COMP2521 19T0 lec11 cs2521@ jashankj@

Sorting

COMP2521 19T0

Week 6, Thursday: Order! Order (II)

Jashank Jeremy

jashank.jeremy@unsw.edu.au

more sorting algorithms non-comparing sorts

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting

Divide-and-Conquer Merge Quick Non-Comparison Key-Indexed

Sorting

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting

Divide-and-Conquer

Merge Quick Non-Comparison Key-Indexed Divide-and-Conquer Algorithms

divide-and-conquer algorithms break up, or shard, the problem into (easier) computations on smaller pieces, and combine the results.

(usually) easy to implement recursively! (usually) easy to implement in parallel!

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting

Divide-and-Conquer

Merge

Non-Compariso

- **Divide-And-Conquer Sorting**
- 1 If a collection has less than two elements, it's sorted. Otherwise, split it into 2 parts.
- 2 Sort both parts separately.
- 3 Combine the sorted collections to return the final result.

COMP2521 19T0 lec11

cs2521@ jashankj@

Divide-and-Conquer

Merge Quick Non-Compariso Sorted Merge

Copy elements from the inputs one at a time, giving preference to the smaller of the two.

When one list is empty, copy the rest of the elements from the other.

COMP2521 19T0 lec11

cs2521@ jashankj@

Divide-and-Conquer

Merge

Non-Comparison
Key-Indexed
Heap

Merge Sort

A divide-and-conquer sort:

partition the input into two equal-sized parts.
recursively sort each of the partitions.
merge the two now-sorted partitions back together.


```
COMP2521
19T0 lec11
```

cs2521@ jashankj@

Sorting
Divide-and-Co

Quick Non-Comparison Key-Indexed

Merge Sort

C Implementation: Merge

```
void merge (Item a[], size_t lo, size_t mid, size_t hi)
{
    Item *tmp = calloc (hi - lo + 1, sizeof (Item));
    size_t i = lo, j = mid + 1, k = 0;

    // Scan both segments, copying to `tmp'.
    while (i <= mid && j <= hi)
        tmp[k++] = less (a[i], a[j]) ? a[i++] : a[j++];

    // Copy items from unfinished segment.
    while (i <= mid) tmp[k++] = a[i++];
    while (j <= hi) tmp[k++] = a[j++];

    // Copy `tmp' back to main array.
    for (i = lo, k = 0; i <= hi; a[i++] = tmp[k++]);

    free (tmp);
}</pre>
```

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting

Divide-and-Conquer

Merge

lon-Comparison Key-Indexed Merge Sort

Analysis (I)

How many steps does it take to sort a collection of *N* elements?

Splitting arrays into two halves: constant time. To re-combine, N steps.

$$T(N) = N + 2T(N/2)$$

substitute
$$N := 2^N$$
; then:
 $T(2^N) = 2^N + 2T(2^N/2)$
 $T(2^N) = 2^N + 2T(2^{N-1})$

COMP2521 19T0 lec11

cs2521@ jashankj@

Divide-and-Conque

Merge

Non-Comparison Key-Indexed Heap Merge Sort
Analysis (II)

divide out
$$2^N$$
; then: $T\left(2^N\right)/2^N = 1 + 2T\left(2^{N-1}\right)/\left(2^N\right)$ $T\left(2^N\right)/2^N = 1 + T\left(2^{N-1}\right)/\left(2^{N-1}\right)$

expanding, we get:

$$1 + (1 + T(2^{N-2}) / (2^{N-2}))$$

$$1 + (1 + (1 + T(2^{N-3}) / (2^{N-3})))$$

$$\dots = N$$

$$T(2^{N})/2^{N} = N$$
$$T(2^{N}) = 2^{N}N$$

$$T(N) = N \log_2 N$$

COMP2521 Merge Sort 19T0 lec11 Analysis (III) cs2521@ jashankj@ Merge How many steps does it take to sort a collection of N elements? split array into equal-sized partitions halving at each level $\Rightarrow \log_2 N$ levels same operations happen at every recursive level • each 'level' requires $\leq N$ comparisons worst case: two arrays exactly interleaved, N comparisons COMP2521 Merge Sort 19T0 lec11 Analysis; Summary cs2521@ jashankj@ Merge Merge sort is $O(n \log n)$. Generally, stable... ... as long as the merge is stable. Not in-place: O(n) memory for merge; $O(\log n)$ stack space. **Oblivious:** $O(n \log n)$ best case, average case, worst case COMP2521 Merge Sort on Lists 19T0 lec11 cs2521@ jashankj@ Merge Straightforward!

- · Traverses input in sequential order.
- Don't need extra space for merging list.
- Works top-down and ... bottom-up?

Bottom-Up Merge Sort

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting

Divide-and-Conquer

Merge

Quick Non-Comparison Key-Indexed

An approach that works non-recursively!

- on each pass, our array contains sorted runs of length m.
- initially, N sorted runs of length 1.
- The first pass merges adjacent elements into runs of length 2.
- The second pass merges adjacent elements into runs of length 4.
- ... continue until we have a single sorted run of length N.

Can be used for *external* sorting; *e.g.*, sorting disk-file contents

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting
Divide-and-Conquer

Merge

Non-Compariso Key-Indexed Heap

```
Bottom-Up Merge Sort
```

C Implementation

```
#define MIN(a,b) ((a) < (b) ? (a) : (b))

void sort_merge_bu (Item a[], size_t lo, size_t hi)

for (size_t m = 1; m <= lo - hi; m *= 2)
    for (size_t i = lo; i <= hi - m; i += 2 * m) {
        size_t end = MIN (i + 2*m - 1, hi);
        merge (a, i, i + m - 1, end);
    }
}</pre>
```

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting
Divide-and-Conquer

Quick

Key-Indexed

Merge Sort is Slow

Merge sort uses a trivial split operation; all the heavy lifting is in the *merge* operation.

Can we split the collection in a more intelligent way, so combining the results is easier?

...e.g., making sure all elements in one part are less than elements in the second part?

COMP2521

Sorting

Divide-and-Conque Merge

Quick

on-Comparison Key-Indexed to partition array a at some index i (the 'pivot'), we need to swap elements such that, for other indices j and k, j < i implies $a[j] \le a[i]$ k > i implies $a[i] \le a[k]$

COMP2521 19T0 lec11

cs2521@ jashankj@

Divide-and-Conquer Merge Quick

Ion-Comparison Key-Indexed

Quick Sort

C Implementation: Sort

Assuming we have a partition function, this looks very similar to merge sort.

```
void sort_quick_naive (Item a[], size_t lo, size_t hi)
{
    if (hi <= lo) return;
    size_t part = partition (a, lo, hi);
    sort_quick_naive (a, lo, part ? (part - 1) : 0);
    sort_quick_naive (a, part + 1, hi);
    // look, ma! no merge!
}</pre>
```

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting
Divide-and-Conquer
Merge
Quick

Non-Compariso Key-Indexed Heap

Quick Sort

C Implementation: Naïve Partition

```
size_t partition (Item a[], size_t lo, size_t hi)
{
    Item v = a[lo]; // our `pivot' value.
    size_t i = lo + 1, j = hi;
    for (;;) {
        while (less (a[i], v) && i < j) i++;
        while (less (v, a[j]) && i < j) j--;
        if (i == j) break;
        swap_idx (a, i, j);
    }
    j = less (a[i], v) ? i : i - 1;
    swap_idx (a, lo, j);
    return j;
}</pre>
```

COMP2521 19T0 lec11 cs2521@

jashankj@

Quick

Quick Sort Analysis

How many steps does it take to sort a collection of N elements?

N steps to partition an array... constant-time combination of sub-results.

best-case (equal sized partitions): $O(N \log N)$ worst-case (one part contains all elements):

$$T(N) = N + T(N-1) = N + (N-1) + T(N-2)$$

... = $N(N+1)/2$, which is $O(N^2)$

COMP2521 19T0 lec11

cs2521@ jashankj@

Quick

Quick Sort

Summary

Quick sort with naïve partition is...

Unstable (in this implementation)... ... but can be made stable.

In-place: partitioning is done in-place; stack depth is O(N) worst-case, $O(\log N)$ average

Oblivious.

COMP2521 19T0 lec11

cs2521@ jashankj@

Problems with Quick Sort

Picking the first or last element as pivot is an absolutely terrible life choice.

... existing order is a worst case. ... existing reverse order is a worst case. partition always gives us parts of size N-1 and 0.

Our ideal pivot is the median value. Our worst pivot is the largest/smallest value. We can reduce the probability of picking a bad pivot...

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting
Divide-and-Conque

Quick

Non-Comparise Key-Indexed

Quick Sort with Median-of-Three Partition

Pick three values: left-most, middle, right-most. Pick the median of these three values as our pivot.

Ordered data is no longer a worst-case scenario. In general, doesn't eliminate the worst-case but makes it much less likely.

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting
Divide-and-Conquer
Merge
Quick

Non-Comparison Key-Indexed Heap

Quick Sort with Median-of-Three Partitioning

- **1** Pick a[l], a[r], a[(l+r)/2]
- **2** Swap a[r-1] and a[(l+r)/2]
- ${f 3}$ Sort ${f a}[l], {f a}[r-1], {f a}[r]$, such that ${f a}[l] \leq {f a}[r-1] \leq {f a}[r]$
- $oldsymbol{4}$ Partition on a[l+1] to a[r-1].

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting Divide-and-Conquer Merge

Quick Non-Compariso Key-Indexed

Quick Sort with Median-of-Three Partitioning

C Implementation

```
void qs_median3 (Item a[], size_t lo, size_t hi)
    size_t mid = (lo + hi) / 2;
    if (less (a[mid], a[lo])) swap_idx (a, lo, mid);
    if (less (a[hi], a[mid])) swap_idx (a, mid, hi);
    if (less (a[mid], a[lo])) swap_idx (a, lo, mid);
    // now, we have a[lo] <= a[mid] <= a[hi]</pre>
    // swap a[mid] to a[lo+1] to use as pivot
    swap_idx (a, lo+1, mid);
}
void sort_quick_m3 (Item a[], size_t lo, size_t hi)
    if (hi <= lo) return;</pre>
    qs_median3 (a, lo, hi);
    size_t part = partition (a, lo + 1, hi - 1);
    sort_quick_m3 (a, lo, part ? (part - 1) : 0);
    sort_quick_m3 (a, part + 1, hi);
}
```

19T0 lec11 cs2521@ jashankj@ Sorting Divide-and-Conque Merge Quick Non-Comparison

COMP2521

Quick Sort Optimisations

Sub-file Cutoff

For small sequences (when n < 5, say), quick sort is expensive because of the recursion overhead.

With a sub-file cutoff, we have two choices: use a different algorithm on small partitions; or do a second sort after the quicksort finishes.

(Insertion sort is a good choice: lots of almost-sorted data!)

COMP2521 19T0 lec11

cs2521@ jashankj@

Divide-and-Conquer Merge Quick

Von-Comparison Key-Indexed Heap

Quick Sort Optimisations

Bentley-McIlroy's Three-Way Partition

For sequences with many duplicate keys, partitioning can screw up badly.

instead, do a three-way partition: keys < a[i], = a[i], > a[i].

COMP2521 19T0 lec11

cs2521@ jashankj@

Sorting

Divide-and-Conquer

Non-Comparison Key-Indexed **Quick Sort on Lists**

Straightforward to do...
if we just use the first or last element as pivot
(which means we're vulnerable to ordered data again)

using a random or median-of-three pivot is now O(n) not O(1)

COMP2521 19T0 lec11 cs2521@ jashankj@

Quick Sort vs Merge Sort

Design of modern CPUs mean, for sorting arrays in RAM quicksort generally outperforms mergesort.

> quicksort is more 'cache friendly': good locality of access on arrays

on the other hand, mergesort is readily stable, readily parallel, more efficient with slower data: a good choice for sorting linked lists

COMP2521 19T0 lec11

cs2521@ jashankj@

Merge Quick

The $n \log n$ Lower Bound

How Low Can We Go? (I)

If we have 3 items, then 3! = 6 possible permutations as input. (n items implies n! possible permutations.)

If we do 1 comparison, we can form two categories (true, false). (k comparisons implies 2^k categories.)

COMP2521 19T0 lec11

cs2521@ jashankj@

Non-Comparison

The $n \log n$ Lower Bound

How Low Can We Go? (I)

n items implies n! possible permutations. k comparisons implies 2^k categories.

We need to do enough comparisons so

 $n! < 2^k$. $log_2 n! \leq log_2 2^k$

 $log_2 n! \leq k$

... applying Stirling's approximation, and waving our hands:

 $n \log n < k$.

the theoretical lower bound on worst-case execution time for comparison-based sorts is $O(n \log n)$. (Quicksort, mergesort are pretty much as good as it gets, for unknown data.)

jashankj@ Merge Quick Non-Comparison All the sorts so far have been comparison-based sorts. (They compare things, using some ordering relation \leq .) Works on any data, so long as we have \leq . What if we know more about the keys? ... could we get down to O(n) time? COMP2521 **Key-Indexed Counting Sort** 19T0 lec11 cs2521@ jashankj@ count up the number of times each key appears; this indexes where each item belongs in the sorted array Key-Indexed FOR EXAMPLE: assuming my key domain is numbers [0...10], if we have three '0's, and two '1's, '2's must go at index 5 and onwards look, ma! no comparisons! look, ma! an O(n) sort! terms and conditions apply, see in store for details COMP2521 **Key-Indexed Counting Sort** 19T0 lec11 cs2521@ jashankj@ we must know our sequence is of size N, Key-Indexed and the domain of keys in that sequence. pumped-up KICS pretty efficient ... if M is small compared to N. actually, O(n + M) ... so if we have 1, 2, 999999 ...

> Not in-place — uses a temporary array. Can be stable! Not really adaptive.

Non-Comparison-Based Sorting

COMP2521

19T0 lec11 cs2521@

Heap Sort

COMP2521 19T0 lec11

cs2521@ jashankj@

orting Divide-and-Conque Merge

Key-Indexed

We already have a data structure which has element ordering as an invariant: the heap or priority queue.

We could just dump all n elements into a priority queue, and dequeue them — n operations of $O(\log n)$ complexity. no gain.

What if we used the heap-fix-down mechanism on the whole array, popping off the maximum item, and shrinking the heap each time? That's O(n)! The catch: the inner loop is expensive.

COMP2521 19T0 lec11

cs2521@ jashankj@

Divide-and-Conque Merge Quick Non-Comparison Kev-Indexed

Неар

Heap Sort

C Implementation

```
void sort_heap (Item a[], size_t lo, size_t hi)
{
    size_t N = hi - lo + 1;
    Item *pq = &a[lo - 1];
    for (size_t k = N/2; k >= 1; k--)
        heap_fixdown (pq, k, N);
    while (N > 1) {
        swap_idx (pq, 1, N);
        heap_fixdown (pq, 1, --N);
    }
}
```