Mattias Villani Department of Statistics Stockholm University Dept of Computer and Information Science Linköping University

Computer Lab 3 - Variational Inference

The labs are the only examination, so you should do the labs **individually**. You can use any programming language you prefer, but do **submit the code**. Submit a readable report in **PDF** (no Word documents!) or a **JuPyteR notebook**

1. AR process with steady state parametrization. Consider the autoregressive process of first order

$$y_t = \mu + \phi(y_{t-1} - \mu) + \varepsilon_t$$
, where $\varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$

for $t=1,\ldots,T$ and μ is the unconditional mean of the process $\mathbb{E}(y_t)=\mu$. Assume the priors $\mu \sim N(0,\sigma_{\mu}^2), \ \phi|\sigma^2 \sim N(0,\sigma^2/\kappa_0)$ and $\sigma^2 \sim \text{Inv}-\chi^2(\nu_0,\sigma_0^2)$. For simplicity we do not impose the stationarity restriction $-1 < \phi < 1$, but instead set $\sigma_0^2 = 1$, $\kappa_0 = 8$ and $\nu_0 = 4$, so the process is stationary with prior probability ≈ 0.95 [Note that the marginal prior for ϕ is $t_{\nu_0}(0,\sigma_0^2/\kappa_0)$ so these values gives $\Pr(-1 < \phi < 1) \approx 0.95$].

(a) Derive the three full conditional posteriors $p(\phi|\mu, \sigma^2, \boldsymbol{y}), \ p(\sigma^2|\phi, \mu, \boldsymbol{y})$ and $p(\mu|\phi, \sigma^2, \boldsymbol{y})$ where \boldsymbol{y} is a time series of length T. Assume that $y_0 = 0$ so that the likelihood can be set up conditional on this pre-sample value. It is OK to refer to results from these slides https://github.com/mattiasvillani/Talks/raw/master/GuestLectureKTH2020.pdf instead of doing boring completions of squares.

[Hint 1: when the pre-sample value y_0 is known, AR processes are estimated just like linear regressions].

[Hint 2: The joint posterior is anatytically intractable because of the product of parameters, $\phi\mu$, but the full conditional posteriors are tractable].

[Hint 3: when deriving full conditional posteriors it is helpful to think about the *model* when the conditioning parameters are known. One can then often rewrite the model so that the full conditional posterior is immediate from the results in https://github.com/mattiasvillani/Talks/raw/master/GuestLectureKTH2020.pdf].

- (b) Code up a Gibbs sampler using these full conditionals and simulate from the posterior for the time series in file timeseries.csv. Set $\sigma_{\mu} = 2$.
- (c) Derive a mean-field variational approximation for the posterior $p(\mu, \phi, \sigma^2 | \boldsymbol{y})$, code it up, and compare the VI approximation of the posterior to the results in 1b).
- (d) Code up the Fixed Form VI algorithm with control variate and adaptive learning rate (Algorithm 3 in Tran's notes) to approximate the posterior distribution $p(\mu, \phi, \sigma^2 | \boldsymbol{y})$ for the data in file timeseries.csv. Use a multivariate normal as approximating density for $p(\mu, \phi, \psi | \boldsymbol{y})$ where $\psi = \log \sigma^2$. Compare the accuracy of this approximation to 1b) and 1c).

Good luck! Remember that sometimes an approximate answer is the correct answer!