Homoscedasticity

Purpose of Homoscedasticity:

- Homoscedasticity, or homogeneity of variances, is an assumption of equal or similar variances in different groups being compared.
- This is an important assumption of parametric <u>statistical</u> <u>tests</u> because they are sensitive to any dissimilarities.
 Uneven variances in samples result in biased and skewed test results.

Importance:

- Why Is Homoskedasticity Important? Homoskedasticity
 is important because it identifies dissimilarities in a
 population. Any variance in a population or sample that
 is not even will produce results that are skewed or
 biased, making the analysis incorrect or worthless.
- Homoscedasticity is a pivotal concept in regression analysis that plays a substantial role in evaluating the trustworthiness of regression models.
- It denotes the assumption that the variance of the errors (residuals) remains constant across all levels of the independent variable(s).
- Homoscedasticity is a key assumption for employing linear regression analysis. To validate the appropriateness of a linear regression analysis, homoscedasticity must not be violated outside a certain tolerance.

Heteroskedasticity

Purpose of Heteroskedasticity:

- Heteroskedasticity refers to a situation where the variance of the residuals is unequal over a range of measured values.
- If heteroskedasticity exists, the population used in the regression contains unequal variance, the analysis results may be invalid.
- It tests whether the variance of the errors from a regression is dependent on the values of the independent variables.

Importance:

- it invalidates statistical tests of significance that assume that the modelling errors all have the same variance.
- Heteroskedasticity is an important concept in regression modeling, and in the investment world, regression models are used to explain the performance of securities and investment portfolios.

Which one is better? Either Homoskedasticity? (or) Heteroskedasticity?

 There are two big reasons why you want homoscedasticity: While heteroscedasticity does not cause bias in the coefficient estimates, it does make them less precise.

- Lower precision increases the_likelihood that the coefficient estimates are further from the correct population value. likelihood that the coefficient estimates are further from the correct population value.
- Heteroscedasticity doesn't create bias, but it means the results of a regression analysis become hard to trust.

Summery:

"I think Homoskedasticity is Better we compare to Heteroskedasticity."