

Implementing probabilistic photometric redshifts on DES SV data

Matías Carrasco Kind

Department of Astronomy
University of Illinois

DES SV data (fixed!)

VVDS Deep 02hr (3117)

CDFS (3721)

VVDS Wide 14hr (2970)

COSMOS (6148)

Secure redshifts 3 < ZFLAG < 4

 $0.01 \leq Z \leq 1.5$

15956 galaxies

7978 for training and 7978 for testing

Use 5 bands from MAG_AUTO and MAG_DETMODEL

Use colors (8)

TPZ: Trees for Photo-Z

- ullet Provides photo-z PDF and confidence values
- Deals with missing data
- Includes measurements errors
- Provides useful ancillary information
- Out-of-Bag data for unbiased errors
- No need for validation set

http://lcdm.astro.illinois.edu/research/TPZ.html

Preliminary results: True plots and PDF

Preliminary results: Metrics

Preliminary results: Error distribution

All these metrics were calculated using the mean of the probability density function

Preliminary results: Using PDFs for N(z)

0.00

1.0

1.2

1.4

0.8

redshift

0.6

Ancillary examples: OOB error and importance

Combining techniques

Multiple "independent" techniques can be combined into a powerful one (Carrasco Kind & Brunner, 2013b, c in prep.)

We use a modified and parallel version of BPZ (Benitez, 2000) with a prior from Random Naïve Bayes Classifier method

Extend it using a 3rd technique from Self-Organized-Maps

Our approach

Template fitting

+

Prior information

+

Empirical method

+

Weigthing scheme

 $\overline{\mathsf{photo-}z}$ $\overline{\mathsf{PDF}}$

Template fitting photo-z

Suppose a set of templates T and n magnitudes $m_1, m_2, ..., m_n$, the probability is:

$$P(z|\vec{m}) = \sum_{T} P(z, T|\vec{m}) \propto \sum_{T} P(z, T|\vec{m}) P(\vec{m}|z, T)$$

where $ec{m}=(m_1,m_2,...,m_n)$

Template fitting photo-z

Suppose a set of templates T and n magnitudes $m_1, m_2, ..., m_n$, the probability is:

$$P(z|\vec{m}) = \sum_T P(z,T|\vec{m}) \propto \sum_T P(z,T|\vec{m})P(\vec{m}|z,T)$$
 where $\vec{m}=(m_1,m_2,...,m_n)$ Prior Likelihood

Template fitting photo-z

Likelihood

Suppose a set of templates T and n magnitudes $m_1, m_2, ..., m_n$, the probability is:

$$P(z|\vec{m}) = \sum_{T} P(z, T|\vec{m}) \propto \sum_{T} P(z, T|\vec{m}) P(\vec{m}|z, T)$$

where $ec{m}=(m_1,m_2,...,m_n)$

DES meeting, LBNL, April 8-12, 2013

Photometric redshifts PDFs for SV data

$$P(z|\vec{m}) = \sum_{T} P(z,T|\vec{m}) \propto \sum_{T} P(z,T|\vec{m}) P(\vec{m}|z,T)$$
 Prior (Likelihood)

RNBC needs training set

Assume *naïvely* $m_i \perp m_j$

Bootstrap samples, random subset of magnitudes

$$P(z|\vec{m}) = \sum_{T} P(z,T|\vec{m}) \propto \sum_{T} P(z,T|\vec{m}) P(\vec{m}|z,T)$$
 Prior (Likelihood)

RNBC needs training set

Assume *naïvely* $m_i \perp m_j$

Bootstrap samples, random subset of magnitudes

RNBC prior
$$\Rightarrow P(z,T|\vec{m}) \propto P(z)P(T|z) \prod_{i=1}^{n} P(m_i|z,T)$$

$$P(z|\vec{m}) = \sum_{T} P(z,T|\vec{m}) \propto \sum_{T} P(z,T|\vec{m}) P(\vec{m}|z,T)$$

$$P(z|\vec{m}) = \sum_{T} P(z,T|\vec{m}) = \sum_{T} P(z,T|\vec{m}) P(\vec{m}|z,T)$$

$$P(z|\vec{m}) = \sum_{T} P(z,T|\vec{m}) = \sum_{T} P(z,T|\vec{m}) P(\vec{m}|z,T)$$

$$P(z|\vec{m}) = \sum_{T} P(z,T|\vec{m}) = \sum_{T} P(z,T|\vec{m}) P(\vec{m}|z,T)$$

RNBC needs training set

Assume *naïvely* $m_i \perp m_j$

Bootstrap samples, random subset of magnitudes

RNBC prior
$$\Rightarrow P(z,T|\vec{m}) \propto P(z)P(T|z) \prod_{i=1}^{n} P(m_i|z,T)$$

PCA transformations

A model is assumed for this term

(Likelihood)

 $P(m_i|z,T)$

0.06 Combining techniques 0.04 0.02 0.00 -0.02-0.04Mod BPZ -0.060.18 0.16 0.14 0.12 0.10 0.08 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.065 0.060 $\frac{6}{5}$ 0.055 0.050 0.050 0.045 يا 0.040 0.035 0.024 0.022 0.020 0.018 Matias Carrasco Kind (UIUC) 0.016 DES meeting

Combining techniques

Mod BPZ

Mod BPZ + RNBC prior

TPZ

TPZ+Mod BPZ + prior

TPZ+Mod BPZ+prior zConf > 0.5

TPZ+Mod BPZ+prior zConf > 0.9

Combining techniques

Simulated DES

We use TPZ (Carrasco Kind & Brunner, 2013a) to generate photo-z for all galaxies.

100,00 for training

5 magnitudes only

 ~ 0.17 sec per PDF

Store 43 million PDFs for analysis

No outlier removal

Simulated DES

Thanks!

TPZ scheme

Performance tests

