

Autonomous Trolley Localization

Amir Darwesh, Jacob Hartzer, and Keith Sponsler

STAT 654: Statistical Computing with R and Python - 22 April 2020

Outline

- Introduction
- Theory
- Data Collection
- Data Analysis
- Conclusions

Introduction

System

- Drive-by-wire 6 passenger Golf Cart
- Sensors for project include:
 - Vectornav Navigation System (VN300)
 - Raw GPS 5 Hz

 Raw Accelerometer/Gyro (IMU) 50 Hz

 Fused Solution (INS) (50 Hz)
 - o PacMOD drive-by-wire module
 - Steering Wheel Angle 30 Hz
 - Wheel Velocity 30 Hz

Introduction

Issues with accelerometers and gyros

- Bias
- Scale Factor
- Noise
- Bias instabilities
- Temperature Effects
- Random Walk Error

Figure 2: Common IMU Errors

Source: Novatel

Introduction

Problem Statement

- Current localization methods are limited to the INS solution uncertainty (0.2-1.5 m)
- INS solution accuracy is very susceptible to atmospheric conditions, trees, buildings, and overpasses.
- **INS** solutions can "jump", particularly while at rest, and can cause improper control actions.

Objective

Combine Vectornav measurements with a physics based vehicle model to avoid these susceptibilities.

Methodology

Approach

- Two different approaches are taken
 - 1st Approach:

Combine **raw** IMU, Gyro, GPS measurements with the vehicle model based on PacMOD measurements

2nd Approach
 Combine manufacturer fused (IMU, GPS)

 INS measurements with the vehicle model based on PacMOD measurements

Measurement Update Cycle

Data Collection

- Used Robot Operating System
- Standardized Messages for sensors
- Manages data messages between sources
- Can record and play back messages in real time

Theory - Kinematic "Bicycle" Model

- Simplifies full vehicle
- Ignores slip and dynamics
- Depends only on velocity and steering angle

$$\dot{x}_r = v\cos\theta$$

$$\dot{y}_r = v \sin \theta$$

$$\dot{\theta} = \frac{v}{L} \tan \delta$$

Theory - Kalman Filter

- Also known as Linear Quadratic Estimation (LQE)
- A two-step, recursive, real-time algorithm
- Equals the MAP in linear systems
- Assumes errors are Gaussian

State:

Prediction Step:

Measurement Step:

$$egin{aligned} x \ position \ p_x \ y \ position \ p_y \ heading \ heading \ x \ velocity \ v_x \ y \ velocity \ v_y \ heading \ rate \ \dot{ heta} \end{aligned}$$

$$egin{aligned} \hat{oldsymbol{x}}_{k|k-1} &= oldsymbol{F}_k \hat{oldsymbol{x}}_{k-1|k-1} + oldsymbol{B}_k oldsymbol{u}_k \ oldsymbol{P}_{k_k-1} &= oldsymbol{F}_k oldsymbol{P}_{k-1|k-1} oldsymbol{F}_k^T + oldsymbol{Q}_k \end{aligned}$$

$$egin{aligned} ilde{oldsymbol{y}}_k &= oldsymbol{z}_k - oldsymbol{H}_k \hat{oldsymbol{x}}_{k|k-1} \ oldsymbol{S}_k &= oldsymbol{H}_k oldsymbol{P}_{k|k-1} oldsymbol{H}_k^T oldsymbol{F}_k^{-1} \ \hat{oldsymbol{x}}_{k|k} &= oldsymbol{\hat{x}}_{k|k-1} + oldsymbol{K}_k ilde{oldsymbol{y}}_k \ \hat{oldsymbol{x}}_{k|k} &= (oldsymbol{I} - oldsymbol{K}_k oldsymbol{H}_k) oldsymbol{P}_{k|k-1} \end{aligned}$$

Theory - Extended Kalman Filter

- Nonlinear systems can be linearized about current state
- More computationally expensive
- Extends to most dynamic systems

Prediction Step:

$$egin{aligned} \hat{m{x}}_{k|k-1} &= m{f}(\hat{m{x}}_{k-1|k-1}, m{u}_k) \ m{P}_{k_k-1} &= m{F}_k m{P}_{k-1|k-1} m{F}_k^T + m{Q}_k \ m{F}_k &= rac{\partial m{f}}{\partial m{x}}|_{\hat{m{x}}_{k-1|k-1}, m{u}_k} \ m{H}_k &= rac{\partial m{h}}{\partial m{x}}|_{\hat{m{x}}_{k-1|k-1}} \end{aligned}$$

Measurement Step:

$$egin{aligned} ilde{oldsymbol{y}}_k &= oldsymbol{z}_k - oldsymbol{h}(\hat{oldsymbol{x}}_{k|k-1}) \ oldsymbol{S}_k &= oldsymbol{H}_k oldsymbol{P}_{k|k-1} oldsymbol{H}_k^T oldsymbol{F}_k^{-1} \ \hat{oldsymbol{x}}_{k|k} &= oldsymbol{P}_{k|k-1} oldsymbol{H}_k^T oldsymbol{S}_k^{-1} \ \hat{oldsymbol{x}}_{k|k} &= \hat{oldsymbol{x}}_{k|k-1} + oldsymbol{K}_k ilde{oldsymbol{y}}_k \ oldsymbol{P}_{k|k} &= (oldsymbol{I} - oldsymbol{K}_k oldsymbol{H}_k) oldsymbol{P}_{k|k-1} \end{aligned}$$

Differences in Approach

1st Approach Combine **raw** IMU, PACMod, GPS

Harder to do, but good for exercise

- Predict IMU
 - a. Integrate accelerometers to determine change in position and velocity
 - b. Determine posterior distribution with state transition
- 2. Update PACMod and GPS
 - a. Linearize measurement models
 - b. Use linearized models to calculate optimal Kalman gain
 - c. Use this gain to find posterior state and distribution

2nd Approach Combine fused INS measurements with PACMod

Easier to do, and most implementable

- Predict INS
 - a. Use *manufacturer* filtered (INS) data as posterior distribution
- 2. Update PACMod
 - a. Linearize measurement models
 - b. Use linearized models to calculate optimal Kalman gain
 - c. Use this gain to find posterior state and distribution

Sensors - Calibration

Accelerometer

Accelerometer calibration model:
$$A = \begin{bmatrix} 1 & M_{XY} & M_{XZ} \\ M_{YX} & 1 & M_{YZ} \\ M_{ZX} & M_{ZY} & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{S_X} & 0 & 0 \\ 0 & \frac{1}{S_X} & 0 \\ 0 & 0 & \frac{1}{S_X} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} B_X \\ B_Y \\ B_Z \end{bmatrix} + \begin{bmatrix} V_X \\ V_Y \\ V_Z \end{bmatrix}$$

Gyroscope

Gyroscope calibration model:
$$\omega = \begin{bmatrix} 1 & M_{XY} & M_{XZ} \\ M_{YX} & 1 & M_{YZ} \\ M_{ZX} & M_{ZY} & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{S_X} & 0 & 0 \\ 0 & \frac{1}{S_X} & 0 \\ 0 & 0 & \frac{1}{S_X} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} B_X \\ B_Y \\ B_Z \end{bmatrix} + \begin{bmatrix} V_X \\ V_Y \\ V_Z \end{bmatrix} + \begin{bmatrix} H_{XX} & H_{XY} & H_{XZ} \\ H_{YX} & H_{YY} & H_{YZ} \\ H_{ZX} & H_{ZY} & H_{ZZ} \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$

Sensors - Simplified Calibration

The simplified calibration model

$$A = \begin{bmatrix} \frac{1}{S_X} & M_{XY} & M_{ZX} \\ M_{YX} & \frac{1}{S_Y} & M_{YZ} \\ M_{ZX} & M_{ZY} & \frac{1}{S_Z} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} B_X \\ B_Y \\ B_Z \end{bmatrix} + \begin{bmatrix} V_X \\ V_Y \\ V_Z \end{bmatrix} \end{pmatrix}$$

$$\omega = \begin{bmatrix} \frac{1}{S_X} & M_{XY} & M_{ZX} \\ M_{YX} & \frac{1}{S_Y} & M_{YZ} \\ M_{ZX} & M_{ZY} & \frac{1}{S_Z} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} B_X \\ B_Y \end{bmatrix} + \begin{bmatrix} V_X \\ V_Y \\ B_Z \end{bmatrix} + \begin{bmatrix} V_X \\ V_Z \end{bmatrix} \end{pmatrix}$$

Integrating for velocity drifts due to misalignment and bias

- Biases are multimodal and dependent on road geometry
- This is very difficult to measure

MEAN x: -0.122

 $x: -0.122 \text{ m/s}^2$

y: -0.02 m/s^2

Removing average bias does improve integration

Least Squares to minimize the velocity error

Dataset 2

IMU Velocity integrated with bias and scale factor removal

Dataset 3

Optimize (scale_factor, bias)

Parameter Estimation - Why it's hard for the IMU

EX:

Golf Cart is pitched, gravity has components in X, Z

EX:

Golf Cart isn't pitched, gravity is entirely in Z axis

Parameter Estimation - Steering Ratio

- Calibration of Steering Ratio
- Integrated Kinematic Bicycle Model vs INS
- Minimized final heading error

Real Time Implementation

PacMOD + (processed) IMU, GPS

2nd approach

1st Approach

EKF results

20

15

Time [s]

10

25

-0.8

Conclusions

- Difficult to show accuracy improvements without proper calibration in the first approach
- Would like to run more tests with filter running in real time
- Able to filter in real time with golf cart data
- Smoother state estimate results
- Real time error estimation leads to filter instability
- Calibration and tuning is dataset dependent

References

- https://www.vectornav.com/
- https://autonomoustuff.com/
- https://commons.wikimedia.org/wiki/File:Ros_logo.svg
- https://tti.tamu.edu/news/self-driving-vehicles-begin-operating-in-downtown-bryan-texas/
- Kalman, R.E. (1960). "A new approach to linear filtering and prediction problems" (PDF). Journal of Basic Engineering. 82 (1): 35–45.
- G.L. Smith; S.F. Schmidt and L.A. McGee (1962). "Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle". National Aeronautics and Space Administration.
- https://www.designnews.com/gadget-freak/ros-101-intro-robot-operating-system/107053141061075
- https://www.novatel.com/assets/Documents/Bulletins/APN064.pdf

•

TEXAS A&M UNIVERSITY

Engineering

Autonomous Trolley Localization

Thank you for your time

Uncertainty Measurements

Data Analysis - INS Drift

Even without motion, the INS tends to drift position

IMU Velocity integrated with bias and scale factor removal

