

Cálculo Numérico - Trabajo Práctico N°7

Interpolación y aproximación polinomial a trozos Curvas Splines

Problema 1:

Dadas las siguientes coordenadas de los perfiles NACA de la serie 6, utilizar curvas splines cúbicas para interpolar los puntos dados y obtener la línea geométrica que define el perfil.

NACA 651-412 [Stations and ordinates given in percent of airfoil chord]

Upper surface		Lower surface				
Station	Ordinate	Station	Ordinate			
0 .847 .580 1.059 2.389 4.757 7.247 9.744 14.757 19.781 24.811 29.840 84.884 39.928 44.902 55.085 60.000 55.085 70.101 75.107 80.108 85.090 95.083 100.000	0 1.010 1.236 1.588 2.224 3.227 4.010 4.672 5.741 6.562 7.193 7.055 7.971 8.189 8.189 8.189 7.908 7.908 7.908 6.440 6.886 4.847 8.935 1.996 0	0 .658 .920 1,441 2,717 5,248 7,753 10,254 15,243 20,219 25,189 30,154 35,116 40,077 45,088 50,000 54,955 59,986 64,914 69,899 74,898 79,897 84,910 89,984 94,967 100,000	0 810 9568 1, 160 1, 490 1, 963 2, 814 2, 604 2, 613 3, 770 3, 855 3, 759 3, 855 2, 801 2, 820 1, 751 2, 282 1, 7287 751 2, 282 1, 728 1			
L. E. radius: 1.000						

NACA 663-218

[Stations and ordinates given in percent of airfoil chord]

Upper surfa c e		Lower surface				
Station	Ordinate	Station	Ordinate			
0 . 889 . 628 . 1.115 . 2.846 . 4.827 . 7.320 . 818 . 14.825 . 10.841 . 24.868 . 20, 887 . 34.914 . 44.971 . 50, 000 . 55, 028 . 60, 054 . 68, 075 . 70, 089 . 75, 095 . 80, 098 . 85, 081 . 90, 050 . 96, 030 . 100, 000	0 1.848 1,636 2,064 2,824 4,003 4,933 5,724 7,082 8,742 9,817 9,731 0,989 10,045 10,045 9,828 9,894 8,610 7,568 6,345 5,001 8,606 2,230 9,961	0 .611 .872 1.385 2.654 5.173 7.680 10.182 15.175 20.159 25.187 30.118 35.086 40.058 45.029 60.000 54.972 59.946 64.925 79.907 84.919 89.940 94.970 100.000	0 -1, 268 -1, 490 -1, 840 -2, 456 -3, 370 -5, 650 -6, 952 -7, 373 -7, 071 -7, 847 -7, 889 -7, 252 -6, 555 -8, 409 -1, 196 -1, 829 0			
L. E. radius: 1,955 Slope of radius through L. B.: 0.084						

Cuadro 1: Coordenadas a interpolar de dos perfiles NACA de la serie 6.

Notar que con los puntos dados y las curvas spline a trozos encontradas, se tiene en forma matemática la geometría "aproximada" del perfil aerodinámico.

Problema 2:

La tabla siguiente muestra el coeficiente de arrastre C_D de una esfera como una función del número de Reynolds. Utilice un spline cúbico natural para encontrar el C_D para los números de Reynolds Re = 5, 50, 500, y, 5000.

INSTITUTO UNIVERSITARIO AERONÁUTICO

Cálculo Numérico

Fecha:23/04/2013

Re	0.2	2	20	200	2000	20000
C_D	103	13.9	2.72	0.800	0.401	0.433

Cuadro 2: Coeficiente de resistencia en función del número de Reynolds.

Ayuda: utilice escala logarítmica. Verifique que utilizando una escala lineal, el polinomio interpolador obtenido utilizando splines cúbicos no tiene un comportamiento adecuado como se esperaría.

Problema 3:

En una curva spline interpoladora de grado n se requiere continuidad en la derivada de hasta orden n-1 en los puntos a interpolar. Cuantas condiciones adicionales son necesarias para especificar una curva spline única?.

INSTITUTO UNIVERSITARIO AERONÁUTICO

Cálculo Numérico Fecha:23/04/2013

Resolución

Resolución - Problema 3:

Suponga que en el intervalo [a,b] están definidos los puntos a interpolar $a=x_0 < x_1 < \ldots < x_m=b$ en cada uno de los m intervalos $[x_i,x_{i+1}]$ la curva spline es un polinómio de grado n, por lo tanto, la curva spline es definida por m (n+1) coeficientes independientes. En cada uno de los extremos del intervalo, el valor del polinomio está definido, por lo tanto se especifican 2m condiciones. En cada uno de los puntos x_1,x_2,\ldots,x_{m-1} de los intervalos, la derivada de orden $1,\ldots,n-1$ debe ser continua, por lo tanto se obtienen (m-1) (n-1)restricciones adicionales. Luego, el número de condiciones adicionales requeridas para obtener una curva spline única es:

$$m(n+1) - 2m - (m-1)(n-1) = n-1 \tag{1}$$