

Detección de neumonía a partir de radiografías de tórax (CXR)

Mario Ubierna San Mamés

Máster universitario en Ciencia de Datos - Universitat Oberta de Catalunya Área de la medicina

Jordi de la Torre Gallart

06/2022

i

Esta obra está sujeta a una licencia de Reconocimiento-NoComercial-SinObraDerivada 3.0 España de Creative Commons

FICHA DEL TRABAJO FINAL

Título del trabajo:	Detección de neumonía a partir de radiografías de tórax (CXR)	
Nombre del autor:	Mario Ubierna San Mamés	
Nombre del consultor/a:	Jordi de la Torre Gallart	
Nombre del PRA:	Jordi de la Torre Gallart	
Fecha de entrega (mm/aaaa):	06/2022	
Titulación:	Máster universitario en Ciencia de Datos	
Área del Trabajo Final:	Área Medicina (TFM-Med)	
Idioma del trabajo:	Castellano	
Palabras clave	Redes neuronales convolucionales, radiografía de tórax, neumonía.	

Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de aplicación, metodología, resultados i conclusiones del trabajo.

La finalidad de este trabajo es la construcción de un modelo de deep learning, que nos permita determinar si a partir de radiografías de tórax (CXR) un paciente presenta una neumonía.

Aunque las redes neuronales artificiales aparecen por primera vez en 1958, cuando apareció el perceptrón, se han ido mejorando las diferentes propuestas hasta tal punto que desde hace 10 años hasta día de hoy son imprescindibles en nuestra sociedad gracias al elevado rendimiento que proporcionan. Dentro de las redes neuronales, las redes neuronales convolucionales (CNN) han adquirido una gran importancia en los últimos años, debido al alto nivel de precisión que son capaces de alcanzar en tareas de clasificación de imágenes.

Para poder lograr el objetivo del proyecto, se ha hecho uso de un elevado número de radiografías de tórax, éstas se han preprocesado y posteriormente se han introducido a la red neuronal convolucional con el objetivo de clasificar las mismas.

Gracias a las más de 25000 radiografías y el modelo generado se ha conseguido determinar si un paciente padece una neumonía con una elevada precisión, permitiendo así dar un pequeño paso en el avance biotecnológico.

Abstract (in English, 250 words or less):

The purpose of this work is the construction of a deep learning model, which allows us to determine if a patient has pneumonia from chest radiographs (CXR).

Although artificial neural networks appear for the first time in 1958, when the perceptron appeared, the different proposals have been improving to such an extent that from 10 years ago to the present day they are essential in our society thanks to the high performance they provide. Within neural networks, convolutional neural networks (CNN) have gained great importance in recent years, due to the high level of precision they are capable of achieving in image classification tasks.

To achieve the objective of the project, a large number of chest radiographs have been used, these have been preprocessed and subsequently entered into the convolutional neural network to be able to classify them.

Thanks to the more than 25,000 chest radiographs and the generated model, it has been possible to determine with great precision if a patient suffers from pneumonia, thus allowing a small step in biotechnological progress to be taken.

Índice

1. Introducción	1
1.1 Contexto y justificación del Trabajo	1
1.2 Motivación personal	2
1.3 Objetivos del Trabajo	3
1.4 Enfoque y método seguido	
1.5 Planificación del Trabajo	5
1.6 Breve sumario de productos obtenidos	
1.7 Breve descripción de los otros capítulos de la memoria	
2. Resto de capítulos	
3. Conclusione's	
4. Glosario	
5. Bibliografía	
6. Anexos	

Lista de figuras

Ilustración 1 - (a) radiografía paciente normal, (b) radiografía	paciente con
neumonía [6].	2
Ilustración 2 - Cross Industry Standard Process for Data Mining	(CRISP-DM)
[10].	4
Ilustración 3 - Planificación del proyecto.	6

1. Introducción

1.1 Contexto y justificación del Trabajo

La neumonía [1] es una infección del sistema respiratorio que afecta a los pulmones, es decir, puede generar una inflamación en los bronquiolos, bronquios y alvéolos pulmonares debido a microorganismos como hongos, bacterias y virus [2].

Aunque el término de neumonía está al día entre nosotros y sobre todo después del *SARS-CoV2* [3], no somos conscientes de la importancia de esta enfermedad. Según Rosario Menéndez, neumóloga de la Sociedad Española de Neumología y Cirugía Torácica (*SEPAR*) [4], cito textualmente: "*La neumonía* es la primera causa de muerte por infección, y no está reconocida como la enfermedad peligrosa que es ni por la comorbilidad que supone".

Indagando aún más en la problemática, la Organización Mundial de la Salud (*OMS*) informa que el 15% de las defunciones entre los niños menores de 5 años están causadas por esta enfermedad [5], por lo tanto, este grupo de edad junto con las personas mayores de 60 años son los más afectados, debido al bajo sistema inmune que se presenta a esas edades.

A nivel nacional la problemática continúa, ya que solo en el año 2017 se ingresaron a 120000 personas dejando a su paso más de 10000 muertes [4], entrando España en el top de los países de la Unión Europea con más fallecidos por neumonía.

Entendiendo cómo de importante es esta enfermedad y las consecuencias de la misma, se ve de forma clara que es de vital importancia poder detectar y diagnosticar cuanto antes la neumonía, con el objetivo de salvar vidas.

Hasta el día de hoy, el diagnóstico de enfermedades pulmonares se puede hacer a partir de radiografías, resonancias magnéticas, broncoscopias, pruebas de esfuerzo... Todas ellas se complementan, pero por norma general se suele hacer uso de radiografías del tórax, ya que éstas junto con la opinión de un experto es suficiente para diagnosticar si existe la enfermedad y en qué grado. En la siguiente imagen se puede observar la diferencia entre un paciente sano y uno con neumonía a partir de una radiografía de tórax:

Ilustración 1 - (a) radiografía paciente normal, (b) radiografía paciente con neumonía [6].

El inconveniente en el diagnóstico de la neumonía es que se realiza de forma manual, en otras palabras, se necesita que un médico analice la radiografía para poder determinar si una persona padece de dicha enfermedad o no.

Por otro lado, hay que tener en cuenta el costo económico que supone, según la Organización Mundial de la Salud (*OMS*) el costo de antibióticos y pruebas necesarias para el diagnóstico de la neumonía solamente en niños supondría invertir 109 millones de dólares al año [5].

Ante este contexto surge la idea de este proyecto, el hacer uso del *deep learning*, y más concretamente de redes neuronales convolucionales (*CNN*), para poder diagnosticar si una persona padece neumonía o no sin la necesidad de la intervención médica, consiguiendo así reducir la saturación del sistema sanitario, además de reducir los costes al ser capaces de identificar la neumonía con antelación.

1.2 Motivación personal

El motivo principal por el que escogí este trabajo es básicamente por el interés personal en el ámbito sanitario. Considero que a día de hoy, existen muchas enfermades tanto en países desarrollados como no desarrollados, en los que hacer uso de la tecnología permitirá resolver de una forma más eficiente el diagnóstico de enfermedades, consiguiendo así mejorar la calidad de vida de la sociedad.

Debido a ese motivo me parece de vital importancia proyectos como este o similares, en los que se busca investigar cómo afecta una enfermedad y a partir de redes neuronales poder diagnosticar si una persona padece neumonía o no, consiguiendo así reducir tiempos, o dicho en otras palabras, reducir el riesgo de mortalidad que conlleva una enfermedad.

Por otro lado, considero que el conocimiento que voy a obtener desarrollando este proyecto me va a aportar grandes cualidades para el mundo laboral, principalmente porque el *deep learning* está visible en una gran variedad de proyectos.

1.3 Objetivos del Trabajo

La hipótesis u objetivo principal de este trabajo es la generación de un modelo que permita determinar si una persona padece neumonía, a partir de radiografías de tórax.

Con el fin de alcanzar dicho objetivo, se plantean los siguientes objetivos secundarios:

- Entender la problemática de la neumonía, qué la causa, cuáles son las consecuencias, cómo se diagnostica a día de hoy, y el estado del arte en esta área.
- Obtener los datos del repositorio en *Kaggle* [7], entendiendo por datos las imágenes médicas en formato *DCM* [8].
- Realizar un preprocesado, para poder enviar a la red neuronal los datos que espera y mejorar la precisión de la misma.
- Creación de la red neuronal convolucional, encargada de recibir la imagen como entrada y capaz de clasificar si la persona padece neumonía.
- Evaluación del modelo, determinar cómo de bueno es para dar por alcanzado el objetivo principal.
- Búsqueda de los hiperparámetros idóneos, con el fin de mejorar la solución.
- Generar la documentación técnica del proyecto.
- Presentar y defender el proyecto ante un tribunal.

1.4 Enfoque y método seguido

A partir de las radiografías de tórax se quiere obtener un conocimiento para determinar si una persona tiene neumonía, para ello se va a hacer uso de una red neuronal convolucional, que use la imagen como entrada y nos devuelva si hay presencia de dicha enfermedad.

Tal y como se puede apreciar en el objetivo del proyecto, estamos en un caso de minería de datos. Por lo tanto, se va a hacer uso de la metodología *Cross Industry Standard Process for Data Mining (CRISP-DM)* [9], ya que ésta es una metodología estándar y es utilizada en un gran número de proyectos de minería de datos.

Cuando hablamos de metodología nos referimos a un conjunto de procedimientos para alcanzar un determinado objetivo, el hacer uso de una

metodología no garantiza el éxito pero sí disminuye las probabilidades de fracaso.

CRISP-DM se caracteriza porque sigue el ciclo de vida de un proyecto de minería de datos, permitiendo que podamos retroceder o avanzar de una fase a otra sin complicaciones, lo contrario a lo que sucede en un modelo de cascada. Además, se parte de la premisa que el proyecto no acaba cuando se encuentra un modelo idóneo, sino que éste hay que mantenerlo, documentarlo, mejorarlo ya que puede ser usado en proyecto futuros.

En esta metodología encontramos seis fases [10], la cuales se detallan a continuación:

Ilustración 2 - Cross Industry Standard Process for Data Mining (CRISP-DM) [10].

- Comprensión del negocio, en esta primera fase se busca definir los objetivos del proyecto. Para ello hay que analizar la situación en la que nos encontramos, lo que se busca resolver, qué tareas se van a realizar... Todo ello ha quedado definido en el apartado 1.3 de este documento.
- 2. Comprensión de los datos, posterior a la compresión del negocio tenemos que hacer frente a qué datos tenemos, cómo son los mismos... En nuestro caso, principalmente vamos a trabajar con imágenes, que éstas son las radiografías de tórax.
- 3. Preparación de los datos, una vez que ya tenemos las radiografías hay que prepararlas para poder introducirlas a la red neuronal, ya sean para normalizar el tamaño de las imágenes, mejorar el contraste o el brillo...

- 4. Modelado, en esta fase nos encargaremos de definir la red neuronal convolucional, la cual tiene que ser capaz de resolver el problema para así poder alcanzar nuestro objetivo, en nuestro caso, diagnosticar si el paciente padece neumonía.
- 5. Evaluación del modelo, en ella se busca saber cómo de bueno es nuestro modelo a partir de diferentes medidas. Si la calidad del modelo no es elevada, hay que retroceder a pasos anteriores.
- Despliegue, en esta fase el objetivo es poder transmitir de forma adecuada la conocimiento obtenido, es decir, explicar de forma comprensible cómo de bueno es el modelo generado para diagnosticar una neumonía.

1.5 Planificación del Trabajo

En el diagrama de *Gantt* que se presenta en la siguiente página, podemos apreciar el cómo se han definido las diferentes fases del proyecto junto con las fechas límites para entregar cada práctica de evaluación continua.

Cabe destacar que cada fase tiene un color diferente, el color azul representa las tareas definidas en la fase "Definición del proyecto", el color verde indica las tareas de la fase "Estado del arte", el color morado hace referencia a la fase "Diseño e implementación del trabajo", el color naranja nos indica "Redacción de la memoria" y el color granate es la fase de "Defensa".

Ilustración 3 - Planificación del proyecto.

1.6 Breve sumario de productos obtenidos

A completar a medida que avanza el proyecto, añadir los entregables de las PEC junto con la presentación de la defensa.

1.7 Breve descripción de los otros capítulos de la memoria

A completar a medida que avanza el proyecto.

2. Resto de capítulos

En estos capítulos, hay que describir los aspectos más relevante del diseño y desarrollo del proyecto, así como de los productos obtenidos. La estructuración de los capítulos puede variar según el tipo de Trabajo.

En cada apartado es muy importante describir las alternativas posibles, los criterios utilizados para tomar decisiones y la decisión tomada.

En caso de que corresponda, se incluirá un apartado de "Valoración económica del trabajo". Este apartado indicará los gastos asociados al desarrollo y mantenimiento del trabajo, así como los beneficios económicos obtenidos. Hacer un análisis final sobre la viabilidad del producto.

3. Conclusiones

Este capítulo tiene que incluir:

- Una descripción de las conclusiones del trabajo: Qué lecciones se han aprendido del trabajo?.
- Una reflexión crítica sobre el logro de los objetivos planteados inicialmente: Hemos logrado todos los objetivos? Si la respuesta es negativa, por qué motivo?
- Un análisis crítico del seguimiento de la planificación y metodología a lo largo del producto: Se ha seguido la planificación? La metodología prevista ha sido la adecuada? Ha habido que introducir cambios para garantizar el éxito del trabajo? Por qué?
- Las líneas de trabajo futuro que no se han podido explorar en este trabajo y han quedado pendientes.

4. Glosario

Definición de los términos y acrónimos más relevantes utilizados dentro de la Memoria.

5. Bibliografía

- [1] «Neumonía». https://medlineplus.gov/spanish/pneumonia.html (accedido 22 de febrero de 2022).
- [2] «Neumonía», Wikipedia, la enciclopedia libre. 22 de febrero de 2022. Accedido: 22 de febrero de 2022. [En línea]. Disponible en: https://es.wikipedia.org/w/index.php?title=Neumon%C3%ADa&oldid=14184 5195
- [3] «SARS-CoV-2», Wikipedia, la enciclopedia libre. 16 de febrero de 2022. Accedido: 23 de febrero de 2022. [En línea]. Disponible en: https://es.wikipedia.org/w/index.php?title=SARS-CoV-2&oldid=141723154
- [4] «La neumonía causa 10.000 muertes anuales, muchas de ellas prevenibles», El Independiente, 6 de noviembre de 2019. https://www.elindependiente.com/vida-sana/salud/2019/11/07/la-neumoniacausa-10-000-muertes-anuales-muchas-de-ellas-prevenibles/ (accedido 22 de febrero de 2022).
- [5] «Neumonía». https://www.who.int/es/news-room/fact-sheets/detail/pneumonia (accedido 22 de febrero de 2022).
- [6] L. Kong y J. Cheng, «Based on improved deep convolutional neural network model pneumonia image classification», *PLOS ONE*, vol. 16, n.º 11, p. e0258804, nov. 2021, doi: 10.1371/journal.pone.0258804.
- [7] «RSNA Pneumonia Detection Challenge». https://kaggle.com/c/rsna-pneumonia-detection-challenge (accedido 23 de febrero de 2022).
- [8] «DICOM», Wikipedia, la enciclopedia libre. 27 de enero de 2022. Accedido: 23 de febrero de 2022. [En línea]. Disponible en: https://es.wikipedia.org/w/index.php?title=DICOM&oldid=141264476
- [9] «CRISP-DM: La metodología para poner orden en los proyectos», Sngular, 2 de agosto de 2016. https://www.sngular.com/es/data-science-crisp-dmmetodologia/ (accedido 24 de febrero de 2022).
- [10] J. F. V. Rueda, «CRISP-DM: una metodología para minería de datos en salud», healthdataminer.com, 4 de noviembre de 2019. https://healthdataminer.com/data-mining/crisp-dm-una-metodologia-paramineria-de-datos-en-salud/ (accedido 24 de febrero de 2022).

6. Anexos

Listado de apartados que son demasiado extensos para incluir dentro de la memoria y tienen un carácter autocontienido (por ejemplo, manuales de usuario, manuales de instalación, etc.)

Dependiente del tipo de trabajo, es posible que no haya que añadir ningún anexo.