Comparison tables: BBOB 2009 noisy testbed in 5-D

The BBOBies

November 20, 2009

Abstract

This document provides tabular results of the workshop for Black-Box Optimization Benchmarking at GECCO 2009, see http://coco.gforge.inria.fr/doku.php?id=bbob-2009. More than 30 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 40. A description of the used objective functions can be found in [13, 8]. The experimental set-up is described in [12].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm. Consequently, the best (smallest) value is 1 and the value 1 appears in each column at least once. See [12] for details on how ERT is obtained. All numbers are computed with no more than two digits of precision.

Table 1: 05-D, running time excess ERT/ERT_{best} on f_{101} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

niction evaluations to reach	reacii u	us value	anvide	oy dimens	1011	-	,				
				ide ini	nere m	oderate	anss				
Δ ftarget	1e + 03	1e+02	1e + 01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.2	0.2	2.2	7.39	8.83	8.6	12.4	13.1	13.8	15	${ m ERT_{best}/D}$
ALPS	1	1.3	12	42	92	120	130	150	180	220	ALPS [15]
AMaLGaM IDEA	1	1.3	5.2	5.6	9.7	13	14	16	18	21	AMaLGaM IDEA [4]
avg NEWUOA	П	2.6	5.9	1.5	1.6	1.7	1.5	1.5	1.5	1.5	avg NEWUOA [23]
BayEDAcG	1	1.7	6.2	23	64	68	120	120	120	130	BayEDAcG [9]
BFGS	1	91	740	70e-1/4e3							BFGS [22]
BIPOP-CMA-ES	1	1.1	3.2	3.1	4.6	9	6.1	7.2	∞	9.6	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	1.3	5.9	7	5.6	3.2	3.3	3.9	4.3	5.4	(1+1)-CMA-ES [2]
DASA	П	11	19	15	18	21	23	26	27	32	DASA [18]
DEPSO	1	1.3	7.5	11	16	21	23	28	31	38	DEPSO [11]
EDA-PSO	1	1.3	4.1	∞	100	270	320	400	490	630	EDA-PSO [5]
full NEWUOA	Н	3.4	3.3	1.3	1.3	1.2	Н		1		full NEWUOA [23]
GLOBAL	1	1.3	11	8.1	7.7	7.4	6.1	6.2	6.2	6.4	GLOBAL [20]
iAMaLGaM IDEA	1	1.3	3.3	3.4	5.1	8.9	7.1	8.5	9.6	12	iAMaLGaM IDEA [4]
MA-LS-Chain	1	1.3	6.9	7.5	13	15	15	17	20	23	MA-LS-Chain [19]
MCS (Neum)	Н	Н	н		20	170	920	82e-5/1e4			MCS (Neum) [16]
NEWUOA	Н	3.6	2.2	1.6	2.1	2.2	5.6	2.9	က	3.1	NEWUOA [23]
(1+1)-ES	Н	2.2	2.9	1.8	2.4	က	3.1	3.4	3.8	4.6	(1+1)-ES [1]
PSO	Н	1.3	4.2	7.8	17	56	36	46	22	92	PSO [6]
PSO_Bounds	П	1.2	4.9	13	53	110	140	190	220	330	PSO_Bounds [7]
Monte Carlo	Н	1.7	8.6	460	1.9e5	10e-2/1e6	-	٠			Monte Carlo [3]
IPOP-SEP-CMA-ES	Н	1.9	4.2	က	4.1	4.9	5.2	5.8	6.4	7.7	IPOP-SEP-CMA-ES [21]
SNOBFIT	П	1.1	7	1.1	-	П	1.1	1.3	1.5	1.8	SNOBFIT [17]
VNS (Garcia)	Н	1.6	7.4	8.9	7.5	8.2	7.9	8.6	9.1	11	VNS (Garcia) [10]

Table 2: 05-D, running time excess ERT/ERT_{best} on f_{102} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Aftarget	$\mathrm{ERT}_{\mathrm{bost}}/\mathrm{D}$	ALPS [15]	AMaLGaM İDÉA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	16-07	19.8	170	15	1.5	130		7.2	4.2	38	28	470	п	5.1	8.5	17		41	3.9	22	250		5.7	2.1	8.1
	10.05	17.1	150	13	1.6	120		6.3	3.7	32	24	390	-	ಬ	7.5	16		33	3.3	45	180		ಬ	1.7	7.5
	16-04	15.5	130	12	1.5	120		9	3.5	30	22	330	1	5.2	7	16	58e-4/1e4	27	3.1	39	150		4.8	1.5	7.2
<i>y</i> : c.	16-03	14.4	110	10	1.5	120		5.1	3.1	56	18	270		5.3	6.1	13	9200	20	2.7	31	120	-	4.1	1.3	9.9
. otomopou	16-02	13.2	92	8.7	1.4	110		4.3	2.6	23	15	180	-	5.5	4.9	12	200	15	2.3	23	82	11e-2/1e6	3.6	1	6.2
bon.	16-01	10	73	9.7	1.5	29		4	2.5	22	13	96	1.2	6.7	4.2	12	120	7	2.2	15	47	1.7e5	3.2	П	9
10.9 CT	10 201 10+01	7.07	51	9	1.4	23	59e-1/3e3	က	2.3	23	6	8.3	1.4	8.9	2.8	8.2	1	9	2.1	10	15	430	2.9	1.2	9.9
arviac	10+01	2.21	9.9	2.2	2.7	12	890	2.7	2.2	41	2.8	4.9	3.2	8.2	5.8	6.9	Н	6.3	5.9	4	4.1	4.2	3.1	7	7.1
anis value	10+09	0.2	1.2	1.3	1.3	1.3	29	1	1.1	61	1.4	1.5	3.8	1.5	1.3	1.3	1	3.9	3.9	1.3	1.6	1.1	1.1	1.1	1.6
_	16+03	0.2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	П
COLOII CVAIDANIOLIS O ICACII	Afterget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 3: 05-D, running time excess ERT/ERT_{best} on f_{103} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	23	-	410	34	140	П	6.9	1100	59e-6/9e5	33e-7/2e3		4.8	33	200	22	230	140	3700	•		•	5.7	3.5	7.9
	1e-05	6.99	31e-6/1e6	350	42	440	3.3	17	360	1.7e6	410	38e-5/1e5	2.4	38	380	49	130	180	530	33e-5/1e5			14	1	20
anchy	$1\dot{e}$ -04	6.4	8300	170	26	460	3.6	15	110	1.3e5	180	2.2e5	2.6	34	140	44	130	85	120	4.7e4	87e-5/1e5		13	1	19
ate Ca	1e-03	6.25	240	22	13	360	3.7	13	59	2700	20	1100	5.6	16	55	33	130	09	27	1400	1.5e4		6.6	Н	16
ere moderate Cauchy	1e-02	5.96	190	17	5.4	360	3.9	10	6.9	430	40	470	1.8	12	12	26	100	9.4	5.2	100	2800	10e-2/1e6	8.1	1	13
103 Sphere I	$1e-\tilde{0}1$	5.96	120	12	3.6	130	3.9	7.4	4.2	89	22	120	1.8	11	7.5	19	100	5.7	3.6	56	98	2.9e5	5.9	П	11
10 10	1e+00	5.52	61	7	1.6	09	4.2	4.7	2.5	19	14	11	1.6	11	4.5	11	П	1.9	2.4	8.3	18	830	3.9	Н	8.6
ne aivi	1e+01	2.2	8.1	ಬ	2.5	12	7.5	3.5	2.4	16	12	4.2	2.8	6.4	2.7	9	П	2.4	က	3.5	4.2	6.2	3.4	1.6	7.5
TE A CITTO	1e + 02	0.2	1.5	1.8	2.5	1.3	2.6	1.7	1.2	7.7	1.5	1.1	5.1	1.3	1.3	1.5	1	3.5	က	1.3	1.1	1.1	1.5	1.5	1.6
Oleach	1e + 03	0.2	1	1	1	П	1	1	1	1	1	1	1	П	П	1	1	1	1	П	1	П	1	П	н
idilicatoti evaluaatotis to reacti atti	Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 4: 05-D, running time excess ERT/ERT_{best} on f_{104} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Affarred: 16+03 16+09	16+03	16+02	1e+01	104 Ro	${f Rosenbrock mo}_{1e-0.1}$	moderate Gauss	Gauss 1e-03	16-04	16-05	16-07	Affaroet
$ m ERT_{best}/D$	3.84	11.2	34.6	155	257	315	354	385	408	457	$ m ERT_{best}/D$
ALPS	6.3	22	18	18	29	37	40	45	48	7.1	ALPS [15]
AMaLGaM IDEA	3.3	3.1	2.1	3.6	2.8	2.6	2.5	2.4	2.4	2.3	AMaLGaM IDEA [4]
avg NEWUOA	1.3	2.8	1	22	9.2	14	23	21	20	24	avg NEWUOA [23]
$\operatorname{BayEDAcG}$	8.9	8.8	21	180	33e-1/2e3					•	BayEDAcG [9]
BFGS	350	61e+1/2e3									BFGS [22]
BIPOP-CMA-ES	2.4	2.6	1.4	1.9	7	7	7	7	1.9	1.8	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1.7	2.2	П	3.7	4.1	4.8	4.4	4.1	3.9	3.5	(1+1)-CMA-ES [2]
DASA	23	27	11	35	46	88	190	820	3200	1.5e4	DASA [18]
DEPSO	7.6	7.9	4.4	10	55	53e-2/2e3					DEPSO [11]
EDA-PSO	4.2	5.6	32	39	53	72	92	110	130	160	EDA-PSO [5]
full NEWUOA	1.8	3.2	1.1	1.8	1.7	1.4	1.4	1.3	1.3	1.2	full NEWUOA [23]
GLOBAL		5.3	2.5	7	3.4	3.7	3.3	က	2.9	2.6	GLOBAL [20]
iAMaLGaM IDEA		2.3	1.5	П	П	Н	П	Н		П	iAMaLGaM IDEA [4]
MA-LS-Chain	ಬ	5.6	3.6	7.1	5.1	4.7	4.4	4.2	4.1	3.8	MA-LS-Chain [19]
MCS (Neum)	Н	1	1.5	920	23e-1/1e4						MCS (Neum) [16]
NEWUOA		2.8	1.2	3.4	9	14	24	100	14e-4/5e3	•	NEWUOA [23]
(1+1)-ES		2.6	1.1	4.3	12	25	63	230	086	0066	(1+1)-ES [1]
PSO	3.3	5.1	5.7	170	190	1500	22e-3/1e5			•	PSO [6]
PSO_Bounds		10	17	2600	5400	15e-1/1e5					PSO_Bounds [7]
Monte Carlo		150	9e3	64e-1/1e6							Monte Carlo [3]
IPOP-SEP-CMA-ES	2.4	15	5.4	14	8.7	7.7	7	6.4	6.1	5.5	IPOP-SEP-CMA-ES [21]
SNOBFIT		2.1	1.3	91	28e-1/1e3	•				•	SNOBFIT [17]
VNS (Garcia)	7.3	4.1	77	7.4	5.6	5.9	11	11	10	6	VNS (Garcia) [10]

Table 5: 05-D, running time excess ERT/ERT_{best} on f_{105} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension 105 Bosonbrook moderate unit

	$\Delta { m ftarget}$	${ m ERT_{b est}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL $[20]$	iAMaLGaM IĎEÁ [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	2240	17	1.7	45e-4/7e3			1		0099		38e-8/1e5			1.5	30			6500				2.4		24
	1e-05	2160	9.4	1.7	46			1	16e-3/1e4	200		31	22e-3/9e3		1.5	31			170				2.5		25
	1e-04	2130	7.8	1.7	47	•		П	33	240		24	61		1.5	31			20	•			2.2		22
e unif	1e-03	2080	9	1.8	14	·		1	34	100		18	31	٠	1.5	32		38e-3/5e3	16	70e-2/1e5	15e-1/1e5		2.6		26
105 Rosenbrock moderate unif	1e-02	2e3	4.6	1.8	4.4			1	11	22	17e-1/2e3	12	9.3	75e-2/200	1.5	33		ಬ	4.3	200	200		2.6	32e-1/1e3	24
3osenbroc	1e-01	1030	5.1	3.3	1.9	·		1.7	4.1	12	14	13	4.5	1	2.8	44	32e-1/1e4	3.3	1.3	630	1400		ъ	14	31
105 I	1e+00	287	7	11	2.4	37e-1/2e3		3.7	4.4	16	16	20	1.6	1	œ	28	520	2.7	1.7	64	1400	69e-1/1e6	18	49	42
	1e+01	33.3	22	2.4	1.7	28		1.7	1.5	17	5.3	40	1.7	2.5	1.5	3.9	1.6	1.7	П	6.4	15	1.4e4	1.3	2.2	27
	1e+02	12.4	26	3.2	3.7	10	82e+1/1e3	2.4	3.2	36	6.2	6.1	4.2	4.8	1.9	v	-1	2.8	1.8	6.5	8.9	160	1.8	4	89
	1e+03	3.28	13	4	1.4	5.8	410	က	2.3	29	9	3.8	2.5	10	2.3	9	1.1	1	2.6	6.3	3.4	8.7	က	2.2	8.4
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 6: 05-D, running time excess ERT/ERT_{best} on f_{106} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension f_{106} | | $\Delta { m ftarget}$ | ${ m ERT_{best}/D}$ | ALPS [15] | 4 | avg NEWUOA [23] | | BFGS [22] | BIPOP-CMA-ES [14] | (1+1)-CMA-ES [2] | DASA [18] | DEPSO [11] | | full NEWUOA [23] | | ΙĀ | MA-LS-Chain [19] | MCS (Neum) [16] | NEWUOA [23] | (1+1)-ES [1] | PSO [6] | PSO_Bounds [7] | Monte Carlo [3] | IPOP-SEP-CMA-ES [21] | SNOBFIT [17] | VNS (Garcia) [10] |
|---------------------|-----------------------|---------------------|-----------|--------------|-----------------|-----------|-----------|-------------------|------------------|-----------|------------|-----------|------------------|-----------|---------------|------------------|-----------------|-------------|--------------|-----------|----------------|-----------------|----------------------|--------------|-------------------|
| | 1e-07 | 617 | • | 28 | 21e-5/8e3 | | | 1.7 | | | | ٠ | 31 | 11e-4/400 | 140 | 4.5 | | | | ٠ | | | н | | 4.6 |
| | 1e-05 | 277 | | 28 | 200 | • | | 1.7 | - | | | | 18 | | | 3.5 | - | | 10e-5/1e6 | | | | 1 | | 4.9 |
| υy | 1e-04 | 556 | 28e-5/1e6 | 22 | 30 | • | | 1.7 | 54e-4/1e4 | 18e-4/1e6 | ٠ | · | 7.8 | 2.7 | 23 | 3.1 | | 79e-4 /7e3 | 2900 | · | · | · | н | • | ಬ |
| tate Cauc | 1e-03 | 533 | 410 | 12 | 9.1 | - | 67e-2/5e3 | 1.6 | 82 | 1.3e4 | | | 3.1 | 1.4 | 13 | 2.8 | | 59 | 260 | | | | П | 18e-1/1e3 | 5.2 |
| ock moderate Cauchy | 1e-02 | 354 | 110 | 11 | 5.8 | 34e-1/2e3 | 210 | 2.3 | 22 | 320 | 14e-1/2e3 | 20e-2/1e5 | 1.7 | -1 | 11 | 3.1 | - | 27 | 38 | 79e-2/1e5 | 14e-1/1e5 | | 1.4 | 40 | 7.7 |
| i Kosenbr | 1e-01 | 210 | 37 | 5.3 | 2.4 | 140 | 100 | 3.2 | 8.6 | 48 | 140 | 0029 | н | Н | 10 | 3.7 | 27e-1/1e4 | ಬ | 17 | 3100 | 3100 | | 2.1 | 19 | 6.3 |
| 10(| 1e+00 | 106 | 20 | 8.8 | 1.5 | 270 | 54 | 4.3 | 4 | 31 | 35 | 28 | П | 1.3 | 9.1 | 3.9 | 1300 | 2.2 | 6.5 | 360 | 1900 | 62e-1/1e6 | က | 18 | 11 |
| | 1e+01 | 15.5 | 49 | 5.3 | П | 53 | 23 | 3.9 | 2.5 | 23 | 11 | 68 | 1.2 | 4.6 | က | 7.5 | 3.2 | 1.1 | 1.7 | 13 | 35 | 1.6e4 | 2.7 | က | 22 |
| | 1e + 02 | 10.1 | 56 | 3.7 | 1.2 | 11 | 22 | 3.4 | 2.7 | 56 | 7.2 | 9.2 | 1.4 | 6.5 | 2.3 | 5.9 | 1.4 | Н | 1.7 | 6.2 | 17 | 150 | 2.5 | 2.6 | 5.4 |
| | 1e+03 | 3.56 | 10 | 4 | 1.9 | 4.8 | 13 | 2.9 | 2.3 | 17 | 6.1 | 3.8 | 77 | 6.7 | 2.4 | 4.8 | 1 | 1.1 | 2.2 | 4 | 6.1 | ∞ | 3.1 | 2.9 | 8.2 |
| | $\Delta { m ftarget}$ | ${ m ERT_{best}/D}$ | ALPS | AMaLGaM IDEA | avg NEWUOA | BayEDAcG | BFGS | BIPOP-CMA-ES | (1+1)-CMA-ES | DASA | DEPSO | EDA-PSO | full NEWUOA | GLOBAL | iAMaLGaM IDEA | MA-LS-Chain | MCS (Neum) | NEWUOA | (1+1)-ES | PSO | PSO_Bounds | Monte Carlo | IPOP-SEP-CMA-ES | SNOBFIT | VNS (Garcia) |

Table 7: 05-D, running time excess ERT/ERT_{best} on f_{107} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$1e-07$ $\Delta ftarget$	370 ERT _{best} /D		11 AMaLGaM IDEA [4]	avg NEWUOA [23]			1 BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]		5.4 DEPSO [11]	Н	full NEWUOA [23]	GLOBAI	30 iAMaLGaM IDEA [4]	5 MA-LS-Chain [19]	. MCS (Neum) [16]	. NEWUOA [23]		10 PSO [6]			8.9 IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	9.1 VNS (Garcia) [10]
		275						1			5.2														
	1e-04	234	14	13		10		1			4.3	30			22	6.5			50e-4/1e6	9.1	68		10		9.5
SS		188				7.7		1			3.7	29			22	7			7.5e4	9.9	100		11	e-2/1e3	10
here Gaus	1e-02	138	13	12		7.7		1	19e-2/1e4	29e-2/7e5	3.9	27	96e-2/8e3		26	6.9	81e-3/1e4		0089	4.8	29	96e-3/1e6	11	53	6.7
107 Sphere Gauss	1e-01	9.06	12	18	14e-1/6e3	7.1		П	210	3.6e4	3.6	20	1400	77e-2/700	28	8.9	72	17e-1/5e3	650	4.3	32	1.3e4	5.6	36	6.3
3	1e+00	45.5	10	5.8	320	6.7	61e-1/2e3	1	42	3e3	3.1	11	250	12	31	ಬ	4.2	190	59	2.6	5.4	48	10	13	∞
	1e+01	7.97	2.7	1.7	89	2.2	150	1.7	21	009	3.3	1.6	82	$^{2.6}$	33	1.9	3.9	09	31	1.3	П	4.5	5.6	1.5	2.7
	1e + 02	0.2	1.4	1.3	2.7	1.4	12	1.4	1	110	1.6	1.3	6.1	1.1	1.9	1.5	П	2.4	3.3	1.3	1.7	1.9	1.2	1.2	1.6
	1e+03	0.2	1	1	1	1	1	1	1	П	1	1	1	П	П	1	1	П	1	1	1	-	1	-	1
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	$iAMaLGaM\ IDEA$	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 8: 05-D, running time excess ERT/ERT_{best} on f_{108} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	16100	98e-6/1e6	450				1		•		•			210	•				•				•	
	1e-05	11700	1200	170		-		1							81	•		-							
	1e-04	8240	180	73		•		П		•		٠			61	•			٠	٠	69e-2/1e5		٠	٠	39e-4/7e6
<u>.</u>	1e-03	6190	35	31	-			1	-	•	·	38e-3/1e5	-		42	29e-3/2e4		-		54e-2/1e5	230		20e-2/1e4	•	4900
108 Sphere unif	1e-02	4930	13	20		•		1				300			33	17	54e-2/1e4		12e-2/1e6	290	290	98e - 3/1e6	9.7	25e-1/1e3	450
108 S	1e-01	2890	4.5	17	27e-1/6e3			1	12e-1/1e4	65e-2/7e5	19e-1/2e3	41		16e-1/900	26	3.9	51	41e-1/5e3	830	71	96	480	9.2	ಬ	44
	1e+00	1030	1	12	44	34e-1/2e3	84e-1/900	1	15	460	9.3	11	43e-1/9e3	3.6	16	1	6.1	64	30	48	98	4.1	6.7	6.5	11
	1e+01	17.3	1.1	75	150	18	56	6.1	24	260	2.3	4.9	78	1.4			15	22	24	420	410	1	100	3.5	61
	1e + 02	0.2	1.1	1.7	က	1.5	9.9	П	33	240	1.1	1.1	68	1.2	1.6	1.7	П	48	96	1.4	1.1	1.6	Н	1.5	1.6
	1e + 03	0.2	1	1	1	1	-	1	1	П	1	П	1	1	1	1	1	1	-	П	1	1	-	П	1
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 9: 05-D, running time excess ERT/ERT_{best} on f_{109} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	189		170		19	П	1.5					20		410	430	340						1.2		1.8
		1e-05	175	-	71		17	1.1	1.1					22		180	72	370						П	10e-3/1e3	1.3
			139				20	1.4	1.1			51e-4/2e3		28	49e-3/200	110	47	300	•	13e-4/1e6				П	100	
-	auchy	1e-03	114	43e-4/1e6	36	67e-4/6e3	22	1.7	1.1	20e-3/1e4		130	30e-3/1e5	21	35	65	20	120	41e-3/5e3	1.4e4	46e-3/1e5	13e-2/1e5		1	35	1.3
-	Sphere	$^{-}1e-02$	75	3500	20	47	24	2.5	1	430	15e-2/7e5	25	2e4	13	53	33	12	32	880	290	2e4	1.9e4	88e - 3/1e6	1.1	16	1.5
	TOS	1e-01	43.3	42	19	56	24	3.4	1.1	22	4.3e4	5.7	550	6.1	5.1	16	5.1	22	83	13	1400	2700	2.2e4	П	3.6	1.6
ied by c		1e+00	11.4	28	3.4	3.6	41	13	2.5	6.5	2800	6.7	4.9	ഹ	7	2.3	5.9	12	13	5.4	130	640	320	2.3	П	4.2
is value divided by difficience		1e + 01	2.2	5.2	3.7	4.3	8.6	39	3.5	2.5	320	6.6	3.1	5.6	8.1	2.6	5.8	Н	4.8	2.7	4.1	3.6	11	4.1	2.4	7.3
		1e + 02	0.2	1.7	1.3	1.5	1.3	18	1.6	2.1	4.7	1.4	1.5	5.6	1.3	1.4	1.5	1	1.7	2.2	1.1	1.4	1.5	1.7	1.5	1.6
o reacii		1e + 03	0.2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	1	1	1	П	1
Infiction evaluations to reach the		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 10: 05-D, running time excess ERT/ERT $_{\rm best}$ on f_{110} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	1.22e5	38	17				1							22										77e-6/7e6
		1.21e5	8.3	17				1							20										160
	1e-04	1.19e5	3.6	17				1							20										20
		1.19e5	1.8	17				1							17						20e-1/1e5				28
ock Gauss	1e-02	1.12e5	1	18				1							12	15e-1/2e4					13				9.7
110 Rosenbrock Gauss	1e-01	24000	1	83				3.7	52e-1/1e4		20e-1/2e3	23e-1/1e5			46	15		13e+0/5e3	29e-2/1e6	17e-1/1e5	59		21e-1/1e4	15e+0/1e3	11
	1e+00	6720	1	74	27e+0/6e3	30e-1/2e3		4.8	22	92e-1/7e5	-	220	15e+0/8e3	32e+0/400	9.1	11	54e-1/1e4	10	33	30	09	63e-1/1e6	6.1	2.1	∞ ∞
	1e + 01	190	4.4	4.7	240	1.9		1	20	3600	1.7	11	140	6	4.7	1.9	8.3	120	21	2.4	42	1900	2.9	8.57	3.4
	1e+02	48	6.2	П	34	2.7	73e+1/1e3	2.2	13	1e3	2.2	4.9	37	ъ	5.6	2.2	3.1	23	16	2.5	4	31	3.9	7.2	1.5
	1e + 03	69.6	4.5	1.5	20	2.4	92	1.3	∞	550	2.7	1.7	28	2.7	1.1	1.8	2.1	17	13	П	1.7	3.1	1.2	1.7	3.4
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 11: 05-D, running time excess ERT/ERT_{best} on f_{111} , in italics is given the median final function value and the median number of

		Δ ftarget	$_{ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS $[22]$	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	6.26e6		•				1		•				•		•				•		•			
		1e-05	6.2e6						П										•							
		1e-04	4.62e6		•		•		1								•		•		•					
		1e-03	4.61e6						1							26e-2/1e6										11e-2/6e6
	ck unif	1e-02	4.59e6	34e-2/1e6	•		·		П		•		٠			3.2	•		٠				٠		٠	20
uc	111 Rosenbrock unif	1e-01	1.77e6	2.5	53e-2/1e6		·		1		•		24e-1/1e5			2.5	19e-1/2e4		٠	٠	31e-1/1e5	14e+0/1e5			٠	5.4
. by dimensi	111	1e+00	1.22e5	1	4.5				2.5	44e+0/1e4	21e+0/7e5	31e+0/2e3	5.4			3.7	1.4	12e+0/1e4		45e-1/1e6	3.4	12	66e - 1/1e6	46e-1/1e4		3.6
alue divided		1e+01	1370	1.5	9.9	20e+1/6e3	67e + 0/2e3	10e+2/600	1	110	3500	22	3.5	16e+1/8e3	12e+1/900	7.2	1.4	22	36e+1/5e3	130	38	110	210	4.9	10e+1/1e3	11
sh this ι		1e + 02	214	2.2	က	09	4.1	38	1.5	20	089	2.9	က	100	7.8	8.3	1	2	26	28	35	73	14	13	8.7	21
s to read		1e+03	13.9	2.9	1.3	140	1.8	61	4.7	19	1e3	3.2	1	150	3.5	1.3	1.5	7.1	28	19	2.6	2.2	2.3	85	2.1	83
function evaluations to reach this value divided by dimension		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 12: 05-D, running time excess ERT/ERT_{best} on f_{112} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	1.12 ROSEIIDFOCK CAUCHY $_{1e-01}$ $_{1e-02}$ $_{1e-03}$ $_{1e-04}$ $_{1e-05}$ $_{1e-07}$ $\Delta { m ftarget}$	900 963 1030 1120 E		270 260 330 380 350 AMaLGaM IDEA [4]	110 $14e-2/7e3$ avg NEWUOA [23]		BFGS [22]	1.2 1.3 1.3 1.3 BIPOP-CMA-ES [14]	29e-2/1e4	18e-2/9e5 DASA [18]	25e-1/2e3 DEPSO [11]		150 93e-3/9e3 full NEWUOA [23]			420 390 28e-2/2e4 MA-LS-Chain [19]		44e-2/5e3 NEWUOA [23]	14e-3/1e6 (1)		29e-1/1e5 PSO_Bounds [7]		1.5 1.5 1.4 1.4 IPOP-SEP-CMA-ES [21]	. SNOBFIT [17]	
divided by	01 1e+00		19	30		35e-1/2e3	0 92e+0/3	1	8.9								37e-1/1				1200		2.5		
this value	1e+02 $1e+01$		29 33	3.6 3.5	2.5 3.1		390 920	6.3		41 79	6.1 7.					6.3 5.4	1.4 41		2.7 2.			160 1.9e4	2.2	1.9 2.7	7.0
s to reach	1e+03		6	3.9	1.5	4.9	130	2.5	2.1	22	8.9	5.2	77	6.1	2.4	6.4	1.1	1	2.6	4.1	5.4	12	2.6	2.4	0 1
function evaluations to reach this value divided	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 13: 05-D, running time excess ERT/ERT_{best} on f_{113} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	4880	1.6			9		1.1			1.4	15		٠	1.8	5.3					43		1.3		15
		1e-05	4830	1.5	-		6.1		1.1			1.4	15		•	1.8	5.3					43		1.3	•	15
		1e-04	4830	1.5	П		6.1		1.1			1.4	15			1.8	5.3		-			43	-	1.3		15
	70		4830	1.5	П		6.1		1.1			1.4	15			1.8	5.3			23e-3/1e6		43		1.3		15
	Step-ellipsoid Gauss	1e-02	4800	1.1	1	13e-1/6e3	6.1		1.1	96e-2/1e4		1.1	11		18e-1/900	1.6	3.4	48e-2/1e4		1400	54e-2/1e5	33		1.2		7.3
ımension	Step-ellip	1e-01	1620	7		55			1.7	92	1e-1/7e5	1	17	14e-1/8e3	7.3	4.2	4.9	92						3.3	30e-1/1e3	13
ted by dime	113	1e+00	377	2.6	4.6	31	2.6	24e+0/2e3	1.3	40	2700	1	3.4	57	6.6	4.7	1.5	6	44	32	180	21	350	6.7	18	13
ue divic		1e + 01	26.5				3.4						4.5	19	4.1	1	2.5	1.5	13	13	470	2.2	8.7	16	7.7	28
this value		1e + 02	1.92	1.2	П	23	1.3	100	2.4	25	220	3.5	2.8	28	1.1	1.8	2.1	73	15	12	1.8	1.8	1.3	74	2.3	2.3
o reach		1e + 03	0.2	1.3	1.3	1.7	1.8	14	2.1	1.1	6.3	1.3	1.3	2.3	1.9	1.9	1.5	П	2.1	2.5	1.5	1.5	1.3	2.2	1.2	П
tunction evaluations to reach thi		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	$iAMaLGaM\ IDEA$	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 14: 05-D, running time excess ERT/ERT_{best} on f_{114} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		17000 ERT _{best} /D	96 ALPS [15]	20 AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	. BFGS [22]	1 BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	. DASA [18]	. DEPSO [11]	. EDA-PSO [5]	full NEWUOA [23]	. GLOBAL [20]	42 iAMaLGaM IDEA [4]	. MA-LS-Chain [19]	. MCS (Neum) [16]	. NEWUOA [23]	(1+1)-ES [1]	. PSO [6]	. PSO_Bounds [7]	. Monte Carlo [3]	. IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	5300 VNS (Garcia) [10]
	1e-05 1		63	19				1							43										5400
	1e-04	16700	63	19				1							43										5400
	1e-03	16700	63	19				1							43										5400
d unif	1e-02	15800	35	14				1							28	29e-2/2e4				73e-2/1e5	47e-1/1e5	44e-2/1e6	99e-2/1e4	•	1200
114 Step-ellipsoid unif	1e-01	11300	7	5.7				П	29e-1/1e4	18e-1/7e5		73e-2/1e5		45e-1/900	15	5.8	13e-1/1e4		29e-2/1e6	39	130	1300	12		140
114 St	1e+00	2940	1.6	7.1	11e+0/6e3	73e-1/2e3		П	24	1100	42e-1/2e3	28	82e-1/8e3	4.5	14	1.6	7.5	89e-1/5e3	20	27	140	34	4.6	56e-1/1e3	14
value divided by difficultion $114~\mathrm{Ste}$	1e + 01	153	1.2	17	74	6.9	28e+0/800	2.2	7.2	260	4.7	21	09	2.7			2.2		13	1	100	2.7	15	3.5	34
	1e+02	2.32	1	1.4	110	1.3	29	21	43	430	2.6	1.3	180	7	1.5	2.1	ಬ	150	38	1.6	1.9	1.6	130	2.7	1.9
1000	1e + 03	0.2	1.3	1.6	1.3	1.2	20	1.5	1.1	4.6	1.2	1.3	1.1	1.5	1.5	1.3	П	П	6.6	1.2	1.4	1.5	1.3	1.5	П
Tunction evaluations to reach time	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 15: 05-D, running time excess ERT/ERT_{best} on f_{115} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDĒA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	594	16e-3/1e6	6.5				5.7							18	280			2.5e4				П		5.2
		1e-05	510	1.3e4	ro		٠		5.9	-	٠		٠			20	150	-		1.4e4	•		•	П	-	5.3
		1e-04	510	1.3e4	ro				5.9							20	150			1.4e4				П	-	5.3
	chy	1e-03	510	1.3e4			89e-2/2e3		5.9			58e-3/2e3			٠	20	150			1.4e4	•		٠	П	•	5.3
	ipsoid Cauchy	1e-02	455	0096	5.6	10e-2/6e3	63		9.9	11e-2/1e4		65	65e-3/1e5	57e-3/8e3		19	72	83e-2/1e4	34e-2/4e3	3e3		38e-2/1e5		П		5.7
	$5 m \ Step-ellij$	$1e-\overline{01}$	366	25	2.9	28	78		6.5	43	63e-2/8e5	6.5	180	17	84e-2/300	8.7	30	400	42	64	580	1100	34e-2/1e6	1	11e-1/1e3	4.4
rided by dim	11	1e+00	26	8.9	4.1	4.2	21	24e+0/2e3	2.6	7.4	2700	5.5	19	2.8	4.7	4.2	3.2	43	14	11	190	400	910	1.5	17	1
alue div		1e + 01	12.7	13	1.8	1.1	5.9	2200	1.5	4.7	420	4.8	7.7	-1	4.4	1.6	က	1.4	2.9	1.7	$^{2.6}$	5.1	22	1.4	4.6	3.4
h this v		1e + 02	2.01	2.5	1.9	1.6	1.5	120	1.7	1.4	45	2.3	1.7	77	1.2	1.3	1.5	1.4	1.2	2.1	1.3	-	1.8	1.4	1.4	2.1
to reac		1e+03	0.2	1.3	1.3	1.1	1.5	32	1.3	1.3	18	1.1	1.7	2.9	1.2	1.1	1.3	П	2.1	1.9	1.5	1.3	1.3	1	1.1	1
function evaluations to reach this value		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 16: 05-D, running time excess ERT/ERT $_{\rm best}$ on f_{116} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension 116 Ellipsoid Gauss

	$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-0.7	6330	2300	-1				7				٠			2.6								7		910
	1e-05	0209	280	1		-		7		•					2.6	٠							2.1	•	570
	1e-04	5520	22	1	-	-		2.1		٠		•		•	2.8			•		-		•	2.5	٠	630
	1e-03	5370	26	1				2.1				18e-1/1e5			2.4	37e-2/2e4							2.3		260
Gauss	1e-02	5250	14	П		•		2.1			73e-1/2e3	270			2.4	69				٠		٠	2.3		200
psoid	1e-01	4460	4.5	1				1.9			3.2	150			2.5	14	12e+0/1e4		17e-1/1e6		19e+0/1e5		2.7	·	52
116 EII	1e+00	2890	2.4	1		37e+0/2e3		7	18e+0/1e4	12e+0/7e5	4.7	96		74e.	3.2		49		1600	15e+0/1e5	150	11e+0/1e6	2.5		22
	1e+01	1150	1.5	1	95e+0/6e3	12		1.2	37 1	1300	1.9	25	10e+1/8e3	4.5	4	2.6	16	74e+0/5e3	40	240	130	1700	4.5	83e+0/1e3	14
	1e + 02	268	2.1	1	35	4.3	12e + 2/900	1.1		220				3.2			1.3	20	11	09	09			4.7	
	1e+03	22.9	3.1	1	29		89	1.8			2.6	1.7	37	2.6	15	1.4	1.8	27	6.2	2.8	1.2	3.8	1.9	1.1	7
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 17: 05-D, running time excess ERT/ERT $_{
m best}$ on $f_{
m 117}$, in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension 117 Ellipsoid unif

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO $[11]$	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	38300		370		•		1		•		•		٠	14e-6/1e6	•				•		•		•	
		34600		45				П				٠		•	29	٠								٠	
	1e-04	30300		27		٠		П							35										
	1e-03	27400	13e-2/1e6	15				1							32										
l unit	1e-02	25700	570	6.6		-		1							17								26e+0/1e4		99L/Z-909
7 Ellipsoid	$1e-0\overline{1}$ $1e-0\overline{2}$	21900	79	8.4		-		1							12	27e-1/2e4			67e-1/1e6	19e+0/1e5	39e+0/1e5		6.7	•	4600
		15200	9.3	5.9				1	77e+0/1e4		-	15e+0/1e5			6	24	36e+0/1e4		930	96	93	94e-1/1e6	9.7		270
	1e+01	5340	3.1		30e+1/6e3					39e+0/7e5				17e+1/800					130	57	120	240	8.7	21e+1/1e3	21
	1e + 02	865	1	5.9	100	21e+1/2e3	91e+1/600	2.1	11	190	7.2	15	45	3.6	4.5	1.2	1.3	41e+1/5e3	17	46	43	7.7	10	8.4	14
	1e+03	34.5	1.4	П	38	1.6	18	9.9	24	160	3.7	1.2	160	2.9	15	77	2.5	41	18	89	7	1.7	62	7	100
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 18: 05-D, running time excess ERT/ERT_{best} on f_{118} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

TOTAL CARREST CONTROLL OF THE PROPERTY OF THE		CITIO III	Agrae and agrae	118	118 Ellinsoid	Canchy					
Δ ftarget	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT_{best}/D}$	5.28	10.9	85.8	243		355	400	441	486	583	${ m ERT_{best}/D}$
ALPS	10	34	13	32	940	4.1e4	41e-3/1e6				ALPS [15]
AMaLGaM IDEA	3.4	4.6	1	2.6	3.6	4.9	10	16	30	54	AMaLGaM İDEA [4]
avg NEWUOA	1.2	1	1.8	8.3	64	18e-2/7e3					avg NEWUOA [23]
$_{ m BayEDAcG}$	12	190	66	90e+0/2e3			•		-		BayEDAcG [9]
BFGS	210	1800	31e+1/3e3		·						BFGS [22]
BIPOP-CMA-ES	4.2	7.8	3.2	7	1.9	2.1	2.1	77	7	1.8	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	2.8	5.7	œ	22	230	32e-2/1e4					(1+1)-CMA-ES [2]
DASA	53	270	1300	2.7e4	27e-1/9e5		•				DASA [18]
DEPSO	10	18	17	38	26	37e-1/2e3					DEPSO [11]
EDA-PSO	5.6	65	110	320	910	4e3	57e-2/1e5				EDA-PSO [5]
full NEWUOA	1.3	1	1.3	5.9	70	22e-2/9e3					full NEWUOA [23]
GLOBAL	6	7	1.8		74e-2/700						GLOBAL [20]
iAMaLGaM IDEA	8.7	3.4	2.7	3.1	7.7	11	22	44	09	130	iAMaLGaM IĎEÁ [4]
MA-LS-Chain	ಬ	12	4.1		44	98	130	260	370	640	MA-LS-Chain [19]
MCS (Neum)	10	24	140	13e+0/1e4		-					MCS (Neum) [16]
NEWUOA	Н	1.3	4.3	10	120	30e-2/5e3	٠		•		NEWUOA [23]
(1+1)-ES	3.7	13	36	530	22e-2/1e6	-			٠		(1+1)-ES [1]
PSO	4.3	029	800	2700	51e-1/1e5		•		•		PSO [6]
PSO_Bounds	4.9	29	1800	12e+0/1e5		-					PSO_Bounds [7]
Monte Carlo	6	200	1.5e4	10e+0/1e6	٠						Monte Carlo [3]
IPOP-SEP-CMA-ES	3.9	9.7	3.8	2	1.8	1.7	1.7	1.6	1.6	1.4	IPOP-SEP-CMA-ES [21]
SNOBFIT 3.2	3.2	23	87	33e+0/1e3			•		•		SNOBFIT [17]
VNS (Garcia)	8.4	8.3	1.8				Н	-	Н	-	VNS (Garcia) [10]

Table 19: 05-D, running time excess ERT/ERT_{best} on f_{119} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	9950	15e-7/1e6	1				2.3				98e-6/1e5			3.6	61e-7/2e4		٠			19e-5/1e5		2.8	٠	1.2e4
	1e-05	2060	29	1				1.5				210			3.8	4.7		٠		14e-5/1e5	26	٠	1.7	٠	130
snr	1e-04	6190	2.2	1		68e-4/2e3		1			19e-4/2e3	15			3.8	1.1				36	35		1.5		7.9
powers Gauss	1e-03	2070	7	2.7		7.1		1			1.8	2.8			6.7	1.3			13e-3/1e6	18	17		2.5		4.6
of different	1e-02	473	4.6	10		4.2		1	20e-2/1e4	31e-2/7e5	3.8	8.5	31e-2/8e3		19	3.3	75e-3/1e4		3900	09	44	10e-2/1e6	5.9	51e-2/1e3	10
$119 \mathrm{Sum}$	1e-01	227	4.8	8.6	42e-2/6e3	4.6	50e-1/2e3	1	140	1.5e4	2.8	8.6	260	80e-2/900	9.1	4	43	90e-2/5e3	260	120	73	6400	8.5	21	7.4
	1e+00	131	1.9	4.6	23	2.2	120	1	15	750	П	1.9	22	4.7	2.8	1.3	77	35	12	71	56	12	11	4.1	8.2
	1e+01	2.35	2.1	1.4	19	2.5	220	1.9	18	210	1.5	1.4	12	1	1.3	1.6	3.5	26	15	1.8	1.7	1.4	4.5	1.7	2.8
	1e + 02	0.2	1.8	1.8	3.4	1.3	45	1.7	32	41	1.5	1.4	4.6	1.5	1.3	1.8	1	1.7	63	1.3	1.2	1.5	5.4	1.3	1.2
	1e + 03	0.2	П	1	П	1.1	П	1	П	П	1	1	П	1	1	1	П	_	П	П	П	1	1	П	П
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 20: 05-D, running time excess ERT/ERT $_{
m best}$ on f_{120} , in italics is given the median final function value and the median number of

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	1.1e5	•	•		•		1		•		•		•		•		•		•		•		•	
		1e-05	00299		68e - 5/1e6		•		1		•		•			13e-4/1e6	•		•	•	•				•	•
		1e-04	35400	34e-4/1e6	130				1							420					16e-2/1e5					
	vers unif	1e-03	14500	1e3	99				1				68e-3/1e5			130	34e-3/2e4				100			30e-2/1e4		58e-4/7e6
	fferent pov	1e-02	0069	53	35				П				64			52	26	48e-2/1e4	•	91e-3/1e6	200	60e-2/1e5	11e-2/1e6	21		740
nension	120 Sum of different powers unif	1e-01	3740	2.8	16	15e-1/6e3	17e-1/2e3		1	45e-2/1e4	44e-2/7e5	10e-1/2e3	23	22e-1/9e3	90e-2/900	34	5.1	38	24e-1/5e3	340	44	22	550	5.9	13e-1/1e3	41
divided by dimension	120	1e+00	580	1	13	49	49	37e-1/900	1.1	9.4	260	ಬ	14	63	1.8	24	1.2	8.5	52	21	120	88	2.3	11	3.3	11
		1e+01	3.21	1.5	1.5	94	1.2	40	17	29	840	2.3	1.1	150	П	1.2	П	3.7	130	54	7		1.1	48	1.2	7
h this v		1e + 02	0.2	1.3	1.4	42	1.6	19	56	4.6	40	1.4	1.3	30	1.3	1.2	1.1	П	34	2.7	1.8	1.7	1.8	1.2	1.5	1.2
to reac		1e+03	0.2	1	П	п	Н	-	П	п	Н	-	1	п	Т		П	1		1.3	1		Н		Н	1
function evaluations to reach this value		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 21: 05-D, running time excess ERT/ERT_{best} on f_{121} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	1240		66				2.5							210					-			1.1	•	П
		1e-05	774		42				7							110								1.2		н
	hy	1e-04	525	-	34	-	41e-4/2e3		1.7				-			110	99e-5/2e4			-	-			1.2		П
	121 Sum of different powers Cauchy	1e-03	317	97e-4/1e6	26	38e-3/6e3	29		1.1			14e-3/2e3		13e-3/8e3		49	120			51e-4/1e6		27e-2/1e5		1.1		П
	fferent po	1e-02	107	1.3e4	25	790	18	50e-2/3e3	1	35e-3/1e4	34e-2/7e5	62	98e-3/1e5	150	10e-2/400	41	40	88e-3/1e4	86e-3/4e3	2200	83e-3/1e5	1.4e4	87e-3/1e6	1.3	11e-2/1e3	1.3
nension	ı of di	1e-01	54.6	150	12	45	22	370	1	59	1.9e5	5.9	2100	33	11	5.6	5.2	180	92	49	2300	3800	2e4	1.1	24	1.3
divided by dimension	21 Sun	1e+00	22.2	11	1.8	3.3	23	7.1	1.1	8.6	3100	2.9	6.6	9.6	3.5	1.1	3.7	11	15	4.5	380	200	53	1	1.9	1.9
divided	1	1e + 01	1.72	1	2.1	4.3	က	42	2.7	1.6	180	4.6	2.5	3.2	1.9	2.5	8.7	1.5	4.8	က	1.6	1.8	2.4	2.3	1.6	3.8
nis value		1e + 02	0.5	1.3	1.5	3.3	1.7	130	4.3	П	13	1.1	1.7	∞	1.7	1.3	1.7	П	3.9	4.4	1.5	1.5	1.6	1.5	1.5	1.2
_		1e + 03	0.2	1.1	П	1	1	П	П	П	1	1	П	1.2	П	1	П	Н	П	П	П	1.1	П	1	П	н
inction evaluations to reach		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 22: 05-D, running time excess ERT/ERT_{best} on f_{122} , in italics is given the median final function value and the median number of

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	22300	29e-6/1e6	2.6				1							3.6								6.7		-
		1e-05	10700	640	3.8				1							5.7								14		
		1e-04	8140	47	3.7				1				37e-3/1e5			5.8	76e-4/2e4							6		76e-5/8e6
	Gauss	1e-03	6020	20	3.6				1				230			7.1	61				17e-2/1e5	85e-3/1e5		3.3		1800
	er F7	1e-02	4320	4.9	3.5				П				96			6	8.9				330	160		3.3	•	120
limension	122 Schaffer F7 Gauss	1e-01	1840	2.8			30e-2/2e3			12e-1/1e4	10e-1/7e5	57e-2/2e3	33	17e-1/8e3		14	4.8	54e-2/1e4	18e-1/5e3	24e-2/1e6	120	52	46e-2/1e6	3.6	20e-1/1e3	34
divided by din		1e+00	345	2.9	4.9	34	2.3	36e-1/3e3	1	28	3200	2.9	10	110	18e-1/900	12	4.3	13	91	72	48	22	100	8.1	13	18
value div		1e+01	2.04	77		6.1		87	2.2	21	410	3.4	1.2	30	1.4	1.3	1.6	8.7	14	17	1	1.7	77	77	1.9	3.4
		1e + 02	0.2	1.1	1.3	1.5	1.3	12	1	П	3.7	1.1	П	2.1	1.2	1.3	1.3	П	1.9	3.1	1.1	1.1	1.1	1	1.1	-
to reac		1e + 03	0.2	1	1	1	П	1	1	1	П	1	1	1	1	1.1	1	1	П	П	1	1	1	1	1	1
function evaluations to reach this		$\Delta \mathrm{ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 23: 05-D, running time excess ERT/ERT $_{\rm best}$ on f_{123} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	4.43e5						1																	
	1e-05	1.34e5		٠				1		•		٠		•		٠		•		٠		•			
	1e-04	90300	•	•				1		•		•		•		•		•		•		•		•	
	1e-03	67100						-		•				•								•			
F7 unif	1e-02	45500		15e-2/1e6				1							18e-2/1e6	•				12e-1/1e5					16e-2/8e6
123 Schaffer F7 unif	1e-01	16300	25e-2/1e6	150	-			1	-	14e-1/7e5	26e-1/2e3	74e-2/1e5	35e-1/9e3		160	64e-2/2e4	16e-1/1e4		59e-2/1e6	87	18e-1/1e5	49e-2/1e6	10e-1/1e4		3300
123 Sc	1e+00	3210	2.1	8.7	26e-1/6e3	25e-1/2e3	39e-1/900	Н	21e-1/1e4	3e3	9.2	33	18	20e-1/800	19	2.4	21	37e-1/5e3	23	48	20	15	5.5	25e-1/1e3	28
	1e+01	2.24	1.1	1.8	80	2.7	46	8.1	27	420	2.5					1.3				1.7		П	6.1		3.1
	1e + 02	0.2	1.1	1.4	2.5	1.1	1.4	1.5	Н	09	1.3	1.2	1.1	1.1	1	1.3	1	1.3	1.2	П	1	1.2	1.1	1.2	П
	1e+03	0.5	1	1	1	П	1	1	1	1	1	1	1	1	1	1	-	1	1	1	-	1	1	-	1
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 24: 05-D, running time excess ERT/ERT_{best} on f_{124} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	19000	-	17				1				-			35	-			-	-			1.9		20e-6/7e6
	1e-05	9040		19				1.2							22								1	-	5400
	1e-04	5280		16				1.1							48								-1		460
ıchy	1e-03	4100		10		13e-3/2e3		1.1							17								П		69
124 Schaffer F7 Cauchy	1e-02	1790	15e-2/1e6	10		က		1.2							18	20e-2/2e4			12e-2/1e6	52e-2/1e5			П		41
124 Schaf	1e-01	208	3.3e4	15	63e-2/6e3	6.9	39e-1/3e3	1	38e-2/1e4	97e-2/7e5	27e-2/2e3	56e-2/1e5	47e-2/8e3	91e-2/800	40	870	55e-2/1e4	11e-1/4e3	3.5e4	0089	77e-2/1e5	46e-2/1e6	3.9	88e-2/1e3	30
•	1e+00	40.4	14	25	89	8.7	066	1.1	33	2e4	10	270	45	21	15	5.1	16	160	35	930					21
	1e+01	1.95	1.4	2.1	6.1	1.8	73	1.5	4.7	320	77	77	5.3	1.7	1.1	1.8	П	က	4.7	1.2	1.6	1.9	1.8	1.1	3.5
	1e + 02	0.2	1.1	1.3	2.1	1.1	2.2	1.5	1.1	6.5	1.1	1.1	1.3	1.2	1.1	1.3	н	1.1	1.4	1.1	Н	1.1	1.6	П	Н
	1e + 03	0.2	Т	1	Н	Т	1	1	-	Н	1	1	н	Н	Н	1	Н	Н	Н	Н	н	Н	П	1	П
	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 25: 05-D, running time excess ERT/ERT_{best} on f_{125} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

nsion	Wank-Kosenbroc	47700 48300 48600 49200 E	3.5 140 290 $21e-4/1e6$	6800 3.2 13 20 23 22 AMaLGaM IDEA [4]	av av	3200 65e-3/2e3 BayEDAcG [9]		00 1 1 1 1 BIPOP-CMA-ES [14]		1.2e6 $68e-3/7e5$. DASA [18]	98e-3/2e3	7.7	4.8	13e-2/900	5.9	4700 1.2 80e-4/2e4 MA-LS-Chain [19]	1.7	2.8	180 13e-3/1e6	28	2.2e4 7.9 14e-3/1e5 PSO_Bounds [7]	36e-3/1e6	5.8 28e-3/1e4 IPOI	13e-2/1e3	25 27 250 250 250 250 27 100 350 27 5 826 17NS (Campia) [10]
ded by dir	123 C71			37	81								26	35	24	35					27				
alue divi	16+01		1.3	1.1	7	1.2	37	1.1	П	36	П	1.1	3.9	1.3	1.2	1.3	П	3.9	2.5	1.2	1.2	1.1	1	1.3	-
ch this v	16+09	0.2	П	1	П	1	п	1	1	1	-	1	1	-	п	1	1	1	1	1	1	1	1	1	-
s to read	16+03	0.2	П	1	П	1	п	1	1	1	-	1	1	-	п	1	1	1	1	1	1	1	1	1	-
function evaluations to reach this value divided by dimension	Aftarget	$\rm ERT_{hest}/D$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 26: 05-D, running time excess ERT/ERT_{best} on f_{126} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	nan				•				•		٠													
		1e-05	nan																•				•			
		1e-04	nan	•	•		•		•		•		•		•		•		•		•		•		•	
	t unif	1e-03	nan		15e-3/1e6				67e-4/9e5		•					16e-3/1e6	27e-3/2e4						34e-3/1e6			15e-3/8e6
	126 Griewank-Rosenbrock unif	1e-02	1.75e5	21e-3/1e6	84	26e-2/6e3			2.1	12e-2/1e4	70e-3/7e5	21e-2/2e3	35e-3/1e5		23e-2/800	42	Н	25e-3/1e4	26e-2/5e3	27e-3/1e6	63e-3/1e5	84e-3/1e5	82	85e-3/1e4		089
nension	riewank-1	1e-01	0.2	4.2e4	3e4	4.5e5	27e-2/2e3	49e-2/1e3	1.3e4	1.6e5	2.4e6	1.4e5	4.7e4	25e-2/9e3	6.2e4	6.9e4	9400	1	3.5e5	2.4e5	2.1e5	3.6e5	1.2e5	4e4	19e-2/1e3	1.2e5
by din	126 C	1e+00	0.2	30	45	1600	56	460	160	410	3300	51	34	1700	42	38	35	П	1100	430	40	56	43	110	06	26
this value divided by dimension		1e + 01	0.2	1.2	Н	22	1.2	5.4	Н	П	2.9	1.1	1	2.6	1	Н	1.1	П	1.2	18	1.2	1.3	1.1	Н	1.3	П
is value		1e + 02	0.2	1	П	1	1	П	П	1	1	1	1	П	1	П	П	1	П	1	П	Н	П	1	П	н
each th		1e + 03	0.2	1	П	1	1	-	П	1	1	1	1	1	1	-	П	1	-	1	П	1	-	1	-	н
nction evaluations to reach		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 27: 05-D, running time excess ERT/ERT_{best} on f_{127} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO[5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	79100		56		٠		П		٠		٠		-	180	٠		٠		•		-		•	210
	1e-05	77900	٠	14		٠		1		٠					40			-							210
	1e-04	77000		10				1							41								18e-3/1e4		210
k Cauchy	1e-03	68300		5.1				1							17	32e-3/2e4			24e-3/1e6			33e-3/1e6	2.2		120
Griewank-Rosenbrock Cauchy	1e-02	25700	17e-3/1e6	2.2	53e-3/6e3	41e-3/2e3		1.2		86e-3/7e5	96e-3/2e3	49e-3/1e5	59e-3/8e3		3.9	7		62e-3/4e3	550	75e-3/1e5	78e-3/1e5	540	1	20e-2/1e3	14
Griewank-	1e-01	0.2	2.5e4	2700	5200	2200	38e-2/3e3	2100	5.5e4	2.8e6	1.5e4	6.3e4	1.1e4	24e-2/800	0086	8600	1	7200	3.6e4	1.5e5	1.3e5	1.2e5	3700	2.2e4	2.7e4
127	1e+00	0.5	46	40	18	35	1300	19								33		14	65	40	44	47	19	24	52
	1e+01	0.2	1.4	1.1	77	1.3	7.8	1	1.3	61	1.3	1.3	4.1	1.1	1.3	1.2	1	2.5	1.1	П	1.2	П	1	1.3	-
	1e + 02	0.2	1	Н	Н	1	1	1	П	1	1	1		Н	1	1	Н	П	1	П	Н	Н	1	П	1
	1e + 03	0.2	1	П	1	1	1	1	П	1	1	1	П	П	1	1	1	1	1	П	П	П	1	П	н
	$\Delta \mathrm{ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 28: 05-D, running time excess ERT/ERT $_{\rm best}$ on f_{128} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

			4230 ERT _{best} /D		18 AMaLGaM IDEA [4]	avg NEWUOA [23]	. BayEDAcG [9]			e-3/1e4 (1+1)-CMA-ES [2]				full NEWUOA [23]			1.3 MA-LS-Chain [19]						. Monte Carlo [3]	IPOI	SNOBFIT [17]	
			3440							19 28												81				
		1e-04	2980	1	25				5.5	14	65e-3/7e5	2.1	24		17e-1/900	12	1.5	49e-3/1e4		75	39	93	10e-3/1e6	4	18e-1/1e3	
	Jauss	1e-03	2490	1	30	31e-2/6e3			9.9	17	4200	2.5	28	16e-2/8e3	4.8	15	1.6	59		26	46	110	6e3	4.8	9	
	128 Gallagher G	1e-02	2100	1	35	42	60e-2/2e3		7.8	11	2400	2.9	33	57	1.7	16	1.5	9.5	19e-1/5e3	10	55	130	710	5.7	7.1	
mension	$128 G_8$	1e-01	1560	1	46	7.5	19		10	8.9	400	3.9	44	36	2.3	21	1.3	3.6	43	8.4	73	130	41	7.6	4.7	0
ided by din			850																							
value div		1e+01	22.2	1.7	1.2	11	1.3	88	2.5	9.1	230	2.8	1.4	15	1	8.2	1.1	4.6	12	7.5	1.9	2.5	1.8	8.9	2.4	,
,		1e + 02	0.2	1	1	1	1	1	1	1	1	1	1	П	1	1	1	-	1	1	1	1	1	1	1	
s to reac		1e+03	0.2	1	1	1	1	1	П	1	1	1	1	П	1	1	П	1	1	1	1	1	1	1	П	,
function evaluations to reach this		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	/ · C/ CLATE

Table 29: 05-D, running time excess ERT/ERT_{best} on f_{129} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]		MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	1.16e5	1	4.2		·		1.9		•		12			8.6	16e-3/2e4		٠		٠	٠	٠			240
	1e-05	1.02e5	1	3.3				2.5				6.7			5.8	3.6									56
	1e-04	72900	1	4.5				က				9.5			4.4	ಬ						13e-3/1e6			16
nif	1e-03	26900	1	4.8				3.9				12			4.7	6.5			60e-4/1e6	20e-1/1e5		260			8.9
129 Gallagher unif	$\widetilde{1e}$ -02	46300	1	4.2				4.8	77e-2/1e4	25e-2/7e5		6		21e-1/900	4.3	1.7	64e-2/1e4		23	15	20e-1/1e5	36	18e-1/1e4		7
129 G	1e-01	11900	1.7	12	30e-1/6e3			9.5	5.9	400	24e-1/2e3	11	55e-1/9e3	1	13	1.6	2.8	61e-1/5e3	6	34	34	5.7	3.8		8.9
•	1e+00	2140	2.7	19	20	62e-1/2e3	76e-1/900	7.1	5.7	140	14	36	58	1.7	25	-	4.9	16	8.9	130	130	1.3	9.2	29e-1/1e3	16
	1e+01	12.8	3.3	2.7	89	27	82	12	34	230	5.7	5.3	130	1.5	22	1.5	6.6	120	29	Н	2.8	2.8	42	5.3	2.5
	1e + 02	0.2	1	1	1	П	1	1	1	П	-	1	1	1	1	П	1	1	-	П	1	-	-	П	П
	1e+03	0.2	1	1	П	П	Н	П	П	Н	Н	П	1	Н		Н	1	П	1	Н	П	Н	1	1	1
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 30: 05-D, running time excess ERT/ERT_{best} on f_{130} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

THE COLOR OF WILLIAM STATE OF THE PARTY OF T		CITIO IIO		divided by		:					
					130 (Jallagher	ù				
Δ ftarget	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02		1e-04	1e-05	1e-07	Δ ftarget
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.2	0.2	10.9	162	209	1640	6560	6750	6780	6910	$\text{ERT}_{\text{best}}/ ext{D}$
ALPS	1	1	1.4	7.7	4.5	4.8		220	2100	12e-5/1e6	ALPS [15]
AMaLGaM IDEA	1	1	2.1	160	140	52		13	14	15	AMaLGaM İDEA [4]
avg NEWUOA	1	1	1.3	6.4	5.9	9	က	13	14e-3/6e3		avg NEWUOA [23]
$_{ m BayEDAcG}$	П	П	2.2	170	47	19e-1/2e3					BayEDAcG [9]
BFGS	1	1	34	110	20e-1/3e3			·			BFGS [22]
BIPOP-CMA-ES	1	1	1.9	57	55	20	5.1	22	20	ro	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	1	2.7	8.9	4.6	9	8.9	71e-4/1e4			(1+1)-CMA-ES [2]
DASA	1	1	150	550	1500	60e-3/7e5	•			-	DASA [18]
DEPSO	1	1	4.6	12	5.7	3.1	1	4.4	4.4	94e-2/2e3	DEPSO [11]
EDA-PSO	1	П	5	310	110	130	110				EDA-PSO [5]
full NEWUOA	1	1	33	7	က	က	2.4		14e-4/8e3		full NEWUOA [23]
GLOBAL	1	1	2.2	-1	Н	1	1.1				GLOBAL [20]
iAMaLGaM IDEA	1	1	1.5	130	55	23	6.4	7	7.5	7.5	iAMaLGaM IDEA [4]
MA-LS-Chain	1	1	2.4	27	17	8.2	2.1		2.5		MA-LS-Chain [19]
MCS (Neum)	1	1	4.1	21	29	40	35e-2/1e4				MCS (Neum) [16]
NEWUOA	П	П	2.3	11	10	19	62e-3/4e3				NEWUOA [23]
(1+1)-ES	1	1	3.3	5.8	3.1	9.9	7	92	380	57e-6/1e6	(1+1)-ES [1]
PSO	1	1	1.7	380	330	250	110	220	78e-2/1e5	•	PSO [6]
PSO_Bounds	1	1	3.1	570	480	84e-2/1e5					PSO_Bounds [7]
Monte Carlo	П	П	3.2	31	110	530		42e-4/1e6			Monte Carlo [3]
IPOP-SEP-CMA-ES	1	1	1	27	11	4.1		Н	1	1	IPOP-SEP-CMA-ES [21]
SNOBFIT	1	1	1.5	3.8	5.3	5.3 9.1	2.3	39e-2/1e3			SNOBFIT [17]
VNS (Garcia)	-	-	1.8	120	110	70		18	18	17	VNS (Garcia) [10]

References

- [1] Anne Auger. Benchmarking the (1+1)-ES with one-fifth success rule on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2453–2458.
- [2] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2467–2472.
- [3] Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2485–2490.
- [4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noisy black-box optimization benchmarking. In Rothlauf [24], pages 2351–2358.
- [5] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using an EDA and PSO hybrid. In Rothlauf [24], pages 2263–2268.
- [6] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using particle swarm optimization. In Rothlauf [24], pages 2269–2274.
- [7] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using PSO_Bounds. In Roth-lauf [24], pages 2275–2280.
- [8] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noisy functions. Technical Report 2009/21, Research Center PPE, 2009.
- [9] Marcus R. Gallagher. Black-box optimization benchmarking: results for the BayEDAcG algorithm on the noisy function testbed. In Rothlauf [24], pages 2383–2388.
- [10] Carlos García-Martínez and Manuel Lozano. A continuous variable neighbourhood search based on specialised EAs: application to the noisy BBObenchmark 2009 testbed. In Rothlauf [24], pages 2367–2374.
- [11] José García-Nieto, Enrique Alba, and Javier Apolloni. Particle swarm hybridized with differential evolution: black box optimization benchmarking for noisy functions. In Rothlauf [24], pages 2343–2350.
- [12] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [13] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noisy functions definitions. Technical Report RR-6869, INRIA, 2009.
- [14] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2397–2402.

- [15] Gregory S. Hornby. The Age-Layered Population Structure (ALPS) evolutionary algorithm, July 2009. Noisy testbed.
- [16] Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 988.
- [17] Waltraud Huyer and Arnold Neumaier. Benchmarking of SNOBFIT on the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 987.
- [18] Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization: noisy function testbed. In Rothlauf [24], pages 2375–2382.
- [19] Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm using local search chaining for black-box optimization benchmarking 2009 for noisy functions. In Rothlauf [24], pages 2359–2366.
- [20] László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-benchmarking of the GLOBAL method for the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 985.
- [21] Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2441–2446.
- [22] Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2415–2420.
- [23] Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2429–2434.
- [24] Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.