16s August 9, 2018 1 16s [?]. , Infernal [?]), $16 \mathrm{s} \ \mathrm{rRNA}.$ 16s2 YARD [?], ECFG [?] ?? $stem_e1 < s >,$

1

3

any			A, U	J, C, G.	
$any^*[nm]$				n m .	
stemN < s >		N	s		
).	
$mk_stem < s >$			(0 N)		s.
stem_e1 <s></s>	,		,	,	
				•	

Table 1:

$$stem 4 < any^*[3..5] > \\ mk_stem < any^*[1..2] \ stem 2 < any^*[3..4] > \ any^*[2..5] > \\ \\ \begin{matrix} C & A \\ C & C \\ A & C \\ C & A \\ C & C \\ A & C \\ C & A \\ C & C \\ A & C \\ C & C$$

Table 2:

??. , 16s Escherichia coli. $:\ A,U,C,G.$ inline 16s16s20 98.16%16s5'M -63.13%.5'M 100 NCBI. $5^{\prime}\mathrm{M}$??. NCBI, 16s (Expected (FP-intervals), Covered

		+	-	+	-	+	-
	h19	17878	335	2153	3165	306	13
5'M	h3	11498	6715	64	5254	81	238

Table 3:

. , 100

:

• 299, 221,54;

• 0,98 0,11.

, **??** 5'M .

. , , ,

\sim
_

_1	NCBI ID	Name	Expected	Covered	FP-intervals	Length(avg.)	Length SD
	NZ_CP012959.1	Aggregatibacter actinomycetemcomitans strain 624	6	6	164	614.6	246.4
1	NC_014640.1	Achromobacter xylosoxidans A8	3	3	556	586.9	244.9
ľ	NC_005966.1	Acinetobacter sp. ADP1 complete genome	7	7	211	552.8	134.4
1	NZ_CP009448.1	Achromobacter xylosoxidans C54	3	3	598	579.1	201.6
1	NC_013171.1	Anaerococcus prevotii DSM 20548	4	3	245	584.6	256.0
1	NZ_CP012590.1	Actinomyces sp. oral taxon 414 strain F0588	3	3	363	591.5	196.8
ľ	NZ_CP014060.1	Achromobacter xylosoxidans strain FDAARGOS_147	3	0	741	614.1	266.0
ľ	NZ_CP007502.1	Aggregatibacter actinomycetemcomitans HK1651	6	6	113	569.8	173.6
ľ	NZ_LT635457.1	Actinomyces sp. Marseille-P2985	3	3	71	570.0	153.4
ľ	NZ_CP012046.1	Achromobacter xylosoxidans strain MN001	3	3	560	599.9	222.9
ľ	NZ_LN831029.1	Achromobacter xylosoxidans genome assembly NCTC10807	3	3	653	582.5	206.0
1	NZ_CP015594.1	Acinetobacter sp. NCu2D-2	7	7	125	544.1	117.1
ľ	NC_012913.1	Aggregatibacter aphrophilus NJ8700	6	6	157	551.2	147.7
ľ	NZ_CP020468.1	Actinomyces sp. pika_114	3	3	103	664.1	596.9
ľ	NZ_CP014232.1	Actinomyces oris strain T14V	3	3	200	606.1	227.7
1	NZ_CP015110.1	Acinetobacter sp. TGL-Y2	7	7	234	561.9	173.1
ľ	NZ_CP012608.1	Acinetobacter sp. TTH0-4	7	7	204	575.3	169.6
1	NZ_CP017812.1	Actinomyces sp. VUL4_3	3	3	125	662.4	326.1
1	NZ_CP012067.1	Aggregatibacter aphrophilus strain W10433	6	6	162	551.3	119.0
ľ	NZ_CP012072.1	Actinomyces meyeri strain W712	3	3	197	631.5	313.8
ľ	NC_000964.3	Bacillus subtilis subsp. subtilis str. 168 chromosome	10	10	278	558.2	154.3
ľ	NZ_CP016852.1	Bacillus subtilis subsp. subtilis strain 168G	10	10	278	558.9	154.3
1	NZ_CP009902.1	Bacillus anthracis strain 2002013094	11	10	1352	656.2	269.3
1	NZ_CP017763.1	Bacillus subtilis strain 29R7-12	10	10	297	538.0	110.4
1	NZ_CP010314.1	Bacillus subtilis subsp. subtilis strain 3NA	10	10	273	556.3	150.7
1	NC_012659.1	Bacillus anthracis str. A0248	11	11	1302	660.8	285.9
1	NC_011835.1	Bifidobacterium animalis subsp. lactis AD011	2	2	190	604.0	223.0
1	NZ_CP009748.1	Bacillus subtilis strain ATCC 13952	7	7	216	553.3	147.2
1	NZ_CP009749.1	Bacillus subtilis strain ATCC 19217	7	7	231	542.8	147.4
1	NC 017834.1	Bifidobacterium animalis subsp. animalis ATCC 25527	4	4	157	653.2	299.0
1	NC 022523.1	Bifidobacterium animalis subsp. lactis ATCC 27673	4	4	176	613.7	252.4
1	NC_017866.1	Bifidobacterium animalis subsp. lactis B420	4	4	192	605.1	243.0
	NZ CP014227.1	Capnocytophaga haemolytica strain CCUG 32990	4	4	405	681.3	312.6
	NZ_CP014230.1	Desulfomicrobium orale DSM 12838	2	2	198	566.4	162.8
	NC_013162.1	Capnocytophaga ochracea DSM 7271	4	4	161	613.1	184.1
	NZ_CP012475.1	Bacillus clausii strain ENTPro	7	7	350	555.3	147.7
	NZ_CP017037.1	Dialister pneumosintes strain F0677	5	5	407	647.0	257.2
1	NZ CP012366.1	Enterococcus durans strain KLDS6.0933	6	6	202	532.3	101.7

NZ CP012384.1	Enterococcus durans strain KLDS 6.0930	6	6	203	532.0	101.4
NC 006582.1	Bacillus clausii KSM-K16 DNA	7	7	369	559.0	176.2
NZ CP016923.1	Klebsiella pneumoniae isolate 11	8	8	381	543.7	150.8
NZ CP008740.1	Haemophilus influenzae 2019	6	6	132	545.0	107.4
NZ CP016926.1	Klebsiella pneumoniae isolate 23	8	8	389	553.2	162.1
NZ CP011313.1	Klebsiella pneumoniae subsp. pneumoniae strain 234-12	8	8	392	556.3	154.4
NC 013721.1	Gardnerella vaginalis 409-05	$\overset{\circ}{2}$	$\overset{\circ}{2}$	237	601.6	229.9
NZ CP007470.1	Haemophilus influenzae strain 477	6	6	136	560.1	118.2
NZ CP007472.1	Haemophilus influenzae strain 723	6	6	146	564.1	152.6
NC 007146.2	Haemophilus influenzae 86-028NP	6	6	157	548.1	104.8
NC 014644.1	Gardnerella vaginalis ATCC 14019 chromosome	2	$\overline{2}$	267	597.4	190.2
NC 003454.1	Fusobacterium nucleatum subsp. nucleatum ATCC 25586	5	5	766	654.9	281.7
NC 010376.1	Finegoldia magna ATCC 29328 DNA	4	4	339	645.8	335.1
NC 018610.1	Lactobacillus buchneri CD034	5	5	107	533.4	173.3
NC 000908.2	Mycoplasma genitalium G37	1	1	30	533.8	98.9
NZ CP019058.1	Gardnerella vaginalis strain GV37	$\overline{2}$	$\overset{-}{2}$	282	588.6	184.2
NZ CP012716.1	Fusobacterium nucleatum subsp. nucleatum ChDC F3162	4	$\overline{4}$	819	655.7	301.7
NC 018498.1	Mycoplasma genitalium M2288	1	1	32	519.3	92.5
NC 018496.1	Mycoplasma genitalium M6282	1	1	30	530.3	95.6
$\overline{\rm NC}^{-}015428.1$	Lactobacillus buchneri NRRL B-30929	5	5	97	524.6	122.8
NZ CP019323.1	Lactobacillus sp. WiKim39	4	4	443	605.1	206.9
NZ CP009531.1	Lactobacillus sp. wkB8	4	4	108	555.3	162.9
$\overline{NC} 014752.1$	Neisseria lactamica 020-06 complete genome	4	4	176	643.8	294.6
NZ_CP013696.1	Pseudomonas aeruginosa strain 12-4-4(59)	4	4	374	555.6	160.0
$\overline{NC} 017534.1$	Propionibacterium acnes 266	3	3	197	605.1	270.4
NZ_CP012889.1	Porphyromonas gingivalis 381	4	4	105	520.1	78.0
$NC_017535.1$	Propionibacterium acnes 6609	3	3	195	609.4	279.5
NZ_AP014839.1	Pseudomonas aeruginosa DNA	4	4	377	570.3	181.0
NZ_CP011995.1	Porphyromonas gingivalis strain A7436	4	4	98	540.6	151.9
NZ_CP013680.1	Pseudomonas aeruginosa AES-1R	1	1	369	556.4	137.9
NZ_CP015347.1	Proteus mirabilis strain AOUC-001	7	7	261	550.1	176.0
NZ_CP020052.1	Proteus mirabilis strain AR_0059	7	7	259	557.6	152.2
NZ_CP021694.1	Proteus mirabilis strain AR_0155	7	7	281	565.3	171.6
$NC_017550.1$	Propionibacterium acnes ATCC 11828	2	2	183	583.6	210.5
NZ_CP017149.1	Pseudomonas aeruginosa strain ATCC 15692	4	4	377	556.7	159.6
NZ_CP007726.1	Neisseria elongata subsp. glycolytica ATCC 29315	4	4	179	655.0	324.3
$NC_010729.1$	Porphyromonas gingivalis ATCC 33277 DNA	4	4	103	525.3	104.1
$NC_018707.1$	Propionibacterium acnes C1	3	3	206	598.5	265.6
NZ_CP012830.1	Pseudomonas fluorescens strain FW300-N2E3	6	6	433	564.4	158.7
NZ_CP011117.1	Pseudomonas fluorescens strain LBUM223	6	6	437	591.4	217.4
$NZ_CP012073.1$	Ottowia sp. oral taxon 894 strain W10237	3	3	269	636.5	258.7

NZ_CP019894.1	Neisseria lactamica strain Y92-1009	4	4	177	603.6	195.8
NZ_CP007241.1	Streptococcus pyogenes strain 1E1	6	6	126	582.6	180.2
$NZ_CP016756.1$	Stenotrophomonas nitritireducens strain 2001	4	4	595	616.9	252.8
$NC_014498.1$	Streptococcus pneumoniae 670-6B	4	4	257	591.7	199.0
$NC_012468.1$	Streptococcus pneumoniae 70585	4	4	246	598.4	201.2
$NC_002967.9$	Treponema denticola ATCC 35405 chromosome	2	2	132	587.1	220.8
$NC_022246.1$	Streptococcus intermedius B196	4	4	304	586.0	198.7
$NC_022236.1$	Streptococcus constellatus subsp. pharyngis C232	4	4	267	588.4	213.5
NZ_CP021181.1	Sphingomonas sp. DC-6	2	2	478	558.8	153.8
$NC_013521.1$	Sanguibacter keddieii DSM 10542	4	4	302	583.3	208.9
$NC_013520.1$	Veillonella parvula DSM 2008	4	4	366	602.6	224.1
$NC_018089.1$	Streptococcus mutans GS-5	5	5	195	555.5	150.5
NZ_AP012334.1	Scardovia inopinata JCM 12537 DNA	2	2	107	590.4	287.9
NZ_CP018221.1	Sphingomonas sp. JJ-A5	2	2	348	562.5	178.6
$NC_017768.1$	Streptococcus mutans LJ23 DNA	5	5	203	572.1	172.1
NZ_CP019511.1	Sphingomonas sp. LM7	2	1	379	639.3	335.8
$NC_020561.1$	Sphingomonas sp. MM-1	2	2	475	594.1	254.4
NZ_CP009227.1	Treponema sp. OMZ 838	2	2	148	618.5	413.7
$NC_007492.2$	Pseudomonas fluorescens Pf0-1	6	6	484	573.8	178.3
$NC_014034.1$	Rhodobacter capsulatus SB 1003	4	4	722	650.8	328.0
NZ_CP019721.1	Veillonella parvula strain UTDB1-3	4	4	354	578.5	180.0

Table 4: (5'M)

NCBI ID	Name	Expected	Covered	FP-intervals	Length(avg.)	Length SD
NZ_CP012959.1	Aggregatibacter actinomycetemcomitans strain 624	6	6	35	954.4	175.2
$NC_014640.1$	Achromobacter xylosoxidans A8	3	0	41	976.6	232.5
$NC_005966.1$	Acinetobacter sp. ADP1 complete genome	7	7	14	974.8	207.5
NZ_CP009448.1	Achromobacter xylosoxidans C54	3	0	43	932.7	146.0
$NC_013171.1$	Anaerococcus prevotii DSM 20548	4	3	29	1174.6	609.3
$NZ_CP012590.1$	Actinomyces sp. oral taxon 414 strain F0588	3	3	28	1033.9	356.2
NZ_CP014060.1	Achromobacter xylosoxidans strain FDAARGOS_147	3	0	79	1024.9	343.2
$NZ_CP007502.1$	Aggregatibacter actinomycetemcomitans HK1651	6	6	17	884.0	64.0
$NZ_LT635457.1$	Actinomyces sp. Marseille-P2985	3	3	5	1120.8	217.2
NZ_CP012046.1	Achromobacter xylosoxidans strain MN001	3	0	56	953.9	206.3

Table 5: $(5^{\circ}M +)$

4

.

• ,

•

• .

References

- [1] Nawrocki E. P., Eddy S. R. Infernal 1.1: 100-fold faster RNA homology searches //Bioinformatics. -2013. . 29. N_{\odot} . 22. . 2933-2935.
- [2] Dowell R. D., Eddy S. R. Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction //BMC bioinformatics. 2004. . 5. \mathbb{N}^{0} . 1. . 1.
- [3] Eddy S. R. A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure //BMC bioinformatics. 2002. . 3. \mathbb{N}^{2} . 1. . 1.
- [4] Yogev S., Milo N., Ziv-Ukelson M. StemSearch: RNA search tool based on stem identification and indexing //Bioinformatics and Biomedicine (BIBM), 2013 IEEE International Conference on. IEEE, 2013. . 145-152.
- [5] Eddy S. R. Homology searches for structural RNAs: from proof of principle to practical use //RNA = 2015. . 21. N_2 . 4. . 605-607.
- [6] Anderson J. W. J. et al. Evolving stochastic context–free grammars for RNA secondary structure prediction //BMC bioinformatics. 2012. . 13. \mathbb{N}^{9} . 1. . 78.
- [7] Hemerik K. Towards a Taxonomy for ECFG and RRPG Parsing //Language and Automata Theory and Applications. 2009. . 410-421.
- [8] Quast C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools //Nucleic acids research. -2012.-.41.- M. D1. -. D590-D596.
- [9] YARD language description. Online. http://yaccconstructor.github.io/YaccConstructor/yard.html
- [10] Rehakova K. et al. Variation in secondary structure of the 16S rRNA molecule in cyanobacteria with implications for phylogenetic analysis //Fottea. -2014. -14. -161-178.

A 16S YARD,

```
inline any: A | U | G | C
inline any_1_2: any*[1..2]
inline any_1_3: any*[1..3]
inline any 23: any any 12
inline any_2_4: any*[2..4]
inline any_3_4: any*[3..4]
inline any_3_5: any any_2_4
inline any_5_7: any any any_3_5
inline any_4_6: any any_3_5
inline any 6_8: any any 5_7
inline any 9 11: any*[9..11]
inline any_4 : any any any any
stem1<s>:
      A s U
    | UsA
    | CsG
    l G s C
    | Gs U
    l U s G
    l As G
    | GsA
stem2<s>: stem1<stem1<s>>
stem4<s>: stem2<stem2<s>>
stem6<s>: stem4<stem2<s>>
stem8<s>: stem4<stem4<s>>
mk stem<s>:
      A mk_stem<s> U
    | U mk_stem<s> A
    | C mk stem<s> G
    | G mk_stem<s> C
    | G mk stem<s> U
    | U mk_stem<s> G
    | G mk stem<s> A
    | A mk stem<s> G
    | s
```

stem<s>: mk stem<stem4<s>>

```
stem 2<s>: mk stem<stem2<s>>
stem e1<s> : stem 2<(any stem 2<s> | stem 2<s> any)> | stem<s>
stem e2<s>: stem 2<(any stem e1<s> any | any stem e1<s>
             | stem e1<s> any)> | stem<s>
stem 4: stem 2<any 4>
[<Start>]
full: middle part root
head_part_root: h3
middle part root: h19
tail part root: h28 any 3 5 h44 any 3 5 h45
head_middle_folded: stem2<(any_6_8 h3 any_9_11 h19 any_1_2 h27 any 2 4)>
full size root: h3 any 9 11 h19 any 1 2 h27 any*[7..9] tail part root
(* 5'M domain *)
h3: stem_e2<(any_1_2 h4 any_1_3 h16 any_3_5
    (h17 | any*[1..6]) any*[2..5] h18 any_1_2)>
h4: stem e1<(h5 h15 any?)>
h5: any 5 7 stem e2<(any 1 3 h6 any 5 7
    stem 2<(any 5 7 h7 any? h11 any 1 3 h12 any?)>
    any 1 2 h13 any 1 2 h14 any 2 4)> any 3 5
h6: stem e2<stem e2<stem e2<stem e2<any 3 4>>>>
h7: stem_e2<(any_2_4 stem<(any_1_2 h8 any_4_6 h9 any_3_5 h10 any_1_2)>
             any 1 3)>
h8: stem 2<(any 3 5 stem 4 any 3 5)>
h9: stem_2<any_3_5>
h10: stem e2<any 3 5>
h11: stem 2<(any 2 4 stem e2<any 6 8> any 3 5)>
h12: stem<(any? stem_2<any_3_5> any_2_4)>
h13: stem<any 9 11>
h14: stem 2<any 3 5>
h15: stem e1<(any 2 4 stem2<any 4> any?)>
h16: stem 2<(any 5 7 stem 2<any 2 4> any 4 6)>
h17: stem<(any*[6..9] stem 2<any*[7..11]> any 6 8)>
h18: stem<(any 5 7 stem<(any 4 6 stem 2<any 3 5> any 6 8)>)>
(* Central domain *)
h19: stem 2<(any 5 7 h20 any 3 5 h25 any*[9..12] h26 any 1 2)>
h20: stem_2 < (any_3_4 stem_2 < (any_1_2 h21 any_2_4 h22 any_2_4) > any_3_4) >
h21: stem e2<(any 3 5 stem e2<(any 3 5 stem e1<any*[5..6]> any 2 4)> any 3 5 )>
```

```
h22: stem e2<( any 1 3 stem<(any 3 4 h23 any*[10..12] stem 2<( any any A any )>
               any 1 2)> any 1 3 )>
h23: stem<(any 2 4 stem 2<any*[5..6]> any 5 7)>
h25: stem<(any*[7..11] stem<any*[8..10]> any*[4..7])>
h26: stem e1<(any 1 2 stem e2<any 4 6> any 3 5 stem 4 any 3 5 )>
h27: stem 2<(any 5 7 stem 4 any 3 5)>
(* 3'M domain *)
h28: stem e2<(any h28_a any_2_4)>
h28 a: stem<(any 1 3 h29 any 4 6 h43 any 4 6)>
h29: stem<(h30 any_2_4 h41 any_5_7 h42 any_4_6)>
h30: stem e1<(any 3 5 h31 any*[7..9] h32 any 2 4)>
h31: stem<any*[7..9]>
h32: stem<(any_4_6 h33 any_1_2 h34 any_3_5)>
h33: stem<(any 1 3 stem<any 4> any 1 3 stem<any 4> any 1 3)>
h34: stem e1<(any 1 2 stem<(stem e2<(any 2 4 h35
     any_4_6 h38 any_3_5)> any_2_4)>)>
h35: stem<(h36 any 2 3 h37 any 2 3)>
h36: stem<any 4>
h37: stem<any 5 7>
h38: stem<(any 1 2 h39 any 1 3 h40 any 4 6)>
h39: stem<(any_2_4 stem<(any_1_3 stem<any_4_6>)> any_2_4)>
h40: stem<any 4>
h41: stem<(any 4 6 stem<(any 1 3 stem<(any 2 4 stem<any 4> any 2 4)>
           any 3 5) > any 4 6) >
h42: stem < (any 3 4 stem < any * [7..9] > any 3 4) >
h43: stem<any*[7..9]>
(* 3'm domain *)
h44: stem<(any 1 3 stem<(any 2 4 stem<(any 1 3 stem<(any 3 5
     stem e1<(any 1 3 stem<any 4>)> any 2 4)> any 1 3)> any 3 5)> any 2 3)>
h45: stem<any 4>
```