Differential Forms

This is mainly from introductory level Youtube Video by Michael Penn https://www.youtube.com/watch?v=PaWjOWxUxGg&list=PL22w63XsKjqzQZtDZO_9s2HEMRJnaOTX7&index=2.

1 Introduction

Definition: 1.1: Tangent Space

Suppose $C \subset \mathbb{R}^2$ is a curve and $p \in C$. The tangent space to C at p T_pC is the set of all vectors tangent to C at p.

Example: y = f(x), p = (a, f(a)).

The tangent vector is $v = \langle 1, f'(a) \rangle$. $T_pC = \text{span}\{\langle 1, f'(a) \rangle\} = \langle c, f'(a) \rangle, c \in \mathbb{R}$.

To distinguish between points on $C \subset \mathbb{R}^2$ and vectors in $T_pC \subset \mathbb{R}^2$, we use the following coordinate systems:

Definition: 1.2: Coordinate Systems

On
$$C \subset \mathbb{R}^2$$
, $(x:y): C \to \mathbb{R}^2$, $(x,y)(p) = (x(p),y(p))$. Here $x: C \to \mathbb{R}$, $y: C \to \mathbb{R}$. On $T_pC \subset \mathbb{R}^2$, $\langle dx, dy \rangle: T_pC \to \mathbb{R}^2$, $\langle dx, dy \rangle(v) = \langle dx(v), dy(v) \rangle$. Here $dx: T_pC \to \mathbb{R}$, $dy: T_pC \to \mathbb{R}$.

Example: $y = x^2$, $(x, y)(p) = (a, a^2)$, $\langle dx, dy \rangle(v) = \langle 1, 2a \rangle$. **Notation:** $(x, y) = (a, a^2) \in C$, $\langle dx, dy \rangle = \langle 1, 2a \rangle \in T_pC$.

Example: $\mathbb{R}^2 = \text{span}\{(1,0),(0,1)\} = \{(x,y): x,y \in \mathbb{R}\}$ $T_p\mathbb{R}^2 = \text{span}\{\langle 1,0\rangle,\langle 0,1\rangle\} = \{\langle dx,dy\rangle_p: dx,dy \in \mathbb{R}\}$ $T_q\mathbb{R}^2 = \text{span}\{\langle 1,0\rangle,\langle 0,1\rangle\} = \{\langle dx,dy\rangle_q: dx,dy \in \mathbb{R}\}$ We can use subscripts p,q to show the base points.

Definition: 1.3: 1-form

A 1-form is a linear function $\omega: T_p\mathbb{R}^n \to \mathbb{R}$. i.e. $\omega: (T_p\mathbb{R}^n)^*$ (dual space of the tangent space)

Example: For \mathbb{R}^2 and $T_p\mathbb{R}^2$, $\omega: T_p\mathbb{R}^2 \to \mathbb{R}$ and linear. Then $\omega(\langle dx, dy \rangle) = adx + bdy = \langle a, b \rangle \cdot \langle dx, dy \rangle = \|\langle a, b \rangle\| \operatorname{proj}_{\langle a, b \rangle} \langle dx, dy \rangle$.

Example: On \mathbb{R}^n , $\omega: T_p\mathbb{R}^n \to \mathbb{R}$ gives $\omega(\langle dx_1, ..., dx_n \rangle) = a_1 dx_1 + \cdots + a_n dx_n$.

Remark 1. A 1-form is a multiple of the scalar projection of $\langle dx, dy \rangle$ onto some line $\langle a, b \rangle$. A line integral is an integral on a 1-form.

Example: Define $\omega(\langle dx, dy \rangle) = 3dx + 2dy.\omega$ projects vectors onto a line with direction $\langle 3, 2 \rangle$, *i.e.* $dy = \frac{2}{3}dx$.

Example: Suppose ω scalar projects onto the line dy = 2dx with length 3. Find ω . $\omega(\langle dx, dy \rangle) = \langle a, b \rangle \langle dx, dy \rangle$, and we need $\langle a, b \rangle \parallel \langle 1, 2 \rangle$, so $\langle a, b \rangle = \langle a, 2a \rangle$. Also, $\|\langle a, 2a \rangle\| = 3$, so $a = \frac{3}{\sqrt{5}}$, $b = \frac{6}{\sqrt{5}}$. $\omega(\langle dx, dy \rangle) = \frac{3}{\sqrt{5}}dx + \frac{6}{\sqrt{5}}dy$.

1.1 Wedge Product and m-forms

Now we want to define a wedge product of 1-forms $\omega_1 \wedge \omega_2$, which is a linear function $\omega_1 \wedge \omega_2 : T_p \mathbb{R}^n \times T_p \mathbb{R}^n \to \mathbb{R}$ that has a meaningful geometric interpretation.

Let $v_1, v_2 \in T_p \mathbb{R}^n$, if we have ω_1 act on v_1 we just get a scalar. Similarly, ω_1 acting on v_2 gives a different scalar. We can now create a vector $\langle \omega_1(v_1), \omega_2(v_1) \rangle$ using these two scalars. We can also create a vector $\langle \omega_1(v_2), \omega_2(v_2) \rangle$ using v_2 .

Definition: 1.4: Wedge Product

Define $\omega_1 \wedge \omega_2(v_1, v_2)$ to be the signed area of the parallelogram spanned by $\langle \omega_1(v_1), \omega_2(v_1) \rangle$ and $\langle \omega_1(v_2), \omega_2(v_2) \rangle$. *i.e.*,

$$\omega_1 \wedge \omega_2(v_1, v_2) = \det \begin{bmatrix} \omega_1(v_1) & \omega_2(v_1) \\ \omega_1(v_2) & \omega_2(v_2) \end{bmatrix}$$

Example: $\omega_1 = 3dx - 2dy - dz$, $\omega_2 = dx + 4dy$, $v_1 = \langle 1, 2, -5 \rangle$, $v_2 = \langle 0, 3, -2 \rangle$. $\omega_1(v_1) = 3 \cdot 1 - 2 \cdot 2 - (-5) = 4$, $\omega_2(v_1) = 1 + 4 \cdot 2 = 9$ $\omega_1(v_2) = 3 \cdot 0 - 2 \cdot 3 - (-2) = -4$, $\omega_2(v_2) = 00 + 4 \cdot 3 = 12$ $\omega_1 \wedge \omega_2(v_1, v_2) = \det \begin{bmatrix} \omega_1(v_1) & \omega_2(v_1) \\ \omega_1(v_2) & \omega_2(v_2) \end{bmatrix} = \det \begin{bmatrix} 4 & 9 \\ -4 & 12 \end{bmatrix} = 84$

Theorem: 1.1: Properties of Wedge Products

Let $\omega_1, \omega_2, \omega_3, \omega$ be 1-forms.

- 1. $\omega_1 \wedge \omega_2 = -\omega_2 \wedge \omega_1$
- 2. $\omega_1 \wedge \omega_2(v_1, v_2) = -\omega_1 \wedge \omega_2(v_2, v_1)$
- 3. $\omega \wedge \omega = 0$
- 4. Distributive: $\omega_1 \wedge (\omega_2 + \omega_3) = \omega_1 \wedge \omega_2 + \omega_1 \wedge \omega_3$

Proof. 1. Suppose $v_1, v_2 \in T_p \mathbb{R}^n$, $\omega_1 \wedge \omega_2(v_1, v_2) = \det \begin{bmatrix} \omega_1(v_1) & \omega_2(v_1) \\ \omega_1(v_2) & \omega_2(v_2) \end{bmatrix} = -\det \begin{bmatrix} \omega_2(v_1) & \omega_1(v_1) \\ \omega_2(v_2) & \omega_1(v_2) \end{bmatrix} = -\omega_2 \wedge \omega_1(v_1, v_2)$

2.
$$\omega_1 \wedge \omega_2(v_1, v_2) = \det \begin{bmatrix} \omega_1(v_1) & \omega_2(v_1) \\ \omega_1(v_2) & \omega_2(v_2) \end{bmatrix} = -\det \begin{bmatrix} \omega_1(v_2) & \omega_2(v_2) \\ \omega_1(v_1) & \omega_2(v_1) \end{bmatrix} = -\omega_1 \wedge \omega_2(v_2, v_1)$$

- 3. By 1, we know that $\omega \wedge \omega = -\omega \wedge \omega$, so $\omega \wedge \omega = 0$.
- 4. Suppose $v, w \in T_p \mathbb{R}^n$

$$\omega_1 \wedge (\omega_2 + \omega_3)(v, w) = \det \begin{bmatrix} \omega_1(v) & (\omega_2 + \omega_3)(v) \\ \omega_1(w) & (\omega_2 + \omega_3)(w) \end{bmatrix} = \det \begin{bmatrix} \omega_1(v) & \omega_2(v) + \omega_3(v) \\ \omega_1(w) & \omega_2(w) + \omega_3(w) \end{bmatrix}$$
$$= \det \begin{bmatrix} \omega_1(v) & \omega_2(v) \\ \omega_1(w) & \omega_2(w) \end{bmatrix} + \det \begin{bmatrix} \omega_1(v) & \omega_2(v) \\ \omega_1(w) & \omega_3(w) \end{bmatrix} = (\omega_1 \wedge \omega_2)(v, w) + (\omega_1 \wedge \omega_3)(v, w)$$

Theorem: 1.2:

For all 1-forms, $\omega_1, \omega_2 : T_p \mathbb{R}^2 \to \mathbb{R}$, $\omega_1 \wedge \omega_2 = cdx \wedge dy$ for some $c \in \mathbb{R}$.

Proof. Let $\omega_1 = Adx + Bdy$, $\omega_2 = Cdx + Ddy$.

$$\omega_1 \wedge \omega_2 = (Adx + Bdy) \wedge (Cdx + Ddy)$$

$$= ACdx \wedge dx + ADdx \wedge dy + BCdy \wedge dx + BDdy \wedge dy$$

$$= (AD - BC)dx \wedge dy$$

Since $dx \wedge dx = dy \wedge dy = 0$ and $dx \wedge dy = -dy \wedge dx$ by Theorem 1.1.

And AD - BC is a constant $c \in \mathbb{R}$.

Definition: 1.5: m-form

An m-form on $T_p\mathbb{R}^n$ is a function $\omega:(T_p\mathbb{R}^n)^m\to\mathbb{R}$ s.t. ω is multilinear and alternating.

1. Multilinear: Let $u_j \in T_p \mathbb{R}^n$, $v, w \in T_p \mathbb{R}^n$, $a, b \in \mathbb{R}$, $\omega(u_1, ..., u_{i-1}, av + bw, u_{i+1}, ..., u_m) = a\omega(u_1, ..., u_{i-1}, v, u_{i+1}, ..., u_m) + b\omega(u_1, ..., u_{i-1}, w, u_{i+1}, ..., u_m)$

2. Alternating: Suppose $\sigma \in S_m$ (Symmetric group of order m, *i.e.* all permutations on m elements.). Then $\omega(u_{\sigma(1)},...,u_{\sigma(m)}) = (-1)^{\operatorname{sgn}(\sigma)}\omega(u_1,...,u_m)$

Example: $dx \wedge dy$ is a 2-form.

Suppose $v = \langle a_1, a_2 \rangle$, $w = \langle b_1, b_2 \rangle$, $dx \wedge dy(v, w) = \det \begin{bmatrix} dx(v) & dy(v) \\ dx(w) & dy(w) \end{bmatrix} = \det \begin{bmatrix} v \\ w \end{bmatrix} = \text{signed area of parallelogram defined by } v \text{ and } w.$

Note: $dx(\langle a_1, a_2 \rangle) = a_1, dy(\langle a_1, a_2 \rangle) = a_2$ for any vector $\langle a_1, a_2 \rangle$.

Example: (Alternating) $\omega(u_3, u_2, u_1) = -\omega(u_1, u_2, u_3)$, because $(1, 3) \in S_3$ is an odd permutation (transposition).

 $\omega(u_2, u_3, u_1) = \omega(u_1, u_2, u_3)$, because $(1, 2, 3) \in S_3$ is an even permutation (3-cycle).

Theorem: 1.3: Construction of m-forms

Let $\omega_1,...,\omega_n$ be 1-forms. We can construct a m-form by

$$(\omega_1 \wedge \cdots \wedge \omega_m)(v_1, ..., v_m) = \det \begin{bmatrix} \omega_1(v_1) & \cdots & \omega_m(v_1) \\ \vdots & \ddots & \vdots \\ \omega_1(v_m) & \cdots & \omega_m(v_m) \end{bmatrix}$$

Example: $\omega = 2dx \wedge dy \wedge dz$, $v_1 = \langle 2, -1, 0 \rangle$, $v_2 = \langle 1, 2, -1 \rangle$, $v_3 = \langle 0, 1, 2 \rangle$

$$\omega = \omega_1 \wedge \omega_2 \wedge \omega_3, \text{ where } \omega_1 = 2dx, \ \omega_2 = dy, \ \omega_3 = dz$$
Then $\omega(v_1, v_2, v_3) = \det \begin{bmatrix} 4 & -1 & 0 \\ 2 & 2 & -1 \\ 0 & 1 & 2 \end{bmatrix} = 4 \cdot 5 - (-1)^2 4 + 0 = 24$

Example: $\omega_1 = dx + 2dy$, $\omega_2 = dx - dz$, $\omega_3 = dx + dy + dz$ $v_1 = \langle 2, 1, 0 \rangle$, $v_2 = \langle -1, 3, -2 \rangle$, $v_3 = \langle 1, 0, 1 \rangle$

$$\omega_1 \wedge \omega_2 \wedge \omega_3(v_1, v_2, v_3) = \det \begin{bmatrix} 2+2\cdot 1 & 2-0 & 2+1+0 \\ -1+2\cdot 3 & -1-(-2) & -1+3+(-2) \\ 1+2\cdot 0 & 1-1 & 1+0+1 \end{bmatrix} = \det \begin{bmatrix} 4 & 2 & 3 \\ 5 & 1 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$
$$= 1(0-3) + 2(4-10) = -3 - 12 = -15$$

Note: The distributive rule from Theorem 1.1 still holds. **Example:**

zampie.

$$(dx + dy + dz) \wedge (2dx - 3dy) \wedge (dx + 2dz)$$

- $= (2dx \wedge dx + 2dy \wedge dx + 2dz \wedge dx 3dx \wedge dy 3dy \wedge dy 3dz \wedge dy) \wedge (dx + 2dz)$
- $= (-5dx \wedge dy 3dz \wedge dy + 2dz \wedge dx) \wedge (dx + 2dz)$
- $= -5dx \wedge dy \wedge dx 3dz \wedge dy \wedge dx + 2dz \wedge dx \wedge dx 10dx \wedge dy \wedge dz$
- $-6dz \wedge dy \wedge dz + 4dz \wedge dx \wedge dz$
- $= -7dx \wedge dy \wedge dz$

Theorem: 1.4:

Every m-form on $T_p\mathbb{R}^n$ can bet written as

$$\omega = \sum_{1 \le i_i < \dots < i_m \le n} a_{i_1 \dots i_m} dx_{i_1} \wedge dx_{i_2} \wedge \dots \wedge dx_{i_m}$$

Sometimes, we write $I = (i_1, ..., i_m), dx_{i_1} \wedge \cdots dx_{i_m} = dx_I$.

Definition: 1.6: Space of m-forms

The space of m-forms has a basis given by $\{dx_{i_1} \wedge \cdots dx_{i_m} : 1 \leq i_1 < \cdots < i_m \leq n\}$ The space is denoted as $\bigwedge^m \mathbb{R}^n$.

$$dx_I(v^{(1)},...,v^{(m)}) = \det[v_{i_k}^{(j)}]_{1 \le j,k \le m}.$$

Theorem: 1.5: Dimension of Space of m-forms

The dimension of the space of m-forms on $T_p\mathbb{R}^n$ is $\binom{n}{m} = \frac{n!}{m!(n-m)!}$

Proof. The basis of $T_p\mathbb{R}^n$ is $\{dx_I\}$. To construct an m-form, we choose m elements from $\{dx_1,...,dx_n\}$. There are exactly $\binom{n}{m}$ ways.

Example: On $T_p\mathbb{R}^4$, there are one 0-form, four 1-forms, six 2-forms, four 3-forms, one 4-forms.

0-forms: \mathbb{R}

1-forms: $\{dx_1, dx_2, dx_3, dx_4\}$

2-forms: $\{dx_1 \wedge dx_2, dx_1 \wedge dx_3, dx_1 \wedge dx_4, dx_2 \wedge dx_3, dx_2 \wedge dx_4, dx_3 \wedge dx_4\}$

3-forms: $\{dx_1 \wedge dx_2 \wedge dx_3, dx_1 \wedge dx_2 \wedge dx_4, dx_1 \wedge dx_3 \wedge dx_4, dx_2 \wedge dx_3 \wedge dx_4\}$ (dual of 1-forms)

4-forms: $\{dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4\}$ (dual of 0-forms)

Theorem: 1.6:

If α is a k-form and β is an l-form. Then $\beta \wedge \alpha = (-1)^{kl} \alpha \wedge \beta$.

Proof. Any permutation on $\{1, ..., m\}$ can be written as a product of transpositions (j, j + 1). Consider the following swap of j with j + 1.

$$dx_{i_{1}} \wedge \cdots \wedge dx_{i_{j+1}} \wedge dx_{i_{j}} \wedge \cdots \wedge dx_{i_{m}}(v^{(1)}, ..., v^{(m)}) = \det \begin{bmatrix} v_{i_{1}}^{(1)} & \cdots & v_{i_{j+1}}^{(1)} & v_{i_{j}}^{(1)} & \cdots & v_{i_{m}}^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{i_{1}}^{(m)} & \cdots & v_{i_{j+1}}^{(m)} & v_{i_{j}}^{(m)} & \cdots & v_{i_{m}}^{(m)} \end{bmatrix}$$

$$= -\det \begin{bmatrix} v_{i_{1}}^{(1)} & \cdots & v_{i_{j}}^{(1)} & v_{i_{j+1}}^{(1)} & \cdots & v_{i_{m}}^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{i_{1}}^{(m)} & \cdots & v_{i_{j}}^{(m)} & v_{i_{j+1}}^{(m)} & \cdots & v_{i_{m}}^{(m)} \end{bmatrix}$$

$$= -dx_{i_{1}} \wedge \cdots \wedge dx_{i_{1}} \wedge dx_{i_{1}} \wedge \cdots \wedge dx_{i_{j}} \quad (v^{(1)}, ..., v^{(m)})$$

For the k-form,
$$\alpha = \sum a_{i_1 \cdots i_k} dx_{i_1} \wedge \cdots \wedge dx_{i_k}$$

For the l-form $\beta = \sum b_{j_1 \cdots j_l} dx_{j_1} \wedge \cdots \wedge dx_{j_l}$

We need to move k elements each passing l elements. And passing l elements gives a $(-1)^l$. k times makes it $(-1)^{kl}$

$$\beta \wedge \alpha = \sum_{I} \sum_{J} a_{I} b_{J} dx_{j_{1}} \wedge \cdots dx_{j_{l}} \wedge dx_{i_{1}} \wedge \cdots dx_{i_{k}}$$

$$= (-1)^{l} \sum_{I} \sum_{J} a_{I} b_{J} dx_{i_{1}} \wedge dx_{j_{1}} \wedge \cdots dx_{j_{l}} \wedge dx_{i_{2}} \wedge \cdots dx_{i_{k}}$$

$$= (-1)^{kl} \sum_{I} \sum_{J} a_{I} b_{J} dx_{i_{1}} \wedge \cdots dx_{i_{k}} \wedge dx_{j_{1}} \wedge \cdots dx_{j_{l}}$$

$$= (-1)^{kl} \alpha \wedge \beta$$

Corollary 1. If k is odd, $\alpha \wedge \alpha = 0$, but for k even, not necessarily true.

Example:
$$v^{(1)} = \langle 1, -1, 3, 5 \rangle, v^{(2)} = \langle 0, 1, -1, 4 \rangle$$

 $dx \wedge dy(v^{(1)}, v^{(2)}) = \det \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = 1$
 $dz \wedge dw(v^{(1)}, v^{(2)}) = \det \begin{bmatrix} 3 & 5 \\ -1 & 4 \end{bmatrix} = 17$
 $dx \wedge dz(v^{(1)}, v^{(2)}) = \det \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix} = -1$
Let $\omega = 2dx \wedge dy + 3dz \wedge dw - 5dx \wedge dz$, then $\omega(v^{(1)}, v^{(2)}) = 2 \cdot 1 + 3 \cdot 17 - 5(-1) = 58$

2 Integration on Forms

2.1 Differential m-forms

Definition: 2.1: Differential m-forms

A differential m-form on \mathbb{R}^n is given by $\omega = \sum_I f_I dx_I$, $I = (i_1, ..., i_m)$, where $f_I : \mathbb{R}^n \to \mathbb{R}$ are differentiable.

Example: $\omega = x^2 dx \wedge dy - x^3 z dy \wedge dz$. For full evaluation, we need three inputs:

- 1 base point $p \in \mathbb{R}^3$
- 2 vectors $v^{(1)}, v^{(2)} \in T_p \mathbb{R}^3$

Suppose p = (2, 1, -1), $\omega_p = 4dx \wedge dy + 8dy \wedge dz$. Now, suppose $v^{(1)} = \langle 1, -2, 3 \rangle$, $v^{(2)} = \langle 2, 0, 1 \rangle$, $\omega_p(v^{(1)}, v^{(2)}) = 4 \det \begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix} + 8 \det \begin{bmatrix} -2 & 3 \\ 0 & 1 \end{bmatrix} = 4 \cdot 4 + 8(-2) = 0$

Remark 2. Generally, a differential m-form on \mathbb{R}^n ω takes in m vector fields on \mathbb{R}^n and outputs a function $\mathbb{R}^n \to \mathbb{R}$.

Example: $\omega = x^2 dx \wedge dy - x^3 dy \wedge dz$, p = (x, y, z), $v^{(1)} = \langle x, 2yz, xy \rangle$, $v^{(2)} = \langle y, xz, y^2 \rangle$.

$$\omega_p(v^{(1)}, v^{(2)}) = x^2 \det \begin{bmatrix} x & 2yz \\ y & xz \end{bmatrix} - x^3 \det \begin{bmatrix} 2yz & xy \\ xz & y^2 \end{bmatrix}$$
$$= x^2(x^2z - 2y^2z) - x^3(2y^3z - x^2yz)$$

Example: $\omega = xydx \wedge dy \wedge dz - 2dx \wedge dy \wedge dw$, $v^{(1)} = \langle x, y, w, z \rangle$, $v^{(2)} = \langle x^2y, yz, x, x^2 \rangle$, $v^{(3)} = \langle w, z, x, y \rangle$.

$$\omega(v^{(1)}, v^{(2)}, v^{(3)}) = xy \det \begin{bmatrix} x & y & w \\ x^2 y & yz & x \\ w & z & x \end{bmatrix} - 2 \det \begin{bmatrix} x & y & z \\ x^2 y & yz & x^2 \\ w & z & y \end{bmatrix}$$

2.2 Integrating 2-forms

Let $\phi: D \to \mathbb{R}^n$, $D \subset \mathbb{R}^2$ be a smooth C^{∞} function parametrizing a surface S in \mathbb{R}^n . We want to calculate $\int_S \omega$ where ω is a differential 2-form on \mathbb{R}^n .

Consider three points $(u_i, v_j), (u_{i+1}, v_j), (u_i, v_{j+1}) \in D$.

We can get a point $p = \phi(u_i, v_j) \in \mathbb{R}^n$ and two vectors $\phi(u_{i+1}, v_j) - \phi(u_i, v_j), \phi(u_i, v_{j+1}) - \phi(u_i, v_j) \in T_{\phi(u_i, v_j)} \mathbb{R}^n$.

Let $\Delta u = u_{i+1} - u_i$, $\Delta v = v_{j+1} - v_j$

$$\int_{S} \omega = \lim_{\Delta u, \Delta v \to 0} \sum_{i,j} \omega_{\phi(u_{i},v_{j})} (\phi(u_{i+1}, v_{j}) - \phi(u_{i}, v_{j}), \phi(u_{i}, v_{j+1}) - \phi(u_{i}, v_{j}))$$

$$= \lim_{\Delta u, \Delta v \to 0} \sum_{i,j} \omega_{\phi(u_{i},v_{j})} \left(\frac{\phi(u_{i+1}, v_{j}) - \phi(u_{i}, v_{j})}{\Delta u}, \frac{\phi(u_{i}, v_{j+1}) - \phi(u_{i}, v_{j})}{\Delta v} \right) \Delta u \Delta v$$

$$= \iint_{D} \omega_{\phi(u,v)} \left(\frac{\partial \phi}{\partial u}, \frac{\partial \phi}{\partial v} \right) dA$$

Example: $\omega = xydx \wedge dy + x^2dx \wedge dz$. $\phi(u,v) = \langle u,v,u^2+v^2\rangle$, $D = \{(u,v): u^2+v^2=1\}$ $\frac{\partial \phi}{\partial u} = \langle 1,0,2u\rangle$, $\frac{\partial \phi}{\partial v} = \langle 0,1,2v\rangle$

$$\int_{S} \omega = \iint_{D} uv dx \wedge dy(\langle 1, 0, 2u \rangle, \langle 0, 1, 2v \rangle) + u^{2} dx \wedge dz(\langle 1, 0, 2u \rangle, \langle 0, 1, 2v \rangle) dV$$

$$= \iint_{D} uv \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + u^{2} \det \begin{bmatrix} 1 & 2u \\ 0 & 2v \end{bmatrix} dV$$

$$= \iint_{D} uv + 2u^{2}v dV$$

$$= \int_{0}^{2\pi} \int_{0}^{1} (r^{2} \sin \theta \cos \theta + 2r^{3} \cos^{2} \theta \sin \theta) r dr d\theta = 0$$

Example: $\omega = yzdx \wedge dy + \frac{z}{x}dy \wedge dz$, $S = \{(x,y,z): x^2 + y^2 = 1, 0 \le z \le 2\}$ a cylinder. We can parametrize S by $\phi(\theta,z) = \langle \cos\theta, \sin\theta, z \rangle$, $\theta \in [0,2\pi]$, $z \in [0,2]$. $\frac{\partial \phi}{\partial \theta} = \langle -\sin\theta, \cos\theta, 0 \rangle$, $\frac{\partial \phi}{\partial z} = \langle 0, 0, 1 \rangle$.

$$\omega_{\phi(\theta,z)}\left(\frac{\partial\phi}{\partial\theta},\frac{\partial\phi}{\partial z}\right) = \sin\theta z \det\begin{bmatrix} -\sin\theta & \cos\theta \\ 0 & 0 \end{bmatrix} + \frac{z}{\cos\theta}\det\begin{bmatrix} \cos\theta & 0 \\ 0 & 1 \end{bmatrix} = z$$

$$\int_{S} \omega = \int_{0}^{2\pi} \int_{0}^{2} \omega_{\phi(\theta,z)} \left(\frac{\partial \phi}{\partial \theta}, \frac{\partial \phi}{\partial z} \right) dz d\theta = \int_{0}^{2\pi} \int_{0}^{2} z dz d\theta = 4\pi$$

2.3 Integrating m-forms

Let ω be a differential m-form on \mathbb{R}^n , $\omega = \sum_I f_I dx_I$, where $I = (i_1, ..., i_m)$. Let $\phi : D \to \mathbb{R}$, $D \subset \mathbb{R}^m$ be a smooth C^{∞} function parametrizing a m-dimensional hypersurface in \mathbb{R}^n .

$$\int_{S} \omega = \int \cdots \int_{D} \omega_{\phi(u_{1},...,u_{m})} \left(\frac{\partial \phi}{\partial u_{1}}, ..., \frac{\partial \phi}{\partial u_{m}} \right) dV_{m}$$

Example: $\omega = x_1 dx_1 + (x_1^2 + x_2) dx_2 + x_3 x_4 dx_4$. $\phi : [0, 3\pi] \to \mathbb{R}^4$, $\phi(t) = \langle \cos t, \sin t, t, -t \rangle$. $\frac{\partial \phi}{\partial t} = \langle -\sin t, \cos t, 1, -1 \rangle$, $dx_1 = -\sin t$, $dx_2 = \cos t$, $dx_4 = -1$.

$$\int_C \omega = \int_0^{3\pi} \cos t(-\sin t) + (\cos^2 t + \sin t) \cos t + (-t^2)(-1)dt = 9\pi^3$$

Example: $\omega = x_3 dx_1 \wedge dx_3 \wedge dx_4$. $\phi : D = [0, 1]^3 \to \mathbb{R}^4$, $\phi(u_1, u_2, u_3) = \langle u_1 u_2, u_1^2 + u_3, u_2 u_3, u_1 + 2u_2 + u_3 \rangle$ $\frac{\partial \phi}{\partial u_1} = \langle u_2, 2u_1, 0, 1 \rangle$, $\frac{\partial \phi}{\partial u_2} = \langle u_1, 0, u_3, 2 \rangle$, $\frac{\partial \phi}{\partial u_3} = \langle 0, 1, u_2, 1 \rangle$

$$\int_{S} \omega = \iiint_{[0,1]^3} u_2 u_3 dx_1 \wedge dx_3 \wedge dx_4 \left(\frac{\partial \phi}{\partial u_1}, \frac{\partial \phi}{\partial u_2}, \frac{\partial \phi}{\partial u_3} \right) dV
= \iiint_{[0,1]^3} u_2 u_3 \det \begin{bmatrix} u_2 & 0 & 1 \\ u_1 & u_3 & 2 \\ 0 & u_2 & 1 \end{bmatrix} dV
= \iiint_{[0,1]^3} u_2^2 u_3^2 - 2u_2^3 u_3 + u_1 u_2^2 u_3 dV = 0$$

Change of Variables

Example: Integrate $\omega = x^2 dx$ over $[0,5] \subset \mathbb{R}$

1. $\phi(t) = t, t \in [0, 5],$

$$\int_{[0,5]} \omega = \int_0^5 \omega_\phi(\phi'(t)) = \int_0^5 t^2 dx(1) dt = \int_0^5 t^2 dt = \frac{125}{3}$$

2. $\phi(t) = 5t - 5, t \in [1, 2],$

$$\int_{[1,2]} \omega = \int_{1}^{2} \omega_{\phi}(5) = \int_{1}^{2} (5t - 5)^{2} dx(5) dt = 5 \int_{1}^{2} (5t - 5)^{2} dt = \frac{125}{3}$$

This example shows that u-substitution is just a change of parametrization in a differential 1-form.

Consider $\phi : [a, b] \to [\phi(a), \phi(b)], \ \omega = f(x)dx$

1. Trivial parametrization:

$$\int_{[\phi(a),\phi(b)]} \omega = \int_{\phi(a)}^{\phi(b)} f(x) dx$$

2. ϕ -parametrization:

$$\int_{[\phi(a),\phi(b)]} \omega = \int_a^b \omega_{\phi(t)}(\phi'(t))dt = \int_a^b f(\phi(t))dx(\phi'(t))dt = \int_a^b f(\phi(t))\phi'(t)dt$$

Example: Calculate $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$ with differential 1-form. $\omega = \frac{1}{\sqrt{1-x^2}} dx$, $[\phi(a), \phi(b)] = [0, 1]$ Let $\phi : [0, \frac{\pi}{2}] \to [0, 1]$, $\phi(t) = \sin t$, $\phi'(t) = \cos t$

$$\omega = \frac{1}{\sqrt{1-x^2}} dx, \ [\phi(a), \phi(b)] = [0, 1]$$

$$\int_{[0,1]} \omega = \int_0^{\pi/2} \omega_{\phi(t)}(\phi'(t))dt = \int_0^{\pi/2} \frac{1}{\sqrt{1 - \sin^2 t}} dx(\cos t)dt = \int_0^{\pi/2} \frac{\cos t}{\cos t} dt = \frac{\pi}{2}$$

We can apply the same technique to 2-forms and m-Forms

To integrate $\omega f(x,y)dx \wedge dy$ over $D \subset \mathbb{R}^2$

1. Trivial parametrization:

$$\int_{D} \omega = \iint_{D} \omega_{id} \left(\frac{\partial id}{\partial x}, \frac{\partial id}{\partial y} \right) dA = \iint_{D} f(x, y) dx \wedge dy(\langle 1, 0 \rangle, \langle 0, 1 \rangle) dA$$
$$= \iint_{D} f(x, y) \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} dA = \iint_{D} f(x, y) dA$$

2. ϕ -parametrization: Let $\phi(u,v) = \langle x(u,v), y(u,v) \rangle$, $\frac{\partial \phi}{\partial u} = \langle \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u} \rangle$, $\frac{\partial \phi}{\partial v} = \langle \frac{\partial x}{\partial v}, \frac{\partial y}{\partial v} \rangle$

$$\begin{split} \int_D \omega &= \iint_D \omega_\phi \left(\frac{\partial \phi}{\partial u}, \frac{\partial \phi}{\partial v} \right) dA' = \iint_D f(x(u,v), y(u,v)) dx \wedge dy \left(\langle \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u} \rangle, \langle \frac{\partial x}{\partial v}, \frac{\partial y}{\partial v} \rangle \right) dA' \\ &= \iint_D f(x(u,v), y(u,v)) \det \left[\frac{\partial x}{\partial u} - \frac{\partial y}{\partial u} \right] dA' \end{split}$$

Example: Compute $\iint_D (x^2+y^2) dA$ with $D=\{(x,y): x^2+y^2\leq 4\}$ Let $\omega=(x^2+y^2) dx \wedge dy$. Define $\phi:[0,2]\times[0,2\pi]\to D$ with $\phi(r,\theta)=\langle r\cos\theta,r\sin\theta\rangle$. $\frac{\partial\phi}{\partial r}=\langle\cos\theta,\sin\theta\rangle,\,\frac{\partial\phi}{\partial\theta}=\langle-r\sin\theta,r\cos\theta\rangle$.

$$\int_{D} \omega = \int_{0}^{2} \int_{0}^{2\pi} \omega_{\phi} \left(\frac{\partial \phi}{\partial r}, \frac{\partial \phi}{\partial \theta} \right) d\theta dr$$

$$= \int_{0}^{2} \int_{0}^{2\pi} r^{2} \det \begin{bmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{bmatrix} d\theta dr$$

$$= \int_{0}^{2} \int_{0}^{2\pi} r^{3} d\theta dr = 8\pi$$

3 Exterior Derivative

The goal here is to define a derivative d that takes differential m-forms on \mathbb{R}^n and outputs differential (m+1)-forms on \mathbb{R}^n .

Starting point d: 0-forms $\to 1$ -forms. i.e. Given a 0-form (a function $f(x_1, ..., x_n)$) on \mathbb{R}^n , what is df?

- 1. df is a 1-form
- 2. To evaluate df, we set a point $p \in \mathbb{R}^n$, $v \in T_n \mathbb{R}^n$,

$$(df)_p(v) = D_v f(p) = \nabla f(p) \cdot v = \frac{\partial f}{\partial x_1} v_1 + \dots + \frac{\partial f}{\partial x_n} v_n = \frac{\partial f}{\partial x_1} dx_1(v) + \dots + \frac{\partial f}{\partial x_n} dx_n(v)$$

Thus $df = \frac{\partial f}{\partial x_1} dx_1 + \cdots + \frac{\partial f}{\partial x_n} dx_n$.

Definition: 3.1: Exterior Derivative

Given a differential m-form $d(fdx_I) = \frac{\partial f}{\partial x_1} dx_1 \wedge dx_I + \cdots + \frac{\partial f}{\partial x_n} dx_n \wedge dx_I$.

Define $d\omega = \sum_{I} \sum_{j=1}^{n} \frac{\partial f_{I}}{\partial x_{j}} dx_{j} \wedge dx_{I}$. This is a differential (m+1)-form.

Example: In \mathbb{R}^3

0-form: a function f, $df = f_x dx + f_y dy + f_z dz$

1-form: $\alpha = fdx + gdy + hdz$,

$$d\alpha = f_x dx \wedge dx + f_y dy \wedge dx + f_z dz \wedge dx + g_x dx \wedge dy + g_y dy \wedge dy + g_z dz \wedge dy + h_x dx \wedge dz + h_y dy \wedge dz + h_z dz \wedge dz$$
$$= (g_x - f_y) dx \wedge dy + (h_y - g_z) dy \wedge dz + (h_x - f_z) dx \wedge dz$$

2-form:
$$\beta = Fdx \wedge dy + Gdx \wedge dz + Hdy \wedge dz$$
,

$$d\beta = F_z dz \wedge dx \wedge dy + G_y dy \wedge dx \wedge dz + H_x dx \wedge dy \wedge dz$$
$$= (F_z - G_y + H_x) dx \wedge dy \wedge dz$$

3-form:
$$\gamma = Rdx \wedge dy \wedge dz$$
, $d\gamma = 0$

Example: $\omega = x^3 dx + 2xy dy + xyz dz$

$$\begin{split} d\omega &= 3x^2 dx \wedge dx + 2y dx \wedge dy + 2x dy \wedge dy + yz dx \wedge dz + xz dy \wedge dz + xy dz \wedge dz \\ &= 2y dx \wedge dy + yz dx \wedge dz + xz dy \wedge dz \end{split}$$

Example: $\omega = x^2y^2dx \wedge dz + 2x^3yzdy \wedge dz$

$$\begin{split} d\omega &= 2xy^2 dx \wedge dx \wedge dz + 2x^2 y dy \wedge dx \wedge dz \\ &+ 6x^2 y z dx \wedge dy \wedge dz + 2x^3 z dy \wedge dy \wedge dz + 2x^3 y dz \wedge dy \wedge dz \\ &= (2x^2 y + 6xyz) dx \wedge dy \wedge dz \end{split}$$

Theorem: 3.1: Product Rule

Given ω a m-form, μ a k-form,

$$d(\omega \wedge \mu) = (d\omega) \wedge \mu + (-1)^m \omega \wedge (d\mu)$$

Proof. Let
$$\omega = \sum_{I} f_{I} dx_{I}$$
, $\mu = \sum_{J} g_{J} dx_{J}$, where $I = (i_{1}, ..., i_{m})$, $J = (j_{1}, ..., j_{k})$.

$$\omega \wedge \mu = \sum_{I} \sum_{J} f_{I} g_{J} dx_{I} \wedge dx_{J}$$

$$d(\omega \wedge \mu) = \sum_{I,J} \sum_{r=1}^{n} \frac{\partial}{\partial x_{r}} (f_{I} g_{J}) dx_{r} \wedge dx_{I} \wedge dx_{J}$$

$$= \sum_{I,J} \sum_{r=1}^{n} \left(\frac{\partial f_{I}}{\partial x_{r}} g_{J} + f_{I} \frac{\partial g_{J}}{\partial x_{r}} \right) dx_{r} \wedge dx_{I} \wedge dx_{J}$$

$$= \sum_{I,J} \sum_{r=1}^{n} \frac{\partial f_{I}}{\partial x_{r}} g_{J} dx_{r} \wedge dx_{I} \wedge dx_{J} + \sum_{I,J} \sum_{r=1}^{n} f_{I} \frac{\partial g_{J}}{\partial x_{r}} dx_{r} \wedge dx_{I} \wedge dx_{J}$$

$$= \sum_{I,J} \sum_{r=1}^{n} \frac{\partial f_{I}}{\partial x_{r}} g_{J} dx_{r} \wedge dx_{I} \wedge dx_{J} + (-1)^{m} \sum_{I,J} \sum_{r=1}^{n} f_{I} \frac{\partial g_{J}}{\partial x_{r}} dx_{I} \wedge dx_{r} \wedge dx_{J}$$

$$= (d\omega) \wedge \mu + (-1)^{m} \omega \wedge (d\mu)$$

Theorem: 3.2:

Suppose ω is a differential m-form on \mathbb{R}^n . Then $d^2(\omega) = d(d\omega) = 0$

Proof. Set
$$\omega = f dx_I$$
, $d\omega = \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i \wedge dx_I$.

$$d^{2}\omega = \sum_{k=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{k} \partial x_{j}} dx_{k} \wedge dx_{j} \wedge dx_{I}$$

$$= \sum_{k=1}^{n} \left(\sum_{j=1}^{k-1} \frac{\partial^{2} f}{\partial x_{k} \partial x_{j}} dx_{k} \wedge dx_{j} \wedge dx_{I} + \sum_{j=k+1}^{n} \frac{\partial^{2} f}{\partial x_{k} \partial x_{j}} dx_{k} \wedge dx_{j} \wedge dx_{I} \right)$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{k-1} \frac{\partial^{2} f}{\partial x_{k} \partial x_{j}} dx_{k} \wedge dx_{j} \wedge dx_{I} - \sum_{k=1}^{n} \sum_{j=1}^{k-1} \frac{\partial^{2} f}{\partial x_{k} \partial x_{j}} dx_{k} \wedge dx_{j} \wedge dx_{I} = 0$$

For the general m-form $\omega = \sum_{I} f_{I} dx_{I}$, by linearity, we have $d^{2}\omega = 0$.

Example: Given a 2-form $\omega = f dx \wedge dy$ on \mathbb{R}^4 .

$$d\omega = f_z dz \wedge dx \wedge dy + f_w dw \wedge dx \wedge dy$$

$$d^2\omega = f_{zw}dw \wedge dz \wedge dz + f_{wz}dz \wedge dw \wedge dx \wedge dy = 0$$

Note that for gradients, curl and div, we have the following relationship:

Functions on $\mathbb{R}^3 \xrightarrow{\operatorname{grad}}$ vector fields on $\mathbb{R}^3 \xrightarrow{\operatorname{curl}}$ vector fields on $\mathbb{R}^3 \xrightarrow{\operatorname{div}}$ Functions on \mathbb{R}^3

$$\operatorname{curl}(\operatorname{grad}(f)) = 0 = d^2 f$$
$$\operatorname{div}(\operatorname{curl}(F)) = 0 = d^2 F$$

11

3.1 Hodge Operator

Recall that $\bigwedge^m(\mathbb{R}^n)$ is the vector space of m-forms on \mathbb{R}^n . The dimension is $\dim \bigwedge^m(\mathbb{R}^n) = \binom{n}{m}$. Note that $\binom{n}{m} = \binom{n}{n-m}$. We want to know if there is a relation between $\bigwedge^m(\mathbb{R}^n)$ and $\bigwedge^{n-m}(\mathbb{R}^n)$

Definition: 3.2: Space of Differential Forms

The space of differential forms is a module over the space of forms

$$\bigoplus_{m=0}^{n} \bigwedge^{m} (\mathbb{R}^{n})$$

Definition: 3.3: Hodge Operator

The hodge operator is $\star : \bigwedge^m(\mathbb{R}^n) \to \bigwedge^{n-m}(\mathbb{R}^n)$. $\star dx_I = dx_J \text{ s.t. } dx_I \wedge dx_J = dx_1 \wedge \cdots dx_n$

Example: On \mathbb{R}^2 .

0-form: $\star 1 = dx \wedge dy$

1-forms: $\star dx = dy$, since we need $dx \wedge (\star dx) = dx \wedge dy$

 $\star dy = -dx$, since $dy \wedge (\star dy) = dy \wedge (-dx) = dx \wedge dy$

2-forms: $\star dx \wedge dy = 1$

Example: On \mathbb{R}^3 , $\star : \bigwedge^1(\mathbb{R}^3) \to \bigwedge^2(\mathbb{R}^3)$ and $\star : \bigwedge^2(\mathbb{R}^3) \to \bigwedge^1(\mathbb{R}^3)$.

1-forms: $\star dx = dy \wedge dz$,

 $\star dy = -dx \wedge dz$, since $dy \wedge (\star dy) = dy \wedge dx \wedge dz = -dx \wedge dy \wedge dz$,

 $\star dz = dx \wedge dy$, since $dz \wedge (\star dz) = dz \wedge dx \wedge dy = dx \wedge dy \wedge dz$.

2-forms: by symmetry, $\star dx \wedge dy = dz$, $\star dx \wedge dz = -dy$, $\star dy \wedge dz = dx$

Example: $\star: \bigwedge^2(\mathbb{R}^5) \to \bigwedge^3(\mathbb{R}^5), \ \omega = dx_1 \wedge dx_2 + 2dx_3 \wedge dx_4 + 7dx_1 \wedge dx_5$

 $\star \omega = dx_3 \wedge dx_4 \wedge dx_5 + 2dx_1 \wedge dx_2 \wedge dx_5 - 7dx_2 \wedge dx_3 \wedge dx_4$

Remark 3. If $\omega = \sum_{I} f_{I} dx_{I}$, then $\star \omega = \sum_{I} f_{I} (\star dx_{I})$.

Definition: 3.4: Grad, Curl, Div

For $f: \mathbb{R}^3 \to \mathbb{R}$, grad $(f) = \langle f_x, f_y, f_z \rangle$

For $F = \langle P, Q, R \rangle$,

 $\operatorname{curl}(F) = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle$

 $\operatorname{div}(F) = P_x + Q_y + R_z$

Identity: $F = \langle P, Q, R \rangle = Pdx + Qdy + Rdz = \omega_F$

Theorem: 3.3:

- 1. $\operatorname{grad}(f) = df$
- 2. $\operatorname{curl}(F) = \star d\omega_F$
- 3. $\operatorname{div}(F) = \star d(\star \omega_F)$

Proof. 1. $df = \sum_{j=1}^{3} \frac{\partial f}{\partial x_j} dx_j = f_x dx + f_y dy + f_z dz = \langle f_x, f_y, f_z \rangle = \operatorname{grad}(f)$

2.

$$\star d\omega_F = \star (P_x dx \wedge dx + Q_x dx \wedge dy + R_x dx \wedge dz + P_y dy \wedge dx + Q_y dy \wedge dy + R_y dy \wedge dz + P_z dz \wedge dx + Q_z dz \wedge dy + R_z dz \wedge dz)$$

$$= \star [(Q_x - P_y) dx \wedge dy + (R_x - P_z) dx \wedge dz + (R_y - Q_z) dy \wedge dz]$$

$$= (Q_x - P_y) dz + (R_x - P_z) dy + (R_y - Q_z) dx$$

$$= \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle = \text{curl}(F)$$

3.

$$\star d(\star \omega) = \star d(\star (Pdx + Qdy + Rdz))$$

$$= \star d[Pdy \wedge dz - Qdx \wedge dz + Rdx \wedge dy]$$

$$= \star (P_x dx \wedge dy \wedge dz + Q_y dx \wedge dy \wedge dz + R_z dx \wedge dy \wedge dz)$$

$$= P_x + Q_y + R_z$$

Also, since
$$d^2 = 0$$
,
 $\operatorname{curl}(\operatorname{grad}(f)) = \star d(df) = \star d^2 f = 0$
 $\operatorname{div}(\operatorname{curl}(F)) = \star d \star \star d\omega_F = \star d^2\omega_F = 0$

3.2 Hodge Product via Inner Product

Definition: 3.5: Hodge Product via Inner Product

Let $\langle \cdot, \cdot \rangle : (\bigwedge^k(\mathbb{R}^n))^2 \to \mathbb{R}$ be a bilinear form (inner product) on the space of k-forms. Define $\star \alpha$ by the unique (n-m)-form s.t. $\forall \beta \in \bigwedge^{n-m}(\mathbb{R})^n$,

$$\beta \wedge (\star \alpha) = \langle \alpha, \beta \rangle dx_1 \wedge \cdots \wedge dx_n$$

Example: Assume
$$\langle dx_I, dx_J \rangle = \begin{cases} 1, I = J \\ 0, I \neq J \end{cases}$$
, $dx, dy, dz \in \bigwedge^1(\mathbb{R}^3)$ 1-forms on \mathbb{R}^3

Let $\star dx = Adx \wedge dy + Bdy \wedge dz + Cdx \wedge dz$.

$$Adx \wedge dx \wedge dy + Bdx \wedge dy \wedge dz + Cdx \wedge dx \wedge dz = dx \wedge (\star dx) = \langle dx, dx \rangle dx \wedge dy \wedge dz$$

Since $dx \wedge dx = 0$, $\langle dx, dx \rangle = 1$, we have B = 1.

From $dy \wedge (\star dx)$, we get C = 0. From $dz \wedge (\star dx)$, we get A = 0.

Thus $\star dx = dy \wedge dz$.

Definition: 3.6: Matrix Representation of Inner Product

On
$$\bigwedge^1(\mathbb{R}^n) = \operatorname{span}\{dx_1, ..., dx_n\}$$
. The inner product can be given by $\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$ where $a_{ij} = \langle dx_i, dx_j \rangle$.

Example:
$$\bigwedge^1(\mathbb{R}^2) = \operatorname{span}\{dx, dy\}$$

$$\langle Adx + Bdy, Cdx + Ddy \rangle = AC\langle dx, dx \rangle + AD\langle dx, dy \rangle + BC\langle dy, dx \rangle + BD\langle dy, dy \rangle$$

$$= \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} \langle dx, dx \rangle & \langle dx, dy \rangle \\ \langle dy, dx \rangle & \langle dy, dy \rangle \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix}$$

Definition: 3.7:

Suppose we know $\langle dx_i, dx_j \rangle$, $1 \leq i, j \leq n$. We can list to an inner product $\langle \cdot, \cdot \rangle : (\bigwedge^m(\mathbb{R}^n))^2 \to \mathbb{R}$, $I = (i_1, ..., i_m), J = (j_1, ..., j_m)$

$$\langle dx_I, dx_J \rangle = \sum_{\sigma \in S_m} \operatorname{sgn}(\sigma) \langle dx_{i_1}, dx_{j_{\sigma(1)}} \rangle \cdots \langle dx_{i_m}, dx_{j_{\sigma(m)}} \rangle$$

Example: Let
$$\langle \cdot, \cdot \rangle : (\bigwedge^1(\mathbb{R}^3))^2 \to \mathbb{R}$$
 given by
$$\begin{bmatrix} 1 & 3 & -2 \\ 3 & 2 & 0 \\ -2 & 0 & -1 \end{bmatrix}$$

1. Compute $\langle 2dx_1 + dx_2, dx_1 + dx_3 \rangle$:

$$\langle 2dx_1 + dx_2, dx_1 + dx_3 \rangle = 2\langle dx_1, dx_1 \rangle + 2\langle dx_1, dx_3 \rangle + \langle dx_2, dx_1 \rangle + \langle dx_2, dx_3 \rangle$$

= 2 \cdot 1 + 2(-2) + 3 + 0 = 1

2. Compute $\langle dx_1 \wedge dx_2, dx_2 \wedge dx_3 \rangle$:

Here
$$I = (1, 2), J = (2, 3), i_1 = 1, i_2 = 2, j_1 = 2, j_2 = 3, S_2 = \{(1), (12)\}$$

$$\langle dx_1, dx_2 \rangle = \langle dx_1, dx_2 \rangle \langle dx_2, dx_3 \rangle - \langle dx_1, dx_3 \rangle \langle dx_2, dx_2 \rangle$$

= 3 \cdot 0 - (-2)2 = 4

Example: Let
$$\langle \cdot, \cdot \rangle : (\bigwedge^{1}(\mathbb{R}^{4}))^{2} \to \mathbb{R}$$
 given by
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & -1 & 0 & -2 \\ 3 & 0 & 1 & 2 \\ 4 & -2 & 2 & 3 \end{bmatrix}$$

Note $S_3 = \{(1), (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$, where $(1), (1\ 2\ 3), (1\ 3\ 2)$ are even permutations with sgn = 1, and $(1\ 2), (1\ 3), (2\ 3)$ are odd permutations with sgn = -1

$$\langle dx_1 \wedge dx_2 \wedge dx_3, dx_2 \wedge dx_3 \wedge dx_4 \rangle = \langle dx_1, dx_2 \rangle \langle dx_2, dx_3 \rangle \langle dx_3, dx_4 \rangle - \langle dx_1, dx_3 \rangle \langle dx_2, dx_2 \rangle \langle dx_3, dx_4 \rangle - \langle dx_1, dx_2 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_3 \rangle + \langle dx_1, dx_3 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_2 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_2 \rangle \langle dx_3, dx_3 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_2 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_2 \rangle \langle dx_3, dx_3 \rangle + \langle dx_1, dx_2 \rangle \langle dx_2, dx_3 \rangle \langle dx_3, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_2 \rangle \langle dx_3, dx_3 \rangle + \langle dx_1, dx_2 \rangle \langle dx_3, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_4 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_4 \rangle \langle dx_2, dx_3 \rangle + \langle dx_1, dx_2 \rangle \langle dx_3, dx_4 \rangle + \langle dx_1, dx_2 \rangle \langle dx_3, dx_3 \rangle + \langle dx_1, dx_2 \rangle \langle dx_2, dx_3 \rangle + \langle dx_1,$$

4 Applications

4.1 Maxwell's equations

Definition: 4.1: Minkowski Inner Product

The Minkowski Inner Product (Metric) on 1-form is defined as diag(1, -1, -1, -1). *i.e.* $\langle dt, dt \rangle = 1$, $\langle dx, dx \rangle = \langle dy, dy \rangle = \langle dz, dz \rangle = -1$, and all other entries as 0.

We can compute the 2-forms to be $\operatorname{diag}(\langle dt \wedge dx \rangle, \langle dt \wedge dy \rangle, \langle dt \wedge dz \rangle, \langle dx \wedge dy \rangle, \langle dx \wedge dz \rangle, \langle dy \wedge dz \rangle) = \operatorname{diag}(-1, -1, -1, 1, 1, 1)$

Proof. $\langle dt \wedge dx, dt \wedge dx \rangle = \langle dt, dt \rangle \langle dx, dx \rangle - \langle dt, dx \rangle \langle dx, dt \rangle = -1$. Similar for $\langle dt \wedge dy, dt \wedge dy \rangle$ and $\langle dt \wedge dz, dt \wedge dz \rangle$.

 $\langle dx \wedge dy, dx \wedge dy \rangle = \langle dx, dx \rangle \langle dy, dy \rangle - \langle dx, dy \rangle \langle dy, dx \rangle = 1.$ Similar for $\langle dx \wedge dz, dx \wedge dz \rangle$ and $\langle dy \wedge dz, dy \wedge dz \rangle$.

For the off-diagonal elements. e.g. $\langle dt \wedge dx, dt \wedge dy \rangle = \langle dt, dt \rangle \langle dx, dy \rangle - \langle dt, dy \rangle \langle dx, dt \rangle = 0.$

The 3-forms can be computed as

 $\operatorname{diag}(dx \wedge dy \wedge dz, dt \wedge dx \wedge dy, dt \wedge dx \wedge dz, dt \wedge dy \wedge dz) = \operatorname{diag}(-1, 1, 1, 1)$

The dual of dt is $\star dt = dx \wedge dy \wedge dz$

The electromagnetic 2-forms is $E = \langle E_1, E_2, E_3 \rangle$ (electric field), $B = \langle B_1, B_2, B_3 \rangle$ (magnetic field). The EM-field can be defined as

$$F = E_1 dx \wedge dt + E_2 dy \wedge dt + E_3 dz \wedge dt + B_1 dy \wedge dz + B_2 dx \wedge dz + B_3 dx \wedge dy$$

The current 1-form is ρ (charge density), $j = \langle J_1, J_2, J_3 \rangle$ (current density),

$$J = \rho dt - J_1 dx - J_2 dy - J_3 dz$$

The Maxwell equations can be defined in the following 2 equivalent ways:

$$\begin{cases} \nabla \cdot E = \rho \\ \nabla \cdot B = 0 \\ \nabla \times E = -\frac{\partial B}{\partial t} \\ \nabla \times B = j + \frac{\partial E}{\partial t} \end{cases} \Leftrightarrow \begin{cases} dF = 0 \\ \star d \star F = J \end{cases}$$

4.2 Integrals of m-forms over m-chains

Definition: 4.2: m-cell

An m-cell, σ , is the image of a differentiable map $\phi:[0,1]^m\to\mathbb{R}^n$ with a specific orientation.

Definition: 4.3: m-chain

An m-chain is a linear combination of m-cells

$$\Sigma = \sum_{i} n_i \sigma_i$$

Example: 0-cell: $\phi : [0,1]^0 \to \mathbb{R}^n$ is a single point. 1-cell: $\phi : [0,\pi] \to \mathbb{R}^2$, $\phi(t) = \langle \cos t, \sin t \rangle$ is a curve 2-cell: $\phi : [0,2\pi] \times [0,\frac{\pi}{2}] \to \mathbb{R}^3$, $\phi(u,v) = \langle \cos u \sin v, \sin u, \sin v, \cos v \rangle$ 3-cells: $x_1^2 + x_2^2 \le 1$, $x_3 \in [0,1]$, $x_4 = 2$, $\phi : [0,1] \times [0,2\pi] \times [0,1] \to \mathbb{R}^4$, $\phi(r,\theta,x_3,x_4) = \langle r\cos\theta, r\sin\theta,x_3,2 \rangle$.

Remark 4. The closed rectangles $[a_1, b_1] \times \cdots \times [a_n, b_n]$ are diffeomorphic to $[0, 1]^n$.

Definition: 4.4: Integrals on m-chain

Given $\Sigma = \sum_{i} n_i \sigma_i$ a m-chain, ω a differential m-form,

$$\int_{\Sigma} \omega = \sum_{i} n_{i} \int_{\sigma_{i}} \omega$$

Example: 0-form $f(x,y) = 3x + xy^2$ on 0-cells p = (0,3), q = (5,2)

$$\int_{2p-q} f = 2 \int_{p} f - \int_{q} f = 2f(p) - f(q) = 2(0+0) - (3 \cdot 5 + 5 \cdot 2^{2}) = -35$$

Example: 1-form $\omega = xydx + (x^2 + y)dy$ on 1-cells $\sigma_1(t) = \langle \cos t, \sin t \rangle$, $t \in [\pi, 0]$, $\sigma_2(t) = \langle t, t - 1 \rangle$, $t \in [1, 2]$

$$\int_{\Sigma} f = \int_{2\sigma_1 - 3\sigma_2} f = 2 \int_{\sigma_1} xy dx + (x^2 + y) dy - 3 \int_{\sigma_2} xy dx + (x^2 + y) dy$$

$$= 2 \int_{\pi}^{0} \cos t \sin t (-\sin t) dt + (\cos^2 t + \sin t) \cos t dt - 3 \int_{1}^{2} t(t - 1) dt + (t^2 + t - 1) dt$$

$$= -11$$

Example: 2-form $\omega = xzdx \wedge dy + dy \wedge dz$ on 2-cell $\phi : [0,1] \times [0,\pi] \to \mathbb{R}^3, \ \phi(r,\theta) = \langle r\cos\theta, r\sin\theta, 2 \rangle$

$$\int_{\sigma} \omega = \int_{\sigma} xz dx \wedge dy + dy \wedge dz$$

$$= \int_{0}^{1} \int_{0}^{\pi} 2r \cos \theta \det \begin{bmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{bmatrix} d\theta dr + \det \begin{bmatrix} \sin \theta & 0 \\ r \cos \theta & 0 \end{bmatrix} d\theta dr$$

$$= \int_{0}^{1} \int_{0}^{\pi} 2r^{2} \cos \theta d\theta dr = 0$$

Definition: 4.5: Boundary of m-cell

The boundary $\partial \sigma$ of an m-cell σ is the image:

$$\sum_{i=1}^{m} (-1)^{i+1} (\phi(x_1, ..., x_{i-1}, 1, x_{i+1}, ..., x_m) - \phi(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_m))$$

The boundary of an m-cell is a (m-1)-chain.

Example: 1-cell $\phi: [0,1] \to \mathbb{R}^n$, $\phi(0) = p$, $\phi(1) = q$, $\partial \sigma = q - p$ is a 0-chain.

2-cell $\phi: [0,1] \times [0,\frac{\pi}{2}] \to \mathbb{R}^2, \ \phi(r,\theta) = \langle r\cos\theta, r\sin\theta \rangle$

$$\partial \sigma = (-1)^2 [\phi(1,\theta) - \phi(0,\theta)] + (-1)^3 [\phi(r,\frac{\pi}{2}) - \phi(r,0)]$$
$$= \phi(1,\theta) - \phi(0,\theta) - \phi(r,\frac{\pi}{2}) + \phi(r,0)$$

This is the counter-clockwise traversal of the boundary of the circle in the first quadrant.

3-cell $\phi: [0,1] \times [0,2\pi] \times [0,\frac{\pi}{2}] \to \mathbb{R}^3, \ \phi(r,u,v) = \langle r\cos u\sin v, r\sin u\sin v, r\cos v \rangle$

$$\begin{split} \partial \sigma &= (\phi(1,u,v) - \phi(0,u,v)) - (\phi(r,2\pi,v) - \phi(r,0,v)) + (\phi(r,u,\frac{\pi}{2} - \phi(r,u,0))) \\ &= \phi(1,u,v) + \phi(r,u,\frac{\pi}{2}) \end{split}$$

The first term is the top-half of the sphere. The second term is the disk at the bottom.

Definition: 4.6: Boundary of m-chain

If
$$\Sigma$$
 is an m-chain where $\Sigma = \sum_{i} n_{i}\sigma_{i}$, σ_{i} are m-cells. Then $\partial \Sigma = \sum_{i} n_{i}\partial \sigma_{i}$

4.3 Generalized Stokes Theorem

Theorem: 4.1: Generalized Stokes Theorem

Suppose $\omega = f dx_2 \wedge \cdots \wedge dx_n$ is an (n-1)-form on \mathbb{R}^n and $R = [0, 1]^n$. Then

$$\int_{\partial R} \omega = \int_{R} d\omega.$$

 $\int_{\partial R} \omega \text{ is the integral of an (n-1)-form on an (n-1)-chain.}$ $\int_{R} \partial \omega \text{ is the integral of an n-form on an n-chain.}$

Note: An (n-1)-form on \mathbb{R}^n looks like $\eta = \sum_{i=1}^n f_i dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n$, with $\widehat{dx_i}$ removed.

Proof. Fix
$$N \in \mathbb{N}$$
. For $I = (i_1, ..., i_n)$, $x_I = \left(\frac{i_1}{N}, ..., \frac{i_n}{N}\right)$. $\frac{1}{N}e_j = (0, ..., \frac{1}{N}, ..., 0)$. $d\omega = d(f dx_2 \wedge \cdots \wedge dx_n) = \frac{\partial f}{\partial x_1} dx_1 \wedge \cdots \wedge dx_n$.

Let $x_I^* \in \left[\frac{i_1}{N}, \frac{i_1+1}{N}\right] \times \left[\frac{i_2}{N}, \frac{i_2+1}{N}\right] \times \cdots$ be a point in the region.

$$\begin{split} &\int_{R} d\omega = \lim_{N \to \infty} \sum_{i_{j}=1, j \in [1, n]}^{N} d\omega_{x_{I}^{*}} \left(\frac{e_{1}}{N}, ..., \frac{e_{n}}{N}\right) \\ &= \lim_{N \to \infty} \sum_{i_{j}=1, j \in [1, n]}^{N} \frac{\partial f}{\partial x_{1}} (x_{I}^{*}) dx_{1} \wedge \cdots \wedge dx_{n} \left(\frac{e_{1}}{N}, ..., \frac{e_{n}}{N}\right) \\ &\quad \text{(By MVT and evaluation of m-forms)} \\ &= \lim_{N \to \infty} \sum_{i_{j}=1, j \in [1, n]}^{N} \frac{f\left(\frac{i_{1}+1}{N}, i_{2}, ..., i_{n}\right) - f(x_{I})}{\frac{1}{N}(i_{1}+1-i_{1})} \frac{dx_{2} \wedge \cdots dx_{n}}{N} \left(\frac{e_{1}}{N}, ..., \frac{e_{n}}{N}\right) \\ &= \lim_{N \to \infty} \sum_{i_{j}=1, j \in [1, n]}^{N} \left(f\left(1, \frac{i_{2}}{N}, ..., \frac{i_{n}}{N}\right) - f\left(0, \frac{i_{2}}{N}, ..., \frac{i_{n}}{N}\right)\right) dx_{2} \wedge \cdots \wedge dx_{n} \left(\frac{e_{1}}{N}, ..., \frac{e_{n}}{N}\right) \end{split}$$

Note: $\partial R = \{0^-, 1^+\} \times [0, 1]^{n-1} \cup [0, 1]\{0^-, 1^+\} \times [0, 1]^{n-2} \cup \cdots$, but the following terms will contribute zero to the results.

 $= \int_{\{1\}\times[0,1]^{n-1}} \omega - \int_{\{0\}\times[0,1]^{n-1}} \omega = \int_{\{0^-,1^+\}\times[0,1]^{n-1}} \omega = \int_{\partial R} \omega$