APR 1 7 2003 WELL TO THE PO

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Timothy A. Coleman

Docket No.: PF112P6

Application No.: 09/921,143

Group Art Unit: 1653

Filed: August 3, 2001

Examiner: Not Yet Assigned

TECH APP 2 TOO 3

TECH CENTER TOO 3

TECH CENTER TOO 3

TECH CENTER TOO 3

For: Vascular Endothelial Growth Factor 2

SUBMISSION OF REPLACEMENT/SUBSTITUTE DRAWINGS

Attn: Draftsperson Commissioner for Patents Washington, DC 20231

Sir:

Applicants submit herewith replacement/substitute Figures 1A-31U (68 sheets) to replace Figures 1A-31G (47 sheets) as originally filed. Additional pages are due to reorganization of the drawings in order to comply with the margin requirements under 37 C.F.R. § 1.84. No new matter is introduced.

No fee is believed due for this submission. In the event that a fee is required in connection with this submission, please charge the required fee to Deposit Account No. 08-3425.

Respectfully submitted,

Dated: April 17, 2003

Melissa J. Pytel

Registration No. 41,512

HUMAN GENOME SCIENCES, INC.

9410 Key West Avenue Rockville, Maryland 20850

(301) 610-5764

Attorney for Applicants

360	CCAACCTCAACTCAAGGACAGAAGAGACTATAAAATTTGCTGCAGCACATTATAATACAG +++++++	301
300	ATTGGAAAATGTACAAGTGTCAGCTAAGGAAGGAGGCTGGCAACATAACAGAGAACAGG ++++++	241
240	AGGAGCAGTTACGGTCTGTGTCCAGTGTAGATGAACTCATGACTGTACTCTACCCAGAAT+++++ TCCTCGTCAATGCCAGACACAGGTCACATCTACTTGAGTACTGACATGAGATGGGTCTTA EQLRSVDBELMITVLYL	181
180	ACCTCTCGGACGCGCGCGGGCGAGGCCACGGCTTATGCAAGCAA	121
120	GCGACGAGGCCCCAGGAGCGCTCCGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCG	61
09	CAGGAAGGTGGTACGTGAGCGACCCGAAGAGAGACACCGCACAAGAGACGACGGCGAC M H S L G F F S V A C S L L A A A	ı
,	GTCCTTCCACCATGCACTCGCTGGGCTTCTTCTCTGTGGCGTGTTCTCTGTGCCTCGCCGC	Н

FIG. 1A

MATCH WITH FIG. 1B

H Y N T E

Ø

Ø

T I K F A

臼

ы

凶

ß

N L N

MATCH WITH FIG. 1A

TCTAGAACTTTTCATAACTATTACTCACCTCTTTCTGAGTTACGTACG

FIG. 18

MATCH WITH FIG. 1C

MATCH WITH FIG. 1B

, ,	GCCCCGAAGCCGGACGGTCGACACCTGGGGTGTTTCTTGATCTGTCTTTGAGTACGGTCA G L R P A S C G P H K E L D R N S C O C	
0	CGGGGCTTCGGCCTGCCAGCTGTGGACCCCCACAAGAACTAGACAGAAACTCATGCCAGT	901
70	TACTGTAGACACCTGGTTTGTTCCTCGACCTACTTCTCTGGACAGTCACACAGACGTCTC DICGPNTTGTTCTTCGACCTACTTCTCTGGACAGTCACAGACGTCTC	₹ 0
000	ATGACATCTGTGGACCAAACAAGGAGCTGGATGAAGAGACCTGTCAGTGTGTGT	841
84(ACCGAGTCCTTCTAAAATACAAAAGGAGCCTACGACCTCTACTGAGTTGTCTACCTAAGGAGCCTACGACCTCTACTGAGTTGTCTACCTAAGGAGCCTACGACCTCTACTGAGTTGTCTACCTAAGGAGCCTACGACCTCTACTGAGTTGTCTACCTAAGGAGCCTACGACCTCTACTGAGTTGTCTACCTAAGGAGCCTACGACCTCTACTGAGTTGTCTACCTAAGGAGCCTACGACCTCTACTGAGTTGTCTACCTAAGGAGCCTACGACCTCTACTACAAAGGAGCCTACGACCTCTACAAAGGAGCCTACGACTACAAAAGGAGCCTACGACTACAAAAGGAGCCTACGACTACAAAAGGAGCCTACGACAAAAAAAA	T8/
0	TGGCTCAGGAAGATTTTATGTTTTTCCTCGGATGCTGGAGATGACTCAACAGATGGATTCC	781
	TCCGTCGCTTGTTCTGGACGGGGGGGTGGTTAATGTACACCTTATTAGTGGACGTCTACGG	!
787	AGGCAGCGAACAAGACCTGCCCCACCAATTACATGTGGAATAATCACATCTGCAGATGCC	721
	AAATGTCTGTTCAAGTAAGGTAATAATCTGCAAGGGACGGTCGTTGTGATGGTGTCACAG	i))
700	TTTACAGACAAGTTCATTCCATTATTAGACGTTCCCTGCCAGCAACACTACCACAGTGTC	661

FIG. 10

MATCH WITH FIG. 1D

MATCH WITH FIG. 1C

1020	1080	1140	1200	1260
GTGTCTGTAAAACAAACTCTTCCCCAGCCAATGTGGGGCCAACCGAGAATTTGATGAAA ++++++	ACACATGCCAGTGTGTATGTAAAGAACCTGCCCCAGAAATCAACCCCTAAATCCTGGAA ++++++	AATGTGCCTGTGAATGTACAGAAAGTCCACAGAAATGCTTGTTAAAAGGAAAGAAGTTCC++++++++ TTACACGGACACTTACATGTCTTTCAGGTGTCTTTACGAACAATTTTCCTTTCTTCAAGG	ACCACCAAACATGCAGCTGTTACAGACGGCCATGTACGAACCGCCAGAAGGCTTGTGAGC++++++ TGGTGGTTTGTACGTCGACAATGTCTGCCGGTACATGCTTGGCGGTCTTCCGAACACTCG H Q T C S C Y R R P C T N R Q K A C E P	CAGGATTTTCATATAGTGAAGAGTGTGTCGTTGTGTCCCTTCATATTGGCAAAGACCAC++++ GTCCTAAAAGTATATCACTTCTTCACACAGCAACACAGGGAAGTATAACCGTTTCTGGTG G F S Y S E E V C R C V P S Y W Q R P Q
961	1021	1081	1141	1201

FIG. 1D

MATCH WITH FIG. 1E

MATCH WITH FIG. 1D

;	AGCTAAGATTGTACTGT	1200
1261	TTTACTCGATTCTAACATGACAAAAGGTCAAGTAGCTAAAAGATAATACCTTTTGACACA M S *	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
1321	TGCCACAGTAGAACTGTCTGTGAACAGAGACCCTTGTGGGTCCATGCTAACAAAGACA	1380
1761	ACGGTGTCATCTTGACAGACACTTGTCTCTCTGGGAACACCCCAGGTACGATTGTTTCTGT	
,	AAAGTCTGTCTTTCCTGAACCATGTGGATAACTTTACAGAAATGGACTGGAGCTCATCTG	1770
1381	TTTCAGACAGAAAGGACTTGGTACACCTATTGAAATGTCTTTACCTGACCTCGAGTAGAC) F H
, ,	CAAAAGGCCTCTTGTAAAGACTGGTTTTCTGCCAATGACCAAACAGCCAAGATTTTCCTC	1500
T # # T	GTTTTCCGGAGAACATTTCTGACCAAAAGACGGTTACTGGTTTGTCGGTTCTAAAAGGAG))
, ,	TTGTGATTTCTTTAAAAGAATGACTATATAATTTTATTTCCACTAAAAATATTGTTTTCTGC	1 0 0 0
TOCT	AACACTAAAGAAATTTTCTTACTGATATATTAAATAAGGTGATTTTTTATAACAAAGACG)))
	ATTCATTTTTATAGCAACAACAATTGGTAAAACTCACTGTGATCAATATTTTTATATCAT	1620
1561	TAAGTAAAAATATCGTTGTTGATTAACCATTTTGAGTGACACTAGTTATAAAAATATAGTA	H N
7		1674
1621	+++	ተ ጋ

FIG. 1E

2A

MATCH WITH FIG. 2B

CGCGACAAACACCTTCTTTAAACCTCCATGTGTGTCCGTCTACAGATGTGGGGGTTGCTG	101
EVCIDVGKEFG	
GAGAAAGACTCAATGCATGCACGGGAGGTGTGTATAGATGTGGGGAAGGAGTTTGGAGT	41
IKFAAHYNTEILKSIDNEW	
TATAAAATTTGCTGCAGCACATTATAATACAGAGATCTTGAAAAGTATTGATAATGAGTG 	.81
K G G W Q H N R E Q A N L N S R T E E T	
GAAAGGAGGCTGGCAACATAACAGAGAACAGGCCAACCTCAACTCAAGGACAGAAGAGACACACAC	.21
M T V L Y P E Y W K M Y K C Q L R	
* AGATGAACTCATGACTGTACTCTACCCAGAATATTGGAAAATGTACAAGTGTCAGCTAAG	1.
+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	
CGAGGCCACGGCTTATGCAAGCAAAGATCTGGAGGAGCAGTTACGGTCTGTGTCCAGTGT	

MATCH WITH FIG. 2A

421	* TGAAATTACAGTGCCTCTCTCTCAAGGCCCCCAAACCAGTAACAATCAGTTTTGCCAATCA
	P L S Q G P K P V T I S F A N
481	GATGCATGTCTAAACTGGATGTTTACAGACAAGTTCATTCCATTAT
	T S C R C M S K L D V Y R Q V H S I I R
541	CCCTGCCAGCAACACTACCACAGTGTCAGGCAGCGAACAAGACCTGCCCCAC
	RSLPATLPQCQAANKTCPTN
601	ATAATCACATCTGCAGATGCCTGGCTCAGGAAGATTTTATGTTTTCC
	Y M W N N H I C R C L A Q E D F M F S S
661	GGATGCTGGAGATGACTCAACATGCATGACATCTGTGGACCAAACAAGGAGCT
	DAGDDSTDGFH
721	GGATGAAGAGACCTGTCAGTGTGTCTGCAGAGCGGGGCTTCGGCCTGCCAGCTGTGGACC
	DEETCOCVCRAGLRPASCGP
	MATCH WITH FIG. 2C

FIG. 2B

MATCH WITH FIG. 2B

ATGTGGGGCCAACCGAGAATTTGATGAAAACAC C G A N R E F D E N T CCCCAGAAATCAACCCCTAAATCCTGGAAAATG CCCCAGAAATCAACCCCTAAATCCTGGAAAATG CCCCAGAAATCAACCCCTAAATCCTGGAAAATG ATGTACGAACCGCCAGAAGGAAGGAAGGACCAGG ATGTACGAACCGCCAGAAGGCTTGTGAGCCAGG C T N R Q K A C E P G CT N R Q K A C E P G CT N R Q K A C E P G CT N R Q K A C E P G	CCACAAAGAACTAGACAGAAACTCATGCCAGTGTGTCTGTAAAAAACAAAC	GTCTGTAAAACAAACTCTTCCCCA(
CCAATGTGGGCCAACCGAGATTTGATGAAAACACATGCCAGTGTGTAAAAA OCGAAN REFDENTCOTTGAAATGTGCCTGTGAATGTAAAA CTGCCCCAGAAATCAACCCCTAAATCCTGGAAATGTGCCTGTGAATGTACAGAAA CTGCCCCAGAAATCAACCCCTAAATCCTGGAAATGTGCCTGTGAATGTACAGAAA CPRNQPLNPGCAAATGCTGTTAAAAGGAAAGAAATGTCCACCAAAATGTGCTTTACA ACAGAAATGCTTGTTAAAAGGAAAGAAAGAAGACCACCAAAATGTGAAGAAGG ORCATGTACGAACCGCCAGAAGGCTTGTGAGAGATTTTCATATAGTGAAGAAGG GCCATGTACGAACCGCCAGAAGACTTGTGAGAATTTTCATATAGTGAAGAAGGAAG	K E L D R N S C Q C	++ C K N K L
CTGCCCCAGAAATCAACCCCTAAATCTGGAAAATGTGCCTGTGAATGTACAGAAA C P R N Q P L N P G K C A C E C T E S ACAGAAATGCTTGTTAAAAGGAAAGAAAGAAACACCCCACAACATGCAGCTGTTACA Q K C L L K G K K F H H Q T C S C Y R GCCATGTACGAACCGCCAGAAGGCTTGTGAGCCAGGATTTTCATATAGTGAAGAAG P C T N R Q K A C E P G F S Y S E E V TCGTTGTGTCCCTTCATATTGGCAAAGACCACAAATGAGCTAAGATTGTTACTTTTTTTT	CCAATGTGGGCCAACCGAGAATTTGATGAAAACA	ACATGCCAGTGTGTATGTAAAAGAAC
CTGCCCCAGAATCAACCCCTAAATCCTGGAAATGTGCCTGTGAATGTACAGAAA C P R N Q P L N P G K C A C E C T E S ACAGAAATGCTTGTTAAAAGGAAAGAAGTTCCACCACCAACATGCAGCTGTTACA Q K C L L K G K K F H H Q T C S C Y R GCCATGTACGACCGCCAGAAGGCTTGTGAGCCAGGATTTTCATATAGTGAAGAAG P C T N R Q K A C E P G F S Y S E E V TCGTTGTGTCCCTTCATATTGGCAAAGACCACAAATGAGCTAAGATTGTACTGTTTTT TCGTTGTTGTCCCTTCATATTGGCAAAGACCACAAATGAGCTAAGATTGTACTGTTTTTTTT	C G A N R E F D E N	C Q C V C
ACAGAAATGCTTGTTAAAAGGAAAGATTCCACCACCAACATGCAGCTGTTACACCACATGCAGCTGTTACACCACATGCAGCTGTTACACCACATGCAGCTGTTACACACATGCAGCTGTTACACACATGCAACATGAGCTGTTACACATGAGCTTGTGAGCCAGGATTTTCATATAGTGAAGAAGACCACAAATGAGCTAAGATTGTACTGTTTTCATTTTCATATTTGAGCAAAATGAGCTAAGATTGTACTGTTTTCATTTTTTTT	CTGCCCCAGAAATCAACCCCTAAATCCTGGAAAAT	ATGTGCCTGTGAATGTACAGAAAGTCC
ACAGAAATGCTTGTTAAAAGGAAAGAAGTTCCACCAAACATGCAGCTGTTACACACATGCAGCATGCAGCTGTTACACACATGCAGCTGTTACACACATGCAGAACATTTTCATATAGTGAAGAAGACTTGTGAGGCTTGTGAGCCAGGATTTTCATATAGTGAAGAAGACATGTGAAGAAGACTTGTGAGAAGACCACAAATGAGCTAAGATTGTACTGTTTTCATATTGTACTGTTTTCATATTGTACTGTTTTTTTT	P R N Q P L N	A C E C T E
GCCATGTACGAACCGCCAGAAGGCTTGTGAGCCAGGATTTTCATATAGTGAAGAAGGCTTGTGAGCCAGGATTTTCATATAGTGAAGAAGGCTTGTGAGCCAGGATTTTCATATAGTGAAGAAGAAGACCAGGATTTTCATATAGTGAAGAAGACAAGAAGACCACAAATGAGATTGTACTGTTTTTTTT	ACAGAAATGCTTGTTAAAAGGAAAGAAGGTTCCACC	CACCAAACATGCAGCTGTTACAGACG
GCCATGTACGAACGCCTTGTGAGCCAGGATTTTCATATAGTGAAGAAG'++++++ P C T N R Q K A C E P G F S Y S E E V TCGTTGTGTCCTTCATATTGGCAAAGACCACAAATGAGCTAAGATTGTACTGTTTT	K C L L K G K K F H	A C S C Y
TCGTTGTCCCTTCATATTGGCAAAGACCACAAATGAGCTAAGATTGTACTGTTTT	GCCATGTACGAACCGCCAGAAGGCTTGTGAGCCAG	GGATTTTCATATAGTGAAGAAGTGTG
TCGTTGTCCCTTCATATTGGCAAAGACCACAAATGAGCTAAGATTGTACTGTTTT	C T N R Q K A C E P	F S Y S F
+	TCGTTGTCCCTTCATATTGGCAAAGACCACAAA	ATGAGCTAAGATTGTACTGTTTTCCA

FIG. 20

MATCH WITH FIG. 2D

MATCH WITH FIG. 2C

1141	GTTCATCGATTTTCTATTATGGAAAACTGTGTTGCCACAGTAGAACTGTCTGT
1201	GAGACCCTTGTGGGTCCATGCTAACAAGACAAAAGTCTGTCT
1261	. TAACTTTACAGAAATGGACTGGAGCTCATCTGCAAAAGGCCTCTTGTAAAGACTGGTTTT
1321	CTGCCAATGACCAAACAGCCAAGATTTTCCTCTTGTGATTTCTTTAAAAGAATGACTATA
1381	TAATTTATTTCCACTAAAATATTGTTTCTGCATTCATTTTTTTATAGCAACAACAATTGGT
1441	. AAAACTCACTGTGATCAATATTTTTTATCATGCAAAATATGTTTAAAATAAAATGAAAA
1501	TTGTATTATAAAAAAAAAA ++

FIG. 2D

1 Pdgfa .MRTLACLLL LGCGYLAHVL AEEAEIPREV IERLARSOIH SIRDLORLLE Pdgfb MNRCWA.LFL SLCCYLRLVS AEGDPIPEEL YEMLSOHSIR SFDDLORLLH VegfMNFLL SWVHWSLALL LY	Pdgfo IDSVGSEDSL DTSLRAHCVH ATKHVPEKRP LPIRRKRSIEEAVP Pdgfb GDP.GEEDGA ELDLNMTRSH SGGELESLARGRRSLG SLTIAEPAMI Vegf APMAEGGGO NHHEVVKFMD .VYQR	Pdgfa AVCKTRTVIY EIPRSQVDPT SANFLIWPPC VEVKRCTGCC NTSSVKCOPS Pdgfb AECKTRTEVF EISRRLIDRT NANFLVWPPC VEVQRCSGCC NNRNVCCRPT Vegf SYCHPIETLY DIFGEYPDEIEYIFKPSC VPLMRCGCCC NDEGLECVPT Vegf2 TCCMPREVCI DVGKEFGVATNTFFKPPC VSVYRCGCCC NSEGLCCMNI	Pdgfa RVHHRSVKVA KVEYVRKKPK LKEVQVRLEE HLEGAG AT Pdgfb QVQLRPVQVR KIEIVRKKPI FKKATVTLED HLACKG ETVAAARPVT Vegf EESNITMQIM RIK.PHQC QHIGEMSFLQ HNKCECRPKK DRARQEKKSV Vegf2 STSYLSKTLF EIT.VPLSQC PKPVTISFAN HTSGRQMSKL DVYRQVHSII
1ERLARSO1H YEMLSDHS1R	LPIRRKRSI. .LARGRRSLG .VYQR	VEVKRCTGCC VEVQRCSGCC VPLMRCGCCC VSVYRCGCCC	HLEGAG HLAGKG HNKGEGRPKK HTSGRGMSKL
AEEAE IPREV AEGOP IPEEL LY	ATKHVPEKRP SGGELES NHHEVVKFMD YNTEILKSID	SANFL IMPPC NANFL VMPPC EY I FKPSC NTFFKPPC	LKEVQVRLEE FKKATVTLED QHIGEMSFLQ PKPVTISFAN
LGCGYLAHVL SLCCYLRLVS SWVHWSLALL LYPEYWKMYK	DTSLRAHGVH ELDLNMTRSH GGGQ EETIKFAAAH	E I PRSQVDP T E I SRRL I DR T D I F QE YPDE I DVGKEFGVAT	KVEYVRKKPK KIEIVRKKPI RIK.PHOC EIT.VPLSOC
1 .MRTLACLLL MNRCWA.LFL MNFLL	51 IDSVGSEDSL GDP.GEEDGA APMAE	101 AVCKTRTV1Y AECKTRTEVF SYCHPIETLV TQCMPREVC1	151 RVHHRSVKVA QVQLRPVQVR EESNITMQIM STSYLSKTLF
Pdgfa Pdgfb Vegf Vegf	Pdgío Pdgíb Vegí Vegí	Pdgfa Pdgfb Vegf Vegf	Pdgfa Pdgfb Vegf Vegf2

-1G. 3A

RTVRVRRPPK CKHRKFKHTH DKTALKETLG KSRYKSWSVY VGARCCLMPW SLPCPHP NYMMNNHICR CLAQEDFMFS SDAGDDSTDG	A	DKPRR	Pdgfa
RTVRVRRPPK KSRYKSWSVY NYMMNHICR	RAGLRPASCG	DKPRR	351
	LDEETCOCVC	LELNERTCRC	SCYRRPCTNR
201 Pdgía TSLNPD YREEDTDVR. Pdgíb RSPGGSQEOR AKTPOTRVTI Vegí RGKGKGOKRKRK Vegí2 RRSLPATLPO COAANKTCPT	Pdgfa	Pdgfa	351
Pdgía Pdgíb Vegí Vegí	Pdgía Pdgíb Vegí Vegí2	Pdgfa Pdgfb Vegf Vegf2	Pdgfa Pdgfb Vegf Vegf

FIG. 3B

PERCENTAGE (%) OF AMINO ACID IDENTITIES BETWEEN EACH PAIR OF GENES IS SHOWN IN THE FOLLOWING TABLE

	PDGFlpha	PDGFβ	VEGF	VEGF-2
PDGF α				
PDGFβ	48.0			
VEGF	20.7	22.7		
VEGF-2	23.5	22.4	30.0	

FIG. 4

Lane 1. normal breast tissue Lane 2. breast tumor tissue Lane 3-9. breast tumor cell lines.

Expression of VEGF2 mRNA in Human Breast Tumor Cells

Expression of VEGF-2 mRNA in Human Adult Tissues

- 1. Ovary
- 2. Testés
- 3. Gall Blader
- 4. Kidney
- 5. Liver

- 6. Lung
- 7. Spleen
- 8. Prostate
- 9. Hippocampus
- 10. Heart

Lane 1: 14-C and rainbow M.W. marker

Lane 2: FGF control

Lane 3: VEGF2 (M13-reverse & forward primer)
Lane 4: VEGF2 (M13-reverse & VEGF-F4 primer)
Lane 5: VEGF2 (M13-reverse & VEGF-F5 primer)

FIG. 7

Lane M: Marker

Lane 1: Vector medium Lane 2: VEGF2 medium

FIG. 8A

Lane M: Marker

Lane 1: vector cytoplasm Lane 2: vector medium Lane 3: VEGF2 cytoplasm Lane 4: VEGF2 medium

FIG. 8B

Lane 1: Molelular weight marker Lane 2: Precipitates containing VEGF2.

FIG. 11

FIG. 12

FIG. 13

tetal kidney
tetal lung
tetal lung
tetal liver
brain
tetal liver
kidney
lung
lung
lung
liver
spleen
thymus
thymus
thymus
thymus
spleen
spleen
spleen
thymus
thymus
skeletal muscl

FIG. 14A

M B 1 2 3 4 5 6 7 8 9 10 11 12 13

FIG. 14B

- 1.
- Molecular weight marker Umbelical vein endothelial cells 2.
- 3. Aortic smooth muscle cells
- Dermal fibroblast 4.

FIG. 15

- 1. Molecular weight marker
- 2. Blank
- 3. Control protein-HA
- 4. Vector control
- 5. VEGF2-HA

FIG. 16A

- 1. Molecular weight marker
- 2. Blank
- 3. Control protein-HA
- 4. VEGF2-HA
- 5. Vector control

FIG. 16B

FIG. 17

FIG. 18

FIG. 19

FIG. 20A

FIG. 20B

FIG. 21A

FIG. 21B

FIG. 22

FIG. 23

FIG. 24

0.0

32 / 68

DAY 0

FIG. 25A

DAY 30

FIG. 25B

34 / 68

FIG. 25F

FIG. 25G

36 / 68

FIG. 25H

FIG. 251

FIG. 25J

FIG. 25K

FIG. 25L

FIG. 25M

FIG. 26A

FIG. 26B

FIG. 26C

FIG. 26D

CHANGE IN DIASTOLIC BLOOD PRESSURE OF SHR RATS GIVEN INCREASING DOSES OF VEGF-2

THE EFFECT OF INCREASING DOSES OF VEGF-2 ON THE MEAN ARTERIAL PRESSURE (MAP) OF SHR RATS

THE EFFECT OF VEGF-2 ON THE DIASTOLIC BLOOD PRESSURE OF SHR RATS

FIG. 26G

FIG. 27

FIG. 28

AAGCITAAAAACIGCAAAAAATAG T|TIGACI OPERATOR 2

50 TAAGAT GTACCCA

94 AGAGGAGAAATTA

FIG. 29

FIG. 30

Ncol
AGCTTGACCTTATGCGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCG TCGAACTGGAATACGCTGAAAGGATGAACCGTCATGTAGATGCÄTAATCAGTAGCGATAATGGTACCACTACGC
CMV Enhancer
STITIGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCCACTGACGT 150 150 150 150 150 150 150 150 150 150
CMV Enhancer
CAATGGGAGTTTGTTTTGGCACCAAAATCAACGAGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCA
YOUR ALL AND

FIG.31A

APR 17 2000 HAREN STORY

AATGGGCGGTAGGGCAACATGCTTATGTAACGGTGAGTTAGCAALATGCLITATAAGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	0
- CMV Enhancer	
CATGCCGATTGGTGGGAGTAAGGTGGTATGATCGTGGTATGATCGTGCCTTGTTAGGAAGGCAACAGACGGGTCT 375	76
RSV-LTR Promoter	
AACACGGATTGGACGAACCACTGAATTCCGCATTGCAGAGATATTGTATTTAAGTGCCCAGCTCGATACAATAAA	2(
Parameter services and the services of the ser	

FIG.31B

525

		009	
	M H S L G F F L S F F	GCGAGGCGCCGCCGCCGCCGCCTTC	
RSV-LTR Promoter	Smal	TCTGTGGCGTGTTCTCTGCTCGCCGCTGCGCTGCTCCCGGGTCCTCGCGAGGCGCCCCGCCGCCGCCGCCGCCGCCGCCGCCGCC	

CICAGGCCIGAGCIGGAGAGCCIGCGCCICGGGCTGCCCCACICCGGTGCCGAAIACGIICGITICIAGACCIC __ا ⋖ BgIII \triangleleft ⋖ ⋖ ⋖ ۵. ⋖ ليا α Ø ⋖ ⋖ S \cup Ø > S

لبا ⋖ S G

S

ш

FIG.31C

GAGCAGTTACGGTCTGTGTCCAGTGTAGATGACTCATGACTGTACTCTACCCAGAATATTGGAAAATGTACAAG CTCGTCAATGCCAGACACAGGTCACATCTACTTGAGTACTGACATGAGATGGGTCTTATAACCTTTTACATGTTC

\succeq	<u> </u>	
>	-	
Σ	-	
>	2	
7	\$	
>	_	
L	L	
	┖	
>	_	l
-		
2	>	
H	_	5
	Σ	:GF
	_	3 -
1	لد	
1		
	>	ļ
	ഗ	
	ഗ	
	>	.
	S.	,
	~	:
	_	.
		,
	ىيا	ار

TGTCAGCTAAGGAAAGGAGGCTGGCAACATAACAGAGAACAGGCCAACCTCAACTCAAGGACAGAAGAGACTATA

_	
⊢-	
ш	
ليا	
\vdash	
\propto	
S	
Z	
z	
A	
0	-7-
ليا	EGF
~	>
z	
I	
O	
>	
9	;
٢	}
\times	<u> </u>
Ω.	=
-	ر
	7
ر	ر

006 +----AAATTIGCIGCAGCACATTATAATACAGAGATCTTGAAAAGTATTGATAATGAGIGGAGAAAGACICAATGCATG TITAAACGACGICGIGTAATATIAIGICICTAGAACTITICATAACTATIACICACCICTIICIGAGTIACGTAC

BgIII

Pstl

Σ	
ں	
0	
 -	
\checkmark	
\propto	
3	
ш	
z	
-	
S	ا ج
\times	EGF
_	<u>₩</u>
_	
لبا	
—	
Z	
>-	
工	
Ø	
Ø	
Ø	
سا	
\simeq	:

FIG.31D

APR 17 700 PULL

976	5	
CCACGGGAGGIGIGTATAGAIGIGGGGAAGGAGITIGGAGICGCGACAACACACCTICITIAAACCICLCAIGIG		GGTGCCCTCCACATATCTACACCCCTTCCTCAAACCILAGLGLIGIIIGIGGAAAAAAAIIIGGAAGAAAAAAAAA

	1050	707) J
PREVCIDVGKEFGVATNTFFKPPCV VEGF-2	TCCGTCTACAGATGTGGGGGTTGCTGCAATAGTGAGGGGCTGCAGTGCATGAACACCCAGCACGAGCTACCTCAGC AGGCAGATGTCTACACCCCCAACGACGTTATCACTCCCGACGTCATGTGGTCGTGGTCGTGGTCGATGGAGTCG	S V Y R C G G C C N S E G L Q C M N T S T S Y L S VEGF-2- AAGACGITATITGAAATTACAGTGCCTCTCTCTCTCAAGGCCCCAAACCAGTAACAATCAGTTTTGCCAATCACAT	TICTGCAATAAACTTTAATGTCACGGAGAGAGAGTTCCGGGGTTTGGTCATTGTTAGTCAAAACGGTTAGTGAA

FIG.31E

I Z

S

<u></u> А

0 G P K -VEGF-2----

S

م

>

لبا

 \checkmark

1200 TCCTGCCGATGCATGTCTAAACTGGATGTTTACAGACAAGTTCCATTCCATTATTAGACGTTCCCTGCCAGCAACA AGGACGGCTACGTACAGATTTGACCTACAAATGTCTGTTCAAGTAAGGTAATAATCTGCAAGGGACGGTCGTTGT

	-	
	∢	
	۵_	
	_	
	S	
	~	
	~	
	-	
ŀ		
l	S	
	±	
	> 4	
	0 \ EGF-2	
i	У Ч	
	>-	
	>	
l		
I		
ı	\vee	
I	S	
1	Σ	
	ں	
	~	
	ں	
1	ഗ	

CTACCACAGIGICAGGCAGCGAACAAGACCIGCCCCACCAATTACATGIGGAATAATCACATCIGCAGAIGCCTG GATGGTGTCACAGTCCGTCGCTTGTTCTGGACGGGGTGGTTAATGTACACCTTATTAGTGTAGACGTCTACGGAC

Pstl

	_	
	ں	
	œ	
	ں	
	エ	
	z	
	z	
	3	
	Σ	
	>-	
	z	-2
		EGF-2-
	ط	
	ں	
	-	
İ	\prec	
	Z	
	Ø	
	Ø	:
		,
İ	_	ا ر
	C	,
	۵	-
	_	_

1350 GCTCAGGAAGATITTATGTTTTCCTCGGATGCTGGAGATGACTCAACAGATGGATTCCATGACATCTGTGGACCA CGAGICCITCIAAAAIACAAAAGGAGCCIACGACCICIACIGAGIIGICIACCIAAGGIACIGIAGACACCIGGI

۵	_	
C	9	
C	ر	
-	_	
C	\supset	
=	r	
Ĺ	ــــــــــــــــــــــــــــــــــــــ	
(5	
ú	\Box	
i	_	
	ഗ	
		2
		:GF
	ය	- VĒ
	Ø	
	S	
	S	,
	با	.
	Σ	:
	سا	-
		٠
	نا	ا ر
	_	5
	<	ĭ.

FIG.31F

OTP F VCIOR WHEN THE VCIOR APPRINGED TO THE VCIOR WHEN THE VCIOR APPRINGED TO THE VCIOR APP

TIGITCCTCGACCTACTICTCTGGACAGTCACACAGGCGTCTCGCCCCGAAGCCGGACGGTCGACACCTGGGGTG AACAAGGAGCTGGATGAAGAGACCTGTCAGTGTGTCTGCAGAGCGGGGCTTCGGCCTGCCAGCTGTGGACCCCAC Pvull Pstl

工 C œ 9 Ø V C R -VEGF-2— O ں لبا ш \prec z

TITCITGATCTGTCTTTGAGTACGGTCACACAGACATTITTGTTTGAGAAGGGGTCGGTTACACCCCGGTTGGCT

Z ⋖ C O S ۵. 0 ں ഗ z \simeq GAATTTGATGAAAACACATGCCAGTGTGTATGTAAAAGAACCTGCCCCAGAAATCAACCCCTAAATCCTGGAAAA CTTAAACTACTITTGTGTACGGTCACACATACATTTTCTTGGACGGGGTCTTTAGTTGGGGATTTAGGACCTTTT

 \times 9 م Z ۵_ O Z \propto ط O Z

FIG.31G

ATT 1 7 THADELAND

Pvull

TGTGCCTGTGAATGTACAGAAAGTCCACAGAAATGCTTGTTAAAAGGAAAGAAGTTCCACCACCAAACATGCAGC ACACGGACACTTACATGTCTTTCAGGTGTCTTTACGAACAATTTTCCTTTCTTCAAGGTGGTGGTTTGTACGTCG エ エ 0 K C L L K G

ACAATGICIGCCGGTACATGCTTGGCGGTCTTCCGAACACTCGGTCCTAAAAGTATATCACTTCTTCACACAGCA TGTTACAGACGGCCATGTACGAACCGCCAGAAGGCTTGTGAGCCAGGATTTTCATATAGTGAAGAAGTGTGTCGT

0 K A C E P œ z

BamHI

ACACAGGGAAGTATAACCTTTTCTGGTGTTTACTCGATTAGATCCTAGGCATGGGACGGGTCCGAAAACAGTTTG TGTGTCCCTTCATATTGGAAAAGACCACAAATGAGCTAATCTAGGATCCGTACCCTGCCCAGGCTTTTGTCAAAC

FIG.31H

- 1875	1950	- 4 2025
AGCACCTTIGIGGTICTCACTTGGTGGAAGCTCTCTACCTGGTGTGTGGGGGAGCGTGGATTCTTCTACACACCCAA	TGTCCCGCCGCGAAGTGGAGGACCCACAAGGTAAGCTCTGCTCCTGAATTCTATCCCAAGTGCTAACTACCCTGT	TIGICITICACCCTTGAGACCTTGTAAATTGTGCCCTAGGTGTGGAGGGTCTCAGGCTAACCAGTGGGGGCACA

FIG.311

-rppi poly A

- rppi poly A —

ACCATTGTCCTACACATCCAAAACCTCCGGGTATACAGGTAAGTACTGGTCACTGAACAGAGTGTCGGTACGTTG T G G T A A C A G G A T G T T T T G G A G G C C C A T A T G T C C A T T C A T G A C C A G T G A C T T C A C A C

•

- rppi poly A --

FIG.31J

TCCCTG ++++++ 2400 AGGGAC	.GGTGGCCCGG	CAACTAG
TCCTAACTGGATTGTCCTATGTGTCTTTGCTTCTGTGCTGCTCTGCCCCTGTGCTGTGCTGTGCTCTGTGACATGACCTCCCTGACATGACCTCCCTGTGACATGACGTGACATGACGTGACATGACGTGACATGACATGACATGACATGACATGACATGACATGACATGACATGACATGAATGA	GCAGTGGCACAACTGGAGGCTGGAGGCCCGGGGGCAGGTGACCTTCAGACCTTGGCACTGGAGGTGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCCGGGCCCC	CAGAAGCGCGGCATCGTGGATCAGTGCTGCACCAGCATCTGCTCTCTCT

FIG.31K

GCCCACCACTACCCTGTCCACCCCTCTGCAATGAATAAAACCTTTGAAAGAGCACTACAAGTTGTGTGTACATGC CGGGTGGTGATGGGACAGGTGGGGAGACGTTACTTATTTTGGAAACTTTCTCGTGATGTTCAACACATGTACTGTACG

-rppi poly Arppi poly A-

GCTGTCTAGACGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACATA CGACAGATCTGCATTAGTACCAGTATCGACAAAGGACACACTTTAACAATAGGCGAGTGTTAAGGTGTTGTAT Pvull Xbal

FIG.31L

Pvull

GACGGGCGAAAGGTCAGCCCTTTGGACAGCACGGTCGACGTAATTACTTAGCCGGTTGCGCGCCCCTCTCCGCCA CIGCCCGCITTCCAGICGGGAAACCIGICGIGCCAGCIGCATI'AAIGAAICGGCCAACGCGGGGGGGGGGGGGG

AACGCATAACCCGCGAGAAGGCGAGCGAGTGACTGAGCGACGCGAGCCAGCAAGCCGACGCGCTCGCCAT TCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAA AGTCGAGTGAGTTTCCGCCATTATGCCAATAGGTGTCTTAGTCCCCTATTGCGTCCTTTCTTGTACACTCGTTTT GGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAG CCGGTCGTTTTCCGGTCCTTGGCATTTTTCCGGCGCAACGACCGCAAAAAGGTATCCGAGGCGGGGGGGACTGCTC

FIG.31M

CATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCT GTAGTGTTTTTAGCTGCGAGTTCAGTCTCCACCGCTTTGGGCTGTCCTGATATTTCTATGGTCCGCAAAGGGGGA

CCTTCGAGGGAGCACGCGAGAGACAAGGCTGGGACGGCGAATGGCCTATGGACAGGCGGAAAGAGGGGAAGCCCT GGAAGETECETTEGEGETETECTATECGACECTGECGGTTÄCEGGATACETGTECGGCTTTETECTECTTEGGGA

TCGCACCGCGAAAGAGTATCGAGTGCGACATCCATAGAGTCAAGCCACATCCAGCAAGCGAGGTTCGACCCGACA AGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGT

GIGCACGAACCCCCCGTICAGCCCCGACCGCTTGCGCTTAICCGGTAACTATCGTCITGAGTCCAACCCGGTAAGA CACGTGCTTGGGGGCCAAGTCGGGCTGGCGACGCGGAATAGGCCATTGATAGCAGAACTCAGGTTGGGCCATTCT

GTGCTGAATAGCGGTGACCGTCGTGACCATTGTCCTAATCGTCTCGCTCCATACATCCGCCACGATGTCTC

FIG.31N

AAGAACTTCACCACCGGATTGATGCCGATGTGATCTTCTTGTCATAAACCATAGACGCGAGACGATTCGGTCAA TICTIGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCAGTT

 AAGCAGCAGATTACGCGCAGAAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAG TTCGTCGTCTAATGCGCGTCTTTTTTCCTAGAGTTCTTCTAGGAAACTAGAAAGATGCCCCAGACTGCGAGTC

ACCTTGCTTTTGAGTGCAATTCCCTAAAACCAGTACTCTAATAGCAGCTGGTTTCGCCGGTAGCACGGAGGGGTG TGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCGTCGACCAAAGCGGCCATCGTGCCTCCCCAC Sall

FIG.310

1

APR 1 7 2003 E

TCCTGCAGTTCGGGGGCATGCGCGGATAGCCGCTGCTGGTTTCCTGGATGCCGACGGATTTGCACTGCCGG AGGACGTCAAGCCCCCGTACCTACGCGCCTATCGGCGACGACCAAAGGACCTACGGCTGCCTAAACGTGACGGCC

TAGAACTCCGCGAGGTCGTCCAGCCTCAGGCAGCTGAACCAACTCGCGAGGGGATCGAGCCCGGGGTGGGCG ATCTIGAGGCGCTCCAGCAGGTCGGAGTCCGTCGACTTGGTTGAGCGCTCCCCTAGCTCGGGCCCCCACCCGC

TICTIGAGGICGTACTCTAGGGGCGCGACCTCCTAGTAGGTCGGCCGCAGGGCCTTTTGCTAAGGCTTCGGGTTG AAGAACTCCAGCATGAGATCCCCGCGCTGGAGGATCATCCAGCCGGCGTCCCGGAAAACGATTCCGAAGCCCAAC

FIG.31P

GGGTCTCAGGGCGAGTCTTCTTGAGCAGTTCTTCCGCTATCTTCCGCTACGCGACGCTTAGCCCTCGCCGCTATG CCCAGAGTCCCGCTCAGAAGACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCGATAC

⋖ ⋖ م ഗ O \simeq -kan r ٧ -ك œ ـــا ـــا

4275 GCATTICGIGCICCTICGCCAGICGGGTAAGCGGCGGTICGAGAAGICGTIATAGIGCCCCAICGGIIGCGATACA CGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGT

⋖ ⋖ œ ⋖ ليا G C لبا 3 Ø œ

GGACTATCGCCAGGCGGTGTGGGTCGGCCGGTGTCAGCTACTTAGGTCTTTTCGCCGGTAAAAGGTGGTACTATA CCTGATAGCGGTCCGCCACACCCCAGCCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATAT

Σ > z G α S C G œ C O

FIG.31Q

APR 17 2000 STATE OF THE PROPERTY OF THE PROPE

OS No.

TCGGCAAGCAGGCATCGCCATGGGTCACGACGAGGATCCTCGCCGTCGGGCATGCGCCTTGAGCCTGGCGAACA AGCCGTTCGTCCGTAGCGGTACCCAGTGCTGCTCTAGGAGCGGCAGCCCGTACGCGGGGAACTCGGACCGCTTGT

_	٢	١		
L	_			
<	I			
C	Y			
-	ب			
2	<u>~</u>			
	⋖			
,	<u>a</u>	:		
	Σ	-		
	۵	-		
	_	ב		
	_	פ		
	L	L	17.0	
	2	\supset	3	2
	-	_		
	;	>		
l		>	.	
l	ı	- -	-	
		コ	-	
İ		ر	5	
		<u>_</u>	ב	
l		<	I	
		C	ر	
		-		
		(_	

0054 +----+ GTTCGGCTGGCGCGCGCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTAC CAAGCCGACCGCGCTCGGGGACTACGAGAAGCAGGTCTAGTAGGACTAGCTGTTCTGGCCGAAGGTAGGCTCATG

œ				
-	-	١		
Ω	_			
Σ	=			
L	٤			
<	I			
C	כ			
-				
2	>			
(=)		
	_	7		
	_	ב		
	_	ב	I L	-
	_	نـ	۱	2
	_	_		
	L	لد		
	L	L	ı	
		I	:	
	•	_	3	
ļ		כי	3	
		_	١	
		<	I	Ì
		C	_	
		<	⋖	
		ι	1	1

CACGAGCGAGCTACGCTACAAAGCGAACCAGCTTACCCGTCCATCGGCCTAGTTCGCATACGTCGGCGGT GIGCICGCICGATGCGATGTTICGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCA

œ \propto 工 م Ø エ O Ø Ø

FIG.31R

4650 AACGTAGTCGGTACTACCTATGAAAGAGCCGTCCTCGTTCCACTCTACTGTCCTCTAGGACGGGGCCGTGAAGCG TIGCAICAGCCATGATGGATACTITCICGGCAGGAGCAAGGIGAGATGACAGGAGATCCTGCCCGGCACTICGC

 \mathcal{C} لبا > م C O S S Σ Ø ⋖ CCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCA GGTTATCGTCGGTCAGGGAAGGGCGAAGTCACTGTTGCAGCTCGTGTCGACGCGTTCCTTGCGGGCAGCACCGGT

Pvull

⋖ C ٩ ب ⋖ Ø 0 Ø G \simeq

FIG.31S

APR 17 200 STATE OF THE PROPERTY OF THE PROPER

Pstl

008h +----

	<u>م</u>	
	>	
	سا	
	>	
	\times	
		
	S	
	9	
	⋖	
	_	֭֡֝֟֝֟֝֟֝֟֟֝
	Z	٤
	سا	اد
ŀ		ا ر
ļ	\subset	,
		د
	با	┙┃
l	<	∢
l	<	∢
	C	۲
	-	_
	C	ر م
	-	3

GGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCAGTCATAGCCGA CCGCGGGGACGCGACTGTCGCCCTTGTGCCGCCGTAGTCTCGTCGGCTAACAGACAACACGGGTCAGTATCGGCT

ļ	ـــــــــــــــــــــــــــــــــــــــ		
	C		
	>-		
	3		
	Ø		
	O		
	0		
	<u> </u>	1	
	9		
	ت	,	
	C.	֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝	
		ا ر	2
	<		
İ	<	۲	
	>	-	
	L	_	
		Ľ	
l	-	لـ	
l	C	n	
ļ	<	Ø	Ì
	(J	
	(<u>ت</u>	
	ı	×	

4950 TATCGGAGAGGTGGGTTCGCCGGCCTCTTGGACGCACGTTAGGTAGAACAAGTTAGTACGCTTTGCTAGGAGTAG ATAGCCTCTCCACCCAAGCGGCGGAGAACCTGCGTGCAATCCATCTTGTTCAATCATGCGAAACGATCCTCATC

	_	
	Σ	
	-	
	اسا	
	0	
	9	
	_	
	エ	
	⋖	
	5	- - - -
	S	Ì
	۵	
	A	
	A	
	3	
	>	
	Ш	
	\simeq	
l		1

FIG.31T

SOLOW TO MAN

Bg

5025 GACAGAGAACTAGTCTAGAACTAGGGGACGCGGTAGTCTAGGAACCGCCGTTCTTTCGGTAGGTCAAATGAAACG CIGICICITGAICAGAICITGAICCCCIGCGCCAICAGAICCIIGGCGGCAAGAAAGCCAICCAGIITACIIIGC

Pvull

TCCCGAAGGGTTGGAATGGTCTCCCGCGGGGTCGACCGTTAAGGCCAAGCGAACGACAGGTATTTTGGCGGGTCA A G G G C T T C C C A A C C T T A C C A G G G G C C C C A G C C A T T C C G G T T C G C T T G C T A A A A A C C G C C C A G T

CTAGCTATCGCCATGTAAGCCCACTGCAAGCTACCTGCTTTCTCTTTGCGCTTGCGTTTTCCCTTGTCCAGATAG GATCGATAGCGGTACATTCGGGTGACGTTCGATGGACGAAGAGAAACGCGAACGCAAAAGGGAACAGGTCTATC

GGGTCATCGACTGTAAGTAGGCCCCAGTCGTGGCAAAGACGCCTGACCGAAAGATGCACAAGGCGAAGGAAATCG CCCAGTAGCTGACATTCATCCGGGGTCAGCACCGTTTCTGCGGACTGGCTTTCTACGTGTTCCGCTTTCTAGC

 FIG.31U