Foundations of C.S.

Spring, 2021

PRINT NAME: SIGN:

Consider the following languages on $\Sigma = \{a, b\}$ defined by the regular expressions.

 $L_{1}: \qquad (\lambda^{*} \cup a \cup b \cup a^{3} \cup b^{3})^{*}$ $L_{2}: \qquad \lambda \cup a \cup b \cup ((a \cup b)^{3})^{*}$ $L_{3}: \qquad \lambda \cup (a \cup b) \cup (a^{*} \cup b^{*})^{3}$ $L_{4}: \qquad \lambda \cup (a \cup b) \cup (a^{3} \cup b^{3})^{*}$ $L_{5}: \qquad \lambda \cup (a \cup b) \cup (a^{3})^{*} \cup (b^{3})^{*}$

1. (2 pts) Find two numbers i and j with $L_i \subseteq L_j$ and $L_j \not\subseteq L_i$.

2. (2 pts) Find two numbers n and m with $L_n = L_m$.

3. (2 pts) List all L_i , if any, which contain only strings of finite length.

4. (2 pts) List all L_i , if any, which contain the string $a^3b^3a^3b^3$.

5. (2 pts) Pick any two distinct languages above and describe them set theoretically.