MTH5105 Differential and Integral Analysis 2009-2010

Solutions 7

1 Exercise for Feedback/Assessment

1) (a) Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable. Define $F:[a,b]\to\mathbb{R}$ by

$$F(x) = \int_{a}^{x} f(t) dt.$$

(i) Why is f bounded?

[2 marks]

(ii) Prove that F is bounded.

[3 marks]

(iii) Prove that there exists a $c \in [a, b]$ such that

$$F(c) = \sup\{F(x) : x \in [a, b]\}$$
.

[3 marks]

- (iv) Now suppose that f is continuous, and that the point c from (iii) satisfies $c \in (a, b)$ What can you conclude about f(c)? [6 marks]
- (b) Let $f:[a,b]\to\mathbb{R}$ be bounded. Prove or disprove: if f^2 is Riemann integrable on [a,b] then f is Riemann integrable on [a,b].

Solution:

(a) (i) A Riemann integrable function must be bounded.

[2 marks]

(ii) Either

$$|F(x)| = \left| \int_{a}^{x} f(t) dt \right| \le (b - a) \sup\{f(t) : t \in [a, b]\}$$

or use Theorem 8.4(a), which says that F is continuous on [a, b], and hence bounded. [3 marks]

- (iii) By Theorem 8.4(a), F is continuous on [a, b], hence attains its upper bound for some $c \in [a, b]$ [3 marks]
- (iv) By Theorem 8.4(b), if f is continuous then F is differentiable and f(x) = F'(x).

 [3 marks]

If F is maximal at $c \in (a, b)$, then by Theorem 2.1, F'(c) = 0. Hence f(c) = 0. [3 marks]

(b) This is false.

[2 marks]

A counterexample is given by the bounded function

$$f(x) = \begin{cases} 1 & x \text{ rational,} \\ -1 & x \text{ irrational.} \end{cases}$$

Clearly $f^2(x) = 1$, and hence f^2 is integrable on [a, b], but f is not (refer to example in lecture which used 0 and 1 instead of -1 and 1). [4 marks]

2 Extra Exercises

2) Let $f:[a,b]\to\mathbb{R}$ be continuous. Show that if

$$\int_{a}^{b} f(x) \, dx = 0$$

then there exists a $c \in (a, b)$ such that f(c) = 0.

[Hint: use an antiderivative of f.]

Solution:

We use

$$F(t) = \int_a^t f(x) dx .$$

Then F(a) = 0 and $F(b) = \int_a^b f(x) dx = 0$.

This should remind you of Rolle's Theorem. We need to check whether we can apply it:

As f is continuous, F is an antiderivative of f: it is differentiable on [a, b] and its derivative F' = f is continuous on [a, b].

Thus the assumptions of Rolle's Theorem are satisfied, and we conclude that there is a $c \in (a, b)$ such that

$$0 = F'(c) = f(c) .$$

3) Compute $\lim_{n\to\infty} f_n(x)$ and $\lim_{n\to\infty} f'_n(x)$ for the following functions:

(a) $f_n: \mathbb{R} \to \mathbb{R}$,

$$x \mapsto \frac{\sin(nx)}{\sqrt{n}}$$
.

(b) $f_n: \mathbb{R} \to \mathbb{R}$,

$$x \mapsto \frac{1}{n}(\sqrt{1+n^2x^2}-1)$$
,

(c) $f_n: \mathbb{R} \to \mathbb{R}$,

$$x \mapsto \frac{1}{1 + nx^2} \ .$$

If the limit doesn't exist, please indicate clearly for which values of x this is the case and give a brief indication why (no complete proof necessary).

Solution:

(a) $|f_n(x)| \leq \frac{1}{\sqrt{n}} \to 0$ as $n \to \infty$, hence

$$\lim_{n\to\infty} f_n(x) = 0 .$$

 $f'_n(x) = \sqrt{n}\cos(nx)$. With increasing n, this function oscillates with strictly increasing amplitude and frequency, so

$$\lim_{n\to\infty} f'_n(x) \text{ does not exist.}$$

[A proof (not asked for) could be as follows. If $|\cos(nx)| \le 1/2$ then $|\cos(2nx)| \ge 1/2$. Thus, for all x there exists an increasing subsequence n_k such that $|\cos(n_k x)| \ge 1/2$. This implies $|f'_{n_k}(x)| \ge \sqrt{n_k}/2$, so $f'_n(x)$ cannot converge.]

2

(b)
$$f_n(x) = \sqrt{x^2 + 1/n^2} - 1/n$$
, hence

$$\lim_{n\to\infty} f_n(x) = |x| .$$

$$f'_n(x) = nx/\sqrt{1 + n^2x^2} = x/\sqrt{x^2 + 1/n^2}$$
, hence

$$\lim_{n \to \infty} f'_n(x) = \begin{cases} 1 & x > 0, \\ 0 & x = 0, \\ -1 & x < 0. \end{cases}$$

(c) $f_n(x) = 1/(1+nx^2)$ so that $f_n(0) = 1$, and for $x \neq 0$ we have $|f_n(x)| < 1/(nx^2)$, hence

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 1 & x = 0, \\ 0 & x \neq 0. \end{cases}$$

 $f'_n(x) = -2nx/(1+nx^2)^2$, so that $f'_n(0) = 0$, and for $x \neq 0$ we have $|f_n(x)| < 2/(n|x|^3)$,

$$\lim_{n\to\infty} f_n'(x) = 0 .$$

4) For a bounded set $\Omega \subset \mathbb{R}$, show that

$$\sup_{y \in \Omega} |y| - \inf_{y \in \Omega} |y| \le \sup_{y \in \Omega} y - \inf_{y \in \Omega} y.$$

[This is needed in the proof of Theorem 7.7.]

Solution:

This can be shown using a long chain of transformations:

$$\begin{split} \sup_{y \in \Omega} |y| - \inf_{y \in \Omega} |y| &= \sup_{y \in \Omega} |y| - \inf_{x \in \Omega} |x| & \text{a change of variables} \\ &= \sup_{y \in \Omega} |y| + \sup_{x \in \Omega} (-|x|) & \text{change inf to sup} \\ &= \sup_{x,y \in \Omega} (|y| - |x|) & \text{combine terms} \\ &\leq \sup_{x,y \in \Omega} (|y-x|) & ||y| - |x|| < |y-x| \\ &= \sup_{x,y \in \Omega} (y-x) & \text{rhs is symmetric in } x \text{ and } y \\ &= \sup_{x,y \in \Omega} y + \sup_{x \in \Omega} (-x) & \text{split terms} \\ &= \sup_{y \in \Omega} y - \inf_{x \in \Omega} x & \text{change sup to inf} \\ &= \sup_{y \in \Omega} y - \inf_{y \in \Omega} y & \text{a change of variables} \end{split}$$