

Theoretische Informatik

Prof. Dr. Juraj Hromkovič Dr. Hans-Joachim Böckenhauer https://courses.ite.inf.ethz.ch/theoInf20

Exercises – Sheet 8

Zürich, November 6, 2020

Exercise 20

(a) Justify informally the correctness of the following statement:

Let L be a language over an alphabet Σ . If $L \in \mathcal{L}_{RE}$ and $L^{\complement} \in \mathcal{L}_{RE}$, then $L \in \mathcal{L}_{R}$.

(b) We consider the language

$$L_{U,\lambda} = \{ \operatorname{Kod}(M) \mid \lambda \in L(M) \}.$$

Prove that $(L_{U,\lambda})^{\complement} \notin \mathcal{L}_{RE}$.

10 points

Exercise 21

Prove the following statements by providing an explicit reduction and showing its correctness.

- (a) $L_{\rm H} \leq_{\rm R} (L_{\rm diag})^{\complement}$,
- (b) $(L_{\text{diag}})^{\complement} \leq_{\mathbf{R}} L_{\mathbf{H}}$.

10 points

Exercise 22

Prove that the language

 $L_{\text{reach}} = \{ \text{Kod}(M) \# 0^i \mid i \in \mathbb{N}, M \text{ has at least } i+1 \text{ states and there exists}$ a word x such that the i-th state of M is reached at least once during the computation of M on x

is not recursive by providing an explicit many-one-reduction and proving its correctness (see Def. 5.24 in the textbook). **10 points**

Submission: Friday, November 13, by 11:15 at the latest, as a clearly legible PDF via e-mail directly to the respective teaching assistant.