Unit 5. Integration techniques

5A. Inverse trigonometric functions; Hyperbolic functions

5A-1 Evaluate

a)
$$\tan^{-1}\sqrt{3}$$

b)
$$\sin^{-1}(\sqrt{3}/2)$$

c) If $\theta = \tan^{-1} 5$, then evaluate $\sin \theta$, $\cos \theta$, $\cot \theta$, $\csc \theta$, and $\sec \theta$.

d) $\sin^{-1}\cos(\pi/6)$ e) $\tan^{-1}\tan(\pi/3)$ f) $\tan^{-1}\tan(2\pi/3)$ g) $\lim_{x\to-\infty}\tan^{-1}x$.

5A-2 Calculate

$$a) \int_1^2 \frac{dx}{x^2 + 1}$$

b)
$$\int_{b}^{2b} \frac{dx}{x^2 + b^2}$$

b)
$$\int_{b}^{2b} \frac{dx}{x^2 + b^2}$$
 c) $\int_{-1}^{1} \frac{dx}{\sqrt{1 - x^2}}$.

5A-3 Calculate the derivative with respect to x of the following

a)
$$\sin^{-1}\left(\frac{x-1}{x+1}\right)$$

b) $\tanh x$

c)
$$\ln(x + \sqrt{x^2 + 1})$$

d) y such that $\cos y = x$, $0 \le x \le 1$ and $0 \le y \le \pi/2$.

e)
$$\sin^{-1}(x/a)$$

f)
$$\sin^{-1}(a/x)$$

g)
$$\tan^{-1}(x/\sqrt{1-x^2})$$

h)
$$\sin^{-1} \sqrt{1-x}$$

5A-4 a) If the tangent line to $y = \cosh x$ at x = a goes through the origin, what equation must a satisfy?

- b) Solve for a using Newton's method.
- **5A-5** a) Sketch the graph of $y = \sinh x$, by finding its critical points, points of inflection, symmetries, and limits as $x \to \infty$ and $-\infty$.
- b) Give a suitable definition for $\sinh^{-1} x$, and sketch its graph, indicating the domain of definition. (The inverse hyperbolic sine.)

c) Find
$$\frac{d}{dx} \sinh^{-1} x$$
.

d) Use your work to evaluate
$$\int \frac{dx}{\sqrt{a^2 + x^2}}$$

5A-6 a) Find the average value of y with respect to arclength on the semicircle $x^2 + y^2 = 1$, y > 0, using polar coordinates.

b) A weighted average of a function is

$$\int_{a}^{b} f(x)w(x)dx \bigg/ \int_{a}^{b} w(x)dx$$

Do part (a) over again expressing arclength as ds = w(x)dx. The change of variables needed to evaluate the numerator and denominator will bring back part (a).

c) Find the average height of $\sqrt{1-x^2}$ on -1 < x < 1 with respect to dx. Notice that this differs from part (b) in both numerator and denominator.

5B. Integration by direct substitution

Evaluate the following integrals

5B-1.
$$\int x\sqrt{x^2 - 1}dx$$
 5B-2. $\int e^{8x}dx$ 5B-3. $\int \frac{\ln x dx}{x}$ 5B-4. $\int \frac{\cos x dx}{2 + 3\sin x}$ 5B-5. $\int \sin^2 x \cos x dx$ 5B-6. $\int \sin 7x dx$ 5B-7. $\int \frac{6x dx}{\sqrt{x^2 + 4}}$ 5B-8. $\int \tan 4x dx$ 5B-9. $\int e^x (1 + e^x)^{-1/3} dx$ 5B-10. $\int \sec 9x dx$ 5B-11. $\int \sec^2 9x dx$ 5B-12. $\int xe^{-x^2} dx$ 5B-13. $\int \frac{x^2 dx}{1 + x^6}$. Hint: Try $u = x^3$.

Evaluate the following integrals by substitution and changing the limits of integration.

5B-14.
$$\int_0^{\pi/3} \sin^3 x \cos x dx$$
 5B-15. $\int_1^e \frac{(\ln x)^{3/2} dx}{x}$ 5B-16. $\int_{-1}^1 \frac{\tan^{-1} x dx}{1 + x^2}$

5C. Trigonometric integrals

Evaluate the following

5C-1.
$$\int \sin^2 x dx$$
 5C-2. $\int \sin^3(x/2) dx$ 5C-3. $\int \sin^4 x dx$ 5C-4. $\int \cos^3(3x) dx$ 5C-5. $\int \sin^3 x \cos^2 x dx$ 5C-6. $\int \sec^4 x dx$ 5C-7. $\int \sin^2(4x) \cos^2(4x) dx$ 5C-8. $\int \tan^2(ax) \cos(ax) dx$ 5C-9. $\int \sin^3 x \sec^2 x dx$ 5C-10. $\int (\tan x + \cot x)^2 dx$ 5C-11. $\int \sin x \cos(2x) dx$ (Use double angle formula.) 5C-12. $\int_0^{\pi} \sin x \cos(2x) dx$ (See 27.)

5C-13. Find the length of the curve $y = \ln \sin x$ for $\pi/4 \le x \le \pi/2$.

5C-14. Find the volume of one hump of $y = \sin ax$ revolved around the x-axis.

5D. Integration by inverse substitution

Evaluate the following integrals

$$5\text{D-1.} \int \frac{dx}{(a^2-x^2)^{3/2}} \qquad 5\text{D-2.} \int \frac{x^3dx}{\sqrt{a^2-x^2}} \qquad 5\text{D-3.} \int \frac{(x+1)dx}{4+x^2} \\ 5\text{D-4.} \int \sqrt{a^2+x^2}dx \qquad 5\text{D-5.} \int \frac{\sqrt{a^2-x^2}dx}{x^2} \qquad 5\text{D-6.} \int x^2\sqrt{a^2+x^2}dx \\ (\text{For 5D-4,6 use } x=a \sinh y, \text{ and } \cosh^2 y = (\cosh(2y)+1)/2, \ \sinh 2y = 2 \sinh y \cosh y.)$$

5D-7.
$$\int \frac{\sqrt{x^2 - a^2} dx}{x^2}$$
 5D-8. $\int x\sqrt{x^2 - 9} dx$

5D-9. Find the arclength of $y = \ln x$ for $1 \le x \le b$.

Completing the square

Calculate the following integrals

5D-10.
$$\int \frac{dx}{(x^2 + 4x + 13)^{3/2}}$$
 5D-11.
$$\int x\sqrt{-8 + 6x - x^2} dx$$
 5D-12.
$$\int \sqrt{-8 + 6x - x^2} dx$$
 5D-13.
$$\int \frac{dx}{\sqrt{2x - x^2}}$$
 5D-14.
$$\int \frac{xdx}{\sqrt{x^2 + 4x + 13}}$$
 5D-15.
$$\int \frac{\sqrt{4x^2 - 4x + 17} dx}{2x - 1}$$

5E. Integration by partial fractions

5E-1.
$$\int \frac{dx}{(x-2)(x+3)} dx$$
 5E-2.
$$\int \frac{xdx}{(x-2)(x+3)} dx$$
 5E-3.
$$\int \frac{xdx}{(x^2-4)(x+3)} dx$$
 5E-4.
$$\int \frac{3x^2+4x-11}{(x^2-1)(x-2)} dx$$
 5E-5.
$$\int \frac{3x+2}{x(x+1)^2} dx$$
 5E-6.
$$\int \frac{2x-9}{(x^2+9)(x+2)} dx$$

- **5E-7** The equality (1) of Notes F is valid for $x \neq 1, -2$. Therefore, the equality (4) is also valid only when $x \neq 1, -2$, since it arises from (1) by multiplication. Why then is it legitimate to substitute x = 1 into (4)?
- **5E-8** Express the following as a sum of a polynomial and a proper rational function

a)
$$\frac{x^2}{x^2-1}$$
 b) $\frac{x^3}{x^2-1}$ c) $\frac{x^2}{3x-1}$ d) $\frac{x+2}{3x-1}$ e) $\frac{x^8}{(x+2)^2(x-2)^2}$ (just give the form of the solution)

- **5E-9** Integrate the functions in Problem **5E-8**.
- **5E-10** Evaluate the following integrals

a)
$$\int \frac{dx}{x^3 - x}$$
 b) $\int \frac{(x+1)dx}{(x-2)(x-3)}$ c) $\int \frac{(x^2 + x + 1)dx}{x^2 + 8x}$ d) $\int \frac{(x^2 + x + 1)dx}{x^2 + 8x}$ e) $\int \frac{dx}{x^3 + x^2}$ f) $\int \frac{(x^2 + 1)dx}{x^3 + 2x^2 + x}$ g) $\int \frac{x^3dx}{(x+1)^2(x-1)}$ h) $\int \frac{(x^2 + 1)dx}{x^2 + 2x + 2}$

- **5E-11** Solve the differential equation dy/dx = y(1-y).
- **5E-12** This problem shows how to integrate any rational function of $\sin \theta$ and $\cos \theta$ using the substitution $z = \tan(\theta/2)$. The integrand is transformed into a rational function of z, which can be integrated using the method of partial fractions.
 - a) Show that

$$\cos \theta = \frac{1 - z^2}{1 + z^2}, \quad \sin \theta = \frac{2z}{1 + z^2}, \quad d\theta = \frac{2dz}{1 + z^2}.$$

Calculate the following integrals using the substitution $z = \tan(\theta/2)$ of part (a).

b)
$$\int_0^{\pi} \frac{d\theta}{1 + \sin \theta}$$
 c) $\int_0^{\pi} \frac{d\theta}{(1 + \sin \theta)^2}$ d) $\int_0^{\pi} \sin \theta d\theta$ (Not the easiest way!)

5E-13 a) Use the polar coordinate formula for area to compute the area of the region $0 < r < 1/(1+\cos\theta), \ 0 \le \theta \le \pi/2$. Hint: Problem 12 shows how the substitution $z = \tan(\theta/2)$ allows you to integrate any rational function of a trigonometric function.

b) Compute this same area using rectangular coordinates and compare your answers.

5F. Integration by parts. Reduction formulas

Evaluate the following integrals

5F-1 a)
$$\int x^a \ln x dx$$
 ($a \neq -1$) b) Evaluate the case $a = -1$ by substitution.

5F-2 a)
$$\int xe^x dx$$
 b) $\int x^2 e^x dx$ c) $\int x^3 e^x dx$ d) Derive the reduction formula expressing $\int x^n e^{ax} dx$ in terms of $\int x^{n-1} e^{ax} dx$.

5F-3 Evaluate
$$\int \sin^{-1}(4x)dx$$

5F-4 Evaluate
$$\int e^x \cos x dx$$
. (Integrate by parts twice.)

5F-5 Evaluate
$$\int \cos(\ln x) dx$$
. (Integrate by parts twice.)

5F-6 Show the substitution $t = e^x$ transforms the integral $\int x^n e^x dx$, into $\int (\ln t)^n dt$. Use a reduction procedure to evaluate this integral.