

Predicting Flight Delays @ SFO

Applications of Data Mining

Data Set

- Source: Transtats; Bureau of Transportation Statistics Flight On-Time Performance
- 12 month period used for training (total of ~1,200,000 rows)
- December 2013 used as test set (~100,000 rows)
- Attributes included:
 - Carrier (nominal)
 - Destination (nominal)
 - Scheduled Time (numerical)
 - Delay Time (Class to predict; nominal)
 - Distance of Flight (numerical)

Pre-Processing

- All flights that met the follow criteria were pruned:
 - Cancelled/Diverted
 - non-SFO outbound

- Size of the pruned data sets:
 - Training: > 168,000 instances
 - Test: > 16,000 instances

Generating Models

- Models generated on Weka 3.7.10
 - Several methods used to generate models (C4.5, Random Forest, Logistic Regression, KNN, SVM, kStar, MLP, CART Tree)

- Most time consuming to build: CART Tree and kStar
- Fastest to build: Random Forest and C4.5 Tree

Model Evaluation

```
for X, Y in \omega_1, \omega_2 do
    \alpha = X.DEP_DELAY;
    \gamma = Y.DEP_DELAY;
    if |\alpha - \gamma| \le \tau_1 then
       C1++;
    end
    if |\alpha - \gamma| \le \tau_2 then
    else
end
```

X= Each instance in the original test set Y= Each instance in the predicted test set $\alpha=$ Original delay time $\gamma=$ Predicted delay time $\omega_1=$ Original test set $\omega_2=$ Predicted test set $\omega_2=$ Predicted test set $\tau_1=$ 3 minutes, first class tolerance $\tau_2=$ 5 minutes, second class tolerance

Model Evaluation

Test Set

Post-Processing

Weka results parser written in Python 2.7

 This parser would feed in data into the model evaluation pipeline where it would then return us and metric on model accuracy.

Results

Models performed worse on test data (compared to training)

 Sampled training set may have not been a good representative for Dec. 2013 sampled set.

 Models were most likely overfitted despite attempts to avoid them via reservoir sampling

Interesting Trends

- Regional airlines tend to have a much greater number of delays. Potential reasons:
 - o operational procedures differ from those of larger aircraft.
 - contractual stipulations

- Worst legacy carrier (delays): United Airlines
- Best legacy carrier (delays): US Airways

Interesting Trends (cont.)

- Best Value-Segment Carrier (delays):
 Jetblue
- Highest Potential for Longer Delays (Time): 11:00-15:
 00
- Major hub airports tend to have more delays.

Delay vs Scheduled Times:

Demo

goo.gl/IEUYIQ

Lessons Learned

- Predicting flight delays remains to be a difficult problem.
 - Past performance is not always indicative of future performance.

 There is much room for improvement if data was expanded. (e.g including weather, ATC data, aircraft registration number, aircraft type.)