

1

SEQUENCE LISTING

<110> MIYAMOTO, KAORU
YAZAWA, TAKASHI
UMEZAWA, AKIHIRO

<120> METHOD FOR DIFFERENTIATING MESENCHYMAL STEM CELLS INTO
STEROID-PRODUCING CELLS

<130> 47232-5014 (230640)

<140> 10/591,530
<141> 2006-09-01

<150> PCT/JP05/02548
<151> 2005-02-18

<150> JP 2004-058406
<151> 2004-03-03

<160> 18

<170> PatentIn Ver. 3.3

<210> 1
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 1
gaaggaaagc cagcaggaga acg

23

<210> 2
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 2
ctctgatgac accactctgc tcc

23

<210> 3
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 3
cgcacagtcc agaacaacaa gca 23

<210> 4
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 4
cggttagaga aggcaggata gag 23

<210> 5
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 5
gcagaccatc ctagatgtca at 22

<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 6
tcatcatagc tttgggtgagg 20

<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 7
aaaataataa cactggggaa ggc 23

<210> 8
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 8
tgggtgtggg tgtaatgaga tgg 23

<210> 9
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 9
agaggatccg cttggggctg c 21

<210> 10
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 10
ggagaattcc ttatggatgg c 21

<210> 11
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 11
tcaccaaatg tatcaagaat gtgt 24

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 12
ccatctgcac atcctcttcc tctt

24

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 13
ccaacagatg tatctggaaag gtgc

24

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 14
ccatctgcac atcctcttgc ctca

24

<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 15
accacagtcc atgccatcac

20

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 16
tccaccaccc tgttgctgtta

20

<210> 17
<211> 1389
<212> DNA
<213> Rattus norvegicus

<400> 17
atggactatt cgtacgacga ggacctggac gagctgtgtc cagtgtgtgg tgacaagggtg 60
tcgggctacc actacgggct gctcacgtgc gagagctgca agggcttctt caagcgcaca 120
gtccagaaca acaagcatta cacgtgcacc gagagtcaga gctgaaaat cgacaagacg 180
cagcgtaagc gctgtccctt ctgccgcttc cagaagtgcc tgacggtggg catgcgcctg 240
gaagctgtgc gtgctgatcg aatgcggggc ggccggaaca agtttgggcc catgtacaag 300
agagaccggg ccttgaagca gcagaagaaa gcacagattc gggccaatgg cttcaaactg 360
gagaccggac caccgatggg ggttcccccg ccacccccc ccccacccgga ctacatgtta 420
ccccctagcc tgcacatgcacc ggagcccaag gccctggctc ctggcccacc cagtggggcg 480
ctgggtgact ttggagcccc atctctgccc atggccgtgc ctggtccccca cgggcctctg 540
gctggctacc tctatcctgc ctctctaaac cgacccatca agtctgagta tccagagccc 600
tacgcccagcc cccctcaaca gccaggggcca ccctacagct atccggagcc cttctcagga 660
gggcccaatg taccagagct catattgcag ctgctcaac tagagccaga ggaggaccag 720
gtgcgtgtc gcacatgtggg ctgcctgcag gagccagccaa aaagccccc tgaccagcca 780
gcgccttca gcctcctctg caggatggcg gaccagacct ttatctccat tgtcactgg 840
gcacgaaggt gcatggatt taaggagctg gaggtggctg accagatgac actgctgcag 900
aactgctgga gtgagctgct ggtgctggac cacatctacc gccaggtcca gtacggcaag 960
gaagacagca tcttgctggt cactggacag gaggtggagc tgagcacggg ggctgtgcag 1020
gctggctccc tgctgcacag cctggtgctg cgggcacagg agttgggtct gcagctgcat 1080
gccctgcaac tggaccgcca ggagtttgc tgcacatgcacc ttctcatcct cttcagccct 1140
gatgtgaaat tcctgaacaa ccacagcctg gtaaaaggacg cccaggagaa ggccaaacgccc 1200
gccctgctgg attacacctt gtgtcaactac ccacactgcg gggacaaaatt ccagcagttg 1260
ctattgtgcc tggtgaggt gccccactg agcatgcagg ccaaggagta tctgtaccat 1320
aagcatttgg gcaacgagat gcccccaac aaccttctca ttgagatgct gcaggccaag 1380
cagacttga 1389

<210> 18
<211> 2393
<212> DNA
<213> Homo sapiens

<400> 18
aagcttcagg gatggcagcc gcttgtgaga aaccctgagc atgagccact cagccaccca 60
gccacccagt caccctgcca cccagccacc cagtcaccca gaaaagctgc tcctgggtgc 120
tgcacccctcg gaagctgtga gataataaaac atttattgtt ttaagccact aaattttggg 180
ataatttgtt aagcagcagt aaacagctaa tacattcagc cttgtttggc gtgagtgatg 240
tgtttctgga agctcttca gagaagttag gtagcttattc tcccagaagc cacagcaaac 300
ctttccctgt ;gtttcattgg cccaaactgg atcggttggc ctatgctgtg atgtgaccat 360
ggcgttggaa gaggatgagg caataacctc cagcttggc cacttctggg gaggggggtca 420
gtgcccacaa cactggggga ggtgcggagg cctgaacggc agttgggtg gctgccaaga 480
ggaccacaag ttcttcattg ccacatcgat tagggctct tctgaggggag gaatgtgggg 540
ctgcgttagaa caatgggatt gactttaaatg cagaaagtta taaatgtcac ctcaagtgc 600
agacccttgg aggaaaaact agtccttggc agactgctt tcttggaa gctcatcacc 660
ctgcgcgtgc tcgttgagaca ctgccttcct tggctgatgt cattccaggc tcaaggctat 720
catggaggca aaacaggctt tctcatactc tctttatcag aaggttcatg actgatgagg 780
tagtggtcac tccagcggga agagcaacaa ccactcttgc taagtacttt ttttttttct 840
tctaaaaact gttgctctaa atttggaa agtggttcaa cagtttgc gtcgggtc 900
aagtggctgt gtaaggacaa cttttgcatt tgggttgc gtcgggtc acacatacaa 960
cagaagaggc caggaggatg tcactcgtgt gtgtgtgtgt gtgtgtgtgt 1020
cagctctatt gagatataat tcacacacca tacattcacc catttaaatg atgcaattca 1080

atggcttta gtgtatagag agttgttcaa taattaccac atatcttag aatatttca 1140
tttcatcat cctaagaatc cctacacact ttatgtccca tcctctaatt cctctatccc 1200
cctagctcta agcaaccacc agtctattt ctgtctgtta gatgtgtgtt ttaaatgcct 1260
tatttgcag aaaataagat tttggggaaa aaaagcaaga agtacccctcc aatgataagt 1320
ataaggata gtgttagattg ctgtcatgaa atgctctaca tggcacatgt atgtttctg 1380
acctacacat ttttaccaag tggctgtaa ttttgtgaa atgacttgaa aactctacag 1440
gtgactgacc cttgttgtt gggaaagtgg taggtgcagg gtgatggggg gtgggtgtgg 1500
gggctgacct gggctggaag gatgggtctg gggatatgat atgatgggag ggggtatgga 1560
agcagctctg aggggtttgc agcacagatc aagtgtgtgg acagggaaaga gctgacatcc 1620
tgagttccgg atggcaacca gatttgccaa ggtcttagag tggatccaga gtggagccctg 1680
accacagacc tcagctcaag ggacccagag cccctctgag tcagctgtac tgaattacag 1740
ccccaaatct gggtcaactg gggagagacg acgaggatta gggttccaag gtgaaactgt 1800
gccattgcgc tccagcctgg gcaacaagaa tgaaactctc taaaaataaa ataaaataaa 1860
ataggcttaag gatgcatttc tcagaactt tccctgttgc tcaatgatgt gtgtctatac 1920
agtggggcca taactaagac gtatgttgc caagctggca agatagctct gaccttctct 1980
tggggccctc atttccccca aacacaggtt gtctgcagtc ttgaccaatg gtcgccaggg 2040
catggactcc gctgcagggg ccagtggag gccccagctc aggcaaaagc acaggcagat 2100
atttcaggag tctgctaggg ctggcactga gggcagagac agaggggtct ccctgtccctt 2160
tggagaacct cacgctgcag aaattccaga ctgaaccttg ataccgagta ggggaggagc 2220
tgtctgcggg tttgagcctg cagcaggagg aaggacgtga acatttatc agcttctggt 2280
atggccttga gctggtagtt ataatctgg ccctgggtggc ccagggtac agtcatccta 2340
gcagtccccg ctgaagtggc gcaggtacag tcacagctgt ggggacagca atg 2393