Podstawy logiki i teorii mnogości

Ćw. 5

opracował: dr inż. Jakub Długosz

Celem ćwiczenia jest zaznajomienie z algebrą zbiorów

Zadanie 1

Podać elementy zbiorów

- a) Ø
- b) {Ø}
- c) $\{\emptyset, \{\emptyset\}\}$
- d) $\{x \in \mathbb{N}: x < 5\}$
- e) $\{x \in \mathbb{N}: x^2 < 5\}$
- f) $\{x \in \mathbb{R}: x^2 + 1 = 4\}$
- g) $\{x \in \mathbb{Q}: x^2 + 1 = 4\}$
- h) $\{x \in \mathbb{R}: x^2 + 1 > 4\}$
- i) $\{x \in \mathbb{Z}: x^2 + 1 > 4\}$
- j) $\{x \in \mathbb{R}: |x| > 4\}$
- k) $\{x \in \mathbb{Z} : |x| > 4\}$
- I) $\{\{a,b\},\{\{a,b\}\},\emptyset\}$
- m) $\{\{a\}\},\{a\},a\}$

Zadanie 2

Obliczyć:

- a) $\{x \in \mathbb{N}: x < 5\} \setminus \{x \in \mathbb{N}: x^2 < 5\}$
- b) $\{x \in \mathbb{N}: x < 5\} \cup \{x \in \mathbb{N}: x^2 < 5\}$
- c) $\{x \in \mathbb{N}: x < 5\} \cap \{x \in \mathbb{N}: x^2 < 5\}$
- d) $\{3,5\}\setminus\{5,7\}$
- e) $\{3,5\} \div \{5,7\}$
- f) $\{x \in \mathbb{N}: x < 5\}'$ przyjmując jako zbiór uniwersalny (przestrzeń) \mathbb{N}
- g) $\{x \in \mathbb{N}: x < 5\}'$ przyjmując jako zbiór uniwersalny (przestrzeń) \mathbb{Z}
- h) $\{x \in \mathbb{N}: x < 5\}'$ przyjmując jako zbiór uniwersalny (przestrzeń) \mathbb{R}
- i) $\{x \in \mathbb{Z}: x^2 + 1 > 4\}'$ przyjmując jako zbiór uniwersalny (przestrzeń) \mathbb{Z}

Zadanie 3

Niech X będzie zbiorem uniwersalnym (przestrzenią), a 2^A niech oznacza zbiór potęgowy zbioru A. Pokazać, że:

- a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- b) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$
- c) $A \subseteq B \Leftrightarrow A \cap B = A \Leftrightarrow [B = A \cup (B \setminus A)]$
- d) $((A \subseteq B) \land (C \subseteq D)) \Rightarrow (A \backslash D \subseteq B \backslash C)$
- e) $((A \subseteq B) \land (C \subseteq D)) \Rightarrow (A \cap C \subseteq B \cap D)$
- f) $A \doteq B = (A \cup B) \setminus (A \cap B)$

Podstawy logiki i teorii mnogości, Ćw. 5, Strona 2/2

- g) $(A \subseteq B) \Rightarrow (2^A \subseteq 2^B)$
- h) $\emptyset \div A = A$
- i) $A \cap (B C) = (A \cap B) (A \cap C)$

Zadanie 4

Niech X będzie zbiorem uniwersalnym (przestrzenią). Czemu są równe:

- a) $A \cup \emptyset$
- b) $A \cap \emptyset$
- c) Ø'
- d) $A \cup A'$
- e) $A \cap A'$
- f) $(A \cup B)'$
- g) $(A \cap B)'$
- h) $A \cup (A \cap B)$
- i) $A \cap (A \cup B)$

Zadanie 5

Jakie zależności muszą zachodzić pomiędzy a, b, c, d jeśli żadne z nich nie jest zbiorem pustym oraz:

- a) $\{a, b, a\} = \{a, b\}$
- b) $\{\{a\},\{a,b\}\}=\{\{c\},\{c,d\}\}$
- c) {{a,b},c}={{a},c}?

Zadanie 6

Określić jakie zależności muszą zachodzić pomiędzy zbiorami A, B, C jeśli:

- a) $(A \setminus C) \cup B = A \cup B$
- b) $(A \cup B) \setminus C = (A \setminus C) \cup B$

Zadanie 7

Wymień kilka aksjomatów zbioru liczb naturalnych (np. aksjomat sumy, istnienia, zbioru potęgowego, pewnik wyboru, regularności).

Zadanie 8

Czy istnieją zbiory A i B takie, że:

- a) $A \in A$
- b) $A \in B \land B \in A$?

Zadanie 9

Czy istnieje zbiór $\{x \in A: x \neq x\}$?

Zadanie 10

Jak skonstruować zbiór liczb naturalnych za pomocą algebry zbiorów?