Case study: How does a bike-share navigate speedy success?

ASK

BUSINESS TASK STATEMENT:

The Statement of this problem gives that a Company called "Bike-Share Company" at Chicago, Wants to improve their sales and to reach the profitable outcome. To opt this, the team of the company decides to convert all the casual riders to a Annual members instead of finding for a new members. Through their analysis, it is driven as the annual members have the highest profit when compared to the casual riders. As a junior data analyst of this company, my sort of analysis would be how do annual members and casual riders use Cyclistic bikes differently? I try to solve this by understand and optimize the usage patterns of Cyclistic's bike-sharing service, we aim to analyze how annual members and casual riders use Cyclistic bikes differently. By examining key metrics such as ride duration, frequency, time of use, and routes taken, we will identify distinct behavioral trends between these two user groups. This analysis will inform strategic decisions for improving bike availability, station placement, and marketing efforts to enhance user satisfaction and operational efficiency.

PREPARE

DATA SOURCE DESCRIPTION:

To Analyse and convert the casual riders to a annual members, I have chosen a Dataset from a list of datasets.

Dataset Name: 202307-divvy-tripdata.xsl

Dataset Description: The dataset have the information about the rider_id, their type, start and end timing of the bike share, stations they returned and the member's casual.

		<i>y Jx</i>											
4	Α	В	C	D	E		G	н		J	K	L	M
1 ride_	id	rideable_type	started_at	ended_at	start_station_name	start_station_id	end_station_name	end_station_id	start_lat	start_Ing	end_lat	end_Ing	member_casual
2 9340	B064F0AEE130	electric_bike	20:06:14	20:22:44	Kedzie Ave & 110th St	20204	Public Rack - Racine Ave & 109th Pl	877	41.69241	-87.7009	41.69484	-87.653	member
3 D146	50EE3CE0D8AF8	classic_bike	17:05:07	17:18:37	Western Ave & Walton St	KA1504000103	Milwaukee Ave & Grand Ave	13033	41.89842	-87.6866	41.89158	-87.6484	member
4 DF41	IBE31B895A25E	classic_bike	10:14:53	10:24:29	Western Ave & Walton St	KA1504000103	Damen Ave & Pierce Ave	TA1305000041	41.89842	-87.6866	41.9094	-87.6777	member
5 9624	A293749EF703	electric_bike	08:27:44	08:32:40	Racine Ave & Randolph St	13155	Clinton St & Madison St	TA1305000032	41.88411	-87.6569	41.88275	-87.6412	member
6 2F68	A6A4CDB4C99A	classic_bike	15:46:42	15:58:08	Clark St & Leland Ave	TA1309000014	Montrose Harbor	TA1308000012	41.96709	-87.6673	41.96398	-87.6382	member
7 9AEE	973E6B941A9C	classic_bike	08:44:47	08:49:41	Racine Ave & Randolph St	13155	Sangamon St & Lake St	TA1306000015	41.88407	-87.6569	41.88578	-87.651	member
8 E366	E997FDA1582B	classic_bike	14:30:44	14:37:45	Clark St & Leland Ave	TA1309000014	Sheridan Rd & Montrose Ave	TA1307000107	41.96709	-87.6673	41.96167	-87.6546	member
9 1BB3	3E73851E6C2C1	classic_bike	10:11:53	10:17:55	Clark St & Leland Ave	TA1309000014	Ravenswood Ave & Berteau Ave	TA1309000018	41.96709	-87.6673	41.95792	-87.6736	member
10 DA1	E1D0866E6566E	electric bike	21:57:27	22:08:27	Clark St & Leland Ave	TA1309000014	Sheffield Ave & Wellington Ave	TA1307000052	41.96709	-87.6675	41.93625	-87.6527	member

Inorder to analyse how the casual and the annual member use cyclist differently,is calculated through the rate Length and Day of week. The updated Data Columns are attached Below.

PROCESS

The Process Step involves finding the error and cleaning the data which led to analysing Phase. The tool that I have chosen to Process, Analyse the data is **EXCEL**.

The Reason to choose Excel?

- Excel is a popular tool for analysis due to its user-friendly interface, extensive data visualization capabilities, and powerful built-in functions for statistical and mathematical calculations.
- It allows for quick data manipulation and supports a wide range of data formats, making it accessible for both beginners and advanced users.
- Additionally, Excel's pivot tables and charts facilitate efficient data summarization and reporting.

Steps for Data Cleaning in Excel:

The steps that I used to clean the data is as follows,

(i) Auto fit rows and columns

Auto-fitting rows and columns in data cleaning ensures that all data is visible without manual adjustments, improving readability and accuracy. This step helps quickly identify inconsistencies or errors in the dataset.

(ii) Remove Duplicates

Identify and eliminate duplicate records to ensure each bike trip is only counted once.

(iii) Missing Spaces

The Cells with additional spaces or trailing spaces are removed and are rearranged using the **trim()** function in the separate column beside of the original column.

(iv) Filling the empty cells

The dataset have the empty cells, which tend to loss the inconsistency of the data. To alter the blank spaces it is filled with the N/A to the entire table.

:	D	Е	F	G	
	12.07.10	^	14/1	1973	1.0
1:19:47	14:33:34 N	A	NA	NA	Piı
1:39:46	19:46:43 N	A	NA	NA	Piı
7:08:01	17:17:55 N	A	NA	NA	Br
2:59:48	13:19:14 N	A	NA	NA	Piı
2:38:53	22:44:57 N	A	NA	NA	Dε
140.50	47.05.56.41				-

Finally the data are evaluated for the consistency and accuracy using the sort&filter,data Validation and Check erros function

ANALYSE

The data in the spread sheet are cleaned and are ready for the analysis phase.

Performing Data Transformation:

ride_id	▼ rideable_type ▼	started_at_	ended_at <mark> ▼</mark> s	tart_station_name 💌
9340B064F0AEE130	electric_bike	20:06:14	20:22:44 Ke	edzie Ave & 110th St
D1460EE3CE0D8AF8	classic_bike	17:05:07	17:18:37 W	Vestern Ave & Walton St
DF41BE31B895A25E	classic_bike	10:14:53	10:24:29 W	Vestern Ave & Walton St
9624A293749EF703	electric_bike	08:27:44	08:32:40 R	acine Ave & Randolph St
2F68A6A4CDB4C99A	classic_bike	15:46:42	15:58:08 C	lark St & Leland Ave
9AEE973E6B941A9C	classic_bike	08:44:47	08:49:41 R	acine Ave & Randolph St
E366E997FDA1582B	classic_bike	14:30:44	14:37:45 C	lark St & Leland Ave
1BB3E73851E6C2C1	classic_bike	10:11:53	10:17:55 C	lark St & Leland Ave
DA1E1D0866E6566E	electric_bike	21:57:27	22:08:27 C	lark St & Leland Ave
39BF4A73A704CA85	classic_bike	10:51:17	11:03:13 W	Varren Park East
F036C3340FF1EE0F	classic_bike	13:27:47	13:46:45 Je	efferson St & Monroe St
253D62F6B36B340C	electric_bike	12:35:51	12:44:16 Pt	ublic Rack - Kostner Ave & D
1AE843E603ED53A2	electric_bike	12:42:41	12:50:51 Po	ublic Rack - Kostner Ave & D
398A58DC66DFAD8A	electric_bike	08:09:43	08:15:48 W	Vestern Ave & Walton St
C87CB0A25C9682DF	classic_bike	21:34:50	21:47:07 R	acine Ave & Randolph St
70FFA226EBD6721F	classic_bike	10:58:20	11:04:37 R	acine Ave & Randolph St
00FE04677C756C6E	classic_bike	16:14:46	16:27:26 R	acine Ave & Randolph St
B0A01513A1935927	electric_bike	17:00:59	17:06:08 W	Vestern Ave & Walton St
A32770999843B987	electric_bike	18:29:28	18:32:28 C	lark St & Leland Ave

Performing Descriptive Analysis:

Column	1
Column	L
Mean	0.015096
Standard Error	0.000165
Median	0.007604
Mode	0.004109
Standard Deviation	0.144918
Sample Variance	0.021001
Kurtosis	16321.48
Skewness	103.6987
Range	35.74017
Minimum	-0.00309
Maximum	35.73708
Sum	11588.3
Count	767650
_	0

Performing some calculations:

15095812
73708333
7

Creating Pivot Table with desired column and Rows:

The Pivot table is created with the set of functions, Here I found the relationship between the casual and annual and analysed the who owns a bike for a longer duration and on which days in the week the bike rented a most.

The table for the analysed data is attached below,

Summary of the Analysis:

Through the "Descriptive Analysis", I have analysed a set of functions for the given table and are listed below.

Column1	
Column1	
Mean	0.015096
Standard Error	0.000165
Median	0.007604
Mode	0.004109
Standard Deviatio	0.144918
Sample Variance	0.021001
Kurtosis	16321.48
Skewness	103.6987
Range	35.74017
Minimum	-0.00309
Maximum	35.73708
Sum	11588.3
Count	767650
	0

SHARE

Visualization of the analysis:

The Visualization is performed through the "Power BI". Through this tool,we can analyse the count of the each member,number of days they rented,who rented a bike a lot. To the end, we got the answer of how the casual and the members differ from each other. A "Dashboard" is created with all of the visualisation elements.

Key considerations after Analysis:

Differentiation of casual and annual:

- 1. The "Annual riders" used the most when compared to the "Casual riders"
- 2. Especially, they rented a classic bike during the "Weekends"
- **3.** The Casual riders share the bike only during the weekend or during the leisure times.

How to Convert casual to a Annual:

- 1. Mostly, the consumers are attracted to the Discounts and Vouchers. So a sudden shrink of the annual members cost would merely change the casual to annual.
- **2.** Changing the Payment options like Instalments.
- **3.** Giving them a "Bonus Coins" for each ride and the amount of the coins collected, the sum of reduction of the amount.
- **4.** The casual to annual converted members will be provided with the offer of "6 MONTHS free Rides.