Литература

- 1) Гельфанд: Лекции по линейной алгебре;
- 2) Кострикин и Манин: Линейная алгебра и геометрия;

Линейные пространства

- (1) Множество векторов плоскости или пространства;
- (2) Строки или столбцы из n чисел (a_1,\ldots,a_n) ;
- (3) Числовые последовательности;
- (4) Разные классы функций: $C(-\infty, \infty), C[0, 1];$
- (5) Многочлены;
- (6) Матрицы $n \times m$;

<u>Поле</u> \mathbb{K} : элементы поля будем называть числами (скалярами), чаще всего полям это \mathbb{R} или \mathbb{C} .

Опр: 1. <u>Линейным пространством</u> над полем \mathbb{K} называется множество V с операциями + (сложение двух элементов из V) и · (умножение элемента из V на скаляр), которые удовлетворяют свойствам:

- (1) в V существует нулевой элемент $0 \in V : 0 + a = a, \forall a \in V;$
- (2) $\forall a \in V, \exists b \in V : a + b = 0;$
- (3) $a+b=b+a, \forall a,b \in V;$
- (4) $(a+b)+c=a+(b+c), \forall a,b,c \in V;$
- (5) $\lambda \cdot (a+b) = \lambda \cdot a + \lambda \cdot b, \forall \lambda \in \mathbb{K}, \forall a, b \in V;$
- (6) $(\lambda + \mu) \cdot a = \lambda \cdot a + \mu \cdot a, \forall \lambda, \mu \in \mathbb{K}, \forall a \in V;$
- (7) $(\lambda \cdot \mu) \cdot a = \lambda \cdot (\mu \cdot a), \forall \lambda, \mu \in \mathbb{K}, \forall a \in V;$
- $(8) \ 1 \cdot a = a, \ \forall a \in V;$

Если выполнены свойства $(1)-(4)\Rightarrow V$ - абелева группа.

Следствие 1.

- 1. Единственность 0;
 - \square Пусть $\exists\,0,0'\in V$ нули $\Rightarrow\, \forall a\in V,\, 0+a=a,\, 0'+a=a \Rightarrow 0'=0+0'=0'+0=0.$
- 2. Единственность обратного элемента (обозначаем -a);
 - $\Box \quad \text{Пусть } \forall a, \exists \, b, b' \in V \colon a + b = 0 \land a + b' = 0 \Rightarrow b' = b' + 0 = b' + (a + b) = (b' + a) + b = 0 + b = b.$
- 3. $0 \in \mathbb{K}$, $0 \cdot a = 0$, $\forall a \in V$:
 - $\Box \ \forall a \in V \Rightarrow 0 = a + (-a) = 1 \cdot a + (-a) = (1+0) \cdot a + (-a) = 1 \cdot a + 0 \cdot a + (-a) = 0 \cdot a + a + (-a) = 0 \cdot a + a + (-a) = 0 \cdot a + 0 = 0 \cdot a .$

4. $(-1)\cdot a = -a, \forall a \in V;$

$$\Box \quad \forall a \in V \Rightarrow 0 = 0 \cdot a = (1-1) \cdot a = 1 \cdot a - 1 \cdot a = a + (-1) \cdot a = a + (-a) \Rightarrow (-1) \cdot a = -a.$$

Аффинные пространства

Опр: 2. Аффинное пространство это набор (A, V, +) такой, что:

- (1) $P + 0 = P, \forall P \in \mathcal{A}, 0 \in V;$
- (2) $(P+a)+b=P+(a+b), \forall P \in \mathcal{A}, \forall a,b \in V, P+a \in \mathcal{A};$
- (3) $\forall P, Q \in \mathcal{A}, \exists ! a \in V : P + a = Q;$

где \mathcal{A} это множество, V это линейное пространство, + это операция сложения: $P+v\in\mathcal{A},\ P\in\mathcal{A},\ v\in V.$

Рис. 1: Сложение точки с вектором в аффинном пространстве.

Rm: 1. <u>Аффинное</u> \Rightarrow <u>линейное</u> (просто забудем про \mathcal{A}). <u>Линейное</u> \Rightarrow <u>аффинное</u> (V - линейное, $\mathcal{A} := V$, + это операция в V).

Пример: A - матрица, X - столбец, AX = 0 - однородная СЛУ, V - множество решений СЛУ, X_1, X_2 - решения $\Rightarrow X_1 + X_2 \in V$, $\lambda \cdot X_1 \in V$, $\lambda \cdot X_2 \in V$ \Rightarrow линейное пространство.

Пример: AX = B - неоднородная СЛУ, не линейное пространство. Пусть \mathcal{A} - множество решений, V - множество решений однородной СЛУ: AX = 0. Решение однородное + решение неоднородное = решение неоднородное \Rightarrow аффинное пространство.

Линейные подпространства

Опр: 3. Пусть V - линейное пространство над \mathbb{K} . Подмножество $L \subset V$ называется линейным подпространством, если $\forall a,b \in L,\ a+b \in L \land \forall \lambda \in \mathbb{K},\ \forall a \in L,\ \lambda \cdot a \in L.$

Примеры: V - множество всех столбцов $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $L \subset V, L$ - множество решений $Ax = 0 \Rightarrow$

V - линейное пространство, L - линейное подпространство (для Ax=B - не будет линейных подпространств). Тогда:

- 1) $L = \{0\}$ линейное подпространство;
- 2) L = V линейное подпространство;
- 3) $a \neq 0, \, a \in V, \, L = \{ \, \lambda {\cdot} a \colon \lambda \in \mathbb{K} \, \}$ линейное подпространство;

Пусть $a_1, \ldots, a_n \in V$.

Опр: 4. Динейной оболочкой элементов $\{a_1, \ldots, a_n\}$, где $a_i \in V$ называются всевозможные выражения вида $\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n$, где $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$. Обозначение $\langle a_1, \ldots, a_n \rangle$.

Лемма 1. Пусть $a_1, \ldots, a_n \in V$, линейная оболочка $\langle a_1, \ldots, a_n \rangle$ является линейным подпространством.

 \square Пусть $b, c \in \langle a_1, \dots, a_n \rangle$, $b = \lambda_1 a_1 + \dots + \lambda_n a_n$, $c = \mu_1 a_1 + \dots + \mu_n a_n \Rightarrow$

$$b+c=(\lambda_1+\mu_1)a_1+\ldots(\lambda_n+\mu_n)a_n\in\langle a_1,\ldots,a_n\rangle,\ \alpha\cdot b=(\alpha\lambda_1)a_1+\ldots+(\alpha\lambda_n)a_n\in\langle a_1,\ldots,a_n\rangle$$

Таким образом получили линейное подпространство.

Линейное подмногообразие

Опр: 5. Пусть $a \in V$, $L \subset V$ - линейное подпространство. Динейным подмногообразием определенным по a и L называется множество $L_a = \{ a + b \colon b \in L \}$.

Пример: L - подпространство V, $a \in V$, тогда L_a представляется в следующем виде:

Рис. 2: Линейное подмногообразие L_a .

Пример: AX = B, a - частное решение неоднородной системы, L - множество решений однородной СЛУ, L_a - множество всех решений неоднородной СЛУ.

Задаемся вопросом, когда $L_{a_1} = L_{a_2}$ - ?

Лемма 2. $L_{a_1} = L_{a_2} \Leftrightarrow a_1 - a_2 \in L$.

 \square (\Leftarrow) $a_1-a_2\in L\Rightarrow$ надо доказать, что $L_{a_1}\subset L_{a_2}$ (обратное включение получится по симметрии). $x\in L_{a_1}\Rightarrow$

$$\exists b \in L : x = a_1 + b = a_1 - a_2 + a_2 + b = a_2 + \underbrace{(a_1 - a_2) + b}_{\in L} = a_2 + b' \in L_{a_2}$$

где $b' \in L$.

$$(\Rightarrow) \ a_1 \in L_{a_1}$$
, так как $a_1 + 0 = a_1 \in L_{a_1}$. $L_{a_1} = L_{a_2} \Rightarrow a_2 + b \in L_{a_2}$, где $b \in L$, $a_1 \in L_{a_2} \Rightarrow b \in L$: $a_1 = a_2 + b \Rightarrow a_1 - a_2 = b \in L$

Множество всех линейных подмногообразий L_{α}

Задано фиксированное L, берем всевозможные a и получаем всевозможные L_a .

Рис. 3: Составление нового линейного подмногообразия L_{a+b} .

Введем структуру линейного пространства на этом множестве:

- (1) $\forall a, b \in V, L_a + L_b = L_{a+b};$
- (2) $\forall a \in V, \forall \lambda \in \mathbb{K}, \lambda \cdot L_a = L_{\lambda a};$

Проверим корректность: $L_a = L_{a'}, L_b = L_{b'}$ тогда.

(1) $L_{a+b} = L_{a'+b'};$

$$\Box \quad a - a' \in L, \ b - b' \in L \Rightarrow a - a' + b - b' = (a + b) - (a' + b') \in L \Rightarrow L_{a + b} = L_{a' + b'}.$$

(2) $L_{\lambda a} = L_{\lambda a'}$;

$$\square \quad a - a' \in L \Rightarrow \lambda \cdot (a - a') \in L \Rightarrow \lambda \cdot a - \lambda \cdot a' \in L \Rightarrow L_{\lambda a} = L_{\lambda a'}.$$

Опр: 6. Множество всех линейных подмножеств, при фиксированном L и $\forall a \in V$, удовлетворяющее условиям (1) и (2) называется факторпространством V/L.

Упр. 1. $L = \{0\}, L = V$, чему равно V/L?