# Design and Analysis of Replication Studies

Leonhard Held University of Zurich





# Introduction

# Replication studies

#### Direct replication

- Repeating original study using the same methodology
- → Tool to assess credibility of scientific discoveries
- → Regulatory requirement

# Replication studies

#### Direct replication

- Repeating original study using the same methodology
- → Tool to assess credibility of scientific discoveries
- → Regulatory requirement

#### Replication crisis

- Low replicability of many scientific discoveries
- → Large-scale replication projects

- 2015: Reproducibility project psychology



#### Estimating the reproducibility of psychological science

Open Science Collaboration

Science **349** (6251), aac4716. DOI: 10.1126/science.aac4716

- 2015: Reproducibility project psychology
- 2016: Experimental economics replication project

#### Science

REPORTS

Cite as: Camerer et al., Science 10.1126/science.aaf0918 (2016).

# Evaluating replicability of laboratory experiments in economics

Colin F. Camerer, <sup>16</sup>† Anna Dreber, <sup>2†</sup> Eskil Forsell, <sup>2†</sup> Teck-Hua Ho, <sup>3,4</sup>† Jürgen Huber, <sup>5‡</sup> Magnus Johannesson, <sup>2†</sup> Michael Kirchler, <sup>5,6</sup>† Johan Almenberg, <sup>7</sup> Adam Altmejd, <sup>3</sup> Taizan Chan, <sup>5</sup> Emma Heikensten, <sup>2</sup> Felix Holzmeister, <sup>5</sup> Taisuke Imai, <sup>1</sup> Siri Isaksson, <sup>2</sup> Gideon Nave, <sup>1</sup> Thomas Pfeiffer, <sup>9,10</sup> Michael Razen, <sup>3</sup> Hang Wu<sup>4</sup>

- 2015: Reproducibility project psychology
- 2016: Experimental economics replication project
- 2018: Experimental philosophy replicability project

Rev.Phil.Psych. https://doi.org/10.1007/s13164-018-0400-9



#### Estimating the Reproducibility of Experimental Philosophy

Florian Cova <sup>1,2</sup> . Brent Strickland <sup>3,4</sup> - Angeln Abatista <sup>5</sup> - Aurélien Allard <sup>6</sup> - James Andow <sup>7</sup> Marío Attie <sup>8</sup> - James Beche<sup>5</sup> - Renatas Berniūnas <sup>10</sup> - Jordane Boudesseul <sup>11</sup> - Matter Colombo <sup>12</sup> - Fiery Cushman <sup>13</sup> - Rodrigo Diaz <sup>14</sup> - Noah N'Djaye Nikolai van Dongen <sup>15</sup> - Vilius Dranseika <sup>16</sup> - Brian D. Earp <sup>17</sup> - Antonio Gaitán Torres <sup>18</sup> - Ivar Hannikainen <sup>19</sup> - José V. Hernández-Conde <sup>20</sup> - Wenjia Hu <sup>21</sup> - François Jaquet <sup>1</sup> - Karcem Khalifa <sup>22</sup> - Hanna Kim <sup>23</sup> - Markus Kneer <sup>24</sup> - Joshua Knobe <sup>25</sup> - Miklos Kurthy <sup>26</sup> - Anthony Lantian <sup>27</sup> - Shen-yi Liao <sup>28</sup> - Edouard Machery <sup>29</sup> - Tania Moerenhoun <sup>30</sup> - Christian Mott <sup>25</sup> - Mark Phelan <sup>21</sup> - Jonathan Phillips <sup>13</sup> - Navin Rambharose <sup>21</sup> - Kevin Reuter <sup>31</sup> - Felipe Romero <sup>15</sup> - Paulo Sousa <sup>25</sup> - Jan Sprenger <sup>35</sup> - Emile Thalabard <sup>34</sup> - Kevin Tobia <sup>25</sup> - Hugo Viciana <sup>35</sup> - Daniel Wikkenfeld <sup>29</sup> - Xiang Zhou <sup>36</sup>

- 2015: Reproducibility project psychology
- 2016: Experimental economics replication project
- 2018: Experimental philosophy replicability project
- 2018: Social sciences replication project

#### nature human behaviour

Letter | Published: 27 August 2018

Evaluating the replicability of social science experiments in *Nature* and *Science* between 2010 and 2015

Colin F. Camerer, Anna Dreber, Felix Holzmeister, Teck-Hua Ho, Jürgen Huber, Magnus Johannesson, Michael Kirchler, Gideon Nave, Brian A. Nosek M., Thomas Pfeiffer, Adam Altmejd, Nick Buttrick, Taizan Chan, Yiling Chen, Eskil Forsell, Anup Gampa, Emma Heikensten, Lily Hummer, Taisuke Imai, Siri Isaksson, Dylan Manfredi, Julia Rose, Eric-Jan Wagenmakers & Hang Wu

- 2015: Reproducibility project psychology
- 2016: Experimental economics replication project
- 2018: Experimental philosophy replicability project
- 2018: Social sciences replication project

#### nature human behaviour

Letter | Published: 27 August 2018

Evaluating the replicability of social science experiments in *Nature* and *Science* between 2010 and 2015

Colin F. Camerer, Anna Dreber, Felix Holzmeister, Teck-Hua Ho, Jürgen Huber, Magnus Johannesson, Michael Kirchler, Gideon Nave, Brian A. Nosek M., Thomas Pfeiffer, Adam Altmejd, Nick Buttrick, Taizan Chan, Yiling Chen, Eskil Forsell, Anup Gampa, Emma Heikensten, Lily Hummer, Taisuke Imai, Siri Isaksson, Dylan Manfredi, Julia Rose, Eric-Jan Wagenmakers & Hang Wu

# Social sciences replication project

# Social sciences replication project



# Social sciences replication project



# Pyc and Rawson (2010). Science

#### Original discovery

"Testing improves memory"

Relative effect size  $d = \hat{\theta}_r/\hat{\theta}_o = 0.4$ 

Relative sample size  $c = n_r/n_o = 9$ 



## When is a replication successful?

#### Some proposed criteria

- 1. Two-trials rule (statistical significance)
- 2. Compatibility of effect estimates
- 3. Meta-analysis of estimates
- 4. Sceptical p-value



#### 1. Two-trials rule

# Are both estimates statistically significant in the same direction?

- → Which threshold?
- $\rightarrow$  one-sided  $\alpha = 0.025$



#### 2. Compatibility of effect estimates

Is the meta-analytic Q-test of the estimates statistically significant?

- → Which threshold?
- $\rightarrow$  two-sided  $\alpha = 0.05$



#### 3. Meta-analysis of effect estimates

#### Is a meta-analytic estimate statistically significant?

- → Which threshold?
- $\rightarrow$  one-sided  $\alpha = 0.025^2 = 0.000625$



#### 4. Sceptical p-value

#### New definition of replication success

J. R. Statist. Soc. A (2020) 183, Part 2, pp. 431-448

# A new standard for the analysis and design of replication studies

Leonhard Held

University of Zurich, Switzerland

#### THE ASSESSMENT OF REPLICATION SUCCESS BASED ON RELATIVE EFFECT SIZE

By Leonhard Held, Charlotte Micheloud and Samuel Pawel.

Epidemiology, Biostatistics and Prevention Institute, Center for Reproducible Science, University of Zurich, 
leonhard held@ich.ch; charlotte micheloud@ich.ch; samuel pawel@ich.ch

Replication studies are increasingly conducted in order to confirm original findings. However, there is no established standard how to assess replication success and in practice many different approaches are used. The purpose of this paper is to refine and extend a recently proposed reverse-Bayes approach for the analysis of replication studies. We show how this method is directly related to the relative effect size, the ratio of the replication to the original effect estimate. This perspective leads to a new proposal to recalibrate the assessment of replication success, the golden level. The recalibration ensures that for borderline significant original studies replication success can only be achieved if the replication effect estimate is larger than the original one. Conditional power for replication success can then take any desired value if the original study is significant and the replication sample size is large enough. Compared to the standard approach to require statistical significance of both the original and replication study, replication success at the golden level offers uniform gains in project power and controls the Type-I error rate if the replication sample size is not smaller than the original one. An application to data from four large replication projects shows that the new approach leads to more appropriate inferences, as it penalizes shrinkage of the replication estimate compared to the original one, while ensuring that both effect estimates are sufficiently convincing on their own.

https://doi.org/10.1111/rssa.12493

https://arxiv.org/abs/2009.07782

#### 4. Sceptical p-value

New definition of replication success

Can we convince a sceptic whose priof beliefs make the original study not significant?

If  $p_S \le \alpha$  we have replication success at level  $\alpha$ 



## **Assessement of replication success**

- Two-trials rule doesn't take into account effect size
- Q-test doesn't take into account significance
- Meta-analysis assumes exchangeability
- Sceptical p-value takes into account effect size and significance



```
## Error in plotLevel(c = mycval, level = 0.025, type = "nominal",
alternative = "one.sided", : could not find function "plotLevel"

## Error in plotLevel(c = mycval, level = 0.025, type = "nominal",
alternative = "one.sided", : could not find function "plotLevel"

## Error in plotLevel(c = mycval, level = 0.025, type = "golden",
alternative = "one.sided", : could not find function "plotLevel"
```

```
## Error in plotLevel(c = mycval, level = 0.025, type = "nominal",
alternative = "one.sided", : could not find function "plotLevel"

## Error in plotLevel(c = mycval, level = 0.025, type = "nominal",
alternative = "one.sided", : could not find function "plotLevel"

## Error in plotLevel(c = mycval, level = 0.025, type = "golden",
alternative = "one.sided", : could not find function "plotLevel"
```

```
## Error in plotLevel(c = mycval, level = 0.025, type = "nominal",
alternative = "one.sided", : could not find function "plotLevel"

## Error in plotLevel(c = mycval, level = 0.025, type = "nominal",
alternative = "one.sided", : could not find function "plotLevel"

## Error in plotLevel(c = mycval, level = 0.025, type = "golden",
alternative = "one.sided", : could not find function "plotLevel"
```



```
## Error in plotLevel(c = mycval, level = 0.025, type = "nominal",
alternative = "one.sided", : could not find function "plotLevel"

## Error in plotLevel(c = mycval, level = 0.025, type = "nominal",
alternative = "one.sided", : could not find function "plotLevel"

## Error in plotLevel(c = mycval, level = 0.025, type = "golden",
alternative = "one.sided", : could not find function "plotLevel"
```

```
## Error in plotLevel(c = mycval, level = 0.025, type = "nominal",
alternative = "one.sided", : could not find function "plotLevel"

## Error in plotLevel(c = mycval, level = 0.025, type = "nominal",
alternative = "one.sided", : could not find function "plotLevel"

## Error in plotLevel(c = mycval, level = 0.025, type = "golden",
alternative = "one.sided", : could not find function "plotLevel"
```

# **Exercise Session 1**

Analysis of replication studies

#### Package ReplicationSuccess

#### - Installation

#### Usage

```
library(ReplicationSuccess)
vignette("ReplicationSuccess")
?pSceptical # documentation
news(package = "ReplicationSuccess") # news page
```

- Effect estimates are assumed to be normally distributed after suitable transformation
  - $\rightarrow$  Fisher's z-transformation for correlation coefficients r with (effective) sample size n-3



- Effect estimates are assumed to be normally distributed after suitable transformation
  - $\rightarrow$  Fisher's *z*-transformation for correlation coefficients *r* with (effective) sample size n-3



#### **Data sets**

?RProjects # Documentation

#### Most important variables

| project | Replication project                     |
|---------|-----------------------------------------|
| ro      | Original effect on correlation scale    |
| rr      | Replication effect on correlation scale |
| fiso    | Original effect on Fisher-z scale       |
| fisr    | Replication effect on Fisher-z scale    |
| se_fiso | Standard error of fiso                  |
| se_fisr | Standard error of fisr                  |

#### Key quantities

- z-value  $z_o$  or (one-sided) p-value  $p_o$  of original study

#### Key quantities

- z-value  $z_0$  or (one-sided) p-value  $p_0$  of original study

- z-value  $z_r$  or (one-sided) p-value  $p_r$  of replication study

#### Key quantities

- z-value  $z_0$  or (one-sided) p-value  $p_0$  of original study

- z-value  $z_r$  or (one-sided) p-value  $p_r$  of replication study

relative sample size (or variance ratio)

$$c = \sigma_o^2/\sigma_r^2 = n_r/n_o$$

RProjects\$c <- RProjects\$se\_fiso^2/RProjects\$se\_fisr^2</pre>

#### Exercises

(Solutions available at https://osf.io/fcrj6/)

#### Load the package and the data sets with

```
library(ReplicationSuccess)
data("RProjects")
```

# Compute the key quantities $z_0$ , $z_r$ , c, and the one-sided p-values $p_0$ and $p_r$ with

#### Exercises

(Solutions available at https://osf.io/fcrj6/)

For all studies from the replication projects investigate

#### Exercise 1.1

How many study pairs fulfill the **significance** criterion for replication success? Use a threshold of  $\alpha=0.025$  for the one-sided *p*-values.

#### Exercise 1.2

For how many study pairs do you find evidence for **incompatible** effect estimates (on Fisher *z*-scale)? Use the function Qtest() and a threshold of  $\alpha=0.05$  for the resulting *p*-value.

# Exercises

(Solutions available at https://osf.io/fcrj6/)

For all studies from the replication projects investigate

#### Exercise 1.3

Compute the one-sided **sceptical** *p***-value**. How many replication studies are successful at 0.025? Use the function pSceptical()

#### Exercise 1.4

Look closer at the studies which show **discrepancies** in terms of replication success based on significance and the sceptical *p*-value. How do their effect estimates and sample sizes compare?

| Project                 | Both <i>p</i> -values < 0.025 |
|-------------------------|-------------------------------|
| Psychology              | 29% (21/73)                   |
| Experimental Economics  | 56% (10/18)                   |
| Social Sciences         | 62% (13/21)                   |
| Experimental Philosophy | 74% (23/31)                   |
| all                     | 47% (67/143)                  |





## Experimental Economics: 56% (10/18)



#### Social Sciences: 62% (13/21)



#### Experimental Philosophy: 74% (23/31)



| Project                 | Incompatible estimates ( $p_Q < 0.05$ ) |
|-------------------------|-----------------------------------------|
| Psychology              | 30% (22/73)                             |
| Experimental Economics  | 17% (3/18)                              |
| Social Sciences         | 33% (7/21)                              |
| Experimental Philosophy | 16% (5/31)                              |
| all                     | 26% (37/143)                            |

#### Psychology: 30% incompatible



#### **Experimental Economics: 17% incompatible**



Social Sciences: 33% incompatible



#### Experimental Philosophy: 16% incompatible



February 2022

| Project                 | sceptical <i>p</i> -value < 0.025 |  |  |
|-------------------------|-----------------------------------|--|--|
| Psychology              | 30% (22/73)                       |  |  |
| Experimental Economics  | 56% (10/18)                       |  |  |
| Social Sciences         | 52% (11/21)                       |  |  |
| Experimental Philosophy | 71% (22/31)                       |  |  |
| all                     | 45% (65/143)                      |  |  |



#### Experimental Economics: 56% (10/18)



#### Social Sciences: 52% (11/21)



#### Experimental Philosophy: 71% (22/31)





# Success organisms 1.0 success organisms organisms





#### February 2022

| Study                             | $n_r/n_o$ | r <sub>o</sub> | r <sub>r</sub> | p <sub>o</sub> | p <sub>r</sub> | ps    |
|-----------------------------------|-----------|----------------|----------------|----------------|----------------|-------|
| Schmidt and Besner (2008)         | 2.6       | 0.2            | 0.25           | 0.028          | < 0.0001       | 0.024 |
| Oberauer (2008)                   | 0.6       | 0.56           | 0.4            | 0.0003         | 0.035          | 0.017 |
| Payne, Burkley, and Stokes (2008) | 2.7       | 0.35           | 0.15           | 0.001          | 0.023          | 0.031 |
| Balafoutas and Sutter (2012)      | 3.5       | 0.28           | 0.15           | 0.009          | 0.011          | 0.04  |
| Pyc and Rawson (2010)             | 9.2       | 0.38           | 0.15           | 0.011          | 0.004          | 0.061 |
| Nichols (2006)                    | 9.4       | 0.75           | 0.44           | 0.015          | 0.0006         | 0.049 |

# **Exercise Session 2**

Design based on significance

# Design of replication studies

## Sample size of replication study

- Direct replication → procedures of replication study as closely matched as possible to original study
- But same sample size as in original study can lead to a very low power (Goodman, 1992)
  - → proper sample size calculation is essential

STATISTICS IN MEDICINE, VOL. 11, 875-879 (1992)

# A COMMENT ON REPLICATION, P-VALUES AND EVIDENCE

#### STEVEN N. GOODMAN

Johns Hopkins University School of Medicine, Department of Oncology, Division of Biostatistics, 550 N. Broadway, Suite 1103, Baltimore MD 21205, U.S.A.

# What is used in practice

## Standard sample size calculation

- Goal is to have between 80% and 95% power in the replication study to detect the effect estimate from the original study.
- Original effect estimate is sometimes shrunken by a factor of 50%.
- Uncertainty of original effect estimate is ignored

# Standard sample size calculation



# Standard sample size calculation



# **Incorporation of uncertainty**



# **Incorporation of uncertainty**



# Incorporation of uncertainty

## Design prior

- Conditional: ignores uncertainty of original study
- Predictive: reflects that there is uncertainty about the true effect after the original experiment

# Design based on significance

#### Two functions:

- powerSignificance() and sampleSizeSignificance()

# Design based on significance

- alternative ("one.sided")

```
Two functions:
 - powerSignificance() and sampleSizeSignificance()
Main arguments (default):
 - zo
 - c (1)
 - power
 - designPrior ("conditional")
 - shrinkage (0)
 - level (0.025)
```

# **Example from Pyc and Rawson (2010)**

- p-value  $p_o = 0.011$
- relative sample size c = 9.2

### Exercises

(Solutions available at https://osf.io/fcrj6/)

#### Exercise 2.1

We have five original studies that we want to replicate. The one-sided p-values are 0.0001, 0.001, 0.005, 0.01, and 0.025, respectively. We decide to use the same sample size as in the original study (c = 1).

- Compute and plot the conditional and predictive power of the five replication studies. Use the function powerSignificance()
- Shrink the original effect estimate by a factor of 25% and use a conditional design prior. How does the power compare to the conditional power without shrinkage?

#### **Exercises**

(Solutions available at https://osf.io/fcrj6/)

#### Exercise 2.2

- Compute and plot the relative sample sizes of the five studies to achieve a power of 80% with the conditional and the predictive design prior. Use the function sampleSizeSignificance().
- Shrink the original effect estimate by a factor of 25% and use a conditional design prior. How does the required relative sample size change compared to not shrinking the estimate?











# **Exercise Session 3**

Design based on replication success (sceptical *p*-value)

# **Design based on replication success**

#### Two functions:

- powerReplicationSuccess() and sampleSizeReplicationSuccess()

# Design based on replication success

#### Two functions:

- powerReplicationSuccess() and sampleSizeReplicationSuccess()

#### Main arguments (default):

- zo
- c (1)
- power
- designPrior ("conditional")
- level (0.025)
- alternative ("one.sided")
- type ("golden")

# **Example from Pyc and Rawson (2010)**

- p-value  $p_o = 0.011$
- relative sample size c = 9.2

## Exercises

(Solutions available at https://osf.io/fcrj6/)

#### Exercise 3.1

- Compute and plot the conditional and predictive power for replication success. Use the function powerReplicationSuccess() with c=1 and  $p_o=0.0001,0.001,0.005,0.01$  and 0.025.
- Compare conditional power for replication success with conditional power for significance (exercise 2.1).

#### **Exercises**

(Solutions available at https://osf.io/fcrj6/)

#### Exercise 3.2

- Compute and plot the relative sample sizes of the five studies to achieve a power of 80% with the conditional and the predictive design prior. Use the function sampleSizeReplicationSuccess().
- Compare the relative sample sizes with the ones obtained in exercise 2.2 (only for the conditional design prior).









## **Outlook**

- Between-study heterogeneity
  - ightarrow relative heterogeneity h can be specified in some functions
- Data-driven shrinkage with empirical Bayes
  - ightarrow designPrior = "EB"
- Interim analysis
  - → powerSignificanceInterim()
- Sample size based on relative effect size

## References

- Camerer, C. F., Dreber, A., Forsell, E., Ho, T., Huber, J., Johannesson, M., Kirchler, M., Almenberg, J., Altmejd, A., Chan, T., Heikensten, E., Holzmeister, F., Imai, T., Isaksson, S., Nave, G., Pfeiffer, T., Razen, M., and Wu, H. (2016). Evaluating replicability of laboratory experiments in economics. *Science*, 351:1433 1436.
- Camerer, C. F., Dreber, A., Holzmeister, F., Ho, T., Huber, J., Johannesson, M., Kirchler, M., Nave, G., Nosek, B., Pfeiffer, T., Altmejd, A., Buttrick, N., Chan, T., Chen, Y., Forsell, E., Gampa, A., Heikenstein, E., Hummer, L., Imai, T., Isaksson, S., Manfredi, D., Rose, J., Wagenmakers, E., and Wu, H. (2018). Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nature Human Behavior. 2:637 644.
- Cova, F., Strickland, B., Abatista, A., Allard, A., Andow, J., Attie, M., Beebe, J., Berniūnas, R., Boudesseul, J., Colombo, M., Cushman, F., Diaz, R., N'Djaye Nikolai van Dongen, N., Dranseika, V., Earp, B. D., Torres, A. G., Hannikainen, I., Hernández-Conde, J. V., Hu, W., Jaquet, F., Khalifa, K., Kim, H., Kneer, M., Knobe, J., Kurthy, M., Lantian, A., Liao, S.-y., Machery, E., Moerenhout, T., Mott, C., Phelan, M., Phillips, J., Rambharose, N., Reuter, K., Romero, F., Sousa, P., Sprenger, J., Thalabard, E., Tobia, K., Viciana, H., Wilkenfeld, D., and Zhou, X. (2018). Estimating the reproducibility of experimental philosophy. *Review of Philosophy and Psychology*.
- Goodman, S. N. (1992). A comment on replication, p-values and evidence. Statistics in Medicine, 11(7):875 879.
- Held, L. (2020). A new standard for the analysis and design of replication studies (with discussion). Journal of the Royal Statistical Society: Series A (Statistics in Society), 183(2):431 – 448.
- Held, L., Micheloud, C., and Pawel, S. (2020). The assessment of replication success based on relative effect size. Technical report.
- Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 349(6251):aac4716.
- Pawel, S. and Held, L. (2020). Probabilistic forecasting of replication studies. PLOS ONE, 15(4):e0231416.
- Pyc, M. A. and Rawson, K. A. (2010). Why testing improves memory: Mediator effectiveness hypothesis. Science, 330(6002):335–335.