Резюме

Пусть функция f определена в окрестности точки x_0 , $x_0 \in \mathbf{R}$.

Производной $f'(x_0)$ функции f в точке x_0 называют предел отношения приращения Δf к вызвавшему это приращение приращению Δx аргумента функции при условии, что $\Delta x \to 0$:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Геометрически $f'(x_0)$ есть тангенс угла наклона к оси абсцисс касательной к графику y = f(x) в точке $M_0(x_0, f(x_0))$.

Основные правила вычисления производных:

если
$$F=f+g$$
 , то $F'(x_0)=f'(x_0)+g'(x_0)$; если $F=f\cdot g$, то $F'(x_0)=f'(x_0)\cdot g(x_0)+f(x_0)\cdot g'(x_0)$; если $F=f/g$, то $F'(x_0)=\frac{f'(x_0)\cdot g(x_0)-f(x_0)\cdot g'(x_0)}{g^2(x_0)}$ (здесь $g(x_0)\neq 0$); если $F=g\circ f$, то $F'(x_0)=g'(y_0)\cdot f'(x_0)$, где $y_0=f(x_0)$; если $F=f^{-1}$, то $F'(y_0)=\frac{1}{f'(x_0)}$ (здесь $y_0=f(x_0)$, $f'(x_0)\neq 0$).

Функцию f называют дифференцируемой в точке x_0 , если справедливо следующее представление приращения этой функции: $f(x_0+h)-f(x_0)=Ah+o(h),\ h\to 0$, где $A\in \mathbf{R}$. Функция f дифференцируема в точке x_0 тогда и только тогда, когда существует производная $f'(x_0)$; константа A в представлении приращения f равна $f'(x_0)$: $\Delta f(h)=f'(x_0)h+o(h)$. Произведение $f'(x_0)h$ называют дифференциалом функции f в точке x_0 и обозначают через df.

Если функция f дифференцируема в каждой точке интервала (a;b), то на (a;b) можно задать функцию, сопоставив каждому x, $x \in (a;b)$, число f'(x). Эту функцию называют производной от функции f или производной первого порядка функции f и обозначают f'. Производная от f' (если она существует) называется производной второго порядка от функции f. Производная $f^{(n)}$ порядка n, $n \ge 2$, от функции f есть производная от производной $f^{(n-1)}$ порядка n-1.

Функцию f называют n раз дифференцируемой в точке x_0 , $x_0 \in \mathbf{R}$, если в этой точке существуют производные $f'(x_0), \ f''(x_0), \ \dots, \ f^{(n)}(x_0)$.

Если функция f n раз дифференцируема в точке x_0 , то выражение $d^n f = f^{(n)}(x_0) dx^n$ называют дифференциалом порядка n функции f в точке x_0 . Справедливо равенство: $d^n f = d(d^{n-1} f)$.

Контрольные вопросы к главе 1

- 1. Что называют производной от функции f в точке x_0 ? Опираясь на это определение, покажите, что функция $f(x) = x^{1/3}$ имеет производную f'(1), а f'(0) не существует.
- 2. Какое свойство приращения Δf функции f называют дифференцируемостью функции f в точке x_0 ? Как связана дифференцируемость функции f в точке x_0 с существованием $f'(x_0)$?
- 3. Всегда ли функция f, имеющая $f'(x_0)$, непрерывна в точке x_0 ? Если не всегда, приведите подтверждающий пример. Всегда ли для функции, непрерывной в точке x_0 , существует $f'(x_0)$? Если не всегда, приведите подтверждающий пример.
- 4. Сформулируйте правила вычисления производных от суммы, произведения и частного дифференцируемых функций, от суперпозиции дифференцируемых функций, от обратной функции.
 - 5. Пользуясь таблицей производных, найдите f' для следующих функций f:

a)
$$f(x) = x^{2/3}\sqrt[3]{x^5 + 1}$$
; 6) $f(x) = \sqrt[3]{1 + \lg(x + \frac{1}{x})}$; B) $f(x) = \frac{e^{-x^2}}{2x}$.

- 6. В чем состоит геометрический смысл числа $f'(x_0)$? Напишите уравнения касательной к кривой $y = \sqrt{x}$ в точке $M_0(4,2)$.
- 7. Что называют дифференциалом функции f, дифференцируемой в точке x_0 ? На чем основано правило замены в приближенных вычислениях приращения Δf дифференциалом df? Вычислить приближенно $\ln 1.2$.