ASSIGNMENT 3 MSO-201: PROBABILITY AND STATISTICS

In all the questions we denote Ω as the sample space and \mathcal{F} is a σ -field.

- 1. Prove that if $A_1, A_2 \ldots \in \mathcal{F}$, then $\bigcap_{i=1}^{\infty} A'_i \in \mathcal{F}$.
- 2. Prove that if $A_1, A_2 \ldots \in \mathcal{F}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.
- 3. Prove that if B_i is either A_i or A_i' , then (a) $\bigcap_{i=1}^{\infty} B_i \in \mathcal{F}$, (b) $\bigcup_{i=1}^{\infty} B_i \in \mathcal{F}$, (c) $\bigcap_{i=1}^{\infty} B_i' \in \mathcal{F}$, (d) $\bigcup_{i=1}^{\infty} B_i' \in \mathcal{F}$.
- 4. If \mathcal{F}_1 and \mathcal{F}_2 are σ -fields which are subsets (means the elements are subsets) of Ω , prove that $\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2$ is also a σ -field.
- 5. If $\mathcal{F}_1, \mathcal{F}_2, \ldots$ are σ -fields which are subsets of Ω , prove that $\mathcal{F} = \bigcap_{i=1}^{\infty} \mathcal{F}_i$ is also a σ -field.
- 6. Suppose $\Omega = \{1, 2, 3, 4, 5\}$, $A = \{1, 2, 3\}$ and $B = \{1, 2\}$, find the minimum σ -field which contains A and B.
- 7. Find a probability function which can be defined on the above σ -field. Find the most general probability function which can be defined on the above σ -field.
- 8. Let $\Omega = (0, \infty)$, and \mathcal{F} is the class of all subsets of Ω . Let $p_i \geq 0$, for $i = 1, 2, 3 \ldots$, and $\sum_{i=1}^{\infty} p_i = 1$. Let us define a set function $P(A) = \sum_{i \in A} p_i$, for any $A \subset (0, \infty)$. Show that $P(\cdot)$ is a probability function.
- 9. Suppose $\Omega = (-\infty, \infty)$, and \mathcal{F} is a σ -field defined on Ω , and it contains all the intervals of the form (a, b), where $-\infty < a < b < \infty$. Show that $\{a\} \in \mathcal{F}$, for any $-\infty < a < \infty$.
- 10. In the same problem as Question 9, prove that \mathcal{F} contains all the intervals of the form [a, b], where $-\infty < a < b < \infty$.