The Long Short Term Memory (LSTM) layer

The "vanilla" Recurrent Neural Network (RNN) layer that we introduced was powerful but somewhat limited

- It suffered from gradients that vanished or exploded
- It's memory tended to be short-term
- Unable to capture dependencies that were too far separated in time

Researchers developed advanced Recurrent Network layer types to address these specific issues.
The Long Short Term Memory (LSTM) layer is one such example.

The importance of selectively forgetting

An RNN layer, at time step t

- ullet Takes input element ${f x}_{(t)}$
- ullet Updates latent state ${f h}_{(t)}$
- ullet Optionally outputs $\mathbf{y}_{(t)}$

according to the equations

$$egin{array}{lll} \mathbf{h}_{(t)} &=& \phi(\mathbf{W}_{xh}\mathbf{x}_{(t)} + \mathbf{W}_{hh}\mathbf{h}_{(t-1)} + \mathbf{b}_h) \ \mathbf{y}_{(t)} &=& \mathbf{W}_{hy}\mathbf{h}_{(t)} + \mathbf{b}_y \end{array}$$

where

- ϕ is an activation function (usually anh)
- W are the weights of the RNN layer
 - lacksquare partitioned into $\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy}$
 - lacksquare \mathbf{W}_{xh} : weights that update $\mathbf{h}_{(t)}$ based on $\mathbf{x}_{(t)}$
 - $lackbox{ } lackbox{ } lac$
 - lacksquare \mathbf{W}_{hy} : weights that update $\mathbf{y}_{(t)}$ based on $\mathbf{h}_{(t)}$

RNN

Latent state $\mathbf{h}_{(t)}$ is

- ullet A fixed length encoding of the variable length input sequence $[\mathbf{x}_{(1)} \dots \mathbf{x}_{(t)}]$
- ullet All essential information about the prefix of ${f x}$ ending at step t is recorded in ${f h}_{(t)}$

 $\mathbf{h}_{(t)}$ is charged with several tasks

- Determining the time t output $\mathbf{y}_{(t)}$ (for a many to many RNN)
- ullet Determining the next latent state ${f h}_{(t+1)}$

But is each and every element $\mathbf{x}_{(t')}$ needed for both these tasks? Probably not.

Consider sequence ${\bf x}$ as frames in a movie.

- Is every detail of the early scenes of a movie
- Relevant to the final scene?

It would be very powerful

- To be able to "forget" synthetic features that are **no longer** relevant
- And selectively update immediately relevant features
- While leaving unchanged those features needed far in the future

This is where the "gates" (if, switch/case) of Neural Programming are relevant.

They will be used in an LSTM

- To determine ("gate") when an individual feature in latent state $\mathbf{h}_{(t)}$ "forgets" (reset)
- ullet To determine which individual features in latent state ${f h}_{(t)}$ get updated at step t

Conclusion

The LSTM is an advanced Recurrent Neural Network (RNN) layer type.

The "gating" mechanism of Neural Programming will be key.

It will endow the LSTM with

- The ability to forget a feature
- Selectively update other features

This will allow the LSTM to mitigate the drawbacks of "vanilla" RNN layers

- Short term memory
- Vanishing/Exploding gradients

```
In [2]: print("Done")
```

Done