P525/ 2 CHEMISTRY Paper 2 July/Aug.2023 2½hours

KAMOTA MOCK EXAMINATIONS 2023

Uganda Advanced Certificate of Education CHEMISTRY

PAPER 2

2 hours 30 minutes

INSTRUCTIONS TO THE CANDIDATES

Answer **five** questions including **three** questions in section **A** and any **two** questions in section **B**.

Write the answers in the answer booklet provided.

Mathematical tables and graph papers are provided.

Begin each question on a fresh page.

Non-programmable scientific electronic calculators may be used.

Illustrate your answers with equations where applicable.

Indicate the questions in the grid below.

Where necessary use C = 12, O = 16, H = 1, Ca = 40, Ag = 108, P = 31

Question			Total
Marks			

- 1. (a) (i) Define the term **colligative property**. (01mark)
 - (ii) State the **colligative properties** of a solution. (02marks)
 - (b) (i) Describe how molecular mass of cane sugar can be determine using one of the colligative properties. (06marks)
 - (ii) State limitations of the method used. (02marks)
 - (c) The table below shows the freezing points of various solutions of cane sugar in solvent **X**.

Mass of cane sugar (g/1000g of solvent X)	26	42	66	78	118	148	173
Freezing point. (°C)	5.11	4.87	4.51	4.33	3.73	3.28	2.91

- (i) Plot a graph of freezing against mass of cane sugar and use graph to determine the: (03marks)
- (ii) Freezing point of solvent X. (01marks)
- (iii) Freezing point constant for solvent **X**. (02marks) (RMM of cane sugar = 342)
- (d) State and explain how the freezing points of the solution would be affected if cane sugar associates in solution **X**. (03marks)
- **2.** (a) Define the terms
 - (i) conductivity

(01mark)

(ii) molar conductivity

(01mark)

(b) The table below shows the molar conductivities of an aqueous solution of sodium hydroxide.

Concentration (moldm ⁻³)	0.01	0.04	0.09	0.16	0.25	0.36
Molar conductivity Λ/ Scm ² mol ⁻¹	238	230	224	217	210	202

		concentration.	$(3\frac{1}{2}$ marks)			
	(ii)	Use the graph to determine the molar conductivit	-			
	(iii)	hydroxide at infinity dilution. Explain the shape of the graph.	(01mark) (03marks)			
(c)	(i)	Draw a sketch graph to show the change in the co				
(•)	(1)		•			
		with volume of ammonia solution when 25cm ³ of acid is titrated with 0.1M ammonia solution.	t 0.1M methanoic			
			(02marks)			
	(ii)	Explain the shape of the graph.	(3½marks)			
(d)	2.661 ionic	conductivity of a saturated solution of silver phosp 1x 10 ⁻⁶ Scm ⁻¹ and that of pure water is 1.519 x 10 ⁻⁶ S conductivities of silver ions and phosphate ions at °C are 61.9 and 240Scm ² mol ⁻¹ respectively. Calcul	Scm ⁻¹ . If the molar infinite dilution			
	(i)	solubility of silver phosphate in molesdm ⁻³ at 25°	C.(2½marks)			
	(ii)	solubility product of silver phosphate at 25°C and	d state its units (2½marks)			
(a)	Write	e the formulae of the chlorides of group(IV) element	nts.			
			(3½marks)			
(b)		the condition (s) and write equation for the reaction aration of	on to show the			
	(i)	the chloride of carbon	(2½marks)			
	(ii)	the chloride of silicon	(2½marks)			
	(iii)	the chlorides of lead	(05marks)			
(c)	Describe the reactions of chlorides of group elements with water.					
			(6½marks)			
		©2023 KAMOTA MOCK EXAMINATIONS				

Plot a graph of molar conductivity against square root of

(i)

3.

4. Complete the following equations and in each case outline a mechanism for the reaction.

(a)
$$CH_3$$
 HI H_2 $C = CH$ CH_3 Br_2 / H_2O CH_3 CH_3

(c)
$$(CH_3)_3C$$
- Br
$$\xrightarrow{EtO^-/EtOH}$$
 heat (04marks)

(d)
$$H^+$$
 (05marks)

(e)
$$OH$$
 + $CH_3 COC1$ OH^- (04marks)

SECTION B

Answer two questions from this section.

- 5. (a) State
- (i) Partition law. (01mark)
- (ii) **three** limitations of the law. (1½marks)
- (b) (i) Describe an experiment to determine the partition coefficient of phenol between ethoxyethane and water. (06marks)
 - (ii) State **two** advantages and **one** disadvantage of using ethoxyethane in this experiment. (1½marks)
- (c) An aqueous solution contains 10g of phenol per litre. When 100cm³ of this solution is shaken with 20cm³ ofethoxyethane, the athoxyethane

	•	r extracts 0.8g of phenol. Calculate mass of pem ³ of the aqueous layer was shaken with	phenol extracted when
	(i)	50cm ³ of the ethoxyethane.	(04marks)
	(ii)	two successive 25cm ³ portions of the ethor	xyethane .
			(04marks)
(d)	Com	nment on your results in (c) above.	(02marks)
coml	oustion	and Y contains carbon, hydrogen and nitrogen, 2.325g of Y yielded 6.6g of carbon dioxidas measured at 15°C and at 760mmHg.	• •
(a)	Calc	culate the empirical formula of Y.	(05marks)
(b)	Whe	en compound was steam distilled at 97°C and	l 755mmHg, the
	press	llate contained 45.49 % by mass of Y . (The sure of water at this temperature 650mmHg).	•
(c)	Y bu	arns with a sooty flame. Write the structural t	formula and name of Y . (01mark)
(d)	Whe	en Y treated with a mixture of concentrated h	ydrochloric acid and

- (d) sodium nitrite solution at 5°C, compound **Z** was formed. State what would be observed and write equation for the reaction when
 - (i) an alkaline solution of naphthalen – 2- ol was added to \mathbf{Z} .

(02marks)

Z was warmed with acidified water. (ii) (02marks)

(e) Using equations only show how

6.

(i) **Y** is prepared from benzene (03marks)

(ii) **Z** can be converted to benzoic acid. (03marks)

- 7. Explain each of the following observations
 - (a) When hydrogen peroxide was added to lead(II) sulphide, black solid turned white. (04marks)
 - (b) Beryllium oxide is insoluble in nitric acid but soluble in sodium hydroxide solution. (04mark)
 - (c) Carbonic acid (H₂CO₃) and sulphurous acid (H₂SO₃) are both weak acid but they exhibit different bond angles. (04marks)
 - (d) When ammonia solution was added to nickel(II) sulphate solution, green precipitate was formed which dissolved to form a blue solution.

 (04marks)
 - (e) When methanoic acid was warmed with Fehling's solution a red precipitate was formed whereas with ethanoic acid, there was no observable change. (04marks)
- **8.** (a) Soap can be prepared from a vegetable oil or animal fat.
 - (i) Distinguish between a vegetable oil and animal fat. (02marks)
 - (ii) Briefly plain how vegetable oil can be extracted from a natural source. (03marks)
 - (b) (i) Briefly describe how soap can be prepared from a vegetable oil. State the chemical principles involved. (3½marks)
 - (ii) Write equation for the reaction leading to the formation of soap.

 (01mark)
 - (iii) State one advantage and one disadvantage of using soap.
 - (iv) Briefly expain he cleansing action of soap. (2½marks)
 - (v) Explain why an aqueous solution of soap is aklaine.

(02 mrks)

(c) (i) Distinguish between soap and non- soapy detergent.

(02mark)

(ii)	Starting from duodecan- 1-	ol write equations to s	show how you
	would prepare a detergent.		(02marks)

(iv) State one advantage and one disadvantage of using a detergent in washing. (02mark)

END