C7 : Structure des entités organiques.

1 Formules d'une molécule organique.

B Définition Molécules organiques

Les molécules étudiées en chimie organique contiennent principalement des atomes de carbone et d'hydrogène.

Une formule:

- <u>développée</u> indique toutes les liaisons d'une molécule.
- <u>semi-développée</u> indique les liaisons entre tous les atomes sauf celles avec les atomes d'hydrogène.

2 Groupes caractéristiques et noms des espèces organiques.

A. Les alcanes

Définition Alcanes

- Les alcanes sont une famille de molécules ne contenant que des atomes de carbone et de l'hydrogène.
- Leur squelette est saturé c'est à dire que toutes les liaisons sont simples.

Noms des alcanes linéaires en fonction du nombre d'atomes de carbone

	1 C	2 C	3 C	4 C
Nom:	méthane	éthane	propane	butane
	5 C	6 C	7 C	8 C
Nom:	pentane	hexane	heptane	octane

B. Les groupes caractéristiques.

B Définition Groupe caractéristique

Un **groupe caractéristique** est un ensemble d'atomes d'une molécule qui permet d'identifier la famille chimie à laquelle elle appartient.

groupes caractéristiques	C-OH	— (0 -C-OH	
Nom:	Hy- droxyle	carbonyle		car- boxyle
fonction chimique :	alcool	cétone si liaison C-H aldé- hyde si liaisons C-C		acide carboxy- lique
Exemples:	Н₃С−ОН	H ₃ C CH ₃	H₃C C H	H ₃ C C OH

C. Nom d'une espèce chimique organique.

Le nom d'une molécule est généralement composé de 3 parties (préfixe) – radical – suffixe

- 1) le **radical** indique le nombre d'atomes de carbone de la chaîne linéaire la plus longue
- 2) le **suffixe** indique la nature et la position du groupe caractéristique

Groupe :	alcool	aldéhyde	cétone	acide carboxy- lique
Suffixe:	- ol	-al	-one	acide oïque

Important: On numérote la chaîne la plus longue de façon à ce que le groupe caractéristique ait le numéro le plus petit possible.

3) Si la molécule possède une chaîne carbonée avec une branche latérale (appelée ramification), on ajoute un **préfixe.** Celui-ci indique le nombre d'atomes de carbone et la position de la ramification

Remarque: On place toujours un tiret entre un chiffre et une lettre.

Exemple: le butan-2-one:

- la chaîne la plus longue a 4 carbones.
- le groupe caractéristique se trouve sur le carbone n°2

3 Spectres infrarouges.

A. Principe.

 Une molécule peut absorber l'énergie d'une onde infrarouge (IR) et la convertir en vibrations.

- Les fréquences d'absorptions dépendent de la nature des liaisons de la molécule.
- En déterminant les valeurs de ces fréquences, on peut trouver la nature des liaisons présentes dans une molécules et en déduire quels groupes caractéristiques elle possède.

B. Lecture d'un spectre IR.

Définition Spectre infra-rouge

Un spectre IR est un graphique sur lequel on trouve:

- 1. la transmittance (entre 0 et 100%) en ordonnée.
- 2. le nombre d'onde (en cm-1) en abscisse.

Attention l'axe des abscisses est généralement inversé!

Lycée Kleber (HW 2025) 1 / 4

Remarques:

- Un spectre IR présente des raies d'absorptions tournée vers le bas!
- Le nombre d'onde est l'inverse de la longueur d'onde.

Méthode d'analyse :

On lit les valeurs des nombres d'onde où la transmittance est petite, puis recherche ces valeurs dans un tableau de référence

Liaisons :	O-H alcool	O-H acide	C-H tétra-
			édrique
Nombre d'onde (cm ⁻¹)	3200 – 3650	2500 -3200	2800 – 3100

Liaisons :	C=O alcool	C-H	tétra-	C-O
		édric	que	
Nombre d'onde (cm ⁻¹)	1650 - 1730	1415 - 1470		1050 - 1450

Ce qu'il faut savoir faire

- Identifier, à partir d'une formule semi-développée, les groupes caractéristiques associés aux familles de composés: alcool, aldéhyde, cétone et acide carboxylique
- ✓ Justifier le nom associé à la formule semi-développée de molécules simples possédant un seul groupe caractéristique et inversement.
- ✓ Exploiter, à partir de valeurs de référence, un spectre d'absorption infrarouge.

Lycée Kleber (HW 2025) 2 / 4

C7: Activité et Exercices

▲ Méthode de travail à suivre :

- Lire la partie cours et suivre les explications du profes-
- **Rédiger** les réponses aux questions **Q1**.. sur une feuille de travail. Ne pas attendre la correction pour commencer!
- Réaliser une carte mentale (ou un résumé) du cours
- Faire les exercices dans l'ordre (sur une feuille)
- Q1. Parmi les espèces suivantes quelles sont celles qui sont organiques ?

 MnO_4 CH_4 $CuSO_4$ $C_6H_{12}O_6$ $C_8H_{10}N_4O_2$ NB: Les espèces non organiques sont souvent appelées \ll minérales »

Q2. Écrire la formule brute puis la formule semi-développé de la molécule suivante:

Quel est le nom de cette molécule ?

Q3. Corriger la formule semi-développée de l'alcane suivant:

$$H_2C$$
 CH_3
 C
 CH_3
 C
 CH_3
 C
 CH_3

- **Q4.** Justifier que le nom de la molécule précédente est « 2méthylpentane »
- **Q5.** Entourer et nommer les groupes caractéristiques dans les molécules suivantes :

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{I} \\ \operatorname{HO} - \operatorname{C} - \operatorname{CH_3} \\ \operatorname{I} \\ \operatorname{CH_3} \end{array}$$

Exercice 1: Fonctions et groupes caractéristiques

1) Donner les formules brutes des molécules suivantes.

2) Entourer les groupes caractéristiques de ces molécules et indiquer leurs fonctions chimiques

Exercice 2: Noms et formules d'une molécule

Donner les noms des molécules suivantes :

Exercice 3: Donner les formules des molécules:

- 1) Hexan-2-ol
- 2) 2-méthylpropanal
- 3) Acide 3-méthylbutanoïque
- 4) 3-méthylpentan-2-one

Exercice 4: Spectre infrarouge 1

En utilisant le tableau de la partie 3B du cours, analyser les deux spectres infrarouges ci-dessous.

L'un des spectres est celui de l'éthanal, l'autre celui de l'éthanol. Attribuer à chaque espèce son spectre. (Justifier)

Exercice 5: Spectre infrarouge 2								
Analys	er	le	spectre	suiv	ant,	et	en d	dé-
duire	la	fonctio	on chim	ique	de	cette	molécu	Jle.
Transmit (%) 100	ttanc	e			7. _~	\bigwedge	١.,	
		V			7	V/	ombre d'or cm ⁻¹)	nde
 	-	1 1 1	2500 2	+ +	1500	1000	F-00	

Exercice 6: D'après bac 2025

Utilisés en parfumerie, le géraniol et l'éthanoate de géranyle sont deux espèces chimiques à l'odeur florale. Si le géraniol peut être extrait en grande quantité dans la nature, cela n'est pas le cas de l'éthanoate de géranyle qui doit être synthétisé en laboratoire.

$$\begin{array}{c} \text{CH}_3 \\ \text{H}_3\text{C} \\ \end{array} \begin{array}{c} \text{CH}_2 \\ \text{CH} \\ \end{array} \begin{array}{c} \text{CH}_2 \\ \text{Géraniol} \\ \end{array} \begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{Géraniol} \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_4 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_4 \\ \text{CH}_4 \\ \text{CH}_5 \\ \text{CH$$

_	,	
1100	nnée	J c.
$\boldsymbol{\nu}$	1116	₹J.

Liaisons	Nombre d'onde	Intensité
O-H Alcool	3200-3700	Forte
O-H acide	2500-3200	Forte et large
C-H	2800-3300	Moyenne fine
C=0	1700-1800	Forte et fine

- Entourer et nommer le groupe caractéristique du géraniol puis indiquer la famille chimique à laquelle il appartient.
- 2) Attribuer, en justifiant, le spectre infrarouge représenté sur la figure ci-après à la bonne espèce chimique parmi le géraniol et l'éthanoate de géranyle.

Lycée Kleber (HW 2025) 4 / 4