

Gépi tanulási esettanulmányok

Osztályozás

2024.09.23.

Huszti Dorottya data scientist

MODELLEZÉSI ALAPOK

MODELLEZÉSI ALAPOK

Osztályozás

Osztályozás

Jellemzői

- Felügyelt tanulás
- > Tipikus use-case: csalás detekció, szavazói döntés, churn, címkézés
- Célváltozó: diszkrét kategorikus változó
- Gépi tanulási modellek osztályozáshoz: logisztikus regresszió, döntési-fa alapú,
 k-nn (k darab legközelebbi szomszéd), stb..
- Kiértékelési metrikák: Accuracy, Precision, Recall, Confusion matrix

Van egy tanító adathalmazom ... ahol ismerem a tulajdonságokat és

Tulajdonságleíró attribútumok – **bemeneti változók**

Életkor	Jövedelem	Lakásméret	Gyerekek	Autók száma
42	280 000	82	3	1
88	90 000	44	0	0
22	180 000	32	0	1
38	400 000	102	1	2

Van egy tanító adathalmazom ... ahol ismerem a tulajdonságokat és

		Х		
X1	X2	Х3	X4	X5

Tulajdonságleíró attribútumok – **bemeneti változók**

Életkor	Jövedelem	Lakásméret	Gyerekek	Autók száma
42	280 000	82	3	1
88	90 000	44	0	0
22	180 000	32	0	1
38	400 000	102	1	2

Van egy tanító adathalmazom

- ... ahol ismerem a tulajdonságokat és ... ahol ismerem a célváltozót

	X					
X1	X2	Х3	X4	X5		
					Célváltozó Target	
Tulajdor	Tulajdonságleíró attribútumok – bemeneti változók					
Életkor	Jövedelem	Lakásméret	Gyerekek	Autók száma	Biztosítás?	
42	280 000	82	3	1	OK	
88	90 000	44	0	0	NO	
22	180 000	32	0	1	ОК	
38	400 000	102	1	2	NO	

És van egy új sor, ahol ... ismerem a tulajdonságokat

Életkor	Jövedelem	Lakásméret	Gyerekek	Autók száma	Biztosítás
55	180 000	62	1	3	????

	У					
X1	X2	Х3	X4	X5	Célváltozó	
Tulajdor	Tulajdonságleíró attribútumok – bemeneti változók					
Életkor	Jövedelem	Lakásméret	Gyerekek	Autók száma	Biztosítás?	
42	280 000	82	3	1	ОК	
88	90 000	44	0	0	NO	
22	180 000	32	0	1	ОК	
38	400 000	102	1	2	NO	

38

És van egy új sor, ahol

- ... ismerem a tulajdonságokat ... modell mondja meg mekkora a célváltozó

400 000

102

55 180 000 62 1 3 ????	Életkor	Jövedelem	Lakásméret	Gyerekek	Autók száma	Biztosítás
	55	180 000	62	1	3	

	X				
X1	X2	MOE	DELL	X5	
Tulajdo	onságleíró a	ttribútumok	– bemen	eti változók	Célváltozó Target Címke
Életkor	Jövedelem	Lakásméret	Gyerekek	Autók száma	Biztosítás?
42	280 000	82	3	1	ОК
88	90 000	44	0	0	NO
22	180 000	32	0	1	OK

NO

Osztályozási feladatok

- Binary Multi-class
 - o csalás nem csalás
 - Kutya macska hal

Osztályozási feladatok

- Binary Multi-class
 - o csalás nem csalás
 - Kutya macska hal
- Single-label Multi label
 - Csalás nem csalás
 - könyvek címkézése

Osztályozási algoritmusok

Osztályozási algoritmusok

- Logisztikus regresszió
- Döntési fa
- K-nn
- Összetett modellek (Ensemble models)- (Képzés későbbi alkalmán):
 - Gradient Boosting Classifier
 - Random forest

$$y = logistic(\propto) = \frac{1}{1 + exp(-\propto)}$$

$$y = logistic(\propto) = \frac{1}{1 + \exp(-\infty)}$$

$$y = logistic(\propto) = \frac{1}{1 + \exp(-\infty)}$$

$$\propto = b_o + b_1 * x_1 + \dots + b_n * x_n$$

$$y = logistic(\propto) = \frac{1}{1 + exp(-\infty)}$$

$$\propto = b_o + b_1 * x_1 + \dots + b_n * x_n$$

x_1	x_2		x_n	
area	rooms	district	elevator	price
120	4	3	1	90
50	2	3	0	45
82	3	8	1	59
46	1	13	0	40
70	3	5	0	71
65	2	3	1	54

X input features

y target

$$y = logistic(\propto) = \frac{1}{1 + exp(-\propto)}$$

$$\propto = b_o + b_1 * x_1 + \cdots + b_n * x_n$$

$$y = logistic(\propto) = \frac{1}{1 + \exp(-\alpha)}$$

$$\alpha = b_o + b_1 * x_1 + \dots + b_n * x_n$$

Előnyei/ Hátrányai

- + Könnyen alkalmazható, kicsi számításigény
- + Jó alapmodellként szolgál
- Jó teljesítményhez szükség van a független változók kigyűjtésére
- Kevésbé könnyen interpretálható mint a döntési fa

Döntési fa

DÖNTÉSI FA

Döntési fa

Előnyei/ Hátrányai

- +Könnyen értelmezhető
- +Változó kiválasztás automatikusan megtörténik
- +Relatív kis adatelőkészítést igényel
- +Kevesebb adattisztítást igényel
- +A paraméterek közötti nem lineáris kapcsolat nem befolyásolja a teljesítményt
- -Túl tanulás
- -A mohó algoritmus nem biztos hogy a globálisan legjobb döntési fát készíti el
- -Kiegyensúlyozatlanok lehetnek, ha egyik osztály jelentősen dominánsabb

A lusta tanuló

A k legközelebbi szomszédok (KNN) algoritmus egy egyszerű, könnyen megvalósítható felügyelt gépi tanulási algoritmus. A KNN algoritmus feltételezi, hogy hasonló dolgok egymáshoz közvetlen közel léteznek. Más szavakkal, hasonló dolgok közel vannak egymáshoz.

Normalizáljuk a paramétereket:

$$X' = rac{X - X_{\min}}{X_{\max} - X_{\min}}$$

Távolság számításhoz: Eucleadian távolság

$$d(\mathbf{p},\mathbf{q}) = d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2}$$

Hogyan válasszuk meg k-t?

- Amint a K értékét 1-re csökkentjük, predikcióink kevésbé stabilak lesznek. Például, ha K == 1 és 99 pont a 100-ból sárga, de a legközelebbi lila, akkor lilát predikálunk
- Fordítva, ahogy növeljük a K értékét, predikcióink stabilabbá válnak a többségi szavazás / átlagolás miatt, és így nagyobb valószínűséggel fognak pontosabb előrejelzéseket tenni.
- Azokban az esetekben, amikor a címkék között többségi szavazást folytatunk, K-t általában páratlan számként definiáljuk, hogy elkerüljük a tiebreakert.

Előnyei/ Hátrányai

- + Az algoritmus egyszerű és könnyen megvalósítható.
- + Nincs szükség modell felépítésére, több paraméter hangolására vagy további feltételezésekre.
- + Az algoritmus sokoldalú. Használható osztályozáshoz, regresszióhoz és kereséshez.
- Az algoritmus jelentősen lassabb lesz, ahogy a példák és / vagy előrejelzők / független változók száma növekszik.

KIÉRTÉKELÉSI METRIKÁK

Kiértékelési metrikák

Metrikák:

- Konfúziós mátrix (Confusion matrix)
- Pontosság (Accuracy)
- Fedés (Recall)
- Pontosság?! (Precision)

		Actual		
		Positive	Negative	
cted	Positive	True Positive	False Positive	
Predicted	Negative	False Negative	True Negative	

Confusion matrix

Jellemzői

- Átfogó képet ad a modellünk teljesítményéről
- A további metrikák ebből vezethetők le

		Actual		
		Positive	Negative	
redicted	Positive	True Positive	False Positive	
Predi	Negative	False Negative	True Negative	

Accuracy

Jellemzői

- Népszerű és könnyen interpretálható metrika
- > Sok esetben csalóka lehet

		Actual		
		Positive	Negative	
redicted	Positive	True Positive	False Positive	
Predi	Negative	False Negative	True Negative	

Precision

Jellemzői

Hány kiválasztott elem releváns

- A Precision egy helyes kiértékelési metrika, mikor szeretnénk biztosak lenni az előrejelzésünket illetően.
- PI.: Ha egy olyan rendszert építünk, melynek segítségével szeretnénk a kártyatulajdonosok hitelkeretét csökkenteni, biztosra kell mennünk, mert egy nem megalapozott limit csökkentés felhasználói elégedetlenséget eredményezhet

Precision = (TP)/(TP+FP)

		Positive	Negative
cted	Positive	True Positive	False Positive
Predicted	Negative	False Negative	True Negative

Actual

Recall

Jellemzői

Hány releváns elem lett kiválasztva

- A Recall egy helyes metrika, mikor az a célunk hogy a lehető legtöbb pozitív elemet kiszűrjük.
- Pl.: Ha egy olyan rendszert építünk, melynek feladata a tumordetekció a legfontosabb hogy az összes esetet kiszűrjük, még akkor is ha néha néha olyanokat is kiválasztunk, melyekbe nem vagyunk biztosak

Recall = (TP)/(TP+FN)

		1 ictual		
		Positive	Negative	
edicted	Positive	True Positive	False Positive	
Predi	Negative	False Negative	True Negative	

Actual.

Precision vs Recall

A kiválasztottak közül mennyi releváns

A releváns elemek hány százalékát találtuk meg

KIÉRTÉKELÉSI MÓDSZEREK

TRAIN-VALIDATION-TEST

TRAIN-VALIDATION-TEST

- K-fold keresztvalidáció
- Legyen k = 4 -> osszuk 4 véletlen csoportra az adathalmazt

- K-fold keresztvalidáció
- Legyen k = 4 -> osszuk 4 véletlen csoportra az adathalmazt
- Egyik csoportot jelöljük ki tesztnek
- Többin tanítsunk
- Értékeljük ki
- Ismételjük összes csoporttal

- K-fold keresztvalidáció
- Legyen k = 4 -> osszuk 4 véletlen csoportra az adathalmazt
- Egyik csoportot jelöljük ki tesztnek
- Többin tanítsunk
- Értékeljük ki
- Ismételjük összes csoporttal

- K-fold keresztvalidáció
- Legyen k = 4 -> osszuk 4 véletlen csoportra az adathalmazt
- Egyik csoportot jelöljük ki tesztnek
- Többin tanítsunk
- Értékeljük ki
- Ismételjük összes csoporttal

Az eredmény nem függ a tanítóhalmaz kiválasztásától

