SISTEMA PARA A OBTENCIÓN E VISUALIZACIÓN DE ESTATÍSTICAS A PARTIR DE VÍDEOS DE PÁDEL.

Óscar Lamas Ríos

Xullo, 2021

Dirección:

Óscar Fresnedo Arias Francisco Laport López

ÍNDICE

- 1 Contextualización
- 2 SVM + HOG
- 3 YOLO
- 4 Diferenciación dos xogadores
- 5 Procesado dos datos
- 6 Gráficos
- 7 Aplicación web
- 8 Conclusións e liñas futuras

CONTEXTUALIZACIÓN: MOTIVACIÓN E OBXECTIVOS

Principais factores que nos motivan para a realización deste proxecto:

- · Importancia da posición na pista no pádel.
- · Non existen solucións semellantes.
- Ferramenta que traballe de xeito automático.
- · Representacións visuais.

CONTEXTUALIZACIÓN: PLANIFICACIÓN

É de vital importancia elixir unha metodoloxía adecuada, pois define un marco de traballo práctico e funcional para minimizar os posibles riscos.

- · Metodoloxía iterativa incremental.
- 7 iteracións en total.
- 120 días con 360 horas de traballo (3h/día)

CONTEXTUALIZACIÓN: VISTA XERAL DO PROXECTO

CONTEXTUALIZACIÓN: COMPOÑENTES

O noso proxecto consta das seguintes compoñentes ou módulos:

- **Detección**: Base do proxecto, debemos detectar e *trackear* os xogadores.
- Procesado de datos: procesar, almacenar e analizar os datos extraídos.
- Xeración de gráficos: xerar representacións visuais útiles.
- Aplicación Web: presentar as funcionalidades do noso software de forma cómoda e amigable.

DETECCIÓN CON SVM: SUPPORT VECTOR MACHINES

- · Modelo lineal de SVM.
- Algoritmo de aprendizaxe automático.
- Resolución de problemas de clasificación.
- Elementos representados por un vector de características.
 - · Histogram of Oriented Gradients, HOG.
- Utilizamos unha versión preadestrada de OpenCV que combina SVM + HOG.

APLICACIÓN AO PROXECTO

Partimos dun procesado con deteccións **superpostas**, **non interesantes** e **erróneas** e con **pouca precisión** á hora de acoutar os xogadores.

CORRECIÓN (I)

Aplicación de Non-Maximum Suppression (NMS) para corrixir as deteccións superpostas.

CORRECCIÓN (II)

Aplicación de máscaras para procesar unicamente as zonas da pista que nos interesan. Dividimos así a zona superior da pista da inferior.

ANÁLISE DE RESULTADOS

As conclusións ás que podemos chegar tras analizar partidos na súa totalidade son as seguintes:

- Bo funcionamento da aplicación da NMS e da detección na zona superior, 80% do tempo.
- Mal funcionamento da detección na zona inferior da pista, moi mellorable, 30% do tempo.

YOLO: YOU ONLY LOOK ONCE

- · Algoritmo de detección que utiliza Redes Neuronais Convolucionais (CNN).
- As distintas capas convolucionais extraen as características das distintas zonas da imaxe.
- Alta velocidade e precisión. Necesitamos dunha única execución do algoritmo.
- Gran número de alternativas, no noso caso empregamos YOLOv3.

YOLO: Análise de resultados

- Detección dos xogadores máis precisa. Xogadores mellor acoutados a través dos cadros delimitadores.
- Melloramos a porcentaxe de tempo que detectamos aos xogadores, sempre preto do 100%.

CORES CON K-MEANS

Para calquera partido de pádel, conseguimos diferenciar unha parella da outra de **xeito automático**.

- 1. Separación zona superior e zona inferior da pista.
- Introducimos K-Means para a análise das cores da equipación dos xogadores. Podemos así diferenciar as parellas cando hai un cambio de pista.

PROCESADO DOS DATOS (I)

Co proceso de detección anterior, obtemos as posicións dos xogadores, procedemos da seguinte forma:

- Tómase como referencia o punto medio da base dos cadros delimitadores para definir a posición dos xogadores.
- Transformación xeométrica de perspectiva utilizando unha matriz de transformación achegada polo método getPerspectiveTransform de OpenCV.
 Conseguimos así representar a coordenada nun mapa 2D.

PROCESADO DOS DATOS (II)

GRÁFICOS

Unha vez que temos as posicións dos xogadores no plano 2D, podemos elaborar distintas representacións visuais dos datos e das súas estatísticas.

- Gráficos individuais, representan información referente a un único xogador.
- Gráficos colectivos, representan información referente a unha parella.

GRÁFICOS INDIVIDUAIS: ZONAS DA PISTA

Mostramos a **porcentaxe de tempo** que pasa un xogador nas distintas **zonas da pista** a través dun gráfico circular. Permítenos analizar o noso estilo de xogo, entre outras cousas.

GRÁFICOS INDIVIDUAIS: MAPA DE CALOR

Representamos as posicións da pista polas que se moveu un xogador, empregando:

- Posicións máis frecuentes \longrightarrow gama de cores cálida.
- Posicións menos frecuentes \longrightarrow gama de cores fría.

GRÁFICOS COLECTIVOS: ZONAS DA PISTA

Comparación do tempo que pasaron os xogadores dunha parella nas distintas zonas da pista.

GRÁFICOS COLECTIVOS: DESCOORDINACIÓN

Representamos a porcentaxe de tempo que os xogadores dunha parella están descoordinados.

APLICACIÓN WEB: DESEÑO

Para expoñer as funcionalidades elaboradas a posibles usuarios interesados, construise unha aplicación web.

- Framework **Django** xunto con **Bootstrap**.
- O patrón de deseño utilizado é o denominado Model Template View (MTV).
- PostgreSQL xunto con PGAdmin. Entidades de Usuario, Partido e Datos.
- Demo aplicación web.

CONCLUSIÓNS

• **Produto final de alta complexidade**. Cumpriuse co obxectivo principal de elaborar un sistema capaz de analizar partidos de pádel.

CONCLUSIÓNS

- **Produto final de alta complexidade**. Cumpriuse co obxectivo principal de elaborar un sistema capaz de analizar partidos de pádel.
- Oportunidade de reforzar e afianzar coñecementos en dous campos importantes.
 - Análise, deseño e desenvolvemento de proxectos.
 - Desenvolvemento de aplicacións web.

CONCLUSIÓNS

- **Produto final de alta complexidade**. Cumpriuse co obxectivo principal de elaborar un sistema capaz de analizar partidos de pádel.
- Oportunidade de reforzar e afianzar coñecementos en dous campos importantes.
 - Análise, deseño e desenvolvemento de proxectos.
 - Desenvolvemento de aplicacións web.
- Campos novos como a visión artificial e edición de imaxes, así como o uso da librería OpenCV.

LIÑAS FUTURAS

 Consideramos o proxecto como unha primeira aproximación, cunha gran modularidade do software que facilita a ampliación de funcionalidades e a introdución de melloras.

LIÑAS FUTURAS

- Consideramos o proxecto como unha primeira aproximación, cunha gran modularidade do software que facilita a ampliación de funcionalidades e a introdución de melloras.
- Aspecto visual e deseño da aplicación web, así como das súas funcionalidades.
- **Detección** dos xogadores ou de outros elementos do partido.

SISTEMA PARA A OBTENCIÓN E VISUALIZACIÓN DE ESTATÍSTICAS A PARTIR DE VÍDEOS DE PÁDEL.

Gracias pola súa atención.

Óscar Lamas Ríos

Xullo, 2021

Dirección:

Óscar Fresnedo Arias Francisco Laport López

