

Problem statement: Development of motion amplification video techniques for vibration analysis

THEME: Manufacturing and automation

Team name: AutoMatrix

ANALYSING PROBLEM STATEMENT

To develop an automated motion amplification video generation system, and enabling constant monitoring to detect and amplify subtle machinery vibrations, also providing real-time SMS alerts to prevent potential damage and accidents in industrial settings.

Proposed SOLUTION

Constant monitoring

A video capturing device which can be a usual **mobie phone mounted** on a **tripod** can be used to **constantly record** video of industrial equipment.

Video segmentation & processing

fixed duration video segments are isolated and processed, **abnormalities are analysed**. **Recurrent nerual netwrok** is used for amplification.

Ticket management system

If any abnormalities is observed in any of the segmented videos a **ticket will be raised** with **type of the abnormality, machine id and magnified video**.

Alert mechanism

As soon as any abnormality like noise, shock or excessive vbiration is detected a **sos message** will be sent to **owners mobile**.

How does it Amplify?

Spatial decomposition

- The extracted frames from video are downsampled using gussian and laplacian pyramids.
- Here we first decompose the video sequence into
 different spatial bands
- Then temporal processing is performed on each band.

Temporal processing

- We consider the time series
 corresponding to the value of
 a pixel in a frequency band
 and apply filters to extract the
 frequency bands of interest.
- The pixel is then multipled with magnification factor alpha. And added to the original to obtain final output.

BENIFITS & USECASES

Early fault detection: By amplifying subtle motions, the system can detect early signs of wear and tear.

 Operational insights: Displacement graphs and FFTs graphs provide insights into the operational health.

Predictive Maintenance: Address potential issuse before they arise or esclate.

Precised diagnosis: It provides a clear visual representation of motion irregularities, aiding in accurate diagnosis of mechanical problems.

BENIFITS & USECASES

- Automobile Industry: Detect issues in gearboxes and transmissions by analyzing motion amplification to ensure smooth gear shifting and reduce wear.
- Power Plants: Monitor the motion of cooling tower fans to prevent imbalances and maintain efficient cooling in power generation facilities.
- Industrial Manufacturing: Ensure precision in product assembly by monitoring the motion amplification of robotic arms and automated machinery for consistency.
- Pulse rate prediction: Contactless pulse rate prediction using motion amplification video of wrist.

OUTPUT MAV

SOURCE VIDEO

FAST FOURIER TRANSFORM GRAPH

Future Scope

- Extensive Domain

 with small adjustments, the model can be used for wide applications and a variety of domains.
- Integration with IOT
 Design sensors and specialised
 cameras, allowing an increase in the
 quality of monitoring and data
 collection.
- Embedding with CCTV servers
 Using CCTVs for constantly
 recording videos and running
 analysis on top those videos

BOTTLENECKS

Need for stable and fixed video capturing source.

The system may sometimes identify false positives,
 leading to unnecessary maintenance or downtime,