ROVIO 论文推导及代码解析

崔华坤 2018.10.18

目录

一、整体流程图	3
二、EKF 框架	4
2.1 状态向量的均值的预测方程	4
2.2 状态向量协方差的预测方程	5
2.3 卡尔曼增益	5
2.4 状态向量的均值更新方程	5
2.5 状态向量的协方差的更新方程	5
二、状态向量	5
2.1 状态向量	6
2.2 bearing vector	7
三、IMU 预测	9
3.1 连续形式的 PVQB 和外参的运动方程	9
3.2 连续形式的 bearing vector 和逆深度的运动方程	10
3.3 离散形式的运动方程	10
3.4 离散形式的协方差预测	11
3.5 Warping Matrix 预测	12
四、视觉更新	13
4.1 光度误差方程	13
4.2 光度误差方程 G-N 求解	14
4.3 观测方程	15
4.4 更新状态向量和协方差	15
五、附录	15
5.1 运动方程的 Jacobian 部分矩阵推导	15
5.2 bearing vector 的连续运动方程推导	16
5.3 Warping Matrix 预测推导	17
六、参考文献	17

一、整体流程图

ROVIO 是一种基于 EKF 的视觉和 IMU 紧耦合的 VI-SLAM 框架,通过 IMU 数据来预测状态向量,通过视觉的光度误差约束来对状态向量进行更新,论文比较新颖的地方在于将路标点的参数化方式:在当前相机坐标系下用 bearing vector和逆深度这三个自由度来表示,并在 IMU 预测阶段对路标点进行预测,在视觉更新时对其修正,不像其他的 VIO 框架一般仅在视觉阶段去计算。(作者说这种方式可以避免不可观状态量,且无需初始化,不明白为什么?)

下图是论文[1]中的流程图,下面进行详细解释:

图 1 ROVIO 流程图

① **IMU 预测**: 当新来一组 gyr 和 acc 数据(\widetilde{w} 和 \widetilde{f})后,IMU 预测阶段需要做三件事情: 一是预测当前时刻的状态向量 x,得到均值的先验 x^- ;二是预测协方差的先验 P^- ,并将 x^- 和 P^- 传给接下来的视觉更新过程; 三是更新 Warping Matrix,用来校正不同视角下的图像映射变化,得到第 i 个路标点的 D_i 在当前时刻的增量: $\Delta D_i = \partial \mu^+/\partial \mu^-$ 。其中, x^+ 和 P^+ 为上一时刻的后验;

- ② **视觉更新**: 当新来一帧图像时,需要对状态向量进行更新,得到当前时刻的后验 x^+ 和 P^+ ,并进行异常点剔除;
- ③ **IEKF**: 因上一步的单次 EKF 很难找到最优解,因此使用多次迭代的 EKF 来 迭代优化,得到更准确的状态向量 x_{iter} ;
- ④ 相机模型:根据 IEKF 计算的状态量 x_{iter} ,结合相机模型,计算特征点在当前帧上的像素坐标 p_i ,传给下一步用于下一帧图像的像素位置计算;
- ⑤ **像素坐标校正:** 当新来一帧图像 I 后,计算上一帧图像中第 i 个特征点的像素位置 p_i 在当前帧 I 中的像素映射位置为: $\hat{P}_i = \pi \left(f(\pi^{-1}(p_i)) \right) + D_i P_{patch}$,其中 P_{patch} 为图像块中的相对坐标;
- ⑥ **光度误差:** 根据上一步得到的当前帧中的特征点像素位置 \hat{P}_i ,及该特征点对应的图像金字塔的灰度值 P_i ,计算该特征点的光度误差: $e(\hat{P}_i) = P_i I_i(\hat{P}_i)$,其中 e 为每一层金字塔的每个 patch 块的所有像素的灰度差之和;
- ⑦ QR 分解:根据上一步得到的光度误差,按照高斯牛顿思路进行求解,得到 Jacboain A 和误差项 b,这里并未直接对像素位置 \hat{P}_i 进行直接的优化更新,而 是根据预测的 \hat{P}_i 对状态向量 x 进行视觉更新,并根据更新后的 x_{iter} ,对 \hat{P}_i 进行 修正更新,并重新计算光度误差 e,然后进行多次迭代的 EKF,即图中上半 部分灰色区域的单个路标点更新迭代过程;
- ⑧ **Patch 提取及 Warp 计算:** 这一步是根据 IMU 预测的 Warping Matrix 增量 ΔD_i 计算得到当前时刻整体的 Warping Matrix D_i ; 同时,当有新的图像进来后,对新特征点提取相应的金字塔图像块 P_i ;
- ⑨ **路标点质量评价及维护:** 当有新图像进来时,对现有路标点进行质量评价, 辞旧迎新,将新特征点的 bearing vector 和逆深度传给 patch 提取模块进行金 字塔提取。

二、EKF 框架

为了思路清晰,这里先给出 EKF 的五个公式(根据《十四讲》第 10.1.3 节):

2.1 状态向量的均值的预测方程

设运动方程为:

$$x_k = f(x_{k-1}, u_k, w_k) (1)$$

其中,x 是状态向量,第 k-1 时刻的状态向量满足如下分布: $x_{k-1}\sim N(\hat{x}_{k-1},\hat{P}_{k-1});\;w_k\sim N(0,Q)$ 是噪声向量(如 acc 和 gyr 的各种噪声), u_k 为运动数据(IMU 的 acc 和 gyr 数据)。

因为运动方程为非线性非高斯分布,因此按照 EKF 思路,在 x_{k-1} 的后验 \hat{x}_{k-1} 和 $w_k = 0$ 处进行一阶线性展开可得:

$$x_k \approx f(\hat{x}_{k-1}, u_k, 0) + F \cdot (x_{k-1} - \hat{x}_{k-1}) + G \cdot w_k$$

= $f(\hat{x}_{k-1}, u_k) + F\delta x_{k-1} + Gw_k$ (2)

其中,
$$F = \frac{\partial f}{\partial x_{k-1}}|_{\hat{x}_{k-1}}$$
, $G = \frac{\partial f}{\partial w_k}|_{0}$ 。

那么, 第 k 时刻的先验, 即状态向量的预测值为:

$$\bar{x}_k = f(\hat{x}_{k-1}, u_k, 0) \tag{3}$$

2.2 状态向量协方差的预测方程

$$\bar{P}_k = F \cdot \hat{P}_{k-1} \cdot F^T + G \cdot Q \cdot G^T \tag{4}$$

2.3 卡尔曼增益

将观测方程进行一阶线性展开,为:

$$z_k \approx h(\bar{x}_k) + H \cdot (x_k - \bar{x}_k) + n_k \tag{5}$$

其中, $H = \frac{\partial h}{\partial x_k}|_{\bar{x}_k}$, 那么卡尔曼增益可定义为:

$$K_k = \bar{P}_k \cdot H^T (H \cdot \bar{P}_k \cdot H^T + Q_k)^{-1}$$
(6)

2.4 状态向量的均值更新方程

$$\hat{x}_{k-1} = \bar{x}_k + K_k \left(z_k - h(\bar{x}_k) \right) \tag{7}$$

2.5 状态向量的协方差的更新方程

$$\hat{P}_k = (I - K_k H) \bar{P}_k \tag{8}$$

我们会在下面的推导中与 EKF 的五个公式(3, 4, 6~8)——对应。

二、状态向量

2.1 状态向量

论文[1](M. Bloesch 2017)式(55)给出了滤波器的所有状态向量,包括当前帧的位置、旋转、速度、Bias、Cam 和 Imu 的外参、当前帧看到的路标点:

$$\chi = (r, v, q, b_f, b_w, c, z, \mu_0, \cdots, \mu_N, \rho_0, \cdots, \rho_N)$$

$$(9)$$

ROVIO 中状态向量写法与个人习惯不同,主要体现在位置的表示上,平常习惯将位置写成从一个坐标系到另一个坐标系的平移 $p_{I\leftarrow B}$,但 ROVIO 用不同坐标系下的向量 $\vec{r}_{I\rightarrow B}$ 来表示;另外,路标点并非用世界系下坐标 P_I 或用第一次观测到该路标点的相机坐标系下的逆深度方式,而是将路标点都表示在当前相机坐标系下,即论文所说的 Robocentric 方式。

值得注意的是,因为代码中的状态向量与论文[1]的表述不同,但是与论文[3] (M. Bloesch 2016)相同,因此这里以论文[3]为依据,对状态向量进行详细说明,式(1)可写成:

$$\chi = \left({}^{I}\vec{r}_{I \to B}, {}^{B}v_{B}, q_{I \leftarrow B}, {}^{B}b_{f}, {}^{B}b_{w}, {}^{B}\vec{r}_{B \to C}, q_{C \leftarrow B}, {}^{C}\mu_{0}, \cdots, {}^{C}\mu_{N}, \rho_{0}, \cdots, \rho_{N} \right) (10)$$

$$\sharp +,$$

 $r={}^{I}\vec{r}_{I\to B}=p_{I\to B}$: 为当前系统的位置,用在惯性世界系 I 中的从 I 系的坐标原点指向 IMU 局部系 B 的坐标原点的向量 \vec{r} 来表示;换句话说, ${}^{I}\vec{r}_{I\to B}$ 表示 B 系原点在 I 系中的位置,即表示从 B 系到 I 系的平移 $p_{I\to B}$;

 $c = {}^B \vec{r}_{B \to C} = p_{B \leftarrow C}$: 为 IMU 和 Camera 之间的位置关系,用在 B 系下的从 B 系的坐标原点指向相机系 C 的原点的向量来表示,即 C 系到 B 系的平移 $p_{B \leftarrow C}$,也就是 C 系原点在 B 系中的位置;

 $^{c}\mu_{i}\in\mathcal{S}^{2}$: 为归一化二维向量,表示当前相机看到的第 i 个路标点,在相机坐标系 C 中 xy 平面上的坐标;

 ρ_i : 为该路标点的在当前相机坐标系下的逆深度。

值得注意的是,在论文[1]中的 $r = {}^B\vec{r}_{I\to B}$,与论文[3]和代码中是不同的,两者有如下关系:

$$p_{I \leftarrow B} = {}^{I}\vec{r}_{I \rightarrow B} = q_{I \leftarrow B} \cdot {}^{B}\vec{r}_{I \rightarrow B} \tag{11}$$

上式的物理意义是同一个向量在不同坐标系中的转化。为了形象说明,以下

图为例,则有: $p_{I \leftarrow B} = {}^{I}\vec{r}_{I \rightarrow B} = (1,1)$,而 ${}^{B}\vec{r}_{I \rightarrow B} = (0,\sqrt{2})$:

图 1 平移的例子

那么,进一步地,我们将论文中的状态向量写成熟悉的形式,大小为 15+6+3N:

$$\chi = (p_{I \leftarrow B}, {}^{B}v_{B}, q_{I \leftarrow B}, {}^{B}b_{f}, {}^{B}b_{w}, p_{B \leftarrow C}, q_{C \leftarrow B}, {}^{C}\mu_{0}, \cdots, {}^{C}\mu_{N-1}, \rho_{0}, \cdots, \rho_{N-1})(12)$$

2.2 bearing vector

首先根据代码,给出 bearing vector 的物理意义,代码对应在 Camera::bearingToPixel 和 Camera::pixelToBearing。假设一个路标点在相机坐标系下的坐标为 $P_c = [x_c, y_c, z_c]$,在像素坐标系下的坐标为 $P_{uv} = [u, v, 1]$,在归一化相机系下的坐标为 $P_{cn} = [x_c/z_c, y_c/z_c, 1]$,对应的 bearing vector 为 b,则有:

$$P_{uv} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \frac{1}{z_c} \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = KP_{cn}$$

那么, bearing vector 为:

$$b = \frac{P_{cn}}{\|P_{cn}\|}$$

这里将 P_{cn} 归一化为所谓的 bearing vector 的意义是为了使 P_{cn} 平滑可导,因ROVIO 将特征点表征在当前帧坐标系下,因此特征点的参数会随着相机的移动而移动,并且需要将其放到 EKF 的状态向量中,并使得误差项对其可导,而 P_{cn} 是有范围约束的,因此对其进行归一化得到无约束的状态量——bearing vector。下面对这一物理量进行详细说明:

方向向量(bearing vector)是用单位球上的三维单位向量来表示,模为 1,自由度为 2。为了平滑地表示方向向量的微分,ROVIO 采用一个旋转 $\mu \in SO(3)$ 来表示方向向量,即单位球的轴 e_z 经过 μ 的旋转后,为该方向向量,如下所示:

$$n(\mu) \coloneqq \mu(e_z) \in S^2 \subset \mathbb{R}^3 \tag{13}$$

$$N(\mu) := \left[\mu(e_x), \mu(e_y) \right] \in \mathbb{R}^{3 \times 2} \tag{14}$$

 e_x 和 e_y 经过 μ 的旋转后,得到单位球的切空间 $N(\mu)$ 。注意虽然用旋转 μ 来表示方向向量,但是因方向向量只有 2 个自由度,故需要用切空间上的 2D 增量来表示方向向量的扰动,如下图所示:

图 2 方向向量表示

定义方向向量的加减运算,来将单位球和切空间联系起来:

$$\boxplus: SO(3) \times R^2 \to SO(3) \quad \mu \boxplus \delta\mu = exp[(N(\mu)\delta\mu)^{\wedge}] \otimes \mu$$
 (15)

$$\theta(\mu, v) = \theta\left(n(\mu), n(v)\right) = \frac{acos\left(n(v)^T n(\mu)\right)}{\|n(v) \times n(\mu)\|} n(v) \times n(\mu)$$

其中, $\theta(\mu, \nu)$ 是两个向量的 $n(\mu)$ 和 $n(\nu)$ 的旋转角轴,模为两个向量的旋转夹角,轴垂直于两个向量所在的平面。

方向向量的微分性质有:

$$\frac{\partial n(\mu)}{\partial \mu} = -n(\mu)^{\wedge} N(\mu) \tag{17}$$

证明如下:(这与论文[1]的公式(32)差一个负号?!)

$$\frac{\partial n(\mu)}{\partial \mu} = \lim_{\delta \mu \to 0} \frac{n(\mu) \boxplus \delta \mu - n(\mu)}{\delta \mu}$$

$$= \lim_{\delta \mu \to 0} \frac{\exp[(N(\mu)\delta \mu)^{\wedge}]n(\mu) - n(\mu)}{\delta \mu}$$

$$= \lim_{\delta \mu \to 0} \frac{[1 + (N(\mu)\delta \mu)^{\wedge}]n(\mu) - n(\mu)}{\delta \mu}$$

$$= \lim_{\delta\mu \to 0} \frac{(N(\mu)\delta\mu)^{\wedge} n(\mu)}{\delta\mu}$$

$$= \lim_{\delta\mu \to 0} \frac{-(n(\mu))^{\wedge} (N(\mu)\delta\mu)}{\delta\mu}$$

$$= -n(\mu)^{\wedge} N(\mu)$$

三、IMU 预测

首先,我们给出连续形式下的状态向量的导数的运动方程,先给出 PVQB 和外参,再给出 bearing vector 和逆深度。

3.1 连续形式的 PVQB 和外参的运动方程

每次获得的不含 bias 和噪声的 acc 和 gyr 数据为:

$${}^{B}f_{I\to B} = {}^{B}\tilde{f}_{I\to B} - {}^{B}b_{f} - {}^{B}n_{f} \tag{18}$$

$${}^{B}\omega_{I\to B} = {}^{B}\widetilde{\omega}_{I\to B} - {}^{B}b_{w} - {}^{B}n_{w} \tag{19}$$

其中, $^B ilde{f}_{I\to B}$, $^B ilde{\omega}_{I\to B}$ 为含有 bias 和噪声的原始数据, Bn_f , Bn_w 为对应的噪声。

论文[3]的式(47~51)及论文[1]的式(67~68)给出连续形式下的运动学方程,即给出了根据 IMU 数据预测状态向量的方法,这里的状态向量为不含误差值,我们将其先写成如下形式,下面再进行证明:

$$\dot{p}_{I \leftarrow B} = {}^{I}v_B = q_{I \leftarrow B} {}^{B}v_B \tag{20}$$

$${}^{B}\dot{v}_{B} = -{}^{B}\omega_{I\to B}^{\wedge} \cdot {}^{B}v_{B} + {}^{B}f_{I\to B} + q_{I\leftarrow B}{}^{T} \cdot {}^{I}g$$

$$(21)$$

$$\dot{q}_{I \leftarrow B} = q_{I \leftarrow B}^{\ \ B} \omega_{I \rightarrow B}^{\Lambda} \tag{22}$$

$${}^{B}\dot{b}_{f} = {}^{B}n_{b_{f}} \tag{23}$$

$${}^{B}\dot{b}_{w} = {}^{B}n_{b_{w}} \tag{24}$$

$$\dot{p}_{B\leftarrow C} = {}^B n_c \tag{25}$$

$$\dot{q}_{C \leftarrow B} = {}^B n_z \tag{26}$$

注意上面的 $\dot{q}_{I\leftarrow B}$ 与论文[3]中不同,这是因为实在看不懂作者定义的田和曰运算,索性弃之不用,延用 IMU 预积分论文[4](C. Forster 2017)公式(29)的写法(详细可参考秦永元《惯性导航》第一版 P238)。

另外,上面 $^{B}\dot{v}_{B}$ 的证明如下:

$$B \dot{v}_{B} = (q_{I \leftarrow B} \dot{T}^{I} v_{B}) = \dot{q}_{I \leftarrow B} \dot{T}^{I} v_{B} + q_{I \leftarrow B} \dot{T}^{I} \dot{v}_{B}$$

$$= [q_{I \leftarrow B} \cdot B \hat{\omega}_{I \rightarrow B}^{\wedge}]^{T} v_{B} + q_{I \leftarrow B} \dot{T} (\dot{f}_{B} + \dot{f}_{B})$$

$$= -B \hat{\omega}_{I \rightarrow B}^{\wedge} \cdot \dot{B} v_{B} + \dot{f}_{B} + q_{I \leftarrow B} \dot{T} \cdot \dot{f}_{B}$$

3.2 连续形式的 bearing vector 和逆深度的运动方程

因为 ROVIO 的路标点是在当前 IMU 坐标系下表示的,虽然路标点在世界系中的位置不动,但是在 IMU 系中却是运动的,因此也需要随着 IMU 进行预测。下面根据路标点在世界系中的位置导数为零这一条件,对路标点的运动方程进行推导,这里直接给出结果,推导可参考附录 5.2 (还没推导出来):

$$\dot{\mu} = N(\mu)^T \left(\widehat{w}_c + n(\mu)^{\wedge} \frac{\widehat{v}_c}{d(\rho)} \right) + n_{\mu}$$
 (27)

$$\dot{\rho} = -n(\mu)^T \frac{\hat{v}_c}{d(\rho)} + n_\rho \tag{28}$$

3.3 离散形式的运动方程

这里以欧拉离散形式为例,对上面的连续形式进行离散化,对应到代码 ImuPrediction:: evalPrediction()函数中,其中 B_1 、 B_2 为相邻的两次 IMU 数据:

$$p_{I \leftarrow B_2} = p_{I \leftarrow B_1} + \Delta t \cdot q_{I \leftarrow B_1}^{B_1} v_{B_1} \tag{29}$$

$${}^{B_2}v_{B_2} = {}^{B_1}v_{B_1} + \Delta t \left(-{}^{B_2}\omega_{I \to B_2}^{\wedge} \cdot {}^{B_1}v_{B_1} + {}^{B_2}f_{I \to B_2} + q_{I \leftarrow B_1}{}^T \cdot {}^Ig \right)$$

$$= (I - \Delta t^{B_2} \omega_{I \to B_2}^{\wedge})^{B_1} v_{B_1} + \Delta t (^{B_2} f_{I \to B_2} + q_{I \leftarrow B_1}^{T} \cdot ^{I} g)$$
 (30)

$$q_{I \leftarrow B_2} = q_{I \leftarrow B_1} exp\left(\Delta t^{B_2} \omega_{I \rightarrow B_2}^{\wedge}\right) \tag{31}$$

$${}^{B_2}b_f = {}^{B_1}b_f + \Delta t^{B_1}\hat{n}_{b_f} \tag{32}$$

$${}^{B_2}b_w = {}^{B_1}b_w + \Delta t^{B_1}\hat{n}_{bw} \tag{33}$$

$$p_{B_2 \leftarrow C} = p_{B_1 \leftarrow C} + \Delta t^B n_C \tag{34}$$

$$q_{C \leftarrow B_2} = exp\left(\Delta t \, {}^B n_z^{\ \ \wedge}\right) q_{C \leftarrow B_1} \tag{35}$$

$$\mu_{k+1} = exp\left\{\Delta t \left[\left(I - n(\mu_k) n(\mu_k)^T \right) \widehat{w}_c + n(\mu_k)^{\wedge} \frac{\widehat{v}_c}{d(\rho_k)} + N(\mu_k) n_{\mu} \right] \right\} \mu_k$$
 (36)

$$\rho_{k+1} = \rho_k - \Delta t n(\mu)^T \frac{\hat{v}_c}{d(\rho)} + \Delta t n_\rho$$
(37)

其中, $q_{I \leftarrow B_2}$ 可参考论文[4](C. Forster 2017)的公式(30),这与论文[3]的公式(56)完全相同,不知在数学上是否有更深层次的吻合。

上面的离散形式的运动方程就对应了前面公式(3)的预测方程: $\bar{x}_k = f(\hat{x}_{k-1}, u_k, 0)$ 。

3.4 离散形式的协方差预测

为了预测状态向量的均值和协方差,我们需要根据前面公式(2)对上一节中的 离散运动方程进行一阶线性展开成如下形式:

$$x_k \approx f(\hat{x}_{k-1}, u_k, 0) + F\delta x_{k-1} + G\delta w_k$$

下面我们需要计算其中的 Jacobian 矩阵 $F = \frac{\partial f}{\partial x_{k-1}}|_{\hat{x}_{k-1}}$ 和 $G = \frac{\partial f}{\partial w_k}|_{0}$ 。

根据定义,可计算出F并写成矩阵形式如下,注意实际上F需要对所有状态向量求导,这里只写了关于PVQB的 Jacobian,代码对应在 ImuPrediction:: jacPreviousState()中:

$$F = \begin{bmatrix} I & \Delta t \cdot q_{I \leftarrow B_{1}} & -\Delta t \left(q_{I \leftarrow B_{1}}^{B_{1}} v_{B_{1}} \right)^{\wedge} & 0 & 0 \\ 0 & I - \Delta t^{B_{2}} \omega_{I \rightarrow B_{2}}^{\wedge} & \Delta t q_{I \leftarrow B_{1}}^{T} \begin{pmatrix} I g \end{pmatrix}^{\wedge} & -\Delta t I & -\Delta t \begin{pmatrix} B_{1} v_{B_{1}} \end{pmatrix}^{\wedge} \\ 0 & 0 & I & 0 & -\Delta t q_{I \leftarrow B_{1}} \Gamma \left(\Delta t^{B_{2}} \omega_{I \rightarrow B_{2}} \right) \\ 0 & 0 & 0 & 0 & I \end{bmatrix}$$

$$(38)$$

其中,根据论文[3]的公式(31)定义有:

$$\Gamma(\varphi) = \frac{\partial exp(\varphi^{\wedge})}{\partial \varphi}$$

上式中的部分推导可查看附录 5.1。

另外,关于噪声的 Jacobian 矩阵 G 可计算并写出矩阵形式(未推导出来), 代码对应在 ImuPrediction:: jacNoise(),注意 G 是关于所有状态向量的噪声项的导数,噪声项的大小为 15+6+3N:

$$w_k = \left(n_p, n_v, n_q, n_{b_f}, n_{b_w}, n_c, n_z, n_{\mu_0}, \cdots, n_{\mu_{N-1}}, n_{\rho_0}, \cdots, n_{\rho_{N-1}}\right)$$

$$G = \begin{bmatrix} \Delta t I & 0 & 0 & 0 & 0 \\ 0 & -\Delta t I & -\Delta t {B_1 \choose B_1}^{\wedge} & 0 & 0 & 0 \\ 0 & 0 & -\Delta t q_{I \leftarrow B_1} \Gamma (\Delta t^{B_2} \omega_{I \to B_2}) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \Delta t I & 0 \\ 0 & 0 & 0 & 0 & \Delta t I \end{bmatrix}$$
(39)

这样,就可以使用上面的公式(4)对协方差进行预测:

$$\bar{P}_k = F\hat{P}_{k-1}F^T + GQG^T$$

其中,初始值 $P_k=0$, $F^{(21+3N)\times(21+3N)}$, $G^{(21+3N)\times(21+3N)}$,Q 为所有噪声项 w_k 的对角协方差矩阵。

3.5 Warping Matrix 预测

在接下来的视觉更新过程中,需要根据 IMU 更新两幅图像的映射关系,即 Warping Matrix。这里用 D 表示,D 为 2×2 的映射矩阵,用来将上一帧的块坐标 p_j 映射到当前帧的块坐标上,因每幅图像的块坐标与图像像素坐标一致,即将 p_j 映射到当前帧的图像像素坐标上。D 的物理意义是计算两帧图像的坐标轴映射关系,从而将一幅图像上的块坐标映射到另一幅图像上,这样可以避免因两帧图像 之间的投影变换关系,导致即使像素块中心点坐标一致,但是光度误差却不同,比如因为旋转导致的块不匹配。假设上一帧图像的任一点的像素坐标为 p_1 ,方向向量为 μ_1 ,在当前帧上的对应点的像素坐标为 p_2 ,方向向量为 μ_2 ,则有:

$$p_2 = \pi(\mu_2) = \pi(f(\mu_1)) = \pi(f(\pi^{-1}(p_1)))$$
(40)

那么, D 可以定义为:

$$D^{2\times2} = \frac{\partial p_2}{\partial p_1} = \frac{\partial \pi(\mu_2)}{\partial \mu_2} \frac{\partial f(\mu_1)}{\partial \mu_1} \frac{\partial \pi^{-1}(p_1)}{\partial p_1}$$
(41)

其中, $\mu_2 = f(\mu_1)$ 表示通过 IMU 预测得到的方向向量。

那么,经过 n个 IMU 传播之后的 Warping Matrix 为:

$$D = \frac{\partial \pi(\mu_{n+1})}{\partial \mu_{n+1}} \left(\frac{\partial f(\mu_n)}{\partial \mu_n} \cdots \frac{\partial f(\mu_1)}{\partial \mu_1} \right) \frac{\partial \pi^{-1}(p_1)}{\partial p_1}$$
(42)

因此,对于当获得第 i 个 IMU 时,只要计算 $\frac{\partial f(\mu_i)}{\partial \mu_i}$,并乘上之前的值即可完成 Warping Matrix 的预测。

下面给出 $\frac{\partial f(\mu_i)}{\partial \mu_i}$,代码对应在 ImuPrediction::evalPrediction()中的bearingVectorJac_变量,详细推导可查看附录 5.3(未推导出来):

$$\frac{\partial f(\mu_i)}{\partial \mu_i} = M(\mu_{i+1})^T \left\{ \Delta t \left(q_m n(\mu_i) \right)^{\wedge} \Gamma(d_m) \left[-\frac{1}{d(\rho_i)} \widehat{v}_c^{\wedge} - \left(n(\mu_i)^T \widehat{w}_c I + n(\mu_i) \widehat{w}_c^T \right) \right] + q_m \right\} M(\mu_i)$$
(43)

其中,

$$M(\mu_{i+1}) = \left[-\mu_{i+1}(e_y), \mu_{i+1}(e_x) \right]$$

$$d_m = \Delta t \left[(I - n(\mu_k)n(\mu_k)^T) \widehat{w}_c + n(\mu_k)^{\wedge} \frac{\widehat{v}_c}{d(\rho_k)} + N(\mu_k)n_{\mu} \right]$$

$$q_m = exp(d_m)$$

四、视觉更新

ROVIO 的视觉跟踪部分有点类似光流: 当第 k 帧图像到来时,首先跟踪上一帧即第 k-1 帧图像的特征点,若跟踪成功的点数少于阈值 N 个,则提取新的 FAST 角点,并计算 Shi-Tomasi 得分挑选出得分较高的角点; 当第 k+1 帧图像到来时,通过 IMU 预测,可估计出第 k 帧的特征点在第 k+1 帧中的像素位置。

4.1 光度误差方程

ROVIO 的视觉约束采用的是光度误差,为:

$$e_{l,i}(p, P, I, D) = P_l(p_i) - \alpha I_l(ps_l + Dp_i) - b$$
 (44)

其中, P_l 是上一帧图像在第 l 层的图像块, p_j 是上一帧图像块中的第 j 个位置,注意 p_j 是块坐标系下的坐标,若图像块尺寸为 8×8 ,则 $p_j \in [-2,3]$; I_l 是当前帧在第 l 层的图像,p 是当前帧第 0 层中与上一帧 p_j 点对应的像素位置,注意 p 是图像坐标系下的坐标,如p(350,240); $s_l = 0.5^l$ 表示下采样的尺度,即对 p 值进行缩放; ps_l 相当于是图像块的中心点坐标, Dp_j 是在此中心点基础上的相对偏移量;a 和 b 是相邻两帧之间亮度变化的模型参数;

图 2 光度误差

4.2 光度误差方程 G-N 求解

下面利用 G-N 法优化上面光度误差方程中的当前帧像素位置 p,我们只关心金字塔零层上的像素坐标,即 $s_0 = 1$,将光度误差进行一阶线性展开:

$$e(\hat{p} + \delta p, P, I, D) = A(\hat{p}, I, D)\delta p + e(\hat{p}, P, I, D) \tag{45}$$

其中, A 为图像梯度:

$$A(\hat{p}, I, D) = \frac{\partial e}{\partial p} = -a \frac{\partial I_0}{\partial p}$$

那么,增量方程可写成:

$$A(\hat{p}, I, D)^{T} A(\hat{p}, I, D) \delta p = -A(\hat{p}, I, D)^{T} e(\hat{p}, P, I, D)$$
(46)

通过上式可解得 δp ,用于对跟踪特征点位置p 的迭代优化。ROVIO 并非直接求解上面的增量方程,而是通过对A 进行 QR 分解来求解 δp :

$$A = \frac{\partial e}{\partial p} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 R_1 \\ 0 \end{bmatrix}$$
 (47)

其中,Q为正交矩阵,R为上三角矩阵。

将分解后的 A 代回一阶展开式中,并将 Q 1 移到光度误差上:

$$Q_{1}(\hat{p}, I, D)^{T} e(\hat{p} + \delta p, P, I, D) = R_{1}(\hat{p}, I, D) \delta p + Q_{1}(\hat{p}, I, D)^{T} e(\hat{p}, P, I, D)$$

$$\Rightarrow y(\hat{p} + \delta p, P, I, D) = R_{1}(\hat{p}, I, D) \delta p + y(\hat{p}, P, I, D)$$
(48)

其中, $y(\hat{p},P,I,D) = Q_1(\hat{p},I,D)^T e(\hat{p},P,I,D)$,为新的光度误差; $R_1(\hat{p},I,D) = Q_1^T \frac{\partial e}{\partial p} = \frac{\partial y}{\partial p}$; $\hat{p} = \pi(\bar{\mu}_k d(\bar{p}_k))$

4.3 观测方程

分析可知,上面的光度误差仅与 bearing vector 和逆深度有关,那么,下面将新光度误差在方向向量的先验 $\bar{\mu}_k$ 和 $\bar{\rho}_k$ 处进行一阶线性展开:

$$y\left(\pi\left(\mu_k d(\rho_k)\right)\right)$$

$$\approx y \left(\pi \left(\bar{\mu}_{k} d(\bar{\rho}_{k}) \right) \right) + \frac{\partial e}{\partial p} \frac{\partial \pi \left(\mu d(\rho) \right)}{\partial P_{c}} \frac{\partial P_{c}}{\partial x} \Big|_{\bar{\mu}_{k}, \bar{\rho}_{k}} (x_{k} - \bar{x}_{k}) + \frac{\partial e}{\partial p} \frac{\partial \pi \left(\mu d(\rho) \right)}{\partial P_{c}} \frac{\partial P_{c}}{\partial n_{u}} \Big|_{0,0} n_{u}$$

$$= y \left(\pi \left(\bar{\mu}_{k} d(\bar{\rho}_{k}) \right) \right) + H(x_{k} - \bar{x}_{k}) + H_{n} n_{u}$$

其中, H的尺寸为 2×3N, N 为特征点个数, 代码对应到 ImgUpdate::jacState()

$$H = \frac{\partial e}{\partial p} \frac{\partial \pi(\mu d(\rho))}{\partial P_c} \frac{\partial P_c}{\partial x} \Big|_{\overline{\mu}_k, \overline{\rho}_k} = R_1(\hat{p}, I, D) \frac{\partial \pi(\mu d(\rho))}{\partial P_c} \frac{\partial P_c}{\partial x} \Big|_{\overline{\mu}_k, \overline{\rho}_k}$$
(49)

代码中是: $F = -A_{red_*c_J_*featureOutputJac_.template block<2,mtState::D_>(0,0);$ 没看懂里面的 featureOutputJac 在 transformFeatureOutputCT_.jacTransform()中是 对应的 $\frac{\partial P_c}{\partial x}$? 是怎么推导出来的?

4.4 更新状态向量和协方差

对应代码在 LWF::Update:: performUpdateEKF(): 卡尔曼增益为:

$$K_k = \bar{P}_k \cdot H^T P_{\mathcal{V}}^{-1} \tag{50}$$

其中, $P_y = H\bar{P}_k H^T + H_n Q_k H_n^T$ 。

状态向量的均值和协方差更新为:

$$\hat{x}_{k-1} = \bar{x}_k + K_k \left(z_k - h(\bar{x}_k) \right) \tag{51}$$

$$\hat{P}_{k} = \bar{P}_{k} - K_{k} P_{y} K_{k}^{T} = \bar{P}_{k} - K_{k} P_{y} (\bar{P}_{k} \cdot H^{T} P_{y}^{-1})^{T}$$

$$= \bar{P}_{k} - K_{k} P_{y} P_{y}^{-1} H \bar{P}_{k} = (I - K_{k} H) \bar{P}_{k}$$
(52)

五、附录

- 5.1 运动方程的 Jacobian 部分矩阵推导
- 1. 速度运动方程关于旋转的 Jacobian:

$$\begin{split} \frac{\partial f_{v}}{\partial q_{I \leftarrow B_{1}}} &= \lim_{\varphi \rightarrow 0} \frac{\Delta t \left(exp(\varphi^{\wedge})q_{I \leftarrow B_{1}}\right)^{T} {}^{I}g - \Delta t q_{I \leftarrow B_{1}}{}^{T} {}^{I}g}{\varphi} \\ &= \lim_{\varphi \rightarrow 0} \frac{\Delta t q_{I \leftarrow B_{1}}{}^{T} (1 - \varphi^{\wedge}) {}^{I}g - \Delta t q_{I \leftarrow B_{1}}{}^{T} {}^{I}g}{\varphi} \\ &= \lim_{\varphi \rightarrow 0} \frac{-\Delta t q_{I \leftarrow B_{1}}{}^{T} \varphi^{\wedge} {}^{I}g}{\varphi} = \lim_{\varphi \rightarrow 0} \frac{\Delta t q_{I \leftarrow B_{1}}{}^{T} \left({}^{I}g\right)^{\wedge} \varphi}{\varphi} = \Delta t q_{I \leftarrow B_{1}}{}^{T} \left({}^{I}g\right)^{\wedge} \end{split}$$

2. 旋转运动方程关于旋转的 Jacobian:

$$\begin{split} \frac{\partial f_{q}}{\partial q_{I \leftarrow B_{1}}} &= \lim_{\varphi \to 0} \frac{exp(\varphi^{\wedge})q_{I \leftarrow B_{1}}exp\left(\Delta t^{B_{2}}\omega_{I \to B_{2}}^{\wedge}\right) \cdot \left[q_{I \leftarrow B_{1}}exp\left(\Delta t^{B_{2}}\omega_{I \to B_{2}}^{\wedge}\right)\right]^{T}}{\varphi} \\ &= \lim_{\varphi \to 0} \frac{exp(\varphi^{\wedge})}{\varphi} = \lim_{\varphi \to 0} \frac{I + \varphi^{\wedge}}{\varphi} = I \end{split}$$

3. 旋转运动方程关于 gyr bias 的 Jacobian:

$$\frac{\partial f_q}{\partial B_w} = \frac{\partial q_{I \leftarrow B_1} exp(\Delta t^{B_2} \omega_{I \to B_2}^{\Lambda})}{\partial B_w}$$

$$= \frac{\partial q_{I \leftarrow B_1} exp(\Delta t^{B_2} \omega_{I \to B_2}^{\Lambda})}{\partial (\Delta t^{B_2} \omega_{I \to B_2}^{\Lambda})} \cdot \frac{\partial \Delta t(B_{\omega_{I \to B}} - B_w)}{\partial B_w}$$

$$= -\Delta t q_{I \leftarrow B_1} \Gamma(\Delta t^{B_2} \omega_{I \to B_2}^{\Lambda})$$

5.2 bearing vector 的连续运动方程推导

根据路标点在世界系中的位置导数为零,对(22)式左右两边对时间 t 求导,其中随时间变化的变量有四个: $p_{I\leftarrow C}$ 、 $q_{C\leftarrow I}$ 、 μ 、 ρ ,得:

$$0 = \frac{\partial p_{I \leftarrow C}}{\partial t} + \frac{\partial q_{C \leftarrow I}^{T} (\mu d(\rho))}{\partial q_{C \leftarrow I}} \frac{\partial q_{C \leftarrow I}}{\partial t} + \frac{\partial q_{C \leftarrow I}^{T} (\mu d(\rho))}{\partial \mu} \frac{\partial \mu}{\partial t} + \frac{\partial q_{C \leftarrow I}^{T} (\mu d(\rho))}{\partial d(\rho)} \frac{\partial d(\rho)}{\partial \rho} \frac{\partial \rho}{\partial t}$$
(A-1)

对于上式进行分别讨论:

1)

$$\frac{\partial p_{I \leftarrow C}}{\partial t} = \frac{\partial \vec{r}_{I \rightarrow C}}{\partial t} = \frac{\partial (\vec{r}_{I \rightarrow B} + q_{I \leftarrow B} \vec{r}_{B \rightarrow C})}{\partial t} = \frac{\partial (p_{I \leftarrow B} + q_{I \leftarrow B} p_{B \leftarrow C})}{\partial t}$$
$$= \frac{\partial p_{I \leftarrow B}}{\partial t} + \frac{\partial q_{I \leftarrow B}}{\partial t} p_{B \leftarrow C} + q_{I \leftarrow B} \frac{\partial p_{B \leftarrow C}}{\partial t}$$

根据连续形式的运动方程可得:

$$\frac{\partial p_{I \leftarrow C}}{\partial t} = q_{I \leftarrow B}{}^{B}v_{B} + \left(q_{I \leftarrow B}{}^{B}\omega_{I \rightarrow B}^{\wedge}\right)p_{B \leftarrow C} + 0 = q_{I \leftarrow B}\left({}^{B}v_{B} + {}^{B}\omega_{I \rightarrow B}^{\wedge}p_{B \leftarrow C}\right)$$

2) (为何下面推导少个负号?!)

$$\frac{\partial q_{C \leftarrow I}^{T}(\mu d(\rho))}{\partial q_{C \leftarrow I}} = \lim_{\varphi \to 0} \frac{(exp(\varphi^{\wedge})q_{C \leftarrow I})^{T}\mu d(\rho) - q_{C \leftarrow I}^{T}(\mu d(\rho))}{\varphi}$$

$$= \lim_{\varphi \to 0} \frac{q_{C \leftarrow I}^{T}(1 - \varphi^{\wedge})\mu d(\rho) - q_{C \leftarrow I}^{T}(\mu d(\rho))}{\varphi}$$

$$= \lim_{\varphi \to 0} \frac{-q_{C \leftarrow I}^{T}\varphi^{\wedge}\mu d(\rho)}{\varphi}$$

$$= q_{C \leftarrow I}^{T}\mu^{\wedge}d(\rho)$$

3)

$$\frac{\partial q_{C \leftarrow I}}{\partial t} = \widehat{w}_C = q_{C \leftarrow B} \,^B \omega_{I \to B}$$

4)

$$\frac{\partial q_{C \leftarrow I}^{T} (\mu d(\rho))}{\partial \mu} = q_{C \leftarrow I}^{T} \frac{\partial n(\mu)}{\partial \mu} d(\rho) = -q_{C \leftarrow I}^{T} n(\mu)^{\wedge} N(\mu) d(\rho)$$

5)

$$\frac{\partial q_{C \leftarrow I}^{T} (\mu d(\rho))}{\partial d(\rho)} \frac{\partial d(\rho)}{\partial \rho} = q_{C \leftarrow I}^{T} \mu d'(\rho)$$

将上面各式代入式(A-1)后,在等式两边乘上 $q_{C\leftarrow I}$

5.3 Warping Matrix 预测推导

六、参考文献

- [1] M. Bloesch. IEKF-based visual-inertial odometry using direct photometric feedback. 2017.
- [2] M. Bloesch. Robust visual inertial odometry using a direct ekf-based approach. 2015. IEEE.
- [3] M. Bloesch. A primer on the differential calculus of 3d orientations. 2016. arXiv.
- [4] C. Forster. On-manifold preintegration for real-time visual-inertial odometry. 2017.