Assigned: 17/19 January 2017

Project #2 – Samples and statistics

EE 511: Spring 2017

Due: (1 week) at the start of lecture. Late penalty: 15% per day.

- 1. Simulate sampling uniformly (how many?) on the interval [-3,2].
 - a. Generate a histogram of the outcomes.
 - b. Compute the sample mean and sample variance for your samples. How do these values compare to the theoretical values? If you repeat the experiment will you compute a different sample mean or sample variance?
 - c. Compute the bootstrap confidence interval (what width?) for the sample mean and sample standard deviation.
- 2. Produce a sequence X by drawing samples from a standard uniform random variable.
 - a. Compute $Cov[X_k, X_{k+1}]$. Are X_k and X_{k+1} uncorrelated? What can you conclude about the independence of X_k and X_{k+1} ?
 - b. Compute a new sequence Y where: $Y[k] = X[k] 2 \cdot X[k-1] + 0.5 \cdot X[k-2] X[k-3]$. Assume X[k] = 0 for $k \le 0$. Compute $Cov[X_k, Y_k]$. Are X_k and Y_k uncorrelated?
- 3. Let M = 10. Simulate (uniform) sampling with replacement from the outcomes 0, 1, 2, 3, ..., M-1.
 - a. Generate a histogram of the outcomes.
 - b. Perform a statistical goodness-of-fit test to conclude at the 95% confidence level if your data fits samples from a discrete uniform distribution 0, 1, 2, ..., 9.
 - c. Repeat (b) to see if your data (the same data from b) instead fit an alternate uniform distribution 1, 2, 3, ..., 10.