

SEQUENCE LISTING

<110> Salceda, Susana
Cafferkey, Robert

<120> Method of Diagnosing, Monitoring, Staging, Imaging and
Treating Breast Cancer

<130> DEX-0209

<140>
<141>

<150> 60/213,084

<151> 2000-06-21

<160> 12

<170> PatentIn Ver. 2.1

<210> 1

<211> 4780

<212> DNA

<213> Homo sapiens

<400> 1

agcaaggag gcatgccaag agcaagagtg tgggtgtcaa cgtagagaat cctcctttt 60
gccccaaaagg ggtgaagtgt ttgtatgcagg tcattggagga gaaagcatgg tgtggtaag 120
acacggaaagg aatgaaggag aggtgagatg aggccacaga aacagggtgt agaggtgtt 180
gcaccttggaa aacattgagg accgtgtgtc aataaaaggcc atggcgagac gatggaaaggc 240
cagaggacac aacagagaga ggaaaccact gttccttaga ggcagaactg agaatacagg 300
acggttaggg gtgaactgag acagcagatg gactcagttac agcaggttga ggacatggaa 360
gctggcagtg gtgtcatcg tggggggcag ggcaggaagg ggtcagagtt caggaaagat 420
tcctgagtct gtggattgtac ttggaggtgg cagggcatgc aggactggat gttgaagatg 480
aaaaggagtt tctggaaagat gacagtggaa ggcaacactg tttgttagact gtgcattttt 540
acactggcat accacatgga atgagagagt ctggcagcca ttctaaggca gttattgggaa 600
tgtaaatttt atgacggaaat tttatgtttaa aagaaggacaggaggcagg taggagggaa 660
gataacctta tgaatttgc cagggttttag catcagtaaa agggctgaca tggaatagg 720
gaagggtggaa tgcagagttc ccaaagtgg ggcactggca aatctcaggc gcaagtcagt 780
ggtatgttcg gtatcatggc tgagtgttagg agcatttttag ggaatagaag ttaaatccta 840
gacgacaagc gagtggggta acaacactt acctgtcatg gtaactactt cattgaatag 900
aaaaacagaa aaagaagaaa ccttatagag ggtgatggta aagcaacccc aactgatatg 960
gaaggcagtg ttggcaatca ctgaagggtca ggattttgaa agcaaacaat taacaatgt 1020
aaatttgcaa gtgtgggggt tggacatagg ttactatgtg tttaatgtgg tctccaacaa 1080
aattagcaga gccaaaatga gaaggaagta ttactctgtt taacaagatt gaaattaagg 1140
ggacagtata cagttaaac cactttggaa ttttaggaatg tcagagttgg tagggtgggt 1200
attgttgcac cttgatccac agtatggaaat aatggcaaag aggaaaacta tatagaaaga 1260
acttgtcatt agggatatttgc ttggcttcct taaagctcct tgagggaaac acttgcataa 1320

O S P R E Y M A R K I N G

tcgtttatgaa gcggagtcg 1380
aaggatgagc ttcatcagca atcctcagaa tgtcagttt actagctaag gatgcaggta 1440
agtatgttgg acaccaagag aacaggaagg aagtgtttt aacactggag gtgggtcatg 1500
aggaagctta tacatattca cattgtaat caatttcaag gacagatgaa caaagactgg 1560
gcgttacca tagagcaggg ttttgcattt ttttccctt aaggcaaaag gcagaaatgaa 1620
gtgggtacac catgattaag ttgcattctg tagagatagg atcatttaag tcaagtca 1680
aacaaaaatt agagacattt aagatgttgg ggttagaaaag ggttatcaaa taggttagaa 1740
agatggctt aaaggaaatg agggaaattt cagttagttt gaggatggc agactggta 1800
tgtgacaat gagtggtaa ataaggaaat ctcagactga gaatcctggc agatcttca 1860
atgggttaga ctgcaggaat attgatttt aagccagact gaagcaaattt ctatgtataa 1920
aggaagggga aagggtggct gaatcaaattt ttcttaccaat actgctttt tttagtattt 1980
agttaaaattt cagattaaat gcttggctt gaagaatgca aagcttactt gaggcttataa 2040
atatggatcc cagtgggtga gtggaggtga gttaaagttt aaaaactctga ggcaatctt 2100
acttaactga agttgttgg ttagtacaga atgccaagtt aatatggta atactgaaca 2160
aaaaataatg gaagggcaac tacagtagct taagatggca ctttaaggaa gtgttaggcag 2220
aaagtcaaga aattaaaata attatgaatc attatatggc aggcaatattt tccagtgaaa 2280
atcagagaaa ataaactcac atacatgtac tggttacagct gatcttagta tgaatatttt 2340
ctattaaaga ctgttttaaa ataagttt aatattttt gaaatggttc cagataacaa 2400
gaaatatgat gcaataaaac ctgataaataa aaagcaatattt aaagatttga atggtttga 2460
ataggtagtga aataaaaaaaat ttaagttggt agttgcatta aaaaggtcaaa acatggggaa 2520
taattgttag aatgttgtgt atataatata tattgttacg ggtgcaataa atattcagg 2580
gaaacagagc tgctgaaaga gaatgaatgc tttagaaggaa tggtgcctt aaggctttc 2640
taaaacttt taggtaaagg acaaattctg ggaggacgaa agataataag taggactagt 2700
tacatagaga cttaggatgt ccatagtctt tcaagaaattt gcccaacctt tgcgagaagg 2760
tggttagtta atatattgtat gttgggttaa agcaaatttt ttcatagtagt gtagattttt 2820
atacattttt aaagtaaaagg ggagtaggaa agattaaaga tagatcaaag aaaggaataa 2880
ttgatgaaac aactttctgg aagagattttag agggatgttgc tcttttgcac tctggaaagac 2940
ttgatttttag agaggataaa ggaagaaagt ggataattctt agaattaaac accaaaagg 3000
tctatgtgtc tggcaccatgt tgaagcaact tacctattttt ttcatattcat ttcatattcat 3060
ttcatttcat ttcatattcat cctataacag tccttaagaga tcaaataattt tgtccacgt 3120
tacacagtca gtatgttagca gggccagcat tcaaattctt atctgtcttataa caaaccata 3180
ttccctcttataa ttatgtataa ctgttttcaat gttgaaggaa atcaaaccataa gaatttctgt 3240
tttttcaactg cgattataag gaaaaatattt atttttctga aatgagacat attgtatgtt 3300
aagaccttga ggtgacaggtt aaaaatttggaa atatctgtga tggggaaatg caaaaaggaa 3360
ggaatggta aaagataacctt attaccatctt atgcccctggt atttcacttc ttccatttgca 3420
cagcatagac tttagattgg ccatggatta aaaaatttggaa aattctgtaca aaaaactaaa 3480
tagaaaggag ttgtttttt aagtaggtat atgatgggtc aatataaaac ttactactaa 3540
caaaaacttta aacaattcccc taaatgccaat cttttataa aaaaaatca aacaaccat 3600
caagcaaaag agtccatagc cagcagacca aatgttggaa tctctggctt aatttgcataa 3660
atctatgtttt taaaactccct tagtgaagag gggcaagaaa acctcttcctt tttttccctt 3720
cttgggtggaa atgttttgcattt gttgttgcattt tttttccctt atactatatg taatttctat 3780
attgttgcattt tttgtatattt ggtattataa aattataactt ctttagattcc gtttgcataa 3840
ctttctgggg tttgtgagccac ctgagttt aagtagcaaaa atgaacctgg ggaagtggaa 3900
agagcttagta ttctcaattt gcaagggattt gattcttcaat tgggttcagc aatttacttc 3960
cctctgaaat taagtggcaaa agtaatagca tccctttaaaa aacaggacat tgggtgagagg 4020
tagaaatagca ggaggaattt tgaaacatgg agggatggctt actggaaaag aactgtatgaa 4080
gtgcagagtc tctccagaca atggtagaaaa ccacaggactt acatataagat tgggccccaaa 4140
tactaqtta qaaaaaqqta aataaaaacta gctttactta agagtacagc cagcttaattt 4200

actggctagt ggacatattt cagacaaatc taactggaga gaaaaacaga ccaggagaga 4260
aagcgaagtt acaaggaaat ggaacttagag aaacctcaca aagggataaa ggaggtaatt 4320
aaaggtaaa gccagatagc ctcgagctca aaggagaaat attggaggcc agataggaaa 4380
gtgccttcct actcaggggg ttatggatcc agggtggtca aagaatagaa gttagttcc 4440
accaggggcc agagggaca atctgggatt cagacacagc agtggtgcca acgtaatct 4500
acetcgtgct agagtctgag tagcctagtc tatcacccaa cacagataag actggacagg 4560
ggctcccagg aaccaacatc taagaaggg a gttggagag gggctaaaag aaagcagggtt 4620
aagccccaaa tgtaactgaa tgatgaccag ggataactat ttactagtgc ttttatgatt 4680
tattgttaact ctgtaacttt cccagtattt gttatTTT taacttctgt ttctcctgta 4740
cttacgagca gtaaaagttt ttcaaaacat aaaaaaaaaa 4780

<210> 2
<211> 509
<212> DNA
<213> Homo sapiens

<400> 2
ttgacctgtg acacctgtg cctaataaac atattaagaa aagtacttag tattgtatag 60
atatttggat tccaagagaa aatgcaacat ttataataag aagtccatac tctttttctt 120
acagcagagc gtcacactga gttccattt aaaaaaggac tcattttca ggccaacaac 180
tgttgcattt gaatcagata taaataatag atttccaca aacactcagc tgattgtac 240
agtgttattt aagctggat gtttatttt ttttcttgg aaggataagct ttatatttgg 300
gcttcatta taaattgtgt tctgcttgg tttaaatggc ttacttataa gctagagcac 360
tatatggag ttttcttctc tgtatggat cctttattt gcttggctgg gttcataaca 420
gtgtgtgcca tattcttctt tttcaactgat tctaagccat gagacttatt agcatctgg 480
ggcaagctgc agggaccatt aacagtgtg 509

<210> 3
<211> 427
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (109)..(179)

<220>
<221> unsure
<222> (330)..(355)

<400> 3
aaaaaaaaaa aaaaaaaaaaattc aacatTTT tttgagaaat ttcaaaccta caaaaagttg 60
caggaatagt gtctatctga aatacatatt cagtttttc tttagaagnn nnnnnnnnnn 120
nnnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnt 180
aaaatcactg tgagcactga cttagcacat actggaccgt tgctcctagg agaaaatacag 240
ggttgcgttc ctgtgagctt tggcgtgtat atttcatca gctgatcaat atgtatctt 300

TRANSCRIPT

gttttatgtg tatttctgtt taaagattcn nnnnnnnnnn nnnnnnnnnn nnnnnnggttg 360
agtgttacc gttgaactca cagcccacag gactagaaca catgcctaaa taaagtttat 420
ctaacat 427

<210> 4
<211> 1506
<212> DNA
<213> Homo sapiens

<400> 4
taaattcgcg gccgcgtcga cgca~~gc~~ccta cagagactgg aaaagaagcc caaaccagg 60
ccccagaga ggtccccag gccc~~ctt~~ttgg ttc~~c~~c~~t~~gagc ctcagctgg ggtgggggt 120
gcctgc~~ag~~tg cgctggctca gtctc~~ctt~~tct gaaaagctgg atccagctt~~g~~ tttgaagccc 180
ttgagctgat cttagatccg gcgcaggaga ccaacgc~~t~~tg cc~~a~~tgctgtt ccggctctca 240
gagcactc~~c~~c caccagagga ggaaggc~~t~~cc cccaccaga gagc~~c~~tcagg agaggggcac 300
catctca~~ag~~tg cgaagagacc caaccc~~c~~t~~g~~t gcctacacac cac~~tt~~cg~~c~~t gaaagctgtg 360
cagcgcat~~t~~g ctgag~~t~~tca c~~t~~gc~~a~~gt~~t~~c~~t~~ atcagcaatt tgaatgagaa ccaggc~~c~~tca 420
gaggagggag gatgagctgg cgggag~~c~~ttc gggagctgg ttatccaaga gaggaagatg 480
aggaggaaga ggaggat~~g~~t gaagaagagg aagaagaaga ggacaggcag gctgaagtcc 540
tgaaggtcat caggc~~a~~gt~~t~~t gctgggcaaa agacaac~~c~~t~~g~~ tggcc~~c~~agg g~~t~~ctgg~~a~~agg 600
gcccgtgg~~g~~ ggc~~c~~ccaccc c~~c~~tctggat~~g~~ agtcc~~g~~ag~~g~~ agatggaggc tctgaggacc 660
aagtgg~~a~~aga cccag~~c~~acta agt~~g~~ag~~c~~ctg gggag~~g~~gaacc tcagc~~g~~cc~~c~~t tccc~~c~~c~~t~~tg 720
agc~~c~~tggc~~a~~c ataggcaccc agc~~c~~tc~~g~~atc tcccaggagg aagtggagg~~g~~ gacatcg~~c~~tg 780
ttccccagaa acc~~c~~actct~~a~~ tc~~c~~t~~c~~acc~~c~~t gttt~~t~~gt~~g~~t cttccc~~c~~tc~~g~~ c~~c~~t~~g~~ct~~a~~gg~~g~~ 840
ctgc~~g~~cttc tgacttct~~g~~ aagactaagg ctgg~~t~~ct~~g~~tg tttg~~c~~tt~~g~~tt tgccc~~c~~ac~~c~~tt 900
tggctgata~~c~~ ccagagaacc tgg~~c~~act~~t~~g ctgc~~c~~t~~g~~at~~g~~ ccc~~c~~cc~~c~~ctg cc~~a~~gt~~c~~att~~c~~ 960
ctccattc~~c~~ ac~~g~~agg~~g~~gg agtggat~~g~~tg agacagccc~~a~~ cattggaaaa tccagaaaaac 1020
cg~~g~~gaacagg gat~~t~~tgcc~~c~~tc~~c~~aatt~~t~~c act~~c~~cc~~c~~aga tc~~c~~t~~c~~cccc tgacacagg 1080
ag~~a~~cccacag ggc~~c~~ag~~g~~accc taagatct~~g~~ ggaaaggagg tc~~c~~t~~g~~agaac~~c~~ cttgaggtac 1140
c~~c~~tt~~t~~agat~~c~~cc~~c~~ tttt~~t~~ac~~c~~cc~~c~~ act~~t~~t~~c~~ctat ggaggatt~~c~~c aagt~~c~~acc~~c~~ac tt~~c~~t~~c~~t~~c~~acc~~c~~ 1200
gg~~c~~t~~t~~ct~~a~~cc~~c~~ agg~~g~~gt~~c~~cagg actaagg~~g~~gt tttt~~t~~ccat agc~~c~~tc~~a~~aca ttttgg~~g~~aat 1260
cttccc~~t~~ta~~a~~ tc~~a~~cc~~c~~tt~~g~~c tc~~c~~t~~c~~tt~~g~~gg tgc~~c~~t~~g~~gaag atggact~~g~~gc agagac~~c~~ct~~t~~ 1320
ttgttgc~~g~~tt~~t~~ atg~~c~~cc~~a~~cg~~g~~ga atg~~c~~cc~~g~~ct~~a~~ gtttat~~g~~tcc~~c~~ ccgg~~t~~gggg~~g~~ 1380
acacagc~~g~~gg ggg~~c~~cc~~c~~agg tttt~~c~~ct~~t~~gt ccc~~c~~ag~~c~~tg ctg~~c~~cccc~~c~~ tttccc~~c~~ttc 1440
ttcc~~c~~ct~~g~~act ccaggc~~c~~t~~g~~a acc~~c~~ct~~c~~cc~~c~~ tg~~c~~t~~g~~taata aatctt~~t~~gt~~a~~ aataacaaaa 1500
aaaaaaaa 1506

<210> 5
<211> 2086
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (1524)

DNA sequence

<400> 5
ctttgtataa ggctcagcta aaaggaaat tgagtggtc agtaccacg gatactatac 60
actctattgc atgattctcc tgcctacatc agaagacgtt tataagccta tttaaagga 120
taccagttgg aatctctctt ttattaatca ccaagagaac catgaacaag ctgttatca 180
tttgactcat cattaatct tgatttccag cttctcacac ttgaaagaag acataataca 240
tttctcacag gattctggga ctattaactg aacttatgtg tgaaaagga attcatacaa 300
tgaaagact agaaataatt attatactta taaccattgt attttacat gttaaaata 360
tagccataat tagcctactc aaatccaagt gtaaaagtaa aatgattgc tttcgaaaa 420
tttccttgc ttagggatc atggacattg aagcatatct tgaaaagaatt ggctataaga 480
agtcttagaa caaattggac ttggaaacat taactgacat tcttcaacac cagatccgag 540
ctgttccctt tgagaacett aacatccatt gtggggatgc catggactta ggcttagagg 600
ccatTTTGA tcaagttgtg agaagaaatc ggggtggatg gtgtctccag gtcaatcatc 660
ttctgtactg ggctctgacc actattgggtt ttgagaccac gatgttgaa gggatgttt 720
acagcactcc agccaaaaaa tacagcactg gcatgattca cttctccctg caggtgacca 780
ttgatggcag gaactacatt gtcgatgctg gtttggacg ctcataccag atgtggcagc 840
ctctggagtt aatttctggg aaggatcagc ctcaggtgcc ttgtgtcttc cggttgcacgg 900
aagagaatgg attctggat ctagacaaa tcagaaggaa acagtagatt ccaaataatgaag 960
aatttcttca ttctgatctc cttagaagaca gcaaataccg aaaaatctac tccttactc 1020
ttaagcctcg aacaattgaa gattttgagt ctatgaatac atacctgcag acatctccat 1080
catctgtgtt tactagtaaa tcattttgtt cttgcagac cccagatggg gttcaactgtt 1140
tggggcctt caccctcacc cataggagat tcaattataa ggacaataca gatctaata 1200
agtcaagac tctgagttaga gaagaaatag aaaaagtgt gaaaaatata tttatattt 1260
ccttcagag aaagcttgc cccaaacatg gtgatagatt tttactatt tagaataagg 1320
agtaaaacaa tcttgcatt ttgtcatcca gtcaccagt tatcaactga cgacctatca 1380
tgtatcttct gtacccttac ttatTTGA agaaaatcct agacatcaaa tcatttcacc 1440
tataaaaatg tcatcatata taattaaaca gcttttaaa gaaacataac cacaacacctt 1500
ttcaaataat aataataata attnttaaaa atgtctttta aagatggcct gtggttatct 1560
tggaaattgg tgatttatgc tagaaagctt ttaatgttg tttattgtt aattcctaga 1620
aaagtttat gggtagatga gtaaataaaa tattgtaaaa aaacttattg tctataaagt 1680
atattaaaac attgttggct aatataattt gaaaaaaaaatg gttttttgg aagacttagg 1740
atattatggt gctacataat tttcctcgta tgctcttttc ctctcatctt tcttgcct 1800
taaattactt tacttccttg cacactttgc catacaagaa tgaacatgag cttttcttgc 1860
gtagatctga gttgaaatcc tggacact gggcaatattt ctttttagat ctgtagctct 1920
gactcctcag gcataaaaatg ggaataatgc ttttacagtt tagtggcgga actaaactcc 1980
caaaattatt tgttatatgg atcaagtaat aacgtcagta atgttttgg tacaaagtca 2040
ttatTTAATA aaagttatttgc ctccatcttgc ttggccccccc caaaaaa 2086

<210> 6
<211> 169
<212> PRT
<213> Homo sapiens

<400> 6
Met Leu Phe Arg Leu Ser Glu His Ser Ser Pro Glu Glu Glu Ala Ser
1 5 10 15

Pro His Gln Arg Ala Ser Gly Glu Gly His His Leu Lys Ser Lys Arg

20

25

30

Pro Asn Pro Cys Ala Tyr Thr Pro Pro Ser Leu Lys Ala Val Gln Arg
35 40 45

Ile Ala Glu Ser His Leu Gln Ser Ile Ser Asn Leu Asn Glu Asn Gln
50 55 60

Ala Ser Glu Glu Glu Asp Glu Leu Ala Glu Leu Arg Glu Leu Gly Tyr
65 70 75 80

Pro Arg Glu Glu Asp Glu Glu Glu Glu Asp Asp Glu Glu Glu Glu
85 90 95

Glu Glu Glu Asp Arg Gln Ala Glu Val Leu Lys Val Ile Arg Gln Ser
100 105 110

Ala Gly Gln Lys Thr Thr Cys Gly Pro Gly Val Trp Lys Gly Pro Trp
115 120 125

Glu Arg Pro Pro Pro Leu Asp Glu Ser Glu Arg Asp Gly Gly Ser Glu
130 135 140

Asp Gln Val Glu Asp Pro Ala Leu Ser Glu Pro Gly Glu Glu Pro Gln
145 150 155 160

Arg Pro Ser Pro Ser Glu Pro Gly Thr
165

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 7
tggaacaact ttcttggaga gatta 25

<210> 8
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 8

atgggtttga tagacagatg agga

24

<210> 9

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 9

cctgtgacac ctgttagccta ataaa

25

<210> 10

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 10

tgacgctctg ctgtaagaaa aa

22

<210> 11

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 11

gccttacaga gactggaaaa gaa

23

<210> 12

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 12

tcagcgaagg tggtgtgttag

20

© 1994 CambridgeSoft