I = intervalle de	Remarques ou	Fonction f	Primitive F où k est une
définition de f	restrictions		constante réelle
$I \subset \mathbb{R}$		$x \mapsto 0$	$x \mapsto k$
$I \subset \mathbb{R}$	$a \in \mathbb{R}$	$x \mapsto a$	$x \mapsto ax + k$
$I \subset \mathbb{R}$	n entier naturel	$x \mapsto x^n$	$x \mapsto \frac{x^{n+1}}{n+1} + k$
$I \subset \mathbb{R}^*$	n entier relatif, $n \neq -1$	$x \mapsto x^n$	$x \mapsto \frac{x^{n+1}}{n+1} + k$
$I \subset \mathbb{R}^+$	n réel $n \neq -1$	$x \mapsto x^n$	$x \mapsto \frac{x^{n+1}}{n+1} + k$
$I \subset \mathbb{R}^*$		$x \mapsto \frac{1}{x^2}$	$x \mapsto -\frac{1}{x} + k$
$I \subset \mathbb{R}^+$		$x \mapsto \frac{1}{\sqrt{x}}$	$x \mapsto 2\sqrt{x} + k$
$I \subset \mathbb{R}$		$x \mapsto \sin x$	$x \mapsto -\cos x + k$
$I \subset \mathbb{R}$		$x \mapsto \cos x$	$x \mapsto \sin x + k$
$I \subset \mathbb{R}$		$x \mapsto \sin(ax + b)$	$x \mapsto -\frac{1}{a}\cos(ax+b) + k$
$I \subset \mathbb{R}$		$x \mapsto \cos(ax + b)$	$x \mapsto \frac{1}{a}\sin(ax+b) + k$
$I \subset \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}$		$x \mapsto \frac{1}{\cos^2 x}$	$x \mapsto \tan x + k$
$I \subset \mathbb{R}$		$x \mapsto 1 + \tan^2 x$	$x \mapsto \tan x + k$
$I \subset \mathbb{R}^+$	x positif	$x \mapsto \sqrt{x}$	$x \mapsto \frac{2}{3}x^{3/2} + k$
$I \subset \mathbb{R}$		$x \mapsto (ax+b)^n$	$x \mapsto \frac{1}{a} \frac{(ax+b)^{n+1}}{n+1} + k$
$I \subset \mathbb{R}$	Avec les mêmes		
	contraintes sur n et sur $(ax + b)$		

Table 1 – Tableau des primitives