TUTORIAL-4

DESIGN & ANALUSIS OF ALGORITHM.

Da Uma Vyshi Cot-spl-2 Roll no-37

Macter's Theorem

1)
$$T(n) = 3T(n/2) + n^2$$

c=logba

Compare n' + f(n)

$$n^2 = n^2$$

$$\int_{0}^{\infty} \frac{1}{n} \int_{0}^{\infty} \frac{1}{n} \int_{0}^{\infty}$$

$$\frac{\tau(n)=2\tau(n/2)+n(\log n)}{\sigma(n)=2\tau(n/2)+n(\log n)}$$

$$\frac{a=2}{c=\log_{2}^{2}}c=1$$

$$\frac{n(\log n)}{\sigma(n)}$$

g)
$$T(n) = 0.5T(n/2) + 1/n$$
.
 $c = \log^{1/2} = -1$
 $n^{-1} = n^{-1}$
 $\tau(n) = O(n^{-1} \log n)$

$$T(n) = 4T(n/2) + \log n.$$

$$\alpha = 4, b = 2$$

$$C = \log_2 4, C = 2$$

$$\log_2 n = n^2$$

$$T(n) = O(n^2)$$

(6)
$$T(n) = 2T(n/2) + n\log n$$
.
 $c = \log_2^2 = 1$
 $f(n) > n^2$
 $n\log n > n$
 $T(n) = O(n\log n)$

(8)
$$T(n) = 2T(n/4) + n$$

$$a = 2, b = 4$$

$$c = log y^{2}$$
 $c = 1/2$
 $f(n) = n^{c}$
 $n^{0.5} = n^{0.5}$
 $7(n) = O(n^{0.5} log n)$

(10)
$$T(n) = 16 T(n|y) + n!$$
 $a = 16$, $b = 4$
 $c = \log_4^{16} c = 2$.

 $n! n^2$

if $(n > 3) n! > n^2$
 $o(n!)$

if $(n \neq 3) n^2 > n!$
 $o(n^2)$

$$a=\sqrt{n}$$
, $b=2$

$$c=\log_2 n^{1/2}$$

(3)
$$T(n) = 3T(n/2) + n$$

 $a = 3$, $b = 2$
 $c = log_2^3 = 1.5$

$$a = 4, b = 2$$
 $c = \log_2^2 = 2$

$$T(n) = O(n^2)$$

$$r(n) = n$$
.

$$a=7$$
, $b=3$
 $1=\log 3$
 $1=1.77$
 $1=\log 3$

(22)
$$T(n) = T(n/2) + n(2 - Cosn)$$
.
 $log'_2 = 0$
 $f(n) > n^c$
 $n(2 - Cosn) > n^o$
 $T(n) = O(n(2 - Cosn))$