Karnaugh maps

Solutions to Student Exercises

Exercise 1:

1. AND gate:

Inputs		Output
В	Α	Q
0	0	0
0	1	0
1	0	0
1	1	1

2. NOR gate:

Inputs		Output
В	Α	Q
0	0	1
0	1	0
1	0	0
1	1	0

3. ExOR gate

Inp	Inputs	
В	Α	Q
0	0	0
0	1	1
1	0	1
1	1	0

4. NAND gate

Inputs		Output
В	ВА	
0	0	1
0	1	1
1	0	1
1	1	0

5. ExNOR gate

Inputs		Output
В	Α	Q
0	0	1
0	1	0
1	0	0
1	1	1

Exercise 2:

Inputs		Output
В	Α	Q
0	0	1
0	1	0
1	0	1
1	1	1

Simplest Boolean expression = $\overline{A} + B$

Check via Boolean gives

$$\overline{\boldsymbol{A}}.\overline{\boldsymbol{B}}+\overline{\boldsymbol{A}}.\boldsymbol{B}+\boldsymbol{A}.\boldsymbol{B}$$

$$\overline{\boldsymbol{A}}.\overline{\boldsymbol{B}} + \boldsymbol{B}.(\overline{\boldsymbol{A}} + \boldsymbol{A})$$

$$\overline{\boldsymbol{A}}.\overline{\boldsymbol{B}}+\boldsymbol{B}$$

$$\overline{\mathbf{A}} + \mathbf{B}$$

Karnaugh maps

Exercise 3.

Inputs			Output
С	В	Α	Q
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

	BA				
C		00	01	11	10
	0	0	1	1	0
	1	1	1	1	0

Simplest Boolean expression = $A + \overline{B}.C$

Example 2:

Boolean expression is : $\overline{B}.C + A.B.\overline{C} + \overline{A}.C$

Exercise 4:

1. $\overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + A.B + B.C$

Simplest Boolean expression = $\mathbf{B} + \overline{\mathbf{A}}.\mathbf{C}$

2. $\overline{A}.\overline{B}.\overline{C} + A.B.\overline{C} + A.\overline{B} + \overline{A}.\overline{C}$

Simplest Boolean expression = $\overline{C} + A.\overline{B}$

3. $A.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C + A.\overline{B}.C$

Simplest Boolean expression = $A.\overline{B} + \overline{B}.C$ or $\overline{B}.(A + C)$