Homework 3

Tianshuang (Ethan) Qiu September 17, 2021

1 Ross 8.2

1.1 a

Since $n^2+1>n\forall n\in\mathbb{R}$, the fraction $\frac{n}{n^2+1}<1$. Furthermore since $n\geq 0$ and $n^2>0$ the fraction is positive. So we have $<\frac{n}{n^2+1}<1$. It is bounded Now we need to show that it is monotonically decreasing, and we will do this via induction.

Base case: $a_1 = \frac{1}{2}, a_2 = \frac{2}{5}, a_2 < a_1$

Inductive case: assume that $a_n < a_{n-1}$, consider

$$a_{n+1} = \frac{n+1}{(n+1)^2 + 1}$$

We take $a_{n+1} - a_n$

$$= \frac{n+1}{(n+1)^2+1} - \frac{n}{n^2+1}$$

$$= \frac{(n+1)(n^2+1) - n((n+1)^2+1)}{(n^2+1)((n+1)^2+1)}$$

$$= \frac{n^3+n+n^2+n-n(n+1)^2-n}{(n^2+1)((n+1)^2+1)}$$

$$= \frac{n^3+n+n^2+n-n^3-n-2n^2-n}{(n^2+1)((n+1)^2+1)}$$