INTERNATIONALE AN

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

DUNG VERÖFFENTLICHT NACH DEM MMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

TRAG ÜBER DIE

(51) Internationale Patentklassifikation 6:

INTERNATIONALE ZUS

H01M 8/02, 8/24

A1

(11) Internationale Veröffentlichungsnummer: WO 96/17394

(43) Internationales

Veröffentlichungsdatum:

6. Juni 1996 (06.06.96)

(21) Internationales Aktenzeichen:

PCT/DE95/01695

(22) Internationales Anmeldedatum:

30. November 1995

(30.11.95)

(81) Bestimmungsstaaten: AU, CA, FI, JP, NO, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Prioritätsdaten:

P 44 42 624.0

1. December 1994 (01.12.94)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, D-80333 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): JANSING, Thomas [DE/DE]; Kilianstrasse 46, D-90425 Nümberg (DE). MARTENS, Thomas [DE/DE]; Meisenstrasse 12, D-96194 Walsdorf (DE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: FUEL CELL WITH BIPOLAR FLANGES COATED WITH CERAMIC MATERIAL AND ITS PRODUCTION

(54) Bezeichnung: BRENNSTOFFZELLE MIT KERAMISCH BESCHICHTETEN BIPOLARPLATTEN UND DEREN HERSTELLUNG

(57) Abstract

In a high-temperature with a solid fuel cell electrolyte, the solid electrolyte (44) is mounted between metal flanges (30, 30') whose surface is at least partially coated with stabilised zirconium oxide (51, 52) or a similar gas-tight ceramic material with a crystalline structure that solidly adheres to the flanges. This coating narrows the gap between the flanges at the edge of the fuel cell and enables this narrow gap to be filled with a solder glass green foil (53) or similar soldering material that laterally seals the fuel cell in a gas-tight manner when

the fuel cell is assembled. The flanges are also insulated from each other. The gas flow channels (31, 31') provided in the flanges for aggressive reaction gasses may also be coated with a thin layer (41, 41') of the same material that protects them against the reaction gasses.

(57) Zusammenfassung

Bei einer Hochtemperatur-Brennstoffzelle mit Festelektrolyt ist der Festelektrolyt (44) zwischen Metallplatten (30, 30') gelagert, deren Oberfläche erfindungsgemäß zumindest teilweise mit stabilisiertem Zirkonoxid (51, 52) oder einer ähnlichen fest haftenden, gasdichten Keramik mit Kristallstruktur beschichtet ist. Diese Beschichtung verringert den Spalt zwischen den Platten am Rand der Brennstoffzelle und gestattet es, diesen verringerten Spalt mit einer Glaslotgrünfolie (53) oder einem ähnlichen Lotmaterial auszufüllen, das beim Fügen der Brennstoffzelle bildet. Auch die Platten sind gegeneinander isoliert. Die in den Platten enthaltenen Gaskanäle (31, 31') für die aggressiven Reaktionsgase können durch eine dünne Beschichtung (41, 41') aus diesem Material auch gegen den Angriff der Reaktionsgase geschützt

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Osterreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
	Barbados	GE	Georgien	NE	Niger
BB		GN	Guinea	NL	Niederlande
BE	Belgien Burkins Faso	GR	Griechenland	NO	Norwegen
BF		HU	Ungam	NZ	Neusceland
BG	Bulgarien	IE	Irland	PL	Polen
BJ	Benin	IT	Italien	PT	Portugal
BR	Brasilien			RO	Rumlinien
BY	Belarus	JP	Japan	RU	Russische Föderation
CA	Kanada	KE	Kenya		Sudan
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Słowakei
CM	Kamerun	u	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
cz	Tschechische Republik	ĹV	Lettland	TJ	Tadschikistan
-	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DE		MD	Republik Moldau	UA	Ukraine
DK	Dinemark	MG	Madagaskar	US	Vereinigte Staaten von Amerika
ES	Spanien			UZ	Usbekistan
FI	Finnland	ML	Mali	VN	Vietnam
FR	Prankreich	MN	Mongolei	VN.	A SCRIPTIO

Beschreibung

Brennstoffzelle mit keramisch beschichteten Bipolarplatten und deren Herstellung

5

10

Die Erfindung betrifft eine Brennstoffzelle mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen (DE-A-42 37 602), insbesondere eine Hochtemperatur-Brennstoffzelle mit einem Festkörperelektrolyt aus ionenleitendem Oxid (sogenannte "Solid Oxide Fuel Cell", SOFC). Auch betrifft die Erfindung ein Verfahren zur Beschichtung der in einer derartigen Zelle verwendeten, metallisch leitenden Platten sowie ein Verfahren zur Herstellung dieser Zelle.

Viele bekannte Brennstoffzellen haben einen röhrenförmigen 15 Aufbau. Bei einem planaren Schichtaufbau der Brennstoffzelle kann demgegenüber eine wesentlich höhere Energiedichte erwartet werden (nach den gegenwärtigen Erfahrungen etwa 1 MW/m³). Die Energieerzeugung beruht dabei auf der kontrollierten che-20 mischen Umsetzung von Sauerstoffionen und Wasserstoff zu Wasser, d.h. auf der sogenannten "Kalten Knallgasreaktion", die jeweils in einer aktiven Kammer abläuft, die durch eine aktive Schichtstruktur in zwei übereinander liegende Teilkammern aufgeteilt ist. Die eine der Teilkammern wird von einem 25 wasserstoffhaltigen Gas (z.B. Wasserstoff), einem aus herkömmlichen Kohlenwasserstoff-Brennstoffen hergestellten Gasgemisch (H2/CO/CO2) oder einem durch Reformieren von Erdgas hergestellten Gemisch (H2/CO/CH4) durchströmt, während die andere Teilkammer von einem sauerstoffhaltigen Gas, z.B. Sau-30 erstoff oder Luft, durchstromt wird.

Eine derartige Hochtemperatur-Brennstoffzelle, wie sie durch die Erfindung weiterentwickelt wird, ist in der DE-A-42 37 602 beschrieben. Wichtigster Bestandteil der aktiven Schichtstruktur ist eine Schicht aus einem Elektrolyten. Die jeweils der darüberliegenden und darunter liegenden Teilkammer zugewandte Oberfläche des Elektrolyten ist als Elek-

30

trode ausgebildet, deren Elektrodenpotentiale über Kontaktstege von elektrisch leitenden Platten abgegriffen werden,
die den Elektrolyt-Oberflächen gegenüberliegen. Durch Reihenschaltung mehrerer derartiger nach oben und unten von elektrisch leitenden Platten begrenzten aktiven Kammern können
die an den einzelnen Elektrolytschichten auftretenden Potentialdifferenzen zu erheblichen Spannungen addiert werden.

Figur 1 zeigt den prinzipiellen Aufbau einer derartigen,
10 durch eine metallisch leitende Bodenplatte 1 und Deckplatte 2
abgedeckten Sandwich-Struktur, die im wesentlichen dem Stand
der Technik entspricht und folgende Merkmale aufweist:

- jeweils ein Paar übereinander angeordneter, metallisch leitender Platten 3, 4 bildet zwischen sich eine von einem äußeren Fügebereich A umgebene aktive Kammer K, wobei die aktive Kammer von einer ionenleitenden aktiven Schichtstruktur (z.B. einer Platte 14 aus dem erwähnten FestkörperElektrolyten und jeweils einer Elektrodenschicht 12, 13 auf
 jeder Seite der Elektrolytplatte) in zwei übereinander liegende, gegeneinander abgeschlossene Teilkammern 11, 11' unterteilt ist;
 - diese aktive Kammer K ist seitlich von isolierenden Stegen 5 gasdicht abgeschlossen, wobei die isolierenden Stege 5 im äußeren Fügebereich A angeordnet sind und die Platten 3, 4 in einem Abstand d voneinander halten; und
 - die Oberfläche 6, 7 dieser Platten 3, 4 ist jeweils im Bereich der aktiven Kammer K profiliert und bildet Kontaktstege 8, 9, auf denen jeweils die aktive Schichtstruktur mit einer der Elektrodenflächen 12, 13 anliegt.

Bei einem undurchlässigen Festkörper kann die gesamte elektrische Leitfähigkeit $\lambda_{\rm total}$ aufgeteilt werden in eine "metallische" Leitfähigkeit $\lambda_{\rm el}$, die von den Elektronen abhängt, die sich im Leitfähigkeitsband des Festkörpers befinden und die eine hohe, mit steigender Temperatur sinkende Beweglichkeit besitzen, und eine Ionenleitfähigkeit $\lambda_{\rm ion}$, die

20

auf der eingeschränkten Beweglichkeit von Ionen im Festkörper (im Fall eines oxidischen Festkörper-Elektrolyten: 0^{2-}) beruht und mit steigender Temperatur zunimmt:

$$\lambda_{\text{total}} = \lambda_{\text{el}} + \lambda_{\text{ion}}$$

Die partiellen Leitfähigkeiten $\lambda_{\rm el}$ und $\lambda_{\rm ion}$ werden beschrieben durch die Konzentration der entsprechenden Ladungsträger und durch "Überführungszahlen" t $_{\rm el}$ und t $_{\rm ion}$, die von der Größe der Ladungen und deren Beweglichkeit innerhalb der Kristallstruktur des Festkörpers abhängen.

Für die Brennstoffzelle ist wichtig, daß der den getrennten Teilkammern zugeführte Sauerstoff und der Wasserstoff durch Elektronenaustausch mit den entsprechend geladenen Elektroden der Kammern ionisiert wird. Bei der Bildung von H werden an die Elektrode der entsprechenden Teilkammer jeweils Elektronen abgegeben, die über die entspechende Platte abgeleitet und dann auf der anderen Plattenseite entweder zur Bildung von 0²⁻ abgegeben oder als Strom in einem an die Zelle angeschlossenen Lastkreis abgegriffen werden. Dabei gestattet die Elektrolytschicht durch Ionenwanderung, daß die Ionen zueinander kommen und H₂O bilden.

Daher ist es in konstruktiver Hinsicht erforderlich, daß die 25 zwischen einzelnen aktiven Kammern angeordneten Platten diese Kammern gegenüber einer Diffusion der Reaktionsgase und der Ionen abdichten. In physikalischer Hinsicht müssen zumindest die zwischen der Bodenplatte 1 und der Deckplatte 2 liegenden Platten 3, 4, die jeweils zwei benachbarte Kammern trennen, 30 eine hohe Elektronenleitfähigkeit besitzen, um in der Teilkammer der einen Kammer die Bildung von H' und gleichzeitig in der Teilkammer der anderen Kammer die Bildung von 02 zu ermöglichen. Sie werden daher "bipolare Platten" (BIP) genannt. Für das Material der Elektrolytschicht gilt gerade das 35 Gegenteil: Sie muß eine niedrige Elektronenleitfähigkeit besitzen, damit das Ionisierungspotential an den Elektroden erhalten bleibt, aber die erforderliche Wanderung der Ionen zulassen. Betrachtet man also das Verhältnis der Überführungszahlen für Elektronen und Ionen, das bei der Betriebstemperatur der Brennstoffzelle (600 bis 1000 °C) die Beweglichkeit der Elektronen und Ionen kennzeichnet, so muß dieses Verhältnis im Fall der BIP stark zugunsten der Elektronen, im Fall der Elektrolytschicht stark zugunsten der Ionen (insbesondere Sauerstoffionen) eingestellt sein.

10 Als Elektrolyt 14 dient üblicherweise Zirkonoxid (ZrO₂), dessen thermischer Längenausdehnungskoeffizient mit der Längenausdehnung der BIP 3, 4 verträglich sein muß, um die Stabilität und Dichtheit der gesamten Anordnung sicherzustellen. Dabei ist vorgesehen, die aktive Schichtstruktur K in mehrere nebeneinander angeordnete Einheiten aufzuteilen. Der Rand der Schichtstruktur K bzw. deren Einheiten ist dabei jeweils in einem inneren Fügebereich B so gehalten, daß die Teilkammer 12 aus mehreren Räumen besteht, die nebeneinander liegen und jeweils gegen die Teilkammer 11 gasdicht abgeschlossen sind.

20

25

30

Die Platten selbst können aus einer elektrisch leitfähigen Keramik, die den Anforderungen dieses Einsatzgebietes besonders angepaßt ist, aus hochformfestem Stahl oder einer Legierung bestehen, in der z.B. ein Oxid dispergiert ist. Ein besonders geeignetes Beispiel einer derartigen Oxid-Dispersion-Legierung (ODS-Legierung) ist eine Chrombasislegierung mit 5 % Eisen und 1 % Yttriumoxid (Y_2O_3) , wobei die Chromeisen-Legierung im wesentlichen der Längenausdehnung des Elektrolyten angepaßt ist, während das darin dispergierte Oxid in erster Linie der Verbesserung der Korrosionseigenschaften dieser Legierung dient.

In Figur 1 ist auch ein Zuführstutzen 15 für das eine Gas erkennbar, das in die zur Zeichenebene senkrechten Gaskanäle 10 eingeleitet und über einen (nicht erkennbaren) Abführstutzen abgeführt wird. Entsprechend ist auch durch die Pfeile 16, 16', 16'' angedeutet, daß das andere Gas über den Gasanschluß Brennstoffzelle abgeführt.

17 in die Kanåle zwischen den Kontaktstegen 8 und somit durch die anderen Teilkammern der aktiven Kammern geleitet wird, um durch einen (in Figur 1 nicht dargestellten) Abführstutzen an der anderen Seite der Brennstoffzelle abgeführt zu werden. Das bei der kalten Knallgasreaktion entstehende Wasser wird zusammen mit der restlichen, nicht in elektrische Energie um-

gesetzten Reaktionsenthalpie durch diese Gasströme aus der

Sind die bipolaren Platten 3, 4 durch die Stege 5 gegeneinander unzureichend isoliert, so treten interne Stromverluste auf, die den Wirkungsgrad der Brennstoffzelle stark beeinträchtigen können. Damit derartige interne Stromverluste 1 o/oo nicht übersteigen, ist für eine ausreichende Isolation in den Stegen 5 des äußeren Fügebereichs A zu sorgen.

Außerdem darf die Brennstoffzelle praktisch kein Leck aufweisen, durch das einer der Reaktionspartner entweichen könnte. Es ist üblich, die Brennstoffzelle im Fügebereich durch ein hochtemperaturfestes Glaslot abzudichten, jedoch bereitet bei einer üblichen Schichtdicke von etwa 700 µm die Dichtheit eines derart breiten Lötspaltes erhebliche Schwierigkeiten.

Insbesondere bereitet es technische Schwierigkeiten, derart

breite Lötstellen mit Lotmaterial zu füllen, ohne daß interne
Spannungen oder gar Mikrorisse auftreten, die zum Versagen
der Lötstelle führen können, wobei erschwerend wirkt, daß zum
Dichten der Lötstelle ein Sintervorgang erforderlich ist, der
meist mit einer Verringerung des Volumens verbunden ist.

Außerdem ist es schwierig, Glaslot, das einen breiten Spalt ausfüllt, so zu sintern, daß das Lötmaterial nicht zu fließen beginnt und in Bereiche der aktiven Kammer gerät, in denen es störend wirkt.

Bei einem Glaslot handelt es sich in der Regel um ein (meist weißes) Oxidpulver, das mit einem (z.B. organischen) Binder

30

35

20

25

versetzt ist, um ein gezieltes Einbringen des Lotmaterials zu ermöglichen. Das Löten selbst geschieht dann durch Erhitzen, wobei der organische Binder entweicht und das verbleibende Oxid aufschmilzt bzw. sintert und somit ein gasundurchlässiges, amorphes Füllmaterial bildet.

Dieses gesinterte, amorphe Füllmaterial besitzt eine Elektronenleitfähigkeit, die zwar mit höherer Temperatur abnimmt,
jedoch vor allem dann nicht mehr vernachlässigt werden kann,
wenn z.B. während des Aufschmelz- und Sintervorgangs Chromoxid aus der bipolaren Platte in das Glaslot diffundiert. Außerdem kann es während des Sinterns zu einer Reduktion des
eindiffundierten Chromoxids und zur Bildung von Chromborid
oder anderen, die Isolation herabsetzenden Komponenten kommen.

Beim Abbrennen bzw. Entweichen des Binders entstehende Dämpfe können außerdem gesundheitsschädlich und schwer zu entsorgen sein; deshalb sollte darauf geachtet werden, daß die Menge des nötigen Glaslotes beschränkt bleibt.

Der entweichende Binder kann außerdem andere Oberflächen in der aktiven Kammer, insbesondere die empfindlichen Elektrodenoberflächen der aktiven Schichtstruktur, schädigen.

Es ist daher bereits vorgeschlagen worden, die Spaltbreite d nicht vollkommen mit derartigem Glaslot zu füllen, sondern in den Lötspalt einen entsprechenden Rahmen aus einer elektrisch isolierenden Keramik (z.B. "Spinell", MgAl₂O₄) einzulöten. Entsprechend ist also der Fügebereich nach dem Stand der Technik durch eine Schichtfolge BIP/Glaslot/Spinell/Glaslot/BIP gekennzeichnet.

Ein derartiger oxidischer Rahmen, dessen Höhe nur wenige 100 µm betragen darf, erfordert jedoch einen hohen Herstellungsaufwand und eine sorgfältige Behandlung. Er kann daher

10

15

20

nur im Labor, aber nicht unter den Bedingungen einer ökonomischen Fertigung eingesetzt werden.

Bei den hohen Betriebstemperaturen sind außerdem die Oberflächen der BIP, die die Gaskanäle an der Kathodenseite der Elektrolytschicht bilden, besonders empfindlich. Dort kann es nämlich zu einer Sauerstoffkorrosion in der Legierung der BIP kommen, insbesondere zur Bildung von Chromoxid. Dieses Chromoxid kann seinerseits durch Festkörperdiffussion zu anderen Komponenten der SOFC gelangen und diese schädigen. In ähnlicher Weise kann es auf der Anodenseite in den Gaskanälen zu einer Wasserstoffkorrosion bzw. Kohlenstoffkorrosion an der Oberfläche des BIP kommen, die nach längeren Standzeiten zur Versprödung und Zerstörung der entsprechenden Kontaktstege führen kann.

Die Erfindung gestattet, die Brennstoffzelle im Fügebereich auf einfache, im technischen Maßstab ökonomisch durchführbarer Weise gasdicht und elektrisch isolierend abzudichten.

Insbesondere kann dabei die erforderliche mechanische Stabilität der Brennstoffzelle auf einfache Weise erreicht werden.

Die Erfindung gestattet aber auch, die den aggressiven Betriebsgasen ausgesetzte Oberfläche der Brennstoffzelle gegen den chemischen Angriff dieser Gase zu schützen.

25

30

35

Die Erfindung geht davon aus, daß die Oberfläche einer bipolaren Platte zumindest in den Bereichen, in denen Diffusionsvorgänge besonders störend sind, durch eine elektrisch isolierende Beschichtung geschützt werden soll. Für diese Schutzschicht ist also außer einer geringen Duchlässigkeit für die Reaktionsgase und andere neutrale Fremdstoffe eine geringe Beweglichkeit der Elektronen zu fordern, während eine besonders geringe Beweglichkeit von Ionen nicht erforderlich ist, da deren Transport ein elektrisches Feld voraussetzen würde. Die gleichen Eigenschaften (geringe Überführungszahlen für Elektronen, hohe Überführungszahlen für Ionen, insbesondere Sauerstoffionen) sind bereits bei der Auswahl des Elek-

trolyten der aktiven Schichtstruktur gefordert, so daß ein kristallines Oxid, wie es für den Elektrolyten geeignet ist, auch für die Beschichtung verwendet werden kann.

5 Dies ist vor allem in den Fügebereichen der Brennstoffzelle vorgesehen. Genauso kann eine derartige Schutzschicht aber auch als Diffussionssperrschicht an den Oberflächen der Gaskanāle verhindern, daß aggressive Betriebsgase in das Material der BIP eindiffundieren.

10

20

30

Eine derartige, fest haftende und undurchlässige Beschichtung aus elektrisch isolierender kristalliner Keramik kann z.B. im wesentlichen aus Zirkonoxid (ZrO,) bestehen, das insbesondere durch eine Stabilisierungskomponente, z.B. CaO, Y,O,, MgO, 15 CeO, etc. stabilisiert ist. Auch Al,O, oder das erwähnte Spinell oder Kombinationen dieser Komponenten können als Beschichtungsmaterial verwendet werden. Außerdem kann auch die Beschichtung selbst schichtweise aufgebaut sein, z.B. mit einer dunnen Haft-Schicht und einer dickeren Deckschicht. Es kann nāmlich moglich sein, daß ein gut haftendes Material nur in dünnen Schichten preisgünstig aufzubringen ist, ein billig aufbringbares Material jedoch auf der BIP-Oberfläche eine geringere Haftung besitzt.

Ein geeigneter Haftgrund ist z.B. NiCrAlY. 25

Auch genügt es, wenn nur die Oberfläche einer der beiden Platten beschichtet ist, die gegenüberliegende Oberfläche der anderen Platte aber ein weniger isolierendes Material trägt, das nur zum gasdichten Ausfüllen des verbleibenden Spaltes im Fügebereich verwendet wird.

Das Beschichtungsmaterial kann z.B. als Dispersion oder Kolloid in einem Gel aufgebracht werden, das anschließend an Luft getrocknet und an der Oberfläche eingebrannt wird. Auch ein Siebdruckverfahren oder ein Naßpulverspritzen ("Wet Powder Spraying", WPS) ist möglich, wobei das aufge-

10

15

20

25

30

brachte Material anschließend an Luft eingebrannt und gesintert wird.

Ebenso ist es vor allem bei sehr dünnen Schichten möglich, durch chemische Bedampfung im Hochvakuum (Chemical Vapour Deposition, CVD) eine entsprechende Beschichtung herzustellen. Auch ein atmosphärisches Plasmaspritzen (APS) oder Flammspritzen mit hohem Strahldruck (z.B. 6 Bar) und entsprechend hoher Strahlgeschwindigkeit gestatten das Aufbringen der erwähnten Schutzschichten.

Während im Bereich der Gaskanäle die Dicke der Beschichtung vorteilhaft zwischen etwa 30 und 50 µm beträgt, sind im äußeren Fügebereich Beschichtungsdicken zwischen etwa 30 und 200 µm vorteilhaft. Während ein Glaslot Körner aus einem amorphen Oxid enthält und beim Löten zu einer amorphen, undurchlässigen Masse mangelnder Isolationsfähigkeit sintert, weist die Beschichtung eine dichte kristalline Keramik auf, in der praktisch keine elektrische Leitung stattfindet.

Gemäß Anspruch 1 und einem Aspekt der Erfindung sind die isolierenden Stege des Brennelementes gebildet durch eine fest haftende undurchlässige Beschichtung auf den Oberflächen der beiden Platten im Fügebereich der Brennstoffzelle, wobei die Beschichtung gegenüber Elektronenleitung isolierend wirkt und der verbleibende Spalt zwischen den beschichteten Oberflächen mit einem undurchlässigen Füllmaterial, insbesondere dem erwähnten Glaslot, gefüllt ist. Die Beschichtung besteht dabei vorteilhaft aus einer kristallinen Keramik, deren Überführungszahl für Elektronen wesentlich kleiner (z.B. Faktor 0,01 und geringer) ist als für Ionen (insbesondere Sauerstoffionen). Als Füllmaterial ist ein amorphes Oxid (z.B. Glas) besonders geeignet.

Die Stege bestehen demnach z.B. aus der Schichtenfolge BIP/ kristalline Keramik/amorphes Oxid/kristalline Keramik/BIP. Dabei kann es bereits ausreichen, nur die Oberfläche einer

20

25

30

35

der beiden bipolaren Platten mit der Beschichtung zu versehen, was dem Schichtaufbau BIP/kristalline Keramik/amorphes Oxid/BIP entspricht.

Das Füllmaterial ist z.B. ein ursprünglich einen Binder enthaltendes Pulver, insbesondere Oxidpulver (z.B. ein Glaslot), das durch Sintern verfestigt und praktisch vom Binder befreit ist. So wird bevorzugt eine gesinterte oder geschmolzene Folie verwendet. Solche Folien sind als Glaslotgrünfolie im Handel erhältlich und für einen kostengünstigen Aufbau der erfindungsgemäßen Brennstoffzelle besonders geeignet.

Nach einem anderen Aspekt ist die eingangs genannte Brennstoffzelle entsprechend den Merkmalen des Anspruchs 9 dadurch gekennzeichnet, daß zumindest in den Gaskanälen auf die Oberflächen der Platte eine fest haftende Beschichtung aus einer undurchlässigen und gegenüber dem reaktonsfähigen Gas korrosionsbeständigen kristallinen Keramik aufgebracht ist, deren Überführungszahl für Elektronen wesentlich kleiner ist als für Sauerstoffionen.

Zur Herstellung der erfindungsgemäßen Brennstoffzelle können gemäß Anspruch 19 zunächst die profilierten Platten, die als bipolare Platten benötigt werden, bereitgestellt und an den für die Beschichtung vorgesehenen Teilen ihrer Oberfläche beschichtet werden. Ebenfalls wird für jede aktive Kammer die benötigte aktive Schichtstruktur bereitgestellt. Außerdem wird von einer Folie ausgegangen, die aus einem durch einen Binder zusammengehaltenen Pulver aus amorphem Oxid besteht, und deren Folien-Dicke größer ist als der für die fertige Brennstoffzelle vorgesehene Abstand zwischen den zumindest teilweise beschichteten Oberflächen der Platten. Solche Folien können in langen Bahnen gefertigt werden, die anschließend in einzelne Folien ("Folienausschnitte") entsprechend den Fügebereichen der Brennstoffzelle zerschnitten werden, d.h. ihr Querschnitt entspricht etwa dem Querschnitt der Brennstoffzelle und sie enthalten ausgeschnittene Fenster, in die die aktiven Schichtstrukturen passen. Sodann wird aus den beschichteten Platten, den aktiven Schichtstrukturen und den Folienausschnitten eine Sandwich-Struktur gebildet, bei der die Folienausschnitte jeweils zwischen zwei Platten und die aktiven Schichtstrukturen in den Freiräumen der Folienausschnitte zu liegen kommen. Anschließend wird die Sandwich-Struktur gesintert, bis deren Höhe die vorgesehene Höhe der Brennstoffzelle erreicht.

10 Diese und weitere Merkmale der Erfindung werden anhand von einem bevorzugten Ausführungsbeispiel und drei weiteren Figuren näher erläutert.

Es zeigen:

15

- FIG 1 eine bereits beschriebene Brennstoffzelle, die praktisch Stand der Technik ist,
- FIG 2 die Oberfläche einer bipolaren Platte und deren Be-20 schichtung,
 - FIG 3 einen Querschnitt durch einen Teil der aktiven Kammer am Rand der Brennstoffzelle nach dem bevorzugten Ausführungsbeispiel und

25

FIG 4 die Sandwich-Struktur der in Figur 3 gezeigten Teile vor dem abschließenden Sintern.

Eingangs wurde bereits der äußere Fügebereich A erläutert,

der den seitlichen Rand des Brennelements darstellt und in
dem die bipolaren Platten auf einem gegenseitigen Abstand d
gehalten sind. Figur 2 zeigt die Aufsicht auf eine solche bipolare Platte 30, die sich über den Querschnitt des Brennelements erstreckt und in diesem Fall aus mehreren Teilen zusammengelötet ist: Im äußeren Fügebereich enthält die Platte 30
einen verdickten Rand 32, in den eine Metallfolie oder ein

Metallplättchen eingefügt ist, wobei Figur 2 vier nebeneinander liegende Plättchen 32' zeigt.

Mindestens eine Oberfläche des verdickten Randes ist erfindungsgemäß mit (bereits eingangs erwähnter) kristalliner, gegenüber Elektronenleitung praktisch isolierender Keramik mit einer Dicke von etwa 150 µm beschichtet. Die Keramik trägt ein undurchlässiges Füllmaterial. In den Fenstern der Plättchen 32' sind Längsnuten 31 erkennbar, die unterhalb der Plättchen 32' mit Zuführungskanälen 33 und Abführungskanälen 34 verbunden sind und Gaskanāle auf der einen Seite der Platte 30 bilden, während auf der (in Figur 2 nicht sichtbaren) anderen Seite der Platte 30 entsprechende Quernuten Gaskanāle bilden, die mit Zuführungskanālen und Abführungskanālen 36, 37 verbunden sind. Dabei ist auch eine der Gasanschlüsse 38 für diese Kanāle 36, 37 und die Quernuten erkennbar, während die entsprechenden oben und unten am Brennelement angeordneten Anschlüsse der Kanäle 33, 34 nicht sichtbar ist.

20

25

10

15

Die zwischen den Längsnuten oder Gaskanälen 31 verlaufenden Stege 39 sind auf ihrer Oberseite nicht beschichtet. Sie bilden vielmehr als Kontaktstege den elektrisch leitenden Kontakt für die eine Elektrode der aktiven Schichtstruktur. Jedoch tragen die Oberflächen der Längsnuten oder Gaskanäle 31 ebenfalls eine Beschichtung aus der kristallinen Keramik, deren Dicke etwa 30 µm beträgt. Das Material der Platte 30 ist im wesentlichen eine Chrombasislegierung mit 5 % Eisengehalt.

30 In Figur 3 ist ein Querschnitt durch den Rand der fertigen Brennstoffzelle gezeigt. Hier ist die bipolare Platte 30 sowie die entsprechende, darunterliegende bipolare Platte 30 erkennbar. Über die Gaszuführungskanāle 33 wird den Längsnuten oder Gaskanālen 31 ein sauerstoffhaltiges Reaktionsgas zugeführt, während durch die entsprechenden Quernuten 31' ein wasserstoff-/kohlenstoffhaltiges Reaktionsgas strömt.

15

20

Die Oberflächen der beiden bipolaren Platten 30, 30' sind mit der Beschichtung 41, 41' aus kristalliner Keramik versehen, wobei nur die zwischen den Gaskanälen stehenden Stege 42 an ihrer Außenseite nicht beschichtet sind. An diesen Außenseiten liegt die aktive Struktur 43 an, deren wesentlicher Teil (Schicht 44) aus einem keramischen, Festkörperionen leitenden Oxid, z.B. Zirkonoxid (ZrO₂, stabilisiert durch einen Zusatz an Y₂O₃) gebildet ist. Wie im Stand der Technik üblich, ist auf beiden Seiten dieser Elektrolyt-Schicht 44 eine Elektrodenschicht angeordnet (Kathode 45, Anode 46), wobei zum Ausgleich von Höhenunterschieden sowie Unebenheiten der Oberfläche auf diese Elektroden noch jeweils eine Funktionsschicht 47, 48 vorgesehen ist. Die Funktionsschicht 48 kann z.B. eine netzartige Metallkeramik (sogenanntes "Cermet") sein, die in diesem Fall auf Nickel-Basis aufgebaut ist.

Entscheidende Eigenschaft dieser Funktonsschicht ist, daß sie eine sehr gute Leitfähigkeit für Elektronen besitzt, während die Leitfähigkeit für Ionen eine untergeordnete Rolle spielt. Im Gegensatz zu dem Material des Elektrolyten und der Beschichtung 41, 41' sind also die Überführungszahlen für Elektronen groß, für Ionen möglicherweise klein.

In der eingangs erwähnten DE-A-42 37 602, deren Inhalt bis auf die Beschichtung der BIP dem Offenbarungsgehalt dieser Erfindung zuzurechnen ist, ist vorgeschlagen, die Funktionsschicht auch auf die Oberfläche der BIP, also auch auf die Oberflächen der Gaskanäle aufzusprühen.

Die bipolaren Platten 30, 30' sind durch einen Steg 50, der rings um den Rand der Brennstoffzelle läuft, in einem Abstand d (ungefähr 700 μm) gehalten. Dieser Steg dichtet die Seiten der Brennstoffzelle gasdicht ab und isoliert die BIP 30 und 30'. Zu diesem Zweck ist die Oberfläche der BIP 30 erfindungsgemäß mit einer Schutzschicht aus stabilisiertem ZrO₂ beschichtet (Dicke d' dieser Schutzschicht etwa 100 μm), die eine fest haftende, dichte Isolationsschicht liefert. Eine

entsprechende Schutzschicht 52 (Dicke d'' etwa 150 µm) befindet sich auch auf der Oberfläche der BIP 30'. Der verbleibende Raum zwischen den beiden Schutzschichten 51 und 52 ist im Bereich dieses Steges 50 (äußerer Fügebereich) erfindungsgemäß mit einem aufgeschmolzenen bzw. gesinterten Glaslot gefüllt, das entsprechend der Beschaffenheit der Glaslot-Körner eine Netzwerk-Struktur aus amorphem Oxid bildet.

Diese Schichtstruktur des Steges 50 verhindert einen von

Elektronen im Leitfähigkeitsband des Beschichtungsmaterials
getragenen Strom. Gleichzeitig verhindern während des Lötens
die Schutzschichten, daß Ionen oder andere Stoffe, die die
Leitfähigkeit der Glaslot-Schicht erhöhen könnten, aus den
Platten 30, 30' in den Steg hinein diffundieren können. Daher
besitzt die Glaslot-Schicht 53 auch bei der Betriebstemperatur eine niedrige elektrische Leitfähigkeit.

Wie Figur 3 zeigt, ist der Rand der aktiven Schichtstruktur
43 in eine über den äußeren Fügebereich A und dessen Füllma20 terial (Glaslot 53) in den inneren Fügebereich B vorspringende Schicht 54 eingeschmolzen und auf der Oberfläche der
BIP 30' gehalten. Dadurch ist auch sichergestellt, daß die
von den Platten 30, 30' und den Stegen 50 gebildete aktive
Kammer in eine obere, an die Gaskanäle 31 angeschlossene Kammer 49 und eine an die Kanäle 31' angeschlossene untere Kammer 49' geteilt ist, wobei diese Kammern gegeneinander gasdicht abgeschlossen sind und nur über den Elektrolyten in ionenleitender Verbindung miteinander stehen.

Bei der Endfertigung dieser Brennstoffzelle wird die in Figur 4 gezeigte Sandwich-Struktur geschichtet, die später nur noch den Temperaturen ausgesetzt wird, die zur Festigung des Füllmaterials (53, 54 in Figur 3) führen. Diese Sandwich-Strukur besteht aus der unteren BIP 30' mit den Schutzschichten 41' und 52, sowie zwei übereinander liegenden Folien 53, 54, die aus kommerzieller, sogenannter "Glaslotgrünfolie" ausgeschnitten sind. In diesen Glaslotgrünfolien ist das entspre-

chende Glaslot-Pulver mittels eines organischen Binders gebunden, der bei den Löttemperaturen (800 bis 1000 °C) entweicht. Die Dicke dieser Folien ist so gewählt, daß der Abstand d_0 zwischen den beschichteten Oberflächen der Platten 30, 30' größer ist als das für die fertige Brennstoffzelle vorgegebene Maß; dies ermöglicht, daß bei einem späteren Lötvorgang auch eine Volumenverkleinerung im Lötmaterial stattfinden kann, wobei sich auch die Höhe der Lotschicht zugunsten einer größeren Breite verringern kann.

Die beiden Glaslotgrünfolien 53 und 54 enthalten fensterförmige Ausschnitte, in die die einzelnen Schichten der aktiven Schichtstruktur, insbesondere also die Funktionsschichten 47, 48 sowie die Elektrolytschicht 44 mit den beiden Elektrodenschichten 45 und 46, hineingelegt werden können. Anschließend wird die obere BIP 30 aufgelegt. Auf diese Weise werden soviele beschichtete BIP und Glasgrünlotfolien aufeinander gestapelt, wie nötig ist, damit die fertige Brennstoffzelle die gewünschte Anzahl übereinander liegender aktiven Kammern enthält. Die so entstandene Sandwich-Struktur wird dann durch entsprechende Temperaturbehandlung verlötet.

Durch die Erfindung wird insgesamt die Menge des benötigten Glaslotes und somit des darin enthaltenen Binders, der in der Regel auch giftige Bestandteile enthält, verringert. Die Breite des mit Lot auszufüllenden Spaltes verringert sich um die Breite der beiden Schutzschichten, wodurch sich sowohl die Dichtigkeit als auch die Festigkeit der Fügestelle verbessert, und die Gefahr, daß überschüssiges Lot in Bereiche der Brennstoffzelle fließt, in denen es Funktionsstörungen hervorrufen kann, ist wesentlich geringer oder sogar vollkommen beseitigt. Da das Material (z.B. stabilisiertes ZrO₂) der Schutzschicht eine gute Haftfähigkeit mit einer Kristallstruktur hoher Dichte verbindet, in der praktisch keine Löslichkeit und Diffussion von störenden Fremdatomen (insbesondere Chromoxid) stattfindet, kann auch das Glaslot Fremdstoffe aus dem Material der BIP nicht aufnehmen.

Versuche mit der erfindungsgemäßen Brennstoffzelle haben gezeigt, daß die Dichtigkeit und Isolation des Fügebereichs mindestens so hoch ist wie bei herkömmlichen Brennstoffzellen, die einen keramischen Rahmen enthalten, der mit großen Aufwand sorgfältig zwischen die Oberflächen der Platten in den Fügebereich eingelötet ist.

Der Aufwand für Herstellung und Verarbeitung der einzelnen Komponenten ist dabei auf ein vertretbares Maß reduziert, so daß die technische Herstellung der Brennstoffzelle vereinfacht wird.

10

15

Patentansprúche

- 1. Brennstoffzelle, die mindestens eine aktive Kammer mit einen oxidischen Festkörperelektrolyten besitzt mit folgenden Merkmalen:
 - a) die aktive Kammer ist von einem Paar übereinander angeordneter, elektrisch leitender Platten (30, 30') gebildet, durch eine ionenleitende aktive Schichtstruktur (44
 bis 48) in übereinanderliegende, gegeneinander abgeschlossene Teilkammern (49, 49') aufgeteilt und von einem äußeren Fügebereich (A) umgeben,
 - b) die aktive Kammer ist seitlich von isolierenden Stegen (50) gasdicht abgeschlossen, wobei die isolierenden Stege (50) im äußeren Fügebereich (A) angeordnet sind und die Platten (30, 30') im Abstand (d) voneinander halten, und
 - c) die Oberfläche der Platten (30, 30') ist im Bereich der aktiven Kammer (49, 49') profiliert und bildet Kontaktstege (42), an denen jeweils eine Elektrodenfläche (45, 47; 46, 48) der ionenleitenden aktiven Schichtstruktur (44 bis 48) anliegt, und Gaskanäle (31, 31'), über die durch jede der beiden Teilkammern ein reaktionsfähiges Gas leitbar ist,

25

30

20

- dadurch gekennzeichnet, daß zur Bildung der isolierenden Stege (50) mindestens die Oberfläche einer der beiden Platten (30, 30') im Fügebereich mit einer fest haftenden, undurchlässigen, gegenüber Elektronenleitung isolierenden Beschichtung (51, 52) versehen und der verbleibende Spalt zwischen diesen Oberflächen mit einem undurchlässigen Füllmaterial (53) gefüllt ist. (Figur 3)
- 2. Brennstoffzelle nach Anspruch 1,
- 35 dadurch gekennzeichnet, daß das Füllmaterial (53) aus einem amorphen Oxid, insbesondere einem Glas, besteht.

- 3. Brennstoffzelle nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß das Füllmaterial (53) ein ursprünglich einen Binder enthaltendes Pulver, insbesondere ein Oxidpulver, ist, das durch Sintern verfestigt und praktisch vollständig vom Binder befreit ist.
- 4. Brennstoffzelle nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß das Füllmaterial (53) eine gesinterte oder geschmolzene Folie, insbesondere Glaslotgrünfolie, ist.
- 5. Brennstoffzelle nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß die Höhe der isolierenden Stege (50) etwa 500 bis 1000 μm, vorteilhaft etwa 700 μm, beträgt.
- Brennstoffzelle nach einem der Ansprüche 1 bis 5,
 d a d u r c h g e k e n n z e i c h n e t, daß die Beschichtung (51, 52) aus einer kristallinen Keramik besteht,
 deren Überführungszahl für Elektronen wesentlich kleiner ist
 als für Ionen, insbesondere für Sauerstoffionen.
- 7. Brennstoffzelle nach Anspruch 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, daß die Be-25 schichtung (51, 52) aus einer gegenüber dem reaktonsfähigen Gas korrosionsbeständigen Keramik besteht.
- 8. Brennstoffzelle nach einem der Ansprüche 6 oder 7, dad urch gekennzeichnet, daß die im äu30 Beren Fügebereich auf der Oberfläche einer Platte (30, 30') aufgebrachte Beschichtung (51, 52) eine Dicke zwischen etwa 30 und 200 µm aufweist.

- 9. Brennstoffzelle, die einen oxidischen Festkörperelektrolyten besitzt, mit folgenden Merkmalen:
- a) die aktive Kammer ist von einem Paar übereinander angeordneter, elektrisch leitender Platten (30, 30') gebildet, durch eine ionenleitende aktive Schichtstruktur (44
 bis 48) in übereinanderliegende, gegeneinander abgeschlossene Teilkammern (49, 49') aufgeteilt und von einem äußeren Fügebereich (A) umgeben,
- 10 b) die aktive Kammer ist seitlich von isolierenden Stegen (50) gasdicht abgeschlossen, wobei die isolierenden Stege (50) im äußeren Fügebereich (A) angeordnet sind und die Platten (30, 30') im Abstand (d) voneinander halten, und
- c) die Oberfläche der Platten (30, 30') ist im Bereich der aktiven Kammer (49, 49') profiliert und bildet Kontaktstege (42), an denen jeweils eine Elektrodenfläche (45, 47; 46, 48) der ionenleitenden aktiven Schichtstruktur (44 bis 48) anliegt, und Gaskanäle (31, 31'), über die durch jede der beiden Teilkammern ein reaktionsfähiges Gas leitbar ist,
- dadurch gekennzeichnet, daß zumindest in den Gaskanälen (31, 31') auf der Oberfläche der Platten (30, 30') eine fest haftende Beschichtung (41) aus einer undurchlässigen und gegenkristallinen Keramik aufgebracht ist, deren Überführungszahl für Elektronen wesentlich kleiner ist als für Sauerstoffionen. (Figur 3)
- 30 10. Brennstoffzelle nach Anspruch 9, dadurch gekennzeichnet, daß die Dicke der Beschichtung (41) etwa zwischen 30 und 50 μm beträgt.
 - 11. Brennstoffzelle nach einem der Ansprüche 6 bis 10,
- 35 dadurch gekennzeichnet, daß die aktive Schichtstruktur (44 bis 48) an ihrem seitlichen Rand in einem inneren Fügebereich (13) gehalten ist, in dem eine Oberfläche

einer Platte (30') fest haftend ebenfalls mit der kristallinen Keramik beschichtet ist und auf der Keramik undurchlässiges weiteres Füllmaterial (52) aufgebracht ist.

- 5 12. Brennstoffzelle nach einem der Ansprüche 6 bis 11, dad urch gekennzeich net, daß die kristalline Keramik im wesentlichen aus Zirkonoxid, Aluminium-oxid oder Spinell besteht.
- 13. Brennstoffzelle nach Anspruch 12,
 d a d u r c h g e k e n n z e i c h n e t, daß die kristalline Keramik durch eine Stabilisierungskomponente stabilisiert ist.
- 15 14. Brennstoffzelle nach Anspruch 12 oder 13, dad urch gekennzeichnet, daß die kristalline Keramik an Luft in die Oberfläche der Platte (3) eingebrannt ist.
- 20 15. Brennstoffzelle nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Platten (30, 30') aus einem hochwarmfesten Stahl bestehen.
 - 16. Brennstoffzelle nach einem der Ansprüche 1 bis 14,
- 25 dadurch gekennzeichnet, daß die Platten (30, 30') aus einer eine Oxiddispersion enthaltenden Chrombasislegierung bestehen.
 - 17. Brennstoffzelle nach einem der Ansprüche 1 bis 14,
- 30 dadurch gekennzeichnet, daß die Platten aus einer leitfähigen Keramik bestehen.
 - 18. Verfahren zum Aufbringen einer fest haftenden, undurchlässigen und korrosionsbeständigen Beschichtung (41, 41') auf
- die Oberfläche einer der Platten (30, 30') einer Brennstoffzelle nach einem der Ansprüche 1 bis 17 gekennzeichnet durch mindestens eines

der folgenden Beschichtungsverfahren: atmosphärisches Plasmaspritzen, Flammspritzen (insbesondere Flammspritzen mit hohem Druck), Beschichtung mit einem eine koloidale Lösung des Beschichtungsmaterials enthaltenden Gel und anschließendes Brennen an Luft, Auftragen des Beschichtungsmaterials mittels Siebdruck und anschließendes Brennen an Luft, Aufspritzen des Beschichtungsmaterials als feuchtes Pulver und anschließendes Brennen an Luft, und Auftragen des Beschichtungsmaterials mittels chemischer Abscheidung aus der Dampfphase.

10

25

30

- 19. Verfahren zur Herstellung einer Brennstoffzelle nach einem der Ansprüche 1 bis 17 mit folgenden Verfahrensschritten:
- a) Bereitstellung der für mehrere übereinander liegende aktive Kammern benötigen profilierten Platten (30, 30') und Beschichten der Oberflächen dieser Platten,,
 - b) Bereitstellung je einer aktiven Schichtstruktur (44 bis 48), für jede aktive Kammer,
 - c) Bereitstellung von Folien, die
- aus einem amorphen Oxidpulver und einen Binder bestehen.
 - deren Dicke größer ist als der für die fertige Brennstoffzelle vorgesehene Abstand (d) zwischen den zumindest teilweise beschichteten Oberflächen der Platten,
 - deren Querschnittsfläche etwa dem Querschnitt der Brennstoffzelle entspricht, und
 - die Ausschnitte enthält, in die die aktiven Schichtstrukturen passen,
 - d) Herstellung einer Sandwich-Struktur, die jeweils zwischen zwei Platten mindestens eine Folie enthält, wobei für jede aktive Kammer jeweils eine der aktiven Schichtstrukturen in die Ausschnitte der Folie gelegt wird, und
- e) Sintern der Sandwich-Struktur, bis deren Höhe (d) die vorgesehene Höhe der Brennstoffzelle erreicht.

FIG 2

3 / 4

4/4

INTERNATIONAL SEARCH REPORT

Inter. anal Application No PCT/DE_95/01695

A. CLASSIFICATION OF SUBJECT MA 1PC 6 H01M8/02 H01M8/24

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 H01M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

. DUCUK	TENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	
A	PATENT ABSTRACTS OF JAPAN vol. 013 no. 493 (E-842) ,8 November 1989 & JP,A,01 197972 (AGENCY OF IND SCIENCE & TECHNOL) 9 August 1989, see abstract	1
A	DE,A,40 11 079 (INTERATOM) 10 October 1991 see column 3, line 23 - line 31; figure 1	1
A	EP,A,0 620 608 (MURATA MANUFACTURING CO) 19 October 1994 see claims 1-4; figure 2	1
A	EP,A,O 426 265 (MITSUBISHI HEAVY IND LTD) 8 May 1991 see page 6, line 38 - line 56; figures 3,5 -/	1

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
*Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance. 'E' earlier document but published on or after the international filing date. 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified). 'O' document referring to an oral disclosure, use, exhibition or other means. 'P' document published prior to the international filing date but	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
later than the priority date claimed Date of the actual completion of the international search	Date of mailing of the international search report
26 March 1996	17.04.96
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Authorized officer D'hondt, J

INTERNATIONAL SEARCH REPORT

Inten anal Application No

		DE 35/01695	
	DERED TO BE RELEVANT	In the second state N	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	EP,A,O 578 855 (SIEMENS AG ;PLANSEE METALLWERK (AT)) 19 January 1994 see claim 1; figures 2,5	16	
A	PATENT ABSTRACTS OF JAPAN vol. 011 no. 119 (E-499) ,14 April 1987 & JP,A,61 267268 (MITSUBISHI ELECTRIC CORP) 26 November 1986, see abstract	9	
P,A	DE,C,44 10 711 (KERNFORSCHUNGSANLAGE JUELICH) 7 September 1995 see column 3, line 51 - line 61; claim 1; figures 1,2	9,12	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte onal Application No PCT/DECES/01695

Patent document cited in search report	Publication date	JP-A- 4230956 19-0		(excite familia)		Publication date
DE-A-4011079	10-10-91			19-08-92 12-01-93		
EP-A-0620608	19-10-94	JP-A-	6302328	28-10-94		
EP-A-0426265	08-05-91	JP-A- JP-A- AU-B- AU-B- DE-D- DE-T- US-A-	3098264 3155050 634812 6226890 69016352 69016352 5145753	23-04-91 03-07-91 04-03-93 21-03-91 09-03-95 20-07-95 08-09-92		
EP-A-0578855	19-01-94	JP-A- US-A-	6188004 5407758	08-07-94 18-04-95		
DE-C-4410711	07-09-95	AU-B- WO-A-	2108495 9526576	17-10-95 05-10-95		

INTERNATIONALER RECHERCHENBERICHT

males Aktenzeichen inter PCT/D=95/01695

A. KLASSIFIZIERUNG DES ANMELD IPK 6 HO1M8/02 HO GEGENSTANDES

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 H01M

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evil. verwendete Suchbegnffe)

Kategorie*	Bezeichnung der Veröffentlichung, sowat erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	PATENT ABSTRACTS OF JAPAN vol. 013 no. 493 (E-842) ,8.November 1989	1
	& JP,A,01 197972 (AGENCY OF IND SCIENCE & TECHNOL) 9. August 1989, siehe Zusammenfassung	I
A	DE,A,40 11 079 (INTERATOM) 10.0ktober 1991 siehe Spalte 3, Zeile 23 - Zeile 31; Abbildung 1	1
A	EP,A,O 620 608 (MURATA MANUFACTURING CO) 19.Oktober 1994 siehe Ansprüche 1-4; Abbildung 2	1
A	EP,A,O 426 265 (MITSUBISHI HEAVY IND LTD) 8.Mai 1991 siehe Seite 6, Zeile 38 - Zeile 56; Abbildungen 3,5	1
	-/	

X Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Priontättedatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theone angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen "X" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die gezignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden -y-Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedaum, aber nach "&" Veröffendichung, die Mitglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 1 7. 04. 96

IX.

26.März 1996

Name und Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2

NL - 2280 HV Rijswijk Td. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax (+31-70) 340-3016

Weitere Veröffentlichungen und der Fortsetzung von Feld C zu

Bevollmächtigter Bediensteter

Siehe Anhang Patentfamilie

D'hondt, J

INTERNATIONALER RECHERCHENBERICHT

Inter males Aktenzeichen
DE 95/01695

C.(Fortsetzu	(Fortsetzing) ALS WESENTLI NGESEHENE UNTERLAGEN				
(ategone"	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.			
A	EP,A,O 578 855 (SIEMENS AG ;PLANSEE METALLWERK (AT)) 19.Januar 1994 siehe Anspruch 1; Abbildungen 2,5	16			
A	PATENT ABSTRACTS OF JAPAN vol. 011 no. 119 (E-499) ,14.April 1987 & JP,A,61 267268 (MITSUBISHI ELECTRIC CORP) 26.November 1986, siehe Zusammenfassung	9			
P,A	DE,C,44 10 711 (KERNFORSCHUNGSANLAGE JUELICH) 7.September 1995 siehe Spalte 3, Zeile 51 - Zeile 61; Anspruch 1; Abbildungen 1,2	9,12			

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffendichungen, die zur selben Patentfamilie gehören

Inter males Aktenzeichen
PCT/DE_05/01695

Im Recherchenbericht ngeführtes Patentdokument	Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
DE-A-4011079	10-10-91	JP-A- US-A-	4230956 5178970	19-08-92 12-01-93	
EP-A-0620608	19-10-94	JP-A-	6302328	28-10-94	
EP-A-0426265	08-05-91	JP-A- JP-A- AU-B- AU-B- DE-D- DE-T- US-A-	3098264 3155050 634812 6226890 69016352 69016352 5145753	23-04-91 03-07-91 04-03-93 21-03-91 09-03-95 20-07-95 08-09-92	
EP-A-0578855	19-01-94	JP-A- US-A-	6188004 5407758	08-07-94 18-04-95	
DE-C-4410711	07-09-95	AU-B- WO-A-	2108495 9526576	17-10-95 05-10-95	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.