	10	20	30	40	50	60
$\frac{x}{v}$		1.808	2.614	3.604	4.857	6.451

The following data gives the marks obtained by 100 students in a subject in an examination using both Newton's forward and backward interpolation formulas, find the number of students who have scored 45 marks and above.

Marks obtained:	30-40	40-50	50-60	60-70	70-80
No of students:	25	35	22	11	7

[Hint: Rewrite the data in terms of x and y, where x denotes the lower boundary of marks and y the numbers of students who have secured marks x and above.]

Use both Newton's forward and backward interpolation formulas to find tan 17° from the following data:

5	dave.							1
	χ°	0.	4	. 8	12	16	20	
-	$\tan x^{\circ}$	0	0.0699	0.1405	0.2126	0.2167	0.3640	

Use both Newton's forward and backward interpolation formulas to find the value of y when x = 23.6 from the following data:

23.0 1101	i the form	owing data	••				
Y	19	20	21	22	23	24	25
v	91.00	100.25	110.00	120.25	131.00	142.25	154.00

Use both Newton's forward and backward interpolation formulas to find the number of students who have secured 75 or less marks from the following data:

Mark range	30-40	40-50	50-60	60-70	70-80
No. of students	31	42	51	35	31

- 7. Find y(5), using both Newton's and backward interpolation formulas, if y(10) = 35.3, y(15) = 32.4, y(20) = 29.2, y(25) = 26.1, y(30) = 23.2 and y(35) = 20.5.
- Find y at x = 0.95, using both Newton's forward and backward interpolations formulas, from the given table.

x	1.0	1.1	1.2	1.3	1.4	1.5
y	0.841	0.891	0.932	0.964	0.925	1.015

Find the value of y at x = 0.47 using Newton's forward and backward interpolations formulas from the given table.

x	0.50	0.55	0.60	0.65	0.70
y	0.1915	0.2088	0.2258	0.2422	0.2580

Find the value of y at x = 6, using both Newton's forward and backward interpolation formulas from the following table.

x	1	2	3	4	5
y	41.66	34.46	28.28	22.94	18.32

Find e^{0.655}, using both Newton's forward and backward interpolation formulas from the following table.

x	0.61	0.62	0.63	0.64	0.65
e^{x}	1.840431	1.858928	1.877610	1.896481	1.915541

	·'s interpolation	on, find the	value of x	when $y = 3$	from the following toll
4.	Using the inverse Lagrange's interpolation	54	72	144	6 40

igrange o	36	54	72	144
<i>x</i>	_2	1	2	4
v	2			

5. Using Lagrange's interpolation formula find f(x)

Y	0	1	4	5
f(x)	4	3	24	39

6. Using Lagrange's interpolation formula find polynomial

r	0	1	3	4
$\frac{\lambda}{v}$	-12	0	6	12

7. Find the polynomial using Lagrange's Interpolation

_	x	0	1	. 2	5	
	v	2	3	12	15	

8. Find the polynomial using Lagrange's Interpolation

<u>x</u>	0	2	3	4	7
f(x)	4	26	58	112	466

9. Using Lagrange's Inverse interpolation find x at y = 100 from the given data.

1	inverse interpolation that any							
	x	3	5	7	9	11		
	ν	6	24	58	108	174		

Using Lagrange's Inverse interpolation find x at y = 85 from the given data.

x	2	5	8	14
y	94.8	87.9	81.3	68.7

11. Using Lagrange's Inverse interpolation find polynomial.

x	30	34	38	42
f(x)	-30	-13	3	18

12. Find polynomial using Lagrange's Interpolation.

0	8	0 100 10 121		
x	-1	0	3	4
f(x)	-38	-12	6	12

13. Find the polynomial using Lagrange's Interpolation

x	0	1	4	5
f(x)	8	11	68	123

14.

х	1.2	2.0	2.5	3.0
f(x)	1.36	0.58	0.34	0.20

Find f(x) at x = 1.6

Find f(x) at x = 25

15.

x	25	30	40	50
f(x)	26	34	42	47
				1,