Sentiment Analysis Using Logistic Regression

Compiled by:

Dr. Amit Kumar Trivedi Department of Computer Science and Engineering TIET, Patiala

Source of slide: DeepLearning.Al

Supervised ML

Compiled by: Dr. Amit Kumar Trivedi, CSED, TIET, Patiala, Source: DeepLearning.AI

Vocabulary and Feature Extraction

Feature Extraction with Frequencies

Positive tweets

Negative tweets

I am happy because I am learning NLP

I am happy

I am sad, I am not learning NLP I am sad

Vocabulary	PosFreq (1)	NegFreq (0)	
1	3	3	-10
am	3	3	1
happy	2	0	1
because	1	0	1
learning	1	1	
NLP	1	1	
sad	0	2	
not	0	1	_

freqs: dictionary mapping from (word, class) to frequency

7	
Vocabulary	PosFreq (1)
	3
am	<u>3</u>
happy	2
because	1
learning	<u>1</u>
NLP	1
sad	0
not	0

I am sad, I am not learning NLP

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

Putting it all together

I am Happy Because i am learning NLP @deeplearning

[happy, learn, nlp]

Bias
$$\leftarrow$$
 [1, 4, 2] \rightarrow Sum negative frequencies $\mathbf{X} = \begin{bmatrix} 1 & X_1^{(1)} & X_2^{(1)} \\ 1 & X_1^{(2)} & X_2^{(2)} \\ \vdots & \vdots & \vdots \\ 1 & X_1^{(m)} & X_2^{(m)} \end{bmatrix}$

Sum positive frequencies

Logistic Regression: Overview

Logistic Regression: Overview

Logistic Regression: Training

Logistic Regression: Testing

• $X_{val} Y_{val} \theta$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

$$\begin{array}{c} h(X_{val}, \theta) \\ pred = h(X_{val}, \theta) \geq 0.5 \end{array} \begin{bmatrix} \begin{bmatrix} 0.3 \\ 0.8 \\ 0.5 \\ \vdots \\ h_m \end{bmatrix} \geq 0.5 = \begin{bmatrix} \underbrace{0.3 \geq 0.5} \\ 0.8 \geq 0.5 \\ \underline{0.5 > 0.5} \\ \vdots \\ pred_m \geq 0.5 \end{bmatrix} = \begin{bmatrix} \underbrace{0} \\ \underline{1} \\ \underline{1} \\ \vdots \\ pred_m \end{bmatrix}$$

Accuracy
$$\longrightarrow \sum_{i=1}^{m} \frac{(pred^{(i)} == y_{val}^{(i)})}{m}$$

Sentiment Analysis

Using Naïve Bayes

Compiled by:

Dr. Amit Kumar Trivedi Department of Computer Science and Engineering TIET, Patiala

Source of slide: DeepLearning.Al

Probability and Bayes' Rule

Corpus of tweets

 $A \rightarrow Positive tweet$

$$P(A) = N_{pos} / N = 13 / 20 = 0.65$$

Probability and Bayes' Rule

$$P(A \cap B) = P(A, B) = \frac{3}{20} = 0.15$$

Probability and Bayes' Rule

$$P(Positive | "happy") =$$

$$\frac{P(\text{Positive} \cap \text{"happy"})}{P(\text{"happy"})}$$

$$P(\text{Positive} | \text{"happy"}) = \frac{P(\text{Positive} \cap \text{"happy"})}{P(\text{"happy"})}$$

$$P(\text{"happy"}|\text{Positive}) = \frac{P(\text{"happy"} \cap \text{Positive})}{P(\text{Positive})}$$

$$P(\text{Positive}|\text{"happy"}) = P(\text{"happy"}|\text{Positive}) \times \frac{P(\text{Positive})}{P(\text{"happy"})}$$

Naïve Bayes Introduction

Positive tweets

I am happy because I am learning NLP I am happy, not sad.

Negative tweets

I am sad, I am not learning NLP I am sad, not happy

word	Pos	Neg
I	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	13	12

word	Pos	Neg
	0.24	0.25
am	0.24	0.25
happy	0.15	0.08
because	0.08	0
learning	0.08	0.08
NLP	0.08	0.08
sad	0.08	0.17
not	0.08	0.17

Naïve Bayes Introduction

Tweet: I am happy today; I am learning.

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} = \frac{0.14}{0.10} = 1.4 > 1$$

$$\frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.14}{0.10} * \frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.10}{0.10}$$

word	Pos	Neg
	0.20	0.20
am	0.20	0.20
happy	0.14	0.10
because	0.10	0.05
learning	0.10	0.10
NLP	0.10	0.10
sad	0.10	0.15
not	0.10	0.15

Laplacian Smoothing

We usually compute the probability of a word given a class as follows:

$$P\left(\mathbf{w_i} \mid ext{ class} \right) = rac{ ext{freq}\left(\mathbf{w_i}, ext{ class}
ight)}{ ext{N_{class}}} \quad ext{ class } \in \{ ext{ Positive, Negative } \}$$

However, if a word does not appear in the training, then it automatically gets a probability of 0, to fix this we add smoothing as follows

$$P\left(\mathrm{w_i} \mid \mathrm{class}
ight) = rac{\mathrm{freq}(\mathrm{w_i}, \, \mathrm{class} \,) + 1}{\left(\mathrm{N_{class}} + \mathrm{V}
ight)}$$

Note that we added a 1 in the numerator, and since there are V words to normalize, we add V in the denominator.

 N_{class} : frequency of all words in class

V: number of unique words in vocabulary

Pos	Neg	ratio
0.19	0.20	
0.19	0.20	
0.14	0.10	
0.10	0.05	
0.10	0.10	
0.10	0.10	
0.10	0.15	
0.10	0.15	
	0.19 0.14 0.10 0.10 0.10 0.10	0.190.200.190.200.140.100.100.050.100.100.100.100.100.15

$$\frac{P(w_i | Pos)}{P(w_i | Neg)}$$

$$\frac{\text{freq}(w_i, 1) + 1}{\text{freq}(w_i, 0) + 1}$$

To do inference, you can compute the following:

$$\frac{P(pos)}{P(neg)}\prod_{i=1}^{m}\frac{P(w_i|pos)}{P(w_i|neg)}>1$$

As m gets larger, we can get numerical flow issues, so we introduce the \log , which gives you the following equation:

$$\log\left(rac{P(pos)}{P(neg)}\prod_{i=1}^{n}rac{P(w_i|pos)}{P(w_i|neg)}
ight)\Rightarrow\lograc{P(pos)}{P(neg)}+\sum_{i=1}^{n}\lograc{P(w_i|pos)}{P(w_i|neg)}$$

The first component is called the log prior and the second component is the log likelihood. We further introduce λ as follows:

doc: I am happy because I am learning.

$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$

$$\lambda(\text{happy}) = log \frac{0.09}{0.01} \approx 2.2$$

word	Pos	Neg	λ
ı	0.05	0.05	0
am	0.04	0.04	0
happy	0.09	0.01	
because	0.01	0.01	
learning	0.03	0.01	
NLP	0.02	0.02	
sad	0.01	0.09	
not	0.02	0.03	

doc: I am happy because I am learning.

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} = \sum_{i=1}^{m} \lambda(w_i)$$

log likelihood = 0 + 0 + 2.2 + 0 + 0 + 0 + 1.1 = 3.3

word	Pos	Neg	λ
	0.05	0.05	0
am	0.04	0.04	0
happy	0.09	0.01	2.2
because	0.01	0.01	0
learning	0.03	0.01	1.1
NLP	0.02	0.02	0
sad	0.01	0.09	-2.2
not	0.02	0.03	-0.4

Training naïve Bayes

- 1. Get or annotate a dataset with positive and negative tweets
- 2. Pre-process the tweets to get [w1, w2, w3, ...]
- 3. Compute freq(w, class)
- 4. Get P(w|pos), P(w|neg)
- 5. Get $\lambda(w)$
- Compute logprior=log(P(pos)/P(neg))

Step 2:

Word

Applications of Naïve Bayes

There are many applications of naive Bayes including:

- Author identification
- Spam filtering
- Information retrieval
- Word disambiguation

This method is usually used as a simple baseline. It is also really fast.