

Transmission de puissance

- 1. Roues de friction
- 2. Engrenages

Roues de friction

FONCTION:

Transmettre par adhérence un mouvement de rotation continu entre deux arbres rapprochés. Les roues de friction sont utilisées essentiellement dans des transmissions à faible puissance

Ce moyen de transmission offre :

- •Un fonctionnement silencieux;
- Une réalisation simple et économique ;
- •Un glissement entre les roues en cas de variation brusque du couple résistant : sécurité.

Roues de friction

Par contre cette transmission a des inconvénients :

- •l'entrainement s'effectue par adhérence qui nécessite une force normale de contact importante. Cette force engendre des charges supplémentaires sur les paliers.
- •Le rapport de transmission r = Ns / Ne n'est pas constant ;
- •Utilisation limitée aux transmissions de faibles puissances

Roues de friction: Etude Technologique

Composition:

Le système roue de friction comprend :

- un plateau (2) en fonte ;
- un galet (1) en cuir, en férodo, en aggloméré de liège,... dont la surface extérieure est conique ou cylindrique (légèrement bombée).

mécanique GM & Gindus

Roues de friction: Schématisation

UIC Cours de construction mécanique GM & Gindus

ENGRENAGES

UIC Cours de construction mécanique GM & Gindus

ENGRENAGES : Définition

Un engrenage est compose de deux roues dentées (la plus petite est appelée pignon) servant a la transmission d'un mouvement de rotation. En contact l'une avec l'autre, elles transmettent de la puissance par obstacle.

ENGRENAGES: développante de cercle

Le profil des dents est une courbe dite en développante de cercle. Cette courbe est obtenue, comme le montre la figure ci-dessous, en développant un cercle appelé cercle de base.

Seule une faible partie de la courbe est utilisee pour la denture.

Si deux cercles de base munis de courbes en développante de cercle sont espaces d'un entraxe (a), on constate que pendant l'engrènement, les deux développantes restent en contact suivant une droite appelée ligne d'action inclinée d'un angle a par rapport a la tangente commune a deux cercles appelés cercles primitifs.

Cet angle a est appelé angle de pression et vaut dans le cas général **20°**.

La génératrice de forme des dents est une droite parallèle a l'axe de rotation. C'est le type de denture le plus courant. Il est utilisé dans toutes les applications de mécanique générale.

uic cours de construction mécanique GM & Gindus

Engrenages cylindriques à denture droite: Type de contact

Contact extérieur

Contact intérieur

UIC Cours de construction mécanique GM & Gindus

Dimensions normalisées:

Deux valeurs permettent de définir les roues dentées:

- Le module **m** choisi parmi les modules normalises et déterminé par un calcul de résistance des matériaux.

La relation permettant le calcul de ce module est : $m \ge 2.34$

√T k.Rpe

T: effort tangentiel sur la dent.

k : coefficient de largeur de denture.

Rpe: résistance pratique a l'extension. Rpe dépend du matériau utilise.

T et **k** sont définis dans la suite de ce cours.

 Le nombre de dents Z de chaque roue dentée permettant de définir le rapport des vitesses r de l'engrenage.

		Roue à denture extérieure	1
Module	m	Déterminé par un calcul de résistance de matériaux]
Nombre de dents	Z	Déterminé à partir des rapports des vitesses angulaires	,
Pas de la denture	р	p = π.m]
Saillie	ha	ha = m	
Creux	hf	hf = 1,25.m	
Hauteur de la dent	h	h = ha + hf = 2,25.m	
Diamètre primitif	d	d = m.Z	
Diamètre de tête	da	da = d + 2m	
Diamètre de pied	df	df = d - 2.5m	
Largeur de denture	b	b = k.m (k valeur à se fixer, fréquemment on choisit entre 6 et 10)	
Entraxe de 2 roues A et B	а	$a = \frac{d_A + d_B}{2} = \frac{m.Z_A}{2} + \frac{m.Z_B}{2} = \frac{m(Z_A + Z_B)}{2}$]

iction ndus

Rapport de vitesses :

 ω 1 et ω 2 sont les vitesses angulaires respectives des roues dentees (1) et (2) :

Z1: Nombre de dents de la roue (1)

Z2: Nombre de dents de la roue (2)

Non glissement au point (M):

$$|| V(M1/0)|| = || V(M2/0)||$$

$$\omega_1. \frac{d_1}{2} = \omega_2. \frac{d_2}{2}$$

$$r = \frac{\omega_2}{\omega_1} = \frac{d_1}{d_2} = \frac{Z_1}{Z_2}$$

 ω : Vitesse angulaire exprimee en rd/s

N : Vitesse de rotation exprimee en tr/min

Efforts sur les dentures – Couple transmis :

L'effort F normal a la dent (Action de la roue menante sur la roue menée) étant incline de l'angle de pression a (20° en général), on considère les deux projections de F suivant:

- la tangente commune aux cercles primitifs : T
 (effort tangentiel qui détermine le couple transmis)
- la normale commune aux cercles primitifs (radiale) : R
 (effort radial qui détermine un effort sur les paliers et contrainte de flexion dans les arbres).

Les relations sont données sur la figure ci-dessous. L'effort T est celui utilise pour le calcul du module **m**.

T = 2C / d $R=T.tg\alpha$

C: couple transmisd: diamètre primitif

Inconvénient de ce type d'engrenage :

Durant l'engrénement, les dents en prise fléchissent, de plus leur nombre varie (2 a 3 dents), ce qui engendre du bruit et des vibrations.

Matériaux utilisés:

Fonte a graphite sphéroïdal : Roues de grandes dimensions.

Aciers ordinaires type C: Engrenages peu charges.

Aciers au nickel-chrome : Engrenages fortement charges.

Matières plastiques (Nylon, Teflon...): Faible puissances.

Train d'engrenages

La génératrice de forme des dents est une ligne hélicoïdales de même axe que l'axe de rotation.

UIC Cours de construction mécanique GM & Gindus

Dimensions:

Les dimensions d'une roue a denture helicoidale sont determinees a partir :

- du module normalise, appele ici module normal (ou reel) et designe par **mn**, (Calcule par la R.d.M.)
- du nombre de dents **Z**.
- de l'angle d'inclinaison de l'helice β.

UIC Cours de construction mécanique GM & Gindus

La relation entre le pas normal **Pn** et le pas tangentiel **Pt** (ou pas apparent) permet

de definir un module tangentiel (ou apparent) mt.

Les dimensions de la roue dependent alors de ce module tangentiel.

Relations: $Pn = Pt.cos\beta mn = mt.cos\beta d = mt.Z$

On constate que le diametre primitif varie avec l'angle d'helice β , il en est de meme pour les diametres de tete et de pied.

Rapport de vitesses :

Le rapport d'une transmission assuree par deux roues cylindriques a denture helicoidale est le meme que celui d'une transmission assuree par deux roues a denture droite.

$$r = \frac{\omega_2}{\omega_1} = \frac{d_1}{d_2} = \frac{Z_1}{Z_2}$$

Conditions d'engrènement :

L'engrenement entre deux roues est possible si :

- elles ont le meme module reel et le meme angle d'inclinaison de l'helice (β).
- les sens d'helices sont inverses

La composante normale a la denture donne trois types d'efforts :

- Effort tangentiel T est souvent determine a partir du couple : T = 2C / d
- Effort radial R, determine par la relation:

 $R = (T / \cos \beta) tga$

- Effort axial A, determine par la relation:

 $A = Ttg\beta$

F : Effort normal a la denture du a l'engrenement

Fi : Resultante de l'effort tangentiel T et

l'effort axial A

Avantage et inconvénient :

Ce type de denture présente l'avantage d'etre plus silencieux que de la denture droite. En contre partie il engendre un effort axial dont l'intensite depend de la valeur de l'angle d'inclinaison de l'helice (β) ce qui necessite l'utilisation de palier de butee pouvant encaisser ce type d'efforts.

Engrenages concourants

Les roues assurant la transmission entre deux arbres concourants sont coniques. L'étude qui suit porte plus particulièrement sur les dentures droites.

Engrenages concourants

Rapport de vitesses :

- N1 et N2 sont les vitesses respectives des roues coniques (1) et (2).
- Z1 et Z2 sont les nombre de dents respectifs des roues coniques (1) et(2).

$$r = \frac{N_2}{N_1} = \frac{d_1}{d_2} = \frac{Z_1}{Z_2}$$

Conditions d'engrènement:

Deux roues coniques n'engrenent correctement que si les modules sont egaux et si les cones primitifs ont a la fois une generatrice commune et leurs sommets confondus.

Engrenages concourants

Disposition constructive:

Le fonctionnement correct d'un engrenage conique nécessite la coïncidence des sommets des cônes primitifs tangents. Ces sommets sont virtuels, le réglage est difficile a réaliser. On règle en général un des deux sommets afin d'avoir un engrènement avec un minimum de jeu et sans précontrainte (serrage) des dentures.

Ce réglage est souvent réalise par l'intérmidiaire de cales de réglage lors du montage des roues.

La figure ci-dessous montre une application d'un réglage des sommets des cônes dans un renvoi d'angle.

