

CENTRO DE ESTUDIOS ECONÓMICOS

Maestría en Economía 2024–2026

Microeconometrics for Evaluation

2 Experimentos

Disclaimer: I AM NOT the original intellectual author of the material presented in these notes. The content is STRONGLY based on a combination of lecture notes (from Aurora Ramirez), textbook references, and personal annotations for learning purposes. Any errors or omissions are entirely my own responsibility.

${\bf \acute{I}ndice}$

Experimentos Aleatorios Métodos	3 3
Métodos para aplicar tratamientos aleatorios	3
Experimentos Naturales	4
El problema de selección	5
Notación	5
La Asignación Aleatoria Resuelve el Problema de Selección	6
Ejemplo de experimento aleatorio grande: Tennessee Proyecto STAR Comparación de medias. Grupo tratamiento y control	7 8
Análisis de Regresión de Experimentos	8
¿Por qué incluir controles adicionales?	9
Krueger (1999)	10
Estimaciones experimentales del efecto del tamaño de clase en los resultados de exámenes	10 11
Potenciales problemas en los experimentos aleatorios: Atrición Atrición	11 12
Robustez. Resultados de la regresión imputando calificaciones Incumplimiento	12 12 13
Otros Problemas en los experimentos aleatorios Costos	14 14 15 15 15
Problemas en los experimentos aleatorios: Validez externa (efectos heterogéneos)	16
Problemas en los experimentos aleatorios: Efectos de Hawthorne y John Henry	16

Conclusiones 17

Experimentos Aleatorios

- Un experimento aleatorio controlado toma como referencia los estudios médicos: comparación entre fármaco y placebo.
- En ciencias sociales, los **experimentos aleatorios** enfrentan un reto central: la **ausencia de contrafactual**, ya que una misma persona no puede ser observada con y sin **tratamiento** al mismo tiempo.

Intuición:

- Es como probar una **receta**: necesitas un grupo que la deguste y otro que no, para saber si realmente funciona.
- El gran lío en sociales es que no puedes tener el **mismo individuo** en dos realidades distintas a la vez, como si existiera un "doble".

Métodos

- Gran avance en economía: se identifican distintas formas de insertar aleatoriedad en la implementación de programas.
- Es posible agregar **componentes aleatorios** sin impedir ni complicar el **funcionamiento normal** de las políticas existentes.
 - Este hallazgo fue el **detonante** del auge de este tipo de estudios empíricos en los últimos **años**.

Intuición:

- Es como hacer un **experimento de cocina**: puedes variar un ingrediente sin arruinar el platillo principal.
- Estos trucos prácticos explican por qué en los últimos tiempos hubo una verdadera explosión de investigaciones basadas en aleatoriedad.

Métodos para aplicar tratamientos aleatorios

Sobresuscripción

- Cuando los **recursos son escasos** o la capacidad de implementación resulta menor que la **demanda**.
- Se eligen beneficiarios al azar (lotería) dentro del conjunto de elegibles.

Asignación aleatoria cronológica o por etapas

• Útil cuando no es viable que algunos grupos o individuos se queden sin apoyo.

- Ventaja: fomenta cooperación del grupo de control y puede reducir la deserción.
- Desventaja: complicado medir efectos de largo plazo, ya que el grupo de control puede ajustar su **conducta** al esperar recibir el programa en el futuro.

Intuición:

- La sobresuscripción es como rifar boletos cuando hay más gente que asientos: pura suerte decide quién entra.
- La asignación por etapas se parece a una fila de espera: todos pasan, pero en distinto momento, lo que cambia cómo se comportan los que esperan.

Asignación aleatoria dentro de un mismo grupo

- Cuando un grupo (ej. escuela) rechaza colaborar si se excluye del programa.
- El programa se implementa en todas las escuelas, dividiendo en distintos subgrupos internos.
- Problema: posible contaminación del grupo control si los recursos se redistribuyen dentro de la escuela.

Diseños de fomento

- Sirven para medir el efecto de un programa que está disponible para todos, pero cuya adopción no es universal.
- En vez de aleatorizar la recepción del tratamiento, se asigna al azar un incentivo que motive a participar. Ejemplo: entregar materiales gratuitos para preparar el GRE.

Intuición:

- La asignación dentro de un grupo es como repartir becas solo a algunos salones dentro de la misma escuela: difícil evitar que se mezclen los efectos.
- Los diseños de **fomento** se parecen a dar un empujoncito: no obligas, pero ofreces algo extra que anima a entrar al programa.

Experimentos Naturales

- A diferencia de los experimentos controlados, cuando factores externos al investigador generan una asignación que luce aleatoria, se habla de experimentos naturales.
- Ejemplos típicos: reformas legales, fechas de inicio de políticas, variaciones naturales como el mes de nacimiento, desastres naturales, entre otros.
- La condición clave es que esas causas externas sean exógenas al efecto causal que se desea identificar.

Intuición:

- Es como si la vida armara un **experimento** por sí sola: un cambio de ley o un desastre reparte "al azar" quién se ve afectado.
- Lo esencial es que ese reparto no dependa de las decisiones de las personas, sino de algo externo que hace de "sorteo natural".

El problema de selección

- Ejemplo del **problema de selección**: ¿realmente los **hospitales** hacen que las personas estén más saludables?
- Basado en la encuesta National Health Interview Survey (NHIS) 2005.

Grupo	Tamaño Muestra	Media Estado Salud	Error Est.
Hospital	7,774	3.21	0.014
No hospital	90,049	3.93	0.003

Estado de salud medido de 1 (mala salud) a 5 (excelente salud).

Diferencia de medias: 0.72; estadístico t: 58.9

Intuición:

- El simple promedio sugiere que quienes no van al hospital reportan mejor salud, pero esto refleja un sesgo: quienes están más enfermos son justamente los que terminan en hospitales.
- Es como decir que los **mecánicos** dañan los autos porque los que están en el taller siempre se ven peor: olvidamos que ya estaban mal antes de entrar.

Notación

- El tratamiento hospitalario se define como una variable binaria: $D_i \in \{0, 1\}$.
- \blacksquare El **resultado de interés** (estado de salud) se denota por Y_i .
- Pregunta central: ¿se ve afectado Y_i por recibir atención hospitalaria?
- Cada individuo tiene dos **resultados potenciales**:

Resultado potencial =
$$\begin{cases} Y_{1i}, & \text{si } D_i = 1 \\ Y_{0i}, & \text{si } D_i = 0 \end{cases}$$

• Y_{0i} es el estado de salud de la persona si no hubiera acudido al **hospital** (sin importar lo que ocurrió en realidad).

• Y_{1i} es el estado de salud del individuo si efectivamente va al hospital.

Intuición:

- La idea es pensar en dos mundos paralelos: uno donde la persona va al hospital y otro donde no va.
- El gran reto es que en la vida real solo vemos **un mundo a la vez**, nunca ambos resultados para la misma persona.
- El efecto causal del tratamiento hospitalario se define como: $Y_{1i} Y_{0i}$.
- \blacksquare El resultado observado Y_i se puede expresar en términos de resultados potenciales:

$$Y_i = Y_{0i} + (Y_{1i} - Y_{0i})D_i$$

- Para cada persona, no es posible observar simultáneamente Y_{1i} y Y_{0i} .
- El **efecto promedio** de la hospitalización comparando promedios de salud entre hospitalizados y no hospitalizados mide lo siguiente:

$$E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

• Este puede descomponerse en:

$$\underbrace{E[Y_{1i}|D_i=1] - E[Y_{0i}|D_i=1]}_{\text{Efecto promedio de tratamiento en tratados}} + \underbrace{E[Y_{0i}|D_i=1] - E[Y_{0i}|D_i=0]}_{\text{Sesgo de selección}}$$

Intuición:

- La comparación simple de hospitalizados vs. no hospitalizados mezcla dos cosas: el **efecto** real del hospital y el sesgo de quién termina en él.
- Es como comparar autos en taller con los que siguen en la calle: los del taller lucen peores, pero no es por el mecánico, sino porque ya estaban **descompuestos**.

La Asignación Aleatoria Resuelve el Problema de Selección

- La asignación aleatoria de D_i garantiza que el tratamiento D_i sea independiente de los resultados potenciales Y_i .
- El sesgo de selección anterior era:

$$E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0]$$

- Si D_i es independiente de Y_i , entonces podemos reemplazar $E[Y_{0i}|D_i=1]$ por $E[Y_{0i}|D_i=1]$ 0].
- Por lo tanto, el término de sesgo de selección desaparece cuando hay asignación aleatoria.

Intuición:

- La aleatorización es como lanzar una moneda: asegura que los grupos sean comparables porque no depende de sus características previas.
- Así, ya no confundimos el efecto real del tratamiento con quién terminó recibiéndolo.

Ejemplo de experimento aleatorio grande: Tennessee Proyecto STAR

- Krueger (1999) reexamina mediante técnicas econométricas un experimento aleatorio sobre el impacto del tamaño de la clase en el desempeño estudiantil.
- El estudio se conoce como Tennessee Student/Teacher Achievement Ratio (STAR) y se llevó a cabo en la década de 1980.
- En total, 11,600 alumnos y sus maestros fueron asignados aleatoriamente a uno de tres grupos:
 - 1. Clases **pequeñas** (13–17 alumnos).
 - 2. Clases **regulares** (22–25 alumnos).
 - 3. Clases regulares (22–25 alumnos) con un asistente de tiempo completo para el profesor.
- Tras la asignación, el diseño establecía que los estudiantes permanecieran en el mismo tipo de clase por cuatro años.
- La aleatorización se implementó al interior de las escuelas.

- Este proyecto fue como un gran laboratorio escolar: miles de alumnos distribuidos por sorteo en clases de distinto tamaño.
- Al mantenerlos en ese esquema varios años, se pudo observar el efecto real del tamaño de grupo sobre el aprendizaje, sin confundirlo con otras causas.

Comparación de medias. Grupo tratamiento y control

Variable	Small	Regular	Regular/Aide	Joint P-Value
Free lunch ^{c}	0.47	0.48	0.50	0.09
White/Asian	0.68	0.67	0.66	0.26
Age in 1985	5.44	5.43	5.42	0.32
Attrition rate ^{d}	0.49	0.52	0.53	0.02
Class size in kindergarten	15.1	22.4	22.8	0.00
Percentile score in kindergarten	54.7	49.9	50.0	0.00

Fuente: Estudiantes que ingresaron al STAR en kindergarten. c Participación en programa de almuerzo gratuito. d Tasa de deserción.

Intuición:

- La tabla muestra que los grupos eran bastante **similares** en características básicas, lo cual valida la aleatorización.
- Las diferencias claras solo aparecen en el **tamaño de clase** y en el **rendimiento inicial**, que son justamente las variables del tratamiento.

Análisis de Regresión de Experimentos

- Con la asignación aleatoria podemos comparar directamente los resultados promedio de tratamiento y control para obtener el efecto causal.
- También es posible trabajar con los datos mediante un análisis de regresión.
- Supongamos un tratamiento constante: $Y_{1i} Y_{0i} = \rho$. Reescribiendo:

$$Y_i = Y_{0i} + (Y_{1i} - Y_{0i})D_i$$

se obtiene:

$$Y_i = \underbrace{E(Y_{0i})}_{\alpha} + \rho D_i + \underbrace{\left(Y_{0i} - E(Y_{0i})\right)}_{\eta_i}$$

- Aquí, η_i representa la parte aleatoria de Y_{0i} .
- Estimamos esta regresión para identificar el efecto causal del tratamiento.

- La regresión hace lo mismo que la **comparación de medias**, pero escrita en forma de ecuación con un intercepto, un coeficiente de tratamiento y un error.
- Es como pasar de una **regla de tres** a una fórmula: cambia la presentación, pero mide la misma idea de cuánto cambia Y por el tratamiento.

■ La expectativa condicional de la ecuación (1) con tratamiento activo o no es:

$$E[Y_i|D_i = 1] = \alpha + \rho + E[\eta_i|D_i = 1]$$

$$E[Y_i|D_i=0] = \alpha + E[\eta_i|D_i=0]$$

Así, la diferencia se expresa como:

$$E[Y_i|D_i=1] - E[Y_i|D_i=0] = \underbrace{\rho}_{\text{Tratamiento}} + \underbrace{\left(E[\eta_i|D_i=1] - E[\eta_i|D_i=0]\right)}_{\text{Sesgo de selección}}$$

• En el experimento STAR, D_i (estar en clase pequeña) se asigna aleatoriamente, por lo que el término de sesgo de selección desaparece.

Intuición:

- La fórmula muestra que la diferencia entre grupos se compone de dos partes: el efecto real y el sesgo.
- Con la aleatorización, la segunda parte se anula, dejando solo el **impacto puro** del tratamiento.

¿Por qué incluir controles adicionales?

■ En lugar de estimar la ecuación (1), se puede plantear:

$$Y_i = \alpha + \rho D_i + X_i' \gamma + \eta_i$$

- 1. Ajustar la aleatoriedad condicional. A veces la asignación aleatoria depende de ciertos observables (ej. nivel de la escuela). Incluirlos corrige esta situación.
- **2. Aumentar la precisión.** Aunque X_i no esté correlacionado con D_i , puede explicar parte de Y_i . Al añadir controles, se reduce la varianza del error y se mejora la estimación de β .
- 3. Controlar aleatoriedad imperfecta. Si el tratamiento no se asigna de forma aleatoria, omitir controles genera sesgo en β . Incluirlos permite captar esas diferencias.

- Los controles funcionan como lentes correctivos: ayudan a enfocar mejor el efecto que nos interesa.
- Además hacen que la medida sea más precisa, y en caso de que la "moneda no fuera tan justa", permiten corregir sesgos.

Krueger (1999)

• Krueger estima el siguiente modelo econométrico:

$$Y_{ics} = \beta_0 + \beta_1 SMALL_{cs} + \beta_2 Reg/A_{cs} + \beta_3 X_{ics} + \alpha_s + \epsilon_{ics}$$

- Y_{ics} : percentil de desempeño del estudiante.
- $SMALL_{cs}$: indicador si el estudiante fue asignado a una clase pequeña.
- Reg/A_{cs} : indicador si el estudiante fue asignado a una clase regular con asistente.
- X_{ics} : conjunto de **controles individuales**.
- α_s : efectos fijos por escuela, dado que la asignación aleatoria se realizó dentro de cada institución.

Intuición:

- Este modelo es básicamente una **regresión de desempeño escolar**, donde las variables clave son los tipos de clase.
- Al incluir **controles** y efectos fijos, se aíslan las diferencias que no dependen del tamaño de clase, logrando una estimación más limpia.

Estimaciones experimentales del efecto del tamaño de clase en los resultados de exámenes

Explanatory variable	(1)	(2)	(3)	(4)
Small class	4.82	5.37	5.26	5.37
	(2.19)	(1.96)	(1.91)	(1.91)
Regular/aide class	2.23	2.29	2.31	2.41
	(2.33)	(1.81)	(1.69)	(1.67)
White/Asian (1=yes)	_	6.31	5.84	5.07
	_	(2.15)	(1.98)	(1.98)
Girl (1=yes)	_	4.48	4.39	4.36
	_	(.83)	(.84)	(.84)
Free lunch (1=yes)	_	-11.63	-11.87	-11.90
	_	(1.36)	(1.34)	(1.34)
White teacher	_	_	77	77
	_	_	(.77)	(.77)
Teacher experience	_	_	.25	.26
	_	_	(.16)	(.16)
Master's degree	_	_	· —	10
	_	_	_	(.65)
School fixed effects	No	Yes	Yes	Yes
R^2	.01	.26	.31	.31

Intuición:

- El coeficiente de **clase pequeña** es positivo y significativo: estar en un grupo reducido mejora el rendimiento en los exámenes.
- Al añadir **controles** y efectos fijos, los resultados se mantienen, mostrando que el efecto es robusto y no se debe a otras características.

Estimaciones experimentales del efecto del tamaño de clase en los resultados de exámenes (First grade)

Explanatory variable	(1)	(2)	(3)	(4)
Small class	8.57	8.43	7.91	7.40
	(1.97)	(1.21)	(1.17)	(1.18)
Regular/aide class	3.44	2.22	2.09	1.88
	(2.05)	(1.00)	(.98)	(.98)
White/Asian (1=yes)	_	6.90	6.97	6.97
	_	(.69)	(.67)	(.67)
Girl (1=yes)	_	5.87	5.89	5.85
	_	(.56)	(.56)	(.56)
Free lunch (1=yes)	_	-13.87	-13.81	-13.80
	_	(.86)	(.85)	(.85)
White teacher	_	_	18	18
	_	_	(.71)	(.71)
Male teacher	_	_	53	53
	_	_	(1.61)	(1.61)
Teacher experience	_	_	.20	.20
	_	_	(.11)	(.11)
Master's degree	_	_	_	.13
	_	_	_	(.67)
School fixed effects	No	Yes	Yes	Yes
R^2	.02	.24	.30	.30

Intuición:

- En primer grado, el impacto de estar en una clase pequeña es todavía más fuerte: los puntajes suben de manera notable.
- Los **controles** (sexo, etnia, almuerzo gratuito, experiencia del maestro) no eliminan el efecto, lo que confirma que la diferencia se debe al **tamaño de clase**.

Potenciales problemas en los experimentos aleatorios: Atrición

Atrición

- Si la **fuga** (attrition) ocurre al azar y afecta de igual modo a tratamiento y control, las estimaciones permanecen **insesgadas**.
- El problema surge si la **fuga no es aleatoria**: por ejemplo, alumnos con alto desempeño de clases grandes podrían inscribirse en escuelas privadas, generando un nuevo **sesgo de selección**.
- Krueger enfrenta esta preocupación imputando los **puntajes de exámenes** (basados en pruebas anteriores) a los niños que abandonaron la muestra, y luego reestima el modelo incluyendo estos datos imputados.

Intuición:

- La fuga es como cuando jugadores abandonan un torneo: si se van al azar no pasa nada, pero si desertan solo los **mejores**, los resultados se distorsionan.
- La imputación funciona como "rellenar huecos" con una **estimación razonable** para evitar que el sesgo arruine el experimento.

Robustez. Resultados de la regresión imputando calificaciones

	Actual test d	ata	Actual and imputed test data			
\mathbf{Grade}	Coef. small class dum.	Sample size	Coef. small class dum.	Sample size		
K	5.32 (0.76)	5900	5.32 (0.76)	5900		
1	6.95 (0.74)	6632	6.30 (0.68)	8328		
2	5.79(0.76)	6282	5.64 (0.65)	9773		
3	5.58(0.79)	6339	4.49(0.63)	10919		

La fuga no aleatoria no sesga los resultados.

Intuición:

- Al incluir los puntajes imputados, los efectos de las clases pequeñas se mantienen, lo que indica que los resultados son **robustos**.
- En otras palabras, incluso si algunos alumnos **abandonan**, las conclusiones no cambian: el beneficio de clases pequeñas sigue siendo claro.

Incumplimiento

• Algunos estudiantes **cambiaron de clase** después de la asignación aleatoria. Ejemplo: transiciones entre los grados 1 y 2.

• Si los alumnos hubieran permanecido siempre en su grupo inicial, todos los elementos fuera de la diagonal serían cero.

	Small	$\mathbf{Regular}$	m Reg/aide	\mathbf{All}
First grade Small	1435	23	24	1482
Regular	152	1498	202	1852
Aide	40	115	1560	1715
All	1627	1636	1786	5049

Intuición:

- El incumplimiento aparece cuando algunos estudiantes cambian de grupo, rompiendo la pureza de la aleatorización inicial.
- Es como si en un **experimento de dieta** algunos participantes decidieran cambiar de plan en medio del estudio: complica la interpretación de los resultados.

Incumplimiento (II)

- Algunos participantes se movieron entre los grupos de tratamiento y control.
- En muchos experimentos, la participación es voluntaria, incluso si la asignación inicial fue aleatoria (aunque no fue el caso en Krueger (1999)).
- Una solución es usar la asignación inicial (clases pequeñas o regulares) como instrumento para la asignación real.
- Krueger presenta resultados de forma reducida donde la asignación inicial funciona como variable explicativa.
- En preescolar, los resultados de MCO y de variables instrumentales (reduced form) son semejantes, pues los estudiantes permanecieron en su clase original al menos un año.
- Desde primer grado en adelante, los estimadores MCO (columnas 1-4) y la forma reducida (columnas 5–8) comienzan a diferir.

- El incumplimiento es como cuando los jugadores cambian de equipo después de hacer el sorteo: ya no puedes confiar solo en el resultado observado.
- Usar la asignación inicial como instrumento es como registrar quién iba a estar en cada equipo desde el inicio: eso ayuda a identificar el efecto real.

	OLS: actual class size			Reduced form: initial class size				
Explanatory variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Small class	5.93	6.33	5.83	5.79	5.31	5.52	5.27	5.26
	(1.97)	(1.29)	(1.23)	(1.17)	(1.10)	(1.10)	(1.10)	(1.10)
Regular/aide class	1.97	1.88	1.64	1.49	1.40	1.61	1.37	1.36
	(2.05)	(1.10)	(1.07)	(1.06)	(.81)	(.81)	(.81)	(.81)
White/Asian (1=yes)	_	6.35	6.38	6.37	_	6.29	6.32	6.31
	_	(.63)	(.63)	(.63)	_	(.63)	(.63)	(.63)
Girl (1=yes)	_	3.63	3.63	3.60	_	3.67	3.67	3.67
	_	(.60)	(.60)	(.60)	_	(.60)	(.60)	(.60)
Free lunch (1=yes)	_	-13.61	-13.78	-13.75	_	-13.75	-13.75	-13.73
	_	(.72)	(.72)	(.72)	_	(.73)	(.73)	(.73)
White teacher	_	_	75	74	_	_	73	73
	_	_	(.72)	(.72)	_	_	(.73)	(.73)
Male teacher	_	_	.28	.28	_	_	.27	.27
	_	_	(1.45)	(1.45)	_	_	(1.47)	(1.47)
Teacher experience	_	_	_	08	_	_	_	08
	_	_	_	(.42)	_	_	_	(.42)
Master's degree	_	_	_	1.03	_	_	_	1.06
	_	_	_	(1.06)	_	_	_	(1.06)
School fixed effects	No	Yes	Yes	Yes	No	Yes	Yes	Yes
R^2	.01	.22	.28	.28	.01	.21	.28	.28

Intuición:

- La comparación entre OLS y forma reducida muestra que los efectos de clases pequeñas siguen siendo positivos, pero ligeramente menores al usar la asignación inicial como instrumento.
- Esto refleja que el incumplimiento atenúa los efectos medidos, y que el uso de IV ayuda a recuperar una estimación más confiable del impacto real.

Otros Problemas en los experimentos aleatorios

Costos

- **■** 1) Costos
 - Costos financieros: los experimentos pueden ser muy caros y difíciles de aplicar correctamente en economía.
 - Problemas éticos: no siempre es posible realizar todos los experimentos deseados, ya que se podrían modificar variables sociales y económicas de forma sustancial, o bien sería injusto negar un tratamiento valioso a un grupo de control.

Microeconometrics for Evaluation

Validez Interna

- 2) Amenazas a la validez interna (las inferencias estadísticas sobre los efectos causales son válidas solo para la población estudiada).
 - Incumplimiento (non-compliance).
 - Fuga (attrition).

Validez Externa

3) Amenazas a la validez externa (la posibilidad de generalizar los resultados a otras poblaciones o escenarios distintos al estudiado).

Intuición:

- Hacer un experimento en economía es como organizar un **gran ensayo clínico**: caro, complicado y a veces éticamente cuestionable.
- Además, incluso si sale perfecto, los resultados pueden servir solo para ese grupo específico y no necesariamente para todo el mundo.

Duración Limitada

■ 4) Duración limitada. Los experimentos suelen ser de carácter temporal. Las personas pueden reaccionar de manera distinta ante un programa corto que frente a uno permanente.

Efectos heterogéneos

• 5) Efectos heterogéneos. A menudo se realizan en un área geográfica específica, lo que dificulta extrapolar los resultados del experimento a la población total.

- Es como probar un **nuevo medicamento** solo durante unos meses: el efecto puede ser distinto si se usa de por vida.
- También es como evaluar un programa en un **pueblo pequeño** y asumir que funcionará igual en todo un país: el contexto puede cambiar mucho.

Problemas en los experimentos aleatorios: Validez externa (efectos heterogéneos)

- Puede presentarse cuando los efectos del tratamiento son heterogéneos. La muestra experimental puede no representar perfectamente a la población de interés debido a la aleatorización.
- Los participantes en el experimento pueden mostrar **efectos diferentes** frente al promedio poblacional.

Figura 1: Distribución de efectos del tratamiento en la población.

 $\rho_i = Y_{1i} - Y_{0i}$: efecto del tratamiento para el individuo i.

 ρ^* : efecto promedio del tratamiento.

 ρ^+ : umbral a partir del cual las personas participan en el experimento.

 ρ^{TT} : efecto medido en los tratados dentro del experimento.

 ρ^{TU} : efecto en los no tratados (no observable porque no participan).

Intuición:

- Es como probar un programa con quienes más interesados están: el efecto en ellos puede ser mayor que en la población general.
- Así, los resultados de la muestra pueden **sobreestimar** o **subestimar** lo que ocurriría si el programa se aplicara a todos.

Problemas en los experimentos aleatorios: Efectos de Hawthorne y John Henry

■ Tratamiento y control pueden modificar su comportamiento al saber que son observados.

- Ejemplo: experimento STAR en Krueger (1999).
 - Efecto Hawthorne: los maestros de clases pequeñas pueden ser más efectivos solo porque participan en un **experimento**, y no necesariamente por el tamaño reducido de la clase.
 - Efecto John Henry: los maestros de clases regulares, al sentirse en desventaja, pueden realizar un esfuerzo extra para compensar, generando un sesgo en la comparación.

Intuición:

- El efecto Hawthorne es como cuando alguien trabaja más duro solo porque sabe que lo están **mirando**.
- El efecto John Henry es como el "espíritu de competencia": quienes reciben menos recursos hacen un **esfuerzo mayor** para no quedarse atrás.
- 3) Efectos de Hawthorne y John Henry (continuación)
 - Krueger (1999) muestra que en el experimento STAR no aparecen estos efectos. El impacto del tamaño de clase en el grupo de control es similar al de los grupos tratados.
- 4) Efectos de equilibrio general
 - Los experimentos a pequeña escala no generan efectos de equilibrio general.
 - Estos efectos pueden ser **cruciales** cuando el programa se aplica a toda la población.

Intuición:

- En STAR, la competencia entre maestros no alteró los resultados: el efecto vino realmente del tamaño de clase.
- Pero en el mundo real, aplicar un programa a gran escala puede cambiar precios, incentivos o comportamientos, generando nuevos efectos que un experimento chico no detecta.

Conclusiones

- Un artículo empírico no debe limitarse a contar una historia interesante: tiene que ser convincente desde un punto de vista lógico.
 - Ejemplo: demostrar que asistir a clases pequeñas eleva el desempeño en pruebas estandarizadas.
- También debe ser sólido desde un punto de vista **técnico**, garantizando **validez interna**.
- La norma en economía aplicada es no contar con datos perfectos.
- Por ello, resulta fundamental reconocer los problemas existentes y enfrentarlos de la mejor manera posible.

Intuición:

• Un buen paper empírico es como una historia bien contada: debe ser clara y lógica, pero también tener fundamentos técnicos que la sostengan.

• Como nunca habrá datos "limpios", lo clave es mostrar las limitaciones y explicar qué hiciste para dar la mejor respuesta posible.