Lab 05

Jack Reddan (A59010543)

10/14/2021

Lab 05: Data Visualization

Install packages

```
# install.packages("ggplot2")
# install.packages("gapminder")
# install.packages("patchwork")
```

Library loading

```
library(ggplot2)
library(gapminder)
library(dplyr)
#library(plotly)
library(patchwork)
```

Data exploration

Examine the *cars* dataset with the "head" function.

head(cars)

```
##
    speed dist
## 1
        4
             2
## 2
        4
            10
        7
## 3
           4
        7 22
## 4
## 5
        8
          16
## 6
        9
          10
```

Plotting the data

Graph stopping distance (ft) as a function of speed (mph) from the 'cars' dataset using ggplot2.

Stopping Distance of Old Cars

Compare the ggplot2 graph to the graph generated from the plotting which comes from base R.

```
# Base graphics translation
plot(x = cars$speed,
    y = cars$dist,
    pch = 16,
    main = "Stopping Distance of Old Cars\n[base graphics]",
    xlab = "Speed (MPH)",
    ylab = "Stopping Distance (ft)")
abline(lm(cars$dist ~ cars$speed),
        col = "blue",
        lwd = 2)
```

Stopping Distance of Old Cars [base graphics]

Using the gene expression dataset

Reading in the gene expression tab-delimited data table as a dataframe and checking the table structure.

```
# Loading in the genes data
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

Exploring the data frame dimensions.

```
# How many genes are in the dataframe nrow(genes)
```

```
## [1] 5196
```

```
# What and how many types of data were collected on each gene.
colnames(genes)
```

```
## [1] "Gene" "Condition1" "Condition2" "State"
ncol(genes)
```

[1] 4

```
# Summary of State values for each gene
table(genes$State)
```

```
## down unchanging up
## 72 4997 127
```

```
# Calculate the percentage of genes which were labeled "up" for their state round(table(genes$State)["up"]/nrow(genes)*100, 2)
```

```
## up
## 2.44
```

Plotting the gene states for both treatment conditions and coloring each data point by its state value.

```
p <- ggplot(data = genes) +
  aes(x = Condition1, y = Condition2,
      col = State) +
  geom_point()
p</pre>
```


Adding a unique color scheme to the plot.

```
p <- p +
    scale_color_manual(values = c("red", "gray", "blue"))
p</pre>
```


Adding a title and axis labels to the plot.

Using the gapminder dataset

Filter the gapminder dataframe for data associated with the year 2007.

```
# gapminder dataset
gapminder_2007 <- gapminder %>% filter(year==2007)
```

Plot the gapminder data for life expectancy (lifeExp) across available years.

```
# Use the geom_violin and geom_jitter layers to accurately view the distribution
# of data points
p <- ggplot(data = gapminder) +
  aes(x = year, y = lifeExp) +
  geom_violin(aes(group = year), draw_quantiles = c(0.5)) +
  geom_jitter(aes(col = continent), alpha = 0.4, width = 0.3)
p</pre>
```


Plot the 2007-subset of gapminder data for life expectancy (life Exp) across the countrys' associated GDP per capita.

```
p <- ggplot(data = gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, col = continent, size = pop) +
  geom_point(alpha=0.4)
p</pre>
```


Using a continuous variable for color.

```
# Gross example with population as color
q <- ggplot(data = gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, col = pop) +
  geom_point()
q</pre>
```


Scaling the size of the data points to better represent the differences in population sizes.

```
# Adjusting point size
p <- ggplot(data = gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, size = pop) +
  geom_point(alpha=0.4)
p</pre>
```


Filter the gapminder dataframe for data associated with the year 1957.

```
# Exploring 1957 gapfinder data
gapminder_1957 <- gapminder %>% filter(year==1957)
```

Plot the 1957-subset of gapminder data for life expectancy (life Exp) across the countrys' associated GDP per capita.

```
p <- ggplot(data = gapminder_1957) +
  aes(x = gdpPercap, y = lifeExp, col = continent, size = pop) +
  geom_point(alpha=0.7) +
  scale_size_area(max_size = 15)
p</pre>
```


Filter the gapminder dataframe for data associated with the years 1957 and 2007.

```
gapminder_1957_2007 <- gapminder %>% filter(year==1957 | year == 2007)
```

Plot the gapminder_1957_2007 data for life expectancy (lifeExp) across the countrys' associated GDP per capita and facet wrap by the year.

```
p <- ggplot(data = gapminder_1957_2007) +
  aes(x = gdpPercap, y = lifeExp, col = continent, size = pop) +
  geom_point(alpha=0.7) +
  scale_size_area(max_size = 15) +
  facet_wrap(~year)
p</pre>
```


Boxplots in ggplot

Filter the gapminder data for values from the year 2007 and select the top 5 countries with the highest population

```
# Top 5 population in the gapminder data for the year 2007
gapminder_2007_top5 <- gapminder %>%
  filter(year == 2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)
# Check the tibble
gapminder_2007_top5
## # A tibble: 5 x 6
##
     country
                    continent year lifeExp
                                                    pop gdpPercap
##
     <fct>
                    <fct>
                              <int>
                                      <dbl>
                                                  <int>
                                                            <dbl>
                                                            4959.
## 1 China
                    Asia
                               2007
                                       73.0 1318683096
## 2 India
                    Asia
                               2007
                                       64.7 1110396331
                                                            2452.
## 3 United States Americas
                               2007
                                       78.2
                                             301139947
                                                            42952.
## 4 Indonesia
                                                            3541.
                               2007
                                       70.6
                                             223547000
                    Asia
## 5 Brazil
                               2007
                                       72.4 190010647
                                                            9066.
                    Americas
```

Plot the population for each of the top five countries with the highest populations, and color by the country's continent.

```
ggplot(data = gapminder_2007_top5) +
aes(x = country, y = pop, fill = continent) +
```


Change the color mapping to the life expectancy of the country.

```
ggplot(data = gapminder_2007_top5) +
aes(x = country, y = pop, fill = lifeExp) +
geom_col()
```


Change the order of the countries from highest to lowest and color by country.

```
ggplot(data = gapminder_2007_top5) +
aes(x = reorder(country, -pop), y = pop, fill = country) +
geom_col()
```


Using the the USArrests dataset

Check the structure of the dataframe.

head(USArrests)

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7

Plot the murder arrests (per 100,000) for each state in the US, and flip the orientation of the plot 90 degrees.

```
ggplot(data = USArrests) +
aes(x = reorder(rownames(USArrests), Murder), y = Murder) +
coord_flip() +
geom_col()
```


Change the boxplot to a collection of points and line segments for easier interpretation.

Combining plots

Assign example plots to variables.

```
p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_smooth(aes(disp, qsec))
p4 <- ggplot(mtcars) + geom_bar(aes(carb))</pre>
```

Combine the example plots with the *patchwork* library.

```
(p1 | p2 | p3) / p4
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Session information

```
sessionInfo()
```

```
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Arch Linux
## Matrix products: default
## BLAS:
          /usr/lib/libblas.so.3.10.0
## LAPACK: /usr/lib/liblapack.so.3.10.0
## locale:
   [1] LC_CTYPE=en_US.UTF-8
                                   LC_NUMERIC=C
##
                                   LC_COLLATE=en_US.UTF-8
##
   [3] LC_TIME=en_US.UTF-8
   [5] LC_MONETARY=en_US.UTF-8
                                   LC_MESSAGES=en_US.UTF-8
    [7] LC_PAPER=en_US.UTF-8
##
                                   LC_NAME=C
                                   LC_TELEPHONE=C
##
   [9] LC_ADDRESS=C
  [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    base
##
## other attached packages:
                                       gapminder_0.3.0 ggplot2_3.3.5
## [1] patchwork_1.1.1 dplyr_1.0.7
##
## loaded via a namespace (and not attached):
  [1] highr_0.9
                          pillar_1.6.1
                                            compiler_4.1.1
                                                              tools_4.1.1
```

##	[9]	digest_0.6.27 lifecycle_1.0.0	lattice_0.20-44 tibble_3.1.2	nlme_3.1-152 gtable_0.3.0	evaluate_0.14 mgcv_1.8-36
		pkgconfig_2.0.3	rlang_0.4.11	Matrix_1.3-4	rstudioapi_0.13
		cli_3.0.0	DBI_1.1.1	yaml_2.2.1	xfun_0.24
##	[21]	withr_2.4.2	stringr_1.4.0	knitr_1.33	generics_0.1.0
##	[25]	vctrs_0.3.8	grid_4.1.1	tidyselect_1.1.1	glue_1.4.2
##	[29]	R6_2.5.0	fansi_0.5.0	rmarkdown_2.11	farver_2.1.0
##	[33]	purrr_0.3.4	magrittr_2.0.1	splines_4.1.1	scales_1.1.1
		ellipsis_0.3.2	${\tt htmltools_0.5.1.1}$	assertthat_0.2.1	colorspace_2.0-2
##	[41]	labeling_0.4.2	utf8_1.2.1	stringi_1.7.2	munsell_0.5.0
##	[45]	crayon_1.4.1			