Билеты по матану

Автор1, ..., Aвтор<math>N

18 июня 2020 г.

Содержание

1.	Инте	егральное исчисление	1
	1.1	Билет 1: NAME	1
	1.2	Билет 2: NAME	1
	1.3	Билет 3: NAME	1
	1.4	Билет 4: NAME	1
	1.5	Билет 5: NAME	1
	1.6	Билет 6: NAME	1
	1.7	Билет 7: NAME	1
	1.8	Билет 8: NAME	1
	1.9	Билет 9: NAME	1
	1.10	Билет 10: NAME	1
	1.11	Билет 11: NAME	1
2.]	Мет	рические и нормированные пространства	2
	2.1	Билет 12: Метрические пространства. Примеры. Шары в метрических пространствах	2
	2.2	Билет 13: Открытые множества: определение и свойства	3
	2.3	Билет 14: Внутренние точки и внутренность множе- ства. Свойства	4
	2.4	Билет 15: Замкнутые множества: определение и свойства. Замыкание множества,	-
	2.1	связь со внутренностью.	5
	2.5	Билет 16: Свойства замыкания. Предельные точки. Связь с замыканием множества.	7
	2.6	Билет 17: Индуцированная метрика. Открытые и замкнутые множества в пространстве и в подпространстве	10
	2.7	Билет 18: Скалярное произведение и норма. Свойства и примеры. Неравенство Коши-Буняковского	11
	2.8	Билет 19: NAME	14
	2.9	Билет 20: NAME	14
	2.10	Билет 21: NAME	14
	2.11	Билет 22: NAME	14
	2.12	Билет 23: NAME	14

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

	2.13	Билет 24: NAME	. 14
	2.14	Билет 25: NAME	. 14
	2.15	Билет 26: NAME	. 14
	2.16	Билет 27: NAME	. 14
	2.17	Билет 28: NAME	. 14
	2.18	Билет 29: NAME	. 14
	2.19	Билет 30: NAME	. 14
	2.20	Билет 31: NAME	. 14
	2.21	Билет 32: NAME	. 14
	2.22	Билет 33: NAME	. 14
	2.23	Билет 34: NAME	. 14
	2.24	Билет 35: NAME	. 14
	2.25	Билет 36: NAME	. 14
	2.26	Билет 37: NAME	. 14
	2.27	Билет 38: NAME	. 14
	2.28	Билет 39: NAME	. 14
3.		повые и функциональные ряды	15
	3.1	Билет 40: NAME	
	3.2	Билет 41: NAME	
	3.3	Билет 42: NAME	
	3.4	Билет 43: NAME	
	3.5	Билет 44: NAME	
	3.6	Билет 45: NAME	
		Билет 46: NAME	
	3.8	Билет 47: NAME	
	3.9	Билет 48: NAME	
		Билет 49: NAME	
		Билет 50: NAME	
		Билет 51: NAME	
		Билет 52: NAME	
		Билет 53: NAME	
		Билет 54: NAME	
		Билет 55: NAME	
		Билет 56: NAME	
		Билет 57: NAME	
		Билет 58: NAME	
	5.21	Билет 60: NAME	. 17

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

	3.22	Билет 61: NAME	17
	3.23	Билет 62: NAME	17
	3.24	Билет 63: NAME	17
	3.25	Билет 64: NAME	17
	3.26	Билет 65: NAME	17
	3.27	Билет 66: NAME	17
	3.28	Билет 67: Равномерная сходимость степенного ряда. Непрерывность суммы сте-	
		пенного ряда. Теорема Абеля	17
		Билет 68: Почленное интегрирование суммы степенного ряда	19
		Билет 69: NAME	19
		Билет 70: NAME	19
		Билет 71: NAME	19
	3.33	Билет 72: NAME	19
1	Фулт	кции нескольких переменных	20
4.	4.1	Билет 73: NAME	22
	4.2	Билет 74: NAME	22
	4.3	Билет 75: NAME	22
	4.4	Билет 76: NAME	22
	4.5	Билет 77: NAME	22
	4.6	Билет 78: NAME	22
	4.7	Билет 79: NAME	22
	4.8	Билет 80: NAME	22
	4.9	Билет 81: NAME	
		Билет 82: NAME	
		Билет 83: NAME	22
		Билет 84: NAME	22
		Билет 85: NAME	22
		Билет 86: NAME	22
		Билет 87: NAME	22
		Билет 88: NAME	22
		Билет 89: NAME	22
		Билет 90: NAME	22
		Билет 91: NAME	22
		Билет 92: NAME	22
		Билет 93: NAME	22
		Билет 94: NAME	22
		Билет 95: NAME	22
		Билет 96: NAME	22
		Билет 97: NAME	

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

	4.26	Билет 98: NAME	22
5.	Teop	рия меры	23
	5.1	Билет 99: NAME	23
	5.2	Билет 100: NAME	23
	5.3	Билет 101: NAME	23
	5.4	Билет 102: NAME	23

1. Интегральное исчисление

- 1.1. Билет 1: NAME
- 1.2. Билет 2: NAME
- 1.3. Билет 3: NAME
- 1.4. Билет 4: NAME
- 1.5. Билет 5: NAME
- 1.6. Билет 6: NAME
- 1.7. Билет 7: NAME
- 1.8. Билет 8: NAME
- 1.9. Билет 9: NAME
- 1.10. Билет 10: NAME
- 1.11. Билет 11: NAME

2. Метрические и нормированные пространства

2.1. Билет 12: Метрические пространства. Примеры. Шары в метрических пространствах.

Определение 2.1.

Метрическое пространства - пара $\langle X, \rho \rangle$, где X - множество, $\rho: X \times X \mapsto \mathbb{R}$ - метрика, ρ обладает следующими свойствами:

- 1. $\rho(x,y) \geqslant 0$, и $\rho(x,y) = 0 \iff x = y$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$ (неравенство треугольника, \triangle)

Пример.

Обычная метрика на \mathbb{R} : $\langle \mathbb{R}, \rho(x,y) = |x-y| \rangle$.

Пример.

«Метрика лентяя» на произвольном множестве:
$$\rho(x,y)= egin{cases} 0 & x=y \\ 1 & x
eq y \end{cases}$$

Пример.

Обычная метрика на \mathbb{R}^2 - длина отрезка: $\rho(\langle x_1,y_1\rangle\,,\langle x_2,y_2\rangle)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

Пример.

Множество - точки на поверхности сферы, метрика - кратчайшая дуга межту точками.

Пример.

Манхэттанская метрика на \mathbb{R}^2 : $\rho(\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle) = |x_1 - x_2| + |y_1 - y_2|$.

Пример.

Французкая железнодорожная метрка: Есть центральный объект, от него есть несколько «лучей».

Если A и B на одном луче, то $\rho(A,B)=AB$

Если на разных: $\rho(A, B) = AP + PB$, где P - центральный объект.

Доказательство.

При условии что расстояния между объектами на одном луче являются метрикой, докажем что ФЖМ - метрика:

Если A и B находятся на одном луче, всё тривиально следует из того, что расстояние на луче - метрика.

Пусть A, B - на разных лучах $\implies A \neq B, A, B \neq P$.

$$\rho(A,B) = AP + PB > 0 \iff AP, PB > 0.$$

$$\rho(A,B) = AP + PB = PB + AP = BP + PA = \rho(B,A).$$

Пусть C лежит на одной ветке с A:

$$\rho(A, C) + \rho(C, B) = AC + (CP + PB) = (AC + CP) + PB \geqslant AP + PB = \rho(A, B).$$

Пусть C лежит на собственной ветке:

$$\rho(A,C) + \rho(C,B) = (AP + PC) + (CP + PB) \geqslant AP + PB = \rho(A,B).$$

Определение 2.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

Открытым шаром радиуса $r \in \mathbb{R}_{>0}$ с центром в $a \in X$ называется $B_r(a) = \{x \in X \mid \rho(a,x) < r\}$.

Замкнутым шаром радиуса $r \in \mathbb{R}_{>0}$ с центром в $a \in X$ называется $\overline{B}_r(a) = \{x \in X \mid \rho(a,x) \leqslant r\}.$

Свойства.

$$B_{r_1}(a) \cap B_{r_2}(a) = B_{\min\{r_1, r_2\}}(a)$$

Если
$$a \neq b$$
, то $\exists r > 0$ $B_r(a) \cap B_r(b) = \varnothing$.

Доказательство.

Возьмём $r = \frac{\rho(a,b)}{2}$

Пусть $x \in B_r(a) \cap B_r(b)$.

Тогда $\rho(a,x) < \frac{\rho(a,b)}{2}$ и $\rho(x,b) < \frac{\rho(a,b)}{2}$.

Но тогда $\rho(a,x) + \rho(x,b) < \rho(a,b)$, противоречие с \triangle .

Аналогичная пара свойств есть и у \overline{B} .

2.2. Билет 13: Открытые множества: определение и свойства.

Определение 2.3.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

Точка $a \in A$ называется внутренней если $\exists r > 0 \quad B_r(a) \subset A$.

Множество внутренних точек называется внутренностью множества, и обозначается Int A.

Определение 2.4.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

А называется открытым, если все его точки внутренние.

Свойства.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

- 1. \varnothing , X отктрыте множества.
- 2. Объединение любого количества открытых множеств открыто

Доказательство.

Пусть $\forall \alpha \in I \quad A_{\alpha}$ - открытое множество. $A := \bigcup_{\alpha \in I} A_{\alpha}$. Возьмём точку $a, \exists \beta \in I \quad a \in A_{\beta}$.

Так-как A_{β} открытое, $\exists r > 0 \quad B_r(a) \subset A_{\beta} \subset A$.

3. Пересечение конечного количества открытых множеств открыто

Доказательство.

Пусть $I = [1; n], \forall k \in I \quad a \in A_k, A_k$ - открытое.

Тогда $\forall k \in I \quad \exists r_k > 0 \quad B_{r_k}(a) \subset A_k$.

Пусть $r = \min_{k} r_k > 0$.

Тогда
$$\forall k \in I \quad B_r(a) \subset B_{r_k}(a) \subset A_k \implies B_r(a) \subset \bigcap_{k=1}^n A_k.$$

4. $\forall a \in X \quad \forall r \in \mathbb{R} \quad B_r(a)$ - открытое множество.

Доказательство.

Пусть $x \in B_r(a)$, $\tilde{r} = r - \rho(x, a)$.

Покажем что $B_{\tilde{r}}(x) \subset B_r(a)$:

$$y \in B_{\tilde{r}}(x) \implies \rho(y, x) < \tilde{r}$$

$$\implies \rho(y, x) < r - \rho(x, a)$$

$$\implies \rho(y, x) + \rho(x, a) < r$$

$$\stackrel{\triangle}{\Longrightarrow} \rho(y, a) < r$$

$$\implies y \in B_r(a)$$

2.3. Билет 14: Внутренние точки и внутренность множе- ства. Свойства.

Определение 2.5 (повтор).

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

Точка $a \in A$ называется внутренней если $\exists r > 0 \quad B_r(a) \subset A$.

Множество внутренних точек называется внутренностью множества, и обозначается Int A.

Свойства.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

- 1. Int $A \subset A$
- 2. Int A объеденение всех открытых множеств содержащихся в A.

Доказательство.

Пусть $G = \bigcup_{\alpha \in I} U_{\alpha}$, где $U_{\alpha} \subset A$ - открытое.

Int $A \subset G$:

$$x \in G \implies \exists \alpha \in I \quad x \in U_{\alpha}$$

 $\implies \exists r > 0 \quad B_r(x) \subset U_{\alpha} \subset A$
 $\implies x \in \text{Int } A$

$$G\subset \operatorname{Int} A\colon x\in \operatorname{Int} A\Longrightarrow \exists r>0$$
 $B_r(x)\subset A.$ $B_r(x)$ - открытое множество, значит $\exists \alpha\in I\ U_\alpha=B_r(x)\Longrightarrow x\in G.$

Автор: Игорь Энгель

3. Int A - откртое множество

Доказательство.

A - объединение открытых множеств, значит открыто.

4. Int $A = A \iff A$ - открыто

Доказательство.

Необходимость (\Longrightarrow): Int A открыто.

Достаточность (\iff): A открыто \implies все точки внутренние \implies $A=\operatorname{Int} A$.

- 5. $A \subset B \implies \operatorname{Int} A \subset \operatorname{Int} B$
- 6. $\operatorname{Int}(A \cap B) = \operatorname{Int} A \cap \operatorname{Int} B$

Доказательство.

В сторону ⊂:

$$A \cap B \subset A \implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} A$$

 $A \cap B \subset B \implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} B$
 $\implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} A \cap \operatorname{Int} B$

В сторону ⊃:

$$x \in \operatorname{Int} A \cap \operatorname{Int} B$$

$$x \in \operatorname{Int} A$$

$$x \in \operatorname{Int} B$$

$$\exists r_1 \quad B_{r_1}(x) \subset A$$

$$\exists r_2 \quad B_{r_2}(x) \subset B$$

$$B_{\min\{r_1, r_2\}}(x) \subset A \cap B$$

$$x \in \operatorname{Int}(A \cap B)$$

7. Int Int A = Int A

Доказательство.

Заметим, что Int A - открытое по 3, дальше по 4 видно равенство.

2.4. Билет 15: Замкнутые множества: определение и свойства. Замыкание множества, связь со внутренностью.

Определение 2.6.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

A называется замкнутым, если $X \setminus A$ - открыто.

Свойства.

1. \varnothing, X - замкнуты.

2. Пересечение любого количества замкнутых множеств замкнуто

Доказательство.

$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$$

Так-как $\forall \alpha \quad X \setminus A_\alpha$ - открытое, то $\bigcup_{\alpha \in I} A_\alpha$ - откртоые, значит $\bigcap_{\alpha \in I} A_\alpha$ - замкнутое.

3. Объединение конечного количества замкнутых множеств замкнуто

Доказательство.

$$X \setminus \bigcup_{k=1}^{n} A_k = \bigcap_{k=1}^{n} (X \setminus A_k)$$

 $X\setminus A_k$ открыто, значит их конечное пересечение открыто, значит $\bigcup_{k=1}^n A_k$ - замкнуто.

4. $\forall a \in X \quad \forall r > 0 \quad \overline{B}_r(a)$ - замкнутое множество.

Доказательство.

Покажем что $X \setminus \overline{B}_r(a) = \{x \in X \mid \rho(x,a) > r\}$ - открыто.

Пусть $x \in X \setminus \overline{B}_r(a)$. $\tilde{r} = \rho(x, a) - r$. Тогда докажем что $B_{\tilde{r}}(x) \cap B_r(a) = \emptyset$:

Пусть $y \in B_{\tilde{r}}(x) \cap \overline{B}_r(a)$, тогда $\rho(x,y) < \tilde{r}, \rho(y,a) < r$.

$$\rho(x,a) \stackrel{\triangle}{\leqslant} \rho(x,y) + \rho(y,a) < \tilde{r} + r = \rho(x,a).$$

Получили противоречие, значит $B_{\tilde{r}}(x) \cap B_r(a) = \emptyset \implies B_{\tilde{r}}(x) \subset X \setminus \overline{B}_r(a)$, значит $X \setminus \overline{B}_r(a)$ - открытое.

Определение 2.7.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

Замыкание множества $A\subset X$ - пересечение всех замкнутых множеств, содержащих A. Обозначается $\operatorname{Cl} A$ или $\overline{A}.$

Теорема 2.1.

$$\operatorname{Cl} A = X \setminus \operatorname{Int}(X \setminus A).$$

Доказательство.

Будем доказывать в виде $X \setminus \operatorname{Cl} A = \operatorname{Int}(X \setminus A)$:

Знаем, что $\operatorname{Int}(X \setminus A) = \bigcup_{\alpha} U_{\alpha}$ по всем U_{α} таким, что $U_{\alpha} \subset (X \setminus A)$ и U_{α} открыто.

Пусть C - замкнутое множество, такое, что $A\subset C$. Тогда $X\setminus C$ - открытое, и $(X\setminus A)\subset (X\setminus C)\implies \exists \alpha\quad U_\alpha=X\setminus C.$

Аналогично в другую сторону - $\forall \alpha \ X \setminus U_{\alpha}$ - замкнутое надмножество A.

Пусть $C_{\alpha} = X \setminus U_{\alpha}$.

$$X \setminus \operatorname{Cl} A = X \setminus \bigcap_{\alpha} C_{\alpha} = \bigcup_{\alpha} (X \setminus C_{\alpha}) = \bigcup_{\alpha} U_{\alpha} = \operatorname{Int}(X \setminus A).$$

 Глава #2
 6 из 23
 Автор: Игорь Энгель

2.5. Билет 16: Свойства замыкания. Предельные точки. Связь с замыканием множества.

Свойства.

- 1. $A \subset \operatorname{Cl} A$
- $2. \ \mathrm{Cl}\,A$ замкнутое множество

Доказательство.

По определению, $\operatorname{Cl} A$ - пересечение замкнутых множетв.

3. $\operatorname{Cl} A = A \iff A$ замкнуто

Доказательство.

$$A = \operatorname{Cl} A \iff X \setminus A = X \setminus \operatorname{Cl} A$$
 $\iff X \setminus A = \operatorname{Int}(X \setminus A)$
 $\iff X \setminus A$ открыто
 $\iff A$ замкнуто

4. $A \subset B \implies \operatorname{Cl} A \subset \operatorname{Cl} B$

Доказательство.

$$A \subset B \implies (X \setminus B) \subset (X \setminus A)$$

$$\implies \operatorname{Int}(X \setminus B) \subset \operatorname{Int}(X \setminus A)$$

$$\implies X \setminus \operatorname{Int}(X \setminus A) \subset X \setminus \operatorname{Int}(X \setminus B)$$

$$\implies \operatorname{Cl} A \subset \operatorname{Cl} B$$

5. $Cl(A \cup B) = Cl A \cup Cl B$

Доказательство.

$$Cl(A \cup B) = X \setminus Int(X \setminus (A \cup B))$$

$$= X \setminus Int((X \setminus A) \cap (X \setminus B))$$

$$= X \setminus (Int(X \setminus A) \cap Int(X \setminus B))$$

$$= (X \setminus Int(X \setminus A)) \cup (X \setminus Int(X \setminus B))$$

$$= Cl A \cup Cl B$$

6. Cl(Cl A) = Cl A

Доказательство.

 $Cl\ A$ замкнуто по свойству 2, равенство следует из свойства 3.

Теорема 2.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

$$a \in \operatorname{Cl} A \iff \forall r > 0 \quad B_r(a) \cap A \neq \varnothing.$$

Доказательство.

Hеобходимость (\Longrightarrow):

Предположим что $\exists r > 0 \quad B_r(a) \cap A = \varnothing$.

Тогда $a \notin A$ и $B_r(a) \subset X \setminus A$, значит $a \in \operatorname{Int}(X \setminus A) \implies a \notin X \setminus \operatorname{Int}(X \setminus A) \implies a \notin \operatorname{Cl} A$.

Достаточность (\iff):

Пусть $a \not\in \operatorname{Cl} A$, тогда $\exists F$ - замкнутое надмножество A, такое, что $a \not\in F \implies a \in X \setminus F$. При этом, $X \setminus F$ открыто.

Тогда $\exists r > 0$ $B_r(a) \subset X \setminus F \subset X \setminus A$.

Ho тогда
$$B_r(a) \cap A = \emptyset$$
.

Следствие.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$, а $U \subset X$ - открытое множетсво. При этом $A \cap U = \varnothing$.

Тогда $\operatorname{Cl} A \cap U = \emptyset$

Доказательство.

$$x \in \operatorname{Cl} A \cap U \implies x \in U$$

$$\implies \exists r > 0 \quad B_r(x) \subset U$$

$$\implies B_r(x) \cap A \subset U \cap A = \varnothing$$

$$\implies x \notin \operatorname{Cl} A$$

$$\implies x \notin \operatorname{Cl} A \cap U$$

Получили противоречие, значит таких x не существует.

Определение 2.8.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

Проколотой окрестностью радиуса $r \in \mathbb{R}_{>0}$ с центров в $a \in X$ называется $\mathring{B}_r(a) := B_r(a) \setminus \{a\} = \{x \in X \mid 0 < \rho(x,a) < r\}.$

Определение 2.9.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

 $a \in A$ называется предельной точкой, если $\forall r > 0 \quad \dot{B}_r(a) \cap A \neq \varnothing$.

Множества предельных точек множества A обозначается A'.

Свойства.

1. $\operatorname{Cl} A = A \cup A'$

Доказательство.

$$a \in \operatorname{Cl} A \iff \forall r > 0 \quad B_a(a) \cap A \neq \emptyset$$

$$\iff \begin{bmatrix} a \in A \\ \mathring{B}_r(a) \cap A \neq \emptyset \end{bmatrix}$$

$$\iff \begin{bmatrix} a \in A \\ a \in A' \end{bmatrix}$$

2. $A \subset B \implies A' \subset B'$

Доказательство.

$$a \in A' \implies \forall r \quad \mathring{B}_r(a) \cap A \neq \varnothing$$

 $\implies \mathring{B}_r(a) \cap B \neq \varnothing$
 $\implies a \in B'$

3. $(A \cup B)' = A' \cup B'$

Доказательство.

$$A \subset A \cup B \implies A' \subset (A \cup B)'$$

$$B \subset A \cup B \implies B' \subset (A \cup B)'$$

$$\implies A' \cup B' \subset (A \cup B)'$$

Покажем другое включение: возьмём $x \in (A \cup B)'$.

Пусть $x \notin A'$: Тогда $\exists R > 0 \quad \mathring{B}_R(x) \cap A = \varnothing$.

Заметим, что $\forall 0 < r \leqslant R \quad \mathring{B}_r(x) \cap A \subset B_R(x) \cap A = \varnothing$, значит $\forall r > 0 \quad \exists 0 < R_r < r \quad B_{R_r}(x) \cap A = \varnothing$.

Так-как $\mathring{B}_{R_r}(x) \cap (A \cup B) \neq \emptyset$, значит $\mathring{B}_{R_r}(x) \cap B \neq \emptyset$. Тогда

$$\forall r > 0 \quad \mathring{B}_r(x) \cap B \supset \mathring{B}_{R_r}(x) \cap B \neq \varnothing.$$

Значит, $x \in B'$

4. $A' \subset A \iff A$ - замкнутое

Доказательство.

$$A$$
 - замкнутое $\iff A = \operatorname{Cl} A$ $\iff A = A \cup A'$ $\iff A' \subset A$

Теорема 2.3.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

 $a \in A' \iff \forall r > 0 \quad B_r(a) \cap A$ содержит бесконечно много точек.

Hеобходимость (\Longrightarrow):

Знаем, что $\mathring{B}_r(a) \cap A \neq \emptyset$, возьмём точку $x_1 \in \mathring{B}_r(a) \cap A$, возьмём $r_2 = \rho(x_1, a)$, знаем, что $\mathring{B}_r(a) \cap A \neq \emptyset$, можем взять точку оттуда, и вообще повторять бесконечное число раз.

Достаточность (\leqslant): $B_r(a) \cap A$ содержит бесконечно много точек $\implies \mathring{B}_r(a) \cap A$ содержит бесконечно много точек $\implies \mathring{B}_r(a) \cap A \neq \varnothing \implies a \in A'$.

2.6. Билет 17: Индуцированная метрика. Открытые и замкнутые множества в пространстве и в подпространстве.

Определение 2.10.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $Y \subset X$.

Тогда пара $\langle Y, \rho|_{Y\times Y}\rangle$ называется метрическим подпростраством X.

Далее, при разговое о подпростравах обычно будет указываться только множество, а метрика использоваться та-же что и для основного пространства.

Теорема 2.4.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, Y - его подпространство.

 $A\subset Y$ открыто в Y тогда и только тогда, когда $\exists G$ открытое в X, такое, что $A=G\cap Y$

Доказательство.

Hеобходимость (\Longrightarrow):

$$A$$
 - открыто в $Y \implies \forall a \in A \quad \exists r_a > 0 \quad B^Y_{r_a}(a) \subset A$
$$\implies A = \bigcup_{a \in A} B^Y_{r(a)}(A) \subset \bigcup_{a \in A} B^X_{r(a)}(a) =: G$$

G - подходящее множество - оно открыто как объединение открытых, покажем что $A = G \cap Y$:

$$B_r^Y(x) = B_r^X(x) \cap Y.$$

$$G \cap Y = Y \cap \bigcup_{a \in A} B_{r(a)}^X(a) = \bigcup_{a \in A} B_{r(a)}^Y(a) = A.$$

Достаточность (\iff):

Пусть $A = G \cap Y$. Возьмём $a \in A$.

$$G$$
 открыто в $X \implies \exists r>0 \quad B_r^X(a)\subset G$
$$\implies B_r^X(a)\cap Y\subset G\cap Y$$

$$\implies B_r^Y(a)\subset A$$

$$\implies A$$
 открыто в Y

Теорема 2.5.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, Y - его подпространство.

 $A \subset Y$ замкнуто тогда и только тогда, когда $\exists F$ замкнутое в X, такое, что $A = F \cap Y$.

 $F:=X\backslash G$, где G - открытое в X такое, что $G\cap Y=Y\backslash A$ существование которого экивалентно открытости $Y\setminus A\iff$ замкнутости A.

$$F \cap Y = (X \setminus G) \cap Y$$
$$= (X \cap Y) \setminus G$$
$$= Y \setminus G$$
$$= Y \setminus (G \cap Y)$$
$$= Y \setminus (Y \setminus A)$$
$$= A$$

2.7. Билет 18: Скалярное произведение и норма. Свойства и примеры. Неравенство Коши-Буняковского.

Определение 2.11.

Нормированным пространством над \mathbb{R} называется пара $\langle X, \|\cdot\| \rangle$, где X - линейное пространство над \mathbb{R} (далее одно и тоже обозначение используется для линейного пространства и его множества векторов), а $\|\cdot\|: X \mapsto \mathbb{R}$ - норма, обладающая следующими свойствами $\forall x,y \in X \quad \forall \lambda \in \mathbb{R}$.

1.
$$||x|| \ge 0$$
 и $||x|| = 0 \iff x = \vec{0}$

$$2. \|\lambda x\| = \lambda \|x\|$$

3.
$$||x + y|| \le ||x|| + ||y|| \ (\triangle)$$

Пример.

$$X = \mathbb{R}, ||x|| = |x|$$

Пример.

На $X = \mathbb{R}^d$ можно задать бесконечно много норм:

$$||x||_1 = \sum_{i=1}^d |x_i|.$$

$$||x||_2 = \sqrt{\sum_{i=1}^d |x_i|^2}.$$

$$||x||_n = \sqrt[n]{\sum_{i=1}^d |x_i|^n}.$$

$$||x||_{\infty} = \max_{i \in 1, \dots, d} |x_i|.$$

Пример.

$$X = C[a, b], \, ||f|| = \max_{x \in [a, b]} |f(x)|.$$

Докажем неравенство треугольника:

$$||f + g|| = \max_{x \in [a,b]} |f(x) + g(x)|$$

$$= |f(x_0) + g(x_0)|$$

$$\leq |f(x_0) + |g(x_0)|$$

$$\leq \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |g(x)|$$

$$= ||f|| + ||g||$$

Определение 2.12.

Пусть X - линейное пространство, тогда функция $\langle\cdot,\cdot\rangle:X\times X\mapsto\mathbb{R}$ называется скалярным произведением, если удовлетворяет следующим свойствам $\forall x,y,z\in X\quad\forall\lambda\in\mathbb{R}$:

1.
$$\langle x, x \rangle \geqslant 0$$
 и $\langle x, x \rangle = 0 \iff x = \vec{0}$.

2.
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$

3.
$$\langle x, y \rangle = \langle y, x \rangle$$

4.
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

Замечание.

Аналогичные определения можно дать над \mathbb{C} , тогда надо ещё потребовать $\langle x, x \rangle \in \mathbb{R}$, и третий пункт примет вид $\langle x, y \rangle = \overline{\langle y, x \rangle}$.

Пример.

$$X = \mathbb{R}^d, \langle x, y \rangle = \sum_{i=1}^d x_i y_i$$

Пример.

Пусть $w_1, ..., w_d > 0$, тогда

$$X = \mathbb{R}^d, \langle x, y \rangle = \sum_{i=1}^d w_i x_i y_i$$

Пример.

$$X = C[a, b], \langle f, g \rangle = \int_{a}^{b} f(t)g(t)dt$$

Свойства.

1.
$$\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$$
 и $\langle x, \lambda y + \mu z \rangle = \lambda \langle x, y \rangle + \mu \langle x, z \rangle$

2. Неравенство Коши-Буняковского: $\langle x,y \rangle^2 \leqslant \langle x,x \rangle \cdot \langle y,y \rangle$

Доказательство.

Пусть $t \in \mathbb{R}$.

$$\langle x + ty, x + ty \rangle \ge 0.$$

 $\langle x + ty, x + ty \rangle = \langle x, x \rangle + 2t \langle x, y \rangle + t^2 \langle y, y \rangle.$

Это квадратное уровнение имеет корень только если x+ty=0, значит не более одного корня. Его дискриминат ≤ 0 :

$$(2\langle x,y\rangle)^2 - 4\langle x,x\rangle \cdot \langle y,y\rangle \leqslant 0 \implies \langle x,y\rangle^2 \leqslant \langle x,x\rangle \cdot \langle y,y\rangle. \qquad \Box$$

3.
$$||x|| = \sqrt{\langle x, x \rangle}$$
 - норма

(a) Первое свойство переносится напрямую, из аналогичных свойств для $\langle x, x \rangle$ и $\sqrt{\ }$

(b)
$$\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda^2 \langle x, x \rangle} = |\lambda| \sqrt{\langle x, x \rangle} = \lambda \|x\|$$

(c)

$$||x + y|| \leqslant ||x|| + ||y|| \iff \sqrt{\langle x + y, x + y \rangle} \leqslant \sqrt{\langle x, x \rangle} + \sqrt{\langle y, y \rangle}$$

$$\iff \langle x + y, x + y \rangle \leqslant \langle x, x \rangle + 2\sqrt{\langle x, x \rangle}\sqrt{\langle y, y \rangle} + \langle y, y \rangle$$

$$\iff \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle$$

$$\iff \langle x, y \rangle \leqslant \sqrt{\langle x, x \rangle}\sqrt{\langle y, y \rangle}$$

$$\iff \langle x, y \rangle^2 \leqslant \langle x, x \rangle \langle y, y \rangle$$

Последнее неравенство - неравенство Коши-Буняковского.

Свойства.

1.
$$\rho(x,y) = ||x-y||$$
 - метрика

Доказательство.

(а) Первое свойство переходит прямо

(b)
$$\rho(y,x) = ||y-x|| = ||(-1)(x-y)|| = |(-1)|||x-y|| = \rho(x,y)$$

(c)
$$||x - y|| \le ||x - z|| + ||z - y||$$
 (\triangle для нормы).

2.
$$|||x|| - ||y||| \le ||x - y||$$

Доказательство.

$$||x|| = ||(x - y) + y|| \stackrel{\triangle}{\leqslant} ||x - y|| + ||y||.$$

$$||y|| = ||(y - x) + x|| \stackrel{\triangle}{\leqslant} ||y - x|| + ||x|| = ||x - y|| + ||x||.$$

$$||x|| \le ||x - y|| + ||y|| \implies ||x|| - ||y|| \le ||x - y||.$$

 $||y|| \le ||x - y|| + ||x|| \implies ||y|| - ||x|| \le ||x - y||.$

П

- 2.8. Билет 19: NAME
- 2.9. Билет 20: NAME
- 2.10. Билет 21: NAME
- 2.11. Билет 22: NAME
- 2.12. Билет 23: NAME
- 2.13. Билет 24: NAME
- 2.14. Билет 25: NAME
- 2.15. Билет 26: NAME
- 2.16. Билет 27: NAME
- 2.17. Билет 28: NAME
- 2.18. Билет 29: NAME
- 2.19. Билет 30: NAME
- 2.20. Билет 31: NAME
- 2.21. Билет 32: NAME
- 2.22. Билет 33: NAME
- 2.23. Билет 34: NAME
- 2.24. Билет 35: NAME
- 2.25. Билет 36: NAME
- 2.26. Билет 37: NAME
- 2.27. Билет 38: NAME
- 2.28. Билет 39: NAME

3. Числовые и функциональные ряды

- 3.1. Билет 40: NAME
- 3.2. Билет 41: NAME
- 3.3. Билет 42: NAME
- 3.4. Билет 43: NAME
- 3.5. Билет 44: NAME
- 3.6. Билет 45: NAME
- 3.7. Билет 46: NAME
- 3.8. Билет 47: NAME
- 3.9. Билет 48: NAME
- 3.10. Билет 49: NAME
- 3.11. Билет 50: NAME
- 3.12. Билет 51: NAME
- 3.13. Билет 52: NAME
- 3.14. Билет 53: NAME
- 3.15. Билет 54: NAME
- 3.16. Билет 55: NAME
- 3.17. Билет 56: NAME
- 3.18. Билет 57: NAME
- 3.19. Билет 58: NAME
- 3.20. Билет 59: NAME
- 3.21. Билет 60: NAME
- 3.22. Билет 61: NAME
- 3.23. Билет 62: NAME
- 3.24. Билет 63: NAME
- 3.25. Билет 64: NAME

R – радиус сходимости, 0 < r < R. Тогда в круге $|z| \le r$ ряд сходится равномерно.

Доказательство.

 $r < R \implies \sum_{n=0}^{\infty} a_n r^n$ сходится абсолютно. Для ряда $\sum_{n=0}^{\infty} a_n z^n, \ |z| \leqslant r$ воспользуемся признаком Вейерштрасса. $|a_nz^n|\leqslant |a_n|r^n,\, |a_n|r^n$ сходится \implies по признаку Вейерштрасса $\sum\limits_{n=0}^\infty a_nz^n,\,\,|z|\leqslant r$ сходится равномерно.

Замечание.

Равномерной сходимости во всем круге может не быть.

Контрпимер $R=1,\;\sum\limits_{n=0}^{\infty}z^{n}=\frac{1}{1-z},\;$ хвост ряда $\sum\limits_{k=n}^{\infty}z^{k}=\frac{z^{n}}{1-z}\not\rightrightarrows 0,\;$ т.к. можем одновременно приблизить числитель к единице, а знаминатель к нулю, и дробь получается сколь угодно большой.

Следствие.

Сумма степенного ряда непрерывна в круге сходимости.

Доказательство.

Возьмем произвольную точку w из круга сходимости, достаточно доказать лишь непрерывность в окресности. Берем r, т.ч. |w| < r < R. Знаем, что в круге |z| < r ряд равномерно сходится. Есть равномерная сходимость и каждое слагаемое это непрерывная функция \Longrightarrow в круге |z| < r сумма непрерывна \Longrightarrow есть непрерывность суммы и в w. В силу произольности wсумма непрерывна в любой точке |z| < R.

Теорема 3.2 (Абеля).

Пусть R – радиус сходимости ряда $\sum\limits_{n=0}^{\infty}a_nz^n$ и ряд сходится при z=R. Тогда на отрезке [0,R] і сходится равномерно ряд сходится равномерно.

 $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x}{R}\right)^n$. Применим признак Абеля. $\sum_{n=0}^{\infty} a_n R^n$ сходится равномерно (нет зависимости от x), $\left(\frac{x}{R}\right)^n \in [0,1]$ \Longrightarrow равномерно огранич., $\left(\frac{x}{R}\right)^n$ монотонно убывает, тогда по признаку Абеля $\sum_{n=0}^{\infty} a_n x^n$ сходится равномерно.

Следствие

 $f(x) = \sum_{n=0}^{\infty} a_n x^n$, если выполнены условия теоремы, то $f(x) \in C[0,R]$, т.к. равномерная сходимость влечет непрерывность. В частности, $\lim_{x\to R^-}\sum_{n=0}^{\infty}a_nx^n=\sum_{n=0}^{\infty}a_nR^n$.

3.29. Билет 68: Почленное интегрирование суммы степенного ряда.

Лемма.

$$x_n, y_n \in \mathbb{R}$$
 и $\lim_{n \to +\infty} x_n \in (0, +\infty)$. Тогда $\overline{\lim} x_n y_n = \lim x_n \overline{\lim} y_n$.

Доказательство.

 $A = \lim x_n, B = \overline{\lim} y_n, C = \overline{\lim} x_n y_n$. (Напоминание: верхний предел это наибольший из частичных).

 $\exists n_k$, т.ч. $x_{n_k}y_{n_k} \to C$. $\lim x_{n_k}y_{n_k} = \lim x_{n_k} \lim y_{n_k}$, равенство есть, т.к. существует предел слева и предел x_{n_k} . Из равенства следует, что $\lim y_{n_k} = \frac{C}{A} \leqslant B \implies C \leqslant AB$.

 $\exists m_k,$ т.ч. $y_{n_k} \to B$. $\lim x_{m_k} y_{m_k} = \lim x_{m_k} \lim y_{m_k} \implies \lim x_{m_k} y_{m_k} = AB \leqslant C$.

Итого равенство.

Следствие.

Радиусы сходимости рядов $\sum_{n=0}^{\infty} a_n z^n$, $\sum_{n=0}^{\infty} a_n \frac{z^{n+1}}{n+1}$, $\sum_{n=1}^{\infty} a_n n z^{n-1}$ совпадают.

Доказательство.

Домножение на z не влияет на радиус, поэтому докажем для рядов $\sum_{n=0}^{\infty} a_n z^n$,

$$\sum_{n=0}^{\infty}a_n\frac{z^n}{n+1},\sum_{n=1}^{\infty}a_nnz^n.$$

$$R_1 = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}, R_2 = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}, R_3 = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|} \sqrt[n]{n}}$$

 $\lim \sqrt[n]{n+1} = \lim \sqrt[n]{n} = 1$, по лемме можем вытащить из под верхнего предела и окажется, что $R_1 = R_2 = R_3$.

Теорема 3.3 (Почленное интегрирование степенного ряда).

R – радиус сходимости ряда $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$. Тогда при $|x-x_0| < R$

 $\int\limits_{x_0}^x f(t)dt = \sum\limits_{n=0}^\infty a_n rac{(x-x_0)^{n+1}}{n+1}$ и полученный ряд имеет тот же радиус сходимости.

Доказательство.

На $[x_0,x]$ ряд сходится равномерно (теорема из билета $67) \Longrightarrow f \in C[x_0,x]$ и можно интегрировать почленно $\int\limits_{x_0}^x \sum\limits_{n=0}^\infty a_n (t-x_0)^n dt = \sum\limits_{n=0}^\infty a_n \int\limits_{x_0}^x (t-x_0)^n dt = \sum\limits_{n=0}^\infty a_n \frac{(x-x_0)^{n+1}}{n+1}.$

3.30. Билет 69: NAME

3.31. Билет 70: NAME

3.32. Билет 71: NAME

3.33. Билет 72: NAME

4. Функции нескольких переменных

- 4.1. Билет 73: NAME
- 4.2. Билет 74: NAME
- **4.3.** Билет **75**: NAME
- 4.4. Билет 76: NAME
- 4.5. Билет 77: NAME
- 4.6. Билет 78: NAME
- 4.7. Билет 79: NAME
- 4.8. Билет 80: NAME
- 4.9. Билет 81: NAME
- 4.10. Билет 82: NAME
- 4.11. Билет 83: NAME
- 4.12. Билет 84: NAME
- 4.13. Билет 85: NAME
- 4.14. Билет 86: NAME
- 4.15. Билет 87: NAME
- 4.16. Билет 88: NAME
- 4.17. Билет 89: NAME
- 4.18. Билет 90: NAME
- 4.19. Билет 91: NAME
- 4.20. Билет 92: NAME
- 4.21. Билет 93: NAME
- 4.22. Билет 94: NAME
- 4.23. Билет 95: NAME
- 4.24. Билет 96: NAME
- 4.25. Билет 97: NAME

Билеты по матану Теория меры

5. Теория меры

5.1. Билет 99: NAME

5.2. Билет 100: NAME

5.3. Билет 101: NAME

5.4. Билет 102: NAME