Diseño Digital Moderno

Exposición 1: Circuito Lógico

Profesora

Elizabeth Fonseca Chavez

Alumnos

Murrieta Villegas Alfonso

Valdespino Mendieta Joaquín

Problema a resolver

Se requiere un circuito para un auto con las siguientes consideraciones:

El circuito debe mandar una señal de precaución cuando el conductor deje encendidas las luces del carro y el motor del auto esté apagado esto con el motivo de no descargar la bateria del carro, a su vez, es necesario que el circuito indique al conductor de si la puerta del carro está abierta o no al momento de arrancar el carro.

Entradas y salidas

ENTRADAS:

- Los faros o luces están encendidos
 - Estado de las luces
- El motor está encendido o no
 - Estado del motor del coche
- La puerta está abierta mientras arranca el coche
 - Estado de la puerta del conductor

SALIDA:

 Se prende LED y suena alarma en caso necesario

Tabla de Verdad

F (Estado de los faros)	M (Estado del motor)	P (Estado de la puerta)	A (Suena alarma -LED)
0	0	0	0
0	0	1	O
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Los estado respecto al circuito son: 0 = LED apagado, 1 = LED prendido

Ecuación Booleana (Reducción)

$$\underline{F}MP + F\underline{MP} + F\underline{MP} + FMP = A$$

Aplicando propiedades:

- (x)(y+z) = (xy) + (xz) Distributividad
- $\bullet \quad \times + \underline{\mathbf{x}} = \mathbf{1}$

Reducción:

$$MP(\underline{F}+F) + F\underline{M}(\underline{P}+P) = A$$

$$MP + FM = A$$

Diseño Circuito Lógico

Dispositivos electrónicos

Compuertas

- 74LS04 NOT
- 74LS32 OR
- 74LS08 AND

Control

- 6 resistencias de $1 \text{ k}\Omega$
- Dip switch de 4 posiciones

Notificadores

- Chicharra piezoeléctrica
- 4 LEDS
 - Blanco
 - Estado faros
 - Verde
 - Estado motor
 - Naranja
 - Estado puerta
 - o Rojo
 - Salida

Datasheets Compuertas

- Input Current @ Max 1 [mA]
- Tipo de encapsulado DIP14
- Voltaje de alimentación:
 - Mínimo -> 4.75 V
 - Máximo -> 5.25 V

Compuerta OR

Compuerta AND

Compuerta NOT

Implementación en Protoboard

Fotografía del circuito:

Resultados

A continuación se muestran algunos casos del circuito:

Imagen 1: Luces apagadas (LED blanco), Motor encendido (LED verde) y Puerta cerrada (LED naranja), no tenemos una alarma de precaución como salida (LED rojo)

Imagen 2: Luces prendidas (LED blanco), Motor encendido (LED verde) y puerta cerrada (LED naranja), no tenemos una alarma de precaución como salida (LED rojo).

Resultados

A continuación se muestran algunos casos del circuito:

Imagen 3: Luces prendidas (LED Blanco), Motor encendido (LED verde) y Puerta abierta (LED Naranja), tenemos la alarma encendida (LED Rojo)

Imagen 4: Luces prendidas (LED Blanco), Motor apagado (LED verde) y Puerta cerrada (LED Naranja), tenemos la alarma encendida (LED Rojo)

Interpretación final - Conclusiones

 Sin duda, la base tanto de las compuertas lógicas como de los microcontroladores y procesadores son los transistores.

 Para poder plantear un problema podemos ayudarnos de una Tabla de Verdad pues a partir de esta podemos obtener una Ecuación Booleana (Existen otras alternativas de solución)

- Una mejora a este circuito podría ser incluir los siguientes aspectos:
 - Considerar si hay personas dentro del carro
 - Considerar todas las puertas que tenga el carro

Referencias

FAIRCHILD. Recuperado el 14 de febrero de 2020, de https://www.alldatasheet.es/datasheet-pdf/pdf/51020/FAIRCHILD/DM74LS08.html

FAIRCHILD. Recuperado el 14 de febrero de 2020, de https://www.alldatasheet.es/datasheet-pdf/pdf/51020/FAIRCHILD/DM74LS04.html

FAIRCHILD. Recuperado el 14 de febrero de 2020, de https://www.alldatasheet.es/datasheet-pdf/pdf/51020/FAIRCHILD/DM74LS32.html

David G. Programación de sistema digitales con VHDL. Patria. Primera edición.