

Predicting collegiate sports' gender revnue

Wooyoung Jeong, Equity in Athletics Data Analysis

Design

Objective: Explore relationship area, population, section ID for each sports and schools to with gender's revenue to help companies invest decision making for collegiate sports or gender equality study.

Goal: Based on the feature, figure out which school and sports have higher revenue compare to other gender.

Tools Used

- Numpy & Pandas
- Scikit-learn & Statsmodels
- Matplotlib

Data

- All collegiate sports data from 2016 to 2019
- Each row represents particular sports in specific college
- Baseline probability = 0.586
- Features
 - Year, state, classification, sports, populations of each gender and others.

Data Cleaning

- Delete all rows that have empty data
- There are total 132327 rows in the dataset
- Removed any irrelevant features
- Made another column that can show which gender has higher revenue
- Delete categorical features that have too many different values
 - ex) city and zip code
 - Made dummy variables for other categorical features

RangeIndex: 132327 entries, 0 to 132326 Data columns (total 28 columns):

#	Column	Non-Null Count	Dtype
0	year	132327 non-null	 int64
1	unitid	132327 non-null	int64
2	institution_name	132327 non-null	object
3		132327 Hon-hull	
	city_txt	132282 non-null	object object
4 5	state_cd zip_text	132282 non-null	float64
6	classification_code		int64
7	classification_code	132327 non-null	object
8	classification other		object
9	ef male count	132327 non-null	int64
10	ef_female_count	132327 non-null	int64
11	ef total count	132327 non-null	int64
12	sector cd	132327 non-null	int64
13	sector_ca sector_name	132282 non-null	object
14	sportscode	132327 non-null	int64
15	partic men	61865 non-null	
16	partic_women	68885 non-null	
17	partic_women	767 non-null	float64
18	partic_coed_women	767 non-null	
19	sum_partic_men	132327 non-null	
20	sum_partic_women	132327 non-null	int64
21	rev men	61865 non-null	float64
22	rev_women	68883 non-null	float64
23	total rev menwomen	87134 non-null	float64
24	exp men	61865 non-null	float64
25	exp_women	68885 non-null	float64
26	total_exp_menwomen		float64
27	sports	122227 non-null	object

Logistic Regression

- Used StandardScaler to scale each features
- Accuracy score = 0.883
- Cross validation score = 0.882

Random Forest

- Did not need to be scaled
- Accuracy score = 0.894
- Cross validation score = 0.891

Results

- Each models have much higher accuracy compare to baseline
- Both cross validation cv = 10
- Random Forest has slightly higher score than Logistic Regression

Future Work

- Hyperparameter tuning
 - For both logistic regression and random forest
- Compare many different other models ex) kNN
- Collect more data
 - There are only 4 years of data in the dataset
- Add more visualization
 - ex) confusion matrix