Polymerní materiály

přírodní polymery

- bílkoviny, enzymy, škrob, celuloza → biologické a fyziologické procesy
- kaučuk, dřevo, kůže, bavlna, vlna, hedvábí → používány už věky
- začátek 20. století → objevena struktura makromolekulárních látek ⇒ pomalý rozvoj polymerní chemie a materiálů
- po r. 1945 → prudký nástup polymerních materiálů ⇒ revoluční změny v oblasti materiálů
- možnost řízení vlastností → výsledek lepší než původní přírodní materiály
- kovy nebo dřevo jsou v mnoha aplikacích střídány (ne nahrazovány)
 polymery s dostatečnými vlastnostmi a levnější a jednodušší výrobou
 a zpracováním
- polymery a kompozity s polymerní matricí jsou nezbytné pro mnoho aplikací (pneumatiky, lepidla, barvy, povlaky, biomedicínské výrobky, LCD)
- vlastnosti polymerních materiálů vycházejí stejně jako u kovů a keramiky – ze struktury materiálů

Tvorba vazby s hybridizovaným uhlíkem

Hybridizace uhlíku

$$C \quad \frac{\uparrow \downarrow}{1s} \, \frac{\uparrow \downarrow}{2s} \, \frac{\uparrow}{2p_x} \, \frac{\uparrow}{2p_y} \, \frac{1}{2p_z}$$

 C^* $\frac{\uparrow\downarrow}{1s} \frac{\uparrow}{2s} \frac{\uparrow}{2p_x} \frac{\uparrow}{2p_y} \frac{\uparrow}{2p_y} \frac{\uparrow}{2p_z}$

Výroba polymerů

Z jednoduchých organických látek tzv. polyreakcí: polymerace polykondenzace

základní pojmy:

monomer = vstupní nízkomolekulární organická sloučenina

mer = přechodná forma vzniklá během polyreakce

polymer = vzniká vzájemnou vazbou vysoce reaktivních konců rozštěpených vazeb; je v něm *n*-krát zapojena merová jednotka

polymerační stupeň *n* = počet merů v řetězci ⇒ délka polymerního řetězce ⇒ další vlastnosti materiálu

Polymerace

štěpení násobných vazeb → reakční místa ⇒ řetězení

Polykondenzace

vzájemná reakce organických látek → polymer + kondenzát

Repeat unit for polyethylene terephthalate (PET polymer)

Methyl alcohol (byproduct)

Vliv stupně polymerace na vlastnosti polymeru

Polymerní řetězec

Molekulová hmotnost M

$$M = n \cdot m$$

n - polymerační stupeň

m - hmotnost základního meru

Primární vazebné síly - kovalentní

$$\rightarrow$$
 C \leftarrow C \leftarrow C \leftarrow

Složení řetězce

homopolymer - v řetězci mery pouze jednoho typu: A 🔾 nebo B

kopolymer - v řetězci mery dvou typů: A 🔘 i B 🌑

terpolymer - v řetězci mery tří typů

Struktura a tvar řetězců v materiálu

dopad na vlastnosti – zvláště mechanické (deformace řetězce)

Konfigurace (takticita) řetězce

popisuje uložení bočních skupin atomů kolem základního řetězce
přímý dopad na vlastnosti materiálu → pravidelně uspořádané řetězce je
možno poskládat blíž k sobě
změna konfigurace řetězce možná pouze chemickým zásahem

Konformace řetězce

- •Jednoduché vazby → schopnost rotace
- •Každá poloha → určitá energie
- Přednostně obsazovány polohy s minimální energií
- •Změna konformace řetězce možná fyzikálním zásahem (ohřevem)

- •Lineární řetězce (PE) → postavení trans trans, tvar cik cak
- •<u>Řetězce s malou boční skupinou</u> (izotaktický PP) → postavení **trans gauche**, pravá šroubovice v úhlu 120°
- <u>Řetězce s velkou boční skupinou</u> (PS) → neschopny rotace
- <u>Řetězce s násobnou vazbou</u> → neschopny rotace

Polymerní materiál jako Σ řetězců

Polymerní materiál = soubor vzájemně se ovlivňujících řetězců

Sekundární vazebné síly

Intermolekulární vazby různého charakteru vazebná energie řádově 10¹ kJ.mol⁻¹

disperzní (Londonovy) síly

nepatrná polarizace způsobená pohybem elektronů; slabé, nezávislé na teplotě

•permanentní dipól

kolem molekul s polárními vazby, snaha o vzájemnou orientaci narušována tepelným pohybem molekul; \uparrow teplota \Rightarrow koheze \downarrow •indukovaný dipól

v blízkosti permanentních dipólů, které polarizují okolní původně neutrální vazby

vodíkové můstky

nejsilnější typ sekundární vazby, přechod k primárním vazbám

Molekulová hmotnost polymeru

Polyreakce → řetězce různé délky statistický charakter molekulové hmotnosti výsledného polymeru.

tvar distribuční křivky → technologické vlastnosti polymeru

Tšířka křivky \to Tinterval $T_{\rm m} \Rightarrow \downarrow$ náročnost technologie zpracování, \downarrow kvalita výrobků (tlusté stěny, tvarově méně náročné výrobky)

Krystalizace

pouze jednoduché a dlouhé řetězce (PE)
vznikají složitější struktury (ortorombická mřížka PE)
často jen část jednoduchých makromolekul organizovaná v mřížce →
polymery pouze částečně krystalické = semikrystalické

krystalinita polymeru
$$k = \frac{\rho_{c}(\rho_{v} - \rho_{a})}{\rho_{v}(\rho_{c} - \rho_{a})} \cdot 100 \text{ [\%]}$$

 $ho_{\rm c}$ – hustota zcela krystalického polymeru, $ho_{\rm v}$ – hustota zkoumaného semikrystalického polymeru, $ho_{\rm a}$ – hustota zcela amorfního polymeru

Krystalické polymery obvykle pevnější a odolnější vůči měknutí a rozpadu vlivem tepla než amorfní

Zapletení lineárních řetězců brání jejich přísnému uspořádání → vyšší stupeň organizace např. po tažení za studena ⇒ krystalinita až 95 %

Nadmolekulární struktura

krystalizace ve zředěném roztoku ⇒ **lamela** destička o tloušťce 10 ÷ 20 nm a délce řádově 10 mm; je v ní za sebou naskládaný určitý počet řetězců

krystalizace z taveniny ⇒ **sferolit** lamely radiálně rostoucí z krystalizačního zárodku oddělené amorfním podílem

krystalizace v klidu střídaná prouděním ⇒ **šiš – kebab**

uspořádání amorfní fáze = amorfní klubko

Tranzitní teploty

krystalický podíl polymeru \rightarrow **teplota tání** $T_{\rm m}$ (melt) \Longrightarrow atomy či ionty opouštějí svá místa v organizované krystalové mřížce

amorfní podíl \rightarrow teplota skelného přechodu T_{g} (glass)

 $T > T_{q} \rightarrow$ možné konformační změny \Rightarrow řetězce schopny natáčení

 $T = T_{\alpha} \rightarrow \text{řetězce}$ ustaveny do stabilní konformace

T < T_q → polymer je sklovitý, tvrdý a křehký

↑ mezimolekulová soudržnost a \downarrow ohebnost řetězců \Rightarrow ↑ \textit{T}_{g}

Obvykle platí, že $T_g \cong \frac{2}{3} \cdot T_m$

teplota viskozního toku T_f (flow)

porušeny sekundární vazby ⇒ řetězce kloužou po sobě

Chování polymerů při zatížení

polymery → elastická i plastická deformace řízena jinými zákonitostmi než ideálně – elastické materiály (kovy)

materiál		deformace		
		elastická	plastická	
polymery $(T > T_g)$	rozplétání řetězců	napínání vazeb	napřimování, rotace a pokluzy řetězců	
kovy		napínání vazeb	pohyb dislokací	

Chování polymerů při zkoušce tahem

zkušební vzorek "dog bone"

> zkušební stroje podobné jako pro zkoušky kovů; nižší síly + větší prodloužení

Semikrystalický materiál při tahovém zatížení

Na vlastnosti polymerů má vliv

Modul pružnosti polymeru E jako funkce

konstrukční polymery: $T_{prac} \le T_{g}$

elastomery: $T_{prac} \ge T_{g}$

Základní typy polymerů

- Termoplasty
- Reaktoplasty
- Elastomery

Termoplasty:

- složeny z dlouhých řetězců
- typické chování → plastické, tvárné
- •řetězce mohou a nemusejí být rozvětvené
- relativně slabé sekundární vazby
- semikrystalické nebo amorfní
- při zahřátí měknou a taví se
- při zvýšených teplotách se dají tvářet
- lehce recyklovatelné

Reaktoplasty (termosety)

- •složeny z dlouhých lineárních nebo rozvětvených řetězců svázaných do 3-D sítě → řetězce nemohou rotovat nebo pokluzovat ⇒ dobrá tuhost, pevnost a tvrdost, malá tažnost a rázová odolnost
- při zkoušce tahem vykazují podobné chování jako křehké kovy nebo keramika
- při ohřevu se netaví, ale dochází k dekompozici
- po zesítění jen obtížně zpracovatelné → obtížná recyklace

fenolové pryskyřice

Elastomery

- přírodní i syntetické polymery
- •schopnost elastické deformace větší než 200%
- •amorfní termoplasty nebo lehce zesítěné reaktoplasty

bez příčných vazeb zatížení → rozplétání řetězců, napínání vazeb odlehčení → řetězce se nevrátí do původního tvaru ⇒ <u>nevratná deformace</u> s příčnými vazbami zatížení → napínání vazeb; odlehčení → příčné vazby vrátí řetezce do původního tvaru ⇒ <u>deformace vymizí</u>

Zpracování polymerů na výrobek

typ polymeru	termoplast	reaktoplast	elastomer
definice materiálu	teplem zplastizovatelný a tlakem tvarovatelný; reversibilní proces	tlakem tvarovatelný, teplo ⇒ zesítění; ireversibilní proces	
příklad	PE, PP, PVC, PC, PA	pryskyřice epoxidové, fenolové	kaučuk
vhodná technologie	lisování vakuové tváření	lisování	
	přetlačování extruze	přetlačování	podobně jako reaktoplasty
	vyfukování injekční vstřikování	extruze	

Spojování plastů

Lepení

rozpouštědla

chemicky rozpouštění lepených povrchů →
měknou ⇒ pohyb makromolekul přes rozhraní
povrchů a jejich vzájemné navazování;
odpaření rozpouštědla → "zamrznutí"
makromolekul ⇒ spojení obou povrchů

Pásky

Adheziva (lepidla)

Mechanické spojování šrouby nýty

Svařování

tavné

vyhřívaná Al-deska s povrchy krytými skelnou tkaninou (nepřilnavé);

svařované materiály přiloženy a po dostatečném ohřevu sundány a přitlačeny k sobě;

zvláště na spojování velkoplošných výrobků z termoplastů

horkým plynem (vzduchem) variace na svařování kovů; svařování a utěsňování desek PP při výrobě velkých chemických nádrží, přídavný materiál je stejný jako svařovaný

třením

rotační tvary, ve svaru výronek (v další operaci odstraněn)

Odpadové hospodářství

Regenerace navrácení původních užitných vlastností → materiály využívány k původním účelům

Recyklace přepracování odpadů → druhotné suroviny

Konečná likvidace energetické využití

shromažďování přeprava skladování úprava využívání zneškodňování

máloodpadové technologie

tailor made materials

```
požadované vlastnosti
 (zvláště mechanické)
           výběr atomů
           chemická konstrukce řetězce
           vzájemná interakce řetězců
           aditiva
                          vhodná technologie
                         zpracování na
                          výrobek
                                     správné
                                      podmínky
                                     provozu
```

kvalitní výrobek