Vector Algebra

Previous Years' CBSE Board Questions

10.2 Some Basic Concepts

VSA (1 mark)

 Find a vector ā of magnitude 5√2, making an angle of $\frac{\pi}{4}$ with x-axis, $\frac{\pi}{2}$ with y-axis and an acute angle θ (AI 2014) EV with z-axis.

SAI (2 marks)

Find a vector \vec{r} equally inclined to the three axes and whose magnitude is $3\sqrt{3}$ units.

10.3 Types of Vectors

MCO

- 3. Two vectors $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ are collinear if
 - (a) $a_1b_1 + a_2b_2 + a_3b_3 = 0$ (b) $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$
 - (c) a₁ = b₁, a₂ = b₂, a₃ = b₃
 - (d) $a_1 + a_2 + a_3 = b_1 + b_2 + b_3$ (2023)
- The value of p for which p(î+ î+k) is a unit vector is
- (b) $\frac{1}{\sqrt{2}}$ (c) 1

(2020) Ap

10.4 Addition of Vectors

MCQ

- ABCD is a rhombus, whose diagonals intersect at E. Then EA+EB+EC+ED equals
- (b) AD
- 2BC
- (d) 2AD

(2020) Ap

10.5 Multiplication of a Vector by a Scalar

MCQ

- A unit vector along the vector 4î-3k is
 - (a) $\frac{1}{2}(4\hat{i} 3\hat{k})$
- (b) $\frac{1}{5}(4\hat{i}-3\hat{k})$
- (c) $\frac{1}{\sqrt{2}}(4\hat{i}-3\hat{k})$
- (d) $\frac{1}{\sqrt{e}}(4\hat{i}-3\hat{k})$

VSA (1 mark)

The position vector of two points A and B are $\overline{OA} = 2\hat{i} - \hat{j} - \hat{k}$ and $\overline{OB} = 2\hat{i} - \hat{j} + 2\hat{k}$, respectively. The position vector of a point P which divides the line segment joining A and B in the ratio 2:1 is .

(2020) An

- Find the position vector of a point which divides the join of points with position vectors $\vec{a}-2\vec{b}$ and $2\vec{a}+\vec{b}$ externally in the ratio 2:1. (Delhi 2016) An
- Write the position vector of the point which divides the join of points with position vectors $3\vec{a}-2\vec{b}$ and $2\vec{a} + 3\vec{b}$ in the ratio 2:1. (AI 2016)
- Find the unit vector in the direction of the sum of the vectors $2\hat{i} + 3\hat{j} - \hat{k}$ and $4\hat{i} - 3\hat{i} + 2\hat{k}$. (Foreign 2015)
- 11. Find a vector in the direction of $\vec{a} = \hat{i} 2\hat{j}$ that has (Delhi 2015C) magnitude 7 units.
- Write the direction ratios of the vector 3a + 2b where $\vec{a} = \hat{i} + \hat{i} - 2\hat{k}$ and $\vec{b} = 2\hat{i} - 4\hat{i} + 5\hat{k}$. (AI 2015C) An
- 13. Write a unit vector in the direction of the sum of the vectors $\vec{a} = 2\hat{i} + 2\hat{j} - 5\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - 7\hat{k}$.

(Delhi 2014)

- 14. Find the value of 'p' for which the vectors $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} = 2p\hat{j} + 3\hat{k}$ are parallel. (Al 2014) An
- Find a vector in the direction of vector 2î 3ĵ + 6k which has magnitude 21 units. (Foreign 2014)
- Write a unit vector in the direction of vector PO. where P and Q are the points(1, 3, 0) and (4, 5, 6) respectively. (Foreign 2014)
- Write a vector in the direction of the vector î 2ĵ + 2k (Delhi 2014C) An that has magnitude 9 units.

SAI (2 marks)

18. X and Y are two points with position vectors $3\vec{a} + \vec{b}$ and $\vec{a}-3\vec{b}$ respectively. Write the position vector of a point Z which divides the line segment XY in the ratio (AI 2019) Cr 2:1 externally.

LAI (4 marks)

 The two vectors j+k and 3i-j+4k represent the two sides AB and AC, respectively of a △ABC. Find the length of the median through A. (Delhi 2016, Foreign 2015)

10.6Product of Two Vectors

MCQ

- 20. If θ is the angle between two vectors \vec{a} and \vec{b} , then $\vec{a} \cdot \vec{b} \ge 0$ only when
 - (a) $0 < \theta < \frac{\pi}{2}$
- (b) $0 \le \theta \le \frac{\pi}{2}$
- (2023)
- 21. The magnitude of the vector $6\hat{i} = 2\hat{j} + 3\hat{k}$ is
 - (b) 5 (2023)

- 22. If the projection of $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is
 - (a) 0

- (b) 1
- (c) $\frac{-2}{3}$
- (d) $\frac{-3}{2}$
- (2020) 🗥
- If î, ĵ, k are unit vectors along three mutually perpendicular directions, then
 - (a) $\hat{i} \cdot \hat{j} = 1$
- (b) $\hat{i} \times \hat{j} = 1$
- (c) $\hat{i} \cdot \hat{k} = 0$
- (d) $\hat{i} \times \hat{k} = 0$ (2020) Ap

VSA (1 mark)

- 24. Find the magnitude of vector \vec{a} given by $\vec{a} = (\hat{i} + 3\hat{j} 2\hat{k}) \times (-\hat{i} + 3\hat{k})$. (2021C)
- 25. If $\vec{a} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = 5\hat{i} 3\hat{j} 4\hat{k}$ then find the ratio

 projection of vector \vec{a} on vector \vec{b} projection of vector \vec{b} on vector \vec{a} (2020C)
- The area of the parallelogram whose diagonals are
 and -3k is ______ square units. (2020)
- 27. The value of λ for which the vectors $2\hat{i} \lambda\hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} \hat{k}$ are orthogonal is ______. (2020)
- Find the magnitude of each of the two vectors a and b, having the same magnitude such that the angle

between them is 60° and their scalar product is $\frac{9}{2}$.

(2018) An

- 29. Write the number of vectors of unit length perpendicular to both the vectors $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{j} + \hat{k}$. (Al 2016)
- 30. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then write the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.

 (NCERT, Foreign 2016)

31. If $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$ and $|\vec{a}| = 5$ then write the value of $|\vec{b}|$. (Foreign 2016)

- 32. If $\vec{a} = 7\hat{i} + \hat{j} 4\hat{k}$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$, then find the projection of \vec{a} on \vec{b} . (Delhi 2015)
- 33. If \hat{a} , \hat{b} and \hat{c} are mutually perpendicular unit vectors, then find the value of $|2\hat{a}+\hat{b}+\hat{c}|$. (Al 2015)
- 34. Write a unit vector perpendicular to both the vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. (Al 2015)
- 35. Find the area of a parallelogram whose adjacent sides are represented by the vectors $2\hat{i} 3\hat{k}$ and $4\hat{j} + 2\hat{k}$. (Foreign 2015)
- 36. If \vec{a} and \vec{b} are unit vectors, then what is the angle between \vec{a} and \vec{b} so that $\sqrt{2}\vec{a}-\vec{b}$ is a unit vector? (Delhi 2015C) $|\vec{A}\vec{n}|$

- 37. Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = 2\hat{i} + 2\hat{j} + \hat{k}$. (Al 2015C)
- Find the projection of vector î+3ĵ+7k on the vector 2î-3ĵ+6k.
 (Delhi 2014) U
- If \(\bar{a}\) and \(\bar{b}\) are two unit vectors such that \(\bar{a} + \bar{b}\) is also a unit vector, then find the angle between \(\bar{a}\) and \(\bar{b}\)
 (Delhi 2014) (\(\bar{A}\))
- 40. If vectors \vec{a} and \vec{b} are such that, $|\vec{a}|=3, |\vec{b}|=\frac{2}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector, then write the angle between \vec{a} and \vec{b} .

 (Delhi 2014) \vec{c}
- 41. If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a}+\vec{b}|=13$ and $|\vec{a}|=5$, find the value of $|\vec{b}|$ (Al 2014) An
- 42. Write the projection of the vector $\hat{i} + \hat{j} + \hat{k}$ along the vector \hat{j} . (Foreign 2014)
- 43. Write the value of $\hat{i} \times (\hat{j} + \hat{k}) + \hat{j} \times (\hat{k} + \hat{i}) + \hat{k} \times (\hat{i} + \hat{j})$.

 (Foreign 2014)
- 44. Write the projection of the vector $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$. (Delhi 2014C)
- 45. If \vec{a} and \vec{b} are unit vectors, then find the angle between \vec{a} and \vec{b} , given that $(\sqrt{3}\vec{a}-\vec{b})$ is a unit vector. (Delhi 2014C)
- 46. Write the value of cosine of the angle which the vector \(\vec{a} = \hat{i} + \hat{j} + \hat{k}\) makes with y-axis.

(Delhi 2014C) (Ap)

- 47. If $|\vec{a}|=8$, $|\vec{b}|=3$ and $|\vec{a}\times\vec{b}|=12$, find the angle between \vec{a} and \vec{b} . (Al 2014C)
- 48. Find the angle between x-axis and the vector $\hat{i} + \hat{j} + \hat{k}$.

 (Al 2014C)

SAI (2 marks)

- 49. If $\vec{a}=4\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2\hat{i}-2\hat{j}+\hat{k}$, then find a unit vector along the vector $\vec{a}\times\vec{b}$. (2023)
- 50. If the vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 3$, $|\vec{b}| = \frac{2}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector, then find the angle between \vec{a} and \vec{b} . (2023)
- 51. Find the area of a parallelogram whose adjacent sides are determined by the vectors \(\vec{a} = \hat{i} \hat{j} + 3\hat{k}\) and \(\vec{b} = 2\hat{i} 7\hat{j} + \hat{k}\). (2023)
- 52. Write the projection of the vector $(\vec{b}+\vec{c})$ on the vector \vec{a} where $\vec{a}=2\hat{i}-2\hat{j}+\hat{k}$, $\vec{b}=\hat{i}+2\hat{j}-2\hat{k}$ and $\vec{c}=2\hat{i}-\hat{j}+4\hat{k}$. (Term II, 2021-22)
- 53. If \(\vec{a} = \hat{i} + \hat{j} 2\hat{k}\) and \(\vec{b} = -\hat{i} + 2\hat{j} + 2\hat{k}\) and \(\vec{c} = -\hat{i} + 2\hat{j} \hat{k}\) are three vectors, then find a vector perpendicular to both the vectors \((\vec{a} + \vec{b})\) and \((\vec{b} \vec{c})\). (Term II, 2021-22C)

54. \vec{a} and \vec{b} are two unit vectors such that $|2\vec{a}+3\vec{b}| = |3\vec{a}-2\vec{b}|$. Find the angle between \vec{a} and \vec{b} .

(Term II, 2021-22)

- 55. If $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$ and $|\vec{b}| = 5$, then find the value of $|\vec{a}|$. (Term II, 2021-22)
- 56. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} \hat{k}$, then find $|\vec{b}|$.

 (Term II, 2021-22)
- 57. If \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.

(Term II, 2021-22C)

58. If \vec{a} and \vec{b} are two vectors such that $|\vec{a} + \vec{b}| = |\vec{b}|$, then prove that $(\vec{a} + 2\vec{b})$ is perpendicular to \vec{a} .

(Term II, 2021-22)

- 59. If the sides AB and BC of a parallelogram ABCD are represented as vectors $\overline{AB} = 2\hat{i} + 4\hat{j} 5\hat{k}$ and $\overline{BC} = \hat{i} + 2\hat{j} + 3\hat{k}$, then find the unit vector along diagonal AC. (2021C)
- 60. Find a unit vector perpendicular to each of the vectors \vec{a} and \vec{b} where $\vec{a} = 5\hat{i} + 6\hat{j} 2\hat{k}$ and $\vec{b} = 7\hat{i} + 6\hat{j} + 2\hat{k}$. (2020)
- 61. Show that $|\vec{a}|\vec{b}+|\vec{b}|\vec{a}$ is perpendicular to $|\vec{a}|\vec{b}-|\vec{b}|\vec{a}$, for any two non-zero vectors \vec{a} and \vec{b} . (2020 C)
- 62. Show that for any two non-zero vectors \vec{a} and \vec{b} , $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ iff \vec{a} and \vec{b} are perpendicular vectors. (2020)
- 63. Show that the vectors $2\hat{i} = \hat{j} + \hat{k}$, $3\hat{i} + 7\hat{j} + \hat{k}$ and $5\hat{i} + 6\hat{j} + 2\hat{k}$ form the sides of a right-angled triangle. (2020)
- If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is √3. (Delhi 2019)
- 65. Let $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{b} = 3\hat{i} \hat{j} + 2\hat{k}$ be two vectors. Show that the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} \vec{b})$ are perpendicular to each other. (Al 2019)
- 66. Find a unit vector perpendicular to both \vec{a} and \vec{b} where $\vec{a} = 4\hat{i} \hat{j} + 8\hat{k}$ and $\vec{b} = -\hat{j} + \hat{k}$ (2019 C)
- 67. If $|\vec{a}|=2$, $|\vec{b}|=7$ and $\vec{a}\times\vec{b}=3\hat{i}+2\hat{j}+6\hat{k}$, find the angle between \vec{a} and \vec{b} . (2019)
- 68. For any two vectors, \vec{a} and \vec{b} , prove that $(\vec{a} \times \vec{b})^2 = \vec{a}^2 \vec{b}^2 (\vec{a} \cdot \vec{b})^2 \qquad (2019)$
- 69. If θ is the angle between two vectors $\hat{i} 2\hat{j} + 3\hat{k}$ and $3\hat{i} 2\hat{j} + \hat{k}$, find $\sin \theta$. (2018)

SAII (3 marks)

70. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$, then find a unit vector perpendicular to both $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$. (2023)

- 71. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Evaluate the quantity $\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, if $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 2$. (2023)
- 72. The two adjacent sides of a parallelogram are represented by 2î-4ĵ-5k and 2î+2ĵ+3k. Find the unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram also. (Term II, 2021-22)
- 73. If \(\bar{a}, \bar{b} \) and \(\bar{c}\) are mutually perpendicular vectors of equal magnitude, then prove that the vector \((2\bar{a} + \bar{b} + 2\bar{c}\)) is equally inclined to both \(\bar{a}\) and \(\bar{c}\). Also, find the angle between \(\bar{a}\) and \((2\bar{a} + \bar{b} + 2\bar{c}\)).

(Term II, 2021-22)

- 74. If $|\vec{a}|=3$, $|\vec{b}|=5$, $|\vec{c}|=4$ and $\vec{a}+\vec{b}+\vec{c}=\vec{0}$, then find the value of $(\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{c}+\vec{c}\cdot\vec{a})$ (Term II, 2021-22)
- 75. If \vec{a} and \vec{b} are two vectors of equal magnitude and α is the angle between them, then prove that $\frac{|\vec{a} + \vec{b}|}{|\vec{a} \vec{b}|} = \cot\left(\frac{\alpha}{2}\right)$ (Term II, 2021-22)

LAI (4 marks)

- 76. If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} 5\hat{k}$ represent two adjacent sides of a parallelogram, find unit vectors parallel to the diagonals of the parallelogram. (2020)
- Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1) (NCERT Exemplar, 2020)
- Prove that three points A, B and C with position vectors \$\vec{a}\$, \$\vec{b}\$ and \$\vec{c}\$ respectively are collinear if and only if \$(\vec{b}\times\vec{c})+(\vec{c}\times\vec{a})+(\vec{a}\times\vec{b})=\vec{0}\$. (2020 C)
- 79. The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $\vec{b} = 2\hat{i} + 4\hat{j} 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ and hence find the unit vector along $\vec{b} + \vec{c}$ (2019, AI 2014)
- 80. If î+ĵ+k, 2î+5ĵ, 3î+2ĵ-3k and î-6ĵ-k respectively are the position vectors of points A, B, C and D, then find the angle between the straight lines AB and CD. Find whether AB and CD are collinear or not. (Delhi 2019)
- 81. Let \$\vec{a}\$, \$\vec{b}\$ and \$\vec{c}\$ be three vectors such that \$\$|\vec{a}|=1\$, \$|\vec{b}|=2\$, \$|\vec{c}|=3\$. If the projection of \$\vec{b}\$ along \$\vec{a}\$ is equal to the projection of \$\vec{c}\$ along \$\vec{a}\$; and \$\vec{b}\$, \$\vec{c}\$ are perpendicular to each other, then find \$|3\vec{a}-2\vec{b}+2\vec{c}|\$.
- 82. Let $\vec{a} = 4\hat{i} + 5\hat{j} \hat{k}$, $\vec{b} = \hat{i} 4\hat{j} + 5\hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{c} and \vec{b} and $\vec{d} \cdot \vec{a} = 21$. (2018)
- 83. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c} . Also, find the angle which $\vec{a} + \vec{b} + \vec{c}$ makes with \vec{a} or \vec{b} or \vec{c} . (Delhi 2017)

- 84. Show that the points A, B, C with position vectors $(2\hat{i} - \hat{j} + \hat{k}, \hat{i} - 3\hat{j} - 5\hat{k})$ and $(3\hat{i} - 4\hat{j} - 4\hat{k})$ respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle. (AI 2017)
- 85. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} - 5\hat{k}$ and $2\hat{i} + 2\hat{j} + 3\hat{k}$. Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.
- 86. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, show that $\vec{a} \vec{d}$ is parallel to $\vec{b} = \vec{c}$, where $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$. (Foreign 2016)
- 87. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, find $(\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy$. (Delhi 2015)
- 88. If $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{i} 4\hat{j} 5\hat{k}$, then find a unit vector perpendicular to both of the vectors (AI 2015) (a - b) and (c - b) -

- 89. Vectors \vec{a} , \vec{b} and \vec{c} are such that $\vec{a}+\vec{b}+\vec{c}=\vec{0}$ and $|\vec{a}|=3$, $|\vec{b}|=5$ and $|\vec{c}|=7$. Find the angle between ā and b.
- Find a unit vector perpendicular to both of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$. (Foreign 2014)
- 91. If $\vec{a} = 2\hat{i} 3\hat{j} + \hat{k}$, $\vec{b} = -\hat{i} + \hat{k}$, $\vec{c} = 2\hat{j} \hat{k}$ are three vectors, find the area of the parallelogram having diagonals $(\vec{a}+\vec{b})$ and $(\vec{b}+\vec{c})$. (Delhi 2014C)
- Find the vector p which is perpendicular to both $\vec{\alpha} = 4\hat{i} + 5\hat{j} - \hat{k}$ and $\vec{\beta} = \hat{i} - 4\hat{j} + 5\hat{k}$ and $\vec{p} \cdot \vec{q} = 21$, where $\vec{q} = 3\hat{i} + \hat{j} - \hat{k}$. (AI 2014C)

CBSE Sample Questions

10.5 Multiplication of a Vector by a Scalar

VSA (1 mark)

- Find a unit vector in the direction opposite to $-\frac{3}{4}\hat{j}$.
- Vector of magnitude 5 units and in the direction opposite to $2\hat{i} + 3\hat{i} - 6\hat{k}$ is _____. (2020-21) U

10.6 Product of Two Vectors

MCQ

- The scalar projection of the vector 3i-j-2k on the vector î+2ĵ-3k is
 - (a) $\frac{7}{\sqrt{14}}$ (b) $\frac{7}{14}$ (c) $\frac{6}{13}$ (d) $\frac{7}{2}$

(2022-23)

- If two vectors āandb are such that |ā|=2,|b|=3 and $\vec{a} \cdot \vec{b} = 4$, then $|\vec{a} - 2\vec{b}|$ is equal to
 - (a) √2
- (b) 2√6
- (d) 2√2 (2022-23)

VSA (1 mark)

Find the area of the triangle whose two sides are represented by the vectors 2i and - 3i.

(2020-21) Ap

Find the angle between the unit vectors \hat{a} and \hat{b} , given that $|\hat{a} + \hat{b}| = 1$. (2020-21)

SAI (2 marks)

- Find $|\vec{x}|$, if $(\vec{x}-\vec{a})\cdot(\vec{x}+\vec{a})=12$, where \vec{a} is a unit vector. (2022-23) An
- 8. If \vec{a} and \vec{b} are unit vectors, then prove that $|\vec{a} + \vec{b}| = 2\cos\frac{\theta}{2}$, where θ is the angle between them.

(Term II, 2021-22) Ev

9. Find the area of the parallelogram whose one side and a diagonal are represented by coinitial vectors

 $\hat{i} = \hat{i} + \hat{k}$ and $4\hat{i} + 5\hat{k}$ respectively. (2020-21)

SA II (3 marks)

 If ā≠0,ā·b=ā·c̄,ā×b=ā×c̄, then show that b=c̄. (Term II, 2021-22) [An]

Detailed **SOLUTIONS**

Previous Years' CBSE Board Questions

1. Here, $I = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$, $m = \cos \frac{\pi}{2} = 0$, $n = \cos \theta$

Since,
$$l^2 + m^2 + n^2 = 1$$

$$\Rightarrow \frac{1}{2} + 0 + \cos^2 \theta = 1 \Rightarrow \cos^2 \theta = 1 - \frac{1}{2} = \frac{1}{2}$$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$$

Commonly Made Mistake (A)

$$\Rightarrow \cos\theta = \pm \frac{1}{\sqrt{2}} \Rightarrow \frac{\pi}{4}, \frac{3\pi}{4} : \theta = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

∴ The vector of magnitude 5√2 is

 $\vec{a} = 5\sqrt{2}(l\hat{i} + m\hat{j} + n\hat{k})$

$$=5\sqrt{2}\left(\frac{1}{\sqrt{2}}\hat{i}+0\hat{j}+\frac{1}{\sqrt{2}}\hat{k}\right)=5(\hat{i}+\hat{k}) \quad [\because \theta \text{ is an acute angle }]$$

We have, |r|=3√3

Since, r is equally inclined to three axes, so direction cosine of unit vector \vec{r} will be same. i.e., l = m = nAs we know that $l^2 + m^2 + n^2 = 1$ $l^2 + l^2 + l^2 = 1 \implies 3l^2 = 1$

$$\Rightarrow l = \pm \frac{1}{\sqrt{3}} = m = n \qquad ...(ii)$$

We have $\overline{OP} = \pm \left(\frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \right) \quad \left\{ \because \vec{p} = \frac{\vec{r}}{|\vec{r}|} \right\}$

 $\{ : |\vec{r}| = 3\sqrt{3} \text{ (given)} \}$ $=\pm 3\sqrt{3} \times \left(\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{k}\right) \Rightarrow \vec{r} = \pm 3(\hat{i} + \hat{j} + \hat{k})$

Answer Tips 🥒

- If a vector is equally inclined to axes, then its direction cosines are equal.
- 3.
- (b): Let $\vec{a} = (\hat{i} + \hat{j} + \hat{k})$

So, unit vector of $\vec{a} = \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{1 + 1 + 1}} = \frac{1}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k})$

- The value of p is $\frac{1}{\sqrt{2}}$
- (a) : EA+EB+EC+ED=EA+EB-EA-EB [As diagonals of a rhombus bisect each other]
- 6. (b): Let $\vec{v} = 4\hat{i} 3\hat{k}$

$$|\vec{v}| = \sqrt{4^2 + (3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$$

Now, $\hat{\mathbf{v}}$ = unit vector along $\vec{\mathbf{v}}$

$$=\frac{\vec{v}}{|\vec{v}|}=\frac{1}{5}(4\hat{i}-3\hat{k})$$

Required position vector of point P

$$=\frac{1(2\hat{i}-\hat{j}-\hat{k})+2(2\hat{i}-\hat{j}+2\hat{k})}{2+1}=\frac{2\hat{i}-\hat{j}-\hat{k}+4\hat{i}-2\hat{j}+4\hat{k}}{3}\\ =\frac{1}{3}(6\hat{i}-3\hat{j}+3\hat{k})-2\hat{i}-\hat{j}+\hat{k}$$

Concept Applied (6)

If \(\bar{a}\) and \(\bar{b}\) are position vectors of two points A and B respectively, then the position vector of R(r) which

divides \overline{AB} internally in the ratio m:n is $\underline{mb+na}$

Required position vector

$$= \frac{2 \cdot (2\vec{a} + \vec{b}) - 1(\vec{a} - 2\vec{b})}{2 - 1} = \frac{4\vec{a} + 2\vec{b} - \vec{a} + 2\vec{b}}{1} = 3\vec{a} + 4\vec{b}$$

Required position vector

$$= \frac{2(2\vec{a}+3\vec{b})+1(3\vec{a}-2\vec{b})}{2+1} = \frac{7\vec{a}+4\vec{b}}{3} = \frac{7}{3}\vec{a}+\frac{4}{3}\vec{b}$$

10. Let $\vec{a} = 2\hat{i} + 3\hat{i} - \hat{k}$ and $\vec{b} = 4\hat{i} - 3\hat{i} + 2\hat{k}$.

Then, the sum of the given vectors is

$$\vec{c} = \vec{a} + \vec{b} = (2+4)\hat{i} + (3-3)\hat{j} + (-1+2)\hat{k} = 6\hat{i} + \hat{k}$$

and
$$|\vec{c}| = |\vec{a} + \vec{b}| = \sqrt{6^2 + 1^2} = \sqrt{36 + 1} = \sqrt{37}$$

$$\therefore \text{ Unit vector, } \hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{6\hat{i} + \hat{k}}{\sqrt{37}} = \frac{6}{\sqrt{37}}\hat{i} + \frac{1}{\sqrt{37}}\hat{k}$$

11. A unit vector in the direction of $\vec{a} = \hat{i} - 2\hat{j}$ is $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$

$$=\frac{\hat{i}-2\hat{j}}{\sqrt{1^2+(-2)^2}}=\frac{1}{\sqrt{5}}(\hat{i}-2\hat{j})$$

- .. The required vector of magnitude 7 in the direction of $\vec{a} = 7 \cdot \hat{a} = \frac{7}{\sqrt{\epsilon}} (\hat{i} - 2\hat{j})$.
- 12. $\vec{a} = \hat{i} + \hat{i} 2\hat{k}$: $\vec{b} = 2\hat{i} 4\hat{i} + 5\hat{k}$
- $3\vec{a} + 2\vec{b} = 3(\hat{i} + \hat{i} 2\hat{k}) + 2(2\hat{i} 4\hat{i} + 5\hat{k})$

$$=(3\hat{i}+3\hat{i}-6\hat{k})+(4\hat{i}-8\hat{i}+10\hat{k})=7\hat{i}-5\hat{i}+4\hat{k}$$

- The direction ratios of the vector $3\vec{a}+2\vec{b}$ are 7.-5.4.
- 13. We have, $\vec{a} = 2\hat{i} + 2\hat{j} 5\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} 7\hat{k}$

Sum of the given vectors is

$$\vec{c} = \vec{a} + \vec{b} = (2+2)\hat{i} + (2+1)\hat{j} + (-5-7)\hat{k} = 4\hat{i} + 3\hat{j} - 12\hat{k}$$

and $|\vec{c}| = \sqrt{(4)^2 + (3)^2 + (-12)^2} = \sqrt{169} = 13$

- $\therefore \text{ Unit vector, } \hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{4\hat{i} + 3\hat{j} 12\hat{k}}{13} = \frac{4}{13}\hat{i} + \frac{3}{13}\hat{j} \frac{12}{13}\hat{k}$
- 14. Let $\vec{a} = 3\hat{i} + 2\hat{i} + 9\hat{k}$ and $\vec{b} = \hat{i} 2p\hat{i} + 3\hat{k}$

For \vec{a} and \vec{b} to be parallel. $\vec{b} = \lambda \vec{a}$.

$$\Rightarrow \hat{i} - 2p\hat{j} + 3\hat{k} = \lambda(3\hat{i} + 2\hat{j} + 9\hat{k}) = 3\lambda\hat{i} + 2\lambda\hat{j} + 9\lambda\hat{k}$$

$$\Rightarrow 1=3\lambda, -2p=2\lambda, 3=9\lambda \Rightarrow \lambda = \frac{1}{3} \text{ and } p=-\lambda = -\frac{1}{3}$$

Concept Applied (6)

- Two vectors \(\vec{a} \) and \(\vec{b} \) are parallel iff one of them is scalar multiple of other.
- 15. Let $\vec{a} = 2\hat{i} 3\hat{i} + 6\hat{k}$

A vector in the direction of a with a magnitude of

- :. Required vector = $21 \times \frac{2\hat{i} 3\hat{j} + 6\hat{k}}{\sqrt{2^2 + (-3)^2 + 6^2}}$
- $=21\times\frac{2\hat{i}-3\hat{j}+6\hat{k}}{7}=6\hat{i}-9\hat{j}+18\hat{k}$
- We have, PO = OO OP

$$=(4\hat{i}+5\hat{j}+6\hat{k})-(\hat{i}+3\hat{j})=3\hat{i}+2\hat{j}+6\hat{k}$$

Required unit vector = $\frac{3\hat{i} + 2\hat{j} + 6\hat{k}}{\sqrt{3^2 + 2^2 + 6^2}} = \frac{3\hat{i} + 2\hat{j} + 6\hat{k}}{7}$

$$unit vector of $\overline{PQ} = \frac{\overline{PQ}}{|\overline{PQ}|}$$$

17. Let
$$\vec{a} = \hat{i} - 2\hat{j} + 2\hat{k}$$

The vector in the direction of \vec{a} with magnitude 9 units $=9\hat{a}$

$$\therefore \text{ Required vector} = 9 \times \frac{\vec{a}}{|\vec{a}|} = 9 \times \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{\sqrt{(1)^2 + (-2)^2 + (2)^2}}$$
$$= \frac{9}{3}(\hat{i} - 2\hat{j} + 2\hat{k}) = 3\hat{i} - 6\hat{j} + 6\hat{k}$$

Answer Tips

18. Position vector which divides the line segment joining points with position vectors $3\vec{a} + \vec{b}$ and $\vec{a} - 3\vec{b}$ in the ratio 2:1 externally is given by

$$\frac{2(\vec{a}-3\vec{b})-1(3\vec{a}+\vec{b})}{2-1} = \frac{2\vec{a}-6\vec{b}-3\vec{a}-\vec{b}}{1} = -\vec{a}-7\vec{b}$$

Concept Applied (6)

If \vec{a} and \vec{b} are position vectors of two points \vec{A} and \vec{b} respectively, then the position vector of $\vec{R}(\vec{r})$ which divides \overline{AB} externally in the ratio m:n is $\frac{m\vec{b}-n\vec{a}}{m-n}$.

19. Take A to be as origin (0, 0, 0).

∴ Coordinates of B are (0, 1, 1) and coordinates of C are (3, -1, 4).

Let D be the mid point of BC and AD is a median of $\triangle ABC$.

$$\therefore$$
 Coordinates of *D* are $\left(\frac{3}{2}, 0, \frac{5}{2}\right)$

So, length of
$$AD = \sqrt{\left(\frac{3}{2} - 0\right)^2 + (0)^2 + \left(\frac{5}{2} - 0\right)^2}$$

= $\sqrt{\frac{9}{4} + \frac{25}{4}} = \frac{\sqrt{34}}{2}$ units

Concept Applied (6)

Position vector of mid point of $AB = \frac{\vec{a} + \vec{b}}{2}$ $A(\vec{a}) \qquad B(\vec{b})$

- 20. (b): Given, $\vec{a} \cdot \vec{b} \ge 0$
- \Rightarrow $|\ddot{a}||\ddot{b}|\cos\theta$ ≥0

Assuming $|\vec{a}| \neq 0$ and $|\vec{b}| \neq 0$

$$\Rightarrow \cos\theta \ge 0 \ [\because |\vec{a}| \ge 0, |\vec{b}| \ge 0] \Rightarrow \theta \in \left[0, \frac{\pi}{2}\right]$$

21. (c): Given vector is 6î-2î+3k

∴ Its magnitude =
$$\sqrt{6^2 + (-2)^2 + 3^2}$$

= $\sqrt{36 + 4 + 9} = \sqrt{49} = 7$ units

22. (c): Here, $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} + \lambda\hat{k}$

Since, projection of \vec{a} on $\vec{b} = 0$

$$\Rightarrow \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = 0 \Rightarrow \frac{(\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (2\hat{i} + \lambda\hat{k})}{\sqrt{2^2 + \lambda^2}} = 0$$

$$\Rightarrow \frac{2 + 3\lambda}{\sqrt{4 + \lambda^2}} = 0 \Rightarrow 2 + 3\lambda = 0 \Rightarrow \lambda = -\frac{2}{3}$$

23. (c) : Since, \hat{i} , \hat{j} , \hat{k} are mutually perpendicular to each other.

$$\hat{i} \cdot \hat{k} = 0$$

24. Let $\vec{a} = (\hat{i} + 3\hat{j} - 2\hat{k}) \times (-\hat{i} + 0\hat{j} + 3\hat{k})$

$$\vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & -2 \\ -1 & 0 & 3 \end{vmatrix} = (9 - 0)\hat{i} - (3 - 2)\hat{j} + (0 + 3)\hat{k} = 9\hat{i} - \hat{j} + 3\hat{k}$$

$$|\vec{a}| = \sqrt{9^2 + (-1)^2 + 3^2} = \sqrt{91}$$

Answer Tips

$$\Rightarrow \text{ If } \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \text{ , then } |\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2} \ .$$

25. Here $\vec{a} = 2\hat{i} - \hat{i} + 2\hat{k}$ and $\vec{b} = 5\hat{i} - 3\hat{i} - 4\hat{k}$

Since projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

and projection of \vec{b} on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$

$$\vec{a} \cdot \vec{b} = (2\hat{i} - \hat{j} + 2\hat{k}) \cdot (5\hat{i} - 3\hat{j} - 4\hat{k})$$

$$\vec{a} \cdot \vec{b} = 10 + 3 - 8 = 13 - 8 = 5$$

$$|\vec{a}| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3$$

$$|\vec{b}| = \sqrt{5^2 + (-3)^2 + (-4)^2} = \sqrt{25 + 9 + 16} = \sqrt{50} = 5\sqrt{2}$$

Required ratio =
$$\frac{5/5\sqrt{2}}{5/3} = \frac{5}{5\sqrt{2}} \times \frac{3}{5} = \frac{3\sqrt{2}}{10}$$

26. Given, two diagonals \vec{d}_1 and \vec{d}_2 are $2\hat{i}$ and $-3\hat{k}$ respectively.

$$\vec{d}_1 \times \vec{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ 0 & 0 & -3 \end{vmatrix} = \hat{i}(0) - \hat{j}(-6 - 0) + \hat{k}(0) = 6\hat{j}$$

So, area of the parallelogram =
$$\frac{1}{2} |\vec{d}_1 \times \vec{d}_2|$$

= $\frac{1}{2} \times 6 = 3$ sq. units

27. Let
$$\vec{a} = 2\hat{i} - \lambda \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{i} - \hat{k}$

We know, \vec{a} and \vec{b} are orthogonal iff $\vec{a} \cdot \vec{b} = 0$

$$\Rightarrow (2\hat{i} - \lambda\hat{j} + \hat{k}) \cdot (\hat{i} + 2\hat{j} - \hat{k}) = 0$$

$$\Rightarrow$$
 2-2 λ -1=0 \Rightarrow 1-2 λ =0 \Rightarrow λ = $\frac{1}{2}$

28. Given,
$$|\vec{a}| = |\vec{b}|, \theta = 60^{\circ} \text{ and } \vec{a} \cdot \vec{b} = \frac{9}{2}$$

Now,
$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

$$\Rightarrow \cos 60^{\circ} = \frac{9/2}{|\vec{a}|^2} \Rightarrow \frac{1}{2} = \frac{9/2}{|\vec{a}|^2}$$

$$\Rightarrow |\vec{a}|^2 = 9 \Rightarrow |\vec{a}| = 3 : |\vec{a}| = |\vec{b}| = 3$$

Answer Tips 🕖

ā·b=|ā|·|b|cosθ

29. Given,
$$\vec{a}=2\hat{i}+\hat{j}+2\hat{k}$$
 and $\vec{b}=\hat{j}+\hat{k}$

Unit vectors perpendicular to \vec{a} and \vec{b} are $\pm \left(\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \right)$

Now,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 2 \\ 0 & 1 & 1 \end{vmatrix} = -\hat{i} - 2\hat{j} + 2\hat{k}$$

.. Unit vectors perpendicular to \$\vec{a}\$ and \$\vec{b}\$ are

$$\pm \frac{(-\hat{i}-2\hat{j}+2\hat{k})}{\sqrt{(-1)^2+(-2)^2+(2)^2}} = \pm \left(-\frac{1}{3}\hat{i}-\frac{2}{3}\hat{j}+\frac{2}{3}\hat{k}\right)$$

So, there are two unit vectors perpendicular to the given vectors.

We have ā,b and c are unit vectors.

Therefore, $|\vec{a}|=1$, $|\vec{b}|=1$ and $|\vec{c}|=1$

Also, $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (given)

$$\Rightarrow |\vec{a} + \vec{b} + \vec{c}|^2 = 0 \Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$$

$$\Rightarrow$$
 1+1+1+2($\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{c}+\vec{c}\cdot\vec{a}$)=0

$$\Rightarrow$$
 3+2($\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$)=0 \Rightarrow ($\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$)=- $\frac{3}{2}$

31.
$$|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400 \Rightarrow \{|\vec{a}||\vec{b}|\sin\theta\}^2 + \{|\vec{a}||\vec{b}|\cos\theta\}^2 = 400$$

$$\Rightarrow |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta + |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta = 400$$

$$\Rightarrow |\vec{a}|^2 |\vec{b}|^2 = 400 \Rightarrow 25 \times |\vec{b}|^2 = 400$$

[:: |a|=5]

$$\Rightarrow |\vec{b}|^2 = 16 \Rightarrow |\vec{b}| = 4$$

32. Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

$$=\frac{(7\hat{i}+\hat{j}-4\hat{k})\cdot(2\hat{i}+6\hat{j}+3\hat{k})}{\sqrt{(2)^2+(6)^2+(3)^2}}=\frac{14+6-12}{7}=\frac{8}{7}$$

33. Here \hat{a}, \hat{b} and \hat{c} are mutually perpendicular unit vectors.

$$\Rightarrow |\hat{a}| = |\hat{b}| = |\hat{c}| = 1$$
 and $\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = 0$...(1)

$$\therefore 12\hat{a} + \hat{b} + \hat{c} P = (2\hat{a} + \hat{b} + \hat{c}).(2\hat{a} + \hat{b} + \hat{c})$$

$$=4\hat{a}\cdot\hat{a}+2\hat{a}\cdot\hat{b}+2\hat{a}\cdot\hat{c}+2\hat{b}\cdot\hat{a}+\hat{b}\cdot\hat{b}+\hat{b}\cdot\hat{c}+2\hat{c}\cdot\hat{a}+\hat{c}\cdot\hat{b}+\hat{c}\cdot\hat{c}$$

$$=4|\hat{a}|^2+|\hat{b}|^2+|\hat{c}|^2+4\hat{a}\cdot\hat{b}+2\hat{b}\cdot\hat{c}+4\hat{a}\cdot\hat{c}$$

$$(\because \hat{b} \cdot \hat{a} = \hat{a} \cdot \hat{b}, \hat{c} \cdot \hat{a} = \hat{a} \cdot \hat{c}, \hat{c} \cdot \hat{b} = \hat{b} \cdot \hat{c})$$

$$= 4 \cdot 1^2 + 1^2 + 1^2$$

[Using (1)]

 $\therefore 12\hat{a} + \hat{b} + \hat{c} \models \sqrt{6}.$

34. Here,
$$\vec{a} = \hat{i} + \hat{i} + \hat{k}$$
 and $\vec{b} = \hat{i} + \hat{i}$

Vector perpendicular to both \vec{a} and \vec{b} is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = -\hat{i} + \hat{j} + 0\hat{k} = -\hat{i} + \hat{j}$$

 \therefore Unit vector perpendicular to both \vec{a} and \vec{b}

$$= \pm \frac{-\hat{i} + \hat{j}}{\sqrt{(-1)^2 + 1^2}} = \pm \frac{1}{\sqrt{2}} \left(-\hat{i} + \hat{j} \right).$$

Key Points

 \Rightarrow Unit vector perpendicular to both \vec{a} and $\vec{b} = \pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$

35. Let
$$\vec{a} = 2\hat{i} - 3\hat{k}$$
 and $\vec{b} = 4\hat{j} + 2\hat{k}$

The area of a parallelogram with \vec{a} and \vec{b} as its adjacent sides is given by $|\vec{a} \times \vec{b}|$.

Now,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -3 \\ 0 & 4 & 2 \end{vmatrix} = 12\hat{i} - 4\hat{j} + 8\hat{k}$$

$$|\vec{a} \times \vec{b}| = \sqrt{(12)^2 + (-4)^2 + (8)^2} = \sqrt{144 + 16 + 64}$$

$$= \sqrt{224} = 4\sqrt{14} \text{ sg. units.}$$

36. Let θ be the angle between the unit vectors \vec{a} and \vec{b} .

$$\therefore \cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \vec{a} \cdot \vec{b} \qquad (\because |\vec{a}| = 1 = |\vec{b}|) \dots (i)$$

Now, $1=\sqrt{2}\vec{a}-\vec{b}$

$$\Rightarrow 1 = |\sqrt{2}\vec{a} - \vec{b}|^2 = (\sqrt{2}\vec{a} - \vec{b}) \cdot (\sqrt{2}\vec{a} - \vec{b})$$

$$=2|\vec{a}|^2 - \sqrt{2}\vec{a} \cdot \vec{b} - \vec{b} \cdot \sqrt{2}\vec{a} + |\vec{b}|^2$$

$$=2-2\sqrt{2}\vec{a}\cdot\vec{b}+1 \qquad (\because \vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{a})$$

 $=3-2\sqrt{2}\,\vec{a}\cdot\vec{b}$

$$\Rightarrow \vec{a} \cdot \vec{b} = \frac{1}{\sqrt{2}} \Rightarrow \cos\theta = \frac{1}{\sqrt{2}}$$
 [By using (i)]

$$\theta = \pi/4$$

37. Projection of
$$\vec{a}$$
 on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

$$=\frac{(2\hat{i}+3\hat{j}+2\hat{k})\cdot(2\hat{i}+2\hat{j}+\hat{k})}{\sqrt{(2)^2+(2)^2+(1)^2}}=\frac{4+6+2}{\sqrt{9}}=\frac{12}{3}=4$$

38. Let $\vec{a} = \hat{i} + 3\hat{j} + 7\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$

Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

$$=\frac{(\hat{i}+3\hat{j}+7\hat{k})\cdot(2\hat{i}-3\hat{j}+6\hat{k})}{\sqrt{(2)^2+(-3)^2+(6)^2}}=\frac{2-9+42}{\sqrt{49}}=\frac{35}{7}=5$$

39. Given $|\vec{a}|=1=|\vec{b}|, |\vec{a}+\vec{b}|=1$

$$\Rightarrow |\vec{a} + \vec{b}|^2 = 1 \Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = 1 \Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = 1$$

$$\Rightarrow |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = 1 \Rightarrow 1 + 2\vec{a} \cdot \vec{b} + 1 = 1$$

$$\Rightarrow 2\vec{a} \cdot \vec{b} = -1 \Rightarrow 2|\vec{a}| \cdot |\vec{b}| \cos\theta = -1 \Rightarrow 2 \cdot 1 \cdot 1 \cos\theta = -1$$

$$\Rightarrow \cos\theta = -\frac{1}{2} \Rightarrow \theta = 120^{\circ}$$

40. Given, $|\vec{a}|=3, |\vec{b}|=\frac{2}{3}$ and $|\vec{a}\times\vec{b}|=1$

$$\Rightarrow |\vec{a}||\vec{b}|\sin\theta = 1 \Rightarrow 3.\frac{2}{3}\sin\theta = 1 \Rightarrow \sin\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$$

41. Given: $\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b} = 0$

Also, $|\vec{a}| = 5$ and $|\vec{a} + \vec{b}| = 13$

$$\Rightarrow |\vec{a} + \vec{b}|^2 = 13^2 \Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = 169$$

$$\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = 169 \Rightarrow |\vec{a}|^2 + 0 + 0 + |\vec{b}|^2 = 169$$

$$\Rightarrow |\vec{b}|^2 = 169 - |\vec{a}|^2 = 169 - 5^2 = 144 \Rightarrow |\vec{b}| = 12$$

42. The projection of the vector $(\hat{i} + \hat{j} + \hat{k})$ along the vector \hat{i} is $(\hat{i} + \hat{i} + \hat{k})$.

vector
$$\hat{j}$$
 is $(\hat{i} + \hat{j} + \hat{k}) \cdot \left(\frac{\hat{j}}{\sqrt{0^2 + 1^2 + 0^2}}\right) = 1$

43. We have, $\hat{i} \times (\hat{j} + \hat{k}) + \hat{j} \times (\hat{k} + \hat{i}) + \hat{k} \times (\hat{i} + \hat{j})$

$$= \hat{i} \times \hat{j} + \hat{i} \times \hat{k} + \hat{j} \times \hat{k} + \hat{j} \times \hat{i} + \hat{k} \times \hat{i} + \hat{k} \times \hat{j}$$

$$=\hat{k}-\hat{j}+\hat{i}-\hat{k}+\hat{j}-\hat{i}=\vec{0}\,.$$

44. Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

$$=\frac{(2\hat{i}-\hat{j}+\hat{k})\cdot(\hat{i}+2\hat{j}+2\hat{k})}{\sqrt{(1)^2+(2)^2+(2)^2}}=\frac{2-2+2}{\sqrt{9}}=\frac{2}{3}$$

45. Let θ be the angle between the unit vectors \vec{a} and \vec{b}

$$\therefore \cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \vec{a} \cdot \vec{b}$$

...(i)
$$(:: |\vec{a}| = |\vec{b}| = 1)$$

Now, $|\sqrt{3}\vec{a}-\vec{b}|=1 \Rightarrow |\sqrt{3}\vec{a}-\vec{b}|^2=1$

$$\Rightarrow 3|\vec{a}|^2 + |\vec{b}|^2 - 2\sqrt{3} \ \vec{a} \cdot \vec{b} = 1 \ \Rightarrow \ 3 + 1 - 2\sqrt{3}|\vec{a}||\vec{b}|\cos\theta = 1$$

$$\Rightarrow 3=2\sqrt{3}\cos\theta \Rightarrow \cos\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{6}$$

46. Let θ be the angle between the vector

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
 and y-axis i.e., $\vec{b} = \hat{j}$

$$\therefore \cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

$$=\frac{(\hat{i}+\hat{j}+\hat{k}).\hat{j}}{|\hat{i}+\hat{j}+\hat{k}||\hat{j}|}=\frac{1}{\sqrt{1^2+1^2+1^2}\sqrt{1^2}}=\frac{1}{\sqrt{3}}$$

47. Let θ be the angle between the vectors \vec{a} and \vec{b} .

Given: $|\vec{a}| = 8, |\vec{b}| = 3$ and $|\vec{a} \times \vec{b}| = 12$

$$\Rightarrow |\vec{a}||\vec{b}||\sin\theta|=12 \Rightarrow 8\times3\times\sin\theta=12$$

$$\Rightarrow \sin\theta = \frac{12}{24} = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$$
.

48. Here, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and vector along x-axis is \hat{i}

.. Angle between ā and î is given by

$$\cos \theta = \frac{\vec{a} \cdot \hat{i}}{\sqrt{1^2 + 1^2 + 1^2} \cdot \sqrt{1^2}} = \frac{(\hat{i} + \hat{j} + \hat{k}) \cdot \hat{i}}{\sqrt{3} \cdot 1} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

49. We have, $\vec{a} = 4\hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} - 2\hat{j} + \hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -1 & 1 \\ 2 & -2 & 1 \end{vmatrix}$$

$$=\hat{i}(-1+2)-\hat{j}(4-2)+\hat{k}(-8+2)=\hat{i}-2\hat{j}-6\hat{k}$$

$$|\vec{a} \times \vec{b}| = \sqrt{1^2 + (-2)^2 + (-6)^2} = \sqrt{41}$$

Unit vector along $\vec{a} \times \vec{b} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$

$$=\frac{\hat{i}-2\hat{j}-6\hat{k}}{\sqrt{41}}=\frac{1}{\sqrt{41}}\hat{i}-\frac{2}{\sqrt{41}}\hat{j}-\frac{6}{\sqrt{41}}\hat{k}$$

50. We know that, $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$

$$\Rightarrow 1=3\times\frac{2}{3}\sin\theta \quad (\because \vec{a}\times\vec{b} \text{ is a unit vector})$$

$$\Rightarrow \sin\theta = \frac{1}{2} = \sin 30^{\circ} \Rightarrow \theta = 30^{\circ}$$

So, angle between \vec{a} and \vec{b} is 30°.

51. Area of parallelogram =
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix}$$

$$=|(-1+21)\hat{i}-(1-6)\hat{j}+(-7+2)\hat{k}|=|20\hat{i}+5\hat{j}-5\hat{k}|$$

$$=\sqrt{(20)^2+(5)^2+(-5)^2}$$

$$=\sqrt{400+25+25}=\sqrt{450}=15\sqrt{2}$$
 sq.units

53. Here
$$\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$$
, $\vec{b} = -\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{c} = -\hat{i} + 2\hat{j} - \hat{k}$
 $\therefore \vec{a} + \vec{b} = (\hat{i} + \hat{j} - 2\hat{k}) + (-\hat{i} + 2\hat{j} + 2\hat{k}) = 3\hat{j}$

Now
$$(\vec{b} - \vec{c}) = (-\hat{i} + 2\hat{j} + 2\hat{k}) - (-\hat{i} + 2\hat{j} - \hat{k}) = 3\hat{k}$$

Vector perpendicular to both $(\vec{a} + \vec{b})$ and $(\vec{b} - \vec{c})$ is

$$(\vec{a} + \vec{b}) \times (\vec{b} - \vec{c}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{vmatrix} = \hat{i}(9 - 0) - \hat{j}(0 - 0) + \hat{k}(0 - 0) = 9\hat{i}$$

... Unit vector perpendicular to both $(\vec{a} + \vec{b})$ and $(\vec{b} - \vec{c})$

$$= \frac{9\hat{i}}{\sqrt{92 + 02 + 02}} = \frac{9\hat{i}}{9} = \hat{i} + 0\hat{j} + 0\hat{k}$$

54. Given a and b are unit vectors

 $|\vec{a}| = |\vec{b}| = 1$

Let θ be the angle between \vec{a} and \vec{b} . Also, $|2\vec{a}+3\vec{b}|=|3\vec{a}-2\vec{b}|$

 $\Rightarrow |2\vec{a}+3\vec{b}|^2=|3\vec{a}-2\vec{b}|^2$

 \Rightarrow $(2\vec{a}+3\vec{b})\cdot(2\vec{a}+3\vec{b})=(3\vec{a}-2\vec{b})\cdot(3\vec{a}-2\vec{b})$

 \Rightarrow 4($\vec{a} \cdot \vec{a}$)+6($\vec{a} \cdot \vec{b}$)+6($\vec{b} \cdot \vec{a}$)+9($\vec{b} \cdot \vec{b}$)

 $= 9(\vec{a} \cdot \vec{a}) - 6(\vec{a} \cdot \vec{b}) - 6(\vec{b} \cdot \vec{a}) + 4(\vec{b} \cdot \vec{b})$

 $\Rightarrow 4|\vec{a}|^2 + 12(\vec{a} \cdot \vec{b}) + 9|\vec{b}|^2 = 9|\vec{a}|^2 - 12(\vec{a} \cdot \vec{b}) + 4|\vec{b}|^2$

⇒ $5|\vec{a}|^2 - 5|\vec{b}|^2 - 24|\vec{a}||\vec{b}|\cos\theta = 0$

⇒ 5·1-5·1-24cosθ=0

 $(: |\vec{a}| = |\vec{b}| = 1)$

 $\Rightarrow \cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2}$

Answer Tips (🌶

⇒ If \(\bar{a}\) is a unit vector, then \(\bar{a}\) = 1

55. We have, $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$

$$\Rightarrow |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta + |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta = 400$$

$$\Rightarrow$$
 $|\vec{a}|^2 |\vec{b}|^2 = 400 \quad (\because \sin^2\theta + \cos^2\theta = 1)$

$$\Rightarrow |\vec{a}|^2 \times 25 = 400 \Rightarrow |\vec{a}|^2 = \frac{400}{25} = 16 \Rightarrow |\vec{a}| = 4$$

56. Given: $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$ To find | BI.

Let $\vec{b} = x\hat{i} + y\hat{i} + z\hat{k}$

Since, $\vec{a} \cdot \vec{b} = 1$

$$\Rightarrow (\hat{i} + \hat{j} + \hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 1 \Rightarrow x + y + z = 1$$

and
$$\vec{a} \times \vec{b} = \hat{j} - \hat{k}$$

 $(\hat{i} + \hat{i} + \hat{k}) \times (x\hat{i} + y\hat{i} + z\hat{k}) = \hat{i} - \hat{k}$

$$|\hat{i} + \hat{j} + \hat{k}| \times (xi + yj + 2k) = j - k$$

$$|\hat{i} + \hat{j} + \hat{k}| = |\hat{i} - \hat{k}| \Rightarrow |\hat{i}(z - y) - \hat{i}(z - x) + \hat{k}(y - x) = |\hat{i} - \hat{k}|$$

$$|x \ y \ z|$$

$$\Rightarrow x - z = 1, y - x = -1, z - y = 0$$

$$\Rightarrow z = y \dots (1), x - z = 1$$
and $y - x = -1$

$$\Rightarrow z = y$$
 ...(1), $x - z = 1$...(2)
and $y - x = -1$...(3)

From equation (1), (2) and (3), we get x = 1, y = z = 0

So $\vec{b} = x\hat{i} + y\hat{j} + z\hat{k} = \hat{i} |\vec{b}| = 1$.

57. Given, \vec{a} , \vec{b} and \vec{c} are unit vectors.

: |a|=1=|b|=|c|

Also, given $\vec{a} + \vec{b} + \vec{c} = \vec{0}$

$$\Rightarrow |\vec{a} + \vec{b} + \vec{c}|^2 = 0 \Rightarrow (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0$$

 $\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + \vec{c} \cdot \vec{c} = 0$

 $\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(a \cdot b + b \cdot c + c \cdot a) = 0$

 \Rightarrow 1+1+1+2($\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{c}+\vec{c}\cdot\vec{a}$)=0 \Rightarrow $(\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{c}+\vec{c}\cdot\vec{a})=\frac{-3}{2}$

58. Given that $|\vec{a} + \vec{b}| = |\vec{b}|$

To prove: $(\vec{a}+2\vec{b})$ is perpendicular to \vec{a} .

i.e., $(\vec{a}+2\vec{b})\cdot\vec{a}=0$

Since, $|\vec{a} + \vec{b}| = |\vec{b}|$

Squaring both sides, we get $|\vec{a} + \vec{b}|^2 = |\vec{b}|^2$

$$\Rightarrow$$
 $(\vec{a}+\vec{b})\cdot(\vec{a}+\vec{b})=|\vec{b}|^2 \Rightarrow |\vec{a}|^2+|\vec{b}|^2+2\vec{a}\cdot\vec{b}=|\vec{b}|^2$

$$\Rightarrow$$
 $|\vec{a}|^2 + 2\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot (\vec{a} + 2\vec{b}) = 0 \Rightarrow (\vec{a} + 2\vec{b}) \cdot \vec{a} = 0$

∴ ā+2b is perpendicular to ā.

59. Given,
$$\overline{AB} = 2\hat{i} + 4\hat{j} - 5\hat{k}$$
, $\overline{BC} = \hat{i} + 2\hat{j} + 3\hat{k}$

Diagonal AC of parallelogram

 $ABCD = \overline{AB} + \overline{BC}$

 $\overline{AC} = (2\hat{i} + 4\hat{j} - 5\hat{k}) + (\hat{i} + 2\hat{j} + 3\hat{k}) = 3\hat{i} + 6\hat{j} - 2\hat{k}$

Unit vector along diagonal $\overline{AC} = \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{|3\hat{i} + 6\hat{j} - 2\hat{k}|}$

$$= \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{9 + 36 + 4}} = \pm \frac{1}{7}(3\hat{i} + 6\hat{j} - 2\hat{k})$$

60. Here, $\vec{a} = 5\hat{i} + 6\hat{j} - 2\hat{k}$ and $\vec{b} = 7\hat{i} + 6\hat{j} + 2\hat{k}$

Vector perpendicular to both a and b is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & 6 & -2 \\ 7 & 6 & 2 \end{vmatrix}$$

$$=\hat{i}(12+12)-\hat{j}(10+14)+\hat{k}(30-42)$$

$$= 24\hat{i} - 24\hat{j} - 12\hat{k} = 12(2\hat{i} - 2\hat{j} - \hat{k})$$

 \therefore Unit vector perpendicular to both \vec{a} and \vec{b}

$$= \pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} = \pm \frac{24\hat{i} - 24\hat{j} - 12\hat{k}}{\sqrt{576 + 576 + 144}} = \pm \frac{12(2\hat{i} - 2\hat{j} - \hat{k})}{\sqrt{1296}}$$
$$= \pm \frac{12(2\hat{i} - 2\hat{j} - \hat{k})}{36} = \pm \frac{1}{3}(2\hat{i} - 2\hat{j} - \hat{k})$$

61. Let $\vec{p} = |\vec{a}|\vec{b} + |\vec{b}|\vec{a}$ and $\vec{a} = |\vec{a}|\vec{b} - |\vec{b}|\vec{a}$

Then we have $\vec{p} \cdot \vec{q} = (|\vec{a}|\vec{b} + |\vec{b}|\vec{a}) \cdot (|\vec{a}|\vec{b} - |\vec{b}|\vec{a})$

 $=|\vec{a}|^2(\vec{b}\cdot\vec{b})-|\vec{a}||\vec{b}|(\vec{b}\cdot\vec{a})+|\vec{b}||\vec{a}|(\vec{a}\cdot\vec{b})-|\vec{b}|^2(\vec{a}\cdot\vec{a})$

 $=|\vec{a}|^2|\vec{b}|^2-|\vec{a}||\vec{b}|(\vec{a}\cdot\vec{b})+|\vec{a}||\vec{b}|(\vec{a}\cdot\vec{b})-|\vec{b}|^2|\vec{a}|^2=0 \ (\because \vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{a})$

 $\Rightarrow \vec{p} \cdot \vec{q} = 0$

Hence, |a|b+|b|a is perpendicular to |a|b-|b|a.

62. For any two non-zero vectors \vec{a} and \vec{b} , we have $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$

 $\Leftrightarrow |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2 \Leftrightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}$

 \Leftrightarrow $4\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \cdot \vec{b} = 0$

So, \vec{a} and \vec{b} are perpendicular vectors.

Let A(2î - ĵ + k̂), B(3î + 7ĵ + k̂) and C(5î + 6ĵ + 2k̂).

Then, $\overline{AB} = (3-2)\hat{i} + (7+1)\hat{j} + (1-1)\hat{k} = \hat{i} + 8\hat{j}$

 $\overline{AC} = (5-2)\hat{i} + (6+1)\hat{i} + (2-1)\hat{k} = 3\hat{i} + 7\hat{i} + \hat{k}$

 $\overline{BC} = (5-3)\hat{i} + (6-7)\hat{i} + (2-1)\hat{k} = 2\hat{i} - \hat{i} + \hat{k}$

Now, angle between AC and BC is given by

$$\Rightarrow \cos \theta = \frac{\overline{AC} \cdot \overline{BC}}{|\overline{AC}||\overline{BC}|} = \frac{6 - 7 + 1}{\sqrt{9 + 49 + 1}\sqrt{4 + 1 + 1}}$$

 \Rightarrow cos θ = 0 \Rightarrow θ = 90° \Rightarrow AC \perp BC

So, A, B, C are the vertices of right angled triangle.

64. Given, $\hat{a} + \hat{b} = \hat{c}$

$$\Rightarrow$$
 $(\hat{a} + \hat{b}) \cdot (\hat{a} + \hat{b}) = \hat{c} \cdot \hat{c} \Rightarrow \hat{a} \cdot \hat{a} + \hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{a} + \hat{b} \cdot \hat{b} = \hat{c} \cdot \hat{c}$

$$\Rightarrow 1 + \hat{a} \cdot \hat{b} + 1 + \hat{a} \cdot \hat{b} = 1$$
 (: $\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{a}$)

$$\Rightarrow 2 \hat{a} \cdot \hat{b} = -1$$
 ...(i)

Now $|\hat{a} - \hat{b}|^2 = (\hat{a} - \hat{b}) \cdot (\hat{a} - \hat{b})$

$$=\hat{a}\cdot\hat{a}-\hat{a}\cdot\hat{b}-\hat{b}\cdot\hat{a}+\hat{b}\cdot\hat{b}=1-\hat{a}\cdot\hat{b}-\hat{a}\cdot\hat{b}+1$$

$$=2-2\hat{a}\cdot\hat{b}=2-(-1)$$

[Using (i)]

= 3

$$|\hat{a} - \hat{b}| = \sqrt{3}$$

65. Given, $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$

Now,
$$\vec{a} + \vec{b} = 4\hat{i} + \hat{j} - \hat{k}$$

Also,
$$\vec{a} - \vec{b} = -2\hat{i} + 3\hat{j} - 5\hat{k}$$

Now,
$$(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = (4\hat{i} + \hat{j} - \hat{k}) \cdot (-2\hat{i} + 3\hat{j} - 5\hat{k})$$

$$= (4)(-2) + (1)(3) + (-1)(-5) = -8 + 3 + 5 = 0$$

Hence, $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ are perpendicular to each other.

66. Here
$$\vec{a} = 4\hat{i} - \hat{j} + 8\hat{k}$$
 and $\vec{b} = -\hat{j} + \hat{k}$

Vector perpendicular to both \vec{a} and \vec{b} is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -1 & 8 \\ 0 & -1 & 1 \end{vmatrix}$$

$$=\hat{i}(-1+8)-\hat{i}(4-0)+\hat{k}(-4-0)=7\hat{i}-4\hat{i}-4\hat{k}$$

Unit vector perpendicular to both ā and b̄ is

$$= \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} = \pm \frac{7\hat{i} - 4\hat{j} - 4\hat{k}}{\sqrt{49 + 16 + 16}} = \pm \frac{1}{9}(7\hat{i} - 4\hat{j} - 4\hat{k})$$

67. We have, |a|=2,|b|=7

$$\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{i} + 6\hat{k}$$

$$|\vec{a} \times \vec{b}| = |3\hat{i} + 2\hat{i} + 6\hat{k}| = \sqrt{3^2 + 2^2 + 6^2}$$

$$|\vec{a} \times \vec{b}| = \sqrt{49} = 7$$

Let ' θ ' be the angle between \vec{a} and \vec{b} , then we have

$$\therefore \sin\theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|} = \frac{7}{2 \times 7} = \frac{1}{2}$$

$$\sin\theta = \frac{1}{2}$$
 $\therefore \theta = \frac{\pi}{6}$

Let θ be the angle between ā and b̄.

We have, $(\vec{a} \times \vec{b})^2 = |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 \cdot \sin^2 \theta = |\vec{a}|^2 |\vec{b}|^2 (1 - \cos^2 \theta)$

 $(: |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta)$

 $=|\vec{a}|^2|\vec{b}|^2-|\vec{a}|^2|\vec{b}|^2\cos^2\theta=|\vec{a}|^2|\vec{b}|^2-(\vec{a}\cdot\vec{b})^2$ Hence, $(\vec{a} \times \vec{b})^2 = \vec{a}^2 \vec{b}^2 - (\vec{a} \cdot \vec{b})^2$

69. Let $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$

Now, $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

$$\Rightarrow$$
 $(\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (3\hat{i} - 2\hat{j} + \hat{k}) = \sqrt{(1)^2 + (-2)^2 + (3)^2} \times$

$$\sqrt{(3)^2 + (-2)^2 + (1)^2 \cos \theta}$$

$$\Rightarrow 3+4+3=\sqrt{14}\times\sqrt{14}\cos\theta \Rightarrow \cos\theta = \frac{10}{14}$$

$$\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{100}{196}} = \sqrt{\frac{96}{196}}$$

$$\Rightarrow \sin\theta = \frac{4\sqrt{6}}{14} = \frac{2\sqrt{6}}{7}$$

70. We have, $\vec{a} = \hat{i} + \hat{i} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{i} + 3\hat{k}$

 $\vec{a} + \vec{b} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{a} - \vec{b} = 0\hat{i} - \hat{j} - 2\hat{k}$

A vector which is perpendicular to both $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ is given by

$$(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 0 & -1 & -2 \end{vmatrix}$$

$$=-2\hat{i}+4\hat{j}-2\hat{k}=\vec{c}$$
 (say)

Now,
$$\vec{c} = \sqrt{(-2)^2 + (4)^2 + (-2)^2} = \sqrt{24} = 2\sqrt{6}$$

Required unit vector, $\hat{c} = \frac{\vec{c}}{|\vec{c}|}$

$$= \frac{1}{2\sqrt{6}} \left(-2\hat{i} + 4\hat{j} - 2\hat{k} \right) = -\frac{\hat{i}}{\sqrt{6}} + \frac{2\hat{j}}{\sqrt{6}} - \frac{\hat{k}}{\sqrt{6}}$$

71. We have, $\vec{a}+\vec{b}+\vec{c}=0$

 $\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0$

$$\Rightarrow |\vec{a}|^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \qquad ... (i)$$

Similarly, $\vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{b} \cdot \vec{c} = 0$

$$\Rightarrow \vec{a} \cdot \vec{b} + |\vec{b}|^2 + \vec{b} \cdot \vec{c} = 0 \qquad ... (ii)$$

And, $\vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + \vec{c} \cdot \vec{c} = 0$

$$\Rightarrow \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + |\vec{c}|^2 = 0$$

Adding (i), (ii) and (iii), we get

$$|\vec{a}|^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{b} + |\vec{b}|^2 + \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{c} + |\vec{b} \cdot \vec{c} + |\vec{c}|^2 = 0$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{c}) = 0$$

$$\Rightarrow$$
 (3)² + (4)² + (2)² + 2 μ = 0

$$\Rightarrow (3)^2 + (4)^2 + (2)^2 + 2\mu = 0$$

$$\Rightarrow \mu = \frac{-(9+16+4)}{2} = \frac{-29}{2}$$

72. Let $\vec{a} = 2\hat{i} - 4\hat{j} - 5\hat{k}$ and $\vec{b} = 2\hat{i} + 2\hat{j} + 3\hat{k}$

Then diagonal \overrightarrow{AC} of the parallelogram is $\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b}$ $\Rightarrow \vec{p} = 2\hat{i} - 4\hat{j} - 5\hat{k} + 2\hat{i} + 2\hat{j} + 3\hat{k} = 4\hat{i} - 2\hat{j} - 2\hat{k}$

Therefore, unit vector parallel to it is

$$\frac{\vec{p}}{|\vec{p}|} = \frac{4\hat{i} - 2\hat{j} - 2\hat{k}}{\sqrt{16 + 4 + 4}} = \frac{2\hat{i} - \hat{j} - \hat{k}}{\sqrt{6}}$$

Now, diagonal BD of the parallelogram is

$$\vec{p}' = \vec{b} - \vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k} - 2\hat{i} + 4\hat{j} + 5\hat{k} = 6\hat{j} + 8\hat{k}$$

Therefore, unit vector parallel to it is

$$\frac{\vec{p}'}{|\vec{p}'|} = \frac{6\hat{j} + 8\hat{k}}{\sqrt{36 + 64}} = \frac{6\hat{j} + 8\hat{k}}{10} = \frac{3\hat{j} + 4\hat{k}}{5}$$

Now,
$$\vec{p} \times \vec{p}' = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -2 & -2 \\ 0 & 6 & 8 \end{vmatrix}$$

$$=\hat{i}(-16+12)-\hat{j}(32-0)+\hat{k}(24-0)$$

$$=-4\hat{i}-32\hat{j}+24\hat{k}$$

$$\therefore \text{ Area of parallelogram} = \frac{|\vec{p} \times \vec{p}'|}{2}$$

$$=\frac{\sqrt{16+1024+576}}{2}=2\sqrt{101} \text{ sq. units.}$$

Concept Applied

- ⇒ Area of parallelogram = $\frac{1}{2} |\vec{d}_1 \times \vec{d}_2|$ where \vec{d}_1 and \vec{d}_2 diagonals of parallelograms.
- 73. Given, a,b,c are mutually perpendicular

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0 \qquad ...(i)$$

Also, $|\vec{a}| = |\vec{b}| = |\vec{c}|$

Let α be the angle between $(2\vec{a}+\vec{b}+2\vec{c})$ and \vec{a}

$$\therefore \cos\alpha = \frac{(2\vec{a} + \vec{b} + 2\vec{c}) \cdot \vec{a}}{|2\vec{a} + \vec{b} + 2\vec{c}||\vec{a}|}$$

$$\Rightarrow \cos\alpha = \frac{2\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + 2\vec{c} \cdot \vec{a}}{|2\vec{a} + \vec{b} + 2\vec{c}||\vec{a}|} \quad [From (i)]$$

$$\cos \alpha = \frac{2|\vec{a}|^2}{|2\vec{a} + \vec{b} + 2\vec{c}||\vec{a}|} = \frac{2|\vec{a}|}{|2\vec{a} + \vec{b} + 2\vec{c}|}$$
...(ii)

Let β be the angle between $(2\vec{a} + \vec{b} + 2\vec{c})$ and \vec{c}

$$\therefore \cos\beta = \frac{(2\vec{a} + \vec{b} + 2\vec{c}) \cdot \vec{c}}{|2\vec{a} + \vec{b} + 2\vec{c}||\vec{c}|}$$

$$\Rightarrow \cos\beta = \frac{2\vec{a}\cdot\vec{c} + \vec{b}\cdot\vec{c} + 2\vec{c}\cdot\vec{c}}{|2\vec{a} + \vec{b} + 2\vec{c}||\vec{c}|}$$

$$\Rightarrow \cos\beta = \frac{2|\vec{c}|^2}{|2\vec{a} + \vec{b} + 2\vec{c}||\vec{c}|} \quad [From (i)]$$

$$\Rightarrow \cos\beta = \frac{2|\vec{c}|}{|2\vec{a} + \vec{b} + 2\vec{c}|} \qquad ...(iii)$$

As $|\vec{a}| = |\vec{c}|$

... (iii)

From (ii) & (iii), $\cos \alpha = \cos \beta \implies \alpha = \beta$

Hence, $(2\vec{a}+\vec{b}+2\vec{c})$ is equally inclined to both \vec{a} and \vec{c} .

Angle between \ddot{a} and $(2\ddot{a}+\ddot{b}+2\ddot{c})$ is

$$\alpha = \cos^{-1}\left(\frac{2|\vec{a}|}{|2\vec{a} + \vec{b} + 2\vec{c}|}\right)$$

75. We have, $|\vec{a}| = |\vec{b}|$

To prove,
$$\frac{|\vec{a}+\vec{b}|}{|\vec{a}-\vec{b}|} = \cot \frac{\alpha}{2}$$

i.e.,
$$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|\cot\frac{\alpha}{2}$$

i.e.,
$$|\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2 \cot^2 \frac{\alpha}{2}$$

LH.S. =
$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}$$

$$=2|\vec{a}|^2+2|\vec{a}||\vec{b}|\cos\alpha \ (:|\vec{a}|=|\vec{b}|)=2|\vec{a}|^2+2|\vec{a}|^2\cos\alpha$$

$$=2|\vec{a}|^2(1+\cos\alpha)=2|\vec{a}|^22\cos^2\frac{\alpha}{2}$$

$$=4|\vec{a}|^2\cos^2\frac{\alpha}{2} \qquad ...(i)$$

R.H.S. =
$$|\vec{a} - \vec{b}|^2 \cot^2 \frac{\alpha}{2} = (|\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}) \cot^2 (\frac{\alpha}{2})$$

=
$$(2|\vec{a}|^2 - 2|\vec{a}||\vec{b}|\cos\alpha) \cdot \cot^2\left(\frac{\alpha}{2}\right)$$

=
$$2|\vec{a}|^2 (1-\cos\alpha)\cot^2\frac{\alpha}{2} = 2|\vec{a}|^2 \cdot 2\sin^2\frac{\alpha}{2} \cdot \frac{\cos^2\alpha/2}{\sin^2\alpha/2}$$

= $4|\vec{a}|^2 \cos^2\alpha/2$...(ii)

.: From (i) and (ii) L.H.S. = R.H.S.

76. Let $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ Then diagonal \overrightarrow{AC} of the parallelogram is

$$\vec{p} = \vec{a} + \vec{b}$$

= $\hat{i} + 2\hat{j} + 3\hat{k} + 2\hat{i} + 4\hat{j} - 5\hat{k}$

 $=3\hat{i}+6\hat{j}-2\hat{k}$

Therefore unit vector parallel to it is

$$\frac{\vec{p}}{|\vec{p}|} = \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{9 + 36 + 4}} = \frac{1}{7}(3\hat{i} + 6\hat{j} - 2\hat{k})$$

Now, diagonal BD of the parallelogram is

$$\vec{p}' = \vec{b} - \vec{a} = 2\hat{i} + 4\hat{j} - 5\hat{k} - \hat{i} - 2\hat{j} - 3\hat{k} = \hat{i} + 2\hat{j} - 8\hat{k}$$

Therefore unit vector parallel to it is

$$\frac{\vec{p}'}{|\vec{p}'|} = \frac{\hat{i} + 2\hat{j} - 8\hat{k}}{\sqrt{1 + 4 + 64}} = \frac{1}{\sqrt{69}}(\hat{i} + 2\hat{j} - 8\hat{k})$$

Concept Applied 6

- ⇒ In a parallelogram with adjacent sides \vec{a} and \vec{b} , one of the diagonal is $\vec{a} + \vec{b}$ and the other is $\vec{b} \vec{a}$.
- 77. Given, AABC with vertices

$$A(1,2,3)=\hat{i}+2\hat{j}+3\hat{k}, B(2,-1,4)=2\hat{i}-\hat{j}+4\hat{k}$$

$$C(4,5,-1)=4\hat{i}+5\hat{j}-\hat{k}$$

Now
$$\overline{AB} = \overline{OB} - \overline{OA} = (2\hat{i} - \hat{i} + 4\hat{k}) - (\hat{i} + 2\hat{i} + 3\hat{k}) = \hat{i} - 3\hat{i} + \hat{k}$$

$$\overline{AC} = \overline{OC} - \overline{OA} = (4\hat{i} + 5\hat{j} - \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = 3\hat{i} + 3\hat{j} - 4\hat{k}.$$

$$\therefore (\overline{AB} \times \overline{AC}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 3 & 3 & -4 \end{vmatrix} = 9\hat{i} + 7\hat{j} + 12\hat{k}$$

Hence, area of
$$\triangle ABC = \frac{1}{2} |\overline{AB} \times \overline{AC}| = \frac{1}{2} |9\hat{i} + 7\hat{j} + 12\hat{k}|$$

$$=\frac{1}{2}\sqrt{9^2+7^2+12^2}=\frac{1}{2}\sqrt{81+49+144}=\frac{1}{2}\sqrt{274}$$
 sq. units

78. Since \vec{a} , \vec{b} and \vec{c} are the position vector of A, B and C respectively.

Then \overline{BC} = position vector of C - position vector of B= $\overline{c} - \overline{b}$...(i) and \overline{CA} = position vector of A - position vector of C

=ā-ē ...(ii

A, B and C are collinear if and only if $\overline{BC} \times \overline{CA} = \overline{0}$

if and only if $(\vec{c} - \vec{b}) \times (\vec{a} - \vec{c}) = \vec{0}$ (From (i) and (ii))

if and only if $(\vec{c} \times \vec{a}) - (\vec{c} \times \vec{c}) - (\vec{b} \times \vec{a}) + (\vec{b} \times \vec{c}) = \vec{0}$

if and only if $(\vec{c} \times \vec{a}) + (\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) = \vec{0}$

 $\{\because \vec{c} \times \vec{c} = \vec{0} \text{ and } \vec{a} \times \vec{b} = -\vec{b} \times \vec{a}\}$

iff $(\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) = \vec{0}$

 \therefore A, B and C are collinear iff $(\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) = \vec{0}$

79. Here, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ $\Rightarrow \vec{b} + \vec{c} = (2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}$

The unit vector along $\vec{b} + \vec{c}$ is $\vec{p} = \frac{\vec{b} + \vec{c}}{|\vec{b} + \vec{c}|}$

$$= \frac{(2+\lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(2+\lambda)^2 + 6^2 + (-2)^2}} = \frac{(2+\lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{\lambda^2 + 4\lambda + 44}}$$

Also, $\vec{a} \cdot \vec{p} = 1$ (Given)

$$\Rightarrow \frac{(2+\lambda)+6-2}{\sqrt{\lambda^2+4\lambda+44}} = 1 \Rightarrow \sqrt{\lambda^2+4\lambda+44} = \lambda+6$$

 $\Rightarrow \lambda^2 + 4\lambda + 44 = \lambda^2 + 12\lambda + 36 \Rightarrow 8\lambda = 8 \Rightarrow \lambda = 1$

.. The required unit vector

$$\vec{p} = \frac{(2+1)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{1+4+44}} = \frac{1}{7} (3\hat{i} + 6\hat{j} - 2\hat{k}).$$

80. Given, position vector of $A = \hat{i} + \hat{j} + \hat{k}$

Position vector of $B = 2\hat{i} + 5\hat{j}$

Position vector of $C = 3\hat{i} + 2\hat{j} - 3\hat{k}$

Position vector of $D = \hat{i} - 6\hat{i} - \hat{k}$

$$\therefore \overline{AB} = (2\hat{i} + 5\hat{j}) - (\hat{i} + \hat{j} + \hat{k}) = \hat{i} + 4\hat{j} - \hat{k}$$
and $\overline{CD} = (\hat{i} - 6\hat{j} - \hat{k}) - (3\hat{i} + 2\hat{j} - 3\hat{k}) = -2\hat{i} - 8\hat{j} + 2\hat{k}$

Now,
$$|\overline{AB}| = \sqrt{(1)^2 + (4)^2 + (-1)^2} = \sqrt{18}$$

$$|\overline{CD}| = \sqrt{(-2)^2 + (-8)^2 + (2)^2} = \sqrt{4 + 64 + 4} = \sqrt{72} = 2\sqrt{18}$$

= $\sqrt{72} = 2\sqrt{18}$

Let θ be the angle between \overline{AB} and \overline{CD} .

$$\therefore \cos \theta = \frac{\overline{AB} \cdot \overline{CD}}{|\overline{AB}| |\overline{CD}|} = \frac{(\hat{i} + 4\hat{j} - \hat{k}) \cdot (-2\hat{i} - 8\hat{j} + 2\hat{k})}{(\sqrt{18})(2\sqrt{18})}$$
$$= \frac{-2 - 32 - 2}{36} = \frac{-36}{36} = -1 \implies \cos \theta = -1 \implies \theta = \pi$$

Since, angle between AB and CD is 180°.

.: AB and CD are collinear.

81. We have, $|\vec{a}|=1$, $|\vec{b}|=2$ and $|\vec{c}|=3$

Given, Projection of \vec{b} along \vec{a} = Projection of \vec{c} along \vec{a}

$$\Rightarrow \quad \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} = \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|} \quad \Rightarrow \quad \vec{b} \cdot \vec{a} = \vec{c} \cdot \vec{a}$$

$$\Rightarrow \vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$$

Given, \vec{b} and \vec{c} are perpendicular to each other

$$\therefore \vec{b} \cdot \vec{c} = 0 \qquad ...(iii)$$

Now, $|3\vec{a}-2\vec{b}+2\vec{c}|^2=(3\vec{a}-2\vec{b}+2\vec{c})\cdot(3\vec{a}-2\vec{b}+2\vec{c})$

$$=9(\vec{a}\cdot\vec{a})-6(\vec{a}\cdot\vec{b})+6(\vec{a}\cdot\vec{c})-6(\vec{b}\cdot\vec{a})+4(\vec{b}\cdot\vec{b})-4(\vec{b}\cdot\vec{c})$$

$$+6(\vec{c}\cdot\vec{a})-4(\vec{c}\cdot\vec{b})+4(\vec{c}\cdot\vec{c})$$

 $= 9 \, |\vec{a}|^2 + 4 \, |\vec{b}|^2 + 4 \, |\vec{c}|^2 + 2 \{ -6 (\vec{a} \cdot \vec{b}) - 4 (\vec{b} \cdot \vec{c}) + 6 (\vec{a} \cdot \vec{c}) \}$

$$=9\times1^2+4\times2^2+4\times3^2+2\{-6(\vec{a}\cdot\vec{b})-4\times0+6(\vec{a}\cdot\vec{b})\}$$

[From eqn (i) and (iii)]

:
$$|3\vec{a} - 2\vec{b} + 2\vec{c}| = \sqrt{61}$$

82. Let
$$\vec{d} = x\hat{i} + y\hat{j} + z\hat{k}$$

Now, it is given that, d is perpendicular to

$$\vec{b} = \hat{i} - 4\hat{j} + 5\hat{k}$$
 and $\vec{c} = 3\hat{i} + \hat{j} - \hat{k}$ $\therefore \vec{d} \cdot \vec{b} = 0$ and $\vec{d} \cdot \vec{c} = 0$

$$\Rightarrow x - 4y + 5z = 0 \qquad ...(i)$$

and
$$3x + y - z = 0$$
 ...(ii)

Also, $\vec{d} \cdot \vec{a} = 21$, where $\vec{a} = 4\hat{i} + 5\hat{j} - \hat{k}$

$$\Rightarrow 4x + 5y - z = 21 \qquad ...(iii)$$

Eliminating z from (i) and (ii), we get
$$16x + y = 0$$
 ...(iv)

Eliminating z from (ii) and (iii), we get
$$x + 4y = 21$$
 ...(v)

Solving (iv) and (v), we get $x = \frac{-1}{3}$, $y = \frac{16}{3}$

Putting the values of x and y in (i), we get $z = \frac{13}{3}$

$$\vec{d} = \frac{-1}{3}\hat{i} + \frac{16}{3}\hat{j} + \frac{13}{3}\hat{k} \text{ is the required vector.}$$

Concept Applied

⇒ If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then $a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$.

83. Given,
$$|\vec{a}| = |\vec{b}| = |\vec{c}|$$
 ...(i)

and
$$\vec{a} \cdot \vec{b} = 0, \vec{b} \cdot \vec{c} = 0, \vec{c} \cdot \vec{a} = 0$$
 ...(ii)

Let $(\vec{a}+\vec{b}+\vec{c})$ be inclined to vectors \vec{a}, \vec{b} and \vec{c} by angles α, β and γ respectively. Then

$$\cos\alpha = \frac{(\vec{a} + \vec{b} + \vec{c}) \cdot \vec{a}}{|\vec{a} + \vec{b} + \vec{c}||\vec{a}|} = \frac{\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a}}{|\vec{a} + \vec{b} + \vec{c}||\vec{a}|}$$

$$= \frac{|\vec{a}|^2 + 0 + 0}{|\vec{a} + \vec{b} + \vec{c}||\vec{a}|}$$
[Using (ii)]

$$= \frac{|\vec{a}|}{|\vec{a} + \vec{b} + \vec{c}|} \dots (iii)$$

Similarly,
$$\cos\beta = \frac{|\vec{b}|}{|\vec{a} + \vec{b} + \vec{c}|}$$
 ...(iv)

and
$$\cos \gamma = \frac{|\vec{c}|}{|\vec{a} + \vec{b} + \vec{c}|}$$
 ...(v)

From (i), (iii), (iv) and (v), we get $\cos \alpha = \cos \beta = \cos \gamma \Rightarrow \alpha = \beta = \gamma$

Hence, the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to the vector \vec{a} . \vec{b} and \vec{c} .

...(ii) Also, the angle between them is given as

$$\alpha = \cos^{-1}\left(\frac{|\vec{a}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)\beta = \cos^{-1}\left(\frac{|\vec{b}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)$$

$$\gamma = \cos^{-1}\left(\frac{|\vec{c}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)$$

84. We have, $A(2\hat{i} - \hat{j} + \hat{k})$, $B(\hat{i} - 3\hat{j} - 5\hat{k})$, and $C(3\hat{i} - 4\hat{j} - 4\hat{k})$

Then,
$$\overline{AB} = (1-2)\hat{i} + (-3+1)\hat{j} + (-5-1)\hat{k} = -\hat{i} - 2\hat{j} - 6\hat{k}$$
,

$$\overline{AC} = (3-2)\hat{i} + (-4+1)\hat{j} + (-4-1)\hat{k} = \hat{i} - 3\hat{j} - 5\hat{k}$$

and
$$\overline{BC} = (3-1)\hat{i} + (-4+3)\hat{j} + (-4+5)\hat{k} = 2\hat{i} - \hat{j} + \hat{k}$$

Now angle between AC and BC is given by

$$\cos\theta = \frac{(\overline{AC}) \cdot (\overline{BC})}{|\overline{AC}||\overline{BC}|} = \frac{2+3-5}{\sqrt{1+9+25} \cdot \sqrt{4+1+1}}$$

$$\Rightarrow$$
 $\cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2} \Rightarrow BC \perp AC$

So, A, B, C are vertices of right angled triangle.

Now area of $\triangle ABC = \frac{1}{2} |\overline{AC} \times \overline{BC}|$

$$\begin{aligned} &=\frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & -5 \\ 2 & -1 & 1 \end{vmatrix} = \frac{1}{2} |(-3-5)\hat{i} - (1+10)\hat{j} + (-1+6)\hat{k}| \\ &= \frac{1}{2} |1 - 8\hat{i} - 11\hat{j} + 5\hat{k}| = \frac{1}{2} \sqrt{64 + 121 + 25} = \frac{\sqrt{210}}{2} \text{ sq. units.} \end{aligned}$$

Concept Applied (6)

If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b & b & b \end{vmatrix}$$

85. Let $\vec{a} = 2\hat{i} - 4\hat{j} - 5\hat{k}$ and $\vec{b} = 2\hat{i} + 2\hat{j} + 3\hat{k}$

Then diagonal \overline{AC} of the parallelogram is $\vec{p} = \vec{a} + \vec{b}$ $\Rightarrow \vec{p} = 2\hat{i} - 4\hat{j} - 5\hat{k} + 2\hat{i} + 2\hat{j} + 3\hat{k} = 4\hat{i} - 2$ Therefore, unit vector parallel to it is

$$\frac{\vec{p}}{|\vec{p}|} = \frac{4\hat{i} - 2\hat{j} - 2\hat{k}}{\sqrt{16 + 4 + 4}} = \frac{2\hat{i} - \hat{j} - \hat{k}}{\sqrt{6}}$$

Now, diagonal BD of the parallelogram is

$$\vec{p}' = \vec{b} - \vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k} - 2\hat{i} + 4\hat{j} + 5\hat{k} = 6\hat{j} + 8\hat{k}$$

Therefore, unit vector parallel to it is

$$\frac{\vec{p}'}{|\vec{p}'|} = \frac{6\hat{j} + 8\hat{k}}{\sqrt{36 + 64}} = \frac{6\hat{j} + 8\hat{k}}{10} = \frac{3\hat{j} + 4\hat{k}}{5}$$

Now,
$$\vec{p} \times \vec{p}' = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -2 & -2 \\ 0 & 6 & 8 \end{vmatrix}$$

$$=\hat{i}(-16+12)-\hat{j}(32-0)+\hat{k}(24-0)=-4\hat{i}-32\hat{j}+24\hat{k}$$

$$\therefore \text{ Area of parallelogram} = \frac{|\vec{p} \times \vec{p}'|}{2}$$
$$= \frac{\sqrt{16 + 1024 + 576}}{2} = 2\sqrt{101} \text{ sq. units.}$$

Concept Applied (6)

- ⇒ Area of parallelogram = $\frac{1}{2} |\vec{a}_1 \times \vec{a}_2|$ where \vec{d}_1 and \vec{d}_2 diagonals of parallelograms.
- Two non zero vectors are parallel if and only if their cross product is zero vector.

So, we have to prove that cross product of $\vec{a} - \vec{d}$ and $\vec{b} - \vec{c}$ is zero vector.

 $(\vec{a}-\vec{d})\times(\vec{b}-\vec{c})=(\vec{a}\times\vec{b})-(\vec{a}\times\vec{c})-(\vec{d}\times\vec{b})+(\vec{d}\times\vec{c})$

Since, it is given that $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$.

And, $\vec{d} \times \vec{b} = -\vec{b} \times \vec{d}$, $\vec{d} \times \vec{c} = -\vec{c} \times \vec{d}$

Therefore, $(\vec{a}-\vec{d})\times(\vec{b}-\vec{c})=(\vec{c}\times\vec{d})-(\vec{b}\times\vec{d})+(\vec{b}\times\vec{d})-(\vec{c}\times\vec{d})=\vec{0}$ Hence, $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$, where $\vec{a}\neq\vec{d}$ and $\vec{b}\neq\vec{c}$.

- 87. $(\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy = [(x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{i}] \cdot [(x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{j})] + xy$ = $(-y\hat{k} + z\hat{j}) \cdot (x\hat{k} - z\hat{i}) + xy = -xy + xy = 0$
- 88. Here, $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{i} 4\hat{j} 5\hat{k}$ $\therefore \vec{a} - \vec{b} = (\hat{i} + 2\hat{j} + \hat{k}) - (2\hat{i} + \hat{j}) = -\hat{i} + \hat{j} + \hat{k}$ and $\vec{c} - \vec{b} = (3\hat{i} - 4\hat{j} - 5\hat{k}) - (2\hat{i} + \hat{j}) = \hat{i} - 5\hat{j} - 5\hat{k}$ Vector perpendicular to both $\vec{a} - \vec{b}$ and $\vec{c} - \vec{b}$ is

$$(\vec{a} - \vec{b}) \times (\vec{c} - \vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 1 \\ 1 & -5 & -5 \end{vmatrix}$$

 $=(-5+5)\hat{i}-(5-1)\hat{j}+(5-1)\hat{k}=-4\hat{j}+4\hat{k}$

.. Unit vector perpendicular to both
$$\vec{a} - \vec{b}$$
 and $\vec{c} - \vec{b}$ = $\pm \frac{-4\hat{j} + 4\hat{k}}{|-4\hat{j} + 4\hat{k}|} = \pm \frac{-4\hat{j} + 4\hat{k}}{\sqrt{(-4)^2 + 4^2}} = \pm \frac{-4\hat{j} + 4\hat{k}}{4\sqrt{2}} = \pm \frac{1}{\sqrt{2}}(-\hat{j} + \hat{k}).$

89. Given $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 3, |\vec{b}| = 5, |\vec{c}| = 7$

We have $\vec{a} + \vec{b} + \vec{c} = 0$

$$\Rightarrow \vec{a} + \vec{b} = -\vec{c} \Rightarrow |\vec{a} + \vec{b}|^2 = |-\vec{c}|^2 \Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a} \cdot \vec{b}) = |\vec{c}|^2$$

$$\Rightarrow 9 + 25 + 2|\vec{a}||\vec{b}|\cos\theta = 49 \Rightarrow 2 \times 3 \times 5 \times \cos\theta = 49 - 34 = 15$$

$$\Rightarrow \cos\theta = \frac{15}{30} = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3} = 60^\circ$$

90. We have, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ Let $\vec{r} = \vec{a} + \vec{b} = 2\hat{i} + 3\hat{i} + 4\hat{k}$ and $\vec{p} = \vec{a} - \vec{b} = -\hat{i} - 2\hat{k}$

A unit vector perpendicular to both \vec{r} and \vec{p} is given as

$$\pm \frac{\vec{r} \times \vec{p}}{|\vec{r} \times \vec{p}|}$$

Now,
$$\vec{r} \times \vec{p} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 0 & -1 & -2 \end{vmatrix} = -2\hat{i} + 4\hat{j} - 2\hat{k}$$

So, the required unit vector is

$$=\pm\frac{\left(-2\hat{i}+4\hat{j}-2\hat{k}\right)}{\sqrt{\left(-2\right)^{2}+4^{2}+\left(-2\right)^{2}}}=\mp\frac{\left(\hat{i}-2\hat{j}+\hat{k}\right)}{\sqrt{6}}.$$

91. Here, $\vec{a} = 2\hat{i} - 3\hat{i} + \hat{k}$, $\vec{b} = -\hat{i} + \hat{k}$ and $\vec{c} = 2\hat{i} - \hat{k}$

$$\vec{a} + \vec{b} = (2\hat{i} - 3\hat{j} + \hat{k}) + (-\hat{i} + \hat{k}) = \hat{i} - 3\hat{j} + 2\hat{k}$$

and
$$\vec{b} + \vec{c} = (-\hat{i} + \hat{k}) + (2\hat{j} - \hat{k}) = -\hat{i} + 2\hat{j}$$

$$\therefore (\vec{a} + \vec{b}) \times (\vec{b} + \vec{c}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ -1 & 2 & 0 \end{vmatrix} = -4\hat{i} - 2\hat{j} - \hat{k}$$

 \vec{b} . Area of a parallelogram whose diagonals are $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$

$$\begin{split} &=\frac{1}{2}\left|\left(\vec{a}+\vec{b}\right)\times\left(\vec{b}+\vec{c}\right)\right| = \frac{1}{2}\left|-4\hat{i}-2\hat{j}-\hat{k}\right| \\ &=\frac{1}{2}\sqrt{\left(-4\right)^2+\left(-2\right)^2+\left(-1\right)^2} = \frac{\sqrt{21}}{2} \text{ sq.units.} \end{split}$$

92. Let
$$\vec{p} = x\hat{i} + y\hat{j} + z\hat{k}$$

Now, it is given that \vec{p} is perpendicular to both $\vec{\alpha}$ and $\vec{\beta}$

$$\vec{p} \cdot \vec{\alpha} = 0$$
 and $\vec{p} \cdot \vec{\beta} = 0$

$$\Rightarrow (x\hat{i}+y\hat{j}+z\hat{k})\cdot(4\hat{i}+5\hat{j}-\hat{k})=0$$

and
$$(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} - 4\hat{j} + 5\hat{k}) = 0$$

$$\Rightarrow$$
 4x + 5y - z = 0 ...(i)
and x - 4y + 5z = 0 ...(ii)

Also, we have, $\vec{p} \cdot \vec{q} = 21 \Rightarrow (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (3\hat{i} + \hat{j} - \hat{k}) = 21$

$$\Rightarrow 3x + y - z = 21 \qquad ...(iii)$$

Eliminating z from (i) and (ii), we get

$$21x + 21y = 0 \Rightarrow x + y = 0$$
 ...(iv)
Eliminating z from (i) and (iii), we get $x + 4y = -21$...(v)

Eliminating 2 from (i) and (ii), we get x + 4y = -21 ...

Solving (iv) and (v), we get x = 7, y = -7

Now, from (i), we get z = -7

So, $\vec{p} = 7i - 7j - 7k$.

CBSE Sample Questions

1. Let \vec{a} be the unit vector in the direction opposite to the given vector $\left(-\frac{3}{4}\hat{j}\right)$.

Then,
$$\vec{a} = \frac{-1}{\sqrt{\left(\frac{3}{4}\right)^2}} \left(-\frac{3}{4}\hat{j}\right) = \hat{j}$$
 (1)

2. A vector in the direction opposite to $2\hat{i} + 3\hat{j} - 6\hat{k}$ is $-2\hat{i} - 3\hat{i} + 6\hat{k}$.

Its magnitude is $|\sqrt{4+9+36}| = |\sqrt{49}| = 7$

So, a vector in the direction opposite to $2\hat{i} + 3\hat{j} - 6\hat{k}$ of magnitude 5 units is $\frac{5}{7}(-2\hat{i} - 3\hat{j} + 6\hat{k})$ (1)

3. (a): Scalar projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

Scalar projection of $3\hat{i} - \hat{j} - 2\hat{k}$ on vector $\hat{i} + 2\hat{j} - 3\hat{k}$

$$= \frac{(3\hat{i} - \hat{j} - 2\hat{k}) \cdot (\hat{i} + 2\hat{j} - 3\hat{k})}{|\hat{i} + 2\hat{i} - 3\hat{k}|} = \frac{7}{\sqrt{14}}$$
(1)

4. (b):
$$|\vec{a}-2\vec{b}|^2 = (\vec{a}-2\vec{b}) \cdot (\vec{a}-2\vec{b})$$

$$=\vec{a}\cdot\vec{a}-4\vec{a}\cdot\vec{b}+4\vec{b}\cdot\vec{b}=|\vec{a}|^2-4\vec{a}\cdot\vec{b}+4|\vec{b}|^2=4-16+36=24$$

 $\therefore |\vec{a}-2\vec{b}|=2\sqrt{6}$ (1)

5. Area of the triangle

$$= \frac{1}{2} |2\hat{i} \times (-3)\hat{j}| = \frac{1}{2} |-6\hat{k}| = 3 \text{ sq. units}$$
 (1)

6. We have, $|\hat{a} + \hat{b}|^2 = 1 \implies \hat{a}^2 + \hat{b}^2 + 2\hat{a} \cdot \hat{b} = 1$

$$\Rightarrow 2\hat{a} \cdot \hat{b} = 1 - 1 - 1 \qquad (\because |\hat{a}| = |\hat{b}| = 1)$$

$$\Rightarrow \hat{a} \cdot \hat{b} = \frac{-1}{2} \Rightarrow |\hat{a}| |\hat{b}| \cos \theta = \frac{-1}{2} \Rightarrow \theta = \cos^{-1} \left(-\frac{1}{2}\right)$$

$$\Rightarrow \theta = \pi - \frac{\pi}{3} \Rightarrow \theta = \frac{2\pi}{3} \tag{1}$$

7. Since ā is a unit vector, ∴ |ā|=1

Now, $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$

$$\Rightarrow \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{a} - \vec{a} \cdot \vec{x} - \vec{a} \cdot \vec{a} = 12$$
 (1/2)

$$\Rightarrow |\vec{x}|^2 - |\vec{a}|^2 = 12 \quad (\because \vec{a} \cdot \vec{x} = \vec{x} \cdot \vec{a}) \tag{1/2}$$

$$\Rightarrow |\vec{x}|^2 - 1 = 12 \Rightarrow |\vec{x}|^2 = 13 \Rightarrow |\vec{x}| = \sqrt{13}$$
 (1)

8. Since,
$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a} \cdot \vec{b})$$
 (1)

:. $|\vec{a} + \vec{b}|^2 = 1 + 1 + 2\cos\theta$ [As $|\vec{a}| = |\vec{b}| = 1$]

$$=2(1+\cos\theta)=4\cos^2\frac{\theta}{2} \qquad \left[\because 1+\cos\theta=2\cos^2\frac{\theta}{2}\right] \qquad (1/2)$$

$$|\vec{a} + \vec{b}| = 2\cos\frac{\theta}{2}$$
 (1/2)

Let ABCD is a parallelogram such that

$$\vec{a} = \overline{AB} = \hat{i} - \hat{j} + \hat{k}, \vec{b} = \overline{BC}$$
, and $\vec{d} = \overline{AC} = 4\hat{i} + 5\hat{k}$.

Now, $\vec{a} + \vec{b} = \vec{d}$ (By triangle law)

$$\Rightarrow \vec{b} = \vec{d} - \vec{a}$$

$$\Rightarrow \vec{b} = (4\hat{i} + 5\hat{k}) - (\hat{i} - \hat{j} + \hat{k})$$

$$=3\hat{i}+\hat{i}+4\hat{k}$$

 $\begin{array}{c}
\vec{a} \\
\vec{b}
\end{array}$ $\begin{array}{c}
\vec{b} \\
\vec{b}
\end{array}$ $\begin{array}{c}
\vec{b} \\
\vec{b}
\end{array}$ $\begin{array}{c}
\vec{b} \\
\vec{b}
\end{array}$

Now,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 3 & 1 & 4 \end{vmatrix} = -5\hat{i} - \hat{j} + 4\hat{k}$$
 (1)

:. Area of parallelogram =
$$|\vec{a} \times \vec{b}|$$

= $\sqrt{25+1+16} = \sqrt{42}$ sq. units (1/2)

10. We have, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} \Rightarrow \vec{a} \cdot (\vec{b} - \vec{c}) = 0$

$$\Rightarrow$$
 $(\vec{b}-\vec{c})=\vec{0}$ or $\vec{a}\perp(\vec{b}-\vec{c})$

$$\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c}) \tag{1}$$

Also, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c} \Rightarrow \vec{a} \times (\vec{b} - \vec{c}) = \vec{0}$

$$\Rightarrow \vec{b} - \vec{c} = \vec{0} \text{ or } \vec{a} || (\vec{b} - \vec{c})$$

$$\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} || (\vec{b} - \vec{c})$$
 (1)

Since, \vec{a} can not be both perpendicular to $(\vec{b}-\vec{c})$ and parallel to $(\vec{b}-\vec{c})$.

Hence,
$$\vec{b} = \vec{c}$$
. (1)