Fast Synthesis of High-Quality Power and Temperature Traces of Multiprocessor Systems

Ivan,¹ Diana,² Petru,¹ and Zebo¹

¹ Linköping University
² Carnegie Mellon University

September 2015

Power & Temperature

- 42
- Fundamental

Multiprocessors

- Complex
- Uncertain

Uncertainty

- Aging
- Workload
- Process variation

Life Off Chip

Hard

Life On ChipTM

Easier

Life On ChipTM

- Actual
- Specific

Solutions

- Adaptive
- Custom-built

Strategies

- Reactive
- Proactive

Prediction

Machine learning

Learning

Need data

Real Data

- Expensive
- Unavailable
- Inappropriate

Simulation Data

Infeasible

Our Goal

 Obtain plenty of power and temperature data in no time

Target Audience

You

Synthetic Data

- Profuse
- Convenient
- Representative

Methodology

- 1. Data acquisition
- 2. Data synthesis

Data Acquisition

- Reference arrivals
- Reference workloads

Reference Arrivals

Logging & monitoring

Reference Workloads

- Real programs
- Record & replay

Data Synthesis

- 1. Traffic
- 2. Schedule
- 3. Power
- 4. Temperature

Traffic

- Burstiness
- Self-similarity
- · Long-range dependence

(Leland et al., 1994)

(Riedi et al., 1999)

Schedule

- Given
- Swappable

Power

- Compose
- No simulation

Temperature

Compute

Data Synthesis

- 1. Traffic
- 2. Schedule
- 3. Power
- 4. Temperature

Toolchain

Up and running

Conclusion

Synthetic data for fun and profit

Thank you! Questions?