Interrupts and events RM0038

Table 50. Vector table (Cat.3 devices) (continued)

Position	Priority	Type of priority	Acronym	Description	Address
52	62	settable	AES	AES global interrupt	0x0000_011C
53	63	settable	COMP_ACQ	Comparator Channel Acquisition Interrupt	0x0000_0120

Table 51. Vector table (Cat.4, Cat.5 and Cat.6 devices)

Position	Priority	Type of priority	Acronym	Description	Address
-	-	-	-	Reserved	0x0000_0000
-	-3	fixed	Reset	Reset	0x0000_0004
-	-2	fixed	NMI_Handler	Non maskable interrupt. The RCC Clock Security System (CSS) is linked to the NMI vector.	0x0000_0008
-	-1	fixed	HardFault_Handler	All class of fault	0x0000_000C
-	0	settable	MemManage_Handler	Memory management	0x0000_0010
-	1	settable	BusFault_Handler	Pre-fetch fault, memory access fault	0x0000_0014
-	2	settable	UsageFault_Handler	Undefined instruction or illegal state	0x0000_0018
-	-	-	-	Reserved	0x0000_001C - 0x0000_002B
-	3	settable	SVC_Handler	System service call via SWI instruction	0x0000_002C
-	4	settable	DebugMon_Handler	Debug Monitor	0x0000_0030
-	-	-	-	Reserved	0x0000_0034
-	5	settable	PendSV_Handler	Pendable request for system service	0x0000_0038
-	6	settable	SysTick_Handler	System tick timer	0x0000_003C
0	7	settable	WWDG	Window Watchdog interrupt	0x0000_0040
1	8	settable	PVD	PVD through EXTI Line16 detection interrupt	0x0000_0044
2	9	settable	TAMPER_STAMP	Tamper, LSECSS and TimeStamp through EXTI line19 interrupts	0x0000_0048
3	10	settable	RTC_WKUP	RTC Wakeup through EXTI line20 interrupt	0x0000_004C
4	11	settable	FLASH	Flash global interrupt	0x0000_0050
5	12	settable	RCC	RCC global interrupt	0x0000_0054
6	13	settable	EXTIO	EXTI Line0 interrupt	0x0000_0058
7	14	settable	EXTI1	EXTI Line1 interrupt	0x0000_005C
8	15	settable	EXTI2	EXTI Line2 interrupt	0x0000_0060
9	16	settable	EXTI3	EXTI Line3 interrupt	0x0000_0064

236/911 DocID15965 Rev 15

Table 51. Vector table (Cat.4, Cat.5 and Cat.6 devices) (continued)

Position	Priority	Type of priority	Acronym	Description	Address
10	17	settable	EXTI4	EXTI Line4 interrupt	0x0000_0068
11	18	settable	DMA1_Channel1	DMA1 Channel1 global interrupt	0x0000_006C
12	19	settable	DMA1_Channel2	DMA1 Channel2 global interrupt	0x0000_0070
13	20	settable	DMA1_Channel3	DMA1 Channel3 global interrupt	0x0000_0074
14	21	settable	DMA1_Channel4	DMA1 Channel4 global interrupt	0x0000_0078
15	22	settable	DMA1_Channel5	DMA1 Channel5 global interrupt	0x0000_007C
16	23	settable	DMA1_Channel6	DMA1 Channel6 global interrupt	0x0000_0080
17	24	settable	DMA1_Channel7	DMA1 Channel7 global interrupt	0x0000_0084
18	25	settable	ADC1	ADC1 global interrupt	0x0000_0088
19	26	settable	USB HP	USB High priority interrupt	0x0000_008C
20	27	settable	USB_LP	USB Low priority interrupt	0x0000_0090
21	28	settable	DAC	DAC interrupt	0x0000_0094
22	29	settable	COMP/CA	Comparator wakeup through EXTI line (21 and 22) interrupt/Channel acquisition interrupt	0x0000_0098
23	30	settable	EXTI9_5	EXTI Line[9:5] interrupts	0x0000_009C
24	31	settable	LCD	LCD global interrupt	0x0000_00A0
25	32	settable	TIM9	TIM10 global interrupt	0x0000_00A4
26	33	settable	TIM10	TIM10 global interrupt	0x0000_00A8
27	34	settable	TIM11	TIM11 global interrupt	0x0000_00AC
28	35	settable	TIM2	TIM2 global interrupt	0x0000_00B0
29	36	settable	TIM3	TIM3 global interrupt	0x0000_00B4
30	37	settable	TIM4	TIM4 global interrupt	0x0000_00B8
31	38	settable	I2C1_EV	I ² C1 event interrupt	0x0000_00BC
32	39	settable	I2C1_ER	I ² C1 error interrupt	0x0000_00C0
33	40	settable	I2C2_EV	I ² C2 event interrupt	0x0000_00C4
34	41	settable	I2C2_ER	I ² C2 error interrupt	0x0000_00C8
35	42	settable	SPI1	SPI1 global interrupt	0x0000_00CC
36	43	settable	SPI2	SPI2 global interrupt	0x0000_00D0
37	44	settable	USART1	USART1 global interrupt	0x0000_00D4
38	45	settable	USART2	USART2 global interrupt	0x0000_00D8
39	46	settable	USART3	USART3 global interrupt	0x0000_00DC
40	47	settable	EXTI15_10	EXTI Line[15:10] interrupts	0x0000_00E0
41	48	settable	RTC_Alarm	RTC Alarms (A and B) through EXTI line17 interrupt	0x0000_00E4

Interrupts and events RM0038

Position	Priority	Type of priority	Acronym	Description	Address
42	49	settable	USB_FS_WKUP	USB Device FS Wakeup through EXTI line18 interrupt	0x0000_00E8
43	50	settable	TIM6	TIM6 global interrupt	0x0000_00EC
44	51	settable	TIM7	TIM7 global interrupt	0x0000_00F0
45	52	settable	SDIO	SDIO Global interrupt	0x0000_00F4
46	53	settable	TIM5	TIM5 Global interrupt	0x0000_00F8
47	54	settable	SPI3	SPI3 Global interrupt	0x0000_00FC
48	55	settable	UART4	UART4 Global interrupt	0x0000_0100
49	56	settable	UART5	UART5 Global interrupt	0x0000_0104
50	57	settable	DMA2_CH1	DMA2 Channel 1 interrupt	0x0000_0108
51	58	settable	DMA2_CH2	DMA2 Channel 2 interrupt	0x0000_010C
52	59	settable	DMA2_CH3	DMA2 Channel 3 interrupt	0x0000_0110
53	60	settable	DMA2_CH4	DMA2 Channel 4 interrupt	0x0000_0114
54	61	settable	DMA2_CH5	DMA2 Channel 5 interrupt	0x0000_0118
55	62	settable	AES	AES global interrupt	0x0000_011C
56	63	settable	COMP_ACQ	Comparator Channel Acquisition Interrupt	0x0000_0120

Table 51. Vector table (Cat.4, Cat.5 and Cat.6 devices) (continued)

10.2 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of up to 24 (or 23 for Cat.1 and Cat.2 devices) edge detectors for generating event/interrupt requests. Each input line can be independently configured to select the type (event or interrupt) and the corresponding trigger event (rising edge, falling edge or both). Each line can also be masked independently. A pending register maintains the status line of the interrupt requests.

10.2.1 Main features

The main features of the EXTI controller are the following:

- Independent trigger and mask on each interrupt/event line
- · Dedicated status bit for each interrupt line
- Generation of up to 24 (or 23 for Cat.1 and Cat.2 devices) software event/interrupt requests
- Detection of external signals with a pulse width lower than the APB2 clock period.
 Refer to the electrical characteristics section of the STM32L1xxxx datasheet for details on this parameter.

10.2.2 Block diagram

The block diagram is shown in Figure 32.

238/911 DocID15965 Rev 15

Figure 32. External interrupt/event controller block diagram

10.2.3 Wakeup event management

The STM32L1xxxx is able to handle external or internal events in order to wake up the core (WFE). The wakeup event can be generated by either:

- enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
 the SEVONPEND bit in the Cortex[®]-M3 system control register. When the MCU
 resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ
 channel pending bit (in the NVIC interrupt clear pending register) have to be cleared.
- or configuring an external or internal EXTI line in event mode. When the CPU resumes
 from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
 IRQ channel pending bit as the pending bit corresponding to the event line is not set.

To use an external line as a wakeup event, refer to Section 10.2.4: Functional description.

10.2.4 Functional description

To generate the interrupt, the interrupt line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the interrupt request by writing a '1 to the corresponding bit in the interrupt mask register. When the selected edge occurs on the external interrupt line, an interrupt request is generated. The pending bit corresponding to the interrupt line is also set. This request is reset by writing a '1 into the pending register.

