STAT 447 Assignment 5

Caden Hewlett

2024-02-08

Question 1: Sequential Updating

Consider a joint a joint probabilistic model given by

$$\theta \sim \rho$$
, and $(x_i \mid \theta) \stackrel{iid}{\sim} \nu_{\theta}$, where $i \in \{1, 2, \dots, n\}$

where ρ is a prior distribution for the unknown parameter θ , and $\{x_i\}_{i=1}^n$ is a sequence of observations with conditional distribution ν_{θ} .

Part 1

Write down the posterior distribution of θ given $\{x_i\}_{i=1}^n$.

In a more verbose sense, let Θ be the random variable for the unknown parameter, and θ be the realization of this random variable under the proposed prior distribution. We can then write the following (purely for nomenclature reasons)

$$\rho = p_{\Theta}(\theta), \text{ where } p_{\Theta}(\theta) \text{ is the PMF/PDF given by } \rho$$

$$P(X = x \mid \theta) = p_{X\mid\Theta}(x,\theta), \text{ where } p_{X\mid\Theta}(x,\theta) \text{ is the PMF given by } \nu_{\theta}$$

With this in mind, we can write the posterior of θ given $\{x_i\}_{i=1}^n$, where we describe the event that $\{X_i\}_{i=1}^n = \{x_i\}_{i=1}^n$ using Bayes' Rule.

We will begin by using the most verbose notation possible, for complete clarity.

$$P(\Theta = \theta \mid \{X_i\}_{i=1}^n = \{x_i\}_{i=1}^n) = \frac{p_{\Theta}(\theta)P(\{X_i\}_{i=1}^n = \{x_i\}_{i=1}^n \mid \Theta = \theta)}{P(\{X_i\}_{i=1}^n = \{x_i\}_{i=1}^n)}$$

We start by considering the joint likelihood function.

$$P(\{X_i\}_{i=1}^n = \{x_i\}_{i=1}^n \mid \Theta = \theta) = P((X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_1 = x_1) \mid \Theta = \theta)$$

Then, using intersections, we can write the likelihood as:

$$P(\{X_i\}_{i=1}^n = \{x_i\}_{i=1}^n \mid \Theta = \theta) = P(\bigcap_{i=1}^n (X_i = x_i) \mid \Theta = \theta)$$

Now, we use the following property of *iid* random variables

$$\text{I.I.D} \implies \forall (i \neq j) \in [1, n], \ (X_i \mid \Theta) \perp (X_j \mid \Theta) \implies \forall (i \neq j) \in [1, n], P(X_i \cap X_j \mid \Theta) = P(X_i \mid \Theta) P(X_j \mid \Theta)$$

Hence, we can write the likelihood as:

$$P(\{X_i\}_{i=1}^n = \{x_i\}_{i=1}^n \mid \Theta = \theta) = \prod_{i=1}^n \left(P(X_i = x_i \mid \Theta = \theta)\right) = \prod_{i=1}^n (\nu_\theta) = (\nu_\theta)^n$$

Which, as you can see, simplifies nicely to $(\nu_{\theta})^n$.

Now, our expression simplifies a little bit to the following:

$$P(\Theta = \theta \mid \{X_i\}_{i=1}^n = \{x_i\}_{i=1}^n) = \frac{p_{\Theta}(\theta)\nu_{\theta}^n}{P(\{X_i\}_{i=1}^n = \{x_i\}_{i=1}^n)}$$

If we wished to, we could write the following proportionality directly to conclude:

$$p_{\Theta|X_{1:n}}(\theta, \{x_i\}_{i=1}^n) = \pi_n \propto \rho \cdot \nu_{\theta}^n$$

Or, letting normalizing constant $\mathcal{Z}_{1:n} = P(\{X_i\}_{i=1}^n = \{x_i\}_{i=1}^n)$, we can write:

$$\pi_n(\theta) = \frac{\rho \cdot \nu_{\theta}^n}{P(\{X_i\}_{i=1}^n = \{x_i\}_{i=1}^n)} = (\mathcal{Z}_{1:n}^{-1}) \cdot \rho \cdot \nu_{\theta}^n$$

Giving us a nice expression for the posterior, both in proportionality and equality according to a normalizing constant.

Part 2

Suppose now we get an additional data point x_{n+1} with the same conditional distribution ν_{θ} . Show that using the posterior from part 1 as the *prior* and data equal to just x_{n+1} gives the same posterior distribution as redoing part 1 with the n+1 data points.

We wish to show that:

$$\pi_{(n+1)}(\theta) = \frac{p_{\Theta}(\theta) P(\{X_i\}_{i=1}^{n+1} = \{x_i\}_{i=1}^{n+1} \mid \Theta = \theta)}{P(\{X_i\}_{i=1}^{n+1} = \{x_i\}_{i=1}^{n+1})} = \frac{\pi_n(\theta) P(X_{n+1} = x_{n+1} \mid \Theta = \theta)}{P(X_{n+1} = x_{n+1})}$$

We'll evaluate each expression in turn.

With the first term, we can say directly that:

LHS =
$$\frac{p_{\Theta}(\theta)P(\{X_i\}_{i=1}^{n+1} = \{x_i\}_{i=1}^{n+1} \mid \Theta = \theta)}{P(\{X_i\}_{i=1}^{n+1} = \{x_i\}_{i=1}^{n+1})} = (\mathcal{Z}_{1:(n+1)}^{-1}) \cdot \rho \cdot \nu_{\theta}^{n+1} \propto \rho \cdot \nu_{\theta}^{n+1}$$

By the exact process used in **Part 1**.

More interestingly, we can expand the second term to as follows:

$$\pi_{(n+1)}(\theta) = \frac{\pi_n(\theta)P(X_{n+1} = x_{n+1} \mid \Theta = \theta)}{P(X_{n+1} = x_{n+1})} = (\mathcal{Z}_{n+1}^{-1})\pi_n(\theta)\nu_{\theta}$$

Then, substituting our expression for $\pi_n(\theta)$ from **Part 1**:

$$RHS = (\mathcal{Z}_{n+1}^{-1}) \Big((\mathcal{Z}_{1:n}^{-1}) \cdot \rho \cdot \nu_{\theta}^{n} \Big) \nu_{\theta} = \left(\mathcal{Z}_{n+1}^{-1} \cdot \mathcal{Z}_{1:n}^{-1} \right) \rho \Big(\nu^{n} \cdot \nu^{1} \Big) = (\mathcal{Z}_{n+1}^{-1} \cdot \mathcal{Z}_{1:n}^{-1})^{-1} \rho \cdot \nu_{\theta}^{n+1} \propto \rho \cdot \nu_{\theta}^{n+1}$$

Question 2: Baesian Inference in the Limit of Increasing Data