Digital Communications SSY125, Lecture 7

Analysis of Linear Modulations (Chapter 6)

Alexandre Graell i Amat alexandre.graell@chalmers.se https://sites.google.com/site/agraellamat

November 18, 2019

Analysis of Linear Modulations

AWGN channel,

- $x_i \in \mathcal{X} = \{X_1, X_2, \dots, X_M\} \subset \mathbb{C}$, with average energy per symbol E_{s} .
- $|\mathcal{X}| = M \longrightarrow m = \log M$ bits per symbol.
- $N_i \sim \mathcal{CN}(0, N_0/2)$.
- The energy per information bit is

$$\mathsf{E}_{\mathsf{b}} = \frac{\mathsf{E}_{\mathsf{s}}}{\log M}.$$

Optimum Decoding Rule

- Based on y, infer u optimally \longrightarrow Based on y infer x optimally.
- Criterion: minimizing the probability of error → maximum a posteriori (MAP) decoding rule,

$$\hat{x}_{\mathsf{MAP}} = \arg\max_{oldsymbol{x}} p(oldsymbol{x} | oldsymbol{y}).$$

 If all sequences x are equiprobable, the MAP decoding rule boils down to the maximum likelihood (ML) decoding rule,

$$\hat{\boldsymbol{x}}_{\mathsf{ML}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{y}|\boldsymbol{x}),$$

Optimum Decoding Rule

• If the channel is memoryless: symbol-by-symbol decoder that makes an independent decision on each received symbol y_i ,

$$\hat{x} = \arg\max_{x \in \mathcal{X}} p(y|x).$$

• For transmission over the Gaussian channel (and equiprobable symbols),

$$\hat{x} = \arg \max_{x \in \mathcal{X}} p(y|x)$$
$$= \arg \min_{x \in \mathcal{X}} ||y - x||^2,$$

i.e., selecting among all possible constellation symbols $x \in \mathcal{X}$ the one at minimum Euclidean distance to the received value y.

Performance of Modulation Schemes

The evaluation of a modulation scheme is based on three parameters:

- The error probability (symbol error probability or bit error probability);
- The E_b/N_0 required to achieve such probability of error, and
- The spectral efficiency $R = \log M$.

The Union Bound

Given a number of events E_1, \ldots, E_N

$$\Pr\left(\bigcup_{i=1}^n E_i\right) \le \sum_{i=1}^n \Pr(E_i),$$

where $E_i \cup E_j$ stands for the union of the events E_i and E_j .

The Q-function

For $Z \sim \mathcal{N}(\mu, \sigma^2)$,

$$\Pr(Z > \beta) = Q\left(\frac{\beta - \mu}{\sigma}\right),$$

where $Q(x)=\frac{1}{\sqrt{2\pi}}\int_x^\infty \exp\left(-\tau^2/2\right) d\tau$ is the tail probability of the standard normal distribution.

- Q(-x) = 1 Q(x).
- For $0 < a \ll b < c$,

$$Q(a) + Q(b) + Q(c) \approx Q(a)$$
.

Symbol Error Probability of BPSK

- $\mathcal{X} = \{X_1, X_2\} \subset \mathbb{R}$, where $X_1 = -\sqrt{\mathsf{E_s}}$ and $X_2 = \sqrt{\mathsf{E_s}}$.
- The received signal is

$$y = x + n$$
,

where $n \sim \mathcal{N}(0, \sigma^2)$.

• For equiprobable symbols, $\hat{x} = X_2$ if y > 0 and $\hat{x} = X_1$ otherwise.

$$\begin{split} P_{\mathrm{s}}^{\mathrm{BPSK}} &= \sum_{x \in \mathcal{X}} \Pr(\hat{x} \neq x | x) P(x) \\ &= \Pr(\mathsf{X}_2 | \mathsf{X}_1) P(\mathsf{X}_1) + \Pr(\mathsf{X}_1 | \mathsf{X}_2) P(\mathsf{X}_2) \\ &= \frac{1}{2} \Pr(\mathsf{X}_2 | \mathsf{X}_1) + \frac{1}{2} \Pr(\mathsf{X}_1 | \mathsf{X}_2), \end{split}$$

Symbol Error Probability of BPSK

If
$$X = \mathsf{X}_1$$
, $Y \sim \mathcal{N}(-\sqrt{\mathsf{E_s}}, \sigma^2)$, hence
$$\begin{split} \mathsf{Pr}(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1 \,) &= \mathsf{Pr}(Y > 0 | X = \mathsf{X}_1 \,) \\ &= \mathsf{Pr}(Y > 0) \Big|_{Y \sim \mathcal{N}(-\sqrt{\mathsf{E_s}}, \sigma^2)} \\ &= \mathsf{Q}\bigg(\frac{\sqrt{\mathsf{E_s}}}{\sigma}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E_s}}{\mathsf{N_0}}}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E_b}}{\mathsf{N_0}}}\bigg). \end{split}$$

Due to symmetry, $\Pr(\hat{x} = \mathsf{X}_1 | x = \mathsf{X}_2) = p(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1)$, and

$$P_s^{\text{BPSK}} = Q\!\left(\sqrt{\frac{2\mathsf{E}_s}{\mathsf{N}_0}}\right) = Q\!\left(\sqrt{\frac{2\mathsf{E}_b}{\mathsf{N}_0}}\right)\!.$$

Symbol Error Probability and Euclidean Distance

For BPSK, $d_{\mathsf{E}}(\mathsf{X}_1,\mathsf{X}_2)=2\sqrt{\mathsf{E}_{\mathsf{s}}}$, hence

$$P_{\rm s}^{\rm BPSK} = {\rm Q} \Bigg(\sqrt{\frac{d_{\rm E}^2({\rm X}_1,{\rm X}_2)}{2{\rm N}_0}} \Bigg). \label{eq:Pspsk}$$

In the general case...

- Consider $X_1 \in \mathbb{C}$ and $X_2 \in \mathbb{C}$ with $d_{\mathsf{E}}(X_1, X_2) = ||X_1 X_2||$. Assume $x \in \mathcal{X} = \{X_1, X_2, \dots, \}$ is transmitted and we receive y = x + n.
- Let \tilde{y} be the projection of y onto the straight line between X_1 and X_2 . Then,

$$\begin{split} \Pr(\hat{x} = \mathsf{X}_2 | x = \mathsf{X}_1) &= \Pr\bigg(\tilde{Y} > \frac{d_\mathsf{E}(\mathsf{X}_1, \mathsf{X}_2)}{2}\bigg) \bigg|_{\tilde{Y} \sim \mathcal{N}(0, \sigma^2)} \\ &= \mathsf{Q}\bigg(\frac{d_\mathsf{E}(\mathsf{X}_1, \mathsf{X}_2)}{2\sigma}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{d_\mathsf{E}^2(\mathsf{X}_1, \mathsf{X}_2)}{2\mathsf{N}_0}}\bigg). \end{split}$$

Pr(x̂ = X₂|x = X₁) depends on d_E(X₁, X₂) ⇒ Construct constellations with high distance between constellation points!

Symbol Error Probability of 4-QAM

- $\mathcal{X} = \{X_1, X_2, X_3, X_4\}$ with $\alpha = \sqrt{E_s/2}$ such that the average energy per symbol is E_s .
- The ML decision is

$$\hat{x} = \begin{cases} \mathsf{X}_1 & \text{if } y_{\mathsf{I}} < 0 \text{ and } y_{\mathsf{Q}} > 0 \\ \mathsf{X}_2 & \text{if } y_{\mathsf{I}} > 0 \text{ and } y_{\mathsf{Q}} > 0 \\ \mathsf{X}_3 & \text{if } y_{\mathsf{I}} > 0 \text{ and } y_{\mathsf{Q}} < 0, \\ \mathsf{X}_4 & \text{if } y_{\mathsf{I}} < 0 \text{ and } y_{\mathsf{Q}} < 0 \end{cases}$$

where $y_{\rm I}$ and $y_{\rm Q}$ are the imaginary and quadrature components of y.

Analysis of Linear Modulations

$$\begin{split} P_{\mathrm{s}}^{\mathrm{4QAM}} &= \Pr(\hat{x} \neq \mathsf{X}_1 | x = \mathsf{X}_1) = \Pr(Y_{\mathrm{I}} > 0 \, \cup \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 \, \cap \, Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) \\ &= \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) + \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1) - \Pr(Y_{\mathrm{I}} > 0 | \mathsf{X}_1) \Pr(Y_{\mathrm{Q}} < 0 | \mathsf{X}_1), \end{split}$$

If X_1 is transmitted, $Y_1 \sim \mathcal{N}(-\alpha, \sigma^2)$ and $Y_Q \sim \mathcal{N}(\alpha, \sigma^2)$. Thus,

$$\Pr(Y_{\mathsf{I}} > 0 | \mathsf{X}_1) = \Pr(Y_{\mathsf{I}} > 0) \Big|_{Y_{\mathsf{I}} \sim \mathcal{N}(-\alpha, \sigma^2)} = \mathsf{Q}\bigg(\frac{\alpha}{\sigma}\bigg) = \mathsf{Q}\bigg(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\bigg),$$

By symmetry, $\Pr(Y_{\mathsf{Q}} < 0 | \mathsf{X}_1) = \Pr(Y_{\mathsf{I}} > 0 | \mathsf{X}_1)$, and

$$P_{\rm s}^{\rm ^{4QAM}} = 2 {\rm Q} \Bigg(\sqrt{\frac{2{\rm E}_{\rm b}}{{\rm N}_{\rm 0}}} \Bigg) - \Bigg({\rm Q} \Bigg(\sqrt{\frac{2{\rm E}_{\rm b}}{{\rm N}_{\rm 0}}} \Bigg) \Bigg)^2. \label{eq:ps_s_q_approx}$$

Upper Bound on the Symbol Error Probability

For general constellations, the exact symbol error probability $P_{\rm s}$ is hard to compute \longrightarrow Use union bound to compute an upper bound

$$\begin{split} P_{\mathsf{s}}^{(M)} &= \sum_{i=1}^{M} \mathsf{Pr}(\hat{x} \neq \mathsf{X}_i | x = \mathsf{X}_i) P(\mathsf{X}_i) \\ &= \frac{1}{M} \sum_{i=1}^{M} \mathsf{Pr}(\hat{x} \neq \mathsf{X}_i | x = \mathsf{X}_i) \\ &= \frac{1}{M} \sum_{i=1}^{M} \mathsf{Pr} \Biggl(\bigcup_{j \neq i} \hat{x} = \mathsf{X}_j | x = \mathsf{X}_i \Biggr) \\ &\leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j \neq i} \mathsf{Pr}(\hat{x} = \mathsf{X}_j | x = \mathsf{X}_i). \end{split}$$

Upper Bound on the Symbol Error Probability

Using

$$\Pr(\hat{x} = \mathsf{X}_j | x = \mathsf{X}_i) = \mathsf{Q}\left(\sqrt{\frac{d_\mathsf{E}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}}\right).$$

the symbol error probability of an M-ary constellation can be upperbounded as

$$P_{\mathsf{s}}^{(M)} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j \neq i} \mathsf{Q} \left(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}} \right).$$

Upper bound on P_s for 4-QAM

Example: 4-QAM

$$\begin{split} P_{\text{s}}^{\text{4QAM}} & \leq \frac{1}{4} \sum_{i=1}^{4} \sum_{j \neq i} \mathsf{Q} \Bigg(\sqrt{\frac{d_{\text{E}}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}} \Bigg) = \sum_{j=2}^{4} \mathsf{Q} \Bigg(\sqrt{\frac{d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_j)}{2\mathsf{N}_0}} \Bigg) \\ & = \mathsf{Q} \Bigg(\sqrt{\frac{d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_2)}{2\mathsf{N}_0}} \Bigg) + \mathsf{Q} \Bigg(\sqrt{\frac{d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_3)}{2\mathsf{N}_0}} \Bigg) + \mathsf{Q} \Bigg(\sqrt{\frac{d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_4)}{2\mathsf{N}_0}} \Bigg). \\ \text{Using } d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_2) = d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_4) = ||\alpha(-1+j) - \alpha(1+j)||^2 = 4\alpha^2 = 2\mathsf{E}_{\text{s}} \text{ and } \\ d_{\text{E}}^2(\mathsf{X}_1, \mathsf{X}_3) = ||\alpha(-1+j) - \alpha(1-j)||^2 = 8\alpha^2 = 4\mathsf{E}_{\text{s}}, \\ P_{\text{s}}^{4\mathsf{QAM}} \leq 2\mathsf{Q} \Bigg(\sqrt{\frac{\mathsf{E}_{\text{s}}}{\mathsf{N}_0}} \Bigg) + \mathsf{Q} \Bigg(\sqrt{\frac{2\mathsf{E}_{\text{s}}}{\mathsf{N}_0}} \Bigg) \\ = 2\mathsf{Q} \Bigg(\sqrt{\frac{2\mathsf{E}_{\text{b}}}{\mathsf{N}_0}} \Bigg) + \mathsf{Q} \Bigg(\sqrt{\frac{4\mathsf{E}_{\text{b}}}{\mathsf{N}_0}} \Bigg). \end{split}$$

Nearest Neighbor Approximation

For large M, even the union bound may be difficult to compute →
Derive an approximation.

$$P_{\mathsf{s}}^{(M)} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j \neq i} \mathsf{Q} \left(\sqrt{\frac{d_{\mathsf{E}}^2(\mathsf{X}_i, \mathsf{X}_j)}{2\mathsf{N}_0}} \right).$$

- The dominant terms are the ones with smaller d_E(X_i, X_j)
- Let

$$d_{\mathsf{E},\mathsf{min}}(\mathsf{X}_i) = \min_{\mathsf{X}_j \neq \mathsf{X}_i} d_{\mathsf{E}}(\mathsf{X}_i,\mathsf{X}_j)$$

and $A_{\min}(X_i)$ the number of constellation points at distance $d_{\mathsf{E},\min}(X_i)$ from X_i (nearest neighbors of X_i). Then,

$$P_{\rm s}^{(M)} pprox rac{1}{M} \sum_{i=1}^{M} A_{\min}({\sf X}_i) {\sf Q} \Biggl(\sqrt{rac{d_{\sf E,min}^2({\sf X}_i)}{2{\sf N}_0}} \Biggr).$$

Nearest Neighbor Approximation

ullet Further approximate $P_{
m s}$ considering only the minimum Euclidean distance,

$$d_{\mathsf{E},\mathsf{min}} = \min_{\mathsf{X}_i} d_{\mathsf{E},\mathsf{min}}(\mathsf{X}_i).$$

Then,

$$\begin{split} P_{\mathrm{s}}^{(M)} &\approx \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2(\mathsf{X}_i)}{2\mathsf{N}_0}} \Bigg) \\ &\leq \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg) \\ &= \Bigg(\frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i) \Bigg) \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg) = \bar{A}_{\min} \mathsf{Q} \Bigg(\sqrt{\frac{d_{\mathsf{E}, \min}^2}{2\mathsf{N}_0}} \Bigg), \end{split}$$

where $\bar{A}_{\min} = \frac{1}{M} \sum_{i=1}^{M} A_{\min}(\mathsf{X}_i)$ is the average number of nearest neighbors.

• Requires only knowledge of \bar{A}_{\min} and $d_{\mathsf{E},\min}$!

Nearest Neighbor Approximation

Nearest Neighbor Approximation for squared M-QAM

For squared M-QAM constellations, there are 4 constellation points with 2 neighbors, $4(\sqrt{M}-2)$ points with 3 neighbors and the remaining points have 4 neighbors, hence $\bar{A}_{\min}=4-4/\sqrt{M}$. Furthermore, $d_{\mathsf{E},\min}=\sqrt{\frac{6\mathsf{E}_{\mathsf{s}}}{M-1}}$. Hence,

$$\begin{split} P_{\text{s}}^{M\text{QAM}} &\approx \bigg(4 - \frac{4}{\sqrt{M}}\bigg) \text{Q}\bigg(\sqrt{\frac{3\text{E}_{\text{s}}}{(M-1)\text{N}_{\text{0}}}}\bigg) \\ &= \bigg(4 - \frac{4}{\sqrt{M}}\bigg) \text{Q}\bigg(\sqrt{\frac{3\text{E}_{\text{b}}\log M}{(M-1)\text{N}_{\text{0}}}}\bigg). \end{split}$$

Nearest Neighbor Approximation of P_s of QAM

- The power efficiency decreases with M.
- The spectral efficiency increases with M.

Bit Error Probability of Linear Modulations

- The bit error probability depends on the binary labeling, i.e., how tuples of $m = \log M$ bits are mapped to the constellation symbols.
- Let

$$\mathsf{L}(x) = (b_1(x), \dots, b_m(x))$$

be the m-bit labeling associated to constellation symbol $x \in \mathcal{X}$.

- Example: L(+1) = (1, 1, 0), L(+5) = (1, 0, 1).
- The bit error probability P_b of an M-ary constellation is given by

$$P_{\mathsf{b}} = \frac{1}{m} \sum_{i=1}^{m} \mathsf{Pr}(i\mathsf{th} \; \mathsf{bit} \; \mathsf{in} \; \mathsf{error}) = \frac{1}{m} \sum_{i=1}^{m} p_{i}.$$

Bit Error Probability of $4\text{-}\mathsf{QAM}$ with Gray and Lexicographic Labeling

Gray Labeling

e_{b_i}: event that bit i is decoded in error.

$$\begin{split} p_1 &= \Pr(\mathsf{e}_{b_1}) = \sum_{x \in \mathcal{X}} \Pr(\mathsf{e}_{b_1}|x) P(x) = \frac{1}{4} \sum_{x \in \mathcal{X}} \Pr(\mathsf{e}_{b_1}|x) \\ &= \frac{1}{4} (\Pr(\mathsf{e}_{b_1}|\mathsf{X}_1) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_2) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_3) + \Pr(\mathsf{e}_{b_1}|\mathsf{X}_4)) \\ &= \frac{1}{4} (\Pr(b_1(\hat{x}) = 0|\mathsf{X}_1) + \Pr(b_1(\hat{x}) = 1|\mathsf{X}_2) \\ &\quad + \Pr(b_1(\hat{x}) = 1|\mathsf{X}_3) + \Pr(b_1(\hat{x}) = 0|\mathsf{X}_4)), \end{split}$$

- All terms are Q $\left(\sqrt{rac{2E_{b}}{N_{0}}}
 ight)$, thus $p_{1}=$ Q $\left(\sqrt{rac{2E_{b}}{N_{0}}}
 ight)$.
- By symmetry, $p_2 = p_1$, hence,

$$P_{\rm b}^{\rm 4QAM-Gray} = \frac{1}{2}(p_1 + p_2) = {\rm Q}\Bigg(\sqrt{\frac{2{\rm E}_{\rm b}}{{\rm N}_{\rm 0}}}\Bigg). \label{eq:pb}$$

Lexicographic Labeling

$$\begin{aligned} p_1 &= \mathsf{Q}\!\left(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\right) \\ p_2 &= 2\mathsf{Q}\!\left(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\right) \! \left(1 - \mathsf{Q}\!\left(\sqrt{\frac{2\mathsf{E}_\mathsf{b}}{\mathsf{N}_\mathsf{0}}}\right)\right). \end{aligned}$$

Thus,

$$P_{\mathrm{b}}^{\mathrm{4QAM-Lex}} = \frac{1}{2}(p_1 + p_2) = \frac{3}{2} \mathrm{Q} \Bigg(\sqrt{\frac{2\mathrm{E}_{\mathrm{b}}}{\mathrm{N}_{\mathrm{0}}}} \Bigg) - \Bigg(\mathrm{Q} \Bigg(\sqrt{\frac{2\mathrm{E}_{\mathrm{b}}}{\mathrm{N}_{\mathrm{0}}}} \Bigg) \Bigg)^2.$$

• Due to the lack of symmetry, $p_1 \neq p_2$.

Bit Error Probability for 4-QAM

Bit Error Probability of M-ary Constellations

• For general M-ary constellations and arbitrary labelings, the computation of $P_{\mathbf{b}}$ is cumbersome \longrightarrow Nearest neighbor approximation.