ARP欺骗攻击与防御策略

环境拓扑

实验步骤

配置AR2

ping各PC之间的情况

```
PC>ping 192.168.2.1: 32 data bytes, Press Ctrl_C to break
From 192.168.2.1: bytes=32 seq=1 ttl=127 time=110 ms
From 192.168.2.1: bytes=32 seq=2 ttl=127 time=62 ms
From 192.168.2.1: bytes=32 seq=3 ttl=127 time=93 ms
From 192.168.2.1: bytes=32 seq=4 ttl=127 time=94 ms
From 192.168.2.1: bytes=32 seq=5 ttl=127 time=110 ms

--- 192.168.2.1 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 62/93/110 ms
```

```
PC>ping 192.168.1.2
Ping 192.168.1.2: 32 data bytes, Press Ctrl_C to break
From 192.168.1.2: bytes=32 seq=1 ttl=128 time=47 ms
From 192.168.1.2: bytes=32 seq=2 ttl=128 time=31 ms
From 192.168.1.2: bytes=32 seq=3 ttl=128 time=47 ms
From 192.168.1.2: bytes=32 seq=4 ttl=128 time=31 ms
From 192.168.1.2: bytes=32 seq=5 ttl=128 time=47 ms
--- 192.168.1.2 ping statistics ---
 5 packet(s) transmitted
 5 packet(s) received
 0.00% packet loss
 round-trip min/avg/max = 31/40/47 ms
PC>ping 192.168.1.3
Ping 192.168.1.3: 32 data bytes, Press Ctrl C to break
From 192.168.1.3: bytes=32 seq=1 ttl=128 time=78 ms
From 192.168.1.3: bytes=32 seq=2 ttl=128 time=78 ms
From 192.168.1.3: bytes=32 seq=3 ttl=128 time=94 ms
From 192.168.1.3: bytes=32 seq=4 ttl=128 time=62 ms
From 192.168.1.3: bytes=32 seq=5 ttl=128 time=78 ms
--- 192.168.1.3 ping statistics ---
 5 packet(s) transmitted
 5 packet(s) received
 0.00% packet loss
 round-trip min/avg/max = 62/78/94 ms
PC>ping 192.168.1.254
Ping 192.168.1.254: 32 data bytes, Press Ctrl C to break
From 192.168.1.254: bytes=32 seq=1 ttl=255 time=125 ms
From 192.168.1.254: bytes=32 seq=2 ttl=255 time=62 ms
From 192.168.1.254: bytes=32 seq=3 ttl=255 time=63 ms
From 192.168.1.254: bytes=32 seq=4 ttl=255 time=46 ms
From 192.168.1.254: bytes=32 seq=5 ttl=255 time=63 ms
```

查看路由器的mac和IP地址绑定情况(arp表)

[AR2]dis arp	MAC ADDRESS	hern ElX PIR	E(M) TYPE ernet 00/1 VLAN/CEVLAN	INTERFACE PVC	VPN-INSTANCE
192.168.1.254 192.168.1.1	192,00e,072fc2b-48fc8 192,00e,072fc2b-48fc8 192,5489-9851-25658		PC3 192 1 168-1.3/24 192 <mark>1</mark> 68-1.1	GE0/0/0 GE0/0/0	
192.168.1.2	5489-98a2-34fc		D-0	GE0/0/0	
192.168.1.3	5489-9816-45f9	20	D-0	GE0/0/0	
192.168.2.254	00e0-fc2b-48fd			GE0/0/1	
192.168.2.1	5489-9872-4d5b	20	D-0	GE0/0/1	
 Total:6	 Dynamic:4	 Stati	c:0 Interface	 e : 2	

修改pc3 IP地址为pc1 IP地址,并查看arp信息,清除arp

1修改ip

2清除arp信息

arp -d

```
PC>arp -d
PC>arp -a
Internet Address Physical Address Type
```

使用PC3 ping PC4 查看AR1的arp表项

1.使用PC3 ping PC4

```
PC>ping 192.168.2.1: 32 data bytes, Press Ctrl_C to break Request timeout!
From 192.168.2.1: bytes=32 seq=2 ttl=127 time=78 ms
From 192.168.2.1: bytes=32 seq=3 ttl=127 time=78 ms
From 192.168.2.1: bytes=32 seq=4 ttl=127 time=78 ms
From 192.168.2.1: bytes=32 seq=4 ttl=127 time=78 ms
From 192.168.2.1: bytes=32 seq=5 ttl=127 time=79 ms
--- 192.168.2.1 ping statistics ---
5 packet(s) transmitted
4 packet(s) received
20.00% packet loss
round-trip min/avg/max = 0/78/79 ms
```

2.AR1的arp表项

```
[AR2] dis arp
IP ADDRESS MAC ADDRESS EXPIRE (M) TYPE INTERFACE VPN-INSTANCE
7、PC3IP地址重新修改为192.168.1.3,然后以上外位CFYLAN.1PVC

192.168.1.254 0000-fc2b-48fc I - GE0/0/0
192.168.1.1 5489-9816-45f9 19 ID-0 GE0/0/0
192.168.1.2 5489-98a2-34fc 7 D-0 GE0/0/0
192.168.1.3 [其本配置(2)5/489-9816-45f9 10 D-0 GE0/0/0
192.168.2.254 00e0-fc2b-48fd I - GE0/0/1
192.168.2.1 5489-9872-4d5b 19 D-0 GE0/0/1

Total:6 Dynamic:4 Static:0 Interface:2
```

PC3 IP地址重新修改为192.168.1.3,然后让PC4 ping 192.168.1.1

```
□ X
CPC4
                            UDP发包工具
  基础配置
            命令行
                      组播
                                        串口
Welcome to use PC Simulator!
PC>ping 192.168.1.1
Ping 192.168.1.1: 32 data bytes, Press Ctrl C to break
Request timeout!
 Request timeout!
 Request timeout!
 Request timeout!
 Request timeout!
  -- 192.168.1.1 ping statistics ---
  5 packet(s) transmitted
  0 packet(s) received
  100.00% packet loss
 PC>
```

防御策略

在AR2绑定网关与MAC地址映射关系

```
1 <AR2>sys
2 [AR2]user-bind static ip-address 192.168.1.1 MAC-address 5489-9851-2565
3 Info: 1 static user-bind item(s) added.
```

在交换机SW3开启动态arp监测

将pc3的IP地址改为pc1后无法ping通

查看AR2的arp表

[AR2]dis arp IP ADDRESS _{Serial} Pos	MAC ADDRESS Ethernet 0/0/1		TYPE VL <mark>AN/CE</mark> VLAN	INTERFACE PVC	VPN-INSTANCE
192.168 ₄₁ 1.254 192.168.1.1 192.168.1.2	00e0-fc2b-48fc 192548979851-2565 1925489-98a2-34fc	1.226	I PO3 2D=60.3/24 2D=60.1	GE0/0/0 GE0/0/0 GE0/0/0	
192.168.1.3 192.168.2.254 192.168.2.1	5489-9816-45f9 00e0-fc2b-48fd 5489-9872-4d5b		D-0 I - D-0	GE0/0/0 GE0/0/1 GE0/0/1	
Total:6	Dynamic:4	 Static:0	Interface	:2	

任务总结

1.交换机可以只绑定IP与MAC地址关系,即执行如下操作

user-bind static ip-address 192.168.1.1 MAC-address 5489-9851-2565

- 2.为防范ARP攻击,假如管理员没有开启动态ARP监测(DAI)功能,在客户机上可以自己手动绑定网关IP与MAC地址关系以避免遭受攻击
- 3.ARP欺骗劫持不属于病毒木马,不能通过安装防病毒软件达到防御效果