Finansiering 1. Reeksamen August 2019.

3 timers skriftlig eksamen. d 23 August 2019. Alle sædvanlige hjælpemidler er tilladt. Sættet er på 2 sider og indeholder 10 delspørgsmål, der indgår med lige vægt i bedømmelsen.

Opgave 1

Antag du har en standard binomialmodel (se Thm 5 s 92 i Noterne) for et aktiv i et vilkårligt antal perioder n. Antag $\sigma = 0, 25$ og $\mu = \sigma^2/2$ (i.e $\alpha = 0$). Antag igennem hele opgaven at $\Delta t = 1$ år, den risikofri rente er 2 % per år og at startkurs er $S_0 = 100$.

- 1.1 Vis at modellen er arbitragefri og komplet.
- 1.2 Betragt en Call Option med udløb om 2 år og strike på K=160. Beregn optionens pris
- 1.3 Betragt en Call Option med udløb om 3 år og strike på K=160. Beregn optionens pris

Antag nu at σ og μ i standard binomial modellen er tidsafhængige. Dvs σ_t og μ_t nu bestemmer standard binomial (under)modellen fra tidspunkt t-1 til t. Antag som før at $\mu_t = \sigma_t^2/2$.

- 1.4 Du får oplyst at $\sigma_1 = 0.35$, $\sigma_2 = 0.25$ og $\sigma_3 = 0.15$. Vis at denne 3-periode model er arbitragefri og komplet.
- 1.5 Genberegn call prisen fra 1.2 og 1.3 i denne model. Forklar hvorfor udløb-3 call'en nu er en smule billigere end i 1.3 men udløb-2 call'en nu er meget dyrere end i 1.2.
- 1.6 Betragt nu en *n*-periode model hvor $\sigma_t = c + 0.35 \times \exp(-0.07 \times t)$.
 - (a) Antag c = 0.01. Er modellen arbitragefri og komplet for alle n > 0? Find en evt. øvre grænse for n.
 - (b) Bestem de værdier af c hvor modellen er arbitragefri og komplet for alle n > 0.

Opgave 2

Antag vi har en økonomi med 2 risikable aktiver (Aktiv 1 og Aktiv 2) hvor du får givet følgende information:

Aktiv	Pris pr aktie	Antal Udestående Aktier	Forventet Afkastrate	Std Afvigelse
1	70	90	0,11	0,25
2	100	40	$0,\!057331$	$0,\!14$

- 1. Find den globale minimumvariansportefølje under antagelse af at korrelationen mellem det to aktivers afkastrater $\rho_{1,2} = 0, 7$.
- 2. Du ønsker at finde en portefølje med en standardafvigelse på under 0,14. Hvad skal korrelationen som minimum være for at det kan lade sig gøre uden at gå kort i aktiv 1?
- 3. Antag $\rho_{1,2} = 0,7$ og at der også eksisterer et risikofri aktiv med afkastrate på 0,01. Vis at CAPM holder i dette marked. (hint: start med at konstruere markedsporteføljen og beregn beta-værdier)
- 4. Antag nu istedet at $\rho_{1,2}=0,5$ og den forventede afkastrate på aktiv 2 er μ_2 . Bestem værdien af μ_2 så CAPM holder i økonomien.