Introducció

Recordatori de conceptes bàsics de probabilitat i estadística.

Una població es una variable aleatoria X.

Una mostra aleatòria de mida n de X és un conjunt de variables aleatòries X_1, \ldots, X_n independents i que compleixen el seguent $\forall A \subset \mathbb{R}, i \in 1, \ldots, n : P(X_i \in A) = P(X \in A)$

Els paràmetres són característiques numèriques poblacionals que solen ser desconegudes, com

- La mitjana $\mu = E(X)$
- La variància $\sigma^2 = Var(X)$
- La desviació estàndard $\sigma = \sqrt{Var(X)}$

Estadistics

Donada una mostra aleatòria X_1, \ldots, X_n de X, un estadístic és una funció d'aquestes variables, i potser de constants conegudes.

Exemples: La mitjana mostral $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

La variància mostral (corregida) $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$.

La variància mostral (no corregida) $S'^2 = \frac{n-1}{n}S^2$.

La quasi-variància mostral $\tilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$ on μ és la mitjana poblacional de X.

Estimadors

Un estimador és un estadístic que es fa servir per estimar un determinat parametre.

Notació: Un estadístic que s'usa per estimar el paràmetre θ es denotat com $\hat{\theta}$. Llavors tenim

- $\hat{\mu} = \overline{X}$.
- $\hat{\sigma}^2 = S^2$.

Distingim entre estimadors (és variable aleatòria) i estimació (valor concret, que es la seva realització, en minúscula).

Distrubucions mostrals més usuals

Donat un estadístic funció de la mostra X_1, \ldots, X_n que és una variable aleatòria, la seva distribució és la distribució de mostral de l'estadístic. Propietats de la llei de la mitjana mostral:

- $\mu_{\overline{X}} = E(\overline{X}) = \mu$.
- $\sigma \frac{2}{X} = Var(\overline{X}) = \frac{\sigma^2}{n}$.

Si $X \sim N(\mu, \sigma^2)$, aleshores $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$.

Propietats de la llei de la variància mostral (corregida), sense corregir i quasivariància:

- $E(\tilde{S}^2) = \sigma^2$.
- $E(S^2) = \sigma^2$.
- $E(S'^2) = \frac{n-1}{n}\sigma^2$.

Si $X \sim N(\mu, \sigma^2)$, aleshores $\frac{n\tilde{S}^2}{\sigma^2} = \frac{1}{\sigma^2} \sim_{i=1}^n (X_1 - \mu)^2 \sim \chi_n^2$, on χ_n^2 és la distribució khi-quadrat amb n graus de llibertat. Això es fa servir si μ és coneguda.

Teorema 1 (Teorema de Fisher). Si X_1, \ldots, X_n és una mostra aleatòria de $X \sim N(\mu, \sigma^2)$, aleshores:

 $1. \overline{X}$ i S^2 són independents.

2. A més
$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi_{n-1}^2$$
.

Aixó es fa servir si μ és desconeguda.

 t_{n-1} és la distribució t
 de Student amb n-1 graus de llibertat.

Distribucions mostrals asimptòtiques

Si X_1, \ldots, X_n és una mostra aleatòria de X amb llei qualsevol i mida n tal que $E(X) = \mu$ i $Var(X) = \sigma^2$, aleshores $\underline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$, equivalentment $Z_n = \frac{\overline{X}_n - \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)} \approx N(0, 1)$.

També si n és prou gran i σ és desconeguda, aleshores tenim el seguent $\frac{\overline{X}_n - \mu}{\left(\frac{S_n}{\sqrt{n}}\right)} \approx N(0, 1)$. A la majoria de distribucions l'approximació es prou bona a partir de n > 30.

Mostra de mida n de X amb distribució qualsevol

 $\frac{\hat{p}_n - p}{\sqrt{\frac{p(1-p)}{n}}} \approx N(0,1)$, on \hat{p}_n és la proporció mostral, p és la proporció

poblacional i n és la mida de la mostra.

Quan més gran sigui np(1-p) millor es l'aproximació. Es considera acceptable si $np(1-p) \geq 5$.

Estadístics d'ordre

Donada una mostra de mida n de $X: X_1, \ldots, X_n$, els estadístics d'ordre són les variables aleatòries $X_{(1)}, \ldots, X_{(n)}$ que són les dades ordenades de menor a major.

Exemples importants:

- La mediana, el valor que separa la meitat superior de la inferior $Q_2 = \begin{cases} X_{((n+1)/2)} & \text{si } n \text{ \'es senar} \\ \frac{X_{(n/2)} + X_{(n/2+1)}}{2} & \text{si } n \text{ \'es parell} \end{cases}$
- Els quartils, els valors que divideixen la mostra en 4 parts iguals: $Q_1 = X_{(n/4)}, \ Q_3 = X_{(3n/4)}.$
- El rang interquartílic, $IQR = Q_3 Q_1$. Ajuda a entendre la dispersió de les dades centrals.

Si X és una v.a. amb funció de distribució F_X , i X_1, \ldots, X_n , aleshores la funció de dist. de la v.a. màxim és $F_{X_{(n)}}(t) = (F_X(t))^n \ \forall t \in \mathbb{R}$. Si X és una v.a. amb funció de distribució F_X , i X_1, \ldots, X_n , aleshores la funció de dist. de la v.a. mínim és $F_{X_{(1)}}(t) = 1 - (1 - F_X(t))^n \ \forall t \in \mathbb{R}$.

Si X és una v.a. amb funció de distribució F_X , i X_1, \ldots, X_n , aleshores

la funció de dist. de la v.a. k-èssim és $F_{X_{(k)}}(t)=\sum\limits_{j=k}^n \binom{n}{j}(F_X(t))^j(1-F_X(t))^{n-j}$ $\forall t\in\mathbb{R}.$

Apendix A

La distribució χ^2

Si Z_1, \ldots, Z_n són v.a. independents amb distribució N(0,1), aleshores la v.a. $Y = Z_1^2 + \cdots + Z_n^2$ llavors $Y \sim \chi_n^2$ amb n graus de llibertat. Propietats:

• La variable Y pren valors positius; la seva funció de densitat

$$f_Y(x) = \begin{cases} 0 & \text{si } x \le 0\\ \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2 - 1} e^{-x/2} & \text{si } x > 0 \end{cases}$$

Amb Γ la funció gamma d'Euler.

- La seva funció generatriu de moments és $\phi_Y(t) = (1-2t)^{-n/2}, \ t < 1/2.$
- E(Y) = n, Var(Y) = 2n.
- Si $Z \sim N(0,1)$ aleshores $Z^2 \sim \chi_1^2$.
- Quan n és suficientment gran es pot fer servir l'aproximació $\sqrt{2\chi_n^2} \approx N(\sqrt{2n-1},1)$.

La distribució t de Student

Si $Z \sim N(0,1)$ i $Y \sim \chi_n^2$ són independents, aleshores la v.a. $T = \frac{Z}{\sqrt{Y/n}} Y \sim t_n$, la t de Student amb n graus de llibertat. Propietats:

• La funció de densitat de $T \sim t_n$ és

$$f_T(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n} \gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

- La densitat de la t de Student és no nul·la en tot \mathbb{R} . També és simètrica respecte l'eix vertical. $n \to \infty \Rightarrow t_n \to N(0,1)$.
- Si $T \sim t_n$ aleshores $E(T^k)$ només existeix si k < n. A més, E(T) = 0 si n > 1 i $Var(T) = \frac{n}{n-2}$ si n > 2.

Intervals de confiança

Sigui X una v.a. i θ qualsevol paràmetre desconegut de la llei de X. Fixem un valor $\gamma \in (0,1)$. Un interval de confiança per θ és una parella de nombres reals $t_1 < t_2$ tals que θ està entre t_1 i t_2 amb una confiança de γ . γ és el nivell de confiança de l'interval.

Com? Es tracta de trobar dos estadístics T_1 i T_2 tal que $P(T_1 < \theta < T_2) \ge \gamma$.

El metode més comú per trobar intervals de confiança és el mètode del pivot.

Mètode del pivot

Un pivot és una v.a. T tal que és una funció de la mostra i del parametre γ i no depén de cap parametre desconegut $T = T(X_1, \ldots, X_n; \theta)$. La llei de T és coneguda i no depén de cap paràmetre desconegut excepte θ .

Per mitjana normal amb variància coneguda

Tenim una població identificada amb una v.a. $X \sim N(\mu, \sigma^2)$ amb $\sigma > 0$ coneguda però μ desconeguda. I tenim una mostra de mida n de X. Un pivot per a μ és $Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$.

Llavors, apliquem:

- 1. $P(a \le Z \le b) = \gamma$, com $a = -b = z_{\alpha/2}$
- 2. Tenim llavors $P(a \leq \frac{\overline{X} \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)} = \gamma$
- 3. Aïllem μ i obtenim $P(\overline{X}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\leq\mu\leq\overline{X}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}})=\gamma$ on $\alpha=1-\gamma$
- 4. Finalment, tenim

$$IC_{\gamma}(\mu) = [t_1, t_2] = [\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

S'anomena error de precisió de l'interval de confiança $IC_{\gamma}(\mu)$ al valor (la constant) $e=z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}$. L'error satisfà el seguent

- $1. P(|\overline{X} \mu| \le e) = \gamma$
- 2. és la semi-amplitud de l'interval de confiança. Quant més gran és l'error, menys precís l'interval.
- 3. Depén de la mida de la mostra n, del nivell de confiança γ i de la desviació tipica poblacional σ .
- (a) L'error és una funció creixent del nivell de confiança.
- (b) L'error és una funció creixent de la desviació típica poblacional.
- (c) L'error és una funció decreixent de la mida de la mostra.
- 4. Per tal que l'error de precisió d'un interval de confiança sigui el menor menor posible i donat que σ és una constant que no podem modificar, ens queden dues opcions:
- (a) El recurs fonamental és augmentar la mida de la mostra.
- (b) L'altre recurs és menys recomenable: disminuir el nivell de confiança.

Però això incrementa el risc de donar un interval que no contingui el paràmetre.

Si fixem un error màxim $\varepsilon > 0$ i un nivell de confiança, podem trobar la mida de la mostra necessària per aconseguir-ho.

Per fer-ho, hem d'aïllar n de la designal tat $e=z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\leq \varepsilon$ i ob-

tenim
$$n \ge \left(\frac{z_{1-\alpha/2}\sigma}{\varepsilon}\right)^2$$
.

Llavors, agafem el primer nombre enter $n = \left[\left(\frac{z_{1-\alpha/2}\sigma}{\varepsilon} \right)^2 \right]$

Per mitjana normal amb variància desconeguda

Tenim una població identificada amb una v.a. $X \sim N(\mu, \sigma^2)$ amb μ i $\sigma > 0$ desconeguda. Llavors tenim un pivot $T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$.

on
$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$
 és la desviació típica mostral.

Si repetim el mateix procediment que abans, obtenim $IC_{\gamma}(\mu) = [\overline{X} - t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}].$

Notem que l'error serà $e = t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}$. Satisfà les mateixes propietats que abans menys que depèn de S en canvi de σ .

Analogament amb abans, si fixem un error màxim $\varepsilon > 0$ i un nivell de confiança, podem trobar la mida de la mostra necessària per aconseguir-ho. Aquesta serà $n = \left[\left(\frac{t_{n-1,1-\alpha/2}S}{\varepsilon} \right)^2 \right]$.

Per variància normal amb mitjana desconeguda

Suposem que tant μ com σ^2 són desconeguts. Llavors, tenim un pivot $\Psi = \frac{(n-1)S^2}{\sigma^2}$.

La llei de $\Psi \sim \chi^2_{n-1}$. No podem fer com anteriorment, ja que χ^2 no es simètrica.

Estimetrica.
Llavors tenim
$$P(a \le \Psi \le b) = \gamma$$
, on $a = \chi^2_{n-1,\alpha/2}$ i $b = \chi^2_{n-1,1-\alpha/2}$.

Aïllem σ^2 i obtenim $P\left(\frac{(n-1)S^2}{\chi^2_{n-1,1-\alpha/2}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{n-1,\alpha/2}}\right) = \gamma$, es dir

 $IC_{\gamma}(\sigma^2) = \left[\frac{(n-1)S^2}{\chi^2}, \frac{(n-1)S^2}{\chi^2}\right]$

$$IC_{\gamma}(\sigma^{2}) = \left[\frac{(n-1)S^{2}}{\chi_{n-1,1-\alpha/2}^{2}}, \frac{(n-1)S^{2}}{\chi_{n-1,\alpha/2}^{2}}\right]$$
I, obviament, $IC_{\gamma}(\sigma) = \left[\sqrt{\frac{(n-1)S^{2}}{\chi_{n-1,1-\alpha/2}^{2}}}, \sqrt{\frac{(n-1)S^{2}}{\chi_{n-1,1-\alpha/2}^{2}}}, \sqrt{\frac{(n-1)S^{2}}{\chi_{n-1,\alpha/2}^{2}}}\right]$

Per variància normal amb mitjana coneguda

El pivot es $\Psi = \frac{n\hat{S}^2}{\sigma^2} \sim \chi_n^2$.

No es simètrica, fem el mateix que abans i tindrem en aïllar σ^2 i o $IC_{\gamma}(\sigma^2) = \left[\frac{n\hat{S}^2}{\chi^2_{n,1-\alpha/2}}, \frac{n\hat{S}^2}{\chi^2_{n,\alpha/2}}\right]$ i $IC_{\gamma}(\sigma) = \left[\sqrt{\frac{n\hat{S}^2}{\chi^2_{n,1-\alpha/2}}}, \sqrt{\frac{n\hat{S}^2}{\chi^2_{n,\alpha/2}}}\right]$

Asimptòtics, per mitjana i la proporció, mostres grans

 $\underline{\text{Si}}\,n$ és prou gran (n>30), podem aproximar amb una normal.

 $\frac{X-\mu}{\sigma/\sqrt{n}} \approx \frac{X-\mu}{S/\sqrt{n}} \sim N(0,1)$ ja que S és un estimador de σ .

Si fem servir com pivot $IC_{\gamma}(\mu) = \left[\overline{X} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right]$ i $IC_{\gamma}(\mu) = \left[\overline{X} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right]$ respectivament.

Si tenim una població dicotomica $X \sim B(p)$ i ens interesa trobar p tenim el seguent pivot $\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx N(0,1)$, on $\hat{p}=$

 \overline{X} . Llavors tenim el seguent interval de confiança $IC_{\gamma}(p)=$

$$\left[\hat{\hat{p}} - z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{\hat{p}} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right] \text{ on } \hat{\hat{p}} = \overline{x} \text{ \'es la realit-zaci\'o de } \hat{p} = \overline{X}. \text{ S'aplica si } n\hat{p}(1-\hat{p}) \geq 18$$

Això s'interpreta de forma analoga a abans. L'error de precisió serà $e=z_{1-\alpha/2}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$ i si volem determinar la mida de la mostra tenim $n = \left| \left(\frac{z_{1-\alpha/2}}{2\varepsilon} \right)^2 \right|.$

IC per la desigualtat de Txebixov

Sigui X_1, \ldots, X_n una mostra de X. Volem estimar μ però no es prou gran per aproximar-ho via normal.

Llavors tenim
$$IC_{\gamma}(\mu) = \left[\overline{X} - \sqrt{\frac{\widehat{Var(X)}}{n\alpha}}, \overline{X} + \sqrt{\frac{\widehat{Var(X)}}{n\alpha}}\right]$$
 on

Var(X) és una bona aproximació de σ^2 . Sí fos coneguda podem fer servir σ^2 en canvi de Var(X).

IC per comparar dues poblacions

Dos poblacions: $X^{(1)}$ i $X^{(2)}$ amb mitjanes μ_1 i μ_2 , variàncies σ_1^2 i σ_2^2 respectivament.

amb mostres independents

La variança es coneguda:

Considerem
$$X^{(1)} \sim N(\mu_1, \sigma_1^2)$$
 i $X^{(2)} \sim N(\mu_2, \sigma_2^2)$.

Aleshores tenim que
$$E(\overline{X}^{(1)} - \overline{X}^{(2)}) = \mu_1 - \mu_2$$
 i $Var(\overline{X}^{(1)} - \overline{X}^{(2)}) = \underline{\sigma_1^2 + \underline{\sigma_2^2}}$

i a més tenim
$$\overline{X}^{(1)} - \overline{X}^{(2)} \sim N(\mu_1 - \mu_2, \sigma_1^2/n_1 + \sigma_2^2/n_2)$$

i a més tenim
$$\overline{X}^{(1)} - \overline{X}^{(2)} \sim N(\mu_1 - \mu_2, \sigma_1^2/n_1 + \sigma_2^2/n_2)$$

Podem agafar la seguent funció pivot: $Z = \frac{(\overline{X}^{(1)} - \overline{X}^{(2)}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim$

N(0, 1)

Fem com sempre i tenim el seguent $IC_{\gamma}(\mu_1 - \mu_2) =$

$$\left[(\overline{x}_1 - \overline{X}_2) - z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, (\overline{x}_1 - \overline{X}_2) + z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right]$$

Important: Si les variables no son normals pero $n_1, n_2 > 30$ podem fer servir aquesta aproximació.

La variança no es coneguda pero que es poden suposar iguals:

Si suposem que
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
 tenim que $\overline{X}^{(1)} - \overline{X}^{(2)} \sim N(\mu_1 - \mu_2, \sigma^2(1/n_1 + 1/n_2))$

Llavors estimem
$$\sigma^2$$
 amb $S^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$ i tenim que $T = \frac{(\overline{X}_1-\overline{X}_2)-(\mu_1-\mu_2)}{S\sqrt{1/n_1+1/n_2}} \sim t_{n_1+n_2-2}$

Llavors tenim $IC_{\gamma}(\mu_1 - \mu_2) =$

$$\overline{(\overline{x}_1 - \overline{x}_2) - t_{n_1 + n_2 - 2, 1 - \alpha/2} S \sqrt{1/n_1 + 1/n_2}, (\overline{x}_1 - \overline{x}_2) + t_{n_1 + n_2 - 2, 1 - \alpha/2} S \sqrt{1/n_1 + 1/n_2}$$

Important: Si $n_1, n_2 > 30$ podem canviar $t_{n_1+n_2-2, 1-\alpha/2}$ per $z_{1-\alpha/2}$. Per variancies desconegudes que NO es poden suposar iguals:

Llavors tenim que $T=\frac{(\overline{X}_1-\overline{X}_2)-(\mu_1-\mu_2)}{\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}}$ que té distribució apro-

ximadament
$$t_{\nu}$$
 on $\nu = \begin{bmatrix} \frac{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2} + \left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}} \end{bmatrix}$ Llavors, com sempre, fem

$$\begin{bmatrix}
(\overline{x}_1 - \overline{x}_2) - t_{\nu, 1 - \alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}, (\overline{x}_1 - \overline{x}_2) + t_{\nu, 1 - \alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}
\end{bmatrix}$$

I com abans, si $n_1, n_2 > 30$ podem canviar $t_{\nu, 1-\alpha/2}$ per $z_{1-\alpha/2}$. Per al quocient de variàncies amb poblacions normals. Com les dues son normals, sabem que $U_1 = \frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi_{n_1-1}^2$ i $U_2 =$ $\frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi_{n_2-1}^2$. Fem servir la distro F de Fisher-Hipercor, llavors tenim $F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{n_1-1,n_2-1}$. La fem pivotar i llavors $IC_{\gamma}(\frac{\sigma_2^2}{\sigma_1^2}) = \left[\frac{S_2^2}{S_1^2}F_{n_1-1,n_2-1,\alpha/2}, \frac{S_2^2}{S_1^2}F_{n_1-1,n_2-1,1-\alpha/2}\right]$

Aquest interval no es simètric. No es gens robust en front a la manca de normalitat.

Asimptòtic per a la diferencia de proporcions amb poblacions binàries: Suposem que $X^{(1)} \sim B(p_1)$ i $X^{(2)} \sim B(p_2)$, son independents. Denotem $\overline{X}_1 = \hat{p}_1$ i $\overline{X}_2 = \hat{p}_2$. Llavors tenim que la seguent funció pivot $\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\overline{p}(1-\overline{p})(1/n_1+1/n_2)}} \sim N(0,1)$ on $\overline{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}$. Es necesita que $n_1\hat{p}_1(1-\hat{p}_1)\geq 18$ i $n_2\hat{p}_2(1-\hat{p}_2)\geq 18$. Llavors tenim $IC_{\gamma}(p_1 - p_2) = (\hat{p}_1 - \hat{p}_2) \pm z_{1-\alpha/2} \sqrt{\overline{p}(1-\overline{p})(1/n_1 + 1/n_2)}$, sent $\overline{\overline{p}} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}.$

Dades aparellades

Si $X_1^{(1)}, \ldots, X_n^{(1)}$ i $X_1^{(2)}, \ldots, X_n^{(2)}$ son mostres aleatòries de mida nsent $X^{(1)} \sim N(\mu_1, \sigma_1^2)$ i $X^{(2)} \sim N(\mu_2, \sigma_2^2)$, es diuen aparellades si hi ha dependencia $\forall i = 1, \ldots, n$.

Llavors, es calculen diferencies $D_1 = X_1^{(1)} - X_1^{(2)}, \dots, D_n = X_n^{(1)}$ $X_n^{(2)}$, amb $D \sim N(\mu = \mu_1 - \mu_2, \sigma^2)$ on σ^2 es desconeguda, ja que no savem la covariancia.

Llavors tenim $IC_{\gamma}(\mu_1 - \mu_2) = \overline{d} \pm t_{n-1,1-\alpha/2} \frac{S_D}{\sqrt{n}}$ on \overline{d} i S_D son mitjana i desviació mostral respectivament.

Apendix B

Distribució F de Fisher-Hipercor

Si $X \sim \chi_n^2$ i $Y \sim \chi_m^2$ son independents, llavors la variable aleatòria $F = \frac{X/n}{V/m}$ es diu que te distribució F de Fisher-Hipercor amb n i m graus de llibertat. Propietats:

- La funció de densitat es $f_F(x) = \frac{\Gamma(\frac{n+m}{2})}{\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})} (\frac{n}{m})^{n/2} x^{n/2-1} \left(1 + \frac{n}{m}x\right)^{-(n+m)/2} \text{ quan } x \ge 0$
- $P(F_{n,m} \le x) = P(F_{m,n} \le \frac{1}{x}$, aixó serveix per exemple quan $P(F \le x) = 0.05 \Rightarrow P(F \ge x) = 0.95 = P(F \le \frac{1}{x})$