Search for Flavor Changing Neutral Currents in Top Quark Decays

 $t \rightarrow q\gamma$

Jason Barkeloo

February 8, 2018

Table of Contents

Brief Background

Searching for Flavor Changing Neutral Current Signatures

Current Investigations

Top Quark Pair Production

• At $\sqrt{s} = 13 \, TeV$ for $m_t = 172.5 \, GeV$, $\sigma_{t\bar{t}} = 831.76 \, pb$

Figure: $t\bar{t}$ production cross section [TopWGSummaryPlots]

Top Quark Decays

► Standard model top branching ratio to bW $\simeq 100\%$

Figure: Leptonic final state diagram for a top decay

Figure: Top quark pair decay final states [Nature]

Top Quark Decays in the SM

- $t \rightarrow bW \approx 99.83\%$
- ▶ $t \rightarrow sW \approx 0.16\%$
- ► $t \rightarrow dW \approx 0.01\%$

$$t \to q_{u,c} X \approx 10^{-17} - 10^{-12}$$

Top Flavor Changing Neutral Currents

► Current Limits on FCNC Decays

- ▶ Limits on $t \rightarrow \gamma q$ processes: [JHEP 04 (2016) 035]
 - ► $t \to \gamma u < 1.3 \times 10^{-4}$
 - ► $t \to \gamma c < 1.7 \times 10^{-3}$

FCNC: What are we looking for? $t\bar{t} o W(o l u) b + q \gamma$

- ► Final state topology
 - ► One Neutrino, from W
 - One Lepton, from W
 - One B-jet, SM top
 - One Photon, FCNC Top
 - ► One Jet, FCNC Top

Background Processes

- ▶ Due to all of the processes at hadron colliders it is important to model similar event topologies well.
- ▶ Major backgrounds include $t\bar{t}$, W+Jets, Z+Jets, + processes with an associated photon

Object Preselection

- We preselect events with objects that look like our expected topology
- Require:
 - ▶ Exactly one lepton (e or μ) \geq 28 GeV
 - ► Exactly one Good photon ≥ 25GeV
 - ▶ Missing Transverse Energy ≥ 30GeV
 - ► ≥ 2 Jets (at least one being b-tagged)
- ▶ All following plots will have signal scaled to 0.2% of nonallhadronic $\sigma_{t\bar{t}}$, MC scaled to 36.07 fb^{-1}

Preselection Objects

Where are the Tops?

- Must be 'reconstructed' from these objects as well as b-jets and E_T^{miss}
- $ightharpoonup E_T^{miss}$ is calculated to balance the event energy in the transverse plane of the detector
- ► The other particles are combined in the only way the signal topology would allow two top quark candidates
 - ► Standard model top candidate: b-jet + lepton + neutrino
 - ► FCNC Top: Photon + Light Jet

Neutrinos

- ► All missing energy in signal topology is from neutrino
- ▶ We have E_T^{miss} and its' direction
 - ▶ Can calulate E_{Tx}^{miss} and E_{Ty}^{miss} easily
 - ► Ambiguous direction along the z-axis
- ▶ A minimization of this χ^2 will allow us to determine the z momentum of the neutrino: $\chi^2 = \frac{(m_{b,l,\nu} m_t)^2}{\sigma_{SMtop}^2} + \frac{(m_{l,\nu} m_W)^2}{\sigma_W^2}$

Figure: e-channel E_T^{miss} distribution

Figure: e-channel χ^2 distribution

Reconstructed Tops

► SM Top

Electron Channel

Muon Channel

► FCNC Top

Thinning Out Backgrounds

► Reconstructing Z mass

► Number of BJets

Thinning Out Backgrounds: Preselection Objects

▶ Before Z-mass, Bjet cuts

Electron Channel

Muon Channel

After Cuts

Thinning Out Backgrounds: FCNC Top $(m_{q\gamma})$

► Before Z-mass, Bjet cuts

150 140 150 160 170 180 190 200 210 220 m_e(GeV)

Electron Channel

Muon Channel

After Cuts

Current Investigation: χ^2

▶ Can χ^2 be used as a discriminating variable?

$$u$$
 $\chi^2 = \frac{(m_{b,l,\nu} - m_t)^2}{\sigma_{SMtop}^2} + \frac{(m_{l,\nu} - m_W)^2}{\sigma_W^2}$

Figure: e-channel χ^2 before cuts

Figure: e-channel χ^2 after Z, Bjet cuts

Current Investigation: $\chi^2 \mu$ -Channel

Before Cuts

After Cuts

Current Investigation: Photon Isolation: μ -Channel

Current Investigation: γ Geometry

cos(theta)

Current Investigation: Geometry ΔR to γ : e-channel

Current Investigation: H_T and H_T +MET e-channel

Outlook

- Many improvements can be made to the analysis
 - Further investigation of χ^2 cuts
 - ▶ Inclusion of a new term in χ^2 to do with FCNC Top
 - Isolation cuts, Photon position don't seem too promising for background reduction
 - ▶ $\Delta R_{\gamma I}$ looks to be useful
- ► Many cuts being optomized currently

Conclusion

- ▶ Barring any excess: with $\approx 150 {\rm fb}^{-1}$ data at $\sqrt{s}=13 {\rm TeV}$ setting an upper limit of BR($t \to q \gamma$) $< 3x 10^{-5}$ is the goal, using a simple extrapolation from previous results.
- ► Orthogonal validation/control regions are in development
- Next grid run will include data to look at MC modeling in these orthogonal regions
- ► Need to request R21 version of MC

Backup

Integrated Luminosity

A Couple BSM Diagrams

 R-parity-violating supersymmetric models
 [arXiv:hep-ph/9705341]

 Top-color-assisted technicolor models
 [arXiv:hep-ph/0303122]

Jets/AntiKT

$$d_{ij} = min(rac{1}{
ho_{ti}^2}, rac{1}{
ho_{tj}^2})rac{\Delta_{ij}^2}{R^2}$$
 $d_{iB} = rac{1}{
ho_{ti}^2}$ $\Delta_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$

- ▶ Find minimum of entire set of $\{d_{ij}, d_{iB}\}$
- ▶ If d_{ij} is the minimum particles i,j are combined into one particle and removed from the list of particles
- ► If d_{iB} is the minimum i is labelled as a final jet and removed from the list of particles
- ▶ Repeat until all particles are part of a jet with distance between jet axes Δ_{ij} is greater than R

B-tagging

$$\mathcal{L}_{tq\gamma}^{eff} = -e\bar{c}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{t}}(\lambda_{ct}^{L}P_{L} + \lambda_{ct}^{R}P_{R})tA_{\mu} + H.c.$$