

Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica

Exame de Recurso

2 de Fevereiro de 2009	Duração: 2 horas 30 minutos
Nome:	
Curso:	Melhoria de Nota: Nº folhas suplementares:

Caso pretenda desistir assine a seguinte declaração.

Declaro que desisto.

Questão	1	2	3a	3b	4	5	6	total
Cotação	10	05	15	10	20	10	15	85
Classificação								

Questão	7a	7b	8a	8b	8c	8d	9	10a	10b	total
Cotação	10	15	15	10	10	10	20	10	15	115
Classificação										

Classificação
total
valores

 $\label{eq:importante} \textbf{IMPORTANTE:} \quad \textit{Justifique resumidamente todas as suas afirmações, indique os cálculos que efectuou e explicite a sua resposta.}$

1. Usando o método de eliminação de Gauss, resolva o seguinte sistema de equações lineares

$$\begin{cases} x + 2y - 3z = 4 \\ 3x - y + 5z = 5 \\ 4x + y + 2z = 9 \end{cases}$$

- 2. Considere o parâmetro $k \in \mathbb{R}$, a matriz $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & k & 2 \\ 1 & 1 & k+1 \end{bmatrix}$ e o vector $B = \begin{bmatrix} 1 \\ k \\ 1 \end{bmatrix}$. Usando o método de eliminação de Gauss, obtenha a forma escalonada por linhas da matriz ampliada $[A \mid B]$.
- 3. Considere o parâmetro $k \in \mathbb{R}$, a matriz $A = \begin{bmatrix} 1 & 2 & -3 \\ 3 & -1 & 5 \\ 4 & 1 & k^2 14 \end{bmatrix}$ e o vector $B = \begin{bmatrix} 4 \\ 5 \\ k + 5 \end{bmatrix}$. Usando o método de eliminação de Gauss, obteve-se a forma escalonada por linhas da matriz ampliada $[A \mid B]$ dada por

$$\begin{bmatrix} 1 & 2 & -3 & | & 4 \\ 0 & -7 & 14 & | & -7 \\ 0 & 0 & k^2 - 16 & | & k - 4 \end{bmatrix}.$$

- (a) Indique, justificando, os valores de k para os quais o sistema AX=B, com $X\in\mathbb{R}^3,$ é
 - i. possível e determinado,
 - ii. possível e indeterminado,
 - iii. impossível.
- (b) Considere k=1. Verifique se pode escrever o vector (4,5,6) como combinação linear das colunas de A. Em caso afirmativo indique essa combinação linear.

- 4. Considere a matriz $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ cuja forma escalonada reduzida por linhas é $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
 - (a) Uma base para o espaço das colunas de $A, \mathcal{C}(A)$ é ______. Justifique.
 - (b) Uma base para o espaço das linhas de $A, \mathcal{L}(A)$, é _______. Justifique.
 - (c) A característica de A, car(A), é ______. Justifique.
 - (d) A nulidade de A, nul(A), é ______. Justifique.
- 5. Se A for uma matriz 64×17 com característica 11, qual o número máximo de vectores $X \in \mathbb{R}^{17}$ linearmente independentes que satisfazem AX = 0? Justifique.
- 6. Sabendo que det $\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = 2$, calcule det $\begin{bmatrix} a_1 & 2b_1 & 4c_1 + a_1 \\ a_2 & 2b_2 & 4c_2 + a_2 \\ a_3 & 2b_3 & 4c_3 + a_3 \end{bmatrix}$.
- 7. Seja $U=\{(x,y,z)\in\mathbb{R}^3:\ y-z=0\}$ um subespaço vectorial de $\mathbb{R}^3.$
 - (a) Indique uma base e a dimensão de U.
 - (b) Calcule a projecção ortogonal do vector u=(1,2,3) sobre o subespaço U.
- 8. Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por f(1,1,1) = (1,2,3), f(0,1,1) = (1,1,1) e f(0,0,1) = (2,3,4).
 - (a) Determine a matriz M de f relativamente à base canónica $\mathcal{C} = ((1,0,0),(0,1,0),(0,0,1))$.
 - (b) Calcule f(2, 3, 2).
 - (c) Obtenha uma base para a imagem de f.
 - (d) Verifique que f não é injectiva.
- 9. Considere a matriz $A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Determine, se possível, uma matriz P invertível, com $\det(P) = 5$ e tal que $P^{-1}AP = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
- 10. Considere as matrizes $P = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$ e $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$.
 - (a) Verifique que P é uma matriz ortogonal e determine a matriz D diagonal tal que $P^TAP = D$.
 - (b) Considere a cónica 4xy + x + y = 0. Determine uma sua equação reduzida e classifique-a.