4. 整数論

約数に関する定理

任意の整数a(≠0。以降も同じ)に対して、aはaの約数、1はaの約数

定理2 aがbの約数、bがcの約数ならば、aはcの約数

定理3 aがbの約数、bがaの約数ならば、b=±a

b=qa, a=q'b (q, q' は整数)

a=q'qa

a≠0故、q'q=1, q'=q=±1

補遺 aがbの約数、cがdの約数ならば、acはbdの約数

定理4 aがbとcの公約数ならば、aはb±cの約数

証明 b=qa, c=q'a (q, q' は整数)

 $b \pm c = qa \pm q'a = (q \pm q')a$

q ± q' は整数故、aはb±cの約数

約数と倍数

任意の整数をaとし、任意の正整数をbとするとき、

a = bq+r, $0 \le r \le b-1$

を満たすq,rが一意的に存在する。このとき、qを**商**、rを**剰余**という。

r=0 即ち、a=bq のとき、aはbの倍数、bはaの約数という。

公約数(common devisor):任意の2つの整数の共通の約数

最大公約数(greatest common devisor):公約数の中で最大の数

整数a、bの最大公約数を以下で表現

(a, b) または GCD(a, b)

(a, b) = 1の時、aとbは**互いに素である**という。

公倍数(common multiple):任意の2つの整数の共通の倍数

最小公倍数(least common multiple):公倍数の中で最小の数

整数a、bの最小公倍数を以下で表現

LCM(a, b)

最大公約数に関する定理

定理5 a<b の時、qを整数とすると、(a, b)= (a, b-qa)

証明 d = (a, b), d' = (a, b-qa) とおく

dはqa の約数 従って、dはqa とbの公約数

∴ 定理4よりdはb-qaの約数

.. dはaとb-qaの公約数

d'はaとb-qaの最大公約数故、d≦d'···①

逆に、d'はaとb-qaの公約数

d'はqaの約数

∴ d'は(b-qa)+qaの約数 即ち、d'はbの約数

.. d'はaとbの公約数

dはaとbの最大公約数故、d'≦d···②

式①、②より、d=d'即ち、(a,b)=(a,b-qa)

 $(6, 15) = (6, 15 - 2 \cdot 6) = (6, 3)$

ユークリッドの互除法

a と b の最大公約数 (a, b) を求める

定理5より
$$(a, b) = (a, b - q_1 a) = (a, r_1) = (r_1, a)$$
 $r_1 < a$

 $b=q_1a+r_1$ $a = q_2 r_1 + r_2$ $r_1 = q_3 r_2 + r_3$

 $r_{n-2} = q_n r_{n-1} + r_n$ $r_{n-1} = q_{n+1}r_n + 0$

 $b>a>r_1>r_2>\cdots>r_n>0$

 $(a, b) = (r_1, a) = (r_2, r_1) = \cdots = (r_n, r_{n-1}) = (0, r_n) = r_n$

例:(85,204)を求める

例:(3,11)を求める

85=0.204+85 204=2:85+34 85=2-34+17

11=3:3+2 3=1 • 2+1 2=2 • 1+0

34=2-17+0

最大公約数は1

最大公約数は17

付. 一次不定方程式の解法

例 以下の一次不定方程式 (1) の解 x、y を求めよ。

$$85x - 204y = 17 \tag{1}$$

解法 x、yの係数の最大公約数は(下記のユークリッドの互除法参照)

$$(85, -204) = (85, 204) = 17$$

であり、17。従って、式(1)は解を持つ。

85と204へのユークリッドの互除法の適用結果

85=0.204+85

204=2.85+34 (2)

85=2:34+17 (3)

 $34=2 \cdot 17+0$

 $17 = 85 - 2 \cdot 34$ 式(3)より

 $= 85 - 2 \cdot (204 - 2 \cdot 85)$ 式(2)より

 $= (1+2\cdot 2)\cdot 85 - 2\cdot 204$

故に、85・5 - 204・2 = 17

従って、x=5、y=2が解

付. 一次不定方程式

命題 aとbの最大公約数をd=(a,b)とするとき、一次不定方程式

$$ax + by = d$$

を満たす解 x, y が存在する。

証明 a、bにユークリッドの互除法を適用し、

$$r_n = d, r_{n+1} = 0$$
 $r_{n-1} = q_{n+1}r_n + 0$

になったとする。その際に現れる式 r, 、=q,r, 1+r, を適用すると、

$$\mathbf{d} = \mathbf{r}_{n-2} - \mathbf{q}_{n} \mathbf{r}_{n-1}$$

更に、一つ前のステップに現れる式 $r_{n,3}=q_{n,1}r_{n,2}+r_{n,1}$ を適用すると、

$$d = r_{n-2} - q_n(r_{n-3} - q_{n-1}r_{n-2})$$

= $- q_n r_{n-3} + (1 + q_n q_{n-1}) r_{n-2}$

同様に $d = (1+q_nq_{n-1}) r_{n-4} - (q_n+(1+q_nq_{n-1}) q_{n-2}) r_{n-3}$

一般に $d = c_{i-1}r_{i-1} + c_ir_i$

 $a=q_2r_1+r_2$ i=0のとき、r₀=a r₁=b 故 d = bc₁ + ac₀

x=c₀, y=c₋₁は解

オイラーの関数

素数:1より大きい整数で、1とその整数以外の約数を持たない数

合成数: 1とその整数以外にも、約数を持つ正整数

(注)1は素数でも合成数でもない

定理6 合成数は素数の積で表される(素因数分解)

定理7 合成数を素数の積で表す仕方は1通りである(積の順序は対象外)

オイラーの関数 $\phi(n)$: 正整数n に対し、 $1 \le i \le n$ で、(n,i) = 1 を満たすi の総数

例: n=12 のとき、 $1 \le i \le 12$ を満たす集合 Z_1 は

$$Z_{12} = \{1, 2, 3, \dots, 12\}$$

(12, i) = 1 を満たす i の集合 $Z_{12}^* = \{1, 5, 7, 11\}$ 故、 $\phi(n) = 4$

合同式

B	月	火	水	木	金	±
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

 \blacksquare : x mod 7 = 4

月: $x \mod 7 = 5$

火: $x \mod 7 = 6$

 $x : x \mod 7 = 0$

 \star : x mod 7 = 1

 $\pm : x \mod 7 = 2$

 \pm : x mod 7 = 3

2つの整数 a,b が同じ曜日を表すということは、7で割った余りが同一ということ このことを以下のように記述し、「a は7を法として b に合同である」という

合同式 a ≡ b mod 7

反射律 a ≡ a mod n

但し、nは自然数

対称律 a ≡ b mod n ならば b ≡ a mod n

推移律 a ≡ b mod n かつ b ≡ c mod n ならば a ≡ c mod n

例: 3 = 10 mod 7 かつ 10 = 17 mod 7 ならば 3 = 17 mod 7

合同式の算法(2)

定理9 $a \equiv b \mod n$ ならば $a^k \equiv b^k \mod n$

証明

 $a \equiv b \mod n$ $a \equiv b \mod n$ k個

 $a \equiv b \mod n$

両辺を掛け合わせると

 $a^k \equiv b^k \mod n$

定理10 (c, n) = 1 ならば

ac ≡ bc mod n の時、a ≡ b mod n

証明

 $ac-bc \equiv 0 \mod n$ $(a-b)c \equiv 0 \mod n$

(c, n)=1故、 $a-b \equiv 0 \mod n$

即ち、a = b mod n

11

合同式の算法(1)

定理8 $a \equiv b \mod n$, $c \equiv d \mod n$ のとき、

 $a + c \equiv b + d \mod n$ $a-c \equiv b-d \mod n$ $ac \equiv bd \mod n$

a = pn + r b = qn + rc = sn + u d = tn + u

> a+c = (p+s)n + (r+u)b+d = (q+t)n + (r+u)同一なので、nで割った余りも同じ

a-c = (p-s)n + (r-u) b-d = (q-t)n + (r-u)同一なので、nで割った余りも同じ

ac = (psn + pu+rs)n+ru bd = (qtn+qt+rt)n + ru同一なので、nで割った余りも同じ

剰余類

剰余類R(a): 自然数 n と整数 a に対して、n を法としてa と合同な整数の集合 **完全剰余系**R_n: 各剰余類R(i) (i=0,1,...,n-1) それぞれの要素から成る整数集合 **既約剰余系**R_n*: 完全剰余系R_nの整数のうち、n と互いに素となる((n, a_i)=1) 整数a。の集合

例: n=10 を法とする剰余類

 $R(0) = {..., -20, -10, 0, 10, 20, ...}$ $R(1) = {..., -19, -9, 1, 11, 21, ...}$

 $R(9) = {..., -11, -1, 9, 19, 29, ...}$

完全剰余系 R₁₀ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

既約剰余系 R_{10} * = {1, 3, 7, 9}

オイラーの関数(R_n*の要素数) φ(10) = 4

12

既約剰余系の乗算

完全剰余系 R₁₀: {0,1,2,3,4,5,6,7,8,9}

乗算結果

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

既約剰余系 R₁₀*: {1,3,7,9}

- ・任意の2つの数の乗算結果は元の既約
- 剰余系の要素
- ・乗算表の行や列には、すべての要素が 繰り返しなしで現れる

乗算の対応は1対1

13

15

オイラーの定理

定理12 自然数n、整数aに対し、(a, n) = 1 ならば、以下の式が成立

 $a^{\phi(n)} \equiv 1 \mod n$

証明 $R_n^* = \{a_1, a_2, \cdots, a_{\phi(n)}\}$ の各要素をx、 R_n^* のうちの1つの要素 a_i とした場合 $x \to a_i x$ は1対1対応

即ち、 $\{a_1,a_2,\cdots,a_{|\phi(n)}\}$ と $\{a_ia_1,a_ia_2,\cdots,a_ia_{|\phi(n)}\}$ は要素の並び順を除いては、同一の集合

従って、その積は同一。即ち、

$$a_1 a_2 \cdots a_{\phi(n)} \equiv (a_i a_1)(a_i a_2) \cdots (a_i a_{\phi(n)}) \mod n$$

$$a_1 a_2 \cdots a_{\phi(n)} \equiv a_i^{\phi(n)} a_1 a_2 \cdots a_{\phi(n)} \mod n$$

$$a_1 a_2 \cdots a_{\phi(n)} (a_i^{\phi(n)} - 1) \equiv 0 \mod n$$

a₁a₂···a_{d(n)}は n と互いに素故、

 $a_i^{\phi(n)} - 1 \equiv 0 \mod n$

 $a_i^{\phi(n)} \equiv 1 \mod n$

既約剰余系の乗算対応

定理11 $\mod n$ の既約剰余系 $R_n^* = \{a_1, a_2, \cdots, a_{\phi(n)}\}$ の各要素xに、 R_n^* のうちの1つの要素 a_i を掛けて

 $x \rightarrow a_i x$

という対応を考えると、この対応は1対1である。

証明 $(a_i, n) = 1, (x, n) = 1$ 故、 $(a_i x, n) = 1$

従って、aix は既約剰余系 Ri*に属する

 $\sharp t$:, $x_1 \rightarrow a_i x_1$, $x_2 \rightarrow a_i x_2$

 \mathfrak{C} , $a_i x_1 \equiv a_i x_2 \mod n$

ならば、定理8より $a_i(x_1-x_2) \equiv 0 \mod n$

即ち、nはa_i(x₁-x₂)の約数

ここで、 $(a_i, n) = 1$ 故、n は $(x_1 - x_2)$ の約数

即ち、 $x_1 \equiv x_2 \mod n$ 従って、対応は1対1 al a2 (1対1対応 a2 a 4 (n) a2 a 2

14

付. オイラーの定理の例

定理12 自然数n、整数aに対し、(a, n) = 1 ならば、以下の式が成立

 $a^{\phi(n)} \equiv 1 \mod n$

例

n=12 のとき、(a,12)=1 を満たす既約剰余系 $R_{12}^*=\{1,5,7,11\}$ オイラーの関数 $\phi(12)=4$

 $1^4 \equiv 1 \mod 12$

 $5^4 = 25^2 \equiv 1 \mod 12$

 $7^4 = 49^2 \equiv 1 \mod 12$

 $11^4 = 121^2 \equiv 1 \mod 12$

 $ab \mod p = (mp+r)b \mod p = (mpb+rb) \mod p = rb \mod p$

abに対する剰余は(aに対する剰余)・bに対する剰余に等しい

16

フェルマーの小定理

定理13 整数a に対し、p が素数で、(a,p)=1 ならば、以下の式が成立 $a^{p-1}\equiv 1 \bmod p$

∵ pが素数故、オイラー関数 φ(p) = p-1

例 p = 5 のとき a = 1, 2, 3, 4 p-1 = 4 $1^4 \equiv 1 \mod 5$ $2^4 = 16 \equiv 1 \mod 5$ $3^4 = 81 \equiv 1 \mod 5$ $4^4 = 256 \equiv 1 \mod 5$

17

逆数の計算(1)

例 mod 11での既約剰余系の逆数

b = a p-2 を計算

 $\begin{array}{l} 1^{-1} \equiv 11^{1-2} = 1^9 \equiv 1 \\ 2^{-1} \equiv 21^{1-2} = 2^9 = 512 \equiv 6 \\ 3^{-1} \equiv 31^{1-2} = 3^9 = (3^3)^3 = 27^3 \equiv 5^3 = 125 \equiv 4 \\ 4^{-1} \equiv 3 \\ 5^{-1} \equiv 51^{1-2} = 5^9 = (5^3)^3 = 125^3 \equiv 4^3 = 64 \equiv 9 \\ 6^{-1} \equiv 2 \\ 7^{-1} \equiv 71^{1-2} = 7^9 = (7^3)^3 = 343^3 \equiv 2^3 = 8 \\ 8^{-1} \equiv 7 \\ 9^{-1} \equiv 5 \\ 10^{-1} \equiv 10^{11-2} = 10^9 = (10^3)^3 = 1000^3 \equiv 10^3 = 1000 \equiv 10 \end{array}$

19

逆数

素数pの既約剰余系 R_p* = {1, 2, · · · ,p-1}の任意の要素 a に対して

 $ab \equiv 1 \mod p$

フェルマーの小定理

となるb が存在する。

pが素数で、(a, p) = 1 ならば、以下の式が成立

b=ap-2を選べばよい

 $a^{p-1} \equiv 1 \mod p$

b をa の逆数(逆元)といい、a-1で表す。

a の逆数は唯一に定まる。

証明 $ab \equiv 1 \mod p$ $ab' \equiv 1 \mod p$

とすると、a(b−b')≡ 0 mod p

(a, p) = 1 故、 $b-b' \equiv 0 \mod p$

即ち、b ☰ b' mod p

ある数の逆数の逆数はその数自身 (a-1)-1= a

18

逆数の計算(2)

例 3b ≡ 1 mod 11におけるb(3の逆数)の計算

ユークリッドの互除法の利用

 $3b \equiv 1 \bmod 11 \qquad (1)$

恒等的に成り立つ式 11b = 0 mod 11 (2)

11と3にユークリッドの互除法を適用

11=3•3+2 (3)

 $3=1\cdot 2+1$ (4)

2=2-1

 $(3) \& 9, (1) \times 3 \qquad 9b \equiv 3 \bmod 11 \tag{5}$

(2) - (5) $2b \equiv -3 \mod 11$ (6)

(4)より、(1) – (6) b = 4 mod 11

20