Development of an Embedded Communication Hub for the Acquisition of Sensor Data in a Robotic System

Project Thesis
Juan Carlos Reyes Andrade, ICS
Draft (2020.04.22)

Contents

1. Background

RTE Networks

2. Main goal

Specific goals

- 3. Solution proposal
- 4. Tasks table
- 5. Timeline

Background

- » Robotic applications increasing their multi-connectivity
- » Several industrial protocols
 - » Fieldbuses standardized in IEC 61158 (CPFs)
 - » DeviceNet and CANopen developed separately
- » Industrial shift into the Real Time Connectivity
- » Open-source developed tools that offer compatibility with specific vendors.

Real-Time Ethernet Networks

- » Started during 2000s (evolution of the field buses)
- » Referenced to IEC61784 part II
- » Two strategies to ensure RT communication:
 - » TDMA and CIP (Common Industrial Protocol)
- » IEC based solutions might not be compatible with the IEEE 802.3 Ethernet
- » TSN Group improves the Data Link and MAC Layer (IEEE802.1Qbv)

Licensed RTE Solutions:

Open source tools:

Main goal

"Develop a device using open-source tools to read out sensor data from a robot axis and it will be able to be interfaced in a RTE Network.

The device could be used afterwards as a test platform within an industrial environment to characterize its compatibility with the ongoing IEC/IEEE 60802 TSN Profile for Industrial Automation."

Specific goals

- » To specify the requirements of the system
 - » Taking into account the state of the art for RTE Industrial Networks
- » To develop the embedded system as a functional EtherCAT Slave Device
 - » Integrating FreeRTOS-CMSIS with SOES (Open-source tools)
 - » Integrating the LAN9252 (SoC over SPI)
 - » Reading out of axis temperature sensors
 - » Controlling the axis LED Ring (WS2812b)
 - » Designing the required user application libraries
- » To design and manufacture a PCB prototype using Altium Designer
- » To test and report the system functionality

Solution proposal

- » Layered structure of functional blocks
 - » Main HW: STM32Nucleo Board, Microchip LAN9252 SPI Eval Board

Timetable

Task Name	Duration	Start	Finish
1. Kick-Off Meeting	1 day	Wed 29.04.20	Wed 29.04.20
2. SW and HW Development for 1st PCB	23 days	Thu 30.04.20	Mon 01.06.20
3. Report of tests with 1st PCB	1 day	Tue 02.06.20	Tue 02.06.20
4. SW for EtherCAT comm/control features	16 days	Wed 03.06.20	Wed 24.06.20
5. Report of tests with EtherCAT comm/control features	1 day	Thu 25.06.20	Thu 25.06.20
6. SW for EtherCAT Data features	23 days	Fri 26.06.20	Tue 28.07.20
7. Report of tests with EtherCAT data features	1 day	Wed 29.07.20	Wed 29.07.20
8. HW Development for 2nd PCB	15 days	Thu 30.07.20	Wed 19.08.20
9. Final test with 2nd PCB	3 days	Thu 20.08.20	Mon 24.08.20
10 .Final presentation	1 day	Wed 26.08.20	Wed 26.08.20
SoSe Examination Period	32 days	Wed 29.07.20	Thu 10.09.20

Timeline

» Duration: 4 Months

» Official start: 29.04 Final Presentation: 26.08 (Proposal)

Dankeschön für Ihre Aufmerksamkeit!