France métropolitaine. 2016. Enseignement de spécialité. Corrigé

EXERCICE 1

Partie A

1) Représentons la situation par un arbre de probabilités.

D'après la formule des probabilités totales,

$$P(S) = P(A) \times P_A(S) + P(B) \times P_B(S)$$

$$= 0.4 \times 0.8 + 0.6 \times 0.95 = 0.32 + 0.57 = 0.89.$$

$$P(S) = 0,89.$$

2) La probabilité demandée est $P_S(A)$.

$$P_S(A) = \frac{P(A \cap S)}{P(S)} = \frac{0,4 \times 0,8}{0,89} = \frac{32}{89} = 0,36 \; \mathrm{arrondi} \; \text{à} \; 10^{-2}.$$

$$P_S(A)=0,\,{\rm arrondi}\,\,\grave{\rm a}\,\,10^{-2}.$$

Partie B

1) Ici n=400 et f=0,92. On note que nf=368 et n(1-f)=32 de sorte que $n\geqslant 30,$ $nf\geqslant 5$ et $n(1-f)\geqslant 5$. Un intervalle de confiance au niveau de confiance 95% est

$$\left[f - \frac{1}{\sqrt{n}}, f + \frac{1}{\sqrt{n}}\right] = \left[0,92 - \frac{1}{\sqrt{400}}, 0,92 + \frac{1}{\sqrt{400}}\right] = [0,87;0,97].$$

La proportion p appartient à l'intervalle [0, 87; 0, 97] au niveau de confiance 95%.

2) Soit n la taille de l'échantillon. Un intervalle de confiance au niveau de confiance 95% est $\left[0,92-\frac{1}{\sqrt{n}},0,92+\frac{1}{\sqrt{n}}\right]$. L'amplitude de cet intervalle est $\frac{2}{\sqrt{n}}$.

$$\begin{split} \frac{2}{\sqrt{n}} &\leqslant 0,02 \Leftrightarrow \frac{1}{\sqrt{n}} \leqslant 0,01 \Leftrightarrow \sqrt{n} \geqslant 100 \\ &\Leftrightarrow n \geqslant 10 \ 000 \ (\mathrm{par} \ \mathrm{stricte} \ \mathrm{croissance} \ \mathrm{de} \ \mathrm{la} \ \mathrm{fonction} \ x \mapsto x^2 \ \mathrm{sur} \ [0,+\infty[). \end{split}$$

La taille minimum de l'échantillon pour que l'amplitude de l'intervalle de confiance soit au maximum 0,02 est 10 000.

Partie C

1) a) Interprétation graphique. $P(T \le a)$ est l'aire, exprimée en unités d'aire, du domaine coloré en bleu ci-dessous.

b) Soit $t \ge 0$.

$$P(T \leqslant t) = \int_0^t \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_0^t = \left(-e^{-\lambda t} \right) - \left(-e^0 \right) = 1 - e^{-\lambda t}.$$

 $\mathbf{c}) \text{ Puisque } \lambda > 0, \ \lim_{t \to +\infty} e^{-\lambda t} = \lim_{X \to -\infty} e^X = 0 \text{ et donc } \lim_{t \to +\infty} P(T \leqslant t) = 1 - 0 = 1.$

2)

$$\begin{split} P(T\leqslant7) = 0,5 &\Leftrightarrow 1-e^{-7\lambda} = 0,5 \Leftrightarrow e^{-7\lambda} = 0,5 \\ &\Leftrightarrow -7\lambda = \ln(0,5) \Leftrightarrow \lambda = -\frac{\ln(0,5)}{7} \\ &\Leftrightarrow \lambda = 0,0990... \end{split}$$

Donc, $\lambda = 0,099$ arrondi à 10^{-3} .

- 3) Pour tout réel positif t, $P(T \le t) = 1 e^{-0.099t}$ et donc aussi $P(T \ge t) = e^{-0.099t}$.
- a) La probabilité demandée est $P(T \ge 5)$.

$$P(T \ge 5) = e^{-0.099 \times 5} = e^{-0.495} = 0.61 \text{ arrondi à } 10^{-2}.$$

b) La probabilité demandée est $P_{T\geqslant 2}(T\geqslant 7)$. On sait que la loi exponentielle de paramètre λ est une loi sans vieillissement. Donc,

$$P_{T\geqslant 2}(T\geqslant 7)=P_{T\geqslant 2}(T\geqslant 5+2)=P(T\geqslant 5)=0,61 \mathrm{\ arrondi \ \grave{a}}\ 10^{-2}.$$

c) On sait que l'espérance de la loi exponentielle de paramètre λ est $\frac{1}{\lambda}$. Donc, ici, $E(T) = \frac{1}{0,099} = 10$ arrondi à l'unité. Ceci signifie qu'en moyenne, un composant vit 10 ans.

EXERCICE 2

Justification 1. Le vecteur \overrightarrow{AB} a pour coordonnées (2, -2, -2) et le vecteur \overrightarrow{AC} a pour coordonnées (-2, -2, -2). S'il existe un réel k tel que $\overrightarrow{AC} = k\overrightarrow{AB}$ alors -2 = 2k et aussi -2 = -2k ce qui est impossible. Donc, il n'existe pas de réel k tel que $\overrightarrow{AC} = k\overrightarrow{AB}$. On en déduit que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires ou encore que les points A, B et C ne sont pas alignés.

L'affirmation 1 est fausse.

Justification 2. Les points A, B et C définissent donc un unique plan et les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont deux vecteurs non colinéaires de ce plan.

$$\overrightarrow{n}.\overrightarrow{AB} = 0 \times 2 + 1 \times (-2) + (-1) \times (-2) = -2 + 2 = 0$$

et

$$\overrightarrow{n}.\overrightarrow{AC} = 0 \times (-2) + 1 \times (-2) + (-1) \times (-2) = -2 + 2 = 0.$$

Le vecteur $\overrightarrow{\pi}$ est orthogonal à deux vecteurs non colinéaires du plan (ABC) et donc le vecteur $\overrightarrow{\pi}$ est un vecteur normal au plan (ABC).

L'affirmation 2 est vraie.

Justification 3. La droite (EF) est la droite passant par E(-1, -2, 3) et de vecteur directeur $\overrightarrow{EF}(-1, -1, 1)$. Un système d'équations paramétriques de la droite (EF) est

$$\left\{ \begin{array}{l} x=-1-t\\ y=-2-t\\ z=3+t \end{array} \right. , \ t\in \mathbb{R}.$$

D'autre part, le plan (ABC) est le plan passant par A(1,2,3) et de vecteur normal $\overrightarrow{\pi}(0,1,-1)$. Une équation du plan (ABC) est $0 \times (x-1) + 1 \times (y-2) - 1 \times (z-3) = 0$ ou encore y-z+1=0.

Soit M(-1-t, -2-t, 3+t), $t \in \mathbb{R}$, un point de la droite (EF).

$$M \in (ABC) \Leftrightarrow (-2-t) - (3+t) + 1 = 0 \Leftrightarrow -2t - 4 = 0 \Leftrightarrow t = -2.$$

Pour t=-2, on obtient le point de coordonnées (1,0,1). Ainsi, la droite (EF) et le plan (ABC) sont sécants en le point de coordonnées (1,0,1). D'autre part, le milieu du segment [BC] a pour coordonnées $\left(\frac{3-1}{2},\frac{0+0}{2},\frac{1+1}{2}\right)$ ou encore (1,0,1). La droite (EF) et le plan (ABC) sont effectivement sécants en le milieu du segment [BC].

L'affirmation 3 est vraie.

Justification 4.

1ère solution. Si les droites (AB) et (CD) sont sécantes, elles sont en particulier coplanaires et on en déduit que le point B appartient au plan (ABC). Mais $y_D - z_D + 1 = 1 - (-1) + 1 = 3 \neq 0$. Donc, le point D n'appartient pas au plan (ABC) et finalement les droites (AB) et (CD) ne sont pas sécantes.

2ème solution. La droite (AB) est la droite passant par A(1,2,3) et de vecteur directeur $\frac{1}{2}\overrightarrow{AB}(1,-1,-1)$. Un système d'équations paramétriques de la droite (AB) est

$$\left\{ \begin{array}{l} x = 1 + t \\ y = 2 - t \\ z = 3 - t \end{array} \right. , \ t \in \mathbb{R}.$$

La droite (CD) est la droite passant par C(-1,0,1) et de vecteur directeur $\overrightarrow{CD}(3,1,-2)$. Un système d'équations paramétriques de la droite (CD) est

$$\begin{cases} x = -1 + 3u \\ y = u \\ z = 1 - 2u \end{cases}, u \in \mathbb{R}.$$

Soient M(1+t,2-t,3-t), $t \in \mathbb{R}$, un point de la droite (AB) et N(-1+3u,u,1-2u), $u \in \mathbb{R}$, un point de la droite (CD).

$$M = N \Leftrightarrow \left\{ \begin{array}{l} 1+t = -1+3u \\ 2-t = u \\ 3-t = 1-2u \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} u = 2-t \\ 1+t = -1+3(2-t) \\ 3-t = 1-2(2-t) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} u = 2-t \\ 4t = 4 \\ -3t = -6 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} u = 2-t \\ t = 1 \\ t = 2 \end{array} \right.$$

Ce système n'a pas de solution et donc les droites (AB) et (CD) ne sont pas sécantes.

L'affirmation 4 est fausse.

EXERCICE 3

- 1) a) Soit (x, y) un couple d'entiers relatifs. 15x 12y = 3(5x 4y) où 5x 4y est un entier relatif. Donc, l'entier 15x 12y est divisible par 3.
- b) Soient (x,y) un couple d'entiers relatifs puis M le point de coordonnées (x,y).

$$M \in \Delta_1 \Leftrightarrow y = \frac{5}{4}x - \frac{2}{3} \Leftrightarrow y = \frac{15x - 8}{12} \Leftrightarrow 12y = 15x - 8$$

 $\Leftrightarrow 15x - 12y = 8.$

Maintenant, 15x - 12y est un entier divisible par 3 et 8 n'est pas un entier divisible par 3. Donc, l'entier 15x - 12y n'est pas égal à l'entier 8.

On a montré qu'il n'existe pas de couple (x,y) d'entiers relatifs tel que $y = \frac{5}{4}x - \frac{2}{3}$ ou encore, il n'existe pas de point de Δ_1 dont les coordonnées sont des entiers relatifs.

Généralisation.

2) a) Soit $M_0(x_0, y_0)$ un point de Δ à coordonnées entières.

$$\begin{split} M_0 \in \Delta \Leftrightarrow y_0 &= \frac{m}{n} x_0 - \frac{p}{q} \Leftrightarrow y_0 = \frac{mqx_0 - np}{nq} \Leftrightarrow nqy_0 = mqx_0 - np \\ &\Leftrightarrow q\left(mx_0 - ny_0\right) = np. \end{split}$$

- b) Ainsi, si il existe un point de Δ dont les coordonnées (x_0, y_0) sont des nombres entiers relatifs, alors $q(mx_0 ny_0) = np$. On en déduit que l'entier q divise l'entier np. Puisque d'autre part, les entiers q et p sont premiers entre eux, le théorème de Gauss permet d'affirmer que l'entier q divise l'entier n.
- 3) a) Les entiers n et m sont premiers entre eux. D'après le théorème de Bézout, il existe deux entiers relatifs u' et v' tels que nu' + mv' = 1 ou encore tel que qru' + mv' = 1. Si on pose u = u' et v = -v', u et v sont deux entiers relatifs tels que nu mv = 1 ou encore qru mv = 1.
- b) D'après la question 2)a), $M(x_0, y_0)$ est un point de Δ à coordonnées entières si et seulement si $q(mx_0 ny_0) = np$. Puique q n'est pas nul,

$$q(mx_0 - ny_0) = np \Leftrightarrow q(mx_0 - ny_0) = qrp \Leftrightarrow mx_0 - ny_0 = rp.$$

Mais si on multiplie les deux membres de l'égalité nu - mv = 1 par rp, on obtient

$$rp = m(-vrp) - n(-urp).$$

Donc, le couple $(x_0, y_0) = (-\nu rp, -\mu rp)$ est solution du problème.

En résumé, il existe sur Δ un point dont les coordonnées sont des entiers relatifs si et seulement si q divise n.

- 4) Ici, les fractions sont bien sous forme irréductible puis $m=3,\,n=8,\,p=7$ et q=4. Puisque 4 divise $8,\,\Delta$ possède un point dont les coordonnées sont des entiers relatifs.
- 5) a) Si Q divise N, que l'algorithme affiche un couple $\left(X, \frac{M}{N}N + \frac{p}{q}\right)$ ou un couple $\left(-X, -\frac{M}{N}X + \frac{P}{Q}\right)$, il s'agit toujours d'un couple d'entiers relatifs qui sont les coordonnées d'un point de Δ . Dans un cas, l'abscisse du point est positive et dans l'autre l'abscisse du point est négative.

Puisque Q divise N, il existe au moins un point à coordonnées entières sur Δ . Celui-ci sera atteint en un temps fini (X prend la valeur X+1) et donc l'algorithme se termine.

Si Q ne divise pas N, l'algorithme se termine immédiatement et en particulier se termine.

On a montré que, dans tous les cas, l'algorithme se termine.

b) Quand Q divise N, l'algorithme affiche le point de Δ à coordonnées entières dont la valeur absolue de l'abscisse est minimum et si Q ne divise pas N, l'algorithme affiche « Pas de solution ». De manière générale, l'algorithme teste si la droite est rationnelle ou pas.

EXERCICE 4

1) Dans le triangle TEA rectangle en E, on a

$$\tan(\alpha) = \frac{EA}{ET} = \frac{25}{x}.$$

De même, dans le triangle TEB rectangle en E, on a

$$\tan(\beta) = \frac{EB}{ET} = \frac{30, 6}{x}.$$

2) La fonction tan est dérivable sur $\left]0,\frac{\pi}{2}\right[$ en tant que quotient de fonctions dérivables sur $\left]0,\frac{\pi}{2}\right[$ dont le dénominateur ne s'annule pas sur $\left]0,\frac{\pi}{2}\right[$. De plus, pour x réel de $\left]0,\frac{\pi}{2}\right[$,

$$\tan'(x) = \frac{\cos x \times \cos x - \sin x \times (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

La dérivée de la fonction tangente est strictement positive sur $\left]0,\frac{\pi}{2}\right[$ et donc la fonction tangente est strictement croissante sur $\left]0,\frac{\pi}{2}\right[$.

3)

$$\tan(\gamma) = \tan(\beta - \alpha) = \frac{\tan(\beta) - \tan(\alpha)}{1 + \tan(\beta) \tan(\alpha)} = \frac{\frac{30, 6}{x} - \frac{25}{x}}{1 + \frac{25}{x} \times \frac{30, 6}{x}} = \frac{\frac{5, 6}{x}}{1 + \frac{765}{x^2}}$$
$$= \frac{5, 6}{x} \times \frac{x^2}{x^2 + 765} = \frac{5, 6x}{x^2 + 765}$$

4) Pour
$$x \in]0,50]$$
, $f(x) = \frac{x^2 + 765}{x}$ puis $\frac{1}{f(x)} = \frac{x}{x^2 + 765}$ et enfin
$$\tan(\gamma) = 5, 6 \times \frac{x}{x^2 + 765} = 5, 6 \times \frac{1}{f(x)} = \frac{5, 6}{f(x)}.$$

Puisque la fonction $t \mapsto \frac{5,6}{t}$ est strictement décroissante sur $]0,+\infty[$ (et que pour tout x de]0,50], f(x) > 0), $\tan(\gamma)$ est maximum si et seulement si f(x) est minimum.

La fonction f est dérivable sur]0,50] et pour tout réel x de]0,50],

$$f'(x) = 1 + 765 \times \left(-\frac{1}{x^2}\right) = 1 - \frac{765}{x^2} = \frac{x^2 - 765}{x^2} = \frac{\left(x - \sqrt{765}\right)\left(x + \sqrt{765}\right)}{x^2}.$$

Sur]0,50], on a $x^2>0$ et $x+\sqrt{765}>0$. Sur]0,50], f'(x) est du signe de $x-\sqrt{765}$ avec $\sqrt{765}=27,6\ldots$ et donc $\sqrt{765}\in]0,50]$. Par suite, la fonction f est strictement décroissante sur $\left[0,\sqrt{765}\right]$ et strictement croissante sur $\left[\sqrt{765},50\right]$. La fonction f admet un minimum en $x_0=\sqrt{765}$.

L'angle \widehat{ATB} est donc maximum pour $ET = \sqrt{765}$ et donc pour maximiser ses chances, le joueur doit se placer à 28 mètres, arrondi au mètre, de la ligne d'essai. Dans ce cas, $\tan(\gamma) = \frac{5,6\sqrt{765}}{1530}$ et donc l'angle maximum mesure 0, 1 radian arrondi à 0,01 radian (fourni par la calculatrice) soit environ 6° .