(BM-307) - Bioinformatics

Course Outline:

Theory:

1. History and evolution of bioinformatics

- 1. Introduction to databases (Database types, Database formats, DNA databases, European Molecular Biology Laboratory (EMBL)
- 2. Genomics
- 3. Transcriptomics
- 4. Computational proteomics

2. Pairwise Sequence Alignment

- 1. Evolutionary Basis
- 2. Sequence Homology versus Sequence Similarity
- 3. Sequence Similarity versus Sequence Identity

3. Database Similarity Searching

- 1. Unique Requirements of Database Searching
- 2. Heuristic Database Searching
- 3. Basic Local Alignment Search Tool (BLAST)
- 4. FASTA
- 5. Comparison of FASTA and BLAST

4. GenBank and DNA Data base of Japan (DDBJ)

- 1. Protein information Resource (PIR) formats
- 2. Protein Sequence (databases, SwissProt, UniProt, UniProtKB/TrEMBL)
- 3. Structural databases (Protein Databank (PDB), Structural Classification of Proteins (SCOP) database, Class, Architecture, Topology, Homology (CATH) database)

5. Introduction to Biomolecules

- 1. Computational Biology: Introduction to Bioinformatics
- 2. Protein folding and misfolding
- 3. Protein Architecture: Sequence of amino acids
- 4. protein interaction.

6. Structures

- 1. Secondary structure of proteins
- 2. Tertiary structure of proteins
- 3. Nucleic Acid Structure.

7. DNAs and RNAs

- 1. Interactions and conformations of DNAs.
- 2. Interactions and conformations of RNA.

8. Computer Simulations of biomolecules

- 1. Classical versus quantum descriptions
- 2. Statistical mechanics of biomolecules (e.g., canonical ensemble, ergodicity)
- 3. Modeling interaction in protein (Bond-length and bond-angle potentials)
- 4. Molecular Dynamics Simulations

Suggested Teaching Methodology:

- Lecturing
- Written Assignments Report Writing

Suggested Assessment:

Theory (100%)

- Sessional (20%)
- Quiz (12%)

- Assignment (8%)
- Midterm (30%)
- Final Term (50%)

Practical Exercises (100%)

• Open-Ended Labs

Text and Reference Books:

- 1. Introduction to Bioinformatics, Arthur M. Lesk, 4th Edition, Oxford University Press, 2014, ISBN 0198724675, 9780198724674
- 2. Bioinformatics and Functional Genomics, Jonathan Pevsner, 2nd Edition, Wiley, 2009, ISBN 0470085851, 9780470085851.
- 3. D. Frankel and B. Smit "Understanding Molecular Simulations: From Algorithms to Applications"
- 4. T. E. Creighton "Proteins" (2nd edition, W.H. Freeman, and Co., New York)

2