#EngineeringPlus Online Course Series

Artificial Intelligence

Course Instructor

Roneeta Purkayastha
Assistant Professor
Computer Science and Engineering
roneeta.purkayastha@adamasuniversity.ac.in

Module: 01 Lecture:

SCHOOL OF ENGINEERING & TECHNOLOGY | ADAMAS UNIVERSITY | KOLKATA

Index

- A* algorithm
- Heuristic function f
- Problem
- Hill climbing vs A* search

The A* algorithm

- The best first search is implemented by an algorithm known as A* algorithm.
- The algorithm searches a directed graph in which each node represents a point in the problem space.
- Each node will contain a description of the problem state it represents and it will have links to its parent nodes and successor nodes.
- In addition it will also indicate how best it is for the search process. A* algorithm uses have been generated, heuristic functions applied to them, but successors not generated.
- The list CLOSED contains nodes which have been examined, i.e., their successors generated.

Heuristic function f

- A heuristic function f estimates the merits of each generated node.
- This function f has two components g and h.
- the function g gives the cost of getting from the initial state to the current node.
- The function h is an estimate of the addition cost of getting from current node to a goal state.
- The function **f** (=**g**+**h**) gives the cost of getting from the initial state to a goal state via the current node.
- Whenever the heuristic function satisfies certain conditions, A* search is both complete and optimal.

Problem

- Use f(N)=g(N)+h(N)
- f(a)=0+14=14
- A->b or a->c
- f(b)=4+12=16 and f(c)=3+11=14
- 14<16
- Expand c, either c->d or c->e
- f(d)=3+7+6=16 and f(e)=3+10+4=17
- 16<17
- Expand either b or d. Let us choose b.
- Either b->e or b->f
- f(e)=4+12+4=20 and f(f)=4+5+11=20
- 20>16
- Expand d, d->e
- f(e)=3+7+2+4=16
- Expand e. e->z
- f(z)=3+7+2+5+0=17
- Path is a-c-d-e-z, cost=17

Admissible A*

- The heuristic function h(N) is called admissible if h(n) is never larger than h*(n), namely h(n) is always less than or equal to true cheapest cost from n to the goal.
- A* is admissible if it uses an admissible heuristic and h(goal)=0
- If the heuristic function h always underestimates the true cost (h(n) is smaller than h*(n)), then A* is guaranteed to find an optimal solution.

Problem

 Perform the A* Algorithm on the following figure. Explicitly write down the queue at each step.

Hill climbing v/s best first search

	Pros	Cons
Hill	+ It needs very little memory	- It can get stuck in the local optima.
Climbing	+ It is simple and often gives us a	- Plateaus can exist.
	pretty good solution.	- Ridges can exist.
	+ In a convex [★] search space, it al-	
	ways finds the optimal answer.	
Best First	+ From the set of possible states, it	- It requires more memory.
Search	chooses the best one.	- It can get stuck in loops.

References

Artificial Intelligence, Russell & Norvig, Pearson

Web Resources

https://ai-master.gitbooks.io/heuristic-search/content/properties-of-greedy-best-first-search.html