

 ${\color{red} {Home}}$ ${\color{red} {Gameboard}}$ Chemistry Inorganic Bonding Shape of ${\color{red} {SnCl_2}}$

Shape of SnCl_2

Which of the following structures represents the gaseous ${\rm SnCl_2}$ molecule? The orbital lobe represents a lone (unshared) pair of electrons.

Figure 1: Possible shapes of SnCl_2

() A

B

() C

Adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 1, Question 5

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Shapes and Angles

Shapes and Angles

Part A	BCl_3 and PCl_3
W	The boron atom has no d-orbitals available for bonding. The boron atom in BCl ₃ has six electrons in its valency shell, whereas the phosphorus atom in PH ₃ has eight. The repulsion between chlorine atoms is greater than that between hydrogen atoms, The covalent radius of phosphorus is greater than that of boron. The covalent radius of chlorine is greater than that of hydrogen.
Part B	$\mathrm{NH_3}$
In	the ammonia molecule, what is the approximate value of the $H-N-H$ bond angle? 180° 120° 107° 90° 60°

Part A adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 3, Question 4; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 1

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Bond Angles

Bond Angles

Part A Methane, ammonia and water

The bond lengths and bond angles in the molecules of methane, ammonia and water may be represented as follows:

Figure 1: Shapes of molecules of methane, ammonia and water.

What causes this trend in the bond angles shown, according to valence shell electron pair repulsion theory?

- 1 increasing repulsion between hydrogen atoms as the bond length decreases
- 2 the number of non-bonding electron pairs in the molecule
- 3 a nonbonding electron pair having a greater repulsive force than a bonding electron pair
 - 1, 2 and 3 are correct
 1 and 2 only are correct
 2 and 3 only are correct
 1 only is correct
 3 only is correct

Part B SO_3^{2-}

The ${\rm SO_3}^{2-}$ ion may be represented as (geometry not necessarily representative):

Figure 2: SO_3^{2-} ion

What is the O-S-O bond angle?

- 90° exactly
- \bigcirc about 107°
- \bigcirc about 109.5°
- \bigcirc 120 $^{\circ}$ exactly

Part A adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 4, Question 31; Part B adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 2

Gameboard:

STEM SMART Chemistry Week 7

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Dative Bond and Similar Shapes

Dative Bond and Similar Shapes

Trimethylamine, Me_3N , reacts with boron trifluoride, BF_3 , to form a compound of formula Me_3NBF_3 .

$$[\mathrm{Me}=\mathrm{CH_3}]$$

How may this reaction be drawn in terms of the shapes of the reactants and products?

- **Δ**
- () **B**
- \bigcirc c

Part A adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 4, Question 3; Part B adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 6

Gameboard:

Part B

STEM SMART Chemistry Week 7

Similar shapes

Home Gameboard Chemistry Inorganic Bonding Shapes of Fluorides

Shapes of Fluorides

For each of the following, enter a one to two word answer, using appropriate shape of molecule terminology, e.g. "linear". BF_3 Part A Describe the shape of BF_3 . CF_4 Part B Describe the shape of ${\ensuremath{\mathrm{CF}}}_4.$ NF_3 Part C Describe the shape of NF_3 . Part D SF_6 Describe the shape of SF_6 .

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Shapes of Halide Compounds

Shapes of Halide Compounds

For each of the following, deduce the shape of the molecules and enter a one to two word answer, using appropriate shape of molecule terminology, e.g. "linear".

Part A BBr_3
Deduce the shape of of BBr_3 .
Part B ${ m PF}_3$
Deduce the shape of of PF_3 .
Part C ${ m SF}_4$
Deduce the shape of ${ m SF}_4.$
Part D ${ m IF}_5$
Deduce the shape of $\mathrm{IF}_5.$

Part E $AlCl_3$ and Cl^-

Predict the shape of the species formed from the reaction of $AlCl_3$ with Cl^- .

Adapted with permission from OCSEB, STEP Chemistry, Jun 1998, Question 4

Gameboard:

STEM SMART Chemistry Week 7

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Shapes of Xenon Compounds

Shapes of Xenon Compounds

For each of the following, deduce the shape of the molecules and enter a one to two word answer, using appropriate shape of molecule terminology, e.g. "linear".

$\begin{array}{ccc} \textbf{Part E} & XeOF_4 \end{array}$

Describe the shape of $XeOF_{4}. \\$

Part A adapted with permission from OCR, STEP Chemistry, June 1999, Question 5

Gameboard:

STEM SMART Chemistry Week 7

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Shape of Ozone

Shape of Ozone

Part A $ m O_3$	
Due diet the above of the array male and O	
Predict the shape of the ozone molecule O_3 .	
Part B	
Faltb	
Have recovering a point of all attended on in C. 2	
How many lone pairs of electrons are in O_3 ?	
•	

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 1, Question 5; Part B created for isaacphysics.org by Robert Less

Gameboard:

STEM SMART Chemistry Week 7

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Shapes of Molecules and Ions

Shapes of Molecules and Ions

By considering the number of lone and bonding pairs of electrons, predict the shape of ${
m ClF_4}^-$.

Part D $\operatorname{SbF_5}^{n-}$

Antimony, Sb, is in group 15 of the Periodic Table. It forms a series of salts which contain the ${\rm SbF_5}^{n-}$ anion, the structure of which is a square-based pyramid:

Figure 1: Structure of the ${\rm SbF_5}^{n-}$ anion

Deduce the total number of electrons around the antimony atom.

Deduce the value of n.

Adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 3, Question 2