DESIGNAND ANALYSIS OF ALGORITHMS

CS 4120/5120
GRAPH REPRESENTATION

AGENDA

- Implementation of graphs
 - Adjacency list
 - Adjacency matrix

GRAPH DIRECTED AND UNDIRECTED

- Computer science and graph theories
 - A graph, denoted by G is represented by G = (V, E), where
 - *V* is the **set** of vertices (nodes), and
 - *E* is the **set** of edges
 - Note that G = (V, E) can represent both **directed** and **undirected** graphs.
- Examples of directed (left two) and undirected graph

GRAPH WEIGHTED AND UNWEIGHTED

- In addition to directed and undirected graph, we also have weighted and unweighted graphs.
- The edges in a **weighted** graph have their own weights (or distances between the two adjacent vertices)
- The edges in an unweighted graph may be thought of as weighing 1.
- Examples of weighted (middle) and unweighted graph

GRAPHS IN COMPUTER WORLD

- Some problems can be modeled as a graph related problem.
- We can then solve these problems by developing a graph algorithm.
- Need a way to represent graphs in programming languages
- In the field of computer science, a graph can be represented in the following ways
 - Adjacency list
 - Adjacency matrix
- We shall take a look at both representations.

THE ADJACENCY-LIST REPRESENTATION

- Given a graph G = (V, E), the adjacency list consists of **an array** adj of |V| lists, one for each vertex in V.
- For each $u \in V$, the adjacency list Adj[u] contains all the vertices v such that there is an edge $(u, v) \in E$.
 - Adj[u] consists of all the vertices adjacent to u in G.
 - In pseudocode, we treat Adj as an attribute of the graph, i.e.,
 - G.Adj[u] represents the adjacent vertices to u in graph G.
- Adj[u] can be implemented by linked list.

THE ADJACENCY-LIST REPRESENTATION VISUALIZATION

- Consider the graph (left) and its corresponding adjacency-list representation (right)
 - The representation contains an array of linked lists.
 - Each element Adj[i] is a linked list of the vertices adjacent to vertex i.

Adj[1]
Adj[2]
Adj[3]
Adj[4]

THE ADJACENCY-LIST REPRESENTATION PROPERTIES

- If G is a directed graph, the sum of the lengths of all the adjacency lists is |E|.
 - An edge of the form (u, v) is represented by having v appear in Adj[u].
- If G is undirected graph, the sum of the lengths of all the adjacency lists is 2|E|,
 - If (u, v) is an **undirected** edge, then u appears in v's adjacency list and vice versa.

THE ADJACENCY-LIST REPRESENTATION WITH WEIGHT

- If G is a **weighted graph**, meaning that each edge has an associated **weight**, typically given by a **weight function** $w: E \to \mathbb{R}$, where \mathbb{R} denotes **real numbers**.
- Example
 - Let G = (V, E) be a weighted graph with weight function w.
 - We simply store the weight w(u, v) of the edge $(u, v) \in E$ with vertex v in u's adjacency list.

THE ADJACENCY-MATRIX REPRESENTATION

- Given a graph G = (V, E).
 - We assume that **vertices are numbered as 1, 2, 3, ..., |V|** in some arbitrary manner.
 - The adjacency matrix consists of a $|V| \times |V|$ matrix $A = (a_{ij})$ such that

$$a_{ij} = \begin{cases} 1 & if (i,j) \in E, \\ 0 & otherwise. \end{cases}$$

Example

		2	3	4
I	0	0	1	1
2	0	0	0	1
3	- 1	1	0	1
4	0	1	1	0

THE ADJACENCY-MATRIX REPRESENTATION PROPERTIES

- The adjacency matrix of a graph requires $\Theta(|V|^2)$ memory, independent of the number of edges in the graph.
- The adjacency matrix of an **undirected** graph is its own transpose: $A = A^{T}$.
- If an edge does not exist, we can store a NIL value as its corresponding matrix entry, though for many problems it is convenient to use a value such as 0 or ∞ .
 - By convention
 - we use ∞ for an entry [u, v] to indicate v is **unreachable** from u.
 - we use 0 for an entry [u, u] (diagonal entries) when there is no cyclic edge that comes back to vertex u.

THE ADJACENCY-MATRIX REPRESENTATION WITH WEIGHT

- If G = (V, E) is a **weighted** graph with edge weight function w, we can simply store the weight w(u, v) of the edge $(u, v) \in E$ as the entry in row u and column v of the the adjacency **matrix**.
- Example
 - The adjacency-matrix of the weighted directed graph is

$$G = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 10 & \infty \\ 14 & 0 & \infty \\ 6 & 8 & 2 \end{bmatrix}$$

- Entry $G_{13} = \infty$ means there is no edge from vertex 1 to vertex 3.
- Entry $G_{11} = G_{22} = 0$ means there is no cyclic edge from vertex 1 to 1, or 2 to 2.

- Show the adjacency-list representation of the graph. (A sample is given in the table.)
 - Order the adjacency lists in increasing order of the key of the vertex.
 - Within a linked-list, order the adjacent vertexes in increasing order of the key of the vertex.

- A cell should contain an element of array adj.
- |*E*| = _____
- The sum of lengths of the adjacency lists is ______

$\boxed{1 \rightarrow 2 \rightarrow 4 \rightarrow 5}$	

- Show the adjacency-list representation of the graph.
 (A sample is given in the table.)
 - Order the adjacency lists in increasing order of the key of the vertex.
 - Within a linked-list, order the adjacent vertexes in increasing order of the key of the vertex.
 - $-A \rightarrow$ should be used to indicate the "link" in a linked-list.
 - A cell should contain an element of array adj.
- |E| = 11.
- The sum of lengths of the adjacency lists is 3+1+3+1+3=11.

$1 \rightarrow 2 \rightarrow 4 \rightarrow 5$
$2 \rightarrow 4$
$3 \to 1 \to 2 \to 4$
4 → 2
$5 \to 1 \to 2 \to 3$

• Show the adjacency-matrix representation of the graph.

• |E| = _____. The number of entries $[i,j] \neq 0$ and $[i,j] \neq \infty$ is _____.

• Show the adjacency-matrix representation of the graph.

$$G = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & \infty & 1 & 1 \\ 2 & \infty & 0 & \infty & 1 & \infty \\ 1 & 1 & 0 & 1 & \infty \\ 4 & \infty & 1 & \infty & 0 & \infty \\ 5 & 1 & 1 & 1 & \infty & 0 \end{bmatrix}$$

• |E| = 11. The number of entries $[i, j] \neq 0$ and $[i, j] \neq \infty$ is 11.

ADJACENCY-LIST VS. ADJACENCY-MATRIX

• Determine to which representation the row is referring to.

Representation	Time for searching an edge	Good for sparse/dense matrices	Space requirement
Adjacency-list	<i>Not 0</i> (1)	Sparse	O(V + E)
Adjacency-matrix	0(1)	Dense	$O(V ^2)$

Note

- **Sparse** graphs: those for which |E| is much less than $|V|^2$.
- **Dense** graphs: those for which |E| is close to $|V|^2$.

NEXT UP BREADTH-FIRST SEARCH

REFERENCE