AAP PLF Analysis Problem Set

March 2024

1 Warmup

- 1. Write down the formal definition of the supremum.
- 2. Write down the definition of Cauchy convergence and convergence.
- 3. Write down the definition of limsup and liminf.

2 Problems with Fields

- 1. Let $(F, +, 0, \cdot, 1, \leq)$ be an ordered field. Prove that
- 2. (a) Write down the definition of the triangle inequality and prove it.
 - (b) Prove the following inequality:

$$||a| - |b|| < |a - b|$$

This is also called the reverse triangle inequality.

3. Prove the following:

$$\forall a, b \in F : |a \cdot b| = |a| \cdot |b|$$

Proof.

3 Supremum and Completeness Problems

3.1 Definitions and Important Proofs

- 1. Write down the Archimedean Property of the reals.
- 2. (a) State the Completeness Axiom for Real Numbers.
 - (b) Assuming the completeness axiom, prove the analogous statement for the infimum.
- 3. Let S = [a, b), where a < b. Find $\inf(S)$ and $\sup(S)$.
- 4. Let $S = \left\{ \frac{n}{2^n} : n \in \mathbb{N}, n \neq 0 \right\}$. Find $\inf(S)$ and $\sup(S)$.
- 5. Let $A \subseteq \mathbb{R}$ such that $A \neq \emptyset$ and bounded above. Let b > 0. Define

$$bA = \{ba : a \in A\}.$$

Show that $\sup(bA) = b \sup(A)$. What is $\sup(bA)$ if b < 0 and A is bounded below?

6. Prove that for any non-empty $A, B \subseteq \mathbb{Q}$ admitting suprema, we have

$$A \subseteq B \implies \sup(A) \le \sup(B)$$

Then, show that under these conditions $A \cup B$ admits a supremum and show

$$\sup(A \cup B) = \max(\sup(A), \sup(B))$$

7. Given two sets $A, B \subseteq \mathbb{Q}$, denote

$$A + B := \{a + b : a \in A \land b \in B\}$$

Assuming that both A, B are non-empty and admit suprema, prove that

$$\sup(A+B) = \sup(A) + \sup(B)$$

- 8. We say that B is dense in A if $\forall a \in A : \forall \epsilon > 0 : \exists b \in B : |a b| < \epsilon$. Prove that if A is dense in B, B is dense in A and if both sets don't contain their supremums, then $\sup A = \sup B$.
- 9. (Challenge Question) Let $A \sim B := A$ is dense in B. Is this an equivalence relation on $P(\mathbb{R})$?

4 Sequences

4.1 Give an example of each of the following or prove that it is impossible.

1. A sequence that is convergent but not monotonic.

4.2 Important Proofs

- 1. Prove the multiplication law for limits.
- 2. Prove that every convergent sequence is bounded. Then, prove that every Cauchy sequence is bounded. Give an example of a bounded sequence that is not convergent (with a proof).
- 3. Prove that every monotone bounded sequence converges.

4.3 Textbook Problems

Ross, Section 10: 6, 8, 9, 10

4.4 Problems

- 1. Prove that for every real number x, there exists a sequence of **rationals** q_n such that q_n converges to x.
- 2. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence that diverges to $-\infty$. Prove that $\{a_n^2\}_{n\in\mathbb{N}}$ diverges to $+\infty$.
- 3. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. If $L\in$ is not a subsequential limit of $\{a_n\}_{n\in\mathbb{N}}$, there exists some $\epsilon>0$ such that only finitely many terms of the sequence $\{a_n\}_{n\in\mathbb{N}}$ lie in the interval $(L-\epsilon,L+\epsilon)$.
- 4. Let $a_1 = 1$ and $a_{n+1} = 3 \frac{1}{a_n}$. Prove that a_n converges. Find what the limit is.

5 Subsequences

5.1 Give an example of each of the following or prove that it is impossible.

- 1. A monotonic sequence with no convergent subsequences.
- 2. A sequence with 3 subsequential limits.
- 3. A sequence that has every integer as a subsequential limit.
- 4. A sequence that has every rational as a subsequential limit.
- 5. A sequence that has every real number as a subsequential limit.
- 6. An unbounded sequence with a convergent subsequence.

6 Liminf and Limsup

6.1 Give an example of each of the following or prove that it is impossible.

6.2 Problems

- 1. If $\limsup_{n\to\infty} a_n = +\infty$, $\limsup_{n\to\infty} k \cdot a_n = +\infty$ for any k > 0.
- 2. Prove that there's a subsequence that converges to the limsup.
- 3. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers and let a be a subsequential limit of a_n . Prove that

$$\liminf_{n \to \infty} a_n \le a \le \limsup_{n \to \infty} a_n$$

4. Given bounded sequences of real numbers $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$, prove that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

Give an example where the inequality is strict.

5. Given bounded non-negative sequences of real numbers $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$, prove that

$$\limsup_{n\to\infty}(a_n+b_n)\leq (\limsup_{n\to\infty}a_n)(\limsup_{n\to\infty}b_n)$$

Give an example where the inequality is strict.

7 Infinite Series

7.1 Give an example of each of the following or prove that it is impossible.

- 1. A convergent infinite series where the root test applies but the ratio test doesn't apply.
- 2. A convergent infinite series where neither the root or the ratio test apply.
- 3. A divergent infinite series where neither the root or the ratio test apply.
- 4. An alternating series whose terms go to 0 but doesn't converge.

7.2 Problems

- 1. Suppose that $\{a_n\}_{n\in\mathbb{N}}$ is a sequence taking on finitely many values in the open interval (-1,1). Show that $\sum_{n=0}^{\infty} (a_n)^n$ converges. Hint: It's crucial that it's the open interval.
- 2. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers such that $\liminf_{n\to\infty}a_n>0$. Prove that there's no subsequence $\{a_{n_k}\}$ such that $\sum_{n=0}^{\infty}a_{n_k}$ converges.
- 3. Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be sequences of real numbers such that $a_n\geq 0$ and $\sum_{n=0}^\infty a_n$ and $\sum_{n=0}^\infty b_n$ converge. Prove that $\sum_{n=0}^\infty a_n b_n^2$ also converges.
- 4. Given sequences of real numbers $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ such that $\sum_{n=0}^{\infty}|a_n|$ converges and $\{b_n\}$ is bounded, prove that $\sum_{n=0}^{\infty}a_nb_n$ converges.

Challenge Problem Given sequences of real numbers $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ such that

$$\sum_{n=0}^{\infty} a_n \text{ convergent } \wedge b_n \text{ monotone bounded}$$

, prove that

$$\sum_{n=0}^{\infty} a_n b_n \text{ convergent}$$

8 Continuity

8.1 Give an example of each of the following or prove that it is impossible.

1. A function that satisfies IVP but is not continuous.

2.

8.2 Definitions and Important Proofs

- 1. Show the equivalence of the ϵ - δ definition of continuity and the sequential definition of continuity.
- 2. Prove EVT and IVT.

8.3 Textbook Problems

Ross, Section 17: 7,8,9,12,13

Ross, Section 18: 5,6,7,8,10

8.4 Problems

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by f(x) = x(1-x). Prove that f is continuous using the ϵ - δ definition.
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and assume C is a closed subset of Im(f). Prove that $f^{-1}(C)$ is also closed. Repeat this with open sets.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be the floor function. Prove that f is continuous at x if and only if $x \notin \mathbb{Z}$.

9 Uniform Continuity

9.1 Give an example of each of the following or prove that it is impossible.

9.2 Problems

- 1. Prove that $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not uniformly continuous.
- 2. A function is said to be **Lipschitz continuous** if $\exists M>0: \forall x,y\in Dom(f):$

$$|f(x) - f(y)| \le |x - y|$$

Prove that Lipschitz continuity implies uniform continuity.

- 3. (a) Prove that $|\sin x \sin y| \le |x y|$ for all $x, y \in \mathbb{R}$.
 - (b) Show that $\sin x$ is uniformly continuous on \mathbb{R} .
- 4. Prove that $f(x) = \sqrt{x}$ is uniformly continuous on (0,1] and $[1,\infty)$. Conclude that f(x) is uniformly continuous on $(0,\infty)$.

10 Differentiation

10.1 Definition and Basic Properties

Definition 1. A function $f: I \to \mathbb{R}$ is differentiable at $c \in I$ if the following limit exists.

$$\lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

If the limit it exists, it's denoted by f'. We can treat f' as a function defined when this limit exists.

An equivalent way to express this limit is the following

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Notice that in both cases, the function isn't even defined at the limit point. This is no loss as the value at x is irrelevant for the limit at x.

Lemma 10.1. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable at $x \in \text{int}(\text{Dom}(f))$. Then, f is continuous at x.

Lemma 10.2 (Differentiation Laws). Let $f, g : \mathbb{R} \to \mathbb{R}$ with $x \in \text{int}(\text{Dom}(f))$. If f and g are both differentiable at x, then so are (f+g)(x) and $(f \cdot g)(x)$ and

Finish writing this out.

Lemma 10.3. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable at $x \in \text{int}(\text{Dom}(f))$. If f has a local extremum at x, then f'(x) = 0.

Proof. We'll consider the left and right limit of the derivative. **Finish this proof.** \Box

A function might have a local extremum at a point where the derivative doesn't exist. One such example is f(x) = |x|, which has a minimum at x = 0 but isn't differentiable at 0. However, the one-sided derivatives exist and obey the corresponding inequalities.

10.2 The Mean Value Theorem

Theorem 10.4 (Rolle's MVT). Let a < b reals and $f : [a,b] \to \mathbb{R}$ a function (with Dom(f) = [a,b]) that is continuous on [a,b] and differentiable on (a,b). Then,

$$f(a) = f(b) \implies \exists x \in (a,b) : f'(x) = 0$$

Proof.

Theorem 10.5 (Lagrange's MVT). Let a < b reals and $f : [a, b] \to \mathbb{R}$ a function (with Dom(f) = [a, b]) that is continuous on [a, b] and differentiable on (a, b). Then,

$$\exists x \in (a,b) : f'(x) = \frac{f(b) - f(a)}{b - a}$$

Proof.

Theorem 10.6 (The derivative satisfies IVP).

Proof. The idea of this proof is to construct some function such that at the extremum points of the function, we get f'(x) = t, where t is the value we'd like to achieve.

10.3 Miscallenous

Lemma 10.7. Let $f : \mathbb{R} \to \mathbb{R}$ be an everywhere differentiable function. f is Lipschitz continuous if and only if f' is bounded.

10.4 Warmup Exercises

1. Use the definition of the derivative to compute f'(2), where $f(x) = x^3$.

10.5 Give an example of each of the following or prove that it is impossible.

1. A continuous but not differentiable function.

10.6 Problems

- 1. Ross 28.8
- 2. Ross 29.2
- Ross 29.3 Assume f is differentiable on \mathbb{R} and f(0) = 0, f(1) = 1, f(2) = 1. Show that $f'(x) = \frac{1}{2}$ for some $x \in (0,2)$ and $f'(x) = \frac{1}{7}$ for some $x \in (0,2)$.
 - 3. Ross 29.4

Ross 29.5 Let f be defined on \mathbb{R} and assume

$$\forall x, y \in \mathbb{R} : |f(x) - f(y)| \le (x - y)^2$$

Prove that f is the constant function.

- 4. Ross 29.7
- 5. Ross 29.9

Ross 29.10

- Ross 29.11 Show that $\forall x > 0 : \sin(x) \le x$.
- Ross 29.14 Let f, g be differentiable on \mathbb{R} , f(0) = g(0) and $\forall x \geq 0 : f'(x) \leq g'(x)$. Prove that $\forall x \geq 0 : f(x) \leq g(x)$.
 - 6. Assume f is differentiable on \mathbb{R} and $\forall x \in \mathbb{R} : 1 \le f'(x) \le 2$. Prove that $\forall x \ge 0 : x \le f(x) \le 2x$.

Ross 29.18

7. Show that there's no function whose derivative is the Dirichlet function.

10.6.1 A Discontinuous Derivative

Let $f = x^2 \sin(\frac{1}{x})$ when $x \neq 0$ and f(0) = 0. f is clearly differentiable at $a \neq 0$ with

$$f'(x) = 2x\sin(\frac{1}{x}) - \cos(\frac{1}{x})$$

f is also differentiable at 0 using the limit definition of the derivative, and f'(0) = 0.

However, we can show that f' is discontinuous using the sequential definition of continuity. Let

$$a_n = \frac{1}{2\pi n}$$

$$b_n = \frac{1}{2\pi n + \pi}$$

Both of these sequences converge to 0, but $f'(a_n)$ converges to 0 whereas $f'(b_n)$ does not.

Follow-up Question: Why did we use x^2 ? What happens if we try to set $f = x \sin(\frac{1}{x})$? Is this function continuous/differentiable at 0?

10

10.7 Solutions to Problems

- Ross 28.8 Do what you gotta do.
- Ross 29.2 Turn this expression into the derivative and use the fact that the derivative of cos is sin.
- Ross 29.3 The first x comes from applying MVT to f(0) and f(1). The second x comes from the IVP property of the derivative coupled with the fact that f'(x) = 0 for some $x \in (1, 2)$.
- Ross 29.4 Use the hint, and it's immediate.
- Ross 29.5 Take the limit and show that the derivative is 0 everywhere.
- Ross 29.7 Solution in the back of the book.
- Ross 29.9 Solution in the back of the book.
- Ross 29.10 Do what you gotta do. The point is that the function is not increasing even though the derivative is positive.
- Ross 29.11 Take the derivative of $f(x) = x \sin(x)$.
- Ross 29.14 Use contradiction and MVT.
- Ross 29.18 Immediate.
 - 1. The derivative should satisfy the IVP property.

11 Taylor's Theorem

11.1 Problems

1. Find the Taylor series for $\cos(x)$, $\sin(x)$ and e^x . Prove that the radius of convergence is ∞ .

2.

12 Integration

12.1 Problems

- 1. Oscillation lemma
- 2. Ross 32.7, 32.8, 33.7, 33.8 (all in Notability)
- 3. Ross 33.4-1 at rationals and -1 at irrationals
- 4. Ross 33.13 IVT for integrals
- 5. MATH131BH Homework 5 Problem 3
- 6. MATH131BH Homework 5 Problem 5

13 Fundamental Theorem of Calculus

- 1. Lipschitz continuity of the antiderivative
- 2. Ross 34.5

3.

14 Challenge Problems

- 1. Let $\{s_n\}_{n\in\mathbb{N}}$ a sequence of real numbers with $s_1:=\sqrt{2}$ and $s_{n+1}:=\sqrt{2+\sqrt{s_n}}$. Prove that s_n converges.
- 2. Let $\{x_n\}_{n\in\mathbb{N}}\subset(0,1)$ be a real-valued sequence.
 - (a) Show that $\{x_n\}_{n\in\mathbb{N}}$ admits a convergent subsequence.
 - (b) If there is a convergent subsequence $\{x_{n_k}\}_{n\in\mathbb{N}}$, show with a counter example that it doesn't need to converge to a point within (0,1).
- 3. Given two reals a_0, b_0 , define $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ recursively so that

$$\forall n \in \mathbb{N} : a_{n+1} = \frac{a_n + b_n}{2} \land b_{n+1} = \sqrt{a_n + b_n}$$

Prove that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.