# Math 254A Lecture 18 Notes

Daniel Raban

May 5, 2021

# 1 Deriving van der Waal's Equation

### 1.1 Recap

Last time, we derived the ideal gas law

$$Pv = nT$$
,

where the volume is not held constant as the number n of particles increase. We mentioned van der Waal's equation, which is a better description of real gasses:

$$\left(P + \frac{a}{v^2}\right)(V - b) = nT,$$

where a and b are constants. Here is what the equation predicts:



The flat regions in this picture are the Maxwell correction to van der Waal's equation. Our next goal is to derive this equation from some simple model.

#### 1.2 Overview of van der Waal's equation

The continuous model (with the kinetic part removed) has the partition function

$$\widetilde{Z}_n(\beta) = \frac{1}{n!} \int \cdots \int_{R_n^n} \exp\left(-\beta \sum_{i=1}^n \varphi_{\text{pot}}(r_i) - \beta \sum_{i,j} \varphi_{\text{int}}(r_i - r_j)\right) dm_3^{\times n}.$$

The discrete analogue is

$$\widetilde{Z}_n(\beta) = \sum_{\substack{\omega \in \{0,1\}^{B_n} \\ |\omega| = n}} \exp\left(-\beta \sum_{i \in B_n} \varphi(i)\omega_i - \beta \sum_{i,j \in B_n} \varphi_{\text{int}}(i-j)\omega_i\omega_j\right),\,$$

where  $B_n = R_n \cap \varepsilon \mathbb{Z}^3$ .

Under what conditions can we derive van der Waal's equation? We will do this for the case b=0, i.e.

$$\left(P + \frac{a}{v^2}\right)v = nT.$$

(Getting the case b > 0 is similar but more intricate, so we will not do it for the sake of time.)

Imagine two tiny regions in a gas.



The mass in each tiny region is proportional to the density, 1/v. So the force between the two regions is dependent on 1/v. This gives intuition for why there should be a 1/v in the equation. This idea of interactions between molecules will lead to the equation.

<sup>&</sup>lt;sup>1</sup>These forces between molecules are now known as van der Waals forces.

### 1.3 Setup and notation

To incorporate a limit of "long range forces," fix an attractive potential energy of interaction  $\varphi: \mathbb{R}^3 \to [0, \infty)$  (since  $\varphi$  is attractive, to avoid having a negative potential, we assume  $\varphi$  is positive and just change the sign in the partition function equation). We will also assume

- $\varphi \in C^1$ ,
- $\varphi(x) = 0$  for  $|x| \ge 1$ .
- $\varphi(x) = \varphi(-x)$ .

Let

$$\varphi^r(x) = \frac{1}{r^3} \varphi\left(\frac{x}{r}\right), \quad \text{for } r > 0,$$

so

$$\int \varphi^r \, dm_3 = \int \varphi \, dm_3 = a$$

for all r > 0. We will be taking  $n \to \infty$  and then taking  $r \to \infty$ . Here's what this looks like:



To get a > 0 and b > 0, we would need to treat a picture like this:



We want to estimate

$$\widetilde{Z}_n(\beta) = \sum_{\substack{\omega \in \Omega_n \\ |\omega| = N_n}} \exp(-\beta \Phi_n^r(\omega)),$$

where  $\Omega_n := \{0,1\}^{B_n}$ ,  $N_n$  is the number of particles in  $B_n$ , and  $B_n = \{1,\ldots,n\}^3$  (note we are changing notation to make n be some geometric parameter rather than the number of particles). We also have

$$\Phi_n^r(\omega) = \sum_{i,j \in B_n} \varphi^r(\varepsilon(i-j)) \omega_i \omega_j.$$

## 1.4 Splitting space into boxes with mass pooled around the centers

We want to estimate  $\frac{1}{n}\log \widehat{Z}_n(\beta)$ , and we will let  $n, r \to \infty$ ,  $\varepsilon \to 0$ , and differentiate with respect to v. Here is a picture of how we will do it:



Fix another  $m \in \mathbb{N}$ , and divide  $B_n$  into  $m \times m$  boxes. Let  $\mathcal{C}_n$  be the set of centers of these boxes. If  $k \in \mathcal{C}_n$ , then  $C_k$  will be the box with center k. (We will assume that  $m \mid n$  for simplicity.). Picture  $1 \ll m \ll r$ , and let  $\omega \in \Omega_n$  with  $|\omega| = N_n$ . We will define a map  $D: \Omega_n \to \widetilde{\Omega}_n = \{0, 1/m^3, 2/m^3, \dots, 1\}^{\mathcal{C}_n}$  by

$$D(\omega)_k = \frac{1}{m^3} \sum_{i \in C_k} \omega_i.$$

The idea is that  $\Phi_n^r(\omega)$  is approximately a function only of  $D(\omega)$ , provided  $r \gg m$ .

Define the **effective energy** of a configuration  $\rho \in \widetilde{\Omega}_n$ :

$$\widetilde{\Phi}_n^r(\rho) = m^6 \sum_{k,\ell \in \mathcal{C}_n} \rho_k \rho_\ell \varphi^r(\varepsilon(k-\ell))$$

Lemma 1.1. If  $D(\omega) = \rho$ , then

$$\Phi_n^r(\omega) = \widetilde{\Phi}_n^r(\rho) + O\left(n \cdot \frac{1}{mr}\right).$$

*Proof.* Suppose  $i \in C_k$  and  $j \in C_\ell$ . Then

$$\varphi^{r}(\varepsilon(i-j)) - \varphi^{r}(\varepsilon(k-\ell)) \leq \|\nabla \varphi^{r}\| (|\varepsilon(i-k)| + |\varepsilon(j-\ell)|)$$

$$= \frac{1}{r^{4}} \|\nabla \varphi\| \cdot O\left(\frac{m\varepsilon}{r^{4}}\right)$$

$$= O\left(\frac{m\varepsilon}{r^{4}}\right).$$

Therefore,

$$\left| \sum_{i \in C_k, j \in C_\ell} \varphi^r(\varepsilon(i-j)) \omega_i \omega_j - m^6 \varphi^r(\varepsilon(k-\ell)) \rho_k \rho_\ell \right|$$

$$= \left| \sum_{i \in C_k, j \in C_\ell} [\varphi^r(\varepsilon(i-j)) - \varphi^r(\varepsilon(k-\ell))] \omega_i \omega_j \right|$$

$$\leq m^6 O\left(\frac{m\varepsilon}{r^4}\right)$$

$$= O\left(\frac{m^7 \varepsilon}{r^4}\right).$$

All that remains will be to sum over all pairs of boxes, which we will do next time.  $\Box$