Simple linear regression - exercise

You are given a real estate dataset.

Real estate is one of those examples that every regression course goes through as it is extremely easy to understand and there is a (almost always) certain causal relationship to be found.

The data is located in the file: 'real_estate price size.csv'.

You are expected to create a simple linear regression (similar to the one in the lecture), using the new data.

In this exercise, the dependent variable is 'price', while the independent variables is 'size'.

Good luck!

Import the relevant libraries

```
In [3]: import numpy as np #multidimensional arrays
   import pandas as pd #format data into columns and rows
   import matplotlib.pyplot as plt #2d visualization
   import statsmodels.api as sm #summaries
   import seaborn #nice graphs
   seaborn.set()
```

Load the data

```
In [4]: data = pd.read_csv('real_estate_price_size.csv')
```

In [22]: data

Out[22]:

	price	size
0	234314.144	643.09
1	228581.528	656.22
2	281626.336	487.29
3	401255.608	1504.75
4	458674.256	1275.46
95	252460.400	549.80
96	310522.592	1037.44
97	383635.568	1504.75
98	225145.248	648.29
99	274922.856	705.29

100 rows × 2 columns

In [20]: data.head()

Out[20]:

	price	size
0	234314.144	643.09
1	228581.528	656.22
2	281626.336	487.29
3	401255.608	1504.75
4	458674.256	1275.46

```
In [21]: data.describe()
```

Out[21]:

	price	size
count	100.000000	100.000000
mean	292289.470160	853.024200
std	77051.727525	297.941951
min	154282.128000	479.750000
25%	234280.148000	643.330000
50%	280590.716000	696.405000
75%	335723.696000	1029.322500
max	500681.128000	1842.510000

Create the regression

Declare the dependent and the independent variables

```
In [8]: y = data['price']
x1 = data['size']
```

Explore the data

```
In [9]: plt.scatter(x1,y)
    plt.xlabel('Size',fontsize=20)
    plt.ylabel('Price',fontsize=20)
    plt.show()
```


Regression itself

```
In [10]:
          x = sm.add constant(x1)
          results = sm.OLS(y,x).fit()
          results.summary()
Out[10]:
          OLS Regression Results
```

Dep. Variable: R-squared: 0.745 price Model: OLS Adj. R-squared: 0.742 Method: Least Squares F-statistic: 285.9 Date: Wed, 25 Aug 2021 Prob (F-statistic): 8.13e-31 Time: 21:36:09 Log-Likelihood: -1198.3 No. Observations: 100 AIC: 2401. **Df Residuals:** BIC: 98 2406. Df Model: 1 **Covariance Type:** nonrobust [0.025 coef std err P>|t| 0.975] 1.019e+05 1.19e+04 8.550 0.000 7.83e+04 1.26e+05 223.1787 13.199 16.909 0.000 196.986 249.371 size **Omnibus**: 6.262 **Durbin-Watson:** 2.267 Prob(Omnibus): 0.044 Jarque-Bera (JB): 2.938 Skew: 0.117 Prob(JB): 0.230 Kurtosis: 2.194 Cond. No. 2.75e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.75e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Plot the regression line on the initial scatter

