



### **Electronics and Communications Department**

# Analog Electronics

#### <u>Lab 5</u>

# **Differential Amplifier**

| Name    | عبدالرحمن علي موسى علي |
|---------|------------------------|
| Section | 4                      |
| Date    | 9/5/2023               |

# • Part I (DC measurements)

from the circuit shown in the figure.



 we get the DC measurements as shown in the table below.

### -Assume $V_T$ =26mV

| $I_{C1}$ | I <sub>E1</sub> | $I_{B1}$ | β   | $r_e = \frac{V_T}{I_E}$ | $g_m = \frac{I_C}{V_T}$ |
|----------|-----------------|----------|-----|-------------------------|-------------------------|
| 0.688mA  | 0.69mA          | 2.27µA   | 303 | 37.6Ω                   | 26.4mA/V                |

### • Part II (AC)

❖ The circuit after connecting 2 AC sources.



$$r_{\pi} = \frac{V_T}{I_B} = 11.45 \text{ K}\Omega$$
 ,  $r_{ie} = \frac{R_B + r_{\pi}}{1 + \beta} + r_e = 108.16 \Omega$ 

$$A_{v_{dm}} = \frac{-R_C}{r_{ie}} = -9.24 \text{ V/V}$$
 ,  $A_{v_{cm}} = \frac{-R_C}{2R_E} = -0.05 \text{ V/V}$ 

CMRR=
$$\frac{A_{v_{dm}}}{A_{v_{cm}}}$$
 = 184.8 = 45.3 dB

- > Now we will see the three modes of the Differential Amplifier:
  - -Assume V1 at 200mV in the three cases.
  - a) Double input mode by putting V2 at 100mV.



We get 
$$V_{o1}$$
= 575mV

, 
$$V_{o2} = 550 \text{mV}$$

b) Single input mode by deleting V2 source and connecting R2 to the ground.



We get 
$$V_{o1}$$
= 700mV

$$V_{o2} = 675 \text{mV}$$

c) Common input mode by connecting R2 to V1 (the same source for 2 input).



We get 
$$V_{o1}$$
= 12mV ,  $V_{o2}$  = 12mV

| <i>V</i> <sub>1</sub> | <i>V</i> <sub>2</sub> | V <sub>o1</sub> | V <sub>o2</sub> | $A_{V} = \frac{V_{o1} - V_{o2}}{V_{1} - V_{2}}$       |
|-----------------------|-----------------------|-----------------|-----------------|-------------------------------------------------------|
| 200mV                 | 100mV                 | 575mV           | 550mV           | $A_{v_{dm}} = \frac{575 - (-550)}{200 - 100} = 11.25$ |
| 200mV                 | 0                     | 700mV           | 675mV           | $A_{v_{dm}} = \frac{700 - (-675)}{200 - 0} = 6.875$   |
| 200mV                 | 200mV                 | 0               | 0               | $A_{v_{cm}}=0$                                        |