_ 33-3-3

U.S. NAVAL AIR MATERIAL CENTER

ILADELPHIA, PENNSYLVANIA

Qualified requesters may obtain copies of this report from ASTIA.

AERONAUTICAL MATERIALS LABORATORY

REPORT NO. NAEC AML 1636 DATE 13 MARCH 1963

FINAL REPORT

DEVELOPMENT AND FORMULATION OF EXPERIMENTAL DIISOCYANATE-BASED LAMINATING RESINS

PROBLEM ASSIGNMENT NO. C 09 RMA 31-1 UNDER BUREAU OF NAVAL WEAPONS
WEPTASK RRMA 03 017/200 1/R007 04 01

THIS REPORT MAY BE RELEASED OUTSIDE OF THE MILITARY
DEPARTMENTS AND FARCUTIVE AGENCIES OF THE UNITED
STATES GOVERNMENT ONLY WITH PAGES Frame REMOVED

APR 3 0 1983

1120

N STAR

9177 99 117

NAVAL AIR ENGINEERING CENTER PHILADELPHIA 12, PENNSYLVANIA

AERONAUTICAL MATERIALS LABORATORY

REPORT NO. NAEC AML 1636 DATE 13 MARCH 1963

FINAL REPORT

DEVELOPMENT AND FORMULATION OF EXPERIMENTAL DIISOCYAMATE-BASED LAMINATING RESINS

PROBLEM ASSIGNMENT NO. C 09 RMA 31-1 UNDER BUREAU OF NAVAL WEAPONS
WEPTASK RRMA 03 017/200 1/R007 04 01

THIS REPORT MAY BE RELEASED CUTSIFE OF THE MILITARY DEPARTMENTS AND FARCUTIVE ACENCIES OF THE UTILITY STATES GOVERNMENT CHI VI'F LACES MORE REMOVED

Prepared by:

a. G. Bonanni

A. P. Bonanni Project Engineer

Approved by:

E. K. Rishel, Head Plastics Branch

C. A. Cassola, Superintendent

High Polymer Division

ABSTRACT

The successful synthesis of halogenated polyurethane resins for laminating is reported. The test results indicate that halogen groupings in a polyurethane resin, tend to increase the thermal stability of the resulting laminate and to increase the pot-life of the resin.

Future efforts will be directed toward improving stability above 300°F of the polyurethane structural laminate.

A patent pertaining to the technique of formulating polyurethane resins has been allowed to Mr. A. P. Bonanni. This patent will be issued soon.

I. INTRODUCTION

A. This is the final report under problem assignment C 09 RMA 31-1, WEPTASK RRMA 03 017/200 1/R007 04 01 which was authorized by reference (a). Early experimentation (references (b), (c), (d) and (e)) indicated that the formulation of a polyurethane resin suitable for preparing a reinforced laminate was feasible. Also, that 2-butene-1,4-diol when reacted with 2,4-tolylene-diisocyanate (TDI) produced the best physical properties in a polyurethane structural laminate. This study pertains to the reaction of halogenated diols with TDI, to increase the pot-life of the polyurethane resin, and to increase the thermal stability of the structural laminates. This work was performed between February 1960 and February 1963.

II. SUMMARY OF RESULTS

- A. Improved flexural modulus properties at elevated temperatures have been attained with the use of halogenated groupings in the polyurethane resins. The physical properties of these structural laminates could be improved with further experimentation.
- B. The pot-life, a problem with un-halogenated diols, is extended to several days with the use of halogenated diols.

III. CONCLUSIONS

- A. The thermal stability of a structural laminate, increases with the use of halogenated diols. Further improvement can be made by varying the concentration of TDI and Nacconate 200. Although the flexural properties do not appear to be significantly high, they must not be considered as the laminate's ultimate flexural strength. In order to determine their ultimate flexural strength, a study must be made to determine the temperature, pressure and time of lamination.
- B. The pot-life of a polyurethane resin can be extended by modifying the chemical structure of the experimental resin using halogenated diols.

IV. RECOMMENDATIONS

- A. It is recommended that a new problem assignment be established to:
- 1. Determine optimum laminating parameters of a halogenated diol and a diisocyanate resin which will give superior physical properties in a structural laminate.
- 2. Ascertain if a peroxide will increase cross-linking in the unsaturated polymers.
 - 3. Determine the molecular weight of a polyurethane resin.
- 4. Study the physical properties of structural laminates formulated with varying amounts of:
 - a. 2.4-tolylene-diisocyanate
 - b. 2-butene-1,4-diol
 - c. Halogenated diols
- d. 3,3'-bitolylene-4,4'-diisocyanate and 3,3'-dimethyldiphenylmethane and the laminating parameters (temperature, pressure and time).

REPORT NO. NAEC AML 1636 IV

TABLE OF CONTENTS

	PAGE
INTRODUCTION	ii
SUMMARY OF RESULTS	ii
CONCLUSIONS	iii
RECOMMENDATIONS	111
LIST OF PLATES	v, vi
DESCRIPTION, METHODS, RESULTS	1, 2
REFERENCES	2

LIST OF PLATES

- 1. Source of materials (*F)
- 2. Melting points using Koffler Hot Stage
- 3. Flexural Data for Hexafluoropentane Diol (HFPD) and 2,4-tolylene-diisocyanate (TDI), Tested at Room Temperature
- 4. Flexural Data for Hexafluoropentane Diol (HFPD) and 2,4-tolylene-diisocyanate (TDI), Tested at 200°F after Exposure to 200°F for 1/2 hour
- 5. Flexural Data for Dibromobutene Diol (DBBD) and 2,4-tolylene-diisocyanate (TDI), Tested at Room Temperature
- 6. Flexural Data for Dibromobutene Diol (DBBD) and 2,4-tolylene-diisocyanate (TDI), Tested at 200°F after Exposure to 200°F for 1/2 hour
- 7. Flexural Data for Hexafluoropentane Diol (HFPD), Macconate 200 and 2,4-tolylene-diisocyanate (TDI), Tested at Room Temperature
- 8. Flexural Data for Hexafluoropentane Diol (HFPD), Macconate 200 and 2,4-tolylene-diisocyanate (TDI), Tested at 200°F after Exposure to 200°F for 1/2 hour
- 9. Flexural Data for Dibromobutene Diol (DBBD), Macconate 200 and 2,4-tolylenediisocyanate (TDI), Tested at Room Temperature
- 10. Flexural Data for Dibromobutene Diol (DBBD), Macconate 200 and 2,4-tolylene-diisocyanate (TDI), Tested at 200°F after Exposure to 200°F for 1/2 hour
- 11. Flexural Data for Dibromobutene Diol (DBBD), Macconate 300, and 2,4-tolylene diisocyanate, Tested at Room Temperature, and 200°F after Exposure to 200°F for 1/2 hour
- 12. Flexural Strength in Bending vs. Diisocyanate Concentration (2,4-tolylene-diisocyanate)(Hexafluoropentane Diol)
- 13. Modulus of Elasticity in Bending vs. Diisocyanate Concentration (2,4-tolylene-diisocyanate), (Hexafluoropentane Diol)
- 14. Flexural Test in Bending vs. Diisocyanate Concentration (2,4-tolylene-diisocyanate), (Dibromobutene Diol)
- 15. Modulus of Elasticity in Bending vs. Diisocyanate Concentration (2,4-tolylene-diisocyanate), (Dibromobutene Diol)
- 16. Flexural Strength in Bending vs. Diisocyanate Concentration (Macconate 200 and 2,4-tolylene-diisocyanate), (Hexafluoropentane Diol)

LIST OF PLATES

- 17. Modulus of Elasticity in Bending vs. Diisocyanate Concentration (Macconate 200 and 2,4-tolylene-diisocyanate), (Hexafluoropentane Diol)
- 18. Flexural Strength in Bending vs. Diisocyanate Concentration (Macconate 200 and 2,4-tolylene-diisocyanate), (Dibromobutene Diol)
- 19. Modulus of Elasticity in Bending vs. Diisocyanate Concentration (Macconate 200 and 2,4-tolylene-diisocyanate), (Dibromobutene Diol)

V. DESCRIPTION, METHODS, RESULTS

A. Description

1. Materials used in this investigation were obtained from sources shown in Plate 1. All the materials reported herein are new to the investigation of polyurethane resins with the exception of TDI and 2-butene-1.4-diol.

B. Method

- 1. The reactants used in the formulation of the polyurethane resins reported herein are TDI, Nacconate 200 (3,3'-bitolylene-4,4'-diisocyanate, Nacconate 300 (diphenylmethane-4,4'-diisocyanate), 2-butene-1,4-diol, HFFD, DBBD and tetrachlorobutane diol (TCDB).
- 2. A study of the melting points of halogenated polyurethane resins using the Koffler Hot Stage (Plate 2) was used to indicate the thermal stability of the resin. These softening points indicated that the physical properties of the structural laminate should be investigated at elevated temperatures. These results are reported in Plates 3 to 11 and graphically presented on Plates 12 to 19. Tests for the evaluation of melting points were performed in accordance with WADC Technical Report 56-399 under the title "Test Methods for Estimation of Thermal Behavior of Polymers."
- 3. All the structural laminates were prepared using 181 Volan A glass cloth. The laminates were cured at 30 psig and 300°F for 30 minutes and post cured at 158°F for 16 hours. Flexural strength and flexural moduli tests were utilized as a screening measure to compare the different polyurethane formulations; also, to make a comparison of the polyurethane resins at room temperature and elevated temperatures (200°F). The flexural properties were conducted in accordance with Test Method Standard No. 406, Plastics: Method of Testing.

C. Results

1. An examination of the melting points, using the Koffler Hot Stage, indicates that as the molar concentration of TDI is increased and the alkene diol (2-butene-l,4-diol) is kept constant, the softening points of the resins increase to a maximum of 226°F with a molar construction of 1.2 moles of TDI. But when a halogenated diol is substituted for the alkene diol, the softening point increases steadily with the addition of more TDI. The softening points become more significant when polyurethane resins are synthesized using TDI, halogenated diols and Macconate 200. These resins do not soften, but begin to carbonize at 572°F. The results are tabulated and shown on Plate 2.

- 2. An examination of the flexural values at room temperature, (Plates 3, 5, 7, 9, and 11 to 19) and at 200°F after being exposed to 200°F for 1/2 hour (Plates 4, 6, 8, and 10 to 19) indicates that although some formulations show temperature stability, there are indications that the laminating parameters (curing temperature, pressure and time) used in this study are not the optimum for the laminates. On Plates 3, 11 and 12, the data show extremely low flexure values for a polyurethane resin using 1.0 mole of HFFD and 1.0 mole of TDI; but, with the increase of only a 0.10 of mole of TDI, a flexural value of 90,100 psi and flexural modulus of 4.07 x 10° is obtained. When exposed to 200°F for 1/2 hour and tested at 200°F (Plates 4, 11 and 12) a loss of more than 70% of the flexural strength is seen and a loss of only 10% of the flexural modulus. On Plates 5, 13 and 14. using 1.0 mole of DBBD and 1.1 moles of TDI a flexural strength of 93,900 psi and a modulus of 4.24 x 100 psi is obtained. When exposed to 200°F for 1/2 hour and tested at 200°F (Plates 6, 13 and 14) a loss of less than 3% is found in the flexural strength and a loss of approximately 5% in the flexural modulus. These values substantiate the theory that when halogenated diols are used, the thermal properties can be increased.
- The pot-life of polyurethane resins is extended to several days when halogenated diols are used. In the formulation using HFPD and TDI, the resulting polyurethane resin remains a liquid for several days provided the resin is placed in an air-tight container free of moisture. The formulations using DBBD and TDI form a polyurethane resin which solidifies in 2 to 3 hours after synthesis but can be poured as a hot melt, provided the temperature of the resin is maintained between 190°F to 205°F. Formulating TDI with HFFD and DBBD and various concentrations of Nacconate 200 yielded resins having a pot-life of less than one hour. Formulating TDI with DBBD and Macconate 300 yielded a resin which had a pot-life of approximately onehalf hour. Once these resins are polymerized, they cannot be reheated to a melt.

REFERENCES

- (a) BUAER 1tr Aer-AE-44/127 of Aug 1955
- (b) MAXSTA ltr XM-52-SP:dsf J2-5 (3517) of Aug 1955
- (c) Report No. NAMC AML AE 4420, Part I of 2 Mar 1956
- (d) Report No. MAMC ANL AE 1071, (AE 4420, Part II) of 16 Oct 1958
- (e) Report No. NAMC AML 1131 (Project No. TED NAM AE 4420, Part III) of 22 Jun 1960

SOURCES OF MATERIALS

Compound	Source
2,4-Tolylene-Diisocyanate	E. I. duPont de Nemours & Co., Inc. Wilmington 98, Delaware
3,3'-Bitolylene-4,4'-Diisocyanate	National Aniline Division Allied Chemical & Dye Corporation 40 Rector Street New York 6, New York
Diphenylmethane-4,4'-Diisocyanate	Same
2-Butene-1,4-Diol	General Aniline & Film Corporation Commercial Development Department 435 Hudson Street New York 14, New York
Hexafluoropentane Diol	Harker Chemical Corporation Niagara Falls, New York
Tetrachlorobutane Diol	General Aniline & Film Corporation Commercial Development Department 435 Hudson Street New York 14, New York
Dibromobutene Diol	Same

MELTING POINTS USING KOFFLER HOT STAGE (*F)

		Moles of		Softening	Initial	Complete
Sample	TDI(1)	2B14D(2)		Point	Flow	Melt
1	1.0	1.0				
2	1.1	1.0		212	230	473
2 3 4	1.2	1.0		248	293	426
4	1.3	1.0		226	248	392
	TDI	HFPD(3)				
1	1.0	1.0			381	419
2	1.1	1.0		241	284	340
2 3 4	1.2	1.0		248	401	4 73
4	1.3	1.0		36 5	388	410
	TDI	DBBD ⁽⁴⁾				
1	1.0	1.0		203	214	221
1 2 3 4	1.1	1.0		207	234	273
3	1.2	1.0		248	374	410
4	1.3	1.0				
	TDI	TCBD ⁽⁵⁾				
. 1	1.0	1.0		347	392	424
	TDI	Nacconate 200	HFPD			
1	1.0	0.5	1.5	158	169	190
2	0.75	0.75	1.5	255	324	Charred at
						572
3	0.50	1.0	1.5	243	266	302
	TDI	Macconate 200	DBBD			
1	1.0	0.050	1.5		ample Charre	d at 572
2	0.75	0.75	1.5	262	313	360
1 2 3	0.50	1.0	1.5	257	293	Charred at

MOTES: (1) TDI - 2,4-Tolylene-Diisocyanate
(2) 2Bl4D - 2-Butene-1,4-Diol
(3) HFPD - Hexafluoropentane Diol
(4) DBBD - Dibromobutene Diol
(5) TCBD - Tetrachlorobutane Diol

FLEXURAL DATA FOR HEXAFLUOROPENTANE DIOL (HFPD) AND 2,4-TOLYLENE-DIISOCYANATE (TDI)

Spec.	Mol	HFPD	Width (in.)	Thick.	Ultimate Load (lbs.)	Flexural Strength (psi)	Avg.	E x 10-6 (psi)	Avg.
1 2 3 4 5	1.0	1.0	0.498 0.513 0.502 0.509 0.516	0.124 0.124 0.125 0.123 0.124	56 53 54 52 52	21,904 20,126 20,690 20,312 19,623	20,500	No Resu	lts
1 2 3 4 5	1.1	1.0	0.500 0.499 0.497 0.050 0.498	0.088 0.087 0.090 0.088 0.089	115 115 120 116 118	89,600 91,000 89,300 90,400 90,100	90,100	4.20 4.17 3.92 4.11 3.97	4.07
1 2 3 4 5	1.2	1.0	0.515 0.516 0.528 0.521 0.517	0.089 0.088 0.089 0.090 0.090	116 114 123 122 118	85,500 86,200 88,500 86,700 84,500	86,300	4.32 4.48 4.26 4.14 4.29	4.30
1 2 3 4 5	1.4	1.0	0.530 0.505 0.510 0.510 0.509	0.103 0.111 0.110 0.112 0.111	19 18 18 13	8,407 8,696 8,752 6,113 6,903	7,800	No Resu	ilts

FLEXURAL DATA FOR HEXAFLUOROPENTAME DIOL (HFPD) AND 2,4-TOLYLENE-DIISOCYANATE (TDI), TESTED AT 200°F AFTER EXPOSURE TO 200°F FOR 1/2 HOUR

Spec.	Mo:	Les HFPD	Width (in.)	Thick.	Ultimate Load (lbs.)	Flexural Strength (psi)	Avg.	E x 10-6 (psi)	Avg.
1 2 3 4 5	1.0	1.0	•••••	K ot	; Tested Bed	cause of De	laminati	Lon	
1 2 3 4 5	1.1	1.0	0.502 0.512 0.495 0.503 0.500	0.087 0.090 0.089 0.088 0.089	32 39 35 36 34	25,100 28,200 26,800 27,900 25,800	26,800	3.43 3.55 3.59 3.43	3.50
1 2 3 4 5	1.2	1.0	0.530 0.527 0.512 0.518 0.519	0.090 0.090 0.088 0.089 0.088	52 43 46 44	36,400 34,400 32,700 33,700 33,000	34,100	2.95 3.35 3.77 3.70 3.87	3.49
1 2 3 4 5	1.4	1.0		N ot	t Tested Be	cause of De	elaminat:	ion	# ~ ~ ~ #* (

FLEXURAL DATA FOR DIBROMOBUTENE DIOL (DBBD) AND 2,4-TOLYLENE-DIISOCYANATE (TDI) TESTED AT ROOM TEMPERATURE

Spec.	Mol	DBBD	Width (in.)	Thick.	Ultimate Load (1bs.)	Flexural Strength (psi)	Avg.	E x 10-6 (psi)	Avg.
1 2 3 4 5	1.0	1.0	0.512 0.501 0.511 0.497 0.513	0.123 0.123 0.123 0.123 0.123	95 95 95 98 88	59,200 56,900 58,000 63,000 54,800	58,400	3.95 3.66 3.75 3.90 3.97	3.85
1 2 3 4 5	1.1	1.0	0.495 0.520 0.511 0.495 0.522	0.095 0.098 0.098 0.094 0.097	140 154 150 139 155	94,200 92,600 91,600 95,600 94,700	93,900	4.23 4.08 4.23 4.41 4.23	4.24
1 2 3 4 5	1.2	1.0	0.526 0.506 0.528 0.519 0.532	0.101 0.096 0.097 0.100 0.101	101 93 105 90 93	56,400 59,900 63,500 52,000 51,400	56,700	3.75 4.03 4.08 3.97 3.92	3•95
1 2 3 4 5	1.3	1.0	0.507 0.525 0.486 0.504 0.505	0.100 0.096 0.096 0.095 0.098	58 61 55 67 63	34,800 38,200 36,900 44,300 43,100	39,500	3.30 3.47 3.95 3.90 3.77	3.68

FLEXURAL DATA FOR DIBROMOBUTENE DIOL (DBBD) AND 2,4-TOLYLENE-DIISOCYANATE (TDI), TESTED AT 200°F AFTER EXPOSURE TO 200°F FOR 1/2 HOUR

Spec.	Me TDI	DBBD DBBD	Width (in.)	Thick.	Ultimate Load (lbs.)	Flexural Strength (psi)	Avg.	E x 10-6	6 <u>Ave.</u>
1 2 3 4 5	1.0	1.0	0.500 0.497 0.514 0.499 0.489	0.097 0.097 0.098 0.096 0.097	87 84 79 94 87	55,500 54,000 48,100 58,900 56,700	54,600	3.85 3.90 3.64 4.03 4.08	3.90
1 2 3 4 5	1.1	1.0	0.518 0.514 0.525 0.528 0.510	0.094 0.095 0.098 0.097 0.098	112 104 117 121 116	69,000 67,400 69,600 73,900 71,000	70,200	4.14 4.14 3.64 4.11 3.90	3•99
1 2 3 4 5	1.2	1.0	0.519 0.503 0.517 0.523 0.530	0.099 0.099 0.096 0.097 0.102	108 93 102 103 113	63,600 56,600 64,300 62,800 61,500	61,800	3.77 3.95 3.80 3.92 3.35	3.76
1 2 3 4 5	1.3	1.0	0.500 0.495 0.498 0.504 0.518	0.100 0.099 0.095 0.095 0.098	59 62 78 77 78	35,400 38,400 52,200 50,900 47,100	44,700	3.85 4.32 3.97 3.70	3.96

FLEXURAL DATA FOR HEXAFLUOROPENTANE DIOL (HFPD), NACCONATE 200 AND 2,4-TOLYLENE-DIISOCYANATE (TDI) TESTED AT ROOM TEMPERATURE

Spec.	TDI	Moles HFPD	200	Width (in.)	Thick.	Ultimate Load (lbs.)	Flexural Strength (psi)	Avg.	E x 10 ⁻⁶ (psi)	Avg.
1 2	1.0	1.5	0.5	0.532 0.530	0.073 0.075	42 43	44,400 43,300		3.97 3.70	
3 4				0.533	0.073	38 42	40,100 41,700	h	3.80 3.55	
5				0.532	0.072	38	37,100	41,300	4.03	3.81
1 2	0.75	1.5	0.75	0.507 0.513	0.085 0.085	63 65	51,800 52,800		4.41 4.05	
1 2 3 4 5				0.513	0.086 0.084	72 66	56,800 57,900		3.97 4.23	
5				0.514	0.085	62	50,300	53,900	4.00	4.13
1	0.5	1.5	1.0	0.473	0.087 0.087	50 53	41,900 44,500		3.68 3.73	
2 3 4				0.471	0.089	53 51	41,000		3.69	
4 5				0.474 0.471	0.090 0.087	53 50	41,400 42,100	42,200	3.77 3. 62	3.70

REPORT NO. NAME AND 1636

FLEXURAL DATA FOR HEXAFLUOROPENTANE DIOL (HFPD), NACCOMATE 200 AND 2,4-TOLYLENE-DIISOCYANATE TESTED AT 200°F AFTER EXPOSURE TO 200°F FOR 1/2 HOUR

Spec.	Mo:	<u>200</u>	Width (in.)	Thick.	Ultimate Load (lbs.)	Flexural Strength (psi)	Avg.	E x 10 ⁻⁶ (ps1) Avg.
1 2 3 4 5	1.0 1	.5 0.5	0.539 0.536 0.533 0.532 0.526	0.075 0.072 0.075 0.071 0.077	7 8 7 6 7	6,900 8,600 7,000 6,700 6,700	7,200	No Results
1 2 3 4 5	0.75 1	.5 0.75	0.485 0.519 0.515 0.509 0.517	0.084 0.085 0.086 0.084 0.085	14 22 17 21 21	12,300 17,600 13,400 17,500 16,800	15 ,50 0	No Results
1 2 3 4 5	0.50 1	5 1.0	0.473 0.471 0.470 0.470 0.470	0.089 0.096 0.089 0.087 0.087	9 12 14 15 15	7,200 9,400 11,300 12,600 12,600	10,600	No Results

REPORT NO. NABC AND 1636

FLEXURAL DATA FOR DIEROMOBUTEME DIOL (DEBD), MACCOMATE 200, AND 2,4-TOLYLEME-DIISOCYAMATE (TDI) TESTED AT ROOM TEMPERATURE

Spec.	TDI	Moles DBBD	200	Width (in.)	Thick.	Ultimate Load (lbs.)	Flexural Strength (psi)	Avg.	E x 10 ⁻⁶ (psi)	Ave.
1 2 3 4 5	1.0	1.5	0.5	0.468 0.468 0.465 0.469 0.465	0.096 0.097 0.096 0.096	80 78 73 83 80	55,700 54,300 50,000 57,600 55,900	54,700	3.55 4.01 3.57 3.62 3.64	3 .6 8
1 2 3 4 5	0.75	1.5	0.75	0.475 0.485 0.487 0.470 0.477	0.093 0.095 0.096 0.093 0.093	55 53 58 57 57	40,100 36,400 38,800 42,000 41,400	39,700	3.72 3.69 3.55 4.06 3.79	3.76
1 2 3 4 5	0.5	1.5	1.0	0.508 0.508 0.509 0.516 0.509	0.096 0.097 0.095 0.088 0.099	66 65 65 60 66	42,300 40,800 42,500 45,100 39,700	42,100	3.60 3.76 3.71 4.30 4.70	4.01

FLEXURAL DATA FOR DIBROMOBUTENE DIOL (DEED), MACCOMATE 200 AND 2,4-TOLYLENE-DIISOCYAMATE TESTED AT 200°F AFTER EXPOSURE TO 200°F FOR 1/2 HOUR

Spec.	TDI	Moles DBBD	200	Width (in.)	Thick.	Ultimate Load (lbs.)	Flexural Strength (psi)	Avg.	E x 10 ⁻⁶ (psi)	Avg.
1 2 3 4 5	1.0	1.5	0.5	0.469 0.465 0.468 0.464 0.469	0.096 0.096 0.094 0.095 0.097	80 72 78 79 78	55,600 50,400 56,500 56,600 53,100	54,400	3.25 3.40 3.67 3.47 3.35	3.43
1 2 3 4 5	0.75	1.5	0.75	0.486 0.482 0.475 0.469 0.471	0.098 0.096 0.096 0.096 0.095	59 57 58 55 56	39,500 38,500 39,700 38,200 39,500	39,100	3.48 3.45 3.85 3.54 3.72	3.61
1 2 3 4 5	0.5	1.5	1.0	0.513 0.516 0.505 0.508 0.511	0.095 0.094 0.098 0.098 0.097	58 57 60 58 54	37,600 37,500 46,800 35,600 33,700	38,400	3,20 3.50 3.21 3.06 3.47	3.29

FLEXURAL DATA FOR DIERONOBUTENE DIOL (DEED), MACCONATE 300, AND 2,4-TOLYLENE-DIISOCYANATE TESTED AT ROOM TEMPERATURE

Spec.	TDI	Moles DBBD	300	Width (in.)	Thick.	Ultimate Load (lbs.)	Flexural Strength (psi)	Avg.	E x 10 ⁻⁶ (psi)	Avg.
1 2 3 4 5	1.0	1.5	0.5	0.464 0.465 0.465 0.457 0.450	0.105 0.106 0.106 0.106 0.106	15 6 149 161 155 158	91,800 85,800 92,700 90,800 94,000	91,000	4.18 3.96 3.69 3.61 3.67	3.82
		TES	STED A	T 200°F	AFTER 1	exposure to	200°F F0	R 1/2 H	OUR	
1 2 3 4 5	1.0	1.5	0.5	0.470 0.458 0.468 0.463 0.454	0.105 0.107 0.105 0.106 0.106	110 103 117 110 126	63,800 59,200 68,155 63,600 70,900	65,100	3.09 3,09 3.40 3.53 3.41	3.36

