Topological Self-Stabilization with Name-Passing Process Calculi

Christina Rickmann

Christoph Wagner, Uwe Nestmann, Stefan Schmid

24. August 2016

Idea

"'We call the system "self-stabilizing" if and only if, regardless of the initial state [...], the system is guaranteed to find itself in a legitimate state after a finite number of moves."'

- Dijkstra 1974

Definition

Self-stabilization

A system is self-stabilizing if and only if (provided no fault occurs)

Convergence: started in any arbitrary state, the system reaches a desired state after a finite number of steps and

Definition

Self-stabilization

A system is self-stabilizing if and only if (provided no fault occurs)

Convergence: started in any arbitrary state, the system

reaches a desired state after a finite

number of steps and

Closure: if the system is in a desired state, it

remains in a desired state.

Characteristics

Self-stabilization:

- specialization of nonmasking fault tolerance
- tolerate arbitrary transient faults
- no initialization
- no fault detection
- must not terminate
- no local knowledge whether stabilized
- adapt to dynamic changes

Linearization

Original Shared-Memory-Algorithm

Gall et al. (2014):

for every node u, there are the following rules for every pair of neighbors v and w

linearize right(v,w) :

$$(v, w \in u.R \land u < v < w)$$

 $\rightarrow e(u, w) := 0, e(v, w) := 1$

linearize left(v,w) :

$$(v, w \in u.L \land w < v < u)$$

$$\rightarrow e(u, w) := 0, e(v, w) := 1$$

asynchronous messages: non blocking

asynchronous messages: non blocking

asynchronous messages: non blocking

asynchronous message passing + changing communication structure + distributed \Rightarrow localized $\pi\text{-calculus}$

$$Alg(p, nb) = (\nu nb_p) \left(\overline{nb_p} \langle nb \rangle \mid Alg_{rec}(p) \mid Alg_{match}(p) \right)$$

$$Alg'(p, nb, x) = (\nu nb_p) \left(\overline{nb_p} \langle nb \rangle \mid Alg_{add}(p, x) \mid Alg_{match}(p) \right)$$

$$Alg_{rec}(p) = p(x) . Alg_{add}(p, x)$$

$$Alg_{add}(p, x) = nb_p(y) . \left(\overline{nb_p} \langle y \cup \{x\} \rangle \mid Alg_{rec}(p) \right)$$

$$Alg_{match}(p) = nb_p(y) . (\text{let } x = \text{select}(\text{findLin}(p, y)) \text{ in}$$

$$\text{if } x = \bot \text{ then } \prod_{j \in y} \overline{j} \langle p \rangle \mid \overline{nb_p} \langle y \rangle$$

$$\text{else if } x = (j, k) \text{ then}$$

$$\text{if } j < k \land k < p \text{ then } \overline{j} \langle k \rangle \mid \overline{nb_p} \langle y \setminus \{j\} \rangle$$

$$\text{else if } j < k \land p < j \text{ then } \overline{k} \langle j \rangle \mid \overline{nb_p} \langle y \setminus \{k\} \rangle$$

$$\cdots$$

Rickmann Self-Stabilization 24. August 2016

 $Alg_{match}(p)$

Rickmann

Self-Stabilization

24. August 2016

keep-alive-messages

keep-alive-messages

Standard Proof Techniques

Let Z be the set of all states and $L \subseteq Z$ the set of legal/desired states

Convergence

Starting from a state in $Z \setminus L$, after a limited number of steps a state in I is reached.

 \Rightarrow construct a function $t: Z \to \mathbb{N}$ (potential function) that decreases with every step and for every state $x \in L$ holds t(x) = 0

Closure

Starting in a state in L, each following state again is in L.

⇒ usually through an invariant

Closure

correct configuration is unique

Closure

correct configuration is unique (up to)

Closure

correct configuration is unique (up to)

Closure

correct configuration is unique (up to)

Idea closure proof:

after every step again a correct configuration

- no linearization steps
- actions involve only desired neighbors
- \Rightarrow topology remains unchanged

Convergence

Problem: keep-alive-messages

Convergence

Problem: keep-alive-messages

Weak Convergence

Starting from any arbitrary state, there is always a way to reach a desired state after a limited number of steps.

Strong convergence for restricted cases Weak convergence in general

Convergence

(Strong) convergence in case:

• no undesired connections anymore

Convergence

(Strong) convergence in case:

no undesired connections anymore

13

everyone sending *keep-alive*-messages, all received and processed eventually

Convergence

(Strong) convergence in case:

- no undesired connections anymore
- all desired connections established

Rickmann Self-Stabilization 24. August 2016

Convergence

(Strong) convergence in case:

- no undesired connections anymore
- all desired connections established

eventually all desired edges no unnecessary keep-alive-messages convergence by potential function

Weak convergence in general:

 subset of executions without unnecessary keep-alive-messages non-empty for each initial configuration converges strongly

Conclusion

Our contributions:

- ullet redesigning algorithm shared memory o asynchronous message-passing
- proving:
 - closure.
 - weak convergence in general,
 - strong convergence for restricted cases
- discussing strong convergence

Future work:

• proving strong convergence

Thanks! Questions?

Fault Tolerance

- Faults occur, we have to deal with them!
- masking fault tolerance:
 - aim: avoid system failure if possible
 - fault model
 - describes all faults that can be tolerated
 - never takes all possible faults into account
 - other faults may lead to system failure
 - needs redundancy in space or time
- nonmasking fault tolerance:
 - system may fail partly or temporarily
 - better than complete and/or permanent failure

Extended Localized Pi

DATA VALUES
$$\mathbf{V}$$
 $v := \bot \mid 0 \mid 1 \mid c \mid (v,v) \mid \{v,\dots,v\}\}$, with $c \in \mathbf{A}$

VARIABLE PATTERN $X := x \mid (X,X)$, with $x \in \mathbf{A}$

EXPRESSIONS $e := v \mid X \mid (e,e) \mid f(e)$, with $f \in \mathbf{A}$

PROCESSES \mathbf{P} $P := 0 \mid P \mid P \mid c(X).P \mid \overline{c}\langle v \rangle \mid (vc)P \mid \mathbf{f}(e)$

if e then P else $P \mid \mathbf{f}(e)$ a finite set of process definitions where in $c(X).P$ variable x as part of X may not occur free in P in input position.

Structural Congruence

$$P \equiv Q \text{ if } P \equiv_{\alpha} Q \qquad P \mid 0 \equiv P \qquad P \mid Q \equiv Q \mid P$$

$$P \mid (Q \mid R) \equiv (P \mid Q) \mid R \qquad (\nu n) \ 0 \equiv 0$$

$$P \mid (\nu n) \ Q \equiv (\nu n) \ (P \mid Q) \text{ , if } n \notin \text{fn}(P)$$

$$(\nu n) \ (\nu m) \ P \equiv (\nu m) \ (\nu n) \ P$$

$$\text{if } e \text{ then } P \text{ else } Q \equiv P \text{, if } \llbracket e \rrbracket = 1$$

$$\text{if } e \text{ then } P \text{ else } Q \equiv Q \text{, if } \llbracket e \rrbracket = 0$$

$$\text{let } X = e \text{ in } P \equiv \{ \mathbb{I}^{e} \mathbb{I} / x \} P$$

$$K(e) \equiv \{ \mathbb{I}^{e} \mathbb{I} / x \} P \text{, if } (K(X) = P) \in D$$

Reduction Semantics

$$\begin{array}{c}
\operatorname{comm} : \overline{c(X).P \mid \overline{c}\langle v \rangle \longmapsto \{v/x\}P} \\
\operatorname{res} : \overline{\frac{P \longmapsto P'}{(\nu c)P \longmapsto (\nu c)P'}} \\
\operatorname{par} : \overline{\frac{P \longmapsto P'}{P \mid Q \longmapsto P' \mid Q}} \\
\operatorname{struct} : \overline{\frac{P \equiv Q \quad Q \longmapsto Q' \quad Q \equiv Q'}{P \longmapsto P'}}
\end{array}$$

19

System Assumptions

Process Ids

Every process has a unique constant id and every value in the system can be interpreted as the id of an existing process.

No Message Loss

Every message is received after a finite but arbitrary number of steps.

Fairness

Every continuously enabled subprocess will eventually (after an arbitrary but finite number of steps) execute a step.

Weakly Connected

The topology with messages is initially weakly connected.

Algorithm I

$$\begin{split} Alg(p, initNb) &= (\nu nb_p) \left(\ \overline{nb_p} \langle initNb \rangle \ | \\ Alg_{rec}(p) \ | \\ Alg_{match}(p) \right) \\ Alg'(p, initNb, x) &= (\nu nb_p) \left(\ \overline{nb_p} \langle initNb \rangle \ | \\ Alg_{add}(p, x) \ | \\ Alg_{match}(p) \right) \\ Alg_{rec}(p) &= p(x) . Alg_{add}(p, x) \\ Alg_{add}(p, x) &= nb_p(y) . \left(\overline{nb_p} \langle y \cup \{x\} \rangle \ | \ Alg_{rec}(p) \) \\ \end{split}$$

21

Algorithm II

$$Alg_{match}(p) = nb_p(y) \cdot (\textbf{let } x = select(findLin(p,y)) \textbf{ in}$$

$$\textbf{if } x = \bot \textbf{ then}$$

$$\prod_{j \in y} \overline{j} \langle p \rangle \mid \overline{nb_p} \langle y \rangle$$

$$\textbf{else if } x = (j,k) \textbf{ then}$$

$$\textbf{if } j < k \wedge k < p \textbf{ then}$$

$$\overline{j} \langle k \rangle \mid \overline{nb_p} \langle y \setminus \{j\} \rangle$$

$$\textbf{else if } j < k \wedge p < j \textbf{ then}$$

$$\overline{k} \langle j \rangle \mid \overline{nb_p} \langle y \setminus \{k\} \rangle$$

$$\textbf{else } \overline{nb_p} \langle y \rangle$$

$$\textbf{else } \overline{nb_p} \langle y \rangle$$

$$\textbf{lese } \overline{nb_p} \langle y \rangle$$

22

Algorithm III

 $\textit{LeftN}: \mathcal{P} \times 2^{\mathcal{P}} \to 2^{\mathcal{P}}$ calculates the left neighborhood of a process and corresponding $\textit{RightN}: \mathcal{P} \times 2^{\mathcal{P}} \to 2^{\mathcal{P}}$ the right neighborhood of a process

$$LeftN(p, y) = \{ q \in \mathcal{P} | q \in y \land q
RightN(p, y) = \{ q \in \mathcal{P} | q \in y \land q > p \}$$

Algorithm III

 $\textit{LeftN}: \mathcal{P} \times 2^{\mathcal{P}} \to 2^{\mathcal{P}}$ calculates the left neighborhood of a process and corresponding $\textit{RightN}: \mathcal{P} \times 2^{\mathcal{P}} \to 2^{\mathcal{P}}$ the right neighborhood of a process

$$LeftN(p, y) = \{ q \in \mathcal{P} | q \in y \land q
$$RightN(p, y) = \{ q \in \mathcal{P} | q \in y \land q > p \}$$$$

The function $\mathit{findLin}: \mathcal{P} \times 2^{\mathcal{P} \times \mathcal{P}} \to 2^{\mathcal{P} \times \mathcal{P}}$ calculates all possible linearization steps in the neighborhood of a process.

$$\mathit{findLin}\left(p,y\right) = \left\{ (q,r) | q,r \in y \land q < r \land (q,r \in \mathit{LeftN}(p,y) \lor \mathit{RightN}(p,y)) \right\}$$

Algorithm III

 $\textit{LeftN}: \mathcal{P} \times 2^{\mathcal{P}} \to 2^{\mathcal{P}}$ calculates the left neighborhood of a process and corresponding $\textit{RightN}: \mathcal{P} \times 2^{\mathcal{P}} \to 2^{\mathcal{P}}$ the right neighborhood of a process

$$LeftN(p, y) = \{ q \in \mathcal{P} | q \in y \land q
RightN(p, y) = \{ q \in \mathcal{P} | q \in y \land q > p \}$$

The function $\mathit{findLin}: \mathcal{P} \times 2^{\mathcal{P} \times \mathcal{P}} \to 2^{\mathcal{P} \times \mathcal{P}}$ calculates all possible linearization steps in the neighborhood of a process.

$$\mathit{findLin}\left(p,y\right) = \left\{ (q,r) | q,r \in y \land q < r \land (q,r \in \mathit{LeftN}(p,y) \lor \mathit{RightN}(p,y)) \right\}$$

The function $select: 2^{\mathcal{P} \times \mathcal{P}} \to (\mathcal{P} \times \mathcal{P})$ returns one of these linearization steps

$$select(y) = \begin{cases} \bot & \text{if } y = \emptyset \\ \varepsilon x. x \in y & \text{if } y \neq \emptyset \end{cases}$$

Configuration (Standardform)

Configuration in Standardform

$$Alg_{all}(P, P', nb, Msgs, add) = \prod_{j \in P} Alg(j, nb(j)) \mid \prod_{j \in P'} Alg'(j, nb(j), add(j)) \mid$$

$$\prod_{(j,k) \in Msgs} \bar{j}\langle k \rangle$$

 \mathcal{P} be the set of unique identifiers,

$$P, P' \subseteq \mathcal{P}$$
 with $P \cup P' = \mathcal{P}$ and $P \cap P' = \emptyset$,

 $nb: \mathcal{P}
ightarrow 2^{\mathcal{P}}$ a neighborhood-function

 $\textit{Msgs} \in \mathbb{N}^{\mathcal{P} \times \mathcal{P}}$ a multiset of the messages in transit and

 $add: \mathcal{P} \rightharpoonup \mathcal{P}$ a partial function with $\forall p \in P'. \exists q \in \mathcal{P}. (p,q) \in add$ and

 $\forall p \in P. \forall q \in \mathcal{P}. (p,q) \notin add$ that describes the adding in progress

Topologies

Network Topology Graph

Let $A \equiv Alg_{all}(P, P', nb, Msgs, add)$ be an arbitrary configuration. Then the (directed) network topology graph T(A) = (V, E) is defined as follows:

$$V = P \cup P' = \mathcal{P}$$
 and $E = \{(p,q)|p,q \in V \land q \in nb(p)\}$

Network Topology Graph with Messages

Let $A \equiv Alg_{all}(P, P', nb, Msgs, add)$ be an arbitrary configuration. Then the (directed) network topology graph with messages $T^M(A) = (V, E)$ is defined as follows:

$$V = P \cup P' = \mathcal{P}$$
 and $E = \{(p,q)|p,q \in V \land (q \in nb(p) \lor (p,q) \in Msgs \lor add(p) = q)\}$

Undirected Topologies

Undirected Topology Graph

Let $A \equiv Alg_{all}(P, P', nb, Msgs, add)$ be an arbitrary configuration. Then the undirected network topology graph U(A) = (V, E) is defined as follows:

$$V = P \cup P' = \mathcal{P}$$
 and $E = \{\{p, q\} | p, q \in V \land q \in nb(p)\}$

Undirected Topology Graph with Messages

Let $A \equiv Alg_{all}(P, P', nb, Msgs, add)$ be an arbitrary configuration. Then the undirected network topology graph with messages $U^M(A) = (V, E)$ is defined as follows:

$$V = P \cup P' = \mathcal{P}$$
 and $E = \{\{p, q\} | p, q \in V \land (q \in nb(p) \lor (p, q) \in Msgs \lor add(p) = q)\}$

Potential Functions I

Potential Function Ψ_p for Processes

Let $p \in \mathcal{P}$ be an arbitrary process and A be a configuration. Let $Rec: (\mathcal{T} \times \mathcal{P}) \to \mathbb{N}^{\mathcal{P}}$ with

$$\textit{Rec}(\textit{A},\textit{p}) = \{ |\textit{q} \in \mathcal{P} | (\textit{p},\textit{q}) \in \textit{Msgs}_{\textit{A}} \land \textit{q} \notin \{\textit{succ}(\textit{p}),\textit{pred}(\textit{p})\} | \}$$

multiset of all process ids to p still in transit and not a desired neighbor and adding : $(\mathcal{T} \times \mathcal{P}) \to \mathbb{N}$ with

$$adding(A, p) = \begin{cases} dist(p, q), & \text{if } add_A(p) = q \in \mathcal{P} \land q \notin \{succ(p), pred(p)\} \\ 0, & \text{otherwise} \end{cases}$$

The potential function $\Psi_p: (\mathcal{T} \times \mathcal{P}) \to \mathbb{N}$ sums up the distances of all outgoing connections of the process p while ignoring desired connections:

$$\Psi_p(A,p) = \sum_{q \in (\mathit{nb}_A(p) \setminus \{\mathit{succ}(p),\mathit{pred}(p)\})} \mathit{dist}(p,q) + \sum_{q \in \mathit{Rec}(A,p)} \mathit{dist}(p,q) + \mathit{adding}(A,p)$$

Potential Functions II

Potential Function Ψ for Configurations

Let A be a configuration. The potential function for configurations $\Psi: \mathcal{T} \to \mathbb{N}$ sums up the distances between all the connections of processes while ignoring desired connections:

$$\Psi(A) = \sum_{p \in \mathcal{P}} \Psi_p(A, p)$$