This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

SEQUENCE LISTING

1	Stefan KAPPELER Zakaria FARAH Johannes Maarten van den BRINK Henrik RAHBEK-NIELSEN Peter BUDTZ	
	Method of producing non-bovine chymosin use hereof	
<130>	KAPPELER=1A	
	us 09/985,936 2001-11-06	
	us 09/705,917 2000-11-06	
<160>	7	
<170>	FastSEQ for Windows Version 4.0	
<210> <211> <212> <213>	34	
<220> <223>	Primer for PCR amplification	
<400> cacgtg	l gcgg agtgggatca ccaggatccc tctg	34
<210> <211> <212> <213>	34	
<220> <223>	Primer for PCR amplification	
<400> tctaga	2 . ggat cagatggcct tggccagccc cacg	34
<210> <211> <212> <213>	35	
	Oligonucleotide primer for oligonucleotide-based mutagenesis	
<400>	3	35

```
<210> 4
<211> 35
<212> DNA
<213> Artificial Sequence
<223> Oligonucleotide for oligonucleotide-based
      mutagenesis
<400> 4
gttatttctg cccgccacgt gtcagtcacc gtcgc
<210> 5
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Chymosin hydrolizes the peptide bond between
      nitrophenylalanine and Met.
<220)
<221> VARIANT
<222> (8)..(8)
<223> Xaa = nitrophenylalanine
<400> 5
His Pro His Pro His Leu Ser Xaa Met Ala Ile
<210> 6
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Chymosin hydrolizes the peptide bond between
      nitrophenylalanine and Ile.
<220>
<221> VARIANT
<222> (8)..(8)
<223> Xaa = nitrophenylalanine
Arg Pro Arg Pro Arg Pro Ser Xaa Ile Ala Ile
 1
<210> 7
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
```

)

35

<220>
<221> misc_feature
<222> (4)..(4)
<223> Xaa is Ser or Thr
<400> 7
Asp Thr Gly Xaa
1

•

•

.