Zero-Shot Sketch-Based Object Retrieval for Remote Sensing Images

Ushasi Chaudhuri

IEEE GRSS Talkathon 2021

Center of Studies in Resources Engineering Indian Institute of Technology Bombay

28 Aug 2021

Cross-modal Retreival

- Within the same dataset, retrieval is a relatively easy work. If we have different modalities of data, ex Pan images, multi-spectral images, SAR images, optical images, or texts, retrieval amongst cross domain becomes more challenging.
- ▶ A network learned for a particular modality may not give good performance on different data.

- 1. 1m pan IKONOS image of Valparaiso, Chile
- $2. \ source: \ https://www.sensorsmag.com/components/hyperspectral-and-multispectral-imaging-sensors-find-hyperflexible-applications$
- 3. Sentinel-1 SAR dataset with C band
- 4. sparseresidentialarea from PatternNet dataset.

Motivation

Why do we need Zero-Shot Learning?

- Necessary to determine a certain number of object classes for object recognition with high success.
- Necessary to collect as many sample images as possible for object classes.
- Exists lots of object classes that we can gather sample images.
- Also exists cases that we are not always so lucky.

For the first time in history Tornado Hits India in State of West Bengal On 25 May 2021.

Zero-shot Learning?

Definition (Zero-shot learning)

Zero-Shot learning method aims to solve a task without receiving any example of that task at training phase.

 Upon the unavailability of a query sample, can I use a quick handmade sketch query?

Semantic information

No samples from ZS classes to be used during training.

How does a Indian kid, who has never seen a zebra, recognize one in the zoo?

Class Description!!

Therefore, We need 2 data representations:

- 1. Image: Photos and sketches.
- 2. Class descriptions as auxiliary semantic information.

Proposed ZS-SBIR Framework

- ▶ Images \mathcal{A} , Sketches \mathcal{B} ; Constraint: $\mathcal{Y}^s \cap \mathcal{Y}^u = \varnothing$
- Modality-specific classifiers (fine-tune Imagenet pre-trained CNN).
- Multi-stream encoder-decoder n/w for visual-semantic mapping.

ZS-SBIR

- ▶ a) Visual Encoders: $f_A(;,\theta_A)$ and $f_B(;,\theta_B)$
- **b)** Semantic Encoders: $f_Z(;,\theta_Z)$
- ▶ c) Cross-Modal Decoders: $g_{AB}(; \theta_{AB})$ and $g_{BA}(; , \theta_{BA})$ which reconstructs A given $f_B(B)$ and vice-versa.
- ★ 1. Cross-modal latent loss: Reduces intra-class variance.

$$\mathcal{L}_{cmd} = ||f_A(\mathcal{A}_c) - f_Z(\mathcal{Z}_c)||^2 + ||f_B(\mathcal{B}_c) - f_Z(\mathcal{Z}_c)||^2$$

★ 2. Cross-modal triplet loss: Further reduce the intra-class distances, and increase the inter-class distances.

$$\mathcal{L}_{si} = \max \left(d(f_{A}\left(\mathcal{A}_{c}\right), f_{B}\left(\mathcal{B}_{c}\right)\right) - d(f_{A}\left(\mathcal{A}_{c}\right), f_{B}\left(\tilde{\mathcal{B}}_{c}\right)\right) + \alpha, 0 \right)$$

★ 3. Classification loss: Class-wise discernibility.

$$\mathcal{L}_{class} = \mathsf{CE}\left(f_{A}(\mathcal{A})\right) + \mathsf{CE}\left(f_{B}(\mathcal{B})\right)$$

Experiments — Datasets

Earth on Canvas: 14 classes × 100 samples. 10:4 train:test.

Results

Table: SBIR performance of the proposed ZSEoC framework on the **EoC** dataset in terms of mAP (%) and precision at top-100 (P@100) (%) values.

Task	EoC			
	mAP	P@100	Feature dimension	
Baseline-I (VggNet-16)	0.221	0.234	4096	
Baseline-II (ResNet-50)	0.236	0.254	2048	
Baseline-III (ResNet-101)	0.269	0.284	2048	
Baseline-IV (CNN)	0.30	0.284	128	
Baseline-V (Pre-train $+$ CNN)	0.196	0.284	128	
ZS-SBIR [kiran2018zero]	0.395	0.421	1024	
ZSIH (binary) [shen2018zero]	0.452	0.487	64	
ZSEoC-300 (fixed semantic vector)	0.686	0.698	300	
ZSEoC-128 (latent semantic vector)	0.674	0.732	128	

Results — t-SNE Plots

Figure: Two-dimensional scatter plots of high-dimensional features generated with t-SNE of image and sketch features, in the shared latent space, trained with a fixed-semantic vector. Clusters with distinct colours denote separate classes in the dataset.

Results — Retrieval on Unseen Classes

Inter-modal	EoC		Uni-modal	EoC	
	mAP	P@100	•	mAP	P@100
Sketch→Image	0.686	0.698	Sketch→Sketc	h 0.719	0.737
$Image { ightarrow} Sketch$	0.612	0.632	${\sf Image}{ ightarrow}{\sf Image}$	0.839	0.855

Thank You