de uma da da população.

Para o entendimento, observama uma escabra conj. de vari (amatra)

Caso essas slam conglisses, bogimos combitar

· Medidos de pendência cendral

$$\int_{\Omega} \int_{\Omega} \int_{\Omega$$

Eberchally go organ br/co; becois

e o rator go ou cite go godos

organogos das ante a bosição

br (n+1).

1

- mediana: Md(x): o valor que ocupa a pos. central dos dodos codendo
- · mada: MO(20): W/r + freg.
- · Medidas de despersão variabilidade: 1 1/2/21-21 = DM (x)

$$Var(\mathbf{x}) : \frac{\sum (x_i - \bar{x})^2}{n} = \frac{\sum x_i^2 - n\bar{x}^2}{n}$$

MERO Sega * + (2, ..., 2n) e

· Ogo tunitos gagas, nonal a madores adunbanos po (as resesigpu belo ing. sue form

Classes	Tabul.	N_i	8,	fi= Wiln	F;
30 ← 21	JD	6	50+21/2	NI/p	My
2 ← 12	<i>□1</i> .	5	5.452		us, wh
ک _ه ۱− کم			C/2312		

N: = freq. abodita dadesse à

Si = ple médio « «
f: : freq. rel. de « -
E = freq. acumulada

Classes
$$N$$
; si fi
 $0 \leftarrow 5$ 360 $2,5$ $0,606$
 $5 \leftarrow 10$ 165 $7,5$ $0,778$
 $10 \leftarrow 15$ 17 $12,5$ $0,079$
 $15 \leftarrow 20$ 17 $17,5$ $0,029$
 $15 \leftarrow 25$ 3 $22,5$ $0,008$
 1000 1000
 1000 1000
 1000 1000
 1000 1000
 1000 1000
 1000
 1000 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000

$$z_{a_{5}} = u'(\underline{z}_{5}' - \underline{z}_{a})_{5} + \dots + \mu^{k}(\underline{s}_{k} - \underline{z}_{a}) = \sum_{i=1}^{k} f'(\underline{z}_{5}' - \underline{z}_{a})_{5}$$

$$\operatorname{mod}_{\omega}(x) = 0 + \overline{\Delta_{\lambda}} d$$

P: pint int ga your mogal

De: dif. entre a freq. da céasse modal e da dois. in. anterior

posternor

d: amplitude de classe modal.

= classe mediana (ver frequamile)

Medrana Posic de classe mediana: $P = \frac{n+1}{2}$ Md (x) = MAP + ($\frac{n}{2}$ - All de freq. ante

Qn = lim, + (// - Fac. and) id

Q3 = 1 im (3h/4 - fac.a) (

· Box-Plot: Evintipo de gréfio pl descrevera dist. dos dodos por é conjuirde com Q1, Q2, mediana e valores extrenos

1. LS = 03+1,5 DQ = 03-Q1

LS = 03+1,5 DQ = 03-Q1 major valor monor que la

minimo: menor wor LI = 01-1,5 DQ = 95-01

Pigg. de Dispersão:

Le bres proposo que sal operrago de grasse mais si dagras nom nerno grético. Um des dbg. é verifear exis de poss. relag. forcional entre variaries mue todo

· idade vs alline

· tempo de estado e nota na prova

 $x = 2^{1} \cdot x^{2} = 2^{1} \cdot x^{2} = 208^{2}$ $x = 2^{1} \cdot x^{2} = 2^{1} \cdot x^{2} = 208^{2}$

83,8F1= 5,43

« Exempla aula X; aunos experiência Y: vindas

$$\rho = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$= \frac{\sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}}{n \operatorname{BP}(x) \operatorname{DP}(y)}$$

Revieão do Prob.

- · Métado pl quandificar a quão plausivel é a occirência de algum a contecimento
- Def: Um experimento é alcatorio so, ao ser repetido normormos condições, es Impasivel prever onterispo domente os resultados.
- De Denominamos espaça arrostral a cons do Lados os recultados poesívere de um exp. alcat, , e o denot por I.

Det: ACID é choreodo evendo.

Em geral, assaciones probación asseventos de interesse. Sendo assim, precisoremos antes de mans roda assámir um y lo que antenha os eventos de interesse, É sutiriento ponsor em tal amo uma subcal. I do tala os subcytos de 12 tata esbadeção deve ter algumes prop.

Def: Umo ool. I de abordos de si dita rálg. se sotisfar as seg. cond.

a) se se seg. cond.

b) Se Ae &, então NE I

c) Se Ai,Az, ... em I, então U AIEI

Agoro, para coda AED, vomos assaron P(A), o qual ind. a prob. de documer.

6. O evento em quedas oconeció com a mág do direita se ela for a selecionoda ra escolha 2n-Kill, e nos 2n-k escolhas anteriores ela aporecer n vezes (en gor orden), e a da esq. n-Li vezes. A prob. disto o pois

$$\begin{pmatrix} 2n-k \\ r \end{pmatrix} 2^{-(2n-k+1)}$$

Como isso the pade ac. coma da esquer da, porsimedria, a probedese, é

$$3\left(3\nu-\kappa\right)3_{-(3\nu-\kappa!)} = \left(3\nu-\kappa\right)3_{-(3\nu-\kappa)}, \quad |4-6'7'-1\nu|$$

LOE demois são fáceis!!!

- . Peunião às 15hs
- · Aula ae 20he

Et: Dab um espiral. 2000 o.olg. I una med. de prob é una função.

P: I > R 1.9.

i. PIATIO, AED

Ex: Dado homesto

[1,0] == E: A

ONTHI 2007 ON TAIL CI

Ropriedades da Rob:

6.1. P(AUBUR) = P(D) + P(B)+P(C) - P(DOB) · P(DOC) - P(BOC) + P(DOBOC)

Em-gerol

$$\mathcal{P}(\mathcal{O}_{A_i}) = \sum_{j=1}^{n} (-n)^{n} \sum_{j \in \mathcal{O}_{A_i} = n}^{j \in \mathcal{O}_{A_i}} \mathcal{P}(\mathcal{O}_{A_j})$$

Do det zone

P(00B)= P(0) A(B/D)

Mais geral, Lemos o dita Regra da Paradolo:

P(An) - 0An) = P(A) P(A) P(A) IA, OA) - P(An IAn - DAn-)

Too. Dob. total: Syom As, - An ev. disj. enB, dalos em J, lais god
BC QA, e P(A,) TO VI. Endas

P(B)= P(BIDI)P(DI).

Teo. de Bayes: Syon Ar..., An e Bevenles um I com A. NAS = \$,141,

P(A,)70 b: P(B)70 - BC QA, Enlas

 $P(A,1B) = \frac{P(B|A,)P(A,1)}{\sum_{i=1}^{2} P(B|A,i)P(B,i)}$

Independencia: AL. Az.,..., An são independentes su

VBS FI,..., n3, (B1712, PCNAs). TP P(As) verificados: 3º-(0)-(1)

Para corocterizon a distrib de uma via. basta determinar eva fidia.

$$F_{x}(\infty) = \mathcal{P}(x \leq \infty)$$
, $\infty \in \mathbb{R}$.

Det: Uma via. X é continua se Fx é continua.

De modo equir, X tem dol. continua se P(X==)=0 + x e 3mX

Adamapar, ticular, são úteis pl modilor varioueis que tomom val. em intervida reta, variaireis que padem, a principio, var. q. padem ser aforidas em apergrando prensão: comprimento, área, volume, distência, tempo, mossa epeso, cargo, teneão, corrente, velocidade, ...

Def: X é absolutamento continua se I fx: R -> R+ t.q. #Ex:

Nesse caso,

Papa) é dita função densidade da viai X.

Arolog.

Seja Xum v. a. cont.

Def: f: R -> R+ é dita uma função densidado de prob. de X re

a) falro toceInt

C) P(XEA)= | F(a) da pl AC Inx.

7. Oviforis

X é dist. segundo o mode la uniforme no intervala (a,b), a, belR, at se sua densidade e dada por

$$f_{X}(t) = \frac{1}{1 - \frac{1}{(a,b)}(t)} \int_{a}^{1-a} \frac{1}{a} \int_{a}^{1-a} \frac{1}{b+a} \int_{a}^{1-a} \frac{1}{b+a} \int_{a}^{1-a} \frac{1}{a} \int_{a$$

2. Exponencia)

X é dist. sejundo o mol. Exponencial de parâmetros à 70 se dua derisidade é dada por

8. Normal.

Diz. que X édist. ceg. o mod. hormal de parametros preos, µ∈R e or 70 se

$$f_{x}(t) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{2\sigma^{2}}{(t-\mu)^{2}}} \prod_{\alpha} \alpha$$

$$= P \left(\frac{\alpha - 1/2 - np}{\sqrt{np(1-p)}} \right)$$

$$P(X=\alpha) = P\left(\alpha - 1 = 7 = \alpha + \frac{1}{2}\right)$$

$$= P\left(\alpha - \frac{1}{2} - np = 2 = \alpha + \frac{1}{2} - np\right)$$

$$\sqrt{npq}$$

2-40 pondos são escolhidos, ind. e ao acaso do intervalo [0,1].

Seja X o no de pondos que pertenerm a [0,c], occes.

Determine P(X=3) e P(X=17).

M. O temp, em minutos é Toom

$$P(T \neq 1/T \equiv 2) = P(T \neq 1, T \equiv 2) = P(T \neq 2) = \frac{1 - e^{-1/3}}{P(T \equiv 2)} = \frac{1 - e^{-2/3}}{P(T \equiv 2)}$$

$$Z = X - \mu \quad N(0,1)$$
 (Normal padrão)

$$f_{z}(t) = f_{x}(\mu + t_{0}) \times \sigma$$

$$= \frac{(t\mu + t_{0}) - \mu}{\sigma^{2}} \cdot \delta$$

$$= \frac{1}{\sqrt{2\pi}} e^{-t} \frac{1}{\sqrt{2\pi}} e^{-t}.$$

dizere que 2 tim dist. normal podrão

Caso Particulores

$$a=1 \Rightarrow f_x(t) = be-bt \prod_{R_t} (t) expon.$$

+ Aproximação da Binomial pela normal

for vezes, nosso interesso está numa medida associada aos empodosmento aleat.

Det: Uma variavel aleatoria X em van esp. do prob. (Ω, \mathcal{F}, R) é uma função $X: \Omega \to R$ +,q.

(X=x) = fues: X(w) = x3 GF. txeR.

Exemplo:

W.C. O. ST 25

 $\frac{b(x)}{\infty} \frac{bd}{bd} \frac{bd}{bd} \frac{bd}{bd} \frac{bd}{bd} \frac{dd}{dd} \frac{d$

Messe caco, X assume os valoreo em 10.1,23, um y lo enumeroirel (monda).

enumerarel são chamados de discretas e aquelos que assumom valores em um inter, da reta são chamados continuas.

termes de prob. dos val. assumidos pela memos. Para tal, asso.

- Como veval, começamos com um experimento aleatório modelado por umo medí da de probabilidade em um dado espaço amostral D. De modo mais preciso, accociomos à um experimento aleatório um mode lo probabilistico.(2,7,8) lembrando que
 - . A (esp.amolral) é o cito de todo os res. possíveis;
 - . J'é uma o-álgebra de eventos de 12;
 - · P & uma probabilidade em (12, F), i.e.,

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}\mathbb{P}(A_{n})$$

Exemplo: Lança-se duas moedos. A primeira resulta em cora com prob. p e a segunda com prob. q, orpr1 e orqr1.

Nexe caso,

com
$$P_{\alpha}(w_{\alpha}) = \begin{cases} p, so w_{\alpha} = C \\ 1-p, so w_{\alpha} = K \end{cases}$$
 $v P_{\alpha}(w_{\alpha}) = \begin{cases} q, so w_{\alpha} = C \\ 1-q, so w_{\alpha} = K \end{cases}$

Def: A função diod. acumulador de via X é a função

Obs: X é continua sa sua fidia é continua.

enumeravel bas, x, ... 3 GR. A função

par = P(X=x) é chamoda f. de prob. de X

. A v.a. X é (absol.) continua se existe uma função f(a) mot-q.

e édita função denerda de probab. de X. Nesse coso
de Fx(x) = fx(x)

Manana,

Det: A esperança (média, valor esperado) de uma v.a. X é def. por

$$E(X) = \begin{cases} \sum_{\alpha} \alpha P(X=x), & \text{se } X \neq \text{discreta} \\ \int_{-\infty}^{\infty} \alpha f_{x}(x) dx, & \text{se } X \neq \text{continuous dens.} f. \end{cases}$$

$$E(g(x)) = \int_{-\infty}^{\infty} g(x)P(x=x), \quad \text{X discrete.}$$

$$\int_{-\infty}^{\infty} g(x)f(x)dx, \quad \text{X cont. condens. } f$$

Principais mode las discretos

1. Uniforme.

a. Bernoulli

X e' a função indicadora do ocorri de sucesso em um ensaio de Brinoulli

8. Binomia

Property
$$f_{x}(\alpha)$$
: $P(x=\alpha) = {n \choose x} p^{x} (1-p)^{n-x}, x \in \{0, ..., n\}$

Obs: Electora-se Mo bolos ao acaso e com reposição de uma urna com Non bolos, Muermilha e N-M broneas. Se X o nº de bolos verm. na am. Xu Bin (n, M/N). Est forem reposiçõe

4. Alpergeométrica

X ν 46 (N, M, π) se

$$f_{x}(\alpha) = \frac{\binom{M}{\infty}\binom{N-M}{n-\infty}}{\binom{N}{\infty}}, \alpha \in \ell_{mox}(0, n-N+M), \dots, m_{in}(n, m)$$

5. Geoméfrica

XN Geo (p) 80

6. Binomial Negativa

se (q, r) NB ux

$$f_{\kappa}(x) = \begin{pmatrix} z-1 \end{pmatrix} \begin{pmatrix} 1-p \end{pmatrix}^{2-r} p^r, \quad x \in \mathcal{E}_{r,r+1}, \dots \end{pmatrix}$$

T. Poisson

$$4x(3) = \frac{1}{6}$$
, $1 = \frac{1}{1}$

Pernapara Modelas em Tempo Cantinuo.

1. Uniforme

a. Exponencial

Ex= / Var K = 1/2 Obs: Falta de memoria:

P(T7+15 | T7+) = P(T75)

λ

8. Normal

Bronzague Xreidist. XNN(H,02) & MER, 680, 50

$$f_{x}(t) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\frac{(t-\mu)^{2}}{2\sigma^{2}}} I_{R}(x) \qquad Ex = \mu$$

$$\sqrt{2\pi\sigma^{2}} \qquad Vor(x) = 0^{2\pi}$$

So X~ N(H,02),

Aprox. da Binomial pela Normal

$$n=1$$
 $n=2$
 $n=80$
 $n=$