Verification of current-state opacity in discrete event systems using an observer net

1 Appendix

1.1 Petri nets

A Petri net is a four-tuple N=(P,T,Pre,Post), where P is a set of m places, graphically represented by circles, T is a set of n transitions, graphically represented by bars, $Pre: P \times T \to \mathbb{N}^1$ and $Post: P \times T \to \mathbb{N}$ specify the arcs directed from places to transitions, and transitions to places, respectively. Pre and Post can be represented by $m \times n$ matrices. The incidence matrix of the net N is accordingly defined by C = Post - Pre.

The input and output sets of a node $x \in P \cup T$, denoted by ${}^{\bullet}x$ and x^{\bullet} , respectively, are defined as ${}^{\bullet}x = \{y \in P \cup T \mid Pre(x,y) > 0\}$ and $x^{\bullet} = \{y \in P \cup T \mid Post(x,y) > 0\}$. A Petri net is said to be acyclic if there are no oriented cycles.

A marking is a mapping $M:P\to\mathbb{N}$ that assigns to each place a non-negative integer number of tokens, graphically represented by black dots. The marking of place p at a M is denoted by M(p). A marking M can be also denoted as $M=\sum_{p\in P}M(p)\cdot p$. A Petri net system $\langle N,M_0\rangle$ is a net N with initial marking M_0 .

A transition t is said to be enabled at a marking M if $M \geq Pre(\cdot,t)$ and its firing yields a marking $M' = M + C(\cdot,t)$. We write $M[\sigma]$ to denote that a sequence of transitions $\sigma = t_{j1} \dots t_{jk} \in T^*$, $k \in \mathbb{N}$, is enabled at M, and $M[\sigma]M'$ to denote that firing the sequence σ yields M'. Given a sequence $\sigma \in T^*$, the function $\pi: T^* \to \mathbb{N}^n$ associates with σ the Parikh vector $y = \pi(\sigma) \in \mathbb{N}^n$, i.e., y(t) = k if transition t appears k times in σ .

A marking M is said to be reachable in $\langle N, M_0 \rangle$ if there exists a sequence σ such that $M[\sigma \rangle M^{'}$. The set of all markings reachable from M_0 defines the reachability set of $\langle N, M_0 \rangle$, denoted by $R(N, M_0)$, i.e., $R(N, M_0) = \{M \in \mathbb{N}^m \mid \exists \sigma \in T^* : M_0[\sigma \rangle M\}$. A Petri net is bounded if there exists a non-negative integer $k \in \mathbb{N}$ such that for any place $p \in P$ and any reachable marking $M \in R(N, M_0)$, $M(p) \leq k$ holds.

1.2 Labeled Petri nets

A labeled Petri net is a four-tuple $G=(N,M_0,E,\ell)$, where $\langle N,M_0\rangle$ is a PN system, E is the alphabet (a set of labels) and $\ell:T\to E\cup\{\varepsilon\}$ is a labeling function that assigns to each transition $t\in T$ either a symbol from E or the empty word ε . The transition set T is partitioned into two disjoint sets $T=T_o\dot{\cup}T_{uo}$, where $T_o=\{t\in T|\ell(t)\in E\}$ is the set of observable transitions and $T_{uo}=T\setminus T_o=\{t\in T|\ell(t)=\varepsilon\}$ is the set of unobservable transitions. The labeling function can be extended to firing sequences $\ell:T^*\to E^*$, i.e., $\ell(\sigma t)=\ell(\sigma)\ell(t)$ with $\sigma\in T^*$ and $t\in T$.

Given a labeled net system $G = (N, M_0, E, \ell)$ and a marking $M \in R(N, M_0)$, we define the language generated from M as

$$\mathcal{L}(N, M) = \{ w \in E^* | \exists \sigma \in T^* : M[\sigma] \text{ and } \ell(\sigma) = w \}$$

Let $G = (N, M_0, E, \ell)$ be an LPN. A string belonging to $\mathcal{L}(N, M_0)$ is called an observation of G, and denoted by w. We define the set of markings consistent with w as

$$C(w) = \{ M \in \mathbb{N}^m | \exists \sigma \in T^* : M_0[\sigma] M \text{ and } \ell(\sigma) = w \}$$

Definition. Given an LPN $G = (N, M_0, E, \ell)$ and a marking $M \in R(N, M_0)$, the unobservable reach of M is defined as $\mathcal{U}(M) = \{M' \in \mathbb{N}^m | \exists \sigma_u \in T_{uo}^* : M[\sigma_u\rangle M'\}$.

In simple words, the unobservable reach of a marking M is the set of markings reachable from M by firing only unobservable transitions.

 $^{^1}$ In this work, we use $\mathbb{N},\,\mathbb{Z}$ and \mathbb{R} to denote the sets of nonnegative integers, integers, and real number, respectively.