A Poisson Boundary Theory for Groupoids

James Harbour

January 31, 2024

Goal: Develop a theory of Poisson boundary for groupoids using Das-Peterson's noncommutative PB framework from [DP22].

1 Setup

1.1 Groupoid Side

Let (\mathcal{G}, μ) be a discrete pmp groupoid and $X = \mathcal{G}^{(0)}$. Assume we have a collection $\{\pi_x\}_{x \in X}$ such that $\pi_x \in \text{Prob}(\mathcal{G}^x)$ for all $x \in X$. Extend each π_x by zero to be defined on of \mathcal{G} . For $g \in \mathcal{G}$, set

$$\pi_g = g_* \pi_{s(g)}$$

In the framework of [Kai05], $\{\pi_g\}$ give the transition probabilites for a Markov operator on \mathcal{G} . Such a Markov operator is called *invariant* if $g_*\pi_h = \pi_{gh}$ for all $(g,h) \in \mathcal{G}^{(2)}$.

Definition 1.1.1 ([Kai05]). A family $\pi = \{\pi_g\}$ of transition probabilities is called Borel if for every nonnegative Borel function f, the function $\pi(f): \mathcal{G} \to \mathbb{C}$ given by $\pi(f)(g) = \int_{\mathcal{G}} f \, d\pi_g$ is Borel.

Given such a Borel family π , we then get an induced Markov operator $P: \mathrm{Bor}(\mathcal{G}) \to \mathrm{Bor}(\mathcal{G})$ given by $Pf = \pi(f)$. The corresponding dual operator $\widetilde{P}: M_+(\mathcal{G}) \to M_+(\mathcal{G})$ is then given by

$$\widetilde{P}(\theta) = \int_{\mathcal{G}} \pi_g \, d\theta(g) \text{ for all } \theta \in M_+(\mathcal{G}).$$

Now by definition of the vector-valued integral,

$$\langle \theta, Pf \rangle = \int_{\mathcal{G}} Pf(g) \, d\theta(g) = \int_{\mathcal{G}} \left(\int_{\mathcal{G}} f \, d\pi_g \right) d\theta(g)$$
$$= \int_{\mathcal{G}} f \, d\widetilde{P}\theta = \langle \widetilde{P}\theta, f \rangle$$

1.2 Von Neumann Algebras Side

Fix a tracial von Neumann algebra (M, τ) and an embedding $M \subseteq \mathcal{A}$ into a C^* algebra \mathcal{A} .

$$S_{\tau}\mathcal{A}) := \{ \varphi \in S(\mathcal{A}) : \varphi|_{M} = \tau \}.$$

Fixing $\varphi \in S_{\tau}(\mathcal{A})$ gives an inclusion $L^2(M,\tau) \subseteq L^2(\mathcal{A},\varphi)$. Let $e_M = Proj_{L^2(M,\tau)} \in B(L^2(\mathcal{A},\varphi))$. Define a u.c.p. map $\mathcal{P}_{\varphi} : \mathcal{A} \to B(L^2(M,\tau))$, by

$$\mathcal{P}_{\varphi}(T) := e_M T e_m \text{ for } T \in \mathcal{A}$$

For $x \in M$, $\mathcal{P}_{\varphi}(x) = x$. The map \mathcal{P}_{φ} is the *Poisson transform* of the inclusion $M \subseteq \mathcal{A}$.

2 Ideas moving forward

• Similar to Remi and Boutonnet in this paper, study intermediate von Neumann algebras

$$L(\mathcal{G}) \subseteq M \subseteq L(\mathcal{G} \curvearrowright \mathcal{B})$$

where $\mathcal{G} \curvearrowright \mathcal{B}$ is the Poisson boundary action.

References

- [DP22] Sayan Das and Jesse Peterson. "Poisson boundaries of II1 factors". In: Compos. Math. 158.8 (2022), pp. 1746–1776.
- [Kai05] Vadim A. Kaimanovich. "Amenability and the Liouville property". In: vol. 149. Probability in mathematics. 2005, pp. 45–85.