ELET 系列 SPP/BLE 应用手册

深圳市易联易通科技有限公司

修改记录:

2015.01.12 V1.4

• 增加常见问题

2015.01.27 V1.5.1

- 在参考原理图中增加 LED 及 GPIO 控制,指示蓝牙的连接状态
- 加入 URATE 指令,修改串口波特率

2015.01.29 V1.5.2

● 修改参考原理图注释

技术支持:

QQ 群: 无线技术支持 250341321

Sales Tel: 13903026250 QQ:13990980 guoshenwang

论坛: http://www.smart-rd.com

1.1 典型电路及 PIN 脚定义

Pin.No	Name	Type	Description
1	UART_TX	О	UART 数据发送输出脚
2	UART_RX	I	UART 数据接收输入脚
3	UART_CTS	I/O	1. UART 清发送输入脚
			2. 通用数字输入、输出脚
4	UART_RTS	I/O	1. UART 请求发送输入脚
			2. 通用数字输入、输出脚
5	AIO1	I/O	BT_WAKEUP,数字输入脚,MCU(客户控制器)唤醒蓝牙模块
			0: 低电平(LOW)蓝牙模块进入休眠省电模式
			1: 高电平(HIGH)唤醒蓝牙模块
			备注:当MCU 要发送数据给蓝牙模块时,先把BT_WAKEUP 从低电平(LOW)
			拉到高电平(HIGH),再发送数据到 UART
6	AIO2	I/O	CMD/DATA_SWITCH,数字输入脚,切换数据模式和命令模式(蓝
			牙模块连接状态)
			0:低电平(LOW),数字模式 (Data transfer mode)
			1:高电平(HIGH),命令模式(Command mode)
			备注: 当蓝牙模块在连接状态, 此脚才有用; 当蓝牙模块在非连接状态, 都
			是在命令模式
7	AIO3	I/O	HOST_WAKEUP,数字输出脚,蓝牙模块唤醒 MCU(客户控制器)
			0:输出低电平(LOW),表示串口没有数据发送到 MCU
			1:输出高电平(HIGH),表示串口有数据要发送到 MCU
			备注: 当蓝牙模块有数据发送到 MCU,此脚会从低电平(LOW)变高电平
			(HIGH),唤醒 MCU 接收数据

8	AIO4	I/O	1. 通用数字输入、输出脚	
			2. PWM2: PWM 输出	
9	ICE_DATA	I/O	调试器的串行数据脚	
10	ICE CLK	I	调试器的串行时钟脚	
11	RESET#	I	外部复位输入,低有效,带内部上拉	
12	VCC	Power	3.3V 外部电源输入	
13	GND0	Ground	接地	
14	AIO5	I/O	1. 通用数字输入、输出脚	
			2. ADC4: ADC 模拟输入	
15	AIO6	I/O	1. 通用数字输入、输出脚	
			2. ADC3: ADC 模拟输入	
16	AIO7	I/O	1. SPI 从机选择脚	
			2. 通用数字输入、输出脚	
			3. I2S 左右声道时钟	
17	AIO8	O	1. SPI MOSI(主机输出,从机输入)	
			2. 通用数字输入、输出脚	
			3. I2S 数据输出	
18	AIO9	I	1. SPI MISO(主机输入,从机输出)	
			2. 通用数字输入、输出脚	
			3. I2S 数据输入	
19	AIO10	I/O	1. SPI 串行时钟脚	
			2. 通用数字输入、输出脚	
			3. I2S bit 时钟脚	
20	AIO11	I/O	1. 通用数字输入、输出脚	
			2. PWM3: PWM 输出脚	
			3. I2SMCLK: I2S 主时钟输出脚	
21	GND1	Ground	接地	
22	GND2	Ground	接地	
23	BIO0	I/O	1. 通用数字输入、输出脚	
	7701	7.10	2. ADC5: ADC 模拟输入	
24	BIO1	I/O	通用数字输入、输出脚	
25	BIO2	I/O	1. 通用数字输入、输出脚	
2.5	PIOC	T/C	2. I2C1 时钟脚	
26	BIO3	I/O	1. 通用数字输入、输出脚	
27	DIO 4	T/C	2. I2C1 数据输入、输出脚	
27	BIO4	I/O	1. 通用数字输入、输出脚	
			2. 1200 时钟脚	
			3. 典型电路中加入 LED 控制,可按客户要求定义状态,例如:	
			当蓝牙未连接时: LED 闪烁	
20	DIOS	T/O	当蓝牙连接后: LED 常亮	
28	BIO5	I/O	1. 通用数字输入、输出脚	
			2. I2CO 数据输入、输出脚	
			3. 典型电路中加入 BT_STATUS 电平输出,可按需求定义,例如:	
			当蓝牙未连接时:BT_STATUS 输出低电平	

	1	T	
			当蓝牙连接后:BT_STATUS 输出高电平
29	BIO6	I/O	1. 通用数字输入、输出脚
			2. 外部中断 1 输入脚
30	BIO7	I/O	1. 通用数字输入、输出脚
			2. ADC2: ADC 模拟输入
31	BIO8	I/O	1. 通用数字输入、输出脚
			2. ADC1: ADC 模拟输入
32	BIO9	I/O	1. 通用数字输入、输出脚
			2. ADC0: ADC 模拟输入
33	BIO10	I/O	1. 通用数字输入、输出脚
			2. PWM0: PWM 输出
34	BIO11	I/O	1. 通用数字输入、输出脚
			2. PWM1: PWM 输出

[※]当 GPIO 不使用时,直接 NC.

1.2 常用接法

1.3 AT 命令

(默认 UART 串口波特率: 115200)

1.3.1 命令格式

AT+指令采用基于ASCII

- 格式说明码的命令行,指令的格式如下:
 - < >: 表示必须包含的部分
 - []:可选的部分
- 命令消息

AT+<CMD>[op][para-1, para-2, para-3, para-4...]<CR> <LF>

- ▶ AT+: 命令消息前缀
- ➤ CMD: 指令字符串
- ▶ [op]: 指令操作,指定是参数设置或查询
 - (1)=:表示参数设置
 - (2)?: 查询
- ▶ [para-n]: 参数设置时的输入,如查询则不需要
- ▶ 〈CR〉<LF〉: 结束符,回车及换行,ASCII码0x0a和0x0d

(在上图的串口工具中,勾选"发送新行"即不用再输入回车及换行)

● 响应消息

+ $\langle RSP \rangle$: [para-1, para-2, para-3, para-4...] $\langle CR \rangle \langle LF \rangle \langle CR \rangle \langle LF \rangle$

▶ +: 响应消息前缀

▶ RSP: 响应字符串,包括:

(1) ok: 表示成功 (2) ERROR: 表示失败

▶ [para-n]:查询时返回参数或出错时错误码▶ ⟨CR⟩⟨LF⟩: ASCII码0x0d及ASCII码0x0a

1.3.2 AT 错误命令集

错误码	含义
0	设备硬件出问题
1	没有连接
2	操作不允许
3	操作参数无效
4	超时
5	内存失败
6	协议错误

1.3.3 AT 指令集

(1) AT 指令集

111 111 4 7/6	
指令	说明
MAC	查询本地BT MAC
Z	重启
VER	查询软件版本
HELP	命令帮助
READY	板子已准备可以接收AT命令
DNAME	设置本地设备名
PIN	设置默认配对码
URATE	修改串口UART波特率
HIDKEY	发送键盘码
DEBUG	打开蓝牙调试模式

(2) AT+VER

功能:读取软件版本.

格式:

查询:

AT+VER? <CR><LF>

返回:

+VER:REL2_3_05_08<CR><LF> 其中 REL2_3_05_08 是软件版本号 (3) AT+MAC

功能:查询 BT 的 MAC 地址.

格式:

查询:

AT+MAC? <CR><LF>

返回:

+MAC:01:02:03:04:05:06<CR><LF> 其中 01:02:03:04:05:06 是址值

(4) AT+H

功能:所有命令帮助.

格式:

查询:

AT+HELP? <CR><LF>

返回:

+HELP:<commands helps><CR><LF>

其中〈commands helps〉是所有命令帮助 S

(5) AT+Z

功能:软件重启设备.

格式:

AT+Z=1<CR><LF>

返回:无

(6) +READY

功能: 板子已准备可以接收 AT 命令, 上电或者重启后板子会从串口返回.

格式:

<1>直接上电重启

+READY: O<CR><LF>

<2>软件重启

+READY: 1<CR><LF>

(7) AT+DNAME

功能:设置本地设备名

格式:

AT+DNAME="test" <CR><LF>

成功返回:OK<CR><LF>

"test"为要修改的设备名,注意有双引号"".

复制命令执行时若报错+ERROR,请将电脑输入法切成英文,然后手动输入上述指令.

(8) AT+URATE

功能:修改串口 UART 波特率

格式:

AT+URATE=9600<CR><LF>

成功返回:OK<CR><LF>

修改串口波特率成功后,PC上的串口工具需要修改相关的端口波特率并重新连接,才能继续后续测试。

(9) AT+PIN

功能:设置默认配对码

格式:

AT+PIN="1234"<CR><LF> 成功返回:0K<CR><LF>

"1234"为默认配对码,注意有双引号"",其中配对码长度必须为4.

复制命令执行时若报错+ERROR,请将电脑输入法切成英文,然后手动输入上述指令.

(10) AT+DEBUG

功能:设置调试模式

格式:

AT+DEBUG=1

成功返回:OK<CR><LF>

Elet_bt. ini 中 com 配置成对应的串口号

双击 ubt_debug. exe,测试,上面会显示如下

```
Welcome to use elinketone bluetooth debug tool!(V2.1)
snoop debug,len:13--0
snoop debug,len:11--1
snoop debug,len:7--0
snoop debug,len:14--0
snoop debug,len:5--1
snoop debug,len:5--1
snoop debug,len:6--0
snoop debug,len:7--0
snoop debug,len:12--1
snoop debug,len:7--0
snoop debug,len:15--0
snoop debug,len:21--1
snoop debug,len:7--0
snoop debug,len:36--1
snoop debug,len:7--0
snoop debug,len:5--1
snoop debug,len:5--1
snoop debug,len:7--0
snoop debug,len:15--0
snoop debug,len:25--1
snoop debug,len:7--0
snoop debug,len:8--0
snoop debug,len:12--0
snoop debug,len:9--0
```

测试结束,关闭以上窗口,把产生的 elet_bt. log 文件给我们。

1.4 简单测试

1.4.1 AT 测试

接上 UART TX 及 UART RX 至串口转接板至 PC, 上电, 用 PC 上串口工具, 做好设置后, 在上面敲 AT+HELP?

1.4.2 HID 测试

1. 在 Android 手机上的设置中,搜索,可以看到 ELET 的键盘,连接

2. 进入 Android 中一个需要键盘输入的应用,如编写短信,然后在串口工具中依次敲: AT+HIDKEY=4

AT+HIDKEY=5

3. 在手机上会出现字符"ab"

1.4.3 BLE 测试

1. 在 iphone 或 ipad 上安装 lightblue, 在 appstore 上搜 lightblue. 在模组正常上电后,打开 lightblue, 可搜到 ELET 的 BLE 设备

3. 其中 0xffe1 为服务,0xffe2 为读的 Notify, 0xffe3 为写, 如果往 0xffe3 上写, 串口上会出现对应信息

1.5 固件升级

1. 升级方法:解压 ubt_download_v2. 3. 2. rar 文件, UART_TX/UART_RX通过转接板连接至 PC上的, 修改 elet_bt. ini 中对应的 com 号, 如为 8

[config]

com=8

- 2. 双击 elet_download. bat,会出现类似附件的显示 upgrade01. jpg,完全升级成功后为 upgrade02. jpg
- 3. 如果不成功,可重新上电,重复<2>
- 4. 升级过程中,最好不要掉电。

upgrade01. jp 成功后图示:

upgrade02. jp

1.6. 常见问题

1.6.1 蓝牙数据透传,出现丢包现象

解答:数据传输过程中,出现丢包现象,问题一般出现的串口(UART),需要加入串口流控(RTS,CTS)

1.6.2 无法通过串口发送 AT 命令

解答: CMD/DATA_SWITCH (PIN) 下拉到 GND, 进入 Command 模式