This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A1 C11D 1/94, 3/20, 3/44

(11) International Publication Number:

WO 97/15649

(43) International Publication Date:

1 May 1997 (01.05.97)

(21) International Application Number:

PCT/US96/15463

(22) International Filing Date:

27 September 1996 (27.09.96)

(30) Priority Data:

9521829.3 9612645.3

25 October 1995 (25.10.95) GB

GB 17 June 1996 (17.06.96)

(71) Applicant: RECKITT & COLMAN INC. [US/US]; 225 Summit Avenue, Montvale, NJ 07645 (US).

(72) Inventor: CRISANTI, Michael: 10 Clapboard Ridge Road #41M, Danbury, CT 06811 (US).

(74) Agents: PARFOMAK, Andrew, N. et al.; Fish & Richardson P.C., Suite 2800, 45 Rockefeller Plaza, New York, NY 10111 (US).

(81) Designated States: AL, AM, AU, BB, BG, BR, CA, CN, CZ, EE, FI, GE, HU, IL, IS, JP, KG, KP, KR, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, SD, SG, SI, SK, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: GERMICIDAL ACIDIC HARD SURFACE CLEANING COMPOSITIONS

(57) Abstract

Improved hard surface cleaning compositions having an acidic pH provide good removal of soap scum stains, and further feature low levels of irritability to the user. The compositions comprise 0.1-10 % by weight of an acid sequestrant constituent; 0.1-10 % by weight of a mixture of hydrophobic and hydrophilic solvents; 1-8 % by weight of a surfactant and/or hydrotrope constituent; 0-20 % by weight of one or more optional constituents; the balance to 100 % by weight of water, wherein the aqueous hard surface cleaning composition exhibits a pH of 7.0 or less, especially a pH of 5.0 and less. Although acidic, the improved hard surface cleaning compositions feature low irritability to the eyes and skin of consumers. The compositions also provide disinfecting effects. Processes for the production of the said compositions, as well as methods for their use are also described.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	- IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	
CA	Canada	KP	Democratic People's Republic	SD	Russian Federation
CF	Central African Republic		of Korea	SE SE	Sudan
CG	Congo	KR	Republic of Korea	SG	Sweden
CH	Switzerland	KZ	Kazakhstan		Singapore
CI	Côte d'Ivoire	ü	Liechtenstein	SI SK	Slovenia
CM	Cameroon	LK	Sri Lanka		Slovakia
CN	China	LR	Liberia	SN	Senegal
CS	Czechoslovakia	LT	Lithuania	SZ	Swaziland
CZ	Czech Republic	LU		TD	Chad
DE	Germany	LV	Luxembourg Latvia	TG	Togo
DK	Denmark	MC		TJ	Tajikistan
EE	Estonia	MD	Monaco	TT	Trinidad and Tobago
ES	Spain		Republic of Moldova	UA	Ukraine
FI	Finland	MG	Madagascar	UG	Uganda
FR	France	ML	Mali	US	United States of America
GA		MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

- 1 -

GERMICIDAL ACIDIC HARD SURFACE CLEANING COMPOSITIONS

5

10

15

20

25

30

The present invention relates to improved cleaning compositions which find particular use in hard surface cleaning applications.

Various formulations in compositions of cleaning agents have been produced and are known to the art. For example, highly acidic cleaning agents comprising strong acids, such as hydrochloric acids, are useful in the removal of hard water stains, however, the presence of strong acids is known to be an irritant to the skin and further offers the potential of toxicological danger. Also, few provide any germicidal or sanitizing effect to treated hard surfaces.

Thus, it is among the objects of the invention to provide improved cleaning compositions which are effective in providing a disinfecting effect and facilitate in the removal of soap scum stains and hard water stains, especially from hard surfaces. It is a further object of the invention to provide improved cleaning compositions which are particularly effective in hard water stain removal and soap scum stain removal, and which further features minimal irritability to the eyes, skin or mucocus tissues of a consumer.

According to the invention, there are provided a germicidal aqueous hard surface cleaning composition which comprises the following necessary constituents:

Constituent (A) acid sequestrant;

Constituent (B) mixture of hydrophobic and hydrophilic solvents;

Constituent (C) surfactant and/or hydrotrope,

The compositions of the invention may also include one or more further optional constituents such as known art additives. By way of non-limiting example, such constituents include: further surfactants, particularly surfactants which are useful for the removal of greasy soils, foaming agents and foam stabilizers, coloring agents, including dyes and pigment compositions, fragrances (whether natural or synthetically produced), fragrance adjuvants and/or fragrance solubilizers, viscosity modifying agents including thickeners or gelling agents, pH adjusting agents, pH buffers, antioxidants, water softening agents, further solubilizing agents which might be useful in the solubilization of one or more of the constituents in water, preservative compositions, as well as other known art additives not particularly elucidated here. Such constituents as described above include known art compositions, including those described in *McCutcheon's Detergents and Emulsifiers*, North American Edition, 1991; *Kirk-Othmer*,

SUBSTITUTE SHEET (RULE 26)

Encyclopedia of Chemical Technology, 3rd Ed., Vol. 22, pp. 346-387, the contents of which are herein incorporated by reference.

The compositions according to the invention are preferably acidic in character, exhibiting a pH of less than 7.0, desirably the pH is in the range of from about 5.0 to about 1.0 and yet more desirably is a pH in the range of about 4.0 to about 1.0 and most desirably is a pH in from 3.0 - 1.0.

In a further aspect of the invention, there is also provided improved process for cleaning and disinfecting surfaces especially hard surfaces which includes the step of applying to the surface a stain releasing and disinfecting effective amount of a composition as taught herein to such a stained surface.

The constituents which comprise Constituent A, namely the acid Constituent A sequestrant according to the invention may be virtually any acid which is found to be effective in the removal of hard water stains from hard surfaces, particularly lavatory surfaces as denoted above. Exemplary useful acids include: citric acid, cresylic acid, dodecylbenzene sulfonic acid, phosphoric acid, salicylic acid, sorbic acid, sulfamic acid, acetic acid, benzoic acid, boric acid, capric acid, caproic acid, cyanuric acid, dihydroacetic acid, dimethylsulfamic acid, propionic acid, polyacrylic acid, 2-ethyl-hexanoic acid, formic acid, fumaric acid, l-glutamic acid, isopropyl sulfamic acid, naphthenic acid, oxalic acid, phosphorus acid, valeric acid, benzene sulfonic acid, xylene sulfonic acid, as well as any acid listed as a registered pesticide active ingredient with the United States Environmental Protection Agency. Further useful acids include: sulfonic acids, maleic acid, acetic acid, adipic acid, lactic acid, butyric acid, gluconic acid, malic acid, tartaric acid, as well as glycolic acid. Desirably glycolic acid and citric acid are used as they are effective and in plentiful supply and are may be advantageously used. These acid sequestrants provide free acidity within the cleaning composition which free acid reacts with the fatty acid metal salts which are comprised within soap scum stains releasing the metal ions and freeing the fatty acid, which facilitates the removal of these undesired stains from hard surfaces. These acid sequestrants also sequester the resulting free metal ions which are released from the soap scum stains. Also where the acid sequestrants are selected to feature disinfecting properties, they concomitantly provide requisite anti-microbial activity necessary to disinfect the cleaned surface.

Preferably Constituent A comprises citric acid with at least one further acid described above, as it has been observed by the inventor that citric acid provides good disinfecting action in the compositions of the invention but in certain formulations may be insufficiently acidic in order to effectively remove certain stains. The addition of at least one further acid provides additional cleaning effect which was not observed in certain formulations with citric acid alone.

20

5

10

15

25

30

10

15

20

25

30

The acid sequestrants of Constituent A are desirably present in the formulations in ranges of from 0.1 to 10% by weight, preferably from 1.0 to 8.0% by weight and more preferably from 4.0 to 6.0% by weight, based on the total weight of a composition. In preferred embodiments however, citric acid comprises at least 0.1% by weight of the total weight of the acids of Constituent A, more preferably citric acid comprises at least 25% by weight, and most preferably citric acid comprises at least 50% by weight of the acids of Constituent A.

Constituent B The constituents of Constituent B, are a mixture of hydrophobic and hydrophilic solvents, which act to aid assisting in the dissolution of the fatty acids from a surface being cleaned. Certain fatty acids present in the soap scum residues are solubilized and/or rendered at least partially miscible in water due to the presence of Constituent B, which feature facilitates the removal of the stain from the surface. The solvents of Constituent B are also useful in penetrating the stain and act as a carrier for the further constituents of the invention, especially the constituents comprising Constituent A thus bringing them through the layer of the stain to the surface upon which the stain is present, and thereby aiding in the effective dissolution of said stain and its removal.

The hydrophobic solvent constituent of Constituent B, should domonstrate solubilization of the aliphatic portions of the fatty acids comprised within the soap scum stains. Exemplary useful hydrophobic solvents include: mineral spirits, tripropylene glycol n-butyl ether, propylene glycol phenyl ether, dipropylene glycol n-propyl ether, ethylene glycol phenyl ether, and particularly propylene glycol n-butyl ether, dipropylene glycol n-butyl ether. The hydrophobic solvent may be one such solvent, or a mixture of two or more hydrophobic solvents.

The hydrophobic solvent desirably exhibits a solubility in water of between 0.0 ml/100 ml and 20.0 ml/100 ml and further should comprise between 50 to 99% of the total weight of Constituent B within the compositions according to the invention. More preferably, the hydrophobic solvent should comprise between 60-95%, most preferably between 80-90% of the total weight of Constituent B of the compositions according to the invention.

The hydrophilic solvent of Constituent B may be one which is useful in solubilizing or improving the miscibility of the hydrophobic solvent in water. Where the hydrophobic solvent of Constituent B dissolves the soap fatty acids, the hydrophilic solvent acts to solubilize the hydrophobic solvent in water, and thereby provides effective solubility with the aqueous phase and facilitating the removal of the hydrophobic solvent and dissolved soap fatty acids from the surface being cleaned.

10

15

20

25

30

By way of non-limiting example, useful hydrophilic solvents include certain alcohols, glycols, acetates, ether acetates and glycol ethers including propylene glycol methyl ether, dipropylene glycol methyl ether, tripropylene glycol methyl ether, propylene glycol n-propyl ether, ethylene glycol n-butyl ether, diethylene glycol n-butyl ether, diethylene glycol methyl ether, propylene glycol, ethylene glycol, isopropanol, ethanol, methanol, diethylene glycol monoethyl ether acetate and particularly useful is ethylene glycol monobutyl ether acetate. A single hydrophilic solvent or two or more hydrophilic solvents may be used.

The hydrophilic solvents comprising Constituent B of this invention should exhibit good solubility in water, i.e., approaching or demonstrating "infinite solubility" and should preferably be comprised within the compositions that are in a weight percentage of between 1-50%, preferably 1-40%, still more preferably between 5-30%, and most preferably between 10-20% based on the total weight of Constituent B within the compositions according to the invention.

With regard to the effective amounts of Constituent B, Constituent B is desirably present between about 0.1-10% by weight based on the total cleaning composition weight, preferably between about 2.0-8.0% by weight, and more preferably 3.0-6.0% by weight.

Constituent C The constituents comprising Constituent C provide for the reduction of the interfacial tension between the soil and the compositions of the invention which facilitates the wetting of the stain as well as providing a hydrotropic functionality. Such a hydrotropic functionality aids in the solubilization of greater amounts of fatty acids in a stain, and in its removal from a surface.

Exemplary materials useful as Constituent C include one or more compounds such as: alkyl phenoxy benzene disulfonates, linear alkyl benzene sulfonates and alkylnaphtalene sulfonates and salts thereof. Such compositions are known to the art, and available as anionic surfactants. These also include but are not limited to: alkali metal salts, ammonium salts, amine salts, aminoalcohol salts or the magnesium salts of one or more of the following compounds: alkyl sulfates, alkyl ether sulfates, alkylamidoether sulfates, alkylaryl polyether sulfates, monoglyceride sulfates, alkylsulfonates, alkylamide sulfonates, alkylarylsulfonates, olefinsulfonates, paraffin sulfonates, alkyl sulfosuccinates, alkyl ether sulfosuccinates, alkyl sulfosuccinates, alkyl sulfosuccinates, alkyl sulfosuccinamate, alkyl sulfoacetates, alkyl phosphates, alkyl ether phosphates, acyl sarcosinates, acyl isethionates, and N-acyl taurates. Generally, the alkyl or acyl radical in these various compounds comprise a carbon chain containing 12 to 20 carbon atoms.

Exemplary alkyl phenoxy benzene disulfonates include metal salts and organic salts of alkylphenoxy benzene disulfonates, such as sodium dodecyl diphenyloxide disulfonate, sodium

SDOCID: <WO__9715649A1_[_>

hexyl diphenyloxide disulfonate, sodium n-decyl diphenyloxide disulfonate, as well as sodium n-hexadecyl diphenyloxide disulfonate. Other metal counterions or organic counterions may be substituted in the place of the sodium noted in the recited alkyl phenoxy benzene disulfonates noted above, as well as mixtures of two or more alkyl phenoxy benzene disulfonates.

5

Exemplary linear alkyl benzene sulfonates include metal salts and organic salts of linear alkyl benzene sulfonate, sodium nonylbenzene sulfonate, isopropylamine salts of linear alkyl benzene sulfonic acid, triethanolamine dodecylbenzene sulfonate, diethanolamine dodecylbenzene sulfonate, potassium dodecylbenzene sulfonate, sodium tridecylbenzene sulfonate, as well as mixtures of sodium dodecylbenzenesulfonate with sodium toluene sulfonate, sodium cumene sulfonate and/or with sodium xylene sulfonate. Other metal counterions or organic counterions may be substituted in the place of the counterions noted in the recited linear alkyl benzene sulfonates noted above, as well as mixtures of two or more linear alkyl benzene sulfonates.

15

10

Exemplary alkylnaphthalene sulfonates include metal salts and organic salts of alkylnaphthalene sulfonates such as sodium diisopropylnaphthalene sulfonate, butylnaphthalene sodium sulfonate, nonylnaphthalene sodium sulfonate, sodium dibutylnaphthalene sulfonate, sodium dimethylnaphthalene sulfonate and sodium dimethylnaphthalene sulfonate. Other metal counterions or organic counterions may be substituted in the place of the counterions noted in the recited alkylnaphthalene sulfonates noted above, as well as mixtures of two or more alkylnaphthalene sulfonates.

20

Further useful as constituents used in Constituent C include sodium xylene sulfonate, sodium cumene sulfonate, and naphthalene sulfonates.

25

With regard to the effective amounts of Constituent C, Constituent C is desirably present between about 1.0-8.0% by weight based on the total cleaning composition weight, preferably between about 2.0-6.0% by weight, and more preferably 2.0-4.0% by weight.

As is noted above, the compositions according to the invention are aqueous in nature.

Water is added to Constituents A, B and C in order to provide 100% by weight of the composition.

The water may be tap water, but is preferably distilled and is most preferably deionized water

30

The compositions according to the invention may comprise one or more of the following optional components, the total weight of such optional constituents not exceeding about 20% by weight of the total weight of the composition, more preferably not exceeding about 10% by weight and is most preferably less than 10% by weight based on the total weight of the composition according to the invention.

Non-ionic surfactants of the conventionally known and used variety in this class of cleaning agents may be added in effective amounts. Exemplary nonionic surfactants include known nonionic surfactants which generally consist of a hydrophobic moiety, such as C8-C20 primary or secondary, branched or straight chain monoalcohols, C8-C18 mono- or dialkyphenols, C6-C20 fatty acid amides, and a hydrophilic moiety which consists of alkylene oxide units. These nonionic surfactants are for instance alkoxylation products of the above hydrophobic moieties, containing from 2 to 30 moles of alkylene oxide. As alkylene oxides ethylene-, propylene- and butylene oxides and mixtures thereof are used. Typical examples of such nonionic surfactants are C9-C11 primary, straight-chain alcohols condensed with 5-9 moles of ethylene oxide, C12-C15 primary straight-chain alcohols condensed with from 6-12 moles of ethylene oxide, or with 7-9 moles of a mixture of ethylene oxide and propylene oxide, C11-C15 secondary alcohols condensed with from 3-15 moles of ethylene oxide, and C10-C18 fatty acid diethanolamides, and tertiary amine oxides such as higher alkyl di(lower alkyl or lower substituted alkyl)amine oxides. Such nonionic surfactants are known to the art, and are more particularly described in *McCutcheon's Detergents and Emulsifiers*, noted above.

Foaming agents, and foam stabilizing agents may be provided, including alkyl sulfates, alkyl sulfonates, amine oxides, as well as alkanolamides. Such may be especially desirable where the composition is packaged in a pressurized device, i.e., an aerosol canister or in a hand-held pumpable container (such as a hand held trigger spraying vessel)

Further optional, but desirable constituent include fragrances, natural or synthetically produced. A fragrance solubilizer which assists in the dispersion, solution or mixing of the fragrance constituent in an aqueous base may also be used. This fragrance solubilizer component is added in minor amounts. One or more known art coloring agents may also be used.

The use of one or more pH adjusting agents, including minor amounts of mineral acids, basic compositions, and organic acids may be used. An exemplary composition includes citric acid, such as is available in an anhydrous salt form of an alkali metal citric acid. The addition of an effective amount such a pH adjusting agent is useful in establishing a targeted pH range for compositions according to the invention.

The addition of an effective amount of a pH buffering composition so to maintain the pH of the inventive compositions may also be added. While the composition of the invention generally does not require a pH buffering composition, the use of such a pH buffering composition may provide the benefit of hard water ion sequestration. Examples of such useful pH buffer compounds and/or pH buffering systems or compositions the alkali metal phosphates, polyphospates,

15

5

10

20

25

30

10

15

20

25

30

pyrophosphates, triphosphates, tetraphosphates, silicates, metasilicates, polysilicates, carbonates, hydroxides, and mixtures of the same. Certain salts, such as the alkaline earth phosphates, carbonates, hydroxides, can also function as buffers. It may also be suitable to use buffers such materials as aluminosilicates (zeolites), borates, aluminates and certain organic materials such as gluconates, succinates, maleates, and their alkali metal salts. Such buffers keep the pH ranges of the compositions of the present invention within acceptable limits. Others, not particularly elucidated here may also be used. Preferably, citric acid, such as is available in an anhydrous salt form of an alkali metal citric acid is added as it is readily commercially available, and effective. The addition of such a buffering agent is desirable in certain cases wherein long term, i.e., prolonged storage, is to be anticipated for a composition, as well as insuring the safe handling of said aqueous composition.

Preservatives may also be added in minor amounts in the formulations according to the invention which preservative compositions do not include a disinfectant component. Known art compositions may be used. Examples of such preservatives compounds include those which are presently commercially available under the tradenames Kathon® CG/ICP (Rohm & Haas, Philadelphia PA), Suttocide® A (Sutton Labs, Chatham NJ) as well as Midtect® TFP (Tri-K Co., Emerson, NJ).

Thickening and/or gelling agents may be added to the hard surface cleaning compositions according to the present invention in order to modify the viscous and/or thixatropic properties thereof. For example, in certain applications it is contemplated that it may be desirable to provide a more viscous, viz., higher viscosities than that of water, whether for esthetic or functional reasons. For example, the addition of a suitable amount of a gelling agent may be desired not only for aesthetic reasons but also to limit the spreading of the composition as it is applied to a surface. This function is desirable in providing a means to apply the composition over a limited area, such as directly onto a stain, without applying an excess onto the surrounding area of a surface. This function also aids in the surface retention time on non-horizontal surface, ensuring that the cleaning composition is in contact with a stained surface without flowing off too rapidly. Similarly, thixatropic properties may also be desired under certain circumstances. In order to provide such functional features to the composition, known thickening and gelling agents including, but not limited to, cellulose compounds, xanthan gums, polymers and/or clays may be added.

The benefits of the compositions described in this specification include particularly: disinfection, good removal of hard water stains, good removal of soap scum stains, relatively low toxicity, as well as ease in handling of the composition due to its readily pourable or pumpable

characteristic. Further, when one or more of the optional constituents is added, i.e., fragrance, foaming agents, coloring agents, the esthetic and consumer appeal of the product is favorably improved.

Notwithstanding that the pH of preferred embodiments of compositions according to the present invention are less than 3.0, it has been surprisingly been found that these formulations do not appear to be particularly irritating to the eyes, skin or mucocus tissues of a consumer. Such is a surprising effect as the presence of the acids in the formulation which are beneficial in the removal of hard water stains, as well as the relatively low pH of the formulation would be expected to be a severe irritant to the eyes, skin or mucocus tissues of a consumer.

The compositions according to the invention are useful in the cleaning and/or disinfecting of hard surfaces, having deposited soil thereon. In such a process, cleaning and disinfecting of such surfaces comprises the step of applying a stain releasing and disinfecting effective amount of a composition as taught herein to such a stained surface. Afterwards, the compositions are optionally but desirably wiped, scrubbed or otherwise physically contacted with the hard surface, and further optionally, may be subsequently rinsed from such a cleaned and disinfected hard surface.

The hard surface cleaner composition provided according to the invention can be desirably provided as a ready to use and intended to be used where a consumer applies an effective amount of the cleaning composition to the surface to be cleaned, and a few moments thereafter, wipes off the treated area with a rag, towel, or sponge, usually a disposable paper towel or sponge. In certain applications where undesirable stain deposits are heavy, the cleaning composition may be left on the stained area until it has effectively loosened the stain deposits after which it may then be wiped off. Multiple applications may also be used.

In a yet a further embodiment, the compositions according to the invention may be formulated so that it may be useful in conjunction with a "aerosol" type product wherein it is discharged from a pressurized aerosol container. Known art propellants such as liquid propellants as well as propellants of the non-liquid form, i.e., pressurized gases, including carbon dioxide, air, nitrogen, hydrocarbons as well as others may be used.

Whereas the present invention is intended to be used in the types of liquid forms described, nothing in this specification shall be understood as to limit the use of the composition according to the invention with a further amount of water to form a cleaning solution therefrom. In such a proposed diluted cleaning solution, the greater the proportion of water added to form said cleaning dilution, the greater may be the reduction of the rate and/or efficacy of the thus formed cleaning solution in the cleaning of a hard surface, as well as a reduction in disinfectant efficacy.

10

5

15

20

25

30

Accordingly, longer residence times upon the stain to effect their loosening and/or the usage of greater amounts may be necessitated. Conversely, nothing in the specification shall be also understood to limit the forming of a "super-concentrated" cleaning composition based upon the composition described above.

5

While the cleaning compositions are most beneficial for use in their form, i.e., their form as described above, they may also be diluted to form a cleaning composition therefrom. Such cleaning compositions may be easily prepared by diluting measured amounts of the compositions in further amounts of water by the consumer or other end user in certain weight ratios of composition:water, and optionally, agitating the same to ensure even distribution of the composition in the water. The aqueous compositions according to the invention may be used without further dilution, but may also be used with a further aqueous dilution, i.e., in composition:water concentrations of 1:0, to extremely dilute dilutions such as 1:10,000. but preferably would be used in a weight or volume ratio proportion of from 1:10 - 1:100. Generally better results and faster removal is to be expected at lower relative dilutions of the composition and the water.

15

10

The following examples below illustrate exemplary formulations and preferred formulations of the inventive composition. Throughout this specification and in the accompanying claims, weight percents of any constituent are to be understood as the weight percent of the active portion of the referenced constituent, unless otherwise indicated.

Example Formulations:

20

Preparation of Example Formulations:

Exemplary formulations illustrating certain preferred embodiments of the inventive compositions and described in more detail in Table 1 below were formulated generally in accordance with the following protocol.

25

Into a suitably sized vessel, a measured amount of water was provided after which the constituents were added in the following sequence: thickening agent, surfactants, solvents, acid and lastly the coloring and fragrance constituents. Mixing, which generally lasted from 5 minutes to 120 minutes was maintained until the particular formulation appeared to be homogeneous. The exemplary compositions were readily pourable, and retained well mixed characteristics (i.e., stable mixtures) upon standing for extend periods, even in excess of 120 days. It is to be noted that the constituents might be added in any order, but it is preferred that water be the initial constituent provided to a mixing vessel or apparatus as it is the major constituent and addition of the further constituents thereto is convenient.

30

The exact compositions of the example formulations are listed on Table 1, below.

	pic i dirilulations	2								
	Ex.1	Ex.2	EX.3	Ex.4	Ex.5	Ex.6	Ev 7	α Δ Δ	E. 0	27.0
Constituent							- Van	LY:0	EX.3	EX.10
Poly-Tergent® SL-62	6.	100	100	5	5	5	30,			-
Rhodapon® I CP	417	1		3 .	3	3	3	- 8	1.00	1.00
Nipole 44 CM	r	-	3	4.1	4.17	4.17	4.17	3.00	4.17	4.17
	0.20	0.20	0.20	0.20	0.20	0.20	0.20	!	0,20	020
Stepanate® SCS	i	6.67	ł	:	6.67	:	!	Ŀ		0.50
Poly-Tergent @2A1	:	1	3.00	:	ŀ	300	3.00	200	,	:
Petro LBA	3.00	;	;	300			3	3	3.6	•
Dowanol® DPnB	4 00	5	90 7				•	:	'	3.00
	3 3	3,5	3.5	4.00	4.00	4.00	4.00	;	4.00	4.00
COWALION TITLE	2.00	2.00	•	:	:	2.00	;	060	2 00	200
Dowanol® PnB	:	:	1	:	:	:		8		3
Butyl Cellosolve®	!	:	2 00	200	500			20.50	•	•
Acetate		•	3	9	3.00	1	7.00		:	1
citric acid	2.50	2.50	250	250	2 50	2 50	67.0	3		
lactic acid				3	300	6.30	7.30	7.30	2.50	2.50
المناور والمريبان			:		7.04	7.84	2.84	1	;	1
grycolic acid	:	3.57	:	3.57	:	ł	:	3.57	3.57	3.57
fragrance	;	:	:	:				0.20		
Keizan ® T	:		:					27.5	: 1	!
						į	:	1	;	1
tanaric acid	2.50	-	2.50	:	;	:		:	:	:
deionized water	80.63	75.89	80.63	79.56	76.62	80.29	80.29	81.93	79.56	79.56

SUBSTITUTE SHEET (RULE 26)

TABLE 1: Example Form		ulations (cont'd)	t'd)								
Constituent	Ex.11	Ex.12	Ex.13	Ex.14	Ex.15	Ex.16	Ex.17.	Ex.18	Ex.19	Ex.20	Ex.21
								٠			
Poly-Tergent® SL-62	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Rhodapon® LCP	4.17	4.17	4.17	3.00	3.00	4.17	4.17	4.17	3.00	3.00	4.17
Ninol® 11-CM	0.20	0.20	0.20		:	0.20	0.20	0.20	•	1	1
Stepanate® SCS	6.67	6.67	••	-	:	1	:	6.67	;	-	,
Poly-Tergent 2A1	;	:		3.00	3.00	3.00	:	:	3.00	3.00	3.00
Petro LBA		ı	3.00	-	-		3.00	;	1	:	;
Dowanol® DPnB	4.00	4.00	4.00	3.90			•		4.50	4.00	:
Dowanol® PnP	2.00		:	06.0	06.0	-	•		1	1.00	:
Dowanol® PnB		;	:	:	3.90	2.50	2.50	2.50	-	1	4.00
Butyl Cellosolve®	:	2.00	2.00	1	:	2.50	2.50	2.50	0.50	1	9.
Acetate											
citric acid	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
lactic acid	!	1	:	:	-	1	2.84	2.84	:	1	1
alveolic acid	:	3.57	1	3.57	3.57	3.57	1	;	i	3.57	:
fractance	:	;	:	0.20	0.20	0.20	0.20	0.20	1	:	:
Kelzan ® T	;	:	;	:	09.0	:	:		1.00	0.75	0.60
tortaric acid	2.50		2.50	;		-	:	:	2.50		2.50
doipping water	76 96	75 89	80 63	81.93	81.33	80.36	81.09	77.42	82.00	81.18	81.23
ותבוסו וולכם אמוכו	2										

SUBSTITUTE SHEET (RULE 26)

Several comparative formulations were produced as well. These formulations were produced in the same manner as the example formulations of Table I, and they are described in more detail on Table 2, following:

Constituent:	Comp.1	Comp.2	Comp.3
Poly-Tergent® SL-62	1.00		
	1.00	1.00	1.00
Rhodapon® LCP (30%)	3.00	3.00	3.00
Ninol® 11-CM			
Stepanate® SCS			
Polytergent 2A1 (45%)	3.00	3.00	
Petro LBA			
Dowanol® PnB	3.90		3.90
Dowanol® PnP	0.90		0.90
Butyl Cellosolve® Acetate	-		0.90
fragrance	0.20	0.20	0.20
citric acid	-	2.50	2.50
actic acid (88%)			2.50
lycolic Acid (70%)		3.57	2.57
artaric Aciu		3.37	3.57
	98.00		84.93
artaric Aciu deionized water	88.00	86.73	

The individual constituents which were used to produce the formulations according to Tables 1 and 2 are described in more detail in Table 3, below.

Table 3 : Constituen Constituent	
	described to be a nonionic alkoxylated linear alcohol
Polytergent® SL-62	surfactant, approx. 8 moles ethoxy per molecule (Olin Chem. Co., Stamford CT)
Rhodapon® LCP	sodium lauryl sulfate (30% actives) (Rhône-Poulenc, Princeton NJ)
Ninol® 11-CM	cocoamide DEA as a foam stabilizer constituent (Stepan Chem. Co., Chicago IL)
Stepanate® SCS	sodium cumene sulfonate (45% actives) as an anionic, hydrotrope
Poly-Tergent® 2A1	sodium dodecyl diphenyloxide disulfonate (45% actives) as an anionic surfactant/hydrotrope (Olin Chem. Co., Stamford CT)
Petro LBA	alkylnaphthalene sulfonate as anionic surfactant/hydrotrope (Witco Corp., New York, NY)
Dowanol® DPnB	dipropylene glycol n-propyl ether as hydrophobic solvent, (Dow Chemical Co., Midland MI)
Dowanol® PnP	propylene glycol n-propyl ether as hydrophilic solvent (Dow Chemical Co., Midland MI)
Dowanol® PnB	propylene glycol n-butyl ether as hydrophobic solvent (Dow Chemical Co., Midland MI)
Butyl Cellosolve	ethylene glycol monobutyl ether acetate as hydrophilic
Acetate	solvent (Union Carbide Corp., Danbury CT)
citric acid	citric acid, anhydrous USP grade as acid sequestrant
lactic acid	lactic acid, USP grade, (88% actives) heat stable as acid sequestrant
glycolic acid	hydroxyacetic acid as acid sequestrant (70% actives) (DuPont Specialty Chemicals, Wilmington DE)
fragrance	commercially available fragrance (International Flavors and Fragrances Co., Teterboro NJ)
Kelzan® T	xanthan gum (Kelco Co., San Diego, CA)
tartaric acid	USP grade, as acid sequestrant
deionized water	deionized water

Evaluation of Cleaning Efficacy:

Various formulations amongst those listed above were evaluated for their cleaning efficacy on tile surfaces utilizing the following protocols.

Visual Evaluation of Cleaning Efficacy:

Various formulations amongst those listed above were evaluated for their cleaning efficacy by visual inspection by a group of twenty panelists who were asked to observe and rate soil removal on tile surfaces in accordance with the following general protocol.

"Standard soiled tiles" were prepared for use in the tests. First, a test soil composition was prepared which was comprised of the following constituents: 3.90% by weight of a stearic acid based bar soap, 0.35% by weight of a moderate-cleaning shampoo containing alkyl

5

10

15

20

25

30

ethoxysulfates and not containing conditioning or treatment additives, 0.06% by weight of ball or black bandy clay, 0.15% by weight of artificial sebum; and 95.54% by weight of deionized water with 2:1 calcium:magnesium, added to give 20,000 ppm total hardness as CaCO₃. The test soil composition was prepared by first shaving the bar soap into a suitable container, followed by adding the remaining constituents in the following order: shampoo; clay; sebum and then water. The test soil composition was stirred with three-blade propeller mixer and heated to 45-50°C and mix until a smooth, lump-free suspension was achieved. Thereafter the suspension was filtered through a Buchner funnel fitted with Whatman #1 filter paper or equivalent, and then the filtrate was resuspended in clean, deionized water, using the same amount of water used to make the test soil composition, and in the same manner, filtered again. The filtrate cake was then removed from the filter paper, and the cake dried overnight at 45°C. After drying, the filtrate cake was pulverized and stored in a dry closed container.

Next, square, 4.5 inch standard black ceramic tiles as the testing substrate were prepared in accordance with the following steps. The ceramic tiles were first cleaned with a commercial light duty liquid dishwashing product; contact with the porous back of the tile was avoided where possible. Next, the tiles were completely rinsed with clean water, and then dried overnight in a 45°C oven with the face of each tile facing the oven shelf; tiles were placed on paper towels to avoid scratching.

Following the preparation of the test soil composition and the testing substrate, test soiled surface samples were prepared. The test soil composition was reconstituted by combining 4.5% by weight of the test soil composition, 9.00% by weight of hard water as described above, 0.77% by weight of hydrochloric acid (0.1N) and 85.73 of acetone in a in a suitable beaker. Next, these constituents were homogenized and formed into a suspension by mixing until color turned from white to gray, which occurred in about 20-30 minutes. during the mixing process, the beaker was covered as much as possible to avoid excessive solvent, viz., acetone, loss. Subsequently, an appropriate amount of the thus reconstituted test soil composition was loaded into an artist's airbrush set to operate at an air pressure of 40 psi.

The reconstituted test soil composition was applied to the surface of the cleaned and dried tiles prepared as noted above which tiles were placed into rows and columns in preparation for the soil application by visually spraying a uniform amount of soil onto the tiles. Approximately 0.10 - 0.26 grams of soil was applied per tile. The tiles were then allowed to air dry for a period of 30 minutes, after which each tile was placed on a laboratory hotplate heated to approximately 320°C until the soil began to visually melt and before the soil began to coalesce into large droplets. Each

10

15

20

of the heated tiles was then removed and allowed to cool for approximately 30 minutes. Each of the treated tile surfaces felt sticky to the touch.

Next, a cleaning simulation was performed by the use of a Gardner Washability Apparatus at a standard pressure and sponge stroke settings, to determine or quantify the cleaning efficiency of the formulations. First, and for each new formulation, the sponge was well rinsed with water, then squeezed until all but 17.5 ±0.5g of water remained. Next, approximately twelve pumps (approx. 1 gram) of a tested product was sprayed onto the soiled area of one tile, after which the product was allowed to stand 30 seconds on the soil surface of the tile, after which the Garner Apparatus was energized to permit the sponge to pass the tile twelve times on one side of the tile, equivalent to six scrub cyclings of the Apparatus. The tested tile was removed, rinsed with tap water and allowed to dry.

This preparation of standard soiled tiles and cleaning protocol was performed not only for each of the Example formulations, but also for a like number of Comparative formulations which was a commercially available hard surface cleaner composition sold under the trade name "Comet® Bathroom Cleaner" which was used directly from the trigger spray container as a foam in accordance with label directions

Twenty individuals acted as testing panelists to rate the level of cleaning on a percentage basis (0%to 100% clean) by comparing the cleaned areas of the Example formulations and those areas cleaned by the Comparative formulations as well as the soiled/uncleaned area of the same time. Each of the panelists rated all of the tiles, and in no case were the panelists allowed to discriminate greater than ten percent (i.e.: 10, 20, 30...100%). The reports determined by the panelists were averaged for each of the evaluated tiles, and the mean reported values for each tile are summarized on Table 4 - Visual Cleaning Evaluation, below.

Example Formulation:	al Cleaning Evaluation Formulation Evaluation Result:	Comparative Formulation Evaluation Result:
Ex.1	44	36
Ex.2	49	45
Ex.4	46	41
Ex.5	53	29
Ex.6	48	34
Ex.7	73	51
Ex.9	55	39
Ex.11	53	47
Ex.12	46	39

As the results of Table 4 indicate, as well as is shown on Figure 1, the various

formulations generally were determined to be at least comparable in their cleaning efficacy when compared to the known commercial formulation, and in certain cases was found to provide a

significant improvement in the cleaning efficacy over that of the prior art commercial cleaning formulation.

Cleaning Evaluation

Cleaning efficacy was measured for the formulation according to Example 8 described in more detail on Table 1 as well as for the three Comparative Examples described on Table 2, above. Evaluation was performed utilizing a Gardner Washability Apparatus, using a standard soil tiles prepared in accordance with the protocol described above at a standard pressure and sponge stroke settings in order to determine or quantify the cleaning efficiency of the formulations. These formulations were used "as is" and were not further diluted to form a cleaning composition therefrom. In determining the cleaning efficiency of each of the formulations, reflectance values were determined using a Gardner Micro-Tri-Gloss Meter which tested each tile at least five times the mean reflectance value being reported below on Table 5. Testing was performed for each of the following: a clean unsoiled tile, a soiled tile, and a soiled tile following Gardner Washability Apparatus scrubbing. Such reflectance values were then employed to calculate % cleaning efficiency according to the following formula:

% Cleaning Efficiency =
$$\underline{\text{Lt - Ls}} \times 100\%$$

wherein:

Lt = % reflectance average after scrubbing solid tile;

Ls = % reflectance average before cleaning soiled tile;

Lo = % reflectance average original tile before soiling.

Cleaning efficiency results are shown in Table 5, following.

Table 5 - Cleaning Efficacy	
Composition:	% Cleaning Efficiency:
Example 8	63.1
Comp.1	2.1
Comp.2	29.8
Comp.3	19.1

As shown, the measurement of the cleaning effectiveness of the test samples demonstrated the superior ability of the cleaning composition of the invention to remove the test soil from the test substrate. Reviewing the formulations reported on Table 5, Comp.1 fails to include the acid sequestrants according to Constituent A, Comp.2 fails to include according to Constituent B, and Comp.3 fails to include Constituent C according to the present invention. As may be seen from the results indicated on Table 5, the compositions according to the invention which include Constituents A, B and C as defined by the present inventors provide a synergistic

25

5

10

15

20

30

10

15

20

25

30

cleaning effect which is not otherwise provided. This effect may be more clearly seen from Figure 2 which shows that surprisingly improved cleaning efficacy is provided by the inventive compositions.

Evaluation of Ocular Irritation:

The ocular irritation characteristics of formulations according to the invention were evaluated using the known Draize Eye test protocol. Evaluation was performed on a formulation according to Example 8 of Table 1 above; the pH of this formulation was determined to be 2.0.

As known to those skilled in the art, the Draize Eye Test measures eye irritation for the grading of severity of ocular lesions. During the performance of the Draize test, the Draize test score on day 1 of the test was 11.33, and it was further observed that all signs of conjunctival irritation of all 6 subjects cleared by day 7. The results of the Draize test indicated that an EPA classification Category III was appropriate, where corneal involvement or irritation cleared in seven (7) days or less. Within the guidelines of the USA Environmental Protection Agency (EPA), 40 C.F.R. Ch.1, §162.10, (1986), based on the Draize Eye Test results, the formulation tested was determined to have a EPA classification Category III, where corneal involvement or irritation cleared in seven (7) days or less. That such results are achieved with a product showing good cleaning efficacy, at a strongly acidic pH is especially surprising.

The preceding evaluations were repeated again, but using the formulation according to Example 13, described on Table 1. The pH of this formulation was evaluated prior to each test and determined to be 2.0. During the performance of the Draize test, the Draize test score on day 1 of the test was 16.5, and it was observed that corneal opacity was exhibited by only 3 of 6 subjects, which nonetheless cleared by the third day. Iritsis was observed in 4 of the 6 subjects, which cleared in these subjects by the second day. All signs of conjunctival irritation of all 6 subjects cleared by day 7. The results of the Draize test indicated that an EPA classification Category III was appropriate, where comeal involvement or irritation cleared in seven (7) days or less. That these results are achieved with a product showing good cleaning efficacy, and having an acidic pH of 2.0 is again, particularly surprising.

Evaluation of Dermal Irritation:

The effect of the formulation according to Example 8 of Table 1 was also evaluated for skin irritation; prior to the test the pH of the formulation was determined to be 2.0. The formulation of Example 8 of Table 1 was used "as is", that is to say without further dilution in water.

Evaluation of skin irritation was performed in accordance with the following protocol. As test animals, one group of young adults 6 New Zealand White rabbits weighing 2.0-3.5 kg with no

differentiation as to their sex were collected. Prior to application of the testing, the back and sides of each animal are clipped free of hair. Two sites, one on each side of the spinal column, are selected and remain intact. Each study animal is fitted with an Elizabethan style restraining collar prior to dosing. Next, the test formulation was introduced under a 2.5 cm sq. gauze patch. The patches were applied to two intact sites/animal, and were secured with adhesive tape; the test sites were not occluded. The test formulation was kept in contact with the skin for 4 hours at which time the wrappings were removed and the sites were rinsed with 100 ml of tap water. The restraining collars were removed at this time.

In vivo evaluation of the rabbits was performed by observing for skin reactions, including ulceration & necrosis, at 4, 24 and 72 hours after application of the test article. Scoring is based on the following scale:

Erythema:

5

10

15

20

25

30 .

35

	No erythema	0
•	Very slight erythema (barely perceptible)	i
	Well-defined erythema	2
	Moderate to severe erythema	3
	Severe erythema (beet redness)	_
	to slight eschar formation (injuries in depth)	4
Edema:		·
	No edema	0
	Very slight edema (barely perceptible)	1
	Slight edema (edges of area	
	well-defined by definite raising)	2
	Moderate edema (raised approx. 1mm)	• 3
	Severe edema (raised more than 1 mm and	
	extending beyond the area of exposure)	4
	Any signs of corrosivity	>4
	<u>-</u>	

Mean Scores are determined by adding the scores of erythema/eschar on both sites and the scores for edema on both sites are added. Each of the resulting 4 sums is divided by 6 (number of animals) to obtain the 4 mean scores for each single time period. Determination of the Primary Irritation Index is obtained by adding the 4 mean scores for the 24 and 72 hour scores (a total of 8 values) and dividing the sum by 4 (2 sites x 2 time periods) to obtain the Primary Irritation Index. A Primary Irritant is defined as a substance which is not corrosive, but which results in an empirical score of 5 or more, in accordance with 16 Code of Federal Regulations §1500.3(c)(4). As a result of the test protocol, it was found that the formulation according to Example 8 of Table 1 caused no irritation as determined by observations in the tested subjects for 72 hours notwithstanding the acidic pH of the formulation.

Evaluation of Antimicrobial Efficacy:

Several of the exemplary formulations described in more detail on Table 1 above were evaluated in order to evaluate their antimicrobial efficacy against Staphylococcus aureus (gram positive type pathogenic bacteria) (ATCC 6538), Salmonella choleraesuis (gram negative type pathogenic bacteria) (ATCC 10708), and Pseudomonas aeruginosa (ATCC 15442). The testing was performed in accordance with the protocols outlined in "Use-Dilution Method", Protocols 955.14, 955.15 and 964.02 described in Chapter 6 of "Official Methods of Analysis", 16th Edition, of the Association of Official Analytical Chemists; "Germicidal and Detergent Sanitizing Action of Disinfectants", 960.09 described in Chapter 6 of "Official Methods of Analysis", 15th Edition, of the Association of Official Analytical Chemists; or American Society for Testing and Materials (ASTM) E 1054-91 the contents of which are herein incorporated by reference. This test is also commonly referred to as the "AOAC Use-Dilution Test Method".

As is appreciated by the skilled practitioner in the art, the results of the AOAC Use-Dilution Test Method indicates the number of test substrates wherein the tested organism remains viable after contact for 10 minutes with at test disinfecting composition / total number of tested substrates (cylinders) evaluated in accordance with the AOAC Use-Dilution Test. Thus, a result of "0/60" indicates that of 60 test substrates bearing the test organism and contacted for 10 minutes in a test disinfecting composition, 0 test substrates had viable (live) test organisms at the conclusion of the test. Such a result is excellent, illustrating the excellent disinfecting efficacy of the tested composition.

Results of the antimicrobial testing are indicated on Table 6, below. The reported results indicate the number of test cylinders with live test organisms/number of test cylinders tested for each example formulation and organism tested.

Table 6 - Antimicrobial	Staphylococcus aureus	Salmonella choleraesuis	Pseudomonas aeruginosa
Example Formulation			********************************
Ex. 15	0/60	0/60	0/60
Ex. 17	0/60		0/60
Ex. 17	0/60		0/60

[&]quot;--" indicates not tested

5

10

15

20

10

As may be seen from the results indicated above, the compositions according to the invention provide excellent cleaning benefits to hard surfaces, including hard surfaces with difficult to remove stains yet at the same time they are surprisingly mild to skin and the mucous tissues of the user which is uncharacteristic of cleaning compositions which include any significant proportion of an acidic constituent. These advantages are further supplemented by the excellent antimicrobial efficacy of these compositions against known bacteria commonly found in bathroom, kitchen and other environments and still further, the efficacy of these compositions against the polio virus as well. Such advantages clearly illustrate the superior characteristics of the compositions, the cleaning and antimicrobial benefits attending its use which is not before known to the art.

DOCID: <WO___9715649A1_I_>

PCT/US96/15463

Claims:

5

10

15

20

- A germicidal aqueous hard surface cleaning composition which comprises:
 - 0.1 10% by weight of an acid sequestrant constituent;
 - 0.1 10% by weight of a mixture of hydrophobic and hydrophilic solvents;
 - 1 8% by weight of a surfactant and/or hydrotrope constituent;
 - 0 20% by weight of one or more optional constituents;

the balance to 100% by weight, water

wherein the aqueous hard surface cleaning composition exhibits a pH of 7.0 or less.

- The aqueous hard surface cleaning composition according to claim 1 wherein the acid sequestrant constituent is selected from: citric acid, cresylic acid, dodecylbenzene sulfonic acid, phosphoric acid, salicylic acid, sorbic acid, sulfamic acid, acetic acid, benzoic acid, boric acid, capric acid, caproic acid, cyanuric acid, dihydroacetic acid, dimethylsulfamic acid, propionic acid, polyacrylic acid, 2-ethyl-hexanoic acid, formic acid, fumaric acid, l-glutamic acid, isopropyl sulfamic acid, naphthenic acid, oxalic acid, phosphorus acid, valeric acid, benzene sulfonic acid, xylene sulfonic acid, sulfonic acids, maleic acid, acetic acid, adipic acid, lactic acid, butyric acid, gluconic acid, malic acid, tartaric acid, and glycolic acid.
- 3. The aqueous hard surface cleaning composition according to claim 1 or 2 wherein the acid sequestrant constituent comprises at least 50% by weight of citric acid.
- 25 4. The aqueous hard surface cleaning composition according to claim 1 wherein the acid sequestrant constituent is present in an amount of from 4.0 6.0% by weight.
- 5. The aqueous hard surface cleaning composition according to claim 1 wherein the mixture of hydrophobic and hydrophilic solvents includes a hydrophobic solvent which is an organic solvent selected from: mineral spirits, tripropylene glycol n-butyl ether, propylene glycol phenyl ether, dipropylene glycol n-propyl ether, ethylene glycol phenyl ether, propylene glycol n-butyl ether, and dipropylene glycol n-butyl ether, and a hydrophilic solvent which is selected from: glycol methyl ether, dipropylene glycol methyl ether, tripropylene glycol methyl ether, propylene glycol n-propyl ether, ethylene glycol n-butyl ether, diethylene glycol n-butyl ether, diethylene glycol n-butyl ether, propylene glycol methyl ether, propylene glycol,

10

ethylene glycol, isopropanol, ethanol, methanol, diethylene glycol monoethyl ether, ethylene glycol mono-butyl ether acetate, and diethylene glycol monoethyl ether acetate.

- 6. The aqueous hard surface cleaning composition according to claim 1 wherein the a mixture of hydrophobic and hydrophilic solvents is present in an amount of from 3.0 6.0% by weight.
- 8. The aqueous hard surface cleaning composition according to any of claims 1 7 wherein the pH of the composition is from about 5.0 to about 1.0.
- 9. The aqueous hard surface cleaning composition according to any of claims 1 7 which comprises a gelling agent, and said composition is in a gelled form.

1/2

Figure 1

9715649A1 I

2/2

Figure 2

INTERNATIONAL SEARCH REPORT

regarded to 0 (second shoot)(July 1992)*

International application No. PCT/US96/15463

	SSIFICATION OF SUBJECT MATTER	• •	
	C11D 1/94, 3/20, 3/44 510/422, 427, 432, 434, 471, 477, 488	1.00	
According to	International Patent Classification (IPC) or to both	national classification and IPC	
B. FIEL	DS SEARCHED	1 1 - iC - si	
	ocumentation searched (classification system followed	by classification symbols,	
	510/422, 427, 432, 434, 471, 477, 488		
Documentati	ion searched other than minimum documentation to the	extent that such documents are included in the fields searched	
NONE			
Electronic d	ata base consulted during the international search (na	me of data base and, where practicable, search terms used)	
	ee Extra Sheet.		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages Relevant to claim No.	
X	US, 5,281,354 A (FABER) 25 Janu	ary 1994 (01/25/94), See 1-9	
^	Abstract; col. 3, lines 10-35; col. 4	l, lines 45-69; col. 6, lines	
	7-69.		
L N	TOTAL COLUMN A MINARES ET	AL) 29 October 1991 1-9	
X	US 5,061,393 A (LINARES ET	ALI 25 001000, 1001	
	(10/29/91), See Abstract; col. 3, line 30 to col. 5, line 65; col. 6, lines 60-65; col. 7, lines 1-25.		
X US 5,232,632 A (WOO ET AL) 3 August 1993 (08/03/93), 1-9			
See Abstract: col. 2, line 23 to col. 5, line 10; col. 5, line 50			
to col. 6, line 35; col. 7, lines 1-60; col. 8, line 30 to col. 9,			
	line 25.		
ļ	*		
		•	
	. *	·	
	, ·		
	her documents are listed in the continuation of Box C	. See patent family annex.	
		are hand amount multiplied after the international filing date or priority	
·A· do	social estepories of cited documents: current defining the general state of the art which is not considered	date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
to	be of particular relevance rhier document published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step	
	and a manufacture on principle claim(a) or which is	when the document is taken alone	
ci	ted to establish the publication date of another crazion or outer scial reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is	
	comment referring to an oral disclosure, use, exhibition or other	combined with one or more other such documents, such combination being obvious to a person skilled in the art	
·P de	comment published prior to the interactional filing date but later than a priority date claimed	*&* document member of the same patent family	
	actual completion of the international search	Date of mailing of the international search report	
03 JANU	ARY 1997	21 FEB 1997	
Name and	mailing address of the ISA/US	Authorized officer Chandra Roy	
Rox PCT	oner of Patents and Trademarks	PAUL LIEBERMAN	
Washingto	n, D.C. 20231 st. (703) 305-3230	Telephone No. (703) 308-2523	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/15463

US 5,290,472 A (MICHAEL) 1 March 1994 (03/01/94), See Abstract; col. 1, lines 30-40; col. 2, lines 53-69; col. 3, lines 20-35; col. 5, lines 30-45; col. 7, line 20 to col. 8, line 20.				
US 5,290,472 A (MICHAEL) 1 March 1994 (03/01/94), See Abstract; col. 1, lines 30-40; col. 2, lines 53-69; col. 3, lines 20-35; col. 5, lines 30-45; col. 7, line 20 to col. 8, line 20.	C (Continue	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Abstract; col. 1, lines 30-40; col. 2, lines 53-69; col. 3, lines 20-35; col. 5, lines 30-45; col. 7, line 20 to col. 8, line 20.	Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.
	X	Abstract; col. 1, lines 30-40; col. 2, lines 53-69; col. 3	, lines 20-	1-9
				·
	í.		4.0	·
			¥.	
	·		·	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/15463

В.	FIELDS	SEARCHED
----	--------	----------

Electronic data bases consulted (Name of data base and where practicable terms used):

search terms: citric, citrate, glycol ether, cellulose, hydroxprpyl cellulose, carboxymethyl cellulose, surfactant, hard surface, aqueous, water

THIS PAGE BLANK (USPTO)