Table 1: Robustness of GMeta Estimation

Setting	Study-I	Study-II	Study-III	Reference	β_i^*	Bias	SD (ESD)	RMSE	CR	AL
I	μ_b	μ_b	μ_b	μ_b	β_1^*	.010	.076 (.075)	.077	.941	.288
	σ_b^2	σ_b^2	$rac{\mu_b}{\sigma_b^2}$	σ_b^2	β_2^*	.011	.064 (.061)	.065	.947	.237
	$ ho_b$	$ ho_b$	$ ho_b$	$ ho_b$	β_3^*	.006	.066 (.064)	.066	.954	.246
II	μ_b	μ_h	μ_m	μ_b	β_1^*	.010	.079 (.072)	.079	.930	.272
	σ_b^2	σ_b^2	σ_b^2	σ_b^2	β_2^*	.002	.056 (.054)	.056	.948	.211
	$ ho_b$	$ ho_b$	$ ho_b$	$ ho_b$	β_3^*	002	.062 (.058)	.062	.945	.222
	μ_b	μ_b	μ_b	μ_b	β_1^*	.032	.088 (.088)	.094	.930	.339
	σ_b^2	σ_h^2	σ_l^2	σ_b^2	β_2^*	002	.062 (.057)	.062	.941	.221
	$ ho_b$	$ ho_b$	$ ho_b$	$ ho_b$	β_3^*	005	.074 (.074)	.074	.967	.286
	μ_b	μ_h	μ_m	μ_b	β_1^*	.021	.079 (.077)	.081	.929	.294
	σ_b^2	σ_h^2	σ_l^2	σ_b^2	β_2^*	.0005	.055 (.055)	.055	.956	.213
	$ ho_b$	$ ho_b$	$ ho_b$	$ ho_b$	β_3^*	008	.065 (.064)	.065	.954	.246
III	μ_b	μ_b	μ_b	μ_b	β_1^*	062	.107 (.118)	.124	.934	.382
	σ_b^2	σ_b^2	σ_b^2	σ_b^2	β_2^*	.021	.070 (.065)	.073	.930	.250
	$ ho_b$	$ ho_b$	$ ho_b$	$ ho_h$	β_3^*	.030	.087 (.096)	.092	.956	.322
	μ_b	μ_b	μ_b	μ_b	β_1^*	.039	.072 (.069)	.081	.891	.264
	σ_b^2	σ_b^2	σ_b^2	σ_b^2	β_2^*	.023	.065 (.062)	.069	.932	.240
	$ ho_b$	$ ho_b$	$ ho_b$	$ ho_l$	β_3^*	.018	.061 (.058)	.064	.930	.224
	μ_b	μ_b	μ_b	μ_b	β_1^*	.053	.079 (.075)	.095	.866	.290
	σ_b^2	σ_b^2	σ_b^2	σ_b^2	β_2^*	.019	.065 (.063)	.067	.942	.242
	$ ho_l$	$ ho_b$	$ ho_h$	$ ho_l$	β_3^*	.012	.068 (.064)	.069	.935	.249
	μ_b	μ_b	μ_b	μ_b	β_1^*	.032	.089 (.084)	.095	.912	.322
	σ_b^2	σ_b^2	σ_b^2	σ_b^2	β_2^*	.010	.062 (.062)	.063	.946	.240
	$ ho_l$	$ ho_b$	$ ho_h$	$ ho_b$	β_3^*	009	.073 (.071)	.073	.942	.273
	μ_b	μ_b	μ_b	μ_b	β_1^*	025	.113 (.108)	.116	.954	.407
	σ_b^2	σ_b^2	σ_b^2	σ_b^2	β_2^*	.017	.065 (.064)	.067	.951	.248
	$ ho_l$	$ ho_b$	$ ho_h$	$ ho_h$	β_3^*	002	.091 (.091)	.091	.965	.347
IV	$X_1 > -0.5, X_2 < 0.5$	$X_2 > 0$	μ_b	μ_b	β_1^*	.007	.096 (.104)	.096	.968	.365
			σ_b^2	σ_b^2	β_2^*	.242	.353 (.117)	.428	.572	.401
			$ ho_b$	$ ho_b$	β_3^*	015	.067 (.081)	.068	.971	.283

Biases, standard deviation (SD), estimated standard deviation (ESD), square roots of mean square errors (RMSE), coverage rates (CR), and average lengths (AL) of 95% confidence intervals of the GMeta estimates using the study covariance estimators in the setting of logistic regression. In setting (I), data are simulated in ideal setting where the covariate distribution is a log-normal distribution with the natural logarithm of the covariates being characterized by mean, sd and correlation of normal variates and are assumed to same across all populations. In setting (II)-(IV), the assumption is violated by creating variations in mean/sd, correlations of the underlying normal distribution and selection criterion across the studies and reference sample. The vector of log-transformed covariate means, variances and correlations are denoted by denoted by $\mu_* = (\mu_1, \mu_2, \mu_3)$, $\sigma_*^2 = (\sigma_1^2, \sigma_2^2, \sigma_3^2)$ and $\rho_* = (\rho_{12}, \rho_{23}, \rho_{13})$ for $* \in \{b, l, m, h\}$, where $\mu_b = (0, 0, 0)$, $\mu_m = (0.5, 0.5, 0.5)$, $\mu_h = (1, 1, 1)$; $\sigma_b^2 = (1, 1, 1)$, $\sigma_l^2 = (0.5, 0.5, 0.5)$, $\sigma_h^2 = (2, 2, 2)$ and $\rho_b = (0.3, 0.6, 0.1)$, $\rho_h = (0.4, 0.8, 0.2)$, $\rho_l = (0.2, 0.4, 0)$. Estimated standard deviation are obtained by the asymptotic formula (??) and used to construct 95% confidence interval.