Elementy Modelowania Matematycznego

Wykład 6

Metoda simpleks

Spis treści

- Wstęp
- Zadanie programowania liniowego

Wstęp

- Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów).
- Jest to stosowana w matematyce iteracyjna metoda rozwiązywania zadań programowania liniowego za pomocą kolejnego polepszania (optymalizacji) rozwiązania.

Wstęp

 Nazwa metody pochodzi od simpleksu, figury wypukłej będącej uogólnieniem trójkąta na więcej wymiarów.

Wstęp

- W przestrzeni euklidesowej:
 - Simpleks zerowymiarowy to punkt
 - Simpleks jednowymiarowy to odcinek
 - Simpleks dwuwymiarowy to trójkąt
 - Simpleks trójwymiarowy to czworościan (niekoniecznie foremny)
 - Simpleks czterowymiarowy to 5-komórka

◆ Rozważamy proces, w którym występują zmienne x₁,x₂,...,x_n, na które nakładamy ograniczenia zapisane w postaci układu równań

◆ Rozważamy proces, w którym występują zmienne x₁,x₂,...,x_n, na które nakładamy ograniczenia zapisane w postaci układu równań

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 \cdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$

- ◆ a_{ij} , b_i znane współczynniki.
- Dopuszczamy jedynie nieujemne wartości
 x_i i b_i czyli:
 - $x_i >= 0;$
 - j = 1, 2, ..., n;
 - $b_i >= 0$;
 - i = 1, 2, ..., m

◆ Z procesem jest związana funkcja celu Z:

$$Z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$$

- c_i , j = 1, 2, ..., n znane współczynniki.
- ◆ Zadanie polega na maksymalizacji (minimalizacji) funkcji celu Z, spełniającej nałożone ograniczenia na zmienne.

Model matematyczny:

FC:
$$Z = \sum_{j=1}^{n} c_j x_j \rightarrow \max$$

O:
$$\begin{cases} \sum_{j=1}^{n} a_{ij}x_{j} = b_{i} \\ x_{j} \geq 0 & j = 1, 2, \dots, n \\ b_{i} \geq 1 & i = 1, 2, \dots, m \end{cases}$$

- Bardzo powszechną w zagadnieniach praktycznych odmianą ograniczeń są ograniczenia w postaci nierówności.
- To również, są zagadnienia programowania liniowego, ale nie w postaci standardowej.

Przykład

- Zakład zamierza rozpocząć produkcję dwóch wyrobów: F₁ i F₂.
- Wśród środków produkcyjnych, które zostaną użyte w procesie produkcji dwa są limitowane.
- Limity te wynoszą:
 - dla środka pierwszego S₁ 63 kilogramów,
 - dla środka drugiego S₂ 64 kilogramy.
- Aby wyprodukować wyrób F_1 potrzeba 9 kg środka S_1 oraz 8 kg środka S_2 .
- Aby wyprodukować wyrób F₂ potrzeba 7 kg środka S₁ oraz 8 kg środka S₂.
- F₁ będą produkowane jednocześnie na 3 maszynach, a F₂ na 2 maszynach.
- Koszty przestrojenia maszyn zwrócą się po wyprodukowaniu łącznie 6 sztuk wyrobów.
- Wiedząc, że cena F₁ będzie wynosić 6 zł, a cena F₂ 5 zł określić wielkość produkcji, która zoptymalizuje zysk ze sprzedaży.

		F_1	F_2	
1	S_1	9	7	63
2	S_2	8	8	64
3	ilość maszyn	3	2	6
	cena	6	5	

Przykład

Zmienne decyzyjne: x_1 – wielkość produkcji F1; x_2 – wielkość produkcji F2

Funkcja celu (FC): $Z(x_1, x_2) = 6x_1 + 5x_2 \rightarrow \max$

Ograniczenia (O):

(1)
$$9x_1 + 7x_2 \leq 63$$

(2)
$$8x_1 + 8x_2 \leq 64$$

(3)
$$3x_1 + 2x_2 \ge 6$$

Warunki brzegowe (WB):

$$x_1 \ge 0, \quad x_2 \ge 0$$

- A(2,0)
 - Z(2, 0) = 6 *2 + 5 *0 = 12
- B(7,0)
 - Z(7; 0) = 6 *7 + 5 *0 = 42
- C(3.5, 4.5)
 - Z(3.5,4.5) = 6 *3.5 + 5 *4.5 = 43.5 ! max
- D(0,8)
 - Z(0,8) = 6 *0 + 5 *8 = 40
- D(0,3)
 - Z(0,3) = 6*0 + 5*3 = 15
- Odpowiedz: Aby zysk był maksymalny, należy wyprodukować 3.5 F1 oraz 4.5 F2

Sprowadzenie zadania do postaci bazowej

Ograniczenie (1) $9x_1 + 7x_2 \le 63$

Aby otrzymać ograniczenie w postaci równania wprowadzamy dodatkową zmienną do ograniczenia:

$$9x_1 + 7x_2 + x_3 = 63$$

 x_3 – zmienna bilansująca określa ilość środka S_1 jaki nie zostanie wykorzystany w procesie produkcji.

Sprowadzenie zadania do postaci bazowej

Ograniczenie (2) $x_1 + x_2 \le 8$

Aby otrzymać ograniczenie w postaci równania wprowadzamy dodatkową zmienną do ograniczenia (podobnie jak dla (1)):

$$x_1 + x_2 + x_4 = 8$$

 x_4 – zmienna bilansująca określa ilość środka S_2 jaki nie zostanie wykorzystany w procesie produkcji. Dla $x_1=0$ i $x_2=0$ mamy:

$$x_4 = 8 \ge 0$$

Sprowadzenie zadania do postaci bazowej

Ograniczenie (3) $3x_1 + 2x_2 \ge 6$

Aby otrzymać ograniczenie w postaci równania wprowadzamy dodatkową zmienną do ograniczenia (podobnie jak dla (1) i (2)):

$$3x_1 + 3x_2 - x_5 = 6$$

Sprowadzenie zadania do postaci bazowej

 x_5 – zmienna bilansująca. Dla $x_1 = 0$ i $x_2 = 0$ mamy: $x_5 = -6 < 0$

W postaci bazowej, w każdym ograniczeniu musi znajdować się jedna zmienna, która po wyzerowaniu wszystkich pozostałych zmiennych w ograniczeniu, jest nieujemna.

Wprowadzamy zatem kolejną zmienną:

$$3x_1 + 3x_2 - x_5 + x_6 = 6$$

 x_6 – zmienna sztuczna. Dla $x_1 = 0$, $x_2 = 0$ i $x_5 = 0$ mamy:

$$x_6 = 6 \ge 0$$

- Rozwiązanie zadania po wprowadzeniu zmiennej sztucznej nie jest równoważne z rozwiązaniem zadania początkowego.
- Byłoby równoważne tylko wtedy, gdyby w rozwiązaniu optymalnym zmienna sztuczna miała wartość zero.
- Aby zapewnić $x_6 = 0$ w rozwiązaniu optymalnym, zmienną sztuczną wprowadza się do funkcji celu.
- Współczynnik przy zmiennej sztucznej w funkcji celu dobiera się tak, aby niezerowa wartość tej zmiennej mocno pogarszała wartość funkcji celu.

FC:
$$Z(x_1, x_2, x_6) = 6x_1 + 5x_2 + Mx_6 \rightarrow \max$$

$$M = -1000$$

• Wszystkie zmienne bilansujące również wprowadzamy do funkcji celu, ale współczynniki przy zmiennych bilansujących w funkcji celu mają wartość równą zero.

$$Z(x_1, x_2, x_3, x_4, x_5, x_6) = 6x_1 + 5x_2 + 0x_3 + 0x_4 + 0x_5 - 1000x_6 \rightarrow \max$$

Funkcja celu (FC):

$$Z(x_1, x_2, x_3, x_4, x_5, x_6) = 6x_1 + 5x_2 + 0x_3 + 0x_4 + 0x_5 - 1000x_6 \rightarrow \max$$

Ograniczenia (O):

$$(1) \quad 9x_1 + 7x_2 + x_3 = 63$$

(2)
$$x_1 + x_2 + x_4 = 8$$

$$(3) \quad 3x_1 + 2x_2 - x_5 + x_6 = 6$$

Warunki brzegowe (WB):

$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ x_4 \ge 0, \ x_5 \ge 0, \ x_6 \ge 0$$

- Wszystkie ograniczenia w postaci równań
- W każdym ograniczeniu znajduje się zmienna, która po wyzerowaniu pozostałych zmiennych ma wartość nieujemną
- Współczynnik przy zmiennej sztucznej ma wartość 1
- Wprowadzone zmienne bilansujące wprowadza sie do funkcji celu z zerowymi współczynnikami
- Wprowadzone zmienne sztuczne uwzględnia się w funkcji celu ze współczynnikami mocno pogarszającymi jej wartość

Reguly tworzenia zadania dualnego

◆ Z każdym zadaniem PL (zwanym pierwotnym lub prymalnym) sprzężone jest pewne inne zadanie PL zwane zadaniem dualnym (ZD).

Reguly tworzenia zadania dualnego

◆ Jeżeli zadaniem pierwotnym (ZP) jest zadanie:

$$\begin{cases} \sum_{j=1}^{n} c_j x_j \to \max, \\ \sum_{j=1}^{n} a_{ij} x_j \le b_i \quad (i = 1, 2, \dots, m), \\ x_j \ge 0 \quad (j = 1, 2, \dots, n), \end{cases}$$

Reguły tworzenia zadania dualnego

to zadaniem dualnym (ZD) będzie zadanie:

$$\begin{cases} \sum_{i=1}^{m} b_i y_i \to \min, \\ \sum_{i=1}^{m} a_{ij} y_i \ge c_j \quad (j=1,2,\ldots,n), \\ y_i \ge 0 \quad (i=1,2,\ldots,m). \end{cases}$$

Reguły tworzenia zadania dualnego

- * Z relacji zachodzących między zadaniem pierwotnym a zadaniem dualnym wynika, że:
 - w zadaniu dualnym jest tyle zmiennych, ile nierówności w zadaniu pierwotnym (każdemu warunkowi ZP odpowiada jedna zmienna ZD),
 - w zadaniu dualnym jest tyle warunków, ile zmiennych w zadaniu pierwotnym,
 - wagi funkcji celu zadania pierwotnego są wyrazami wolnymi w zadaniu dualnym,
 - wyrazy wolne zadanie pierwotnego są wagami funkcji celu w zadaniu dualnym,
 - macierz współczynników zadania dualnego jest transpozycją macierzy współczynników zadania pierwotnego,
 - jeżeli zadanie jest na maksimum, to dualne jest na minimum i odwrotnie.

Reguly tworzenia zadania dualnego

- W przypadku ogólnym stosujemy ponadto następujące, dodatkowe reguły tworzenia zadania dualnego:
 - jeżeli w ZP i-ty warunek jest równością, to odpowiadająca mu zmienna yi nie ma ograniczeń,
 - jeżeli w ZP i-ty warunek jest nietypową nierównością, to w ZD zmienna yi ≤ 0,
 - jeżeli w ZP na zmienną xi nie nałożono ograniczeń, to j-ty warunek ZD jest równością,
 - jeżeli w ZP zmienna xi ≤ 0, to w ZD j-ty warunek jest nietypową nierównością.

Reguly tworzenia zadania dualnego

 Mamy następujące zadanie pierwotne o postaci standardowej:

$$2x_1 + 3x_2 + x_3 \rightarrow \min,$$
 zmienne dualne:
 $4x_1 - 6x_2 + 5x_3 \ge 4,$ (ZP) $x_1 + 2x_2 + 4x_3 \ge 7,$ $x_1, x_2, x_3 \ge 0,$

• W zadaniu dualnym będą oczywiście dwie zmienne y1, y2, gdyż w ZP występują dwa ograniczenia (co zaznaczono przy ZP), a samo zadanie dualne do rozważanego zadania ZP ma postać:

$$4y_{1} + 7y_{2} \rightarrow \max,$$

$$4y_{1} + y_{2} \leq 2,$$

$$-6y_{1} + 2y_{2} \leq 3,$$

$$5y_{1} + 4y_{2} \leq 1,$$

$$y_{1}, y_{2} \geq 0.$$
(ZD)

Należy utworzyć zadanie dualne do następującego zadania pierwotnego:

$$6x_1 + 8x_2 \rightarrow \max,$$

 $4x_1 + 6x_2 \le 10,$
 $3x_1 + x_2 = 4,$ \leftarrow (ZP)
 $2x_1 + 2x_2 \ge 2,$
 $x_1 - \text{dowolne}, x_2 \ge 0,$

zmienne dualne:

$$y_l \ge 0$$
,

$$y_2$$
 – dowolne,

$$y_3 \leq 0$$
.

◆ Zadanie dualne będzie miało trzy zmienne (bo w ZP występują trzy ograniczenia) i dwa warunki ograniczające (bo w ZP występują dwie zmienne):

$$10y_{1} + 4y_{2} + 2y_{3} \rightarrow \min,$$

$$4y_{1} + 3y_{2} + 2y_{3} = 6,$$

$$6y_{1} + y_{2} + 2y_{3} \ge 8,$$

$$y_{1} \ge 0, y_{2} - \text{dowolne}, y_{3} \le 0.$$
(ZD)

* TWIERDZENIE 1 (o istnieniu)

- Jeżeli ZP i ZD mają rozwiązania dopuszczalne, to obydwa mają rozwiązania optymalne.
- * Jeżeli natomiast chociaż jedno z nich nie ma rozwiązania dopuszczalnego, to obydwa nie mają rozwiązań optymalnych.

TWIERDZENIE 2

◆ Jeżeli x₁,x₂,...,x_n jest rozwiązaniem dopuszczalnym zadania pierwotnego (prymalnego), a y₁,y₂,...,y_m - rozwiązaniem dopuszczalnym zadania dualnego, to między wartościami funkcji celu zachodzi nierówność:

$$\sum_{j=1}^{n} c_j x_j \le \sum_{i=1}^{m} b_i y_i$$

 Dla rozwiązań dopuszczalnych wartość funkcji celu ZP nie może być większa od wartości funkcji celu ZD.

- TWIERDZENIE 3 (o optymalności)
- Jeżeli istnieją dwa takie rozwiązania dopuszczalne $\overline{x_1, x_2, ..., x_n}$ (ZP) i mamy $\overline{y_1, y_2, ..., y_m}$ (ZD), że:

$$\sum_{j=1}^{n} c_j \overline{x}_j = \sum_{i=1}^{m} b_i \overline{y}_i$$

• to obydwa rozwiązania są rozwiązaniami optymalnymi.

◆ Twierdzenie o równowadze wykorzystujemy do sprawdzania optymalności znanego rozwiązania dopuszczalnego lub do znajdowania rozwiązania optymalnego dla przypadku szczególnego, gdy zadanie PL ma tylko dwa warunki ograniczające.

- Przypomnijmy, że zadanie pierwotne opisuje problem maksymalizacji przychodu osiąganego z produkcji n wyrobów.
- Zużycie środków produkcji nie może przekroczyć zasobów, jakimi dysponujemy.
- Waga c_j oznacza cenę j-tego wyrobu, współczynnik a_{ij} – wielkość zużycia i-tego środka na produkcję jednostki j-tego wyrobu, wyraz wolny
- ◆ b_i zasób i-tego środka produkcji,
- a zmienna x_i wielkość produkcji j-tego wyrobu.

- Aby nierówności w zadaniu miały sens, zmienną y_i interpretujemy jako cenę i-tego środka.
- Załóżmy, że konkurent chce nabyć od producenta środki produkcji.
- Jaką ich cenę powinien zaoferować?

 Z pewnością chciałby odkupić środki produkcji najtaniej. Proponuje więc, aby suma

$$\sum_{i=1}^{m} b_i y_i$$

- czyli wartość funkcji celu zadania dualnego (!!!), była minimalna.
- Konkurent musi się liczyć z faktem, że jeżeli zaoferuje producentowi zbyt niską cenę, to ten posiadanych środków nie sprzeda.

- Cena za niska to taka, kiedy przychód ze sprzedaży tych środków byłby niższy od przychodu, jaki producent może uzyskać kierując je do produkcji.
- ◆ Gdyby producent sprzedał środki niezbędne do produkcji jednostki j-tego produktu po cenach y_i (i=1,2,...,m), to dostałby sumę

$$\sum_{j=1}^{n} a_{ij} y_{i}$$

• Opłaci się więc sprzedać środki, jeżeli:

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_i \quad (j = 1, 2, ..., n)$$

◆ Zadanie dualne jest więc zadaniem, jakie powinien rozwiązać konkurent pragnący nabyć środki produkcji od producenta, jeżeli chciałby działać racjonalnie i liczy na racjonalne zachowanie producenta.

Przykład

- Mały warsztat naprawia trzy rodzaje urządzeń B1, B2, B3.
- Każde urządzenie zawiera trzy podstawowe elementy: E1, E2, E3.
- Naprawa polega na demontażu i/lub montażu elementów E1, E2, E3 według określonej technologii.

Przykład

◆ Tabela przedstawia przebieg każdej naprawy, zysk z naprawy urządzenia określonego typu oraz zapas elementów E1, E2, E3 w firmie.

		Element		
Urządzenie	E1	E2	E3	zysk
				zysk [\$/szt]
B1	3	-2	-4	-1
B2	-1	4	3	3
B3	2	0	8	-2
Zapas [szt.]	7	12	10	

◆ Zadanie:

$$2x_{1} + x_{2} + 3x_{3} \rightarrow \max$$

$$3x_{1} - x_{2} + 2x_{3} \leq 7$$

$$-2x_{1} + 4x_{2} \leq 12$$

$$-4x_{1} + 3x_{2} + 8x_{3} \leq 10$$

$$x_{1}, x_{2}, x_{3} \geq 0$$

Pozbywamy się nierówności

$$2x_{1} + x_{2} + 3x_{3} + 0s_{1} + 0s_{2} + 0s_{3} \rightarrow \max$$

$$3x_{1} - x_{2} + 2x_{3} + s_{1} = 7$$

$$-2x_{1} + 4x_{2} + s_{2} = 12$$

$$-4x_{1} + 3x_{2} + 8x_{3} + s_{3} = 10$$

$$x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, s_{3} \ge 0$$

•	D	CI.	-1	3	-2	0	0	0	D:
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi
1	S_1	0							
2	S_2	0							
3	S_3	0							
4									

i	В	Cb	-1	3	-2	0	0	0	Bi
,	D	CD	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	S_3	DI
1	S_1	0							
2	S_2	0	×7 / 1.		·1 ·				
3	S_3	0 2	w spor zmieni	czynn 1ych v	iki prz v	4ý			
4		f	unkcji	celu					

Tabela simpleksowa

Współczynniki przy zmiennych w ograniczeniach

•	ъ	CI.	-1	3	-2	0	0	0	D:
i	В	Cb	\mathbf{x}_1	\mathbf{X}_2	X ₃	s_1	32	s_3	Bi
1	S_1	0	3	-1	2	1	0	0	7
2	S_2	0	-2	4	0	0	1	0	12
3	S_3	0	-4	3	8	0	0	1	10
4									

$$z_j = \sum_{i \in B} c_i a_{ij}$$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D	2	Ch	-1	3	-2	0	0	0	D:
	1	D	1	CD	\mathbf{x}_1	\mathbf{x}_2	Wie	rsz w	skaźni	kowy.	Bi
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S_1	1	0	3	-1	w _j =	c _j -z _j			7
	2	S_2	2	0	-2	4	0	0	1	0	12
$3 S_3 0 -4 3 8 0 0 1 1$	3	S_3	3	0	-4	3	8	0	0	1	10
4	4		4								

$$z_j = \sum_{i \in B} c_i a_{ij}$$

•	ъ	Cb	-1	3	-2	0	0	0	D:
i	В	CD	\mathbf{x}_1	\mathbf{x}_2	Wie	rsz w	skaźni	kowy.	Bi
1	S_1	0	3	-1	w _j =	c _j -z _j			7
2	S_2	0	-2	4	0	0	1	0	12
3	S_3	0	-4	3	8	0	0	1	10
4			-1	3	-2	0	0	0	

$$z_j = \sum_{i \in B} c_i a_{ij}$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-1	3	-2	0	0	0		
1 S_1 0 3 -1 2 1 rozwiązaniu 2 S_2 0 -2 4 0 0 1 0	i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	X ₃	s_1				
	1	S_1	0	3	-1	2	1				
3 S ₃ 0 -4 3 8 0 0 1	2	S_2	0	-2	4	0	0	1	0		
	3	S_3	0	-4	3	8	0	0	1		
4 -1 3 -2 0 0 0	4			-1	3	-2	0	0	0	0	

$$z_j = \sum_{i \in B} c_i a_{ij}$$

·	D	CI.	-1	3	-2	0	0	0	D:	
i	В	Cb		10					Bi	
1	S_1	0	Jež	elı są v		scı doc ozwią		ıstnıej	e leps:	ze
2	S_2	0		Wybie ₁	ramy v	wartoś	ć mak	symal	ną w _j	
3	S_3	0	-4		8	0	0	1	10	
4			-1	3	-2	0	0	0	0	

•		GI.	-1	3	-2	0	0	0	D.	
1	В	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi	
1	S_1	0	3	-1	2	1	0	0	7	
2	S_2	0	-2	4	0_		o baz	y zost	anie	2
3	S_3	0	-4	3	8		wadzo zyli z			a 2
4			-1	3	-2	0	0	0	0	

i	В	Cb	-1	3	-2	0	0	0	Bi
1	Ъ	CD	\mathbf{x}_1	\mathbf{x}_2	X ₃	Ilian			
1	S_1	0	3	-1		Ujen	me wa pon	sporcz ijamy	ynniki '
2	S_2	0	-2	4	0		_		
3	S_3	0	-4	3	8	0	0	1	10
4			-1	3	-2	0	0	0	0

	D.	CI.	-1	3	-2	0	0	0	D.
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	\mathbf{s}_2	s_3	Bi
1	S_1	0	3	-1	2	1	0	0	7
2	S_2	0	-2	4	L	Do b	azy w	prowa	dzimy lub s ₃
3	S_3	0	-4	3	8	X ₂ V	v miej	sce s ₂	lub s ₃
4			-1	3	-2	0	0	0	0

		n.	Ch	-1	3	-2	0	0	0	D:
	i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-1	2	1	0	0	7
					4	0	0	1	0	12
orazli i	12/4<10/3			-4	3	8	0	0	1	10
czyn z	czyli z bazy wychodzi s ₂			-1	3	-2	0	0	0	0

•	D d	В	D	D	CI.	-1	3	-2	0	0	0	D.
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	X ₃	s_1	s_2	s_3	Bi			
1	S_1	0	3	-1 7mi	2	Togt			7			
2	X ₂	3		$^{4}X_{2}$	wpro	k ₂ zasi wadza	ępuje my ze	S ₂	12			
3	S_3	0	-4		spółc	zynnił	ciem	1	10			
4			-1	3	2 Iun -2	kcji ce	0		0			

◆ Tabela simpleks Ozielimy przez wartość przy wprowadzonej

	D	Ch	aby	zmienn w bazie	0	D:			
i	В	Cb	X_1	y w bazie współczynnik 0 wynosił 1 s ₂ s ₃			s_3	Bi	
1	S_1	0	3	-1	1	1	0	0	7
2	\mathbf{x}_2	3	-1/2	1	0	0	1/4	0	3
3	S_3	0	-4	3	8	0	0	1	10
4			-1	3	-2	0	0	0	0

			-1	3	-2	0	0	0	D.	
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	x ₃	S ₁	S ₂	S	Bi	
1	S_1	0	3	-1	2	wp	ozostał	my wsp ych róv	vnaniao	ch
2	\mathbf{x}_2	3	-1/2	1	V	0 Wy	ykorzys vierając	tując ró e wpro	wnanio wadzor	e 1a
3	S_3	0	-4	3	8	0		mienną	10	
4			-1	3	-2	0	0	0	0	

	. n	Ch	-1	3	-2	0	0	0	D.
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi
1	S_1	0	3	-1	2	+	0	0	7
2	\mathbf{x}_2	3	-1/2	1	0		1/4	0	3
3	S_3	0	-4	3	8	0	0	1	10
4			-1	3	-2	0	0	0	0

•	: D		-1	3	-2	0	0	0	n:
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	x ₃	s_1	s_2	S_3	Bi
1	S_1	0	2,5	odru (gie ₂ *3	odejmu	jemy o	d trzeci	ego ₀
2	\mathbf{x}_2	3	-1/2	1	0	0	1/4	0	3
3	S_3	0	-4	3	8	0	0	1	10
4			-1	3	-2	0	0	0	0

•		Сь	-1	3	-2	0	0	0	n:
i	В		\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi
1	S_1	0	2,5	0	2	1	1/4	0	10
2	\mathbf{X}_2	3	-1/2	1	0	0	1/4	0	3
3	S_3	0	-2,5	0	8	0	-3/4	1	1
4			-1	3	-2	0	0	0	0

<u>.</u>	R	B Cb	-1	3	-2	0	0	0	D:
i	Б	CD	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi
1	S_1	0	2,5	0	2	1	1/4	0	10
2	\mathbf{x}_2	3	-1/2	1 3*	*2,5+ -(1/2)+ *(-2,5)	0	1/4	0	3
3	S_3	0	-2,5	0 0	*(-2,5) =	0	-3/4	1	1
4			1/2	3	-3/2	0	0	0	0
-1-(-3/2)=1/2									

: D	Ch	-1	3	-2	0	0	0	D:	
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	X_3	s_1	S ₂	s_3	Bi
1	S_1	0	2,5	0	2	0*0+ 3*1+	1/4	0	10
2	\mathbf{x}_2	3	-1/2	1	0	0*0	1/4	0	3
3	S_3	0	-2,5	0	8	3	-3/4	1	1
4			1/2	0	-2	3-3=0	0	0	0

	ъ	Ch.	-1	3	-2	0	0	0	D:
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s ₁	s_2	S_3	Bi
1	S_1	0	2,5	0	2	1	0*2+ 3*0+	0	10
2	\mathbf{x}_2	3	-1/2	1	0	0	0*8	0	3
3	S_3	0	-2,5	0	8	0	- 0 /4	1	1
4			1/2	0	-2	0	2-0=-2	0	0

	n	Cl.	-1	3	-2	0	0	0	D:
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi
1	S_1	0	2,5	0	2	1	1/4	0*1+	10
2	\mathbf{x}_2	3	-1/2	1	0	0	1/4	3*0+ 0*0	3
3	S_3	0	-2,5	0	8	0	-3/4	= 0	1
4			1/2	0	-2	0	0	0	0
								0-0=0	

	, n	CI	-1	3	-2	0	0	0	D:
i	В	Cb	\mathbf{x}_1	X ₂	X ₃	s_1	s_2	s_3	Bi
1	S_1	0	2,5		*(1/4)+ *(1/4)+		1/4	0	10
2	\mathbf{x}_2	3	-1/2)*(-3/4)		1/4	0	3
3	S_3	0	-2,5	0	= 3/4	0	-3/4	1	1
4			1/2	0-(3/ 4) =-3	/4 ⁰	-3/4	0	0

	ъ	CI.	-1	3	-2	0	0	0	D.
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	X ₃	S ₁	S ₂	s_3	Bi
1	S_1	0	2,5	0	2	0*0+ 3*0+	1/4	0	10
2	\mathbf{x}_2	3	-1/2	1	0	0*1	1/4	0	3
3	S_3	0	-2,5	0	8	0	-3/4	1	1
4			1/2	0	-2	0-0-0	-3/4	0	0

	D	Ch	-1	3	-2	0	0	0	. D:
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi
1	S_1	0	2, Ist r			odatnia	1/4	0	10
2	\mathbf{x}_2	3	Do	konty bazy w	ynuujen prowad	ny zimy x	1 1/4	0	3
3	S_3	0	-2,5	0	8	0	-3/4	1	1
4			1/2	0	-2	0	-3/4	0	0

•		CI.	-1	3	-2	0	0	0	D.
i	В	Cb	\mathbf{x}_1	X 2	X ₃	S	S ₂	S 3	Bi
1	S_1	0	2,5		dyna do wprow	vadzam	y do ba		10
2	X_2	3	-1/2	4	x1 w	miejsc	e s1 1/4		3
3	S_3	0	-2,5	0	8	0	-3/4	1	1
4			1/2	0	-2	0	-3/4	0	0

•	.	CI.	-1	3	-2	0	0	0	D.
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi
1	\mathbf{x}_1	-1	2,5	0	2	1	1/4	0	10
2	\mathbf{x}_2	3	-1/2	1	0	0	1/4	0	3
3	S_3	0	-2,5	0	8	0	-3/4	1	1
4			1/2	0	-2	0	-3/4	0	0

•	D.	CI.	-1	3	-2	0	0	0	D.
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi
1	\mathbf{x}_1	-1	2,5	0	2	1	1/4	0	10
2	\mathbf{x}_2	3	$1/\hat{\mathbf{D}}\mathbf{z}$	ielimy v	wiersz j	orzez 2	5 1 4	0	3
3	S_3	0		ak aby v	współcz ynosił 1	zynnik	-3/4	1	1
4			1/2	0	-2	0	-3/4	0	0

•	n.		-1	3	-2	0	0	0	D.
i	В	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi
1	\mathbf{x}_1	-1	1	0	4/5	2/5	1/10	0	4
2	\mathbf{x}_2	3	-1/2	D	zielimy	wiersz	z przez	2,50	3
3	S_3	0	-2,5	0	tak aby	v współ wynosił	czynnil 1 ^{-3/4}	1	1
4			1/2	0	-2	0	-3/4	0	0

	•	n.		-1	3	-2	0	0	0	D.
	1	В	Cb	\mathbf{x}_1	\mathbf{x}_2	X ₃	s_1	s_2	s_3	Bi
	1	\mathbf{x}_1	-1	1	0	4/5	2/5	1/10	0	4
Zerujem	y współ	czynni	di 3	0	1	2/5	1/5	3/10	0	5
przy zm	niennej cy równ	x1 przy	7 0	0	0	10	1	-1/2	1	11
рошос	4	аша 1		1/2	0	-2	0	-3/4	0	0

◆ Tabela simpleksowa

Liczymy wartości wj wiersz 4

	i B	Ch	-1	3	-2	0	0	0	D:
1	Б	Cb	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	s_1	s_2	s_3	Bi
1	\mathbf{x}_1	-1	1	0	4/5	2/5	1/10	0	4
2	\mathbf{x}_2	3	0	1	2/5	1/5	3/10	0	5
3	S_3	0	0	0	10	1	-1/2	1	11
4			0	0	-12/5	-1/5	-4/5	0	11

•	D	Cb	-1	3	-2	0	0	0	D:
i	В	CD	\mathbf{x}_1	\mathbf{X}_2	X ₃	s_1	s_2	s_3	Bi
1	\mathbf{x}_1	-1	1	0	4/5	2/5	1/10	0	4
2	\mathbf{x}_2	3	0	1	datnich Czyli	1/5	3/10	0	5
3	S_3	0	Of	rzymal	iśmy ro	związa	nie	1	11
4			0	0	-12/5	-1/5	-4/5	0	11

i	В	Cb	-1	3	-2	0	0	0	Bi
			\mathbf{x}_1	\mathbf{x}_2	x ₃	s_1	s_2	s_3	
1	\mathbf{x}_1	-1	1	0	4/5	2/5	1/10	0	4
2	\mathbf{x}_2	3	0	1	x1=4 x2=5	1/5	3/10	0	5
3	S_3	0	0	0	x3=0	1	-1/2	1	11
4			Q.	0	S3=11	-1/5	-4/5	0	11

