PTF 10149 70 Watts, 921–960 MHz GOLDMOS Field Effect Transistor

Description

The PTF 10149 is an internally matched 70–watt *GOLDMOS* FET intended for cellular and GSM amplifier applications from 921 to 960 MHz. It operates with 50% efficiency and 16 dB typical gain. Nitride surface passivation and full gold metallization ensure excellent device lifetime and reliability.

- INTERNALLY MATCHED
- · Performance at 960 MHz, 26 Volts
 - Output Power = 70 Watts
 - Power Gain = 16.0 dB Typ
 - Efficiency = 50% Typ
- Full Gold Metallization
- · Silicon Nitride Passivated
- Excellent Thermal Stability
- 100% Lot Traceability

Package 20252

RF Specifications (100% tested)

Characteristic	Symbol	Min	Тур	Max	Units
Gain					
(V _{DD} = 26 V, P _{OUT} = 70 W, I _{DQ} = 750 mA, f = 960 MHz)	G _{pe}	15.0	16.0	_	dB
Power Output at 1 dB Compression					
$(V_{DD} = 26 \text{ V}, I_{DQ} = 750 \text{ mA}, f = 960 \text{ MHz})$	P-1dB	70	75	_	Watts
Drain Efficiency					
(V _{DD} = 26 V, P _{OUT} = 70 W, I _{DQ} = 750 mA, f = 960 MHz)	η	47	50	_	%
Load Mismatch Tolerance					
(V _{DD} = 26 V, P _{OUT} = 70 W, I _{DQ} = 750 mA, f = 921 MHz —all phase angles at frequency of test)	Ψ	_	_	5:1	_

All published data at $T_{CASE} = 25^{\circ}C$ unless otherwise indicated.

Electrical Characteristics (100% Tested)

Characteristic	Conditions	Symbol	Min	Тур	Max	Units
Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 25 \text{ mA}$	V _{(BR)DSS}	65	_	_	Volts
Drain-Source Leakage Current	V _{DS} = 26 V, V _{GS} = 0 V	I _{DSS}	_	_	1.0	mA
Gate Threshold Voltage	$V_{DS} = 10 \text{ V}, I_D = 75 \text{ mA}$	V _{GS(th)}	3.0	_	5.0	Volts
Forward Transconductance	V _{DS} = 10 V, I _D = 3 A	9fs	_	3.0	_	Siemens

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	Vdc
Gate-Source Voltage	V _{GS}	±20	Vdc
Operating Junction Temperature	TJ	200	°C
Total Device Dissipation Above 25°C derate by	P _D	197 1.12	Watts W/°C
Storage Temperature Range	T _{STG}	-40 to +150	°C
Thermal Resistance (T _{CASE} = 70°C)	$R_{ heta JC}$	0.89	°C/W

Typical Performance

ERICSSON **#**

* This part is internally matched. Measurements of the finished product will not yield these figures.

Impedance Data

 $(V_{DD} = 26 \text{ V}, P_{OUT} = 70 \text{ W}, I_{DQ} = 700 \text{ mA})$

Frequency	Z Source Ω		Z Load Ω		
MHz	R	jΧ	R	jX	
920	1.45	-0.64	1.40	1.08	
930	1.44	-0.60	1.43	1.06	
940	1.43	-0.55	1.45	1.05	
950	1.42	-0.34	1.50	1.03	
960	1.40	-0.21	1.55	1.02	

Test Circuit

Test Circuit Schematic for f = 960 MHz

DUT	PTF 10149	LDMOS Field Effect Transistor	C1, C3, C8, C	12 33 pF	Capacitor ATC 100 B
ℓ 1	0.0633 λ 960 GHz	Microstrip 50 Ω	C2	1.3 pF, 50 V	Capacitor, ATC 100 B
ℓ 2	0.1142 λ 960 GHz	Microstrip 50 Ω	C4	Not Used	
ℓ 3	$0.0821~\lambda~960~GHz$	Microstrip 50 Ω	C5, C6, C7	7.5 pF	Capacitor, ATC 100 B
ℓ 4	0.1294 λ 960 GHz	Microstrip 9.18 Ω	C9	100 μF, 50 V	Capacitor, Digi-Key P5182-ND
ℓ 5	0.0468 λ 960 GHz	Microstrip 9.18 Ω	C10	0.1 υF, 50 V	Capacitor, Digi-Key P4525-ND
ℓ 6	$0.0481~\lambda~960~GHz$	Microstrip 6.79 Ω	C11	0.3 pF	Capacitor ATC 100 B
ℓ7	$0.0441~\lambda~960~GHz$	Microstrip 6.79 Ω	R1, R2	1K	Resistor, Digi-Key 1KQBK
ℓ 8	0.2500 λ 960 GHz	Microstrip 59 Ω	L1, L2	4 Turn, 20 AV	/G, .120" I.D.
ℓ 9	0.1398 λ 960 GHz	Microstrip 6.79 Ω	Circuit Board	.031" thick, &	$S_r = 4.0$, G200, AlliedSignal,
<i>ℓ</i> 10	$0.0821~\lambda~960~GHz$	Microstrip 50 Ω		2 oz. copper	
ℓ 11	0.0226 λ 960 GHz	Microstrip 9.69 Ω			
ℓ 12	0.0109 λ 960 GHz	Microstrip 9.69 Ω			
ℓ 13	0.0504 λ 960 GHz	Microstrip 50 Ω			
ℓ 14	$0.034~\lambda~960~GHz$	Microstrip 50 Ω			
<i>ℓ</i> 14	0.034 λ 960 GHz	Microstrip 50 Ω			

Assembly Diagram

Artwork (not to scale)

Case Outline Specifications

