• * horn'ı a doln'ı za'vora mno ziny, supremum, infimum

Suprema a infima, úplnost \mathbb{R} . Když $X \subset \mathbb{R}$ a $c \in X$, pak $c = \min(X)$, c je minimum nebo též nejmenší prvek X, pokud $c \leq a$ pro každé $a \in X$.

Podobně se definuje $\max(X)$, maximum nebo největší prvek X. Číslo $c \in \mathbb{R}$ je horní mez množiny $X \subset \mathbb{R}$, když $c \geq a$ pro každé $a \in X$. Podobně se definuje dolní mez. Když $X \subset \mathbb{R}$ a $c \in \mathbb{R}$, pak c je supremum množiny X, $c = \sup(X)$, když

$$c = \min(\{\text{horní meze množiny } X\})$$
,

tedy c je nejmenší horní mez X. Supremum X nemusí v X ležet a když existuje, je určeno jednoznačně. Ještě jednou řečeno, $c = \sup(X)$, právě když

- 1. pro každé $a \in X$ je $a \le c$ (tj. c je horní mez X) a
- pro každé d ∈ R, d < c, existuje a ∈ X, že a > d (tj. c nelze nijak zmenšit na d, aby zůstalo horní mezí, c je nejmenší horní mez X).

Podobně se definuje infimum množiny $X \subset \mathbb{R}$:

$$\inf(X) = \max(\{\text{doln\'i meze mno\'ziny } X\})$$
,

je to největší dolní mez množiny X. Úplně stejně definujeme supremum a infimum pro podmnožiny $\mathbb Q$ v uspořádání ($\mathbb Q$, <) (a obecně v každé lineárně nebo i částečně uspořádané množině). Množina $X \subset \mathbb R$ je shora omezená, máli alespoň jednu horní mez. Podobně se definuje omezenost zdola. Následující výsledek je základní vlastnost reálných čísel, kterou racionální čísla nemají.

• * spo cetna mno zina

Nespočetnost \mathbb{R} . Množina M je nekonečná, právě když existuje injekce $f: M \to M$, že $f(M) \neq M$. Nekonečná množina M je spočetná, když existuje bijekce $f: \mathbb{N} \to M$. Spočetnost M tedy znamená, že existuje posloupnost $(a_n) = (a_1, a_2, \dots)$ s těmito vlastnostmi:

- 1. pro každé n je $a_n \in M$,
- 2. pro každé $n \neq m$ je $a_n \neq a_m$ a
- pro každé x ∈ M existuje n ∈ N, že a_n = x.

Podstatný je první a třetí požadavek: když je (a_n) splňuje, vypuštěním duplikací a přeindexováním z (a_n) snadno vyrobíme posloupnost (a'_n) , jež splňuje všechny tři požadavky. Množina je nespočetná, když není spočetná. Uvidíme, že taková je množina \mathbb{R} . Nejprve ale uvedu příklady spočetných množin. * vlastn´ı a nevlastn´ı limita posloupnosti, konvergentn´ı a divergentn´ı posloupnost
Když (a_n) ⊂ ℝ je posloupnost reálných čísel a a ∈ ℝ je číslo, pak a je limitou
(a_n), psáno lim_{n→∞} a_n = a či jen lim a_n = a, pokud

$$\forall \varepsilon > 0 \; \exists n_0 : \; n > n_0 \Rightarrow |a_n - a| < \varepsilon \; .$$

(Zde ε bereme z \mathbb{R} , n_0 a n z \mathbb{N} a $\exists n_0 : n > n_0 \Rightarrow \dots$ je totéž jako $\exists n_0 \forall n : n > n_0 \Rightarrow \dots$) Tuto limitu nazýváme podrobněji vlastní limitou a když ji posloupnost (a_n) má, pak též řekneme, že konverguje.

Nevlastní limita posloupnosti (a_n) je $+\infty$ či $-\infty$:

$$\lim a_n = +\infty \iff \forall c \ \exists n_0 : \ n > n_0 \Rightarrow a_n > c$$

a podobně lim $a_n = -\infty$, platí-li totéž s $a_n < c$.

* rada, sou cet rady, konvergence a divergence rady

Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel $(a_n) \subset \mathbb{R}$ uvedená v zápisu

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots ,$$

spolu s metodou přiřazující řadě její součet, což je reálné číslo (někdy povolíme i $\pm \infty$). Motivací a hnací myšlenkou je snaha rozšířit sčítání reálných čísel na nekonečně mnoho sčítanců. Nejběžnější sčítací metodou je metoda částečných součtů, což je posloupnost

$$(s_n)$$
 definovaná jako $s_n = a_1 + a_2 + \cdots + a_n$.

Řada $\sum_{n=1}^{\infty} a_n$ konverguje, když konvergují její částečné součty (s_n) , to jest $\lim s_n = s \in \mathbb{R}$. Součet řady $\sum_{n=1}^{\infty} a_n$ pak definujeme jako tuto limitu,

$$\sum_{n=1}^{\infty} a_n = s = \lim(a_1 + a_2 + \dots + a_n) \in \mathbb{R}.$$

Je-li lim s_n nevlastní nebo neexistuje, řekneme, že řada diverguje (pak nemá žádný součet). Pokud lim $s_n = \pm \infty$, píšeme též $\sum_{n=1}^{\infty} a_n = \pm \infty$.

• * limita funkce v bod e

Definice (limita funkce v bodě). Nechť $f: M \to \mathbb{R}$, $a \in \mathbb{R}^*$ je hromadný bod M a $A \in \mathbb{R}^*$. Pak definujeme

$$\lim_{x \to a} f(x) = A \iff \forall \varepsilon > 0 \; \exists \delta > 0 : \; f(P(a, \delta) \cap M) \subset U(A, \varepsilon)$$

funkce f(x) má v bodě a limitu A.

Jinak řečeno, pro každé $\varepsilon > 0$ existuje $\delta > 0$, že když $x \in P(a, \delta)$ a f je v x definovaná, pak nutně $f(x) \in U(A, \varepsilon)$. Jak a tak A může být i $\pm \infty$. Je důležité, že $\lim_{x\to a} f(x)$ nezávisí na hodnotě f(a), ba ani f(x) nemusí být v bodě a definovaná (tj. $a \notin M$).

A co kdyby a nebyl hromadným bodem M? Pak by existovalo $\delta > 0$, že $P(a, \delta) \cap M = \emptyset$, tedy $f(P(a, \delta) \cap M) = \emptyset$ a inkluze $f(P(a, \delta) \cap M) \subset U(A, \varepsilon)$ by platila pro každé A a $\varepsilon > 0$. Cokoli by pak bylo limitou f(x) v a, což není šikovná definice. Proto se požaduje, aby a byl hromadným bodem M.

Tato definice zobecňuje limitu posloupnosti: když posloupnost $(a_n) \subset \mathbb{R}$ chápeme jako funkci $a : \mathbb{N} \to \mathbb{R}$, pak zřejmě

$$\lim_{n\to\infty} a_n = \lim_{x\to +\infty} a(x) ,$$

existuje-li alespoň jedna strana.

• * spojitost funkce v bod e a na intervalu

Definice (spojitost funkce v bodě). Nechť $f: M \to \mathbb{R}, a \in M$. Pak řekneme, že funkce f(x) je spojitá v bodě a, když

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; f(U(a, \delta) \cap M) \subset U(f(a), \varepsilon) \; .$$

Jinými slovy, spojitost f(x) v a znamená, že

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; x \in M, \; |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Dostatečně malá změna v argumentu funkce f tedy způsobí jen (předem omezenou) malou změnu funkční hodnoty.

Rozebereme souvislost s limitou. Když $a \in M$ není hromadným bodem množiny $M \setminus \{a\}$, čili $U(a, \delta) \cap M = \{a\}$ pro nějaké $\delta > 0$, postulovali jsme v hořejší definici, že $\lim_{x\to a} f(x)$ není definovaná. Nicméně v této situaci podle právě uvedené definice je stále f(x) spojitá v a. Je-li $a \in M$ hromadným bodem množiny $M \setminus \{a\}$, pak spojitost f(x) v a znamená přesně, že

$$\lim_{x \to a} f(x) = f(a) .$$

Definuje se i jednostranná spojitost: když $a \in M$, $f: M \to \mathbb{R}$ a

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; f(U^+(a, \delta) \cap M) \subset U(f(a), \varepsilon) \; ,$$

pak řekneme, že f(x) je v a zprava spojitá. Podobně pro spojitost zleva.

• * derivace funkce v bod e

Definice (derivace funkce). Nechť $a \in \mathbb{R}$, $\delta > 0$ a $f : U(a, \delta) \to \mathbb{R}$. Derivace funkce f v bodě a je hodnota limity

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

(když tato limita existuje).

Jednostranné derivace $f'_{-}(a)$ a $f'_{+}(a)$ definujeme zřejmým způsobem pomocí limity zleva a limity zprava. Hodnota derivací f'(a), $f'_{-}(a)$ a $f'_{+}(a)$ může být i nevlastní a platí ekvivalence

$$f'(a) = A \iff f'_{-}(a) = A \& f'_{+}(a) = A$$
.

Nechť $f: U(a, \delta) \to \mathbb{R}$ (pro nějaké $a \in \mathbb{R}$ a $\delta > 0$). Je-li f v a spojitá, je v okolí a funkce f dobře aproximována konstantní funkcí g(x) = f(a). Těsněji lze aproximovat pomocí tečny.

* Taylor°uv polynom

Definice (Taylorův polynom). Nechť $a, \delta \in \mathbb{R}$, $\delta > 0$, $f : U(a, \delta) \to \mathbb{R}$, $n \in \mathbb{N}_0$ a existuje vlastní n-tá derivace $f^{(n)}(a) \in \mathbb{R}$ (pro n = 0 to chápeme jako požadavek spojitosti f v a). Taylorů polynom řádu n funkce f v bodě a je polynom

$$T_n^{f,a}(x) := \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$$

$$= f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \dots + \frac{f^{(n)}(a)(x-a)^n}{n!}.$$

Všimněme si, že platí identita

$$(T_n^{f,a}(x))' = T_{n-1}^{f',a}(x)$$

(takže $(T_n^{f,a}(x))^{(i)}(a) = f^{(i)}(a)$ pro i = 0, 1, ..., n). Ta nám umožní dokázat, že $T_n^{f,a}(x)$ je jediný polynom stupně nejvýše n, který aproximuje f v okolí x = a až do řádu n.