Labor Income Uncertainty and the Macroeconomy

Christopher Carroll

¹Consumer Financial Protection Bureau Christopher.Carroll@cfpb.gov

Presentation at "Uncertainty and the Macroeconomy" May 2014

US Personal Saving Rate (s), 1966–2011

Theory

$$\begin{aligned} \mathbf{v}(m_t) &= \max_{\left\{\mathbf{c}_t, \mathbf{x}_t\right\}} \ u(\mathbf{c}_t) + \beta \mathbb{E}_t \left[\mathbf{v}(m_{t+1})\right] \\ &\text{s.t.} \end{aligned}$$

$$\mathcal{R}_{t+1} &= \zeta \mathbf{R}_{t+1} + (1 - \zeta) \mathbf{R}$$

$$m_{t+1} &= (m_t - \mathbf{x}_t - \mathbf{c}_t) \mathcal{R}_{t+1} + \theta_{t+1}$$

- ► Labor Income Uncertainty
 - Unemployment Is Biggest Shock
 - Lots of Micro Evidence that Precautionary Saving Is Big
 - **Basically, people facing greater** σ :
 - ▶ Don't buy a house/car (x = 0)
 - Hold larger net worth
- Rate-Of-Return Uncertainty
 - ► Theoretical effects on *C* ambiguous
 - ▶ For plausible parameter values, $\sigma \uparrow \Rightarrow C \uparrow$
 - Portfolio share in risky asset is reduced

Literature on *C*

- "Wealth Effects"
 - Modigliani, Klein, MPS model, ...
 - $ightharpoonup s_t = -0.05 m_t + ext{other stuff}$
- "Precautionary"
 - ► Carroll (1992)
 - Saving rate rises in recessions
 - ▶ $\Delta \log C_{t+1}$ strongly related to $\mathbb{E}_t(u_{t+1} u_t)$
- "Credit Availability"
 - Secular Trend:
 - Parker (2000), Dynan and Kohn (2007), Muellbauer (many papers)
 - Cyclical Dynamics:
 - Guerrieri and Lorenzoni (2017), Eggertsson and Krugman (2012), Hall (2011)

Great Recession 2007–2009

- \triangleright s rises by \sim 4 pp
- ▶ Bigger & more persistent increase than any postwar recession
- ▶ But all three indicators also move a lot:
 - Credit conditions tighten
 - Unemployment Expectations rise
 - Wealth falls

Personal Saving Rate 2007− ↑

Saving Rate After a Permanent Rise in $\ensuremath{\mho}$

Credit Easing/Financial Innovation & Deregulation

m is close to linear in credit conditions

Net Worth (Ratio to Quarterly Disp Income)

Credit Easing Accumulated (CEA) (à la Muellbauer)

Accumulated responses, weighted with debt–income ratio, to: "Please indicate your bank's willingness to make consumer installment loans now as opposed to three months ago."

U_t Implied by Michigan U Expectations

UExp: "How about people out of work during the coming 12 months—do you think that there will be more unemployment than now, about the same, or less?"

Reduced-Form Regressions

$$s_t = \gamma_0 + \gamma_m m_t + \gamma_{\mathsf{CEA}} \mathsf{CEA}_t + \gamma_{\mathsf{E}u} \mathbb{E}_t u_{t+4} + \gamma_t \ t + \gamma_{uC} (\mathbb{E}_t u_{t+4} \times \mathsf{CEA}_t) + \varepsilon_t$$

Model	Time	Wealth	CEA	Un Risk	All 3	Baseline	Interact
γ_0	11.95***	25.20***	9.32***	8.24***	14.90***	15.23***	15.55*
	(0.61)	(1.73)	(0.57)	(0.42)	(2.56)	(2.16)	(2.56)
γ_m	, ,	-2.61***	, ,	, ,	-1.12***	-1.18***	-1.37^{*}
		(0.32)			(0.42)	(0.35)	(0.46)
$\gamma_{\sf CEA}$			-14.14***		-5.47***	-6.12***	-4.60*
			(1.74)		(1.94)	(0.57)	(1.72)
γ_{Eu}				0.67***	0.32***	0.29***	0.38*
				(0.05)	(0.12)	(80.0)	(0.11)
γ_t	-0.04***	-0.03***	0.04***	-0.05***	-0.00		0.00
	(0.00)	(0.00)	(0.01)	(0.00)	(0.01)		(0.01)
γ_{uC}							-0.32*
							(0.16)
\bar{R}^2	0.70	0.85	0.82	0.88	0.89	0.90	0.90
F stat p val	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DW stat	0.30	0.69	0.50	0.86	0.94	0.93	0.98

PSR Forecasts—Out of Sample

2012-2015

Scenarios based on SPF and our judgement

Conclusions

- ► All three effects present
- Easier borrowing largely explains secular decline s
- Order of importance in Great Recession:
 - 1. Wealth shock
 - 2. Labor income risk
 - 3. Credit tightening
 - ightharpoonup \Rightarrow if credit has big cyclical effect, comes thru w and \mho

References

- CARROLL, CHRISTOPHER D. (1992): "The Buffer-Stock Theory of Saving: Some Macroeconomic Evidence," Brookings Papers on Economic Activity, 1992(2), 61-156, http://econ.ihu.edu/people/ccarroll/BufferStockBPEA.pdf.
- DYNAN, KAREN E., AND DONALD L. KOHN (2007): "The Rise in U.S. Household Indebtedness: Causes and Consequences," International Finance Discussion Paper 37, Board of Governors of the Federal Reserve System.
- EGGERTSSON, GAUTI B., AND PAUL KRUGMAN (2012): "Debt, Deleveraging, and the Liquidity Trap: A Fisher-Minsky-Koo Approach," *The Quarterly Journal of Economics*, 127(3), 1469–1513.
- GUERRIERI, VERONICA, AND GUIDO LORENZONI (2017): "Credit crises, precautionary savings, and the liquidity trap," The Quarterly Journal of Economics, 132(3), 1427–1467.
- ${\rm Hall},\ {\rm Robert}\ {\rm E.}\ (2011):\ "The\ Long\ Slump,"\ AEA\ Presidential\ Address,\ ASSA\ Meetings,\ Denver.$
- PARKER, JONATHAN A. (2000): "Spendthrift in America? On Two Decades of Decline in the U.S. Saving Rate," in NBER Macroeconomics Annual 1999, Volume 14, NBER Chapters, pp. 317–387. National Bureau of Economic Research, Inc.

Background Slides

Alternative Measures of Credit Availability

Assumptions/Scenarios for Out-of-Sample Forecasts

Assumptions/Scenarios for Out-of-Sample Forecasts

Actual and Target Wealth

Household Wealth 2007– ↓ by 150% of Income

Sustained Expectations of Rising Unemp Risk

Thomson Reuters/University of Michigan $\mathbb{E}_t(u_{t+4}-u_t)$

Tighter HH Credit Supply (Based on Muellbauer)

Consumption Function

Overshooting and Fiscal Policy

DSGE models:

- Frictions, frictions everywhere; but missing here
- ▶ If Δc imposes 'external' costs
 - Sticky prices/wages
 - Capital (or Investment) adjustment costs
 - Other reasons for 'pecuniary externalities'
- ▶ ⇒ 'stimulus' payments, fiscal policy may reduce cost of cycle
- Justification for 'automatic stabilizers'?

Reduced-Form Regressions on Model Data

$$s_t^{\text{theor}} = \gamma_0 + \gamma_m m_t + \gamma_{\text{CEA}} \text{CEA}_t + \gamma_{Eu} \mathbb{E}_t u_{t+4} + \gamma_t \ t + \gamma_{uC} \big(\mathbb{E}_t u_{t+4} \times \text{CEA}_t \big) + \varepsilon_t$$

Model	Time	Wealth	CEA	Un Risk	All 3	Baseline	Interact
γ_0	11.96***	21.44***	9.35***	8.42***	12.24***	12.51***	12.49**
	(0.50)	(1.11)	(0.41)	(0.16)	(0.60)	(0.53)	(0.55)
γ_m		-2.33***			-0.79***	-0.85***	-0.94**
		(0.25)			(0.12)	(0.10)	(0.11)
γ_{CEA}			-13.82***		-5.85***	-6.49***	-5.33**
			(1.12)		(0.59)	(0.14)	(0.47)
γ_{Eu}				0.63***	0.33***	0.30***	0.37**
				(0.02)	(0.04)	(0.02)	(0.03)
γ_t	-0.04***	-0.03***	0.04***	-0.05***	-0.00		0.00
	(0.00)	(0.00)	(0.01)	(0.00)	(0.00)		(0.00)
γ_{uC}							-0.19**
							(0.04)
\bar{R}^2	0.80	0.93	0.93	0.98	0.99	0.99	0.99
F stat p val	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DW stat	0.05	0.22	0.09	0.39	0.72	0.71	0.99

Reduced-Form Regressions on Actual Data

$$s_t^{\mathsf{meas}} = \gamma_0 + \gamma_m m_t + \gamma_{\mathsf{CEA}} \mathsf{CEA}_t + \gamma_{\mathsf{E}u} \mathbb{E}_t u_{t+4} + \gamma_t \ t + \gamma_{uC} \big(\mathbb{E}_t u_{t+4} \times \mathsf{CEA}_t \big) + \varepsilon_t$$

Model	Time	Wealth	CEA	Un Risk	All 3	Baseline	Interact
γ_0	11.95***	25.20***	9.32***	8.24***	14.90***	15.23***	15.55**
	(0.61)	(1.73)	(0.57)	(0.42)	(2.56)	(2.16)	(2.56)
γ_m		-2.61***			-1.12***	-1.18***	-1.37**
		(0.32)			(0.42)	(0.35)	(0.46)
$\gamma_{\sf CEA}$			-14.14***		-5.47***	-6.12***	-4.60**
			(1.74)		(1.94)	(0.57)	(1.72)
γ_{Eu}				0.67***	0.32***	0.29***	0.38**
				(0.05)	(0.12)	(80.0)	(0.11)
γ_t	-0.04***	-0.03***	0.04***	-0.05***	-0.00		0.00
	(0.00)	(0.00)	(0.01)	(0.00)	(0.01)		(0.01)
γ_{uC}							-0.32**
							(0.16)
\bar{R}^2	0.70	0.85	0.82	0.88	0.89	0.90	0.90
F stat p val	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DW stat	0.30	0.69	0.50	0.86	0.94	0.93	0.98