

INVEST IN A BETTER FUTURE THROUGH AGRICULTURE

KEY

FINDINGS

Countries to Invest In	Crops
Liberia	Meat: pig
Timor-Leste	Meat: pig
Madagascar	Meat: chicken
Haiti	Milk: whole fresh goat

PHASE 1:

Defining Social Good

Our Definition of Underprivileged Countries

Positive Correlation between

Percent of population that is poor

AND

Percent of population that works in agriculture

How We Define Social Good

Social Good is defined as:

Ag_rate x poverty_rate x undernourishment

GDP per capita

Variables:

Ag_rate = Number of agricultural workers / Population Poverty_rate = Percent of People Below Poverty Line Undernourishment = Prevalence of Undernourishment (3yr avg.)

PHASE 2:

Minimizing Environmental Costs

Combining Social Good and Environmental Metrics

Formula:

Metric used for defining environmental impact:

Social Good

Using last 5 years of CO2 Emission

CO2 Emission per country for last 5 years

Overall worldwide CO2 emissions for last 5 years

FUTURE WORK

- Adding machine learning to compare future investments
- Use algorithm to see if environmental impact has decreased and if our definition of social good has increased
- Find a metric for the crop production values
- Use crop production as a factor to determine products to invest in

Team Presentation

Izzy Friedfeld-Gebaide

Sophomore

College: Barnard

Linkedin:

https://www.linkedin.com/in/ifriedfeldgeb aide/

Patricia Ong

Sophomore

College: USC

Linkedin:

https://www.linkedin.com/in/patricia-ong-6 30409205/

Meghana Tera

Sophomore

College: Carnegie Mellon

Linkedin:

https://www.linkedin.com/in/meghana-tera/

Nikan Taheri

Sophomore

College: UCI

Linkedin:

https://www.linkedin.com/in/nikan-taheri-861 a051b3/

Kevin Zheng

Junior

College: SUNY Polytechnic

Linkedin:

https://www.linkedin.com/in/kevin-zheng-322a50

THANKS **FUR** LISTENING

If you have any questions, take a look at the appendix

Appendix

- EDA
- Function (invest product)

EDA

Function

Function used to determine which product to invest in based on the different metrics

```
#EmissionsList

def determineMinProd(Country):
    tempProd = (ProdTonDF.loc[Country]>=np.percentile(ProdTonDF,50))
    tempProd= tempProd.to_frame()
    prodEmissionsList = [x.split('-')[0] for x in EmissionsList]
    tempProd = tempProd.set_index(tempProd.reset_index()['index'].str.split('-', expand = True)[0])
    tempProd = tempProd.loc[prodEmissionsList, Country]
    return tempProd.loc[tempProd].index[0]
```

