

UNIVERSIDAD NACIONAL DE COLOMBIA

FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA MECÁNICA Y MECATRÓNICA

Resistencia de Materiales

PROYECTO DE CURSO #3 – Comprobación de una viga estáticamente indeterminada para esfuerzos y deformaciones

Semestre I - 2017

Objetivos de Formación

- 1. Conocer y aplicar los métodos de solución de vigas hiperestáticas.
- 2. Discutir y analizar los estados de esfuerzos y las deformaciones que aparecen en vigas. Plantear condiciones de diseño para vigas que estén basados en esfuerzo admisible y en deformaciones.
- 3. Desarrollar las habilidades necesarias para el trabajo en equipo.
- 4. Desarrollar habilidades para identificar, formular y resolver problemas de ingeniería.
- 5. Desarrollar habilidades para utilizar técnicas y herramientas modernas de ingeniería necesarias para la práctica profesional.

El Proyecto

Desarrolle un programa de computador y preséntelo junto con un informe de proyecto, que permita dar respuesta al siguiente problema de Resistencia de Materiales:

Una viga estáticamente indeterminada, de sección **A** y de longitud L= 10 m, deberá soportar la fuerza concentrada **F** y la carga uniformemente distribuida **w**. La viga estará empotrada en su extremo izquierdo (a) y apoyada en dos travesaños auxiliares en c y d respectivamente. Estos travesaños no son perfectamente rígidos y funcionan elásticamente con rigidices k_1 y k_2 respectivamente (son datos conocidos, dados en MN/m). En la Figura 1 aparece un diagrama de la viga, donde se muestra la ubicación de las cargas y los distintos apoyos.

El programa debe permitir hallar los siguientes resultados:

- a) Las reacciones en los apoyos (a, c y d).
- b) Los diagramas de fuerza de cortante y momento flector $(V_{(x)} y Mf_{(x)})$.
- c) El Factor de Seguridad de la viga.
- d) La deflexión que experimenta la viga en b, c y d.
- e) La pendiente que experimenta la viga en b, c y d.
- f) Alertar sobre el no cumplimiento de alguna condición de diseño.

Figura 1. Diagrama de la viga.

En la Figura 2 se aclara mediante un esquema de caja negra las entradas disponibles (variables) y las respuestas que el programa deberá resolver.

Figura 2. Esquema de las entradas y salidas para el programa solucionador.

Las variables para el cálculo del caso de estudio serán las siguientes:

Número de	Designación viga	F c	w c	M	S
selección de	(sección A) b	(kN)	(kN/m)	(m)	(m)
variante ^a					
0	W 460 x 158	18*(1+B/6)	12*(1+B/8)	1,5	4, 0
1	W 460 x 74	16*(1+B/6)	13*(1+B/8)	2,0	4,5
2	W 310 x 107	13*(1+B/6)	10*(1+B/8)	2,5	5, 0
3	W 250 x 167	10*(1+B/6)	7*(1+B/8)	3,0	5,4
4	W 200 x 86	8*(1+B/6)	6*(1+B/8)	1,0	5,8
5	W 410 x 114	14*(1+B/6)	13*(1+B/8)	2,75	3,8
6	W 360 x 551	12*(1+B/6)	10*(1+B/8)	3,5	4,75
7	W 360 x 216	11*(1+B/6)	9*(1+B/8)	3,75	6,3
8	W 250 x 101	9*(1+B/6)	7*(1+B/8)	4, 0	6,8
9	W 310 x 74	10*(1+B/6)	8*(1+B/8)	4,3	7,5

a: Corresponde al último digito del Código de Estudiante, del integrante del equipo cuyo primer apellido sea el primero ordenado alfabéticamente.

Restricciones geométricas, físicas y mecánicas:

$$M \leq S$$

$$1 \, m \leq S \leq \frac{2}{3} L$$

$$(no \ hay \ apoyo \ en \ c) \ 0 \leq k_1^* \leq \infty \ (pat \ in \ en \ c)$$

$$(no \ hay \ apoyo \ en \ d) \ 0 \leq k_2^* \leq \infty \ (pat \ in \ en \ d)$$

$$\sigma_{max} \leq [\sigma]^{**} \ (condici \ in \ de \ esfuerzo \ admisible)$$

$$y_i \leq [y]^{***} \ (condici \ in \ de \ deflexi \ in \ limite)$$

$$\theta_i \leq [\theta]^{***} \ (condici \ in \ de \ pendiente \ limite)$$

Estructura del Informe

El informe deberá tener la siguiente estructura básica:

- 1- Portada (información general).
- 2- Resumen (aprox. 250 palabras).
- 3- Introducción.
- 4- Fundamentación teórica.
- 5- Método de solución (planteamiento de modelos).
 - a. Diagrama de cuerpo libre.

b: Designación para el perfil doble T de ala ancha, fuente: Beer, Ferdinand et al. (2010) Mecánica de Materiales. 5ª edición. Editorial Mc. Graw-Hill, p. 750 – 753.

c: En las ecuaciones B es el penúltimo digito del Código de Estudiante, del integrante del equipo cuyo primer apellido sea el primero ordenado alfabéticamente.

^{*:} Se sugiere una rigidez para los apoyos c y d superior a 1 MN/m

^{**:} Se sugiere emplear para la viga un acero estructural ASTM-A36; en caso necesario especificar otro material (se requeriría fabricar una viga no estándar).

^{***:} Escoja y argumente valores adecuados para [y] y $[\theta]$.

- b. Ecuaciones de equilibrio.
- c. Curva elástica de la viga y condiciones de bordes.
- d. Diagramas de solicitaciones internas.
- e. Cálculo de esfuerzos y FS.
- f. Cálculo de deflexiones y pendientes.
- 6- Solución del "Caso de Estudio".
- 7- Análisis de sensibilidad para k₁ y k₂ (variación de un parámetro a la vez).
- 8- Discusión de resultados.
- 9- Conclusiones y recomendaciones.
- 10- Referencias.
- 11- Anexo: programa solucionador desarrollado.

Consideraciones generales

- 1. El proyecto se desarrollará en equipos de tres o cuatro estudiantes.
- 2. Se entregará un informe escrito que cumpla con todas las normas básicas de presentación, que incluirá memoria de cálculos, diagramas claros, justificaciones de las decisiones tomadas, criterios de diseño aplicados y toda la información necesaria para que queden perfectamente claros los pasos seguidos.
- 3. Se entregarán los archivos de los programas desarrollados.
- 4. Evaluación:

5. Fecha de entrega y sustentación: jueves 11 de Mayo de 2017.