Easy tasks:

1.
$$\lambda f^{V \to E}$$
 $\lambda g^{(V \to E) \to E}$ $g(\lambda x^{V}, f \times)$

2. Idata Tabc = AalBbclC

1. $\lambda f^{V \to E}$ $\lambda g^{(V \to E) \to E}$

2.11 data Tabe = A al B b c l C b b a by data Unit = Unit a

3.1)
$$\lambda f$$
 $\lambda g^{\gamma \rightarrow \alpha} \lambda h$ $\lambda x \lambda y$ $h(f(x x))$

$$\lambda f \lambda g^{\gamma \rightarrow \alpha} \lambda h$$
 $\lambda x \lambda y$ $h(g(y))$

$$\lambda f \lambda g^{\gamma \rightarrow \alpha} \lambda h$$
 $\lambda x \lambda y$ $h(g(y))$

$$\lambda f \lambda f \lambda f$$

 $\lambda^{x}_{y}(y^{5}.x))$

3) $\lambda = (((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \beta + (\lambda \times \beta, \gamma)$ 4) 2x.x -> Id

4. 1) 3 x.x 2) $\lambda f(\lambda x. f(x x))(\lambda x. f(x x)) \rightarrow \gamma$ -combinator 3) 1 x. 2 x: xx

Reaches infinite loop.

6. 1) g computes if n is odd (true) or even (false)

2)
$$\gamma = \lambda t \cdot (\lambda x \cdot f(x \times))(\lambda x \cdot f(x \times))$$

 $\gamma H = \lambda t \cdot (\lambda x \cdot f(x \times))(\lambda x \cdot f(x \times)) H$
 $= > (\lambda x \cdot H(x \times))(\lambda x \cdot H(x \times))$
 $= > H((\lambda x \cdot H(x \times))(\lambda x \cdot H(x \times)))$

* Now substitute $(\lambda x.H(x \times))(\lambda x.H(x \times))$ for find $\rightarrow (\lambda n. if n = 1 flan frue else if n = 0 flan false else not <math>(((\lambda x.H(x \times))(\lambda x.H(x \times)))(n-1))$

* Simplify inner expression

* Substitute back into larger expression:

->
$$(\lambda n \cdot if n = i \cdot flun \cdot frue \cdot efse \cdot if n = o \cdot flun \cdot false \cdot efse$$

 $not(H((\lambda x \cdot H(x x))(\lambda x \cdot H(x x)))(n-i))$

=> f(n-1) has been replaced by H(()x.H(xx))()x.H(xx)))(n-1)

3) (YH)2= H((\(\chi\x.\H(\x\x))(\(\lambda\x.\H(\x\x))\)2 =) if 2=1 than true else if 2=0 than false else not (((\(\chi x. H(xx))(\(\lambda x. H(xx))\)(2-1) => if false than true else if tolse than false else not (川(()x. H(x x))()x. H(x x))) 1) => not (if 1=1 than true else if 1=0 than false

else not (((\(\lambda x.H(xx))(\lambda x.H(xx)))(1-1))

The computation might continue but we can see that this should evaluate to true, thus the final result should be not (true) => false.