

Learning in Repeated Games

Game Theory Course: Jackson, Leyton-Brown & Shoham

Introduction

- We will cover two types of learning in repeated games.
 - Fictitious Play
 - No-regret Learning
- In general Learning in Game Theory is a rich subject with many facets we will not be covering.

- Initially proposed as a method for computing Nash equilibrium.
- Each player maintains explicit belief about the other players.
 - Initialize beliefs about the opponent's strategies.
 - Each turn:
 - Play a best response to the assessed strategy of the opponent.
 - Observe the opponent's actual play and update beliefs accordingly.

Formally

- Maintain counts of opponents actions
 - For every $a \in A$ let w(a) be the number of times the opponent has player action a.
 - Can be initialized to non-zero starting values.
- Assess opponent's strategy using these counts:

$$\sigma(a) = \frac{w(a)}{\sum_{a' \in A} w(a')}$$

- (pure strategy) best respond to this assessed strategy.
 - Break ties somehow.

Example using matching pennies

Round	I's action	2's action	l's beliefs	2's beliefs
0			(1.5,2)	(2,1.5)
1	Т	Т	(1.5,3)	(2,2.5)
2	Т	Н	(2.5,3)	(2,3.5)
3	Т	Н	(3.5,3)	(2,4.5)
4	Н	Н	(4.5,3)	(3,4.5)
5	Н	Н	(5.5,3)	(4,4.5)
6	Н	Н	(6.5,3)	(5,4.5)
7	Н	Т	(6.5,4)	(6,4.5)
:	:	:	:	<u>:</u>

Convergence

Theorem

If the empirical distribution of each player's strategies converges in fictitious play, then it converges to a Nash equilibrium.

Convergence

Theorem

If the empirical distribution of each player's strategies converges in fictitious play, then it converges to a Nash equilibrium.

Theorem

Each of the following are a sufficient conditions for the empirical frequencies of play to converge in fictitious play:

- The game is zero sum;
- The game is solvable by iterated elimination of strictly dominated strategies;
- The game is a potential game;
- The game is $2 \times n$ and has generic payoffs.

Definitions

Definition (Regret)

The regret an agent experiences at time t for not having played s is $R^t(s) = \alpha^t - \alpha^t(s)$.

Definitions

Definition (Regret)

The regret an agent experiences at time t for not having played s is $R^t(s) = \alpha^t - \alpha^t(s)$.

Definition (No-regret learning rule)

A learning rule exhibits no regret if for any pure strategy of the agent s it holds that $Pr([\liminf R^t(s)] \le 0) = 1$.

Regret Matching

• Example learning rule that exhibits no regret: Regret Matching.

Regret Matching

- Example learning rule that exhibits no regret: Regret Matching.
- At each time step each action is chosen with probability proportional to its regret. That is,

$$\sigma_i^{t+1}(s) = \frac{R^t(s)}{\sum_{s' \in S_i} R^t(s')},$$

where $\sigma_i^{t+1}(s)$ is the probability that agent i plays pure strategy s at time t+1.

Regret Matching

- Example learning rule that exhibits no regret: Regret Matching.
- At each time step each action is chosen with probability proportional to its regret. That is,

$$\sigma_i^{t+1}(s) = \frac{R^t(s)}{\sum_{s' \in S_i} R^t(s')},$$

where $\sigma_i^{t+1}(s)$ is the probability that agent i plays pure strategy s at time t+1.

• Converges to a correlated equilibrium for finite games.