Journal Club

The Effect of Host Genetics on the Gut Microbiome
October 20th, 2016
Marc Sze

Introduction

Ran Blekhman @blekhman · Oct 6

@ewanbirney @WvSchaik @dgmacarthur for sure there are false positives, but I trust the LCT-bifido link. Validated in 3 independent papers

Introduction

I would be really interested to hear what GWAS experts (@dgmacarthur?) make of this paper (which I like, but fear for spurious correlations)

Ran Blekhman @blekhman

The effect of host genetics on the gut microbiome nature.com/ng/journal/vao...

LIKES

Daniel MacArthur @dgmacarthur · Oct 6

@blekhman @ewanbirney @WvSchaik I couldn't see any big red flags. Good people involved.

Ewan Birney @ewanbirney · Oct 6

@WvSchaik @dgmacarthur @blekhman however instinctively they need a higher multiple testing penalty than 5e-8 - will dig in next week

David Eccles @gringene_bio · Oct 6

@WvSchaik @BioMickWatson @dgmacarthur I'd like to see a bootstrapped version of this. That plot looks a little bit population-ey.

Paul Gordon @YYCist · Oct 6

@ewanbirney @BioMickWatson @WvSchaik @dgmacarthur @blekhman based on 3 Dutch cohorts. Poss SNP/microbiome confounding by mother-child pairs

Paul Gordon @YYCist · Oct 6

@ewanbirney @BioMickWatson @WvSchaik @dgmacarthur @blekhman LifeLines-DEEP cohort explicitly multigeneration, methods used to ctl for this?

Overview

General Analysis Pipeline:

Quantile Normalization

Gene	S1	S2	S3
Α	5	4	3
В	2	1	4
С	3	4	6
D	4	2	8

Rearrange values from lowest to highest

Gene	S1	S2	S3
Α	2	1	3
В	3	2	4
С	4	4	6
D	5	4	8

row

Rank	Mean
I	2
II	3
Ш	4.67
IV	5.67

Gene	S1	S2	S3
Α	IV	Ш	I
В	I	I	П
С	Ш	Ш	Ш
D	Ш	Ш	IV

Gene	S1	S2	S3
Α	5.67	4.67	2
В	2	2	3
С	3	4.67	4.67
D	4.67	3	5.67

Use rankings to assign mean values to gene and sample.

Results: GWAS and Microbiome

Results: GWAS and Microbiome - Taxonomy

and cytokine

Results: GWAS and Microbiome - Pathways

Results: Targeted Approach and Microbiome

Some Important Caveats

Ewan Birney @ewanbirney · Oct 6

@WvSchaik @dgmacarthur @blekhman however instinctively they need a higher

@WvSchaik @dgmacarthur @blekhman however instinctively they need a higher multiple testing penalty than 5e-8 - will dig in next week

David Eccles @gringene_bio · Oct 6

@WvSchaik @BioMickWatson @dgmacarthur I'd like to see a bootstrapped version of this. That plot looks a little bit population-ey.

...

- Some "Tricksy" Math
 - Based on authors chosen P-value the expectation is for 50,000 False Positives in first stage
 - No report of total comparisons under P-value to judge how many in first stage could be expected to be not false positives (e.g. 50,004 -50,000)
 - Judge their False Discovery Rate for second stage (validation) based on the 50,000 from the first stage.
 - FDR = 50,000 x 0.01 = 500
 - My thoughts are validation FDR should be independent not dependent on first set for true validation.
 - Have a higher trust in combined data
 - Cutoff p-value = 5x10-8
 - FDR ranges from 1.5 5 (so 2%-12%)
 - Accepted loose FDR now accepted as 5%

Some Important Caveats

Some Important Caveats

- Three types of patterns emerge from significant data
 - Two out of three are easily biologically interpretable

These are easily interpretable based on biology

And Now the LCT Story

Ran Blekhman @blekhman · Oct 6

@ewanbirney @WvSchaik @dgmacarthur for sure there are false positives, but I trust the LCT-bifido link. Validated in 3 independent papers

- 1) Ideally qPCR for Bifidobacterium would have been good to complement the inferred abundances
- 2) Would categorize the evidence as still up for debate.

Thank you for your time and attention!!