Vehicle Routing Problem using Quantum Computing

Shivalee RK Shah

 The VRP, or Vehicle Routing Problem, is a combinatorial optimization challenge in the field of operations research and logistics. It involves efficiently routing a fleet of vehicles to deliver goods or services to a set of customers while minimizing overall costs.

- The VRP, or Vehicle Routing Problem, is a combinatorial optimization challenge in the field of operations research and logistics.
 It involves efficiently routing a fleet of vehicles to deliver goods or services to a set of customers while minimizing overall costs.
- Our objective is to solve the vehicle routing problem, in which we have n locations k vehicles, and 1 depot

- The VRP, or Vehicle Routing Problem, is a combinatorial optimization challenge in the field of operations research and logistics.
 It involves efficiently routing a fleet of vehicles to deliver goods or services to a set of customers while minimizing overall costs.
- Our objective is to solve the vehicle routing problem, in which we have n locations k vehicles, and 1 depot
- It is difficult to solve this problem classically due to its inherent combinatorial complexity.

- The VRP, or Vehicle Routing Problem, is a combinatorial optimization challenge in the field of operations research and logistics.
 It involves efficiently routing a fleet of vehicles to deliver goods or services to a set of customers while minimizing overall costs.
- Our objective is to solve the vehicle routing problem, in which we have n locations k vehicles, and 1 depot
- It is difficult to solve this problem classically due to its inherent combinatorial complexity.
- As the number of locations, vehicles, and constraints increase, the problem space grows exponentially, resulting in a vast number of potential solutions that need to be explored.

- The VRP, or Vehicle Routing Problem, is a combinatorial optimization challenge in the field of operations research and logistics.
 It involves efficiently routing a fleet of vehicles to deliver goods or services to a set of customers while minimizing overall costs.
- Our objective is to solve the vehicle routing problem, in which we have n locations k vehicles, and 1 depot
- It is difficult to solve this problem classically due to its inherent combinatorial complexity.
- As the number of locations, vehicles, and constraints increase, the problem space grows exponentially, resulting in a vast number of potential solutions that need to be explored.
- This is where we want to make use of quantum properties of superposition so that we can explore this vast solution space quickly

 D-Wave's quantum annealing technology is specifically designed to solve optimization problems. At its core, a D-Wave quantum annealer consists of a superconducting processor

- D-Wave's quantum annealing technology is specifically designed to solve optimization problems. At its core, a D-Wave quantum annealer consists of a superconducting processor
- The key concept behind quantum annealing is to encode the optimization problem as an Ising model or a Quadratic Unconstrained Binary Optimization (QUBO) problem, which is a type of BQM.

- D-Wave's quantum annealing technology is specifically designed to solve optimization problems. At its core, a D-Wave quantum annealer consists of a superconducting processor
- The key concept behind quantum annealing is to encode the optimization problem as an Ising model or a Quadratic Unconstrained Binary Optimization (QUBO) problem, which is a type of BQM.
- So We define an objective function that we seek to minimize. This
 objective function is written as an energy model. It is a quadratic
 function in terms of binary variables.

- D-Wave's quantum annealing technology is specifically designed to solve optimization problems. At its core, a D-Wave quantum annealer consists of a superconducting processor
- The key concept behind quantum annealing is to encode the optimization problem as an Ising model or a Quadratic Unconstrained Binary Optimization (QUBO) problem, which is a type of BQM.
- So We define an objective function that we seek to minimize. This
 objective function is written as an energy model. It is a quadratic
 function in terms of binary variables.
- backend tries to find the lowest energy state of this physical system

- D-Wave's quantum annealing technology is specifically designed to solve optimization problems. At its core, a D-Wave quantum annealer consists of a superconducting processor
- The key concept behind quantum annealing is to encode the optimization problem as an Ising model or a Quadratic Unconstrained Binary Optimization (QUBO) problem, which is a type of BQM.
- So We define an objective function that we seek to minimize. This objective function is written as an energy model. It is a quadratic function in terms of binary variables.
- backend tries to find the lowest energy state of this physical system
- which is equivalent to finding the minimum of our objective function

Hamiltonian in $Y_{i\alpha}$

minimizing cost

$$\begin{split} H_A &= A \cdot \sum_{v=1}^{V} \sum_{i=1}^{N_0} \sum_{j=1}^{N_0} c_{ij}^v \sum_{\alpha=1}^{N_0-1} y_{i\alpha}^v y_{j\alpha+1}^v + A \cdot \sum_{v=1}^{V} \sum_{i=1}^{N_0} c_{0i}^v \left(y_{i1}^v + \sum_{\alpha=2}^{N_0} \left(1 - \sum_{\substack{j=1 \\ j \neq i}}^{N_0} y_{j(\alpha-1)}^v \right) y_{i\alpha}^v \right) \\ &+ A \cdot \sum_{v=1}^{V} \sum_{i=1}^{N_0} c_{i0}^v \left(y_{iN_0}^v + \sum_{\alpha=1}^{N_0-1} y_{i\alpha}^v \left(1 - \sum_{\substack{j=1 \\ j \neq i}}^{N_0} y_{j(\alpha+1)}^v \right) \right) \end{split}$$

constraints to prevent sub-tours

$$H_B = B \cdot \sum_{i=1}^{N_0} \left(1 - \left(\sum_{\alpha=1}^{N_0} \sum_{v=1}^{V} y_{i\alpha}^v\right)\right)^2$$

$$H_C = C \cdot \sum_{\alpha=1}^{N_0} \left(1 - \left(\sum_{i=1}^{N_0} \sum_{v=1}^V y_{i\alpha}^v\right)\right)^2$$

Hamiltonian in $Y_{i\alpha}$

order delivery quantity

$$H_D = D\sum_{v=1}^k \left(\sum_{i=1}^{N_0}\sum_{lpha=1}^{N_0}q_iy_{ilpha}^v - Q_v
ight)$$

time constraints

$$\begin{split} H_E &= E \cdot \sum_{v=1}^{V} \sum_{i=1}^{N_0} \sum_{j=1}^{N_0} t_{ij}^v \sum_{\alpha=1}^{N_0-1} y_{i\alpha}^v y_{j\alpha+1}^v + E \cdot \sum_{v=1}^{V} \sum_{i=1}^{N_0} t_{0i}^v \left(y_{i1}^v + \sum_{\alpha=2}^{N_0} \left(1 - \sum_{\substack{j=1 \\ j \neq i}}^{N_0} y_{j(\alpha-1)}^v \right) y_{i\alpha}^v \right) \\ &+ E \cdot \sum_{v=1}^{V} \sum_{i=1}^{N_0} t_{i0}^v \left(y_{iN_0}^v + \sum_{\alpha=1}^{N_0-1} y_{i\alpha}^v \left(1 - \sum_{\substack{j=1 \\ j \neq i}}^{N_0} y_{j(\alpha+1)}^v \right) \right) \end{split}$$

Comparison of time for classical and quantum

N	К	classical route: V1	V2	classical time	classical cost	CQM cost	BQM cost	vehicle routes-v1	v2	constraint satisfied	time
4	2	Vehicle_1 path: []	0 ->2 -> 4 -> 1 -> 3 -> 0	0.080123901	112.7471745	153.757	112.747 (D= 10000, E=100)	Vehicle_1 path: []	Vehicle 2:0- >2->4->3 ->1->0	yes	42.519 ms
5	2	Vehicle_1 path: []	0 -> 2 -> 4 -> 5 -> 3 -> 1 -> 0	0.1208	110.3649677	152.6	126.389 (D= 1000,E=100)	Vehicle_1 path: []	Vehicle 2:0- >2->3->1- >4->5->0	yes	73.678 ms
6	2	Vehicle_1 path: []	0 -> 2 -> 4 -> 5 -> 3 -> 1 -> 6 -> 0	0.248588133	107.23425	146.82	254.172	Vehicle_1 path: []	Vehicle_2 path: ['0 -> 1', '1 -> 3', '2 -> 6', '3 -> 5', '4 -> 2', '5 -> 4', '6 -> 0']	yes	31.822
7	2	0 -> 2 -> 4 -> 5 -> 0	0 -> 7 -> 3 -> 1 -> 6 -> 0	0.253687143	222.1871036	265.50	312.579	Vehicle_1 path: ['0 -> 3', '1 -> 5', '3 -> 1', '5 - > 0']	Vehicle_2 path: ['0 -> 2', '2 -> 4', '4 -> 7', '6 -> 0', '7 -> 6']	yes	15.927
8	2	0 -> 2 -> 8 -> 0	0 -> 7 -> 4 -> 5 -> 3 -> 1 -> 6 -> 0	0.369401932	225.1299349	269.27	-	Vehicle_1 path: ['0 -> 3', '1 -> 5', '3 -> 1', '5 - > 0']	Vehicle_2 path: ['0 -> 2', '2 -> 8', '4 -> 7', '6 -> 0', '7 -> 6', '8 -> 4']	yes	31.849
9	2	0 -> 2 -> 8 -> 0	0 -> 7 -> 9 -> 4 -> 5 -> 3 -> 1 -> 6 -> 0	0.54723405	228.7424815	264.382	-	Vehicle_1 path: ['0 -> 1', '1 -> 3', '3 -> 5', '5 - > 0']	Vehicle_2 path: ['0 -> 2', '2 -> 9', '4 -> 8', '6 -> 0', '7 -> 6', '8 -> 7', '9 -> 4']	yes	31.852

Quantum Computing: Advantages and Limitations

Quantum superposition enables us to perform multiple calculations at once as opposed to one at a time on classical computers

IBM Roadmap for Quantum Computers

Since hardware is improving, it will not be long until quantum computers will demonstrate significant speed up. We have to be ready for the next big thing!

