96298049. PubMed ID: 8709097. Inhibitors of human immunodeficiency virus type 1 derived from gp41 transmembrane protein: structure--activity studies. Kazmierski W M; Hazen R J; Aulabaugh A; StClair M H. (Department of Medicinal Chemistry I, Glaxo Wellcome Inc., Research Triangle Park, North Carolina 27709, USA. ) Journal of medicinal chemistry, (1996 Jul 5) Vol. 39, No. 14, pp. 2681-9. Journal code: 9716531. ISSN: 0022-2623. Pub. country: United States. Language: English. We synthesized analogues of gp41 (553-590), 1, and evaluated them for ΑB their inhibitory activity against HIV-1 in MT4 cell assay (IC50(1) = 2.7 microM). (The numbering scheme for gp41 (e.g., gp41(553-590) for 1) adapted throughout the text is from ref 6.) Gradual truncation of either the N- or C-terminal end of gp41 (553-590) resulted in a substantial loss of inhibitory properties of resulting compounds. Unexpectedly, simultaneous truncations of both N- and C-termini of gp41(553-590) resulted in a potent heptadecamer, 13, IC50 = 10.4 microM. Coupling of a racemic alpha-aminotetradecanoic acid (Atd) to gp41 fragments afforded diastereomeric conjugates, most of which were chromatographically separable. In this series, pentadecamer 27 had an IC50 of 8.9 microM, while its Atd diastereomer 28 was much less inhibitory. This finding is consistent with relative inhibitory potencies of other Atd-containing diastereomeric pairs and could reflect a chiral sense of Atd residue interacting with the receptor. Compounds 13 and 27, which are practically equipotent to 1, represent minimalistic fragments of the leucine-zipper region of gp41 and constitute a basis for design of a second generation of gp41-based inhibitors. Circular dichroism studies suggested that compounds in this series are likely to inhibit HIV-1 replication by virtue of their alpha-helical character. The observed structure-activity relationship supports impairment of viral gp41 as a possible mechanism of

action of 1.

- <110> APPLICANT: Trimeris, Inc.
  <120> TITLE OF INVENTION: HIV-Derived HR1 Peptides Modified to Form Stable Trimers, and
  Their Use In Therapy to Inhibit Transmission of Human
  Immunodeficiency Virus
  <130> FILE REFERENCE: TRM-001
  <140> CURRENT APPLICATION NUMBER: US/10/664,021
  <141> CURRENT FILING DATE: 2003-09-16
- <151> PRIOR FILING DATE: 2002-09-27
- <150> PRIOR APPLICATION NUMBER: US 60/414,514
- <160> NUMBER OF SEQ ID NOS: 82
- <170> SOFTWARE: PatentIn version 3.2
- <210> SEQ ID NO 1 <211> LENGTH: 59
- <212> TYPE: PRT
- <213> ORGANISM: Human immunodeficiency virus type 1
- <400> SEQUENCE: 1

Thr Leu Thr Val Gln Ala Arg Gln Leu Leu Ser Gly Ile Val Gln Gln 1 5 10 15

Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu Gln 20 25 30

Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala Val 35 40 45

Glu Arg Tyr Leu Lys Asp Gln Leu Leu Gly Ile 50 55

efgabedef "Ur" - QQHLLQLTVW

SEQ ID NO:35 SEQ ID NO:36 SEQ ID NO:32 SEQ ID NO:23 QARQL L SGI VQQQNNL LRAI **EAQQHLLQLTVWĞ**I KQLQARI LAVERYLK QARQL L SGI VQQQNNL LRAI **EAQQH<u>A</u>LQATVWG**I KQLQARI LAVERYLK QARQL<u>V</u>SG<u>L</u>VQQQNNI LRA**LEATQH<u>AVQAL</u>VWG**VKQLQAR<u>V</u>LALERY! K QI RQL L SGI VQQQNNL LRAI **EAI QH<u>A</u>LQ<u>AI</u> VWG**I KQLQARI LAVERYLK ABCALLSGI VOQQNNLLRAI EAQQHLLQLTVWGI

QQQNNL LRAI EAQQHL LQLTVWGI KQLQARI LAVERYLKDQ SEQ ID NO:27 QQQNNL LRAI EAQQHL LQLTAWGI KQLQARI LAVERYLKDQ SEQ ID NO:29 QQQNNL LRAI EAQQHL LQLTVA GI KQLQARI LAVERYLKDQ SEQ ID NO:30

FIG. 3



FIG. 4

# SCORE - View Sequence Detail(s) for Application 10664021

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Suggestions

Enter SEQ ID Here is the list of the requested sequences:

<u>Sequences</u>

No: Submit <110> APPLICANT: Trimeris, Inc. Enter <120> TITLE OF INVENTION: HIV-Derived HR1 Peptides Modified to Form Stable Trimers, and Their Use In Therapy to Inhibit Transmission of Human Application ID Immunodeficiency Virus No: <130> FILE REFERENCE: TRM-001 <140> CURRENT APPLICATION NUMBER: US/10/664,021 <141> CURRENT FILING DATE: 2003-09-16 Submit <150> PRIOR APPLICATION NUMBER: US 60/414,514 <151> PRIOR FILING DATE: 2002-09-27 First <160> NUMBER OF SEQ ID NOS: 82 Sequence <170> SOFTWARE: PatentIn version 3.2 Next <u>Sequence</u> <210> SEQ ID NO 1 <211> LENGTH: 59 Previous <212> TYPE: PRT Sequence <213> ORGANISM: Human immunodeficiency virus type 1 <400> SEQUENCE: 1 <u>Last</u> Thr Leu Thr Val Gln Ala Arg Gln Leu Leu Ser Gly Ile Val Gln Gln <u>Sequence</u> Convert To Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu Gln <u>Search</u> 20 Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala Val <u>Format</u> 3℃ 40 35 Go back to Glu Arg Tyr Leu Lys Asp Gln Leu Leu Gly Ile Table of Contents <u>Page</u> Download All

SCORE 2.0 BuildDate: 12/05/2005

|                 | 10         | 9         | e <sup>20</sup>                       | 30                                    | 40          |
|-----------------|------------|-----------|---------------------------------------|---------------------------------------|-------------|
| T-21            | NNLLRAIEAO | OHLL      | OLTVWG                                | IKQLQARILAVERYLK                      | DQ          |
| Gp41bru.pro     | 00         |           |                                       | ••••                                  | Q           |
| Gp41hxb2.PRO    | 00         | •••       |                                       | • • • • • • • • • • • • • • • •       | Q           |
| PNL4-3 gp41.PRO | 00         |           |                                       |                                       | Q           |
| Ug273-A.pro     | oos        |           | K                                     | LR                                    | Q           |
| Us2-B.pro       | QQ         |           |                                       | v                                     | Q           |
| Ug268-C.pro     | QQ         | M.        |                                       | T.VIQ                                 | Q           |
| Se365-D.pro     | QQ         |           | • • • • •                             | R                                     | Q           |
| CM240-E.pro     | QQS        | • • • •   |                                       | v                                     | K           |
| Bz126-F.pro     | QQ         | • • • •   |                                       | vQ                                    | Q           |
| HH8793-G.pro    | QQS        | • • • •   |                                       | VLR                                   | . <b></b> Q |
| ENV_HV1BN       |            |           |                                       |                                       |             |
| ENV_HV1C4       | QQ         | • • • •   | • • • • • •                           | • • • • • • • • • • • • • •           | Q           |
| ENV_HV1KB       | QQD        |           | • • • • • • •                         |                                       | ••₽         |
| _ACT1H00        | QQ         |           | • • • • • •                           | • • • • • • • • • • • • • • • •       | ٠٠۵         |
| ENV_HV1B8       | QQ         | • • • •   | • • • • • •                           |                                       | ••₽         |
| ENV_HV1Z8       |            |           |                                       | vs                                    |             |
| 1               |            |           |                                       | <u>v</u>                              |             |
| 2               | QQTS       | • • • •   | • • • • • •                           | v                                     | Q           |
| 3               | QQ.D       | M.        | • • • • • •                           | vL.GQ                                 | 0           |
| 4               | QQM        | M.        | • • • • • •                           | v                                     | 0           |
| 5               |            |           |                                       | · · · · · · · · · · · · · · · · · · · |             |
| 6               | QQSM       | M.        | • • • • • •                           | <u>v</u>                              | 8           |
| 7               | QQXM       |           | ••••                                  | vLR                                   |             |
| 8               | QQ.DG.D.E  | · · · · · | • • • • • •                           | WV                                    | .G.Q        |
| 9               | QQ.SQ      | . KM.     | • • • • • • • • • • • • • • • • • • • | VF                                    | X           |
| 10              | QQ.D       | • • • •   | R                                     | · · · · · · · · · · · · · · · · · · · | ···×        |
| 11              | ODG F      | OME       | <sub>.</sub> .                        | FL                                    |             |
| 12<br>13        | QASA       | M         | K                                     | RVI                                   | 0           |
| 13              | 006        |           | • • • • • •                           | PG                                    | 0           |
| 15              | QQS        |           |                                       | vKF                                   | 0           |
| 16              | ER.K.R     | M .       |                                       | vs                                    | ō           |
| 17              | HOS        |           |                                       |                                       | ۱ Q         |
| 18              | 00.DG.D.I  | · · · · · |                                       | VVF                                   | iG.Q        |
| <b>-</b>        | ##         |           |                                       |                                       |             |

FIG. 2

## IV

### HIV-1/SIVcpz proteins

| Introduction                             | 457 |
|------------------------------------------|-----|
| Table of HIV-1/SIVcpz protein alignments | 460 |
| Gag                                      | 470 |
| Pol                                      | 480 |
| Vif                                      | 498 |
| Vpr                                      | 502 |
| Tat                                      | 504 |
| Rev                                      | 506 |
| Vpu                                      | 508 |
| Env                                      | 510 |
| Nef                                      | 526 |

#### Construction of HIV-1/SIVcpz protein alignments

The number of full-length gene sequences is still growing rapidly for all genes. The envelope master alignment now contains 307 full-length sequences. For the purposes of the printed alignments, we have had to limit the number of sequences dramatically. Here we list the criteria we have followed to make the selection.

First, we have decided to end the supremacy of the B clade sequences. More than half (198, to be precise) of the full-length envelope sequences are still subtype B, though the contribution of other subtypes is increasing. We have tried to balance the number of representatives of all subtypes in these alignments. For this, we had to make a heavy selection on subtype B sequences. We have tried to include as many "classical" sequences as possible. A lot of follow-up work has been done based on lab strains such as HXB2, MN, SF2, and JR-CSF/JR-FL, so these strains are included in the alignments. Furthermore, within subtype B we have tried to represent sequences from diverse geographical origins, so as to represent a broad spectrum of variants. In the case of subtype B, this means that we have included African, Asian and Brazilian variants along with the "Western" strains. For sequences from non-B subtypes, we have selected a few representative sequences from each dataset, again with an eye on maintaining geographical diversity. When possible we have left all representatives of group O in the alignment, as these sequences are much more genetically diverse that the subtypes.

| Explanation of Symb | ols in Alignments                                                                                                         |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|
| Symbol              | Meaning                                                                                                                   |
| Alignment symbols   |                                                                                                                           |
| ? in consensus      | no majority-rule consensus could be determined at this position                                                           |
| x                   | nucleotide missing from codon                                                                                             |
| #                   | frameshift, or codon contains N or illegal character                                                                      |
| \$                  | stop codon                                                                                                                |
| Annotation symbols  | 3                                                                                                                         |
| II                  | domain boundaries                                                                                                         |
| 1                   | protein start point                                                                                                       |
| \                   | protein end point                                                                                                         |
| V                   | splice site or exon join                                                                                                  |
| ->                  | start of overlapping coding region                                                                                        |
| <-                  | end of overlapping coding region                                                                                          |
| *                   | cysteine                                                                                                                  |
| ^^^ [NxS, NxT]      | glycosylation site                                                                                                        |
| ^*^ [NCS, NCT]      | glycosylation site with cysteine                                                                                          |
| CD4                 | residue critical for CD4 binding                                                                                          |
| cds                 | coding sequence (indicates regions where two proteins overlap; the overlapping proteins use two different reading frames) |
| MHR                 | major homology region                                                                                                     |
| nls                 | nuclear localization signal                                                                                               |
| phos site           | phosphorylation site                                                                                                      |
| PKC                 | protein kinase C binding                                                                                                  |
| Zn-motif            | Zinc finger binding motif                                                                                                 |

#### Sources of Annotation in the Alignments

| Protein | Annotation                                 | Reference                                         |
|---------|--------------------------------------------|---------------------------------------------------|
| Gag     | phos site Ser (111)                        | Yu, J Biol Chem 270:4792 (1995)                   |
| Gag     | MHR, (284-302)                             | Otteken, J Virol 70:3407 (1996)                   |
| Gag     | CyPa (205-241)                             | Braaten, J Virol 70:4220 (1996)                   |
| Gag     | vpr packaging domain                       | Lu, J Virol 69:6873 (1995)                        |
| •       | LKSLFG, (489-494)                          | Kondo, J Virol 70:159 (1996)                      |
| Nef     | myristylation, (1-7)                       | Huang, J Virol 69:93 (1995)                       |
| Nef     | MHC downmodulation, PK recruitment (26-29) | Piguet, p. 448 Human Retroviruses and AIDS (1999) |
| Nef     | heart of CD4 binding site (55-56)          | Piguet, p. 448 Human Retroviruses and AIDS (1999) |
| Nef     | acidic cluster, (60-64)                    | Piguet, p. 448 Human Retroviruses and AIDS (1999) |
| Nef     | (PxxP)3, (67-76)                           | Huang, J Virol 69:93 (1995)                       |
| Nef     | PKC, (75-80)                               | Huang, J Virol 69:93 (1995)                       |
| Nef     | polypurine tract, (89-97)                  | Huang, J Virol 69:93 (1995)                       |
| Nef     | PAK binding, (103-105)                     | Piguet, p. 448 Human Retroviruses and AIDS (1999) |
| Nef     | Beta turn, (128-131)                       | Huang, J Virol 69:93 (1995)                       |
| Nef     | PxxP, (145-148)                            | Huang, J Virol 69:93 (1995)                       |
| Nef     | COP1 recruitment (152-153)                 | Piguet, p. 448 Human Retroviruses and AIDS (1999) |
| Nef     | AP recruitment, (162-163)                  | Piguet, p. 448 Human Retroviruses and AIDS (1999) |
| Nef     | V-ATPase and Raf-1<br>binding, (172-173)   | Piguet, p. 448 Human Retroviruses and AIDS (1999) |
| Vpr     | alpha helix, (16-34)                       | Cornelissen, ARHR 13:247 (1997)                   |
| Vpr     | H(S/F)RIG motifs, (71-82)                  | Macreadie, PNAS USA 92:2770 (1995)                |
| Vpu     | all annotations                            | Cornelissen, ARHR 13:247 (1997)                   |
| Vpr     | LR domain, (60-82)                         | Wang, Gene 178:7 (1996)                           |

| Table 1: Table of HIV-1/SIVcpz protein Alignments | -1/SIVcpz protein A | lignments                                       |                      |                                                                |
|---------------------------------------------------|---------------------|-------------------------------------------------|----------------------|----------------------------------------------------------------|
| Name                                              | Accession           | Region                                          | Author               | Reference                                                      |
| A.DE.AF200476                                     | AF200476            | VIF                                             | Kuhn, J              | Unpublished                                                    |
| A.FR.HIV232956                                    | AJ232956            | NEF                                             | Jubier-Maurin, V     | ARHR 15(1):23-32 (1999)                                        |
| A.GB.MA246                                        | Y13718              | ENV                                             | Douglas, NW          | J Mol Biol 273(1):122-149 (1997)                               |
| A.KE.AF233689                                     | AF233689            | VIF                                             | Kuhn, J              | Unpublished                                                    |
| A.KE.K89                                          | L22943              | ENV                                             | Louwagie, J          | J Virol 69(1):263-271 (1995)                                   |
| A.KE.Q23                                          | AF004885            | ENV GAG NEF POL REV                             | Poss, M              | Unpublished                                                    |
| A RW PVPI                                         | 280201              | TAT VIF VPR VPU<br>FNV                          | Rev F                | [[mijh]ished (1992)                                            |
| A.SE.SE6594                                       | AF069672            | GAG NEF POL REV TAT                             | Carr, JK.            | AIDS 13(14):1819-1826 (1999)                                   |
|                                                   |                     | VIF VPR VPU                                     |                      |                                                                |
| A.SE.SE7253                                       | AF069670            | GAG POL REV TAT VIF                             | Сап, ЈК              | AIDS 13(14):1819-1826 (1999)                                   |
| A.SE.SE7535                                       | AF069671            | VER VEU<br>GAG POL REV TAT VIF                  | Carr, JK             | AIDS 13(14):1819-1826 (1999)                                   |
|                                                   |                     | VPR                                             |                      |                                                                |
| A.SE.SE8538                                       | AF069669            | GAG NEF POL REV TAT<br>VIF VPR                  | Сап, ЈК              | AIDS 13(14):1819-1826 (1999)                                   |
| A.SE.SE8891                                       | AF069673            | GAG NEF REV TAT VIF                             | Сагг, ЈК             | AIDS 13(14):1819-1826 (1999)                                   |
| A.SE.UGSE8131                                     | AF107771            | ENV GAG NEF POL REV                             | Laukkanen, T         |                                                                |
| 4 II 4 1 411 4                                    | 707 COOT 4          | ENG VII VIN VIO                                 | 7 : 0 : 0 : 1        | (9001) 0101 (010, 1010, 1010)                                  |
| A.UG.92UG037                                      | AF082486<br>U51190  | ENV KEV VPU ENV GAG NEF POL REV TAT VIE VPR VPI | Linsola, K<br>Gao, F | AIDS 12(14):1907-1919 (1996)<br>J Virol 70(3):1651-1657 (1996) |
| A.UG.U13-2                                        | X91354              | VIF                                             | Wieland, U           | J Gen Virol 78:393-400 (1997)                                  |
| A.UG.U455                                         | M62320              | ENV GAG NEF POL REV<br>TAT VPR VPU              | Oram, JD             | ARHR 6(9):1073-1078 (1990)                                     |
| A.UG.UG273A                                       | L22957              | REV TAT VPU                                     | Louwagie, J          | J Virol 69(1):263-271 (1995)                                   |
| A.UG.UG275A                                       | L22951              | REV TAT VPU                                     | Louwagie, J          | J Virol 69(1):263-271 (1995)                                   |
| A2.CD.97CDKFE4                                    | AF286240            | POL VIF VPR                                     | Gao, F               | ARHR 17(8):675-688(2001)                                       |
| A2.CD.97CDKS10                                    | AF286241            | ENV REV TAT VIF VPR                             | Gao, F               | ARHR 17(8):675-688(2001)                                       |
| A2.CD.97CDKTB48                                   | AF286238            | ENV GAG NEF REV TAT                             | Gao, F               | ARHR 17(8):675-688(2001)                                       |
| A2.CY.94CY017-41                                  | AF286237            | ENV GAG NEF POL REV<br>TAT VIF VPR VPU          | Gao, F               | ARHR 17(8):675-688(2001)                                       |

| =   |  |
|-----|--|
| 0   |  |
| Ũ   |  |
| ••• |  |
|     |  |
| 9   |  |
| 0   |  |
| æ   |  |
|     |  |

| Name                  | Accession | Region                                 | Author        | Reference .                              |
|-----------------------|-----------|----------------------------------------|---------------|------------------------------------------|
| B.AU.MBC18            | AF042102  | ENV GAG POL REV VIF                    | Oelrichs, RB  | ARHR 14(9):811-814 (1998)                |
| B.AU.MBC200           | AF042100  | NEF TAT .                              | Oelrichs, RB  | ARHR 14(9):811-814 (1998)                |
| B.AU.SC49             | AF128998  | GAG                                    | Oelrichs, RB  | Unpublished                              |
| B.AU.VH<br>B.CN PI 42 | AF146728  | GAG REV VPR VPU<br>FNV GAG NFF POT RFV | Oelrichs, R   | Unpublished<br>ARHR 14/3):785-288 (1998) |
| 7                     |           | TAT VIF VPR VPU                        |               |                                          |
| B.DE.D31              | U43096    | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Kreutz, R     | ARHR 8(9):1619-1629 (1992)               |
| B.DE.HAN              | U43141    | ENV GAG NEF REV                        | Sauermann, U  | ARHR 6(6):813-823 (1990)                 |
| B.ES.89SP061          | AJ006287  | ENV GAG NEF REV TAT                    | Olivares, I   | ARHR 14(18):1649-165 (1998)              |
| B.FR.HXB2             | K03455    | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Wong-Staal, F | Nature 313(6000):277-284 (1985)          |
| B.FR.NE100            | M58272    | NEF                                    | Delassus, S   | J Virol 65:225-231 (1991)                |
| B.FR.SWB884           | M58206    | NEF                                    | Delassus, S   | J Virol 65:225-231 (1991)                |
| B.FR.vi02011A1H       | AF143115  | VIF                                    | Hassaine, G   | Virology 276(1):169-180 (2000)           |
| B.GA.OYI              | M26727    | ENV GAG NEF POL REV                    | Huet, T       | AIDS 3(11):707-715 (1989)                |
|                       |           | IAI VIF VPR VPU                        |               |                                          |
| B.GB.CAM1             | D10112    | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | McIntosh, AA  | Unpublished (1991)                       |
| B.GB.GB8              | AJ271445  | GAG                                    | Farrar, GH    | J Med Virol 34(2):104-113 (1991)         |
| B.GB.14663            | Z68564    | VPR                                    | Kuiken, CL    | J Gen Virol 77(Pt 4):783-792 (1996)      |
| B.GB.14663            | Z68613    | VPU                                    | Kuiken, CL    | J Gen Virol 77(Pt 4):783-792 (1996)      |
| B.GB.MANC             | U23487    | GAG                                    | Zhu, T        | Nature 374(6522):503-504 (1995)          |
| B.GB.WB               | U36882    | ENV                                    | Douglas, NW   | AIDS 10(1):39-46 (1996)                  |
| B.IN.HIVP35A          | Y15122    | NEF                                    | Ahmad, KM     | ARHR 14(16): 1491-1493 (1998)            |
| B.IT.B-IT-R5          | AF147737  | NEF                                    | Catucci, M    | J Med Virol 60(3):294-299 (2000)         |
| B.JP.D70887           | D70887    | VIF                                    | Tominaga, K   | ARHR 12(16):1543-1549 (1996)             |
| B.P.ETR               | D12582    | ENV                                    | Shimizu, H    | Virology 189:534-546 (1992)              |
| B.JP.JH31             | M21137    | GAG                                    | Komiyama, N   | ARHR 5:411-419 (1989)                    |
| B.JP.JH32             | M21138    | ENV VPU                                | Komiyama, N   | ARHR 5:411-419 (1989)                    |
| B.JP.PT1-01           | AB034578  | VPU                                    | Yamada, T     | Arch Virol 145(5):1021-1027 (2000)       |
| B.P.PT1-4             | AB034517  | VPR                                    | Yamada, T     | Arch Virol 145(5):1021-1027 (2000)       |
| B.P.PT7-6             | AB034474  | VIF                                    | Yamada, T     | Arch Virol 145(5):1021-1027 (2000)       |
|                       |           |                                        |               |                                          |

| نب |
|----|
| =  |
| 0  |
| U  |
| •• |
| _  |
| 9  |
| 3  |
| 7  |
| _  |

| Name                                     | Accession                        | Region                                 | Author                          | Reference                                                        |
|------------------------------------------|----------------------------------|----------------------------------------|---------------------------------|------------------------------------------------------------------|
| B.P.nef<7>-a<br>B.KR.CSR9412d<br>B.KR.WK | AB034272<br>AF238268<br>AF224507 | NEF<br>NEF<br>ENV GAG NEF POL REV      | Yamada, T<br>Cho, YK<br>Cho, YK | Arch Virol 145(5):1021-1027 (2000)<br>Unpublished<br>Unpublished |
| B.NL.3202A21                             | U34604                           | TAT VIF VPR VPU ENV GAG NEF POL REV    | Guillon, C                      | ARHR 11(12):1537-1541 (1995)                                     |
| B.SE.AF047085                            | AF047085                         | NEF                                    | Visco Comandini, U              | J Hum Virol 1(5):320-327 (1998)                                  |
| B.TH.28-19                               | U48917                           | NEF                                    | Artenstein, AW                  | ARHR 12:557-560 (1996)                                           |
| B.TH.93TH067                             | U39258                           | ENV                                    | Penny, MA                       | ARHR 12(8):741-747 (1996)                                        |
| B.TH.AF082839                            | AF082839                         | NEF                                    | Vallejo, A                      | AIDS 13(4):532-534 (1999)                                        |
| B.TT.QZ4589                              | U32396                           | ENV                                    | Blattner, W                     | Unpublished (1995)                                               |
| B.TW.TWB101                              | AF220464                         | VPU                                    | Lee, CN                         | J Clin Microbiol 38(7):2468-2474 (2000)                          |
| B.TW.TWCYS                               | AF086817                         | ENV GAG NEF POL REV                    | Huang, LM                       | Unpublished                                                      |
|                                          |                                  | TAT VIF VPR VPU                        |                                 |                                                                  |
| B.UA.UKR1216                             | AF193278                         | ENV REV VPU                            | Liitsola, K                     | ARHR 16(11):1047-1053 (2000)                                     |
| B.US.1-2                                 | U41181                           | VIF                                    | Sova, P                         | J Virol 69(4):2557-2564 (1995)                                   |
| B.US.85WCIPR54                           | U69584                           | GAG                                    | Fang, G                         | J AIDS 12(4): 352-357 (1996)                                     |
| B.US.AD8                                 | AF004394                         | GAG                                    | Theodore, TS                    | ARHR 12(3): 191-194 (1996)                                       |
| B.US.AF019528                            | AF019528                         | VIF                                    | Yedavalli, VR                   | J Virol 72(2):1092-1102 (1998)                                   |
| B.US.BC                                  | L02317                           | VIF                                    | Ghosh, SK                       | Virology 194, 858-864 (1993)                                     |
| B.US.DH123                               | AF069140                         | ENV GAG                                | Shibata, R                      | J Virol 69(7):4453-4462 (1995)                                   |
| B.US.JRCSF                               | M38429                           | ENV GAG NEF POL REV                    | O'Brien, WA                     | Nature 348:69-73 (1990)                                          |
| B.US.JRFL                                | U63632                           | ENV GAG NEF POL REV                    | O'Brien, WA                     | Nature 348:69-73 (1990)                                          |
| BIICIMI                                  | 1116900                          | IAI VIF<br>NEF                         | Huang V                         | 1 Virol 69(1)-93-100 (1995)                                      |
| Diode at a                               | 20010                            | TALL TO A DATE DOT DEV                 | , in                            | V:=10=12=124(7):521 525 (1000)                                   |
| B.US.MNCG                                | M1/449                           | ENV GAG NEF FOL KEV<br>TAT VIF VPR VPU | curgo, c                        | v 1f010gy 104(2):331-330 (1366)                                  |
| B.US.NC7                                 | AF049495                         | NEF                                    | Mwaengo, DM                     | J Virol 72(11):8976-8987 (1998)                                  |
| B.US.NY5CG                               | M38431                           | GAG                                    | Willey, RL                      | PNAS USA 83(14):5038-5042 (1986)                                 |
| B.US.RF                                  | M17451                           | ENV GAG NEF POL REV                    | Starcich, BR                    | Cell 45(5):637-648 (1986)                                        |
| B.US.SC                                  | M17450                           | REV                                    | Gurgo, C                        | Virology 164(2):531-536 (1988)                                   |
| B.US.SF2                                 | K02007                           | ENV GAG NEF POL REV                    | van Beveren, CP                 | RNA tumor viruses, 2nd edition, Vol 2: 1124-1141;                |
|                                          |                                  | VIF VPR VPU                            |                                 | Cold Spring Harbor Laboratory (1985)                             |

|   | ٤ |  |
|---|---|--|
| 1 | Ē |  |
|   | ខ |  |
|   |   |  |
|   | _ |  |
| - | 을 |  |
|   | 8 |  |

| Name                                                                | Accession                                    | Region                                                                      | Author                                                       | Reference                                                                                                                            |
|---------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| B.US.WC001<br>C.BI.BU910112<br>C.BR.92BR025                         | AF003887<br>U39233<br>U52953                 | REV TAT VIF VPR VPU<br>ENV<br>ENV GAG NEF POL REV<br>TAT VIF VPR VPI        | Fang, G<br>Penny, MA<br>Gao, F                               | J AIDS 12(4):352-357 (1996)<br>ARHR 12(8):741-747 (1996)<br>J Virol 70(3):1651-1667 (1996)                                           |
| C.BW.96BW01B03<br>C.BW.96BW01B21<br>C.BW.96BW01B22<br>C.BW.96BW0402 | AF110959<br>AF110960<br>AF110961<br>AF110962 | POL NEF REV VIF VPR GAG TAT ENV GAG NEF POL REV TAT VIF VPR VPU             | Novitsky, VA<br>Novitsky, VA<br>Novitsky, VA<br>Novitsky, VA | J Virol 73(5):4427-4432 (1999)<br>J Virol 73(5):4427-4432 (1999)<br>J Virol 73(5):4427-4432 (1999)<br>J Virol 73(5):4427-4432 (1999) |
| C.BW.96BW0502<br>C.BW.96BW0504<br>C.BW.96BW1104<br>C.BW.96BW1210    | AF110967<br>AF110968<br>AF110969<br>AF110972 | GAG NEF POL<br>REV TAT VIF VPR<br>GAG NEF POL REV VIF<br>GAG REV            | Novitsky, VA<br>Novitsky, VA<br>Novitsky, VA<br>Novitsky, VA | J Virol 73(5):4427-4432 (1999) J Virol 73(5):4427-4432 (1999) J Virol 73(5):4427-4432 (1999) J Virol 73(5):4427-4432 (1999)          |
| C.BW.96BW15B03<br>C.BW.96BW1626<br>C.BW.96BW16B01<br>C.BW.96BW17A09 | AF1109/3<br>AF110978<br>AF110976<br>AF110979 | GAG REV<br>GAG<br>REV<br>GAG REV                                            | Novitsky, VA<br>Novitsky, VA<br>Novitsky, VA<br>Novitsky, VA | J VIIOI 73(5):4427-4432 (1999)<br>J Virol 73(5):4427-4432 (1999)<br>J Virol 73(5):4427-4432 (1999)<br>J Virol 73(5):4427-4432 (1999) |
| C.CN.AF268277<br>C.DJ.DJ259A<br>C.DJ.DJ373A<br>C.ET.ETH2220         | AF268277<br>L22940<br>L23065<br>U46016       | ENV<br>REV TAT VPU<br>ENV REV TAT<br>ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Chen, Z<br>Louwagie, J<br>Louwagie, J<br>Salminen, MO        | J Virol 74(14):6501-6510 (2000)<br>J Virol 69(1):263-271 (1995)<br>J Virol 69(1):263-271 (1995)<br>ARHR 12(14):1329-1339 (1996)      |
| C.FR.HIV232980<br>C.FR.HIV232996<br>C.IN.93IN101                    | AJ232980<br>AJ232996<br>AB023804             | NEF<br>NEF<br>ENV GAG NEF REV TAT<br>VPR VPU                                | Jubier-Maurin, V<br>Jubier-Maurin, V<br>Mochizuki, N         | ARHR 15(1):23-32 (1999)<br>ARHR 15(1):23-32 (1999)<br>ARHR 15(14):1321-1324 (1999)                                                   |
| C.IN.93IN904<br>C.IN.93IN905<br>C.IN.93IN999<br>C.IN.94IN11246      | AF067157<br>AF067158<br>AF067154<br>AF067159 | GAG NEF<br>GAG<br>GAG NEF POL<br>GAG NEF POL REV TAT                        | Lole, KS<br>Lole, KS<br>Lole, KS<br>Lole, KS                 | J Virol 73(1):152-160 (1999)<br>J Virol 73(1):152-160 (1999)<br>J Virol 73(1):152-160 (1999)<br>J Virol 73(1):152-160 (1999)         |
| C.IN.95IN21068<br>C.IN.AF209990<br>C.IN.HIVY15117                   | AF067155<br>AF20990<br>Y15117                | GAG NEF POL REV TAT<br>VIF VPR<br>GAG<br>NEF                                | Lole, KS<br>Gupta, S<br>Ahmad, KM                            | J Virol 73(1):152-160 (1999)  Protein Epr Purif 21(7):378-385 (2001)  ARHR 14(16):1491-1493 (1998)                                   |

Table 1: cont.

| Name           | Accession | Region                                   | Author               | Reference                                         |
|----------------|-----------|------------------------------------------|----------------------|---------------------------------------------------|
| C.IN.HIVY17884 | Y17884    | NEF                                      | Ahmad, KM            | ARHR 14(16):1491-1493 (1998)                      |
| C.IN.HIVY17891 | Y17891    | NEF                                      | Ahmad, KM            | ARHR 14(16):1491-1493 (1998)                      |
| C.IN.HIVY17892 | Y17892    | NEF                                      | Ahmad, KM            | ARHR 14(16):1491-1493 (1998)                      |
| C.SN.SE364A    | L22944    | VPU                                      | Louwagie, J          | J Virol 69(1):263-271 (1995)                      |
| C.SO.SO145A    | L22946    | ENV REV VPU                              | Louwagie, J          | J Virol 69(1):263-271 (1995)                      |
| C.TW.TWC2      | AF220473  | VPU                                      | Lee, CN              | J Clin Microbiol 38(7):2468-2474 (2000)           |
| C.UG.UG268A2   | L22948    | ENV REV VPU                              | Louwagie, J          | J Virol 69(1):263-271 (1995)                      |
| D.CD.84ZR085   | U88822    | ENV GAG NEF POL REV                      | Gao, F               | J Virol 72(7):5680-5698 (1998)                    |
|                |           | TAT VIF VPR VPU                          |                      |                                                   |
| D.CD.ELI       | K03454    | ENV GAG NEF POL RĘV<br>TAT VIF VPR VPI I | Alizon, M            | Cell 46(1):63-74 (1986)                           |
| ואז מט מ       | 103653    | HNIV                                     | Volimo I             | ABHR 4:165-173 (1988)                             |
| אַרואַ מַטַ מ  | 200000    | ENIV GAG NEE PO! REV                     | Spire B              | Gene 81:275-284 (1989)                            |
|                |           | TAT VIF VPR VPU                          |                      |                                                   |
| D.CD.Z2Z6      | M22639    | GAG POL REV TAT VIF                      | Srinivasan, A        | Gene 52:71-82 (1987)                              |
|                |           | VPR                                      |                      |                                                   |
| D.CI.CI13      | AJ277820  | ENV                                      | Beirnaert, E         | Virology 281(2):305-314 (2001)                    |
| D.JP.PT14-4    | AB034541  | VPR                                      | Yamada, T            | Arch Virol 145(5):1021-1027 (2000)                |
| D.SN.SE365A2   | L22945    | ENV REV TAT VPU                          | Louwagie, J          | J Virol 69(1):263-271 (1995)                      |
| D.TZ.87TZ4622  | U65075    | ENV                                      | Robbins, KE          | ARHR 12(14):1389-1391 (1996)                      |
| D.TZ.TZ005     | U12406    | VPU                                      | Siwka, W             | ARHR 10(12):1753-1754 (1994)                      |
| D.UG.92UG024-D | U08805    | ENV                                      | WHO Global Programme | WHO Global Programme ARHR 10(11):1327-1343 (1994) |
| D.UG.94UG1141  | U88824    | GAG NEF POL REV TAT                      | Gao, F               | J Virol 72(7):5680-5698 (1998)                    |
|                | 4         | VII VII VIO                              |                      | (F001) 000 F0C 0E 1 111 0 1                       |
| D.UG.U18-0     | X91355    | VIF.                                     | Wieland, U           | J Gen Virol /8:393-400 (1997)                     |
| D.UG.U25-6     | X91361    | VIF                                      | Wieland, U           | J Gen Virol 78:393-400 (1997)                     |
| D.UG.U36-0     | X91363    | VIF                                      | Wieland, U           | J Gen Virol 78:393-400 (1997)                     |
| D.UG.UG266A2   | L22947    | VPU                                      | Louwagie, J          | J Virol 69(1):263-271 (1995)                      |
| D.UG.UG269A    | L22949    | REV                                      | Louwagie, J          | J Virol 69(1):263-271 (1995)                      |
| D.UG.UG274A2   | L22950    | REV TAT                                  | Louwagie, J          | J Virol 69(1):263-271 (1995)                      |
| D.UG.WH015-474 | U36886    | ENV                                      | Douglas, NW          | AIDS 10(1):39-46 (1996)                           |
| D.ZR.AF233690  | AF233690  | VIF                                      | Kuhn, J              | Unpublished                                       |
| F1.BE.V1850    | AF077336  | ENV GAG NEF POL REV                      | Сапт, ЛК             | Virology 269(1):95-104 (2000)                     |
|                |           | OIL VIIA IIA IUI                         |                      |                                                   |

| =        |
|----------|
| 0        |
| ū        |
|          |
| ä        |
| _        |
| <u>e</u> |
| <b>三</b> |
| æ        |
| <b>—</b> |

| Name             | Accession | Region                                 | Author           | Reference                      |
|------------------|-----------|----------------------------------------|------------------|--------------------------------|
| F1.BR.93BR020-1  | AF005494  | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Gao, F           | J Virol 72(7):5680-5698 (1998) |
| F1.BR.BZ126      | L22082    | ENV REV TAT VPU                        | Louwagie, J      | ARHR 10(5):561-567 (1994)      |
| F1.BR.BZ162      | L11751    | GAG                                    | Louwagie, JJ     | AIDS 7:769-780 (1993)          |
| F1.BR.BZ163      | L22085    | REV TAT VPU                            | Louwagie, J      | ARHR 10(5):561-567 (1994)      |
| F1.CD.V1174      | L11782    | GAG                                    | Louwagie, JJ     | AIDS 7:769-780 (1993)          |
| F1.DE.AF200475   | AF200475  | VIF                                    | Kuhn, J          | Unpublished                    |
| F1.F1.F1N9363    | AF075703  | ENV GAG NEF POL REV                    | Laukkanen, T     | Unpublished                    |
|                  |           | TAT VIF VPR VPU                        |                  |                                |
| F1.FR.MP411      | AJ249238  | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Peeters, M       | ARHR 16(2):139-151(2000)       |
| F1.RW.V169       | L11796    | GAG                                    | Louwagie, JJ     | AIDS 7:769-780 (1993)          |
| F2.CM.CA20       | AJ277824  | ENV                                    | Nyambi, PN       | J Virol 70(9):6235-6243 (1996) |
| F2.CM.HIM277819  | AJ277819  | ENV                                    | Beimaert, E      | Virol 281(2):305-314 (2001)    |
| F2.CM.HIV232985  | AJ232985  | NEF                                    | Jubier-Maurin, V | ARHR 15(1):23-32 (1999)        |
| F2.CM.MP255      | AJ249236  | ENV GAG POL REV TAT                    | Peeters, M       | ARHR 16(2):139-151(2000)       |
|                  |           | VIF VPR VPU                            |                  |                                |
| F2.CM.MP257      | AJ232986  | NEF                                    | Jubier-Maurin, V | ARHR 15(1):23-32 (1999)        |
| F2.CM.MP257      | AJ249237  | ENV GAG POL REV TAT                    | Peeters, M       | ARHR 16(2):139-151(2000)       |
|                  |           | VIF VPR VPU                            |                  |                                |
| G.BE.DRCBL       | AF084936  | ENV GAG NEF POL REV                    | Debyser, Z       | ARHR 14(5):453-459 (1998)      |
| OCULUI DE        | A F056186 | VIE VPR VPII                           | Harada V         | Unnuhlished                    |
| G.FI.HH8793-1-1  | AF061640  | GAG NEF POL REV VIF                    | Salminen, MO     | ARHR 8(9):1733-1742 (1992)     |
|                  |           | VPR                                    |                  |                                |
| G.FI.HH8793-12-1 | AF061641  | ENV TAT VPU                            | Salminen, MO     | ARHR 8(9):1733-1742 (1992)     |
| G.GA.LBV217      | U09664    | ENV                                    | Janssens, W      | ARHR 10:877-879 (1994)         |
| G.ML.HIV232990   | AJ232990  | NEF                                    | Jubier-Maurin, V | ARHR 15(1):23-32 (1999)        |
| G.NG.92NG083     | U88826    | ENV GAG NEF POL REV                    | Gao, F           | J Virol 72(7):5680-5698 (1998) |
|                  |           | TAT VIF VPR VPU                        |                  |                                |
| G.NG.IKCSW22     | AJ232991  | NEF                                    | Jubier-Maurin, V | ARHR 15(1):23-32 (1999)        |
| G.NG.MACSW39     | AJ232992  | NEF                                    | Jubier-Maurin, V | ARHR 15(1):23-32 (1999)        |
| G.NG.NG1937      | AF069937  | ENV                                    | McCutchan, FE    | Virology 254(2):226-234 (1999) |
| G.NG.NG1939      | AF069935  | ENV                                    | McCutchan, FE    | Virology 254(2):226-234 (1999) |
| G.SE.SE6165      | AF061642  | ENV GAG NEF POL REV                    | Сапт, ЛК         | Virology 247(1):22-31 (1998)   |
|                  |           | TAT VIF VPR VPU                        |                  |                                |

| Ħ             |
|---------------|
|               |
| 8             |
|               |
| $\overline{}$ |
| e             |
| ⇁             |
| 2             |
| _c4           |

| Name           | Accession | Region                                 | Author               | Reference                               |
|----------------|-----------|----------------------------------------|----------------------|-----------------------------------------|
| G.TW.TWG1      | AF220486  | VPU                                    | Lee, CN              | J Clin Microbiol 38(7):2468-2474 (2000) |
| H.BE.V1991     | AF190127  | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Laukkanen, T         | AIDS 14(11):1533-1543 (2000)            |
| H.BE.VI997     | AF190128  | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Laukkanen, T         | AIDS 14(11):1533-1543 (2000)            |
| H.CD.HIV232994 | AJ232994  | NEF                                    | Jubier-Maurin, V     | ARHR 15(1):23-32 (1999)                 |
| H.CD.HIV232995 | AJ232995  | NEF                                    | Jubier-Maurin, V     | ARHR 15(1):23-32 (1999)                 |
| H.CF.90CF056   | AF005496  | ENV GAG NEF POL REV                    | Murphy, E            | ARHR 9(10):997-1006 (1993)              |
| J.SE.SE7022    | AF082395  | ENV GAG NEF POL REV                    | Laukkanen, T         | ARHR 15(3):293-297 (1999)               |
|                |           | TAT VIF VPR VPU                        |                      |                                         |
| J.SE.SE7887    | AF082394  | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Laukkanen, T         | ARHR 15(3):293-297 (1999)               |
| K.BE.V1325     | L11789    | GAG                                    | Louwagie, JJ         | AIDS 7:769-780 (1993)                   |
| к.ср.еотвис    | AJ249235  | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Peeters, M           | ARHR 16(2):139-151 (2000)               |
| K.CM.MP535     | AJ249239  | ENV GAG NEF POL REV                    | Peeters, M           | ARHR 16(2):139-151 (2000)               |
| N.CM.YBF106    | AJ271370  | ENV GAG NEF POL REV                    | Souquiere, S         | Unpublished                             |
|                |           | TAT VIF VPR                            |                      |                                         |
| N.CM.YBF30     | AJ006022  | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Simon, F             | Nature Med 4(9):1032-1037 (1998)        |
| O.CM.ANT70     | L20587    | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Vanden Haesevelde, M | J Virol 68(3):1586-1596 (1994)          |
| O.CM.CM4974    | AF009033  | ENV                                    | Korber, BT           | Unpublished                             |
| O.CM.HIVICA9EN | X96522    | ENV                                    | Janssens, W          | AIDS 13:41-48 (1999)                    |
| O.CM.MVP5180   | L20571    | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Gurtler, LG          | J Virol 68:1581-1585 (1994)             |
| O.FR.HIVY16019 | Y16019    | VIF VPR VPU                            | Bibollet-Ruche, F    | ARHR 14(11):951-961 (1998)              |
| O.FR.HIVY16020 | Y16020    | VIF VPR VPU                            | Bibollet-Ruche, F    | ARHR 14(11):951-961 (1998)              |
| O.FR.HIVY16021 | Y16021    | VIF VPR VPU                            | Bibollet-Ruche, F    | ARHR 14(11):951-961 (1998)              |
| O.FR.HIVY16022 | Y16022    | VIF VPR VPU                            | Bibollet-Ruche, F    | ARHR 14(11):951-961 (1998)              |
| O.FR.HIVY16023 | Y16023    | VIF VPR VPU                            | Bibollet-Ruche, F    | ARHR 14(11):951-961 (1998)              |
| O.FR.HIVY16024 | Y16024    | VIF VPR VPU                            | Bibollet-Ruche, F    | ARHR 14(11):951-961 (1998)              |
| O.FR.HIVY16025 | Y16025    | VPR                                    | Bibollet-Ruche, F    | ARHR 14(11):951-961 (1998)              |
| O.FR.HIVY16026 | Y16026    | VPR VPU                                | Bibollet-Ruche, F    | ARHR 14(11):951-961 (1998)              |

| =        |
|----------|
| 0        |
| Ü        |
| ••       |
| _        |
| <u> </u> |
| <u> </u> |
| æ        |
| _        |

| Name               | Accession  | Region                                 | Author                | Reference                                                            |
|--------------------|------------|----------------------------------------|-----------------------|----------------------------------------------------------------------|
| O.FR.HIVY16027     | Y16027     | VPR                                    | Bibollet-Ruche, F     | ARHR 14(11):951-961 (1998)                                           |
| O.FR.HIVY16028     | Y16028     | VPR ·                                  | Bibollet-Ruche, F     | ARHR 14(11):951-961 (1998)                                           |
| O.FR.HIVY16029     | Y16029     | VPR VPU                                | Bibollet-Ruche, F     | ARHR 14(11):951-961 (1998)                                           |
| O.FR.HIVY16030     | Y16030     | VPR                                    | Bibollet-Ruche, F     | ARHR 14(11):951-961 (1998)                                           |
| O.FR.HIVY16031     | Y16031     | VPR VPU                                | Bibollet-Ruche, F     | ARHR 14(11):951-961 (1998)                                           |
| O.GA.VI686         | X96526     | ENV                                    | Delaporte, E          | AIDS 10(8):903-910 (1996)                                            |
| O.GQ.193HA         | U82990     | ENV                                    | Hunt, JC              | ARHR 13(12):995-1005 (1997)                                          |
| O.SN.MP1299        | AJ302646   | GAG NEF POL REV TAT                    | Peeters, M            | Unpublished (2000)                                                   |
|                    |            | VIF VPR VPU                            |                       |                                                                      |
| O.SN.MP1300        | AJ302647   | ENV GAG NEF POL REV<br>TAT VIF VPR VPI | Peeters, M            | Unpublished (2000)                                                   |
| CPZ.CD.CPZANT      | U42720     | ENV GAG NEF POL REV                    | Vanden Haesevelde, MM | Vanden Haesevelde, MM Virology 221(2):346-350 (1996)                 |
|                    |            | TAT VIF VPR VPU                        | •                     | 3                                                                    |
| CPZ.CM.CAM3        | AF115393   | ENV GAG NEF POL REV                    | Corbet, S             | J Virol 74:529-534 (2000)                                            |
|                    |            | TAT VIF VPR VPU                        |                       |                                                                      |
| CPZ.CM.CAM5        | AJ271369   | ENV GAG NEF POL REV                    | Souquiere, S          | Unpublished                                                          |
|                    |            | TAT VIF VPR VPU                        |                       |                                                                      |
| CPZ.GA.CPZGAB      | X52154     | ENV GAG NEF POL REV                    | Huet, T               | Nature 345(6273):356-359 (1990)                                      |
|                    |            | TAT VIF VPR VPU                        |                       |                                                                      |
| CPZ.US.CPZUS       | AF103818   | ENV GAG NEF POL REV                    | Gao, F                | Nature 397(6718):436-441 (1999)                                      |
| 107111000 10 17 17 | 4 17107740 |                                        | 4                     | (0000) 32501 (3501)(66)/5 (**)/11                                    |
| 01_AE.CF.90CF11697 | AF19/340   | ENV GAG NEF POL KEV<br>TAT VIF VPR VPU | Anderson, Jr          | J VITOI /4(ZZ):10/32-10/63 (ZUUU)                                    |
| 01_AE.CF.90CF402   | U51188     | ENV GAG NEF POL REV                    | Gao, F                | J Virol 70(10):7013-7029 (1996)                                      |
| 1                  |            | TAT VIF VPR VPU                        |                       |                                                                      |
| 01_AE.CF.90CF4071  | AF197341   | ENV GAG NEF POL REV                    | Anderson, JP          | J Virol 74(22):10752-10765 (2000)                                    |
|                    | A 197701 A | ENIV                                   | Doimport L            | Virolom, 281(2):205_214 (2001)                                       |
| OI AE.CIM.CAIO     | A E315850  | IVE IVE                                | Dounach, E            | VIII.0083 201(2):303-314 (2001)                                      |
| UI_AE.DE.NUSDE     | AF213839   | - II                                   | Numit, J              | Onpulsined                                                           |
| 01_AE.FR.HIV232982 | AJ232982   | ZEF                                    | Jubier-Maurin, V      | ARHR 15(1):23-32 (1999)                                              |
| 01_AE.TH.93TH057   | AF197338   | GAG NEF POL REV TAT                    | Anderson, JP          | J Virol 74(22):10752-10765 (2000)                                    |
| ,                  |            | VIF VFO                                | £                     | (0000) 4/10 0 0410 0 (00/11 0 14 14 14 14 14 14 14 14 14 14 14 14 14 |
| 01_AE.1H.931H065   | AF19/339   | ENV GAG POL KEV IAI                    | Anderson, JP          | J VIrol /4(22):10/52-10/65 (2000)                                    |
| 01_AE.TH.93TH253   | U51189     | POL REV TAT                            | Gao, F                | J Virol 70(10):7013-7029 (1996)                                      |
| 01_AE.TH.93TH902   | AF170549   | GAG POL VPR                            | Chang, SY             | ARHR 15(17):1591-1596 (1999)                                         |
| 01_AE.TH.94TH702   | AF170545   | POL VPR                                | Chang, SY             | ARHR 15(17):1591-1596 (1999)                                         |
|                    |            |                                        |                       |                                                                      |

| نب       |
|----------|
| con      |
| Ξ        |
| <u>و</u> |
| ap       |

| Name                                 | Accession            | Region                                                    | Author                        | Reference                                                 |
|--------------------------------------|----------------------|-----------------------------------------------------------|-------------------------------|-----------------------------------------------------------|
| 01_AE.TH.94TH7091                    | AF170546             | GAG                                                       | Chang, SY                     | ARHR 15(17):1591-1596 (1999)                              |
| 01_AE.TH.95TNIH047                   | AB032741             | GAG POL REV TAT VIF                                       | Auwanit, W                    | Unpublished (1999)                                        |
| 01_AE.TH.98-4                        | U48934               | NEF                                                       | Artenstein, AW                | ARHR 12:557-560 (1996)                                    |
| 01_AE.TH.CM240                       | U54771               | ENV GAG NEF POL REV                                       | Carr, JK                      | J Virol 70(9):5935-5943 (1996)                            |
| 01_AE.TH.KH03                        | U48264               | ENV ENV ENV ENV ENV ENV ENV ENV ENV                       | McCutchan, FE                 | J Virol 70(6):3331-3338 (1996)                            |
| 01_AE.TH.TH022                       | AB032740             |                                                           | Auwanit, W                    | Unpublished (1999)                                        |
| 01_AE.TW.TWE13                       | AF220479             | IAI VIF VFK VFU                                           | Lee, CN                       | J Clin Microbiol 38(7):2468-2474 (2000)                   |
| 01_AE.TW.TWE6                        | AF220478             | VPU                                                       | Lee, CN                       | J Clin Microbiol 38(7):2468-2474 (2000)                   |
| 02_AG.CM.MP807                       | AJ286133             | NEF POL REV TAT VIF                                       | Montavon, C                   | J AIDS 23(5):363-374 (2000)                               |
| 02_AG.DJ.DJ258A                      | L22939               | VPR VPU VPU ENV GAG NEF POL REV                           | Louwagie, J                   | J Virol 69(1):263-271 (1995)                              |
| 02_AG.FR.DJ263                       | AF063223             |                                                           | Carr, JK                      | Virology 247(1):22-31 (1998)                              |
| 02_AG.FR.DJ264                       | AF063224             | IAI VIF VPR VPU<br>ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Сат, ЈК                       | Virology 247(1):22-31 (1998)                              |
| 02_AG.GH.G829                        | AF184155             | GAG NEF POL REV TAT VIF VPR VPU ENV GAG NEF POL REV       | Candotti, D                   | J Med Virol 62(1):1-8 (2000)                              |
| 02_AG.NG.IBNG                        | L39106               |                                                           | Howard, TM                    | ARHR 10(12):1755-1757 (1994)                              |
| 02_AG.NG.NG1921                      | AF069941             | TAT VIF VPR VPU ENV ENV AT VIE VPR VPU TAT VIE VPR VPII   | McCutchan, FE                 | Virology 254(2):226-234 (1999)                            |
| 02_AG.SE.SE7812                      | AF107770             |                                                           | Laukkanen, T                  | Unpublished                                               |
| 02_AG.SN.MP1211                      | AJ251056             | ENV GAG NEF POL REV TAT VIF VPR VPU                       | Toure-Kane, C                 | ARHR 16(6):603-609 (2000)                                 |
| 02_AG.SN.MP1213<br>03_AB.RU.KAL153-2 | AJ251057<br>AF193276 | NEF FOL KEV IAI VIF<br>VPR<br>ENV GAG NEF POL REV         | I oure-Kane, C<br>Liitsola, K | AKHK 10(6):003-009 (2000)<br>AIDS 12(14):1907-1919 (1998) |
| 03_AB.RU.KAL68-1                     | AF082485             | ENV ENV CAG NEF POL REV TAT VIE VPB VPH                   | Liitsola, K                   | AIDS 12(14):1907-1919 (1998)                              |
| 03_AB.RU.RU98001                     | AF193277             |                                                           | Liitsola, K                   | ARHR 16(11):1047-1053 (2000)                              |
| 04_cpx.CY.94CY032-3                  | AF049337             | ENV GAG NEF POL REV                                       | Gao, F                        | J Virol 72(12):10234-10241 (1998)                         |

| Name                                    | Accession            | Region                                 | Author                       | Reference                                                      |
|-----------------------------------------|----------------------|----------------------------------------|------------------------------|----------------------------------------------------------------|
|                                         |                      | TAT VIF VPR VPU                        |                              |                                                                |
| 04_cpx.GR.97PVCH                        | AF119820             | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Nasioulas, G                 | ARHR 15(8):745-758 (1999)                                      |
| 04_cpx.GR.97PVMY                        | AF119819             | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Nasioulas, G                 | ARHR 15(8):745-758 (1999)                                      |
| 05_DF.BE.VI1310                         | AF193253             | ENV GAG NEF POL REV                    | Laukkanen, T                 | Virology 269(1):95-104 (2000)                                  |
| 05_DF.BE.VI961                          | AF076998             | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Сап, ЛК                      | Virology 269(1):95-104 (2000)                                  |
| 06_cpx.AU.BFP90                         | AF064699             | ENV GAG NEF POL REV                    | Oelrichs, RB                 | ARHR 14(16):1495-1500 (1998)                                   |
| 06_cpx.ML.95ML127                       | AJ288982             | ENV GAG NEF POL REV                    | Montavon, C                  | ARHR 15(18):1707-1712 (1999)                                   |
| 06_cpx.ML.95ML84                        | AJ245481             | ENV GAG NEF POL REV                    | Montavon, C                  | ARHR 15(18):1707-1712 (1999)                                   |
| 06_cpx.NG.NG3670a<br>06_cpx.SN.97SE1078 | AF069934<br>AJ288981 | ENV<br>ENV GAG NEF POL REV             | McCutchan, FE<br>Montavon, C | Virology 254(2):226-234 (1999)<br>ARHR 15(18):1707-1712 (1999) |
| 10_CD.BFL061                            | AF289548             | ENV GAG NEF POL REV                    | Koulinska, IN                | ARHR 20(5):423-431(2001)                                       |
| 10_CD.BFL071                            | AF289549             | ENV GAG NEF POL REV                    | Koulinska, IN                | ARHR 20(5):423-431(2001)                                       |
| 10_CD.BFL110                            | AF289550             | ENV GAG NEF POL REV                    | Koulinska, IN                | ARHR 20(5):423-431(2001)                                       |
| 11_cpx.CM.CA1                           | AJ277823             | ENV                                    | McCutchan, FE                | Virology 254(2):226-234 (1999)                                 |
| 11_cpx.CM.MP818                         | AJ291718             | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Peeters, M                   | Unpublished (2000)                                             |
| 11_cpx.FR.MP1298                        | AJ291719             | ENV GAG NEF POL REV<br>TAT VIF VPR VPU | Peeters, M                   | Unpublished (2000)                                             |
| 11_cpx.FR.MP1307                        | AJ291720             | ENV GAG NEF POL REV                    | Peeters, M                   | Unpublished (2000)                                             |
| 11_cpx.GR.GR17                          | AF179368             | ENV GAG NEF POL REV                    | Paraskevis, D                | ARHR 16(9):845-855 (2000)                                      |
| 11_cpx.NG.NG3670b                       | AF069945             | ENV                                    | McCutchan, FE                | Virology 254(2):226-234 (1999)                                 |

| بر<br>6                               | 233<br>260<br>260 | 556          | 555         | 576         | 572                                   | 575        | 568         | 196        | 564                                   | 564        | 555        | 540         | 557       | 536           | 267         | 576         | 7 0         | 7/0        | 9.4                                                    | 575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 541         | 548       | 569       | 577       | 564       | 575        | 560        | 100        | 263                                     | 549           | 575                                     | 561          | 200        | v (        | 775                                     | 223                                     | 552              | 551       | 567        | 586<br>574 | 574        | 299                                   | 572       |           | 0 L<br>0 L<br>0 L | 60.00     | 553                                     | 565        | 561         | 0 7 7<br>9 7 9 | 200                                     | 567       | 563       | 555<br>575                              | 295          | 267      | 828           |  |
|---------------------------------------|-------------------|--------------|-------------|-------------|---------------------------------------|------------|-------------|------------|---------------------------------------|------------|------------|-------------|-----------|---------------|-------------|-------------|-------------|------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-----------|-----------|-----------|------------|------------|------------|-----------------------------------------|---------------|-----------------------------------------|--------------|------------|------------|-----------------------------------------|-----------------------------------------|------------------|-----------|------------|------------|------------|---------------------------------------|-----------|-----------|-------------------|-----------|-----------------------------------------|------------|-------------|----------------|-----------------------------------------|-----------|-----------|-----------------------------------------|--------------|----------|---------------|--|
| RACOHI.J.OL.T.                        | 9                 |              |             | - A A -     |                                       | WO         | X0          | XXX        | K                                     | OM         |            | SS          | S         | QaqR-S        | QQR-S       | 4           | i i         | 2          |                                                        | 00R-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |           |           |           |           |            |            |            |                                         | k             | X                                       | К            | ××         |            | X X X X X X X X X X X X X X X X X X X   |                                         |                  |           |            | 4          |            |                                       |           |           |                   | 1111111   |                                         |            |             | ea/1-K         | X0                                      | K         | OM-K      | XX                                      | TS           | 8        | S             |  |
| T.O. L. HOOONII. I. BA I RAOOHIJ. OI. | 8                 | S            | S           | SS          | 0                                     | S          | SS          | , A        |                                       |            | S          |             | I         | Du            | Q           | SQ          |             |            |                                                        | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Sa-       | S         | S         | -LST-     | S          |            |            |                                         | 8             | S                                       | S            | XK         |            |                                         |                                         |                  |           | S          | 200        | -0-        |                                       | S         | S         | בייטמיי           |           |                                         | XK         |             |                |                                         | S         | K         |                                         | -O           |          | -X            |  |
| EDS.T.TOGROUP.                        |                   | ^\n          | A-V         | Λ           | · · · · · · · · · · · · · · · · · · · |            |             |            |                                       |            |            | L           | I         | -a-gtHtlmK-   | -ATHTK-     | -A-RTHS-IK- | -ATHI-MK-   | -Y-ASHIN   | THT-MK-                                                | -ATHT-MK-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 1         |           |           |           | ¥          |            |            |                                         |               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |              |            |            |                                         |                                         |                  |           |            |            |            |                                       | N         |           |                   | V         | Λ                                       |            |             | a              |                                         | L         |           |                                         | X-N-T-Y-     | H        |               |  |
| -  <br>TWO & SOUTH                    | 1it               | - I          | - I         |             | 4 1-4                                 | -Ī         | -H          |            |                                       | -I         | -I         | -I          | -I        | ATt           | AT-         | AT          | - TA        | ATA        | ATA                                                    | -TAAT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Δ           |           | -1        | -I        | -I        | - <u>1</u> |            |            |                                         | a- <u>I</u> - | -I                                      | -I           | R-I-       | -T         |                                         |                                         | -I               | -I        |            | 7          | 4          | ,                                     | -I        | -I        |                   | -1        | - <u>1</u>                              | -1         | - <u>1</u>  |                |                                         | -I        | -I        | -T                                      | V            | Δ        | AV-           |  |
| eptide -                              | fla-              |              |             | LF          |                                       |            |             | Ė          |                                       | •          | - 14       |             |           | V-S           | S-V         | VS          |             |            |                                                        | -S-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | IF        | IF        | IF        | IF        | IF         | IFF.       | 15-        | 17                                      | 7-1-          |                                         | -F           |            |            | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                         |                  |           |            |            | 4          | -11                                   | T         | £         | H E               |           |                                         |            |             | L?a            | 1.5                                     |           | LF        | L                                       | 5-1          |          |               |  |
| gp41<br>fusion p                      | v.g.lv.           | VV.          | L V.        | λ           |                                       | MF.        | MF.         |            | λ                                     |            | L V.       | AF L        | AF- L     | 1-M1?         | L-M         | L-M         | E-7:-:      | W - T      | E 2                                                    | 1 X-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AFL         | E         | Σ         | . MW.     | M.        | ;          | Σ          | E 2        | ΕΣ                                      | V?LV.         | LV                                      | LV.          | LV.        | LV         | LV L F.                                 |                                         | V                | . V V.    | M.         | L          | X          | · · ·                                 | LM.       | -VLV.     |                   | -VLV.     | I LV.                                   | ILM.       | ILV.        | V?1V.          | >                                       | -vv       | AVL       | . VV.                                   | 1            | AF L     | AP L          |  |
| 99120 // 9                            |                   |              |             |             | 4 E                                   | E          | <u>B</u>    | X16        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            |            | SS          | SS        | gt?h          | RT. H       | NNPH        | GTPH        | HTPH       | 11.11.11.15<br>11.11.11.11.11.11.11.11.11.11.11.11.11. | 7. B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×           | B         | B         | B         | B         | B          | ш          | 36         | ax                                      | 1 22          | B                                       | B            | B          | E          | A                                       | 4                                       |                  |           | -\$        | X          | . W        | 4:::                                  | G         | GK        | 5                 |           | Ξ                                       | B          | B           | 9              |                                         | В         | B         | E                                       |              | A        | QK.D-Q        |  |
| אנססאגאי                              | r-R               | R            | R-R         | R           | R-R                                   | .Е-К       | .E-R        | -TR        |                                       | R-R        | R-R        |             |           | -kia-PvIgt    | -RIA-P-IST  | -VS-PIISL   | -IA-PTIGT   | MS-PIINI   | TOT -0 - 2 - 10 - 10 - 10 - 10 - 10 - 10 -             | -13-P-1GTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -GHT-       | ~         | R-R       | R         | -G9-      | R          | -R         | . K        |                                         | cha           | -RP                                     | -н           | -R         | ·          |                                         |                                         |                  |           | NR         | -G-R:      | -K-K       | -0×                                   | -W-R      | -R-R      | 2 E               |           |                                         |            |             | H C            |                                         | -R        | -R        |                                         | -TXPETKO     | H        | R-HT-ARQ      |  |
| o en contra                           | vk-Kpv            | K            | KS          | -R-KI       | KS                                    |            | ,           | II         | 46                                    |            | 0          | -SI         | )IS-      | -rvK-FS       | -RVK-FS     | -OVK-FS     | VK-FS       | -0-K-FS    | DITT                                                   | - KVK-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . :         |           | I0-       | I         |           | ĪÕI        | iŏ-        | 1          |                                         | AQ            |                                         | I            |            | W          |                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                  |           | I          | I-A        | 10-1-4-1-1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | KI        | KI        | K1                | KI        | I-I-I                                   | I          | -RL         | -B-K           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | -B-K      | -B-K      | -E-K                                    | T            | -SI      | -RS           |  |
| 1247AA 1000                           | -B?               | N-           | Ē           |             | 1                                     |            |             |            |                                       |            | 1          | -0          | -0-       | te-fn         | EN          |             |             | TKN        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HNX         | B         |           |           |           |            |            |            | 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 |               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |              |            |            |                                         |                                         | 1                |           |            | A          |            |                                       |           | QN        | Z                 |           |                                         | X          |             | k              |                                         | R         | N         | : : : : : : : : : : : : : : : : : : : : | - C- B 4 4   | INR      |               |  |
| -                                     | gd-rd             | AN-K         |             | A           |                                       |            |             |            | - 1 - N - K - L                       |            |            | -SN-VNL     | -SN-VNI   | -ik-I         | -IK-I       | .II         | -AI         | -VX-       | - V L                                                  | T-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TTAL        | -qNiK     | X-K       | NIK       |           | X-N-       | ENIK       | NTV        | TIN                                     | 4             |                                         |              |            |            |                                         |                                         |                  |           |            |            |            |                                       |           |           | I                 | X-12      | *************************************** |            |             | -Td-rd-        |                                         | -TNT-     | NI-       | 1                                       | O-WARK -     | -SEL     | -TN-K-I       |  |
| V5, - -                               | 7778t7-tg         |              |             |             | SLNL                                  | TVNN       | TANG        | SA-NYT     |                                       | NNTRTE-T   | THY        | YVTXV)-     | TKET-VY   | ??sn???tfr-i- | SS-NNVTI    | KS-PNTT-G-T | SSRDNTLA    | STGENTLV   | - KSNII                                                | TITE SECTION OF THE S | NNDSRNITVN  | ???nttn-T | T-N-T     | NOT-KN-T- | .E-ETI-T- | STDT-T-    | T-NNT-N    | T-NO.I     | E-NIW                                   | nstn-T        | STN-T-                                  | STN-T-       | T-NTS      | STN-T-     | T-LV                                    |                                         | ٠,               | VT        | TNNT       | NET-DN-TL  | . SUIGN-I  |                                       | TV        |           | -ILL              | - I - I   | N-SON-T-                                | ANNTSON-T  | DSO-SN      | .???ttn-TT     | T-NOT                                   | TTT       | TTOTON    | .NDTIGK-TT                              | -I-KTINITSN: | KVTITN-  | N-SGNLTTN     |  |
| CD4  -                                | nn??              | T-T-SANNA    | 2           | T.          | N. N.                                 | -F-RN-T    | -Y-EDKG     | -I-EA      |                                       | 5          |            | EHS-R       |           | aldnowN       | OM-NTWN     |             | ٠           | OL-OPWN.   | OM-MPWN.                                               | OL-NOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DISTSAV     | t?n       | W         | 1         | >         | •          | '          |            |                                         | 2n            | SN.                                     | .NS          | Z          | KH         |                                         |                                         | ¥6:              | ٠         | •          | •          |            | 20.                                   | R-E.      | RN        | NIN               |           | A                                       | RDGC       | AN          | :              |                                         | : :       | : :       | :                                       | ٠            | EAG-KWE  |               |  |
|                                       | ຶ .               | 93-12-1      | L /<br>183  | 37          |                                       |            |             |            |                                       |            |            |             |           |               |             |             |             | •          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 07        | 30CF11697 | 90CF402   | 90CF4071  | CA10       | 93TH065    | CM240      | CHO3                                    | 02            | 3,263                                   | 57264        | LBNG       | VG1921     | SE7812                                  | 721211<br>721.153-2                     | CAL68-1          | 2098001   | .94CY032-3 | . 97 PVCH  | . Y / PVMY | 71961                                 | BFP90     | .95ML127  | .95ML84           | 975F1078  | 161                                     | 071        | 110         | 11 cpx         | . Mr. 6 1 6                             | .MP1298   | .MP1307   | .GR17                                   | 78.67        | <u> </u> | 2GAB          |  |
| 2                                     | CONSENSUS G       | G. FI. HH87. | G. NG. 92NG | G. NG. NG19 | G NG NG19                             | H.BE.VI99. | H. BE. VI99 | H.CF. 90CF | 1 28.3870                             | X 735.02.0 | K CW MD5.2 | N CAN VARIA | N CW VBF3 | CONSENSUS     | O. CM. ANT7 | O. CM. CM49 | O. CM. HIVI | O.CM. MVPS | O.GA. V168                                             | 0.60.193R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CD2 IIS CD3 | CONSENSUS | 01 AE.CF. | 01 AE.CF. | 01_AE.CF. | 01 AE. CM. | 01 AE. TH. | 01 AE. TH. | OI AE TH                                | CONSENSUS     | 02 AG. FR. 1                            | 02 AG. FR. I | 02 AG. NG. | 02 AG. NG. | 02_AG.SE.                               | 02 AG. SN.                              | 03_AB.RU.KAL68-1 | 03_AB.RU. | 04_cpx.CY  | 04_cpx.GR  | OF CDX.GK  | 05 DF BE                              | 06_cpx.AU | 06_cpx.ML | 06_cpx.ML         | OF CDX.NG | 10 CD. BFL                              | 10_CD. BFL | 10_CD. BFL. | CONSENSUS      | 2 × × × × × × × × × × × × × × × × × × × | 11 CDX FR | 11_cpx.FR | 11_cpx.GR.GR17                          | CPZ.CM.CA    | CP2 CP2  | CPZ.GA.CPZGAB |  |

| 668<br>6683<br>6693<br>6693<br>6693<br>6693<br>6693<br>6693<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 645<br>645<br>646<br>646<br>646<br>646<br>646<br>646<br>646<br>646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A - :: SN -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CAC-isn, -A.A.  O-dk-isn, -di-lyq-i-e-nq-k-qde- O-K-S Di-YN-i- | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| \$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| immunodominant region  *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTV-1 I H-R- TTV-1 I H-R TTV- |
| B. FR. HXB2 CONSERSUS A A. GB. MA246 A. KE. K93 A. KE. K93 A. KE. K93 A. KB. WDVI A. SB. UGSE8131 A. SB. UGSE8131 A. UG. 92UG37 B. UG. 92UG37 B. DB. DB. DB. DB. BB. BB. BB. BB. BB. B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C. DJ. DJ373A C. ET. TETH222 C. SO. CO145A C. UG. UG268A2 CONSENSUS D D. CD. ELLI D. CD. ELLI D. CD. ELLI D. CD. CT. CT. D. CD. NDK D. CT. CT. D. CG. ST. D. CG. ST. TET. ST. ST. TET. ST. ST. TET. ST. ST. TET. ST. TET |

#### **ACKNOWLEDGMENTS**

The HIV Sequence Database and Analysis Project is funded by the Vaccine and Prevention Research Program of the AIDS Division of the National Institute of Allergy and Infectious Diseases (Dr. James Bradac, Project Officer) through an interagencyagreement with the U.S. Department of Energy.

We thank our editors, the many researchers who have made their sequences available prior to publication, and authors who help by contributing to our review section.

#### The Cover



A schematic representation of the activation mechanism of latent proviruses by NF- $\kappa$ B and Tat during T-cell activation. From: Karn J, Tat, a novel regulator of HIV transcription and latency, Page 2 of this Compendium.

#### Citing this publication

We have simplified the name of this, our annual publication. Formerly known as "Human Retroviruses and AIDS" it should now be cited simply as *HIV Sequence Compendium 2000*, Kuiken C, Foley B, Hahn B, Marx P, McCutchan F, Mellors J, Mullins J, Wolinsky S, and Korber B, editors. Published by Theoretical Biology and Biophysics Group, Los Alamos National Laboratory.

assemble in solution into trimers. For example, SEQ ID NO:23 comprises the amino acid sequence of a native sequence when compared to SEQ ID NO:32 which comprises the amino acid sequence of a synthetic peptide of the present invention.

The term "reactive functionality", when used herein for purposes of the specification and claims, means a chemical group or chemical moiety that is capable of forming a covalent bond and/or is protective (e.g., protects peptide derivatives from reacting with themselves). With respect to chemical groups, a reactive functionality is known to those skilled in the art to comprise a group that includes, but is not limited to, maleimide, thiol, carboxy, phosphoryl, acyl, hydroxyl, acetyl, hydrophobic, amido, dansyl, fluorenylmethyoxycarbonyl (Fmoc), t-butyloxycarbonyl (Boc), sulfo, a succinimide, a thiol-reactive, an amino-reactive, a carboxyl-reactive, and the like. A chemical moiety may comprise a linker. Linkers are known to refer to a compound or moeity that acts as a molecular bridge to operably link two different molecules (e.g., a wherein one portion of the linker binds to a peptide according to the present invention, and wherein another portion of the linker binds to a macromolecular carrier or another antiviral peptide known to inhibit HIV transmission to a target cell). The two different molecules may be linked to the linker in a step-wise manner. There is no particular size or content limitations for the linker so long as it can fulfill its purpose as a molecular bridge. Linkers are known to those skilled in the art to include, but are not limited to, chemical chains, chemical compounds (e.g., reagents), and the like. The linkers may include, but are not limited to, homobifunctional linkers and heterobifunctional linkers. Heterobifunctional linkers, well known to those skilled in the art, contain one end having a first reactive functionality to specifically link a first molecule, and an opposite end having a second reactive functionality to specifically link to a second molecule. It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and heterofunctional (such as those described in the catalog of the Pierce Chemical Co., Rockford, Ill.), may be employed as a linker with respect to the present invention. Depending on such factors as the molecules to be linked, and the conditions in which the linking is performed, the linker may vary in length and composition for optimizing such properties as preservation of biological function stability, resistance to certain chemical and/or temperature parameters, and of sufficient stereo-selectivity or size. For example, the linker should not significantly interfere with the ability of the synthetic peptide according to the present invention (to which it is linked) to function as an inhibitor of either or both of HIV fusion and HIV transmission to a target cell. A preferred reactive functionality



## HIV-DERIVED HR1 PEPTIDES MODIFIED TO FORM STABLE TRIMERS, AND THEIR USE IN THERAPY TO INHIBIT TRANSMISSION OF HUMAN IMMUNODEFICIENCY VIRUS

This application claims the benefit of the U.S. Provisional Application 60/414,514 filed on 27 September 2002.

#### FIELD OF THE INVENTION

The present invention relates to synthetic peptides derived from the HR1 region of gp41, trimers formed therefrom, and their uses in anti-HIV therapy as antiviral agents to inhibit transmission of HIV (Human Immunodeficiency Virus) to target cells. More particularly, the present invention comprises a family of synthetic peptides which contain one or more site-specific amino acid substitutions (as compared to the native sequence) which uniquely result in a change in the oligomerization state in solution to self—association into predominately a trimeric form in forming a coiled coil, and may further stabilize such trimers formed.

#### BACKGROUND OF THE INVENTION

It is now well known that cells can be infected by HIV through a process by which fusion occurs between the cellular membrane and the viral membrane. The generally accepted model of this process is that the viral envelope glycoprotein complex (gp120/gp41) interacts with cell surface receptors on the membranes of the target cells. Following binding of gp120 to cellular receptors (e.g., CD4 in combination with a chemokine co-receptor such as CCR-5 or CXCR-4), induced is a conformational change in the gp120/gp41 complex that allows gp41 to insert into the membrane of the target cell and mediate membrane fusion.

The amino acid sequence of gp41, and its variation among different strains of HIV, is well known. FIG.1 is a schematic representation of the generally accepted functional domains of gp41 (note the amino acid sequence numbers may vary slightly depending on the HIV-1 strain). The fusion peptide (fusogenic domain) is believed to be involved in insertion into and disruption of the target cell membrane. The transmembrane domain, containing the transmembrane anchor sequence, is located at the C-terminal end of the protein. Between the fusion peptide and transmembrane anchor are two distinct regions, known as heptad repeat (HR) regions, each region having a plurality of heptads. The HR1 region, nearer to the N-terminal end of the protein than the HR2 region as depicted in FIG.1, has been generally described as comprising an amino acid

sequence having the sequence of SEQ ID NO:1. However, due to naturally occurring polymorphisms, the amino acid sequence of the HR1 region of HIV-1 gp41 may vary slightly, depending on the viral strain from which the amino acid sequence was deduced. The amino acid sequence comprising the HR1 region is one of the most highly conserved regions in the HIV-1 envelope protein (Shu et al., 1999, Biochemistry, 38:5378-5385). The other region, HR2, is also depicted in FIG.1 wherein the amino acid numbering corresponds to the amino acid sequence of gp160 in strain III B. The HR regions are known to have a plurality of 7 amino acid residue stretches or "heptads" (the 7 amino acids in each heptad designated "a" through "g"), wherein the amino acids in the "a" position and "d" position are generally hydrophobic. Also present in each HR region is one or more leucine zipper-like motifs (also referred to as "leucine zipper-like repeats"), each comprising an 8 amino acid sequence initiating with, and ending with an isoleucine or leucine. Most frequently, the HR2 region has just one leucine zipper likemotif, whereas the HR1 region has five leucine zipper-like motifs. Heptad repeats and leucine zipper-like motifs are amino acid sequences that contribute to formation of a coiled coil structure of gp41, and of a coiled coil structure of peptides derived from the HR regions. Generally, coiled coils are known to be comprised of two or more helices that wrap around each other in forming oligomers, with the hallmark of coiled coils being a heptad repeat of amino acids with a predominance of hydrophobic residues at the first ("a") and fourth ("d") positions, charged residues frequently at the fifth ("e") and seventh ("g") positions, and with the amino acids in the "a" position and "d" position being primary determinants that influence the oligomeric state and strand orientation (see, e.g., Akey et al., 2001, Biochemistry, 40:6352-60).

It was discovered that peptides derived from either the HR1 region ("HR1 peptides") or HR2 region ("HR2 peptides") of HIV-1 gp41 inhibit transmission of HIV to host cells both in *in vitro* assays and in *in vivo* clinical studies (see, e.g., Wild et al., 1994, *Proc. Natl. Acad. Sci. USA*, 91:9770-9774; U.S. Patent Nos. 5,464,933 and 5,656,480 licensed to the present assignee; and Kilby et al., 1998, *Nature Med.* 4:1302-1306. See also, e.g., U.S. Patent Nos. 6,258,782 and 6,348,568 assigned to the present assignee. The disclosures of these patents are herein incorporated by reference). More particularly, HR1 peptides exemplified by DP107 (also known as T-21, a synthetic peptide having the amino acid sequence of SEQ ID NO:2) blocked infection of T cells with 50% effective concentration values (EC50) of 1 μg/ml (see, e.g., Lawless et al., 1996, *Biochemistry*, 35:13697-13708). Sedimentation equilibrium experiments indicated

that, in solution, T-21 peptide exists in a monomer/ dimer/tetramer equilibrium (e.g., at concentrations of 5μM or less, with predominately tetramers at high concentrations of peptide (e.g., 10μM or more). A structural interaction occurring between a HR2 peptide and HR1 peptide has been observed when HR1 peptide is tetrameric (Lawless et al., supra). However, the generally accepted model of gp41 suggests that the gp41 core exists as a six helix bundle comprised of three N-terminal (HR1) regions forming a parallel trimeric coiled coil, where three C-terminal (HR2) regions pack in an antiparallel orientation into the hydrophobic grooves on the surface of the trimeric coiled coil (see, e.g., Shu et al., 1999, Biochemistry 38:5378-5385; Root et al., 2001, Science 291:884-888, and U.S. Patent No. 6,150,088). Accordingly, as compared to monomeric or tetrameric structures, trimers formed from self-assembly of synthetic peptide may provide a structure that acts more like the trimeric HR1 region in the *in vivo* binding interactions between the trimeric HR1 region and trimeric HR2 region of HIV gp41.

Thus, there is a need for additional compounds (particularly synthetic peptides self-assembled into trimeric form) which can interfere with the interaction of the various domains of gp41 involved in oligomerization and with the changes that gp41 undergoes which are necessary to effect fusion, thereby inhibiting the fusion of HIV gp41 to a target cell membrane.

#### SUMMARY OF THE INVENTION

The present invention relates to synthetic peptides derived from the HR1 region of HIV-1 gp41 wherein the synthetic peptides contain one or more site-specific amino acid substitutions (as compared to the native sequence of that HR1 region of HIV-1 gp41 or HR1 peptide derived therefrom), in one or more of the plurality of heptads of the peptide, which unexpectedly result in a change in the oligomerization state in solution to self–association into predominately a trimeric form ("self-associates" or "self-assembles" "into trimers"). Also provided are trimers formed from synthetic peptide.

In another object of the invention, provided are synthetic peptides derived from the HR1 region of HIV-1 gp41 which, in addition to containing one or more site-specific amino acid substitutions in one or more of the plurality of heptads which result in self-assembly into a trimeric form, also contains a plurality of amino acid substitutions which unexpectedly stabilize such trimers formed. Also provided are trimers formed from synthetic peptide.

In another object of the present invention, provided are synthetic peptides

|                 | 10            | 20                                    | 30                                       | 40                                    |
|-----------------|---------------|---------------------------------------|------------------------------------------|---------------------------------------|
| т-21            | NNLLRAIEAQQHL | +<br>.r.otvvw.gtr                     |                                          | YLKDO                                 |
|                 | QQ            | 20021111022                           |                                          | 0                                     |
| Gp41bru.pro     | QQ            | • • • • • • • •                       | •••••                                    |                                       |
| Gp41hxb2.PRO    | QQ            | • • • • • • • •                       | • • • • • • • • • • •                    | · · · · · · · · · · · · · · · · · · · |
| PNL4-3 gp41.PRO | QQ            | · · · · · · · · · · · · · · · · · · · | * * * * * * * * * * * * * * * * * * * *  | x                                     |
| Ug273-A.pro     | QQS           | . K                                   |                                          |                                       |
| Us2-B.pro       | QQ            |                                       | · · · · · · · · · · · · · · · · · · ·    |                                       |
| Ug268-C.pro     | QQ            | 1                                     | T.VI                                     |                                       |
| Se365-D.pro     | QQ            |                                       | · · · · · · · · · · · · · · · · · · ·    | KQ                                    |
| CM240-E.pro     | QQS           | • • • • • • • •                       | · • • • • • • • • • • • • • • • • • • •  | K                                     |
| Bz126-F.pro     | QQ            | . <b></b> .                           |                                          | QQ                                    |
| HH8793-G.pro    | QQS           |                                       | vL                                       | RQ                                    |
| ENV HV1BN       | QQMM          | 1.E                                   | <b>. V</b>                               | Q                                     |
| ENV_HV1C4       | QQK           |                                       |                                          | Q                                     |
| ENV_HV1KB       | QQD           |                                       |                                          | Q                                     |
| VCLJH00         | QQK           |                                       |                                          | Q                                     |
| ENV HV1B8       | 00            |                                       |                                          | Q                                     |
| ENV HV1Z8       | 00            | <b>4</b>                              |                                          | Q                                     |
| 1               | OOT.M.K       |                                       | <b>. V</b>                               | Q                                     |
| 2               | QQTS          |                                       |                                          | RQ                                    |
| 3               | QQ.D          | M                                     | vL.G                                     | Q Q                                   |
| 4               | QQM           | vi                                    | <b>v</b>                                 | RQ                                    |
| 5               | QQSMLI        | MVVI                                  | <b>.</b>                                 | Q                                     |
| 6 .             | QQSM          | VI                                    | V                                        | Q                                     |
| 7               | QQXM          |                                       | V.L.                                     | RQ                                    |
| 8               | QQ.DG.D.P     | w                                     | <b>. V</b>                               | RG.O                                  |
| -               | QQ.SQRI       | M                                     | <b>. V</b>                               | 0                                     |
| 9               | QQ.D          | P                                     | V L                                      | . R. O                                |
| 10              | QQT.M         |                                       | V                                        | 0                                     |
| 11              | QRSKQI        |                                       | τ                                        | 0                                     |
| 12              | QQ            | M.                                    | P V.T.                                   | 0                                     |
| 13              | QQS           |                                       | ם מייניייייייייייייייייייייייייייייייייי |                                       |
| 14              | QQS           | • • • • • • • •                       | EG                                       | ,                                     |
| 15              | QQ            |                                       | V A.                                     | X                                     |
| 16              | ER.K.R        | М                                     | V                                        | ,                                     |
| 17              | HQS           | • • • • • • • • •                     | · · · · · · · · · · · · · · · · · · ·    |                                       |
| 18              | QQ.DG.D.P     | v                                     | V                                        | , KG . Q                              |

FIG. 2

SEQ ID NO:23 SEQ ID NO:32 SEQ ID NO:35 SEQ ID NO:36 abcd fgabcdefg

QARQL L SGI VQQQNNL LRAI EAQQHL LQLTVWGI KQLQARI LAVERYLK

QARQL L SGI VQQQNNL LRAI EAQQHALQATVWGI KQLQARI LAVERYLK

QARQL VSGI VQQQNNI LRAI EATQHAVQALVWGVKQLQARILAVERYLK

QI RQL LSGI VQQQNNI LRAI EATQHAVQALVWGVKQLQARILAVERYIK

QQQNNLLRAI EAQQHLLQLTVWGI KQLQARI LAVERYLKDQ SEQ ID NO:27 QQQNNLLRAI EAQQHLLQLTAWGI KQLQARI LAVERYLKDQ SEQ ID NO:29 QQQNNLLRAI EAQQHLLQLTVA GI KQLQARI LAVERYLKDQ SEQ ID NO:30

FIG. 3



FIG. 4

| The control of the    | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| 10   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DA   - V5, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LITYOAROLLSG1VOQONN V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DA   - V5, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C Fide -    C Fide -    C Fide -    C C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DA   - V5_   - V5_   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02   6 pa 41   |  |  |  |  |  |  |  |  |  |  |  |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CD4  3.12-1  3.12-1  5.5  6.7  7.7  7.7  7.7  7.7  7.7  7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |
| R. HXR2 SERSUSS SERSUSS G. G. 1920 G. | B. FR. HXB2  CONSENSUS G  G. BE. DRCBL  G. GA. LEBY21 12-1  G. CA. VICHO 12-1  G. GA. LEBY21 12-1  G. GA. WEBS1 12-1  G. CA. WEBS1 12-1  G. GA. WEBS1 12-1  G. |  |  |  |  |  |  |  |  |  |  |  |  |  |

|                 | 688                        | 663         | 683        | 680      | 678        | 691       | 969        | 686        | 682          | 680         | 989         | 675               |                                                                           | 0 10                                    | 0 0           | 9           | 677       | 682        | 687        | 694        | 687      | 688         | 500                                            | 7.00           | * 0       | 0 0       | 169      | 688        | 670          | 691        | 679          | 683             | 189          | 200          |            | 6,0         | 689                                     | 700      | 687      | 657       | 673           | 681        | 684          | 7 2 2      | 9 10                                   | 969            | 0 0                             | 689           | 989         | 681                                     | 658       | 688         | 686   | 695       | 678     | 673       | 683        | 683          | 682           | 692           | 700        | 7 0        | 0 1        | 674        | 674           | 675           | 663        | 679          | 675           | 682         |  |
|-----------------|----------------------------|-------------|------------|----------|------------|-----------|------------|------------|--------------|-------------|-------------|-------------------|---------------------------------------------------------------------------|-----------------------------------------|---------------|-------------|-----------|------------|------------|------------|----------|-------------|------------------------------------------------|----------------|-----------|-----------|----------|------------|--------------|------------|--------------|-----------------|--------------|--------------|------------|-------------|-----------------------------------------|----------|----------|-----------|---------------|------------|--------------|------------|----------------------------------------|----------------|---------------------------------|---------------|-------------|-----------------------------------------|-----------|-------------|-------|-----------|---------|-----------|------------|--------------|---------------|---------------|------------|------------|------------|------------|---------------|---------------|------------|--------------|---------------|-------------|--|
|                 | YIKI,FIMI                  | ki-in-      | I          | I        | -II        | RI        | I          | -II        | I            | RVI-        | RI          | 1                 | 10                                                                        | 77.                                     | -111          |             | I         | I          | I          | I          | RIT-     | 1           | •                                              | -              | 1         | 111111    |          | I          | I            |            | RI           | I               | 11111        | 1            | 4 -        |             |                                         |          | I        | kIm-      | I             | I          |              | 10         | 1 1 1 1                                | 1              | :<br>:<br>:<br>:<br>:<br>:<br>: |               | -II         | I                                       | k1mi      | I           | T     | I         |         | ΛI        | ۸۱         | I            | RI-           |               | -          |            |            |            | I             | I             | RIV        | I            | I             | EI          |  |
| •               | NWENT TAWLS                | nd-sn       |            | S-Q      | S-D-S      | D-S       | D-S        | SD-S       | D-SK         | S           | S           | 2-2-              | 100                                                                       | 1 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |               | S-I         | DK        | SD-S       | S-XD-S     | S          | S8S      |             | 3                                              | 5              | No E      |           |          | DK         | DK           | SD0s       | D            | D-SK            |              |              | 2 2        | DK          | 0                                       |          | S        | ups       | SD            | TG         | GK           |            | 7                                      |                |                                 | GS            | DK          | -                                       | b8        | S           | S     | SK        | SK      | DG        | D          | S            |               |               | ָרְ<br>בּי |            |            | SWG        | D             | SD-S          | SS         | L            | SSS           | SR          |  |
|                 | LELDKWASLW                 | -an         | -AN        | DAN      | 2          |           | N          | -AS        |              | -AR-        |             | - N               |                                                                           |                                         |               | -ND         |           | NR         |            | N          |          |             | NO                                             |                |           |           | A        |            | XX           |            |              |                 | - A          | :            |            |             | ;                                       |          |          | 누         | Ŏ             | Ö          | -AS-W        | A N KN     | 20-11-14                               |                | ξ,                              | -AS-KN        | 9-S1        |                                         | -G        |             |       |           |         | KA        | -A         |              | . :           |               | ) K        |            |            | - <b>A</b> | 0             |               | DI         | NO           | -A            | -ADN        |  |
|                 | NOOEKNEOEL                 | nakad-      | I          | -Q       | X          | A         | Y          | -P         | IRM-         | -G          | -d          | 4                 | י ב                                                                       |                                         | h             | 2           | T         |            |            |            |          | Ğ           | )                                              | •              |           |           |          |            | -LI          |            | -Q           | 1 1 1 1 1 1 1 1 | 1            | 1            | 4          |             |                                         |          |          | nekkD-    | KDP           | -d         | Ġ            | 9          | 4 0                                    |                | 2:                              | 9!            |             | Q                                       | Ke        | IK          |       | :         | [I      | TK        | T          | TD0          | TKD-          | 1             | •          |            |            |            | SR            |               | -N         | 0            | R             | -QD-        |  |
|                 | LIHSLIEESO                 | i-Yd-i-e    | I-YT-L     | I-YN-L   | YR         | YQDY      | •          | I-YDK      |              | I-Y0        | I-YN-L      | T. VM-1.          | 7-02-1                                                                    | 7                                       |               | 1-XI-T-1X-T | E-YT      | XI         | YT         | XX         | W        | YT          | E-175                                          | - 17-N7-       | MI        |           | XD-T-U-Y | XI         | E-YT         | F-YT-L     | H-YN-L-K     | NA              | - X          | T-Y-T-       | 11.        |             | XK                                      |          | T-YT-L   | t-Yr-L-d  | T-YR-L-D      | T-YR-L-D   | T-YR-1,-D    | - VD-1-D   | 1 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - | 1 - IK - L - V | ^ - 7 - N I - T                 | 1-YL          | T-YR-L-V    | DNMQSGT-YR-L-D                          | 1-Yse     | XX          |       | ^-XX-^    | X       | X         | X          | X            |               |               | 1 - VV     | - VI - T   | E-IKD      | E-YRQ      | T-YMK         | T-YR          | T-YRGA-    | T-YRVA-      | T-YDA-        | T-YRSA-     |  |
| *               | WDREINNYTS                 | -dk-isnd    | KSH        | ξS       | KY         | ;         | ;          | VIXDI-     | KSI          | LO-EKSSGI-) | -NMLODNI-YN | L. T. C. T. L. D. |                                                                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | 27 - 27 - TO- | NIX-        | -EDR      | -ED        | -ED        | -ED        | -RDH     | -EDR        | ם נ                                            |                |           |           | Z        | NS         | -EDR         | X          | 0-EDDH-)     | -EID            | -EK          | -EKEN        | 1          | -60         | -KD                                     |          | -EDN     | r-istn    | NS            | NS         | NSS          | N          |                                        |                | 7                               | NSA           | KSD         | 9S                                      | -ErdG     | -EDG        | -EDG  | -EDG      | -EDG    | -EDG      | -EDG       | -EDG         | SS            | F. F. C D C.  | No M.D.    | NO - 01 AG | 7777       | -EXSSY     | -EKSSK        | -EXSN         | -EKSD      | -EKSG        | -EKDK         | -EKGD       |  |
| <b>*</b>        | W NHT-TWME                 | - 2NM10     | ENMLO      | ENMLO    | NMLO       | DNMLQK    | DNMLO      | 0MNG       | ENMLO        | NM LO       | WWIO        | MANA -            | •                                                                         |                                         |               | 7WNO:       | WW        | WW         | WW         | ٠.'        |          | ٠.          | ٠.                                             | :              | ٠         | ٠         | ٠        |            | IN : :       | - DNM      |              |                 | CWA          |              |            |             |                                         |          |          |           |               |            |              |            |                                        |                |                                 |               |             |                                         |           |             |       |           |         |           | - 1        |              |               |               |            |            | WN5        | ENM        | 0WN           | OWW           | KNM10      | 0WW          | 0WNO          | GNM         |  |
| <b>.</b>        | KSLEOT                     | -808e-      | 0SE-       |          | DE-        | T-SE-     | IX         | SE-        | DE-          | -d-o · · ·  | -TY-E-      | , C.              | ָבָּבְּיבְּיבְיבָּיבְיבְיבִיבְיבִיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְי | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |               | - I         | EE-       | -WOW       | T-D        | S          | NK-      | JK          |                                                | and the second | 904       | 4:1       |          | DK-        | NE-          | -OS-N-:::  | -TYDE-       | DK-             | - T          | -80          | 2 2        | r.          |                                         | -WN      | -0       | ksqee-    | -1-E          | R-0-D-     | , A          |            | 200                                    | 20             | 1000                            | -IOSE         | RTQ-E-      | - GD                                    | k-1de-    | R-V-Y-      | RNE-  | -H        | RDE-    | DE-       | TE-        | GE-          | -10           | 16-1          |            | -          |            |            | 00E           | HDE-          | -19-E-     | ODE-         | - KB          | EDDE-       |  |
| •               | IASWS N                    | SaS         | SS-        | .SS      | .SS-       | ·SS       | ST         | .SNNS      | .SS-         | ·SS-        | SS          |                   | E                                                                         |                                         |               |             |           |            |            | TT         |          |             |                                                |                | ••••      |           |          |            |              | .TS        | I-           | T               |              |              | •          |             |                                         |          |          | .B5       | .DN-          | .SS-       |              |            |                                        |                |                                 | ·····         | ·····       | SS                                      |           | SS          | ····· | SS        | SS      | SS        | SS         |              | S             |               |            |            |            |            |               | F             |            | SS           | SS            | L           |  |
| region .        | TLICTTAVPWN                | 1t-n        | Z          | NI       | N          | I-d       | I          | X          | N-d          | I           | L           |                   | ) E                                                                       | 7 4 7                                   |               |             |           |            | T          |            |          |             |                                                |                | <br>      | ;         |          |            |              | L          | N-N          |                 |              |              |            |             | I                                       |          |          | ab        |               |            | N            | H          |                                        |                |                                 |               |             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Ht-t      | IH          | K     | HT        | HN      | HT        | NH         | HT           | нр-0          | H             | N          | 4          |            |            | N             | N             | II         | N            | N-R           | P-T         |  |
| odominant       | WGCSGN                     |             |            |          |            |           |            |            |              |             |             |                   |                                                                           | , ,                                     | V 1           |             |           |            |            |            |          |             | D                                              | 2              |           |           |          |            |              |            |              |                 |              | - W          | :          |             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |          |           |               |            |              |            |                                        |                |                                 |               |             |                                         | IK        |             |       |           | Z       |           | RR         | R            | A             | ASB           |            |            |            |            |               |               |            | FL           |               |             |  |
| imminodom<br> - | AVERYLKDOC                 |             | -LR        | R        | R          |           |            |            | R            | 0           | r0          | 1                 | ,                                                                         |                                         |               |             |           | R          | R          | R          |          |             | 1-0                                            | Y 7            |           |           | X        |            |              | R          | R            |                 | 0            | *            | Č          |             |                                         | ¥        |          | Iy-k      | II            | IR         |              |            |                                        | 0.11           | W . U T                         |               |             | 01                                      | X X       | !           |       | S         |         |           |            | S            | S             |               |            |            |            |            | :             |               |            |              |               |             |  |
|                 | VWGIKOLOARILAVERYLKDOOLLGI | Λ           | VLI        | Λ        | R          | \\        | WA         | Λ          | R            | Λ           | VI          |                   | N                                                                         | *                                       |               | <b>&gt;</b> | A         | R          |            | R          |          | N           | and and an | - 1            |           | :         | `        | A          | A            | Λ          | VR           | ^               | OA           | W            |            |             | ::                                      | X        | A        | dt-VI     | IV-I          | IV-L       | IV-T         | V - T      | I N L                                  | A-1            | T                               | ·             | IX          | 0IA-I                                   | K         |             |       | S         |         | A         |            | XPSR         | SN            | 8             | 2          | 7          |            | T          | <b>&gt;</b> : | Λ             | ·1         | j            |               |             |  |
|                 |                            |             |            |          | ,          | •         | 131        | •          | •            | •           | •           | '                 | •                                                                         |                                         | '             | •           | •         | •          | •          |            | •        | •           | •                                              |                |           |           |          |            |              |            | •            | 91              |              | •            |            | •           | •                                       | •        | •        |           | - 112         |            | 102          | - 174      |                                        |                | 1                               | •             |             | . 2                                     | ٠         | ,<br>12     | •     | •         | •       | •         | 7          | 522          | 34-D          | •             | ١          | 120-1      | •          | •          | 163           | •             |            | - 618/       |               |             |  |
|                 | B. FR. HXB2                | CONSENSUS A | A.GB.MA246 | A.KE.K89 | A. KE. 023 | A.RW.PVPI | A.SE.UGSE8 | A.UA.ukr97 | A. UG. 92UG0 | A.UG.U455   | A2.CD.97CD  | 07 CD 97 CA       | 20 VO 04 CA                                                               | CONCENSION                              | CONTRACTOR OF | B.AU.MBC18  | B.CN.RL42 | B. DE. D31 | B. DE. HAN | B.ES.89SP0 | B.GA.OYI | B. GB. CAM1 | 1 2 2                                          | 10 OF          | 77. C. C. | 2002.00.0 | D. N. W. | B.NL.3202A | B. TH. 93THO | B.TT.02458 | B. TW. TWCYS | B.UA.UKR12      | B. US. DH123 | B. US. JRCSF | 1361 311 0 | D. 02. 0KFL | B. US. MINCG                            | 5 . C R. | B.US.SF2 | CONSENSOS | C.BI.BU910112 | C.BR.92BRO | C. BW. 96BWO | C CN AP268 | 7 LT D.T. 7.2                          | C CTTT TTT 7   | A THE PERSON                    | C. IN. 93 INI | C.SO. SO145 | C. UG. UG268A2                          | CONSENSOS | D.CD. 842R0 | D.C.  | D.CD. 371 | D.G.NDK | D.CI.CI13 | D.SN.SE365 | D. TZ. 87TZ4 | D. UG. 92UGO. | D. IIG. WHO15 | FI BE VISS | 01 00 0300 | F1.0K.350K | F1.5K.5612 | FI.FI.FINA    | F1. FR. MP41. | F2.CM.CA20 | F2. CM. HIM2 | F2. CM. MP25. | F2.CM.MP257 |  |

```
<!--StartFragment-->RESULT 6
    AAY89779 standard; peptide; 41 AA.
ID
XX
AC
     AAY89779;
XX
DT
     23-MAY-2000 (first entry)
XX
     Core polypeptide fragment T No. 1345.
DE
XX
     Retrovirus; hybrid polypeptide; enhancer; gp41; envelope protein; HIV-1;
KW
     HIV-2; SIV; pharmacokinetic; half-life; growth factor; cytokine; viral;
KW
     anti-fusogenic; differentiation factor; interleukin; interferon;
KW
     colony stimulating factor; hormone; angiogenic factor.
KW
XX
os
     Unidentified.
XX
PN
     WO9959615-A1.
XX
PD
    25-NOV-1999.
XX
                    99WO-US011219.
ΡF
     20-MAY-1999;
XX
PR
     20-MAY-1998;
                    98US-00082279.
XX
PA
     (TRIM-) TRIMERIS INC.
XX
     Barney S, Guthrie KI, Merutka G, Anwer MK, Lambert DM;
PΙ
XX
     WPI; 2000-136792/12.
DR
XX
     A new hybrid polypeptide with enhanced pharmacokinetic properties
PT
PT
     comprises enhancer sequence.
XX
     Disclosure; Page 44; 124pp; English.
PS
XX
CC
     The invention relates to hybrid polypeptides comprising enhancer peptide
     sequence linked to core polypeptides. The enhancer polypeptides are
CC
CC
     derived from various retroviral envelope (gp41) protein sequences,
CC
     especially from HIV-1, HIV-2 and SIV. The enhancer peptides enhance the
     pharmacokinetic properties such as increasing the half-life of any core
CC
     polypeptide that they are linked to. The core polypeptides are any
CC
     polypeptide that may be introduced into a living system and that can
CC
     function as a pharmacoligically useful peptide for the treatment or
CC
CC
     prevention of a disease. The core polypeptides are bioactive peptides
     selected from a growth factor, cytokine, differentiation factor,
CC
     interleukin, interferon, colony stimulating factor, hormone or angiogenic
CC
     factor. The peptides of the invention can be used for inhibiting viral
CC.
     infection and can be used in anti-viral and anti-fusogenic treatments.
CC
     Sequences AAY88651-Y90055 represent core polypeptide fragments that can
CC
     be used in the invention. Some sequences among those indicated also
CC
     comprise enhancer fragments at terminal ends and form hybrid polypeptides
CC
XX
SQ
     Sequence 41 AA;
                          98.0%; Score 199; DB 3; Length 41;
  Query Match
  Best Local Similarity
                          97.6%; Pred. No. 4.6e-18;
  Matches 40; Conservative
                                 0; Mismatches
                                                  1; Indels
                                                                 0; Gaps
                                                                             0;
                           efgabedef
            1 QQQNNLLRAIEAQQHLLQLTAWGIKQLQARILAVERYLKDQ 41
Qу
              1 QQQNNLLRAIEAQQHLLQLTVWGIKQLQARILAVERYLKDQ 41
<!--EndFragment-->
```

```
<!--StartFragment-->RESULT 8
ABB01187
    ABB01187 standard; peptide; 41 AA.
ID
XX
AC
    ABB01187;
XX
DT
     11-SEP-2003 (revised)
DT
     06-AUG-2003 (revised)
DT
     03-JAN-2002 (first entry)
XX
     Viral DP178/107-like region peptide T1345.
DE
XX
     Human immunodeficiency virus; HIV; respiratory syncytial virus; RSV;
KW
     virucide; heptad repeat region; transmembrane protein; gp41; HR1; HR2;
KW
KW
     infection.
XX
os
     Viruses.
XX
FH
                    Location/Qualifiers
FT
     Modified-site
                     /note= "N-terminal is substituted by Ac"
FT
FT
     Modified-site
                     41
FT
                     /note= "C-terminal amide"
XX
PN
     WO200164013-A2.
XX
PD
     07-SEP-2001.
XX
     07-FEB-2001; 2001WO-US003988.
ΡF
XX
PR
     29-FEB-2000; 2000US-00515965.
XX
PA
     (TRIM-) TRIMERIS INC.
XX
PΙ
     Antczak JB, Delmedico MK, Erickson JB, Lambert DM, Sista P;
XX
     WPI; 2001-514829/56.
DR
XX
     Heptad repeat region peptide analogs useful for inhibiting virus/cells
РΤ
PT
     fusion, useful for treating HIV and Respiratory Syncytial Virus
PT
     infection.
XX
PS
     Disclosure; Page 57; 587pp; English.
XX
     The invention relates to isolated analogues of the heptad repeat region
CC
     peptides DP178 and DP107. DP178 and DP107 correspond to amino acids 638-
CC
     673 (heptad repeat region HR2) and 558-595 (heptad repeat region HR1)
CC
     respectively, of HIV-1LAI transmembrane protein gp41. The HR1 and HR2
CC
     regions of proteins interact non-covalently with each other and/or with
CC
     peptides derived from them. This interaction is required for normal
CC
     infectivity of viruses such as RSV and HIV. The heptad repeat region
CC
     peptide analogues may be used to inhibit respiratory syncytial virus
CC
     (RSV) infection in a cell. They may also be used to inhibit HIV
CC
     infection. The present sequence is a peptide provided in the
CC
     specification. (Updated on 06-AUG-2003 to correct OS field.) (Updated on
CC
     11-SEP-2003 to standardise OS field)
CC
XX
SQ
     Sequence 41 AA;
  Query Match
                          98.0%; Score 199; DB 4; Length 41;
  Best Local Similarity 97.6%; Pred. No. 4.6e-18;
           40; Conservative
                                0; Mismatches 1; Indels
            1 QQQNNLLRAIEAQQHLLQLTAWGIKQLQARILAVERYLKDQ 41
Qу
              1 QQQNNLLRAIEAQQHLLQLTVWGIKQLQARILAVERYLKDQ 41
<!--EndFragment-->
```

```
<!--StartFragment-->RESULT 10
AAU13733
TD
    AAU13733 standard; peptide; 41 AA.
XX
AC
    AAU13733;
XX
DT
     21-NOV-2001 (first entry)
XX
    DP178-like/DP107-like peptide T-1345.
DE
XX
KW
    Anti-retroviral; DP178-like; DP107-like; transmembrane protein gp41;
KW
    antifusogenic; antiviral; HIV transmission; mutant; mutein.
XX
OS
    Human immunodeficiency virus 1; isolate LAI.
os
    Synthetic.
XX
FH
    Kev
                     Location/Qualifiers
FT
    Modified-site
FT
                     /note= "N-terminal is substituted by Ac"
FT
    Modified-site
FT
                     /note= "C-terminal amide"
XX
PN
    WO200151673-A2.
XX
PD
    19-JUL-2001.
XX
PF
     05-JUL-2000; 2000WO-US035727.
XX
PR
     09-JUL-1999;
                    99US-00350841.
XX
PA
     (TRIM-) TRIMERIS INC.
XX
ΡI
    Jeffs P, Lackey JW, Erickson JB, Lawless MK, Merutka G;
XX
DR
    WPI; 2001-442157/47.
XX
PT
     Identifying a compound that inhibits the formation of or disrupts a
PT
     DP107/DP178 complex, especially compounds with antifusogenic, antiviral
PT
     or intracellular modulatory activity, by detecting the formation of a
PT
     DP107/DP178 complex.
XX
     Disclosure; Page 76; 259pp; English.
PS
XX
CC
     The present invention relates to peptides which exhibit anti-retroviral
CC
     activity. The peptides of the invention (AAU12559-AAU14009) comprise
     DP178-like and DP107-like peptides. The DP178 peptide corresponds to
CC
CC
     amino acids 639-673 of the transmembrane protein gp41 from human
CC
     immunodeficiency virus 1 (HIV-1) isolate LAI. The DP107 peptide
CC
     corresponds to amino acids 558-595 of gp41 from HIV-1LAI. The invention
CC
     also relates to a method of identifying compounds that inhibit the
     formation of or disrupts a DP107/DP178 complex. The method comprises
CC
CC
     detecting the formation of a DP107/DP178 complex, both in the presence or
CC
     absence of a test compound, in a reaction mixture containing DP107 and
CC
     DP178 peptides. The method is useful for identifying compounds, including
CC
     small molecule compounds, which may themselves exhibit antifusogenic,
CC
     antiviral or intracellular modulatory activity. The DP178-like/DP107-like
CC
     peptides are useful to inhibit human and non-human retroviral,
CC
     particularly HIV, transmission to uninfected cells. The present sequence
CC
     represents one of the DP178-like/DP107-like peptides of the invention
XX
SQ
     Sequence 41 AA;
                          98.0%; Score 199; DB 4; Length 41;
 Query Match
 Best Local Similarity
                          97.6%; Pred. No. 4.6e-18;
                                 0; Mismatches
 Matches
           40; Conservative
                                                   1; Indels
                                                                  0; Gaps
                                                                              0:
```

<!--EndFragment-->

Db

```
<!--StartFragment-->RESULT 11
ADE02656
ID
    ADE02656 standard; peptide; 41 AA.
XX
AC
    ADE02656;
XX
DT
    29-JAN-2004 (first entry)
XX
    Hybrid polypeptide pharmacokinetic enhancer peptide, SEQ ID No 1163.
DE
XX
KW
    hybrid; enhancer; anti-fusogenic; antiviral; virucide; antidiabetic;
KW
    pharmacokinetic; fusogenic; insulin; diabetes.
XX
os
    Unidentified.
XX
FH
                     Location/Qualifiers
    Key ·
FT
    Modified-site
FT
                     /note= "Residue is modified by acetyl group"
FT
    Modified-site
                     41
FT
                     /note= "C-terminal amide"
XX
PN
     US6348568-B1.
XX
PD
     19-FEB-2002.
XX
PF
     20-MAY-1999;
                    99US-00315304.
XX
PR
     20-MAY-1998;
                    98US-00082279.
XX
     (TRIM-) TRIMERIS INC.
PΑ
XX
ΡI
     Barney S, Guthrie KI, Merutka G, Anwer MK, Lambert DM;
XX
DR
     WPI; 2002-424396/45.
XX
PT
     New hybrid polypeptide for modulating fusogenic events for e.g. antiviral
PΤ
     activity, has enhancer peptide sequence derived from retroviral envelope
PT
     protein sequences linked to core polypeptide e.g. therapeutic protein.
XX
PS
     Disclosure; SEQ ID NO 1163; 70pp; English.
XX
CC
     The invention relates to a novel hybrid polypeptide comprising an
CC
     enhancer peptide sequence linked to a core polypeptide. The enhancer
     peptide sequence comprises WQEWEQKI or WASLWEWF. The invention also
CC
CC
     includes novel peptides that exhibit anti-fusogenic activity, antiviral
     activity and/or ability to modulate intracellular processes. The novel
CC
CC
     hybrid polypeptide has virucide and antidiabetic activity. The enhancer
CC
     peptide sequence enhances pharmacokinetic properties of any core
     polypeptide, for example, a polypeptide useful for the treatment or
CC
CC
     prevention of a disease, or an imaging agent useful for imaging
CC
     structures in vivo. The core polypeptides and hybrid polypeptides are
CC
     useful for modulating fusogenic events and exhibit antifusogenic or
     antiviral activity. The novel hybrid polypeptide is useful for decreasing
CC
CC
     viral infection and modulating intracellular processes involving coiled-
CC
     coil peptide interactions. The novel hybrid polypeptide comprises insulin
CC
     or its fragment, so the core polypeptide is useful for ameliorating the
CC
     symptoms of forms of diabetes. The novel hybrid polypeptide is also
    useful as a part of prognosis for preventing disorders including fusion
CC .
CC
     events and viral infection that involves cell-cell and/or virus-cell
CC
     fusion, and for diagnosis and in vivo imaging methods. This sequence
CC
     represents an enhancer peptide of the invention.
XX
SQ
     Sequence 41 AA;
                          98.0%; Score 199; DB 5; Length 41;
  Query Match
```

97.6%; Pred. No. 4.6e-18;

0; Mismatches

1; Indels

0; Gaps

Best Local Similarity 97.6 Matches 40; Conservative

<!--EndFragment-->

```
<!--StartFragment-->RESULT 1
US-09-082-279B-1163
; Sequence 1163, Application US/09082279B
; Patent No. 6258782
; GENERAL INFORMATION:
  APPLICANT: Barney, Shawn
  APPLICANT: Guthrie, Kelly
  APPLICANT: Merutka, Gene
  APPLICANT: Anwer, Mohmed
  APPLICANT: Lambert, Dennis
  TITLE OF INVENTION: HYBRID POLYPEPTIDES WITH ENHANCED
  TITLE OF INVENTION: PHARMACOKINETIC PROPERTIES
  FILE REFERENCE: 7872-043
  CURRENT APPLICATION NUMBER: US/09/082,279B
  CURRENT FILING DATE: 1998-05-20
  NUMBER OF SEQ ID NOS: 1515
  SOFTWARE: FastSEQ for Windows Version 3.0
; SEQ ID NO 1163
   LENGTH: 41
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Core polypeptide
US-09-082-279B-1163
 Query Match
                        98.0%; Score 199; DB 2; Length 41;
 Best Local Similarity 97.6%; Pred. No. 4.1e-20;
         40; Conservative
                               0; Mismatches
                                              1; Indels
                                                             0; Gaps
                                                                        0;
 Matches
           1 QQQNNLLRAIEAQQHLLQLTAWGIKQLQARILAVERYLKDQ 41
Qу
             Db
           1 QQQNNLLRAIEAQQHLLQLTVWGIKQLQARILAVERYLKDQ 41
<!--EndFragment-->
```

```
<!--StartFragment-->RESULT 11
AAB24105
     AAB24105 standard; protein; 50 AA.
ID
XX
AC
     AAB24105;
XX
DT
     12-SEP-2003 (revised)
     29-JAN-2001 (first entry)
DT
XX
     HIV-1 qp41 NHR region amino acid sequence SEQ ID NO:2.
DE
XX
     HIV-1; human immunodeficiency virus; human; epitope; gp41; MAb;
KW
     monoclonal antibody; antiviral; antiHIV; infection; inhibition;
KW
KW
     replication.
XX
os
     Human immunodeficiency virus 1.
XX
PN
     WO200055377-A1.
XX
PD
     21-SEP-2000.
XX
     15-MAR-2000; 2000WO-US006771.
PF
XX
PR
     17-MAR-1999;
                    99US-0124907P.
PR
     14-MAR-2000; 2000US-00525874.
XX
     (NYBL-) NEW YORK BLOOD CENT INC.
PA
PΑ
     (JIAN/) JIANG S.
     (DEBN/) DEBNATH A K.
PA
XX
ΡI
     Jiang S, Debnath AK;
XX
DR
     WPI; 2000-656011/63.
XX
     Screening assay for antiviral compounds targeted to HIV-1 gp41 core
PT.
PT
     structure involves utilizing conformation-specific monoclonal antibody,
     which is reactive with fusion active gp41 of the virus.
PT
XX
PS
     Disclosure; Fig 2; 79pp; English.
XX
     The present invention describes a method for screening (M1) an antiviral
CC
     compound (AC) targeted to the HIV-1 gp41 core structure. The method
CC
     involves capturing polyclonal antibodies (PAB) directed against trimer of
CC
CC
     heterodimer (A) which contains N- and C-peptide (NP,CP) onto a solid-
     phase, to form a PAB-coated solid-phase that is added with mixture of NP,
CC
     CP, and AC, adding monoclonal antibody (MAb) directed against (A) and
CC
     measuring the binding of MAb. The antivirals identified by the method are
CC
     useful for inhibiting HIV-1 replication or infectivity in cells, in
CC
     patients and for treating the patients infected with HIV-1. The method
CC
CC
     distinguishes the anti-HIV-1 agents targeting the gp41 core domain from
     those having different targets. Since the residues located at the
CC
     interaction sites in both the N-terminal heptad repeat (NHR) and C-
CC
CC
     terminal heptad repeat (CHR) regions of gp41 are highly conserved, the
     antiviral agents targeted to the gp41 core are considered to have broader
CC
CC
     specificity against infection by HIV strains than those targeted to
CC
     gp120. The present sequence represents the HIV-1 gp41 NHR region amino
CC
     acid sequence, which is used in the exemplification of the present
     invention. (Updated on 12-SEP-2003 to standardise OS field)
CC
XX
     Sequence 50 AA;
SQ
  Query Match
                          96.6%; Score 224; DB 3; Length 50;
                          95.9%; Pred. No. 3.9e-19;
  Best Local Similarity
  Matches
                                 2; Mismatches
                                                   0; Indels
                                                                  0; Gaps
            47; Conservative
```

Qy

<!--EndFragment-->

```
<!--StartFragment-->
RESULT 11
AAB24105
     AAB24105 standard; protein; 50 AA.
ID
XX
AC
     AAB24105;
XX
DT
     12-SEP-2003
                 (revised)
     29-JAN-2001 (first entry)
DT
XX
     HIV-1 gp41 NHR region amino acid sequence SEQ ID NO:2.
DE
XX
     HIV-1; human immunodeficiency virus; human; epitope; gp41; MAb;
KW
KW
     monoclonal antibody; antiviral; antiHIV; infection; inhibition;
KW
     replication.
XX
os
     Human immunodeficiency virus 1.
XX
ΡN
     WO200055377-A1.
XX
PD
     21-SEP-2000.
XX
PF
     15-MAR-2000; 2000WO-US006771.
XX
PR
     17-MAR-1999;
                    99US-0124907P.
PR
     14-MAR-2000; 2000US-00525874.
XX
PA
     (NYBL-) NEW YORK BLOOD CENT INC.
PA
     (JIAN/) JIANG S.
PA
     (DEBN/) DEBNATH A K.
XX
ΡI
     Jiang S,
              Debnath AK;
XX
DR
     WPI; 2000-656011/63.
XX
     Screening assay for antiviral compounds targeted to HIV-1 gp41 core
PT
PT
     structure involves utilizing conformation-specific monoclonal antibody,
PT
     which is reactive with fusion active gp41 of the virus.
XX
PS
     Disclosure; Fig 2; 79pp; English.
XX
     The present invention describes a method for screening (M1) an antiviral
CC
     compound (AC) targeted to the HIV-1 gp41 core structure. The method
CC
     involves capturing polyclonal antibodies (PAB) directed against trimer of
CC
     heterodimer (A) which contains N- and C-peptide (NP,CP) onto a solid-
CC
CC
     phase, to form a PAB-coated solid-phase that is added with mixture of NP,
     CP, and AC, adding monoclonal antibody (MAb) directed against (A) and
CC
     measuring the binding of MAb. The antivirals identified by the method are
CC
CC
     useful for inhibiting HIV-1 replication or infectivity in cells, in
     patients and for treating the patients infected with HIV-1. The method
CC
CC
     distinguishes the anti-HIV-1 agents targeting the gp41 core domain from
     those having different targets. Since the residues located at the
CC
     interaction sites in both the N-terminal heptad repeat (NHR) and C-
CC
     terminal heptad repeat (CHR) regions of gp41 are highly conserved, the
CC
CC
     antiviral agents targeted to the gp41 core are considered to have broader
CC
     specificity against infection by HIV strains than those targeted to
CC
     gp120. The present sequence represents the HIV-1 gp41 NHR region amino
CC
     acid sequence, which is used in the exemplification of the present
CC
     invention. (Updated on 12-SEP-2003 to standardise OS field)
XX
SQ
     Sequence 50 AA;
                           96.6%; Score 224; DB 3; Length 50;
  Query Match
                          95.9%;
  Best Local Similarity
                                  Pred. No. 3.9e-19;
            47; Conservative
                                                                      Gaps
                                                                               0;
  Matches
                                  2; Mismatches
                                                    0;
                                                        Indels
```

<!--EndFragment-->

Db

```
<!--StartFragment-->
RESULT 12
AAY89334
ID AAY89334 standard; peptide; 51 AA.
XX
AC
    AAY89334;
ХX
DT
     23-MAY-2000 (first entry)
XX
     Core polypeptide fragment T No. 865.
DE
XX
     Retrovirus; hybrid polypeptide; enhancer; gp41; envelope protein; HIV-1;
KW
     HIV-2; SIV; pharmacokinetic; half-life; growth factor; cytokine; viral;
KW
     anti-fusogenic; differentiation factor; interleukin; interferon;
KW
ΚW
     colony stimulating factor; hormone; angiogenic factor.
ХX
os
     Unidentified.
XX
PN
     WO9959615-A1.
XX
PD
     25-NOV-1999.
XX
                    99WO-US011219.
PF
     20-MAY-1999;
XX
                    98US-00082279.
PR
     20-MAY-1998;
XX
PA
     (TRIM-) TRIMERIS INC.
XX
     Barney S, Guthrie KI, Merutka G, Anwer MK, Lambert DM;
ΡI
XX
     WPI; 2000-136792/12.
DR
XX
     A new hybrid polypeptide with enhanced pharmacokinetic properties
PΤ
PT
     comprises enhancer sequence.
XX
PS
     Disclosure; Page 34; 124pp; English.
XX
     The invention relates to hybrid polypeptides comprising enhancer peptide
CC
CC
     sequence linked to core polypeptides. The enhancer polypeptides are
CC
     derived from various retroviral envelope (gp41) protein sequences,
     especially from HIV-1, HIV-2 and SIV. The enhancer peptides enhance the
CC
     pharmacokinetic properties such as increasing the half-life of any core
CC
     polypeptide that they are linked to. The core polypeptides are any
CC
     polypeptide that may be introduced into a living system and that can
CC
     function as a pharmacoligically useful peptide for the treatment or
CC
     prevention of a disease. The core polypeptides are bioactive peptides
CC
     selected from a growth factor, cytokine, differentiation factor,
CC
     interleukin, interferon, colony stimulating factor, hormone or angiogenic
CC
     factor. The peptides of the invention can be used for inhibiting viral
CC
     infection and can be used in anti-viral and anti-fusogenic treatments.
CC
     Sequences AAY88651-Y90055 represent core polypeptide fragments that can
CC
CC
     be used in the invention. Some sequences among those indicated also
     comprise enhancer fragments at terminal ends and form hybrid polypeptides
CC
XX
SO
     Sequence 51 AA;
                          96.6%; Score 224; DB 3; Length 51;
  Query Match
  Best Local Similarity
                          95.9%; Pred. No. 4e-19;
          47; Conservative
                                2; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
  Matches
            1 QARQLLSGIVQQQNNLLRAIEAQQHLLQLTVFGIRQLQARILAVERYLK 49
Qу
              1 QARQLLSGIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARILAVERYLK 49
<!--EndFragment-->
```

```
<!--StartFragment-->RESULT 1
US-09-525-874-2
; Sequence 2, Application US/09525874
; Patent No. 6596497
; GENERAL INFORMATION:
  APPLICANT: Jiang, Shibo
  APPLICANT: Debnath, Asim K.
  TITLE OF INVENTION: Screening of Antiviral Compounds
  TITLE OF INVENTION: Targeted to the HIV-1 gp41 Core Structure
  FILE REFERENCE: 990006/RSB
  CURRENT APPLICATION NUMBER: US/09/525,874
  CURRENT FILING DATE: 2000-03-14
  EARLIER APPLICATION NUMBER: US 60/124,907
  EARLIER FILING DATE: 1999-03-17
  NUMBER OF SEQ ID NOS: 3
; SEQ ID NO 2
   LENGTH: 50
   TYPE: PRT
   ORGANISM: NHR region of gp41
   FEATURE:
   LOCATION: 540..589
US-09-525-874-2
                        96.6%; Score 224; DB 2; Length 50;
 Query Match
 Best Local Similarity 95.9%; Pred. No. 3.2e-23;
          47; Conservative
                               2; Mismatches
                                                0; Indels
                                                             0; Gaps
                                                                         0;
 Matches
           1 QARQLLSGIVQQQNNLLRAIEAQQHLLQLTVFGIRQLQARILAVERYLK 49
Qу
             1 QARQLLSGIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARILAVERYLK 49
Db
```

<!--EndFragment-->

```
<!--StartFragment-->RESULT 2
US-09-082-279B-745
; Sequence 745, Application US/09082279B
; Patent No. 6258782
; GENERAL INFORMATION:
  APPLICANT: Barney, Shawn
  APPLICANT:
             Guthrie, Kelly
  APPLICANT: Merutka, Gene
  APPLICANT: Anwer, Mohmed
  APPLICANT: Lambert, Dennis
  TITLE OF INVENTION: HYBRID POLYPEPTIDES WITH ENHANCED
  TITLE OF INVENTION: PHARMACOKINETIC PROPERTIES
  FILE REFERENCE: 7872-043
  CURRENT APPLICATION NUMBER: US/09/082,279B
  CURRENT FILING DATE: 1998-05-20
  NUMBER OF SEQ ID NOS: 1515
  SOFTWARE: FastSEQ for Windows Version 3.0
 SEQ ID NO 745
   LENGTH: 51
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Core polypeptide
US-09-082-279B-745
 Query Match
                        96.6%; Score 224; DB 2; Length 51;
                        95.9%; Pred. No. 3.3e-23;
 Best Local Similarity
                               2; Mismatches
          47; Conservative
                                               0; Indels
                                                             0; Gaps
                                                                         0;
 Matches
           1 QARQLLSGIVQQQNNLLRAIEAQQHLLQLTVFGIRQLQARILAVERYLK 49
Qу
             1 QARQLLSGIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARILAVERYLK 49
Db
```

<!--EndFragment-->