Национальный исследовательский университет «МЭИ»

Институт Радиотехники и Электроники им. В.А. Котельникова

Отчёт

по лабораторной работе №1

«Моделирование процессов дискретизации и восстановления аналогового сигнала»

по курсу «цифровая обработка сигналов»

Группа: ЭР-11-21

Бригада: 5

Выполнили: Тимохин С.А.

Выскиль С.М.

Проверил: Торопчин Д.С.

Дата: 24.09.24

Домашняя подготовка

1. Построение спектров дискретных сигналов, полученных путем дискретизации с частотой $f_{\rm д}=1000\Gamma$ ц следующих аналоговых сигналов.

$$a) \ s1(t) = U0 + Um * \sin(2*\pi*f*t)$$
, где $U0 = 1$ В, $Um = 1$ В, $f = 100$ Гц

б)
$$s2(t)=Um1*\sin(2*\pi*f1*t)+Um2$$

$$*\sin(2*\pi*f2*t+\pi)++Um3*\sin(2*\pi*f3*t),$$
 где $f1=100$ Гц, $f2=200$ Гц, $f3=400$ Гц, $Um1=1$ В, $Um2=0.5$ В,
$$Um3=0.25$$
В

- 2. Полагая, что частота дискретизации $f_{\rm d}=1000\Gamma$ ц, изобразите спектр дискретного сигнала для следующих случаев:
 - а) Частота входного колебания f1 = 800 Гц
 - б) Частота входного колебания f3 = 600 Гц

Интервал Найквиста - это диапазон частот, в пределах которого можно точно восстанавливать сигнал после его дискретизации, без потерь информации и искажений. Этот интервал ограничен половиной частоты дискретизации.

Максимальная частота спектра в пределах интервала Найквиста равняется 500Гц.

3. Определение номиналов элементов R1 и C1 сглаживающего фильтра, частота среза которого равна максимальной частоте спектра в пределах интервала Найквиста.

Рекомендуется задать сопротивление резистора равным 10 ... 100 кОм, а емкость конденсатора рассчитать, исходя из частоты среза.

$$f_c = \frac{1}{2 * \pi * R1 * C1}$$

Для
$$R1=10$$
к
Ом и $f_c=500$
Гц

$$C1 = \frac{1}{2 * \pi * R1 * f_c} = 31 \text{H}\Phi$$

Выполнение работы

1. Сборка схемы по рис. 1.14

Рисунок 1 – Исследуемая схема

2. Исследование спектра дискретной синусоиды при различных соотношениях между частотой сигнала и частотой дискретизации.

Длительности дискретизирующего импульса составляет 1 мкс.

Pисунок 2 - Эпюры колебаний: на выходе сумматора — V(3) и на выходе дискретизатора — V(4).

Pисунок 3 - Cпектр колебаний в узле 4 - fft(V(4))

Частота первого нуля 300 Гц

Рисунок 5 – частота первого источника 900 Гц

Вывод: т.к. сигнал теперь имеет большую частоту, а частота дискретизирующего импульса осталась прежней, то теряется большое количество информации исходного сигнала. Дискретизирующий импульс не успевает дискретизировать.

3. Моделирование работы цап и сглаживающего фильтра

Моделирование осуществляется при следующих параметрах синусоидальных источников сигнала:

- для источника V1: амплитуда Um1 = 1 B, f 1 = 100 Гц, DC = 1 B;
- для источника V2: Um2 = 0,5 B; f 2 = 200 Гц, DC = 0, фаза колебаний 180
- для источника V3: Um3 = 0,25 B; f 3 = 400 Γ ц, DC = 0.

Pисунок 6 - Эпюры колебаний: на выходе сумматора — V(3) и на выходе дискретизатора — V(4).

Рисунок 7 - Эпюры колебаний: на выходе ЦАП — V(8) и на выходе фильтра — V(9).

Рисунок 8 - Спектры колебаний в узлах 4, 8 и 9 — fft (V(4)), fft(V(8)) и fft(V(9))

Установим новое значение C1 так, чтобы постоянная времени RC-цепи увеличилась в 10 раз.

$0.378~{\rm n}\Phi$ - ёмкость, при которой постоянная времени цепи увеличивается в $10~{\rm pa}{\rm 3}$

Рисунок 9 - Спектры колебаний в узлах 4, 8 и 9 — fft (V(4)), fft(V(8)) и fft(V(9)) при C1=0.378 п Φ

4. Моделирование эффекта наложения колебаний

1-й эксперимент.

Преобразование колебания с частотой 800 Гц.

Частота колебаний второго источника $f2 = 200 \, \Gamma$ ц.

a)
$$Um1 = 1B$$
, $Um2 = 0$, $Um3 = 0$

Pисунок 10 - Эпюры колебаний на выходе сумматора V(3) и дискретизатора V(4)

Рисунок 11 - Эпюры колебаний на выходе ЦАП – V(8) и на выходе фильтра – V(9).

б) Um1 = 0, Um2 = 1 B, Um3 = 0

Pисунок 12 - Эпюры колебаний на выходе сумматора V(3) и дискретизатора V(4)

Рисунок 13 - Эпюры колебаний на выходе ЦАП — V(8) и на выходе фильтра — V(9).

2-й эксперимент.

Преобразование колебания с частотой 600 Гц. Частота колебаний второго источника f2 = 400 Гц.

Включаются поочередно второй и третий синусоидальные источники:

a)
$$Um1 = 0$$
, $Um2 = 0$, $Um3 = 1B$

Рисунок 14 - Эпюры колебаний на выходе сумматора V(3) и дискретизатора V(4)

Рисунок 15 - Эпюры колебаний на выходе ЦАП — V(8) и на выходе фильтра — V(9).

Pисунок 16 - Эпюры колебаний на выходе сумматора V(3) и дискретизатора V(4)

Рисунок 17 - Эпюры колебаний на выходе ЦАП — V(8) и на выходе фильтра — V(9).

3-й эксперимент.

Включите первый и второй синусоидальные источники, частота колебаний второго источника $f2 = 200 \, \Gamma$ ц. Постройте графики 1 и 2 для случаев:

а) фаза колебания источника V2 равна 180 градусов

Pисунок 18 - Эпюры колебаний на выходе сумматора V(3) и дискретизатора V(4)

Рисунок 19 - Эпюры колебаний на выходе ЦАП — V(8) и на выходе фильтра V(9).

б) фаза колебания источника V2 равна 0 градусов

Pисунок 20 - Эпюры колебаний на выходе сумматора V(3) и дискретизатора V(4)

Рисунок 21 - Эпюры колебаний на выходе ЦАП – V(8) и на выходе фильтра V(9).

4-й эксперимент.

Включите второй и третий синусоидальные источники, частота колебаний второго источника $f2 = 400 \, \Gamma$ ц. Постройте графики 1 и 2 для случаев:

а) фаза колебания источника V2 равна 180 градусов

Pисунок 22 - Эпюры колебаний на выходе сумматора V(3) и дискретизатора V(4)

Рисунок 23 - Эпюры колебаний на выходе ЦАП – V(8) и на выходе фильтра – V(9).

б) фаза колебания источника V2 равна 0 гр

Pисунок 24 - Эпюры колебаний на выходе сумматора V(3) и дискретизатора V(4)

Pисунок 25 - Эпюры колебаний на выходе ЦАП — V(8) и на выходе фильтра — V(9).

Вывод: Мы приобрели навыки компьютерного моделирования и исследовали процессы дискретизации аналоговых сигналов и цифро-аналоговое преобразование.