From sample mean to population mean

FOUNDATIONS OF PROBABILITY IN PYTHON

Alexander A. Ramírez M. CEO @ Synergy Vision

Sample mean review

LAW OF LARGE NUMBERS

The sample mean approaches the expected value as the sample size increases.

$$ext{Sample mean} = ar{X_2} = rac{x_1 + x_2}{2}$$

$$\text{Sample mean} = \bar{X_3} = \frac{x_1 + x_2 + x_3}{3}$$

$$\text{Sample mean} = \bar{X_n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$ext{Sample mean} = ar{X_n} = rac{x_1 + x_2 + \dots + x_n}{n}
ightarrow \mathbb{E}(\mathbb{X})$$

Generating the sample

1 0 0 0 0 1

```
# Import binom and describe
from scipy.stats import binom
from scipy.stats import describe
# Sample of 250 fair coin flips
samples = binom.rvs(n=1, p=0.5, size=250, random_state=42)
# Print first 100 values from the sample
print(samples[0:100])
[0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 1\ 0
```


Calculating the sample mean

```
# Calculate the sample mean
print(describe(samples[0:10]).mean)
```

0.6

Plotting the sample mean

```
from scipy.stats import binom
from scipy.stats import describe
import matplotlib.pyplot as plt

# Define our variables
coin_flips, p, sample_size , averages = 1, 0.5, 1000, []

# Generate the sample
samples = binom.rvs(n=coin_flips, p=p, size=sample_size, random_state=42)
```


Plotting the sample mean (Cont.)

```
# Calculate the sample mean
for i in range(2,sample_size+1):
    averages.append(describe(samples[0:i]).mean)

# Print the first values of averages
print(averages[0:10])
```

```
[0.5, 0.6666666666666666, 0.75, 0.6, 0.5, 0.42857142857142855, 0.5, 0.555555555555555
```

Plotting the sample mean (Cont.)

```
# Add population mean line and sample mean plot
plt.axhline(binom.mean(n=coin_flips, p=p), color='red')
plt.plot(averages, '-')

# Add legend
plt.legend(("Population mean", "Sample mean"), loc='upper right')
plt.show()
```

Sample mean plot

Let's practice!

FOUNDATIONS OF PROBABILITY IN PYTHON

Adding random variables

FOUNDATIONS OF PROBABILITY IN PYTHON

Alexander A. Ramírez M. CEO @ Synergy Vision

The central limit theorem (CLT)

The sum of random variables tends to a normal distribution as the number of them grows to infinity.

Conditions:

- The variables must have the same distribution.
- The variables must be independent.

Poisson population plot

```
# Add the imports
from scipy.stats import poisson, describe
from matplotlib import pyplot as plt
import numpy as np
# Generate the population
population = poisson.rvs(mu=2, size=1000, random_state=20)
# Draw the histogram with labels
plt.hist(population, bins=range(9), width=0.8)
plt.show()
```


Sample means plot

```
# Generate 350 sample means, selecting
# from population values
np.random.seed(42)
# Define list of sample means
sample_means = []
for _ in range(350):
    # Select 10 from population
    sample = np.random.choice(population, 10)
    # Calculate sample mean of sample
    sample_means.append(describe(sample).mean)
```

Sample means plot (Cont.)

```
# Draw histogram with labels
plt.xlabel("Sample mean values")
plt.ylabel("Frequency")
plt.title("Sample means histogram")
plt.hist(sample_means)
plt.show()
```


Let's add random variables

FOUNDATIONS OF PROBABILITY IN PYTHON

Linear regression

FOUNDATIONS OF PROBABILITY IN PYTHON

Alexander A. Ramírez M. CEO @ Synergy Vision

Linear functions

Linear function parameters

$$y = slope * x + intercept$$

Linear function with random perturbations

 $y = slope * x + intercept + random_number$

Start from the data and find a model that fits

What model will fit the data?

What would be the criteria to determine which is the best model?

What model will fit the data? (Cont.)

Probability and statistics in action

Calculating linear model parameters

```
# Import LinearRegression
from sklearn.linear_model import LinearRegression
# sklearn linear model
model = LinearRegression()
model.fit(hours_of_study, scores)
# Get parameters
slope = model.coef_[0]
intercept = model.intercept_
# Print parameters
print(slope, intercept)
(1.496703900384545, 52.44845266434719)
```


Predicting scores based on hours of study

```
# Score prediction
score = model.predict(np.array([[15]]))
print(score)
```

[74.89901117]

Plotting the linear model

```
import matplotlib.pyplot as plt

plt.scatter(hours_of_study, scores)

plt.plot(hours_of_study_values, model.predict(hours_of_study_values))

plt.show()
```


Let's practice with linear models

FOUNDATIONS OF PROBABILITY IN PYTHON

Logistic regression

FOUNDATIONS OF PROBABILITY IN PYTHON

Alexander A. Ramírez M. CEO @ Synergy Vision

Original data

New data

Where would you draw the line?

Solution based on probability

The logistic function

logistic(t) = logistic(slope * x + intercept)

Changing the slope

Changing the intercept

From data to probability

Outcomes

Misclassifications

Logistic regression

```
# Import LogisticRegression
from sklearn.linear_model import LogisticRegression
# sklearn logistic model
model = LogisticRegression(C=1e9)
model.fit(hours_of_study, outcomes)
# Get parameters
beta1 = model.coef_[0][0]
beta0 = model.intercept_[0]
# Print parameters
print(beta1, beta0)
(1.3406531235010786, -15.05906237996095)
```


Predicting outcomes based on hours of study

```
hours_of_study_test = [[10]]

outcome = model.predict(hours_of_study_test)
print(outcome)
```

```
array([False])
```


Probability calculation

```
# Put value in an array
value = np.asarray(9).reshape(-1,1)
# Calculate the probability for 9 hours of study
print(model.predict_proba(value)[:,1])
```

array([0.04773474])

Let's practice!

FOUNDATIONS OF PROBABILITY IN PYTHON

Wrapping up foundations of probability in Python

Alexander A. Ramírez M. CEO @ Synergy Vision

Fundamental concepts

Important probability distributions

The most important results

Linear and logistic regression

Keep learning at DataCamp!

FOUNDATIONS OF PROBABILITY IN PYTHON

