Appendix

GEAR MANUFACTURERS AND SOURCES

Black Diamond Equipment, Ltd. 2084 East 3900 South Salt Lake City, UT 84124 (801) 278–5533 www.bdel.com

Blue Water 209 Loworn Road Carrollton, GA 30117 (770) 834–7515 www.bluewaterropes.com

Mammut Sports Group (formerly Climb High) 135 Northside Drive Shelburne, VT 05482 (802) 985–5056 www.mammutusa.com

Metolius Climbing 63189 Nels Anderson Road Bend, OR 97701 (541) 382–7585 www.metoliusclimbing.com

Pigeon Mountain Industries (PMI) P.O. Box 803 LaFayette, GA 30728 (800) 282–7673 www.pmirope.com SMC 6930 Salashan Parkway Ferndale, WA 98248 (360) 366–5532 www.smcgear.net

Wild Country
Meverill Road
Buxton, Derbyshire, England
SK17 8PY
44 (0) 1298–871–010
www.wildcountry.co.uk

Wild Country distributed in the United States by: Excalibur P.O. Box 1007 Sandy, UT 84091 (801) 942–8471 xcalibur@mindspring.com

Yates Gear, Inc. 2608 Hartnell Avenue #6 Redding, CA 96002 (530) 222–4606 www.yatesgear.com

ESSENTIAL READING

Each year's climbing accidents are compiled and published in *Accidents in North American Mountaineering*, available at climbing shops nationwide.

Black Diamond comparative testing of high-tensile cord: www.xmission.com/~tmoyer/testing.

American Safe Climbing Association (ASCA) Web site, www.safeclimbing.org. Good resource for those who want to place bolts.

Supplemental Instruction

The American Mountain Guides Association (AMGA) is an excellent source of qualified instructors and guides. They can be reached at P.O. Box 1739, Boulder, CO 80306; (303) 271–0984.

Vertical Adventures, run by co-author Bob Gaines, offers instructional and guiding services in Joshua Tree and Idylwild, California. (800) 514–8785; www,vertical adventures.com; e-mail bgvertical@aol.com.

Index

American triangle, 205, 206 anchor systems overview, 127–31. See also specific systems anchor test results, 183–95 cordelette equal length, 186, 192 cordelette unequal length, 187, 192 equalette leg-failure test, 190–91 equalette unequal length, 189, 193 materials, 183, 191–93 quad, 190 shock loading, 190–91 sliding X equal length, 186 sliding X unequal length, 187–88, 193 test parameters, 183–86	tying into, 144 upward oppositional anchors, 174–77 belay positions, 177–82 direct belay, 180–81 indirect belay, 178 redirected belay, 179, 181 rope-direct belay, 182 Big Bros, 55–56 big wall anchors, 211–12 bivouac anchors, 209–10 Black Diamond Camalots placement, 68, 69 retraction, 61, 66, 67 in tapering cracks, 72–73 Black Diamond Micro Stoppers, 49, 50 Black Diamond Stoppers
belay anchors, 140–95 anchor test results, 183–95 for beginners, 173–74 belay positions, 177–82 building, 140–44 composite anchors, 172–73 cordelettes, 148–58 equalette, 166–72 factor 2 falls, 144–45 modern rigging trends, 147 sliding X, 158–66 spreading the load, 145–46 static and automatic equalization systems, 146–48	history, 13–14 performance, 105 placement, 37, 38, 40, 42, 74 blocks, 24–26, 28 bollards, 30 bolt hangers, 91–92 bolts, 84–93 bolt hangers, 91–92 future, 92–93 history, 84–90 in-situ bolts, 93 stainless steel bolts, 92–93 strength ratings, 85 titanium bolts, 93 bosses, 29 bottleneck placements, 36, 37, 40

boulders, 24–26	Communauté Européene (CE), 79, 109
bowline-on-a-bight, 122–24	composite anchors, 172–73
Bugaboos, 82	Conformité Européenne (CE), 79, 109
bushes, 24	constant camming angle, 66
	cord, 99, 157-58, 192
C	cordelettes, 148–58
Camalots. See Black Diamond	anchoring to trees, 21, 22
Camalots	anchor test results, 186, 187, 192
camming angle, constant, 66	equalization, 149, 152–54
cams. See spring-loaded camming	equal length, 186, 192
devices (SLCDs)	high-tensile cord versus nylon,
carabiners, 47, 143	157–58, 192
CE mark, 79, 109	off-axis loading on, 154–57
CEN (Comité Européen de	rigging, 148-52
Normalisation), 109	unequal length, 187, 192
chickenheads, 29–30	crossed sling. See sliding X
chocks	curved tapers, 35, 38-40
development, 12-15	Curve Nuts, 35, 38
setting safe chocks, 36	
chocks, mechanical, 59–79	D
sliding nuts, 75–77	direct belay, 180-81
spring-loaded camming devices,	direction of pull, 111–17
59–75	and anchor building, 113–15
chocks, passive, 33–57	changes in, 165–66
Big Bros, 55–56	defined, 111
hexes, 52	and Jesus Nut, 112, 115
micro-tapers (micro-nuts), 48–51	on primary placements, 117
offset tapers, 47–48	and sliding X, 165–66
oppositional nuts, 43–47	and swing, 115–17
placement, 33–35	and tapers, 41, 42
removing, 56–57	doubled carabiners, 143
tapers, 35–43	double fisherman's knot, 119, 120
Tricams, 53–55	Drive bolts, 86-88
chockstones, 31–32	drop tests, 101, 103, 104, 175,
Climb-Spec webbing, 96–97	184–85
clove hitch, 43, 46, 121–22	dynamically equalized anchors,
clutch effect, 161–62	113–14, 146–47
cold shuts, 94–95	dynamic forces, 104–6
Comité Européen de Normalisation	Dyneema webbing, 97–98, 99
(CEN). 109	

E	fixed pitons, 82–84
efficiency, 135	flakes, 26–27
endwise placement, taper, 37–38	flaring cracks, 71–72
EN (European Norm) standards, 109	Friends. See Wild Country Friends
equalette, 166–72	
advantages, 170–71	G
anchor test results, 189,	gear
190–91, 193	development, 12-15
leg-failure test, 190–91	missing, 17–18
limitations, 171	testing, 79, 101
quad, 171–72, 199	gear, fixed, 81–99
rigging, 168–70	bolts, 84–93
using, 170	cold shuts, 94-95
equalization	cordage, 99
anchor tests, 184–85	webbing, 95-99
cordelettes, 149, 152-54	girth-hitch, 21–22, 23, 32
dynamically equalized anchors,	Golden Rule, 108, 127-28, 212
113–14, 146–47	"good enough" anchors, 5–6, 18,
static equalizing anchors, 113, 146	214–15
Equalized component (SRENE), 134	Gunks tie-off, 64, 65, 71
equipment. See gear	gym climbing, 9
European Committee for	
Standards, 109	Н
European Norm (EN) standards, 109	hardware. See gear
extension, 184	Hexentrics, 13, 14
	hexes, 52
F	high-tensile cord, 157–58, 192
factor 1 fall tests, 185	hooks, 94–95
factor 2 falls, 144–45	horizontal crack placement, taper,
factor 2 fall tests, 101, 103, 104.	41–42
See also fall forces	horizontal opposition, 44–47
fall forces, 101–9	horizontal pitons, 82
dynamic forces in, 104–6	horns, 2631
top piece in, 107–8	
field testing, 2	1
figure eight on a bight, 119, 120, 121	indirect belay, 178
fisherman's knot, 119, 120	injury per climber ratio, 9–10
5-piece bolts, 84, 89–90	in-situ bolts, 93
fixed gear. See gear, fixed	ISO 9000, 109

ISO 14000 certificates, 109	micro-tapers (micro-nuts), 48-51
	mil-spec webbing, 96, 98
J	Munter hitch, 124-26
Jesus Nut, 107-9, 112, 115	
	N
K	natural anchors, 19–32
kiloNewtons (kN), 103	boulders and blocks, 24-26
KISS (Keep It Simple, Stupid), 142,	chockstones, 31-32
194–95	horns, 26-31
knifeblades, 82	shrubs and bushes, 24
knots, 119–26	threading tunnels, 31
anchor tests, 184	trees, 19-23
bowline-on-a-bight, 122–24	Newtons, 103
clove hitch, 43, 46, 121–22	No Extension component (SRENE), 134
double fisherman's, 119, 120	nuts. See chocks
figure eight on a bight, 119,	nut tools, 57
120, 121	nylon cord, 99, 157–58, 192
knot strength, 126	nylon webbing, 96–97, 98, 99
Munter hitch, 124–26	
overhand on a bight, 119, 120, 121	0
ring bend, 119, 120	off-axis loading on cordelettes, 154–57
L	offset cams, 68
lab testing, 2. See also anchor test	offset tapers, 47–48
results	opposition, horizontal, 44–47
leg-failure test of equalette, 190–91	oppositional anchors, upward,
load, spreading the, 145-46	174–77
logarithmic spiral, 66	oppositional nuts, 43–47
Lost Arrows, 82	overbuilding, 213, 214
	overhand on a bight, 119, 120, 121
M	
macro rock structure, 78	P
magic X. See sliding X	passive chocks. See chocks, passive
match fit, 36, 37, 52	pitons, 81–84
mechanical chocks. See chocks,	portaledges, 209, 210

pounds of force (lbf), 103

pre-equalized anchors, 113, 146

primary placements, 117, 183

Powers Bolt, 84

222

mechanical Metolius Curve Nuts, 35, 38

micro rock structure, 78

Micro Stoppers, 49, 50

Q	changes in direction of pull,
quad, 171–72, 190, 199	165–66
quickdraws, 98	equal length, 186
	normal usage, 160–62
R	placement pairs, 162–65
rappel anchors, 203–9	rigging, 158–60
rappel rings, 203, 204, 205	unequal length, 187–88, 193
Rawl Drive bolts, 86–88	sling material. See webbing (sling
Rawl 5-piece bolts, 84, 89–90	material)
Rawl Stud bolts, 89, 90	slings, for oppositional nuts, 46–47
Rawl Zamaz Nailin bolts, 85–86	slow-pull, static-rope testing, 184,
Realized Ultimate Reality Piton	193–94
(RURP), 82	Solid, Redundant, Equalized, and No
redirected belay, 179, 181	Extension anchors. See SRENE
Redundant component (SRENE), 134,	anchors
135–39, 184	Solid component (SRENE), 134
rigging methods, modern	SOS (Solid, Orientation, Surface
limitations, 6–7, 10–11	area), 74
trends, 147	Spectra webbing, 97–98, 99
ring bend, 119, 120	spikes, 29
rock structure, analyzing, 78	spreading the load, 145–46
rope-direct belay, 182	spring-loaded camming devices
RURP (Realized Ultimate Reality	(SLCDs), 59-75
Piton), 82	color coding, 68
"	design, 59
S	development, 14, 59-61
Screamers, 49	dirty SLCDs, 73
security, 4–5, 213–15	in flaring cracks, 71–72
self-equalizing anchors, 113–14,	flexible versus rigid stems, 62–65
146–47	investing in, 75
shock loading, 159–60, 190–91	offset cams, 68
shrubs, 24	placement, 62, 65–67, 68, 71
simple anchors, defined, 17	strength, 65
simplicity, 134–35	stuck SLCDs, 73-75
SLCDs. See spring-loaded camming	in tapering cracks, 72–73
devices (SLCDs)	three versus four cams, 61
sliding nuts, 14–15, 75–77	tipsy placements, 69–71
sliding X, 158–66	SRENE anchors, 132–39
anchor test results. 186, 187–88, 193	and efficiency, 135

Equalized component, 134	titanium bolts, 93
No Extension component, 134	top piece in fall, 107-8
Redundant component, 134,	toprope anchors, 197–203
135–39, 184	trees, 19–23
and simplicity, 134–35	Tricams, 53–55
Solid component, 134	tunnels, threading, 31
use, 8, 132–34	
variations, 135	U
stainless steel bolts, 92-93	UIAA standard, 101, 109
standards stamps, 109	upward oppositional anchors, 174–77
Star Dryvin bolts, 85	USE Diamond Taper Bolts, 89
static equalizing anchors, 113, 146	
static forces, 103-4	V
Sterling Ropes tests. See anchor test	VW Bug experiment, 7
results	
Stoppers. See Black Diamond Stoppers	W
straight tapers, 35, 37–38	water knot, 119, 120
Stud bolts, 89, 90	webbing (sling material), 95–99
swing, and direction of pull, 115–17	history, 96–98
	mil-spec webbing, 96, 98
Т	nylon webbing, 96–97, 98, 99
Taper Bolts, 89	quickdraws, 98
tapering cracks, 72–73	Web-o-lette mode, 156
tapers, 35–43	Wild Country Friends
curved tapers, 35, 38-40	development, 14, 60-61
design, 35	placement, 64, 65, 71
direction of pull, 41, 42	removing stuck cams, 74–75
endwise placement, 37–38	tipped-out placement, 69
horizontal crack placement, 41–42	
micro-tapers, 48–51	Υ
offset tapers, 47–48	Yates Screamers, 49
placement, 36-43, 48, 74	•
straight tapers, 35, 37–38	Z
Ten-Point System, 201	Zamaz Nailin bolts, 85–86
- / /	,

tipped-out placements, 69-71

About the Authors

John Long is the author of twenty-five books, with over one million copies in print. He is the principal author of the How to Rock Climb series. His short-form literary stories have been widely anthologized and translated into many languages. John won the 2006 Literary Award for excellence in alpine literature from the American Alpine Club.

PHOTO COURTESY OF JOHN LONG

PHOTO COURTESY OF BOB GAINES

Bob Gaines is an AMGA Certified Rock Guide who has been teaching rock climbing since 1983. He is the owner/director of Vertical Adventures Climbing School, based at Joshua Tree National Park, California, where he has taught clients ranging from Boy Scouts to Navy Seals. Bob has also worked extensively as a climbing stunt coordinator on over 40 television commercials. He was the chief safety officer for the movie Cliffhanger and doubled for Captain Kirk when Kirk free soloed El Capitan in Star Trek V. Bob is also the co-author of Rock Climbing Tahquitz and Suicide Rocks (The Globe Pequot Press. 2001).

Climbing Anchors

Second Edition

JOHN LONG and BOB GAINES

GUILFORD, CONNECTICUT
HELENA, MONTANA
AN IMPRINT OF THE GLOBE PEQUOT PRESS

To buy books in quantity for corporate use or incentives, call **(800) 962–0973** or e-mail **premiums@GlobePequot.com.**

FALCONGUIDES

Text copyright © 2006 John Long and Bob Gaines
Portions of this book were previously published in *Climbing Anchors* by John Long
(Chockstone Press, Inc., 1993) and *More Climbing Anchors* by John Long and Bob
Gaines (Chockstone Press, Inc., reprinted by Falcon Publishing, Inc., 1996).

ALL RIGHTS RESERVED. No part of this book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, except as, may be expressly permitted in writing from the publisher. Requests for permission should be addressed to The Globe Pequot Press, Attn: Rights and Permission Department, P.O. Box 480, Guilford, CT 06437.

Falcon, FalconGuides, and Chockstone are registered trademarks and How to Climb is a trademark of Morris Book Publishing, LLC.

Photos © Bob Gaines unless noted otherwise Section opener spot photos by photos.com Illustrations © Mike Clelland

Library of Congress Cataloging-in-Publication Data Long, John, 1953-

Climbing anchors / John Long and Bob Gaines. — 2nd ed.

p. cm.

Originally published: Evergreen, Colo.: Chockstone Press, 1993.

ISBN-13: 978-0-7627-2326-3

1. Rock climbing—Equipment and supplies. 2. Rock climbing—Safety measures. I. Gaines, Bob, 1959- II. Title.

GV200.15.L66 2006

796.52'2-dc22

2006009207

Printed in the United States of America Second Edition/Fourth Printing

"Whenever building any anchor, *everything* (be it a 4-foot-thick tree or a shiny new bolt) deserves a second thought."

—From a thread on rockclimbing.com

Warning: Climbing is a dangerous sport. You can be seriously injured or die. Read the following before you use this book.

This is an instruction book about rock climbing, a sport that is inherently dangerous. Do not depend solely on information from this book for your personal safety. Your climbing safety depends on your own judgment based on competent instruction, experience, and a realistic assessment of your climbing ability.

There is no substitution for personal instruction in rock climbing, and climbing instruction is widely available. You should engage an instructor or guide to learn climbing safety techniques. If you misinterpret a concept expressed in this book, you may be killed or seriously injured as a result of the misunderstanding. Therefore, the information provided in this book should be used only to supplement competent personal instruction from a climbing instructor or guide. Even after you are proficient in climbing safely, occasional use of a climbing guide is a safe way to raise your climbing standard and learn advanced techniques.

There are no warranties, either expressed or implied, that this instruction book contains accurate and reliable information. There are no warranties as to fitness for a particular purpose or that this book is merchantable. Your use of this book indicates your assumption of the risk of death or serious injury as a result of climbing's risks and is an acknowledgment of your own sole responsibility for your safety in climbing or in training for climbing.

The authors and The Globe Pequot Press assume no liability for accidents happening to, or injuries sustained by, readers who engage in the activities described in this book.

Acknowledgments

Special thanks to Jim Ewing, research and development manager at Sterling Ropes, who conducted all the drop tests; Mark Chatwin, of Chatwin Guides, and Kolin Powick, quality assurance manager at Black Diamond, who critiqued versions of the text; Tom Cecil, of Seneca Rocks Mountain Guides, who exhaustively field-tested rigging systems; Dr. Richard Goldstone and Craig Connally, who provided studied opinions and hard figures about fall forces and anchor systems; Dr. Lawrence Hamilton and Dr. Callie Rennison, who fashioned the statistical analysis for Jim's testing; editor and project expediter John Burbidge, who kept this monster on course from start to finish; and my co-author, Bob Gaines, director of Vertical Adventures, who—among many other duties—provided most of the photos.

Liz Dunn-Tierney on *Rock Lobster*, Otter Cliff, Acadia National Park, Maine. PHOTO BY STEWART M. GREEN.

Contents

Acknowledgments	ix
Introduction	1
PART I: SIMPLE ANCHORS	
Chapter 1. Natural Anchors	
Trees	
Shrubs and Bushes	
Boulders and Blocks	
Horns	
Threading Tunnels	
Chockstones	
Chapter 2. Passive Chocks	
Tapers	35
Oppositional Nuts	43
Offset Tapers	
Micro-Tapers (Micro-Nuts)	
All the Rest	
Removing Passive Chocks	
Chapter 3. Mechanical Chocks	
Spring-Loaded Camming Devices (SLCDs)	
Sliding Nuts	
Summary	
Chapter 4. Fixed Gear	81
Pitons	81
Bolts	
Cold Shuts	94
Webbing (Sling Material)	
Cordage	
Chapter 5. Fall Forces and the Jesus Nut	
Static and Dynamic Forces	
Dynamic Forces in a Fall	104
The Top Piece	107
Conclusion	
Chapter 6. Judging the Direction of Pull	111
Direction of Pull and Anchor Building	113
Swing	
Direction of Pull on Primary Placements	117

Chapter 7. Knots for Anchoring	119
Ring Bend	119
Double Fisherman's	119
Overhand on a Bight and Figure Eight on a Bight	119
Clove Hitch	121
Bowline-on-a-Bight	
Munter Hitch	124
Knot Strength	126
PART II: ANCHOR SYSTEMS	127
Chapter 8. SRENE Anchors	
·	
Redundancy: The Ongoing Discussion	
Chapter 9. Belay Anchors	
Building Belay Anchors—A Step-by-Step Process	
Static and Automatic Equalization Systems	
Cordelettes	
The Sliding X	
The Equalette	
Composite Anchors: Cordelette, Sliding X and Equalette	
What's Best for Beginners?	
Upward Oppositional Anchors	
Belay Positions	
Anchor Test Results	
Chapter 10: Other Anchors	
Toprope Anchors	
Rappel Anchors	
Bivouac Anchors	
Big Wall Anchors	
Review	
Conclusion	212
Appendix	217
Index	219
About the Authors	225