

· to find a tangent line slope m

weed two points. We. We have point P(4,4). We also can consider any point on parabola. Let us denote it by Q. Point Q has coordinates $Q(x, y) = Q(x, x^2)$. • First, we compute a slope of a secont line (a line that intersects a curve more than once). We denote this slope by mpg. mpa is a good approximation of the · Han can we compute mpg? Since we are given two points P and Q, we can use the point-slope formula for writing the equation of a line which opes through P and Q. P(2,2) $m_{Q} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{x^2 - 1}{x - 1}$ $Q(x,x_3)$ $m_{QQ} = \frac{x^2 - 1}{x - 1}$

Ne	bea	X/V	with	9	izna	ger in	a	the	
1902	OVVVV) ON	ramb	0			0		
CXON	nple								
C			Q0	0 50	4		6.		
<i>3</i> //	bbose		000	X 15	0,40	bbea	71	om X	ie .
nb	box	065	ekva.	/OV	dec	K 01		ne (C	
	MEX	in '	/ocom	60	450	, w (spore	the	grow
Fiv	nd L	ve 1	ieloci)	cy	of y	ihe	ball	વર્ડ	ær
5	secol	nds.		0					
C 0	wiw								
201		15							
			0		01.		1		
Me	dev	note	6	y .	50	c)	the	disto	unce Isured
40	Men		atter	4		Secov	nds	mec	swred
ıı ı	v v	vere	rs.						
て	/ew	Ove	9	<i>wi</i>					
			Ch		0 \ 2				
			2/5	\s 4 ,	445				
							•.	- 1 S	
	Onex	age	Velo	ity	= 60	omae	- 1/4	psed psed	<u> </u>
		0		0		cime	exa	psea	

Hence, we can compute the variage the brief time interval of a tenth of a second from t=5 to t=5.1: Saverage St It appears that as we shorten the time period, the average velocity is becoming closer to 49 (m/s). The instantaneous velocity when t=5
is defined to be the limiting value
of these average velocities over
Shorter and Shorter time periods
that start at t=5.

