Introduction to Clustering

TOP: Data Clustering 076/091

Instructor: Sayan Bandyapadhyay

Portland State University

Outline

- Introduction
- 2 A Preliminary Model of Clustering
- 3 Metric Space
- 4 Our First Model of Clustering
- 5 Center-based Clustering
- 6 Complexity of Clustering Problems

Clustering of Social Network

Dividing the customers into similar groups

Applications

- grouping of genes and proteins, and cancer and tumor detection in Biology
- speech recognition, and text summarization in Natural Language Processing
- grouping images, and image segmentation in Computer Vision

Applications

- grouping of genes and proteins, and cancer and tumor detection in Biology
- speech recognition, and text summarization in Natural Language Processing
- grouping images, and image segmentation in Computer Vision
- Collaborative filtering
- Data summarization
- Dynamic trend detection
- Social network analysis
- Unsupervised learning

Unsupervised learning

Building a classifier to identify cats and dogs images

The ML Pipeline

Training Stage

Training the classifier: feature engineering/labeling of samples

Outline

- 1 Introduction
- 2 A Preliminary Model of Clustering
- 3 Metric Space
- 4 Our First Model of Clustering
- 5 Center-based Clustering
- 6 Complexity of Clustering Problems

The Mapping

Points in Real Space

Partition of Points

Drawback: Abstract Data Types

Not all data can be represented in numerical forms

- Categorical data: Gender, Address
- Text data
- Biological data: Gene expressions, Gene ontology annotations

Drawback: Abstract Data Types

Not all data can be represented in numerical forms

- Categorical data: Gender, Address
- Text data
- Biological data: Gene expressions, Gene ontology annotations

We will try to represent data in an abstract way

Outline

- 1 Introduction
- 2 A Preliminary Model of Clustering
- 3 Metric Space
- 4 Our First Model of Clustering
- 5 Center-based Clustering
- 6 Complexity of Clustering Problems

X is a set of points

X is a set of points

A function $d: X \times X \to \mathbb{R}^+$ is said to be a **distance metric** if it has the following properties:

- Reflexivity: $\forall x, y \in X, d(x, y) = 0 \iff x = y$
- Symmetry: $\forall x, y \in X, d(x, y) = d(y, x)$
- *Triangle Inequality:* $\forall x, y, z \in X, d(x, y) \leq d(x, z) + d(z, y)$

X is a set of points

A function $d: X \times X \to \mathbb{R}^+$ is said to be a **distance metric** if it has the following properties:

- Reflexivity: $\forall x, y \in X, d(x, y) = 0 \iff x = y$
- Symmetry: $\forall x, y \in X, d(x, y) = d(y, x)$
- Triangle Inequality: $\forall x, y, z \in X, d(x, y) \leq d(x, z) + d(z, y)$

X is a set of points

A function $d: X \times X \to \mathbb{R}^+$ is said to be a **distance metric** if it has the following properties:

- Reflexivity: $\forall x, y \in X, d(x, y) = 0 \iff x = y$
- Symmetry: $\forall x, y \in X, d(x, y) = d(y, x)$
- *Triangle Inequality:* $\forall x, y, z \in X, d(x, y) \leq d(x, z) + d(z, y)$

X along with the metric d is called a metric space (X, d)

The Idea of Metric Spaces

Ball B(v, r) with center v and radius r

The Idea of Metric Spaces

Diameter of B(v, r) is $\leq 2r$

Examples

Metric

- Euclidean distance: $X = \mathbb{R}^d$: $d(x, y) = \sqrt{\sum_{i=1}^d (x_i y_i)^2}$
- Manhattan distance: $X = \mathbb{R}^d$: $d(x, y) = \sum_{i=1}^d |x_i y_i|$
- $X = \Sigma^*$ is the set of finite length strings over an alphabet Σ , d is the edit distance
- X is a set of vertices in a graph G, d is the shortest path distance

Outline

- 1 Introduction
- 2 A Preliminary Model of Clustering
- 3 Metric Space
- 4 Our First Model of Clustering
- 5 Center-based Clustering
- 6 Complexity of Clustering Problems

Distances to clustering

C is a set of points

■ Diameter of C: $\Delta(C) = \max_{x,y \in C} d(x,y)$

Distances to clustering

C is a set of points

- Diameter of C: $\Delta(C) = \max_{x,y \in C} d(x,y)$
- Is a measure of goodness of a cluster

Distances to clustering

C is a set of points

- Diameter of C: $\Delta(C) = \max_{x,y \in C} d(x,y)$
- Is a measure of goodness of a cluster

A partition of X, $\Pi(X) = \{C_1, C_2, \dots, C_k\}$ such that

- $C_i \subset X; \forall i$
- $C_i \cap C_j = \emptyset; \forall i \neq j$
- $\Pi(X)$ is a cover: $\bigcup_{i=1}^k C_i = X$

Measuring Goodness via Cost

Cost of a partition $\Pi(X)$: Cost $(\Pi(X)) = \max_{i=1}^k \Delta(C_i)$

Measuring Goodness via Cost

Cost of a partition $\Pi(X)$: Cost $(\Pi(X)) = \max_{i=1}^k \Delta(C_i)$

*k***-partition problem**: Given a metric space (X, d), find a partition $\Pi(X)$ of size k that minimizes $Cost(\Pi(X))$

Measuring Goodness via Cost

Cost of a partition $\Pi(X)$: $Cost(\Pi(X)) = max_{i=1}^k \Delta(C_i)$

*k***-partition problem**: Given a metric space (X, \mathcal{O}) , find a partition $\Pi(X)$ of size k that minimizes $Cost(\Pi(X))$

- \blacksquare Why k is needed?
- An example of a *model selection*

Cluster Representatives

- center of a cluster
- data compression/summarization

Cluster Representatives

- center of a cluster
- data compression/summarization

Should the center be in *X*?

- key patterns of variations of brain scans: Yes
- words that capture different topics: No (continuous)

Cluster Representatives

- center of a cluster
- data compression/summarization

Should the center be in *X*?

- key patterns of variations of brain scans: Yes
- words that capture different topics: No (continuous)

We use a universe $\mathcal{U}: X \subset \mathcal{U}$ and centers are also in \mathcal{U}

- (discrete) centers are from $X = \mathcal{U}$
- \blacksquare (continuous) centers are from ${\cal U}$ and not-necessarily in X

Outline

- 1 Introduction
- 2 A Preliminary Model of Clustering
- 3 Metric Space
- 4 Our First Model of Clustering
- 5 Center-based Clustering
- 6 Complexity of Clustering Problems

Center-Based Clustering: Voronoi property

Figure: 3-cluster example

k-means Clustering

■ $Cost(p_1)=10^2$, $Cost(p_2)=12^2$,..., $Cost(p_5)=13^2$

k-means Clustering

- $\text{Cost}(p_1)=10^2, \text{Cost}(p_2)=12^2, \dots, \text{Cost}(p_5)=13^2$
- Choose a set of cluster centers to minimize the sum of point costs

k-means Clustering

Given a set X of n points in the metric space (\mathcal{U}, d)

■ Find a set C of k points (cluster centers) in \mathcal{U} that minimizes,

$$cost(C) = \sum_{p} d(p, NearestCenter(p))^2$$

Popular Clustering Objectives

Find a set C of k points (cluster centers) in \mathcal{U} that minimizes

k-means:
$$cost(C) = \sum_{p} d(p, NearestCenter(p))^2$$

$$k$$
-median: $cost(C) = \sum_{p} d(p, NearestCenter(p))$

$$k$$
-center: $cost(C) = \max_{p} d(p, NearestCenter(p))$

Outline

- 1 Introduction
- 2 A Preliminary Model of Clustering
- 3 Metric Space
- 4 Our First Model of Clustering
- 5 Center-based Clustering
- 6 Complexity of Clustering Problems

Finding the Best Clustering

All these problems are NP-hard

Finding the Best Clustering

All these problems are NP-hard

Solving exactly

- Discrete: $|X| = |\mathcal{U}| = n$. Pick the best k centers in X in $n^{O(k)}$ time
- Continuous: Pick the best k centers in \mathcal{U} in $|\mathcal{U}|^{O(k)}$ time

Finding the Best Clustering

All these problems are NP-hard

Solving exactly

- Discrete: $|X| = |\mathcal{U}| = n$. Pick the best k centers in X in $n^{O(k)}$ time
- Continuous: Pick the best k centers in \mathcal{U} in $|\mathcal{U}|^{O(k)}$ time

We can solve more efficiently if we are allowed to have some error in our solution

Coping with NP-hardness

Heuristics

- Simple (easy to implement)
- Very time-efficient
- Works well in practice
- No quality control

Coping with NP-hardness

Heuristics

- Simple (easy to implement)
- Very time-efficient
- Works well in practice
- No quality control

- Simple most of the time
- Time-efficient
- Works well in general
- Quality control

- \blacksquare α -approximation algorithm: cost is within α -factor
 - minimum cost M; our cost $\leq \alpha \cdot M$;

- \blacksquare α -approximation algorithm: cost is within α -factor
 - minimum cost M; our cost $\leq \alpha \cdot M$;
 - 1-approximation is optimal
 - 2-approximation is 100% error

- \blacksquare α -approximation algorithm: cost is within α -factor
 - minimum cost M; our cost $\leq \alpha \cdot M$;
 - 1-approximation is optimal
 - 2-approximation is 100% error
- Approximation scheme
 - approximation to any desired precision: our cost $\leq (1 + \varepsilon) \cdot M$, for any $\varepsilon > 0$

- \blacksquare α -approximation algorithm: cost is within α -factor
 - minimum cost M; our cost $\leq \alpha \cdot M$;
 - 1-approximation is optimal
 - 2-approximation is 100% error
- Approximation scheme
 - approximation to any desired precision: our cost $\leq (1 + \varepsilon) \cdot M$, for any $\varepsilon > 0$
 - error is controlled

