An Ounce of Prevention or a Pound of Cure?

The Value of Health Risk Information

Alex Hoagland, Boston University

September 8, 2021

Social networks in health: the apple doesn't fall far

- Social networks provide important health information
 - Expectations of own health risks
 - Learn about value of medical care
 - Identify how/from whom to obtain care

Social networks in health: the apple doesn't fall far

- Social networks provide important health information
 - Expectations of own health risks
 - Learn about value of medical care
 - Identify how/from whom to obtain care
- Family relationships are particularly important
- How individual experiences ⇒ family behaviors is vital to policies:
 - Incentivizing take-up of **high-value** services (e.g., preventive care)
 - Curbing use of low-value services (e.g., unnecessary surgeries)

Social networks in health: the apple doesn't fall far

- Social networks provide important health information
 - Expectations of own health risks
 - Learn about value of medical care
 - Identify how/from whom to obtain care
- Family relationships are particularly important
- How **individual experiences** ⇒ **family behaviors** is vital to policies:
 - Incentivizing take-up of **high-value** services (e.g., preventive care)
 - Curbing use of low-value services (e.g., unnecessary surgeries)

I show family health events cause spillovers but do not improve welfare

- Individuals (over-) update beliefs about health risks
- Leads to increased healthcare utilization (high + low-value)
- Welfare gains are dampened by misinterpretation of information

Example: COVID-19 Vaccinations

He put off getting vaccinated. Now, he's in the ICU pleading for others to avoid his mistake: 'I messed up'

'Get the vaccine:' Oregon man pleads as 23-year-old wife fights for her life

COVID-19: Family of anti-vaxxer nightclub boss who died from coronavirus urges people to get the jab

Family of San Diego COVID-19 victim makes emotional vaccine plea

Dimensions of Health Information

There are **many types** of health information:

- 1 Systematic information: Deductibles, networks, codes (oh my!)
- Type information: Expectations about own health risk

Dimensions of Health Information

There are **many types** of health information:

- Systematic information: Deductibles, networks, codes (oh my!)
- 2 Type information: Expectations about own health risk

I use major health events as my main source of health information

- Chronic diagnoses within households between 2006–2018
- Directly transmit type information to other family members
 - Genetic risk (Type 1 diabetes)
 - Lifestyle risk (Type 2 diabetes)

Dimensions of Health Information

There are **many types** of health information:

- Systematic information: Deductibles, networks, codes (oh my!)
- 2 Type information: Expectations about own health risk

I use major health events as my main source of health information

- Chronic diagnoses within households between 2006–2018
- Directly transmit type information to other family members
 - Genetic risk (Type 1 diabetes)
 - Lifestyle risk (Type 2 diabetes)
- Identifying assumption: timing of health shocks is random
- New information alters health choices based on interpretation

Key Questions & Methodology

- How does health information change health choices?
 - Staggered difference-in-differences
 - Evaluate non-diagnosed members' spending and plan choices
 - Examine potential mechanisms for responses

Key Questions & Methodology

- 1 How does health information change health choices?
 - Staggered difference-in-differences
 - Evaluate non-diagnosed members' **spending** and **plan** choices
 - Examine potential mechanisms for responses
- What is the value of new health information?
 - Structural model of health choices allows me to:
 - Separate informational from financial spillovers
 - Monetize value of new type information
 - Evaluate what adds to (and detracts from) this value

Key Questions & Methodology

- 1 How does health information change health choices?
 - Staggered difference-in-differences
 - Evaluate non-diagnosed members' **spending** and **plan** choices
 - Examine potential mechanisms for responses
- What is the value of new health information?
 - Structural model of health choices allows me to:
 - Separate informational from financial spillovers
 - Monetize value of new type information
 - Evaluate what adds to (and detracts from) this value
- Why does over-responsiveness to health information matter?
 - Assess how consumer beliefs (over-) react to new information
 - Compare outcomes to those when beliefs are less reactionary
 - Discuss optimal policy for revealing health information

Preview of Results

- **Spillover Effects**: non-diagnosed (but affected) household members increase spending by about 10% annually (~\$50)
 - Affected individuals invest in disease-specific preventive care and increase adherence to already existing preventive care
 - Alternative mechanisms do not fully explain results
 - Corresponding increase in low-value "screening" services

Preview of Results

- Spillover Effects: non-diagnosed (but affected) household members increase spending by about 10% annually (\sim \$50)
 - Affected individuals invest in disease-specific preventive care and increase adherence to already existing preventive care
 - Alternative mechanisms do not fully explain results
 - Corresponding increase in low-value "screening" services
- Valuing Health Information:
 - Household welfare penalties of \$2,688 annually
 - Ex-post belief overweighting limits welfare gains

Preview of Results

- Spillover Effects: non-diagnosed (but affected) household members increase spending by about 10% annually (\sim \$50)
 - Affected individuals invest in disease-specific preventive care and increase adherence to already existing preventive care
 - Alternative mechanisms do not fully explain results
 - Corresponding increase in low-value "screening" services
- Valuing Health Information:
 - Household welfare penalties of \$2,688 annually
 - Ex-post belief **overweighting** limits welfare gains
- **3 Limiting Over-Responsiveness Improves Welfare:**
 - Bounding responsiveness of beliefs \Rightarrow net gains of \$2,788 annually
 - Benefits 86% of households
 - Returns can be improved by demographic targeting of revelation

Contributions

My work fits into multiple strands of the literature:

Health Information Spillovers:

(Fadlon & Nielsen, 2019; Song 2021)

- ► Illustrates new (strong) channel for spillovers
- Quantifies general welfare effects of health information
- Disentangles various mechanisms and drivers of welfare losses

Contributions

My work fits into multiple strands of the literature:

Health Information Spillovers:

(Fadlon & Nielsen, 2019; Song 2021)

- Illustrates new (strong) channel for spillovers
- Quantifies general welfare effects of health information
- Disentangles various mechanisms and drivers of welfare losses

2 Structural Models of Health:

(Barseghyan et al., 2018; Bundorf et al., 2021; Sabety 2020)

- First structural model incorporating care for chronic conditions
- New estimation of behavioral effects in structural health models
- Micro-foundation of belief formation when events are "low p, high c"

Contributions

My work fits into multiple strands of the literature:

Health Information Spillovers:

(Fadlon & Nielsen, 2019; Song 2021)

- Illustrates new (strong) channel for spillovers
- Quantifies general welfare effects of health information
- Disentangles various mechanisms and drivers of welfare losses

Structural Models of Health:

(Barseghyan et al., 2018; Bundorf et al., 2021; Sabety 2020)

- First structural model incorporating care for chronic conditions
- New estimation of behavioral effects in structural health models
- Micro-foundation of belief formation when events are "low p, high c"
- **Suboptimal Health Choices:** (Abaluck & Gruber, 2011, 2016a; Abaluck & Compiani, 2020; Ketcham et al., 2012; Handel, 2013; Handel & Kolstad, 2015)
 - Highlights that even simple signals may backfire
 - Underscores role of behavioral biases and heterogeneity

OUTLINE

- Data: Major health events taking place within a household
- 2 Reduced-Form Evidence: Informational spillovers and mechanisms
- 3 Structural Model: Quantifying value of health information
- 4 Counterfactual Scenarios: The role of over-reaction in welfare
- **5** Conclusion: Discussion & policy importance

The Value of Claims Data

Data: Truven Commercial Claims and Encounters Marketscan, 2006–2018

- Detailed claims for households in group ESI plans
- Typically, families with middle-aged parents + young children
- 8 firms with consistent plan identifiers (N = 353,403 families)

The Value of Claims Data

Data: Truven Commercial Claims and Encounters Marketscan, 2006–2018

- Detailed claims for households in group ESI plans
- Typically, families with middle-aged parents + young children
- 8 firms with consistent plan identifiers (N = 353,403 families)

Key Variables:

- Major health events identified using HHS-HCCs
 - Generic set of conditions that alter risk, spending, & utilization
 - Limited to common non-pregnancy conditions
- Main outcomes:
 - Health spending/utilization (billed and OOP)
 - Health insurance plan choice
 - Use of preventive and low-value care

A Few Summary Statistics

	Full Sample	Plan-Identified Sample		
Family size	3.00	3.01		
Employee age	45.01	44.36		
Total medical spending	\$2,504.41 [\$679.75]	\$2,454.88 [\$624.16]		
OOP medical spending	\$443.07 [\$109.66]	\$337.98 [\$80.33]		
% experiencing chronic diagnosis	6.32	5.21		
% experiencing acute event	0.96	0.58		
Chronic illnesses:				
OOP, diagnosis year	\$1,082.05 [\$464.69]	\$854.62 [\$329.90]		
OOP, future years	\$983.03 [\$521.39]	\$683.60 [\$446.69]		
Acute events:				
OOP, diagnosis year	\$2,494.42 [\$1,419.91]	\$2,107.09 [\$964.62]		
Years	2006-2018	2006-2013		
N _{individuals}	1,087,353	555,733		

Notes: Medians in brackets. Spending in 2020 USD.

Plan Characteristics

I use multiple firms to leverage variation in plan characteristics

- Useful to separate risk preferences from risk beliefs
- Characteristics are simplified based on claims data

	Firm								
	Α	В	С	D	E	F	G	Н	
# of plans offered	3.50	2.50	3.00	2.00	2.00	2.57	2.75	3.00	
HH premium	12.70	9.82	9.73	10.16	9.34	8.93	9.13	11.53	
HH deductible	0.36	0.39	2.13	0.97	0.95	0.71	0.89	0.48	
% o-deductible	64.29	46.67	0.00	0.00	0.00	22.22	31.82	38.89	
HH OOP max.	3.47	4.55	5.05	5.92	4.32	4.11	5.15	3.92	
HHI of all plans	0.43	0.60	0.40	0.56	0.86	0.61	0.64	0.44	

Averages are pooled across all plans and years in a given firm. Prices in \$1,000s.

Mehtodology

I estimate the effects of new chronic diagnoses using a **two-way** fixed-effects (TWFE) approach:

$$\sinh^{-1}(y_{ft}) = \alpha_f + \tau_t + \sum_{k=-T}^{T} \gamma_k \mathbb{1}\left\{t - E_{ft} = k\right\} + \epsilon_{ft}.$$

Mehtodology

I estimate the effects of new chronic diagnoses using a **two-way** fixed-effects (TWFE) approach:

$$\sinh^{-1}(y_{ft}) = \alpha_f + \tau_t + \sum_{k=-T}^{T} \gamma_k \mathbb{1}\left\{t - E_{ft} = k\right\} + \epsilon_{ft}.$$

- Relative to year prior to event
- Coefficients roughly interpretable as percentage changes
- Standard errors are clustered at household level
- Results are robust to standard TWFE concerns

Household Chronic Diagnoses ↑ (Non-Diagnosed) Spending

Evidence of Belief Updating: Preventive Care

Households also increase general takeup of wellness visits Details

- Generally considered high-value care (Tong et al., 2021)
- 1.5pp more likely to use wellness visit (from 92%)
- Increased (billed) spending on prevention of ~10% (\$50) annually

Evidence of Belief Updating: Preventive Care

Households also increase general takeup of wellness visits Details

- Generally considered high-value care (Tong et al., 2021)
- 1.5pp more likely to use wellness visit (from 92%)
- Increased (billed) spending on prevention of ~10% (\$50) annually

More interesting, households seek out disease-specific prevention:

- Diagnoses provide targeted risk signals (e.g., diabetes diagnoses)
- Preventive responses to risk information should be selective

Diabetes Screening Responses Following Health Events

Selective use of preventive services is visible even in raw data

Diabetes Screening Responses Following Health Events

Selective use of preventive services is visible even in raw data

Diabetes Screening Responses Following Health Events

Selective use of preventive services is visible even in raw data

Effect of Chronic Events on Disease-Specific Screenings

For causal analysis, I estimate a **triple differences** approach:

$$\begin{split} \textit{Pr}(\textit{Screening})_{\textit{ftd}} &= \beta_{\text{DD}}(\textit{post}_t \times \textit{chronic}_f) \\ &+ \beta_{\text{DDD}}(\textit{post}_t \times \textit{chronic}_f \times \mathbb{1}\left\{\textit{chronic}_f = d\right\}) \\ &+ \alpha_f + \tau_t + \varepsilon_{\textit{ftd}} \end{split}$$

Effect of Chronic Events on Disease-Specific Screenings

For causal analysis, I estimate a **triple differences** approach:

Effect of Chronic Events on Disease-Specific Screenings

For causal analysis, I estimate a **triple differences** approach:

$$\begin{split} \textit{Pr}(\textit{Screening})_{\textit{ftd}} &= \beta_{\text{DD}}(\textit{post}_t \times \textit{chronic}_f) \\ &+ \beta_{\text{DDD}}(\textit{post}_t \times \textit{chronic}_f \times \mathbb{1}\left\{\textit{chronic}_f = d\right\}) \\ &+ \alpha_f + \tau_t + \varepsilon_{\textit{ftd}} \end{split}$$

I use this approach for various **diagnoses** ⇒ **screenings**:

- \blacksquare Any chronic diagnosis \rightarrow new hypertension diagnoses
- Diabetes diagnoses → diabetes screenings
- 3 Diabetes diagnoses → cholesterol screenings
- Cancer diagnoses → cancer screenings

I also include placebo regressions to highlight role of information:

- 5 Diabetes diagnoses → obesity diagnoses
- 6 Mental health diagnoses → depression screenings

Difference-in-Difference (β_{DD}): Effect of Any Diagnosis

Difference-in-Difference (eta_{DD}): Effect of Any Diagnosis

Triple Difference (β_{DDD}): Effect of Specific Diagnosis

Triple Difference ($eta_{ exttt{DDD}}$): Effect of Specific Diagnosis

Heterogeneity by Household Relationship

Excluding Alternative Responses: Moral Hazard

A natural question here is: "Isn't this just a price response?"

Excluding Alternative Responses: Moral Hazard

A natural question here is: "Isn't this just a price response?"

Responses are stable over time

Excluding Alternative Responses: Moral Hazard

A natural question here is: "Isn't this just a price response?"

Responses are mirrored for those with fewest financial incentives

Excluding Alternative Responses: Salience Effects

Another possible explanation: salience effects

• After *any* traumatic health event, families may reassess care value

Excluding Alternative Responses: Salience Effects

Another possible explanation: salience effects

1 Responses more pronounced for chronic events than acute ones

Excluding Alternative Responses: Salience Effects

Another possible explanation: salience effects

- 1 Responses more pronounced for chronic events than acute ones
 - True for use of preventive care as well

Excluding Alternative Responses: Learning about Health Care

Households might be learning about health systems instead of risk?

- Diagnoses reveal role of preventive care, insurance coverage, etc.
- Example: Asthma prevention following an asthma attack

I examine use of already existing medications for prevention:

 Limit sample to all non-diagnosed individuals who repeatedly filled preventive cardiovascular medications in their first two years

Excluding Alternative Responses: Learning about Health Care

I examine use of already existing medications for prevention:

Health events spur resurgence in adherence, albeit short-lived

Do ex-post choices look better?

Examine **spending** on low-value services:

- Health services identified as "low-return"
- Based on recommendations of Choosing Wisely initiative and other physician specialty organizations (Bhatia et al., 2015; Wolfson et al., 2014)

Do ex-post choices look better?

Examine **spending** on low-value services:

- Health services identified as "low-return"
- Based on recommendations of Choosing Wisely initiative and other physician specialty organizations (Bhatia et al., 2015; Wolfson et al., 2014)

Population	Pediatric	Adult			
Service Category	All	Drugs	Imaging	Screening	Surgery
$Post_t imes Diagnosis_f$	0.051* (0.017)	-0.004 (0.000)	0.029*** (0.013)	0.103*** (0.014)	-0.096*** (0.012)
Adjusted R ²	0.192	0.143	0.123	0.163	0.230

Notes: N=1,538,161. Standard errors clustered at the household level. p < 0.05, ** p < 0.01, *** p < 0.001.

Table. Estimated Effects of Chronic Illness on Low-Value Care Utilization

- How do major health events change household behavior?
 - ► Persistent spending increases: ~10% or \$50 OOP annually
 - Similar increases in takeup of preventive services

- How do major health events change household behavior?
 - ► Persistent spending increases: ~10% or \$50 00P annually
 - Similar increases in takeup of preventive services
- 2 How are these changes indicative of updated beliefs?
 - Responses include increase in disease-specific screenings
 - ► Sizable behavior responses (screening takeup ↑ 15-20%)

- How do major health events change household behavior?
 - ► Persistent spending increases: ~10% or \$50 OOP annually
 - Similar increases in takeup of preventive services
- 2 How are these changes indicative of updated beliefs?
 - Responses include increase in disease-specific screenings
 - Sizable behavior responses (screening takeup ↑ 15-20%)
- Are these changes consistent with alternative explanations?
 - Moral Hazard: Financial incentives don't increase responses
 - **Salience:** Responses are larger for chronic vs. acute events
 - Systematic Learning: Takeup of existing preventive medications ↑

- How do major health events change household behavior?
 - ► Persistent spending increases: ~10% or \$50 OOP annually
 - Similar increases in takeup of preventive services
- 2 How are these changes indicative of updated beliefs?
 - Responses include increase in disease-specific screenings
 - Sizable behavior responses (screening takeup ↑ 15-20%)
- Are these changes consistent with alternative explanations?
 - Moral Hazard: Financial incentives don't increase responses
 - **Salience**: Responses are larger for chronic vs. acute events
 - Systematic Learning: Takeup of existing preventive medications \(\bar\)
- Do affected households make better choices?
 - Households \(\frac{1}{2}\) spending on low-value screenings
 - No evidence of changes in plan choices

Main goal: quantify value of new health information

Two-stage choice model of consumer demand for health care

(Cardon & Hendel, 2001; Einav et al., 2013; Marone & Sabety, 2021)

1 Households choose health plans to maximize expected utility

Main goal: quantify value of new health information

Two-stage choice model of consumer demand for health care

(Cardon & Hendel, 2001; Einav et al., 2013; Marone & Sabety, 2021)

- Households choose health plans to maximize expected utility
- Individuals receive health shocks (acute and chronic)

Main goal: quantify value of new health information

Two-stage choice model of consumer demand for health care

(Cardon & Hendel, 2001; Einav et al., 2013; Marone & Sabety, 2021)

- 1 Households choose health plans to maximize expected utility
- Individuals receive health shocks (acute and chronic)
- Individuals choose health spending, trading off wealth and health

Main goal: quantify value of new health information

Two-stage choice model of consumer demand for health care

(Cardon & Hendel, 2001; Einav et al., 2013; Marone & Sabety, 2021)

- 1 Households choose health plans to maximize expected utility
- Individuals receive health shocks (acute and chronic)
- Individuals choose health spending, trading off wealth and health
- Individuals update beliefs about probability of medical events

Main goal: quantify value of new health information

Two-stage choice model of consumer demand for health care

(Cardon & Hendel, 2001; Einav et al., 2013; Marone & Sabety, 2021)

- Households choose health plans to maximize expected utility
- Individuals receive health shocks (acute and chronic)
- Individuals choose health spending, trading off wealth and health
- Individuals update beliefs about probability of medical events

Important notes:

- Model is static: decisions today → inputs tomorrow
- Type information evolves according to exogenous shocks
- Time is discrete (year)

A household f is comprised of individuals $i \in \mathcal{I}_f$, characterized by:

Individual probabilities of diagnosis with a chronic illness, pift

A household f is comprised of individuals $i \in \mathcal{I}_f$, characterized by:

- 1 Individual probabilities of diagnosis with a chronic illness, pift
- Individual distributions of acute health shocks $\lambda_{ift} \sim F(\mu_{\lambda}, \sigma_{\lambda}, \kappa_{\lambda})$

A household f is comprised of individuals $i \in \mathcal{I}_f$, characterized by:

- Individual probabilities of diagnosis with a chronic illness, p_{ift}
- Individual distributions of acute health shocks $\lambda_{ift} \sim F(\mu_{\lambda}, \sigma_{\lambda}, \kappa_{\lambda})$
- **3** Household distribution of chronic care costs m_{ft}^{CH}

A household f is comprised of individuals $i \in \mathcal{I}_f$, characterized by:

- Individual probabilities of diagnosis with a chronic illness, p_{ift}
- Individual distributions of acute health shocks $\lambda_{ift} \sim F(\mu_{\lambda}, \sigma_{\lambda}, \kappa_{\lambda})$
- **3** Household distribution of chronic care costs m_{ft}^{CH}
- $oxed{4}$ Household risk aversion parameter ψ_{ft}

A household f is comprised of individuals $i \in \mathcal{I}_f$, characterized by:

- Individual probabilities of diagnosis with a chronic illness, p_{ift}
- Individual distributions of acute health shocks $\lambda_{ift} \sim F(\mu_{\lambda}, \sigma_{\lambda}, \kappa_{\lambda})$
- 3 Household distribution of chronic care costs m_{fr}^{CH}
- $oxed{4}$ Household risk aversion parameter ψ_{ft}

Health events affect:

- All individual beliefs $\{p_{ift}\}_{i \in I_f}$
- Household risk aversion ψ_{ft}
- de facto care prices (moral hazard)

Model Stages: Medical Spending Choices

After choosing a plan $j \in \mathcal{J}$ and realizing health shocks $\{m_{ft}^{CH}, \lambda_{ift}\}_{I_f}$, households choose **medical spending** that maximizes expected utility:

$$m_{\textit{ift}}^* \equiv \text{argmax}_{m_{\textit{ift}}} \text{EU}(m_{\textit{ift}}; \lambda_{\textit{ift}}, m_{\textit{ft}}^{\text{CH}}, j) = p_{\textit{ift}} u_{\textit{ift}, \text{CH}} + (1 - p_{\textit{ift}}) u_{\textit{ift}, \text{H}}$$

Model Stages: Medical Spending Choices

After choosing a plan $j \in \mathcal{J}$ and realizing health shocks $\{m_{ft}^{CH}, \lambda_{ift}\}_{I_f}$, households choose **medical spending** that maximizes expected utility:

$$m_{\textit{ift}}^* \equiv \text{argmax}_{m_{\textit{ift}}} \text{EU}(m_{\textit{ift}}; \lambda_{\textit{ift}}, m_{\textit{ft}}^{\text{CH}}, j) = p_{\textit{ift}} u_{\textit{ift}, \text{CH}} + (1 - p_{\textit{ift}}) u_{\textit{ift}, \text{H}}$$

where

$$u_{ift,H} = \left[(m_{ift} - \lambda_{ift}) - \frac{1}{2\omega} (m_{ift} - \lambda_{ift})^2 \right] - c_j(m_{ift})$$

Model Stages: Medical Spending Choices

After choosing a plan $j \in \mathcal{J}$ and realizing health shocks $\{m_{ft}^{CH}, \lambda_{ift}\}_{I_f}$, households choose **medical spending** that maximizes expected utility:

$$m_{\textit{ift}}^* \equiv \text{argmax}_{m_{\textit{ift}}} \text{EU}(m_{\textit{ift}}; \lambda_{\textit{ift}}, m_{\textit{ft}}^{\text{CH}}, j) = p_{\textit{ift}} u_{\textit{ift}, \text{CH}} + (1 - p_{\textit{ift}}) u_{\textit{ift}, \text{H}}$$

where

$$u_{ift,H} = \left[(m_{ift} - \lambda_{ift}) - \frac{1}{2\omega} (m_{ift} - \lambda_{ift})^2 \right] - c_j(m_{ift})$$

and

$$u_{ift,C} = \left[(\alpha_{1f} m_{ift} + \alpha_{2f} m_{ft}^{CH} - \lambda_{ift}) - \frac{1}{2\omega} (\alpha_{1f} m_{ift} + \alpha_{2f} m_{ft}^{CH} - \lambda_{ift})^2 \right] - c_j(m_{ift})$$

Solving the Utility Maximization Problem

Model Stages: Plan Choice

Families choose plans with uncertain health states:

$$U_{fjt} = -\sum_{i \in I_f} \left[\int \int \frac{1}{\psi_{ft}(x_{ft})} \exp\{-\psi_{ft}(x_{ft})u_{ift}^*\} dF_{\lambda_i} dG_{m^{CH}} \right]$$
$$-c_j(m_{ft}^{CH}) - \pi_{fj} - \eta \mathbb{1}_{fj,t-1},$$

Model Stages: Plan Choice

Families **choose plans** with uncertain health states:

$$U_{fjt} = -\sum_{i \in \mathcal{I}_f} \left[\int \int \frac{1}{\psi_{ft}(x_{ft})} \exp\{-\psi_{ft}(x_{ft})u_{ift}^*\} dF_{\lambda_i} dG_{m^{CH}} \right]$$
$$-c_j(m_{ft}^{CH}) - \pi_{fj} - \eta \mathbb{1}_{fj,t-1},$$

- Individual utility is assumed to be CARA
- Households maximize sum of individual utilities
- Chronic care prices are attributed "first" (moral hazard)

Parameter Responses to Health Events: Beliefs

Major health events provide households with **information** about risks p_{ift}

- Model as Bayesian learning
- Prior beliefs and signals assumed to be normally distributed
- Posteriors are thus given by:

$$\begin{split} \sigma_{pi,t+1}^2 &= \frac{\tilde{\sigma}_{ift}^2 \sigma_{pio}^2}{\tilde{\sigma}_{ift}^2 + s_{ift} \sigma_{pio}^2} \\ \mu_{pi,t+1} &= \frac{\tilde{\sigma}_{ift}^2 \mu_{pit} + \sigma_{pit}^2 \tilde{\mu}_{ift}}{\tilde{\sigma}_{ift}^2 + \sigma_{pit}^2} \end{split}$$

Parameter Responses to Health Events: Beliefs

Major health events provide households with **information** about risks p_{ift}

- Model as Bayesian learning
- Prior beliefs and signals assumed to be normally distributed
- Posteriors are thus given by:

$$\begin{split} \sigma_{pi,t+1}^2 &= \frac{\tilde{\sigma}_{ift}^2 \sigma_{pio}^2}{\tilde{\sigma}_{ift}^2 + s_{ift} \sigma_{pio}^2} \\ \mu_{pi,t+1} &= \frac{\tilde{\sigma}_{ift}^2 \mu_{pit} + \sigma_{pit}^2 \tilde{\mu}_{ift}}{\tilde{\sigma}_{ift}^2 + \sigma_{pit}^2} \end{split}$$

Updating is "triggered" by a signal parameterized by:

$$y_{ift} = \pi_1 \mathbb{1}\{\text{chronic}\}_{f,-i} + \pi_2 \mathbb{1}\{\text{acute}\}_{f,-i} + \pi_3 \mathbb{1}\{\text{acute}\}_{f,i} + \pi_4 x_{ift}$$

Parameter Responses to Health Events: Risk Aversion

Major health events also change household **risk aversion**, ψ_{ft}

• Households update ψ_{ft} at the end of each period:

$$\psi_{ft} = \gamma_{o}\psi_{f,t-1} + \gamma_{1} \left\{ \text{Post}_{t} \times m_{fo}^{\text{CH}} \right\} + \gamma_{2} \left\{ \text{Post}_{t} \times c_{j}(m_{fo}^{\text{CH}}) \right\} + \gamma_{3} \left\{ \text{Post}_{t} \times \text{Hosp}_{fo} \right\}$$

- γ_0 measures **persistence** of risk aversion across years
- Impact of health event is allowed to vary by
 - Overall cost of event (billed spending)
 - OOP spending on event
 - Whether a hospitalization occurred

Data Variation & Identification

I identify **informational effects** separate from other channels using multiple sources of **variation**:

- Moral Hazard Effects leverage cross-illness variation in:
 - Diagnostic cost
 - Maintenance cost
 - Plan characteristics
- 2 Salience Effects rely on plan choice set variation (Ericson et al., 2020)
 - Risk aversion drives plan choices in model, not spending
 - Repeated choices
 - Circumstances of major medical events

Estimation Overview

Finding 1: Large Belief Updating

Major health events are associated with large increases in risk beliefs:

Parameter Estimates: Belief Changes

		Preferred Specification			
		Estimate Std. Err.			
Pan	Panel A: Dynamic Parameters				
Beli	ef Evolution				
π_1	Family Chronic Event	0.33	(0.002)		
π_2	Own Acute Event	0.05	(0.002)		
π_3	Family Acute Event	0.06	(0.002)		
$\pi_{\scriptscriptstyle 4}$	Years since Event	0.01	(0.000)		
σ_{π}	Error Variance	1.52	(0.018)		

Notes: Average marginal effects on posterior means shown.

- Chronic events generate strong changes to risk beliefs
- Acute events generate weaker responses
- Effects are persistent

Finding 2: Residual Salience Effects

		Preferred Specification			
		Estimate	Std. Err.		
Pan	Panel A: Dynamic Parameters				
Risk	Aversion Evolution				
ψ_{o}	Persistence, Year $t-1$	0.95	(0.025)		
ψ_1	Health Event (HE)	0.61	(0.015)		
ψ_2	HE × Year o Cost	0.19	(0.020)		
ψ_3	HE × Year o OOP	-0.88	(0.024)		
$\psi_{\scriptscriptstyle 4}$	${\sf HE} imes {\sf Hospitalization}$	1.51	(0.033)		
σ_{ψ}	Error Variance	0.01	(0.016)		

- Health events 1 risk aversion by 34.9%
- Households respond to event intensity

Finding 3: Value of Health Risk Information

Measure value of information as marginal willingness to pay

• Welfare metric: certainty equivalent

$$CE_{fit} = -\psi_{ft}^{-1}\log(-U_{fit})$$

Report changes in CE_{fit} relative to benchmark world:

$$\Delta(CE) = CE_{fit}(\text{event occurs}) - CE_{fit}(\text{no event occurs})$$

Major Health Events Generate -\$3,076 Loss

New Health Information Generates -\$2,788 Loss

- Isolate value of health information
- Hold constant the impact of health event on salience and prices
- Informational effect captures 90% of welfare changes

Scenario 1: What if Over-Responsiveness were Limited?

Welfare losses arise from large changes to risk beliefs

- Households overweight health risks by 6x
- High risk beliefs ⇒ propagation of spending + low-value service use

Scenario 1: What if Over-Responsiveness were Limited?

Welfare losses arise from large changes to risk beliefs

- Households overweight health risks by 6x
- High risk beliefs ⇒ propagation of spending + low-value service use

What is the value of information when "correctly" interpreted?

- 1 Place arbitrary upper bounds on $p_{if,t>0}$
- Reevaluate marginal WTP with limits
- Ignore moral hazard & salience effects

Bounding Belief Responsiveness Improves Welfare

Notes: Green dashed line indicates average in-sample rate of diagnosis.

Bounding Belief Responsiveness Improves Welfare

Notes: Green dashed line indicates average in-sample rate of diagnosis.

Scenario 2: Can Health Information be Targeted?

Policy revealing info. must balance heterogeneous returns:

Full revelation may not be optimal when:

- Revelation is costly
- Revelation disrupts insurance markets (Posey & Thistle, 2021)
- 3 Revelation is personally sub-optimal (Oster et al., 2013)

Scenario 2: Can Health Information be Targeted?

Policy revealing info. must balance heterogeneous returns:

Full revelation may not be optimal when:

- Revelation is costly
- 2 Revelation disrupts insurance markets (Posey & Thistle, 2021)
- 3 Revelation is personally sub-optimal (Oster et al., 2013)

What is the value of transmitting health risks?

• For example: COVID-19 antibody screenings

Scenario 2: Can Health Information be Targeted?

Policy revealing info. must balance heterogeneous returns: Full revelation may not be optimal when:

- Revelation is costly
- 2 Revelation disrupts insurance markets (Posey & Thistle, 2021)
- 3 Revelation is personally sub-optimal (Oster et al., 2013)

What is the value of transmitting health risks?

- For example: COVID-19 antibody screenings
- Simulate "revealing" health information to control group
- 2 At time t, individuals are given signal of predicted risk \hat{p}_{if}
- 3 Assume full responsiveness $(p_{if,t>0} = \hat{p}_{if})$

Targeting Information Revelation Improves Welfare

Targeting Information Revelation Improves Welfare

Conclusions & Future Work

Social networks provide highly relevant experiences for individuals

- 1 Observing family health events increases health spending
 - Most consistent with learning about health risk
 - Responses include increased use of prevention and low-value care
- Individuals overreact to health information
 - Leads to welfare penalties of \$2,788
 - ▶ Bounding responsiveness ⇒ net gains for 86% of households
 - Can improve returns on dissemination by targeting information

Conclusions & Future Work

Social networks provide highly relevant experiences for individuals

- Observing family health events increases health spending
 - Most consistent with learning about health risk
 - Responses include increased use of prevention and low-value care
- Individuals overreact to health information
 - Leads to welfare penalties of \$2,788
 - ▶ Bounding responsiveness ⇒ net gains for 86% of households
 - Can improve returns on dissemination by targeting information

This analysis can be extended in several meaningful ways:

- Endogenize chronic care health costs (non-ESI populations)
- Consider health production and liquidity constraints in modeling
- 3 Overlap between chronic conditions and job lock

AN OUNCE OF PREVENTION OR A POUND OF CURE? THE VALUE OF HEALTH RISK INFORMATION

Alex Hoagland Boston University

Additional Comments? alcobe@bu.edu
Website: alex-hoagland.github.io

References (1/3)

- Abaluck & Compiani (2020). A Method to Estimate Discrete Choice Models that is Robust to Consumer Search, NBFR WP
- Abaluck & Gruber (2011). Choice Inconsistencies among the Elderly: Evidence from Plan Choice in the Medicare Part D Program. AER.
- Abaluck & Gruber (2016). Evolving Choice Inconsistencies in Choice of Prescription Drug Insurance. AER.
- Alalouf et al. (2019). What Difference Does a Diagnosis Make? Evidence from Marginal Patients. NBER WP
- Baicker et al. (2015). Behavioral Hazard in Health Insurance. QIE.
- Barseghyan et al. (2018). Estimating Risk Preferences in the Field. JEL
- Bhatia et al. (2015). Measuring the effect of Choosing Wisely: an integrated framework to assess campaign impact on low-value care. BMJ Quality & Safety
- Cardon & Hendel (2001). Asymmetric Information in Health Insurance: Evidence from the National Medical Expenditure Survey. RAND
- Chernew et al. (2008). Learning and the value of information: Evidence from health plan report cards. J Econometrics
- Choudhry et al. (2009). Measuring Concurrent Adherence to Multiple Related Medications. Am J Managed Care.
- de Chaisemartin & D'Haultfoeuille (2019). Two-way fixed effects estimators with heterogeneous treatment effects. NBER WP.

References (2/3)

- Einav et al. (2013). Selection on Moral Hazard in Health Insurance. AER.
- Enthoven (1980). Health Plan: The Only Practical Solution to the Soaring Cost of Medical Care.
- Ericson et al. (2020). Inferring Risk Perceptions and Preferences Using Choice from Insurance Menus: Theory and Evidence. The Economic J.
- Fadlon & Nielsen (2019). Family Health Behaviors. AER.
- Fuchs (2004). More Variation In Use Of Care, More Flat-Of-The-Curve Medicine. **Health Affairs**
- Gruber et al. (2020). Managing Intelligence: Skilled Experts and AI in Markets for Complex Products. NBER WP.
- Grubb (2015). Overconfident Consumers in the Marketplace. JEP
- Handel (2013). Adverse Selection and Inertia in Health Insurance Markets: When Nudging Hurts. AER.
- Handel & Kolstad (2015). Health Insurance for "Humans": Information Frictions, Plan Choice, and Consumer Welfare. AER.
- Handel & Kolstad (2017). Wearable Technologies and Health Behaviors: New Data and New Methods to Understand Population Health. AER.
- Iizuka et al. (2021). False Alarm? Estimating the Marginal Value of Health Signals. NBFR WP.

References (3/3)

- Jones et al. (2019). What do Workplace Wellness Programs do? Evidence from the Illinois Workplace Wellness Study. QJE.
- Kenkel (1991). Health Behavior, Health Knowledge, and Schooling. JPE.
- Ketcham et al. (2012). Sinking, swimming, or learning to swim in Medicare Part D. AER.
- Krummel (2019). The Rise of Wearable Technology in Health Care. JNO
- Marone & Sabety (in press). Should there be vertical choice in health insurance markets? AER.
- Oster et al. (2013). Optimal Expectations and Limited Medical Testing: Evidence from Huntington Disease. AER.
- Sloan et al. The Smoking Puzzle: Information, Risk Perception, and Choice.
- Shafer et al. (2021).Trends in pediatric wellness visits with out-of-pocket costs before and after the Affordable Care Act. JNO.
- Song & Baicker (2019). Effect of a Workplace Wellness Program on Employee Health and Economic Outcomes: A Randomized Clinical Trial. JAMA.
- Sorensen (2006). Social learning and health plan choice. RAND.
- Train (2009). Discrete Choice Methods With Simulation.
- Wolfson et al. (2014). Engaging Physicians and Consumers in Conversations About Treatment Overuse and Waste: A Short History of the Choosing Wisely Campaign.
 Academic Medicine

Identifying Major Medical Events

Example: Asthma

```
Codes
  ▶ 345 Asthma

    145.2 Mild intermittent asthma

   - J45.20 ..... uncomplicated
   → J45.21 ..... with (acute) exacerbation
   ▶ 145.22 ..... with status asthmaticus

    J45.3 Mild persistent asthma

   → J45.30 ..... uncomplicated
   -> J45.31 ..... with (acute) exacerbation
   ▶ 145.32 ..... with status asthmaticus

    J45.4 Moderate persistent asthma

   → J45.40 ..... uncomplicated
   → J45.41 ..... with (acute) exacerbation
   ▶ J45.42 ..... with status asthmaticus
   ▶ 345.5 Severe persistent asthma
   → J45.50 ..... uncomplicated
   → J45.51 ..... with (acute) exacerbation
   ▶ 145.52 ..... with status asthmaticus

    J45.9 Other and unspecified asthma

   ► J45.90 Unspecified asthma
    ▶ J45.901 ..... with (acute) exacerbation
     → J45.902 ..... with status asthmaticus
     ▶ J45.909 ..... uncomplicated
    ▶ 145 99 Other asthma

    J45,990 Exercise induced bronchospasm

    J45.991 Cough variant asthma

     → J45.998 Other asthma
```

Additional restrictions:

- Require 1+ year of data without diagnosis
- Require 1+ year of follow-up data

Summarizing Major Medical Events

	Full Sample	Households with chronic conditions			
Total spending OOP spending	\$2,504.41 [\$679.75] \$443.07 [\$109.66]	\$3,378.17 [\$957.52] \$531.93 [\$151.18]			
Incidence of chronic illness (per 1,000 individuals)					
Asthma	2.93	96.08			
Breast/prostate cancer	0.35	11.58			
Diabetes w/ complications	0.39	12.72			
Diabetes w/o complications	1.18	38.57			
Fibrosis of lung	0.46	15.10			
MDD/biploar	1.62	52.76			
Multiple sclerosis	1.10	36.17			
Rheumatoid arthritis	0.17	5.70			
Seizures	0.30	9.82			
N _{individuals}	1,087,353	165,694			

Inferring Plan Characteristics

- Individual and household deductibles (Zhang et al., 2018)
- Mousehold coinsurance rates and out-of-pocket maxima (Marone &

Sabety, 2021)

Robustness of Estimation Approach

I check my results against various **estimation approaches**:

- 1 Recentered Time Series: Results are visible in the raw data
- 2 Standard DD: Coefficients validate dynamic treatment effects
 - Results do not depend on measurement of dependent variable
- 3 Robust TWFE Estimation:
 - Use large control group to separately identify dynamic treatment effects and time trends (Sun & Abraham, 2020)
 - Verify lack of negative weighting in my approach (Goodman-Bacon et al., 2019)
 - Verify with robust estimators by Chaisemartin & D'Haultfoeuille, 2019 and Sant'Anna & Zhao, 2020

Back to Results

Observed Responses to Utilization of Preventive Care

Time Trends in Utilization of Preventive Care

Takeup of Preventive Care Increases for those in o-Ded Plans

Spending Responses are Largest for Low-Spending Families

Note: Effect of chronic diagnoses for those spending q% of deductible or less prior to event. Coefficient is for the inverse hyperbolic sine of OOP spending.

Extensive Margin Effects

	Year o	Years 1–5 (average)
Any Billed Spending	1.54***	0.60***
	(80.0)	(0.13)
Any OOP Spending	2.62***	1.41***
	(0.11)	(0.18)
Any Outpatient Visits	2.20***	o.65***
	(0.09)	(0.15)
Any Preventive Care	3.23***	0.90***
	(0.15)	(0.22)
Any Prescription Fills	4.74***	2.45***
	(0.41)	(0.53)

Heterogeneity in Disease-Specific Responses

Screening Diagnosis	Hypertension Any Chronic	Diabetes Diabetes	Cholesterol Diabetes	High BMI Diabetes	Cancer Cancer	Depression MDD/Bipolar
$Post_t imes Diagnosis_f$	0.39***	-0.85***	-2.20***	-0.38**	2.55***	0.30**
	(0.03)	(0.21)	(0.29)	(0.12)	(0.43)	(0.10)
$Post_t \times Diagnosis_f \times Parent_j$	-0.34**	3.49*	3.73	1.73*	-1.90	-0.93***
	(0.11)	(1.71)	(2.26)	(0.70)	(2.49)	(0.13)
$Post_t \times Diagnosis_f \times Spouse_i$	-0.74***	2.54***	5.15***	1.03***	-3.33***	-0.62***
	(0.13)	(0.45)	(0.60)	(0.20)	(0.81)	(0.11)
$Post_t \times Diagnosis_f \times Sibling_i$	0.09	0.76	2.89	0.16	1.56	0.68*
, ,	(0.04)	(1.09)	(1.86)	(0.69)	(1.55)	(0.32)
Observations	4,039,602	3,680,725	3,680,725	3,680,725	3,671,064	3,724,608
Adjusted R ²	0.024	0.217	0.388	-0.025	0.473	0.117

Standard errors in parentheses

Back to Results

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Corresponding ↑ Likelihood in *Any* Prescription Refills

Solving the Model: Medical Spending

Optimal medical spending:

$$m_{\text{ift}}^* = \frac{1}{1 + p_{\text{ift}}(\alpha_1 - 1)} \left(\lambda_{\text{ift}} + \omega (1 + p_{\text{ift}}(\alpha_1 - 1) - c_j'(m_{\text{ift}})) - p_{\text{ift}} \alpha_2 m_{\text{ft}}^{\text{CH}} \right).$$

• Note that $c'_i(m_{ift})$ depends on overall spending

Solving the Model: Medical Spending

Optimal medical spending:

$$m_{\text{ift}}^* = \frac{1}{1 + p_{\text{ift}}(\alpha_1 - 1)} \left(\lambda_{\text{ift}} + \omega (1 + p_{\text{ift}}(\alpha_1 - 1) - c_j'(m_{\text{ift}})) - p_{\text{ift}} \alpha_2 m_{\text{ft}}^{\text{CH}} \right).$$

• Note that $c'_i(m_{ift})$ depends on overall spending

The model has the following parameters of interest (θ) to be estimated:

Type shifters: coefficients shifting starting means in $\{p_{ift}, \mu_{\lambda,i}, \psi_{f,t}\}$

$$\left[\begin{array}{c} p_{i,o} \\ \mu_{\lambda,i} \\ \log(\psi_{f,o}) \end{array} \right] \sim \mathcal{N} \left(\left[\begin{array}{c} \beta_p \mathbf{X}_k^p \\ \beta_{\lambda} \mathbf{X}_k^{\lambda} \\ \beta_{\psi} \mathbf{X}_k^{\psi} \end{array} \right], \left[\begin{array}{ccc} \sigma_p^2 & & \\ \sigma_{p,\lambda} & \sigma_{\mu}^2 & \\ \sigma_{p,\psi} & \sigma_{\lambda,\psi} & \sigma_{\psi}^2 \end{array} \right] \right).$$

The model has the following parameters of interest (θ) to be estimated:

- **Type shifters:** coefficients shifting starting means in $\{p_{ift}, \mu_{\lambda,i}, \psi_{f,t}\}$
- **Type evolution:** coefficients that change p_{ift} and ψ_{ft} over time (including $\{\sigma_v^2, \sigma_w^2\}$)

The model has the following parameters of interest (θ) to be estimated:

- **Type shifters:** coefficients shifting starting means in $\{p_{ift}, \mu_{\lambda,i}, \psi_{f,t}\}$
- **Type evolution:** coefficients that change p_{ift} and ψ_{ft} over time (including $\{\sigma_v^2, \sigma_w^2\}$)
- **Preference parameters**: α_{1f} , α_{2f} , ω , η , and σ_{ε}^2

The model has the following parameters of interest (θ) to be estimated:

- **Type shifters:** coefficients shifting starting means in $\{p_{ift}, \mu_{\lambda,i}, \psi_{f,t}\}$
- **Type evolution:** coefficients that change p_{ift} and ψ_{ft} over time (including $\{\sigma_v^2, \sigma_w^2\}$)
- **Preference parameters:** α_{1f} , α_{2f} , ω , η , and σ_{ε}^2
- Other shape parameters suppressed from notation

I estimate the model via **simulated maximum likelihood** (Train, 2009)

Estimation Overview (2/3)

I estimate via the following steps:

1 Numerically integrate over dimensions of unobserved heterogeneity ($\{p_{io}, \mu_{\lambda,i}, \psi_{f,pre}\}$)

Estimation Overview (2/3)

I estimate via the following steps:

- 1 Numerically integrate over dimensions of unobserved heterogeneity ($\{p_{io}, \mu_{\lambda,i}, \psi_{f,pre}\}$)
- 2 Simulate individual-level parameters across these support points

Estimation Overview (2/3)

I estimate via the following steps:

- 1 Numerically integrate over dimensions of unobserved heterogeneity ($\{p_{io}, \mu_{\lambda,i}, \psi_{f,\text{pre}}\}$)
- 2 Simulate individual-level parameters across these support points
- 3 Calculate implied λ_{ift} in each period given data/parameters

Estimation Overview (3/3)

4 Construct conditional pdf of spending:

$$f_m(m_{ift}|\upsilon_{its},\theta,\mathbf{X}) = \begin{cases} \Phi\left(\frac{-\kappa_i - \mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} = o \\ \Phi'\left(\frac{\lambda_{ift} - \kappa_i - \mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} > o. \end{cases}$$

Estimation Overview (3/3)

4 Construct conditional pdf of spending:

$$f_m(m_{ift}|\nu_{its},\theta,\mathbf{X}) = \begin{cases} \Phi\left(\frac{-\kappa_i - \mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} = o \\ \Phi'\left(\frac{\lambda_{ift} - \kappa_i - \mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} > o. \end{cases}$$

5 Construct choice probabilities:

$$\textit{L}_{\textit{fits}} = \frac{\exp(\textit{U}_{\textit{fits}}/\sigma_{\varepsilon})}{\sum_{i \in \mathcal{J}_{\textit{ft}}} \exp(\textit{U}_{\textit{fits}}/\sigma_{\varepsilon})}$$

Estimation Overview (3/3)

4 Construct conditional pdf of spending:

$$f_m(m_{ift}|\nu_{its},\theta,\mathbf{X}) = \begin{cases} \Phi\left(\frac{-\kappa_i - \mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} = o\\ \Phi'\left(\frac{\lambda_{ift} - \kappa_i - \mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} > o. \end{cases}$$

5 Construct choice probabilities:

$$L_{fits} = \frac{\exp(U_{fits}/\sigma_{\epsilon})}{\sum_{i \in \mathcal{J}_{ft}} \exp(U_{fits}/\sigma_{\epsilon})}$$

6 Construct likelihood function and optimize:

$$LL_{f} = \sum_{s=1}^{S} W_{s} \left(\prod_{t=1}^{T} \sum_{j=1}^{J} d_{fjt} f_{m}(m_{ft}) \cdot L_{fjts} \right)$$

Model Performance: Major Health Events

Model captures impacts of major health events on predicted spending

Model Fit: Plan Choices

Model fit in the plan choice stage (match rate: 82.2%)

Model Fit: Spending

Model fit in the **health spending** stage

Additional Parameters: Correlations

		Preferred Specification					
		Estimate	Std. Err.				
Panel B: Heterogeneity in Types							
$\sigma_{arepsilon}^{\scriptscriptstyle 2}$	Idiosyncratic Shock	3.56	(0.085)				
$\sigma_{\scriptscriptstyle D}^{\scriptscriptstyle 2}$	Initial Beliefs	14.51	(0.001)				
σ_w^2	Initial Risk Aversion	2.57	(0.005)				
$\sigma_p^2 \ \sigma_\psi^2 \ \sigma_\lambda^2$	Acute Shocks	2.03	(0.001)				
$ ho_{p,\psi}$		-0.54	(0.002)				
$ ho_{p,\lambda}$		0.38	(0.002)				
$ ho_{\psi,\lambda}$		0.09	(0.002)				

Additional Parameters: Mean Shifters

	$p_{\rm o}$	λ	κ	ψ_{o}
Intercept	0.089	0.190	-0.105	0.112
Age	0.084	-0.088	-0.097	
Age ²	0.115	-0.006	-0.087	
Female	0.102	0.219	-0.117	
Individual risk score	0.100			
Any PE condition in family	0.107			
Туре		0.152		
Family size				0.107
Average family age				0.052
Average family risk score				0.140

Heterogeneity in Welfare Effects of Information

Less averse households experience lower welfare penalties

Higher risk aversion ⇒↑ "translation" of events into spending

Initial Household Risk Aversion $\overline{\psi}$

Heterogeneity in Welfare Effects of Information

Households with ↑ expected risk experience lower welfare penalties

Higher risk ⇒ smaller change in spending outcomes

Average Household Risk Scores

