PQC Function Evaluation

Carnegie Vacation Scholarship

David Amorim

Week 4 (22/07/2024 - 26/07/2024)

Table of Contents

- Preliminaries
- Changing Input Layer Structure
- Fixing Parameters
- 4 Improving the Loss Function
- **5** Exploring Correlations
- 6 Next Steps

David Amorim PQC Function Evaluation 29/07/2024 2/36

Aims for the Week

The following aims were set at the last meeting (22/07/2024):

Change Input Layer Structure

Improve the connectivity of input layers. Each input qubit should ideally control each target qubit at some point in the network.

Fix Parameters

Add the option to keep parameters fixed for each type of network layer.

Improve Loss Function

Develop a distance measure taking into account digital encoding. Either incorporate this into weights for an existing loss function or define a new loss function on this basis.

Additional Aim: Understanding Phase Extraction

• Phase encoding is based on two operators, \hat{Q}_{Ψ} and \hat{R} , defined via

$$\hat{Q}_{\Psi} |j\rangle |0\rangle = |j\rangle |\Psi(j)\rangle \tag{1}$$

$$\hat{R}|l\rangle = e^{il}|l\rangle \tag{2}$$

Encoding proceeds in three steps:

$$|j\rangle|0\rangle \xrightarrow{\hat{\mathbf{Q}}_{\Psi}} |j\rangle|\Psi(j)\rangle \xrightarrow{\hat{\mathbf{I}} \otimes \hat{\mathbf{R}}} |j\rangle e^{i\Psi(j)}|\Psi(j)\rangle \xrightarrow{\hat{\mathbf{Q}}_{\Psi}^{\dagger}} e^{i\Psi(j)}|j\rangle|0\rangle, \quad (3)$$

- The phase $e^{i\Psi(j)}$ of the final state is extracted assuming the ancilla register is clear (i.e. in the state $|0\rangle$)
- However, when \hat{Q}_{Ψ} does not produce an eigenstate of $\hat{I} \otimes \hat{R}$, applying \hat{Q}^{\dagger} does not generally clear the ancilla
- A flawed implementation of \hat{Q}_{Ψ} non-trivially affects the extracted phase function

4/36

Additional Aim: Understanding Phase Extraction

- To investigate this relationship between \hat{Q}_{Ψ} and the extracted phase ('phase extraction problem'), make the following definitions:
 - M $_{j}$: mismatch between $|j\rangle\,|\Psi(j)\rangle$ and $\hat{Q}_{\Psi}\,|j\rangle\,|0\rangle$
 - $|\psi\rangle_{\mathrm{final}}$: state vector post phase extraction
 - $\tilde{\Psi}$: extracted phase function (in contrast to the target function, Ψ)
- Based on the above, define five metrics that quantify the quality of \hat{Q}_{Ψ} as well as of phase extraction:

	Definition	Description	Ideal Value
$\overline{\mu}$	$Mean(M_j)$	mean mismatch	0
σ	$STDEV(M_j)$	mismatch STDEV	0
ϵ	$1- \left<\psi \psi ight>_{final} ^2$	normalisation error	0
χ	$Mean(ilde{\Psi}(j) - \Psi(j))$	phase function error	0
Ω	$(\mu + \sigma + \epsilon + \chi)^{-1}$	super-metric	∞

Table 1: Metrics introduced to quantify QCNN performance

Glossary

Acronym	Meaning		
CL	convolutional layer		
AA-CL	all-to-all convolutional layer		
NN-CL	neighbour-to-neighbour convolutional layer		
IL	input layer		
SAM	sign-adjusted mismatch		

Table 2: Acronyms used in the following.

Variable	Meaning
n	input register size
m	target register size
L	number of network layers
Ψ_{H23}	phase function from Hayes 2023

Table 3: Variables used in the following.

Table of Contents

- Preliminaries
- 2 Changing Input Layer Structure
- Fixing Parameters
- 4 Improving the Loss Function
- **5** Exploring Correlations
- Mext Steps

David Amorim PQC Function Evaluation 29/07/2024 7/36

- Previously, the jth input qubit controlled an operation on the jth target qubit (with wrap-around for n>m)
- An optional shift parameter, s, has now been added so that the jth input qubit controls an operation on the j+sth target qubit
- This shift parameter is incremented for each successive IL
- \bullet The QCNN is padded with additional ILs to ensure that the number of ILs is $\geq m$
- Thus, each input qubit now controls an operation on each target qubit at some point in the QCNN
- Note that ILs still alternate between control states 0 and 1

	shifts	no shifts
μ	3.4e-2	3.2e-2
σ	1.4e-1	1.5e-1
ϵ	2.0e-2	7.5e-2
χ	3.2e-2	1.3e-0
Ω	4.46	0.63

Table 4: Comparing metrics for $\Psi(f) \sim f$ ($L=6,\ m=3,\ 600$ epochs, SAM)

Figure 1: Effects of shifted ILs for $\Psi(f)\sim f$ ($L=6,\ m=3,\ \rm 600$ epochs, SAM)

9/36

David Amorim PQC Function Evaluation 29/07/2024

	shifts	no shifts
μ	1.9e-1	2.4e-1
σ	1.2e-1	1.5e-1
ϵ	2.2e-1	4.7e-1
χ	1.9e-1	4.3e-1
Ω	1.39	0.78

Table 5: Comparing metrics for $\Psi(f)\sim f^2$ ($L=6,\ m=3,\ {\rm 600}$ epochs, SAM)

Figure 2: Effects of shifted ILs for $\Psi(f)\sim f^2$ ($L=6,\ m=3$,600 epochs, SAM)

10 / 36

David Amorim PQC Function Evaluation 29/07/2024

- The data for 'no shifts' was obtained by setting s=0 for all ILs instead of incrementing s
- This should be equivalent to last week's circuit structure
- However, the 'no shifts' results are significantly worse than the results shown last week (???)
- Thus, the improvements due to the new IL structure are somewhat exaggerated
- Nonetheless, increased IL connectivity clearly leads to improved performance

Figure 3: Effects of shifted ILs for $\Psi_{\rm H23}$ ($L=6,\ m=3,\ 600$ epochs, SAM)

Table of Contents

- Preliminaries
- Changing Input Layer Structure
- 3 Fixing Parameters
- 4 Improving the Loss Function
- **5** Exploring Correlations
- 6 Next Steps

David Amorim PQC Function Evaluation 29/07/2024 12 / 36

- Implemented the option to fix parameters for each layer type
- This means that each instance of a layer type (IL, AA-CL, NN-CL) uses the same set of parameters
- \bullet This significantly reduces the number of trainable parameters at large L
- Surprisingly, reducing the parameter space produces no noticeable speed-up (so-called qiskit primitives, i.e. the sampler, take up roughly 95% of the computational time)

David Amorim PQC Function Evaluation 29/07/2024 13/36

					2.25	
					2.00	none
						CL
					1.75	· IL
					1.50	• both
	1				£ 1.25	00,000,000,00
	none	CL	IL	both	1.00	90,888,000,000
	1.3e-1	1.5e-1	4.5e-1	4.4e-1	0.75	::neiliniliele
μ	1.5e-1	1.5e-1	4.5e-1	4.46-1		, e , e , e , e , e , e , e , e , e , e
σ	2.2e-1	2.1e-1	2.6e-1	1.6e-1	0.50	•
ϵ	4.4e-2	1.5e-1	4.9e-1	5.8e-1		•• •.
24	6.8e-2	8.0e-2	2.4e-1	2.3e-1	0.5	19
χ	0.06-2	0.06-2	2.46-1	2.3e-1	.S 0.0	•======================================
Ω	2.14	1.68	0.70	0.71	ΔΦ.	2101 2101 201 201 201 201 201 201 201 20
'	1	!		ļ!	-0.5	**************************************
Table	6: Compa	ring metric	cs for $\Psi(f)$	r) $\sim f$		••
	(L=6, m=4, 600 epochs, SAM)				40 60 80 100 120 140 160	
(L -	L=0, m=4, 000 epochs, SAM)				f (Hz)	

Figure 4: Effects of fixing parameters ILs for $\Psi(f)\sim f$ ($L=6,\ m=4,\ 600$ epochs, SAM)

David Amorim PQC Function Evaluation 29/07/2024 14/36

	none	CL	IL	both
$\overline{\mu}$	2.3e-1	3.5e-1	5.8e-1	5.3e-1
σ	1.3e-1	1.6e-1	2.5e-1	2.0e-1
ϵ	2.7e-1	4.4e-1	4.3e-1	3.3e-1
χ	1.7e-1	1.8e-1	1.9e-0	3.6e-1
Ω	1.26	0.88	0.32	0.71
Ω	1.26	0.88	0.32	0.71

Table 7: Comparing metrics for $\Psi(f) \sim f^2$ (L=6, m=4, 600 epochs, SAM)

Figure 5: Effects of fixing parameters for $\Psi(f)\sim f^2$ ($L=6,\ m=4,\ 600$ epochs, SAM)

15/36

David Amorim PQC Function Evaluation 29/07/2024

- Legend for the plots on the previous slide:
 - 'none': no parameters fixed
 - 'CL': only CL parameters fixed
 - 'IL': only IL parameters fixed
 - 'both': all parameters fixed
- Evidently, keeping parameters fixed leads to (slightly, for 'CL', or drastically, for 'IL' and 'both') worse performance, likely due to a reduction of the search space
- Note that 'IL' as well as 'both' lead to high ϵ and hence somewhat meaningless results
- Thus, especially taking into account the equivalent computational times, not keeping parameters fixed yields better results
- These results suggest a particular importance of ILs compared to CLs

Table of Contents

- Preliminaries
- 2 Changing Input Layer Structure
- Fixing Parameters
- 4 Improving the Loss Function
- **5** Exploring Correlations
- 6 Next Steps

David Amorim PQC Function Evaluation 29/07/2024 17/36

Formalisation

- Consider a computational basis state, $|k\rangle$, of the combined input-register-target-register system
- The state $|k\rangle$ is associated with a bit string $k=\{0,1\}^{n+m}$
- Denote by $[k]_n$ and $[k]_m$ the bit strings of length n and m, respectively, associated with each of the registers and write their concatenation as

$$k \equiv [k]_n \diamond [k]_m \tag{4}$$

A general state of the two-register system is then written as

$$|z\rangle = \sum_{k=0}^{2^{n+m}-1} z_k |k\rangle \tag{5}$$

and referred to via its coefficients z_k

David Amorim PQC Function Evaluation 29/07/2024 18 / 36

Formalisation

When training in superposition, the desired state of the system is

$$|y\rangle = \sum_{j=0}^{2^{n}-1} \frac{1}{\sqrt{2^{n}}} |j\rangle_{i} |\Psi(j)\rangle_{t}, \qquad (6)$$

where the subscripts i and t indicate basis states of the input and target registers, respectively

ullet This state |y
angle can be written in terms of the combined basis $\{|k
angle\}$ via

$$y_k = \begin{cases} \frac{1}{\sqrt{2^n}} & \text{if } k = [k]_n \diamond \Psi([k]_n) \\ 0 & \text{else} \end{cases}$$
 (7)

• Further denote the output state produced by the QCNN by $|x\rangle$, with associated coefficients x_k

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

SAM and Beyond

Recall the definition of SAM:

$$\mathsf{SAM}(|x\rangle, |y\rangle) = \left|1 - \sum_{k} x_{k} y_{k}\right| \tag{8}$$

By construction, this is closely related to the mismatch

$$\mathsf{M}(|x\rangle, |y\rangle) = 1 - \left| \sum_{k} x_{k} y_{k} \right| \tag{9}$$

• While effective, SAM's fundamental flaw is that it does not directly take into account the amplitudes x_k for k where $y_k=0$ (i.e. where $[k]_m \neq \Psi([k]_n)$

David Amorim PQC Function Evaluation 29/07/2024 20 / 36

SAM and Beyond

• Consider k=a and k=b with $[k]_m \neq \Psi([k]_n)$ for both and

$$\left| [a]_m - \Psi([a]_n) \right| > \left| [b]_m - \Psi([b]_n) \right| \tag{10}$$

- To improve performance, the loss function should punish a non-zero x_a more than a non-zero x_b which is not the case for SAM
- This could be achieved via a weighted mismatch (WIM),

$$\mathsf{WIM}(\ket{x},\ket{y}) = \left| 1 - \sum_{k} \tilde{w}_{k} x_{k} y_{k} \right|,\tag{11}$$

where $\tilde{w}_k \in \mathbb{R}_+$ are appropriate weights

David Amorim PQC Function Evaluation 29/07/2024 21/36

SAM and Beyond

It was discussed at the last meeting to base the weights on

$$w_k = \sum_{\substack{l=0, \\ l \neq [k]_m}}^{2^m - 1} \left| x_{[k]_n \diamond l} \right| \left| l - \Psi([k]_n) \right|, \tag{12}$$

with the $ilde{w}_k$ obtained from the w_k via normalisation and smoothing

- Implementing this proved to be ineffective, with no improvement on SAM (see later)
- This raises broader questions about the feasibility of WIM: is adding weights sufficient to alter SAM's fundamental dynamic of neglecting x_k fpr k with $y_k=0$?

David Amorim PQC Function Evaluation 29/07/2024 22/36

Introducing WILL

- To improve on SAM, it could instead be beneficial to return to a loss function which more directly takes into account all x_k
- Define L_p loss as

$$\mathsf{LL}_{\mathsf{p}}(|x\rangle, |y\rangle) = \left(\sum_{k} |x_{k} - y_{k}|^{p}\right)^{1/p} \tag{13}$$

- As discussed, computational basis states are not equidistant for phase encoding: their distance depends on the value they encode on the input and target registers
- A weighted L_p loss (WILL) can factor in an appropriate distance measure for the state space:

$$\mathsf{WILL}_{\mathsf{p,q}} = \left(\sum_{k} \left| x_k - y_k \right|^p \middle| [k]_m - \Psi([k]_n) \middle|^q \right)^{1/p} \tag{14}$$

 David Amorim
 PQC Function Evaluation
 29/07/2024
 23 / 36

Testing WILL

Figure 6: Comparing Ω for various p, q $(L=6, m=3, 600 \text{ epochs}, \Psi(f) \sim f)$

Figure 7: Comparing Ω for various p, q $(L=6, m=3, 600 \text{ epochs}, \Psi(f) \sim f^2)$

24/36

David Amorim PQC Function Evaluation 29/07/2024

Testing WILL

These tests already reveal WILL's subpar performance

	$\Psi(f) \sim f$	$\Psi(f) \sim f^2$	Ψ_{H23}
(p,q)	(0.75, 1.50)	(0.75, 2.50)	(0.5, 1.50)
μ	3.0e-1	4.7e-1	7.1e-2
σ	1.8e-2	1.5e-1	2.1e-1
ϵ	1.9e-1	3.8e-1	2.7e-2
χ	3.9e-1	6.8e-1	7.0e-2
Ω	1.11	0.60	2.63

Table 8: WILL metrics for different Ψ using the best identified p,q combination ($L=6,\ m=4,\ 600$ epochs)

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	3.4e-2	6.0e-2	3.0e-1
σ	1.4e-1	1.1e-1	1.7e-2
ϵ	1.9e-2	9.2e-2	1.9e-1
χ	3.2e-2	5.1e-2	3.9e-1
Ω	4.46	3.19	1.11

Table 9: Comparing loss function metrics for $\Psi(f) \sim f$ (L = 6, m = 4, 600 epochs)

Figure 8: Comparing extracted phase functions for $\Psi(f) \sim f$ (L = 6, m = 4, 600 epochs)

David Amorim PQC Function Evaluation

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	1.9e-1	2.3e-1	4.7e-1
σ	1.2e-1	1.0e-1	1.5e-1
ϵ	2.2e-1	4.2e-1	3.8e-1
χ	1.9e-1	2.0e-1	6.8e-1
Ω	1.39	1.05	0.60

Table 10: Comparing loss function metrics for $\Psi(f)\sim f^2$ (L=6, m=4, 600 epochs)

Figure 9: Comparing extracted phase functions for $\Psi(f)\sim f^2$ ($L=6,\ m=4$, 600 epochs)

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	6.8e-2	8.4e-2	7.1e-2
σ	1.8e-1	1.2e-1	2.1e-1
ϵ	4.5e-2	1.8e-1	2.7e-2
χ	7.4e-2	1.0e-1	7.0e-2
Ω	2.75	2.07	2.63

Table 11: Comparing loss function metrics for $\Psi_{\rm H23}$ ($L=6,\ m=4,\ 600$ epochs)

Figure 10: Comparing extracted phase functions for $\Psi_{\rm H23}$ ($L=6,\ m=4,\ 600$ epochs)

28 / 36

Loss Function Conclusion

- The attempts to improve upon SAM via WIM and WILL have failed
- No further ansatz to design a new loss function could be identified
- Further QCNN improvements might have to come from something other than the loss function

Table of Contents

- Preliminaries
- Changing Input Layer Structure
- 3 Fixing Parameters
- 4 Improving the Loss Function
- **5** Exploring Correlations
- Mext Steps

David Amorim PQC Function Evaluation 29/07/2024 30/36

- The following investigates correlations between the metrics μ , σ , χ , and ϵ in an attempt to better understand the relationship between phase extraction and \hat{Q}_{Ψ}
- This is done by analysing the outputs of N=267 different QCNNs with various different configurations (i.e. L, m, loss functions, Ψ ,...)
- Key questions to answer are:
 - Is a low normalisation error ϵ an indicator of a good fit, i.e. low χ ?
 - Is a low mean mismatch μ a guarantee of low ϵ , χ ?
 - What is the role of σ ?

Figure 11: Correlation between ϵ and χ . Figure 12: Correlation between μ and χ .

Figure 13: Correlation between μ and ϵ . Figure 14: Correlation between μ and σ .

Figure 15: Correlation between σ and ϵ . Figure 16: Correlation between σ and χ .

David Amorim PQC Function Evaluation 29/07/2024 34/36

Table of Contents

- Preliminaries
- 2 Changing Input Layer Structure
- Fixing Parameters
- 4 Improving the Loss Function
- **5** Exploring Correlations
- 6 Next Steps

David Amorim PQC Function Evaluation 29/07/2024 35/36

Next Steps

- Try to formalise and further investigate the relationship between \hat{Q}_{Ψ} and the extracted phase (phase extraction problem)
- Look into adding more ILs compared to CLs
- Look into barren plateau mitigation techniques
- ...?

David Amorim PQC Function Evaluation 29/07/2024 36/36