

Revolutionizing IIoT: Enabling Real-time Secure Connectivity to the Edge with Single-Pair Ethernet and Zephyr® OS

Jason Murphy

Senior Engineer, Software Systems

analog.com

Agenda

- Intro to 10BASE-T1L Single-Pair Ethernet
- The Need for Software
- Zephyr for SPE Application Development
- Summary

Ethernet to the Edge

Industrial connectivity networks have adopted Ethernet over the last number of decades.

Ethernet has been adopted where possible in industrial networks (Control Level).

Gap: Ethernet to the Edge

IEEE 802.3cg-2019 (10BASE-T1L)

Enables Ethernet connectivity to field-level/edge devices.

10BASE-T1L SPE Overview

10BASE-T1L in the Industrial Network

10BASE-T1L - Key Benefits

Data Rate

Higher Speed vs. Legacy Fieldbus

Improved Latency

IP to the Edge

Remove Data Islands

Remove Gateways

Simplify Data Access

Security

Difficult to Retrofit Security

Ethernet Enables Modern Security

Diagnostics

Send More Than Just Sensor Data

Send Device Fault & Diagnostics Data

10BASE-T1L Transceivers

PHY

- Host processor includes Ethernet MAC
- MDIO/MII interface
- High performance

MAC/PHY

- Host processor does not need Ethernet MAC
- SPI interface
- Suitable for Low-Power MCUs

2-PORT SWITCH

- 2-Port Switch (2x PHY + MAC)
- SPI Interface
- Enables various network topologies

The Need for Software

Embedded Ethernet can be challenging. Software is key!

Device Drivers

Connectivity Stack (TCP/IP)

Application Protocols

Security (Data & Device)

Edge Processing

Why Zephyr?

Native TCP/IP Networking Stack

Support for key Ethernet protocols

Real-Time Performance

Deterministic, low latency networking

Resource Efficient

Optimised for resource-constrained devices

Security

Encryption, authentication, secure boot

Open Source

Transparent, extensible software

Portability

Support for a range of platforms and arch's

10BASE-T1L MAC/PHY Zephyr Driver

Driver acts as the interface between the Ethernet MAC/PHY and the Zephyr network stack.

Zephyr defines a standard L1 API for Ethernet devices.

The standard API abstracts the physical layer details from the upper network stack layers.

10BASE-T1L MAC/PHY Zephyr Driver: Driver API

```
struct ethernet api {
       struct net if api iface api;
       int (*start)(const struct device *dev);
       int (*stop)(const struct device *dev);
       enum ethernet_hw_caps (*get_capabilities)(const struct device *dev);
       int (*set config)(const struct device *dev, ..);
       int (*send)(const struct device *dev, struct net pkt *pkt);
};
static int adin2111_init(const struct device *dev)
   // Check SPI interface
   // Config RESET_N and INT_N GPIOs
   // Register interrupt callbacks
   // Soft reset
   // Create offload thread
```


10BASE-T1L MAC/PHY Zephyr Driver: Open Alliance SPI

OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface Available in Zephyr → drivers/ethernet/oa_tc6.c

Enables 10Mbps frame transfer with SPI clock of 12-16MHz

Figure 24. Ethernet Data Frame Transfer Followed by Control Transfer

Ethernet Application Development

- Platform Selection.
- 2. Board Configuration.
- 3. Software Configuration.
- 4. Application development using Zephyr networking libraries.

10BASE-T1L Platforms in Zephyr

ADIN1110 MAC/PHY

ADIN2111 2-Port Switch

Location in Zephyr tree:

- drivers/ethernet/eth_adin2111.c
- drivers/ethernet/phy/phy_adin2111.c

adi_eval_adin1110ebz

adi_eval_adin2111ebz

• boards/adi

Board Configuration - Devicetree

Devicetree configs:

- SPI bus/pins
- Reset/INT pins
- SPI frequency
- SPI DMA config
- MAC address
- Ethernet LED function

```
&spi3 {
    pinctrl-0 = <&spi3a ss0 p0 19 &spi3a miso p0 20
                &spi3a mosi p0 21 &spi3a sck p0 16>;
    pinctrl-names = "default";
    status = "okay";
    adin1110: adin1110@0 {
        compatible = "adi,adin1110";
        reg = \langle 0x0 \rangle;
        spi-max-frequency = <25000000>;
        int-gpios = <&gpio0 17 (GPIO_ACTIVE_LOW | GPIO_PULL_UP)>;
        reset-gpios = <&gpio0 15 GPIO ACTIVE LOW>;
        port1 {
            local-mac-address = [ CA 2F B7 10 23 70 ];
        mdio: mdio {
            compatible = "adi,adin2111-mdio";
            status = "okay";
            #address-cells = <1>;
            #size-cells = <0>;
            ethernet-phy@1 {
                 reg = \langle 0x1 \rangle;
                 compatible = "adi,adin2111-phy";
                 status = "okay";
                led0-en;
                 led1-en;
  };
};
```


Software Configuration - Kconfig

Kconfig is used to enable the Ethernet driver and network stack components.

Software requirements will be application dependent.

Zephyr supports many L2/L3/L4 protocols:

```
L2: L3: L4:
LLDP IPv4 TCP
IPv6 UDP
ICMP
ARP
```

```
# Enable ADIN2111 driver
CONFIG ETH DRIVER=y
CONFIG ETH ADIN2111=y
CONFIG NET L2 ETHERNET=V
# Enable network stack
CONFIG NETWORKING=y
CONFIG NET LOG=y
# Enable IPv4
CONFIG NET IPV4=y
CONFIG NET CONFIG NEED IPV4=y
# Enable TCP
CONFIG NET TCP=v
# Enable DHCP
CONFIG NET DHCPV4=y
# Enable Sockets (used by MQTT lib)
CONFIG NET SOCKETS=y
CONFIG NET SOCKETS SOCKOPT TLS=y
# Enable MQTT
CONFIG MOTT LIB=V
CONFIG MOTT LIB TLS=y
```


Application Development

Secured Ethernet Connectivity

Sending data securely over Ethernet requires using TLS/DTLS.

Zephyr provides TLS support using mbedTLS.

Zephyr's Socket API includes secure socket capability.

Once a secure socket is configured, it can be used like a regular socket.

Enables protocols such as HTTPS and MQTTS

```
/* Register CA certificate */
tls credential add(CA CERTIFICATE TAG,
TLS_CREDENTIAL_CA_CERTIFICATE, ca_certificate,
sizeof(ca certificate));
/* MQTT secure config */
client ctx.transport.type = MQTT TRANSPORT SECURE;
struct mqtt sec config *tls config =
&client ctx.transport.tls.config;
tls_config->peer_verify = TLS_PEER_VERIFY_REQUIRED;
tls config->cipher list = NULL;
tls config->sec tag list = m sec tags;
tls config->sec tag count = ARRAY SIZE(m sec tags);
tls_config->hostname = MQTT_BROKER_HOSTNAME;
```


Sample Application

Features:

- Acquires IP address using DHCP lease.
- Brings up secure MQTT connection to broker using secure socket connection.
- Subscribes to user-defined MQTT topic(s).
- Work queue thread publishes temperature sensor data at a regular interval.
- Dedicated thread to handle incoming MQTT commands.

Summary

10BASE-T1L SPE is bringing Ethernet Connectivity to Edge Devices

Higher data rates over longer distance

Seamless connectivity from edge to cloud

Software is key to SPE device development

Embedded Ethernet requires software above L2

Zephyr provides an Embedded Software Ecosystem to build Ethernet-connected Edge Devices

Networking stack

Security

Real-time capabilities

SPE is already well supported in Zephyr

Provides an alternative to existing industrial comms protocols like CAN, Modbus while being able to use familiar socket/IP APIs.

See our Secure Industrial Network Demo @ ADI Booth (E15)

Thank you!