1. Какие есть способы измерения магнитного поля?

В Одной Очень полезной методичке приборы для измерения магнитного поля делят на пять основных групп, исходя из законов, лежащих в основе их работы: 1) феррозондовые (принучп изменения магнитных свойств ферромагнетика при

изменении характеристик магнитного поля - нанагничивание и известная петля гистерезиса,

обнотки возбуждения на \simeq (5in) токе: т.е. перемагничивание, и обмотка измерений, где будет ε_i индуущроваться ЭДС) 2) магнитоиндуктивные (принуи п связи ΔH внешнего поля и индуктивно-

τρα κατυμκά ε φερροματή ετερχήεμο) 3) ματημτορέσμετορημές (ρεγαστραμία μεκραβλεή τρα κατοριώ βραχυμάς σε βρομάτι τρα ματάμε που βράτε βραμές $F_{\Lambda} = O(F_{2\Lambda}) + Q \cdot [\vec{x} \times \vec{B}]$

4) КВантовые (принул пречессии (вращ.) магнитного монента электрона вокруг вектора внеш. магнитного поля; особенно эффективны СКВЦЯ-магнитометры \rightarrow сверхпроводимость...)

2. Пояснение демонстрации с телевизором и магнитом.

хочется предположить, что телевизор из эксперимента устроен по принуипу CRT мониторов (т.е. на электронно-лучевой трубке), тогда из электронной пушки под действием сильного электростат. поля исходит поток электронов, с ним взаимодействует магнитное поле отклоняющего соленоида и в конечном итоге происходит активация люминофора. Котда к экрану подносят сильный магнит подкову, электроных

начинают менять траекторию лод действием внещнего магнитного поля (принунп в основе силы лоренца) + есть квантовая природа такого поведения. Поднесение магнита намагничивает маску монитора, и

иногда перенагничивание при "Выкл-вкл" не спасёт устройство от деффекта искажения и цветопередачи.

3. Пояснение принципа работы масс-спектрометра.

Масс-спектрометь используется для определения массы атомов: прочесс ионизации вещества и так называемого "отбора" изучаемых частиц остаётся в деталях реализации, но общий принуип определения массы можно описать следующим образом: ионизированные частицы попадают в серерический трек с известным радиусом и начинают "Закручиваться" под действием силы лоренца. $F_{\Lambda} = ma = m\frac{\nabla^2}{F} = q \sqrt{B}$ $V = \frac{E}{B}$ т.к. $q = q \sqrt{B}$ при "отборе" $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B}$, при этом $m = m \frac{\Delta^2}{F} = q \sqrt{B}$ $m = q \sqrt{B$

4. A circular loop of wire, of radius r, carries current I. It is placed in a magnetic field whose lines seem to diverge from a point at the distance d to the angle of theta. Determine the force of the loop.

force of the loop. 3anuwen cury Amnepa Ha yyactok korbya:

dF=i.[B×de]=i.de.B.Sino u возынём интеграл

T.e. OTBET:
$$F = \frac{2\pi B I}{\sqrt{r^2 + d^2}}$$

