PMATH352W18 - Complex Analysis - Topical Exercises

Johnson Ng

January 28, 2018

Contents

1	Complex Numbers	2
	1.1 Basic Algebraic Properties	2
	1.2 Polar Form	2
	1.3 Roots of a Complex Number	3
2		ل ا
	Complex Functions	5
	2.1 Limits and Continuity	5

Chapter 1

Complex Numbers

1.1 Basic Algebraic Properties

1. Verify that

(i)
$$(\sqrt{2}-i)-i(1-\sqrt{2}i)=-2i$$
 (ii) $(2-3i)(-2+i)=-1+8i$ (iii) $(3+i)(3-i)(\frac{1}{5}-\frac{1}{10}i)=2+i$

- 2. Find the complex numbers which are complex conjugates of
 - (i) Their own squares; (ii) Their own cubes.
- 3. Caclulate the following quantities:

(i)
$$\frac{1+i\tan\theta}{1-i\tan\theta}$$
; (ii) $\frac{(1+2i)^3-(1-i)^3}{(3+2i)^3-(2+i)^2}$; (iii) $\frac{(1-i)^5-1}{(1+i)^5+1}$; (iv) $\frac{(1+i)^9}{(1-i)^7}$.

4. Find the points z = x + iy such that

(i)
$$|z| \le 2$$
; (ii) $\text{Im } z > 0$; (iii) $\text{Re } z \le \frac{1}{2}$; (iv) $\text{Re}(z^2) = a$; (v) $\left| z^2 - 1 \right| = a$; (vi) $\left| \frac{z-1}{z+1} \right| \le 1$; (vii) $\left| \frac{z-\alpha}{z-\beta} \right| = 1$.

1.2 Polar Form

1. Represent the following complex numbers in polar form:

(i)
$$1 = i$$
; (ii) $-1 + i$; (iii) $-1 - i$; (iv) $1 - i$; (v) $1 + \sqrt{3}i$; (vi) $-1 + \sqrt{3}i$; (vii) $-1 - \sqrt{3}i$; (viii) $1 + \sqrt{3}i$; (ix) $2 + \sqrt{3} + i$.

2. Generalize the Triangle Inequality.

3. Prove the identity

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2),$$

for arbitrary complex numbers $z_1, z_2, ..., z_n$.

- 4. When do three points $z_1, z_2, z_3 \in \mathbb{C}$ lie on a straight line in the complex plane?
- 5. Let σ be the line segment joining two points z_1 and z_2 . Find the point z dividign σ in the ratio $\lambda_1 : \lambda_2$.
- 6. Four points z_1, z_2, z_3, z_4 satisfy the conditions

$$z_1 + z_2 + z_3 + z_4 = 0$$
, $|z_1| = |z_2| = |z_3| = |z_4| = 1$.

Show that the points either lie ast the vertices of a square inscribed in the unit circle or else coincide in pairs.

7. Calculate the following quantities:

(i)
$$(1+i)^{25}$$
; (ii) $\left(\frac{1+\sqrt{3}i}{1-i}\right)^{30}$; (iii) $\left(1-\frac{\sqrt{3-i}}{2}\right)^2 4$; (iv) $\frac{(-1+\sqrt{3}i)^{15}}{(1-i)^{30}} + \frac{(-1-\sqrt{3}i)^{15}}{(1+i)^{20}}$.

- 8. Use De Moivre's theorem to express $\cos nx$ and $\sim nx$ in terms of powers of $\cos x$ and $\sin x$.
- 9. Express $\tan 6x$ in terms of $\tan x$.
- 10. Write $\sqrt{1+i}$ in polar form.

1.3 Roots of a Complex Number

1. Find all the values of the following roots:

(i)
$$\sqrt[3]{1}$$
; (ii) $\sqrt[3]{i}$; (iii) $\sqrt[4]{-1}$; (iv) $\sqrt[6]{-8}$; (v) $\sqrt[8]{1}$; (vi) $\sqrt{3+4i}$; (vii) $\sqrt[3]{-2+2i}$; (viii) $\sqrt[5]{-4+3i}$; (ix) $\sqrt[6]{\frac{1-i}{\sqrt{3}+i}}$; (x) $\sqrt[8]{\frac{1+i}{\sqrt{3}-i}}$;

- 2. Prove that the sum of all the distinct nth roots of unity is zero. What geometric fact does this express?
- 3. Let ϵ be any nth root of unity other than 1. prove that

$$1 + 2\epsilon + 3\epsilon^2 + \ldots + n\epsilon^{n-1} = \frac{n}{\epsilon - 1}$$

4. Prove that every complex number $\alpha \neq -1$ of unit modulus can be represented in the form

$$\alpha = \frac{1+it}{1-it}$$

where $t \in \mathbb{R}$.

Chapter 2

Complex Functions

2.1 Limits and Continuity

1. Let $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$, $z_0 \in \Omega$. $\forall z \in \Omega$, prove that

$$(z \to z_0 \implies f(z) \to \infty) \iff (z \to z_0 \implies \psi(z) = \frac{1}{f(z)} \to 0)$$

2. The Cauchy Convergence Criterion for sequences states that a complex sequence z_n is convergent iff

$$\forall \epsilon > 0 \ \exists N = N(\epsilon) > 0 \ \forall m, n > N$$

 $|z_m - z_n| < \epsilon.$

Prove the generalization of the criterion: The function f(z) approaches a limit as $z \to z_0$ iff

$$\forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0$$
$$(0 < |z' - z_0| < \delta \ \land \ 0 < |z'' - z| < \delta) \implies |f(z') - f(z'')| < \epsilon$$

3. Let f(z) be a rational function, i.e., a ratio

$$f(z) = \frac{a_0 + a_1 z + \dots a_m z^m}{b_0 + b_1 z + \dots + b_n z^n} \ (a_m \neq 0, b_n \neq 0)$$
 (2.1)

of two polynomials. Discuss the possible values of $\lim_{z\to\infty} f(z)$.

4. Where is the function Equation (2.1) continuous?

- 5. Prove that if f(z) is continuous in a region Ω , then so is |f(z)|.
- 6. Is the function

$$f(zz) = \frac{1}{1-z}$$

continuous in the open disk |z| < 1?