Page 344 - Int Suites

95 Soit (I_n) et (J_n) les suites définies sur \mathbb{N}^* par :

$$I_n = \int_0^1 \frac{1}{1+x^n} dx$$
 et $J_n = \int_0^1 \frac{x^n}{1+x^n} dx$.

- **1. a.** Justifier que, pour tout réel x de [0; 1], $\frac{1}{1+x^n} \le 1$.
- **b.** Montrer que la suite (I_n) est majorée par 1.
- **2. a.** Montrer que, pour n dans \mathbb{N}^* , $0 \le J_n \le \frac{1}{n+1}$.
- **b.** En déduire la limite de la suite (J_n) .
- **3. a.** Calculer, pour tout n de \mathbb{N}^* , $I_n + J_n$.
- **b.** Déterminer la limite de la suite (I_n) .

Page 344 - Int part

Pour chacun des exercices 81 à 84, calculer les intégrales en utilisant la méthode d'intégration par parties.

- **81 Capacité 6,** p. 335
- 1. $I = \int_{-2}^{3} (x+1)e^{x} dx$ 2. $J = \int_{0}^{1} xe^{2x} dx$
- **82** 1. $I = \int_{1}^{e} \ln(x) dx$ 2. $J = \int_{1}^{e} x^{2} \ln(x) dx$
- **83** 1. $I = \int_{0}^{\frac{\pi}{2}} x \cos(x) dx$ 2. $J = \int_{0}^{\pi} (x+1) \sin(x) dx$
- **84** 1. $I = \int_{0}^{\pi} t \sin(2t) dt$ 2. $J = \int_{0}^{2} (3t + 1)e^{-t} dt$

Page 345 - Aire

104 Soit f et g les fonctions définies sur \mathbb{R} par :

$$f(x) = 2x^2 - 3x + 1$$
 et $g(x) = x^2 + 3x - 4$.

- 1. a. À l'aide d'une calculatrice, conjecturer la position relative des courbes représentatives de ces deux fonctions.
- **b.** Démontrer cette conjecture.
- 2. En déduire l'aire, en unités d'aire, du domaine délimité par ces deux courbes et les droites d'équations x = 2 et x = 4.

Page 346 - Fonc Int Part

109 Soit g la fonction définie sur l'intervalle [1; $+\infty$ [par :

$$g(x) = \int_1^x \frac{\ln(t)}{t^2} dt.$$

- **1.a.** Déterminer le sens de variation de la fonction g sur [1; $+\infty$ [.
- **b.** Donner une interprétation géométrique du réel g(3).
- 2. a. À l'aide d'une intégration par parties, montrer que :

$$g(x) = 1 - \frac{\ln(x) + 1}{x}.$$

b. Déterminer la limite de g en $+\infty$

Page 347 - Problème

121 😑 CALCULER 📝 REPRÉSENTER

On considère la fonction f_n définie sur \mathbb{R} par :

$$f_n(x) = (x+2)e^{-nx}$$

où n est un entier naturel non nul. On note €, sa courbe représentative dans un repère orthonormé d'unité graphique 4 cm.

- a. Déterminer la limite de la fonction f₁ en -∞.
- b. Déterminer la limite de f₁ en +∞ puis donner une interprétation graphique de ce résultat.
- Étudier les variations de la fonction f₁ sur ℝ puis construire son tableau de variations.
- Déterminer le signe de la fonction f₁ sur ℝ.
- Construire la courbe €₁.
- 5. On note \mathcal{G}_1 la surface délimitée par \mathcal{C}_1 , l'axe des abscisses et les droites d'équations x = 0 et x = 1.

Calculer, à l'aide d'une intégration par parties, une valeur exacte puis arrondie à 10^{-3} de l'aire en cm² du domaine \mathcal{S}_1 .

6. Soit (I_n) la suite définie sur \mathbb{N}^* par : $I_n = \int_0^1 f_n(x) dx.$

$$I_n = \int_0^1 f_n(x) dx.$$

a. Démontrer que, pour tout n de \mathbb{N}^* ,

$$I_{n+1} - I_n = \int_0^1 (x+2)e^{-nx}(e^{-x}-1)dx$$
.

- **b.** En déduire le sens de variation de la suite (I_n) .
- c. Démontrer que, pour tout $n \in \mathbb{N}^*$, $0 \le I_n \le \frac{3}{n}(1 e^{-n})$.
- d. En déduire que la suite (I_n) converge.

Page 348 - Aire

Estimer une intégrale

122 = (v) 15 min Capacité 1, p. 331

QCM Choisir la ou les bonnes réponses.

On considère la fonction f définie sur [-2; 5] et dont la courbe

On note $I = \int_{-2}^{0} f(x) dx$, $J = \int_{0}^{3} f(x) dx$ et $K = \int_{3}^{5} f(x) dx$.

- 1. L'intégrale $\int_{-2}^{0} f(x) dx$ est :
- a.1>0
- **b**. 1 < 0
- c = 0
- 2. La meilleure estimation de l est :
- a. I≈4
- **b.** I ≈ 5
- c. I≈6
- 3. L'intégrale J est comprise entre :
- a. 1 < J < 3
- **b.** 3 < J < 54. L'intégrale de 0 à 5 de la fonction f est égale à :
 - c.5 < J < 7

- a. I + J
- **b.** J + K