

planetmath.org

Math for the people, by the people.

torsion element

Canonical name TorsionElement
Date of creation 2013-03-22 13:54:41
Last modified on 2013-03-22 13:54:41
Owner mathcam (2727)
Last modified by mathcam (2727)

Numerical id 7

Author mathcam (2727)

Entry type Definition Classification msc 13C12

Defines torsion submodule Defines torsion module

Let R be a commutative ring, and M an R-module. We call an element $m \in M$ a torsion element if there exists a non-zero-divisor $\alpha \in R$ such that $\alpha \cdot m = 0$. The set is denoted by tor(M).

tor(M) is not empty since $0 \in tor(M)$. Let $m, n \in tor(M)$, so there exist $\alpha, \beta \neq 0 \in R$ such that $0 = \alpha \cdot m = \beta \cdot n$. Since $\alpha\beta \cdot (m-n) = \beta \cdot \alpha \cdot m - \alpha \cdot \beta \cdot n = 0, \alpha\beta \neq 0$, this implies that $m-n \in tor(M)$. So tor(M) is a subgroup of M. Clearly $\tau \cdot m \in tor(M)$ for any non-zero $\tau \in R$. This shows that tor(M) is a submodule of M, the **torsion submodule** of M. In particular, a module that equals its own torsion submodule is said to be a $torsion \ module$.