GRAFOS DIRIGIDOS

Un grafo dirigido consiste en un conjunto de vertices y arcos.

La nodos o puntos dirigidos o líneas dirigidas.

orco: par ordenado de vértices.

v wes adjacente a v

los vértices representan objetos y los areas relaciones entre objetos.

Un grafo divigido puede usarse para representar el flugo de control en un programa de computador.

longitud de comino - número de arcos en el camino camino - sim ple - todos sus vertices (excepto el primero y el último) son distintos.

camino - ciclo - camino simple de longitud mínima 1 y empiera y termina en el mismo vertice.

grafo dirigido etiquetado - clarco, vertice o ambas
pueden tener una etiquetade
cualquier tipode dato.

un vértice puede tener a la vez un nombre y una etiqueta.

Si se espera que el grafo permanezca fijo, en las litas de adjacencia, seria preferible que CABEZATI] fuera un cursor a un arreglo ADY, cuando ADY se encueba un coro, es el fin de la lista de vertices adjacentos a vi El Futuro se moldea

XTDA GRAFO DIRIGIDO

III

D

I

III

D

D

Q

1

Operaciones: * lectura de la eliqueta de un vértice o un arco, la inserción o Supresión de vertices y arcos, y el recorrido de arcos desde la cola hasta la cabera.

for cada vérbice u adjacete a v do

Segunda representación con listo de adjacencia

indice-posición en la lista de adjacencia de v. Si se usa una matriz de adjacencia, un indice es un entero que representa un vertice adjacente

3 Up: 1) Primero (v) - devuelve el indice del primer vértice adjacate a v. Se devuelve hulo (n) si no hag.

2) Siquiente (v, i) - devuelve it t de los vértices adjacates a v. Se devuelve A si i es el illimo adjacate de v.

3) Vertice (viù) - devuelve el verbice cuyo indice i esta etre la vertices adjacetes a v.

Ver cooligo pag 6 PDF V 6.3 PROBLEMA D LOS CAMINOS MAS COATOS CON UN V SOLO ORIGEN Un vertice se específica como origen. El problem es deberminor el costo del camino mas orro del origen a Today las demas vertices de v. longitud de un camino es la suna de los costos de los arcos del camino. algoritmo de Dijustra - opera a partir de un anjuntos de vertices cuya distancia mas corta desde el origen ya es especial - camino mos arto etre el origer y v. Funciona pa lo que aparese cono lo mejor se converte es lo meyor de todo

Comparación entre Flogd y Dijustra

Si el número de aristar es monor que nº la versión de Dijustra con lista de adjacencia tana un lica po adjacencia tana un licano o ha log n)

Tiempo de ejecución del algoritmo de Dijkstra: (1940)

O(a log n) - lista de adjaca an t cola de prioridad (heap Totatrit de adjacaca T T a=actualizaciones El Futuro se moldea I 6.4 PROBLEMA D LOS CAMINOS CORTOS ENTRE TODOS T LOS PARES algoritmo de Flogd. T K AK [i,j] min { A N-1 [C,N] + A N-1 [N,j] Ęī GRAFO DIRIGIDO PONDERADO 3 8 0 2 5 3 00 0 At [i,j] AO [6,j] 3 5 0 2 0 8 0 As Cinj] A2[i,j]

Cerradura transitiva algoritmo de Warshall.

Obj: determinar si existe un camina El Futuro se moldea (directo or indirecto) entre todo par de vértices de m que la dirigida

A [i][j] = The -parco directo i-j

A [i] [j] = False + Si no existe

Acilly = Acilly V (Acilcul > Aculty)

 $O(n^3)$

Sirve para grafos no ponderados

excentricidad de un vertice v: Max distancia minima desde cualquier otro vertice u hasta v.

Formula: ex (v) = max { longitud del camino mais corto de war} x & v

Centro del grafo: vértice con la menor excentricidad (el mais "cercano" al vértice más lejano)

6.5. Recorridos en grafos dirigidos

Búsqueda en Profundidad (bpf)

Es un algoritmo recursivo que recorre sistemáticomete un grafo dirigido, explorando todos los vértices alcantable desde un nodo inicial.

- 1) Inicialitación: Todos los vérticer se marca como no visitador.
- 2) Se recorrer todas las adjacen les del actual si no feron virtada
- 3) Si quedaron vérticer sin visitar se repite el proceso derde otro vértice no explorado

O(a) (a=nimero de arcos)

Bosque abarcador en profundidad bosque abarcador--compresto por arbolas bot El Futuro se moldea _ Es un bosque (conjunto de airboles) pa el grafo puede no ser conero Tipos de Arcos Ejemplo Tipo Dirección Def arbol A ->B unv visita x 149 cuando , se retroceso C -> A v es un ancestro de u a U->V el bosque A -D v es un descendiente de w avence W->V (pero no es arco de air bol) u y v no tiene relación D -> C Cruzado W->V ancertio - descondiente. Bosque Aborcador Grafo arco de cirbol retroceso avance Cruzado