Carnot Number

<u>Input/Output Temperature Difference in Hydroelectric Power Stations</u>
Seasonal Temperature Difference in Ocean/River Systems

Human Relevance

Grand Coulee Dam

- Hydro electric stations are the oldest form of grid scale power plant
- Largest power plant in the US ~ 7GW
- ~2× larger than the second largest power station (Palo Verde Nuclear)
- Roosevelt Reservoir heats up the rivers waters
 - Much larger impact than factories or traditional power plants which use rivers/streams for cooling
- Salmon are particularly sensitive to the temperature of the river
 - >15°C strains the fish, >20°C can be fatal to the fish
- In 2019 $\sim \frac{1}{2}$ of all 500,00 sockeye salmon returning to the Columbia River basin died because of abnormally high temperatures
 - https://www.oregonlive.com/environment/2015/07/hot_water_killing_half_of_colu.html

Approximating The "Carnot Number"

Heat Drop Across Hydro-plant

Definitions

 $\eta \equiv$ Turbine efficiency of power plant $\Rightarrow (1 - \eta) \approx f \cdot 10^{-1}$ $g \equiv \text{Gravitational aceleration} \approx 10 \frac{m}{c^2}$ $h \equiv$ Height Difference between upper and lower reservoirs $\approx 10^2 m$ $c_p \equiv \text{Specific heat of water } \approx f \cdot 10^3 \frac{J}{\text{kg} \cdot \text{°C}}$ $\dot{m} \equiv \text{Flow rate through plant}$ $t \equiv time$ $T \equiv Temperature$

Governing Eqns.

Power into Heat: $P_H = (1 - \eta) \dot{m} q h$ $W_H = \int_0^{\Delta t} P_H \, dl \, \tau = (1 - \eta) \, \dot{m} \, g \, h \, \Delta t$ Work into heat: Heat to raise the temp. of water: $\Delta Q = c_p(\dot{m} \Delta t) \Delta T$

$$(1 - \eta) \dot{m} g h \Delta t = c_p(\dot{m} \Delta t) \Delta T$$

$$\Rightarrow \Delta T = \frac{(1 - \eta) g h}{c_p} = \frac{f \cdot 10^{-1} \cdot 10 \frac{m}{c^2} \cdot 10^2 m}{f \cdot 10^3 \frac{J}{\text{kg} \cdot \text{°C}}} = 10^{-1} \, \text{°C}$$

Checking the units:

Heat Change Over The Year

Intuition

We know that river's in the north build up ice in the winter ($\approx 10^{\circ}$ °C) to being comfortable enough to swim in during the summer ($\approx 10^1 \, ^{\circ}\text{C} - f \cdot 10^1 \, ^{\circ}\text{C}$).

Thus the total temperature change is either $10^1 \,^{\circ}\text{C} - f \cdot 10^1 \,^{\circ}\text{C}$.

To make a more mathematical guess, consider the temperature variation over the seasons to be a square wave rather than a sinusoid (Its either summer, or winter). Assume that the water in a dam's reservoir originated entirely from underground aquifers, which were held at a constant temperature.

Out[207]=

Saving Graphic

Definitions

 $h \equiv$ Heat transfer coefficient of Air $\approx 10 \frac{W}{m^2 K}$ $c_p \equiv$ Specific heat of water $\approx f \cdot 10^3 \frac{J}{\text{kg} \cdot ^{\circ}\text{C}}$ $m \equiv \text{Mass of body being cooled} \approx \text{Lake Roosevelt } 10^{13} \text{ kg}$

 $A \equiv \text{Exposed surface area of body being cooled} \approx \text{Lake Roosevelt } f \cdot 10^8 \, \text{m}^2$ $T_a \equiv$ Temperature of air $\approx f \cdot 10$ °C during the summer, 0 °C during the winter $T_{aq} \equiv \text{Temperature of water in aquafer} \approx f \, ^{\circ}\text{C} \text{ year round}$

> $T_w \equiv$ Temperature of water in reservoir Q ≡ Heat

Governing Eqns.

Newtonian cooling:
$$\frac{\partial Q}{\partial t} = h A (T_a - T_w(t))$$

Heat to change the temp. of water: $\partial Q = c_p \, m \, \partial T_w$

$$\frac{\partial T}{\partial t} = \frac{hA}{c_p m} \left(T_a - T_w(t) \right)$$
$$T_w(t) = T_a - e^{-\frac{Aht}{cm}} \left(T_{aq} - T_a \right)$$

Summer

$$T_{w}(t) = f \cdot 10 \,^{\circ}\text{C} - \exp\left(-\frac{f \cdot 10^{8} \, m^{2} * 10^{\frac{W}{m^{2} \, K}} * t}{f \cdot 10^{3} \, \frac{J}{\text{kg} \cdot \text{c}} * 10^{13} \, \text{kg}}\right) (f \,^{\circ}\text{C} - f \cdot 10 \,^{\circ}\text{C})$$

$$T_{w}(t) = f \cdot 10 \,^{\circ}\text{C} - \exp\left(-t * 10^{-7}\right) (f \cdot 10 \,^{\circ}\text{C})$$

$$\text{After 6 months } t \approx f \cdot 10^{7} \Rightarrow$$

$$T_{w}(t) = f \cdot 10 \,^{\circ}\text{C} - \exp(-f) (f \cdot 10 \,^{\circ}\text{C}) = f \cdot 10 \,^{\circ}\text{C} - f \cdot 10^{-2} * (f \cdot 10 \,^{\circ}\text{C}) = f \cdot 10 \,^{\circ}\text{C}$$

Winter

$$T_{w}(t) = 0 \text{ °C} - \exp\left(-\frac{f \cdot 10^{8} \, m^{2} * 10^{\frac{W}{m^{2} \, K}} * t}{f \cdot 10^{3} \, \frac{J}{\text{kg} \cdot \text{°C}} * 10^{13} \, \text{kg}}\right) (f \text{ °C} - 0 \text{ °C})$$

$$T_{w}(t) = -\exp\left(-t * 10^{-7}\right) (f \text{ °C})$$
After 6 months $t \approx f \cdot 10^{7} \Rightarrow$

$$T_{w}(t) = f \cdot 10^{-2} * (f \text{ °C}) = 10^{-1} \text{ °C}$$

Checking the units:

Approximate Carnot Number

$$\frac{10^{-1} \, ^{\circ}\text{C}}{f \cdot 10 \, ^{\circ}\text{C}} = f \cdot 10^{-2}$$

What The Data Says

Columbia River - Grand Coulee Dam

Importing Data

Below Coulee

Above Coulee

Difference Across

Saving Data

Plotting Data

Saving Graphic

Data Source

"Columbia Basin Conditions for Temperature, Dissolved Gas Percent and Spill Percent"

http://www.cbr.washington.edu/dart/query/basin_conditions Columbia Basin Research School of Aquatic & Fishery Sciences University of Washington 1325 4th Avenue, Suite 1515 Seattle, WA 98101