視覚とSparse coding

(阪医Python会勉強会第8回)

山本 拓都

視覚の経路

https://en.wikipedia.org/wiki/Visual_system

http://www.waece.org/cd_morelia2006/ponencias/stoodley.htm

V1の単純細胞

(Hubel & Wiesel, J Physiol. 1959)

https://www.youtube.com/watch?v=8VdFf3egwfg

フィルタリング・畳み込み

https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411

Sharpen Filter

Blurring Filter

ガボールフィルタと単純細胞の受容野

白色:ON領域(興奮) 黒色:OFF領域(抑制)

(Jones & Palmer, J Physiol. 1987)

今日の本題:Sparse coding モデル

Receptive fields

Sparseとは?

Dense (密) ⇔ Sparse (疎, 疎ら, スカスカ)

Dense Matrix

1	2	31	2	9	7	34	22	11	5
11	92	4	3	2	2	3	3	2	1
3	9	13	8	21	17	4	2	1	4
8	32	1	2	34	18	7	78	10	7
9	22	3	9	8	71	12	22	17	3
13	21	21	9	2	47	1	81	21	9
21	12	53	12	91	24	81	8	91	2
61	8	33	82	19	87	16	3	1	55
54	4	78	24	18	11	4	2	99	5
13	22	32	42	9	15	9	22	1	21

Sparse Matrix

1		3		9		3			
11		4						2	1
		1				4		1	
8				3	1				
			9			1		17	
13	21		9	2	47	1	81	21	9
				19	8	16			55
54	4				11				
		2					22		21

https://cmdlinetips.com/2018/03/sparse-matrices-in-python-with-scipy/

Sparse Labeling

Regular Labeling

IV

Supernova system (Mizuno et al., Neuron. 2014)

①画像パッチを切り取る(赤枠)

Sparse モデル

Natrual Images

Learned bases $(\phi_1, \phi_2, \dots, \phi_{64})$: "Edges"

②画像パッチをニューロンの活動と 受容野の積の線形和で再構成する。 このとき、できるだけ一部のニュー ロンだけが活動(=スパースな活動) するようにする。

 $[\alpha_1, \dots, \alpha_{64}] = [0, \dots, 0.8, \dots, 0.3, \dots, 0.5, \dots, 0]$

https://www.cs.ubc.ca/~schmidtm/MLRG/sparseCoding.pdf

JPEG圧縮の仕組み

JPEGなどの画像圧縮、MP3など音声圧縮には**離散コサイン変換**(discrete cosine transform; DCT)が使われている (フーリエ変換と異なり実数のみを使用)。

画像を分割し、波形を足し合わせる係数を求めることで、必要な情報量を減らすことができる。

(cf.)『フーリエ変換と画像圧縮の仕組み』 https://www.slideshare.net/ginrou799/ss-46355460

http://ohzawa-lab.bpe.es.osakau.ac.jp/resources/text/KisokouKoukai2009/Ohzawa2009Koukai04.pdf

Jupyter notebookで実行

生成モデルの視点で書いた数学的な詳細は以下を参照。 『11.2 Sparse coding (Olshausen & Field, 1996) モデル』 https://compneuro-julia.github.io/11-2_sparse-coding.html