Setup

```
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
from matplotlib import style
import seaborn as sns

# Configuración matplotlib
plt.rcParams['image.cmap'] = "bwr"
#plt.rcParams['figure.dpi'] = "100"
plt.rcParams['savefig.bbox'] = "tight"
style.use('ggplot') or plt.style.use('ggplot')

# Configuración warnings
import warnings
warnings.filterwarnings('ignore')
```

Data

	Estado	Edad	Ratio.Pago	Salario	Dias.trabajados	Ausencias	Sexo	Estado.Civil
0	0	30.0	28.50	4167.066667	3317	1	Female	2
1	0	34.0	23.00	6962.466667	1420	17	Male	1
2	0	31.0	29.00	4330.333333	1154	3	Male	4
3	0	32.0	21.50	4332.733333	58	15	Female	2
4	0	30.0	16.56	3388.333333	940	2	Female	4
5	1	30.0	20.50	3837.866667	730	15	Female	2
6	0	33.0	55.00	6377.333333	691	19	Male	2
7	1	33.0	55.00	3957.666667	1636	19	Male	2
8	0	31.0	34.95	3189.133333	1014	4	Female	2
۵	\cap	3U U	24 05	334E 300000	22/17	16	Famala	g

Analisis Exploratorios

infoData.describe()

```
data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 310 entries, 0 to 309
       Data columns (total 11 columns):
        # Column Non-Null Count Dtype
            Estado 310 non-null int64
Edad 310 non-null float64
Ratio.Pago 310 non-null float64
Salario 310 non-null float64
        0 Estado
       1 Edad
2 Ratio.P
      Ratio.Pago 310 non-null float64
Dias.trabajados 310 non-null int64
Ausencias 310 non-null int64
Sexo 310 non-null object
Estado.Civil 310 non-null int64
Departamento 310 non-null object
Posicion 310 non-null object
Desempeño 310 non-null object
       dtypes: float64(3), int64(4), object(4)
       memory usage: 26.8+ KB
data.isnull().sum()
       Estado
       Edad
       Ratio.Pago
       Salario
       Dias.trabajados
       Ausencias
      Sexo
       Estado.Civil
       Departamento
       Posicion
       Desempeño
                                  0
       dtype: int64
infoData = data
infoData = infoData.drop('Estado.Civil', axis = 1)
```

	Estado	Edad	Ratio.Pago	Salario	Dias.trabajados	Ausencias
count	310.000000	310.000000	310.000000	310.000000	310.000000	310.000000
mean	0.409677	38.867742	31.284806	4606.534839	1296.080645	10.264516
std	0.492569	8.922459	15.383615	1677.350176	769.491382	5.843235
min	0.000000	25.000000	14.000000	3004.600000	2.000000	1.000000
25%	0.000000	32.000000	20.000000	3707.033333	766.250000	5.000000
50%	0.000000	37.000000	24.000000	4190.666667	1238.000000	10.000000
75%	1.000000	44.000000	45.315000	4804.733333	1732.750000	15.000000
max	1.000000	67.000000	80.000000	16666.666667	4339.000000	20.000000

Se observan algunas posibles incongruensias en la variable de Salario

```
fig, axe = plt.subplots(2, 2, figsize=(12,8))
axe[0, 0].hist(data['Edad'], bins = 50)
axe[0, 1].hist(data['Salario'], bins = 50)
axe[1, 0].hist(data['Ratio.Pago'], bins = 50)
axe[1, 1].hist(data['Dias.trabajados'], bins = 50)
axe[0, 0].set_xlabel('Edad')
axe[0, 0].set_ylabel('Personas')
axe[0, 0].set_title('Distribucion de Edades', fontsize = 10, fontweight = "bold")
axe[0, 0].tick_params(labelsize = 7)
axe[0, 1].set_xlabel('Salario')
axe[0, 1].set_ylabel('USD')
axe[0, 1].set_title('Distribucion de Salarios', fontsize = 10, fontweight = "bold")
axe[0, 1].tick_params(labelsize = 7)
axe[1, 0].set_xlabel('Pago por Hora')
axe[1, 0].set_ylabel('Personas')
axe[1, 0].set_title('Distribucion de Horas por Personas', fontsize = 10, fontweight = "bold")
axe[1, 0].tick_params(labelsize = 7)
axe[1, 1].set_xlabel('Dias totales trabajados')
axe[1, 1].set_ylabel('Personas')
axe[1, 1].set_title('Distribucion de Dias por Personas', fontsize = 10, fontweight = "bold")
axe[1, 1].tick_params(labelsize = 7)
fig.tight_layout()
plt.subplots_adjust(top=0.9)
plt.show()
```


Con estos graficos realizados, podemos observar que existen algunos salarios que superan los 8000 USD, lo que es sospechoso, por lo tanto hay que identificar primero si estan correctos o no.

```
dataSalarios = data['Salario'].sort_values(ascending = False)
display(dataSalarios.head(5))
print('')
display(dataSalarios.tail(5))
           16666.666667
         14696.666667
    131 12000.000000
    96
           11866.666667
          11366.666667
    Name: Salario, dtype: float64
    216 3066.533333
           3028.866667
    152
          3026.333333
    176
    231
         3007.666667
           3004.600000
    140
    Name: Salario, dtype: float64
```

Como el sueldo minimo de la empresa esta entre los 3000+ USD, los sueldos sobre 8000 USD deberian ser omitidos, ya que son posibles candidatos de ser datos incongruentes. Ademas revisando los datos de la variable Edad, se observan algunos datos incongruentes dentro de la tabla.

Por lo tanto, los datos incongruentes seran omitidos, al igual que las variables Estado Civil, Posicion, Desempeño y Departamento

Construyendo nuevo DataFrame con las variables continuas

```
newData = data.loc[:, ['Estado', 'Edad', 'Ratio.Pago', 'Salario', 'Dias.trabajados', 'Ausencias']]
#Eliminando Edades incongruentes
newData = newData.drop(index = newData[newData['Edad']%1 != 0].index)
#Eliminando Salarios muy altos
newData = newData.drop(index = newData[newData['Salario'] > 8000].index)
newData.head(5)
```

	Estado	Edad	Ratio.Pago	Salario	Dias.trabajados	Ausencias	7
0	0	30.0	28.50	4167.066667	3317	1	
1	0	34.0	23.00	6962.466667	1420	17	
2	0	31.0	29.00	4330.333333	1154	3	
3	0	32.0	21.50	4332.733333	58	15	
4	0	30.0	16.56	3388.333333	940	2	

Modelo Regresion Logistica

```
X = newData.iloc[:,newData.columns != 'Estado']
y = newData.Estado
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
                                                              train_size = 0.75,
                                                               random_state = 2023,
                                                               shuffle = True
import statsmodels.api as sm
X_train = sm.add_constant(X_train, prepend=True)
modelo = sm.Logit(endog=y_train, exog=X_train,)
modelo = modelo.fit()
print(modelo.summary())
       Optimization terminated successfully.
                     Current function value: 0.509974
                     Iterations 6
                                                Logit Regression Results
       Dep. Variable: Estado No. Observations: 210
Model: Logit Df Residuals: 204
Method: MLE Df Model: 5
       Method: MLE Df Model:
Date: Thu, 04 May 2023 Pseudo R-squ.:
Time: 22:47:59 Log-Likelihood:
converged: True LL-Null:
                                                                                                                0.2482
-107.09
-142.46
                                                                                                             7.221e-14
       converged: True LL-Null:
Covariance Type: nonrobust LLR p-value:
                                        coef std err z P>|z| [0.025 0.975]

        const
        1.6859
        1.088
        1.549
        0.121
        -0.447
        3.819

        Edad
        0.0387
        0.019
        2.017
        0.044
        0.001
        0.076

        Ratio.Pago
        -0.0317
        0.012
        -2.600
        0.009
        -0.956
        -0.008

        Salario
        -5.483e-05
        0.000
        -0.334
        0.739
        -0.000
        0.000

        Dias.trabajados
        -0.0019
        0.000
        -6.316
        0.000
        -0.003
        -0.001

        Ausencias
        0.0081
        0.028
        0.287
        0.774
        -0.047
        0.063

        ______
```

Metricas

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

class_names=[0,1] # name of classes
fig, ax = plt.subplots()
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names)
plt.yticks(tick_marks, class_names)
# create heatmap
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Actual label')
plt.xlabel('Predicted label');
```

Confusion matrix


```
from sklearn.metrics import f1_score
#Calculo la sensibilidad del modelo
sensibilidad = recall_score(y_test, clasificacion)
print('Sensibilidad del modelo:')
print(sensibilidad)
#Calculo el Puntaje F1 del modelo
puntajef1 = f1_score(y_test, clasificacion)
print('Puntaje F1 del modelo:')
print(puntajef1)
#Calculo la exactitud del modelo
exactitud = accuracy_score(y_test, clasificacion)
print('Exactitud del modelo:')
print(exactitud)
#Calculo la precisión del modelo
precision = precision_score(
           y_true = y_test,
```

y_pred = clasificacion)

from sklearn.metrics import precision_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score

0.7096774193548387

print('Precisión del modelo:')

```
fpr, tpr, _ = metrics.roc_curve(y_test, clasificacion)
auc = metrics.roc_auc_score(y_test, clasificacion)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
plt.legend(loc=4)
plt.show()
```



```
from sklearn.metrics import roc_auc_score

roc_auc = roc_auc_score(y_test, clasificacion)
print('Curva ROC - AUC del modelo:')
print(roc_auc)

Curva ROC - AUC del modelo:
    0.772167487684729
```

Interpretacion

Con lo observado en el modelo, podemos concluir que las variables Salario y Ausencias no son significativos y que no se puede afirmar que tienen relacion con el Estado del empleado. Sin embargo, las variables Edad, Ratio y Dias, son significativos.

De acuerdo a las metricas obtenidas del modelo, este modelo posee una Exactitud del 77% y una precision del 70%. En cuanto al valor de AUC es de 0.77, el cual es cercano a 1 y que tiene un buen desempeño para distinguir los casos positivos y negativos.

- Construyendo nuevo DataFrame con las variables categoricas

sns.countplot(x='Sexo', hue='Estado', data=data)

<Axes: xlabel='Sexo', ylabel='count'>

sns.countplot(x='Estado.Civil', hue='Estado', data=data)

<Axes: xlabel='Estado.Civil', ylabel='count'>


```
sns.countplot(x='Departamento', hue='Estado', data=data)
plt.xticks(rotation=45, ha='right')
plt.show()
```



```
plt.figure(figsize=(15, 4))
sns.countplot(x='Posicion', hue='Estado', data=data)
plt.xticks(rotation=45, ha='right')
```

plt.show()


```
sns.countplot(x='Desempeño', hue='Estado', data=data)
plt.xticks(rotation=45, ha='right')
plt.show()
```


Modelo Regresion Logistica para variables Categoricas

```
modeloC = sm.Logit(b_train, A_train)
modeloC = modeloC.fit()
print(modeloC.summary())
```

<

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.426715

Iterations: 35

Logit Regression Results

Dep. Variable:	Estado	No. Observations:	232				
Model:	Logit	Df Residuals:	210				
Method:	MLE	Df Model:	21				
Date:	Thu, 04 May 2023	Pseudo R-squ.:	0.3735				
Time:	22:48:04	Log-Likelihood:	-98.998				
converged:	False	LL-Null:	-158.01				
Covariance Type:	nonrobust	LLR p-value:	1.649e-15				

	coef	std err	z	P> z	[0.025	0.975]	
Edad	0.0662	0.023	2.914	0.004	0.022	0.111	
Ratio.Pago	-0.0040	0.020	-0.203	0.839	-0.043	0.035	
Salario	-5.635e-05	0.000	-0.549	0.583	-0.000	0.000	
Dias.trabajados	-0.0025	0.000	-6.534	0.000	-0.003	-0.002	
Ausencias	0.0320	0.033	0.974	0.330	-0.032	0.096	
Sexo_Female	-5.7628	8.96e+06	-6.43e-07	1.000	-1.76e+07	1.76e+07	
Sexo_Male	-5.6293	9.49e+06	-5.93e-07	1.000	-1.86e+07	1.86e+07	
Estado.Civil_1	-1.8109	3.09e+06	-5.86e-07	1.000	-6.06e+06	6.06e+06	
Estado.Civil_2	-1.7720	3.68e+06	-4.81e-07	1.000	-7.22e+06	7.22e+06	
Estado.Civil_3	-2.7746	3.85e+06	-7.21e-07	1.000	-7.55e+06	7.55e+06	
Estado.Civil_4	-2.5927	2.94e+06	-8.82e-07	1.000	-5.76e+06	5.76e+06	
Estado.Civil_5	-2.4419	2.78e+06	-8.79e-07	1.000	-5.44e+06	5.44e+06	
Departamento_Admin Offices	4.6449	2e+07	2.32e-07	1.000	-3.93e+07	3.93e+07	
Departamento_Executive Office	-38.9548	7.21e+09	-5.4e-09	1.000	-1.41e+10	1.41e+10	
Departamento_IT/IS	4.6592	2.02e+07	2.31e-07	1.000	-3.95e+07	3.95e+07	
Departamento_Production	6.5965	1.98e+07	3.33e-07	1.000	-3.88e+07	3.88e+07	
Departamento_Sales	5.1020	1.99e+07	2.56e-07	1.000	-3.9e+07	3.9e+07	
Departamento_Software Engineering	6.5600	1.98e+07	3.31e-07	1.000	-3.89e+07	3.89e+07	
Desempeño_90-day meets	2.0324	9.87e+06	2.06e-07	1.000	-1.93e+07	1.93e+07	
Desempeño_Exceeds	1.5833	9.87e+06	1.6e-07	1.000	-1.93e+07	1.93e+07	
Desempeño_Exceptional	-21.3667	9.87e+06	-2.16e-06	1.000	-1.93e+07	1.93e+07	
Desempeño_Fully Meets	2.0496	9.87e+06	2.08e-07	1.000	-1.93e+07	1.93e+07	
Desempeño_N/A- too early to review	1.8677	9.87e+06	1.89e-07	1.000	-1.93e+07	1.93e+07	
Desempeño_Needs Improvement	3.0641	9.87e+06	3.1e-07	1.000	-1.93e+07	1.93e+07	
Desempeño_PIP	-0.6227	9.87e+06	-6.31e-08	1.000	-1.93e+07	1.93e+07	

/usr/local/lib/python3.10/dist-packages/statsmodels/base/model.py:604: ConvergenceWarning: Maximum Likelihood optimization failed to cor warnings.warn("Maximum Likelihood optimization failed to "

Segun los datos obtenidos con el modelo para observar si las categorias tienen relacion con el estado del empleado, se puede concluir que no son significativas para determinar el estado, puesto que poseen un p value de 1.