Lecture 14

Instructor: Karteek Sreenivasaiah

12th October 2018

Data Structure

Binomial Tree

is a rooted tree with a recursive construction.

Defined recursively as follows:

- ► Constructing B_0 : Just one node.
- \triangleright B_k :

Take two B_{k-1} trees T_1 , T_2 . Make T_1 the leftmost child of the root T_2 .

 $B_0 \\$

 $B_0 \qquad \quad B_1$

Properties of a Binomial Tree

Theorem 1

The ℓ 'th layer of the Binomial Tree B_n has $\binom{n}{\ell}$ nodes.

Here we are assuming the root is in layer $\ell = 0$.

Properties of a Binomial Tree

Theorem 1

The ℓ 'th layer of the Binomial Tree B_n has $\binom{n}{\ell}$ nodes.

Here we are assuming the root is in layer $\ell = 0$.

Corollary 1

The Binomial Tree B_n has exactly 2^n nodes.

Properties of a Binomial Tree

Observation 1

Children of the root of B_k from right to left look like:

 $B_0, B_1, \ldots, B_{k-1}.$

Data Structure

Binomial Heap

- A forest of Binomial Trees.
- Each Binomial Tree has the min-heap property.
- ► For any degree, at most one Binomial Tree of that degree.

Data Structure

Binomial Heap

- A forest of Binomial Trees.
- Each Binomial Tree has the min-heap property.
- ► For any degree, at most one Binomial Tree of that degree.

Supports:

- ► Insert
- Decrease Key
- ► Return-Min
- ► Extract-Min
- ▶ Delete Key

Binomial Heap to store 13 nodes.

Binomial Heap to store 20 nodes.

- The roots of each Binomial Tree form a linked list
- Each Binomial Tree is stored in "left child right sibling" representation.
- ► Maintain min-heap property in each Binomial Tree.

Left child - right sibling representation

Left child - right sibling representation

Left child - right sibling representation with root list

Left child - right sibling representation with root list

Properties of a Binomial Heap

Theorem 1

A Binomial Heap with n nodes has $O(\log n)$ many Binomial Trees.

Proof

Let the binary representation of n be

$$n = b_{\log n} b_{\log n-1} \cdots b_0$$

A BinHeap with n nodes has the tree B_k if and only if $b_k = 1$. Hence a Binomial Heap with n nodes has precisely as many Trees as the number of 1s in the binary representation of n.

Return-Min

To return the minimum element in a Binomial Heap:

- ► Walk through the root list.
- ► Return the minimum value seen.

Note: Since each Binomial Tree present is a min-heap, the roots contain the minimum element of their respective tree.

Union of two Binomial Heaps H_1 and H_2 is the most important procedure of all. It works as follows:

- ► Merge H_1 and H_2 based on degree of root.
- Fix the merged list to correct double instances of same degree.

Heap H_1 has 7 nodes and H_2 has 19 nodes.

Merge by degree:

Merge by degree:

12

Merge by degree:

12

18

Merge by degree:

Merge by degree:

(12) (18) (7) (3) (25) (37)

Merge by degree:

Merge by degree:

Union procedure

Primarily three cases:

- Node x and next(x) have different degree: Move pointers down the list.
- 2. Nodes x, next(x) and next(next(x)) have same degree: Move pointers down the list.
- Nodes x, next(x) have same degree, but not next(next(x)):
 Join* trees rooted at x and next(x) to get a bigger Binomial
 Tree.

Note: Join the bigger key as child of smaller key.

Insert into Binomial Heap

To insert *x* into a Binomial heap *H*.

- ightharpoonup Create new Binomial heap H' with just x
- ightharpoonup Call Union on H and H'.

Extract-Min from a Binomial heap *H* is as follows:

- 1. Find the tree *T* that contains the minimum root in the root list.
- 2. Disconnect *T* from *H*.
- 3. Remove the root.
- 4. Create new heap from the children:
 - From right to left, link nodes to create the new root list.
- 5. Call Union on H and T.

Call Union (H_1,H_2)

Decrease-Key(x, v) decreases the key of node x to new value v:

- ▶ If *v* is larger than key in *x*, return error.
- Else, assign new value v in node x
- ► Check if key in parent of *x* is smaller.
 - If yes, stop.
 - Else, swap keys between *x* and its parent.
 - Recurse.

Delete from Binomial Heap

To delete a node *x* from a Binomial heap *H*.

- ▶ Decrease-Key of x to $-\infty$.
- ► Call Extract-Min.

Exercises

- ► Study pseudocode of all procedures from CLRS (2nd ed)
- ► Study running time of all procedures.

Thank You