Practice Midterm Exam—Statistics 621

The midterm will be closed book exam, but you are allowed one formula sheet. Show your work for full or partial credit.

(1) Let X_1, \ldots, X_n be random variables, and let M denote the minimum,

$$M = \min\{X_1, \dots, X_n\}.$$

Show that if

$$\sum_{i=1}^{n} P(X_i > 0) > n - 1,$$

then P(M > 0) > 0.

(2) Let $\Omega = \{0, 1, 2, \ldots\}$, and let \mathcal{C} be all subsets of Ω that are finite or have a finite complement,

$$C = \{ A \subset \Omega : \#A < \infty \text{ or } \#(\Omega \setminus A) < \infty \}.$$

Is C a field (or algebra)? Is C a σ -field? Explain your answers.

(3) Let (Ω, \mathcal{B}, P) be a probability space and define

$$C = \{ B \in \mathcal{B} : P(B) = 0 \text{ or } 1 \}.$$

Is \mathcal{C} a σ -field? Explain your answer.

(4) Let $(\Omega, \mathcal{B}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, define X by

$$X(\omega) = (\omega^+)^2,$$

and let P be a probability measure on (Ω, \mathcal{B}) given by

$$P(A) = \int_{A} \frac{1}{2} e^{-|\omega|} d\omega, \qquad A \in \mathcal{B}.$$

- (a) Which of the following sets: $S_1 = (-1, 1), S_2 = [\pi, \infty),$ $S_3 = \{0\}$ and $S_4 = (-\infty, 7]$, lie in $\sigma(X)$?
- (b) Let F denote the distribution of X. Find $F(\{0\})$ and $F([1,\infty))$.
- (5) Let X_n , $n \ge 1$, be i.i.d. from a standard exponential distribution (so $P(X_n \le x) = 1 e^{-x}$, x > 0), and define $Y_n = X_n/\log n$. Find

$$\limsup_{n\to\infty} Y_n.$$

Hint: First compute $P(Y_n \ge c, \text{i.o.})$.

- (6) Let X_i , $i \ge 1$, be i.i.d. and uniformly distributed on (0,1).
 - (a) Find $P(\inf_{n>1} nX_n > 0)$.
 - (b) Find $P(\inf_{n>1} n^2 X_n > 0)$.
 - (c) Find $\liminf_{n\to\infty} n^2 X_n$. (This variable should be almost surely constant, possibly $+\infty$, by Kolmogorov's zero-one law.)
- (7) Let Z have a standard normal distribution with density $\phi(x) = e^{-x^2/2}/\sqrt{2\pi}$, and let h be a bounded differentiable function on $[0, \infty)$, vanishing at zero, h(0) = 0. Then

$$\int_0^\infty \left| h(1/x^2) \right| dx < \infty.$$

Use this fact and dominated convergence to find

$$\lim_{n\to\infty} nEh\left(1/(n^2Z^2)\right).$$

Hint: The answer will naturally depend on h and should not be zero in general.

(8) Let X and Y be i.i.d. with common cumulative distribution function F. Express the integral

$$\int F^2(t)e^{-t}\,dt$$

as E[h(X,Y)] for some specific function h.

(9) Suppose X > 0 almost surely. Find a function g so that

$$\int_0^\infty e^{-y} P(X < y) \, dy = E[g(X)].$$

(10) Show that $X_n \stackrel{p}{\to} 0$ if and only if

$$E\left[\frac{|X_n|}{1+|X_n|}\right] \to 0.$$

(11) For $n \geq 1$, let X_n have a Bernoulli distribution with success probability p_n , and let c_n , $n \geq 1$, be a sequence of constants increasing to $+\infty$. When is the collection $\{c_n X_n, n \geq 1\}$ uniformly integrable?