

EECS 230 Deep Learning

Lecture 17: Multimodal Generative Model

Recap: Large Language Model

Recap: Image Generation Model

□VAE, GAN, Diffusion model

Multimodal Generative Model

☐Text-to-video

□ Generative model that takes multimodal data input or produces multimodal output
 □ Modalities: Video, image, text, audio, etc.
 □ Applications:
 □ Visual Question Answering
 □ Image Captioning
 □ Text-to-image

Multimodal AI Glass

Visual Question Answering

Example of GPT-4 visual input:

User What is funny about this image? Describe it panel by panel.

Source: https://www.reddit.com/r/hmmm/comments/ubab5v/hmmm/

GPT-4 The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin connector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning connector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large, outdated VGA connector into a small, modern smartphone charging port.

Multimodal model outperforms unimodal model

List of Multimodal Models

Model <u>SORA</u>	Year 2024	Developer OpenAl	Modality Video,Text	Architecture Image Encoder: Diffusion DiT	Key Features Generative Modeling, Text-to- Video
Gemini V1.5	2024	Google	Video,Text,Audio	Image Encoder: ViT,Text Encoder:Transformer	Generative Modeling,Long Context Window
BLIP2	2023	Salesforce Research	Image,Text	Q-Former: Bridging Modality Gap,Image Encoder: ViT-L/ViT- G,Text LLM Encoder: OPT/FlanT5	Generative Modeling,Image-to- Text,Visual Question Answering,Image-to- Text Retrieval
<u>GPT-4V</u>	2023	OpenAl	Image,Text	Text Encoder: GPT	Generative Modeling, Multimodal LLM, Visual Question Answering
<u>LLaVA</u>	2023	Microsoft	Image,Text	Text LLM Encoder: Vicuna,Image Encoder:CLIP visual ViT-L	Generative Modeling, Visual Instruction Generation
FLAMINGO	2022	DeepMind	Image,Text	Gated Cross Attention,Multiway Transformer,ViT-giant	VQA,Interleaved Visual and Textual Data
BEIT-3	2022	Microsoft	Image,Text	Text Encoder: OPT/FlanT5,Image Encoder:ViT-L/ViT-g	Object Detection, Visual Question Answering, Image Captaining
CLIP	2021	OpenAl	Image,Text	Text Encoder: Transformer; Image Encoder: ResNet/ViT	Multimodal Alignment,Zero-Shot Learning

How to add image as input to LLM?

□ LLaVA (Large Language and Vision Assistant)

LLaVA architecture

Recap: CLIP (Contrastive Language-Image Pre-training)

Figure: Contrastive Pre-training of language-image pairs. The text encoder is a standard transformer encoder. The extracted feature is the embedding of the CLS token. The image encoder is either a ResNet-50 or a Vision Transformer (ViT).

Multiway-transformer

☐ A shared Multiway Transformer as the backbone network

Multiway-transformer

☐ A shared Multiway Transformer as the backbone network

Multimodal architecture

☐ Perceiver and Perceiver IO as general purpose architecture

Flamminggo

Figure 5 | GATED XATTN-DENSE layers. We insert new cross-attention layers, whose keys and values are obtained from the vision features while using language queries, followed by dense feed forward layers in between existing pretrained and frozen LM layers in order to condition the LM on visual inputs. These layers are *gated* so that the LM is kept intact at initialization for improved stability and performance.

