#Problem - 1: Getting Started with Data Exploration
#1. Data Exploration and Understanding:

#• Dataset Overview:

#1. Load the dataset and display the first 10 rows. import pandas as pd

dataset = pd.read_csv("/content/drive/MyDrive/Copy
print("First 10 rows are:")
print(dataset.head(10))

#2. Identify the number of rows and columns in the
dataset = pd.read_csv("/content/drive/MyDrive/Copy
rows, columns = dataset.shape
print("Number of rows:",rows)
print("Number of Columns:",columns)

#3. List all the columns and their data types.
dataset = pd.read_csv("/content/drive/MyDrive/Copy
print("All the columns and their data types:")
print(dataset.dtypes)

→ First 10 rows are:

	Country name	score	Log GDP per capita	Soc
0	Finland	7.741	1.844	
1	Denmark	7.583	1.908	
2	Iceland	7.525	1.881	
3	Sweden	7.344	1.878	
4	Israel	7.341	1.803	
5	Netherlands	7.319	1.901	
6	Norway	7.302	1.952	
7	Luxembourg	7.122	2.141	
8	Switzerland	7.060	1.970	
9	Australia	7.057	1.854	

Healthy	life	expectancy	Freedom	to	make	lj
		0.695				

U	0.093
1	0.699
2	0.718
3	0.724
4	0.740
5	0.706
6	0.704
7	0.708
8	0.747
9	0.692

Perceptions	of	corruption	Dystopia	+	resid
		0 5 4 6			_

0	0.546	2.	
1	0.548	1.	
2	0.182	2.	
3	0.524	1.	
4	0.193	2.	
5	0.372	1.	
6	0.484	1.	
7	0.432	1.	

KeyError KeyError

You

Please explain the error:

TypeError: Could not convert

Gemini

Hypothesis

The error message "TypeError:
Could not convert
['NepalPakistanIndiaBangladeshAfg
to numeric" indicates that the
mean() function is being applied
to a column containing string
values, specifically the 'Country
name' column. You are including
'Country name' in the list of
columns to calculate the mean for,
but it is not numeric.

Suggested Changes

Use code with caution

Rate this answer 🖒 🗇

```
0.498
                                                  1.
     9
                            0.323
                                                  1.
    Number of rows: 143
    Number of Columns: 9
    All the columns and their data types:
    Country name
                                      object
     score
                                     float64
    Log GDP per capita
                                     float64
     Social support
                                     float64
    Healthy life expectancy
                                     float64
    Freedom to make life choices
                                     float64
    Generosity
                                     float64
    Perceptions of corruption
                                     float64
     Dystopia + residual
                                     float64
     dtype: object
#• Basic Statistics:
#1. Calculate the mean, median, and standard deviation
# Loading dataset
dataset = pd.read_csv('/content/drive/MyDrive/Copy
# Calculating basic statistics from the 'score' co
mean = dataset['score'].mean()
median= dataset['score'].median()
standard deviation= dataset['score'].std()
# Displaying results
print(f"Mean Score is: {mean}")
print(f"Median Score is: {median}")
print(f"Standard deviation score is: {standard_dev
#2. Identify the country with the highest and lowe
# Loading dataset
dataset = pd.read_csv('/content/drive/MyDrive/Copy
# To find the highest and lowest score
highest = dataset.nlargest(1, 'score')
lowest = dataset.nsmallest(1, 'score')
#displaying result
print("Country with the highest happiness score:",
print("Country with the lowest score :",lowest)
→ Mean Score is: 5.52758041958042
    Median Score is: 5.785
     Standard deviation score is: 1.170716509944299
     Country with the highest happiness score:
            Finland 7.741
                                         1.844
       Healthy life expectancy Freedom to make li
     0
                          0.695
```

```
Perceptions of corruption Dystopia + resic
                            0.546
                                                 2.
    Country with the lowest score:
                                         Country na
    142 Afghanistan 1.721
                                           0.628
         Healthy life expectancy Freedom to make
    142
                            0.242
         Perceptions of corruption Dystopia + res
    142
                              0.088
#Missing Values:
#1. Check if there are any missing values in the (
# Loading dataset
dataset = pd.read_csv('/content/drive/MyDrive/Copy
# Searching missing values
missing_values = dataset.isnull().sum()
# Displaying missing values
print("Missing values in each columns:\n", dataset
→ Missing values in each columns:
     Country name
                                      0
    score
                                     0
                                     3
    Log GDP per capita
    Social support
                                     3
                                     3
    Healthy life expectancy
    Freedom to make life choices
                                     3
    Generosity
    Perceptions of corruption
                                     3
    Dystopia + residual
                                     3
    dtype: int64
and Sorting:
ne dataset to show only the countries with a Score
aset
.read_csv('/content/drive/MyDrive/Copy of WHR-2024-
and displaying countries with Score greater than 7.
t[dataset['score'] > 7.5])
filtered dataset - Sort the dataset by GDP per Capi
taset
.read_csv('/content/drive/MyDrive/Copy of WHR-2024-
sorting, and displaying top 10 rows
aset[dataset['score'] > 7.5].sort_values(by='Log GD
```

```
12/19/24, 10:34 PM
```

```
\rightarrow
       Country name score Log GDP per capita
     0
            Finland
                     7.741
                                           1.844
            Denmark
                     7.583
                                           1.908
     1
     2
            Iceland 7.525
                                           1.881
        Healthy life expectancy Freedom to make li
     0
                           0.695
                           0.699
     1
     2
                           0.718
        Perceptions of corruption Dystopia + resid
     0
                             0.546
                                                    2.
     1
                             0.548
                                                    1.
     2
                             0.182
                                                    2.
                             Log GDP per capita
       Country name
                                                   Soc
                      score
     1
            Denmark
                      7.583
                                            1.908
     2
                                           1.881
            Iceland
                     7.525
                                           1.844
     0
            Finland 7.741
        Healthy life expectancy Freedom to make li
                           0.699
     1
     2
                           0.718
     0
                           0.695
        Perceptions of corruption Dystopia + resid
     1
                             0.548
                                                    1.
    2
                             0.182
                                                    2.
     0
                             0.546
                                                    2.
#• Adding New Columns:
#1. Create a new column called Happiness Category
# based on their Score:
\#Low - (Score < 4)
\#Medium - (4 \le Score \le 6)
#High - (Score > 6)
# Load the dataset
dataset = pd.read_csv('/content/drive/MyDrive/Copy
# Add 'Happiness Category' column
dataset['Happiness Category'] = ['Low' if x < 4 e^{-x}
# Display the result
print(dataset[['Country name', 'score', 'Happiness
\rightarrow
                             score Happiness Categor
              Country name
                    Finland
                             7.741
                                                   Hic
     1
                    Denmark
                             7.583
                                                   Hic
     2
                    Iceland
                             7.525
                                                   Hic
     3
                     Sweden
                            7.344
                                                   Hic
     4
                     Israel
                             7.341
                                                   Hiç
```

```
      138 Congo (Kinshasa)
      3.295
      Lc

      139 Sierra Leone
      3.245
      Lc

      140 Lesotho
      3.186
      Lc

      141 Lebanon
      2.707
      Lc

      142 Afghanistan
      1.721
      Lc
```

[143 rows x 3 columns]

```
#2. Data Visualizations:
#• Bar Plot: Plot the top 10 happiest countries by
import matplotlib.pyplot as plt
dataset = pd.read csv('/content/drive/MyDrive/Copy
# Bar Plot: Top 10 happiest countries
Top_10_Highest = dataset.nlargest(10, 'score')
plt.figure(figsize=(10, 6))
plt.bar(Top 10 Highest ['Country name'], Top 10 Hig
plt.xticks(rotation=45)
plt.title('Top 10 happiest countries by score:')
plt.xlabel('Country name')
plt.ylabel('Happiness Score')
plt.show()
#• Line Plot: Plot the top 10 unhappiest countries
Top 10 Unhappiest = dataset.nsmallest(10, 'score')
plt.figure(figsize=(10, 6))
plt.plot(Top 10 Unhappiest['Country name'], Top 10
plt.xticks(rotation=45)
plt.title('Top 10 unhappiest countries by score')
plt.xlabel('Country name')
plt.ylabel('Happiness Score')
plt.show()
#• Plot a histogram for the Score column to show it
plt.figure(figsize=(8, 5))
plt.hist(dataset['score'], bins=15, color='purple',
plt.title('Distribution of Happiness Scores')
plt.xlabel('Happiness Score')
plt.ylabel('Frequency')
plt.show()
#• Scatter Plot: Plot a scatter plot between GDP pe
plt.figure(figsize=(8, 6))
plt.scatter(dataset['Log GDP per capita'], dataset[
plt.title('Relationship between Log GDP per capita
plt.xlabel('Log GDP per capita')
plt.ylabel('Happiness Score')
plt.show()
```


#Problem - 2 - Some Advance Data Exploration Task:
#Task - 1 - Setup Task - Preparing the South-Asia
#Steps:

#1. Define the countries in South Asia with a list
#south asian countries = ["Afghanistan", "Banglade
#"Maldives", "Nepal", "Pakistan", "Srilanka"]
dataset = pd.read_csv('/content/drive/MyDrive/Copy

Filtering South Asian countries
South_Asian1 = ["Afghanistan", "Bangladesh", "Bhu¹
South_Asia_dataset1 = dataset[dataset['Country nar

print(South_Asia_dataset1)

#2. Use the list from step - 1 to filtered the dat

dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian2 = ["Afghanistan", "Bangladesh", "Bhut
print(dataset[dataset['Country name'].isin(South_/)

#3. Save the filtered dataframe as separate CSV f:

dataset3 = pd.read_csv('/content/drive/MyDrive/Cop South_Asian3 = ["Afghanistan", "Bangladesh", "Bhu1 South_Asia_dataset3 = dataset[dataset['Country nar South_Asia_dataset3.to_csv('/content/drive/MyDrive

Country name score Log GDP per 92 Nepal 5.158 107 Pakistan 4.657 125 India 4.054 128 Bangladesh 3.886 142 Afghanistan 1.721	r capita 5 0.965 1.069 1.166 1.122 0.628
Healthy life expectancy Freed	om to make
92 0.443	
107 0.321	
125 0 . 417	
128 0.513	
142 0.242	
Perceptions of corruption Dys	topia + res
92 0.115	
107 0.074	
125 0.122	
128 0.167	
142 0.088	
Country name score Log GDP pe	r capita §
92 Nepal 5.158	. capica c
107 Dakistan 4 657	0.965
107 Pakistan 4 . 657	•
107 Pakistan 4.057 125 India 4.054	0.965

24, 10:34 PM 142	Afghanistan	1.721	2438437_	_RijaKhatiwada.ip 0
92 107 125 128 142	Healthy life	expectancy 0.443 0.321 0.417 0.513 0.242	Freedom	to make
92 107 125 128 142	Perceptions	of corruptic 0.11 0.07 0.12 0.16	.5 74 22 37	oia + res
#Tasks: #1. Using	- Composite the SouthAsi g metrics:Com	a DataFrame	, create	
south_asi	pd.read_csv(an = ["Afghan a_dataset = d	ii <mark>stan", "</mark> Bai	ngladesh"	, "Bhutan
south_asi	.a_dataset['Co	omposite Sco	re'] = 0.	40 * sout
print(sou	th_asia_datas	et[['Countr	y name',	'Composit
#2. Rank	the South Asi	an countrie:	s based o	n the Com
south_asi	pd.read_csv(an = ["Afghan a_dataset = d	istan", "Ba	ngladesh"	, "Bhutan
south_asi	.a_dataset['Co	omposite Sco	re'] = 0.	40 * sout
south_asi	.a_dataset = s	outh_asia_da	ataset.so	rt_values
print(sou	th_asia_datas	et[['Countr	y name',	'Composit
#3. Visua	lize the top	5 countries	using a	horizonta
dataset = south_asi	pd.read_csv(an = ["Afghan	' <u>/content/d</u> istan", "Ba	rive/MyDr ngladesh"	ive/Copy , "Bhutan
south_asi	.a_dataset = d	lataset[data	set['Coun	try name'
south_asi	.a_dataset['Co	omposite Sco	re'] = 0.	40 * sout
Top_5 = s	outh_asia_dat	aset.nlarge:	st(5, 'Co	mposite S
plt.title	t.barh(x='Cou e('Top 5 South el('Composite)	Asian Coun	tries by	Composite

#4. Discuss whether the rankings based on the Compo
dataset = pd.read_csv('/content/drive/MyDrive/Copy
south_asian = ["Afghanistan", "Bangladesh", "Bhutan
south_asia_dataset = dataset[dataset['Country name'
south_asia_dataset['Composite Score'] = 0.40 * sout
south_asia_dataset['Composite Rank'] = south_asia_d
south_asia_dataset['Original Rank'] = south_asia_da
south_asia_dataset[['Composite Rank', 'Original Ranplt.show()

<ipython-input-48-b03a2d992208>:10: SettingWit
A value is trying to be set on a copy of a sli
Try using .loc[row_indexer,col_indexer] = value

See the caveats in the documentation: https://south_asia_dataset['Composite Score'] = 0.40 <ipython-input-48-b03a2d992208>:20: SettingWit A value is trying to be set on a copy of a sli Try using .loc[row_indexer,col_indexer] = value.

See the caveats in the documentation: https://south_asia_dataset['Composite Score'] = 0.40 <a href="https://south_asia_dataset['Composite Score'] = 0.40 <a href="https://south_asia_dataset['Com

See the caveats in the documentation: https://south_asia_dataset['Composite Score'] = 0.40

Country name	Composite Score
Nepal	0.8159
Pakistan	0.7039
India	0.7874
Bangladesh	0.6774
Afghanistan	0.3238
Country name	Composite Score
Nepal	0.8159
India	0.7874
Pakistan	0.7039
Bangladesh	0.6774
Afghanistan	0.3238
	Nepal Pakistan India Bangladesh Afghanistan Country name Nepal India Pakistan Bangladesh

<ipython-input-48-b03a2d992208>:49: SettingWit
A value is trying to be set on a copy of a sli
Try using .loc[row_indexer,col_indexer] = value

See the caveats in the documentation: https://south_asia_dataset['Composite Score'] = 0.40 <a href="https://south_asia_dataset['Composite Score'] = 0.40 <a href="https://south_asia_dataset['Com

See the caveats in the documentation: https://south_asia_dataset['Composite Rank'] = south south_asia_dataset['Composite Rank'] = south south_asia_dataset['Composite Rank'] = south asia_dataset['Composite Rank'] = south asia_dataset['Com

Try using .loc[row_indexer,col_indexer] = valu

See the caveats in the documentation: https://south_asia_dataset['Original Rank'] = south_


```
#Task - 3 - Outlier Detection:
#1. Identify outlier countries in South Asia based
dataset = pd.read_csv('/content/drive/MyDrive/Copy
south_asian = ["Afghanistan", "Bangladesh", "Bhuta
south asia dataset = dataset[dataset['Country name
def detect_outliers(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower\_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    return df[(df[column] < lower_bound) | (df[co]</pre>
#detecting outliers based on gdp and score
Outliers_Score = detect_outliers(south_asia_datase
Outliers_Gdp = detect_outliers(south_asia_dataset,
Outliers = pd.concat([Outliers_Score, Outliers_Gd;
#Displaying the result
print(Outliers[['Country name', 'score', 'Log GDP
#2. Define outliers using the 1.5 \times IQR rule.
dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian = ["Afghanistan", "Bangladesh", "Bhuta
South_Asia_dataset = dataset[dataset['Country name
def detect_outliers(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IOR = 03 - 01
    return df[(df[column] < Q1 - 1.5 * IQR) | (df
Outliers_Score = detect_outliers(south_asia_datase
Outliers_Gdp = detect_outliers(south_asia_dataset,
Outliers = pd.concat([Outliers_Score, Outliers_Gdr
print(Outliers[['Country name', 'score', 'Log GDP
#3. Create a scatter plot with GDP per Capita on 1
dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian = ["Afghanistan", "Bangladesh", "Bhuta
South_Asia_Dataset = dataset[dataset['Country name
```

```
def detect_outliers(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    return df[(df[column] < Q1 - 1.5 * IQR) | (df

Outliers = pd.concat([detect_outliers(south_asia_c
Normal = South_Asia_dataset[~South_Asia_dataset['(

plt.scatter(Normal['Log GDP per capita'], Normal[
plt.scatter(Outliers['Log GDP per capita'], Outlieplt.xlabel('Log GDP per capita')
plt.ylabel('score')
plt.title('GDP per Capita versus Score')
plt.legend()
plt.show()</pre>
```

#4. Discuss the characteristics of these outliers


```
#Task - 4 - Exploring Trends Across Metrics:
#Tasks:
##1. Choose two metrics (e.g., Freedom to Make Lii
#{pearson correlation} with the Score for South As
```

```
dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian = ["Afghanistan", "Bangladesh", "Bhuta
```

South_Asia_Dataset = dataset[dataset['Country name

Correlation_Freedom = South_Asia_dataset['score'].
Correlation_Generosity = South_Asia_dataset['score'].

```
print(Correlation_Freedom)
print(Correlation_Generosity)
```

#2. Create scatter plots with trendlines for these import seaborn as sns

dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian = ["Afghanistan", "Bangladesh", "Bhuta

South_Asia_dataset = dataset[dataset['Country name

sns.regplot(x='Freedom to make life choices', y='!
plt.title('Freedom to Make Life Choices versus Scot
plt.show()

```
sns.regplot(x='Generosity', y='score', data=South_
plt.title('Generosity versus score')
plt.show()
```

#3. Identify and discuss the strongest and weakest

0.801497903141921 0.8773326267276358


```
#Task - 5 - Gap Analysis:
#Tasks:
#1. Add a new column, GDP-Score Gap, which is the
```

```
#Loading dataset
dataset = pd.read_csv('/content/drive/MyDrive/Copy
# Countries list
South Asian = ["Afghanistan", "Bangladesh", "Bhuta
# Countries list
South Asia dataset = dataset[dataset['Country name
# Adding gdp score column
South_Asia_dataset['GDP-Score Gap'] = south_asia_c
# Displaying the uploaded dataset
print(South_Asia_dataset[['Country name', 'Log GDI
#2. Rank the South Asian countries by this gap in
#Loading dataset
dataset = pd.read_csv('/content/drive/MyDrive/Copy
# Countries list
South_Asian = ["Afghanistan", "Bangladesh", "Bhuta
# Countries list
South Asia dataset = dataset[dataset['Country name
# Adding gdp score column
South Asia dataset['GDP-Score Gap'] = South Asia (
# Ranking by GDP-Score Gap in ascending order
Ascending Rank = South Asia dataset.sort values('(
# Ranking by GDP-Score Gap in descending order
Descending_Rank = South_Asia_dataset.sort_values(
# Displaying the results
print("Ascending Rank:")
print(Ascending_Rank[['Country name', 'GDP-Score (
print("\nDescending Rank:")
print(Descending_Rank[['Country name', 'GDP-Score
#3. Highlight the top 3 countries with the largest
dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian = ["Afghanistan", "Bangladesh", "Bhuta
South_Asia_dataset = dataset[dataset['Country name
South_Asia_dataset['GDP-Score Gap'] = South_Asia_c
Top_Positive_Gap = South_Asia_dataset.sort_values
Top_Negative_Gap = South_Asia_dataset.sort_values
Top_Gaps = pd.concat([Top_Positive_Gap, Top_Negat:
```

```
plt.figure(figsize=(10, 6))
plt.bar(Top_Gaps['Country name'], Top_Gaps['GDP-Soplt.xlabel('Country name')
plt.ylabel('GDP-Score Gap')
plt.title('Top 3 Countries with the Largest Posit:
plt.xticks(rotation=45, ha='right')
plt.show()
```

#4. Analyze the reasons behind these gaps and the:

<ipython-input-66-30292651331c>:15: SettingWit
A value is trying to be set on a copy of a sli
Try using .loc[row_indexer,col_indexer] = value

See the caveats in the documentation: https://south_Asia_dataset['GDP-Score Gap'] = south_ south_south_asia_dataset['GDP-Score Gap'] = south_ south_south_asia_dataset['GDP-Score Gap'] = south_ south_asia_dataset['GDP-Score Gap'] = south_ south_asia_dataset <

See the caveats in the documentation: <a href="https://South_Asia_dataset['GDP-Score Gap'] = South_ <a href="https://south_Asia_dataset['GDP-Score Gap'] = Noth_Asia_dataset['GDP-Score Gap'] = Noth_Asia_datas

See the caveats in the documentation: https://
South_Asia_dataset['GDP-Score Gap'] = South_
Country name Log GDP per capita score (

92	Nepal	0.965	5.158	
107	Pakistan	1.069	4.657	
125	India	1.166	4.054	
128	Bangladesh	1.122	3.886	
142	Afghanistan	0.628	1.721	

Ascending Rank:

	Country name	GDP-Score Gap
92	Nepal	-4.193
107	Pakistan	-3.588
125	India	-2.888
128	Bangladesh	-2.764
142	Afghanistan	-1.093

Descending Rank:

	9	
	Country name	GDP-Score Gap
142	Afghanistan	-1.093
128	Bangladesh	-2.764
125	India	-2.888
107	Pakistan	-3.588
92	Nepal	-4.193


```
#Task - 1 - Setup Task - Preparing the Middle Easte
#1. Similar in Task - 1 of Problem 2 create a dataf
Dataset = pd.read_csv('/content/drive/MyDrive/Copy
Middle Eastern Countries = ["Bahrain", "Iran", "Ira
                            "Kuwait", "Lebanon", "0
Middle East Dataset = dataset[dataset['Country name
print(Middle_East_Dataset)
#1. Descriptive Statistics: • Calculate the mean, St
Dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian = ["Afghanistan", "Bangladesh", "Bhutan
Middle Eastern Countries = ["Bahrain", "Iran", "Ira
South_Asia_Dataset = dataset[dataset['Country name'
Middle_East_Dataset = dataset[dataset['Country name
South_Asia_Mean = South_Asia_Dataset['score'].mean(
South_Asia_Std = South_Asia_Dataset['score'].std()
Middle_East_Mean = Middle_East_Dataset['score'].mea
Middle_East_Std = Middle_East_Dataset['score'].std(
print(f"South Asia - Mean Score: {South_Asia_Mean }
print(f"Middle East - Mean Score: {Middle_East_Mean
#• Which region has higher happiness Scores on aver
if South_Asia_Mean > Middle_East_Mean:
    print("South Asia has a higher average happines
else:
    print("Middle East has a higher average happine
\rightarrow
          Country name score
                               Log GDP per capita
                Israel 7.341
                                            1.803
    12
                Kuwait 6.951
                                            1.845
    27
          Saudi Arabia 6.594
                                            1.842
```

#Problem - 3 - Comparative Analysis:

			2.00.07_	renjur mann
61 91 99 124 141	Iran Jordan	5.959 5.166 4.923 4.186 2.707		NaN 1.249 1.435 1.262 1.377
4 12 27 61 91 99 124 141	Healthy life	expectancy 0.740 0.661 0.511 NaN 0.498 0.571 0.594 0.556	Freedom	to make
Midd	h Asia – Mean le East – Mear le East has a	0.19 0.17 0.18 0.04 0.12 0.18 0.02 Score: 3.89	93 72 38 aN 48 23 39 29 9520000000	- 100004, S andard [

#2. Top and Bottom Performers:

#• Identify the top 3 and bottom 3 countries in ea

Dataset = pd.read_csv('/content/drive/MyDrive/Copy

South_Asian = ["Afghanistan", "Bangladesh", "Bhuta Middle_Eastern_Countries = ["Bahrain", "Iran", "Ir

South_Asia_Dataset = Dataset[Dataset['Country name
Middle_East_Dataset = Dataset[Dataset['Country name

Top 3 and bottom 3 countries based on Score in 5
Top_3_South_Asia = South_Asia_Dataset.sort_values
Bottom_3_South_Asia = South_Asia_Dataset.sort_values

Top 3 and bottom 3 countries based on Score in N
Top_3_Middle_East = Middle_East_Dataset.sort_value
Bottom_3_Middle_East = Middle_East_Dataset.sort_value

Displaying results

print("Top 3 South Asian countries based on Score:
print(Top_3_South_Asia[['Country name', 'score']])

print("\nBottom 3 South Asian countries based on 9
print(Bottom_3_South_Asia[['Country name', 'score'])

```
print("\nTop 3 Middle Eastern countries based on 5
print(Top_3_Middle_East[['Country name', 'score']]
print("\nBottom 3 Middle Eastern countries based (
print(Bottom_3_Middle_East[['Country name', 'score
#• Plot bar charts comparing these charts.
import pandas as pd
import matplotlib.pyplot as plt
Dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian = ["Afghanistan", "Bangladesh", "Bhuta
Middle_Eastern_Countries = ["Bahrain", "Iran", "I
South Asia Dataset = Dataset[Dataset['Country name
Middle_East_Dataset = Dataset[Dataset['Country nar
# Top 3 and bottom 3 countries based on Score in 9
Top 3 South Asia = South Asia Dataset.sort values
Bottom_3_South_Asia = South_Asia_Dataset.sort_val
# Top 3 and bottom 3 countries based on Score in N
Top_3_Middle_East = Middle_East_Dataset.sort_value
Bottom_3_Middle_East = Middle_East_Dataset.sort_va
# Plotting bar charts comparing the scores
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# South Asia - Top 3
axes[0, 0].bar(Top_3_South_Asia['Country name'], -
axes[0, 0].set title('Top 3 South Asian Countries
axes[0, 0].set_xlabel('Country')
axes[0, 0].set_ylabel('Score')
# South Asia - Bottom 3
axes[0, 1].bar(Bottom_3_South_Asia['Country name']
axes[0, 1].set_title('Bottom 3 South Asian Countr:
axes[0, 1].set_xlabel('Country')
axes[0, 1].set_ylabel('Score')
# Middle East - Top 3
axes[1, 0].bar(Top_3_Middle_East['Country name'],
axes[1, 0].set_title('Top 3 Middle Eastern Countr:
axes[1, 0].set_xlabel('Country')
axes[1, 0].set_ylabel('Score')
# Middle East - Bottom 3
axes[1, 1].bar(Bottom_3_Middle_East['Country name
axes[1, 1].set_title('Bottom 3 Middle Eastern Cour
axes[1, 1].set_xlabel('Country')
axes[1, 1].set_ylabel('Score')
plt.tight_layout()
```

plt.show()

125

```
Top 3 South Asian countries based on Score:
Country name score
92 Nepal 5.158
107 Pakistan 4.657
```

India 4.054

Bottom 3 South Asian countries based on Score:

Country name score
142 Afghanistan 1.721
128 Bangladesh 3.886
125 India 4.054

Top 3 Middle Eastern countries based on Score:

Country name score
Israel 7.341
Kuwait 6.951
Saudi Arabia 6.594

Bottom 3 Middle Eastern countries based on Scc

Country name score
141 Lebanon 2.707
124 Jordan 4.186
99 Iran 4.923

#3. Metric Comparisons:

Commons loss matrices like CDD man Comits

```
#• compare key metrics tike סטר per capita, sociat
import pandas as pd
import matplotlib.pyplot as plt
Dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian = ["Afghanistan", "Bangladesh", "Bhutan
Middle Eastern Countries = ["Bahrain", "Iran", "Ira
South Asia Dataset = Dataset[Dataset['Country name'
Middle East Dataset = Dataset[Dataset['Country name
# Remove any non-numeric or missing values for the
South_Asia_Dataset = South_Asia_Dataset[['Country n
Middle_East_Dataset = Middle_East_Dataset[['Country
# Calculate the mean values for each metric
south asia means = South Asia Dataset[['Log GDP per
middle_east_means = Middle_East_Dataset[['Log GDP p
# Create the comparison dataframe
comparison df = pd.DataFrame({
    'Region': ['South Asia', 'Middle East'],
    'GDP per Capita': [south asia means['Log GDP pe
    'Social Support': [south_asia_means['Social sup
    'Healthy Life Expectancy': [south_asia_means['H
})
# Plotting the grouped bar chart
comparison df.set index('Region').plot(kind='bar',
plt.title('Comparison of Key Metrics Between South
plt.vlabel('Mean Value')
plt.xlabel('Region')
plt.xticks(rotation=0)
plt.tight_layout()
plt.show()
#• Which metrics show the largest disparity between
Dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian = ["Afghanistan", "Bangladesh", "Bhutan
Middle_Eastern_Countries = ["Bahrain", "Iran", "Ira
South_Asia_Dataset = Dataset[Dataset['Country name'
Middle_East_Dataset = Dataset[Dataset['Country name
south_asia_means = South_Asia_Dataset[['Log GDP per
middle_east_means = Middle_East_Dataset[['Log GDP p
difference = abs(south_asia_means - middle_east_mea
largest_disparity_metric = difference.idxmax()
nrint(f"larnest disnarity: {larnest disnarity metri
```

```
difference.plot(kind='bar', figsize=(8, 5))
plt.title('Metric Disparity')
plt.ylabel('Difference')
plt.show()
```


Largest disparity: Social support with a diff ϵ

#4. Happiness Disparity: • Compute the range (max Dataset = pd.read_csv('/content/drive/MyDrive/Copy

```
South_Asian = ["Afghanistan", "Bangladesh", "Bhuta
Middle_Eastern_Countries = ["Bahrain", "Iran", "I
South_Asia = Dataset[Dataset['Country name'].isin
Middle_East = Dataset[Dataset['Country name'].isir
south asia range = South Asia['score'].max() - Sou
middle_east_range = Middle_East['score'].max() - N
south asia cv = South Asia['score'].std() / South
middle_east_cv = Middle_East['score'].std() / Midd
print(f"South Asia - Range: {south_asia_range:.2f}
print(f"Middle East - Range: {middle_east_range:..?
#• Which region has greater variability in happing
if south_asia_cv > middle_east_cv:
    print("South Asia has greater variability in I
else:
    print("Middle East has greater variability in
→ South Asia - Range: 3.44, CV: 33.79%
    Middle East - Range: 4.63, CV: 28.34%
    South Asia has greater variability in happines
#5. Correlation Analysis: • Analyze the correlation
Dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian = ["Afghanistan", "Bangladesh", "Bhutan
Middle_Eastern_Countries = ["Bahrain", "Iran", "Ira
South_Asia = Dataset[Dataset['Country name'].isin(S
Middle_East = Dataset[Dataset['Country name'].isin(
south_asia_corr = South_Asia[['score', 'Freedom to
middle_east_corr = Middle_East[['score', 'Freedom t
print(south_asia_corr[['score']])
print(middle_east_corr[['score']])
#• Create scatter plots to visualize and interpret
Dataset = pd.read_csv('/content/drive/MyDrive/Copy
South_Asian = ["Afghanistan", "Bangladesh", "Bhutan
Middle_Eastern_Countries = ["Bahrain", "Iran", "Ira
South_Asia = Dataset[Dataset['Country name'].isin(S
Middle_East = Dataset[Dataset['Country name'].isin(
plt.figure(figsize=(12, 6))
```

27/27