Теория вероятностей и математическая статистика, Коллоквиум IV

Версия от 17.06.2021 06:34

Содержание

Билет 1	2
Выборка, оценка, статистика	
Несмещенность, состоятельность, асимптотическая нормальность и эффективность оценок	. 2
Пример отсутствия несмещенной оценки	. 3
Отсутствие эффективной оценки в классе всех оценок	. 3
Единственность эффективной оценки	. 3
Состоятельность асимптотической нормальной оценки	. 4
Билет 2	5
Метод моментов и его состоятельность	. 5
Метод максимального правдоподобия	. 5
Энтропия и состоятельность оценки максимального правдоподобия	. 5
Билет 3	8
Информация Фишера и неравенство Рао-Крамера	. 8
Критерий равенства в неравенстве Рао-Крамера	
Билет 4	10
Доверительные интервалы	. 10
Различимые методы построения доверительных интервалов (с помощью неравенств на вероятность боль-	
ших уклонений, с помощью цен-тральной статистики, с помощью асимптотически нормальной оценки).	
Примеры	. 10
Билет 5	13
Построение точных доверительных интервалов для параметров нормального распределения	. 13
Матожидание.	. 13
Дисперсия	. 14
Билет 6	15
Проверка гипотез	
Ошибки 1-го и 2-го рода	
Уровень значимости и мощность статистического критерия	
Пример построения критерия с помощью доверительного интеграла	
Нижняя оценка суммы вероятностей ошибок 1-го и 2-го рода	. 16
Билет 7	17
Теорема Неймана-Пирсона	
Пример применения теоремы Неймана-Пирсона	. 17
Билет 8	19
Эмпирическая функция распределения	
Теорема Гливенко-Кантелли	. 19

Выборка, оценка, статистика. Несмещенность, состоятельность, асимптотическая нормальность и эффективность оценок. Пример отсутствия несмещенной оценки. Отсутствие эффективной оценки в классе всех оценок. Единственность эффективной оценки. Состоятельность асимптотической нормальной оценки.

Выборка, оценка, статистика

Предположим, нам известно, что неизвестное распределение принадлежит какому-то конкретному семейству распределений с функциями распределения F_{θ} , где $\theta \in \Theta \subseteq \mathbb{R}^k$. Тогда задачей статистики является оценка неизвестного параметра $\theta_0 \in \Theta$, соответствующего нашему неизвестному распределению.

Например, пусть X есть случайная величина и мы знаем распределение этой случайно величины $F_{\theta}(t)$ с точностью до θ (например, $\mathcal{N}(0,\theta)$). Задача статистики заключается в том, чтобы оценить параметр θ .

Пример. Пусть в ящике N шаров, M из них чёрные. Мы достали из ящика n шаров. Теория вероятностей задается вопросом, с какой вероятностью среди вытянутых шаров есть m чёрных. Математическая статистика задаётся вопросом, сколько всего в ящике чёрных шаров (какое M), если мы достали n шаров и m из них чёрные.

Определение. Вектор $X = (X_1, \dots, X_n)$ с независимыми компонентами, где каждая случайная величина имеет одно и то же распределение, называется **выборкой**.

Определение. Произвольная функция $T_n(X)$, принимающая выборку как аргумент, называется **статистикой**.

Важно то, что статистика зависит от случайных величин X_1, \dots, X_n , и не зависит от θ .

Пример. Выборочное среднее $\overline{X_n}$ является статистикой

$$T(X) = \overline{X_n} = \frac{X_1 + \dots + X_n}{n}.$$

Когда проводится серия независимых экспериментов с функцией распределения F_{θ} (θ неизвестно), мы получаем выборку $X=(X_1,\ldots,X_n)$. По выборке хочется определить значение $\widehat{\theta}$, которое в каком-либо смысле близко к реальному θ .

Определение. Статистика $\hat{\theta}(X_1, ..., X_n)$ со значением из множества параметров Θ называется **оценкой** неизвестного параметра θ .

Несмещенность, состоятельность, асимптотическая нормальность и эффективность оценок

Определение. Оценка $\widehat{\theta}_n(X)$ является **несмещенной**, если $\mathrm{E}_{\theta}\left[\widehat{\theta}_n(X)\right]=\theta$ для любого $\theta\in\Theta$.

Напомним определение сходимости случайных величин X_n к случайной величине X по вероятности:

$$X_n \xrightarrow[n \to \infty]{P} X \iff \forall \varepsilon > 0 \lim_{n \to \infty} P[|X_n - X| \geqslant \varepsilon] = 0.$$

Определение. Оценка $\widehat{\theta}_n(X)$ является **состоятельной**, если $\widehat{\theta}_n(X) \xrightarrow[n \to \infty]{\mathrm{P}_{\theta}} \theta$ для любого $\theta \in \Theta$.

Обычно состоятельность оценки является следствием закона больших чисел.

Пример. Пусть $\widehat{\theta}_n = \overline{X_n} = \frac{X_1 + \dots + X_n}{n}$ и $\mathrm{E}[X_1] = \theta$. Тогда $\widehat{\theta}_n = \overline{X_n} \xrightarrow{\mathrm{P}} \mathrm{E}[X_1] = \theta$, откуда следует, что оценка $\widehat{\theta}_n$

Напомним определение сходимости случайных величин X_n к случайной величине X normu наверное:

$$X_n \xrightarrow[n \to \infty]{\text{n.H.}} X \iff P \left[\lim_{n \to \infty} X_n = X \right] = 1.$$

Определение. Оценка $\widehat{\theta}_n(X)$ является сильно состоятельной, если $\widehat{\theta}_n(X) \xrightarrow[n \to \infty]{\text{п.н.}} \theta$ для любого $\theta \in \Theta$.

Напомним определение сходимости случайных величин X_n к случайной величине X по распределению:

$$X_n \xrightarrow[n \to \infty]{\mathrm{d}} X \iff \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$
 в каждой точке x , где непрерывна F_X .

2

Определение. Оценка $\widehat{\theta}_n(X)$ является **асимптотически нормальной** с коэффициентом $\sigma^2(\theta)$, если

$$\sqrt{n}\left(\widehat{\theta}_n(X) - \theta\right) \xrightarrow[n \to \infty]{\mathrm{d}_{\theta}} \mathcal{N}(0, \sigma^2(\theta)),$$

что эквивалентно $\frac{\sqrt{n}\left(\widehat{\theta}_n(X) - \theta\right)}{\sigma(\theta)} \xrightarrow[n \to \infty]{\mathrm{d}_{\theta}} \mathcal{N}(0, 1).$

Коэффициент $\sigma^2(\theta)$ называется асимптотической дисперсией.

Определение. Пусть K это некое множество (класс) оценок (например, K — несмещенные оценки).

Оценка $\widehat{\theta}_n(X) \in K$ является эффективной в классе K, если для каждого $\theta \in \Theta$ и для каждой оценки $\theta_n^* \in K$ выполняется

 $\mathbb{E}_{\theta} \left[\widehat{\theta}_n(X) - \theta \right]^2 \leqslant \mathbb{E}_{\theta} \left[\theta_n^*(X) - \theta \right]^2.$

Если K это класс несмещенных оценок, то условие можно переписать следующим образом:

$$D_{\theta}\left[\widehat{\theta}_{n}(X)\right] \leqslant D_{\theta}\left[\theta_{n}^{*}(X)\right].$$

Определение. Несмещенную оценку $\widehat{\theta}_n(X)$ в классе всех несмещенных оценок будем называть просто эффективной.

Пример отсутствия несмещенной оценки

Пример. Пусть X_i это случайная величина Бернулли (то есть X_i принимает значение 1 с вероятностью $p \in (0;1)$ и 0 с вероятностью 1-p) и $\theta = \sin(p)$. Запишем математическое ожидание оценки по определению:

$$\mathrm{E}\left[\widehat{\theta}_n(X)\right] = \sum_{(x_1,\dots,x_n)\in\{0,1\}^n} \widehat{\theta}_n(x_1,\dots,x_n) \cdot p^{x_1+\dots+x_n} \cdot (1-p)^{n-x_1-\dots-x_n}.$$

То есть математическое ожидание оценки это некий полином от p, а полином не может равняться $\sin p$, поэтому оценка не может быть несмещенной. Вместо синуса можно было рассмотреть что-то другое.

Отсутствие эффективной оценки в классе всех оценок

Утверждение. Не существует эффективной оценки в классе всех оценок.

Доказательство. Пусть $\widehat{\theta}_n(X)$ эффективна в классе всех оценок. Тогда для любой $\theta_n^*(X)$ должно выполняться

$$\mathrm{E}_{\theta} \left[\widehat{\theta}_n(X) - \theta \right]^2 \leqslant \mathrm{E}_{\theta} \left[\theta_n^*(X) - \theta \right]^2.$$

В том числе, это должно выполняться для любой $\theta_n^*(X) = C = \text{const:}$

$$E_{\theta} \left[\widehat{\theta}_n(X) - \theta \right]^2 \leqslant E_{\theta} \left[C - \theta \right]^2.$$

Это неравенство также должно выполняться для любого θ . В частности, для $\theta = C$. Тогда

$$E_{\theta} \left[\widehat{\theta}_n(X) - \theta \right]^2 \le 0.$$

Это означает, что $\widehat{\theta}_n(X) = \theta = C$ почти наверное. Но мы ведь могли взять и другое $C' \neq C$ и ровно по тем же соображениям получить

$$\widehat{\theta}_n(X) = C \neq C' = \widehat{\theta}_n(X).$$

Пришли к противоречию.

Единственность эффективной оценки

Утверждение. Если эффективная оценка существует, то она единственная.

Доказательство. Пусть $\widehat{\theta}_n(X)$ и $\theta_n^*(X)$ — эффективные оценки.

Тогда по определению эффективности:

- $\mathrm{E}_{\theta}\left[\widehat{\theta}_n(X)\right] = \theta = \mathrm{E}_{\theta}\left[\theta_n^*(X)\right]$ для любого θ .
- $D_{\theta}\left[\widehat{\theta}_{n}(X)\right]\leqslant D_{\theta}\left[\widetilde{\theta}(X)\right]$ и $D_{\theta}\left[\theta_{n}^{*}(X)\right]\leqslant D_{\theta}\left[\widetilde{\theta}(X)\right]$ для любой несмещенной $\widetilde{\theta}_{n}(X)$.

Рассмотрим равенство параллелограмма для билинейной формы $cov(\xi, \nu)$:

$$cov(\xi + \nu, \xi + \nu) + cov(\xi - \nu, \xi - \nu) = 2 \cdot cov(\xi, \xi) + 2 \cdot cov(\nu, \nu).$$

Так как $cov(\xi, \xi) = D[\xi]$, поделив обе стороны на 4 получаем равенство

$$D\left[\frac{\xi+\nu}{2}\right] + D\left[\frac{\xi-\nu}{2}\right] = \frac{1}{2}D[\xi] + \frac{1}{2}D[\nu].$$

Воспользовавшись этим равенством для оценки $\frac{\widehat{\theta}_n(X) + \theta_n^*(X)}{2}$ получаем

$$D_{\theta}\left[\frac{\widehat{\theta}_{n}(X) + \theta_{n}^{*}(X)}{2}\right] = \frac{D[\widehat{\theta}_{n}(X)] + D[\theta_{n}^{*}(X)]}{2} - D_{\theta}\left[\frac{\widehat{\theta}_{n}(X) - \theta_{n}^{*}(X)}{2}\right] \leqslant \frac{D[\widehat{\theta}_{n}(X)] + D[\theta_{n}^{*}(X)]}{2}$$

При этом, так как обе оценки эффективные,

$$\frac{\mathrm{D}[\widehat{\theta}_n(X)] + \mathrm{D}[\theta_n^*(X)]}{2} \leqslant \mathrm{D}_{\theta} \left[\frac{\widehat{\theta}_n(X) + \theta_n^*(X)}{2} \right].$$

Последнее равенство может показаться неочевидным. Так как $\widehat{\theta}_n(X)$ это эффективная оценка (а значит имеет дисперсию не превосходящую дисперсию любой другой несмещенной оценки) и оценка $\frac{\widehat{\theta}_n(X) + \theta_n^*(X)}{2}$ несмещенная (по линейности матожидания), то выполняется неравенство

$$D_{\theta}[\widehat{\theta}_{n}(X)] \leqslant D_{\theta} \left[\frac{\widehat{\theta}_{n}(X) + \theta_{n}^{*}(X)}{2} \right] \iff \frac{1}{2} D_{\theta}[\widehat{\theta}_{n}(X)] \leqslant \frac{1}{2} D_{\theta} \left[\frac{\widehat{\theta}_{n}(X) + \theta_{n}^{*}(X)}{2} \right].$$

Аналогичное неравенство выполняется и для оценки $\theta_n^*(X)$. Суммируем эти два неравенства и получаем

$$\frac{\mathrm{D}_{\theta}[\widehat{\theta}_n(X)] + \mathrm{D}_{\theta}[\theta_n^*(X)]}{2} \leqslant \mathrm{D}_{\theta} \left\lceil \frac{\widehat{\theta}_n(X) + \theta_n^*(X)}{2} \right\rceil.$$

Мы закончили тем же, с чего и начали. Тогда все неравенства это равенство. Значит, $\mathrm{D}_{\theta}\left[\frac{\widehat{\theta}_n(X)-\theta_n^*(X)}{2}\right]=0.$ Из этого следует, что почти наверное

$$\widehat{\theta}_n(X) - \theta_n^*(X) = \mathcal{E}_{\theta} \left[\widehat{\theta}_n(X) - \theta_n^*(X) \right] = \mathcal{E}_{\theta} \left[\widehat{\theta}_n(X) \right] - \mathcal{E}_{\theta} \left[\theta_n^*(X) \right] = \theta - \theta = 0.$$

То есть, $\widehat{\theta}_n(X) = \theta_n^*(X)$ почти наверное.

Состоятельность асимптотической нормальной оценки

Утверждение. Если оценка асимптотически нормальная, то она состоятельная.

Доказательство. Пусть $\widehat{\theta}_n(X)$ — асимптотически нормальная оценка параметра θ .

По определению асимптотической нормальности $\sqrt{n}\left(\widehat{\theta}_n(X) - \theta\right) \xrightarrow{\mathrm{d}_{\theta}} \mathcal{N}(0, \sigma^2(\theta)).$

Про сходимость по распределению произведения мы знаем, что если один из пределов сходится к константе, то верна арифметика:

$$\frac{1}{\sqrt{n}} \cdot Z \xrightarrow[n \to \infty]{d} 0 \cdot Z = 0.$$

Тогда

$$\widehat{\theta}_n(X) - \theta = \frac{1}{\sqrt{n}} \cdot \sqrt{n} \left(\widehat{\theta}_n(X) - \theta \right) \xrightarrow[n \to \infty]{d_\theta} 0 \cdot \mathcal{N}(0, \sigma^2(\theta)) = 0.$$

Так как есть сходимость по распределению к константе, то есть сходимость по вероятности к константе (факт с предыдущего коллоквиума):

$$\widehat{\theta}_n(X) - \theta \xrightarrow[n \to \infty]{\mathrm{d}_{\theta}} 0 \iff \widehat{\theta}_n(X) \xrightarrow[n \to \infty]{\mathrm{P}_{\theta}} \theta$$

а это и есть определение состоятельности.

Метод моментов и его состоятельность. Метод максимального правдоподобия. Энтропия и состоятельность оценки максимального правдоподобия.

Метод моментов и его состоятельность

Пусть (X_1, \ldots, X_n) — выборка, где X_i задано распределением F_{θ} . Хотим найти состоятельную оценку параметра θ . Пусть g — непрерывная функция, причём $\mathbb{E}_{\theta}|g(X_1)| < \infty$. Посчитаем матожидание $\mathbb{E}_{\theta}g(X_1) = f(\theta)$. Предположим, что $\exists f^{-1}$, и она непрерывна. Так как на практике мы не знаем параметр θ , то мы не можем посчитать такое матожидание. Но мы можем приближённо посчитать $f(\theta)$ воспользовавшись ЗБЧ:

$$\frac{g(X_1) + \ldots + g(X_n)}{n} \xrightarrow{P_{\theta}} \mathbb{E}_{\theta} g(X_1) = f(\theta).$$

Теперь в силу обратимости f можно получить сходимость к θ :

$$f^{-1}\left(\frac{g(X_1)+\ldots+g(X_n)}{n}\right) \xrightarrow{P_{\theta}} f^{-1}(f(\theta)).$$

Оценкой параметра θ назовём функцию

$$\hat{\theta}(X_1,\ldots,X_n) = f^{-1}\left(\frac{g(X_1) + \ldots + g(X_n)}{n}\right).$$

Эта оценка состоятельна, так как $\hat{\theta}(X_1,\ldots,X_n) \xrightarrow{P_{\theta}} \theta$. Вместо ЗБЧ можно применить УЗБЧ, и получить сильную состоятельность.

Метод максимального правдоподобия

Энтропия и состоятельность оценки максимального правдоподобия

Определение 1. Обобщённой плотностью ρ_X случайной величины X назовём функцию плотности X, если случайная величина является непрерывно, или функцию $\rho_X(t) = P(X=t)$ в случае, если X имеет дискретное распределение.

Определение 2. Пусть $X = (X_1, \dots, X_n)$ — выборка из распределения с обобщённой плотностью ρ_{θ} . Обобщённая плотность вектора X называется функцией правдоподобия, и имеет вид

$$p(X,\theta) = \rho_{\theta}(X_1) \cdot \ldots \cdot \rho_{\theta}(X_n)$$

Функцию $\ln p(X,\theta)$ называют логарифмической функцией правдоподобия и обозначают $L(X,\theta)$.

Определение 3. Пусть ρ_0, ρ_1 — положительные вероятностные плотности. Выражение

$$\int \ln \frac{\rho_1(x)}{\rho_0(x)} \cdot \rho_1(x) dx$$

называется энтропией распределения с плотностью ρ_1 относительно распределения с плотностью ρ_0 .

Замечание. Здесь и далее интергралы без пределов интегрирования обозначают интегрирование по множеству, на котором задано распределение. Они вовсе не означают неопределённый интеграл.

Следующее утверждение показывает, что энтропия в некотором смысле оценивает расстояние между распределениями:

Лемма (Информационное неравенство). Пусть ρ_0, ρ_1 — положительные вероятностные плотности. Тогда

$$\int \ln \frac{\rho_1(x)}{\rho_0(x)} \cdot \rho_1(x) dx \geqslant 0$$

Равенство достигается тогда и только тогда, когда $\rho_0 = \rho_1$.

Доказательство. Домножим обе части неравенства на (-1) и будем выводить оценку сверху:

$$\int \ln \frac{\rho_0(x)}{\rho_1(x)} \cdot \rho_1(x) dx \leqslant 0$$

Воспользуемся неравенством $\ln x \leqslant x-1$ (очевидно, если, например, посмотреть на графики этих функций: у них есть единственное пересечение в точке x=1):

$$\ln \frac{\rho_0(x)}{\rho_1(x)} \rho_1(x) \leqslant \left(\frac{\rho_0}{\rho_1} - 1\right) \rho_1 = \rho_0 - \rho_1$$

Проинтегрируем обе части:

$$\int \ln \frac{\rho_0(x)}{\rho_1(x)} \cdot \rho_1(x) dx \leqslant \int \rho_0(x) dx - \int \rho_1(x) dx = 0$$

Оба интеграла справа равны 1, в силу того, что под интегралами стоят плотности. Таким образом оценку сверху мы доказали, найдём теперь, когда достигается равенство.

Пусть в неравенстве достигается равенство, т.е. известно, что

$$\int \ln \frac{\rho_0(x)}{\rho_1(x)} \cdot \rho_1(x) dx = 0 \qquad \qquad \int \rho_0(x) dx - \int \rho_1(x) dx = 0 \iff \int \left(\frac{\rho_0}{\rho_1} - 1\right) \rho_1 dx = 0$$

Тогда

$$\int \left(\left(\frac{\rho_0}{\rho_1} - 1 \right) - \ln \frac{\rho_0}{\rho_1} \right) \rho_1 dx = 0$$

Так как $\ln x \leqslant x - 1$, то $0 \leqslant x - 1 - \ln x$ и функция в скобках неотрицательна. Теперь очевидно, что 0 достигается только в случае $\rho_0 = \rho_1$:

$$\left(\frac{\rho_0}{\rho_1} - 1\right) - \ln\frac{\rho_0}{\rho_1} = 0 \iff \left(\frac{\rho_0}{\rho_1} - 1\right) = \ln\frac{\rho_0}{\rho_1} \iff \rho_0 = \rho_1$$

Вывели утверждение, которое показывает, что энтропия, в некотором смысле оценивает расстояние между плотностями, т.е. расстояние между распределениями. Теперь будем применять это утверждение для построения оценки.

Пусть есть выборка $X = (X_1, \dots, X_n)$ из распределения с обобщённой плотностью ρ_{θ} . Пусть реальное значение параметра θ равно θ_1 . Рассмотрим функцию следующего вида:

$$W(\theta) = \mathbb{E}_{\theta_1} \ln \rho_{\theta}(X_1) = \int \ln \rho_{\theta}(x) \rho_{\theta_1}(x) dx$$

Можно показать, что $W(\theta) \leq W(\theta_1) \, \forall \, \theta$, действительно:

$$W(\theta) - W(\theta_1) = \int \ln \rho_{\theta}(x) \rho_{\theta_1}(x) dx - \int \ln \rho_{\theta_1}(x) \rho_{\theta_1}(x) dx = \int \ln \frac{\rho_{\theta}(x)}{\rho_{\theta_1}(x)} \rho_{\theta_1}(x) dx \leq 0$$

Причём наибольшее значение $W(\theta)$ достигается при $\theta = \theta_1$. Таким образом можно естественно оценить реальный параметр, если найти точку максимума функции $W(\theta)$. В чём проблема: мы не знаем ρ_{θ_1} , и потому функция $W(\theta)$ нам так же не известна. Решение проблемы: $W(\theta)$ это некоторое матожидание. По ЗБЧ известно, что выборочное среднее по вероятности сходится к матожиданию. Т.е.

$$\frac{\ln \rho_{\theta}(X_1) + \ldots + \ln \rho_{\theta}(X_n)}{n} \xrightarrow{P} \mathbb{E}_{\theta_1} \ln \rho_{\theta}(X_1) = W(\theta)$$

Немного преобразуем левую часть:

$$\frac{\ln \rho_{\theta}(X_1) + \ldots + \ln \rho_{\theta}(X_n)}{n} = \frac{1}{n} \sum_{i=1}^n \ln \rho_{\theta}(X_i) = \frac{1}{n} L(X, \theta)$$

Таким образом, вместо того, чтобы искать максимум неизвестной функции, мы будем искаль максимум того, что к ней приближается, и найденное значение и будем называть **оценкой максимального правдоподобия**.

Определение 4. Оценкой максимального правдоподобия параметра θ называется максимум функции $L(X,\theta)$.

Предложение. (Состоятельность оценки максимального правдоподобия.)

Пусть $\theta \in (a,b)$, и на этом отрезке функция $\theta \to L(X,\theta)$ имеет единственную точку локального максимума $\hat{\theta}$. Тогда $\hat{\theta} \xrightarrow{P} \theta_0$.

Доказательство. Будем пользоваться тем, что $\frac{1}{n}L(X,\theta) \xrightarrow{P} W(\theta)$. Хотим доказать, что $P(|\hat{\theta} - \theta_0| \geqslant \delta) \to 0 \,\forall \, \delta > 0$ (просто определение сходимости по вероятности). Рассмотрим точки $\theta_0 - \delta, \theta_0 + \delta$. Про эти точки известно следующее:

$$\begin{cases} W(\theta_0) > W(\theta_0 - \delta) \xleftarrow{P} \frac{1}{n} L(X, \theta_0 - \delta) \\ W(\theta_0) > W(\theta_0 + \delta) \xleftarrow{P} \frac{1}{n} L(X, \theta_0 + \delta) \end{cases}$$

Можно ожидать, что при достаточно большом n, с вероятностью, близкой к 1 будут выполнены неравенства

$$\begin{cases} \frac{1}{n}L(X,\theta_0) > \frac{1}{n}L(X,\theta_0 - \delta) \\ \frac{1}{n}L(X,\theta_0) > \frac{1}{n}L(X,\theta_0 + \delta) \end{cases}$$

Посмотрим теперь на функцию $\theta \to L(X, \theta)$:

Ясно, что на интервале $(\theta_0 - \delta, \theta_0 + \delta)$ сущетвует точка, значение в которой строго больше, чем на концах, а значит, функция имеет на этом отрезке точку локального максимума. Т.е. для точки локального максимума $\hat{\theta}$ выполнено $|\hat{\theta} - \theta_0| < \delta$. Чтобы завершить доказательство, нужно обосновать фразу "при достаточно большом n, с вероятностью, близкой к 1...". Другими словами, хотим доказать, что

$$P\left(\frac{1}{n}L(X,\theta_0-\delta)<\frac{1}{n}L(X,\theta_0)\right)\xrightarrow[n\to\infty]{}1$$

Положим $W(\theta_0)-W(\theta_0-\delta)=\varepsilon>0$. Из ЗБЧ следует, что

$$\begin{cases} P\left(\left|\frac{1}{n}L(X,\theta_0-\delta)-W(\theta_0-\delta)\right|\geqslant\frac{\varepsilon}{4}\right)\to 0\\ P\left(\left|\frac{1}{n}L(X,\theta_0)-W(\theta_0)\right|\geqslant\frac{\varepsilon}{4}\right)\to 0 \end{cases}$$

Поймём, почему из этого следует, что $P\left(\frac{1}{n}L(X,\theta_0-\delta)\geqslant \frac{1}{n}L(X,\theta_0)\right)\to 0$ (*). Пусть величины $\frac{1}{n}L(X,\theta_0-\delta)$ и $W(\theta_0-\delta)$ отличаются менее, чем на $\frac{\varepsilon}{4}$. Аналогично для $\frac{1}{n}L(X,\theta_0)$ и $W(\theta_0)$. Тогда верна следующая цепочка равенств:

$$W(\theta_0) \leqslant \frac{1}{n} L_n(X, \theta_0) + \frac{\varepsilon}{4} \leqslant \frac{1}{n} L_n(X, \theta_0 - \delta) + \frac{\varepsilon}{4} \leqslant W(\theta_0 - \delta) + \frac{\varepsilon}{2}$$

Переход (1) следует из неравенства (*). Тогда мы получаем, что $W(\theta_0)-W(\theta_0-\delta)\leqslant \frac{\varepsilon}{2}$. Но $W(\theta_0)-W(\theta_0-\delta)=\varepsilon$, и получается противоречие. Значит, или $\frac{1}{n}L(X,\theta_0-\delta)$ и $W(\theta_0-\delta)$ отличаются более, чем на $\frac{\varepsilon}{4}$, или же величины $\frac{1}{n}L(X,\theta_0)$ и $W(\theta_0)$. Но тогда мы получаем, что исход из события $\{\frac{1}{n}L(X,\theta_0-\delta)\}$ $\frac{1}{n}L(X,\theta_0)$ лежит в объединении

$$\left\{ \left| \frac{1}{n} L(X, \theta_0 - \delta) - W(\theta_0 - \delta) \right| \geqslant \frac{\varepsilon}{4} \right\} \cup \left\{ \left| \frac{1}{n} L(X, \theta_0) - W(\theta_0) \right| \geqslant \frac{\varepsilon}{4} \right\}$$

А вероястность таких событий стремится к нулю. Теперь методом пристального взгляда можно заметить, что мы всё доказали.

Информация Фишера и неравенство Рао-Крамера. Критерий равенства в неравенстве Рао-Крамера.

Информация Фишера и неравенство Рао-Крамера

Определение. Информация Фишера $I(\theta) = \mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} L(x, \theta) \right)^2$

Выведение и альтернативные варианты (здесь θ_0 — реальный параметр):

ф-ла Тейлора
$$L(x,\theta) \overset{\downarrow}{\simeq} L(x,\hat{\theta}_n(x)) + \frac{1}{2} \frac{\partial^2}{\partial \theta^2} L(x,\hat{\theta}_n(x)) \left(\theta - \hat{\theta}_n(x)\right)^2$$
 ≤ 0 тк точка максимума

Точка максимума близка к параметру, посмотрим на вторую производную в реальном параметре:

$$\begin{split} &-\mathbb{E}_{\theta_0}\frac{\partial^2}{\partial\theta^2}L(x,\theta_0) = -\mathbb{E}_{\theta_0}\frac{\partial}{\partial\theta}\left(\frac{\frac{\partial}{\partial\theta}P(x,\theta_0)}{P(x,\theta_0)}\right) = -\mathbb{E}_{\theta_0}\left(\frac{\frac{\partial^2}{\partial\theta^2}P(x,\theta_0)}{P(x,\theta_0)} - \frac{\left(\frac{\partial}{\partial\theta}P(x,\theta_0)\right)^2}{P(x,\theta_0)^2}\right) & \\ &\left[\text{трюки c производными так как } \left(\frac{a}{b}\right)' = \frac{a'}{b} - \frac{ab'}{b^2}, \text{ но здесь } a = b' \implies \left(\frac{b'}{b}\right)' = \frac{b''}{b} - \frac{(b')^2}{b^2}\right] \\ & \oplus -\int_{\mathbb{P}_n}\left(\frac{\frac{\partial^2}{\partial\theta^2}P(x,\theta_0)}{P(x,\theta_0)} - \frac{\left(\frac{\partial}{\partial\theta}P(x,\theta_0)\right)^2}{P(x,\theta_0)^2}\right)P(x,\theta_0)dx = -\int_{\mathbb{P}_n}\frac{\partial^2}{\partial\theta^2}P(x,\theta_0)dx + \int_{\mathbb{P}_n}\left(\frac{\frac{\partial}{\partial\theta}P(x,\theta_0)}{P(x,\theta_0)}\right)^2P(x,\theta_0)dx \end{split}$$

Предположим, что выполнены условия регулярности

- $P(x,\theta)$ дважды непрерывно дифференцируема по θ
- $P(x,\theta) > 0$ на каком-то множесте иксов (прямая, отрезок, точки в дискретном случае) $\forall \theta$
- Производную и интеграл можно переставить

Из этого следует

$$\int\limits_{\mathbb{R}^n} P(x,\theta) dx = 1 \implies \int\limits_{\mathbb{R}^n} \frac{\partial}{\partial \theta} P(x,\theta) dx = \frac{\partial 1}{\partial \theta} = 0, \qquad \int\limits_{\mathbb{R}^n} \frac{\partial^2}{\partial \theta^2} P(x,\theta) dx = 0$$

Итак

$$-\mathbb{E}_{\theta_0} \frac{\partial^2}{\partial \theta^2} L(x, \theta_0) = -\int_{\mathbb{R}^n} \frac{\partial^2}{\partial \theta^2} P(x, \theta_0) dx + \int_{\mathbb{R}^n} \left(\frac{\frac{\partial}{\partial \theta} P(x, \theta_0)}{P(x, \theta_0)} \right)^2 P(x, \theta_0) dx = \mathbb{E}_{\theta_0} \left(\frac{\partial}{\partial \theta} L(x, \theta_0) \right)^2 = I(\theta)$$

В дискретном случае меняем интегралы на суммы

Предположения про $P(x, \theta)$ очень натуральны, поэтому их никто не проверяет

Утверждение. Пусть выполнены условия регулярности. Тогда

$$I(\theta) = \mathbb{D}_{\theta} \left(\frac{\partial}{\partial \theta} L(x, \theta) \right) = n \cdot i(\theta), \text{ где } i(\theta) = \mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} \ln \rho_{\theta}(X_1) \right)^2.$$

Здесь $i(\theta)$ — информация Фишера выборки из одного элемента

Доказательство.

$$\mathbb{E}_{\theta}\left(\frac{\partial}{\partial \theta}L(x,\theta)\right) = \int\limits_{\mathbb{R}^{n}} \frac{\frac{\partial}{\partial \theta}P(x,\theta)}{P(x,\theta)}P(x,\theta)dx = \int\limits_{\mathbb{R}^{n}} \frac{\partial}{\partial \theta}P(x,\theta)dx = 0 \implies \mathbb{D}_{\theta}\left(\frac{\partial}{\partial \theta}L(x,\theta)\right) = \mathbb{E}_{\theta}\left(\frac{\partial}{\partial \theta}L(x,\theta)\right)^{2}$$

$$\frac{\partial}{\partial \theta}L(x,\theta) = \sum_{i} \frac{\partial}{\partial \theta}\ln\rho_{\theta}(X_{i}) \implies \mathbb{D}_{\theta}\left(\frac{\partial}{\partial \theta}L(x,\theta)\right) = n\mathbb{D}_{\theta}\left(\frac{\partial}{\partial \theta}\ln\rho_{\theta}(X_{1})\right) = n\mathbb{E}_{\theta}\left(\frac{\partial}{\partial \theta}\ln\rho_{\theta}(X_{1})\right)^{2} = n \cdot i(\theta)$$
Outputs for definition.

Теорема. Неравенство Рао-Крамера Пусть выполняются условия регулярности, а $\theta_n(x)$ — несмещенная оценка функции $\tau(\theta)$ (как правило $\tau(\theta) = \theta$, но иногда мы пытаемся оценить не саму θ , а какую-то функцию θ), тогда

$$\mathbb{D}_{\theta}(\theta_n(x)) \geqslant \frac{(\tau'(\theta))^2}{I(\theta)}$$

Неравенство нужно чтобы находить эффективные оценки: там где достигается равенство, там и оценка эффективна. Доказательство.

$$\tau(\theta) = \mathbb{E}_{\theta}(\theta_{n}(x)) = \int_{\mathbb{R}_{n}} \theta_{n}(x) P(x,\theta) dx.$$

$$\tau'(\theta) = \int_{\mathbb{R}^{n}} \theta_{n}(x) \frac{\partial}{\partial \theta} P(x,\theta) dx = \int_{\mathbb{R}^{n}} \theta_{n}(x) \frac{\partial}{\partial \theta} P(x,\theta) dx - \tau(\theta) \int_{\mathbb{R}^{n}} \frac{\partial}{\partial \theta} P(x,\theta) dx = \int_{\mathbb{R}^{n}} (\theta_{n}(x) - \tau(\theta)) \frac{\partial}{\partial \theta} P(x,\theta) dx = \int_{\mathbb{R}^{n}} (\theta_{n}(x) - \tau(\theta)) \frac{\partial}{\partial \theta} P(x,\theta) dx = \mathbb{E}_{\theta} \left((\theta_{n}(x) - \tau(\theta)) \frac{\partial}{\partial \theta} L(x,\theta) \right) \stackrel{\downarrow}{\leqslant}$$

$$= \frac{\partial}{\partial \theta} \ln P(x,\theta) = \frac{\partial}{\partial \theta} L(x,\theta)$$

$$\leqslant \sqrt{\mathbb{E}_{\theta} (\theta_{n}(x) - \tau(\theta))^{2}} \sqrt{\mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} L(x,\theta) \right)^{2}} = \sqrt{\mathbb{D}_{\theta} (\theta_{n}(x))} \sqrt{I(\theta)}$$

$$\tau'(\theta) \leqslant \sqrt{\mathbb{D}_{\theta} (\theta_{n}(x))} \sqrt{I(\theta)} \implies (\tau'(\theta))^{2} \leqslant \mathbb{D}_{\theta} (\theta_{n}(x)) I(\theta).$$

Критерий равенства в неравенстве Рао-Крамера

Равенство достигается когда достигается равенство в Коши-Буняковском, то есть

$$\theta_n(x) - \tau(\theta) = c_n(\theta) \frac{\partial}{\partial \theta} L(x, \theta)$$

Пример в ситуации бернулли:

$$\frac{\partial}{\partial \theta} L(x,\theta) = \frac{\sum_{i} X_{i} - n\theta}{\theta(1-\theta)} = \frac{n}{\underbrace{\theta(1-\theta)}} (\overline{X}_{n} - \theta) \implies \text{ в Рао-Крамере достигается равенство } \implies \bar{X}_{n} \Rightarrow \Phi \Phi \text{ оценка}$$

Если (в случае оценки θ , то есть $\tau(\theta) = \theta$) существует несмещенная оценка $\hat{\theta}_n$, на которой достигается равенство в Рао-Крамере, то это оценка максимального правдоподобия

$$\hat{\theta}_n(x) - \theta = c_n(\theta) \frac{\partial}{\partial \theta} L(x, \theta)$$
 Возьмем $\theta = \theta^*(x)$ оценка макс правдоподобия $\implies \frac{\partial}{\partial \theta} L(x, \theta^*(x)) = 0 \implies \hat{\theta}_n(x) = \theta^*(x)$

Доверительные интервалы. Различимые методы построения доверительных интервалов (с помощью неравенств на вероятность больших уклонений, с помощью центральной статистики, с помощью асимптотически нормальной оценки). Примеры.

Доверительные интервалы

Знать, что оценка $\hat{\theta}_n(X)$ состоятельна (сходится по вероятности к θ) это, конечно, круго, но особо много информации о ней нам не даёт. Нам хотелось бы знать как быстро она куда-то там сходится – хотим для фиксированного $\alpha \in (0,1)$ и фиксированного $\varepsilon>0$ знать такой номер n, что $P_{\theta}(|\hat{\theta}_n(X)-\theta|<\varepsilon)>1-\alpha.$

Определение. $(\hat{\theta}_1(X), \hat{\theta}_2(X))$ — доверительный интервал уровня доверия $1-\alpha,$ если

$$P_{\theta}(\theta \in (\hat{\theta}_1(X), \hat{\theta}_2(X))) \geqslant 1 - \alpha$$

$$P_{\theta}(\hat{\theta}_1(X) \leqslant \theta \leqslant \hat{\theta}_2(X)) \geqslant 1 - \alpha$$

Определение. Последовательность оценок $\hat{\theta}_1^n(X)$, $\hat{\theta}_2^n(X)$ образует асимтотический доверительный интервал, если $\liminf P_{\theta}(\hat{\theta}_1^n(X) \leqslant \theta \leqslant \hat{\theta}_2^n(X)) \geqslant 1 - \alpha$

Пример. Пусть есть выборка из случайных величин с нормальным распределением $X_j \sim \mathcal{N}(\theta,1)$. Знаем, что $\overline{X}_n = \frac{X_1 + \dots + X_n}{n} \xrightarrow{P_{\theta}} \theta$ (ЗБЧ) — среднее хорошо приближает θ .

Посмотрим на разность эмпирического среднего и реальной θ : $\frac{X_1 + \dots + X_n}{n} - \theta = \frac{\overbrace{(X_1 - \theta)}^{\sim \mathcal{N}(0,1)} + \dots + \overbrace{(X_n - \theta)}^{\sim \mathcal{N}(0,1)}}{n} \sim \frac{1}{n}$

$$\mathcal{N}(0, \frac{1}{n})$$

$$\implies \sqrt{n}(\frac{X_1 + \dots + X_n}{n} - \theta) \sim \mathcal{N}(0, 1)$$

Теперь по таблице значений функции распределения нормального закона найдём квантили $z_{\frac{\alpha}{2}}$ и $z_{1-\frac{\alpha}{2}}\colon \Phi(z_{\frac{\alpha}{2}})=$ $\frac{\alpha}{2}, \Phi(z_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}.$

$$P_{\theta}(z_{\frac{\alpha}{2}} \leqslant \sqrt{n}(\frac{X_1 + \dots + X_n}{n} - \theta) \leqslant z_{1 - \frac{\alpha}{2}}) = \Phi(z_{1 - \frac{\alpha}{2}}) - \Phi(z_{\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha$$

$$P(\frac{z_{\frac{\alpha}{2}}}{\sqrt{n}} - \overline{X_n} \leqslant -\theta \leqslant \frac{z_{1 - \frac{\alpha}{2}}}{\sqrt{n}} - \overline{X_n}) = 1 - \alpha$$

$$P(\overline{X_n} - \frac{z_{1 - \frac{\alpha}{2}}}{\sqrt{n}} \leqslant \theta \leqslant \overline{X_n} - \frac{z_{\frac{\alpha}{2}}}{\sqrt{n}}) = 1 - \alpha$$

Заметим, что мы взяли симметричный интервал: $z_{\frac{\alpha}{2}} = -z_{1-\frac{\alpha}{2}}$. В таком случае наш интервал принимает вид:

$$(\overline{X_n}-\frac{z_{1-\frac{\alpha}{2}}}{\sqrt{n}},\overline{X_n}+\frac{z_{1-\frac{\alpha}{2}}}{\sqrt{n}})$$
. В таком случае длина этого интервала равна $\mathrm{O}(\frac{1}{\sqrt{n}})$

Но зачем мы решили взять симметричный интервал? Вспомним, что мы от него хотим: минимальной длины. А какой интервал на графике нормального распределения будет захватывать нужную площадь и при этом быть самым коротким среди всех? Правильно, симметричный с центром в пике колокола нормального распределения.

Различимые методы построения доверительных интервалов (с помощью неравенств на вероятность больших уклонений, с помощью цен-тральной статистики, с помощью асимптотически нормальной оценки). Примеры

1. Неравенства Чебышёва или Чернова

$$X_1, \dots, X_n \sim \text{Bern}(\theta), P(X_i = 1) = \theta$$

$$P_{\theta}(|\overline{X_n} - \theta| \geqslant \varepsilon) \leqslant \frac{\mathbb{D}X_1}{n\varepsilon^2} = \frac{\theta(1 - \theta)}{n\varepsilon^2} \leqslant \frac{1}{4n\varepsilon^2} = \alpha \implies \varepsilon = \frac{1}{\sqrt{2n\alpha}} \implies P_{\theta}(\overline{X_n} - \frac{1}{\sqrt{2n\alpha}} < \theta < \overline{X_n} + \frac{1}{\sqrt{2n\alpha}}) \geqslant 1 - \alpha.$$

Чернов:
$$P_{\theta}(|\overline{X_n} - \theta| \geqslant \varepsilon) \leqslant 2e^{-\frac{n\varepsilon^2}{4}} = \alpha$$

$$-\frac{n\varepsilon^2}{4} = \ln\frac{\alpha}{2}$$

$$\varepsilon = 2\sqrt{-\frac{\ln\frac{\alpha}{2}}{n}}$$

$$\implies P_{\theta}(\overline{X_n} - 2\sqrt{-\frac{\ln\frac{\alpha}{2}}{n}} < \theta < \overline{X_n} + 2\sqrt{-\frac{\ln\frac{\alpha}{2}}{n}}) \geqslant 1 - \alpha$$

Заметим, что в обоих оценках мы получили, что длина интервала равна $O(\frac{1}{\sqrt{n}})$, но несложно заметить, что константа Чернова значительно лучше, чем у Чебышёва.

2. Метод центральной статистики

Определение. $V(X, \theta)$ называется центральной статистикой, если:

- (a) её распределение не зависит от θ : $P_{\theta}(V(X,\theta) \leqslant t) = F(t)$
- (b) $\forall X : \theta \mapsto V(X, \theta)$ монотонная

Пусть у нас есть такая статистика. Вопрос: как с её помощью строить доверительные интервалы? Предельно просто: подберём числа t_1 и t_2 таким образом, чтобы $P_{\theta}(t_1 \leqslant \mathrm{V}(X,\theta) \leqslant t_2) \geqslant 1-\alpha$. Мы можем так сделать, потому что распределение V не зависит от θ . Теперь поскольку при любом X наша функция монотонна, то данная оценка равносильна тому, что $P_{\theta}(\hat{\theta}_1(X) \leqslant \theta \leqslant \hat{\theta}_2(X)) \geqslant 1-\alpha$ — чисто из-за монотонности по θ .

Пример. $X_j \sim \mathcal{U}(0,\theta) \implies \theta^{-1}X_j \sim \mathcal{U}(0,1)$. Это уже центральная статистика, однако она зависит всего от одного элемента выборки. Рассмотрим $X_{(n)} = \max_{1 \leqslant j \leqslant n} X_j$: $P_{\theta}(\theta^{-1}X_{(n)} \leqslant t) = P_{\theta}(\max_{1 \leqslant j \leqslant n} \theta^{-1}X_j \leqslant t) = \prod_{j=1}^n P_{\theta}(\theta^{-1}X_j \leqslant t)$

$$t) = t^n$$

Теперь грубо попробуем оценить, куда там наша статистика попадает:

$$P_{\theta}(\underbrace{t}_{t_1} \leqslant \theta^{-1}X_{(n)} \leqslant \underbrace{1}_{t_2}) = 1 - t^n = 1 - \alpha \implies t = \alpha^{\frac{1}{n}}$$

Теперь попробуем вытащить отсюда θ :

$$P_{\theta}(\alpha^{\frac{1}{n}} \leqslant \theta^{-1} X_{(n)} \leqslant 1) = 1 - \alpha$$

$$P_{\theta}(\frac{\alpha^{\frac{1}{n}}}{X_{(n)}} \leqslant \theta^{-1} \leqslant \frac{1}{X_{(n)}}) = 1 - \alpha$$

$$P_{\theta}(\underbrace{X_{(n)}}_{\hat{\theta}_{1}(X)} \leqslant \theta \leqslant \underbrace{\frac{X_{(n)}}{\alpha^{\frac{1}{n}}}}_{\hat{\theta}_{2}(X)}) = 1 - \alpha$$

Теперь посмотрим на длину полученного доверительного интервала:

$$(\alpha^{-\frac{1}{n}}-1)X_{(n)}$$

Что мы можем сказать про $\alpha^{-\frac{1}{n}}-1$? Разложим это дело по Тейлору:

$$\alpha^{-\frac{1}{n}} - 1 \sim e^{-\frac{\ln \alpha}{n}} - 1 \sim \frac{-\ln \alpha}{n} = \underline{O}(\frac{1}{n}) \to 0$$

Получается длина доверительного интервала с ростом количества элементов выборки стремится к нулю. Получается мы построили что-то более менее разумное.

Часто в роли центральной статистики можно взять следующую лабуду: $V(X,\theta) = -\sum_{j=1}^n \ln F_{\theta}(X_j)$ — это сумма

независимых распределений, поэтому достаточно показать что одно не зависит от θ — тогда в силу независимости сумма тоже будет не зависеть от θ :

 $P_{\theta}(-\ln F_{\theta}(X_j)\leqslant t)=P_{\theta}(F_{\theta}(X_j)\geqslant e^{-t})=P_{\theta}(X_j\geqslant F_{\theta}^{-1}(e^{-t}))=1-F_{\theta}(F_{\theta}^{-1}(e^{-t}))=1-e^{-t},$ а это экспоненциальное распределение. Сумма экспоненциальных распределений это Гамма распределение \implies $V(X,\theta)=\Gamma(n,1)$

3. Построение асимптотических доверительных интервалов

Пусть у нас есть $\hat{\theta}_n(X)$ — асимптотически нормальная оценка θ с асимптотической дисперсией $\sigma^2(\theta)$. Это значит, что

$$\frac{\sqrt{n}(\hat{\theta}_n(X) - \theta)}{\sigma(\theta)} \xrightarrow{d_{\theta}} Z \sim \mathcal{N}(0, 1)$$

Теперь мы хотим получить доверительный интервал. Если бы у нас $\sigma(\theta)$ была константой, то мы могли бы уже привычно взять там квантили нормального распределения, туды сюды и получить интервал:

$$P_{\theta}(t_1 \leqslant \frac{\sqrt{n}(\hat{\theta}_n(X) - \theta)}{\sigma(\theta)} \leqslant t_2) \to \Phi(t_2) - \Phi(t_1) = 1 - \alpha.$$

Тогда мы могли бы просто взять такие $\Phi(t_2)=1-rac{lpha}{2}$ и $\Phi(t_1)=rac{lpha}{2}$ и получить, что

$$P_{\theta}(\hat{\theta}_n(X) - \frac{t_{1-\frac{\alpha}{2}}\sigma(\theta)}{\sqrt{n}} \leqslant \theta \leqslant \hat{\theta}_n(X) + \frac{t_{1-\frac{\alpha}{2}}\sigma(\theta)}{\sqrt{n}}) \to 1 - \alpha$$

Но тут есть проблема — у нас слева и справа есть $\sigma(\theta)$ в числителе, что совершенно ломает корректность статистики, мы ведь хотим чтобы штуки слева и спрва от θ в неравенстве не зависили от θ . Как это решать? Очень просто, перейти от $\sigma(\theta)$ к состоятельной оценке $\sigma(\theta)$. Возможны следующие случаи:

(a) σ — непрерывная функция

Тогда $\sigma(\hat{\theta}_n(X)) \xrightarrow{P_{\theta}} \sigma(\theta)$ и мы можем везде в наших рассуждениях заменить $\sigma(\theta)$ на $\sigma(\hat{\theta}_n(X))$ и сходимость сохранится:

$$P_{\theta}(\hat{\theta}_n(X) - \frac{t_{1-\frac{\alpha}{2}}\sigma(\hat{\theta}_n(X))}{\sqrt{n}} \leqslant \theta \leqslant \hat{\theta}_n(X) + \frac{t_{1-\frac{\alpha}{2}}\sigma(\hat{\theta}_n(X))}{\sqrt{n}}) \to 1 - \alpha$$

(b) Изначально было ЦПТ

$$\hat{\theta}_n(X) = \overline{X_n}, \sigma^2(\theta) = \mathbb{D}_{\theta}X$$

В таком случае мы можем использовать выборочную дисперсию в качестве состоятельной оценки дисперсии:

$$s^2 = rac{1}{n-1} \sum_{j=1}^n (X_j - \overline{X_n})^2$$
 — выборочная дисперсия

(c) Можно поправить нашу асимптотическую дисперсию: подобрать такую функцию φ , что

$$\sqrt{n}(\varphi(\hat{\theta}_n(X)) - \varphi(\theta)) \to \underbrace{\mathcal{N}(0, 1)}_{=\varphi'(\theta) \cdot \mathcal{N}(0, \sigma^2(\theta))} \implies \varphi'^2(\theta)\sigma^2(\theta) = 1$$

Построение точных доверительных интервалов для параметров нормального распределения.

Матожидание.

Оцениваем параметры случайной величины $\sim \mathcal{N}(a, \sigma^2)$ по выборке X_1, \dots, X_n :

1. σ — известно. Оцениваем матожидание a:

Центрируем и нормируем случайную величину разности оценки и параметра:

$$\sqrt{n} \, rac{\overline{X_n} - a}{\sigma} \sim \mathcal{N}(0,1)$$
 — центральная статистика

Пусть для $t_{1-\frac{\alpha}{2}}$ верно, что $\Phi\left(t_{1-\frac{\alpha}{2}}\right)=1-\frac{\alpha}{2},$ тогда

$$P_{\theta}\left(-t_{1-\frac{\alpha}{2}} \leq \frac{\sqrt{n}(\overline{X_n} - a)}{\sigma} \leq t_{1-\frac{\alpha}{2}}\right) = 1 - \alpha \iff P_{\theta}\left(\underbrace{\overline{X_n} - \frac{t_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}}}_{\hat{\Theta}_1(x)} \leq a \leq \underbrace{\overline{X_n} + \frac{t_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}}}_{\hat{\Theta}_2(x)}\right) = 1 - \alpha$$

 $2. \sigma$ не известно.

Лемма. Пусть
$$X = (X_1, \dots, X_n) \sim \mathcal{N}\left(a, \operatorname{diag}(\sigma^2)\right)$$
, $\operatorname{diag}(\sigma^2) = \begin{pmatrix} \sigma^2 & 0 \\ & \ddots & \\ 0 & \sigma^2 \end{pmatrix}$, $\{X_j\}$ независимы, $\mathbb{D}X_j = \sigma^2$, $\mathbb{E}X_j = a$.

Тогда
$$\overline{X_n}$$
 и $\sum_{j=1}^n (X_j - \overline{X_n})^2$ независимы.

Доказательство. Не ограничивая общности, считаем, что $\mathbb{E}X_j = a = 0$.

Рассмотрим
$$U = \begin{pmatrix} \frac{1}{\sqrt{n}} & \dots & \frac{1}{\sqrt{n}} \\ \star & \dots & \star \\ \star & \dots & \star \end{pmatrix}$$
 — ортогональную, и случайную величину $u = UX \sim \mathcal{N}(0, \operatorname{diag}(\sigma^2)),$

$$(U^*C_xU = U^*\operatorname{diag}(\sigma^2)U = \sigma^2U^*IU = \sigma^2U^*U = \sigma^2I = \operatorname{diag}(\sigma^2))$$

$$\{u_{\sigma}\}$$
 — незав., $\mathbb{E}u_j=0, \mathbb{D}u_j=\sigma^2.$

Далее |u| — вторая векторная норма, т.е. $|u| = \sqrt{u_1^2 + \ldots + u_n^2}$. К слову, вторая норма — унитарно-инвариантна, поэтому |u| = |UX| = |X| в силу ортогональности U.

$$\sum_{j=2}^n u_j^2 = |u|^2 - u_1^2 = |u|^2 - \left(\frac{\sum X_j}{\sqrt{n}}\right)^2 = |X|^2 - n\overline{X_n}^2 \text{ (t.k. } U - \text{opt.)}$$

$$\sum_{j=1}^{n} (X_j - \overline{X_n})^2 = \sum_{j=1}^{n} X_j^2 - 2n\overline{X_n} \frac{1}{n} \sum_{j=1}^{n} X_j + n\overline{X_n}^2 = \sum_{j=1}^{n} X_j^2 - n\overline{X_n}^2$$

$$\sum_{j=2}^n u_j^2 = \sum_{j=1}^n (X_j - \overline{X_n})^2 - \text{независимо с } u_1 = \frac{X_1 + \ldots + X_n}{\sqrt{n}} = \sqrt{n} \ \overline{X_n}$$

При этом $\sum_{j=2}^n u_j^2 = \sigma^2 \sum_{j=2}^n (\sigma^{-1} u_j)^2$, и $\sigma^{-1} u_j \sim \mathcal{N}(0,1)$, то есть

$$\chi_{n-1}^2 = \sum_{i=2}^n \frac{u_j^2}{\sigma^2} = \sum_{i=1}^n \frac{(X_j - \overline{X_n})^2}{\sigma^2} = \sum_{k=1}^{n-1} \xi_k^2, \, \{\xi_k\} \, - \, \text{незав.}, \xi_k \sim \mathcal{N}(0,1),$$

где χ^2_{n-1} — распределение χ -квадрат с (n-1) степенями свободы, распределение величины $\sum_{j=1}^{n-1} \xi_j^2$, ξ_j — независимые нормально распределенные с параметрами 0 и 1 величины.

13

В итоге
$$\overline{X_n}$$
 и $s^2 = \frac{1}{n-1} \sum_{j=1}^n (x_j - \overline{X_n})^2$ независимы и $\sigma^{-2} s^2 \sim \frac{1}{n-1} \chi_{n-1}^2$.

Так как σ неизвестна, заменим ее на $\sqrt{s^2}$ и получим статистику:

$$T_{n-1}(X) = \frac{\sqrt{n}(\overline{X_n} - a)}{\sqrt{s^2}} = \frac{\frac{\sqrt{n}(\overline{X_n} - a)}{\sigma}}{\sqrt{\sigma^{-2}s^2}} \sim \frac{\xi}{\sqrt{\frac{1}{n-1}\chi_{n-1}^2}},$$

 ξ и χ независимы.

 $T_n = \frac{\xi}{\sqrt{\frac{1}{n}\chi_n^2}}$ — распределение Стьюдента с n степенями свободы.

Его плотность:

$$\rho_{T_n}(x) = C_n \left(1 + \frac{x^2}{n} \right)^{-(n+1)/2}$$

Т.к. плотность симметрична, можем выбрать 1 квантиль:

$$F_{T_{n-1}}(t_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}, F_{T_{n-1}}(-t_{1-\frac{\alpha}{2}}) = \frac{\alpha}{2}$$

Попадаем в случай 1 с известной дисперсией:

$$P_{\theta}\left(-t_{1-\frac{\alpha}{2}} \leq \frac{\sqrt{n}(\overline{X_n} - a)}{\sqrt{s^2}} \leq t_{1-\frac{\alpha}{2}}\right) = 1 - \alpha \iff P_{\theta}\left(\underbrace{\overline{X_n} - \frac{t_{1-\frac{\alpha}{2}}\sqrt{s^2}}{\sqrt{n}}}_{\hat{\Theta}_1(x)} \leq a \leq \underbrace{\overline{X_n} + \frac{t_{1-\frac{\alpha}{2}}\sqrt{s^2}}{\sqrt{n}}}_{\hat{\Theta}_2(x)}\right) = 1 - \alpha$$

Дисперсия.

Из доказательства леммы выше:

$$\sigma^{-2}(n-1)S_n^2 \sim \chi_{n-1}^2$$

Выберем $x_{\alpha/2}$ и $x_{1-\alpha/2}$ такое, что $F_{\chi^2_{n-1}}(x_{\alpha/2})=\alpha/2$ и $F_{\chi^2_{n-1}}(1-x_{\alpha/2})=1-\alpha/2$ ($F_{\chi^2_{n-1}}-$ функция распределения случайной величины χ^2_{n-1}). Тогда

$$P\left(x_{\alpha/2} \le \frac{(n-1)S_n^2}{\sigma^2} \le x_{1-\alpha/2}\right) = 1 - \alpha,$$

и интервал уровня $1 - \alpha$ имеет вид

$$\left(\frac{\sqrt{n-1}\,S_n}{\sqrt{x_{1-\alpha/2}}},\,\,\frac{\sqrt{n-1}\,S_n}{\sqrt{x_{\alpha/2}}}\right).$$

Проверка гипотез. Ошибки 1-го и 2-го рода. Уровень значимости и мощность статистического критерия. Пример построения критерия с помощью доверительного интеграла. Нижняя оценка суммы вероятностей ошибок 1-го и 2-го рода.

Проверка гипотез

Пускай есть выборка X_1, \ldots, X_n с распределением P_{θ} .

Определение. Предположения о значениях θ и называются статистическими гипотезами.

Пример. $H_0: \theta \in \Theta_0$ — статистическая гипотеза

Определение. Простая гипотеза (одноточечная гипотеза) — гипотеза вида H_0 : $\theta = \Theta_0$, где $\Theta = \{\theta_0\}$

Определение. Гипотеза H_1 : $\theta = \Theta_1$ — альтернативная гипотеза

Пример. H_1 : $\theta = \overline{\Theta_0}$ — альтернативная гипотеза

Для проверки гипотез, строят критерий на основе критического множества как правило $\subset \mathbb{R}^n$, то есть действуют по такому принципу:

Выделяют в области значения параметров критического множества K, так, что $\forall \theta \in \Theta_0, P_{\theta}((X_1 \dots X_n) \in K)$ — «маленькая», тогда $X_1 \dots X_n \in K$ свидетельствует против гипотезы H_0 , то есть если $X = (X_1 \dots X_n) \in K \Rightarrow H_0$ отклоняется, иначе принимается.

Далее $X = (X_1 \dots X_n)$

Ошибки 1-го и 2-го рода

Пусть у нас есть критическое множество K. При проверке гипотез мы могли совершить две ошибки:

Определение. Ошибка первого рода: отклонение верной гипотезы H_0 , то есть это $P_{\theta}(X \in K)$. В случае простой гипотезы $P_{\theta_0}(X \in K)$

Определение. Ошибка второго рода: принятие ложной гипотезы H_0 , то есть это $P_{\theta}(X \notin K)$. В случае простой гипотезы $P_{\theta_1}(X \notin K)$

Уровень значимости и мощность статистического критерия

Определение. Критерий K имеет уровень значимости α , если вероятность ошибки первого рода меньше либо равна α , то есть P_{θ} ($X \in K$) $\leqslant \alpha$.

Определение. Мощность критерия K это величина, равная 1 - вероятность ошибки второго рода, то есть $1-P_{\theta}(X\notin K)=P_{\theta}(X\in K)$. В случае простой гипотезы величина $\beta=P_{\theta_1}(X\in K)$ — мощность $\theta\in\Theta_1$

Если имеются два критерия K,S уровня значимости α , то K более мощный, чем S если

$$\forall \theta \in \Theta_1 : P_{\theta}(X \in K) \geqslant P_{\theta}(X \in S)$$

Пример построения критерия с помощью доверительного интеграла

Пример. Пускай $X_1, \ldots, X_n \sim \mathcal{N}(\theta, 1)$

 $H_0: \theta = \theta_0$

 $H_1:\theta=\theta_1$

Ранее при данных условиях мы получили следующий доверительный интервал:

$$P_{\theta_0}\left(\overline{X_n} - \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{n}} \leqslant \theta_0 \leqslant \overline{X_n} + \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{n}}\right) = P_{\theta_0}\left(\theta_0 - \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{n}} \leqslant \overline{X_n} \leqslant \theta_0 + \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{n}}\right) = 1 - \alpha$$

Выберем критическое множество $K\colon \left\{X\colon \overline{X_n}>\theta_0+\frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{n}}\right\}\cup \left\{X\colon \overline{X_n}<\theta_0-\frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{n}}\right\}$ Тогда $P_{\theta_0}(X\in K)=1-(1-\alpha)=\alpha$

Найдем ошибку второго рода:

$$P_{\theta_{1}}(X \notin K) = P_{\theta_{1}}\left(\theta_{0} - \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{n}} \leqslant \overline{X_{n}} \leqslant \theta_{0} + \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{n}}\right) =$$

$$= P_{\theta_{1}}\left(\sqrt{n}\left(\theta_{0} - \theta_{1}\right) - Z_{1-\frac{\alpha}{2}} \leqslant \underbrace{\sqrt{n}\left(\overline{X_{n}} - \theta_{1}\right)}_{\sim \mathcal{N}(0,1)} \leqslant \sqrt{n}\left(\theta_{0} - \theta_{1}\right) + Z_{1-\frac{\alpha}{2}}\right) =$$

$$= \Phi\left(\sqrt{n}\left(\theta_{0} - \theta_{1}\right) + Z_{1-\frac{\alpha}{2}}\right) - \Phi\left(\sqrt{n}\left(\theta_{0} - \theta_{1}\right) - Z_{1-\frac{\alpha}{2}}\right)$$

Посмотрим, что происходит при $n \to \infty$:

1.
$$\theta_0 > \theta_1 \implies P_{\theta_1}(X \notin K) \to 0$$

2.
$$\theta_0 < \theta_1 \implies P_{\theta_1}(X \notin K) \to 0$$

Таким образом, мы получили состоятельный критерий.

Нижняя оценка суммы вероятностей ошибок 1-го и 2-го рода

Теорема. Пусть у нас есть две гипотезы:

1.
$$H_0: \rho = f_0$$

2.
$$H_1: \rho = f_1$$

Сумма ошибки первого рода и ошибки второго рода больше либо равна $1-\frac{1}{2}\int\limits_{\mathbb{T}_2}|f_0-f_1|dx$

Доказательство. Найдем сумму ошибок первого и второго рода:

$$P_0(X \in K) + P_1(X \notin K) = \int_K f_0 dx + \int_{\mathbb{R}^n \setminus K} f_1 dx = 1 + \int_K (f_0 - f_1) dx \geqslant$$

$$\underbrace{\prod_{1 = \int_K f_1 dx} f_1 dx}_{1 = \int_K f_1 dx} = 1 + \int_K (f_0 - f_1) dx \geqslant$$

Введем множество $S = \{f_0 \leqslant f_1\}$

$$\geqslant 1 + \int_{K \cap S} (f_0 - f_1) dx \geqslant 1 + \int_{S} (f_0 - f_1) dx$$

Рассмотрим отдельно интеграл $\int\limits_S (f_0-f_1)dx$:

$$\int_{S} (f_0 - f_1) dx = \int_{S} f_0 dx - \int_{S} f_1 dx = 1 - \int_{\mathbb{R}^n \setminus S} f_0 dx - 1 + \int_{\mathbb{R}^n \setminus S} f_1 dx = \int_{\mathbb{R}^n \setminus S} (f_1 - f_0) dx$$

В силу того, как мы выбрали множество S, можно увидеть, что

1.
$$\int_{S} (f_0 - f_1) dx = -\int_{S} |f_0 - f_1| dx$$

2.
$$\int_{\mathbb{R}^n \setminus S} (f_1 - f_0) dx = -\int_{\mathbb{R}^n \setminus S} |f_0 - f_1| dx$$

Тогда мы получаем, что

$$-\int\limits_{\mathbb{R}^n\backslash S}|f_0-f_1|dx = -\int\limits_{S}|f_0-f_1|dx = -\frac{1}{2}\int\limits_{\mathbb{R}^n}|f_0-f_1|dx \implies P_0(X\in K) + P_1(X\notin K)\geqslant 1 - \frac{1}{2}\int\limits_{\mathbb{R}^n}|f_0-f_1|dx$$

Теорема Неймана-Пирсона и пример её применения.

Теорема Неймана-Пирсона

Пусть гипотеза H_0 утверждает, что плотность выборки – это f_0 , а альтернативная гипотеза H_1 утверждает, что плотность выборки – это f_1 .

Предположим, что $\forall \alpha \in [0,1] \exists t := t(\alpha) : P_0(f_1(x) \geqslant t f_0(x)) = \alpha.$

Теорема (Неймана-Пирсона). В такой постановке наиболее мощный критерий уровня значимости α имеет вид $K_{t(\alpha)} := \{f_1(x) \ge t(\alpha)f_0(x)\}.$

Доказательство. Пусть S – тоже критерий уровня значимости α : $P_0(X \in S) \leqslant \alpha = P_0(X \in K_{t(\alpha)})$. Хотим сравнить $P_1(X \in K_{t(\alpha)}) - P_1(X \in S)$. Хотим, чтобы это было больше либо равно нуля. Это и будет означать, что у нас критерий наиболее мощный.

$$P_1(X \in K_{t(\alpha)}) - P_1(X \in S) = \int\limits_{K_{t(\alpha)}} f_1 dx - \int\limits_{S} f_1 dx = [$$
 можем выкинуть пересечение, так как на пересечении эти инте-

гралы просто сократятся] = $\int\limits_{K_{t(\alpha)}\backslash S}^{\infty} f_1 dx - \int\limits_{S\backslash K_{t(\alpha)}}^{} f_1 dx.$

Заметим, что на $S \setminus K_{t(\alpha)}$ выполнено $f_1 < t(\alpha) f_0$, так как это взято из дополнения к $K_{t(\alpha)}$, где по условию выполняется $f_1(x) \geqslant t(\alpha) f_0(x)$. Поэтому имеем: $\int\limits_{K_{t(\alpha)} \setminus S} f_1 dx - \int\limits_{S \setminus K_{t(\alpha)}} f_1 dx \geqslant t(\alpha) \int\limits_{K_{t(\alpha)} \setminus S} f_0 dx - t(\alpha) \int\limits_{S \setminus K_{t(\alpha)}} f_0 dx = [\text{снова добавим пересечение и вынесем } t(\alpha)] = t(\alpha) \cdot (\int\limits_{K_{t(\alpha)}} f_0 dx - \int\limits_{S} f_0 dx) = t(\alpha) \cdot (P_0(X \in K_{t(\alpha)}) - P_0(X \in S)) \geqslant 0$ из построения

критерия S $(P_0(X \in S) \leqslant \alpha = P_0(X \in K_{t(\alpha)})).$

Получили: $P_1(X \in K_{t(\alpha)}) - P_1(X \in S) \geqslant 0$, что и требовалось доказать.

Пример применения теоремы Неймана-Пирсона

Пример. Пусть у нас выборка из нормального закона $N(\theta,1)$. Пусть наша гипотеза H_0 говорит, что $\theta=\theta_0$, а альтернативная гипотеза H_1 говорит, что $\theta=\theta_1>\theta_0$.

$$f_1(X) = \frac{1}{\sqrt{2\pi}^n} \cdot \exp\left(-\frac{1}{2} \sum_{j=1}^n (X_j - \theta_1)^2\right)$$
$$f_0(X) = \frac{1}{\sqrt{2\pi}^n} \cdot \exp\left(-\frac{1}{2} \sum_{j=1}^n (X_j - \theta_0)^2\right)$$

Зададим критерий K_t из теоремы Неймана-Пирсона (ничего в 0 не обращается – сразу можем поделить):

$$K_t = \left\{ \frac{f_1}{f_0} \geqslant t \right\} = \left\{ exp\left(\frac{1}{2}\sum_{j=1}^n [(X_j - \theta_0)^2 - (X_j - \theta_1)^2]\right) \geqslant t \right\} = [\text{логарифмируем, расскрываем скобки, умножаем на}$$

$$\text{два}] = \left\{ \sum_{j=1}^n [2X_j(\theta_1 - \theta_0)] + n(\theta_0^2 + \theta_1^2) \geqslant 2 \ln t \right\} = \left\{ (\theta_1 - \theta_0)\overline{X_n} \geqslant \frac{\ln t}{n} - \frac{(\theta_0^2 + \theta_1^2)}{2} \right\} = [\text{по условию } \theta_1 > \theta_0 \Rightarrow \text{поделим}]$$

$$= \left\{ \overline{X_n} \geqslant \frac{\frac{\ln t}{n} - \frac{(\theta_0^2 + \theta_1^2)}{2}}{\theta_1 - \theta_0} \right\}$$

Таким образом пришли к тому, что $K_t = \left\{ \frac{f_1}{f_0} \geqslant t \right\}$ равносильно множеству $\widetilde{K}_s = \left\{ \overline{X_n} \geqslant s \right\}$. Равносильно в том смысле, что для каждого t мы можем подобрать s(t), что множество K_t совпадает с $\widetilde{K}_{s(t)}$. Теперь будем искать критические множества именно в таком виде (для удобства).

Должно выполняться: $P_0(X \in K_t) = \alpha \Leftrightarrow P_0(X \in \widetilde{K}_{s(t)}) = \alpha$. А что это за вероятности? Это вероятность $P_{\theta_0}(\overline{X_n} \geqslant s) = \alpha$ То есть, $P_{\theta_0}(\sqrt{n}(\overline{X_n} - \theta_0) \geqslant \sqrt{n}(s - \theta_0)) = \alpha$, где $\sqrt{n}(\overline{X_n} - \theta_0) \sim N(0, 1)$, поэтому тут просто написано, что $1 - \Phi(\sqrt{n}(s - \theta_0)) = \alpha$.

Значит, выбираем квантиль нормального закона уровня $1-\alpha$: $Z_{1-\alpha}=\sqrt{n}(s-\theta_0)\Rightarrow$ $s = \theta_0 + \frac{Z_{1-\alpha}}{\sqrt{n}}$. Выразили s.

Таким образом, наше критическое множество $\left\{\overline{X_n} \geqslant \theta_0 + \frac{Z_{1-\alpha}}{\sqrt{n}}\right\}$. Это критерий уровня значимости α .

Теперь посчитаем мощность (это же самый мощный критерий):
$$P_{\theta_1}\left(\overline{X_n}\geqslant\theta_0+\frac{Z_{1-\alpha}}{\sqrt{n}}\right)=P_{\theta_1}\left(\sqrt{n}(\overline{X_n}-\theta_1)\geqslant\sqrt{n}(\theta_0-\theta_1)+Z_{1-\alpha}\right)=1-\Phi(\sqrt{n}(\theta_0-\theta_1)+Z_{1-\alpha}).$$

Заметим, что если объём выборки n устремить к бесконечности, то точка, в которой мы берём Φ стремится к минус бесконечности (так как $(\theta_0 - \theta_1) < 0$ по условию), поэтому мощность стремится к 1.

По теореме Неймана-Пирсона выписанная мощность максимальна.

Эмпирическая функция распределения. Теорема Гливенко-Кантелли.

Эмпирическая функция распределения

Говоря об эмпирическом распредлениии и эмпирической функции распределения, мы в качестве параметра θ рассматриваем как бы само распределение, " $\theta = P$ ".

Определение. Пусть X_1,\dots,X_n - выборка из распредления с функцией распределения F. Эмпирическим распределением будем называть $P_n^*(B) = \frac{\#\{X_j \in B\}}{n} = \frac{1}{n} \sum_{i=1}^n I_{\{X_j \in B\}}$, где B - множество, # - обозначает "количество".

Сразу заметим, что:

1.
$$\mathbb{E}[P_n^*(B)] = \mathbb{E}[I_{X_1 \in B}] = P(X_1 \in B)$$

2. По УЗБЧ
$$P_n^*(B) = \frac{1}{n} \sum_{j=1}^n I_{\{X_j \in B\}} \xrightarrow{\text{п.н.}} \mathbb{E}\big[I_{X_1 \in B}\big] = P(X_1 \in B)$$

Рассмотрев в определении эмпирического распределения луч вместо множества, получим эмпирическую функцию распределения.

Определение. Пусть X_1,\dots,X_n - выборка из распредления с функцией распределения F. Эмпирической функцией распределения будем называть случайную величину $F_n^*(t) = \frac{1}{n} \sum_{i=1}^n I_{\{X_j \leqslant t\}}$

Заметим:

1.
$$\mathbb{E}[F_n^*(t)] = \frac{1}{n} \sum_{i=1}^n P(X_i \le t) = P(X_1 \le t) = F(t)$$

2. По УЗБЧ
$$F_n^*(t) \xrightarrow{\text{п.н.}} F(t)$$

Теорема Гливенко-Кантелли

Теорема (Гливенко-Кантелли). Пусть X_1, \ldots, X_n - выборка из распредления с функцией распределения F. Тогда:

$$\sup_{t} |F_n^*(t) - F(t)| \xrightarrow{\text{п.н.}} 0$$

Доказательство.

Докажем только для непрерывной F.

Зафиксируем $N \in \mathbb{N}$ и выберем точки t_0, t_1, \ldots, t_n такие, что

$$F(t_0) = 0, F(t_1) = \frac{1}{N}, \dots, F(t_k) = \frac{k}{N}, \dots, F(t_N) = 1$$

Для определенности $t_0=-\infty, t_N=+\infty.$

Посмотрим, что происходит с разностью эмпирической и реальной функций распределения на промежутках вида $t \in [t_k, t_{k+1}]$.

$$F_n^*(t) - F(t) \leqslant \Big[$$
Оцениваем сверху. Хотим получить в F_n^* значение побольше, а в F - поменьше.

Поэтому, используя монотонность, подставляем соответствующие точки из промежутка $\Big| \leqslant F_n^*(t_{k+1}) - F(t_k) = 0$

$$= F_n^*(t_{k+1}) - F(t_{k+1}) + \frac{1}{N}$$

Теперь оценим снизу.

$$F_n^*(t) - F(t) \ge F_n^*(t_k) - F(t_{k+1}) = F_n^*(t_k) - F(t_k) - \frac{1}{N}$$

Получаем:

$$F_n^*(t_k) - F(t_k) - \frac{1}{N} \leqslant F_n^*(t) - F(t) \leqslant F_n^*(t_{k+1}) - F(t_{k+1}) + \frac{1}{N}$$

$$|F_n^*(t) - F(t)| \le \max_{0 \le k \le N-1} |F_n^*(t_k) - F(t_k)| + \frac{1}{N},$$

$$\sup_{t} |F_n^*(t) - F(t)| \le \max_{0 \le k \le N-1} |F_n^*(t_k) - F(t_k)| + \frac{1}{N}$$

(Навесили слева супремум по t, т.к. правая часть от t не зависит)

Введем множество $A_N = \left\{ \omega : \forall k \in \{0,\dots,N\} \ F_n^*(t_k) \xrightarrow[n \to \infty]{(\omega)} F(t_k) \right\}$ - пересечение конечного числа событий вероятности 1 (т.к. по УЗБЧ $\forall t_k \ F_n^*(t_k) \xrightarrow[n \to \infty]{\text{п.н.}} F(t_k)$), поэтому $P(A_N) = 1$. Если $\omega \in A_N$, то

$$\overline{\lim}_{n\to\infty} \sup_{t} |F_n^*(t) - F(t)| \leqslant \frac{1}{N}$$

Теперь пересечем множества: $A=\bigcap_{N=1}^{\infty}A_N\Rightarrow P(A)=1$ - пересекли счетное число событий вероятности 1. Если $\omega\in A$, то

$$\overline{\lim}_{n\to\infty}\sup_{t}|F_{n}^{*}(t)-F(t)|\leqslant\frac{1}{N}\;\forall N\in\mathbb{N},$$

$$\begin{bmatrix}\lim_{N\to\infty}\end{bmatrix}$$

$$\overline{\lim}_{n\to\infty}\sup_{t}|F_{n}^{*}(t)-F(t)|\leqslant0,$$

$$0\leqslant\underline{\lim}_{n\to\infty}\sup_{t}|F_{n}^{*}(t)-F(t)|\leqslant\overline{\lim}_{n\to\infty}\sup_{t}|F_{n}^{*}(t)-F(t)|\leqslant0,$$

$$\forall\omega\in A\;\lim_{n\to\infty}\sup_{t}|F_{n}^{*}(t)-F(t)|=0$$