Capítulo 2-Projeto Lógico Combinacional G

Profa. Eliete Caldeira

Módulos padrão aritméticos

 Módulos-padrão aritméticos: somadores, subtratores, Unidades Lógicas e Aritméticas (ALUs), comparadores, multiplicadores

- Um somador de N bits e um componente de bloco operacional que adiciona dois números A e B de N bits gerando:
 - Uma soma S de N bits e
 - Um transporte ("vai um" ou "carry out") C de 1 bit

Ex: somador de 2 bits

Inputs			Outputs			
a1	a0	b1	b0	С	s1	s0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0

Inputs			Outputs			
a1	a0	b1	b0	С	s1	s0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Figure 4.24 Truth table for a 2-bit adder.

 Para somadores com larguras maiores, a tabela verdade passa a ser de difícil construção (somador de 16 bits tem mais de

4 bilhões de linhas)

 Por isto, somadores não são construídos usando a lógica de 2 níveis

Figure 4.25 Why large adders aren't built using standard two-level combinational logic—notice the exponential growth. How many transistors would a 32-bit adder require?

Como fazer um circuito somador que não gaste tanta porta com tantas entradas?

- Como fazer um circuito somador que não gaste tanta porta com tantas entradas?
- Seguindo o raciocínio de contas a mão!

Figure 4.26 Adding two binary numbers by hand, column by column.

- Um Meio-Somador (half-adder): é um componente combinacional que adiciona dois bits (a e b) e gera uma soma (s) e um bit de transporte de "vai um" (c_o)
- Pela tabela-verdade:

$$s = a xor b$$

 $c_o = a and b$

	Inp	uts	Outputs		
9	а	b	со	s	
Ī	0	0	0	0	
	0	1	0	1	
	1	0	0	1	
	1	1	1	0	

Figure 4.28 Truth table for a half-adder.

Figure 4.29 Half-adder: (a) circuit, and (b) block symbol.

Um Somador Completo (full-adder) é um componente combinacional que adiciona três bits (a, b e c_i) e gera uma soma (s) e um bit

de transporte de "vai um" (c_o)

$c_o = a'bc_i + ab'c_i + abc_i' + abc_i$
$c_o = a'bc_i + abc_i + ab'c_i + abc_i + abc_i' +$
abc _i
$c_o = (a'+a)bc_i + (b'+b)ac_i + (c'+c)ab$
$\mathbf{c}_{o} = \mathbf{b}\mathbf{c}_{i} + \mathbf{a}\mathbf{c}_{i} + \mathbf{a}\mathbf{b}$
$s = a'b'c_i + a'bc_i' + ab'c_i' + abc_i$
$s = a'(b'c_i + bc_i') + a(b'c_i' + bc_i)$
$s = a'(b xor c_i) + a(b xor c_i)'$
$s = a xor b xor c_i$

1	nput	Outputs		
а	b	ci	со	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Figure 4.30 Truth table for a full-adder.

- Um Somador Completo (full-adder) é um componente combinacional que adiciona três bits (a, b e c_i) e gera uma soma (s) e um bit de transporte de "vai um" (c_o)
- $\mathbf{s} = \mathbf{a} \times \mathbf{or} \mathbf{b} \times \mathbf{or} \mathbf{c}_{i}$
- \mathbf{b} co = \mathbf{b} .c_i + \mathbf{a} .c_i + \mathbf{a} .b

Figure 4.31 Full-adder: (a) circuit, and (b) block symbol.

 Outra forma de implementar o Somador Completo (full-adder) pode ser obtida manipulando as expressões da função

$$c_o = a'.b.c_i + ab'c_i + abc_i' + abc_i$$

 $c_o = c_i(a'b + ab') + ab(c_i' + c_i)$
 $c_o = c_i(a xor b) + ab$

 $s = a xor b xor c_i$

Somador de números de 4 bits

Figure 4.32 4-bit adder: (a) carry-ripple implementation with 3 full-adders and 1 half-adder, and (b) block symbol.

Somador de números de 4 bits com carry de entrada ("vem-um")

Figure 4.33 4-bit adder: (a) carry-ripple implementation with 4 full-adders, with a carry-in input, and (b) block symbol.

Este é um somador de transporte propagado. Como fica o atraso?

Exemplo de uso:Soma de 0111 e0001

Figure 4.34 Example of adding 0111+0001 using a 4-bit carry-ripple adder. The output will exhibit temporarily incorrect (spurious) results until the carry bit from the rightmost bit has had a chance to propagate (ripple) all the way through to the leftmost bit.

Somador de 2N bits usando dois somadores de N bits

Figure 4.35 8-bit adder: (a) carry-ripple implementation built from two 4-bit carry-ripple adders, and (b) block symbol.

Subtratores

- Um subtrator de N bits é um componente de bloco operacional que toma duas entradas binárias A e B e produz um resultado S na saída igual a A-B.
- Exemplos:
 - \circ 6-2 = 4
 - 5-7 = -2
- Mas como representar números negativos???

Representação de números negativos - Sinal e Magnitude

- Sinal e Magnitude
- Bit de ordem mais elevada:
 - Sinal do número: 0 → positivo e 1 → negativo.
- Bits de ordem inferior:
 - · Representam a magnitude ou módulo do número.
- \rightarrow Ex.: 7 = 0111 e -7=1111
- Representa números entre
 - $-(2^{n-1}-1) \le x \le (2^{n-1}-1)$
- Problemas:
 - Pouco eficiente
 - Representação dupla para o 0 (0000 e 1000)

Representação de números negativos - Complemento

- Pode-se usar a adição para se fazer a subtração usando complementos
- Na base 10:

- Assim, somar o complemento produz uma resposta com exatamente 10 a mais
- Descartando a coluna das dezenas, obtemos o resultado

Complemento: o que falta para se chegar a 10

Representação de números negativos - Complemento

- Para determinar o complemento na base 10, é preciso fazer uma subtração. Então não há grande vantagem no método
- Como obter complemento na base 2?

Representação de números negativos - Complemento de dois

- Para determinar o complemento de dois de um número representado na base 2:
- Basta inverter todos os bits e somar 1!!!
- Esta é uma forma de representar números negativos!

Representação de números negativos - Complemento de dois

- Representação de números negativos
- Apenas 1 representação para o 0
- Isto implica em uma representação assimétrica. Representa números de :
 - \circ $-(2^{n-1}) \le x \le (2^{n-1}-1)$
- ▶ Ex: Um número de 4 bits vai de −8 a +7
- Bit mais significativo: SINAL

Bits	Valor
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

Representação de números negativos - Complemento de um

- É obtida invertendo todos os bits do número
- Representa números de :
 - \circ $-(2^{n-1}-1) \le x \le (2^{n-1}-1)$
- Ex: +2 = 0010 e -2 = 1101
- Tem duas representações para o 0 (0000 e 1111)
- Bit mais significativo: SINAL

Subtração

- Usando complemento de dois:
- Efetue:
 - · 10 12 =?
 - · 130 53 =?

Subtração

Como fazer um subtrator usando um somador?

Subtração

Como fazer um subtrator usando um somador?

Somador/subtrator

Detecção de Estouro

- Estouro ou transbordamento (overflow): quando realizamos aritmética usando números binários de largura fixa de bits, algumas vezes o resultado tem largura maior do que essa largura fixa.
- Ex. 1: Número positivos sem complemento de 2 1111 + 0001 = 10000 (de cinco bits)
 Fácil, basta olhar o vai um do somador!
- Ex. 2: Positivos em complementos de 2
 0111 + 0001 = 1000
 7 + 1 = -8 ????????
- Quando somamos 2 número positivos, basta olhar se o resultado é negativo!

Detecção de Estouro

- Ex. 3: Negativos em complementos de 21111 + 1000 = 1 0111
- Quando somamos 2 número negativos, basta olhar se a resultado é positivo!
- Ex. 4: E se somamos um positivo e um negativo???

NUNCA PODE OCORRER ESTOURO!

 O resultado nunca será mais positivo que o número positivo ou mais negativo que o número negativo

Detecção de estouro

- Em resumo...
- Para detecção do estouro sem complemento de 2 basta olhar o vai-um
 - estouro = vai-um
- A detecção do estouro em complemento de 2 envolve a detecção de:
 - Se ambos os números de entrada são positivos e produzem um resultado negativo, ou
 - Se ambos os números de entrada são negativos e produzem um resultado positivo
- ► Considerando $a(a_{N-1} ... a_0)$, $b(b_{N-1} ... b_0)$ er $(r_{N-1} ... r_0)$ em complemento de 2 estouro = $a_{N-1}b_{N-1}r_{N-1}$ ' + a_{N-1} ' b_{N-1} ' r_{N-1}

Detecção de estouro

- Ou ainda:
- Comparar o bit de transporte que entra na coluna do bit de sinal com o bit de transporte que sai dessa mesma coluna, o "vai um", quando o bit de transporte que entra e diferente do que sai, houve estouro.

Para ser continuado....