

Interplanetary trajectories Example: Earth to Mars case

Report

Degree: Master's degree in Aerospace Engineering

Course: 220301 - Aerodynamics, Flight and Orbital Mechanics

Delivery date: 15-01-2018

Students: Fontanes Molina, Pol; Martínez Viol, Víctor; Urbano González, Eva María

Contents

Lis	st of Tables	ii
Lis	st of Figures	iii
1	Figure example formats	1
2	Aim	2
3	Theoretical background 3.1 Planetary orbits and approximations analysis	3
4	Calculations and results	4
5	Conclusions	5
6	Bibliography	6

Example: Earth to Mars case R - i

List of Tables

1.0.1 Thickness after the materials correction factor	1
---	---

Example: Earth to Mars case R - ii

List of Figures

1.0.1	Landing distance vs	MTOW for the Boeing 777.	
-------	---------------------	--------------------------	--

Example: Earth to Mars case R - iii

1 | Figure example formats

FIGURE

Figure 1.0.1: Landing distance vs MTOW for the Boeing 777.

TABLE

 T_1 13 cm T_2 21 cm T_3 62 cm T_t 95 cm

Table 1.0.1: Thickness after the materials correction factor.

2 | Aim

This projects aims to compute an interplanetary trajectory which, for a given ecliptic rectangular positions of two planets in two known time instances, is able to carry a spaceship with a unique impulse, from the first planet to the second.

3 | Theoretical background

- 3.1 Planetary orbits and approximations analysis
- 3.1.1 Patched Conic Approximation (PCA)
- 3.1.1.1 1st. Geocentric stage
- 3.1.1.2 2nd. Heliocentric stage
- 3.1.1.3 3rd. Planetocentric stage

4 | Calculations and results

5 Conclusions

Example: Earth to Mars case R - 5

6 Bibliography

- [1] J. Calaf, "Trajectòries interplanetàries: Patched Conic Approximation," 2017.
- $[2] \begin{tabular}{ll} -----, "Trajectòries interplanetàries," $2017. \end{tabular}$
- [3] —, "Treballs de Mecànica Orbital," 2017.

R - 6