Support vector comparison machines

Toby Dylan Hocking toby.hocking@mail.mcgill.ca joint work with David Venuto, Lakjaree Sphanurattana, and Masashi Sugiyama

2 March 2018

Introduction and related work

Learning a max-margin comparison function

Results and conclusions

Motivating example: learning to compare sushi

salmon is better than eel

fatty tuna is as good as crab liver

If I give you another sushi pair, can you tell me which one is better, or if they are equally good?

Motivating example: learning to compare sushi

salmon is better than eel

fatty tuna is as good as crab liver

If I give you another sushi pair, can you tell me which one is better, or if they are equally good?

Learning a comparison function

We are given n training pairs $(\mathbf{x}_i, \mathbf{x}'_i, y_i)$

▶ Input: a pair of feature vectors $\mathbf{x}_i, \mathbf{x}_i' \in \mathbb{R}^p$ e.g. sushi fattiness, taster birthplace.

Output: a label
$$y_i = \begin{cases} -1 & \text{if } \mathbf{x}_i \text{ is better} \\ 0 & \text{if } \mathbf{x}_i \text{ is as good as } \mathbf{x}_i' \\ 1 & \text{if } \mathbf{x}_i' \text{ is better.} \end{cases}$$

Goal: find a comparison function $c: \mathbb{R}^p \times \mathbb{R}^p \to \{-1,0,1\}$

Good prediction with respect to the zero-one loss:

$$\underset{c}{\operatorname{minimize}} \sum_{i \in \operatorname{test}} I\left[y_i \neq c(\mathbf{x}_i, \mathbf{x}_i')\right]$$

► Symmetry: $c(\mathbf{x}, \mathbf{x}') = -c(\mathbf{x}', \mathbf{x})$.

Geometric interpretation when $r(\mathbf{x}) = ||\mathbf{x}||_2^2$

Geometric interpretation when $r(\mathbf{x}) = ||\mathbf{x}||_2^2$

Related work: rank and rate

Inputs Outputs	single items x pairs of items x		
$y \in \{-1,1\}$	SVM	SVMrank	
$y \in \{-1, 0, 1\}$		this work	

- ➤ T Joachims. Optimizing search engines using clickthrough data. KDD 2002. (SVMrank)
- ▶ K Zhou et al. Learning to rank with ties. SIGIR 2008. (boosting, ties are more effective with more output values)
- ▶ R Herbrich et al. TrueSkill: a Bayesian skill rating system. NIPS 2006. (generalization of Elo for chess)

SVMrank ignores equality $y_i = 0$ pairs

Linear $r(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$.

minimize w^Tw

subject to $\mathbf{w}^{\mathsf{T}}(\mathbf{x}_i' - \mathbf{x}_i)y_i \geq 1$, $\forall i$ such that $y_i \in \{-1, 1\}$.

margin decision

inactive

Introduction and related work

Learning a max-margin comparison function

Results and conclusions

Learning to rank and compare

We will learn a

- ▶ Ranking function $r : \mathbb{R}^p \to \mathbb{R}$. Bigger is better.
- ► Threshold $\tau \in \mathbb{R}^+$. A small difference $|r(\mathbf{x}') - r(\mathbf{x})| \le \tau$ is not significant.

Fix the threshold au=1. The problem becomes

minimize
$$\sum_{i=1}^{n} I\left[y_i \neq c_1(\mathbf{x}_i, \mathbf{x}_i')\right].$$

If there are several r that achieve 0 error, then the data are separable.

Max margin LP for separable data

Linear Program (LP) measures ranking function values:

```
\begin{split} & \underset{\mu \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^p}{\text{maximize } \mu} \\ & \text{subject to } \mu \leq 1 - |\mathbf{w}^\mathsf{T}(\mathbf{x}_i' - \mathbf{x}_i)|, \ \forall \ i \ \text{such that } y_i = 0, \\ & \mu \leq -1 + \mathbf{w}^\mathsf{T}(\mathbf{x}_i' - \mathbf{x}_i)y_i, \ \forall \ i \ \text{such that } y_i \in \{-1, 1\}. \end{split}
```

- ▶ If the optimal margin $\mu > 0$ then the data are separable.
- ▶ Ranking function $r(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x}$.
- ▶ Comparison function $c_1(\mathbf{x}, \mathbf{x}')$.

Geometric interpretation of max margin LP

boundary

difference vector

LP constraint activeLP constraint inactive

Equivalent: $(\mathbf{x}_i, \mathbf{x}_i', y_i = -1)$ flipped to $(\mathbf{x}_i', \mathbf{x}_i, \tilde{y}_i = 1)$

boundary

difference vector

LP constraint activeLP constraint inactive

Max margin SVM QP for separable data

Change of variables "flipped data"

$$\boldsymbol{\tilde{X}} = \left[\begin{array}{c} \boldsymbol{X}_1 \\ \boldsymbol{X}'_{-1} \\ \boldsymbol{X}_0 \\ \boldsymbol{X}'_0 \end{array} \right], \ \boldsymbol{\tilde{X}}' = \left[\begin{array}{c} \boldsymbol{X}'_1 \\ \boldsymbol{X}_{-1} \\ \boldsymbol{X}'_0 \\ \boldsymbol{X}_0 \end{array} \right], \ \boldsymbol{\tilde{y}} = \left[\begin{array}{c} \boldsymbol{1}_{|\mathcal{I}_1|} \\ \boldsymbol{1}_{|\mathcal{I}_{-1}|} \\ -\boldsymbol{1}_{|\mathcal{I}_0|} \\ -\boldsymbol{1}_{|\mathcal{I}_0|} \end{array} \right],$$

- $ilde{\mathbf{y}}_i = -1$ implies no significant difference between $ilde{\mathbf{x}}_i$ and $ilde{\mathbf{x}}_i'$,
- $\tilde{y}_i = 1$ implies that $\tilde{\mathbf{x}}_i'$ is better than $\tilde{\mathbf{x}}_i$.

Quadratic Program measures weight vector size (SVM QP)

Same as SVM: learn affine function $f(\mathbf{x}) = \beta + \mathbf{u}^{\mathsf{T}}\mathbf{x}$. **Lemma:** $\hat{\mu} = -1/\beta$, $\hat{\mathbf{w}} = -\mathbf{u}/\beta$ are feasible for the LP.

Max margin SVM QP for separable data

Change of variables "flipped data"

$$\tilde{\boldsymbol{X}} = \left[\begin{array}{c} \boldsymbol{X}_1 \\ \boldsymbol{X}'_{-1} \\ \boldsymbol{X}_0 \\ \boldsymbol{X}'_0 \end{array} \right], \ \tilde{\boldsymbol{X}}' = \left[\begin{array}{c} \boldsymbol{X}'_1 \\ \boldsymbol{X}_{-1} \\ \boldsymbol{X}'_0 \\ \boldsymbol{X}_0 \end{array} \right], \ \tilde{\boldsymbol{y}} = \left[\begin{array}{c} \boldsymbol{1}_{|\mathcal{I}_1|} \\ \boldsymbol{1}_{|\mathcal{I}_{-1}|} \\ -\boldsymbol{1}_{|\mathcal{I}_0|} \\ -\boldsymbol{1}_{|\mathcal{I}_0|} \end{array} \right],$$

- $ilde{\mathbf{y}}_i = -1$ implies no significant difference between $ilde{\mathbf{x}}_i$ and $ilde{\mathbf{x}}_i'$,
- $\tilde{y}_i = 1$ implies that $\tilde{\mathbf{x}}_i'$ is better than $\tilde{\mathbf{x}}_i$.

Quadratic Program measures weight vector size (SVM QP)

Same as SVM: learn affine function $f(\mathbf{x}) = \beta + \mathbf{u}^{\mathsf{T}}\mathbf{x}$. **Lemma:** $\hat{\mu} = -1/\beta$, $\hat{\mathbf{w}} = -\mathbf{u}/\beta$ are feasible for the LP.

Equivalent: $(\mathbf{x}_i, \mathbf{x}_i', y_i = -1)$ flipped to $(\mathbf{x}_i', \mathbf{x}_i, \tilde{y}_i = 1)$

boundary

difference vector

LP constraint activeLP constraint inactive

QP sensitive to feature scale

boundary

decision
$$r(\mathbf{x}) = \pm 1$$
 margin $r(\mathbf{x}) = \pm 1 \pm \mu$

difference vector

LP constraint activeLP constraint inactiveQP support vector

$$(\mathbf{x}_i, \mathbf{x}_i', y_i = 0)$$
 flipped to $(\mathbf{x}_i, \mathbf{x}_i', \tilde{y}_i = -1)$

boundary

difference vector

LP constraint activeLP constraint inactiveQP support vector

$$(\mathbf{x}_i,\mathbf{x}_i',y_i=0)$$
 flipped to $(\mathbf{x}_i,\mathbf{x}_i',\tilde{y}_i=-1),$ $(\mathbf{x}_i',\mathbf{x}_i,\tilde{y}_i=-1)$

boundary

difference vector

LP constraint activeLP constraint inactiveQP support vector

Max margin LP and QP for separable data

Linear Program (LP) measures function values:

$$\label{eq:maximize} \begin{split} & \underset{\boldsymbol{\mu} \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^p}{\text{maximize}} & \boldsymbol{\mu} \\ & \text{subject to} & \boldsymbol{\mu} \leq 1 - |\mathbf{w}^\mathsf{T}(\mathbf{x}_i' - \mathbf{x}_i)|, \ \forall \ i \ \text{such that} \ y_i = 0, \\ & \boldsymbol{\mu} \leq -1 + \mathbf{w}^\mathsf{T}(\mathbf{x}_i' - \mathbf{x}_i)y_i, \ \forall \ i \ \text{such that} \ y_i \in \{-1, 1\}. \end{split}$$

Quadratic Program (QP) measures weight vector size:

$$\label{eq:linear_problem} \begin{split} & \underset{\mathbf{u} \in \mathbb{R}^p, \beta \in \mathbb{R}}{\text{minimize}} & \mathbf{u}^\mathsf{T} \mathbf{u} \\ & \text{subject to} & & \tilde{y}_i(\beta + \mathbf{u}^\mathsf{T} (\mathbf{\tilde{x}}_i' - \mathbf{\tilde{x}}_i)) \geq 1, \ \forall i \in \{1, \dots, m\}. \end{split}$$

- ▶ **Lemma:** $\hat{\mu} = -1/\beta$, $\hat{\mathbf{w}} = -\mathbf{u}/\beta$ are feasible for the LP.
- ▶ Ranking functions $r_{LP}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$, $r_{QP}(\mathbf{x}) = \hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x}$.
- ▶ Comparison function $c_1(\mathbf{x}, \mathbf{x}')$.

Introduction and related work

Learning a max-margin comparison function

Results and conclusions

Simulation: true patterns r and noisy training pairs

Validation and test data have the same number of pairs n and the same proportion of equality pairs ρ .

Details of simulation setup

- ▶ Inputs $\mathbf{x}_i, \mathbf{x}'_i \in [-3, 3]^2$.
- ▶ True ranking function $r(\mathbf{x}) = ||\mathbf{x}||_j^2$ for $j \in \{1, 2, \infty\}$.
- ▶ Noisy labels $y_i = t_1[r(\mathbf{x}_i') r(\mathbf{x}_i) + \epsilon_i]$.

$$\qquad \qquad \text{Threshold function } t_1(x) = \begin{cases} -1 & \text{ if } x < -1, \\ 0 & \text{ if } |x| \leq 1, \\ 1 & \text{ if } x > 1. \end{cases}$$

- ▶ Noise $\epsilon_i \sim N(0, \sigma)$ with standard deviation $\sigma = 1/4$.
- ► Train, validation, and test sets with
 - ▶ same number of training pairs *n*, and
 - same proportion of equality pairs ρ .
- ▶ Fit a 10×10 grid of models to the training set:
 - Cost parameter $C = 10^{-3}, \dots, 10^3$,
 - ► Gaussian kernel width 2⁻⁷,...,2⁴.
- Select the model with minimal zero-one loss on the validation set.

We ran 3 different algorithms on each data set

	equality pairs		inequality pairs		
Input:	$ \mathcal{I}_0 $	_	$ \mathcal{I}_1 + \mathcal{I}_{-1} $	\rightarrow	code
rank	0		$ \mathcal{I}_1 + \mathcal{I}_{-1} $	\rightarrow	SVMrank
rank2	$2 \mathcal{I}_0 $	$\leftarrow \rightarrow$	$2(\mathcal{I}_1 + \mathcal{I}_{-1})$	$\rightarrow \rightarrow$	SVMrank
compare	$2 \mathcal{I}_0 $		$ \mathcal{I}_1 + \mathcal{I}_{-1} $	\rightarrow	proposed

Equality $y_i = 0$ pairs are shown as — segments.

Inequality $y_i \in \{-1,1\}$ pairs are shown as \rightarrow arrows.

rank ignores each input equality pair.

rank2 converts each input equality pair to two contradictory inequality pairs.

compare directly models the equality pairs.

n=100 training pairs and learned $\hat{r}:\mathbb{R}^2 \to \mathbb{R}$ for simulated square-shaped $r(\mathbf{x})=||\mathbf{x}||_{\infty}^2$ pattern

n=800 training pairs and learned $\hat{r}:\mathbb{R}^2 \to \mathbb{R}$ for simulated square-shaped $r(\mathbf{x})=||\mathbf{x}||_{\infty}^2$ pattern

Test error lowest for proposed SVMcompare model

number of labeled pairs, half equality and half inequality

Test error lowest for proposed SVMcompare model

number of labeled pairs, half equality and half inequality

No difference for few equality pairs, rank worse when there are many equality pairs

No difference for few equality pairs, rank worse when there are many equality pairs

Sushi data of Kamishima et al.

- http://www.kamishima.net/sushi/
- ▶ 100 different sushis rated by 5000 different people.
- ► Each person rated 10 sushis on a 5 point scale.
- Convert 10 ratings to 5 preference pairs.
- ▶ 17,832 equality $y_i = 0$ pairs and
- ▶ 7,168 inequality $y_i \in \{-1,1\}$ pairs.
- ▶ Feature pairs $\mathbf{x}_i, \mathbf{x}'_i \in \mathbb{R}^{14}$.
- 7 sushi features: style, major, minor, oily, eating frequency, price, and selling frequency.
- ▶ 7 taster/person features: Sushi gender, age, time, birthplace and current home (we converted Japanese prefecture codes to latitude/longitude coordinates).

Sushi data are harder, but SVMcompare still has lowest test error

Chess data description

- ▶ http://www.chessmetrics.com, 1999—2006 (eight years).
- ► For each year, train on first four months (Jan–Apr), test on other months (May–Dec).
- ▶ 44.7% draws $(y_i = 0)$ predicting them is important!
- ▶ 16 features computed for each player and game: ELO score, Glicko score, initial move, loss/wins to a lower/higher ranked player, the average score difference of opponents, win/loss/draw/games played raw values and percentages, etc.

Chess data result

Features 0 0 1 2 (Glicko and ELO Scores) 16 (All Features)

Conclusions and future work

- ▶ Learned a nonlinear ranking function $r(\mathbf{x}) \in \mathbb{R}$, and
- ▶ a comparison function $c(\mathbf{x}, \mathbf{x}') \in \{-1, 0, 1\}$.
- ► Results in simulation/sushi: rank < rank2 < compare.
- ► Results in chess: linear SVM improves over ELO/Glicko.
- ▶ Directly learning from $y_i = 0$ equality pairs (draws) is important, when they are present!
- https://github.com/tdhock/rankSVMcompare
- ► Future work: algorithms for large data and online setting.

Thank you!

Supplementary slides appear after this one.