GLYPHOSATE-TOLERANT 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASES

This is a continuation-in-part of a U.S. patent application 5 Ser. No. 07/749,611, filed Aug. 28, 1991 now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 07/576,537, filed Aug. 31, 1990, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates in general to plant molecular biology and, more particularly, to a new class of glyphosatetolerant 5-enolpyruvylshikimate-3-phosphate synthases.

Recent advances in genetic engineering have provided the 15 requisite tools to transform plants to contain foreign genes. It is now possible to produce plants which have unique characteristics of agronomic importance. Certainly, one such advantageous trait is more cost effective, environmentally compatible weed control via herbicide tolerance. Herbicidetolerant plants may reduce the need for tillage to control weeds thereby effectively reducing soil erosion.

One herbicide which is the subject of much investigation in this regard is N-phosphonomethylglycine commonly referred to as glyphosate. Glyphosate inhibits the shikimic 25 acid pathway which leads to the biosynthesis of aromatic compounds including amino acids, plant hormones and vitamins. Specifically, glyphosate curbs the conversion of phosphoenolpyruvic acid (PEP) and 3-phosphoshikimic acid to 5-enolpyruvyl-3-phosphoshikimic acid by inhibiting the 30 enzyme 5-enolpyruvylshikimate-3-phosphate synthase (hereinafter referred to as EPSP synthase or EPSPS). For purposes of the present invention, the term "glyphosate" should be considered to include any herbicidally effective form of N-phosphonomethylglycine (including any salt 35 thereof) and other forms which result in the production of the glyphosate anion in planta.

It has been shown that glyphosate-tolerant plants can be produced by inserting into the genome of the plant the capacity to produce a higher level of EPSP synthase in the 40 chloroplast of the cell (Shah et al., 1986) which enzyme is preferably glyphosate-tolerant (Kishore et al. 1988). Variants of the wild-type EPSPS enzyme have been isolated which are glyphosate-tolerant as a result of alterations in the EPSPS amino acid coding sequence (Kishore and Shah, 45 1988; Schulz et al., 1984; Sost et al., 1984; Kishore et al., 1986). These variants typically have a higher K, for glyphosate than the wild-type EPSPS enzyme which confers the glyphosate-tolerant phenotype, but these variants are also characterized by a high K_m for PEP which makes the 50 enzyme kinetically less efficient (Kishore and Shah, 1988; Sost et al., 1984; Schulz et al., 1984; Kishore et al., 1986; Sost and Amrhein, 1990). For example, the apparent K_ for PEP and the apparent K, for glyphosate for the native EPSPS from E. coli are 10 µM and 0.5 µM while for a glyphosate- 55 tolerant isolate having a single amino acid substitution of an alanine for the glycine at position 96 these values are 220 µM and 4.0 mM, respectively. A number of glyphosatetolerant plant variant EPSPS genes have been constructed by mutagenesis. Again, the glyphosate-tolerant EPSPS was impaired due to an increase in the K, for PEP and a slight reduction of the V_{max} of the native plant enzyme (Kishore and Shah, 1988) thereby lowering the catalytic efficiency (V_{max}/K_m) of the enzyme. Since the kinetic constants of the variant enzymes are impaired with respect to PEP, it has 65 been proposed that high levels of overproduction of the variant enzyme, 40-80 fold, would be required to maintain

10/622201

normal catalytic activity in plants in the presence of glyphosate (Kishore et al., 1988).

While such variant EPSP synthases have proved useful in obtaining transgenic plants tolerant to glyphosate, it would be increasingly beneficial to obtain an EPSP synthase that is highly glyphosate-tolerant while still kinetically efficient such that the amount of the glyphosate-tolerant EPSPS needed to be produced to maintain normal catalytic activity in the plant is reduced or that improved tolerance be 10 obtained with the same expression level.

Previous studies have shown that EPSPS enzymes from different sources vary widely with respect to their degree of sensitivity to inhibition by glyphosate. A study of plant and bacterial EPSPS enzyme activity as a function of glyphosate concentration showed that there was a very wide range in the degree of sensitivity to glyphosate. The degree of sensitivity showed no correlation with any genus or species tested (Schulz et al., 1985). Insensitivity to glyphosate inhibition of the activity of the EPSPS from the Pseudomonas sp. PG2982 has also been reported but with no details of the studies (Fitzgibbon, 1988). In general, while such natural tolerance has been reported, there is no report suggesting the kinetic superiority of the naturally occurring bacterial glyphosatetolerant EPSPS enzymes over those of mutated EPSPS enzymes nor have any of the genes been characterized. Similarly, there are no reports on the expression of naturally glyphosate-tolerant EPSPS enzymes in plants to confer glyphosate tolerance.

For purposes of the present invention the term "mature EPSP synthase" relates to the EPSPS polypeptide without the N-terminal chloroplast transit peptide. It is now known that the precursor form of the EPSP synthase in plants (with the transit peptide) is expressed and upon delivery to the chloroplast, the transit peptide is cleaved yielding the mature EPSP synthase. All numbering of amino acid positions are given with respect to the mature EPSP synthase (without chloroplast transit peptide leader) to facilitate comparison of EPSPS sequences from sources which have chloroplast transit peptides (i.e., plants and fungi) to sources which do not utilize a chloroplast targeting signal (i.e., bacteria).

In the amino acid sequences which follow, the standard single letter or three letter nomenclature are used. All peptide structures represented in the following description are shown in conventional format in which the amino group at the N-terminus appears to the left and the carboxyl group at the C-terminus at the right. Likewise, amino acid nomenclature for the naturally occurring amino acids found in protein is as follows: alanine (Ala;A), asparagine (Asn;N), aspartic acid (Asp;D), arginine (Arg;R), cysteine (Cys;C), glutamic acid (Glu; E), glutamine (Gln; Q), glycine (Gly; G), histidine (His;H), isoleucine (Ile;I), leucine (Leu;L), lysine (Lys;K), methionine (Met;M), phenylalanine (Phe;F), proline (Pro;P), serine (Ser;S), threonine (Thr;T), tryptophan (Trp;W), tyrosine (Tyr;Y), and valine (Val;V). An "X" is used when the amino acid residue is unknown and parentheses designate that an unambiguous assignment is not possible and the amino acid designation within the parentheses is the most probable estimate based on known infor-60 mation.

The term "nonpolar" amino acids include alanine, valine, leucine, isoleucine, proline, phenylalanine, tryptophan, and methionine. The term "uncharged polar" amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The term "charged polar" amino acids includes the "acidic" and "basic" amino acids. The term "acidic" amino acids includes aspartic acid and glutamic.

0,000,

acid. The term "basic" amino acid includes lysine, arginine and histidine. The term "polar" amino acids includes both "charged polar" and "uncharged polar" amino acids.

3

Deoxyribonucleic acid (DNA) is a polymer comprising four mononucleotide units, dAMP (2'-Deoxyadenosine-5monophosphate), dGMP (2'-Deoxyguanosine-5monophosphate), dCMP (2'-Deoxycytosine-5monophosphate) and dTMP (2'-Deoxythymosine-5monophosphate) linked in various sequences by 3',5'phosphodiester bridges. The structural DNA consists of 10 multiple nucleotide triplets called "codons" which code for the amino acids. The codons correspond to the various amino acids as follows: Arg (CGA, CGC, CGG, CGT, AGA, AGG); Leu (CTA, CTC, CTG, CIT, TTA, TTG); Ser (TCA, TCC, TCG, TCT, AGC, AGT); Thr (ACA, ACC, ACG, 15 ACT); Pro (CCA, CCC, CCG, CCT); Ala (GCA, GCC, GCG, GCT); Gly (GGA, GGC, GGG, GGT); Ile (ATA, ATC, ATT); Val (GTA, GTC, GTG, GTT); Lys (AAA, AAG); Asn (AAC, AAT); Gln (CAA, CAG); His (CAC, CAT); Glu (GAA, GAG); Asp (GAC, GAT); Tyt (TAC, 20 TAT); Cys (TGC, TGT); Phe (TTC, TTT); Met (ATG); and Trp (UGG). Moreover, due to the redundancy of the genetic code (i.e., more than one codon for all but two amino acids), there are many possible DNA sequences which may code for a particular amino acid sequence.

SUMMARY OF THE INVENTION

DNA molecules comprising DNA encoding kinetically efficient, glyphosate-tolerant EPSP synthases are disclosed. The EPSP synthases of the present invention reduce the 30 amount of overproduction of the EPSPS enzyme in a transgenic plant necessary for the enzyme to maintain catalytic activity while still conferring glyphosate tolerance. The EPSP synthases described herein represent a new class of EPSPS enzymes, referred to hereinafter as Class II EPSPS 35 enzymes. Class II EPSPS enzymes of the present invention usually share only between about 47% and 55% amino acid similarity or between about 22% and 30% amino acid identity to other known bacterial or plant EPSPS enzymes and exhibit tolerance to glyphosate while maintaining suit- 40 able K_m (PEP) ranges. Suitable ranges of K_m (PEP) for EPSPS for enzymes of the present invention are between 1-150 μM, with a more preferred range of between 1-35 μ M, and a most preferred range between 2-25 μ M. These kinetic constants are determined under the assay conditions 45 specified hereinafter. An EPSPS of the present invention preferably has a K, for glyphosate range of between 15-10000 μ M. The K/K_m ratio should be between about 2-500, and more preferably between 25-500. The V_{max} of the purified enzyme should preferably be in the range of 50 2-100 units/mg (µmoles/minute.mg at 25° C.) and the K for shikimate-3-phosphate should preferably be in the range of 0.1 to 50 µM.

Genes coding for Class II EPSPS enzymes have been isolated from five (5) different bacteria: Agrobacterium 55 tumefaciens sp. strain CP4, Achromobacter sp. strain LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis, and Staphylococcus aureus. The LBAA and PG2982 Class II EPSPS genes have been determined to be identical and the proteins encoded by these two genes are very similar to the 60 CP4 protein and share approximately 84% amino acid identity with it. Class II EPSPS enzymes often may be distinguished from Class I EPSPS's by their inability to react with polyclonal antibodies prepared from Class I EPSPS enzymes under conditions where other Class I EPSPS enzymes would readily react with the Class I antibodies as well as the presence of certain unique regions of

amino acid homology which are conserved in Class II EPSP synthases as discussed hereinafter.

Other Class II EPSPS enzymes can be readily isolated and identified by utilizing a nucleic acid probe from one of the Class II EPSPS genes disclosed herein using standard hybridization techniques. Such a probe from the CP4 strain has been prepared and utilized to isolate the Class II EPSPS genes from strains LBAA and PG2982. These genes may also optionally be adapted for enhanced expression in plants by known methodology. Such a probe has also been used to identify homologous genes in bacteria isolated de novo from soil

The Class II HPSPS enzymes are preferably fused to a chloroplast transit peptide (CIP) to target the protein to the chloroplasts of the plant into which it may be introduced. Chimeric genes encoding this CTP-Class II HPSPS fusion protein may be prepared with an appropriate promoter and 3' polyadenylation site for introduction into a desired plant by standard methods.

To obtain the maximal tolerance to glyphosate herbicide it is preferable to transform the desired plant with a plant-expressible Class II EPSPS gene in conjunction with another plant-expressible gene which expresses a protein capable of degrading glyphosate such as a plant-expressible gene encoding a glyphosate oxidoreductase enzyme as described in PCT Application No. WO 92/00377, the disclosure of which is hereby incorporated by reference.

Therefore, in one aspect, the present invention provides a new class of EPSP synthases that exhibit a low K_m for phosphoenolpyruvate (PEP), a high V_{max}/K_m ratio, and a high K_i for glyphosate such that when introduced into a plant, the plant is made glyphosate-tolerant such that the catalytic activity of the enzyme and plant metabolism are maintained in a substantially normal state. For purposes of this discussion, a highly efficient EPSPS refers to its efficiency in the presence of glyphosate.

More particularly, the present invention provides EPSPS enzymes having a K_m for phosphoenolpyruvate (PEP) between 1–150 μ M and a K_n (glyphosate)/ K_m (PEP) ratio between 3–500, said enzymes having the sequence domains:

-R-X₁-H-X₂-E-(SEQ ID NO:37), in which

X₁ is an uncharged polar or acidic amino acid,

X₂ is serine or threonine; and

-G-D-K-X₃-(SEQ ID NO:38), in which

 X_3 is serine or threonine; and

-S-A-Q-X₄-K-(SEQ ID NO:39), in which

 X_4 is any amino acid; and

-N-X5-T-R-(SEQ ID:40), in which

X₅ is any amino acid.

Exemplary Class II EPSPS enzyme sequences are disclosed from seven sources: Agrobacterium sp. strain designated CP4, Achromobacter sp. strain LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis 1A2, Staphylococcus aureus (ATCC 35556), Synechocystis sp. PCC6803 and Dichelobacter nodosus.

In another aspect of the present invention, a double-stranded DNA molecule comprising DNA encoding a Class II EPSPS enzyme is disclosed. Exemplary Class II EPSPS enzyme DNA sequences are disclosed from seven sources: Agrobacterium sp. strain designated CP4, Achromobacter sp. strain LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis 1A2, Staphylococcus aureus (ATCC 35556), Synechocystis sp. PCC6803 and Dichelobacter nodosus.

In a further aspect of the present invention, nucleic acid probes from EPSPS Class II genes are presented that are suitable for use in screening for Class II EPSPS genes in other sources by assaying for the ability of a DNA sequence from the other source to hybridize to the probe.

In yet another aspect of the present invention, a recombinant, double-stranded DNA molecule comprising in sequence:

- a) a promoter which functions in plant cells to cause the production of an RNA sequence;
- b) a structural DNA sequence that causes the production of an RNA sequence which encodes a Class II EPSPS enzyme having the sequence domains:

-R-X₁-H-X₂-E-(SEQ ID NO:37), in which

X₁ is an uncharged polar or acidic amino acid,

X₂ is serine or threonine; and

-G-D-K-X₃-(SEQ ID NO:38), in which

X₃ is serine or threonine; and

-S-A-Q-X₄-K-(SEQ ID NO:39), in which

 X_4 is any amino acid; and

-N-X₅-T-R-(SEQ ID:40), in which

X₅ is any amino acid; and

c) a 3' nontranslated region which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence

where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the EPSP synthase polypeptide to enhance the glyphosate tolerance of a plant cell transformed with said DNA molecule.

In still yet another aspect of the present invention, transgenic plants and transformed plant cells are disclosed that are made glyphosate-tolerant by the introduction of the above-described plant-expressible Class II EPSPS DNA molecule into the plant's genome.

In still another aspect of the present invention, a method for selectively controlling weeds in a crop field is presented by planting crop seeds or crop plants transformed with a plant-expressible Class II EPSPS DNA molecule to confer glyphosate tolerance to the plants which allows for glyphosate containing herbicides to be applied to the crop to selectively kill the glyphosate sensitive weeds, but not the crops.

Other and further objects, advantages and aspects of the invention will become apparent from the accompanying drawing figures and the description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A, 1B, show the DNA sequence (SEQ ID NO:1) for the full-length promoter of figwort mosaic virus (FMV35S).

FIG. 2 shows the cosmid cloning vector pMON17020.

FIG. 3A, 3B, 3C, 3D and 3E show the structural DNA sequence (SEQ ID NO:2) for the Class II EPSPS gene from bacterial isolate Agrobacterium sp. strain CP4 and the deduced amino acid sequence (SEQ ID NO:3).

FIG. 4A, 4B, 4C, 4D and 4E show the structural DNA sequence (SEQ ID NO:4) for the Class II EPSPS gene from 55 the bacterial isolate Achromobacter sp. strain LBAA and the deduced amino acid sequence (SEQ ID NO:5).

FIG. 5A, 5B, 5C, 5D and 5E show the structural DNA sequence (SEQ ID NO:6) for the Class II EPSPS gene from the bacterial isolate Pseudomonas sp. strain PG2982 and the 60 deduced amino acid sequence (SEQ ID NO:7).

FIG. 6A and 6B show the Bestfit comparison of the CP4 EPSPS amino acid sequence (SEQ ID NO:3) with that for the *E. coli* EPSPS (SEQ ID NO:8).

FIG. 7A and 7B show the Bestfit comparison of the CP4 65 EPSPS amino acid sequence (SEQ ID NO:3) with that for the LBAA EPSPS (SEQ ID NO:5).

FIG. 8A and 8B show the structural DNA sequence (SEQ ID NO:9) for the synthetic CP4 Class II EPSPS gene.

FIG. 9 shows the DNA sequence (SEQ ID NO:10) of the chloroplast transit peptide (CTP) and encoded amino acid sequence (SEQ ID NO:11) derived from the *Arabidopsis thaliana* EPSPS CTP and containing a SphI restriction site at the chloroplast processing site, hereinafter referred to as CTP2.

FIG. 10A and 10B show the DNA sequence (SEQ ID NO:12) of the chloroplast transit peptide and encoded amino acid sequence (SEQ ID NO:13) derived from the Arabidopsis thaliana EPSPS gene and containing an EcoRI restriction site within the mature region of the EPSPS, hereinafter referred to as CTP3.

FIG. 11 shows the DNA sequence (SEQ ID NO:14) of the chloroplast transit peptide and encoded amino acid sequence (SEQ ID NO:15) derived from the *Petunia hybrida* EPSPS CTP and containing a SphI restriction site at the chloroplast processing site and in which the amino acids at the processing site are changed to -Cys-Met-, hereinafter referred to as CTP4.

FIG. 12A and 12B show the DNA sequence (SEQ ID NO:16) of the chloroplast transit peptide and encoded amino acid sequence (SEQ ID NO:17) derived from the *Petunia hybrida* EPSPS gene with the naturally occurring EcoRI site in the mature region of the EPSPS gene, hereinafter referred to as CIP5.

FIG. 13 shows a plasmid map of CP4 plant 30 transformation/expression vector pMON17110.

FIG. 14 shows a plasmid map of CP4 synthetic EPSPS gene plant transformation/expression vector pMON17131.

FIG. 15 shows a plasmid map of CP4 EPSPS free DNA plant transformation expression vector pMON13640.

FIG. 16 shows a plasmid map of CP4 plant transformation/direct selection vector pMON17227.

FIG. 17 shows a plasmid map of CP4 plant transformation/expression vector pMON19653.

FIG. 18A, 18B, 18C and 18D show the structural DNA sequence (SEQ ID NO:41) for the Class II EPSPS gene from the bacterial isolate *Bacillus subtilis* and the deduced amino acid sequence (SEQ ID NO:42).

FIG. 19A, 19B, 19C and 19D show the structural DNA sequence (SEQ ID NO:43) for the Class II EPSPS gene from the bacterial isolate Staphylococcus aureus and the deduced amino acid sequence (SEQ ID NO:44).

FIG. 20A, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20I, 20J and 20K show the Bestfit comparison of the representative Class II EPSPS amino acid sequences Pseudomonas sp. strain PG2982 (SEQ ID NO:7), Achromobacter sp. strain LBAA (SEQ ID NO:5), Agrobacterium sp. strain designated CP4 (SEQ ID NO:3), Bacillus subtilis (SEQ ID NO:42), and Staphylococcus aureus (SEQ ID NO:44) with that for representative Class I EPSPS amino acid sequences [Sacchromyces cerevisiae (SEQ ID NO:49), Aspergillus nidulans (SEQ ID NO:50), Brassica napus (SEQ ID NO:51), Arabidopsis thaliana (SEQ ID NO:52), Nicotina tobacum (SEQ ID NO:53), L. esculentum (SEQ ID NO:54), Petunia hybrida (SEQ ID NO:55), Zea mays (SEQ ID NO:56), Solmenella gallinarum (SEQ ID NO:57), Solmenella typhimurium (SEQ ID NO:58), Solmenella typhi (SEQ ID NO:65), E. coli (SEQ ID NO:8), K. pneumoniae (SEQ ID NO:59), Y. enterocolitica (SEQ ID NO:60), H. influenzae (SEQ ID NO:61), P. multocida (SEQ ID NO:62), Aeromonas salmonicida (SEQ ID NO:63), Bacillus pertussis (SEQ ID NO:64)] and illustrates the conserved regions among .

Class II EPSPS sequences which are unique to Class II EPSPS sequences. To aid in a comparison of the EPSPS sequences, only mature EPSPS sequences were compared. That is, the sequence corresponding to the chloroplast transit peptide, if present in a subject EPSPS, was removed prior to making the sequence alignment.

7

FIG. 21A, 21B, 21C, 21D and 21E show the structural DNA sequence (SEQ ID NO:66) for the Class II EPSPS gene from the bacterial isolate Synechocystis sp. PCC6803 and the deduced amino acid sequence (SEQ ID NO:67).

FIG. 22A, 22B, 22C, 22D and 22E show the structural DNA sequence (SEQ ID NO:68) for the Class II EPSPS gene from the bacterial isolate *Dichelobacter nodosus* and the deduced amino acid sequence (SEQ ID NO:69).

FIG. 23A, 23B, 23C and 22D show the Bestfit comparison of the representative Class II EPSPS amino acid sequences Pseudomonas sp. strain PG2982 (SEQ ID NO:7), Achromobacter sp. strain LBAA (SEQ ID NO:5), Agrobacterium sp. strain designated CP4 (SEQ ID NO:3), Synechocystis sp. PCC6803 (SEQ ID NO:67), Bacillus subtilis (SEQ ID NO:42), Dichelobacter nodosus (SEQ ID NO:69) and Staphylococcus aureus (SEQ ID NO:44).

FIG. 24 a plasmid map of canola plant transformation/expression vector pMON17209.

FIG. 25 a plasmid map of canola plant transformation/expression vector pMON17237.

STATEMENT OF THE INVENTION

The expression of a plant gene which exists in double-stranded DNA form involves synthesis of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme, and the subsequent processing of the mRNA primary transcript inside the nucleus. This processing involves a 3' non-translated region which adds polyadenylate nucleotides to the 3' end of the RNA.

Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter." The promoter region contains a sequence of bases that signals RNA polymerase to associate with the DNA, and to initiate the 40 transcription into mRNA using one of the DNA strands as a template to make a corresponding complementary strand of RNA. A number of promoters which are active in plant cells have been described in the literature. These include the nopaline synthase (NOS) and octopine synthase (OCS) 45 promoters (which are carried on tumor-inducing plasmids of Agrobacterium tumefaciens), the cauliflower mosaic virus (CaMV) 19S and 35S promoters, the light-inducible promoter from the small subunit of ribulose bis-phosphate carboxylase (ssRUBISCO, a very abundant plant 50 70 gene is preferred. polypeptide) and the full-length transcript promoter from the figwort mosaic virus (FMV35S), promoters from the maize ubiquitin and rice actin genes. All of these promoters have been used to create various types of DNA constructs which have been expressed in plants; see, e.g., PCT publication 55 WO 84/02913 (Rogers et al., Monsanto).

Promoters which are known or found to cause transcription of DNA in plant cells can be used in the present invention. Such promoters may be obtained from a variety of sources such as plants and plant DNA viruses and include, 60 but are not limited to, the CaMV35S and FMV35S promoters and promoters isolated from plant genes such as ssRUBISCO genes and the maize ubiquitin and rice actin genes. As described below, it is preferred that the particular promoter selected should be capable of causing sufficient 65 expression to result in the production of an effective amount of a Class II EPSPS to render the plant substantially tolerant

to glyphosate herbicides. The amount of Class II EPSPS needed to induce the desired tolerance may vary with the plant species. It is preferred that the promoters utilized have relatively high expression in all meristematic tissues in addition to other tissues inasmuch as it is now known that glyphosate is translocated and accumulated in this type of plant tissue. Alternatively, a combination of chimeric genes can be used to cumulatively result in the necessary overall expression level of the selected Class II EPSPS enzyme to result in the glyphosate-tolerant phenotype.

8

The mRNA produced by a DNA construct of the present invention also contains a 5' non-translated leader sequence. This sequence can be derived from the promoter selected to express the gene, and can be specifically modified so as to increase translation of the mRNA. The 5' non-translated regions can also be obtained from viral RNAs, from suitable eukaryotic genes, or from a synthetic gene sequence. The present invention is not limited to constructs, as presented in the following examples, wherein the non-translated region is derived from both the 5' non-translated sequence that accompanies the promoter sequence and part of the 5' non-translated region of the virus coat protein gene. Rather, the non-translated leader sequence can be derived from an unrelated promoter or coding sequence as discussed above.

Preferred promoters for use in the present invention the full-length transcript (SEQ ID NO:1) promoter from the figwort mosaic virus (FMV35S) and the full-length transcript (35S) promoter from cauliflower mosaic virus (CaMV), including the enhanced CaMV35S promoter (Kay et al. 1987). The FMV35S promoter functions as strong and uniform promoter with particularly good expression in meristernatic tissue for chimeric genes inserted into plants, particularly dicotyledons. The resulting transgenic plant in general expresses the protein encoded by the inserted gene at a higher and more uniform level throughout the tissues and cells of the transformed plant than the same gene driven by an enhanced CaMV35S promoter. Referring to FIG. 1, the DNA sequence (SEQ ID NO:1) of the FMV35S promoter is located between nucleotides 6368 and 6930 of the FMV genome. A 5' non-translated leader sequence is preferably coupled with the promoter. The leader sequence can be from the FMV35S genome itself or can be from a source other than FMV35S.

For expression of heterologous genes in moncotyledonous plants the use of an intron has been found to enhance expression of the heterologous gene. While one may use any of a number of introns which have been isolated from plant genes, the use of the first intron from the maize heat shock 70 gene is preferred.

The 3' non-translated region of the chimeric plant gene contains a polyadenylation signal which functions in plants to cause the addition of polyadenylate nucleotides to the 3' end of the viral RNA. Examples of suitable 3' regions are (1) the 3' transcribed, non-translated regions containing the polyadenylated signal of Agrobacterium tumor-inducing (Ti) plasmid genes, such as the nopaline synthase (NOS) gene, and (2) plant genes like the soybean storage protein genes and the small subunit of the ribulose-1,5-bisphosphate carboxylase (ssRUBISCO) gene. An example of a preferred 3' region is that from the ssRUBISCO gene from pea (E9), described in greater detail below.

genes. As described below, it is preferred that the particular promoter selected should be capable of causing sufficient 65 a structural coding sequence in double-stranded DNA form expression to result in the production of an effective amount of a Class II EPSPS to render the plant substantially tolerant II EPSPS enzyme.

Identification of glyphosate-tolerant, highly efficient EPSPS enzymes

In an attempt to identify and isolate glyphosate-tolerant, highly efficient EPSPS enzymes, kinetic analysis of the EPSPS enzymes from a number of bacteria exhibiting tolerance to glyphosate or that had been isolated from suitable sources was undertaken. It was discovered that in some cases the EPSPS enzymes showed no tolerance to inhibition by glyphosate and it was concluded that the tolerance phenotype of the bacterium was due to an impermeability to glyphosate or other factors. In a number of 1 cases, however, microorganisms were identified whose EPSPS enzyme showed a greater degree of tolerance to inhibition by glyphosate and that displayed a low K_ for PEP when compared to that previously reported for other microbial and plant sources. The EPSPS enzymes from these microorganisms were then subjected to further study and analysis.

Table I displays the data obtained for the EPSPS enzymes identified and isolated as a result of the above described analysis. Table I includes data for three identified Class II EPSPS enzymes that were observed to have a high tolerance to inhibition to glyphosate and a low K_m for PEP as well as data for the native Petunia EPSPS and a glyphosate-tolerant variant of the Petunia EPSPS referred to as GA101. The GA101 variant is so named because it exhibits the substitution of an alanine residue for a glycine residue at position 101 (with respect to Petunia). When the change introduced into the Petunia EPSPS (GA101) was introduced into a number of other EPSPS enzymes, similar changes in kinetics were observed, an elevation of the K_i for glyphosate and of the K_m for PEP.

TABLE I

Kinetic	characterizatio	n of EPSPS enzymes	_
ENZYME SOURCE	K _m PEP (µM)	K _i Glyphosate (μM)	K _i /K _m
Petunia	5	0.4	80.0
Petunia GA101	200	2000	10
PG2982	2.1-3.1 ¹	25-82	~8-40
LBAA	~7.3~8 ²	60 (est) ⁷	~79
CP4	123	2720	227
B. subtilis 1A2	134	440	33.8
S. aureus	55	200	40

 $^{^{1}}$ Range of PEP tested = 1–40 μ M 2 Range of PEP tested = 5–80 μ M

The Agrobacterium sp. strain CP4 was initially identified by its ability to grow on glyphosate as a carbon source (10 mM) in the presence of 1 mM phosphate. The strain CP4 was identified from a collection obtained from a fixed-bed immobilized cell column that employed Mannville R-635 55 diatomaceous earth beads. The column had been run for three months on a waste-water feed from a glyphosate production plant. The column contained 50 mg/ml glyphosate and NH₃ as NH₄Cl. Total organic carbon was 300 mg/ml and BOD's (Biological Oxygen Demand—a measure 60 of "soft" carbon availability) were less than 30 mg/ml. This treatment column has been described (Heitkamp et al., 1990). Dworkin-Foster minimal salts medium containing glyphosate at 10 mM and with phosphate at 1 mM was used to select for microbes from a wash of this column that were 65 capable of growing on glyphosate as sole carbon source. Dworkin-Foster minimal medium was made up by combin-

ing in I liter (with autoclaved H_2O), 1 ml each of A, B and C and 10 ml of D (as per below) and thiamine HCl (5 mg).

<	A.	D-P Salts (1000X stock; per 1	00 ml; autoclaved):	
,		H ₃ BO ₃	1 mg	
		MnSO ₄ .7 H ₂ O	1 mg	
		ZnSO ₄ .7 H ₂ O	12.5 mg	
		CuSO _{4.5} H ₂ O	8 mg	
		NaMoO ₃ .3 H ₂ O	1.7 mg	
	В.	FeSO _{4.7} H ₂ O (1000X Stock; I	er 100 ml; autoclaved)	0.1 g
10	C.	MgSO ₄ .7 H ₂ O (1000X Stock;	per 100 ml; autoclaved)	20 g
	D.	(NH ₄) ₂ SO ₄ (100X stock; per 1	00 ml; autoclaved)	20 g

Yeast Extract (YE; Difco) was added to a final concentration of 0.01 or 0.001%. The strain CP4 was also grown on media composed of D-F salts, amended as described above, containing glucose, gluconate and citrate (each at 0.1%) as carbon sources and with inorganic phosphate (0.2-1.0 mM) as the phosphorous source.

Other Class II EPSPS containing microorganisms were identified as Achromobacter sp. strain LBAA (Hallas et al., 1988), Pseudomonas sp. strain PG2982 (Moore et al., 1983; Fitzgibbon 1988), Bacillus subtilis 1A2 (Henner et al., 1984) and Staphylococcus aureus (O'Connell et al., 1993). It had been reported previously, from measurements in crude states, that the EPSPS enzyme from strain PG2982 was less sensitive to inhibition to glyphosate than that of E. coli, but there has been no report on the K_m for PEP for this enzyme or of the DNA sequence for the gene for this enzyme (Fitzgibbon, 1988; Fitzgibbon and Braymer, 1990). Relationship of the Class II EPSPS to those previously studied

All EPSPS proteins studied to date have shown a remarkable degree of homology. For example, bacterial and plant EPSPS's are about 54% identical and with similarity as high as 80%. Within bacterial EPSPS's and plant EPSPS's themselves the degree of identity and similarity is much greater (see Table II).

TABLE II

	son between exemplary Class I EPSPS protein sequences ¹	
_	similarity	identity
E. coli vs. S. typhimurium	93	88
P. hybrids vs. E. coli	72	55
P. hybrids vs. L. esculentum	93	88

¹The EPSPS sequences compared here were obtained from the following references: E. coli, Rogers et al., 1983; S. typhimurium, Staller et al., 1985; Petunia hybrids, Shah et al., 1986; and tomato (L. esculentum), Gasser et al., 1988.

When crude extracts of CP4 and LBAA bacteria (50 μ g protein) were probed using rabbit anti-EPSPS antibody (Padgette et al., 1987) to the Petunia EPSPS protein in a Western analysis, no positive signal could be detected, even with extended exposure times (Protein A—¹²⁵I development system) and under conditions where the control EPSPS (Petunia EPSPS, 20 ng; a Class I EPSPS) was readily detected. The presence of EPSPS activity in these extracts was confirmed by enzyme assay. This surprising result, indicating a lack of similarity between the EPSPS's from these bacterial isolates and those previously studied, coupled with the combination of a low K_m for PEP and a high K_c for glyphosate, illustrates that these new EPSPS enzymes are different from known EPSPS enzymes (now referred to as Class I EPSPS).

 $^{^{3}}$ Range of PEP tested = 1.5-40 μ M

Range of PEP tested = 1-60 μ M

⁵Range of PEP tested = 1-50 µM

⁷⁽est) = estimated

Glyphosate-tolerant Enzymes in Microbial Isolates

For clarity and brevity of disclosure, the following description of the isolation of genes encoding Class II EPSPS enzymes is directed to the isolation of such a gene from a bacterial isolate. Those skilled in the art will recognize that the same or similar strategy can be utilized to isolate such genes from other microbial isolates, plant or fungal sources.

Cloning of the Agrobacterium sp. strain CP4 EPSPS Gene(s) in E. coli

Having established the existence of a suitable EPSPS in Agrobacterium sp. strain CP4, two parallel approaches were undertaken to clone the gene: cloning based on the expected phenotype for a glyphosate-tolerant EPSPS; and purification of the enzyme to provide material to raise antibodies and to 15 obtain amino acid sequences from the protein to facilitate the verification of clones. Cloning and genetic techniques, unless otherwise indicated, are generally those described in Maniatis et al., 1982 or Sambrook et al., 1987. The cloning strategy was as follows: introduction of a cosmid bank of strain Agrobacterium sp. strain CP4 into E. coli and selection for the EPSPS gene by selection for growth on inhibitory concentrations of glyphosate.

Chromosomal DNA was prepared from strain Agrobacterium sp. strain CP4 as follows: The cell pellet from a 200 25 ml L-Broth (Miller, 1972), late log phase culture of Agrobacterium sp. strain CP4 was resuspended in 10 ml of Solution I; 50 mM Glucose, 10 mM EDTA, 25 mM Tris -CL pH 8.0 (Birnboim and Doly, 1979). SDS was added to a final concentration of 1% and the suspension was subjected to 3 three freeze-thaw cycles, each consisting of immersion in dry ice for 15 minutes and in water at 70° C. for 10 minutes. The lysate was then extracted four times with equal volumes of phenol:chloroform (1:1; phenol saturated with TE; TE=10 mM Tris pH8.0; 1.0 mM EDTA) and the phases separated by 35 centrifugation (15000 g; 10 minutes). The ethanolprecipitable material was pelleted from the supernatant by brief centrifugation (8000 g; 5 minutes) following addition of two volumes of ethanol. The pellet was resuspended in 5 ml TE and dialyzed for 16 hours at 4° C. against 2 liters TE. 40 This preparation yielded a 5 ml DNA solution of 552 µg/ml.

Partially-restricted DNA was prepared as follows. Three 100 µg aliquot samples of CP4 DNA were treated for 1 hour at 37° C. with restriction endonuclease HindIII at rates of 4, 2 and 1 enzyme unit/µg DNA, respectively. The DNA 45 samples were pooled, made 0.25 mM with EDTA and extracted with an equal volume of phenol:chloroform. Following the addition of sodium acetate and ethanol, the DNA was precipitated with two volumes of ethanol and pelleted by centrifugation (12000 g; 10 minutes). The dried DNA 50 pellet was resuspended in 500 µl TE and layered on a 10-40% Sucrose gradient (in 5% increments of 5.5 ml each) in 0.5M NaCl, 50 mM Tris pH8.0, 5 mM EDTA. Following centrifugation for 20 hours at 26,000 rpm in a SW28 rotor, the tubes were punctured and ~1.5 ml fractions collected. 55 Samples (20 µl) of each second fraction were run on 0.7% agarose gel and the size of the DNA determined by comparison with linearized lambda DNA and HindIII-digested lambda DNA standards. Fractions containing DNA of 25-35 kb fragments were pooled, desalted on AMICON10 columns 60 (7000 rpm; 20° C.; 45 minutes) and concentrated by precipitation. This procedure yielded 15 µg of CP4 DNA of the required size. A cosmid bank was constructed using the vector pMON17020. This vector, a map of which is presented in FIG. 2, is based on the pBR327 replicon and 65 contains the spectinomycin/streptomycin (Spr;spc) resistance gene from Tn7 (Fling et al., 1985), the chloram-

phenicol resistance gene (Cmr;cat) from Tn9 (Alton et al., 1979), the gene 10 promoter region from phage T7 (Dunn et al., 1983), and the 1.6 kb BglII phage lambda cos fragment from pHC79 (Hohn and Collins, 1980). A number of cloning sites are located downstream of the cat gene. Since the predominant block to the expression of genes from other microbial sources in E. coli appears to be at the level of transcription, the use of the T7 promoter and supplying the T7 polymerase in trans from the pGP1-2 plasmid (Tabor and Richardson, 1985), enables the expression of large DNA segments of foreign DNA, even those containing RNA polymerase transcription termination sequences. The expression of the spc gene is impaired by transcription from the T7 promoter such that only Cmr can be selected in strains containing pGP1-2. The use of antibiotic resistances such as Cm resistance which do not employ a membrane component is preferred due to the observation that high level expression of resistance genes that involve a membrane component, i.e. β-lactamase and Amp resistance, give rise to a glyphosatetolerant phenotype. Presumably, this is due to the exclusion of glyphosate from the cell by the membrane localized resistance protein. It is also preferred that the selectable marker be oriented in the same direction as the T7 promoter.

The vector was then cut with HindIII and treated with calf alkaline phosphatase (CAP) in preparation for cloning. Vector and target sequences were ligated by combining the following:

	Vector DNA (HindIII/CAP)	3 µg
30	Size fractionated CP4 HindIII fragments	1.5 µg
	1OX ligation buffer	2.2 µl
	T4 DNA ligase (New England Biolabs) (400 U/µI)	1.0 µ1

and adding H₂O to 22.0 µl. This mixture was incubated for 18 hours at 16° C. 10X ligation buffer is 250 mM Tris-HCl, pH 8.0; 100 mM MgCl₂; 100 mM Dithiothreitol; 2 mM Spermidine. The ligated DNA (5 µl) was packaged into lambda phage particles (Stratagene; Gigapack Gold) using the manufacturer's procedure.

A sample (200 µl) of E. coli HB101 (Boyer and Rolland-Dussoix, 1973) containing the T7 polymerase expression plasmid pGP1-2 (Tabor and Richardson, 1985) and grown overnight in L-Broth (with maltose at 0.2% and kanamycin at 50/µg/ml) was infected with 50 µl of the packaged DNA. Transformants were selected at 30° C. on M9 (Miller, 1972) agar containing kanamycin (50 µg/ml), chloramphenicol (25 μg/ml), L-proline (50 μg/ml), L-leucine (50 μg/ml) and B1 (5 μg/ml), and with glyphosate at 3.0 mM. Aliquot samples were also plated on the same media lacking glyphosate to titer the packaged cosmids. Cosmid transformants were isolated on this latter medium at a rate of ~5×10⁵ per µg CP4 HindIII DNA after 3 days at 30° C. Colonies arose on the glyphosate agar from day 3 until day 15 with a final rate of ~1 per 200 cosmids. DNA was prepared from 14 glyphosatetolerant clones and, following verification of this phenotype, was transformed into E. coli GB100/pGP1-2 (E. coli GB100 is an aroA derivative of MM294 [Talmadge and Gilbert, 1980]) and tested for complementation for growth in the absence of added aromatic amino acids and aminobenzoic acids. Other aroA strains such as SR481 (Bachman et al., 1980; Padgette et al., 1987), could be used and would be suitable for this experiment. The use of GB100 is merely exemplary and should not be viewed in a limiting sense. This aroA strain usually requires that growth media be supplemented with L-phenylalanine, L-tyrosine and L-tryptophan each at 100 µg/ml and with para-hydroxybenzoic acid, 2.3-dihydroxybenzoic acid and para-aminobenzoic acid each at 5 µg/ml for growth in minimal media. Of the fourteen cosmids tested only one showed complementation of the aroA- phenotype. Transformants of this cosmid, pMON17076, showed weak but uniform growth on the unsupplemented minimal media after 10 days.

The proteins encoded by the cosmids were determined in vivo using a T7 expression system (Tabor and Richardson, 1985). Cultures of E. coli containing pGP1-2 (Tabor and Richardson, 1985) and test and control cosmids were grown at 30° C. in L-broth (2 ml) with chloramphenicol and 10 kanamycin (25 and 50 µg/ml, respectively) to a Klett reading of ~50. An aliquot was removed and the cells collected by centrifugation, washed with M9 salts (Miller, 1972) and resuspended in 1 ml M9 medium containing glucose at acids at 0.01% (minus cysteine and methionine). Following incubation at 30° C. for 90 minutes, the cultures were transferred to a 42° C. water bath and held there for 15 minutes. Rifampicin (Sigma) was added to 200 µg/ml and the cultures held at 42° C. for 10 additional minutes and then 20 transferred to 30° C. for 20 minutes. Samples were pulsed with 10 µCi of 35S-methionine for 5 minutes at 30° C. The cells were collected by centrifugation and suspended in 60-120 µl cracking buffer (60 mM Tris-HCl 6.8, 1% SDS, 1% 2-mercaptoethanol, 10% glycerol, 0.01% bromophenol 25 blue). Aliquot samples were electrophoresed on 12.5% SDS-PAGE and following soaking for 60 minutes in 10 volumes of Acetic Acid-Methanol-water (10:30:60), the gel was soaked in ENLIGHTNING™ (DUPONT) following manufacturer's directions, dried, and exposed at -70° C. to X-Ray 30 film. Proteins of about 45 kd in size, labeled with 35Smethionine, were detected in number of the cosmids, including pMON17076.

Purification of EPSPS from Agrobacterium sp. strain CP4 All protein purification procedures were carried out at 35 3°-5° C. EPSPS enzyme assays were performed using either the phosphate release or radioactive HPLC method, as previously described in Padgette et al., 1987, using 1 mM phosphoenol pyruvate (PEP, Boehringer) and 2 mM shikimate-3-phosphate (S3P) substrate concentrations. For 40 radioactive HPLC assays, 14-CPEP (Amersham) was utilized. S3P was synthesized as previously described in Wibbenmeyer et al. 1988. N-terminal amino acid sequencing was performed by loading samples onto a Polybrene precycled filter in aliquots while drying. Automated Edman 45 degradation chemistry was used to determine the N-terminal protein sequence, using an Applied Biosystems Model 470A gas phase sequencer (Hunkapiller et al., 1983) with an Applied Biosystems 120A PTH analyzer.

Five 10-liter fermentations were carried out on a sponta- 50 neous "smooth" isolate of strain CP4 that displayed less clumping when grown in liquid culture. This reduced clumping and smooth colony morphology may be due to reduced polysaccharide production by this isolate. In the following CP4 refers to the "smooth" isolate—CP4-S1. The cells from the three batches showing the highest specific activities were pooled. Cell paste of Agrobacterium sp. CP4 (300 g) was washed twice with 0.5 L of 0.9% saline and collected by centrifugation (30 minutes, 8000 rpm in a GS3 Sorvall 60 rotor). The cell pellet was suspended in 0.9 L extraction buffer (100 mM TrisCl, 1 mM EDTA, 1 mM BAM (Benzamidine), 5 mM DTT, 10% glycerol, pH 7.5) and lysed by 2 passes through a Manton Gaulin cell. The resulting solution was centrifuged (30 minutes, 8000 rpm) and the 65 supernatant was treated with 0.21 L of 1.5% protamine sulfate (in 100 mM TrisCl, pH 7.5, 0.2% w/v final protamine

sulfate concentration). After stirring for 1 hour, the mixture was centrifuged (50 minutes, 8000 rpm) and the resulting supernatant treated with solid ammonium sulfate to 40% saturation and stirred for 1 hour. After centrifugation (50) minutes, 8000 rpm), the resulting supernatant was treated with solid ammonium sulfate to 70% saturation, stirred for 50 minutes, and the insoluble protein was collected by centrifugation (1 hour, 8000 rpm). This 40-70% ammonium sulfate fraction was then dissolved in extraction buffer to give a final volume of 0.2 L, and dialyzed twice (Spectrum 10,000 MW cutoff dialysis tubing) against 2 L of extraction buffer for a total of 12 hours.

To the resulting dialyzed 40-70% ammonium sulfate fraction (0.29 L) was added solid ammonium sulfate to give 0.2%, thiamine at 20 µg/ml and containing the 18 amino 15 a final concentration of 1M. This material was loaded (2 ml/min) onto a column (5 cm×15 cm, 295 ml) packed with phenyl Sepharose CL-4B (Pharmacia) resin equilibrated with extraction buffer containing 1M ammonium sulfate. and washed with the same buffer (1.5 L, 2 ml/min). EPSPS was eluted with a linear gradient of extraction buffer going from 1M to 0.00M ammonium sulfate (total volume of 1.5 L, 2 ml/min). Fractions were collected (20 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions with the highest EPSPS activity (fractions 36-50) were pooled and dialyzed against 3×2 L (18 hours) of 10 mM TrisCl, 25 mM KCl, 1 mM EDTA, 5 mM DTT, 10% glycerol, pH 7.8.

The dialyzed EPSPS extract (350 ml) was loaded (5 ml/min) onto a column (2.4 cm×30 cm, 136 ml) packed with Q-Sepharose Fast Flow (Pharmacia) resin equilibrated with 10 mM TrisCl, 25 mM KCl, 5 mM DTT, 10% glycerol, pH 7.8 (Q Sepharose buffer), and washed with 1 L of the same buffer. EPSPS was eluted with a linear gradient of Q Sepharose buffer going from 0.025M to 0.40M KCI (total volume of 1.4 L, 5 ml/min). Fractions were collected (15 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions with the highest EPSPS activity (fractions 47-60) were pooled and the protein was precipitated by adding solid ammonium sulfate to 80% saturation and stirring for 1 hour. The precipitated protein was collected by centrifugation (20 minutes, 12000 rpm in a GSA Sorvall rotor), dissolved in Q Sepharose buffer (total volume of 14 ml), and dialyzed against the same buffer (2×1 L, 18 hours).

The resulting dialyzed partially purified EPSPS extract (19 ml) was loaded (1.7 ml/min) onto a Mono Q 10/10 column (Pharmacia) equilibrated with Q Sepharose buffer, and washed with the same buffer (35 ml). EPSPS was eluted with a linear gradient of 0.025M to 0.35M KCl (total volume of 119 ml, 1.7 ml/min). Fractions were collected (1.7 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions with the highest EPSPS activity (fractions 30-37) were pooled (6 ml).

The Mono Q pool was made 1M in ammonium sulfate by section dealing with the purification of the EPSPS enzyme, 55 the addition of solid ammonium sulfate and 2 ml aliquots were chromatographed on a Phenyl Superose 5/5 column (Pharmacia) equilibrated with 100 mM TrisCl. 5 mM DTT. 1M ammonium sulfate, 10% glycerol, pH 7.5 (Phenyl Superose buffer). Samples were loaded (1 ml/min), washed with Phenyl Superose buffer (10 ml), and eluted with a linear gradient of Phenyl Superose buffer going from 1M to 0.00M ammonium sulfate (total volume of 60 ml, 1 ml/min). Fractions were collected (1 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions from each run with the highest EPSPS activity (fractions ~36-40) were pooled together (10 ml, 2.5 mg protein). For N-terminal amino acid sequence determination, a portion of

one fraction (#39 from run 1) was dialyzed against 50 mM $NaHCO_3$ (2×1 L). The resulting pure EPSPS sample (0.9 ml, 77 μ g protein) was found to exhibit a single N-terminal amino acid sequence of:

XH(G)ASSRPATARKSS(G)LX(G)(T)V(R)IPG(D)(K)(M) (SEQ ID NO:18).

The remaining Phenyl Superose EPSPS pool was dialyzed against 50 mM TrisCl, 2 mM DTT, 10 mM KCl, 10% glycerol, pH 7.5 (2×1 L). An aliquot (0.55 ml, 0.61 mg protein) was loaded (1 ml/min) onto a Mono Q 5/5 column (Pharmacia) equilibrated with Q Sepharose buffer, washed with the same buffer (5 ml), and eluted with a linear gradient of Q Sepharose buffer going from 0-0.14M KCl in 10 minutes, then holding at 0.14M KCl (1 ml/min). Fractions were collected (1 ml) and assayed for EPSPS activity by the phosphate release assay and were subjected to SDS-PAGE (10-15%, Phast System, Pharmacia, with silver staining) to determine protein purity. Practions exhibiting a single band of protein by SDS-PAGE (22-25, 222 µg) were pooled and 20 dialyzed against 100 mM ammonium bicarbonate, pH 8.1 (2×1 L, 9 hours).

Trypsinolysis and peptide sequencing of Agrobacterium sp strain CP4 HPSPS

To the resulting pure Agrobacterium sp. strain CP4 25 EPSPS (111 µg) was added 3 µg of trypsin (Calbiochem), and the trypsinolysis reaction was allowed to proceed for 16 hours at 37° C. The tryptic digest was then chromatographed (1 ml/min) on a C18 reverse phase HPLC column (Vydac) as previously described in Padgette et al., 1988 for E. coli 30 EPSPS. For all peptide purifications, 0.1% trifluoroacetic acid (TFA, Pierce) was designated buffer "RP-A" and 0.1% TFA in acetonitrile was buffer "RP-B". The gradient used for elution of the trypsinized Agrobacterium sp. CP4 EPSPS was: 0-8 minutes, 0% RP-B; 8-28 minutes, 0-15% RP-B; 35 28-40 minutes, 15-21% RP-B; 40-68 minutes, 21-49% RP-B; 68-72 minutes, 49-75% RP-B; 72-74 minutes, 75-100% RP-B. Fractions were collected (1 ml) and, based on the elution profile at 210 nm, at least 70 distinct peptides were produced from the trypsinized EPSPS. Fractions 40-70 40 were evaporated to dryness and redissolved in 150 µl each of 10% acetonitrile, 0.1% trifluoroacetic acid.

The fraction 61 peptide was further purified on the C18 column by the gradient: 0-5 minutes, 0% RP-B; 5-10 minutes, 0-38% RP-B; 10-30 minutes, 38-45% B. Fractions were collected based on the UV signal at 210 nm. A large peptide peak in fraction 24 eluted at 42% RP-B and was dried down, resuspended as described above, and rechromatographed on the C18 column with the gradient: 0-5 minutes, 0% RP-B; 5-12 min, 0-38% RP-B; 12-15 min, 50 38-39% RP-B; 15-18 minutes, 39% RP-B; 20-24 minutes, 41% RP-B; 24-28 minutes, 42% RP-B. The peptide in fraction 25, eluting at 41% RP-B and designated peptide 61-24-25, was subjected to N-terminal amino acid sequencing, and the following 55 sequence was determined:

APSM(I)(D)EYPILAV (SEQ ID NO:19)

The CP4 EPSPS fraction 53 tryptic peptide was further purified by C18 HPLC by the gradient 0% B (5 minutes), 0-30% B (5-17 minutes), 30-40% B (17-37 minutes). The peptide in fraction 28, eluting at 34% B and designated peptide 53-28, was subjected to N-terminal amino acid sequencing, and the following sequence was determined:

In order to verify the CP4 EPSPS cosmid clone, a number of oligonucleotide probes were designed on the basis of the sequence of two of the tryptic sequences from the CP4 enzyme (Table III). The probe identified as MID was very low degeneracy and was used for initial screening. The probes identified as EDV-C and EDV-T were based on the same amino acid sequences and differ in one position (underlined in Table III below) and were used as confirmatory probes, with a positive to be expected only from one of these two probes. In the oligonucleotides below, alternate acceptable nucleotides at a particular position are designated by a "f" such as A/C/T.

TABLE III

5	Selected CP4 HPSPS peptide sequences and DNA probes		
	PEPTIDE 61-24-25 APSM(I)(D)EYPILAV	(SEQ ID NO:19)	
	Probe MID; 17-mer, mixed probe; 24-fold degenerate	` '	
	ATGATA/C/TGAC/TGAG/ATAC/TCC	(SEQ ID NO:21)	
	PEPTIDE 53-28 ITGLLEGEDVINTGK	(SEQ ID NO:20)	
n	Probe EDV-C; 17-mer; mixed probe; 48-fold degener-	, ,	
•	ate		
	GAA/GGAC/TGTA/C/G/TATA/C/TAACAC	(SEQ ID NO:22)	
	Probe EDV-T; 17-mer; mixed probe; 48-fold degenerate		
	GAA/GGAC/TGTA/C/G/TATA/C/TAATAC	(SEQ ID NO:23)	

The probes were labeled using gamma-32P-ATP and polynucleotide kinase. DNA from fourteen of the cosmids described above was restricted with EcoRI, transferred to membrane and probed with the oligonucleotide probes. The conditions used were as follows: prehybridization was carried out in 6× SSC, 10× Denhardt's for 2-18 hour periods at 60° C., and hybridization was for 48-72 hours in 6× SSC, 10× Denhardt's, 100 μg/ml tRNA at 10° C. below the T_d for the probe. The T_d of the probe was approximated by the formula 2° C.×(A+T)+4° C.×(G+C). The filters were then washed three times with 6× SSC for ten minutes each at room temperature, dried and autoradiographed. Using the MID probe, an ~9.9 kb fragment in the pMON17076 cosmid gave the only positive signal. This cosmid DNA was then probed with the EDV-C (SEQ ID NO:22) and EDV-T (SEQ ID NO:23) probes separately and again this ~9.9 kb band gave a signal and only with the EDV-T probe.

The combined data on the glyphosate-tolerant phenotype, the complementation of the *E. coli* aroA- phenotype, the expression of a ~45 Kd protein, and the hybridization to two probes derived from the CP4 EPSPS amino acid sequence strongly suggested that the pMON17076 cosmid contained the EPSPS gene.

Localization and subcloning of the CP4 EPSPS gene

The CP4 EPSPS gene was further localized as follows: a number of additional Southern analyses were carried out on different restriction digests of pMON17076 using the MID (SEQ ID NO:21) and EDV-T (SEQ ID NO:23) probes separately. Based on these analyses and on subsequent detailed restriction mapping of the pBlueScript (Stratagene) subclones of the ~9.9 kb fragment from pMON17076, a 3.8 kb EcoRI-SalI fragment was identified to which both probes hybridized. This analysis also showed that MID (SEO ID NO:21) and EDV-T (SEQ ID NO:23) probes hybridized to different sides of BamHI, ClaI, and SacII sites. This 3.8 kb 60 fragment was cloned in both orientations in pBlueScript to form pMON17081 and pMON17082. The phenotypes imparted to E. coli by these clones were then determined. Glyphosate tolerance was determined following transformation into E. coli MM294 containing pGP1-2 (pBlueScript also contains a T7 promoter) on M9 agar media containing glyphosate at 3 mM. Both pMON17081 and pMON17082 showed glyphosate-tolerant colonies at three days at 30° C.

at about half the size of the controls on the same media lacking glyphosate. This result suggested that the 3.8 kb fragment contained an intact EPSPS gene. The apparent lack of orientation-dependence of this phenotype could be explained by the presence of the T7 promoter at one side of 5 the cloning sites and the lac promoter at the other. The aroA phenotype was determined in transformants of E. coli GB 100 on M9 agar media lacking aromatic supplements. In this experiment, carried out with and without the Plac inducer IPTG, pMON17082 showed much greater growth 10 than pMON17081, suggesting that the EPSPS gene was expressed from the SalI site towards the EcoRI site.

Nucleotide sequencing was begun from a number of restriction site ends, including the BamHI site discussed above. Sequences encoding protein sequences that closely 15 matched the N-terminus protein sequence and that for the tryptic fragment 53-28 (SEQ ID NO:20) (the basis of the EDV-T probe) (SEQ ID NO:23) were localized to the SaII side of this BamHI site. These data provided conclusive evidence for the cloning of the CP4 EPSPS gene and for the direction of transcription of this gene. These data coupled with the restriction mapping data also indicated that the complete gene was located on an ~2.3 kb XhoI fragment and this fragment was subcloned into pBlueScript. The nucleotide sequence of almost 2 kb of this fragment was determined by a combination of sequencing from cloned restriction fragments and by the use of specific primers to extend the sequence. The nucleotide sequence of the CP4 HPSPS gene and flanking regions is shown in FIG. 3 (SEQ ID NO:2). The sequence corresponding to peptide 61-24-25 30 (SEQ ID NO:19) was also located. The sequence was determined using both the SEQUENASE™ kit from IBI (International Biotechnologies Inc.) and the T7 sequencing/ Deaza Kit from Pharmacia.

That the cloned gene encoded the EPSPS activity purified from the Agrobacterium sp. strain CP4 was verified in the following manner: By a series of site directed mutageneses, BgIII and NcoI sites were placed at the N-terminus with the fMet contained within the NcoI recognition sequence, the first internal NcoI site was removed (the second internal NcoI site was removed later), and a SacI site was placed after the stop codons. At a later stage the internal NotI site was also removed by site-directed mutagenesis. The following list includes the primers for the site-directed mutagenesis (addition or removal of restriction sites) of the CP4 EPSPS gene. Mutagenesis was carried out by the procedures of Kunkel et al. (1987), essentially as described in Sambrook et al. (1989).

PRIMER BgNc (addition of BgIII and NeoI sites to N-terminus)
CGTGGATAGATCTAGGAAGACAACCATGGCTCACGGTC
(SEQ ID NO:24)

PRIMER Spb2 (addition of Spb1 site to N-terminus)
GGATAGATTAAGGAAGACGCGCATGCTTCACGGTGCAAGCAGCC
(SEQ ID NO:25)

PRIMER S1 (addition of SacI site immediately after stop codons)
GGCTGCCTGATGAGCTCCACAATCGCCATCGATGG
(SEQ ID NO:26)

PRIMER N1 (removal of internal NotI recognition site)
CGTCGCTCGTCGTGCGTGGCCGCCCTGACGGC
(SEQ ID NO:27)

PRIMER No.1 (removal of first internal No.1 recognition site)
CGGGCAAGGCCATGCAGGCTATGGGCGCC
(SEQ ID NO.28)

-continued

PRIMER Noo2 (removal of second internal NooI recognition site)
CGGGCTGCCGCCTGACTATGGGCCTCGTCGG
(SEQ ID NO:29)

This CP4 EPSPS gene was then cloned as a NcoI-BamHI N-terminal fragment plus a BamHI-SacI C-terminal fragment into a PrecA-gene10L expression vector similar to those described (Wong et al., 1988; Olins et al., 1988) to form pMON17101. The K_m for PEP and the K, for glyphosate were determined for the EPSPS activity in crude lysates of pMON17101/ GB100 transformants following induction with nalidixic acid (Wong et al., 1988) and found to be the same as that determined for the purified and crude enzyme preparations from Agrobacterium sp. strain CP4.

Characterization of the EPSPS gene from Achromobacter sp. strain LBAA and from Pseudomonas sp. strain PG2982

A cosmid bank of partially HindIII-restricted LBAA DNA was constructed in *E. coli* MM294 in the vector pHC79 (Hohn and Collins, 1980). This bank was probed with a full length CP4 EPSPS gene probe by colony hybridization and positive clones were identified at a rate of ~1 per 400 cosmids. The LBAA EPSPS gene was further localized in these cosmids by Southern analysis. The gene was located on an ~2.8 kb XhoI fragment and by a series of sequencing steps, both from restriction fragment ends and by using the oligonucleotide primers from the sequencing of the CP4 EPSPS gene, the nucleotide sequence of the LBAA EPSPS gene was completed and is presented in FIG. 4 (SEQ ID NO:4).

The EPSPS gene from PG2982 was also cloned. The EPSPS protein was purified, essentially as described for the CP4 enzyme, with the following differences: Following the Sepharose CL-4B column, the fractions with the highest EPSPS activity were pooled and the protein precipitated by adding solid ammonium sulfate to 85% saturation and stirring for 1 hour. The precipitated protein was collected by centrifugation, resuspended in Q Sepharose buffer and following dialysis against the same buffer was loaded onto the column (as for the CP4 enzyme). After purification on the Q Sepharose column, ~40 mg of protein in 100 mM Tris pH 7.8, 10% glycerol, 1 mM EDTA, 1 mM DTT, and 1M ammonium sulfate, was loaded onto a Phenyl Superose (Pharmacia) column. The column was eluted at 1.0 ml/minutes with a 40 ml gradient from 1.0M to 0.00M ammonium sulfate in the above buffer.

Approximately 1.0 mg of protein from the active fractions of the Phenyl Superose 10/10 column was loaded onto a Pharmacia Mono P 5/10 Chromatofocusing column with a flow rate of 0.75 ml/minutes. The starting buffer was 25 mM bis-Tris at pH 6.3, and the column was eluted with 39 ml of Polybuffer 74, pH 4.0. Approximately 50 μg of the peak fraction from the Chromatofocusing column was dialyzed into 25 mM ammonium bicarbonate. This sample was then used to determine the N-terminal amino acid sequence.

The N-terminal sequence obtained was:

XHSASPKPATARRSB (where X=an unidentified residue) (SEQ ID NO:30)

A number of degenerate oligonucleotide probes were designed based on this sequence and used to probe a library of PG2982 partial-HindIII DNA in the cosmid pHC79 (Hohn and Collins, 1980) by colony hybridization under nonstringent conditions. Final washing conditions were 15 minutes with 1× SSC, 0.1% SDS at 55° C. One probe with 65 the sequence GCGGTBGCSGGYTTSGG (where B=C, G, or T; S=C or G, and Y=C or T) (SEQ ID NO:31) identified a set of cosmid clones.

The cosmid set identified in this way was made up of cosmids of diverse HindIII fragments. However, when this set was probed with the CP4 EPSPS gene probe, a cosmid containing the PG2982 EPSPS gene was identified (designated as cosmid 9C1 originally and later as 5 pMON20107). By a series of restriction mappings and Southern analysis this gene was localized to a ~2.8 kb XhoI fragment and the nucleotide sequence of this gene was determined. This DNA sequence (SEQ ID NO:6) is shown in FIG. 5. There are no nucleotide differences between the EPSPS gene sequences from LBAA (SEQ ID NO:4) and PG2982 (SEQ ID NO:6). The kinetic parameters of the two enzymes are within the range of experimental error.

A gene from PG2982 that imparts glyphosate tolerance in 15 E. coli has been sequenced (Fitzgibbon, 1988; Fitzgibbon and Brayruer, 1990). The sequence of the PG2982 EPSPS Class II gene shows no homology to the previously reported sequence suggesting that the glyphosate-tolerant phenotype of the previous work is not related to EPSPS.

Characterization of the EPSPS from Bacillus subtilis

Bacillus subtilis 1A2 (prototroph) was obtained from the Bacillus Genetic Stock Center at Ohio State University. Standard EPSPS assay reactions contained crude bacterial extract with, 1 mM phosphoenolpyruvate (PEP), 2 mM shikimate-3-phosphate (S3P), 0.1 mM ammonium molybdate, 5 mM potassium fluoride, and 50 mM HEPES, pH 7.0 at 25° C. One unit (U) of EPSPS activity is defined as one µmol EPSP formed per minute under these conditions. For kinetic determinations, reactions contained crude bacterial, 2 mM S3P, varying concentrations of PEP, and 50 mM HEPES, pH 7.0 at 25° C. The EPSPS specific activity was found to be 0.003 U/mg. When the assays were performed in the presence of 1 mM glyphosate, 100% of the 35 EPSPS activity was retained. The app $K_m(PEP)$ of the B. subtilis EPSPS was determined by measuring the reaction velocity at varying concentrations of PEP. The results were analyzed graphically by the hyperbolic, Lineweaver-Burk and Eadie-Hofstee plots, which yielded appK_(PEP) values of 15.3 μM, 10.8 μM and 12.2 μM, respectively. These three data treatments are in good agreement, and yield an average value for appK_(PEP) of 13 \(\mu M\). The appK_(glyphosate) was estimated by determining the reaction rates of B. subtilis 1A2 EPSPS in the presence of several concentrations of 45 glyphosate, at a PEP concentration of 2 μ M. These results were compared to the calculated V_{max} of the EPSPS, and making the assumption that glyphosate is a competitive inhibitor versus PEP for B. subtilis EPSPS, as it is for all other characterized EPSPSs, an appK_i(glyphosate) was 50 determined graphically. The appK_t(glyphosate) was found to be 0.44 mM.

The EPSPS expressed from the B. subtilis aroE gene described by Henner et al. (1986) was also studied. The source of the B. subtilis aroE (EPSPS) gene was the E. coli 55 plasmid-bearing strain ECE13 (original code=MM294[p trp100]; Henner, et al., 1984; obtained from the Bacillus Genetic Stock Center at Ohio State University; the culture genotype is [pBR322 trp100] Ap [in MM294] [pBR322::6 kb insert with trpFBA-hisH]). Two strategies were taken to 60 GGGGGAGCTCATTATCCCTCATTTTGTAAAAGC express the enzyme in E. coli GB100 (aroA-): 1) the gene was isolated by PCR and cloned into an overexpression vector, and 2) the gene was subcloned into an overexpression vector. For the PCR cloning of the B. subtilis aroE from ECE13, two oligonucleotides were synthesized which incor- 65 porated two restriction enzyme recognition sites (NdeI and EcoRI) to the sequences of the following oligonucleotides:

(SEQ ID NO:45)

GGAACATATGAAACGAGATAAGGTGCAG

(SEQ ID NO:46)

GGAATTCAAACTTCAGGATCTTGAGATAGAAAATG

The other approach to the isolation of the B. subtilis aroE gene, subcloning from ECE13 into pUC118, was performed as follows:

- (i) Cut ECB13 and pUC with XmaI and SphL
- (ii) Isolate 1700bp aroE fragment and 2600bp pUC118 vector fragment.
- (iii) Ligate fragments and transform into GB100.

The subclone was designated pMON21133 and the PCRderived clone was named pMON21132. Clones from both approaches were first confirmed for complementation of the aroA mutation in E. coli GB100. The cultures exhibited EPSPS specific activities of 0.044 U/mg and 0.71 U/mg for the subclone (pMON21133) and PCR-derived clone (pMON21132) enzymes, respectively. These specific activities reflect the expected types of expression levels of the two vectors. The B. subtilis EPSPS was found to be 88% and 100% resistant to inhibition by 1 mM glyphosate under these conditions for the subcloned (pMON21133) and PCRderived (pMON21132) enzymes, respectively. The appK_m (PEP) and the appK_i(glyphosate) of the subcloned B. subtilis EPSPS (pMON21133) were determined as described above. The data were analyzed graphically by the same methods used for the 1A2 isolate, and the results obtained were comparable to those reported above for B. subtilis 1A2 culture.

Characterization of the EPSPS gene from Staphylococcus

The kinetic properties of the S. aureus EPSPS expressed in E. coli were determined, including the specific activity. the appK_m(PEP), and the appK_i(glyphosate). The S. aureus EPSPS gene has been previously described (O'Cormell et al., 1993)

The strategy taken for the cloning of the S. aureus EPSPS was polymerase chain reaction (PCR), utilizing the known nucleotide sequence of the S. aureus aroA gene encoding EPSPS (O'Cormell et al., 1993). The S. aureus culture (ATCC 35556) was fermented in an M2 facility in three 250 mL shake flasks containing 55 mL of TYE (tryptone 5 g/L, yeast extract 3 g/L, pH 6.8). The three flasks were inoculated with 1.5 mL each of a suspension made from freeze dried ATCC 35556 S. aureus cells in 90 mL of PBS (phosphatebuffered saline) buffer. Flasks were incubated at 30° C. for 5 days while shaking at 250 rpm. The resulting cells were lysed (boiled in TE [tris/EDTA] buffer for 8 minutes) and the DNA utilized for PCR reactions. The EPSPS gene was amplified using PCR and engineered into an E. coli expression vector as follows:

(i) two oligonucleotides were synthesized which incorporated two restriction enzyme recognition sites (NcoI and SacI) to the sequences of the oligonucleotides:

(SEQ ID NO:47)

GGGGCCATGGTAAATGAACAAATCATTG

(SEQ ID NO:48)

- (ii) The purified, PCR-amplified aroA gene from S. aureus was digested using NcoI and SacI enzymes.
- (iii) DNA of pMON 5723, which contains a pRecA bacterial promoter and Gene 10 leader sequence (Olins et al., 1988) was digested NcoI and SacI and the 3.5 kb digestion product was purified.

(iv) The S. aureus PCR product and the NcoI / SacI pMON 5723 fragment were ligated and transformed into E. coli JM101 competent cells.

(v) Two spectinomycin-resistant E. coli JM101 clones from above (SA#2 and SA#3) were purified and trans- 5 formed into a competent aroA- E. coli strain, GB100

For complementation experiments SAGB#2 and SAGB#3 were utilized, which correspond to SA#2 and SA#3, respectively, transformed into \tilde{E} . coli GB 100. In addition, E. coli GB 100 (negative control) and pMON 9563 (wt petunia EPSPS, positive control) were tested for AroA complementation. The organisms were grown in minimal media plus and minus aromatic amino acids. Later analyses showed that the SA#2 and SA#3 clones were identical, and they were assigned the plasmid identifier pMON21139.

in M9 minimal media and induced with nalidixic acid. A negative control, E. coli GB100, was grown under identical conditions except the media was supplemented with aromatic amino acids. The cells were harvested, washed with 0.9% NaCl, and frozen at -80° C., for extraction and EPSPS 20 analysis.

The frozen pMON21139 E. coli GB100 cell pellet from above was extracted and assayed for EPSPS activity as previously described. EPSPS assays were performed using 1 mM phosphoenolpyruvate (PEP), 2 mM shikimate-3- 25 phosphate (S3P), 0. 1 mM ammonium molybdate, 5 mM potassium fluoride, pH 7.0, 25° C. The total assay volume was 50µL, which contained 10 µL of the undiluted desalted extract.

The results indicate that the two clones contain a functional aroA/EPSPS gene since they were able to grow in minimal media which contained no aromatic amino acids. As expected, the GB100 culture did not grow on minimal medium without aromatic amino acids (since no functional EPSPS is present), and the pMON9563 did confer growth in minimal media. These results demonstrated the successful 35 cloning of a functional EPSPS gene from S. aureus. Both clones tested were identical, and the E. coli expression vector was designated pMON21139.

The plasmid pMON21139 in E. coli GB 100 was grown in M9 minimal media and was induced with nalidixic acid to 40 induce EPSPS expression driven from the RecA promoter. A desalted extract of the intracellular protein was analyzed for EPSPS activity, yielding an EPSPS specific activity of 0.005 µmol/min mg. Under these assay conditions, the S. aureus EPSPS activity was completely resistant to inhibition by 1 45 mM glyphosate. Previous analysis had shown that E. coli GB100 is devoid of EPSPS activity.

The app $K_m(PEP)$ of the S. aureus EPSPS was determined by measuring the reaction velocity of the enzyme (in crude bacterial extracts) at varying concentrations of PEP. The 50 results were analyzed graphically using several standard kinetic plotting methods. Data analysis using the hyperbolic, Lineweaver-Burke, and Eadie-Hofstee methods yielded appK_m(PEP) constants of 7.5, 4.8, and 4.0 µM, respectively. These three data treatments are in good agreement, and yield 55 an average value for app $K_m(PEP)$ of 5 μM .

Further information of the glyphosate tolerance of S. aureus EPSPS was obtained by determining the reaction rates of the enzyme in the presence of several concentrations of glyphosate, at a PEP concentration of 2 µM. These results 60 were compared to the calculated maximal velocity of the EPSPS, and making the assumption that glyphosate is a competitive inhibitor versus PEP for S. aureus EPSPS, as it is for all other characterized EPSPSs, an appK₂(glyphosate) aureus EPSPS estimated using this method was found to be 0.20 mM.

The EPSPS from S. aureus was found to be glyphosatetolerant, with an appK_i(glyphosate) of approximately 0.2 mM. In addition, the appK_m(PEP) for the enzyme is approximately 5 μM, yielding a appK_{*}(glyphosate)/appK_{**}(PEP) of

Alternative Isolation Protocols for Other Class II EPSPS Structural Genes

A number of Class II genes have been isolated and described here. While the cloning of the gene from CP4 was difficult due to the low degree of similarity between the Class I and Class II enzymes and genes, the identification of the other genes was greatly facilitated by the use of this first gene as a probe. In the cloning of the LBAA EPSPS gene, the CP4 gene probe allowed the rapid identification of SAGB#2 in E. coli GB100 (pMON21139) was also grown 15 cosmid clones and the localization of the intact gene to a small restriction fragment and some of the CP4 sequencing primers were also used to sequence the LBAA (and PG2982) EPSPS gene(s). The CP4 gene probe was also used to confirm the PG2982 gene clone. The high degree of similarity of the Class II EPSPS genes may be used to identify and clone additional genes in much the same way that Class I EPSPS gene probes have been used to clone other Class I genes. An example of the latter was in the cloning of the A. thaliana EPSPS gene using the P. hybrida gene as a probe (Klee et al., 1987).

Glyphosate-tolerant EPSPS activity has been reported previously for EPSP synthases from a number of sources. These enzymes have not been characterized to any extent in most cases. The use of Class I and Class II EPSPS gene probes or antibody probes provide a rapid means of initially screening for the nature of the EPSPS and provide tools for the rapid cloning and characterization of the genes for such enzymes.

Two of the three genes described were isolated from bacteria that were isolated from a glyphosate treatment facility (Strains CP4 and LBAA). The third (PG2982) was from a bacterium that had been isolated from a culture collection strain. This latter isolation confirms that exposure to glyphosate is not a prerequisite for the isolation of high glyphosate-tolerant EPSPS enzymes and that the screening of collections of bacteria could yield additional isolates. It is possible to enrich for glyphosate degrading or glyphosate resistant microbial populations (Quinn et al., 1988; Talbot et al., 1984) in cases where it was felt that enrichment for such microorganisms would enhance the isolation frequency of Class II EPSPS microorganisms. Additional bacteria containing class II EPSPS gene have also been identified. A bacterium called C 12, isolated from the same treatment column beads as CP4 (see above) but in a medium in which glyphosate was supplied as both the carbon and phosphorus source, was shown by Southern analysis to hybridize with a probe consisting of the CP4 EPSPS coding sequence. This result, in conjunction with that for strain LBAA, suggests that this enrichment method facilitates the identification of Class II EPSPS isolates. New bacterial isolates containing Class II EPSPS genes have also been identified from environments other than glyphosate waste treatment facilities. An inoculum was prepared by extracting soil (from a recently harvested soybean field in Jerseyville, Ill.) and a population of bacteria selected by growth at 28° C. in Dworkin-Foster medium containing glyphosate at 10 mM as a source of carbon (and with cycloheximide at 100 µg/ml to prevent the growth of fungi). Upon plating on L-agar media, five colony types were identified. Chromosomal DNA was was determined graphically. The appK (glyphosate) for S 65 prepared from 2ml L-broth cultures of these isolates and the presence of a Class II EPSPS gene was probed using a the CP4 EPSPS coding sequence probe by Southern analysis

under stringent hybridization and washing conditions. One of the soil isolates, S2, was positive by this screen.

23

Class II EPSPS enzymes are identifiable by an elevated Ki for glyphosate and thus the genes for these will impart a glyphosate tolerance phenotype in heterologous hosts. 5 Expression of the gene from recombinant plasmids or phage may be achieved through the use of a variety of expression promoters and include the T7 promoter and polymerase. The T7 promoter and polymerase system has been shown to work in a wide range of bacterial (and mammalian) hosts and offers the advantage of expression of many proteins that may be present on large cloned fragments. Tolerance to growth on glyphosate may be shown on minimal growth media. In some cases, other genes or conditions that may give glyphosate tolerance have been observed, including over expression of beta-lactamase, the igrA gene (Fitzgibbon and Braymer, 1990), or the gene for glyphosate oxidoreductase (PCT Pub. No. WO92/00377). These are easily distinguished from Class II EPSPS by the absence of EPSPS enzyme activity.

The EPSPS protein is expressed from the aroA gene (also called aroE in some genera, for example, in Bacillus) and mutants in this gene have been produced in a wide variety of bacteria. Determining the identity of the donor organism (bacterium) aids in the isolation of Class II EPSPS genesuch identification may be accomplished by standard micro- 25 biological methods and could include Gram stain reaction, growth, color of culture, and gas or acid production on different substrates, gas chromatography analysis of methylesters of the fatty acids in the membranes of the microorganism, and determination of the GC % of the 30 genome. The identity of the donor provides information that may be used to more easily isolate the EPSPS gene, An AroA- host more closely related to the donor organism could be employed to clone the EPSPS gene by complementation but this is not essential since complementation of the E. coli AroA mutant by the CP4 EPSPS gene was observed. In addition, the information on the GC content the genome may be used in choosing nucleotide probes—donor sources with high GC % would preferably use the CP4 EPSPS gene or sequences as probes and those donors with low GC would preferably employ those from Bacillus subtilis, for example. Relationships between different EPSPS genes

The deduced amino acid sequences of a number of Class I and the Class II EPSPS enzymes were compared using the Bestfit computer program provided in the UWGCG package (Devereux et al. 1984). The degree of similarity and identity as determined using this program is reported. The degree of similarity/identity determined within Class I and Class II protein sequences is remarkably high, for instance, comparing E. coli with S. typhimurium (similarity/identity=93%/ 88%) and even comparing E. coli with a plant EPSPS (Petunia hybrida; 72%/55%). These data are shown in Table IV. The comparison of sequences between Class I and Class II, however, shows a much lower degree of relatedness between the Classes (similarity/identity=50-53%/23-30%). The display of the Bestfit analysis for the E. coli (SEQ ID NO:8) and CP4 (SEQ ID NO:3) sequences shows the positions of the conserved residues and is presented in FIG. 6. Previous analyses of EPSPS sequences had noted the high degree of conservation of sequences of the enzymes and the almost invariance of sequences in two regions—the "20-35" and "95-107" regions (Gasser et al., 1988; numbered 60 according to the Petunia EPSPS sequence)—and these regions are less conserved in the case of CP4 and LBAA when compared to Class I bacterial and plant EPSPS sequences (see FIG. 6 for a comparison of the E. coli and CP4 EPSPS sequences with the E. coli sequence appearing 65 PG2892 vs. CP4 as the top sequence in the Figure). The corresponding sequences in the CP4 Class II EPSPS are:

PGDKSISHRSFMPGGL (SEQ ID NO:32) LDFGNAATGCRLT. (SEQ ID NO:33)

These comparisons show that the overall relatedness of Class I and Class II is EPSPS proteins is low and that sequences in putative conserved regions have also diverged considerably.

24

In the CP4 EPSPS an alanine residue is present at the "glycine101" position. The replacement of the conserved glycine (from the "95-107" region) by an alanine results in an elevated K, for glyphosate and in an elevation in the K. for PEP in Class I EPSPS. In the case of the CP4 EPSPS, which contains an alanine at this position, the K_m for PEP is in the low range, indicating that the Class II enzymes differ in many aspects from the EPSPS enzymes heretofore characterized.

Within the Class II isolates, the degree of similarity/ identity is as high as that noted for that within Class I (Table IVA). FIG. 7 displays the Bestfit computer program alignment of the CP4 (SEQ ID NO:3) and LBAA (SEQ ID NO:5) EPSPS deduced amino acid sequences with the CP4 sequence appearing as the top sequence in the Figure. The symbols used in FIGS. 6 and 7 are the standard symbols used in the Bestfit computer program to designate degrees of similarity and identity.

TABLE IVA 1,2

Comparison of relatedness of KPSPS protein sequences Comparison between Class I and Class II EPSPS protein sequences

		similarity	identity
35	S. cerevisiae vs. CP4	£4	20
		54 50	30 25
	A. nidularıs vs. CP4	50	25
	B. napus vs. CP4	47	22
	A. thaliana vs. CP4	. 48	22
	N. tabacum vs. CP4	50	24
40	L. esculentum vs. CP4	50	24
₩	P. hybrida vs. CP4	50	23
	Z. mays vs. CP4	48	24
	S. gallinarum vs. CP4	51	25
	S. typhimurium vs. CP4	51	25
	S. typhi vs. CP4	51	25
	K. pneumoniae vs. CP4	56	28
45	Y. enterocolitica vs. CP4	-53	25
	H. influenzae vs. CP4	-53	27
•	P. multocida vs. CP4	55	. 30
	A. salmonicida vs. CP4	53	23
	B. pertussis vs. CP4	53	27
	E. coli vs. CP4	52	26
50	E. coli vs. LBAA	52	26
	E. coli vs. B. subtilis	55	29
	E. coli vs. D. nodosus	55	32
	E. coli vs. S. aureus	55	29
	E.coli vs. Synechocystis sp. PCC6803	53	30

Comparison between Class I EPSPS protein sequences

	similarity	identity
E. coli vs. S. typhimurium	93	88
P. hybrids vs. E. coli	72	55

Comparison between Class	II HPSPS protein sequ	ences	C6	
	similarity	identity		
). nodosus vs. CP4	62	43		
BAA vs. CP4	90	83		
G2892 vs. CP4	90	83		

58

34

S. aureus vs. CP4

TABLE IVA 1,2-continued

			_
B. subtills vs. CP4	59	41	
Synechocystis sp. PCC6803 vs. CP4	62	45	

¹ The EPSPS sequences compared here were obtained from the following references: E. coli, Rogers et al., 1983; S. typhimurium, Stalker et al., 1985; Petunia hybrids, Shah et al., 1986; B. pertussis, Maskell et al., 1988; S. cerevisiae, Duncan et al., 1987, Synechocystis sp. PCC6803, Dalla Chiesa et al., 1994 and D. nodosus, Alm et al., 1994.

GAP" Program, Genetics Computer Group, (1991), Program Manual for 10

the GCG Package, Version 7, April 1991, 575 Science Drive, Madison, Wisconsin, USA 53711

The relative locations of the major conserved sequences among Class II EPSP synthases which distinguishes this group from the Class I EPSP synthases is listed below in 15 Table IVB.

TABLE IVB

				_	
I	Location of Conserved Sequences in Class II EPSP Synthases		- 20		
Source	Seq. 1 ¹	Seq. 2 ²	Seq. 3 ³	Seq. 4 ⁴	_
CP4			,		
start	200	26	173	271	25
end	204	29	177	274	_
<u>LBAA</u>					
start	· 200	26	173	271	
end	204	29	177	274	
PG2982					30
start	200	26	173	273	
end	204	29	177	276	
B. subtilis					
start	190	17	164	257	35
end	194	20	168	260	-
S. aureus					
start	193	21	166	261	
end.	197	24	170	264	
Synechocystis s	p .				
PCC6803					40
start	. 210	34	183	278	
end	214	38	187	281	
D. nodosus					
start	195	22	168	261	45
end	199	25	172	264	
min. start	190	17	164	257	
max. end	214	38	187	281	

¹⁻R-X₁-H-X₂-B-(SEQ ID NO:37)

The domains of EPSP synthase sequence identified in this application were determined to be those important for maintenance of glyphosate resistance and productive binding of 55 PEP. The information used in indentifying these domains included sequence alignments of numerous glyphosatesensitive EPSPS molecules and the three-dimensional x-ray structures of E. coli EPSPS (Stallings, et al. 1991) and CP4 EPSPS. The structures are representative of a glyphosatesensitive (i.e., Class I) enzyme, and a naturally-occuring glyphosate-tolerant (i.e., Class II) enzyme of the present invention. These exemplary molecules were superposed three-dimensionally and the results displayed on a computer graphics terminal. Inspection of the display allowed for 65 structure-based fine-tuning of the sequence alignments of glyphosate-sensitive and glyphosate-resistant EPSPS mol-

ecules. The new sequence alignments were examined to determine differences between Class I and Class II EPSPS enzymes. Seven regions were identified and these regions were located in the x-ray structure of CP4 EPSPS which also contained a bound analog of the intermediate which forms catalytically between PEP and S3P.

The structure of the CP4 EPSPS with the bound intermediate analog was displayed on a computer graphics terminal and the seven sequence segments were examined. Important residues for glyphosate binding were identified as well as those residues which stabilized the conformations of those important residues; adjoining residues were considered necessary for maintenance of correct three-dimensional structural motifs in the context of glyphosate- sensitive EPSPS molecules. Three of the seven domains were determined not to be important for glyphosate tolerance and maintainance of productive PEP binding. The following four primary domains were determined to be characteristic of Class II EPSPS enzymes of the present invention:

-R-XrH-X2-E(SEQ ID NO:37), in which X₁ is an uncharged polar or acidic amino acid, X₂ is serine or threonine,

The Arginine (R) reside at position 1 is important because the positive charge of its guanidium group destabilizes the binding of glyphosate. The Histidine (H) residue at position 3 stabilizes the Arginine (R) residue at position 4 of SEQ ID NO:40. The Glutamic Acid (E) residue at position 5 stabilizes the Lysine (K) residue at position 5 of SEQ ID NO:39.

-G-D-K-X3(SEQ ID NO:38), in which

X₃ is serine or threonine,

The Aspartic acid (D) residue at position 2 stabilizes the Arginine (R) residue at position 4 of SEQ ID NO:40. The Lysine (K) residue at position 3 is important because for productive PEP binding.

-S-A-O-X,-K(SEO ID NO:39), in which

X₄ is any amino acid,

The Alanine (A) residue at position 2 stabilizes the Arginine (R) residue at position 1 of SEQ ID NO:37. The Serine (S) residue at position 1 and the Glutamine (Q) residue at position 3 are important for productive S3P binding.

-N-X₅-T-R(SEQ ID NO:40) in which

X₅ is any amino acid,

The Asparagine (N) residue at position 1 and the Threonine (T) residue at position 3 stabilize residue X. at position 2 of SEQ ID NO:37. The Arginine (R) residue at position 4 is important because the positive charge of its guanidium group destabilizes the binding of glyphosate.

Since the above sequences are only representative of the Class II EPSPSs which would be included within the generic structure of this group of EPSP synthases, the above sequences may be found within a subject EPSP synthase molecule within slightly more expanded regions. It is believed that the above-described conserved sequences would likely be found in the following regions of the mature EPSP synthases molecule:

- -R-X₁-H-X₂-E-(SEQ ID NO:37) located between amino acids 175 and 230 of the mature EPSP synthase
- -G-D-K-X₃-(SEQ ID NO:38) located between amino acids 5 and 55 of the mature EPSP synthase sequence;
- -S-A-Q-X₄-K-(SEQ ID NO:39) located between amino acids 150 and 200 of the mature EPSP synthase sequence; and

²-G-D-K-X₃-(SEQ ID NO:38) ³-S-A-Q-X₄-K-(SEQ ID NO:39)

⁴⁻N-X₅-T-R-(SEQ ID NO:40)

-N-X₅-T-R-(SEQ ID NO:40) located between amino acids 245 and 295 of the mature EPSPS synthase sequence. One difference that may be noted between the deduced amino acid sequences of the CP4 and LBAAEPSPS proteins is at position 100 where an Alanine is found in the case of the CP4 enzyme and a Glycine is found in the case of the LBAA enzyme. In the Class I EPSPS enzymes a Glycine is usually found in the equivalent position, i.e Glycine96 in E. coli and K. pneumoniae and Glycine 101 in Petunia. In the case of these three enzymes it has been reported that converting that Glycine to an Alanine results in an elevation of the appKi for glyphosate and a concomitant elevation in the appKm for PEP (Kishore et al., 1986; Kishore and Shah, 1988; Sost and Amrhein, 1990), which, as discussed above, makes the enzyme less efficient especially under conditions of lower PEP concentrations. The Glycine 100 of the LBAA EPSPS was converted to an Alanine and both the appKm for PEP and the appKi for glyphosate were determined for the variant. The Glycine100Alanine change was introduced by mutagenesis using the following primer:

CGGCAATGCCGCCACCGGCGCGCGCCC

(SEQ ID NO:34)

and both the wild type and variant genes were expressed in E. coli in a RecA promoter expression vector (pMON17201 and pMON17264, respectively) and the appKm's and appthe disruption of stretches of G's and C's, the elimination of potential polyadenylation sequences, and improvements in the codon usage to that used more frequently in plant genes, could result in higher expression of the CP4 EPSPS gene in

A synthetic CP4 gene was designed to change as completely as possible those inimical sequences discussed above. In summary, the gene sequence was redesigned to eliminate as much as possible the following sequences or sequence features (while avoiding the introduction of unnecessary restriction sites): stretches of G's and C's of 5 or greater; and A+T rich regions (predominantly) that could function as polyadenylation sites or potential RNA destabilization region. The sequence of this gene is shown in FIG. 8 (SEQ ID NO:9). This coding sequence was expressed in E. coli from the RecA promoter and assayed for EPSPS activity and compared with that from the native CP4 EPSPS gene. The apparent Km for PEP for the native and synthetic genes was 11.8 and 12.7, respectively, indicating that the enzyme expressed from the synthetic gene was unaltered. The N-terminus of the coding sequence was mutagenized to place an SphI site at the ATG to permit the construction of the CTP2-CP4 synthetic fusion for chloroplast import. The following primer was used to accomplish this mutagenesis:

GGACGCTGCTTGCACCGTGAAGCATGCTTAAGCTTGGCGTAATCATGG.

(SEQ ID NO:35)

Ki's determined in crude lysates. The data indicate that the 30 Expression of Chloroplast Directed CP4 EPSPS appKi(glyphosate) for the G100A variant is elevated about 16-fold (Table V). This result is in agreement with the observation of the importance of this G-A change in raising the appKi(glyphosate) in the Class I EPSPS enzymes. However, in contrast to the results in the Class I G-A 35 variants, the appKm(PEP) in the Class II (LBAA) G-A variant is unaltered. This provides yet another distinction between the Class II and Class I EPSPS enzymes.

TABLE V

	appKm(PEP)	appKi(glyphosate)
Lysate prepared from: E. coli/pMON17201 (wild type) E. coli/pMON17264 (G100A variant)	5.3 µM 5.5 µM	28 μM• 459 μM#

[@]range of PEP: 2-40 µM

The LBAA G100A variant, by virtue of its superior kinetic 50 properties, should be capable of imparting improved in planta glyphosate tolerance.

Modification and Resynthesis of the Agrobacterium sp. strain CP4 EPSPS Gene Sequence

The EPSPS gene from Agrobacterium sp. strain CP4 55 contains sequences that could be inimical to high expression of the gene in plants. These sequences include potential polyadenylation sites that are often and A+T rich, a higher G+C % than that frequently found in plant genes (63% versus ~50%), concentrated stretches of G and C residues, 60 and codons that are not used frequently in plant genes. The high G+C % in the CP4 EPSPS gene has a number of potential consequences including the following: a higher usage of G or C than that found in plant genes in the third position in codons, and the potential to form strong hair-pin 65 structures that may affect expression or stability of the RNA. The reduction in the G+C content of the CP4 EPSPS gene,

The glyphosate target in plants, the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, is located in the chloroplast. Many chloroplast-localized proteins, including EPSPS, are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide (CTP) that is removed during the import steps. Examples of other such chloroplast proteins include the small subunit (SSU) of Ribulose-1,5-bisphosphate carboxylase (RUBISCO), Ferredoxin, Ferredoxin oxidoreductase, the Light-harvesting-complex protein I and protein II, and Thioredoxin F. It has been demonstrated in vivo and in vitro that non-chloroplast proteins may be targeted to the chloroplast by use of protein fusions with a CTP and that a CTP sequence is sufficient to target a protein

to the chloroplast.

A CTP-CP4 EPSPS fusion was constructed between the Arabidopsis thaliana EPSPS CTP (Klee et al., 1987) and the CP4 EPSPS coding sequences. The Arabidopsis CIP was engineered by site-directed mutagenesis to place a SphI restriction site at the CTP processing site. This mutagenesis replaced the Glu-Lys at this location with Cys-Met. The sequence of this CTP, designated as CTP2 (SEQ ID NO:10), is shown in FIG. 9. The N-terminus of the CP4 EPSPS gene was modified to place a SphI site that spans the Met codon. The second codon was converted to one for leucine in this step also. This change had no apparent effect on the in vivo activity of CP4 EPSPS in E. coli as judged by rate of complementation of the aroA allele. This modified N-terminus was then combined with the SacI C-terminus and cloned downstream of the CTP2 sequences. The CTP2-CP4 EPSPS fusion was cloned into pBlueScript KS(+). This vector may be transcribed in vitro using the T7 polymerase and the RNA translated with 35S-Methionine to provide material that may be evaluated for import into chloroplasts isolated from Lactuca sativa using the methods described hereinafter (della-Cioppa et al., 1986, 1987). This template was transcribed in vitro using T7 polymerase and the 35Smethionine-labeled CTP2-CP4 EPSPS material was shown

^{*}range of glyphosate: 0-310 µM; #range of glyphosate: 0-5000 µM.

to import into chloroplasts with an efficiency comparable to that for the control Petunia EPSPS (control=35S labeled PreEPSPS [pMON6140; della-Cioppa et al., 1986]).

In another example the Arabidopsis EPSPS CTP, designated as CTP3, was fused to the CP4 EPSPS through an 5 EcoRI site. The sequence of this CTP3 (SEQ ID NO:12) is shown in FIG. 10. An EcoRI site was introduced into the Arabidopsis EPSPS mature region around amino acid 27, replacing the sequence -Arg-Ala-Leu-Leu- with -Arg-Ile-Leu-Leu- in the process. The primer of the following 10 sequence was used to modify the N-terminus of the CP4 EPSPS gene to add an EcoRI site to effect the fusion to the

CTP3:GGAAGACGCCCAGAATTCACGGTGCAAGCAGCCGG (SEQ ID NO:36) (the EcoRI site is underlined.

This CTP3-CP4 EPSPS fusion was also cloned into the pBlueScript vector and the T7 expressed fusion was found to also import into chloroplasts with an efficiency comparable to that for the control Petunia EPSPS (pMON6140). 20

A related series of CTPs, designated as CTP4 (SphI) and CTP5 (EcoRI), based on the Petunia EPSPS CTP and gene were also fused to the SphI- and EcoRI-modified CP4 EPSPS gene sequences. The SphI site was added by site-directed mutagenesis to place this restriction site (and 25 change the amino acid sequence to -Cys-Met-) at the chloroplast processing site. All of the CTP-CP4 EPSPS fusions were shown to import into chloroplasts with approximately equal efficiency. The CTP4 (SEQ ID NO:14) and CTP5 (SEQ ID NO:16) sequences are shown in FIGS. 11 and 12. 30

A CTP2-LBAA EPSPS fusion was also constructed following the modification of the N-terminus of the LBAA EPSPS gene by the addition of a SphI site. This fusion was also found to be imported efficiently into chloroplasts.

By similar approaches, the CTP2-CP4 EPSPS and the 35 CTP4-CP4 EPSPS fusion have also been shown to import efficiently into chloroplasts prepared from the leaf sheaths of corn. These results indicate that these CTP-CP4 fusions could also provide useful genes to impart glyphosate tolerance in monocot species.

The use of CTP2 or CTP4 is preferred because these transit peptide constructions yield mature EPSPS enzymes upon import into the chloroplat which are closer in composition to the native EPSPSs not containing a transit peptide signal. Those skilled in the art will recognize that various 45 chimeric constructs can be made which utilize the functionality of a particular CTP to import a Class II EPSPS enzyme into the plant cell chloroplast. The chloroplast import of the Class II EPSPS can be determined using the following assay. Chloroplast Uptake Assay

Intact chloroplasts are isolated from lettuce (Latuca sativa, var. longifolia) by centrifugation in Percoll/ficoll gradients as modified from Bartlett et al., (1982). The final pellet of intact chloroplasts is suspended in 0.5 ml of sterile 330 mM sorbitol in 50 mM Hepes-KOH, pH 7.7, assayed for 55 chlorophyll (Arnon, 1949), and adjusted to the final chlorophyll concentration of 4 mg/ml (using sorbitol/Hepes). The yield of intact chloroplasts from a single head of lettuce is 3-6 mg chlorophyll.

A typical 300 µl uptake experiment contained 5 mM ATP, 60 8.3 mM unlabeled methionine, 322 mM sorbitol, 58.3 mM Hepes-KOH (pH 8.0), 50 µl reticulocyte lysate translation products, and intact chloroplasts from *L. sativa* (200 µg chlorophyll). The uptake mixture is gently rocked at room temperature (in 10×75 mm glass tubes) directly in front of 65 a fiber optic illuminator set at maximum light intensity (150 Watt bulb). Aliquot samples of the uptake mix (about 50 µl)

are removed at various times and fractionated over 100 µl silicone-oil gradients (in 150 µl polyethylene tubes) by centrifugation at 11,000x g for 30 seconds. Under these conditions, the intact chloroplasts form a pellet under the silicone-oil layer and the incubation medium (containing the reticulocyte lysate) floats on the surface. After centrifugation, the silicone-oil gradients are immediately frozen in dry ice. The chloroplast pellet is then resuspended in 50-100 μ l of lysis buffer (10 mM Hepes-KOH pH 7.5, 1 mM PMSF, 1 mM benzamidine, 5 mM e-amino-n-caproic acid, and 30 µg/ml aprotinin) and centrifuged at 15,000× g for 20 minutes to pellet the thylakoid membranes. The clear supernatant (stromal proteins) from this spin, and an aliquot of the reticulocyte lysate incubation medium from each uptake experiment, are mixed with an equal volume of 2×SDS-PAGE sample buffer for electrophoresis (Laemmli,

SDS-PAGE is carried out according to Laemmli (1970) in 3-17% (w/v) acrylamide slab gels (60 mm×1.5 mm) with 3% (w/v) acrylamide stacking gels (5 mm×1.5 mm). The gel is fixed for 20-30 rain in a solution with 40% methanol and 10% acetic acid. Then, the gel is soaked in EN³HANCE™ (DuPont) for 20-30 minutes, followed by drying the gel on a gel dryer. The gel is imaged by autoradiography, using an intensifying screen and an overnight exposure to determine whether the CP4 EPSPS is imported into the isolated chloroplasts.

Plant Transformation

Plants which can be made glyphosate-tolerant by practice of the present invention include, but are not limited to, soybean, cotton, corn, canola, oil seed rape, flax, sugarbeet, sunflower, potato, tobacco, tomato, wheat, rice, alfalfa and lettuce as well as various tree, nut and vine species.

Adouble-stranded DNA molecule of the present invention ("chimeric gene") can be inserted into the genome of a plant by any suitable method. Suitable plant transformation vectors include those derived from a Ti plasmid of Agrobacterium tumefaciens, as well as those disclosed, e.g., by Herrera-Estrella (1983), Beyart (1984), Klee (1985) and EPO publication 120,516 (Schilperoort et al.). In addition to plant transformation vectors derived from the Ti or root-inducing (Ri) plasmids of Agrobacterium, alternative methods can be used to insert the DNA constructs of this invention into plant cells. Such methods may involve, for example, the use of liposomes, electroporation, chemicals that increase free DNA uptake, free DNA delivery via microprojectile bombardment, and transformation using viruses or pollen.

Class II EPSPS Plant transformation vectors

Class II EPSPS DNA sequences may be engineered into vectors capable of transforming plants by using known techniques. The following description is meant to be illustrative and not to be read in a limiting sense. One of ordinary skill in the art would know that other plasmids, vectors, markers, promoters, etc. would be used with suitable results. The CTP2-CP4 EPSPS fusion was cloned as a BglII-EcoRI fragment into the plant vector pMON979 (described below) to form pMON17110, a map of which is presented in FIG. 13. In this vector the CP4 gene is expressed from the enhanced CaMV35S promoter (E35S; Kay et al. 1987). A FMV35S promoter construct (pMON17116) was completed in the following way: The Sall-NotI and the NotI-BellI fragments from pMON979 containing the Spc/AAC(3)-III/ oriV and the pBR322/Right Border/NOS 3'/CP4 EPSPS gene segment from pMON17110 were ligated with the XhoI-BglII FMV35S promoter fragment from pMON981. These vectors were introduced into tobacco, cotton and

A series of vectors was also completed in the vector pMON977 in which the CP4 EPSPS gene, the CTP2-CP4 EPSPS fusion, and the CTP3-CP4 fusion were cloned as BglII-SacI fragments to form pMON17124, pMON17119, and pMON17120, respectively. These plasmids were intro- 5 duced into tobacco. A pMON977 derivative containing the CTP2-LBAA EPSPS gene was also completed (pMON17206) and introduced into tobacco.

The pMON979 plant transformation/expression vector the neomycin phosphotransferase typeII (KAN) gene in pMON886 with the 0.89 kb fragment containing the bacterial gentamicin-3-N-acetyltransferase type III (AAC(3)-III) gene (Hayford et al., 1988). The chimeric P-35S/AA(3)-III/ NOS 3' gene encodes gentamicin resistance which permits 15 selection of transformed plant cells. pMON979 also contains a 0.95 kb expression cassette consisting of the enhanced CaMV 35S promoter (Kay et al., 1987), several unique restriction sites, and the NOS 3' end (P-En-CaMV35SfNOS 3'). The rest of the pMON979 DNA segments are exactly the 20 same as in pMON886.

Plasmid pMON886 is made up of the following segments of DNA. The first is a 0.93 kb AvaI to engineered-EcoRV fragment isolated from transposon Tn7 that encodes bacterial spectinomycin/streptomycin resistance (Spc/Str), which 25 is a determinant for selection in E. coli and Agrobacterium tumefaciens. This is joined to the 1.61 kb segment of DNA encoding a chimeric kanamycin resistance which permits selection of transformed plant cells. The chimeric gene (P-35S/KANfNOS 3') consists of the cauliflower mosaic 30 virus (CaMV) 35S promoter, the neomycin phosphotransferase typeII (KAN) gene, and the 3'-nontranslated region of the nopaline synthase gene (NOS 3') (Fraley et al., 1983). The next segment is the 0.75 kb oriV containing the origin of replication from the RK2 plasmid. It is joined to the 3.1 35 kb SalI to PvuI segment of pBR322 (ori322) which provides the origin of replication for maintenance in E. coli and the bom site for the conjugational transfer into the Agrobacterium tumefaciens cells. The next segment is the 0.36 kb PvuI to BclI from pTIT37 that carries the nopaline-type T-DNA 40 right border (Fraley et al., 1985).

The pMON977 vector is the same as pMON981 except for the presence of the P-En-CaMV35S promoter in place of the FMV35S promoter (see below).

The pMON981 plasmid contains the following DNA 45 segments: the 0.93 kb fragment isolated from transposon Tn7 encoding bacterial spectinomycin/streptomycin resistance [Spc/Str; a determinant for selection in E. coli and Agrobacterium tumefaciens (Fling et al., 1985)]; the chimeric kanamycin resistance gene engineered for plant 50 expression to allow selection of the transformed tissue, consisting of the 0.35 kb cauliflower mosaic virus 35S promoter (P-35S) (Odell et al., 1985), the 0.83 kb neomycin phosphotransferase type II gene (KAN), and the 0.26 kb 3'-nontranslated region of the nopaline synthase gene (NOS 55 3') (Fraley et al., 1983); the 0.75 kb origin of replication from the RK2 plasmid (oriV) (Stalker et al., 1981); the 3.1 kb Sall to Pvul segment of pBR322 which provides the origin of replication for maintenance in E. coli (ori-322) and the born site for the conjugational transfer into the Agro- 60 bacterium tumefaciens cells, and the 0.36 kb PvuI to BclI fragment from the pTTT37 plasmid containing the nopalinetype T-DNA right border region (Fraley et al., 1985). The expression cassette consists of the 0.6 kb 35S promoter from the figwort mosaic virus (P-FMV35S) (Gowda et al., 1989) 65 and the 0.7 kb 3' non-translated region of the pea rbcS-E9 gene (E9 3') (Coruzzi et al., 1984, and Morelli et al., 1985).

32

The 0.6 kb SspI fragment containing the FMV35S promoter (FIG. 1) was engineered to place suitable cloning sites downstream of the transcriptional start site. The CTP2-CP4syn gene fusion was introduced into plant expression vectors (including pMON981, to form pMON17131; FIG. 14) and transformed into tobacco, canola, potato, tomato, sugarbeet, cotton, lettuce, cucumber, oil seed rape, poplar, and Arabidopsis.

The plant vector containing the Class II EPSPS gene may was derived from pMON886 (described below) by replacing 10 be mobilized into any suitable Agrobacterium strain for transformation of the desired plant species. The plant vector may be mobilized into an ABI Agrobacterium strain. A suitable ABI strain is the A208 Agrobacterium tumefaciens carrying the disarmed Ti plasmid pTiC58 (pMP90RK) (Koncz and Schell, 1986). The Ti plasmid does not carry the T-DNA phytohormone genes and the strain is therefore unable to cause the crown gall disease. Mating of the plant vector into ABI was done by the triparental conjugation system using the helper plasmid pRK2013 (Ditta et al., 1980). When the plant tissue is incubated with the ABI-::plant vector conjugate, the vector is transferred to the plant cells by the vir functions encoded by the disarmed pTiC58 plasmid. The vector opens at the T-DNA right border region, and the entire plant vector sequence may be inserted into the host plant chromosome. The pTiC58 Ti plasmid does not transfer to the plant cells but remains in the Agrobacterium. Class II EPSPS free DNA vectors

Class II EPSPS genes may also be introduced into plants through direct delivery methods. A number of direct delivery vectors were completed for the CP4 HPSPS gene. The vector pMON13640, a map of which is presented in FIG. 15, is described here. The plasmid vector is based on a pUC plasmid (Vicira and Messing, 1987) containing, in this case, the nptII gene (kanamycin resistance; KAN) from Tn903 to provide a selectable marker in E. coli. The CTP4-EPSPS gene fusion is expressed from the P-FMV35S promoter and contains the NOS 3' polyadenylation sequence fragment and from a second cassette consisting of the E35S promoter, the CTP4-CP4 gene fusion and the NOS 3' sequences. The scoreable GUS marker gene (Jefferson et al., 1987) is expressed from the mannopine synthase promoter (P-MAS; Velten et al., 1984) and the soybean 7S storage protein gene 3' sequences (Schuler et al., 1982). Similar plasmids could also be made in which CTP-CP4 EPSPS fusions are expressed from the enhanced CaMV35S promoter or other plant promoters. Other vectors could be made that are suitable for free DNA delivery into plants and such are within the skill of the art and contemplated to be within the scope of this disclosure.

Plastid transformation:

While transformation of the nuclear genome of plants is much more developed at this time, a rapidly advancing alternative is the transformation of plant organelles. The transformation of plastids of land plants and the regeneration of stable transformants has been demonstrated (Svab et al., 1990; Maliga et al., 1993). Transformants are selected, following double cross-over events into the plastid genome, on the basis of resistance to spectinomycin conferred through rRNA changes or through the introduction of an aminoglycoside 3"-adenyltransferase gene (Svab et al., 1990; Svab and Maliga, 1993), or resistance to kanamycin through the neomycin phosphotransferase NptII (Carrer et al., 1993). DNA is introduced by biolistic means (Svab et al, 1990; Maliga et al., 1993) or by using polyethylene glycol (O'Neill et al., 1993). This transformation route results in the production of 500-10,000 copies of the introduced sequence per cell and high levels of expression of the

introduced gene have been reported (Carrer et al., 1993; Maliga et al., 1993). The use of plastid transformation offers the advantages of not requiring the chloroplast transit peptide signal sequence to result in the localization of the heterologous Class II EPSPS in the chloroplast and the 5 potential to have many copies of the heterologous plant-expressible Class II EPSPS gene in each plant cell since at least one copy of the gene would be in each plastid of the cell.

Plant Regeneration

When expression of the Class II EPSPS gene is achieved in transformed cells (or protoplasts), the cells (or protoplasts) are regenerated into whole plants. Choice of methodology for the regeneration step is not critical, with suitable protocols being available for hosts from Leguminosae (alfalfa, soybean, clover, etc.), Umbelliferae (carrot, celery, parsnip), Cruciferae (cabbage, radish, rapeseed, etc.), Cucurbitaceae (melons and cucumber), Gramineae (wheat, rice, corn, etc.), Solanaceae (potato, tobaceo, tomato, peppers), various floral crops as well as various trees such as poplar or apple, nut crops or vine plants such as grapes. See, e.g., Ammirato, 1984; Shimamoto, 1989; Fromm, 1990; Vasil, 1990.

The following examples are provided to better elucidate the practice of the present invention and should not be 25 interpreted in any way to limit the scope of the present invention. Those skilled in the art will recognize that various modifications, truncations, etc. can be made to the methods and genes described herein while not departing from the spirit and scope of the present invention.

In the examples that follow, EPSPS activity in plants is assayed by the following method. Tissue samples were collected and immediately frozen in liquid nitrogen. One gram of young leaf tissue was frozen in a mortar with liquid nitrogen and ground to a fine powder with a pestle. The 35 powder was then transferred to a second mortar, extraction buffer was added (1 ml/gram), and the sample was ground for an additional 45 seconds. The extraction buffer for canola consists of 100 mM Tris, 1 mM EDTA, 10% glycerol, 5 mM DTT, 1 mM BAM, 5 mM ascorbate, 1.0 mg/ml BSA, 40 pH 7.5 (4° C.). The extraction buffer for tobacco consists of 100 mM Tris, 10 mM EDTA, 35 mM KCl, 20% glycerol, 5 mM DTT, 1 mM BAM, 5 mM ascorbate, 1.0 mg/ml BSA, pH 7.5 (4° C.). The mixture was transferred to a microfuge tube and centrifuged for 5 minutes. The resulting superna- 45 tants were desalted on spin G-50 (Pharmacia) columns, previously equilibrated with extraction buffer (without BSA), in 0.25 ml aliquots. The desalted extracts were assayed for EPSP synthase activity by radioactive HPLC assay. Protein concentrations in samples were determined by 50 the BioRad microprotein assay with BSA as the standard.

Protein concentrations were determined using the BioRad Microprotein method. BSA was used to generate a standard curve ranging from 2-24 µg. Either 800 µl of standard or diluted sample was mixed with 200 µl of concentrated 55 BioRad Bradford reagent. The samples were vortexed and read at A(595) after -5 minutes and compared to the standard curve.

EPSPS enzyme assays contained HEPES (50 mM), shikimate-3-phosphate (2 mM), NH_4 molybdate (0.1 mM) 60 and KF (5 mM), with or without glyphosate (0.5 or 1.0 mM). The assay mix (30 μ l) and plant extract (10 μ l) were preincubated for 1 minute at 25° C. and the reactions were initiated by adding ¹⁴C-PEP (1 mM). The reactions were quenched after 3 minutes with 50 μ l of 90% EtOH/0.1M 65 HOAc, pH 4.5. The samples were spun at 6000 rpm and the resulting supernatants were analyzed for ¹⁴C-EPSP produc-

34

tion by HPLC. Percent resistant EPSPS is calculated from the EPSPS activities with and without glyphosate.

The percent conversion of ¹⁴C labeled PHP to ¹⁴C EPSP was determined by HPLC radioassay using a C18 guard column (Brownlee) and an AX₁₀₀ HPLC column (0.4×25 cm, Synchropak) with 0.28M isocratic potassium phosphate eluant, pH 6.5, at 1 ml/min. Initial velocities were calculated by multiplying fractional turnover per unit time by the initial concentration of the labeled substrate (1 mM). The assay was linear with time up to ~3 minutes and 30% turnover to EPSPS. Samples were diluted with 10 mM Tris, 10% glycerol, 10 mM DTT, pH 7.5 (4° C.) if necessary to obtain results within the linear range.

In these assays DL-dithiotheitol (DTT), benzamidine (BAM), and bovine serum albumin (BSA, essentially globulin free) were obtained from Sigma. Phosphoenolpyruvate (PEP) was from Boehringer Mannheim and phosphoenol-[1-14C]pyruvate (28 mCi/mmol) was from Amersham.

EXAMPLES

Example 1

Transformed tobacco plants have been generated with a number of the Class II EPSPS gene vectors containing the CP4 EPSPS DNA sequence as described above with suitable expression of the EPSPS. These transformed plants exhibit glyphosate tolerance imparted by the Class II CP4 EPSPS.

Transformation of tobacco employs the tobacco leaf disc transformation protocol which utilizes healthy leaf tissue about 1 month old. After a 15-20 minutes surface sterilization with 10% Clorox plus a surfactant, the leaves are rinsed 3 times in sterile water. Using a sterile paper punch, leaf discs are punched and placed upside down on MS104 media (MS salts 4.3 g/l, sucrose 30 g/l, B5 vitamins 500×2 ml/l, NAA 0.1 mg/l, and BA 1.0 mg/l) for a 1 day preculture.

The discs are then inoculated with an overnight culture of a disarmed Agrobacterium ABI strain containing the subject vector that had been diluted 1/5 (i.e.: about 0.6 OD). The inoculation is done by placing the discs in centrifuge tubes with the culture. After 30 to 60 seconds, the liquid is drained off and the discs were blotted between sterile filter paper. The discs are then placed upside down on MS104 feeder plates with a filter disc to co-culture.

After 2-3 days of co-culture, the discs are transferred, still upside down, to selection plates with MS104 media. After 2-3 weeks, callus tissue formed, and individual clumps are separated from the leaf discs. Shoots are cleanly cut from the callus when they are large enough to be distinguished from stems. The shoots are placed on hormone-free rooting media (MSO: MS salts 4.3 g/l, sucrose 30 g/l, and B5 vitamins 500×2 ml/l) with selection for the appropriate antibiotic resistance. Root formation occurred in 1-2 weeks. Any leaf callus assays are preferably done on rooted shoots while still sterile. Rooted shoots are then placed in soil and kept in a high humidity environment (i.e.: plastic containers or bags). The shoots are hardened off by gradually exposing them to ambient humidity conditions.

Expression of CP4 EPSPS protein in transformed plants

Tobacco cells were transformed with a number of plant vectors containing the native CP4 EPSPS gene, and using different promoters and/or CTP's. Preliminary evidence for expression of the gene was given by the ability of the leaf tissue from antibiotic selected transformed shoots to recallus on glyphosate. In some cases, glyphosate-tolerant callus was selected directly following transformation. The level of expression of the CP4 EPSPS was determined by the level

_

of glyphosate-tolerant EPSPS activity (assayed in the presence of 0.5 mM glyphosate) or by Western blot analysis using a goat anti-CP4 EPSPS antibody. The Western blots were quantitated by densitometer tracing and comparison to a standard curve established using purified CP4 EPSPS. These data are presented as % soluble leaf protein. The data from a number of transformed plant lines and transformation vectors are presented in Table VI below.

35

TABLE VI

Expression of CP4 KPSPS in transformed tobacco tissue		
Vector	Plant #	CP4 EPSPS ** (% leaf protein)
pMON17110	25313	0.02
pMON17110	25329	0.04
pMON17116	25095	0.02
pMON17119	25106	0.09
pMON17119	25762	0.09
pMON17119	25767	0.03

**Glyphosate-tolerant EPSPS activity was also demonstrated in leaf extracts for these plants.

Glyphosate tolerance has also been demonstrated at the whole plant level in transformed tobacco plants. In tobacco, R_o transformants of CTP2-CP4 EPSPS were sprayed at 0.4 lb/acre (0.448 kg/hectare), a rate sufficient to kill control non-transformed tobacco plants corresponding to a rating of 3, 1 and 0 at days 7, 14 and 28, respectively, and were analyzed vegetatively and reproductively (Table VII).

TABLE VII

	Score**								
		<u> </u>							
Vector/Plant #	day 7	day 14	day 28	Fertile					
ION17110/25313	6	4	2	100					
ION17110/25329	9	10	10	yes					
MON17119/25106	9	10	yes						

*Spray rate = 0.4 Ib/acre (0.448 kg/hectare)

**Plants are evaluated on a numerical scoring system of 0-10 where a vegetative score of 10 represents no damage relative to nonsmayed controls and 0 represents a dead plant. Reproductive scores (Fertile) are determined at 45 28 days after spraying and are evaluated as to whether or not the plant is fertile.

Example 2A

Canola plants were transformed with the pMON17110, 50 pMON17116, and pMON17131 vectors and a number of plant lines of the transformed canola were obtained which exhibit glyphosate tolerance.

Plant Material

Seedlings of *Brassica napus* cv Westar were established 55 in 2 inch (~5 cm) pots containing Metro Mix 350. They were grown in a growth chamber at 24° C., 16/8 hour photoperiod, light intensity of 400 uEm⁻²sec⁻¹ (HID lamps). They were fertilized with Peters 20-10-20 General Purpose Special. After 2½ weeks they were transplanted to 6 inch 60 (~15 cm) pots and grown in a growth chamber at 15°/10° C. day/night temperature, 16/8 hour photoperiod, light intensity of 800 uEm⁻²sec⁻¹ (HID lamps). They were fertilized with Peters 15-30-15 Hi-Phos Special.

Transformation/Selection/Regeneration

Four terminal internodes from plants just prior to bolting or in the process of bolting but before flowering were **36**

removed and surfaced sterilized in 70% v/v ethanol for 1 minute, 2% w/v sodium hypochlorite for 20 minutes and rinsed 3 times with sterile deionized water. Stems with leaves attached could be refrigerated in moist plastic bags for up to 72 hours prior to sterilization. Six to seven stem segments were cut into 5 mm discs with a Redco Vegetable Slicer 200 maintaining orientation of basal end.

The Agrobacterium was grown overnight on a rotator at 24° C. in 2 mls of Luria Broth containing 50 mg/l to kanamycin, 24 mg/l chloramphenicol and 100 mg/l spectinomycin. A 1:10 dilution was made in MS (Murashige and Skoog) media giving approximately 9×10⁸ cells per ml. This was confirmed with optical density readings at 660 mu. The stem discs (explants) were inoculated with 1.0 ml of Agrobacterium and the excess was aspirated from the explants.

The explants were placed basal side down in petri plates containing 1/10× standard MS salts, B5 vitamins, 3% sucrose, 0.8% agar, pH 5.7, 1.0 mg/l 6-benzyladenine (BA). The plates were layered with 1.5 ml of media containing MS 20 salts, B5 vitamins, 3% sucrose, pH 5.7, 4.0 mg/l p-chlorophenoxyacetic acid, 0.005 mg/l kinetin and covered with sterile filter paper.

Following a 2 to 3 day co-culture, the explants were transferred to deep dish petri plates containing MS salts, B5 vitamins, 3% sucrose, 0.8% agar, pH 5.7, 1 mg/l BA, 500 mg/l carbenicillin, 50 mg/l cefotaxime, 200 mg/l kanamycin or 175 mg/l gentamicin for selection. Seven explants were placed on each plate. After 3 weeks they were transferred to fresh media, 5 explants per plate. The explants were cultured in a growth room at 25° C., continuous light (Cool White). Expression Assay

After 3 weeks shoots were excised from the explants. Leaf recallusing assays were initiated to confirm modification of R_o shoots. Three tiny pieces of leaf tissue were placed on recallusing media containing MS salts, B5 vitamins, 3% sucrose, 0.8% agar, pH 5.7, 5.0 mg/l BA, 0.5 mg/l naphthalene acetic acid (NAA), 500 mg/l carbenicillin, 50 mg/l cefotaxime and 200 mg/l kanamycin or gentamicin or 0.5 mM glyphosate. The leaf assays were incubated in a growth room under the same conditions as explant culture. After 3 weeks the leaf recallusing assays were scored for herbicide tolerance (callus or green leaf tissue) or sensitivity (bleaching).

Transplantation

At the time of excision, the shoot stems were dipped in Rootone® and placed in 2 inch (-5 cm) pots containing Metro-Mix 350 and placed in a closed humid environment. They were placed in a growth chamber at 24° C., 16/8 hour photoperiod, 400 uEm⁻¹sec⁻²(HID lamps) for a hardening-off period of approximately 3 weeks.

The seed harvested from R_o plants is R_1 seed which gives rise to R_1 plants. To evaluate the glyphosate tolerance of an R_o plant, its progeny are evaluated. Because an R_o plant is assumed to be hemizygous at each insert location, selfing results in maximum genotypic segregation in the R_1 . Because each insert acts as a dominant allele, in the absence of linkage and assuming only one hemizygous insert is required for tolerance expression, one insert would segregate 3:1, two inserts, 15:1, three inserts 63:1, etc. Therefore, relatively few R_1 plants need be grown to find at least one resistant phenotype.

Seed from an R_o plant is harvested, threshed, and dried before planting in a glyphosate spray test. Various techniques have been used to grow the plants for R₁ spray evaluations. Tests are conducted in both greenhouses and growth chambers. Two planting systems are used; ~10 cm pots or plant trays containing 32 or 36 cells. Soil used for

planting is either Metro 350 plus three types of slow release fertilizer or plant Metro 350. Irrigation is either overhead in greenhouses or sub-irrigation in growth chambers. Fertilizer is applied as required in irrigation water. Temperature regimes appropriate for canola were maintained. A sixteen hour photoperiod was maintained. At the onset of flowering, plants are transplanted to ~15 cm pots for seed production.

A spray "batch" consists of several sets of R₁ progenies all sprayed on the same date. Some batches may also include evaluations of other than R_1 plants. Each batch also includes 1 sprayed and unsprayed non-transgenic genotypes representing the genotypes in the particular batch which were putatively transformed. Also included in a batch is one or more non-segregating transformed genotypes previously identified as having some resistance.

Two-six plants from each individual R, progeny are not sprayed and serve as controls to compare and measure the glyphosate tolerance, as well as to assess any variability not induced by the glyphosate. When the other plants reach the 2-4 leaf stage, usually 10 to 20 days after planting, glypho- 20 sate is applied at rates varying from 0.28 to 1.12 kg/ha, depending on objectives of the study. Low rate technology using low volumes has been adopted. A laboratory track sprayer has been calibrated to deliver a rate equivalent to field conditions.

A scale of 0 to 10 is used to rate the sprayed plants for vegetative resistance. The scale is relative to the unsprayed plants from the same R, plant. A 0 is death, while a 10 represents no visible difference from the unsprayed plant. A higher number between 0 and 10 represents progressively 30 less damage as compared to the unsprayed plant. Plants are scored at 7, 14, and 28 days after treatment (DAT), or until bolting, and a line is given the average score of the sprayed plants within an R, plant family.

Six integers are used to qualitatively describe the degree 35 of reproductive damage from glyphosate:

- 0: No floral bud development
- 2: Floral buds present, but aborted prior to opening
- 4: Flowers open, but no anthers, or anthers fail to extrude 40 past petals
- 6: Sterile anthers
- 8: Partially sterile anthers
- 10: Fully fertile flowers

Plants are scored using this scale at or shortly after 45 initiation of flowering, depending on the rate of floral structure development.

Expression of EPSPS in Canola

After the 3 week period, the transformed canola plants 50 were assayed for the presence of glyphosate-tolerant EPSPS activity (assayed in the presence of glyphosate at 0.5 mM). The results are shown in Table VIII.

TABLE VIII

TABLE VIII								
Expression of CP4 EPSPS in transformed Canola plants								
	Plant #	% resistant EPSPS activity of Leaf extract (at 0.5 mM glyphosate)	60					
Vector Control		0						
pMON17110	41	47						
pMON17110	52	28						
pMON17110	71	82						
pMON17110	104	<i>7</i> 5						
pMON17110	172	84	6					
pMON17110	177	85						

TABLE VIII-continued

Expression of CP4 EPSPS in transformed Canola plants									
	Plant #	% resistant EPSPS activity of Leaf extract (at 0.5 mM glyphosate)							
pMON17110	252	29+							
pMON17110	350	49							
pMON17116	40	25							
pMON17116	99	87							
pMON17116	175	94							
pMON17116	178	43							
pMON17116	182	18							
pMON17116	252	69							
pMON17116	298	44*							
pMON17116	332	89							
pMON17116	383	97							
pMON17116	395	52							

*assayed in the presence of 1.0 mM glyphosate

R₁ transformants of canola were then grown in a growth chamber and sprayed with glyphosate at 0.56 kg/ha (kilogram/hectare) and rated vegetatively. These results are shown in Table IXA-IXC. It is to be noted that expression of glyphosate resistant EPSPS in all tissues is preferred to observe optimal glyphosate tolerance phenotype in these transgenic plants. In the Tables below, only expression results obtained with leaf tissue are described.

TABLE IXA

Glyphosate tolerance in Class II HPSPS canola R₁ transformant (pMON17110 = P-E35S; pMON17116 = P-FMV35S; R1 plants; Spray rate = 0.56 kg/ha)

	. % resistant	Vegetative Score**				
Vector/Plant No.	EPSPS*	day 7	day 14			
Control Westar	0	5	3			
pMON17110/41	47	6	7			
pMON17110/71	82	6	7			
pMON17110/177	85	9	10			
pMON17116/40	25	9	9			
pMON17116/99	87	9	10			
pMON17116/175	94	9	10			
pMON17116/178	43	6	3			
pMON17116/182	18	9	10			
pMON17116/383	97	9	10			

TABLE IXB

Glyphosate tolerance in Class II EPSPS canola R₁ transformants (pMON17131 = P-FWV35S; R1 plants; Spray rate = 0.84 kg/h2)

Vegetative score** day 14	Reproductive score day 28			
10	10			
9	10			
9	10			
9	10			
9	10			
10	10			
10	10			
1	0			
	day 14 10 9 9 9 10			

TABLE IXC

Glyphosate tolerance in Class I EPSPS canola transformants (P-E35S; R2 Plants; Spray rate = 0.28 kg/ha)

Vector/Plant No.	% resistant	Vegetative Score**				
Vector/Plant No.	EPSPS*	day 7	day 14			
Control Westar	0	4	2			
pMON899/715	96	5	6			
pMON899/744	95	8	8			
pMON899/794	86	6	4			
pMON899/818	81	7	. 8			
pMON899/885	57	7	6			

*% resistant EPSPS activity in the presence of 0.5 mM glyphosate **A vegetative score of 10 indicates no damage, a score of 0 is given to a dead

The data obtained for the Class II EPSPS transformants may be compared to glyphosate-tolerant Class I EPSP transformants in which the same promoter is used to express the EPSPS genes and in which the level of glyphosatetolerant EPSPS activity was comparable for the two types of transformants. A comparison of the data of pMON17110 [in Table IXA] and pMON17131 [Table IXB] with that for pMON899 [in Table IXC; the Class I gene in pMON899 is that from A. thaliana (Klee et al., 1987) in which the glycine at position 101 was changed to an alanine] illustrates that the Class II EPSPS is at least as good as that of the Class I EPSPS. An improvement in vegetative tolerance of Class II EPSPS is apparent when one takes into account that the Class II plants were sprayed at twice the rate and were tested as R₁ plants.

Example 2B

The construction of two plant transformation vectors and the transformation procedures used to produce glyphosatetolerant canola plants are described in this example The vectors, pMON17209 and pMON17237, were used to generate transgenic glyphosate-tolerant canola lines. The vectors each contain the gene encoding the 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4. The vectors also contain enzyme (GOX) from Achromobacter sp. strain LBAA (Barry et al., 1992) or the gene encoding a variant of GOX (GOX v.247) which displays improved catalytic properties. These enzymes convert glyphosate to aminomethylphosphonic acid and glyoxylate and protect the plant from damage 50 by the metabolic inactivation of glyphosate. The combined result of providing an alternative, resistant EPSPS enzyme and the metabolism of glyphosate produces transgenic plants with enhanced tolerance to glyphosate

molecular biology and microbial genetics approaches were employed (Maniatis et al., 1982). Site-directed mutageneses were carried out as described by Kunkel et al. (1987). Plant-preferred genes were synthesized and the sequence confirmed.

Plant transformation vectors. The following describes the general features of the plant transformation vectors that were modified to form vectors pMON17209 and pMON17237. The Agrobacterium mediated plant transformation vectors contain the following well-characterized DNA segments 65 which are required for replication and function of the plasmids (Rogers and Klee, 1987; Klee and Rogers, 1989).

The first segment is the 0.45 kb ClaI-DraI fragment from the pTi15955 octopine Ti plasmid which contains the T-DNA left border region (Barker et al., 1983). It is joined to the 0.75 kb origin of replication (oriV) derived from the broad-host range plasmid RK2 (Stalker et al., 1981). The next segment is the 3.1 kb Sall-PvuI segment of pBR₃₂₂ which provides the origin of replication for maintenance in E. coli and the born site for the conjugational transfer into the Agrobacterium turnefaciens cells (Bolivar et al., 1977). This is fused to the 0.93 kb fragment isolated from transposon Tn7 which encodes bacterial spectinomycin and streptomycin resistance (Fling et al., 1985), a determinant for the selection of the plasmids in E. coli and Agrobacterium. It is fused to the 0.36 kb PvuI-BclI fragment from the pTiT37 plasmid which contains the nopaline-type T-DNA right border region (Fraley et al., 1985). Several chimeric genes engineered for plant expression can be introduced between the Ti right and left border regions of the vector. In addition to the elements described above, this vector also includes the 35S promoter/ NPTII/NOS 3' cassette to enable selection of transformed plant tissues on kanamycin (Klee and Rogers, 1989; Fraley et al., 1983; and Odell, et al., 1985) within the borders. An "empty" expression cassette is also present between the borders and consists of the enhanced E35S promoter (Kay et al., 1987), the 3' region from the small subunit of RUBP carboxylase of pea (E9) (Coruzzi et al., 1984; Morelli et al., 1986), and a number of restriction enzyme sites that may be used for the cloning of DNA sequences for expression in plants. The plant transformation system based on Agrobacterium tumefaciens delivery has been reviewed (Klee and Rogers, 1989; Fraley et al., 1986). The Agrobacterium mediated transfer and integration of the vector T-DNA into the plant chromosome results in the expression of the chimeric genes conferring the desired phenotype in plants.

Bacterial Inoculum. The binary vectors are mobilized into Agrobacterium tumefaciens strain ABI by the triparental conjugation system using the helper plasmid pRK2013 (Ditta et al., 1980). The ABI strain contains the disarmed pTiC58 plasmid pMP90RK (Koncz and Schell, 1986) in the chloramphenicol resistant derivative of the Agrobacterium tumefaciens strain A208.

Transformation procedure. Agrobacterium inocula were grown overnight at 28° C. in 2 ml of LBSCK (LBSCK is made as follows: LB liquid medium [1 liter volume]=10 g either the gox gene encoding the glyphosate oxidoreductase 45 NaCl; 5 g Yeast Extract; 10 g tryptone; pH 7.0, and autoclave for 22 minutes. After autoclaving, add spectinomycin (50 mg/ml stock)-2 ml, kanamycin (50 mg/ml stock)-1 ml, and chloramphenicol (25 mg/ml stock)—1 ml.). One day prior to inoculation, the Agrobacterium was subcultured by inoculating 200 µl into 2 ml of fresh LBSCK and grown overnight. For inoculation of plant material, the culture was diluted with MSO liquid medium to an A660 range of 0.2-0.4.

Seedlings of Brassica napus cv. Westar were grown in Molecular biology techniques. In general, standard 55 Metro Mix 350 (Huminert Seed Co., St. Louis, Mo.) in a growth chamber with a day/night temperature of 15°/10° C., relative humidity of 50%, 16h/8h photoperiod, and at a light intensity of 500 µmol m⁻² sec⁻¹. The plants were watered daily (via sub-irrigation) and fertilized every other day with 60 Peter's 15:30:15 (Fogelsville, Pa.).

> In general, all media recipes and the transformation protocol follow those in Fry et. al. (1987). Five to six week-old Westar plants were harvested when the plants had bolted (but prior to flowering), the leaves and buds were removed, and the 4-5 inches of stem below the flower buds were used as the explant tissue source. Following sterilization with 70% ethanol for 1 min and 38% Clorox for 20 min,

the stems were rinsed three times with sterile water and cut into 5 mm-long segments (the orientation of the basal end of the stem segments was noted). The plant material was incubated for 5 minutes with the diluted Agrobacterium culture at a rate of 5 ml of culture per 5 stems. The suspension of bacteria was removed by aspiration and the explants were placed basal side down—for an optimal shoot regeneration response—onto co-culture plates (1/10 MSO solid medium with a 1.5 ml TXD (tobacco xanthi diploid) liquid medium overlay and covered with a sterile 8.5 cm filter paper). Fifty-to-sixty stem explants were placed onto each co-culture plate.

After a 2 day co-culture period, stem explants were moved onto MS medium containing 750 mg/l carbenicillin, 50 mg/l cefotaxime, and 1 mg/l BAP (benzylaminopurine) for 3 days. The stem explants were then placed for two periods of three weeks each, again basal side down and with 5 explants per plate, onto an MS/0.1 mM glyphosate, selection medium (also containing carbenicillin, cefotaxime, and BAP (The glyphosate stock [0.5M] is prepared as described in the following: 8.45 g glyphosate [analytical 20 grade] is dissolved in 50 ml deionized water, adding KOH pellets to dissolve the glyphosate, and the volume is brought to 100 ml following adjusting the pH to 5.7. The solution is filter-sterilized and stored at 4° C.). After 6 weeks on this glyphosate selection medium, green, normally developing 25 shoots were excised from the stem explants and were placed onto fresh MS medium containing 750 mg/l carbenicillin, 50 mg/l cefotaxime, and 1 mg/l BAP, for further shoot development. When the shoots were 2-3 inches tall, a fresh cut at the end of the stem was made, the cut end was dipped in 30 Root-tone, and the shoot was placed in Metro Mix 350 soil and allowed to harden-off for 2-3 weeks.

Construction of Canola transformation vector pMON17209. The EPSPS gene was isolated originally from Agrobacterium sp. strain CP4 and expresses a highly toler- 35 ant enzyme. The original gene contains sequences that could be inimical to high expression of the gene in some plants. These sequences include potential polyadenylation sites that are often A+T rich, a higher G+C % than that frequently found in dicotyledonous plant genes (63% versus ~50%), 40 concentrated stretches of G and C residues, and codons that may not used frequently in dicotyledonous plant genes. The high G+C % in the CP4 HPSPS gene could also result in the formation of strong hairpin structures that may affect expression or stability of the RNA. A plant preferred version of the 45 gene was synthesized and used for these vectors. This coding sequence was expressed in E. coli from a PRecAgene10L vector (Olins et al., 1988) and the EPSPS activity was compared with that from the native CP4 EPSPS gene. The app K_m for PEP for the native and synthetic genes was 50 11.8 µM and 12.7 µM, respectively, indicating that the enzyme expressed from the synthetic gene was unaltered. The N-terminus of the coding sequence was then mutagenized to place an SphI site (GCATGC) at the ATG to permit the construction of the CTP2-CP4 synthetic fusion 55 for chloroplast import. This change had no apparent effect on the in vivo activity of CP4 EPSPS in E. coli as judged by complementation of the aroA mutant. A CTP-CP4 EPSPS fusion was constructed between the Arabidopsis thaliana EPSPS CTP (Klee et al., 1987) and the CP4 EPSPS coding 60 sequences. The Arabidopsis CTP was engineered by sitedirected mutagenesis to place a SphI restriction site at the CTP processing site. This mutagenesis replaced the Glu-Lys at this location with Cys-Met. The CTP2-CP4 EPSPS fusion was tested for import into chloroplasts isolated from Lactuca 65 sativa using the methods described previously (della-Cioppa et al., 1986; 1987).

The GOX gene that encodes the glyphosate metabolizing enzyme glyphosate oxidoreductase (GOX) was cloned originally from Achromobacter sp. strain LBAA (Hallas et al., 1988; Barry et al., 1992). The gox gene from strain LBAA was also resynthesized in a plant-preferred sequence version and in which many of the restriction sites were removed (PCT Appln. No. WO 92/00377). The GOX protein is targeted to the plastids by a fusion between the C-terminus of a CTP and the N-terminus of GOX. A CTP, derived from the SSU1A gene from Arabidopsis thaliana (Timko et al., 1988) was used. This CTP (CTP1) was constructed by a combination of site-directed mutageneses. The CIP1 is made up of the SSU1A CTP (amino acids 1-55), the first 23 amino acids of the mature SSU1A protein (56-78), a serine residue (amino acid 79), a new segment that repeats amino acids 50 to 56 from the CTP and the first two from the mature protein (amino acids 80-87), and an alanine and methionine residue (amino acid 88 and 89). An NcoI restriction site is located at the 3' end (spans the Met89 codon) to facilitate the construction of precise fusions to the 5' of GOX. At a later stage, a BgIII site was introduced upstream of the N-terminus of the SSU1A sequences to facilitate the introduction of the fusions into plant transformation vectors. A fusion was assembled between CTP1 and the synthetic GOX gene.

The CP4 EPSPS and GOX genes were combined to form pMON17209 as described in the following. The CTP2-CP4 EPSPS fusion was assembled and inserted between the constitutive FMV35S promoter (Gowda et al., 1989; Richins et al., 1987) and the E9 3' region (Coruzzi et al., 1984; Morelli et al., 1985) in a pUC vector (Yannisch-Perron et al., 1985; Vieira and Messing, 1987) to form pMON17190; this completed element may then be moved easily as a NotI-NotI fragment to other vectors. The CTP1-GOX fusion was also assembled in a pUC vector with the FMV35S promoter. This element was then moved as a HindIII-BamHI fragment into the plant transformation vector pMON10098 and joined to the E9 3' region in the process. The resultant vector pMON17193 has a single NotI site into which the FMV 35S/CTP2-CP4 EPSPS/E9 3' element from pMON17190 was cloned to form pMON17194. The kanamycin plant transformation selection cassette (Fraley et al., 1985) was then deleted from pMON17194, by cutting with XhoI and re-ligating, to form the pMON17209 vector (FIG. 24).

Construction of Canola transformation vector pMON17237. The GOX enzyme has an apparent Km for glyphosate [appK_m(glyphosate)] of ~25 mM. In an effort to improve the effectiveness of the glyphosate metabolic rate in planta, a variant of GOX has been identified in which the appK_m(glyphosate) has been reduced approximately 10-fold; this variant is referred to as GOX v.247 and the sequence differences between it and the original plantpreferred GOX are illustrated in PCT Appln. No. WO 92/00377. The GOX v.247 coding sequence was combined with CTP1 and assembled with the FMV35S promoter and the E9 3' by cloning into the pMON17227 plant transformation vector to form pMON17241. In this vector, effectively, the CP4 EPSPS was replaced by GOX v.247. The pMON17227 vector had been constructed by replacing the CTP1-GOX sequences in pMON17193 with those for the CTP2-CP4 EPSPS, to form pMON17199 and followed by deleting the kanamycin cassette (as described above for pMON17209). The pMON17237 vector (FIG. 25) was then completed by cloning the FMV35S/CTP2-CP4 EPSPS/E9 3' element as a NotI-NotI fragment into pMON17241.

Example 3

Soybean plants were transformed with the pMON13640 (FIG. 15) vector and a number of plant lines of the transformed soybean were obtained which exhibit glyphosate tolerance

Soybean plants are transformed with pMON13640 by the method of microprojectile injection using particle gun technology as described in Christou et al. (1988). The seed harvested from R_o plants is R_1 seed which gives rise to R_1 plants. To evaluate the glyphosate tolerance of an R_o plant, its progeny are evaluated. Because an R_o plant is assumed to be hemizygous at each insert location, selfing results in maximum genotypic segregation in the R_1 . Because each insert acts as a dominant allele, in the absence of linkage and assuming only one hemizygous insert is required for tolerance expression, one insert would segregate 3:1, two inserts, 15:1, three inserts 63:1, etc. Therefore, relatively few R_1 plants need be grown to find at least one resistant phenotype.

Seed from an R_o soybean plant is harvested, and dried before planting in a glyphosate spray test. Seeds are planted 20 into 4 inch (~5 cm) square pots containing Metro 350. Twenty seedlings from each R_o plant is considered adequate for testing. Plants are maintained and grown in a greenhouse environment. A 12.5–14 hour photoperiod and temperatures of 30° C. day and 24° C. night is regulated. Water soluble 25 Peters Pete Lite fertilizer is applied as needed.

A spray "batch" consists of several sets of R_1 progenies all sprayed on the same date. Some batches may also include evaluations of other than R_1 plants. Each batch also includes sprayed and unsprayed non-transgenic genotypes representing the genotypes in the particular batch which were putatively transformed. Also included in a batch is one or more non-segregating transformed genotypes previously identified as having some resistance.

One to two plants from each individual R_o progeny are not sprayed and serve as controls to compare and measure the glyphosate tolerance, as well as to assess any variability not induced by the glyphosate. When the other plants reach the first trifoliate leaf stage, usually 2-3 weeks after planting, glyphosate is applied at a rate equivalent of 128 oz/acre (8.895 kg/ha) of Roundup®. A laboratory track sprayer has been calibrated to deliver a rate equivalent to those conditions

A vegetative score of 0 to 10 is used. The score is relative to the unsprayed progenies from the same R_o plant. A 0 is death, while a 10 represents no visible difference from the unsprayed plant. A higher number between 0 and 10 represents progressively less damage as compared to the unsprayed plant. Plants are scored at 7, 14, and 28 days after treatment (DAT). The data from the analysis of one set of transformed and control soybean plants are described on Table X and show that the CP4 EPSPS gene imparts glyphosate tolerance in soybean also.

TABLE X

Glyphosate tolerance in Class II EPSPS soybean							
transformants							
(P-H35S, P-FMV35S; RO plants; Spray rate = 128 oz/acre)							

	Vegetative score								
Vector/Plant No.	day 7	day 14	day 28						
13640/40-11	5	6	7						
13640/40-3	9	10	10						
13640/40-7	4	7	7						
control A5403 2	1	0							
control A5403 1	1	Ó							

44

Example 4

The CP4 EPSPS gene may be used to select transformed plant material directly on media containing glyphosate. The ability to select and to identify transformed plant material depends, in most cases, on the use of a dominant selectable marker gene to enable the preferential and continued growth of the transformed tissues in the presence of a normally inhibitory substance. Antibiotic resistance and herbicide tolerance genes have been used almost exclusively as such dominant selectable marker genes in the presence of the corresponding antibiotic or herbicide. The nptII/kanamycin selection scheme is probably the most frequently used. It has been demonstrated that CP4 EPSPS is also a useful and perhaps superior selectable marker/selection scheme for producing and identifying transformed plants.

A plant transformation vector that may be used in this scheme is pMON17227 (FIG. 16). This plasmid resembles many of the other plasmids described infra and is essentially composed of the previously described bacterial replicon system that enables this plasmid to replicate in *E. coli* and to be introduced into and to replicate in Agrobacterium, the bacterial selectable marker gene (Spc/Str), and located between the T-DNA right border and left border is the CTP2-CP4 synthetic gene in the FMV35S promoter-E9 3' cassette. This plasmid also has single sites for a number of restriction enzymes, located within the borders and outside of the expression cassette. This makes it possible to easily add other genes and genetic elements to the vector for introduction into plants.

The protocol for direct selection of transformed plants on glyphosate is outlined for tobacco. Explants are prepared for pre-culture as in the standard procedure as described in Example 1: surface sterilization of leaves from 1 month old tobacco plants (15 minutes in 10% clorox+surfactant; $3\times$ dH₂O washes); explants are cut in 0.5×0.5 cm squares, removing leaf edges, mid-rib, tip, and petiole end for uniform tissue type; explants are placed in single layer, upside down, on MS104 plates+2 ml 4COO5K media to moisten surface; pre-culture 1-2 days. Explants are inoculated using overnight culture of Agrobacterium containing the plant transformation plasmid that is adjusted to a titer of 1.2×10⁹ bacteria/ml with 4COO5K media. Explants are placed into a centrifuge tube, the Agrobacterium suspension is added 45 and the mixture of bacteria and explants is "Vortexed" on maximum setting for 25 seconds to ensure even penetration of bacteria. The bacteria are poured off and the explants are blotted between layers of dry sterile filter paper to remove excess bacteria. The blotted explants are placed upside down on MS104 plates+2 ml 4COO5K media+filter disc. Co-culture is 2-3 days. The explants are transferred to MS104+Carbenicillin 1000 mg/l+cefotaxime 100 mg/l for 3 days (delayed phase). The explants are then transferred to MS104+glyphosate 0.05 mM+Carbenicillin 1000 mg/l+ cefotaxime 100 mg/l for selection phase. At 4-6 weeks shoots are cut from callus and placed on MSO+Carbenicillin 500 mg/l rooting media. Roots form in 3-5 days, at which time leaf pieces can be taken from rooted plates to confirm glyphosate tolerance and that the material is transformed.

The presence of the CP4 EPSPS protein in these transformed tissues has been confirmed by immunoblot analysis of leaf discs. The data from one experiment with pMON17227 is presented in the following: 139 shoots formed on glyphosate from 400 explants inoculated with Agrobacterium ABI/pMON17227; 97 of these were positive on recallusing on glyphosate. These data indicate a transformation rate of 24 per 100 explants, which makes this a

highly efficient and time saving transformation procedure for plants. Similar transformation frequencies have been obtained with pMON17131 and direct selection of transformants on glyphosate with the CP4 EPSPS genes has also been shown in other plant species, including, Arabidopsis, 5 soybean, corn, wheat, potato, tomato, cotton, lettuce, and sugarbeet.

The pMON17227 plasmid contains single restriction enzyme recognition cleavage sites (NotI, XhoI, and BstXI) between the CP4 glyphosate selection region and the left ¹⁰ border of the vector for the cloning of additional genes and to facilitate the introduction of these genes into plants.

Example 5A

The CP4 EPSPS gene has also been introduced into Black Mexican Sweet (BMS) corn cells with expression of the protein and glyphosate resistance detected in callus.

The backbone for this plasmid was a derivative of the high copy plasmid pUC119 (Viera and Messing, 1987). The 1.3 2 Kb FspI-DraI pUC119 fragment containing the origin of replication was fused to the 13 Kb SmaI-HindIII filled fragment from pKC7 (Rao and Rogers, 1979) which contains the neomycin phosphotransferase type II gene to confer bacterial kanamycin resistance. This plasmid was used to 2 construct a monocot expression cassette vector containing the 0.6 kb cauliflower mosaic virus (CaMV) 35S RNA promoter with a duplication of the -90 to -300 region (Kay et al., 1987), an 0.8 kb fragment containing an intron from a maize gene in the 5' untranslated leader region, followed 30 by a polylinker and the 3' termination sequences from the nopaline synthase (NOS) gene (Fraley et al., 1983). A 1.7 Kb fragment containing the 300 bp chloroplast transit peptide from the Arabidopsis EPSP synthase fused in frame to the 1.4 Kb coding sequence for the bacterial CP4 EPSP synthase 35 was inserted into the monocot expression cassette in the polylinker between the intron and the NOS termination sequence to form the plasmid pMON19653 (FIG. 17).

pMON19653 DNA was introduced into Black Mexican Sweet (BMS) cells by co-bombardment with EC9, a plasmid 40 containing a sulfonylurea-resistant form of the maize aceto-lactate synthase gene. 2.5 mg of each plasmid was coated onto tungsten particles and introduced into log-phase BMS cells using a PDS-1000 particle gun essentially as described (Klein et al., 1989). Transformants are selected on MS 45 medium containing 20 ppb chlorsulfuron. After initial selection on chlorsulfuron, the calli can be assayed directly by Western blot. Glyphosate tolerance can be assessed by transferring the calli to medium containing 5mM glyphosate. As shown in Table XI, CP4 EPSPS confers glyphosate 50 tolerance to corn callus.

TABLE XI

Expression of CP4 in BMS Com Callus - pMON 19653						
Line	CP4 expression (% extract protein)					
284	0.006%					
287	0.036					
290	0.061					
295	0.073					
299	0.113					
309	0.042					
313	0.003					

To measure CP4 EPSPS expression in corn callus, the following procedure was used: BMS callus (3 g wet weight)

was dried on filter paper (Whatman#1) under vacuum. reweighed, and extraction buffer (500 µl/g dry weight; 100 mM Tris, 1 mM EDTA, 10% glycerol) was added. The tissue was homogenized with a Wheaton overhead stirrer for 30 seconds at 2.8 power setting. After centrifugation (3 minutes, Eppendorf microfuge), the supernatant was removed and the protein was quantitated (BioRad Protein Assay). Samples (50 µg/well) were loaded on an SDS PAGE gel (Jule, 3-17%) along with CP4 EPSPS standard (10 ng). electrophoresed, and transferred to nitrocellulose similarly to a previously described method (Padgette, 1987). The nitrocellulose blot was probed with goat anti-CP4 EPSPS IgG, and developed with I-125 Protein G. The radioactive blot was visualized by autoradiography. Results were quantitated by densitometry on an LKB UltraScan XL laser densitomer and are tabulated below in Table X.

TABLE XII

,	Glyphosate resistance in BMS Corn Callus using pMON 19653								
Vector	Experiment	# chlorsulfuron- resistant lines	# cross-resistant to Glyphosate						
19653	253	120	81/120 = 67.5%						
5 19653	254	80	37/80 = 46%						
EC9 control	253/254	8	0/8 = 0%						

Improvements in the expression of Class II EPSPS could also be achieved by expressing the gene using stronger plant promoters, using better 3' polyadenylation signal sequences, optimizing the sequences around the initiation codon for ribosome loading and translation initiation, or by combination of these or other expression or regulatory sequences or factors.

Example 5B

The plant- expressible genes encoding the CP4 EPSPS and a glyphosate oxidoreductasease enzyme (PCT Pub. No. WO92/00377) were introduced into embryogenic corn callus through particle bombardment. Plasmid DNA was prepared using standard procedures (Ausubel et al., 1987), cesium-chloride purified, and re-suspended at 1 mg/ml in TE buffer. DNA was precipitated onto M10 tungsten or 1.0 µg gold particles (BioRad) using a calcium chloride/spermidine precipitation protocol, essentially as described by Klein et al. (1987). The PDS1000® gunpowder gun (BioRad) was used. Callus tissue was obtained by isolating 1-2 mm long immature embryos from the "Hi-II" genotype (Armstrong et al., 1991), or Hi-II X B73 crosses, onto a modified N6 medium (Armstrong and Green, 1985; Songstad et al., 1991). Embryogenic callus ("type-II"; Armstrong and Green, 1985) initiated from these embryos was maintained by subculturing at two week intervals, and was bombarded when less than two months old. Each plate of callus tissue 55 was bombarded from 1 to 3 times with either tungsten or gold particles coated with the plasmid DNA(s) of interest. Callus was transferred to a modified N6 medium containing an appropriate selective agent (either glyphosate, or one or more of the antibiotics kanamycin, G418, or paromomycin) 60 1-8 days following bombardment, and then re-transferred to fresh selection media at 2-3 week intervals. Glyphosateresistant calli first appeared approximately 6-12 weeks post-bombardment. These resistant calli were propagated on selection medium, and samples were taken for assays gene expression. Plant regeneration from resistant calli was accomplished essentially as described by Petersen et al. (1992).

In some cases, both gene(s) were covalently linked together on the same plasmid DNA molecule. In other instances, the genes were present on separate plasmids, but were introduced into the same plant through a process termed "co-transformation". The 1 mg/ml plasmid preparations of interest were mixed together in an equal ratio, by volume, and then precipitated onto the tungsten or gold particles. At a high frequency, as described in the literature (e.g., Schocher et al., 1986), the different plasmid molecules integrate into the genome of the same plant cell. Generally the integration is into the same chromosomal location in the plant cell, presumably due to recombination of the plasmids prior to integration. Less frequently, the different plasmids integrate into separate chromosomal locations. In either case, there is integration of both DNA molecules into the same plant cell, and any plants produced from that cell.

Transgenic corn plants were produced as described above which contained a plant-expressible CP4 gene and a plant-expressible gene encoding a glyphosate oxidoreductase enzyme.

The plant-expressible CP4 gene comprised a structural ²⁰ DNA sequence encoding a CTP2/CP4 EPSPS fusion protein. The CTP2/CP4 EPSPS is a gene fusion composed of the N-terminal 0.23 Kb chloroplast transit peptide sequence from the Arabidopsis thaliana EPSPS gene (Klee et al. 1987, referred to herein as CTP2), and the C-terminal 1.36 25 Kb 5-enolpyruvylshikimate-3-phosphate synthase gene (CP4) from an Agrobacterium species. Plant expression of the gene fusion produces a pre-protein which is rapidly imported into chloroplasts where the CTP is cleaved and degraded (della-Cioppa et al., 1986) releasing the mature 30 CP4 protein.

The plant-expressible gene expressing a glyphosate oxidoreductase enzyme comprised a structual DNA sequence comprising CTP1/GOXsyn gene fusion composed of the N-terminal 0.26 Kb chloroplast transit peptide sequence 35 derived from the Arabidopsis thaliana SSU 1a gene (Timko et al., 1988 referred to herein as CTP1), and the C-terminal 1.3 Kb synthetic gene sequence encoding a glyphosate oxidoreductase enzyme (GOXsyn, as described in PCT Pub. No. WO92/00377 previously incorporated by reference). 40 The GOXsyn gene encodes the enzyme glyphosate oxidoreductase from an Achromobacter sp. strain LBAA which catalyzes the conversion of glyphosate to herbicidally inactive products, aminomethylphosphonate and glyoxylate. Plant expression of the gene fusion produces a pre-protein 45 which is rapidly imported into chloroplasts where the CTP is cleaved and degraded (della-Cioppa et al., 1986) releasing the mature GOX protein.

Both of the above described genes also include the following regulatory sequences for plant expression: (i) a 50 promoter region comprising a 0.6 Kb 35S cauliflower mosaic virus (CaMV) promoter (Odell et al., 1985) with the duplicated enhancer region (Kay et al., 1987) which also contains a 0.8 Kb fragment containing the first intron from the maize heat shock protein 70 gene (Shah et al., 1985 and 55 PCT Pub. No. W093/19189, the disclosure of which is hereby incorporated by reference); and (ii) a 3' non-translated region comprising a 0.3 Kb fragment of the 3' non-translated region of the nopaline synthase gene (Fraley et al., 1983 and Depicker, et al., 1982) which functions to 60 direct polyadenylation of the mRNA.

The above described transgenic corn plants exhibit tolerance to glyphosate herbicide in greenhouse and field trials.

Example 6

The LBAA Class II EPSPS gene has been introduced into plants and also imparts glyphosate tolerance. Data on

tobacco transformed with pMON17206 (infra) are presented in Table XIII.

TABLE XIII

	Tobacco Glyphosate Spray Test (pMON17206: E35S - CTP2-LBAA EPSPS: 0.4 lbs/ac)							
	Line	7 Day Rating						
	33358	9						
0	34586	9						
	33328	9						
	34606	9						
	33377	9						
	34611	10						
	34607	10						
	34601	9						
	34589	9						
	Samsun (Control)	4						

From the foregoing, it will be recognized that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with advantages which are obvious and which are inherent to the invention. It will be further understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims. Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.

BIBLIOGRAPHY

Alm, R. A., Dalrymple, B. P. and Mattick, J. S. 1994. Sequencing and expression of the aroA gene from *Dichelobacter nodosus*, Gene, 145: 97-101.

Alton, N. K. and Vapnek, D. (1979) Nature 282:864–869.
Ammirato, P. V., et al. Handbook of Plant Cell Culture—Crop Species. Macmillan Publ. Co. (1984).

Armstrong, C. L., and Green, C. E. 1985. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. *Planta* 164:207-214.

Armstrong, C. L., Green, C. B., and Phillips, R. L. 1991. Development and availability of germplasm with high Type II culture formation response. *Maize Genetics Cooperation NewsLetter* 65:92–93.

Arnon, D. I. Plant Physiol. 24:1-15 (1949).

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. 1987. CUR-RENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley and Sons, Inc. New York.

Bachmann, B. J. et al., Microb. Rev., 44:1-56 (1980).

Barker, R., Idler, K., Thompson, D., and Kemp, J. (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens Ti plasmid pTi15955. Plant Mol Biol 2:335-350

Barry, G., Kishore, G., Padgette, S., Taylor, M., Kolacz, K., Weldon, M., Re D., Eichholtz., Fincher, K., and Hallas, L. (1992) Inhibitors of amino acid biosynthesis: Strategies for imparting glyphosate tolerance to crop plants. In: Biosynthesis and Molecular Regulation of Amino Acids in Plants. pp. 139-145. [Edited by Singh, B. K., Flores, H. E., and Shannon, J. C.] American Society of Plant Physiologists, Rockville, Md.

Bartlett, S. G., Grossman, A. R., and Chua, N. H. (1982) in *Methods in Chloroplast Molecular Biology*, pp. 1081-1091. M. Edelman, R. B., Hallick, and Chua, N. H. ede

- Bevan, M. (1984) Nucleic Acids Res. 12 (22): 8711-8721. Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids. Res. 7:1513-1525.
- Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. B., Heynecker, H. L., Boyer, H. W., Crosa, J. H., and Falkow, S. (1977) Construction and characterization of new cloning vehicles, II. A multi-purpose cloning system. Gene 2: 95-113.
- Boyer, H. W. and Rolland-Dussoix, D. (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41:459.
- Carrer, H., Hockenberry, T. N., Svab, Z., and Maliga, P. (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241: 49–56.
- Christou, P., D. E. McCabe, and W. F. Swain (1988) Stable transformation of Soybean Callus by DNA-Coated Gold Particles. Plant Physiol. 87:671-674.
- Coruzzi, G., Broglie, R., Edwards, C., and Chua, N. H. (1984). Tissue-specific and light-regulated expression of a 20 pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. EMBO J 3: 1671.
- Dalla Chiesa, M., Mayes, S. R., Maskell, D. J., Nixon, P. J. and Barber, J. 1994 An AroA homologue from Synechocystis sp. PCC6803, Gene, 144: 145-146.
- della-Cioppa, G., Bauer, S. C., Klein, B. K., Shah, D. M., Fraley, R. T. and Kishore G. K. (1986) Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad Sci. USA 83: 6873-6877.
- della-Cioppa, G., Bauer, S. C., Taylor, M. T., Rochester, D. E., Klein, B. K., Shah, D. M., Fraley, R. T. and Kishore G. M. (1987) Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. Bio/ Technology 5: 579-584.
- Depicker, A., Stachel, S., Dhaese, P., Zambryski, P., and Goodman, H. M. 1982. Nopaline Synthase: Transcript Mapping and DNA Sequence. J. MOLEC. APPL. GENETICS 1:561-573.
- Devereux, J., Haeberli, P. and Smithies, O. (1984) A com- 40 prehensive set of sequence analysis programs for the VAX. Nucl. Acids. Res. 12:387-395.
- Ditta, G., Stanfield, S., Corbin, D., and Helinski, D. R. (1980) Broad host range DNA cloning system for Gram-Negative bacteria: construction of a gene bank of Rhizo- 45 Hohn, B. and Collins J. (1980) A small cosmid for efficient bium meliloti. Proc Natl Acad Sci USA 77, 7347-7351.
- Duncan, K., Edwards, R. M., Coggins, J. R. (1987)The pentafunctional aroM enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Biochem. J. 246:375-386.
- Dunn, J. J. and Studier, F. W., (1983) J. Mol. Biol. 166:477-535.
- Fitzgibbon, J. E. (1988)Pseudomonas sp. strain PG2982: uptake of glyphosate and cloning of a gene which confers increased resistance to glyphosate. Ph.D. Dissertation, 55 Louisiana State University.
- Fitzgibbon, E. F. and Braymer, H. D. (1990) Cloning of a gene from Pseudomonas sp. PG2982 conferring increased glyphosate resistance Appl. Environ. Microbiol. 56: 3382-3388.
- Fling, M. E., Kopf, J., and Richards, C. (1985). Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3"(9)-Onucleotidyltransferase. Nucleic Acids Res. 13 no.19, 7095-7106.
- Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R. Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A.,

- Fink, C. L., Fry, J. S., Galluppi, G. R., Goldberg, S. B., Hoffman, N. L., and Woo, S. C. 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80:4803-4807.
- 5 Fraley, R. T., Rogers, S. G., Horsch, R. B., Eichholtz D. A., Flick, J. S., Fink, C. L., Hoffmann, N. L. and Sanders, P. R. (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technology 3: 629-635.
- 10 Fromm, M., (1990) UCLA Symposium on Molecular Strategies for Crop Improvement, Apr. 16-22, 1990. Keystone.
 - Fry J., Barnason A., and Horsch R. (1987) Plant Cell Reports 6: 321-325.
- 15 Gasser, C. S., Winter, J. A., Hironaka, C. M. and Shah, D. M. (1988) Structure, expression, and evolution of the 5-enolpyruvylshikimate 3-phosphate synthase genes of petunia and tomato. J. Biol. Chem. 263: 4280-4289.
 - Gowda, S., Wu, F. C., and Shepard, R. J. (1989). Identification of promoter sequences for the major RNA transcripts of figwort mosaic and peanut chlorotic streak viruses (caulimovirus group). Journal of Cellular Biochemistry supplement 13D, 301 (Abstract).
- Hallas, L. E., Hahn, B. M. and Korndorfer, C. (1988) Characterization of microbial traits associated with glyphosate biodegradation in industrial activated sludge. J. Industrial Microbiol. 3: 377-385.
- Hayford, M. B., Medford, J. L., Hoffmann, N. L., Rogers, S. G. and Klee, H. J. (1988) Development of a plant transformation selection system based on expression of genes encoding gentamicin acetyltransferases. Plant Physiol. 86: 1216-1222.
- Herrera-Estrella, L., et al. (1983) Nature 303:209
- Heitkamp, M. A., Hallas, L. and Adams, W. J. (1990) Biotreatment of industrial wastewater with immobilized microorganisms-Presented in Session 11, Paper S40, Society for Industrial Microbiology Annual Meeting, Orlando, Fla., Jul. 29-Aug. 3, 1990.
- Henher, J. H., Band, L. and Shimotsu, H. (1984) Nucleotide sequence of the Bacillus subtilis tryptophan operon. Gene., 34: 169-177.
- Henner, J. H., Band, L., Flaggs, G. and Chen, E. (1986) The organization and nucleotide sequence of the Bacillus subtilis hisH, tyrA and aroE genes Gene 49: 147-152.
- cloning of large DNA fragments. Gene 11: 291-298.
- Horsch, R. B. and H. Klee. (1986) Proc. Natl. Acad. Sci. U.S.A. 83:4428-32.
- Hunkapiller, M. W., Hewick, R. M., Drever, R. J., and Hood, L. (1983) Methods Enzymol. 91, 399-413.
- Jefferson, R. A., Kavanaugh, T. A. and Bevan, M. W., 1987, EMBO J., 6:3901-3907.
- Kay, R., Chan, A., Daly, M. and McPherson, J. 1987. Duplication of the CaMV 35S promoter sequence creates a strong enhancer for plants. Science 236, 1299-1302.
- Kishore, G., Shah, D., Padgette, S., della-Cioppa, G., Gasser, C., Re, D., Hironaka, C., Taylor, M., Wibbenmeyer, J., Eichholtz, D., Hayford, M., Hoffman, N., Delannay, X., Horsch, R., Klee, H., Rogers, S., Rochester, D., Brundage, L., Sanders, P. and Fraley, R. T. (1988) 5-Enolpyruvylshikimate 3-phosphate synthase: From Biochemistry to genetic engineering of glyphosate tolerance, in Biotechnology for Crop Protection ACS Symposium series No. 379. Eds. Hedlin P. A., Menn, J. J. and Hollingsworth, R. M. pp. 37-48.
- Kishore, G. and Shah, D. (1988) Ann. Rev. Biochem. 57:627-663.

- Kishore, G. M., Brundage, L., Kolk, K., Padgette, S. R., Rochester, D., Huynh, Q. K. and della-Cioppa, G. (1986) Fed. Proc. 45: 1506.
- Klee, H. J., et al. (1985) Bio/Technology 3:637-42.
- Klee, H. J., Muskopf, Y. M. and Gasser, C. S. (1987) Cloning 5 of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol. Gen. Genet. 210: 437-442
- Klee, H. J. and Rogers, S. G. (1989) Plant gene vectors and 10 genetic transformation: plant transformation systems based on the use of Agrobacterium tumefaciens in: Cell Culture and Somatic Cell: Genetics of Plants eds J. Schell and I. K. Vasil. 6: 1-23.
- Klein, T. M., Kornstein, L., Sanford, J. C., and Fromm, M. 15 E. 1989. Genetic transformation of maize cells by particle bombardment. Plant Phys. 91:440-444.
- Koncz, C. and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary 20 vector. Mol. Gen. Genet. 204:383-396.
- Kunkel, T. A., Roberts, J. D. and Zakour, R. A. (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367.
- Laemmli, U.K. (1970), "Cleavage of structural proteins 25 Sambrook, J., Fritsch, E. F. and Maniatis, T., (1989) Molecuduring the assembly of the head of the bacteriophage T4" Nature, 227:680.
- Maliga, P., Carrer, H., Kanevski, I., Staub, J., and Svab, Z. (1993) Plastid engineering in land plants: a conservative genome is open to change. Philos. Trans. R. Soc. London 30 B Biol. Sci. 342: 203-208.
- Maniatis, T., Fritsch, E. F. and Sambrook, J. (1982) Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Maskell, D. J., Morrissey, P. and Dougan, G. (1988) Cloning 35 and nucleotide sequence of the aroA gene of Bordetella pertussis. J. Bacteriol. 170:2467-2471.
- Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Moore, J. K., Braymer, H. D. and Larson, A. D. (1983) 40 Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl. Environ. Microbiol. 46: 316-320.
- Morelli, G., Nagy, F., Fraley, R. T., Rogers, S. G., and Chua, N. H. (1985). A short conserved sequence is involved in 45 the light-inducibility of a gene encoding ribulose 1.5bisphosphate carboxylase small subunit of pea. Nature 315, 200–204.
- O'Connell, C., Pattee, P. A. and Foster, T. J. (1993) Sequence and mapping of the aroA gene of Staphylococcus aureus 50 8325-4. J. Gen. Micr. 139: 1449-1460.
- Odell, J. T., Nagy, F., and Chua, N. H. (1985). Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810-812.
- Olins, P. O., Devine, C. S., Rangwala, S. H. and Kavka, K. 55 S. (1988) Gene 73: 227-235.
- O'Neill, C., Horvath, G. V., Horvath, E., Dix, P. J. and Medgyesy, P. (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J. 3: 60 729–738.
- Padgette, S. R., Huynh, Q. K., Borgmeyer, J., Shah, D. M., Brand, L. A., Re, D. B., Bishop, B. F., Rogers, S. G., Fraley, R. T., and Kishore, G. (1987) Bacterial expression and isolation of Petunia hybrida 5-enol- 65 pyruvylshikimate-3-phosphate synthase. Arch. Biochem. Biophys. 258, 564-573.

- Padgette, S. R., Huynh, Q. K., Aykent, S., Sammons, R. D., Sikorski, J. A., and Kishore, G. M. (1988) J. Biol. Chem. 263, 1798–1802.
- Petersen, W. L., Sulc, S., and Armstrong, C. L. 1992. Effect of nurse cultures on the production of macro-calli and fertile plants from maize embryogenic suspension protoplasts. Plant Cell Reports 10:591-594.
- Quinn, J. P., Peden, J. M. M. and Dick, E. (1988) Glyphosate tolerance and utilization by the microflora of soils treated with the herbicide. Appl. Microbiol. Biotechnol.29: 511-516.
- Rao, R. N. and Rogers, S. G. (1979). Plasmid pKC7: A vector containing ten restriction endonuclease sites suitable for cloning DNA segments. Gene 7:79.
- Richins, R. D., Scholthof, H. B., and Shepard, R. J. (1987) Sequence of the figwort mosaic virus DNA (caulimovirus group). Nucl. Acids Res. 15: 8451-8466.
- Rogers, S. G., Brand, L. A. Holder, S. B. Sharps, E. S. and Brackin, M. J. (1983) Amplification of the aroA gene from E. coli results in tolerance to the herbicide glyphosate. Appl. Environ. Microbiol. 46:37-43.
- Rogers, S. G. and Klee, H. J. (1987). "Pathways to genetic manipulation employing Agrobacterium." in Plant Gene Research, Plant DNA Infectious Agents, Vol IV, Hohn, T. and Schell, J., eds. Springer-Verlag, Vienna, pp.179-203.
- lar Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- Schocher, R. J., Shillito, R. D., Saul, M. W., Paszkowski, J., and Potrykus, L (1986). Co-transformation of unlinked foreign genes into plants by direct gene transfer. Bio/ Technology 4:1093-1097.
- Songstad, D. D., Armstrong, C. L., and Petersen, W. L. (1991). AgNO₃ increases type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Reports 9: 699-702.
- Schuler, M. A., Schmitt, E. S. and Beachy, R. N. (1982) Nucleic Acids Res. 10:8225-8244.
- Schulz, A., Kruper, A. and Amrhein, N. (1985) Differential sensitivity of bacterial 5-enolpyruvylshikimate-3phosphate synthases to the herbicide glyphosate. FEMS Microbiol. Lett. 28: 297-301.
- Schulz, A., Sost, D. and Amrhein, D. (1984) Arch. Microbiol. 137: 121-123.
- Shah, D., Horsch, R., Klee, H., Kishore, G., Winter, J., Tumer, N., Hironaka, C., Sanders, P., Gasser, C., Aykent, S., Siegal, N., Rogers, S., and Fraley, R. (1986). Engineering herbicide tolerance in transgenic plants. Science 233, 478-481.
- Shah, D. M., Rochester, D. E., Krivi, G., Hironaka, C., Mozer, T. J., Fraley, R. T., and D. C. Tiemeier. 1985. Structure and expression of the maize hsp70 gene. Cell. and Mol. Biol. of Plant Stress, Alan R. Liss, Inc. pp. 181-200.
- Shimamoto, K. et al. (1989) Nature 338:274-276.
- Sost, D., Schulz, A. and Amrhein, N. (1984) FEBS Lett. 173: 238-241.
 - Sost, D. and Amrhein, N. (1990) Substitution of Gly-96 to Ala in the 5-enolpyruvylshikimate 3-phosphate synthase of Klebsiella pneumoniae results in greatly reduced affinity for the herbicide glyphosate. Arch. Biochem. Biophys.
 - Stalker, D. M., Thomas, C. M., and Helinski, D. R. (1981). Nucleotide sequence of the region of the origin of replication of the broad host range plasmid RK2. Mol Gen Genet 181: 8-12.
- Stalker, D. M., Hiatt, W. R. and Comai, L. (1985) A single amino acid substitution in the enzyme

5-enolpyruvylshikimate 3-phosphate synthase confers resistance to glyphosate. J. Biol. Chem. 260: 4724-4728. Stallings, W. C., Abdel-Meguid, S.S., Lim, L. W., Shieh, Huey-Sheng, Dayringer, H. B., Leimgruber, N. K., Stegeman, R. A., Anderson, K. S., Sikorski, J. A., 5 Talmadge, K., and Gilbert, W., (1980) "Construction of Padgette S. R., Kishore, G. M. (1991). Structure and Topological Symmetry of the Glyphosate Target 5-enolpyruvylshikimate-3-phosphate synthase, Proc. Natl. Acad. Sci. USA 88, 5046-5050.

Svab, Z., Hajdukiewicz, P., and Maliga, P. (1990) Stable 10 transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87: 8526-8530.

Svab, Z. and Maliga, P. (1993) High frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad Sci. USA 90:913-917.

Tabor, S. and Richardson, C. C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074-1078.

Talbot, H. W., Johnson, L. M. and Munnecke, D. M. (1984) Glyphosate utilization by Pseudomonas sp. and Alcaligenes sp. isolated from environmental sources. Current Microbiol. 10: 255-260.

plasmid vectors with unique PstI cloning sites in the signal sequence coding region" Gene, 12: 235-241.

Timko, M. P., Herdies, L., de Almeida, E., Cashmore, A. R., Leemans, J., and Krebbers, E. 1988. Genetic Engineering of Nuclear-Encoded Components of the Photosynthetic Apparatus in Arabidopsis in "The Impact of Chemistry on Biotechnology," ACS Books, 279–295.

Vasil, V., F. Redway and I. Vasil. (1990), Bio/Technology 8:429-434.

Vieira, J. and Messing J. (1987) Production of singlestranded plasmid DNA. Methods Enzymol. 153: 3-11.

Yanisch-Perron, C., Vieira, J. and Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i i i) NUMBER OF SEQUENCES: 69

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGIH: 597 base pairs
 - (B) TYPE: moleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TCATCAAAAT ATTTAGCAGC ATTCCAGATT GGGTTCAATC AACAAGGTAC GAGCCATATC 60 ACTITATICA AATTGGTATC GCCAAAACCA AGAAGGAACT CCCATCCICA AAGGTITGTA 120 AGGAAGAATT CTCAGTCCAA AGCCTCAACA AGGTCAGGGT ACAGAGTCTC CAAACCATTA GCCAAAAGCT ACAGGAGATC AATGAAGAAT CTTCAATCAA AGTAAACTAC TGTTCCAGCA CATGCATCAT GGTCAGTAAG TTTCAGAAAA AGACATCCAC CGAAGACTTA AAGTTAGTGG GCATCTTTGA AAGTAATCTT GTCAACATCG AGCAGCTGGC TTGTGGGGAC CAGACAAAA AGGAATGGTG CAGAATTGTT AGGCGCACCT ACCAAAAGCA TCTTTGCCTT TATTGCAAAG ATAAAGCAGA TTCCTCTAGT ACAAGTGGGG AACAAAATAA CGTGGAAAAG AGCTGTCCTG 480 ACAGCCCACT CACTAATGCG TATGACGAAC GCAGTGACGA CCACAAAAGA ATTCCCTCTA 540 TATAAGAAGG CATTCATTCC CATTTGAAGG ATCATCAGAT ACTAACCAAT ATTTCTC 597

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1982 base pairs
- (B) TYPE: modeic seid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 62..1426

									-00	ntinue	1						
	xi)	SEQUEN	CE DES	CRIPII	ON: SE	1 CI O	10:2:							-			
•		-				-		3000	G GA	GAGC	GTG	GATA	GATI	CAA (3GAA	BACGCC	6 0
C ATG	T C	G CA	c de	ot (3CA	AGC	: A	3C C	3G C	CC GC	CA A	cc o	c c	3C A	AA T	cc	106
Me t		r Hi	₽ G	ly A	1 a 5	Ser	S	r A	g P	ro Al	a T1	or Al	la Aı	g Ly		1 5	
TCT G					Th												154
CAC C																	202
ACC G																	250
CAG G																	298
GAT G Asp G 80					n Gi												3 4 6
TTC G	31 y	A s n	Ala	A 1 a	a Th	ır C	1 y	Cys	Arg	L e u 105	Thr	Mct	G 1 y	Leu	V a 1 1 1 0	G1 y	394
GTC T	уг	A # p	Pb e 115	Ası	, Se	r 7	hr	Phe	I 1 o 1 2 0	G 1 y	Asp	Ala	Ser	Leu 125	Thr	Lys	4 4 2
CGC C) r o	Met 130	G 1 y	Arg	3 V 2	1 I	.ou	A s n 1 3 5	Pro	Len	Arg	Glu	Me t 140	Gly	Val	Gln	490
	y s	Sor	Glu	Ası	p G 1	l y # 1	5 O	Arg	Leu	Pro	Val	Thr 155	Leu	Arg	G 1 y	Pro	538
AAG A Lys T 160	hr	Pro	Thr	Рт	1 (lo 7 55	hr	Tyr	Arg	Val	Pro 170	Met	Ala	Ser	Ala	G 1 n 175	586
GTG A	ув	Ser	Ala	V a 1	i Le	eu I	.cu	Ala	Gly	Leu 185	Asn	Thr	Pro	G 1 y	I 1 e 190	Thr	634
ACG C	/al	I 1 e	G 1 u 195	Рго	o 1 i	lo M	le t	Thr	Arg 200	Asp	Hi s	Thr	Gln	L y s 2 0 5	Met	Lou	682
CAG C	3 1 y	Phe 210	G 1 y	Ala	a A	1 a 1	.eu	Thr 215	Val	Glu	Thr	A s p	A 1 a 2 2 0	A s p	G 1 y	V a 1	730
	Thr 225	110	Arg	Let	n G	lu (3 1 y 1 3 0	Arg	Gly	Lys	Lcu	Thr 235	G 1 y	Gln	V a 1	I 1 e	778
GAC C Asp V 240	V a 1	Pro	G 1 y	A # 1	P P 1	ro 8 4 5	Бег	Ser	Thr	Ala	Phe 250	Pro	Lou	Val	Ala	Ala 255	826
CTG (Leu	V a 1	Рго	G1;	y So	er A	\ s p	Val	Thr	I 1 c 2 6 5	Leu	Asn	Val	Leu	Me t 270	Asn	874
CCC A				G 1													922
ATC (970

CTG CGC GTT CGC TCC TCC ACG CTG AAG GGC GTC ACG GTG CCG GAA GAC	1018
Leu Arg Val Arg Ser Ser Thr Leu Lys Gly Val Thr Val Pro Glu Asp 305 310	
CGC GCG CCT TCG ATG ATC GAC GAA TAT CCG ATT CTC GCT GTC GCC GCC Arg Ala Pro Sor Met lie Asp Glu Tyr Pro lie Leu Ala Val Ala Ala	1066
320 325 330 335	
GCC TTC GCG GAA GGG GCG ACC GTG ATG AAC GGT CTG GAA GAA CTC CGC Ala Pho Ala Glu Gly Ala Thr Val Mot Asn Gly Lou Glu Glu Lou Arg	1114
340 345 350	
GTC AAG GAA AGC GAC CGC CTC TCG GCC GTC GCC AAT GGC CTC AAG CTC Val Lys Glu Ser Asp Arg Leu Ser Ala Val Ala Asa Gly Leu Lys Leu	1162
355 360 365	
AAT GGC GTG GAT TGC GAT GAG GGC GAG ACG TCG CTC GTC GGC GGC Asn Gly Val Asp Cys Asp Glu Gly Glu Thr Ser Leu Val Val Arg Gly	1210
370 375 380	
CGC CCT GAC GGC AAG GGG CTC GGC AAC GCC TCG GGC GCC GCC GCC Arg Pro Asp Gly Lys Gly Lou Gly Asa Ala Sor Gly Ala Ala Val Ala	1 2 5 8
385 390 395	
ACC CAT CTC GAT CAC CGC ATC GCC ATG AGC TTC CTC GTC ATG GGC CTC Thr His Leu Asp His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu	1306
400 405 410 415	
GTG TCG GAA AAC CCT GTC ACG GTG GAC GAT GCC ACG ATG ATC GCC ACG Val Sor Glu Asu Pro Val Thr Val Asp Asp Ala Thr Met Ile Ala Thr	1354
420 425 430	
AGC TTC CCG GAG TTC ATG GAC CTG ATG GCC GGG CTG GGC GCG AAG ATC Sor Pho Pro Glu Pho Mot Asp Leu Mot Ala Gly Lou Gly Ala Lys Ile	1 4 0 2
435 440 445	
GAA CTC TCC GAT ACG AAG GCT GCC TGATGACCTT CACAATCGCC ATCGATGGTC Glu Leu Ser Asp Thr Lys Ala Ala	1456
450 455	
CCGCTGCGGC CGGCAAGGG ACGCTCTCGC GCCGTATCGC GGAGGTCTAT GGCTTTCAT	C 1516
ATCTCGATAC GOGCCTGACC TATCGCGCCA CGGCCAAAGC GCTGCTCGAT CGCGGCCTG	T 1576
CGCTTGATGA CGAGGCGGTT GCGGCCGATG TCGCCCGCAA TCTCGATCTT GCCGGGCTC	
ACCOGTEGGT GETGTEGGEE CATGECATEG GEGAGGEGGE TTEGAAGATE GEGGTEATG	
CCTCGGTGCG GCGGGCGCTG GTCGAGGCGC AGCGCAGCTT TGCGGCGCGT GAGCCGGGC	
CGGTGCTGGA TGGACGCGAT ATCGGCACGG TGGTCTGCCC GGATGCGCCG GTGAAGCTC	
ATGTCACCGC GTCACCGGAA GTGCGCGCGA AACGCCGCTA TGACGAAATC CTCGGCAAT	
GCGGGTTGGC CGATTACGGG ACGATCCTCG AGGATATCCG CCGCCGCGAC GAGCGGGAC	
TGGGTCGGGC GGACAGTCCT TTGAAGCCCG CCGACGATGC GCACTT	1982

(${\bf 2}$) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 455 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Ser His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser Ser 1 10 15 Arg Sor Phe Mot Phe Gly Gly Leu Ala Ser Gly Glu Thr Arg Ile Thr 35

_															
G 1 7	Leu 50	Leu	Glu	G 1 y	Glu	A s p 5 5	Val	Ilc	Asn	Thr	G 1 y 6 0	Lys	Ala	Met	Gln
A 1 a 6 5	Mot	G 1 y	Ala	Агд	I 1 ° 70	Arg	Lys	Glu	G i y	A s p 75	Thr	Trp	Ilo	Ilo	A s p 8 0
G 1 y	V a 1	Gly	A s n	G 1 y 8 5	G 1 y	Lou	Leu	Ala	Pro 90	G 1 v	A 1 a	Pro	Leu	A s p 9 5	Pbc
Gly	Asn	Ala	A 1 a 100	T h, r	G 1. y	Суз	Arg	L e u 105	T h r	Mot	G1 y	Leu	V a 1 1 1 0	Gly	V a 1
Туr	Asp	Pho 115	Asp	Ser	Thr	Phe	I 1 e 1 2 0	G I y	Asp	Ala	Ser	Lou 125	Thr	Lys	Arg
Pro	Me t 130	G 1 y	Arg	V a 1	Leu	A s n 1 3 5	Pro	Lou	Агд	Glu	Mot 140	G l y	V a 1	Gln	V a 1
Lys 145	Ser	G 1 u	Asp	G 1 y	A s p 1 5 0	Arg	Leu	Pro	Vai	Thr 155	Leu	Агд	G 1 y	Pro	Lys 160
Thr	Pro	Thr	Pro	Ile 165	Thr	Туг	Arg	V a l	Pro 170	Mot	Ala	Ser	Ala	Gln 175	V a 1
Lys	Ser	Ala	V a 1 1 8 0	Leu	Leu	Ala	G 1 y	Leu 185	Asn	Thr.	Pro	G1 y	I 1 c 190	Thr	Tbr
V a 1	Ile	G 1 u 195	Pro	Ilc	Met	Thr	Arg 200	A s p	Hi.	Thr	Glu	Lys 205	Met	Leu	Gla
G 1 y	Phc 210	G 1 y	Ala	Азп	Leu	T b r 2 1 5	V a 1	Glu	Thr	A s p	A 1 a 2 2 0	Asp	G 1 y	V a I	Arg
T h r 2 2 5	Ile	Arg	Leu	Gla	G 1 y 2 3 0	Arg	G 1 y	Lys	Leu	Thr 235	G l y	Gln	Val	Ile	A s p 2 4 0
Va 1	Pro	G 1 y	Авр	Pro 245	Ser	Scr	Thr	Ala	Phc 250	Pro	Leu	Val	Ala	Ala 255	Leu
Leu	Val	Pro	G 1 y 2 6 0	Ser	Asp	V a 1	Thr	Ilo 265	Len	Asn	Val	Leu	Met 270	Asn	Pro
Thr	Агд	Thr 275	G 1 y	Leu	Ile	Leu	Thr 280	Lou	Gln	Glu	Met	G 1 y 2 8 5	Ala	Asp	Ile
G 1 v	Val 290	I 1 o	Авп	Pro	Arg	L e u 295	Ala	G1y	Gly	Glu	A s p 3 0 0	Val	Ala	Asp	Leu
Arg 305	Val	Arg	Ser	Ser	T b 1 3 1 0	Len	Lys	G1y	Val	Thr 315	Va 1	Pro	Glu	Asp	Arg 320
				3 2 5	Азр				3 3 0					3 3 5	
			3 4 0		Thr			3 4 5					350		
Lys	Glu	S e 1 3 5 5	Азр	Arg	Lcu	Ser	A 1 a 3 6 0	Val	Ala	Asn	Gly	L e u 3 6 5	Lys	Leu	Asn
G 1 y	Val 370		Сув	A s p	Glu	G l y 3 7 5	Glu	Thr	Ser	Leu	V a 1 3 8 0	Val	Arg	Gly	Атд
Pro 385	Asp	G 1 y	Lys	Gly	Leu 390	Gly	Asn	Ala	Ser	G 1 y 3 9 5	Ala	Ala	Val	Ala	Thr 400
His	Leu	Asp	His	A r g 4 0 5	Ilc	Ala	Met	Ser	Phc 410	Leu	Val	Met	Gly	Leu 415	Val
Ser	Glu	Азл	Pro 420	V a 1	Thr	V a 1	Asp	A s p 4 2 5	Ala	Thr	Mot	110	A 1 a 4 3 0	Thr	Ser
Phe	Pro	G 1 u 4 3 5	Phe	Met	Asp	Leu	Mot 440	Ala	Gly	Leu	Gly	A 1 a 4 4 5	Lys	Ilo	Glu
Leu	S e r 4 5 0	Asp	Thr	Lys	Ala	A 1 a 4 5 5									

(i) SEQUENCE CHARACTERISTI

- (UENCE CHARACTERISTICS:
 (A) LENGTH: 1673 base pairs
 (B) TYPE: meleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: finesr

(i i) MOLECULE TYPE: DNA (genomic)

(ix)FEATURE:

- (A) NAME/KBY: CDS (B) LOCATION: 86.1432

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GTAGCCACAC ATA	TTACTA TAGCT	AGGAA GCCCGCTA	ATC TCTCAATCCC G	CGTGATCGC 60
GCCAAAATGT GACT	GTGAAA AATCC	ATG TCC CAT 1	CT GCA TCC CCG	AAA CCA 112
		Met Ser His S	Ser Ala Ser Pro	Lys Pro
GCA ACC GCC CGC	CGC TCG GAG	GCA CTC ACG	GC GAA ATC CGC	ATT CCG 160
Ala Thr Ala Arg	Arg Ser Glu 15	Ala Lou Thr G	ly Glu Ilc Arg 20	Ile Pro 25
GGC GAC AAG TCC	ATC TCG CAT	CGC TCC TTC A	ATG TTT GGC GGT	CTC GCA 208
	Ile Ser His	Arg Ser Phe M	lot Pho Gly Gly	Leu Ala
	3 0	3 5		4 0
TCG GGC GAA ACC	CGC ATC ACC	GGC CTT CTG	AA GGC GAG GAC	GTC ATC 256
Ser Gly Glu Thi		Gly Leu Leu G	ilu Gly Glu Asp 55	Val Ilc
AAT ACA GGC CG	. GCC ATG CAG	666 ATG 666		
Asn Thr Gly Arg	Ala Mot Gin	Ala Mot Gly A	GCG AAA ATC CGT	AAA GAG 304 Lys Glu
6 0		6 5	7 0	•
GGC GAT GTC TGC	ATC ATC AAC	GGC GTC GGC A	AT GGC TGC CTG	TTG CAG 352
Gly Asp Val Trp 75	Ilc Ile Asn	Gly Val Gly A	isn Gly Cys Leu	Leu Gin
	8 0		8 5	
CCC GAA GCT GCC	CTC GAT TTC	GGC AAT GCC	GA ACC GGC GCG	CGC CTC 400
90	95		3ly Thr Gly Ala. 100	Arg Leu 105
ACC ATA AGC CT	. ATC 666 466			.ma
			AAG ACC TCC TTT	
	1 1 0	115		120
GAC GCC TCG CTC	TCG AAG CGC	CCG ATG GGC C	GC GTG CTG AAC	CCG TTG 496
	Ser Lys Arg	Pro Met Gly A	Arg Val Lou Asn	
		130	1 3 5	4
CGC GAA ATG GGG	GTT CAG GTG	GAA GCA GCC	AT GGC GAC CGC	ATG CCG 544
140	val Gin val	145	Asp Gly Asp Arg : 150	Met Pro
CTG ACG CTG AT			366 456 466 545	
Leu Thr Leu II	Gly Pro Lys	The Ala Asn B	CCG ATC ACC TAT	CGC GTG 592 Arg Val
155	160		165	•
CCG ATG GCC TCG	GCG CAG GTA	AAA TCC GCC (STG CTG CTC GCC	GGT CTC 640
Pro Met Ala Sei	Ala Gln Val	Lys Ser Ala V	Al Leu Leu Ala	Gly Leu
170	173	•	180	185
			CG GTC ATG ACC	
ASE IEF PRO GI	190	195	Pro Val Mot Thr	Arg Asp 200
0.0.00000000000000000000000000000000000				
His Thr Glu Ly	Mot Leu Gin	Gly Phe Gly	GCC GAC CTC ACG	GTC GAG 736 Val Glu
2 0 3	5	210	2 1 5	
ACC GAC AAG GA	GGC GTG CGC	CAT ATC CGC	ATC ACC GGC CAG	GGC AAG 784
	Gly Val Arg		lle Thr Gly Gla	
2 2 0		2 2 5	230	
CTT GTC GGC CA	ACC ATC GAC	GTG CCG GGC	GAT CCG TCA TCG	ACC GCC 832
Let Val Gly Gl	Thr Ile Asp	Val Pro Gly	Asp Pro Ser Ser	Thr Ala

-continued	
235 240 245	
TTC CCG CTC GTT GCC GCC CTT CTG GTG GAA GGT TCC GAC GTC ACC ATC Pho Pro Lou Val Ala Ala Leu Leu Val Glu Gly Ser Asp Val Thr Ile 250 265	880
CGC AAC GTG CTG ATG AAC CCG ACC CGT ACC GGC CTC ATC CTC ACC TTG Arg Asn Val Lou Met Asn Pro Thr Arg Thr Gly Lou Ilo Lou Thr Lou	928
270 275 280 CAG GAA ATG GGC GCC GAT ATC GAA GTG CTC AAT GCC CGT CTT GCA GGC Gln Glu Met Gly Ala Asp Ile Glu Val Leu Asn Ala Arg Leu Ala Gly	976
285 290 295 GGC GAA GAC GTC GCC GAT CTG CGC GTC AGG GCT TCG AAG CTC AAG GGC Gly Glu Asp Val Ala Asp Lou Arg Val Arg Ala Ser Lys Lou Lys Gly	1024
300 305 310 GTC GTC GTT CCG CCG GAA CGT GCG CCG TCG ATG ATC GAC GAA TAT CCG Val Val Val Pro Pro Glu Arg Ala Pro Ser Met Ile Asp Glu Tyr Pro	.1072
315 320 325 GTC CTG GCG ATT GCC GCC TCC TTC GCG GAA GGC GAA ACC GTG ATG GAC Val Leu Ala Ile Ala Ala Ser Phe Ala Glu Gly Glu Thr Val Met Asp 330 345	1120
GGG CTC GAC GAA CTG CGC GTC AAG GAA TCG GAT CGT CTG GCA GCG GTC Gly Leu Asp Glu Leu Arg Val Lys Glu Ser Asp Arg Leu Ala Ala Val 350 360	1168
GCA CGC GGC CTT GAA GCC AAC GGC GTC GAT TGC ACC GAA GGC GAG ATG Ala Arg Gly Leu Glu Ala Asa Gly Val Asp Cys Thr Glu Gly Glu Met 365	1216
TCG CTG ACG GTT CGC GGC CCC CCC GAC GGC AAG GGA CTG GGC GGC GGC Ser Leu Thr Val Arg Gly Arg Pro Asp Gly Lys Gly Len Gly Gly Gly 380	1264
ACG GTT GCA ACC CAT CTC GAT CAT CGT ATC GCG ATG AGC TTC CTC GTG Thr Val Ala Thr His Leu Asp His Arg Ile Ala Met Ser Phe Leu Val 395	1312
ATG GGC CTT GCG GCG GAA AAG CCG GTG ACG GTT GAC GAC AGT AAC ATG Met Gly Leu Ala Ala Glu Lys Pro Val Thr Val Asp Asp Ser Asn Met 410 420 425	1360
ATC GCC ACG TCC TTC CCC GAA TTC ATG GAC ATG ATG CCG GGA TTG GGC Ilo Ala Thr Ser Phe Pro Glu Phe Met Asp Met Met Pro Gly Leu Gly 430	1 4 0 8
GCA AAG ATC GAG TTG AGC ATA CTC TAGTCACTCG ACAGCGAAAA TATTATTTGC Ala Lys Ile Glu Leu Ser Ile Leu 445	1462
GAGATIGGGC ATTATIACCG GTTGGTCTCA GCGGGGGTTT AATGTCCAAT CTTCCATACG	1522
TAACAGCATC AGGAAATATC AAAAAAGCTT TAGAAGGAAT TGCTAGAGCA GCGACGCCGC	1582
CTAAGCTTTC TCAAGACTTC GTTAAAACTG TACTGAAATC CCGGGGGGTC CGGGGATCAA	1642
ATGACTTCAT TTCTGAGAAA TTGGCCTCGC A	1673

(2) INFORMATION FOR SEQ ID NO.5:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 449 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Ser His Ser Ala Ser Pro Lys Pro Ala Thr Ala Arg Arg Ser Glu 1 10 15

Ala Leu Thr Gly Glu Ile Arg Ile Pro Gly Asp Lys Ser Ile Ser His

Атд	Ser	Phe 35	Mot	Phe	G 1 y	Gly	Leu 40	Ala	Ser	Gly	Glu	Thr 45	Arg	Ile	Thr
Gly	Leu 50	Leu	Gĺu	Gly	Glu	A s p 5 5	V a 1	110	Asn	Thr	G 1 y 6 0	Arg	Ala	Met	Gin
A 1 a 6 5	Met	G l y	A 1 a	Lys	I 1 c 7 0	Arg	L y s	Glu	Gly	A s p 7 5	Val	Trp	Ile	I 1 o	A s n 8 0
G 1 y	V a 1	Gly	Asn	G l y 8 5	Сув	Leu	Leu	Gln	Pro 90	G 1 u	A1 a	Ala	Lou	A s p 9 5	Pho
Gly	Asn	Ala	G 1 y 1 0 0	Thr	G 1 y	Ala	Arg	Len 105	Thr	Met	G 1 y	Len	V a 1 1 1 0	G 1 y	Thr
Tyr	A s p	Met 115	Lys	Thr	Ser	Phe	I I e 120	Gly	Asp	Ala	Ser	Lou 125	Sor	Lys	Arg
Pro	Mot 130	G l y	Arg	Va 1	Leu	A s n 1 3 5	Pro	Leu	Arg	Glu	Me t 140	G I y	Val	Gln	V a 1
G 1 u 1 4 5	Ala	A I a	A s p	Gly	A s p 1 5 0	Arg	Met	Pro	Leu	Thr 155	Leu	Ilo	Gly	Pro	L y a 160
Thr	A 1 a	Asn	Pro	I 1 c 165	Tbr	Туг	Arg	Vai	Pro 170	Mct	Ala	Ser	Ala	G 1 a 175	Val
Lys	Ser	Ala	V a l 180	Leu	Leu	Ala	G1 y	Leu 185	Asn	Thr	Pro	G 1 y	Val 190	Thr	Thr
Val	Ilo	Glu 195	Pro	V a 1	Mot	Thr	Arg 200	Asp	His	Thr	Glu	Lys 205	Met	Leu	G 1 a
G 1 y	Phe 210	Gly	Ala	Asp	Len	Thr 215	V a 1	Glu	Thr	A s p	L y s 2 2 0	A s p	Gly	V a 1	Arg
His 225	Ilo	Arg	Ilc	Thr	G 1 y 2 3 0	Gln	Gly	Lys	Leu	V a 1 2 3 5	G 1 y	Gln	Thr	Ile	Asp 240
Val				2 4 5		Ser			250					255	
Leu	Val	Giu	G 1 y 2 6 0	Ser	A s p	Val	Thr	I 1 c 265	Arg	Asn	Va 1	Leu	M c t 270	Asn	Pro
	Arg	275				Leu	280					285		•	
	290					Leu 295					300				
305					310	Leu				3 1 5					Arg 320
				3 2 5		Glu			3 3 0					3 3 5	Ser
			3 4 0			V a 1		3 4 5					350		
		355				Ala	360					365			
·	Va 1 370					Gly 375					380				
3 8 5					390	Gly				395					400
				405		Pho			410					Glu 415	Lys
			420			Ser		4 2 5					430		Glu
Phe	Mot	A s p 4 3 5	Met	Met	Pro	G1y	Leu 440	G1y	Ala	Lys	I 1 c	Glu 445	Lou	Ser	Ile
Leu															

(${\bf 2}$) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1500 base pairs
 (B) TYPE: medica acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: DNA (genomic)
- (ix)FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 34.1380

	(x i)	SEQUEI	VCE DES	CRIPTIO	N: SEQ II	D NO:6:										
GTG	ATCG	coc e	CAAA	ATGT	JA CI	r g t g A		A TC	CATO	3 TC	CA1	r TC	r GC	A TC	с ссв	5 4
										t Sea	Hie	S C		s Se	гРто	
AAA	CCA	GCA	ACC	GCC	CGC	CGC	TCG	GAG	GCA	CTC	ACG	GGC	GAA	ATC	CGC	102
		1 0					1 5	Glu		•		2 0				
ATT	Pro 25	GGC Gly	GAC Asp	AAG Lys	TCC	ATC 110 30	TCG Ser	CAT Hi:	Arg	TCC	TTC Phe 35	ATG Met	TTT Phe	GGC Gly	GGT Gly	150
CTC Lou 40	GCA Ala	TCG Sor	GGC Gly	GAA Glu	ACC Thr 45	CGC Arg	ATC Ile	ACC Thr	GGC Gly	CTT Leu 50	CTG L o u	GAA Glu	GGC Gly	GAG Glu	GAC Asp 55	198
								CAG Gln								2 4 6
								AAC Asn 80								294
TTG Lou	CAG Gln	CCC Pro 90	GAA Glu	GCT Ala	GCG Ala	CTC Leu	GAT Asp 95	TTC Pbc	GGC Gly	AAT	GCC Ala	GGA Gly 100	ACC	GGC Gly	GCG Ala	3 4 2
								ACC Thr								390
								CGC Arg								438
								OTO Val								486
								AAG Lys 160								534
Arg	Val	Pro 170	Mot	Ala	Ser	Ala	Gln 175	GTA Val	Lys	Ser	Ala	Val 180	Lou	Leu	Ala	582
								ACC								630
								CAG Gln								678
								CGC Arg								7 2 6
								GAC Asp								774

														, 0		
								-00	ntinue	d .						
			235				-	2 4 0					2 4 5			
ACC	GCC	TTC	CCG	CTC	GTT	GCC	GCC	CTT	CTG	GTG	GAA	GGT	TCC	GAC	GTC	8 2 2
Thr	Ala	Рhе	Pro	Lou	Val	Ala	Ala	Leu	Leu	Va 1	Glu	Gly	Ser	Asp	Val	022
		250					255					260		-		
ACC	ATC	coc	AAC	GTG	CTG	ATG	AAC	CCG	ACC	CGT	ACC	GGC	CTC	ATC	CTC	870
Thr	265	Arg	Asn	Val	Leu	Met 270	Asn	Pro	Thr	Arg	Thr 275	Gly	Leu	Ile	Leu	
400	TT0				000				٠				GCC			
Thr	Len	Gln	Gin	Met	61.4	Ala	AAD	TIC	GIR	VAL	CTC	AAT	GCC Ala	CGT	CTT	918
280					285		,		•••	290	200	W. 9 II	AIA	AIB	295	
GCA	GGC	GGC	GAA	GAC	GTC	GCC	GAT	ста	CGC	GTC	A G G	GCT	TCG	AAG	CTC	966
Ala	Gly	Gly	Glu	Asp	Val	Ala	Asp	Lou	Arg	Val	Arg	Ala	Ser	Lvs	Leu	,,,,
				300			-		305					310		
AAG	GGC	GTC	GTC	GTT	CCG	CCG	GAA	CGT	GCG	CCG	TCG	ATG	ATC	GAC	GAA	1014
Lys	Gly	V a 1	Val	Val	Pro	Pro	Glu		Ala	Pro	Ser	Met	I 1 c	Asp	Glu	
			3 1 5					3 2 0					3 2 5			
TAT	CCG	GTC	CTG	GCG	ATT	GCC	GCC	TCC	TTC	GCG	GAA	GGC	GAA	ACC	GTG	1062
Tyr	Pro	Val	Leu	Ala	lle	Ala	Ala	Scr	Phe	Ala	Glu		Glu	Thr	Val	
		330					3 3 5					3 4 0				
ATG	GAC	GGG	CTC	GAC	GAA	CTG	CGC	GTC	AAG	GAA	TCG	GAT	CGT	CTG	GCA	1110
Met	A & p	Gly	Len	Asp	Giu	Leu 350	Arg	V = 1	Lys	Glu	Ser 355	Asp	Arg	Leu	Ala	
GCG	GTC	GCA	CGC	GGC	CTT	GAA	GCC	AAC	GGC	GTC	GAT	TGC	ACC	GAA	GGC	1 1 5.8
360	Val	Ala	Arg	Giy	3 6 5	Gia	Ala	Asn	GIY	V A 1	Asp	Сув	Thr	GIu	G 1 y 3 7 5	
GAG	ATG	TCG	CTG	ACG	GTT	CGC	GGC	CGC	CCC	GAC	GGC	AAG	GGA	CTG	GGC	1206
GIE	Diot	Ser	Lon	380	Val	Arg	Gly	Arg	9 r o	Asp	GIy	Lys	G 1 y	Leu 390	G1 y	
GGC	GGC	ACG	GIT	GCA	ACC	CAT	CTC	GAT	CAT	CGT	ATC	GCG	ATG Met	AGC	TTC	1254
o.,	01,		395	W18	1 11 1		Leu	4 0 0	ы,	Arg	110	AIA	M e t	Ser	Phe	
стс	GTG	ATG	GGC	СТТ	GCG	aca	GAA	AAG	CCG	or a	A C G	СТТ	GAC.	GAC	AGT	1302
Len	Val	Met	Gly	Leu	Ala	Ala	Glu	Lys	Pro	Val	Thr	Val	Asp	Asp	Ser	1302
		410					4 1 5					420				
AAC	ATG	ATC	GCC	ACG	TCC	TTC	ccc	GAA	TTC	ATG	GAC	ATG	ATG	CCG	GGA	1350
Asn	Met	Ile	Ala	Thr	Ser	Pho	Pro	Glu	Pbe	Mot	A s p	M e t	Met	Pro	Gly	
	4 2 5					430					4 3 5					
TTG	GGC	GCA	AAG	ATC	GAG	TTG	AGC	ATA	CTC	TAG	TCAC	TCG .	ACAG	CGAA	A A	1400
Leu 440	Gly	Ala	Lys	Ilc	Glu 445	Leu	Scr	Ilc	Len							
~ + 0					443											
TAT	TATT'	IGC (GAGA:	ITGG	GC A	TTAT	TACC	G GT	r gg t	CTCA	GCG	GGGG	TTT A	AATG	TCCAAT	1460

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 449 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear

CTTCCATACG TAACAGCATC AGGAAATATC AAAAAAGCTT

(i i) MOLECULE TYPE: protein

(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Me t	Ser	His	Ser	A 1 a 5	Ser	Pro	Lys	Pro	A 1 a 1 0	Thr	Ala	Arg	Arg	Ser 15	G 1 u	
Ala	Leu	Thr	G 1 y 2 0	Glu	Ile	Агд	Ilo	Pro 25	G 1 y	Asp	L y s	Ser	I 1 c 3 0	Ser	Hi.	
Arg	Ser	Phe 35	Met	Phe	Gly	G 1 y	Leu 40	A 1 a	Ser	G 1 y	Glu	T b r 4 5	Arg	I 1 c	Thr	
Gly	Leu	Len	Glu	Glv	Glu	Asp	Val	Ilo	Asn	Thr	G 1 v	A T #	Ala	Met	61 .	

		/1		-continued	12
5	5 0		5 5	60	
Ala Mo	t Gly	Ala Lys	Ilo Arg Ly	s Glu Gly Asp Val	Trp Ile Ile Asa 80
Gly Va	ıl Gly	Asn Gly 85	Cys Leu Le	u Gla Pro Glu Ala 90	Ala Leu Asp Phe 95
Gly As	n Ala	Gly Thr 100	Gly Ala Ar	g Lou Thr Mot Gly 105 ·	Lou Val Gly Thr
Tyr As	p Met 115	Lys Thr	Ser Phe II	e Gly Asp Ala Ser 0	Leu Ser Lys Arg 125
Pro Mo		Arg Val	Leu Asn Pr 135	o Leu Arg Glu Met 140	Gly Val Gla Val
Glu A1 145	la Ala	Asp Gly	Asp Arg Me 150	t Pro Leu Thr Leu 155	Ilc Oly Pro Lys 160
Thr Al	la Asz	Pro I1e 165	Thr Tyr Ar	g Vai Pro Mot Ala 170	Ser Ala Gla Val 175
Lys Se	r Ala	Val Leu 180	Lou Ala G1	y Leu Asn Thr Pro 185	Gly Val Thr Thr 190
	195		2 0		2 0 5
2 1	10	-	2 1 5	1 Glu Thr Asp Lys 220	
2 2 5	_		230	y Lys Lou Val Gly 235	2 4 0
	Ť	2 4 5		250 IT Ile Arg Asn Val	2 5 5
		260	-	265 ar Lou Gla Glu Met	270
	275	•	2 8		285
2 9	9 0		295	300	-
3 0 5			3 1 0	315	3 2 0
		3 2 5		330 st Asp Gly Leu Asp	3 3 5
Lys G	lu Ser	340 Asp Arg	Leu Ala Al	345 Ia Val Ala Arg Gly	
Gly V:	355 al Asp			in Met Ser Leu Thr	365 Val Arg Gly Arg
Pro A	70 sp Gly	Lys Gly		380 ly Gly Thr Val Ala	
385 His A:	rg Ile		390 Ser Phe Le	395 ou Val Met Gly Leu	
	. 1 71.	405	Asp Sor As	410 sa Met Ile Ala Thr	415 Ser Phe Pro Glu
Pro V	81 101				
		420 Met Met		425 ou Gly Ala Lys Ilc 40	4 3 0

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 423 amino acids (B) TYPH: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: finear

(i i) MOLECULE TYPE: protein

(\mathbf{x} \mathbf{i}) SEQUENCE DESCRIPTION: SEQ ID NO:8:

S c r	Leu	T h r	Lou	Gla	Pro	I 1 e	Ala	Arg	Val.	A s p	G 1 y	Thr	Ile	Asn 15	Leu
_	Gly	Sет	L y s	Thr	V a l	Ser	Asa	Arg		Len	Lou	Lou	A 1 a	Ala	Lou
Ala	His	G 1 y	Lys	Tbr	V a 1	Lou	T h r		Leu	Leu	A s p	S o 1		Asp	V a i
Агв	His	Mot	Leu	Asn	Ala	Leu 55	Thr	Ala	Leu	G 1 y	Val		T y r	Thr	Leu
S o r 6 5	Ala	A s p	Arg	Thr	Arg 70	Cys	Glu	I 1 c	I l c	Gly 75	A s n	G 1 y	G 1 y	Pro	Leu 80
His	Ala	G 1 u	G 1 y	A 1 a 8 5	Leu	G 1 v	Leu	Phe	Leu 90	О Іу	Asn	Ala	Gly	T b r 9 5	Ala
Met	Arg	Pro	Leu 100	Ala	Ala	Ala	Leu	Cys 105	Lou	Gly	Ser	Asn	A s p 1 1 0	I 1 c	V a 1
Leu	Thr	G 1 y 1 1 5	Glu	Pro	Агд	Met	Lys 120	G 1 u	Arg	Pro	I 1 e	Gly 125	His	Leu	V a i
Asp	Ala 130	Leu	Arg	Leu	G l y	G 1 y 1 3 5	Ala	Lys	I l e	Thr	Tyr 140	Lou	G 1 u	Gln	G 1 u
A s n 1 4 5	Tyr	Pro	Pro	Leu	Arg 150	Leu	Gln	G 1 y	Gly	Phe 155	Thr	G l y	G l y	Asn	Vai 160
Asp	Val	Asp	Gly	Ser 165	Val	Ser	Ser	Gla	Phe 170	Leu	Thr	A 1 a	Leu	L e u 175	Met
Thr	Ala	Pro	Leu 180	Ala	Pro	G 1 n	Asp	Thr 185	V a l	Ilo	Arg	I 1 e	Lys 190	. G 1 y	Asp
Leu	Va 1	Ser 195	Lys	Рго	Tyr	Ilc	A s p 200	Ile	Thr	Leu	Asn	Leu 205	Met	Lys	Thr
Phc	G 1 y 2 1 0	Val	Glu	Ilc	Glu	A s n 2 1 5	Gln	His	Tyr	Gln	G 1 n 2 2 0	Phe	V a 1	V a 1	L y s
G 1 y 2 2 5	Gly	Gla	Ser	Туг	G 1 n 2 3 0	Ser	Pro	Gly	Thr	Tyr 235	Len	Val	Glu	Gly	A s p 2 4 0
Ala	Ser	Ser	Ala	S o r 2 4 5	Туг	Phe	Leu	Ala	A 1 a 2 5 0	Ala	Ala	Ile	Lys	G l y 2 5 5	G1 y
Thr	V a 1	Lys	V a 1 2 6 0	Thr	Gly	Ilc	Gly	A T g 265	Asn	Ser	Met	Gln	Gly 270	Asp	Ile
Агд	Phe	A 1 a 2 7 5	A s p	V a 1	Lou	Glu	Lys 280	Mot	Gly	Ala	Thr	11 c 285	Суз	Trp	Gly
Asp	A s p 2 9 0	Tyr	Ilc	Ser	Сув	Thr 295	Arg	Gly	Glu	Leu	A s n 3 0 0	Ala	Ile	Asp	Met
A s p 3 0 5	Met	Asn	His	Ile	Pro 310	A s p	A1 a	Ala	Mot	Thr 315	I 1 o	Ala	Tbr	Ala	A 1 a 3 2 0
				3 2 5					3 3 0					Trp 335	
Val	Lys	Glo	Thr 340	Asp	Arg	Leu	Phc	A 1 a 3 4 5	Met	Ala	Thr	Glo	L e u 3 5 0	Arg	Lys
Val	G 1 y	Ala 355		Val	Glu	Glu	G 1 y 3 6 0	His	Asp	Tyr	I 1 c	Arg 365	Ilc	Thr	Pro
Pro	G 1 u 3 7 0		Leu	Asn	Phe	Ala 375		I 1 c	Ala	Thr	T y r 3 8 0	Asn	Asp	His	Arg

```
Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro Val Thr 390 400
```

Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr Phe Glu 405 410

Ala Arg Ile Ser Gln 420

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1377 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

(* i) SEQUENCE DESCRIPTION: SEQ ID NO:9:

6 0	GGTCTTTCTG	TAAGTCCTCT	CAACTGCTCG	AGCCGTCCAG	CGGTGCAAGC	CCATGGCTCA
1 2 0	TTTGGAGGTC	GTCCTTCATG	TCTCCCACAG	GACAAGTCTA	TATTCCAGGT	GAACCGTCCG
180	ATCAACACTG	TGAAGATGTT	TTTTGGAAGG	ATCACCGGTC	TGAAACTCGT	TCGCTAGCGG
2 4 0	TGGATCATTG	AGGTGATACT	TCCGTAAGGA	GGTGCCAGAA	GCAAGCTATG	GTAAGGCTAT
300	GGTAACGCTG	TCTCGATTTC	CTGAGGCTCC	стссттестс	TAACGGTGGA	ATGGTGTTGG
360	AGCACTTTCA	CGATTTCGAT	TTGGTGTTA	ATGGGTCTTG	CCGTTTGACT	CAACTGGTTG
420	CTTCGCGAAA	GTTGAACCCA	TGGGTCGTGT	AAGCGTCCAA	TTCTCTCACT	TTGGTGACGC
480	CGTGGACCAA	AGTTACCTTG	ATCGTCTTCC	GAAGACGGTG	GGTGAAGTCT	TGGGTGTGCA
5 4 0	AAGTCCGCTG	CGCTCAAGTG	CTATGGCTTC	TACAGGGTAC	GCCAATCACC	AGACTCCAAC
600	ATCATGACTC	TATCGAGCCA	TCACCACTGT	ACCCCAGGTA	TGGTCTCAAC	ттстосттос
660	GAGACTGATG	CCTTACCGTT	TTGGTGCTAA	CTTCAAGGTT	TGAAAAGATG	GTGACCACAC
720	CAAGTGATTG	GCTCACCGGT	GTCGTGGTAA	CGTCTTGAAG	GCGTACCATC	CTGACGGTGT
780	CTTGTTCCAG	тестесстте	TCCCATTGGT	TCTACTGCTT	TGATCCATCC	ATGTTCCAGG
8 4 0	CTCATCTTGA	CCGTACTGGT	TGAACCCAAC	AACGTTTTGA	CACCATCCTT	GTTCCGACGT
900	GGTGGAGAAG	ACGTCTTGCT	TGATCAACCC	GACATCGAAG	AATGGGTGCC	CTCTGCAGGA
960	CCAGAAGACC	TGTTACTGTT	CTTTGAAGGG	CGTTCTTCTA	сттесететт	ACGTGGCTGA
1020	TTCGCTGAAG	TGCAGCTGCA	TTCTCGCTGT	GAGTATCCAA	TATGATCGAC	GTGCTCCTTC
1080	CGTCTTTCTG	GGAAAGCGAC	TCCGTGTTAA	TTGGAAGAAC	TATGAACGGT	GTGCTACCGT
1140	ACTTCTCTCG	TGAAGGTGAG	TTGATTGCGA	CTCAACGGTG	CGGTCTCAAG	CTGTCGCAAA
1200	GCTGTCGCTA	TTCTGGAGCA	TCGGTAACGC	GGTAAGGGTC	TCGTCCTGAC	TCGTGCGTGG
1260	TCTGAAAACC	GGGTCTCGTT	TCCTCGTTAT	GCTATGAGCT	TCACCGTATC	CCCACCTCGA
1320	ATGGATTTGA	CCCAGAGTTC	CTACTAGCTT	ACTATGATCG	TGATGATGCT	CTGTTACTGT
1377	TGAGCTC	GGCTGCTTGA	CCGACACTAA	ATCGAACTCT	TGGAGCTAAG	TGGCTGGTCT

(${\bf 2}$) INFORMATION FOR SBQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 318 base pairs

- (B) TYPE: mucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

								-00	ntinue	i						
	(ix		URE: (A)NAM (B)LOC						_		-		-			
	(x i) SBQU	ENCE DES	CRIPTIO	N: SEQ	ID NO:10:										
AGA'	CTA	TCG	ATAA	GCTT	ЭА Т	GTAA	DOT	A GG	AGA:	CAA	AATI	TTC	AAT	cccc	ATTCTT	6 0
CGA:	T T G C	TTC	AATT	GAAG:	гт т	стсс	AT	G GC	G CA	GT	r AG	AG.	A AT	C TG	CAAT	113
							М¢	t Ala 1	G 1 1	va i	1 So:		g I 1	с Су:	s Asn	
GGT G1y 10	GTG Val	CAC Gl n	AAC Asn	C C A Pro	TCT Ser 15	CTT Leu	ATC Ile	TCC Ser	A A T A s n	CTC Len 20	TCG Ser	AAA Lys	TCC Ser	AGT Ser	CAA Gln 25	161
CGC Arg	AAA Lys	TCT	Pro	TTA Leu 30	T C G S o r	GTT Val	TCT Ser	CTG Lon	AAG Lys 35	ACG Thr	CAG Gln	CAG Gln	CAT His	CCA Pro 40	CGA Arg	209
GCT Ala	TAT	CCC	3 ATT 110 45	TCG Ser	T C G S e r	T C G S e r	TGG Trp	GGA Gly 50	TTG Leu	AAG Lys	AAG Lys	AGT Ser	GGG G1 y 5 5	ATG Met	ACG Thr	257
TTA Leu	ATT Ile	G G C G 1 y 6 0	TCT Ser	GAG Glu	CTT	CGT Arg	CCT Pro 65	CTT Leu	AAG Lys	GTC Val	ATG Met	TCT Sor 70	TCT	GTT Val	TCC Ser	305
			ATG Met	c												3 1 8
(2)I	NFORM	ATION F	OR SEQ II	D NO:11:												
	(i	(ENCE CHA A) LENC B) TYPE D) TOPO	70H: 77 a : amino a	mino aci rid											

(i i) MOLECULE TYPE: protein

(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Ala Gln Val Ser Arg Ile Cys Asn Gly Val Gln Asn Pro Ser Leu 1 10 15 Ser Asn Leu Ser Lys Ser Ser Gln Arg Lys Ser Pro Leu Ser Val 20 25 30 Leu Lys Thr Gln Gln His Pro Arg Ala Tyr Pro Ile Ser Ser Ser 35 Trp Gly Leu Lys Lys Ser Gly Met Thr Leu Ile Gly Ser Glu Leu Arg 50 60 Pro Leu Lys Val Met Ser Ser Val Ser Thr Ala Cys Met 65

(2) INFORMATION FOR SBQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 base pairs
 - (B) TYPE: modeic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: finear
- (i i) MOLECULE TYPE: DNA (genomic)
- (ix)FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 87.401
- (\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:12:

AGATCTATCG ATAAGCTTGA TGTAATTGGA GGAAGATCAA AATTTTCAAT CCCCATTCTT 60 CGATTGCTTC AATTGAAGTT TCTCCG ATG GCG CAA GTT AGC AGA ATC TGC AAT 113

						Me	t Ala	Gli	a Val	l Sei	r Ar _i	g I1	Су	Asn	
			-				TCC Ser								161
							CTG Leu								209
				 			GGA Gly 50								257
			TCT	 			CTT					тст			3 0 5
	Ala	GAG		 	Glu	ATT	GTA Vai			Pro	ATT		-		3 5 3
				 			TCC Ser		Ser					I 1 e	401
9 0 C				9 5					100					105	402

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 105 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- ($\mathbf{x}\ i$) SEQUENCE DESCRIPTION: SBQ ID NO:13:

Met Ala Gln Val Ser Arg Ile Cys Asn Gly Val Gln Asn Pro Ser Lou 1 5 10 . 15 Ser Asa Leu Ser Lys Ser Ser Gla Arg Lys Ser Pro Leu Ser Val 20 25 30 Ser Leu Lys Thr Gln Gln His Pro Arg Ala Tyr Pro Ile Ser Ser Ser 35 Trp Oly Lou Lys Lys Ser Gly Met Thr Leu Ile Gly Ser Glu Leu Arg 50 55 Pro Leu Lys Val Met Ser Ser Val Ser Thr Ala Glu Lys Ala Ser Glu 65 Ile Vai Leu Gin Pro Ile Arg Giu Ile Ser Giy Leu Ile Lys Leu Pro 85 90 100

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGIH: 233 base pairs

 - (B) TYPE: meleic soid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: DNA (genomic)
- (i x) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 14.232
- (x i) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AGAI	CTT	TCA	A G	Α.	ATG	G	CA	CAA	١.	ATT	AA	С	AAC	ATG	G	CT	CAA	GGG) A	ATA	C.	A A	4.9
					Met 1	A	la	Gli	1	110	A s :	n 5	Авп	Mot	A	l a	Gla	G 1 y 1 0		I c	G	la	
ACC	CTT	AAI	C	c	AA	T	TC	: A/	T	TT	c c	ΑT	AAA	cc	c (CAA	GTT	cc	T:	AAA	۸ '	тст	9 1
Thr	Leu	A s 1	P	. 0	A s	11	Sei	: A:	n	Ph (i s	Lys	Pr	о (Gla	Va 1 2 5		۰	Lys	. :	Ser	
TCA	AGT	TTT	c:	ГТ	G T	T	TT	r G c	A	TC	r a	A A	AA.	СТ	G ,	AAA	AA1	TC	: A	GC/	١.	AAT	145
Ser	Ser 30	Phe	L	u e	V a	1	Phο	G	y 5	Sei	L	7 *	Lys	Lo	u 1	L y s 40	Asn	Sc	r	Ala		Asn	
тст	ATG	TTC	3 G:	ГΤ	TT	G	AAA	. A.	A	GA:	г т	C A	ATT	TT	T.	ATG	CAA		G	TTI	r	тат	193
								L							o 1		Gln						• • • •
TCC	TTT	AGC	3 A	ГΤ	TC	A	GC.	L T	:A	GTO	3 (3)	СТ	AC.	GC	c ·	TGC	ATG	. с					233
Sor	Phe	Arg	1	lc	S c	I	A 1 a	Se	r	V a	l A	l a	Th:	A 1	B. (Cys	Met	•					43.

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 73 amino acids
 - (B) TYPE; amino acid
- (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- ($\mathbf{x}\ \mathbf{i}\)$ SEQUENCE DESCRIPTION: SEQ ID NO:15:

 Met
 Ala
 Gln
 Ile
 Asn
 Asn
 Met
 Ala
 Gln
 Gln
 Thr
 Leu
 Asn
 Pro

 1
 1
 1
 1
 Asn
 Ser
 Asn
 Phe
 Leu
 Leu
 Lys
 Pro
 Leu
 Lys
 Ser
 Ser
 Ser
 Ser
 Phe
 Leu
 Leu
 Leu
 Lys
 Asn
 Ser
 Ala
 Asn
 Ser
 Met
 Leu
 Val
 45

 Leu
 Lys
 Lys
 Lys
 Leu
 Lys
 Met
 Gln
 Lys
 Phe
 Cys
 Ser
 Phe
 Arg
 Ile

 Coulont
 50
 55
 60
 60
 80
 80
 80
 10
 80
 80
 80
 80
 10
 80
 80
 80
 80
 10
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80

(2) INFORMATION FOR SBQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 352 base pairs (B) TYPH: modeic acid
 - (B) TYPE: modeic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: DNA (genomic)
- (ix)FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 49.351
- (x i) SEQUENCE DESCRIPTION: SEQ ID NO:16:

AGA	CTG	CTA (3 A A A 1	TAAT	т т	3 T T T A	ACT	TAT 1	AGAA	GGAG	ATA	TATC	C AT	3 GC/	A CAA	57
													Mot	t Ala	a Gla	
ATT	AAC	AAC	ATG	GCT	CAA	GGG	ATA	CAA	ACC	CTT	AAT	ccc	AAT	TCC	AAT	105
Ilc	Asn	Asn	Mct	Ala	Gla	Gly	I 1 e	Gln	Thr	Leu	Asn	Pro	Asn	Ser	Asa	
	5					10					1 5					
TTC	CAT	AAA	ccc	CAA	GTT	ССТ	A A A	тст	TCA	AGT	ттт	СТТ	GTT	ттт	001	153
Phe	His	Lvs	Pro	Gla	Val	Pro	T. v a	Ser	Ser	80.	Pha	Lan	V - 1	Dh.	OUA	133
20		•			2.5		~,.	•••	•••	30		200	·		-	
										30					3 5	
TCT	AAA	AAA	CTG	AAA	AAT	TCA	GCA	AAT	TCT	ATG	TTG	GTT	TTG	AAA	AAA	201
															Lys.	

				4 0			_		4 5	•				5 0		
							TTT									2 4 9
Авр	Ser	116	5 5	ane t	GIR	Lys	Phe	60	361	rne	Arg	116	65	Ala	361	
							TCT									297
Val	Ala		Ala	Gln	Lys	Pro	Ser	Glu	I 1 c	Val	Leu		Pro	Ilc	Ly s	
		70					7 5					8 0				
GAG	ATT	TCA	GGC	ACT	GTT	AAA	TTG	CCT	GGC	TCT	AAA	TCA	ATT	TCT	AAT	3 4 5
Glu	I 1 e 8 5	Ser	G1 y	Thr	V a 1	L y s 9 0	Lou	Pro	Gly	Sor	L y s 9 5	Ser	Leu	Ser	Asn	
AGA	ATT	С														3 5 2
_	Ilc															
100																

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 101 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:17:

 Met 1
 Ala Gln Ile
 Asn Ss Asn Met Ala Gln Gly Ile Gln Thr Leu Asn Pro 15

 Asn Ser Asn Phe 20
 His Lys Pro Gln Val Pro Lys Ser Ser Ser Ser Phe Leu 25

 Val Phe Gly 35
 Ser Lys Lys Leu Lys Asn Ser Ala Asn Ser Met Leu Val 45

 Leu Lys Lys Lys Asp Ser Ile Pho Met Gln Lys Phe Cys Ser Phe Arg Ile 50

 Ser Ala Ser Val Ala Thr Ala Gln Lys Pro Ser Glu Ile Val Leu Gln 65

 Pro Ile Lys Glu Ile Ser Gly Thr Val Lys Leu Pro Gly Ser Lys Ser 95

 Leu Ser Asn Arg 11e

(${\bf 2}\,$) INFORMATION FOR SBQ ID NO:18:

- ($\,\mathbf{i}\,$) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: peptide
- (* i) SEQUENCE DESCRIPTION: SBQ ID NO:18:

Xaa His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser Ser Gly 10 15

Leu Xaa Gly Thr Val Arg Ile Pro Gly Asp Lys Met 20 25

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: peptide

```
( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:19:
         Ala Pro Ser Met lle Asp Glu Tyr Pro Ilc Leu Ala Val
                                                                       10
( 2 ) INFORMATION FOR SEQ ID NO:20:
         ( i ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGTH: 15 amino acids
                 ( B ) TYPE: amino acid
                 ( C ) STRANDEDNESS: single
                 ( D ) TOPOLOGY: linear
       ( i i ) MOLECULE TYPE: peptide
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:20:
        lle Thr Gly Leu Leu Glu Gly Glu Asp Val Ile Asn Thr Gly Lys
                                                                       10
(2) INFORMATION FOR SBQ ID NO:21:
         ( i ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGTH: 17 base pairs
                 (B) TYPE: moleic acid
                 ( C ) STRANDEDNESS: single
                 ( D ) TOPOLOGY: linear
       ( i i ) MOLECULE TYPE: Other mucleic acid
                ( A ) DESCRIPTION: Synthetic DNA
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:21:
ATGATHGA Y G ARTA Y CC
                                                                                                                            17
(2) INFORMATION FOR SEQ ID NO:22:
         ( i ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGTH: 17 base pairs
                 (B) TYPE: nucleic acid
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
       ( i i ) MOLECULE TYPE: Other micleic acid
                 ( A ) DESCRIPTION: Synthetic DNA
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:22:
GARGAY GINA THAACAC
                                                                                                                           17
(2) INFORMATION FOR SEQ ID NO:23:
        ( i ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGIH: 17 base pairs
                 (B) TYPE: muchele acid
                 (C) STRANDEDNESS: single
                 ( D ) TOPOLOGY: linear
       ( i i ) MOLECULE TYPE: Other mucheic acid
                 ( A ) DESCRIPTION: Synthetic DNA
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:23:
GARGA Y GINA THAATAC
                                                                                                                           17
(2) INFORMATION FOR SEQ ID NO:24:
         ( i ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGTH: 38 base pairs
                 ( B ) TYPE: meleic acid
                 ( C ) STRANDEDNESS: single
                 ( D ) TOPOLOGY: linear
       ( i i ) MOLECULE TYPE: Other nucleic acid
```

(A) DESCRIPTION: Synthetic DNA		
(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:24:		
CGTGGATAGA TCTAGGAAGA CAACCATGGC	TCACGGTC 3	8
(2) INFORMATION FOR SEQ ID NO.25:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: muclaic acid (C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(i i) MOLECULE TYPE: Other mucleic acid (A) DESCRIPTION: Synthetic DNA		
(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO.25:		
GGATAGATTA AGGAAGACGC GCATGCTTCA	CGGTGCAAGC AGCC 4	4
(2) INFORMATION FOR SEQ ID NO.26:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pains (B) TYPE: modeic acid (C) STRANDEUNESS: single (D) TOPOLOGY: linear	. :	
(i i) MOLECULE TYPE: Other mucleic acid (A) DESCRIPTION: Synthetic DNA		
(x i) SEQUENCE DESCRIPTION: SEQ ID NO-26:		
GGCTGCCTGA TGAGCTCCAC AATCGCCATC	GATGG 3	5
(2) INFORMATION FOR SBQ ID NO.27:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pains (B) TYPE: macleis acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(i i) MOLECULE TYPE: Other mucleic acid (A) DESCRIPTION: Synthetic DNA		
(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:27:		
COTCGCTCGT COTGCGTGGC COCCCTGACG	GC 3	2
(2) INFORMATION FOR SEQ ID NO28:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pains (B) TYPE: modele acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(i i) MOLECULE TYPE: Other mucleic acid (A) DESCRIPTION: Synthetic DNA		
(\mathbf{x} \mathbf{i}) SEQUENCE DESCRIPTION: SEQ ID NO-28:		
CGGGCAAGGC CATGCAGGCT ATGGGCGCC	2	9
(2) INFORMATION FOR SEQ ID NO.29:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pains (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(i) MOI BOTT B TVDB: Od smale said		

```
-continued
```

```
( A ) DESCRIPTION: Synthetic DNA
      ( \mathbf{z} \mathbf{i} ) SEQUENCE DESCRIPTION: SEQ ID NO:29:
CGGGCTGCCG CCTGACTATG GGCCTCGTCG G
                                                                                                                         3 1
(2) INFORMATION FOR SBQ ID NO:30:
        ( i ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGTH: 15 amino acids
                 (B) TYPE: amino acid
                 ( C ) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: protein
      ( \mathbf{x} i ) SEQUENCE DESCRIPTION: SEQ ID NO:30:
        Xaa His Ser Ala Ser Pro Lys Pro Ala Thr Ala Arg Arg Ser Glu
(2) INFORMATION FOR SEQ ID NO:31:
        ( i ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGIH: 17 base pairs
                 (B) TYPE: modeic acid
                 ( C ) STRANDEDNESS: single
                 ( D ) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: Other nucleic acid
                ( A ) DESCRIPTION: Synthetic DNA
      ( \mathbf{x} i ) SEQUENCE DESCRIPTION: SEQ ID NO:31:
GCGGTBGCSG GYTTSGG
                                                                                                                          17
(2) INFORMATION FOR SEQ ID NO:32:
        ( i ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGTH: 16 amino acids
                 ( B ) TYPE: amino acid
                 (C) STRANDEDNESS: single
                 ( D ) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: peptide
      ( \mathbf{x} i ) SEQUENCE DESCRIPTION: SEQ ID NO:32:
        Pro Gly Asp Lys Ser lie Ser His Arg Ser Phe Met Phe Gly Gly Leu
(2) INFORMATION FOR SEQ ID NO:33:
        ( i ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGTH: 13 amino acids
                 ( B ) TYPE: amino acid
                 (C) STRANDEDNESS: single
                 ( D ) TOPOLOGY: linear
       ( i i ) MOLECULE TYPE: peptide
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:33:
        Leu Asp Phe Gly Asn Ala Ala Thr Gly Cys Arg Leu Thr
( 2 ) INFORMATION FOR SEQ ID NO:34:
         ( i ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGTH: 26 base pairs
                 ( B ) TYPE: modeic acid
                 ( C ) STRANDEDNESS: single
                 ( D ) TOPOLOGY: Imear
       ( i i ) MOLECULE TYPE: Other nucleic acid
```

	<u> </u>
(A) DESCRIPTION: Synthetic DNA	
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
CGGCAATGCC GCCACCGGCG CGCGCC	2 6
(2) INFORMATION FOR SBQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 49 base pairs	•
(B) TYPE: metric said	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(=)	
(i i) MOLECULE TYPE: Other mudele acid (A) DESCRIPTION: Synthetic DNA	•
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
GGACGGCTGC TTGCACCGTG AAGCATGCTT AAGCTTGGCG TAATCATGG	4 9
(2) INFORMATION FOR SEQ ID NO:36:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 35 base pains	
(B) TYPE: mcleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i i) MOLECULE TYPE: Other modein said (A) DESCRIPTION: Synthetic DNA	
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
GGAAGACGCC CAGAATTCAC GGTGCAAGCA GCCGG	3 5
(2) INFORMATION FOR SEQ ID NO:37:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 5 amino acids	
(B) TYPE: zmino acid	
(D) TOPOLOGY: linear	
(i i) MOLECULE TYPE: peptide	
(ix) FEATURE:	
(A) NAME/KHY: Modified-site (B) LOCATION: 2	
(D) OTHER INFORMATION: Inste= "Xaa at position 2 is Gly,	
Ser, Thr., Cys., Tyr., Asn., Gln., Asp., or Ghr."	
/ : - NTHITTE	
(i x) FEATURE: (A) NAME/KEY: Modified-site	
(B) LOCATION: 4	
(D) OTHER INFORMATION: /note= "Xaa at position 4 is Ser or Thr"	
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
Arg Xaa His Xaa Glu	
1 5	
(2) INFORMATION FOR SBQ ID NO:38:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 4 amino acids	
(B) TYPE: amino acid (D) TOPOLOGY: linear	
(i i) MOLECULE TYPE: peptide	
(ix) Feature:	
(A) NAME/KEY: Modified-site	
(B) LOCATION: 4	
(D) OTHER INFORMATION: /note= "Xea at position 4 is Ser	
or The"	

```
-continued
```

```
( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:38:
        Gly Asp Lys Xaa
(2) INFORMATION FOR SEQ ID NO:39:
         ( i ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 5 amino acids
                  ( B ) TYPE: amino acid
                  ( D ) TOPOLOGY: linear
       ( i i ) MOLECULE TYPE: peptide
       (ix) FEATURE:
                  ( A ) NAME/KEY: Modified-site
                  (B) LOCATION: 4
                  ( D ) OTHER INFORMATION: /note= "Xaa at position 4 is Ala,
                           Arg, Asn, Asn, Cys, Gin, Gin, Gly, His, Ile, Leu,
                           Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val"
       ( \mathbf{x} i ) SEQUENCE DESCRIPTION: SEQ ID NO:39:
         Sor Ala Gin Xaa Lys
( 2 ) INFORMATION FOR SEQ ID NO:40:
         ( i ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 4 amino acids
                  (B) TYPE: amino acid
       ( i i ) MOLECULE TYPE: peptide
       (ix)FEATURE:
                  ( A ) NAME/KEY: Modified-site
                  (B) LOCATION: 2
                  ( D ) OTHER INFORMATION: /note= "Xaa at position 2 is Ala
                           Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu
                           Lys, Met, Phe, Pm, Ser, Thr, Trp, Tyr, or Val?"
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:40:
         Asn Xaa Thr Arg
( 2 ) INFORMATION FOR SEQ ID NO:41:
         ( i ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 1287 base pairs
                  (B) TYPE: medeic acid
                  ( C ) STRANDEDNESS: double
                  ( D ) TOPOLOGY: linear
       ( i i ) MOLECULE TYPE: DNA (genomic)
       (ix)FEATURE:
                  ( A ) NAME/KEY: CDS
                  ( B ) LOCATION: 1..1287
       (x i ) SEQUENCE DESCRIPTION: SEQ ID NO:41:
ATG AAA CGA GAT AAG GTG CAG ACC TTA CAT GGA GAA ATA CAT ATT CCC Met Lys Arg Asp Lys Val Gln Thr Leu His Gly Glu Ile His Ile Pro

1 5 10
GGT GAT AAA TCC ATT TCT CAC CGC TCT GTT ATG TTT GGC GCG CTA GCG Gly Asp Lys Ser Ile Ser His Arg Ser Val Met Phe Gly Ala Leu Ala
                                                                                                                                  96
GCA GGC ACA ACA GTT AAA AAC TTT CTG CCG GGA GCA GAT TGT CTG
Ala Gly Thr Thr Val Lys Asa Pho Lou Pro Gly Ala Asp Cys Lou
35 40
AGC ACG ATC GAT TGC TTT AGA AAA ATG GGT GTT CAC ATT GAG CAA AGC
                                                                                                                                 192
```

						•		-00	nunue	a						
Ser	Thr 50	Ilo	Asp	Сув	Pho	Arg 55	Lys	Met	Gly	Val	His	I 1 o	Glu	Gls	Ser	
AGC	AGC	GAT	GTC	ата	ATT	CAC	GGA	A A A	GGA	ATC	GAT	acc	СТС		646	240
					lle											240
6 5			· - •		70		,	-,-	,	7 5	,			-,-	80	
					GAT											288
Pro	Glu	Ser	Leu		Asp	Val	Gly	Asn		Gly	Thr	Thr	I·l e	-	Leu	
				8-5					90					9 5		
ATG	CTC	GGA	ATA	TTG	GCG	GGC	CGT	CCT	TTT	TAC	AGC	GCG	GTA	GCC	GGA	3 3 6
Met	Leu	Gly	11c	Leu	Ala	Gly	Arg	Pro	Phe	Туг	Ser	Ala	V a 1	Ala	Gly	
			100					105					110			
~																
					AAA Lys											384
p		115			_,.	6	120	220	_,,	6		125	•••		200	
	•															
					AAA											432
Lys		Met	Gly	Ala	Ly s		Asp	GI y	Arg	Ala		Gly	Glu	Phe	Thr	
	130					135					1 4 0					
CCG	CTG	TCA	GTG	AGC	GGC	GCT	TCA	TTA	AAA	GGA	ATT	GAT	TAT	GTA	TCA	480
					Gly											
1 4 5					150					155		_	-		160	
					CAA											5 2 8
FIO	VAI	AIA	Ser	165	Gla	110	Lys	301	170	AHI	ren	Len	AIA	175	res	
														.,,		
CAG	GCT	GAG	GGC	ACA	ACA	ACT	GTA	ACA	GAG	ccc	CAT	AAA	TCT	CGG	GAC	576
Gln	Ala	Glu		Thr	Thr	Thr	Val		Glu	Рто	His	Lys		Arg	Asp	
			180					185					190			
CAC	ACT	GAG	CGG	ATG	CTT	тст	GCT	ттт	aac	GTT	440	СТТ	тст	GAA	GAT	624
					Leu											024
		195	•				200		•			205			•	
					ATT											672.
GIL	210	261	V 2 1	ser	110	215	GIY	Uly	GIR	Ly.	220	101	AIB	VIS	A # P	
											220					
ATT	TTT	GTT	CCT	GGA	GAC	ATT	TCT	TCA	GCC	GCG	TTT	TTC	CTT	GCT	GCT	720
	Phe	V a l	Pro	Gly	Asp	Ile	Ser	Ser	Ala		Phe	Phe	Leu	Ala	Ala	
225					230					235					240	
GGC	GCG	ATG	GTT	CCA	AAC	AGC	AGA	ATT	GTA	TTG		AAC	GTA	GGT	T T A	768
					Asn											708
•				2 4 5					250		_,_			255		
					GGT											816
ABD	Pro	Thr	A r g 260	Thr	Gly	110	116	A s p 2 6 5	Val	Leu	Gla	Asp	Met 270	Gly	Ala	
			200					203		•			270			
AAA	CTT	GAA	ATC	AAA	CCA	TCT	GCT	GAT	AGC	GGT	GCA	GAG	CCT	TAT	GGA	864
Lys	Lou		Ilc	Lys	Pro	Ser		Asp	Ser	Gly	Ala	G 1 u	Pro	Tyr	Gly	
		275					280					285				
GAT	TTG	ATT	A T A	GAA	ACG	TCA	тст	СТА	AAG	GCA	GTT	GAA	ATC	GG 4	664	912
					Thr											712
_	290					295			•		300				,	
					TTA											960
3 0 5	116	110	Pro	Атд	Leu 310	110	Asp	GIB	116		Ilc	IIc	Ala	Leu	Leu 320	
203					210					3 1 5					5 Z U	
GCG	ACT	CAG	GCG	GAA	GGA	ACC	ACC	GTT	ATT	AAG	GAC	GCG	GCA	GAG	CTA	1008
					G 1 y											, 3
				3 2 5					3 3 0					3 3 5		
			.			~~=										
					AAC As n											1056
~ , ,		- y s	340		Y 2 II	TIR		3 4 5	* N 1	v # 1	* A I	361	350	rcu	Arg	
					ATT											1104
Lys	Leu		Ala	Glu	Ilc	Glu		Thr	Ala	A s p	Gly		Lys	V a 1	Туг	
		3 5 5					360					365				
aac	444	C A A	400	TTC	AAA	GG C	aac	GCT	004	GTC	TOO	400		cc.		
556	~~~	CAA	ACU		AAA	330	550	001	JCA	010	100	AGC	CAC	GGA	GAT	1 1 5 2

Gly	Lys 370	Gln	Thr	Leu	Lys	Gly 375	Gly	Ala	Ala	Val	Ser 380	Ser	His	Gly	Asp	
														GAG Glu		1200
										His				CCA Pro 415		1248
						AAG Lys						TGA				1287

(2) INFORMATION FOR SBQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTE: 428 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:42:

	,	,	~~	can no	·· ord u	J NOME.									
Met 1	Lys	Arg	Asp	Lys 5	Val	Gln	Thr	Leu	His 10	G 1 y	Glu	Ile	His	I 1 c 1 5	Pro
G 1 y	A s p	Lys	S e r 2 0	I 1 c	Ser	His	Arg	S e r 2 5	V a 1	Mot	Phe	G 1 y	A 1 a 3 0	Leu	Ala
Ala	G 1 y	Thr 35	Thr	Thr	Val	Lys	A s a 4 0	Pho	Leu	Pro	G 1 y	A 1 a 4 5	Asp	Суя	Leu
Scr	Thr 50	I 1 c	Asp	Суз	Phe	Arg 55	Lys	M o t	Gly	Val	His 60	I 1 e	Gla	Gln	Ser
S e r 6 5	Sor	Asp	Val	V a 1	I 1 c 70	Hi:	G1 y	Lys	Gly	11 e 75	Asp	A 1 a	Leu	Lys	G1 u 80
Pro	Glu.	Ser	Leu	Leu 85	Asp	Val	Gly	Asn	S e r 9 0	Gly	Thr	Thr	Ilo	Arg 95	Leu
Met	Leu	G 1 y	I 1 c 1 0 0	Len	Ala	G 1 y	Arg	Pro 105	Phe	Tyr	Ser	Ala	Va1 110	Ala	O 1 y
Asp	G 1 a	Ser 115	110	Ala	Lys	Arg	Pro 120	Met	Lys	Arg	V a l	Thr 125	Glu	Pro	Leu
Lys	L y s 1 3 0	Met	G 1 y	Ala	Ly.	I 1 c 1 3 5	Asp	G 1 y	Агд	Ala	G1y 140	G 1 y	Glu	Pbc	Thr
Pro 145	Leu	Ser	V a 1	Ser	G 1 y 1 5 0	Ala	Ser	Len	Lys	Gly 155	Ile	Asp	Tyr	V a 1	S e r 160
Pro	Val	Ala	Ser	Ala 165	Gln	Ile	Ly s	Ser	Ala 170	Val	Leu	Leu	Ala	Gly 175	Leu
Gln	Ala	Glu	G 1 y 180	Thr	Thr	Thr	Val	Thr 185	Glu	Pro	His	Lys	Ser 190	Arg	Asp
His	Thr	Glu 195	Arg	Met	Leu	Ser	A 1 a 200	Phe	Gly	Va 1	Lys	Leu 205	Ser	Glu	A s p
Gln	Thr 210	Ser	V a 1	Ser	Ilc	A 1 a 2 1 5	G 1 y	G 1 y	Gln	L y s	Leu 220	Thr	Ala	Ala	Asp
I l e 2 2 5	Pho	V a 1	Pro	G 1 y	A s p 2 3 0	Ile	Ser	Ser	Ala	A 1 a 2 3 5	Pho	Pho	Lou	Ala	A 1 a 2 4 0
Gly	Ala	Mot	Val	Pro 245	Asn	Ser	Arg	Ile	V a 1 2 5 0	Leu	Lys	Asn	Val	G 1 y 2 5 5	Leu
Asn	Pro	Thr	Arg 260	Thr	Gly	I 1 o	110	A s p 2 6 5	Val	Lou	Gln	Asn	M o t 270	G 1 y	Ala
Lys	Leu	G 1 u 275	I 1 c	Lys	Рто	Ser	A 1 a 2 8 0	Asp	Ser	Gly	Ala	G 1 u 2 8 5	Pro	Tyr	G 1 y

```
        Asp
        Leu
        Ile
        Ile
        Glu
        Thr
        Ser
        Leu
        Lys
        Ala
        Val
        Glu
        Ile
        Gly
        Gly
        Gly
        Gly
        Gly
        Glu
        Ile
        Pro
        Glu
        Leu
        Lus
        Glu
        Ile
        Pro
        Ile
        Ile</th
```

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1293 base pairs
 - (B) TYPE: mucicic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

(i x) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..1293

(* i) SEQUENCE DESCRIPTION: SEQ ID NO:43:

	• •	-			-											
						ATT										4 8
						AAG Lys										9 6
						GTA Val										1 4 4
		TGT				ATG Mct	GAC					TTA				192
	AAA					AAA Lys					TCC					2 4 0
GTT					CAA	GTA Val				GGT					ACA	288
				GCA		TTG Lou			GGT				Glu	AGT		3 3 6
		G 1 y	GAT			ATT Ile	Gly	AAA				Asp				384
	Pro					GAT Asp										432
	130					135					1 4 0					•

TAT	ACA	CCA	TTA	ATT	ATT	AAG	CCA	тст	GTC	ATA	A A A	G G T	ATA	AAT	TAT	480
Туг					Ile	Lys				Ilc					Tyr	700
1 4 5					150					155					160	
CAA	ATG	GAA	GTT	GCA	AGT	GCA	CAA	GTA	AAA	AGT	GCC	ATT	ATT	TTT	GCA	5 2 8
Gla	Met	Glu	V a i	Ala 165	Ser	Ala	Gln	V a 1	Lys	Ser	Ala	I 1 o	Leu	Phe	Ala	
				103					170					175		
						CCG										576
Ser	Leu	Phe	S o r	Lys	G l·u	Pro	Thr	II c 185	lle	Lys	G'l u	Leu	Asp 190	Val	Ser	
CGA	AAT	CAT	ACT	GAG	ACG	ATG Mot	TTC	AAA	CAT	TIT	AAT	ATT	CCA	ATT	GAA	624
		195		•••		510 1	200	Lys		гпс	ADE	205	FIU	116	Giu	
GC A	GAA	GGG	T T A	TCA												
Ala	Glu	Gly	Leu	Ser	Ile	AAT Asn	Thr	Thr	Pro	GAA	Ala	ATT Ile	Arg	TAC	ATT	672
	210					2 1 5					220			- • -		
AAA	CCT	GCA	GAT	TTT	CAT	GTT	CCT	GGC	GAT	ATT	TCA	тст	GCA	GCG	TTC	720
Lys	Pro	Ala	A s p	P h e	His	Val	Pro	Gly	Asp	Ile	Ser	Ser	Ala	Ala	Phe	, 20
225					230					2 3 5					2 4 0	
TTT	ATT	GTT	GCA	GCA	CTT	ATC	ACA	CCA	GGA	AGT	GAT	GTA	ACA	ATT	CAT	768
Pho	Ile	V a l	Ala	Ala 245	Leu	Ile	Thr	Pro		Ser	Asp	V a I	Thr		His	
									250					255		•
AAT	GTT	GGA	ATC	AAT	CAA	ACA	CGT	TCA	GGT	ATT	ATT	GAT	ATT	GTT	GAA	8 1 6
A * 11	V & 1	Gly	260	All	GII	Thr	Arg	265	GIY	110	116	Asp	270	VAI	Glu	
Lys	Met	Gly	GIT	AAT	ATC	CAA Gln	CTT	TTC	AAT	CAA	ACA	ACT	GGT	GCT	GAA	864
-		275	•				280					285	,			
ССТ	ACT	GCT	тст	ATT	CGT	ATT	CAA	TAC	ACA	CCA	ATG	СТТ	CAA	CCA	A T A	912
	Thr					Ilc										, , <u>, , , , , , , , , , , , , , , , , </u>
	290					295					300					
ACA	ATC	GAA	GGA	GAA	TTA	GTT	CCA	AAA	GCA	ATT	GAT	GAA	CTG	сст	GTA	960
Thr 305	Ile	Glu	Gly	Glu	Leu 310	V a 1	Pro	Lys	Ala	11 c 315	A s p	Glu	Leu	Pro		
															320	
ATA	GCA	TTA	CTT	TGT	ACA	CAA	GCA	GTT	GGC	ACG	AGT	ACA	ATT	AAA	GAT	1008
	AIA	Leu	Leu	325	TUT	Gln	AIB	Vai	330	Thr	Ser	Thr	116	1335	Asp	•
000			77 T A													
Ala	Glu	Glu	Len	Lys	Va 1	AAA Lys	GIB	ACA	AAT	AGA	ATT	GAT	ACA	ACG	GCT	1056
			3 4 0	-		-		3 4 5		·		•	3 5 0			
GAT	ATG	TTA	AAC	TTG	TTA	GGG	TTT	GAA	TTA	CAA	CCA	ACT	AAT	GAT	GGA	1104
A . p	Mot	Leu	A s n	Lcu	Leu	G 1 y	Pho	Glu	Leu	Gln	Pro	Thr	Asa	Asp	Gly	
		3 5 5					360					365				
TTG	ATT	ATT	CAT	CCG	TCA	GAA	TTT	AAA	ACA	AAT	GCA	ACA	GAT	ATT	TTA	1152
Leu	11 e 370	I l •	His	Pro	Ser	Glu 375	Рьо	Lys	Thr	Asn	A 1 a 3 8 0	Thr	A s p	Ile	Leu	
						-										
						ATG Met										1200
385	V n h	413	wiß		390	DA C E	MC [ren	AIA	3 9 5	AIB	Cy s	val	гев	Ser 400	
400	G . C							m			à					
Sor	Glu	Pro	Val	Lys	I l e	AAA Lys	GAA Gla	Phe	GAT	GCT Ala	GTA Val	AAT	GTA Val	TCA	TTT	1 2 4 8
				405		•			410					415	•	
CCA	GGA	TTT	ATT	CCA	A A A	CTA	AAG	СТТ	TTA	CAA	AAT	GAG	400	TAA		1293
Pro	Gly	Pho	Leu	Pro	Lys	Leu	Lys	Leu	Leu	Gla	Asn	Glu	Gly			1293
			4 2 0					4 2 5					430			

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 430 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: finear

(i i) MOLECULE TYPE: protein (\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:44: Met Val Asn Giu Gin Ile Ile Asp Ile Ser Gly Pro Leu Lys Gly Glu 1 15 Ile Glu Val Pro Gly Asp Lys Ser Met Thr His Arg Ala Ile Met Leu 20 25 30 A.1a Ser Leu Ala Glu Gly Val Ser Thr Ile Tyr Lya Pro Leu Leu Gly 35 Glu Asp Cys Arg Arg Thr Met Asp 11e Phe Arg His Leu Gly Val Glu 50 55 Ile Lys Glu Asp Asp Glu Lys Leu Val Val Thr Ser Pro Gly Tyr Gla 65 70 75 80 Val Asn Thr Pro His Gln Val Lou Tyr Thr Gly Asn Sor Gly Thr Thr 85 90 95 Thr Arg Leu Leu Ala Gly Leu Leu Ser Gly Leu Gly Asa Glu Ser Val Leu Ser Gly Asp Val Ser Ile Gly Lys Arg Pro Met Asp Arg Val Leu 115 120 Arg Pro Leu Lys Leu Met Asp Ala Asa Ile Glu Gly Ile Glu Asp Asa 130 135 Tyr Thr Pro Leu Ile Ile Lys Pro Ser Val Ile Lys Gly Ile Asn Tyr 145 150 155 Gln Mot Glu Val Ala Sor Ala Gln Val Lys Sor Ala Ile Leu Phe Ala 165 170 175 Ser Leu Phe Ser Lys Glu Pro Thr Ile Ile Lys Glu Leu Asp Val Ser 180 185 Arg Asn His Thr Glu Thr Met Phe Lys His Phe Asn Ile Pro Ile Glu 195 200 Ala Glu Gly Leu Ser Ile Asn Thr Thr Pro Glu Ala Ile Arg Tyr Ile 210 215 Lys Pro Ala Asp Pho His Val Pro Gly Asp Ilc Sor Ser Ala Ala Pho 225 230 235 Phe Ile Val Ala Ala Leu Ile Thr Pro Gly Ser Asp Val Thr Ile His 245 250 Asn Val Gly Ile Asn Gin Thr Arg Sor Gly Ile Ile Asp Ile Val Glu 260 265 270 Lys Met Gly Gly Asn Ile Gln Leu Phe Asn Gln Thr Thr Gly Ala Glu 275 280 285 Pro Thr Ala Ser Ile Arg Ile Gln Tyr Thr Pro Met Leu Gln Pro Ile 290 295 Thr Ile Glu Gly Glu Leu Val Pro Lys Ala Ile Asp Glu Leu Pro Val 305 310 315 Ile Ala Leu Leu Cys Thr Gln Ala Val Gly Thr Ser Thr Ile Lys Asp 325 330 335 Ala Glu Glu Lou Lys Val Lys Glu Thr Asn Arg Ilo Asp Thr Thr Ala 340 345 350 Asp Met Leu Asn Leu Ceu Gly Phe Glu Leu Gln Pro Thr Asn Asp Gly 355 360 Lou Ilo Ilo His Pro Sor Glu Pho Lys Thr Asn Ala Thr Asp 11c Lou 370 375

Thr Asp His Arg Ile Gly Met Met Lou Ala Val Ala Cys Val Leu Ser 385 390 395 400

	-continue	d							
Ser Glu Pro Val Lys Ile Lys Gln I 405	Phe Asp 410	Ala	Va 1	Asn	Val	Ser 415	Phe		
Pro Gly Phe Lou Pro Lys Lou Lys I 420	Leu Lou 425	Gln	Asn	Glu	O 1 y 4 3 0				
(2) INFORMATION FOR SEQ ID NO.45:									
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: muckic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	·								
(i i) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA						•		•	
(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO.45:									
GGAACATATG AAACGAGATA AGGTGCAG									2 8
(2) INFORMATION FOR SEQ ID NO:46:									
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: modeic acid (C) STRANDHONESS: single (D) TOPOLOGY: linear			:						
(i i) MOLECULE TYPE: Other models acid (A) DESCRIPTION: Synthetic DNA									
($\mathbf{x} \ \mathbf{i} \)$ SEQUENCE DESCRIPTION: SEQ ID NO:46:									
GGAATTCAAA CTTCAGGATC TTGAGATAGA	AAATG							•	3 5
(2) INFORMATION FOR SEQ ID NO:47:								:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: modeic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear									
(i i) MOLECULE TYPE: Other models asid (A) DESCRIPTION: Synthetic DNA									
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:47:									
GGGGCCATGG TAAATGAACA AATCATTG									2 8
(2) INFORMATION FOR SEQ ID NO:48:									
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: modeic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear									
(i i) MOLECULE TYPE: Other modeic acid (A) DESCRIPTION: Synthetic DNA									
(\mathbf{x} \mathbf{i}) SEQUENCE DESCRIPTION: SEQ ID NO:48:									
GGGGGAGCTC ATTATCCCTC ATTTTGTAAA	AGC								3 3
(2) INFORMATION FOR SEQ ID NO:									•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 480 smino acids (B) TYPB: amino acid (D) TOPOLOGY: linear									
(i i) MOLECULE TYPE: protein									

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:49: Leu Thr Asp Glu Thr Leu Val Tyr Pro Pho Lys Asp Ilo Pro Ala Asp 1 10 15 Gln Gln Lys Val Val Ile Pro Pro Gly Ser Lys Ser Ile Ser Asn Arg 20 25 30 Ala Lou Ilo Lou Ala Ala Lou Gly Glu Gly Gla Cys Lys Ilo Lys Asn 35 40 45 Leu Leu His Ser Asp Asp Thr Lys His Met Leu Thr Ala Val His Glu 50 55 Lou Lys Gly Ala Thr Ilo Sor Trp Glu Asp Asa Gly Glu Thr Val Val 65 70 75 Val Glu Gly His Gly Gly Sor Thr Leu Ser Ala Cys Ala Asp Pro Leu 85 90 95 Tyr Lou Gly Asn Ala Gly Thr Ala Ser Arg Pho Lou Thr Ser Lou Ala 100 105 Ala Leu Val Asa Ser Thr Ser Ser Gln Lys Tyr Ile Val Leu Thr Gly
115 125 Asn Ala Arg Met Gin Gin Arg Pro Ile Ala Pro Leu Val Asp Ser Leu 130 140 Arg Ala Asn Gly Thr Lys Ile Glu Tyr Leu Asn Asn Glu Gly Ser Leu 145 150 155 Leu Ala Ala Thr Val Ser Ser Gla Tyr Val Ser Ser Ile Leu Met Cys 180 185 Ala Pro Tyr Ala Glu Glu Pro Val Thr Leu Ala Leu Val Gly Gly Lys 195 200 Pro Ile Ser Lys Leu Tyr Val Asp Met Thr Ile Lys Met Met Glu Lys 210 220 Phe Gly Ile Asn Val Glu Thr Ser Thr Thr Glu Pro Tyr Thr Tyr 225 230 235 Ile Pro Lys Gly His Tyr Ile Asn Pro Ser Glu Tyr Val Ile Glu Ser 245 255 Asp Ala Ser Ser Ala Thr Tyr Pro Leu Ala Phe Ala Ala Met Thr Gly 260 · 270 Thr Thr Val Thr Val Pro Asn Ile Gly Phe Glu Ser Leu Gln Gly Asp 275 280 285 Ala Arg Phe Ala Arg Asp Val Leu Lys Pro Met Gly Cys Lys Ile Thr 290 295 300 Gln Thr Ala Thr Ser Thr Thr Val Ser Gly Pro Pro Val Gly Thr Leu 305 310 315 Lys Pro Lou Lys His Val Asp Met Glu Pro Met Thr Asp Ala Phe Leu 325 330 330 Thr Ala Cys Val Val Ala Ala Ile Ser His Asp Ser Asp Pro Asn Ser 340 Ala Asn Thr Thr Ile Glu Gly Ile Ala Asn Gln Arg Val Lys Glu 355 360 Cys Asn Arg lie Leu Ala Met Ala Thr Glu Leu Ala Lys Phe Gly Val 370 380 Lys Thr Thr Glu Leu Pro Asp Gly Ile Gln Val His Gly Leu Asn Ser 385 390 395 Ile Lys Asp Len Lys Val Pro Ser Asp Ser Ser Gly Pro Val Gly Val

Сув	Thr	Tyr		Asp	His	Arg			Mct	Ser	Phe	Ser	Lou	Leu	Ala
-			420					4 2 5					430		
Glv	Mot	Va 1	Asn	Ser	Gln	Asn	Glu	Arg	Asn	Gin	V . 1	A 1 n	Asn	Pro	Val
		435					440				V 4. 1	445			,
Arg	I l e	Leu	Glu	Arg	His							Pro	Gly	Trp	Trp
	450					4 5 5					460				
Авр	V a 1	Lou	His	Ser	Glu	Len	G 1 y	Ala	Lvs	Len	Asp	Glv	Ala	Gln	Pro
465					470		•								480

(2) INFORMATION FOR SBQ ID NO:50:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGITE: 460 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(* i) SEQUENCE DESCRIPTION: SEQ ID NO:50:

	Ala	Pro	Ser		Glu	V a 1	His	Pro	Gly	V a 1	Ala	His	Ser	Ser	Asn
1				5					10					1 5	
Val	Ile	Суз	A 1 a 2 0	Pro	Pro	Gly	Ser	L y s 2 5	Ser	Ile	Ser	Asn	A r g	Ala	Leu
Vai	Leu	A 1 a 3 5	Ala	Leu	Gly	Ser	Gly 40	Thr	Сув	Агд	lic	L y s 4 5	Asn	Leu	Leu
His	S e r 5 0	Asp	Asp	Thr	Glu	V a 1 5 5	Met	Lev	A s n	Ala	Leu 60	G 1 u	Arg	Lou	G 1 y
A 1 a 6 5	Ala	Thr	Pho	Sor	Trp 70	Giu	Glo	Glu	G 1 y	G 1 u 7 5	V a 1	Lon	V a 1	V a 1	A s n 8 0
Gly	Lys	Gly	G 1 y	A s n 8 5	Leu	Gln	Ala	Ser	S e r 90	Ser	Pro	Leu	Tyr	Leu 95	G 1 y
Авп	Ala	G 1 y	Thr 100	Ala	Ser	Arg	Phe	L e u 105	Thr	Thr	V a 1	Ala	Thr 110	Lou	A 1 a
A s·n	Ser	S o r 1 1 5	Thr	V a 1	A s p	Ser	Ser 120	Vai	Leu	Thr	G 1 y	A s n 1 2 5	Asn	Arg	Mot
Lys	Gl n 130	Атд	Pro	I 1 o	G 1 y	A s p 135	Leu	V a 1	A s p	Ala	Leu i40	Thr	Ala	Asn	V a 1
Leu 145	Pro	Leu	Asn	Thr	Ser 150	Lys	G 1 y	Arg	Ala	S c r 1 5 5	Lcu	Pro	Lou	Ly:	I 1 e 1 6 0
Ala	Ala	Ser	Gly	G1y 165	Pho	Ala	Gly	G 1 y	A s n 170	Ilc	Asn	Lou	Ala	A1 a 175	Lys
Va 1	Ser	Ser	Gln 180	Tyr	Val	Ser	Ser	Leu 185	Leu	Met	Сув	A 1 a	Pro 190	Туг	Ala
Lys	Glu	Pro 195	V a 1	Thr	Leu	Arg	Leu 200	V a l	G 1 y	Gly	L y s	Pro 205	Ile	Ser	Gln
Pro	Tyr 210	I 1 e	A s p	Met	Thr	Thr 215	Ala	Met	Met	Arg	S e r 2 2 0	Phe	G 1 y	Ile	Asp
V a 1 2 2 5	Gla	L y s	Ser	Thr	Thr 230	Glu	G 1 u	Hi;	Thr	T y r 2 3 5	His	I 1 o	Pro	Gln	G 1 y 2 4 0
Arg	Tyr	V a 1	Asn	Pro 245	Ala	Giu	Tyr	V a 1	I 1 c 2 5 0	Glu	Ser	A s p	Ala	S c r 2 5 5	Сув
Ala	Thr	Туг	Pro 260	Leu	Ala	Val	Ala	A 1 a 2 6 5	V a l	Thr	G l y	Thr	T b r 270	Сув	Thr
Val	Pro	Asn 275	I 1 c	G I y	Ser	Ala	Ser 280	Leu	Gln	Gly	Asp	A l a 2 8 5	Arg	Ph e	Ala
V a 1	Glu 290	V a 1	Leu	Arg	Pro	Me t 295	G1 y	Cy s	ТЬт	Vai	G 1 u 3 0 0	Gla	Thr	Glu	Th r

111 112

-continued

(2) INFORMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 amino acida
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(x i) SEQUENCE DESCRIPTION: SEQ ID NO-51:

 Lys
 Ala
 Ser
 Glu
 Ile
 Val
 Leu
 Gla
 Pro
 Ile
 Arg
 Glu
 Ile
 Ser
 Gly
 Leu

 Ile
 Lys
 Leu
 Pro
 Gly
 Ser
 Lys
 Ser
 Leu
 Ser
 Asn
 Arg
 Ile
 Leu
 Asn
 Ser
 Ser
 Ser
 Asn
 Asn
 Asn
 Ser
 He
 Leu
 Asn
 Asn
 Asn
 Asn
 Asn
 Arg
 Ala
 Leu
 Asn
 Asn
 Arg
 Ala
 Leu
 Asn
 Arg
 Ala
 Asn
 Ala
 Asn
 Arg
 Arg

		195					200					205				•
Tyr	V a 1 2 1 0	Glu	Met	Thr	Leu	L y s 2 1 5	Leu	Met	G 1 n	Arg	Phc 220	G 1 y	V a 1	Ser	Ala	
G 1 u 2 2 5	H i s	Ser	A s p	Ser	Trp 230	Авр	Arg	P h o	P h c	Val 235	Ly:	Gly	G 1 y	Gln	Lys 240	
Туr	Lys	Ser	Pro	G 1 y 2 4 5	Asn	Ala	Tyr	Val	G 1 u 2 5 0	Gl y	A s p	Ala	Ser	S c r 2 5 5	Ala	
Ser	Туг	Phe	Leu 260	Ala	G 1 y	Ala	Ala	I 1 c 2 6 5	Tbr	G1 y	Glv	Thr	V a 1 2 7 0	Thr	Val	
G 1 u	Gly	Cys 275	Gly	Thr	Thr	Ser	L e u 2 8 0	Gln	G 1 y	A s p	V a l	Lys 285	P h e	Ala	Glu	
Val	Leu 290	0 1 u	Lys	Met	G 1 y	C y s 2 9 5	Lys	Val	Ser	Trp	Thr 300	Glu	Asn	Ser	V a 1	
Thr 305	V a 1	Thr	G 1 y	Pro	S e r 3 1 0	Arg	A s p	Ala	P h c	Gly 315	Mot	Arg	His	Lou	Arg 320	
Ala	V a 1	A s p	V a 1	Asn 325	Met	Asn	Lys	Met	Pro 330	A s p	V a l	Ala	Met	Thr 335	Leu	
Ala	V a 1	V a 1	A 1 a 3 4 0	Leu	Phe	Ala	Asp	G1y 345	Pro	Thr	Thr	Ile	Arg 350	A s p	V a 1	
Ala	Ser	Trp 355	Arg	V a 1	Lys	Glu	Thr 360	Glu	Arg	Met	I 1 c	A 1 a 3 6 5	Ilc	Суз	Thr	
G 1 u	Leu 370	Arg	Lys	Leu	Gly	Ala 375	Thr	Val	G 1 u	Glu	G 1 y 3 8 0	Ser	A s p	Tyr	Сув	
Va1 385	Ile	Thr	Pro	Pro	A 1 a 3 9 0	Lys	Val	Lys	Pro	A 1 a 3 9 5	Glu	Ile	A s p	Thr	Tyr 400	
Asp	Asp	His	Arg	Me t 405	Ala	Met	Ala	Phe	Ser 410	Lou	Ala	Ala	Сув	Ala 415	Азр	
V a 1	Pro	Val	Thr 420	Ile	Lys	A s p	Pro	G 1 y 4 2 5	Cys	Thr	Arg	Lys	Thr 430	Phe	Pro	
Asp	Tyr	Phe 435	Gln	Va1	Leu	Glu	S e r 4 4 0	I 1 c	Thr	Lys	Hi s					

(2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 444 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein

(\mathbf{x} \mathbf{i}) SEQUENCE DESCRIPTION: SEQ ID NO:52:

Lys 1	Ala	Ser	G 1 v	I 1 c 5	V a 1	Lcu	Gln	Pro	I 1 c 10	Arg	Glu	I 1 e	Ser	G 1 y 1 5	Leu
Ile	L y s	Leu	Pro 20	G 1 y	Ser	Lys	Ser	Leu 25	Ser	Asn	Arg	I 1 e	Leu 30	Leu	Leu
Ala	Ala	L c u 3 5	Ser	G 1 u	G 1 y	Thr	Thr 40	V a l	V a 1	A s p	A s n	L c u 4 5	Leu	A s n	Ser
A \$ p	A s p 5 0	I 1 e	Asn	Tyr	Met	Leu 55	Asp	Ala	Leu	Lys	Arg 60	Leu	G 1 y	Leu	Asn
V a 1 6 5	Glu	Thr	Asp	Ser	G 1 u 7 0	A s n	Азл	Arg	Ala	V a 1 7 5	V a 1	Glu	G 1 y	C y s	G 1 y 8 0
G 1 y	I 1 e	Phe	Pro	A 1 a 8 5	Ser	Ile	Asp	Ser	Lys 90	Sor	Аsр	Ilo	Glu	L e u 9 5	Туг
Leu	G 1 y	A s n	A 1 a 1 0 0	Gly	Thr	Ala	Met	Arg 105	Pro	Lou	Thr	Ala	A 1 a 1 1 0	V a 1	Thr

Ala Ala Gly Gly Asn Ala Ser Tyr Val Leu Asp Gly Val Pro Arg Met 115 120 Arg Glu Arg Pro Ilo Gly Asp Leu Val Val Gly Leu Lys Gla Leu Gly 130 140 Ala Asp Val Glu Cys Thr Leu Gly Thr Asn Cys Pro Pro Val Arg Val 145 150 155 Asn Ala Asn Gly Gly Lou Pro Gly Gly Lys Val Lys Lou Sor Gly Ser 165 170 175 ile Ser Ser Glm Tyr Leu Thr Ala Leu Leu Met Ser Ala Pro Leu Ala 180 185 Leu Gly Asp Val Glu Ile Glu Ile Val Asp Lys Leu Ile Ser Val Pro 195 200 205 Tyr Val Glu Met Thr Leu Lys Leu Met Glu Arg Phe Gly Val Ser Val 210 215 Glu His Ser Asp Ser Trp Asp Arg Phe Phe Val Lys Gly Gly Gln Lys 225 230 235 240 Tyr Lys Sor Pro Gly Asn Ala Tyr Val Glu Gly Asp Ala Sor Sor Ala 245 255 Cys Tyr Phe Leu Ala Gly Ala Ala Ile Thr Gly Glu Thr Val Thr Val 260 265 Glu Gly Cys Gly Thr Thr Ser Leu Gln Gly Asp Val Lys Phe Ala Glu 275 280 285 Val Leu Glu Lys Met Gly Cys Lys Val Ser Trp Thr Glu Asn Ser Val 290 295 300 Thr Val Thr Gly Pro Pro Arg Asp Ala Phe Gly Met Arg His Leu Arg 305 310 315 Ala lle Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu 325 330 Ala Val Val Ala Leu Phe Ala Asp Gly Pro Thr Thr Ile Arg Asp Val 340 Ala Sor Trp Arg Val Lys Glu Thr Glu Arg Met Ile Ala Ile Cys Thr 355 Glu Leu Arg Lys Leu Gly Ala Thr Val Glu Glu Gly Ser Asp Tyr Cys 370 380 Val Ile Thr Pro Pro Lys Lys Val Lys Thr Ala Glu Ile Asp Thr Tyr 385 390 395 Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Asp 405 415 Val Pro II e Thr II e Asn Asp Ser Gly Cys Thr Arg Lys Thr Phe Pro 420 425 Asp Tyr Phe Gln Val Leu Glu Arg Ile Thr Lys His 435

(${f 2}$) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (* i) SEQUENCE DESCRIPTION: SEQ ID NO:53:
- Lys Pro Asn Glu Ile Val Leu Gln Pro Ile Lys Asp Ile Ser Gly Thr 1 5 10
- Val Lys Leu Pro Gly Ser Lys Sor Leu Sor Asn Arg Ile Leu Leu Leu 20 25 30

Ala Ala	L e u 3 5	Ser	Lys	Gly	Arg	Thr 40	V a 1	V a l	A s p	Asn	Lon 45	Leu	Ser	Scr
Asp Asp 50	I 1 e	His	Tyr	Mct	L c u 5 5	G1 y	Ala	Leu	Lys	Thr 60	Leu	G 1 y	Leu	H i s
Val Glu 65	Asp	Asp	Asn	Glu 70	Asn	Gla	Arg	Ala	I 1 c 7 5	V a 1	Glu	Gly	Cys	G1 y 80
Gly Gln	Phe	Pro	V a 1 8 5	G 1 y	Lys	Lys	Ser	G1в 90	Glu	Glu	Ilc	Gln	Leu 95	Phe
Leu Gly		100					1 0 5					110		
Val Ala	115					120					125			
Arg Glu 130					1 3 5			_	•	1 4 0	-			- •
1 4 5	Val		•	150					155				_	160
Val Ser			165					170					175	Ser
	Ser	180		Len			185					190	Lou	
Len Gly	195					200		_			1 1 e 2 0 5			Pro .
Tyr Val 210	G1 u				2 1 5					220	·		Ser	
2 2 5	Thr			230					2 3 5	•	_	-	Gln	240
Tyr Lys			2 4 5					250	•	-			S o r 2 5 5	Ala
	Pho	260					265			-		270	Thr	
Glu Gly Val Lou	275					280					285			
290 Thr Val					295				_	300				
305 Ala Val				3 1 0					3 1 5					3 2 0
Ala Val			3 2 5					330	_				7 h r 3 3 5	Leu
Ala Ser		.340					3 4 5					3 5 0		
	3 5 5					360		_			3 6 5	•	·	
Glu Leu 370					3 7 5					3 8 0		_		-
11c 11c 385				390					395					400
Asp Asp Val Pro			405					410					4 1 5	•
		420					4 2 5				Lys	Thr 430	Phe	Pro
Asn Tyr	Phc 435	Asp	Val	Leu	Gla	G1 n 440	Tyr	Ser	Lys	His				

120

-continued

(2) INFORMATION FOR SBQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 444 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Lys 1	Pro	His	Glu	1 1 c 5	Val	Leu	Xaa	Рго	I 1 c 1 0	Lys	A s p	I 1 c	Ser	G 1 y 15	Thr
V a 1	Ly:	Leu	Pro 20	G 1 y	Ser	Lys	Ser	L e u 2 5	Ser	Asn	Агд	Į l o	Leu 30	Lou	Lou
Ala	Ala	Leu 35	Ser	Glu	O 1 y	Αrg	Th i	V a 1	V a 1	Asp	Asn	Leu 45	Leu	Ser	Ser
Asp	A s p 5 0	Ilc	His	Tyr	Met	Leu 55	G 1 y	Ala	Leu	Lys	Thr 60	Leu	G 1 y	Leu	Hi s
V a 1 6 5	Glu	As p	A s p	Asn	G1 u 70	Asn	Gln	Arg	Ala	I 1 c 7 5	V a 1	G 1 u	G 1 y	Сув	G 1 y 8 0
G 1 y	GIn	Phe	Pro	V a 1 8 5	G 1 y	Lys	Lys	Ser	G 1 u 9 0	Glu	G 1 u	I 1 c	Gln	Leu 95	Phe
Leu	G1 y	Asn	A 1 a 1 0 0	Gly	Thr	Ala	Met	Arg 105	Pro	Leu	Thr	Ala	A 1 a 1 1 0	Va 1	Thr
Val	Ala	Gly 115	G1y	His	Ser	Arg	Tyr 120	V a 1	Lou	A s p	G 1 y	V a 1 1 2 5	Рго	Arg	Met
Arg	G l u 130	Arg	Pro	Ilc	G 1 y	A s p 1 3 5	Leu	Val	Asp	Gly	L c u 1 4 0	Ly:	G l n	Leu	0 1 y
A 1 a 1 4 5	Glu	Val	Asp	Сув	Ser 150	Leu	Gly	Thr	Asn	Cys 155	Pro	Pro	Val	Arg	I 1 c 160
V a 1	Ser	Lys	G 1 y	G1y 165	Leu	Pro	Gly	Gly	Lys 170	Val	Lys	Leu	Ser	Gly 175	Ser.
Ile	Ser	Ser	G1 n 180	Tyr	Leu	Thr	Ala	Len 185	Leu	Mot	Ala	Ala	Pro 190	Leu	Ala
Leu	Gly	A s p 195	Val	Glu	Ilo	Glu	I 1 e 2 0 0	Ile	Asp	Lys	Lou	I 1 e 2 0 5	Ser	Val	Рго
Tyr	V a 1 2 1 0	Glu	Met	Thr	Leu	L y s 2 1 5	Leu	Met	Glu	Агд	Phe 220	Gly	Val	Phe	V a l
G 1 u 2 2 5	His	Ser	Ser	G 1 y	Trp 230	A s p	Arg	Phe	Leu	Val 235	Lys	Gly	Gly	Gln	Lys 240
Tyr	Lys	Ser	Pro	G 1 y 2 4 5	Lys	A 1 a	P h c	Val	G 1 u 2 5 0	Gly	Авр	Ala	Ser	S o r 2 5 5	Ala
Ser	Tyr	Phe	L e u 260	Ala	Gly	Ala	Ala	V a 1 2 6 5	Thr	Gly	G 1 y	Thr	V a 1 270	Thr	Val
Glu	G1y	Су в 275	Gly	Thr	Ser	Ser	Leu 280	Gln	G 1 y	A s p	V a 1	L y s 2 8 5	Phc	Ala	Glu
Val	Leu 290	Glu	Lys	Met	Gly	A 1 a 2 9 5	Glu	Val	Thr	Trp	Thr 300	Glu	A s n	Ser	Val
Thr 305	Val	Lys	Gly	Pro	Pro 310	Arg	Asn	Ser	Ser	G 1 y 3 1 5	Mot	Lys	His	Leu	Arg 320
Ala	I 1 c	Asp	V a 1	A s n 3 2 5	Met	Asn	Lys	Met	Pro 330	Asp	Val	Ala	Met	Thr 335	Leu
Ala	Val	V a 1	A 1 a 3 4 0	Leu	Pho	Ala	Asp	G 1 y 3 4 5	Pro	Thr	Thr	Ilc	Arg 350	Asp	V a 1
Ala	Set	Trp 355	Агд	Val	Lys	Glu	Thr 360	Glu	Агд	Met	11 c	A 1 a 3 6 5		Сув	Thr

Glu Lou Arg Lys Lou Gly Ala Thr Val Val Glu Gly Sor Asp Tyr Cys 3 7 5 lie lie Thr Pro Pro Giu Lys Leu Asa Val Thr Giu lie Asp Thr Tyr Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Asp 405 410 Val Thr Ile Lys Asn Pro Gly Cys Thr Arg Lys Thr Pho Pro 420 425 Asp Tyr Pho Glu Val Leu Gln Lys Tyr Sor Lys His 4 3 5

(2) INFORMATION FOR SEQ ID NO:55:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: Emcar

(i i) MOLECULE TYPE: protein

(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Lys 1	Pro	Ser	Glu	I 1 e	V a l	Leu	Gln	Pro	I I o 10	Lys	Glu	I 1 e	Ser	G 1 y 1 5	Thr
Val	Lys	Leu	Pro 20	G 1 y	Ser	L y s	Ser	L e u 2 5	Ser	Asn	Arg	I 1 e	Leu 30	Leu	Leu
		3 5			Gly		4 0					4 5			Ser
-	50			•	Mot	5 5	•			·	60		•		
6 5			-		A1 a 7 0 G1 y			_		7 5			•	•	80
				8 5	Thr	·			90					9 5	
	•		100	·	Ser			105					110		
Arg	Glu	115 Arg	Pro	I 1 c	Ser		120 Leu	V a l	Asp	Gly	Leu	125 Lys	Gln	Leu	Gly
	130 Glu	V a l	Asp	Суз	Phe	135 Leu	Gly	Thr	Lys		140 Pro	Pro	V a 1	Arg	
145 Val	Ser	Lys	Gly	G1 y	150 Leu	Pro	Gly	G l y	Lys 170	155 Val	Lys	Leu	Ser	Gly	160 Ser
I l c	Ser	Ser	G1 n		Leu	Tbr	Ala	Le u		Mot	Ala	Ala	Pro		A 1 a
Leu	Gly	A s p	V a l	Glu	I l e	Glu	1 1 e 2 0 0	I l e	Asp	Lys	Leu	I 1 e 2 0 5	Ser	V a 1	Pro
Tyr	Val 210	G 1 u	Met	Thr	Leu	Lys 215	Leu	Met	Glu	Arg	Ph e 220	G 1 y	Ile	Ser	V a l
G 1 u 2 2 5	His	Ser	Ser	Ser	Trp 230	Asp	Arg	Phọ	Phe	V a 1 2 3 5	Arg	G 1 y	G 1 y	Gla	Lys 240
Туr	Lys	Ser	Pro	G1y 245	L y s	Ala	Phe	Val	G 1 u 2 5 0	G 1 y	Аsр	Ala	Ser	Ser 255	Ala
Ser	Tyr	Phe	Leu 260		G 1 y	Ala	Ala	V a l 2 6 5	Thr	Gly	G 1 y	Thr	Ile 270		Val
Glu	Gly	Су; 275	-	Thr	Asn	Ser	L c u 2 8 0		Gly	A s p	Val	Lys 285		Ala	Glu

123

-continued

 Val
 Leu 290
 Glu Lys
 Met 295
 Glu 295
 Glu Val
 Thr 300
 Glu Asn Ser
 Val

 Thr 290
 Val
 Lys
 Gly Pro 310
 Arg Ser
 Ser
 Ser
 Gly 315
 Arg Lys
 His Leu Arg 320

 Ala
 Ile Asp Val
 Asn Met 325
 Asn Lys
 Met 2330
 Asp Val
 Ala Met 2335
 Leu 335

 Ala
 Val
 Asn 325
 Met 325
 Asn Lys
 Met 330
 Asp Val
 Ala Met 335
 Leu 335

 Ala
 Val
 Ala Leu 340
 Leu Tyr Ala Asp 61y 71
 Pro 7th 345
 Ala Ile Arg Asp Val
 Asp Val

 Ala Ser Trp 340
 Val Lys
 Glu Thr 360
 Arg Met 11e Ala Ile Cys
 Arg Asp Val
 Arg Arg Asp Val
 Arg Arg Arg Arg Cys
 Thr 360
 Arg Arg Met 375
 Arg Arg Arg Arg Cys
 Thr 360
 Thr 36

(2) INFORMATION FOR SBQ ID NO:56:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGIH: 444 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: finear

(i i) MOLECULE TYPE: protein

(* i) SEQUENCE DESCRIPTION: SEQ ID NO:56:

	195		200	2 0 5	
Tyr Val 210	Glu Met	Thr Lou Arg 215	Leu Met Glu	Arg Phe Gly 220	Val Lys Ala
Glu His 225	Ser Asp	Ser Trp Asp 230	Arg Phe Tyr	Ile Lys Gly 235	Gly Gln Lys 240
Tyr Lys		Lys Asn Ala 245	Tyr Val Glu 250	Gly Asp Ala	Ser Ser Ala · 255
Ser Tyr	Phe Leu 260	Ala Gly Ala	Ala lle Thr 265	Gly Gly Thr	Val Thr Val 270
Glu Gly	Cys Gly 275	Thr Thr Ser	Leu Gln Gly 280	Asp Val Lys 285	Pho Ala Giu
Val Leu 290	Glu Met	Met Gly Ala 295	Lys Val Thr	Trp Thr Glu 300	Thr Ser Val
Thr Val	Thr Gly	Pro Pro Arg 310	Glu Pro Phe	Gly Arg Lys 315	His Leu Lys 320
Ala Ilo	•	Asn Met Asn 325	Lys Met Pro 330	Asp Val Ala	Met Thr Leu 335
Ala Val	Val Ala 340	Leu Phe Aia	Asp Gly Pro 345	Thr Ala Ile	Arg Asp Val 350
Ala Ser	Trp Arg	Val Lys Glu	Thr Glu Arg 360	Met Val Ala 365	lle Arg Thr
Glu Leu 370	Thr Lys	Leu Gly Ala .375	Ser Val Glu	Glu Gly Pro 380	Авр Тут Сув
3 8 5		390		3 9 5	Asp Thr Tyr 400
	_	4 0 5	410		Cys Ala Glu 415
	4 2 0		4 2 5		Thr Phe Pro 430
Asp Tyr	Pho Asp 435	Val Leu Ser	Thr Phe Val	Lys Asn	

(2) INFORMATION FOR SEQ ID NO:57:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTE: 427 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO-57:

Met 1	Glu	Ser	Leu	Thr 5		Gln	Pro	Ilc	Ala 10	Arg	Val	A s p	G 1 y	A 1 a 1 5	Ile
Asn	Leu	Pro	G 1 y 20	Ser	Lys	Ser	Val	S e r 2 5		Arg	Ala	Leu	Leu 30	Lou	Ala
Ala	Lou	A 1 a 3 5	Сув	G 1 y	Lys		V a 1 4 0			Asn	Leu	L e u 4 5	A s p	Ser	Asp
Авр	V a 1 5 0		His	Met	Leu	A s n 5 5	Ala	Leu	Ser	Ala	L e u 60	Gly	Ilo	Asn	Tyr
Thr 65	Leu	Ser	Ala	A s p		Thr		Сув	A s p	I 1 e 7 5	Thr	G 1 y	Asn	G 1 y	G 1 y 8 0
Pro	Leu	Arg	A 1 a			Ala			Lou 90	P h e	Leu	G 1 y	Asn	A 1 a 9 5	Gly
Thr	Ala	M c t	Arg			Ala				•		-		Asn	G1 u

127 128

-continued Ile Val Leu Thr Gly Glu Pro Arg Met Lys Glu Arg Pro Ile Gly His 115 120 125 Leu Val Asp Ser Leu Arg Gln Gly Gly Ala Asn I-le Asp Tyr Leu Glu 130 .140 Gln Glu Asn Tyr Pro Pro Leu Arg Leu Arg Gly Gly Phe Ile Gly Gly 145 150 155 Asp Ile Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 165 170 170 Leu Met Thr Ala Pro Leu Ala Pro Lys Asp Thr Ile Ile Arg Val Lys
180 185 Gly Glu Leu Val Ser Lys Pro Tyr Ile Asp Ile Thr Leu Ash Leu Met 195 200 205 Lys Thr Phe Gly Val Olu Ile Ala Asn His His Tyr Gln Gln Phe Val 210 . 220
 Val
 Lys
 Gly
 Gly
 Gln
 Gln
 Tyr
 His
 Ser
 Pro
 Gly
 Arg
 Tyr
 Leu
 Val
 Glu

 225
 230
 235
 235
 240
 Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Ala Ile Lys 245 255 Gly Gly Thr Val Lys Val Thr Gly Ile Gly Arg Lys Ser Met Gly Gly 260 265 270Asp Ile Arg Phe Ala Asp Val Leu Glu Lys Met Gly Ala Thr Ile Thr 275 280 Trp Gly Asp Asp Phe Ile Ala Cys Thr Arg Gly Glu Leu His Ala Ile 290 295 300 Asp Mot Asp Mot Asn His Ile Pro Asp Ala Ala Mot Thr Ile Ala Thr 305 310 315 Thr Als Leu Phe Ala Lys Gly Thr Thr Thr Leu Arg Asn 11e Tyr Asn 325 330 335 Trp Arg Val Lys Glu Thr Asp Arg Lou Phe Ala Met Ala Thr Glu Leu 340 . 345 Arg Lys Val Gly Ala Glu Val Glu Glu Gly His Asp Tyr Ile Arg Ile 355 360 365 Thr Pro Pro Ala Lys Leu Gln His Ala Asp Ile Gly Thr Tyr Asn Asp 370 375 380 His Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 385 390 395 Val Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 405 . 410 415 Phe Glu Gla Leu Ala Arg Met Ser Thr Pro Ala 420 425

(2) INFORMATION FOR SEQ ID NO:58:

- ($\,i\,$) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 427 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:58:

 Met
 Glu
 Ser
 Leu
 Thr
 Leu
 Gln
 Pro
 I ie
 Ala
 Arg
 Val
 Asp
 Gly
 Ala
 I leu

 Asn
 Leu
 Pro
 Gly
 Ser
 Lys
 Ser
 Val
 Ser
 Asn
 Arg
 Ala
 Leu
 Leu
 Leu
 Leu
 Ala

 Ala
 Leu
 Ala
 Cys
 Gly
 Lys
 Thr
 Val
 Leu
 Thr
 Asn
 Leu
 Leu
 Asp
 Ser
 Asp

Asp	Va 1	Arα	Hi:	Met	Len	Aso	Als	Leu	Set	A 1 a	l.c.	G1 =	114	A = =	T w -
	5 0					5 5					60				-
Thr 65	Leu	Ser	Ala	Asp	A r g	Thr	Агд	Cy s	Авр	11 e 75	Thr	Gly	Asn	G 1 y	G1y 80
Pro	Leu	Arg	Ala	S e r 8 5	Gly	Thr	Lou	Glu	L e u 90	Phe	Leu	G l y	Asn	Ala 95	G 1 y
Thr	Ala	Met	Arg 100	Pro	Leu	Ala	Ala	A 1 a 105	Leu	Суз	Leu	Gly	G1 m 1 1 0	Asn	Glu
Ilc	V a 1	Leu 115	Thr	Gly	Gln	Pro	Arg 120	Met	Lys	Glu	Arg	Pro 125	I l c	G 1 y	H i s
Lou	V a 1 1 3 0	Asp.	Ser	Leu	Arg	G 1 n 135	G 1 y	G 1 y	Ala	Азп	I 1 e 1 4 0	A s p	Туг	L e u	Glu
G1n 145	Glu	Asn	Туг	Pro	Pro 150	Leu	Arg	Leu	Arg	G 1 y 1 5 5	G 1 y	Pho	I 1 o	G 1 y	G 1 y 1 6 0
Asp	I 1 c	G 1 B	V a 1	A s p 165	G 1 7	Ser	Val	Ser	S e r 170	Gln	P h c	Leu	Thr	A 1 a 1 7 5	Leu
Leu	Met	Thr	A 1 a 1 8 0	Pro	Leu	Ala	Pro	Glu 185	A s p	Thr	I 1 e	I 1 o	Arg 190	V a 1	Lys
Gly	G 1 u	Leu 195	V a 1	Sor	Ly:	Pro	Tyr 200	116	A s p	I 1 e	Thr	Leu 205	Asn	Leu	Met
Lys	Thr 210	Phe	G 1 y	Va1	Glu	I 1 e 2 1 5	Ala	Asn	His	Hi s	Tyr 220	Gln	Gla	P h e	V a 1
V a 1 2 2 5	Lys	Gly	G 1 y	Gln	Gln 230	Tyr	Hi s	Ser	Pro	G1y 235	Arg	Tyr	Leu	Val	G I u 2 4 0
Gly	A s p	Ala	Ser	S o r 2 4 5	Ala	Ser	Tyr	P h e	Leu 250	Ala	Ala	G l y	G 1 y	I 1 o 2 5 5	Lys
G 1 y	Gly	Thr	V a 1 2 6 0	Lys	V a 1	Thr	G1 y	I 1 e 2 6 5	G 1 y	G 1 y	Lys	Ser	Met 270	Gln	Gly
A s p	I 1 c	Arg 275	Phe	Ala	Asp	V a1	Leu 280	His	Lys	Met	G 1 y	A 1 a 2 8 5	Thr	I 1 e	Thr
Trp	G1y 290	Asp	Asp	Phe	I 1 e	A 1 a 2 9 5	Сув	Thr	Arg	G 1 y	G1 u 300	Leu	His	A 1 a	I l e
A s p 3 0 5	Mot	Asp	Mot	Asn	Hi: 310	Ile	Pro	A s p	Ala	A 1 a 3 1 5	Mct	Thr	I 1 e	A 1 a	Th 1 320
Thr	Ala	Len	Phe	A 1 a 3 2 5	Lys	Gly	Thr	Thr	Thr 330	Leu	Arg	Asn	Ile	Tyr 335	Asn
Ттр	Arg	V a 1	Lys 340	Glu	Thr	Asp	Arg	L o u 3 4 5	Pho	Ala	Mot	Ala	Thr 350	G 1 u	Ĺes
Arg	Lys	V a 1 3 5 5	G I y	Ala	Glu	V a 1	G1 u 360	Glu	Gly	His	Авр	Tyr 365	I 1 e	Arg	Ilc
Thr	Pro 370	Pro	Ala	Lys	Lcu	G1 n 375	His	Ala	A s p	I l o	G 1 y 3 8 0	Thr	Tyr	Asn	A s p
His 385	Arg	Met	Ala	Met	Cys 390	Phe	Ser	Lev	Val	A 1 a 3 9 5	Len	Ser	Asp	Thr	Р г о 4 0 0
V a 1	Tbr	I l e	Leu	A s p 4 0 5	Pro	Lys	Суs	Thr	A 1 a 4 1 0	Lys	Thr	Pho	Рто	A s p 4 1 5	Tyr
Pho	G 1 B	G 1 n	Leu 420	Ala	Arg	Mot	Sor	Thr 425	Pro	A 1 a					

(2) INFORMATION FOR SEQ ID NO:59:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 427 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

131

-continued

(i i) MOLECULE TYPE: protein (x i) SEQUENCE DESCRIPTION: SEQ ID NO:59: Met Glu Ser Leu Thr Leu Gla Pro Ile Ala Arg Val Asp Gly Thr Val
1 5 10 15 Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu Ala 20 25 30 Ala Leu Ala Arg Gly Thr Thr Val Leu Thr Asa Leu Leu Asp Ser Asp
35
40 Asp Val Arg His Met Lou Asa Ala Lou Sor Ala Leu Gly Val His Tyr 50 55 Val Leu Ser Ser Asp Arg Thr Arg Cys Glu Val Thr Gly Thr Gly Gly 65 70 75 . Pro Lou Gin Ala Giy Sor Ala Lou Giu Lou Pho Lou Giy Asa Ala Giy 85 90 95 Thr Ala Met Arg Pro Leu Ala Ala Ala Leu Cys Leu Gly Ser Asn Asp 100 105 Ile Val Leu Thr Gly Glu Pro Arg Met Lys Glu Arg Pro Ile Gly His 115 120 Leu Val Asp Ala Leu Arg Gln Gly Gly Ala Gln Ile Asp Tyr Leu Glu 130 140 Gln Glu Asn Tyr Pro Pro Leu Arg Leu Arg Gly Gly Phe Thr Gly Gly 145 150 155 Asp Val Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 165 170 175 Leu Met Ala Ser Pro Leu Ala Pro Gln Asp Thr Val Ile Ala Ile Lys 180 185 Gly Glu Leu Val Ser Arg Pro Tyr Ile Asp Ile Thr Leu His Leu Met 195 200 Lys Thr Pho Gly Val Glu Val Glu Asn Gln Ala Tyr Gln Arg Pho Ile 210 220 Val Arg Gly Asa Gla Gla Tyr Gla Scr Pro Gly Asp Tyr Leu Val Glu 225 230 235 Gly Asp Ala Sor Ser Ala Ser Tyr Phe Leu Ala Ala Gly Ala Ile Lys 245 255 Gly Gly Thr Val Lys Val Thr Gly Ile Gly Arg Asn Ser Val Gln Gly 260 270 Asp Ile Arg Phe Ala Asp Val Leu Glu Lys Met Gly Ala Thr Val Thr 275 . 285 Trp Gly Glu Asp Tyr Ile Ala Cys Thr Arg Gly Glu Leu Asn Ala Ile 290 295 Asp Met Asp Met Asn His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr 305 310 315 Ala Ala Leu Phe Ala Arg Gly Thr Thr Thr Leu Arg Asn Ile Tyr Asn 325 330 335 Trp Arg Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu 340 345 Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 355 360 Thr Pro Pro Leu Thr Leu Gln Phe Ala Giu Ile Giy Thr Tyr Asn Asp 370 375 380 His Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro

Vai	Thr	Ile	Leu	A s p 4 0 5	Рго	L y s	Сув	Thr	A 1 a 4 1 0	Lys	Thr	Phe	Pro	A s p 4 1 5	Туг
Ph c	Gly	Gln	Leu 420	Ala	Arg	I 1 e	Ser	Thr 425	Len	Ala					

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 427 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(* i) SEQUENCE DESCRIPTION: SEQ ID NO:60:

(21)5	-QULIC	L DLL	M 21014.	SEQ ID I	10.00.										
Mc t	Len	Glu	Ser	Leu 5	Thr	Leu	His	Pro	I 1 e 1 0	Ala	Leu	I 1 o	Asn	Gly 15	Thr
Val	A s n	Leu	Pro 20	G1 y	Ser	Lys	Ser	V a 1 2 5	Sor	A s n	Атв	Ala	Leu 30	Leu	Leu
Ala	Ala	Leu 35	Ala	Glu	G 1 y	Thr	Thr 40	Gln	Len	A s n	A s 2	Leu 45	Leu	A s p	Ser
Asp	A s p 5 0	Ile	Агд	His	Met	Leu 55	Asn	Ala	Lou	Gin	A 1 a 6 0	Lou	G 1 y	V a 1	Lys
T y r 65	Arg	Leu	Ser	Ala	A s p 70	Arg	Thr	Arg	Сув	G 1 u 7 5	V a 1	Asp	Gly	Leu	G 1 y 8 0
G l y	Lys	Leu	Val	A 1 a 8 5	Glu	Gla	Pro	Len	G 1 u 90	Leu	Pho	Len	G 1 y	A s n 9 5	Ala
G 1 y	Thr	Ala	Me t 100	Arg	Pro	Leu	Ala	A 1 a 105	Ala	Lou	Сув	Leu	G1y 110	Lys	Asn
Авр	Ile	V a 1 1 1 5	Leu	Thr	G 1 y	Glu	Pro 120	Arg	Met	Lys	Glu	Arg 125	Pro	I 1 e	G l y
His	Leu 130	V a 1	Asp	Ala ·	Leu	Arg 135	Gln	Gly	G 1 y	Ala	G1 n 140	Ile	A s p	Tyr	Leu
G 1 u 1 4 5	Gln	Glu	Asn	Tyr	Arg 150	Arg	Сув	Ile	Ala	Gly 155	Gl y	P h e	Arg	G 1 y	G 1 y 1 6 0
Lys	Leu	Thr	Val	A s p 165	G1y	Ser	V a 1	Ser	Ser 170	Gin	Phe	Leu	Thr	A 1 a 175	Leu
			180	Pro				Gln 185	Asp	Thr	Glu	Ilc	01 n 190	Ile	Gln
		195		Ser			200	Ilo	_			205			
	210			V a 1		2 1 5					220				
2 2 5				Gln	230					2 3 5					2 4 0
				S c r 2 4 5					250					255	Lys
Gly	Oly	Thr	Val 260	Arg	Val	Thr	Gly	I 1 c 265	G 1 y	Lys	Gla	Ser	Val 270	Gln	G 1 y
Авр	Thr	Lys 275	Phc	Ala	Asp	Val	Lcu 280	Glu	Lys	Mot	G 1 y	A 1 a 2 8 5	Lys	11 c	Ser
Trp	G 1 y 2 9 0	Asp	Asp	Tyr	Ile	Olu 295	Суѕ	Ser	Arg	Gly	01 n 300	Leu	Gln	Gly	I 1 e
A s p 3 0 5	Met	Авр	Met	Asn	His 310	Ilo	Pro	Asp	Ala	Ala 315	Met	Thr	Ilc	Ala	Thr 320
Thr	Ala	Leu	Phe	Ala 325	Asp	Gly	Pro	Thr	V a 1 3 3 0	Ilc	Arg	Asn	Ilc	Tyr 335	Asn

 Trp
 Arg
 Val
 Lys
 Glu
 Thr
 Asp
 Arg
 Leu
 Ser
 Ala
 Met
 Ala
 Thr
 Glu
 Leu
 Ala
 Glu
 Asp
 Val

 Val
 Pro
 Pro
 Ala
 Glu
 Leu
 Ala
 Ala
 Ala
 Glu
 Glu
 Glu
 Thr
 Tyr
 Asp
 Asp
 Asp
 Ala
 Ala

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(* i) SEQUENCE DESCRIPTION: SEQ ID NO:61:

Mot Glu Lys Ilo Thr Lou Ala Pro Ile Ser Ala Val Glu Gly Thr Ile 1 5 10 15 As a Leu Pro Gly Ser Lys Ser Leu Sor As a Arg Ala Leu Leu Ala 20 25 30 Ala Lou Ala Lys Gly Thr Thr Lys Val Thr Asn Lou Lou Asp Sor Asp 35 40 45 Asp Ile Arg His Met Leu Asn Ala Leu Lys Ala Leu Gly Val Arg Tyr 50 55 Gln Leu Ser Asp Asp Lys Thr Ile Cys Glu Ile Glu Gly Leu Gly Gly 65 70 75 Ala Phe Asa Ilo Gla Asp Asa Leu Ser Leu Phe Leu Gly Asa Ala Gly 85 90 Thr Ala Met Arg Pro Leu Thr Ala Ala Leu Cys Leu Lys Gly Asn His 100 105 Glu Val Glu Ilc Ilc Leu Thr Gly Olu Pro Arg Met Lys Glu Arg Pro 115 120 Ile Leu His Leu Val Asp Ala Leu Arg Gla Ala Gly Ala Asp Ile Arg 130 135 Tyr Leu Glu Asn Glu Gly Tyr Pro Pro Leu Ala Ile Arg Asn Lys Gly 145 150 155 Ile Lys Gly Gly Lys Val Lys Ile Asp Gly Ser Ile Ser Ser Gla Phe 165 170 175 Leu Thr Ala Leu Leu Met Ser Ala Pro Leu Ala Glu Asa Asp Thr Glu 180 185 Ile Glu Ile Ile Gly Glu Leu Val Ser Lys Pro Tyr Ile Asp 11c Tbr 195 200 . 205 Len Ala Met Met Arg Asp Pho Gly Val Lys Val Glu Asn His His Tyr 210 215 Lys Phe Gln Val Lys Gly Asn Gln Ser Tyr Ile Ser Pro Asn Lys 230 235 240 Gly Ala lie Lys Gly Lys Val Lys Val Thr Gly Ile Gly Lys Asn Ser

		260		2 6 5	2 7	0
110	Gln Gly 275		Leu Phe Al 28	a Asp Val Leu O	Glu Lys Mo 285	t Gly Ala
Lys	Ile Thr 290	Trp Gly	Glu Asp Ph 295	e Ile Gln Ala	Glu His Al 300	a Glu Leu
A s n 3 0 5	Gly Ile	Asp Met	Asp Mot As:	n His Ile Pro 315	Asp Ala Al	a Met Thr 320
Ile	Ala Thr	Thr Ala 325	Leu Phe Se	r Asn Gly Glu 330	Thr Val II	c Arg Asn 335
Ile	Tyr Asn	Trp Arg 340	Val Lys Gl	Thr Asp Arg 345	Leu Thr Al	
Thr	Glu Leu 355		Val Gly Al 36	a Glu Val Glu O	Glu Gly Gl 365	u Asp Phe
Ile	Arg I1c 370	Gln Pro	Leu Ala Le 375	u Asa Gla Pho	Lys His Al 380	a Asn Ile
01 u 385	The Tyr	Asn Asp	His Arg Me 390	t Ala Met Cys 395	Phe Ser Le	u Tie Ala 400
Leu	Ser Asn	Thr Pro 405	Val Thr II	e Leu Asp Pro 410	Lys Cys Th	r Ala Lys 415
Thr	Pho Pro	Thr Phe 420	Pho Asn Gl	u Phe Glu Lys 425	lic Cys Lo 43	

(2) INFORMATION FOR SPQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGITE: 441 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Val 1	Ilo	L y s	Asp	Ala 5	Thr	Ala	Ile	Thr	Le u 10	Asn	Pro	Ile	Ser	T y r 1 5	I 1 c
Glu	Gly	Glu	V a 1 2 0	Arg	Len	Pro	G 1 y	Ser 25	Lys	Ser	Leu	Ser	A s n 3 0	Arg	Ala
Leu	Lou	Lou 35	Ser	Ala	Lon	A 1 a	Lys 40	Gly	Lys	Thr	Thr	L c u 4 5	Thr	Asn	Leu
Lou	A s p 5 0	Ser	Asp	Asp	V a 1	Arg 55	His	Mot	Leu	A s n	A 1 a 6 0	Leu	Lys	Glu	Leu
G 1 y 6 5	Val	Thr	Tyr	Gla	L e u 70	Ser	Glu	Asp	Lys	S e 1 7 5	V a l	Сув	GlB	I 1 e	G 1 u 8 0
Gly	Leu	Gly	Arg	A i a 8 5	Phe	O l u	Trp	Gln	S c r 90	G l y	Leu	Ala	Leu	P b c 9 5	Leu
Gly	Asn	Ala	G1y 100	Thr	Ala	M c t	Arg	Pro 105	Leu	Thr	Ala	Ala	L c u 1 1 0	C y s	Leu
Ser	Thr	Pro 115	Asn	Агд	Glu	G 1 y	Lys 120	Asn	Glu	Ile	Val	L e u 1 2 5	Thr	Gly	Glu
Pro	Arg 130	Mot	Lys	Glu	Атв	Pro 135	Ilc	Gla	His	Lou	V a I 1 4 0	A s p	Ala	Leu	Сув
Gin 145	Ala	G 1 y	Ala	Glu	I 1 e 1 5 0	Gln	Tyr	Leu	Glu	Gln 155	Glu	G 1 y	Туг	Pro	Pro 160
1 1 e	Ala	I 1 e	Arg	A s n 165	Thr	Gly	Lou	Lys	G 1 y 1 7 0	G 1 y	Arg	Ilo	Gln	I 1 e 175	Asp
Gly	Ser	V a l	Ser 180	Ser	Gla	Phe	Leu	Thr 185	Ala	Leu	Len	Met	Ala 190	Ala	Рго

<u>-</u>	Met	Ala	Glu 195	Ala	Asp	Τhτ	Glu	I 1 e 200	Glu	Ile	Ilc	G1 y	G 1 u 2 0 5	Leu	Val	Ser
	Lys	Pro 210	Туr	Ile	A s p	110	Thr 215	Leu	Lys	Met	Met	G1 n 220	Thr	Phc	Gly	Vai
	G 1 u 2 2 5	Val	Glu	Asn	Gln	A 1 a 2 3 0	Tyr	G·l n	Arg	Phe	Leu 235	V a l	Lys	Gly	Hi s	G1 n 240
	Gln	Tyr	Gin	Ser	Pro 245	Hi s	Arg	Phe	Leu	V a 1 2 5 0	Glu	G 1 y	Asp	Ala	Ser 255	Ser
	Ala	Ser	Туг	Phe 260	Leu	Ala	Ala	Ala	Ala 265	Ile	Lys	G 1 y	Lys	V a 1 2 7 0	Lys	V a 1
	Thr		Val 275	G 1 y	Lys	Asn	Ser	I 1 c 2 8 0	Gln	G 1 y	Asp	Arg	Leu 285	Phe	Ala	Авр
	Va 1	Leu 290	G 1 u	Lys	Mot	G l y	Ala 295	His	Ile	Thr	Trp	G1y 300	Авр	Asp	Phe	Ile
	G1 n 305	Val	Glu	Lys	Gly	A s n 3 1 0	Leu	Lys	G 1, y	Ile	A s p 3 1 5	Mot	Asp	Met	Asn	His 320
	Ile	Pro	Asp	Ala	A 1 a 3 2 5	M o t	Thr	Ile	Ala	Thr 330	Thr	Ala	Leu	Phe	A 1 a 3 3 5	Glu
	G 1 y	Glv	Thr	V a 1 3 4 0	Ile	Arg	Asn	I l e	Tyr 345	A s n	Trp	Arg	Val	Lys 350	Glu	Thr
	A s p	Arg	Leu 355	Thr	Ala	Mot	Ala	Thr 360	Glu	Leu	Arg	Lys	V a 1 3 6 5	G 1 y	Ala	Glu
	Val	Gi u 370	G 1 u	G 1 y	Glu	Asp	Phe 375	Ilc	Arg	Ile	Gln	Pro 380	Leu	Asn	Lou	Ala
	G1 n 385	Pho	Gln	His	Ala	G1 u 390	Leu	Asn	Ile	His	A s p 3 9 5	His	Arg	Mot	Ala	M o t 400
	Сув	Phe	Ala	Leu	I 1 c 4 0 5	Ala	Leu	Ser	Lys	Thr 410	Ser	Val	Thr	Ile	L c u 4 1 5	Азр
	Pro	Ser	Суз	Thr 420	Ala	Lys	Thr	Phe	Pro 425	Thr	Phe	Lou	[] e	Leu 430	Phe	Thr
	Leu	Asn	Thr 435	Агд	Glu	Vai	Ala	Tyr 440	Arg							

(2) INFORMATION FOR SEQ ID NO:63:

- (i) SBQUENCE CHARACTERISTICS:
 (A) LENGTE: 426 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Asn 1	Ser	Lou	Arg	Leu 5	Glu	Pro	Ile	Ser	Arg 10	V a 1	Ala	G 1 y	Glu	Vai 15	Asn
Lou	Pro	G 1 y	S e r 2 0	Lys	Sor	V a 1	Ser	A s n 2 5	Arg	Ala	Leu	Leu	Leu 30	Ala	Ala
Lcu	Ala	Arg 35	Gly	Thr	Thr	Arg	L e u 4 0	Thr	Asn	Leu	Leu	A s p 4 5	Ser	Asp	A s p
Ile	Arg 50	H i s	Met	Leu	Ala	A 1 a 5 5	Lou	Thr	Gln	Lev	G 1 y 6 0	V a 1	Lys	Туr	L y s
L e u 65	Ser	Ala	A s p	Lys	Thr 70	Glu	Суз	Thr	V a l	His 75	Gly	Leu	G 1 y	Arg	S c r 8 0
Phe	Ala	V a l	Ser	A 1 a 8 5	Pro	V a 1	A s n	Lou	Phe 90	Leu	G 1 y	A s n	Ala	G I y 9 5	Thr
Ala	Mct	Arg	Pro 100	Leu	Сув	Ala	Ala	Leu 105	Сув	Leu	G 1 y	Ser	G1 y 110	Glu	Tyr

Met	Leu	G 1 y	G 1 y	Glu	Pro	Агд	Me t	Glu	Glu	Arg	Pro	I 1 c	G 1 y	Hi s	Leu
V a l	Asp		Leu	Ala	Leu	Lys		Ala	Hi s	110			Lou	Lys	Lys
Asp	130 Gly	Туг	Pro	Pro	Leu	135 Val	Val	Asp	Ala	Lys	140 Gly	Lou	Trp	Gly	G l y
145			Val		150					155					160
				165		•			170					175	Phe
Lou	Met	Ala	A 1 a 180	Pro	Ala	Met	Ala	Pro 185	Val	Ile	Pro	Arg	I 1 e 1 9 0	His	Ilc
Lys	Gly	Glu 195	Lou	V a 1	Sor	Lys	Pro 200	Туr	Ilc	Asp	I 1 c	Thr 205	Lou	His	11 c
Mct	A s n 2 1 0	Ser	Ser	G 1 y	V a 1	V a 1 2 1 5	Ile	Glu	His	A s p	A * n 2 2 0	Туг	L y s	Leu	Рbе
Tyr 225	Ile	Lys	Gly	Asn	G1 n 230	Ser	Ilo	V a 1	Sor	Pro 235	G 1 y	A s p	Phe	Leu	V a 1 2 4 0
Glu	G1y	Asp	Ala	S o r 2 4 5	Ser	Ala	Ser	Tyr	Phe 250	Leu	Ala	Ala	G 1 y	Ala 255	I l e
Lys	Gly	Lys	Val 260	Arg	V a 1	Thr	G1y	I 1 o 2 6 5	Gly	Lys	His	Ser	I 1 c 2 7 0	Gly	Asp
Ilc	His	Phc 275	Ala	Asp	Val	Leu	G1 u 280	Агд	Met	Gly	Ala	Arg 285	Ile	Thr	Trp
Gly	A s p 2 9 0	Asp	Phe	Ilc	GIu	A 1 a 295	Glu	Gla	Gly	Pro	Lou 300	Нiв	G 1 y	Va 1	Asp
Me t 305	Asp	Met	Asn	His	I 1 c 3 1 0	Pro	Asp	Val	G 1 y	His 315	Asp	His	Ser	Gly	G 1 n 3 2 0
Ser	His	Cys	Leu	Pro 325	Arg	Val	Pro	Pro	Hi: 330	Ser	Gln	His	Leu	Gln 335	Leu
Ala	Val	Arg	A s p		Arg	Сув	Thr	Pro 345	Сув	Thr	His	G 1 y	His 350	Arg	Arg
Ala	Gln	A 1 a 3 5 5	G 1 y	Va 1	Ser	Glu	G1 u 360	G 1 y	Thr	Thr	Phc	I 1 e 3 6 5	Thr	Arg	A s p
Ala	A 1 a 3 7 0	Asp	Pro	Ala	Gla	A 1 a 3 7 5	Arg	Arg	Asp	Arg	His 380	Leu	Gln	Arg	Ser
Arg 385	110	Ala	Met	Сув	Phe 390	Ser	Leu	Val	Ala	Leu 395	Ser	Авр	Ilo	Ala	V a 1 4 0 0
Thr	Ile	Asn	Asp	Pro 405	G 1 y	Сув	Thr	Ser	L y s 4 1 0	Thr	Ph o	Pro	A s p	Tyr 415	Phe
Asp	Lys	Lcu	A 1 a 4 2 0	Ser	V a 1	Scr	Gla	A 1 a 4 2 5	V a 1						

(2) INFORMATION FOR SEQ ID NO:64:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 442 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear

(i i) MOLBCULE TYPE: protein

(\mathbf{x} \mathbf{i}) SEQUENCE DESCRIPTION: SEQ ID NO:64:

Met Ser Gly Leu Ala Tyr Leu Asp Leu Pro Ala Ala Arg Leu Ala Arg 1 10 15 Gly Glu Val Ala Leu Pro Gly Ser Lys Ser IIe Ser Asa Arg Val Leu 20 30 Leu Leu Ala Ala Leu Ala Glu Gly Ser Thr Glu Ile Thr Gly Leu Leu 143

144

3 5	5		4 0	0			4 5		
Asp Ser As 50	ар Авр	Thr Arg	Val Mo 55	et Leu		Leu 60	Arg Gln	Leu	Gly
Val Ser Va	al Gly	Glu Val 70	Ala As	sp Gly	Cys Val 75	Thr	Ilo Glu	Gly	V a 1 8 0
Ala Arg Ph		Thr Glu 85	Gln Al		Leu Pho 90	Leu	Gly Asn	Ala 95	Gly
Thr Ala Pi	he Arg 100	Pro Leu	Thr Al	la Ala 105	Leu Ala	Leu	Met Gly 110	Gly	Asp
Tyr Arg Le	eu Ser 15	Gly Val	Pro Ar 12	-	His Glu	_	Pro I1e 125	G 1 y	Asp
Leu Val Ai 130	sp Ala	Leu Arg	Gla Ph 135	he Gly	•	I 1 c 1 4 0	Glu Tyr	Leu	G1y
Gln Ala Gl 145	ly Tyr	Pro Pro 150	Lou Ar	rg Ile	Gly Gly 155	G 1 у	Ser Ile	Arg	V a i 1 6 0
Asp Gly Pr		Arg Val 165	Glu Gl	-	Val Scr 170	Ser	Gin Phe	Leu 175	Thr
Ala Lou Lo	ou Met 180	Ala Ala	Pro Va	al Lou 185	Ala Arg	Агд	Ser Gly 190	Gln	Азр
	1 e Glu ' 9 5	Val Val	Gly G1 20		Ile Ser		Pro Tyr 205	Ile	Glu
Ile Thr Le	cu Asn	Leu Met	Ala Ar 215	rg Phe		S o r 2 2 0	Val Arg	Arg	Азр
Gly Trp As 225	rg Ala	Phe Thr 230	Ile Al	la Arg	Asp Ala 235	Val	Tyr Arg	Gly	Pro 240
Gly Arg Me		110 Glu 245	Gly As		Sor Thr 250	Ala	Ser Tyr	Phe 255	Leu
Ala Leu Gi	260		-	265	-		270		·
	7 5		2 8	8 0			285		
Mot G1y A1 290			295			300			
3 0 5		3 1 0			Lys Ala 315		-	-	3 2 0
Asn Leu II		3 2 5			3 3 0			3 3 5	·
Ala Asp Gi	3 4 0	-		3 4 5	·		350		•
	5 5		3 6	6 0			365		-
Ala Gly V: 370		·	3 7 5			380			
Pro Gly Gl 385		390			3 9 5				400
Met Ala Me		4 0 5			410			4 1 5	-
Ilo Leu A	420			4 2 5		Pro	Asp Tyr 430	Phe	Asp
Val Tyr A:	la Gly 35	Leu Leu		la Arg 40	Авр				

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 427 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (* i) SEQUENCE DESCRIPTION: SEQ ID NO:65:

		_	_		_		_					_			
Mot	Glu	Ser	Lou	Thr 5	Leu	Gln	Pro	Ile	Ala 10	Arg	Val	Asp	Gly	A l.a 15	Ile
Asn	Leu	Pro	G 1 y 2 0	Ser	Lys	Ser	V a 1	S e r 2 5	Asn	Arg	Ala	Leu	Leu 30	Leu	Ala
Ala	Leu	A 1 a 3 5	Суя	Gly	Lys	Thr	V a 1 4 0	Lon	Thr	Asn	Leu	L c n 4 5	Asp	Ser	Asp
Asp	Val 50	Arg	His	Met	Leu	A s n 5 5	Ala	Lcu	Ser	Ala	L e u 60	G l y	I 1 c	Asn	Туг
Thr 65	Leu	Ser	Ala	Asp	Arg 70	Thr	Атд	Сув	Asp	1 1 c 7 5	Thr	G 1 y	Asn	G 1 y	G1y 80
Рто	Leu	Агд	Ala	S e r 8 5	G 1 y	Thr	Leu	G1 a	Leu 90	Phc	Lou	Gly	Asn	Ala 95	G 1 y
Thr	Ala	Met	Arg 100	Pro	Leu	Ala	Ala	A 1 a 105	Leu	Сув	Lou	G 1 y	Gln 110	Asn	Glu
Ilo	Val	L e, u 1 1 5	Thr	Gly	Glu	Pro	Arg 120	Met	Lys	Glu	Arg	Pro 125	I l e	G 1 y	His
Leu	V a 1 1 3 0	Asp	Scr	Leu	Arg	Gln 135	Gly	G1 y	Ala	Asn	I 1 e 1 4 0	Asp	Туг	Leu	Glu
Gln 145	Glu	Asn	Tyr	Pro	Pro 150	Leu	Агд	Leu	Агд	G 1 y 1 5 5	Gly	Phe	I 1 e	G 1 y	Gly 160
Авр	lie	Glu	V a 1	A s p 165	Gly	Ser	V a I	Ser	S o r 170	Gla	Phe	Lou	Thr	A 1 a 175	Lou
Leu	Mot	Thr	A 1 a 1 8 0	Pro	Leu	Ala	Pro	Glu 185	A s p	Thr	110	I 1 e	Arg 190	V a l	Lys
G 1 y	Glu	Leu 195	Val	Ser	Lys	Рго	T y r 200	Ilo	Asp	I 1 e	Thr	Lou 205	Asn	Len	Met
Lys	Thr 210	P h e	Gly	V a 1	Glu	I 1 o 2 1 5	Ala	Asn	His	His	T y r 2 2 0	Gln	Gla	Pho	V a 1
V a 1 2 2 5	Lys	G 1 y	Gly	Gla	G1 n 230	Туг	Hi s	Ser	Pro	G1 y 235	Arg	Туг	Leu	Val	G 1 u 2 4 0
Gly	A s p	Ala	Ser	Ser 245	Ala	Ser	Туr	Pho	L e u 2 5 0	Ala	Ala	Gly	G 1 y	I 1 e 2 5 5	Lys
G 1 y	G 1 y	Tbr	V a 1 2 6 0	Lys	V a 1	Thr	G 1 y	I 1 c 2 6 5	Gly	Gly	Lys	Ser	Me t 270	Gin	Gly
Asp	Ile	Arg 275	Phe	Ala	A s p	V a 1	Leu 280	His	Lys	Mct	Gly	A 1 a 2 8 5	Thr	110	Thr
Ттр	G 1 y 2 9 0	Asp	Asp	Phe	Ile	A 1 a 2 9 5	Суз	Thr	Arg	Gly	G1 u 3 0 0	Leu	Hi:	Ala	lle
A s p 3 0 5	Met	Asp	Met	Asn	Hi: 310	I l e	Рто	Asp	Ala	Ala 315		Thr	I 1 c	A 1 a	Thr. 320
Tbr	Ala	Leu	Pho	Ala 325		Gly	Thr	Thr	Thr 330	Leu	Arg	Asn	Ilo	T y r 3 3 5	Asn
Trp	Arg	Val	Lys 340		Thr	Авр	Arg	L c u 3 4 5	РЬс	Ala	Met	Ala	Thr 350		Len
Arg	Lys	V a i 3 5 5	•	Ala	Glu	V a 1	G l u 3 6 0	Glu	Gly	His	A s p	T y r 3 6 5		Arg	116
Thr	Pro 370		Ala	Lys	Leu	Gl n 375		Ala	Asp	I 1 e	G 1 y 3 8 0		Tyr	Asn	Asp

148

-continued

His Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 385 390 395 Val Thr lle Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr
405
415 Pho Glu Gla Leu Ala Arg Met Ser Thr Pro Ala 4 2 5 420

(2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
 - RUENCH CHARACTERISTICS:

 (A) LENGTH: 1894 base pairs
 (B) TYPH: mucleic acid
 (C) STRANDHDNESS: double
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

- (i x) FEATURE:

 - (A) NAME/KHY: CDS (B) LOCATION: 275...1618

($\mathbf{x}\ \mathbf{i}\)$ SEQUENCE DESCRIPTION: SEQ ID NO:66:

ACGC	7 G C 1 (JIA .	ACGG.	IAGI	AG G	3610	CGAC	J CA	CAAA	AGCG	GTG	CC66	CAA	GCAG.	AACTAA	6 0
TTTC	CAT	966	GAAT	AATG	GT A	TTTC	ATTG	3 TT	reec	CTCT	GGT	CTGG	CAA	TGGT	TGCTAG	120
GCG	TCG	CCT (STTG	AAAT	TA A	CAAA	CTGT	G G C	CCTT	CCAC	TGA	CCAT	GGT .	AACG.	ATGTTT	180
TTT	CTT	CCT	IGAC	FAAC	CG A	GGAA	AATT	660	CGGG	366C	AGA	AATG	CCA .	ATAC.	ATTTA	2 4 0
GCT	GGT	CTT (ссст	3CCC	CT A	ATTT	STCC	CT	CC A	rg g	CC T	TG C	TT T	CC C	тс	292
									M	t A	la L	eu L	eu S	or L 5	c u	
AAC	AAT	CAT	CAA	TCC	CAT	CAA	CGC	TTA	ACT	GTT	AAT	ccc	ССТ	GCC	CAA	3 4 0
Asn	Азп	His		Ser	Hi s	Gla	Arg		Thr	V a 1	Asn	Pro		Ala	Gln	
			10					1 5					2 0			
															ATT	388
Gly	Val	A 1 a 2 5	Leu	Thr	Gly	Arg		Arg	V a 1	Pro	Gly	_	Lys	Ser	Ile	
		23					3 0					3 5				
TCC	CAT	CGG	GCC	TTG	ATG	TTG	GGG	GCG	ATC	GCC	ACC	GGG	GAA	ACC	ATT	436
Sor		Arg	Ala	Leu	Mot		G1y	Ala	I 1 c	Ala		Gly	Glu	Thr	Ile	
	4 0					4 5					5 0					
ATC	GAA	GGG	CTA	CTG	TTG	999	GAA	GAT	ccc	CGT	AGT	ACG	acc	CAT	TGC	484
I 1 e	Glu	Gly	Leu	Leu	Leu	Gly	Glu	Asp	Pro	Arg	Ser	Thr	Ala	His	Cys	404
5 5					60					6 5					7 0	
ттт	CGG	GCC	ATG	GGA	GCA	GAA	ATC	AGC	GAA	СТА	AAT	тсь	GAA		ATC	532
Phe	Arg	Ala	Met	Gly	Ala	Glu	lle	Ser	Glu	Leu	Asn	Sor	Glu	Lys	Ilc	332
				7 5					8 0					8 5		
ATC	GTT	CAG	GGT	caa	GGT	ств	GGA	CAG	TTG	CAG	GAA	ccc	AGT	ACC	GTT	580
Ile	Val	Gln	Gly	Arg	Gly	Lou	Gly	Gla	Lou	Gla	Glu	Pro	Ser	Thr	Val	380
			9 0					9 5					100			
TTG	G 4 T	000	000		T.C.T											
					Ser										TTG	628
		105	,			· . ,	110		DIO (115		0.,	Leu	
					GAT											676
Lou	120	GIY	GIR	Lys	Авр	125	Leu	Pho	Thr	Val	130	Gly	Asp	Asp	Ser	
											130					
					ATG											724
	Arg	Hi.	Arg	Pro	Met	Ser	Arg	Val	Ilc		Pro	Leu	Gln	Gln		
135					140					1 4 5					150	
666	GCA	AAA	ATT	TGG	GCC	CGG	AGT	AAC	GGC	AAG	TTT	GCG	CCG	CTG	GCA	772
				Trp	Ala											
				155					160					165		

							-00	липс	u —						
GTC CA	AG GGT in Gly	AGC Ser 170	CAA	TTA	AAA Lys	CCG	ATC 110 175	CAT Hi;	TAC Tyr	CAT His	TCC	CCC Pro	ATT Ile	GCT Ala	820
TCA G	CC CAG la Gln 185	GTA Val	AAG Lys	TCC Ser	TGC Cys	CTG Leu 190	TTG Leu	CTA Lon	GCG Ala	GGG Gly	TTA Leu 195	ACC Thr	ACC Thr	GAG Glu	868
Gly A	AC ACC	ACG Thr	GTT Val	ACA Thr	GAA G1 u 205	C C A P r o	GCT Ala	CTA Len	TCC Ser	CGG Arg 210	GAT	CAT His	AGC Ser	GAA G1 u	916
CGC AT	TG TTG	CAG Gla	GCC Ala	TTT Phe 220	GGA Gly	GCC Ala	AAA Lys	TTA Leu	ACC Thr 225	ATT	GAT Asp	CCA Pro	GTA Val	ACC Thr 230	964
CAT AG	GC GTC	ACT Tbr	GTC Val 235	CAT His	00C 01y	CCG Pro	GCC Ala	CAT His 240	TTA Leu	ACG Thr	GGG Gly	CAA Gln	CGG Arg 245	GTG Vai	1012
GTG GT	TG CCA	000 01y 250	GAC Asp	ATC Il•	AGC Ser	T C G S o r	GCG A1 a 255	GCC Ala	TTT Pbc	TGG Trp	TTA Lou	GTG Val 260	GCG Ala	GCA Ala	1060
TCC AT	TT TTG le Leu 265	CCT Pro	GGA Gly	TCA Ser	GAA Glu	TTG Leu 270	TTG Leu	GTG Val	GAA Glu	AAT As n	GTA Val 275	GGC Gly	ATT	AAC As n	1108
Pro Ti	CC AGG hr Arg 80	ACA Thr	GGG Gly	GTG Val	TTG Leu 285	GAA Glu	GTG Val	TTG Leu	GCC Ala	CAG G1 n 290	ATG Met	GGG Gly	GCG Ala	GAC Asp	1156
ATT AC I 1 e T 1 2 9 5	CC CCG hr Pro	GAG Glu	AAT Asn	GAA G1 u 3 0 0	CGA Arg	TTG Leu	GTA Val	ACG Thr	GGG Gly 305	GAA Glu	C C G P r o	GTA Val	GCA Ala	GAT Asp 310	1204
CTG CC	GG GTT rg Val	AGG Arg	GCA Ala 315	AGC Sei	CAT His	CTC Len	CAG Gln	GGT G1y 320	TGC Cys	ACC	TTC Pho	GGC Gly	GGC G1y 325	GAA Glu	1 2 5 2
ATT AT	TT CCC le Pro	CGA Arg 330	CTG Lou	ATT	GAT Asp	G A A G I u	ATT I 1 e 3 3 5	CCC Pro	ATT Ile	TTG	GCA Ala	GTG Val 340	GCG Ala	GCG Ala	1300
GCC T	TT GCA he Ala 345	GAG Glu	GGC Gly	ACT Tbr	ACC Thr	CGC Arg 350	ATT	GAA Glu	ĠAT Asp	GCC	GCA Ala 355	GAA Glu	CTG Leu	AGG Arg	1348
Val L	AA GAA ys Glu 60	AGC Ser	GAT Asp	CGC Arg	CTG Leu 365	G C G A 1 a	GCC Ala	ATT	GCT Ala	TCG Ser 370	GAG Glu	TTG	GGC Gly	AAA Lys	1396
ATG G Met G 375	GG GCC ly Ala	AAA Lys	GTC Val	ACC Thr 380	GAA Glu	TTTPhc	GAT Asp	GAT Asp	GGC Gly 385	CTG Leu	GAA Glu	ATT	CAA Gla	GGG G1 y 3 9 0	1444
	GC CCG														1492
ATT G	CC ATG	GC G A 1 a 4 1 0	TTG Leu	GCG Ala	ATC Ile	GCC Ala	GCT Ala 415	TTA	GGT Gly	AGT Ser	GGG Gly	GGG G1 y 420	CAA Gln	ACA Thr	1540
	TT AAC 1 c Asn 425	Агд													1588
Gly T	CG CTA br Leu 40	GGG Gly	CAA Gln	GTT Val	GCC Ala 445	CAA Gla	GGA Gly	TAA.	AGTT.	AGA	AAA	CTCC	TG		1635
66666	TTTGT	AAAT	GTTT	TA C	CAAG	GTAG	T TT	GGGG	TAAA	GGC	CCCA	GCA .	AGTG	CTGCCA	1695
GGGTA	ATTA	TCCG	CAAT	TG A	CCAA	TCGG	C AT	GGAC	CGTA	TCG	TTCA	AAC	TGGG	TAATTC	1755
TCCCT	TAAT	тсст	TAAA.	AG C	TCGC	TTAA	A AC	TOCC	CAAC	GTA	тстс	CGT .	AAT G	GCGAGT	1815
GAGTA	GAAGT	AATG	GGGC	CA A	ACGG	CGAT	C GC	CACG	GGAA	ATT	AAAG	CCT	GCAT	CACTGA	1875

CCACTTATAA CTTTCGGGA 1894

(2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 447 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (* i) SEQUENCE DESCRIPTION: SEQ ID NO:67:

	, ,														
Me t	Ala	Leu	Leu	S e r 5	Leu	A 6 1	Авд	His	G 1 n 1 0	Ser	Hi s	Gla	Агд	Leu 15	Thr
V a I	Asn	Pro	Pro 20	Ala	Gln	G 1 y	V a 1	A 1 a 2 5	·L o u	Thr	Gly	Arg	L e u 3 0	Arg	Val
Pro	G 1 y	A s p 3 5	Lys	Ser	I 1 c	Ser	His 40	Arg	A 1 a	Leu	Mot	Leu 45	G 1 y	Ala	1 1 c
Ala	Thr 50	G 1 y	G 1 u	Thr	I 1 e	I 1 c 5 5	Glu	G 1 y	Leu	Leu	Leu 60	G 1 y	Glu	Asp	Pro
Arg 65	Ser	Thr	Ala	Hi s	C y s	P h c	Arg	A 1 a	Mct	G 1 y	Ala	Glu	I 1 e	Ser	G1 u 8 0
Leu.	Asn	Ser	G 1 u	L y s 8 5	I 1 e	Ile	V a 1	Gln	G 1 y 9 0	Arg	G 1 y	Leu	Gly	Gln 95	Leu
Gln	G 1 u	Pro	Ser 100	Thr	V a 1	Lon	Asp	Ala 105	G 1 y	Asn	Sor	G 1 y	Thr 110	Thr	Mct
Агд	Leu	Met 115	Leu	G1y	Leu	Leu	A 1 a 1 2 0	G l y	Gin	Lys	Asp	C y s	Leu	Phe	Thr
V a 1	Thr 130	G 1 y	Asp	A s p	Ser	Leu 135	Агд	Hi s	Агд	Pro	M o t 1 4 0	Ser	Агв	Va1	110
G 1 a 1 4 5	Pro	Leu	Gln	G1 n	Me t 150	G l y	Ala	Lys	I 1 e	Trp 155	Ala	Arg	Ser	Asn	G 1 y 1 6 0
Lys	Pho	Ala	Pro	Leu 165	Ala	V a 1	Ģln	O 1 y	S o r 170	Gln	Ļοu	Lys	Pro	I 1 c 175	Hi s
Tyr	Hi s	Ser	Pro 180	I 1 o	Ala	Ser	Ala	Gln 185	V a 1	Lys	Ser	Сув	Leu 190	Leu	Leu
Ala	G 1 y	Leu 195	Thr	Thr	Glu	G 1 y	A s p 2 0 0	Thr	Thr	V a l	Thr	G 1 u 2 0 5	Pro	Ala	Lou
Ser	Arg 210	As p	Hi:	Ser	Glu	Arg 215	Mot	Lou	G1 n	Ala	Phe 220	G 1 y	Ala	Lys	Leu
Thr 225	I 1 c	Asp	Рго	V a 1	Thr 230	H i s	Ser	Val	Thr	V a 1 2 3 5	His	G 1 y	Pro	Ala	Hi s 240
Leu	Thr	G 1 y	Gln	Arg 245	Val.	Va1	V a l	Pro	G 1 y 2 5 0	A s p	I 1 c	Ser	Ser	Ala 255	Ala
Phc	Trp	Leu	V a 1 2 6 0	A 1 a	Ala	Ser	Ile	Leu 265	Рто	Gly	Ser	Glu	Leu 270	Leu	V a 1
Glu	Asn	V a 1 2 7 5	G 1 y	I 1 o	Аsп	Рго	Thr 280	Агв	Thr	Gly	V a l	L c u 2 8 5	Glu	V a 1	Leu
Ala	Gln 290	Met	G 1 y	Ala	Asp	I 1 e 295	Thr	Pro	Glu	A s n	G 1 u 3 0 0	Arg	Leu	V a 1	Thr
G 1 y 3 0 5	Glu	Pro	V a 1	Ala	A s p 3 1 0	Leu	Агд	V a 1	Arg	A 1 a 3 1 5	Ser	Hi s	Leu	Gln	G 1 y 3 2 0
Сув	Thr	Pho	Ø 1 y	G 1 y 3 2 5	G 1 u	Ile	Ilc	Pro	Arg 330	Leu	I 1 e	Авр	Glu	1 1 c 3 3 5	Pro
I 1 e	Leu	Ala	V a 1 3 4 0	Ala	Ala	Ala	Phe	A 1 a 3 4 5	G 1 v	Gly	Thr	Thr	Arg 350	110	Glu

A s p	Ala	A 1 a 3 5 5	Glu	Leu	Агд	Val	Lys 360	Glu	Ser	Asp	Arg	L o u 3 6 5	Ala	Ala	Ile
Ala	Ser 370	G 1 u	Leu	Gly	Lys	Met 375	Gly	Ala	Lуs	V a 1	T b r 380	Glu	Pho	A s p	Авр
G 1 y 3 8 5	Lou	Glu	110	Gln	G 1 y 3 9 0	Gly	Ser	Pro	Leu	Gl n 395	Gly	Ala	Glu	V a l	A s p 4 0 0
Ser	Leu	Thr	A s p	His 405	Arg	Ilo	Ala	Met	Ala 410	Leu	Ala	I l c	Ala	A 1 a 4 1 5	Leu
G 1 y	Ser	G 1 y	G 1 y 4 2 0	Gla	Thr	I 1 c	Ile	A s n 4 2 5	Arg	Ala	Glu	Ala	A 1 a 4 3 0	Ala	I 1 e
Ser	Tyr	Pro 435	Glu	Phe	Phe	G l у	Thr 440	Lou	G 1 y	Gln	V a 1	A 1 a 4 4 5	Gln	G 1 y	

(2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1479 base pains
 (B) TYPE: modeic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

- (i x) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 107...1438

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:68:

TTTAAAAACA ATGA	GTTAAA AAATTAT	TTT TCTGGCACAC	GCGCTTTTT TGCATTTTT	60
CTCCCATTTT TCCG	GCACAA TAACGTT	GGT TTTATAAAAG	GAAATG ATG ACG	1 1 5
			Met Met Thr 1	
			TCC GGC GAA ATA ACG Ser Gly Glu Ile Thr 15	163
			TTA TTA TTA GCA GCG Leu Leu Leu Ala Ala 35	2 1 1
TTA GCA GAA GGA Lou Ala Glu Gly	CAA ACG GAA A Gln Thr Glu I 40	TC CGC GGC TTT le Arg Gly Phe 45	TTA GCG TGC GCG GAT Lou Ala Cys Ala Asp 50	259
TGT TTG GCG ACG Cys Leu Ala Thr 55	CGG CAA GCA T Arg Gln Ala L	TG CGC GCA TTA ou Arg Ala Lou 60	GGC GTT GAT ATT CAA Gly Val Asp Ile Gln 65	307
	Ile Vai Thr I		GGA TTT CTG GGT TTG Gly Phe Leu Gly Leu 80	3 5 5
CAG CCG CCG AAA Gln Pro Pro Lys 85	GCA CCG TTA A Ala Pro Leu A 90	AT ATG CAA AAC sn Met Gin Asn	AGT GGC ACT AGC ATG Ser Gly Thr Ser Met 95	403
			TTT GAG AGC GTG TTA Pho Glu Sor Val Lou 115	451
TGC GGC GAT GAA Cys Gly Asp Glu	TCA TTA GAA A Ser Leu Glu L 120	AAA CGT CCG ATG	CAG CGC ATT ATT ACG Gin Arg lie lie Thr 130	499
	Met Gly Ala L		CAC AGC AAT TTT ACG His Ser Asn Phe Thr 145	5 4 7
			GGC ATT GAT TAC GCG Gly Ile Asp Tyr Ala	595

156

								_~	HUHUC	<u> </u>						
		150					155					160		-		
TTA	cco	CTT	ccc	AGC	GCG	CAA	TTA	AAA	AGT	TGC	CTT	ATT	TTG	GCA	GGA	643
Leu		Lcu	Pro	Ser	Ala		Leu	Lys	Ser	Cys	Leu	I 1 c	Lcu	Ala	Gly	
	165					170					175					
											TGC					691
	Leu	Ala	A s p	G1 y		Thr	Arg	Len	Hi:		Сув	Gly	I l o	Ser		
180					185					190	_				195	
											GGÇ					739
A s p	His	Thr	Glu	Arg 200	Mct	Lcu	Pro	Leu	Phc 205	Gly	G1 y	Ala	Leu	Glu 210	Ilc	
				200					203					210		
											AAA					787
Lys	Lys	GIE	215	110	110	V B I	LDI	220	GIY	GII	Lys	Leu	H18	GIY	Сув	
											GCG Ala					. 8 3 5
V 4 1	Leu	230	110	V 4 1	GIY	vsh	235	361	A 1 4	Ala	AIB	240	PIC	M C L	VAI	
											ATT Ile					883
	2 4 5					250					255	6			.,	
A T T	A A T	cca	A C G	cac	aca	GCA	A T C	A T T	ACT	TTG	TTG			A T C	000	931
											Leu					931
260			•		265					270					275	
GGA	CGG	ATT	GAA	TTG	CAT	CAT	CAG	coc	TTT	TGG	GGC	GCC	GAA	CCG	GTG	979
				Leu					Phe		G1 y			Pro		
				280					285					290		
											GGC					1027
Ala	Asp	I 1 c		V a 1	Tyr	His	Sor		Lou	Arg	Gly	I l o		V a 1	Ala	
			295					300					305			
											CCG					1075
Рτο	Glu	Trp 310	Ilc	Ala	Авп	Ala	11c	Asp	Glu	Leu	Pro	Ile 320	Pho	Pho	Ile	
											GGC Gly					1123
	3 2 5	A I I	C y s	Ala	011	330	101	1111	PHE	, a ı	335	ABD	Lou	261	G18	
											ATG Mot					1171
3 4 0	_				3 4 5	•	Ū			3 5 0					3 5 5	
CAA	ACT	TTG	GGC	GTG	GCG	TGC	GAC	GTT	GGC	acc	GAT	ттт	АТТ	CAT	ATA	1219
				V a 1							Asp					,
				360					365					370		
TAT	GGA	AGA	AGC	GAT	CGG	CAA	TTT	TTA	CCG	GCG	CGG	GTG	AAC	AGT	TTT	1267
Tyr	G1y	Arg	Ser	Asp	Arg	Gln	Phc	Leu	Pro	Ala	Arg	V a 1	Азд	Ser	Pho	
			375					380					3 8 5			
															GCG	1315
Gly	Азр	His 390	Атд	Ile	Ala	Met	Ser 395	Leu	Ala	Val	Ala	G 1 y	V a 1	Arg	Ala	
		,,,					,,,					400				
											GCO					1363
Ala	G1 y	Glu	Leu	Leu	Ile	A 5 p 4 1 0	Asp	Gly	Ala	Val	Ala 415	Ala	V a 1	Ser	Mot	•
															GAA	1411
420	011	P II C	A I B	W & h	425	AIB	AIB	AIR		430	Met	ASD	VAI	GIY	435	
						_	_	_								
						CAC His		TGA	TGGT	CCT	AGCG	GTGT	TG G	AAAA	GGCAC	1 4 6 5
-,.	v		-,,	440			٠.٠٧									
A C T																
OOT (GGCG	CAA	GCTT													1479

(2) INFORMATION FOR SEQ ID NO:69:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 443 amino acids
- (B) TYPE: amino acid (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (\mathbf{x} i) SEQUENCE DESCRIPTION: SBQ ID NO:69:

Met Met Thr Asn Ile Trp His Thr Ala Pro Val Ser Ala Leu Ser Gly
1 10 15 Giu Ile Thr Ile Cys Gly Asp Lys Ser Met Ser His Arg Ala Leu Leu 20 25 Leu Ala Ala Leu Ala Glu Gly Gln Thr Glu Ile Arg Gly Phe Leu Ala 35 40 45 Cys Ala Asp Cys Leu Ala Thr Arg Gln Ala Leu Arg Ala Leu Gly Val 50 Asp Ile Gln Arg Glu Lys Glu Ile Val Thr Ile Arg Gly Val Gly Phe 65 70 80 Leu Gly Leu Gln Pro Pro Lys Ala Pro Leu Asn Met Gln Asn Ser Gly 85 Thr Ser Met Arg Leu Leu Ala Gly Ile Leu Ala Ala Gln Arg Phe Glu 100 105 110 Ser Val Leu Cys Gly Asp Glu Ser Leu Glu Lys Arg Pro Met Gln Arg 115 120 125 Ile Ile Thr Pro Leu Val Gla Met Gly Ala Lys Ile Val Ser His Ser 130 140 As n Phe Thr Ala Pro Leu His Ile Ser Gly Arg Pro Leu Thr Gly 11e 145 150 155 Asp Tyr Ala Leu Pro Leu Pro Ser Ala Gln Leu Lys Ser Cys Leu Ile 165 170 175 Leu Ala Gly Leu Leu Ala Asp Gly Thr Thr Arg Leu His Thr Cys Gly 180 185 Ile Ser Arg Asp His Thr Glu Arg Met Leu Pro Leu Phe Gly Gly Ala 195 200 205 Leu Glu Ile Lys Lys Glu Gln Ile Ile Val Thr Gly Gly Gln Lys Leu 210 220 His Gly Cys Val Lou Asp Ilo Val Gly Asp Lou Sor Ala Ala Ala Pho 225 230 235 Phe Met Val Ala Ala Leu Ilc Ala Pro Arg Ala Glu Val Val Ilc Arg 245 - 250 - 255 Asn Val Gly Ile Asn Pro Thr Arg Ala Ala Ile Ile Thr Leu Leu Gln 260 270 Lys Met Gly Gly Arg Ile Glu Leu His His Gln Arg Phe Trp Gly Ala 275 280 285 Glu Pro Val Ala Asp Ile Val Val Tyr His Ser Lys Leu Arg Gly Ile 290 295 300 Val Ala Pro Glu Trp Ile Ala Asa Ala Ile Asp Glu Leu Pro Ile 310 315 320 Phe Ile Ala Ala Cys Ala Glu Gly Thr Thr Phe Val Gly Asn 325 330 Leu Ser Glu Leu Arg Val Lys Glu Ser Asp Arg Leu Ala Ala Met Ala 340 - 345 Gin Asn Leu Gin Thr Leu Giy Val Ala Cys Asp Val Giy Ala Asp Phe 355 360 365 lle His Ile Tyr Gly Arg Ser Asp Arg Gln Phe Leu Pro Ala Arg Val