Departamento de Ciência de Computadores FCUP Desenho e Análise de Algoritmos (CC2001) 2017/18

Exame (29.01.2018)	duração: 3h
	3

N.º		Nome	
1.	Considere a rede de flu	ixo segu	inte, onde c/f são pares capacidade/fluxo, e s e t são a origem e destino.

b) [1.5] Partindo do fluxo f, aplique o algoritmo de Edmonds-Karp para obter um fluxo máximo (desenhe a rede residual em cada iteração, represente o fluxo final na rede, e explique sucintamente os passos).

c) [0.6] Complete as frases: A capacid	lade do corte $(\{s,x,t\},\{p,q,z,m,k\})$ é].
	$ig $ e um corte $\{S,T\}$ com capacidade mínima, a qual e].

	e o incremento de $ f $				
estratégia <i>greed</i>	0, 20, 50, 100, e 200, y que obtém a soluçã é incorreta se for limit	o ótima se se dis	spuser de um nú	mero ilimitado de	moedas de cada
	a definição matemáti de de cada uma das af			classes indicadas,	justifique a vera
	$3n\log_2 n \notin \Theta(n\log_2 n)$				

N.º		Nome					
b)	$4n^2 + 150 \in \Omega(12n^2)$	+ 5).					
	Considere o algoritmo inhos mínimos com o						
	[0.3+0.7] O que retor lementação de Q apro						
b)	[1.0] Indique a comp			(- /	,	DECREASEK	$\operatorname{EY}(Q, v, dist[v])$
	,	e do algoritn	no de Dijkstra].
de p	[0.4] Explique de que peso máximo (ou mí n ermina um conjunto n	nimo) de um	grafo $G = ($	V, E, d), se ded	luz da cor	reção da estra	tégia greedy que
/*	Em alternativa, res	olva questão	10. */				

6. [2.0] Aplique o algoritmo de Prim para obter uma árvore geradora \mathcal{T} de peso **mínimo** do grafo indicado, com raiz q. Anote os nós com pares (dist, pai), como se definiu nas aulas, de modo a poder reconstruir **os** passos intermédios dessa aplicação. Na caixa à direita, indique os nós em \mathcal{T} após cada iteração.

7.	Considere o algoritmo	de Kosaraju-Sharir j	para determinação da	s componente	s fortemente co	onexas de
um	grafo dirigido $G = (V,$	(E). Pretendemos ob	ter uma lista de listas	de nós que de	finem cada con	nponente.

a)	[1.5] Descreva	os passos principais, as	suas complexidades temporais	e as estruturas de dados que usam.

, , ,	 1 ,	•	1	1

|--|

iicçao.

N.º	Nome	

8. Considere a função ANALISAROTA(s,t,n,C) para verificar se uma rota a dar por um utilizador passa em s e t e tem lugares suficientes entre s e t para um grupo de n elementos, sendo C uma matriz e C[i,j]o número de lugares disponíveis no troço (i,j) (que será -1 se não existir esse troço). A rota é dada pela sequência de nós por onde passa, os quais são todos distintos. O utilizador começa por dar o número de nós da rota e a seguir indicará os nós. Assuma que $s \neq t$ e $n \geq 1$.

		a) [1.2] Qual é a complexidade no pior caso?			
	D () (C)	E, no melhor caso?	Identifique-os e explique		
Anai	LISAROTA (s,t,n,C)				
1.	$p \leftarrow n;$				
2.	$ler(m); ler(i); d \leftarrow 1;$				
3.	Se $(i = s)$ então $ok \leftarrow \texttt{true}$;				
4.	$senão ok \leftarrow false;$				
5.	Enquanto $(i \neq t \land p = n \land d < m)$ fazer				
6.	$ler(j); d \leftarrow d + 1;$				
7.	Se $(j = s)$ então $ok \leftarrow \texttt{true}$;				
8.	senão				
9.	se ($ok = \texttt{true} \land p > C[i, j]$) então				
10.	$p \leftarrow C[i, j];$				
11.	$i \leftarrow j;$				
12.	Se $(i = t \land ok = \mathtt{true} \land p = n)$ então				
13.	retorna true;				
14.	retorna false;				

b) [0.7] Assuma que não é necessário ler a rota até ao fim. Indique um invariante de ciclo que permita demonstrar a correção da função.

	——————————————————————————————————————	apresente a dedi	ição de que a funç	ção retorna o valor co	orreto.
0.3] Assuma que é	necessário ler a ro	ota até ao fim. Co	orrija o programa.		

3 T O	3.7	
N°	Nome	
11.	1 101110	

9. Seja G=(V,E,d) um grafo dirigido finito, com $V=\{1,2,\ldots,n\}$, e em que $d(e)\in\mathbb{Z}^+$ define o peso do ramo e, para todo $e\in E$. O peso de um percurso é a soma dos pesos nos ramos do percurso. Considere percursos $\gamma_{ij}^{(k,r)}$ de i para j com no máximo r ramos e que passam num nó k pré-definido (basta que k ocorra, não tem de ser um nó intermédio). Seja $K_{ij}^{(k,r)}$ o **peso mínimo** que um tal percurso pode ter, para k e k fixos. Um percurso tem pelo menos um ramo. Se o percurso não existir, defina $K_{ij}^{(k,r)}$ como k.

b) [0.5] No caso geral, prove que nenhum percurso $\gamma_{ij}^{(k,r)}$ com peso $K_{ij}^{(k,r)}$ contém um ciclo de k para k, a menos que i=j=k.

(Sugestão: como exprimir a matriz $K^{(k,r+1)}$ a partir da matriz $K^{(k,r)}$ e de d?)

d) [0.2] Indique um valor r_0 , dependente de n , tal que $K_{ij}^{(k,r)} = K_{ij}^{(k,r_0)}$, para todo (i,j) e $r \ge r_0$.
e) [1.1] Escreva (em pseudocódigo) uma função RESOLVE (D, n, k, K) , com complexidade $O(n^3)$, para obter a matriz K , sendo K_{ij} o peso mínimo de um percurso de i para j que passe por k , com $k \ge 1$ fixo para todos os pares (i, j) . Deve ser baseada na recorrência definida anteriormente e usar programação dinâmica . São dados n , k e a matriz D , sendo $D_{ij} = d(i, j)$ se $(i, j) \in E$ (caso contrário, $D_{ij} = \infty$).
10. [0.4] Uma árvore de pesquisa red -black não é uma árvore equilibrada. Que propriedade garante que a operação de procura de um dado valor seja realizada em $O(\log_2 n)$, sendo n o número de valores na árvore
/* Em alternativa, resolva questão 5. */