SPRAWOZDANIE- Projekt 7

Wizualizacja działania algorytmu genetycznego (GA) Maciej Mróz, Roksana Patelczyk

1. Formularz testowy

Parametry GA

Liczba bitów kodujących 1 gen	nie dotyczy
Liczba bitów kodujących 1 chromosom	nie dotyczy
Metoda selekcji	turniejowa
Liczba punktów krzyżowania	1
Prawdopodobieństwo krzyżowania, pc	implicit(zawsze)
Prawdopodobieństwo mutacji, pm	0.1
Częstotliwość próbkowania, co Δs(#ev) =	co każde pokolenie
	liczbaOsobników × liczbaPokoleń,
Kryterium stopu - max liczba ewaluacji FP (#ev_max) wykonywanych przez algorytm (taka	np. 100 × 200 = 20000
sama we wszystkich testach), #ev_max = Liczba uruchomień algorytmu do uśrednienia wyników, #runs =	1
Funkcje przetestowane oraz przetestowana liczba zmiennych w tych funkcjach:	Т
Rastrigin	2
Przetestowane rozmiary populacji xP (przetestowany rozmiar zaznaczyć za pomocą "x"):	
10	Х
20	X
50	X
100	X
200	X
300	X
400	X
500	Х
600	X
1000	Х
1500	Х
2000	Х

Jakie krzywe są pokazane na wykresach (zaznaczyć za pomocą "x"):

Średnie wartości FP w punktach próbkowania co Δs(#ev), AVGs	Х
Średnie wartości FP dla każdego punktu #ev, AVG	X

2. Cel projektu

Celem projektu było stworzenie aplikacji wizualizującej działanie algorytmu genetycznego (GA) na funkcji testowej w przestrzeni rzeczywistej. Projekt miał umożliwić analizę wpływu parametrów takich jak liczba pokoleń, wielkość populacji oraz przystosowanie osobników.

3. Opis zastosowanego algorytmu

W implementacji wykorzystano klasyczny algorytm genetyczny działający na populacji punktów w przestrzeni dwuwymiarowej. Optymalizowana funkcja to **Rastrigin**, która jest funkcją trudną do optymalizacji ze względu na dużą liczbę minimów lokalnych. W implementacji wykorzystano klasyczny algorytm genetyczny działający na populacji punktów w przestrzeni dwuwymiarowej. Program został zaimplementowany w środowisku **Processing**, które umożliwia szybkie tworzenie wizualizacji i interfejsu graficznego.

Szczegóły:

- Przestrzeń rozwiązań: 2D, zakres od -5.12 do 5.12 dla każdej zmiennej.
- **Selekcja**: turniejowa (rozmiar 5) losujemy 5 osobników, wybieramy najlepszego.
- **Krzyżowanie**: arytmetyczne potomek to średnia dwóch rodziców.
- Mutacja: adaptacyjna krok mutacji maleje wraz z postępem pokoleń.
- Prawdopodobieństwo mutacji: 10% (0.1).
- Funkcja celu: Rastrigin $f(x, y) = 20 + x^2 10 \cdot cos(2\pi x) + y^2 10 \cdot cos(2\pi y)$

4. Parametry wejściowe programu

Parametry są ustawiane dynamicznie przez użytkownika przez graficzny interfejs (GUI):

- Liczba osobników w populacji: np. 100
- Liczba pokoleń: np. 200
- Pokaż średnią przystosowania opcjonalny checkbox
- **Przycisk START** uruchamia algorytm
- Przycisk NOWY WYKRES resetuje eksperyment i wraca do ekranu startowego

5. Opis działania programu

Program symuluje działanie GA i prezentuje wyniki w czasie rzeczywistym za pomocą 3 wykresów:

a) Wykres: Pokolenie vs Przystosowanie

- Oś X: numer pokolenia
- Oś Y: wartość funkcji celu (Rastrigina)
- Kolor punktu: im ciemniejszy, tym lepsze przystosowanie
- Opcjonalnie: czerwona linia średniego przystosowania

b) Wykres: Liczba ewaluacji vs Przystosowanie

- Oś X: liczba wykonanych ewaluacji (osobnik × pokolenie)
- Oś Y: przystosowanie
- Umożliwia ocenę szybkości zbieżności

c) Wykres przestrzenny (x1 vs x2)

- Oś X i Y: wartości zmiennych
- Pokazuje rozmieszczenie osobników w przestrzeni
- Obserwacja: skupianie się osobników wokół minimum funkcji

6. Wyniki i obserwacje

- Algorytm zbiega do globalnego minimum funkcji Rastrigina.
- Populacja zaczyna jako losowa, ale z pokolenia na pokolenie staje się bardziej skupiona wokół minimum.
- Średnie przystosowanie stopniowo maleje co pokazuje skuteczność działania.
- Zmienny krok mutacji zapewnia dobrą równowagę między eksploracją i eksploatacją.

7. Wnioski

- Algorytm działa poprawnie i zapewnia skuteczną optymalizację funkcji testowej.
- Wizualizacja pomaga intuicyjnie zrozumieć procesy ewolucyjne zachodzące w populacji.
- Interfejs pozwala na eksperymenty z parametrami i szybką analizę ich wpływu na wynik.

8. Podział pracy:

- Maciej Mróz 55%
- Roksana Patelczyk 45%