INTELIGENCIA ARTIFICIAL

Luis Emilio Cabrera Crot

luis.cabrera@ulagos.cl

Universidad de Los Lagos

Departamento de Ciencias de la Ingenería

Agradecimientos a: Julio Aracena y Francisco Tassara

Diciembre 2022

UNIVERSIDAD DE LOS LAGOS

EN ESTE CAPÍTULO ...

• Clasificación Cuantitativa vs Cualitativa.

 Clasificar en dos clases con una neurona resulta es una tarea simple...

 Clasificar en dos clases con una neurona resulta es una tarea simple...

¿Y SI TENEMOS MÁS DE DOS CLASES?

- Tenemos dos posibilidades:
 - Clasificación Cuantitativa.
 - Clasificación Cualitativa.

CLASIFICACIÓN CUANTITATIVA

Es cuando la salida de nuestra red representa una magnitud.

Ejemplo: Se entrevista a un grupo de niños acerca de su desayuno:

- Beberá dos tazas de leche, si come o toma:
 - 1 pan con mantequilla
 - 1 pan con manjar
 - 1 vaso de jugo de naranja.
- Beberá media taza de leche, si come o toma:
 - Medio pan con mantequilla
 - 0 pan con manjar
 - 3 vaso de jugo de naranja.
- Beberá cuatro tazas de leche, si come o toma:
 - 3 pan con mantequilla
 - 2 pan con manjar
 - 0 vaso de jugo de naranja.

CLASIFICACIÓN CUANTITATIVA

Para este caso:

$$x^{1} = (1, 1, 1), t^{1} = 2$$

 $x^{2} = (0.5, 0, 3), t^{2} = 0.5$
 $x^{3} = (3, 2, 0), t^{1} = 4$

Entonces, al entrenar nuestra red, podremos responder: ¿Cuántas tazas de leche beberá un niño que come 5 panes con mantequilla y 1 pan con manjar?

Y CON LOS DÍGITOS ¿PODEMOS HACERLO IGUAL?

No, pues ocurre lo siguiente:

Por muy buen 6, nunca debería llegar a ser un 7.

Y CON LOS DÍGITOS ¿PODEMOS HACERLO IGUAL?

No, pues ocurre lo siguiente:

Por muy mal 5, nunca debería llegar a ser un 4.

Modificamos nuestra red:

Colocando 10 neuronas en la capa de salida (1 por cada dígito):

De esa manera, si nuestro input (x^j) es:

La salida (t^i) será: $\begin{cases} 1 & \text{En la neurona de 6} \\ 0 & \text{En las otras neuronas} \end{cases}$

Si nuestro input (x^j) es:

La salida (t^i) será: $\begin{cases} 1 & \text{En la neurona de 5} \\ 0 & \text{En las otras neuronas} \end{cases}$

Finalmente, Si testeamos esta imagen (es un 7):

Una salida de la red puede ser la siguiente:

(0:0.0|1:0.6|2:0.0|3:0.0|4:0.05|5:0.0|6:0.0|7:0.9|8:0.0|9:0.0)

El objetivo para que sea una buena predicción es que la neurona correcta sea lo más cercana a 1 y el resto de las neuronas sean lo más cercanas a 0.

ATENCIÓN

Para facilitar el trabajo:

- En el Google Drive (https://drive.google.com/drive/u/1/folders/1OvIn-GAL0IV4nUINOo-ErjltxHc9lamU)
- Los archivos '*-Quali.csv' tendrán las clases numéricas convertidas en 10 salidas {0,1}.

INTELIGENCIA ARTIFICIAL

Luis Emilio Cabrera Crot

luis.cabrera@ulagos.cl

Universidad de Los Lagos

Departamento de Ciencias de la Ingenería

Agradecimientos a: Julio Aracena y Francisco Tassara

Diciembre 2022

UNIVERSIDAD DE LOS LAGOS

