# **Assignment 5 – Supervised Learning – Regression**

Name: Rabia Abdul Sattar

Roll No: 2225165022

Course: Applied Data Science with AI

Week #: 5

**Project Title:** Customer Churn Prediction

# 1. Reading Summary

#### **Reading Material:**

- Hands-On ML GitHub Notebooks
- Scikit-Learn Regression

#### **Key Learnings:**

- Linear Regression fits a linear model using least squares.
- Evaluation metrics include Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).
- Baseline model comparison helps evaluate model improvement.

#### **Reflection:**

This assignment helped me understand how regression models work in real-world datasets. By training a Linear Regression model on the Titanic dataset, I learned how data preprocessing, encoding, and feature selection affect model performance.

## 2. Classroom Task Documentation

#### Task Performed:

• Implemented Linear Regression (scikit-learn).

• Compared Linear Regression to a simple baseline predictor using MAE and RMSE.

# 3. Weekly Assignment Submission

Assignment Title: Apply regression on dataset

#### **Steps Taken**

## **Step 1 – Dataset Loading**

The **Titanic dataset** (train.csv) was loaded using pandas. This dataset contains passenger information including age, class, sex, number of siblings/spouses, parents/children, and fare paid.

## **Step 2 – Target and Feature Selection**

The target variable selected for regression is "Fare" (continuous value). Features chosen for prediction include:

- Pclass Passenger Class
- Sex Gender
- **Age** Age of Passenger
- SibSp Number of Siblings/Spouses aboard
- Parch Number of Parents/Children aboard
- Embarked Port of Embarkation

## **Step 3 – Data Preprocessing**

- Missing Values:
  - Age filled with median.
  - Embarked filled with mode (most frequent value).
- Encoding Categorical Data:

 Used one-hot encoding for Sex and Embarked to convert them into numerical form.

## Step 4 – Train/Test Split

To evaluate model generalization, data was split into:

• Training Set: 80% of the data

• **Testing Set:** 20% of the data

| 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris                        | male   | 22.0 | 1 | 0 | A/5 21171        | 7.2500  | NaN   | S |
|---|---|---|---|------------------------------------------------|--------|------|---|---|------------------|---------|-------|---|
|   |   | Ü | v | Brauna, IVII. OVERT Harris                     | maic   | 22.0 |   | Ü | 740 21171        | 7.2000  | 14014 | Ŭ |
| 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th | female | 38.0 | 1 | 0 | PC 17599         | 71.2833 | C85   | C |
| 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina                         | female | 26.0 | 0 | 0 | STON/02. 3101282 | 7.9250  | NaN   | S |
| 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel)   | female | 35.0 | 1 | 0 | 113803           | 53.1000 | C123  | S |
| 4 | 5 | 0 | 3 | Allen, Mr. William Henry                       | male   | 35.0 | 0 | 0 | 373450           | 8.0500  | NaN   | S |

## **Step 5 – Model Training (Linear Regression)**

Trained a Linear Regression model on the training data using Scikit-Learn.

## Step 6 – Baseline Model

A **baseline mean predictor** was created that predicts the mean Fare value for every passenger.

This provides a reference point to measure regression model performance.

## **Step 7 – Model Evaluation**

Both models (Linear Regression and Baseline) were compared using two metrics:

| Model                     | MAE         | RMSE         |
|---------------------------|-------------|--------------|
| Linear Regression         | ≈ Lower MAE | ≈ Lower RMSE |
| Baseline (Mean Predictor) | Higher MAE  | Higher RMSE  |

The Linear Regression model achieved lower MAE and RMSE than the baseline, proving that the selected features have predictive power for Fare.

## **Step 8 – Coefficient Analysis**

The regression coefficients indicate the strength and direction of each feature's impact on the predicted Fare.



#### **Interpretation:**

- **Pclass** (class) and **Sex\_male** have negative coefficients lower class or being male tends to correspond with lower fares.
- Age and Parch have small positive effects on Fare.

## **Output:**





# Residuals distribution shows the difference between actual and predicted values



**Linear Regression Coefficients — feature influence on predicted Fare** 



## **Challenges Faced:**

• Age contains missing values simple median imputation was used here for a baseline. For better models, consider more advanced imputation or feature engineering.

Fare is skewed (often right-skewed); transformations (log) can sometimes improve regression performance not applied here so this remains a pure linear baseline.

#### **GitHub Link:**

https://github.com/Rabia-Abdul-Sattar/Customer-Churn-Prediction

# 4. Project Progress Milestone

• Built a first baseline regression model (Linear Regression) and compared with a naive baseline predictor using MAE and RMSE.

**Next steps:** feature engineering (log-transform Fare, more features, polynomial features), outlier handling, and using regularized regression (Ridge/Lasso).

#### 5. Self-Evaluation

☑ Completed: dataset loading, preprocessing, train/test split, Linear Regression training, baseline comparison, MAE & RMSE evaluation, saved outputs for inclusion in the assignment.