

MIAT-STM32嵌入式作業系統uC/OS II移植

Declared Version

Training Only			
Declare			
Document Version	1.00		
Release Date	2009.06.20		
Document Title	MIAT-STM32嵌入式作業系統uCOS II移植		
Exercise Time	■ Lecture 25 minutes ■ Operating 25 minutes		
Platform	■ MIAT_STM32 ■ MIAT_IOB		
Peripheral	LCD, LED		
Author	■ WU-YANG Technology Co., Ltd.		

實驗目的

- □ 利用MicroC/OS II多工執行的能力執行多個 應用程式
- □ 了解如何在MicroC/OS II中加入工作

實驗原理

- □ MicroC/OS II是以多重工作處理為核心的即時多工作業系統
- □ 具備可移植性、唯讀儲存性、可規劃性及程 式碼小等特點
- □ 官方網站(http://www.micrium.com/)提供多種硬體平台上的移植範例程式

MicroC/OS-II 架構

- □ MicroC/OS-II在架構上主要包含兩個部分的程式碼:
 - 與處理器相依的程式碼(processor specific code)
 - □ 提供內容交換(context switch)時工作狀態的儲存和回復,以及設定系統時脈(clock tick)相關的機制
 - 與處理器無關的程式碼(processor independent code)等部分
 - □ 提供其他的作業系統服務,包括:排班 (scheduling)、工作之間的通訊(inter-task communication)實作等等

MicroC/OS-II 架構圖

Application Software

µ/OS-II (Processor Independent Code)

uCOS_II.C

uCOS_II.H

OS_CORE.C OS_MBOX.C OS_MEM.C OS_Q.C OS_SEM.C OS_TASK.C

OS TIME.C

μ/OS-II Configuration (Application Specific)

> OS_CFG.H INCLUDES.H

μ/OS-II Port

(Processor Specific Code)

OS_CPU.H OS_CPU_A.A3M OS_CPU_C.C

Software

Hardware

CPU

Timer

硬體電路配置

子版腳位名稱	子版腳位編號	母版腳位名稱	母版腳位編號
VCC5V	CON2.11	VCC5V	EXCON1.36
GND	CON2.12	GND	EXCON1.35
LCD_D0	CON2.16	PC0	EXCON1.24
LCD_D1	CON2.15	PC1	EXCON1.25
LCD_D2	CON2.14	PC2	EXCON1.26
LCD_D3	CON2.13	PC3	EXCON1.27
LCD_D4	CON2.8	PC4	EXCON2.8
LCD_D5	CON2.7	PC5	EXCON2.9
LCD_D6	CON2.6	PC6	EXCON3.24
LCD_D7	CON2.5	PC7	EXCON3.25
LCD_EN	CON2.15	PC8	EXCON3.26
LCD_RS	CON2.17	PC9	EXCON3.27
LCD_R/W	CON2.18	PC10	EXCON4.3
LED_G1	CON2.23	PF6	EXCON1.18
LED_G2	CON2.24	PF7	EXCON1.19
LED_G3	CON2.21	PF8	EXCON1.20
LED_G4	CON2.22	PF9	EXCON1.21
		•	

硬體電路配置

實驗說明

□程式架構

- 🛅 MIAT-STM32-OS-Probe
 - a BSP
 - na CPU-LIB
- 🗉 🦳 OS-Probject
- 🖪 🦳 uC-CPU
- 🗉 🧎 uC-LCD
- 🖪 🧀 uC-LIB
- 🖪 🦳 uCOS-II
- 🖪 🦳 uC-Probe

Application

APP.C APP_VECT.C APP_CFG.H INCLUDES.H OS_CFG.H

OS_CORE.C OS_FLAG.C OS_MBOX.C

OS_FLAG.C
OS_MBOX.C
OS_MEM.C
OS_MUTEX.C
OS_Q.C
OS_SEM.C
OS_TASK.C
OS_TIME.C
OS_TMR.C
uCOS_II.H

µC/OS-II

OS_CPU_C.C OS_CPU_A.ASM OS_CPU.H OS_DBG.C

BSP

BSP.C BSP.H

STM32F103ZC

/ Target Board

加入工作

```
int main (void)
    CPU INTO8U os err;
    BSP IntDisAll();
                                                                /* Disable all ints until we are ready to accept them.
    OSInit();
                                                                /* Initialize "uC/OS-II, The Real-Time Kernel".
                                                                                                                         */
    os err = OSTaskCreateExt((void (*)(void *)) App TaskStart, /* Create the start task.
                                                                                                                         */
                            (void
                                           * ) 0,
                             (OS STK
                                            * ) &App TaskStartStk[APP TASK START STK SIZE - 1],
                             (INT8U
                                            ) APP TASK START PRIO,
                                             ) APP TASK START PRIO,
                             (INT16U
                             (OS STK
                                            * ) & App TaskStartStk[0],
                                             ) APP TASK START STK SIZE,
                             (INT32U
                             (void
                             (INT16U
                                             ) (OS_TASK_OPT_STK_CLR | OS_TASK_OPT_STK_CHK));
#if (OS TASK NAME SIZE >= 11)
    OSTaskNameSet(APP_TASK_START_PRIO, (CPU_INTO8U *)"Start Task", &os_err);
#endif
    OSStart();
                                                                /* Start multitasking (i.e. give control to uC/OS-II). */
    return (0);
```


建立工作

□ OSTaskCreateExt(void(*task)(void *pd), *pdata, void OS_STK *ptos, INT8U prio, INT16U id, OS STK *pbos, INT32U stk_size, void *pext, INT16U *opt

□ OSTaskCreateExt()用來建立一個新的工作,建立工作可以在多工環境開始之前或正在執行的工作中建立,但不能從中斷服務常式裡建立。

- □ task 指向工作程式碼的指標
- □ pdata 一個指標,指向一個類型可以選擇的資料區,該資料區的資料用在建立工作時與工作有關的參數,pdata用在向建立的工作傳遞參數
- □ ptos 指向工作堆疊頂端的指標

OS_STK_GROWTH (OS_CPU.H)設為1時,堆疊由高位址向低位址遞減,ptos應指向工作堆疊的最高位址;

OS_STK_GROWTH設為O時,堆疊由高位址向低位址 遞增,ptos應指向工作堆疊的最低位址

- □ prio 工作優先權,數字越小權限越高
- □ id 工作標誌,無實際用途,可把id與prio設 為相同
- □ pbos 指向工作堆疊底端的指標

OS_STK_GROWTH設為1時,ptos應指向工作堆疊的 最低位址;

OS_STK_GROWTH設為O時, ptos應指向工作堆疊的最高位址

- □ stk_size 指定工作堆疊的大小
- □ pext 一個定義使用者資料結構的指標
- □ opt 與工作相關的操作號誌
 - OS_TASK_OPT_NONE
 - OS_TASK_OPT_STK_CHK 堆疊檢查
 - OS_TASK_OPT_STK_CLR 清空堆疊
 - OS_TASK_OPT_SAVE_FP 儲存浮點數暫存器的值(處理器需有浮點數硬體)

工作內容

- 工作函式中必須呼叫 下列其中一個函式
 - OSMboxPend()
 - OSFlagPend()
 - OSMutexPend()
 - OSQPend()
 - OSSemPend()
 - OSTimeDly()
 - OSTimeDlyHMSM()
 - OSTaskSuspend()
 - OSTaskDel()

```
static void App TaskStart (void *p arg)
    CPU INT32U i;
   CPU INT32U j;
    (void) p arg;
   BSP Init();
   OS CPU SysTickInit();
    App TaskCreate();
   while (DEF TRUE) {
        for (j = 0; j < 4; j++) {
            for (i = 1; i \le 4; i++) {
                BSP LED On(i);
                OSTimeDlyHMSM(0, 0, 0, 100);
                BSP LED Off(i);
                OSTimeDlyHMSM(0, 0, 0, 50);
            for (i = 4; i >= 1; i--) {
                BSP LED On(i);
                OSTimeDlyHMSM(0, 0, 0, 50);
                BSP_LED_Off(i);
                OSTimeDlyHMSM(0, 0, 0, 100);
        for (i = 0; i < 4; i++) {
            BSP LED On(0);
            OSTimeDlyHMSM(0, 0, 0, 200);
            BSP LED Off(0);
            OSTimeDlyHMSM(0, 0, 0, 200);
                                        98
```


實驗目標

- □ 在MicroC/OS II移植程式中加入LCD與LED 兩個工作
 - MicroC/OS II的STM32F103ZC版本可在 http://www.micrium.com/st/STM32.html下載

□ 1.在bsp.h中加入hw_config.h與lcd_func.h

```
#include <cpu.h>
#include <lib def.h>
#include <lib mem.h>
#include <lib str.h>
#include <stm32f10x conf.h>
#include <stm32f10x lib.h>
#include
         <app cfg.h>
#include
         <ldd.h>
#include <bsp.h>
#include <hw config.h>
#include < lcd func.h>
#include <ucos ii.h>
#if (APP OS PROBE EN == DEF ENABLED)
#include <os probe.h>
#endif
```


□ 2.在app.c中撰寫工作要執行的內容

```
static void App_TaskTxtLcd(void *p arg)
                                                       static void App NewTask (void *p arg)
                                                           CPU INT32U i;
   CPU INT32U i;
                                                           CPU INT32U j;
   GPIO Configuration();
   init lcd();
                                                           (void) p arg;
    (void) p arg;
                                                           BSP Init();
                                                           OS CPU SysTickInit();
  /* 開始顯示資料 */
                                                           while (DEF TRUE) {
  while (DEF TRUE)
                                                               for (j = 0; j < 4; j++) {
                                                                   for (i = 1; i \le 4; i++) {
     for (i=0; i<3; i++)
                                                                       BSP LED On(i);
                                                                       OSTimeDlyHMSM(0, 0, 0, 100);
        print(i,"MIAT STM32");/* 顯示訊息1 */
        print(i+1,"HELLO world.....");/* 顯示訊息2 */
        prline1(15, '1');/* 第1行顯示字元 */
                                                                   for (i = 1; i \le 4; i++) {
        prline2(15, '2');/* 第2行顯示字元 */
                                                                       BSP LED Off(i);
        OSTimeDlyHMSM(0, 0, 0, 500);
                                                                       OSTimeDlyHMSM(0, 0, 0, 100);
```


□ 3.在app.c宣告工作函式與變數

```
LOCAL FUNCTION PROTOTYPES
static void App TaskCreate
                                  (void);
static void App EventCreate
                                  (void);
static void App TaskStart
                                  (void
                                               *p arg);
static void App TaskUserIF
                                  (void
                                               *p arg);
static void App TaskKbd
                                  (void
                                               *p arg);
static void App NewTask
                                  (void
                                               *p arg);
static void App_TaskTxtLcd
                                  (void
                                               *p arg);
static void App DispScr SignOn
                                  (void);
static void App DispScr TaskNames(void);
1*
*******************
            LOCAL GLOBAL VARIABLES
************************
static OS STK
                  App TaskStartStk[APP TASK START STK SIZE];
                  App TaskUserIFStk[APP TASK USER IF STK SIZE];
static OS STK
                  App TaskKbdStk[APP TASK KBD STK SIZE];
static OS STK
      OS STK
                  App NewTaskStk[APP TASK KBD STK SIZE];
static
                  App TaskTxtLcdStk[APP TASK USER IF STK SIZE];
static OS STK
```


□ 4.在app_cfg.h中 設定工作優先權 與工作堆疊大小

/* ******	*******	*****	****
*	TASK PRIORITIES		
*/	********	*****	****
#define	APP_TASK_START_PRIO		3
#define	APP Task TxtLcd PRIO		9
#define	APP New Task PRIO		10
#define #define	APP_TASK_KBD_PRIO APP_TASK_USER_IF_PRIO		4 12
#define	OS PROBE TASK PRIO	(OS LOWEST PRIO	- 3)
#define	OS_TASK_TMR_PRIO	(OS_LOWEST_PRIO	- 2)
* *	**************************************	of OS_STK entrie	s)
*/			
#define	APP_TASK_START_STK_SIZE		512
#define	APP New Task STK SIZE		128
#define	APP Task TxtLcd STK SIZE		256
#define	APP_TASK_KBD_STK_SIZE		128
#define	APP_TASK_USER_IF_STK_SIZE		256
#define	OS PROBE TASK STK SIZE		128

□ 5. 修改app.c中 App_TaskStart()

的內容,右圖爲修改 前,下圖爲修改後

```
static void App TaskStart (void *p arg)
    CPU INT32U i;
    CPU INT32U j;
    (void) p arg;
    BSP Init();
   OS CPU SysTickInit();
#if (OS TASK STAT EN > 0)
    OSStatInit();
#endif
    App TaskCreate();
   while (DEF TRUE) {
            OSTimeDlyHMSM(0, 0, 0, 200);
}
```

```
static void App TaskStart (void *p arg)
    CPU INT32U i;
    CPU INT32U j;
    (void) p arg;
    BSP Init();
    OS CPU SysTickInit();
#if (OS TASK STAT_EN > 0)
    OSStatInit();
#endif
    App TaskCreate();
    while (DEF TRUE) {
        for (j = 0; j < 4; j++) {
            for (i = 1; i \le 4; i++) {
                BSP LED On(i);
                OSTimeDlyHMSM(0, 0, 0, 100);
                BSP LED Off(i);
                OSTimeDlyHMSM(0, 0, 0, 50);
            for (i = 4; i >= 1; i--) {
                BSP LED On(i);
                OSTimeDlyHMSM(0, 0, 0, 50);
                BSP LED Off(i);
                OSTimeDlyHMSM(0, 0, 0, 100);
        for (i = 0; i < 4; i++) {
            BSP LED On(0);
            OSTimeDlyHMSM(0, 0, 0, 200);
            BSP LED Off(0);
            OSTimeDlyHMSM(0, 0, 0, 200);
```

104

□ 6.在App_TaskCreate()中執行兩項工作

```
static void App TaskCreate (void)
    CPU INTO8U os err;
    os err = OSTaskCreateExt(App_NewTask,
                              &App NewTaskStk[APP New Task STK SIZE - 1],
                                               ) APP New Task PRIO,
                              (INT8U
                              (INT16U
                                               ) APP New Task PRIO,
                             &App NewTaskStk[0],
                              (INT32U
                                               ) APP New Task STK SIZE,
                             Ο,
                              (INT16U
                                              ) (OS TASK OPT STK CLR | OS TASK OPT STK CHK));
   os err = OSTaskCreateExt( App_TaskTxtLcd,
                              &App TaskTxtLcdStk[APP Task TxtLcd STK SIZE - 1],
                              (INT8U
                                               ) APP Task TxtLcd PRIO,
                              (INT16U
                                               ) APP Task TxtLcd PRIO,
                             &App_TaskTxtLcdStk[0],
                              (INT32U
                                               ) APP Task TxtLcd STK SIZE,
                              (void
                                             * ) 0,
                              (INT16U
                                               ) (OS TASK OPT STK CLR | OS TASK OPT STK CHK));
```


- □ 7. dfu燒錄
 - 7.1 必須在main()中加入 NVIC_SetVectorTable(0x08003000,0x0);
 - 7.2 在STM32_Flash.scat裡將
 LR_IROM1 0x08000000 0x00020000 與
 ER_IROM1 0x08000000 0x08020000 改為
 LR_IROM1 0x08003000 0x00020000 與
 ER_IROM1 0x08003000 0x08020000

7.1

7.2