Álgebra Linear Algorítmica - ICP115 (2021-2) João Vitor de Oliveira Silva

REVISÃO PARA P1

Todas as respostas devem ser justificadas, por meio de cálculos e/ou argumentos geométricos. Mesmo que use alguma ferramenta computacional para os cálculos, deve-se apresentar os passos envolvidos em sua resposta.

1. Diga se os conjuntos abaixo de vetores do plano são linearmente dependentes ou independentes. **Justifique suas respostas.**

(a)
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1\\-2 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix} \right\}$$

(c)
$$\left\{ \begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$$

(d)
$$\left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} -1\\0 \end{bmatrix} \right\}$$

(e)
$$\left\{ \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$$

- 2. Determine as matrizes na base canônica $\beta = \{e_1, e_2\}$ que correspondem aos seguintes operadores lineares.
 - (a) Um cisalhamento C que leva a reta x = 0 em $y = 2\pi x$;
 - (b) Uma rotação R anti-horária de $\frac{\pi}{6}$ radianos;
 - (c) Uma reflexão E cujo espelho é a reta x + y = 0;
 - (d) Uma projeção ortogonal P sobre a reta y = 0;
 - (e) $E^{80}R^8$;
 - (f) $E^{11}P^5$

3. Em computação quântica a matriz

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$

descreve a chamada porta de Hadamard.

- (a) Mostre que H descreve uma reflexão do plano.
- (b) Calcule o espelho desta reflexão.
- 4. Considere a seguinte matriz

$$Z = \begin{bmatrix} -17 & -18 \\ -15 & 4 \end{bmatrix}$$

Responda as seguintes perguntas, justificando:

- (a) Esta matriz é inversível? Justifique.
- (b) Qual o seu determinante?
- (c) Quais são seus autovalores e seus autoespaços correspondentes?
- (d) Qual o determinante de Z^{20} ?
- 5. Encontre a matriz A (na base canônica) que possui como autovalores $\lambda_1 = -1$ e $\lambda_2 = 3$ e seus respectivos autovetores $v_1 = [2, -1]^t$ e $v_2 = [2, 1]^t$.
- 6. Considere o seguinte algoritmo:

```
Algoritmo 1: calculo misterioso
```

```
Entrada: Matriz (2 \times 2) A
```

Variável: Vetor (2×1) v, Vetor (2×1) $e_1 = [1, 0]^T$, Matriz (2×2)

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, Numreal γ

início

se $A^T A \neq I$ ou $\det(A) \neq 1$ então

| retorna ERRO!

$$v \leftarrow Ae_1 \\ \gamma \leftarrow v^t e_1$$

$$\alpha \neq a t_{\alpha}$$

retorna $arccos(\gamma)$

Pede-se que responda:

- (a) Se fosse executado calculo_misterioso(A_1), em que $A_1 = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$, qual seria o resultado?
- (b) Se fosse executado calculo_misterioso(A_1^T), qual seria o resultado?
- (c) Se fosse executado calculo_misterioso(8 A_1), qual seria o resultado?
- (d) Descreva com suas palavras o que é retornado pelo algoritmo e como isso é feito.