Data Retrieval With Elementary Data Structures

Recapping Insertion/Deletion/Search Algorithms With Arrays And Lists

Elementary Data Structures

- Stacks, queues, linked lists: Undergrad prerequisites
 - Study CLRS Ch. 10 to recap or equivalent book
 - Focus on linked lists for general data retrieval operations (insert/delete/search)
 - Everyone should be able to write code for insert/delete/search on singly/doubly linked lists with pointers
- Binary tree representation using pointers (CLRS 10.4)
- Time complexities of insert/delete/search algorithms on sorted/unsorted arrays/linked lists
 - Everyone should be able to derive all these

Elementary Data Retrieval

- Sequence of operations of mixed types
 - Insertion/deletion/search of items
- Collection of items: Accessed by an attribute (key)
 - Managed as arrays, linked lists (should be familiar to all already)
 - Binary search trees for better performance
- Time complexities of those operations on different data structures

Binary Search Trees

Average-Case Logarithmic Insert/Delete/Search/Minimum/Maximum Operations

What is a Binary Search Tree (BST)?

- · Recursive definition
 - An empty tree is a BST.
 - A binary tree with root node r is a BST if and only if:
 - r's left/right subtree is a BST.
 - All values in r's left subtree are less than or equal to r.
 - All values in r's right subtree are greater than ("or equal to" included in CLRS) r.

Inserting in a Binary Search Tree

- Add a new leaf that continues to meet the BST property
- Start like search, but don't stop at a match
 - Continue until hitting a nil node
 - Add a new leaf there with the inserted value.
- http://visualgo.net/bst
- Still *O*(*h*)

Querying Binary Search Tree

- Searching for a key
 - Very similar to binary search of a sorted array
 - The mid entry is just replaced with the tree node.
 - left = mid + 1: Traversing to the right subtree
 - right = mid 1: Traversing to the left subtree
- Experiment BST searches at http://visualgo.net/bst
- All are O(h), where h is the tree height.

Deleting From Binary Search Tree

- Of course search first. Return if not found.
- If the found node (call it z) is a leaf, trivial.
- If z has only one child, almost trivial.
- If z has both children,
 - Find z's right subtree's minimum (z's successor). Call it y.
 - y should be moved to z's position.
 - Filling in y's vacancy is almost trivial, as y must have no left child.
- Experiment at http://visualgo.net/bst
- Actual code (even pseudocode) can be tricky. Study CLRS 12.3 code.

BST Deletion Examples

Average Case Insert/Delete/Search

Operations	Unsorted arrays	Sorted arrays	Unsorted singly linked lists	Sorted singly linked lists	Unsorted doubly linked lists	Sorted doubly linked lists	BST
INSERT(A/L, i/n)	O(n)		O(n)		0(1)		
INSERT(A/L, k)	O(n)	O(n)	0(1)	O(n)	0(1)	O(n)	$O(\lg n)$
DELETE(A/L, i/n)	O(n)		O(n)		0(1)		
DELETE(A/L, k)	O(n)	O(n)	O(n)	O(n)	O(n)	O(n)	$O(\lg n)$
SEARCH(A/L, k)	O(n)	$O(\lg n)$	O(n)	O(n)	O(n)	O(n)	$O(\lg n)$
MINIMUM(A/L)	O(n)	0(1)	O(n)	0(1)	0(n)	0(1)	$O(\lg n)$
MAXIMUM(A/L)	O(n)	0(1)	O(n)	0(1)	O(n)	0(1)	$O(\lg n)$

Time Complexities of BST Operations

- All are O(h)
 - h = n 1 in the worst case.
 - Totally skewed to one side, or zig-zag
 - Therefore, worst case BST operations are all $\Theta(n)$.
- Average case tree height
 - Expected height of a randomly built BST
 - Another probability and random variable analysis
 - See Proof of Theorem 12.4 in CLRS pp. 300-303
- Theorem 12.4: Expected height of a randomly built BST on n distinct keys is $O(\lg n)$.

Worst Case Insert/Delete/Search

Operations	Unsorted arrays	Sorted arrays	Unsorted singly linked lists	Sorted singly linked lists	Unsorted doubly linked lists	Sorted doubly linked lists
INSERT(A/L, i/n)						
INSERT(A/L, k)						
DELETE(A/L, i/n)						
DELETE(A/L, k)						
SEARCH(A/L, k)						
MINIMUM(A/L)						
MAXIMUM(A/L)						

Heaps And Heapsort

When We Want O(1) MAXIMUM() (Or MINIMUM()) All The Time

Max Heap Example (CLRS Fig. 6.1)

What Is a Heap?

- A data structure that's specialized for retrieving minimum (or maximum) in O(1) time. This is called Priority Queue.
 - Many applications for "priority queues" in many other algorithms
 - BST can only give us $O(\lg n)$ (Even balanced BST for worst case)
- Utilize binary tree, but make sure it's as balanced as possible
 - Complete binary tree
 - · As balanced as possible, all leaves packed to the left
 - With heap property
 - For each node, its value is less than (for min-heap) or great than (for max-heap) both of its children
 - Implemented using an array
 - No need for pointer operations/traversals

Building A Max-Heap

- Given an array of arbitrary values, build a max-heap.
- Two approaches:
 - Insert item by item starting from an empty heap
 - After each insertion, the resulting array must form a max-heap.
 - So fix up each inserted (appended) item by "trickling-up".
 - n insertions, each insertion possibly taking O(h), resulting in $O(n \lg n)$
 - Consider the original array as a heap
 - Of course it's not really a heap, so fix one-by-one, from bottom up, but we do "trickling-down" here
 - Each fix-up could possibly take O(h), and there are n fix-ups possible, so this looks like another $O(n \lg n)$
 - Turns out that this is not a tight bound. It's actually O(n).
 - Analysis in CLRS 6.3

Building Max-Heap By Item-By-Item Insertions

• Given array A = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7],

Time Complexity Of BUILD-MAX-HEAP(A)

- Naïve/loose analysis: $O(\lg n)$ for each MAX-HEAPIFY(A, i), n/2 times, so easily $O(n \lg n)$, but this is not tight as shown below:
- Note that MAX-HEAPIFY(A, i) is not on the root (at height $h = |\lg n|$) all the time, but mostly on nodes at lower heights!
 - Up to n/2 nodes at height 0 (leaf), n/4 nodes at height 1, n/8 nodes at height 2, ... \rightarrow Up to $\lceil n/2^{n+1} \rceil$ nodes at height h, where $0 \le h \le \lceil \lg n \rceil$

• Therefore, actual # operations is:
$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$
$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} - O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$

$$\sum_{h=0}^{\infty} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$
$$= O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$
$$= O(n).$$

Building Max-Heap By Node-By-Node Fix-ups

• Given array A = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7],

BUILD-MAX-HEAP(A)

- 1 A.heap-size = A.length
- for i = |A.length/2| downto 1
- Max-Heapify(A, i)

Max-Heapify(A, i)l = LEFT(i)r = RIGHT(i)**if** $l \leq A$. heap-size and A[l] > A[i]largest = lelse largest = i**if** $r \le A$. heap-size and A[r] > A[largest]largest = r**if** $largest \neq i$ exchange A[i] with A[largest]10 MAX-HEAPIFY(A, largest)

Heapsort By Repeatedly Deleting (Extracting) Max (CLRS Fig. 6.4)

- The root of a max-heap is always the maximum of all values!
- Remove root. Its sorted position is that of the last node of the heap.
- Move last node in heap to root, fixup the heap (trickle-down)
- Then repeat this whole process until there's no node left in the heap.
- Complexity: $O(n \lg n)$ obviously.
- Experiment all heap operations at http://visualgo.net/heap

Heap as Priority Queue

- INSERT(S, x)
 - Insert x into queue so that GET-MAX() and EXTRACT-MAX() is efficient.
 - Place x at the end of array (last node in the heap), trickle it up. This is $O(\log n)$.
- GET-MAX(S): Always root. O(1).
- EXTRACT-MAX(S): Removes & returns max of all values in queue
 - Remove root, move last heap node to root, trickle it down. This is $O(\log n)$.
- Many applications in various computer science specialty areas
 - Especially in scheduling & simulation: All about temporal priorities.
 - Also used frequently in many graph algorithms (e.g., shortest paths)