

主要内容

- 知乎推荐页场景和 Ranking 历程介绍
- 深度学习在 Ranking 中的尝试和应用现状
- Ranking 面临问题和未来研究方向

知乎推荐页场景

赵玮炜: 首先回答楼主的问题"为什么 不能像手机一样显示剩余电量百分比, 这个问题的答案是: 能显示百分比, ...

17 特同

靠工资在北京买房现实吗?

羊迪: 当然现实了, 不需要年入百万, 月入一万都没多大问题,来,我教你。 首先,确认下购房条件是否满足,如...

388 赞同·136 评论

后悔当初没有考上高校?环球网校轻松考取MBA, 点击报名

名校梦想无法实现? 现在机会来了! 环球网校轻松考取 MBA, 帮你实现名校学历, 职场转型利器, 薪资爆炸式提升

环球网校 的广告· 查看详情

据说机器学习长于预测, 计量经济学长于解释。有什 么具体例子是机器学习完成了很好的预测却在解...

颢卿: 机器学习之于计量经济学 - 随机森林算法大战最 小二乘法 今天这篇正好借花献佛,来和大家从解释和预 测两个角度来和大家简单讲讲机器学习和传统计量方法... 242 赞同 · 21 评论

23:19 HD (\$ 490)

Q 熊晓鸽的投资方法

▲ 提问

推荐 执榜 视频

Deeplearning.ai卷积神经网络(1.6 如何做三维卷 积)

忆臻: 0、前言 打算对吴恩达老师的 Deeplearning课程做一个笔记回顾, 大体整理思路为吴老师课堂内容和个...

提升学历很难吗? 来环球网校考在职研究生, 学时 短,含金量高

学历是求职的敲门砖, 也是升职加薪的垫脚石。高考失利没 关系! 在职研是你的又一次机会。来环球网校, 帮你高效学 习,提升学历!

环球网校 的广告·查看详情

电动车续航破600,燃料电池汽车出路何在?

玖牛咨询: 导读 电动汽车与燃料电池汽车谁是新能源汽 车未来? 比亚迪唐EV、现代NEXO、丰田MIRAR续航里程 接近。失去续航里程高的优势, 氢燃料电池汽车出路何...

1 赞同·20 评论

0 赞同

海洋里有哪些有趣的哺乳动物?

一个男人在流浪: 谢激。因为题目里说 到了是海洋哺乳动物,这就把我们的可 选范围限制在了一定很小的面里--...

1.783 赞同·90 评论

23:55

(45) ▶ 提问

毕赣邀你下周日见面聊爱情

推荐

热榜

视频

怎样评价一个演员的台词功底?

大酱: 我当时以为这是真的杀人犯采访

2.757 赞同 · 447 评论

有什么事是外国人来了中国之后才知道的?

笑笑木: 很多国家是不"拼假"的。比如, 今年国庆假期之 前的周六日正常上班上学, 然后连着放七天, 这就是"拼 假"。这种模式现在被很多人吐槽。我上大学的时候,隔...

216 赞同 · 77 评论

汽车的操控性到底是指什么?

翰德林曼: 汽车的操控性到底是指什么? 说到操控性, 在 中国和欧美还是有些差异,在中国,普通消费者理解的操 控包含了动力加速性能,驾驶性,转向,极限操控,甚至...

25 赞同

如何克服一个人独处时草名的空虚寂寞感?或许, Soul里有要的答案

推荐页请求流程

推荐页模块详解

- 召回:负责把用户可能感兴趣的内容提取出来,重点是全
 - ▶ 基于话题:关注,行为挖掘
 - ▶ 基于内容: 协同
- 排序:负责对召回的内容进行打分,可以理解为感兴趣程度,重点是准
 - ▶ 基于规则:时间顺序,线性加权
 - ▶ 基于模型: GBDT, DNN
- 重排序:出于产品或者业务的考虑,对排序后的内容进行重排,最终展示
 - ▶ 提权:比如对视频进行一定的提权
 - ▶ 隔离:相似内容隔开
 - ▶ 强插: 高质量的新内容流通

推荐页Ranking历程

模型选择

特征介绍

- 用户画像
 - 用户属性特征: 性别等
 - 》 统计特征,用户点赞数等
- 内容画像
 - 固有特征:文章长度,关键词等
 - > 统计特征: 历史点赞数等
- 交叉特征
- 用户与内容的交叉特征: 比如用用户感兴趣的话题和当前待推荐内容的话题交叉

特征介绍

●特征类别

- » 数值特征:文章长度,点赞数
- ▶ Onehot: 内容类型
- > Multihot: 内容多个话题 id
- > Onehot with value: 用户对单类型内容的感兴趣程度
- > Multihot with value: 用户对各话题的感兴趣程度

特征设计

●设计原则

- ▶ 特征尽量全:从现有的数据中提取尽可能多的特征
- ▶ 特征原始值全: 比如加历史CTR 特征的时候, 可以把 pv 和 click 都带上
- ▶ 覆盖率大:去掉一些覆盖率很低的特征,这些特征影响影响范围小,大部分是缺失值
- ▶ 线上线下一致:覆盖率和取值分布尽可能接近

●新特征方向

- → 显式交叉特征: DNN 能学习特征的非线性能力,增加交叉特征可以降低模型搜索的空间,在训练数据一定的情况下可以提升效果,如用户的话题兴趣和当前话题的均值和最大值,效果提升明显
- » 出于业务考虑:需要对业务有一定的理解,把自己当做用户,考虑什么情况下点击率会大,什么样的内容更容易被用户点,比如视频在 wifi 下更容易被点,视频点击率高的人更喜欢视频
- > 数据挖掘特征:如内容 Embedding 特征

特征设计

- ●内容 Embedding 介绍
 - > Embedding 目的: 把内容映射到低纬空间,相似内容距离较近,可以当做内容特征
 - > 文本角度: tfidf, 关键词进行word2vec 等
 - > 行为角度: 考虑用户在知乎的行为,搜索内容相关性较好,依据搜索点击序列设计 Embedding
- 实现细节
 - » 数据:将搜索行为进行session切分,组织成类似于 sentence 序列
 - » 样本: 85亿
 - ▶ 模型: skip-gram
 - > loss: nce-loss

特征设计

skip-gram 结构

embedding 效果

ID

标题

回答	97421005	回答:像vb vc ve这样	的保健品,可以天天吃吗?	谢邀, 这	这些保健品VB	是非常容易缺乏的,	可以补充。维生	素C和维生素E不	太容易缺乏,	多吃蔬菜
回答	67962958	回答: 开始拼命地吃维	生生素b族 vb3 vb6 vc ve 望能	台疗答主:怎	基样私信你? 我	战也遇到同样问题,	痘痘长了大概有 [·]	十一年了,今年2	5周岁,期间记	式过各种方
回答	61376154	回答: 我是22岁的女生	生,请问日常吃什么营养品比较	交好 我高三的	时候被我妈逼	逼迫吃葡萄籽、vc和	各种保健品,但	是葡萄籽我最讨厌	尼 吃,因为真的	勺很难吃,
回答	2927800	回答: 继续用综合维生	上素还是只服用vc vb?	题主你好	F! 综合维生素	图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图	直在关注,首先	陈述我的观点1.纷	合维生素按时	加用后,
回答	66482293	回答: 吃维生素b族 vb	o3 vb6 vc ve 望能治疗我的痘	賣 ₹ 我也吃过	扩小瓶的VB6坚	经持吃了三个月好像	基本上就是按说	的 吃的 吃了	710瓶 吃完后	确实能控制
回答	93548384	回答: 看微博里说纽斯	所特的VC+VE+葡萄籽可以美国	本人黑,	双11买的纽斯	听特的美白套餐,就		。到现在四个月	了。首先说白,	没感觉变
回答	83179992	回答: 吃药店的小瓶vo	c和吃自然堂,汤臣倍健的vc	边 没有差别	J,因为你摄 <i>)</i>	的维生素剂量是一	样的,这是标准:	剂量,只是自然望	並、汤臣倍健等	等保健品品
回答	94153709	回答: 想利用服用VC和	和VE的胶囊美白,这科学吗?	VC 两种维生	素都有抗氧化	比的功能,至于能不	能美白,我只能	说有待商榷。维生	E素ADEK属于	脂溶性维生
回答	18055293	回答: 因为长痘痘, 可	T以VB.VC.VE一起服用一段时	间 我当时也	是长过很多短	痘,在杭州看的中	医调理一段时间	确实好了,吃中药	的同时医生酮	记了vc vb约
回答	93241351	回答: 吃富含vc的水果	R和直接喝vc片有什么区别?	谢邀! 当	给然会有区别!	片剂有提取的和合	成的两种片剂含:	量多少不一片剂中	コ营养素单一ス	k果中富含
回答	33467535	回答: 普通人长期每天	吃 Nature Made莱萃美的vc	□ve 谢邀,首	先抱歉的回答	答, 因为对您购买的	保健品并不了解	,无法正面回答您	8的问题,抱歉	欢。其次,

CTR 模型

●选择 CTR 模型原因:

- ▶ 推荐页排序目标是把用户推荐感兴趣的内容排在前面,可有下面两个学习目标
 - ◆ 停留时长:适合用回归问题来解决,最后会偏向于长文章
 - ◆ 点击率:二分类问题,知乎的问答一般不长,更加合适
- 分类问题相比回归问题,目标类别少,相对准确率高
- > 分类问题场景业界应用较广,可交流空间大
- > 分类问题最后会输出一个概率分,方便与多目标结合
- ●损失函数

$$Loss = -\sum_{i=1}^{N} (y_i \log(p_i) + (1 - y_i) \log(1 - p_i))$$

最初DNN 结构

- 1. 将输入特征分为用户和内容两块
- 2. 经过特征映射后分别通过全连接 与两个独立的隐含层连接
- 3. 两个独立的隐含层 cancat 后再 经过两个全连接层
- 4. 最后输出 sigmoid 与交叉熵损失 作为 loss

AUC: 0.7618

优化 DNN 结构

- 1. 将用户和内容的特征,分别按照 内容的 field 分为不同的 block
- 2. 每个 block 先经过全连接到独立 的隐含层
- 3. 将上面的隐含层 concat 再经过 后面的 DNN 模型

AUC: 0.7678, 提升0.6%

Deep FM

- 1. 增加了一阶和 FM 模 块,FM 通过 block 之间的内积实现
- 2. AUC 提升 0.2%

Last View + DIN

- 1. Last view topic 与当前内容的几个 topic 计算 Attention Score, 再按权重进行 sum pooling
- 2. AUC 提升约 0.2%

Last Display + GRU

- 1. Last Display 经过 Embedding 后与是否点击结合,再进入 GRU 模块,最后状态当做 DNN 输入
- 2. AUC 提升约 0.4%

多目标

- 1. 每个 task 共享前面的几层权重,可以 节省训练和预测的计算量
- 2. Loss 可以是几个 task 的 loss 做简 单线性加权
- 3. 上线仍然要确定各个 ctr 的加权值, 经验比较重要
- 4. 上线后线上表现:点击率基本不变,而 其他的几个指标,比如点赞,收藏大幅 提升

最终模型结构

经验分享

- 对于随时间变化的统计特征,比如用户和内容画像的统计值,线上 service 应当纪录请求时的值,生成训练样本时直接从纪录的日志里获取,避免特征穿越问题;
- 如果发现线下效果好,比如 AUC 和 NDCG 提升明显,但上线效果不显著,很可能是特征不一致导致的,可重点排查;
- 线上线下最好使用同一套特征抽取框架,只需使用的相同特征配置便可保证一致性,我们 Global Ranking 使用同一套 proto 结构和特征抽取模块实现;
- 做特征归一化操作,发现有特别大的值,比如几万或者几十万,要先取 log ,不然会导致这个特征大部分值都 趋向0,相当于特征失效;
- 输入特征要做非法检查,防止出现 inf, nan, 而导致模型训练出现异常的参数; ● 对于线上的每次请求, 用户特征都是一样的, 可以只计算一遍用户特征相关的 block, 避免冗余运算;
- 训练数据量要尽可能大,可以使用 FlatBuffer 结构把训练数据存放在 HDFS 上,训练时直接从 HDFS 读取, 边读取边训练;
- 线上模型要能自动更新,过老的模型效果下降严重;

面临问题

- 推荐页与搜索页的特性不同
 - ▶ 搜索带着 query 来的,结果与之相关性越高越好,不用太关心结果的多样性
 - ▶ 推荐页用户没有明确的目的,但是有兴趣偏好和对结果的多样性需求,推荐既要准确又要多样化
- CTR 预估模型是 pointwise 模型,没有考虑单个内容与其他内容同时出现的影响
- 用户对感兴趣的东西会出现审美疲劳,要及时抓住这种特点,比如一个算法工程师看完几个机器学习文章后就不想再看了,这时候要能推荐一些其他话题的内容

未来方向

- 强化学习
 - Actor: 根据用户过去的浏览和点击行为生成推荐页整屏结果
 - Critic: 接收到点击或者其他正向行为作为 reward, 同时训练 Critic 和 Actor 网络参数
- 优点
 - ▶ 能及时捕捉用户的反馈,从而避免对同一话题产生审美疲劳
 - 》 推荐整屏幕内容,避免 pointwise 方式下内容较为集中问题
- 缺点
 - 模型结构复杂,模型参数训练较困难

