Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>	
25/05/2023	9 – Algorithmique	Résumé	

Informatique

9 Algorithmique

Résumé

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>	
25/05/2023	9 – Algorithmique	Résumé	

Terminaison					Prouver l'existence d'un variant de boucle évoluant de manière strictement monotone dans un espace fini Attention : dans le cas d'un «for i in L:», modifier la taille de			
Correction		for			L dans la boucle peut conduire à une non terminaison $ \begin{array}{l} \text{Notons } \mathcal{P}(k) \text{ la propriété après l'itération pour } i = k \\ \text{Corriger une boucle } \text{ or } \text{ ornsiste à réaliser 3 étapes :} \\ & \text{-} \text{Initialisation } : \mathcal{P} \text{ vraie à la première itération } : \mathcal{P}(0) \\ & \text{-} \text{Transmission : Si } \mathcal{P} \text{ vraie à l'itération } i, \ \mathcal{P} \text{ vraie à l'itération } i + 1 : \mathcal{P}(i) \Rightarrow \mathcal{P}(i+1) \\ & \text{-} \text{Sortie : A la dernière itération } n, \ \mathcal{P} \text{ doit permettre de démontrer que le résultat obtenu est le résultat attendu : } \mathcal{P}(n) \Rightarrow Résultat \\ & \text{Remarque : la première itération correspond à } i = 0 \\ \end{array} $			
		while			Notons $\mathcal{P}(i)$ la propriété après la i eme itération. Corriger une boucle « while » consiste à réaliser 3 étapes : - Initialisation : \mathcal{P} vraie avant la première itération : $\mathcal{P}(0)$ - Transmission : Si \mathcal{P} vraie avant l'itération i , \mathcal{P} vraie après: $\mathcal{P}(i) \Rightarrow \mathcal{P}(i+1)$ - Sortie : Après la dernière itération n (lorsque la condition devient fausse pour la première fois), $\mathcal{P}(n)$ doit permettre de démontrer que le résultat obtenu est le résultat attendu : $\mathcal{P}(n) \Rightarrow Résultat$ Remarque : $i=0$ correspond à l'état initial			
		Attention		n	Rédaction en 5 étapes : Algorithme – Propriété – Initialisation – Transmission – Sortie			
		Outils de vérification			<pre>assert booleen, "message si False" L = [] Typage des fonctions (indicatif): def f(x:float) ->float: try: x = L.pop() except: print("L est vide")</pre>			
Complexité en temps		0(f((n)		$f(x) = O(g(x))$ signifie $\exists N \in \mathbb{R}^+ \& A \in \mathbb{R} \ / \forall x > N, \left \frac{f(x)}{g(x)} \right < A$ e nombre d'opérations d'un algo s'écrit sous la forme $af(n) + b$ Si une complexité est indépendante de n , on dit $O(1)$ i $n = 100$ et la complexité est en $O(n)$, NE PAS écrire $O(100)$!!!			
f(n)	0	C(n)		P	reuve	f(n)	C(n)	Preuve
10	C	0(1)			0 = 10	n	$O(n^3)$	$rac{n}{n^3} \sim rac{1}{n^2} ightarrow 0$ A éviter toutefois
2n	C)(n)	$\frac{2n}{n} = 2$		$2^{n} + 3^{n}$	$O(3^n)$	$\frac{2^n + 3^n}{3^n} = \left(\frac{2}{3}\right)^n + 1 \underset{+\infty}{\sim} 1$	
$2n^2$	0	(n^2)		$\frac{2n}{n}$	$\frac{n^2}{n^2} = 2$	2^{n+1}	$O(2^n)$	$\frac{2^{n+1}}{2^n} = 2$
$2n + 3n^2$	0	$O(n^2)$ $\frac{2n+1}{n}$		$\frac{+3n}{n^2}$	$\frac{2}{1+\infty} \frac{3n^2}{n^2} = 3$	$\log n$	$O(\ln n)$	$\frac{\log n}{\ln n} = \frac{\ln n}{\ln 2} = \frac{1}{\ln 2}$

