

CAMBRIDGE INSTITUTE OF TECHNOLOGY

K.R. PURAM, BENGALURU-560036

Department of Basic Sciences

Program:

B.E.

M.Tech.

Specialization:

Preparatory Examination - Even Semester 2018-19

Sub. Name: Advanced Calculus & Numerical Methods

Sub. Code: 18MAT21

Semester: II

Date: 13-06-2019

Time: 1:15 PM

Duration: 3 Flours

Max. Marks: 100

Unstructions: Answer any five full questions, choosing one from each module, each full question carries maximum 20 marks]

SI. No.		s: Answer any five full questions, choosing one from each module, each full question carri-	COs	RBT Levels	Marks
No.		Module 1			
1.	a)	Find the directional derivative of $\varphi = 4xz^3 - 3x^2y^2z$ at $(2,-1,2)$ along $2\hat{i} - 3\hat{j} + 6\hat{k}$.	COL	LI	04M
	b)	Prove that the vector $\vec{F} = \frac{x\hat{i} + y\hat{j}}{x^2 + y^2}$ is both solenoidal and irrotational.	COI	1.2	08M
	c)	Determine the total work done by the force $\vec{F} = (3x^2 + 6y)\hat{i} - 14yz\hat{j} + 20zx^2\hat{k}$ along the curve given by	COL	1.3	08M
		$x = t, y = t^2, z = t^3 \text{ and } 0 \le t \le 1.$			
2.	a)	Find the constants a, b, c so that the vector function $\vec{F} = (x+2y+az)\hat{i} + (bx-3y+z)\hat{j} + (4x+cy+2z)\hat{k}$ is irrotational.	COL	LI	04M
		Hence find the scalar function φ such that $\vec{F} = \nabla \varphi$.			
	b)	Determine the value of the integral $\oint (3x^2 - 8y^2) dx + (4y - 6xy) dy$	COL	1.2	08M
		using Green's theorem in a plane, where C is the boundary of the region enclosed by $y = \sqrt{x}$ and $y = x^2$.			
	c)	Use divergence theorem to evaluate $\iint \vec{F} \cdot \hat{n} ds$ over the surface of the	COI	1.3	08M
		region above xy plane, bounded by the cone $z^2 = x^2 + y^2$ and the plane $z = 4$ where $\vec{F} = 4xz\hat{i} + xyz^2\hat{j} + 3z\hat{k}$.			

	7	Module II			
3.	a)	Find the solution of $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 3e^x.$	CO2	LI	04M
	b)	Determine the solution of $\frac{d^2y}{dx^2} + y = \frac{1}{1 + \sin x}$ using the method of variation of parameters.	CO2	L2	08M
	c)	Solve: $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 9y = 3x^2 + \sin(3\log x)$.	CO2	L3	08M
		OR			
4.	a)	Find the solution of $(D^3 + 8)y = x^4 + 2x + 1$ where $D = \frac{d}{dx}$.	CO2	LI	04M
	b)	Determine the solution for the equation: $(1+x)^2 y'' + (1+x)y' + y = 2\sin[\log(1+x)].$	CO2	L2	08M
	c)	In an L-C-R circuit, the charge q on a plate of a condenser is given by	CO2	L3	08M
		$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = E \sin pt.$ The circuit is tuned to resonance so that			
		$p^2 = \frac{1}{LC}$. If initially the current i and the charge q be zero, prove that for the small values of R/L, the current in the circuit at time t is given			2
	-	by (Et/2L) Sinpt.			
		Module III			
5.	a)	Find the partial differential equation by eliminating the arbitrary function from $z = y f(x) + x \varphi(y)$.	CO3	LI	04M
	b)	Determine the solution of $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$, given that $u = 0$ when	CO3	L2	08M
		$t = 0$ and $\frac{\partial u}{\partial t} = 0$ at $x = 0$.			
	c)	Derive one dimensional wave equation in the standard form. OR	CO3	L3	08M
6/	a)	Find the partial differential equation by eliminating the arbitrary constants from $(x-a)^2 + (y-b)^2 + z^2 = c^2$.	CO3	LI	04M
(Determine the solution of $\frac{\partial^2 z}{\partial x^2} = \sin x \sin y$ given $\frac{\partial z}{\partial y} = -2 \sin y$	CO3	L2	08M
		when $x = 0$ and $z = 0$ when y is an odd multiple of $\frac{\pi}{2}$.			
	c)	Solve one dimensional heat equation using the method of separation of variables.	CO3	1.3	08M

Page 2 of 3

-	-	Module IV	-		
7.	(a)	Find the nature of the series: $\sum_{n=1}^{\infty} \frac{n!}{(n^n)^2}$.	CO4	LI	04M
	b)	Express $f(x) = x^4 + 3x^3 + 2x^2 - x - 3$ in terms of Legendre polynomial.	CO4	1.2	08M
	c)	Determine the solution of Bessel's differential equation leading to $J_n(x)$.	CO4	1.3	08M
		OR			
8.	a)	Find the nature of the series : $\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{1}{2}}}.$	CO4	1.1	04M
	b)	Determine the solution of Legendre's equation leading to $P_n(x)$.	CO4	1.2	08M
	c)	Use Rodrigue's formula to show that $P_3(\cos\theta) = \frac{1}{8}(3\cos\theta + 5\cos 3\theta)$.	CO4	L3	08M
		Module V			
9.	a)	Find the real root of the equation $xe^x - \cos x = 0$ correct to 3 decimal places which lies between 0 and 1 by using Regula Falsi method.	CO5	LI	04M
	b)	Determine the value of the integral $\int_{0}^{2} \sqrt{\sin x} dx$ by using Simpson's	CO5	1.2	08M
		$\left(\frac{3}{8}\right)^{th}$ rule and dividing the interval into ten equal parts.			
	c)	Use an appropriate interpolation formula to compute $f(98)$ for the	CO5	1.3	08M
		following data:			
	113	x 80 85 90 95 100			
		f(x) 5026 5674 6362 7088 7854			
		O.D.			
4.0	10	OR			
10.	(a)	Find a real root of the equation $x \log_{10} x - 1.2 = 0$, near $x=2.5$ using Newton-Raphson method correct to 4 decimal places.	CO5	LI	04M
	by	Determine the interpolating polynomial using divided difference	CO5	1.2	08M
	/	formula for the following data:	Tipo i		
		x 0 1 2 3 4 5			
		f(x) 3 2 7 24 59 118	1		
	el	Use Weddle's rule to evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ by taking seven ordinates and	CO5	L3	08M
1		hence find an approximate value of π .			