Modern Deep NLP - Session 1

Instructor: Dr. Ehsan Amjadian

Teaching Staff: Preston Engstrom, Dr. Florian Goebels, Werner Chao, Masoud Hoveidar

a aisc

License

This Slide Deck is part of the workshop "modern natural language processing" run by Aggregate Intellect Inc. (https://ai.science), and is released under 'Creative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA" license. This material can be altered and distributed for non-commercial use with reference to Aggregate Intellect Inc. as the original owner, and any material generated from it must be released under similar terms (https://creativecommons.org/licenses/by-nc-sa/4.0/).

Logistics

- The purpose of the workshop
 - a. Internalize Cutting Edge Deep NLP
 - b. The Reasons behind these Innovations
 - c. A Comprehensive Map of Modern Algorithms

2. This Session:

- a. Intro and evolution of modern deep NLP
- b. Transfer Learning using a Modern Deep NLP Algorithm
- c. Encoder-Decoder Architecture

Prerequisites

Prerequisites

- 1. Knowledge of Python
- 2. Familiarity with Linear Algebra
- 3. Knowledge of Machine Learning
- 4. Familiarity with TensorFlow and PyTorch is a plus but not a hard requirement

Multilayer Perceptron: Architecture

Multilayer Perceptron: Equations

Linear Projection

1) z = Wx + b

Common Nonlinearities

- 2) Sig: $a = 1 / (1 + e^{-z})$
- 3) Tanh: $(e^z e^-z) / (e^z + e^-z)$
- 4) ReLU: $z^+ = max(0, z)$
- 5) Leaky ReLU: {
 - a) 0.01z for z < 0,
 - b) z for z >= 0

Neural Language Model

Neural Language Model: Equations

Neural architecture: $f(i, w_{t-1}, \dots, w_{t-n+1}) = g(i, C(w_{t-1}), \dots, C(w_{t-n+1}))$ where g is the neural network and C(i) is the i-th word feature vector.

Vanilla RNN: Architecture

Vanilla RNN: Equations

Can you tell me what the difference is?

Which one is the diagram?

Elman network

$$egin{aligned} h_t &= \sigma_h(W_h x_t + U_h h_{t-1} + b_h) \ y_t &= \sigma_y(W_y h_t + b_y) \end{aligned}$$

Jordan network

$$egin{aligned} h_t &= \sigma_h(W_h x_t + U_h y_{t-1} + b_h) \ y_t &= \sigma_y(W_y h_t + b_y) \end{aligned}$$

Variables and functions

- x_t : input vector
- h_t : hidden layer vector
- y_t : output vector
- ullet W , U and b: parameter matrices and vector
- ullet σ_h and σ_y : Activation functions

LSTM: Architecture

LSTM: Equations

- The significance of Cell State
- Gates
- Operations
 - Addition
 - Pointwise Mult.
 - Sigmoid

$$f_{t} = \sigma (W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma (W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$\tilde{C}_{t} = \tanh(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} * C_{t-1} + i_{t} * \tilde{C}_{t}$$

$$o_{t} = \sigma (W_{o} [h_{t-1}, x_{t}] + b_{o})$$

$$h_{t} = o_{t} * \tanh(C_{t})$$

Questions So Far?

•

Autoencoding: Representation Learning

Encoder-Decoder Architecture: Seq2Seq Models

Word-to-Vec

Word-to-Vec

GloVe

Variety of windows sizes and weighting

$\mathcal{L}_{GloVe} = -\sum_{i=1}^{V} \sum_{j=1}^{V} f(X_{i,j})$	$(\log X_{i,j} - w_i^{T})$	w_j ²
actual co-occurence probability*	squared error	co-occurence prol predicted by the

	wo	w ₁	W ₂	 wj	****
Wo					
w _±					
W ₂					
w,				×ij	
ï					
wıч					

Questions?

•