Projeto de Circuitos Eletrônicos Integrados 2

Amplificadores Operacionais Avançados Amp. Op. Cascode

Professor: Wellington Amaral (waamaral@unb.br)

Justificativa

- Três maneiras de aumentar o ganho de um amplificador operacional:
 - 1. Adicionar mais estágios de ganho
 - Aumentar a transcondutância do primeiro ou do segundo estágio
 - 3. Aumentar a impedância de saída vista pelo primeiro ou segundo estágio

Justificativa

- Três maneiras de aumentar o ganho de um amplificador operacional:
 - 1. Adicionar mais estágios de ganho

Pode levar à instabilidade

Justificativa

- Três maneiras de aumentar o ganho de um amplificador operacional:
 - 1. Adicionar mais estágios de ganho
 - Aumentar a transcondutância do primeiro ou do segundo estágio

Aumento do consumo de potência

Justificativa

- Três maneiras de aumentar o ganho de um amplificador operacional:
 - 1. Adicionar mais estágios de ganho
 - Aumentar a transcondutância do primeiro ou do segundo estágio
 - 3. Aumentar a impedância de saída vista pelo primeiro ou segundo estágio

Funcionamento

$$R_I \approx (g_{mC2}r_{ds}C_2r_{ds}2)||(g_{mC4}r_{ds}C_4r_{ds}4)$$

Voltage gain =
$$\frac{v_{o1}}{v_{in}} = g_{m1}R_I$$

➤ Vbias é utilizado para polarizar MC1 e MC2 e ajustar a tensão Vds de M1 e M2

Funcionamento

Implementation of the floating voltage V_{Bias} which must equal $2V_{ON} + V_{T}$.

 $R_I \approx (g_{mC2}r_{ds}C_2r_{ds}2)||(g_{mC4}r_{ds}C_4r_{ds}4)$

Voltage gain =
$$\frac{v_{o1}}{v_{in}} = g_{m1}R_I$$

➤ Vbias é utilizado para polarizar MC1 e MC2 e ajustar a tensão Vds de M1 e M2

Exercício

ightharpoonup Projete um Amplificador Cascode com as seguintes especificações abaixo. Encontre Av e $C_{\rm I}$.

VDD = 2,5V	Ids1 = Ids2 = 50uA
W/L = 10um/1um	GB = 10MHz

Dados da tecnologia:

Vtn = 0.5V	$\lambda_{N} = 0.06V^{-1}$
Vtp = 0.5V	$\lambda_{\rm p} = 0.08 V^{-1}$
Kn = 120uA/V ²	
$Kp = 25uA/V^2$	

Cascode no Primeiro Estágio

- Saída DC do primeiro estágio muito distante de VDD
 - Seria necessário um VDS grande no estágio de saída
 - Menor excursão do sinal na saída
- ➤ Logo, MT1 e MT2 realizam um *Level* Shifter
- ➤ O ganho pode chegar facilmente a 100000V/V

Cascode no Segundo Estágio

Elimina a necessidade de um *Level* Shifter

$$A_{v} = g_{mI}g_{mII}R_{I}R_{II}$$

Cascode no Segundo Estágio

Elimina a necessidade de um *Level* Shifter

$$A_{v} = g_{mI}g_{mII}R_{I}R_{II}$$

$$g_{mI} = g_{m1} = g_{m2}$$

$$R_I = \frac{1}{g_{ds2} + g_{ds4}} = \frac{2}{(\lambda_2 + \lambda_4)I_{D5}}$$

Cascode no Segundo Estágio

Elimina a necessidade de um *Level* Shifter

$$A_{v} = g_{mI}g_{mII}R_{I}R_{II}$$

$$g_{mI} = g_{m1} = g_{m2}$$

$$R_I = \frac{1}{g_{ds2} + g_{ds4}} = \frac{2}{(\lambda_2 + \lambda_4)I_{D5}}$$

$$g_{mII} = g_{m6}$$

$$R_{II} = (g_{mC6}r_{dsC6}r_{ds6}) || (g_{mC7}r_{dsC7}r_{ds7})$$

Balanceado com Cascode no Segundo Estágio

- Mais estável
- Autocompensado

$$A_{VI} = gm_2/gm_4$$
$$= gm_1/gm_3$$

$$A_{VII} = \left(\frac{gm_6 + gm_8}{2}\right)R_{II}$$

$$R_{II} = (gm_7r_{ds7}r_{ds6})||(gm_{12}r_{ds12}r_{ds11})$$

Balanceado com Cascode no Segundo Estágio

Equações de Projeto

Slew rate =
$$\frac{I_{\text{out}}}{C_L}$$
 $GB = \frac{g_{m1}g_{m8}}{g_{m3}C_L}$ $A_v = \frac{1}{2} \left(\frac{g_{m1}g_{m8}}{g_{m3}} + \frac{g_{m2}g_{m6}}{g_{m4}} \right) R_{II}$

$$A_{v} = \frac{1}{2} \left(\frac{g_{m1}g_{m8}}{g_{m3}} + \frac{g_{m2}g_{m6}}{g_{m4}} \right)$$

$$=V_{DD}-\left|\frac{I_5}{R}\right|_{1/2}-\left|V_{TO3}\right|(\max)+V_{T1}(\min)$$

$$V_{in}(\max) = V_{DD} - \left| \frac{I_5}{\beta_3} \right|^{1/2} - \left| V_{TO3} \right| (\max) + V_{T1}(\min) \qquad V_{in}(\min) = V_{SS} + V_{DS5} + \left| \frac{I_5}{\beta_1} \right|^{1/2} + V_{T1}(\min)$$

Balanceado com Cascode no Segundo Estágio

➤ Projete o Amp. Op ao lado com as seguintes especificações:

Av ≥ 5000		
ICMR = 1V a 2V		
Slew rate = 5V/us com 50pF de carga		
GB = 10MHz com 25pF de carga		
0.5V < Output swing < 2V		

> Dados da tecnologia:

Vtn = 0.5V	$\lambda_{N} = 0.06V^{-1}$
Vtp = 0.5V	$\lambda_{\rm P} = 0.08 V^{-1}$
Kn = 120uA/V ²	Cox = 6E-15 F/um2
Kp = 25uA/V ²	

Demais dados de projeto:

L = 0.5um	

Balanceado com Cascode no Segundo Estágio

1) Máxima corrente na saída

$$I_{\text{source}}/I_{\text{sink}} = C_L \times \text{slew rate} = 50 \text{ pF}(5 \text{ V/}\mu\text{s}) = 250 \mu\text{A}$$

2) Corrente máxima na saída (considerando que toda corrente I5 flui em M4)

Max.
$$I_{\text{out}}(\text{source}) = (S_6/S_4)I_5$$
 and Max. $I_{\text{out}}(\text{sink}) = (S_8/S_3)I_5$

Será considerado:

$$S_3 = S_4$$
, $S_6 = S_8$, and $S_{10} = S_{11}$

3) Dimensões dos transistores de saída

Escolhendo I5 = 100uA:

$$S_6 = 2.5S_4$$
 and $S_8 = 2.5S_3$

4) Amplitude de saída mínima de 0,5V (sob máxima corrente de 250uA)

$$0.25 = \sqrt{\frac{2I_{11}}{K'_N S_{11}}} = \sqrt{\frac{2I_{12}}{K'_N S_{12}}} = \sqrt{\frac{500 \ \mu\text{A}}{(120 \ \mu\text{A/V2})S_{11}}}$$
 resultando

$$S_{11} = S_{12} = 67$$

$$S_9 = S_{10} = 67$$

Balanceado com Cascode no Segundo Estágio

Amplitude de saída máxima de 2V (sob máxima corrente de 250uA)

$$0.25 = \sqrt{\frac{2I_6}{K'PS_6}} = \sqrt{\frac{2I_7}{K'PS_7}} = \sqrt{\frac{500 \ \mu\text{A}}{(25 \ \mu\text{A/V2})S_6}} \implies \begin{array}{c} S_6 = S_7 = S_8 = 320 \\ S_3 = S_4 = (320/2.5) = 128 \end{array}$$

- 5) Verificar a excursão de entrada e a influência dos seus pólos
 - Utilizando os dados de ICMR

$$V_{in}(\text{max}) = V_{DD} - \left[\frac{I_5}{\beta_3}\right]^{1/2} - |V_{TO3}|(\text{max}) + V_{T1}(\text{min})$$

Balanceado com Cascode no Segundo Estágio

Amplitude de saída máxima de 2V (sob máxima corrente de 250uA)

$$0.25 = \sqrt{\frac{2I_6}{K'PS_6}} = \sqrt{\frac{2I_7}{K'PS_7}} = \sqrt{\frac{500 \ \mu\text{A}}{(25 \ \mu\text{A/V2})S_6}} \implies S_6 = S_7 = S_8 = 320$$
$$S_3 = S_4 = (320/2.5) = 128$$

- 5) Verificar a excursão de entrada e a influência dos seus pólos
 - Utilizando os dados de ICMR obtém-se S3 > 16
 - S3 foi calculado anteriormente como sendo S3 = 128
 - Utilizando um S3 maior obtém-se uma maior excursão na entrada

$$V_{in}(\text{max}) = V_{DD} - \left[\frac{I_5}{\beta_3}\right]^{1/2} - |V_{TO3}|(\text{max}) + V_{T1}(\text{min})$$

Balanceado com Cascode no Segundo Estágio

Amplitude de saída máxima de 2V (sob máxima corrente de 250uA)

$$0.25 = \sqrt{\frac{2I_6}{K'PS_6}} = \sqrt{\frac{2I_7}{K'PS_7}} = \sqrt{\frac{500 \ \mu\text{A}}{(25 \ \mu\text{A/V2})S_6}} \implies S_6 = S_7 = S_8 = 320$$
$$S_3 = S_4 = (320/2.5) = 128$$

- 5) Verificar a excursão de entrada e a influência dos seus pólos
 - Utilizando os dados de ICMR obtém-se S3 > 16
 - S3 foi calculado anteriormente como sendo S3 = 128
 - Utilizando um S3 maior obtém-se uma maior excursão na entrada
 - Com S3 = 128 obtém-se Vin(max) = 2.32V
 - Verificar se ele provoca um pólo abaixo de GB

$$p_3 = \frac{-g_{m3}}{C_{gs3} + C_{gs8}} = \frac{-\sqrt{2K'_P S_3 I_3}}{(0.667)(W_3 L_3 + W_8 L_8)C_{ox}} = 3.125 \times 10^9 \text{ rads/sec or } 497 \text{ MHz}$$

que é maior que 10GB!

Balanceado com Cascode no Segundo Estágio

- 6) Cálculo de gm1 e gm2 (duas maneiras possíveis)
 - a) A partir da especificação de Av.

$$A_{v} = (g_{m1}/2g_{m4})(g_{m6} + g_{m8}) R_{II}$$
 considerando
$$S_{6}/S_{4} (S_{8}/S_{3} = S_{11}/S_{3}) = k$$

$$\frac{g_{m6}}{g_{m4}} = \frac{g_{m11}}{g_{m3}} = \sqrt{\frac{2KP' \cdot S_{6} \cdot I_{6}}{2KP' \cdot S_{4} \cdot I_{4}}} = k$$

após o cálculo das várias transcondutâncias e resistências de saída obtém-se:

$$g_{m4} = 566 \ \mu S$$
 $r_{ds6} = r_{d7} = 100 \ k\Omega$ $g_{m6} = g_{m7} = g_{m8} = 1414$ $r_{ds11} = r_{ds12} = 133 \ k\Omega$ $g_{m11} = g_{m12} = 1414 \ \mu S$

Balanceado com Cascode no Segundo Estágio

considerando os valores anteriores e que Av deve ser maior que 5000 e k = 2.5

b) A partir da especificação de GB

Multiplicando o ganho pelo pólo dominante $(1/C_{II}R_{II})$ obtém-se:

$$GB = \frac{g_{m1}(g_{m6} + g_{m8})}{2g_{m4}C_L}$$

Considerando CL = 25pF e utilizando a especificação de GB obtém-se:

$$gm1 = 628us$$

como este valor é maior que 221us é escolhido

$$gm1 = gm2 = 628us$$

Considerando o valor de I5: $S1 = S2 = 32.9 \approx 33$

Balanceado com Cascode no Segundo Estágio

7) Verificar se S1 e S2 são grandes o suficiente para ICMR*min*

$$V_{in}(\min) = V_{SS} + V_{DS5} + \left[\frac{I_5}{\beta_1}\right]^{1/2} + V_{T1}(\min)$$

Balanceado com Cascode no Segundo Estágio

- 7) Verificar se S1 e S2 são grandes o suficiente para ICMR*min*
 - Utilizando a equação da saturação obtém-se que Vds5 = 0.341V. Logo S5 = 15
 - O ganho obtido foi de Av = 14182V/V, com GB = 10MHz para uma CL = 25pF
- 8) Conhecendo as corrente de polarização e os valores de W/L, as tensões de polarização VNB1, VNB2 e VPB2 podem ser projetadas.

Os valores obtidos a partir do procedimento anterior foram:

$$S_1 = S_2 = 33$$
 $S_3 = S_4 = 128$ $S_5 = 15$ $S_6 = S_7 = S_8 = 320$ $S_9 = S_{10} = S_{11} = S_{12} = 67$

O consumo de potência foi de 350uA · 2.5V = 0.875mW

Balanceado com Cascode no Segundo Estágio

➤ Projete um Amp. Op ao lado com as seguintes especificações:

VDD = 1.8V	Av ≥ 5000	
GB = 5MHz	ICMR = 0,8V a 1,3V	
Slew rate = 2V/us com 5pF de carga		
GB = 5MHz com 2pF de carga		
0,3V < Output swing < 1,3V		

> Dados da tecnologia:

Vtn = 0,397V	$\lambda_{\rm N} = 0.06 { m V}^{-1}$
Vtp = 0,457V	$\lambda_{\rm P} = 0.08 { m V}^{-1}$
Kn = 591uA/V ²	Cox = 8,82E-15 F/um2
Kp = 216uA/V ²	

Demais dados de projeto:

Lmin e Wmin = 0,5um	

Amp. Op. Folded Cascode

Características

- > Auto compensado
- ➤ Não existe o problema de perda de metade do ganho na conversão para single-ended
- ➢ Bom PSRR
- ➤ Bom ICMR

Referências

➤ Phillip Allen, Douglas Holberg, "CMOS Analog Circuit Design", Capítulo 6 Oxford, 2a ed., 2002.