PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-280031

(43)Date of publication of application: 20.10.1998

(51)Int.Cl.

C21D 1/06

C23C 8/22 C23C 8/46

C23C 8/66

(21)Application number: 09-089815

(71)Applicant: TOKAI UNIV

(22)Date of filing:

08.04.1997

(72)Inventor: GENMA KUNIYASU

KAWAKAMI MAMORU

(54) METHOD FOR HARDENING CARBURIZED SURFACE OF CARBON STEEL

(57)Abstract:

PROBLEM TO BE SOLVED: To harden the surface of a carbon steel without generating martensitic transformation in the steel.

SOLUTION: A steel in which at least the part to be subjected to surface hardening treatment is low in carbon, and also, elements having a high tendency to form carbides than iron are contained is subject to heating treatment at less than the A1 transformation point in a carburizing agent. As the elements having a high tendency to form carbides, at least one kind among Ti, Nb, V, Ta, W, Mo, Cr, Mn, Zr and Hf is preferably used, and the heating temp. is preferably regulated to 500 to and the heating temp. is preferably regulated to 500 to 650° C.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-280031

(43)公開日 平成10年(1998)10月20日

(51) Int.Cl. ⁶		識別記号	FΙ					
C 2 1 D	1/06		C 2 1 D	1/06	4	A		
C 2 3 C	8/22		C 2 3 C	8/22				
	8/46			8/46				
	8/66			8/66				
			審査請求	未請求	請求項の数 2	OL	(全 8	頁)
(21)出願番号	•	· 特願平9-89815	(71)出願人	0001253	369			
				学校法。	人東海大学			
(22)出顧日		平成9年(1997)4月8日		東京都沿	渋谷区富ヶ谷 2 7	「目28≹	¥4号	
			(72)発明者	源馬	国恭			
				神奈川場	具秦野市鶴巻183	5-17		
			(72)発明者	河上 計	瘦			
				東京都民	目黒区大岡山1-	-16-1	7	
			(74)代理人	弁理士	村瀬 一美			

(54) 【発明の名称】 炭素鋼の浸炭表面硬化方法

(57) 【要約】

【課題】 鋼のマルテンサイト変態を起こすことなく表面硬化を図る。

【解決手段】 少なくとも表面硬化処理が求められる部分が低炭素でありかつ鉄よりも炭化物形成傾向の大きい元素を含む鋼を、A1 変態温度未満の温度により浸炭剤中で加熱処理するようにしている。炭化物形成傾向の大きい元素としては、Ti, Nb, V, Ta, W, Mo, Cr, Mn, Zr, Hfのうち少なくとも1種類であることが好ましく、加熱温度としては、500~650℃が好ましい。

【特許請求の範囲】

【請求項1】 少なくとも表面硬化が要求される部分が低炭素でありかつ鉄よりも炭化物形成傾向の大きい元素を含む鋼を、A1 変態温度未満の温度により浸炭剤中で加熱処理することを特徴とする炭素鋼の浸炭表面硬化方法。

【請求項2】 前記加熱処理温度は500~650℃であることを特徴とする請求項1記載の炭素鋼の浸炭表面硬化方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、炭素鋼の表面だけを硬化させる熱処理方法に関する。さらに詳述すると、本発明は、浸炭処理により表面硬化させる方法の改良に関する。

[0002]

【従来の技術】炭素鋼の表面だけを硬くする熱処理(表面硬化法)には、鋼の表面の化学成分を変えて硬化する 化学的表面硬化法として、浸炭によるものが知られている。

【0003】この浸炭は、通常肌焼き鋼と呼ばれている低炭素鋼や低合金鋼の表面に、炭素を浸み込ませて表面だけを高炭素鋼とし、その後にこれを焼き入れして表面を硬くする熱処理である。炭素を浸み込ませるだけでも硬くすることはできるが、それだけでは不十分なので焼き入れ操作を行う。例えば、浸炭方法によっても異なが、通常、900~950℃で加熱して浸炭し、その後、固体浸炭の場合には900℃で一次焼き入れ、800℃で二次焼き入れを行い、また液体浸炭やガス浸炭の場合にはそのまま直焼き入れを行う。そして、焼き入れの後、さらに150~200℃程度で焼きもどしを行っている。また、最近は、1050~1100℃の高温で短時間浸炭する高温浸炭法というものもある。

【0004】いずれの浸炭方法を行う場合においても、 A_1 変態温度(約723°C)からはるかに高い950°C ないし 1000°C付近の高温に加熱して浸炭処理し、その後 A_1 変態温度よりも高温の温度(A_3 変態温度以上 30~50°C)から急冷することにより行われる。

[0005]

【発明が解決しようとする課題】しかしながら、上述した浸炭方法では、鋼をA1変態温度よりも遙かに高温(900~950℃あるいは1050~1100℃)に加熱しなければならないので、鋼はマルテンサイト変態により著しい体積膨張を生じてしまい、鋼材を加熱した場合に焼入れ歪みによって寸法誤差が大きくなってしまう。加えて、マルテンサイト変態により鋼材に焼き割れを生ずることがあるので、鋼製品の歩留まりも悪くなってしまう。

【0006】さらに、浸炭のため900~950℃ある いは1050~1100℃に加熱し、さらにその後にも 一次及び二次の焼き入れあるいは直焼き入れのために9 ○○℃程度まで加熱し、加えて150~200℃程度で 焼きもどす必要があるため、加熱処理時間の短縮が難し い。

【0007】一方、マルテンサイト変態による体積膨張を避けるために、表面硬化は要求されているものの焼入れを行うことができない鋼製品が多数存在しており、これらの鋼製品の表面硬化を促進する必要がある。

【0008】そこで、本発明は、鋼のマルテンサイト変態を起こすことなく表面硬化を図ることができる鋼の浸炭表面硬化方法を提供することを目的とする。

[0009]

【課題を解決するための手段】かかる目的を達成するため、本発明者が種々実験・研究した結果、鉄よりも炭化物形成傾向の大きい元素の鋼への添加と、A1変態点以下の温度で炭素を鋼中に拡散浸透させることとが可能であることを知見するに至った。

【0010】元来、純鉄は A_1 変態温度以下において浸炭しても、焼き入れ硬化のために有効な浸炭層は形成されない。これは純鉄を A_1 変態温度以下で浸炭すると、表面に鉄炭化物であるセメンタイト(Fe_3 C)層が緻密に形成され、それが炭素の侵入を阻むためそれ以上浸炭が進行しなくなるからである。この冶金学上の常識は合金鋼にも及び A_1 変態点以下での浸炭を考慮することの盲点となっていた。

【0011】しかしながら、セメンタイトは熱力学的にはあまり安定ではなく、クロムやモリブデンといった鉄より炭素との親和力が強い元素が鋼中に共存すれば、それらにより比較的容易に炭素を奪われ鉄を遊離してしまう。本発明者はかかる事実に基づいて、鉄より炭素との親和力が強い元素を適当量含有する鋼がA1変態温度以下の浸炭性雰囲気において加熱されれば、セメンタイト層が表面に形成されることなく炭素が当該鋼中に侵入するということを考えた。

【0012】そこで、請求項1の鋼の表面硬化方法は、少なくとも表面硬化が要求される部分が低炭素でありかつ鉄よりも炭化物形成傾向の大きい元素を含む鋼を、A1変態温度未満の温度により浸炭剤中で加熱処理する1変態温度未満の温度により浸炭剤中で加熱処理する1変態浸炭硬化方法と呼ぶ)。ここで、鉄よりも炭化物形成傾向の大きい元素としては、Ti、Nb、V、Ta、W、Mo、Cr、Mn、Zr、Hfのうち少なくか形成型温度は500~650℃であることが好ましい。なおも1種類を含むものであることが好ましい。な求される部分が低炭素の鋼」とは、炭素量0.20~0.30%C以下のいわゆる低炭素鋼の他、炭素量0.30%Cを超えても脱炭することにより表面層が炭素量0.1%C以下に調整されたものも含む。

【0013】この場合、浸炭表面硬化処理が求められる

部分が低炭素であるので、浸炭前の鋼では鉄よりも炭化物形成傾向の大きい元素はほとんど炭化物になっていない。このため、浸炭により新たな炭素が多量に鋼の表面に供給されて、その時初めて鉄よりも炭化物形成傾向の大きい元素が炭化物となる。したがって、鋼の表面層での析出硬化を有効に行うことができる。

【0014】そこで、A1変態温度未満の温度、特に5 OO~650℃に加熱された鉄よりも炭化物形成傾向の 大きい元素を含む鋼は、鉄の結晶の中で鉄よりも炭化物 形成傾向の大きい元素が移動を始め、浸炭剤中の炭素が 鋼の表面で鉄よりも炭化物形成傾向の大きい元素の周囲 に引き寄せられ、セメンタイトFeg C層を鋼の表面に 形成することなく鋼の表面層に浸透拡散させる。さら に、鋼の表面層に浸透した炭素が鉄よりも炭化物形成傾 向の大きい元素に結合して炭化物を析出することによ り、その周囲の鉄の結晶が歪み析出硬化によって鋼の表 面層が硬化する。500~650℃という温度は、A1 変態温度を大きく下回る温度であるがちょうど鉄の結晶 の中で金属原子が移動でき始める温度であるため、炭化 物形成能の強い元素が溶けていれば、炭素がその周りに 引きつけられて炭化物として析出する。したがって、鋼 をA1 変態温度未満の温度で加熱することにより焼入れ しなくても表面硬化を行うことができる。

[0015]

【発明の実施の形態】以下、本発明の鋼の表面硬化方法 を実施の形態の一例に基づいて詳細に説明する。

【 O O 1 6 】本発明の炭素鋼の浸炭表面硬化方法は、A 1 変態温度未満の温度により浸炭剤中で加熱処理するようにしている。

【0017】ここで、鉄よりも炭化物形成傾向の大きい元素としては、特に限定されるものではないが、例えばTi、Nb、V、Ta、W、Mo、Cr、Mn、Zr、Hf等があり、これらの元素のうち少なくとも1種類を含んでいれば足りる。また、この鋼は低炭素鋼であり、炭素量0.15%C以下としている。

【0018】浸炭剤としては、現在実用化されている各 浸炭法で使用されているものの使用が可能である。浸炭 法は、現在、固体浸炭法、液体浸炭法、ガス浸炭法、電 解浸炭法、イオン浸炭法、浮遊流動浸炭法などが実用と されており、中でもガス浸炭法、イオン浸炭法が最も900 の一定程度における浸炭を前提としたものである。 その加熱温度さえ変更すれば従来の浸炭による場では、 そのまま活用できる。例えば、ガス浸炭による場合には、 浸炭剤として水素ーアセチレン雰囲気が使用される。そして、この雰囲気中で少なくとも表面硬化物が成 は、そして、この雰囲気でありかつ鉄よりも炭になが ずめられる部分が低炭素でありかつ鉄よりも炭化物形成 気には限られず、他の種類のガス浸炭剤を使用したガス浸炭法により浸炭したり、イオン浸炭法や電解浸炭法 や液体浸炭剤を使用した液体浸炭法や固形浸炭剤を使用した液体浸炭法により浸炭することができる。いずれの 浸炭法によっても浸炭により鋼の表面硬化を図ることが できるのは勿論である。また、イオン窒化法の窒素の代わりに一酸化炭素やメタン、アセチレンなどの浸炭用して 使用することによって、イオン窒化法の装置を使用して サブA1 浸炭変態浸炭硬化方法を実施することも安定 ある。さらに、電解浸炭法は、従来、920℃にでさせて均一に被浸炭部品を加熱することの困難さから、開発が遅れているが、本発明のサブA1 変態浸炭硬化方法 によれば550℃程度の比較的低温で安定させれば良い ので、開発し易い。いずれにしても、煤の発生を伴わず 均一に炭素が鋼材中に浸透するのであればその方法は問われることがない。

【0019】ここで、Crの含有率の比較的高い鋼を表面硬化する場合は、イオン浸炭法を採用することが好ましい。この理由は、Crの含有率の比較的高い鋼では表面にCrの水和性皮膜や酸化物皮膜や水酸化物皮膜(不動態)が形成されるので、鋼の耐食耐熱性が向上して鋼の表面への炭素の浸透が妨げられるが、イオン浸炭法を採用するとイオンのスパッタ効果によって炭素が鋼の表面に浸透可能となるからである。

【0020】そして、加熱温度はA₁ 変態温度未満の温度、好ましくは500~650℃程度である。500~650℃の温度のとき、鋼の鉄の結晶の間で鉄よりも炭化物形成傾向の大きい元素の原子が移動可能となる。

【0021】この鋼を500~650℃程度に加熱する ことにより、鉄の結晶の中で鉄よりも炭化物形成傾向の 大きい元素の原子が移動を始める。そして、水素ーアセ チレン雰囲気中の炭素は、鋼の表面で鉄よりも炭化物形 成傾向の大きい元素の周囲に引き寄せられる。このた め、炭素と鉄とが結合して鋼の表面にセメンタイトFe 3 C層を緻密に形成することはないので、鋼の表面での 炭素の侵入を阻害することがない。これにより、炭素は 鋼の表面層に浸透拡散することができる。さらに、鋼の 表面層に浸透した炭素が鉄よりも炭化物形成傾向の大き い元素に結合して炭化物を析出することにより、その周 囲の鉄の結晶が歪み析出硬化によって鋼の表面層が硬化 する。ここで、この鋼は低炭素鋼であるので、浸炭前の 鋼では鉄よりも炭化物形成傾向の大きい元素はほとんど 炭化物になっていない。このため、浸炭により新たな炭 素が多量に鋼の表面に供給されて、その時初めて鉄より も炭化物形成傾向の大きい元素が炭化物となる。したが って、鋼の表面層での析出硬化を有効に行うことができ る。したがって、鋼を500~650℃程度の温度で加 熱することにより焼入れしなくても表面硬化を行うこと

【0022】例えば、図1に示すように、鉄よりも炭化物形成傾向の大きい元素を添加したMAC24鋼を55 0.600.650℃で浸炭した場合、いずれの加熱温 度の場合も表面から約0.2 mmの深さまで硬さの上昇が認められた。また、いずれの加熱温度の場合も表面硬さはH v 4 0 0を超えるものとなり、構造用合金鋼である例えばS C M 4 4 0 鋼に焼入れ焼戻しした硬さ(H v 5 5 0 ℃での加熱の場合は、H v 5 1 0程度にまで硬化した。これは合金工具鋼の熱間金型用鋼である例えばS K D 6 1 鋼に焼入れ・焼もどしした硬さ(H v 5 5 0)に匹敵するものとなった。したがって、A 1 変態温度未満の温度により浸炭剤中で加熱した鋼材が、A 1 変態温度を適かに超えて950℃程度から焼入れされた従来品と同等以上に表面硬化できることが確認された。

【0023】反面、表1に示すSKD61鋼のように低炭素鋼の炭素含有量よりも多くの炭素を含む鋼は、そのままではA1変態温度未満で浸炭を行っても表面硬化はほとんど見られない。したがって、本発明の鋼の表しいであると言える。しかであると言える。しかであると言える。しかであっても表面脱炭を行うことにより、その後のA1変態温度未満での浸炭で大きな表面硬化が見られる。したがって、低炭素鋼の炭を含す量よりも多くの炭素を含む鋼であっても、脱炭を経て浸炭を行うことにより表面硬化できる。要は、表面硬化処理が求められる部分が低炭素でありかつ鉄よりも炭化物形成傾向の大きな元素を含む鋼であれば良い。

【0024】上述した鋼の表面硬化方法によれば、鋼の加熱温度をA1変態温度未満、好ましくは500~650℃程度にして焼入れ工程を省いているので、鋼はマルテンサイト変態を起こさない。このため、鋼はマルテンサイト変態による著しい体積膨張を起こすことがないので、鋼材の寸法精度を向上させることができる。また、鋼材の焼き割れを防止して歩留まりを良くすることができるので、製造コストを低減することができる。しかも、従来はマルテンサイト変態による体積膨張を避けて焼入れを行うことができなかった鋼製品でも表面硬化処理を行うことができるようになり、表面硬化可能な鋼製品の範囲を拡大することができる。

【0025】また、本実施形態の表面硬化方法によれば、鋼の加熱温度をA1変態温度未満にできるので、加熱に必要な時間を短縮して鋼製品の製造時間の短縮化を図ることができると共に、加熱に必要なエネルギの使用量を減少させてエネルギコストを削減することができる。特に本実施形態の浸炭処理によれば後処理として焼入れ及び焼戻しを行う必要がないので、従来の浸炭処理に比べて表面硬化に必要な時間の短縮とエネルギの低減とを大幅に行うことができる。

【0026】なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。

[0027]

【実施例】

[実施例 1] 表 1 に示す組成のMAC24鋼(熱間圧延材)を水素-アセチレン浸炭性雰囲気中で3時間550 ℃加熱する、いわゆるサブA1変態浸炭硬化方法を実施した。

【 0 0 2 8 】 [実施例 2] 表 1 に示す組成のMAC 2 4 鋼(熱間圧延材)を水素-アセチレン浸炭性雰囲気中で 3 時間 6 0 0 ℃加熱する、いわゆるサブA 1 変態浸炭硬化方法を実施した。した。

【0029】 [実施例3] 表1に示す組成のMAC24 鋼(熱間圧延材)を水素-アセチレン浸炭性雰囲気中で 3時間650℃加熱する、いわゆるサブA1変態浸炭硬 化方法を実施した。した。

【0030】以上の実施例 1 から 3 のサブ A_1 変態浸炭硬化方法を施した 3 種類のMAC24 鋼の表面層のビッカース硬さ(荷重は 100gf)を測定し、その結果を図 1 に示した。

【0031】同図から明らかなように、いずれの加熱温度の場合も表面から約0.2mmの深さまで硬さの上昇が認められた。また、いずれの加熱温度の場合も表面硬さはH v 400を超えるものとなり、構造用合金鋼である例えばSCM 440鋼に焼入れ・焼戻しした硬さ(H v 300~370)を超えるものとなった。特に、550℃での加熱の場合は、H v 510程度にまで硬化した。これは合金工具鋼の熱間金型用鋼である例えばSKD61鋼に焼入れ焼戻しした硬さ(H v 550)に匹敵するものとなった。したがって、A1変態温度未満で加熱した鋼材がA1変態温度を超えて焼入れされた従来品と同等以上に表面硬化できることが確認された。

【0032】 [実施例4] 表 1 に示す組成のMAC24 鋼 (熱間圧延材)を水素-3%アセチレン雰囲気中で3時間加熱した。加熱温度は723K(450%)とした。この加熱処理を行ったMAC24 鋼の表面層のマイクロビッカース硬さ(荷重は200gf)を測定した。この硬さの値としては10 回の測定値の算術平均値を採用した。その結果を表 1 に示す。

【0033】[比較例1]表1に示す組成のSACM645鋼(熱ならし材)を実施例2と同様に水素-3%アセチレン雰囲気中で3時間加熱した。加熱温度は723℃とした。この加熱処理を行ったSACM645鋼の表面層のマイクロビッカース硬さ(荷重は200gf)を測定した。この硬さの値としては10回の測定値の算術平均値を採用した。その結果を表1に示す。

【0034】[比較例2] 表1に示す組成のSKD61 鋼(焼きなまし材)を実施例2と同様に水素-3%アセチレン雰囲気中で3時間加熱した。加熱温度は723℃とした。この加熱処理を行ったSKD61鋼の表面層のマイクロビッカース硬さ(荷重は200gf)を測定した。この硬さの値としては10回の測定値の算術平均値を採用した。その結果を表1に示す。 [0035]

【表1】

		.,	実施例4	比較例1	比較例2	
鋼材		MAC24	SACM645	SKD61		
	С		0.15	0.46	0. 37	
1	S	1	0.27	0. 33	0. 97	
元	M	n	0.50	0. 57	0. 36	
素]	P	0.020	0.021	0.007	
	,	S	0.020	0.013	0.002	
	N	1	0.10	0. 10	_	
質	Мо		2.49	1.53	5. 08	
量			0.36	0. 16	1. 24	
%			-	1.04	_	
			-	_	0. 82	
Cu		u	0.11	0. 11	_	
ヒ゛ッカース		浸炭前	350	250	196	
硬さ (Hv)		浸炭	535	263	250	
硬化の程度		大きい	僅か 僅か			

【0036】表1に示すように、サブA1変態浸炭硬化 方法を実施した実施例4の鋼は浸炭によって大きく硬化 した。反面、比較例1の鋼は浸炭によって僅かしか硬化 しなかった。硬化が小さい理由は、SACM645鋼は 中炭素鋼で炭素量が0.46%Cであったので、鋼中の 鉄よりも炭化物形成傾向の大きい元素は浸炭前から炭化 物になっていて、加熱及び浸炭によっても炭化物の析出 硬化がほとんど生じなかったためと考えられる。したが って、この発明の鋼の表面硬化方法を実現するために は、鋼は低炭素鋼であることが必要であると推測され る。さらに、比較例2の鋼も浸炭によって僅かしか硬化 しなかった。硬化が小さい理由は、SKD61鋼は中炭 素鋼で炭素量がO. 37%Cであったので、比較例1の SACM645鋼と同様に鋼中の鉄よりも炭化物形成傾 向の大きい元素は浸炭前から炭化物になっていて、加熱 及び浸炭によっても炭化物の析出硬化がほとんど生じな かったためと考えられる。また、比較例1のSACM6 45鋼よりは炭素量が少ないので硬化の程度が大きくな

った。

【0037】 [実施例5] SKD61鋼を950℃の湿潤水素中に4時間載置して表面脱炭を行った。そして、脱炭後の表面硬さを測定した。その後、550℃で3時間加熱した後焼き戻し(テンパー)たものと、550℃3時間で本発明のサブA1変態浸炭硬化方法を行ったものとの2種類の鋼を得た。これらの鋼の表面硬さを測定した。その結果を表2に示す。

【0038】 [実施例6] SKD61鋼を1050℃の湿潤水素中に4時間載置して表面脱炭を行った。そして、脱炭後の表面硬さを測定した。その後、550℃で3時間加熱した後焼き戻し(テンパー)たものと、550℃3時間で本発明のサブA1変態浸炭硬化方法を行ったものとの2種類の鋼を得た。これらの鋼の表面硬さを測定した。その結果を表2に示す。

[0039]

【表2】

1 . 0 6

		表面硬さ(Hv) 脱炭後の熱処理			
	脱炭条件				
	(湿潤水素中)	脱炭のまま	テンパーのみ 550℃,3時間	浸炭 550℃, 3時間	
実施例5 実施例6	950℃, 4時間 1050℃, 4時間	430 560	510 600	670 815	

【0040】表2に明らかなように、SKD61鋼は極めて焼入れされ易い鋼であり、脱炭のままでもかな良の硬さとなった。また、脱炭後のSKD61鋼に焼き戻かできた。したなっても、ある程度硬さを増すことができた。したものの方が遙かに高い硬さを得ることができた。これは、SKD61鋼の内部で炭化物となってと飲みできた。これは、SKD61鋼の内部で炭化物となっていた鉄子により炭素が鋼の表面の大きい元素が脱炭により金属炭炭を付ったとによるものと考えられる。したがって、本発明の鋼の表面硬化方法は低炭素鋼の炭素とて大がって、本発明の鋼の表面硬化方法は低炭素鋼の炭素を含む鋼であることが判明した。

【0041】[実施例7]試験片として図2に示す円盤形状のSKD61鋼1を用意した。このSKD61鋼1は、直径がW=22mmで中心から7mm離れた点を中心にS部分が設けられている。このS部分は、図3に示すようにSKD61鋼1を流通路2中に設置したときに流通路2の中心部分に相当する位置とされている。そして、S部分は、SKD61鋼1の径方向の長さが4mmであると共に、径方向に垂直な方向の長さが12mmでその両端部は半円形状とされている。

【0042】このSKD61鋼1を1060℃の水素中に80分間載置して溶体化を行った。その後、この鋼1を885℃の湿潤水素中に16時間載置して表面脱炭を行った。そして、脱炭後の表面硬さを測定した。その結果、表面硬さHv212であった。

【0043】その後、図3に示すように浸炭ガスの流通路2とその内部の鋼1の保持部3とを備えた装置を用いて、550℃の水素ーアセチレン雰囲気中を鋼1の片側面に6時間吹き付けて浸炭を行った。ここで、浸炭ガスの流通路2の高さはSKD61鋼の直径の2倍弱であったので、SKD61鋼の上部のS部分が流通路2の高さたので、SKD61鋼の上のため、浸炭ガスはS部分に最も大きな流速で吹き付けた。そして、この鋼1の表面硬さを測定した。SKD61鋼1の縦方向の直径W上で1mmごとに硬さを測定した結果を表3に示し、SK

D61鋼のS部分でランダムな位置で硬さを測定した結果を表4に示す。

【0044】表3、4に示すように、いずれの位置でも 浸炭前の硬さ(H v 2 1 2)よりも遙かに大きくなっ た。特に表 4 に示すように S 部分の中では浸炭前の約3 倍の硬さになった部分もあった。したがって、本発明の 鋼の表面硬化方法は低炭素鋼に特に有効であると共に、 低炭素鋼の炭素含有量よりも多くの炭素を含む鋼であっ ても脱炭を経て浸炭を行うことにより表面硬化できるこ とが確認された。

[0045]

【表3】

表面硬さ(Hv) 荷重:200gf
473
373
320
3 2 0
256
286
373
311
256
256
286
398
412
320
302
263

【0046】 【表4】

	表面硬さ	(H v)	荷重:	200gf
	412	593	373	6 3 2
	466	362	584	4 1 2
i	441	701	497	3 7 1
	385	603	412	644
	373	412	426	5 3 6
	351	426	412	453
	5 3 6	340	5 4 8	412
ĺ	412	373	5 2 8	441
	412	412	473	479
	490	421	412	5 2 4
	423	570	6 5 4	5 4 4
ı				

[0047]

【発明の効果】以上の説明より明らかなように、請求項1の炭素鋼の浸炭表面硬化方法は、少なくとも表面硬化処理が求められる部分が低炭素でありかつ鉄よりも炭化物形成傾向の大きい元素を含む鋼をA1変態温度未満の温度により浸炭剤中で加熱処理するようにしているので、鉄の結晶の中で鉄よりも炭化物形成傾向の大きい元素の原子が移動すると共に、浸炭剤中の炭素が鋼の表面で鉄よりも炭化物形成傾向の大きい元素の周囲に引き寄せられて、炭素は鉄と結合することなく鋼の表面層に引きないで鉄よりも炭化物形成傾向の大きい元素の周囲に引き寄せられて、炭素は鉄と結合することなく鋼の表面層にきせられて、炭素は鉄と結合することなく鋼の表面層化となる。しかも、その表面硬化は、焼入れをしなくとも、A1変態温度よりも遙かに高い温度(950℃)で行う従来の浸炭法と同等以上の硬度が得られる。

【0048】したがって、炭素鋼はA1変態温度以上に加熱されることがなく、マルテンサイト変態を起こさない。このため、鋼はマルテンサイト変態による著しい体積膨張を起こすことがないので、鋼材の寸法精度を向上

させることができる。また、鋼材の焼き割れを防止して 歩留まりを良くすることができるので、製造コストを低 減することができる。しかも、従来はマルテンサイト変 態による体積膨張を避け焼入れを行うことができなかっ た鋼製品でも表面硬化処理を行うことができるようにな り、表面硬化可能な鋼製品の範囲を拡大することができ る。

【0049】また、本発明の表面硬化方法によれば、炭素鋼の加熱温度はA1変態温度未満であるので、加熱に必要な時間を短縮して鋼製品の製造時間の短縮化を図ることができると共に、加熱に必要なエネルギの使用量を減少させてエネルギコストを削減することができる。しかも、このサブA1変態浸炭硬化処理によれば、後処理として焼入れ及び焼戻しを行う必要がないので、従来の浸炭処理に比べて表面硬化に必要な時間の短縮とエネルギの低減とを大幅に行うことができる。特に、500℃が熱処理を行う場合には、A1変態温度を大きく下回る温度であってもちょうど鉄の結晶の中で大きく下回る温度であるため、炭化物形成能の強い元素が溶けていれば、炭素がその周りに引きつけられて炭化物として析出することができる。即ち、最も少ない加熱量で所望の表面硬化を行うことができる。

【図面の簡単な説明】

【図1】本発明の鋼の表面硬化方法の実施例1により得られたMAC24鋼の表面深さと硬さとの関係を示す図である。

【図2】実施例5に使用したSKD61鋼の試験片を示す斜視図である。

【図3】実施例5で使用した実験装置を示す側面図である。

【符号の説明】

1 SKD61鋼の試験片

【図2】

[図3]

21 - 9 21

