

Mathematics Specialist Test 4 2020

Section 1 Calculator Free **Trigonometry**

STUDENT'S NAME	Solutions	
DATE : Wednesday 22 nd July	TIME: 30 minutes	MARKS : 32

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (3 marks)

Determine the exact value of cos 75°.

$$\cos (45 + 30)$$
= $\cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$
= $\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$
= $\frac{\sqrt{6} \cdot \sqrt{2}}{4}$

2. (8 marks)

(a) Sketch the function $y = -2\sin(2(x + 30^\circ))$ on the axes below.

(b) Sketch the function $y = \csc\left(2\left(x - \frac{\pi}{4}\right)\right)$ on the axes below. [4]

3. (8 marks)

Given that $\cos\theta = \frac{3}{5}$ where $0 \le \theta \le 90^\circ$, and $\sin\beta = \frac{1}{3}$ where $90^\circ \le \beta \le 180^\circ$ Determine:

(a)
$$\cos(\theta + \beta)$$
 [4] $\cos \theta \cos \beta - \sin \theta \sin \theta$ [4] $\frac{3}{5} \cdot \frac{2\sqrt{2}}{3} - \frac{4}{5} \cdot \frac{1}{3}$ $\sin \theta = \frac{4}{5}$ $\cos \beta = \frac{2\sqrt{2}}{3}$ $-\frac{6\sqrt{2}}{15} - \frac{4}{15}$ $\cos \beta = \frac{2\sqrt{2}}{3}$

(b)
$$\tan(2\theta)$$

$$= \frac{2 + \tan \theta}{1 - \tan^2 \theta}$$

$$= \frac{3 \cdot \frac{4}{3}}{1 - \left(\frac{4}{3}\right)^2}$$

$$= \frac{3 \cdot \frac{4}{3}}{3 \cdot \frac{2}{3}}$$

$$= \frac{3 \cdot \frac{4}{3}}{3 \cdot \frac{2}{3}}$$

$$= \frac{3 \cdot \frac{4}{3}}{3 \cdot \frac{2}{3}}$$

4. (8 marks)

Solve

(a)
$$\tan (2x + 15^\circ) = -1 \text{ for } 0^\circ \le x \le 180^\circ$$
 [3]

$$tan(2x+15) = -1$$

$$0 \le 2x \le 360$$

$$0 \le 2x \le 360$$

$$15 \le 2x+15 \le 375$$

$$2x = 120^{\circ}, 300^{\circ} \checkmark$$

$$x = 60^{\circ}, 150^{\circ} \checkmark$$

(b)
$$\sqrt{3} \sin x + \cos x = \sqrt{2}$$
 for $0 \le x \le 2\pi$ by expressing in the form $R \sin (x + \alpha) = c$ [5]

$$2\left(\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right) = \sqrt{2}$$

$$2\left(\sin x \cos x + \cos x \sin x\right) = \sqrt{2}$$

$$2\sin\left(x + \alpha\right) = \sqrt{2}$$

$$\sin\left(x + \frac{\pi}{6}\right) = \sqrt{2}$$

$$\sin\left(x + \frac{\pi}{6}\right) = \frac{\pi}{2}$$

$$\cos\left(x + \frac{\pi$$

5. (5 marks)

Solve $2\sin^2\theta - \sqrt{3}\sin\theta = 0$ given θ in radians.

$$\sin\theta\left(2\sin\theta-\sqrt{3}\right)=0$$

$$\sin\theta=0$$

$$\sin\theta=\sqrt{3}$$

$$\sin\theta=\sqrt{3}$$

$$\sin\theta=\sqrt{3}$$

$$\sin\theta=\sqrt{3}$$

$$\sqrt{\theta}=\sqrt{3}+2\pi n, n\in\mathbb{Z}$$

$$\sqrt{\theta}=\sqrt{3}+2\pi n, n\in\mathbb{Z}$$

$$\sqrt{\theta}=\sqrt{3}+2\pi n, n\in\mathbb{Z}$$

Mathematics Specialist Test 4 2020

Section 2 Calculator Assumed **Trigonometry**

STUDENT'S NAME

Solutions

DATE: Wednesday 22nd July

TIME: 20 minutes

MARKS: 20

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Special Items:

Three calculators, notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

6. (4 marks)

Determine the equation of the function shown below, x in radians

7. (9 marks)

A radio wave follows the path of the equation $h = 9 \sin\left(\frac{\pi t}{4}\right) + \cos\left(\frac{\pi t}{4}\right)$, where h (metres) is the height from a mean level and t (hours) is the time after 9 a.m.

(a) Express
$$9 \sin \left(\frac{\pi t}{4}\right) + \cos \left(\frac{\pi t}{4}\right)$$
 in the form $r \sin \left(\frac{\pi t}{4} + \alpha\right)$ [3]
$$\frac{1}{1 + \alpha} = \sqrt{82}$$

$$\alpha = 0.11157$$

(b) Determine the height of the radio waves at 9 a.m.

Im

(c) Determine the height of the radio waves at 11 a.m.

e radio waves at 11 a.m. [2]

(d) Determine the time(s) in a 24-hour period when the height of the radio waves returns to that of 9 a.m. [3]

[1]

8. (7 marks)

Prove each of the following.

(a)
$$\cos^2 A - \sin^2 B = \cos (A + B) \cos (A - B)$$

$$= \cos (A + B) \cos (A - B)$$

$$= (\cos A \cos B - \sin A \sin B) (\cos A \cos B + \sin A \sin B)$$

$$= \cos^2 A \cos^2 B - \sin^2 A \sin^2 B$$

$$= \cos^2 A (1 - \sin^2 B) - (1 - \cos^2 A) \sin^2 B$$

$$= \cos^2 A - \sin^2 B$$

(b)
$$\frac{1 + \cot \theta}{\csc \theta} - \frac{\sec \theta}{\cot \theta + \tan \theta} = \cos \theta$$

$$\frac{1}{\sin \theta} = \frac{1}{\cos \theta}$$

$$= \frac{1 + \cos \theta}{\sin \theta} - \frac{1}{\cos \theta}$$

$$= \frac{1 + \cos \theta}{\sin \theta} - \frac{1}{\cos \theta}$$

$$= \frac{1}{\sin \theta} - \frac{1}{\cos \theta}$$

$$= \frac{1}{\cos \theta} - \frac{1}{\cos \theta}$$

$$= \frac{1}{\sin \theta} - \frac{1}{\cos \theta}$$

$$= \frac{1}{\cos \theta$$

= RHS.

cas 8