

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА «Г	Ірограммное обеспечение ЭВМ и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

HA TEMY:

«Проектирование БД системы обогащения обучающей выборки для автоматизированной проверки отчета на соответствие нормативным требованиям»

Студент <u>ИУ7-64Б</u> (Группа)	(Подпись, дата)	—————————————————————————————————————
Руководитель курсовой работы	(Подпись, дата)	Строганов Ю. В. (И. О. Фамилия)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 4				
1	Ана	ілитич	иеская часть	5
	1.1	Основ	вные ошибки в отчетах	5
	1.2	Прием	л лабораторных работ	5
		1.2.1	Участники процесса приема работ	5
		1.2.2	Процесс приема работ	5
		1.2.3	Анализ существующих средств автоматизации	8
2	Кон	нструк	торская часть	10
	2.1	Форма	ализация сущностей базы данных	10
3	Tex	нологи	ическая часть	12
4	Исо	следова	ательская часть	13
3	АКЛ	ЮЧЕ	ние	14
\mathbf{C}	ПИС	сок и	СПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	15
П	РИЛ	ОЖЕ	ние а	16
	A.1	Основ	еные ошибки в отчетах	16
		A.1.1	Общие ошибки	16
		A.1.2	Ошибки в тексте	16
		A.1.3	Ошибки в рисунках	17
		A.1.4	Ошибки в таблицах	18
		A.1.5	Ошибки в формулах	19
		A.1.6	Ошибки в списках	19
		A.1.7	Ошибки в списке литературы	20
П	РИЛ	ОЖЕ	ние в	21

ВВЕДЕНИЕ

Во время обучения студентам регулярно приходится писать отчеты к различным видам работ (курсовые, лабораторные, научно-исследовательские работы и т. д.), при этом оформление работ должно соответствовать ГОСТ, что необходимо своевременно проверить и при необходимости отправить отчет на доработку, однако, количество студентов намного превышает количество нормоконтроллеров. Для ускорения процесса проверки возможно использование автоматических систем.

Целью курсовой работы является разработка базы данных обогащения обучающей выборки для автоматизированной проверки отчета на соответствие нормативным требованиям.

Для достижения цели научно-исследовательской работы требуется решить следующие задачи:

- проанализировать существующие решения;
- формализовать задачу и определить необходимый функционал;
- проанализировать способы хранения данных и системы управления базами данных, выбрать подходящую систему для поставленной цели;
- спроектировать базу данных, описать ее сущности и связи;
- спроектировать и разработать базу данных;
- исследовать зависимость времени выполнения запроса от числа получаемых запросов;

1 Аналитическая часть

В данной части работы будет описаны ошибки в отчетах, которые необходимо обнаружить, а также описаны участники процесса приема лабораторных работ, также будут описаны существующие средства автоматизации.

1.1 Основные ошибки в отчетах

Основные ошибки в отчетах описаны в приложении А.

1.2 Прием лабораторных работ

В не автоматизированной системе проверки отчетов на соответствие ГОСТ и дополнительным требованиям присутствуют две роли: студент, выполняющий некоторую работы, которая подразумевает написание отчета и нормоконтроллер, принимающий экспертное решение о соответствии предоставленного ему отчета необходимым требованиям.

1.2.1 Участники процесса приема работ

С помощью использования автоматической проверки отчета возможно сократить временные ресурсы, выделяемые нормоконтроллером на проверку отчетов студентов, однако, полностью отказаться от финального контроля результатов человеком невозможно, таким образом существует две роли при проверки отчета на соответствие ГОСТ, а именно: студент и нормоконтроллер.

1.2.2 Процесс приема работ

Студент отправляет отчет на проверку, а затем получает результат со списком ошибок (если имеются). Нормоконтроллер же анализирует отчет, составленный автоматической системой проверки, и при необходимости может внести необходимые правки. Диаграммы процесса проверки отчетов приведены на картинках 1.1–1.3, также приведена диаграмма BPMN 2.0, на которой представлено взаимодействие системы проверки отчетов, нормоконтроллера и студента (рисунок 1.4).

Использование автоматической проверки отчетов на соответствие ГОСТ и дополнительным требованиям сократит временные затраты на проверку отчетов.

Рисунок 1.1 – Диаграмма вариантов автоматической проверки отчета

Рисунок 1.2 – Диаграмма состояний проверки отчета

Рисунок 1.3 – Диаграмма последовательности действий

Рисунок 1.4 – BPMN 2.0 диаграмма сдачи лабораторной работы

1.2.3 Анализ существующих средств автоматизации

Ввиду распространенности решаемой проблемы уже были созданы приложения для автоматизации проверки документов на соответствие стандартам.

Наиболее популярными из них являются:

- 1. BKP-CMAPT [1];
- 2. TestVkr [2];
- 3. Applitools visual testing [3];

Система ВКР-СМАРТ, предназначенная для проверки выпускных квалификационных работ (ВКР) студентов, представляет собой универсальную платформу, разработанную для системного хранения и проверки на заимствования ВКР и других работ обучающихся. Также система проверяет предложенные работы на выполнение всех требований ФГОС ВО и СПО, а также соответствие ГОСТам. После выполнения проверок, будет получен отчет о проценте заимствования и замечания по нарушенным стандартам [1].

Система ТЕСТ ВКР (Технический регламент проверки выпускных квалификационных работ) предназначена для проверки выпускных квалификационных работ студентов на объем заимствования и их размещения в электронно-библиотечной системе (ЭБС) университета. Система обеспечивает централизованное хранение и контроль за академическими работами студентов, а также их проверку на оригинальность и уникальность контента, также данную систему (без использования хранилища) возможно запускать локально, для проверки работы на нарушение ГОСТ [2].

Платформа Applitools позволяет использовать «визуальное тестирование» предназначенное для сравнения получаемого изображения с реальным. Этот метод особенно эффективен при выявлении ошибок во внешнем виде страницы или экрана, которые могут остаться незамеченными при традиционном функциональном тестировании. С использованием Applitools Eyes разработчики могут легко интегрировать визуальные тесты, которые могут быть использованы для выявления отклонений от стандартов в PDF [3].

В таблице 1.1 под «элементами отчета» подразумеваются таблицы, рисунки, схема алгоритмов, формулы.

Таблица 1.1 – Сравнение существующих средств автоматизации

Критерий	BKP CMAPT	TestVkr	Applitools
Проверка текстов	да	да	нет
Проверка элемен-	нет	нет	да
тов отчета			
Наличие общего	да	да	нет
хранилища работ			
Возможность за-	нет	да	да
пуска локально			

Вывод

В данном разделе были описаны основные ошибки студентов в отчетах по лабораторным работам, были выделены участники процесса приема лабораторных работ, формализован процесс приема лабораторных работ, а также рассмотрены существующие средства автоматизации проверки работ на соответствие стандартам.

2 Конструкторская часть

В данной части работы будет описана реализация базы данных, описана ER диаграмма БД и принципиальная схема БД, также будут описаны схемы триггеров и хранимые процедуры.

2.1 Формализация сущностей базы данных

В соответствие с диаграммой 1.4 были выделены следующие таблицы:

- 1. student таблица студентов;
- 2. normcontroller таблица нормоконтроллеров;
- 3. mistakes таблица ошибок в отчетах студентов;
- 4. mistake_type таблица типов ошибок (возможно введение новых типов ошибок во время работы системы);
- 5. report отчет студента;
- 6. feedback отзыв студента о ошибке (в случае ошибки преподавателя можно указать на это);
- 7. reward награды для выдачи студентам, преуспевающим в выполнении лабораторных работ.

На основе описанной информации была получена диаграмма сущность—связь, представленная на рисунке 2.1.

Рисунок 2.1 – Диаграмма сущность—связь

3 Технологическая часть

В данной части рассматривается выбор средств реализации, описывается реализация алгоритмов и приводится интерфейс программного обеспечения.

4 Исследовательская часть

В данном разделе будет описано исследование зависимости среднего числа генерируемых кадров от числа и типа примитивов на сцене. Также будет описаны технические характеристики устройства, на котором проводились замеры и приведен анализ полученных результатов.

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. BKP BУЗ [Электронный ресурс]. URL: http://www.vkr-vuz.ru/ (дата обращения: 27.11.2023).
- 2. TestVkr [Электронный ресурс]. URL: https://ibm5.ru/studientam (дата обращения: 27.11.2023).
- 3. PdfTest [Электронный ресурс]. URL: https://applitools.com/blog/automate-pdf-testing/ (дата обращения: 27.11.2023).
- 4. ГОСТ 7.32—2017 Система стандартов по информации, библиотечному и издательскому делу. Отчет о научно-исследовательской работе. Структура и правила оформления. М.: Стандартинформ, 2017. 35 с.

ПРИЛОЖЕНИЕ А

А.1 Основные ошибки в отчетах

В данном разделе будут рассмотрены наиболее часто встречающиеся ошибки, которые совершают студенты при написании различных отчетов.

В целях выявления наиболее часто встречающихся ошибок были опрошены преподаватели, работа которых непосредственно связана с проверкой отчетов студентов.

А.1.1 Общие ошибки

В ГОСТ 7.32 указаны следующие размеры полей: левое — 30 мм, правое — 15 мм, верхнее и нижнее — 20 мм [4]. Выход за границы листа является одной из самых распространенных ошибок.

Каждый объект (таблица, рисунок, схема алгоритма, формула) должен быть подписан и пронумерован, однако более подробно подписи к каждому из них будут рассмотрены в следующих подразделах.

Если таблицу или схему не удается разместить на одной странице, то следует разбить данный объект на несколько частей, каждая из которых должна быть подписана.

А.1.2 Ошибки в тексте

Слова в тексте должны быть согласованы в роде, числе и падеже.

Страницы отчета должны быть пронумерованы, однако, номер на титульном листе не ставится, но он является первой страницей, что означает, что следующая страница должна иметь номер 2.

Ненумерованный заголовок (введение, список литературы, оглавление и т. п.) должен быть выравнен по центру, при этом он состоит только из прописных букв (пример представлен в приложении Б.1), другие варианты оформления являются не соответствующими стандарту.

Абзацный отступ должен быть одинаковым по всему тексту отчета и равен 1,25 см [4]. Любые другие варианты оформления считаются ошибочными.

Возможна потеря научного стиля и переход к публицистике, что является ошибкой, текст работы должен быть написан на государственном языке в

А.1.3 Ошибки в рисунках

Частой ошибкой является неправильное оформление рисунков. Каждый рисунок должен быть подписан, при этом подпись должна располагаться строго по центру, внизу рисунка. Другое оформление считается ошибочным.

Использование рисунков низкого разрешения является ошибкой. Все рисунки должны быть выполнены в высоком качестве, если обратное не требуется в самой работе.

Некорректный поворот рисунка считается ошибкой. Если рисунок не удается разместить на странице, то допускается повернуть его таким образом, чтобы верх рисунка был ближе к левой части страницы (см. рисунок Б.2).

Ошибки в графиках

Для каждого графика должна существовать легенда, для оформления которой существует два варианта:

- в одном из углов графика находится область, в которой указаны все обозначения;
- в подписи к графику описано каждое обозначение;

другое оформление является ошибкой.

Часто на графиках отсутствуют единицы измерения, что является ошибкой. Должны быть подписаны единицы измерения каждой из осей графика, даже в том случае, если на графике оси подписываются словами, например, если измерение идет в штуках или на оси обозначены времена года (см. рисунок Б.3).

Отчеты могут быть напечатаны в черно-белом варианте, поэтому на графиках должны быть маркеры, которые позволят отличить графики друг от друга даже не в цветом варианте. Отсутствие маркеров считается ошибкой.

При большом количестве графиков на одном рисунке возможна ситуация, при которой невозможно отличить один график от другого, что является ошибкой.

Ошибки в схемах алгоритмов

Если схему не удается разместить на одной странице, то она разбивается на несколько частей, каждая из которых должна быть подписана. Для разделения схемы алгоритма на части используется специальный символ-соединитель, который отображает выход в часть схемы и вход из другой части этой схемы, соответствующие символы-соединители должны содержать одно и то же уникальное обозначение, любые другие варианты оформления являются ошибочными.

Часто вместо символа начала или конца алгоритма используют овал, однако в этом случае должен быть использован прямоугольник с закругленными углами (см. рисунок Б.4).

При использовании символа процесса (прямоугольник) часто используют прямоугольник с закругленными углами (см. рисунок Б.5), что является ошибкой.

При соединении символов схемы алгоритмов не нужны стрелки, если они соединяют символы в направлении слево-направо или сверху-вниз, в остальных случаях символы должны соединяться линиями со стрелкой на конце, отсутствие требуемых стрелок считается ошибкой.

При использовании символа процесса-решение как минимум одна из соединительных линий должна быть подписана (см. рисунок Б.6), однако возможен также вариант, когда подписаны обе линии. Отсутствие пояснений к выходам данного символа является ошибкой.

Часто пояснительный текст пересекается с символами, использующимися для составления схем, что является ошибкой.

А.1.4 Ошибки в таблицах

Каждая таблица должна быть подписана. Наименование следует помещать над таблицей слева, без абзацного отступа в следующем формате: Таблица Номер таблицы - Наименование таблицы. Наименование таблицы приводят с прописной буквы без точки в конце [4]. Другие варианты оформления считаются не соответствующими стандарту.

Таблицу с большим количеством строк допускается переносить на другую страницу. При переносе части таблицы на другую страницу слово «Таб-

лица», ее номер и наименование указывают один раз слева над первой частью таблицы, а над другими частями также слева пишут слова «Продолжение таблицы» и указывают номер таблицы [4]. Любое другое оформление считается ощибочным.

А.1.5 Ошибки в формулах

Каждая формула должна быть пронумерована вне зависимости от того, существует ли ссылка на нее. Нумерация может осуществляться в двух вариантах:

- сквозная нумерация (номер формулы не зависит от раздела, в котором она находится);
- нумерация, зависящая от раздела (в том случае номер формулы начинается с номера раздела);

другое оформление считается ошибкой.

Отсутствие знака препинания после формулы является ошибкой. После каждой формулы должен находиться знак препинания (точка, запятая и т. п.), зависящий от контекста. Если в формуле содержится система уравнений, то после каждого из них (за исключением последнего) ставится запятая, а после последнего — точка, либо запятая (см. рисунок Б.7).

Номер формулы должен быть выравнен по правому краю страницы и находиться по центру формулы (в вертикальной плоскости). Другое оформление нумерации формул считается не соответствующим стандарту.

Если формула вставляется в начале страницы, то часто перед ней может присутствовать отступ, которого быть не должно.

А.1.6 Ошибки в списках

Ненумерованные списки должны начинаться с удлиненного тире (см. рисунок Б.8), другое оформление является ошибочным.

В нумерованных списках после номера пункта обязательно должна стоять скобка (см. рисунок Б.10), использование другого знака считается ошибкой.

В конце каждого пункта списка должен быть знак препинания, от которого зависит первая буква первого слова следующего пункта (см. рисунок Б.9):

- если пункт заканчивается на точку, то первое слово следующего пункта должно начинаться на прописную букву;
- если пункт заканчивается запятой или точкой с запятой, то следующий первое слово следующего слово должно начинаться со строчной буквы;

другое оформление является ошибочным.

А.1.7 Ошибки в списке литературы

Часто при описании одного из источников не указывается одна из составных частей (автор, издательство и т. п.), что является ошибкой.

Также нередко встречаются ссылки на так называемые «препринтовские» издательства (статья еще не вышла), однако была использована в отчете, это считается ошибкой.

приложение Б

Введение

Рисунок Б.1 – Пример ошибочного оформления ненумерованного заголовка

тпоунов т ттримор расоты 2 оуфера

Рисунок Б.2 – Пример ошибочного оформления рисунка — некорректный поворот

Рисунок Б.3 – Пример ошибочного оформления графика — отсутствуют единицы измерения

Рисунок Б.4 – Пример ошибочного оформления схемы — некорректный символ начала

Рисунок Б.5 – Пример ошибочного оформления схемы — некорректный символ процесса

Рисунок Б.6 – Пример ошибочного оформления схемы — не подписана ни одна из веток символа процесса—решение

$$D(i,j) = \begin{cases} 0 & \text{если } i = 0, j = 0 \\ j & \text{если } i = 0, j > 0 \\ \text{если } j = 0, i > 0 \end{cases}$$

$$\text{если } j = 0, i > 0$$

$$\text{если } j = 0, i > 0$$

$$min(min(D(i,j-1)+1)$$

$$D(i-1,j)+1)$$

$$D(i-1,j-1)+m(S_1[i],S_2[j])$$

$$\begin{bmatrix} D(i-2,j-2)+1 & \text{если } i > 1, j > 1, \\ S_1[i-1] == S_2[j-2], \\ S_1[i-2] == S_2[j-1] \end{bmatrix}$$
 иначе

Рисунок Б.7 – Пример ошибочного оформления системы уравнений — отсутствуют знаки препинания после уравнений

- One
- Two
- Three

Рисунок Б.8 – Пример ошибочного оформления ненумерованного списка — некорректный символ перед элементами списка

- Первый,
- Второй,
- Третий.

Рисунок Б.9 – Пример ошибочного оформления ненумерованного списка — некорректный регистр буквы следующего пункта после запятой в предыдущем

- 1. первый,
- 2. второй,
- 3. третий.

Рисунок Б.10 – Пример ошибочного оформления нумерованного списка — некорректный символ после номера элемента списка