1. Introduction to Artificial Intelligence

Definition:

Artificial Intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems.

Key Goals of AI:

- Perception
- Reasoning
- Learning
- Natural interaction
- Problem-solving

Types of AI:

- Narrow AI: Specialized in one task (e.g., Siri, Alexa)
- General AI: Human-level intelligence across a wide range of tasks
- Super AI: Hypothetical AI surpassing human intelligence

Applications:

• Healthcare, Finance, Gaming, Autonomous Vehicles, Virtual Assistants, etc.

2. Problem Solving and Search Algorithms

Problem Solving in AI:

Involves defining a **problem space**, **initial state**, **goal state**, and **actions** to reach the goal.

Search Algorithms:

Uninformed Search (Blind Search):

- Breadth-First Search (BFS): Explores level by level
- **Depth-First Search (DFS)**: Explores as far as possible along one branch
- Uniform Cost Search: Explores based on path cost

Informed Search (Heuristic-based):

- Greedy Best-First Search: Uses heuristic to select the most promising node
- A* Search: Combines path cost and heuristic (f(n) = g(n) + h(n))

Adversarial Search:

- Minimax Algorithm: For two-player games (e.g., chess)
- Alpha-Beta Pruning: Optimization for minimax

3. Knowledge Representation and Reasoning (KR&R)

Knowledge Representation:

How to symbolically represent knowledge so a machine can reason with it.

Types of Representation:

- Logical (Propositional & First-Order Logic)
- Semantic Networks
- Frames and Scripts
- Ontologies

Reasoning:

Drawing conclusions from known facts.

Types of Reasoning:

- **Deductive Reasoning**: General to specific
- Inductive Reasoning: Specific to general
- Abductive Reasoning: Best explanation
- **Probabilistic Reasoning:** Using probability (e.g., Bayesian networks)

4. Machine Learning Fundamentals

What is Machine Learning?

A subset of AI that enables systems to learn and improve from experience without being explicitly programmed.

Categories:

• Supervised Learning: Learn from labeled data (e.g., classification, regression)

- Unsupervised Learning: Find hidden patterns in unlabeled data (e.g., clustering)
- Reinforcement Learning: Learn by interacting with the environment (rewardbased)

Common Algorithms:

- Linear Regression
- Logistic Regression
- Decision Trees
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Support Vector Machines (SVM)
- Neural Networks

5. Natural Language Processing (NLP)

Definition:

NLP enables computers to understand, interpret, and generate human language.

Key Tasks:

- Tokenization
- Part-of-Speech Tagging
- Named Entity Recognition (NER)
- Sentiment Analysis
- Machine Translation
- Question Answering
- Text Summarization

Techniques:

- Rule-based Systems
- Statistical Methods
- Deep Learning (e.g., RNN, Transformers, BERT)

6. Computer Vision and Robotics

Computer Vision:

Enables machines to interpret visual data.

Key Tasks:

- Image Classification
- Object Detection
- Image Segmentation
- Face Recognition
- Optical Character Recognition (OCR)

Techniques:

- Convolutional Neural Networks (CNNs)
- Image Preprocessing (e.g., filters, edge detection)

Robotics:

Integrates AI to enable autonomous decision-making in physical systems.

Key Concepts:

- Perception (using sensors)
- Motion Planning
- Control Systems
- Robot Localization and Mapping (SLAM)

7. Ethics and Future of Al

Ethical Issues:

- Bias and Fairness
- Privacy Concerns
- Job Displacement
- Surveillance
- Autonomous Weapons

Responsible AI:

- Explainability
- Transparency
- Accountability
- Inclusiveness

Future Trends:

- Explainable AI (XAI)
- General AI development
- Al in creativity (e.g., art, music)
- Integration with IoT and Edge computing
- Al governance and regulations

Summary Table:

Topic	Key Concepts
Introduction	Types of AI, Applications
Problem Solving	Search algorithms (BFS, DFS, A*), Game playing
KR & Reasoning	Logic, Ontologies, Reasoning types
Machine Learning	Supervised, Unsupervised, Algorithms
NLP	Parsing, Translation, Transformers
Computer Vision & Robotics	CNNs, Object Detection, Robot control
Ethics & Future	Fairness, Transparency, Regulation