Potencia -> vatio (w)

Inductancia -> henrio (H)

Capacidad -> faradio (F)

Carga -> culombio (C)

Voltaje -> voltio (V)

Intensidad -> amperio (A)

Corriente

Resistencia -> ohmio (-2)

$$AA = \frac{10^{-8} \text{ culombio}}{45 \rightarrow \text{ segundo}} I = \frac{Q}{t}$$

amperio

$$V = L \cdot \frac{dI}{dt}$$
 $AH = AV \cdot \frac{AS}{AA}$
 $A \rightarrow Damperio$

henrio

$$C = \frac{Q}{V} \rightarrow 1F = \frac{1}{1} \frac{1}{V} \frac{\text{culombi}}{\text{voltio}}$$
faradio

Resistencia Condensador Pasivos Inductancia

F. Alimentación/es -> Activos

TIPOS DE ELEMENTOS IDEALES

Activos: pueden ceder energia al circuito.

Tipo	NOMBRE	SÍMBOLO	V-I]
independientes	Fuente de tension	a_+b		// //
•	Fuente de corriente	ab	ab 4	1=1

depende del circuito en que se encuentre.

► El valor de la tensión entre los terminales de una fuente de corriente depende del circuito en que se encuentre.

Tipo	NOMBRE	SIMBOLO	V-I)
Dependientes -	Frente de tensión	a + b aly ó pIn	Vab A I	Vab=XVa Vab=BI
	Fuente de corriente	a 84 6 SI4	Vab 1	I=SI.

Vi o II, tensión o corriente en algún pto. del circuito.

[►] X, B, 8 y S son constantes con las dimensiones apropiadas.

A diferencia de las independientes, tanto el valor de la tensión con el de la corriente, depende del circuito en que se encuentre.

Pasivos: no pueden ceder energía al circuito.

TiPO	NOMBRE	SÍMBOLO	V-I
	Resistencia	$a - \frac{R}{I}$	Vab
Impedancias	Bobina	а — то р	Vab = L. <u>dI(t)</u>
	Condensador		I = C. dVab(t) (At)

$$C = \frac{Q}{V} \implies Q = C.V$$

$$\frac{dQ}{dt} = I = C. \frac{dV(H)}{dt}$$

· Asociación en serie de ELEMENTOS PASIVOS (Equivalencia)

$$-\frac{1}{R_1} \frac{1}{R_2} \frac{1}{R_3} \frac{1}{R_4} \frac{1$$

ASOCIACIÓN EN PARALELO DE ELEMENTOS PASIVOS (Equivalencia)

Req =
$$\left(\sum_{k} \mathcal{R}_{k}\right)^{-1}$$

Req = $\left(\sum_{k} \mathcal{R}_{k}\right)^{-1}$

Req = $\left(\sum_{k} \mathcal{R}_{k}\right)^{-1}$

Leq = $\left(\sum_{k} \mathcal{L}_{k}\right)^{-1}$

Leq = $\left(\sum_{k} \mathcal{L}_{k}\right)^{-1}$

$$C_{eq} = \sum_{k} C_{k}$$

Veq = ∑ Vk R k LD Suma algebraia Cuidado direccione

DE FUENTES DE CORRIEN · ASOCIACIONES EN SERIE Y PARALELO

 $T_{eq} = \sum_{k} I_{k}$ Lo Suma algebraica! cuidado direcciones

OTROS ELEMENTOS: CONEXIONES

- -Nodo: pto. donde se unen tres o más elementos.
- RAMA: porción de circuito entre dos nodos que no pasa por un tercer nodo.
- LAZO CERRADO: recorrido en un circuito que parte y acaba en el mismo punto.
- -MALLA: lazo cerrado que no contiene otros lazos cerrados

$$P = \frac{1}{T} \int_{0}^{1} i(t) \cdot v(t) dt$$

REALES EN CIRCUITOS REALES

ANÁLISIS DE UN CIRCUITO

- Determinación de las corrientes y tensiones en el mismo.

Se conocen VA, IB, Rj y & Pero

VA II

R1

R2

NO I1, IR2 ni VIB

cicómo deducir las magnitudes desconocidas

DE MEDIANTE LAS LEYES DE KIRCHHOFF

TOTAL SIGNOS DE ANÁLIO -DAPLICANDO MÉTODOS SIMPLIFICADOS DE ANALI

Req.=
$$\frac{1}{6} + \frac{1}{4} = \frac{10}{24}$$

Req.= $\frac{1}{10} + \frac{1}{4} = \frac{10}{24}$

Req.= $\frac{24}{10} = \frac{2'4}{10} = \frac{1}{10}$

Req.= $\frac{24}{10} = \frac{1}{10} = \frac$

$$I_{7} = \frac{10V}{10^{14}\Omega} = 0^{19}62 A \qquad || V_{AB} = 8\Omega \cdot 0^{19}62 = 7^{16}92 W$$

$$V_{BC} = 10 - 7^{16}92 = 2^{13}08 V$$

$$I_{7} = \frac{2^{13}08V}{4\Omega} = 0^{15}77 A$$

- De la Printra LEY DE KIRCHOFF (1ºLK) podemos sacar N-1 ecuaciones independientes, siendo n = nº de nodos.
- De la SEGUNDA LEY DE KIRCHHOFF (Z=LK) podemos sacar m ecuaciones independientes, siendo m = nº de mallas.

MÉTODO DE TENSIONES DE NODOS: utilità la L.K.N. - Se elige un nodo como origen de tensiones (V=O), y se

etiquetan los restantes.

_ Se asignan corrientes a todas las ramas del circuito.

- Mediante la L.K.N. se plantean n-1 ecuaciones de nodo, siendo n=nº de nodos.

- Se expresan las ecuaciones en función de las tensiones de nodo usando la L. Ohm.

- Si el sistema es indeterminado (porque hay fuentes dependientes), se buscan relaciones "adicionales" en el propio circuito y se resuelve el sistema (obtención de las tensione de nodo).

MÉTODO DE CORRIENTES DE MALLAS: Utiliza la L.K.M.

- Se asigna una "corriente de malla" a cada malla. Una rama perteneciente a dos mallas estará recorrida por dos "corrientes de malla -Mediante la L.K.M. se plantean m ecuaciones de malla, con m = nº de mallas.
- Se expresan las ecuaciones en función de las corrientes de malla usando la L.Ohm.
- Si el sistema de ecuaciones es indeterminado, se buscan relaciones "adicionales" en el circuito y se resuelve el sistema (obtención de las corrientes de malla)

PRINCIPIO DE SUPERPOSICION

En aquellos fenómemos físicos en los que causa y efecto estan linealmente relacionados, el efecto total de varias causas actuando simultáneamente es equivalente a la suma de los efectos de cada causa actuando individualmente.

En circuitos electrónicos { causas (=>) fuentes independientes efectos (=>) tensiones y corrientes que producen -Este teorema puede usarse con cualquiera de los métodos anteriore:

- Es especialmente útil en algunos circuitos de corriente alterna.

Atención /

- -Las fuentes dependientes (no) se deben anular, pues no son causas.
- No olvidar que la corriente por un cortocircuito puede tomar cualquier valor, mientras que la corriente por un circuito abierto es nula.
- Las ecuaciones de un circuito parcial no son válidas para el o los otros, pues la topología de ambos circuitos es diferente.

Circuites DE DOS TERMINALES

à Qué ocurre si en una red o circuito lineal conectamos entre dos puntos una resistencia adicional y hacemos variar su valor?

- Las corrientes y tensiones deutro de la red lineal variarai con el valor de R.

- Se establecerá una corriente I por la resistencia, y la caída de tensión V entre sus terminales será función de ella.

- A la relación V-I así obtenida se le denomina ecuación característica del circuito, y a su representación grafica, curva característica.

Ejemplo: ecuacion característica del armito de la figura,

L.K.N.
$$I_1 = I_2 + I \Rightarrow I_1 - I_2 - I = 0 \Rightarrow I_1 - \frac{V}{R_2} - I = 0$$

=
$$V(1) = R_2 I_4 - R_2 I$$
 curva característica: $f_{R_2}I_4$

- En circuitos con varias posibilidades de elección de los terminales, se obtendran distintas ecuaciones características (= circuitos equivalentes) para cada par de terminales:

N(I) = R2I1 - R2I

O RI III R2 = D PRI IZ U RZ REPTI

V(I) = R2 I1 - R2 I

· tomando C y A $V(I) = R_1 I_1 - R_1 I$

- Observar que la relación obtenida es de la forma V(I) = A B.I, este resultado es general para toda red lineal, por ser combinación de elementos lineales.
- La constante "A" ([A]=V) corresponde a la situacion en que I=O (R no conectada o de valor infinito, circuito abierto, y recibe el nombre de TENSIÓN DE THÉVENIN, YTA
- La constante "B" ([B] = 12) recibe el nombre de resistencia equivalente, Req. $V(I) = V_{Th} Req. I$
- Todo circuito lineal se comporta de la misma manera que un circuito formado por una fuente de tensión en serie con una resistencia (TEOREMA DE THÉVENIN).

- Si se intercambian las variables dependiente e independiente, la relación es de la forma I(v) = C DV, este resultado es tambiér general para toda red lineal.
- La constante "C" ([c]=A) corresponde a la situacioù en que V=O(R=0), o sea terminales en "cortocircuito" cable entre ellos), y recibe el nombre de <u>corriente de Norton</u>, In.

- La constante "D" ([D] = IZ) es D = B-1 = Req-1.
$$[I(V) = I_N - Req^{-1}V]$$
 $V_{Th} = I_N. Req.$

Todo circuito lineal se comporta de la misma manera que un circuito formado por una fuente de corriente en paralelo con una resistencia (TEOREMA DE NORTON).

OBTENCIÓN DE LOS CIRCUITOS EQUIVALENTES DE HEVENIN Y NORTON DE UNA

RED LINEAL

- 1) Identificando términos una vez obtenida la ecuación característica.
- 2) Imponiendo en el circuito las condiciones de circuito abierto (tensión V_{TN}) y de cortocircuito (para I_N), y utilizando la relación entre ellas para obtener Req.
- Si el circuito no tiene fuentes dependientes, se puede obtener Reg anulando las fuentes independientes y calculando el equivalente de la asociación de resistencias visto desde esos dos puntos.
- En cualquier circuito se puede obtener Req anulando las fuentes independientes, conectando una fuente de prueba externa (entre los terminales a y b) y hallando el cociente entre la tensión que aplica dicha fuente y la corriente que suministra.

complejo conjugado de $Z = \overline{Z} = Z^* = a - bj = C. e^{-j\ell} = D Z.\overline{Z} = |Z|^2$ Observación: sea F un número complejo de la forma $F = \frac{A.B}{C.D}$

$$|F| = \frac{|A|.|B|}{|c|.|D|}$$
 ; $\varphi(F) = \varphi(A) + \varphi(B) - \varphi(C) - \varphi(D)$

-BOBINAS Y CONDENSADORES EN CONTINUA
$$(f=0 \Rightarrow w=2\pi f=0)$$
 $Z_{c} = \frac{1}{jwc} \xrightarrow{\omega \to \infty} Z_{c} \to \infty$ (circuito abierto)

 $Z_{L} = jwL \xrightarrow{\omega \to \infty} Z_{L} \to 0$ (cortocircuito)

 $Z_{L} = jwL \xrightarrow{\omega \to \infty} Z_{L} \to \infty$ (circuito abierto)

$$V_0 = i \left(R_2 || Z_c \right)$$

$$V_0 = i \left(R_1 + \left(R_2 || Z_c \right) \right)$$

$$A_{V} = \frac{V_{0}}{V_{i}} = \frac{i(R_{2}||Z_{C})}{i(R_{1}+(R_{2}||Z_{C}))} = \frac{R_{2}||Z_{C}}{R_{1}+R_{2}||Z_{C}} = \frac{\left(\frac{1}{R_{2}}+j\omega_{C}\right)^{-1}}{R_{1}+\left(\frac{1}{R_{2}}+j\omega_{C}\right)^{-1}} = \frac{1}{1+\frac{R_{1}}{R_{2}}+j\omega_{C}R_{1}}$$

$$= \frac{R_{2}}{R_{1}+R_{2}+j\omega_{C}R_{1}R_{2}} = \frac{R_{2}/(R_{1}+R_{2})}{1+j\omega_{C}R_{1}+R_{2}} = \frac{1}{1+j\omega_{C}R_{1}R_{2}}$$

$$= \frac{O'_{1}}{1+j\frac{1}{1}}$$

$$= \frac{O'_{1}}{1+j\frac{1}{1}}$$

$$= \frac{O'_{1}}{1+j\frac{1}{1}}$$

$$= \frac{O'_{1}}{1+j\frac{1}{1}}$$

$$|A_V|_{dB} = \frac{20 \log_{10} 0^1}{-20 dB} - 20 \log_{10} \left[1 + \frac{f^2}{f_1^2}\right]^{1/2} =$$

