FinalRC_Meng Zi :)

Date: 2024/12/13

AVL Tree

First you need to know that all of the operations (insert, remove, search) on AVL tree are O(logn)

Balance condition

- Empty tree
- or both its left and right subtrees are AVL balanced && the height diff between them at most 1

Height limitation

$$log_2(n+1) - 1 \le h \le 1.44 log_2(n+2)$$

Please try to prove it by yourself

Re-balance

When to re-balance?

- You can check the def of **balance factor**. Also, if the height diff between two subtrees is greater than 1, you need to re-balance it.
- every time you do insertion or removal, you need to check whether you need to do a rebalance

Rotation

Right Rotation:


```
void rightRotation(Nood *& P){
   Node* A = P->left;
   Node* A_right = P->left->right;
   A->right = P;
   P->left = A_right;
   renewHeight(P);
   renewHeight(A);
}
//But...
```

RR Rotation:

Final height is the same as the height before insertion.

LR Rotation:

Final height is the same as the height before insertion.

How to memorize them?

Implementation

Preparation

```
struct{
   Item item;
   int height;
   node *left;
   node *right;
}
```

A quick question: when we do insertion or removal, how to renew the height and balance factor?

```
int getHeight(node *n){
    if(!n) return -1;
    return n->height;
}
void RenewHeight(node *n){
    if(!n) return;
    n->height = max(getHeight(n->left),getHeight(n->right)) + 1;
}
int BalFactor(node*n){
    if(!n) return 0;
    return (getHeight(n->left) - getHeight(n->right));
void Balance(node *&n) {
    if(BalFactor(n) > 1) {
        if(BalFactor(n->left) > 0) LLRotation(n);
        else LRRotation(n);
    }
```

```
else if(BalFactor(n) < -1) {
    if(BalFactor(n->right) < 0) RRRotation(n);
    else RLRotation(n);
}</pre>
```

```
void insert(node *&root, Item item){
   if(root == NULL){
      root = new node(item);
      return;
   }
   if(item.key < root->item.key) insert(root->left, item);
   else insert(root->right, item);

//why we don't need to renewheight here?
Balance(root);
RenewHeight(root);
}
```

Remove is similar, try it as a practice by yourselves!

Minimum Spanning Tree

Definition Review

Tree: Connected acyclic undirected graph with num(E) = num(V) - 1

Spanning Tree: Subgraph of a graph that is a tree and contains all vertices of the graph.

Minimum Spanning Tree: Spanning tree with the smallest sum of edge weights.

Prim's Algorithm (greedy)

Basic idea:

- 1. Divide **V** into **T** and **T'**
- 2. Arbitrarily pick one node into T
- 3. while **T'** is not empty, find the shortest link between **T** and **T'** and move the node on **T'** side to **T**

We store a value D(v) for every v in T' to represent the min distance between v and all the vertices in T. Every time, we choose min(D(v)) to move it from T' to T.

After we move v into T, for every neighbor vertices (linked with an edge) u, we compare D(u) with w(v,u) and choose the smaller one to be the new D(u).

For those who need the code:

```
// V: number of vertices, adj: adjacency list
// weight(u, v): weight of edge (u, v)
vector<int> prim() {
   // D: shortest distance to the MST
   vector<int> D(V, INT_MAX);
    // in_tree: whether in the MST
   vector<bool> in_tree(V, false);
   D[0] = 0;
    vector<int> parent(V, -1);
    for (int i = 0; i < V; i++) {
        int v = -1;
        // Find the smallest D[v] for v not in the tree
        for (int u = 0; u < V; u++) {
            if (!in_tree[u] && (v == -1 || D[u] < D[v])) {
                v = u;
            }
        }
        if (v == -1) {
            // MST does not exist
            return vector<int>();
        in_tree[v] = true;
        for (int u : adj[v]) {
            int w = weight(v, u);
            // Update D[u] for all u not in the tree
            if (!in_tree[u] && w < D[u]) {
                D[u] = w;
                parent[u] = v;
            }
        }
    }
   return parent;
}
```

Time complexity analysis:

- linear scan (T'): $O(V^2 + E)$
- binary heap (T'): O(VlogV + ElogE)
- Fibonacci heap (T'): O(VlogV + E)

Shortest Path

To find the shortest path between two vertices in a graph.

Remember that we need to solve a single source all destinations problem

Unweighted graph:

Use BFS + store the predecessor, for example:

Weighted Graph:

We need to first make sure all the weights less than zero. (why?)

Then we use Dijkstra's Algorithm:

Denote

- distance between the vertice v and the starting vertice as D(v)
- the predecessor as P(v)
- 1. Initially, D(s)=0, D(v)=inf, P(v)=NULL for all $v\neq s$
- 2. Store all the nodes in a set ${\cal R}$
- 3. while ${\it R}$ is not empty
 - 1. Find the v_m that make $D(v_m)$ the min of D(v), remove v_m from R
 - 2. The shortest path for v_m is $D(v_m)$, store it.
 - 3. for all the neighbor nodes u of v_m in R. If $D(v_m)+w(v_m,u)< D(u)$, we renew D(u) and record $P(u)=v_m$

Strongly encourage you to go through the whole process with an example shown in the slides.

For those who need the code:

```
// V: number of vertices, adj: adjacency list
vector<int> bfs(int start) {
   // visited is substituted by parent to record the path
   vector<int> parent(V, -1);
    // level: distance from start
   vector<int> level(V, -1);
   queue<int> q;
   q.push(start);
    level[start] = 0;
   while (!q.empty()) {
       int v = q.front();
       q.pop();
       for (int u : adj[v]) {
            if (parent[u] == -1) { // Not visited
                q.push(u);
                level[u] = level[v] + 1;
                parent[u] = v;
            }
        }
    }
   return parent; // or level, depending on the requirement
}
```

Ending

Some exam tips?

Thank all of you for finishing the course ECE2810J!

Actually, I have thought about a lot of conclusion remarks and tried to find some fancy sentences to work as the ending. Finally, I decide to say something in plain words "I wish all of you all the best in the future, achieve all your goals and realize all your dreams."