Function, Domain and Range

What is a function?

Definition of a function

A function f from a set of elements X to a set of elements Y is a rule that assigns to each element x in X exactly one element y in Y.

One way to demonstrate the meaning of this definition is by using arrow diagrams.

 $f: X \to Y$ is a function. Every element in X has associated with it exactly one element of Y.

 $g: X \to Y$ is not a function. The element 1 in set X is assigned two elements, 5 and 6 in set Y.

The Vertical Line Test

The Vertical Line Test states that if it is *not possible* to draw a vertical line through graph so that it cuts the graph in more than one point, then the graph is a function.

This is not the graph of a function. The vertical line we have drawn cuts the graph twice.

Domain of a function

For a function $f: X \to Y$ the domain of f is the set X.

This also corresponds to the set of x-values when we describe a function as a set of ordered pairs (x, y).

If only the rule y = f(x) is given, then the domain is taken to be the set of all real x for which the function is defined. For example, $y = \sqrt{x}$ has domain; all real $x \ge 0$. This is sometimes referred to as the *natural* domain of the function.

Range of a function

For a function $f: X \to Y$ the range of f is the set of y-values such that y = f(x) for some x in X.

This corresponds to the set of y-values when we describe a function as a set of ordered pairs (x, y). The function $y = \sqrt{x}$ has range; all real $y \ge 0$.

- a. State the domain and range of $y = \sqrt{x+4}$.
- **b.** Sketch, showing significant features, the graph of $y = \sqrt{x+4}$.

Solution

a. The domain of $y = \sqrt{x+4}$ is all real $x \ge -4$. We know that square root functions are only defined for positive numbers so we require that $x+4 \ge 0$, ie $x \ge -4$. We also know that the square root functions are always positive so the range of $y = \sqrt{x+4}$ is all real $y \ge 0$.

b.

The graph of $y = \sqrt{x+4}$.

a. A parabola, which has vertex (3, -3), is sketched below.

b. Find the domain and range of this function.

Solution

The domain of this parabola is all real x. The range is all real $y \geq -3$.

The graph of the function $f(x) = (x-1)^2 + 1$ is sketched below.

The graph of $f(x) = (x - 1)^2 + 1$.

State its domain and range.

Solution

The function is defined for all real x. The vertex of the function is at (1,1) and therfore the range of the function is all real $y \ge 1$.

Specifying or restricting the domain of a function

We sometimes give the rule y = f(x) along with the domain of definition. This domain may not necessarily be the natural domain. For example, if we have the function

$$y = x^2$$
 for $0 \le x \le 2$

then the domain is given as $0 \le x \le 2$. The natural domain has been restricted to the subinterval $0 \le x \le 2$.

Consequently, the range of this function is all real y where $0 \le y \le 4$. We can best illustrate this by sketching the graph.

The graph of $y = x^2$ for $0 \le x \le 2$.

1. a. State the domain and range of $f(x) = \sqrt{9 - x^2}$.

b. Sketch the graph of $y = \sqrt{9 - x^2}$.

a. The domain of $f(x) = \sqrt{9-x^2}$ is all real x where $-3 \le x \le 3$. The range is all real y such that $0 \le y \le 3$.

b.

The graph of
$$f(x) = \sqrt{9 - x^2}$$
.

2. Sketch the following functions stating the domain and range of each:

a.
$$y = \sqrt{x-1}$$
 c. $y = \frac{1}{x-4}$

c.
$$y = \frac{1}{x-4}$$

b.
$$y = |2x|$$

d.
$$y = |2x| - 1$$
.

2. a.

The graph of $y = \sqrt{x-1}$. The domain is all real $x \ge 1$ and the range is all real $y \ge 0$.

The graph of y = |2x|. Its domain is all real x and range all real $y \ge 0$.

c.

The domain is all real $x \neq 4$ and the range is all real $y \neq 0$.

d.

The graph of y = |2x| - 1. The domain is all real x, and the range is all real $y \ge -1$.

4. a.

The graph of $y=-\sqrt{4-x^2}$. This is a function with the domain: all real x such that $-2 \le x \le 2$ and range: all real y such that $-2 \le y \le 0$.

The graph of |x| - |y| = 0. This is not the graph of a function.

c.

The graph of $y = x^3$. This is a function with the domain: all real x and range: all real y.

d.

The graph of $y = \frac{x}{|x|}$. This is the graph of a function which is not defined at x = 0. Its domain is all real $x \neq 0$, and range is $y = \pm 1$.

e.

The graph of |y| = x. This is not the graph of a function.

- 5. a. The values of x in the interval 0 < x < 4 are not in the domain of the function.
 - b. x = 1 and x = -1 are not in the domain of the function.