Virtual Memory: malloc, method 1: implicit lists

Method 1: Implicit List

- For each block we need both size and allocation status
 - Could store this information in two words: wasteful!

Method 1: Implicit List

- For each block we need both size and allocation status
 - Could store this information in two words: wasteful!

Standard trick

- If blocks are aligned, some low-order bits of size are always 0
- Instead of storing an always-0 bit, use it as a allocated/free flag
- When reading size word, must mask out this bit

Format of allocated and free blocks

a = 1: Allocated block

a = 0: Free block

Size: block size

Payload: application data (allocated blocks only)

Detailed Implicit Free List Example

Double-word aligned

Allocated blocks: shaded

Free blocks: unshaded

Headers: labeled with size in bytes/allocated bit

Implicit List: Finding a Free Block

- **■** First fit:
 - Search list from beginning, choose first free block that fits:

- Can take linear time in total number of blocks (allocated and free)
- In practice it can cause "splinters" at beginning of list

Implicit List: Finding a Free Block

■ First fit:

Search list from beginning, choose first free block that fits:

- Can take linear time in total number of blocks (allocated and free)
- In practice it can cause "splinters" at beginning of list

Next fit:

- Like first fit, but search list starting where previous search finished
- Should often be faster than first fit: avoids re-scanning unhelpful blocks
- Some research suggests that fragmentation is worse

Implicit List: Finding a Free Block

■ First fit:

Search list from beginning, choose first free block that fits:

- Can take linear time in total number of blocks (allocated and free)
- In practice it can cause "splinters" at beginning of list

Next fit:

- Like first fit, but search list starting where previous search finished
- Should often be faster than first fit: avoids re-scanning unhelpful blocks
- Some research suggests that fragmentation is worse

■ Best fit:

- Search the list, choose the best free block: fits, with fewest bytes left over
- Keeps fragments small—usually improves memory utilization
- Will typically run slower than first fit

Implicit List: Allocating in Free Block

- Allocating in a free block: splitting
 - Since allocated space might be smaller than free space, we might want to split the block

- Simplest implementation:
 - Need only clear the "allocated" flag
 void free_block(ptr p) { *p = *p & -2 }
 - But can lead to "false fragmentation"

- Simplest implementation:
 - Need only clear the "allocated" flag
 void free_block(ptr p) { *p = *p & -2 }
 - But can lead to "false fragmentation"

- Simplest implementation:
 - Need only clear the "allocated" flag
 void free_block(ptr p) { *p = *p & -2 }
 - But can lead to "false fragmentation"

malloc(5) Oops!

Simplest implementation:

Need only clear the "allocated" flag
void free_block(ptr p) { *p = *p & -2 }

But can lead to "false fragmentation"

malloc(5) Oops!

There is enough free space, but the allocator won't be able to find it

Implicit List: Coalescing

- Join (coalesce) with next/previous blocks, if they are free
 - Coalescing with next block

But how do we coalesce with previous block?

Implicit List: Bidirectional Coalescing

- **Boundary tags** [Knuth73]
 - Replicate size/allocated word at "bottom" (end) of free blocks
 - Allows us to traverse the "list" backwards, but requires extra space
 - Important and general technique!

Implicit List: Bidirectional Coalescing

- **Boundary tags** [Knuth73]
 - Replicate size/allocated word at "bottom" (end) of free blocks
 - Allows us to traverse the "list" backwards, but requires extra space
 - Important and general technique!

a = 1: Allocated block

a = 0: Free block

Size: Total block size

Payload: Application data (allocated blocks only)

Constant Time Coalescing

Constant Time Coalescing (Case 1)

Constant Time Coalescing (Case 1)

Constant Time Coalescing (Case 2)

Constant Time Coalescing (Case 2)

Constant Time Coalescing (Case 3)

Constant Time Coalescing (Case 3)

Constant Time Coalescing (Case 4)

Constant Time Coalescing (Case 4)

Disadvantages of Boundary Tags

- Internal fragmentation
 - Not part of payload, hence overhead!
- Can it be optimized?
 - Which blocks need the footer tag?

Disadvantages of Boundary Tags

- Internal fragmentation
 - Not part of payload, hence overhead!
- Can it be optimized?
 - Which blocks need the footer tag?
 Do we need it for allocated blocks?

Disadvantages of Boundary Tags

Internal fragmentation

Not part of payload, hence overhead!

Can it be optimized?

Which blocks need the footer tag?
 Do we need it for allocated blocks?
 ...Can we use *more* of the header free/allocated trick?

Summary of Key Allocator Policies

Placement policy:

- First-fit, next-fit, best-fit, etc.
- Trades off lower throughput for less fragmentation
- Interesting observation: segregated free lists (next lecture)
 approximate a best fit placement policy without having to search
 entire free list

Summary of Key Allocator Policies

Placement policy:

- First-fit, next-fit, best-fit, etc.
- Trades off lower throughput for less fragmentation
- Interesting observation: segregated free lists (next lecture)
 approximate a best fit placement policy without having to search
 entire free list

Splitting policy:

- When do we go ahead and split free blocks?
- How much internal fragmentation are we willing to tolerate?

Summary of Key Allocator Policies

Placement policy:

- First-fit, next-fit, best-fit, etc.
- Trades off lower throughput for less fragmentation
- Interesting observation: segregated free lists (next lecture)
 approximate a best fit placement policy without having to search
 entire free list

Splitting policy:

- When do we go ahead and split free blocks?
- How much internal fragmentation are we willing to tolerate?

Coalescing policy:

- Immediate coalescing: coalesce each time free is called
- Deferred coalescing: try to improve performance of free by deferring coalescing until needed. Examples:
 - Coalesce as you scan the free list for malloc
 - Coalesce when the amount of external fragmentation reaches some threshold (but how do you measure that?)

Implicit Lists: Summary

- Implementation: very simple
- Allocate cost:
 - linear time worst case
- Free cost:
 - constant time worst case
 - even with coalescing
- Memory usage:
 - will depend on placement policy
 - First-fit, next-fit or best-fit
- Not used in practice for malloc/free because of lineartime allocation
 - used in many special purpose applications
- However, the concepts of splitting and boundary tag coalescing are general to all allocators