(with the maximum attained for $x = u_{n-k}$), where $1 \le k \le n-1$. Equivalently, if V_k is the subspace spanned by (u_1, \ldots, u_k) , then

$$\lambda_k = \max_{x \neq 0, x \in V_k} \frac{x^\top A x}{x^\top x}, \quad k = 1, \dots, n.$$

Proof. First observe that

$$\max_{x \neq 0} \frac{x^{\top} A x}{x^{\top} x} = \max_{x} \{ x^{\top} A x \mid x^{\top} x = 1 \},$$

and similarly,

$$\max_{x \neq 0, x \in \{u_{n-k+1}, \dots, u_n\}^{\perp}} \frac{x^{\top} A x}{x^{\top} x} = \max_{x} \left\{ x^{\top} A x \mid (x \in \{u_{n-k+1}, \dots, u_n\}^{\perp}) \land (x^{\top} x = 1) \right\}.$$

Since A is a symmetric matrix, its eigenvalues are real and it can be diagonalized with respect to an orthonormal basis of eigenvectors, so let (u_1, \ldots, u_n) be such a basis. If we write

$$x = \sum_{i=1}^{n} x_i u_i,$$

a simple computation shows that

$$x^{\top} A x = \sum_{i=1}^{n} \lambda_i x_i^2.$$

If $x^{\top}x = 1$, then $\sum_{i=1}^{n} x_i^2 = 1$, and since we assumed that $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, we get

$$x^{\top} A x = \sum_{i=1}^{n} \lambda_i x_i^2 \le \lambda_n \left(\sum_{i=1}^{n} x_i^2 \right) = \lambda_n.$$

Thus,

$$\max_{x} \left\{ x^{\top} A x \mid x^{\top} x = 1 \right\} \le \lambda_n,$$

and since this maximum is achieved for $e_n = (0, 0, ..., 1)$, we conclude that

$$\max_{x} \left\{ x^{\top} A x \mid x^{\top} x = 1 \right\} = \lambda_n.$$

Next observe that $x \in \{u_{n-k+1}, \dots, u_n\}^{\perp}$ and $x^{\top}x = 1$ iff $x_{n-k+1} = \dots = x_n = 0$ and $\sum_{i=1}^{n-k} x_i^2 = 1$. Consequently, for such an x, we have

$$x^{\top} A x = \sum_{i=1}^{n-k} \lambda_i x_i^2 \le \lambda_{n-k} \left(\sum_{i=1}^{n-k} x_i^2 \right) = \lambda_{n-k}.$$