

Mining Large Scale Datasets

Finding Similar Items – Locality-Sensitive Hashing

(Adapted from CS246@Starford.edu; http://www.mmds.org)

Sérgio Matos - aleixomatos@ua.pt

- Many problems can be expressed as finding "similar" sets
 - \hookrightarrow Find near-neighbors in high-dimensional space
- Some examples:
 - Documents with similar content Mirror pages, plagiarism
 - E-commerce
 - 'Similar' products; 'similar' costumers
 - Recommendation and search

Netflix movies

Entity resolution

FB and LinkedIn profiles

- Many problems can be expressed as finding "similar" sets
 - → Find near-neighbors in high-dimensional space
- Some examples:
 - Documents with similar content Mirror pages, plagiarism
 - E-commerce
 - 'Similar' products; 'similar' costumers
 - Recommendation and search
 - Netflix movies
 - Entity resolution

FB and LinkedIn profiles

Note: NOT the same as finding exactly equal items

• Given:

High dimensional data points $x_1, x_2, ...$

Example: images are long vectors of pixel colors

Some distance function $d(x_1, x_2)$

 Find all pairs of data points that are within a distance threshold

$$d(x_1,x_2) \leq t$$

Naïve approach is $O(N^2)$

Naïve approach requires looking at every pair of items. Even a "small" dataset of a million items gives half a trillion pairs

to examine.

- \bullet Suppose we need to find near-duplicate documents among N =1 million documents
- If we compute pairwise similarities for every pair of docs

$$N(N-1)/2 \approx 5 \times 10^{11}$$
 comparisons

At 10^6 comparisons/sec, it would take >**5 days**

• For N = 10 million, it would take more than a year!

- \bullet Suppose we need to find near-duplicate documents among N =1 million documents
- If we compute pairwise similarities for every pair of docs

$$N(N-1)/2 \approx 5 \times 10^{11}$$
 comparisons At 10^6 comparisons/sec, it would take $>$ **5 days**

- \bullet For N = 10 million, it would take more than a year!
 - \hookrightarrow Can be done in O(N) \odot

Locality-Sensitive Hashing

- Family of related techniques
- Allows to only examine pairs that are likely to be similar Avoids quadratic growth in computation time

LSH: general idea

- Hash items into buckets using many different hash functions
 - \hookrightarrow Functions are designed so that similar items are more likely to hash into same bucket
- Only pairs that share a bucket for at least one of the hash functions need to be examined
 - \hookrightarrow There may be false negatives pairs of similar items may not be considered at all
 - → There may be false positives pairs of items may be erroneously found as similar

Application example: similar documents

- Find documents that share a lot of common text
 - Mirror pages
 - Plagiarism
 - Similar news articles
- Transform documents into sets.
- Convert sets into smaller signatures
- Compare signatures using Jaccard similarity

Similar Documents: Steps

- **Shingling**: Converts a document into a set representation
- **Min-Hashing**: Convert large sets to short signatures, while preserving similarity
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

Shingling: Convert documents into sets

• A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc

Tokens may be chars, words or something else, depending on the application

• *k* is application dependent, but should be large enough so that most shingles do not appear in a given document

k = 8, 9, or 10 is often used in practice

first char 9-shingles of slide title:

"shingling", "hingling:", "ingling: ", "ngling: c", "gling: co"

• Long shingles can be compressed through hashing

Use 4 byte integers for example, instead of 9 bytes

 A document is represented by the set of (hash values of) its k-shingles

Shingling: Convert documents into sets

Example: document D1="abcdabd"

Set of 2-shingles: S(D1) = ab, bc, cd, da, bd Hash the shingles: h(S(D1)) = 1, 5, 7, 8, 11

Benefits of shingles:

- Similar documents will have many shingles in common
- Changing a word only affects k-shingles within distance k-1 from the word
- Reordering paragraphs only affects the shingles that cross paragraph boundaries

Comparing sets: Jaccard similarity

Document D1 is a set of its k-shingles C1=S(D1)

A natural similarity measure is the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$$

intersection = 3 union = 8 Jaccard similarity = 3/8

Jaccard distance = $1 - sim(D_1, D_2) = 1 - |C_1 \cap C_2|/|C_1 \cup C_2|$

Similar Documents: Steps

- Shingling: Converts a document into a set representation
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

Summarizing sets

Shingling:

Documents as sets of shingles Represented as boolean/bit vectors in a matrix

• Sets of shingles are large (possibly 4x document size)

Compute small *signatures*, so that

Similarity of signatures ≈ similarity of documents

→ Remember: Comparing all pairs takes too much time
We will see how to handle this later (LSH)

Summarizing sets: signatures

Key idea

"Hash" each column C to a small signature h(C), such that: sim(C1,C2) is the same as the "similarity" of h(C1) and h(C2)

Find a hash function $h(\cdot)$ such that:

if sim(C1, C2) is high, then with high prob. h(C1) = h(C2) if sim(C1, C2) is low, then with high prob. $h(C1) \neq h(C2)$

Summarizing sets: signatures

Key idea

"Hash" each column C to a small signature h(C), such that: sim(C1, C2) is the same as the "similarity" of h(C1) and h(C2)

Find a hash function $h(\cdot)$ such that:

if sim(C1, C2) is high, then with high prob. h(C1) = h(C2) if sim(C1, C2) is low, then with high prob. $h(C1) \neq h(C2)$

The hash function depends on the similarity metric: Not all similarity metrics have a suitable hash function

Suitable hash function for the Jaccard similarity: Min-Hashing

Characteristic matrix

Encode the collection of sets using bit vectors

- Rows = elements (shingles)
- Columns = sets (documents)
- 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets What is $sim(C_1, C_2)$?

	Documents					
	1	1	1	0		
	1	1	0	1		
Sulligles	0	1	0	1		
	0	0	0	1		
	1	0	0	1		
	1	1	1	o		
	1	0	1	0		

Matrix is usually sparse!

→ Not actually constructed; only used to help 'visualize'

Min-Hashing

Definition

To minhash a set represented by a column of the characteristic matrix, perform a random permutation of the rows.

The minhash value of any column is the number of the first row, in the permuted order, in which the column has a 1.

Per	muta	ati	ons	(Chara	cteri	stic n	natrix	1	Sig	natur	e ma	trix
2	4		3		1	0	1	0					
3	2		4		1	0	0	1					
7	1		7		0	1	0	1					
6	3		2		0	1	0	1					
1	6		6		0	1	0	1					
5	7	1	1		1	0	1	0					
4	5		5		1	0	1	0					

Create a signature of length 3, using three random permutations

Peri	mutati	ons	(Chara	cteri	stic n	natrix
2	4	3		1	0	1	0
3	2	4		1	0	0	1
7	1	7		0	1	0	1
6	3	2		0	1	0	1
1	6	6		0	1	0	1
5	7	1		1	0	1	0
4	5	5		1	0	1	0

characteristic matrix			
1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

1	1

Signature matrix

For the first permutation, select the row with index 1, and assign that number as the signature value to columns with 1 in the characteristic matrix

Permutations

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

Characteristic matrix

0	1	0
0	0	1
1	0	1
1	0	1
1	0	1
0	1	0
0	1	0
	0 1 1 1	0 0 1 0 1 0 1 0 0 1

Signature matrix

2	1	2	1

Next, select row with index 2, and assign that number as the signature value to columns with 1 in the characteristic matrix

Permutations				
2		4		3
3		2		4
7		1		7
6		3		2
1		6		6
5		7		1
4		5		5

Characteristic matrix				
1	0	1	0	
1	0	0	1	
0	1	0	1	
0	1	0	1	
0	1	0	1	
1	0	1	0	
1	0	1	0	

2	1	2	1
	1		1

Signature matrix

Now for the second permutation, select the row with index 1, and assign that number as the signature value to columns with 1 in the characteristic matrix

Permutations

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5
	_	

Characteristic matrix

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix

2	1	2	1
2	1		1

Repeat for row with index 2. Do not change signature value for C4, since the value is already set (and is lower)

Permutations

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

Characteristic matrix

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix

2	1	2	1
2	1		1

Repeat for row with index 3. In this case we don't do any changes since C1 and C4 already have signature values

Peri	mutati	ions		Chara	ecteri	stic n	natrix	c	Sign	natur	e ma	trix
2	4	3		1	0	1	0		2	1	2	1
3	2	4		1	0	0	1		2	1	4	1
7	1	7		0	1	0	1					
6	3	2		0	1	0	1					
1	6	6		0	1	0	1					
5	7	1		1	0	1	0					
4	5	5		1	0	1	0					

Repeat for row with index 4

Per			٠.	4	_	
rer	m	u	ιa	U	О	ns

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

Characteristic matrix

	1	0
0	0	1
1	0	1
1	0	1
1	0	1
0	1	0
0	1	0
	1 1 1	1 0 1 0 1 0 0 1

Signature matrix

2	1	2	1
2	1	4	1

Your turn!

Min-Hashing

Each minhash function $h_{\pi}(\cdot)$ is associated with a (*virtual*) permutation of the rows of the characteristic matrix

 $h_\pi(\mathit{C}) = \mathsf{the}$ number of the first row (in the permuted order) in which column C has value 1

$$h_{\pi}(C) = min_{\pi}\pi(C)$$

Apply, to all columns, several randomly chosen permutations to create a signature for each column

Result is a signature matrix

columns = sets, rows = minhash values

Min-Hashing and Jaccard similarity

The Min-Hash Property

For a random permutation of rows, the probability that $h(C_1) = h(C_2)$ equals $sim(C_1, C_2)$, the Jaccard similarity of those sets.

$$p(h(C_1) = h(C_2)) = sim(C_1, C_2)$$

Min-Hashing and Jaccard similarity

C_1	C_2	
1	1	a
1	0	b
0	1	С
0	0	d

- Characteristic matrix has rows of types a, b, c, d
- Jaccard similarity between C_1 and C_2

$$sim(C_1, C_2) = a/(a+b+c)$$

(here, a represents the number of lines of type a)

Min-Hashing and Jaccard similarity

Consider the permutations

C_1	C_2	C_1	C_2	C_1	C_2
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
	0 1	0	0	0	0
1	1	1	0	0	1

First case corresponds to finding an a type row, and $h(C_1) = h(C_2)$ Other cases correspond to b and c type rows, and $h(C_1) \neq h(C_2)$

So, the probability of $h(C_1) = h(C_2)$ is equal to the probability of finding an a type row first, or a/(a+b+c)

Similarity of signatures

- The similarity of two signatures is the fraction of the hash functions in which they agree
- Thus, the expected similarity of two signatures equals the Jaccard similarity of the columns or sets that the signatures represent
- The longer the signatures, the smaller will be the expected error

Permutations

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

Characteristic matrix

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix

2	1	2	1
2	1	4	1
1	2	1	2

Similarities

1-2 1-3 2-4 3-4 0 .75 .75 0 Original 0 .67 1 0 Signatures

- Permuting rows is **prohibitive!!**
- Consider 1 billion rows
 - Picking a random permutation of 1 billion is highly expensive
 - Representing a random permutation requires 1 billion entries (4 Gb!)
 - Accessing rows in permuted order represents too many disks accesses (thrashing)

Solution: row hashing
 Pick K hash functions h_i (e.g. K = 100)
 h_i "permutes" r to position h_i(r) in the permuted order
 For each column c and hash function h_i, the signature value will be given by the smallest value of h_i(r) for which column c has a 1 in row r

• Which hash function to use?

Universal hashing:

$$h_{a,b}(x) = ((a \cdot x + b) \bmod p) \bmod N$$

a, b: random integers, $a \neq 0$

p: prime number, p > N

N: number of shingles

```
initialize M[i, c] // matrix of signature values // for each hash function i // and column c for each row r for each hash function h_i compute h_i(r) for each column c if c has 1 in row r for each hash function h_i if h_i(r) < M[i, c] M(i, c) = h_i(r)
```

				$M(i, C_1)$	$M(i, C_2)$
			h(1) = 1	1	∞0
			g(1) = 3	3	00
Row	C ₁	C ₂	h(2) = 2	1	2
1	1	0	g(2) = 0	3	0
2 3 4 5	0	1			
3 4	1	0	h(3) = 3	1	2
5	0	1	g(3) = 2	2	0
			h(4) = 4	1	2
			g(4) = 4	2	0
$h(x) = x \mod 5$ $g(x) = (2x+1) \mod 5$					
		h(5) = 0	1	0	
9(11)	(=/ / .		g(5) = 1	2	0
				Signature	matrix M

Min-Hashing: Speedup

- Apply only to first m rows
 Some columns may have only zeros in all m initial rows
- Divide matrix M into k/m blocks
 Apply minhashing to each block
 Gives k/m minhash values from a single hash function and a single pass over all the rows of M
 Allows using less hash functions

Similar Documents: Steps

- Shingling: Converts a document into a set representation
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

- Goal: Find documents with Jaccard similarity at least sthresh
- We what columns C_1 and C_2 of M to be a candidate pair if $M(i, C_1) = M(i, C_2)$ for at least fraction s_{thresh} of rows i

For Min-Hash matrices

Hash columns of signature matrix M to many buckets Each pair of documents that hashes into the same bucket is a candidate pair

- Divide M into b bands of r rows
- For each band, hash its portion of each column into k buckets
 Make k as large as possible
- Column pairs that hash to the same bucket for at least 1 band are candidate pairs
- Tune b and r to catch most similar pairs, but few non-similar pairs

Assumption

There are enough buckets so that columns are unlikely to hash to the same bucket unless they are identical in a particular band

- From this, we can consider that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis that follows, not for correctness of algorithm

Locality-Sensitive Hashing: example

Consider signatures of 100 integers, choose b = 20 and r = 5We want to find pairs with similarity $s \ge 0.8$

Assume C_1 and C_2 are 80% similar (s = 0.8)

Since $sim(C1, C2) \ge s$, we want C_1 , C_2 to be a candidate pair $\hookrightarrow C_1$ and C_2 should hash to at least 1 common bucket

Probability C_1 , C_2 are identical in a given band: $s^r = (0.8)^5 = 0.328$ Probability C_1 , C_2 are not similar in all of the 20 bands: $(1-s^r)^b = (1-0.328)^{20} = 0.00035$

- → Misses about 1/3000th of the 80%-similar docs (false negatives)
- \hookrightarrow Finds 99.965% pairs of documents with similarity $s \ge 0.8$

Locality-Sensitive Hashing: example

Consider signatures of 100 integers, choose b = 20 and r = 5We want to find pairs with similarity $s \ge 0.8$

Assume C_1 and C_2 are 30% similar (s = 0.3)

Since sim(C1, C2) < s, we want C_1 , C_2 to NOT be a candidate pair

 \hookrightarrow C_1 and C_2 should hash to NO common buckets

Probability C_1 , C_2 are identical in a given band:

$$s^r = (0.3)^5 = 0.0024$$

Probability C_1 , C_2 identical in at least 1 of 20 bands:

$$1 - (1 - s^r)^b = 1 - (1 - 0.00243)^{20} = 0.0474$$

→ Approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs (false positives)

LSH – Optimal scenario: only pairs of sets with similarity $> s_{thresh}$ are selected as candidates

45/51

LSH - One band of one row

LSH - One band of one row: False negatives and False positives

- b bands, r rows/band
- Consider columns C1 and C2 with similarity s
- For any band (r rows):
 - Probability that all rows in band are equal $= s^r$
 - Probability that some row in band is unequal = $1 s^r$
 - Probability that no band identical = $(1 s^r)^b$
 - Probability that at least 1 band identical = $1 (1 s^r)^b$

LSH - b bands of r rows: S-curve

Finding similar documents: pipeline

- Pick a value of k and construct from each document the set of k-shingles. Optionally, hash shingles to shorter bucket numbers
- Sort the document-shingle pairs to order them by shingle
- Pick a length n and compute the minhash signatures for all documents
- ① Choose a similarity threshold s_{thresh} . Pick a number of bands b and a number of rows r such that $b \cdot r = n$, and the threshold s_{thresh} is approximately $(1/b)^{1/r}$

To avoid false negatives, select b and r to get a threshold lower than s_{thresh} ; to limit false positives, select b and r to produce a higher threshold

- Construct candidate pairs by applying the LSH technique
- **6** Examine each candidate pair's signatures and determine whether the fraction of components in which they agree is at least s_{thresh}
- Optionally, check the original documents

Similar Documents: Overview

- **Shingling**: Converts a document into a set representation
- **Min-Hashing**: Convert large sets to short signatures, while preserving similarity
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents