Topics in Stata

Chinmay Lohani

August 2019

Predoc Orientation 2019 Energy Policy Institute at UChicago

Items

- Fuzzy string matching: reclink, matchit
- Dealing with dates: year(), month(), format %td
- · Random sampling and bootstrapping: bsample, gsample
- · Parallel processing: parallel
- · Table customisation: file write

Fuzzy string matching

- You will encounter many occasions where you will have to match the names of certain variables between two datasets.
- It will rarely be the case that names will match perfectly, making the need for fuzzy string matching.

Fuzzy matching- reclink

- reclink uses a bigram based method to join two separate datasets (can use many variables to match on).
- . reclink v1 v2 v3 using set2, gen(myscore) idmaster(id)
 idusing(recno)

String matching-matchit

The other useful command for fuzzy string matching is matchit.

You can choose n-gram based matching, soundex (which is phonetic) and can even weigh between various gram methods and is highly flexible

```
. matchit v1 v2, similmethod(soundex)
```

General guideline- tweak string matching methods to generate a large number of viable matches and skim through.

Date variables

Stata has an extensive package/function called date() to deal with date objects in your datasets.

You can extract various elements of a timestamp using functions such as month(), year(); merge together using dofm() etc.

Basic idea- machine format vs human readable format, and knowing how to switch between them.

Note- All data is actually stored numerically under the hood, however best practice would entail using human readable formats wherever possible.

Random sampling and bootstrapping

- Many tasks will require you to sample parts of your data randomly, to draw from a given distribution.
- gsample is a function you can use to draw from a data by using its instances as an empirical distribution function (or proportional to size).

```
.gsample 6000, wor //sample without replacement, draw 6000 observations
```

Random sampling

- You can also draw from a standard distribution to generate a new variable in your dataset. eg. runiformint(a,b)
- Useful when you want to randomly sample a smaller part of the data to work with.

```
.gen sampler= runiformint(1, 100)
.keep if sampler<=5
.drop sampler</pre>
```

Bootstrapping

- No easy closed form package for the standard errors- use bootstrapping.
- Draw from your distribution of errors, use that draw as an instance of given data to re-estimate parameter, estimate parameters until you have a distribution.
- For generating these errors, use **bsample**.

Parallel programming-parallel

- Many times, you would like to utilise the processing power available to you.
- In principle, user made package parallel allows you to parallelise the control flow used to execute your stata code under the hood.
- In practice, not super robust. Worth testing in certain usecases.

Writing to file

- Of the programming functionality that Stata offers, one useful bit to know is writing to a file.
- Specially useful in cases when you wish to write to a different format, or don't wish to disturb current workspace.
- In particular, you can automate making highly customisable tables by writing Latex files.

```
.file open myfile using "$dirpath_out/
Table_cost_various_responses.tex", write replace
    .file write myfile " & & & \multicolumn{5}{c}{Rebate(
Rs)} \\" _n
    .file write myfile " Treated \% & N(treated) &
Increase (kWh) & 0.5 & 1 & 1.5 & 2 & 2.5 \\" _n
    .file write myfile " \midrule " _n
```

Example Table

Notch (kWh)	Marginal price below and above the notch (Rs)	Initial estimates		Corrected estimates	
		Excess (bills)	Excess (ratio)	Excess (bills)	Excess (ratio)
Panel A	: Standard domestic ho	useholds			
200	$\frac{4}{5.95}$	-4900.6 (8660.9) [-0.57]	-0.03 (0.06) [-0.50]	-4740.3 (13913.2) [-0.34]	-0.03 (0.17) [-0.18]
400	5.95 7.3	2424.5 (27221.3) [0.09]	0.07 (0.81) [0.09]	2391.9 (32076.6) [0.07]	0.07 (0.81) [0.09]
800	7.3 8.1	-1392.0 (24840.6) [-0.06]	-0.25 (150.62) [-0.00]	-1354.4 (69051.9) [-0.02]	-0.24 (56.88) [-0.00]
1200	8.1 8.75	-1604.0 (18628.3) [-0.09]	-0.59 (8.11) [-0.07]	-1593.5 (62071.7) [-0.03]	-0.59 (17.73) [-0.03]