## Sensors

- Converts a physical quantity to be measured into voltage.
- Examples of physical quantity
  position, sound, temperature, pressure, vibration, acceleration
- Transducer is the active element of the sensor.

# 1) Position and speed measurement

Position measurement

- (i) Proximity sensor/Limit switch: Detect if something has reached close enough
- (ii) Potentioneter: Linear or rotany position
- (ii) Linear variable différential Transformer Linear displacement
- (iv) Encoder: measure angles (usually on motors)

Speed measurement

Use finite différence on position data.

 $\frac{ds}{dt} = \frac{P_2 - P_1}{t_2 - t_1} \quad \text{noisy} \quad + 6 \text{ Her}$ 

Sbutterworth bilter R-c hardware
2 Kalmon filter

# Photo-emitter detection pair

Principle: Light-sensitive element (i) photo-diode, (ii) photo cell



## Hall-effect sensor

Principle: Current carrying conductor that is exposed to magnetic field produces a voltage difference across the end of the conductor (Hall effect)







## Ultraponic Infra red sensor

Principle: Send a high frequency sound wave and measure time to receive the sound wome (time of flight sensor)

#### Implementation



2d  $\approx$  5 lt,+tz) s= speed of sound Produces Voltage (Vont)  $\approx$  lt,+tz)

- i) Calibrate the sensor by putting an object at
- i) Calibrate .

  known distance (do) & near.

  2) for a new neasurement  $V_1$ ,  $d_1 = \begin{pmatrix} d_0 \\ V_0 \end{pmatrix}$   $V_1$  neasured

  Calibratin

# Contret Sensor / Bump sensor

Principle:

Contact leads to dosing a circuit which leads to a non zero current in the circuit.

Implementation





#### Potentio meter

#### a) Linear potentionneter



Thus 
$$R_{x} = \frac{x}{L} R_{L}$$

But 
$$V \propto R$$
.  $\Rightarrow V_x = \frac{\pi}{L} V \Rightarrow n = L \frac{V_x}{V}$  nulesonred

Here L, V are known apriori, 1/2 is measured, I is the unknown (distance) that is inferred.

#### Rotary Potentiometer



Linear Variable Differential Transformer (LUDT)
Principle: Electro magnetic induction



1) Vin is the input - 2) This causes Fin in primary coil. - 3) I'm magnetizes the soft iron (ove (B).

- 4 B causes I'm (B) I'm causes voltage Vout.

Vont = No. of wils in secondary
Vin No. of wils in primary

Implementation

Nant to measure

dispherement of

the soft iron core

middle. The 2 coils produce

equal and opposite voltages: Vont =0

Case 2: Soft iron core mores to the right. This causes more coils on the right than the left. This results in a Yout & distance moved by the Soft iron core

# Radio Frequency IDentification (RFID) Sensor. This is a wireless proximity sensor

It has 3 elements

- 1 A RFID tag attached to the object to be tracked
- @ A RFIP transreceiver to collect data
- 3 An antenna on the RFID tag to send vadio frequency data to the RFID transreceiver.



- RFID tag is passine (no batteries)
- RFID transreceiver is active (powered). It energizes the RFID tag
- Each RFID tag transmits a unique code to the RFID transreceiver. By using different codes on different tags, it is possible to track multiple objects.
- Example, Highway toll collection such as EZ-Pass wes
  RFID technology.

Digital optical encoder

Encoder measures angular position using optics (emilter-detector pair). Encoder produces digital output unlike a potentioneter which produces an analog output.

There are 2 types of encoders

Incremental encoder: measures relative change in position

Desolute encoder: measures absolute position

2) is more expensive than 1). I need an initialization vontine. If encoders are used for velocity measurements using finite difference then 1 or 2 are equally good.

## Basic principle of an encoder



O Light enviter: Envits light continuously

2) Light detector: Retects light

3 coded Pisk: Contains useful pattern that either blocks or lets light pass. Based on the defected light/gattern it is possible to measure position.

#### 1 Incremental encoders





The angle turned can be computed by knowing degrees turned per change in pulse and counting the number of pulses.

EXAMILE:

There are go slots in the disk. If we count 14 high signals then compute the angle turned.

Each slot corresponds to 360/30 = 12° /slot. Since the count is 15, the angle turned is 14 (12) = 168°.

A single track can only give the angle turned, it cannot provide the direction of motion.

To get magnitude and direction, one needs two tracks - A/B are 1/4 cycle out of phase, hence called quadrature - Consider the repeating unit. It has the following code 1= black 0= white Repeating unit Now let us see how to sense the direction Starting position (say) Re-writing

Bleads A - 0-1 transition in

A leads B - o-1 transition in

A leado B - 0-1 transition in A occurs before B Bleads A - 0-1 transition in B occurs before A

(1) Direction sensing. This is based on edge detection using Flip Flops There are 3 resolutions: 1x, 2x, 4x. CW CCW CCW ز× ت CCW C W 2X 坚 CCW CW 9X 4X determined as follows 1X uses negative edge of A OR) B negative edge of A (AND) (B) positive AND negative edge of A AND B How to use these to determine direction Lets look at 1X: This is highlighted For CCW: This logic can be used to determine direction.

(2) magnitude seusing

A has soo slots then we have resolution of z(soo) = 1000 (o ki). B has soo slots, hence we would have another 1000. The combination would have a resolution of 4000

Consider a motor spinning at 1000 rpm. The motor has a resolution of 4000 per revolution (A,B channels, each with 500 slots)

The encoder count = 1000 rev x 4000 counts

60 sec 1 rev

= 66000 counts per revolution.

Specialized counters are used. Example, LS 7166 is 24-bit counter.

Advantages of incremental encoder

- 10 v cost for high resolution

#### Disadvantage of incremental encoder

- gives only change in position. Some encoders have a third channel (besides A,B) called the 2-channel. This has a mark that can be used to zero the position. However, this requires one to physically more the sheft.

#### 2) Absolute encoder

Provides absolute position. If the encoder has N tracks then there are  $2^N$  terels and resolution is  $\frac{360}{2^N}$  e.g. N=4;  $2^4=16$  terels; Resolution =  $\frac{360}{14}$  =  $83.5^{\circ}$ 





| $\begin{array}{ c c c c c c } \hline \textbf{Decimal Code} & \textbf{Rotation Range} & \textbf{O} & \textbf{Natural binary} & \textbf{Gray code} \\ \hline & 0 & 022.5 & 0.000 & 0.000 \\ \hline 1 & 22.5-45 & 0.000 & 0.001 \\ 2 & 45-67.5 & 0.010 & 0.011 \\ 3 & 67.5-90 & 0.011 & 0.010 \\ 4 & 90-112.5 & 0.100 & 0.110 \\ 5 & 112.5-135 & 0.101 & 0.111 \\ 6 & 135-157.5 & 0.110 & 0.101 \\ 7 & 157.5-180 & 0.111 & 0.100 \\ 8 & 180-202.5 & 1.000 & 1.100 \\ 9 & 202.5-225 & 1.001 & 1.101 \\ 10 & 225-247.5 & 1.010 & 1.111 \\ 11 & 247.5-270 & 1.011 & 1.110 \\ 12 & 270-292.5 & 1.100 & 1.010 \\ 13 & 292.5-315 & 1.101 & 1.011 \\ 14 & 315-337.5 & 1.110 & 1.001 \\ \hline \end{array}$ |                                                               |                                                                                                                                                                              | <b>15</b> ×                                                                                                  |                                                                                                      |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Decimal Code                                                  | Rotation Range (°)                                                                                                                                                           | •                                                                                                            | •                                                                                                    |          |
| 15 337.5–360 1111 3 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | 22.5–45<br>45–67.5<br>67.5–90<br>90–112.5<br>112.5–135<br>135–157.5<br>157.5–180<br>180–202.5<br>202.5–225<br>225–247.5<br>24 7.5–270<br>270–292.5<br>292.5–315<br>315–337.5 | 0001<br>0010<br>0011<br>0100<br>0101<br>0110<br>0111<br>1000<br>1001<br>1010<br>1011<br>1100<br>1101<br>1110 | 0001<br>0011<br>0010<br>0110<br>0111<br>0101<br>0100<br>1100<br>1101<br>1111<br>1110<br>1010<br>1011 | ~ birany |



| Decimal Code | Rotation Range (°) | Natural binary<br>code (B <sub>3</sub> B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> ) | Gray code<br>(G <sub>3</sub> G <sub>2</sub> G <sub>1</sub> G <sub>0</sub> ) |
|--------------|--------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 0            | 0-22.5             | 0000                                                                                  | 0000                                                                        |
| 1            | 22.5-45            | 0001                                                                                  | 0001                                                                        |
| 2            | 45-67.5            | 0010                                                                                  | 0011                                                                        |
| 3            | 67.5–90            | 0011                                                                                  | 0010                                                                        |
| 4            | 90-112.5           | 0100                                                                                  | 0110                                                                        |
| 5            | 112.5–135          | 0101                                                                                  | 0111                                                                        |
| 6            | 135–157.5          | 0110                                                                                  | 0101                                                                        |
| 7            | 157.5–180          | 0111                                                                                  | 0100                                                                        |
| 8            | 180-202.5          | 1000                                                                                  | 1100                                                                        |
| 9            | 202.5-225          | 1001                                                                                  | 1101                                                                        |
| 10           | 225-247.5          | 1010                                                                                  | 1111                                                                        |
| 11           | 24 7.5–270         | 1011                                                                                  | 1110                                                                        |
| 12           | 270-292.5          | 1100                                                                                  | 1010                                                                        |
| 13           | 292.5-315          | 1101                                                                                  | 1011                                                                        |
| 14           | 315-337.5          | 1110                                                                                  | 1001                                                                        |
| 15           | 337.5-360          | 1111                                                                                  | 1000                                                                        |





$$B_3 = G_3$$

$$B_2 = B_3 \oplus G_2$$

$$B_1 = B_2 \oplus G_1$$

$$B_0 = B_1 \oplus G_0$$