Written Homework 7

Name(s):

- 7.1.9. Let R be the relation on \mathbb{Z} where for all $a, b \in \mathbb{Z}$, a R b if and only if $|a b| \leq 2$.
 - (a) Use set builder notation to describe the relation R as a set of ordered pairs.
 - (b) Determine the domain and range of the relation R.
 - (c) Use the roster method to specify the set of all integers x such that x R 5 and the set of all integers x such that 5 R x.
 - (d) If possible, find integers x and y such that x R 8, 8 R y, but $x \not R y$.
 - (e) If $a \in \mathbb{Z}$, use the roster method to specify the set of all $x \in \mathbb{Z}$ such that x R a.
- 7.2.15. Define the relation \approx on $\mathbb{R} \times \mathbb{R}$ as follows: For $(a, b), (c, d) \in \mathbb{R} \times \mathbb{R}$, $(a, b) \approx (c, d)$ if and only if $a^2 + b^2 = c^2 + d^2$.
 - (a) Prove that \approx is an equivalence relation on $\mathbb{R} \times \mathbb{R}$.
 - (b) List four different elements of the set

$$C = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid (x, y) \approx (4, 3)\}.$$

- (c) Give a geometric description of the set C.
- 7.3.7. Define the relation \sim on \mathbb{R} as follows:

For $x, y \in \mathbb{R}$, $x \sim y$ if and only if $x - y \in \mathbb{Q}$.

- (a) Prove that \sim is an equivalence relation on \mathbb{R} .
- (b) List four different real numbers that are in the equivalence class of $\sqrt{2}$.
- (c) If $a \in \mathbb{Q}$, what is the equivalence class of a?
- (d) Prove that $\left[\sqrt{2}\right] = \left\{r + \sqrt{2} \mid r \in \mathbb{Q}\right\}$.
- (e) If $a \in \mathbb{Q}$, prove that there is a bijection from [a] to $[\sqrt{2}]$.