Álgebra lineal I, Grado en Matemáticas

Febrero 2019, Segunda Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz escalonada.
- (b) Suma de subespacios vectoriales.
- (c) Sistema generador y base de un espacio vectorial.
- (d) Aplicación lineal.

Ejercicio 1: (2 puntos)

Sea $A \in \mathfrak{M}_n(\mathbb{K})$ una matriz para la cual existen escalares $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ tales que

$$I_n + \lambda_1 A + \lambda_2 A^2 + \ldots + \lambda_p A^p = 0$$

- (a) Demuestre que A es invertible y determine su inversa.
- (b) Determine la inversa de una matriz A de orden n que cumple $I_n = A^3 + 2A^2$.

Ejercicio 2: (2,5 puntos)

Sea $\mathfrak{M}_2(\mathbb{K})$ el espacio vectorial de matrices de orden 2 con entradas en \mathbb{K} y U el subespacio vectorial de $\mathfrak{M}_2(\mathbb{K})$ definido por $U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathfrak{M}_2(\mathbb{K}) : a = d \right\}$

- (a) Determine una base de U.
- (b) Determine un subespacio W suplementario de U que no contenga matrices singulares, salvo la matriz nula.

Ejercicio 3: (3,5 puntos)

Sean V y W dos \mathbb{K} -espacios vectoriales, $\mathcal{B} = \{v_1, v_2, v_3\}$ una base de V y $\mathcal{B}' = \{w_1, w_2\}$ una base de W. Sea $f: V \longrightarrow W$ la aplicación lineal tal que

$$f(v_1 + 2v_2) = w_1 + w_2, \ f(v_2 - v_3) = 0, \ f(v_1 - 2v_3) = 2w_1 - w_2$$

- (a) Determine la matriz respecto de las bases \mathcal{B} y \mathcal{B}' .
- (b) Sea P el plano generado por los vectores $v_1 + v_2 + v_3$ y $v_1 + 2v_3$. Determine unas ecuaciones implícitas del subespacio vectorial imagen f(P).

Ejercicio 1: Sea $A \in \mathfrak{M}_n(\mathbb{K})$ una matriz para la cual existen escalares $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ tales que

$$I_n + \lambda_1 A + \lambda_2 A^2 + \ldots + \lambda_n A^p = 0$$

- (a) Demuestre que A es invertible y determine su inversa.
- (b) Determine la inversa de una matriz A de orden n que cumple $I_n = A^3 + 2A^2$.

Solución: (a) Despejando I_n en la ecuación matricial dada se tiene

$$I_n = -\lambda_1 A - \lambda_2 A^2 - \ldots - \lambda_p A^p$$

y aplicando la propiedad distributiva

$$I_n = A(-\lambda_1 I_n - \lambda_2 A - \dots - \lambda_p A^{p-1})$$

Entonces, A es invertible y $A^{-1} = -\lambda_1 I_n - \lambda_2 A - \dots - \lambda_p A^{p-1}$

(b) Si $I_n = A^3 + 2A^2$, entonces $I_n = A(A^2 + 2A)$, de donde $A^{-1} = A^2 + 2A$.

Ejercicio 2: Sea $\mathfrak{M}_2(\mathbb{K})$ el espacio vectorial de matrices de orden 2 con entradas en \mathbb{K} y U el subespacio vectorial de $\mathfrak{M}_2(\mathbb{K})$ definido por $U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathfrak{M}_2(\mathbb{K}) : a = d \right\}$

- (a) Determine una base de U.
- (b) Determine un subespacio W suplementario de U que no contenga matrices singulares, salvo la matriz nula.

Solución: Si consideramos coordenadas respecto de la base canónica \mathcal{B} de $\mathfrak{M}_2(\mathbb{K})$, las matrices de U son $(a,b,c,d)_{\mathcal{B}}$, tales que a-d=0, por lo que esta última es una ecuación implícita de U y dim U=3. Es fácil obtener 3 matrices linealmente independientes que formen una base de U, ya que sólo han de cumplir a=d:

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Para encontrar un suplementario de U basta ampliar la base $\{A_1, A_2, A_3\}$ de U, a una base de $\mathfrak{M}_2(\mathbb{K})$, añadiendo una matriz $A_4 = (a, b, c, d)_{\mathcal{B}}$ que no pertenezca a U, es decir $a \neq d$, y cuyo determinante sea $ad - bc \neq 0$ (para que no sea singular). Hay muchas opciones, por ejemplo si tomamos $A_4 = (0, 1, 1, 1)_{\mathcal{B}}$, entonces $W = L(A_4)$ es un suplementario de U en las condiciones pedidas. Las matrices que forman el subespacio W son de la forma

$$W = \left\{ \left(\begin{array}{cc} 0 & b \\ b & b \end{array} \right) \in \mathfrak{M}_2(\mathbb{K}) : b \in \mathbb{K} \right\}$$

Todas regulares salvo la matriz nula pues

$$\det \left(\begin{array}{cc} 0 & b \\ b & b \end{array} \right) = -b^2 \neq 0 \iff b \neq 0$$

Observación: Nótese que $\{A_1, A_2, A_3, A_4\}$ son linealmente independientes simplemente exigiendo $a \neq d$, pues en ese caso $A_4 \notin U$. No obstante, podemos confirmar que la matriz de coordenadas por filas tendría rango cuatro o determinante no nulo:

$$\det \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix} = d - a \neq 0$$

Ejercicio 3:

Sean V y W dos \mathbb{K} -espacios vectoriales, $\mathcal{B} = \{v_1, v_2, v_3\}$ una base de V y $\mathcal{B}' = \{w_1, w_2\}$ una base de W. Sea $f: V \longrightarrow W$ la aplicación lineal tal que

$$f(v_1 + 2v_2) = w_1 + w_2, \ f(v_2 - v_3) = 0, \ f(v_1 - 2v_3) = 2w_1 - w_2$$

- (a) Determine la matriz respecto de las bases \mathcal{B} y \mathcal{B}' .
- (b) Sea P el plano generado por los vectores $v_1 + v_2 + v_3$ y $v_1 + 2v_3$. Determine unas ecuaciones implícitas del subespacio vectorial imagen f(P).

Solución: Es un ejercicio del examen de septiembre de 2017