Lösungen zum Übungsblatt 1

Sommersemester 2024

Aufgabe P1

a) Ergebnisraum

Geeigneter Ergebnisraum für das Werfen zweier nicht unterscheidbarer Würfel ist $\{(i,j): 1 \le i \le j \le 6\}$. Dieser berücksichtigt, dass die Würfel nicht unterscheidbar sind und vermeidet doppelte Kombinationen wie (1,2) und (2,1).

b) Laplace-Annahme

Die Laplace-Annahme ist sinnvoll, da jeder Wurf gleich wahrscheinlich ist. Da die Würfel fair sind, hat jedes mögliche Paar (i, j) die gleiche Wahrscheinlichkeit.

c) Ereignisse

- $A1 = E \cap F$: Das Ereignis, dass die Augensumme ungerade ist und mindestens einer der Würfel eine 3 zeigt.
- $A2 = F \cup G$: Mindestens einer der Würfel zeigt eine 3 oder die Augensumme ist 7.
- $A3 = (E \cup F) \cap G$: Die Augensumme ist 7 und zusätzlich ist entweder die Augensumme ungerade oder mindestens ein Würfel zeigt eine 3.
- $A4 = E \cup (F \cap G)$: Die Augensumme ist ungerade oder mindestens ein Würfel zeigt eine 3 und die Augensumme ist 7.
- $A5 = G \setminus E$: Die Augensumme ist 7, aber nicht ungerade.
- $A6 = E \cap F \cap G$: Die Augensumme ist ungerade, mindestens einer der Würfel zeigt eine 3, und die Augensumme ist 7.

Aufgabe P2

To prove that $A \cup B = A \cup (\neg A \cap B)$:

Step 1: $A \cup B \subseteq A \cup (\neg A \cap B)$

Let $x \in A \cup B$. This implies $x \in A$ or $x \in B$. Therefore:

- If $x \in A$, then $x \in A \cup (\neg A \cap B)$.
- If $x \notin A$ but $x \in B$, then $x \in \neg A$ and $x \in \neg A \cap B$, thus $x \in A \cup (\neg A \cap B)$.

Step 2: $A \cup (\neg A \cap B) \subseteq A \cup B$

Let $x \in A \cup (\neg A \cap B)$. This implies $x \in A$ or $x \in (\neg A \cap B)$. Therefore:

- If $x \in A$, then $x \in A \cup B$.
- If $x \in (\neg A \cap B)$, this implies $x \in \neg A$ and $x \in B$, hence $x \in A \cup B$.

Conclusion:

Since $A \cup B \subseteq A \cup (\neg A \cap B)$ and $A \cup (\neg A \cap B) \subseteq A \cup B$, we have:

$$A \cup B = A \cup (\neg A \cap B)$$

Aufgabe H1

Mengen im Ergebnisraum $\Omega = [-1, 1]^2$.

• $\neg A$: $\{(x,y) \in \Omega : x+y < 0\}$

 $(\neg A)$

Figure 1: Graphical representation of the set A where x + y < 0.

- $A \cap B$: $\{(x,y) \in \Omega : x + y \ge 0 \text{ und } |x| + |y| \ge 1\}$
- $(B \cup C)^c$: $\{(x,y) \in \Omega : |x| + |y| < 1 \text{ oder } x^2 < y\}$

Figure 2: Description...

Aufgabe H2

Beweis der Gesetze von de Morgan unter Verwendung einer beliebigen Indexmenge I.

$$\bigcup_{i \in I} A_i = \bigcap_{i \in I} \overline{A_i}$$
$$\bigcap_{i \in I} A_i = \bigcup_{i \in I} \overline{A_i}$$

Figure 3: Description...