

Departamento de Eletrónica, Telecomunicações e Informática

Machine Learning Lecture 6: Model selection and validation - Bias vs. Variance

Petia Georgieva (petia@ua.pt)

Deciding what to do next?

Suppose you have trained a ML model on some data. However, when you test your hypothesis on a new set of data, you find that it makes unacceptably large errors in its prediction. What should you do?

- -- Get more training examples?
- -- Try smaller sets of features?
- -- Try getting additional features?
- -- Try adding polynomial features?
- -- Try decreasing/ increasing the regularization parameter lambda?

Machine learning diagnostics:

You need to run tests to gain insight what isn't working with the learning algorithm and how to improve its performance.

Diagnostics can take time to implement, but can be a very good use of your time.

Training/Testing subsets (one model)

Dataset:

_	Size	Price
20%	2104	400 $(x^{(1)}, y^{(1)})$
	1600	330 $(x^{(2)}, y^{(2)})$
	2400	369
	1416	232
	3000	540 $(x^{(m)}, y^{(m)})$
	1985	300
	1534	315
	1427	199 $(x_{test}^{(1)}, y_{test}^{(1)})$
30%	1380	212 (Test $\xrightarrow{(x^{(2)}, y^{(2)})}$
30	1494	243 Set
2:02	7.05	$(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$

- Learn model parameters Theta from training data

(minimize cost function J)

- Compute the test error (MSE !!!)

$$E_{test}(\theta) = \frac{1}{2m_{test}} \left[\sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2} \right]$$

or

- **Compute misclassification error** (for classification problems) (# of correctly classified test examples / # of all test examples)

Holdout method (train and test subsets)

- 1. Split data into two sets:
- Training set: used to train the model
- Test set: used to test the trained model

Mean Squared Error (MSE) is not the same as the cost function!!!

COST (LOSS) FUNCTIONS

Training data MSE

Regularized Linear Regression Cost Function

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Ridge Regression

- Regularized Logistic Regression Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

- Regularized SVM Cost Function

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \left(\frac{1}{2} \sum_{i=1}^{n} \theta_j^2 \right)$$

Model selection (choose the best hypothesis)

1.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2. $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$
3. $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$
 \vdots
10. $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$

Given many models (for example with different polynomial degrees or different algorithms – LogReg, NN, SVM, etc.).

In order to choose the best model, devide dataset in 3 sets: training, cross validation (CV) and test sets.

Training/Validation/Test subsets

Dataset:

	Size	Price
60.	2104	400
	1600	330
	2400	369 Training
	1416	232
	3000	540
	1985	300
20%	1534	315 7 Cross validation 199) set (cu)
	1427	199) set (CU)
٥٠.	/ 1380	212 } test set
	1494	243

$(x^{(1)}, y^{(1)})$
$(x^{(2)}, y^{(2)})$
$(x^{(m)}, y^{(m)})$
$(x_{cv}^{(1)}, y_{cv}^{(1)})$
$(x_{cv}^{(2)}, y_{cv}^{(2)})$
:
$(x_{cv}^{(m_{cv})}, y_{cv}^{(m_{cv})})$
$(x_{test}^{(1)}, y_{test}^{(1)})$
$(x_{test}^{(2)}, y_{test}^{(2)})$
:
$\underline{\underline{(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})}$

Model selection (choose the best hypothesis)

Step 1: Optimize parameters Theta (to minimize the cost function *J*) using the same training set for each model. Compute the training error:

Training error:

$$E_{train}(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} \right]$$

Step 2: Test the optimized models from step 1 with the CV set and choose the model with the min CV error:

Cross validation (CV) error:

$$E_{cv}(\theta) = \frac{1}{2m_{cv}} \left[\sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^{2} \right]$$

Step 3: Retrain the best model from step 2 with both train and CV sets starting from the parameters got at step 2. Test the retrained model with test set and compute test error (*this is the real model performance !!!*):

Test error:

$$E_{test}(\theta) = \frac{1}{2m_{test}} \left[\sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2} \right]$$

Bias vs. Variance

An important concept in machine learning is the bias-variance tradeoff. Models with high bias are not complex enough for the data and tend to under-fit, while models with high variance over-fit the training data.

underfit- high bias

just right

overfit- high variance

(1st order polinom. model)

(3rd order polinom. model)

(higher ord. polinom. Model)

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$
 $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_{16} x^n$

Diagnosing Bias vs. Variance

Suppose your learning algorithm is performing less well than you expect (Cross Validation Error or Test Error is high). Is it a bias problem or a variance problem?

Bias (underfit) problem:

Etrain will be high Ecv will be also high

Variance (overfit) problem:

Etrain will be low Ecu much higher than Etrain

Model selection (choose the best regularization parameter λ)

For a given model:

Try different values of $\lambda = [0, 0.01, 0.1, 1, \ldots]$

Step 1: For each λ , optimize parameters θ using the training set

$$E_{train}(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} \right]$$

Step 2: Test the optimized models from step 1 with the CV set and choose the model with λ that gets min CV error:

$$E_{cv}(\theta) = \frac{1}{2m_{cv}} \left[\sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^{2} \right]$$

Step 3: Retrain the model with best λ from step 2 with both train and CV sets starting from the parameters θ got at step 2. Test the retrained model with the test set and compute the error:

$$E_{test}(\theta) = \frac{1}{2m_{test}} \left[\sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2} \right]$$

Bias/Variance as a function of the regularization parameter

Bias (underfit) problem => too large λ :

Etrain will be high Ecv will be also high

Variance (overfit) problem=> too small λ

Etrain will be low

Ecv will be much higher than Etrain

Select λ using CV set

Best $\lambda = 3$

ML

Learning Curves

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

If a learning algorithm is suffering from high bias, getting more training data will not help much

Learning Curves

If a learning algorithm is suffering from high variance, getting more training data is likely to help

Regularization and Learning Curves

Polynomial regression, $\lambda = 100$

Learning curve, $\lambda = 100$

Advice for applying machine learning

Suppose you have learned a data model (hypothesis). However, when you test your hypothesis on a new set of data, you find that it makes unacceptably large errors in its prediction (regression or classification). What should you try next?

- -- Get more training examples fixes high variance
- -- Try smaller sets of features fixes high variance
- -- Try getting additional features fixes high bias
- -- Try adding polynomial features fixes high bias
- -- Try decreasing λ fixes high bias
- Try increasing λ fixes high variance

Cross Validation – Random Subsampling

- Make K training experiments, where each time randomly select some of the examples for training (70%) and the rest for CV without replacement.
- For each data split retrain the model from scratch with the training examples and estimate the error *Ecv* with the CV examples.
- The final validation error is obtained as the average of the CV errors.
- The estimate is significantly better than the holdout method.

$$E_{cv} = \frac{1}{K} \sum_{i=1}^{K} E_{testi}$$
Total number of examples
Experiment 1
Experiment 2
Experiment 3

K –fold Cross Validation

- Devide data into K subsets (K-fold).
- Use K-1 subsets for training and the remaining subset for CV.
- The advantage of K-fold CV is that all examples in the dataset are used for both training and validation.
- As before the final validation error is estimated as the average CV error.

$$E_{cv} = \frac{1}{K} \sum_{i=1}^{K} E_{testi}$$

Leave-one-out Cross Validation

- Leave-one-out is the degenerate case of K-fold CV, where K is chosen as the total number of examples.
- For a dataset with *N* examples, perform m experiments.
- For each experiment use *N-1* examples for training and the remaining example for CV.
- As before the final validation error is estimated as the average error on CV examples.
- Useful for small data sets.

