Supplementary Materials for "An Efficient and Computationally Robust Statistical Method for Analyzing Case-Control Mother-Offspring Pair Genetic Association Studies" by

Hong Zhang, Bhramar Mukherjee, Victoria Arthur, Gang Hu, Hagit Hochner, and Jinbo Chen

Appendix A. Derivation of the Log Profile Likelihood Function (2.5) in the Main Text.

We adopt the notation in the main text. The constraint on the prevalence $\operatorname{pr}(Y=1)=f$ can be written as $\sum_{j}\sum_{k=1}^{n}\operatorname{pr}(Y=1|G^{o}=j,G^{m}=k)\operatorname{pr}(G^{o}=j|G^{m}=k)\operatorname{pr}(G^{m}=k|X_{i})\pi_{i}=f, \text{ or equivalently}$

$$\sum_{i=1}^{n} H_i(\Theta)\pi_i = f. \tag{S1}$$

The aim is to maximize the log empirical likelihood function

$$\log L(\Theta, \boldsymbol{\pi}) = l_1(\Theta) + \sum_{i=1}^n \log \pi_i$$
 (S2)

subject to the constraints (S1) and $\sum_{i=1}^{n} \pi_i = 1$, where

$$l_1(\Theta) = \sum_{i=1}^n \{ \log \operatorname{pr}(Y_i | G_i^o, G_i^m, X_i) + \log \operatorname{pr}(G_i^o | G_i^m) + \log \operatorname{pr}(G_i^m | X_i) \}.$$

Using the Lagrange multiplier method, this maximization problem is equivalent to maximizing

$$l_1(\Theta) + \sum_{i=1}^n \log \pi_i - \zeta \left(\sum_{i=1}^n \pi_i - 1 \right) - n\lambda \left(\sum_{i=1}^n H_i(\Theta) - f \right).$$

Set the derivative of the above function with respect to π_i to 0, we obtain

$$\frac{1}{\pi_i} = \zeta + n\lambda H_i(\Theta),\tag{S3}$$

or equivalently

$$1 = \zeta \pi_i + n \lambda H_i(\Theta) \pi_i$$
.

Summing the above equation over $i=1,\ldots,n,$ we have that $\zeta=n(1-\lambda f)$. Plugging this into (S3) gives

$$\pi_i = \frac{1}{n\{1 + \lambda(H_i(\Theta) - f)\}}.$$

Plugging the above expression into (S1) gives equation (2.6) in the main text, which is the constraint on the multiplier λ . The maximization problem is equivalent to maximizing (S2), or (2.5) in the main text, subject to the constraint (2.6) in the main text.

Appendix B. Derivation of Equations in (2.8) in the Main Text.

We outline the proof of the two equations in (2.8) in the main text, following that of Theorem 1 of Zhang et al. (2018). We adopt the notation in the main text. Denote $Z = (X, G^o, G^m)$, $Z_i = (X_i, G^o_i, G^m_i)$, $G = (G^o, G^m)$, $G_i = (G^o_i, G^m_i)$, $p_Z(Z; \Theta) = \operatorname{pr}_{\Theta}(Y = 1|Z)$, $p_X(X; \Theta) = \operatorname{pr}_{\Theta}(Y = 1|X)$. Let \mathcal{G} be the set consisting of all possible values of (G^o, G^m) . For any measurable function t, let $E\{t(Z)|Y = 1\}$ and $E\{t(Z)|Y = 0\}$ be denoted by $E_1\{t(Z)\}$ and $E_0\{t(Z)\}$, respectively. Furthermore, $E\{t(Z)\}$ denotes the expectation of t(Z) in the population from which cases and controls arise.

We can show that for any measurable function t, the following results hold:

$$E_1\{t(Z)\} = E\left\{\frac{p_Z(Z;\Theta_0)}{f}t(Z)\right\} \text{ and } E_0\{t(Z)\} = E\left\{\frac{1 - p_Z(Z;\Theta_0)}{1 - f}t(Z)\right\},\tag{S4}$$

$$E\left\{\sum_{i=1}^{n} t(Z_i)\right\} = nE\left[\left\{1 + \lambda_0(p_Z(Z;\Theta_0) - f)\right\}t(Z)\right],\tag{S5}$$

and

$$E\left\{\sum_{i=1}^{n} \frac{(2Y_i - 1)t(Z_i)}{1 + Y_i + (2Y_i - 1)p_Z(Z_i; \Theta)}\right\} = n\lambda_0 E\{t(Z)\},\tag{S6}$$

provided that the relevant expectations exist and are finite. Since $E\{p_Z(Z;\Theta_0)|X\} = p_X(X;\Theta_0)$ and $E\{p_X(X;\Theta_0)\} = \operatorname{pr}_{\Theta_0}(Y=1) = f$, applying (S5), we have that

$$E\left[\sum_{i=1}^{n} \frac{p_X(X_i; \Theta_0) - f}{1 + \lambda_0 \{p_X(X_i; \Theta_0) - f\}}\right] = nE\left[\frac{1 + \lambda_0 \{p_Z(Z; \Theta_0) - f\}}{1 + \lambda_0 \{p_X(X; \Theta_0) - f\}} \{p_X(X; \Theta_0) - f\}\right] = 0.$$
 (S7)

This proves

$$E\left\{\frac{\partial}{\partial\lambda}l(\Theta_0,\lambda_0)\right\} = 0. \tag{S8}$$

Next we prove that

$$E\left\{\frac{\partial}{\partial\Theta}l(\Theta_0,\lambda_0)\right\} = 0. \tag{S9}$$

Note that

$$l(\Theta, \lambda_0) = \sum_{i=1}^n \log \operatorname{pr}_{\Theta}(Y_i | Z_i) + \sum_{i=1}^n \log \operatorname{pr}_{\Theta}(G_i | Z_i) - \sum_{i=1}^n \log[n\{1 + \lambda_0(p_X(X_i; \Theta) - f)\}]$$

$$:= \ell^{(1)}(\Theta, \lambda_0) + \ell^{(2)}(\Theta, \lambda_0) - \ell^{(3)}(\Theta, \lambda_0), \tag{S10}$$

We have that

$$E\left\{\frac{\partial}{\partial\Theta}\ell^{(1)}(\Theta_0,\lambda_0)\right\} = E\left\{\sum_{i=1}^n \frac{(2Y_i - 1)\partial p_Z(Z_i;\Theta_0)/\partial\Theta}{1 + Y_i + (2Y_i - 1)p_Z(Z_i;\Theta_0)}\right\} = n\lambda_0 E\left\{\frac{\partial p_Z(Z;\Theta_0)}{\partial\Theta}\right\}. \tag{S11}$$

By (S4), we have that

$$E\left\{\frac{\partial}{\partial\Theta}\ell^{(2)}(\Theta_{0},\lambda_{0})\right\} = n_{1}E\left\{\frac{p_{Z}(Z;\Theta_{0})}{f}\frac{\partial}{\partial\Theta}\log\operatorname{pr}_{\Theta_{0}}(G|X)\right\} + n_{0}E\left\{\frac{1 - p_{Z}(Z;\Theta_{0})}{1 - f}\frac{\partial}{\partial\Theta}\log\operatorname{pr}_{\Theta_{0}}(G|X)\right\}$$

$$= \frac{n_{0}}{1 - f}E\left\{\frac{\partial}{\partial\Theta}\log\operatorname{pr}_{\Theta_{0}}(G|X)\right\} + n\lambda_{0}E\left\{p_{Z}(Z;\Theta_{0})\frac{\partial}{\partial\Theta}\log\operatorname{pr}_{\Theta_{0}}(G|X)\right\}$$

$$= 0 + n\lambda_{0}E\left\{\operatorname{pr}_{\Theta_{0}}(Y = 1|G)\frac{\partial}{\partial\Theta}\log\operatorname{pr}_{\Theta_{0}}(G|X)\right\}$$

$$= n\lambda_{0}E\left\{\sum_{g \in \mathcal{G}}\operatorname{pr}_{\Theta_{0}}(Y = 1|G = g, X)\frac{\partial}{\partial\Theta}\operatorname{pr}_{\Theta_{0}}(G = g|X)\right\}. \tag{S12}$$

By (S6) and (S5), we have that

$$E\left\{\frac{\partial}{\partial\Theta}\ell^{(3)}(\Theta_{0},\lambda_{0})\right\} = \lambda_{0}E\left[\sum_{i=1}^{n} \frac{\partial p_{X}(X_{i};\Theta_{0})/\partial\Theta}{1+\lambda_{0}\{p_{X}(X_{i};\Theta_{0})-f\}}\right]$$

$$=n\lambda_{0}E\left[\frac{1+\lambda_{0}\{p_{Z}(Z;\Theta_{0})-f\}}{1+\lambda_{0}\{p_{X}(X;\Theta_{0})-f\}}\frac{\partial p_{X}(X;\Theta_{0})}{\partial\Theta}\right]$$

$$=n\lambda_{0}E\left[\frac{\partial p_{X}(X;\Theta_{0})}{\partial\Theta}\right]$$

$$=n\lambda_{0}E\left\{\frac{\partial}{\partial\Theta}\sum_{g\in\mathcal{G}}\operatorname{pr}_{\Theta_{0}}(Y=1|X,G=g)\operatorname{pr}_{\Theta_{0}}(G=g|X)\right\}$$

$$=n\lambda_{0}E\left\{\sum_{g\in\mathcal{G}}\frac{\partial}{\partial\Theta}\operatorname{pr}_{\Theta_{0}}(Y=1|X,G=g)\operatorname{pr}_{\Theta_{0}}(G=g|X)\right\}$$

$$+\sum_{g\in\mathcal{G}}\operatorname{pr}_{\Theta_{0}}(Y=1|X,G=g)\frac{\partial}{\partial\Theta}\operatorname{pr}_{\Theta_{0}}(G=g|X)$$

$$=E\left\{\frac{\partial}{\partial\Theta}\ell^{(1)}(\Theta_{0},\lambda_{0})\right\}+E\left\{\frac{\partial}{\partial\Theta}\ell^{(2)}(\Theta_{0},\lambda_{0})\right\}.$$
(S14)

Equation (S9) follows from (S10) and (S14). The two equations in (2.8) in the main text are proved by (S8) and (S9).

Appendix C. Asymptotic Equivalence of Profile MLE and Modified Profile MLE

Here we follow the proof of Theorem 2 of Zhang et al. (2018) to show the asymptotic equivalence of the profile MLE and the modified profile MLE of Θ . It follows from equation (2.8) in the main text and the expression of the score function $\partial l_{\rm mp}(\Theta)/\partial\Theta$ that with probability tending to 1 there exists a solution $\hat{\Theta}$ to equation (2.11), which is consistent for Θ_0 , under some regularity conditions. Likewise, with probability tending to 1 there exists a solution $(\tilde{\Theta}, \tilde{\lambda})$ to the score equations (2.7) in the main text, which is consistent for (Θ_0, λ_0) . In what follows, we outline the proof for the asymptotic equivalence of $\tilde{\Theta}$ and $\hat{\Theta}$.

If we write

$$U(\Theta) = \frac{\partial}{\partial \Theta} l_{\mathbf{p}}(\Theta) = \frac{\partial}{\partial \Theta} l(\Theta, \lambda) |_{\lambda = \lambda(\Theta)}$$

and

$$S_0(\Theta) = \frac{\partial^2}{\partial \Theta \partial \Theta'} l(\Theta, \lambda_0),$$

then we have that

$$n^{1/2}(\tilde{\Theta} - \Theta_0) = -\{S_0(\Theta_0)/n\}^{-1}n^{-1/2}U(\Theta_0)\{1 + o_p(1)\}.$$
(S15)

Similarly, we have that

$$n^{1/2}(\hat{\Theta} - \Theta_0) = -\{S_0(\Theta_0)/n\}^{-1}n^{-1/2}U_0(\Theta_0)\{1 + o_p(1)\},\tag{S16}$$

where $U_0(\Theta) = \partial l(\Theta, \lambda_0)/\partial \Theta$. Using Taylor's series expansion, we have that

$$n^{-1/2}\{U(\Theta_0) - U_0(\Theta_0)\} = \frac{1}{n} \frac{\partial^2 l(\Theta_0, \lambda_0)}{\partial \Theta \partial \lambda'} n^{1/2} \{\lambda(\Theta_0) - \lambda_0\} (1 + o_p(1)). \tag{S17}$$

Futhermore, it follows from $E\{n^{-1}\partial^2l(\Theta_0, \lambda_0)/\partial\Theta\partial\lambda'\}=0$ that

$$\frac{1}{n} \frac{\partial^2 l(\Theta_0, \lambda_0)}{\partial \Theta \partial \lambda'} \to 0 \text{ in probability.}$$
 (S18)

It follows from (S17)-(S18) that

$$n^{-1/2}\{U(\Theta_0) - U_0(\Theta_0)\} \to 0$$
 in probability. (S19)

The asymptotic equivalence of $\tilde{\Theta}$ and $\hat{\Theta}$ follows from (S15), (S16), and (S19).

Figure S1: For the X-axis, p.BMI is the p-value for testing the association between pp-BMI and maternal genotype G^m with DEP. For the Y-axis, p.IND and p.DEP are the p-values for testing associations between offspring genotype G^o and low birth weight Y with DEP and IND, respectively. Here DEP and IND are our proposed method with and without dependence dependence assumption between X and G^m , respectively.

Table S1: Estimation and significance test results for simulation studies comparing DEP and DEP-CLH with moderate association between maternal genotype and covariate (additive mode of inheritance, $f = 0.01, \theta = 0.2, \eta = \log(1.2)$).

					DEP^a				Ц	DEP-CLH"	٦.	
$G^m \sim X^c$	$\log(\mathrm{OR})$	${ m True}^d$	Bias^e	SE^f	SEE^g	CP^h	$Power^i$	Bias^e	SE^f	${ m SEE}^g$	CP^h	Power^i
The linear	eta_{G^o}	0.000	-0.022	0.156	0.153	0.946	0.054	-0.026	0.158	0.155	0.941	0.057
model (3.2)	eta_{Gm}	0.000	0.029	0.148	0.154	0.948	0.052	0.033	0.151	0.155	0.943	0.055
	$\beta_{G \circ X}$	0.000	-0.011	0.129	0.131	0.956	0.044	-0.009	0.129	0.132	0.957	0.041
	β_{G^mX}	0.000	-0.011	0.183	0.171	0.922	0.078	-0.014	0.192	0.179	0.915	0.083
	eta_{G^o}	0.182	-0.016	0.142	0.149	0.962	0.182	-0.019	0.147	0.150	0.960	0.186
	eta_{Gm}	0.182	0.031	0.159	0.150	0.932	0.298	0.040	0.195	0.151	0.931	0.298
	$\beta_{G \circ X}$	0.000	-0.003	0.129	0.126	0.926	0.074	-0.004	0.146	0.127	0.923	0.077
	β_{G^mX}	0.000	-0.020	0.166	0.168	0.954	0.046	-0.016	0.197	0.175	0.943	0.057
	β_{G^o}	0.182	-0.025	0.146	0.146	0.954	0.204	-0.021	0.157	0.147	0.937	0.201
	eta_{Gm}	0.182	0.019	0.141	0.146	0.960	0.270	0.017	0.152	0.147	0.949	0.272
	β_{G^oX}	-0.182	0.001	0.131	0.128	0.942	0.308	0.003	0.137	0.129	0.941	0.306
	β_{G^mX}	-0.182	-0.003	0.158	0.168	0.960	0.184	-0.002	0.174	0.174	0.949	0.170
The daLOG	β_{G^o}	0.000	0.017	0.157	0.153	0.950	0.050	0.015	0.160	0.153	0.944	0.056
model (2.3)	eta_{G^m}	0.000	-0.015	0.157	0.154	0.936	0.064	-0.010	0.159	0.155	0.946	0.054
	$\beta_{G \circ X}$	0.000	0.000	0.131	0.131	0.954	0.046	0.002	0.131	0.131	0.950	0.050
	β_{G^mX}	0.000	0.008	0.166	0.171	0.958	0.042	0.006	0.173	0.177	0.944	0.056
	eta_{G^o}	0.182	0.025	0.144	0.149	0.952	0.290	0.022	0.146	0.151	0.953	0.282
	β_{G^m}	0.182	-0.009	0.148	0.150	0.950	0.224	-0.004	0.155	0.152	0.945	0.231
	$\beta_{G^{\circ}X}$	0.000	-0.021	0.127	0.127	0.948	0.052	-0.017	0.128	0.128	0.945	0.053
	β_{G^mX}	0.000	0.010	0.166	0.168	0.958	0.042	0.005	0.180	0.176	0.945	0.053
	eta_{G^o}	0.182	0.010	0.140	0.145	0.952	0.248	0.011	0.169	0.148	0.940	0.242
	β_{G^m}	0.182	0.000	0.145	0.146	0.952	0.240	0.012	0.225	0.148	0.943	0.259
	$\beta_{G^{\circ}X}$	-0.182	-0.005	0.123	0.127	0.956	0.312	-0.005	0.138	0.130	0.953	0.296
	$\beta_{G^m X}$	-0.182	0.00	0 171	0.160	0.059	0.186	0.010	0.919	0 175	0.047	0 109

^aOur proposed method allowing for dependence between X and G^m ; ^bthe estimator proposed by Chen et al. (2012); ^cmodel relating G^m and X; ^dtrue value of the log-OR parameter; ^edifference between the mean estimate and true parameter value; ^fempirical standard error; ^gmean estimated standard error; h empirical coverage probability of 95% CI; i type-I error/power for testing genetic effect.

Table S2: Estimation results with $\beta_X = \log(1.5)$ and $\beta_{G^o} = \beta_{G^m} = \beta_{G^m X} = \beta_{G^o X} = 0$ under the additive mode of inheritance (f = 0.01, f) $\theta = 0.2$). G^m was independent of X ($\eta = 0$ in the daLOG model).

				DEP^a					IND^b				$ m TOGIT^c$	$^{-}$ I Γ^c	
Model	Model Log-OR	Bias^d	${ m SE}^e$	SEE^f	CP^g	RE^h	BIAS^d	${ m SE}^e$	SEE^f	CP^g	RE^h	BIAS^d	SE^e	SEE^f	CP^g
M1	eta_{G^o}	0.024	0.139	0.140	0.946	1.35	0.024	0.139	0.140	0.946	1.35	0.023	0.161	0.161	0.944
	β_X	0.001	0.047	0.047	0.948	1.00	0.001	0.047	0.047	0.947	1.00	0.001	0.047	0.047	0.948
M2	eta_{Gm}	-0.022	0.143	0.144	0.949	1.28	-0.024	0.139	0.141	0.951	1.35	-0.026	0.161	0.162	0.952
	β_X	0.000	0.046	0.047	0.950	1.00	0.000	0.046	0.047	0.950	1.00	0.000	0.046	0.047	0.950
M3	eta_{G^o}	0.011	0.147	0.147	0.947	1.28	0.011	0.147	0.147	0.948	1.28	0.012	0.166	0.165	0.949
	β_X	0.000	0.052	0.052	0.950	1.21	0.000	0.052	0.052	0.949	1.21	0.001	0.057	0.057	0.955
	β_{G^oX}	-0.016	0.120	0.121	0.948	1.88	-0.018	0.113	0.114	0.948	2.10	-0.021	0.164	0.165	0.952
M4	eta_{Gm}	0.012	0.146	0.147	0.952	1.25	0.011	0.146	0.147	0.952	1.25	0.013	0.164	0.165	0.950
	β_X	0.005	0.056	0.057	0.951	1.04	0.005	0.052	0.052	0.948	1.21	0.004	0.057	0.057	0.951
	β_{G^mX}	-0.001	0.159	0.159	0.951	1.08	-0.004	0.112	0.113	0.951	2.16	0.004	0.165	0.166	0.949
M5	eta_{G^o}	-0.023	0.157	0.154	0.943	1.51	-0.023	0.157	0.154	0.943	1.51	-0.021	0.193	0.191	0.942
	β_{Gm}	0.021	0.157	0.153	0.940	1.56	0.020	0.157	0.153	0.940	1.56	0.023	0.196	0.191	0.945
	β_X	0.002	0.059	0.058	0.950	1.06	0.002	0.055	0.054	0.947	1.23	0.003	0.061	090.0	0.950
	β_{G^oX}	0.025	0.132	0.132	0.951	2.07	0.025	0.132	0.132	0.951	2.07	0.024	0.190	0.192	0.957
	β_{G^mX}	-0.016	0.172	0.172	0.945	1.25	-0.016	0.133	0.131	0.943	2.07	-0.012	0.192	0.192	0.951

^aDEP, our proposed method allowing for dependence between X and G^m ; ^bIND, our proposed method with independence assumption between X and G^m ; ^cLOGIT, the conventional logistic regression method; ^ddifference between the mean estimate and true parameter value; ^eempirical standard error; f mean estimated standard error; g empirical coverage probability of the 95% confidence interval; h relative efficiency defined as the asymptotic variance of LOGIT divided by that of the target method.

Table S3: Estimation results with zero genetic effects (additive mode of inheritance, $\beta_X = \log(1.5)$, $\beta_{G^o} = \beta_{G^m} = \beta_{G^m X} = \beta_{G^o X} = 0$, f = 0.01, $\theta = 0.2$). G^m was correlated with X ($\eta = \log(3.0)$ in daLOG model).

				DEP^a					IND^b				$ m TOGIT^c$	$^{ m IT}^c$	
Model	Log-OR	Bias^d	${ m SE}^e$	SEE^f	CP^g	\mathbb{RE}^h	BIAS^d	SE^e	SEE^f	CP^g	\mathbb{RE}^h	BIAS^d	SE^e	SEE^f	CP^g
M1	β_{G^o}	-0.008	0.137	0.137	0.951	1.35	0.036	0.133	0.133	0.941	1.44	-0.008	0.159	0.160	0.953
	β_X	-0.003	0.047	0.047	0.949	1.00	-0.004	0.047	0.047	0.952	1.00	-0.003	0.047	0.047	0.950
M2	eta_{Gm}	-0.001	0.140	0.141	0.952	1.23	0.482	0.133	0.134	0.052	1.37	-0.001	0.156	0.157	0.954
	β_X	0.004	0.048	0.048	0.954	1.00	0.001	0.046	0.046	0.954	1.08	0.004	0.048	0.049	0.953
M3	β_{G^o}	0.000	0.151	0.151	0.951	1.28	-0.215	0.148	0.148	0.699	1.32	0.004	0.170	0.168	0.945
	β_X	-0.001	0.053	0.053	0.949	1.23	-0.122	0.051	0.051	0.343	1.35	0.001	0.059	0.059	0.946
	$\beta_{G^{o}X}$	-0.003	0.119	0.120	0.948	1.85	0.557	0.108	0.109	0.001	2.25	-0.008	0.162	0.161	0.951
M4	eta_{G^m}	0.000	0.153	0.153	0.951	1.30	-0.076	0.150	0.151	0.928	1.35	0.006	0.174	0.174	0.951
	β_X	0.001	0.060	0.060	0.947	1.04	-0.248	0.052	0.052	0.003	1.37	0.001	0.061	090.0	0.946
	β_{G^mX}	0.001	0.150	0.148	0.949	1.08	1.066	0.111	0.109	0.000	1.99	-0.001	0.156	0.154	0.945
M5	β_{G^o}	-0.019	0.156	0.156	0.949	1.51	-0.102	0.152	0.153	0.897	1.59	-0.021	0.192	0.194	0.954
	eta_{Gm}	0.014	0.157	0.159	0.951	1.56	-0.042	0.155	0.156	0.944	1.61	0.016	0.197	0.199	0.952
	β_X	0.001	0.062	0.061	0.946	1.10	-0.249	0.054	0.054	0.004	1.44	0.001	0.065	0.063	0.948
	$\beta_{G^{\circ}X}$	-0.006	0.130	0.131	0.950	2.16	0.001	0.124	0.125	0.950	2.37	-0.011	0.191	0.192	0.951
	β_{G^mX}	0.005	0.164	0.162	0.951	1.21	1.070	0.124	0.125	0.000	2.13	0.010	0.181	0.182	0.952

^aDEP, our proposed method allowing for dependence between X and G^m ; ^bIND, our proposed method with independence assumption between X and G^m ; ^cLOGIT, the conventional logistic regression method; ^ddifference between the mean estimate and true parameter value; ^eempirical standard error; f mean estimated standard error; g empirical coverage probability of the 95% confidence interval; h relative efficiency defined as

the asymptotic variance of LOGIT divided by that of the target method.

Table S4: Estimation results with non-zero genetic effects (additive mode of inheritance, $\beta_X = \log(1.5)$, $\beta_{G^o} = \beta_{G^m} = \beta_{G^m} X = \beta_{G^o} X = \log(1.2)$, $f = 0.01, \ \theta = 0.2$). G^m was correlated with X $(\eta = \log(3.0)$ in daLOG model).

				DEP^a					IND^b				$ m TOGIT^c$	IL^c	
Model	Model Log-OR	BIAS^d	SE^e	SEE^f	CP^g	RE^h	BIAS^d	SE^e	SEE^f	CP^g	RE^h	BIAS^d	SE^e	SEE^f	CP^g
M1	β_{G^o}	0.010	0.134	0.135	0.951	1.35	0.051	0.130	0.131	0.932	1.42	0.000	0.155	0.158	0.958
	β_X	0.007	0.047	0.047	0.950	1.00	0.015	0.047	0.047	0.937	1.00	0.008	0.047	0.047	0.950
M2	eta_{Gm}	0.008	0.139	0.139	0.949	1.23	0.494	0.133	0.132	0.041	1.35	0.010	0.154	0.155	0.951
	β_X	-0.001	0.048	0.048	0.954	1.00	0.012	0.046	0.046	0.946	1.08	-0.001	0.048	0.049	0.955
M3	β_{G^o}	0.003	0.150	0.150	0.951	1.28	-0.239	0.146	0.147	0.635	1.35	-0.003	0.169	0.170	0.949
	β_X	0.001	0.055	0.054	0.946	1.23	-0.120	0.053	0.052	0.369	1.32	-0.001	0.061	0.060	0.945
	β_{G^oX}	-0.007	0.116	0.115	0.945	2.03	0.557	0.106	0.105	0.000	2.43	0.003	0.165	0.163	0.949
M4	eta_{G^m}	0.024	0.153	0.153	0.948	1.30	-0.054	0.150	0.151	0.941	1.35	0.023	0.174	0.175	0.949
	β_{G^oX}	0.009	0.061	0.061	0.944	1.04	-0.249	0.053	0.053	0.004	1.37	0.008	0.062	0.062	0.947
	β_{G^mX}	-0.018	0.144	0.145	0.951	1.12	1.067	0.107	0.108	0.000	2.04	-0.013	0.153	0.154	0.951
M5	β_{G^o}	0.028	0.161	0.160	0.943	1.54	-0.062	0.158	0.156	0.927	1.59	0.030	0.199	0.198	0.942
	eta_{G^m}	-0.031	0.163	0.164	0.947	1.56	-0.091	0.161	0.161	0.910	1.59	-0.034	0.203	0.203	0.945
	β_X	0.008	0.063	0.063	0.950	1.06	-0.259	0.054	0.055	0.004	1.44	0.007	0.065	990.0	0.949
	β_{G^oX}	-0.036	0.123	0.124	0.941	2.46	-0.032	0.118	0.119	0.943	2.69	-0.024	0.193	0.194	0.949
	β_{G^mX}	0.022	0.159	0.158	0.945	1.32	1.112	0.122	0.123	0.000	2.25	0.020	0.183	0.183	0.955

^aDEP, our proposed method allowing for dependence between X and G^m ; ^bIND, our proposed method with independence assumption between X and G^m ; ^cLOGIT, the conventional logistic regression method; ^ddifference between the mean estimate and true parameter value; ^eempirical standard error; f mean estimated standard error; g empirical coverage probability of the 95% confidence interval; h relative efficiency defined as

the asymptotic variance of LOGIT divided by that of the target method.

Table S5: Type-I error rates and powers for testing the genetic effects under the recessive mode of inheritance $(f = 0.01, \theta = 0.2)$. Under the null hypothesis, $\beta_{G^o} = \beta_{G^m} = \beta_{G^m X} = \beta_{G^o X} = 0$; under the alternative hypothesis, $\beta_{G^o} = \beta_{G^m} = \beta_{G^m X} = \beta_{G^o X} = \log(1.2)$. The log-OR for X was $\beta_X = \log(1.5)$.

			N	ull hypot	hesis	Alteri	native hy	ypothesis
η^a	Model^b	Effect^c	DEP^d	IND^e	LOGIT^f	$\overline{\mathrm{DEP}^d}$	IND^e	LOGIT^f
0	M1	Joint	0.049	0.048	0.049	0.228	0.223	0.150
	M2	Joint	0.043	0.042	0.040	0.193	0.199	0.152
	M3	Joint	0.060	0.058	0.041	0.407	0.405	0.145
	M4	Joint	0.049	0.055	0.036	0.251	0.459	0.159
	M5	Joint	0.056	0.063	0.043	0.471	0.650	0.260
	M5	Offspring	0.066	0.065	0.043	0.285	0.280	0.169
	M5	Maternal	0.046	0.050	0.039	0.155	0.202	0.132
$\log(3.0)$	M1	Joint	0.052	0.591	0.051	0.185	$-^e$	0.133
	M2	Joint	0.055	0.994	0.050	0.192	-	0.160
	M3	Joint	0.051	0.694	0.034	0.587	-	0.242
	M4	Joint	0.053	>0.999	0.047	0.633	-	0.589
	M5	Joint	0.052	>0.999	0.037	0.899	-	0.752
	M5	Offspring	0.062	0.216	0.044	0.267	-	0.161
	M5	Maternal	0.053	1.000	0.047	0.134	-	0.114

^aThe maternal genotype was either independent of $(\eta = 0)$ or strongly correlated with the environmental risk factor $(\eta = \log(3.0))$, as specified in the daLOG model; ^bPenetrance models specified in (2.1Notation, Model and Prospective Likelihoodequation.2.1); ^cGenetic effect; ^dOur proposed method allowing for dependence between X and G^m ; ^eour proposed method with independence assumption between X and G^m ; ^fthe conventional logistic regression method; ^gPower not displayed because of inflated type-I error rates.

Table S6: Type-I error rates and powers for testing the genetic effects under the dominant mode of inheritance $(f = 0.01, \theta = 0.2)$. Under the null hypothesis, $\beta_{G^o} = \beta_{G^m} = \beta_{G^m X} = \beta_{G^o X} = 0$; under the alternative hypothesis, $\beta_{G^o} = \beta_{G^m} = \beta_{G^m X} = \beta_{G^o X} = \log(1.2)$. The log-OR for X was $\beta_X = \log(1.5)$.

			N	[ull hypot]	hesis	Alteri	native hyp	oothesis
η^a	Model^b	Effect^c	DEP^d	IND^e	LOGIT^f	$\overline{\mathrm{DEP}^d}$	IND^e	LOGIT^f
0	M1	Joint	0.051	0.051	0.052	0.609	0.610	0.474
	M2	Joint	0.045	0.041	0.042	0.656	0.675	0.545
	М3	Joint	0.052	0.054	0.051	0.959	0.969	0.753
	M4	Joint	0.050	0.049	0.044	0.862	0.981	0.801
	M5	Joint	0.052	0.053	0.051	>0.999	>0.999	0.995
	M5	Offspring	0.053	0.052	0.042	0.816	0.817	0.574
	M5	Maternal	0.050	0.047	0.048	0.617	0.748	0.496
$\log(3.0)$	M1	Joint	0.046	0.900	0.051	0.677	$_e$	0.523
	M2	Joint	0.050	0.999	0.051	0.493	-	0.428
	M3	Joint	0.051	>0.999	0.053	0.982	-	0.782
	M4	Joint	0.049	>0.999	0.046	0.787	-	0.739
	M5	Joint	0.046	>0.999	0.047	>0.999	-	0.989
	M5	Offspring	0.048	0.077	0.046	0.771	-	0.558
	M5	Maternal	0.041	1.000	0.048	0.548	-	0.412

^aThe maternal genotype was either independent of $(\eta = 0)$ or strongly correlated with the environmental risk factor $(\eta = \log(3.0))$, as specified in the daLOG model; ^bPenetrance models specified in (2.1Notation, Model and Prospective Likelihoodequation.2.1); ^cGenetic effect; ^dOur proposed method allowing for dependence between X and G^m ; ^eour proposed method with independence assumption between X and G^m ; ^fthe conventional logistic regression method; ^gPower not displayed because of inflated type-I error rates.

Table S7: Type-I error rates and powers for testing joint genetic effect with small minor allele frequency $\theta = 0.1$ (additive mode of inheritance, f = 0.01). Under the null hypothesis, $\beta_{G^o} = \beta_{G^m} = \beta_{G^m X} = \beta_{G^o X} = 0$; under the alternative hypothesis, $\beta_{G^o} = \beta_{G^m} = \beta_{G^m X} = \beta_{G^o X} = \log(1.2)$. The log-OR for X was $\beta_X = \log(1.5)$.

		N	ull hypotl	hesis	Altern	ative hy	pothesis
η^d	Model	DEP^a	IND^b	$LOGIT^c$	DEP^a	IND^b	LOGIT^c
0	M1	0.030	0.029	0.047	0.106	0.103	0.160
	M2	0.032	0.032	0.053	0.088	0.088	0.140
	M3	0.032	0.034	0.049	0.332	0.374	0.199
	M4	0.042	0.044	0.052	0.163	0.306	0.189
	M5	0.039	0.041	0.043	0.510	0.751	0.450
$\log(3.0)$	M1	0.030	0.060	0.044	0.121	0.290	0.174
	M2	0.036	0.862	0.051	0.107	_e	0.152
	M3	0.035	0.980	0.048	0.477	-	0.287
	M4	0.039	>0.999	0.045	0.291	-	0.305
	M5	0.039	>0.999	0.043	0.741	-	0.664

^aDEP, our proposed method allowing for dependence between X and G^m ; ^bIND, our proposed method with independence assumption between X and G^m ; ^cLOGIT, the conventional logistic regression method.

^dThe maternal genotype was either independent of $(\eta = 0)$ or strongly correlated with $(\eta = \log(3.0))$ the environmental risk factor. ^ePower was not displayed because of inflated type-I error rate.

Table S8: Type-I error rates and powers for testing joint genetic effect with smaller sample size $(n_0 = n_1 = 200, \text{ additive mode of inheritance}, \theta = 0.2 \ f = 0.01)$. Under the null hypothesis, $\beta_{G^o} = \beta_{G^m} = \beta_{G^mX} = \beta_{G^oX} = 0$; under the alternative hypothesis, $\beta_{G^o} = \beta_{G^m} = \beta_{G^mX} = \beta_{G^oX} = \log(1.2)$. The log-OR for X was $\beta_X = \log(\underline{1.5})$.

		Nι	ıll hypot	thesis	Alte	rnative h	ypothesis
η^d	Model	DEP^a	IND^b	LOGIT^c	$\overline{\mathrm{DEP}^a}$	IND^b	LOGIT^c
0	M1	0.051	0.049	0.050	0.098	0.095	0.086
	M2	0.049	0.049	0.048	0.093	0.098	0.086
	M3	0.054	0.054	0.049	0.168	0.180	0.094
	M4	0.052	0.053	0.045	0.104	0.169	0.081
	M5	0.051	0.051	0.040	0.187	0.305	0.132
$\log(3.0)$	M1	0.055	0.060	0.048	0.096	0.126	0.085
	M2	0.052	0.350	0.049	0.090	_e	0.088
	M3	0.053	0.557	0.049	0.183	-	0.102
	M4	0.052	0.990	0.046	0.132	-	0.115
	M5	0.053	0.984	0.040	0.242	-	0.178

^aDEP, our proposed method allowing for dependence between X and G^m ; ^bIND, our proposed method with independence assumption between X and G^m ; ^cLOGIT, the conventional logistic regression method.

^dThe maternal genotype was either independent of $(\eta = 0)$ or strongly correlated with $(\eta = \log(3.0))$ the environmental risk factor. ^ePower was not displayed because of inflated type-I error rate.

Table S9: Type-I error rates and powers for the simulation study comparing DEP and EMIM (additive mode of inheritance, f = 0.01, $\theta = 0.2$). In all simulation scenarios, $\beta_{G^o} = \beta_{G^m} = \log(\text{OR})$ (OR = 0 or 1.2). The log-OR for X was $\beta_X = \log(1.5)$.

				EMIM			DEP	
${\bf Interaction}^a$	e^{η}	OR	Offspring b	$Maternal^c$	Joint^d	$\overline{\text{Offspring}^b}$	$Maternal^c$	Joint^d
Zero	1	1	0.050	0.054	0.053	0.048	0.048	0.054
Zero	1.2	1	0.050	0.085	0.072	0.050	0.049	0.055
Zero	1	1.2	0.292	0.271	0.499	0.264	0.235	0.380
Zero	1.2	1.2	0.315	0.459	0.674	0.292	0.220	0.392
Non-zero	1	1.2	_e	_	0.280	_	_	0.630
Non-zero	1.2	1.2	_	_	0.359	_	_	0.613

 $a \beta_{G^m X} = \beta_{G^o X} = 0$ (zero interaction) and $\beta_{G^m X} = \beta_{G^o X} = -\log(OR)$ (non-zero interaction); bNull hypothesis: $\beta_{G^o} = 0$; cNull hypothesis: $\beta_{G^m} = 0$; cNull hypothesis: $\beta_{G^o} = \beta_{G^m} = 0$; cIt does not make sense to test main effects in the presence of interaction effects.

Table S10: Estimation and significance test results with correctly specified prevalence or mis-specified disease prevalence (additive mode of inheritance, $\theta = 0.2$, $\beta_X = \log(1.5)$).

			Preva	lence cc	Prevalence correctly specified $(=f)$	specified	(=f)	Pre	valence	mis-spec	Prevalence mis-specified (= f^*)	f^*
$(f, f^*)^a$ log(OR)	$\log(\mathrm{OR})$	${ m True}^b$	Bias^c	SE^d	SEE^e	CP^f	$Power^g$	Bias	SE	SEE	CP	Power
(0.01,0.2)	β_{G^o}	0.000	0.015	0.154	0.173	0.952	0.048	0.013	0.156	0.174	0.952	0.048
	β_{G^m}	0.000	0.001	0.159	0.179	0.948	0.052	0.002	0.160	0.179	0.948	0.051
	β_{G^oX}	0.000	-0.016	0.129	0.162	0.951	0.049	-0.015	0.130	0.164	0.951	0.048
	β_{G^mX}	0.000	0.010	0.161	0.173	0.950	0.050	0.009	0.162	0.173	0.950	0.051
(0.2,0.01)	β_{G^o}	0.000	-0.007	0.173	0.153	0.951	0.049	-0.004	0.171	0.152	0.951	0.049
	β_{G^m}	0.000	0.003	0.178	0.158	0.948	0.052	0.003	0.176	0.156	0.948	0.055
	β_{G^oX}	0.000	0.008	0.166	0.132	0.950	0.050	0.003	0.166	0.132	0.950	0.052
	β_{G^mX}	0.000	900.0	0.176	0.165	0.952	0.048	0.006	0.178	0.166	0.952	0.050
(0.01, 0.2)	β_{G^o}	0.182	0.011	0.156	0.175	0.956	0.223	0.012	0.160	0.179	0.956	0.188
	eta_{G^m}	0.182	0.003	0.160	0.180	0.955	0.204	-0.006	0.163	0.183	0.955	0.163
	β_{G^oX}	0.182	-0.016	0.122	0.164	0.953	0.261	0.059	0.124	0.167	0.953	0.291
	β_{G^mX}	0.182	0.007	0.158	0.172	0.946	0.222	-0.031	0.158	0.173	0.946	0.129
(0.2,0.01)	β_{G^o}	0.182	-0.003	0.173	0.154	0.952	0.176	-0.007	0.174	0.154	0.952	0.212
	eta_{G^m}	0.182	0.002	0.179	0.159	0.953	0.183	0.005	0.179	0.158	0.953	0.227
	β_{G^oX}	0.182	0.003	0.174	0.130	0.948	0.187	-0.079	0.173	0.129	0.948	0.124
	β_{G^mX}	0.182	0.012	0.188	0.169	0.945	0.181	0.024	0.185	0.167	0.945	0.235

 af : true disease prevalence, f^* : specified prevalence; b true parameter value; c difference between the mean estimate and true parameter value; d empirical standard error; e mean estimated standard error; f empirical coverage probability of the 95% confidence interval; g power of the

significance test of genetic effect.

Table S11: Estimation and significance test results of DEP for simulations with mis-specified fixation index parameter (additive mode of inheritance, $f = 0.01, \theta = 0.2, \eta = \log(3)$).

			- 1	Zero genetic effect	etic effec	t;			N_{0}	n-zero ge	Non-zero genetic effect	ect	
F^a		True^b	Bias^c	SE^d	SEE^e	CP^f	$Power^g$	True^b	Bias^c	SE^d	${ m SEE}^e$	CP^f	$Power^g$
0.05	β_{G^o}	0.000	0.014	0.153	0.155	0.951	0.047	0.182	0.011	0.145	0.146	0.950	0.248
		0.000	-0.001	0.163	0.162	0.953	0.052	0.182	0.000	0.151	0.154	0.951	0.250
		0.405	0.003	0.062	0.062	0.948	1.000	0.405	0.004	0.062	0.062	0.950	1.000
		0.000	-0.016	0.128	0.129	0.952	0.050	-0.182	-0.010	0.128	0.128	0.947	0.315
		0.000	0.011	0.162	0.163	0.950	0.050	-0.182	0.006	0.165	0.164	0.951	0.209
0.1		0.000	0.015	0.152	0.154	0.952	0.046	0.182	0.008	0.144	0.145	0.953	0.236
		0.000	-0.007	0.165	0.165	0.954	0.048	0.182	-0.003	0.154	0.156	0.952	0.276
		0.405	0.003	0.062	0.063	0.952	1.000	0.405	0.004	0.062	0.063	0.951	1.000
		0.000	-0.015	0.127	0.128	0.952	0.050	-0.182	-0.011	0.124	0.127	0.954	0.307
		0.000	0.012	0.164	0.165	0.950	0.050	-0.182	0.007	0.163	0.165	0.956	0.216
0.2		0.000	0.015	0.151	0.152	0.952	0.045	0.182	0.009	0.142	0.143	0.946	0.222
		0.000	-0.008	0.170	0.170	0.955	0.048	0.182	-0.004	0.161	0.160	0.952	0.321
		0.405	0.003	0.063	0.064	0.952	1.000	0.405	0.004	0.064	0.065	0.934	1.000
		0.000	-0.013	0.126	0.126	0.950	0.050	-0.182	-0.008	0.124	0.126	0.948	0.296
		0.000	0.011	0.166	0.167	0.951	0.050	-0.182	0.008	0.166	0.168	0.953	0.248

 a : fixation index parameter; b true parameter value; c difference between the mean estimate and true parameter value; d empirical standard error; e mean estimated standard error; f empirical coverage probability of the 95% confidence interval; g power of the significance test of genetic effect.

Table S12: Type-I error rates and powers of DEP for simulations with various specified modes of inheritance $(f=0.01,\,\theta=0.2,\,\eta=\log(3)).$

			REC^a			ADD^a			DOM^a	
Effect	β	REC^b	ADD^b	DOM^b	REC^b	ADD^b	DOM^b	REC^b	ADD^b	DOM^b
Zero	0	0.048	0.048	0.054	0.050	0.053	0.052	0.046	0.050	0.052
	0	0.054	0.048	0.043	0.051	0.055	0.054	0.049	0.048	0.047
	0	0.098	0.054	0.055	0.060	0.058	0.054	0.056	0.050	0.052
	0	0.054	0.057	0.053	0.056	0.057	0.052	0.054	0.055	0.055
	Joint	0.072	0.055	0.050	0.053	0.053	0.055	0.051	0.049	0.050
Non-zero	0.182	0.469	0.242	0.087	0.153	0.289	0.309	0.070	0.549	0.634
	0.182	0.042	0.051	0.078	0.158	0.244	0.249	0.074	0.050	0.052
	-0.182	0.485	0.237	0.087	0.220	0.396	0.371	0.115	0.698	0.773
	-0.182	0.056	0.051	0.056	0.120	0.147	0.165	0.068	0.053	0.045
	Joint	0.511	0.226	0.103	0.296	0.675	0.624	0.115	0.705	0.760

Table S13: Joint genetic effect, minor allele frequency, Hardy-Weinberg equilibrium, and maternal genotype and pp-BMI independence in the Tianjin Postpartum GDM Prevention Program.

			Ge	enetic effec	ets^a	
SNP	MAF^b	HWE^c	$\overline{\mathrm{DEP}^d}$	IND^e	LOGIT^f	${\rm Independence}^g$
rs3923113	0.144	0.200	0.173	0.147	0.231	0.020 (-0.488)
rs4402960	0.266	0.262	0.043	0.028	0.052	$0.733\ (0.057)$
$\mathrm{rs}16861329$	0.184	0.242	0.266	0.478	0.357	0.182 (-0.256)
$\mathrm{rs}7754840$	0.465	0.310	0.273	0.324	0.311	$0.026 \ (-0.316)$
rs1799884	0.232	1.000	0.104	0.070	0.087	$0.603\ (0.097)$
rs1802295	0.111	0.528	0.141	0.231	0.133	0.142 (-0.339)
rs4746822	0.268	0.378	0.205	0.112	0.180	$0.882 \ (0.024)$
$\mathrm{rs}2237895$	0.320	0.285	< 0.001	< 0.001	< 0.001	0.587 (-0.088)
rs5219	0.433	0.561	0.244	0.192	0.144	0.071 (-0.249)
$\mathrm{rs}1387153$	0.417	0.605	0.008	0.007	0.017	0.572 (-0.079)
rs10830963	0.426	0.949	0.105	0.096	0.104	$0.546 \; (-0.091)$
$\mathrm{rs}7178572$	0.371	0.787	0.873	0.764	0.861	0.819 (-0.037)
$\mathrm{rs}2028299$	0.189	0.533	0.978	0.984	0.977	0.548 (-0.099)
rs4812829	0.444	0.306	0.217	0.352	0.146	0.050 (0.262)

^ep-value for testing the joint genetic effect; ^bminor allele frequency; ^dp-value for testing HWE; ^dDEP, our proposed method allowing for dependence between X and G^m ; ^eIND, our proposed method with independence assumption between X and G^m ; ^fLOGIT, the conventional logistic regression method; ^gp-value for testing the independence between the maternal genotype and pp-BMI ($H_0: \eta = 0$), with the estimated η in the parentheses.

Table S14: Offspring SNP main effects in the Tianjin Postpartum GDM Prevention Program.

		DEP^{c}	ı		IND^b	ı		LOGIT^c			
SNP	$\hat{\beta}_{G^o}{}^d$	SE^e	P -value f	$\hat{\beta}_{G^o}{}^d$	SE^e	$\operatorname{P-value}^f$	$-\hat{eta}_{G^o}{}^d$	SE^e	P -value f		
rs3923113	-0.295	0.234	0.208	-0.339	0.232	0.144	-0.374	0.301	0.213		
rs4402960	-0.038	0.184	0.835	-0.035	0.183	0.851	0.057	0.236	0.809		
rs16861329	0.118	0.209	0.573	0.095	0.208	0.647	0.019	0.273	0.946		
$\mathrm{rs}7754840$	0.112	0.163	0.492	0.091	0.163	0.575	0.123	0.209	0.556		
rs1799884	0.128	0.196	0.513	0.133	0.196	0.498	0.058	0.252	0.817		
rs1802295	0.178	0.256	0.487	0.156	0.255	0.539	0.364	0.335	0.277		
rs 4746822	0.109	0.182	0.547	0.111	0.181	0.540	0.191	0.241	0.428		
rs2237895	-0.405	0.185	0.028	-0.412	0.184	0.025	-0.424	0.228	0.063		
rs5219	-0.044	0.169	0.794	-0.060	0.169	0.725	-0.033	0.209	0.876		
$\mathrm{rs}1387153$	-0.024	0.165	0.882	-0.029	0.164	0.859	0.154	0.222	0.489		
rs10830963	0.037	0.169	0.825	0.030	0.169	0.859	0.071	0.216	0.744		
$\mathrm{rs}7178572$	-0.160	0.167	0.339	-0.163	0.167	0.330	-0.137	0.219	0.533		
rs2028299	-0.027	0.207	0.897	-0.034	0.207	0.869	-0.107	0.265	0.685		
rs4812829	-0.263	0.169	0.119	-0.250	0.169	0.139	-0.239	0.213	0.262		

 ${}^a\mathrm{DEP}$, our proposed method allowing for dependence between X and G^m ; ${}^b\mathrm{IND}$, our proposed method with independence assumption between X and G^m ; ${}^c\mathrm{LOGIT}$, the conventional logistic regression method; ${}^d\mathrm{estimated}$ genetic effect; ${}^e\mathrm{estimated}$ standard error of $\hat{\beta}_{G^o}$; ${}^f\mathrm{significance}$ test p-value.

Table S15: Maternal SNP main effects in the Tianjin Postpartum GDM Prevention Program.

		DEP^{c}	ı		IND^b			LOGIT^c			
SNP	$\hat{\beta}_{G^m}^{d}$	SE^e	P -value f	$\hat{\beta}_{G^m}{}^d$	SE^e	P -value f	$\hat{\beta}_{G^m}{}^d$	SE^e	P -value f		
rs3923113	-0.248	0.244	0.308	-0.295	0.241	0.221	-0.186	0.297	0.532		
rs4402960	0.449	0.181	0.013	0.450	0.180	0.013	0.450	0.238	0.059		
rs16861329	-0.212	0.205	0.300	-0.232	0.203	0.252	-0.246	0.290	0.395		
$\mathrm{rs}7754840$	0.240	0.164	0.143	0.216	0.163	0.185	0.253	0.216	0.240		
rs1799884	0.348	0.188	0.064	0.354	0.188	0.059	0.414	0.247	0.094		
rs1802295	0.533	0.257	0.038	0.507	0.256	0.048	0.623	0.327	0.057		
rs4746822	0.304	0.185	0.100	0.305	0.184	0.098	0.237	0.232	0.306		
rs2237895	0.768	0.170	< 0.001	0.763	0.170	< 0.001	0.830	0.228	< 0.001		
rs5219	-0.263	0.172	0.125	-0.280	0.171	0.102	-0.286	0.209	0.172		
rs1387153	0.432	0.165	0.009	0.427	0.164	0.010	0.248	0.217	0.252		
rs10830963	0.335	0.163	0.040	0.329	0.163	0.044	0.313	0.214	0.144		
$\mathrm{rs}7178572$	0.089	0.175	0.609	0.088	0.174	0.612	0.111	0.216	0.608		
rs2028299	0.067	0.211	0.752	0.061	0.210	0.771	0.182	0.267	0.496		
rs4812829	0.202	0.163	0.214	0.220	0.163	0.177	0.179	0.216	0.408		

^aDEP, our proposed method allowing for dependence between X and G^m ; ^bIND, our proposed method with independence assumption between X and G^m ; ^cLOGIT, the conventional logistic regression method; ^destimated genetic effect; ^eestimated standard error of $\hat{\beta}_{G^m}$; ^f significance test p-value.

Table S16: Offspring SNP versus pp-BMI interaction effects in the Tianjin Postpartum GDM Prevention Program.

	DEP^a			IND^b			LOGIT	c
$\hat{\beta}_{G^oX}^d$	SE^e	P -value f	$\hat{\beta}_{G^oX}{}^d$	SE^e	P -value f	$\hat{\beta}_{G^oX}{}^d$	SE^e	P -value f
0.167	0.166	0.316	0.165	0.164	0.315	-0.123	0.331	0.709
0.303	0.149	0.042	0.303	0.150	0.043	0.430	0.249	0.084
-0.197	0.174	0.257	-0.191	0.172	0.267	-0.618	0.289	0.032
0.138	0.139	0.319	0.137	0.138	0.321	-0.115	0.211	0.585
-0.022	0.148	0.885	-0.021	0.148	0.885	-0.328	0.281	0.243
-0.015	0.218	0.944	-0.016	0.216	0.943	0.017	0.351	0.962
0.040	0.140	0.773	0.039	0.140	0.783	0.037	0.244	0.880
0.144	0.136	0.291	0.143	0.136	0.292	0.275	0.249	0.269
-0.197	0.138	0.153	-0.195	0.137	0.155	-0.376	0.225	0.095
0.313	0.129	0.016	0.311	0.129	0.016	0.576	0.233	0.013
0.182	0.129	0.160	0.180	0.129	0.162	0.339	0.234	0.147
0.070	0.126	0.578	0.070	0.125	0.579	0.363	0.235	0.122
-0.080	0.174	0.644	-0.083	0.174	0.634	-0.109	0.284	0.702
0.170	0.135	0.209	0.169	0.135	0.210	0.408	0.224	0.068
	0.167 0.303 -0.197 0.138 -0.022 -0.015 0.040 0.144 -0.197 0.313 0.182 0.070 -0.080	$\hat{\beta}_{G^{\circ}X}^{d}$ SE ^e 0.167 0.166 0.303 0.149 -0.197 0.174 0.138 0.139 -0.022 0.148 -0.015 0.218 0.040 0.140 0.144 0.136 -0.197 0.138 0.313 0.129 0.182 0.129 0.070 0.126 -0.080 0.174	$\hat{\beta}_{G^{\circ}X}^{d}$ SE ^e P-value ^f 0.167 0.166 0.316 0.303 0.149 0.042 -0.197 0.174 0.257 0.138 0.139 0.319 -0.022 0.148 0.885 -0.015 0.218 0.944 0.040 0.140 0.773 0.144 0.136 0.291 -0.197 0.138 0.153 0.313 0.129 0.016 0.182 0.129 0.160 0.070 0.126 0.578 -0.080 0.174 0.644	$\hat{\beta}_{G^{\circ}X}{}^{d}$ SE ^e P-value ^f $\hat{\beta}_{G^{\circ}X}{}^{d}$ 0.167 0.166 0.316 0.165 0.303 0.149 0.042 0.303 -0.197 0.174 0.257 -0.191 0.138 0.139 0.319 0.137 -0.022 0.148 0.885 -0.021 -0.015 0.218 0.944 -0.016 0.040 0.140 0.773 0.039 0.144 0.136 0.291 0.143 -0.197 0.138 0.153 -0.195 0.313 0.129 0.016 0.311 0.182 0.129 0.160 0.180 0.070 0.126 0.578 0.070 -0.080 0.174 0.644 -0.083	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^aDEP, our proposed method allowing for dependence between X and G^m ; ^bIND, our proposed method with independence assumption between X and G^m ; ^cLOGIT, the conventional logistic regression method; ^destimated genetic effect; ^eestimated standard error of $\hat{\beta}_{G^oX}$; ^fsignificance test p-value.

Table S17: Maternal SNP versus pp-BMI interaction effects in the Tianjin Postpartum GDM Prevention Program.

		DEP^a			IND^b			LOGIT^c			
SNP	$\hat{\beta}_{G^m X}{}^d$	SE^e	P -value f	$\frac{\hat{\beta}_{G^m X}{}^d}{\hat{\beta}_{G^m X}{}^d}$	SE^e	P -value f	$\hat{\beta}_{G^m X}{}^d$	SE^e	P -value f		
rs3923113	0.270	0.284	0.341	-0.220	0.181	0.224	0.437	0.336	0.193		
rs4402960	-0.117	0.226	0.603	-0.059	0.150	0.695	-0.164	0.240	0.493		
rs16861329	0.505	0.262	0.054	0.240	0.161	0.136	0.744	0.312	0.017		
$\mathrm{rs}7754840$	0.112	0.196	0.568	-0.207	0.133	0.121	0.242	0.219	0.268		
rs1799884	-0.354	0.241	0.142	-0.257	0.151	0.089	-0.230	0.267	0.389		
rs1802295	0.291	0.323	0.369	-0.052	0.221	0.812	0.316	0.346	0.361		
rs4746822	-0.310	0.225	0.169	-0.283	0.153	0.065	-0.352	0.241	0.144		
$\mathrm{rs}2237895$	-0.201	0.211	0.340	-0.290	0.136	0.034	-0.286	0.234	0.222		
rs5219	0.259	0.198	0.191	0.008	0.139	0.956	0.460	0.227	0.043		
rs1387153	0.048	0.197	0.807	-0.031	0.135	0.819	-0.073	0.222	0.743		
rs10830963	0.126	0.201	0.530	0.035	0.130	0.785	0.071	0.221	0.749		
$\mathrm{rs}7178572$	-0.099	0.211	0.639	-0.135	0.135	0.316	-0.200	0.219	0.362		
rs2028299	0.109	0.248	0.659	0.010	0.183	0.956	0.127	0.281	0.652		
rs4812829	-0.326	0.190	0.086	-0.061	0.131	0.643	-0.514	0.234	0.028		

^aDEP, our proposed method allowing for dependence between X and G^m ; ^bIND, our proposed method with independence assumption between X and G^m ; ^cLOGIT, the conventional logistic regression method; ^destimated genetic effect; ^eestimated standard error of $\hat{\beta}_{G^mX}$; ^f significance test p-value.

Table S18: Joint genetic effect, minor allele frequency, Hardy-Weinberg equilibrium, and maternal genotype and pp-BMI independence in the Jerusalem Perinatal Study.

				Gene	tic effects a		
SNP	MAF^b	HWE^c	$\overline{\mathrm{DEP}^d}$	IND^e	LOGIT^f	EMIM^g	Independence h
rs2932965	0.172	0.699	0.014	0.011	0.013	0.015	0.481 (-0.058)
$\mathrm{rs}3774921$	0.343	0.076	0.001	0.005	0.001	0.001	0.023 (-0.149)
$\mathrm{rs}3755863$	0.482	0.939	0.001	0.012	0.004	0.003	$0.004\ (0.166)$
rs8192678	0.355	0.869	0.009	0.011	0.023	0.016	$0.563\ (0.037)$
rs2970849	0.252	0.304	0.153	0.251	0.276	0.171	0.124 (-0.106)
$\mathrm{rs}1472095$	0.169	0.164	0.030	0.063	0.054	0.025	0.062 (-0.146)
$\mathrm{rs}2970853$	0.226	0.830	0.019	0.025	0.028	0.035	$0.370 \; (-0.065)$
$\mathrm{rs}4697046$	0.336	1.000	0.284	0.339	0.375	0.436	$0.422 \ (-0.050)$
$\mathrm{rs}7665116$	0.172	0.501	0.509	0.538	0.487	0.334	$0.560 \ (0.044)$
rs12374408	0.338	0.349	0.056	0.218	0.037	0.046	$0.002\ (0.185)$
$\mathrm{rs}7437482$	0.279	1.000	0.411	0.412	0.545	0.433	$0.798 \; (0.017)$
rs10002477	0.393	0.693	0.402	0.476	0.335	0.373	$0.152 \ (0.087)$
$\mathrm{rs}6850464$	0.117	0.850	0.649	0.730	0.582	0.574	$0.269 \ (0.089)$
rs11724368	0.277	0.924	0.173	0.388	0.155	0.156	$0.006 \; (-0.175)$
rs 4235308	0.480	1.000	0.349	0.632	0.238	0.273	0.013 (-0.145)
$\mathrm{rs}7656250$	0.309	0.290	0.181	0.223	0.148	0.154	$0.312\ (0.068)$
rs10213440	0.201	0.234	0.337	0.331	0.512	0.398	$0.908 \; (0.009)$
rs 4550905	0.358	0.509	0.016	0.039	0.019	0.027	$0.135 \ (-0.095)$
rs 4361373	0.165	0.271	0.452	0.440	0.820	0.393	0.902 (-0.010)
rs11734408	0.179	0.702	0.044	0.030	0.046	0.037	0.897 (-0.010)
$\mathrm{rs}3796407$	0.299	0.718	0.712	0.618	0.879	0.740	$0.024\ (0.147)$
rs12500214	0.256	0.762	0.777	0.790	0.746	0.779	$0.033\ (0.148)$
rs2946385	0.483	0.360	0.217	0.186	0.274	0.339	$0.211\ (0.070)$
rs2970872	0.445	0.938	0.057	0.039	0.069	0.058	0.141 (-0.091)

^ep-value for testing the joint genetic effect; ^bminor allele frequency; ^dp-value for testing HWE; ^dDEP, our proposed method allowing for dependence between X and G^m ; ^eIND, our proposed method with independence assumption between X and G^m ; ^fLOGIT, the conventional logistic regression method; ^gEMIM, a method developed in Ainsworth et al. (2011a) and Howey and Cordell (2012); ^hp-value for testing the independence between the maternal genotype and pp-BMI ($H_0: \eta = 0$), with the estimated η in the parentheses.

Table S19: Offspring SNP main effects in the Jerusalem Perinatal Study.

		DEP	\overline{a}		IND	b		LOGI	Γ^c
SNP	$\hat{\beta}_{G^o}{}^d$	SE^e	P -value f	$-\hat{\beta}_{G^o}{}^d$	SE^e	P -value f	$\hat{\beta}_{G^o}{}^d$	SE^e	P -value f
rs2932965	0.41	0.401	0.306	0.41	0.401	0.305	0.50	0.408	0.220
$\mathrm{rs}3774921$	0.68	0.323	0.036	0.68	0.323	0.035	0.65	0.343	0.058
$\mathrm{rs}3755863$	-0.46	0.304	0.127	-0.47	0.304	0.124	-0.41	0.337	0.222
rs8192678	-0.74	0.313	0.018	-0.75	0.313	0.017	-0.66	0.359	0.065
rs2970849	0.22	0.356	0.539	0.22	0.355	0.534	0.13	0.364	0.729
rs1472095	0.80	0.386	0.038	0.80	0.385	0.039	0.71	0.414	0.085
$\mathrm{rs}2970853$	0.24	0.385	0.531	0.24	0.385	0.532	0.30	0.390	0.443
rs 4697046	-0.25	0.328	0.443	-0.25	0.328	0.451	-0.29	0.345	0.406
$\mathrm{rs}7665116$	-0.07	0.448	0.879	-0.07	0.448	0.877	-0.14	0.424	0.749
rs12374408	-0.10	0.353	0.779	-0.10	0.352	0.781	-0.15	0.350	0.673
$\mathrm{rs}7437482$	-0.40	0.365	0.277	-0.40	0.365	0.276	-0.40	0.384	0.297
rs10002477	0.11	0.322	0.737	0.11	0.322	0.734	0.19	0.345	0.586
$\mathrm{rs}6850464$	-0.44	0.553	0.426	-0.44	0.553	0.422	-0.47	0.510	0.356
rs11724368	0.34	0.353	0.332	0.35	0.352	0.326	0.34	0.366	0.356
rs4235308	-0.07	0.326	0.822	-0.07	0.325	0.827	-0.09	0.332	0.783
$\mathrm{rs}7656250$	0.31	0.339	0.366	0.31	0.339	0.367	0.33	0.352	0.347
$\mathrm{rs}10213440$	-0.52	0.416	0.210	-0.51	0.416	0.216	-0.53	0.439	0.227
rs 4550905	0.25	0.344	0.460	0.25	0.344	0.461	0.35	0.337	0.307
rs 4361373	-0.01	0.424	0.990	0.00	0.423	0.999	0.01	0.435	0.983
rs11734408	-0.13	0.393	0.742	-0.13	0.393	0.741	-0.09	0.416	0.820
$\mathrm{rs}3796407$	-0.39	0.339	0.251	-0.39	0.338	0.244	-0.32	0.357	0.373
$\mathrm{rs}12500214$	-0.13	0.327	0.681	-0.14	0.327	0.659	-0.06	0.390	0.880
rs2946385	-0.27	0.275	0.327	-0.27	0.275	0.327	-0.23	0.329	0.478
rs2970872	0.31	0.284	0.268	0.32	0.284	0.263	0.20	0.342	0.556

 a DEP, our proposed method allowing for dependence between X and G^m ; b IND, our proposed method with independence assumption between X and G^m ; c LOGIT, the conventional logistic regression method; d estimated genetic effect; e estimated standard error of $\hat{\beta}_{G^o}$; f significance test p-value.

Table S20: Maternal SNP main effects in the Jerusalem Perinatal Study.

		DEP ^e	a		IND^l)		LOGIT^c			
SNP	$\hat{\beta}_{G^m}{}^d$	SE^e	P -value f	$\hat{\beta}_{G^m}{}^d$	SE^e	P -value f	$\hat{\beta}_{G^m}{}^d$	SE^e	P -value f		
rs2932965	0.33	0.412	0.428	0.32	0.410	0.436	0.36	0.421	0.392		
$\mathrm{rs}3774921$	-0.23	0.347	0.510	-0.23	0.345	0.507	-0.17	0.349	0.635		
$\mathrm{rs}3755863$	-0.05	0.320	0.884	-0.04	0.320	0.889	-0.21	0.345	0.539		
rs8192678	0.18	0.340	0.594	0.18	0.340	0.592	0.08	0.350	0.825		
rs2970849	-0.65	0.362	0.071	-0.65	0.362	0.070	-0.51	0.383	0.184		
rs1472095	-0.92	0.439	0.036	-0.92	0.438	0.035	-0.70	0.454	0.122		
$\mathrm{rs}2970853$	0.53	0.354	0.131	0.53	0.353	0.133	0.65	0.384	0.093		
rs 4697046	0.41	0.294	0.161	0.41	0.294	0.161	0.55	0.352	0.116		
$\mathrm{rs}7665116$	0.33	0.420	0.429	0.33	0.421	0.434	0.51	0.413	0.219		
rs12374408	0.47	0.343	0.168	0.45	0.342	0.187	0.57	0.353	0.107		
$\mathrm{rs}7437482$	0.20	0.369	0.596	0.20	0.370	0.594	0.22	0.371	0.556		
rs10002477	0.44	0.313	0.164	0.43	0.313	0.173	0.39	0.340	0.250		
$\mathrm{rs}6850464$	-0.15	0.517	0.777	-0.16	0.517	0.760	0.01	0.508	0.979		
rs11724368	-0.60	0.338	0.075	-0.61	0.338	0.073	-0.64	0.390	0.098		
rs4235308	-0.26	0.323	0.417	-0.26	0.323	0.427	-0.25	0.335	0.447		
$\mathrm{rs}7656250$	0.29	0.315	0.351	0.29	0.315	0.357	0.29	0.351	0.410		
$\mathrm{rs}10213440$	0.26	0.388	0.508	0.25	0.388	0.516	0.29	0.403	0.471		
rs 4550905	-0.19	0.321	0.560	-0.19	0.321	0.564	-0.24	0.346	0.490		
rs 4361373	-0.22	0.389	0.564	-0.23	0.39	0.560	-0.14	0.436	0.752		
rs11734408	0.21	0.424	0.627	0.21	0.424	0.625	0.28	0.431	0.521		
rs3796407	0.03	0.326	0.923	0.02	0.326	0.939	0.01	0.362	0.968		
rs12500214	-0.28	0.369	0.454	-0.29	0.369	0.437	-0.32	0.384	0.397		
rs2946385	-0.40	0.325	0.219	-0.40	0.326	0.214	-0.48	0.336	0.156		
rs2970872	0.62	0.321	0.054	0.62	0.321	0.054	0.68	0.339	0.044		

^aDEP, our proposed method allowing for dependence between X and G^m ; ^bIND, our proposed method with independence assumption between X and G^m ; ^cLOGIT, the conventional logistic regression method; ^destimated genetic effect; ^eestimated standard error of $\hat{\beta}_{G^m}$; ^fsignificance test p-value.

Table S21: Offspring SNP versus pp-BMI interaction effects in the Jerusalem Perinatal Study.

		DEP^a	;		IND^b			LOGIT^c			
SNP	$\frac{-\hat{\beta}_{G^{o}X}{}^{d}}$	SE^e	P -value f	$\hat{\beta}_{G^oX}^d$	SE^e	P -value f	$\hat{\beta}_{G^oX}^d$	SE^e	P -value f		
rs2932965	0.02	0.410	0.969	0.01	0.410	0.974	0.07	0.392	0.868		
$\mathrm{rs}3774921$	0.25	0.336	0.463	0.25	0.334	0.461	0.17	0.340	0.615		
$\mathrm{rs}3755863$	0.34	0.323	0.295	0.33	0.320	0.296	0.27	0.339	0.426		
rs8192678	0.00	0.312	0.987	0.00	0.312	0.988	-0.25	0.356	0.478		
rs2970849	0.26	0.369	0.477	0.26	0.368	0.477	0.33	0.364	0.368		
$\mathrm{rs}1472095$	0.21	0.354	0.547	0.20	0.352	0.563	0.34	0.417	0.412		
$\mathrm{rs}2970853$	-0.56	0.407	0.172	-0.56	0.407	0.168	-0.48	0.372	0.199		
rs4697046	-0.29	0.348	0.411	-0.29	0.348	0.407	-0.27	0.338	0.428		
$\mathrm{rs}7665116$	-0.69	0.473	0.145	-0.69	0.474	0.145	-0.50	0.401	0.210		
rs12374408	0.44	0.372	0.232	0.44	0.367	0.228	0.53	0.356	0.135		
$\mathrm{rs}7437482$	-0.61	0.323	0.060	-0.61	0.324	0.062	-0.58	0.390	0.138		
rs10002477	0.29	0.349	0.410	0.28	0.348	0.416	0.40	0.334	0.235		
$\mathrm{rs}6850464$	-0.42	0.584	0.477	-0.41	0.582	0.485	-0.47	0.502	0.352		
$\mathrm{rs}11724368$	0.08	0.364	0.835	0.08	0.361	0.833	-0.08	0.365	0.835		
rs4235308	-0.25	0.328	0.445	-0.25	0.325	0.447	-0.34	0.334	0.305		
$\mathrm{rs}7656250$	0.54	0.359	0.131	0.54	0.359	0.131	0.57	0.345	0.097		
rs10213440	-0.73	0.367	0.048	-0.73	0.367	0.047	-0.68	0.439	0.120		
rs 4550905	0.00	0.360	0.990	0.00	0.359	0.997	0.24	0.333	0.471		
rs4361373	-0.62	0.436	0.156	-0.62	0.436	0.155	-0.32	0.423	0.456		
rs11734408	0.68	0.426	0.109	0.68	0.426	0.110	0.65	0.425	0.125		
$\mathrm{rs}3796407$	-0.30	0.321	0.347	-0.31	0.320	0.336	-0.19	0.348	0.578		
rs12500214	-0.23	0.320	0.468	-0.24	0.319	0.460	-0.30	0.386	0.438		
rs2946385	-0.31	0.270	0.257	-0.30	0.270	0.264	-0.34	0.33	0.303		
rs2970872	0.13	0.286	0.650	0.13	0.285	0.641	0.30	0.344	0.391		

^aDEP, our proposed method allowing for dependence between X and G^m ; ^bIND, our proposed method with independence assumption between X and G^m ; ^cLOGIT, the conventional logistic regression method; ^destimated genetic effect; ^eestimated standard error of $\hat{\beta}_{G^oX}$; ^fsignificance test p-value.

Table S22: Maternal SNP versus pp-BMI interaction effects in the Jerusalem Perinatal Study.

		DEP^a			IND^b		$LOGIT^c$			
SNP	$\frac{1}{\hat{\beta}_{G^m X}} d$	SE^e	P -value f	$\hat{\beta}_{G^m X}{}^d$	SE^e	P -value f	$\hat{\beta}_{G^m X}{}^d$	SE^e	P -value f	
rs2932965	1.05	0.415	0.011	0.95	0.382	0.013	1.10	0.427	0.010	
rs3774921	1.04	0.338	0.002	0.79	0.315	0.012	1.06	0.355	0.003	
$\mathrm{rs}3755863$	-1.19	0.345	0.001	-0.91	0.333	0.006	-1.19	0.339	< 0.001	
rs8192678	-0.89	0.361	0.014	-0.83	0.354	0.019	-0.71	0.327	0.029	
$\mathrm{rs}2970849$	0.40	0.374	0.281	0.23	0.356	0.527	0.36	0.389	0.352	
rs1472095	0.82	0.424	0.054	0.57	0.398	0.152	0.76	0.466	0.102	
$\mathrm{rs}2970853$	0.89	0.392	0.023	0.78	0.372	0.035	0.91	0.367	0.013	
rs 4697046	0.52	0.358	0.146	0.44	0.345	0.203	0.56	0.343	0.103	
$\mathrm{rs}7665116$	0.22	0.457	0.635	0.28	0.447	0.528	0.12	0.401	0.761	
rs12374408	-0.86	0.373	0.021	-0.53	0.351	0.128	-0.96	0.368	0.009	
$\mathrm{rs}7437482$	0.16	0.396	0.677	0.18	0.386	0.633	0.20	0.371	0.597	
rs10002477	-0.29	0.331	0.375	-0.14	0.313	0.644	-0.34	0.339	0.321	
$\mathrm{rs}6850464$	-0.29	0.548	0.592	-0.15	0.529	0.775	-0.46	0.530	0.391	
rs11724368	0.54	0.371	0.146	0.24	0.353	0.496	0.65	0.398	0.102	
rs4235308	0.61	0.347	0.080	0.36	0.329	0.273	0.68	0.341	0.046	
$\mathrm{rs}7656250$	-0.53	0.347	0.126	-0.42	0.328	0.199	-0.50	0.337	0.138	
$\mathrm{rs}10213440$	0.29	0.423	0.495	0.30	0.412	0.464	0.32	0.401	0.420	
rs 4550905	0.99	0.330	0.003	0.83	0.312	0.008	0.87	0.341	0.011	
rs 4361373	0.70	0.410	0.086	0.69	0.388	0.076	0.51	0.445	0.254	
rs11734408	-1.18	0.424	0.005	-1.20	0.411	0.004	-1.14	0.409	0.005	
$\mathrm{rs}3796407$	0.04	0.357	0.912	0.28	0.343	0.407	0.03	0.368	0.936	
rs12500214	-0.15	0.383	0.698	0.09	0.370	0.803	-0.09	0.397	0.815	
rs2946385	0.13	0.331	0.690	0.25	0.317	0.428	0.22	0.354	0.533	
rs2970872	-0.15	0.346	0.669	-0.30	0.33	0.363	-0.24	0.341	0.477	

 a DEP, our proposed method allowing for dependence between X and G^m ; b IND, our proposed method with independence assumption between X and G^m ; c LOGIT, the conventional logistic regression method; d estimated genetic effect; e estimated standard error of $\hat{\beta}_{G^mX}$; f significance test p-value.

Table S23: The marginal distribution of the maternal and offspring genotypes under the daLOG model (2.3) in the main $\underline{\text{text.}}$ The MAF was 0.25, and the covariate X was binary with pr(X=1)=pr(X=0)=0.5.

		$\eta = 0$			$\eta = 1$			$\eta = 2$	
	0	1/2	1	0	1/2	1	0	1/2	1
G^m	0.562	0.375	0.062	0.419	0.437	0.144	0.323	0.393	0.284
G^o	0.562	0.375	0.062	0.478	0.431	0.091	0.390	0.490	0.120