In [1]: import matplotlib.pyplot as plt
import seaborn as sns

In [4]: df=sns.load_dataset("car_crashes")
df

Out[4]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	СО
6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ
7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL
10	15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA
11	17.5	9.450	7.175	14.350	15.225	861.18	120.92	HI
12	15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID
13	12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL
14	14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN
15	15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA
16	17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS
17	21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY
18	20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA
19	15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME
20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD
21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI
23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	МО
26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT
27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
28	14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV
29	11.6	4.060	3.480	10.092	9.628	746.54	120.21	NH
30	11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ
31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН
36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	OK
37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI
40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	SC
41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT
45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY

```
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 51 entries, 0 to 50
        Data columns (total 8 columns):
         # Column
                              Non-Null Count Dtype
             total
                              51 non-null
                                               float64
             speeding
                              51 non-null
                                               float64
                                               float64
             alcohol
                              51 non-null
                              51 non-null
                                               float64
             not_distracted
             no_previous
                              51 non-null
                                               float64
             ins_premium ins_losses
                              51 non-null
                                               float64
                              51 non-null
                                               float64
             abbrev
                              51 non-null
                                               object
        dtypes: float64(7), object(1)
        memory usage: 3.3+ KB
```

In [6]: df.head(5)

Out[6]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA

Scatterplot

```
In [10]: sns.scatterplot(x='alcohol',y='total',data=df)
```

Out[10]: <Axes: xlabel='alcohol', ylabel='total'>

In []: Inference:from the plot we can say that as the percentage of alcohol-involved in crashes increases, the total number of crashes tends to increase slightly.

Barplot

```
In [29]: | sns.barplot(x='abbrev',y='total',data=df,hue='abbrev')
Out[29]: <Axes: xlabel='abbrev', ylabel='total'>
              25
                                                                            abbrev
                                                                             - AL
                                                                              AK
              20
                                                                                AZ
                                                                                AR
                                                                                CA
                                                                                CO
              15
                                                                                CT
           total
                                                                                DE
                                                                                DC
              10
                                                                                FL
                                                                                GA
                                                                                HI
                                                                                ID
               5
                                                                                IL
                                                                                IN
                                                                                IA
                                                                                KS
                 ALIKARCA CODDEGANDILINAK SIYAMI DILANING DING MINING DIDIRARS SIDI
                                                                                KY
                                                abbrev
                                                                                LA
                                                                                ME
                                                                                MD
                                                                                MA
                                                                                MN
                                                                                MO
                                                                                NE
                                                                                NV
                                                                                NH
                                                                                NJ
                                                                                NM
                                                                                NY
                                                                                NC
                                                                                ND
                                                                                OH
                                                                                OK
                                                                                OR
                                                                                PA
                                                                                RI
```

SC SD TN TX UT VA WA WA WA WY

```
In [ ]: Inference:from the plot we can say that
```

- 1) The barplot shows the mean total crashes for each state.
- 2) It provides an overview of the average crash count in different states.
- 3) You can identify states with higher or lower average crash rates.

Boxplot

```
In [26]: sns.boxplot(x='abbrev',y='total',data=df)
Out[26]: <Axes: xlabel='abbrev', ylabel='total'>
```

abbrev

```
In [ ]: Inference:from the plot we can say that
1) The boxplot shows the distribution of total crashes by state (abbreviations).
2) It identifies potential outliers with extreme values for some states.
3) It helps to understand the variation in crash counts across different states.
```

Lineplot

In [30]: sns.lineplot(x='total',y='alcohol',data=df,errorbar=None)

Out[30]: <Axes: xlabel='total', ylabel='alcohol'>

In []: Inference:from the plot we can say that as x-label total increases the y-label alcohol is not increasing proportionally, and there sudden dips in the plot

Distplot

```
In [17]: sns.distplot(df['alcohol'])
```

C:\Users\gurug\AppData\Local\Temp\ipykernel_9012\2398698211.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df['alcohol'])

Out[17]: <Axes: xlabel='alcohol', ylabel='Density'>

In []: Inference:from the plot we can say that the most common alcohol reading for drivers involved in fatal car accidents is between 4 & 5.

Relplot

In [19]: sns.relplot(x='alcohol',y='ins_premium',data=df,hue='abbrev')

Out[19]: <seaborn.axisgrid.FacetGrid at 0x15cbf0b3910>

In []: Inference:from the plot we can say thatt, here is a relationship between the alocohol and insurance_premium based on each state

```
In [20]: df['abbrev'].value_counts()
Out[20]: AL
                1
1
1
          NV
          NH
          NJ
                NC
          ND
          OK
          OR
          RI
          SC
          SD
          TN
          UT
          VT
          VA
          WV
          WI
NE
          ΑK
          ID
AZ
          CA
CO
CT
          DC
          FL
GA
          ΙL
          MS
IN
          IΑ
          KS
          KY
LA
          ME
          MD
          MΑ
          ΜI
          WY
          Name: abbrev, dtype: int64
```

Jointplot

In [23]: sns.jointplot(x='total',y='alcohol',data=df)

Out[23]: <seaborn.axisgrid.JointGrid at 0x15cc42c48b0>

In []: Inference:from the plot we can say that, the shape of the relationship between total & alcohol, as well as the distribution of each variable.

Correlation

In [27]: corr=df.corr()
corr

C:\Users\gurug\AppData\Local\Temp\ipykernel_9012\3182140910.py:1: FutureWarning: The default value of numeric_only in DataFram
e.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.
 corr=df.corr()

Out[27]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	-0.036011
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	-0.065928
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	-0.112547
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	-0.075970
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	-0.006359
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000	0.623116
ins losses	-0.036011	-0.065928	-0 112547	-0.075970	-0.006359	0.623116	1 000000

Heatmap

```
In [28]: sns.heatmap(corr,annot=True)
```

Out[28]: <Axes: >


```
In []: Inference:from the plot we can say that as
1) The heatmap displays the correlation between numerical variables.
2) Positive correlations (values closer to 1) between variables like "total," "alcohol," and "speeding" suggest that they tend to increase together.
3) Negative correlations (values closer to -1) between variables like "ins_premium" and "ins_losses" suggest an inverse relationship.
```

In []: