Cohen-Montgomery Duality and the Grothendieck Correspondence

Liangze Wong

University of Washington, Seattle

Shanghai University of Finance and Economics 2 Nov 2018

Cohen-Montgomery Duality

Grothendieck Correspondence

Let G and N be groups, $\varphi \colon G \to \mathbf{Aut}(N)$ a G-action on N.

Let G and N be groups, $\varphi \colon G \to \mathbf{Aut}(N)$ a G-action on N.

Can form $N \rtimes_{\varphi} G$

Let G and N be groups, $\varphi \colon G \to \mathbf{Aut}(N)$ a G-action on N.

Can form
$$N\rtimes_{\varphi}G=$$
 the set $N\times G$ with multiplication
$$(m,g)\cdot (n,h)=(m\,\varphi_g(n),gh).$$

Let G and N be groups, $\varphi \colon G \to \mathbf{Aut}(N)$ a G-action on N.

Can form $N\rtimes_{\varphi}G=$ the set $N\times G$ with multiplication $(m,g)\cdot (n,h)=(m\,\varphi_g(n),gh).$

Also have a group homomorphism $N \rtimes_{\varphi} G \to G$.

Let G and N be groups, $\varphi \colon G \to \mathbf{Aut}(N)$ a G-action on N.

Can form
$$N \rtimes_{\varphi} G =$$
 the set $N \times G$ with multiplication $(m,g) \cdot (n,h) = (m \varphi_{\sigma}(n),gh).$

Also have a group homomorphism $N \rtimes_{\varphi} G \to G$.

In fact, G and N don't have to be groups!

Given a small category C and a functor $\varphi \colon C^{op} \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \stackrel{g}{\rightarrow} d\right) \mapsto \left(N_d \stackrel{\varphi_g}{\longrightarrow} N_c\right)$

Given a small category C and a functor $\varphi \colon C^{op} \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \xrightarrow{g} d\right) \mapsto \left(N_d \xrightarrow{\varphi_g} N_c\right)$

Given a small category C and a functor $\varphi \colon C^{op} \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \xrightarrow{g} d\right) \mapsto \left(N_d \xrightarrow{\varphi_g} N_c\right)$

we can define a new category $N_{\bullet} \rtimes_{\varphi} C$:

• objects are (x, c) where $x \in N_c$

Given a small category C and a functor $\varphi \colon C^{op} \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \xrightarrow{g} d\right) \mapsto \left(N_d \xrightarrow{\varphi_g} N_c\right)$

- objects are (x, c) where $x \in N_c$
- arrows are $(x \xrightarrow{m} \varphi_g(y), c \xrightarrow{g} d)$

Given a small category C and a functor $\varphi \colon C^{op} \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \xrightarrow{g} d\right) \mapsto \left(N_d \xrightarrow{\varphi_g} N_c\right)$

- objects are (x, c) where $x \in N_c$
- arrows are $(x \xrightarrow{m} \varphi_g(y), c \xrightarrow{g} d)$
- with composition:

$$(m,g)\circ(n,h)=(m\,\varphi_g(n),gh).$$

Given a small category C and a functor $\varphi \colon C^{op} \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \xrightarrow{g} d\right) \mapsto \left(N_d \xrightarrow{\varphi_g} N_c\right)$

- objects are (x, c) where $x \in N_c$
- arrows are $(x \xrightarrow{m} \varphi_g(y), c \xrightarrow{g} d)$
- with composition:

$$(m,g)\circ(n,h)=(m\,\varphi_g(n),gh).$$

Given a small category C and a functor $\varphi \colon C^{op} \to \mathbf{Cat}$

$$c \mapsto N_c \in \mathbf{Cat}$$
 $\left(c \xrightarrow{g} d\right) \mapsto \left(N_d \xrightarrow{\varphi_g} N_c\right)$

we can define a new category $N_{\bullet} \rtimes_{\varphi} C$:

- objects are (x, c) where $x \in N_c$
- arrows are $(x \xrightarrow{m} \varphi_g(y), c \xrightarrow{g} d)$
- with composition:

$$(m,g)\circ (n,h)=(m\,\varphi_g(n),gh).$$

This has a functor $N_{\bullet} \rtimes_{\varphi} C \to C$.

Example (Semi-direct products)

Let
$$C = \cdot \bigcirc^G$$
 and $N = \cdot \bigcirc^N$.

Example (Semi-direct products)

Let
$$C = \cdot \bigcirc^G$$
 and $N = \cdot \bigcirc^N$.

Then actions $\varphi \colon G \to \operatorname{Aut}(N)$ are functors $\varphi \colon C^{op} \to \operatorname{Cat}$:

$$\cdot \mapsto \mathsf{N}. \qquad (c \xrightarrow{\mathsf{g}} \mathsf{d}) \mapsto (\mathsf{N}. \xrightarrow{\varphi_{\mathsf{g}}} \mathsf{N}.)$$

Example (Semi-direct products)

Let
$$C = \cdot \bigcirc^G$$
 and $N = \cdot \bigcirc^N$.

Then actions $\varphi \colon G \to \operatorname{Aut}(N)$ are functors $\varphi \colon C^{op} \to \operatorname{Cat}$:

$$\cdot \mapsto N$$
. $(c \xrightarrow{g} d) \mapsto (N \xrightarrow{\varphi_g} N \cdot)$

and $N_{\bullet} \rtimes_{\varphi} C$ is a category with one object \cdot and

$$\mathsf{Hom}(\cdot,\cdot)=\mathsf{N}\rtimes_{\varphi}\mathsf{G}.$$

The Grothendieck Correspondence

Theorem (Grothendieck, 1959)

Let C be a category. There is an adjunction

Given a functor $p: X \to C$ and $c \in C$, define the category $X \swarrow c$:

• objects are pairs (x,g) where $x \in X$ and $g: c \to px$

$$c \xrightarrow{g} px$$

Given a functor $p: X \to C$ and $c \in C$, define the category $X \swarrow c$:

• objects are pairs (x,g) where $x \in X$ and $g: c \to px$

$$c \xrightarrow{g} px$$

• maps $(x,g) \rightarrow (y,h)$ are maps $\varphi \colon x \rightarrow y$ s.t. $(p\varphi)g = h$

When $X = \cdot \stackrel{\mathcal{E}}{\longleftrightarrow}$ and $C = \cdot \stackrel{\mathcal{G}}{\longleftrightarrow}$, we get $X \swarrow \cdot$ where:

ullet objects are $g \in G$

$$c \xrightarrow{g} px \qquad \qquad c \xrightarrow{g} px \qquad \qquad$$

When $X = \cdot \stackrel{\mathcal{F}}{\longleftrightarrow}$ and $C = \cdot \stackrel{\mathcal{G}}{\longleftrightarrow}$, we get $X \swarrow \cdot$ where:

ullet objects are $g \in G$

• maps $g \to h$ are maps $e \in E$ s.t. $pe = hg^{-1}$

When $X = \cdot \stackrel{\mathcal{F}}{\longleftrightarrow}$ and $C = \cdot \stackrel{\mathcal{G}}{\longleftrightarrow}$, we get $X \swarrow \cdot$ where:

ullet objects are $g \in G$

When $X = \cdot \stackrel{\mathcal{F}}{\longleftrightarrow}$ and $C = \cdot \stackrel{\mathcal{G}}{\longleftrightarrow}$, we get $X \swarrow \cdot$ where:

- ullet objects are $g \in G$
- maps $g \to h$ are maps $e \in E$ s.t. $pe = hg^{-1}$

When $X = \cdot \stackrel{\mathcal{F}}{\longleftrightarrow}$ and $C = \cdot \stackrel{\mathcal{G}}{\longleftrightarrow}$, we get $X \swarrow \cdot$ where:

- ullet objects are $g \in G$
- maps $g \to h$ are maps $e \in E$ s.t. $pe = hg^{-1}$

When $X = \cdot \stackrel{\mathcal{E}}{\longleftrightarrow}$ and $C = \cdot \stackrel{\mathcal{G}}{\longleftrightarrow}$, we get $X \swarrow \cdot$ where:

- objects are $g \in G$
- maps $g \to h$ are maps $e \in E$ s.t. $pe = hg^{-1}$

Note: If $E = N \rtimes G$, then $E_{hg^{-1}} \cong N$.

Theorem (Grothendieck, 1959)

Let C be a category. There is an adjunction

Theorem (Grothendieck, 1959)

Let C be a category. There is an adjunction

$$\mathsf{Cat}_{/C} \qquad \qquad \bot \qquad \mathsf{Fun}(C^{op}, \mathsf{Cat})$$

Let
$$C = \cdot \subset G$$
 and $\varphi \colon C^{op} \to \mathbf{Cat}$ be induced by a G -action.

Theorem (Grothendieck, 1959)

Let C be a category. There is an adjunction

$$\mathsf{Cat}_{/C} \qquad \qquad \bot \qquad \mathsf{Fun}(C^{op}, \mathsf{Cat})$$

Let
$$C = \cdot \longleftrightarrow$$
 and $\varphi \colon C^{op} \to \mathbf{Cat}$ be induced by a G -action.

$$\cdot \stackrel{\mathsf{N}}{\longleftrightarrow} \quad \stackrel{\mathsf{N}}{\longleftrightarrow} \quad \cdot \stackrel{\mathsf{N}}{\longleftrightarrow} {}^{\varphi} G$$

Theorem (Grothendieck, 1959)

Let C be a category. There is an adjunction

$$\mathsf{Cat}_{/C} \qquad \qquad \bot \qquad \mathsf{Fun}(C^{op},\mathsf{Cat})$$

Let
$$C = \cdot \longleftrightarrow$$
 and $\varphi \colon C^{op} \to \mathbf{Cat}$ be induced by a G -action.

The Skew Group Ring $- \times G$

G a finite group, *A* a *k*-algebra, $\varphi \colon G \to \mathbf{Aut}(A)$ a group action.

G a finite group, *A* a *k*-algebra, $\varphi \colon G \to \mathbf{Aut}(A)$ a group action.

Can form $A \times G$

G a finite group, *A* a *k*-algebra, $\varphi \colon G \to \mathbf{Aut}(A)$ a group action.

Can form
$$A \rtimes G = \bigoplus_{g \in G} A$$
 with multiplication
$$(a,g) \cdot (b,h) = (a \varphi_g(b), gh).$$

G a finite group, *A* a *k*-algebra, $\varphi \colon G \to \mathbf{Aut}(A)$ a group action.

Can form $A \rtimes G = \bigoplus_{g \in G} A$ with multiplication

$$(a,g)\cdot(b,h)=(a\,\varphi_g(b),gh).$$

Don't have $A \rtimes G \to kG$, but we do have a G-grading on $A \rtimes G$.

G a finite group, *A* a *k*-algebra, $\varphi \colon G \to \mathbf{Aut}(A)$ a group action.

Can form $A \rtimes G = \bigoplus_{g \in G} A$ with multiplication

$$(a,g)\cdot(b,h)=(a\,\varphi_g(b),gh).$$

Don't have $A \rtimes G \to kG$, but we do have a G-grading on $A \rtimes G$.

Maps of sets $p: X \to G$ are the same as G-gradings on X:

$$X = \coprod_{g \in G} X_g$$
 $X_g := p^{-1}(g)$

Cohen-Montgomery Duality

Theorem (Cohen & Montgomery, 1984)

Let G be a finite group, |G| = n. There are functors

$$\mathbf{Alg}_G \xrightarrow[-\rtimes G]{-\#kG^*} G$$
- \mathbf{Alg}

Let $E = \bigoplus_{g \in G} E_g$ be a G-graded ring.

Let $E = \bigoplus_{g \in G} E_g$ be a G-graded ring.

We can form a k-linear category whose objects are $g \in G$ and

$$\operatorname{\mathsf{Hom}}(g,h) := E_{hg^{-1}} \qquad \qquad g \xrightarrow{E_{hg^{-1}}} h$$

Let $E = \bigoplus_{g \in G} E_g$ be a G-graded ring.

We can form a k-linear category whose objects are $g \in G$ and

$$\operatorname{\mathsf{Hom}}(g,h) := E_{hg^{-1}} \qquad \qquad g \xrightarrow{E_{hg^{-1}}} h$$

If G is finite, we can combine these into a single algebra:

$$E\#kG^*:=\left(E_{hg^{-1}}\right)_{g,h\in G}$$

Let $E = \bigoplus_{g \in G} E_g$ be a G-graded ring.

We can form a k-linear category whose objects are $g \in G$ and

$$\operatorname{\mathsf{Hom}}(g,h) := E_{hg^{-1}} \qquad \qquad g \xrightarrow{E_{hg^{-1}}} h$$

If G is finite, we can combine these into a single algebra:

$$E\#kG^*:=\left(E_{hg^{-1}}\right)_{g,h\in G}$$

If
$$E = A \rtimes G$$
, then $E_{hg^{-1}} = A$, so $E \# kG^* = M_n(A)$.

Theorem (Cohen & Montgomery, 1984)

Let G be a finite group, |G| = n. There are functors

$$\mathbf{Alg}_G \xrightarrow[-\rtimes G]{-\#kG^*} G$$
- \mathbf{Alg}

Theorem (Cohen & Montgomery, 1984)

Let G be a finite group, |G| = n. There are functors

$$\mathbf{Alg}_G \xrightarrow[- imes G]{-\#kG^*} G$$
- \mathbf{Alg}

Theorem (Cohen & Montgomery, 1984)

Let G be a finite group, |G| = n. There are functors

$$\mathbf{Alg}_G \xrightarrow[- imes G]{-\#kG^*} G$$
- \mathbf{Alg}

$$\cdot \overset{\mathsf{A}}{\longmapsto} \quad \cdot \overset{\mathsf{A}}{\longmapsto} \quad \cdot \overset{\mathsf{A}}{\longmapsto} G$$

Theorem (Cohen & Montgomery, 1984)

Let G be a finite group, |G| = n. There are functors

$$\mathsf{Alg}_G \xrightarrow[-\times G]{-\#kG^*} G$$
-Alg

$$\cdot \overset{A}{\longleftrightarrow} \overset{-\rtimes G}{\longleftrightarrow} \cdot \overset{A\rtimes G}{\longleftrightarrow} \overset{-\#kG^*}{\longleftrightarrow} \overset{g \overset{A}{\longleftrightarrow} g''}{\swarrow}$$

G-graded algebras

 \leftrightarrow

algebras with G-action

G-graded algebras \leftrightarrow algebras with G-action kG-comodule algebras \leftrightarrow kG-module algebras

G-graded algebras	\leftrightarrow	algebras with <i>G</i> -action
kG-comodule algebras	\leftrightarrow	kG-module algebras
H-comodule algebras	\leftrightarrow	H-module algebras

G-graded algebras	\leftrightarrow	algebras with G -action
kG-comodule algebras	\leftrightarrow	kG-module algebras
H-comodule algebras	\leftrightarrow	H-module algebras

1984 Cohen-Montgomery H = kG, G finite 1984 van den Bergh H Hopf algebra, finite 1985 Blattner-Montgomery H Hopf algebra 1999 Nikshych H weak Hopf algebra, finite

G-graded algebras

 \leftrightarrow

algebras with G-action

G-graded algebras \leftrightarrow algebras with G-action G-graded categories \leftrightarrow categories with G-action

G-graded algebras \leftrightarrow algebras with G-action G-graded categories \leftrightarrow categories with G-action

1984 Cohen-MontgomeryG finite group, A has 1 object2006 Cibils-MarcosG group, A has ∞ objects2008 LowenG category, A has ∞ objects

	Н	Hopf	dim	ObH	Ob <i>A</i>	<i>k</i> -linear
×	G	✓	∞	1	1	
'59 Groth	G	(√)	∞	∞	∞	
'84 Coh-Mon	kG	✓	finite	1	1	✓

	Н	Hopf	dim	ObH	Ob <i>A</i>	k-linear
×	G	✓	∞	1	1	
'59 Groth	G	(✓)	∞	∞	∞	
'84 Coh-Mon	kG	\checkmark	finite	1	1	\checkmark
'84 vdBer	Н	✓	finite	1	1	✓
'85 Bla-Mon	Н	\checkmark	∞	1	1	\checkmark
'99 Niksh	Н	✓	finite	n	1	✓
'06 Cib-Mar	G	✓	∞	1	∞	✓
'08 Lowen	G	(√)	∞	∞	∞	✓

Н	Hopf	dim	Ob H	Ob <i>A</i>	<i>k</i> -linear
G	✓	∞	1	1	
G	(✓)	∞	∞	∞	
kG	\checkmark	finite	1	1	\checkmark
Н	✓	finite	1	1	✓
Н	✓	∞	1	1	✓
Н	\checkmark	finite	n	1	\checkmark
G	✓	∞	1	∞	✓
G	(✓)	∞	∞	∞	✓
Н	(√)	∞	∞	∞	✓
	G G kG H H G G	G	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Want to combine the two generalizations of semi-direct products:

- from groups to categories (one object to many objects)
- from groups to algebras (linearizing)

Want to combine the two generalizations of semi-direct products:

- from groups to categories (one object to many objects)
- from groups to algebras (linearizing)

More generally, we can work in a monoidal category $(\mathcal{V}, \otimes, \mathbf{1})$ and ask for 'many-object algebras' in \mathcal{V} .

The 'category' A being (co)acted on should be:

Definition (Aguiar, 1997)

A V-internal category is $A = (A_0, A_1)$ where:

- ullet A_0 is a coalgebra in ${\cal V}$, with a bi-coaction on A_1
- A_1 is an algebra in (A_0, A_0) -Bicomod

$$A_0 \stackrel{u}{\rightarrow} A_1 \qquad A_1 \boxtimes_{A_0} A_1 \stackrel{m}{\rightarrow} A_1$$

The 'category' A being (co)acted on should be:

Definition (Aguiar, 1997)

A V-internal category is $A = (A_0, A_1)$ where:

- ullet A_0 is a coalgebra in ${\cal V}$, with a bi-coaction on A_1
- A_1 is an algebra in (A_0, A_0) -Bicomod

$$A_0 \xrightarrow{u} A_1 \qquad \quad A_1 \boxtimes_{A_0} A_1 \xrightarrow{m} A_1$$

Any k-algebra A gives rise to a **Vect** $_k$ -internal category (k, A).

The 'category' A being (co)acted on should be:

Definition (Aguiar, 1997)

A V-internal category is $A = (A_0, A_1)$ where:

- ullet A_0 is a coalgebra in ${\cal V}$, with a bi-coaction on A_1
- A_1 is an algebra in (A_0, A_0) -Bicomod

$$A_0 \xrightarrow{u} A_1$$
 $A_1 \boxtimes_{A_0} A_1 \xrightarrow{m} A_1$

Any k-algebra A gives rise to a \mathbf{Vect}_k -internal category (k, A). But also, path 'algebras' (kV, kP) of infinite quivers.

The 'category' A being (co)acted on should be:

Definition (Aguiar, 1997)

A V-internal category is $A = (A_0, A_1)$ where:

- A_0 is a coalgebra in \mathcal{V} , with a bi-coaction on A_1
- A_1 is an algebra in (A_0, A_0) -**Bicomod**

$$A_0 \xrightarrow{u} A_1$$
 $A_1 \boxtimes_{A_0} A_1 \xrightarrow{m} A_1$

Any k-algebra A gives rise to a \mathbf{Vect}_k -internal category (k, A). But also, path 'algebras' (kV, kP) of infinite quivers.

Any small category $C = (C_0, C_1)$ is a **Set**-internal category.

The 'category' A being (co)acted on should be:

Definition (Aguiar, 1997)

A V-internal category is $A = (A_0, A_1)$ where:

- A_0 is a coalgebra in \mathcal{V} , with a bi-coaction on A_1
- A_1 is an algebra in (A_0, A_0) -**Bicomod**

$$A_0 \stackrel{u}{\rightarrow} A_1 \qquad A_1 \boxtimes_{A_0} A_1 \stackrel{m}{\rightarrow} A_1$$

Any k-algebra A gives rise to a \mathbf{Vect}_k -internal category (k, A). But also, path 'algebras' (kV, kP) of infinite quivers.

Any small category $C = (C_0, C_1)$ is a **Set**-internal category. Linearizing, $kC = (kC_0, kC_1)$ is a **Vect**_k-internal category.

The acting 'category' H should be:

Definition (Day & Street, 2003)

A V-quantum category is a category $H = (H_0, H_1)$ where:

- H_0, H_1 are coalgebras in \mathcal{V} , with coalg maps $H_1 \xrightarrow{s,t} H_0$
- H_1 is an algebra in (H_0, H_0) -Bicomod

The acting 'category' *H* should be:

Definition (Day & Street, 2003)

A V-quantum category is a category $H = (H_0, H_1)$ where:

- H_0, H_1 are coalgebras in \mathcal{V} , with coalg maps $H_1 \xrightarrow{s,t} H_0$
- H_1 is an algebra in (H_0, H_0) -Bicomod

This is a V-quantum groupoid if there is an 'antipode'.

The acting 'category' *H* should be:

Definition (Day & Street, 2003)

A V-quantum category is a category $H = (H_0, H_1)$ where:

- H_0, H_1 are coalgebras in \mathcal{V} , with coalg maps $H_1 \xrightarrow{s,t} H_0$
- H_1 is an algebra in (H_0, H_0) -Bicomod

This is a V-quantum groupoid if there is an 'antipode'.

Any k-bialgebra H gives rise to a \mathbf{Vect}_k -quantum category (k, H).

The acting 'category' *H* should be:

Definition (Day & Street, 2003)

A V-quantum category is a category $H = (H_0, H_1)$ where:

- H_0, H_1 are coalgebras in \mathcal{V} , with coalg maps $H_1 \xrightarrow{s,t} H_0$
- H_1 is an algebra in (H_0, H_0) -Bicomod

This is a V-quantum groupoid if there is an 'antipode'.

Any k-bialgebra H gives rise to a \mathbf{Vect}_k -quantum category (k, H). This is a \mathbf{Vect}_k -quantum groupoid if H is a Hopf algebra.

The acting 'category' H should be:

Definition (Day & Street, 2003)

A V-quantum category is a category $H = (H_0, H_1)$ where:

- H_0, H_1 are coalgebras in \mathcal{V} , with coalg maps $H_1 \xrightarrow{s,t} H_0$
- H_1 is an algebra in (H_0, H_0) -Bicomod

This is a V-quantum groupoid if there is an 'antipode'.

Any k-bialgebra H gives rise to a \mathbf{Vect}_k -quantum category (k, H). This is a \mathbf{Vect}_k -quantum groupoid if H is a Hopf algebra.

Any small category $C = (C_0, C_1)$ is a **Set**-quantum category.

The acting 'category' H should be:

Definition (Day & Street, 2003)

A V-quantum category is a category $H = (H_0, H_1)$ where:

- H_0, H_1 are coalgebras in \mathcal{V} , with coalg maps $H_1 \xrightarrow{s,t} H_0$
- H_1 is an algebra in (H_0, H_0) -Bicomod

This is a V-quantum groupoid if there is an 'antipode'.

Any k-bialgebra H gives rise to a \mathbf{Vect}_k -quantum category (k, H). This is a \mathbf{Vect}_k -quantum groupoid if H is a Hopf algebra.

Any small category $C = (C_0, C_1)$ is a **Set**-quantum category. This is a **Set**-quantum groupoid if C is a groupoid.

Theorem (W., in progress)

Let $\mathcal V$ be a monoidal category with equalizers preserved by \otimes . For $H=(H_0,H_1)$ a $\mathcal V$ -quantum category, there is an adjunction

which becomes an equivalence if H is a quantum groupoid.

Theorem (W., in progress)

Let $\mathcal V$ be a monoidal category with equalizers preserved by \otimes . For $H=(H_0,H_1)$ a $\mathcal V$ -quantum category, there is an adjunction

which becomes an equivalence if H is a quantum groupoid.

- Cohen-Montgomery Duality: $V = \mathbf{Vect}_k$ and $H_0, A_0 = k$
- Grothendieck Correspondence: $V = \mathbf{Set}$

Thank you!

Questions/comments?