Project GreenEye

A Computer Vision project on Preliminary Detection on Diseased Vegetables

Prepared by: Nicholas Yuen

Table of contents

01

Background & Problem Statement

02

EDA & Preprocessing

03

Modeling

04

Background & Problem Statement

Background

- Global trends threatening food security
- Singapore Food Agency's goal: 30% nutritional value by 2030 (30 by 30)
 - o Limitations:
 - Limited land space
 - Sustainability/Environmental well-being
 - Limited manpower

Background (Cont'd)

Use of hydroponic farms

Other challenges:

- Common diseases and pests
- Time consuming / labour intensive for monitoring

Problem Statement

- Use of Computer Vision to monitor
 - Detection of symptoms for early damage control
- Feeds into binary classification model

Primary Objective:

• Achieve minimally 90 ~ 95% accuracy Secondary Objective:

- Exploration of effectiveness under image with other interferences
- Difficulty in finding diseased plant images with interferences
- Correct classification % + Prediction probability

Prediction Probability

 Analyse of prediction probabilities of each image classified

'High confidence' Class: Diseased

> 'Confidently' classified as diseased Bad model

'Confidently' classified as healthy Good model

'High confidence'

Class: Healthy

Correct Classification

 Total no. classified as healthy

Total no. of images with water droplets

Workflow

EDA & Preprocessing

Feature Extraction

Classification & Evaluation

- Data
 Acquisition &
 Augmentation
- Exploratory Data Analysis
- Preprocessing

- Understanding Feature Extraction
- MobileNetV2
- MobileNetV3
- MobileNetV3 + Regularization
- InceptionResNetV2

- Evaluation summary
- Limitations
- Future work

EDA & Preprocessing

EDA & Preprocessing

Feature Extraction

Classification & Evaluation

Data Acquisition & Augmentation

- Data from Roboflow
 - 468 images for training
 - 100 images for test
- Data Augmentation on images with water droplets

EDA

- Display of sample images
- Common occurring colors
 - Darker hues in diseased than healthy images
 - Contrast varies
- Contrast of images

Preprocessing

- Histogram Equalization
- Amplification of yellow hues

Modeling

EDA & Preprocessing

Feature Extraction

Classification & Evaluation

Understanding Feature Extraction

Convolutional Neural Network (CNN)

Types used:

- MobileNetV2
- MobileNetV3
- InceptionResNetV2

Fully connected layer:

- 1-layer Output layer
- Sigmoid activation function

Approach 1: MobileNetV2

- Why MobileNetV2?
 - Fast convolution process using depthwise-seperable
 - o Baseline choice
- Evaluation (Regular images)
 - Accuracy test score: 97%
 - Accuracy train score: 96%
- Evaluation (Water droplet images)
 - 27% correct classification
 - Majority of classification probabilities are close to zero

Approach 2: MobileNetV3

- Why MobileNetV3?
 - MobileNetV2 + Squeeze and Excitation + h-swish
 - More 'detailed' feature extraction
 - Faster with lower calculations
- Evaluation (Regular images)
 - o 94% for both train and test
- Evaluation (Water droplet images)
 - 29% correct classification
 - Minimum probability of 0.34, mostly
 Centralized at 0.5

Approach 2B: MobileNetV3 + Regularization

- Why Ridge Regularization?
 - To enable higher degree of epoch iterations
 - Less aggressive type of regularization than Lasso
- Evaluation (Regular images)
 - Accuracy test score: 95%
 - Accuracy train score: 96%
- Evaluation (Water droplet images)
 - 2% correct classification
 - Minimum probability of 0.23, mostly Centralized at 0.35

Approach 3: InceptionResNetV2

- Why InceptionResNetV2?
 - Extensive feature extraction through parallel convolutional branches
 - Residual block that result in faster run time and better learning process
- Evaluation (Regular images)
 - Accuracy test score: 94%
 - Accuracy train score: 91%
- Evaluation (Water droplet images)
 - 15% correct classification
 - Substantial amount of classification probabilities are close to zero

Conclusion

EDA & Preprocessing

Feature Extraction

Classification & Evaluation

Evaluation Summary

Approach	Performance (Test accuracy on Regular images)	Performance (Water droplet images)
MobileNetV2	97%	27% and majority close to zero
MobileNetV3	94%	29% and lesser close to zero
MobileNetV3 + Regularization	95%	2% and lesser close to zero
InceptionResNetV2	94%	15% and majority close to zero

Correct classification % & proportion of prediction probabilities

Limitations

	Limitations Prospective Solutions	
_	 Limited application for outdoor farming 	Relevant data collection
	 Accuracy for night/low light images 	 Use of promising preprocessing methods (eg. Learning to See in the Dark) to enhance low light images
	 Potential accuracy loss on collective images of crops 	Use of Object Detection to isolate individual plant

Future works

- Use of Neural Architecture Search for more efficient exploration of CNN
- To be able to classify the various specific diseases for more efficient damage control measures.
- Extend model to detect common pest (Diamondback Moth)
- Scale app to accept live feed of images in backend

Try it out!

For mobile users

OR

greeneye-by-nicholas-yuen.streamlit.app ${\mathsf Q}$

Thank you!

Email: nicholasyuen92@gmail.com

Github: https://git.generalassemb.ly/nichyuen

