Tobias Jawecki

Email tobias.jawecki@gmail.com
Web https://newbisi.github.io

Nationality Austrian

Academic Employment & Teaching Experience

09/2021–08/2022 University Assistant, Institute for Theoretical Physics, TU Wien, Austria 10/2021–02/2022 Exercise Instructor, Institute for Theoretical Physics, TU Wien

10/2021–02/2022 Exercise Instructor, Institute for Theoretical Physics, TU Wien 03/2017–03/2020 University Assistant, Institute of Analysis and Scientific Computing, TU Wien,

experiences as a substitute lecturer

10/2013-06/2016 Exercise Tutor, Institute of Analysis and Scientific Computing, TU Wien

Further Academic Experience

Participation at international conferences with scientific talks, e.g., CMQT Bath 2022, SciCADE Innsbruck 2019, and seminars, e.g., Oberwolfach Wave

Phenomena 2019

02/2019-05/2019 Visiting Researcher at Mathematical Institute, Oxford University, UK

Education

03/2017–12/2022 Doctoral Student Technische Mathematik, TU Wien, Austria Student at the doctoral college Unravelling Advanced 2D Materials

03/2015–03/2017 Diploma Student Technische Mathematik, TU Wien 03/2011–03/2015 Bachelor Student Technische Mathematik, TU Wien

10/2010-02/2011 Bachelor Student Technische Chemie (first semester), TU Wien

06/2009 Matura at Borg Götzis, Vorarlberg, Austria

Preprints

T. Jawecki. A review of the separation theorem of Chebyshev-Markov-Stieltjes for polynomial and some rational Krylov subspaces, 2022.

preprint at https://arxiv.org/abs/2205.01535

Publications

T. Jawecki and P. Singh. Unitarity of some barycentric rational approximants. IMA J. Numer. Anal., 2023.

doi: 10.1093/imanum/drad066

W. Auzinger, J. Dubois, K. Held, H. Hofstätter, T. Jawecki, A. Kauch, O. Koch, K. Kropielnicka, P. Singh, and C. Watzenböck. Efficient Magnus-type integrators for solar energy conversion in Hubbard models. *J. Comput. Math. Data Sci.*, 2:100018, 2022.

doi: 10.1016/j.jcmds.2021.100018

T. Jawecki. A study of defect-based error estimates for the Krylov approximation of φ -functions. *Numer. Algorithms*, 90(1):323–361, 2022.

doi: 10.1007/s11075-021-01190-x

W. Auzinger, T. Jawecki, O. Koch, P. Pukach, R. Stolyarchuk, and E.B. Weinmüller. Some aspects on [numerical] stability of evolution equations of stiff type; use of computer algebra. In 2021 IEEE XVII th International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), pages 180–184, 2021.

doi: 10.1109/memstech53091.2021.9468055

C. Schattauer, L. Linhart, T. Fabian, T. Jawecki, W. Auzinger, and F. Libisch. Graphene quantum dot states near defects. *Phys. Rev. B*, 102:155430, 2020.

doi: 10.1103/PhysRevB.102.155430

T. Jawecki, W. Auzinger, and O. Koch. Computable upper error bounds for Krylov approximations to matrix exponentials and associated φ -functions. BIT, 60(1):157–197, 2020.

doi: 10.1007/s10543-019-00771-6

Theses

T. Jawecki. Krylov techniques and approximations to the action of matrix exponentials. Ph.D thesis, TU Wien, Austria, 2022.

doi: 10.34726/hss.2022.45083

T. Jawecki. Bifurcation analysis via numerical continuation for nonlinear fourth-order partial differential equations. Diploma thesis, TU Wien, 2017.

available online at https://permalink.catalogplus.tuwien.at/AC13642458