Podstawy elektroniki i techniki cyfrowej z elementami miernictwa

LAB.4

Funkcje Logiki Kombinacyjnej i Układy Sekwencyjne

Układy Kombinacyjne

- 1. Sumatory binarne o strukturze równoległej
 - 1.1 Half Adder

a	b	S(x1)	C(x2)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Wnioski: S to wynik dodawania a C to wynik przeniesienia bitu

1.2 Full Adder

Rozbuduj poprzedni układ o drugi podobny tak aby można było dodawać dwie zmienne bitowe do siebie z uwzględnieniem tego co powstanie na wcześniejszym sumatorze. Objaśnij jaką funkcje pełni wejście C. Przetestuj układ a wyniki umieść w odpowiedniej tabeli.

а	b	c	S(x1)	C(x2)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Wnioski:

- Jeśli dwa bity wejściowe (a,ba, ba,b) są równe 1, to powstaje przeniesienie do następnej pozycji.
- Jeśli przeniesienie (C) z wcześniejszego bitu jest ustawione, to zostanie uwzględnione w sumowaniu.

1.3 Implementacja modułu (makra) pełnego sumatora

Sprawdź działanie zrealizowanego schematu, czy jest taki sam, jak poprzedni. Umieść wyniki w odpowiedniej tabeli.

а	b	c	S(x1)	C(x2)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Wnioski: Jest to ten sam układ co poprzedni

1.4 Trzy-bitowy sumator

Zrealizuj układ, jak na poniższym rysunku. Udowodnij za pomocą kilku przykładów, że układ działa poprawnie jako 3-bitowy sumator. Umieść wyniki w raporcie.

a	b	С	d	e	f	X4	X3	X2	X1
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	1	1	0
0	1	0	0	0	1	0	1	0	1
0	1	1	0	1	0	0	1	1	1
1	0	0	0	1	0	0	1	0	1
1	0	1	0	0	1	0	1	1	1
1	1	0	0	0	1	1	1	0	0
1	1	1	1	1	1	1	0	1	1

Wnioski:

Wejścia:

- a,b,c– pierwsza liczba 3-bitowa.
- d,e,f–druga liczba 3-bitowa.

Wyjścia:

- X1,X2,X3– bity sumy.
- X4 przeniesienie końcowe.

Układ spełnił założenia, działa poprawnie.

Układy Sekwencyjne

Asynchroniczny licznik zliczający wstecz (do dołu)

Przetestuj działanie licznika modulo-16 zliczającego wstecz. Umieść wyniki w raporcie.

Wnioski: Przedstawiony układ zlicza od 15 do 0. Po zejściu poniżej 0 układ resetuje się.

2.2 Synchroniczny licznik dziesiętny

Przetestuj działanie synchronicznego licznika dziesiętnego zbudowanego w oparciu o układ 74192 – jest to synchroniczny, rewersyjny licznik dziesiętny BCD z dwoma wejściami zegarowymi i z zerowaniem.

Wyniki i opis problemu przedstaw w raporcie.

Wnioski: Przetestowany układ zlicza od 0 do 9. Po przekroczeniu liczby 9 następuje przepełnienie.