Cognome e Nome Matricola

Università degli Studi di Padova - Corso di Laurea in Ingegneria Biomedica

Prova di Meccanica per Bioingegneria del 30 gennaio 2024 - tempo a disposizione 2 ore

Analisi di un meccanismo articolato

[15 punti]

Il movente del meccanismo mostrato in figura è costituito dalla manovella AB, che comanda la biella BC, a sua volta collegata al telaio tramite il bilanciere CD. Completano il meccanismo la biella CE e il pattino E, che scorre orizzontalmente sul telaio. Si richiede:

- a) l'analisi cinematica di posizione (per il meccanismo assemblato come in figura)
- b) l'analisi cinematica di velocità (per la sole variabili elencate in tabella)
- c) l'analisi statica

Scrivere la soluzione ANALITICA dettagliata in bella copia in uno dei fogli a quadretti, Riportare qui sotto i risultati NUMERICI (con <u>una cifra decimale</u>) e il poligono dei vettori.

geometria			
a0	80	mm	
a1	40	mm	
a2	50	mm	
a3	70	mm	
a4	60	mm	
a6	100	mm	

Poligono di chiusura

analisi di posizione (8 punti)				
q	deg			
ф2		deg		
ф3		deg		
ф4		deg		
a5		mm		
analisi di velocità (5 punti)				
qdot	30.000	deg/s		
qdot φ2dot	30.000	•		
•	30.000	deg/s		
φ2dot φ3dot	30.000 si statica (2 p	deg/s deg/s deq/s		
φ2dot φ3dot		deg/s deg/s deq/s		

Questito teorico [6 punti]

Disegnare un meccanismo a ginocchiera (a proprio gradimento) e spiegarne il principio di funzionamento. Scrivere la soluzione di seguito.

Analisi di un meccanismo con il metodo di Assur

[9 punti]

La figura mostra un compressore radiale a tre cilindri, ciascuno sfasato di 120°. Il movente è rappresentato dall'albero rotante 2, mentre i cedenti corrispondono ai pistoni 6-7-8.

Si richiede di:

۵ ۱		1 .					
711	ACAGILIRA LINA	CCDIZZO OL	//donziondo	CONNIA	cinomaticho c	arandazza i	annmatricha
11	eseguire uno	SCHIZZO EV	nuenzianiuu	CODDIE	cinematiche e	granuezze	geometriche
-,						0	

2) calcolare i gradi di libertà tramite l'equazione di Grubler

2) effettuare la scomposizione in diadi

3) scrivere il codice (pseudo-Matlab) per l'analisi cinematica di posizione Scrivere la soluzione di seguito e nella pagina a fianco [2 punti]

[2 punti]

[2 punti]

[3 punti]

Compito del 2024_01

```
Gometria
    a0 = 80.0 \text{ mm}
    a1 = 40.0 \text{ mm}
    a2 = 50.0 \text{ mm}
   a3 = 70.0 \text{ mm}
    a4 = 60.0 \, \text{mm}
    a6 = 100.0 mm
Analisi Cinematica di POSIZIONE
Movente q = phi1 = 60^{\circ}
  phi2 = 165.4 ° = 360-194.6 = 180 -14.6 = -180+345.4
  phi3 = 222.5 ° = 360-137.5 = 180 +42.5 = -180+402.5
  phi4 = 61.5 ° = 360-298.5 = 180-118.5 = -180+241.5
B = (100.0, 34.6) mm
    C = (51.6, 47.3) \text{ mm}

E = (80.3, 100.0) \text{ mm}
Analisi Cinematica di VELOCITA'
phi1dot = 30.0 °/s
phi2dot = -8.6 °/s
phi3dot = 19.7 °/s
phi4dot = -35.5 °/s
 xBdot = -18.1 \text{ mm/s}
 vBdot = 10.5 \text{ mm/s}
Analisi STATICA
forceFB = 300.0 N
 alphaB = 20.0 deg
torqueMA = 7.7 Nm
```


Cognome e Nome Matricola

Università degli Studi di Padova - Corso di Laurea in Ingegneria Biomedica

Prova di Meccanica per Bioingegneria del 29 febbraio 2024 - tempo a disposizione 2 ore

Analisi di un meccanismo articolato

[15 punti]

Il movente del meccanismo mostrato in figura è costituito dal membro AB ed in particolare dal pattino A, che scorre lungo l'asse x. Il bilanciere CD è collegato al movente tramite la biella BC, mentre il pattino E, che scorre orizzontalmente, è collegato al movente tramite la biella BE. Sul meccanismo agiscono due forze applicate rispettivamente in A e in B, più la coppia MD applicata alla manovella.

Si richiede:

- a) l'analisi cinematica di posizione (per il meccanismo assemblato come in figura)
- b) l'analisi cinematica di velocità (per la sole variabili elencate in tabella)
- c) l'analisi statica

Scrivere la soluzione ANALITICA dettagliata in bella copia in uno dei fogli a quadretti, Riportare qui sotto i risultati NUMERICI (con <u>una cifra decimale</u>) e il poligono dei vettori.

geometria			
a0	a0 80		
a2	90	mm	
a3	50	mm	
a4	40	mm	
a5	35	mm	

forze esterne			
FA	60	N	
FB	120	N	

Poligono di chiusura

analisi di posizione (8 punti)				
q	120.0	mm		
ф3		deg		
ф4		deg		
ф5		deg		
a6		mm		
analisi	analisi di velocità (5 punti)			
qdot	15.0	mm/s		
ф3dot		deg/s		
ф4dot		deq/s		
analisi statica (2 punti)				
M _D		Nm		

Questito teorico [6 punti]

La figura mostra un meccanismo di spinta in condizioni di equilibrio statico.

1) Scrivere le equazioni di equilibrio del meccanismo necessarie e sufficienti a calcolare le reazioni vincolari a telaio con il metodo Newtoniano

2) Calcolare il valore della coppia Q in funzione della forza F Scrivere la soluzione di seguito.

Analisi di un meccanismo con il metodo di Assur

[9 punti]

La figura mostra un meccanismo utilizzato per test di usura di lunga durata

Assegnato come movente la manovella AB, si richiede di:

- 1) eseguire uno schizzo evidenziando coppie cinematiche e grandezze geometriche
- 2) calcolare i gradi di libertà tramite l'equazione di Grubler
- 2) effettuare la scomposizione in diadi
- 3) scrivere il codice (pseudo-Matlab) per l'analisi cinematica di posizione Scrivere la soluzione di seguito e nella pagina a fianco

[2 punti]

[2 punti]

[2 punti]

[3 punti]

Compito del 2024_02

```
geometria
   a0 = 80.0 \text{ mm}
   a2 = 90.0 \, \text{mm}
   a3 = 50.0 \text{ mm}
   a4 = 40.0 \text{ mm}
   a5 = 35.0 mm
Analisi Cinematica di POSIZIONE
q = 120 \text{ mm}
  phi3 = 65.5 ° = 360-294.5 = 180-114.5 = -180+245.5
  phi4 = 26.9 ° = 360-333.1 = 180-153.1 = -180+206.9
  phi5 = 152.1 ° = 360-207.9 = 180 -27.9 = -180+332.1
   a6 = 25.4 \, \text{mm}
    B = (56.4, 63.6) \text{ mm}
    C = (35.7, 18.1) \text{ mm}
Analisi Cinematica di VELOCITA'
qot = 15 \text{ mm/s/s}
phi3dot = -24.6 °/s
phi4dot = 14.3 °/s
phi5dot = 0.0 °/s
  Bdot = (15.0, 0.0) \, mm/s
  Cdot = (-4.5, 8.9) \text{ mm/s}
  Edot = (15.0, 0.0) mm/s
Analisi STATICA
forceFA = 60.0 N
forceFB = 120.0 N
torqueMD = 0.0 Nm
```

