Computational Finance FIN-472 Homework 7

November 3, 2017

Exercise 1: Consider a GARCH model $(X_t)_{0 \le t \le T}$ of the form

$$dX_t = \kappa(\theta - X_t) dt + \sigma X_t dW_t,$$

where κ, θ and σ are model parameters.

- a) Prove that X_t is a polynomial diffusion and write its infinitesimal generator \mathcal{G} .
- b) For $u \in \mathbb{R}$, define v as

$$v(t,x) = \mathbb{E}[\exp(iuX_T)|X_t = x].$$

If the conditions of the Feyman-Kac theorem are satisfied, v solves the equation

$$v_t + \mathcal{G}v = 0$$
, $v(T, x) = \exp(iux)$.

Can we write the solution of the PDE as

$$v(t,x) = \exp(\phi(T-t) + \psi(T-t)x)$$

for some function ϕ and ψ with $\phi(0) = 0$ and $\psi(0) = iu$?

c) Solve explicitly the differential equation for X_t .

Hint: Consider the Ansatz $L_t := e^{\left(\kappa + \frac{\sigma^2}{2}\right)t - \sigma W_t} X_t$.

d) For $N \in \mathbb{N}$, write the matrix representation G_N of the infinitesimal generator restricted to $\operatorname{Pol}_N(\mathbb{R})$, with respect to the monomial basis given by

$$H_N(x) = (1, x, x^2, \cdots, x^N).$$

e) Use the moment formula for polynomial diffusions to calculate the first moment $\mathbb{E}[X_T]$. Check that the obtained result is coherent with what one gets from the explicit formula derived in part c).

f) Consider the set of parameters

$$\kappa = 0.5, \ \theta = 0.4, \ \sigma = 0.2, \ X_0 = 1, \ T = 0.5.$$

Use the moment formula for polynomial diffusions to find the first 4 moments

$$\mathbb{E}[X_T], \ \mathbb{E}[X_T^2], \ \mathbb{E}[X_T^3], \ \mathbb{E}[X_T^4]$$

and calculate the 4-order "approximation" of the density of X_T with a Gaussian that matches the first two moments. Plot the density approximation for orders 1, 2, 3, 4.

Exercise 2: Consider the Heston model where the squared volatility V_t and the log-asset price X_t are given by

$$dV_{t} = \kappa(\theta - V_{t})dt + \sigma\sqrt{V_{t}}dW_{t}^{(1)},$$

$$dX_{t} = (r - V_{t}/2)dt + \rho\sqrt{V_{t}}dW_{t}^{(1)} + \sqrt{V_{t}}\sqrt{1 - \rho^{2}}dW_{t}^{(2)}.$$

Here, $W^{(1)}$ and $W^{(2)}$ are independent Brownian motions and $\kappa, \theta, \sigma, \rho$ are model parameters.

a) Let $\mu_w \in \mathbb{R}$ and $\sigma_w > 0$ be arbitrary parameters. Consider the basis of $\operatorname{Pol}_N(\mathbb{R}^2)$ defined

$$\mathcal{H}_N = \{1, v, \frac{x - \mu_w}{\sigma_w}, v^2, v\left(\frac{x - \mu_w}{\sigma_w}\right), \left(\frac{x - \mu_w}{\sigma_w}\right)^2, \cdots, v^n, v^{n-1}\left(\frac{x - \mu_w}{\sigma_w}\right), \cdots, \left(\frac{x - \mu_w}{\sigma_w}\right)^n\}$$

and write it in a row vector

$$H_N = (1, v, \frac{x - \mu_w}{\sigma_w}, v^2, v\left(\frac{x - \mu_w}{\sigma_w}\right), \left(\frac{x - \mu_w}{\sigma_w}\right)^2, \cdots, v^n, v^{n-1}\left(\frac{x - \mu_w}{\sigma_w}\right), \cdots, \left(\frac{x - \mu_w}{\sigma_w}\right)^n).$$

Note that the dimension of $\operatorname{Pol}_N(\mathbb{R}^2)$ is $M := \frac{(N+1)(N+2)}{2}$.

Define a bijective function

$$\pi: \{(m,n) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid m,n \geq 0; m+n \leq N\} \to \{1,2,\cdots,M\},\$$

that describes the ordering for the basis H_N . In other words, each basis element of the form $v^m \left(\frac{x-\mu_w}{\sigma_w}\right)^n$ is stored in the position $\pi(m,n)$ in the vector H_N . Implement this function in Matlab and call it Ind.m.

- b) Write a Matlab function GenHeston.m that constructs G_N , the matrix representation of the infinitesimal generator \mathcal{G} restricted to $\operatorname{Pol}_N(\mathbb{R}^2)$ with respect to the basis H_N .
- c) Consider the model parameters

$$X_0=5.1,\ V_0=0.04,\ \kappa=1,\ \theta=0.04,\ \sigma=0.2,\ r=0.03,\ \rho=-0.8,\ T=1/52,$$

together with $\mu_w = \mathbb{E}[X_T]$ and $\sigma_w^2 = \text{Var}[X_T]$. Using the moment formula for polynomial diffusions, compute

$$\mathbb{E}\left[\left(\frac{X_T - \mu_w}{\sigma_w}\right)\right], \ \mathbb{E}\left[\left(\frac{X_T - \mu_w}{\sigma_w}\right)^2\right], \ \mathbb{E}\left[\left(\frac{X_T - \mu_w}{\sigma_w}\right)^3\right], \ \mathbb{E}\left[\left(\frac{X_T - \mu_w}{\sigma_w}\right)^4\right].$$