Hierarchical spatial modelling for applied population and community ecology

Jeffrey W. Doser, Marc Kéry, Gesa von Hirschheydt 24-27 June 2024

Spatial hierarchical distance sampling models

Jeffrey W. Doser 24-27 June 2024

Population

Population

Sample

Population

Sample

Need to adjust our abundance estimate by our **detection probability**

Distance sampling

- A specialized protocol to estimate abundance/density while accounting for imperfect detection.
- Fundamental concept: use information on the observed distances of animals to estimate detection probability.
- One of the most common methods in ecology for density/abundance estimation.
- Two major "flavors" of distance sampling
 - 1. Conventional distance sampling
 - 2. Hierarchical distance sampling (and related approaches)

- A population is surveyed using a line transect or point transects (i.e., point counts).
- Observer records the distance to each individual observed.

- A population is surveyed using a line transect or point transects (i.e., point counts).
- Observer records the distance to each individual observed.

- Line transects or point counts are performed at a set of j = 1, 2, ..., J sites.
- Distances can be recorded in one of two ways:
 - Continuous distance measurement to each individual
 - Assign each individual to a distance bin

- Line transects or point counts are performed at a set of j = 1, 2, ..., J sites.
- Distances can be recorded in one of two ways:
 - Continuous distance measurement to each individual
 - Assign each individual to a distance bin

For analysis in spAbundance, we will always work with binned data (which can be derived from continuous measurements after data collection).

Continuous vs. Binned distances

Continuous

Site	Distance (m)	
1	100	
1	122	
1	30	
2	18	
3	7	
4	53	
4	47	

Continuous vs. Binned distances

Continuous

Site	Distance (m)	
1	100	
1	122	
1	30	
2	18	
3	7	
4	53	
4	47	

Binned

Site	Distance bin (m)	
1	100-150	
1	100-150	
1	25-50	
2	0-25	
3	0-25	
4	50-100	
4	25-50	

Continuous vs. Binned distances

Continuous

Binned

Site	Distance (m)	
1	100	
1	122	
1	30	
2	18	
3	7	
4	53	
4	47	

Site	Distance bin (m)	
1	100-150	
1	100-150	
1	25-50	
2	0-25	
3	0-25	
4	50-100	
4 25-50		

Binned distance sampling data

Site	Distance bin (m)			
1	100-150			
1	100-150			
1	25-50			
2	0-25			
3	0-25			
4	50-100			
4	25-50			

Site	0-25m	25-50m	50-100m	100-150m
1	0	1	0	2
2	1	0	0	0
3	1	0	0	0
4	0	1	1	0

Binned distance sampling data

Site	Distance bin (m)		
1	100-150		
1	100-150		
1	25-50		
2	0-25		
3	0-25		
4	50-100		
4	25-50		

This is the format of distance sampling data we need for spAbundance.

Site	0-25m	25-50m	50-100m	100-150m
1	0	1	0	2
2	1	0	0	0
3	1	0	0	0
4	0	1	1	0

 Detection probability decreases as the distance of an individual from the observer increases.

- Detection probability decreases as the distance of an individual from the observer increases.
- E(n) = p * N
 - n = sample count
 - N = true abundance
 - p = detection probability (the probability an individual in the population appears in our sample)

- Detection probability decreases as the distance of an individual from the observer increases.
- E(n) = p * N
 - n = sample count
 - N = true abundance
 - p = detection probability (the probability an individual in the population appears in our sample)
- Detection probability p is determined by two components:
 - Detection function
 - Distribution of individuals in space with respect to the observer

Detection probability decreases as distance from observer increases

Kéry and Royle (2015) Chapter 8

$$\bar{p} = \int_0^B g(x)[x]dx$$

Average detection probability

Maximum detection distance

Average detection probability

Maximum detection distance

an individual at distance x, given it is there.

Detection function g(x)

- More formally, $g(x) = Pr(detect \mid x)$
- Distance sampling requires g(0) = 1 (there are models to relax this assumption, but not in spabundance).
- g(x) must be a monotonic decreasing function (i.e., starts at 1, then continuously decreases towards 0).
- Common detection functions:
 - Half normal
 - Negative exponential
 - Hazard rate (not available in spAbundance)

Detection functions g(x)

Half normal

Negative exponential

$$g(x;\sigma) = \exp(-\frac{x^2}{2\sigma^2})$$
 $g(x;\sigma) = \exp(-\frac{x}{\sigma})$

 σ is a scale parameter that takes positive values. It controls the shape of the detection curve.

Detection functions

- The average detection probability p is equal to the area under the detection curve!
- We can estimate other effects of covariates on detection using a GLM framework with the scale parameter σ .
- What link function makes sense for modeling σ as a function of covariates?

A probability distribution that determines the probability an individual occurs at distance x.

Probability distribution of individual distances

- Most distance sampling approaches assume individuals are uniformly distributed across the line transect rectangle/point count circle.
- Uniformity can also be induced by design (i.e., randomly locating transects).
- This results in [x] taking the following forms:

Line transects:
$$[x] = \frac{1}{B}$$
Point counts: $[x] = \frac{2x}{B^2}$

Conventional Distance Sampling

S. T. Buckland, D. R. Anderson, K. P. Burnham J. L. Laake, D. L. Borchers and L. Thomas

Conventional Distance Sampling

- Long history of development.
- Focus is on estimating abundance/density in an area of interest, not on spatial variation in abundance.
- Assumes abundance is constant across all transects.
- Can model detection probability with many covariates (sometimes called multiple covariate distance sampling).

Hierarchical distance sampling (HDS)

- Allows density/abundance to vary across transects (sites) using a GLM approach.
- Based on a similar hierarchical framework to occupancy models, N-mixture models.
- Similar approach:
 - Density surface modelling (Hedley and Buckland 2004; Miller et al. 2013)

Ecology, 85(6), 2004, pp. 1591–1597 © 2004 by the Ecological Society of America

MODELING ABUNDANCE EFFECTS IN DISTANCE SAMPLING

J. Andrew Royle, 1,4 Deanna K. Dawson, 2 and Scott Bates 3

Hierarchical distance sampling (HDS)

- Allows density/abundance to vary across transects (sites) using a GLM approach.
- Based on a similar hierarchical framework to occupancy models, N-mixture models.
- Similar approach:
 - Density surface modelling (Hedley and Buckland 2004: Miller et al. 2013)
 This is the approach implemented in

Ecology, 85(6), 2004, pp. 1591–1597 © 2004 by the Ecological Society of America

MODELING ABUNDANCE EFFECTS IN DISTANCE SAMPLING

spAbundance.

J. Andrew Royle, 1,4 Deanna K. Dawson, 2 and Scott Bates 3

Hierarchical distance sampling

 As with N-mixture models, our HDS model is split into two components:

Process model

Model for the true abundance/density and how it varies spatially.

Observation model

Model that relates our imperfect observations to the true abundance/density.

$$N_j \sim \text{Poisson}(\mu_j A_j)$$

 $\log(\mu_j) = \boldsymbol{x}_j^{\top} \boldsymbol{\beta}$

True abundance at site j

$$N_j \sim \mathrm{Poisson}(\mu_j A_j)$$
 $\log(\mu_j) = oldsymbol{x}_j^ op oldsymbol{eta}$

True abundance at site j

An offset to convert μ to abundance per unit area (density)

 $N_j \sim \text{Poisson}(\mu_j A_j)$

$$\log(\mu_j) = \boldsymbol{x}_j^{\top} \boldsymbol{\beta}$$

True abundance at site j

An offset to convert μ to

abundance per unit area

Expected abundance (or abundance per unit area) at site j

True abundance at site j

 $\log(\mu_j) = \boldsymbol{x}_j^{\mathsf{T}} \boldsymbol{\beta}$

Expected abundance (or abundance per unit area) at site j

Covariates (including an intercept)

Covariate effects

An offset to convert μ to

(density)

abundance per unit area

Spatial HDS process model

$$N_j \sim \text{Poisson}(\mu_j A_j)$$

 $\log(\mu_j) = \boldsymbol{x}_j^{\top} \boldsymbol{\beta} + w_j$
 $\mathbf{w} \sim \text{Multivariate Normal}(\mathbf{0}, \tilde{\boldsymbol{C}}(d, \phi, \sigma^2))$

Spatial HDS process model

$$N_j \sim \text{Poisson}(\mu_j A_j)$$

 $\log(\mu_j) = \boldsymbol{x}_j^{\top} \boldsymbol{\beta} + w_j$
 $\mathbf{w} \sim \text{Multivariate Normal}(\mathbf{0}, \tilde{\boldsymbol{C}}(d, \phi, \sigma^2))$

For spatial models, we use our usual NNGP approach. All of our previous discussion on spatial models applies!

- For HDS, we use "binned" distance sampling data.
- If you collected continuous distances, you should just bin the data. There is minimal loss of information.
- k = 1, 2, ..., K distance bins.
- $y_{j,k}$ = number of individuals observed at site j in distance bin k

$$\mathbf{y}_j = [y_{j,1}, y_{j,2}, \dots, y_{j,K}]$$

Site	0-25m	25-50m	50-100m	100-150m
1	0	1	0	2
2	1	0	0	0
3	1	0	0	0
4	0	1	1	0

- For our observation model (likelihood) we will use the multinomial distribution.
- For our context, the multinomial distribution distributes the N_j individuals across the distance bins, assigning each individual to only one bin.
- However, we need to also have an "unobserved" bin.

Site	0-25m	25-50m	50-100m	100-150m
1	0	1	0	2
2	1	0	0	0
3	1	0	0	0
4	0	1	1	0

$$\mathbf{y}_j = [y_{j,1}, y_{j,2}, \dots, y_{j,K}]$$

Site	True (unobserved) abundance
1	5
2	2
3	1
4	4

$$N_j$$

Site	0-25m	25-50m	50-100m	100-150m	Unobserved
1	0	1	0	2	2
2	1	0	0	0	1
3	1	0	0	0	0
4	0	1	1	0	2

$$\mathbf{y}_{j}^{*} = [y_{j,1}, y_{j,2}, \dots, y_{j,K}, y_{j,K+1}]$$

Site	True (unobserved) abundance
1	5
2	2
3	1
4	4

$$N_j$$

Site	0-25m	25-50m	50-100m	100-150m	Unobserved
1	0	1	0	2	2
2	1	0	0	0	1
3	1	0	0	0	0
4	0	1	1	0	2

Site	True (unobserved) abundance
1	5
2	2
3	1
4	4

$$\mathbf{y}_{j}^{*} = [y_{j,1}, y_{j,2}, \dots, y_{j,K}, y_{j,K+1}]$$

$$N_j$$

$$\mathbf{y}_{j}^{*} \sim \text{Multinomial}(N_{j}, \boldsymbol{\pi}_{j}^{*})$$

$$\boldsymbol{\pi}_{i}^{*} = [\pi_{j,1}, \pi_{j,2}, \dots, \pi_{j,K}, \pi_{j,K+1}]$$

$$\boldsymbol{y}_{j}^{*} \sim \operatorname{Multinomial}(N_{j}, \boldsymbol{\pi}_{j}^{*})$$

$$\boldsymbol{\pi}_{i}^{*} = [\pi_{j,1}, \pi_{j,2}, \dots, \pi_{j,K}, \pi_{j,K+1}]$$

- $\pi_{j,k}$ is the probability of detecting an individual in the kth distance band at site j.
- $\pi_{j,K+1}$ is the probability of not detecting an individual at site j.

Multinomial cell probabilities visually

K = 5 distance bands

$$\pi_{j,k} = \bar{p}_{j,k} \cdot \psi_k$$

$$\pi_{j,k} = \bar{p}_{j,k} \cdot \psi_k$$

Probability of of detecting an individual at site j in distance band k, given the individual is there

Probability an individual occurs in distance band k

Probability of of detecting an individual at site j in distance band k, given the individual is there

$$\pi_{j,k} = \bar{p}_{j,k} \cdot \psi_k$$

Upper distance limit for band k

$$\bar{p}_{j,k} = \int_{b_k}^{b_{k+1}} g(x)[x]dx$$

Lower distance limit for band k

$$\pi_{j,k} = \bar{p}_{j,k} \cdot \psi_k$$

Upper distance limit for band k

$$\bar{p}_{j,k} = \int_{b_k}^{b_{k+1}} g(x)[x]dx$$

Lower distance limit for band k

Line transects

$$\psi_k = \frac{b_{k+1} - b_k}{B}$$

Point counts

$$\psi_k = \frac{b_{k+1}^2 - b_k^2}{B^2}$$

Cell probabilities depend on σ

$$\log(\sigma_j) = \boldsymbol{v}_j^{\top} \boldsymbol{\alpha}$$

Spatial HDS: putting it all together

$$N_j \sim \text{Poisson}(\mu_j A_j)$$

$$\log(\mu_j) = \boldsymbol{x}_j^{\top} \boldsymbol{\beta} + \mathbf{w}_j$$

$$\mathbf{w} \sim \text{Multivariate Normal}(\mathbf{0}, \mathbf{C}(d, \phi, \sigma^2))$$

$$\boldsymbol{y}_{j}^{*} \sim \operatorname{Multinomial}(N_{j}, \boldsymbol{\pi}_{j}^{*})$$

$$\log(\sigma_j) = \boldsymbol{v}_j^{\top} \boldsymbol{\alpha}$$

Spatial HDS: putting it all together

Fitting hierarchical distance sampling models in spabundance

- Non-spatial models: DS()
- Spatial models: spDS()
- Family argument can be Poisson or NB (aiming to have zero-inflated Poisson in the future)
- Detection function (det.func) can be either half-normal or negative exponential.
- Supports both circular (point count) transects and linear transects via the transect argument.

A note on what we mean by "spatial hierarchical distance sampling"

- Hierarchical distance sampling allows for abundance to vary across transects (sites) but not within a transect.
- When we fit a spatial model, we still assume abundance is uniform within a transect/site. We account for spatial autocorrelation across transects/sites.
- This differs from "spatial distance sampling" in Section 9.8 of Kéry and Royle (2015), in which the objective is to account for within-transect spatial variation in abundance.

Exercise: Estimating density of an island endemic

12-spatial-hds-issj.R

