Klausur altePO # 1 Seite 2 / 13

1. TM-Konstruktion

10 Punkte

Betrachten Sie die Sprache $\mathcal{L} = \{w \in \{a,b\}^* \mid \text{Es gibt } n \in \mathbb{N} \text{ mit: } |w| = 2^n\}$. Beachten Sie, dass $0 \in \mathbb{N} \text{ gilt.}$

Konstruieren Sie eine DTM M, die diese Sprache akzeptiert.

- Erklären Sie die Arbeitsweise der Maschine ausführlich. Geben Sie insbesondere die Aufgabe jedes Kontrollzustands der Maschine an.
- Geben Sie die Transitionen der Maschine explizit an, z.B. in Form einer Tabelle oder als Zustandsgraph.
- Sie können wahlweise annehmen, dass das Band auf beiden Seiten der Eingabe mit —-Symbolen gefüllt ist, oder dass das Band auf der linken Seite durch ein \$-Symbol beschränkt ist. Geben Sie an, wofür Sie sich entschieden haben und geben Sie an, auf welches Symbol der Lese-/Schreibkopf initial zeigt.

Hinweis: Benutzen Sie 2 Bänder.

1 L= {wefarb3* | Inem: |w|=2n} wer DEM.

Arbeitsweise: Mehrband TM

- 1) Mit zwei Bänder in dieser TM märkiert das erste Band "a" und das zweik "b"
- 2) Aber wenn alle "a" und "b" in den beiden Bändesn markiert sind, reicht bleibt es jetzt, die Länge des Wortes zu rechnen.
- 3) Diese DTM akteptiert wort w auch, wenn entweder "a" eder "b" nicht da ist.
- 4) Wie wird die Länge des Works wie 1,2,4,8, usw. berechnet?

Klausur # 1 Seite 2 / 8

1. TM-Konstruktion

7 + 1 + 2 = 10 Punkte

Betrachten Sie die folgende Sprache

$$L = \left\{ w \in \left\{ a, b \right\}^* \mid \exists k \in \mathbb{N} : |w|_a = k|w|_b \right\}.$$

Hierbei bezeichnen $|w|_a$ die Anzahl der as und $|w|_b$ die Anzahl der bs in w.

- a) Konstruieren Sie eine deterministische Turingmaschine *M*, die *L* akzeptiert. Beschreiben Sie die Funktionsweise Ihrer Turingmaschine.
- b) Geben Sie eine möglichst genaue Platzschranke f für Ihre Turingmaschine M an, sodass $\operatorname{Space}_{M}(n) \in \mathcal{O}(f(n))$ gilt.
- c) Finden Sie eine möglichst genaue Platzschranke g mit $L \in DSPACE(\mathcal{O}(g(n)))$. Vergleichen Sie g mit der Platzschranke f Ihrer Turingmaschine M.

SS22

1 L= { w = {a, b}* | 3 k = N : | w | a = k | w }

d.h. eine DTM Abzeptiert ab, aab, aaaab, now. aber nicht Wörter wie abb, aabbbb, um.

Funktionsweise

- D Zuwst Schauet der Kopfzeiger ob u au im Wert überhaupt existiert.
- 2) Wenn nein, dann REJECT, sonst ersetzen wir "a" mit "x".
- 3) Dann werden alle ander Symbole übersprungen bis "b" existient.
- 4) Existient "b", wird es dann mit "y" ersetzt.
- 5) Am Ende stellt die Marchine sicher, dan Zuerst alle "a" mit "x' markiert sind und dann alle "b" mit "y".

DTM

Aber bei (3)
steht zwei Miguichheiten
yyL oder yyR?!

Klausur altePO # 1 Seite 2 / 13

1. TM-Konstruktion

10 Punkte

Betrachten Sie die Sprache $\mathcal{L} = \{w.u.w \in \{a,b\}^* \mid w,u \in \{a,b\}^*, |w| > 0\}.$

Konstruieren Sie eine NTM M, die diese Sprache akzeptiert.

• Erklären Sie die Arbeitsweise der Maschine ausführlich. Geben Sie insbesondere die Aufgabe jedes Kontrollzustands der Maschine an.

- Geben Sie die Transitionen der Maschine explizit an, z.B. in Form einer Tabelle oder als Zustandsgraph.
- Sie können wahlweise annehmen, dass das Band auf beiden Seiten der Eingabe mit —-Symbolen gefüllt ist, oder dass das Band auf der linken Seite durch ein \$-Symbol beschränkt ist. Geben Sie an, wofür Sie sich entschieden haben und geben Sie an, auf welches Symbol der Lese-/Schreibkopf initial zeigt.

Hinweise: Machen Sie von Nichtdeterminismus Gebrauch. Sie dürfen auch mehrere Bänder verwenden.

WS 2020/21

(i) Konstruier eine NTM M

für $L = \{w.u.w \in \{a,b\}^{\#} \mid w,u \in \{a,b\}^{\#}, |w|>0\}$ Wie konstruiert man eine NTM?

Klausur altePO # 1 Seite 2 / 13

1. TM-Konstruktion

10 Punkte

Betrachten Sie die Sprache $\mathcal{L} = \{a^n.b^m.c^k \mid n, m, k > 0 \text{ und } n - m \le k < n + m\} \subseteq \{a, b, c\}^*.$

Konstruieren Sie eine DTM M, die diese Sprache akzeptiert.

• Erklären Sie die Arbeitsweise der Maschine ausführlich. Geben Sie insbesondere die Aufgabe jedes Kontrollzustands der Maschine an.

- Geben Sie die Transitionen der Maschine explizit an, z.B. in Form einer Tabelle oder als Zustandsgraph.
- Sie können wahlweise annehmen, dass das Band auf beiden Seiten der Eingabe mit

 -Symbolen gefüllt ist, oder dass das Band auf der linken Seite durch ein \$-Symbol beschränkt ist. Geben Sie an, wofür Sie sich entschieden haben und geben Sie an, auf welches Symbol der Lese-/Schreibkopf initial zeigt.

Hinweis: Sie dürfen auch mehrere Bänder verwenden.

WS 2021/22

1 L= {an. bm. ck | n, m, k>0 und n-m ≤ k < n+m} = {a,b,c}*

Arbeitsweise

) Diese TM akzeptiest kein leeres Wort.

2

Mit CamScanner gescar

Probeklausur Seite 2 / 20

1. Konstruktion einer DTM

10 Punkte

Konstruieren Sie eine **deterministische** Turingmaschine *M*, welche die Sprache

$$L = \{a^m b^n \mid m, n > 0 \text{ UND } m^2 < 3n\}$$

entscheidet. Beispielsweise sind ab, $aabb \in L$, aber aab, $aaabbb \notin L$.

- Erklären Sie die Arbeitsweise der Maschine ausführlich. Geben Sie insbesondere die Aufgabe jedes Kontrollzustands der Maschine an.
- Geben Sie die Transitionen der Maschine explizit an, z.B. in Form einer Tabelle oder als Zustandsgraph. Im Zustandsgraphen brauchen Sie Transitionen nach q_{rej} nicht zu zeichnen.
- Sie können wahlweise annehmen, dass das Band auf beiden Seiten der Eingabe mit

 -Symbolen gefüllt ist, oder dass das Band auf der linken Seite durch ein \$-Symbol beschränkt ist. Geben Sie an, wofür Sie sich entschieden haben und geben Sie an, auf welches Symbol der Lese-/Schreibkopf initial zeigt.

Hinweis: Die Turingmaschine darf mehrere Bänder verwenden.

Mockexam SS22

() Arbeitweise:

- D'Everst schout der Kopfzeiger ob "a" im gegelsenen Wort überhaupt existient.
- 2) Wenn na" existient, dann ersetze dan mit un
- 3) Dann überspringe alle ander Buchstaben bis "b"
 gefunden wird.
- 4) Wenn "E" "b" micht existiest, dann einfach REJECT.
- 5) Existient "6", dann ersette dan mit 4y".
- 6) Diens Prozess lauft fort, bis zuerst alle "a" markiert. Sind und dann alle 116's.

Zustandsgraph: Nehme an, Band ist an der beiden Seite mit "-Symbolen gestüllt ist.

Mit CamScanner gescan