Agenda: Water Solubility / Molarity Calculating pH

- 1. What kind of bonds hold water together? (HINT: there are two types!)
- 2. Is H₂O hydrophobic or hydrophilic? Based on this properly, what types of molecules does it dissolve in solution?
- 3. Why are the intermolecular attractions in $H_2O(g)$ much weaker than the attractions in $H_2O(l)$ or $H_2O(s)$?

more energy, less hydrogen bonding because the molecules are moving faster

- 4. List three reasons why water is biochemically important
 - 1. good solvent
 - 2. high heat specificity
 - 3.useful in reactions
- 5. Is water considered a weak acid/base or strong acid/base?

weak because

Use the following diagram to answer the questions below:

6. Calculate the concentration of [H+] vs [OH-] given the pH

a. pH of 7

b. pH of 3

pH=-log10([H+])

 $10^-pH=[H+]$

c. pH of 9

7. If we have 10^{-10} M of NaOH, what is the pH of the solution?

pH=4

8. If we have 10⁻⁴ M of HCl, what is the pH of the solution?

pH=4

9. What is the $[H^+]$ of a solution whose $[OH^-]$ is 9.31 x 10^{-2} M?

10. **BONUS** (this is optional!):

What is the pOH of a solution whose $[H^+]$ is 2.75 x 10^{-4} M?