STQQSSD			,-	//
Trabalho de CDI II	- Integralis m	ultiplas		
Questão 1				
$a \rightarrow \int \int \frac{4y}{x^3 + 2} dx dy$	onde R={(x,y)	; 1≤x≤2 e	. 0≤y≤2	x }
$\int_{0}^{2x} \frac{4y}{x^3+2} dy dx = \int_{0}^{2x} \frac{4y}{x^3+2} dy dx$	X(x3+2) 0			x2 dx =
$8 \int_{1}^{2} x^{2} dx = 8 \int_{3}^{16}$ -visulatitumaçãe	x du :	3 J3 W	Lu = 8 (u) $= 8 (u)$	
$u = x^2 + 2 \rightarrow du = 3x^2 dx$	-		3	11
01+w, 0+0+w 0+0, w+0				

___/___/___

6-) \\ \(\text{x}^2 + y^2 \)	Jxdy onde $R \in O$ interior do triângulo cujos vértices $(1,2),(3,3),(4,0)$
3 a)	(1) R1 (4,0)
equação de (3,3), (4,0)	
$m = y_1 - y_0$ $y = x_1 - x_0$ $y = 3 - 0$ ($\begin{array}{cccccccccccccccccccccccccccccccccccc$
m = 3 = -3 -1 $(4,0)(1,2)$	1-3y +4=y
m = 2.0 $1-4$ $m = 2. = -2$ -3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Sex + ye dx	$\frac{dy}{dy} = \int_{-3}^{3} \frac{13}{3} \frac{13}$
	La continuação eso

c-) (cos (x²+y²) dxdy onde R é esta asma da reta	a região onde $0 \leq y \leq \sqrt{4-x^2}$ e que $y = x$
	$y \leq \sqrt{4-x^2}$
-2 2 2	$y = 44 - x^{2}$ $y^{2} = 44 - x^{2}$ $y^{2} = 4 - x^{2}$
	y2+x2=4.
transfermande para condemde po · cos (xe+ye) = cos (xe)	
· ye+xe=4 -+ xe=+ + x=+2 +	0 × 90 × 20
· 7 × 0 × 7 4	20 - 20 + 200 = 200 + du = 2 20 du = 0
$\iint_{R} \cos(x^{2} + y^{2}) dx dy = \iint_{\frac{\pi}{4}} \cos(xx^{2})$	or dride = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
= \int_{\frac{1}{4}} \cos \cos \cos \cos \cos \cos \cos \cos	$de = \int_{\frac{\pi}{4}}^{\pi} com(4) de = 1 \int_{\frac{\pi}{4}}^{\pi} com(4) de$
$=\frac{1}{2}\left(\cos(4)\Theta\right)^{2} - \frac{1}{2}\left(\cos(4)\pi - \cos(4)\pi\right) - \frac{1}{2}\left(\cos(4)\pi\right)^{2}$	= (4(4) 22 - +1 (40m(4) 27 - com(4) 27) =
= 1. $3 \cos(4) \pi = 3 \pi \cos(4)$, 2 + 8	

$= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - 2(ye^y) - (1-e^y) dy = 0$ $= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - 2(ye^y) - (1-2e^y) dy = 0$ $= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - 2(ye^y) - (1-2e^y) dy = 0$ $= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - 2(ye^y) - (1-2e^y) dy = 0$ $= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - 2(ye^y) - (1-2e^y) dy = 0$ $= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - 2(ye^y) - (1-2e^y) dy = 0$ $= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - 2(ye^y) - (1-2e^y) dy = 0$ $= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - (1-2e^y) dy = 0$ $= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - (1-2e^y) dy = 0$ $= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - 2(ye^y) - (1-2e^y) dy = 0$ $= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - 2(ye^y) - (1-2e^y) dy = 0$ $= 2 \left[(1-y^2)(e^y) - (1-2e^y) dy \right] - 2(ye^y) - (1-2e^y) dy = 0$
$= 2 \left[e^{y} (1-y^{2}) - \left(-2 (ye^{y} - e^{y}) \right) \right] - 2 \left[e^{y} (1-y^{2}) + 2 (ye^{y} - e^{y}) \right] = 3$
= 2 [ey-eyy+2yey=2ey] - 2 [-ey-eyy+2yey]+1 = 3 [-ey
$\frac{3}{3} \left[\frac{1}{2} + e^{-1} + e^{-1} (-1)^{2} - 2(-1)e^{-1} \right] = \frac{3}{3} \left[\frac{1}{2} + \frac{1}{2} + \frac{2}{3} \right] - \frac{2}{3} + \frac{4}{2} = \frac{8}{3} $

e-) o volume do sólido 5= {(x,y,3); 1 = 3 = 10 + x2 + y2, x2+y2 = 4 e x > 0}

$$-\int_{0}^{\pi}\int_{0}^{2}a_{1}(10+a_{2}^{2})-a_{1}da_{2}da_{3}=\int_{0}^{\pi}\int_{0}^{2}10a_{1}+a_{1}^{2}-a_{1}da_{2}da_{3}=0$$

$$\int_{0}^{\pi} \int_{0}^{2} \alpha x^{3} + 9 \alpha x \, dx \, dx = \int_{0}^{\pi} \frac{\alpha x^{4} + 9 \alpha x^{2}}{4} \, dx = \int_{0}^{\pi} \frac{2x^{4} + 9 \cdot 2x^{2}}{4} \, dx = \int_{0}^{\pi} \frac{2x^{4}$$

$$\int_{0}^{\pi} \frac{16 + 18}{4} d\theta = \int_{0}^{\pi} \frac{4 + 18}{4} d\theta = \int_{0}^{\pi} \frac{4 + 18}{4} d\theta = 2200 = 220 = 220 = 210$$

_questai					
	Tx2 t2-x2-y2 xy dz dydx	e estévica	98		
• Nx2+y	2 ≤ 3 + 00 ≤ 3 + 0 ≤ (x, 5e, n0) 0 ≤ 0 ≤ 0, n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x2-y2 + 3= -x2 -> y2	12-02 +x2 = 1 = R = 1	
	(a) (a) (a) (a) (a)	mere dz dr. d	le = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(%) COSE	seno dodrd
	(4) ³ (0) ⊕ 0×n ⊕ 3	J.).	(cg/0 5g/ne (Va		, ,
OUT!	дл	<u>3</u> a	$\frac{1}{2} \left \frac{1}{2} \right = \frac{2\pi}{3}$	2 R (2-1)2 -	5 -0 de
J 3	$\frac{1}{2} d\theta = \int d\theta = 1$	27 = 1 1			
				E.	

STQQSSD