Distance in Big Dimensions

Jon Gillard

School of Mathematics, Cardiff University

GillardJW@Cardiff.ac.uk

Joint work with Emily O'Riordan and Anatoly Zhigljavsky (Cardiff)

Introduction

Context

- Many (all?) multivariate statistical techniques are reliant on computing distance.
- Whitening data can improve efficiency and accuracy.
- High-dim. data covariance matrix Σ often singular, or close.

'Gold-standard' (squared) Mahalanobis distance

Mahalanobis $x^{\top} \Sigma^{-1} x$

$$x^{\top} \Sigma^{-1} x$$

Euclidean $y^{\top}y \iff$ whitening \iff transform $y = \Sigma^{-1/2}x$

This talk

Overview of two relatively new families of distances:

- ► Simplicial distances (by Pronzato, Wynn, Zhigljavsky)
- Minimal-variance distances

Finally, how we may (approximately) whiten data:

Minimal-variance whitening

Simplicial Distances

see e.g. Pronzato, Wynn, Zhigljavsky, (2018), JMA

The k-simplicial distance from x to X is the average volume of all k-dimensional simplices formed by x and points in X.

Figure: k = 3 dimensional simplices

- ▶ k-dimensional simplicial distances are of the form $x^{T}S_{k}x$
- ▶ 1-dimensional simplicial distance prop. to Euclidean
- ► *d*-dimensional/full-dimensional simplicial distance prop. to Mahalanobis
- ▶ The volumes can be exponentiated by a value δ .

Simplicial Distances: Computation

Methods of calculating the simplicial distances:

- Direct: average volume of all k-dimensional simplices between x and X,
- For exponent $\delta=2$: fast polynomial method,
- Compute average volume of a $\gamma\%$ sample of all k-dimensional simplices.

Parameters

- k: simplex dimension
- δ : exponent
- γ : sampling percentage (if using sampling).

Figure: CDFs of simplicial distances with changing *k*

Simplicial Distances when $\delta = 2$ (squared volumes)

Covariance matrix Σ with eigenvalues $\Lambda = \{\lambda_1, \lambda_2, \dots \lambda_d\}$, $x^\top S_k x$ Elementary symmetric function in eigenvalues

$$e_k(\Lambda) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le d} \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_k}$$

$$q_k(\Sigma) = \sum_{i=0}^{k-1} (-1)^i e_{k-i-1}(\Lambda) \Sigma^i$$

$$S_k = \frac{q_k(\Sigma)}{e_k(\Lambda)}$$

Example,
$$k = 2$$

$$e_2(\Lambda) = \sum_{1 \leq i < j \leq d} \lambda_i \lambda_j, \qquad q_2(\Sigma) = \left(\sum_{i=1}^d \lambda_i\right) I - \Sigma$$

Simplicial Distances: Degenerate data

Simulated data with eigenvalues $\Lambda = \{[100, 100] + [1] * 10 + [0.00001] * 10 + [0] * 28\}$

Simplicial Distances: Clustering

Simplicial distances:

- available when Mahalanobis isn't reliable/available
- can be shown to be more effective than
 Euclidean/Mahalanobis in simulated/real examples

Figure: Clustering (projected to two-dimensions)

Minimal-Variance Distances

see e.g. GO'RZ, (2022), JoSTaP

Form

$$x^{\top}A_kx$$
 where $A_k = \sum_{i=0}^{k-1} \theta_i \Sigma^i$

Objective

$$\hat{\theta}_k := \operatorname{argmin}_{\theta} \operatorname{Var} \left[x^{\top} A_k x \right] + constraint$$

Constraint

Enforce some properties of the Mahalanobis distance e.g. $trace(A_k\Sigma)=d$

Solution with above constraint

$$\hat{ heta}_k \propto (V^ op V)^{-1} \left(ext{trace}(\Sigma), \dots, ext{trace}(\Sigma^k)
ight)^ op V = (\lambda_j^{i+1})_{j=1,\dots,d,i=0,\dots,k-1}$$

Underlying principle: polynomial fit to 1/eigenvalues

Clustering example: adjusted rand and purity scores

Higher scores are better

Figure: MV-k: Minimal-variance distance with parameter k, SD-k: Simplicial distance with parameter k.

Outlier labelling example: adjusted rand scores

Dataset	Euclidean	Mahalanobis	Simplicial	Min-Var
Lympho	0.287	0.633	0.814 (k = 5)	0.814 (k = 2)
WBC	0.568	0.620	, ,	, ,
			0.568 (k = 1)	0.568 (k = 1)
Glass	0.066	0.066	0.066 (k = 1)	0.066 (k = 1)
Vowels	0.142	0.569	0.569 (k = 11)	$0.611 \; (k=6)$
Cardio	0.554	0.547	0.627 (k = 10)	0.627 (k = 4)
Thyroid	0.123	0.510	0.491 (k = 5)	$0.558 \; (k=5)$
Musk	0.201	1.000	1.000 (k = 2)	1.000 (k = 2)
Satimage-2	0.825	0.652	0.942 (k = 7)	0.942 (k = 3)
Letter	-0.012	0.268	0.159 (k = 10)	0.258 (k = 10)
Speech	-0.000	0.129	0.016 (k = 4)	0.129 (k = 5)
Pima	0.140	0.132	0.145 (k = 2)	0.149 $(k = 2)$
Satellite	0.200	0.349	0.364 (k = 8)	0.395 (k = 8)
Shuttle	0.864	0.951	0.953 (k = 6)	0.947 (k = 6)
BreastW	0.863	0.830	0.863 (k = 1)	0.863 (k = 1)
Arrhythmia	0.333	0.953	0.402 (k = 9)	0.420 (k = 9)
Ionosphere	0.178	0.743	0.723 (k = 7)	0.743 (k = 4)
MNIST	0.333	0.512	0.418 (k = 10)	0.547 $(k = 8)$
Optdigits	-0.021	-0.028	0.135 (k = 21)	0.207 (k = 3)
Cover	-0.010	0.077	0.384 (k = 5)	0.507 (k = 4)
Mammography	0.247	0.355	0.347 (k = 5)	0.367 $(k = 5)$
Annthyroid	0.035	0.318	0.297 (k = 5)	0.305 (k = 4)
Pendigits	0.173	0.053	0.372 (k = 3)	0.398 (k = 2)
Wine	0.875	0.755	0.875 (k = 1)	1.000 (k = 4)

Data obtained from the Outlier Detection DataSets Source (ODDS). Exercise: find labelled outliers.

Minimal-Variance Whitening

Idea

Try to 'approximately' whiten data using $y = A_k^{-1/2}x$

Figure: Heatmaps of a covariance matrix before and after whitening

Minimal-Variance Whitening: Before

Minimal-Variance Whitening: After

Iterative Minimal-Variance Whitening

Idea

Apply small-k minimal-variance whitening repeatedly e.g

$$y = ... \left(\tilde{A}_{k_2}^{-1/2} \left(A_{k_1}^{-1/2} x \right) \right)$$

Figure: Iteratively MV-whitened covariance matrix of Musk data, k=2

Thank you for listening

- Jonathan Gillard, Emily O'Riordan, and Anatoly Zhigljavsky. Polynomial whitening for high-dimensional data. *Computational Statistics*, 2022.
- Jonathan Gillard, Emily O'Riordan, and Anatoly Zhigljavsky. Simplicial and minimal-variance distances in multivariate data analysis.
 - Journal of Statistical Theory and Practice, 16(1), 2022.
- Luc Pronzato and Anatoly Zhigljavsky.

 Measures minimizing regularized dispersion.

 Journal of Scientific Computing, 78(3):1550–1570, 2018.
- Luc Pronzato, Henry Wynn, and Anatoly Zhigljavsky. Simplicial variances, potentials and Mahalanobis distances. Journal of Multivariate Analysis, 168:276–289, 2018.