Least Squares

We want to find a line/curve that minimizes the sum of the square of the error caused due to deviation.

The least squares for Ax = b is \hat{x} for which,

$$||b-A\hat{x}|| \leq ||b-Ax||$$

for all x

We can use the normal equation to solve for \hat{x}

⊘ Normal Equation ∨

$$A^T A \hat{x} = A^T \vec{b}$$

Manipulating this we can get this,

$$\hat{x} = (A^TA)^{-1}A^T\vec{b}$$

& Proof ∨

 \hat{x} is a least squares solution of Ax = b

 $\iff A\hat{x} - b$ is as small as possible

 $\iff A\hat{\boldsymbol{x}} - \boldsymbol{b}$ is orthogonal to $\operatorname{Col}(A)$

 $\stackrel{\mathsf{FTLA}}{\Longleftrightarrow} A\hat{\boldsymbol{x}} - \boldsymbol{b} \text{ is in } \mathrm{Nul}(A^T)$

$$\iff A^T(A\hat{x} - b) = 0$$

$$\iff A^T A \hat{x} = A^T b$$

$$R\hat{x} = Q^T \vec{b}$$

$$A^T A \hat{x} = A^T \vec{b}$$
 $(QR)^T QR \hat{x} = (QR)^T \vec{b}$ $R^T Q^T QR \hat{x} = R^T Q^T \vec{b}$ $R^T R \hat{x} = R^T Q^T \vec{b}$ $R \hat{x} = Q^T \vec{b}$

How to solve

Method 1

- 1. Construct **QR Factorization**
- 2. Solve $R\hat{x} = Q^T \vec{b}$

Method 2

1. Solve the normal equation for \hat{x} .

Method 3

1. Use Mean Deviation

Line

Say we want to find a line y = mx + b that is the best fit for the following points:

X	-2	-1	1	1	2
у	-2	-1	1	2	2

We can create a list of linear equations using this:

$$m(-2) + b = -2 \ m(-1) + b = -1 \ m(1) + b = 1 \ m(1) + b = 2 \ m(2) + b = 2$$

We can turn this in to a matrix equation like so,

$$Aec{x} = ec{b}$$
 $egin{bmatrix} 1 & -2 \ 1 & -1 \ 1 & 1 \ 1 & 2 \ \end{bmatrix} egin{bmatrix} b \ m \end{bmatrix} = egin{bmatrix} -2 \ -1 \ 1 \ 2 \ 2 \ \end{bmatrix}$

Compute QR,

$$\begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{10}} \\ \frac{1}{\sqrt{5}} & -\frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{5}} & 0 \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{10}} \end{bmatrix} \begin{bmatrix} \frac{5}{\sqrt{5}} & 0 \\ 0 & \frac{10}{\sqrt{10}} \end{bmatrix}$$

Now compute $Q^T \vec{b}$,

$$Q^T ec{b} = egin{bmatrix} rac{2}{\sqrt{5}} \ rac{11}{\sqrt{10}} \end{bmatrix}$$

Finally solve $R\hat{x} = Q^T \vec{b}$,

$$\begin{bmatrix} \frac{5}{\sqrt{5}} & 0\\ 0 & \frac{10}{\sqrt{10}} \end{bmatrix} \hat{x} = \begin{bmatrix} \frac{2}{\sqrt{5}}\\ \frac{11}{\sqrt{10}} \end{bmatrix}$$

$$\hat{x} = oxed{\left[egin{array}{c} rac{2}{5} \ rac{11}{10} \end{array}
ight]}$$

So we get
$$y = \frac{2}{5} + \frac{11}{10}x$$

Curves

We can use this method to fit data to a curve using the function,

$$y = c_0 + c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x)$$

Lets take an example,

Say we want to modal:

X	-1	0	0	1
у	2	1	0	6

Using $y=c_1x+c_2x^2$

$$-c_1+c_2=2$$

$$0c_1 + 0c_2 = 1$$

$$0c_1 + 0c_2 = 0$$

$$c_1+c_2=6$$

Now we can use one of the methods to solve for c_1 and c_2