

# Description

The **vs3401-s3** uses advanced trench technology to provide excellent  $R_{\rm DS(ON)}$ , low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications.

#### **General Features**

•  $V_{DS} = -30V, I_{D} = -4.2A$ 

 $R_{DS(ON)}$  < 90m $\Omega$  @  $V_{GS}$ =-2.5V

 $R_{DS(ON)}$  < 75m $\Omega$  @  $V_{GS}$ =-4.5V

 $R_{DS(ON)} < 55 m\Omega$  @  $V_{GS}$ =-10V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package

### Application

- PWM applications
- Load switch
- Power management



Schematic diagram



### **Package Marking And Ordering Information**

|   | Device Marking | Device    | Device Package | Reel Size | Tape width | Quantity   |
|---|----------------|-----------|----------------|-----------|------------|------------|
| ſ | VS3401-S3      | VS3401-S3 | SOT-23         | Ø180mm    | 8 mm       | 3000 units |

## Absolute Maximum Ratings (TA=25℃unless otherwise noted)

| Parameter                                        | Symbol           | Limit      | Unit         |
|--------------------------------------------------|------------------|------------|--------------|
| Drain-Source Voltage                             | V <sub>DS</sub>  | -30        | V            |
| Gate-Source Voltage                              | V <sub>G</sub> S | ±12        | V            |
| Drain Current-Continuous                         | I <sub>D</sub>   | -4.2       | Α            |
| Drain Current-Pulsed (Note 1)                    | I <sub>DM</sub>  | -30        | Α            |
| Maximum Power Dissipation                        | P <sub>D</sub>   | 1.2        | W            |
| Operating Junction and Storage Temperature Range | $T_{J}, T_{STG}$ | -55 To 150 | $^{\circ}$ C |

#### **Thermal Characteristic**

| Thermal Resistance,Junction-to-Ambient (Note 2) | R <sub>eJA</sub> | 104 | °C/W |
|-------------------------------------------------|------------------|-----|------|
|-------------------------------------------------|------------------|-----|------|

# Electrical Characteristics (TA=25℃ unless otherwise noted)

| Parameter                       | Symbol            | Condition                                  | Min | Тур | Max | Unit |
|---------------------------------|-------------------|--------------------------------------------|-----|-----|-----|------|
| Off Characteristics             |                   |                                            |     |     |     |      |
| Drain-Source Breakdown Voltage  | BV <sub>DSS</sub> | V <sub>GS</sub> =0V I <sub>D</sub> =-250μA | -30 |     | -   | V    |
| Zero Gate Voltage Drain Current | I <sub>DSS</sub>  | V <sub>DS</sub> =-24V,V <sub>GS</sub> =0V  | -   | -   | -1  | μA   |

Vseei Semiconductor Co., Ltd



| Gate-Body Leakage Current          | I <sub>GSS</sub>                   | V <sub>GS</sub> =±10V,V <sub>DS</sub> =0V                            | -    | -   | ±100 | nA |  |
|------------------------------------|------------------------------------|----------------------------------------------------------------------|------|-----|------|----|--|
| On Characteristics (Note 3)        |                                    |                                                                      |      |     |      |    |  |
| Gate Threshold Voltage             | $V_{GS(th)}$                       | ν <sub>DS</sub> =V <sub>GS</sub> ,I <sub>D</sub> =-250μΑ             |      | -1  | -1.3 | V  |  |
|                                    |                                    | V <sub>GS</sub> =-10V, I <sub>D</sub> =-4.2A                         | -    | 48  | 55   | mΩ |  |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub>                | V <sub>GS</sub> =-4.5V, I <sub>D</sub> =-4A                          | -    | 56  | 75   | mΩ |  |
|                                    |                                    | V <sub>GS</sub> =-2.5V, I <sub>D</sub> =-1A                          |      | 72  | 90   | mΩ |  |
| Forward Transconductance           | <b>9</b> FS                        | V <sub>DS</sub> =-5V,I <sub>D</sub> =-4.2A                           | -    | 10  | -    | S  |  |
| Dynamic Characteristics (Note4)    |                                    |                                                                      |      |     |      |    |  |
| Input Capacitance                  | C <sub>lss</sub>                   | \\ - 45\\\\ -0\\                                                     | -    | 880 | -    | PF |  |
| Output Capacitance                 | C <sub>oss</sub>                   | $V_{DS}$ =-15V, $V_{GS}$ =0V,<br>F=1.0MHz                            | -    | 105 | -    | PF |  |
| Reverse Transfer Capacitance       | C <sub>rss</sub>                   | F=1.0WI12                                                            | -    | 65  | -    | PF |  |
| Switching Characteristics (Note 4) | ·                                  |                                                                      |      |     |      |    |  |
| Turn-on Delay Time                 | t <sub>d(on)</sub>                 | $V_{DD}$ =-15V, $I_{D}$ =-4.2A $V_{GS}$ =-10V, $R_{GEN}$ =6 $\Omega$ | -    | 7   | =    | nS |  |
| Turn-on Rise Time                  | t <sub>r</sub>                     |                                                                      | -    | 3   | -    | nS |  |
| Turn-Off Delay Time                | t <sub>d(off)</sub>                |                                                                      | -    | 30  | -    | nS |  |
| Turn-Off Fall Time                 | t <sub>f</sub>                     |                                                                      | -    | 12  | -    | nS |  |
| Total Gate Charge                  | Qg                                 | V <sub>DS</sub> =-15V,I <sub>D</sub> =-4.2A,V <sub>GS</sub> =-4.5V   | -    | 8.5 | -    | nC |  |
| Gate-Source Charge                 | Q <sub>gs</sub>                    |                                                                      | -    | 1.8 | -    | nC |  |
| Gate-Drain Charge                  | Q <sub>gd</sub>                    |                                                                      | ,=,, | 2.7 | -    | nC |  |
| Drain-Source Diode Characteristics | Drain-Source Diode Characteristics |                                                                      |      |     |      |    |  |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>                    | V <sub>GS</sub> =0V,I <sub>S</sub> =-4.2A                            | -    | -   | -1.2 | V  |  |
|                                    |                                    |                                                                      |      |     |      |    |  |

### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production



# Typical Electrical and Thermal Characteristics



Figure 1:Switching Test Circuit



 $T_J$ -Junction Temperature ( ${}^{\circ}$ C) Figure 3 Power Dissipation



I<sub>D</sub>- Drain Current (A)

Vds Drain-Source Voltage (V) Figure 5 Output Characteristics



Figure 2:Switching Waveforms



Figure 4 Drain Current



I<sub>D</sub>- Drain Current (A) Figure 6 Drain-Source On-Resistance





Vgs Gate-Source Voltage (V) Figure 7 Transfer Characteristics



Vgs Gate-Source Voltage (V) Figure 9 Rdson vs Vgs



Qg Gate Charge (nC) Figure 11 Gate Charge



 $T_J$ -Junction Temperature( ${}^{\circ}$ C) Figure 8 Drain-Source On-Resistance



Vds Drain-Source Voltage (V) Figure 10 Capacitance vs Vds



Vsd Source-Drain Voltage (V)
Figure 12 Source- Drain Diode Forward

Is- Reverse Drain Current (A)





Vds Drain-Source Voltage (V)

Figure 13 Safe Operation Area



T<sub>J</sub>-Junction Temperature(°C)

Figure 14BV<sub>DSS</sub> vs Junction Temperature



Figure 15Normalized Maximum Transient Thermal Impedance