

SEM 1-1

F.E. (Semester – I) (Revised Course) Examination, Nov./Dec. 2013 APPLIED MATHEMATICS – I

Duration: 3 Hours

Total Marks: 100

6

12

Instructions: 1) Attempt any five questions, at least one from each Module.

2) Assume suitable data, if necessary.

MODULE-I

1. a) Show that $\int_0^\infty x^n e^{-a^2x^2} dx = \frac{1}{2a^{n+1}} \Gamma\left(\frac{n+1}{2}\right)$. Hence deduce that $\int_0^\infty e^{-a^2x^2} dx = \frac{\sqrt{\pi}}{2a}.$

b) Evaluate $\int_0^1 x^3 \left(1 - \sqrt{x}\right)^5 dx$.

c) Show that $\int_{0}^{1} \left(1 - x^{\frac{1}{n}}\right)^{m} dx = \frac{n!m!}{(m+n)!}$.

d) Prove that $\frac{\beta(m+1,n)}{m} = \frac{\beta(m,n+1)}{n} = \frac{\beta(m,n)}{m+n}$.

2. a) Test the convergence of the following series:

i) $\frac{3}{4} + \frac{3 \cdot 4}{4 \cdot 6} + \frac{3 \cdot 4 \cdot 5}{4 \cdot 6 \cdot 8} + \dots \infty$

ii) $\sum_{n=1}^{\infty} \frac{n^2}{e^n}$

iii) $\frac{1}{1 \cdot 2 \cdot 3} + \frac{3}{2 \cdot 3 \cdot 4} + \frac{5}{3 \cdot 4 \cdot 5} + \dots$

b) Define interval of convergence and find it for the series

$$\frac{1}{2}x + x^2 + \frac{9}{8}x^3 + x^4 + \frac{25}{32}x^5 + \dots$$

c) State D'Almbert ratio test for the convergence of a series.

2

7

MODULE - II

- 3. a) If $z = \cos \theta + i \sin \theta$ prove that :
 - i) $\frac{2}{1+z} = 1 i \tan \frac{\theta}{2}$

ii)
$$\frac{1+z}{1-z} = i \cot \frac{\theta}{2}.$$

- b) If $\tan z = \frac{i}{2} (1 i)$ prove that $z = \frac{\tan^{-1} z}{2} + \frac{i}{4} \log_e 5$.
- c) If $\tan (a + i\beta) = x + iy$. Prove that $x^2 + y^2 + 2x\cot 2\alpha = 1$.
- d) Use DMT to solve the equation $x^5 + x^4 + x^3 + x^2 + x + 1 = 0$.
- 4. a) Considering the principal value only, prove that the real part of $(1 + i\sqrt{3})^{(1+i\sqrt{3})}$

is
$$2e^{-\pi/\sqrt{3}}\cos(\pi/3 + \sqrt{3}\log_e 2)$$
.

b) If $\frac{(1+i)^{(x+iy)}}{(1-i)^{(x-iy)}} = a + ib$ then considering the principal value only, prove that

$$\tan^{-1}\left(\frac{b}{a}\right) = \frac{\pi x}{2} + y \log 2.$$

c) Show that the function $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ is harmonic. Construct the corresponding analytic function f(z) = u + iv.

MODULE - III

- 5. a) If $y = a \cos(\log x) + b \sin(\log x)$ where 'a' and 'b' are constants then show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.
 - b) Expand log (1 + 2 sin x) in powers of x. Find the first 5 terms.
 - c) Use Taylors theorem to expand $Sec^2 x$ in powers of $(x \pi/4)$.

- 6. a) Evaluate:
 - i) $\lim_{x\to 1} \frac{x^x x}{x 1 \log x}$
 - ii) $\lim_{x\to 0} \log_{\tan^2(x)} \tan^2(2x)$
 - iii) $\lim_{x \to 0} \frac{\sin x \log \left(e^x \cos x \right)}{x \sin x}.$
 - b) If z = f(x, y) where $x = e^u + e^{-v}$ and $y = e^{-u} e^v$ then prove that $z_u z_v = xz_x yz_y$.

MODULE - IV

- 7. a) Form the partial differential equation eliminating the arbitrary constants:
 - i) z = axy + b
 - ii) $Z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
 - b) If $z = x^n f\left(\frac{y}{x}\right) + y^{-n} f\left(\frac{x}{y}\right)$ then prove that $x^2 z_{xx} + 2xy z_{xy} + y^2 z_{yy} + x z_x + y z_y = n^2 z.$
 - c) Solve the partial differential equation $zx \frac{\partial z}{\partial x} + zy \frac{\partial z}{\partial y} = xy$.
- 8. a) If $u = \sin^{-1} \left[\frac{x^2 \sqrt{y} + y^2 \sqrt{x}}{3x^2 4y^2} \right]$ then prove :
 - i) $2(xu_x + yu_y) = \tan u$
 - ii) $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = \frac{-\sin u \cos 2u}{4\cos^3 u}$.
 - b) Find the maximum and minimum distance of the point (3, 4, 12) to the sphere $x^2 + y^2 + z^2 = 1$.
 - c) Discuss u (x, y) = $x^2y 3x^2 2y^2 4y + 3$ for extreme values. 6