第17讲 互感

一场赏心悦目的 电路探索之旅

今天课后会有 调查问卷 1 互感和互感电压

2 同名端

3 互感的去耦等效

纸笔计算器

 $Principles \ of \ Electric \ Circuits \ Lecture \ 17 \ Tsinghua \ University \ 2023$

本讲重难点

- 根据绕向确定同名端
- 根据同名端确定感应电压正负号
- 去耦等效
 - 串联
 - 并联
 - 单点联

包括时域和相量域

1 互感和互感电压 (Mutual Inductance)

复习——电感(inductance)

由电磁感应定律

$$e = -\frac{\mathrm{d} \psi}{\mathrm{d} t} = -L \frac{\mathrm{d} i}{\mathrm{d} t}$$

 i, Φ 右螺旋

$$\Phi \rightarrow \Psi = N\Phi$$

e, Φ 右螺旋

 $L = \frac{\psi}{i}$

 $L \propto N^2$

自己电流变化对自己 电压的影响

$$\overset{i}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}} \overset{\overset{\circ}{\longrightarrow}} \overset{\overset{\circ}{\longrightarrow}} \overset{\overset{\circ}{\longrightarrow}} \overset{\overset{\circ}{\longrightarrow}} \overset{\overset{\circ}{\longrightarrow}} \overset{\overset{\circ}{\longrightarrow}} \overset{\overset{\circ}{\longrightarrow}} \overset$$

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

电感确定u-i关系无需考虑线圈绕向

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

单选题 1分

 Φ_{21} 的意思是?

- A 线圈1产生的磁通
- B 线圈1产生,过线圈2截面的磁通
- 线圈2产生的磁通
- 线圈2产生,过线圈1截面的磁通

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

(1) 互感的定义 (课前预习)

$$L_1 = \frac{\psi_{11}}{i_1}$$

$$L_2 = \frac{\psi_{22}}{i_2}$$

线圈2的自感

线圈1对2的互感
$$M_{21} = \frac{\psi_{21}}{i_1}$$
 $M_{12} = \frac{\psi_{12}}{i_2}$

$$M_{12} = \frac{\psi_{12}}{i_2}$$

线圈2对1的互感

 $M \propto N_1 N_2$

单位 亨 (H)

- (2) 互感的性质
 - a) 对于线性电感 $M_{12}=M_{21}=M$
 - b) 互感系数M只与两个线圈的几何尺寸、匝数、 相互位置和周围的介质磁导率有关。

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

(3) 耦合系数k (coupling coefficient)

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

 $k \le 1$

互感不大于两个自感的几何平均值。

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

$$\boldsymbol{L}_{\!1} = \frac{N_{1}\boldsymbol{\Phi}_{11}}{\boldsymbol{i}_{\!1}}$$

$$\boldsymbol{L_2} = \frac{\boldsymbol{N_2 \Phi_{22}}}{\boldsymbol{i_2}}$$

$$M_{21} = \frac{N_2 \Phi_{21}}{i_1}$$

$$M_{12} = \frac{N_1 \Phi_{12}}{i_2}$$

$$M_{12} = M_{21} = M$$

$$\Phi_{11} = \Phi_{S1} + \Phi_{21}$$

$$\Phi_{22} = \Phi_{S2} + \Phi_{12}$$

(3) 耦合系数k (coupling coefficient)

$$k = \frac{M}{\sqrt{L_1 L_2}} \le 1$$

全耦合: k=1 $\phi_{S1} = \phi_{S2} = 0$

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

市课堂 Rain Classroom

单选题 1分

对于两个有耦合的电感线圈,假定其自(电)感分别为2mH和8mH,两者间可能的最大互(电)感为

- A 2mH
- B 4mH
- 6mH
- 8mH

8

己侧电流变化对对侧电压的影响

(4) 互感电压

 i_1, Φ_{21} 右手螺旋定则 Φ_{21}, e_{21} ,右手螺旋定则

互感电压的方向与 互感线圈的绕向有关!! i_1, Φ_{21} 右手螺旋定则 $\Phi_{21}, e_{21},$ 右手螺旋定则 由电磁感应定律

$$e_{21} = -\frac{d \psi_{21}}{dt} = -M \frac{di_1}{dt}$$

$$u_{21} = -e_{21} = M \frac{di_1}{dt}$$

$$e_{21} = -\frac{\mathrm{d}\psi_{21}}{\mathrm{d}t} = -M\frac{\mathrm{d}i_{1}}{\mathrm{d}t}$$

$$u_{21} = e_{21} = M\frac{\mathrm{d}i_{1}}{\mathrm{d}t}$$

难道需要画绕向才能定电压吗?

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

问题1: 如何规定 i_1 和 u_{21} 的参考方向关系,使得互感电压总是正的? OR i_1 的方向和 u_{21} 的方向有一个怎样的约定的时候, u_{21} 总是正的?

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

3 同名端 (Dot Convention)

同名端: 当两个电流分别从两个线圈的对应端子流入 , 其所产生的磁场相互加强时,则这两个对应端子称为同名端。

问题2: 如何根据绕法确定同名端?

注意:线圈的同名端必须两两确定。

 $Principles \ of \ Electric \ Circuits \ Lecture \ 17 \ Tsinghua \ University \ 2023$

雨课堂

如果3个绕组根据线圈之间的两组关系可以确定另一组关系,则可以用3个点来代替6个点。

单选题 1分

如图标注的同名端是

- A
- 正确的
- B 错误的

13

问题3:如何根据同名端确定互感电压?

$$u_{21} = M \frac{\mathrm{d} i_1}{\mathrm{d} t}$$

$$u_{21} = -M \frac{\mathrm{d}i_{1}}{\mathrm{d}t}$$

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

$$u_{21} = M \frac{\mathrm{d}i_1}{\mathrm{d}t}$$

标注同名端后, 无需绕向即可确定电压

$$u_{21} = -M \frac{\mathrm{d}i_1}{\mathrm{d}t}$$

规律:

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

$$u_{21} = M \frac{\mathrm{d} i_1}{\mathrm{d} t}$$

标注同名端后, 无需绕向即可确定电压

$$u_{21} = -M \frac{\mathrm{d}i_1}{\mathrm{d}t}$$

规律: 如果电流参考方向从同名端流入, 互感电压参考方向在同名端为正。

$$0 \quad u = M \frac{\mathrm{d}i}{\mathrm{d}t}$$

重要!

16

$$u_{21} = M \frac{\mathrm{d} i_1}{\mathrm{d} t}$$

$$u_{21} = M \frac{\mathrm{d}i_1}{\mathrm{d}t}$$

17

问题4: 当两组线圈装在黑盒里,只引出四个端线,如何确定其同名端? 即如何在黑箱电感中用互感电压测量并确定同名端

电源接一组线圈 直流电压表接另一组线圈

合K,i介, $\frac{\mathrm{d}i}{\mathrm{d}t} > 0$

如果电压表+极接至同名端

$$u_{21} = M \frac{\mathrm{d}i}{\mathrm{d}t} > 0$$
 电压表正偏

如果电压表+极接至非同名端

$$u_{21} = -M \frac{\mathrm{d}i}{\mathrm{d}t} < 0$$
 电压表反偏

$$\frac{di_1}{dt} + M \frac{di_2}{dt}$$

$$u_2 = M \frac{\mathrm{d}i_1}{\mathrm{d}t} + L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

时域形式
$$u_1 = L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} + M \frac{\mathrm{d}i_2}{\mathrm{d}t} \qquad u_1 = L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} - M \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

$$u_2 = M \frac{\mathrm{d}i_1}{\mathrm{d}t} + L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} \qquad u_2 = -M \frac{\mathrm{d}i_1}{\mathrm{d}t} + L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} \qquad u_2 = -M \frac{\mathrm{d}i_1}{\mathrm{d}t} - L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

$$u_1 = L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} + M \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

$$u_2 = -M \frac{\mathrm{d}i_1}{\mathrm{d}t} - L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

在正弦稳态分析中, 其相量形式的方程为

$$\dot{U}_1 = \mathbf{j}\omega L_1 \dot{I}_1 + \mathbf{j}\omega M \dot{I}_2$$

$$\dot{U}_2 = \mathbf{j}\omega M \dot{I}_1 + \mathbf{j}\omega L_2 \dot{I}_2$$

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

单选题 1分

下列公式正确的是 "红包"

$$\dot{U}_{1} = j\omega L_{1}\dot{I}_{1} + j\omega M\dot{I}_{2}$$

$$\dot{U}_{2} = j\omega M\dot{I}_{1} + j\omega L_{2}\dot{I}_{2}$$

$$\begin{array}{ll}
\dot{U}_1 = j\omega L_1 \dot{I}_1 - j\omega M \dot{I}_2 \\
\dot{U}_2 = j\omega M \dot{I}_1 - j\omega L_2 \dot{I}_2
\end{array}$$

$$\dot{U}_{1} = j\omega L_{1}\dot{I}_{1} - j\omega M\dot{I}_{2}$$

$$\dot{U}_{2} = j\omega M\dot{I}_{1} + j\omega L_{2}\dot{I}_{2}$$

$$\dot{U}_1 = -j\omega L_1 \dot{I}_1 - j\omega M \dot{I}_2$$

$$\dot{U}_2 = -j\omega M \dot{I}_1 + j\omega L_2 \dot{I}_2$$

20

互感线圈的等效电路

3 互感的去耦等效

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

$$u = L_1 \frac{\mathrm{d}i}{\mathrm{d}t} \bigcirc M \frac{\mathrm{d}i}{\mathrm{d}t} + L_2 \frac{\mathrm{d}i}{\mathrm{d}t} \bigcirc M \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$= (L_1 + L_2 - 2M) \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$= L_{\mathrm{eq}} \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$= L_{\mathrm{eq}} = L_1 + L_2 - 2M$$

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

问题5: 你手头有一个电感测量装置(比如交流电桥), 如何测量两线圈之间的互感值?

$$L_{M0} = L_1 + L_2 + 2M$$
 $L_{K} = L_1 + L_2 - 2M$

此处可以有弹幕或投稿

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

$$L_{M0} = L_1 + L_2 + 2M$$
 $L_{K} = L_1 + L_2 - 2M$

*顺接一次,反接一次,就可以测出互感:

$$M = \frac{L_{10} - L_{12}}{4}$$

* 全耦合 $M = \sqrt{L_1 L_2}$

当
$$L_1=L_2=L$$
时, $M=L$

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

单选题

1分

两电感线圈同名端顺串连接时电感值为10mH, 同名端反串连接时电感值为2mH。则其互感为

- **8 mH**
- **B** 2 mH
- 4 mH
- 5 mH

27

(2) 互感线圈的并联

同名端在同侧

$$\begin{array}{c|c}
M \\
\hline
i_1 \downarrow & * \\
L_1
\end{array}$$

$$\begin{array}{c|c}
u = L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} + M \frac{\mathrm{d}i_2}{\mathrm{d}t} \\
u = L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} + M \frac{\mathrm{d}i_1}{\mathrm{d}t} \\
i = i_1 + i_2
\end{array}$$

消去i₁和i₂,解得u,i的关系

$$u = \frac{(L_1 L_2 - M^2)}{L_1 + L_2 - 2M} \frac{di}{dt}$$

$$L_{\rm eq} = \frac{(L_1 L_2 - M^2)}{L_1 + L_2 - 2M}$$

记不住

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

同名端在同侧互感并联电路的去耦等效分析

画等效电路 (投稿)

同名端在同侧互感并联电路的去耦等效分析

画等效电路

(投稿)

于歆杰等,关于全耦合的一道习题的讨论,电气电子教学学报,2012(课外推送)

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

同理可推得同名端在异侧互感并联电路的去耦等效分析

$$\begin{cases} |i_2| \\ |L_2| \\ |* \end{cases} \qquad \begin{cases} u = (L_1 + M) \frac{\mathrm{d}i_1}{\mathrm{d}t} - M \frac{\mathrm{d}i}{\mathrm{d}t} \\ u = (L_2 + M) \frac{\mathrm{d}i_2}{\mathrm{d}t} - M \frac{\mathrm{d}i}{\mathrm{d}t} \end{cases}$$

等效电路

$$(L_{1}+M)//(L_{2}+M)-M + i_{1}$$

$$L_{eq} = \frac{(L_{1}L_{2}-M^{2})}{L_{1}+L_{2}+2M}$$

$$U = L_{1}+M$$

$$U = L_{1}+M$$

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

单选题

1分

该端口的去耦等效电感为

0.857 mH

0.962 mH

4.857 mH

2 mH

32

(3) 有一个公共节点互感线圈的去耦等效电路

2个同名端都靠近 (远离) 公共节点

$$u_{AC} = u_1$$

$$= L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}$$

$$= (L_1 - M) \frac{di_1}{dt} + M \frac{di_3}{dt}$$

$$u_{BC} = u_2$$

$$i_3 = i_1 + i_2$$

$$= L_2 \frac{di_2}{dt} + M \frac{di_1}{dt}$$

$$= (L_2 - M) \frac{di_2}{dt} + M \frac{di_3}{dt}$$

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

等效电路

$$u_{AC} = \left(L_1 - M\right) \frac{\mathrm{d}i_1}{\mathrm{d}t} + M \frac{\mathrm{d}i_3}{\mathrm{d}t}$$

$$u_{\rm BC} = \left(L_2 - M\right) \frac{\mathrm{d}i_2}{\mathrm{d}t} + M \frac{\mathrm{d}i_3}{\mathrm{d}t}$$

$$\dot{\boldsymbol{i}}_3 = \dot{\boldsymbol{i}}_1 + \dot{\boldsymbol{i}}_2$$

等效电路

强调:

多了个节点D

$$u_1 = u_{AC} \neq u_{AD}$$

$$u_2 = u_{BC} \neq u_{BD}$$

 L_1 -M, L_2 -M,M都不是真电感

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

而课堂 Rain Classroom

单选题

1分

如图所示,去耦等效电路中, L_1 的感值为

- 5mH
- 3mH

37

 $Principles \ of \ Electric \ Circuits \ Lecture \ 17 \ Tsinghua \ University \ 2023$

例1 已知如图,求入端阻抗 Z=?

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

例2 画出下图电路的去耦等效电路。

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

例3 列写电路的回路电流方程。

法1: 直接列写

法2: 去耦等效

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

法1:直接列写 先不考虑互感 再补充互感电压

$$(R_1 + \mathbf{j}\omega L_1 + \mathbf{j}\omega L_3 + R_3)\dot{I}_a + (R_3 + \mathbf{j}\omega L_3)\dot{I}_b$$

$$= \dot{U}_{s1}$$

法1: 直接列写

$$\begin{pmatrix} (R_{1} + j\omega L_{1} + j\omega L_{3} + R_{3})\dot{I}_{a} + (R_{3} + j\omega L_{3})\dot{I}_{b} \\ -j\omega M_{31}\dot{I}_{a} - j\omega M_{31}\dot{I}_{a} + j\omega M_{12}\dot{I}_{b} - j\omega M_{23}\dot{I}_{b} - j\omega M_{31}\dot{I}_{b} = \dot{U}_{S1} \\ (R_{2} + j\omega L_{2} + j\omega L_{3} + R_{3})\dot{I}_{b} + (R_{3} + j\omega L_{3})\dot{I}_{a} \\ + j\omega M_{12}\dot{I}_{a} - j\omega M_{31}\dot{I}_{a} - j\omega M_{23}\dot{I}_{a} - j\omega M_{23}\dot{I}_{b} - j\omega M_{23}\dot{I}_{b} = \dot{U}_{S2} \end{pmatrix}$$

注意: ① 不丢互感电压项; ② 互感电压的正、负。

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

法2 去耦等效电路(一对一对消)

法2 去耦等效电路(一对一对消)

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

去耦等效不是万能的

没有公共点

怎么办?

Principles of Electric Circuits Lecture 17 Tsinghua University 2023

