ASSIGNMENT-06 MAB-103

23116073

PARTH

1>	21	0.62	0.68	0.70		0.75
	f(x)	0.660 4918	0.7336304	0.788537	07965858	0.8223167

Neuton's divided. $y_0 + (x_-n_0) \Delta y_0 + (x_-n_0)(x_-n_1) \Delta^2 y_0 + (x_-n_0)(x_-n_1)(x_-n_2) \Delta^3 y_0 + \dots$

2	f(n)	47	∆2y	△34	Δ ⁴ y .
0.62 0.68 0.70 0.73	0.6604918 0.7386304 0.758887 0.7968858	1. 2189766 1. 247668 1. 2667 266 1. 2868 48	0.38605	0.216228	0.080984

= 10.7838403

(0.1)(0.04)(0.02)(-0.01)(0.080984)

2> 2/	f(x)	ФУ	△ ² y	△ ³ y	<u>A</u> '9
1.5	0.3639 0.3258 0.2612 0.2095 0.1876	-0.381 -0.323 -0.2585 -0.219	0.1933	-0.0641 -0.05918	0.0082

$$9(1.2S) = 0.3639 + (0.2S)(-2.0.381) + (0.2S)(0.1S)(0.1933) + (0.2S)(0.1S)(-0.0641) +$$

$$3.7 \times | f(x) | \Delta y | \Delta^{2}y | \Delta^{3}y$$

$$300 \quad 2.4771 \quad 0.00145 \quad 0.00001$$

$$304 \quad 2.4829 \quad 0.0014 \quad 0.000001$$

$$305 \quad 2.4843 \quad 0.0014 \quad 0$$

$$\Xi f(310) = 2.4771 + (10)(0.00145) + (10)(6)(0.00000) + (10)(6)(5)(0.0000000)$$

$$= 2.498028$$

4.)
$$\chi$$
 $f(\chi)$ Δy $\Delta^2 y$ $\Delta^3 y$ $\Delta^4 y$

1.1 2.0091
1.2 2.0333 0.0242 0.0117 - 0.0028
1.3 2.0692 0.0359 0.0092
1.4 2.1143 0.0451 0.0073 - 0.0019
1.5 2.1667 0.0524

$$\frac{dy}{d\pi} = \frac{1}{h} \left[\Delta y_0 + \frac{(2p-1)}{2!} \Delta y_0 + \frac{(3p^2 - 6p + 2)}{3!} \Delta^3 y_0 + \frac{4p^3 - 18p^2}{+2np - 6} \Delta y_0 \right]$$

$$\frac{dy}{dn} = \frac{1}{h} \left[2y_0 + \frac{2y_0}{3} - \frac{4y_0}{4} \right]$$

$$f'(1.1) = 0.173666667 \times 0.1737$$

$$\frac{d^{3}y}{dn^{2}} = \frac{1}{h^{2}} \left[\frac{2}{2!} \Delta^{3}y_{0} + \frac{6p-6}{3!} \Delta^{3}y_{0} + \frac{12p^{2} - 36p + 22}{4!} \Delta^{4}y_{0} \right]$$

$$\frac{d^{3}y}{dn^{2}} = \frac{1}{h^{2}} \left[\Delta^{2}y_{0} - \Delta^{3}y_{0} + \frac{11}{12} \Delta^{4}y_{0} \right]
+ \frac{1}{(0.1)^{2}} \left[0.0117 - (-0.0025) + \frac{11}{12} (0.0006) \right]
= 1.4750$$

$$\frac{x}{0} \frac{f(x)}{0.5708} \frac{\Delta y}{0.0030} \frac{\Delta^{2}y}{0.0030} \frac{\Delta^{4}y}{0.0030}$$

$$5.$$
 \times $f(x)$ Δy Δy

a)
$$x = 0$$

$$f'(0) = \frac{1}{h} \left[\Delta y_0 - \frac{\Delta y_0}{2} + \frac{\Delta^3 y_0}{3} \right] = \frac{1}{s} \left[0.0003 - \frac{(0.0060)^4}{2} + \frac{(0.0003)}{3} \right] = 0.00002$$

$$f''(0) = \frac{1}{h^2} \left[\Delta^2 y_0 + \Delta^3 y_0 \right]$$

$$= \frac{1}{2s} \left[0.0060 - 0.0003 \right] = \left[0.00023 \right]$$

b)
$$\chi = 3 \implies \rho = 0 \quad 3 = 0 = 0.6$$

$$f'(3) = \frac{1}{h} \left[\Delta y_0 + \frac{(2p-1)}{2!} \Delta y_0 + \frac{(3p^2 - 6p + 2)}{3!} \Delta^3 y_0 \right]$$

$$= \frac{1}{s} \left[(0.0030) + \left(\frac{1.2-1}{2!} \right) (0.0060) + \left(\frac{3(0.6)^2 - 6(0.6) + 2}{3!} \right) (0.0003) \right]$$

$$= \frac{0.0002352}{0.0007148}$$

$$f''(3) = \frac{1}{h^2} \left[\frac{2}{2!} \Delta^2 y_0 + \frac{6p - 6}{3!} \Delta^2 y_0 \right]$$

$$= \frac{1}{25} \left[0.0060 + \left(\frac{6(0.6 - 1)}{3!} \right) (0.0003) \right]$$

$$= 0.0002382 \times \left[0.0002 \right]$$

$$f'(18) = \frac{1}{h} \left[\nabla y_n + \left(\frac{2p+1}{2} \right) \nabla^2 y_n + \left(\frac{3p^2 + 6p + 2}{3!} \right) \nabla^2 y_n \right]$$

$$P = \frac{18 - 20}{s} = \frac{-0.4}{s}$$

$$f'(18) = \frac{1}{5} \left[0.0219 + \left(2 \frac{(-0.4)+1}{2} \right) (0.0066) + \frac{0.0003}{75} \right]$$

$$f''(18) = \frac{1}{h^2} \left[\nabla^2 y_n + \frac{1}{12} \nabla^2 y_n$$

$$= \frac{1}{25} \left[(0.0066) + \left(\frac{6(-0.4+1)}{31} \right) (0.0003) \right]$$

$$f'(ao) = \frac{1}{n} \left[\nabla y_n + \Delta \frac{y_n}{2} + \nabla \frac{y_n}{3} \right]$$

$$= \frac{1}{5} \left[0.0219 + 0.0066 + 0.0003 \right] = \left[0.00506 \right]$$

$$f''(20) = \frac{1}{h^2} \left[\nabla^2 y_n + \frac{6}{3!} \nabla^3 y_n \right] = \frac{1}{25} \left[0.0066 + \frac{9}{6} (0.0003) \right]$$

6.)
$$\times$$
 $f(x)$ \times $f(x)$ $f(x)$ \times $f(x)$ $f(x)$ \times $f(x)$ \times $f(x)$ \times $f(x)$ \times $f(x)$ \times $f(x)$ \times $f(x)$ \times

 $f''(0.82) = \frac{1}{h^2} \left[\Delta^2 y_{-1} + \frac{p}{2} \left(\Delta^3 y_{-1} + \Delta^3 y_{-2} \right) + \frac{(12p^2 - 2)}{4!} \Delta^4 y_{-2} \right]$ $= \frac{1}{(0.2)^2} \left[0.04758 + \frac{(0.1)}{2} \left(0.0061 + 0.00833 \right) + \frac{12(0.1)^2 - 2}{4!} \left(0.00033 \right) \right]$

$$\frac{dy}{dx} = \frac{1}{h} \left[-\frac{y_{n}}{2} + \left(\frac{2p+1}{2} \right) + \left(\frac{3p^{2} + 6p + 2}{3} \right) + \left(\frac{3p^{2} + 6p + 2}{3} \right) + \left(\frac{4p^{3} + 18p^{2} + 22p + 6}{41}$$

$$0 = \frac{1}{(0.1)} \left[(0.001) + \left(\frac{2p+1}{2} \right) (-0.005) + 0 + \left(\frac{4p^3 + 18p^2 + 2xp + 6}{4p^3 + 18p^2 + 2xp + 6} \right) (0.0002) \right]$$

$$0 = (0.01) + \left(\frac{2p+1}{2} \right) (-0.05) + \left(\frac{4p^3 + 18p^2 + 2xp + 6}{4p^3 + 18p^2 + 2xp + 6} \right) (0.0002)$$
So reglected.

$$\frac{18}{s} = \frac{2p+1}{2}$$

$$\frac{p=-4.5}{s} = \frac{2p}{s} = \frac{2p+1}{s}$$

$$(p=-0.3)$$

$$\chi = \chi_n + ph$$

$$y = f(1.57) = y_0 + P \Delta y_0 + P(P-1) \Delta y_0$$

$$= 0.4660 + (-0.3)(0.0158) + (-0.3)(-1.3)(-0.0048)$$

$$= 0.500025$$

8.>	a. 1					
	X	+(x)	ZY	024	D39	049
	0.2	2.10022 1.98730 1.90940 1.86672 1.88937 1.88737	-0.11292 -0.0779 -0.04268 -0.00728 0.06326	0.03502 0.03522 0.03533 0.03536	0.00026	0.00009
		0 s y	△6g			
	0	00018	-0.00016			
dy		In [Dyo+	(2P-1) A	yo + (3p	$\frac{(2-6\rho+2)}{3!}$	y. J
0		(0.2) (-0	· 11292) + (2)	2-1) (0.035	02)) + (3P -6P	(0.0020)
	=>	P = 00	8834180da	3.5485	300 -1.292	11 5 504
Xx		$x = xn + p$ $y_n + p$	ph = 1.2	+ (3.54850 + (3.54850 +1) \frac{7}{2}n +	(0.2) = 0 $(0.2) = 0$ $(0.1)(0.2) = 0$ $(0.1)(0.2) = 0$	8717 V3Jn

= 1.88737