КИСЛОРОД, СЕРА И ИХ СОЕДИНЕНИЯ ТИПЫ РЕАКЦИЙ

более сильный ВЫТЕСНЯЕТ более слабого - вытеснение примеры:

основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ: 1) Na,O + CO, = Na,CO,

2) NaOH + HCl = NaCl + H₂O

электролит + электролит (р-р) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ:

- 1) NaOH + HCl = NaCl + H₂O
- 2) KCl + AgNO, = KNO, + AgI

ФИЗИЧЕСКИЕ СВОЙСТВА

О.: газ без цвета, без запаха, без вкуса, мало раств. в воде, в жидком и твёрдом состоянии - голубой и парамагнитен

О,: ядовитый газ голубого цвета с резким характерным запахом, лучше О, растворяется в воде

ПОЛУЧЕНИЕ

1) термическое разложение в-в: $2KMnO_{L}(t) = K_{L}MnO_{L} + MnO_{L} + O_{L}$ $2KClO_{s}(MnO_{s}, t) = 2KCl + 3O_{s}$ $4K_2Cr_2O_7(t) = 4K_2CrO_4 + 2Cr_2O_3 + 3O_2$ $2KNO_{3}(t) = 2KNO_{3} + O_{3}$ $2HgO(t) = 2Hg + O_{2}$ $2H_{2}O_{2}$ (MnO₂, t) = $2H_{2}O + O_{2}$ 2) продукт ОВР: $5H_2O_2 + 2KMnO_4 + 3H_2SO_4 = 2MnSO_4$ + K,SO, + 8H,O + 50, 2Na,O, + 2CO, = 2Na,CO, + O, 3) эл-з воды: 2H,О (эл.ток) = 2H, + О,

ОБЩИЕ СВЕДЕНИЯ

Нахождение "О" в ПС: VIA-группа, 2 период Строение атома: 1s²2s²2p⁴ Степени окисления: -2, -1, 0, +1, +2 Нахождение в природе: 0, - кислород, 0, - озон, вода, минералы, органические вещества и т.д.

ХИМИЧЕСКИЕ СВОЙСТВА - СИЛЬНЕЙШИЕ ОКИСЛИТЕЛИ!!! $Ca + O_{1}(t) = CaO_{1}Li + O_{2} = Li_{2}O_{2}$ $Zn + O_{1}(t) = ZnO_{1}Na + O_{2} = Na_{2}O_{2}$ $Ba + O_{2}(t) = BaO_{2}, Cs + O_{2} = CsO_{2}$ $Al + O_{1}(t) = Al_{1}O3, K + O_{1} = KO_{1}$ $H_{1} + O_{2} (t) = H_{2}O_{1} C + O_{2} = CO/CO_{2}$ $S + O_{1}(t) = SO_{1}, Si + O_{2} = SiO_{2}$ $F_1 + O_2(t) = OF_1, P + O_2 = P_2O_2/P_2O_2$ Cl, + O, (t) = не идёт, N, + O, (эл.ток) = NO $H_2S + O_2(t) = S/SO_2 + H_2O_1 + O_2 = CO_2$ $Na_2O + O_2(t) = Na_2O_2$, $FeS + O_2 = Fe_2O_3 + SO_2$ $HI + O_{2}(t) = I_{2} + H_{2}O_{3}CH_{4} + O_{5} = CO_{5} + H_{2}O_{5}$ FeS, + O_2 (t) = Fe, O_3 + SO_2 , CuS + O_2 = CuO + SO_2 $NO + O_2(t) = NO_2, SO_2 + O_2(V_2O_5, t) = SO_3$ $NH_1 + O_2(t) = N_1 + H_2O_2(t) + NH_3 + O_2(t) = NO + H_2O_2(t)$

Что касается свойств озона, то он является ещё более сильным окислителем, чем кислород и образуется в атмосфере при разрядах молнии: 202 (эл.ток) = 302. Поэтому для облегчения задачи написания уравнений реакций с участиме озона, можно представлять его для себя как "О2 + О2", но, естественно, только на черновике или у себя в голове!!!

ФИЗИЧЕСКИЕ СВОЙСТВА

кристаллическая		пластическая
ромбическая	моноклинная	

Лимонно- желтый кристаллы	Темно-желтые кристаллы	Резиноподобная масса темно-коричневого цвета
t _{плавлен} =112,8°C плотность = 2,06 г/см ³	t _{плавлення} =119,3°C плотность = 1,957 г/см ³	Образуется при резком охлаждении расплава плотность = 2,046 г/см ³

ПОЛУЧЕНИЕ

1) окисление сероводорода (t): 2H₂S + O₂ (t) = 2S + 2H₂O 2) восстановление SO₂ (t): SO₂ + 2C (t) = 2CO + S SO₂ + 2H₂S = 2H₂O + 3S 3) добыча самородной серы

СЕРА - ОБЩИЕ СВЕДЕНИЯ

Нахождение в ПС: VIA-группа, 3 период Строение атома: $1s^22s^22p^63s^23p^4$ Степени окисления: -2, -1, 0, +1, +2, +4, +6 Нахождение в природе: ромбическая сера (самородная), FeS $_2$ - железный колчедан (пирит), H_2S - сероводород, ZnS - цинковая обманка, PbS - свинцовый блеск, CaSO $_4$ * $2H_2O$ - гипс, Na_2SO_4 * $10H_2O$ - глауберова соль, $MgSO_4$ * $7H_2O$ - магнезия (горькая соль), SO_2 - сернистый газ.

химические свойства

$$S + Me(t) = сульфид Me$$
 $S + Ca(t) = CaS, Al_2S_3 + H_2O = Al(OH)_3 + H_2S$
 $S + Al(t) = Al_2S_3, Al_2S_3 + HCl = AlCl_3 + H_2S$
 $S + aктивный неMe(t) = бинарное соединение$
 $S + O_2 = SO_2, S + F_2 = SF_6$
 $S + C = CS_2, S + P = P_2S_3/P_2S_5, S + H_2 = H_2S$
 $S + p - p$ щёлочи = диспропорционирование
 $S + NaOH = Na_2S + Na_2SO_3 + H_2O$
 $S (восстановитель) + окислитель = OBP$
 $S + HNO_3(p) + H_2O = H_2SO_4 + NO$
 $S + H_2SO_4(k) = SO_2 + H_2O$
 $S + Na_2SO_3 = Na_2S_2O_3$

СЕРОВОДОРОД H,S И СУЛЬФИДЫ MeS

H₂S: бесцветный ядовитый газ с запахом тухлых яиц, p-p H₂S в воде - кислота

ПОЛУЧЕНИЕ

- 1) выделение из природных газов
- 2) сульфид + к-та неокислитель FeS + 2HCl = FeCl₂ + H₂S 3) синтез из простых в-в: H₂ + S (t) = H₂S

химические своиства

Кислота: реагирует с осн. и амф.оксидами, с основаниями; с металлами; вступает в РИО с солями; восстановитель: в ОВР обычно окисляется до серы. Её соли - сульфиды - могут растворяться в кислотах, кроме Ag_2S , PbS, CuS, CdS, HgS; сильные восстановители, при их обжиге образуются SO_2 и MeO

в OBP H₂S и MeS чаще всего окисляются до простого вещества - серы:

S-2 * окислитель SO

H,S + Fe = FeS + H, H,S + Cu = реакция не идёт $H_s + KOH = KHS/K_s + H_sO$ H,S + NH,*H,O = (NH,),S/NH,HS + H,O $H_{,S}$ + CaO = CaS + $H_{,O}$ H,S + ZnO = ZnS + H,O $SO_{,} + H_{,}S = S + H_{,}O$ H₂S + CuCl₂ = CuS + HCl $H_{,}S(t) = H_{,} + S$ H,S + O,(Heд) = S + H,OH,S + O,(u36) = SO, + H,OH,S + I, = HI + SH,S + Br, = HBr + S $H_{y}S + KMnO_{x} + H_{y}SO_{x} = S + MnSO_{x} + K_{y}SO_{x} + H_{y}O_{x}$ $H_2S + KMnO_L = S + MnO_2 + KOH + H_2O$ $H_2S + H_2SO_4 = SO_2 + H_2O$ или $S + SO_2 + H_2O$ $H_{,S} + HNO_{,}(\kappa) = S + NO_{,} + H_{,}O$ H,S + FeCl, = S + FeCl, + HCl $CuS + H_2SO_L(K) = CuSO_L + NO_2 + S + H_2O$ CuS + HCl = CuCl, + H,S FeS + HCl = FeCl, + H,S

ОКСИД СЕРЫ (IV) SO_2 - СЕРНИСТЫЙ ГАЗ И ЕГО РАСТВОР В ВОДЕ - СЕРНИСТАЯ КИСЛОТА H, SO_3

SO₂: бесцвтный газ с резким характерным запахом; растворим в воде.

ПОЛУЧЕНИЕ

В лаборатории: 1) неакт Ме +
H₂SO₄(к): Cu + 2H₂SO₄(к) = SO₂ +
CuSO₄ + 2H₂O
2) сульфит + к-та неокислитель
Na₂SO₃ + 2HCl = 2NaCl + H₂O + SO₂
В промышленности
1) горение S/H₂S в кислороде:
S+O₂=SO₂, 2H₂S+3O₂=2SO₂+2H₂O
2) обжиг сульфидов:
4FeS₂ + 11O₂ = 2Fe₂O₃ + 8SO₂

химические свойства

Кислотный оксид: реагирует с водой, осн. оксидами (только раств.!), с основаниями (только со щелочами!); летучий: легко вытесняется из солей "крутыми" оксидами.

в OBP SO₂, сернистая кислота (даже без нагревания распадается на оксид и воду) и её соли - восстановители

 $SO_2 + H_2O = H_2SO_3$ (обратимо) SO, + NaOH = NaHSO, SO, + 2NaOH = Na,SO, + H,O SO, + Al,O, = реакция не идёт SO, + Na,O = Na,SO, SO, + CuO = реакция не идёт $SO_2 + H_2O + CaSO_3 = Ca(HSO_3)_2$ $SO_{3} + C(t) = S + CO$ $SO_{1} + O_{2} (kat, t) = SO_{3}$ **SO, + NO, = SO, + NO** $SO_2 + H_2O + Zn = ZnSO_3 + H_2$ $Na_2SO_3 + O_2 = Na_2SO_4$ **SO**₂ + H₂O₂ = H₂SO₄ SO, + I, + H,O = H2SO4 + HI Na,SO, + Cl, + H,O = HCl + Na,SO, $Na_2SO_3 + KMnO_4 + H_2SO_4 = Na_2SO_4 + MnSO_4 +$ K,SO, + H,O $Na_{x}SO_{x} + KMnO_{x} + H_{y}O = Na_{y}SO_{x} + MnO_{y} + KOH$ $Na_2SO_3 + KMnO_L + KOH = Na_2SO_L + K_2MnO_L + H_2O$ Na₂SO₃ + K₂Cr₂O₇ + H₂SO₄ = Na₂SO₄ + Cr₂(SO₄)₃ + K,SO, + H,O SO, + H,S = S + H,O SO₂ + HI = S + I₂ + H₂O $SO_{1} + CO(t) = S + CO_{1}$ $H_2SO_3 = H_2O + SO_2$ (обратимо)

ОКСИД СЕРЫ (VI) SO₃ - СЕРНЫЙ АНГИДРИД И ЕГО РАСТВОР В ВОДЕ - СЕРНАЯ КИСЛОТА H₂SO₄

SO₃: бесцветная жидкость, активно поглощает воду с образованием серной кислоты

ПОЛУЧЕНИЕ

В промышленности

1) каталитическое окисление SO_2 в SO_3 : $2SO_2 + O_2$ (Pt/V_2O_5 , t) = $2SO_3$ 2) один из этапов нитрозного

цин из этапов нитрозного способа получения серной кислоты: SO₂ + NO₂ = SO₃ + NO в OBP SO₃ и концентрированная H₂SO₄ являются сильными окислителями и чаще всего восстанавлаиваются до SO₃

SO₃ + H₂O = H₂SO₄ SO₃ + NaOH = NaHSO₄ SO₃ + 2NaOH = Na₂SO₄ + H₂O SO₃ + Al₂O₃ = Al₂(SO₄)₃ SO₃ + Na₂O = Na₂SO₄ SO₃ + CuO = CuSO₄ nSO₃ + H₂SO₄(конц) = H₂SO₄*nSO₃ - олеум SO₃ + C (t) = SO₂ + CO или S + CO₂ SO₃ + H₂S = S + H₂O ХИМИЧЕСКИЕ СВОЙСТВА

Кислотный оксид: реагирует с
водой, осн. и амф. оксидами,
с основаниями и амф. гидроксидами; за счёт с.о. +6
является сильным окислителем
и восстанавливается преимущественно до SO,.

СЕРНАЯ КИСЛОТА H₂SO₂: ХАРАКТЕРНЫЕ И СПЕЦИФИЧЕСКИЕ ХИМИЧЕСКИЕ СВОЙСТВА

Н₂SO₄: бесцветная тяжёлая нелетучая жидкость, без запаха, гигроскопична

ПОЛУЧЕНИЕ (промышленность)

1) обжиг пирита в обжиговых печах кипящего слоя:

4FeS $_2$ + 110 $_2$ (t) = 2Fe $_2$ O $_3$ + 8SO $_2$ 2) каталитическое ок-е SO2 в контактном аппарате:

2SO $_2$ + O $_2$ (Pt/V $_2$ O $_5$, t) = 2SO $_3$ 3) в поглотительной башне: nSO $_3$ + H $_2$ SO $_4$ (к) = H $_3$ SO $_4$ *nSO $_3$

химические свойства

Кислота: реагирует с осн. и амф. оксидами, с основаниями и амф. гидроксидами, вступает в РИО с солями; конц серка: реагирует с твёрдыми солями, сильный окислитель (в ОВР часто восстанаваливается до SO_2).

в OBP SO₃ и концентрированная H_2SO_4 (к) + H_2SO_4 (к

Чем отличается взаимодействие с металлами разбавленной и концентрированной серной кислоты?

 $H_2SO_L(разб)$ - кислота-неокислитель, $H_2SO_L(конц)$ - кислота-окислитель!

Чем же отличаются между собой кислоты-окислители и кислоты-НЕокислители?

Fe +
$$H_2SO_4(p)$$
 = $FeSO_4 + H_2$

окислитель - водород

Fe + $H_2SO_4(\kappa)$ = $Fe_2(SO_4)_3 + H_2O + SO_2$
окислитель - сера

Au, Pt, Pd не растворяются даже в конц. $H_2SO_{\lambda}!!!$