

MILLNVLRICI IVCLVNDGAG KHSEGRERTK TYSLNSRGYF 40
RKERGARRSK ILLVNTKGKD EPHIGHGDFG LVAELFDSTR 80
THTNRKEPDM NKVKLFSTVA HGNKSARRKA YNGSRRNIFS 120
RRSFDFKRNT E VTEKPGAKMF WNNFLVKMNG APQNTSHGSK 160
AQEIMKEACK TLPFTQNIVH ENCDRMVIQN NLCFGKCISL 200
HVPNQQDRRN TCSHCLPSKF TLNHLTNCT GSKNVVKVVM 240
MVEECTCEAH KSNFHQTAQF NMDTSTTLHH 270

Figure 1. Deduced amino acid sequence of Xenopus cerberus protein. SEQ ID NO:1.

Figure 2. Nucleotide sequence of the full-length cerberus DNA derived from the *Xenopus* organizer. The sense strand is on top (in the 5' to 3' direction) and the antisense strand on the bottom line (on the opposite direction). SEQ ID NO:2.

GAATTCCAG CAAGTCGCTC AGAACACTG CAGGGTCTAG ATATCATACA ATGTTACTAA CTTAAGGGTC GTTCAGCGAG TCTTGTGAC GTCCCAGATC TATAGTATGT TACAATGATT	60
ATGTAACTCAG GATCTGTATT ATCGTCTGCC TTGTGAATGA TGGAGCAGGA AAACACTCAG TACATGAGTC CTAGACATAA TAGCAGACGG AACACTTACT ACCTCGCTC TTTGTGAGTC	120
AAGGACGAGA AAGGACAAAA ACATATTCAC TAAACAGCAG AGGTTACTTC AGAAAAGAAA TCCCTGCTCT TTCCCTGTTT TGTATAAGTG AATTGTCGTC TCCAATGAAG TCTTTCTTT	180
GAGGAGCACG TAGGAGCAAG ATTCTGCTGG TGAATACTAA AGGTCTTGAT GAACCCCCACA CTCCTCGTGC ATCCTCGTTC TAAGACGACC ACTTATGATT TCCAGAACTA CTTGGGGTGT	240
TTGGGCATGG TGATTTTCGC TTAGTAGCTG AACTATTTGA TTCCACCAGA ACACATACAA AACCCGTACC ACTAAAAGCG AATCATCGAC TTGATAAACT AAGGTGGTCT TGTGTATGTT	300
ACAGAAAAGA GCCAGACATG AACAAAGTCA AGCTTTCTC AACAGTTGCC CATGGAAACA TGTCTTTCT CGGTCTGTAC TTGTTTCAGT TCGAAAAGAG TTGTCAACGG GTACCTTTGT	360
AAAGTGCAAG AAGAAAAGCT TACAATGGTT CTAGAAGGAA TATTTTCCT CGCCGTTCTT TTTCACGTTTC TTCTTTTCGA ATGTTACCAA GATCTTCCTT ATAAAAGGA GCGGCAAGAA	420
TTGATAAAAG AAATACAGAG GTTACTGAAA AGCCTGGTGC CAAGATGTT TC GGAAACAATT AACTATTTTC TTTATGTCTC CAATGACTTT TCGGACCACG GTTCTACAAG ACCTTGTAA	480
TTTTGGTTAA AATGAATGGA GCCCCACAGA ATACAAGCCA TGGCAGTAAA GCACAGGAAA AAAACCAATT TTACTTACCT CGGGGTGTCT TATGTTCGGT ACCGTCAATT CGTGTCTTT	540
TAATGAAAGA AGCTTGCAAA ACCTTGTTTT TCACTCAGAA TATTGTACAT GAAAAGTGTG ATTACTTTCT TCGAACGTTT TGGAACAAAA AGTGAAGTCTT ATAACATGTA CTTTGACAC	600
ACAGGATGGT GATACTGAAAC AATCTGTGCT TTGGTAAATG CATCTCTC CATGTTCCAA TGTCTTACCA CTATGTCTTG TTAGACACGA AACCAATTAC GTAGAGAGAG GTACAAGGTT	660
ATCAGCAAGA TCGACGAAAT ACTTGTCCC ATTGCTTGCC GTCCAAATT ACCCTGAACC TAGTCGTTCT AGCTGCTTTA TGAACAAGGG TAACGAACGG CAGGTTAAA TGGGACTTGG	720
ACCTGACGCT GAATTGTACT GGATCTAAGA ATGTTAGTAA GGTTGTCTG ATGGTAGAGG TGGACTGCGA CTTAACATGA CCTAGATTCT TACATCATT CCAACAGTAC TACCATCTCC	780
AATGCACGTG TGAAGCTCAT AAGAGCAACT TCCACCAAC TGCACTGTTT AACATGGATA TTACGTGCAC ACTTCGAGTA TTCTCGTTGA AGGTGGTTG ACGTGTCAAA TTGTACCTAT	840
CATCTACTAC CCTGCACCAT TAAAGGACTG CCATACAGTA TGGAAATGCC CTTTTGTTGG GTAGATGATG GGACGTGGTA ATTTCTGAC GGATGTCTAC ACCTTTACGG GAAAACAACC	900
AATATTGTT ACATACTATG CATCTAAAGC ATTATGTTGC CTTCTATTTC ATATAACCAC TTATAAACAA TGTATGATAC GTAGATTCG TAATACAACG GAAGATAAAG TATATTGGTG	960
ATGGAATAAG GATTGTATGA ATTATAATTA ACAAAATGGCA TTTTGTGTA CATGCAAGAT TACCTTATTC CTAACATACT TAATATTAAT TGTTTACCGT AAAACACATT GTACGTTCTA	1020

CTCTGTTCCA	TCAGTTGCAA	GATAAAAGGC	AATATTGTT	TGACTTTTT	TCTACAAAAT	1080
GAGACAAGGT	AGTCAACGTT	CTATTTCCG	TTATAAACAA	ACTGAAAAAA	AGATGTTTA	
GAATACCCAA	ATATATGATA	AGATAATGGG	GTCAAAAATG	TTAAGGGGTA	ATGTAATAAT	1140
CTTATGGGTT	TATATACTAT	TCTATTACCC	CAGTTTGAC	AATTCCCCAT	TACATTATTA	
AGGGACTAAG	TTTGCCCAGG	AGCAGTGACC	CATAACAACC	AATCAGCAGG	TATGATTTCAC	1200
TCCCTGATTC	AAACGGGTCC	TCGTCACTGG	GTATTGTTGG	TTAGTCGTCC	ATACTAAATG	
TGGTCACCTG	TTTAAAAGCA	AAACATCTTAT	TGGTTGCTAT	GGGTTACTGC	TTCTGGGCAA	1260
ACCAGTGGAC	AAATTTCGT	TTGTAGAATA	ACCAACGATA	CCCAATGACG	AAGACCCGTT	
AATGTGTGCC	TCATAGGGGG	GTTAGTGTGT	TGTGTA	CTGTTACTGC	TTTATTTCAT	1320
TTACACACGG	AGTATCCCCC	CAATCACACA	ACACATGACT	TATTTAACAT	AAATAAAAGTA	
TGTTACAAAA	AAAAAAA					
ACAATGTTT	TTTTTTTT					

Fig. 2. (Continuation page 2, SEQ ID NO:2).

卷之三

MSRTRKVDSL LLLAIPGLAL LLLPNAYCAS CEPVRIPMCK SMPWNMTKMP NHLHHSTQAN 60
AIALAIEQFEG LLTTECSQDL LFFLCAMYAP ICTIDFQHEP IKPCKSVcer ARAGCEPILI 120
KYRHTWPESL ACEELPVYDR GVCISPEAIV TVEQGTD SMP DFSMDSNNGN CGSGREHCKC 180
KPMKATQKTY LKNNNYNYVIR AKVKEVKVKC HDATAIVEVK EILKSSLVNI PKDTVTLYTN 240
SGCLCPQLVA NEEYIIMGYE DKERTRLLL V EGSLAEKWRD RLAKKVKRWD QKLRRPRKSK 300
DPVAPIPNKN SNSRQARS

Figure 3. Deduced amino acid sequence of Xenopus frazzled protein. SEQ ID NO:3.

Figure 4. Nucleotide sequence of the full-length frazzled cDNA derived from the Xenopus organizer. The sense strand of the DNA on top (5' to 3' direction) and the antisense strand on the bottom line (opposite direction). SEQ ID NO:4.

GAATTCCCTT TCACACAGGA CTCCCTGGCAG AGGTGAATGG TTAGCCCTAT GGATTTGGTT CTTAAGGGAA AGTGTGTCCT GAGGACCGTC TCCACTTACC AATCGGGATA CCTAAACCAA	60
TGTTGATTT GACACATGAT TGATTGCTT CAGATAGGAT TGAAGGACTT GGATTTTAT ACAACAAAAA CTGTGTACTA ACTAACGAAA GTCTATCCTA ACTTCCTGAA CCTAAAAATA	120
CTAATTCTGC ACTTTAAAT TATCTGAGTA ATTGTTCATT TTGTATTGGA TGGGACTAAA GATTAAGACG TGAAAATTA ATAGACTCAT TAACAAAGTAA AACATAACCT ACCCTGATT	180
GATAAACTTA ACTCCTTGCT TTTGACTTGC CCATAAACTA TAAGGTGGGG TGAGTTGTAG CTATTTGAAT TGAGGAACGA AAACTGAACG GGTATTTGAT ATTCCACCCCC ACTCAACATC	240
TTGCTTTAC ATGTGCCAG ATTTCCCTG TATTCCCTGT ATTCCCTCTA AAGTAAGCCT AACGAAAATG TACACGGTC TAAAAGGGAC ATAAGGGACA TAAGGGAGAT TTCATTGGA	300
ACACATACAG GTTGGGCAGA ATAACAATGT CTCGAACAAG GAAAGTGGAC TCATTACTGC TGTGTATGTC CAACCCGTCT TATTGTTACA GAGCTTGTTC CTTTCACCTG AGTAATGACG	360
TACTGGCCAT ACCTGGACTG GCGCTTCTCT TATTACCAA TGCTTACTGT GCTTCGTGTG ATGACCGGTA TGGACCTGAC CGCGAAGAGA ATAATGGTT ACGAATGACA CGAACACAC	420
AGCCTGTGCG GATCCCCATG TGCAAATCTA TGCCATGGAA CATGACCAAG ATGCCCAACC TCGGACACGC CTAGGGTAGAC ACGTTACCTT GTACTGGTTC TACGGGTTGG	480
ATCTCCACCA CAGCACTCAA GCCAATGCCA TCCTGGCAAT TGAACAGTTT GAAGGTTTGC TAGAGGTGGT GTCGTGAGTT CGGTTACGGT AGGACCGTTA ACTTGTCTAA CTTCCAAACG	540
TGACCACTGA ATGTAGCCAG GACCTTTGT TCTTTCTGTG TGCCATGTAT GCCCCCATT ACTGGTAGCT TACATCGTC CTGAAAACA AGAAAGACAC ACGGTACATA CGGGGGTAAA	600
GTACCATCGA TTTCCAGCAT GAACCAATTAA AGCCTTGCAA GTCCGTGTGC GAAAGGGCCA CATGGTAGCT AAAGGTGCTA CTTGGTTAAT TCGGAAOGTT CAGGCACACG CTTTCCCGGT	660
GGGCCGGCTG TGAGCCCATT CTCATAAAAGT ACCGGCACAC TTGGCCAGAG AGCCTGGCAT CCCGGCCGAC ACTCGGGTAA GAGTATTTCA TGGCCGTGTG AACCGGTCTC TCGGACCGTA	720
GTGAAGAGCT GCCCCGTATAT GACAGAGGAG TCTGCATCTC CCCAGAGGCT ATCGTCACAG CACTTCTCGA CGGGCATATA CTGTCCTCTC AGACGTAGAG GGGTCTCCGA TAGCAGTGTG	780
TGGAACAAGG AACAGATCA ATGCCAGACT TCTCCATGGA TTCAAACAAT GGAAATTGCG ACCTTGTCTCC TTGTCTAAGT TACGGTCTGA AGAGGTACCT AAGTTGTTA CCTTTAACGC	840
GAAGCGGCAG GGAGCACTGT AAATGCAAGC CCATGAAGGC AACCCAAAAG ACGTATCTCA CTTCGCCGTC CCTCGTGACA TTTACGTTCG GGTACTTCCG TTGGGTTTC TGCATAGAGT	900
AGAATAATTA CAATTATGTA ATCAGAGCAA AAGTGAAGA GGTGAAGTG AAATGCCACG TCTTATTAAT GTTAATACAT TAGTCTCGTT TTCACTTCTC CCACTTCAC TTTACGGTGC	960
ACGCAACAGC AATTGTGGAA GTAAAGGAGA TTCTCAAGTC TTCCCTAGTG AACATTCTA TGCCTGTGCG TTAACACCTT CATTCCCTCT AAGAGTTCAAG AAGGGATCAC TTGTAAGGAT	1020

0 1 2 3 4 5 6 7 8 9

AAGACACAGT GACACTGTAC ACCAACTCAG GCTGCTTGTG CCCCCAGCTT GTGCCAATG TTCTGTGTCA CTGTGACATG TGGTTGAGTC CGACGAACAC GGGGGTCGAA CAACGGTTAC	1080
AGGAATACAT AATTATGGGC TATGAAAGACA AAGAGCGTAC CAGGCTTCTA CTAGTGGAAAG TCCTTATGTA TTAATACCCG ATACTTCTGT TTCTCGCATG GTCCGAAGAT GATCACCTTC	1140
GATCCTTGGC CGAAAAATGG AGAGATCGTC TTGCTAAGAA AGTCAAGCGC TGGGATCAAA CTAGGAACCG GCTTTTACCG TCTCTAGCAG AACGATTCTT TCAGTTCGCG ACCCTAGTTT	1200
AGCTTCGACG TCCCAGGAAA AGCAAAGACC CCGTGGCTCC AATTCCAAC AAAAACAGCA TCGAAGCTGC AGGGTCCTT TCGTTCTGG GGCACCGAGG TTAAGGGTTG TTTTGTGCGT	1260
ATTCCAGACA AGCGCGTAGT TAGACTAACG GAAAGGTGTA TGGAAACTCT ATGGACTTTG TAAGGTCTGT TCGCGCATCA ATCTGATTGC CTTTCCACAT ACCTTGAGA TACCTGAAAC	1320
AAACTAAGAT TTGCATTGTT GGAAGAGCAA AAAAGAAATT GCACTACAGC ACGTTATATT TTGATTCTA AACGTAACAA CCTTCTCGTT TTTTCTTTAA CGTGATGTCG TGCAATATAAA	1380
CTATTGTTA CTACAAGAAG CTGGTTAGT TGATTGTAGT TCTCCTTCC TTCTTTTTT GATAACAAAT GATGTTCTTC GACCAATCA ACTAACATCA AGAGGAAAGG AAGAAAAAAA	1440
TTATAACTAT ATTGCACGT GTTCCCAGGC AATTGTTTA TTCAACTTCC AGTGACAGAG AATATTGATA TAAACGTGCA CAAGGGTCCG TTAACAAAAT AAGTTGAAGG TCACTGTC	1500
CAGTGACTGA ATGTCTCAGC CAAAGAACG TCAATTCAATT TCTGATCAAC TAATGGTGAC GTCACTGACT TACAGAGTCG GATTCTTCG AGTTAAGTAA AGACTAGTTG ATTACCACTG	1560
AAGTGTGTTGA TACTTGGGGA AAGTGAACTA ATTGCAATGG TAAATCAGAG AAAAGTTGAC TTCACAAACT ATGAACCCCT TTCACTTGAT TAACGTTACC ATTTAGTCTC TTTCAACTG	1620
CAATGTTGCT TTTCTGTAG ATGAACAAGT GAGAGATCAC ATTTAAATGA TGATCACTTT GTTACAACGA AAAGGACATC TACTTGTCA CTCTCTAGTG TAAATTACT ACTAGTGAAA	1680
CCATTTAATA CTTTCAGCAG TTTTAGTTAG ATGACATGTA GGATGCACCT AAATCTAAAT GGTAAATTAT GAAAGTCGTC AAAATCAATC TACTGTACAT CCTACGTGGA TTTAGATTTA	1740
ATTTTATCAT AAATGAAGAG CTGGTTAGA CTGTATGGTC ACTGTTGGGA AGGTAAATGC TAAAATAGTA TTTACTTCTC GACCAATCT GACATACCAAG TGACAACCCCT TCCATTTACG	1800
CTACTTGTC AATTCTGTT TAAAAATTGC CAAATAAAT ATTAAGTCCT AAATAAAAAA GATGAAACAG TTAAGACAAA ATTTTTAACG GATTTATTTA TAATTCAAGGA TTTATTTTTT	1860
AAAAAAAAAA AAAAA TTTTTTTTT TTTT	

Fig. 4. (Continuation page 2, SEQ ID NO:4).

MLLLFRAlPM LLLGLMVLQT DCEIAQYYID EEEPPGTVIA VLSQHSIFNT TDIPATNFRL 60
 MKQFNNSLIG VRESDGQLSI MERIDREQIC RQSLHCNLAL DVVSFSKGHF KLLNVKVEVR
 DINDHSPHFP SEIMHVEVSE SSSVGTRIPL EIAIDEDVGS NSIQNFQISN NSHFSIDVLT 120
 RADGVKYADL VLMRELDREI QPTYIMELLA MDGGVPSLSC TAVVNIRVLD FNDNSPVFER
 STIAVDLVED APLGYLLLEL HATDDDEGVN GEIVYGFSTL ASQEVRQLFK INSRTGSVTL 180
 EGQVDFETKQ TYEFEVQAQD LGPNPLTATC KVTVHILDVN DNTPAITITP LTTVNAGVAY 240
 IPETATKENF IALISTTDRA SGSGNGQVRCT LYGEHEHKLQ QAYEDSYMIV TTSTLDRENI 300
 AAYSLTVVAE DLGFPSLKTK KYYTVKVSDE NDNAPVFSKP QYEASILENN APGSYITTVI 360
 ARDSDDSDQNG KVNYRLVDAK VMGQSLTTFV SLDAADSGVLR AVRSLDYEKL KQLDFEIEAA 420
 DNGIPQLSTR VQLNLRIVDQ NDNCPVITNP LLNNNGSGEVL LPISAPQNYL VFQLKAEDSD 480
 EGHNSQLFYT ILRDPSRLFA INKESGEVFL KKQLNSDHSE DLSIVVAVYD LGRPSLSTNA 540
 TVKFILTDSE PSNVEVVILQ PSAEEQHQID MSIIFIAVLA GGCALLLLAI FFVACTCKKK 600
 AGEFKQVPEQ HGTCNEERLL STPSPQSVCSS SLSQSESQL SINTESENCS VSSNQEQQHQO 660
 TGIKHSISVP SYHTSGWHLD NCAMSISGHS HMGHISTKVQ WAKEIVTSMT VTLILVENQK 720
 RRALSSQCRH KPVLNTQMNQ QGSDMPITIS ATESTRVQKM GTAHCNMKRA IDCLTL 780
 840

09062326 - 07/21/02

Figure 5. Deduced amino acid sequence of the Xenopus PAPC (paraxial protocadherin) protein. It encodes a member of the cadherin family of transmembrane proteins that has dorsalizing activity when constructs are injected into Xenopus embryos. SEQ ID NO:5.

Figure 6. Nucleotide sequence of the full-length PAPC cDNA derived from the *Xenopus* organizer. The sense strand of the DNA is shown in the top line (in the 5' to 3' direction), and the bottom line shows the antisense strand (opposite orientation). SEQ ID NO:6.

GAATTCCAG AGATGAACTC CTTGAGATTG TTTAAATGA CTGCAGGTCT GGAAGGGATT	60
CTTAAGGGTC TCTACTTGAG GAACTCTAAC AAAATTTACT GACGTCCAGA CCTTCCTAAC	
ACATTGCCAC ACTGTTCTA GGCAATGAAAA AACTGCAAGT TTCAACTTTG TTTTGGTGC	120
TGTAACGGTG TGACAAAGAT CCGTACTTTT TTGACGTTCA AAGTTGAAAC AAAAACCACG	
AACTTGATT CTTCAAGATG CTGCTCTCT TCAGAGCCAT TCCAATGCTG CTGTTGGAC	180
TTGAAACTAA GAAGTTCTAC GACGAAGAGA AGTCTCGGTAGGTTACGAC GACAACCCCTG	
TGATGGTTT ACAAACAGAC TGTGAAATTG CCCAGTACTA CATAGATGAA GAAGAACCCC	240
ACTACCAAAA TGTTGTCTG ACACCTAAC GGGTCATGAT GTATCTACTT CTTCTGGGG	
CTGGCACTGT AATTGCACTG TTGTCACAAC ACTCCATATT TAACACTACA GATATACCTG	300
GACCGTGACA TTAACGTCAAC AACAGTGTG TGAGGTATAA ATTGTGATGT CTATATGGAC	
CAACCAATTG CCGTCTAACG AAGCAATTAA ATAATTCCCT TATCGGAGTC CGTGAGAGTG	360
GTTGGTTAAA GGCAAGATTAC TTCGTTAAAT TATTAAGGGAA ATAGCCTCAG GCACTCTCAC	
ATGGGCAGCT GAGCATCATG GAGAGGATTG ACCGGGAGCA AATCTGCAGG CAGTCCCTTC	420
TACCCGTGCA CTCGTAGTAC CTCTCTAAC TGGCCCTCGT TTAGACGTCC GTCAGGGAAAG	
ACTGCAACCT GGCTTTGGAT GTGGTCAGCT TTCCCAAAGG ACACCTCAAG CTTCTGAACG	480
TGACGTTGGA CCGAAACCTA CACCAAGTCGA AAAGGTTCC TGTGAAGTTC GAAGACTTGC	
TGAAAGTGGG GGTGAGAGAC ATTAATGACC ATAGCCCTCA CTTTCCAGT GAAATAATGC	540
ACTTTCACCT CCACCTCTG TAATTACTGG TATCGGGAGT GAAAGGGTCA CTTTATTACG	
ATGTGGAGGT GTCTGAAAGT TCCTCTGTGG GCACCAAGGAT TCCTTAGAA ATTGCAATAG	600
TACACCTCCA CAGACTTCA AGGAGACACC CGTGGTCCTA AGGAAATCTT TAACTGTTATC	
ATGAAGATGT TGGGTCCAAC TCCATCCAGA ACTTTCAAGAT CTCAAATAAT AGCCACTTCA	660
TACTTCTACA ACCCAGGTTG AGGTAGGTCT TGAAAGTCTA GAGTTATTA TCGGTGAAGT	
GCATTGATGT GCTAACCAAGA GCAGATGGGG TGAAATATGC AGATTTAGTC TTAATGAGAG	720
CGTAACCTACA CGATTGGTCT CGTCTACCCCC ACTTTATACG TCTAAATCAG AATTACTCTC	
AACTGGACAG GGAAATCCAG CCAACATACA TAATGGAGCT ACTAGCAATG GATGGGGGTG	780
TTGACCTGTC CCTTTAGGTC GGTTGTATGT ATTACCTCGA TGATCGTTAC CTACCCCCAC	
TACCATCACT ATCTGGTACT GCAGTGGTTA ACATCCGAGT CCTGGACTTT AATGATAACA	840
ATGGTAGTGA TAGACCATGA CGTCACCAAT TGTAGGCTCA GGACCTGAAA TTACTATTGT	
GCCCCAGTGTGTT TGAGAGAAGC ACCATTGCTG TGGACCTAGT AGAGGATGCT CCTCTGGGAT	900
CGGGTCACAA ACTCTCTCG TGGTAACGAC ACCTGGATCA TCTCCTACGA GGAGACCCCTA	
ACCTTTGTT GGAGTTACAT GCTACTGACG ATGATGAAGG AGTGAATGGA GAAATTGTTT	960
TGAAAACAA CCTCAATGTA CGATGACTGC TACTACTTCC TCACTTACCT CTTAACAAA	
ATGGATTCAAG CACTTTGGCA TCTCAAGAGG TACGTCAAGCT ATTTAAAATT AACTCCAGAA	1020
TACCTAACGTC GTGAAACCGT AGAGTTCTCC ATGCAGTCGA TAAATTTAA TTGAGGTCTT	

CTGGCAGTGT TACTCTTCAA GGCCAAAGTTG ATTTGAGAC CAAAGCAGACT TACGAATTG GACCGTCACA ATGAGAACCTT CCGGTTCAAC TAAAACCTCG GTTCGTCTGA ATGCTTAAAC	1080
AGGTACAAGC CCAAGATTTG GGCCCCAACC CACTGACTGC TACTTGAAA GTAAGTGTTC TCCATGTTCG GGTTCTAAC CGGGGGTTGG GTGACTGACG ATGAACATTT CATTGACAAG	1140
ATATACTTGA TGTAATGAT AATACCCCCAG CCATCACTAT TACCCCTCTG ACTACTGTAA TATATGAACT ACATTTACTA TTATGGGTC GGTAGTGATA ATGGGAGAC TGATGACATT	1200
ATGCAGGAGT TGCCTATATT CCAGAAACAG CCACAAAGGA GAACTTATA GCTCTGATCA TACGTCTCA ACGGATATAA GGTCTTGTC GGTGTTCCCT CTTGAAATAT CGAGACTAGT	1260
GCACTACTGA CAGAGCCTCT GGATCTAATG GACAAGTTCG CTGTACTCTT TATGGACATG CGTGATGACT GTCTCGGAGA CCTAGATTAC CTGTTCAAGC GACATGAGAA ATACCTGTAC	1320
AGCACTTAA ACTACAGCAA GCTTATGAGG ACAGTTACAT GATAGTTACC ACCTCTACTT TCGTGAAATT TGATGTCGTT CGAATACTCC TGTCAATGTA CTATCAATGG TGAGAGATGAA	1380
TAGACAGGGA AAACATAGCA GCGTACTCTT TGACAGTAGT TGCAGAAGAC CTTGGCTTCC ATCTGTCCTT TTTGTATCGT CGCATGAGAA ACTGTCATCA ACGTCTCTG GAACCGAAGG	1440
CCTCATTGAA GACCAAAAAG TACTACACAG TCAAGGTTAG TGATGAGAAAT GACAATGCAC GGAGTAACCTT CTGGTTTTC ATGATGTC AGTTCCAATC ACTACTCTTA CTGTTACGTG	1500
CTGTATTTTC TAAACCCAG TATGAAGCTT CTATTCTGGA AAATAATGCT CCAGGCTCTT GACATAAAAG ATTTGGGTC ATACTTCGAA GATAAGACCTT TTTATTACGA GGTCCGAGAA	1560
ATATAACTAC AGTGATAGCC AGAGACTCTG ATAGTGATCA AAATGGCAA GTAAATTACA TATATTGATG TCACTATCGG TCTCTGAGAC TATCACTAGT TTTACCGTTT CATTAAATGT	1620
GACTTGTGGA TGCAAAAGTG ATGGGCCAGT CACTAACAAAC ATTTGTTCTT CTTGATGCGG CTGAACACCT ACGTTTCAC TACCCGGTCA GTGATTGTTG TAAACAAAGA GAACTACGCC	1680
ACTCTGGAGT ATTGAGAGCT GTTAGGTCTT TAGACTATGA AAAACTTAAA CAACTGGATT TGAGACCTCA TAATCTCGA CAATCCAGAA ATCTGATACT TTTGAATT GTGACCTAA	1740
TTGAAATTGA AGCTGCAGAC AATGGGATCC CTCAACTCTC CACTCGCGTT CAACTAAATC AACTTTAATC TCGACGCTCG TTACCCCTAGG GAGTTGAGAG GTGAGCGCAA GTGATTAG	1800
TCAGAAATGT TGATCAAAAT GATAATTGCC CTGTGATAAC TAATCCTCTT CTTAATAATG AGTCTTATCA ACTAGTTTA CTATTAACGG GACACTATTG ATTAGGAGAA GAATTATTAC	1860
GCTCGGGTGA AGTTCTGCTT CCCATCAGCG CTCCTCAAAA CTATTTAGTT TTCCAGCTCA CGAGCCCAC TCAAGACGAA GGGTAGTCGC GAGGAGTTT GATAATCAA AAGGTCGAGT	1920
AAGCCGAGGA TTCAGATGAA GGGCACAACT CCCAGCTGTT CTATACCATA CTGAGAGATC TTCGGCTCCT AAGTCTACTT CCCGTGTTGA GGGTCGACAA GATATGGTAT GACTCTCTAG	1980
CAAGCAGATT GTTTGCCATT AACAAAGAAA GTGGTGAAAGT GTTCCGTAAA AAACAATTAA GTTCGTCTAA CAAACGGTAA TTGTTCTTT CACCACTTCA CAAGGACTTT TTTGTTAATT	2040
ACTCTGACCA TTCAGAGGAC TTGAGCATAG TAGTTGCACT GTATGACTTG GGAAGACCTT TGAGACTGGT AAGTCTCCTG AACTCGTATC ATCAACGTCA CATACTGAAC CCTTCTGGAA	2100
CATTATCCAC CAATGCTACA GTTAAATTCA TCCTCACCGA CTCTTTCCCT TCTAACGTTG GTAATAGGTG GTTACGATGT CAATTAAAGT AGGAGTGGCT GAGAAAAGGA AGATTGCAAC	2160

Fig. 6. (Continuation page 2, SEQ ID NO:6).

090925-00000000

AAGTCGTTAT TTTGCACCA TCTGCAGAAG AGCAGCACCA GATCGATATG TCCATTATAT TTCAGCAATA AAACGTTGGT AGACGTCTC TCGTCGTGGT CTAGCTATAC AGGTAATATA	2220
TCATTGCGAGT GCTGGCTGGT GGTTGTGCTT TGCTACTTTT GGCCATCTTT TTGTTGGCCT AGTAACGTCA CGACCGACCA CCAACACGAA ACGATGAAAA CCGGTAGAAA AAACACCGGA	2280
GTACTTGTAAGA AAAGAAAAGCT GGTGAATTAA ACCAGGTACC TGAACAACAC GGAACATGCA CATGAACATT TTTCTTCGA CCACCTAAAT TCGTCCATGG ACTTGTGTTG CCTTGTACGT	2340
ATGAAGAACG CCTGTTAACG ACCCCATCTC CCCAGTGGT CTCTCTCTC TTGTCAGT TACTTCTTGC GGACAATTG TGTTGAGAG GGGTCAGCCA GAGAAGAAGA AACAGAGTCA	2400
CTGAGTCATG CCAACTCTCC ATCAAATCTG AATCTGAGAA TTGCAGCGTG TCCTCTAAC GACTCAGTAC GGTTGAGAGG TAGTTATGAC TTAGACTCTT AACGTCGCAC AGGAGATTGG	2460
AAGAGCAGCA TCAGCAAACA GGCATAAAAGC ACTCCATCTC TGTACCATCT TATCACACAT TTCTCGTCGT AGTCGTTGT CCGTATTCG TGAGGTAGAG ACATGGTAGA ATAGTGTGTA	2520
CTGGTTGGCA CCTGGACAAT TGTGCAATGA GCATAAGTGG ACATTCTCAC ATGGGGCACA GACCAACCGT GGACCTGTTA ACACGTTACT CGTATTCAAC TGTAAGAGTG TACCCGTGT	2580
TTAGTACAAA GGTACAGTGG GCAAAGGAGA TAGTGACTTC AATGACAGTG ACTCTGATAC AATCATGTTT CCATGTCACC CGTTCTCTC ATCACTGAAG TTACTGTCAC TGAGACTATG	2640
TAGTGGAGAA TCAGAAAAGA AGAGCATTGA GCAGCCAATG CAGGCACAAG CCAGTGCTCA ATCACCTCTT AGTCTTCTC TCTCGTAAC CGTCGGTTAC GTCCGTGTTG GTCACGAGT	2700
ATACACAGAT GAATCAGCAG GGTTCCGACA TGCCGATAAC TATTCAGCC ACCGAATCAA TATGTGTCTA CTTAGTCGTC CCAAGGCTGT ACGGCTATTG ATAAAGTCGG TGGCTTAGTT	2760
CAAGGGTCCA GAAAATGGGA ACTGCACATT GCAATATGAA AAGGGCTATA GACTGTCTTA GTTCCCAGGT CTTTACCCCT TGACGTGTAA CGTTATACTT TTCCCGATAT CTGACAGAAT	2820
CTCTGTAGCT CCTGTATATT ACAATACCTA CCATGCAAGA ATGCCAACC TGCACATACC GAGACATCGA GGACATATAA TGTTATGGAT GGTACGTTCT TACGGATTGG ACGTGTATGG	2880
GAACCATACC CTTAGAGACC CTTATTACCA TATCAATAAT CCTGTTGCTA ATCGGATGCA CTTGGTATGG GAATCTCTGG GAATAATGGT ATAGTTATTA GGACAAAGAT TACCTACGT	2940
GGCGGAATAT GAAAGAGATT TAGTCAACAG AAGTGCAACG TTATCTCCGC AGAGATCGTC CCGCCTTATA CTTTCTCTAA ATCAGTTGTC TTCACGTTGC AATAGAGGGC TCTCTAGCAG	3000
TAGCAGATAC CAAGAATTCA ATTACAGTCC GCAGATATCA AGACAGCTTC ATCCTTCAGA ATCGTCTATG GTTCTTAAGT TAATGTCAGG CGTCTATAGT TCTGTGAAAG TAGGAAGTCT	3060
AATTGCTACA ACCTTTTAAT CATTAGGCAT GCAAGTGAGA ATGCACAAAG GCAAGTGCTT TTAACGATGT TGGAAAATTA GTAATCCGTA CGTTCACTCT TACGTGTTTC CGTTCACGAA	3120
TAGCATGAAA GCTAAATATA TGGAGTCTCC CCTTTCCCTC TGATGGATGG GGGGAGACAC ATCGTACTTT CGATTTATAT ACCTCAGAGG GGAAAGGGAG ACTACCTACC CCCCTCTGTG	3180
AGGACAGTGC ATAAATATAC AGCTGCTTTC TATTTGCATT TCACTGGGA ATTTTTGTT TCCTGTCAAG TATTTATATG TCGACGAAAG ATAAACGTAA AGTGAACCCCT TAAAAAACAA	3240
TTTTTACAT ATTTATTTT CCTGAATTGA ATGTGACATT GTCCTGTCAC CTAACTAGCA AAAAAAATGTA TAAATAAAAAA GGACTTAAC TACACTGTAA CAGGACAGTG GATTGATCGT	3300

Fig. 6. (Continuation page 3, SEQ ID NO:6).

ATTAATCCA CAGACCTACA GTCAAATATT TGAGGGCCCC TGAAACAGCA CATCAGTCAG
TAATTTAGGT GTCTGGATGT CAGTTATAA ACTCCCGGGG ACTTTGTCGT GTAGTCAGTC 3360

GACCTAAAGT GGCTTTTA CTTTAGCAG CTCCCTGGTC TGCCCTCTGT GTTAATCAGC
CTGGATTCAGCGA AAAATCGTC GAGGACCCAG ACGGGAGACA CAATTAGTCG 3420

CCCTGGTCAA GTCTGAGTA GGATCATGGC GTTTTATAT GCATCTCACC TACTTGAC
GGGACCAAGTT CAGGACTCAT CCTAGTACCG CAAAAATATA CGTAGAGTGG ATGAAACCTG 3480

GTGATTTACA CATAATAGGA AACGCTTGGT TTCAGTGAAG TCTGTGTGT ATATATTCTG
CACTAAATGT GTATTATCCT TTGCGAACCA AAGTCACTTC AGACACAAACA TATATAAGAC 3540

TTATATACAC GCATTTGTG TTTGTGTATA TATTCAAGT CCATTCAAGAT ATGTGTATAT
AATATATGTG CGTAAAACAC AAACACATAT ATAAAGTTCA GGTAAGTCTA TACACATATA 3600

AGTGCAGACC TTGTAAATTA AATATTCTGA TACTTTTCC TCAATAATA TTTAAAT
TCACGTCTGG AACATTTAAT TTATAAGACT ATGAAAAGG AGTTATTAT AAATTTA

Fig. 6. (Continuation page 4, SEQ ID NO:6).

0660 0660 0660 0660 0660 0660 0660 0660

MVCCGPGRML LGWAGLLVLA ALCLLQVPGA QAAACEPVRI PLCKSLPWNN TKMPNHLHHS 60
TQANAILAME QFEGLLGTHC SPDLLFFLCA MYAPICTIDF QHEPIKPCKS VCERARQGCE 120
PILIKYRHSHW PESLACDELP VYDRGVCISP EAIVTADGAD FPMDSSSTGHC RGASSERCKC 180
KPVRATQKTY FRNNNYNYVIR AKVKEVKMKC HDVTAVVEVK EILKASLVNI PRDTVNLYTT 240
SGCLCPPLTV NEEYVIMGYE DEERSRLLL EGSIAEKWKD RLGKKVKRWD MKLRHLGLGK 300
TDASDSTQNZ KSGRNSNPRP ARS.

Figure 7. Deduced amino acid sequence of mouse FRZB-1 protein. SEQ ID NO:7.

090225 074101

Figure 8. Nucleotide sequence of the full-length mouse FRZB-1 cDNA. SEQ ID NO:8.

AAGCCTGGGA CCATGGTCTG CTGCGGCCCG GGACGGATGC TGCTAGGATG GGCCGGGTIG TTCGGACCTT GGTACAGAC GACGCCGGC CCTGCCTACG ACGATCCTAC CGGGCCCAAC	60
CTAGTCTGG CTGCTCTCTG CCTGCTCCAG GTGCCCGGAG CTCAGGCTGC AGCCTGTGAG GATCAGGACC GACGAGAGAC GGACGAGGTC CACGGGCCTC GAGTCCGACG TCGGACACTC	120
CCTGTCCGCA TCCCCTGCTG CAAGTCCCTT CCCTGGAACA TGACCAAGAT GCCCAACCAC GGACAGGCGT AGGGCGACAC GTTCAGGGAA GGGACCTTGT ACTGGTTCTA CGGGTTGGTG	180
CTGCACCCACA GCACCCAGGC TAACGCCATC CTGGCCATGG AACAGTTCGA AGGGCTGCTG GACGTGGTGT CGTGGGTCCG ATTGCGGTAG GACCGGTACC TTGTCAAGCT TCCCAGCAC	240
GGCACCCACT GCAGCCCGGA TCTTCTCTTC TTCCTCTGTG CAATGTACGC ACCCATTTGC CCGTGGGTGA CGTCGGGCCT AGAAGAGAAC AGGAGACAC GTTACATGCG TGGTAAACG	300
ACCATCGACT TCCAGCACGA GCCCATCAAG CCCTGCAAGT CTGTGTGTGA GCGCGCCCGA TGGTAGCTGA AGGTCGTGCT CGGGTAGTTC GGGACGTTCA GACACACACT CGCGCGGGCT	360
CAGGGCTGCG AGCCCATTCT CATCAAGTAC CGCCACTCGT GGCCGGAAAG CTTGGCTGCG GTCCCGACGC TCAGGTAAGA GTAGTTCATG GCGGTGAGCA CCGGCCTTTC GAACCGGACG	420
GACGGAGCTGC CGGTGTACGA CCGCGGCGTG TGCATCTCTC CTGAGGCCAT CGTCACCGCG CTGCTCGACG GCCACATGCT GGCGCCGCAC ACGTAGAGAG GACTCCGGTA GCAGTGGCGC	480
GACGGAGCGG ATTTCTAT GGATTCAAGT ACTGGACACT GCAGAGGGGC AAGCAGCGAA CTGCCTCGCC TAAAAGGATA CCTAAGTTCA TGACCTGTGA CGTCTCCCCG TTCGTCGCTT	540
CGTGCCTAAAT GTAAGCCTGT CAGAGCTACA CAGAAGACCT ATTTCCGGAA CAATTACAAC GCAACGTTTA CATTGGACA GTCTCGATGT GTCTCTGGAA TAAAGGCTT GTTAATGTTG	600
TATGTCATCC GGGCTAAAGT TAAAGAGGTA AAGATGAAAT GTCATGATGT GACCGCCGTT ATACAGTAGG CCCGATTCA ATTTCTCCAT TTCTACTTTA CAGTACTACA CTGGCGGCAA	660
GTGGAAGTGA AGGAAATTCT AAAGGCATCA CTGGTAAACA TTCCAAGGGAA CACCGTCAAT CACCTTCACT TCCTTTAAGA TTCCGTAGT GACCATTGT AAGGTTCCCT GTGGCAGTTA	720
CTTTATACCA CCTCTGGCTG CCTCTGTCTT CCACTTACTG TCAATGAGGA ATATGTCATC GAAATATGGT GGAGACCGAC GGAGACAGGA GGTGAATGAC AGTTACTCCT TATACAGTAG	780
ATGGGCTATG AAGACGAGGA ACGTTCCAGG TTACTCTGG TAGAAGGCTC TATACTGAG TACCCGATAC TTCTGCTCCT TGCAAGGTCC AATGAGAACC ATCTTCCGAG ATATCGACTC	840
AAAGTGGAAAGG ATCGGCTTGG TAAGAAAGTC AAGCGCTGGG ATATGAAACT CCGACACCTT TTCACCTTCC TAGCCGAACC ATTCTTCAAG TTGCGACCC TATACTTTGA GGCTGTGGAA	900
GGACTGGGTA AAACTGATGC TAGCGATTCC ACTCAGAATC AGAAGTCTGG CAGGAACCTC CCTGACCCAT TTTGACTACG ATCGCTAAGG TGAGTCTTAG TCTTCAGACC GTCTTGAGA	960

FOURTY-SEVEN

AATCCCCGGC CAGCACGCAG CTAATCCTG AAATGTAAAA GGCCACACCC ACGGACTCCC TTAGGGCGG GTCGTGCGTC GATTAGGAC TTTACATTT CCGGTGTGGG TGCGTGAGGG	1020
TTCTAAGACT GGCGCTGGTG GACTAACAAA GGAAAACCGC ACAGTTGTGC TCGTGACCGA AAGATTCTGA CCGCGACCAC CTGATTGTT CCTTTGGCG TGTCAACACG AGCACTGGCT	1080
TTGTTTACCG CAGACACCGC GTGGCTACCG AAGTTACTTC CGGTCCCCCTT TCTCCTGCTT AACAAATGGC GTCTGTGGCG CACCGATGGC TTCAATGAAG GCCAGGGGAA AGAGGACGAA	1140
CTTAATGGCG TGGGGTTAGA TCCTTTAATA TGTTATATAT TCTGTTTCAT CAATCACGTG GAATTACCGC ACCCCAATCT AGGAAATTAT ACAATATATA AGACAAAGTA GTTAGTGCAC	1200
GGGACTGTTC TTTTGCAACC AGAATAGTAA ATTAATATG TTGATGCTAA GGTTCTGTA CCCTGACAAG AAAACGTTGG TCTTATCATT TAATTATAC AACTACGATT CCAAAGACAT	1260
CTGGACTCCC TGGGTTTAAT TTGGTGTTC GTACCCGTAT TGAGAATGCA ATGTTTCATG GACCTGAGGG ACCCAAATTA AACCCACAAGA CATGGGACTA ACTCTTACGT TACAAAGTAC	1320
TAAAGAGAGA ATCCTGGTCA TATCTCAAGA ACTAGATATT GCTGTAAGAC AGCCTCTGCT ATTCTCTCT TAGGACCAAGT ATAGAGTTCT TGATCTATAA CGACATTCTG TCGGAGACGA	1380
GCTGCGCTTA TAGTCTTGTG TTTGTATGCC TTTGTCCATT TCCCTCATGC TGTGAAAGTT CGACGCGAAT ATCAGAACAC AAACATACGG AAACAGGTAA AGGGAGTACG ACACTTCAA	1440
ATACATGTTT ATAAAGGTAG AACGGCATTG TGAAATCAGA CACTGCACAA GCAGAGTAGC TATGTACAAA TATTTCATC TTGCCGTAAA ACTTTAGTCT GTGACGTGTT CGTCTCATCG	1500
CCAACACCAAG GAAGCATTG TGAGGAAACG CCACACAGCA TGACTTATTT TCAAGATTGG GGTTGTGGTC CTTCGTAAAT ACTCCTTTGC GGTGTGTCGT ACTGAATAAA AGTTCTAAC	1560
CAGGCAGCAA AATAAATAGT GTTGGGAGCC AAGAAAAGAA TATTTGCCT GGTTAAGGGG GTCCGTCGTT TTATTTATCA CAACCCTCGG TTCTTTCTT ATAAAACGGA CCAATTCCCC	1620
CACACTGGAA TCAGTAGCCC TTGAGCCATT AACAGCAGTG TTCTCTGGC AAGTTTTGA GTGTGACCTT AGTCATCGGG AACTCGGTAA TTGTCGTCAC AAGAAGACCG TTCAAAAAC	1680
TTTGTTCATA AATGTATTCA CGAGCATTAG AGATGAACCT ATAACTAGAC ATCTGTTGTT AAACAAGTAT TTACATAAGT GCTCGTAATC TCTACTTGAA TATTGATCTG TAGACAACAA	1740
ATCTCTATAG CTCTGCTTCC TTCTAAATCA AACCCATTGT TGGATGCTCC CTCTCCATTC TAGAGATATC GAGACGAAGG AAGATTTAGT TTGGGTAAACA ACCTACGAGG GAGAGGTAAG	1800

09903225 024104

ATAAATAAAT TTGGCTGCT GTATTGGCCA GGAAAAGAAA GTATTAAAGT ATGCATGCAT 1860
TATTATTTA AACCGAACGA CATAACCGGT CCTTTCTTT CATAATTCA TACGTACGTA
GTGCACCAGG GTGTTATTTA ACAGAGGTAT GTAACTCTAT AAAAGACTAT AATTCACAGG 1920
CACGTGGTCC CACAATAAAT TGCTCCATA CATTGAGATA TTTCTGATA TTAAATGTCC
ACACGGAAAT GTGCACATTT GTTTACTTTT TTTCTCCTT TTGCTTGAG CTTGTGATTT 1980
TGTGCCTTTA CACGTGTAAA CAAATGAAAA AAAGAAGGAA AACGAAACCC GAACACTAAA
TGGTTTTGG TGTGTTATG TCTGTATTTT GGGGGTGGG TAGGTTTAAG CCATTGCACA 2040
ACCAAAAC ACCACAAATAC AGACATAAAA CCCCCCACCC ATCCAAATTC GGTAACGTGT
TTCAAGTTGA ACTAGATTAG AGTAGACTAG GCTCATGGC CTAGACATTA TGATTGAAT 2100
AAGTTCAACT TGATCTAATC TCATCTGATC CGAGTAACCG GATCTGTAAT ACTAAACTTA
TTGTGTTGT TAATGCTCCA TCAAGATGTC TAATAAAAGG AATATGGTG TCAACAGAGA 2160
AACACAAACAA ATTACGAGGT AGTTCTACAG ATTATTTCC TTATACCAAC AGTTGTCTCT
CGACAAACAAC AACAAA
GCTGTTGTTG TTGTTT

MVCGSPGGML LLRAGLLALA ALCLLRVPGA RAAACEPVRI PLCKSLPWNM TKMPNHLHHS 60
TQANAILAIE QFEGLLGTHC SPDLLFFLCA MYAPICTIDF QHEPIKPCKS VCERARQGCE 120
PILIKYRHSH PENLACEELP VYDRGVCISP EAIVTADGAD FPMDSNGNC RGASSERCKC 180
KPIRATQKTY FRNNNYNYVIR AKVKEIKTKC HDVTAVVEVK EILKSSLVNI PRDTVNLYTS 240
SGCLCPPLNV NEEYIIMGYE DEERSRLLL V EGSI AEKW KD RLGKKV KRWD MKLRHLGLSK 300
SDSSNSDSTQ SQKSGRNSNP RQARN.

Figure 9. Dduced amino acid sequence of human FRZB-1 protein. SEQ ID NO:9.

0900000000 - 074104

Figure 10. Nucleotide sequence of the full-length human FRZB-1 cDNA. SEQ ID NO:10.
 This sequence was assembled from public ESTs from the Genbank database
 (accession numbers: H18848, R63748, W38677, W44760, H38379 and N71244).

GGCGGAGCGG GCCTTTGGC GTCCACTGCG CGGCTGCACC CTGCCCATC TGCCGGGATC CGCCTCGCC CGGAAAACCG CAGGTGACGC GCCGACGTGG GACGGGGTAG ACGGCCCTAG	60
ATGGTCTGCG GCAGCCCGGG AGGGATGCTG CTGCTGCGGG CGGGCTGCT TGCCCTGGCT TACCAAGACGC CGTCGGGCC TCCCTACGAC GACGACGCC GGCCGACGA ACGGGACCGA	120
GCTCTCTGCC TGCTCCGGGT GCCCGGGGCT CGGGCTGCAG CCTGTGAGCC CGTCCGCATC CGAGAGACGG ACGAGGCCA CGGGCCCCGA GCCCGACGTC GGACACTCGG GCAGGCGTAG	180
CCCTGTGCA AGTCCCTGCC CTGGAACATG ACTAAAGATGC CCAACCACCT GCACCACAGC GGGGACACGT TCAGGGACGG GACCTTGAC TGATTCTACG GGTTGGTGGA CGTGGTGTG	240
ACTCAGGCCA ACGCCATCCT GGCCATCGAG CAGTCGAAG GTCTGCTGGG CACCCACTGC TGAGTCCGGT TGCGGTAGGA CCGGTAGCTC GTCAAGCTTC CAGACGACCC GTGGGTGACG	300
AGCCCCGATC TGCTCTTCTT CCTCTGTGCC ATGTACGCGC CCATCTGCAC CATTGACTTC TCGGGGCTAG ACGAGAAAGAA GGAGACACGG TACATGCGCG GGTAGACGTG GTAAGTGAAG	360
CAGCACGAGC CCATCAAGCC CTGTAAGTCT GTGTGCGAGC GGGCCCGCA GGGCTGTGAG GTCGTGCTCG GGTAGTTCGG GACATTAGA CACACGCTCG CCCGGCCGT CCCGACACTC	420
CCCATACTCA TCAAGTACCG CCACTCGTGG CCGGAGAACCC TGGCCTGCGA GGAGCTGCCA GGGTATGAGT AGTTCATGGC GGTGAGCACC GGCCTCTTGG ACCGGACGCT CCTCGACGGT	480
GTGTACGACA GGGCGTGTG CATCTCTCCC GAGGCCATCG TTACTGCGGA CGGAGCTGAT CACATGCTGT CCCCCCACAC GTAGAGAGGG CTCCGGTAGC AATGACGCC GCCTCGACTA	540
TTTCCTATGG ATTCTAGTAA CGGAAACTGT AGAGGGCAA GCAGTGAACG CTGTAAATGT AAAGGATACC TAAGATCATT GCCTTTGACA TCTCCCCGTT CGTCACTTGC GACATTACCA	600
AAGCCTATTA GAGCTACACA GAAGACCTAT TTCCGGAACA ATTACAACCA TGTCATTGG TTCGGATAAT CTCGATGTGT CTTCTGGATA AAGGCCTTGT TAATGTTGAT ACAGTAAGCC	660
GCTAAAGTTA AAGAGATAAA GACTAAGTGC CATGATGTGA CTGCAGTAGT GGAGGTGAAG CGATTCAAT TTCTCTATTT CTGATTACG GTACTACACT GACGTCACTCA CCTCCACTTC	720
GAGATTCTAA AGTCCTCTCT GGTAAACATT CCACGGGACA CTGTCAACCT CTATACCAGC CTCTAAGATT TCAGGAGAGA CCATTGTAA GGTGCCCTGT GACAGTTGGA GATATGGTGG	780
TCTGGCTGCC TCTGCCCTCC ACTTAATGTT AATGAGGAAT ATATCATCAT GGGCTATGAA AGACCGACGG AGACGGGAGG TGAATTACAA TTACTCCTTA TATAGTAGTA CCCGATACTT	840

GATGAGGAAC GTTCCAGATT ACTCTGGTG GAAGGCCTCA TAGCTGAGAA GTGGAAGGAT 900
 CTACTCCTTG CAAGGTCTAA TGAGAACAC CTTCCGAGAT ATCGACTCTT CACCTTCCTA

 CGACTCGGTA AAAAGTTAA GCGCTGGGAT ATGAAGCTTC GTCATCTTGG ACTCAGTAAA 960
 GCTGAGCCAT TTTTCATT CGCGACCCTA TACTTCGAAG CAGTAGAAC TGAGTCATT

 AGTGATTCTA GCAATAGTGA TTCCACTCAG AGTCAGAAGT CTGGCAGGAA CTCGAACCCC 1020
 TCACTAAGAT CGTTATCACT AAGGTGAGTC TCAGTCTTCA GACCGTCCCTT GAGCTTGGGG

 CGGCAAGCAC GCAACTAAAT CCCGAAATAC AAAAGTAAC ACAGTGGACT TCCTATTAAG 1080
 GCCGTTCGTG CGTTGATTAA GGGCTTTATG TTTTCATTG TGTCACCTGA AGGATAATTG

 ACTTACTTGC ATTGCTGGAC TAGCAAAGGA AAATTGCACT ATTGCACATC ATATTCTATT 1140
 TGAATGAACG TAACGACCTG ATCGTTCCCT TTTAACGTGA TAACGTGTAG TATAAGATAA

 GTTTACTATA AAAATCATGT GATAACTGAT TATTACTTCT GTTTCTCTTT TGGTTTCTGC 1200
 CAAATGATAT TTTTAGTACA CTATTGACTA ATAATGAAGA CAAAGAGAAA ACCAAAGACG

 TTCTCTCTTC TCTCAACCCC TTTGTAATGG TTTGGGGCA GACTCTTAAG TATATTGTGA 1260
 AAGAGAGAAG AGAGTTGGGG AAACATTACC AAACCCCCGT CTGAGAATTG ATATAACACT

 GTTTCTATT TCACTAATCA TGAGAAAAAC TGTTCTTTG CAATAATAAT AAATTAAACA 1320
 CAAAGATAA AGTGATTAGT ACTCTTTTG ACAAGAAAAC GTTATTATTA TTTAATTGT

 TGCTGTTACC AGAGCCTCTT TGCTGAGTCT CCAGATGTTA ATTTACTTTG TGCAACCCAA 1380
 ACGACAATGG TCTCGGAGAA ACGACTCAGA GGTCTACAAT TAAATGAAAG ACGTGGGGTT

 TTGGGAATGC AATATTGGAT GAAAAGAGAG GTTTCTGGTA TTCACAGAAA GCTAGATATG 1440
 AACCCCTACG TTATAACCTA CTTTTCTCTC CAAAGACCCT AAGTGTCTTT CGATCTATAC

 CCTTAAAACA TACTCTGCCG ATCTAATTAC AGCCTTATTG TTGTATGCCT TTTGGGCATT 1500
 GGAATTTGT ATGAGACGGC TAGATTAAATG TCGGAATAAA AACATACGGA AAACCCGTAA

 CTCCTCATGC TTAGAAAGTT CCAAATGTTT ATAAAGGTAA AATGGCAGTT TGAAGTCAAA 1560
 GAGGAGTACG AATCTTCAA GGTTTACAAA TATTCACATT TTACCGTCAA ACTTCAGTTT

 TGTCACATAG GCAAAGCAAT CAAGCACCAG GAAGTGTGTTA TGAGGAAACA ACACCCAAGA 1620
 ACAGTGTATC CGTTCTGTTA GTTCGTGGTC CTTCACAAAT ACTCCTTGT TGTGGTTCT

 TGAATTATTT TTGAGACTGT CAGGAAGTAA AATAAATAGG AGCTTAAGAA AGAACATTTT 1680
 ACTTAATAAA AACTCTGACA GTCCTTCATT TTATTTATCC TCGAATTCTT TCTTGTAAAA

 GCCTGATTGA GAAGCACAAC TGAAACCAGT AGCCGCTGGG GTGTTAATGG TAGCATTCTT 1740
 CGGACTAACT CTTCGTGTG ACTTTGGTCA TCGGCGACCC CACAATTACC ATCGTAAGAA

 CTTTTGGCAA TACATTGAT TTGTTCATGA ATATATTAAT CAGCATTAGA GAAATGAATT 1800
 GAAAACCGTT ATGTAACACTA AACAAAGTACT TATATAATTA GTCGTAATCT CTTTACTTAA

 ATAACCTAGAC ATCTGCTGTT ATCACCATAG TTTGTTTAA TTTGCTTCCT TTTAAATAAA 1860
 TATTGATCTG TAGACGACAA TAGTGGTATC AAAACAAATT AAACGAAGGA AAATTTATTT

 CCCATTGGTG AAAGTCAAAA AAAAAAAA AAA
 GGGTAACCAC TTTCAGTTT TTTTTTTTT TTT

09032020 102410