VAE - Arithmetic Expressions with Variables

1 INTRODUCTION

VAE is a toy language for the COSE212 course at Korea University. VAE stands for a language of arithmetic expressions with variables, and it supports the following features:

- integers
- basic arithmetic operators: addition (+) and multiplication (*)
- immutable variables (val)

This document is the specification of VAE. First, Section 2 describes the concrete syntax, and Section 3 describes the abstract syntax. Then, Section 4 describes the big-step operational (natural) semantics of VAE.

2 CONCRETE SYNTAX

The concrete syntax of VAE is written in a variant of the extended Backus–Naur form (EBNF). The notation <nt> denotes a nonterminal, and "t" denotes a terminal. We use ? to denote an optional element and + (or *) to denote one or more (or zero or more) repetitions of the preceding element. We omit some obvious terminals using the ellipsis (\ldots) notation.

The precedence and associativity of operators are defined as follows:

Operator	Associativity	Precedence
*	left	1
+	left	2

3 ABSTRACT SYNTAX

The abstract syntax of VAE is defined as follows:

4 SEMANTICS

The big-step operational (natural) semantics of VAE is defined as follows:

$$\sigma \vdash e \Rightarrow n$$

$$\operatorname{Num} \frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma \vdash e_2 \Rightarrow n_2}{\sigma \vdash n_1 \Rightarrow n_1 \qquad \sigma \vdash e_2 \Rightarrow n_1 + n_2} \qquad \operatorname{Mul} \frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma \vdash e_2 \Rightarrow n_2}{\sigma \vdash e_1 \times e_2 \Rightarrow n_1 \times n_2}$$

$$\operatorname{Val} \frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma[x \mapsto n_1] \vdash e_2 \Rightarrow n_2}{\sigma \vdash \operatorname{Val} x = e_1; \ e_2 \Rightarrow n_2} \qquad \operatorname{Id} \frac{x \in \operatorname{Domain}(\sigma)}{\sigma \vdash x \Rightarrow \sigma(x)}$$