

× 4

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس : المجموعات درس رق

<u>I</u> تحدید محموعة:

A. نشاط و مفردات:

1 مجموعة الأعداد الصحيح الطبيعية المحصورة قطعا بين 3 و 1

أكتب هذه المجموعة بطريقتين مختلفتين.

• نكتب E على الشكل: $E = \{n \in \mathbb{N} \mid 3 < n < 7\}$. نقول أننا عرفنا $E = \{n \in \mathbb{N} \mid 3 < n < 7\}$

، يمكن أن نمثل بعض المجموعات على الشكل التالي: كل عنصر من E نكتبه في مكان ما ونضع بجواره الرمز . x أو • وتحاط كل العناصر بخط و خارج ذلك نكتب رمز المجموعة E . والشكل المحصل عليه يسمى مخطط فان diagramme de Venn

<u>B</u>. تمرین تطبیقی:

 $A = \{0, 2, 4, 6, \cdots\}$ ب F =]-5, 5[المجموعة التالية بالإدراك : أ - [-5, 5]

 $C = \left\{p \in \mathbb{Z} / (p-3)(2p-5) = 0 \right\}$ ب. $B = \left\{d \in \mathbb{N} / \exists k \in \mathbb{N}, 20 = k \times d \right\}$ اكتب المجموعة التالية بالتفصيل : أ - $\{p \in \mathbb{Z} / (p-3)(2p-5) = 0\}$

 \mathbf{H} التضمن – التضمن المزدوج (التساوي) – مجموعة أجزاء مجموعة:

A التضمن – L'INCLUSION (التضمن المزدوج (أو التساوي) L'INCLUSION – التضمن

<u>1.</u> تعریف:

 $A \subset B$ فهو ينتمي إلى B و نكتب $A \subset B$ نقول إن مجموعة B فهو ينتمي إلى B و نكتب $A \subset B$

 $A \subset B \Leftrightarrow (x \in A \Rightarrow x \in B)$ إذن:

2. مثال:

. $A = \{2,3,4,5\}$ ؛ $E = \{0,2,3,4,5,6\}$ نعتبر المجموعات التالية:

نمثل E و A.

التساوي (أو التضمن المزدوج) $\underline{\mathbf{B}}$

1. تعریف:

.B \subset A و B متساویتین یکافئ A \subset B و متساویتین یکافئ

 $A = B \Leftrightarrow (A \subset B \cup B \subset A)$ إذن:

<u>2.</u> ملحوظة:

 $(A \subset B \cup B \subset C) \Rightarrow A \subset C$ التضمن متعدي

3. تمرين تطبيقي:

 $\mathrm{E}=\ \left\{rac{1}{\mathrm{x}}/\,\mathrm{x}\in\mathbb{R}\ ext{ e }\mathrm{x}>1
ight\}$ و $\mathrm{F}=\left]0,1\right[$ نعتبر المجموعتين:

بين أن: E = F.

ے نبین أن: E ⊂ F.

. $\frac{1}{x}$ < 1 و منه $y = \frac{1}{x}$ و اذن $y \in E$ نعتبر $y \in E$

0 < y < 1: اذن $0 < \frac{1}{x} < 1$ و بالتالي:

خلاصة 1: E⊂F.

.F⊂E:نبین أن

ليكن: y ∈ F إذن: 0 < y < 1.

درس : المجموعات درس رقو

 $y=rac{1}{x}$ نضع : $rac{1}{x}$ و منه: $rac{1}{x}$ و بالتالي: x>1 ومنه : y يكتب على شكل $rac{1}{x}$ مع x>1 ؛ بالتالي $y\in E$

خلاصة F ⊂ E : 2.

 $\mathbf{E} = \mathbf{F}$ ف $\mathbf{F} \supset \mathbf{F}$ إذن:

<u>C</u> مجموعة أجزاء مجموعة:

1. نشاط:

 $E = \{1,2,3\}$ أجزاء .E

2. تعریف:

E مجموعة.

 $\mathcal{P}(\mathbf{E})$: و يرمز لها ب \mathbf{E} جميع أجزاء \mathbf{E} و يرمز لها ب

 $A \in \mathcal{P}(E) \Leftrightarrow A \subset E$ إذن:

3. ملحوظة:

عناصر $\mathcal{G}(\mathbf{E})$ هي أجزاء (أي على شكل مجموعات).

$$\mathcal{G}(\mathbf{E}) = \{\emptyset\} \cdot \mathbf{E} = \emptyset \quad \bullet$$

4. تمرین تطبیق:

اً. أكتب بالتفصيل: $\mathcal{P}(\mathbf{E})$ حيث:

 $\mathbf{E} = \{1,2\} - \mathbf{E} \cdot \mathbf{E} = \{\emptyset\} - \mathbf{E} \cdot \mathbf{E} = \{2\}$

جواب:

. $\mathcal{G}(\mathbf{E}) = \mathcal{G}(\{2\}) = \{\emptyset, \{2\}\}$

$$\cdot \mathcal{G}(\mathbf{E}) = \mathcal{G}(\{\varnothing\}) = \{\varnothing, \{\varnothing\}\}$$

. $\mathcal{P}(\mathbf{E}) = \mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$ -c

$$\mathcal{G}(\mathbf{E}) = \mathcal{G}(\{\{1,2\}\}) = \{\emptyset, \{1,2\}\} \quad \text{--}$$

III. العمليات على المجموعات:

<u>A</u>. التقاطع:

1. تعریف:

A و B مجموعتان.

 $A \cap B$: العناصر المشتركة ل A و B تكون مجموعة تسمى تقاطع A و B ويرمز لها ب

 $A \cap B = \{x / x \in A \in X \in B\}$ اِذْن:

ملحوظة: $x \in A \Rightarrow x \in A$ و $x \in A$ (نستعملها في التمارين)

3. مثال:

$$B = \{-1, 2, 4, 6, 44, 50\}$$
 و $A = \{1, 2, 3, 4, 5, 6\}$

درس: المجموعات درس رق

4. تمرين تطبيقي:

 $A\cap]-\infty,3[$: حدد التقاطع . $A=\left\{ p\in \mathbb{Z}\,/\,2\leq \left|p\right|\leq 5
ight\}$

5. خاصیات:

$$A \cap A = A : A \cap \emptyset = \emptyset$$

$$A \cap B \subset B$$
 $A \cap B \subset A$ -2

التقاطع تبادلي .
$$A \cap B = B \cap A$$

$$(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C \stackrel{\underline{4}}{=}$$

6. برهان للتجمعية:

حواب.

نبين أن:
$$(A \cap B) \cap C = A \cap (B \cap C)$$
 نبين أن: $(A \cap B) \cap C = A \cap (B \cap C)$ نبين أن:

$$x \in (A \cap B) \cap C \Leftrightarrow x \in A \cap B \land x \in C$$
 (حسب تعریف التقاطع)

$$\Leftrightarrow$$
 $(x \in A \land x \in B) \land x \in C (حسب تعریف التقاطع)$

$$\Leftrightarrow x \in A \land (x \in B \land x \in C)$$
 (العطف تجميعي)

$$(A \cap B) \cap C = A \cap (B \cap C) : 0$$

B. الاتحاد:

1. تعریف:

A و B مجموعتان.

 $A \cup B$: العناصر التي تنتمي إلى A أو تنتمي إلى B تسمى اتحاد المجموعتين $A \cup B$ و يرمز لها ب

$$A \cup B = \{x/x \in A \mid x \in B\}$$
 إذن:

ملحوظة: $x \in B$ أو $x \in A \cup B \Leftrightarrow x \in A$. (نستعملها في التمارين)

<u>3.</u> مثال:

$$B = \{-1, 2, 4, 6, 44, 50\}$$
 و $A = \{1, 2, 3, 4, 5, 6\}$

$$A \cup B = \{-1,1,2,3,4,5,6,10,44,50\}$$
 لاينا:

4. خاصیات:

$$A \cup \emptyset = A$$
 $A \cup A = A$ -1

$$B \subset (A \cup B)$$
 $A \subset (A \cup B) = 2$

$$A \subset B \Leftrightarrow A \cup B = B = 3$$

$$(A \cup B) \cup C = A \cup (B \cup C) = A \cap B \cap C$$
 $\underline{4}$

5. تمرين تطبيقي:

درس : المجموعات

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. بين أن التقاطع $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

نبين على صحة التوزيعية على اليسار:
$$(A \cap C) = (A \cap B) \cup (A \cap C)$$
 (نرمز للعطف ب $A \cap (B \cup C) = (A \cap B)$ نبين على صحة التوزيعية على اليسار: $(A \cap C) \cup (A \cap C)$ هي العلاقة $(A \cap C) \cup (A \cap C)$

$$(1) \Leftrightarrow x \in A \land x \in B \cup C$$

$$\Leftrightarrow x \in A \land x \in B \cup C$$

$$\Leftrightarrow x \in A \land x \in B \cup C$$

$$\Leftrightarrow x \in A \land (x \in B \lor x \in C)$$

$$\Leftrightarrow$$
 $(x \in A \land x \in B) \lor (x \in A \land x \in C)$

$$\Leftrightarrow x \in A \cap B \lor x \in A \cap C$$

$$\Leftrightarrow x \in (A \cap B) \cup (A \cap C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 ومنه:

 $(B \cup C) \cap A = (B \cap A) \cup (C \cap A)$ بنفس الطريقة نبين على صحة التوزيعية على اليمين):

طريقة 2 : لكي نبين $(C \cap A) \cup (C \cap A)$ (نستعمل أن التقاطع و الاتحاد تبادلي) .

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
 : نبین آن

$$(A \cup B) \cap C = C \cap (A \cup B)$$

$$=(C\cap A)\cup (C\cap B)$$
 (حسب التوزيعية على اليسار)

$$=(A \cap C) \cup (B \cap C)$$
 (لأن العطف تبادلي)

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
 ومنه : التوزيعية على اليسار صحيحة

خلاصة: التقاطع م توزيعي على الاتحاد ن

<u>C</u>. الجزء المتمم.

1. تعریف:

E يسمى الجزء A جزء من مجموعة E المجموعة E المكونة من جميع عناصر E التى لا تنتمى ل E تكون جزء من E يسمى الجزء

 $\mathbf{B} = \mathbf{C}_{\mathbf{F}}^{\mathbf{A}}$ المتمم ل \mathbf{A} في \mathbf{E} يرمز له ب $\mathbf{B} = \overline{\mathbf{A}}$ او أيضا ب

(نستعملها في التمارين) . $x \in C_E^A \Leftrightarrow x \in E$ و $x \not\in A$

$$\mathrm{C}_{\mathbb{R}}^{[1,3]} = \left] -\infty, 1\right[\; \cup \; \left] 3, +\infty \right[\; \mathsf{J} \; \mathrm{C}_{\mathbb{Z}}^{\mathbb{N}} = \mathbb{Z}^{-*} \; \right]$$

3. ملحوظة:

 $x \in A \Leftrightarrow x \notin \overline{A}$

4. خاصیات:

- $\mathbf{C}_{\mathrm{E}}^{\mathrm{C}_{\mathrm{E}}^{\Lambda}}=\mathbf{A}$ و $\mathbf{C}_{\mathrm{E}}^{\mathrm{E}}=\mathbf{A}$ و $\mathbf{C}_{\mathrm{E}}^{\mathrm{E}}=\mathbf{E}$
- $A \cup \overline{A} = A \cup C_E^A = E$ $A \cap \overline{A} = A \cap C_E^A = \emptyset$
 - $.\overline{A} \cap B = \overline{A} \cup \overline{B}$ $\underline{B} = \overline{A} \cap \overline{B}$

<u>.</u> برهان:

درس: المجموعات

 $x \in A \cup B \Leftrightarrow x \in A \lor x \in B$

 $x \notin A \cup B \Leftrightarrow x \notin A \land x \notin B$

نبرهن على صحة الخاصية الأخيرة.

 $\overline{\mathbf{A} \cup \mathbf{B}} = \overline{\mathbf{A}} \cap \overline{\mathbf{B}}$ نبرهن أن:

 $x \in A \cup B \Leftrightarrow x \in E \land x \notin A \cup B$

 $\Leftrightarrow x \in E \land (x \notin A \land x \notin B)$

 $\Leftrightarrow (x \in E \land x \notin A) \land (x \in E \land x \notin B)$

 $\Leftrightarrow x \in \overline{A} \land x \in \overline{B}$

 $\Leftrightarrow x \in \overline{A} \cap \overline{B}$

 $.\overline{A \cup B} = \overline{A} \cap \overline{B}$ خلاصة:

نبین علی: $\overline{\mathbf{A} \cap \mathbf{B}} = \overline{\mathbf{A} \cup \mathbf{B}}$ بطریقة أخری

 $x \in A \cap B \Leftrightarrow x \notin A \cap B$

 $x \in A \cap B \Leftrightarrow x \in A \land x \in B$

 $\Leftrightarrow x \notin A \lor x \notin B$ $\Leftrightarrow x \in \overline{A} \lor x \in \overline{B}$

 $x \notin A \cup B \Leftrightarrow x \notin A \lor x \notin B$

 $\Leftrightarrow x \in \overline{A} \cup \overline{B}$

 $. \overline{A \cap B} = \overline{A} \cup \overline{B} : \Delta \cap B$ خلاصة

<u>D</u>. الفرق:

1. تعریف:

A و B مجموعتان.

 $A \setminus B$ و لا تنتمي إلى A و لا تنتمي إلى B تسمى فرق المجموع $A \cap B$ ثم المجموعة ويرمز لها ب

 $(x \in A)$ و $x \in A$. (نستعملها في التمارين) $(x \in A)$

 $A \setminus B = A \cap \overline{B}$: دينا E ملحوظة A و B جزآن من مجموعة E دينا A و B

 $B = \{-1,2,4,6,10,44,50\}$ و $A = \{1,2,3,4,5,6\}$

 $B \setminus A = \{-1,10,44,50\}$ و $A \setminus B = \{1,3,5\}$

4. تمرین تطبیقی:

حدد: A \ B تم B \ A مع.

 $. \mathbf{B} = \mathbb{N}^* \mathbf{g} \mathbf{A} = \mathbb{Z} - \mathbf{b}$

 $.B = \begin{bmatrix} 1,5 \end{bmatrix} \quad A = \mathbb{R} \quad -\psi$

E الفرق التماثلي:

<u>1.</u> تعریف:

 $A\Delta B$. ويرمز له ب: $A \cup B \cup A$ الفرق التماثلي للمجموعتين A و B هو معرف بما يلي:

 $A\Delta B = \{x/(x \in A) \mid x \notin B\}$ أو $\{x \in B\}$ و $\{x \in A\}$

ملحوظة : إذن: $x \in A \triangle B \Leftrightarrow x \in (A \cup B) \setminus (A \cap B) \Leftrightarrow x \in A \triangle B \Leftrightarrow x \in A \triangle B$ و التمارين) $x \in A \triangle B \Leftrightarrow x \in (A \cup B) \setminus (A \cap B)$

 $B = \{-1, 2, 4, 6, 10, 44, 50\}$ و $A = \{1, 2, 3, 4, 5, 6\}$

ΑΔΒ

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس : المجموعات درس رق

الصفحة

 $A\Delta B = \{-1,1,3,5,10,44,50\}$ $A \cap B = \{2,4,6\}$:

نمثل A ∩ B و A∆B باستعمال مخطط فان.

4. ملحوظة:

- $\mathbf{A}\Delta\mathbf{B} = \mathbf{B}\Delta\mathbf{A} \quad \bullet$
- . $A\Delta B = (A \cup B) \setminus (A \cap B)$ ■
- $. \ \mathbf{A}\Delta\mathbf{B} = (\mathbf{A} \cap \overline{\mathbf{B}}) \cup (\mathbf{B} \cap \overline{\mathbf{A}}) \quad \blacksquare$

الجداء الديكارتى

1. تعریف:

E و F مجموعتان:

المجموعة المكونة من جميع الأزواج (x,y) حيث $x \in E$ و $y \in F$ تسمى الجداء الديكارتي ل E ثم F (الترتيب مهم) ويرمز لها ب E . ExF

 $.E \times F = \{(x,y) / x \in E \text{ g } y \in F\} : الذن$

ملحوظة: $y \in F$ و $x \in E \Leftrightarrow x \in E$ (نستعملها في التمارين) $y \in F$

3. مثال:

. $B = \{2,3,4\}$ و $A = \{1,2\}$

 $A \times B = \{(1,2); (1,3); (1,4); (2,2); (2,3); (2,4)\}$

4. ملحوظة:

 $\mathbf{E} \times \emptyset = \emptyset \times \mathbf{E} = \emptyset$

5. تمرین تطبیقی:

 $F = \{1,2,3\}$ و $E = \{1,2\}$ مع $E \times F$ و $E \times F$.

 \mathbf{F} . \mathbf{B} . \mathbf{E} . \mathbf{B} . \mathbf{E} . \mathbf{E} . \mathbf{E} . \mathbf{E}

 $. (A \subset E \ B \subset F) \Rightarrow A \times B \subset E \times F$ بين أن:

<u>6.</u> تعميم

و E_3 و E_3 و E_3 ثلاث مجموعات حيث $X_1 \in E_1$ و $X_2 \in E_2$ و $X_2 \in E_3$ الكتابة $X_3 \in E_3$ تسمى مثلوث و هو عنصر من الجداء $E_1 \times E_2 \times E_3$. $E_2 \times E_3$ في هذا الترتيب و يرمز له ب $E_1 \times E_2 \times E_3$.

بصفة عامة : نعتبر المجموعات E_i مع E_i مع E_i ؛ الجداء الديكارتي ل E_i و E_i و E_i في هذا الترتيب هي E_i

. $\prod_{j=1}^{j=n} E_j$ أو أيضا ب $E_1 \times E_2 \times \cdots \times E_n$ أو أيضا ب

 $\mathbf{x}_{\mathbf{n}} \in \mathbf{E}_{\mathbf{n}}$ عناصر $\mathbf{x}_{\mathbf{n}} \in \mathbf{E}_{\mathbf{n}}$ عناصر $\mathbf{x}_{\mathbf{n}} \in \mathbf{E}_{\mathbf{n}}$ عناصر $\mathbf{x}_{\mathbf{n}} \in \mathbf{E}_{\mathbf{n}}$ عناصر $\mathbf{x}_{\mathbf{n}} \in \mathbf{E}_{\mathbf{n}}$ عناصر وتسمى $\mathbf{x}_{\mathbf{n}} \in \mathbf{E}_{\mathbf{n}}$ وتسمى وتسم

. $(x_1, x_2, x_3, ..., x_n) \in \prod_{j=1}^{j=n} E_j$. أو أيضا $(x_1, x_2, x_3, ..., x_n) \in E_1 \times E_2 \times \cdots \times E_n$.

 $\mathbb{R} imes \mathbb{R} imes \mathbb{R} = \mathbb{R}^3$: مثال . \mathbf{E}^n باختصار $\mathbf{E}_1 imes \mathbf{E}_2 imes \cdots imes \mathbf{E}_n = \mathbf{E}_1 = \mathbf{E}_2 = \cdots = \mathbf{E}_n = \mathbf{E}$. حالة خاصة :

7. مثال:

 $(2,-5,\sqrt{7})\in\mathbb{R}^3$: ولدينا : المثلوث $(2,-5,\sqrt{7})$ عنصر من \mathbb{R}^3 و لدينا : المثلوث $\mathbb{R} imes\mathbb{R} imes\mathbb{R}$