- 1. We perform a rotation by 50 degrees about the point (3,1). To what point is the point (8, 9) transformed by such a rotation?
 - (a) (-0.087, 9.974)
 - (b) (0.087, 0.997)
 - (c) (9.974, -0.087)
 - (d) (0.087, 9.974)
 - (e) (0.997, -0.087)

For questions 2 and 3, we wish to reflect the object labeled O in the above picture across the line x = y, resulting in the object O', with vertex v_i in O associated with vertex v_i' in O'.

- 2. Transformation A is comprised of a rotation by 45° , followed by a scale (-1,1), and finally a rotation by -45° . Transformation B is comprised of a rotation by 90° , which is then followed by a scale (-1,1). Which of the following choices is correct?
 - (a) Only Transformation A achieves what is desired.
 - (b) Only Transformation B achieves what is desired.
 - (c) Both A and B achieve what is desired.
 - (d) Neither A nor B achieve what is desired.
- 3. The six "magic numbers" r_{xx} r_{xy} r_{yx} r_{yy} t_x t_y that define this transformation are:
 - (a) 0.0, 1.0, 1.0, 0.0, 1.0, 1.0
 - (b) 1.0, 0.0, 0.0, 1.0, 1.0, 1.0
 - (c) 0.0, 1.0, 1.0, 0.0, 0.0, 0.0
 - (d) 1.0, 0.0, 0.0, 1.0, 0.0, 0.0
 - (e) 1.0, 1.0, 0.0, 1.0, 1.0, 1.0

The next four questions refer to the images and matrix products below.

$$\left(\begin{array}{ccc} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ 0 & 0 & 1 \end{array}\right) \times \left(\begin{array}{ccc} 0.5 & 0 & 0\\ 0 & 0.5 & 0\\ 0 & 0 & 1 \end{array}\right) \times \left(\begin{array}{ccc} 1 & 0 & 100\\ 0 & 1 & 100\\ 0 & 0 & 1 \end{array}\right)$$

$$\left(\begin{array}{ccc} 1 & 0 & 100 \\ 0 & 1 & 100 \\ 0 & 0 & 1 \end{array}\right) \times \left(\begin{array}{ccc} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{array}\right) \times \left(\begin{array}{ccc} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- 4. Which of the following transformations is represented by the first matrix product above?
 - (a) Scale by 0.5 0.5, then rotate by 30, then translate by 100 100
 - (b) Translate by 100 100, the rotate by 30, then scale by 0.5 0.5
 - (c) Translate by 100 100, then scale by 0.5 0.5, then rotate by 30
 - (d) Rotate by 30, then scale by 0.5 0.5, then translate by 100 100
 - (e) Scale by 0.5 0.5, then translate by 100 100, then rotate by 30
 - (f) Rotate by 30, then translate by 100 100, then scale by 0.5 0.5
- 5. Which of the following transformations is represented by the second matrix product above?
 - (a) Scale by 0.5 0.5, then rotate by 30, then translate by 100 100
 - (b) Translate by 100 100, the rotate by 30, then scale by 0.5 0.5
 - (c) Translate by 100 100, then scale by 0.5 0.5, then rotate by 30
 - (d) Rotate by 30, then scale by 0.5 0.5, then translate by 100 100
 - (e) Scale by 0.5 0.5, then translate by 100 100, then rotate by 30
 - (f) Rotate by 30, then translate by 100 100, then scale by 0.5 0.5
- 6. Given the original image at the top left, which picture was produced by applying to that the original image the transformation in the first matrix product above?
 - (a) A
 - (b) B
 - (c) C
 - (d) D
- 7. Given the original image at the top left, which picture was produced by applying to that the original image the transformation in the second matrix product above?
 - (a) A
 - (b) B
 - (c) C
 - (d) D