Calcul différentiel

Vallaeys Pascal

2 avril 2024

Références: 1

Exercices de la banque CCINP: 33,52,56,57,58

Méthodes de base :

- Montrer qu'une fonction est différentiable.
- Montrer qu'une fonction est de classe C^1 .
- Résolution d'une équation aux dérivées partielles.
- Déterminer des extrema locaux ou globaux.
- Appliquer le théorème d'optimisation sous contrainte.
- Utilisation de la règle de la chaîne.

2 Exercices incontournables:

Exercice 1: (CCINP MP 2022)

$$\Omega = \{(x, y) \in \mathbb{R}^2 / x > 0 \text{ et } y > 0\}$$

Soit
$$\Phi: \Omega \longrightarrow \Omega$$

 $(x,y) \longmapsto (xy,\frac{x}{y})$

$$(x,y) \longmapsto (xy,\frac{x}{y})$$

- 1) Montrer que Φ est bijective et déterminer Φ^{-1} .
- 2) On pose $(u, v) = \Phi(x, y)$ et f(x, y) = F(u, v).

Exprimer $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial^2 x}$ et $\frac{\partial^2 f}{\partial^2 y}$ en fonction des dérivées partielles de F.

3) Résoudre $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) - 2f(x,y) + 2 = 0$ 4) Résoudre $x^2 \frac{\partial^2 f}{\partial x^2} - y^2 \frac{\partial^2 f}{\partial x^2} = 0$.

3) Résoudre
$$x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) - 2f(x,y) + 2 = 0$$

4) Résoudre
$$x^2 \frac{\partial^2 f}{\partial^2 x} - y^2 \frac{\partial^2 f}{\partial^2 y} = 0$$
.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve : Pour la question 3), il faut utiliser les résultats trouvés précédemment en faisant un changement de variable dans l'équation.

Exercice 2: (CCINP MP 2021)

On considère \mathbb{R}^n et son produit scalaire naturel $\langle \cdot, \cdot \rangle$. Soit f un endomorphisme symétrique à valeurs propres strictement positives. 1. Montrer que : $\forall h \in \mathbb{R}^n, h \neq 0, \langle f(h), h \rangle > 0$

- 2. Soit $u \in \mathbb{R}^n$ et $g: \mathbb{R}^n \to \mathbb{R}$ définie par : $\forall x \in \mathbb{R}^n, g(x) = \frac{1}{2} \langle f(x), x \rangle \langle u, x \rangle$
- a) Montrer que g est différentiable et calculer son gradient.
- b) Montrer que g admet un unique point critique $z_0 = f^{-1}(u)$.
- c) Montrer que g admet un minimum global en z_0 .

Indication : Calculer le signe de $g(z_0 + h) - g(z_0)$.

Exercice 3: (Centrale MP 2021)

On rappelle que le laplacien d'une fonction de classe \mathcal{C}^2 de \mathbb{R}^n peut s'écrire : $\Delta f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x^2}$.

On pose $\mathcal{B} = \{x \in \mathbb{R}^n, ||x|| < 1\}.$

Soit f de classe \mathcal{C}^2 sur $\overline{\mathcal{B}}$ et telle que f est nulle sur Fr(B).

1) Pour cette question on suppose que pour tout $x \in \mathcal{B}$, f(x) > 0.

Montrer que qu'il existe un x_0 de \mathcal{B} telle que le maximum de f soit atteint en x_0 .

Montrer qu'on a alors $\Delta f(x_0) \leq 0$.

2) On suppose à présent qu'il existe $x \in \mathcal{B}$ tel que f(x) = 0.

Montrer que le laplcien de f s'annule au moins une fois.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve :

Pour montrer que $\Delta f(x_0) \leq 0$, l'examinateur m'a demandé de d'abord montrer le cas où n=1 Commentaires divers :

Examinateur parlant peu et difficile à comprendre à cause de problèmes d'élocution.

Exercice 4: (Ecrit CCINP MP 2017)

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 $\mathbb{R}^2 \to \mathbb{R}^2$ $(x,y) \to \sin(x^2 - y^2)$ et $g: (x,y) \to (x+y,x-y)$

- 1. Justifier que les fonctions f et g sont différentiables sur \mathbb{R}^2 et écrire la matrice jacobienne de f puis de g en un point (x,y).
- 2. Pour $(x,y) \in \mathbb{R}^2$, déterminer l'image d'une vecteur $(u,v) \in \mathbb{R}^2$ par l'application $d(f \circ g)(x,y)$ en utilisant les deux méthodes suivantes :
 - a. En calculant $f \circ g$.
 - b. En utilisant le produit de deux matrices jacobiennes.

Exercice 5: (Mines-Ponts 2019)

Soit (E, \langle, \rangle) un espace euclidien, $f \in S^{++}(E)$ et $u \in E$.

Pour $x \in E$, on note $F(x) = \frac{1}{2} \langle f(x), x \rangle - \langle u, x \rangle$.

- a) Montrer que F est de classe C^1 et calculer sa différentielle.
- b) Montrer que F atteint son minimum sur E en un point que l'on précisera.

Exercice 6:

On pose
$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

- a) Montrer que f est continue.
- b) Montrer que f est de classe C^1 .
- b) Montrer que f
 n'est pas de classe \mathbb{C}^2 au voisinage de (0,0).

Exercice 7:

Soit de classe C^2 . On pose $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$ (Laplacien). On dit que f est harmonique si $\Delta f = 0$.

- 1. (a) On pose z=x+iy et $f(x,y) = \ln \left| e^{ze^{-z}} \right|$. Calculer Δf .
 - (b) Montrer que $f:(x,y)\to \operatorname{Arctan}'\left(\frac{y}{x}\right)$ est harmonique.
- 2. Soit de classe C^2 et f définie par $f(x,y)=g\left(\frac{y}{x}\right)$. Déterminer g de sorte que f soit harmonique.
- 3. Soit de classe C^2 On pose $f:(x,y,z)\to g\left(\frac{x^2+y^2}{z^2}\right)$. Déterminer g de sorte que f soit harmonique.
- 4. Exprimer le Laplacien en coordonnées polaires.

Exercice 8:

 $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe C^1 , et soit $(x_1, ..., x_n, h_1, ..., h_n) \in \mathbb{R}^{2n}$. On considère $g: t \to f(x_1 + th_1, ..., x_n + th_n)$. Justifier le fait que g est de classe C^1 sur \mathbb{R} et calculer sa dérivée.

Exercice 9: (Mines MP 2021)

Soit $g \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$. On considère la fonction f définir sur \mathbb{R}^2 par : $\forall (x, y) \in \mathbb{R}^2$, $f(x, y) = \frac{g(x) - g(y)}{x - y}$ si $x \neq y$ et f(x, y) = g'(x) sinon. Montrer que f est de classe \mathcal{C}^1 .

3 Exercices de niveau 1:

Exercice 10: (ENSEA/ENSIIE MPi 2023)

Étudier les extrema de la fonction :

$$\begin{array}{c|ccc} f: &]0; +\infty[\times\mathbb{R} & \longrightarrow & \mathbb{R} \\ & (x,y) & \longmapsto & x(y^2 + \ln(x)^2) \end{array}$$

Exercice 11: (CCINP MP 2023)

On note, pour tous réels x et $y: f(x,y)=y^2\sin(x/y)$ si $y\neq 0$ et f(x,0)=0.

1. On pose $X_0 = (x_0, 0)$ où $x_0 \in \mathbb{R}$.

Montrer que f est continue en X_0 . Montrer que f est continue sur \mathbb{R}^2 .

2. On considère $X_1 = (x_1, y_1) \in \mathbb{R}^2$ avec $y_1 \neq 0$.

Calculer les dérivées partielles de f en X_1 .

f est-elle différentiable en X_1 ? Si oui, donner la différentielle de f en X_1 , puis en (0,1).

3. Calculer les dérivées partielles de f en X_0 . Si on suppose que f est différentiable en X_0 , que vaut sa différentielle?

Exercice 12: (CCINP MP 2022)

Soit
$$f: (x,y) \longmapsto \frac{xy}{\sqrt{x^2+y^2}} \sin\left(\frac{1}{\sqrt{x^2+y^2}}\right)$$
 si $(x,y) \neq (0,0)$ et $f: (0,0) \longmapsto 0$.

- 2.On pose $\overrightarrow{u_{\theta}} = (\cos \theta, \sin \theta)$ avec $\theta \in]-\pi, \pi]$. Trouver les θ tels que la dérivée partielle de f en (0,0) selon $\overrightarrow{u_{\theta}}$ existe.
 - 3. Existent-ils des dérivées partielles de f en (0,0)?
 - 4. Calculer $\frac{\partial f}{\partial x}(x,y)$ avec $(x,y)\neq (0,0)$. 5. Est-ce qu'ils existent des dérivées partielles d'ordre 2 de f sur \mathbb{R}^2 ?

Exercice 13: (CCINP TSI 2021)

Soit $f(x,y) = x^4 + y^4 - 4xy$ définie sur \mathbb{R}^2 . Déterminer les points où f admet des extrema locaux.

Exercice 14 : (TPE MP 2019)

On définit
$$f$$
 sur $[0,1]^2$ par $f(1,1) = 0$ et $f(x,y) = \frac{xy(1-x)(1-y)}{1-xy}$ pour $(x,y) \neq (1,1)$.

- a) Montrer que f est continue.
- b) Déterminer le maximum de f.

Exercice 15:

Donner la différentielle de f au point demandé, à la main puis à l'aide des dérivées partielles :

a)
$$f:(x,y)\to\cos\left(\frac{x}{y}\right)$$
 en $\left(\frac{\pi}{2},\frac{1}{2}\right)$.

- b) $f:(x,y) \to Arc\sin(xy)$ en (0,0) puis $(\frac{1}{2},\frac{1}{2})$.
- c) $f:(x,y) \to \tan(\pi + x + y) \text{ en } (\frac{\pi}{2}, \frac{\pi}{3}).$

Exercice 16 : Donner les différentielles des fonctions suivantes :

Exercise 16: Donner les differentielles des fonctions survantes:
$$\mathbb{R}^{n} \to \mathbb{R}$$
1. $f: \overrightarrow{x} \to (\overrightarrow{x}/\overrightarrow{a}) \exp\left(-\|\overrightarrow{x}\|^{2}\right)$ où $\overrightarrow{a} \in \mathbb{R}^{n}$ est
$$\begin{array}{c}
\mathbb{R}_{n}[X] \to \mathbb{R} \\
5. f: P \to \int_{0}^{1} P^{2} \\
P \to \int_{0}^{1} P^{2} \\
0$$
un vecteur non nul fixé.

2. $f: \mathbb{C}^{*} \to \mathbb{C}$

$$z \to \frac{1}{z}.$$
6. $f: M_{n}(\mathbb{R}) \to \mathbb{R}$

$$M_{n}(\mathbb{R}) \to \mathbb{R}$$

2.
$$f: z \to \frac{1}{z}$$
.
2. $f: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ at $z: M_n(\mathbb{R}) \to M_n(\mathbb{R})$

3.
$$f: \frac{M_n(\mathbb{R}) \to M_n(\mathbb{R})}{M \to M^2}$$
 et $g: \frac{M_n(\mathbb{R}) \to M_n(\mathbb{R})}{M \to M^3}$.
4. $f: \frac{M_n(\mathbb{R}) \to M_n(\mathbb{R})}{M \to Tr(M^3)}$

6.
$$f: M_n(\mathbb{R}) \to \mathbb{R}$$
 en toute matrice inversible $GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$

un vecteur non nul fixé.

2.
$$f: \frac{\mathbb{C}^* \to \mathbb{C}}{z \to \frac{1}{z}}$$
.

3. $f: \frac{M_n(\mathbb{R}) \to M_n(\mathbb{R})}{M \to M^2}$ et $g: \frac{M_n(\mathbb{R}) \to M_n(\mathbb{R})}{M \to M^3}$.

4. $f: \frac{M_n(\mathbb{R}) \to M_n(\mathbb{R})}{M \to M^2}$ et $g: \frac{M_n(\mathbb{R}) \to M_n(\mathbb{R})}{M \to M^3}$.

5. $f: \frac{M_n(\mathbb{R}) \to M_n(\mathbb{R})}{M \to M^{-1}}$ en toute matrice inversible.

7. $f: \frac{GL_n(\mathbb{R}) \to GL_n(\mathbb{R})}{M \to M^{-1}}$ en toute matrice inversible.

Exercice 17: (CCINP PC)

Déterminer les tangentes à la courbe d'équation $x^2 + 3xy + y^2 = 0$ passant par (1,7).

Exercice 18: (Centrale PSI)

On considère la surface d'équation $x^2 + y^2 + z^2 + 6x + 4y - 2z = 1$. Existe-t-il des plans tangents à cette surface et parallèles au plan d'équation x + y + z = 0?

Exercices de niveau 2 :

Exercice 19: (Mines MP 2023)

On note
$$f(x,y) = \int_0^1 \ln(t^x + t^y) dt$$
.

- 1. Donner l'ensemble de définition de f.
- 2. f admet-elle des extremums?

Exercice 20: (Mines MP 2023)

- 1. Soit U un ouvert de \mathbb{R} , $x_0 \in U$ et $f: U \to \mathbb{R}$ dérivable tels que f admet un extremum en x_0 . Montrer que $f'(x_0) = 0.$
 - 2. Énoncer un théorème semblable pour U un ouvert de \mathbb{R}^2 et le démontrer.
 - 3. Étudier les extremums de $f:(x,y)\mapsto \sin(|x+iy|)^2$ sur $\Omega=\{(x,y)\in\mathbb{R}^2: x^2+y^2\leqslant 1\}$.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve :

- 1. Utiliser directement la dimension pour montrer que la somme est directe.
- 2). Utiliser le signe de l'accroissement au voisinage de x_0 .

Commentaires divers : Examinateur plutôt froid mais sympathique.

Pour la 3., j'ai uniquement eu le temps d'expliquer le raisonnement qu'il aurait fallu mener.

Exercice 21: (CCINP MP 2023)

 $E = \mathcal{M}_n(\mathbb{R})$, muni d'une norme sous-multiplicative $\|\|$, ie $\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2$, $\|AB\| \leq \|A\| \|B\|$

- 1. Soit $H \in E$, ||H|| < 1, montrer que $I_n H$ est inversible, d'inverse $\sum_{n=0}^{\infty} H^n$.
- 2. Montrer que $GL_n(\mathbb{R})$ est ouvert dans E.

3. Soit
$$f: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$$

 $M \mapsto M^{-1}$

- a) Montrer que f est différentiable en I_n et que $df(I_n)(H) = -H$.
- b) Montrer que f est différentiable en tout point de E

(on remarquera que $(M+H)^{-1} = (M(I_n + M^{-1}H))^{-1})$).

Indication(s) fournie(s) par l'examinateur pendant l'épreuve : Q1) Attention à bien justifier la sommabilité de la série.

Commentaires divers: L'examinateur était neutre et ne m'a pas donné d'indications, il m'a autorisé à laissé des justifications en suspens pour continuer les exercices.

Exercice 22: (Centrale MP 2023)

Soit E euclidien, muni du produit scalaire noté $\langle \cdot, \cdot \rangle$. Si F est un fermé non vide de E, on note $g_F(x) =$ $d(x,F) = \inf_{y \in F} \ \|x-y\|.$ On note F^c le complémentaire de F.

- 1. a) Si $x \in E$ et F est un s-ev de E, exprimer le projeté orthogonal de x sur F à l'aide d'une base orthonormée de F, et démontrer ce résultat.
 - b) En déduire l'expression de $g_F(x)$ à l'aide d'une base orthonormée de E adaptée à F.
 - c) Montrer que g_F est différentiable sur F^c et exprimer sa différentielle.
- 2. Si $n \in \mathbb{N}^*$ et $x \in E$, on note $F_{n,x} = \{f \in F \mid ||x f|| \leq g_F(x) + \frac{1}{n}\}$ et $\Phi_n(y) = \inf_{f \in F_{n,x}} \langle 2y, f \rangle$. De même, on note $F_{0,x} = \{ f \in F \mid ||x - f|| \le g_F(x) \}$ et $\Phi_0(y) = \inf_{f \in F_{0,x}} \langle 2y, f \rangle$.
 - a) Montrer que Φ_n converge uniformément vers Φ_0 sur la sphère unité de E, c'est à dire $S = \{y \in E \mid ||y|| = 1\}$. En déduire l'existence d'une suite $(c_n)_n$ qui vérifie (je sais plus).
 - b) Non traitée, elle parlait de la suite définie précédemment.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve :

2) a) Données par l'examinateur : A y fixé, montrer que les inf sont atteints.

Montrer que la suite $(\Phi_n(y))_n$ est croissante.

Je ne sais pas comment on pourrait finir après cela. Peut-être un des théorèmes de Dini (à condition de montrer que les Φ_n sont continues).

Exercice 23: (Mines MP 2023)

On considère \mathbb{R}^n muni de la structure euclidienne usuelle. Soit N une norme sur \mathbb{R}^n et a>0.

Soit f de \mathbb{R}^n dans \mathbb{R} de classe \mathcal{C}^1 tel que pour tout $x,y \in \mathbb{R}^n$, $\langle \nabla f(x) - \nabla f(y), x - y \rangle \geqslant a N(x-y)^2$.

Montrer que f(x) tend vers $+\infty$ quand N(x) tend vers $+\infty$.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve : Considérer, pour $x \in \mathbb{R}^n$, l'application $g_x : \mathbb{R} \to \mathbb{R}, \ t \mapsto f(tx)$.

Exercice 24:

Soient $a_1, ..., a_n$ et $x_1, ..., x_n$ des réels strictement positifs.

On note $X = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 + ... + x_n = 1\}$

Montrer que $\sqrt[n]{a_1...a_n} \le \frac{a_1+...+a_n}{n}$, à l'aide du théorème d'optimisation sous une contrainte, appliqué sur X.

Exercice 25: (Mines MP 2022)
$$\mathbb{R}^2 \to \mathbb{R}$$
On pose: $f: (x,y) \mapsto \begin{cases} \frac{\sin(xy)}{|x|+|y|} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$

Est-ce que f est continue? de classe C^1 ?

Exercice 26: (Mines MP 2018)

On pose $f(x,y) = \sum_{n=0}^{+\infty} \ln(1 + x^{2n} + y^{2n})$.

- a) Déterminer le domaine de définition D de f.
- b) Montrer que f est de classe C^1 sur D.

Exercice 27: (Mines-Ponts 2019) Soit f une application de classe C^2 de \mathbb{R}^2 dans \mathbb{R} telle que $\Delta f = 0$. On pose $\forall (r, \theta) \in \mathbb{R}^2$, $g(r, \theta) = f(r \cdot \cos \theta, r \cdot \sin \theta)$.

- a) Montrer que g est de classe C^2 sur \mathbb{R}^2 et que $\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial g}{\partial r}\right)(r,\theta) + \frac{\partial^2 g}{\partial \theta^2}(r,\theta) = 0$ pour tout $r \in \mathbb{R}_+^*$ et tout
 - b) Montrer que $r \in \mathbb{R} \to \int_{0}^{2\pi} f(r.\cos\theta, r.\sin\theta)d\theta$ est constante.

Exercice 28: Soit E une espace euclidien et $u \in S(E)$. On note $\varphi: x \to \frac{(u(x)/x)}{(x/x)}$ pour x vecteur non nul de E.

- a) Calculer la différentielle de φ en tout point.
- b) Montrer que cette différentielle est nulle uniquement aux points qui sont des vecteurs propres de u.

Exercice 29: (Centrale MP)

Soit $\lambda > 0$ un réel et $U = (\mathbb{R}^* +)^n$. $U \to \mathbb{R}$ On pose $f: (x_1, ..., x_n) \to \frac{1}{2}(x_1...x_n)^2 - \lambda x_1...x_n + \frac{1}{x_1} + ... + \frac{1}{x_n}$.

a) Déterminer le nombre de points critiques de f, suivant λ .

- b) Etudier les extrema de f.

5 Exercices de niveau 3:

Exercice 30 : (ENS MP 2022)

Soit $f: \mathbb{R}^n \to \mathbb{R}^n$, continue et minorée.

Pour $x_0 \in \mathbb{R}^n$, $\varepsilon > 0$, $\lambda > 0$, on pose pour tout $x \in \mathbb{R}^n$, $g(x) = f(x) + \frac{\varepsilon}{\lambda} ||x - x_0||$.

Montrer que g admet un minimum global On suppose f différentiable, montrer que pour tout $\varepsilon > 0$, il existe y_{ε} , tel que $f(y_{\varepsilon}) < \inf_{x \in \mathbb{R}^n} f(x) + \varepsilon$ et $\|\operatorname{grad} f\| < \sqrt{\varepsilon}$

Indications fournies par l'examinateur pendant l'épreuve :

Choisir un point $y \in \mathbb{R}^n$ vérifiant une certaine propriété. Puis appliquer 1 pour obtenir un point y_{ε} Utiliser la valeur de la différentielle comme limite d'un taux d'accroissement pour l'inégalité

Exercice 31 : (ENS MP 2022)

Soit f une fonction continue sur \mathbb{R} et vérifiant $\lim_{t\to\infty} f=0$. On pose u l'application :

$$u: \mathbb{R}_{+}^{*} \times \mathbb{R} \rightarrow \mathbb{R}$$

$$(t,x) \mapsto \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^{2}}{2t}} f(y) dy$$

Montrer que u est bien définie, qu'elle est prolongeable par continuité en 0 et que son prolongement est uniformément continue.

Exercice 32: (ENS MP 2022)

- 1) Soit $u \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})$ telle que $\Delta u > 0$ sur $\overline{B}(0,1)$. Montrer que u atteint son maximum sur la sphère S(0,1).
 - 2) Démontrer le même résultat en supposant uniquement $\Delta u \geqslant 0$ sur $\overline{B}(0,1)$.

3) Soit
$$V$$
 telle que $\forall x \in \mathbb{R}^n$, $V(x) = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{pmatrix}$.

Montrer $\Delta V = 0$.

Indication(s) fournie(s) par l'examinatrice pendant l'épreuve :

Question 2 : Considérer l'application u_n définie par $\forall x \in \overline{B}(0,1), \ u_n(x) = u(x) + \frac{1}{n} ||x||^2$.

Exercice 33:
$$M_{n}(\mathbb{R}) \to \mathbb{R}^{n}$$
Soit $f: M \to \begin{pmatrix} Tr(M) \\ Tr(M^{2}) \\ \vdots \\ Tr(M^{n}) \end{pmatrix}$.

- a) Montrer que f est différentiable et calculer sa différentielle.
- b) Comparer le rang de $d\!f\left(M\right)$ et le degré du polynôme minimal de M.
- c) Montrer que l'ensemble des matrices de $M_n(\mathbb{R})$ dont le polynôme minimal est de degré n est une partie ouverte de $M_n(\mathbb{R})$.

Exercice 34: (ULM MP)

Soient $x_1, x_2, ..., x_k$ des entiers naturels de somme $n \in \mathbb{N}$. Comment rendre leur produit $x_1.x_2...x_k$ maximal sous ces conditions?

Exercice 35 : (X PC 2014) Déterminer l'image de l'application $\mathbf{f}:(x,y)\in\mathbb{R}^2\to(\cos x+\cos y,\sin x+\sin y)$.