Docket No.: PF-0556-1 DIV USSN: 09/954,846 EXHIBIT B

Dup

S ScI08

36 October 1975 Vol. 270 : Pages 349-545

GENOME ISSUE

MI 22000-2215

OCCOMOHOMOC MI 220 22002 M LYIBAIEM BD EFDO C KOEMIC \$05285558(0)5\$82 JS\01\62 E 2522

COVER

e Genome Project adds a new dimension to questions gena, expression in humans and model systems. A art on page 415 summarizes progress in the enorhabditis elegans Genome Project and indicates ne ways information about sequences can be used.

News stones, Articles, Perspectives, Policy Forums, and Reports focus on technological developments, clinical applications, and ethical concerns resulting from the burgeoning of genomic information. [C. elegans image: F. Maduro and D. Pilgrim, University of Alberta]

PORTS INCOME TO STATE OF THE PARTY OF THE PA

imogenic Ages for Earthquake turrence Intervals and Debris Flow Fan Depoon, Owens Valley, California R. Bierman, A. R. Gillespie, M. W. Caffee

450

noautotrophic Microbial
systems in Deep Basalt Aquifers
O. Stevens and J. P. McKinley

ge Arctic Temperature Change at Wisconsin-Holocene Glacial Transition M. Cuffey, G. D. Clow, R. B. Alley, M. Stuiver, D. Waddington, R. W. Saltus

erplasticity in Earth's Lower Mantle: 458 lence from Seismic Anisotropy and k Physics

i. Karat , S. Zhang, H.-R. Wenk

ge-Scale Interplanetary Magnetic d Configuration Revealed by Solar io Bursts

J. Reiner, J. Fainberg, R. G. Stone

Role of Yeast Insulin-Degrading Enzyme
Homologs in Propheromone Processing and
Bud Site Selection

N. Adames, K. Blundell, M. N. Ashby, C. Boone

Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray

Complementary DNA Microarray
M. Schena, D. Shalon, R. W. Davis, P. O.
Brown

Gene Therapy in Peripheral Blood Lymphocytes and Bone Marrow for ADA Immunodeficient Patients

C. Bordignon, L. D. Notarangelo, N. Nobili, G. Ferrari, G. Casorati, P. Panina, E. Mazzolari, D. Maggioni, C. Rossi, P. Servida, A. G. Ugazio, F. Mavilio

T Lymphocyte-Directed Gene Therapy for ADA SCID: Initial Trial Results After 4 Years

R. M. Blaese, K. W. Culver, A. D. Miller, C. S. Carter, T. Fleisher, M. Clerici, G. Shearer, L. Chang, Y. Chiang, P. Tolstoshev, J. J. Greenblatt, S. A. Rosenberg, H. Klein, M. Berger, C. A. Mullen, W. J. Ramsey, L. Muul, R. A. Morgan, W. F. Anderson

Physical Map and Organization of Arabidopsis thaliana Chromosome 4

R. Schmidt, J. West, K. Love, Z. Lenehan, C. Lister, H. Thompson,

D. Bouchez, C. Dean

Serial Analysis of Gene Expression V. E. Velculescu, L. Zhang,

B. Vogelstein, K. W. Kinzler

TECHNICAL COMMENTS MINISTER

The Radius of Gyration of an 487 Apomyoglobin Folding Intermediate D. Eliezer, P. A. Jennings, P. E. Wright, S. Doniach, K. O. Hodgson, H. Tsuruta

397
Good things in small genomes

AS B and if Direct is the second and the second and

sco J. Ayele ring President sman . Colwell isdent ubchenco

Jeen E. Teytor Chang-Lin Tien Nancy S. Wester

> William T. Golden Treasurer Richard S. Nicholeon Executive Officer

B SCIENCE (ISSN 9034-8075) is published weekly on Friday, except the last week in December, by the American Association for the Advancement of Science, 1333 H Street, MW, Washington, DC 20005. Second-class postage (publication No. 464450) paid at Washington, DC, and addenial meining offices. Copyright © 1995 by the American Association for the Advancement of Science. The the SCIENCE is a registered tracement of the AAAS, Domestic individual membership and subscription (51 issues): 827 (850 allocated in subscription). Domestic restrictions authorization (51 issues): 8228. Foreign postage extra: Mexico, Certiboson (surface mail) 853; other countries (sir assist delivery) 893. First class, sirmail, student and emembers rates on request, Canadan rasse with GST evaluable upon request, GST #1254 88122. Printed in the U.S.A.

Change of address: alore 4 weeks, grying old and new addresses and 8-digl scoopil number. Postmaster: Send charge of address to Science, P.D. Box 1811, Danbury, CT 06613—1811, Bingle sepy sales: \$7,00 per lesse propell includes surface postage; buth naise on request, Authorization to philatesia microsis tor trace or postage; buth naise on request, Authorization is philatesia microsis for seminal or presonal use under corounstances not failing within the fail use provisions of the Copyright Act is granted by AAAS to libraries and ethe users regulatered with the Copyright Coorance Center (CCC) Transactions Reporting Service, provided that \$3,00 per article is paid directly to CCC, 27 Congress Street, Salem, MA 01970. The identification code for Science is 0038-8075/IS 33.00, Science is mosted in the Reader's Guites to Periodical Libraries and in several approximation indexes.

Aid1p sequence following Ser²⁰⁸ and occurs within the comain of Aid1p that shows homology with hIDE (14). To delete the complete STE23 sequence and create the ste231::URA3 mutation, polymerase chain reaction (PCR) primers (5'-TCGGAAGACCTCAT-TCTTGCTCATTTTGATATTGCTC- TGTAGATTG-TACTGAGAGTGCAC-3": and 5"-GCTACAAACAGC-GTCGACTTGAATGCCCCGACATCTTCGACTGT-GCGGTATTTCACACCG-3') were used to amplify the URA3 sequence of pRS316, and the reaction product was transformed into yeast for one-step gene replacement [R. Rothstein, Methods Enzymol. 194, 281 (1991)]. To create the aut A::LEU2 mutation contained on p114, a 5.0-kb Sal I fragment from pAXL1 was cloned into pUC19, and an internal 4.0-kb Hpa HXno I fragment was replaced with a LEU2 fragment. To construct the ste23A::LEU2 aliele ta deletion corresponding to 931 amino acids) carried on p153, a LEU2 tragment was used to replace the 2.8-kb Pml HEC136 It tragment of STE23, which occurs within a 6.2-kb Hind III-Bgl II genomic tragment carried on pSP72 (Promega). To create YEpMFA1, a 1.6-kb Barn Hi tragment containing MFA1, from pKK16 [K. Kuchler, R. E. Sterne, J. Thomer, EMBO J. 8, 3973 (1989)], was ligated into the Barn HI site of YED351 [J. E. Hill, A. M. Myers, T. J. Koemer, A. Tzagoloff, Yeast 2, 163 (1986)].

THE RESERVE OF THE PARTY OF THE

J. Chant and I. Herskowitz, Cell 65, 1203 (1991). B. W. Matthews, Acc. Chem. Res. 21, 333 (1988). K. Kuchler, H. G. Dohlman, J. Thorner, J. Cell Biol. 120, 1203 (1993); R. Kolling and C. P. Hollenberg, EMBO J. 13, 3261 (1994); C. Berkower, D. Losyza, S. Michaelis, Mol. Biol. Cell 5, 1185 (1994).

A. Bender and J. R. Pringle, Proc. Natl. Acad. Sci. U.S A 86, 9976 (1989); J. Chant, K. Corrado, J. R. Pringle, I. Herskowitz, Cell. 65, 1213 (1991); S. Powers, E. Gonzales, T. Christensen, J. Cubert, D. Broek, ibid., p. 1225; H. O. Park, J. Chant, I. Herskowitz, Nature 365, 269 (1993); J. Chant, Trends Genet. 10, 328 (1994); _______ and J. R. Pringle, J. Cell Biol. 129, 751 (1995); J. Chant, M. Mischke, E. Mitchell, I. Herskowitz, J. R. Pringle, ibid., p. 767. G. F. Sprague Jr., Methods. Enzymol. 194, 77 (1991).

Single-letter abbreviations for the amino acid residues are as follows: A. Ala; C. Cys; D. Asp; E. Glu; F. Phe; G. Gly; H. His; I. He; K. Lys; L. Leu; M. Met; N. Asn; P. Pro; O, Gln; R. Arg; S. Ser; T. Thr; V. Val; W.

Trp; and Y, Tyr.

A W303 1A derivative, SY2625 IMATa ura3-1 lau2-3, 112 trp1-1 ade2-1 can1-100 sst1 \(\text{mta2\(\Delta ::FUS1-tac2} \) his34::FUS1-HIS3), was the parent strain for the mutant search, SY2625 derivatives for the mating assays, secreted pheromone assays, and the pulse-chase experiments included the following strains: Y49 (\$1922-1), Y115 (mfa1&::LEUZ), Y142 (axf1::URA3), Y173 laxi1 A::LEU2), Y220 laxi1::URA3 ste23A::URA3), Y221 (S1e23A::URA3), Y231 (2x11A::LEU2 S1e23A::LEUZ), and Y233 Iste23A::LEUZ). MATe derivatives of SY2625 included the following strains: Y199 (SY2625 made MATa), Y278 (ste22-1), Y195 (mta14::LEUZ), Y196 (axt14::LEUZ), and Y197 (axi1::URA3). The EG123 (MATa leu2 ura3 trp1 can1 nis4) genetic background was used to create a set of strains for analysis of bud are selection. EG123 derivatives included the following strains: Y175 (ax114::LEU2), Y223 (ax11::URA3), Y234 (516234:: LEUZ), and Y272 (axi1 A:: LEUZ sta23 A:: LEUZ). MATa derivatives of EG123 included the following strains: Y214 (EG123 made MATa) and Y293 (axi1 A::LEU2). All strains were generated by means of standard genetic or molecular methods involving the appropriate constructs (23). In particular, the aid1 ste23 double mutant strains were created by crossing of the appropriate MATs ste23 and MATs axd1 mutants, followed by sponulation of the resultant diploid and isolation of the double mutant from nonparental di-type tétrads. Gené disruptions were confirmed with either PCR or Southern (DNA) analysis. p129 is a YEp352 IJ. E. Hill, A. M. Myers, T. J. Koerner, A. Tzagoloff, Yeast 2, 163 (1985)] plasmid containing 8 5.5-kb Sal I tragment of pAXL1, p151 was derived from p129 by insertion of a linker at the Bgf II site within AXL1, which led to an in-frame insertion of the hemagglutinin (HA) epitope (DOYPYDVPDYA) (29) between amino acids 854 and 855 of the AXL1 prod-

uct. pC225 is a KS+ (Stratagene) plasmed containing a 0.5-kb Barn HI-Sst I tragment from pAXL1; Substtution mutations of the proposed active site of Aidin were created with the use of pC225 and site-specific mutagenesis involving appropriate synthetic oligonucleotoes last1-H68A, 5'-GTGCTCACAAAGCGCT-GCCAAACCGGC-3'; ad1-E71A, 5'-AAGAATCAT-GTGCGCACAAAGGTGCGC-3"; and auti-E71D, 5"-AAGAATCATGTGATCACAAAGGTGCGC-3"). The mutations were confirmed by sequence analysis. After mutagenesis, the 0.4-kb Barn HI-Msc I tragment from the mutagenized pC225 plasmids was transterred into pAXL1 to create a set of pRS316 plasmics carrying different AXL1 alleles, p124 (ax1-H68A). p130 (axt1-E71A), and p132 (axt1-E71D). Smilarly, a set of HA-tagged alleles carned on YEp352 were created after replacement of the p151 Barn Hi-Msc I fragment, to generate p161 (aud1-E71A), p162 (aud1-

H68A), and p163 (axt1-E71D).

32. We thank J. Becker and S. Michaelis for providing a-factor antibodies; S. Michaelis for discussing unpublished results and helping with the pulse-chase experiments; J. Brown, J. Chant, and S. Sanders for their input concerning bud site selection experiments; M. Raymond, F. Taminol, and M. Whitewastor plasmids; M. Marra for providing the STE23 genomic fragment; and H. Bussey, J. Brown, N. Davis, T. Favero, C. de Hoog, and S. Kim for comments on the manuscript. Supported by a grant to C.B. from the Natural Sciences and Engineering Research Council of Canada. Support for neithers as the search Program postdoctoral fellowship (4FT-0083).

22 June 1995; accepted 21 August 1995

Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray

Mark Schena,* Dari Shalon,*† Ronald W. Davis, Patrick O. Brown‡

A high-capacity system was developed to monitor the expression of many genes in parallel. Microarrays prepared by high-speed robotic printing of complementary DNAs on glass were used for quantitative expression measurements of the corresponding genes. Because of the small format and high density of the arrays, hybridization volumes of 2 microliters could be used that enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA. Differential expression measurements of 45 Arabidopsis genes were made by means of simultaneous, two-color fluorescence hybridization.

The temporal, developmental, topographical, histological, and physiological patterns in which a gene is expressed provide clues to its biological role. The large and expanding database of complementary DNA (cDNA) sequences from many organisms (1) presents the opportunity of defining these patterns at the level of the whole genome.

For these studies, we used the small flowering plant Arabidopsis thaliana as a model organism. Arabidopsis possesses many advantages for gene expression analysis, including the fact that it has the smallest genome of any higher eukaryote examined to date (2). Forty-five cloned Arabidopsis cDNAs (Table 1), including 14 complete sequences and 31 expressed sequence tags (ESTs), were used as gene-specific targets. We obtained the ESTs by selecting cDNA clones at random from an Arabidopsis cDNA library. Sequence analysis revealed that 28 of the 31 ESTs matched sequences in the database (Table 1). Three additional cDNAs from other organisms served as controls in the experiments.

The 48 cDNAs, averaging \sim 1.0 kb, were amplified with the polymerase chain reaction (PCR) and deposited into individual wells of a 96-well microtiter plate. Each sample was duplicated in two adjacent wells to allow the reproducibility of the arraying and hybridization process to be tested. Samples from the microtiter plate were printed onto glass microscope slides in an area measuring 3.5 mm by 5.5 mm with the use of a high-speed arraying machine (3). The arrays were processed by chemical and heat treatment to attach the DNA sequences to the glass surface and denature them (3). Three arrays, printed in a single lot, were used for the experiments here. A single microtiter plate of PCR products provides sufficient material to print at least 500 arrays.

Fluorescent probes were prepared from total Arabidopsis mRNA (4) by a single round of reverse transcription (5). The Arabidopsis mRNA was supplemented with human acetylcholine receptor (AChR) mRNA at a dilution of 1:10,000 (w/w) before cDNA synthesis, to provide an internal standard for calibration (5). The resulting fluorescently labeled cDNA mixture was hybridized to an array at high stringency (6) and scanned

M. Schena and R. W. Davis, Department of Biochemistry, Beckman Center, Stanford University Medical Center, Stanford, CA 94305, USA.

D. Shalon and P. O. Brown, Department of Biochernistry and Howard Hughes Medical Institute, Beckman Center, Stanford University Medical Center, Stanford, CA 94305, USA.

^{*}These authors contributed equally to this work.
†Present address: Synteni, Palo Alto, CA 94303, USA.
‡To whom correspondence should be addressed. E-mail: pbrown@cmgm.stanford.edu

a laser (3). A high-sensitivity scan gave als that saturated the detector at nearly of the Arabidopsis target sites (Fig. 1A), ibration relative to the AChR mRNA dard (Fig. 1A) established a sensitivity t of ~1:50,000. No detectable hybridizawas observed to either the rat glucocorid receptor (Fig. 1A) or the yeast TRP4. 1A) targets even at the highest scangesistivity. A moderate-sensitivity scan

of the same array allowed linear detection of the more abundant transcripts (Fig. 1B). Quantitation of both scans revealed a range of expression levels spanning three orders of magnitude for the 45 genes tested (Table 2). RNA blots (7) for several genes (Fig. 2) corroborated the expression levels measured with the microarray to within a factor of 5 (Table 2).

Differential gene expression was investi-

gated with a simultaneous, two-color hybridization scheme, which served to minimize experimental variation inherent in the comparison of independent hybridizations. Fluorescent probes were prepared from two mRNA sources with the use of reverse transcriptase in the presence of fluorescein- and lissamine-labeled nucleotide analogs, respectively (5). The two probes were then mixed together in equal proportions, hybridized to a single array, and scanned separately for fluorescein and lissamine emission after independent excitation of the two fluorophores (3).

To test whether overexpression of a single gene could be detected in a pool of total Arabidopsis mRNA, we used a microarray t analyze a transgenic line overexpressing the single transcription factor HAT4 (8). Fluorescent probes representing mRNA from wild-type and HAT4-transgenic plants were labeled with fluorescein and lissamine, respectively; the two probes were then mixed and hybridized to a single array. An intense hybridization signal was observed at the position of the HAT4 cDNA in the lissamine-specific scan (Fig. 1D), but not in the fluorescein-specific scan of the same array (Fig. 1C). Calibration with AChR mRNA added to the fluorescein and lissamine cDNA synthesis reactions at dilutions of 1:10,000 (Fig. 1C) and 1:100 (Fig. 1D), respectively, revealed a 50-fold elevation of HAT4 mRNA in the transgenic line relative to its abundance in wild-type plants (Table 2). This magnitude of HAT4 overexpression matched that inferred from the Northern (RNA) analysis within a factor of 2 (Fig. 2 and Table 2). Expression of all the other genes monitored on the array differed by less than a factor of 5 between HAT4transgenic and wild-type plants (Fig 1, C

Fig. 2. Gene expression monitored with RNA (Northern) blot analysis. Designated amounts of mRNA from wild-type and *HAT4*-transgenic plants were spotted onto nylon membranes and probed with the cDNAs indicated. Purified human AChR mRNA was used for calibration.

Gene expression monitored with the use of cDNA microarrays. Fluorescent scans represented in locolor correspond to hybridization intensities. Color bars were calibrated from the signal obtained to use of known concentrations of human AChR mRNA in independent experiments. Numbers and on the axes mark the position of each cDNA. (A) High-sensitivity fluor scein scan after hybridization unrescein-labeled cDNA derived from wild-type plants. (B) Same array as in (A) but scanned at attein sensitivity. (C and D) A single array was probed with a 1:1 mixture of fluorescein-labeled cDNA vild-type plants and lissamine-labeled cDNA from HAT4-transgenic plants. The single array was canned successively to detect the fluorescein fluorescence corresponding to mRNA from HAT4-transgenic plants (D). (E) A single array was probed with a 1:1 mixture of fluorescein-labeled cDNA from root tissue and ne-labeled cDNA from leaf tissue. The single array was then scanned successively to detect the cein fluorescence corresponding to mRNAs expressed in roots (E) and the lissamine fluorescence conding to mRNAs expressed in leaves (F).

and D, and Table 2). Hybridization of fluorescein-labeled glucocorticoid receptor cDNA (Fig. 1C) and lissamine-labeled TRP4 cDNA (Fig. 1D) verified the presence of the negative control targets and the lack of optical cross talk between the two fluorophores.

To explore a more complex alteration in expression patterns, we performed a second two-color hybridization experiment with fluorescein- and lissamine-labeled probes prepared from root and leaf mRNA, respectively. The scanning sensitivities for the two fluorophores were normalized by matching the signals resulting from AChR

mRNA, which was added to both cDNA synthesis reactions at a dilution of 1:1000 (Fig. 1, E and F). A comparison of the scans revealed widespread differences in gene expression between root and leaf tissue (Fig. 1, E and F). The mRNA from the light-regulated CABI gene was ~500-fold more abundant in leaf (Fig. 1F) than in root tissue (Fig. 1E). The expression of 26 other genes differed between root and leaf tissue by more than a factor of 5 (Fig. 1, E and F).

The HAT4-transgenic line we examined has elongated hypocotyls, early flowering, poor germination, and altered pigmentation (8). Although changes in expression were

Table 1. Sequences contained on the cDNA microarray. Shown is the position, the known or putative function, and the accession number of each cDNA in the microarray (Fig. 1). All but three of the ESTs used in this study matched a sequence in the database. NADH, reduced form of nicotinamide adenine dinucleotide; ATPase, adenosine triphosphatase; GTP, guanosine triphosphate.

Position	cDNA	Function	Accession number
a1, 2	AChR	Human AChR	
a3, 4	EST3	Actin	H36236
a5, 6	EST6	NADH dehydrogenase	Z27010
a7, 8	AAC1	Actin 1	M20016
a9, 10	EST12	Unknown	U36594†
a11, 12	EST13	Actin	T45783
b1, 2	CABI	Chlorophyll a/b binding	M85150
b3, 4 ·	EST17	Phosphoglycerate kinase	T44490
b5, 6	GA4	Gibberellic acid biosynthesis	L37126
b7, 8	EST19	Unknown	U36595†
b9, 10	GBF-1	G-box binding factor 1	X63894
b11, 12	EST23	Elongation factor	X52256
c1, 2	EST29	Aldolase -	T04477
c3, 4	GBF-2	G-box binding factor 2	X63895
c5, 6	EST34	Chloroplast protease	R87034
c7, 8	EST35	Unknown	T14152
c9, 10	EST41	Catalase	T22720
c11, 12	rGR	Rat glucocorticoid receptor	
d1, 2	EST42	Unknown	M14053
3 3. 4	EST45	ATPase	U365961
15. 6	HAT1	Homeobox-leucine zipper 1	J04185
17 , 8	EST46	Light harvesting complex	U09332
19. 10	EST49	Unknown	T04063
J11, 12	HAT2	Homeobox-leucine zipper 2	T76267
e1, 2	HAT4	Homeobox-leucine zipper 4	U09335
≥3. 4	EST50	Phosphoribulokinase	M90394
≥5. 6	HAT5	Homeobox-leucine zipper 5	T04344
∍7. 8	EST51	Unknown	M90416
9, 10	HAT22	Horneobox-leucine zipper 22	Z33675
11, 12	EST52	Oxygen evolving	U09336
1. 2	EST59	Unknown	T21749
3. 4	KNAT1	Knotted-like homeobox 1	Z34607
5. 6	EST60	RuBisCO small subunit	. U14174
7. 8	EST69	Translation elements de la	X14564
9, 10	PPH1	Translation elongation factor	T42799
		Protein phosphatase 1	U34803
11, 12	EST70	Unknown	T44621
11, 2	EST75	Chloroplast protease	T43698
13, 4	EST78	Unknown	R65481
15. 6	ROC1	Cyclophilin	L14844
17, 8	EST82	GTP binding	X59152
9, 10	EST83	Unknown	Z33795
-11 <u>.</u> 12	EST84	Unknown	T45278
1, 2	EST91	Unknown	T13832
3, 4	EST96	Unknown	R64816
5, 6	SAR1	Synaptobrevin	M90418
7. 8	EST100	Light harvesting complex	Z18205
9, 10	EST103	Light harvesting complex	X03909
11, 12	TRP4	Yeast tryptophan biosynthesis	X04273

observed for HAT4, large changes in expression were not observed for any of the ther 44 genes we examined. This was somewhat surprising, particularly because comparative analysis of leaf and root tissue identified 27 differentially expressed genes. Analysis of an expanded set of genes may be required to identify genes whose expression changes upon HAT4 overexpression; alternatively, a comparison of mRNA populations from specific tissues of wild-type and HAT4-transgenic plants may allow identification of downstream genes.

At the current density of robotic printing, it is feasible to scale up the fabrication process to produce arrays containing 20,000 cDNA targets. At this density, a single array would be sufficient to provide gene-specific targets encompassing nearly the entire repertoire of expressed genes in the Arabidopsis genome (2). The availability of 20,274 ESTs from Arabidopsis (1, 9) would provide a rich source of templates for such studies.

The estimated 100,000 genes in the human genome (10) exceeds the number of Arabidopsis genes by a factor of 5 (2). This modest increase in complexity suggests that similar cDNA microarrays, prepared from the rapidly growing repertoire of human ESTs (1), could be used to determine the expression patterns of tens of thousands of human genes in diverse cell types. Coupling an amplification strategy to the reverse transcription reaction (11) could make it feasible to monitor expression even in minute tissue samples. A wide variety of acute and chronic physiological and pathological conditions might lead to characteristic changes in the patterns of gene expression in peripheral blood cells or other easily sampled tissues. In concert with cDNA microarrays for monitoring complex expression patterns, these tissues might therefore serve as sensitive in vivo sensors for clinical diagnosis. Microarrays of cDNAs could thus provide a useful link between human gene sequences and clinical medicine.

Table 2. Gene expression monitoring by microerray and RNA blot analyses; tg, HA74-transperic. See Table 1 for additional gene information. Expression levels (w/w) were calibrated with the use of known amounts of human AChR mRNA. Values for the microarray were determined from microerray scans (Fig. 1); values for the RNA blot were determined from RNA blots (Fig. 2).

n level (w/w)		
Expression level (w/w)		
RNA blot		
1:83		
1:150		
1:6300		
1:210		
1:1800		
1:1300		

roprietary sequence of Stratagene (La Jolia, California).

tNo match in the database; novel EST.

FERENCES AND NOTES

Int EST catabase (dbEST release 091495) National Center for Biotechnology Informaiesda. MD) contains a total of 322,225 enuding 255,645 from the human genome 44 from Arabidopsis. Access is available via 1 Wide Web (http://www.ncbi.nkm.nkn.gov). verowitz and R. E. Pruitt, Science 229, 1214 , E. Prutt and E. M. Meyerowitz, J. Mol. Biol. (1986); I. Hwang et al., Plant J. 1, 367 (1991); et al., Plant Mol. Biol. 24, 685 (1994); L. Le IJ., Mol. Gen. Genet. 245, 390 (1994).

1, thesis, Stanford University (1995); . Brown, in preparation. Microarrays were d on poly-L-lysine-coated microscope gma) with a custom-built arraying machine i one printing tip. The tip loaded 1 µl of PCR (0.5 mg/ml) from 96-well microtiter plates isited ~0.005 µl per slide on 40 slides at a if 500 µm. The printed shoes were rehydrathours in a humid chamber, snap-oned at r 1 min, mosed in 0.1% SDS, and treated i% succinic anhydride prepared in buffer g of 50% 1-methyl-2-pyrrolidinone and c acid. The cDNA on the slides was denaistilled water for 2 min at 90°C immediately ie. Microarrays were scanned with a laser nt scanner that contained a computer-constage and a microscope objective. A mixed iline laser allowed sequential excration of Jorophores. Emitted light was spirt accordvelength and detected with two photomules. Signals were read into a PC with the use it analog-to-digital board. Additional details rray tabrication and use may be obtained by e-mail (pbrown@cmgm. stanford.edu).

subel et al., Eds., Current Protocols in Moology (Greene & Wiley Interscience, New

14), pp. 4:3.1-4:3.4.

yiated (poly(A)+) mRNA was prepared from with the use of Oligotex-dT resin (Olagen). ranscription (RT) reactions were carned out staScript RT-PCR lot (Stratagene) modified s: 50-µJ reactions contained 0.1 µg/µJ of tis mRNA, 0.1 ng/µl of human AChR .05 μg/μl of oligo(dT) (21-mer), 1× first tter, 0.03 U/µJ of ribonuclease block, 500 yadenosine triphosphate (dATP), 500 μM nosine inphosphate, 500 µM dTTP, 40 reytosine triphosphate (dCTP), 40 µM fu-12-dCTP (or issamine-5-dCTP), and 0.03 rataScript reverse transcriptase. Reactions bated for 60 min at 37°C, precipitated with nd resuspended in 10 µJ of TE (10 mM tns-I mM EDTA, pH 8.0). Samples were then 3 min at 94°C and chilled on ice. The RNA aded by adding 0.25 µJ of 10 N NaOH у a 10-min incubation at 37°C. The samneutralized by addition of 2.5 µl of 1 M ا 8.0) and 0.25 سا of 10 N HCl and precip-1 ethanol. Pellets were washed with 70% ined to completion in a speedvac, resus-, 10 μl of H_2O , and reduced to 3.0 μl in a Fluorescent nucleotide analogs were obn New England Nuclear (DuPont).

ion reactions contained 1.0 µl of fluorescent thesis product (5) and 1.0 µl of hybridization x saline sodium citrate (SSC) and 0.2% 2.0-ul probe mixtures were aliquoted onto smay surface and covered with cover slips rund). Arrays were transferred to a hybridamber (3) and incubated for 18 hours at ys were washed for 5 min at room temperin low-stringency wash buffer (1 x SSC) SDS), then for 10 min at room temperature ngency wash buffer (0.1× SSC and 0.1% ys were scanned in 0.1 x SSC with the use cence laser-scanning device (3).

1 poly(A)* mRNA (4, 5) were spotted onto abranes (Nytran) and crosslinked with ulthit with the use of a Stratalinker 1800 e). Probes were prepared by random In the use of a Prime-It II kit (Stratagene) in ce of [P2P]dATP. Hybridizations were carcording to the instructions of the manufacturer. Quantitation was performed on a Phosphortmager (Molecular Dynamics).

B. M. Schena and R. W. Davis, Proc. Natl. Acad. Sci. U.S.A. 89, 3894 (1992); M. Schena, A. M. Lloyd, R. W. Devis, Genes Dev. 7, 367 (1993); M. Schena and R. W. Davis, Proc. Natl. Acad. Sci. U.S.A. 91, 8393 (1994).

9. H. Hohe et al., Plant J. 4, 1051 (1993); T. Newman et al., Plant Physiol. 106, 1241 (1994).

10. N. E. Morton, Proc. Natl. Acad. Sci. U.S.A. 88, 7474 (1991); E. D. Green and R. H. Waterston, J. Am. Med. Assoc. 266, 1966 (1991); C. Betanne-Chante-IOI, Cell 70, 1059 (1992); D. R. Cox et al., Science 265, 2031 (1994).

11. E. S. Kawasaki et al., Proc. Natl. Acad. Sci. U.S.A. 85, 5698 (1988).

12. The laser fluorescent scanner was designed and taon. cated in collaboration with S. Smith of Stanford University. Scanner and analysis software was developed by R. X. Xa. The suconic arrhydrod reaction was suggested by J. Muligan and J. Van Ness of Darwin Molecular Corporation. Thanks to S. Theologis, C. Somerville, K. Yarnamoto, and members of the laboratones of R.W.C and P.O.B. for critical comments. Supported by the Howard Hughes Medical Institute and by grants from NIH [R21HG00450] (P.O.B.) and R37AG00198 (R.W.D.)) and from NSF (MCB9106011) (R.W.D.) and by an NSF pracuate fellowship (D.S.). P.O.B. is an assistant investigator of the Howard Hughes Medical institute.

11 August 1995; accepted 22 September 1995

Gene Therapy in Peripheral Blood Lymphocytes and Bone Marrow for ADA Immunodeficient Patients

Claudio Bordignon,* Luigi D. Notarangelo, Nadia Nobili, Giuliana Ferrari, Giulia Casorati, Paola Panina, Evelina Mazzolari, Daniela Maggioni, Claudia Rossi, Paolo Servida, Alberto G. Ugazio, Fulvio Mavilio

Adenosine deaminase (ADA) deficiency results in severe combined immunodeficiency, the first genetic disorder treated by gene therapy. Two different retroviral vectors were used to transfer ex vivo the human ADA minigene into bone marrow cells and peripheral blood lymphocytes from two patients undergoing exogenous enzyme replacement therapy. After 2 years of treatment, long-term survival of T and B lymphocytes, marrow cells, and granulocytes expressing the transferred ADA gene was demonstrated and resulted in normalization of the immune repertoire and restoration of cellular and humoral immunity. After discontinuation of treatment, T lymphocytes, derived from transduced peripheral blood lymphocytes, were progressively replaced by marrow-derived T cells in both patients. These results indicate successful gene transfer into long-lasting progenitor cells, producing a functional multilineage progeny.

Severe combined immunodeficiency associated with inherited deficiency of ADA (1) is usually fatal unless affected children are kept in protective isolation or the immune system is reconstituted by bone marrow transplantation from a human leukocyte antigen (HLA)-identical sibling donor (2). This is the therapy of choice, although it is available only for a minority of patients. In recent years, other forms of therapy have been developed, including transplants from haploidentical donors (3, 4), exogenous enzyme replacement (5), and somatic-cell gene therapy (6-9).

We previously reported a preclinical model in which ADA gene transfer and expression successfully restored immune functions in human ADA-deficient (ADA") peripheral blood lymphocytes (PBLs) in immunodeficient mice in vivo (10, 11). On the basis of these preclinical results, the clinical application of gene therapy for the treatment of ADA SCID (severe combined immunodeficiency disease) patients who previously failed exogenous enzyme replacement therapy was approved by our Institutional Ethical Committees and by the Italian National Committee for Bioethics (12). In addition to evaluating the safety and efficacy of the gene therapy procedure, the aim of the study was to define the relative role of PBLs and hematopoietic stem cells in the long-term reconstitution of immune functions after retroviral vector-mediated ADA gene transfer. For this purpose, two structurally identical vectors expressing the human ADA c mplementary DNA (cDNA), distinguishable by the presence of alternative restriction sites in a nonfunctional region of the viral long-terminal repeat (LTR), were used to transduce PBLs and bone marrow (BM) cells independently. This procedure allowed identification of the origin of

G. Casorati, Unità di Immunochimica, DIBIT, Istituto Scientifico H. S. Raffaele, Milan, Italy.

C. Bordignon, N. Nobili, G. Ferrari, D. Maggioni, C. Rossi, P. Servida, F. Mavilio, Telethon Gene Therapy Program for Genetic Diseases, DIBIT, Istituto Scientifico H. S. Raftaele, Milan, Italy.

L. D. Notarangelo, E. Mazzolari, A. G. Ugazio, Department of Pediatnos, University of Brescia Medical School, Brescia, Italy.

P. Panina, Roche Milano Ricarche, Milan, Italy,

^{*}To whom correspondence should be addressed.