# Calcul des probabilités- Partie 2

Réalisé par Dr. A. Redjil Département de mathématiques, UBMA, Annaba

October 16, 2021

#### Abstract

E-mail: a.redjil@univ-annaba.dz

## 1 Variables aléatoires

La variable aléatoire associe une valeur réelle à chaque résultat d'une expérience aléatoire.

Elle est définie par une application de l'ensemble des résultats  $\Omega$  dans  $\mathbb{R}$ . On note [X=a] l'ensemble des résultas  $\omega$  pour lesquels  $X(\omega)=a$ , de même  $b < X \le a$ .

# 1.1 Définition

**Définition** X est une variable aléatoire sur un espace probabilisable  $(\Omega, \mathcal{T})$  si X est une application mesurable définie sur  $\Omega$  et si pour tout réel a,  $[X \leq a]$  appartient à la tribu

 $([X \le a] \text{ est un événement}).$ 

Soit  $(\Omega, \mathcal{A}, P)$  un espace de probabilité. Une variable aléatoire X est une fonction mesurable de  $(\Omega, \mathcal{A})$  dans  $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ , est la tribu borélienne.

```
Pour a, b \in \mathbb{R}, a \leq b, on a:

X^{-1}([a,b]) = \{\omega \in \Omega, X(\omega) \in [a,b]\} est un élément de \mathcal{A}.
```

• Pour l'expérience "pile ou face",  $\Omega = \{p, f\}$ , on peut considérer la variable aléatoire X définie par X(f) = 0 et X(p) = 1.

Pour l'expérience aléatoire "2 lancers de dé" (ou "lancer de deux dés" ), l'espace fondamental est défini par:  $\Omega = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),\ldots,(6,5),(6,6)\} \text{ soit } 36 \text{ éléments tels que } (i,j) \text{ signifie "} i \text{ est le résultat du premier lancer, } j \text{ est le résultat du second". On peut alors définir de nombreuses variables aléatoires, citons par exemple:}$ 

- la variable aléatoire X définie par X(i, j) = i + j, somme des résultats des 2 lancers (ou des deux dés).
- la variable aléatoire Y définie par Y(i,j) = |i-j|, l'écart entre les résultats des deux lancers.

Notations: Pour  $a, b \in \mathbb{R}$ ,  $a \leq b$ , a ou b éventuellement infini, on définit  $X^{-1}([a,b]) = \{\omega \in \Omega, \ X(\omega) \in [a,b]\} = \{\omega \in \Omega, \ a \leq X(\omega) \leq b\}$  l'ensemble des éléments de  $\Omega$  tels que  $X(\omega)$  est compris entre a et b.

On note aussi cet ensemble par  $\{a \leq X \leq b\}$ .

Si  $a = -\infty$  on note alors cet ensemble par  $\{X \leq b\}$  et si  $b = +\infty$  par  $\{X \geq a\}$ . Si a = b on note  $\{X = a\}$  l'ensemble des  $\omega$  tels que  $X(\omega) = a$ .

## Rappel

La tribu borélienne  $\mathcal{B}$  est composée de tous les sous-ensembles de  $\mathbb{R}$  obtenus par une suite, éventuellement infinie, d'intersections, de réunion ou de passage au complémentaire sur des intervalles de type [a, b].

 $\mathcal{B}$  est appelée aussi l'ensemble des boréliens.

#### Définition

Soit X une variable aléatoire définie sur l'espace de probabilité  $(\Omega, \mathcal{A}, P)$ . On définit alors une loi de probabilité  $P_X$  sur l'espace probabilisable  $(\mathbb{R}, \mathcal{B})$  par

$$P_X([a,b]) = P(X^{-1}([a,b]).$$

 $(\mathbb{R}, \mathcal{B}, P_X)$  est alors un espace de probabilité.

La probabilité pour que la valeur de X soit comprise entre a et b est donnée par:  $P_X([a,b]) = P(a \le X \le b)$ .

 $P_X$  est appelée loi de probabilité de la variable aléatoire X ou plus simplement loi de X.

## 1.2 Loi et fonction de répartition

**Définition** Pour une variable aléatoire discrète, la loi de X est la donnée de l'ensemble des valeurs possibles de X,  $X(\Omega)$ , et la probabilité que X prenne chacune de ces valeurs.

Cela peut être donné par une ou plusieurs formules, ou bien les valeurs peuvent être énumérées dans un tableau.

Caractérisation la loi d'une variable aléatoire discrète est caractérisée par le fait que chacune des probabilités est positive ou nulle et la somme des probabilités (ou la somme de la série des probabilités dans le cas discret infini) est égale à 1.

Fonction de répartition La fonction de répartition F d'une variable aléatoire X est définie par  $F(x) = P(X \le x)$  pour tout réel x.

On peut retrouver la loi à partir de la fonction de répartition : si X prend les valeurs  $x_1 < x_2 < \cdots < x_n$  alors

$$P(X = x_k) = P(X \le x_k) - P(X < x_k)$$
  
=  $P(X \le x_k) - P(X \le x_{k-1})$  si  $k - 1 \ge 1$ 

La première valeur  $X = x_1$  joue un rôle particulier et est à traiter a-priori à part. On peut souvent la réintégrer a-posteriori dans la formule générale.

Et on peut retrouver la fonction de répartition à partir de la loi : si  $x_k \le x < x_{k+1}$  alors

$$F(x) = P(X \le x) = P(X \le x_k) = \sum_{i=1}^{k} P(X = x_i)$$

# 1.3 Détermination de la loi d'une variable aléatoire

## 1.3.1 Fonction de répartition

#### **Définition**

Soit X une variable aléatoire définie sur l'espace de probabilité  $(\Omega, \mathcal{A}, P)$ . La fonction de répartition de X est la fonction  $F_X: \mathbb{R} \longrightarrow \mathbb{R}$  définie, pour tout  $x \in \mathbb{R}$ , par

$$F_X(x) = P(X \le x)$$

## Propriétés de la fonction de répartition

- 1.  $F_X(-\infty) := \lim_{x \to -\infty} F_X(x) = 0$
- 2.  $F_X(+\infty) := \lim_{x \to +\infty} F_X(x) = 1$

## Exercice

Pour X définie par X(f)=0 et X(p)=1 dans l'expérience "pile ou face" on a  $F_X(x)=\left\{ \begin{array}{ll} 0 & si \ x<0 \\ \frac{1}{2} & si \ 0\leq x<1 \\ 1 & si \ x\geq 1 \end{array} \right.$ 

#### ${f Exercice}$

Déterminer et tracer le graphe de  $F_X$  pour X la variable aléatoire définie, dans le cas du lancer de un seul dé, par X(i) = i pour i = 1,...,6.

#### 1.3.2 Fonction de densité

## Rappel: vocabulaire de théorie des ensembles

- - Un ensemble dénombrable est de la forme  $\{\omega_1, \omega_2, \omega_3, \dots, \omega_k, \dots\}$ . Il est infini mais on peut énumérer ses éléments.
  - Un ensemble discret est soit un ensemble fini, soit un ensemble dénombrable.
  - Si un ensemble infini n'est pas dénombrable on dira qu'il est continu.

Si toutes les valeurs possibles que peut prendre une v.a. donnée X forment un ensemble discret on dira que X est une variable aléatoire discrète. Sinon on dit que X est une variable aléatoire continue (c-à-d que X peut prendre une infinité non dénombrable de valeurs).

#### Exercice

• Si on considère pour univers tous les étudiants d'une université U et que l'on considère la variable aléatoire qui à tout étudiant associe son sexe (codé 1 pour un homme, 2 pour une femme), c'est encore une v.a. discrète puisque les seules valeurs possibles sont 1 ou 2.

Toujours sur les étudiants, la v.a. qui à chacun associe leur performance sur une course de  $100\mathrm{m}$  est continue, en effet une valeur possible est  $12~\mathrm{s}$  mais une autre est  $12~\mathrm{s}$  3 dixièmes, une autre  $12~\mathrm{s}$  3 dixièmes 6 centièmes, une autre  $12~\mathrm{s}$  3 dixièmes 6 centièmes 5 millièmes, etc. On suppose évidemment, de façon irréaliste, que l'on dispose d'un chronomètre de précision infinie.

De façon plus réaliste on sera souvent obligé de discrétiser une telle variable. En effet si on dispose d'un chrono précis au centième et en supposant que personne ne mette plus de 30s à courir le 100m, la v.a. ne pourra au plus que 3000 valeurs différentes. Et donc une v.a. discrète.

Si X est une v.a. discrète finie Dans ce cas, X ne peut prendre qu'un nombre fini de valeurs distinctes. On note  $x_1, x_2, \ldots, x_n$  ces valeurs.

On a alors 
$$\Omega = \bigcup_{i=1}^n \{X = x_i\}$$
 et  $\{X = x_i\} \cap \{X = x_j\} = \emptyset$  si  $i \neq j$  (Preuve: En effet  $\omega \in \{X = x_i\} \Leftrightarrow X(\omega) = x_i$ . Donc  $X(\omega) \neq x_j$  puisque  $x_i \neq x_j$  et donc  $\omega \notin \{X = x_i\}$ .)

Donc les  $\{X = x_i\}$  pour i allant de 1 à n forment une famille d'événement deux à deux incompatibles. On a donc

$$1 = P(\Omega) = P(\bigcup_{i=1}^{n} \{X = x_i\}) = \sum_{i=1}^{n} P(X = x_i)$$

.

## Définition

Soit X une variable aléatoire discrète finie sur l'espace de probabilité  $(\Omega, \mathcal{A}, P)$ . Soient  $x_1, x_2, \ldots, x_n$  les n valeurs distinctes pouvant être prises par X.

La fonction  $f_X(x) = \begin{cases} P(X = x_i) & x = x_i \text{ pour un } i \text{ entre } 1 \text{ et } n \\ 0 & x \neq x_i \text{ pour tous les } i \text{ entre } 1 \text{ et } n \end{cases}$  s'appelle fonction de densité de la v. a. X.

Si X est une v.a. discrète infinie (dénombrable) On peut définir les

mêmes notions et écrire les mêmes formules en remplaçant n par  $+\infty$ . (avec des précautions).

## Si X est une v.a. continue Définition

Soit X une variable aléatoire discrète définie sur l'espace de probabilité  $(\Omega, \mathcal{A}, P)$ . S'il existe  $f_X$  telle que  $P(Xx) = F_X(x) = \int_{-\infty}^x f_X(u) \ du$  on dit que  $f_X$  est la fonction de densité de X.

# 1.4 Espérance et variance

**Définition** L'espérance d'une variable aléatoire qui ne prend qu'un nombre fini de valeur est :

$$E(X) = \sum_{k \in X(\Omega)} k \cdot P(X = k)$$

Si X prend un nombre infini dénombrable de valeur, X n'a une espérance que si la série  $\sum_{k \in X(\Omega)} k \cdot P(X = k)$  est absolument convergente. L'espérance de X est alors la somme de la série (sans valeur absolue)

La variance de X est donnée par la formule:

$$V\left(X\right) = E\left[\left(X - E\left(X\right)\right)^{2}\right] = E\left(X^{2}\right) - E\left(X\right)^{2}$$

L'écart-type est la racine carrée de la variance.

## Remarques

Quand la loi de X est donnée par plusieurs formules, il faut décomposer la somme pour pouvoir substituer la formule à P(X = k)

**Calculs** Soit Y = f(X) une variable aléatoire fonction d'une autre variable X, Pour calculer l'espérance de Y en fonction de X, il n'est pas utile de chercher d'abord la loi de Y:

$$E(Y) = E(f(X)) = \sum_{k \in X(\Omega)} f(k) P(X = k)$$

Dans le cas d'un nombre infini dénombrable de valeurs, la somme étant celle de la série qui doit être absolument convergente.

- En particulier, on en déduit la linéarité de l'espérance : si a et b sont des réels (et non pas des variables aléatoires) et X une variable aléatoire E(aX + b) = aE(X) + b.
- On a  $E(X^2) = \sum_{k \in X(\Omega)} k^2 P(X = k)$ On considère la somme de la série si elle est absolument convergente dans le cas discret infini.
- La variance se calcule plus facilement par  $V(X) = E(X^2) E(X)^2$  et on a pour des réels a et b:  $V(aX + b) = a^2V(X)$

**Définition** L'espérance d'une variable aléatoire qui ne prend qu'un nombre fini de valeur est :

$$E(X) = \sum_{k \in X(\Omega)} k \cdot P(X = k)$$

Si X prend un nombre infini dénombrable de valeur, X n'a une espérance que si la série  $\sum_{k \in X(\Omega)} k \cdot P(X = k)$  est absolument convergente. L'espérance de X est alors la somme de la série (sans valeur absolue).

#### 1.5 Moments d'une Variable discrète

La loi dune variable aléatoire X est donnée par le tableau suivant:

| [X=x]                        | 0  | 1                          | 2  | 3               | 4              |
|------------------------------|----|----------------------------|----|-----------------|----------------|
| $\mathbf{D}[\mathbf{V} = w]$ | 9  | 1                          | 1  | 1               | 1              |
| P[X = x]                     | 13 | $\frac{\overline{13}}{13}$ | 13 | $\overline{13}$ | $\frac{1}{13}$ |

avec x est la valeur prise par la variable X.

X est une variable discrète finie donc elle admet une espérance.

De plus, 
$$E(X) = \sum_{x \in X(\Omega)} x P(X = x) = 0 \times \frac{9}{13} + 1 \times \frac{1}{13} + 2 \times \frac{1}{13} + 3 \times \frac{1}{13} + 4 \times \frac{1}{13} = \frac{10}{13}$$

On remarque que l'on a bien  $0 \le E(X) \le 4$ .

Voici l'un des théorèmes les plus important sur l'espérance, le théorème de transfert :

#### Théorème

Si  $X(\Omega)$  est fini ou si la série  $\sum g(x_i)P(X=x_i)$  converge alors la variable g(X) admet une espérance :

$$E(g(X)) = \sum_{x \in X(\Omega)} g(x)P(X = x).$$

## Corolaire

Si X admet une espérance alors pour tout  $(a,b) \in \mathbb{R}^2$ , aX+b admet une espérance et

$$E(aX + b) = aE(X) + b$$

## Définition

Si X est une variable aléatoire telle que E(X)=0, on dit que X est une variable centré.

Soit X une variable discrète admettant une espérance E(X). La variable aléatoire X - E(X) est une variable discrète centrée.

#### 1.5.1 Moment d'ordre r.

## Définition

Soit  $r \in \mathbb{N}^*$ . Si  $X^r$  admet une espérance alors on dit que X admet un moment d'ordre r qui est le réel  $m_r(X) = E(X^r)$ .

#### Remarques

• Grâce au théorème de transfert, en cas de convergence, on a  $E(X^r)=\sum_{x\in X(\Omega)}x^rP(X=x)$ 

Le moment d'ordre 1 est l'espérance.

Toutes les variables discrètes finies admettent des moments d'ordre r pour tout  $r \in \mathbb{N}^*$ .

Soit  $r \in \mathbb{N}^*$ . Si X admet un moment d'ordre r alors X admet des moments d'ordre s pour tout  $s \in [1, r]$ .

## Corolaire

Si  $E(X^2)$  existe alors E(X) existe.

La réciproque à cette propriété est fausse.