Лекція 5. ТОЧКОВІ ОЦІНКИ ПАРАМЕТРІВ РОЗПОДІЛУ

5.1. Постановка задачі оцінювання параметрів розподілу

Статистики, які отримують за різними вибірками часто відрізняються одна від одної. Тому статистика, отримана за вибіркою, ϵ тільки *оцінкою* невідомого параметра генеральної сукупності.

Параметри генеральної сукупності $M(x) = \overline{X}_{\Gamma}, D_{\Gamma}, \sigma_{\Gamma}, Mo, Me, r_{xy}$ є величинами сталими, але їх числове значення невідоме. Ці параметри оцінюються параметрами вибірки: $\overline{x}_B, D_B, \sigma_B, Mo^*, Me^*, r_B$, які дістають при обробці вибірки. Вони є величинами непередбачуваними, тобто випадковими.

Наближене значення шуканої величини генеральної сукупності, встановлене на основі вибіркового спостереження, називають *статистичною* оцінкою параметра розподілу.

Оцінка параметра — певна числова характеристика, отримана за вибіркою. Коли оцінка визначається одним числом, її називають точковою оцінкою.

Для того, щоб будь-які статистики були хорошими оцінками параметрів генеральної сукупності, потрібно, щоб вони володіли рядом властивостей: *ефективність*, *незміщеність*, *спроможною* (конзистентною).

Оцінка θ^* називається *спроможною*, якщо при збільшенні обсягу вибірки n вона збігається за ймовірністю до значення параметра θ :

$$\theta^* \to \theta \Rightarrow \lim_{n \to \infty} P(|\theta^* - \theta| < \varepsilon) = 1, \forall \varepsilon > 0.$$

$$n \to \infty$$

Оцінка θ^* називається **незміщеною**, якщо її математичне сподівання точно рівне параметру θ для будь-якого об'єму вибірки:

$$M(\theta^*) = \theta, \forall n$$

Різниця $\theta^* - \theta = \varepsilon$ називається зміщенням статистичної оцінки θ^* .

Ефективною називають таку незміщену оцінку, якщо її дисперсія мінімальна по відношенню до дисперсії будь-якої іншої оцінки цього параметра.

Генеральна дисперсія має дві точкові оцінки: D_B - вибіркова дисперсія; S^2 - виправлена вибіркова дисперсія. D_B обчислюється при $n \ge 30$, а S^2 - при n < 30. Причому в математичній статистиці доводиться, що

$$S^{2} = \frac{\sum_{i=1}^{n} (\bar{X}_{\Gamma} - \bar{x}_{B})}{n-1} = \frac{n}{n-1} D_{B}.$$

(поправка $\frac{n}{n-1}$ вводиться для усунення зміщеності у малих вибірках). При великих обсягах вибірки D_B та S^2 практично співпадають.

Генеральне середнє квадратичне відхилення σ_{Γ} також має дві точкові оцінки: σ_B - вибіркове середнє квадратичне відхилення та S - виправлене вибіркове середнє квадратичне відхилення. σ_B використовується для оцінювання σ_{Γ} при $n \ge 30$, а S для оцінювання σ_{Γ} при n < 30; при цьому $\sigma_B = \sqrt{D_B}$, а $S = \sqrt{S^2}$.

Приклад 5.1. 200 однотипних деталей були піддані шліфуванню. Результати вимірювання наведені як дискретний статистичний розподіл, поданий у табличній формі:

X_i, MM	3,7	3,8	3,9	4,0	4,1	4,2	4,3	4,4
n_i	1	22	40	79	27	26	4	1

Знайти точкові незміщені статистичні оцінки для $\overline{X}_{\Gamma} = M(x)$, D_{Γ} .

Розв'язання: Оскільки точковою незміщеною оцінки для \overline{X}_{\varGamma} є \overline{x}_{B} , то обчислимо:

$$\overline{x}_B = \frac{\sum_{i=1}^{8} x_i n_i}{n} = \frac{3,7 \cdot 1 + 3,8 \cdot 22 + \dots \cdot 4, 4 \cdot 1}{200} = 4,004 \text{ MM}.$$

Для визначення точкової незміщеної статистичної оцінки для D_{Γ} обчислимо

$$D_B = \frac{\sum_{i=1}^{8} x_i^2 n_i}{n} - (\overline{x}_B)^2 = 16,048 - 4,004^2 = 0,015984.$$

Тоді точкова незміщена статистична оцінка для D_{Γ} дорівнює:

$$S^2 = \frac{n}{n-1}D_B = \frac{200}{200-1} \cdot 0,015984 = 0,01606 \text{ mm}^2.$$

Приклад 5.2. Граничне навантаження на сталевий болт x_i , що вимірювалось в лабораторних умовах, задано як інтервальний статистичний розподіл:

x_i , km/ mm ²	4,5-5,5	5,5-6,5	6,5-7,5	7,5-8,5	8,5-9,5	9,5-10,5	10,5-11,5	11,5-12,5	12,5-13,5	13,5-14,5
n_i	40	32	28	24	20	18	16	12	8	4

Визначити точкові незміщені статистичні оцінки для $\overline{X}_{\Gamma} = M(x)$, D_{Γ} .

Розв'язання: Для визначення точкових незміщених статистичних оцінок \bar{x}_B , S^2 перейдемо від інтервального статистичного розподілу до дискретного, який набирає такого вигляду:

$x_i^* = x_{i-1} + \frac{h}{2}$	5	6	7	8	9	10	11	12	13	14
n_i	40	32	28	24	20	18	16	12	8	4

Обчислюємо
$$\overline{x}_B = \frac{\sum\limits_{i=1}^{10} x_i n_i}{n} = \frac{5 \cdot 40 + 6 \cdot 32 + \ldots \cdot 14 \cdot 4}{202} = 8,02 \text{ кг/мм}^2.$$

Отже, точкова незміщена статистична оцінка для $\, \overline{X}_{\varGamma} = M \left(x \right), \, \overline{x}_{B} = 8,02 \,$ кг/мм².

Для визначення S^2 обчислимо D_B :

$$D_B = \frac{\sum_{i=1}^{8} (x_i^*)^2 n_i}{n} - (\overline{x}_B)^2 = 70,69 - 8,02^2 \approx 6,37 \text{ kg/mm}^2.$$

Тоді точкова незміщена статистична оцінка для D_{Γ} дорівнює:

$$S^2 = \frac{n}{n-1}D_B = \frac{202}{202-1} \cdot 6{,}37 \approx 6{,}4 \text{ KG/MM}^2.$$

Існує ще такі поняття як надійність та достатність.

Надійною називають таку статистичну оцінку, яка ґрунтується на законі великих чисел, тобто із збільшенням кількості спостережень вона наближається до свого математичного сподівання.

Оцінку називають **достатньою**, якщо вона забезпечує повноту використання всієї інформації про невідому характеристику генеральної сукупності, яка міститься у вибірці.

5.2. Методи визначення точкових статистичних оцінок параметрів генеральної сукупності

Метод моментів

Нехай $X_1, X_2, ..., X_n$ - вибірка з генеральної сукупності, $x_1, x_2, ..., x_n$ - реалізація вибірки.

При C = 0 одержимо початковий момент порядку k вибірки:

$$v_k^* = \frac{1}{n} \sum_{i=1}^n x_i^k \; ,$$

зокрема $v_1^* = \overline{x}_B$.

При $C = \overline{x}_B$ одержимо центральний момент порядку k вибірки:

$$\mu_k^* = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_B)^k$$
,

зокрема $\mu_1^* = D_B$

Оцінка одного параметра

Для оцінки одного параметра достатньо мати одне рівняння відносно цього параметра, тому прирівнюють початковий теоретичний момент першого порядку $v_1 = M\left(X\right)$ до початкового емпіричного моменту першого порядку $v_1^* = \overline{x}_B$:

$$v_1 = M(X) = \int x \cdot f(x,\theta) dx = \varphi(\theta) = v_1^* = \overline{x}_B = \frac{1}{n} \sum_{i=1}^n x_i.$$

Розв'язавши рівняння $M(\theta) = \overline{x}_B$, одержують оцінку параметра θ , яка є функцією від \overline{x}_B , отже і від $x_1, x_2, ..., x_n$.

Оцінка двох параметрів

Нехай щільність розподілу $f\left(x,\theta_{1},\theta_{2}\right)$ генеральної сукупності X визначається двома невідомими параметрами θ_{1},θ_{2} . Для їх визначення потрібно мати два рівняння. Прирівняємо теоретичний та емпіричний початкові моменти першого порядку $v_{1}=v_{1}^{*}$ і теоретичний та емпіричний центральні моменти другого порядку $\mu_{2}=\mu_{2}^{*}$. Розв'язавши систему

$$\begin{cases} M(\theta_1) = \overline{x}_B \\ D(\theta_2) = D_B \end{cases}$$

одержимо оцінку параметрів θ_1, θ_2 , які є функціями від $x_1, x_2, ..., x_n$.

Приклад 5.3. Випадкова величина X — час роботи елемента, вона має показниковий розподіл з параметром λ . Отримано статистичний розподіл середнього часу роботи 200 елементів.

x_i	2,5	7,5	12,5	17,5	22,5	27,5
n_i	133	45	15	4	2	1

де x_i — середній час роботи елемента в годинах, частота n_i — кількість елементів, які пропрацювали в середньому x_i годин. Знайти методом моментів точкову оцінку параметра λ .

Розв'язання: Прирівнявши теоретичний і емпіричний моменти першого порядку і враховуючи, що для показникового закону $M\left(X\right) = \frac{1}{\lambda}$, отримаємо $\lambda = \frac{1}{x}$. Отже, точковою оцінкою параметра $\lambda \in \lambda^* = \frac{1}{x}$. Обчисливши $\overline{x}_B = \frac{1}{200} \sum_{i=1}^6 n_i x_i = 5$, одержимо $\lambda^* = \frac{1}{5} = 0,2$.

Приклад 5.4. Число насінин буряну у пробах зерна має закон розподілу Пуассона. Результати вибірки із N = 130 проб зерна занесені до таблиці. Знайти параметр λ по вибірці методом моментів.

x_i	0	1	2	3	4	5
n_i	9	39	40	24	11	7

Розв'язання: Як відомо, параметр λ для закону Пуассона — це математичне сподівання, що за методом моментів оцінюється першим вибірковим моментом: $\lambda = \overline{x}_B = \frac{1}{N} \sum_{i=1}^6 x_i n_i = \frac{1}{130} \cdot 270 \approx 2,077$.

Приклад 5.5. Знайти методом моментів за вибіркою $x_1, x_2, ..., x_n$ точкові оцінки невідомих параметрів a та σ нормального розподілу, щільність якого

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{(2\sigma)^2}}.$$

Розв'язання: Для знаходження двох невідомих параметрів необхідно визначити два рівняння: прирівняємо початковий теоретичний момент першого порядку та центральний теоретичний момент другого порядку

відповідними емпіричними моментами: $v_1^*=M_1,\,\mu_2^*=m_2$. Враховуючи, що $v_1^*=M\left(X\right),M_1=\overline{x}_B,\,\mu_2^*=D\left(X\right),m_2=D_B$, маємо:

$$\begin{cases}
M(X) = \overline{x}_B \\
D(X) = D_B
\end{cases}$$

Математичне сподівання та дисперсія нормального розподілу відомі, звідси отримаємо:

$$\begin{cases} M(X) = a = \overline{x}_B \\ D(X) = \sigma^2 = D_B \end{cases}$$

Тому знаходимо оцінки параметрів:

$$a = \overline{x}_B = \frac{1}{n} \sum x_i n_i.$$

$$\sigma = \sqrt{D_B} = \sqrt{\frac{1}{n} \sum (x_i - \overline{x}_B)^2} n_i.$$

Приклад 5.6. Нехай величина ξ має щільність $p(x) = \frac{1}{b-a}$, якщо $x \in (a;b)$ та p(x) = 0, якщо $x \notin (a;b)$. Проведена вибірка:

x_i	1	2	3	4	5	8	9
n_i	3	5	4	3	6	4	5

Використовуючи метод моментів знайти a та b.

Розв'язання: Прирівняємо математичне сподівання $M(X) = \frac{a+b}{2}$ та

дисперсію $D(X) = \frac{(b-a)^2}{12}$ відповідними моментами та отримаємо систему рівнянь:

$$M(X) = \frac{a+b}{2} = v_1^* = \frac{1}{n} \sum x_i n_i;$$

$$D(X) = \frac{(b-a)^2}{12} = \mu_2^* = \frac{1}{n} \sum x_i^2 n_i - \left(\frac{1}{n} \sum x_i n_i\right)^2.$$

Складемо таблицю для знаходження моментів:

x_i	1	2	3	4	5	8	9	сума
n_i	3	5	4	3	6	4	5	30
$x_i n_i$	3	10	12	12	30	32	45	144
$x_i^2 n_i$	3	20	36	48	150	256	405	918

$$v_1^* = \frac{1}{30} \cdot 144 = 4.8;$$

$$\mu_2^* = \frac{1}{30} \cdot 918 - 4.8^2 = 7.56.$$

Підставимо знайдені значення до системи та отримаємо:

$$\begin{cases} \frac{a+b}{2} = 4.8; \\ \frac{(b-a)^2}{12} = 7.56. \end{cases} \begin{cases} a \approx 0.038; \\ b \approx 9.562. \end{cases}$$

Метод найменших квадратів

Згідно з цим методом статистичні оцінки визначаються з умови мінімізації суми квадратів відхилень варіант вибірки від статистичної оцінки θ^* .

Використовуючи метод найменших квадратів, можна, наприклад, визначити статистичну оцінку для $\overline{X}_{\Gamma} = M(X)$. Для цього скористаємося функцією $u = \sum_{i=0}^n \left(x_i - \theta^*\right)^2 \cdot n_i$. Використовуючи умову екстремуму, дістанемо:

$$\frac{\partial u}{\partial \theta^*} = -2\sum_{i=1}^n \left(x_i - \theta^*\right)^2 n_i = 0\;;\; \sum_{i=1}^n x_i n_i - \sum_{i=1}^n \theta^* n_i = 0\;;\; \text{звідси}\;\; \theta^* = \frac{\sum_{i=1}^n x_i n_i}{n} = \overline{x}_B\;.$$

Отже для $\theta = \overline{X}_{\Gamma}$ точковою статистичною оцінкою буде $\theta^* = \overline{x}_B$ — вибіркова середня.

Приклад 5.7. Експериментальні дані про значення змінних наведені у таблиці:

x_i	1	2	4	6	8
n_i	3	2	1	0,5	0

У результаті їх вирівнювання отримаємо функцію $y = \frac{5}{2x}$.

Використовуючи метод найменших квадратів, апроксимувати табличні дані лінійно залежністю y = ax + b.

Розв'язання: Параметри a та b рівняння y = ax + b за методом найменших квадратів потрібно знайти із системи рівнянь:

$$\begin{cases} a\sum x_i^2 + b\sum x_i = \sum x_i y_i \\ a\sum x_i + bn = \sum y_i \end{cases}$$
, де $i = \overline{1,n}$, $n = 5$.

						сума
x_i	1	2	4	6	8	21
n_i	3	2	1	0,5	0	6б5
x_i^2	1	4	16	36	64	121
$x_i y_i$	3	4	4	3	0	14

Тоді, система рівнянь має вигляд:

$$\begin{cases} 121a + 21b = 14; & \begin{cases} a = -0,405; \\ 21a + 5b = 6,5. \end{cases} & \begin{cases} a = -0,405; \\ b = 3,003. \end{cases} & y = -0,405x + 3,003. \end{cases}$$

Метод максимальної правдоподібності

Цей метод посідає центральне місце в теорії статистичного оцінювання параметрів θ . На нього свого часу звертав увагу К. Гаусс, а розробив його Р. Фішер.

Нехай ознака генеральної сукупності X визначається лише одним параметром θ і має щільність імовірностей $f(x;\theta)$. У разі реалізації вибірки з варіантами $x_1, x_2, ..., x_n$ щільність імовірностей вибірки буде такою:

$$f\left(x_1, x_2, \dots, x_n, \theta^*\right) = f\left(x_1, \theta^*\right) \cdot f\left(x_2, \theta^*\right) \cdot \dots \cdot f\left(x_n, \theta^*\right). \tag{5.1}$$

Вона називається *функцією вірогідності* (правдопдібності) і позначається $L = L(\theta^*)$.

Суть цього методу полягає в тому, що, фіксуючи значення варіант $x_1, x_2, ..., x_n$, визначають таке значення параметра θ^* , при якому функція (5.1) максимізується. *Оцінкою максимальної вірогідності параметра* θ називають те значення параметра θ , при якому функція вірогідності досягає найбільшого значення при заданих $x_1, x_2, ..., x_n$, тобто є розв'язком рівняння $L(\theta^*) = \max L(\theta)$.

Так, наприклад, коли ознака генеральної сукупності X має нормальний закон розподілу, то функція максимальної правдоподібності набере такого вигляду:

$$f\left(x_{1}, x_{2}, \dots, x_{n}, \theta_{1}^{*}, \theta_{2}^{*}\right) = \frac{1}{\left(2\pi\theta_{2}^{*}\right)^{\frac{n}{2}}} \cdot e^{\frac{\sum_{i=1}^{n} \left(x_{i} - \theta_{1}^{*}\right)^{2}}{2\theta_{2}^{*}}}.$$
 (5.2)

Оскільки $L(\theta^*)$ і $\ln L(\theta^*)$ досягають найбільшого значення у одних і тих самих точках, то зручно від функції (5.2) перейти до її логарифма:

$$\ln f(x_1, x_2, ..., x_n, \theta_1^*, \theta_2^*) =$$

$$L(x_1, x_2, ..., x_n, \theta_1^*, \theta_2^*) = -\frac{n}{2} (\ln \pi + \ln \theta_2^*) - \frac{\sum_{i=1}^{n} (x_i - \theta_1^*)^2}{2\theta_2^*}.$$

Використовуючи необхідні умови екстремуму для цієї функції, дістанемо:

$$\begin{cases}
\frac{\partial L}{\partial \theta_1^*} = -\frac{1}{\theta_2^*} \sum_{i=1}^n \left(x_i - \theta_1^* \right) = 0 \\
\frac{\partial L}{\partial \theta_2^*} = -\frac{n}{2\theta_2^*} + \frac{1}{2\left(\theta_2^*\right)^2} \sum_{i=1}^n \left(x_i - \theta_1^* \right)^2 = 0
\end{cases}$$
(5.3)

3 першого рівняння системи (5.3) дістанемо:

$$\sum_{i=1}^{n} x_{i} = -n\theta_{1}^{*} = 0,$$

$$\theta_{1}^{*} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{i} = \overline{x}_{B}.$$
(5.4)

з другого рівняння системи (5.3), враховуючи (5.4) маємо:

$$\theta_{2}^{*} \cdot n = \sum_{i=1}^{n} (x_{i} - \overline{x}_{B})^{2},$$

$$\theta_{2}^{*} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x}_{B})^{2} = D_{B}.$$
(5.5)

Таким чином, для середнього генеральної сукупності $\overline{X}_{\Gamma} = M(X)$ точковою статистичною оцінкою є вибіркове середнє \overline{x}_B , а для теоретичної дисперсії D_{Γ} - вибіркова дисперсія D_B .

Приклад 5.8. Зайти методом найбільшої правдоподібності оцінку параметра p біноміального розподілу $P_n(x_i) = C_n^k p^k (1-p)^{n-k}$, якщо у n_1 незалежних випробувань подія A з'явилася m_1 раз та у n_2 незалежних випробувань подія A з'явилася m_2 раз.

Розв'язання: Складемо функцію правдоподібності:

$$L = P_{n_1}(m_1) \cdot P_{n_2}(m_2) = C_{n_1}^{m_1} \cdot C_{n_2}^{m_2} \cdot p^{m_1 + m_2} \cdot (1 - p)^{\left[(n_1 + n_2) - (m_1 + m_2) \right]}.$$

Про логарифмувавши функцію, отримуємо:

$$\ln L = \ln \left(C_{n_1}^{m_1} \cdot C_{n_2}^{m_2} \right) + \left(m_1 + m_2 \right) \cdot \ln p + \left[\left(n_1 + n_2 \right) - \left(m_1 + m_2 \right) \right] \cdot \ln \left(1 - p \right).$$

Обчислимо першу похідну за p:

$$\frac{\partial \ln L}{\partial p} = \frac{m_1 + m_2}{p} - \frac{\left(n_1 + n_2\right) - \left(m_1 + m_2\right)}{1 - p}.$$

Прирівняємо знайдену похідну до нуля та отримаємо:

$$\frac{m_1 + m_2}{p} - \frac{(n_1 + n_2) - (m_1 + m_2)}{1 - p} = 0.$$

$$p = \frac{m_1 + m_2}{n_1 + n_2}.$$

У знайденій критичній точці p друга похідна від'ємна, це означає, що знайдена критична точка — є точкою максимуму, а отже її потрібно прийняти в якості оцінки за методом найбільшої правдоподібності невизначеної ймовірності p біноміального закону розподілу: $p^* = \frac{m_1 + m_2}{n_1 + n_2}$.

Приклад 5.9. Знайти методом найбільшої правдоподібності за вибіркою $x_1, x_2, ..., x_n$ точкову оцінку параметра p геометричного розподілу: $P(X = x_i) = (1-p)^{x_i-1} p$, де x_i - число випробувань, виконаних до появи події, p - ймовірність появи події в одному випробуванні.

Розв'язання: Функція правдоподібності має вигляд:

$$L(p) = \prod_{i=1}^{n} p(x_i, \lambda) = \prod_{i=1}^{n} (1-p)^{x_i-1} p = p^n \prod_{i=1}^{n} (1-p)^{x_i-1}$$

Тоді,

$$\ln L(p) = \ln \left[\prod_{i=1}^{n} (1-p)^{x_i-1} \right] = \ln \left[p^n \right] + \ln \left[\prod_{i=1}^{n} (1-p)^{x_i-1} \right] =$$

$$= n \ln p + \sum_{i=1}^{n} \ln \left((1-p)^{x_i-1} \right) = n \ln p + \sum_{i=1}^{n} (x_i-1) \ln (1-p) =$$

$$= n \ln p + \ln (1-p) \sum_{i=1}^{n} (x_i-1) = n \ln p + \ln (1-p) \left(\sum_{i=1}^{n} x_i - n \right) =$$

$$= n \ln p + \ln (1-p) \sum_{i=1}^{n} x_i - n \ln (1-p).$$

Умова екстремуму:

$$\frac{\partial \ln L}{\partial p} = \left(n \ln p + \ln \left(1 - p \right) \sum_{i=1}^{n} x_i - n \ln \left(1 - p \right) \right) = n \frac{1}{p} + \frac{-1}{1 - p} \sum_{i=1}^{n} x_i - n \frac{-1}{1 - p} = 0,$$

$$n \frac{1}{p} + \frac{1}{p - 1} \sum_{i=1}^{n} x_i - n \frac{1}{p - 1} = 0.$$

Перетворимо:

$$\frac{1}{p-1} \left(\sum_{i=1}^{n} x_i - n \right) = -n \frac{1}{p};$$

$$-\frac{p-1}{p} = \frac{\sum_{i=1}^{n} x_i - n}{n};$$

$$\frac{1}{p} - 1 = \frac{1}{n} \sum_{i=1}^{n} x_i - 1;$$

$$\frac{1}{p} = \frac{1}{n} \sum_{i=1}^{n} x_i;$$

$$p = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} x_i} = \frac{1}{\overline{x}_B}.$$

Таким чином, у якості оцінки отримали: $p^* = \frac{1}{\overline{x}_R}$.

Приклад 5.10. Знайти оцінку максимальної правдоподібності параметрів a, σ нормального розподілу $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}$ за вибіркою x_1, x_2, \dots, x_n .

Розв'язання: Складемо функцію правдоподібності

$$L(x_1, x_2, ..., x_n, a, \sigma) = \frac{1}{\sigma^n (\sqrt{2\pi})^n} e^{-\frac{\sum_{i=1}^n (x_i - a)^2}{2\sigma^2}},$$

звідси
$$\ln L = -n \ln \sigma - \ln \left(\sqrt{2\pi}\right)^n - \frac{\sum\limits_{i=1}^n \left(x_i - a\right)^2}{2\sigma^2}.$$

Розв'яжемо систему

$$\begin{cases} \frac{\partial \ln L}{\partial a} = 0; & \begin{cases} \sum_{i=1}^{n} x_i - na = 0; \\ \frac{\partial \ln L}{\partial \sigma} = 0; \end{cases} \begin{cases} a = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}_B; \\ -n\sigma^2 + \sum_{i=1}^{n} (x_i - a)^2 = 0. \end{cases} \begin{cases} a = \frac{1}{n} \sum_{i=1}^{n} (x_i - a)^2 = D_B. \end{cases}$$

Знаходимо частинні похідні другого порядку для визначення точки екстремуму:

$$\frac{\partial^2 \ln L}{\partial a^2} = -\frac{n}{\sigma^2}; \quad \frac{\partial^2 \ln L}{\partial \sigma^2} = \frac{n}{\sigma^2} - \frac{3\sum_{i=1}^n (x_i - a)^2}{\sigma^4}; \quad \frac{\partial^2 \ln L}{\partial a \partial \sigma} = -\frac{2\sum_{i=1}^n (x_i - a)}{\sigma^3}.$$

Тоді

$$A = \frac{\partial^2 \ln L}{\partial a^2} \bigg|_{\substack{a = \overline{x}_B \\ \sigma = \sqrt{D_B}}} = -\frac{n}{D_B} < 0; \quad C = \frac{\partial^2 \ln L}{\partial \sigma^2} \bigg|_{\substack{a = \overline{x}_B \\ \sigma = \sqrt{D_B}}} = \frac{n}{D_B} - \frac{3\sum_{i=1}^n (x_i - \overline{x}_B)^2}{D_B^2} = -\frac{2n}{D_B};$$

$$B = \frac{\partial^2 \ln L}{\partial a \partial \sigma} \begin{vmatrix} a = \overline{x}_B \\ \sigma = \sqrt{D_B} \end{vmatrix} = -\frac{2\sum_{i=1}^n (x_i - \overline{x}_B)}{\sqrt{D_B^3}} = 0, \quad \text{оскільки} \quad \sum_{i=1}^n (x_i - \overline{x}_B) = 0.$$

Отже,
$$\Delta = AC - B^2 = \left(-\frac{n}{D_B}\right) \cdot \left(-\frac{2n}{D_B}\right) = \frac{2n^2}{D_B^2} > 0$$
 і $A < 0$, тому функція $\ln L$ в

точці (\overline{x}_B, D_B) має максимум. Для параметрів (a, σ^2) оцінкою максимальної правдоподібності (\overline{x}_B, D_B) .

5.3. Граничні (Δ) та середні (Δ_c) похибки

Похибку репрезентативності можна подати як різницю між генеральними та вибірковими характеристиками досліджуваної сукупності: $\varepsilon = \overline{X}_{\Gamma} - \overline{x}_{B} \text{ або } \varepsilon = p - \omega.$

Про величину розбіжності між параметром і статистикою $\Delta = \frac{t \cdot \sigma}{\sqrt{n}} = t \cdot \Delta_c, \text{ можна судити тільки з певною ймовірністю, від якої залежить величина } t$. Таким чином встановлюється зв'язок між *граничною похибкою* Δ , яка гарантується з деякою ймовірністю p, величино t та середньою похибкою вибірки $\Delta_c = \frac{\sigma_{\Gamma}}{\sqrt{n}}$.

Із центральної граничної теореми Ляпунова випливає, що вибіркові розподіли статистик (при $n \ge 30$) будуть мати нормальний розподіл незалежно від того, який розподіл має генеральна сукупність. Отже, $P\!\left(\left|\overline{x}_B - \overline{X}_{\varGamma}\right| < t \cdot \Delta_c\right) \approx 2\Phi(t), \text{ де } \Phi(t) \text{ - функція Лапласа.}$

Значення ймовірностей, які відповідають різним t, містяться в спеціальних таблицях: при $n \ge 30$ - в таблиці значень $\Phi(t)$ - функцій Лапласа, а при n < 30 - в таблиці розподілу t - Стьюдента. Невідоме значення σ_{Γ} при розрахунку похибки вибірки замінюється σ_{R} .

В залежності від способу відбору середня похибка вибірки визначається по різному:

Середня похибка (Δ_c)	Власне - випадковий відбір				
Середня похиока (Δ_c)	повторний	безповторний			
Для середньої	$\sqrt{\frac{\sigma^2}{n}}$	$\sqrt{\frac{\sigma^2}{n} \cdot \left(1 - \frac{n}{N}\right)}$			
Для частки	$\sqrt{\frac{\omega \cdot (1-\omega)}{n}}$	$\sqrt{\frac{\omega \cdot (1-\omega)}{n} \cdot \left(1-\frac{n}{N}\right)}$			

Де $\sigma^2 = D_B$ - вибіркова дисперсія; $\omega \cdot (1-\omega)$ - вибіркова дисперсія частки значень ознаки m; n - обсяг вибірки; N - обсяг генеральної сукупності; $\frac{n}{N}$ - частка досліджуваної сукупності; $1-\frac{n}{N}$ - поправка на скінченність сукупності.

З формули граничної похибки $\Delta = t \cdot \Delta_c$ та формул середніх похибок вибірки вивчаються формули необхідної чисельності вибірки для різних способів відбору:

Обсяг вибірки (п)	Власне - випадковий відбір				
Оосяг виогрки (п)	повторний	безповторний			
Для середньої	$\frac{t^2 \cdot \sigma^2}{\Delta^2}$	$\frac{t^2 \cdot \sigma^2 \cdot N}{N \cdot \Delta^2 + t^2 \cdot \sigma^2}$			
Для частки	$\frac{t^2 \cdot \omega \cdot (1 - \omega)}{\Delta^2}$	$\frac{t^2 \cdot N \cdot \omega \cdot (1 - \omega)}{N \cdot \Delta^2 + t^2 \cdot \omega \cdot (1 - \omega)}$			