

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/810,376	03/27/2004	Kentaro Toyama	MCS-081-03	8607
27662	7590	01/12/2007	EXAMINER	
MICROSOFT CORPORATION			TSUI, WILSON W	
C/O LYON & HARR, LLP			ART UNIT	PAPER NUMBER
300 ESPLANADE DRIVE			2178	
SUITE 800				
OXNARD, CA 93036				
SHORTENED STATUTORY PERIOD OF RESPONSE	MAIL DATE		DELIVERY MODE	
3 MONTHS	01/12/2007		PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

Office Action Summary	Application No.	Applicant(s)	
	10/810,376	TOYAMA ET AL.	
	Examiner Wilson Tsui	Art Unit 2178	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 28 June 2006.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-37 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-37 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date: _____ |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date <u>20040419</u> . | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

1. This action is in response to the application filed on: 3/27/2004, and IDS filed on: 04/19/2004.
2. Claims 1-37 are pending, and claims 1, 12,13, and 37 are independent claims.

Information Disclosure Statement

3. The information disclosure statement filed 4/19/2004 fails to comply with the provisions of 37 CFR 1.97, 1.98 and MPEP § 609 because Entries A12, and A13 fail to provide a date. It has been placed in the application file, but the information referred to therein has not been considered as to the merits. Applicant is advised that the date of any re-submission of any item of information contained in this information disclosure statement or the submission of any missing element(s) will be the date of submission for purposes of determining compliance with the requirements based on the time of filing the statement, including all certification requirements for statements under 37 CFR 1.97(e). See MPEP § 609.05(a).

Claim Rejections - 35 USC § 101

35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

4. Claim 37 is rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter.

With regards to claim 37, the claimed authoring system appears to be a "computer program per se", without hardware. Thus, since the computer program is not embodied in a computer readable medium; it is not statutory. See MPEP 2106 below:

Data structures not claimed as embodied in computer-readable media are descriptive material *per se* and are not statutory because they are not capable of causing functional change in the computer. See, e.g., Warmerdam, 33 F.3d at 1361, 31 USPQ2d at 1760 (claim to a data structure *per se* held non statutory). Such claimed data structures do not define any structural and functional interrelationships between the data structure and other claimed aspects of the invention, which permit the data structure's functionality to be realized. In contrast, a claimed computer-readable medium encoded with a data structure defines structural and functional interrelationships between the data structure and the computer software and hardware components which permit the data structure's functionality to be realized, and thus statutory.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.

5. Claims 1-9, 11-18, 21, 22, 34, and 37 are rejected under 35 U.S.C. 102(a) as being anticipated by Spinellis ("Position-Annotated Photographs: A Geotemporal Web", published: June 2003, pages: 72-79).

With regards to claim 1, Spinellis teaches a method for generating a geographic travelogue of a trip, comprising: *obtaining content items associated with the trip* (Page 72: GTWeb homepage is used to collect content items such as photographs and location data), *the content items including any piece of information that is displayable on a computing device; geographically coding the content items to tag the content items with geographic locations associated with the trip to create geo-coded content items* (Page 73: GTWeb indexes photographs using thumbprints and also annotates them with time and place); *and automatically integrating the geo-coded content items with other multimedia data associated with the trip to generate the geographic travelogue* (page 73: whereas the geo content items are associated with other various multimedia data such as graphical maps/timelines).

With regards to claim 2, which depends on claim 1, Spinellis teaches a method further comprising: *selecting a map displaying an area visited during the trip; and automatically integrating the map into the geographic travelogue* (page 73: whereas a map is selected that is displaying an area visited during the trip, and as shown in Figure 2, data is integrated into the map into the geographic travelogue).

With regards to claim 3, which depends on claim 2, Spinellis teaches a method further comprising *using a location resolver capable of converting between various location reference systems to resolve the geographic locations of the geo-coded content items* (page 75: whereas, location includes latitude-longitude, or geographical feature (whereas at track point is associated with the nearest geographical feature).

With regards to claim 4, which depends on claim 3, Spinellis teaches further comprising *converting the geographic locations of the geo-coded content items from a content item location reference system to map location reference system that is compatible with the selected map* (Figure 6: whereas, resolved geographic features of geo-coded content items are used for map generation/and thus compatible).

With regards to claim 5, which depends on claim 1, Spinellis teaches further comprising *using a clustering technique to cluster the geo-coded content items into clusters based on the geographic locations of the geo-coded content items* (page 75: whereas, clustering is implemented through proximity calculations)

With regards to claim 6, which depends on claim 5, Spinellis teaches further comprising *integrating each of the clusters of geo-coded content items into the geographic travelogue* (Figure 5: whereas, clusters of geo-code content items based on proximity is integrated in a geographic travelog.)

With regards to claim 7, which depends on claim 2, Spinellis teaches further comprising *selecting a size, a shape, and a type of the map based on the geographic locations of the geo-coded content items* (Figure 4: as shown map size, shape, and type is selected based on locations of geo-coded content items).

With regards to claim 8, which depends on claim 5, Spinellis teaches further comprising *generating additional content items relevant to the at least one of: (b) the clusters* (page 75: whereas a set of "visits" are generated based on nearest log points).

With regards to claim 9, which depends on claim 2, Spinellis teaches further comprising *automatically arranging the geo-coded content items and the map within the geographic*

travelogue (Figures 4 and 5: whereas geo-coded items and the map are within the geographic travelogue).

With regards to claim 11, which depends on claim 1, Spinellis teaches further comprising: *defining tracks as a record of where a subject traveled during the trip over an interval of time* (Figure 3: whereas tracks are defined in a timeline), *the subject including at least one of: (a) a person* (page 75: whereas, "Annotated features refer to the time the user's track passed near them); *and automatically incorporating the tracks into the geographic travelogue such that the tracks are intelligently positioned within the geographic travelogue* (page 75: whereas, the tracks are intelligently positioned using geographical features, and positioned appropriately within the geographic travelogue as shown in Figures 3-5).

With regards to claim 12, for a computer readable medium performing a method similar to the method of claim 1, is rejected under similar rationale.

With regards to claim 13, Spinellis teaches a computer-readable medium containing instructions for *facilitating automated inclusion of maps and other geographical data into travelogues about a trip, comprising: tagging pieces of trip information, which are displayable in the travelogue, with their associated geographic locations from the trip to produce geo-coded content items*, as similarly explained in the rejection for claim 1; *automatically selecting sizes, shapes, and types of maps based on the geographic locations of the geo-coded content items*, as similarly explained in the rejection for claim 7; *and automatically incorporating the maps and the geo-coded content items with other*

multimedia data to produce a geographic travelogue, as similarly explained in the rejection for claim 1.

With regards to claim 14, which depends on claim 13, Spinellis teaches further comprising: *obtaining tracks of the trip, where tracks includes a record of where a subject traveled over a span of time; and automatically selecting sizes, shapes, and types of maps based on the tracks* (as similarly explained in Figures 3, and 4, and also in the rejection for claim 7).

With regards to claim 15, which depends on claim 13, Spinellis teaches *wherein other multimedia data includes video and also using video (page 78), photographs, and blocks of text about the trip* (Figure 5)

With regards to claim 16, which depends on claim 13, Spinellis teaches *expressing geographic locations on the maps in a map location reference system* (as shown in Figure 4, geographic locations are expressed on a map); *expressing geographic locations associated with the geo-coded content items in a content item location reference system* (as shown in Figure 5, photographs associated with a particular location of a trip are located); *and converting the geo-coded content items from a geographic location expressed in the content item location reference system to the map location reference system* (as explained in page 74, GTWeb allocates the photos into different maps).

With regards to claim 17, which depends on 3, Spinellis teaches *further comprising generating clusters of geo-coded content items using a clustering technique based on the geographic locations* (as explained in page 75, a proximity/clustering technique is

used to generate clusters of geo-coded content items based on geographic locations, as shown in Figure 5)

With regards to claim 18, which depends on claim 17, Spinellis teaches *wherein the clustering technique includes at least one of: (a) agglomerative clustering* (whereas, as explained in page 75, an agglomerative clustering is used through proximity techniques, and a resulting cluster is shown in Figure 5)

With regards to claim 21, which depends on claim 17, Spinellis teaches *further comprising dividing the geographic travelogue in a plurality of separate geographic travelogues based on the clusters* (page 75, Figure 5: whereas, each of geographic travelogue generated is based on proximity oriented and time/temporal clustering at the time of a query).

With regards to claim 22, which depends on claim 17, Spinellis teaches *determining whether to exclude certain ones of the geo-coded content items from a cluster based on a comparison between the cluster and the remaining clusters* (a geographical feature cluster, and a coordinates cluster are used for comparison, such that a certain geo-coded content items from related to a cluster, is shown, such as in Figure 5); and *automatically giving a title to a cluster based on the geo-coded content items contained in the cluster* (as shown in Figure 5, a city title is assigned to a cluster of geo-coded content items in regional proximity).

With regards to claim 34, which depends on claim 14, Spinellis teaches further comprising *correlating the tracks with the geo-coded content items using visual cues that show a relationship between the geo-coded content items and their corresponding*

geographic locations (as explained in page 75, and Figure 5, geo-coded content items and displayed together with other geo-coded content items in relative proximity).

With regards to claim 36, which depends on claim 17, Spinellis teaches *analyzing the geographic locations of the clusters and geo-coded content items; and adding more content items to the geographic travelogue based on the analysis* (as explained in page 75: more content items are added for display based on geographical proximity analysis).

With regards to claim 37, Spinellis teaches an authoring system for authoring on a computing device a geographic travelogue of a trip, comprising: a *content item, wherein the content item includes a piece of information associated with the trip that is displayable on the computing device* (as explained in the rejection for claim 1); a *geographic coder that marks the content item with its associated geographic location from the trip to produce a geo-coded content item* (as explained in the rejection for claim 1); a *map selection module that selects a map that corresponds to the geographic location of the geo-coded content item* (as shown in Figure 5); and a *content item and map layout module that automatically incorporates the geo-coded content items, maps, and other multimedia data associated with the trip to produce the geographic travelogue* (as shown in Figure 5: whereas geo-coded content items are integrated with a link to a map layout module, and also similarly explained in the rejection for claim 1).

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

- (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the

Art Unit: 2178

invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

6. Claims 10, 23, 27-29, and 31 are rejected under 35 U.S.C. 103(a) as being unpatentable over Spinellis ("Position-Annotated Photographs: A Geotemporal Web", published: June 2003, pages: 72-79) and Rothmuller (US Application: US 2003/0033296, published: Feb. 13, 2003, filed: Jul. 17, 2002).

With regards to claim 10, which depends on claim 1, Spinellis teaches *determining subjects of the trip, a subject including a person, time, and location(s) on the trip over an interval of time; and automatically integrating geo-coded content items from a subject into the geographic travelogue* (as explained in page 75, an individual is tracked/indexed for the trip, however, Spinellis doesn't explicitly teach determining subjects of the trip, the subjects including a person, objects, or a set thereof that traveled together on the trip over an interval of time; and automatically integrating geo-coded content items from several subjects into the geographic travelogue).

Rothmuller teaches determining subjects of the trip, the subjects including a person, objects, or a set thereof that traveled together on the trip over an interval of time; and automatically integrating geo-coded content items from several subjects into the geographic travel/photo-log (paragraph 0006: whereas, multiple individuals at a particular trip/location, can be searched for based upon individual names and time intervals (paragraph 0008)).

It would have been obvious to one of the ordinary skill in the art at the time of the invention to have modified Spinellis's subject/trip metadata, to have further included the ability to search/determine individuals that traveled together on a trip over a particular

interval of time. The combination of Spinellis and Rothmuller et al would have allowed Spinellis to have implemented a method for “users [to] store and retrieve digital photographs and photographic information” (Rothmuller et al, paragraph 0003). With regards to claim 23, which depends on claim 22, Spinellis teaches wherein *determining whether to exclude certain ones of the geo-coded content items from a cluster* (page 75: whereas, geo-coded content items are excluded from a cluster if they are not within a desired proximity range). However, Spinellis does not expressly teach a *representative-item selection process that creates sub-clusters of items based on a similarity metric and selects a limited number of sub-clusters from each cluster*. Rothmuller et al teaches a *representative-item selection process that creates sub-clusters of items based on a similarity metric and selects a limited number of sub-clusters from each cluster* (Fig 1: whereas, a sub clusters such as best matches and close matches implemented, such that a limited number is selected). It would have been obvious to one of the ordinary skill in the art at the time of the invention to have modified Spinellis’s selection and exclusion of certain geo-coded items from a cluster, such that subclusters of items based on similarity for limited selection is implemented, as taught by Rothmuller. The combination of Spinellis and Rothmuller would have allowed Spinellis to have implemented a database search “for photos that match certain tags or groups of tags” (Rothmuller et al, paragraph 0026). With regards to claim 27, which depends on claim 13, the combination of Spinellis and Rothmuller teaches identifying /searching for two or more subjects, in conjunction with the same geographic location requirement, and thus, similarly teach *automatically*

identifying geographic intersections in the trip, where geographic intersections are geographic locations where two or more subjects have visited, as similarly explained in the rejection for claim 10.

With regards to claim 28, which depends on claim 13, the combination of Spinellis and Rothmuller similarly teach *automatically identifying geographic and temporal intersections in the trip, where geographic and temporal intersections are geographic locations where two or more subjects visited at overlapping times*, as explained in the rejection for claim 10.

With regards to claim 29, which depends on claim 28, Spinellis further teaches comprising *creating a separate travelogue at an intersection of the geographic and temporal intersections, wherein content items of all subjects that geographic and temporal intersect are combined*, as similarly explained in the rejection for claim 21, and is rejected under similar rationale.

With regards to claim 31, which depends on claim 17, the combination of Spinellis and Rothmuller et al similarly teaches further comprising automatically selecting a special set of content items based on the clusters and subjects that were part of the trip, as explained in the rejection for claim 10, and is rejected under the same rationale.

7. Claims 19, 24-26, and 35 are rejected under 35 U.S.C. 103(a) as being unpatentable over Spinellis ("Position-Annotated Photographs: A Geotemporal Web", published: June 2003, pages: 72-79) and DeLorme et al (US Patent: 6,321,158 B1, issued: Nov. 20, 2001, filed Aug. 31, 1998).

With regards to claim 19, which depends on claim 17, Spinellis teaches *geo-coded content items*, as similarly explained in the rejection for claim 1. However, Spinellis does not expressly teach further comprising *simplifying an appearance of the geo-coded content items on a map by reducing a number of visual elements representing the geo-coded content items.*

DeLorme et al teaches *simplifying an appearance of the geo-coded content items on a map by reducing a number of visual elements representing the geo-coded content items* (Abstract: whereas, automatic zooming is implemented to increase or reduce the resolution of visual elements representing geo-coded content items).

It would have been obvious to one of the ordinary skill in the art at the time of the invention to have modified Spinellis's geo-coded content items, such that they are implemented in a map with detail-based zoom features as taught by DeLorme et al. The combination of Spinellis and DeLorme et al would have allowed Spinellis to have implemented "map information content and levels of detail ... at lesser/greater level of detail ..." (DeLorme et al, column 4, lines 58-65)

With regards to claim 24, which depends on claim 13, DeLorme teaches the appearance of geo-content items in the rejection for claim 19. DeLorme further teaches the appearance of geo-content items further comprise arranging the geo-coded content items on corresponding maps such that each of the geo-coded content items is on or near its geographic location represented on the maps (Fig 1N: whereas geo-coded content items are on or near geographic locations represented on the map).

With regards to claim 25, which depends on claim 24, Spinellis teaches *inserting visual cues in the geographic travelogue to show a relationship between the geo-coded content items and their corresponding geographic locations* (Figure 4: whereas, geo-content items include location based track points, and a track line is shown in the map providing a representative cue of relative journey path)

With regards to claim 26, which depends on claim 25, Spinellis teaches *wherein the visual cues include at least one of: (b) passive visual cues that are statically viewable in the geographic travelogue* (as shown in figure 4: a track line is viewable in the geographic travelogue).

With regards to claim 35, which depends on claim 14, Spinellis teaches *displaying tracks on maps*, as similarly explained in the rejection for claim 14. However, Spinellis does not expressly teach further comprising *dynamically displaying the tracks on the maps in an animated manner*.

DeLorme et al teaches *dynamically displaying the tracks on the maps in an animated manner* (column 5, lines 25-33: whereas current-position based tracking is implemented.).

It would have been obvious to one of the ordinary skill in the art at the time of the invention to have modified Spinellis's display of tracks on maps, such that the mapping and tracking would have been updated dynamically, as taught by DeLorme et al. The combination of Spinellis and DeLorme et al would have allowed Spinellis to have implemented a "communications dimension for [a] map reading system" (DeLorme, column 3, lines 52-55).

8. Claims 20 and 32 are rejected under 35 U.S.C. 103(a) as being unpatentable over Spinellis ("Position-Annotated Photographs: A Geotemporal Web", published: June 2003, pages: 72-79) and Holbrook (US Application: US 20050203918, published: Sep. 15, 2005, filed: May 16, 2005, EEFID: Nov. 15, 2001).

With regards to claim 20, which depends on claim 17, Spinellis teaches *travelogue pages based on clusters*, as similarly explained in the rejection for claim 6 (as well as subjects, as explained in the rejection for claim 10). However, Spinellis does not expressly teach the *creating a hierarchical organization of pages based on the clusters*. Holbrook teaches *creating a hierarchical organization of pages based on the clusters* (paragraph 0068: whereas, pages/page content are organized hierarchically based on clustered data.)

It would have been obvious to one of the ordinary skill in the art at the time of the invention to have modified Spinellis's travelogue pages, which were compiled based upon clusters and subjects, to have further included creating a hierarchical organization of pages based on the clusters, as taught by Holbrook. The combination would have allowed Spinellis to have "concisely present relevant data to the user, ... to efficiently evaluate and review the data [though] data organization' (Holbrook, paragraph 0015).

With regards to claim 32, which depends on claim 17, Spinellis teaches *clusters and subjects of the trip*, as similarly explained in the rejection for claim 10. However, Spinellis does not expressly teach, further comprising *performing multi-faceted hierarchical organization of pages of the geographic travelogue based on the clusters and subjects of the trip*.

Yet, the combination of Spinellis and Holbrook explained in the rejection for claim 20, teach *performing multi-faceted hierarchical organization of pages of the geographic travelogue based on the clusters and subjects of the trip*, as similarly explained in the rejection for claim 20, and is rejected under similar rationale.

9. Claim 30 is rejected under 35 U.S.C. 103(a) as being unpatentable over Spinellis (“Position-Annotated Photographs: A Geotemporal Web”, published: June 2003, pages: 72-79) and Rothmuller et al (US Application: US 2003/0033296, published: Feb. 13, 2003, filed: Jul. 17, 2002), in further view of Te et al (US Patent: 6,785,864, issued: Aug. 31, 2004, filed: Dec. 1, 1999).

With regards to claim 30, which depends on claim 28, Spinellis teaches *geographic and temporal intersections* (page 75: whereas, results of track points having common boundary of time and geography, are recognized for being within a certain common ground/boundary). However, Spinellis does not expressly teach *marking the geographic and temporal intersections, in other travelogues, and generating a link to other travelogues*.

Te et al teaches marking one or more user's web page that share the same/intersection hyperlink document being monitored, by generating a notification link for a user (Abstract).

It would have been obvious to one of the ordinary skill in the art at the time of the invention to have modified Spinellis's processing of intersections for a travelogue, such that upon intersection, links are generated for one or more users, as taught by Te et al. The combination of Spinellis, Rothmuller et al, and Te et al would have allowed Spinellis

to have "users benefit from a notification system that provided the ability to ... be electronically notified" (Te et al, column 1, lines 55-60).

10. Claim 33 is rejected under 35 U.S.C. 103(a) as being unpatentable over Spinellis ("Position-Annotated Photographs: A Geotemporal Web", published: June 2003, pages: 72-79).

With regards to claim 33, which depends on claim 14, Spinellis teaches aligning and overlaying the tracks on the maps (Figure 4); However, Spinellis does not expressly teach *snapping the tracks onto known landmarks on the maps.*

Yet, Spinellis teaches snapping tracks to nearest geographical feature/landmark, (page 75: whereas, proximity to nearest geographical feature is calculated, and if close enough in proximity, a location is selected/snapped-to, and shown in Figure 5).

It would have been obvious to one of the ordinary skill in the art at the time of the invention to have modified Spinellis's method for overlaying tracks on maps, such that the tracks are snapped to the nearest geographic feature, as also taught by Spinellis. The combination would have allowed Spinellis to have implemented selected a "track log point with the smallest Euclidean distance" (Spinellis, page 75).

Conclusion

11. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

- Jhani (US Application: US 2003/0126250 A1): This reference teaches tracking user location, and multi-user notification upon geographic/location/region intersection.

Art Unit: 2178

- Burch et al (US Patent: 6,826,473 B1): This reference teaches monitoring travel distance in a travel log through GPS technology.
- Vance et al (US Patent: 7,050,986 B1): This reference teaches maintaining travel log information, and location based content items.
- Vetterli et al (US Application: US 2002/0075282 A1): This reference teaches annotating a map/image view with geo coded data.
- Faltings et al (US 2003/0033164 A1): This reference teaches travel information/itinerary management through graphical display.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Wilson Tsui whose telephone number is (571)272-7596. The examiner can normally be reached on Monday - Friday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Stephen Hong can be reached on (571) 272-4124. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

W.T. 1/8/07

Wilson Tsui
Patent Examiner
Art Unit: 2178
January 8, 2007

STEPHEN HONG
SUPERVISORY PATENT EXAMINER