

Demystifying Black-box Models with Symbolic Metamodels

Ahmed M. Alaa Mihaela van der Schaar

Demystifying ANY Black-box Model

- Our focus: Black-box machine learning models with small to moderate number of features used in applications where the physical interpretation of features is important.
- Key Example: ML models for medical risk prediction...
 - ➤ Need a transparent risk equation describing the model for approval in practice guidelines.
 - ➤ Need to understand what the model discovered: feature importance, instance-wise feature importance, feature interactions, model non-linearity, etc.

Symbolic Metamodeling

- A symbolic metamodel takes as an input a trained machine learning model and outputs a transparent mathematical equation describing the model's prediction surface.
- Metamodeling needs only <u>query access</u> to the black-box model.

Symbolic Metamodeling

The symbolic metamodel problem formulation

Model space

e.g., for neural networks: space of all uninterpretable composite functions with given activation

Metamodel space

Combination of simple functions (polynomials, closed-form or analytic expressions)

Symbolic Metamodeling

The symbolic metamodel problem formulation

Metamodel optimization problem

$$g^* = \arg\min_{g \in \mathcal{G}} \ell(g, f)$$

Metamodeling loss

$$\ell(g, f) = \|f - g\|_2^2 = \int_{\mathcal{X}} (g(\mathbf{x}) - f(\mathbf{x}))^2 d\mathbf{x}$$

Metamodeling via Meijer-G functions

- Parameterize the metamodeling space using two steps
 - 1 Decompose the metamodel into univariate functions

$$g(\mathbf{x}) = g(x_1, \dots, x_n) = \sum_{i=0}^{r} g_i^{out} \left(\sum_{j=1}^{d} g_{ij}^{in}(x_j) \right)$$

2 - Model basis functions via Meijer-G functions

$$G_{p,q}^{m,n}\left(\begin{smallmatrix} a_{1},...,a_{p} \\ b_{1},...,b_{q} \end{smallmatrix} \middle| x\right) = \frac{1}{2\pi i} \int_{\mathcal{L}} \frac{\prod_{j=1}^{m} \Gamma(b_{j}-s) \prod_{j=1}^{n} \Gamma(1-a_{j}+s)}{\prod_{j=m+1}^{q} \Gamma(1-b_{j}+s) \prod_{j=n+1}^{p} \Gamma(a_{j}+s)} x^{s} ds$$

What are Meijer-G functions?

 A univariate special function given by the following line integral in the complex plane.

$$G_{p,q}^{m,n} \left(\begin{smallmatrix} a_1, \dots, a_p \\ b_1, \dots, b_q \end{smallmatrix} \middle| x \right) = \frac{1}{2\pi i} \int_{\mathcal{L}} \frac{\prod_{j=1}^m \Gamma(b_j - s) \prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1 - b_j + s) \prod_{j=n+1}^p \Gamma(a_j + s)} \ x^s \, ds$$

 Reduces to almost all known basic functions for different selections of the poles and zeros.

G-function	Equivalent function	G-function	Equivalent function
$G_{0,1}^{1,0}\left(\begin{smallmatrix} -\\ 0 \end{smallmatrix}\middle -x\right)$	e^x	$G_{2,2}^{1,2} \left(\frac{\frac{1}{2},1}{\frac{1}{2},0} \middle x^2 \right)$	$2\arctan(x)$
$G_{2,2}^{1,2}\left({}_{1,0}^{1,1}\left x\right. \right)$	$\log(1+x)$	$G_{1,2}^{2,0}\left(\begin{smallmatrix}1\\\alpha,0\end{smallmatrix}\middle x\right)$	$\Gamma(\alpha,x)$
$G_{0,2}^{1,0} \left({ - \atop 0, {1 \over 2}} \left { x^2 \over 4} \right. \right)$	$\frac{1}{\sqrt{\pi}}\cos(x)$	$G_{1,2}^{2,0} \left(\begin{smallmatrix} 1 \\ 0, \frac{1}{2} \end{smallmatrix} \middle x^2 \right)$	$\sqrt{\pi}\operatorname{erfc}(x)$
$G_{0,2}^{1,0}\left(egin{array}{c} - rac{1}{2},0 \ rac{1}{4} \end{array} ight)$	$\frac{1}{\sqrt{\pi}}\sin(x)$	$ G_{0,2}^{1,0} \left(\left. \begin{array}{c} - \\ \frac{a}{2}, \frac{-a}{2} \end{array} \right \frac{x^2}{4} \right) $	$J_a(x)$

Advantages

- This means that we can learn symbolic equations by tuning realvalued parameters using gradient descent!
- Example: Tuning symbolic expressions using 2 parameters a & b

$$\widehat{f}(x;a,b) = G_{2,2}^{1,2} \left(\begin{smallmatrix} a,a \\ a,b \end{smallmatrix} \middle| x \right)$$

Connection to related works

 Can reduce to different forms of model explanation by analytic derivations of the symbolic expression.

Derivative: instance-wise feature importance (INVASE, L2X, SHAP, DeepLIFT)

$$g(\mathbf{x}) \approx g(\mathbf{x}_0) + (x_1 - x_{0,1}) \cdot g_{x_1}(\mathbf{x}_0) - x_{0,2} \cdot x_1 \cdot g_{x_1 x_2}(\mathbf{x}_0) + \frac{1}{2} (x_1 - x_{0,1})^2 g_{x_1 x_1}(\mathbf{x}_0) + (x_2 - x_{0,2}) \cdot g_{x_2}(\mathbf{x}_0) - x_{0,1} \cdot x_2 \cdot g_{x_1 x_2}(\mathbf{x}_0) + \frac{1}{2} (x_2 - x_{0,2})^2 g_{x_2 x_2}(\mathbf{x}_0) + x_1 \cdot x_2 \cdot g_{x_1 x_2}(\mathbf{x}_0),$$

Interaction terms: feature interactions (GAM2)

Metamodeling provides symbolic equations for instance-wise feature importance!

Experiments

 Synthetic experiments: Can recover richer symbolic expressions compared to existing symbolic regression methods based on genetic programming

	$f_1(x) = e^{-3x}$	$f_2(x)=rac{x}{(x+1)^2}$	$f_3(x) = \sin(x)$	$f_4(x)=J_0(10\sqrt{x})$
\mathbf{SM}^p	$-x^3 + \frac{5}{2}(x^2 - x) + 1$	$\frac{x^3}{3} - \frac{4x^2}{5} + \frac{2x}{3}$	$\frac{-1}{4} x^2 + x$	$-7(x^2-x)-1.4$
	R^2 : 0.995	R^2 : 0.985	$R^2: 0.999$	$R^2: -4.75$
\mathbf{SM}^c	$x^{4 \times 10^{-6}} e^{-2.99x}$	$x(x+1)^{-2}$	$1.4x^{1.12}$	$I_{0.0003} \left(10 e^{\frac{j\pi}{2}} \sqrt{x} \right)$
	R^2 : 0.999	R^2 : 0.999	$R^2: 0.999$	$R^2: 0.999$
SR	$x^2 - 1.9x + 0.9$	$\frac{0.7x}{x^2 + 0.9x + 0.75}$	$-0.17x^2 + x + 0.016$	$-x\left(x-0.773\right)$
	R^2 : 0.970	$R^2 \ 0.981$	$R^2: 0.998$	$R^2: 0.116$

- SMp = meta-modeling restricted to polynomials
- SMc = meta-modeling restricted to closed-form expressions
- SR= symbolic regression

Experiments

 Instance-wise feature importance: 3 standard synthetic datasets with different levels of complexity for which true feature importance is known.

 Symbolic metamodeling performs competitively compared to methods tailored for feature importance

Experiments

- Medical applications: debugs the discrepancies in assigning feature importance in machine learning models and existing medical scores.
- Medical score ignores interactions and hence does not correctly quantify the importance of individual features.

