Assignments

- Read sections 11.3 and 11.4 of the book
 - CCP modules and Illustration: Generating a periodic waveform using an interrupt
- Read the Capture/Compare/PMW (CCP) modules section of the datasheets
- The CCP module serves three functions
 - <u>Capturing</u> the 16 bit register value of a timer when an event happens on an input pin
 - Comparing the CCP 16 bit register with the 16 bit register of a timer and changing the output value of a pin and setting the CCPIF flag
 - In <u>PWM</u> mode the CCP module can generate an output pulse wave form with a specified frequency and duty cycle
- Only discussing PWM tonight

CCP Modules

- Enhanced CCP modules (ECCP)
 - Difference from standard CCP modules is related to the PWM function – can output to multiple pins
- PIC18F46K22
 - Two standard CCP modules
 - Three enhanced CCP modes (ECCP)
- PIC18F8722
 - Two standard CCP modules
 - Three enhanced CCP modes (ECCP)
- PIC16F917
 - Two standard CCP modules

CCP Module Resources

• PIC18F46K22

- CCP modules can be configured to use timer1, timer3, or timer5 for capture and compare modes
- CCP modules can be configures to use timer2, timer4, or timer6 for PWM modes

PIC18F8722

- CCP modules can be configured to use timer1 or timer3 for capture and compare modes
- CCP modules can be configures to use timer2 or timer4 for PWM modes

PIC16F917

- CCP use timer1 for capture and compare modes
- CCP use timer2 for PWM modes

PWM Mode

- The PWM (pulse width modulation) mode is used to output an on/off signal
 - Typically used to drive some kind of electric device
 - Electric motor (Mechatronics board)
 - Piezo buzzer (DEM 2 board)
 - The on signal is full power
 - The off signal is no power
 - The combination, turned on and off rapidly, is treated as an average of the two
 - Varying percent time on changes the average
 - Simulates partial power
 - Can use to vary the speed of an electric motor

PMW Mode

- The period is the duration of a complete cycle
 - Period = 1/frequency
- The pulse width is the time that the output is high or on
- The duty cycle is the percentage of time that the output is high versus total time
 - Duty cycle = (pulse width)/(period)

PMW Mode

- Basic operation
 - The pulse period is specified using the selected 8 bit timer and associated PRx register
 - The duty cycle period (or pulse width) is specified using a 10 bit value
 - The 8 MSBs are specified in CCPRxL
 - The 2 LSBs are specified in CCPxCON
 - The 2 LSBs are fractional values and are matched with the 2 bit internal clock or 2 bits of the pre scaler
 - Remember, the system clock increment 4 times per instruction
 - When the timer matches PRx, the output pin (CCPx) is set high (beginning of pulse)
 - When the timer matches the 8 bit CCPRxH and two bits from CCPxCON, the output pin (CCPx) is set low (end of pulse)

PMW Mode Equations

- Computing the PWM period
 - Period = $(PRx + 1) \times 4 \times (1/Fosc) \times (timer pre scale)$
 - Solve for PRx
- Computing the pulse width
 - Pulse width = CCPRxL:CCPxCON<5:4> x (1/Fosc) x (timer pre scale)
- Computing the duty cycle
 - Duty cycle = (CCPRxL:CCPxCON<5:4>)/(4 x (PRx + 1))
- Given duty cycle
 - Compute pulse width integer portion (DC x PRx)
 - Compute fractional part − 0, 25, 50, 75 (00, 01, 10, 11),

PWM Mode

- General operation
 - Setup the CCP module
 - Disable output pin (CCPx)
 - Select the timer (CCPTMRSx)
 - Load the PWM period into PRx
 - Load CCPRxL with 8 MSBs of PWM duty cycle
 - Load CCPxCON with 2 LSBs of PWM duty cycle
 - Timer setup
 - Clear TMRxIF
 - Set the timer prescale
 - Enable the timer
 - Wait until timer overflows (full pulse width on first pulse)
 - Enable the CCPx pin for output

Lab 6

- Use the PWM mode to the CCP module on the PICDEM DEM 2 board to drive the piezo buzzer
- Use the functionality developed in lab 5 (hex/decimal/binary display)
- Display current setting for PWM frequency, oscillator frequency (in kHz), PWM duty cycle (%) on line 1
- Display the current setting for PWM period, PWM duty cycle
 8 MSBs, and PWM duty cycle 2 LSBs in decimal on line 2
- Default is potentiometer varies the range of the PMW period
- First push of right most button has the potentiometer vary the range of the PWM duty cycle period
- Second push of right most button returns to default mode