Information Retrieval (CSD510)

Parametric and Zone Indexing

January 29, 2024

Documents with Structure

- So far, we discussed unstructured text.
- Many documents in reality have a structure.
- They are composed of
 - Fields
 - Zones

An Intuitive Explanation of Convolutional Neural Networks

Posted on August 11, 2016 by ujjwalkarn

What are Convolutional Neural Networks and why are they important?

Convolutional Neural Networks (ConvNets or CNNs) are a category of Neural Networks that have proven very effective in areas such as image recognition and classification. ConvNets have been

Zones and Fields

A document is associated with fields and zones.

METADATA Fields filename author title date of creation

- Sample Query: find documents authored by William Shakespeare in 1601 containing the phrase "you brutus"
- Sample Query: find documents with merchant in the title and william in the author list and the phrase gentle rain in the body

Zones and Fields

- Zones are arbitrary free text.
- Fields may take relatively small set of values...(may call for range query (year between 1600 and 1700) support)

METADATA Fields

filename author title date of creation

How to index zones and fields?

Indexing fields

- Parameteric indexing
- One parameteric index for each field.
- May call for range query (year between 1600 and 1700) support.

Indexing Zones and Fields

- Create separate Index for each field and each zone.
 - Standard Inverted Index +
 - Parametric Indexes (one for each field) +
 - Zone Indexes (one for each zone)

Zone Index Example

We can do better...

Encode zones in postings.

Weighted Zones

- Not all zones are equally important!
- Consider a collection where documents have three zones (I = 3):
 - author (least important)
 - 2 title (more important)
 - body (most important)
- ullet We can associate a weight, g_i to each zone
- **1** author $(g_1 = 0.2)$
- ② title $(g_2 = 0.3)$
- **3** body $(g_3 = 0.5)$

$$\sum_{i=1}^{l} g_i = 1$$

$$g_i \in [0,1]$$

Weighted Zone Scoring

- If all query terms appear in ith zone,
 - we say $s_i = 1$
- Then, we score the document as $\sum_{i=1}^{l} g_i s_i$

Weighted Zone Scoring on Inverted Index

A Match Found? Add g_i to an array **score**[docID]. This array is often called **Accumulator**.

Machine Learned Relevance

- Use human-annotated training examples
- Consider:
 - Only two zones exist: title and body.
 - $S_T(d, q) = 1$ if query term exists in title.
 - $S_B(d,q)=1$ if query term exists in body

Example	DocID	Query	s_T	s_B	Judgment
Φ_1	37	linux	1	1	Relevant
Φ_2	37	penguin	0	1	Non-relevant
Φ_3	238	system	0	1	Relevant
Φ_4	238	penguin	0	0	Non-relevant
Φ_5	1741	kernel	1	1	Relevant
Φ_6	2094	driver	0	1	Relevant
Φ_7	3191	driver	1	0	Non-relevant

Learning Weights (without ML)

Query	DocID	User Judgment
linux	37	1
system	238	1
kernel	1741	1
driver	2094	1

Judgment of 1 implies the document is relevant.

Query	DocID	In Title? (S _T)	In Body? (S _B)	Our Score
linux	37	1	1	?
system	238	0	1	?
kernel	1741	1	1	?
driver	2094	0	1	?

Assume zone weights: title ($g_1 = 0.3$) and body ($g_2 = 1 - 0.3 = 0.7$)

Learning Weights

Query	DocID	User Judgment
linux	37	1
system	238	1
kernel	1741	1
driver	2094	1

Query	DocID	In Title? (S _T)	In Body? (S _B)	Our Score
linux	37	1	1	1
system	238	0	1	0.7
kernel	1741	1	1	1
driver	2094	0	1	0.7

Learning Weights

If g is the title weight, how to quantify the error?

Query	DocID	User Judgment	S _T	SB
linux	37	1	0	0
system	238	1	0	1
kernel	1741	1	1	0
driver	2094	1	1	1

s _T	SB	Score
0	0	0
0	1	1 - g
1	0	g
1	1	1

Query	DocID	In Title? (S _T)	In Body? (S _B)	Our Score
linux	37	1	1	1
system	238	0	1	1 – g
kernel	1741	1	1	1
driver	2094	0	1	1 - g

Learning Weights

$$score = g. s_T + (1 - g).s_B$$

Then the error,

$$\epsilon = (relevance - score)^2$$

Our objective is to find g such that we minimize the total error,

$$\sum_{\text{all documents}}$$

For the 01 Case...

How to quantify the error?

Query	DocID	User Judgment
linux	37	1
system	238	1
kernel	1741	1
driver	2094	1

S _T	SB	Score
0	0	0
0	1	1 - g
1	0	g
1	1	1

Query	DocID	In Title? (S _T)	In Body? (S _B)	Our Score
linux	37	1	1	1
system	238	0	1	1-g
kernel	1741	1	1	1
driver	2094	0	1	1 - g

^{*}What if we have non-relevant judgments also?

For 01 case...

Error =
$$[1 - (1 - g)]^2 n_{01r} + [0 - (1 - g)]^2 n_{01n}$$

$$(n_{01r} + n_{10n})g^2 + (n_{10r} + n_{01n})(1 - g)^2 + n_{00r} + n_{11n}$$

$$(n_{01r} + n_{10n})g^2 + (n_{10r} + n_{01n})(1 - g)^2 + n_{00r} + n_{11n}$$

$$(n_{01r} + n_{10n})g^2 + (n_{10r} + n_{01n})(1 - g)^2 + n_{00r} + n_{11n}$$

Differentiate w.r.t g and equate to zero

$$(n_{01r} + n_{10n})g^2 + (n_{10r} + n_{01n})(1 - g)^2 + n_{00r} + n_{11n}$$

Differentiate w.r.t g and equate to zero $g = \frac{n_{01r} + n_{10n}}{n_{10r} + n_{10n} + n_{01r} + n_{01n}}$