ARM v6-M Instruction Set MOV

ADD

Subtract

Multiply

Compare

Logical

Shift/Rotate

Load

Store

Load/Store Multiple

Push/Pop

Branch

Stack Operations

Extend

Pseudo Instructions

Weitere Befehle

REV REV16 REVSH SVC CPSID CPSIE SETEND BKPT NOP SEV WFE WFI YIELD

ZHAW_CT1/23.12.2016 ARM_v6-M_Instruction_Set.docx 3 ZHAW_CT1/23.12.2016 ARM_v6-M_Instruction_Set.docx 4

Thumb[®] 16-bit Instruction Set Quick Reference Card

This card lists all Thumb instructions available on Thumb-capable processors earlier than ARM®v6T2. In addition, it lists all Thumb-2 16-bit instructions. The instructions shown on this card are all 16-bit in Thumb-2, except where noted otherwise.

All registers are Lo (R0-R7) except where specified. Hi registers are R8-R15.

Key to Tables			
§	See Table ARM architecture versions.	<loreglist+lr></loreglist+lr>	A comma-separated list of Lo registers. plus the LR, enclosed in braces, { and }.
<loreglist></loreglist>	A comma-separated list of Lo registers, enclosed in braces, { and }.	<loreglist+pc></loreglist+pc>	A comma-separated list of Lo registers. plus the PC, enclosed in braces, { and }.

Operation		§	Assembler	Updates	Action	Notes
Move	Immediate		MOVS Rd, # <imm></imm>	N Z	Rd := imm	imm range 0-255.
	Lo to Lo		MOVS Rd, Rm	N Z	Rd := Rm	Synonym of LSLS Rd, Rm, #0
	Hi to Lo, Lo to Hi, Hi to Hi		MOV Rd, Rm		Rd := Rm	Not Lo to Lo.
	Any to Any	6	MOV Rd, Rm		Rd := Rm	Any register to any register.
Add	Immediate 3		ADDS Rd, Rn, # <imm></imm>	N Z C	Rd := Rn + imm	imm range 0-7.
	All registers Lo		ADDS Rd, Rn, Rm	N Z C	Rd := Rn + Rm	
	Hi to Lo, Lo to Hi, Hi to Hi		ADD Rd, Rd, Rm		Rd := Rd + Rm	Not Lo to Lo.
	Any to Any	T2	ADD Rd, Rd, Rm		Rd := Rd + Rm	Any register to any register.
	Immediate 8		ADDS Rd, Rd, # <imm></imm>	N Z C	Rd := Rd + imm	imm range 0-255.
	With carry		ADCS Rd, Rd, Rm	N Z C	Rd := Rd + Rm + C-bit	
	Value to SP		ADD SP, SP, # <imm></imm>		SP := SP + imm	imm range 0-508 (word-aligned).
	Form address from SP		ADD Rd, SP, # <imm></imm>		Rd := SP + imm	imm range 0-1020 (word-aligned).
	Form address from PC		ADR Rd, <label></label>		Rd := label	label range PC to PC+1020 (word-aligned).
Subtract	Lo and Lo		SUBS Rd, Rn, Rm	N Z C	Rd := Rn - Rm	
	Immediate 3		SUBS Rd, Rn, # <imm></imm>	N Z C	Rd := Rn - imm	imm range 0-7.
	Immediate 8		SUBS Rd, Rd, # <imm></imm>	N Z C	Rd := Rd - imm	imm range 0-255.
	With carry		SBCS Rd, Rd, Rm	N Z C	Rd := Rd - Rm - NOT C-bit	
	Value from SP		SUB SP, SP, # <imm></imm>		SP := SP - imm	imm range 0-508 (word-aligned).
	Negate		RSBS Rd, Rn, #0	N Z C	Rd := -Rn	Synonym: NEGS Rd, Rn
Multiply	Multiply		MULS Rd, Rm, Rd	N Z *	Rd := Rm * Rd	* C and V flags unpredictable in §4T, unchanged in §5T and above
Compare			CMP Rn, Rm	N Z C V	update APSR flags on Rn – Rm	Can be Lo to Lo, Lo to Hi, Hi to Lo, or Hi to Hi.
	Negative		CMN Rn, Rm	N Z C V	update APSR flags on Rn + Rm	
	Immediate		CMP Rn, # <imm></imm>	N Z C V	update APSR flags on Rn – imm	imm range 0-255.
Logical	AND		ANDS Rd, Rd, Rm	N Z	$Rd := Rd \ AND \ Rm$	
	Exclusive OR		EORS Rd, Rd, Rm	N Z	Rd := Rd EOR Rm	
	OR		ORRS Rd, Rd, Rm	N Z	Rd := Rd OR Rm	
	Bit clear		BICS Rd, Rd, Rm	N Z	$Rd := Rd \ AND \ NOT \ Rm$	
	Move NOT		MVNS Rd, Rm	N Z	Rd := NOT Rm	
	Test bits		TST Rn, Rm	N Z	update APSR flags on Rn AND Rm	
Shift/rotate	Logical shift left		LSLS Rd, Rm, # <shift></shift>	N Z C*	$Rd := Rm \ll shift$	Allowed shifts 0-31. * C flag unaffected if shift is 0.
			LSLS Rd, Rd, Rs	N Z C*	Rd := Rd << Rs[7:0]	* C flag unaffected if Rs[7:0] is 0.
	Logical shift right		LSRS Rd, Rm, # <shift></shift>	N Z C	Rd := Rm >> shift	Allowed shifts 1-32.
			LSRS Rd, Rd, Rs	N Z C*	Rd := Rd >> Rs[7:0]	* C flag unaffected if Rs[7:0] is 0.
	Arithmetic shift right		ASRS Rd, Rm, # <shift></shift>	N Z C	$Rd := Rm \ ASR \ shift$	Allowed shifts 1-32.
			ASRS Rd, Rd, Rs	N Z C*	$Rd := Rd \ ASR \ Rs[7:0]$	* C flag unaffected if Rs[7:0] is 0.
	Rotate right		RORS Rd, Rd, Rs	N Z C*	Rd := Rd ROR Rs[7:0]	* C flag unaffected if Rs[7:0] is 0.

Thumb 16-bit Instruction Set Quick Reference Card

Operation		§	Assembler	Action	Notes
Load	with immediate offset, word	-	LDR Rd, [Rn, # <imm>]</imm>	Rd := [Rn + imm]	imm range 0-124, multiple of 4.
	halfword		LDRH Rd, [Rn, # <imm>]</imm>	Rd := ZeroExtend([Rn + imm][15:0])	Clears bits 31:16. imm range 0-62, even.
	byte		LDRB Rd, [Rn, # <imm>]</imm>	Rd := ZeroExtend([Rn + imm][7:0])	Clears bits 31:8. imm range 0-31.
	with register offset, word		LDR Rd, [Rn, Rm]	Rd := [Rn + Rm]	
	halfword		LDRH Rd, [Rn, Rm]	Rd := ZeroExtend([Rn + Rm][15:0])	Clears bits 31:16
	signed halfword		LDRSH Rd, [Rn, Rm]	Rd := SignExtend([Rn + Rm][15:0])	Sets bits 31:16 to bit 15
	byte		LDRB Rd, [Rn, Rm]	Rd := ZeroExtend([Rn + Rm][7:0])	Clears bits 31:8
	signed byte		LDRSB Rd, [Rn, Rm]	Rd := SignExtend([Rn + Rm][7:0])	Sets bits 31:8 to bit 7
	PC-relative		LDR Rd, <label></label>	Rd := [label]	label range PC to PC+1020 (word-aligned).
	SP-relative		LDR Rd, [SP, # <imm>]</imm>	Rd := [SP + imm]	imm range 0-1020, multiple of 4.
	Multiple, not including base		LDM Rn!, <loreglist></loreglist>	Loads list of registers (not including Rn)	Always updates base register, Increment After.
	Multiple, including base		LDM Rn, <loreglist></loreglist>	Loads list of registers (including Rn)	Never updates base register, Increment After.
Store	with immediate offset, word		STR Rd, [Rn, # <imm>]</imm>	[Rn + imm] := Rd	imm range 0-124, multiple of 4.
	halfword		STRH Rd, [Rn, # <imm>]</imm>	[Rn + imm][15:0] := Rd[15:0]	Ignores Rd[31:16]. imm range 0-62, even.
	byte		STRB Rd, [Rn, # <imm>]</imm>	[Rn + imm][7:0] := Rd[7:0]	Ignores Rd[31:8]. imm range 0-31.
	with register offset, word		STR Rd, [Rn, Rm]	[Rn + Rm] := Rd	-gas-ra-ra-[e-ra-], same samge v v s
	halfword		STRH Rd, [Rn, Rm]	[Rn + Rm][15:0] := Rd[15:0]	Ignores Rd[31:16]
	byte		STRB Rd, [Rn, Rm]	[Rn + Rm][7:0] := Rd[7:0]	Ignores Rd[31:8]
	SP-relative, word		STR Rd, [SP, # <imm>]</imm>	[SP + imm] := Rd	imm range 0-1020, multiple of 4.
	Multiple		STM Rn!, <loreglist></loreglist>	Stores list of registers	Always updates base register, Increment After.
Push	Push		PUSH <loreglist></loreglist>	Push registers onto full descending stack	Tiways apaaces base register, merement river.
	Push with link		PUSH <loreglist+lr></loreglist+lr>	Push LR and registers onto full descending stack	
Pop	Pop		POP <loreglist></loreglist>	Pop registers from full descending stack	
. ор	Pop and return	4T	POP <loreglist+pc></loreglist+pc>	Pop registers, branch to address loaded to PC	
	Pop and return with exchange	5T	POP <loreglist+pc></loreglist+pc>	Pop, branch, and change to ARM state if address[0] = 0	
If-Then	If-Then	T2	IT{pattern} {cond}	Makes up to four following instructions conditional,	The first instruction after IT has condition cond. The following
				according to pattern. pattern is a string of up to three letters. Each letter can be T (Then) or E (Else).	instructions have condition cond if the corresponding letter is T, or the inverse of cond if the corresponding letter is E. See Table Condition Field .
Branch	Conditional branch		B{cond} <label></label>	If {cond} then PC := label	label must be within – 252 to + 258 bytes of current instruction. See Table Condition Field .
	Compare, branch if (non) zero	T2	CB{N}Z Rn, <label></label>	If Rn {== != } 0 then PC := label	label must be within +4 to +130 bytes of current instruction.
	Unconditional branch	12	B <label></label>	PC := label	label must be within ±2KB of current instruction.
	Long branch with link		BL <label></label>	LR := address of next instruction, PC := label	This is a 32-bit instruction.
	Long oranen with mix		DL (label)	ER address of fiest instruction, i e facei	label must be within ±4MB of current instruction (T2: ±16MB).
	Branch and exchange		BX Rm	PC := Rm AND 0xFFFFFFE	Change to ARM state if $Rm[0] = 0$.
	Branch with link and exchange	5T	BLX <label></label>	LR := address of next instruction, PC := label	This is a 32-bit instruction.
				Change to ARM	label must be within ±4MB of current instruction (T2: ±16MB).
	Branch with link and exchange	5T	BLX Rm	LR := address of next instruction, PC := Rm AND 0xFFFFFFE	Change to ARM state if $Rm[0] = 0$.
Extend	Signed, halfword to word	6	SXTH Rd, Rm	Rd[31:0] := SignExtend(Rm[15:0])	
	Signed, byte to word	6	SXTB Rd, Rm	Rd[31:0] := SignExtend(Rm[7:0])	
	Unsigned, halfword to word	6	UXTH Rd, Rm	Rd[31:0] := ZeroExtend(Rm[15:0])	
	Unsigned, byte to word	6	UXTB Rd, Rm	Rd[31:0] := ZeroExtend(Rm[7:0])	
Reverse	Bytes in word	6	REV Rd, Rm	Rd[31:24] := Rm[7:0], Rd[23:16] := Rm[15:8], Rd[15:8]	:= Rm[23:16], Rd[7:0] := Rm[31:24]
	Bytes in both halfwords	6	REV16 Rd, Rm	Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:24] :=	Rm[23:16], Rd[23:16] := Rm[31:24]
	Bytes in low halfword, sign extend	6	REVSH Rd, Rm	Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:16] :=	Rm[7] * &FFFF

Thumb 16-bit Instruction Set Quick Reference Card

Operation		§	Assembler	Action	Notes
Processor	Supervisor Call		SVC <immed_8></immed_8>	Supervisor Call processor exception	8-bit immediate value encoded in instruction. Formerly SWI.
state change	Change processor state	6	CPSID <iflags></iflags>	Disable specified interrupts	
change		6	CPSIE <iflags></iflags>	Enable specified interrupts	
	Set endianness	6	SETEND <endianness></endianness>	Sets endianness for loads and saves.	<pre><endianness> can be BE (Big Endian) or LE (Little Endian).</endianness></pre>
	Breakpoint	5T	BKPT <immed_8></immed_8>	Prefetch abort or enter debug state	8-bit immediate value encoded in instruction.
No Op	No operation		NOP	None, might not even consume any time.	Real NOP available in ARM v6K and above.
Hint	Set event	T2	SEV	Signal event in multiprocessor system.	Executes as NOP in Thumb-2. Functionally available in ARM v7.
	Wait for event	T2	WFE	Wait for event, IRQ, FIQ, Imprecise abort, or Debug entry request.	Executes as NOP in Thumb-2. Functionally available in ARM v7.
	Wait for interrupt	T2	WFI	Wait for IRQ, FIQ, Imprecise abort, or Debug entry request.	Executes as NOP in Thumb-2. Functionally available in ARM v7.
	Yield	T2	YIELD	Yield control to alternative thread.	Executes as NOP in Thumb-2. Functionally available in ARM v7.

Condition Fie	Condition Field		
Mnemonic	Description		
EQ	Equal		
NE	Not equal		
CS / HS	Carry Set / Unsigned higher or same		
CC / LO	Carry Clear / Unsigned lower		
MI	Negative		
PL	Positive or zero		
VS	Overflow		
VC	No overflow		
HI	Unsigned higher		
LS	Unsigned lower or same		
GE	Signed greater than or equal		
LT	Signed less than		
GT	Signed greater than		
LE	Signed less than or equal		
AL	Always. Do not use in B{cond}		

In Thumb code for processors earlier than ARMv6T2, cond must not appear anywhere except in Conditional Branch (B{cond}) instructions.

In Thumb-2 code, cond can appear in any of these instructions (except CBZ, CBNZ, CPSID, CPSIE, IT, and SETEND).

The condition is encoded in a preceding IT instruction (except in the case of B{cond} instructions).

If IT instructions are explicitly provided in the Assembly language source file, the conditions in the instructions must match the corresponding IT instructions.

ARM architecture versions		
4T	All Thumb versions of ARM v4 and above.	
5T	All Thumb versions of ARM v5 and above.	
6	All Thumb versions of ARM v6 and above.	
T2	All Thumb-2 versions of ARM v6 and above.	

Proprietary Notice

Words and logos marked with [®] or [™] are registered trademarks or trademarks of ARM Limited in the EU and other countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage arising from the use of any information in this reference card, or any error or omission in such information, or any incorrect use of the product.

Document Number

ARM QRC 0006E

Change Log

Issue	Date	Change
A	Nov 2004	First Release
В	May 2005	RVCT 2.2 SP1
C	March 2006	RVCT 3.0
D	March 2007	RVCT 3.1
E	Sept 2008	RVCT 4.0

ARM® Thumb® Cortex-M0/M1 Instruction Set ordered by machine code

School of Engineering

This card lists all Thumb instructions ordered by machine code to ease manually disassemble Thumb code. See the respective *Thumb® 16-bit Instruction Set Quick Reference Card* for details on the individual instructions.

Version 1.2, 2017-01-08, Andreas Gieriet 0000 - 0x0xxx Instructions 0000 0000 00mm mddd --> alias for LSLS Rddd,Rmmm,#0 0000 0iii iimm mddd LSLS Rddd, Rmmm, #Obiiiii; Rddd = Rmmm LSL #Ob0iiiii 0000 liii iimm mddd LSRS Rddd, Rmmm, #0biiiii; Rddd = Rmmm LSR #0b0iiiii 0001 - 0x1xxx Instructions 0001 0iii iimm mddd ASRS Rddd, Rmmm, #0biiiii; Rddd = Rmmm ASR #0b0iiiii 0001 100m mmnn nddd ADDS Rddd, Rnnn, Rmmm ; Rddd = Rnnn + Rmmm ; Rddd = Rnnn -0001 101m mmnn nddd Rddd, Rnnn, Rmmm 0001 110i iinn nddd ADDS Rddd, Rnnn, #0biii : Rddd = Rnnn + #0b0iii 0001 111i iinn nddd SUBS Rddd, Rnnn, #0biii : Rddd = Rnnn - #0b0iii 0010 - 0x2xxx Instructions 0010 Oddd iiii iiii MOVS Rddd, #0biiiiiiii ; Rddd = #0b0iiiiiii 0010 1nnn iiii iiii CMP Rnnn, #Obiiiiiii ; flags = Rnnn - #Ob0iiiiiii 0011 - 0x3xxx Instructions 0011 0ddd iiii iiii ADDS Rddd, #0biiiiiii ; Rddd = Rddd + #0b0iiiiiii 0011 1ddd iiii iiii SUBS Rddd, #0biiiiiiii ; Rddd = Rddd - #0b0iiiiiiii 0100 - 0x4xxx Instructions 0100 0000 00mm mddd ANDS ; Rddd = Rddd & Rmmm Rddd. Rmmm 0100 0000 01mm mddd EORS Rddd, : Rddd = Rddd ^ Rmmm 0100 0000 10mm mddd T.ST.S Rddd, Rmmm : Rddd = Rddd LSL Rmmm ; Rddd = Rddd T.SR Rmmm 0100 0000 11mm mddd LSRS Rddd. Rmmm 0100 0001 00mm mddd ASRS Rddd Rmmm ; Rddd = Rddd ASR Rmmm ; Rddd = Rddd + Rmmm + carry 0100 0001 01mm mddd ADCS Rddd Rmmm 0100 0001 10mm mddd SBCS Rddd, Rmmm ; Rddd = Rddd - Rmmm - ~carry 0100 0001 11mm mddd RORS Rddd, Rmmm ; Rddd = Rddd ROR Rmmm 0100 0010 00mm mddd TST Rddd, Rmmm : flags : Rddd & Rmmm 0100 0010 01mm mddd RSBS Rddd. Rmmm, #0 : Rddd = 0--> alias for NEGS Rddd, Rmmm ; flags : Rnnn - Rmmm 0100 0010 10mm mnnn CMP Rnnn, Rmmm 0100 0010 11mm mnnn ; flags : Rnnn + Rmmm Rnnn, Rmmm 0100 0011 00mm mddd ORRS : Rddd = Rddd | Rmmm Rddd. Rmmm 0100 0011 01mm mddd MULS Rddd. Rmmm, Rddd ; Rddd = Rddd * 0100 0011 10mm mddd ; Rddd = Rddd & ~Rmmm --> bit clear BICS Rddd, Rmmm : Rddd = 0100 0011 11mm mddd Rddd. ~Rmmm Rmmm 0100 0100 dmmm mddd ADD Rdddd, Rmmmm : Rdddd = Rdddd + Rmmmm 0100 0101 nmmm mnnn CMP Rnnnn, Rmmmm : flags : Rnnnn - Rmmmm 0100 0110 dmmm mddd Rdddd Rmmmm PC=Rmmmm (mmmm==0b1111: unpredictable) 0100 0111 0mmm m BX Rmmmm 0100 0111 1mmm m... ; LR = IPC+2, PC=Rmmmm (mmmm==0b1111: unpredictable) Rmmmm 0100 1ttt iiii iiii Rttt, [PC, #off] : Rttt = [((IPC+4) &~0b011)+0b0iiiiiiii001 --> +1020 max T.DR T.DR Rttt, label : --> the assembler calculates the above from the label T.DR Rttt. =lab ; --> pseudo instruction: the assembler stores the lab/lit : in litpool, access PC relative with LDR Rttt.litpool T.DR Rttt. =lit 0101 - 0x5xxx Instructions 0101 000m mmnn nttt Rttt, [Rnnn, Rmmm] ; [Rnnn + Rmmm] = Rttt 0101 001m mmnn nttt ; [Rnnn + Rmmm] = Rttt --> low half Rttt. [Rnnn. Rmmm] 0101 010m mmnn nttt : [Rnnn + Rmmm] = Rttt --> low byte STRB Rttt. [Rnnn. Rmmm] 0101 011m mmnn nttt LDRSB Rttt, [Rnnn, Rmmm] ; Rttt<sss1> = [Rnnn + Rmmm]<1>--> low byte 0101 100m mmnn nttt Rttt, [Rnnn, Rmmm] ; Rttt = [Rnnn + Rmmm] LDRH Rttt, [Rnnn, Rmmm] ; Rttt<0021> = [Rnnn + Rmmm1<21> 0101 101m mmnn nttt --> low half LDRB Rttt, [Rnnn, Rmmm] ; Rttt<0001> = [Rnnn + Rmmm]<1> 0101 110m mmnn nttt --> low byte 0101 111m mmnn nttt LDRSH Rttt, [Rnnn, Rmmm] ; Rttt<ss21> = [Rnnn + Rmmm]<21> --> low half 0110 - 0x6xxx Instructions Rttt, [Rnnn, #off] ; [Rnnn + ObOiiiii00] = Rttt --> +124 max 0110 Oiii iinn nttt Rttt, [Rnnn, #off] ; Rttt = [Rnnn + 0x0iiiii00] --> +124 max 0110 liji jinn nttt 0111 - 0x7xxx Instructions 0111 Oiii iinn nttt STRB Rttt, [Rnnn, #off] ; [Rnnn + ObOiiiii] = Rttt --> +31 max. low byte 0111 liii iinn nttt Rttt, [Rnnn, #off] ; Rttt<0001> = [Rnnn + 0x0iiiii]<1> --> +31 max, low byte LDRB 1000 - 0x8xxx Instructions 1000 Oiii iinn nttt Rttt, [Rnnn, #off] ; [Rnnn + 0x0iiiii0] = Rttt LDRH Rttt, [Rnnn, #off] ; Rttt<0021> = [Rnnn + 0x0iiiii0]<21> --> +62 max. low half 1000 liii iinn nttt 1001 - 0x9xxx Instructions 1001 Ottt iiii iiii Rttt, [SP, #off] ; [SP + Ob0iiiiiiii00] = Rttt --> +1020 max 1001 1ttt iiii iiii LDR Rttt, [SP, #off] : Rttt = [SP + Ob0iiiiiiii00]

i decairs on th	e individual in	InES Institute of Embedded Systems
1010 - 0xAxxx Instruc	tions	Embodada ojstomo
1010 Oddd iiii iiii		; Rddd = ((IPC+4)&~0b011)+0b0iiiiiiii00> +1020 max
1010 1ddd iiii iiii		; Rddd = SP + 0b0iiiiiiiii00> +1020 max
1011 - 0xBxxx Instruc	tions	
1011 0000 Oiii iiii	ADD SP, SP, #off	; $SP = SP + 0b0iiiiiii00$ > +508 max
1011 0000 liii iiii	SUB SP, SP, #off	; $SP = SP - 0b0iiiiiii00$ > +508 max
1011 00il iiii innn	CBZ Rnnn, label	; SP = SP - 0b0iiiiiii00> +508 max ; if Rnnn==zero, PC = IPC+4 + 0x0iiiii0> +126 max ; Rddd <ss2l> = Rmmm<432l>> low half ; Rddd<sssl> = Rmmm<432l>> low byte ; Rddd<002l> = Rmmm<432l>> low byte ; Rddd<0001> = Rmmm<432l>> low byte ; rrrrrrr = Lo reg-mask> pushes regs to SP (decrements SP) ; rrrrrrr = Lo reg-mask> pushes regs to SP (decrements SP) ; unpredictable : sets little=endian mode in CPSR</sssl></ss2l>
1011 0010 00mm mddd	SXTH Rddd, Rmmm	; Rddd <ss21> = Rmmm<4321>> low half</ss21>
1011 0010 01mm mddd	SXTB Rddd, Rmmm	; Rddd <sss1> = Rmmm<4321>> low byte</sss1>
1011 0010 10mm mddd	UXTH Rddd, Rmmm	; Rddd<0021> = Rmmm<4321>> low half
1011 0010 11mm mddd	UXTB Rddd, Rmmm	; Rddd<0001> = Rmmm<4321>> low byte
1011 0100 rrrr rrrr	PUSH {reg0-7}	; rrrrrrr = Lo reg-mask> pushes regs to SP (decrements SP)
1011 0101 rrrr rrrr	PUSH {LR,regU-/]	; rrrrrrr = Lo reg-mask> pushes regs to SP (decrements SP)
1011 0110 0100 ****	-	; unpredictable
	SETEND LE SETEND BE	; sets little-endian mode in CPSR
	CDCIE -: 6	; sets big-endian mode in CPSK
1011 0110 0110 0aif 1011 0110 0111 0aif	CPSIE all	<pre>; sets little-endian mode in CPSR ; sets big-endian mode in CPSR ; Enable Processor State> a=imprecise-abort, i=IRQ, f=FIQ ; Disable Processor State> a=imprecise-abort, i=IRQ, f=FIQ ; unpredictable</pre>
1011 0110 0111 0411 1011 0110 011x 1xxx	-	; unpredictable
1011 1011 1111 1nnn		; if Rnnn!=zero, PC = IPC+4 + 0*0iiiiii0> + 126 max
1011 1010 00mm mddd	REV Rddd. Rmmm	; Rddd<4321> = Rmmm<1234>> reverse all
1011 1010 01mm mddd	REV16 Rddd, Rmmm	; Rddd<4321> = Rmmm<3412>> reverse low half, rev. upper half
1011 1010 10xx xxxx	-	; undefined
1011 1010 11mm mddd	REVSH Rddd. Rmmm	: Rddd<4321> = Rmmm <ss12>> reverse low half, sign extended</ss12>
1011 1100 rrrr rrrr	POP {reg0-7}	; rrrrrrr = Lo reg-mask> pops regs from SP (increments SP)
1011 1101 rrrr rrrr	POP {PC,req0-7]	; Rddd<4321> = Rmmm <ss12>> reverse low half, sign extended ; rrrrrrr = Lo reg-mask> pops regs from SP (increments SP) ; rrrrrrr = Lo reg-mask> pops regs from SP (increments SP) ; breakpoint, arg ignored by HW</ss12>
1011 1110 iiii iiii	BKPT #0biiiiiiii	; breakpoint, arg ignored by HW
1011 1111 0000 0000	NOP	; do nothing
1011 1111 0001 0000	YIELD	; do nothing, NOP-Hint: signal to HW to suspend/resume threads
1011 1111 0010 0000	WFE	; do nothing, NOP-Hint, wait for event
1011 1111 0011 0000	WFI	; do nothing, NOP-Hint: wait for interrupt
1011 1111 0100 0000	SEV	; do nothing, NOP-Hint: signal event to multi-processor system
1011 1111 cccc mmmm	ITsel cond	; if-then: sel=mmmm: T=then/E=else, cond=cccc: as for Bcc<11:8>
1100 - 0xCxxx Instruc		
1100 0mm rrrr rrrr		<pre>; rrrrrrr = Lo reg-mask, inc Rnnn ; rrrrrrr = Lo reg-mask, inc Rnnn if Rnnn not in mask</pre>
1100 Imm FFFF FFFF		; rrrrrrr = Lo reg-mask, load Rnnn if Rnnn in mask
	IDMIA KIIIII (lego-/)	, IIIIIII - 10 leg-mask, load kinni II kinni II mask
1101 - 0xDxxx Instruc	tions	
1101 0000 iiii iiii	BEQ label	; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max
1101 0001 iiii iiii	BNE label	; if true, PC = IPC+4 + Obiiiiiiii > -256/+254 max
1101 0010 iiii iiii	BHS/BCS label	; if true, PC = IPC+4 + Obiiiiiiii > -256/+254 max
1101 0011 iiii iiii	BLO/BCC label	; if true, PC = IPC+4 + Obiiiiiiii0> -256/+254 max
1101 0100 iiii iiii	BPL label	; if true, PC = IPC+4 + Obiiiiiiii0> -256/+254 max
1101 - OxDxxx Instruct 1101 0000 iiii iiii 1101 0001 iiii iiii 1101 0010 iiii iiii 1101 0011 iiii iiii 1101 0110 iiii iiii 1101 0100 iiii iiii 1101 0101 iiii iiii 1101 0110 iiii iiii 1101 0111 iiii iiii 1101 1001 iiii iiii 1101 1001 iiii iiii 1101 1010 iiii iiii	BMI label	; if true, PC = IPC+4 + Obiiiiiiii0> -256/+254 max
1101 0110 iiii iiii	BVS label	; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max
1101 0111 iiii iiii	BVC label	; if true, PC = IPC+4 + Obiiiiiiii > -256/+254 max
1101 1000 iiii iiii	BHI label	; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max
1101 1001 iiii iiii	BLS label	; if true, PC = IPC+4 + Obiiiiiiii > -256/+254 max
1101 1010 iiii iiii	BGE label	; if true, PC = IPC+4 + Obiiiiiiii > -256/+254 max
1101 1011 iiii iiii	BLT label	; if true, PC = IPC+4 + Obiiiiiiii
		; if true, PC = IPC+4 + Obiiiiiiii > -256/+254 max
1101 1101 iiii iiii	BLE label	; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max
1101 1101 iiii iiii 1101 1110 xxxx xxxx	BLE label	<pre>; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max ; undefined> can be used for instruction emulation</pre>
1101 1101 iiii iiii 1101 1110 xxxx xxxx	BLE label	; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max
1101 1101 iiii iiii 1101 1110 xxxx xxxx 1101 1111 iiii iiii	BLE label - SVC #0biiiiiii	<pre>; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max ; undefined> can be used for instruction emulation</pre>
1101 1101 iiii iiii 1101 1110 xxxx xxxx 1101 1111 iiii iiii 1110 - 0xExxx Instruc	BLE label - SVC #0biiiiiii tions	; if true, PC = IPC+4 + Obiiiiiiii
1101 1101 iiii iiii 1101 1110 xxxx xxxx 1101 1111 iiii iiii 1110 - 0xExxx Instruc 1110 0iii iiii iiii	BLE label - SVC #0biiiiiii tions	; if true, PC = IPC+4 + Obiiiiiiiii> -256/+254 max ; undefined> can be used for instruction emulation ; supervisor call (formerly called SWI), arg ignored by HW ; PC = IPC+4 + Obiiiiiiiiiii> -2048/+2046 max
1101 1101 iiii iiii 1101 1110 xxxx xxxx 1101 1111 iiii iiii 1110 - 0xExxx Instruc	BLE label - SVC #0biiiiiii tions	; if true, PC = IPC+4 + Obiiiiiiii
1101 1101 iiii iiii 1101 1110 XXXX XXXX 1101 1111 iiii iiii 1110 - 0XEXXX Instruc 1110 0iii iiii iiii 1110 1XXX XXXX	BLE label - SVC #0biiiiiii tions B label	; if true, PC = IPC+4 + Obiiiiiiiii> -256/+254 max ; undefined> can be used for instruction emulation ; supervisor call (formerly called SWI), arg ignored by HW ; PC = IPC+4 + Obiiiiiiiiiii> -2048/+2046 max
1101 1101 iiii iiii 1101 1110 xxxx xxxx 1101 1111 iiii iiii 1110 - 0xExxx Instruc 1110 0iii iiii iiii 1110 1xxx xxxx xxxx 1111 - 0xFxxx Instruc	BLE label - SVC #Obiiiiiii tions B label - tions	; if true, PC = IPC+4 + Obiiiiiiiii> -256/+254 max ; undefined> can be used for instruction emulation ; supervisor call (formerly called SWI), arg ignored by HW ; PC = IPC+4 + Obiiiiiiiiiii> -2048/+2046 max ; 32 bit instructions
1101 1101 iiii iiii 1101 1110 XXXX XXXX 1101 1111 iiii iiii 1110 - 0XEXXX Instruc 1110 0iii iiii iiii 1110 1XXX XXXX XXXX 1111 - 0XFXXX Instruc 1111 0xii iiii iiii	BLE label - SVC #Obiiiiiii tions B label - tions Tyl ziii iiii iiii BL	<pre>; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max ; undefined> can be used for instruction emulation ; supervisor call (formerly called SWI), arg ignored by HW ; PC = IPC+4 + Obiiiiiiiiii</pre>
1101 1101 iiii iiii 1101 1110 XXXX XXXX 1101 1111 iiii iiii 1110 - 0xEXXX Instruc 1110 0iii iiii iiii 1110 1XXX XXXX 1111 - 0xFXXX Instruc 1111 0xii iiii iiii 1 1111 0011 1110 1111 1 1111 0011 1010 mmmm 1	BLE label SVC #0biiiiiii tions B label tions 1y1 ziii iiii iiii BL 000 dddd ssss ssss MRS 3	<pre>; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max ; undefined> can be used for instruction emulation ; supervisor call (formerly called SWI), arg ignored by HW ; PC = IPC+4 + Obiiiiiiiiiii> -2048/+2046 max ; 32 bit instructions label ; LR=IPC+4,PC=IPC+4+ObXYZiiii0,X,Y,Z=f(x,y,z), +/-16M Rdddd,S; Rdddd = special register S (encoded as 0xbssssssss) Rddddd,S; special register S (encoded as 0xbsssssssss)</pre>
1101 1101 iiii iiii 1101 1110 XXXX XXXX 1101 1111 iiii iiii 1110 - 0xEXXX Instruc 1110 0iii iiii iiii 1110 1XXX XXXX 1111 - 0xFXXX Instruc 1111 0xii iiii iiii 1 1111 0011 1110 1111 1 1111 0011 1010 mmmm 1	BLE label SVC #0biiiiiii tions B label tions 1y1 ziii iiii iiii BL 000 dddd ssss ssss MRS 3	<pre>; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max ; undefined> can be used for instruction emulation ; supervisor call (formerly called SWI), arg ignored by HW ; PC = IPC+4 + Obiiiiiiiiiii> -2048/+2046 max ; 32 bit instructions label ; LR=IPC+4,PC=IPC+4+ObXYZiiii0,X,Y,Z=f(x,y,z), +/-16M Rdddd,S; Rdddd = special register S (encoded as 0xbssssssss) Rddddd,S; special register S (encoded as 0xbsssssssss)</pre>
1101 1101 iiii iiii 1101 1110 XXXX XXXX 1101 1111 iiii iiii 1110 - 0xEXXX Instruc 1110 0iii iiii iiii 1110 1XXX XXXX 1111 - 0xFXXX Instruc 1111 0xii iiii iiii 1 1111 0011 1110 1111 1 1111 0011 1010 mmmm 1	BLE label SVC #0biiiiiii tions B label tions 1y1 ziii iiii iiii BL 000 dddd ssss ssss MRS 3	<pre>; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max ; undefined> can be used for instruction emulation ; supervisor call (formerly called SWI), arg ignored by HW ; PC = IPC+4 + Obiiiiiiiiiii> -2048/+2046 max ; 32 bit instructions label ; LR=IPC+4,PC=IPC+4+ObXYZiiii0,X,Y,Z=f(x,y,z), +/-16M Rdddd,S; Rdddd = special register S (encoded as 0xbssssssss) Rddddd,S; special register S (encoded as 0xbsssssssss)</pre>
1101 1101 iiii iiii 1101 1110 XXXX XXXX 1101 1111 iiii iiii 1110 - 0xEXXX Instruc 1110 0iii iiii iiii 1110 1XXX XXXX 1111 - 0xFXXX Instruc 1111 0xii iiii iiii 1 1111 0011 1110 1111 1 1111 0011 1010 mmmm 1	BLE label SVC #0biiiiiii tions B label tions 1y1 ziii iiii iiii BL 000 dddd ssss ssss MRS 3	<pre>; if true, PC = IPC+4 + Obiiiiiiii> -256/+254 max ; undefined> can be used for instruction emulation ; supervisor call (formerly called SWI), arg ignored by HW ; PC = IPC+4 + Obiiiiiiiiiii> -2048/+2046 max ; 32 bit instructions label ; LR=IPC+4,PC=IPC+4+ObXYZiiii0,X,Y,Z=f(x,y,z), +/-16M Rdddd,S; Rdddd = special register S (encoded as 0xbssssssss) Rddddd,S; special register S (encoded as 0xbsssssssss)</pre>
1101 1101 iiii iiii 1101 1110 XXXX XXXX 1101 1111 iiii iiii 1110 - 0xEXXX Instruc 1110 0iii iiii iiii 1110 1XXX XXXX 1111 - 0xFXXX Instruc 1111 0xii iiii iiii 1 1111 0011 1110 1111 1 1111 0011 1010 mmmm 1	BLE label - SVC #Obiiiiiii tions B label - tions 1y1 zii iiii iiii BL 000 dddd ssss ssss MRS: 000 1000 ssss ssss MRS: 000 1111 0100 1111 DSB 000 1111 0101 1111 DMB 000 1111 0110 1101 ISB	<pre>; if true, PC = IPC+4 + Obiiiiiiii > -256/+254 max ; undefined> can be used for instruction emulation ; supervisor call (formerly called SWI), arg ignored by HW ; PC = IPC+4 + Obiiiiiiiiii</pre>

- 1) IPC is the PC of the current instruction (IPC+4 is given by the pipeline, IPC+2/+4 is the return address in the LR)
- 2) a dot means don't care, but must be set to 0.
- 3) <4321>: word, <21>: low half word, <1>: low byte, <0001>: zero extend byte, <sss1>: sign extend byte, etc.
- 4) Undefined instructions can be used to emulate instructions (they trigger the undefined exception).

- 5) Unpredictable instructions do any unpredictable actions and are therefore illegal instructions.
- 6) Unallocated codes are undefined unless they are explicitly marked as unpredictable.
- 7) CBZ, CBNZ, IT are the only 16 bit instructions which are not part of Cortex-M0/M1 Thumb code.
- 8) BL, DMB, DSB, ISB, MRS, MSR are the only 32 bit instructions as part of the Cortex-MO/M1 instruction set.

ARM Cond. Jumps

Flag- Dependent

Symbol	Condition	Flag
EQ	Equal	Z == 1
NE	Not equal	Z == 0
CS	Carry set	C == 1
CC	Carry clear	C == 0
MI	Minus/negative	N == 1
PL	Plus/positive or zero	N == 0
VS	Overflow	V == 1
VC	No overflow	V == 0

Arithmetic - unsigned: higher and lower

Symbol	Condition	Flag
EQ	Equal	Z == 1
NE	Not equal	Z == 0
HS (=CS)	Unsigned higher or same	C == 1
LO (=CC)	Unsigned lower	C == 0
HI	Unsigned higher	C == 1 and Z == 0
LS	Unsigned lower or same	C == 0 or Z == 1

Arithmetic - signed: greater and less

Symbol	Condition	Flag
EQ	Equal	Z == 1
NE	Not equal	Z == 0
MI	Minus/negative	N == 1
PL	Plus/positive or zero	N == 0
VS	Overflow	V == 1
VC	No overflow	V == 0
GE	Signed greater than or equal	N == V
LT	Signed less than	N != V
GT	Signed greater than	Z == 0 and N == V
LE	Signed less than or equal	Z == 1 or N != V

C Reference Card (ANSI)

Program Structure/Functions

type $fnc(type_1,)$;	function prototype
01 0 01 1	1 01
$type\ name;$	variable declaration
<pre>int main(void) {</pre>	main routine
declarations	local variable declarations
statements	
}	
type $fnc(arq_1, \ldots)$ {	function definition
declarations	local variable declarations
statements	
return value;	
}	
/* */	comments
<pre>int main(int argc, char *argv[])</pre>	main with args
<pre>exit(arg);</pre>	terminate execution

C Preprocessor

<pre>#include <filename></filename></pre>
#include " $filename$ "
#define $name\ text$
#define $name(var)$ $text$
B) ((A)>(B) ? (A) : (B))
#undef $name$
#
<pre>printf("%s = %d", #A, (A))</pre>
##
#if, #else, #elif, #endif
#ifdef, #ifndef
$\mathtt{defined}(name)$
\

Data Types/Declarations

char
int
float, double
short
long
long long
signed
unsigned
int*, float*,
$\{name_1 = value_1, \dots\};$
type const name;
extern
static
static
void
struct $tag \{\};$
typedef type name;
${ t sizeof}$ $object$
${ t size of (type)}$

Initialization

initialize variable	type name = value;
initialize array	$type name[]=\{value_1, \ldots\};$
initialize char string	<pre>char name[]="string";</pre>

Constants

suffix: long, unsigned, float	65536L, -1U, 3.0F	
exponential form	4.2e1	
prefix: octal, hexadecimal	0, 0x or 0X	
Example. 031 is 25, 0x31 is 49 decimal		
character constant (char, octal, hex)	a', '\ooo', '\xhh'	
newline, cr, tab, backspace	n, r, t, b	
special characters	\ \?, \', \"	
string constant (ends with '\0')	"abcde"	

ions Pointers, Arrays & Structures

declare pointer to type	type *name;	
declare function returning pointer to	<pre>type type *f();</pre>	
declare pointer to function returning	<pre>type type (*pf)();</pre>	
generic pointer type	void *	
null pointer constant	NULL	
object pointed to by pointer	*pointer	
address of object name	&name	
array	name [dim]	
multi-dim array	$name[dim_1][dim_2]$	
Structures		
struct tag { structure	e template	

struct tag {
 declarations
};
structure template
declaration of members
};

 $\begin{array}{lll} \text{create structure} & & \text{struct } tag \ name \\ \text{member of structure from template} & & name \cdot member \\ \text{member of pointed-to structure} & & pointer \ \ -> \ member \end{array}$

Operators (grouped by precedence)

struct member operator struct member through pointer	name.member pointer->member
increment, decrement	++,
plus, minus, logical not, bitwise not	+, -, !, ~
indirection via pointer, address of object	
cast expression to type	(type) expr
size of an object	sizeof
multiply, divide, modulus (remainder)	*, /, %
add, subtract	+, -
left, right shift [bit ops]	<<, >>
relational comparisons	>, >=, <, <=
equality comparisons	==, !=
and [bit op]	&
exclusive or [bit op]	^
or (inclusive) [bit op]	1
logical and	&&
logical or	П
conditional expression ea	xpr_1 ? $expr_2$: $expr_3$
assignment operators	+=, -=, *=,
expression evaluation separator	,
Unary operators conditional expression	and assignment oper

Unary operators, conditional expression and assignment operators group right to left; all others group left to right.

Flow of Control

```
statement terminator
block delimiters
                                        { }
exit from switch, while, do, for
                                        break;
next iteration of while, do, for
                                        continue;
                                        goto label;
label
                                        label: statement
return value from function
                                        return expr
Flow Constructions
if statement
                       if (expr_1) statement<sub>1</sub>
                       else if (expr_2) statement_2
                       else statement3
while statement
                       while (expr)
                         statement
for statement
                       for (expr_1; expr_2; expr_3)
                         statement
do statement
                       do statement
                       while (expr);
switch statement
                       switch (expr) {
                           case const_1: statement_1 break;
                          case const_2: statement_2 break;
                           default: statement
```

ANSI Standard Libraries

<assert.h></assert.h>	<ctype.h></ctype.h>	<errno.h></errno.h>	<float.h></float.h>	imits.h>
<locale.h></locale.h>	<math.h></math.h>	<setjmp.h></setjmp.h>	<signal.h></signal.h>	<stdarg.h></stdarg.h>
<stddef h=""></stddef>	<stdio h=""></stdio>	<stdlib.h></stdlib.h>	<string.h></string.h>	<time h=""></time>

Character Class Tests <ctype.h>

1.1	
alphanumeric?	isalnum(c)
alphabetic?	isalpha(c)
control character?	<pre>iscntrl(c)</pre>
decimal digit?	isdigit(c)
printing character (not incl space)?	isgraph(c)
lower case letter?	islower(c)
printing character (incl space)?	<pre>isprint(c)</pre>
printing char except space, letter, digit?	<pre>ispunct(c)</pre>
space, formfeed, newline, cr, tab, vtab?	isspace(c)
upper case letter?	isupper(c)
hexadecimal digit?	<pre>isxdigit(c)</pre>
convert to lower case	tolower(c)
convert to upper case	toupper(c)

String Operations <string.h>

s is a string; cs, ct are constant strings

length of s	strlen(s)
copy ct to s	strcpy(s,ct)
concatenate ct after s	strcat(s,ct)
compare cs to ct	strcmp(cs,ct)
only first n chars	strncmp(cs,ct,n)
pointer to first c in cs	strchr(cs,c)
pointer to last c in cs	strrchr(cs,c)
copy n chars from ct to s	memcpy(s,ct,n)
copy n chars from ct to s (may overlap)	memmove(s,ct,n)
compare n chars of cs with ct	memcmp(cs,ct,n)
pointer to first c in first n chars of cs	memchr(cs,c,n)
put c into first n chars of s	memset(s,c,n)

C Reference Card (ANSI)

Input/Output <stdio.h>

Standard I/O	
standard input stream	stdin
standard output stream	stdout
standard error stream	stderr
end of file (type is int)	EOF
get a character	getchar()
print a character	$ exttt{putchar}(chr)$
print formatted data	<pre>printf("format", arg1,)</pre>
print to string s	sprintf(s,"format", arg1,)
read formatted data	scanf("format",&name ₁ ,)
read from string s ss	scanf(s, "format", &name1,)
print string s	puts(s)
File I/O	-
declare file pointer	FILE $*fp$;
pointer to named file	fopen("name", "mode")
modes: r (read), w (write)), a (append), b (binary)
get a character	getc(fp)
write a character	putc(chr, fp)
write to file	fprintf(fp ," $format$ ", arg_1 ,)
read from file	fscanf(fp, "format", arg1,)
read and store n elts to *ptr	fread(*ptr,eltsize,n,fp)
write n elts from *ptr to file	<pre>fwrite(*ptr,eltsize,n,fp)</pre>
close file	$ extsf{fclose}(fp)$
non-zero if error	$\mathtt{ferror}(\mathit{fp})$
non-zero if already reached EO)F feof(fp)
read line to string s (< max ch	(ars) fgets(s,max, fp)
write string s	fputs(s,fp)
Codes for Formatted I/O:	"%-+ 0w.pmc"
 left justify 	
+ print with sign	
space print space if no sig	gn
0 pad with leading ze	eros
w min field width	
p precision	
m conversion characte	r:
h short, 1	long, L long double
c conversion characte	r:
d,i integer	u unsigned
c single char	s char string
f double (printf)	e,E exponential
f float (scanf)	1f double (scanf)
o octal	x,X hexadecimal
p pointer	n number of chars written
	1 1:

Variable Argument Lists <stdarg.h>

declaration of pointer to arguments $va_list ap;$ initialization of argument pointer va_start(ap, lastarq); lastarq is last named parameter of the function access next unnamed arg, update pointer va_arg(ap, type) call before exiting function va end(ap):

g,G same as f or e,E depending on exponent

Standard Utility Functions <stdlib.h>

absolute value of int n	abs(n)	
absolute value of long n	labs(n)	
quotient and remainder of ints n,d	div(n,d)	
returns structure with div_t.quot a	nd div_t.rem	
quotient and remainder of longs n,d	ldiv(n,d)	
returns structure with ldiv_t.quot	and ldiv_t.rem	
pseudo-random integer [0,RAND_MAX]	rand()	
set random seed to n	srand(n)	
terminate program execution	exit(status)	
pass string s to system for execution	system(s)	
Conversions		
convert string s to double	atof(s)	
convert string s to integer	atoi(s)	
convert string s to long	atol(s)	
convert prefix of s to double	strtod(s,&endp)	
convert prefix of s (base b) to long	strtol(s,&endp,b)	
same, but unsigned long	strtoul(s,&endp,b)	
Storage Allocation		
allocate storage malloc(size)	, calloc(nobj,size)	
change size of storage newptr =	<pre>realloc(ptr,size);</pre>	
deallocate storage	<pre>free(ptr);</pre>	
Array Functions		
search array for key bsearch(key	array,n,size,cmpf)	
sort array ascending order qsort	(array,n,size,cmpf)	
Time and Date Functions <time.h></time.h>		
processor time used by program	clock()	
Example. clock()/CLOCKS_PER_SEC	is time in seconds	
current calendar time	+imo()	

current calendar time time() time2-time1 in seconds (double) difftime(time2,time1) arithmetic types representing times clock_t,time_t structure type for calendar time comps struct tm seconds after minute tm_sec tm_min minutes after hour hours since midnight tm_hour tm_mday day of month months since January tm_mon years since 1900 tm_year tm_wday days since Sunday days since January 1 tm_yday Daylight Savings Time flag tm_isdst convert local time to calendar time mktime(tp) convert time in tp to string asctime(tp) convert calendar time in tp to local time ctime(tp)

gmtime(tp)

localtime(tp)

format date and time info strftime(s, smax, "format", tp)

tp is a pointer to a structure of type tm

convert calendar time to GMT

convert calendar time to local time

Mathematical Functions <math.h>

Arguments and returned values are double

trig functions	sin(x), $cos(x)$, $tan(x)$
inverse trig functions	asin(x), acos(x), atan(x)
$\arctan(y/x)$	atan2(y,x)
hyperbolic trig functions	sinh(x), cosh(x), tanh(x)
exponentials & logs	exp(x), log(x), log10(x)
exponentials & logs (2 power)	<pre>ldexp(x,n), frexp(x,&e)</pre>
division & remainder	<pre>modf(x,ip), fmod(x,y)</pre>
powers	pow(x,y), $sqrt(x)$
rounding	<pre>ceil(x), floor(x), fabs(x)</pre>

Integer Type Limits

The numbers given in parentheses are typical values for the constants on a 32-bit Unix system, followed by minimum required values (if significantly different).

quirou rara	os (ii sigiiiiioaiioi) aiii	010110).
CHAR_BIT	bits in char	(8)
CHAR_MAX	max value of char	(SCHAR_MAX or UCHAR_MAX)
CHAR_MIN	min value of char	(SCHAR_MIN or 0)
SCHAR_MAX	max signed char	(+127)
SCHAR_MIN	min signed char	(-128)
SHRT_MAX	max value of short	(+32,767)
SHRT_MIN	min value of short	(-32,768)
INT_MAX	max value of int	(+2,147,483,647) $(+32,767)$
INT_MIN	min value of int	(-2,147,483,648) $(-32,767)$
LONG_MAX	max value of long	(+2,147,483,647)
LONG_MIN	min value of long	(-2,147,483,648)
UCHAR_MAX	\max unsigned char	(255)
USHRT_MAX	max unsigned shor	t $(65,535)$
UINT_MAX	\max unsigned int	(4,294,967,295) $(65,535)$
ULONG_MAX	\max unsigned long	(4,294,967,295)

Float Type Limits <float.h>

The numbers given in parentheses are typical values for the constants on a 32-bit Unix system.

constants on a 92-bit only system.			
FLT_RADIX	radix of exponent rep	(2)	
FLT_ROUNDS	floating point rounding mode	9	
FLT_DIG	decimal digits of precision	(6)	
FLT_EPSILON	smallest x so $1.0 f + x \neq 1.0 f$	(1.1E - 7)	
FLT_MANT_DIG	number of digits in mantissa		
FLT_MAX	maximum float number	(3.4E38)	
FLT_MAX_EXP	maximum exponent		
FLT_MIN	minimum float number	(1.2E - 38)	
FLT_MIN_EXP	minimum exponent		
DBL_DIG	decimal digits of precision	(15)	
DBL_EPSILON	smallest x so $1.0 + x \neq 1.0$	(2.2E - 16)	
DBL_MANT_DIG	number of digits in mantissa		
DBL_MAX	max double number	(1.8E308)	
DBL_MAX_EXP	maximum exponent		
DBL_MIN	min double number	(2.2E - 308)	
DBL_MIN_EXP	minimum exponent		

January 2007 v2.2. Copyright © 2007 Joseph H. Silverman

Permission is granted to make and distribute copies of this card provided the copyright notice and this permission notice are preserved on all copies.

Send comments and corrections to J.H. Silverman, Math. Dept., Brown Univ., Providence, RI 02912 USA. (jhs@math.brown.edu)