线性代	数
2017年9月1	16:50
正交阵 实对称	$\Lambda^{T}A = AA^{T} = E$, $A^{-1} = A^{T}$ $A^{T} = A$
	T = -A
A实矩阵 ATA	a _i =0,A=O
正交向量内	为零
$[A\xi_1, A\xi_2,$	$A_3 = A[\xi_1, \xi_2, \xi_3]$
合同 若	可逆矩阵C,使B=C ^T AC, 含有平方项
范德蒙行列:	
	$\begin{array}{cccc} \cdots & 1 & & & \\ \cdots & x_3 & = & \prod_{1 \le i < j \le n} x_j - x_i) & & & \\ \vdots & \vdots & \vdots & & & & \\ \end{array}$
拉普拉斯展	
	Anxn CAIGA mn
Bma	0 = B 0 = B C = (-1) A B
Amxm	$\begin{vmatrix} O \\ O \\ A \end{vmatrix} = \begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = \begin{vmatrix} A & O $
克拉默法则	程根与 A 的关系
	展开式总共n!项 同行不同列的乘积
逆对角线正	를 (-1)n(n-1)/2

A相似B r(A)=r(B), A = B ,特征多项式/特征值相同
对称矩阵的两个特征值对应的特征向量正交
A是n阶对称矩阵,必有正交矩阵P,使P-¹AP=Λ
λ是A的特征方程的k重根,則矩阵A-λE的秩R=n-k,对应特征方程有k个线性无关特征向量
A、B均是实对称矩阵,A、B相似的充分必要条件是A、B有相同的特征值
可相似对角化,有不同的特征值
$egin{array}{c ccccccccccccccccccccccccccccccccccc$
λ $\kappa\lambda$ $\frac{ A }{\lambda}$ $f(\lambda)$
ξ ξ ξ ξ
A实对称,
必相似于对角阵,且存在正交阵Q,Q-1AQ=QTAQ=对角阵
A特征值为实数,特征向量为实向量
属于不同特征值的特征向量正交
【注】 同理可以证明: n 阶矩阵 A 正定时,与 A 有关的矩阵 $kA(k>0)$. A^{\dagger} . A^{\dagger} . A^{\dagger} . A^{\dagger} . A^{\dagger} . A^{\dagger} . A
$f(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$ 是多項式、 $a_i>0$ 、 $i=0$ 、 1 、 2 、 \cdots 、 n)等均是正定矩阵;请读者证明。
A正定->A实对称
A*正定-〉A正定 反之不成立
在给二次型f,总有正交变换X=Py,使f化标准型,若A ^T =A,存在可逆变换×=Cz使f为标准型
【注】 (1)用配方法化二次型为标准形、规范形、若有平方项、应将平方项及某有关混合项型或完全
平方(如上例),没有平方项时,作可逆线性变换 $\langle x_i=y_i+y_i\rangle$
$\langle x_2 - y_3 \rangle$
例)。这样任何二次型,总可以用配方法化成标准形、规范形、且所作变换均是可进线性变换、用矩阵的语言可表达为:任何实对称矩阵,必存在可逆阵 C ,使得 $C^TAC = \Lambda$,其中 Λ 是对角阵,或对角元素只取 1 ,
一1 0 针对各体
(2)配方是中学已经掌握的内容,并不困难. 但为我们提供了①所作的可逆线性变换:②A 合同的对 角阵:③二次型(或 A)的秩:④正、负惯性指数:⑤是否正定等二次型的重要信息,故在求上述问题时,别
角阵;③二次型(或 A)的秩;④止、贝顶性相似; ⑥足目显入
1. 二次型正定的充要条件
n 元二次型 $f = \mathbf{x}^{T} A \mathbf{x}$ 正定 \Leftrightarrow 对任意 $\mathbf{x} \neq 0$,有 $\mathbf{x}^{T} A \mathbf{x} > 0$ (定义) $\Leftrightarrow f$ 的正惯性指数 $p = n \Leftrightarrow$ 存在可逆矩阵 \mathbf{D} ,使 $\mathbf{A} = \mathbf{D}^{T} \mathbf{D} \Leftrightarrow \mathbf{A} \simeq \mathbf{E} \Leftrightarrow \mathbf{A}$ 的特征值 $\lambda_i > 0$ ($i = 1, 2, \cdots, n$) $\Leftrightarrow \mathbf{A}$ 的全部顺序主子式 > 0 .
2 一次刑正定的必要条件
$(1)a_{ii}>0 (i=1,2,\cdots,n);(2) A >0.$
之此。如何一个时间也或性受换,将二次型化成标准形成规范形。其正项之数。 变的。产标为正惯性指数,9 称为负惯性指数。
变的, p 称为正侧性指数, q 称为负侧性指数, 【注】 (1) 若二次型的秩为 r, 则 r = p+q, 故知命同支統不改变正、负侧性指数,(3) 两个二次型(或
变的, p 称为止彻狂指数, q 称为负惯性指数
变的, p 称为正侧性指数, q 称为负侧性指数, 【注】 (1) 若二次型的秩为 r, 则 r = p+q, 故知命同支統不改变正、负侧性指数,(3) 两个二次型(或
变的, p 称为正侧性指数, q 称为负侧性指数, 【注】 (1) 若二次型的秩为 r, 则 r = p+q, 故知命同支統不改变正、负侧性指数,(3) 两个二次型(或
变的。身际为止侧性指数。4 称为负侧性指数。 【注】 (1)若二次型的秩为 r. 则 r = p+q, 效知命阅支换不改专正、负侧性指数。(2)两个二次型(或 实对称阵)合同的完要条件是有相同的正、负侧性指数,或有相同的秩及正(或鱼)性核指数。