

h(125)→aa→yyyy

Hgg Meeting
22nd October 2018

Tanvi Wamorkar¹, Toyoko Orimoto¹, Andrea Massironi²
[1] Northeastern University
[2] INFN Milano-Bicocca and CERN

Overview of the updates

- Reminder of the analysis setup <u>Link to the previous presentation</u>
- Distributions at the pre-selection level & MVA optimization
- Discussion of Di-Photon Pairing
- Background model
- Signal model
- Next steps

Analysis Setup

- Analysis framework based on FLASHgg
- Following low mass Hgg analysis as close as possible; same trigger strategy, same processed samples
- Primary dataset: DoubleEG (ReReco) [36/fb with golden json]
- Signal samples:
 - /SUSYGluGluToHToAA_AToGG_M-XX_TuneCUETP8M1_13TeV_pythia8/; XX ∈ [10,60] GeV

Background samples:

- /GJet_Pt-20to40_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8/
- /GJet_Pt-20toInf_DoubleEMEnriched_MGG-40to80_TuneCUETP8M1_13TeV_Pythia8/
- /GJet_Pt-40toInf_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8/
- /QCD_Pt-30to40_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8/
- /QCD_Pt-30toInf_DoubleEMEnriched_MGG-40to80_TuneCUETP8M1_13TeV_Pythia8/
- /QCD_Pt-40toInf_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8/
- DiPhotonJetsBox_M40_80-Sherpa
- DiPhotonJetsBox_MGG-80toInf_13TeV-Sherpa

Online Selection

- Online selection strategy based on low mass Hgg analysis
- [Data] Low mass Diphoton triggers (OR of the two paths)
 - HLT_Diphoton30PV_18PV_R9Id_AND_IsoCaloId_AND_HE_R9Id_DoublePixelVeto_Mass55
 - HLT_Diphoton30EB_18EB_R9Id_OR_IsoCaloId_AND_HE_R9Id_DoublePixelVeto_Mass55
- [Data & MC] Apply low mass pre-selection (tighter than HLT)
 - ullet Removed the following selections from the low mass pre-selection cfi: Scaled p_T selections, very loose MVA selection
 - Optimize MVA cuts on the 4γ's

Object Selection

- Require that at least one di-photon passes the pre-selection
- Photons selection
 - $p_T(y_{1,2}) > 30$, 20 GeV and $p_T(y_{3,4}) > 10$, 10 GeV
 - $|\eta(\gamma's)| < 2.5$ and not within the EB-EE gap
- [Signal MC]: γ 's are gen-matched (geometrical matching based on ΔR)
 - In case of events w/ > 4 γ 's @reco-level, the gen-matched γ 's are selected
- [Data and Background MC]: In case of events w/ > 4 γ 's, pick the 4 highest p_T γ 's

Preselection Level Plots

- Data/MC comparison with 36/fb of 2016 data
- After applying pre-selection
- Data/MC does not match right now
- Data/MC does not match right now
 Found a bug in my ntuple producer (wrong Generator level weights)
 Photon scales and smearing are not applied here
 Submitted new jobs with fix (will update with corrected plots)

 - Submitted new jobs with fix (will update with corrected plots)
- Blinding region in M(yyyy) = [115,135] GeV (removed from the plots)
- Reminder: background MC not used for signal extraction

- \bullet Removed the loose MVA selection (at > -0.9) from the preselection cfi file
- MVA distributions of the 4y's at the pre-selection level (y's are p_T ordered)
- The idea is to determine a set of selections on the MVA score of the 4y's s.t we keep a high signal efficiency while rejecting the maximum background, across all signal mass points

- Checked three different types of selections
 - Selection 1: Cut on the MVA score of the first 2 highest $p_T \gamma$'s (starting from cut at -0.9, increment the cut value)
 - Selection 2: Cut on MVA score of all 4 γ's
 - Selection 3: Keep a loose cut on the first 2 highest $p_T \gamma$'s and keep incrementing the cut value for the 3rd and 4th γ
- Check the background rejection, first for all backgrounds separately and then for the combined background

QCD

- Selection 1: Cut on the MVA score of the first 2 highest $p_T \gamma$'s (starting from cut at -0.9, increment the cut value)
- Selection 2: Cut on MVA score of all 4
 y's
- Selection 3: Keep a loose cut on the first 2 highest p_T γ 's and keep incrementing the cut value for the 3^{rd} and 4^{th} γ

STERN LAND STERN LAND

MVA selection

y + Jets

- Selection 1: Cut on the MVA score of the first 2 highest $p_T \gamma$'s (starting from cut at -0.9, increment the cut value)
- Selection 2: Cut on MVA score of all 4
 y's
- Selection 3: Keep a loose cut on the first 2 highest p_T γ 's and keep incrementing the cut value for the 3^{rd} and 4^{th} γ

STERN LIVE VERIFAL VIATUS OF STERN LIVE VIATUS O

MVA selection

Di-y + Jets

- Selection 1: Cut on the MVA score of the first 2 highest $p_T \gamma$'s (starting from cut at -0.9, increment the cut value)
- Selection 2: Cut on MVA score of all 4
 y's
- Selection 3: Keep a loose cut on the first 2 highest p_T γ 's and keep incrementing the cut value for the 3^{rd} and 4^{th} γ

All background combined

- Il background ombined

 Applying this selection keeps 93% of the signal efficiency while rejecting 92% Applying this selection keeps 93% of of the background
- Question: Are there scale factors available for a different value of the selection?

Signal Efficiency

 Signal efficiency after the different selection steps

Analysis Strategy

- Can explore 2 possibilities:
- Strategy 1:
 - Signal extraction by parametric fit in M(4y)
 - According to signal mass hypothesis, select mass window in M(2y) and fit the M(4y) distribution

- Strategy 2:
 - From the data sidebands of the M(4 γ) distribution, perform a signal extraction by parametric fit in M(2 γ)
 - In this case, it is important to ensure that the M(2y) signal distribution has a narrow peak and few events in the tail (otherwise, the pdf is not gaussian)
 - Important to optimize diphoton pairing in this case

• Once an event passes the preselection requirements, diphoton pairs are created from the 4 γ 's in the event (γ_1 , γ_2 , γ_3 , γ_4)

• Three unique combinations of diphoton pairs $(\gamma_{12}, \gamma_{34})$, $(\gamma_{13}, \gamma_{24})$, $(\gamma_{14}, \gamma_{23})$; out of these combinations at most one pairing correctly maps the true pseudo scalar "a" decay products

• Currently, pairing is done such that the diphoton mass difference is minimum

 $\Delta M = |m_{diphoton1} - m_{diphoton2}|$

```
## Analyzing event 79
0 1 Pair1 mass 60.7878757267 2 3 Pair2 mass 27.1668615445
0 2 Pair1 mass 44.2490779655 1 3 Pair2 mass 45.9583165151
0 3 Pair1 mass 61.281119926 1 2 Pair2 mass 59.5444302031
Chosen pair: Diphoton1 0 2 Diphoton2 1 3
```

• For e.g : Even though the 3rd pair is the correct one, the pair chosen in this event was the 2nd one (because of minimum ΔM)

- Want to minimize the number of events in the tail
- Alternative pairing method?
- Look at Gen-Level distribution
- Top: p_T distribution of "a"
- ullet Bottom: ΔR distribution of γ 's coming from the same "a"
- For m(a) = 60 GeV, the "a's" will be almost back-to-back, and its product γ 's will be well separated in ΔR ; as we go down in m(a), the "a" is more boosted and its product γ 's are geometrically closer to each other
- Define a variable:
 - Delta = $(p^a_T) X (\Delta R_{y^1,y^2})$

- Define a variable:
 - Delta = $(p^a_T) X (\Delta R_{y^1,y^2})$
- Try to minimize "Delta" to pick correct diphoton pair
- But, across the masses, this variable does not have the best discriminating power
- Trying different pairing methods:
 - Minimize $\frac{\Delta m}{\Delta R_{\gamma 12} + \Delta R_{\gamma 34}}$
 - Minimize $\frac{\Delta m}{p_T(a1) + p_T(a2)}$

Delta distribution for correct pair

Delta distribution for wrong pair

ullet So far, the ΔM minimization pairing has the best performance across the entire m(a) range

- More checks about the pairing
- Red: Pairing according to minimization of ΔM
- Green: Pairs made from gen-matched y's
- The gen-matched pairing does not show improvement
- How is Gen-Reco pairing done?
 - For every Gen-level γ , look for the Reco-level γ closest in ΔR
- Hypothesis: For the case, where all γ 's are resolved, the min. ΔR method could be picking up γ from the wrong "a"
- Possible fix: For pairing, for the gen γ , look for reco γ 's within a cone of $\Delta R = 0.15$
 - If more than one reco γ is found within the cone, then pair by minimization of Δp_T
 - Testing this hypothesis now

Moving forward..

- Its important to understand the di-photon pairing issue, to be able to scan M(2y)
- On the following slides, for the background and signal model fitting, I have not used any selection on the di-photon object (the inclusive M(4y) distribution i.e, without using any di-photon mass window)
- Thanks to Ed and Yacine for their help with flashggFinalFit machinery!

Background Model

- Without any categorization or any mass window cut on M(2y), inclusive M(4y) distribution
- Order 1 Bernstein polynomial chosen as the best fit PDF

Signal Model

- For the signal model, the first step is to determine how many gaussians should be used to fit the $M(4\gamma)$ distribution
- The fit did not fail here, but the low end tail of the distribution is not being modeled properly
 - Check the fit with a Gaussian core + DCB (for the tail)
- Working on adding the photon systematics and will update on this soon
- After this, can proceed to the next steps of signal model

Summary and Next steps

- Some issues to be resolved, before moving on to the statistical side of the analysis
 - Fix the generator level weights and produce Data/MC comparison plots with the fix
 - Di-Photon pairing:
 - Check the alternate Gen-Reco pairing
 - Other suggestions are welcome
- Working on these checks
- Next step would be to follow through with the entire flashggFinalFit machinery, and compare where we stand wrt the ATLAS result
 - ATLAS Paper link