

EVALUATION OF UV-C AIR PURIFICATION SYSTEM IN REDUCING MICROBIAL CONTAMINATION IN OCCUPATIONAL ENVIRONMENTS

PRESENTED BY

Isa De Palma
PhD Student - Medical Biotechnologies
University of SIENA

De Palma I., Amodeo D., Puccio A., Cevenini G., Messina G.

- Department of Medical Biotechnologies, University of Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Italy

UV-C DISINFECTION: A DISINFECTION APPROACH IN HEALTHCARE ENVIRONMENTS

1240

University of Siena researchers demonstrate rapid UV disinfection of ORs between surgeries

UV-C devices operate in:

- Surface (direct-acting devices)
- Air (flow devices)

Journal of Hospital Infection

Volume 128, October 2022, Pages 19-25

Improvement and standardization of disinfection in hospital theatre with ultraviolet-C technology

R. Bosco 3, G. Cevenini b, S. Gambelli c, N. Nante d, G. Messina d A

1240

AIR QUALITY IN INDOOR ENVIRONMENTS

Indoor Air Quality

Fungi

- · Aspergillus spp.
- Penicillium spp.

Bacteria

- Staphylococci spp.
- Bacillus spp.
- Clostridium spp.

Viruses

- Respiratory (Influenza Virus, SARS-CoV, Adenovirus)
- Gastrointestinal (Enterovirus, Rotavirus, Norwalk-Like Virus)

AIM OF THE STUDY

UNIVERSITÀ DI SIENA

- to evaluate the effectiveness of a UV-C air purifier system in a real working environment
- to assess the system's ability to reduce microbial air contamination in an office setting.

Cleaning Air T12

- 12 UV-C lamps
- 6 lamps per side (separate sections)
- $210 \text{ m}^3 / \text{ h}$

Dec 2020 - Feb 2021

Environmental Hygiene Laboratory (preliminary stage) and Office (experimental stage) of the Department of Molecular Medicine and Development of the University of Siena.

SCHEMATIC PROCEDURE

Samplings during
Preliminary and
Experimental stage

OPERATIVE SPHERE

Stage 1 (Day 1, 2, 3)

Stage 2 (Day 4) Stage 3 (Day 4) Stage 4 (Day 4)

UV-C purifier: OFF UV-C purifier: OFF UV-C purifier: ON UV-C purifier: OFF

STAGE 1 (Day 1, 2 and 3)

Results: STAGE 1 (Day 1, 2 and 3)

Average Microbial Load 22°C:

186.8 CFU/m3 (95% CI 154-219) (Day 1); 93.6 CFU/m3 (95% CI 69.6-117.6) (Day 2) 152 CFU/m3 (95% CI 124-180) (Day 3)

Average Microbial Load 36°C:

161.1 CFU/m3 (95% CI 131-191) (Day 1); 107.8 CFU/m3 (95% CI 78.7-137) (Day 2) 181 CFU/m3 (95% CI 151.7-212) (Day 3)

Stage 1 (Day 1, 2, 3)

UV-C purifier: **OFF**

Does the number of subjects change air quality?

Median Microbial Load 22°C

66 (CFU/III°).	153
95% CI	95% CI
(59.18-	(108.79 -
139.81)	179.75)

Median Microbial Load 36°C

88	173
95% CI	95% CI
(80-101)	(141.55-
	228.61)

Results: STAGE 1 (Day 1, 2 and 3)

Average Microbial Load 22°C:

186.8 CFU/m3 (95% CI 154-219) (Day 1); 93.6 CFU/m3 (95% CI 69.6-117.6) (Day 2) 152 CFU/m3 (95% CI 124-180) (Day 3)

Average Microbial Load 36°C:

161.1 CFU/m3 (95% CI 131-191) (Day 1); 107.8 CFU/m3 (95% CI 78.7-137) (Day 2) 181 CFU/m3 (95% CI 151.7-212) (Day 3)

Is there a difference in the microbial load in the air if the window is open or closed?

Median Microbial Load 22°C

136 (CFU/m³):	241
95% CI	95% CI
(113.71-	(199-257)
215.73)	

Median Microbial Load 36°C (CFU/m³):

141	173
95% CI	95% CI
(123.14)	(116-272)

RESULTS: Stage 2,3 and 4 – 4th day

Time

RESULTS: EXPERIMENTAL STAGE (Phase 3 and 4 – 4th day)

CONCLUSIONS

Cleaning Air T12 was able to significantly reduce and control microbial contamination of the air

- Comparison of CFU data, between the device-on phase and the subsequent device-off phase, showed statistically significant increase of environmental contamination (from a mean of **86.6** to **171.1** CFU/m³) about **100%**.
- In an office with no air exchange with the outside, reductions values have reached levels of over 60% compared to the initial contamination values, despite the presence of 3-5 people.
- The effectiveness of the device is even more evident when it's switched off: a rapid increase in the microbial load of the air is observed (up to 150%) compared to start time.

SOME LIMITATIONS...

Cleaning Air T12 was able to significantly reduce and control air microbial contamination

- We tested a single scenario
- The subjects wore a disposable 3-layer surgical mask
- The fourth day of the experiment was repeated only once

FUTURE PERSPECTIVE

Cleaning Air T12 was able to significantly reduce and control air microbial contamination

In order to increase the UV-C device performance in disinfection the solution could be a combined system with the addition of filters with intermediate filtering power

Thank you for your attention...

Case Studies in Chemical and Environmental Engineering 6 (2022) 100240

Contents lists available at ScienceDirect

Case Studies in Chemical and Environmental Engineering

journal homepage: www.sciencedirect.com/journal/case-studies-in-chemicaland-environmental-engineering

Case Report

Wind of change: Better air for microbial environmental control

G. Messina a, b, *, D. Amodeo b, F. Taddeini a, I. De Palma b, A. Puccio c, G. Cevenini c

Post Graduate School of Public Health, University of Siena, Italy

Department of Molecular and Developmental Medicine, University of Siena, Italy

Department of Medical Biotechnologies, Bioengineering Lab, University of Siena, Italy

... and contact us:

University of Siena - Department of Molecular and Developmental Medicine

Environmental hygiene laboratory

e-mail: gabriele.messina@unisi.it

isa.depalma@student.unisi.it