Exercices (HAI933I)

Exercice 1 (Fragment existential conjonctif)

On considère les trois formules fermées suivantes :

- $F_1 = \exists x_1 \exists y_1 \exists z_1 \ (p(x_1, y_1) \land q(y_1, z_1) \land r(z_1))$
- $F_2 = \exists x_2 \exists y_2 \exists z_2 \exists v_2 \ (r(x_2) \land p(x_2, y_2) \land q(y_2, x_2) \land q(y_2, z_2) \land p(z_2, v_2) \land q(v_2, z_2))$
- $F_3 = \exists x_3 \exists y_3 \ (p(a, x_3) \land q(x_3, y_3))$
- $F_4 = \exists x_4 \ (p(a, x_4) \land q(x_4, a)) \land r(a))$

Question 1. Déterminez les relations de conséquence logique entre ces formules, en donnant un homomorphisme qui prouve la conséquence logique lorsque c'est le cas.

Question 2. Mettre chaque formule redondante sous une forme non-redondante (autrement dit, en voyant une formule comme un ensemble d'atomes, donner un *core* de cet ensemble d'atomes).

Exercice 2 (Règles Datalog)

Question 1. Soit une base de faits F sans variables. Soit \mathcal{R} un ensemble de règles positives Datalog. La saturation de F par \mathcal{R} est-elle nécessairement un core?

Question 2. Même question avec une base de faits F qui peut comporter des variables mais qui est un core.

Exercice 3 (Inclusion de requêtes conjonctives)

Etant données deux requêtes conjonctives Q_1 et Q_2 , on dit que Q_1 est incluse dans Q_2 (notation $Q_1 \sqsubseteq Q_2$) si, pour toute base de faits F, l'ensemble des réponses à Q_1 dans F est inclus dans l'ensemble des réponses à Q_2 dans F.

- 1. Montrer la propriété suivante : étant données des requêtes booléennes Q_1 et Q_2 , on a $Q_1 \sqsubseteq Q_2$ (autrement dit toute base de faits qui répond oui à Q_1 répond aussi oui à Q_2) si et seulement si il existe un homomorphisme de Q_2 dans Q_1 .
- 2. Définir l'homomorphisme de requêtes conjonctives quelconques, dans l'idée d'étendre cette propriété ; puis étendre la propriété à des requêtes conjonctives quelconques en utilisant cette notion.