

ANTICIPER LA CONSOMMATION DES BÂTIMENTS

VILLE DE SEATTLE

SOMMAIRE

- 1. Problématique
- 2. Données fournies
- 3. Nettoyage et analyses préliminaires
- 4. Modélisations
- 5. Résultats

1. PROBLÉMATIQUE

Ville neutre en consommation en émissions de GES

OBJECTIFS

➤ Neutralité en émissions de gaz à effet de serre d'ici 2050

➤ Prédire la consommation d'énergie et le rejet de GES des bâtiments non résidentiels

> Evaluer l'intérêt de l'Energy Star Score

2. DONNÉES FOURNIES

Relevés effectués par des agents de la ville

RELEVÉS STRUCTURELS ET ÉNERGÉTIQUES

EFFECTUÉS EN 2016

Sur tous les bâtiments de la ville

Grand panel d'information sur chaque bâtiment

Relevés couteux

NumberofBuild	dings	NumberofFloors	PropertyGFATotal	PropertyGFAParking	PropertyGFABuilding(s)	ListOfAllPropertyUseTypes	LargestPropertyUseType	LargestPropertyUseTypeGFA
	1.0	12	88434	0	88434	Hotel	Hotel	88434.0
	1.0	11	103566	15064	88502	Hotel, Parking, Restaurant	Hotel	83880.0
	1.0	41	956110	196718	759392	Hotel	Hotel	756493.0
	1.0	10	61320	0	61320	Hotel	Hotel	61320.0
	1.0	18	175580	62000	113580	Hotel, Parking, Swimming Pool	Hotel	123445.0
	1.0	1	12294	0	12294	Office	Office	12294.0
	1.0	1	16000	0	16000	Other - Recreation	Other - Recreation	16000.0
	1.0	1	13157	0	13157	Fitness Center/Health Club/ Gym, Other - Recrea	Other - Recreation	7583.0
	1.0	1	14101	0	14101	Fitness Center/Health Club/ Gym, Food Service,	Other - Recreation	6601.0
	1.0	1	18258	0	18258	Fitness Center/Health Club/ Gym, Food Service,	Other - Recreation	8271.0

RELEVÉS STRUCTURELS

2. Données Fournies

RELEVÉS ÉNERGÉTIQUES

Extrait

2. Données Fournies

VARIABLES CIBLES

SiteEnergyUse(kBtu)
7.226362e+06
8.387933e+06
7.258702e+07
6.794584e+06
1.417261e+07
9.320821e+05
9.502762e+05
5.765898e+06
7.194712e+05
1.152896e+06

TotalGHGEmissions				
249.98				
295.86				
2089.28				
286.43				
505.01				
20.94				
32.17				
223.54				
22.11				
41.27				

ENERGYSTARScore			
60.0			
61.0			
43.0			
56.0			
75.0			
46.0			
NaN			

2. Données Fournies

3. NETTOYAGE ET ANALYSES PRÉLIMINAIRES

Analyses sur le jeu de données & Transformation de certaines variables

NETTOYAGE & ANALYSES PRÉLIMINAIRES

Suppression Colonnes

Suppression bâtiments résidentiels

Suppression de certaines valeurs aberrantes

NETTOYAGE & ANALYSES PRÉLIMINAIRES

Relation entre variables cibles et variables textuelles (quartier) LargestPropertyUseType 0
LargestPropertyUseTypeGFA 4
SecondLargestPropertyUseType 675
SecondLargestPropertyUseTypeGFA 675
ThirdLargestPropertyUseType 1152
ThirdLargestPropertyUseTypeGFA 1152
ENERGYSTARScore 530

Traitement et remplacement des valeurs manquantes

Etudes de corrélation entre les variables

NETTOYAGE & ANALYSES PRÉLIMINAIRES

SUPPRESSION FINALE DE COLONNES

Suppression des colonnes « non cibles » et non disponibles lors de la construction du bâtiment

COLONNES RESTANTES

3. Nettoyage et analyses préliminaires

TRANSFORMATION DES VARIABLES CATÉGORIELLES

ThirdLargestPropertyUseType	SecondLargestPropertyUseType	LargestPropertyUseType
Financial Office	Parking	Convention Center
Non-Refrigerated Warehouse	Laboratory	Office
Parking	Parking	Hotel
Parking	Parking	Office
Other	Parking	Hospital (General Medical & Surgical)
Financial Office	Other	Retail Store
Retail Store	Parking	Office
Office	Parking	Office
Medical Office	Multifamily Housing	Parking
Parking	Other - Entertainment/Public Assembly	Parking
Office	Office	Retail Store
Restaurant	Parking	Office
Office	Hotel	Multifamily Housing
	Retail Store	Parking
Hotel	Parking	Office
Multifamily Housing	Parking	Medical Office
Multifamily Housing	Retail Store	Office
Data Center	Refrigerated Warehouse	Non-Refrigerated Warehouse
Other/Specialty Hospital Other	Parking	Office
Other	Parking	Medical Office
2	Parking	Hospital (General Medical & Surgical)
Restaurant	Parking	Office
Restaurant	Parking	Office
Other	Parking	Office
Multifamily Housing	Office	Data Center
Multifamily Housing	Parking	Office
Fitness Center/Health Club/Gym	Parking	Office
Office	Parking	Office

valeurs
possibles

```
7.5.1 LargestPropertyUseType
buildings['LargestPropertyUseType'].unique()
array(['Hotel', 'Police Station', 'Other - Entertainment/Public Assembly',
       'Library', 'Fitness Center/Health Club/Gym', 'Social/Meeting Hall',
       'Courthouse', 'Other', 'College/University',
       'Automobile Dealership', 'Office', 'Self-Storage Facility',
       'Non-Refrigerated Warehouse', 'K-12 School', 'Other - Mall',
       'Medical Office', 'Retail Store',
       'Hospital (General Medical & Surgical)', 'Museum',
       'Repair Services (Vehicle, Shoe, Locksmith, etc)',
       'Other - Lodging/Residential', 'Other/Specialty Hospital',
       'Financial Office', 'Distribution Center', 'Parking',
       'Multifamily Housing', 'Worship Facility', 'Restaurant',
       'Data Center', 'Laboratory', 'Supermarket/Grocery Store',
       'Urgent Care/Clinic/Other Outpatient', nan, 'Other - Services',
       'Strip Mall', 'Wholesale Club/Supercenter',
       'Refrigerated Warehouse', 'Manufacturing/Industrial Plant',
       'Other - Recreation', 'Lifestyle Center',
       'Other - Public Services', 'Fire Station', 'Performing Arts',
       'Residential Care Facility', 'Bank Branch', 'Other - Education',
       'Other - Restaurant/Bar', 'Food Service', 'Adult Education',
       'Other - Utility', 'Movie Theater',
       'Personal Services (Health/Beauty, Dry Cleaning, etc)',
       'Residence Hall/Dormitory', 'Pre-school/Daycare',
       'Prison/Incarceration'], dtype=object)
```

TRANSFORMATION DES VARIABLES CATÉGORIELLES

Réduction des possibilités

```
Largest value 1 = 'Office'
Largest value 2 = 'Hospital'
Largest_value_3 = 'Warehouse'
Largest value 4 = 'School'
Largest_value_5 = 'Repair and Public Services'
Largest_value_6 = 'Food/Drink Services'
Largest_value_7 = 'Retail/Mall'
Largest value 8 = 'Recreational Venues'
# Creating a dictionnary to be able to use the replace methods to handle strings with parenthesis.
replacement_mapping = {
    'Medical Office': Largest value 1,
    'Office': Largest_value_1,
    'Financial Office': Largest value 1,
    'Hospital (General Medical & Surgical)': Largest_value_2,
    'Other/Specialty Hospital': Largest_value_2,
    'Urgent Care/Clinic/Other Outpatient': Largest_value_2,
    'Non-Refrigerated Warehouse': Largest_value_3,
    'Self-Storage Facility': Largest_value_3,
    'Distribution Center': Largest_value_3,
    'Refrigerated Warehouse': Largest_value_3,
    'College/University': Largest_value_4,
    'K-12 School': Largest_value_4,
    'Other - Education': Largest_value_4,
    'Adult Education': Largest_value_4,
    'Pre-school/Daycare': Largest_value_4,
    'Repair Services (Vehicle, Shoe, Locksmith, etc)': Largest value 5,
    'Other - Services': Largest_value_5,
    'Other - Public Services': Largest value 5,
    'Personal Services (Health/Beauty, Dry Cleaning, etc)': Largest_value_5,
    'Restaurant': Largest_value_6,
    'Other - Restaurant/Bar': Largest_value_6,
    'Food Service': Largest_value_6,
    'Supermarket/Grocery Store': Largest_value_6,
    'Other - Mall' : Largest_value_7,
    'Strip Mall' : Largest_value_7,
    'Retail Store' : Largest_value_7,
    'Wholesale Club/Supercenter' : Largest_value_7,
    'Other - Entertainment/Public Assembly' : Largest value 8,
    'Other - Recreation' : Largest_value_8,
    'Social/Meeting Hall' : Largest_value_8,
    'Movie Theater' : Largest_value_8
# Replacing the values
buildings['LargestPropertyUseType'] = buildings['LargestPropertyUseType'].replace(replacement_mapping)
```

TRANSFORMATION DES VARIABLES CATÉGORIELLES

ENCODAGE

Suppression de la colonne initiale

Ajout de nouvelles colonnes

0 et 1

LargestPropertyUseType_Hotel	LargestPropertyUseType_Laboratory	LargestPropertyUseType_Library	LargestPropertyUseType_Lifestyle Center	LargestPropertyUseType_Manufacturing/ Industrial Plant
1.0	0.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0

3. Nettoyage et analyses préliminaires

MÉTRIQUES DE SUPPRESSION

SUPPRESSION DES COLONNES INUTILES ET DES VA

Initialement : 3 376 lignes × 46 colonnes

Résidentiels : 1 668 x 46 colonnes

Valeurs Aberrantes + Colonnes inutiles :

1 477 lignes x 20 colonnes

Suppression de 56% lignes & 57% colonnes

ENCODAGE

Changement des valeurs

1 477 lignes × 112 colonnes

4. MODÉLISATIONS

Mise en place des modèles d'apprentissage automatique

Choix des modèles

Modèles

Valeurs continu
 Régression

- Régression linéaire
- Forêt aléatoire
- Gradient Boosting
- Support Vector Regression

Métriques

- R² (Coefficient de détermination)
- Erreur quadratique moyenne
- Temps d'exécution
- Nombre de variables utilisées

PROCÉDURE GÉNÉRALE

- > Ensemble des variables
- > Sélection des variables pertinentes
- > Sélection des hyperparamètres du modèle (nombre d'arbres, profondeur des arbres..)
- > Etude des résultats et du temps d'exécution du modèle

FORÊT ALÉATOIRE

Sélection variables pertinentes

FORÊT ALÉATOIRE – SÉLECTION DES HYPERPARAMÈTRES

* Source: MétéoSuisse-Blog | 30 octobre 2022

- ➤ Nombre d'arbres
- Profondeur maximale des arbres.
- Nombre d'échantillon nécessaire pour créer une séparation (nœud)
- Nombre minimum d'échantillon pour faire une « feuille »
- ➤ Le seuil : Sélection des variables avec une importance supérieure à une certaine valeur

5. RÉSULTATS

Comparaisons des différents modèles

ENSEMBLE DES MODÈLES - CONSOMMATION

ENSEMBLE DES MODÈLES - EMISSIONS

FORÊT ALÉATOIRE – HYPERPARAMÈTRES

- Nombre d'arbres 500
- Profondeur maximale des arbres Aucune
- Nombre d'échantillon nécessaire pour créer une séparation (nœud) - 2
- Nombre minimum d'échantillon pour faire une
 « feuille » 1
- ➤ Le seuil : Sélection des variables avec une importance supérieure à une certaine valeur Seuil à 0,05

Feature Importances: NumberofBuildings: 0.1001 PropertyGFATotal: 0.2502 PropertyGFABuilding(s): 0.3026 LargestPropertyUseTypeGFA: 0.3471

5. Résultats

ENERGY STAR SCORE - CONSOMMATION

ENERGY STAR SCORE - ÉMISSIONS

ENERGY STAR SCORE

CONSOMMATION

Ajout de l'Energie Star Score aux variables d'entrée

Dégrade la qualité des prédictions

EMISSIONS

Ajout de l'Energie Star Score aux variables d'entrée

Ne change rien

6. CONCLUSION

CONCLUSION

- Résultats peu concluants R² ne dépasse pas 0,64 (au moins 0,7 pour mettre un modèle en prod)*
 - Plus de bâtiments : (bâtiments non résidentiels représentent 1 668 lignes, c'est peu)
- Pistes amélioration ML:
 - > Amélioration du feature engineering
 - > Recherche plus poussée d'hyperparamètres (NB : Certaines recherches prennent beaucoup de temps à se compléter)
 - > Tests sur d'autres types de modèles de régression
- Pistes d'amélioration jeu de données:
 - > Information sur le type de construction (matériaux, isolation etc)
- > Temps d'exécution : Dépend du système sur lequel le modèle tourne (gradient boosting)

^{*}Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning: with Applications in R. Springer.

MERCI