Smart Credit Predictions

Shuteng, Dean, Leila

In general, how do banks decide if you're a good credit risk for a loan?

They use the 5 C's of credit

Character

Are you a responsible borrower?

Capacity

Can you reasonably take on more debt?

Capital

Are you making a down payment?

Collateral

Do you have any assets to put up against a loan?

Conditions

How's the economy?

Our goal: What features cause people to have overdue credit payments?

Features Explored:

- Years employed
- Total income

- Age
- Education Level
- Family and assets
 - Family/Marital Status
 - Properties Owned

Prediction:

We will be predicting whether a credit card applicant is a "good" or "bad" client, based on historical data and features derived from their application

Our Data

ID	Income	Age	Marital Status	Student	On Time
43583	121500	45	Married	0	0
281472	360000	30	Single	1	1
570404	126000	26	Single	1	0
648705	180000	58	Married	0	1
760580	107500	63	Married	0	0

O1
Data
Exploration

Age

- < 30 lower payback rate
- 30-70 hover around the same
- > 70 highest payback rate

Family Status

- Overall, married & single individuals similar payback rate
 - However, single slightly below average

Family Status

- **single** individuals:
 - significantly lower payback rate 3+ children
- married individuals: average or above
 - dual-income household

Employment Type

- Less **students** in data
 - shorter credit history
- Working & pensioner around average

Education Level

- With college degree higher payback rate
 - Higher education:
 undergradute degee
 - Academic degree:
 postgraduate degree
- Secondary: completion of high school/middle school

Employment Type & Education Type

Average: 51%

 working with postgraduate degree highest payback rate

Data Preparation

Dataset Merge

 Combined two datasets using inner join to ensure only applicants with complete data were included

Created Target Variable

- Caculated each applicant's on-time payment rate
- Defined applicants as
 "Good Clients (1)" if their
 on-time payment rate ≥ 75%
 and "Bad Clients (0)"
 otherwise

Data Preparation

Processed Categorical Variables

 Used one-hot encoding to convert categorical features (e.g., education level, employment type, marital status) into binary (0/1) columns

Feature Scaling

 Applied StandardScaler to standardize numerical features like years employed, total income, and age

Handled Class Imbalance

 Used SMOTE (Synthetic Minority Over-sampling Technique) to balance the dataset by oversampling the minority class

Definitions:

Decision tree

predictive model that splits data into **branches** to make decisions based on features

Models

Random Forest

group of decision trees
that predicts the class (or
value) of a data point by
aggregating the results
of multiple trees

Definitions:

Confusion Matrix

Simple table that shows how well a classification model is performing by comparing its **predictions** to the **actual** results

02 Decision Tree

Decision Tree

Columns selected: Car Ownership, House Ownership, Total Income, Number of Children, Number of Family Members, Years of Employment, Age

Chosen based on their relevance to financial responsibility

Predicting: On time payments

Decision Tree

Confusion Matrix

~ 67% accurate

03 Random Forest

Random Forest

Columns selected: Car Ownership, House Ownership, Total Income, Number of Children, Number of Family Members, Years of Employment, Age, Gender, Education Level, Marital Status, Housing Status, Employment Type

Confusion Matrix

~ 70% accurate

Model Comparison

Metrics	Decision Trees	Random Forest
Accuracy	0.67	0.70
True Positive Rate	0.69	0.54
True Negative rate	0.64	0.77
False Positive Rate	0.36	0.23
False Negative Rates	0.31	0.46
Precision	0.48	0.54

Random Forest Model:

- True Negatives:
 - 71% only completed high/middle school
 - > 80% of applicants have at least one child

Decision Trees Model:

- True Positives:
 - 70% of people had no children
 - 67% of people owned their home

Model Comparison

Random Forest

- reduces overfitting-> higher accuracy
- harder to interpret as model gets larger

Decision Tree

- handles non-linear relasionships
- feature importance
- sensitive to small changes in data
- biased towards dominant class

• prone to overfitting

easy to understand& interpret

Conclusion

Analysis

- higher education = **higher** on-time payback rate
- more children = **lower** on-time payback rate
- home ownership = **higher** on-time payback rate

Models

- Decision Tree: can identify specific patterns for true positives (paying on time)
- Random Forests: more robust, better handling true negatives (not paying on time) due to their ensemble nature & ability to generalize

Thank You!