Uegentige Integraler:

Sammenligningskriteriet:

La $f,g:[a:\infty)\to\mathbb{R}$, kontinuerlig og positiv. Anta f(x) > (x) for alle x:

- 1. Hvis $\int_a^\infty f(x)dx$ Konvergerer $\Rightarrow \int_a^\infty g(x)dx$ Kon-
- 2. Hvis $\int_a^\infty g(x)dx$ Divergerer $\Rightarrow \int_a^\infty f(x)dx$ Diverg-

Grensesammenligningskriteriet:

La $f, g : [a : \infty) \to \mathbb{R}$, kontinuerlig og positiv.

- 1. $\int_a^\infty f(x)dx$ Konvergerer og $\lim_{x\to\infty} \frac{g(x)}{f(x)} < \infty \Rightarrow$ $\int_{a}^{\infty} g(x)$ Konvergerer
- 2. $\int_a^{\infty} f(x)dx$ Divergerer og $\lim_{x\to\infty} \frac{g(x)}{f(x)} > 0 \Rightarrow$ $\int_{a}^{\infty} g(x)$ Divergerer

Viktige Integraler:

 $\int_0^1 \frac{dx}{x^p}$ Konvergerer for p<1, divergerer for $p\geq 1$ $\int_1^\infty \frac{dx}{x^p}$ Konvergerer for p>1, divergerer for $p\leq 1$

Taylorpolynom:

Taylors formel med restledd:

Anta f og den n+1 første deriverte er kont på [a, b]: $f(b) = T_n f(b) + \frac{1}{n!} \int_a^b f^{n+1}(t) (b-t)^n dt$

Lagranges restleddformel

Anta f of dens n+1 første deriverte er kont på [a,b] $R_n f(x) = \frac{f^{n+1}(c)}{(n+1)!} (x-a)^{n+1}$

Funksjonsfølger:

Punktvis og uniform konvergens:

Definisjon av punktvis konvergens:

La $\{f_n\}$ være en følge som er definert på en mengde A, og la f være en funksjon definert på samme mengde A. f_n Konvergerer punktvis mot f på A, Hvis: $\lim_{n\to\infty} f_n(x) = f(x)$ for alle x i A

Definisjon av avstand mellom to funksjoner over A:

f og q er definert på samme mengde A. avstanden blir da: $d_A(f,g) = \sup\{|f(x) - g(x)| : x \in A|\}$

Definisjon av uniform kovergens:

En funksjonsfølge $\{f_n\}$, definert på A, konvergerer uniformt mot f(Også definert på A) hvis: $\lim_{n\to\infty} d_A(f,f_n) = 0$

Teorem: Ang konitnuitet av funksjonsfølger:

La f og $f_1, f_2, f_3 \dots$ være funksjoner definert på en mengde A. Anta at f_1, f_2, f_3, \ldots er kont. og at følgen f_n konvergerer uniformt mot f på A. Da er f kontinuerlig i A.

Dinis teorem:

Anta at $\{f_n\}$ er en voksende følge av kont. funksjoner som konvergerer punktvis mot en kont. funksjon f på l

et lukket, begrenset intervall [a, b]. Da konvergerer $\{f_n\}$ uniformt mot f på [a, b]

Integrasjon og derivasjon av funksjonsfølger

Integrasjon av funksjonsfølger

 $\{f_n\}$ er en føge av funksjoner som konvergerer uniformt mot f på [a,b], da er $\lim_{n\to\infty} \int_c^x f_n(t)dt = \int_c^x \lim_{n\to\infty} f_n(t)dt = \int_c^x f(t)dt$ for $c \in [a,b]$ dette gjelder også for

 $\lim_{n \to \infty} \int_{a}^{\infty} f_n(t)dt = \int_{a}^{\infty} \lim_{n \to \infty} f_n(t)dt = \int_{c}^{x} f(t)dt$

Derivasjon av funksjonsfølger

 $\{f_n\}$ er en funksjonsfølge på [a,b], og de deriverte f'_n konvergerer uniformt mot en funksjon h. Anta at $\{f_n(d)\}$ konvergerer for et tall $d \in [a,b]$. Da konvergerer $\{f_n\}$ mot en deriverbar funksjon f og f'

 $\lim_{n\to\infty} f'_n(x) = [\lim_{n\to\infty} f_n(x)]'$

Rekker

Egenskaper ved rekker:

La $\sum_{n=0}^{\infty} a_n$ og $\sum_{n=0}^{\infty} b_n$ være konvergente rekker: 1. $\sum_{n=0}^{\infty} (a_n \pm b_n) = \sum_{n=0}^{\infty} a_n \pm \sum_{n=0}^{\infty} b_n$

- 2. $\sum_{n=0}^{\infty} ca_n = c \sum_{n=0}^{\infty} a_n$

Absolutt og betinget konvergens

Definisjon:

Vi sier at rekken $\sum a_n$ konvergerer absolutt dersom $\sum |a_n|$ konvergerer.

Lemma:

Dersom $\sum a_n$ er betinget konvergent, divergerer både $\sum a_n^+ \text{ og } \sum a_n^-$

Divergenstesten:

 $\sum_{n=0}^{\infty} a_n \text{Konveregerer} \Rightarrow \lim_{n \to \infty} a_n = 0$

Integraltesten:

Anta $f:[1,\infty)\to\mathbb{R}$ er en pos., kont. og avtagende funksjon. Da konvergerer rekken $\sum_{n=1}^{\infty} f(n)$ hviss integralet $\int_{1}^{\infty} f(x)dx$ konveregerer.

Sammenligningstesten:

La $\sum_{n=1}^{\infty} a_n$ og $\sum_{n=1}^{\infty} b_n$ være to positive rekker

- 1. Anta at $\sum_{n=1}^{\infty} a_n$ konvergerer og at det finnes et tall c slik at $b_n \leq c \cdot a_n$ for alle n. Da konveregerer $\sum_{n=1}^{\infty} b_n.$
- 2. Anta at $\sum_{n=1}^{\infty} a_n$ divergerer og at det finnes et positivt tall d slik at $b_n \geq d \cdot a_n$ for alle n. Da divergerer $\sum_{n=1}^{\infty} b_n$

Grensesammenligningstesten:

La $\sum_{n=1}^{\infty} a_n$ og $\sum_{n=1}^{\infty} b_n$ være to positive rekker:

1. Anta at $\sum_{n=1}^{\infty} a_n$ konvergerer og at $\lim_{n\to\infty} \frac{b_n}{a_n} < \infty$. Da konvergerer også $\sum_{n=1}^{\infty} b_n$.

2. Anta at $\sum_{n=1}^{\infty} a_n$ divergerer og at $\lim_{n\to\infty} \frac{b_n}{a_n} > 0$. Da divergerer også $\sum_{n=1}^{\infty} b_n$

Forholdstesten:

La $\sum_{n=0}^{\infty} a_n$ være en rekke og anta at grensen $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = a$ eksisterer(Den kan være ∞ !). Da gjelder:

- 1. Dersom a < 1, Konveregerer rekken absolutt.
- 2. Dersom a > 1, Divergerer rekken.
- 3. Dersom a = 1, gir testen ingen konklusjon.

Rottesten:

La $\sum_{n=0}^{\infty} a_n$ være en rekke og anta at grensen $\lim_{n\to\infty} \sqrt[n]{|a_n|} = a$ eksisterer(den kan være ∞ !). Da gjelder:

- 1. Dersom a < 1, konvergerer rekken absolutt.
- 2. Dersom a > 1, divergerer rekken
- 3. Dersom a = 1, gir testen ingen konklusjon

Alternerende rekker test:

Anta $\sum_{n=1}^{\infty} a_n$ er en rekke av typen $\sum_{n=1}^{\infty} (-1)^n b_n$ $b_n > 0$. Hvis;

- 1. $\lim_{n\to\infty}b_n=0$ og
- 2. $\{b_n\}$ er en synkende følge

Så konvergerer $\sum_{n=1}^{\infty} a_n$

Viktige rekker:

- 1. Rekken $\sum_{n=1}^{\infty} \frac{1}{n^p}$ konvergerer hviss p > 1
- 2. $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$, hvis |x| < 1
- 3. $\sum_{n=0}^{\infty} \frac{x^n}{n} = -\ln(1-x)$

Rekker av funksjoner:

Weierstrass' M-test:

La $\sum_{n=0}^{\infty} v_n(x)$ være en rekke av funksjoner definert på en mengde A. Anta det finnes en konvergent rekke (av tall) $\sum M_n$ slik at $|v_n(a)| \leq M_n$ for alle n og alle $a \in A$. Da konvergerer rekken $\sum_{n=0}^{\infty} v_n(x)$ uniformt og absolutt på A.

Potensrekker:

Definisjon:

En Potensrekke er en funksjonsrekke på formen: $\sum_{n=0}^{\infty}a_{n}(x-a)^{n}$

Flervariabel kalkulus:

Kjerneregelen:

Anta $h: \mathbb{R}^1 \to \mathbb{R}^n$ og $x: \mathbb{R}^n \to \mathbb{R}^1$, er to deriverbare funksjoner. Anta så en funksjon $f: \mathbb{R}^1 \to \mathbb{R}^1$ definert med: f = x(h). Da er: $\frac{df}{dt}(t_0) = \frac{\partial h}{\partial x_1}(\hat{x_0}) \frac{dx_1}{dt}(t_0) + \frac{\partial h}{\partial x_2}(\hat{x_0}) \frac{dx_2}{dt}(t_0) + \cdots + \frac{\partial h}{\partial x_n}(\hat{x_0}) \frac{dx_n}{dt}(t_0)$

Differensialet:

La $f: X \in \mathbb{R}^n \to \mathbb{R}$ være en funksjon, la $\hat{a} = (a_1, a_2, \dots, a_n) \in X$ Differensialet til f i \hat{a} er da en funksjon $h: \mathbb{R}^n \to \mathbb{R}$ definert med: $h(\hat{x}) = f(\hat{a}) + f_{x_1}(x_1 - a_1) + f_{x_2}(x_2 - a_2) + \dots + f_{x_n}(x_n - a_n)$

Kjente grenser:

Logaritmiske og eksponentsielle:

- 1. $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$
- 2. $\lim_{x\to\infty} \frac{n}{\sqrt[n]{n!}} = e$
- 3. $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$
- 4. $\lim_{x \to +\infty} \left(1 \frac{1}{x}\right)^x = \frac{1}{e}$
- 5. $\lim_{x \to +\infty} \left(1 + \frac{k}{x}\right)^{mx} = e^{mk}$
- 6. $\lim_{x\to+\infty} \left(\frac{x}{x+k}\right)^x = \frac{1}{e^k}$
- 7. $\lim_{x\to 0} \left(\frac{a^x-1}{x}\right)^x = \ln(a), \ a>0$
- 8. $\lim_{x\to 0} (1 + a(e^{-x} 1))^{-\frac{1}{x}} = e^{a}$
- 9. $\lim_{x \to 1} \frac{\ln(x)}{x-1} = 1$
- 10. $\lim_{x\to 0} \frac{\ln(x+1)}{x} = 1$

Trigonometriske:

- 1. $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$
- 2. $\lim_{x\to 0} \frac{\sin(ax)}{ax} = 1$
- 3. $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$
- 4. $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$
- $5. \lim_{x \to 0} \frac{\sin(ax)}{x} = a$
- 6. $\lim_{x \to 0} \frac{\sin(ax)}{bx} = \frac{a}{b}$
- 7. $\lim_{x\to n^{\pm}} \tan\left(\pi x + \frac{\pi}{2}\right) = \mp \infty$ For alle $n \in \mathbb{N}$

Hvis grensen ikke er her; HUSK L'HÔPITAL!!!