizienz, Anämien nach einer Chemotherapie und Anämien bei HIV-Patienten.
- Verwendung von Erythropoetin-Sensitizern zur Herstellung von Arzneimitteln oder pharmazeutischen Zusammensetzungen zur Stimulation der Erythropoese von Eigenblutspendern.
 - Verwendung nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet,
 daß die Erythropoetin-Sensitizer peroral appliziert werden.