```
present
```

```
1 html"<button onclick='present()'>present</button>"
```

(Shifted) (Inverse) Power Method

- Mathe 3 (CES)
- WS21
- Lambert Theisen (theisen@acom.rwth-aachen.de)

```
1 using LinearAlgebra, PlutoUI, Plots, Printf
```

PlotlyBackend()

```
1 plotly()
```

For saving to png with the Plotly backend PlotlyBase has to be installed.

Define some Matrices

```
A = 3×3 Matrix{Int64}:

25 -89 68

-26 148 -52

-10 77 -29
```

```
1 A = [
2     25 -89 68
3     -26 148 -52
4     -10 77 -29
5 ]
```

```
B = 3×3 Matrix{Int64}:

-139 -85 -125

182 -64 -178

-117 -105 79
```

```
1 B = [
2   -139 -85 -125
3   182 -64 -178
4   -117 -105 79
5 ]
```

Define the Rayleigh Quotient

$$ho_A(x) := rac{x^T A x}{x^T x}$$

ρ (generic function with 1 method)

```
1 function ρ(A, x) # Rayleigh quotient
2 return x' * A * x / (x' * x)
3 end
```

Construct Error History Object

This is used to store all the errors for later plotting.

```
1 struct Errorhistory
2 errors :: Array{Float64}
3 end
```

Define the Power Method Algorithm

```
1. Given A \in \mathbb{R}^{n 	imes n}, 	au = 10^{-10}
```

2. Choose start vector $x_0 \in \mathbb{R}^n \setminus \{0\}$

3. While
$$k < k_{
m max} \wedge {
m error} > au$$
 do

1.
$$x_{k+1} = rac{Ax_k}{\left|\left|Ax_k
ight|\right|_2}$$

2.
$$\lambda_{k+1} =
ho_A(x_{k+1})$$

4. Return estimated eigenpair (λ_k, x_k)

PM (generic function with 1 method)

```
1 function PM(A, x0; maxit = 100, tol = 1E-10) # Power Method
 3
        k = 0
        residual = Inf
 4
        \lambda = nothing
        eh = Errorhistory([])
        while k <= maxit && norm(residual) > tol
 8
            x = A * x
             x = x / norm(x)
             \lambda = \underline{\rho}(A, x)
10
             residual = A * x - \lambda * x # if \lambda exact => residual = zeros(n)
11
             push!(eh.errors, norm(residual))
12
13
             k += 1
14
        end
15
        return (\lambda, x, eh)
16 end
```

Execute PM

Will converge to largest eigenpair.

```
Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
values:
3-element Vector{Float64}:
    -8.9999999999993
    18.00000000000000004
    135.00000000000002
vectors:
3×3 Matrix{Float64}:
    -0.894427     0.904534     -0.408248
    -2.15181e-16     0.301511     0.816497
          0.447214     0.301511     0.408248

1 eigen(A)
```

Residual Error

The normed error of the residual $e=||x_k-x^*||_2$ is in $\mathcal{O}(q^k)$ with the eigenvalue ratio $q=\lambda_1/\lambda_2$ of the considered matrix.


```
1 plot([pm[3].errors, [1 * abs(eigvals(A)[end-1] / eigvals(A)[end])^i for i = 1 :
    size(pm[3].errors)[1]]], yaxis=:log, title="PM: Norm of Residual",
    label=["norm(res, 2)" "O(q^i)=O($(@sprintf("%.2f", abs(eigvals(A)[end-1] /
    eigvals(A)[end])))^i)"])
```

Comparison of Matrices with Different Fundamental Ratios

- Matrix A has ratio $q = 0.13333333333333336 = <math>\lambda_{g}/\lambda_{1}$
- ullet Matrix B has ratio $q={ t 0.9718253158075504}$

Therefore, much faster converge for A.

Oscillations probably due to $|\lambda_3| = |\lambda_2|$.

```
1 md"""
2 ## Comparison of Matrices with Different Fundamental Ratios
3
4 - Matrix $A$ has ratio $q=$ $(abs(eigvals(A)[end-1]/eigvals(A)[end])) = λ<sub>2</sub>/λ<sub>1</sub>
5 - Matrix $B$ has ratio $q=$ $(abs(eigvals(B)[end-1]/eigvals(B)[end]))
6
7 Therefore, much faster converge for $A$.
8
9 Oscillations probably due to $|\lambda_3| = |\lambda_2|$ ...
10 """
```

```
[-155.0-93.0im, -155.0+93.0im, 186.0+0.0im]
```

```
1 eigen(B).values
```

```
3×3 Matrix{Int64}:
-139 -85 -125
182 -64 -178
-117 -105 79
```



```
1 plot(map(X -> PM(X, ones(3), maxit=500)[3].errors, [A, B]), yaxis=:log, label=["A" "B"], title="Residual errors A vs B")
```

Define the (Shifted) Inverse Power Method Algorithm

- 1. Given $A \in \mathbb{R}^n$ and eigenvalue shift μ
- 2. Choose start vector $x_0 \in \mathbb{R} \setminus \{0\}$
- 3. While $k < k_{
 m max} \wedge {
 m error} > {
 m tol}\,{
 m do}$
 - 1. Solve: $(A-\mu I)x_{k+1}=x_k$ (this is like $x_{k+1}=(A-\mu I)^{-1}x_k$)
 - 2. Normalize: $x_{k+1} \mapsto x_{k+1} / ||x_{k+1}||_2$
 - 3. Update eigenvalue estimate (with initial matrix A, not A^{-1}): $\lambda_{k+1} =
 ho_A(x_{k+1})$
- 4. Return estimated eigenpair (λ_k, x_k)

5 of 7 11.12.24, 09:41

IPM (generic function with 1 method)

```
1 function IPM(A, x0; shift = 0, maxit = 100, tol = 1E-10) # Inverse Power Method
 3
        i = 0
      residual = Inf
 4
        \lambda = nothing
        eh = Errorhistory([])
        while i <= maxit && norm(residual) > tol
            x = (A - shift * I(size(A)[2])) \setminus x
            x = x / norm(x)
            \lambda = \underline{\rho}(A, x)
10
            residual = A * x - \lambda * x
11
12
            push!(eh.errors, norm(residual))
13
14
        end
15
        return (\lambda, x, eh)
16 end
```

Execute IPM to find the Smallest Eigenpair

Check the Error

```
6.140155051070906e-11
1 abs(<u>ipm</u>[1] - eigvals(<u>A</u>)[1])
```

Check the Convergence Behavior for Different Shifts

Notice that better shifts significantly improve the performance of the algorithm. Shift eight and ten are the same because they have the same absolute distance to the real eigenvalue.

```
shifts = 0:-2:-10

1 # Compare zeros shift with good estimation
2 shifts = 0:-2:-10 # real lowest eval is -9
```


1 plot(map(X -> IPM(A, ones(3), tol=1E-5, shift=X)[3].errors, shifts), yaxis=:log,
label=reshape(map(x -> string("shift=", x), shifts), 1, :), title="Residual Errors
A with different shifts")