```
In [1]:
```

```
import pandas as pd;
import numpy as ny;
```

In [2]:

```
dataset = pd.read_csv('Social_Network_Ads.csv')
```

In [3]:

```
dataset.head()
```

Out[3]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0

In [4]:

```
dataset['Gender'].replace('Male',1,inplace=True);
dataset['Gender'].replace('Female',0,inplace=True);
```

In [5]:

```
dataset['Gender']
```

Out[5]:

```
0
        1
1
        1
2
        0
3
        0
4
        1
395
        0
396
        1
397
        0
398
        1
399
```

Name: Gender, Length: 400, dtype: int64

In [6]:

```
X= dataset.iloc[:,1:4]
Y= dataset.iloc[:,-1]
X
```

Out[6]:

	Gender	Age	EstimatedSalary
0	1	19	19000
1	1	35	20000
2	0	26	43000
3	0	27	57000
4	1	19	76000
395	0	46	41000
396	1	51	23000
397	0	50	20000
398	1	36	33000
399	0	49	36000

400 rows × 3 columns

In [7]:

```
from sklearn.model_selection import train_test_split
```

In [8]:

```
x_train, x_test, y_train, y_test = train_test_split(X,Y,test_size=0.20,random_state
```

In [9]:

```
from sklearn.linear_model import LogisticRegression
```

In [10]:

```
logistic_model = LogisticRegression()
```

In [11]:

```
logistic_model.fit(x_train,y_train)
```

Out[11]:

LogisticRegression()

In [12]:

```
y_pred = logistic_model.predict(x_test)
```

```
In [13]:
```

Error = (FP+FN)/(TP+TN+FN+FP)

```
y_pred
Out[13]:
Θ,
     0,
     Θ,
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
In [14]:
from sklearn.metrics import confusion_matrix, accuracy_score
In [18]:
accuracy = accuracy_score(y_test,y_pred)*100
confusion_mat = confusion_matrix(y_test,y_pred)
In [20]:
print(accuracy)
print(confusion_mat)
56.25
[[45 0]
[35 0]]
In [23]:
TP = confusion mat[0][0];
TN =confusion mat[1][1];
FP = confusion mat[1][0];
FN = confusion_mat[0][1];
Precision = (TP)/(TP+FP);
Recall = (TP)/(TP+FN)
```

```
In [25]:
```

```
print("TP : ",TP)
print("FP : ",FP)
print("TN : ",TN)
print("FN : ",FN)
print("Precision : ", Precision)
print("Recall : ", Recall)
print("Error : ", Error)
```

TP: 45
FP: 35
TN: 0
FN: 0

Precision: 0.5625

Recall : 1.0 Error : 0.4375

In []: