Gautam Singh

Indian Institute of Technology Hyderabad

April 28, 2025

- Introduction
- **Preliminaries**

Boomerang Attacks

The S-box Switch

The Yoyo Game

Mixture Differentials

3 The Retracing Boomerang Attack

The Retracing Boomerang Framework

The Shifting Retracing Attack

The Mixing Retracing Attack

Comparison Between the Two Types of Retracing Attacks

4 Retracing Boomerang Attack on Five Round AES

Brief Description of AES

The Yoyo Attack on Five Round AES

Improved Attack on Five Round AES

6 Improved Attack on Five Round AES with a Secret S-box

Partial Recovery of the S-box

Introduction

• Broke the record for 5-round AES when it was published.

Introduction

- Broke the record for 5-round AES when it was published.
- 2 Brings the attack complexity down to $2^{16.5}$ encryptions.

Introduction

- Broke the record for 5-round AES when it was published.
- \odot Brings the attack complexity down to $2^{16.5}$ encryptions.
- Uncovers a hidden relationship between boomerang attacks and two other cryptanalysis techniques: yoyo game and mixture differentials.

The Boomerang Attack

① Typically split the encryption function as $E=E_1\circ E_0$, with differential trails for each sub-cipher.

Figure 1: The boomerang attack.

The Boomerang Attack

- 1 Typically split the encryption function as $E=E_1\circ E_0$, with differential trails for each sub-cipher.
- 2 We can build a distinguisher that can distinguish E from a truly random permutation in $\mathcal{O}((pq)^{-2})$ plaintext pairs.

Figure 1: The boomerang attack.

The Boomerang Distinguisher

Algorithm 1 The Boomerang Attack Distinguisher

- 1: Initialize a counter $ctr \leftarrow 0$.
- 2: Generate $(pq)^{-2}$ plaintext pairs (P_1, P_2) such that $P_1 \oplus P_2 = \alpha$.
- for all pairs (P_1, P_2) do
- Ask for the encryption of (P_1, P_2) to (C_1, C_2) . 4:
- Compute $C_3 = C_1 \oplus \delta$ and $C_4 = C_2 \oplus \delta$. 5:

 $\triangleright \delta$ -shift

- Ask for the decryption of (C_3, C_4) to (P_3, P_4) . 6:
- if $P_3 \oplus P_4 = \alpha$ then 7:
- 8: Increment ctr
- 9: if ctr > 0 then
- **return** This is the cipher E 10:
- 11: else
- **return** This is a random permutation 12:

• Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.

- Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .

- Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .
- \odot Denoting this part of the intermediate state by X_i ,

$$(X_1)_j \oplus (X_2)_j = (X_1)_j \oplus (X_3)_j = (X_2)_j \oplus (X_4)_j = \Delta$$
 (1)
which shows $(X_1)_i = (X_4)_i$ and $(X_2)_i = (X_3)_i$.

4 ロ ト 4 周 ト 4 星 ト 4 星 ト 9 Q Q

- Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .
- **3** Denoting this part of the intermediate state by X_j ,

$$(X_1)_j \oplus (X_2)_j = (X_1)_j \oplus (X_3)_j = (X_2)_j \oplus (X_4)_j = \Delta$$
 (1)

which shows $(X_1)_j = (X_4)_j$ and $(X_2)_j = (X_3)_j$.

4 If the differential characteristic in f_j^{-1} holds for (X_1, X_2) , then it will hold for (X_3, X_4) . We pay for probability in one direction.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

The S-box Switch

Boomerang Switches

- Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the S-box switch.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .
- $oldsymbol{0}$ Denoting this part of the intermediate state by X_j ,

$$(X_1)_j \oplus (X_2)_j = (X_1)_j \oplus (X_3)_j = (X_2)_j \oplus (X_4)_j = \Delta$$
 (1)

which shows $(X_1)_j = (X_4)_j$ and $(X_2)_j = (X_3)_j$.

- 4 If the differential characteristic in f_j^{-1} holds for (X_1, X_2) , then it will hold for (X_3, X_4) . We pay for probability in one direction.
- **6** Distinguisher probability increases by a factor of $(q')^{-1}$, where q' is the probability of the differential characteristic in f_i .

Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.

- Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- *Unlike* the boomerang attack, this process continues in the yoyo game.

- **1** Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- *Unlike* the boomerang attack, this process continues in the yoyo game.
- (such as zero difference in some part).

- ① Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- *Unlike* the boomerang attack, this process continues in the yoyo game.
- (such as zero difference in some part).
- Opening Probabilities are low with large I. Still, the yoyo technique has been used to attack AES reduced to 5 rounds.

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

• If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

- If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.
- 2 $X_1 \oplus X_3 = \gamma \implies X_2 \oplus X_4 = \gamma$. Hence, for $\gamma \xrightarrow{q} \delta$ in E_1 , $C_1 \oplus C_3 = C_2 \oplus C_4 = \delta$ with probability q^2 .

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a mixture counterpart of (P_1, P_2) if for each $1 \le j \le t$, the quartet $(\rho_i^1, \rho_i^2, \rho_i^3, \rho_i^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

- 1 If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.
- 2 $X_1 \oplus X_3 = \gamma \implies X_2 \oplus X_4 = \gamma$. Hence, for $\gamma \xrightarrow{q} \delta$ in E_1 , $C_1 \oplus C_3 = C_2 \oplus C_4 = \delta$ with probability a^2 .
- 3 Has been applied to AES reduced up to 6 rounds. E_0 is taken to be the first 1.5 rounds of AES, which can be treated as four parallel super S-boxes.

The Retracing Boomerang Framework

Figure 2: The retracing boomerang attack.

The retracing boomerang framework consists of a shifting type and a mixing type.

- The retracing boomerang framework consists of a shifting type and a mixing type.
- Both attacks use the setup shown in Figure 2.

- The retracing boomerang framework consists of a shifting type and a mixing type.
- Both attacks use the setup shown in Figure 2.
- Although the additional split looks restrictive, it applies for a wide class of block ciphers such as SASAS constructions.

- The retracing boomerang framework consists of a shifting type and a mixing type.
- Both attacks use the setup shown in Figure 2.
- Although the additional split looks restrictive, it applies for a wide class of block ciphers such as SASAS constructions.
- Further, we assume that E_{12} can be split into two parts of size b and n-b bits, call these functions E_{12}^L and E_{12}^R , with characteristic probabilities q_2^L and q_2^R respectively.

The Shifting Retracing Attack

The Shifting Retracing Boomerang Attack

1 Adds a (b-1)-bit filtering in the middle of the attack procedure.

- $oldsymbol{0}$ Adds a (b-1)-bit filtering in the middle of the attack procedure.
- 2 Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all such pairs that do not satisfy this relation.

The Shifting Retracing Attack

- $oldsymbol{0}$ Adds a (b-1)-bit filtering in the middle of the attack procedure.
- **2** Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all such pairs that do not satisfy this relation.
- **6** A δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) .

- Adds a (b-1)-bit filtering in the middle of the attack procedure.
- Check if $C_1^L \oplus C_2^L = 0$ or δ_I . Discard all such pairs that do not satisfy this relation.
- A δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) .
- Filtering ensures that the two unordered pairs (C_1, C_3) and (C_2, C_4) are equal.

- Adds a (b-1)-bit filtering in the middle of the attack procedure.
- Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all such pairs that do not satisfy this relation.
- A δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) .
- Filtering ensures that the two unordered pairs (C_1, C_3) and (C_2, C_4) are equal.
- **6** If one of these pairs satisfies the differential characteristic $\delta_I \stackrel{q_2^L}{\longrightarrow} \mu_I$, the other pair will too!.

- Adds a (b-1)-bit filtering in the middle of the attack procedure.
- Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all such pairs that do not satisfy this relation.
- A δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) .
- Filtering ensures that the two unordered pairs (C_1, C_3) and (C_2, C_4) are equal.
- **5** If one of these pairs satisfies the differential characteristic $\delta_L \xrightarrow{q_2^L} \mu_L$, the other pair will too!.
- Increases the probability of the boomerang distinguisher by $(q_2^L)^{-1}$.

- $oldsymbol{0}$ Adds a (b-1)-bit filtering in the middle of the attack procedure.
- 2 Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all such pairs that do not satisfy this relation.
- **3** A δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) .
- 4 Filtering ensures that the two unordered pairs (C_1, C_3) and (C_2, C_4) are equal.
- **6** If one of these pairs satisfies the differential characteristic $\delta_L \xrightarrow{q_2^L} \mu_L$, the other pair will too!.
- 6 Increases the probability of the boomerang distinguisher by $(q_2^L)^{-1}$.
- Any possible characteristic of (E_{12}^L) has probability at least 2^{-b+1} , thus the overall probability increases by a factor of at most 2^{b-1} . On the other hand, filtering only leaves 2^{-b+1} of the pairs, so there is no apparent gain.

Figure 3: A shifted quartet (dashed lines indicate equality).

Advantages of Filtering

Improving the signal to noise ratio. Improving the probability by a factor of $(q_2^L)^{-1}$ improves the SNR which ensures a higher fraction of the filtered pairs on average satisfy $P_3 \oplus P_4 = \alpha$. The characteristic $\beta \xrightarrow{p} \alpha$ in the backward direction for the pair (X_3, X_4) can be replaced by a truncated differential characteristic $\beta \xrightarrow{p'} \alpha'$ of higher probability.

Advantages of Filtering

- 1 Improving the signal to noise ratio. Improving the probability by a factor of $(q_2^L)^{-1}$ improves the SNR which ensures a higher fraction of the filtered pairs on average satisfy $P_3 \oplus P_4 = \alpha$. The characteristic $\beta \xrightarrow{p} \alpha$ in the backward direction for the pair (X_3, X_4) can be replaced by a truncated differential characteristic $\beta \xrightarrow{p'} \alpha'$ of higher probability.
- Reducing the data complexity. Due to the filtering, the attack leaves fewer ciphertexts. This improves the complexity in cases where more decryption queries are made.

Advantages of Filtering

- 1 Improving the signal to noise ratio. Improving the probability by a factor of $(q_2^L)^{-1}$ improves the SNR which ensures a higher fraction of the filtered pairs on average satisfy $P_3 \oplus P_4 = \alpha$. The characteristic $\beta \xrightarrow{p} \alpha$ in the backward direction for the pair (X_3, X_4) can be replaced by a truncated differential characteristic $\beta \xrightarrow{p'} \alpha'$ of higher probability.
- Reducing the data complexity. Due to the filtering, the attack leaves fewer ciphertexts. This improves the complexity in cases where more decryption queries are made.
- **6** Reducing the time complexity. The filtering can also reduce the time complexity if it is dominated by the analysis of the plaintext pairs (P_3, P_4) .

The Mixing Retracing Attack

The Mixing Retracing Boomerang Attack

1 In the shifting attack, the attacker forces equality between the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) using a δ -shift.

The Retracing Boomerang Attack

- In the shifting attack, the attacker forces equality between the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) using a δ -shift.
- In this type of attack, each ciphertext pair can be shifted by $(C_1^L \oplus C_2^L, 0)$. The resulting ciphertexts are

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R),$$
 (2)

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (3)

- In the shifting attack, the attacker forces equality between the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) using a δ -shift.
- In this type of attack, each ciphertext pair can be shifted by $(C_1^L \oplus C_2^L, 0)$. The resulting ciphertexts are

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R),$$
 (2)

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (3)

3 Again, the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) are equal.

The Retracing Boomerang Attack

- In the shifting attack, the attacker forces equality between the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) using a δ -shift.
- In this type of attack, each ciphertext pair can be shifted by $(C_1^L \oplus C_2^L, 0)$. The resulting ciphertexts are

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R),$$
 (2)

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (3)

- Again, the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) are equal.
- 4 Further, $C_1^R = C_3^R$ and $C_2^R = C_4^R$, thus we gain an additional factor of $(q_2^R)^{-2}$ for a total probability of $(pq_1)^2q_2^L$, better than shifting!

- **1** In the shifting attack, the attacker forces equality between the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) using a δ -shift.
- ② In this type of attack, each ciphertext pair can be shifted by $(C_1^L \oplus C_2^L, 0)$. The resulting ciphertexts are

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R),$$
 (2)

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (3)

- 8 Again, the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) are equal.
- Further, $C_1^R = C_3^R$ and $C_2^R = C_4^R$, thus we gain an additional factor of $(q_2^R)^{-2}$ for a total probability of $(pq_1)^2q_2^L$, better than shifting!
- 5 Similar to the core step used in the yoyo attack on AES.

Figure 4: A mixture quartet of ciphertexts (dashed lines indicate equality).

- Using structures
 - Shifting applies the same δ -shift to all pairs of ciphertexts.

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.
- **2** Combination with E_{11}

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

2 Combination with E_{11}

In mixing, the output difference of E₁₂^L is arbitrary.

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

Combination with E_{11}

- In mixing, the output difference of E₁₂ is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

Combination with E_{11}

- In mixing, the output difference of E₁₂ is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.
- Construction of 'friend pairs'

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

2 Combination with E_{11}

- In mixing, the output difference of E_{12}^L is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.

3 Construction of 'friend pairs'

'Friend pairs' are pairs which satisfy a common property.

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

2 Combination with E_{11}

- In mixing, the output difference of E_{12}^L is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.

6 Construction of 'friend pairs'

- 'Friend pairs' are pairs which satisfy a common property.
- More 'friend pairs' can be constructed in the shifting variant.

Description of AES

Byte ordering shown after SB in Figure 5 (column major).

Figure 5: An AES round.

- Byte ordering shown after SB in Figure 5 (column major).
- 2 j-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_i$.

Figure 5: An AES round.

Brief Description of AES

- Byte ordering shown after SB in Figure 5 (column major).
- \bigcirc j-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_j$.
- **6** Denote by W, Z and X the states before MC in round 0, at the input to round 1 and before MC in round 2 respectively.

Figure 5: An AES round.

- Byte ordering shown after SB in Figure 5 (column major).
- 2 j-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_i$.
- Denote by W, Z and X the states before MC in round 0, at the input to round 1 and before MC in round 2 respectively.
- The I-th shifted column (resp. I-th inverse shifted column) refers to application of SR (resp. SR^{-1}) to the I-th column.

Figure 5: An AES round.

- Byte ordering shown after SB in Figure 5 (column major).
- 2 j-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_i$.
- Denote by W, Z and X the states before MC in round 0, at the input to round 1 and before MC in round 2 respectively.
- The I-th shifted column (resp. I-th inverse shifted column) refers to application of SR (resp. SR^{-1}) to the I-th column.
- **6** Round subkeys are k_{-1}, k_0, \ldots

Figure 5: An AES round.

① Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.

- ① Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- ② Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$. (why?)

- ① Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- ② Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$. (why?)
- **6** For E_{12} , 1.5 rounds of AES can be taken as four 32-bit super S-boxes.

- ① Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- ② Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$. (why?)
- § For E_{12} , 1.5 rounds of AES can be taken as four 32-bit super S-boxes.
- 4 Ciphertext pair (C_1, C_2) modified into its mixture (C_3, C_4) w.r.t. super S-boxes and decrypted. The four inputs to the S-boxes have zero XOR, thus $X_1 \oplus X_2 \oplus X_3 \oplus X_4 = 0$ since MC is linear.

- ① Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- 2 Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$. (why?)
- \odot For E_{12} , 1.5 rounds of AES can be taken as four 32-bit super S-boxes.
- 4 Ciphertext pair (C_1, C_2) modified into its mixture (C_3, C_4) w.r.t. super S-boxes and decrypted. The four inputs to the S-boxes have zero XOR, thus $X_1 \oplus X_2 \oplus X_3 \oplus X_4 = 0$ since MC is linear.
- **5** $X_3 \oplus X_4 = 0$ in a shifted column and $Z_3 \oplus Z_4 = 0$ in an inverse shifted column with probability 2^{-6} . This corresponds to one of the four quartets (0, 5, 10, 15), (1, 4, 11, 14), (2, 5, 8, 13), (3, 6, 9, 12).

- ① Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- ② Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$. (why?)
- § For E_{12} , 1.5 rounds of AES can be taken as four 32-bit super S-boxes.
- 4 Ciphertext pair (C_1, C_2) modified into its mixture (C_3, C_4) w.r.t. super S-boxes and decrypted. The four inputs to the S-boxes have zero XOR, thus $X_1 \oplus X_2 \oplus X_3 \oplus X_4 = 0$ since MC is linear.
- **5** $X_3 \oplus X_4 = 0$ in a shifted column and $Z_3 \oplus Z_4 = 0$ in an inverse shifted column with probability 2^{-6} . This corresponds to one of the four quartets (0, 5, 10, 15), (1, 4, 11, 14), (2, 5, 8, 13), (3, 6, 9, 12).
- **6** Attack quartets of k_{-1} . Friend pairs of (Z_3, Z_4) used to get more information.

Algortihm of Yoyo Attack

Algorithm 2 Yoyo Attack on Five Round AES

- 1: Ask for the encryption of 2^6 pairs (P_1, P_2) of chosen plaintexts with non-zero difference only in bytes 0, 5, 10, 15.
- 2: for all corresponding ciphertext pairs (C_1, C_2) do
- Let (C_3^j, C_4^j) , j = 1, 2, 3, 4 be the mixture counterparts of the pair (C_1, C_2) . 3:
- Ask for the decryption of the ciphertext pairs and consider the pairs (Z_3^j, Z_4^j) . 4:
- 5: for all $l \in \{0, 1, 2, 3\}$ do
- Assume all four pairs (Z_3^j, Z_4^j) and the pair (Z_1, Z_2) have zero difference in byte I. 6: 7:
 - Use the assumption to extract bytes 0, 5, 10, 15 of k_{-1} .
- 8: if a contradiction is reached then
- 9: Increment 1
- 10: if l > 3 then Discard the pair
- 11: else
- Using $Z_3^j \oplus Z_4^j = 0$ in the entire *I*-th inverse shifted column, attack the three 12: remaining columns of round 0 (sequentially) and decude the rest of k_{-1} .

① Data complexity of 2^9 and time complexity of 2^{40} . Careful analysis of round 0 can reduce the complexity down to 2^{31} .

- ① Data complexity of 2^9 and time complexity of 2^{40} . Careful analysis of round 0 can reduce the complexity down to 2^{31} .
- 2 Can improve using a meet in the middle (MITM) attack on bytes 0, 5, 10 and 15 of k_{-1} .

- ① Data complexity of 2^9 and time complexity of 2^{40} . Careful analysis of round 0 can reduce the complexity down to 2^{31} .
- ② Can improve using a meet in the middle (MITM) attack on bytes 0, 5, 10 and 15 of k_{-1} .
- **3** Denote the value of byte m before MC operation of round 0 by W_m , and WLOG let I=0. Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{4}$$

- ① Data complexity of 2^9 and time complexity of 2^{40} . Careful analysis of round 0 can reduce the complexity down to 2^{31} .
- ② Can improve using a meet in the middle (MITM) attack on bytes 0, 5, 10 and 15 of k_{-1} .
- 8 Denote the value of byte m before MC operation of round 0 by W_m , and WLOG let I=0. Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{4}$$

① The adversary guesses bytes 0, 5 of k_{-1} by computing the following for j=1,2,3 and storing the concatenated 24-bit value in a hash table.

$$02_{x} \cdot ((W_{3}^{j})_{0} \oplus (W_{4}^{j})_{0}) \oplus 03_{x} \cdot ((W_{3}^{j})_{1} \oplus (W_{4}^{j})_{1})$$
 (5)

6 Similarly, the adversary does this for bytes 10, 15 of k_{-1} , computing

$$01_{x} \cdot ((W_{3}^{j})_{2} \oplus (W_{4}^{j})_{2}) \oplus 01_{x} \cdot ((W_{3}^{j})_{3} \oplus (W_{4}^{j})_{3})$$
 (6)

6 Similarly, the adversary does this for bytes 10, 15 of k_{-1} , computing

$$01_{x} \cdot ((W_{3}^{j})_{2} \oplus (W_{4}^{j})_{2}) \oplus 01_{x} \cdot ((W_{3}^{j})_{3} \oplus (W_{4}^{j})_{3})$$
 (6)

6 The adversary checks for a match in the table, which is equivalent to $(Z_3^j)_0 = (Z_4^j)_0$ for j = 1, 2, 3.

Meet in the Middle Improvement on Yoyo Attack

6 Similarly, the adversary does this for bytes 10, 15 of k_{-1} , computing

$$01_{x} \cdot ((W_{3}^{j})_{2} \oplus (W_{4}^{j})_{2}) \oplus 01_{x} \cdot ((W_{3}^{j})_{3} \oplus (W_{4}^{j})_{3})$$
 (6)

- **6** The adversary checks for a match in the table, which is equivalent to $(Z_3^j)_0 = (Z_4^j)_0$ for j = 1, 2, 3.
- ② 24-bit filtering leaves 2^8 candidates for bytes 0, 5, 10, 15 of k_{-1} , checked using the conditions $(Z_3^4)_0 = (Z_4^4)_0$ and $(Z_1)_0 = (Z_2)_0$.

Meet in the Middle Improvement on Yoyo Attack

6 Similarly, the adversary does this for bytes 10, 15 of k_{-1} , computing

$$01_{x} \cdot ((W_{3}^{j})_{2} \oplus (W_{4}^{j})_{2}) \oplus 01_{x} \cdot ((W_{3}^{j})_{3} \oplus (W_{4}^{j})_{3})$$
 (6)

- The adversary checks for a match in the table, which is equivalent to $(Z_3^J)_0 = (Z_4^J)_0$ for j = 1, 2, 3.
- \bigcirc 24-bit filtering leaves 2^8 candidates for bytes 0, 5, 10, 15 of k_{-1} , checked using the conditions $(Z_3^4)_0 = (Z_4^4)_0$ and $(Z_1)_0 = (Z_2)_0$.
- 8 Although the data complexity looks like 2¹⁶, the dissection technique can be used to maintain the memory at 2^9 .

Meet in the Middle Improvement on Yoyo Attack

6 Similarly, the adversary does this for bytes 10, 15 of k_{-1} , computing

$$01_{x} \cdot ((W_{3}^{j})_{2} \oplus (W_{4}^{j})_{2}) \oplus 01_{x} \cdot ((W_{3}^{j})_{3} \oplus (W_{4}^{j})_{3})$$
 (6)

- The adversary checks for a match in the table, which is equivalent to $(Z_3^j)_0 = (Z_4^j)_0$ for j = 1, 2, 3.
- ② 24-bit filtering leaves 2^8 candidates for bytes 0, 5, 10, 15 of k_{-1} , checked using the conditions $(Z_3^4)_0 = (Z_4^4)_0$ and $(Z_1)_0 = (Z_2)_0$.
- ① The time complexity is now reduced to $2^6 \cdot 4 \cdot 2^{16} = 2^{24}$ operations, which is roughly equivalent to less than 2^{23} encryptions.

1 The MITM attack can be improved to a time complexity of $2^{16.5}$ at the expense of incereasing the data complexity to 2^{15} .

- **1** The MITM attack can be improved to a time complexity of $2^{16.5}$ at the expense of incereasing the data complexity to 2^{15} .
- 2 The main idea is to reduce the number of possible key values to 2^8 instead of 2^{16} as described earlier. This is done in multiple steps.

- **1** The MITM attack can be improved to a time complexity of $2^{16.5}$ at the expense of incereasing the data complexity to 2^{15} .
- 2 The main idea is to reduce the number of possible key values to 2⁸ instead of 2¹⁶ as described earlier. This is done in multiple steps.
 - Specific choice of plaintexts based on DDT of AES S-boxes.

- **1** The MITM attack can be improved to a time complexity of $2^{16.5}$ at the expense of incereasing the data complexity to 2^{15} .
- 2 The main idea is to reduce the number of possible key values to 2⁸ instead of 2¹⁶ as described earlier. This is done in multiple steps.
 - Specific choice of plaintexts based on DDT of AES S-boxes.
 - Eliminating key bytes using friend pairs.

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (7)

① Choose plaintexts with non-zero difference only in bytes 0 and 5. Here, $(Z_1)_0 = (Z_2)_0$ leaves 2^8 candidates for $k_{-1,\{0,5\}}$, given by

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (7)

2 Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (7)

- **②** Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- **3** DDT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.

$$02_x \cdot ((W_1)_0 \oplus (W_2)_0) \oplus 03_x \cdot ((W_1)_1 \oplus (W_2)_1) = 0.$$
 (7)

- **2** Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- ODT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.
- ② For each (P_1, P_2) and for each guess of $k_{-1,0}$, use (7) to compute the output difference of the SB operation in byte 5.

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (7)

- **2** Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- ODT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.
- 4 For each (P_1, P_2) and for each guess of $k_{-1,0}$, use (7) to compute the output difference of the SB operation in byte 5.
- **6** We can lookup to find inputs that can lead to this difference and retrieve possible values of $k_{-1,5}$ that correspond to the guessed $k_{-1,0}$.

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (7)

- **2** Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- ODT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.
- 4 For each (P_1, P_2) and for each guess of $k_{-1,0}$, use (7) to compute the output difference of the SB operation in byte 5.
- **6** We can lookup to find inputs that can lead to this difference and retrieve possible values of $k_{-1,5}$ that correspond to the guessed $k_{-1,0}$.
- **6** Gives 2^8 values of $k_{-1,\{0,5\}}$ in about 2^8 simple operations per pair.

1 To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .

- 1 To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .
- 2 In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (8)

- 1 To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .
- ② In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (8)

Assume WLOG that equality holds in byte 10.

3 Then, (6) depends only on $k_{-1,15}$ and has only 2^8 possible values.

- ① To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .
- ② In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (8)

- § Then, (6) depends only on $k_{-1,15}$ and has only 2^8 possible values.
- $_{0}$ Requires 2^{9} simple operations and leaves 2^{8} candidates for $k_{-1,\{0,5,15\}}$.

- 1 To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .
- ② In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (8)

- **3** Then, (6) depends only on $k_{-1,15}$ and has only 2^8 possible values.
- 4. Requires 2^9 simple operations and leaves 2^8 candidates for $k_{-1,\{0,5,15\}}$.
- **5** Similar MITM procedure followed with another friend pair to obtain the unique value of $k_{-1,\{0,5,10,15\}}$ by isolating $k_{-1,10}$.

- 1 To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .
- ② In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (8)

- § Then, (6) depends only on $k_{-1,15}$ and has only 2^8 possible values.
- 4. Requires 2^9 simple operations and leaves 2^8 candidates for $k_{-1,\{0,5,15\}}$.
- **5** Similar MITM procedure followed with another friend pair to obtain the unique value of $k_{-1,\{0,5,10,15\}}$ by isolating $k_{-1,10}$.
- **6** Perform 2^8 operations for each pair (P_1, P_2) and for each value of I. Total time complexity of about 2^{16} operations.

- 1 To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .
- ② In particular, we choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (8)

- **3** Then, (6) depends only on $k_{-1,15}$ and has only 2^8 possible values.
- 4 Requires 2^9 simple operations and leaves 2^8 candidates for $k_{-1,\{0,5,15\}}$.
- **5** Similar MITM procedure followed with another friend pair to obtain the unique value of $k_{-1,\{0,5,10,15\}}$ by isolating $k_{-1,10}$.
- **6** Perform 2^8 operations for each pair (P_1, P_2) and for each value of I. Total time complexity of about 2^{16} operations.
- Peach pair requires 2⁷ friend pairs to find one that satisfies (8) with high probability. Total data complexity is increased to about 2¹⁵.

OPERATE : Precomputation: Compute DDT row of AES S-box for input difference 01_x , along with actual inputs for each output difference.

- **1 Precomputation:** Compute DDT row of AES S-box for input difference 01_x , along with actual inputs for each output difference.
- **Online Phase:** Take 64 pairs (P_1, P_2) with $(P_1)_5 = 00_x$, $(P_2)_5 = 01_x$, $(P_1)_0 \neq (P_2)_0$ and all other corresponding bytes equal.

- **Precomputation:** Compute DDT row of AES S-box for input difference 01_x , along with actual inputs for each output difference.
- **Online Phase:** Take 64 pairs (P_1, P_2) with $(P_1)_5 = 00_x$, $(P_2)_5 = 01_x$, $(P_1)_0 \neq (P_2)_0$ and all other corresponding bytes equal.
- Solution For each plaintext pair, create 2^7 friend pairs (P_1^j, P_2^j) such that for each j, $P_1^j \oplus P_2^j = P_1 \oplus P_2$ and $(P_1^j)_{\{0.5.10.15\}} = (P_1)_{\{0.5.10.15\}}$.

4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)

- For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (I = 0 taken below)
 - ① Use (7) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (7) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^j, P_4^j) .

- ④ For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (7) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^j, P_4^j) .
 - § Find a j for which (8) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0,5,15\}}$.

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (7) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^I, P_4^I) .
 - § Find a j for which (8) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0,5,15\}}$.
 - 4 Perform another MITM attack on column 0 of round 0 using two plaintext pairs $(P_3^{j'}, P_4^{j'})$. This gives a possible value for $k_{-1,\{0,5,10,15\}}$.

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (7) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^J, P_4^J) .
 - § Find a j for which (8) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0,5,15\}}$.
 - 4 Perform another MITM attack on column 0 of round 0 using two plaintext pairs $(P_3^{j'}, P_4^{j'})$. This gives a possible value for $k_{-1,\{0,5,10,15\}}$.
 - If contradiction, go to the next value of I. If contradiction for all I, discard this pair and go to the next pair.

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (7) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^I, P_4^I) .
 - § Find a j for which (8) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0,5,15\}}$.
 - 4 Perform another MITM attack on column 0 of round 0 using two plaintext pairs $(P_3^{j'}, P_4^{j'})$. This gives a possible value for $k_{-1,\{0,5,10,15\}}$.
 - If contradiction, go to the next value of I. If contradiction for all I, discard this pair and go to the next pair.
- **6** Using a pair (P_1, P_2) for which no contradiction occurred, perform similar MITM attacks on columns 1, 2 and 3 of round 0 using the fact that $Z_3 \oplus Z_4$ equals 0 in the *I*-th inverse shifted column to recover the entire k_{-1} .

1 The attack succeeds if the data contains a pair that satisfies the truncated differential characteristic of E_0 and for one of the 'friend pairs' of that pair, the corresponding plaintext pair (P_3^j, P_4^j) has zero difference in either byte 10 or 15.

- 1 The attack succeeds if the data contains a pair that satisfies the truncated differential characteristic of E_0 and for one of the 'friend pairs' of that pair, the corresponding plaintext pair (P_3^j, P_4^j) has zero difference in either byte 10 or 15.
- ② Increasing the number of initial pairs and friend pairs per initial pair boosts success probability. With 64 pairs and 128 friend pairs per initial pair, the probability of success is $(1 e^{-1})^2 \approx 0.4$

- 1 The attack succeeds if the data contains a pair that satisfies the truncated differential characteristic of E_0 and for one of the 'friend pairs' of that pair, the corresponding plaintext pair (P_3^j, P_4^j) has zero difference in either byte 10 or 15.
- ② Increasing the number of initial pairs and friend pairs per initial pair boosts success probability. With 64 pairs and 128 friend pairs per initial pair, the probability of success is $(1 e^{-1})^2 \approx 0.4$
- **3** Another way to boost succees probability is to find other ways to cancel terms in (6). For instance, if there exist j, j' such that $\{(P_3^j)_{10}, (P_4^j)_{10}\} = \{(P_3^{j'})_{10}, (P_4^{j'})_{10}\}$, we can take the XOR of (6) to cancel the effect of $k_{-1,10}$, thus increasing the success probability even when there is no pair that satisfies (8).

① Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.

- ① Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.
- Structures can reduce the data complexity to slightly above 2¹⁴ adaptively chosen ciphertexts and plaintexts, but also slightly reduces the success probability due to additional dependencies between analyzed pairs.

- ① Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.
- Structures can reduce the data complexity to slightly above 2¹⁴ adaptively chosen ciphertexts and plaintexts, but also slightly reduces the success probability due to additional dependencies between analyzed pairs.
- \odot Memory complexity of the attack remains at 2^9 128-bit memory cells, like the yoyo attack.

Attack Analysis

- ① Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.
- Structures can reduce the data complexity to slightly above 2¹⁴ adaptively chosen ciphertexts and plaintexts, but also slightly reduces the success probability due to additional dependencies between analyzed pairs.
- \odot Memory complexity of the attack remains at 2^9 128-bit memory cells, like the yoyo attack.
- 7 Time complexity is dominated by several MITM attacks that take 2¹⁶ operations each. Considering one AES operation to be equivalent to 80 S-box lookups and adding it to the number of queries gives us a total of 2^{16.5} encryptions.

1 Retracing boomerang attack recovers the secret key without fully recovering the secret S-box (the S-box is recovered upto an affine transformation in $GF(2^8)$).

- Retracing boomerang attack recovers the secret key without fully recovering the secret S-box (the S-box is recovered upto an affine transformation in $GF(2^8)$).
- 2 The idea exploit the fact that with probability 2^{-6} , the pair (Z_3, Z_4) has zero difference in an inverse shifted column.

- Retracing boomerang attack recovers the secret key without fully recovering the secret S-box (the S-box is recovered upto an affine transformation in $GF(2^8)$).
- 2 The idea exploit the fact that with probability 2^{-6} , the pair (Z_3, Z_4) has zero difference in an inverse shifted column.
- This observation does not depend on the specific structure of MC and SB operations, hence it can be applied to key-dependent variants as well.

Assume WLOG the retracing boomerang produces zero difference in byte 0 of state Z, or $(Z_3)_0 \oplus (Z_4)_0 = 0$. (4) can be rewritten as

$$0 = (Z_3)_0 \oplus (Z_4)_0$$

$$= 02_x \cdot ((W_3)_0 \oplus (W_4)_0) \oplus 03_x \cdot ((W_3)_1 \oplus (W_4)_1)$$

$$\oplus 01_x \cdot ((W_3)_2 \oplus (W_4)_2) \oplus 01_x \cdot ((W_3)_3 \oplus (W_4)_3).$$
(10)

Assume WLOG the retracing boomerang produces zero difference in byte 0 of state Z, or $(Z_3)_0 \oplus (Z_4)_0 = 0$. (4) can be rewritten as

$$0 = (Z_3)_0 \oplus (Z_4)_0$$

$$= 02_x \cdot ((W_3)_0 \oplus (W_4)_0) \oplus 03_x \cdot ((W_3)_1 \oplus (W_4)_1)$$

$$\oplus 01_x \cdot ((W_3)_2 \oplus (W_4)_2) \oplus 01_x \cdot ((W_3)_3 \oplus (W_4)_3).$$
(10)

Note that $(W_3)_i = SB(P_3 \oplus k_{-1,j'})$ for j = 0, 1, 2, 3 where $i' = SR^{-1}(i)$.

1 Assume WLOG the retracing boomerang produces zero difference in byte 0 of state Z, or $(Z_3)_0 \oplus (Z_4)_0 = 0$. (4) can be rewritten as

$$0 = (Z_3)_0 \oplus (Z_4)_0$$

$$= 02_x \cdot ((W_3)_0 \oplus (W_4)_0) \oplus 03_x \cdot ((W_3)_1 \oplus (W_4)_1)$$

$$\oplus 01_x \cdot ((W_3)_2 \oplus (W_4)_2) \oplus 01_x \cdot ((W_3)_3 \oplus (W_4)_3).$$

$$(10)$$

- ② Note that $(W_3)_j = SB(P_3 \oplus k_{-1,j'})$ for j = 0, 1, 2, 3 where $j' = SR^{-1}(j)$.
- § If we define $4 \cdot 256 = 1024$ variables $x_{m,j} = SB(m \oplus k_{-1,j'})$ for $m \in \mathbb{F}_q$ and j = 0, 1, 2, 3, then each plaintext pair P_1, P_2 which satisfies (10) provides a linear equation in the variables $x_{m,j}$.

To obtain many pairs, attach about 2¹⁰ friend pairs to each of the 2⁶ original pairs (P_1, P_2) .

- 4 To obtain many pairs, attach about 2^{10} friend pairs to each of the 2^6 original pairs (P_1, P_2) .
- **5** For each original pair along with its friend pairs, perform the mixing retracing boomerang process to obtain a linear equation in the variables $x_{m,j}$. A few more friend pairs are taken for extra filtering of the original pairs.

- 4 To obtain many pairs, attach about 2^{10} friend pairs to each of the 2^{6} original pairs (P_1, P_2) .
- 5 For each original pair along with its friend pairs, perform the mixing retracing boomerang process to obtain a linear equation in the variables $x_{m,j}$. A few more friend pairs are taken for extra filtering of the original pairs.
- 6 Since differences are used (10), we can recover the S-box with an invertible linear transformation over $GF(2^8)$. That is, we can only obtain functions S_0, S_1, S_2, S_3 such that

$$S_j(x) = L_0(SB(x \oplus k_{-1,j'})),$$
 (11)

for some unknown linear transformation L_0 . Similar linear transformations L_t will be obtained for column t.

Attack Analysis

The secret key k_{-1} can be recovered despite not knowing the S-box in two steps.

First, for each j', we can recover $\bar{k_{j'}}=k_{-1,0}\oplus k_{-1,j'}$ as $\bar{k_{j'}}$ is the unique value of c such that $S_j(x)=S_0(x\oplus c)$ for all x. Similarly, we can recover each inverse shifted column of k_{-1} up to 2^8 possible values. This reduces the total number of candidates for k_{-1} to 2^{32} .

Second, the differences $k_{-1,0} \oplus k_{-1,j}$ for j=1,2,3 can be found by taking several quartets of values (x_0,x_1,x_2,x_3) such that $\bigoplus_{i=0}^3 S_0(x_i)=0$. These quartets eliminate the effect of the difference between the linear transformations L_0 and L_j by finding the unique value of c_j such that $\bigoplus_{i=0}^3 S_j(c_j \oplus x)=0$. Thus, in about 2^{12} operations, we can determine the entire secret key k_{-1} upto the value of $k_{-1,0}$. These 2^8 possibilities can be exhaustively searched.

The data complexity of this attack is $2 \cdot 2^6 \cdot 2^{10} = 2^{17}$ chosen plaintexts and 2^{17} adaptively chosen ciphertexts. Using structures, the amount of chosen plaintexts can be reduced to 2^{14} , thus the overall data complexity

is less than 2^{17.5} chosen plaintexts and adaptively chosen ciphertexts. The time complexity is dominated by solving a system of 1034 equations in 1024 variables for each of the 2^6 pairs (P_1, P_2) . Using an efficient algorithm such as the Method of the Four Russians, each solution takes about 2^{27} simple operations or approximately 2^{21} encryptions. Thus, the overall time complexity is 2^{29} .

The memory complexity is dominated by the memory required for solving the equations, which is about 2¹⁷ 128-bit blocks.

The equation solving step has to be applied 28 times since we do not know if a pair satisfies the boomerang property. To obtain this information in advance, we can use the five-round yoyo distinguisher. In this variant, the time complexity is dominated by the complexity of the yoyo distinguisher, which is $2^{25.8}$. The memory complexity is still 2^{17} .