COMS 4771 Lecture 18

- 1. k-means clustering
- 2. Dictionary learning

Unsupervised classification / clustering

Unsupervised classification

- ▶ Input: $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(n)} \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ **Output**: function $f: \mathbb{R}^d \to \{1, 2, \dots, k\} =: [k]$.
- ► Typical semantics: hidden subpopulation structure.

Unsupervised classification / clustering

Unsupervised classification

- ▶ Input: $x^{(1)}, x^{(2)}, \dots, x^{(n)} \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ **Output**: function $f: \mathbb{R}^d \to \{1, 2, \dots, k\} =: [k]$.
- ► Typical semantics: hidden subpopulation structure.

Clustering

- ▶ Input: $x^{(1)}, x^{(2)}, \dots, x^{(n)} \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ Output: partitioning of $x^{(1)}, x^{(2)}, \dots, x^{(n)}$ into k groups.
- ▶ Often done via unsupervised classification;
 ⇒ "clustering" often synonymous with "unsupervised classification".
- ▶ Sometimes also have a "representative" $c_j \in \mathbb{R}^d$ for each $j \in [k]$ (e.g., average of the $x^{(i)}$ in jth group) \longrightarrow quantization.

Unsupervised classification / clustering

Clustering

- ▶ Input: $x^{(1)}, x^{(2)}, \dots, x^{(n)} \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ Output: partitioning of $x^{(1)}, x^{(2)}, \dots, x^{(n)}$ into k groups.
- ▶ Often done via unsupervised classification;
 ⇒ "clustering" often synonymous with "unsupervised classification".
- Sometimes also have a "representative" $c_j \in \mathbb{R}^d$ for each $j \in [k]$ (e.g., average of the $x^{(i)}$ in jth group) \longrightarrow quantization.

USES OF CLUSTERING: FEATURE REPRESENTATIONS

USES OF CLUSTERING: FEATURE REPRESENTATIONS

Histogram representation

- ▶ Cut up each $\boldsymbol{x}^{(i)} \in \mathbb{R}^d$ into different parts $\boldsymbol{x}^{(i,1)}, \boldsymbol{x}^{(i,2)}, \dots, \boldsymbol{x}^{(i,m)} \in \mathbb{R}^p$ (e.g., small patches of an image) . Cluster over all pathes
- lacktriangle Cluster all the parts $oldsymbol{x}^{(i,j)}$: get k representatives $oldsymbol{c}_1, oldsymbol{c}_2, \ldots, oldsymbol{c}_k \in \mathbb{R}^p$.

Represent $x^{(i)}$ by a histogram over $\{1, 2, ..., k\}$ based on assignments of $x^{(i)}$'s parts to representatives.

replace each path with a representative from k

choose the right representative(k representatives in total) at each path!!!

USES OF CLUSTERING: COMPRESSION

Quantization

Replace each $oldsymbol{x}^{(i)}$ with its representative

$$\boldsymbol{x}^{(i)} \; \mapsto \; \boldsymbol{c}_{f(\boldsymbol{x}^{(i)})}.$$

Example: quantization at image patch level.

k-MEANS CLUSTERING

k-means clustering

Problem

- ▶ Input: $x^{(1)}, x^{(2)}, \dots, x^{(n)} \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ Output: k representatives ("centers", "means") $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$.
- ▶ **Objective**: choose $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \min_{j \in [k]} \| m{x}^{(i)} - m{c}_j \|_2^2.$$

k-means clustering

Problem

- ▶ Input: $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(n)} \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ Output: k representatives ("centers", "means") $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$.
- ▶ **Objective**: choose $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \min_{j \in [k]} \|m{x}^{(i)} - m{c}_j\|_2^2.$$

Natural assignment function

$$f(\boldsymbol{x}) := rg \min_{j \in [k]} \| \boldsymbol{x} - \boldsymbol{c}_j \|_2^2.$$

k-means clustering

Problem

the input could be pathes

- ▶ Input: $x^{(1)}, x^{(2)}, \dots, x^{(n)} \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ Output: k representatives ("centers", "means") $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$.
- ▶ **Objective**: choose $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \min_{j \in [k]} \|m{x}^{(i)} - m{c}_j\|_2^2.$$

Natural assignment function

$$f(\boldsymbol{x}) := \operatorname*{arg\,min}_{j \in [k]} \| \boldsymbol{x} - \boldsymbol{c}_j \|_2^2.$$

NP-hard, even if k=2 or d=2.

k-means clustering for k=1

Problem: Pick $c \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \|oldsymbol{x}^{(i)} - oldsymbol{c}\|_2^2$$

k-means clustering for k=1

Problem: Pick $oldsymbol{c} \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^{n} \| m{x}^{(i)} - m{c} \|_2^2.$$

Solution: "bias/variance decomposition"

$$\frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}\|_{2}^{2} = \|\boldsymbol{\mu} - \boldsymbol{c}\|_{2}^{2} + \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}^{(i)} - \boldsymbol{\mu}\|_{2}^{2}$$

where ${\pmb \mu} = rac{1}{n} \sum_{i=1}^n {\pmb x}^{(i)}.$

k-means clustering for k=1

Problem: Pick $oldsymbol{c} \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \| \boldsymbol{x}^{(i)} - \boldsymbol{c} \|_2^2.$$

Solution: "bias/variance decomposition"

$$\frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}\|_{2}^{2} = \|\boldsymbol{\mu} - \boldsymbol{c}\|_{2}^{2} + \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}^{(i)} - \boldsymbol{\mu}\|_{2}^{2}$$

where ${\pmb \mu} = rac{1}{n} \sum_{i=1}^n {\pmb x}^{(i)}.$

Therefore, optimal choice for c is μ .

k-means clustering for k=1

Problem: Pick $c \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^{n} \| m{x}^{(i)} - m{c} \|_2^2.$$

Solution: "bias/variance decomposition"

$$\frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}\|_{2}^{2} = \|\boldsymbol{\mu} - \boldsymbol{c}\|_{2}^{2} + \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}^{(i)} - \boldsymbol{\mu}\|_{2}^{2}$$

where
$$oldsymbol{\mu} = rac{1}{n} \sum_{i=1}^n oldsymbol{x}^{(i)}$$
 .

Therefore, optimal choice for c is μ .

k-means clustering for d=1

Dynamic programming in time $O(n^2k)$.

Assignment variables

For each data point $x^{(i)}$, let $\phi^{(i)} \in \{0,1\}^d$ denote its "one-hot" representation:

$$\phi_j^{(i)} = \mathbb{1}\{\boldsymbol{x}^{(i)} \text{ is assigned to cluster } j\}.$$

Assignment variables

For each data point $\boldsymbol{x}^{(i)}$, let $\boldsymbol{\phi}^{(i)} \in \{0,1\}^d$ denote its "one-hot" representation:

$$\phi_j^{(i)} = \mathbb{1}\{\boldsymbol{x}^{(i)} \text{ is assigned to cluster } j\}.$$

Objective becomes (for optimal setting of $\phi^{(i)}$ s)

$$\sum_{i=1}^{n} \min_{j \in [k]} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}_j\|_2^2 = \sum_{i=1}^{n} \left\{ \sum_{j=1}^{k} \phi_j^{(i)} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}_j\|_2^2 \right\}.$$

Assignment variables

For each data point $x^{(i)}$, let $\phi^{(i)} \in \{0,1\}^d$ denote its "one-hot" representation:

$$\phi_j^{(i)} = \mathbb{1}\{\boldsymbol{x}^{(i)} \text{ is assigned to cluster } j\}.$$

Objective becomes (for optimal setting of $\phi^{(i)}$ s)

$$\sum_{i=1}^{n} \min_{j \in [k]} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}_j\|_2^2 = \sum_{i=1}^{n} \Biggl\{ \sum_{j=1}^{k} \phi_j^{(i)} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}_j\|_2^2 \Biggr\}.$$

Lloyd's algorithm (sometimes called *the* k-means algorithm) Initialize $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ somehow. Then repeat until convergence:

- lacksquare Holding $m{c}_1, m{c}_2, \dots, m{c}_k$ fixed, pick optimal $m{\phi}^{(1)}, m{\phi}^{(2)}, \dots, m{\phi}^{(n)}$.
- lacksquare Holding $oldsymbol{\phi}^{(1)}, oldsymbol{\phi}^{(2)}, \ldots, oldsymbol{\phi}^{(n)}$ fixed, pick optimal $oldsymbol{c}_1, oldsymbol{c}_2, \ldots, oldsymbol{c}_k$.

Assignment variables

For each data point $\boldsymbol{x}^{(i)}$, let $\boldsymbol{\phi}^{(i)} \in \{0,1\}^d$ denote its "one-hot" representation:

$$\phi_j^{(i)} = \mathbb{1}\{\boldsymbol{x}^{(i)} \text{ is assigned to cluster } j\}.$$

Objective becomes (for optimal setting of $\phi^{(i)}$ s)

$$\sum_{i=1}^{n} \min_{j \in [k]} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}_j\|_2^2 = \sum_{i=1}^{n} \Biggl\{ \sum_{j=1}^{k} \phi_j^{(i)} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}_j\|_2^2 \Biggr\}.$$

Lloyd's algorithm (sometimes called *the k*-means algorithm) Initialize $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ somehow. Then repeat until convergence:

- ▶ Holding c_1, c_2, \ldots, c_k fixed, pick optimal $\phi^{(1)}, \phi^{(2)}, \ldots, \phi^{(n)}$. Set $\phi^{(i)}$ so $x^{(i)}$ is assigned to closest c_j .
- $lackbox{Holding } \phi^{(1)}, \phi^{(2)}, \ldots, \phi^{(n)} ext{ fixed, pick optimal } c_1, c_2, \ldots, c_k.$

Assignment variables

For each data point $x^{(i)}$, let $\phi^{(i)} \in \{0,1\}^d$ denote its "one-hot" representation:

$$\phi_j^{(i)} = \mathbb{1}\{\boldsymbol{x}^{(i)} \text{ is assigned to cluster } j\}.$$

Objective becomes (for optimal setting of $\phi^{(i)}$ s)

$$\sum_{i=1}^{n} \min_{j \in [k]} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}_j\|_2^2 = \sum_{i=1}^{n} \Biggl\{ \sum_{j=1}^{k} \phi_j^{(i)} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}_j\|_2^2 \Biggr\}.$$

Lloyd's algorithm (sometimes called *the k*-means algorithm) Initialize $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ somehow. Then repeat until convergence:

- ▶ Holding c_1, c_2, \ldots, c_k fixed, pick optimal $\phi^{(1)}, \phi^{(2)}, \ldots, \phi^{(n)}$. Set $\phi^{(i)}$ so $x^{(i)}$ is assigned to closest c_j .
- ▶ Holding $\phi^{(1)}, \phi^{(2)}, \dots, \phi^{(n)}$ fixed, pick optimal c_1, c_2, \dots, c_k . Set c_j to be the average of the $x^{(i)}$ assigned to cluster j.

Arbitrary initialization of c_1 and c_2 .

 $\begin{array}{l} \textbf{Iteration 1} \\ \textbf{Optimize assignments } \phi^{(i)}. \end{array}$

 $\begin{array}{l} \textbf{Iteration 2} \\ \textbf{Optimize assignments } \phi^{(i)}. \end{array}$

Iteration 2 Optimize representatives c_i .

 $\begin{array}{l} \textbf{Iteration 4} \\ \textbf{Optimize assignments } \phi^{(i)}. \end{array}$

Iteration 4 Optimize representatives c_i .

Initializing Lloyd's algorithm

Basic idea: Choose initial centers to have good coverage of the data points.

Farthest-first traversal

For $j=1,2,\ldots,k$:

Pick $c_j \in \mathbb{R}^d$ from among $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ farthest from previously chosen $c_1, c_2, \ldots, c_{j-1}$.

 $(c_1$ chosen arbitrarily.)

INITIALIZING LLOYD'S ALGORITHM

Basic idea: Choose initial centers to have good coverage of the data points.

Farthest-first traversal

For j = 1, 2, ..., k:

Pick $c_j \in \mathbb{R}^d$ from among $x^{(1)}, x^{(2)}, \dots, x^{(n)}$ farthest from previously chosen c_1, c_2, \dots, c_{j-1} .

(c_1 chosen arbitrarily.)

But this can be thrown off by outliers...

Initializing Lloyd's algorithm

Basic idea: Choose initial centers to have good coverage of the data points.

Farthest-first traversal For j = 1, 2, ..., k:

Pick
$$c_j \in \mathbb{R}^d$$
 from among $x^{(1)}, x^{(2)}, \dots, x^{(n)}$ farthest from previously chosen c_1, c_2, \dots, c_{j-1} (c_1 chosen arbitrarily.)

But this can be thrown off by outliers...

A better idea:

$$D^2$$
 sampling (a.k.a. "k-means++")
For $i = 1, 2, ..., k$:

x(i)'s distance to all previous cj (choose the minimal one!)

▶ Randomly pick $c_j \in \mathbb{R}^d$ from among $x^{(1)}, x^{(2)}, \dots, x^{(n)}$ according to distribution

$$\Pr(\boldsymbol{c}_j = \boldsymbol{x}^{(i)}) \propto \min_{j' < j} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}_{j'}\|_2^2.$$

(Uniform distribution when j = 1.) the prob of choosing xi for c

Choosing k

▶ Usually by hold-out validation / cross-validation on auxiliary task (e.g., supervised learning task).

Choosing k

- Usually by hold-out validation / cross-validation on auxiliary task (e.g., supervised learning task).
- ▶ Heuristic: Find large gap between k-1-means cost and k-means cost.

CLUSTERING AT MULTIPLE SCALES

 $\it Hierarchical\ clustering:$ encode clusterings for all values of $\it k$ in a tree.

$$k = 2 \text{ or } k = 3?$$

Hierarchical clustering: encode clusterings for all values of k in a tree.

Caveat: not always possible.

$$k = 2 \text{ or } k = 3?$$

Hierarchical clustering: encode clusterings for all values of k in a tree.

Caveat: not always possible.

Hierarchical clustering: encode clusterings for all values of k in a tree.

Caveat: not always possible.

EXAMPLE: PHYLOGENETIC TREE

HIERARCHICAL CLUSTERING

Divisive (top-down) clustering

- lacktriangle Partition data into two groups (e.g., via k-means clustering with k=2).
- ► Recurse on each part.

HIERARCHICAL CLUSTERING

Divisive (top-down) clustering

- ▶ Partition data into two groups (e.g., via k-means clustering with k = 2).
- Recurse on each part.

Agglomerative (bottom-up) clustering

- lackbox Start with every point $x^{(i)}$ in its own cluster.
- ▶ Repeatedly merge "closest" pair of clusters.

HIERARCHICAL CLUSTERING

Divisive (top-down) clustering

- ▶ Partition data into two groups (e.g., via k-means clustering with k = 2).
- ▶ Recurse on each part.

Agglomerative (bottom-up) clustering

- lacktriangle Start with every point $oldsymbol{x}^{(i)}$ in its own cluster.
- ► Repeatedly merge "closest" pair of clusters.

Example: Ward's average linkage method

aggregate!!!

$$\operatorname{dist}(C,\tilde{C}) := \frac{|C|\cdot |\tilde{C}|}{|C| + |\tilde{C}|} \|\operatorname{mean}(C) - \operatorname{mean}(\tilde{C})\|_2^2$$

(the increase in k-means cost caused by merging C and \tilde{C}).

(A.K.A. SPARSE CODING)

DICTIONARY LEARNING

Goal: Find representatives $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ such that each $x^{(i)}$ is "well-represented" by a linear combination of $\leq s$ such representatives c_j .

Special case: $s = 1 \Longrightarrow \text{clustering/quantization}$

Generalizing k-means

k-means objective

$$\min_{oldsymbol{C},oldsymbol{\Phi}} \sum_{i=1}^n \left\| oldsymbol{x}^{(i)} - oldsymbol{C} oldsymbol{\phi}^{(i)}
ight\|_2^2$$

- $\Phi = [\phi^{(1)}|\phi^{(2)}|\cdots|\phi^{(n)}] \in \{0,1\}^{k\times n}$ are the cluster assignments.
- $m C = [m c_1 | m c_2 | \cdots | m c_k] \in \mathbb{R}^{d imes k}$ are the cluster representatives.

Generalizing k-means

k-means objective

$$\min_{oldsymbol{C},oldsymbol{\Phi}} \sum_{i=1}^n \left\| oldsymbol{x}^{(i)} - oldsymbol{C} oldsymbol{\phi}^{(i)}
ight\|_2^2$$

- $lack \Phi = [\phi^{(1)}|\phi^{(2)}|\cdots|\phi^{(n)}] \in \{0,1\}^{k\times n}$ are the cluster assignments.
- $lackbox{ } oldsymbol{C} = [oldsymbol{c}_1 | oldsymbol{c}_2 | \cdots | oldsymbol{c}_k] \in \mathbb{R}^{d imes k}$ are the cluster representatives.

Lloyd's algorithm:

Initialize C somehow. Then repeat:

- ▶ Holding C fixed, pick optimal Φ .
- lacktriangledown Holding Φ fixed, pick optimal C.

Generalizing k-means

k-means objective

$$\min_{oldsymbol{C},oldsymbol{\Phi}} \sum_{i=1}^n \left\| oldsymbol{x}^{(i)} - oldsymbol{C} oldsymbol{\phi}^{(i)}
ight\|_2^2$$

- $lack \Phi = [\phi^{(1)}|\phi^{(2)}|\cdots|\phi^{(n)}] \in \{0,1\}^{k\times n}$ are the cluster assignments.
- $m C = [m c_1 | m c_2 | \cdots | m c_k] \in \mathbb{R}^{d imes k}$ are the cluster representatives.

Lloyd's algorithm:

Initialize C somehow. Then repeat:

- ▶ Holding C fixed, pick optimal Φ .
- ▶ Holding Φ fixed, pick optimal C.

Generalization

Permit each $\phi^{(i)}$ to have up to s non-zero entries (not necessarily equal to 1)

Common dictionary learning objective

$$\min_{oldsymbol{C}, oldsymbol{\Phi}} \sum_{i=1}^n \left\| oldsymbol{x}^{(i)} - oldsymbol{C} oldsymbol{\phi}^{(i)}
ight\|_2^2.$$

Generalization of Lloyd's algorithm:

Initialize C somehow. Then repeat:

▶ Holding C fixed, pick (near) optimal Φ .

▶ Holding Φ fixed, pick optimal C.

Common dictionary learning objective

$$\min_{oldsymbol{C},oldsymbol{\Phi}}\sum_{i=1}^n \left\|oldsymbol{x}^{(i)} - oldsymbol{C}oldsymbol{\phi}^{(i)}
ight\|_2^2.$$

Generalization of Lloyd's algorithm:

Initialize C somehow. Then repeat:

▶ Holding C fixed, pick (near) optimal Φ .

n sparse regression problems: use Lasso, forward stepwise regression, \dots

ightharpoonup Holding Φ fixed, pick optimal C.

Common dictionary learning objective

$$\min_{oldsymbol{C},oldsymbol{\Phi}} \sum_{i=1}^n \left\| oldsymbol{x}^{(i)} - oldsymbol{C} oldsymbol{\phi}^{(i)}
ight\|_2^2.$$

Generalization of Lloyd's algorithm:

Initialize C somehow. Then repeat:

▶ Holding C fixed, pick (near) optimal Φ .

 $\it n$ sparse regression problems: use Lasso, forward stepwise regression, \dots

ightharpoonup Holding Φ fixed, pick optimal C.

Ordinary least squares solution:

$$\boldsymbol{C}^{\top} := (\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top})^{-1} \boldsymbol{\Phi} \boldsymbol{X}$$

where *i*-th row of \boldsymbol{X} is $\boldsymbol{x}^{(i)\top}$.

Common dictionary learning objective

$$\min_{oldsymbol{C},oldsymbol{\Phi}} \sum_{i=1}^n \Bigl\|oldsymbol{x}^{(i)} - oldsymbol{C}oldsymbol{\phi}^{(i)}\Bigr\|_2^2.$$

Generalization of Lloyd's algorithm:

Initialize C somehow. Then repeat:

▶ Holding C fixed, pick (near) optimal Φ .

 $\it n$ sparse regression problems: use Lasso, forward stepwise regression, \dots

ightharpoonup Holding Φ fixed, pick optimal C.

Ordinary least squares solution:

$$\boldsymbol{C}^{\top} := (\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top})^{-1} \boldsymbol{\Phi} \boldsymbol{X}$$

where *i*-th row of \boldsymbol{X} is $\boldsymbol{x}^{(i)\top}$.

Typical initialization: random (e.g., i.i.d. $\mathcal{N}(0,1)$ entries), or D^2 sampling.

EXAMPLE: MIXED-MEMBERSHIP MODEL

Represent corpus of documents by counts of words they contain:

	doc. 1	doc. 2	doc. 3	
aardvark	3	7	2	
abacus	0	0	4	• • •
abalone	0	4	0	
:	:	÷	:	

Example: Mixed-membership model

Represent corpus of documents by counts of words they contain:

	doc. 1	doc. 2	doc. 3	
aardvark	3	7	2	
abacus	0	0	4	• • •
abalone	0	4	0	
:	:	÷	÷	

Modeling assumption:

- k "topics", each represented by a distributions over vocabulary words $m{eta}_1, m{eta}_2, \dots, m{eta}_k \in \mathbb{R}^d.$
- ▶ Each document i is associated with $\leq s$ topics.

Document i's count vector is drawn from a multinomial distribution with probabilities given by $\sum_{t=1}^k w_t^{(i)} \boldsymbol{\beta}_t$ where $\boldsymbol{w}^{(i)}$ is a probability vector with $\leq s$ non-zero entries.

EXAMPLE: MIXED-MEMBERSHIP MODEL

In expectation:

- $ightharpoonup \phi_t^{(i)} = w_t^{(i)} imes ext{length of document } i.$
- $\blacktriangleright \ \beta_t = t\text{-th column of } \pmb{B}$

EXAMPLE: MIXED-MEMBERSHIP MODEL

In expectation:

- $lackbox{\phi}_t^{(i)} = w_t^{(i)} imes ext{length of document } i.$
- $ightharpoonup eta_t = t$ -th column of $oldsymbol{B}$

Applying dictionary learning:

Identify $m{eta}_1, m{eta}_2, \dots, m{eta}_k$ as "representatives" $m{c}_1, m{c}_2, \dots, m{c}_k \in \mathbb{R}^d$ …

RECAP

- ▶ Uses of clustering:
 - ▶ Unsupervised classification ("hidden subpopulations").
 - Quantization
 - ▶ ...
- ▶ *k*-means clustering: popular objective for clustering and quantization.
- ▶ Lloyd's algorithm: alternating optimization, needs good initialization.
- ▶ Hierarchical clustering: clustering at multiple levels of granularity.
- ▶ Dictionary learning/sparse coding: generalization of clustering.