Lecture 1

Lecture 1 learning outcomes

- State a counterintuitive result about a stochastic process
- Compare averages taken from different perspectives by informal picture-based reasoning
- Name the document where course policies, logistics, etc. can be found
 - Starts with "s", ends with "yllabus.pdf on Canvas"

Waiting for the bus

- Today's lecture is all informal and non-rigorous
 - Pinning down many of these concepts more formally is a goal of the course
- The most stochastic process of them all: waiting for the bus
 - Suppose buses arrive randomly at a bus stop every 10 minutes on average
 - Suppose customers arrive at "uniformly random" times
 - Question: what's the average waiting time between arrival and the next bus?
 - Less than 5 minutes?
 - Exactly 5 minutes?
 - Between 5 and 10 minutes?
 - Exactly 10 minutes?
 - More than 10 minutes?
 - If the answer depends on the details, which of the above are possible answers?

Tale of two cities

- Ithaca vs. Boston
 - Ithaca: regular buses
 - Boston: very irregular buses

- Let T_c be the distribution of the amount of time (in minutes) between buses in city c
 - Time between buses in Ithaca:

$$T_{\mathrm{Ithaca}} = 10$$

Time between buses in Boston:

$$T_{
m Boston} = egin{cases} 1 & ext{with probability } rac{2}{3} \ 28 & ext{with probability } rac{1}{3} \end{cases}$$

- What's the average time between buses?
 - $\mathbf{E}[T_{\text{Ithaca}}] = \mathbf{E}[T_{\text{Boston}}] = 10$
 - So it seems like "buses come every 10 minutes on average" in both places
- What's the average waiting time $\mathbf{E}[W_c]$ until the next bus in city c?
 - Ithaca
 - Draw timeline
 - Draw waiting-time-if-arriving-now as a function of time
 - Looks like triangles, or a sawtooth wave
 - Compute average by dividing integral of function by total time
 - Result: $\mathbf{E}[W_{\mathrm{Ithaca}}] = 5$
 - · Activity: Repeat for Boston
 - Difficulty: not all the between-bus intervals have the same length
 - Draw timeline with twice as many T=1 intervals as T=28 intervals
 - Draw triangles, compute integral
 - Result: $\mathbf{E}[W_{\mathrm{Boston}}] = 13.1$
 - More than 10 minutes?!
- What happened here?
 - Two competing phenomena
 - Arrive after some of T has passed
 - So expect $\mathbf{E}[W]$ to be smaller
 - More likely to arrive during a large value of T
 - So expect E[W] to be larger
 - This is called the inspection paradox
 - Depending on T, either factor can be dominant
 - But how much impact does each factor have exactly?

General rule for average waiting time

- Now consider some generic nonnegative distribution T
- How do we compute average waiting time?

- · Same main steps
 - Draw timeline
 - · Draw triangles/sawtooth
 - · Compute integral under triangles, divide by total length of timeline
- Result: $\mathbf{E}[W] = \frac{\mathbf{E}[T^2]}{2\mathbf{E}[T]}$
 - So $\mathbf{E}[W]$ has to do with the *variance* of T, not just its mean!

More inspection paradox: classroom sizes

- · Classroom sizes from different perspectives
 - Cornell says its average class size is 30
 - Students say their average class size is more than 90
 - · Can both be right?
- Maybe class size distribution C is

$$C = \begin{cases} 10 & \text{w.p. } \frac{5}{6} \\ 130 & \text{w.p. } \frac{1}{6} \end{cases}$$

- Cornell's perspective: $\mathbf{E}[C] = 30$
- Students' perspective:
 - · Assume for simplicity that each student is in one class
 - But basically the same reasoning works as long as every student has the same number of classes
 - Draw row of 180 students
 - Analogous to timeline in bus example
 - Put students in the same class next to each other
 - Draw "class size as a function of student"
 - Looks like squares, e.g. a clump of 10 students in a row are in a class of size 10, giving a 10-by-10 square
 - Do sum of square areas and divide by total number of students
- Result: averaging over students, their class's average size is $\frac{\mathbf{E}[C^2]}{\mathbf{E}[C]}$
 - Just like waiting for the bus, but without the $\frac{1}{2}$
 - The difference is triangle areas (which have a $\frac{1}{2}$) vs. square areas (which don't)

Logistics

- Main thing: see the syllabus
 - Highlights below
- Textbook: Introduction to Probability for Computing

- · PDFs of all chapters available for free
- Homework
 - Basically every week
 - · Mini-homework if after break or before prelim
 - Usually due Thursday at 10pm
 - Short grace period, but don't push it
 - This week's mini-homework due Friday
- Discussion
 - Starts Friday
 - Guided problem solving, but not the homework
 - Work independently or in groups for 60–75 min, then solutions
 - Feel free to arrive a little late (especially for the 8am sections!), though you will miss some solving time
- Office hours
 - Help with homework and course material
 - Office hours schedule will be announced soon
- Ed Discussions
 - Most questions about the course
 - Technical questions
 - Admin questions of general interest
 - Admin questions specific to you (e.g. test conflict): email ORIE-3510-SPRING-2024-STAFF-L@list.cornell.edu
- Course announcements
 - Big ones on Canvas
 - Minor ones on Ed Discussions
- 110% grading