Linguaggi

18: Semantica della logica del prim'ordine

Claudio Sacerdoti Coen

<sacerdot@cs.unibo.it>

Universitá di Bologna

09/12/2019

Outline

Al fine di definire la semantica classica di un linguaggio del prim'ordine è necessario prima individuare la forma appropriata per le descrizioni dei mondi.

La semantica classica associa:

- A ogni connotazione proposizionale un valore di verità $\in \{0,1\}$
- A ogni connotazione che è un termine un elemento del dominio delle denotazioni per i termini

Inoltre, come nel caso proposizionale, un mondo deve fissare esclusivamente la semantica delle "formule atomiche" (costanti, funzioni, predicati) che verrà estesa a ogni formula possibile assegnando una semantica invariabile ai connettivi e ai quantificatori.

Definizione: un mondo o interpretazione per la logica del prim'ordine è una coppia (A, I) dove A è un insieme non vuoto di denotazioni per i termini e I è una funzione di interpretazione che associa

- a ogni funzione fⁿ una funzione il cui dominio è
 Aⁿ = A × . . . × A (n volte) e il cui codominio è A
- Caso particolare: per ogni costante c, $I(c) \in A$
- a ogni predicato Pⁿ una funzione il cui dominio è Aⁿ e il cui codominio è {0,1} o, equivalentemente, un sottoinsieme di Aⁿ
- Caso particolare: per ogni predicato 0-ario P, $I(P) \in \{0, 1\}$ come nel caso della logica proposizionale

Nota: un mondo non è più rappresentabile come una sequenza di booleani e non è più possibile usare tabelle di verità.

Siamo già in grado di interpretare in un mondo (A, I) termini e proposizioni in cui non occorrano variabili. (La definizione formale verrà data in seguito).

Esempio:

Sia $A = \mathbb{N}$, I(D) l'insieme dei numeri pari, $I(f^1)(n) = n + 1$ I(c) = 2. Allora $[D(f(c))]^{(A,I)} = 0$.

Ma che semantica diamo a $\forall x.P$ e a $\exists x.P$? Intuitivamente, $\forall x.P$ è vera quando P è sempre vera al variare di x mentre $\exists x.P$ è vera quando P è vera almeno una volta al variare di x. La variazione è implicita essere sul dominio A del nostro mondo.

Come catturare la nozione di variazione di x sul dominio A? Vediamo prima un paio di modi non corretti:

- $[\![\forall x.P]\!]^{(A,I)} = \min\{[\![P[\alpha/x]]\!]^{(A,I)} \mid \alpha \in A\}$ Errata in quanto α è una denotazione e non una connotazione! Pertanto $P[\alpha/x]$ non è ammesso dalla sintassi.
- ② $[\![\forall x.P]\!]^{(A,l)} = \min\{ [\![P[t/x]]\!]^{(A,l)} \mid t \in Term \}$ dove Ter è l'insieme di tutte le connotazioni per termini nel nostro linguaggio.
 - Errata in quanto il mio mondo potrebbe avere molte più denotazioni per termini di quelle rappresentabili sintatticamente tramite connotazioni. Esempio: $A = \mathbb{R}$ poichè l'insieme delle connotazioni è sempre enumerabile.

Come catturare la nozione di variazione di x sul dominio A?

Definizione: dato un mondo (A, I) un ambiente ξ è una funzione il cui dominio è l'insieme di tutte le variabili e il cui codominio è A.

Useremo gli ambienti per interpretare le variabili nello stesso modo in cui usiamo *I* per interpretare le costanti.

Esempio:
$$[\![f^2(c,x)]\!]^{(A,I),\xi} = I(f^2)(I(c),\xi(x))$$

I quantificatori universale ed esistenziale fanno variare gli ambienti per assegnare a una variabile *x* tutti i possibili valori di *A*.

Definizione di semantica classica della logica del prim'ordine. Sia (A, I) un mondo e ξ un ambiente sul mondo. Definiamo per induzione strutturale

dove $\xi[x \mapsto \alpha]$ associa α a $x \in \xi(y)$ a y.

Soddisfacibilità, insoddisfacibilità, ...

Tutte le definizioni viste per la logica proposizionale classica che facevano riferimento alle nozioni di mondo e semantica rimangono identiche per la logica del prim'ordine classica con le nuove definizioni di mondo (e ambiente) e semantica.

Esempio: $\Gamma \Vdash G$ quando in ogni mondo (A, I) e ambiente ξ si ha che se $\llbracket F \rrbracket^{(A,I),\xi} = 1$ per ogni $F \in \Gamma$ allora $\llbracket G \rrbracket^{(A,I),\xi} = 1$.

Semantica intuizionista della logica del prim'ordine

Accenniamo qui alla proprietà più importante della semantica intuizionista della logica del prim'ordine:

se

$$\Vdash \forall x. \exists y. P(x,y)$$

allora

$$\vdash \forall x. \exists y. P(x, y)$$

(per il teorema di completezza debole) e inoltre vi è (e sappiamo qual'è) un algoritmo f che ad ogni input x associa un output f(x) tale che P(x, f(x))

P(x, y) viene chiamata la specifica dell'algoritmo

Semantica intuizionista della logica del prim'ordine

Esempio di specifica per un algoritmo di ordinamento:

```
\forall I.\exists I'.
(Lista(I) \Rightarrow \exists I'.(Lista(I') \land Ordinata(I') \land \forall z.(z \in I \iff z \in I')))
```

Da ogni prova intuizionista del precedente enunciato si ricava una funzione che data una lista / restituisce una lista / assieme a una prova che mostra che / e / hanno gli stessi elementi e che / è ordinata.

Una dimostrazione intuizionista corrisponde a dare contemporaneamente un'implementazione e la dimostrazione di correttezza dell'implementazione stessa!

Rimandiamo al corso di Fondamenti Logici dell'Informatica lo studio di questo approccio alla programmazione.

Equivalenze logiche notevoli (caso proposizionale, 1/2)

Commutatività':

$$A \lor B \equiv B \lor A$$
, $A \land B \equiv B \land A$

Associatività':

$$A \lor (B \lor C) \equiv (A \lor B) \lor C, \quad A \land (B \land C) \equiv (A \land B) \land C$$

Idempotenza:

$$A \lor A \equiv A$$
, $A \land A \equiv A$

Distributività:

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C), \quad A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$$

Assorbimento:

$$A \lor (A \land B) \equiv A, \quad A \land (A \lor B) \equiv A$$

Elemento neutro:

$$A \lor \bot \equiv A$$
, $A \land \top \equiv A$

Annichilamento:

$$A \lor \top \equiv \top$$
, $A \land \bot \equiv \bot$

Equivalenze logiche notevoli (caso proposizionale 2/2)

Doppia negazione:

$$\neg \neg A \equiv A$$

De Morgan:

$$\neg (A \lor B) \equiv \neg A \land \neg B, \quad \neg (A \land B) \Vdash \neg A \lor \neg B, \quad \neg A \lor \neg B \Vdash \neg (A \land B)$$

Nota: quelle in rosso valgono solo in logica classica, quelle in nero anche in logica intuizionista

Teorema (completezza): siano P e Q due formule della logica proposizionale. $P \equiv Q$ (usando la definizione di equivalenza logica in logica classica) sse posso dimostrare $P \equiv Q$ usando solamente le equivalenze notevoli classiche appena elencate. Dimostrazione: interessante, ma lunga e complessa.

Quantificatori dello stesso tipo commutano:

$$\forall x. \forall y. P \equiv \forall y. \forall x. P$$
$$\exists x. \exists y. P \equiv \exists y. \exists x. P$$

Quantificatori di tipo diverso NON commutano:

$$\exists x. \forall y. P \Vdash \forall y. \exists x. P \\ \forall x. \exists y. P \not \Vdash \exists y. \forall x. P$$

Esempio: $\forall x. \exists y. x < y \text{ vs } \exists y. \forall x. x < y \text{ in } \mathbb{N}.$

Le seguenti equivalenze possono essere utilizzate per spostare i quantificatori in posizione di testa nelle formule:

$$\forall x.(P \land Q) \equiv (\forall x.P) \land (\forall x.Q) \quad \text{(usata da dx a sx)}$$

$$\exists x.(P \lor Q) \equiv (\exists x.P) \lor (\exists x.Q) \quad \text{(usata da dx a sx)}$$

$$\forall x.P \equiv P \text{ se } x \notin FV(P) \quad \text{(usata da dx a sx)}$$

$$\exists x.P \equiv P \text{ se } x \notin FV(P) \quad \text{(usata da dx a sx)}$$

$$\forall x.(P \lor Q) \equiv (\forall x.P) \lor Q \text{ se } x \notin FV(Q) \quad \text{(usata da dx a sx)}$$

$$\exists x.(P \land Q) \equiv (\exists x.P) \land Q \text{ se } x \notin FV(Q) \quad \text{(usata da dx a sx)}$$

Le leggi di De Morgan si estendono ai quantificatori universali ed esistenziali (pensati come congiunzioni/disgiunzioni infinite):

```
\neg \forall x.P \equiv \exists x.\neg P \qquad \text{solo in logica classica} \\ \exists x.\neg P \Vdash \neg \forall x.P \qquad \text{in logica intuizionista} \\ \neg \exists x.P \equiv \forall x.\neg P \qquad \text{in logica classica e intuizionista}
```

Attenzione: per dimostrare che $\neg \forall x.P$ basta dimostrare che $\exists x. \neg P$ ovvero è sufficiente un controesempio. Ma per dimostrare $\neg \exists x.P$ dobbiamo dimostrare $\forall x. \neg P$ ovvero serve una dimostrazione.

Sia $x \notin FV(Q)$ (sempre vero per un qualche Q' che sia α -convertibile con Q). Si ha

$$(\forall x.P) \Rightarrow Q \equiv \exists x.(P \Rightarrow Q)$$

$$\exists x.(P \Rightarrow Q) \Vdash (\forall x.P) \Rightarrow Q$$

$$(\exists x.P) \Rightarrow Q \equiv \forall x.(P \Rightarrow Q)$$

$$Q \Rightarrow (\exists x.P) \equiv \exists x.(Q \Rightarrow P)$$

$$Q \Rightarrow (\forall x.P) \equiv \forall x.(Q \Rightarrow P)$$

solo in logica classica in logica intuizionista

Quantificazioni limitate

Informalmente si usano sovente forme di quantificazioni limitate a un particolare dominio o proprietà:

$$\forall x \in A.P(x)$$
 $\exists x \in A.P(x)$

per ogni
$$x$$
 t.c. $Q(x)$ si ha $P(x)$ esiste x t.c. $Q(x)$ per cui $P(x)$

che corrispondono alla versioni formali

$$\forall x.(x \in A \Rightarrow P(x)) \qquad \exists x.(x \in A \land P(x))$$

$$\forall x.(Q(x) \Rightarrow P(x))$$
 $\exists x.(Q(x) \land P(x))$

Riflettete sul caso $\forall x \in \emptyset.P(x)!$

Quantificazioni limitate ed equivalenze logiche notevoli

Fare attenzione all'applicazione corretta delle leggi di De Morgan sulle quantificazioni limitate:

$$\neg \forall x \in A.P(x) \qquad \neg \exists x \in A.P(x)
= \neg \forall x.(x \in A \Rightarrow P(x)) = \neg \exists x.(x \in A \land P(x))
\equiv \neg \forall x.(\neg x \in A \lor P(x)) \equiv \forall x.\neg(x \in A \land P(x))
\equiv \exists x.\neg(\neg x \in A \lor P(x)) \equiv \forall x.(\neg x \in A \lor \neg P(x))
\equiv \exists x.(x \in A \land \neg P(x)) \equiv \forall x.(x \in A \Rightarrow \neg P(x))
= \exists x \in A.\neg P(x) = \forall x \in A.\neg P(x)$$

Nota: mentre la seconda vale anche intuizionisticamente, la prima vale intuizionisticamente solo nella direzione $\exists x \in A. \neg P(x) \Vdash \neg \forall x \in A. P(x)$, compresa la sua variante $\exists x \in A. P(x) \Vdash \neg \forall x \in A. \neg P(x)$

Correttezza e completezza della deduzione naturale

Anche per la deduzione naturale (sia classica che intuizionista) valgono i teoremi di correttezza e completezza:

- Correttezza: per ogni Γ, F della logica del prim'ordine, se Γ ⊢ F allora Γ ⊩ F
- Completezza (forte): per ogni Γ, F della logica del prim'ordine, se Γ ⊢ F allora Γ ⊢ F

Per la logica classica vale anche un teorema di completezza debole dotato di contenuto computazionale che si basa su ipotesi più strette (finitezza di Γ ed enumerabilità del linguaggio dei termini).

Primo teorema di incompletezza di Goedel (1931)

Attenzione: il teorema di completezza ci dice solo che tutte le conseguenze logiche degli assiomi in Γ sono dimostrabili. Ovvero data una formula P, $\Gamma \vdash P$ sse P è vera in tutti i mondi (A, I), ξ che soddisfano Γ e $\Gamma \vdash \neg P$ sse P è falsa in tutti i mondi (A, I), ξ che soddisfano Γ .

Quando Γ impone un numero sufficiente di vincoli da essere soddisfatti da un solo mondo, allora in quel mondo ogni P è vera o falsa e quindi $\Gamma \vdash P$ oppure $\Gamma \vdash \neg P$.

Domanda: dato un mondo, è sempre possibile imporre degli assiomi Γ che siano soddisfatti solo da lui? NO (dimostrazione omessa)

Primo teorema di incompletezza di Goedel (1931)

Primo teorema di incompletezza di Goedel (1931)

In ogni teoria matematica Γ sufficientemente espressiva da contenere l'aritmetica, esiste una formula P tale che, se $\Gamma \not\vdash \bot$ allora $\Gamma \not\vdash P$ e $\Gamma \not\vdash \neg P$.

- il caso Γ ⊢ ⊥ non è interessante (la teoria è inconsistente, tutto è dimostrabile)
- con l'aritmetica Goedel programma, codificando nei numeri naturali la sintassi delle formule e la sintassi degli alberi di derivazione
- la dimostrazione (lunga e complessa) ricalca il paradosso del mentitore: P dice "io non sono dimostrabile" usando la codifica nei numeri per creare la confusione fra livello e metalivello
- la proposizione P non è interessante: ci sono proposizioni interessanti con la stessa proprietà?

Secondo teorema di incompletezza di Goedel

Secondo teorema di incompletezza di Goedel

Nessuna teoria Γ sufficientemente espressiva da contenere l'aritmetica e consistente (ovvero tale che $\Gamma \not\vdash \bot$) è in grado di dimostrare la sua consistenza.

- per dimostrare la prova si codifica l'intera prova del primo teorema di incompletezza di Goedel nei numeri naturali
- conseguenza: per dimostrare la consistenza di una logica+teoria non possiamo che fidarci di una meta-logica+teoria o, in alternativa, costruire una catena ascendente infinita di meta-meta-...-logica+teoria di cui ognuna dimostra la precedente