[10 pts] Complete the coding below for the SCOMP microprocessor

Assume the following 16 bit (extended) instruction set has been design and the data A,B,C,D etc. start at address 10,11,12 and 13 in memory.

Opcode	Instruction	Operation Performed
	Mnemonic	
00xx	ADD address	AC <= AC + contents of memory address
01xx	STORE address	contents of memory address <= AC
02xx	LOAD address	AC <= contents of memory address
03xx	JUMP address	PC <= address
04xx	JNEG address	If AC < 0 Then PC <= address
05xx	SUBT address	AC = AC - MDR
06xx	XOR address	AC = AC XOR MDR
07xx	OR address	AC = AC OR MDR
08xx	AND address	AC = AC AND MDR
09xx	JPOS address	IF AC > 0 THEN PC = address
0Axx	JZERO address	IF AC = 0 THEN PC = address
0Bxx	ADDI address	AC = AC + address (using sign extension!)

[5points] Complete the coding below for the opcode (using 4 HEX digits)

16 bit OP code	Instruction
02 12	Load AC with C
00 10	ADD A to AC
09 07	IF AC>0 THEN JUMP to address 07
06 13	Perform XOR of AC and memory location D
0B FF	Add immediate value -1 to AC

[5 points] Explain operation performed or give instruction mnemonic

16 bit OP code	Instruction
03 04	JUMP to address 04
0B 14	Add decimal immediate value 20 to AC
08 12	Perform AND of AC and memory location C
01 10	Store AC at address A
05 11	Subtract B from AC