

CS 383 – Machine Learning

Logistic Regression

Slides adapted from material created by E. Alpaydin Prof. Mordohai, Prof. Greenstadt, Pattern Classification (2nd Ed.), Pattern Recognition and Machine Learning

Objectives

- Logistic Regression is a terrible name!
 - It's not regression at all!
 - It's classification
- But as you'll see, how we do it is extremely similar to linear regression

- Adapt linear regression for binary classification $y \in \{0,1\}$
- Outputs a probability: $0 \le P(y = 1) \le 1$
- Recall from *linear* regression we computed $g(x) = x\theta$
- We can adapt this for use in computing P(y = 1):

$$P(y = 1) = g(x) = \frac{1}{1 + e^{-x\theta}}$$

Greenstadt

$$P(y = 1|x) = g(x) = \frac{1}{1 + e^{-x\theta}}$$

- This function, Let $g(z) = \frac{1}{1+e^{-z}}$ is called the *sigmoid* or *logistic* function
 - Tends to 0 as z decreases
 - Tends to 1 as z increases
- This has the nice characteristic in that it's differentiable
 - Why might that be important?!

• Let
$$g_{\theta}(x) = g(x\theta) = \frac{1}{1 + e^{-x\theta}}$$

- Then we can compute the probabilities
 - $P(y = 1|x, \theta) = g_{\theta}(x)$
 - $P(y = 0 | x, \theta) = 1 g_{\theta}(x)$
- Which we often refer to as the likelihoods.
- Ultimately we want to find the parameters θ to minimize the classification error
 - ullet Or find the parameters eta to maximize the correct class likelihood

Fit Parameters Based on Maximum Likelihood

• Given the true value \boldsymbol{y} we can then compute the likelihood that we are correct as

$$P(y|x,\theta) = (g_{\theta}(x))^{y} (1 - g_{\theta}(x))^{(1-y)}$$

Doing this for the entire dataset we're interested in

$$P(Y_1, Y_2, ..., Y_N | X_1, X_2, ..., X_N, \theta)$$

- Since $0 \le P(Y_t|X_t,\theta) \le 1$ we can treat them as probabilities
- Since the observations are conditionally independent of one another

$$P(Y|X,\theta) = P(Y_1, ..., Y_N | X_1, ..., X_N, \theta) = \prod_{t=1}^{T} P(Y_t | X_t, \theta)$$

 Therefore, doing this for all samples we get an overall value for our "correctness" as

$$P(Y|X,\theta) = \prod_{t=1}^{N} P(Y_t|X_t,\theta) = \prod_{t=1}^{N} (g_{\theta}(X_t))^{Y_t} (1 - g_{\theta}(X_t))^{(1-Y_t)}$$

Log Likelihood

- So what do we do with this likelihood $P(Y|X,\theta)$?
 - We want to maximize it!
- So we're going to want to take the derivative
- But taking the derivative of a product of a lot of things involves a very long expansion
- Let's instead first take the log of this
 - Doing so will result in a sum which is easier to take the derivative of.
 - So now we want to maximize the log likelihood

Log Likelihood

- From the properties of logarithms
 - $\log_b(mn) = \log_b(m) + \log_b(n)$
 - $\log_b(m^n) = n \cdot \log_b(m)$
- Returning to our likelihood $P(Y_t|X_t,\theta)$, for a single term we get

•
$$ln\left(\left(g_{\theta}(X_t)\right)^{Y_t}\left(1-g_{\theta}(X_t)\right)^{(1-Y_t)}\right)$$

• =
$$\ln(g_{\theta}(X_t)^{Y_t}) + \ln(1 - g_{\theta}(X_t))^{1 - Y_t}$$

• =
$$Y_t ln(g_\theta(X_t)) + (1 - Y_t) ln(1 - g_\theta(X_t))$$

Log Likelihood

 Since we're taking the log of product of this for each instance we get a sum!

$$\ell(Y|X,\theta) = \log P(Y|X,\theta) = \sum_{t=1}^{N} Y_t \ln(g_{\theta}(X_t)) + (1 - Y_t) \ln(1 - g_{\theta}(X_t))$$

To Maximize Likelihood

$$\ell(Y|X,\theta) = \sum_{t=1}^{N} Y_t \ln(g_{\theta}(X_t)) + (1 - Y_t) \ln(1 - g_{\theta}(X_t))$$

- Ideally we'd like to take the derivative of this with respect to θ , set it equal to zero, and solve for θ to find the maxima
 - The closed form approach
 - But this isn't easy ☺
- So what's our other approach
 - Do partial derivatives on the parameters and use gradient descent! (actually in this case gradient ascent, since we're trying to maximize)

To Maximum Likelihood

- We're going to take the partial derivatives with respect to θ_i
- Like before for simplicity let's start off with just one training instance (x, y)

$$\ell(y|x,\theta) = y \ln(g_{\theta}(x)) + (1-y) \ln(1-g_{\theta}(x))$$

Therefore we want

$$\frac{\partial}{\partial \theta_i} \ell(y|x,\theta) = \frac{\partial}{\partial \theta_i} \left(y \ln(g_{\theta}(x)) + (1-y) \ln(1-g_{\theta}(x)) \right)$$

To Maximum Likelihood

$$\frac{\partial}{\partial \theta_j} \ell(y|x,\theta) = \frac{\partial}{\partial \theta_j} \left(y \ln(g_{\theta}(x)) + (1-y) \ln(1-g_{\theta}(x)) \right)$$

• We'll need the partial of the sigmoid, $g_{\theta}(x)$ with respect to θ_i :

•
$$\frac{\partial}{\partial \theta_i} g_{\theta}(x) = \frac{\partial}{\partial \theta_i} \left(\frac{1}{1 + e^{-x\theta}} \right) = \frac{\partial}{\partial \theta_i} \left(1 + e^{-x\theta} \right)^{-1}$$

• =
$$-1(0 + x_j e^{-x\theta})(1 + e^{-x\theta})^{-2} = -\frac{x_j e^{-x\theta}}{(1 + e^{-x\theta})^2}$$

$$\bullet = -\frac{1}{1+e^{-x\theta}} \frac{e^{-x\theta}}{1+e^{-x\theta}} x_j$$

• =
$$g_{\theta}(x)(1-g_{\theta}(x))x_j$$

To Maximum Likelihood

$$\frac{\partial}{\partial \theta_j} \ell(y|x,\theta) = \frac{\partial}{\partial \theta_j} \left(y \ln(g_{\theta}(x)) + (1-y) \ln(1-g_{\theta}(x)) \right)$$

From the previous slide we have

$$\frac{\partial}{\partial \theta_j} g_{\theta}(x) = g_{\theta}(x) (1 - g_{\theta}(x)) x_j$$

- Derivation in class...
 - To help $\frac{\partial}{\partial x} \ln x = \frac{1}{x} \cdot \frac{\partial}{\partial x} x$
- Results in:

$$\frac{\partial}{\partial \theta_i} \ell(y|x,\theta) = (y - g_{\theta}(x)) x_j$$

Gradient Ascent Rule

$$\frac{\partial}{\partial \theta_j} \ell(y|x,\theta) = (y - g_{\theta}(x)) x_j$$

- We want this to go towards zero (local maxima)
- So let's update θ_i as

$$\theta_{j} \coloneqq \theta_{j} + \eta \frac{\partial}{\partial \theta_{j}} \ell(y|x,\theta)$$

$$\theta_{j} = \theta_{j} + \eta (y - g_{\theta}(x)) x_{j}$$

• This is the same form as the sum-of-squares error for linear regression!!!!

Logistic Regression Example

Let's classifying whether a person will buy a product or not

	Y	X-Variables							
							(Omit-	Prev	Prev
Obs.			Is	Is	Has	Is Pro-	ted Vari-	Child	Parent
No.	Buy	Income	Female	Married	College	fessional	ables)	Mag	Mag
1	0	24000	1	0	1	1		0	0
2	1	75000	1	1	1	1		1	0
3	0	46000	1	1	0	0		0	0
4	1	70000	0	1	0	1		1	0
5	0	43000	1	0	0	0		0	1
6	0	24000	1	1	0	0		0	0
7	0	26000	1	1	1	0		0	0
8	0	38000	1	1	0	0		0	0
9	0	39000	1	0	1	1		0	0
10	0	49000	0	1	0	0		0	0
								-	
654	0	10000	1	0	0	0		0	0
655	1	75000	0	1	0	1		0	0
656	0	72000	0	0	1	0		0	0
657	0	33000	0	0	0	0		0	0
658	0	58000	0	1	1	1		0	0
659	1	49000	1	1	0	0		0	0
660	0	27000	1	1	0	0		0	0
661	0	4000	1	0	0	0		0	0
662	0	40000	1	0	1	1		0	0
663	0	75000	1	1	1	0		0	0
664	0	27000	1	0	0	0		0	0
665	0	22000	0	0	0	1		0	0
666	0	8000	1	1	0	0		0	0
667	1	75000	1	1	1	0		0	0
668	0	21000	0	1	0	0		0	0
669	0	27000	1	0	0	0		0	0
670	0	3000	1	0	0	0		0	0
671	1	75000	1	1	0	1		0	0
672	1	51000	1	1	0	1		0	0
673	0	11000	0	1	0	0		0	0

KidCreative.csv

Logistic Regression Example

- Make some design decisions:
 - Randomize data
 - Use 2/3 training, 1/3 testing
 - Standardize features
 - Add bias feature
 - Initialize parameters to random values in the range [-1, 1]
 - Since our equation is based on log likelihood, let's terminate when change in sum of log likelihoods doesn't change more than eps
 - Recall the log likelihood of an example being correct is

$$y \ln\left(\frac{1}{1 + e^{-x\theta}}\right) + (1 - y) \ln\left(1 - \frac{1}{1 + e^{-x\theta}}\right)$$

- But be careful... log(0) = -Inf. So you might need to deal with this somehow
- Let's do something different (smarter?) with η
 - Start if off relatively large, say $\eta=0.5$
 - If we notice an decrease in the log likelihood (meaning we over-jumped the maxima), then decrease it by ½
- Let's do batch regression

Example

 $\theta =$ -12.7663 5.1987 0.9057 0.6136 0.0880 -0.3606 -0.4920 -29.3976 0.2140 -0.0329 0.7355 0.3957 0.0054 0.9061 1.1647 0.1887 0.1881

Choosing Class 1 if $P(y = 1|x, \eta) \ge 0.5$ we get:

Precision: 0.7708 Recall: 0.7551

F-Measure: 0.7629

Final Observations

- Let's think about this algorithm
 - Supervised or non?
 - Classification or regression?
 - Model-based or instance-based?
 - When it comes time to test/use, are we using the original data?
 - Linear vs Non-Linear?
 - Can this work on categorical data?
 - Can this work on continuous valued data?
 - Training Complexity?
 - Testing Complexity?
 - How to deal with overfitting?
 - Directly handles multi-class?