Задача с решением по численным методам Тема: аппроксимация функции МНК

Задание.

Функция y = y(x) задана таблицей своих значений:

x	-2	-1	0	1	2
У	y_0	y_1	y_2	y_3	y_4

Применяя метод наименьших квадратов, приблизить функцию многочленами 1-ой и 2-ой степеней. Для каждого приближения определить величину среднеквадратичной погрешности. Построить точечный график функции и графики многочленов.

Таблица к задаче 3

Nº	y_0	y_1	y_2	<i>y</i> ₃	<i>y</i> ₄	Nº	y_0	y_1	y_2	<i>y</i> ₃	y_4
11	-4.8	0	3.2	4.0	2.8	26	0.0	-1.4	-1.6	-0.5	1.2

Решение.

Приближение многочленом первой степени ищется в виде:

$$y = ax + b$$

где коэффициенты а, b находятся из системы уравнений:

$$\begin{cases} a \sum x_i + bn = \sum y_i \\ a \sum x_i^2 + b \sum x_i = \sum x_i y_i \end{cases}$$

Приближение многочленом второй степени ищется в виде:

$$y = ax^2 + bx + c$$

где коэффициенты a, b, c находятся из системы уравнений:

$$\begin{cases} a \sum_{i} x_{i}^{2} + b \sum_{i} x_{i} + cn = \sum_{i} y_{i} \\ a \sum_{i} x_{i}^{3} + b \sum_{i} x_{i}^{2} + c \sum_{i} x_{i} = \sum_{i} x_{i} y_{i} \\ a \sum_{i} x_{i}^{4} + b \sum_{i} x_{i}^{3} + c \sum_{i} x_{i}^{2} = \sum_{i} x_{i}^{2} y_{i} \end{cases}$$

Найдем все нужные суммы для обеих моделей - линейной и квадратичной.

						Сумма
x_i	-2	-1	0	1	2	0
y_i	-4,8	0	3,2	4	2,8	5,2
x_i^2	4	1	0	1	4	10
x_i^3	-8	-1	0	1	8	0
x_i^4	16	1	0	1	16	34
$x_i y_i$	9,6	0	0	4	5,6	19,2

Задача скачана с https://www.matburo.ru/ (еще много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

$\begin{vmatrix} x_i^2 y_i & -19.2 & 0 & 0 & 4 \end{vmatrix}$	11,2	-4
---	------	----

Найдем коэффициенты a, b линейного приближения

$$\begin{cases} a \sum x_i + bn = \sum y_i \\ a \sum x_i^2 + b \sum x_i = \sum x_i y_i \\ a \sum x_i = \sum x_i y_i \\ b = \frac{5.2}{10a + 0b = 19.2} \\ b = \frac{5.2}{5} = 1.04; \ a = \frac{19.2}{10} = 1.92 \\ y \approx P_1(x) = 1.92x + 1.04 \end{cases}$$

Рассчитаем среднеквадратическую погрешность:

x	-2	-1	0	1	2	
y	-4,8	0	3,2	4	2,8	
$P_1(x)$	-2,8	-0,88	1,04	2,96	4,88	Сумма
$(P_1(x) - y)^2$	4	0,7744	4,6656	1,0816	4,3264	14,848

$$\sigma_1 = \sqrt{\frac{1}{n} \sum (P_1(x) - y)^2} = \sqrt{\frac{14.848}{5}} = \sqrt{2.9696} = 1.723253$$

Найдем коэффициенты a, b, c квадратичного приближения

$$\begin{cases} a \sum_{i} x_{i}^{2} + b \sum_{i} x_{i} + cn = \sum_{i} y_{i} \\ a \sum_{i} x_{i}^{3} + b \sum_{i} x_{i}^{2} + c \sum_{i} x_{i} = \sum_{i} x_{i} y_{i} \\ a \sum_{i} x_{i}^{4} + b \sum_{i} x_{i}^{3} + c \sum_{i} x_{i}^{2} = \sum_{i} x_{i}^{2} y_{i} \end{cases}$$

$$\begin{cases} 10a + 0b + 5c = 5.2 \\ 0a + 10b + 0c = 19.2 \\ 34a + 10c = -4 \end{cases} \Leftrightarrow \begin{cases} 10a + 5c = 5.2 \\ 34a + 10c = -4 \\ b = 1.92 \end{cases} \Leftrightarrow \begin{cases} c = \frac{5.2}{5} - 2a = 1.04 - 2a \\ 34a + 10(1.04 - 2a) = -4 \\ b = 1.92 \end{cases}$$

$$34a + 10(1.04 - 2a) = -4$$

$$14a = -14.4$$

$$a = -\frac{14.4}{14} = -1.028571$$

$$c = 1.04 - 2a = 1.04 - 2(-1.028571) = 3.097143$$

$$y \approx P_{2}(x) = -1.028571x^{2} + 1.92x + 3.097143$$

x	-2	-1	0	1	2	
у	-4,8	0	3,2	4	2,8	
$P_2(x)$	-4,85714	0,148571	3,097143	3,988571	2,822857	Сумма
$(P_2(x)$						
$-y)^2$	0,003265	0,022073	0,01058	0,000131	0,000522	0,036571

Задача скачана с https://www.matburo.ru/ (еще много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

$$\sigma_2 = \sqrt{\frac{1}{n} \sum (P_2(x) - y)^2} = \sqrt{\frac{0.036571}{5}} = \sqrt{0.007314} = 0.085524$$

Ответ.

$$P_1(x) = 1.92x + 1.04;$$
 $\sigma_1 = 1.723253;$ $P_2(x) = -1.028571x^2 + 1.92x + 3.097143;$ $\sigma_2 = 0.085524$