Meta-analysis

Heather Cordell
Newcastle University

heather.cordell@ncl.ac.uk

Acknowledgement: thanks to Andrew Morris who originally created many of these slides

Introduction

- We can increase power (particularly to detect rarer variants of more modest effect) by collecting larger and larger sets of samples.
- Alternatively, we can combine the results of previously conducted GWAS of a trait through meta-analysis, without direct exchange of genotype data.
 - Exchange summary statistics for each SNP including "risk" allele, p-value, \log_e odds ratio or β (effect) and 95% confidence interval (standard error).
- GWAS results can be combined through meta-analysis even if genotyped for different sets of SNPs, through the use of *imputation*.

Fixed-effects meta-analysis

- Let β_i denote the allelic effect (aligned relative to a fixed baseline allele) of the *i*th study, with its variance denoted v_i .
- Estimate of the allelic effect over all N studies is then given by $B = \frac{\sum_{i} w_{i} \beta_{i}}{\sum w_{i}}$

where $w_i = 1/v_i$, with variance given by $V = \left[\sum_i w_i\right]^{-1}$

• Test for association over all studies given by $X^2 = B^2/V$, having an approximate chi-squared distribution with one degree of freedom.

Fixed-effects meta-analysis

- If estimates of the effect size are not available, or are not on the same "scale", we can make use of Stouffer's method for fixed-effects meta-analysis.
- Let Z_i denote the directed Z-score (aligned to a fixed baseline allele) for the ith study, and n_i denote the reported sample size.
- Combined test statistic is given by:

$$Z = \frac{\sum_{i} Z_{i} \sqrt{n_{i}}}{\sqrt{\sum_{i} n_{i}}} \sim N(0,1)$$

Assessing heterogeneity

- Fixed effects meta-analysis assumes the same odds ratio (allelic effect) over all studies. [Note this is true under the null].
- We can test for heterogeneity between effects using the statistic $Q = \sum_i w_i (B \beta_i)^2$, which has an approximate chi-squared distribution with *N*-1 degrees of freedom.
- An alternative statistic, $I^2=[Q-(N-1)]/Q$, quantifies the extent of heterogeneity from a collection of allelic effect sizes.
- It is important to investigate the source of potential heterogeneity.

Example: sporadic amyotrophic lateral sclerosis

Random-effects meta-analysis

- Random-effects meta-analysis: assumes a distribution of true allelic effects instead of a single underlying true effect size. [Note this is almost surely true under the alternative].
- Random-effects variance component given by

$$\tau^{2} = \max \left(0, \frac{Q - (N - 1)}{\sum_{i} w_{i} - \left(\sum_{i} w_{i}^{2} / \sum_{i} w_{i}\right)}\right)$$

Weight assigned to ith study then given by

$$W_i^* = (\tau^2 + V_i)^{-1}$$
.

A comment on random effects...

- Random-effects meta-analysis is often utilised when a SNP demonstrates significant evidence of heterogeneity in allelic effects between studies.
- Important to investigate the source of heterogeneity between studies: variability may be due to phenotype definition, population background, interaction with exposure to environmental risk factor.

Strand alignment

- Study 1: OR of 1.1 for allele A relative to allele G (aligned to + strand).
- Study 2: OR of 1.3 for allele C relative to allele T (aligned to – strand).
- Effect in study 2 is actually in *opposite direction* to study 1, since A is not complementary to C.
- It is straightforward to overcome this issue for non-AT or non-GC SNPs: otherwise rely on correct strand information or matching of allele frequencies (possibly with reference to HapMap or 1000 Genomes data).

Software

- Fixed- and random-effects meta-analysis can be performed for individual SNPs in standard statistical software packages such as R.
- Specialised software for genome-wide association metaanalysis that can handle large numbers of SNPs and studies, and can incorporate checks for strand alignment:
 - METAL: http://genome.sph.umich.edu/wiki/METAL Program
 - GWAMA: http://www.geenivaramu.ee/en/tools/gwama
 - METASOFT: http://genetics.cs.ucla.edu/meta/
 - META: https://jmarchini.org/software/#meta

Trans-ethnic meta-analysis

- GWAS are increasingly undertaken across diverse populations.
- We expect increased heterogeneity in allelic effects between GWAS from diverse populations:
 - Differences in LD structure between ancestry groups: useful for fine-mapping causal variants.
 - Differences in exposure to an environmental risk factor that interacts with causal SNP.
- Random effects meta-analysis does not formally model source of heterogeneity:
 - We expect "similar" populations to have less heterogeneity.....

Trans-ethnic meta-regression

AFRAMREASEURSAS

- Meta-regression can be used to model heterogeneity due to a "confounder" that differs between GWAS as a covariate.
- Principal components analysis can be used to derive "axes of genetic variation" that explain genetic differences between populations.
- MR-MEGA uses these axes to model heterogeneity in allelic effects between GWAS: those that are genetically dissimilar are more likely to have heterogeneous effects.
- https://genomics.ut.ee/en/tools/mr-mega

Summary

- Meta-analysis of GWAS summary statistics allows increase in power to detect association without direct exchange of genotype (and other relevant phenotype) data.
- Fixed-effects meta-analysis assumes homogenous allelic effect across studies, so important to assess evidence for heterogeneity.
- Software designed for GWAS meta-analysis has features that allow for strand alignment and SNP filtering.
- Important to model heterogeneity in trans-ethnic meta-analysis.