

UNIVERSIDAD FIDELITAS

Escuela de Ingeniería Eléctrica

Control automático

Tarea#8

Realizado por:

Fabricio Gutiérrez Arias.

Profesor:

Erick Salas

II cuatrimestre 2018

Fecha: 10 de julio del 2018

Parte en matlab:

>> A=tf([0 0 1],[1 10 24])

A =

1

Continuous-time transfer function.

>> W=feedback(A,1)

W =

1

$$s^2 + 10 s + 25$$

Continuous-time transfer function.

>> step(W)

>> E=feedback(1,W)

$$s^2 + 10 s + 25$$

$$s^2 + 10 s + 26$$

Continuous-time transfer function.

>> step(E)

P =

s + 1.25

s + 1

Continuous-time transfer function.

>> S=series(A,P)

S=

$$s + 1.25$$

$$s^3 + 11 s^2 + 34 s + 24$$

Continuous-time transfer function.

>> F=feedback(S,1)

F =

$$s + 1.25$$

$$s^3 + 11 s^2 + 35 s + 25.25$$

Continuous-time transfer function.

>> step(F)

>> M=feedback(1,S)

M =

$$s^3 + 11 s^2 + 34 s + 24$$

Continuous-time transfer function.

>> step(M)

>> step(F,W,10)

Parte hecha a mano:

