Addition of external information for enhancement of local embeddings for event sequences data models

Maria Kovaleva Research advisor: Ph.D. Alexey Zaytsev

Department of Intelligent Systems

Moscow Institute of Physics and Technology
&
Data Science

Skolkovo Institute of Science and Technology

Introduction. External information

General problem: building of embeddings \mathbf{h}_t for event sequences

Gaps: self-supervised models for representation learning ignore external information

Idea: the external information is contained in sequences themselves and can be represented as their aggregation

Aim and Objectives

The aim of the work:

To enhance the embeddings for event sequences data models using aggregation of external information.

Objectives:

- 1. Development of aggregation methods for external aggregation accounting
- 2. Validation of developed methods on bank transactions data

Problem statement and baseline approaches

$$D = \left\{S^i\right\}_{i=1}^n - \text{ set of } n \text{ sequences}$$

$$S^i = \left\{\left(t^i_j, \mathbf{Z}^i_j\right)\right\}_{j=0}^{T^i} - \text{ event sequence}$$

$$t^i_j \in [0, T^i] - \text{ time of the event; } \mathbf{Z}^i_j \in \mathbb{R}^d - \text{ description of the event}$$

Embeddings construction: $e(S^i) = H^i$

- e is encoder: usually dense NN for event description encoding + recurrent NN

Contrastive learning for encoder:

 $L_{km} = I_{k=m}d\left(\mathbf{h}^k,\mathbf{h}^l\right)^2 + \frac{1}{2}\left(1 - I_{k=m}\right)\max\left\{0,\rho - d\left(\mathbf{h}^k,\mathbf{h}^l\right)\right\}^2$, where d is a distance between embeddings and ρ is a hyperparameter

Autoregressive learning for encoder:

A loss function consists of the cross-entropy for the categorical features and MSE for the continuous features $\,$

Receiving representations of external information and taxonomy of aggregation methods

Construction of a vector of external information

Taxonomy of aggregation methods

When constructing aggregation methods, one can use the similarity of the current sequence and sequences from the training set

Similarity of sequences:

- by embeddings
- by time

General formula for aggregation: $\mathbf{b}_{\tau}^{c} = f\left(H, f_{e}\left(H, \mathbf{h}_{t < \tau}^{c}\right), f_{t}\left(\tau, T\right)\right)$

Where $H = \left[\mathbf{h}_{t<\tau}^1, \dots, \mathbf{h}_{t<\tau}^n\right]$ is a matrix with embeddings of all sequences at current time,

 $T = \left[t_{t<\tau}^1, \ldots, t_{t<\tau}^n, \right]$ is a vector of the last event times for all sequences; f_e and f_t are functions to measure similarity by embeddings and time, f is aggregation function, usually weighed sum of vectors from H.

Proposed aggregation methods

Classic:

1 Mean:
$$\mathbf{b}_{\tau}^{c} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{h}_{t < \tau}^{i}$$

2 Max:
$$\mathbf{b}_{\tau}^{c} = \max(H)$$

Inspired by the Hawkes process*:

- 3 Exp Hawkes:
 - $\mathbf{b}_{\tau}^{c} = H \exp\left(-\left(\tau \mathbf{1} T\right)\right)$
- 4 Exp learnable Hawkes: $\mathbf{b}_{\tau}^{c} = \phi_{NN} \left(\operatorname{concat} \left(H, \mathbf{h}_{\tau}^{c} \right) \right) \exp \left(\left(\tau \mathbf{1} T \right) \right)$
- 5 Attention Hawkes: $\mathbf{b}_{\tau}^{c} = H\left(\operatorname{softmax}\left(H^{T}\mathbf{h}_{\tau}^{c}\right) \odot \exp\left(-\left(\tau\mathbf{1} T\right)\right)\right)$

Attention based:

- 6 Attention: $\mathbf{b}_{\tau}^{c} = H \text{softmax} (H^{T} \mathbf{h}_{\tau}^{c})$
- 7 Learnable attention: $\mathbf{b}_{\tau}^{c} = H \text{softmax} \left(H^{T} A \mathbf{h}_{\tau}^{c} \right)$
- 8 Symmetrical attention: $\mathbf{b}_{\tau}^{c} = H \text{softmax} \left(H^{T} S^{T} S \mathbf{h}_{\tau}^{c} \right)$
- 9 Kernel attention: $\mathbf{b}_{\tau}^{c} = H \text{softmax}\left(\phi\left(H^{T}\right)\phi\left(\mathbf{h}_{\tau}^{c}\right)\right)$

Where A and S are matrices with learnable parameters, ϕ and ϕ_{NN} are learnable transformation (two-layer NN).

^{*}Laub P. J., Taimre T., Pollett P. K. Hawkes processes. arXiv preprint arXiv:1507.02822. - 2015.

Validation of proposed methods

Dataset of the bank transactions:

- 1. Each sequence S^i : one bank client transactions
- 2. Each event \mathbf{Z}_{i}^{i} : transaction (merchant category code + amount)
- 3. Target: whether the client left the bank

Validation:

- 1. **Global** : the model inference on the whole sequence to check its global patterns
 - a binary downstream task
 - b one output vector for a boosting model
- 2. **Local**: the model inference on sliding windows to check local properties.
 - a next event type prediction
 - b local target prediction
 - c MLP head for prediction

Results: external information addition enhances metrics

The best models are to the right and higher.

- 1. Accounting of the **external information** improve metrics
- 2. **Exp Hawkes** method is the best for the local task
- Classic and attention based methods are the best for the global task

Defence statements

- 1. It was suggested to use embeddings aggregations to account for external information in event sequences.
- 2. A taxonomy of aggregation methods is proposed and specific methods are implemented.
- It was shown that addition of external information improves the quality of embeddings when used in various applied problems with real data.

Publications

 Bazarova, A.*, Kovaleva, M.^{†*}, Kuleshov, I.*, Romanenkova, E.*, Stepikin, A.*, Yugay, A.*, Mollaev, D., Kireev, I., Savchenko, A., and Zaytsev, A. Universal representations for financial transactional data: embracing local, global, and external contexts. arXiv preprint arXiv:2404.02047 (2024)

^{*}Equal contribution

[†]Contribution: analysis of the external information addition

Additional slides. Results.

	Global target			
	Contrastive learning		Autoregressive learning	
	ROC-AUC	PR-AUC	ROC-AUC	PR-AUC
Without contex	0.743 ± 0.009	0.792 ± 0.014	0.692 ± 0.025	0.734 ± 0.032
Mean	0.773 ± 0.004	0.828 ± 0.003	0.722 ± 0.007	0.776 ± 0.005
Max	0.774 ± 0.021	$\overline{0.818 \pm 0.032}$	0.725 ± 0.005	0.777 ± 0.002
Attention	0.760 ± 0.014	0.808 ± 0.017	0.696 ± 0.014	0.744 ± 0.017
Learn. attention	0.777 ± 0.013	0.830 ± 0.013	0.704 ± 0.026	0.751 ± 0.020
Sym. attention	0.785 ± 0.010	0.835 ± 0.005	0.722 ± 0.010	0.769 ± 0.004
Kernel attention	0.775 ± 0.003	0.824 ± 0.002	0.709 ± 0.019	0.760 ± 0.003
Exp Hawkes	$\overline{0.765 \pm 0.008}$	0.814 ± 0.009	0.716 ± 0.005	$\overline{0.767 \pm 0.013}$
Exp learn. Hawkes	0.764 ± 0.008	0.812 ± 0.008	0.714 ± 0.025	0.758 ± 0.020
Attention Hawkes	0.761 ± 0.007	0.796 ± 0.009	0.717 ± 0.014	0.751 ± 0.023
	Local target			
Without contex	0.569 ± 0.008	0.321 ± 0.003	0.535 ± 0.008	0.299 ± 0.011
Mean	0.592 ± 0.005	0.342 ± 0.005	0.543 ± 0.006	0.312 ± 0.006
Max	0.640 ± 0.005	0.400 ± 0.006	0.621 ± 0.006	0.256 ± 0.008
Attention	0.600 ± 0.009	0.348 ± 0.010	0.534 ± 0.016	0.301 ± 0.007
Learn. attention	0.583 ± 0.007	0.330 ± 0.008	0.590 ± 0.035	0.338 ± 0.025
Sym. attention	0.583 ± 0.007	0.329 ± 0.007	0.605 ± 0.027	0.350 ± 0.020
Kernel attention	0.582 ± 0.007	0.329 ± 0.007	$\overline{0.572 \pm 0.021}$	0.330 ± 0.023
Exp Hawkes	0.649 ± 0.000	0.366 ± 0.003	0.638 ± 0.001	0.351 ± 0.001
Exp learn. Hawkes	0.581 ± 0.012	0.322 ± 0.013	0.539 ± 0.034	0.293 ± 0.025
Attention Hawkes	0.635 ± 0.004	0.359 ± 0.005	0.598 ± 0.003	0.331 ± 0.001

Results of validation for different methods. The best values are **bolded**, the second values are <u>underlined</u>, the third values are <u>double underlined</u>.