ENUNCIADO

Un banco tiene que comprar una máquina para procesar entre las siguientes:

	· · · · · · · · · · · · · · · · · · ·	<u>. </u>				
	Número de máquina	Costo	Procesamiento	Vida útil		
	1	40000	1600 por hora	3000hs		
2		30000	1000 por hora	3000hs		

El banco debe procesar un promedio de 800 cheques por hora (distribución exponencial)

Si el cheque entra en espera cuesta \$10 por cada hora (entiendo que 1 segundo o 59 minutos = 1 hora)

Determinar:

- 1) Cuál máquina comprar
- 2) Máxima espera de un cheque
- 3) Las dos anteriores considerando que los cheques a procesar son un 20% más (960)

RESOLUCIÓN

Distribución de los procesamientos de cheques						
Número de máquina	Tasa de procesamiento (λ) = media					
1	1600					
2	1000					

Distribución de las llegadas de cheques					
Tasa de llegadas (λ)	Media $(1/\lambda)$				
800	1/800 = 0,00125				

Para el cálculo:

Para el Calculo.						
Exponencial	$X = \frac{-1}{\lambda}.\ln(1 - RND) \text{donde} \lambda = \frac{1}{\mu}$					
Poisson	<pre>P = 1; X = -1; A = e^{-λ}; Hacer { Generar U = RND(0,1); P = P * U; X = X + 1; } mientras (P >= A); Devolver X; El único parámetro que requiere este algoritmo es el Lambda (λ) el cual en este caso representa a la media de la distribución de Poisson para la cual se quieren generar variables aleatorias.</pre>					

Tipo de objeto	Nombre	Referencia Estados			
			Esperando procesamiento (EP)		
Cliente	Cheque	$C_{ m n}$	Siendo procesado (SP)		
			Fuera del sistema (FS)		
Comidor	Máguina	N.4	Libre (L)		
Servidor	Máquina	M	Ocupado (O)		

Nro		Reloi		Llegada del chequ	ıe		Fin procesamiento	cheque	Máq	Juina	Che	eques	Máxima espera de un cheque (Fin de procesamiento - Hora llegada)
Evento	Evento	(hs)	RND	Tiempo entre	Próxima	RND	Tiempo de	Fin de	Estado	Cola	C_1		(calcular cuando se da un fin de procesamiento, salvo para el primero)
				llegadas	llegada		procesamiento	procesamiento			Estado	Hora llegada	

Eventos	Probabilidad		
Llegada del próximo cheque	Exponencial $-\left(\frac{1}{800}\right)$		
Fin procesamiento cheque máquina 1	Poisson(1600)		
Fin procesamiento cheque máquina 2	Poisson(1000)		

Dudas:

¿La máquina a comprar es la que tarde menos horas o la que menos gaste? (entiendo que la que menos gaste considerando el costo de cada una también) ¿Se tendrían 4 tablas (2 por cada máquina, una con 800 cheques por hora y otra con 960 cheques por hora)? (como la tabla abajo)

Cantidad de cheques por hora	Máquina Nro
800	1
800	2
960	1
960	2