Mathematics I (BSM 101)

Manju Subedi

Gandaki University Bachelor in Information Technology(BIT) BSM 101

manjusubedi.061@gmail.com

January 4, 2023

1 / 11

Extreme Value Function:

The Max-Min Theorem for Continuous Functions:

If f is continuous at every point of a closed interval I, then f assumes both an absolute maximum value M and an absolute minimum value m somewhere in I. That is, there are numbers x_1 and x_2 in I with $f(x_1) = m, f(x_2) = M$, and $m \le f(x) \le M$ for every other x in I

Extreme Value Function:

The Max-Min Theorem for Continuous Functions:

If f is continuous at every point of a closed interval I, then f assumes both an absolute maximum value M and an absolute minimum value msomewhere in I. That is, there are numbers x_1 and x_2 in I with $f(x_1) = m, f(x_2) = M$, and $m \le f(x) \le M$ for every other x in I

Maximum and minimum at endpoints

at interior points

Minimum at interior point. maximum at endpoint

Manju Subedi Gandaki University January 4, 2023

Absolute Extreme Values

Let f be a function with domain D. Then f has an **absolute maximum** value on D at a point c if

$$f(x) \le f(c)$$
 for all x in D

Absolute Extreme Values

Let f be a function with domain D. Then f has an **absolute maximum** value on D at a point c if

$$f(x) \le f(c)$$
 for all x in D

and an **absolute minimum** value on D at c if

$$f(x) \ge f(c)$$
 for all x in D .

Absolute maximum and minimum values are called absolute extrema. Absolute extrema are also called global extrema.

Local Extreme Values:

A function f has a **local maximum** value at an interior point c of its domain if $f(x) \le f(c)$ for all x in some open interval containing c.

Local Extreme Values:

A function f has a **local maximum** value at an interior point c of its domain if $f(x) \le f(c)$ for all x in some open interval containing c. A function f has a **local minimum** value at an interior point c of its domain if $f(x) \ge f(c)$ for all x in some open interval containing c.

Local Extreme Values:

A function f has a **local maximum** value at an interior point c of its domain if $f(x) \le f(c)$ for all x in some open interval containing c. A function f has a **local minimum** value at an interior point c of its domain if $f(x) \ge f(c)$ for all x in some open interval containing c.

Manju Subedi Gandaki University January 4, 2023

4 / 11

The First Derivative Theorem for Local Extreme Values:

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then

$$f'(c)=0.$$

The First Derivative Theorem for Local Extreme Values:

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then

$$f'(c)=0.$$

Critical Point: An interior point of the domain of a function f where f' is zero or undefined is a critical point of f.

The First Derivative Theorem for Local Extreme Values:

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then

$$f'(c)=0.$$

Critical Point: An interior point of the domain of a function f where f' is zero or undefined is a critical point of f.

Note: Maximum and minimum of the function are occurs only at critical points.

The First Derivative Theorem for Local Extreme Values:

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then

$$f'(c)=0.$$

Critical Point: An interior point of the domain of a function f where f' is zero or undefined is a critical point of f.

Note: Maximum and minimum of the function are occurs only at critical points.

Finding Absolute Extrema: In any Continuous Function f on a Closed Interval

- 1. Find all critical points by setting f'(x) = 0
- 2. Evaluate f at all critical points and endpoints.
- 3. Take the largest and smallest of these values.

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 900

The First Derivative Theorem for Local Extreme Values:

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then

$$f'(c)=0.$$

Critical Point: An interior point of the domain of a function f where f' is zero or undefined is a critical point of f.

Note: Maximum and minimum of the function are occurs only at critical points.

Finding Absolute Extrema: In any Continuous Function f on a Closed Interval

- 1. Find all critical points by setting f'(x) = 0
- 2. Evaluate f at all critical points and endpoints.
- 3. Take the largest and smallest of these values.

Example 1: Find the absolute maximum and minimum values of $f(x) = x^2$ on [-2, 1].

Increasing and Decreasing Functions

Definition: Let f be a function defined on an interval I and let x_1 and x_2 be any two points in I.

- 1. f increases on I if $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.
- 2. f decreases on I if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

Increasing and Decreasing Functions

Definition: Let f be a function defined on an interval I and let x_1 and x_2 be any two points in I.

- 1. f increases on I if $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.
- 2. f decreases on I if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

The First Derivative Test for Increasing and Decreasing: Suppose that f is continuous on [a, b] and differentiable on (a, b). If f'(x) > 0 at each point of (a, b), then f increases on [a, b].

If f'(x) < 0 at each point of (a, b), then f decreases on [a, b].

Let f be a differentiable function on an interval I. To find intervals on which f is increasing and decreasing:

• Find the critical values of f. That is, find all c in I where f'(c) = 0 or f' is not defined.

Let f be a differentiable function on an interval I.

To find intervals on which f is increasing and decreasing:

- Find the critical values of f. That is, find all c in I where f'(c) = 0 or f' is not defined.
- Use the critical values to divide I into subintervals.

Let f be a differentiable function on an interval I.

To find intervals on which f is increasing and decreasing:

- Find the critical values of f. That is, find all c in I where f'(c) = 0 or f' is not defined.
- Use the critical values to divide I into subintervals.
- **3** Pick any point p in each subinterval, and find the sign of f'(p).

Let f be a differentiable function on an interval I.

To find intervals on which f is increasing and decreasing:

- Find the critical values of f. That is, find all c in I where f'(c) = 0 or f' is not defined.
- Use the critical values to divide I into subintervals.
- **3** Pick any point p in each subinterval, and find the sign of f'(p). a. If f'(p) > 0, then f is increasing on that subinterval.

Let f be a differentiable function on an interval I.

To find intervals on which f is increasing and decreasing:

- Find the critical values of f. That is, find all c in I where f'(c) = 0 or f' is not defined.
- ② Use the critical values to divide I into subintervals.
- **3** Pick any point p in each subinterval, and find the sign of f'(p).
 - a. If f'(p) > 0, then f is increasing on that subinterval.
 - b. If f'(p) < 0, then f is decreasing on that subinterval.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Let f be a differentiable function on an interval I.

To find intervals on which f is increasing and decreasing:

- Find the critical values of f. That is, find all c in I where f'(c) = 0 or f' is not defined.
- ② Use the critical values to divide I into subintervals.
- 3 Pick any point p in each subinterval, and find the sign of f'(p).
 - a. If f'(p) > 0, then f is increasing on that subinterval.
 - b. If f'(p) < 0, then f is decreasing on that subinterval.

Example:2 Let $f(x) = x^3 + x^2 - x + 1$. Find intervals on which f is increasing or decreasing.

First Derivative Test: Let f be a function defined on an open interval I. Let f be continuous at a critical point c in I. Then

• If f'(x) changes sign from positive to negative as x increases through c, i.e., if f'(x) > 0 at every point sufficiently close to and to the left of c, and f'(x) < 0 at every point sufficiently close to and to the right of c, then c is a point of local maxima.

First Derivative Test: Let f be a function defined on an open interval I. Let f be continuous at a critical point c in I. Then

- If f'(x) changes sign from positive to negative as x increases through c, i.e., if f'(x) > 0 at every point sufficiently close to and to the left of c, and f'(x) < 0 at every point sufficiently close to and to the right of c, then c is a point of local maxima.
- ② If f'(x) changes sign from negative to positive as x increases through c, i.e., if f'(x) < 0 at every point sufficiently close to and to the left of c, and f'(x) > 0 at every point sufficiently close to and to the right of c, then c is a point of local minima.

First Derivative Test: Let f be a function defined on an open interval I. Let f be continuous at a critical point c in I. Then

- If f'(x) changes sign from positive to negative as x increases through c, i.e., if f'(x) > 0 at every point sufficiently close to and to the left of c, and f'(x) < 0 at every point sufficiently close to and to the right of c, then c is a point of local maxima.
- ② If f'(x) changes sign from negative to positive as x increases through c, i.e., if f'(x) < 0 at every point sufficiently close to and to the left of c, and f'(x) > 0 at every point sufficiently close to and to the right of c, then c is a point of local minima.
- **3** If f'(x) does not change sign as x increases through c, then c is neither a point of local maxima nor a point of local minima. Infact, such a point is called point of inflection.

First Derivative Test: Let f be a function defined on an open interval I. Let f be continuous at a critical point c in I. Then

- If f'(x) changes sign from positive to negative as x increases through c, i.e., if f'(x) > 0 at every point sufficiently close to and to the left of c, and f'(x) < 0 at every point sufficiently close to and to the right of c, then c is a point of local maxima.
- ② If f'(x) changes sign from negative to positive as x increases through c, i.e., if f'(x) < 0 at every point sufficiently close to and to the left of c, and f'(x) > 0 at every point sufficiently close to and to the right of c, then c is a point of local minima.
- **3** If f'(x) does not change sign as x increases through c, then c is neither a point of local maxima nor a point of local minima. Infact, such a point is called point of inflection.

Example 3: Find all points of local maxima and local minima of the function f given by

$$f(x) = x^3 - 3x + 3$$

Second Derivative Test: Let f be a function defined on an interval I and $c \in I$. Let f be twice differentiable at c. Then

- If f'(c) = 0 and f''(c) < 0, then f has a local maximum at x = c.
- If f'(c) = 0 and f''(c) > 0, then f has a local minimum at x = c.
- The test fails if f'(c) = 0 and f''(c) = 0.

Second Derivative Test: Let f be a function defined on an interval I and $c \in I$. Let f be twice differentiable at c. Then

- If f'(c) = 0 and f''(c) < 0, then f has a local maximum at x = c.
- If f'(c) = 0 and f''(c) > 0, then f has a local minimum at x = c.
- The test fails if f'(c) = 0 and f''(c) = 0.

Example 4: Find local maximum and local minimum values of the function f given by

$$f(x) = 3x^4 + 4x^3 - 12x^2 + 12$$

Example 5: Find all the points of local maxima and local minima of the function f given by

$$f(x) = 2x^3 - 6x^2 + 6x + 5$$

Thank you

