Multi-Resolution Image Store

A Case of Size-Tiered Storage Systems

Ming Chen (mchen@cs.stonybrook.edu)

Introduction

Small Objects: Hot

- What
 - Metadata, Thumbnails
- How
 - Random: Searching, Indexing, Preview
- Where
 - Top tiers: RAM, FLASH
- Why
 - Throughput: op/sec
 - Inherent fit: Performance++;
 - Intuitive: peek before embark; size proportional

Large Objects: Not So Hot

- What
 - Large Images, Multimedia, Logs, Backup
- How
 - Sequential: Streaming, Scan, Mapping
- Where
 - Bottom tiers: SATA, TAPE
- Why
 - Throughput: mb/sec
 - Inherent fit: Capacity--; Cost--;
 - Slow seeks amortized by fast sequential I/Os

Implementation

- Schema Based on KV Store
- Log-structured Merge Tree
- Compaction (Temporal Locality)
- Multi-Tier Tablet Server Storage Layer (GTSSL)
- Deal with opposite extremes

Contributions

- Size-Tiered Property of Workloads
- Metadata Management
- Fast Prototyping of Specialized Storage Systems
- Take Advantage of Standards (JPEG 2000)

Feasibility

- Hardware
 - SSD, SAS, SATA drives
 - Servers
- Software
 - Berkeley DB, Level DB, KVDB
 - GTSSL
 - Filebench
- Intelligence
 - CSE602
 - FSL

Benchmark

- Synthetic Workloads
 - Access Model Presented in Haystack
 - Filebench
- Real Workloads
 - IIPImage deployments
 - TODO

References

- GTSSL, An Efficient Multi-Tier Tablet Server Storage Architecture
- Finding a needle in Haystack: Facebook's photo storage
- IIPImage, http://iipimage.sourceforge.net/documentation/images/
- A study of irregularities in file-size distribution
- hFS: a hybrid file system prototype for improving small file and metadata performance
- A Pseudo-Infinite Multimedia Storage System, http://www.fsl.cs.sunysb.edu/project-multimediafs.html
- Unifying biological image formats with HDF5
- In-Kernel Berkeley DB Databases and Transactional Storage, http://www.fsl.cs.sunysb.edu/project-kbdb.html