Project Report Format

1. INTRODUCTION

1.1 Project Overview

This project aims to build a machine learning-based web application that predicts the likelihood of a patient suffering from liver cirrhosis using clinical features such as blood values, alcohol consumption patterns, and more. It provides early-stage alerts for medical professionals and patients.

1.2 Purpose

2. IDEATION PHASE

- 2.1 Problem Statement
- 2.2 Empathy Map Canvas
- 2.3 Brainstorming

3. REQUIREMENT ANALYSIS

- 3.1 Customer Journey map
- 3.2 Solution Requirement
- 3.3 Data Flow Diagram
- 3.4 Technology Stack

4. PROJECT DESIGN

- 4.1 Problem Solution Fit
- 4.2 Proposed Solution
- 4.3 Solution Architecture

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

7. RESULTS

Liver Cirrhosis Prediction

AGE	Gender	Place(location where the patient lives)	Duration of alcohol consumption(years)
52	Male 🗸		
		Rural	13
Quantity of alcohol	Type of alcohol consumed	Blood pressure (mmhg)	Obesity
consumption (quarters/day)	Country Liquor 🗸	32	Yes
2			
Family history of cirrhosis/	Hemoglobin (g/dl)	PCV (%)	RBC (million cells/microliter)
hereditary	2	1 \$	2
Yes			
MCV (femtoliters/cell)	MCH (picograms/cell)	MCHC (grams/deciliter)	Total Count
1	5	3	12000
Polymorphs (%)	Lymphocytes (%)	Monocytes (%)	Eosinophils (%)
6	4	2	23
Basophils (%)	Platelet Count (lakhs/mm)	Direct (mg/dl)	Indirect (mg/dl)
6	6	32	2
Total Protein (g/dl)	Albumin (g/dl)	Globulin (g/dl)	AL.Phosphatase (U/L)
6	8	7	2
SGOT/AST (U/L)	USG Abdomen (diffuse liver or not)	Lymphocytes (%)	Hemoglobin (g/dl)
		5	8
	3		

Output 2:

With Different values

8. ADVANTAGES & DISADVANTAGES

Advantages:

- Early detection of liver cirrhosis
- Non-invasive and cost-effective
- Supports faster clinical decisions
- Scalable and user-friendly
- Useful for data-driven insights

Disadvantages:

- Accuracy depends on data quality
- May not generalize to all populations

- Requires strong data privacy measures
- Some models lack interpretability

9. CONCLUSION

- ML helps in early, efficient liver cirrhosis prediction
- Reduces diagnostic time and cost
- Improves patient care and supports doctors
- Shows promise for AI in healthcare

10. FUTURE SCOPE

- Connect with hospital databases (EHR)
- Real-time mobile prediction app
- Extend to other liver diseases
- Add explainability to model results
- Deploy on cloud with multilingual support

11. APPENDIX

Dataset Link: https://www.kaggle.com/datasets/bhavanipriya222/liver-cirrhosis-

prediction

GitHub & Project Demo Link:

https://github.com/Pnvsai888/Revolutionizing-Liver-Care-Predicting-Liver-Cirrhosis-using-Advanced-Machine-Learning-Techniques