Titel der Bachelorarbeit

von

Martin Sobotzik

Bachelorarbeit in Physik rtm/vorgelegt dem Fachbereich Physik, Mathematik und Informatik (FB 08)der Johannes Gutenberg-Universität Mainzam 1. April 2012

1. Gutachter: Prof. Dr. Lebeim Elfenbeinturm

2. Gutachter: Prof. Dr. Habe Dünkel

Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.
Mainz, den [Datum] [Unterschrift]

Martin Sobotzik KOMET Institut für Physik Staudingerweg 7 Johannes Gutenberg-Universität D-55099 Mainz msobotzi@students.uni-mainz.de

Inhaltsverzeichnis

1.	Einleitung	1
2.	Experimenteller Aufbau am MAMI	2
	2.1. Der MAMI-Beschleuniger	2
	2.2. Die Photonenmarkierungsanlage	5
	2.3. Das Detektorsystem	5
	2.3.1. Der Crystal-Ball-Detektor	5
	2.3.2. TAPS,PID & MWPC	8
	2.4. Methoden	8
	2.5. Ergebnisse	8
3.	Zusammenfassung und Ausblick	9
Α.	Anhang	10
	A.1. Tabellen und Abbildungen	10
	A.2. Weiterführende Details zur Arbeit	10
В.	Literaturverzeichnis	11
C.	Danksagung	13

1. Einleitung

Dieses Dokument richtet sich an Studierende am Fachbereich 08 im Studiengang Bachelor of Science (Physik). Sie finden hier Beispiele für eine mögliche Gliederung Ihrer Arbeit und Hinweise zur Strukturierung des Inhalts. Selbstverständlich sollen Sie diese Gliederung nach den Gegebenheiten Ihrer Bachelorarbeit anpassen. Besprechen Sie rechtzeitig mit Ihrem Betreuer, ob Ihr Entwurf sinnvoll ist. Holen Sie sich auch Anregungen zur Gestaltung von Abschlussarbeiten aus der Literatur (siehe z. B. [?]).

Sofern Sie sich dazu entscheiden, Ihr Dokument in LATEX zu erstellen, können Sie diese Datei als Vorlage verwenden. Fast die gesamte Literatur in der Physik verwendet LATEX, vor allem wegen der ausgezeichneten Möglichkeiten für das Formelschreiben.

In der Einleitung Ihrer Bachelorarbeit sollte das Thema der Arbeit möglichst allgemeinverständlich eingeführt werden. Gehen Sie dabei auch auf das weitere Umfeld der Arbeit ein und erläutern Sie, warum Aufgabenstellung und Herangehensweise interessant sind. Auch die weitere Gliederung kann angesprochen werden, um dem Leser einen ersten Überblick über den nachfolgenden Text zu geben.

Der Mainzer Mikrotron (MAMI) war zur Zeit meiner Bachelorarbeit ein mehrstufiger Rennbahn-Teilchenbeschleuniger (RTM¹) für Elektronenstrahlen und stand verschiedenen Arbeitsgruppen für Experimente zur Verfügung. Die Anlage befand sich auf dem Gelände des Instituts für Kernphysik (KPh) der Johannes Gutenberg-Universität und bestand aus mehreren Hallen.

Die A2-Kollaboration untersuchte vor allem die Struktur von Nukleonen mit Hilfe von reellen Photonen, welche durch Bremsstrahlung des MAMI-Elektronenstrahls erzeugt wurden. Die Photonenenergie konnte durch eine Photonenmarkierungsanlage (Tagger²) bestimmt werden. Nach der Reaktion mit dem Target wurden die Teilchen durch ein System von verschiedenen Teilchendetektoren nachgewiesen.

2.1. Der MAMI-Beschleuniger

1979 wurde das MAMI erstmals in Betrieb genommen und bestand damals nur aus einem einzelnen RTM, womit eine maximale Elektronenenergie von 14 MeV erreicht werden konnte. Im Laufe der Jahre wurde das MAMI um zwei weitere RTMs und einem HDSM³ erweitert, wodurch eine Elektronenenergie von 1,5 GeV erreicht werden konnte.[KPh11G]

Um unpolarisierte Elektronen zu erzeugen, wurde eine Glühkathode auf 1000°C erhitzt. Dadurch konnten Elektronen den Heizdraht, aufgrund ihrer thermischen Bewegung, verlassen. Diese Elektronen wurden durch ein elektrisches Feld, welches durch die heiße Kathode und einer Anode, erzeugt wurde, zur Anode beschleunigt und traten dann durch ein Loch in der Anode aus und wurden weiter durch einen Linearbeschleuniger mit einer Frequenz von 2,45 GHz auf ca. 3,5 MeV beschleunigt. Diese Frequenz ist für das MAMI typisch und machte es zu einem Dauerstrich-Elektronen-Beschleuniger. Das heißt die Frequenz, mit der die Elektronen-Pakete auftraten, war größer, als die Frequenz, mit der die Detektoren einzelne Events auflösen konnten und somit wirkte der Strahl für die Detektoren kontinuierlich.

Da die Elektronen mit einem Linearbeschleuniger nur einige MeV pro Meter beschleunigt werden können, und man keine kilometerlangen Strecke bauen wollte, entschied man sich dafür, die Elektronen mehrmals durch den gleichen Beschleunigerabschnitt zu beschleunigen. Dazu wurden sie nachdem sie beschleunigt wurden, durch zwei 180°

 $^{^{1}} Race\text{-}Track\text{-}Microtron$

²to tag = markieren

³Harmonic Double Sided Microtron

Abbildung 2.1.: Grundriss der Beschleunigeranlage MAMI. Zu sehen sind die drei RTMs, der HDSM der Tagger und die verschiedenen Experimentierhallen: A1 (Elektronenstreuung), A2 (Strukturanalyse von Nukleonen), A4 (Paritätsverletzung) und X1 (Röntgenstrahlung). [KPh07]

Dipole so umgeleitet, dass sie wieder am Anfang des Beschleunigerabschnitts waren und diese Bahn abermals durchlaufen konnten. Eine phasengerichtete Rückkopplung ist allerdings nur möglich, wenn die statische und die dynamische Kohärenzbedingung erfüllt sind. Damit die statische Kohärenzbedingung erfüllt ist, muss die Länge der ersten vollständigen Bahn ein ganzzahliges Vielaches der beschleunigten Hochfrequenz sein. Für die dynamische Kohärenz muss die Längendifferenz von zwei aufeinander folgenden Umläufen ebenfalls ein ganzzahliges Vielfaches der Wellenlänge sein[Un08]. Diese Bedingungen gaben ebenfalls die Grenzen für den maximal möglichen Energiegewinn jeder Stufe an.

Wie bereits erwähnt besaß MAMI drei dieser RTMs. Die erste Stufe MAMI A bestand aus zwei RTMs mit 18 bzw. 51 Umläufen. Die zweite Stufe MAMI B bestand

aus dem, zu diesem Zeitpunkt, größten RTM der Welt mit 90 Umläufen und Dipolen mit einer Breite von jeweils 5 m, wodurch sie 450 t schwer waren. Damit waren auch die technischen Grenzen erreicht.[KPh11F]

Abbildung 2.2.: Prinzip eines RTM: Der Elektronenstrahl wird immer wieder durch den Linearbeschleuniger geschickt, bis die gewünschte Energie erreicht wurde und der Strahl mittels eines sogenannten Kicker-Magnet zum nächstem Abschnitt weiter geleitet wird. [KPh07]

Um nun aber trotzdem höhere Energien zu erreichen, musste sich ein neues Konzept übelegt werden. MAMI C war folglich kein RTM mehr, sondern ein HDSM. Das heißt, es bestand aus vier 90° Dipolen, welche jeweils 250 t schwer waren und einem zusätzlichen Linearbeschleuniger. Fäieses HDSM wurde der erste Linearbeschleuniger der Welt gebaut, der mit einer Fequenz von 4,9 GHz betrieben werden konnte betrieben wurde er allerdings, wie die beiden voherigen RTMs mit einer Frequenz von 2,45 GHz.

	RTM1	RTM2	RTM3	HDSM
Eingangsenergie	$3,455~\mathrm{MeV}$	$14,35~\mathrm{MeV}$	$179,5~\mathrm{MeV}$	$854,6~\mathrm{MeV}$
Ausgangsenergie	$14,35~\mathrm{MeV}$	$179,5~\mathrm{MeV}$	$854,6~\mathrm{MeV}$	1,5 GeV
Anzahl Umläufe	18	51	90	43
Energiegewinn pro Umlauf	$0,559~{ m MeV}$	$3,24~{ m MeV}$	$7.5~\mathrm{MeV}$	$13,93-16,63~{ m MeV}$

Tabelle 2.1.: Technische Daten der MAMI-Beschleunigerstufen [Un08]

Der Elektronenstrahl hatte am Ende der Beschleunigung eine Energie von ca. 1,5 GeV, diese konnte in etwa 15 MeV Schritten eingestellt werden. Sein Durchmesser lag im Mikrometerbereich, was sehr gute Voraussetzungen für Präzisionsexperimente waren. [KPh07].

2.2. Die Photonenmarkierungsanlage

In der A2-Experimentierhalle wurde der reelle Photonenstrahl mittels Bremsstrahlung erzeugt. Dazu traf der MAMI-Elektronenstrahl auf einen Radiator, typischerweise ein dünnes Metall oder ein Diamant mit einer Dicke von 10 bis 100 μ m, und wurde gestreut, dabei wird aufgrund der Impulserhaltung ein Photon abgestrahlt:

$$e^- + N \to N + e^- + \gamma \tag{2.1}$$

Der Rückstoß des Kerns kann aufgrund seiner großen Masse vernachlässigt werden und die Energie der Photonen kann mit folgender Formel berechnet werden:

$$E_{\gamma} = E_e - E_{e^-} \tag{2.2}$$

Dabei war E_e die Energie des Elektronenstrahls und E_{e^-} die Energie der gestreuten Elektronen, welche durch den Glasgow-Mainz-Tagger bestimmt wurde, dieser trennt zusätzlich den Photonen- von dem Elektronenstrahl. Durch einen Dipol wurden die Elektronen ohne Bremsstrahlung, das heißt ohne Energieverlust, abgelenkt und, je nach Energie, auf einen bestimmten Abschnitt des Tagger-Elektronenleiters fokussiert. Die Tagger-Elektronenleiter bestand aus 353 Szintillatoren, welche sich jeweils zur Hälfte überlappten. Dadurch ergaben sich 352 Kanäle mit einer Energieauflösung von $\Delta E \approx 2$ MeV bzw. 4 MeV bei einer Strahlenenergie von $E_e = 800$ MeV bzw. 1.5 GeV. Folglich ließ sich der Impuls über den Auftreffort bestimmen und dadurch die Energie der Elektronen. Die Energie der Photonen konnte dann mit Gleichung 2.2 errechnet werden.

2.3. Das Detektorsystem

Nach seiner Erzeugung traf der Photonenstrahl auf das Flüssig-Wasserstoff-Target, welches sich im Zentrum des Crystal-Balls (CB) befand. Die erzeugten und gestreuten Teilchen konnten dann durch ein System von Detektoren bestehend aus dem Crystal-Ball Detektor, einem Teilchenidentifikationsdetektor (PID⁴), zwei Vieldrahtproportionalkammern (MWPC⁵) und einem Photonenspektrometer (TAPS⁶). Der PID und MWPC waren im Inneren des CB angebracht. Der TAPS wurde am Ausgang des CB platziert, um einen fast vollständig abgedeckten Raumwinkel zu erreichen.

2.3.1. Der Crystal-Ball-Detektor

Ursprünglich wurde der Crystal-Ball Detektor Anfang der 70er Jahre am SPEAR⁷ für die Entdeckung des J/Ψ -Mesons entwickelt. Später wurde mit seiner Hilfe das

⁴Particle Ideticication Detector

 $^{^5}$ Multi-Wire Proportional Chamber

⁶Two Arm Photon Spectrometer

⁷Stanford Positron Electron Asymmetric Ring

Abbildung 2.3.: Der Glasgow-Mainz-Tagger: Am Radiator entstanden durch Bremsstrahlung Photonen, welche durch den Kollimator auf das Target trafen. Die Elektronen wurden durch den Dipol auf den Elektronenleiter angelenkt, wodurch sich ihre Energie bestimmen ließ[Un08]

Bottom-Quark am DESY 8 und Baryonenresonanzen am BNL 9 untersucht. Seit November 2002 stand der Crystal-Ball Detektor der A2-Kollaboration am MAMI für Experimente mit reellen Photonen zur Verfügung.

Der Crystal-Ball war ein Kalorimeter bestehend aus 672 Natriumiodid (NaI) Szintillatoren, welche so eingeordnet waren, dass 93,3% des Raumwinkels abgedeckt werden konnte. Die Geometrie basierte auf der Form eines Ikosaeders, ein Würfel bestehend aus 20 gleichgroßen gleichseitigen Dreiecken. Jedes dieser Dreiecke war weiter aufgeteilt in in vier kleinere gleichseitige Dreiecke, welche wiederum jeweils in neun gleichseitige Dreiecke unterteilt waren. Somit ergaben sich 720 gleichseitige Flächen. Aufgrund der hohen Zahl der Flächen erinnerte der Crystal-Ball an eine Hohlkugel mit einem außen Radius von ca. 66 cm und einen Innenradius von ca. 25 cm. Da

⁸Deutsches Elektronen-Synchrotron

⁹Brookhaven National Laboratory

Abbildung 2.4.: Anordnung des Detektorsystems: Im Zentrum des sphärischen Kalorimeters (CB) befanden sich der Detektor zur Teilchenidentifikation (PID) und zwei zur Bestimmung der Teilchen-Trajektorie (MWPC). Die TAPS-Wand befand sich am Ausgang des CB und sorgte dafür, dass der CB einen Raumwinkel von fast 4π abdeckte[We13]

der Crystal-Ball Detektor ursprünglich in e^-e^+ Streuexperimenten verwendet wurde, mussten sowohl für den Strahleneingang als auch -ausgang 24 dieser Flächen entfernt werden, wodurch insgesamt 672 Detektoren angebracht werden konnten. Die Nal-Szintillatorkristalle waren ca. 40 cm (\sim 15,7 Strahlungslängen) lang, hatten die Form eines Pyramidenstumpfes mit dreieckiger Grundfläche und einer Seitenlänge von etwa 5 cm am schmalen und ca. 13 cm am dicken Ende. Jeder dieser Kristalle deckte etwa 0,14 % des Raumwinkels ab und wurde durch einen eigenen Photoelektronenvervielfacher (PTM¹⁰) ausgelesen.

 $^{^{10}}$ PhotoMultiplier-Tube

2.3.2. TAPS, PID & MWPC

2.4. Methoden

Entsprechend kann es bei einer theoretischen Arbeit sinnvoll sein, die Lösungsmethoden in einem eigenen Kapitel zu beschreiben.

2.5. Ergebnisse

Hauptteil Ihrer Arbeit ist das Kapitel (oder die Kapitel) mit den Ergebnissen. Bei einer theoretischen Arbeit kann damit auch die Herleitung von Formeln oder die Beschreibung eines Computerprogramms gemeint sein.

3. Zusammenfassung und Ausblick

In der Zusammenfassung sollten Sie in knapper Form die Aufgabenstellung und die wichtigsten Ergebnisse rekapitulieren. Es ist für die Gutachter hilfreich, wenn Sie ausdrücklich beschreiben, worin Ihre eigenen Beiträge liegen. Scheuen Sie sich auch nicht davor auszusprechen, welche Untersuchungen durch die Zeitbegrenzung der Bachelorarbeit nicht möglich waren und nutzen Sie dies als Überleitung zu einem Ausblick auf mögliche weitergehende Arbeiten an der Aufgabenstellung.

A. Anhang

A.1. Tabellen und Abbildungen

In der Regel sind die in Tabellen und Abbildungen enthalten Informationen so wichtig, dass sie im Hauptteil der Arbeit erscheinen sollten. Unter Umständen sind aber ergänzende Tabellen und Abbildungen gut in einem Anhang aufgehoben. Wie im Hauptteil sollten Sie auch hier darauf achten, dass die in Tabellen und Figuren (siehe Abb. A.1) dargestellte Information im Text angesprochen wird und selbsterklärende Legenden vorhanden sind.

Abbildung A.1.: Feynmandiagramm für eine typische Einschleifen-Korrektur zur Produktion von sieben Jets in der e^+e^- -Vernichtung (entnommen aus [?], mit Zustimmung der Autoren).

A.2. Weiterführende Details zur Arbeit

Manch wichtiger Teil Ihrer tatsächlichen Arbeit ist zu technisch und würde den Hauptteil des Textes unübersichtlich machen, beispielsweise wenn es um die Details des Versuchsaufbaus in einer experimentellen Arbeit oder um den für eine numerische Auswertung verwendeten Algorithmus geht. Dennoch ist es sinnvoll, entsprechende Beschreibungen in einem Anhang Ihrer Bachelorarbeit aufzunehmen. Insbesondere für zukünftige Arbeiten, die an Ihre Bachelorarbeit anschließen, sind dies manchmal hilfreiche Informationen.

B. Literaturverzeichnis

Machen Sie genaue Angaben, so dass die verwendeten Literaturstellen eindeutig identifiziert und aufgefunden werden können. Bei Lehrbüchern [?] ist es sinnvoll, den Titel anzugeben, eventuell auch die Ausgabe. Bei Artikeln in Fachzeitschriften [?] ist es üblich, nur die gebräuchlichen Abkürzungen für den Titel der Zeitschrift, Band, Erscheinungsjahr und Seite anzugeben. Unter Umständen kann es auch sinnvoll sein, im Internet aufgefundene Informationsquellen anzugeben, zum Beispiel für Software [?] oder zu den Details von Ergebnissen großer experimenteller Kollaborationen. Es ist selbstverständlich, dass Sie auch Bachelor- [1], Diplom- oder Doktorarbeiten angeben, wenn Sie diese in Ihrer eigenen Arbeit verwendet haben.

Literaturverzeichnis

- [Un04] Diplomarbeit von Marc Unverzagt, 2004 Energie-Eichung des Crystal-Ball-Detektors am MAMI
- [Un08] Dissertation von Marc Unverzagt, 2008 Bestimmung des Damitz-Plot-Parameters α für den Zerfall $\eta 3\pi^0$ mit dem Crystal Ball am MAMI
- [We13] Diplomarbeit von Jennifer Wettig, 2013 Aufbau und Inbetriebnahme einer neuen HV-Versorgung für den Crystal Ball Detektor am MAMI
- [KPh11G] Internetseite der Kernphysik Mainzer Mikrotron-Geschichte, Internetseite http://www.kernphysik.uni-mainz.de/379.php, (Stand 04.03.2017)
- [KPh11F] Internetseite der Kernphysik Funktionsprinzip des MAMI, Internetseite http://www.kernphysik.uni-mainz.de/375.php, (Stand 06.03.2017)
- [KPh04] Prospekt des Institut für Kernphysik Internetlink, https://portal.kph.uni-mainz.de/de/information/introduction/prospekt.pdf, (Stand: 04.03.2017)
- [KPh07] Pressemitteilung der KPh, https://www.uni-mainz.de/presse/archiv/zope.verwaltung.uni-mainz.de/presse/mitteilung/2007/2007_10_05_phys_einweihung_mami/showArticle_dtml.html, (Stand 06.03.2017)
- [1] B. Freund Nummer eins, Bachelorarbeit, Johannes Gutenberg-Universität Mainz, 2012.

C. Danksagung

 \dots an wen auch immer. Denken Sie an Ihre Freundinnen und Freunde, Familie, Lehrer, Berater und Kollegen.