

Projet ANDROIDE

Amélioration de la conduite d'un robot roulant intelligent et autonome

Equipe

Jérémy Dufourmantelle - 21104331 Ethan Abitbol - 3804139 Elias Bendjaballah - 3700088 Jules Cassan - 3810883

24 Mai 2022

Encadrants

Jean Michel Ilié

Farouk Meddah

Introduction

Repousser au maximum les interventions humaines.

- TurtleBot3
- Livrer des médicaments à des pharmacies réparties dans une ville dont on connaît la topologie.
- Améliorer la conduite -> Prise de virages
- Circuit + ensemble des virages = une suite de courbes de Bézier.

Comment améliorer la conduite d'un robot roulant intelligent et autonome par la méthode des courbes de Bézier?

Sommaire

- 1) Courbes de Bézier
- Etude de la faisabilité d'une approche déterministe de la conduite autonome du véhicule
- 3) Conception d'un simulateur 2D
- 4) Environnement 3D sur GAZEBO

Courbes de Bézier

Un peu d'histoire :

- Paul de Casteljau en 1959 pour Citroen
- Pierre Bézier en 1962 pour Renault
- -> Courbes polynomiales paramétriques

Courbe de Bézier cubique

Pierre Bézier

Méthode de barycentrage successif

Méthode par subdivision sélective

<u>Étude de faisabilité d'une approche</u> <u>déterministe de la conduite</u> autonome du véhicule

Représentation de la route

<u>Recherche</u>

Algorithme Général Déterministe par méthode de Bézier

Choix du point de repère le plus adapté

pas de virage dans l'immédiat

accélération

Algorithme Général Déterministe par méthode de Bézier

Choix du point de repère le plus adapté

plusieurs Bi -> virage plus serré

Décélération + Ajustement de la direction

Conception d'un simulateur 2D

Pourquoi?

fonctionnalités

Architecture et choix d'implémentation

Connection avec l'état de l'art

Construction de la route

Vitesse et rotation du véhicule

Accélération linéaire et angulaire

Système de correction de la direction

$$\theta(t+1) = \theta_t + \omega_{\theta_t} * t + \frac{1}{2}\alpha * t^2$$

<u>Démonstration</u> <u>du simulateur</u>

Résultats et limites

Deux approches:

- Vitesse Dynamique
- Vitesse Constante

Amélioration:

 Méthode d'apprentissage pour les paramètres

Environnement 3D sur Gazebo

- Mise en commun des éléments et observations effectuées sur l'environnement 2D
- Réflexion sur le portage en 3D + focus sur les éléments importants
- Documentation et apprentissage de l'API Gazebo
- Extension du modèle -> Env de simulation Custom

- Open Source
- Moteur 3D basé sur le moteur OGRE

- ODE (Open Dynamics Engine)
- Bullet Physics
- Simbody (multibody physics API)
- Dart (Dynamic Animation and Robotics toolkit)
- Forte synergie avec ROS
- Possibilité d'augmenter la simulation par ajout de Plugin C++

<u>Génération randomisée,</u> <u>semi-randomisée et stricte</u>

- Base XML
- Format très similaire au Simulation Description Format (.sdf)
- Etude de la spécification : https://classic.gazebosim.org/tutorials?tut=build_model
- Identification des éléments clés + concaténation de plusieurs sdf ou génération d'un sdf principal

<u>Générateur :</u>

Primitives

Définition du pattern :

- <sequence> </sequence>
- <optional> </optional>
- <select> (<case></case>)* </select>
- <repeat> </repeat>
- <shuffle> </shuffle>


```
<shuffle>
       <sequence>
2
           <parkingObstacle width="0.28" length="0.2" />
           <parkingLot length="0.55" />
           <parkingObstacle width="0.28" length="0.2" />
       </sequence>
       <sequence>
           <parkingObstacle width="0.28" length="0.2" />
           <parkingLot length="0.63" />
           <parkingObstacle width="0.28" length="0.2" />
       </sequence>
       <sequence>
12:
           <parkingObstacle width="0.28" length="0.2" />
           <parkingLot length="0.70" />
14
           <parkingObstacle width="0.28" length="0.2" />
       </sequence>
           <parkingObstacle width="0.28" length="0.2" />
           <parkingObstacle width="0.28" length="0.4" />
       <sequence>
19
           <parkingObstacle width="0.15" length="0.2" />
               <repeat min="3" max="5">
21
                   <optional p="0.8">
                       <select>
                           <case w="1"><parkingLot length="0.10" /></case>
                           <case w="1"><parkingLot length="0.20" /></case>
25
```


Conclusion

- Projet très enrichissant :
 - Personnellement (gestion, recherche..)
 - Notion courbe de Bézier,
 - Conception d'une approche déterministe,
 - Implémentation de notre propre simulateur,
 - maîtriser un simulateur 3D,
- Améliorations possibles:
 - Obtenir les valeurs critiques par apprentissage,
 - Profil de conduite plus avancé,
 - Projet pas totalement complet:
 - Implémentation sur Robot réel.

Merci pour votre attention

Avez-vous des questions?

