数季电路与逻辑设计

Digital circuit and logic design

● 第七章 中规模通用集成电路及其应用

主讲教师 何云峰

■提纲

常用中规模信号产生与变换电路

- 5**G**555
- D/A转换器
- A/D转换器

A/D-模数转换 (Analog-Digital)

模拟量转换为数字量

A/D转换的过程

采样和保持

数字电路与逻辑设计

■集成A/D转换器

采样:指周期地获取模拟信号的瞬时值,从而得到一系列时

间上离散的脉冲采样值

保持:在两次采样之间将前一次采样值保存下来,使其在量

化编码期间不发生变化

采样和保持

采样保持电路一般由采样模拟开关、保持电容和运算放大器等几个部分组成

经采样保持得到的信号值依然是模拟量,而不是数字量

A/D-模数转换 (Analog-Digital)

模拟量转换位数字量

A/D转换的过程

采样和保持

量化和编码

所取的最小数量单位叫做量化单位,其大小等于数字量的最低有效位所代表的模拟电压大小,记作V_{LSB}

编码:把量化的结果用代码(如二进制数码、 BCD码等)表示出来

■量化(Quantization) 与编码 (Encoding)

- 所取的最小数量单位叫做量化单位,其大小等于数字量的最低有效位所代表的模拟电压大小,记作V_{LSB}
- 编码:把量化的结果用代码(如二进制数码、 BCD码等)表示出来
- A/D转换过程中的量化和编码是由A/D转换 器实现的

A/D转换器的类型

并 行 比 较 型 A/ D 转 换

器

组成:电阻分压器、电压比较器、数码寄存器及编码器

优点:转换速度快

缺点:随着输出二进制位数的增加,器件数目按几何级数增加

一个n位的转换器,需要2n-1个比较器

制造高分辨率的集成并行A/D转换器受到一定限制

适用于要求转换速度高、但分辨率较低的场合

逐次比较型A/D转换器

使用最广泛的一种类型

组成:电压比较器、逻辑控制器、D/A转换器及数码寄存器

原理: 类似天平称重物

特点:转换速度较快,且输出代码的位数多,精度高

A/D转换器的类型

双积分型A/D转换器的类型

一种间接A/D转换器

2 组成:积分器、检零比较器、时钟控制门和计数器

工作原理:把输入的模拟电压转换成一个与之成正比的时间宽度信号,然后在这个时间 宽度里对固定频率的时钟脉冲进行计数,其结果就是正比于输入模拟信号的数字量输出。

光 优点:精度高、抗干扰能力强

※ 缺点:速度较慢

广泛用于对速度要求不高的数字化仪表

- 2 分辨率是指输出数字量变化一个最小单位(最低位的变化)对应输入模拟量需要变化的量
- 浴 输出位数越多,分辨率越高
- 12 通常以输出二进制码的位数表示分辨率
- | 常用的集成A/D转换器有8位、10位、12位、16位等,每种又可分为不同的型号

相对精度

- 相对精度:实际转换值偏离理想特
 - 性的误差

 $\pm \frac{1}{2}$ LSB

通常以数字量最低位所代表的模拟 输入值来衡量,如相对精度不超过

转换时间

转换时间:A/D转换器从接到转换命 令起到输出稳定的数字量为止所需要 的时间

集成A/D转换器典型芯片---ADC0809

CMOS工艺制成的逐次比较型A/D转换器

采用28引脚双列直插式封装

ADC0809

1	IN ₃	IN ₂	28
2	IN ₄		27
3		IN ₁	26
4	IN ₅	IN ₀	25
-	IN ₆	Α	24
5	IN ₇	В	-
6	START	C	23
7	EOC	ALE	22
8	D_4	Do	21
9		D_1	20
10	OE		19
11	CLK	D_2	18
	V _{CC}	D_3	17
12	V _{REF(+)}	D_7	16
13	GND	V _{REF(-)}	
14	D_6	D ₅	15

集成A/D转换器典型芯片---ADC0809

主要性能

分辨率:8位

转换时间: 100µs

相对精度:±1LSB

采用单电源供电

电源电压为+5V

功耗为15mW

ADC0809

		_	
1	IN	IN_2	28
2	IN ₃ IN ₄		27
3	IN ₅	IN ₁	26
4	IN ₆	IN ₀	25
5	IN ₇	A B	24
6	START	C	23
7	EOC	ALE	22
8	D_4	D_0	21
9	OE	D_1	20
10	CLK	D_2	19
11	V _{CC}	D_3	18
12	V _{REF(+)}	D_7	17
13	GND	V _{REF(-)}	16 15
14	D ₆	D ₅	13
	100		

各部分的功能

地址锁存与译码器

控制8位模拟开关

实现对8路模拟信号的

选择

各部分的功能

8个模拟输入端

接收8路模拟信号

相对某一时刻只能 选择其中的一路进 行转换

各部分的功能

树状开关与256R电阻网络

构成D/A转换电路

产生与逐次逼近寄存器 中二进制数字量对应的 反馈模拟电压

送至比较器,与输入 模拟电压进行比较

各部分的功能

比较器

输出结果和控制与时序 电路的输出一起控制逐 次逼近寄存器中的数据 从高位至低位变化

依次确定各位的值

直至最低位被确定为止

各部分的功能

三态输出锁存缓冲器

转换完成后,转换结果 送到三态输出缓冲器

当输出允许信号OE有 效时,选通输出缓冲 器,输出转换结果

引脚功能

IN0 ~ IN7

8路模拟电压输入端

A,B,C

模拟输入通道的地址选择线

当CBA=000时,选中IN。

CBA=001时,选中IN₁

引脚功能

ALE

地址锁存允许信号输入端

该端接高电平时有效

仅当该信号有效时,才 能将地址信号锁存,经 译码后选中一个通道

引脚功能

START

启动转换脉冲输入端

CLK

时钟脉冲输入端

 $D_0 \sim D_7$

数据输出端

D7为高位

引脚功能

OE

输出允许端

高电平有效

该端为高电平时,打 开三态输出缓冲器, 输出转换结果

 $V_{REF(+)}$ $\pi DV_{REF(-)}$

参考电压正端和负端

用

ADC0809可直接与微机系统相连接。

有关D/A转换器的应用,将在"微机接口技术"课 程中作深入讨论

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 何云峰

