2014

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

holiday Language: hy-AM

Արձակուրդ

Չիան-Չիան պլանավորում է իր հաջորդ արձակուրդն անցկացնել Թայվանում։ Արձակուրդի ընթացքում Չիան-Չիան քաղաքից քաղաք է անցնում և այցելում այդ քաղաքների ատրակցիոնները։

Թայվանում կա n քաղաք, դրանք բոլորը տեղակայված են միակ մայրուղու երկայնքով։ Քաղաքները համարակալված են հաջորդաբար 0-ից n-1 թվերով։ i-րդ քաղաքի, որտեղ 0 < i < n-1, հարակից քաղաքներն են i-1-րդը և i+1-րդը։ 0 քաղաքի միակ հարակից քաղաքը 1-ն է, n-1-րդ քաղաքի միակ հարակից քաղաքը n-2-ն է։

Յուրաքանչյուր քաղաքում կան ինչ-որ թվով արտարկցիոններ։ Չիան-Չիան պլանավորում է այցելել որքան հնարավոր է շատ ատրակցիոններ։ Չիան-Չիան արդեն ընտրել է, թե որ քաղաքում պետք է սկսի իր արձակուրդը։ Արձակուրդի յուրաքանչյուր օր Չիան-Չիան կարող է կամ տեղափոխվել հարակից քաղաք, կամ այցելել այն քաղաքի բոլոր ատրակցիոնները, որտեղ նա գտնվում է, բայց ոչ երկու գործողությունը նույն օրում։ Չիան-Չիան որևէ քաղաքում նույն ատրակցիոնը երկու անգամ չի այցելում անգամ եթե նա այդ քաղաքում մի քանի անգամ է մնում։ Օգնեք, խնդրեմ, Չիան-Չիային պլանավորել արձակուրդն այնպես, որ նա այցելի որքան հնարավոր է շատ արտրակցիոններ։

Օրինակ

Դիցուք Ջիան-Ջիան ունի 6 օր արձակուրդ, կա 5 քաղաք (թվարկված ներքևի աղյուսակում), և նա սկսում է քաղաք 2-ից։ Առաջին օրը Ջիան-Ջիան այցելում է քաղաք 2-ի 20 ատրակցիոնները։ Երկրորդ օրը Ջիան-Ջիան քաղաք 2-ից տեղափոխվում է քաղաք 3։ Երրորդ օրը նա այցելում է քաղաք 3-ի 30 ատրակցիոնները։ Հաջորդ երկու օրերին Ջիան-Ջիան քաղաք 3-ից տեղափոխվում է քաղաք 1 և վեցերորդ օրը այցելում է քաղաք 1-ի 10 ատրակցիոնները։ Ջիան-Ջիայի այցելած ատրակցիոննարի ընդհանուր քանակը կլինի 20 + 30 + 10 = 60, որը ատրակցիոնների մեծագույն քանակն է, որ Ջիան-Ջիան կարող է այցելել 6 օրում, եթե սկսի քաղաք 2-ից։

քաղաք	ատրակցիոնների քանակը		
0	2		
1	10		
2	20		
3	30		
4	1		

op	գործողություն
----	---------------

op	գործողություն		
1	այցելել քաղաք 2-ի ատրակցիոնները		
2	քաղաք 2-ից տեղափոխվել քաղաք 3		
3	այցելել քաղաք 3-ի ատրակցիոնները		
4	քաղաք 3-ից տեղափոխվել քաղաք 2		
5	քաղաք 2-ից տեղափոխվել քաղաք 1		
6	այցելել քաղաք 1-ի ատրակցիոնները		

Խնդիր

Իրականացրեք, խնդրեմ, findMaxAttraction ֆունկցիան, որը հաշվում է, թե Ձիան-Ձիան առավելագույնը քանի ատրակցիոն կարող է այցելել։

- findMaxAttraction(n, start, d, attraction)
 - n-ը քաղաքների քանակն է։
 - start-ր սկզբնական քաղաքի համարն է։
 - d-**ն օրերի քանակն** է։
 - attraction- \underline{n} n thum \underline{n} thum \underline{n} thum \underline{n} the \underline{n} thum \underline{n} is a traction [i]- \underline{n} thum \underline{n} the \underline{n} thum $\underline{n$
 - Ֆունկցիան պետք է վերադարձնի, թե Ձիան-Ձիան առավելագույնը քանի ատրակցիոն կարող է այցելել։

Ենթախնդիրներ

Բոլոր ենթախնդիրներում $0 \leq d \leq 2n + \lfloor n/2 \rfloor$.

Լրացուցիչ սահմանափակումներ.

ենթախնդիր	միավոր	n	քաղաքում ատրակցիոնների մաքսիմալ քանակը	սկզբնակս քաղաքը
1	7	$2 \leq n \leq 20$	$0 \le t \le 1,000,000,000$	սահմանա- փակում չկա
2	23	$2 \leq n \leq 100,000$	$0 \le t \le 100$	0 քաղաք
3	17	$2 \leq n \leq 3,000$	$0 \le t \le 1,000,000,000$	սահմանափա չկա
4	53	$2 \leq n \leq 100,000$	$0 \le t \le 1,000,000,000$	սաիմանափա չկա

Իրականացման մանրամասներ

Պահանջվում է հանձնել ճիշտ մեկ ֆայլ, որի անունը պետք է լինի holiday.c, holiday.cpp կամ holiday.pas։ Այդ ֆայլում պետք է իրականացնել վերը նկարագրված ֆունկցիաները օգտագործելով հետևյալ նախատիպերը։ C/C++ ծրագրերում պետք նաև ավելացնել holiday.h ֆայլի ընդգրկման հրամանը։

Նկատենք, որ արդյունքը կարող է մեծ լինել, և որ findMaxAttraction-ի վերադարձի տիպը 64-բիթանոց ամբողջ է։

C/C++ onughn

```
long long int findMaxAttraction(int n, int start, int d,
int attraction[]);
```

Pascal onmahn

```
function findMaxAttraction(n, start, d : longint;
attraction : array of longint): int64;
```

Գրեյդերի օրինակ

Գրեյդերի օրինակը մուտքային տվյալները ներածում է հետևյալ ձևոաչափով.

- **Snn** 1. n, start, d:
- Snn 2. attraction[0], ..., attraction[n-1]:

Գրեյդերի օրինակը կարտածի findMaxAttraction ֆունկցիայի վերադարձի արժեըը։