Fast Fourier Transform

Jordi Cortadella and Jordi Petit Department of Computer Science

Why Fourier Transform?

Fourier series

• Periodic function f(t) of period 1:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2\pi nt) + \sum_{n=1}^{\infty} b_n \sin(2\pi nt)$$

Fourier coefficients:

$$a_n = 2 \int_0^T f(t) \cos(2\pi nt) dt, \qquad b_n = 2 \int_0^T f(x) \sin(2\pi nt) dt$$

 Fourier series is fundamental for signal analysis (to move from time domain to frequency domain, and vice versa)

Discrete-time signals

Polynomial representation

$$P(x) = x^3 - 2x^2 - 3x + 1$$

$$P(x) = (1, -2, -3, 1)$$

Coefficient representation

Point-value representation

$$P(x) = \{(-1,1), (0,1), (1,-3), (2,-5)\}$$

Polynomials: coefficient representation

• A polynomial is represented as a vector of coefficients $(a_0, a_1, \ldots, a_{n-1})$:

$$A(x) = 2x^4 + x^2 - 4x + 3$$
$$A = (3, -4, 1, 0, 2)$$

• Addition: O(n)

$$A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_{n-1} + b_{n-1})x^{n-1}$$

• Evaluation: O(n) using Horner's method

$$A(x) = a_0 + (x(a_1 + x(a_2 + \dots + x(a_{n-2} + x(a_{n-1})) \dots)))$$

• Multiplication: $O(n^2)$ using brute force

$$A(x) \cdot B(x) = \sum_{i=0}^{2n-2} c_i x^i$$
, where $c_i = \sum_{j=0}^{i} a_j b_{i-j}$

Polynomials: point-value representation

- Fundamental Theorem (Gauss): A degree-n polynomial with complex coefficients has exactly n complex roots.
- Corollary: A degree-n polynomial A(x) is uniquely identified by its evaluation at n+1 distinct values of x.

Polynomials: point-value representation

• A polynomial is represented as a set of pairs (x_i, y_i) :

$$A(x) = \{(x_0, y_0), \dots, (x_{n-1}, y_{n-1})\}\$$

$$B(x) = \{(x_0, z_0), \dots, (x_{n-1}, z_{n-1})\}\$$

• Addition: O(n)

$$A(x) + B(x) = \{(x_0, y_0 + z_0), \dots, (x_{n-1}, y_{n-1} + z_{n-1})\}$$

• Multiplication: O(n), but with 2n-1 points

$$A(x) \cdot B(x) = \{(x_0, y_0 \cdot z_0), \dots, (x_{n-1}, y_{n-1} \cdot z_{n-1})\}\$$

• Interpolation: $O(n^2)$ using Lagrange's formula

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}$$

Interpolation: Lagrange polynomials

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}$$

$$A(x) = \{(-1, -1), (0, -2), (2, 2)\}$$

$$A(x) = -1\frac{(x-0)(x-2)}{(-1-0)(-1-2)} - 2\frac{(x+1)(x-2)}{(0+1)(0-2)} + 2\frac{(x+1)(x-0)}{(2+1)(2-0)}$$

$$A(x) = -\frac{x(x-2)}{3} + (x+1)(x-2) + \frac{(x+1)x}{3}$$

$$A(x) = x^2 - 2$$

Interpolation: Lagrange polynomials

$$A(x) = \{(-1, -1), (0, -2), (2, 2)\}$$

$$A(x) = x^2 - 2$$

Conversion between both representations

representation	addition	multiplication	evaluation
coefficient	0(n)	$0(n^2)$	0(n)
point-value	0(n)	0(n)	$O(n^2)$

Could we have an *efficient* algorithm to move from coefficient to point-value representation and vice versa?

From coefficients to point-values

Given a polynomial $a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}$, evaluate it at n different points x_0, \ldots, x_{n-1} :

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Runtime: $O(n^2)$ matrix-vector multiplication (apply Horner n times).

Horner's rule:

$$p(x) = a_0 + x \left(a_1 + x \left(a_2 + x \left(a_3 + \dots + x \left(a_{n-1} + x a_n \right) \dots \right) \right) \right)$$

- Credits: based on the intuitive explanation by Dasgupta, Papadimitriou and Vazinari, Algorithms, McGraw-Hill, 2008.
- We want to evaluate A(x) at n different points. Let us choose them to be positive-negative pairs: $\pm x_0$, $\pm x_1$, ..., $\pm x_{n/2-1}$
- The computations for $A(x_i)$ and $A(-x_i)$ overlap a lot.
- Split the polynomial into odd and even powers

$$3 + 4x + 6x^2 + 2x^3 + x^4 + 10x^5 = (3 + 6x^2 + x^4) + x(4 + 2x^2 + 10x^4)$$

• The terms in parenthesis are polynomials in x^2 :

$$A(x) = A_e(x^2) + xA_o(x^2)$$

• The calculations needed for $A(x_i)$ can be reused for computing $A(-x_i)$.

$$A(x_i) = A_e(x_i^2) + x_i A_o(x_i^2) A(-x_i) = A_e(x_i^2) - x_i A_o(x_i^2)$$

• Evaluating A(x) at n paired points

$$\pm x_0, \pm x_1, \dots, \pm x_{n/2-1}$$

reduces to evaluating $A_e(x)$ and $A_o(x)$ at just n/2 points: $x_0^2, \cdots, x_{n/2-1}^2$

If we could recurse, we would get a running time:

$$T(n) = 2 \cdot T(n/2) + O(n) = O(n \log n)$$

But can we recurse?

The problem:

?

We need x_0^2 and x_1^2 to be a plus-minus pair. But a square cannot be negative!

Not if we use real numbers. How about complex numbers?

Selection of the evaluation points

Selection of the evaluation points

Complex numbers: review

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

Polar coordinates: (r, θ)

Length:
$$r = \sqrt{a^2 + b^2}$$

Angle $\theta \in [0,2\pi)$: $\cos \theta = \frac{a}{r}$, $\sin \theta = \frac{b}{r}$

heta can always be reduced modulo 2π

Some examples:

Number	-1	i	5 + 5i
Polar coords	$(1,\pi)$	$(1,\pi/2)$	$(5\sqrt{2},\pi/4)$

Complex numbers: multiplication

$$-z = (r, \theta + \pi)$$
, since $-1 = (1, \pi)$

If z is on the unit circle, then $z^n = (1, n\theta)$

Complex numbers: the *n*th roots of unity

Solutions to the equation
$$z^n = 1$$
 $(n = 16)$

Solutions are $z=(1,\theta)$, for θ a multiple of $2\pi/n$

All roots are plus-minus paired:

$$-(1,\theta) = (1,\theta + \pi)$$

Roots of unity for n = 8

Recursive divide-and-conquer

Divide-and-conquer step

Evaluate A(x) at nth roots of unity

Evaluate $A_e(x^2)$ and $A_o(x^2)$ at (n/2)nd roots of unity

Divide-and-conquer steps


```
function FFT(A, \omega)
   Inputs: A = (a_0, a_1, ..., a_{n-1}), for n a power of 2
                \omega: A primitive nth root of unity
   Output: (A(1), A(\omega), A(\omega^2), ..., A(\omega^{n-1}))
   if \omega=1: return A // Only 1 coef. (constant)
   (A_e(\omega^0), A_e(\omega^2), \dots, A_e(\omega^{n-2})) = \mathsf{FFT}(A_e, \omega^2)
   (A_o(\omega^0), A_o(\omega^2), \dots, A_o(\omega^{n-2})) = \mathsf{FFT}(A_o, \omega^2)
```

for
$$k=0$$
 to $n-1$: $A(\omega^k)=A_e(\omega^{2k})+\omega^kA_o(\omega^{2k})$

return
$$(A(1), A(\omega), A(\omega^2), ..., A(\omega^{n-1}))$$

for
$$k=0$$
 to $n-1$: $A(\omega^k)=A_e(\omega^{2k})+\omega^kA_o(\omega^{2k})$

Example (n = 8):

$$A(\omega^{0}) = A_{e}(\omega^{0}) + \omega^{0}A_{o}(\omega^{0})$$

$$A(\omega^{1}) = A_{e}(\omega^{2}) + \omega^{1}A_{o}(\omega^{2})$$

$$A(\omega^{2}) = A_{e}(\omega^{4}) + \omega^{2}A_{o}(\omega^{4})$$

$$A(\omega^{3}) = A_{e}(\omega^{6}) + \omega^{3}A_{o}(\omega^{6})$$

$$A(\omega^{4}) = A_{e}(\omega^{8}) + \omega^{4}A_{o}(\omega^{8})$$

$$A(\omega^{5}) = A_{e}(\omega^{10}) + \omega^{5}A_{o}(\omega^{10})$$

$$A(\omega^{6}) = A_{e}(\omega^{12}) + \omega^{6}A_{o}(\omega^{12})$$

$$A(\omega^{7}) = A_{e}(\omega^{14}) + \omega^{7}A_{o}(\omega^{14})$$

$$\omega^4 = \omega^{12}$$

$$\omega^2 = -\omega^6$$

for
$$k=0$$
 to $n-1$: $A(\omega^k)=A_e(\omega^{2k})+\omega^kA_o(\omega^{2k})$

Example (n = 8):

$$A(\omega^{0}) = A_{e}(\omega^{0}) + \omega^{0}A_{o}(\omega^{0})$$

$$A(\omega^{1}) = A_{e}(\omega^{2}) + \omega^{1}A_{o}(\omega^{2})$$

$$A(\omega^{2}) = A_{e}(\omega^{4}) + \omega^{2}A_{o}(\omega^{4})$$

$$A(\omega^{3}) = A_{e}(\omega^{6}) + \omega^{3}A_{o}(\omega^{6})$$

$$A(\omega^{4}) = A_{e}(\omega^{8}) + \omega^{4}A_{o}(\omega^{8})$$

$$A(\omega^{5}) = A_{e}(\omega^{10}) + \omega^{5}A_{o}(\omega^{10})$$

$$A(\omega^{6}) = A_{e}(\omega^{12}) + \omega^{6}A_{o}(\omega^{12})$$

$$A(\omega^{7}) = A_{e}(\omega^{14}) + \omega^{7}A_{o}(\omega^{14})$$

$$A(\omega^{0}) = A_{e}(\omega^{0}) + \omega^{0}A_{o}(\omega^{0})$$

$$A(\omega^{1}) = A_{e}(\omega^{2}) + \omega^{1}A_{o}(\omega^{2})$$

$$A(\omega^{2}) = A_{e}(\omega^{4}) + \omega^{2}A_{o}(\omega^{4})$$

$$A(\omega^{3}) = A_{e}(\omega^{6}) + \omega^{3}A_{o}(\omega^{6})$$

$$A(\omega^{4}) = A_{e}(\omega^{0}) - \omega^{0}A_{o}(\omega^{0})$$

$$A(\omega^{5}) = A_{e}(\omega^{2}) - \omega^{1}A_{o}(\omega^{2})$$

$$A(\omega^{6}) = A_{e}(\omega^{4}) - \omega^{2}A_{o}(\omega^{4})$$

$$A(\omega^{7}) = A_{e}(\omega^{6}) - \omega^{3}A_{o}(\omega^{6})$$

$$\omega^4 = \omega^{12}$$

$$\omega^2 = -\omega^6$$

for
$$k=0$$
 to $n-1$: $A(\omega^k)=A_e(\omega^{2k})+\omega^kA_o(\omega^{2k})$

Example (n = 8):

$$A(\omega^{0}) = A_{e}(\omega^{0}) + \omega^{0}A_{o}(\omega^{0})$$

$$A(\omega^{4}) = A_{e}(\omega^{0}) - \omega^{0}A_{o}(\omega^{0})$$

$$A(\omega^{1}) = A_{e}(\omega^{2}) + \omega^{1}A_{o}(\omega^{2})$$

$$A(\omega^{5}) = A_{e}(\omega^{2}) - \omega^{1}A_{o}(\omega^{2})$$

$$A(\omega^{2}) = A_{e}(\omega^{4}) + \omega^{2}A_{o}(\omega^{4})$$

$$A(\omega^{6}) = A_{e}(\omega^{4}) - \omega^{2}A_{o}(\omega^{4})$$

$$A(\omega^{3}) = A_{e}(\omega^{6}) + \omega^{3}A_{o}(\omega^{6})$$

$$A(\omega^{7}) = A_{e}(\omega^{6}) - \omega^{3}A_{o}(\omega^{6})$$

$$A(\omega^{0}) = A_{e}(\omega^{0}) + \omega^{0}A_{o}(\omega^{0})$$

$$A(\omega^{1}) = A_{e}(\omega^{2}) + \omega^{1}A_{o}(\omega^{2})$$

$$A(\omega^{2}) = A_{e}(\omega^{4}) + \omega^{2}A_{o}(\omega^{4})$$

$$A(\omega^{3}) = A_{e}(\omega^{6}) + \omega^{3}A_{o}(\omega^{6})$$

$$A(\omega^{4}) = A_{e}(\omega^{0}) - \omega^{0}A_{o}(\omega^{0})$$

$$A(\omega^{5}) = A_{e}(\omega^{2}) - \omega^{1}A_{o}(\omega^{2})$$

$$A(\omega^{6}) = A_{e}(\omega^{4}) - \omega^{2}A_{o}(\omega^{4})$$

$$A(\omega^{7}) = A_{e}(\omega^{6}) - \omega^{3}A_{o}(\omega^{6})$$

FFT shuffling

for
$$k=0$$
 to $n-1$: $A(\omega^k)=A_e(\omega^{2k})+\omega^kA_o(\omega^{2k})$

Example (n = 8):

$$A(\omega^{0}) = A_{e}(\omega^{0}) + \omega^{0}A_{o}(\omega^{0})$$

$$A(\omega^{4}) = A_{e}(\omega^{0}) - \omega^{0}A_{o}(\omega^{0})$$

$$A(\omega^{1}) = A_{e}(\omega^{2}) + \omega^{1}A_{o}(\omega^{2})$$

$$A(\omega^{5}) = A_{e}(\omega^{2}) - \omega^{1}A_{o}(\omega^{2})$$

$$A(\omega^{2}) = A_{e}(\omega^{4}) + \omega^{2}A_{o}(\omega^{4})$$

$$A(\omega^{6}) = A_{e}(\omega^{4}) - \omega^{2}A_{o}(\omega^{4})$$

$$A(\omega^{3}) = A_{e}(\omega^{6}) + \omega^{3}A_{o}(\omega^{6})$$

$$A(\omega^{7}) = A_{e}(\omega^{6}) - \omega^{3}A_{o}(\omega^{6})$$

for
$$k=0$$
 to $n/2-1$:
$$A(\omega^k) = A_e(\omega^{2k}) + \omega^k A_o(\omega^{2k})$$

$$A(\omega^{k+\frac{n}{2}}) = A_e(\omega^{2k}) - \omega^k A_o(\omega^{2k})$$

```
function FFT(a, \omega)
  Inputs: a = (a_0, a_1, ..., a_{n-1}), for n a power of 2
               \omega: A primitive nth root of unity
  Output: (a(1), a(\omega), a(\omega^2), ..., a(\omega^{n-1}))
  if \omega=1: return a // n=1, \alpha has only one element
   (s_0, s_1, ..., s_{n/2-1}) = FFT((a_0, a_2, ..., a_{n-2}), \omega^2)
  (s_0', s_1', \dots, s_{n/2-1}') = \mathsf{FFT} ((a_1, a_3, \dots, a_{n-1}), \omega^2)
   for k=0 to n/2-1: // FFT shuffling
     r_k = s_k + \omega^k s_k'
     r_{k+n/2} = s_k - \omega^k s_k'
   return (r_0, r_1, ..., r_{n-1})
```

FFT: asymptotic complexity

The runtime of the FFT can be expressed as:

$$T(n) = 2 \cdot T(n/2) + O(n)$$

Using the Master Theorem we conclude:

Runtime
$$FFT(n) = O(n \log n)$$

Unfolding the FFT

Unfolding the FFT (butterfly diagram)

Why is it called a butterfly diagram?

Conversion between both representations

representation	addition	multiplication	evaluation
coefficient	0(n)	$0(n^2)$	0(n)
point-value	0(n)	0(n)	$O(n^2)$

From point-values to coefficients

The Fast Fourier Transform computes:

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)^2} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

where
$$\omega = e^{2\pi i/n} = (1, 2\pi/n)$$
.

Let us call $F_n(\omega)$ the Fourier matrix. Thus,

$$y = F_n(\omega) \cdot a$$

How about if we know y and we want to obtain a?

From point-values to coefficients

$$y = F_n(\omega) \cdot a$$

$$\downarrow \qquad \qquad \downarrow$$

$$[F_n(\omega)]^{-1} \cdot y = a$$

 $F_n(\omega)$ is a unitary matrix and has the following property:

$$[F_n(\omega)]^{-1} = \frac{1}{n} \cdot F_n(\omega^{-1})$$

and also

If ω is a primitive *n*th root of unit, then $1/\omega$ is also a primitive *n*th root of unit.

Note: The inverse of unitary matrix is its conjugate transpose

Conversion between both representations

representation	addition	multiplication	evaluation
coefficient	0(n)	$0(n^2)$	0(n)
point-value	0(n)	0(n)	$O(n^2)$

Polynomial multiplication

Input: Coefficients of two polynomials A(x) and B(x), of degree d_A and d_B , respectively. Let $d = d_A + d_B$.

Output: The product $C = A \cdot B$.

- 1. Selection:
 - Pick $\omega = (1, 2\pi/n)$, such that $n \ge d+1$ and n is a power of two.
- 2. Evaluation (FFT):
 - Compute A(1), $A(\omega)$, $A(\omega^2)$, ..., $A(\omega^{n-1})$.
 - Compute B(1), $B(\omega)$, $B(\omega^2)$, ..., $B(\omega^{n-1})$.
- 3. Multiplication:
 - Compute $C(\omega^k) = A(\omega^k) \cdot B(\omega^k)$, for all k = 0, ..., n 1.
- Interpolation (inverse FFT):
 - Recover $C(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_d x^d$.

Example: from values to coefficients

Let us consider a polynomial:

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

• We have n=4 and $\omega=i$. Let us assume that the evaluation at four different points is:

$$P(1) = 2$$

 $P(i) = 1 - i$
 $P(-1) = 4$
 $P(-i) = 1 + i$

• We want to calculate the coefficients (a_0,a_1,a_2,a_3) using the inverse FFT, i.e.,

$$[a_0, a_1, a_2, a_3] = \frac{1}{4} FFT([2, 1 - i, 4, 1 + i], \omega^{-1})$$

Example: from values to coefficients

$$[a_0, a_1, a_2, a_3] = \frac{1}{4}[8, -4, 4, 0]$$

$$P(x) = x^2 - x + 2$$

Example: from coefficients to values

$$[y_0, y_1, y_2, y_3] = FFT([a_0, a_1, a_2, a_3], \omega = i)$$

$$[y_0, y_1, y_2, y_3] = [2,1-i,4,1+i]$$

Conclusions

- Gilbert Strang (MIT, 1994):
 "the most important numerical algorithm of our lifetime".
- Reference: Cooley, James W., and Tukey, John W., 1965, "An algorithm for the machine calculation of complex Fourier series," Mathematics of Computation 19: 297-301.

EXERCISES

Multiplication

Consider the polynomials $1 + x - 2x^2 + x^3$ and $-1 + x^2$:

– Choose an appropriate power of two to execute the FFT for the polynomial multiplication. Find the value of ω .

– Give the result of the FFT for x^2-1 using the value of ω required for the multiplication (no need to execute the FFT).

Polynomial evaluation

Consider the FFT of the polynomial $x^2 + 2x + 1$:

- Find the value of ω to execute the FFT.
- In which points the polynomial must be evaluated?
- Execute the FFT and give the point-value representation of the polynomial.

Multiplication using FFT

Consider the polynomials $-1 + 2x + x^2$ and 1 + 2x:

- Choose an appropriate power of two to execute the FFT. Find the value of ω .
- Calculate their point-value representation using the FFT (execute the FFT algorithm manually).
- Calculate the product of the point-value representations.
- Execute the inverse FFT to obtain the coefficients of the product.