Appunti di Network Modeling New

massimo.meneghello 93

June 2017

Contents

1	Cat	ene di Markov	2
	1.1	Processi di Markov	2
	1.2	Analisi di Primo Passo	3
	1.3	Catene di Markov speciali	5
		1.3.1 Catena di Markov a due stati	
		1.3.2 Passeggiata casuale unidimensionale	
		1.3.3 Success Runs	
	1.4	Tempi di primo passaggio	5
	1.5	İ	6
	1.6	La classificazione degli stati	
		1.6.1 Periodicità di una catena di Markov	
			7
	1.7	Teorema Fondamentale delle Catene di Markov	8
2	Pro	cessi Di Poisson	9
	2.1	Processi di Poisson	9
3	Pro	cessi di Rinnovamento	L 1
	3.1	Equazioni di Rinnovamento	L 1
4	Pro	tocolli 1	L 1
	4.1	ALOHA	11
	4.2	Go-Back-N	
5	Per	Esame 1	12

1 Catene di Markov

1.1 Processi di Markov

Definizione 1.1. Un processo di Markov $\{X_t\}$ è un processo aleatorio con la proprietà che, noto il valore di X_t , i valori di X_s per s > t non sono influenzati dai valori di X_u per u < t.

In termini formali la proprietà di Markov afferma che

$$P[X_{n+1} = j \mid X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i] = P[X_{n+1} = j \mid X_n = i]$$

Gli stati che un processo di Markov può assumere sono spesso indicati con gli interi positivi $0, 1, \ldots$ La probabilità di transizione ad un passo (cioè la probabilità che trovandosi in uno stato i all'istante n-esimo, all'istante successivo ci si trovi nello stato j) è definita come

$$P_{ij}^{n,n+1} = P[X_{n+1} = j \mid X_n = i] = P_{ij}$$

Considerando tutti le possibili probabilità di transizione ad un passo si ottiene la matrice di Markov relativa al processo

$$P = \begin{bmatrix} P_{00} & P_{01} & P_{02} & \dots \\ P_{10} & P_{11} & P_{12} & \dots \\ \vdots & \vdots & \vdots & \vdots \\ P_{i0} & P_{i1} & P_{i2} & \dots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

per la quale devono valere

$$P_{i,j} \ge 0$$
 $i, j = 0, 1, 2, \dots$ (1)

$$\sum_{j=0}^{\infty} P_{ij} = 1 \qquad i = 0, 1, 2, \dots$$
 (2)

Un processo di Markov è completamente definito dalla sua matrice. Sia $P[X_0 = i] = p_i$, allora, grazie alla proprità di Markov possiamo eseguire la seguente computazione

$$P[X_0 = i_0, X_1 = i_1, \dots, X_n = i_n] = P[X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}] \cdot P[X_n = i_n \mid X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}]$$

$$= P[X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = I_{n-1}] \cdot P_{i_{n-1}i_n}$$

$$= p_i P_{i_0i_1} P_{i_1i_2} \dots P_{i_{n-1}i_n}$$

Analizziamo ora la probabilità di transizione compiendo n passi.

$$P_{ij}^{(n)} = P[X_{n+m} = j \mid X_m = i] = P[X_n = j \mid X_0 = i]$$

L'ultima uguaglienza deriva dalla proprietà di omogeneità dei processi di Markov.

Proposizione 1.1. La matrice di transizione a n passi soddisfa

$$P_{ij}^{(n)} = \sum_{k=0}^{\infty} P_{ik} P_{kj}^{(n-1)}$$

dove

$$P_{ij}^{(0)} = \left\{ \begin{array}{ll} 1 & \quad se \ i = j \\ 0 & \quad altrimenti \end{array} \right.$$

Dimostrazione.

$$\begin{split} P_{ij}^{(n)} &= P[X_{n+m} = j \mid X_m = i] = P[X_n = j \mid X_0 = i] \\ &= \sum_{k=0}^{\infty} P[X_n = j, X_1 = k \mid X_0 = i] \\ &= \sum_{k=0}^{\infty} P[X_n = j \mid X_1 = k, X_0 = i] \cdot P[X_1 = k \mid X_0 = i] \\ &= \sum_{k=0}^{\infty} P[X_n = j \mid X_1 = k] \cdot P[X_1 = k \mid X_0 = i] \\ &= \sum_{k=0}^{\infty} P_{ik} P_{kj}^{(n-1)} \end{split}$$

1.2 Analisi di Primo Passo

Consideriamo la seguente matrice di Markov

$$P = \left[\begin{array}{ccc} 1 & 0 & 0 \\ \alpha & \beta & \gamma \\ 0 & 0 & 1 \end{array} \right]$$

con α , β , $\gamma > 0$ e $\alpha + \beta + \gamma = 1$. Vogliamo trovare i valori di

$$u = P[X_T = 0 \mid X_0 = 1]$$

 $v = E[T \mid X_0 = 1]$

dove $T = \min\{n \geq 0 : X_n = 0, X_n = 2\}$, quindi vogliamo conoscere qual è la probabilità che il processo resti intrappolato nello stato 0 sapendo che lo stato iniziale è 1 e vogliamo anche conoscere quanto tempo dovremmo attendere affinché questo accada (valore atteso).

Conoscendo la scomposizione vista in 1.1 osserviamo che

$$u = P[X_T = 0 \mid X_0 = 1] = P_{10}^{(T)}$$

$$= \sum_{k=0}^{2} P_{1k} P_{k0}^{(T-1)}$$

$$= P_{10} P_{00}^{(T-1)} + P_{11} P_{10}^{(T-1)} + P_{12} P_{20}^{(T-1)}$$

$$= \alpha (1) + \beta (u) + \gamma (0)$$

$$= \alpha + \beta u = \frac{\alpha}{1 - \beta} = \frac{\alpha}{\alpha + \gamma}$$

Abbiamo anche utilizzata l'uguaglianza $P_{ij}^{(T)}=P_{ij}^{(T-1)}$. Mentre per il valore atteso degli istanti impiegati abbiamo

$$v = 1 + \alpha (0) + \beta (v) + \gamma (0)$$
$$= 1 + \beta v$$
$$= \frac{1}{1 - \beta} = \frac{1}{\alpha + \gamma}$$

In generale possiamo avere matrici di Markov come la seguente, di dimensione $(N+1) \times (N+1)$:

$$P = \begin{bmatrix} \mathbf{Q} & \mathbf{R} \\ \mathbf{O} & \mathbf{I} \end{bmatrix} \tag{3}$$

dove \mathbf{O} è una matrice $(N-r+1) \times r$ di zeri e \mathbf{I} è una matrice identità $(N-r+1) \times (N-r+1)$. In questa matrice possiamo riconoscere due tipi di stati (le cui definizioni formali verrano fornite successivamente):

- transient, cioè gli stati da $0, \ldots, r-1$ per i quali vale $P_{ij}^{(n)} \to 0$ quando $n \to \infty$ per $0 \le i, j < r$;
- absorbing, gli stati da r, \ldots, N per i quali $P_{ii} = 1$ per $r \leq i \leq N$.

Otteniamo

$$u_i = U_{ik} = P[\text{Assorbimento in k} \mid X_0 = i]$$
 per $0 \le i < r$
= $P_{ik} + \sum_{j=0}^{r-1} P_{ij} U_{jk}$

mentre il tempo medio di assorbimento vale

$$v_i = 1 + \sum_{j=0}^{r-1} P_{ij} v_j$$
 per $0 \le i < r$

Dall'n-esima potenza della matrice di Markov è possibile calcolare

- ullet il numero medio di visite su uno stato j
- il tempo medio fino all'assorbimento della catena
- \bullet la probabilità di assorbimento in uno stato k.

Tutte questo dipende dallo stato iniziale $X_0 = i$. L'n-esima potenza della matrice 3 è facilmente ottenibile

$$P^{n} = \begin{bmatrix} \mathbf{Q}^{n} & (\mathbf{I} + \mathbf{Q} + \mathbf{Q}^{2} + \dots + \mathbf{Q}^{n-1})R \\ \mathbf{O} & \mathbf{I} \end{bmatrix}$$
 (4)

Forniamo un'interpretazione per P^n :

$$\begin{split} W_{ij}^{(n)} &= \text{numero medio di visite allo stato } j \text{ in } n \text{ passi partendo dallo stato } i \\ &= E\left[\sum_{l=0}^{n}\mathbf{1}\{X_{l}=j\} \mid X_{0}=i\right] \text{ ma poich\'e } E[\mathbf{1}\{X_{l}=j\} \mid X_{0}=i] = P_{ij}^{(l)} \\ &= \sum_{l=0}^{n} E[\mathbf{1}\{X_{l}=j\} \mid X_{0}=i] \\ &= \sum_{l=0}^{n} P_{ij}^{(n)} \end{split}$$

Abbiamo quindi trovato che

$$W^{(n)} = \mathbf{I} + \mathbf{Q} + \mathbf{Q}^2 + \dots + \mathbf{Q}^{n-1}$$
$$= \mathbf{I} + \mathbf{Q} (\mathbf{I} + \dots + \mathbf{Q}^{n-1})$$
$$= \mathbf{I} + \mathbf{Q} W^{(n-1)}$$

Passando al limite otteniamo

$$W_{ij} = \lim_{n \to \infty} W_{ij}^{(n)} = E[\text{visite totali a } j \mid X_0 = i] \quad 0 \le i, j < r$$

mentre in forma matriciale si ottiene

$$W = \mathbf{I} + \mathbf{Q} W$$

e quindi

$$W = (\mathbf{I} - \mathbf{Q})^{-1} \tag{5}$$

che è detta matrice fondamentale associata a Q.

1.3 Catene di Markov speciali

1.3.1 Catena di Markov a due stati

Sia data la matrice

$$P = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} \quad \text{con} \quad 0 < a, b < 1$$

allora l'
 $n\text{-}\mathrm{esima}$ potenza di Pvale

$$P^{(n)} = \frac{1}{a+b} \begin{bmatrix} b & a \\ b & a \end{bmatrix} + \frac{(1-a-b)^n}{a+b} \begin{bmatrix} a & -a \\ -b & b \end{bmatrix} \quad \text{per} \quad n \ge 0$$

che può essere facilmente dimostrato per induzione.

1.3.2 Passeggiata casuale unidimensionale

1.3.3 Success Runs

1.4 Tempi di primo passaggio

Si è interessati nel conoscere quanto tempo è necessario (in media) per raggiungere uno stato j partendo da uno stato i.

$$\theta_{ij}$$
 = numero di transizioni per raggiungere j da i per la prima volta $P[\theta_{ij} = n] = f_{ij}(n) = P[X_n = j, X_m \neq j, m = 1, ..., n - 1 \mid X_0 = i]$

Abbiamo la relazione ricorsiva

$$f_{ij}(n) = \begin{cases} P_{ij} & n = 1\\ \sum_{k \neq j} P_{ik} f_{kj} (n-1) & n > 1 \end{cases}$$

IMPORTANTE. Per calcolare la il valore atteso del tempo di primo passaggio tra 2 stati $i \in j$ usiamo

$$E[\theta_{ij}] = P_{ij} + \sum_{k \neq j} P_{ik} (1 + E[\theta_{kj}])$$
$$= 1 + \sum_{k \neq j} P_{ik} E[\theta_{kj}] \quad \forall i, j$$

Questo comporta la risoluzione di un sistema di equazioni. In particolar modo, se si vuole calcolare $E[\theta_{ii}]$ tutte le variabili nella parte destra non sono note. Tuttavia, come vi vedrà più avanti alla proposizione 1.7 abbiamo che

$$E[\theta_{ii}] = m_i = \lim_{n \to \infty} \frac{1}{P_{ii}^{(n)}} = \frac{1}{\pi_i}$$

Per calcolare il secondo momento (necessario per trovare la varianza) del tempo di primo passaggio usiamo

$$E[\theta_{ij}^{2}] = 2 E[\theta_{ij}] - 1 + \sum_{k \neq j} P_{ik} E[\theta_{kj}^{2}]$$
$$Var(\theta_{ij}) = E[(\theta_{ij} - E[\theta_{ij}])^{2}] = E[\theta_{ij}^{2}] - E[\theta_{ij}]^{2}$$

1.5 Comportamento asintotico delle catene di Markov

Definizione 1.2. Una catena di Markov si dice regolare se la k-esima potenza della matrice P associata alla catena ha tutti elementi strettamente positivi, quindi se

$$P_{ij}^{(k)} > 0 \quad \forall i, j$$

La caratteristica più importante di questa catena è l'esistenza di una distribuzione di probabilità al limite

$$\pi = (\pi_0, \dots, \pi_N) \text{ con } \pi_j > 0 \quad \forall j \in \sum_j \pi_j = 1$$

che è indipendente dallo stato iniziale della catena.

IMPORTANTE. Questi concetti sono utili per conoscere come evolve una catena di Markov all'infinito, quindi per sapere dove in che stato potremmo trovarla.

Proposizione 1.2. Sia P una matrice di probabilità di transizione regolare con stati 0, 1, ..., N. Allora la distribuzione limite $\vec{\pi} = (\pi_0, ..., \pi_N)$ è l'unica soluzione non negativa del sistema

$$\begin{cases} \pi_j = \sum_{k=0}^{N} \pi_k P_{kj} & j = 0, \dots, N \\ \sum_{k=0}^{N} \pi_k = 1 & \end{cases}$$

 $con \ \pi_k = \lim_{n \to \infty} P_{ik}^{(n-1)}.$

Risolvendo questo sistema di N+1 incognite e N+2 equazioni (un'equazione è ridondante e può essere rimossa)otteniamo il vettore $\vec{\pi}$ che ci permette di conoscere

$$\lim_{n \to \infty} P^n = \begin{bmatrix} \pi_0 & \pi_1 & \dots & \pi_N \\ \pi_0 & \pi_1 & \dots & \pi_N \\ \vdots & \vdots & & \vdots \\ \pi_0 & \pi_1 & \dots & \pi_N \end{bmatrix}$$

1.6 La classificazione degli stati

Lo stato j è detto raggiungibile dallo stato i $(i \to j)$ se $P_{ij}^{(n)} > 0$ per qualche $n \ge 0$. Due stati sono detti comunicanti $(i \leftrightarrow j)$ se i è raggiungibile da j e viceversa.

Proposizione 1.3. Il concetto di comunicazione è una relazione di equivalenza.

Dimostrazione. Si dimostrano le proprietà di una relazione di equivalenza.

- 1. proprietà riflessiva, $i \leftrightarrow i$ vale perché $P_{ii}^{(0)} = 1$
- 2. proprietà simmetrica, $i \leftrightarrow j \Rightarrow j \leftrightarrow i$
- 3. **proprietà transitiva**, $i \leftrightarrow k$ e $k \leftrightarrow j \Rightarrow i \leftrightarrow j$, infatti se $i \leftrightarrow k$ e $k \leftrightarrow j$ allora esitono n, m tali che $P_{ik}^{(n)} > 0$ e $P_{kj}^{(m)} > 0$, quindi $P_{ij}^{(n+m)} = \sum_{r=0}^{\infty} P_{ir}^{(n)} P_{rj}^{(m)} \ge P_{ik}^{(n)} P_{kj}^{(m)} > 0$

Una catena di Markov è detta *irriducibile* se tutti gli stati comunicano tra di loro (quindi se tutti gli stati appartendono a un'unica classe di equivalenza).

1.6.1 Periodicità di una catena di Markov

Proposizione 1.4. Se $i \leftrightarrow j$ allora d(i) = d(j) (il periodo è una proprietà di classe).

Dimostrazione. Sia $S_i = \{s > 0 : P_{ii}^{(s)} > 0\}$. Allora esistono m, n tali che

$$P_{ij}^{(m)} > 0, \quad P_{ji}^{(n)} > 0$$

$$\forall s \in S_i, P_{ii}^{(s)} > 0$$

$$P_{jj}^{(n+s+m)} = \sum_{h,k} P_{jh}^{(n)} P_{hk}^{(s)} P_{kj}^{(m)} \ge P_{ji}^{(n)} P_{ii}^{(s)} P_{ij}^{(m)} > 0$$

Se $s \in S_i$ allora $n+s+m \in S_j$. Analogamente $P_{ii}^{(2s)} \ge (P_{ii}^{(s)})^2 > 0$. Quindi $n+2s+m \in S_j$ e di conseguenza n+s+m è multiplo intero di n+2s+m.

$$n+2s+m-n-s-m=s\in S_i$$

Se $s \in S_i$ allora è multiplo di d(j). Quindi d(j) è divisore comune di S_i , d(i) è MCD di S_i . Ma allora d(i) è multiplo di d(j). Per simmetria d(j) multiplo di d(i) quindi d(i) = d(j).

1.6.2 Stati ricorrenti e stati transitori

Proposizione 1.5.

$$i \ ricorrente \Leftrightarrow \sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty$$
 $i \ transitorio \Leftrightarrow \sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty$

Proposizione 1.6. Se $i \leftrightarrow j$ e i ricorrente, allora anche j è ricorrente.

Dimostrazione. Dall'ipotesi $i \leftrightarrow j$ sappiamo che esistono $m, n \ge 1$ tali che

$$P_{ij}^{(n)} > 0, \quad P_{ji}^{(m)} > 0$$

 $Sia\ l > 0$. $Sapendo\ che$

$$P_{jj}^{(m+n+l)} = \sum_{h,k} P_{jh}^{(m)} P_{hk}^{(l)} P_{kj}^{(n)} \ge P_{ji}^{(m)} P_{ii}^{(l)} P_{ij}^{(n)}$$

 $Sommando\ otteniamo$

$$\sum_{n=1}^{\infty} P_{jj}^{(n)} \geq \sum_{l=1}^{\infty} P_{jj}^{(m+n+l)} \geq P_{ji}^{(m)} \, P_{ij}^{(n)} \, \sum_{l=1}^{\infty} P_{ii}^{(l)} = \infty$$

(La sommatoria diverge perché i è ricorrente)

1.7 Teorema Fondamentale delle Catene di Markov

Ricordiamo che

$$f_{ii}^{(n)} = P[X_n = i, X_m \neq i, m = 1, \dots, n-1 \mid X_0 = i]$$

= $P[R_i = n \mid X_0 = i]$ con $R_i = \min\{n \ge 1; X_n = i\}$

La durata media tra due visite è quindi definita come

$$m_i = E[R_i \mid X_0 = i] = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$$
 (6)

Definizione 1.3. Se $m_i < \infty$ allora i si dice ricorrente positivo $(\pi_i > 0)$ mentre se $m_i = \infty$ allora i si rice ricorrente nullo $(\pi_i = 0)$.

Proposizione 1.7. Consideriamo una catena di Markov aperiodica, irriducibile, ricorrente. Sia $P_{ii}^{(n)}$ la probabilità di essere nello stato i alla transizione n-esima per $n=0,1,2,\ldots$ e sia dato lo stato iniziale $X_0=i$ (per convenzione si assume $P_{ii}^{(0)}=1$). Sia $f_{ii}^{(n)}$ la probabilità di primo ritorno allo stato i nella stansizione n-esima, dove $f_{ii}^{(0)}=0$. Allora

$$\lim_{n \to \infty} P_{ii}^{(n)} = \frac{1}{\sum_{n=0}^{\infty} n f_{ii}^{(n)}} = \frac{1}{m_i}$$
 (7)

Sotto le medesime condizioni abbiamo anche che

$$\lim_{n \to \infty} P_{ji}^{(n)} = \lim_{n \to \infty} P_{ii}^{(n)} \quad \forall j$$
 (8)

Proposizione 1.8. In una catena di Markov con un numero finito di stati deve esserci almeno uno stato ricorrente positivo.

Dimostrazione. (Per assurdo) Supponiamo che tutti gli stati siano transitori o ricorrenti nulli, quindi

$$1 = \sum_{j=0}^{N} P_{ij}^{(n)} \quad \forall n, i$$

Per $n \to \infty$:

$$1 = \lim_{n \to \infty} \sum_{j=0}^{N} P_{ij}^{(n)} = \sum_{j=0}^{N} \lim_{n \to \infty} P_{ij}^{n} = 0$$

Assurdo.

2 Processi Di Poisson

La distribuzione di Poisson con parametro $\mu > 0$ è data da

$$p_k = e^{-\mu} \frac{\mu^k}{k!} \quad \text{per } k = 0, 1, \dots$$
 (9)

Media e varianza di una variabile aleatoria di Poisson sono date da

$$E[X] = \mu$$

$$E[X^2] = \mu^2 + \mu$$

$$Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2 = \mu$$

Proposizione 2.1. Siano X e Y due variabili aleatorie (indipendenti) con distribuzione di Poisson, rispettivamente di parametro μ e λ . Allora Z = X + Y è una variabile aleatoria di Poisson con con parametro $\mu + \lambda$.

Dimostrazione 1.

$$\begin{split} P[X+Y=n] &= \sum_{k=0}^{n} \, P[X=k,Y=n-k] \\ &= \sum_{k=0}^{n} \, P[X=k] \, P[Y=n-k] \\ &= \sum_{k=0}^{n} \, e^{-\mu} \frac{\mu^{k}}{k!} \, e^{-\lambda} \frac{\lambda^{n-k}}{(n-k)!} \\ &= e^{-(\mu+\lambda)} \frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \mu^{k} \lambda^{n-k} \\ &= e^{-(\mu+\lambda)} \, \frac{(\mu+\lambda)^{n}}{n!} \end{split}$$

2.1 Processi di Poisson

Definizione 2.1. Un processo di Poisson di intensità $\lambda > 0$ è un processo stocastico a valori interi $\{X(t);\ t \geq 0\}$ per il quale

1. per ogni valore di tempo $t_0 = 0 < t_1 < \ldots < t_n$, il gli incrementi del processo

$$X(t_1) - X(t_0), \dots, X(t_n) - X(t_{n-1})$$

sono variabili aleatorie indipendenti;

2. $per s \ge 0$ e t > 0 la variabile aleatoria X(s+t) - X(s) ha distribuzione di Poisson

$$P[X(s+t) - X(s) = k] = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$
 per $k = 0, 1, ...$

3. X(0) = 0

Proposizione 2.2. Sia X(t) un processo di Poisson con $\lambda > 0$. Allora

$$P[X(u) = k \mid X(t) = n] = \frac{n!}{k! (n-k)!} \left(\frac{u}{t}\right)^k \left(1 - \frac{u}{t}\right)^{n-k}$$
(10)

 $con \ 0 < u < t \ e \ 0 \le k \le n.$

Una proprietà significativa

$$P[X_1(t) = k \mid X_1(t) + X_2(t) = n] = \frac{n!}{k!(n-k)!} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n-k}$$
(11)

IMPORTANTE. Supponiamo di fornire un servizio al quale arrivano richeste secondo una distribuzione di Poisson con parametro λ . Ogni richiesta ha durata Y_1, Y_2, \ldots , variabili aleatorie con funzione di distribuzione comune $G(y) = P[Y_k \leq y]$. Gli arrivi sono invece regolati dalle variabili W_1, W_2, \ldots che possiamo far diventare variabili aleatorie uniformi.

Sia M(t) una variabile che conta le richieste attive in un dato istante t con M(0) = 0 e sia X(t) il numero totale di richieste arrivate fino all'istante t. Allora

$$M(t) = \sum_{k=1}^{X(t)} \mathbf{1}\{W_k + Y_k \ge t\}$$

Sia

$$p = P[U_k + Y_k \ge t] = \frac{1}{t} \int_0^t P[Y_k \ge t - u] du$$
$$= \frac{1}{t} \int_0^t [1 - G(t - u)] du = \frac{1}{t} \int_0^t [1 - G(z)] dz$$

Conoscendo il numero n di richieste totali fino all'istante t, la probabilità condizionata fornisce

$$P[M(t) = m \mid X(t) = n] = \frac{n!}{m!(n-m)!} p^m (1-p)^{n-m}$$

mentre

$$P[M(t) = m] = e^{-\lambda p t} \frac{(\lambda p t)^m}{m!}$$

Il numero di richieste esistenti al tempo t è un processo di Poisson con media

$$E[M(t)] = \lambda p t$$
$$= \lambda \int_0^t [1 - G(z)] dz$$

3 Processi di Rinnovamento

3.1 Equazioni di Rinnovamento

Definizione 3.1. Sia a(t) una funzione nota, F(t) funzione di distribuzione della variabile aleatoria X. Allora

$$A(t) = a(t) + \int_0^t A(t-x) dF(x)$$

è detta equazione di rinnovamento.

Proposizione 3.1. Sia a(t) una funzione limitata. Allora

$$A(t) = a(t) + \int_0^t A(t-x) dF(x)$$

ha un'unica soluzione A limitata su un intervallo finito e questa è

$$A(t) = a(t) + \int_0^t a(t-x) dM(x)$$

con $M(t) = \sum_{k=1}^{\infty} F_k(t)$ è la funzione di rinnovamento.

Grazie al risultato della proposizione 3.1 possiamo dimostrare questa importante relazione

$$E[S_{N(t)+1}] = E[X_1 + X_2 + \dots + X_{N(t)+1}]$$

$$= E[\sum_{i=1}^{N(t)+1} X_i]$$

$$\vdots$$

$$= \mu E[M(t) + 1] \quad \text{con } \mu = E[X_1]$$

dove le X_1, X_2, \ldots sono variabili aleatorie indipendenti e identicamente distribuite mentre N è un valore casuale. Usando l'argomento di rinnovamento possiamo infatti scrivere

$$\begin{split} A(t) &= E[S_{N(t)+1}] \\ &= \int_0^\infty E[S_{N(t)+1}] \mid X_1 = x] \, dF(x) \\ &= \int_0^t [x + A(t-x)] \, dF(x) + \int_t^\infty x \, dF(x) \\ &= \int_t^\infty x \, dF(x) + \int_0^t A(t-x) \, dF(x) \\ &= E[X_1] + \int_0^t A(t-x) \, dF(x) \\ &= E[X_1] + \int_0^t E[X_1] \, dM(t) \quad \text{per il teorema } 3.1 \\ &= E[X_1][M(t) + 1] \end{split}$$

4 Protocolli

4.1 ALOHA

4.2 Go-Back-N

5 Per Esame

- Dimostrare che il periodo è una proprietà di classe: vedi proposizione 1.4.
- Dimostrare che se $i \leftrightarrow j$ e i ricorrente, allora anche j è ricorrente: vedi proposizione 1.6.
- Dimostrare che in una catena di Markov con un numero finito di stati non possono esserci stati ricorrenti nulli:

Dimostrazione. Suppongo che esista uno stato ricorrente nullo. Allora deve esistere una classe ricorrente nulla con un numero finito di stati ma questo è impossibile per il teorema 1.8.

- Dimostrare che se X e Y sono due variabili aleatorie con distribuzione di Poisson, rispettivamente di parametri μ e λ allora X+Y è una variabile di Poisson con parametro $\mu+\lambda$: vedi proposizione 2.1.
- Dimostrare che $E[S_{N(t)+1}] = E[X_k][M(t)+1]$ con $E[X_1] = \mu$: la dimostrazione è resa possibile dalla proposizione 3.1 e segue la dimostrazione del teorema.