

3253 - Analytic Techniques and Machine Learning

Module 6: Support Vector Machines

Course Plan

Module Titles

- Module 1 Introduction to Machine Learning
- Module 2 End to End Machine Learning Project
- Module 3 Classification
- Module 4 Clustering and Unsupervised Learning
- Module 5 Training Models and Feature Selection

Module 6 – Current Focus: Support Vector Machines

- Module 7 Decision Trees and Ensemble Learning
- Module 8 Dimensionality Reduction
- Module 9 Introduction to TensorFlow
- Module 10 Introduction to Deep Learning and Deep Neural Networks
- Module 11 Distributing TensorFlow, CNNs and RNNs
- Module 12 Final Assignment and Presentations (no content)

Learning Outcomes for this Module

- Apply linear and non-linear Support Vector Machine (SVM) to classification problems
- Use SVM for regression problems
- Explore how SVM works

Topics for this Module

- 6.1 Introduction to Support Vector Machines (SVM)
- 6.2 Linear classification with SVM
- 6.3 Non-linear classification
- 6.4 SVM regression
- 6.5 How SVM works
- 6.6 Resources and Wrap-up

Module 6 – Section 1

Introduction to Support Vector Machines (SVM)

<u>SVM</u>

- An ML algorithm for either classification or regression
- It can model both linear and non-linear patterns
- Most appropriate for small or mid-size data sets
- Training points (x, y) have labels +1 or -1

Module 6 – Section 2

Linear Classification with SVM

Linear Classification

- A training set is linearly separable if a hyperplane leaves class +1 on one side and class -1 on the other side
- SVM finds the hyperplane that leaves the largest possible margin on both sides, until the first examples are found

- A hyperplane in the plane is a line
- The points (x_1, x_2) in the line satisfy the equation $w_1x_1 + w_2x_2 + b = 0$ with w_1, w_2, b constants
- (w_1, w_2) is \perp to the line
- A hyperplane in 3D space is a plane described as $w_1x_1 + w_2x_2 + w_3x_3 + b = 0$
- In n-dimensions (features), a hyperplane is $w_1x_1 + \dots + w_n x_n + b = w^T \cdot x + b = 0$

- If the data is linearly separable, the SVM algorithm finds w and b, so that class +1 satisfies $w^T \cdot x + b \ge 1$ and class -1 satisfies $w^T \cdot x + b \le -1$
- Once w, b are known, new points x are classified by:

$$y = \begin{cases} +1, & if \ w^T \cdot x + b > 0 \\ -1, & if \ w^T \cdot x + b < 0 \end{cases}$$

What does an SVM solution look like?

What does it not look like?

What does an SVM solution look like?

- The vectors on the dashed lines are the support vectors, and determine the solution
- Neither Setosa examples to the far left, or Versicolor examples to the far right, determine the solution

- SVM described above is hard margin, no examples between dashed lines
- Soft margin SVM allows violations of this: examples within the dashed lines
- The solution finds a balance between wide margin and number of violations
- This is managed by a hyperparameter C
- Low C
 big margin & more violations

- C can be used for regularization
- If SVM overfits, decrease C. It allows violations, less aggressively fitting the data

Violations may not be misclassifications

Module 6 – Section 3

Non-Linear Classification

Non-Linear Classification

- Non linearly-separable datasets can become so by adding new features
- A non linearly separable 1-feature set can become separable by transforming the feature (in this example, by squaring it)

- Adding non-linear features manually is not the best approach. There's a better way!
- The algorithm works as if the original features are transformed non-linearly into a high dimensional space $\phi: R^n \to R^r, r \gg n$
- In R^r the dataset (hopefully) becomes separable, and linear SVM is applied
- The transformation ϕ is unknown. The algorithm does not actually use it

- All that is needed to do linear SVM is to apply inner product, with which geometry can be done, and w, b be found
- To do linear SVM is the transformed space we only need inner product $\langle \phi(x), \phi(x') \rangle$
- Kernel trick: only need a kernel in the original space $k: R^n \times R^n \to R$. Mercer's Thm. assures there exists $\phi: R^n \to R^r$ (for some r) such that $k(x, x') = \langle \phi(x), \phi(x') \rangle$

Non-linear SVM requires specifying the kernel There are many possible kernels (hyperparameter) Popular kernels: polynomial, gaussian, linear

- Linear: $k(x, x') = \langle x, x' \rangle$
- Polynomial: $k(x, x') = (\langle x, x' \rangle + r)^d$
- Gaussian: $k(x, x') = \exp(-\gamma ||x x'||^2) = \exp(-\gamma \langle x x' \rangle ||x x'||^2)$

 Polynomial kernel is analogous to replacing the original features by many polynomial transformations of them

$$k(x, x') = (\langle x, x' \rangle + r)^d$$

Gaussian Kernel

$$k(x, x') = \exp(-\gamma ||x - x'||^2)$$

Module 6 – Section 4

SVM Regression

SVM Regression

- Classification goal: find parallel dashed lines as far as possible and containing few points between them
- Regression goal: find parallel dashed lines that are close to each other and contain as many points as possible
- Instead of C the regularization hyperparameter is ϵ

SVM Regression (cont'd)

- Non linear SVM Regression, same kernels
- E.g., polynomial kernels:

Module 6 – Section 5

How SVM Works

How SVM works

Linear SVM classifies points by:

$$y = \begin{cases} +1, & if \ w^T \cdot x + b > 0 \\ -1, & if \ w^T \cdot x + b < 0 \end{cases}$$

• The algorithm finds $w (\perp to line)$ and b

Linear SVM classifies points by:

$$y = \begin{cases} +1, & if \ w^T \cdot x + b > 0 \\ -1, & if \ w^T \cdot x + b < 0 \end{cases}$$

- The algorithm finds $w (\perp to line)$ and b
- Distance between margins: $\frac{w}{||w||}(x^+ x^-) = \frac{2}{||w||}$

 x^+, x^- are supports

Optimization problem that yields w, b

$$\begin{cases} minimize: \frac{1}{2}w^T \cdot w \\ subject to: \ y^{(i)}(w^T \cdot x^{(i)} + b) \ge 1, for \ all \ i \end{cases}$$

For soft margin: add slack variables

$$\begin{cases} minimize: \frac{1}{2}w^T \cdot w + C \sum_{i} \xi^{(i)} \\ subject \ to: y^{(i)} (w^T \cdot x^{(i)} + b) \ge 1 - \xi^{(i)} \end{cases}$$

 These formulations (*Primal*) are cases of Quadratic Programming

$$\begin{cases} minimize \ (variable \ u): \frac{1}{2}u^T \cdot H \cdot u + f^T \cdot u \\ subject \ to: A \cdot u \le d \end{cases}$$

where: $u, f \in \mathbb{R}^{q \times 1}$, H symmetrix $q \times q$, $d \in \mathbb{R}^{m \times 1}$, $A \in \mathbb{R}^{m \times q}$

• With appropriate values for H, f, A, d, the primal formulation can be solved as QP problems (well studies)

There is an equivalent formulation (same solution) to the Primal, called *Dual*

$$\begin{cases} minimize \ (variable \ \alpha): \sum_{i=1}^m \alpha_i y^{(i)} - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y^{(i)} y^{(j)} \langle x^{(i)}, x^{(j)} \rangle \\ subject \ to: \alpha_i \geq 0, \sum_{i=1}^m \alpha_i y^{(i)} = 0 \end{cases}$$

Once α is found, it can be used to obtain w and b from the Primal

formulation, and build the classifier
$$b = \frac{1}{n_s} \sum_{i:\alpha_i > 0} (1 - y^{(i)} \langle w, x^{(i)} \rangle)$$

$$w = \sum_{i=1}^{m} \alpha_i y^{(i)} x^{(i)}$$

 The Dual formulation is also applicable for the non linear case, using any kernel: replace \(\(\)_, \(\)\)by \(k\)

$$\begin{cases} minimize \ (variable \ \alpha): \sum_{i=1}^m \alpha_i y^{(i)} - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y^{(i)} y^{(j)} (k(x^{(i)}, x^{(j)})) \\ subject \ to: \alpha_i \geq 0, \sum_{i=1}^m \alpha_i y^{(i)} = 0 \end{cases}$$

• Once α is found, b can be found, and the classifier can be computed $y = w^T \cdot \phi(x) + b$:

$$b = \frac{1}{n_s} \sum_{i:\alpha_i > 0} \left(1 - y^{(i)} \sum_{j=1}^m \alpha_j y^{(j)} k(x^{(j)}, x^{(i)}) \right)$$
$$y = w^T x + b = \sum_{i=1}^m \alpha_i y^{(i)} k(x^{(i)}, x) + b$$

Module 6 – Section 6

Resources and Wrap-up

Resources

 Hands-On Machine Learning with Scikit-Learn and Tensorflow

Assessment

See Jupyter Notebook

Next Class

Decision Trees

Follow us on social

Join the conversation with us online:

- f facebook.com/uoftscs
- @uoftscs
- in linkedin.com/company/university-of-toronto-school-of-continuing-studies
- @uoftscs

Any questions?

Thank You

Thank you for choosing the University of Toronto School of Continuing Studies