Modeling Conceptual Understanding in Image Reference Games

Rodolfo Corona, Stephan Alaniz, Zeynep Akata Presenter : Serkan Bugur

Authors

Rodolfo Corona

- PhD student at UC Berkeley
- Fullbright Student Research Grant at Amsterdam ML Research Group

Stephan Alaniz

 PhD student at MPI (University of Tubingen)

Zeynep Akata

 Professor at University of Tubingen

Motivation

- A system interacting with a large population of users.
 - Variety of agents' understanding of the world.
 - Perception difference, e.g. human & machine.

- An agent capable of forming representations of other agent's understanding;
 - Internal
 - Human-Interpretable

Model

- Goal: given image pair (x_t, x_c) , speaker communicates attribute a that allows listener to select x_t
- Episode k:
 - \circ Speaker and listener encode the image pair using perceptual modules ϕ_{S},ϕ_{L}
 - Speaker selects a target image x_t^k and attribute a_k with its policy conditioned on agent embedding h_k and image features $z_{s,k} = \phi(x_t^k) \phi(x_c^k)$
 - o Given a_k , the listener guesses the target image rationally $g = \arg\max_{x \in \{x_t^k, x_c^k\}} \phi_L^a(x)$
 - \circ Speaker updates embedding h_{k+1} given the reward r_k received for using a_k in that game
- Play N episodes to learn about listener, then play M episodes on which reward is evaluated

Agent Embedding Module

- LSTM's hidden state is used for agent embedding.
- After each episode,
 - \circ Attribute a_k is selected, r_k is received.
 - Generate $O_k \rightarrow$ one-hot vector.
 - \circ Update $ightarrow h_k = LSTM(h_{k-1},o_k)$

Attribute Selection Mechanism

- Use parameterized value function $V(s_k, a_k)$ and policy function $\pi_S(s_k, a_k)$ with $s_k = \lceil z_{s_k}; h_k \rceil$ • Value-function Loss: $f_{s_k} = \frac{1}{2} \sum_{k=1}^{\infty} MSE(V(s_k, a_k), x_k)$
- Value-function Loss: $\mathcal{L}_V = \frac{1}{N+M} \sum_{N+M} \text{MSE}(V(s_k, a_k), r_k)$
- **Epsilon Greedy:** random with probability ϵ , otherwise $a_k = \arg \max_{a \in A} V(s_k, a)$
- Active Policy: $\mathcal{L}_a = \frac{1}{N} \sum_N -R \log \pi_S(s_t, a_t)$ with $R = -\frac{1}{M} \sum_M \text{MSE}(V(s_k, a_k), r_k)$

- Random Sampling: Random during practice, greedy during evaluation
- Reactive Policy: Use same action, change on negative reward, remember 'bad'
- Random Agent : Always random

Datasets

- AwA2 [Xian et al., 2018]
 - 85 attributes

polar bear

black: no
white: yes
brown: no
stripes: no
water: yes
eats fish: yes

- SUN Attribute [Patterson et al., 2014]
 - 102 attributes for each object

- CUB [Wah et al., 2011]
 - > 200 attributes

\wedge	forehead_color	black	black	black
	breast_pattern	solid	solid	solid
	breast_color	white	white	white
	head_pattem	plain	capped	plain
	back_color	white	white	black
	wing_color	grey/white	grey	white
	leg_color	orange	orange	orange
	size	medium	large	medium
4	bill_shape	needle	dagger	dagger
	wing_shape	pointed	tapered	long
THE SHIP SHIP SHIP SHIP SHIP SHIP SHIP SHIP		-		
	primary_color	white	white	white

	forehead_color	red	red	red
4 数 4 元 1489	breast_pattern	multi- colored	solid	solid
	breast_color	white	white/red	white
A Townson	head_pattern	capped	capped	capped
	back_color	white/ black	white/ black	white/ black
	wing_color	white/ black	white/black	white/black
	leg_color	buff	black	black
用用 使 医	size	small	medium	medium
	bill_shape	all- purpose	dagger	all- purpose
	wing_shape	pointed	tapered	pointed
FULL TO THE PARTY OF				
	primary_color	black, red	white, black	white, black

Results

Results -- Continued

Idea

- Speaker → A perfect tutor (agent) that already learned to apply several actions on several objects perfectly.
- Listeners → Partial knowledge about the actions and states.
- Speaker should generate **motor commands** (including state and action information) which the listener doesn't know how to perform perfectly.
- Possible actions: push (left, right, front, etc.), grasp, flip, etc.
- Possible states: different objects on different locations, multiple object setups, etc.

Initial Diagram

Initial Setup

- Initialize motor commands as following: 001 → push left, 000 → push right, 101 → grasp left, etc.
- For the sake of simplicity let's say that an agent learns an action after it collects N samples for that action.