

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67137

I. DISPOSICIONES GENERALES

MINISTERIO DE FOMENTO

9511 Orden FOM/1635/2013, de 10 de septiembre, por la que se actualiza el Documento Básico DB-HE «Ahorro de Energía», del Código Técnico de la Edificación, aprobado por Real Decreto 314/2006, de 17 de marzo.

Constituyendo la edificación, tanto en España como en Europa, un importante consumidor de energía, el control de su consumo de energía y la mayor utilización de la energía procedente de fuentes renovables, junto con el ahorro energético y una mayor eficiencia energética, constituyen parte importante de las medidas necesarias para cumplir tanto los objetivos nacionales como los compromisos comunitarios, tales como el paquete de medidas sobre energía y cambio climático, que configuran el denominado objetivo 20-20-20. Además, estas medidas sirven para disminuir nuestra dependencia energética así como para reducir las emisiones de gases de efecto invernadero, en una aproximación al cumplimiento del Protocolo de Kioto de la Convención Marco de las Naciones Unidas sobre el Cambio Climático.

Apuntando ya en este sentido, la Ley 38/1999, de 5 de noviembre, de Ordenación de la Edificación (LOE), estableció entre sus requisitos básicos de la edificación, el que los edificios se proyecten de tal forma que no se deteriore el medio ambiente y de que se consiga un uso racional de la energía necesaria para la utilización del edificio, mediante el ahorro de energía y el aislamiento térmico.

Posteriormente, mediante el Real Decreto 314/2006, de 17 de marzo, se aprobó el Código Técnico de la Edificación (CTE) previsto en esta ley, que fue definido como el marco normativo de las exigencias básicas de calidad de los edificios y de sus instalaciones, que permiten verificar el cumplimiento de tales requisitos básicos, entre los cuales figura el de ahorro de energía. Esta ley obliga, además, a que el Código se actualice periódicamente conforme a la evolución de la técnica y a la demanda de la sociedad. Así quedó previsto en el citado real decreto, habilitando en su disposición final tercera a la Ministra de Fomento para que apruebe, mediante orden ministerial, las modificaciones de los Documentos Básicos del CTE que sean necesarias.

Por otro lado, mediante el citado Real Decreto 314/2006, de 17 de marzo se consideraron transpuestas al ordenamiento jurídico español las exigencias relativas a los requisitos de eficiencia energética de los edificios, de la Directiva 2002/91/CE del Parlamento Europeo y del Consejo, de 16 de diciembre de 2002, donde se establece asimismo, la obligación de revisar periódicamente tales requisitos y actualizarlos, en caso necesario, con el fin de adaptarlos a los avances técnicos del sector de la construcción.

Asimismo, la Directiva 2009/28/CE del Parlamento Europeo y del Consejo de 23 de abril de 2009 relativa al fomento del uso de energía procedente de fuentes renovables, establece la obligatoriedad de exigir en estas normas y códigos de construcción o en cualquier forma con efectos equivalentes, si procede, el uso de niveles mínimos de energía procedente de fuentes renovables en los edificios nuevos y en los ya existentes que sean objeto de una renovación importante.

Con posterioridad, la Directiva 2010/31/UE del Parlamento Europeo y del Consejo, de 19 de mayo de 2010, relativa a la eficiencia energética de los edificios, ha modificado y refundido la Directiva 2002/91/CE del Parlamento Europeo y del Consejo, de 16 de diciembre de 2002, circunstancia que hace necesario transponer de nuevo al ordenamiento jurídico español las modificaciones que introduce con respecto a la anterior.

Considerando todo lo anterior, mediante esta disposición se actualiza el Documento Básico del CTE DB-HE relativo al ahorro energético y se transpone parcialmente al ordenamiento jurídico español, la Directiva 2010/31/UE del Parlamento Europeo y del Consejo, de 19 de mayo de 2010, en lo relativo a los requisitos de eficiencia energética de

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67138

los edificios, establecidos en sus artículos 3, 4, 5, 6 y 7, así como la Directiva 2009/28/CE del Parlamento Europeo y del Consejo de 23 de abril de 2009, en lo relativo a la exigencia de niveles mínimos de energía procedente de fuentes renovables en los edificios, establecida en su artículo 13.

La nueva directiva 2010/31/UE establece, además de la obligatoriedad de fijar unos requisitos mínimos de eficiencia energética de los edificios o partes de éste, con el fin de alcanzar niveles óptimos de rentabilidad, la obligatoriedad de que antes del 31 de diciembre de 2020, todos los nuevos edificios tengan un consumo de energía casi nulo, y que antes de que termine el 2018, los edificios nuevos que estén ocupados y sean propiedad de autoridades públicas sean igualmente edificios de consumo de energía casi nulo. Para ello será necesario que antes se establezca una definición de ámbito nacional del concepto «edificio de consumo de energía casi nulo» determinándose el correspondiente nivel de eficiencia energética así como el porcentaje de la energía requerida que deberá estar cubierta por energía procedente de fuentes renovables.

En esta dirección, la actualización del Documento Básico de Ahorro de energía, DB-HE, que se aprueba mediante esta disposición y las exigencias que en el mismo se establecen, constituye la primera fase de aproximación hacia ese objetivo de conseguir «edificios de consumo de energía casi nulo» antes de las fechas citadas, que deberá continuarse en un corto plazo con nuevas exigencias más estrictas, que se habrán de aprobarse de forma reglamentaria antes de que se alcancen las citadas fechas.

Esta disposición ha sido sometida al procedimiento de información en materia de normas y reglamentaciones técnicas y de reglamentos relativos a los servicios de la sociedad de la información, previsto en la Directiva 98/34/CE del Parlamento Europeo y del Consejo de 22 de junio, modificada por la Directiva 98/48/CE de 20 de julio, así como en el Real Decreto 1337/1999, de 31 de julio, que incorpora estas Directivas al ordenamiento jurídico español.

En la tramitación de esta disposición se han cumplido los trámites establecidos en la Ley 50/1997, de 27 de noviembre, del Gobierno. Asimismo, se ha sometido a informe de los miembros de la Comisión del Código Técnico de la Edificación, como parte del Consejo para la Sostenibilidad, Innovación y Calidad de la Edificación creado mediante el Real Decreto 315/2006, de 17 de marzo.

Esta orden ministerial se dicta al amparo de la habilitación conferida a la Ministra de Fomento por la disposición final tercera del Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación, para que apruebe, mediante orden ministerial, las modificaciones y revisiones periódicas que sean necesarias de los Documentos Básicos del Código Técnico de la Edificación.

En su virtud, de acuerdo con el Consejo de Estado, dispongo:

Artículo único. Actualización del Documento Básico DB HE «Ahorro de energía» del Código Técnico de la Edificación, aprobado por Real Decreto 314/2006, de 17 de marzo.

El Documento Básico DB HE «Ahorro de energía» de la Parte II del Código Técnico de la Edificación, aprobado mediante el Real Decreto 314/2006, de 17 de marzo, se actualiza, sustituyéndolo por el que se incluye como anejo a esta orden.

Disposición transitoria primera. Edificaciones a las que no será de aplicación lo previsto en esta disposición.

Las actualizaciones del Código Técnico de la Edificación aprobadas por esta disposición no serán de aplicación a las obras de nueva construcción y a las intervenciones en edificios existentes que tengan solicitada la licencia municipal de obras a la entrada en vigor de esta disposición.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67139

Dichas obras deberán comenzar dentro del plazo máximo de eficacia de dicha licencia, conforme a su normativa reguladora, y, en su defecto, en el plazo de nueve meses contado desde la fecha de otorgamiento de la referida licencia. En caso contrario, los proyectos deberán adaptarse a las nuevas exigencias del Código Técnico de la Edificación que se aprueban mediante esta disposición.

Disposición transitoria segunda. Edificaciones a las que será de aplicación potestativa lo previsto en esta disposición.

Las modificaciones del Código Técnico de la Edificación aprobadas por esta disposición serán de aplicación potestativa a las obras de nueva construcción y a intervenciones en edificios existentes para las que se solicite licencia municipal de obras en el plazo de seis meses desde la entrada en vigor de la presente disposición.

Dichas obras deberán comenzar dentro del plazo máximo de eficacia de dicha licencia, conforme a su normativa reguladora, y, en su defecto, en el plazo de nueve meses contado desde la fecha de otorgamiento de la referida licencia. En caso contrario, los proyectos deberán adaptarse a las nuevas exigencias del Código Técnico de la Edificación que se aprueban mediante esta disposición.

Disposición transitoria tercera. Edificaciones a las que será de aplicación obligatoria lo previsto en esta disposición.

Las modificaciones del Código Técnico de la Edificación aprobadas por esta disposición serán de aplicación obligatoria a las obras de nueva construcción y a las intervenciones en edificios existentes para las que se solicite licencia municipal de obras una vez transcurrido el plazo de seis meses desde la entrada en vigor de la presente disposición.

Disposición final primera. Título competencial.

Esta orden tiene carácter básico y se dicta al amparo de las competencias que se atribuyen al Estado en los artículos 149.1.16.ª, 23.ª y 25.ª de la Constitución Española en materia de bases y coordinación general de la sanidad, protección del medio ambiente y bases del régimen minero y energético, respectivamente.

Disposición final segunda. Entrada en vigor.

Esta orden entrará en vigor el día siguiente al de su publicación en el «Boletín Oficial de Estado».

Madrid, 10 de septiembre de 2013.-La Ministra de Fomento, Ana María Pastor Julián.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67140

ANEJO

Documento Básico HE

Ahorro de energía

HE 0 Limitación del consumo energétic	HE 0	Limitación	del	consumo	energétic
---------------------------------------	------	------------	-----	---------	-----------

- HE 1 Limitación de la demanda energética
- HE 2 Rendimiento de las instalaciones térmicas
- HE 3 Eficiencia energética de las instalaciones de iluminación
- HE 4 Contribución solar mínima de agua caliente sanitaria
- HE 5 Contribución fotovoltaica mínima de energía eléctrica

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67141

Documento Básico HE Ahorro de Energía

Introducción

I Objeto

Este Documento Básico (DB) tiene por objeto establecer reglas y procedimientos que permiten cumplir el requisito básico de ahorro de energía. Las secciones de este DB se corresponden con las exigencias básicas HE 1 a HE 5, y la sección HE 0 que se relaciona con varias de las anteriores. La correcta aplicación de cada sección supone el cumplimiento de la exigencia básica correspondiente. La correcta aplicación del conjunto del DB supone que se satisface el requisito básico "Ahorro de energía".

Tanto el objetivo del requisito básico "Ahorro de energía", como las exigencias básicas se establecen el artículo 15 de la Parte I de este CTE y son los siguientes:

Artículo 15. Exigencias básicas de ahorro de energía (HE)

- 1. El objetivo del requisito básico "Ahorro de energía" consiste en conseguir un uso racional de la energía necesaria para la utilización de los edificios, reduciendo a límites sostenibles su consumo y conseguir asimismo que una parte de este consumo proceda de fuentes de energía renovable, como consecuencia de las características de su proyecto, construcción, uso y mantenimiento.
- 2. Para satisfacer este objetivo, los *edificios* se proyectarán, construirán, utilizarán y mantendrán de forma que se cumplan las exigencias básicas que se establecen en los apartados siguientes.
- 3. El Documento Básico "DB HE Ahorro de energía" especifica parámetros objetivos y procedimientos cuyo cumplimiento asegura la satisfacción de las exigencias básicas y la superación de los niveles mínimos de calidad propios del requisito básico de ahorro de energía.

15.1 Exigencia básica HE 1: Limitación de la demanda energética

Los edificios dispondrán de una envolvente de características tales que limite adecuadamente la demanda energética necesaria para alcanzar el bienestar térmico en función del clima de la localidad, del uso del edificio y del régimen de verano y de invierno, así como por sus características de aislamiento e inercia, permeabilidad al aire y exposición a la radiación solar, reduciendo el riesgo de aparición de humedades de condensación superficiales e intersticiales que puedan perjudicar sus características y tratando adecuadamente los puentes térmicos para limitar las pérdidas o ganancias de calor y evitar problemas higrotérmicos en los mismos.

15.2 Exigencia básica HE 2: Rendimiento de las instalaciones térmicas

Los edificios dispondrán de instalaciones térmicas apropiadas destinadas a proporcionar el bienestar térmico de sus ocupantes. Esta exigencia se desarrolla actualmente en el vigente Reglamento de Instalaciones Térmicas en los Edificios, RITE, y su aplicación quedará definida en el proyecto del edificio.

15.3 Exigencia básica HE 3: Eficiencia energética de las instalaciones de iluminación

Los *edificios* dispondrán de instalaciones de iluminación adecuadas a las necesidades de sus *usuarios* y a la vez eficaces energéticamente disponiendo de un sistema de control que permita ajustar el encendido a la ocupación real de la zona, así como de un sistema de regulación que optimice el aprovechamiento de la luz natural, en las zonas que reúnan unas determinadas condiciones.

15.4 Exigencia básica HE 4: Contribución solar mínima de agua caliente sanitaria

En los edificios, con previsión de demanda de agua caliente sanitaria o de climatización de piscina cubierta, en los que así se establezca en este CTE, una parte de las necesidades energéticas térmicas derivadas de esa demanda se cubrirá mediante la incorporación en los mismos de sistemas de captación, almacenamiento y utilización de energía solar de baja temperatura, adecuada a la radiación solar global de su emplazamiento y a la demanda de agua caliente del edificio o de la piscina. Los valores derivados de esta exigencia básica tendrán la consideración de mínimos, sin perjuicio de

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67142

Documento Básico HE Ahorro de Energía

valores que puedan ser establecidos por las administraciones competentes y que contribuyan a la sostenibilidad, atendiendo a las características propias de su localización y ámbito territorial.

15.5. Exigencia básica HE 5: Contribución fotovoltaica mínima de energía eléctrica

En los edificios que así se establezca en este CTE se incorporarán sistemas de captación y transformación de energía solar en energía eléctrica por procedimientos fotovoltaicos para uso propio o suministro a la red. Los valores derivados de esta exigencia básica tendrán la consideración de mínimos, sin perjuicio de valores más estrictos que puedan ser establecidos por las administraciones competentes y que contribuyan a la sostenibilidad, atendiendo a las características propias de su localización y ámbito territorial.

Il Ámbito de aplicación

El ámbito de aplicación en este DB se especifica, para cada sección de las que se compone el mismo, en sus respectivos apartados.

El contenido de este DB se refiere únicamente al requisito básico "Ahorro de energía". También deben cumplirse las exigencias básicas de los demás requisitos básicos, lo que se posibilita mediante la aplicación del DB correspondiente a cada uno de ellos.

III Criterios generales de aplicación

Pueden utilizarse otras soluciones diferentes a las contenidas en este DB, en cuyo caso deberá seguirse el procedimiento establecido en el artículo 5 de la Parte I del CTE, y deberá justificarse en el proyecto el cumplimiento del requisito básico y de las exigencias básicas.

El "Catálogo de Elementos Constructivos del CTE" aporta valores para determinadas características técnicas exigidas en este DB. Los valores que el Catálogo asigna a soluciones constructivas que no se fabrican industrialmente sino que se generan en la obra tienen garantía legal en cuanto a su aplicación en los proyectos, mientras que para los productos de construcción fabricados industrialmente dichos valores tienen únicamente carácter genérico y orientativo.

Las citas a una disposición reglamentaria en este DB se refieren a la versión vigente en cada momento. Las citas de normas se refieren a las versiones que se indican en el documento "Normas de aplicación", que tendrá el carácter de Documento Reconocido del CTE.

IV Criterios de aplicación en edificios existentes

Criterio 1: no empeoramiento

Salvo en los casos en los que en este DB se establezca un criterio distinto, las condiciones preexistentes de ahorro de energía que sean menos exigentes que las establecidas en este DB no se podrán reducir, y las que sean más exigentes únicamente podrán reducirse hasta el nivel establecido en el DB.

Criterio 2: flexibilidad

En los casos en los que no sea posible alcanzar el nivel de prestación establecido con carácter general en este DB, podrán adoptarse soluciones que permitan el mayor grado de adecuación posible, determinándose el mismo, siempre que se dé alguno de los siguientes motivos:

- a) en edificios con valor histórico o arquitectónico reconocido, cuando otras soluciones pudiesen alterar de manera inaceptable su carácter o aspecto, o;
- b) la aplicación de otras soluciones no suponga una mejora efectiva en las prestaciones relacionadas con el requisito básico de "Ahorro de energía", o;
- c) otras soluciones no sean técnica o económicamente viables, o;

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67143

Documento Básico HE Ahorro de Energía

 d) la intervención implique cambios sustanciales en otros elementos de la envolvente sobre los que no se fuera a actuar inicialmente.

En el proyecto debe justificarse el motivo de la aplicación de este criterio de flexibilidad. En la documentación final de la obra debe quedar constancia del nivel de prestación alcanzado y los condicionantes de uso y mantenimiento, si existen.

Criterio 3: reparación de daños

Los elementos de la parte existente no afectados por ninguna de las condiciones establecidas en este DB, podrán conservarse en su estado actual siempre que no presente, antes de la intervención, daños que hayan mermado de forma significativa sus prestaciones iniciales. Si el edificio presenta daños relacionados con el requisito básico de "Ahorro de energía", la intervención deberá contemplar medidas específicas para su resolución.

V Condiciones particulares para el cumplimiento del DB-HE

La aplicación de los procedimientos de este DB se llevará a cabo de acuerdo con las condiciones particulares que en el mismo se establecen y con las condiciones generales para el cumplimiento del CTE, las condiciones del proyecto, las condiciones en la ejecución de las obras y las condiciones del edificio que figuran en los artículos 5, 6, 7 y 8 respectivamente de la parte I del CTE.

VI Términos y definiciones

A efectos de aplicación de este DB, los términos que figuran en letra cursiva deben utilizarse conforme al significado y a las condiciones que se establecen para cada uno de ellos, bien en los apéndices A de cada una de las secciones de este DB o bien en el Anejo III de la Parte I de este CTE, cuando sean términos de uso común en el conjunto del Código.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67144

Documento Básico HE Ahorro de Energía

Índice

SECCIÓN HE 0 LIMITACIÓN DEL CONSUMO ENERGÉTICO

- 1 Ámbito de aplicación
- 2 Caracterización y cuantificación de la exigencia
 - 2.1 Caracterización de la exigencia
 - 2.2 Cuantificación de la exigencia
- 3 Verificación y justificación del cumplimiento de la exigencia
 - 3.1 Procedimiento de verificación
 - 3.2 Justificación del cumplimiento de la exigencia
- 4 Datos para el cálculo del consumo energético
 - 4.1 Demanda energética y condiciones operacionales
 - 4.2 Factores de conversión de energía final a energía primaria
 - 4.3 Sistemas de referencia
- 5 Procedimientos de cálculo del consumo energético
 - 5.1 Características de los procedimientos de cálculo del consumo energético

Apéndice A Terminología

SECCIÓN HE 1 LIMITACIÓN DE LA DEMANDA ENERGÉTICA

- 1 Ámbito de aplicación
- 2 Caracterización y cuantificación de la exigencia
 - 2.1 Caracterización de la exigencia
 - 2.2 Cuantificación de la exigencia
- 3 Verificación y justificación del cumplimiento de la exigencia
 - 3.1 Procedimiento de verificación
 - 3.2 Justificación del cumplimiento de la exigencia
- 4 Datos para el cálculo de la demanda
 - 4.1 Solicitaciones exteriores
 - 4.2 Solicitaciones interiores y condiciones operacionales
- 5 Procedimientos de cálculo de la demanda
 - 5.1 Características de los procedimientos de cálculo de la demanda
 - 5.2 Modelo del edificio
 - 5.3 Edificio de referencia
- 6 Productos de construcción
 - 6.1 Características exigibles a los productos
 - 6.2 Características exigibles a los cerramientos y particiones interiores de la envolvente térmica
 - 6.3 Control de recepción en obra de productos
- 7 Construcción
 - 7.1 Ejecución
 - 7.2 Control de la ejecución de la obra
 - 7.3 Control de la obra terminada

Apéndice A Terminología

Apéndice B Zonas climáticas

Apéndice C Perfiles de uso

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67145

Documento Básico HE Ahorro de Energía

Apéndice D Definición del edificio de referencia

Apéndice E Valores orientativos de los parámetros característicos de la envolvente térmica

SECCIÓN HE 2 RENDIMIENTO DE LAS INSTALACIONES TÉRMICAS

La exigencia básica HE 2 se desarrolla en el vigente Reglamento de instalaciones térmicas en los edificios (RITE).

SECCIÓN HE 3 EFICIENCIA ENERGÉTICA DE LAS INSTALACIONES DE ILUMINACIÓN

- 1 Ámbito de aplicación
- 2 Caracterización y cuantificación de las exigencias
 - 2.1 Valor de Eficiencia Energética de la Instalación
 - 2.2 Potencia instalada en edificio
 - 2.3 Sistemas de control y regulación
- 3 Verificación y justificación del cumplimiento de la exigencia
 - 3.2 Procedimiento de verificación
 - 3.3 Justificación del cumplimiento de la exigencia
- 4 Cálculo
 - 4.1 Datos previos
 - 4.2 Método de cálculo
- 5 Mantenimiento y conservación

Apéndice A Terminología

SECCIÓN HE 4 CONTRIBUCIÓN SOLAR MÍNIMA DE AGUA CALIENTE SANITARIA

- 1 Ámbito de aplicación
- 2 Caracterización y cuantificación de las exigencias
 - 2.1 Caracterización de la exigencia
 - 2.2 Cuantificación de la exigencia
- 3 Verificación y justificación del cumplimiento de la exigencia
 - 3.1 Procedimiento de verificación
 - 3.2 Justificación del cumplimiento de la exigencia
- 4 Cálculo
 - 4.1 Cálculo de la demanda
 - 4.2 Zonas climáticas
- 5 Mantenimiento
 - 5.1 Plan de vigilancia
 - 5.2 Plan de mantenimiento

Apéndice A Terminología

Apéndice B Temperatura media del agua fría

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67146

Documento Básico HE Ahorro de Energía

SECCIÓN HE 5 CONTRIBUCIÓN FOTOVOLTAICA MÍNIMA DE ENERGÍA ELÉCTRICA

- 1 Generalidades
 - 1.1 Ámbito de aplicación
- 2 Caracterización y cuantificación de la exigencia
 - 2.1 Caracterización de la exigencia
 - 2.2 Cuantificación de la exigencia
- 3 Verificación y justificación del cumplimiento de la exigencia
 - 3.1 Procedimiento de verificación
 - 3.2 Justificación del cumplimiento de la exigencia
- 4 Cálculo
 - 4.1 Zonas climáticas
- 5 Condiciones generales de la instalación
 - 5.1 Definición
 - 5.2 Criterios generales de cálculo
- 6 Mantenimiento
 - 6.1 Plan de vigilancia
 - 6.2 Plan de mantenimiento preventivo

Apéndice A Terminología

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67147

Documento Básico HE Ahorro de Energía

Sección HE 0 Limitación del consumo energético

1 Ámbito de aplicación

- 1 Esta Sección es de aplicación en:
 - a) edificios de nueva construcción y ampliaciones de edificios existentes;
 - edificaciones o partes de las mismas que, por sus características de utilización, estén abiertas de forma permanente y sean acondicionadas.
- 2 Se excluyen del ámbito de aplicación:
 - a) construcciones provisionales con un plazo previsto de utilización igual o inferior a dos años;
 - edificios industriales, de la defensa y agrícolas o partes de los mismos, en la parte destinada a talleres, procesos industriales, de la defensa y agrícolas no residenciales;
 - c) edificios aislados con una superficie útil total inferior a 50 m².

2 Caracterización y cuantificación de la exigencia

2.1 Caracterización de la exigencia

- 1 El consumo energético de los edificios se limita en función de la zona climática de su localidad de ubicación y del uso previsto.
- 2 El consumo energético para el acondicionamiento, en su caso, de aquellas edificaciones o partes de las mismas que, por sus características de utilización, estén abiertas de forma permanente, será satisfecho exclusivamente con energía procedente de fuentes renovables.

2.2 Cuantificación de la exigencia

2.2.1 Edificios nuevos o ampliaciones de edificios existentes de uso residencial privado

1 El *consumo energético* de *energía primaria* no renovable del edificio o la parte ampliada, en su caso, no debe superar el valor límite C_{ep,lim} obtenido mediante la siguiente expresión:

$$C_{ep,lim} = C_{ep,base} + F_{ep,sup} / S$$

donde.

C_{ep,lim} es el valor límite del *consumo energético* de *energía primaria* no renovable para los servicios de calefacción, refrigeración y ACS, expresada en kW·h/m²·año, considerada la superficie útil de los *espacios habitables*;

C_{ep,base} es el valor base del *consumo energético* de *energía primaria* no renovable, dependiente de la *zona climática* de invierno correspondiente a la ubicación del edificio, que toma los valores de la tabla 2.1;

F_{ep.sup} es el factor corrector por superficie del *consumo energético* de *energía primaria* no renovable, que toma los valores de la tabla 2.1;

S es la superficie útil de los espacios habitables del edificio, o la parte ampliada, en m².

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67148

Documento Básico HE Ahorro de Energía

Tabla 2.1 Valor base y factor corrector por superficie del consumo energético

	Zona climática de invierno									
	α	A *	В*	C*	D	E				
C _{ep,base} [kW·h/m²·año]	40	40	45	50	60	70				
F _{ep,sup}	1000	1000	1000	1500	3000	4000				

 $^{^{\}star}$ Los valores de $C_{\text{ep,base}}$ para las zonas climáticas de invierno A, B y C de Canarias, Baleares, Ceuta y Melilla se obtendrán multiplicando los valores de $C_{\text{ep,base}}$ de esta tabla por 1,2.

2.2.2 Edificios nuevos o ampliaciones de edificios existentes de otros usos

1 La calificación energética para el indicador consumo energético de energía primaria del edificio o la parte ampliada, en su caso, debe ser de una eficiencia igual o superior a la clase B, según el procedimiento básico para la certificación de la eficiencia energética de los edificios aprobado mediante el Real Decreto 235/2013, de 5 de abril.

3 Verificación y justificación del cumplimiento de la exigencia

3.1 Procedimiento de verificación

1 Para la correcta aplicación de esta Sección del DB HE deben verificarse las exigencias cuantificadas en el apartado 2 con los datos definidos en el apartado 4, utilizando un procedimiento de cálculo acorde a las especificaciones establecidas en el apartado 5;

3.2 Justificación del cumplimiento de la exigencia

- Para justificar que un edificio cumple la exigencia básica de limitación del consumo energético que se establece en esta sección del DB HE, los documentos de proyecto han de incluir la siguiente información:
 - a) definición de la zona climática de la localidad en la que se ubica el edificio, de acuerdo a la zonificación establecida en la sección HE1 de este DB;
 - b) procedimiento empleado para el cálculo de la demanda energética y el consumo energético;
 - c) demanda energética de los distintos servicios técnicos del edificio (calefacción, refrigeración, ACS y, en su caso, iluminación);
 - d) descripción y disposición de los sistemas empleados para satisfacer las necesidades de los distintos servicios técnicos del edificio;
 - e) rendimientos considerados para los distintos equipos de los servicios técnicos del edificio;
 - f) factores de conversión de energía final a energía primaria empleados;
 - g) para uso residencial privado, consumo de energía procedente de fuentes de energía no renovables:
 - h) en caso de edificios de uso distinto al residencial privado, calificación energética para el indicador de energía primaria.

4 Datos para el cálculo del consumo energético

4.1 Demanda energética y condiciones operacionales

1 El consumo energético de los servicios de calefacción y refrigeración se obtendrá considerando las condiciones operacionales, datos previos y procedimientos de cálculo de la demanda energética establecidos en la Sección HE1 de este Documento Básico.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67149

Documento Básico HE Ahorro de Energía

- 2 El consumo energético del servicio de agua caliente sanitaria (ACS) se obtendrá considerando la demanda energética resultante de la aplicación de la sección HE4 de este Documento Básico.
- 3 El consumo energético del servicio de iluminación se obtendrá considerando la eficiencia energética de la instalación resultante de la aplicación de la sección HE3 de este Documento Básico.

4.2 Factores de conversión de energía final a energía primaria

1 Los factores de conversión de energía final a energía primaria procedente de fuentes no renovables para cada vector energético, empleados para la justificación de las exigencias establecidas en este Documento Básico, serán los publicados oficialmente.

4.3 Sistemas de referencia

1 Cuando no se definan en proyecto equipos para un servicio de climatización se considerarán las eficiencias de los sistemas de referencia, que se indican en la tabla 2.2.

Tabla 2.2 Eficiencias de los sistemas de referencia

Tecnología	Vector energético	Rendimiento		
Producción de calor	Gas natural	0,9		
Producción de frío	Electricidad	2,0		

5 Procedimientos de cálculo del consumo energético

- 1 El objetivo de los procedimientos de cálculo es determinar el *consumo de energía* primaria procedente de fuentes de energía no renovables.
- 2 El procedimiento de cálculo debe permitir desglosar el consumo energético de energía final en función del vector energético utilizado (tipo de combustible o electricidad) para satisfacer la demanda energética de cada uno de los servicios técnicos (calefacción, refrigeración, ACS y, en su caso, iluminación).

5.1 Características de los procedimientos de cálculo del consumo energético

5.1.1 Características generales

- 1 Cualquier procedimiento de cálculo debe considerar, bien de forma detallada o bien de forma simplificada, los siguientes aspectos:
 - a) la demanda energética necesaria para los servicios de calefacción y refrigeración, según el procedimiento establecido en la sección HE1 de este Documento Básico;
 - b) la demanda energética necesaria para el servicio de agua caliente sanitaria;
 - en usos distintos al residencial privado, la demanda energética necesaria para el servicio de iluminación;
 - d) el dimensionado y los rendimientos de los equipos y sistemas de producción de frío y de calor, ACS e iluminación;
 - e) el empleo de distintas fuentes de energía, sean generadas in situ o remotamente;
 - f) los factores de conversión de energía final a energía primaria procedente de fuentes no renovables;
 - g) la contribución de energías renovables producidas in situ o en las proximidades de la parcela.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67150

Documento Básico HE Ahorro de Energía

Apéndice A Terminología

Calificación energética: letra que indica la clase de eficiencia energética para un indicador determinado (por ejemplo, consumo energético). La escala de calificación energética se construye en base al valor del indicador para el edificio de referencia, el valor del indicador para el edificio objeto y la dispersión del indicador para la población de referencia. En edificios nuevos la escala comprende, en orden de mayor a menor eficiencia, las calificaciones o clases A, B, C, D y E, extendiéndose hasta las calificaciones F y G para edificios existentes.

Consumo energético: es la energía necesaria para satisfacer la demanda energética de los servicios de calefacción, refrigeración, ACS y, en edificios de uso distinto al residencial privado, de iluminación, del edificio, teniendo en cuenta la eficiencia de los sistemas empleados. En el contexto de este documento, se expresa en términos de energía primaria y en unidades kW·h/m².año, considerada la superficie útil de los espacios habitables del edificio.

Demanda energética: energía útil necesaria que tendrían que proporcionar los sistemas técnicos para mantener en el interior del edificio unas condiciones definidas reglamentariamente. Se puede dividir en demanda energética de calefacción, de refrigeración, de agua caliente sanitaria (ACS) y de iluminación, y se expresa en kW·h/m².año, considerada la superficie útil de los espacios habitables del edificio.

Energía final: energía tal y como se utiliza en los puntos de consumo. Es la que compran los consumidores, en forma de electricidad, carburantes u otros combustibles usados de forma directa.

Energía primaria: energía suministrada al edificio procedente de fuentes renovables y no renovables, que no ha sufrido ningún proceso previo de conversión o transformación. Es la energía contenida en los combustibles y otras fuentes de energía e incluye la energía necesaria para generar la energía final consumida, incluyendo las pérdidas por su transporte hasta el edificio, almacenamiento, etc.

Energía primaria = Energía final + Pérdidas en transformación + Pérdidas en transporte

Energía procedente de fuentes renovables: energía procedente de fuentes renovables no fósiles, es decir, energía eólica, solar, aerotérmica, geotérmica, hidrotérmica y oceánica, hidráulica, biomasa, gases de vertedero, gases de plantas de depuración y biogás.

Espacio habitable: espacio formado por uno o varios *recintos habitables* contiguos con el mismo uso y condiciones térmicas equivalentes agrupados a efectos de cálculo de la *demanda energética*.

En función de su densidad de las fuentes internas, los espacios habitables se clasifican en espacios habitables de muy alta, alta, media o baja carga interna.

En función de la disponibilidad de sistemas de calefacción y/o refrigeración, los espacios habitables se clasifican en acondicionados o no acondicionados.

Recinto habitable: recinto interior destinado al uso de personas cuya densidad de ocupación y tiempo de estancia exigen unas condiciones acústicas, térmicas y de salubridad adecuadas. Se consideran *recintos habitables* los siguientes:

- a) habitaciones y estancias (dormitorios, comedores, bibliotecas, salones, etc.) en edificios residenciales;
- b) aulas, bibliotecas, despachos, en edificios de uso docente;
- c) quirófanos, habitaciones, salas de espera, en edificios de uso sanitario;
- d) oficinas, despachos; salas de reunión, en edificios de uso administrativo;
- e) cocinas, baños, aseos, pasillos y distribuidores, en edificios de cualquier uso;

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67151

Documento Básico HE Ahorro de Energía

- f) zonas comunes de circulación en el interior de los edificios;
- g) cualquier otro con un uso asimilable a los anteriores.

Recinto no habitable: recinto interior no destinado al uso permanente de personas o cuya ocupación, por ser ocasional o excepcional y por ser bajo el tiempo de estancia, sólo exige unas condiciones de salubridad adecuadas. En esta categoría se incluyen explícitamente como no habitables los garajes, trasteros, las cámaras técnicas y desvanes no acondicionados, y sus zonas comunes.

Zona climática: zona para la que se definen unas solicitaciones exteriores comunes a efectos de cálculo de la *demanda energética*. Se identifica mediante una letra, correspondiente a la severidad climática de invierno, y un número, correspondiente a la severidad climática de verano.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67152

Documento Básico HE Ahorro de Energía

Sección HE 1 Limitación de la demanda energética

1 Ámbito de aplicación

- 1 Esta Sección es de aplicación en:
 - a) edificios de nueva construcción;
 - b) intervenciones en edificios existentes:
 - ampliación: aquellas en las que se incrementa la superficie o el volumen construido;
 - reforma: cualquier trabajo u obra en un edificio existente distinto del que se lleve a cabo para el exclusivo mantenimiento del edificio;
 - cambio de uso.
- 2 Se excluyen del ámbito de aplicación:
 - a) los edificios históricos protegidos cuando así lo determine el órgano competente que deba dictaminar en materia de protección histórico-artística;
 - b) construcciones provisionales con un plazo previsto de utilización igual o inferior a dos años;
 - edificios industriales, de la defensa y agrícolas o partes de los mismos, en la parte destinada a talleres y procesos industriales, de la defensa y agrícolas no residenciales;
 - d) edificios aislados con una superficie útil total inferior a 50 m²;
 - e) las edificaciones o partes de las mismas que, por sus características de utilización, estén abiertas de forma permanente;
 - f) cambio del uso característico del edificio cuando este no suponga una modificación de su perfil de uso.

2 Caracterización y cuantificación de la exigencia

2.1 Caracterización de la exigencia

- 1 La demanda energética de los edificios se limita en función de la zona climática de la localidad en que se ubican y del uso previsto.
- 2 En edificios de uso residencial privado, las características de los elementos de la *envolvente térmica* deben ser tales que eviten las descompensaciones en la calidad térmica de los diferentes *espacios habitables*. Se limitará igualmente la transferencia de calor entre unidades de distinto uso, y entre las *unidades de uso* y las zonas comunes del edificio.
- 3 Se deben limitar los riesgos debidos a procesos que produzcan una merma significativa de las prestaciones térmicas o de la vida útil de los elementos que componen la envolvente térmica, tales como las condensaciones.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67153

Documento Básico HE Ahorro de Energía

2.2 Cuantificación de la exigencia

2.2.1 Edificios nuevos o ampliaciones de edificios existentes

2.2.1.1 Limitación de la demanda energética del edificio

2.2.1.1.1 Edificios de uso residencial privado

1 La demanda energética de calefacción del edificio o la parte ampliada, en su caso, no debe superar el valor límite D_{cal,lim} obtenido mediante la siguiente expresión:

$$D_{cal,lim} = D_{cal,base} + F_{cal,sup} / S$$

donde,

D_{cal,lim} es el valor límite de la *demanda energética* de calefacción, expresada en kW·h/m²·año, considerada la superficie útil de los *espacios habitables*;

D_{cal,base} es el valor base de la *demanda energética* de calefacción, para cada *zona climática* de invierno correspondiente al edificio, que toma los valores de la tabla 2.1;

F_{cal,sup} es el factor corrector por superficie de la *demanda energética* de calefacción, que toma los valores de la tabla 2.1;

S es la superficie útil de los espacios habitables del edificio, en m².

Tabla 2.1 Valor base y factor corrector por superficie de la demanda energética de calefacción

	Zona climática de invierno									
	α	Α	В	С	D	Е				
D _{cal,base} [kW·h/m²·año]	15	15	15	20	27	40				
F _{cal,sup}	0	0	0	1000	2000	3000				

2 La demanda energética de refrigeración del edificio o la parte ampliada, en su caso, no debe superar el valor límite D_{ref, lim} = 15 kW·h/m²·año para las zonas climáticas de verano 1, 2 y 3, o el valor límite D_{ref, lim} = 20 kW·h/m²·año para la zona climática de verano 4.

2.2.1.1.2 Edificios de otros usos

1 El porcentaje de ahorro de la demanda energética conjunta de calefacción y refrigeración, respecto al edificio de referencia del edificio o la parte ampliada, en su caso, debe ser igual o superior al establecido en la tabla 2.2.

Tabla 2.2 Porcentaje de ahorro mínimo de la demanda energética conjunta respecto al edificio de referencia para edificios de otros usos, en %

Zona	Carga de las fuentes internas								
climática de verano	Baja	Media	Alta	Muy alta					
1, 2	25%	25%	25%	10%					
3, 4	25%	20%	15%	0%*					

^{*} No debe superar la demanda límite del edificio de referencia

2 Los edificios que sean asimilables al uso residencial privado, debido a su uso continuado y baja carga de las fuentes internas, pueden justificar la limitación de la demanda energética mediante los criterios aplicables al uso residencial.

2.2.1.2 Limitación de descompensaciones en edificios de uso residencial privado

1 La transmitancia térmica y permeabilidad al aire de los huecos y la transmitancia térmica de las zonas opacas de muros, cubiertas y suelos, que formen parte de la envolvente térmica del edificio, no debe superar los valores establecidos en la tabla 2.3. De esta comprobación se excluyen los puentes térmicos.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67154

Documento Básico HE Ahorro de Energía

Tabla 2.3 Transmitancia térmica máxima y permeabilidad al aire de los elementos de la envolvente térmica

Dowlanding	Zona climática de invierno										
Parámetro	α	Α	В	С	D	E					
Transmitancia térmica de muros y elementos en contacto con el terreno ⁽¹⁾ [W/m²•K]	1,35	1,25	1,00	0,75	0,60	0,55					
Transmitancia térmica de cubiertas y suelos en contacto con el aire [W/m²•K]	1,20	0,80	0,65	0,50	0,40	0,35					
Transmitancia térmica de huecos ⁽²⁾ [W/m²•K]	5,70	5,70	4,20	3,10	2,70	2,50					
Permeabilidad al aire de huecos ⁽³⁾ [m ³ /h·m ²]	< 50	< 50	< 50	< 27	< 27	< 27					

⁽¹⁾ Para elementos en contacto con el terreno, el valor indicado se exige únicamente al primer metro de muro enterrado, o el primer metro del perímetro de suelo apoyado sobre el terreno hasta una profundidad de 0,50m.

- 2 Las soluciones constructivas diseñadas para reducir la demanda energética, tales como invernaderos adosados, muros parietodinámicos, muros Trombe, etc., cuyas prestaciones o comportamiento térmico no se describen adecuadamente mediante la transmitancia térmica, pueden superar los límites establecidos en la tabla 2.3.
- 3 La transmitancia térmica de medianerías y particiones interiores que delimiten las unidades de uso residencial de otras de distinto uso o de zonas comunes del edificio, no superará los valores de la tabla 2.4. Cuando las particiones interiores delimiten unidades de uso residencial entre sí no se superarán los valores de la tabla 2.5.

Tabla 2.4 Transmitancia térmica límite de particiones interiores, cuando delimiten unidades de distinto uso, zonas comunes, y medianerías, U en W/m²∙K

Tipo de elemento		Zona climática de invierno									
ripo de elemento	α	Α	В	С	D	E					
Particiones horizontales y verticales	1,35	1,25	1,10	0,95	0,85	0,70					

Tabla 2.5 Transmitancia térmica límite de particiones interiores, cuando delimiten unidades del mismo uso, U en W/m²•K

Tipo de elemento	Zona climática de invierno									
ripo de elemento	α	Α	В	С	D	Е				
Particiones horizontales	1,90	1,80	1,55	1,35	1,20	1,00				
Particiones verticales	1,40	1,40	1,20	1,20	1,20	1,00				

2.2.2 Intervenciones en edificios existentes

2.2.2.1 Limitación de la demanda energética del edificio

- 1 Cuando la intervención produzca modificaciones en las condiciones interiores o exteriores de un elemento de la envolvente térmica que supongan un incremento de la demanda energética del edificio, las características de este elemento se adecuarán a las establecidas en este Documento Básico.
- 2 En las obras de reforma en las que se renueve más del 25% de la superficie total de la envolvente térmica final del edificio y en las destinadas a un cambio de uso característico del edificio se limitará la demanda energética conjunta del edificio de manera que sea inferior a la del edificio de referencia.
- En las obras de reforma no consideradas en el caso anterior, los elementos de la *envolvente térmica* que se sustituyan, incorporen, o modifiquen sustancialmente, cumplirán las limitaciones establecidas en la tabla 2.3. Cuando se intervenga simultáneamente en varios elementos de la *envolvente térmica*, se podrán superar los valores de *transmitancia térmica* de dicha tabla si la *demanda energética* resultante fuera igual o inferior a la obtenida aplicando los valores de la tabla a los elementos afectados.

⁽²⁾ Se considera el comportamiento conjunto de vidrio y marco. Incluye lucernarios y claraboyas.

⁽³⁾ La permeabilidad de las carpinterías indicada es la medida con una sobrepresión de 100Pa.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67155

Documento Básico HE Ahorro de Energía

2.2.2.2 Limitación de descompensaciones en edificios de uso residencial privado

1 En edificios de uso residencial privado, la transmitancia térmica de las nuevas particiones interiores o aquellas que sean objeto de sustitución no superará los valores de la tabla 2.4 cuando estas delimiten las unidades de uso residencial privado de otras de distinto uso o de zonas comunes del edificio, y los de la tabla 2.5 cuando delimiten unidades de uso residencial privado entre sí.

2.2.3 Limitación de condensaciones

1 Tanto en edificaciones nuevas como en edificaciones existentes, en el caso de que se produzcan condensaciones intersticiales en la *envolvente térmica* del edificio, estas serán tales que no produzcan una merma significativa en sus prestaciones térmicas o supongan un riesgo de degradación o pérdida de su vida útil. Además, la máxima condensación acumulada en cada periodo anual no será superior a la cantidad de evaporación posible en el mismo periodo.

3 Verificación y justificación del cumplimiento de la exigencia

3.1 Procedimiento de verificación

- 1 Para la correcta aplicación de esta Sección del DB HE deben realizarse las siguientes verificaciones:
 - a) Verificación de las exigencias cuantificadas en el apartado 2 con los datos y solicitaciones definidos en el apartado 4, utilizando un procedimiento de cálculo acorde a las especificaciones establecidas en el apartado 5;
 - b) Cumplimiento de las condiciones relativas a los productos de construcción y sistemas técnicos expuestas en el apartado 6;
 - c) Cumplimiento de las condiciones de construcción y sistemas técnicos expuestas en el apartado
 7.

3.2 Justificación del cumplimiento de la exigencia

- 1 Para justificar el cumplimiento de la exigencia básica de limitación de la demanda energética que se establece en esta sección del DB HE, los documentos de proyecto han de incluir la siguiente información:
 - a) definición de la zona climática de la localidad en la que se ubica el edificio;
 - b) descripción geométrica, constructiva y de usos del edificio: orientación, definición de la envolvente térmica, otros elementos afectados por la comprobación de la limitación de descompensaciones en edificios de uso residencial privado, distribución y usos de los espacios, incluidas las propiedades higrotérmicas de los elementos;
 - c) perfil de uso y, en su caso, nivel de acondicionamiento de los espacios habitables;
 - d) procedimiento de cálculo de la demanda energética empleado para la verificación de la exigencia:
 - e) valores de la demanda energética y, en su caso, porcentaje de ahorro de la demanda energética respecto al edificio de referencia, necesario para la verificación de la exigencia;
 - f) características técnicas mínimas que deben reunir los productos que se incorporen a las obras y sean relevantes para el comportamiento energético del edificio.
- 2 Para justificar el cumplimiento de la exigencia básica de limitación de condensaciones intersticiales, los documentos de proyecto han de incluir su verificación.

4 Datos para el cálculo de la demanda

4.1 Solicitaciones exteriores

1 Se consideran solicitaciones exteriores las acciones del clima sobre el edificio con efecto sobre su comportamiento térmico, y por tanto, sobre su demanda energética.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67156

Documento Básico HE Ahorro de Energía

- 2 A efectos de cálculo, se establece un conjunto de *zonas climáticas* para las que se define un *clima de referencia*, que define las *solicitaciones exteriores* en términos de temperatura y radiación solar.
- 3 La zona climática de cada localidad, así como su clima de referencia, se determina a partir de los valores tabulados recogidos en el Apéndice B, o de documentos reconocidos elaborados por las Comunidades Autónomas.

4.2 Solicitaciones interiores y condiciones operacionales

- Se consideran solicitaciones interiores las cargas térmicas generadas en el interior del edificio debidas a los aportes de energía de los ocupantes, equipos e iluminación.
- 2 Las condiciones operacionales se definen por los siguientes parámetros, que se recogen en los perfiles de uso del apéndice C:
 - a) temperaturas de consigna de calefacción;
 - b) temperaturas de consigna de refrigeración;
 - c) carga interna debida a la ocupación;
 - d) carga interna debida a la iluminación;
 - e) carga interna debida a los equipos.
- 3 Los espacios habitables del edificio mantendrán, a efectos de cálculo de la demanda, las condiciones operacionales definidas en su perfil de uso, excluyéndose el cumplimiento de las condiciones a) y b), relativas a temperaturas de consigna en el caso de los espacios habitables no acondicionados.
- 4 Debe especificarse el nivel de ventilación de cálculo para los espacios habitables y no habitables, que ha de ser coherente con el derivado del cumplimiento de otras exigencias y las condiciones de proyecto.

5 Procedimientos de cálculo de la demanda

- El objetivo de los procedimientos de cálculo es determinar la demanda energética de calefacción y refrigeración necesaria para mantener el edificio por periodo de un año en las condiciones operacionales definidas en el apartado 4.2 cuando este se somete a las solicitaciones interiores y exteriores descritas en los apartados 4.1 y 4.2. Los procedimientos de cálculo podrán emplear simulación mediante un modelo térmico del edificio o métodos simplificados equivalentes.
- 2 El procedimiento de cálculo debe permitir obtener separadamente la *demanda energética* de calefacción y de refrigeración.

5.1 Características de los procedimientos de cálculo de la demanda

5.1.1 Características generales

- 1 Cualquier procedimiento de cálculo debe considerar, bien de forma detallada o bien de forma simplificada, los siguientes aspectos:
 - a) el diseño, emplazamiento y orientación del edificio;
 - b) la evolución hora a hora en régimen transitorio de los procesos térmicos;
 - c) el acoplamiento térmico entre zonas adyacentes del edificio a distintas temperaturas;
 - d) las solicitaciones interiores, solicitaciones exteriores y condiciones operacionales especificadas en los apartados 4.1 y 4.2, teniendo en cuenta la posibilidad de que los espacios se comporten en oscilación libre;
 - e) las ganancias y pérdidas de energía por conducción a través de la envolvente térmica del edificio, compuesta por los cerramientos opacos, los huecos y los puentes térmicos, con consideración de la inercia térmica de los materiales;
 - las ganancias y pérdidas producidas por la radiación solar al atravesar los elementos transparentes o semitransparentes y las relacionadas con el calentamiento de elementos opacos de la *envolvente térmica*, considerando las propiedades de los elementos, su orientación e inclinación y las sombras propias del edificio u otros obstáculos que puedan bloquear dicha radiación;

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67157

Documento Básico HE Ahorro de Energía

g) las ganancias y pérdidas de energía producidas por el intercambio de aire con el exterior debido a ventilación e infiltraciones teniendo en cuenta las exigencias de calidad del aire de los distintos espacios y las estrategias de control empleadas.

5.2 Modelo del edificio

- 1 El modelo del edificio debe estar compuesto por una serie de espacios conectados entre sí y con el ambiente exterior mediante los cerramientos, los huecos y los puentes térmicos. La zonificación del modelo puede diferir de la real siempre que refleje adecuadamente el comportamiento térmico del edificio.
- 2 Los espacios del edificio deben estar clasificados en espacios habitables y espacios no habitables. Los primeros se clasificarán además según su carga interna (baja, media, alta o muy alta), en su caso, y según su nivel de acondicionamiento (espacios acondicionados o espacios no acondicionados).

5.2.1 Envolvente térmica del edificio

- 1 La envolvente térmica del edificio está compuesta por todos los cerramientos que delimitan los espacios habitables con el aire exterior, el terreno u otro edificio, y por todas las particiones interiores que delimitan los espacios habitables con espacios no habitables en contacto con el ambiente exterior.
- 2 La envolvente térmica podrá incorporar, a criterio del proyectista, espacios no habitables adyacentes a espacios habitables.

5.2.2 Cerramientos opacos

- Deben definirse las características geométricas de los cerramientos de espacios habitables y no habitables, así como de particiones interiores, que estén en contacto con el aire o el terreno o se consideren adiabáticos a efectos de cálculo.
- 2 Deben definirse los parámetros de los cerramientos que describan adecuadamente sus prestaciones térmicas. Se podrá utilizar una descripción simplificada mediante agregación de capas paralelas y homogéneas que presente un comportamiento térmico equivalente.
- 3 Debe definirse el espesor, la densidad, la conductividad y el calor específico de las capas con *masa térmica* apreciable. En el caso de capas sin *masa térmica* significativa (cámaras de aire) se pueden describir sus propiedades a través de la resistencia total de la capa y su espesor.
- 4 Deben tenerse en cuenta las sombras que puedan arrojar los obstáculos remotos sobre los *cerramientos* exteriores del edificio.
- 5 Debe considerarse la permeabilidad al aire de los cerramientos opacos y el efecto de rejillas y aireadores, en su caso.

5.2.3 Huecos

- Deben considerarse las características geométricas de los huecos y el espacio al que pertenecen, al igual que las protecciones solares, sean fijas o móviles, y otros elementos que puedan producir sombras o disminuir la captación solar de los huecos.
- Para los huecos, es necesario definir la transmitancia térmica del vidrio y el marco, la superficie de ambos, el factor solar del vidrio y la absortividad de la cara exterior del marco. En el caso de puertas cuya superficie semitransparente sea inferior al 50% es necesario considerar exclusivamente la transmitancia térmica y, cuando sea preciso, la absortividad.
- 3 Debe considerarse la *permeabilidad al aire* de los *huecos* para el conjunto marco vidrio incluyendo el efecto de aireadores de ventilación en su caso.
- 4 Deben tenerse en cuenta las sombras que puedan arrojar los obstáculos de *fachada*, incluyendo retranqueos, voladizos, toldos, salientes laterales y cualquier otro elemento de control solar exterior que figure explícitamente en la memoria del proyecto y con efecto de sombra sobre los *huecos*.

5.2.4 Puentes térmicos

Deben considerarse los puentes térmicos lineales del edificio, caracterizados mediante su tipo, la transmitancia térmica lineal, obtenida en relación con los cerramientos contiguos, y su longitud. Debe especificarse el sistema dimensional utilizado cuando no se empleen dimensiones interiores o pueda dar lugar a dudas.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67158

Documento Básico HE Ahorro de Energía

5.3 Edificio de referencia

1 El edificio de referencia es un edificio obtenido a partir del edificio objeto, con su misma forma, tamaño, orientación, zonificación interior, uso de cada espacio, e iguales obstáculos remotos, y unas soluciones constructivas tipificadas, cuyos parámetros característicos se describen en el Apéndice D.

6 Productos de construcción

6.1 Características exigibles a los productos

- 1 Los edificios se caracterizan térmicamente a través de las propiedades higrotérmicas de los productos de construcción que componen su envolvente térmica.
- 2 Los productos para los cerramientos se definen mediante su conductividad térmica λ (W/m·K) y el factor de resistencia a la difusión del vapor de agua μ. En su caso, además se podrá definir la densidad ρ (kg/m³) y el calor específico c_p (J/kg·K).
- 3 Los *productos* para *huecos* (incluidas las puertas) se caracterizan mediante la *transmitancia térmica* U (W/m²·K) y el *factor solar* g⊥ para la parte semitransparente del hueco y por la *transmitancia térmica* U (W/m²·K) y la *absortividad* α para los marcos de huecos (puertas y ventanas) y lucernarios.
- 4 Las carpinterías de los *huecos* se caracterizan, además, por la resistencia a la permeabilidad al aire en m³/h·m² o bien su clase, según lo establecido en la norma UNE EN 12207.
- 5 Los valores de diseño de las propiedades citadas deben obtenerse de valores declarados por el fabricante para cada producto.
- 6 El pliego de condiciones del proyecto debe incluir las características higrotérmicas de los *productos* utilizados en la *envolvente térmica* del edificio. Deben incluirse en la memoria los cálculos justificativos de dichos valores y consignarse éstos en el pliego.
- 7 En todos los casos se utilizarán valores térmicos de diseño, los cuales se pueden calcular a partir de los valores térmicos declarados según la norma UNE EN ISO 10456. En general y salvo justificación, los valores de diseño serán los definidos para una temperatura de 10°C y un contenido de humedad correspondiente al equilibrio con un ambiente a 23°C y 50 % de humedad relativa.

6.2 Características exigibles a los cerramientos y particiones interiores de la envolvente térmica

- 1 Las características exigibles a los cerramientos y particiones interiores son las expresadas mediante los valores de sus transmitancias térmicas.
- 2 El cálculo de estos parámetros debe figurar en la memoria del proyecto. En el pliego de condiciones del proyecto se deben consignar los valores y características exigibles a los cerramientos y particiones interiores.

6.3 Control de recepción en obra de productos

- 1 En el pliego de condiciones del proyecto han de indicarse las condiciones particulares de control para la recepción de los productos que forman los *cerramientos* y *particiones interiores* de la *envolvente térmica*, incluyendo los ensayos necesarios para comprobar que los mismos reúnen las características exigidas en los apartados anteriores.
- 2 Debe comprobarse que los productos recibidos:
 - a) corresponden a los especificados en el pliego de condiciones del proyecto;
 - b) disponen de la documentación exigida;
 - c) están caracterizados por las propiedades exigidas:
 - d) han sido ensayados, cuando así se establezca en el pliego de condiciones o lo determine el director de la ejecución de la obra con el visto bueno del director de obra, con la frecuencia establecida.
- 3 El control debe seguir los criterios indicados en el artículo 7.2 de la Parte I del CTE.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67159

Documento Básico HE Ahorro de Energía

7 Construcción

7.1 Ejecución

Las obras de construcción del edificio se ejecutarán con sujeción al proyecto y sus modificaciones autorizadas por el director de obra previa conformidad del promotor, a la legislación aplicable, a las normas de la buena práctica constructiva y a las instrucciones del director de obra y del director de la ejecución de la obra, conforme a lo indicado en el artículo 7 de la Parte I del CTE. En el pliego de condiciones del proyecto se indicarán las condiciones particulares de ejecución de los cerramientos y particiones interiores de la envolvente térmica.

7.2 Control de la ejecución de la obra

- El control de la ejecución de las obras se realizará de acuerdo con las especificaciones del proyecto, sus anexos y modificaciones autorizados por el director de obra y las instrucciones del director de la ejecución de la obra, conforme a lo indicado en el artículo 7.3 de la Parte I del CTE y demás normativa vigente de aplicación.
- 2 Se comprobará que la ejecución de la obra se realiza de acuerdo con los controles y con la frecuencia de los mismos establecida en el pliego de condiciones del proyecto.
- 3 Cualquier modificación que pueda introducirse durante la ejecución de la obra quedará en la documentación de la obra ejecutada sin que en ningún caso dejen de cumplirse las condiciones mínimas señaladas en este Documento Básico.

7.3 Control de la obra terminada

- 1 El control de la obra terminada debe seguir los criterios indicados en el artículo 7.4 de la Parte I del CTE.
- 2 En esta Sección del Documento Básico no se prescriben pruebas finales.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67160

Documento Básico HE Ahorro de Energía

Apéndice A Terminología

Absortividad (α): fracción de la radiación solar incidente a una superficie que es absorbida por la misma. La absortividad va de 0,0 (0%) hasta 1,0 (100%).

Adiabático: ver Cerramiento adiabático.

Carga interna: conjunto de solicitaciones generadas en el interior del edificio, debidas, fundamentalmente, a los aportes de energía de los ocupantes, los equipos eléctricos y la iluminación.

En función de su densidad de las fuentes internas la carga interna de los espacios habitables se clasifica en:

Tabla A.1 Carga interna en función de la densidad de las fuentes internas

Carga interna	Densidad de las fuentes internas, C _{FI} [W/m ²]
Baja	< 6
Media	6 – 9
Alta	9 – 12
Muy alta	> 12

Cerramiento: elemento constructivo del edificio que lo separa del exterior, ya sea aire, terreno u otros edificios. Comprende las cubiertas, suelos, huecos, muros y medianeras.

En la intervención en edificios existentes, cuando un elemento de cerramiento separe una zona ampliada respecto a otra existente, se considerará perteneciente a la zona ampliada

Cerramiento adiabático: cerramiento a través del cual se considera que no se produce intercambio de calor.

Clima de referencia: clima normalizado que define los parámetros climáticos (temperatura, radiación solar...) representativos de una zona climática concreta para el cálculo de la demanda. Permite estandarizar las solicitaciones exteriores.

Condiciones operacionales: conjunto de temperaturas de consigna y distribución horaria de las cargas internas definidas para cada perfil de uso.

Cubierta: cerramiento en contacto con el aire exterior en su cara superior cuya inclinación sea inferior a 60° respecto a la horizontal.

Demanda energética: energía útil necesaria que tendrían que proporcionar los sistemas técnicos para mantener en el interior del edificio unas condiciones definidas reglamentariamente en función del uso del edificio (perfiles de uso) y de la zona climática en la que se ubique (clima de referencia). Se puede dividir en demanda energética de calefacción, de refrigeración, de agua caliente sanitaria (ACS) y de iluminación, y se expresa en kW·h/m².año, considerada la superficie útil de los espacios habitables del edificio.

Demanda energética del edificio de referencia: demanda energética obtenida para el edificio de referencia. Puede obtenerse para la demanda energética de calefacción, de refrigeración, conjunta (de calefacción y refrigeración) o global (que incluye la demanda de calefacción, refrigeración, ACS e iluminación). Se expresa en kW·h/m².año, considerada la superficie útil de los espacios habitables del edificio.

Demanda energética conjunta (de calefacción y refrigeración): demanda energética obtenida como suma ponderada de la demanda energética de calefacción (D_C) y la demanda energética de refrigeración (D_R). Se expresa en kW·h/m².año, considerada la superficie útil de los espacios habitables del edificio.

La ponderación se realiza en función del consumo de energía primaria requerido para combatir cada demanda energética, siendo $D_G = D_C + 0.70 \cdot D_R$ la expresión que permite obtener la demanda energética

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67161

Documento Básico HE Ahorro de Energía

conjunta para edificios situados en territorio peninsular y $D_G = D_C + 0.85 \cdot D_R$ para el caso de territorio extrapeninsular.

Densidad de las fuentes internas: promedio horario de la carga térmica total debida a las fuentes internas, repercutida sobre la superficie útil.

Se calcula a partir de las cargas nominales en cada hora para cada carga (carga sensible debida a la ocupación, carga debida a iluminación y carga debida a equipos) a lo largo de una semana tipo:

$$C_{FI} = \Sigma C_{oc} / (7.24) + \Sigma C_{il} / (7.24) + \Sigma C_{eq} / (7.24)$$

ΣC_{oc} = suma de las cargas sensibles nominales por ocupación [W/m²], por hora y a lo largo de una semana tipo

ΣC_{ii} = suma de las cargas nominales por iluminación [W/m²], por hora y a lo largo de una semana tipo

ΣC_{eq} = suma de las cargas nominales de equipos [W/m²], por hora y a lo largo de una semana tipo

Los horarios para los perfiles de uso tipo se especifican en el apéndice C.

La densidad de las fuentes internas del edificio se obtiene promediando las densidades de cada uno de los espacios ponderadas por la fracción de la superficie útil que representa cada espacio en relación a la superficie útil total del edificio.

Edificio de referencia: edificio obtenido a partir del *edificio objeto* que se define con su misma forma, tamaño, orientación, zonificación interior, uso de cada espacio, e iguales obstáculos, y unas soluciones constructivas con parámetros característicos iguales a los establecidos en el Apéndice D.

Edificio objeto: edificio tal cual ha sido proyectado en geometría (forma, tamaño y orientación), construcción y condiciones de uso, del que se quiere verificar el cumplimiento de la reglamentación.

Envolvente (térmica): ver definición del apartado 5.2.1.

Espacio habitable: espacio formado por uno o varios recintos habitables contiguos con el mismo uso y condiciones térmicas equivalentes agrupados a efectos de cálculo de la demanda energética.

En función de su densidad de las fuentes internas, los espacios habitables se clasifican en espacios habitables de muy alta, alta, media o baja carga interna.

En función de la disponibilidad de sistemas de calefacción y/o refrigeración, los espacios habitables se clasifican en acondicionados o no acondicionados.

Espacio (habitable) acondicionado: espacio habitable que va a disponer de un sistema de calefacción y/o refrigeración. En uso residencial privado se consideran acondicionados todos los espacios habitables.

Espacio (habitable) de carga interna alta: espacio habitable donde se genera gran cantidad de calor por su ocupación, iluminación o equipos existentes. Corresponde a espacios con una densidad de las fuentes internas entre 9 W/m² y 12 W/m².

Espacio (habitable) de carga interna baja: espacio habitable donde se disipa poco calor. Comprende los espacios destinados principalmente a residir en ellos, con carácter eventual o permanente. En esta categoría se incluyen todos los espacios de edificios de viviendas y aquellas zonas o espacios de edificios asimilables a éstos en uso y dimensión, tales como habitaciones de hotel, habitaciones de hospitales y salas de estar, así como sus zonas de circulación vinculadas. Corresponde a una densidad de las fuentes internas inferior a 6 W/m².

Espacio (habitable) de carga interna media: espacio habitable donde se genera una cantidad de calor, intermedia entre los espacios definidos con alta y baja carga interna. Corresponde a una densidad de las fuentes internas entre 6 W/m² y 9 W/m².

Espacio (habitable) de carga interna muy alta: espacio habitable donde se genera gran cantidad de calor por su ocupación, iluminación o equipos existentes. Corresponde a espacios con una densidad de las fuentes internas superior a 12 W/m².

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67162

Documento Básico HE Ahorro de Energía

Espacio (habitable) no acondicionado: espacio habitable que no va a disponer de un sistema de calefacción y/o refrigeración. Al ser un espacio habitable dispone, sin embargo de fuentes internas (iluminación, ocupación y equipos). Se aplica a usos distintos del residencial privado, puesto que en este se consideran acondicionados todos los espacios habitables.

Espacio no habitable: espacio formado por uno o varios *recintos no habitables* contiguos con el mismo uso y condiciones térmicas equivalentes, agrupados a efectos de cálculo de la *demanda energética*. Al no ser un *espacio habitable* no se considera la existencia de fuentes internas (iluminación, ocupación y equipos).

Fachada: cerramiento en contacto con el aire exterior cuya inclinación es superior a 60° respecto a la horizontal. La orientación de una fachada se caracteriza mediante el ángulo α que es el formado por el norte geográfico y la normal exterior de la fachada, medido en sentido horario. Se distinguen 8 orientaciones según los sectores angulares contenidos en la figura A.1.

Figura A.1. Orientaciones de las Fachadas

Factor de sombra (F_s): fracción de la radiación incidente en un hueco que no es bloqueada por la presencia de obstáculos de fachada, tales como: retranqueos, voladizos, toldos, salientes laterales u otros.

Factor solar (g1): cociente entre la radiación solar a incidencia normal que se introduce en el edificio a través del acristalamiento y la que se introduciría si el acristalamiento se sustituyese por un hueco perfectamente transparente. Se refiere exclusivamente a la parte semitransparente de un hueco.

Factor solar modificado (F): fracción de la radiación incidente en un hueco que no es bloqueada por el efecto de obstáculos de fachada y las partes opacas del hueco. Se calcula a partir del factor de sombra del hueco (F_S), el factor solar de la parte semitransparente del hueco (g_\perp), la absortividad de la parte opaca (α) (normalmente el marco), su transmitancia térmica (U_m), y la fracción de la parte opaca (F_M), según la siguiente expresión:

$$F = F_{S} \cdot [(1 - F_M) \cdot g_{\perp} + F_M \cdot 0.04 \cdot U_m \cdot \alpha]$$

Hueco: cualquier elemento transparente o semitransparente de la *envolvente del edificio*. Comprende las ventanas, lucernarios y claraboyas así como las puertas acristaladas con una superficie semitransparente superior al 50%.

Invernadero adosado: recinto no acondicionado formado por un cerramiento exterior con un porcentaje alto de superficie acristalada que se coloca adyacente a las fachadas de un edificio. El elemento de fachada que actúa de separación entre el invernadero y las zonas interiores del edificio puede incluir también acristalamientos. Es posible la existencia de una circulación de aire generalmente forzada a través de dicho recinto, bien en forma de recirculación del aire interior o de precalentamiento de aire exterior que se usa para ventilación. A esta misma categoría pertenecen las galerías y los balcones acristalados.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67163

Documento Básico HE Ahorro de Energía

Lucernario: cualquier hueco situado en una cubierta, por tanto su inclinación será menor de 60º respecto a la horizontal.

Masa térmica: capacidad de los materiales de absorber y almacenar calor. Depende de la densidad del material, de su calor específico y su conductividad.

Material: parte de un producto sin considerar su modo de entrega, forma y dimensiones, sin ningún revestimiento o recubrimiento.

Medianería: cerramiento que linda con otro edificio ya construido o que se construya a la vez y que conforme una división común. Si el edificio se construye con posterioridad el cerramiento se considerará, a efectos térmicos, una fachada.

Muro parietodinámico: cerramiento que aprovecha la energía solar para el precalentamiento del aire exterior de ventilación. Generalmente está formado por una hoja interior de fábrica, una cámara de aire y una hoja exterior acristalada o metálica que absorbe la radiación solar. La circulación del aire puede ser natural (termosifón) o forzada.

Muro Trombe: cerramiento que aprovecha la energía solar para el calentamiento por recirculación del aire interior del edificio. Generalmente está formado por una hoja interior de fábrica, una cámara de aire y un acristalamiento exterior. La circulación del aire puede ser natural (termosifón) o forzada. También se denomina muro solar ventilado.

Parámetro característico: magnitud que se suministra como dato de entrada a un procedimiento de cumplimentación.

Partición interior: elemento constructivo del edificio que divide su interior en recintos independientes. Pueden ser verticales u horizontales.

En la intervención en edificios existentes, cuando un elemento de cerramiento separe una zona ampliada respecto a otra existente, se considerará perteneciente a la zona ampliada.

Perfil de uso: descripción hora a hora, para un año tipo, de las *cargas internas* (carga sensible por ocupación, carga latente por ocupación, equipos, iluminación y ventilación) y *temperaturas de consigna* (alta y baja) de un *espacio habitable*. Está determinado por el uso del *espacio habitable*, su nivel de *cargas internas* y su *periodo de utilización*.

Periodo de utilización: tiempo característico de utilización de un espacio habitable o del edificio. A efectos de la definición de perfiles de uso se establecen periodos de utilización tipo de 8h, 12h, 16h y 24h.

Para edificios de uso residencial privado se establece un periodo de utilización de 24h.

Permeabilidad al aire: propiedad de una ventana o puerta de dejar pasar el aire cuando se encuentra sometida a una presión diferencial. La permeabilidad al aire se caracteriza por la capacidad de paso del aire, expresada en m³/h, en función de la diferencia de presiones.

Porcentaje de ahorro de la demanda energética: relación entre la diferencia entre la demanda energética del edificio de referencia (D_{ref}) y del edificio objeto (D_{obj}) y la demanda energética del edificio de referencia, expresada como porcentaje. Puede aplicarse a la demanda energética de calefacción, demanda energética de refrigeración o a la demanda energética conjunta (de calefacción y refrigeración).

$$%_{AD} = 100 \text{ x } (D_{ref} - D_{obj}) / D_{ref}$$

Producto: forma final de un material listo para su uso, de forma y dimensiones dadas y que incluye cualquier recubrimiento o revestimiento.

Puente térmico: zona de la *envolvente térmica* del edificio en la que se evidencia una variación de la uniformidad de la construcción, ya sea por un cambio del espesor del *cerramiento* o de los materiales empleados, por la penetración completa o parcial de elementos constructivos con diferente conductividad, por la diferencia entre el área externa e interna del elemento, etc., que conllevan una minoración de la resistencia térmica respecto al resto del cerramiento.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67164

Documento Básico HE Ahorro de Energía

Los puentes térmicos son partes sensibles de los edificios donde aumenta la probabilidad de producción de condensaciones.

Los puentes térmicos más comunes son:

- a) Puentes térmicos integrados en los cerramientos:
 - i) pilares integrados en los cerramientos de las fachadas;
 - ii) contorno de huecos y lucernarios;
 - iii) cajas de persianas;
 - iv) otros puentes térmicos integrados;
- b) Puentes térmicos formados por encuentro de cerramientos:
 - i) frentes de forjado en las fachadas;
 - ii) uniones de cubiertas con fachadas;
 - iii) cubiertas con pretil;
 - iv) cubiertas sin pretil;
 - v) uniones de fachadas con cerramientos en contacto con el terreno;
 - vi) unión de fachada con losa o solera;
 - vii) unión de fachada con muro enterrado o pantalla;
- c) Esquinas o encuentros de fachadas, que, dependiendo de la posición del ambiente exterior se subdividen en:
 - i) esquinas entrantes;
 - ii) esquinas salientes;
- d) Encuentros de voladizos con fachadas;
- e) Encuentros de tabiquería interior con cerramientos exteriores.

Puente térmico lineal: puente térmico con una sección transversal uniforme a lo largo de una dirección.

Recinto habitable: recinto interior destinado al uso de personas cuya densidad de ocupación y tiempo de estancia exigen unas condiciones acústicas, térmicas y de salubridad adecuadas. Se consideran recintos habitables los siguientes:

- a) habitaciones y estancias (dormitorios, comedores, bibliotecas, salones, etc.) en edificios residenciales;
- b) aulas, bibliotecas, despachos, en edificios de uso docente;
- c) quirófanos, habitaciones, salas de espera, en edificios de uso sanitario;
- d) oficinas, despachos; salas de reunión, en edificios de uso administrativo;
- e) cocinas, baños, aseos, pasillos y distribuidores, en edificios de cualquier uso;
- f) zonas comunes de circulación en el interior de los edificios;
- g) cualquier otro con un uso asimilable a los anteriores.

Recinto no habitable: recinto interior no destinado al uso permanente de personas o cuya ocupación, por ser ocasional o excepcional y por ser bajo el tiempo de estancia, sólo exige unas condiciones de salubridad adecuadas. En esta categoría se incluyen explícitamente como no habitables los garajes, trasteros, las cámaras técnicas y desvanes no acondicionados, y sus zonas comunes.

Severidad climática: cociente entre la demanda energética de un edificio en una localidad y la correspondiente al mismo edificio en una localidad de referencia. En la presente reglamentación se ha tomado Madrid como localidad de referencia, siendo, por tanto, su severidad climática la unidad. Se define una severidad climática de verano y otra de invierno.

Sistema dimensional: sistema que determina el método para determinar la longitud (u otra magnitud) característica de un elemento constructivo.

Solicitaciones exteriores: acciones exteriores al edificio que tienen efecto sobre el comportamiento térmico del mismo. Comprende, fundamentalmente, las cargas térmicas debidas al clima.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67165

Documento Básico HE Ahorro de Energía

Solicitaciones interiores: acciones interiores al edificio que tienen efecto sobre el comportamiento térmico del mismo. Comprende, fundamentalmente, las cargas térmicas debidas a los aportes de energía de los ocupantes, equipos e iluminación.

Suelo: cerramiento horizontal o ligeramente inclinado que esté en contacto por su cara inferior con el aire, con el terreno, o con un espacio no habitable.

Temperatura de consigna: temperatura o rango de temperaturas consideradas en el cálculo de la demanda enegética que fija el límite de temperatura interior a partir del cual operan los sistemas de acondicionamiento del edificio, requiriendo aportes energéticos.

Transmitancia térmica: flujo de calor, en régimen estacionario, para un área y diferencia de temperaturas unitarias de los medios situados a cada lado del elemento que se considera.

Transmitancia térmica lineal: flujo de calor, en régimen estacionario, para una longitud y diferencia de temperaturas unitarias de los medios situados a cada lado del puente térmico que se considera.

Unidad de uso: edificio o parte de él destinada a un uso específico, en la que sus usuarios están vinculados entre sí bien por pertenecer a una misma unidad familiar, empresa, corporación; o bien por formar parte de un grupo o colectivo que realiza la misma actividad. Se consideran unidades de uso diferentes, entre otras, las siguientes:

- a) En edificios de vivienda, cada una de las viviendas.
- b) En hospitales, hoteles, residencias, etc., cada habitación, incluidos sus anexos.
- c) En edificios docentes, cada aula, laboratorio, etc.

Uso característico: uso predominante o representativo a efectos de la estimación de la demanda energética.

Zona climática: zona para la que se definen unas solicitaciones exteriores comunes a efectos de cálculo de la *demanda energética*. Se identifica mediante una letra, correspondiente a la severidad climática de invierno, y un número, correspondiente a la severidad climática de verano.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67166

Documento Básico HE Ahorro de Energía

Apéndice B Zonas climáticas

B.1 Zonas climáticas

Las tablas B.1 y B.2 permiten obtener la *zona climática* (Z.C.) de una localidad en función de su capital de provincia y su altitud respecto al nivel del mar (h). Para cada provincia, se tomará el clima correspondiente a la condición con la menor cota de comparación.

Tabla B.1.- Zonas climáticas de la Península Ibérica

						Zor	nas climá	ticas Peníi	nsula I	bérica								
Capital	Z.C.	Altitud	A4	А3	A2	A1	B4	В3	B2	B1	C4	СЗ	C2	C1	D3	D2	D1	E1
Albacete	D3	677				_						h < 450			h < 950			h ≥ 950
Alicante/Alacant	B4	7					h < 250					h < 700			h ≥ 700			11 2 330
Almería	A4	0	h < 100				h < 250	h < 400				h < 800			h ≥ 800			
Ávila	E1	1054	11 < 100				11 \ 230	11 \ 400				11 < 000			11 2 000	h < 550	h < 850	h ≥ 850
Badajoz	C4	168									h < 400	h < 450			h ≥ 450	11 < 330	11 < 030	11 2 030
Barcelona	C2	1									11 < 400	11 < 450	h < 250		11 2 430	h < 450	h < 750	h ≥ 750
Bilbao/Bilbo	C1	214											11 < 230	h < 250		11 < 450	h ≥ 250	11 2 7 3 0
Burgos	E1	861												11 < 250			h < 600	h ≥ 600
Cáceres	C4	385									h < 600				h < 1050		11 < 000	h ≥ 1050
Cádiz	A3	0		h < 150				h < 450			11 < 000	h < 600	h < 850		11 < 1030	h ≥ 850		11 2 1030
Castellón/Castelló	B3	18		11 < 130				h < 50				h < 500	11 < 630		h < 600	h < 1000		h≥1000
Ceuta	B3	0						h < 50				11 < 500			11 < 600	11 < 1000		11 2 1000
Ciudad Real	D3	630						11 < 50	_		h < 450	h < 500			h ≥ 500			
Córdoba	B4	113					h < 150				h < 550	11 < 500			h ≥ 550			
Coruña, La/ A Coruña	C1	0					11 < 150				11 < 550			h < 200	11 2 330		h ≥ 200	
Cuenca	D2	975												11 < 200	h < 800	h < 1050		h ≥ 1050
Gerona/Girona	D2	143											h < 100		11 < 800	h < 600		h ≥ 600
	C3		h . FO			_	h < 350				h + C00	h < 800	11 < 100		h = 1200	11 < 000		
Granada		754 708	h < 50				n < 350				n < 600	n < 800			h < 1300	h < 1000		h ≥ 1300 h ≥ 1000
Guadalajara	D3		h . 50				h . 450	h < 350	_			h . 000			h < 950	u < 1000		u 5 1000
Huelva	A4 D2	50 432	h < 50				n < 150	n < 350	_			h < 800 h < 200			h ≥ 800	L . 700		L > 700
Huesca	C4						h < 350	_		- 1	h < 750	n < 200			h < 400 h < 1250	h < 700		h ≥ 700 h ≥ 1250
Jaén . ,		436				_	n < 350				n < 750				n < 1250			
León	E1	346																h < 1250
Lérida/Lleida	D3	131										h < 100	L . 200		h < 600	L . 700		h ≥ 600
Logroño	D2	379											h < 200			h < 700	h . 500	h ≥ 700
Lugo	D1	412										h . 500			L . 050	h . 4000	h < 500	h ≥ 500
Madrid	D3	589							_			h < 500			h < 950	h < 1000		h ≥ 1000
Málaga	A3	0						h < 300	_			h < 700			h ≥ 700			
Melilla	A3	130						h . 400	_			h . 550			h > 550	_		
Murcia	B3	25						h < 100				h < 550	h < 300		h ≥ 550	L . 000		h > 000
Orense/Ourense	D2	327										h < 150	n < 300	h . 50		h < 800	h . 550	h≥800
Oviedo	D1	214												h < 50			h < 550	h ≥ 550
Palencia	D1	722							_								h < 800	h ≥ 800
Palma de Mallorca	B3	1						h < 250	_			h ≥ 250						
Pamplona/Iruña	D1	456											h < 100		_	h < 300	h < 600	h ≥ 600
Pontevedra	C1	77												h < 350			h ≥ 350	1
Salamanca	D2	770														h < 800		h ≥ 800
San Sebastián/Donostia	D1	5															h < 400	h ≥ 400
Santander	C1	1												h < 150			h < 650	h ≥ 650
Segovia	D2	1013														h < 1000		h≥1000
Sevilla	B4	9					h < 200				h ≥ 200							
Soria	E1	984														h < 750	h < 800	h ≥ 800
Tarragona	B3	1						h < 50				h < 500			h ≥ 500			
Teruel	D2	995										n < 450	h < 500		1	h < 1000		h≥1000
Toledo	C4	445							_		h < 500				h ≥ 500			
Valencia/València	B3	8						h < 50				h < 500				h < 950		h ≥ 950
Valladolid	D2	704														h < 800		h ≥ 800
Vitoria/Gasteiz	D1	512															h < 500	h ≥ 500
Zamora	D2	617														h < 800		h ≥ 800
Zaragoza	D3	207			_					, ,		h < 200			h < 650			h ≥ 650
Capital	Z.C.	Altitud	A4	А3	A2	A1	B4	В3	B2	B1	C4	СЗ	C2	C1	D3	D2	D1	E1

Tabla B.2.- Zonas climáticas de las Islas Canarias

Zonas climáticas Canarias											
Capital	Z.C.	Altitud	α3	A2	B2	C2					
Palmas de Gran Canaria, Las	α3	114	h < 350	h < 750	h < 1000	h ≥ 1000					
Santa Cruz de Tenerife	α3	0	h < 350	h < 750	h < 1000	h ≥ 1000					

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67167

Documento Básico HE Ahorro de Energía

B.2 Clima de referencia

La Dirección General de Arquitectura, Vivienda y Suelo, del Ministerio de Fomento, publicará en formato informático los datos que definen el *clima de referencia* de cada *zona climática*, que establece las condiciones exteriores de cálculo.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67168

Documento Básico HE Ahorro de Energía

Apéndice C Perfiles de uso

C.1 Perfiles de uso

Las siguientes tablas recogen los perfiles de uso normalizados de los edificios (solicitaciones interiores) en función de su uso, *densidad de las fuentes internas* (baja, media o alta) y *periodo de utilización* (8, 12, 16 y 24h):

USO RESIDENCIAL	(24h, BAJA)							
	1-7	8	9-15	16-23	24			
Temp Consigna Alta (°C)								
Enero a Mayo	_	_	_	-	_			
Junio a Septiembre	27	-	_	25	27			
Octubre a Diciembre	_	-	_	-	_			
Temp Consigna Baja (°C)								
Enero a Mayo	17	20	20	20	17			
Junio a Septiembre	_	_	-	-	_			
Octubre a Diciembre	17	20	20	20	17			
Ocupación sensible (W/m²)								
Laboral	2,15	0,54	0,54	1,08	2,15			
Sábado y Festivo	2,15	2,15	2,15	2,15	2,15			
Ocupación latente (W/m²)								
Laboral	1,36	0,34	0,34	0,68	1,36			
Sábado y Festivo	1,36	1,36	1,36	1,36	1,36			
Iluminación (W/m²)								
Laboral, Sábado y Festivo	0,44	1,32	1,32	1,32	2,2			
Equipos (W/m²)								
Laboral, Sábado y Festivo	0,44	1,32	1,32	1,32	2,2			
Ventilación verano ¹								
Laboral, Sábado y Festivo	4,00	4,00	*	*	*			
Ventilación invierno ²								
Laboral, Sábado y Festivo	*	*	*	*	*			

¹ En régimen de verano, durante el periodo comprendido entre la 1 y las 8 horas, ambas incluidas, se supondrá que los espacios habitables de los edificios destinados a vivienda presentan una infiltración originada por la apertura de ventanas de 4 renovaciones por hora. El resto del tiempo, indicados con * en la tabla, el número de renovaciones hora será constante e igual al mínimo exigido por el DB
² El número de renovaciones hora, indicado con * en la tabla, será constante e igual al calculado mínimo exigido por el DB HS.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67169

Documento Básico HE Ahorro de Energía

USO NO RESIDENCIAL: 8 h	BA	JA	MED	IA	AL1	ΓΑ
	1-6 15-24	7-14	1-6 15-24	7-14	1-6 15-24	7-14
Temp Consigna Alta (°C)						
Laboral y Sábado	_	25	_	25	_	25
Festivo	-	-	-	-	-	_
Temp Consigna Baja (°C)						
Laboral y Sábado	-	20	-	20	-	20
Festivo	-	-	-	-	-	_
Ocupación sensible (W/m²)						
Laboral y Sábado	0	2,00	0	6,00	0	10,00
Festivo	0	0	0	0	0	0
Ocupación latente (W/m²)						
Laboral y Sábado	0	1,26	0	3,79	0	6,31
Festivo	0	0	0	0	0	0
lluminación (%)						
Laboral y Sábado	0	100	0	100	0	100
Festivo	0	0	0	0	0	0
Equipos (W/m²)						
Laboral y Sábado	0	1,50	0	4,50	0	7,50
Festivo	0	0	0	0	0	0
Ventilación (%)						
Laboral y Sábado	0	100	0	100	0	100
Festivo	0	0	0	0	0	0

USO NO RESIDENCIAL: 12 h		BAJA			MEDIA			ALTA	
	1-6			1-6			1-6		
	15-16	7-14	17-20	15-16	7-14	17-20	15-16	7-14	17-21
	21-24			21-24			21-24		
Temp Consigna Alta (°C)									
Laboral y Sábado	_	25	25	_	25	25	_	25	25
Festivo	_	-	-	-	_	-	-	-	-
Temp Consigna Baja (°C)									
Laboral y Sábado	_	20	20	_	20	20	-	20	20
Festivo	_	_	-	_	_	_	-	_	-
Ocupación sensible (W/m²)									
Laboral	0	2,00	2,00	0	6,00	6,00	0	10,00	10,00
Sábado	0	2,00	0	0	6,00	0	0	10,00	0
Festivo	0	0	0	0	0	0	0	0	0
Ocupación latente (W/m²)									
Laboral	0	1,26	1,26	0	3,79	3,79	0	6,31	6,31
Sábado	0	1,26	0	0	3,79	0	0	6,31	0
Festivo	0	0	0	0	0	0	0	0	0
lluminación (%)									
Laboral	0	100	100	0	100	100	0	100	100
Sábado	0	100	0	0	100	0	0	100	0
Festivo	0	0	0	0	0	0	0	0	0
Equipos (W/m²)									
Laboral	0	1,50	1,50	0	4,50	4,50	0	7,50	7,50
Sábado	0	1,50	0	0	4,50	0	0	7,50	0
Festivo	0	0	0	0	0	0	0	0	0
Ventilación (%)									
Laboral	0	100	100	0	100	100	0	100	100
Sábado	0	100	0	0	100	0	0	100	0
Festivo	0	0	0	0	0	0	0	0	0

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67170

Documento Básico HE Ahorro de Energía

USO NO RESIDENCIAL: 16 h		BAJA			MEDIA			ALTA	
	1-6 23-24	7-14	15-22	1-6 23-24	7-14	15-22	1-6 23-24	7-14	15-22
Temp Consigna Alta (°C)									
Laboral y Sábado	-	25	25	-	25	25	-	25	25
Festivo	-	-	-	-	_	-	-	-	-
Temp Consigna Baja (°C)									
Laboral y Sábado	_	20	20	_	20	20	_	20	20
Festivo	_	_	_	_	_	_	_	_	_
Ocupación sensible (W/m²)									
Laboral	0	2,00	2,00	0	6,00	6,00	0	10,00	10,00
Sábado	0	2,00	0	0	6,00	0	0	10,00	0
Festivo	0	0	0	0	0	0	0	0	0
Ocupación latente (W/m²)									
Laboral	0	1,26	1,26	0	3,79	3,79	0	6,31	6,31
Sábado	0	1,26	0	0	3,79	0	0	6,31	0
Festivo	0	0	0	0	0	0	0	0	0
lluminación (%)									
Laboral	0	100	100	0	100	100	0	100	100
Sábado	0	100	0	0	100	0	0	100	0
Festivo	0	0	0	0	0	0	0	0	0
Equipos (W/m²)									
Laboral	0	1,50	1,50	0	4,50	4,50	0	7,50	7,50
Sábado	0	1,50	0	0	4,50	0	0	7,50	0
Festivo	0	0	0	0	0	0	0	0	0
Ventilación (%)									
Laboral	0	100	100	0	100	100	0	100	100
Sábado	0	100	0	0	100	0	0	100	0
Festivo	0	0	0	0	0	0	0	0	0

USO NO RESIDENCIAL: 24 h	ВА	JA	MEI	DIA	AL	TA
	1-6 15-24	7-14	1-6 15-24	7-14	1-6 15-24	7-14
Temp Consigna Alta (°C)						
Laboral	25	25	25	25	25	25
Sábado	-	25	_	25	_	25
Festivo	-	_	_	_	_	_
Temp Consigna Baja (°C)						
Laboral	20	20	20	20	20	20
Sábado	-	20	-	20	_	20
Festivo	-	-	-	-	_	_
Ocupación sensible (W/m²)						
Laboral	2,00	2,00	6,00	6,00	10,00	10,00
Sábado	0	2,00	0	6,00	0	10,00
Festivo	0	0	0	0	0	0
Ocupación latente (W/m²)						
Laboral	1,26	1,26	3,79	3,79	6,31	6,31
Sábado	0	1,26	0	3,79	0	6,31
Festivo	0	0	0	0	0	0
lluminación (%)						
Laboral	100	100	100	100	100	100
Sábado	0	100	0	100	0	100
Festivo	0	0	0	0	0	0
Equipos (W/m²)						
Laboral	1,50	1,50	4,50	4,50	7,50	7,50
Sábado	0	1,50	0	4,50	0	7,50
Festivo	0	0	0	0	0	0
Ventilación (%)						
Laboral	100	100	100	100	100	100
Sábado	0	100	0	100	0	100
Festivo	0	0	0	0	0	0

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67171

Documento Básico HE Ahorro de Energía

Apéndice D Definición del edificio de referencia

D.1 Características generales

El edificio de referencia se define con la misma forma, tamaño, orientación, zonificación interior, uso de cada espacio, e iguales obstáculos remotos que el edificio objeto.

Los parámetros de transmitancia y factor solar de los elementos de la *envolvente térmica* son los establecidos en el apartado D.2.

El documento Condiciones de aceptación de procedimientos alternativos a LIDER y CALENER recoge el procedimiento detallado para la obtención del edificio de referencia a partir del edificio objeto, incluida la definición constructiva de los elementos, valores de cálculo de los puentes térmicos, niveles de ventilación e infiltración, etc.

D.2 Parámetros característicos de la envolvente

D.2.1 ZONA CLIMÁTICA α1, A1

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno U_{Mlim}: 0,94 W/m² K
Transmitancia límite de suelos U_{Slim}: 0,53 W/m² K

Transmitancia límite de suelos U_{Slim}: 0,53 W/m² K
Transmitancia límite de cubiertas U_{Clim}: 0,50 W/m² K

Factor solar modificado límite de lucernarios F_{Llim}: 0,29

	Transmitar	ncia límite d	de huecos l	J _{Hlim} W/m ² K	Factor	solar n	nodificad	o límite d	le hued	os F _{Hlim}			
					Baja	carga in	nterna	Alta	carga ir				
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	s	SE/SO			
de 0 a 10	5,7	5,7	5,7	5,7	-	-	-	-	-	-			
de 11 a 20	4,7	5,7	5,7	5,7	-	-	-	-	-	-			
de 21 a 30	4,1	5,5	5,7	5,7	-	-	-	-	-	-			
de 31 a 40	3,8	5,2	5,7	5,7	-	-	-	0,56	-	0,60			
de 41 a 50	3,5	5,0	5,7	5,7	-	-	-	0,47	-	0,52			
de 51 a 60	3,4	4,8	5,7	5,7	-	-	-	0,42	-	0,46			

D.2.2 ZONA CLIMÁTICA α2, A2

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno U_{Mlim}: 0,94 W/m² K

Transmitancia límite de suelos U_{Slim}: 0,53 W/m² K
Transmitancia límite de cubiertas U_{clim}: 0,50 W/m² K

Factor solar modificado límite de lucernarios F_{Llim}: 0,29

	Transmitar	ncia límite d	de huecos l	J _{Hlim} W/m ² K	Factor solar modificado límite de huecos F _{Hlim}						
			Baja	carga ir	nterna	Alta carga interna					
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO	
de 0 a 10	5,7	5,7	5,7	5,7	-	-	-	-	-	-	
de 11 a 20	4,7	5,7	5,7	5,7	-	-	-	-	-	-	
de 21 a 30	4,1	5,5	5,7	5,7	-	-	-	0,60	-	-	
de 31 a 40	3,8	5,2	5,7	5,7	-	-	-	0,47	-	0,51	
de 41 a 50	3,5	5,0	5,7	5,7	0,59	-	-	0,40	0,58	0,43	
de 51 a 60	3,4	4,8	5,7	5,7	0,51	-	0,55	0,35	0,52	0,38	

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67172

Documento Básico HE Ahorro de Energía

D.2.3 ZONA CLIMÁTICA α3, A3

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,94 W/m² K U_{Slim}: 0,53 W/m² K

U_{Slim}: 0,53 W/m² K U_{Clim}: 0,50 W/m² K

F_{Llim}: 0,29

	Transmitar	ncia límite d	de huecos l	J _{Hlim} W/m ² K	Factor solar modificado límite de huecos F						
						carga interna Alta carga inte			terna		
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO	
de 0 a 10	5,7	5,7	5,7	5,7	-	-	-	-	-	-	
de 11 a 20	4,7	5,7	5,7	5,7	-	-	-	-	-	-	
de 21 a 30	4,1	5,5	5,7	5,7	-	-	-	0,60	-	-	
de 31 a 40	3,8	5,2	5,7	5,7	-	-	-	0,48	-	0,51	
de 41 a 50	3,5	5,0	5,7	5,7	0,57	-	0,60	0,41	0,57	0,44	
de 51 a 60	3,4	4,8	5,7	5,7	0,50	-	0,54	0,36	0,51	0,39	

D.2.4 ZONA CLIMÁTICA α4, A4

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,94 W/m² K

U_{Slim}: 0,53 W/m² K

U_{Clim}: 0,50 W/m² K F_{Llim}: 0,29

Factor solar modificado límite de huecos F_{Hlim} Transmitancia límite de huecos U_{Hlim} W/m²K Baja carga interna Alta carga interna E/O S SE/ % de huecos N/NE/NO E/O SE/SO E/O SE/SO SE/SO de 0 a 10 5,7 5,7 5,7 5,7 de 11 a 20 4,7 5,7 5,7 5,7 0,57 de 21 a 30 4.1 5.5 5.7 5.7 0.56 de 31 a 40 3,8 5,2 5,7 5,7 0,57 0,58 0,43 0,59 0,44 3,5 de 41 a 50 5,7 0,47 0,48 0,35 0,37 5,0 5,7 0,49 de 51 a 60 3,4 4,8 5,7 5,7 0,40 0,55 0,42 0,30 0,32

D.2.5 ZONA CLIMÁTICA B1

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,82 W/m² K U_{Slim}: 0,52 W/m² K U_{Clim}: 0,45 W/m² K

F_{Llim}: 0,32

	Transmitar	ncia límite d	de huecos l	J _{Hlim} W/m ² K	Factor solar modificado limite de huecos F							
				Baja	aja carga interna							
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO		
de 0 a 10	5,4	5,7	5,7	5,7	-	-	-	-	-	-		
de 11 a 20	3,8	4,9	5,7	5,7	-	-	-	-	-	-		
de 21 a 30	3,3	4,3	5,7	5,7	-	-	-	-	-	-		
de 31 a 40	3,0	4,0	5,6	5,6	-	-	-	0,56	-	0,60		
de 41 a 50	2,8	3,7	5,4	5,4	-	-	-	0,47	-	0,52		
de 51 a 60	2,7	3,6	5,2	5,2	-	-	-	0,42	-	0,46		

cve: BOE-A-2013-9511

33

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67173

Documento Básico HE Ahorro de Energía

D.2.6 ZONA CLIMÁTICA B2

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,82 W/m² K U_{Slim}: 0,52 W/m² K

U_{Clim}: 0,45 W/m² K

F_{Llim}: 0,32

	Transmitar	ncia límite d	de huecos l	J _{Hlim} W/m ² K	Factor	solar n	nodificad	do límite de huecos F _{Hlim}			
					Baja	carga ir	nterna	na Alta carga int		terna	
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO	
de 0 a 10	5,4	5,7	5,7	5,7	-	-	-	-	-	-	
de 11 a 20	3,8	4,9	5,7	5,7	-	-	-	-	-	-	
de 21 a 30	3,3	4,3	5,7	5,7	-	-	-	0,60	-	-	
de 31 a 40	3,0	4,0	5,6	5,6	-	-	-	0,47	-	0,51	
de 41 a 50	2,8	3,7	5,4	5,4	0,59	-	-	0,40	0,58	0,43	
de 51 a 60	2,7	3,6	5,2	5,2	0,51	-	0,55	0,35	0,52	0,38	

SE/SO

5,7

5,7

5.7

5,6

5,4

5,2

0,46

D.2.7 ZONA CLIMÁTICA B3

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de huecos U_{Hlim} W/m²K

E/O

5,7

4,9

4,3

4,0

3,7

3,6

Transmitancia límite de suelos

% de huecos

de 0 a 10

de 11 a 20

de 21 a 30

de 31 a 40

de 41 a 50

de 51 a 60

Transmitancia límite de cubiertas

N/NE/NO

5,4

3,8

3.3

3,0

2,8

2,7

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,82 W/m² K U_{Slim}: 0,52 W/m² K U_{Clim}: 0,45 W/m² K

F_{Llim}: 0,30

 Factor solar modificado límite de huecos F_{Hlim}

 Baja carga interna
 Alta carga interna

 E/O
 S
 SE/SO
 E/O
 S
 SE/SO

 0,57
 0,50

 0,53
 0,59
 0,38
 0,57
 0,43

0,33

0,52

D.2.8 ZONA CLIMÁTICA B4

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

5,7

5,7

5.7

5,6

5,4

5,2

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,82 W/m² K U_{Slim}: 0,52 W/m² K U_{Clim}: 0,45 W/m² K F_{Llim}: 0,28

0,51

0,38

	Transmitar	ncia límite d	de huecos l	Factor solar modificado límite de huecos F _{Hlim}						
					Baja	carga in	terna	Alta	carga in	terna
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO
de 0 a 10	5,4	5,7	5,7	5,7	-	-	-	-	-	-
de 11 a 20	3,8	4,9	5,7	5,7	-	-	-	-	-	-
de 21 a 30	3,3	4,3	5,7	5,7	-	-	-	0,55	-	0,57
de 31 a 40	3,0	4,0	5,6	5,6	0,55	-	0,58	0,42	0,59	0,44
de 41 a 50	2,8	3,7	5,4	5,4	0,45	-	0,48	0,34	0,49	0,36
de 51 a 60	2,7	3,6	5,2	5,2	0,39	0,55	0,41	0,29	0,42	0,31

cve: BOE-A-2013-9511

34

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67174

Documento Básico HE Ahorro de Energía

D.2.9 ZONA CLIMÁTICA C1

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,73 W/m² K

U_{Slim}: 0,50 W/m² K

U_{Clim}: 0,41 W/m² K

F_{Llim}: 0,37

	Transmitar	ncia límite d	de huecos l	J _{Hlim} W/m ² K	Factor solar modificado límite de huecos F _{Hlim}						
					Baja	carga ir	nterna	Alta	Alta carga interna		
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO	
de 0 a 10	4,4	4,4	4,4	4,4	-	-	-	-	-	-	
de 11 a 20	3,4	3,9	4,4	4,4	-	-	-	-	-	-	
de 21 a 30	2,9	3,3	4,3	4,3	-	-	-	-	-	-	
de 31 a 40	2,6	3,0	3,9	3,9	-	-	-	0,56	-	0,60	
de 41 a 50	2,4	2,8	3,6	3,6	-	-	-	0,47	-	0,52	
de 51 a 60	2,2	2,7	3,5	3,5	-	-	-	0,42	-	0,46	

D.2.10 ZONA CLIMÁTICA C2

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,73 W/m² K

U_{Slim}: 0,50 W/m² K

U_{Clim}: 0,41 W/m² K F_{Llim}: 0,32

Factor solar modificado límite de huecos F_{Hlim} Transmitancia límite de huecos U_{Hlim} W/m²K Baja carga interna Alta carga interna SE/SO % de huecos N/NE/NO E/O SE/SO E/O SE/SO de 0 a 10 4,4 4.4 4.4 4,4 de 11 a 20 3,4 3,9 4,4 4,4 de 21 a 30 2.9 3.3 4.3 4,3 0.60 de 31 a 40 2,6 3,0 3,9 3,9 0,47 0,51 de 41 a 50 2,4 2,8 3,6 0,59 0,43 3,6 0,40 0,58 de 51 a 60 2,2 2,7 3,5 3,5 0,51 0,55 0,35 0,52 0,38

D.2.11 ZONA CLIMÁTICA C3

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,73 W/m² K

U_{Slim}: 0,50 W/m² K

U_{Clim}: 0,41 W/m² K

F_{Llim}: 0,28

	Transmitar	ncia límite d	le huecos l	J _{Hlim} W/m ² K	Factor	solar n	lar modificado límite de huecos F _{Hlim}				
					Baja carga interna			Alta carga interna			
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO	
de 0 a 10	4,4	4,4	4,4	4,4	-	-	-	-	-	-	
de 11 a 20	3,4	3,9	4,4	4,4	-	-	-	-	-	-	
de 21 a 30	2,9	3,3	4,3	4,3	-	-	-	0,55	-	0,59	
de 31 a 40	2,6	3,0	3,9	3,9	-	-	-	0,43	-	0,46	
de 41 a 50	2,4	2,8	3,6	3,6	0,51	-	0,54	0,35	0,52	0,39	
de 51 a 60	2,2	2,7	3,5	3,5	0,43	-	0,47	0,31	0,46	0,34	

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67175

Documento Básico HE Ahorro de Energía

D.2.12 ZONA CLIMÁTICA C4

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,73 W/m² K

U_{Slim}: 0,50 W/m² K

U_{Clim}: 0,41 W/m² K

F_{Llim}: 0,27

	Transmitar	ncia límite d	de huecos l	J _{Hlim} W/m ² K	Factor solar modificado límite de huecos F _{Hlim}						
				•••••	Baja	carga in	terna	Alta	carga in	terna	
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO	
de 0 a 10	4,4	4,4	4,4	4,4	-	-		-	-	-	
de 11 a 20	3,4	3,9	4,4	4,4	-	-	-	-	-	-	
de 21 a 30	2,9	3,3	4,3	4,3	-	-	-	0,54	-	0,56	
de 31 a 40	2,6	3,0	3,9	3,9	0,54	-	0,56	0,41	0,57	0,43	
de 41 a 50	2,4	2,8	3,6	3,6	0,47	-	0,46	0,34	0,47	0,35	
de 51 a 60	2,2	2,7	3,5	3,5	0,38	0,53	0,39	0,29	0,40	0,30	

D.2.13 ZONA CLIMÁTICA D1

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,66 W/m² K U_{Slim}: 0,49 W/m² K

U_{Clim}: 0,38 W/m² K

F_{Llim}: 0,36

	Transmitar	ncia límite d	le huecos l	J _{Hlim} W/m ² K	Factor solar modificado límite de huecos F						
					Baja	carga ir	nterna	Alta	carga in	terna	
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO	
de 0 a 10	3,5	3,5	3,5	3,5	-	-	-	-	-	-	
de 11 a 20	3,0	3,5	3,5	3,5	-	-	-	-	-	-	
de 21 a 30	2,5	2,9	3,5	3,5	-	-	-	-	-	-	
de 31 a 40	2,2	2,6	3,4	3,4	-	-	-	0,54	-	0,58	
de 41 a 50	2,1	2,5	3,2	3,2	-	-	-	0,45	-	0,49	
de 51 a 60	1,9	2,3	3,0	3,0	-	-	-	0,40	0,57	0,44	

D.2.14 ZONA CLIMÁTICA D2

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U _{Mlim} :	0,66	W/m ² K	
U _{Slim} :	0,49	W/m ² K	

U_{Clim}: 0,38 W/m² K

F_{Llim}: 0,31

	Transmitar	ncia límite d	de huecos l	J _{Hlim} W/m ² K	Factor solar modificado limite de huecos F _{Hlim}							
					Baja	carga in	arga interna					
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO		
de 0 a 10	3,5	3,5	3,5	3,5	-	-	-	-	-	-		
de 11 a 20	3,0	3,5	3,5	3,5	-	-	-	-	-	-		
de 21 a 30	2,5	2,9	3,5	3,5	-	-	-	0,58	-	0,61		
de 31 a 40	2,2	2,6	3,4	3,4	-	-	-	0,46	-	0,49		
de 41 a 50	2,1	2,5	3,2	3,2	-	-	0,61	0,38	0,54	0,41		
de 51 a 60	1,9	2,3	3,0	3,0	0,49	-	0,53	0,33	0,48	0,36		

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67176

Documento Básico HE Ahorro de Energía

D.2.15 ZONA CLIMÁTICA D3

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,66 W/m² K U_{Slim}: 0,49 W/m² K

U_{Clim}: 0,38 W/m² K

F_{Llim}: 0,28

	Transmitar	Factor solar modificado límite de huecos F _{Hlim}								
					Baja	carga in	terna	Alta	carga in	terna
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO
de 0 a 10	3,5	3,5	3,5	3,5	-	-	-	-	-	-
de 11 a 20	3,0	3,5	3,5	3,5	-	-	-	-	-	-
de 21 a 30	2,5	2,9	3,5	3,5	-	-	-	0,54	-	0,57
de 31 a 40	2,2	2,6	3,4	3,4	-	-	-	0,42	0,58	0,45
de 41 a 50	2,1	2,5	3,2	3,2	0,50	-	0,53	0,35	0,49	0,37
de 51 a 60	1,9	2,3	3,0	3,0	0,42	0,61	0,46	0,30	0,43	0,32

D.2.16 ZONA CLIMÁTICA E1

Transmitancia límite de muros de fachada y cerramientos en contacto con el terreno

Transmitancia límite de suelos

Transmitancia límite de cubiertas

Factor solar modificado límite de lucernarios

U_{Mlim}: 0,57 W/m² K U_{Slim}: 0,48 W/m² K U_{Clim}: 0,35 W/m² K F_{Llim}: 0,36

	Transmitar	ncia límite d	de huecos l	J _{Hlim} W/m ² K	Factor solar modificado límite de hueco					
				•••••	Baja	carga ir	nterna	Alta	carga in	terna
% de huecos	N/NE/NO	E/O	S	SE/SO	E/O	S	SE/SO	E/O	S	SE/SO
de 0 a 10	3,1	3,1	3,1	3,1	-	-	-	-	-	-
de 11 a 20	3,1	3,1	3,1	3,1	-	-	-	-	-	-
de 21 a 30	2,6	3,0	3,1	3,1	-	-	-	-	-	-
de 31 a 40	2,2	2,7	3,1	3,1	-	-	-	0,54	-	0,56
de 41 a 50	2,0	2,4	3,1	3,1	-	-	-	0,45	0,60	0,49
de 51 a 60	1,9	2,3	3,0	3,0	-	-	-	0,40	0,54	0,43

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67177

Documento Básico HE Ahorro de Energía

Apéndice E Valores orientativos de los parámetros característicos de la envolvente térmica

E.1 Características generales

Este apéndice aporta valores orientativos de los parámetros característicos de la envolvente térmica para el predimensionado de soluciones constructivas en uso residencial.

El uso de soluciones constructivas con parámetros característicos iguales a los indicados no garantiza el cumplimiento de la exigencia pero debería conducir a soluciones próximas a su cumplimiento. Los valores se han obtenido considerando unos puentes térmicos equivalentes a los del edificio de referencia y un edificio de una compacidad media.

Para simplificar el uso de estas tablas se ha tomado como límite de aplicación una superficie total de huecos no superior al 15% de la superficie útil. Las transmitancias térmicas de huecos y el factor solar modificado recomendados deberían reducirse respecto a los indicados en caso de tener relaciones mayores de superficie de huecos respecto a la superficie útil.

La descripción de la captación solar en invierno es cualitativa. Es alta para edificios con ventanas sin obstáculos orientadas al sur, sureste o suroeste, y baja para orientaciones norte, noreste, noroeste, o para cualquier orientación en el caso de existir obstáculos que impidan la radiación directa sobre los huecos. Para cada nivel de captación y zona climática se proporciona un rango de transmitancias que corresponde a un porcentaje total de huecos respecto a la superficie útil entre el 15% (nivel inferior) y el 10% (nivel superior).

E.2 Parámetros característicos de la envolvente térmica

Tabla E.1. Transmitancia del elemento [W/m² K]

		Zona Climática										
Transmitancia del elemento [W/m² K]	α	A	В	С	D	Е						
U _M	0.94	0.50	0.38	0.29	0.27	0.25						
Us	0.53	0.53	0.46	0.36	0.34	0.31						
Uc	0.50	0.47	0.33	0.23	0.22	0.19						

 $\textbf{U}_{\text{M}}\!\!:$ Transmitancia térmica de muros de fachada y cerramientos en contacto con el terreno

U_S: Transmitancia térmica de suelos (forjados en contacto con el aire exterior)

U_C: Transmitancia térmica de cubiertas

Tabla E.2. Transmitancia térmica de huecos [W/m² K]

Transmitancia té huecos [W/n		α	A	В	C	D	E
	Alta	5.5 – 5.7	2.6 – 3.5	2.1 – 2.7	1.9 – 2.1	1.8 – 2.1	1.9 – 2.0
Captación solar	Media	5.1 – 5.7	2.3 – 3.1	1.8 – 2.3	1.6 – 2.0	1.6 – 1.8	1.6 – 1.7
	Baja	4.7 – 5.7	1.8 – 2.6	1.4 – 2.0	1.2 – 1.6	1.2 – 1.4	1.2 – 1.3

NOTA: Para el factor solar modificado se podrá tomar como referencia, para zonas climáticas con un verano tipo 4, un valor inferior a 0,57 en orientación sur/sureste/suroeste, e inferior a 0,55 en orientación este/oeste.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67178

Documento Básico HE Ahorro de energía

Sección HE 2 Rendimiento de las instalaciones térmicas

Exigencia básica HE 2: Rendimiento de las instalaciones térmicas

Los *edificios* dispondrán de instalaciones térmicas apropiadas destinadas a proporcionar el *bienestar térmico* de sus ocupantes. Esta exigencia se desarrolla actualmente en el vigente Reglamento de Instalaciones Térmicas en los Edificios, RITE, y su aplicación quedará definida en el *proyecto* del *edificio*.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67179

Documento Básico HE Ahorro de energía

Sección HE 3 Eficiencia Energética de las Instalaciones de Iluminación

1 Ámbito de aplicación

- 1 Esta sección es de aplicación a las instalaciones de iluminación interior en:
 - a) a edificios de nueva construcción;
 - b) intervención en edificios existentes con una superficie útil total final (incluidas las partes ampliadas, en su caso) superior a 1000 m2, donde se renueve más del 25% de la superficie iluminada;
 - c) otras intervenciones en edificios existentes en las que se renueve o amplíe una parte de la instalación, en cuyo caso se adecuará la parte de la instalación renovada o ampliada para que se cumplan los valores de eficiencia energética límite en función de la actividad y, cuando la renovación afecte a zonas del edificio para las cuales se establezca la obligatoriedad de sistemas de control o regulación, se dispondrán estos sistemas;
 - d) cambio de uso característico del edificio;
 - e) cambios de actividad en una zona del edificio que impliquen un valor más bajo del *Valor de Eficiencia Energética de la Instalación* límite, respecto al de la actividad inicial, en cuyo caso se adecuará la instalación de dicha zona.
- 2 Se excluyen del ámbito de aplicación:
 - a) construcciones provisionales con un plazo previsto de utilización igual o inferior a dos años;
 - edificios industriales, de la defensa y agrícolas o partes de los mismos, en la parte destinada a talleres y procesos industriales, de la defensa y agrícolas no residenciales;
 - c) edificios independientes con una superficie útil total inferior a 50 m2:
 - d) interiores de viviendas.
 - e) los edificios históricos protegidos cuando así lo determine el órgano competente que deba dictaminar en materia de protección histórico-artística.
- 3 En los casos excluidos en el punto anterior, en el proyecto se justificarán las soluciones adoptadas, en su caso, para el ahorro de energía en la instalación de iluminación.
- 4 Se excluyen, también, de este ámbito de aplicación los alumbrados de emergencia.

2 Caracterización y cuantificación de las exigencias

2.1 Valor de Eficiencia Energética de la Instalación

1 La eficiencia energética de una instalación de iluminación de una zona, se determinará mediante el valor de eficiencia energética de la instalación VEEI (W/m2) por cada 100 lux mediante la siguiente expresión:

$$VEEI = \frac{P \cdot 100}{S \cdot E_m} \tag{2.1}$$

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67180

Documento Básico HE Ahorro de energía

siendo

- P la potencia de la lámpara más el equipo auxiliar [W];
- S la superfície iluminada [m²];
- E_m la iluminancia media horizontal mantenida [lux]
- 2 Los valores de eficiencia energética límite en recintos interiores de un edificio se establecen en la tabla 2.1. Estos valores incluyen la iluminación general y la iluminación de acento, pero no las instalaciones de iluminación de escaparates y zonas expositivas.

Tabla 2.1 Valores límite de eficiencia energética de la instalación

Zonas de actividad diferenciada	VEEI límite
administrativo en general	3,0
andenes de estaciones de transporte	3,0
pabellones de exposición o ferias	3,0
salas de diagnóstico (1)	3,5
aulas y laboratorios (2)	3,5
habitaciones de hospital (3)	4,0
recintos interiores no descritos en este listado	4,0
zonas comunes (4)	4,0
almacenes, archivos, salas técnicas y cocinas	4,0
aparcamientos	4,0
espacios deportivos (5)	4,0
estaciones de transporte (6)	5,0
supermercados, hipermercados y grandes almacenes	5,0
bibliotecas, museos y galerías de arte	5,0
zonas comunes en edificios no residenciales	6,0
centros comerciales (excluidas tiendas) (7)	6,0
hostelería y restauración (8)	8,0
religioso en general	8,0
salones de actos, auditorios y salas de usos múltiples y convenciones, salas de ocio o espectáculo, salas de reuniones y salas de conferencias (9)	8,0
tiendas y pequeño comercio	8,0
habitaciones de hoteles, hostales, etc.	10,0
locales con nivel de iluminación superior a 600lux	2,5

⁽¹⁾ Incluye la instalación de *iluminación general* de salas como salas de examen general, salas de emergencia, salas de escaner y radiología, salas de examen ocular y auditivo y salas de tratamiento. Sin embargo quedan excluidos locales como las salas de operación, quirófanos, unidades de cuidados intensivos, dentista, salas de descontaminación, salas de autopsias y mortuorios y otras salas que por su actividad puedan considerarse como salas especiales.

otras salas que por su actividad puedan considerarse como salas especiales.

(2) Incluye la instalación de iluminación del aula y las pizarras de las aulas de enseñanza, aulas de práctica de ordenador, música, laboratorios de lenguaje, aulas de dibujo técnico, aulas de prácticas y laboratorios, manualidades, talleres de enseñanza y aulas de arte, aulas de preparación y talleres, aulas comunes de estudio y aulas de reunión, aulas clases nocturnas y educación de adultos, salas de lectura, quarderías, salas de juegos de quarderías y sala de manualidades.

salas de lectura, guarderías, salas de juegos de guarderías y sala de manualidades.

(3) Incluye la instalación de iluminación interior de la habitación y baño, formada por *iluminación general*, iluminación de lectura e iluminación para exámenes simples.

iluminación para exámenes simples.

(4) Espacios utilizados por cualquier persona o usuario, como recibidor, vestíbulos, pasillos, escaleras, espacios de tránsito de personas, aseos públicos, etc.

(5) Incluye las instalaciones de iluminación del terreno de juego y graderíos de espacios deportivos, tanto para actividades de entre-

[&]quot;Incluye las instalaciones de iluminación del terreno de juego y graderíos de espacios deportivos, tanto para actividades de entrenamiento y competición, pero no se incluye las instalaciones de iluminación necesarias para las retransmisiones televisadas.
Los graderíos serán asimilables a zonas comunes del grupo 1

Los graderíos serán asimilables a zonas comunes del grupo 1

(6) Espacios destinados al tránsito de viajeros como recibidor de terminales, salas de llegadas y salidas de pasajeros, salas de recogida de equipajes, áreas de conexión, de ascensores, áreas de mostradores de taquillas, facturación e información, áreas de espera, salas de consigna, etc.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67

Documento Básico HE Ahorro de energía

2.2 Potencia instalada en edificio

La potencia instalada en iluminación, teniendo en cuenta la potencia de lámparas y equipos auxiliares, no superará los valores especificados en la Tabla 2.2.

Tabla 2.2 Potencia máxima de iluminación

Uso del edificio	Potencia máxima instalada [W/m2]
Administrativo	12
Aparcamiento	5
Comercial	15
Docente	15
Hospitalario	15
Restauración	18
Auditorios, teatros, cines	15
Residencial Público	12
Otros	10
Edificios con nivel de iluminación superior a 600lux	25

2.3 Sistemas de control y regulación

- Las instalaciones de iluminación dispondrán, para cada zona, de un sistema de control y regulación con las siguientes condiciones:
 - toda zona dispondrá al menos de un sistema de encendido y apagado manual, no aceptándose los sistemas de encendido y apagado en cuadros eléctricos como único sistema de control. Toda zona dispondrá de un sistema de encendidos por horario centralizado en cada cuadro eléctrico. Las zonas de uso esporádico dispondrán de un control de encendido y apagado por sistema de detección de presencia temporizado o sistema de pulsador temporizado;
 - b) se instalarán sistemas de aprovechamiento de la luz natural, que regulen proporcionalmente y de manera automática por sensor de luminosidad el nivel de iluminación en función del aporte de luz natural de las luminarias de las habitaciones de menos de 6 metros de profundidad y en las dos primeras líneas paralelas de luminarias situadas a una distancia inferior a 5 metros de la ventana, y en todas las situadas bajo un lucernario, cuando se den las siguientes condiciones:
 - en todas las zonas que cuenten con cerramientos acristalados al exterior, cuando éstas cumplan simultáneamente las siguientes condiciones:

⁽⁷⁾ Incluye la instalación de iluminación general e iluminación de acento de recibidor, recepción, pasillos, escaleras, vestuarios y

aseos de los centros comerciales.

(8) Incluye los espacios destinados a las actividades propias del servicio al público como recibidor, recepción, restaurante, bar, comedor, auto-servicio o buffet, pasillos, escaleras, vestuarios, servicios, aseos, etc.

(9) Incluye la instalación de *iluminación general* e *iluminación de acento*. En el caso de cines, teatros, salas de conciertos, etc. se

excluye la iluminación con fines de espectáculo, incluyendo la representación y el escenario.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67182

Documento Básico HE Ahorro de energía

Figura 2.1

- que el ángulo θ sea superior a 65° (θ -> 65°), siendo θ el ángulo desde el punto medio del acristalamiento hasta la cota máxima del edificio obstáculo, medido en grados sexagesimales;
 - que se cumpla la expresión: T(A_w/A)>0,11

siendo

- T coeficiente de transmisión luminosa del vidrio de la ventana del local en tanto por uno.
- Aw área de acristalamiento de la ventana de la zona [m²].
- A área total de las fachadas de la zona, con ventanas al exterior o al patio interior o al atrio [m2].
 - ii) en todas las zonas que cuenten con cerramientos acristalados a patios o atrios, cuando éstas cumplan simultáneamente las siguientes condiciones:
 - en el caso de patios no cubiertos cuando éstos tengan una anchura (ai) superior a 2 veces la distancia (hi), siendo hi la distancia entre el suelo de la planta donde se encuentre la zona en estudio, y la cubierta del edificio;

Edificio objeto A4 Locales con aporte de luz natural A3 Patio interior

Figura 2.2

En el caso de patios cubiertos por acristalamientos cuando su anchura (ai) sea superior a 2/T_c veces la distancia (h_i), siendo h_i la distancia entre la planta donde se encuentre el local en estudio y la cubierta del edificio, y siendo T_c el coeficiente de transmisión luminosa del vidrio de cerramiento del patio, expresado en %.

Figura 2.3

que se cumpla la expresión T(A_w/A)>0,11

siendo

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67183

Documento Básico HE Ahorro de energía

- T coeficiente de transmisión luminosa del vidrio de la ventana del local en tanto por uno.
- Aw área de acristalamiento de la ventana de la zona [m²].
- A área total de las superficies interiores del local (suelo + techo + paredes + ventanas) [m²].
- c) Quedan excluidas de cumplir la exigencia del apartado b), las siguientes zonas de la tabla 2.1:
 - i) zonas comunes en edificios residenciales.
 - ii) habitaciones de hospital.
 - iii) habitaciones de hoteles, hostales, etc.
 - iv) tiendas y pequeño comercio.

3 Verificación y justificación del cumplimiento de la exigencia

3.1 Procedimiento de verificación

- 1 Para la aplicación de esta sección debe seguirse la secuencia de verificaciones que se expone a continuación:
 - a) cálculo del valor de eficiencia energética de la instalación VEEI en cada zona, constatando que no se superan los valores límite consignados en la Tabla 2.1 del apartado 2.1;
 - cálculo del valor de potencia instalada en el edificio en iluminación a nivel global, constatando que no superan los valores límite consignados en la Tabla 2.2 del apartado 2.2;
 - c) comprobación de la existencia de un sistema de control y, en su caso, de regulación que optimice el aprovechamiento de la luz natural, cumpliendo lo dispuesto en el apartado 2.3;
 - d) verificación de la existencia de un plan de mantenimiento, que cumpla con lo dispuesto en el apartado 5.

3.2 Justificación del cumplimiento de la exigencia

- 1 Los documentos del proyecto han de incluir la siguiente información:
- a) relativa al edificio
 - Potencia total instalada en el edificio en los conjuntos: lámpara más equipo auxiliar (P_{TOT}).
 - Superficie total iluminada del edificio (S_{TOT}).
 - Potencia total instalada en el edificio en los conjuntos: lámpara más equipo auxiliar por unidad de superficie iluminada (P_{TOT}/S_{TOT}).

b) relativo a cada zona

- el índice del local (K) utilizado en el cálculo;
- el numero de puntos considerados en el proyecto;
- el factor de mantenimiento (F_m) previsto;
- la iluminancia media horizontal mantenida (E_m) obtenida;
- el índice de deslumbramiento unificado (UGR) alcanzado;
- los índices de rendimiento de color (Ra) de las lámparas seleccionadas;
- el valor de eficiencia energética de la instalación (VEEI) resultante en el cálculo.
- las potencias de los conjuntos: lámpara más equipo auxiliar
- la eficiencia de las lámparas utilizadas, en términos de lum/W
- 2 Asimismo debe justificarse en la memoria del proyecto para cada zona el sistema de control y regulación que corresponda.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67184

Documento Básico HE Ahorro de energía

4 Cálculo

4.1 Datos previos

- 1 Para determinar el cálculo y las soluciones luminotécnicas de las instalaciones de iluminación interior, se tendrán en cuenta parámetros tales como:
 - a) el uso de la zona a iluminar;
 - b) el tipo de tarea visual a realizar;
 - c) las necesidades de luz y del usuario del local;
 - d) el *índice del local* K o dimensiones del espacio (longitud, anchura y altura útil);
 - e) las reflectancias de las paredes, techo y suelo de la sala;
 - f) las características y tipo de techo;
 - g) las condiciones de la luz natural;
 - h) el tipo de acabado y decoración;
 - i) el mobiliario previsto.
- 2 Los parámetros que definen la calidad y confort lumínico deben establecerse en la memoria del proyecto. A efectos del cumplimiento de las exigencias de esta sección, se consideran como aceptables los valores establecidos en la norma UNE EN 12464-1 y en la norma UNE EN 12193.

4.2 Método de cálculo

- El método de cálculo utilizado, que quedará establecido en la memoria del proyecto, será el adecuado para el cumplimiento de las exigencias de esta sección y utilizará como datos y parámetros de partida, al menos, los consignados en el apartado 4.1, así como los derivados de los materiales adoptados en las soluciones propuestas, tales como lámparas, equipos auxiliares y luminarias.
- 2 Se obtendrán como mínimo los siguientes resultados para cada zona:
 - a) valor de eficiencia energética de la instalación VEEI;
 - b) iluminancia media horizontal mantenida E_m en el plano de trabajo;
 - c) índice de deslumbramiento unificado UGR para el observador.
 - Asimismo, se incluirán los valores del *índice de rendimiento de color* (Ra) y las potencias de los conjuntos *lámpara* más *equipo auxiliar* utilizados en el cálculo.
- 3 Se obtendrán como mínimo los siguientes resultados para el edificio completo:
 - a) valor de potencia total instalada en lámpara y equipo auxiliar por unidad de área de superficie iluminada.
- 4 El método de cálculo se formalizará bien manualmente o a través de un programa informático, que ejecutará los cálculos referenciados obteniendo como mínimo los resultados mencionados en el punto 2 anterior. Estos programas informáticos podrán establecerse en su caso como Documentos Reconocidos.

5 Mantenimiento y conservación

Para garantizar en el transcurso del tiempo el mantenimiento de los parámetros luminotécnicos adecuados y el valor de eficiencia energética de la instalación VEEI, se elaborará en el proyecto un plan de mantenimiento de las instalaciones de iluminación que contemplará, entre otras acciones, las operaciones de reposición de lámparas con la frecuencia de reemplazamiento, la limpieza de luminarias con la metodología prevista y la limpieza de la zona iluminada, incluyendo en ambas la periodici-

BOLETÍN OFICIAL DEL ESTADO

Núm. 219 Jueves 12 de septiembre de 2013

Sec. I. Pág. 67185

Documento Básico HE Ahorro de energía

dad necesaria. Dicho plan también deberá tener en cuenta los sistemas de regulación y control utilizados en las diferentes zonas.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67186

Documento Básico HE Ahorro de energía

Apéndice A Terminología

Alumbrado de emergencia: instalación de iluminación que, en caso de fallo en el alumbrado normal, suministra la iluminación necesaria para facilitar la visibilidad a los usuarios y que éstos puedan abandonar el edificio, impida situaciones de pánico y permita la visión de las señales indicativas de las salidas y la situación de los equipos y medios de protección existentes.

Coeficiente de transmisión luminosa del vidrio (T): porcentaje de luz natural en su espectro visible que deja pasar un vidrio. Se expresa en tanto por uno o tanto por ciento.

Eficacia luminosa: cociente entre el flujo luminoso emitido y la potencia eléctrica de la fuente. Se expresa en lm/W (lúmenes/vatio).

Equipo auxiliar: equipos eléctricos o electrónicos asociados a la *lámpara*, diferentes para cada tipo de *lámpara*. Su función es el encendido y control de las condiciones de funcionamiento de una *lámpara*. Estos equipos auxiliares, salvo cuando son electrónicos, están formados por combinación de arrancador/cebador, balasto y condensador.

Factor de mantenimiento (F_m): cociente entre la *iluminancia* media sobre el plano de trabajo después de un cierto periodo de uso de una instalación de alumbrado y la *iluminancia* media obtenida bajo la misma condición para la instalación considerada como nueva.

Iluminación de acento: iluminación diseñada para aumentar considerablemente la *iluminancia* de un área limitada o de un objeto con relación a la de su entorno, con alumbrado difuso mínimo.

Iluminación general: iluminación sustancialmente uniforme de un espacio sin tener en cuenta los requisitos locales especiales

Iluminancia: cociente del flujo luminoso $d\phi$ incidente sobre un elemento de la superficie que contiene el punto, por el área dA de ese elemento, siendo la unidad de medida el lux.

Iluminancia inicial (Einicial): iluminancia media cuando la instalación es nueva. Se expresa en lux (lx).

Iluminancia media en el plano horizontal (E): iluminancia promedio sobre el área especificada. Se expresa en lux (lx).

El número mínimo de puntos a considerar en su cálculo, estará en función del *índice del local* (K) y de la obtención de un reparto cuadriculado simétrico.

- a) 4 puntos si K < 1
- b) 9 puntos si 2 > K ≥ 1
- c) 16 puntos si 3 > K ≥ 2
- d) 25 puntos si K ≥ 3

Iluminancia media horizontal mantenida (E_m): valor por debajo del cual no debe descender la *iluminancia* media en el área especificada. Es la *iluminancia* media en el período en el que debe ser realizado el mantenimiento. Se expresa en lux (Ix).

Índice de deslumbramiento unificado (UGR): es el índice de deslumbramiento molesto procedente directamente de las *luminarias* de una instalación de iluminación interior, definido en la publicación CIE (Comisión Internacional de Alumbrado) nº 117.

Índice de rendimiento de color (R_a): efecto de un iluminante sobre el aspecto cromático de los objetos que ilumina por comparación con su aspecto bajo un iluminante de referencia. La forma en que la luz de una *lámpara* reproduce los colores de los objetos iluminados se denomina *índice de rendimiento de color* (R_a). El color que presenta un objeto depende de la distribución de la energía espectral de la luz con que está iluminado y de las características reflexivas selectivas de dicho objeto.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67187

Documento Básico HE Ahorro de energía

Índice del local (K): es función de:

$$K = \frac{L \times A}{H \times (L + A)}$$

siendo

L la longitud del local;

A la anchura del local;

H la distancia del plano de trabajo a las luminarias.

Lámpara: fuente construida para producir una radiación óptica, generalmente visible.

Luminaria: aparato que distribuye, filtra o transforma la luz emitida por una o varias *lámparas* y que, además de los accesorios necesarios para fijarlas, protegerlas y conectarlas al circuito eléctrico de alimentación contiene, en su caso, los equipos auxiliares necesarios para su funcionamiento, definida y regulada en la norma UNE EN 60598-1.

Pérdida de equipo auxiliar: potencia máxima de entrada al *equipo auxiliar*, que será diferente para cada potencia nominal y tipo de *lámpara*.

Potencia nominal de lámpara: potencia de funcionamiento de entrada a la lámpara.

Potencia total del conjunto lámpara más equipo auxiliar: potencia máxima de entrada de los circuitos equipo auxiliar-lámpara, medidos en las condiciones definidas en las normas UNE EN 50294 y UNE EN 60923.

Reflectancia: cociente entre el flujo radiante o luminoso reflejado y el flujo incidente en las condiciones dadas. Se expresa en tanto por ciento o en tanto por uno.

Salas Técnicas: salas donde se ubican instalaciones que dan servicio al edificio como sala de calderas, sala de bombeo, centros de transformación, sala de cuadros eléctricos, sala de contadores, sala de sistemas de alimentación ininterrumpidas o cualquier sala de máquinas, así como salas de fotocopiadoras o reprografía, sala de fax, centralita telefónica, salas de mensajería y empaquetado.

Sistema de control y regulación: conjunto de dispositivos, cableado y componentes destinados a controlar de forma automática o manual el encendido y apagado o el flujo luminoso de una instalación de iluminación. Se distinguen 4 tipos fundamentales:

- a) regulación y control bajo demanda del usuario, por interruptor manual, pulsador, potenciómetro o mando a distancia;
- b) regulación de iluminación artificial según aporte de luz natural por ventanas, cristaleras, lucernarios o claraboyas;
- c) control del encendido y apagado según presencia en la zona;
- d) regulación y control por sistema centralizado de gestión.

Sistema de aprovechamiento de la luz natural: conjunto de dispositivos, cableado y componentes destinados a regular de forma automática el flujo luminoso de una instalación de iluminación, en función del flujo luminoso aportado a la zona por la luz natural, de tal forma ambos flujos aporten un nivel de iluminación fijado en un punto, donde se encontraría el sensor de luz. Existen 2 tipos fundamentales de regulación:

- a) regulación todo/nada: la iluminación se enciende o se apaga por debajo o por encima de un nivel de iluminación prefijado;
- b) regulación progresiva: la iluminación se va ajustando progresivamente según el aporte de luz natural hasta conseguir el nivel de iluminación prefijado.

Sistema de detección de presencia: conjunto de dispositivos, cableado y componentes destinados a controlar de forma automática, el encendido y apagado de una instalación de iluminación en función de presencia o no de personas en la zona. Existen 4 tipos fundamentales de detección:

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67188

Documento Básico HE Ahorro de energía

- a) infrarrojos;
- b) acústicos por ultrasonido;
- c) por microondas;
- d) híbrido de los anteriores.

Sistema de temporización: conjunto de dispositivos, cableado y componentes destinados a controlar de forma automática, el apagado de una instalación de iluminación en función de un tiempo de encendido prefijado.

Zona de actividad diferenciada: espacio o local con un determinado uso y por tanto, con unos parámetros de iluminación acordes con el mismo.

Zonas expositivas: espacios destinados a exponer productos de diferente índole al público.

Zona de uso esporádico: espacios donde la ocupación es aleatoria, no controlada y no permanente, como aseos, pasillos, escaleras, zonas de tránsito, aparcamientos, etc.

Valor de eficiencia energética de la instalación (VEEI): valor que mide la eficiencia energética de una instalación de iluminación de una zona de actividad diferenciada, cuya unidad de medida es (W/m2) por cada 100 lux.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67189

Documento Básico HE Ahorro de energía

Sección HE 4 Contribución solar mínima de agua caliente sanitaria

1 Ámbito de aplicación

- 1 Esta Sección es de aplicación a:
 - a) edificios de nueva construcción o a edificios existentes en que se reforme íntegramente el edificio en sí o la instalación térmica, o en los que se produzca un cambio de uso característico del mismo, en los que exista una demanda de agua caliente sanitaria (ACS) superior a 50 l/d;
 - ampliaciones o intervenciones, no cubiertas en el punto anterior, en edificios existentes con una demanda inicial de ACS superior a 5.000 l/día, que supongan un incremento superior al 50% de la demanda inicial;
 - c) climatizaciones de: piscinas cubiertas nuevas, piscinas cubiertas existentes en las que se renueve la instalación térmica o piscinas descubiertas existentes que pasen a ser cubiertas.

2 Caracterización y cuantificación de las exigencias

2.1 Caracterización de la exigencia

- 1 Se establece una contribución mínima de energía solar térmica en función de la zona climática y de la demanda de ACS o de climatización de piscina del edificio.
- 2 En el caso de ampliaciones e intervenciones en edificios existentes, contemplados en el punto 1 b) del apartado 1, la contribución solar mínima solo afectará al incremento de la demanda de ACS sobre la demanda inicial.

2.2 Cuantificación de la exigencia

2.2.1 Contribución solar mínima para ACS y/o piscinas cubiertas

- 1 La contribución solar mínima anual es la fracción entre los valores anuales de la energía solar aportada exigida y la demanda energética anual para ACS o climatización de piscina cubierta, obtenidos a partir de los valores mensuales.
- 2 En la tabla 2.1 se establece, para cada zona climática y diferentes niveles de demanda de ACS a una temperatura de referencia de 60°C, la contribución solar mínima anual exigida para cubrir las necesidades de ACS.

cve: BOE-A-2013-9511

50

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67190

Documento Básico HE Ahorro de energía

Tabla 2.1. Contribución solar mínima anual para ACS en %.

Demanda total de ACS del	Zona climática					
edificio (I/d)	I	II	Ш	IV	V	
50 – 5.000	30	30	40	50	60	
5.000 - 10.000	30	40	50	60	70	
>10.000	30	50	60	70	70	

3 En la tabla 2.2 se establece, para cada zona climática, la contribución solar mínima anual exigida para cubrir las necesidades de climatización de piscinas cubiertas.

Tabla 2.2. Contribución solar mínima en %. Caso Climatización de piscinas cubiertas

Demanda total de ACS del	Zona climática					
edificio (I/d)	I	II	III	IV	V	
Piscinas cubiertas	30	30	50	60	70	

- 4 La contribución solar mínima para ACS y/o climatización de piscinas cubiertas podrá sustituirse parcial o totalmente mediante una instalación alternativa de otras energías renovables, procesos de cogeneración o fuentes de energía residuales procedentes de la instalación de recuperadores de calor ajenos a la propia instalación térmica del edificio; bien realizada en el propio edificio o bien a través de la conexión a una red de climatización urbana.
- Para poder realizar la sustitución se justificará documentalmente que las emisiones de dióxido de carbono y el consumo de energía primaria no renovable, debidos a la instalación alternativa y todos sus sistemas auxiliares para cubrir completamente la demanda de ACS, o la demanda total de ACS y calefacción si se considera necesario, son iguales o inferiores a las que se obtendrían mediante la correspondiente *instalación solar térmica* y el *sistema de referencia* que se deberá considerar como auxiliar de apoyo para la demanda comparada.
- 6 En los casos en los que el emplazamiento del edificio no cuente con suficiente acceso al sol por barreras externas al mismo, cuando existan limitaciones no subsanables derivadas de la configuración previa del edificio existente en rehabilitación de edificios o cuando existan limitaciones no subsanables derivadas de la aplicación de la normativa urbanística que imposibiliten de forma evidente la disposición de la superficie de captación necesaria en edificios de nueva planta o rehabilitaciones de edificios, o cuando así lo determine el órgano competente que deba dictaminar en materia de protección histórico-artística, deberá sustituirse parcial o totalmente la contribución solar mínima de manera acorde con lo establecido en los párrafos 4 y 5.

2.2.2 Protección contra sobrecalentamientos

- El dimensionado de la instalación se realizará teniendo en cuenta que en ningún mes del año la energía producida por la instalación podrá superar el 110% de la demanda energética y en no más de tres meses el 100% y a estos efectos no se tomarán en consideración aquellos periodos de tiempo en los cuales la demanda energética se sitúe un 50% por debajo de la media correspondiente al resto del año, tomándose medidas de protección.
- 2 En el caso de que en algún mes del año la contribución solar pudiera sobrepasar el 100 % de la demanda energética se adoptarán cualquiera de las siguientes medidas:
 - a) dotar a la instalación de la posibilidad de disipar dichos excedentes (a través de equipos específicos preferentemente pasivos o mediante la circulación nocturna del circuito primario);

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67191

Documento Básico HE Ahorro de energía

- b) tapado parcial del campo de captadores. En este caso el captador solar térmico está aislado del calentamiento producido por la radiación solar y a su vez evacua los posibles excedentes térmicos residuales a través del fluido del circuito primario (que seguirá atravesando el captador);
- c) vaciado parcial del campo de captadores. Esta solución permite evitar el sobrecalentamiento, pero dada la pérdida de parte del fluido del circuito primario, debe ser repuesto por un fluido de características similares, debiendo incluirse este trabajo entre las labores del contrato de mantenimiento;
- d) desvío de los excedentes energéticos a otras aplicaciones existentes;
- e) sistemas de vaciado y llenado automático del campo de captadores.
- 3 En cualquier caso, si existe la posibilidad de evaporación del fluido de transferencia de calor bajo condiciones de estancamiento, el dimensionado del vaso de expansión debe ser capaz de albergar el volumen del medio de transferencia de calor de todo el grupo de captadores completo incluyendo todas las tuberías de conexión de captadores más un 10 %.
- 4 Las instalaciones deben incorporar un sistema de llenado manual o automático que permita llenar el circuito y mantenerlo presurizado. En general, es muy recomendable la adopción de un sistema de llenado automático con la inclusión de un depósito de recarga u otro dispositivo.

2.2.3 Pérdidas por orientación, inclinación y sombras

- 1 Las pérdidas se expresan como porcentaje de la *radiación solar* que incidiría sobre la superficie de captación orientada al sur, a la inclinación óptima y sin sombras.
- 2 La orientación e inclinación del sistema generador y las posibles sombras sobre el mismo serán tales que las pérdidas sean inferiores a los límites establecidos en la tabla 2.3. Este porcentaje de pérdidas permitido no supone una minoración de los requisitos de contribución solar mínima exigida.

Tabla 2.3 Pérdidas límite

Caso	Orientación e inclinación	Sombras	Total
General	10 %	10 %	15 %
Superposición de captadores	20 %	15 %	30 %
Integración arquitectónica de captadores	40 %	20 %	50 %

- 3 En todos los casos se han de cumplir tres condiciones: las *pérdidas por orientación* e inclinación, las *pérdidas por sombras* y las pérdidas totales deberán ser inferiores a los límites estipulados en la tabla anterior, respecto a los valores de energía obtenidos considerando la orientación e inclinación óptimas y sin sombra alguna.
- 4 Se considerará como la orientación óptima el sur y la inclinación óptima, dependiendo del periodo de utilización, uno de los valores siguientes:
 - a) demanda constante anual: la latitud geográfica;
 - b) demanda preferente en invierno: la latitud geográfica + 10 °;
 - c) demanda preferente en verano: la latitud geográfica 10 °.

2.2.4 Sistemas de medida de energía suministrada

- 1 Las instalaciones solares o instalaciones alternativas que las sustituyan de más de 14 kW dispondrán de un sistema de medida de la energía suministrada con objeto de poder verificar el cumplimiento del programa de gestión energética y las inspecciones periódicas de eficiencia energética.
- 2 El diseño del sistema de contabilización de energía y de control debe permitir al usuario de la instalación comprobar de forma directa, visual e inequívoca el correcto funcionamiento de la instalación, de manera que este pueda controlar diariamente la producción de la instalación.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67192

Documento Básico HE Ahorro de energía

- 3 En el caso de viviendas esta visualización y contraste de la energía producida por la instalación con respecto a la producción de proyecto podrá ser verificada de forma centralizada por quien la comunidad delegue o de manera individualizada por cada usuario particular mediante la incorporación de paneles de visualización, visores de lectura de contadores, etc. accesibles.
- 4 En el caso de instalaciones solares con acumulación solar distribuida será suficiente la contabilización de la energía solar de forma centralizada en el circuito de distribución hacia los acumuladores individuales.

2.2.5 Sistemas de acumulación solar y conexión de sistema de generación auxiliar

- El sistema de acumulación solar se debe dimensionar en función de la energía que aporta a lo largo del día, y no solo en función de la potencia del generador (*captadores* solares), por tanto se debe prever una acumulación acorde con la demanda al no ser esta simultánea con la generación.
- 2 Para la aplicación de ACS, el área total de los captadores tendrá un valor tal que se cumpla la condición:

donde.

- A suma de las áreas de los captadores [m²];
- V volumen de la acumulación solar [litros].
- No se permite la conexión de un sistema de generación auxiliar en el acumulador solar. Para los equipos de instalaciones solares que vengan preparados de fábrica para albergar un sistema auxiliar eléctrico, se deberá anular esta posibilidad de forma permanente, mediante sellado irreversible u otro medio.

3 Verificación y justificación del cumplimiento de la exigencia

3.1 Procedimiento de verificación

- 1 Para la aplicación de esta sección debe seguirse la secuencia que se expone a continuación:
 - a) obtención de la contribución solar mínima según el apartado 2.2;
 - b) diseño y dimensionado de la instalación;
 - c) obtención de las pérdidas límite por orientación, inclinación y sombras del apartado 2.2.3;
 - d) cumplimiento de las condiciones de mantenimiento del apartado 5.

3.2 Justificación del cumplimiento de la exigencia

- 1 En la documentación de proyecto figurará:
 - a) la zona climática según la Radiación Solar Global media diaria anual del emplazamiento;
 - b) la contribución solar mínima exigida;
 - c) la demanda de agua caliente sanitaria anual;
- 2 Cuando la demanda se satisfaga mediante una instalación solar térmica, se incluirán también:
 - a) las características y dimensionado de la instalación proyectada;
 - b) contribución solar anual alcanzada:
 - c) plan de vigilancia y plan de mantenimiento de la instalación.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67193

Documento Básico HE Ahorro de energía

3 Cuando toda o parte de la demanda de agua caliente sanitaria se cubra con una instalación alternativa, se justificará el cumplimiento de lo dispuesto en el apartado 4 y 5 del punto 2.2.1.

4 Cálculo

4.1 Cálculo de la demanda

1 Para valorar las demandas se tomarán los valores unitarios que aparecen en la siguiente tabla (Demanda de referencia a 60 °C).

Tabla 4.1. Demanda de referencia a 60 °C(1)

Criterio de demanda	Litros/día·unidad	unidad
Vivienda	28	Por persona
Hospitales y clínicas	55	Por persona
Ambulatorio y centro de salud	41	Por persona
Hotel *****	69	Por persona
Hotel ****	55	Por persona
Hotel ***	41	Por persona
Hotel/hostal **	34	Por persona
Camping	21	Por persona
Hostal/pensión *	28	Por persona
Residencia	41	Por persona
Centro penitenciario	28	Por persona
Albergue	24	Por persona
Vestuarios/Duchas colectivas	21	Por persona
Escuela sin ducha	4	Por persona
Escuela con ducha	21	Por persona
Cuarteles	28	Por persona
Fábricas y talleres	21	Por persona
Oficinas	2	Por persona
Gimnasios	21	Por persona
Restaurantes	8	Por persona
Cafeterías	1	Por persona

⁽¹⁾ Los valores de demanda ofrecidos en esta tabla tienen la función de determinar la fracción solar mínima a abastecer mediante la aplicación de la tabla 2.1. Las demandas de ACS a 60 °C se han obtenido de la norma UNE 94002. Para el cálculo se ha utilizado la ecuación (3.2.) con los valores de Ti= 12 °C (constante) y T = 45 °C.

3 Para una temperatura en el acumulador final diferente de 60 °C, se deberá alcanzar la contribución solar mínima correspondiente a la demanda obtenida con las demandas de referencia a 60 °C. No obstante, la demanda a considerar a efectos de cálculo, según la temperatura elegida, será la que se obtenga a partir de la siguiente expresión:

$$D(T) = \sum_{i=1}^{12} D_i(T)$$
 (4.1)

² Para otros usos se tomarán valores contrastados por la experiencia o recogidos por fuentes de reconocida solvencia.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67194

Documento Básico HE Ahorro de energía

$$D_i(T) = D_i(60^{\circ}C) \frac{60 - T_i}{T - T_i}$$
(4.2)

donde

 $\begin{array}{lll} D(T) & \text{Demanda de agua caliente sanitaria anual a la temperatura T elegida;} \\ D_i(T) & \text{Demanda de agua caliente sanitaria para el mes i a la temperatura T elegida;} \\ D_i(60~^{\circ}C) & \text{Demanda de agua caliente sanitaria para el mes i a la temperatura de 60~^{\circ}C;} \\ T & \text{Temperatura del acumulador final;} \\ T_i & \text{Temperatura media del agua fría en el mes i (según Apéndice B).} \end{array}$

4 En el uso residencial privado el cálculo del número de personas por vivienda deberá hacerse utilizando como valores mínimos los que se relacionan a continuación:

Tabla 4.2. Valores mínimos de ocupación de cálculo en uso residencial privado

Número de dormitorios	1	2	3	4	5	6	≥6
Número de Personas	1,5	3	4	5	6	6	7

5 En los edificios de viviendas multifamiliares se utilizará el factor de centralización correspondiente al número de viviendas del edificio que multiplicará la demanda diaria de agua caliente sanitaria a 60 °C calculada.

Tabla 4.3. Valor del factor de centralización

Nº viviendas	N≤3	4≤N≤10	11≤N≤20	21≤N≤50	51≤N≤75	76≤N≤100	N≥101
Factor de							
centralización	1	0,95	0,90	0,85	0,80	0,75	0,70

- 6 Adicionalmente se tendrán en cuenta las pérdidas caloríficas en distribución/recirculación del agua a los puntos de consumo así como en los sistemas de acumulación.
- 7 Para el cálculo posterior de la contribución solar anual, se estimarán las demandas mensuales tomando en consideración el número de personas correspondiente a la ocupación plena.
- 8 Se tomarán como perteneciente a un único edificio la suma de demandas de agua caliente sanitaria de diversos edificios ejecutados dentro de un mismo recinto, incluidos todos los servicios. Igualmente en el caso de edificios de varias viviendas o usuarios de ACS, a los efectos de esta exigencia, se considera la suma de las demandas de todos ellos.
- 9 En el caso que se justifique un nivel de demanda de ACS que presente diferencias de más del 50% entre los diversos días de la semana, se considerará la correspondiente al día medio de la semana y la capacidad de acumulación será igual a la del día de la semana de mayor demanda.

4.2 Zonas climáticas

1 En la tabla 4.4 se marcan los límites de zonas homogéneas a efectos de la exigencia. Las zonas se han definido teniendo en cuenta la Radiación Solar Global media diaria anual sobre superficie horizontal (H), tomando los intervalos que se relacionan para cada una de las zonas, como se indica a continuación:

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67195

Documento Básico HE Ahorro de energía

Tabla 4.4. Radiación solar global media diaria anual

8				
Zona climática	MJ/m ²	kWh/m²		
I	H < 13,7	H < 3,8		
II	13,7 ≤ H < 15,1	3,8 ≤ H < 4,2		
III	15,1 ≤ H < 16,6	4,2 ≤ H < 4,6		
IV	16,6 ≤ H < 18,0	4,6 ≤ H < 5,0		
V	H ≥ 18,0	H ≥ 5,0		

Para la asignación de la zona climática de la tabla 4.4 podrán emplearse los datos de Radiación Solar Global media diaria anual que para las capitales de provincia se recogen en el documento "Atlas de Radiación Solar en España utilizando datos del SAF de Clima de EUMETSAT", publicado en el año 2012 por la Agencia Estatal de Meteorología. Para aquellas localidades distintas de las capitales de provincia, a efectos de aplicación de este Documento Básico podrá emplearse el dato correspondiente a la capital de provincia, o bien otros datos oficiales de Radiación Solar Global media diaria anual aplicables a dicha localidad correspondientes al período 1983-2005.

5 Mantenimiento

- Sin perjuicio de aquellas operaciones de mantenimiento derivadas de otras normativas, para englobar todas las operaciones necesarias durante la vida de la instalación para asegurar el funcionamiento, aumentar la fiabilidad y prolongar la duración de la misma, se definen dos escalones complementarios de actuación:
 - a) plan de vigilancia;
 - b) plan de mantenimiento preventivo.

5.1 Plan de vigilancia

1 El plan de vigilancia se refiere básicamente a las operaciones que permiten asegurar que los valores operacionales de la instalación sean correctos. Es un plan de observación simple de los parámetros funcionales principales, para verificar el correcto funcionamiento de la instalación. Tendrá el alcance descrito en la tabla 5.1:

Tabla 5.1 Plan de vigilancia

Elemento de la instalación	Operación	Frecuencia (meses)	Descripción
CAPTADORES	Limpieza de cristales	A determinar	Con agua y productos adecuados
	Cristales	3	IV condensaciones en las horas centrales del día
	Juntas	3	IV Agrietamientos y deformaciones
	Absorbedor	3	IV Corrosión, deformación, fugas, etc.
	Conexiones	3	IV fugas
	Estructura	3	IV degradación, indicios de corrosión.
CIRCUITO PRIMARIO	Tubería, aislamiento y sistema de llenado	6	IV Ausencia de humedad y fugas.
	Purgador manual	3	Vaciar el aire del botellín
CIRCUITO	Termómetro	Diaria	IV temperatura
SECUNDARIO	Tubería y aislamiento	6	IV ausencia de humedad y fugas.
	Acumulador solar	3	Purgado de la acumulación de lodos de la parte inferior del depósito.

IV: inspección visual

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67196

Documento Básico HE Ahorro de energía

2 Adicionalmente, durante todo el año se vigilará la instalación con el objeto de prevenir los posibles daños ocasionados por los posibles sobrecalentamientos.

5.2 Plan de mantenimiento

- 1 Son operaciones de inspección visual, verificación de actuaciones y otros, que aplicados a la instalación deben permitir mantener dentro de límites aceptables las condiciones de funcionamiento, prestaciones, protección y durabilidad de la instalación.
- 2 El mantenimiento implicará, como mínimo, una revisión anual de la instalación para instalaciones con superficie de captación inferior a 20 m² y una revisión cada seis meses para instalaciones con superficie de captación superior a 20 m².
- 3 El plan de mantenimiento debe realizarse por personal técnico competente que conozca la tecnología solar térmica y las instalaciones mecánicas en general. La instalación tendrá un libro de mantenimiento en el que se reflejen todas las operaciones realizadas así como el mantenimiento correctivo.
- 4 El mantenimiento ha de incluir todas las operaciones de mantenimiento y sustitución de elementos fungibles o desgastados por el uso, necesarias para asegurar que el sistema funcione correctamente durante su vida útil.
- 5 A continuación se desarrollan de forma detallada las operaciones de mantenimiento que deben realizarse en las instalaciones de energía solar térmica para producción de agua caliente, la periodicidad mínima establecida (en meses) y observaciones en relación con las prevenciones a observar.

Tabla 5.2 Plan de mantenimiento. Sistema de captación

Equipo	Frecuencia (meses)	Descripción
Captadores	6	IV diferencias sobre original
Cristales	6	IV diferencias entre captadores
Juntas	6	IV condensaciones y suciedad
Absorbedor	6	IV agrietamientos, deformaciones
Carcasa	6	IV corrosión, deformaciones
Conexiones	6	IV deformación, oscilaciones, ventanas de respiración
Estructura	6	IV aparición de fugas
Captadores*	6	IV degradación, indicios de corrosión, y apriete de tornillos
Captadores*	12	Tapado parcial del campo de captadores
Captadores*	12	Destapado parcial del campo de captadores
Captadores*	12	Vaciado parcial del campo de captadores
Captadores*	12	Llenado parcial del campo de captadores

^{*} Operaciones a realizar en el caso de optar por las medidas b) o c) del apartado 2.1.2 párrafo 2. IV: inspección visual

Tabla 5.3 Plan de mantenimiento. Sistema de acumulación

Equipo	Frecuencia (meses)	Descripción
Depósito	12	Presencia de lodos en fondo
Ánodos sacrificio	12	Comprobación de desgaste
Ánodos de corriente impresa	12	Comprobación del buen funcionamiento
Aislamiento	12	Comprobar que no hay humedad

IV: inspección visual

cve: BOE-A-2013-9511

57

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67197

Documento Básico HE Ahorro de energía

Tabla 5.4 Plan de mantenimiento. Sistema de intercambio

Equipo	Frecuencia (meses)	Descripción
Intercambiador de placas	12	CF eficiencia y prestaciones
	12	Limpieza
Intercambiador de serpentín	serpentín 12 CF eficiencia y prestaciones	
-	12	Limpieza

CF: control de funcionamiento

Tabla 5.5 Plan de mantenimiento. Sistema de captación

Equipo	Frecuencia (meses)	Descripción
Fluido refrigerante	12	Comprobar su densidad y pH
Estanqueidad	24	Efectuar prueba de presión
Aislamiento al exterior	6	IV degradación protección uniones y ausencia de humedad
Aislamiento al interior	12	IV uniones y ausencia de humedad
Purgador automático	12	CF y limpieza
Purgador manual	6	Vaciar el aire del botellín
Bomba	12 Estanqueidad	
Vaso de expansión cerrado	6	Comprobación de la presión
Vaso de expansión abierto	6	Comprobación del nivel
Sistema de Ilenado	6	CF actuación
Válvula de corte	12	CF actuaciones (abrir y cerrar) para
		evitar agarrotamiento
Válvula de seguridad	12	CF actuación

IV: inspección visual

CF: control de funcionamiento

Tabla 5.6 Plan de mantenimiento. Sistema eléctrico y de control

Equipo	Frecuencia (meses)	Descripción
Cuadro eléctrico	12	Comprobar que está siempre bien cerrado para que no entre polvo
Control diferencial	12	CF actuación
Termostato	12	CF actuación
Verificación del sistema de medida	12	CF actuación

CF: control de funcionamiento

Tabla 5.7 Plan de mantenimiento. Sistema de energía auxiliar

Equipo	Frecuencia (meses)	Descripción				
Sistema auxiliar	12	CF actuación				
Sondas de temperatura	12	CF actuación				

CF: control de funcionamiento

cve: BOE-A-2013-9511

58

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67198

Documento Básico HE Ahorro de energía

Apéndice A Terminología

Absorbedor: componente de un captador solar térmico cuya función es absorber la energía radiante y transferirla en forma de calor a un fluido.

Captador (solar térmico): dispositivo diseñado para absorber la *radiación solar* y transmitir la energía térmica así producida a un fluido de trabajo que circula por su interior.

Carcasa: es el componente del *captador* que conforma su superficie exterior, fija la cubierta, contiene y protege a los restantes componentes del colector y soporta los anclajes del mismo.

Cerramiento: función que realizan los *captadores* cuando constituyen el tejado o la fachada de la construcción arquitectónica, debiendo garantizar la debida estanqueidad y aislamiento térmico.

Circuito primario: circuito del que forman parte los *captadores* y las tuberías que los unen, en el cual el fluido recoge la energía solar y la transmite.

Circuito secundario: circuito en el que se recoge la energía transferida del *circuito primario* para ser distribuida a los puntos de consumo.

Circuito de consumo: circuito por el que circula agua de consumo.

Circulación natural: cuando el movimiento del fluido entre los captadores y el intercambiador del depósito de acumulación se realiza por convección y no de forma forzada.

Depósitos solares conectados en serie invertida: depósitos conectados de forma que el sentido de circulación del agua de consumo es contrario al sentido de circulación de calentamiento del agua solar.

Depósitos solares conectados en paralelo con el circuito secundario equilibrado: depósitos conectados en paralelo de forma que el sentido de circulación del agua de consumo es contrario al sentido de circulación de calentamiento del agua solar.

Elementos de sombreado: cuando los *captador*es protegen a la construcción arquitectónica de la sobrecarga térmica causada por los rayos solares, proporcionando sombras en el tejado o en la fachada del mismo.

Instalación solar térmica: conjunto de componentes encargados de realizar las funciones de captar la radiación solar incidente mediante captadores solares térmicos, transformarla directamente en energía térmica útil calentando un líquido, transportar la energía térmica captada al sistema de intercambio o de acumulación a través de un circuito hidráulico mediante circulación natural por termosifón o circulación forzada por bomba, transferir la energía térmica captada desde el circuito de captadores al circuito de consumo mediante un intercambiador, almacenar dicha energía térmica de forma eficiente, bien en el mismo líquido de trabajo de los captadores, o bien transferirla a otro, para poder utilizarla después de forma directa en los puntos de consumo, asegurar mediante un sistema de regulación y control el correcto funcionamiento de la instalación para proporcionar la máxima energía solar térmica posible y protegerla frente a sobrecalentamientos, congelaciones, etc.. El sistema se complementa con un sistema auxiliar de apoyo.

Los sistemas que conforman la instalación solar térmica para agua caliente son los siguientes:

- a) un sistema de captación formado por los captadores solares de calentamiento de fluido, encargados de transformar la radiación solar incidente en energía térmica de forma que se calienta el fluido de trabajo que circula por ellos;
- b) un sistema de acumulación constituido por uno o varios depósitos que almacenan el agua caliente hasta que se precisa su uso;
- c) un circuito hidráulico constituido por tuberías, bombas, válvulas, etc., que se encarga de establecer el movimiento del fluido caliente hasta el sistema de acumulación;

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67199

Documento Básico HE Ahorro de energía

- d) un sistema de intercambio que realiza la transferencia de energía térmica captada desde el circuito de *captadores*, o *circuito primario*, al agua caliente que se consume;
- e) sistema de regulación y control que se encarga por un lado de asegurar el correcto funcionamiento del equipo para proporcionar la máxima energía solar térmica posible y, por otro, actúa como protección frente a la acción de múltiples factores como sobrecalentamientos del sistema, riesgos de congelaciones, etc.;
- f) adicionalmente, se dispone de un equipo de energía convencional auxiliar que se utiliza para cubrir la demanda que la energía solar no pueda satisfacer directamente, garantizando la continuidad del suministro de agua caliente en casos de escasa radiación solar o demanda superior a la prevista.

Integración arquitectónica de los captadores: disposición de los captadores en la que estos cumplen una doble función, energética y arquitectónica (revestimiento, cerramiento o sombreado) y, además, sustituyen a elementos constructivos convencionales o son elementos constituyentes de la composición arquitectónica.

Irradiancia solar: potencia radiante incidente por unidad de superficie sobre un plano dado. Se expresa en kW/m2.

Irradiación solar: energía incidente por unidad de superficie sobre un plano dado, obtenida por integración de la *irradiancia solar* durante un intervalo de tiempo dado, normalmente una hora o un día. Se mide en kWh/m2.

Pérdidas por orientación: cantidad de *irradiación solar* no aprovechada por el sistema captador a consecuencia de no tener la orientación óptima.

Pérdidas por inclinación: cantidad de *irradiación solar* no aprovechada por el sistema *captador* a consecuencia de no tener la inclinación óptima.

Pérdidas por sombras: cantidad de *irradiación solar* no aprovechada por el sistema *captador* a consecuencia de la existencia de sombras sobre el mismo en algún momento del día.

Radiación solar: es la energía procedente del sol en forma de ondas electromagnéticas.

Radiación Solar Global media diaria anual: radiación solar directa e indirecta (global) que llega a una determinada superficie, tomando el valor anual como suma de valores medios diarios. En este documento se considera una superficie horizontal.

Revestimiento: cuando los *captadores* constituyen parte de la envolvente de una construcción arquitectónica.

Sistema de referencia: se considerará como sistema de referencia para ACS, y como sistema de referencia para calefacción, una caldera de gas con rendimiento medio estacional de 92%.

Sistemas solares prefabricados: instalaciones solares térmicas que se producen bajo condiciones que se presumen uniformes y son ofrecidos a la venta como equipos completos y listos para instalar, bajo un solo nombre comercial. Pueden ser compactos o partidos y, por otro lado, constituir un sistema integrado o bien un conjunto y configuración uniforme de componentes.

Superposición de captadores: disposición de los *captadores* en la que estos se colocan paralelos a la envolvente del edificio sin necesidad de cumplir la doble funcionalidad definida en la *integración arquitectónica*. No se considera admisible la colocación horizontal de los módulos con el fin de favorecer la autolimpieza de los *captadores*.

Temperatura de estancamiento del captador: corresponde a la máxima temperatura del fluido que se obtiene cuando, sometido el *captador* a altos niveles de radiación y temperatura ambiente y siendo la velocidad del viento despreciable, no existe circulación en el *captador* y se alcanzan condiciones cuasiestacionarias.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67200

Documento Básico HE Ahorro de energía

Apéndice B Temperatura media del agua fría

La siguiente tabla contiene la temperatura diaria media mensual (°C) de agua fría para las capitales de provincia, para su uso en el cálculo de la demanda de ACS a temperaturas de cálculo distintas a 60°C:

Tabla B.1 Temperatura diaria media mensual de agua fría (°C)

	D.I IEI	-								0.1		D: .
Capital de provincia	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
A Coruña	10	10	11	12	13	14	16	16	15	14	12	11
Albacete	7	8	9	11	14	17	19	19	17	13	9	7
Alicante/Alacant	11	12	13	14	16	18	20	20	19	16	13	12
Almería	12	12	13	14	16	18	20	21	19	17	14	12
Ávila	6	6	7	9	11	14	17	16	14	11	8	6
Badajoz	9	10	11	13	15	18	20	20	18	15	12	9
Barcelona	9	10	11	12	14	17	19	19	17	15	12	10
Bilbao/Bilbo	9	10	10	11	13	15	17	17	16	14	11	10
Burgos	5	6	7	9	11	13	16	16	14	11	7	6
Cáceres	9	10	11	12	14	18	21	20	19	15	11	9
Cádiz	12	12	13	14	16	18	19	20	19	17	14	12
Castellón/Castelló	10	11	12	13	15	18	19	20	18	16	12	11
Ceuta	11	11	12	13	14	16	18	18	17	15	13	12
Ciudad Real	7	8	10	11	14	17	20	20	17	13	10	7
Córdoba	10	11	12	14	16	19	21	21	19	16	12	10
Cuenca	6	7	8	10	13	16	18	18	16	12	9	7
Girona	8	9	10	11	14	16	19	18	17	14	10	9
Granada	8	9	10	12	14	17	20	19	17	14	11	8
Guadalajara	7	8	9	11	14	17	19	19	16	13	9	7
Huelva	12	12	13	14	16	18	20	20	19	17	14	12
Huesca	7	8	10	11	14	16	19	18	17	13	9	7
Jaén	9	10	11	13	16	19	21	21	19	15	12	9
Las Palmas de Gran	15	15	16	16	17	18	19	19	19	18	17	16
Canaria												
León	6	6	8	9	12	14	16	16	15	11	8	6
Lleida	7	9	10	12	15	17	20	19	17	14	10	7
Logroño	7	8	10	11	13	16	18	18	16	13	10	8
Lugo	7	8	9	10	11	13	15	15	14	12	9	8
Madrid	8	8	10	12	14	17	20	19	17	13	10	8
Málaga	12	12	13	14	16	18	20	20	19	16	14	12
Melilla	12	13	13	14	16	18	20	20	19	17	14	13
Murcia	11	11	12	13	15	17	19	20	18	16	13	11
Ourense	8	10	11	12	14	16	18	18	17	13	11	9
Oviedo	9	9	10	10	12	14	15	16	15	13	10	9
Palencia	6	7	8	10	12	15	17	17	15	12	9	6
Palma de Mallorca	11	11	12	13	15	18	20	20	19	17	14	12
Pamplona/Iruña	7	8	9	10	12	15	17	17	16	13	9	7
Pontevedra	10	11	11	13	14	16	17	17	16	14	12	10
Salamanca	6	7	8	10	12	15	17	17	15	12	8	6
San Sebastián	9	9	10	11	12	14	16	16	15	14	11	9
Santa Cruz de Tenerife	15	15	16	16	17	18	20	20	20	18	17	16
Santa Cruz de Terierrie Santander	10	10	11	11	13	15	16	16	16	14	12	10
Segovia	6	7	8	10	12	15	18	18	15	12	8	6
Seyovia Sevilla	11	11	13	14	16	19	21	21	20	16	13	11
Sevilla Soria	5	6	7	9	11	14	17	16	14	11	8	6
	10	11	12	14	16	18	20	20	19	16	12	11
Tarragona				10	12					12		
Teruel	6	7	8			15	18	17	15		8	6
Toledo	8		11	12	15	18	21	20	18	14	11	8
Valencia	10	11	12	13	15	17	19	20	18	16	13	11
Valladolid	6	8	9	10	12	15	18	18	16	12	9	7
Vitoria-Gasteiz	7	7	8	10	12	14	16	16	14	12	8	7
Zamora	6	8	9	10	13	16	18	18	16	12	9	7
Zaragoza	8	9	10	12	15	17	20	19	17	14	10	8

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67201

Documento Básico HE Ahorro de energía

En los casos en los que la localidad no coincida con la capital de provincia se corregirá la temperatura ambiente diaria media mensual (TambY) según la temperatura de la capital de provincia (TambCP) y la diferencia de altura con respecto a esta (Az = Altura de la localidad – Altura de la Capital de provincia) mediante la siguiente expresión:

TambY = TambCP - B * Az

Donde

B = 0,010 para los meses de octubre a marzo;

B = 0,005 para los meses de abril a septiembre.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67202

Documento Básico HE Ahorro de energía

Sección HE 5 Contribución fotovoltaica mínima de energía eléctrica

1 Generalidades

1.1 Ámbito de aplicación

- 1 Esta Sección es de aplicación a:
 - a) edificios de nueva construcción y a edificios existentes que se reformen íntegramente, o en los que se produzca un cambio de uso característico del mismo, para los usos indicados en la tabla 1.1 cuando se superen los 5.000 m² de superficie construida;
 - ampliaciones en edificios existentes, cuando la ampliación corresponda a alguno de los usos establecidos en tabla 1.1 y la misma supere 5.000 m² de superficie construida.

Se considerará que la superficie construida incluye la superficie del aparcamiento subterráneo (si existe) y excluye las zonas exteriores comunes.

Tabla 1.1 Ámbito de aplicación

rabia iii rambito ao apiioaoioii
Tipo de uso
Hipermercado
Multi-tienda y centros de ocio
Nave de almacenamiento y distribución
Instalaciones deportivas cubiertas
Hospitales, clínicas y residencias asistidas
Pabellones de recintos feriales

- 2. En el caso de edificios ejecutados dentro de una misma parcela catastral, destinados a cualquiera de los usos recogidos en la tabla 1.1, para la comprobación del límite establecido en 5.000 m2, se considerara la suma de la superficie construida de todos ellos.
- 3 Quedan exentos del cumplimiento total o parcial de esta exigencia los edificios históricos protegidos cuando así lo determine el órgano competente que deba dictaminar en materia de protección histórico-artística.

2 Caracterización y cuantificación de la exigencia

2.1 Caracterización de la exigencia

1 Se establece una contribución mínima de energía eléctrica obtenida por sistemas de captación y transformación de energía solar por procedimientos fotovoltaicos.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67203

Documento Básico HE Ahorro de energía

2.2 Cuantificación de la exigencia

2.2.1 Potencia eléctrica mínima

1 La potencia nominal mínima a instalar se calculará mediante la siguiente fórmula:

$$P = C \cdot (0,002 \cdot S - 5) \tag{2.1}$$

Siendo

- P la potencia nominal a instalar [kW];
- C el coeficiente definido en la tabla 2.1 en función de la zona climática establecida en el apartado 4.1;
- S la superficie construida del edificio [m²]:

Tabla 2.1 Coeficiente climático

Zona climática	С
I	1
П	1,1
III	1,2
IV	1,3
V	1,4

- 2 La superficie S a considerar para el caso de edificios destinados a cualquiera de los usos recogidos en la tabla 1.1 ejecutados dentro de una misma parcela catastral, será la suma de todas ellas.
- 3 En todos los casos, la potencia pico mínima del generador será al menos igual a la potencia nominal del inversor. La potencia nominal máxima obligatoria a instalar en todos los casos será de 100 kW.
- 4 La potencia eléctrica mínima de la *instalación solar fotovoltaica* determinada en aplicación de la exigencia básica que se desarrolla en esta sección, podrá sustituirse parcial o totalmente cuando se cubra la producción eléctrica estimada que correspondería a la potencia mínima mediante el aprovechamiento de otras fuentes de energías renovables.
- 5 Para estimar la producción de la instalación fotovoltaica se considerarán los ratios de producción siguientes por zonas climáticas, en kWh/kW:

Tabla 2.2 Ratios de producción por zona climática

	Zona I	Zona II	Zona III	Zona IV	Zona V
Horas equivalentes de referencia anuales (kWh/kW)	1.232	1.362	1.492	1.632	1.753

2.2.2 Pérdidas por orientación, inclinación y sombras

- 1 La disposición de los *módulos* se hará de tal manera que las *pérdidas debidas a la orientación e inclinación del sistema y a las sombras* sobre el mismo sean inferiores a los límites de la tabla 2.3.
- 2 Las pérdidas se expresan como porcentaje de la radiación solar que incidiría sobre la superficie de captación orientada al sur, a la inclinación óptima y sin sombras.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67204

Documento Básico HE Ahorro de energía

Tabla 2.3 Pérdidas límite

Caso	Orientación e inclinación	Sombras	Total
General	10%	10%	15%
Superposición de módulos fotovoltaicos	20%	15%	30%
Integración arquitectónica de módulos fotovoltaicos	40%	20%	50%

- 3 En todos los casos se han de cumplir tres condiciones: las pérdidas por orientación e inclinación, las pérdidas por sombras y las pérdidas totales deberán ser inferiores a los límites estipulados en la tabla anterior, respecto a los valores de energía obtenidos considerando la orientación e inclinación óptimas y sin sombra alguna.
 - Para este cálculo se considerará como orientación óptima el sur y como inclinación óptima la latitud del lugar menos 10°.
- 4 Cuando, por razones arquitectónicas excepcionales no se pueda instalar toda la potencia exigida cumpliendo los requisitos indicados en la tabla 2.3, se justificará esta imposibilidad analizando las distintas alternativas de configuración del edificio y de ubicación de la instalación, debiéndose optar por aquella solución que más se aproxime a las condiciones de máxima producción.

3 Verificación y justificación del cumplimiento de la exigencia

3.1 Procedimiento de verificación

- 1 Para la aplicación de esta sección debe seguirse la secuencia que se expone a continuación:
 - a) obtención de la potencia pico mínima a instalar;
 - b) diseño y dimensionado de la instalación;
 - c) obtención de las pérdidas límite por orientación, inclinación y sombras del apartado 2.2;
 - d) cumplimiento de las condiciones de mantenimiento del apartado 5.

3.2 Justificación del cumplimiento de la exigencia

- 1 En la documentación de proyecto figurará:
 - a) la zona climática de la localidad en la que se ubica el edificio;
 - b) la potencia pico mínima a instalar;
 - c) las características y dimensionado de la instalación proyectada;
 - d) potencia pico alcanzada;
 - e) plan de vigilancia y plan de mantenimiento preventivo de la instalación.

4 Cálculo

4.1 Zonas climáticas

1 En la tabla 4.1 se marcan los límites entre zonas climáticas homogéneas a efectos de la exigencia. Las zonas se han definido teniendo en cuenta la Radiación Solar Global media diaria anual sobre superficie horizontal (H), tomando los intervalos que se relacionan para cada una de las zonas.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67205

Documento Básico HE Ahorro de energía

Tabla 4.1 Radiación Solar Global media diaria anual

Zona climática	MJ/m ²	kWh/m²
I	H < 13,7	H < 3,8
II	13,7 ≤ H < 15,1	$3.8 \le H < 4.2$
III	15,1 ≤ H < 16,6	$4,2 \le H < 4,6$
IV	16,6 ≤ H < 18,0	$4,6 \le H < 5,0$
V	H ≥ 18,0	H ≥ 5,0

Para la asignación de la zona climática de la tabla 4.1 podrán emplearse los datos de Radiación Solar Global media diaria anual que para las capitales de provincia se recogen en el documento "Atlas de Radiación Solar en España utilizando datos del SAF de Clima de EUMETSAT", publicado en el año 2012 por la Agencia Estatal de Meteorología. Para aquellas localidades distintas de las capitales de provincia, a efectos de aplicación de este Documento Básico podrá emplearse el dato correspondiente a la capital de provincia, o bien otros datos oficiales de Radiación Solar Global media diaria anual aplicables a dicha localidad correspondientes al período 1983-2005.

5 Condiciones generales de la instalación

5.1 Definición

- 1 Una instalación solar fotovoltaica conectada a red está constituida por un conjunto de componentes encargados de realizar las funciones de captar la radiación solar, generando energía eléctrica en forma de corriente continua y adaptarla a las características que la hagan utilizable por los consumidores conectados a la red de distribución de corriente alterna. Este tipo de instalaciones fotovoltaicas trabajan en paralelo con el resto de los sistemas de generación que suministran a la red de distribución.
- 2 Los sistemas que conforman la instalación solar fotovoltaica conectada a la red son los siguientes:
 - a) sistema generador fotovoltaico, compuesto de módulos que a su vez contienen un conjunto elementos semiconductores conectados entre sí, denominados células, y que transforman la energía solar en energía eléctrica;
 - b) inversor que transforma la corriente continua producida por los módulos en corriente alterna de las mismas características que la de la red eléctrica;
 - c) conjunto de protecciones, elementos de seguridad, de maniobra, de medida y auxiliares.
- 3 Se entiende por potencia pico o potencia máxima del generador aquella que puede entregar el módulo en las condiciones estándares de medida. Estas condiciones se definen del modo siguiente:
 - a) irradiancia 1000 W/m²;
 - b) distribución espectral AM 1,5 G;
 - c) incidencia normal;
 - d) temperatura de la célula 25 °C.

5.2 Criterios generales de cálculo

5.2.1 Sistema generador fotovoltaico

1 El *módulo fotovoltaico* llevará de forma claramente visible e indeleble el modelo y nombre o logotipo del fabricante, potencia pico, así como una identificación individual o número de serie trazable a la fecha de fabricación.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67206

Documento Básico HE Ahorro de energía

- 2 Los módulos serán Clase II y tendrán un grado de protección mínimo IP65. Por motivos de seguridad y para facilitar el mantenimiento y reparación del generador, se instalarán los elementos necesarios (fusibles, interruptores, etc.) para la desconexión, de forma independiente y en ambos terminales, de cada una de las ramas del resto del generador.
- 3 Las exigencias del Código Técnico de la Edificación relativas a seguridad estructural serán de aplicación a la estructura soporte de módulos.
- 4 El cálculo y la construcción de la estructura y el sistema de fijación de módulos permitirá las necesarias dilataciones térmicas sin transmitir cargas que puedan afectar a la integridad de los módulos, siguiendo las indicaciones del fabricante. La estructura se realizará teniendo en cuenta la facilidad de montaje y desmontaje, y la posible necesidad de sustituciones de elementos.
- 5 La estructura se protegerá superficialmente contra la acción de los agentes ambientales.
- 6 En el caso de instalaciones integradas en cubierta que hagan las veces de la cubierta del edificio, la estructura y la estanqueidad entre módulos se ajustará a las exigencias indicadas en la parte correspondiente del Código Técnico de la Edificación y demás normativa de aplicación.

5.2.2 Inversor

- 1 Los inversores cumplirán con las directivas comunitarias de Seguridad Eléctrica en Baja Tensión y Compatibilidad Electromagnética.
- 2 Las características básicas de los inversores serán las siguientes:
 - a) principio de funcionamiento: fuente de corriente;
 - b) autoconmutado;
 - c) seguimiento automático del punto de máxima potencia del generador,
 - d) no funcionará en isla o modo aislado.
- 3 La potencia del inversor será como mínimo el 80% de la potencia pico real del generador fotovoltaico.

5.2.3 Protecciones y elementos de seguridad

- 1 La instalación incorporará todos los elementos y características necesarias para garantizar en todo momento la calidad del suministro eléctrico, de modo que cumplan las directivas comunitarias de Seguridad Eléctrica en Baja Tensión y Compatibilidad Electromagnética.
- 2 Se incluirán todos los elementos necesarios de seguridad y protecciones propias de las personas y de la instalación fotovoltaica, asegurando la protección frente a contactos directos e indirectos, cortocircuitos, sobrecargas, así como otros elementos y protecciones que resulten de la aplicación de la legislación vigente. En particular, se usará en la parte de corriente continua de la instalación protección Clase II o aislamiento equivalente cuando se trate de un emplazamiento accesible. Los materiales situados a la intemperie tendrán al menos un grado de protección IP65.
- 3 La instalación debe permitir la desconexión y seccionamiento del inversor, tanto en la parte de corriente continua como en la de corriente alterna, para facilitar las tareas de mantenimiento.

6 Mantenimiento

- 1 Para englobar las operaciones necesarias durante la vida de la instalación para asegurar el funcionamiento, aumentar la fiabilidad y prolongar la duración de la misma, se definen dos escalones complementarios de actuación:
 - a) plan de vigilancia;
 - b) plan de mantenimiento preventivo.

6.1 Plan de vigilancia

1 El plan de vigilancia se refiere básicamente a las operaciones que permiten asegurar que los valores operacionales de la instalación son correctos. Es un plan de observación simple de los parámetros funcionales principales (energía, tensión etc.) para verificar el correcto

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67207

Documento Básico HE Ahorro de energía

funcionamiento de la instalación, incluyendo la limpieza de los *módulos* en el caso de que sea necesario.

6.2 Plan de mantenimiento preventivo

- 1 Son operaciones de inspección visual, verificación de actuaciones y otros, que aplicados a la instalación deben permitir mantener dentro de límites aceptables las condiciones de funcionamiento, prestaciones, protección y durabilidad de la instalación.
- 2 El plan de mantenimiento debe realizarse por personal técnico competente que conozca la tecnología solar fotovoltaica y las instalaciones eléctricas en general. La instalación tendrá un libro de mantenimiento en el que se reflejen todas las operaciones realizadas así como el mantenimiento correctivo.
- 3 El mantenimiento preventivo ha de incluir todas las operaciones de mantenimiento y sustitución de elementos fungibles o desgastados por el uso, necesarias para asegurar que el sistema funcione correctamente durante su vida útil.
- 4 El mantenimiento preventivo de la instalación incluirá, al menos, una revisión anual en la que se realizarán las siguientes actividades:
 - a) comprobación de las protecciones eléctricas;
 - b) comprobación del estado de los módulos: comprobar la situación respecto al proyecto original y verificar el estado de las conexiones;
 - c) comprobación del estado del inversor: funcionamiento, lámparas de señalizaciones, alarmas, etc;
 - d) comprobación del estado mecánico de cables y terminales (incluyendo cables de tomas de tierra y reapriete de bornas), pletinas, transformadores, ventiladores/extractores, uniones, reaprietes, limpieza;
 - e) Comprobación de la instalación de puesta a tierra, realizándose la medida de la resistencia de tierra;
 - f) Comprobación de la estructura soporte de los módulos, verificación de los sistemas de anclaje y reapriete de sujeciones.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67208

Documento Básico HE Ahorro de energía

Apéndice A Terminología

Célula solar o fotovoltaica: dispositivo que transforma la radiación solar en energía eléctrica.

Cerramiento: función que realizan los *módulos* que constituyen el tejado o la fachada de la construcción arquitectónica, debiendo garantizar la debida estanqueidad y aislamiento térmico.

Elementos de sombreado: módulos fotovoltaicos que protegen a la construcción arquitectónica de la sobrecarga térmica causada por los rayos solares, proporcionando sombras en el tejado o en la fachada del mismo.

Fuente de corriente: sistema de funcionamiento del inversor, mediante el cual se produce una inyección de corriente alterna a la red de distribución de la compañía eléctrica.

Funcionamiento en isla o modo aislado: cuando el inversor sigue funcionando e inyectando energía a la red aun cuando en ésta no hay tensión.

Generador (fotovoltaico): asociación en paralelo de ramas fotovoltaicas.

Instalación solar fotovoltaica: aquella que dispone de módulos fotovoltaicos para la conversión directa de la radiación solar en energía eléctrica, sin ningún paso intermedio.

Integración arquitectónica de módulos fotovoltaicos: módulos fotovoltaicos que cumplen una doble función, energética y arquitectónica (revestimiento, cerramiento o sombreado) y, además, sustituyen a elementos constructivos convencionales o son elementos constituyentes de la composición arquitectónica.

Interruptor: dispositivo de seguridad y maniobra.

Irradiación solar: energía incidente por unidad de superficie sobre un plano dado, obtenida por integración de la *irradiancia* durante un intervalo de tiempo dado, normalmente una hora o un día. Se expresa en kWh/m².

Irradiancia solar: potencia radiante incidente por unidad de superficie sobre un plano dado. Se expresa en kW/m².

Módulo o panel fotovoltaico: conjunto de *células solares* directamente interconectadas y encapsuladas como único bloque, entre materiales que las protegen de los efectos de la intemperie.

Pérdidas por inclinación: cantidad de *irradiación solar* no aprovechada por el sistema *generador* a consecuencia de no tener la inclinación óptima.

Pérdidas por orientación: cantidad de *irradiación solar* no aprovechada por el sistema *generador* a consecuencia de no tener la orientación óptima.

Pérdidas por sombras: cantidad de *irradiación solar* no aprovechada por el sistema *generador* a consecuencia de la existencia de sombras sobre el mismo en algún momento del día.

Potencia de la instalación fotovoltaica o potencia nominal: suma de la potencia nominal de los inversores (la especificada por el fabricante) que intervienen en las tres fases de la instalación en condiciones nominales de funcionamiento.

Potencia nominal del generador: suma de las potencias máximas de los módulos fotovoltaicos.

Radiación Solar Global media diaria anual: radiación solar directa e indirecta (global) que llega a una determinada superficie, tomando el valor anual como suma de valores medios diarios. En este documento se considera una superficie horizontal.

Radiación solar: energía procedente del sol en forma de ondas electromagnéticas.

BOLETÍN OFICIAL DEL ESTADO

Jueves 12 de septiembre de 2013

Sec. I. Pág. 67209

Documento Básico HE Ahorro de energía

Rama fotovoltaica: subconjunto de *módulos* interconectados en serie o en asociaciones serieparalelo, con voltaje igual a la tensión nominal del *generador*.

Superposición de módulos fotovoltaicos: módulos fotovoltaicos que se colocan paralelos a la envolvente del edificio sin la doble funcionalidad definida en la *integración arquitectónica*. No obstante no se acepta en este concepto la disposición horizontal con el fin de favorecer la autolimpieza de los *módulos*.

cve: BOE-A-2013-9511

D. L.: M-1/1958 - ISSN: 0212-033X