0.1 Chapter 1

Theorem 1. Let P be a set. An order (or **partial order**) on P is a binary relation \leq on P such that, for all $x, y, z \in P$,

- 1. $x \leq x$,
- 2. $x \le y$ and $y \le x$ imply x = y,
- 3. $x \le y$ and $y \le z$ imply $x \le z$.

Theorem 2. Let P be an ordered set. Then P is a **chain** if, for all $x, y \in P$, either $x \leq y$ or $y \leq x$ (that is, if any two elements of P are comparable). Alternative names for a chain are **linearly ordered set** and **totally ordered set**. The ordered set is an **antichain** if $x \leq y$ in P only if x == y.

Theorem 3. We say that P and Q are (order-)isomorphic, and write $P \cong Q$, if there exists a map φ from P onto Q such that $x \leq y$ in P if and only if $\varphi(x) \leq \varphi(y)$ in Q. Then φ is called order-isomorphism.

Theorem 4. Let P be an ordered set and let $x, y \in P$. We say x is **covered by** y (or y **covers** x), and write $x \prec y$, if $x \leq y$ and $x \leq z \leq y$ implies z = x. The latter condition is demanding that there be no element z of P with $x \leq z \leq y$.

Theorem 5. Let P be a finite ordered set. We can represent P by a configuration of circles (representing the elements of P) and interconnecting lines (indicating the covering relation). The construction goes as follows.

- 1. To each point $x \in P$, associate a point p(x) of the Euclidean plane, depicted by a small circles with centre at p(x).
- 2. For each covering pair $x \prec y$ in P, take a line segment $\ell(x,y)$ joining the circle at p(x) to the circle at p(y).
- 3. Carry out 1 and 2 in such a way that
 - if $x \prec y$, then p(x) is 'lower' than p(y) (that is, in standard Cartesian coordinates, has strictly smaller second coordinate),

• the circle at p(z) does not intersect the line segment $\ell(x,y)$ if $z \neq x$ and $z \neq y$.

Theorem 6. Let P and Q be finite ordered sets and let $\varphi : P \mapsto Q$ be a bijective map. Then the following are equivalent:

- 1. φ is an order-isomorphism;
- 2. x < y in P if and only if $\varphi(x) < \varphi(y)$ in Q

Theorem 7. Given any ordered set P we can form a new orderer set P^{∂} (the **dual** of P) by defining $x \leq y$ to hold in P^{∂} if and only if $y \leq x$ hold in P. For P finite, we obtain a diagram for P^{∂} simply by 'turning upside down' a diagram for P.

Theorem 8. Let P be an ordered set. We say P has a bottom element if there exists $\bot \in P$ (called **bottom**) with the property that $\bot \le x$ for all $x \in P$. Dually, P has a top element if there exists $\top \in P$ such that $x \le \top$ for all $x \in P$.

Theorem 9. Let P be an ordered set. We say P has a bottom element if there exists $\bot \in P$ (called **bottom**) with the property that $\bot \le x$ for all $x \in P$. Dually, P has a top element if there exists $\top \in P$ such that $x \le \top$ for all $x \in P$.

Theorem 10. Given an ordered set P (with or without \bot), we form P_\bot (called P 'lifted') as follows. Take an element $\mathbf{0} \notin P$ and define \le on $P_\bot := P \cup \{\mathbf{0}\}$ by

$$x \leq y$$
 if and only if $x = 0$ or $x \leq y$ in P

Theorem 11. Let P be an ordered set and let $Q \subseteq P$. Then $a \in Q$ is a **maximal** element of Q if $a \leq x$ and $x \in Q$ imply a = x. We denote the set of maximal elements of Q by MaxQ. If Q (with the order inherited from P) has a top element, T_Q , then $MaxQ = \{T_Q\}$; in this case T_Q is called the **greatest** (or **maximum**) element of Q, and we write $T_Q = maxQ$. A **minimal** elment of $Q \subseteq P$ and minQ, the **least** (or **minimum**) element of Q (when these exist) are defined dually, that is by reversing the order.

Theorem 12. Suppose that P and Q are (disjoint) ordered sets. The **disjoint union** $P \cup Q$ of P and Q is the ordered set formed by defining $x \leq y$ in $P \cup Q$ if and only if

either $x, y \in P$ and $x \leq y$ in P or $x, y \in Q$ and $x \leq y$ in Q. A diagram for $P \cup Q$ is formed by placing side by side diagrams for P and Q.

Theorem 13. Let P and Q be (disjoint) ordered sets. **The linear sum** $P \oplus Q$ is defined by taking the following order relation on $P \cup Q : x \leq y$ if and only if

$$x, y \in P$$
 and $x \le y$ in P ,
or $x, y \in P$ and $x \le y$ in Q ,
or $x \in P$ and $y \in Q$

A diagram for $P \oplus Q$ (when P and Q are finite) is obtained by placing a diagram for P directly below a diagram for Q and then adding a line segment from each each maximal element of P to each minimal element of Q.

Theorem 14. Let P_1, \ldots, P_n be ordered sets. The Cartesian product $P_1 \times \ldots \times P_n$ can be made into an ordered set by imposing the coordinatewise order by

$$(x_1,\ldots,x_n) \le (y_1,\ldots,y_n) \iff (\forall i)x_i \le y_i \text{ in } P_i.$$

Theorem 15. Let $X = \{1, 2, ..., n\}$ and define $\varphi : \mathcal{O}(X) \to \mathcal{O}(X)$ by $\varphi(A) = (\epsilon_1, ..., \epsilon_n)$ where

$$\epsilon_i = \begin{cases} 1 \text{ if } i \in A, \\ 0 \text{ if } i \notin A. \end{cases}$$

Then φ is an order-isomorphism.

Theorem 16. Let P be an ordered set and $Q \subseteq P$.

- Q is a down-set (alternative term include decreasing set and order ideal) if, whenever $x \in Q$, $y \in P$ and $y \le x$, we have $y \in Q$.
- Dually, Q is an up-set (alternative terms are increasing set and order filter) if, whenever $x \in Q$, $y \in P$ and $y \ge x$, we have $y \in Q$.

 $\textbf{Theorem 17.} \downarrow Q := \{y \in P | (\exists x \in Q) y \leq x\} \ and \uparrow Q := \{y \in P | (\exists x \in Q) y \geq x\},$

$$\downarrow x := \{y \in P | y \leq x\} \ and \uparrow x := \{y \in P | y \geq x\}.$$

Theorem 18. The family of all down-sets of P is denoted by $\mathcal{O}(P)$. It is itself an ordered set, under the inclusion order.

Theorem 19. Let P be an ordered set and $x, y \in P$. Then the following are equivalent:

- 1. $x \le y$;
- $2. \downarrow x \subseteq \downarrow y;$
- 3. $(\forall Q \in \mathcal{O}(P))y \in Q \implies x \in Q$.

Theorem 20.

$$\mathcal{O}(P)^{\partial} = \mathcal{O}(P^{\partial})$$

Theorem 21. Let P be an ordered set. Then

- 1. $\mathcal{O}(P \oplus \mathbf{1}) \cong \mathcal{O}(P) \oplus \mathbf{1}$ and $\mathcal{O}(\mathbf{1} \oplus P) \cong \mathbf{1} \oplus \mathcal{O}(P)$;
- 2. $\mathcal{O}(P_1 \cup P_2) \cong \mathcal{O}(P_1) \times \mathcal{O}(P_2)$.

Theorem 22. Let P and Q be ordered sets. A map $\varphi: P \to Q$ is said to be

- 1. order-preserving (or alternatively, monotone) if $x \leq y$ in P implies $\varphi(x) \leq \varphi(y)inQ$;
- 2. an **order-embedding** (and we write $\varphi : P \to Q$) if $x \leq y$ in P if and only if $\varphi(x) \leq \varphi(y)$ in Q;
- 3. an **order-isomorphism** if it is an order-embedding which maps P onto Q.