快速傅立葉轉換(FFT)

在離散傅立葉轉換中,一次會有n個值經由傅立葉矩陣進行傅立葉轉換得到新的n個值,進行傅立葉矩陣乘法時,離散傅立葉轉換的時間複雜度為 $O(n^2)$,快速傅立葉轉換可將時間複雜度降為 $O(nlog_2n)$ 。

假設複數集 $\{1,\omega,\omega^2,\omega^3,\omega^4,\ldots\omega^{n-1}\}$ 為 $Z^n=1$ 的根,則複數集 $\{1,\omega^2,\omega^4,\ldots,\omega^{n-2}\}$ 為 $Z^{n/2}=1$ 的根,對於 $m=2^k$, $k\in N$, $\{1,\omega^m,\omega^{2m},\ldots,\omega^{n-m}\}$ 是 $Z^{n/m}=1$ 的根(理論一),利用此性質將 傅立葉矩陣進行 divide and conquer。

由於
$$\omega^{k+n/2} = e^{-2\pi i(k+n/2)/n} = \cos\left(2\pi \frac{k+\frac{n}{2}}{n}\right) - i\sin\left(2\pi \frac{k+\frac{n}{2}}{n}\right) = \cos\left(2\pi \frac{k}{n} + \pi\right) - i\sin\left(2\pi \frac{k}{n} + \pi\right)$$

$$= -\cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right) = -\left[\cos\left(\frac{2\pi k}{n}\right) - i\sin\left(\frac{2\pi k}{n}\right)\right] = -\omega^{k}$$
故 $\omega^{k+n/2} = -\omega^{k}$,若 $n = 8$,則 $\omega^{4} = -1$, $\omega^{5} = -\omega$, $\omega^{6} = -\omega^{2}$, $\omega^{7} = -\omega^{3}$ (1)

下列用 8×8 傅立葉矩陣來當例子說明:

$$F_8 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^4 & \omega^6 & 1 & \omega^2 & \omega^4 & \omega^6 \\ 1 & \omega^3 & \omega^6 & \omega & \omega^4 & \omega^7 & \omega^2 & \omega^5 \\ 1 & \omega^4 & 1 & \omega^4 & 1 & \omega^4 & 1 & \omega^4 \\ 1 & \omega^5 & \omega^2 & \omega^7 & \omega^4 & \omega & \omega^6 & \omega^3 \\ 1 & \omega^6 & \omega^4 & \omega^2 & 1 & \omega^6 & \omega^4 & \omega^2 \\ 1 & \omega^7 & \omega^6 & \omega^5 & \omega^4 & \omega^3 & \omega^2 & \omega \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & -1 & -\omega & -\omega^2 & -\omega^3 \\ 1 & \omega^2 & -1 & -\omega^2 & 1 & \omega^2 & -1 & -\omega^2 \\ 1 & \omega^3 & -\omega^2 & \omega & -1 & -\omega^3 & \omega^2 & -\omega \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -\omega & \omega^2 & -\omega^3 & -1 & \omega & -\omega^2 & \omega^3 \\ 1 & -\omega^2 & -1 & \omega^2 & 1 & -\omega^2 & -1 & \omega^2 \\ 1 & -\omega^3 & -\omega^2 & -\omega & -1 & \omega^3 & \omega^2 & \omega \end{bmatrix}$$

延續上列矩陣的 @,則 4×4 傅立葉矩陣為:

$$F_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega^2 & \omega^4 & \omega^6 \\ 1 & \omega^4 & 1 & \omega^4 \\ 1 & \omega^6 & \omega^4 & \omega^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega^2 & -1 & -\omega^2 \\ 1 & -1 & 1 & -1 \\ 1 & -\omega^2 & -1 & \omega^2 \end{bmatrix}$$

在此能發現,若將 F_8 的偶數行往前移動,會出現 F_4 矩陣,因此將 F_8 乘上排列矩陣 (permutation matrix)。

$$F_8P_8^T = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^2 & -1 & -\omega^2 & \omega & \omega^3 & -\omega & -\omega^3 \\ 1 & -1 & 1 & -1 & \omega^2 & -\omega^2 & \omega^2 & -\omega^2 \\ 1 & -\omega^2 & -1 & \omega^2 & \omega^3 & \omega & -\omega^3 & -\omega \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & \omega^2 & -1 & -\omega^2 & -\omega & -\omega^3 & \omega & \omega^3 \\ 1 & -1 & 1 & -1 & -\omega^2 & \omega^2 & -\omega^2 & \omega^2 \\ 1 & -\omega^2 & -1 & \omega^2 & -\omega^3 & -\omega & \omega^3 & \omega \end{bmatrix} = \begin{bmatrix} F_4 & D_4F_4 \\ F_4 & -D_4F_4 \end{bmatrix}$$

上式的 D_4 為 diagonal matrix , D_4 = diag(1, ω , ω^2 , ω^3) ,對角元素為 Z^8 = 1 的前 4 個根。

一般狀況可表示為下: $ω=e^{2\pi i/n}$,對於 $m=2^k\leq n$, $k\in N$,由於 permutation matrix 屬於 orthogonal matrix,具有 $P_\pi P_\pi^T = P_\pi^T P_\pi = I$ 性值,故傅立葉矩陣 F_m 分塊表示法如下:

$$F_{\rm m} = \begin{bmatrix} F_{\frac{m}{2}} & D_{\frac{m}{2}} F_{\frac{m}{2}} \\ F_{\frac{m}{2}} & -D_{\frac{m}{2}} F_{\frac{m}{2}} \end{bmatrix} P_{\rm m}$$
 (2)

其中 $F_{m/2}$ 為 $m/2 \times m/2$ 傅立葉矩陣,從(理論一)來看,對於 $a=2^k$, $k \in N$, $\{1,\omega^a,\omega^{2a},...,\omega^{n-a}\}$ 是 $Z^{n/a}=1$ 的根,令 m=n / a,a=n / m ,複數集 $\{1,\omega^{n/m},\omega^{2n/m},...,\omega^{n-n/m}\}$ 為 $Z^m=1$ 的根, $D_{m/2}$ 為 $Z^m=1$ 的前 $\frac{m}{2}$ 個根,故 $D_{m/2}=diag(1,\omega^{n/m},\omega^{2n/m},....,\omega^{n/2-n/m})$,

雨
$$P_{\mathbf{m}}^{\mathsf{T}} = \begin{bmatrix} e_0 & e_2 & \cdots & e_{m-2} & e_1 & e_3 & \cdots & e_{m-1} \end{bmatrix}$$
 。

以下以 n=8展示快速傅立葉矩陣:

$$X_8 = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix}$$
 $P_8X_8 = \begin{bmatrix} x_0 \\ x_2 \\ x_4 \\ x_6 \\ x_1 \\ x_3 \\ x_5 \\ x_7 \end{bmatrix} = \begin{bmatrix} X_4^{(0)} \\ - \\ X_4^{(1)} \end{bmatrix}$ 其中 $X_4^{(0)}$ 與 $X_4^{(1)}$ 分別為 X_8 的奇數元與偶數元組成

要計算 F₈X₈,利用分塊表示法可得:

$$F_{8}X_{8} = \begin{bmatrix} F_{4} & D_{4}F_{4} \\ F_{4} & -D_{4}F_{4} \end{bmatrix} P_{8}X_{8} = \begin{bmatrix} F_{4} & D_{4}F_{4} \\ F_{4} & -D_{4}F_{4} \end{bmatrix} \begin{bmatrix} X_{4}^{(0)} \\ -- \\ X_{4}^{(1)} \end{bmatrix} = \begin{bmatrix} F_{4}X_{4}^{(0)} + D_{4}F_{4}X_{4}^{(1)} \\ F_{4}X_{4}^{(0)} - D_{4}F_{4}X_{4}^{(1)} \end{bmatrix}$$

用同樣步驟繼續分解 F_4X_4 ,最終得到 F_2X_2 ,此時 F_8X_8 被拆解為 4 個 F_2X_2 。在計算 X_2 時,不必實際乘上排列矩陣做運算,規則如下:

X_8	X_4	X_2
0(000)	0(000)	0(000)
1(001)	2(010)	4(100)
2(010)	4(100)	2(010)
3(011)	6(110)	6(110)
4(100)	1(001)	1(001)
5(101)	3(011)	5(101)
6(110)	5(101)	3(011)
7(111)	7(111)	7(111)

表一中括弧內為該數字的二進位表示法,表中可以看出,當 X_8 第一次經過排序變為 X_4 時, X_4 排列為固定最後一個位元,前兩個位元為自然排序,當 X_4 在經過一次排序後變為 X_2 , X_2 排列為固定最後兩個位元,第一個位元為自然排序,依此規則來產生 X_n 。而 D_n 為 diagonal matrix,進行矩陣乘法時直接乘上對角元素就好,以 D_4 為例:

参考來源:快速傅立葉轉換 排列矩陣 Diagonal Matrix