Epigenetic modifications and resistance to TB

Kim Dill-McFarland kadm@uw.edu
Oct 11, 2019

Central dogma

image: CHROMAcademy

Central dogma

image: CHROMAcademy

3/44

The 'omics world

· Snapshots in time

The 'omics world

· Snapshots in time

5/44

DNA is not wholly fixed

- \cdot The DNA you're born with is not the DNA you die with
- · Local mutations
- $\cdot\;$ Changes in DNA sequence at the cell or tissue level
- · Not heritable
- $\cdot \ \ Epigenetics$
- · Changes in DNA that do not involve sequence
- Heritable

Epigenetics

Genomics: the whole picture

- · DNA sequence
- · DNA methylation
- · Chromatin accessibility
 - Sum of all histone modifications
- · = Predict gene expression

Methylation methods

Measuring methylation

- · Only occurs at CpG sites
- · Array-type (as opposed to whole genome)
- · Illumina Infinium MethylationEPIC arrays I and II
- · 865,918 probes across genome

MethylationEPIC arrays

Methylated CG sites protected during bisulfite treatment

MethylationEPIC arrays

Unmethylated CG sites converted to TG during bisulfite treatment

12/44

MethylationEPIC arrays

Proportion of reads from methylated beads

13/44

Why isn't it 0:1?

- · Technical
- 1 bp mismatch doesn't 100% prevent extension
- · Incomplete bisulfite conversion
- $\cdot \ \ Biological$
- · Heterogeneous genes
- · Heterogeneous cell population

Methylation results

Estimated TB incidence rates, 2017

image: WHO Global Tuberculosis Report 2018

Estimated TB incidence rates, 2016

*Cases per 100,000 persons

image: CDC National TB Surveillance Systems

17/44

Uganda household contact study

- · 2002 2012 in Kampala, Uganda
- \cdot 872 Index Cases with culture confirmed pulmonary TB
- 2585 contacts of Index Cases

Henry Boom

Cathy Stein

Harriet Mayanja-Kizza

Ma N et al 2014 doi: 10.1186/1471-2334-14-352

· Stein C et al 2018 doi: 10.1093/aje/kwx380

18/44

Uganda household contact study

Slide courtesy T Hawn

- · TST: Tuberculin skin test
- · IGRA: Interferon-gamma release assay

19/44

RSTR: Resister

 highly exposed to TB but by all available measures, remains uninfected for many years

LTBI: latent TB infection

• infected with TB but not actively manifesting symptoms

TB: pulmonary TB

· infected with TB in lungs and actively manifesting symptoms

What makes resisters resistant?

Why epigenetics in RSTR?

- Transcription of histone deacetylase (HDAC) genes associated with RSTR-derived PBMCs (monocytes) infected with Mtb
- · Genetic variation in HDAC genes associated with Ugandan RSTRs
- HDAC3 inhibitor treatment decreased Mtb replication in macrophages

Experimental design

23/44

Cohort metrics

	RSTR	LTBI
N	31.0	30.0
Age at enroll, mean	15.7	18.7
Female, %	50.0	50.0
TB risk exposure score, mean	6.1	6.2
HIV+	0.0	0.0

Overall methylation profiles

25/44

Overall methylation profiles

Overall methylation profiles

27/44

Cautions for MDS (and PCA)

- · Coerces multi-dimensional data into 2D
- · Does not capture full variability of the data
- \cdot Can only identify very large, global differences
- · Not seeing clear separation in MDS/PCA does not indicate that no differences exist.

Probe-level analysis

Differentially methylated probes

- · Linear regression of each probe (R package limma)
- · Multiple comparison correction (FDR)

```
## Contrasts
## Levels RSTR-LTBI
## LTBI -1
## RSTR 1
```

Differentially methylated probes

Differentially methylated probes

Cautions for DM probes

- · Multiple comparison correction
 - P-value $\leq 0.05 = 33113$
 - FDR $\leq 0.05 = 0$
 - FDR $\leq 0.5 = 18$
- · How biologically relevant is a single methylation site?
- · How biologically relevant are sites in the middle of genes?

33/44

Region-level analysis

Differentially methylated regions

	Small effect size		Large effe	Large effect size			
	Precision	Power	Precision	Power	Speed	Co-variates	R
bumphunter	-	-	+	-	+	Υ	Υ
combp	++	-	++	++	+	Υ	Ν
DMRcate	++		++	+	++	Υ	Υ
Probe Lasso	+		++	+	++	N	Υ

Mallik et al 2018 doi: 10.1093/bib/bby085

· Peters et al 2015 doi: 10.1186/1756-8935-8-6

35/44

DMRcate

- 1. Define significant probes from linear models (FDR \leq 0.5)
- 2. Estimate methylation of other probes in sample using a Kernel smoother for **DMP weighted** and **unweighted** models
- 3. Keep estimates from best fit for each sample
- 4. Re-estimate P-values for DMP using new estimated methylation values
- 5. Multiple comparison correction (FDR)
- 6. Group significant probes within 500 bp into regions

Probes in regions

37/44

Example region: DMR_2

38/44

Example region: DMR_2

· TBCD: tubulin folding cofactor D

39/44

Identified regions

FDR cutoff Total regions Total genes Total probes in regions

1e-05	4	4	17
1e-04	5	5	20
1e-03	11	10	49
1e-02	37	32	178
5e-02	92	69	331

Gold standard genes of interest in RSTR

- · Lower methylation
- · Higher chromatin availability
- · Higher RNA expression
- · Or vice versa

41/44

Future directions

- More complex models including demographics, exposure risk score, BCG vaccination, etc.
- Inclusion of SNP probes
- \cdot Compare to RNA-seq and chromatin availability

Acknowledgements

Thomas Hawn, MD

- · Felicia Nguyen
- · Glenna Peterson
- · Jason Simmons, MD
- · Monica Campo, MD

Statistics

- Candace Williams, PhD, San Diego Zoo Global
- Holly Hartman, MS, U Michigan

RSTR project

- Cathy Stein, PhD, Case Western
- Henry Boom, MD, Case Western
- Harriet Mayanja-Kizza, MD, Makerere University
- Chetan Seshadri, MD, UW-Medicine

43/44

Bioinformatics Interest Group at SLU

- · Monthly paired seminar and workshop series
- · Coming Winter 2019
- · Recruiting executive team members!

For more info:

UW mail list: slu_bioinformatics

· Website: https://big-slu.github.io/

· Email me: kadm@uw.edu