Team & Collaboration

Presentation for COMP 599: Designing and Building Intelligent Systems

- 1. Motivation
- 2. Tools
- 3. Roles
- 4. Activity
- 5. Examples

Martin Pömsl October 5th, 2021

Motivation

Collaboration is all about communication.

Yesterday, Facebook experienced problems that disrupted the communication between

- Users and services
- Employees and servers
- Employees in different physical locations
- Employees and electronic on-site locks

Motivation

Choose communication tools wisely:

 If you have too many tools, attention gets divided and communication becomes ineffective

 If you have too few tools, you become reliant on them and they might not be ideal for every purpose of communication

Tools

Table 2. Reported Technologies in Use: Types, Tools, Uses, and Types of Common Ground

500.000.000.000			2000 m	
Types of Technologies	Example Tools	Uses	Types of Common Ground	
Co-Editing Systems		- teach, tell and explain tabular data sets, DS methods	Content	
	Google Docs, Google Sheets	- brainstorm, compile and compare different perspectives	Content	
		- summarize progress, document decision rationales	Content	
		- plan schedule, moderate progress	Process	
		- specify work division	Process	
Communication Systems	Emails	- exchange meeting notes and align quick decisions	Content	
	Linais	- schedule meetings and exchange meeting agendas	Process	
	Skype, Zoom	- present and discuss findings	Content	
		- make decisions, discuss and align goals and protocols	Content, Process	
		- exchange quick questions and clarifications	Content	
	Slack	- propose and brainstorm ideas	Content	
Co-Creation Systems with Version Control	GitHub	- conduct collaborative analytics	Content, Process	
		- curate and share work processes	Content, Process	
Repository Systems	PRO-ACT database	- curate and share data sets	Content	
Expertise Systems	MeSH terms	- query domain-specific knowledge	Content	

Yaoli Mao, Dakuo Wang, Michael Muller, Kush R. Varshney, Ioana Baldini, Casey Dugan, and Aleksandra Mojsilović. 2019. How Data Scientists Work Together With Domain Experts in Scientific Collaborations: To Find The Right Answer Or To Ask The Right Question? *Proc. ACM Hum.-Comput. Interact.* 3, GROUP, Article 237 (December 2019), 23 pages. DOI: https://doi.org/10.1145/3361118. Table 2.

Tools

Involved roles	Corresponding phase	Tools	Purpose of the conversation					
₽ → 1	Project requirement	Internal data warehosuse	Interactive Q&A session. Domain experts explain concepts from raw data (e.g., meaning of each column)					
		Powerpoint	Education session. To bridge the knowledge gap and laying the groundwork for upcoming collaboration					
		Powerpoint	Sync up and report the progress update. Sharing results of different configuration of models					
	Model development	Github, Cloud contents management tool	Sharing high-level details of how the model works and how maps to the business problem					
		Github, Word documents	Sharing algorithm and error details of how the model works					
	Model evaluation	Powerpoint, Excel, Mural	Finalizing the model. Include additional metrics such as user acceptance testing					
	Model deployment		Sharing road maps. At this point, stakeholders understand various metrics in ML and confusion matrix					

Piorkowski, D. et al. (2021) 'How Al Developers Overcome Communication Challenges in A Multidisciplinary Team: A Case Study', Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), pp. 1–25. doi: 10.1145/3449205. Figure 3.

Roles

Data Scientists

Domain Experts

Software Developers

- Strategy Consultants
- Business Experts

→ Understand roles to communicate

Piorkowski, D. et al. (2021) 'How Al Developers Overcome Communication Challenges in A Multidisciplinary Team: A Case Study', Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), pp. 1–25. doi: 10.1145/3449205. Figure 2.

Roles

What is a Data Scientist?

- Survey of 532 data scientists at Microsoft
- Nine distinct role clusters of activities
- Limitation: Data scientists are self-identified

M. Kim, T. Zimmermann, R. DeLine and A. Begel, "Data Scientists in Software Teams: State of the Art and Challenges," in *IEEE Transactions on Software Engineering*, vol. 44, no. 11, pp. 1024-1038, 1 Nov. 2018, doi: 10.1109/TSE.2017.2754374. Table 1.

Entire population 532 people	12.0% 4.7h	7.2% 2.9h	11.7% 4.9h	12.5% 5.2h	4.8% 2.1h	6.9% 3.0h	8.5% 3.5h	9.2% 3.8h	2.4% 1.1h	5.5% 2.1h	4.1% 1.9h	15.1% 6.7h
Cluster 1 Polymath - 156 people	10.4% 4.4h	8.5% 3.6h	11.5% 5.1h	15.1% 6.7h	9.1% 4.0h	7.7% 3.6h	7.4% 3.5h	7.9% 3.6h	3.2% 1.5h	5.2% 2.3h	4.0% 2.0h	10.1% 4.5h
Cluster 2 Data Evangelist - 71 people	6.8% 2.2h	2.1% 1.0h	6.7% 2.5h	7.7% 2.9h	2.4% 1.2h	7.0% 2.6h	12.0% 4.5h	23.0% 8.6h	3.7% 1.3h	9.5% 3.3h	13.4% 6.0h	5.7% 2.6h
Cluster 3 Data Preparer- 122 people	24.5% 9.4h	4.9% 1.9h	19.6% 7.8h	10.0% 4.0h	3.0% 1.3h	9.0% 4.1h	11.6% 4.5h	8.8% 3.5h	1.5% 0.7h	3.9% 1.3h	1.5% 0.7h	1.8% 0.8h
Cluster 4 Data Shaper- 33 people	5.6% 2.5h	1.8% 0.7h	27.0% 11.5h	25.7% 10.9h	6.0% 2.6h	8.9% 3.8h	7.6% 3.3h	7.5% 3.2h	2.1% 1.0h	3.3% 1.4h	2.5% 1.1h	1.9% 0.9h
Cluster 5 Data Analyzer - 24 people	9.9% 3.7h	0.9% 0.3h	5.8% 2.4h	49.1% 18.4h	4.6% 2.2h	6.6% 2.7h	5.2% 2.2h	5.8% 2.4h	1.8% 0.9h	4.2% 1.6h	2.8% 1.3h	3.2% 1.3h
Cluster 6 Platform Builder - 27 people	12.5% 4.4h	48.5% 18.4h	6.1% 2.6h	4.3% 1.9h	3.8% 1.1h	2.7% 1.2h	4.4% 2.0h	4.1% 1.9h	2.1% 0.9h	3.0% 1.1h	1.4% 0.6h	6.9% 3.1h
Cluster 7 Moonlighter 50% - 63 people	7.3% 3.1h	5.0% 2.2h	5.0% 2.1h	5.5% 2.4h	2.8% 1.2h	4.2% 2.0h	7.8% 3.3h	5.9% 2.4h	1.8% 0.8h	5.7% 2.3h	2.5% 1.1h	46.5% 20.0h
Cluster 8 Moonlighter 20% - 32 people	2.9% 1.2h	1.4% 0.6h	1.9% 0.9h	1.6% 0.7h	0.4% 0.2h	1.5% 0.7h	1.7% 0.8h	2.3% 1.0h	0.6% 0.3h	2.1% 1.0h	2.9% 1.3h	80.9% 36.1h
Cluster 9 Insight Actor- 4 people	0.9% 0.1h	2.1% 1.0h	1.8% 0.2h		0.9% 0.1h	5.7% 1.5h	18.5% 4.8h	10.1% 1.6h	3.0% 1.1h	57.1% 11.8h		
Query exterior	ind data	er data	ie data Analy	e data	Validate	insight his seninate	insight of	diner's	Insight	insight de de la	not related	100S
overy exist	The to gath	Prede	Pugly	EXP	Validate	isseminate	CORDE WILL	Tationalize	PCTO	MOLK Legate	not relate	
Or olaff	y.				<), 4	06		other	" NOT	•	

Activity

- Collaborate as a group (whole class) to write a simple Python script
- Two phases:
 - Phase 1 (5 minutes): Without any communication (no speaking, no Slack)
 - Phase 2 (5 minutes): With communication (Slack: #team-collaboration-activity)
- Constraints:
 - Each person can only write two lines of code!

Activity

Task: Find arguments $x, y \in [-500, 500]$ for the eggholder function that minimize it!

Open Google Doc
 (link in #team-collaboration-activity)

Turn on "Suggesting" in top right corner

3. Write your two lines of code!

Activity: Solution I

Task: Find arguments x, y \in [-500, 500] for the eggholder function that minimize it!

```
def minimize_eggholder():
   best_x, best_y = -500, -500
    best_res = 0
   for x in range(-500, 500):
        for y in range(-500, 500):
            res = eggholder(x, y)
            if res < best_res:
                best res = res
                best_x, best_y = x, y
   print(best_x, best_y, best_res)
    Output: 482.00 433.00 -950.86
```


Activity: Solution II

Task: Find arguments $x, y \in [-500, 500]$ for the eggholder function that minimize it!

```
def minimize_eggholder():
    from scipy import optimize
    bounds = [(-500, 500), (-500, 500)]
    arr_func = lambda a: eggholder(a[0], a[1])
    res = optimize.dual_annealing(arr_func, bounds)
    print(*res.x, res.fun)
```


Output: 482.35 432.87 -956.91

Example: AirBnb

- Roles: Central data science team with sub-teams facing engineers, marketers
- Communication: Initially direct conversation (7 people), now focus on cross-team
- Use Cases:
 - Predict Location Relevance
 - Suggest Search Queries

Example: Uber

- Roles: Product, specialist, research, ML platforms teams
- Communication: Annual internal ML conference, reading groups
- Use Cases:
 - Predict Demand Localization
 - Uber Eats Suggestions
 - ETA Prediction

Example: LinkedIn

- Roles: Data science is full product team with blurry distinctions
- Communication: Small teams should sit together, regular contact across teams
- Use Cases:
 - People You May Know (PYMK)
 - Career Explorer
 - Who's Viewed My Profile

Any Questions?

Thanks for Participating!

Martin Pömsl October 5th, 2021