

Aljabar Matriks: Ukuran Jarak

Euclidean (straight line) distance – The *Euclidean* distance between two points **x** and **y** (whose coordinates are represented by the elements of the corresponding vectors) in p-space is given by

d(x,y) =
$$\sqrt{(x_1 - y_1)^2 + \dots + (x_p - y_p)^2}$$

the Euclidean (straight line) distances are

Notice that the lengths of the vectors are their distances from the origin:

$$d(0, P) = \sqrt{(x_1 - 0)^2 + \dots + (x_p - 0)^2}$$

$$= \sqrt{x_1^2 + \dots + x_p^2}$$

This is yet another place where the Pythagorean Theorem rears its head!

Problem – What if the coordinates of a point **x** (i.e., the elements of vector **x**) are random variables with differing variances?

- Suppose
- we have n pairs of measurements on two variables X_1 and X_2 , each having a mean of zero
- X₁ is more variable than X₂
- X₁ and X₂ vary independently

A scatter diagram of these data might look like this:

Euclidean distance does not account for differences in variation of X₁ and X₂!

We standardize each value of X_i by dividing by its standard deviation.

If we are looking at distances from the origin $D(\mathbf{0}, \mathbf{P})$, we could divide coordinate i by its sample standard deviation $\sqrt{s_{ii}}$:

$$x_{i}^{*} = \frac{X_{i}}{\sqrt{S_{ii}}}$$

The resulting measure is called Statistical Distance or Mahalanobis Distance:

$$d(0,P) = \sqrt{(x_1^*)^2 + \dots + (x_p^*)^2}$$

$$= \sqrt{\left(\frac{\mathsf{X}_1}{\sqrt{\mathsf{S}_{11}}}\right)^2 + \dots + \left(\frac{\mathsf{X}_p}{\sqrt{\mathsf{S}_{pp}}}\right)^2}$$

weight of
$$k_1 = \frac{1}{s_{11}} = \sqrt{\frac{x_1^2}{s_{11}} + \cdots + \frac{x_p^2}{s_{pq}}}$$

$$x_p$$
 has a relative weight of $k_p = \frac{1}{s_{pp}}$

What if the scatter diagram of these data looked like this:

X₁ and X₂ now have an obvious positive correlation!

We can plot a rotated coordinate system on axes \tilde{x}_1 and \tilde{x}_2 :

This suggests that we calculate distance based on the rotated axes \tilde{x}_1 and \tilde{x}_2 .

The relation between the original coordinates (x_1, x_2) and the rotated coordinates $(\tilde{x}_1, \tilde{x}_2)$ is provided by:

$$\tilde{\mathbf{x}}_1 = \mathbf{x}_1 \cos(\theta) + \mathbf{x}_2 \sin(\theta)$$

$$\tilde{x}_2 = -x_1 \sin(\theta) + x_2 \cos(\theta)$$

Now we can write the distance from $P = (\tilde{x}_1, \tilde{x}_2)$ to the origin in terms of the original coordinates x_1 and x_2 of P as

$$d(\mathbf{0},\mathbf{P}) = \sqrt{a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2}$$

where
$$\cos^{2}\left(\theta\right)$$

$$a_{11} = \frac{\cos^{2}\left(\theta\right)s_{11} + 2\sin\left(\theta\right)\cos\left(\theta\right)s_{12} + \sin^{2}\left(\theta\right)s_{22}}{\sin^{2}\left(\theta\right)}$$

$$+ \frac{\sin^{2}\left(\theta\right)}{\cos^{2}\left(\theta\right)s_{22} - 2\sin\left(\theta\right)\cos\left(\theta\right)s_{12} + \sin^{2}\left(\theta\right)s_{11}}$$

$$\mathbf{a}_{22} = \frac{\sin^2(\theta)}{\cos^2(\theta)\mathbf{s}_{11} + 2\sin(\theta)\cos(\theta)\mathbf{s}_{12} + \sin^2(\theta)\mathbf{s}_{22}}$$

$$\frac{\cos^2(\theta)}{\cos^2(\theta)\mathbf{s}_{22} - 2\sin(\theta)\cos(\theta)\mathbf{s}_{12} + \sin^2(\theta)\mathbf{s}_{11}}$$

$$\mathbf{and}$$

$$\cos(\theta)\sin(\theta)$$

$$\mathbf{a}_{12} = \frac{\cos^2(\theta)\mathbf{s}_{11} + 2\sin(\theta)\cos(\theta)\mathbf{s}_{12} + \sin^2(\theta)\mathbf{s}_{22}}{\sin(\theta)\cos(\theta)}$$

$$-\frac{\sin(\theta)\cos(\theta)}{\cos^2(\theta)\mathbf{s}_{22} - 2\sin(\theta)\cos(\theta)\mathbf{s}_{22} + \sin^2(\theta)\mathbf{s}_{22}}$$

Note that the distance from $P = (x_1, x_2)$ to the origin for uncorrelated coordinates x_1 and x_2 is

$$d(\mathbf{0},\mathbf{P}) = \sqrt{a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2}$$

for weights

$$\mathsf{a}_{\mathsf{i}\mathsf{j}} = \frac{\mathsf{1}}{\mathsf{s}_{\mathsf{i}\mathsf{j}}}$$

What if we wish to measure distance from some *fixed* point $Q = (y_1, y_2)$?

In this diagram, $Q = (y_1, y_2) = (x_1, x_2)^{-1}$ is called the centroid of the data.

The distance from any point p to some fixed point Q = (y_1, y_2) is

$$d(\mathbf{P},\mathbf{Q}) = \sqrt{a_{11}(x_1 - y_1)^2 + 2a_{12}(x_1 - y_1)(x_2 - y_2) + a_{22}(x_2 - y_2)^2}$$

Suppose we have the following ten bivariate observations (coordinate sets of (x_1, x_2)):

Obs#	X ₁	X ₂
1	-3	3
2	-2	6
3	-1	4
4	-2	4
5	-3	6
6	-1	6
7	-3	2
8	-3	5
9	0	7
10	-2	7
Χi	-2.0	5.0

The plot of these points would look like this:

The data suggest a positive correlation between x_1 , and x_2 .

The inscribing ellipse (and major and minor

The rotational weights are:

$$a_{11} = \frac{\cos^{2}(45^{0})}{\cos^{2}(45^{0})(1.11) + 2\sin(45^{0})\cos(45^{0})(0.8) + \sin^{2}(45^{0})(2.89)}$$

$$\sin^{2}(\theta)$$

$$\cos^{2}(45^{0})(2.89) - 2\sin(45^{0})\cos(45^{0})(0.8) + \sin^{2}(45^{0})(1.11)$$

$$= 0.6429$$

and:

$$a_{22} = \frac{\sin^{2}\left(45^{0}\right)}{\cos^{2}\left(45^{0}\right)\left(1.11\right) + 2\sin\left(45^{0}\right)\cos\left(45^{0}\right)\left(0.8\right) + \sin^{2}\left(45^{0}\right)\left(2.89\right)}{\cos^{2}\left(45^{0}\right)\left(2.89\right) - 2\sin\left(45^{0}\right)\cos\left(45^{0}\right)\left(0.8\right) + \sin^{2}\left(45^{0}\right)\left(1.11\right)} = 0.6429$$

and:

$$a_{12} = \frac{\sin(45^{\circ})\cos(45^{\circ})}{\cos^{2}(45^{\circ})(1.11) + 2\sin(45^{\circ})\cos(45^{\circ})(0.8) + \sin^{2}(45^{\circ})(2.89)}$$

$$\cos(\theta)\sin(45^{\circ})$$

$$\cos^{2}(45^{\circ})(2.89) - 2\sin(45^{\circ})\cos(45^{\circ})(0.8) + \sin^{2}(45^{\circ})(1.11)$$

$$= -0.3571$$

So the distances of the observed points from their centroid $\mathbf{Q} = (-2.0, 5.0)$ are:

						Euclidean	Mahalanobis
	Obs#	X ₁	X ₂	$\tilde{\mathbf{x}}_1$	$\tilde{\mathbf{x}}_{2}$	D(P,Q)	D(P,Q)
	1	-3	3	0.0000	4.2426	2.2361	1.3363
T.	2	-2	6	2.8284	5.6569	1.0000	0.8018
7	3	-1	4	2.1213	3.5355	1.4142	1.4142
	4	-2	4	1.4142	4.2426	1.0000	0.8018
0	5	-3	6	2.1213	6.3640	1.4142	1.4142
A SECT.	6	-1	6	3.5355	4.9497	1.4142	0.7559
	7	-3	2	-0.7071	3.5355	3.1623	2.0702
	8	-3	5	1.4142	5.6569	1.0000	0.8018
	9	0	7	4.9497	4.9497	2.8284	1.5119
	10	-2	7	3.5355	6.3640	2.0000	1.6036
	Χį	-2.0	5.0				

Mahalonobis distance can easily be generalized to p dimensions:

$$d(\mathbf{P}, \mathbf{Q}) = \sqrt{\sum_{i=1}^{p} a_{ii} (x_i - y_i)^2 + 2\sum_{i=1}^{j-1} \sum_{j=2}^{p} a_{ij} (x_i - y_i) (x_j - y_j)}$$

and all points satisfying

$$\sum_{i=1}^{p} a_{ii} (x_i - y_i)^2 + 2 \sum_{i=1}^{j-1} \sum_{j=2}^{p} a_{ij} (x_i - y_i) (x_j - y_j) = c^2$$

form a hyperellipsoid with centroid **Q**.

Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World