Two and Three View Geometry

P J Narayanan

CVIT, IIIT, Hyderabad
CS5765. Computer Vision. Spring 2013

An Image Point in Another View

- Given an image point x of a world point X in one camera, where does the corresponding point lie in another view?
- The ray corresponding to x appears as a line

Epipolar Geometry

- Given two cameras and an image x of a world point X in one, where does the image in the other lie? On a line called the epipolar line.
- Epipole is the image of one camera on the other. Also the vanishing point of the baseline between cameras.
- Epipolar plane contains the baseline and the ray due to x.
- Restricts the corresponding point to a line in other view.

Fundamental Matrix F

- Let $P_1 = K[I|0]$ and $P_2 = K'[R|t]$ be the two cameras. A point x in image 1 is mapped to a line I' in image 2.
- ightharpoonup x maps to direction $m K^{-1}x$ and point at infinity is on it.
- \blacksquare It projects to $K'RK^{-1}x$ in the second image.
- ullet Epipolar line I' joins this point to epipole e'.
- $\mathbf{l'} = \mathbf{e'} \times (\mathbf{K'RK^{-1}x}) = [\mathbf{e'}]_{\times} \mathbf{K'RK^{-1}x} = \mathbf{Fx}$, where $\mathbf{F} = [\mathbf{e'}]_{\times} \mathbf{K'RK^{-1}}$ is called the **Fundamental Matrix**. For general cameras: $\mathbf{F} = [\mathbf{e'}]_{\times} \mathbf{P'P^{+}}$
- If x, x' are corresponding points, $x'^TFx = 0$.

$$[\mathbf{t}]_{ imes} = \left[egin{array}{cccc} 0 & -t_3 & t_2 \\ t_3 & 0 & -t_1 \\ -t_2 & t_1 & 0 \end{array}
ight]. \quad \mathbf{t} imes \mathbf{v} = [\mathbf{t}]_{ imes} \mathbf{v}. \quad [\mathbf{t}]_{ imes} ext{ is skew-symmetric, singular.}$$

Alternate Derivation

- Assume a plane π not passing through \mathbf{C}, \mathbf{C}' , with a homography \mathbf{H}_{π} .
- For a point on π that projects to \mathbf{x}, \mathbf{x}' in the two images, we have $\mathbf{x}' = \mathbf{H}_{\pi}\mathbf{x}$.
- ullet \mathbf{x}' is a point on the epipolar line of \mathbf{x} . So is \mathbf{e}' .
- ullet Epipolar line $\mathbf{l'} = [\mathbf{e'}]_{\times} \mathbf{H}_{\pi} \mathbf{x} = \mathbf{F} \mathbf{x}$, where $\mathbf{F} = [\mathbf{e'}]_{\times} \mathbf{H}_{\pi}$.
- If the plane is π_{∞} , we have $\mathbf{x} = \mathbf{Kd}$ and $\mathbf{x}' = \mathbf{K}'\mathbf{Rd}$. $\mathbf{x}' = \mathbf{K}'\mathbf{R}\mathbf{K}^{-1}\mathbf{x}$, or $\mathbf{H}_{\infty} = \mathbf{K}'\mathbf{R}\mathbf{K}^{-1}$.
- Thus, $\mathbf{F} = [\mathbf{e}']_{\times} \mathbf{K}' \mathbf{R} \mathbf{K}^{-1}$, as before.
- Any planar homography H will work, but given 2 cameras, the fundamental matrix F is fixed!!

Properties of F

- $\mathbf{F}^{\mathbf{T}}$ is the fundamental matrix from \mathbf{I}' to \mathbf{I} . $\mathbf{I}' = \mathbf{F}\mathbf{x}$ and $\mathbf{I} = \mathbf{F}^{\mathbf{T}}\mathbf{x}'$.
- For epipolar line pairs, $\mathbf{l'} = \mathbf{F}[\mathbf{e}]_{\times}\mathbf{l}$ and $\mathbf{l} = \mathbf{F''}[\mathbf{e'}]_{\times}\mathbf{l'}$.

 e is a line not passing through the epipole. For an epipolar line \mathbf{l} , $[\mathbf{e}]_{\times}\mathbf{l}$ is its point of intersection with \mathbf{e} . $\mathbf{F}[\mathbf{e}]_{\times}\mathbf{l}$ is its epipolar line, namely, $\mathbf{l'}$. Thus $\mathbf{l'} = \mathbf{F}[\mathbf{e}]_{\times}\mathbf{l}$
- Epipole e' is on l'. Hence, $e'^TFx = (e'^TF)x = 0$ for all x. Thus, $e'^TF = 0$. Similarly, Fe = 0. Epipoles are the left and right null spaces of F.
- \blacksquare F has rank 2 (as $[e]_{\times}$ has rank 2).
- F is a property of the camera pair only and is independent of the scene.
- It has 7 degrees of freedom; overall defined upto scale, with a 0 determinant. The fundamental matrix can be computed from 7 point correspondences.

Restricted Situations

- Pure translation: $\mathbf{F} = [\mathbf{e}']_{\times}$ with 2 dof. $\mathbf{K}' = \mathbf{K}$, $\mathbf{R} = \mathbf{I}$
- Translation in X only: P' = K[I|-C], where $C = \begin{bmatrix} a & 0 & 0 \end{bmatrix}^T$. Thus, $e' = -KC = \begin{bmatrix} -fa & 0 & 0 \end{bmatrix}^T$ and

$$\mathbf{F} = [\mathbf{e}']_{\times} = -\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -fa \\ 0 & fa & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

 $\mathbf{x'}^{\mathsf{T}}\mathbf{F}\mathbf{x} = \mathbf{0}$ reduces to y' = y.

- Pure rotation or No translation: No epipolar geometry as $\mathbf{x}' = \mathbf{H}\mathbf{x}$ for all \mathbf{x} .
- General motion: $\mathbf{F} = [\mathbf{e}']_{\times} \mathbf{H}_{\infty} = [\mathbf{e}']_{\times} \mathbf{K}' \mathbf{R} \mathbf{K}^{-1}$.

Three Cases of Translation

In X only:

$$egin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ \end{array}$$

 $x'^{\mathbf{T}}Fx = 0$ reduces to:

$$v = v'$$

Horizontal epipolar lines

In Y only:

$$egin{bmatrix} 0 & 0 & 1 \ 0 & 0 & 0 \ -1 & 0 & 0 \ \end{bmatrix}$$

 $x'^{\mathbf{T}}Fx = 0$ reduces to:

$$u = u'$$

Vertical epipolar lines

In Z only:

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $x'^{T}Fx = 0$ reduces to:

$$\frac{u}{v} = \frac{u'}{v'}$$

Radial epipolar lines

Fundamental Matrix Estimation

Estimating F

- Each point match gives one equation $x'^TFx = 0$ in the unknown entries of F.
- F has 8 degrees of freedom upto scale factor. Hence the 8-point algorithm can estimate it.
- F is singular and |F| = 0. Thus, really only 7 degrees of freedom and 7 points should suffice. However, it is hard to enforce this constraint. Reduces to a cubic polynomial and non-linear optimization required.
- In practice, solve using DLT with n > 8 matches.
 - Normalize each image. Centroid is origin, mean distance is $\sqrt{2}$.
 - A is an $n \times 9$ matrix from equations for each match.
 - SVD of $AA^T = UDV^T$. Solution: last column of V.

Enforcing Rank-2 Constraint

- Due to noise, F may have a full rank of 3. Epipolar lines may not meet if the fundamental matrix is not of rank 2
- To enforce singularity, find $\mathbf{F} = \mathbf{U}\mathbf{D}\mathbf{V}^T$. Modify $\mathbf{D} = diag(\mathbf{a}, \mathbf{b}, \mathbf{c})$ to $\mathbf{D}' = diag(\mathbf{a}, \mathbf{b}, \mathbf{0})$ by setting last singular value to 0.
- Use $\mathbf{F}' = \mathbf{U}\mathbf{D}'\mathbf{V}^{\mathbf{T}}$ as the fundamental matrix. This minimizes the Frobenius norm between original \mathbf{F} and \mathbf{F}' with rank of 2.
- Overall procedure to estimate the fundamental matrix:
 - Normalize points in each image independently
 - Find F from SVD of AAT using the DLT algorithm
 - Enforce rank 2 constraint
 - Denormalize values to get F in original coordinates

RANSAC to Estimate F

- Find interest points in each image
- Find matches using similarity, proximity, etc
- Estimate F using RANSAC, using N samples
 - Select a random sample of 8 points, estimate F
 - Compute number of inliers among matches to F
 - Keep the solution with maximum number of inliers
- Estimate F from all matches classified as inliers. Can use a more accurate, non-linear optimization of geometric distance for this step
- Use F matrix to find better interest point matches
- Repeat last 2 steps until matches converge

Projective Properties of Fundamental Matrix

Projective Ambiguity of F

- $\mathbf{x'^TFx} = \mathbf{0}$ for a point \mathbf{X} for camera pair $(\mathbf{P}, \mathbf{P'})$. Consider a camera pair $(\mathbf{PH}, \mathbf{P'H})$, where \mathbf{H} is a general, non-singular, 4×4 homography in 3-space.
- Point H⁻¹X projects to (PH) (H⁻¹X) and (P'H) (H⁻¹X).
 F is the fundamental matrix of (PH, P'H), for any H
 Any property based on projections x will have a projective ambiguity
- Theorem: That is the only ambiguity! If two camera configurations have the same fundamental matrix, there is a homography that relate the cameras.
- This suggests we can reduce every camera pair to their canonical form of [I|0] and [M|m]. The fundamental matrix for this is $[m]_{\times}M$.

Let \mathbf{P}^* be a non-singular matrix built by adding a row to \mathbf{P} .

Set
$$\mathbf{H} = (\mathbf{P}^*)^{-1}$$
. $\mathbf{PH} = [\mathbf{I}|\mathbf{0}]$ and $\mathbf{P'H} = [\mathbf{M}|\mathbf{m}]$

Decomposing F to Cameras

- Same F can be given by several camera pairs. We can decompose a known F into camera pairs.
- The cameras P = [I|0] and $P' = [[e']_{\times}F|e']$ have the fundamental matrix F.

$$\mathbf{F} = [\mathbf{e}']_{\times}[\mathbf{e}']_{\times}\mathbf{F} = (\mathbf{e}'\mathbf{e}'^T - \mathbf{I})\mathbf{F} = -\mathbf{F} = \mathbf{F}$$

- Epipole e' can be obtained from F as, $e'^TF = 0$.
- Given F, we can arrive at a pair of cameras for it! This will be off from the real camera pair only be an unknown projective transformation H of the cameras/world.
- Generally, P = [I|0] and $P' = [[e']_{\times}F + e'v^T|\lambda e']$ for any 3-vector v and non-zero constant λ will also have the same F. Many canonical camera pairs with same F.

Essential Matrix E

- For calibrated cameras, apply K⁻¹ to x to get normalized coordinates K⁻¹x. Similarly, K'⁻¹x'
- The epipolar relation can be expressed in normalized coordinates as: $x'^TEx = 0$ for an Essential Matrix E
- $f E = [t]_{\times} R$ since P = [I|0] and P' = [R|t]
- Using F, we can write $(K'^{-1}x')^T E (K^{-1}x) = 0$. Thus, $E = K'^T F K$ in terms of F.
- Properties of Essential Matrix:
 - It has a rank 2, with 2 equal singular values and one 0 singular value. It can be written as (upto scale) E = U diag(1,1,0) V^T using SVD.
 - E only has 5 degrees of freedom: 3 for rotation, 3 for translation, with a scale ambiguity.

Cameras from E

Given

 $\mathbf{E} = \mathbf{U} \ diag(\mathbf{1}, \mathbf{1}, \mathbf{0}) \ \mathbf{V^T}$, the second (normalized) cameras is one of:

$$egin{aligned} [\mathbf{U}\mathbf{W}\mathbf{V^T}| \pm \mathbf{u_3}] ext{ or } \ [\mathbf{U}\mathbf{W^T}\mathbf{V^T}| \pm \mathbf{u_3}] \end{aligned}$$

where
$$\mathbf{W} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The 4-way ambiguity is resolved using a single point, as a point will be in front of the camera in only one.

Trifocal Tensor of Three Views

A Line in Three Views

Geometry of Three Views

- What happens when 3 cameras are viewing a scene?
- Let the cameras be $P = [I|0], P' = [A|a_4], P'' = [B|b_4]$. We have $a_4 = e'$ and $b_4 = e''$ to be the epipoles in views two and three. A, B are respectively the H_{∞} to views 2 and 3 respectively from view one
- Conside a world line L projecting to 1, 1' and 1" in the three views. The planes containing the image lines and their respective camera centres intersect at the world line L
- The planes $\pi = \mathbf{P^T}\mathbf{l}, \ \pi' = \mathbf{P'^T}\mathbf{l'}, \ \text{and} \ \pi'' = \mathbf{P''^T}\mathbf{l''}$ are:

$$\pi = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \pi' = \begin{bmatrix} \mathbf{A^T}\mathbf{l'} \\ \mathbf{a_4^T}\mathbf{l'} \end{bmatrix}, \quad \pi'' = \begin{bmatrix} \mathbf{B^T}\mathbf{l''} \\ \mathbf{b_4^T}\mathbf{l''} \end{bmatrix}$$

Trifocal Tensor

• Since they meet in a line, the matrix $\mathbf{M} = [\pi \ \pi' \ \pi'']$ must have rank of 2

$$\mathbf{M} = \begin{bmatrix} \mathbf{l} & \mathbf{A^T l'} & \mathbf{B^T l''} \\ 0 & \mathbf{a_4^T l'} & \mathbf{b_4^T l''} \end{bmatrix} = [\mathbf{m_1} \ \mathbf{m_2} \ \mathbf{m_3}]$$

- We can write $\mathbf{m_1} = \alpha \mathbf{m_2} + \beta \mathbf{m_3}$. Comparing, $\alpha = k(\mathbf{b_4^T}\mathbf{l''})$ and $\beta = -k(\mathbf{a_4^T}\mathbf{l'})$. Thus, $\mathbf{l} = (\mathbf{l''^T}\mathbf{b_4})\mathbf{A^T}\mathbf{l'} (\mathbf{l'^T}\mathbf{a_4})\mathbf{B^T}\mathbf{l''}$
- Components of \mathbf{l} , l_i , i = 1, 2, 3 can be given by: $l_i = \mathbf{l''^T}(\mathbf{b_4}\mathbf{a_i^T})\mathbf{l'} \mathbf{l'^T}(\mathbf{a_4}\mathbf{b_i^T})\mathbf{l''} = \mathbf{l'^T}(\mathbf{a_i}\mathbf{b_4^T} \mathbf{a_4}\mathbf{b_i^T})\mathbf{l''} = \mathbf{l'^T}\mathbf{T}_i\mathbf{l''}$
- **▶** T_i , i = 1, 2, 3 are 3×3 matrices that contitute the **trifocal tensor** of views 1, 2, and 3, relating lines in two views to a line in the third as: $I^T = I'^T [T_1 \ T_2 \ T_3]I''$
- The relation can be written for lines, points, and their combinations in three views.

A Point Three Views

Tensor Acting on Points

• For corresponding points $\mathbf{x} \leftrightarrow \mathbf{x}' \leftrightarrow \mathbf{x}''$, the tensor gives:

$$[\mathbf{x}']_{\times} \left(\sum_{i} x_i \mathbf{T}_i\right) [\mathbf{x}'']_{\times} = 0_{3 \times 3}$$

- x_i , i = 1, 2, 3 are the respective coordinates of the point. $\sum_i x_i \mathbf{T}_i$ is a 3×3 matrix. The right hand side is a 3-vector of zero values
- Defines a *trilinear* relation in coordinates of x, x', x''.
- Nine trilinearities can be defined using different choices of views for each matching triplet of points. However, only 4 of them are linearly independent

Trifocal Tensor: Properties

- The trifocal tensor $[T_i] = [T_1 \ T_2 \ T_3]$ has 26 independent elements and a common scale factor.
- The tensor only has 18 independent degrees of freedom. This is given by 3×11 for 3 camera matrices minus 15 for an arbitrary projective transformation.
- $\mathbf{H} = [\mathbf{T_1^T} \ \mathbf{T_2^T} \ \mathbf{T_3^T}] \, \mathbf{l'}$ gives the point homography $\mathbf{H_{13}}(\mathbf{l'})$ between views 1 and 3 due to the plane defined by $\mathbf{C'}$ and $\mathbf{l'}$. Similarly, $\mathbf{H_{12}}(\mathbf{l''}) = [\mathbf{T_1} \ \mathbf{T_2} \ \mathbf{T_3}] \, \mathbf{l''}$
- It represents a projective property of the combination of 3 cameras only, independent of the scene structure.
- ullet 3 matching lines give 2 linear equations in entries of $[\mathbf{T}_i]$. 3 matching points give 4 equations. 26 equations are needed to estimate the tensor. There is no easy way to exploit the reduced real degrees of freedom.

View Transfer

- Given the projections of a point in 2 views, where is it in a third view? Given x, x', what is x''?
- Known pairwise fundamental matrices F_{21} , F_{32} , F_{13} :
 - $F_{31}x$ and $F_{32}x'$ are epipolar lines due to projections of a world point.
 - $\mathbf{x''}$ is the intersection of these lines. Hence, $\mathbf{x''} = (\mathbf{F_{31}x}) \times (\mathbf{F_{32}x'})$
- Trifocal tensor is known:
 - The point version of the tensor gives 4 independent trilinear equations in the coordinates $\mathbf{x}, \mathbf{x}', \mathbf{x}''$. Given two points, the third can be calculated easily from this relation.

Thank You!

Many figures are from the book

Multiview Geometry in Computer Vision

by Richard Hartley and Andrew Zisserman