CS2010: ALGORITHMS AND DATA STRUCTURES

Lecture 3: Mathematical Approach to the Analysis of Algorithms

Vasileios Koutavas

School of Computer Science and Statistics
Trinity College Dublin

LAST LECTURE

Analysis of Algorithms: evaluates the efficiency of our programs

- → How the running time/memory footprint of the algorithm scales when the input size increases.
 - → Express running time as a function T(N), where N is the size of the input.
- → For any given input size N, we will be focusing on the worst-case inputs (the worst case value of T(N))
- → Scientific method: measure running times through experiments and discover T(N)

Mathematical methods – consider a model of computation and count the number of program steps for worst-case inputs of size N.

- → Parts from S&W 14
- → Evaluate the performance of algorithms by Mathematical Calculations

CALCULATIONS

MATHEMATICAL APPROACH:

EVALUATING PERFORMANCE BY

Mathematical models for running time

Total running time: sum of cost x frequency for all operations.

- Need to analyze program to determine set of operations.
- · Cost depends on machine, compiler.
- · Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Cost of basic operations

Challenge. How to estimate constants.

operation	example	nanoseconds †
integer add	a + b	2.1
integer multiply	a * b	2.4
integer divide	a / b	5.4
floating-point add	a + b	4.6
floating-point multiply	a * b	4.2
floating-point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math.atan2(y, x)	129.0

[†] Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Cost of basic operations

Observation. Most primitive operations take constant time.

operation	example	nanoseconds †
variable declaration	int a	c_1
assignment statement	a = b	c_2
integer compare	a < b	<i>C</i> ₃
array element access	a[i]	C4
array length	a.length	<i>C</i> ₅
1D array allocation	new int[N]	$c_6 N$
2D array allocation	new int[N][N]	c ₇ N ²

Caveat. Non-primitive operations often take more than constant time.

Example: 1-SUM

Q. How many instructions as a function of input size N?

```
int count = 0;
for (int i = 0; i < N; i++)
   if (a[i] == 0)
        count++;</pre>
```

operation	frequency
variable declaration	2
assignment statement	2
less than compare	N + 1
equal to compare	N
array access	N
increment	N to 2 N

Example: 2-SUM

Q. How many instructions as a function of input size N?

```
int count = 0;
          for (int i = 0; i < N; i++)
              for (int j = i+1; j < N; j++)
                 if (a[i] + a[j] == 0)
                     count++:
                                              0+1+2+\ldots+(N-1) = \frac{1}{2}N(N-1)
Pf. [n even]
                              0
                          .
              0+1+2+\ldots+(N-1) = \frac{1}{2}N^2 - \frac{1}{2}N
```

half of diagonal

square

28

String theory infinite sum

$$1+2+3+4+\ldots = -\frac{1}{12}$$

http://www.nytimes.com/2014/02/04/science/in-the-end-it-all-adds-up-to.html

Example: 2-SUM

Q. How many instructions as a function of input size N?

operation	frequency	
variable declaration	N + 2	
assignment statement	N + 2	
less than compare	½ (N + 1) (N + 2)	
equal to compare	½ N (N – 1)	
array access	N(N-1)	
increment	$\frac{1}{2} N (N-1)$ to $N (N-1)$	

tedious to count exactly

Example: 2-SUM

Q. How many instructions as a function of input size N?

operation	frequency	
variable declaration	<i>N</i> + 2	
assignment statement	<i>N</i> + 2	
less than compare	½ (N + 1) (N + 2)	
equal to compare	½ N (N – 1)	
array access	N(N-1)	
increment	$\frac{1}{2}N(N-1)$ to $N(N-1)$	

tedious to count exactly

"best case" vs "worst case" input of size N. We are

CALCULATING PRECISE RUNNING TIME

$$T(N) = c_1 A(N) + c_2 B(N) + c_3 C(N) + c_4 D(N) + c_5 E(N)$$

Where

 c_1 :cost of array access

 c_2 :cost of integer addition

 c_3 :cost of integer comparison

c4: cost of increment

c₅:cost of assignment

A(N):number of array accesses

B(N): number of integer additions

C(N): number of integer comparisons

D(N): number of increments

E(N): number of assignments

(functions of the input size N)

5

CALCULATING PRECISE RUNNING TIME

$$T(N) = c_1 A(N) + c_2 B(N) + c_3 C(N) + c_4 D(N) + c_5 E(N)$$

Where

 c_1 :cost of array access

 c_2 :cost of integer addition

 c_3 :cost of integer comparison

c4: cost of increment

c₅:cost of assignment

A(N): number of array accesses

B(N): number of integer additions

C(N): number of integer comparisons

D(N): number of increments

E(N): number of assignments

(functions of the input size N)

Q. Advantages / Disadvantages over scientific method?

Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,

- · Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.

Bottom line. We use approximate models in this course: $T(N) \sim c N^3$.

We will simplify calculations using $\underline{\text{approximations}}$ based on $\underline{\text{Cost Models}}$

Cost Model 1: All constant costs = 1

COST MODEL 1: ALL CONSTANT COSTS = 1

→ New generation computers have smaller constants than previous generation

$$c_i = 1$$

$$T_N = A + B + C + D + E$$

Where

A :number of array accesses

B:number of integer additions

C:number of integer comparisons

D:number of increments

E:number of assignments

Careful!

There are operations that **do not** have a constant cost:

→ Naive string concatenation: s = str + "ABCDEFG";

→ Method calls: max = Collections.max(myList);

9

Careful!

There are operations that **do not** have a constant cost:

- \rightarrow Naive string concatenation: s = str + "ABCDEFG";
 - ightarrow the cost of this operation is linear to the size of ${ t str}$
- → Method calls: max = Collections.max(myList);

Careful!

There are operations that **do not** have a constant cost:

- → Naive string concatenation: s = str + "ABCDEFG";
 - → the cost of this operation is linear to the size of str
 - → when efficiency is important use StringBuilder
- → Method calls: max = Collections.max(myList);

Careful!

There are operations that **do not** have a constant cost:

- → Naive string concatenation: s = str + "ABCDEFG";
 - → the cost of this operation is linear to the size of str
 - → when efficiency is important use StringBuilder
- → Method calls: max = Collections.max(myList);
 - → the cost of this operation is the cost of running the algorithm in Collections.max with an input of size myList.size()

Example: 2-SUM

Q. How many instructions as a function of input size N?

Estimate performance by adding up frequencies 30

Cost model 2: only highest order terms count

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
 - when N is large, terms are negligible
 - when N is small, we don't care

Ex 1.
$$\frac{1}{6}N^3 + 20N + 16$$
 ~ $\frac{1}{6}N^3$

Ex 2.
$$\frac{1}{6}N^3 + 100N^{4/3} + 56 \sim \frac{1}{6}N^3$$

Ex 3.
$$\frac{1}{2}N^3 - \frac{1}{2}N^2 + \frac{1}{3}N$$
 ~ $\frac{1}{2}N^3$

discard lower-order terms (e.g., N = 1000: 166.67 million vs. 166.17 million)

Technical definition.
$$f(N) \sim g(N)$$
 means $\lim_{N \to \infty} \frac{f(N)}{g(N)} =$

33

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- · Ignore lower order terms.
 - when N is large, terms are negligible
 - when N is small, we don't care

operation	frequency	tilde notation
variable declaration	N + 2	~ N
assignment statement	N + 2	~ N
less than compare	½ (N + 1) (N + 2)	~ ½ N ²
equal to compare	½ N (N – 1)	~ ½ N ²
array access	N(N-1)	$\sim N^{2}$
increment	½ <i>N</i> (<i>N</i> – 1) to <i>N</i> (<i>N</i> – 1)	$\sim \frac{1}{2} N^2$ to $\sim N^2$

COST MODEL 3: COUNT ONLY SOME OPERATIONS

Simplifying the calculations

"It is convenient to have a measure of the amount of work involved in a computing process, even though it be a very crude one. We may count up the number of times that various elementary operations are applied in the whole process and then given them various weights. We might, for instance, count the number of additions, subtractions, multiplications, divisions, recording of numbers, and extractions of figures from tables. In the case of computing with matrices most of the work consists of multiplications and writing down numbers, and we shall therefore only attempt to count the number of multiplications and recordings." — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES

By A. M. TURING

(National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY

A number of methods of solving sets of linear equations and inverting matrices are discussed. The theory of the rounding-off errors involved is investigated for some of the methods. In all cases examined, including the well-known 'Gauss elimination process', it is found that the errors are normally quite moderate: no exponential build-up need occur.

Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.

DON'T OVER-SIMPLIFY!

Careful!

Make sure that the operations you are not counting add up to a factor **lower** than the operations you do count.

COMBINATIONS OF COST MODELS

COMBINATIONS OF COST MODELS

Each cost model makes a **simplification** in the calculation of running time.

 \implies approximation of running time.

We can even **combine** the assumptions of different cost models.

Example: 2-SUM

Q. Approximately how many array accesses as a function of input size N?

A. $\sim N^2$ array accesses.

Performance estimate = simplified number of array accesses

Bottom line. Use cost model and tilde notation to simplify counts.