Содержание

1	Teo	рия булевых функций	1									
	1.1	Определение булевой функции (Б Φ). Количество Б Φ от n переменных. Таблица истинности Б Φ	1									
	1.2	Булевы функции одной и двух переменных (их таблицы, названия)	1									
	1.3	Формулы логики высказываний. Представление Б Φ формулами	1									
	1.4	Эквивалентные формулы. Основные эквивалентности теории булевых функций	2									
	1.5	Тождественно истинные (ложные) и выполнимые Б Φ	4									
	1.6	ДНФ и КНФ, алгоритмы приведения	4									
	1.7	СДНФ и СКНФ, теоремы существования и единственности, алгоритмы приведения	4									
	1.8	Минимизация нормальных форм (карты Карно)	5									
	1.9	Полином Жегалкина, его существование и единственность. Алгоритм построения	6									
	1.10		6									
		Полные системы булевых функций, базисы	7									
		Классы T_0, T_1 (функции, сохраняющие 0 и 1)	7									
	1.13 Класс S самодвойственных функций, определение двойственной Φ											
		Класс монотонных функций	S									
		Класс линейных функций	S									
		Леммы о несамодвойственной, немонотонной, нелинейной функциях	C									
		Теорема Поста о полноте системы булевых функций	Č									
			9									
	1.10	Релейно-контактные схемы: определение, примеры, функция проводимости. Анализ и синтез РКС (умение решать задачи)	11									
		(умение решать задачи)	11									
2	Лог	ика высказываний	11									
	2.1	Парадоксы в математике. Парадоксы Г. Кантора и Б. Рассела	11									
	2.2	Логическое следование в логике высказываний. Проверка логического следования с помощью таблиц										
		истинности и эквивалентных преобразований.	11									
	2.3	Понятия прямой теоремы, а также противоположной, обратной и обратной к противоположной теорем										
	2.4	Понятия необходимых и достаточных условий	13									
	2.5	Формальные системы. Выводы в формальных системах. Свойства выводов	13									
	$\frac{2.6}{2.6}$	Исчисление высказываний (ИВ) Гильберта. Примеры выводов	14									
	$\frac{2.0}{2.7}$	Теорема о дедукции для ИВ	14									
	2.8	Теорема о полноте и непротиворечивости ИВ	15									
	$\frac{2.0}{2.9}$	ИВ Генцена, его полнота	15									
	$\frac{2.3}{2.10}$		$\frac{15}{17}$									
	2.10	Metod pesonodnii dan norikki bilekusiibulini (oca oooelobulinii koppektiloeti)	Ι.									
3	Лог	ика предикатов	17									
	3.1	Понятие предиката и операции, их представления, примеры	17									
	3.2	Сигнатура, интерпретация сигнатуры на множестве, алгебраические системы	17									
	3.3	Язык логики предикатов, термы, формулы логики предикатов	18									
	3.4	Свободные и связанные переменные. Замкнутые формулы	18									
	3.5	Истинность формул на алгебраической системе	18									
	3.6	Изоморфизм систем. Теорема о сохранении значений термов и формул в изоморфных системах. Ав-										
	0.0	томорфизм	19									
	3.7	Элементарная теория алгебраической системы. Элементарная эквивалентность систем. Связь поня-	10									
	0.1	тий изоморфизма и элементарной эквивалентности	19									
	3.8	Выразимость свойств в логике предикатов. Умение записать формулой различные свойства систем и	10									
	J .0	элементов систем	20									
	3.9	Эквивалентность формул логики предикатов	20									
		Тождественно истинные (ложные) и выполнимые формулы	20									
			20									
		Пренексный вид формулы										
		Основные эквивалентности логики предикатов	21									
		Классы формул Σ_n , Π_n , Δ_n . Соотношения между классами	23									
		Нормальная форма Сколема, ее построение (на примерах)	23									
		Проверка существования вывода методом резолюций (алгоритм)	23									
		Логическое следование в логике предикатов	23									
		Исчисление предикатов (ИП) Гильберта. Свойства выводов	23									
		Теория. Модель теории	23									
	3.19	Непротиворечивая теория. Полная теория. Свойства непротиворечивых и полных теорий	23									

3.20	Теорема о существовании модели (без доказательства)	23								
3.21	Теорема о связи выводимости и противоречивости	23								
3.22	Теоремы о корректности и полноте ИП	23								
3.23	Теорема компактности	23								
3.24	Аксиоматизируемые и конечно аксиоматизируемые классы. Конечно аксиоматизируемые теории	24								
3.25	5 Обоснование нестандартного анализа (построение алгебраической системы, элементарно эквивалент-									
	ной полю вещественных чисел, содержащей бесконечно малые элементы)									
3.26	Метод резолюций для логики предикатов (без доказательства корректности)	24								

1 Теория булевых функций

1.1 Определение булевой функции (БФ). Количество БФ от n переменных. Таблица истинности БФ

Определение. Булева функция от n переменных - это отображение $\{0,1\}^n \to \{0,1\}$

 $\it 3ame$ чание. Количество Б Φ от n переменных - $\it 2^{2^n}$

Доказательство. Каждая булева функция определяется своим столбцом значений. Столбец является булевым вектором длины m=2n, где n - число аргументов функции. Число различных векторов длины m (а значит и число булевых функций, зависящих от n переменных) равно $2^m=2^{2^n}$

1.2 Булевы функции одной и двух переменных (их таблицы, названия)

- отрицание (¬), f_4 - тождественная 1

		y	0	\wedge	\rightarrow'	\boldsymbol{x}	\leftarrow'	y	+	\vee	\downarrow	\leftrightarrow	y'	\leftarrow	x'	\rightarrow		1
_	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Булевы функции двух переменных	0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- 1. ∧ конъюнкция
- 2. \leftarrow антиимпликация
- 3.
 ightarrow импликация
- 4. ∨ дизъюнкция
- 5. | штрих Шеффера
- 6. ↓ стрелка Пирса
- 7. + взаимоисключающее или, сложение по модулю 2 (XOR)

1.3 Формулы логики высказываний. Представление БФ формулами

Определение. Формула логики высказываний - слово алфавита логики высказываний, построенное по следующим правилам:

- 1. символ переменной формула
- 2. символы 0 и 1 формулы
- 3. если Φ_1 и Φ_2 формулы, то слова $(\Phi_1\&\Phi_2), (\Phi_1\leftrightarrow\Phi_2), (\Phi_1\to\Phi_2), (\Phi_1|\Phi_2), \dots, \Phi_1'$ тоже формулы

Очевидно, что каждой формуле логики высказываний можно поставить в соответствие булеву функцию, причем если формуле F_1 соответствует функция f_2 , а формуле F_2 функция f_2 и $F_1 \equiv F_2$, то $f_1 \equiv f_2$.

Каждая формула $\Phi(x_1,\ldots,x_n)$ логики высказываний однозначно определяет некоторую булеву функцию $f(x_1,\ldots,x_n)$ Это булева функция, определенная таблицей истинности формулы Φ .

1.4 Эквивалентные формулы. Основные эквивалентности теории булевых функций

Определение. Формулы логики высказываний $\Phi(x_1, x_2, \ldots, x_n)$ и $\Psi(x_1, x_2, \ldots, x_n)$ эквивалетные, если для всех наборов значений $a_1, \ldots, a_n \in \{0, 1\}$ $\Phi(a_1, \ldots, a_n) = 1 \Leftrightarrow \Psi(a_1, \ldots, a_n) = 1$

Теорема 1.1 (Об эквивалентных формулах). 1. Если $\Phi(x_1, \ldots, x_n) \equiv \Psi(x_1, \ldots, x_n)$ и $\theta_i(x_1, \ldots, x_k)$, $i = 1, \ldots, n$, - формулы логики высказываний, то $\Phi(\theta_1, \ldots, \theta_n) \equiv \Psi(\theta_1, \ldots, \theta_n)$

2. Если в формуле Φ заменить подформулу Ψ на эквивалетную формулу Θ , то результат замены эквивалентен Φ .

Доказатель ство. 1. После подстановки в $\Phi(x_1, \dots, x_n)$ формул $\theta_i(x_1, \dots, x_k)$ получим формулу от k переменных:

$$\Phi(\theta_1,\ldots,\theta_n)(x_1,\ldots,x_k) = \Phi(\theta_i(x_1,\ldots,x_k),\ldots,\theta_n(x_1,\ldots,x_k))$$

и аналогично для Ψ . Выберем произвольный набор элементов $a_1, \ldots, a_k \in \{0,1\}$ и подставим:

$$\Phi(\theta_1(a_1,\ldots,a_k),\ldots,\theta_n(a_1,\ldots,a_k)) = \Phi(b_1,\ldots,b_n), b_i = \theta_i(a_1,\ldots,a_k),$$

$$\Psi(\theta_1(a_1,\ldots,a_k),\ldots,\theta_n(a_1,\ldots,a_k),\ldots,\theta_n(a_1,\ldots,a_k)) = \Psi(b_1,\ldots,b_n).$$

Т.к. $\Phi \equiv \Psi, \Phi(b_1, \dots, b_n) = 1 \leftrightarrow \Psi(b_1, \dots, b_n) = 1$, значит и $\Phi(\theta_1, \dots, \theta_n)(a_1, \dots, a_k) = 1 \leftrightarrow \Psi(\theta_1, \dots, \theta_n)(a_1, \dots, a_k)$, т.е. $\Phi(\theta_1, \dots, \theta_n) \equiv \Psi(\theta_1, \dots, \theta_n)$.

2. По условию $\Psi \equiv \Theta$. Обозначим результат замены в формуле Φ подформулы Ψ на Θ через $\Phi[\Psi/\Theta]$.

Индукцию по числу логических связанок в формуле Φ . Пусть k - число связок в подфомруле Ψ .

Заметим, что, если формула Φ содержит менее k связок, то в ней нет подформулы Ψ . А если формула Φ имеет ровно k связок, то единственный случай, когда она содержит подформулу Ψ - это $\Phi = \Psi$ База индукции.

- (a) Формула Φ содержит не более k связок и при этом $\Phi \neq \Psi$. Тогда Φ не содержит подформулы Ψ , поэтому при данной операции не меняется: $\Phi[\Psi/\Theta] = \Phi$, отсюда $\Phi[\Psi/\Theta] \equiv \Phi$
- (b) Формула Φ содержит k связок и $\Phi=\Psi$. Тогда $\Phi[\Psi/\Theta]=\Theta$ результат замены эквивалентен исходной формуле $\Phi=\Psi$

Шаг индукции.

Рассмотрим формулу $\Phi(x_1, \ldots, x_n)$ содержающую m+1 связки, считая, что для формул из не более, чем m связок, утверждение доказано. Тогда Φ имеет вид $\Phi_1 \wedge \Phi_2, \Phi_1 \vee \Phi_2$ и т.д.

Рассмотрим случай конъюнкции (остальные аналогично). Выберем набор элементов $a_1, \ldots, a_n \in \{0, 1\}$ и подставим в формулы:

$$\Phi(a_1, \dots, a_n) = \Phi_1(a_1, \dots, a_n) \wedge \Phi_2(a_1, \dots, a_n),$$

$$\Phi[\Psi/\Theta](a_1, \dots, a_n) = \Phi_1[\Psi/\Theta](a_1, \dots, a_n) \wedge \Phi_2[\Psi/\Theta](a_1, \dots, a_n).$$

По индукционному допущению формулы $\Phi_1 \equiv \Phi_1[\Psi/\Theta]$ аналогично для Φ_2 Поэтому

$$\Phi(a_1,\ldots,a_n) = \Phi_1(a_1,\ldots,a_n) \wedge \Phi_2(a_1,\ldots,a_n),$$

$$\Phi[\Psi/\Theta](a_1,\ldots,a_n) = \Phi_1[\Psi/\Theta](a_1,\ldots,a_n) \wedge \Phi_2[\Psi/\Theta](a_1,\ldots,a_n),$$

T.e. $\Phi \equiv \Phi[\Psi/\Theta]$

Теорема 1.2. Справедливы следующие эквивалетности

1.
$$a \lor b \equiv b \lor a$$
 симметричность

2.
$$a \wedge b \equiv b \wedge a$$

3.
$$a \lor (b \lor c) \equiv (a \lor b) \lor c$$
 ассоциативность

4.
$$a \wedge (b \wedge c) \equiv (a \wedge b) \wedge c$$

5.
$$a \wedge (b \vee c) \equiv a \wedge b \vee a \wedge c$$
 дистрибутивность

6.
$$a \lor b \land c \equiv (a \lor b) \land (a \lor c)$$

7.
$$a \vee a \equiv a \ u \partial e m nome + m + o c m b$$

8.
$$a \wedge a \equiv a$$

9.
$$\overline{(a \lor b)} \equiv \overline{a} \land \overline{b}$$
 законы де Моргана

10.
$$\overline{(a \wedge b)} \equiv \overline{a} \vee \overline{b}$$

- 11. $\overline{\overline{a}} \equiv a$ двойное отрицание
- 12. $a \lor a \land b \equiv a$ поглощение
- 13. $a \wedge (a \vee b) \equiv a$
- 14. $a \vee \overline{a} \wedge b \equiv a \vee b$ слабое поглощение
- 15. $a \wedge (\overline{a} \vee b) \equiv ab$
- 16. $a \lor 0 \equiv a$
- 17. $a \wedge 0 \equiv 0$
- 18. $a \lor 1 \equiv 1$
- 19. $a \wedge 1 \equiv a$
- 20. $a \vee \overline{a} \equiv 1$
- 21. $a\overline{a} \equiv 0$
- 22. $a \to b \equiv \overline{a} \lor b$
- 23. $a \leftrightarrow b \equiv \overline{a} \land \overline{b} \lor a \land b \equiv (a \to b) \land (b \to a)$
- 24. $a+b \equiv \overline{a \leftrightarrow b} \equiv \overline{a} \wedge b \vee a \wedge \overline{b}$
- 25. $a|b \equiv \overline{a \wedge b}$
- 26. $a \downarrow b \equiv \overline{a \lor b}$

Доказательство. Доказательство сводится к построению таблиц истинности для левой и правой частей каждой эквивалентности ►

1.5 Тождественно истинные (ложные) и выполнимые БФ

Определение. Формула $\Phi(x_1, \dots, x_n)$ называется тождественно истинной (ложной), если для любого набора значений $\Phi(x_1, \dots, x_n) = 1(0)$

Определение. Формула $\Phi(x_1,\ldots,x_n)$ называется выполнимой, если существует набор значений, для которого $\Phi(x_1,\ldots,x_n)=1$

1.6 ДНФ и КНФ, алгоритмы приведения

Определение. Литера - это переменная или отрицание переменной

Определение. Конъюнкт (элементарная конъюнкция) - это либо литера, либо конъюнкция литер

Определение. Дизъюнктивная нормальная форма $(ДН\Phi)$ - это либо конъюнкт, либо дизъюнкия конъюнктов

Определение. Дизъюнкт (элементарная дизъюнкция) - это либо литера, либо дизъюнкция литер

Определение. Конъюнктивная нормальная форма $(KH\Phi)$ - это либо дизъюнкт, либо конъюнкция дизъюнктов

Замечание. Алгоритм построения ДНФ(КНФ) по заданной ТИ

- 1. Выбрать в таблице все строки со значением функции f=1 (f=0)
- 2. Для каждой такой строки $(x, y, z) = (a_1, a_2, a_3)$ выписать конъюнкт (дизъюнкт) по принципу: пишем переменную с отрицанием, если ее значение 0(1), иначе пишем переменную без переменную без отрицания.
- 3. берем дизъюнкцию (конъюнкцию) построенных конъюнктов (дизъюнктов)

Замечание. Алгоритм приведения формулы к ДНФ/КНФ методом эквивалентностей

- 1. Выразить все связки в формуле через конъюнкцию, дизъюнкцию и отрицание.
- 2. Внести все отрицания внутрь скобок
- 3. Устранить двойные отрицания
- 4. Применять свойство дистрибутивности, пока это возможно

1.7 СДНФ и СКНФ, теоремы существования и единственности, алгоритмы приведения

Определение. Совершенный конъюнкт от переменных x_1, \ldots, x_n - это конъюнкт вида $x_1^{a_1} \wedge \cdots \wedge x_n^{a_n}$, где $(a_1, \ldots, a_n) \in \{0, 1\}^n$.

Определение. Совершенный дизъюнкт от переменных x_1, \ldots, x_n - это конъюнкт вида $x_1^{a_1} \lor \cdots \lor x_n^{a_n}$, где $(a_1, \ldots, a_n) \in \{0, 1\}^n$.

Замечание.

$$x^a = \begin{cases} \overline{x} & \text{если a} = 0, \\ x & \text{если a} = 1. \end{cases}$$

Определение (СДНФ). Совершенная дизъюнктивная нормальная форма(СДНФ) от переменных x_1, \ldots, x_n - это дизъюнкция совершенных конъюнктов от x_1, \ldots, x_n , в которой нет попарно эквивалентных слагаемых

Определение (СКНФ). Совершенная конъюктивная нормальная форма(СКНФ) от переменных x_1, \ldots, x_n - это конъюнкция совершенных дизъюнктов от x_1, \ldots, x_n , в которой нет попарно эквивалентных слагаемых.

Теорема 1.3 (о существовании и единственности СДНФ). Любая булева функция $f(x_1, ..., x_n) \neq 0$ определяется формулой, находящейся в СЛНФ, причем эта СДНФ единственная с точностью до перестановок слагаемых и множителей в слагаемых

1. Существование. По следствию к теореме о разложении получаем для $f(x_1,\dots,x_n) \neq 0$

$$f = \bigvee_{\substack{(a_1, \dots, a_n) \in \{0,1\}^n \\ f(a_1, \dots, a_n) = 1}} x_1^{a_1} \dots x_n^{a_n}$$

2. Единственность. Пусть, у функции $f(x_1, \dots, x_n) \neq 0$ две СДН Φ , обозначим их Φ и Ψ . Так как они определяют одну и ту же функцию, то $\Phi \equiv \Psi$

Выберем в Φ произвольное слагаемое $x_1^{a_1}\dots x_n^{a_n}$. По лемме о совершенных конъюнктах это слагаемое истинно при $(x_1,\dots,x_n)=(a_1,\dots,a_n)$. Тогда и вся дизъюнкция $\Phi(a_1,\dots,a_n)=1$, а в силу эквивалентности формул и $\Psi(a_1,\dots,a_n)=1$

Но тогда в Ψ есть слагаемое $x_1^{b_1} \dots x_n^{b_n}$, истинное на наборе (a_1, \dots, a_n) . Снова по лемме это возможно только при $(a_1, \dots, a_n) = (b_1, \dots, b_n)$.

Получаем, что все слагаемые СДН Φ Φ есть в Ψ . Рассуждая симметрично, получаем, что и Ψ содержится в Φ , т.е. они равны

Замечание (Лемма о совершенных конъюнктах). 1. Пусть $\Phi(x_1,\dots,x_n)=x_1^{a_1}\dots x_n^{a_n}$ - совершенный конъюнкт. Тогда для любого набора значений $(b_1,\dots,b_n)\in\{0,1\}^n$

$$\Phi(b_1,\ldots,b_n)=1 \leftrightarrow (b_1,\ldots,b_n)=(a_1,\ldots,a_n).$$

2. Два совершенных конъюнкта от перменных x_1, \ldots, x_n эквивалентны тогда и только тогда, когда они равны с точностью до перестановки литер.

Замечание. Рассуждая двойственным образом, можно получить теорему о СКНФ Замечание. Алгоритм приведения формулы к СДНФ(СКНФ)

- 1. Строим ДНФ(KHΦ) формулы.
- 2. Вычеркиваем тождественно ложные (истинные) слагаемые (множители).
- 3. В каждое слагаемое (множитель) добавляем переменны по правилам:

СДНФ:
$$\Phi(x_1, \dots, x_n) \equiv \Phi(y \vee \overline{y}) \equiv \Phi \wedge y \vee \Phi \wedge \overline{y}$$

СКНФ: $\Phi(x_1, \dots, x_n) \equiv \Phi \vee y \wedge \overline{y} \equiv (\Phi \vee y) \wedge (\Phi \vee \overline{y})$

4. Вычеркиваем повторяющиеся слагаемые(множители).

1.8 Минимизация нормальных форм (карты Карно)

Определение. ДНФ Φ булевой функции называется минимальной, если в любой ДНФ этой функции количество литер не меньше, чем в Φ

Определение. Карта Карно функции $f(x_1, \dots, x_n)$ - это двумерная таблица построенная следующим образом.

- 1. Разделим набор переменных x_1, \ldots, x_n На две части: x_1, \ldots, x_k и x_{k+1}, \ldots, x_n
- 2. Строкам таблицы соответсвуют всевозможные наборы нзачений переменных x_1, \ldots, x_k , колонкам x_{k+1}, \ldots, x_n . При этом наборы в двух соседних строках/колонках должны отличаться не более, чем одним значением. Крайние строки/колонки считаются соседними
- 3. В ячейки заносятся значения функции $f(x_1, ..., x_n)$ на соответсвующих наборах.

Замечание. Алгоритм построения минимальной ДНФ с помощью карт Карно

- 1. Строим карту Карно функции f
- 2. В карте находим покрытие всех ячеек со значением 1 прямоугольникам со свойствами:
 - (a) Длины сторон прямоугольника $2^k, k \ge 0$
 - (b) каждый прямоугольник содержит только 1
 - (с) каждая ячейка с 1 покарыта прямоугольником максимальной площади
 - (d) количество прямоугольников минимально
- 3. По кааждому прямоугольнику выписываем конъюнкт. Конъюнкт образуют литеры, значения которых в прямоугольнике не меняются

1.9 Полином Жегалкина, его существование и единственность. Алгоритм построения

Определение. Моном от перменных x_1, \ldots, x_n - это либо 1, либо конъюнкт вида $x_{i_1} \cdots x_{i_k}$, где x_{i_k} - переменная из списка x_1, \ldots, x_n , без повторяющихся множителей

Определение. Полином Жегалкина от переменных x_1, \ldots, x_n - это либо 0, либо сумма мономов от переменных x_1, \ldots, x_n без эквивалентных слагаемых

Теорема 1.4 (о существовании и единственности полинома Жегалкина). Любая булева функция может быть определена полиномом Жегалкина. Полином Жегалкина буленвой функции единственный с точностью до перестановок слагаемых и множителей

Доказательство. • (Существование) Т.к. для любой булевой функции можно определить ДНФ, доказывает, что любую булеву функцию можно выразить через \land , \lor , '. Выразим \land , +, 1 через \land , \lor , '.

$$\overline{x} = x+1$$

$$x\vee y = \overline{\overline{x\vee y}} = \overline{x}\overline{y} = (x+1)(y+1)+1 = xy+x+1+1 = xy+x+y.$$

• (Единственность)

Количество булевых функций от n переменных 2^{2^n}

Найдем количество полиномов Жегалкина от x_1, \ldots, x_n

Сопоставим моному упорядоченный набор чисел $(a_1,..,a_n)a_i \in \{0,1\}$, по принципу: $a_i = 1 \leftrightarrow$ переменная x_i в моному есть. Это соответствие является биекцией. Таким образом, мономов от п переменных столько же, сколько наборов вида $(a_1,...,a_n), a_i \in \{0,1\}$, а их 2^n штук.

Произвольный полином Жегалкина от п переменных можно представить в виде: $p(x_1, \ldots, x_n) = b_1 M_1 + \cdots + b_k M_k, k = 2^n$, где $b_j \in \{0, 1\}$, а M_1, \ldots, M_k - все мономы от x_1, \ldots, x_n .

Сопоставим полиному р набор коэффициентов $(b_1, \ldots, b_k), b_i \in \{0, 1\}.$

Это снова биекция, поэтому полиномов столько же сколько таких наборов, а их $2^k=2^{2^n}$

Получили, что количество полиномов Жегалкина от n переменных равно количеству булевых функций от n переменных.

Допустим теперь, что у какой-то булевой функции f два разных полинома. Тогда для какой-то другой функции g полинома не хватит. Но это противоречит тому, что каждую булеву функцию можно представить полиномом Жегалкина.

1.10 Суперпозиция булевых функций. Замкнутые классы булевых функций

Определение. Суперпозиция булевых функций $f(x_1, ..., x_n)$ и $f_i(x_1, ..., x_k)$, i = 1, ..., n, - это функция $F(x_1, ..., x_k) = f(f_1, ..., f_n)$.

Определение. Подстановка переменной у вместо x_i в булеву функцию $f(x_1, \ldots, x_n)$ — это суперпозиция вида $f(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n)$.

Определение. Замыкание класса K булевых функций (обозначение: [K]) — это наименьший класс, содержащий все функции класса K, всевозможные их суперпозиции и результаты подстановок переменных, суперпозиции полученных функций и т.д.

Определение. Замкнутый класс булевых функций — это класс, равный своему замыканию.

Пример. $M = \{x', x \oplus y\}.$

- 1. $0 \in [M]$, так как $0 = x \oplus x$
- 2. $1 \in [M]$, так как $1 = (x \oplus x)'$
- 3. $x \oplus y \oplus z \in [M]$

1.11 Полные системы булевых функций, базисы

Определение. Система булевых функций является полной(в классе K), если ее замыкание равно классу всех булевых функций(классу K)

Пример (Примеры полных систем). 1. $M = \{\neg x, xy, x \lor y\}$ каждая БФ может быть записана в виде ДНФ

- 2. $M = \{ \neg x, x \lor y \}$ выражаем xy через отрицание и дизъюнкцию по закону де Моргана
- 3. $M = \{ \neg x, xy \}$
- 4. $M = \{ \oplus, *, 1 \}$ полином Жегалкина
- 5. $\{\leftrightarrow,\lor,0\}$ навесить отрицание на функции из предыдущей системы
- 6. $M=\{x|y\},\, \neg x\equiv x|x,xy\equiv \neg (x|y)\equiv (x|y)|(x|y)$ аналогично стрелка Пирса

Определение. Полная (в классе K) система функций называется базисом (класса K), если никакая ее подсистема не будет полной (в классе K).

Пример (Примеры базисов). 1. $M=\{x|y\}, \ \neg x\equiv x|x,xy\equiv \neg (x|y)\equiv (x|y)|(x|y)$ аналогично стрелка Пирса

- 2. $M = \{\&,'\}$, аналогично $\{\lor,'\}$ Мы не могли вычеркнуть отрицание, так как xy и $x \lor y \in T_0 \implies [xy, x \lor y] \subseteq T_0$ и $1 \notin T_0 \implies \neg x \in [xy, x \lor y] \implies \{\lor, \&\}$ не полна
- 3. $M = \{ \oplus, *, 1 \}$ полином Жегалкина

Замечание. Никакой базис не может содержать более 4 функций.

Доказательство. Из доказательства теоремы Поста $g_0(x)$ (не сохраняющая 0 функция $f(x_1, \ldots, x_n)$, в которую подставлили одну и ту же переменную х) либо несамодвойственна, либо немонотонна, \Longrightarrow полной будет система из 4 функций. Этим доказано, что всякая полная система содержит полную подсистему не более чем из четырёх функций. В базисе нет собственных полных подсистем, поэтому в нём не более четырёх функций.

Оценку нельзя уменьшить, так как существует система $\{0,1,xy,x\oplus y\oplus z\}$. Построим таблицу с классами Поста, видим, что система полна и никакая ее собственная подсистема не полна.

1.12 Классы T_0, T_1 (функции, сохраняющие 0 и 1)

Определение. Класс $T_0 = \{f(x_1, \dots, x_n) \mid f(0, \dots, 0) = 0\}$

Определение. Класс $T_1 = \{f(x_1, \dots, x_n) \mid f(1, \dots, 1) = 1\}$

	T_0	T_1	S	M	$\mid L \mid$
0	+	-	-	+	+
1	-	+	-	+	+
X	+	+	-	+	+
$\neg x$	_	_	+	-	+
xy	+	+	-	+	-
$x \vee y$	+	+	-	+	-
$x \oplus y$	+	_	-	-	+
$x \leftrightarrow y$	_	+	-	-	+
$x \to y$	_	+	-	-	-
x y	-	-	-	-	-
$x \downarrow y$	-	-	-	-	-

Замечание. Классы T_0, T_1 являются замкнутыми.

Доказательство. Докажем для T_0 . Достаточно взять булевы функции $g, g_1, \ldots, g_n \in T_0$ и доказать, что их суперпозиция из класса T_0 .

$$g(g_1(0,\ldots,0),\ldots,g_n(0,\ldots,0))=g(0,\ldots,0)=0$$

1.13 Класс S самодвойственных функций, определение двойственной БФ

Определение. Булева функция $g(x_1, \ldots, x_n)$ называется двойственной к БФ $f(x_1, \ldots, x_n)$ (обозначается $g = f^*$), если $g(x_1, \ldots, x_n) = f'(x_1', \ldots, x_n')$.

Из закона двойного отрицания следует, что $(f^*)^* = f$

Определение. Булева функция f называется самодвойственной, если $f = f^*$.

Определение. Класс самодвойственных функций = $\{f \mid f = f^*\}$

Замечание. Класс S является замкнутым.

Доказательство. Возьмем БФ $g, g_1, \ldots g_k \in S$ и докажем, что их суперпозиция будет также из класса S. Если $F(x_1, \ldots, x_n) = g(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n)),$

TO $F^*(x_1, ..., x_n) = \neg F(\neg x_1, ..., \neg x_n) = \neg g(g_1(\neg x_1, ..., \neg x_n), ..., g_k(\neg x_1, ..., \neg x_n)).$

Так как $g_i \in S$, то $g_i(x_1, \dots, x_n) = \neg g_i(\neg x_1, \dots, \neg x_n)$, что эквивалентно $\neg g_i(x_1, \dots, x_n) = g_i(\neg x_1, \dots, \neg x_n)$. Следовательно, $F^*(x_1, \dots, x_n) = \neg g(\neg g_1(x_1, \dots, x_n), \dots, \neg g_k(x_1, \dots, x_n))$.

Так как $g \in S$, то $\neg g(\neg g_1(x_1,\ldots,x_n),\ldots,\neg g_k(x_1,\ldots,x_n)) = (g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n)) \implies f^*(x_1,\ldots,x_n) \models F(x_1,\ldots,x_n)$

1.14 Класс монотонных функций

Определение. Назовем два набора из 0 и 1 $a=(a_1,\ldots a_n),b=(b_1,\ldots b_n)$ **соседними**, если все их координаты (кроме одной) совпадают.

Определение. Пусть k - номер единственной координаты, по которой отличаются соседние наборы a, b. Если $a_k = 0, b_k = 1$, то мы будем говорить, что набор a **меньше** набора b $(a \prec b)$

Определение (Монотонная функция). БФ $f(x_1, \dots x_n)$ называется монотонной, если \forall соседних наборов a, b таких, что $a \prec b \implies f(a) \leq f(b)$

Замечание. Класс М является замкнутым.

Доказательство. $g, g_1, \dots g_k \in M, F(x_1, \dots, x_n) = g(g_1, \dots g_k)$ и рассмотрим два произвольных набора $a \prec b$. Пусть $c_1 = g_1(a), d_1 = g_1(b), \dots \ c_k = g_k(a), \dots d_k = g_k(b)$ $g_i \in M \implies c_i \leq d_i$

Если наборы $c=(c_1,\ldots,c_k)$ и $d=(d_1,\ldots,d_k)$ - соседние, то и $F(c)\leq F(d)$

В противном случае легко показать, что В цепочка

$$c \prec e_1 \prec \cdots \prec e_l \prec d$$

(то есть наши наборы сравнимы по определению Ашаева)

и
$$g(c) \leq g(d) \implies F(c) \leq F(d) \implies F \in M$$

1.15 Класс линейных функций

Определение. Б Φ называется линейной, если ее полином Жегалкина линеен, т.е не содержит конъюнкции т.е его степень не выше 1.

Лемма 1.1. Класс L является замкнутым.

Доказатель ство. При подстановке линейных функций в линейную функцию не может появиться конъюнкции. $f(x_1,\ldots,x_n)=a_0\oplus a_1(f_1(x_1,\ldots,x_n)\cdots\oplus a_mf_m(x_1,\ldots,x_n))=a_0\oplus a_1(b_0^1\oplus b_1^1x_1\cdots\oplus b_n^1x_n)\ldots\cdots\oplus a_m(b_0^m\oplus b_1^mx_1\cdots\oplus b_n^mx_n)=(a_0\oplus a_1b_0^1\cdots\oplus a_mb_0^m)\oplus (a_1b_1^1\oplus\cdots\oplus a_mb_1^m)x_1\oplus\cdots\oplus (a_1b_n^1\oplus\cdots\oplus a_mb_n^m)x_n.$

1.16Леммы о несамодвойственной, немонотонной, нелинейной функциях

Лемма 1.2 (о несамодвойственной функции). Если $\mathcal{D}\Phi$ $f(x_1,\ldots,x_n)$ несамодвойственна, то замыкание класса $[f, \neg x]$ содержит тождественно ложную $\mathcal{B}\Phi$ 0 и тождественно истинную $\mathcal{B}\Phi$ 1.

Доказательство. Так как f несамодвойственна, то существует набор a_1, \ldots, a_n значений аргументов такой, что $f(a_1,\ldots,a_n) \neq \neg f(\neg a_1,\ldots,\neg a_n)$

Так как БФ принимают только значения 0 и 1, то $f(a_1, ..., a_n) = f(\neg a_1, ..., \neg a_n)$

Составим функцию $g(x) = f(x^{a_1}, \dots, x^{a_n})$, где

$$x^a = \begin{cases} x & \text{если } a = 1\\ \neg x & \text{если } a = 0 \end{cases}$$

Очевидно, что $g \in [f, \neg x]$, так как является их суперпозицией.

$$g(0) = f(0^{a_1}, \dots, 0^{a_n}) = f(\neg a_1, \dots, \neg a_n), \ g(1) = f(1^{a_1}, \dots, 1^{a_n}) = f(a_1, \dots, a_n),$$

 $g(0) = g(1)$ - g - константа, g и $\neg g$ принимают значения 0 и 1 чтд.

Лемма 1.3 (О немонотонной функции). *Если* $f(x_1, ..., x_n)$ *немонотонна, то* $x' \in [f, 0, 1]$

Доказатель ство. Из немонотонности f следует существование двух соседних наборов $a = (a_1, \ldots, a_n) \prec (b_1, \ldots, b_n) =$ b такие, что f(a) > f(b). Б.О.О считаем, что они отличаются только в первой координате

$$a_1 = 0$$
$$b_1 = 1$$
$$a_i = b_i$$

$$\forall g(x, a_2, \dots, a_n) \in [f, 0, 1]$$

 $g(0) = f(a) = 1$, $g(1) = f(b) = 0 \implies g \equiv x'$

Лемма 1.4 (О нелинейной функции). $f(x_1, ..., x_n) \notin L \implies xy \in [f, 0, 1, x']$

Доказательство. $f(x_1,\ldots,x_n)\notin L\implies$ полином Жегалкина функции f содержит конъюнкцию двух переменных x_1 и x_2

$$\implies f(x_1, \dots, x_n) = x_1 x_2 h_{12}(x_3, \dots x_n) + x_1 h_1(x_3, \dots x_n) + h_0(x_3, \dots x_n)$$
 $f \notin L \implies h_{12} \neq 0 \implies \exists (a_3, \dots a_n) h_{12}(a_3, \dots a_n) = 1$
Подставим этот набор в ПЖ f :

Подставим этот набор в ПЖ f:

$$g(x_1,x_2)=f(x_1,x_2,a_3\dots a_n)=x_1x_2h_{12}(a_3,\dots a_n)+x_1h_1(a_3,\dots a_n)+h_0(a_3,\dots a_n)$$
 $h_i\in\{0,1\}$ \Longrightarrow $\exists 8$ вариантов того, как выглядит полином Жегалкина

- 1. Система функций $[g, \neg, 0, 1]$ полна и содержит конъюнкцию
- 2. g конъюнкция
- 3. $xy = g(x, y') \lor xy = g(x', y) \implies xy \in$ замыкание

Т.к g выражается через $f(x_1, \dots x_n), 0, 1$, то конъюнкция также лежит в замыкании $[f, \neg, 0, 1]$

1.17Теорема Поста о полноте системы булевых функций

Теорема 1.5 (Теорема Поста). Система $B\Phi$ является полной тогда и только тогда, когда она не лежит целиком ни в одном из классов Поста.

Доказательство.

- \Rightarrow Пусть все функции из 1 класса, б.о.о. они из T_0 . Так как он замкнут, то замыкание этих функций не совпадает $c \mathcal{B} \implies$ набор не полон.
- \Leftarrow Если набор $f_1 \dots f_k$ не содержится полностью ни в одном из классов Поста, то существуют БФ $f_0 \notin T_0, f_1 \notin$ $T_1, f_S \notin S, f_M \notin M, f_L \notin L$

Заменим все переменные этих функций на х и получим функцию одного аргумента

$$g_0(x) = f_0(x, x, \dots, x), g_1(x) = f_1(x, x, \dots, x), g_S(x) = f_S(x, x, \dots, x), g_M(x) = f_M(x, x, \dots, x), g_L(x) = f_L(x, x, \dots, x).$$

Все БФ из замыкания этих функций $G \in [f_1, \dots, f_k]$ (переименовали переменные). Докажем полноту набора [G] через полноту $[\neg x, xy]$:

- 1. $[G] \ni \neg x, 0, 1$ по лемме о нелинейной функции содержит xy
- 2. $[G] \ni \neg x \implies$ по лемме о несамодвойственной функции содержит 0 и 1 \implies по лемме о нелинейной функции содержит xy
- 3. $[G] \ni 0,1 \implies$ по лемме о немонотонной функции содержит $\neg x \implies$ по лемме о нелинейной функции содержит xy
- 4. $[G] \ni \neg x, 0, 1$ по лемме о нелинейной функции содержит xy

Предполные классы

Определение. Предполным классом K называется неполный класс, при добавлении любой функции, которая не принадлежит ему, получается класс полный.

Утверждение. Предполный класс является замкнутым.

Доказательство. Пусть класс A не замкнут. Значит, найдется функция $f \in [A] \setminus A$. Получаем: $[A \cup f] = [A]$. $A \neq \mathcal{B}$, но при добавлении f получаем полную систему (по определению) \implies противоречие. Значит, A— замкнутый класс.

Утверждение (Максимальные замкнутые классы). Классы Поста являются максимальными замкнутыми классами (предполными) и других нет.

Доказательство.

- Докажем максимальность T_0 . Пусть он не максимален, т.е существует замкнутый класс A такой, что $T_0 \subset A \subset \mathcal{B}$, тогда $[T_0] \subseteq A$
 - Пусть $f_0 \in A \setminus T_0$, тогда $g(x) = f(x, ..., x) \notin T_0$. Если $g(1) = 0, g \equiv \neg(x)$, иначе $g \equiv 1$. Так как $T_0 \ni 0, xy$, немонотонные и несамодвойственные функции, $[T_0, f] = \mathcal{B}$, а это противоречит $[T_0, f] \subseteq A$.
- Докажем максимальность T_1 . Пусть он не максимален, т.е существует замкнутый класс A такой, что $T_1 \subset A \subset \mathcal{B}$, тогда $[T_1] \subseteq A$
 - Пусть $f_1 \in A \setminus T_1$, тогда $g(x) = f(x, ..., x) \notin T_1$. Если $g(0) = 1, g \equiv \neg(x)$, иначе $g \equiv 0$. Так как $T_1 \ni 1, xy$, немонотонные и несамодвойственные функции, $[T_1, f] = \mathcal{B}$, а это противоречит $[T_1, f] \subseteq A$.
- K = S. Пусть $f(x_1,\ldots,x_n) \notin S$. $x' \in S$, по лемме о несамодвойственной функции $0,1 \in [f,x'] \subseteq [S,f]$

Выберем в S нелинейную функцию, например, g=xy+yz+xz. По лемме о нелинейной функции $xy\in[g,0,1,x']\subseteq[S,f]\implies\{xy,x'\}\in[S,f]$

$$\mathcal{B} = [xy, x'] \subseteq [S, f] = B$$

- К = М, $f(x_1, ..., x_n) \notin M$. По лемме о немонотонной функции $0, 1 \in M; x' \in [f, 0, 1] \subseteq [M, f]$ $\{xy, x'\} \in [M, f] \implies \mathcal{B} = [xy, x'] \subseteq [M, f] = B$
- K = L, $f(x_1, ..., x_n) \notin L$. По лемме о нелинейной функции $x', 0, 1 \in L$; $xy \in [0, 1, x', f] \subseteq [L, f]$ $\{xy, x'\} \in [L, f] \implies \mathcal{B} = [xy, x'] \subseteq [Lf] = B$

1.18 Релейно-контактные схемы: определение, примеры, функция проводимости. Анализ и синтез РКС (умение решать задачи)

Определение. Реле это некоторое устройство, которое может находиться в одном из двух возможных состояний: включенном и выключенном.

Пример. Примеры реле: различные выключатели, термодатчики, датчики движения и т.п.

Реле используются в построении различных электрических схем. Включение или выключение реле приводит к появлению или исчезновению тока на определённых участках электрической схемы.

Пусть S некоторая электрическая схема, содержащая реле x_1, \ldots, x_n . Со схемой S можно связать функцию проводимости f_S , которая равна 1, если схема проводит ток при заданном состоянии реле (и f_S равна 0 в противном случае). Возникает вопрос: а какие аргументы имеет функция f_S ? Для определения аргументов f_S мы будем рассматривать каждое реле x_i как переменную, принимающую значения из множества $\{0,1\}$ с очевидной интерпретацией: $x_i = 0$, если реле выключено, и $x_i = 1$, если реле включено.

Таким образом функция проводимости $f_S(x_1,\ldots,x_n)$ становится булевой функцией, зависящей от текущего состояния своих реле.

- 1. цепь замкнута $f_S = 1$
- 2. цепь не замкнута $f_S = 0$
- 3. последовательное соединение $f_S(x,y) = xy$
- 4. параллельное соединение $f_S(x,y) = x \vee y$

Задачи, связанные с релейно-контактными схемами можно подразделить на две большие группы:

- 1. дана схема, нужно построить более простую схему с такой же функцией проводимости
- 2. нужно построить схему по описанию её функции проводимости.

2 Логика высказываний

2.1 Парадоксы в математике. Парадоксы Г. Кантора и Б. Рассела

Утверждение (Рассел). Множество М будем называть нормальным, если оно не принадлежит самому себе как элемент. Например, множество кошек нормально, поскольку множество кошек не является кошкой. А вот каталог каталогов по-прежнему останется каталогом, поэтому множество каталогов, не является нормальным. Рассмотрим теперь множество В, составленное из всевозможных нормальных множеств. Формально множество В определяется так:

```
x \in B \Leftrightarrow x \notin x (2)
```

Возникает вопрос: будет ли В принадлежать самому себе как элемент? И тут возникает парадокс: дело в том, что если вместо x из формулы (2) подставить B, то возникнет явное противоречие $B \in B \Leftrightarrow B \notin B$.

Утверждение (Кантор?). Предположим, что множество всех множеств $V = \{x \mid x = x\}$ существует. В этом случае справедливо $\forall x \forall T (x \in T \to x \in V)$, то есть всякое множество Tявляется подмножеством V. Но из этого следует $\forall T \mid T \mid \leqslant \mid V \mid$ — мощность любого множества не превосходит мощности V.

Но в силу аксиомы множества всех подмножеств, для V, как и любого множества, существует множество всех подмножеств $\mathcal{P}(V)$, и по теореме Кантора $|\mathcal{P}(V)|=2^{|V|}>|V|$, что противоречит предыдущему утверждению. Следовательно, V не может существовать, что вступает в противоречие с «наивной» гипотезой о том, что любое синтаксически корректное логическое условие определяет множество, то есть что $\exists y \forall z (z \in y \leftrightarrow A)$ для любой формулы A, не содержащей y свободно.

2.2 Логическое следование в логике высказываний. Проверка логического следования с помощью таблиц истинности и эквивалентных преобразований.

Определение. Интерпретация переменных - это отображение вида $\alpha:\{x,x_1,\ldots,x_n\}\to\{0,1\}$. Задать интерпретацию - приписать j-той переменной значение 0, 1

Если Φ - формула, а α - интерпретация, то Φ^{α} - значение формулы, когда вместо x_i подставили $\alpha(x_i)$ Первый способ определить математическое понятие доказательства - логическое следование.

Определение. Γ - множество формул, Φ - формула логики высказываний. Формула Φ логически следует из Γ ($\Gamma \models \Phi$), если для любой интерпретации α_k верно - если истинны все формулы из Γ при этой интерпретации, то истинна и Φ .

$$\forall \alpha (\forall \psi \in \Gamma \ \psi^{\alpha} = 1) \implies \Phi^{\alpha} = 1$$

Свойства логического следования

- 1. $\Phi \models \Psi, \Psi \models \Theta \implies \Phi \models \Theta$
- 2. Γ, Δ множество формул, Φ формула. Если $\forall \psi \in \Delta$ $\Gamma \models \psi$ $[\Gamma \models \Delta]$ & $\Delta \models \Phi$, то $\Gamma \models \Phi$
- 3. Если $\Gamma \models \Phi, \Gamma \subseteq \Delta, \Longrightarrow \Delta \models \Phi$
- $4. \models \Phi \implies \Phi \equiv 1$
- 5. $\Phi_1, \dots, \Phi_n \models \Phi_1, \& \dots, \& \Phi_n \& \Phi_1, \& \dots, \& \Phi_n \models \Phi_1 \dots \Phi_n$
- 6. $\Gamma, \Phi \models \Psi \Leftrightarrow \Gamma \models \Phi \to \Psi$
- 7. Если $\Gamma=\{\Phi_1,\ldots,\Phi_n\}$ конечное, то $\Gamma\models\Phi\Leftrightarrow\Phi_1,\&\ldots,\&\Phi_n\to\Phi\equiv 1$

Доказательство. 1. Следует из $2 [\Delta = {\Psi}, \Gamma = {\Phi}]$

2. $\Gamma \models \Delta : \forall \alpha$ - интерпретация $\forall \Psi \in \Delta[(\forall \theta \in \Gamma \quad \theta^{\alpha} = 1) \implies \Psi^{\alpha} = 1]$ $\Delta \models \Phi : \forall \alpha$ - интерпретация $[(\forall \Psi \in \Delta \quad \Psi^{\alpha} = 1) \implies \Phi^{\alpha} = 1]$ $(\forall \theta \in \Gamma \quad \theta^{\alpha} = 1) \implies \forall \Psi \in \Delta \quad \Psi^{\alpha} = 1 \implies \Phi^{\alpha} = 1$ $\implies \Gamma \models \Phi$

[тупо пишем условие]

- 3. $\Gamma \models \Phi \implies \Phi : \forall \alpha [(\forall \Psi \in \Gamma \quad \Psi^{\alpha} = 1) \implies \Phi^{\alpha} = 1]$ $\Gamma \subset \Delta : \forall \Psi \in \Delta \quad \Psi^{\alpha} = 1 \implies \forall \Psi \in \Gamma \quad \Psi^{\alpha} = 1 \implies \Phi^{\alpha} = 1$
- $4. \models \Phi \Leftrightarrow \forall \alpha (\forall \Psi \in \varnothing \quad \Psi^{\alpha} = 1) \to \Phi^{\alpha} = 1 \implies \forall \alpha \quad \Phi^{\alpha} = 1 \implies \Phi \equiv 1$
- 5. α инт., тогда $(\forall \Psi \in \{\Phi_1, \dots, \Phi_n\} \Psi^{\alpha} = 1) \Leftrightarrow (\Phi_1, \dots, \Phi_n)^{\alpha} = 1 \implies \Phi_1, \dots, \Phi_n \models \Phi_1, \& \dots, \& \Phi_n$. Обратное аналогично.
- 6. \Rightarrow $\forall \alpha$ инт. $[(\forall \theta \in \Gamma \quad \theta^{\alpha} = 1 \quad \& \quad \Phi^{\alpha} = 1) \implies \Psi^{\alpha} = 1]$ (*)

пусть $\alpha: (\forall \theta \in \Gamma \quad \theta^{\alpha} = 1)$

- (a) $\Phi^{\alpha} = 1$, тогда из (*) $\Psi^{\alpha} = 1(\Phi \to \Psi)^{\alpha} = 1$
- (b) $\Phi^{\alpha} = 0 \implies (\Phi \to \Psi) = 1 \implies$

$$(\Phi \to \Psi)^{\alpha} = 1$$

 $\leftarrow \Gamma \models \Phi \rightarrow \Psi$:

$$\alpha: (\forall \theta \in \Gamma \quad \theta^{\alpha} = 1) \implies (\Phi \to \Psi)^{\alpha} = 1$$

Из истинности всех формул из Γ следует истинность импликации, а если добавить еще и истинность Φ при той же интерпретации, то из этого будет следовать истинность посылки, то есть Ψ .

7. Следует из п.4-п.6

Проверять логическое следование можно при помощи таблиц истинности и эквивалентных преобразований, пользуясь 7 свойством (проверить, является ли импликация тождественно истинной функцией или нет).

2.3 Понятия прямой теоремы, а также противоположной, обратной и обратной к противоположной теорем

Многие математические теоремы имеют структуру, выражаемую формулой $X \to Y$. Утверждение X называется условием теоремы, а утверждение Y — ее заключением. Далее, если некоторая теорема имеет форму $X \to Y$, утверждение $Y \to X$ называется **обратным** для данной теоремы. Это утверждение может быть справедливым, и тогда оно называется теоремой, **обратной** для теоремы $X \to Y$, которая, в свою очередь, называется **прямой** теоремой.

Для теоремы, сформулированной в виде импликации $X \to Y$, кроме обратного утверждения $Y \to X$ можно сформулировать противоположное утверждение. Им называется утверждение вида $\neg X \to \neg Y$. Утверждение, противоположное данной теореме, может быть также теоремой, т. е. быть истинным высказыванием, но может таковым и не быть.

Теорема, обратная противоположной: $\neg X \to \neg Y$ (контрапозиция).

Утверждение.
$$A \to B \models B' \to A'$$
 $A \to B, B \to A \models B' \to A', A' \to B'$

- 1. Из прямого следует противоположное обратному
- 2. Из прямого утверждения в общем случае не следует обратное и противоположное
- 3. Если одновременно истинно и прямое, и обратное, то истинны все четыре

Пример. Если формула - ДН Φ , то это дизъюнкция. Прямое и контрапозиция верны, а противоположное и обратное нет.

2.4 Понятия необходимых и достаточных условий

Если некоторая математическая теорема имеет структуру, выражаемую формулой $X \to Y$, то высказывание Y называется **необходимым** условием для высказывания X (другими словами, если X истинно, то Y с необходимостью должно быть также истинным), а высказывание X называется **достаточным** условием для высказывания Y (другими словами, для того чтобы Y было истинным, достаточно, чтобы истинным было высказывание X).

2.5 Формальные системы. Выводы в формальных системах. Свойства выводов

Определение. Формальная система состоит из четырех элементов:

- 1. алфавит (некоторое множество)
- 2. набор формул (множество слов, отобранных с помощью некоторых правил)
- 3. набор аксиом (множество формул, отобранных по некоторым правилам)
- 4. набор правил вывода вида $\frac{\phi_1,...,\phi_n}{\Psi}$ (из формул $\phi_1,...,\phi_n$ следует формула Ψ)

Определение. Вывод формулы ϕ из множества формул Γ в формальной системе — это конечная последовательность формул $\phi_1, \ldots, \phi_n = \phi$, в которой каждая ϕ_i

- либо аксиома формальной системы
- либо принадлежит множеству Г (является гипотезой)
- либо получена из предыдущих формул по одному из правил вывода.

Определение. Формула ϕ выводится из множества формул Γ (обозначение: $\Gamma \vdash \phi$), если существует вывод ϕ из Γ . **Утверждение** (Свойства выводов).

- 1. Если $\Gamma \vdash \phi$, то существует конечное подмножество $\Gamma_0 \subseteq \Gamma$ такое, что $\Gamma_0 \vdash \phi$.
- 2. Если $\Gamma \vdash \phi$ и $\Gamma \subseteq \Delta$, то $\psi \vdash \Delta$.
- 3. (транзитивность выводимости) Если $\Gamma \vdash \Delta$ (т.е. все формулы из Δ выводятся из Γ) и $\Delta \vdash \phi$, то и $\Gamma \vdash \phi$.

Доказательство.

- 1. $\Gamma \vdash \phi: \exists \phi_1, \dots, \phi_n = \phi$. Так как вывод конечный, то можно найти конечное множество гипотез, оно и будет Γ_0
- 2. Есть вывод $\Gamma \vdash \phi : \phi_1, \dots, \phi_n = \phi$ Гипотезы $\Gamma \subseteq$ гипотезы из $\Delta \implies \Delta \vdash \phi$
- 3. $\Gamma \vdash \Delta, \Delta \vdash \psi$

$$\psi_{i1},\ldots,\psi_{ik}=\psi_i$$
 - вывод ψ_i из $\Gamma\left[\Delta=igcup_i\psi_i
ight]$

$$heta_1,\dots, heta_m=\phi$$
 - вывод $\Delta \vdash \psi$

Построим единую последовательность $\psi_{i1}, \dots, \psi_{ik}, \theta_1, \dots, \theta_m = \phi$ (проходим по всевозможным ψ_i)

2.6 Исчисление высказываний (ИВ) Гильберта. Примеры выводов

Определение. Исчисление высказываний - конкретная формальная система на базе логики высказываний.

- 1. алфавит = символы переменных, отрицание, импликация, скобки
- 2. формулы ИВ формулы языка ЛВ, использующие только отрицание и импликацию
- 3. (схемы аксиом) аксиомы ИВ:

$$A_1 \ A \to (B \to A)$$

$$A_2 (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

$$A_3 (B' \to A') \to ((B' \to A) \to B)$$

4. силлогизм: $\frac{A,A\rightarrow B}{B}$ modus ponens

Пример. $A, A \rightarrow B, \vdash B$

- 1. A
- $2. \ A \rightarrow B$
- 3. B (MP 1, 2)

Пример. $A \vdash B \rightarrow A$

- 1. (A_1) $A \rightarrow (B \rightarrow A)$
- 2. A
- 3. $B \rightarrow A \text{ (MP 1, 2)}$

Замечание. Если $\Gamma = \emptyset$, то пишем $\vdash \phi(\phi)$ доказуема)

2.7 Теорема о дедукции для ИВ

Теорема 2.1. Γ - множество формул, A, B - формулы UB. Тогда Γ , $A \vdash B \Leftrightarrow \Gamma$, $\vdash A \to B$

Доказательство. $\Leftarrow \Gamma \vdash A \to B$, строим $\Gamma, A \vdash B$

 $\Gamma, A \vdash A, A \to B$ и $A, A \to B \vdash B(MP)$, По транзитивности получаем требуемое.

- ⇒ доказывается индукцией по длине вывода В из Г, А.
 - 1. Если этот вывод длины 1, то В аксиома или гипотеза. Если В аксиома, то имеем вывод А \to В (из \varnothing):
 - (а) В (аксиома)
 - (b) $B \to (A \to B)$ (аксиома A1)
 - (c) $A \rightarrow B (1,2, MP)$
 - 2. Если $B \in \Gamma$, то имеем такой же вывод $A \to B$ из Γ :
 - (а) В (гипотеза)

- (b) $\mathrm{B} \to (\mathrm{A} \to \mathrm{B})$ (аксиома $\mathrm{A1})$
- (c) $A \rightarrow B (1,2, MP)$
- 3. Если B=A, то $A\to B=A\to A$. Но $\vdash A\to A$:

(a)
$$(A_2)$$
 $(A \to ((A \to A) \to A)) \to ((A \to (A \to A)) \to (A \to A))$

- (b) (A_1) $A \rightarrow ((A \rightarrow A) \rightarrow A)$
- (c) (MP 1, 2) $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$
- (d) (A_1) $A \to (A \to A)$
- (e) (MP 3, 4) $A \rightarrow A$
- 4. Предположим теперь, что Г, А ⊢ В и утверждение (⇒) верно для всех более коротких выводов, т.е. для всех C, если Γ , $A \vdash C$ и вывод C из Γ , A короче, чем вывод B, то $\Gamma \vdash A \to C$.

Докажем, что $\Gamma \vdash A \rightarrow B$.

Рассмотрим вывод из Г, А, который заканчивается формулой В. При этом В может оказаться аксиомой или гипотезой (тогда все предыдущие формулы для доказательства B не нужны). Но в этом случае $\Gamma \vdash A \to B$ по (1)-(3). Остается случай, когда В получается по MP из формул C, C \to B, причем Γ , A \vdash C и Γ , A \vdash C \to В с более короткими доказательствами. По предположению индукции имеем

(*)
$$\Gamma \vdash A \to C, A \to (C \to B)$$
. С другой стороны, (**) $A \to C, A \to (C \to B) \vdash A \to B$:

- 1. $A \rightarrow C$ (гипотеза)
- 2. $A \rightarrow (C \rightarrow B)$ (гипотеза)
- 3. $(A \to (C \to B)) \to ((A \to C) \to (A \to B))$ (аксиома A2)
- 4. $(A \rightarrow C) \rightarrow (A \rightarrow B) (2,3, MP)$
- 5. A \to B (1,4, MP)

Из (*), (**) по транзитивности получаем $\Gamma \vdash A \rightarrow B$.

2.8Теорема о полноте и непротиворечивости ИВ

2.9ИВ Генцена, его полнота

- 1. Алфавит: $\{x_1, \ldots, x_n, \&, \lor, \to, ', (,), \vdash, "\}$
- 2. Используем слова двух видов:
 - (а) Формулы формулы логики высказываний
 - (b) Секвенции слова вида $\Gamma \vdash \Delta$, где Γ, Δ множества формул

Из всех формул Γ вместе следует хотя бы одна формула из Δ (& $\Gamma \to \vee \Delta$)

3. Аксиомы: секвенции

$$\Gamma, \phi \vdash \Delta, \phi$$

4. Правила вывода:

$$\vdash \& \frac{\Gamma \vdash \phi, \Delta}{\Gamma \vdash \phi \& \psi, \Delta} \frac{\Gamma \vdash \psi, \Delta}{\Delta}$$

$$\vdash \ \lor \ \frac{\Gamma \vdash \phi, \psi, \Delta}{\Gamma \vdash \phi \lor \psi, \Delta}$$

$$\vdash \rightarrow \frac{\Gamma, \phi \vdash \Delta \quad \Gamma \vdash \psi, \Delta}{\Gamma \vdash \phi \rightarrow \psi, \Delta}$$

$$\vdash$$
 ' $\frac{\Gamma, \phi \vdash \Delta}{\Gamma \vdash \phi', \Delta}$

&
$$\vdash \frac{\Gamma, \phi, \psi \vdash \Delta}{\Gamma, \phi \nmid \ell, \psi \vdash \Delta}$$

$$\rightarrow \vdash \frac{\Gamma \vdash \phi, \Delta}{\Gamma, \phi \rightarrow \psi \vdash \Delta}$$

$$' \vdash \frac{\Gamma \vdash \phi, \Delta}{\Gamma, \phi' \vdash \Delta}$$

Определение. Секвенция $\Gamma \vdash \Delta$ доказуема, если существует конечная последовательность секвенций $\Gamma_1 \vdash \Delta_1, \dots, \Gamma_n \vdash \Delta_n \vdash \Gamma \vdash \Delta$, в которой каждая секвенция:

- либо аксиома;
- либо получена из предыдущих по одному из правил вывода.

Замечание (Алгоритм поиска контрпримера к секвенции). 1. Взять исходную секвенцию $\Gamma \vdash \Delta$ и разместить её в корне дерева.

- 2. С помощью правил вывода ИВ Генцена добавлять в дерево новые вершины. Правила вывода нужно применять верх ногами, то есть по имеющейся секвенции выписать секвенции, которые находятся в верхней строке правил вывода ИВ Генцена.
- 3. Процесс построения дерева завершается, когда во всех его листьях строят секвенции без логических операций.
- 4. Если во всех листьях дерева строят аксиомы ИВ Генцена, то исходная секвенция $\Gamma \vdash \Delta$ не имеет контрпримера. Иначе, у секвенции $\Gamma \vdash \Delta$ существует контрпример.

Пример. $x \to y \vdash x' \lor y$

Строим вывод:

$$\rightarrow \vdash \ \tfrac{x \vdash x, y}{x \rightarrow y, x \vdash y}$$

$$\vdash ' \frac{x \rightarrow y, x \vdash y}{x \rightarrow y \vdash x', y}$$

$$\vdash \lor \frac{x \rightarrow y \vdash x', y}{x \rightarrow y \vdash x' \lor x}$$

Определение. $\Gamma = \{\phi_1, \dots, \phi_n\}, \Delta = \{\psi_1, \dots, \psi_m\}$. Секвенция $\Gamma \vdash \Delta$ тождественно истинна, если тождественно истинна формула $(\phi_1, \& \dots, \& \phi_n) \to (\psi_1 \lor \dots \lor \psi_m)$

Теорема 2.2. Секвенция $\Gamma \vdash \Delta$ доказуема $\Leftrightarrow \Gamma \vdash \Delta$ тож дественно истинна

 \Rightarrow (Корректность ИВ Генцена) $\Gamma \vdash \Delta$ доказуема \Leftrightarrow есть вывод $\Gamma_1 \vdash \Delta_1, \dots, \Gamma_n \vdash \Delta_n \vdash \Gamma \vdash \Delta$ Индукция по номеру секвенции: докажем, что все секвенции в выводе тождественно истинны:

Основание: k = 1.

 $\Gamma_1 \vdash \Delta_1$ аксиома, т.е имеет вид $\Gamma, \Psi \vdash \widetilde{\Delta}, \Psi$ - она тожд. истинная $=> \&\Gamma_1 \to \lor \Delta_1 \sim \phi \&\&\Gamma_1 \to (\phi \lor \lor \Delta_1)$ Шаг индукции. Докажем для $\Gamma_k \vdash \Delta_k$, считая, что для всех предыдущих секвенций все доказано

- 1. $\Gamma_k \vdash \Delta_k$ аксиома все аксиомы тожд. истинны (как и раньше)
- 2. Если секвенция получена по правилу вывода из секвенций $\Gamma_i \vdash \Delta_i, \Gamma_j \vdash \Delta_j, i, j < k$

По инд. допущению, они тожд. истинны.

Осталось доказать, что любое правило вывода из тождественно истинных секвенций даст тождественно истинную секвенцию. Это делается перебором правил: [\vdash &] $\frac{\Gamma \vdash \phi, \Delta}{\Gamma \vdash \phi \& \psi, \Delta}$

 $\Gamma \vdash \phi$, Δ тождественно истинны $\langle = \rangle \& \Gamma \rightarrow (\phi \lor \lor \Delta) \sim 1$

 $\Gamma \vdash \psi, \Delta$ тождественно истинны $<=> \&\Gamma \rightarrow (\psi \lor \lor \Delta) \sim 1$

1.
$$\&\Gamma \rightarrow \lor \Delta \sim 1 => \&\Gamma \rightarrow (\psi\&\phi \lor \lor \Delta) \sim 1$$

2.
$$\&\Gamma \rightarrow \lor \Delta_{\rm He} \sim 1$$

&
$$\Gamma \to \phi \sim 1$$
 и & $\Gamma \to \psi \sim 1 => \&\Gamma \to (\psi\&\phi) \sim 1$ и поэтому & $\Gamma \to (\psi\&\phi \lor \lor \Delta) \sim 1$

Остальные правила вывода аналогично.

 \Leftarrow (Полнота ИВ Генцена) $\Gamma \vdash \Delta$ - тождественно истинна.

Заметим, что во всех правилах верхняя секвенция содержит на одну связку меньше, чем нижняя.

Пусть в Δ есть формула со связкой, например, $\Phi \vee \Psi$. По правилу получим:

$$\frac{\Gamma,\phi,\psi\vdash\widetilde{\Delta}}{\Gamma\vdash\phi\lor\psi,\widetilde{\Delta}},\phi\lor\psi,\widetilde{\Delta}=\Delta$$

Действуя аналогично, уберем в формулах из Δ все логические связки, уберем и в Γ

Получим набор секвенций $\Gamma \vdash \Delta$ в которых Γ и Δ состоят только из переменных.

- 1. Пусть есть переменная $x \in \Gamma \cap \Delta =>$ это аксиома
- 2. нет $x \in \Gamma \cap \Delta = \emptyset$, пусть $\Gamma = \{y_1, \dots, y_k\}, \Delta = \{z_1, \dots, z_n\}$ положим $y_1 = \dots = y_k = 1, z_1, = \dots = z_n = 0$, при этой интерпретации & $\Gamma \to \vee \Delta^{\alpha} = 0$

Перебирая правила, докажем, что при любой интепретации α , если одна из секвенций $\Gamma_1 \vdash \Delta_1 \ \Gamma_2 \vdash \Delta_2$ ложна, то и результат тоже ложь

$$[\vdash \&] \frac{\Gamma \vdash \phi, \Delta}{\Gamma \vdash \phi \& \psi, \Delta} \frac{\Gamma \vdash \psi, \Delta}{\Gamma}$$
 α - интерпретация $(\&\Gamma \to (\phi \lor \lor \Delta))^{\alpha} = 0 \Leftrightarrow (\&\Gamma)^{\alpha} = 1$ $(\phi \lor \lor \Delta)^{\alpha} = 0 \phi^{\alpha} = 0$ и $(\&\Delta)^{\alpha} = 0$, тогда $(\&\Gamma \to (\phi\&\psi \lor \lor \Delta))^{\alpha} = 0[\&\Gamma = 1, \phi\&\psi = 0, \bigvee \Delta = 0]$

Спускаясь вниз к исходной секвенции, получаем что она ложна => противоречие.

2.10 Метод резолюций для логики высказываний (без обоснования корректности)

3 Логика предикатов

3.1 Понятие предиката и операции, их представления, примеры

Определение. n-местный предикат на множестве A - это отображение вида $P:A^n \to \{0,1\}$

Определение. n-местная операция на множестве A - это отображение вида $f:A^n o A$

Предикат можно задать как множество тех аргументов, на которых он является истинным

Пример.
$$P = \{1,3\} : P = 1 \Leftrightarrow x = 1 \lor x = 3$$

Пример.
$$Q = \{(1,2), (3,4), (5,6)\}$$

Способы задания:

- 1. описательный
- 2. множество (отношения)
- 3. таблица (истинности)
- 4. графы для предиката P(x,y) ребро (x,y) обозначает P(x,y)=1 для операции f(x) дуга (x,y) обозначает y=f(x)

3.2 Сигнатура, интерпретация сигнатуры на множестве, алгебраические системы

Определение. Сигнатура - набор предикатных, функциональных и константных символов с указанием местностей

Пример.
$$\sigma = \{P^{(1)}, Q^{(2)}, f^{(1)}, q^{(2)}, c\}$$

Определение. Две сигнатуры считаем *равными*, если в них одинаковое кол-во символов каждого сорта и местности соответствующих символов равны

Определение. Интерпретация сигнатуры σ на множестве A - это отображение, которое

- 1. каждому n-местному предикатному символу $P^{(n)} \in \sigma$ сопоставляет n-местный предикат на A
- 2. каждому n-местному функциональному символу $f^{(n)} \in \sigma$ сопоставляет n-местную операцию на A
- 3. каждому константному символу сопоставляет элемент множества А

Определение. Алгебраическая система - набор, состоящий из множества A, сигнатуры σ и интерпретации σ на A. Множество A называют основным множеством системы ($\mathfrak{a} = < A, \sigma >$)

3.3 Язык логики предикатов, термы, формулы логики предикатов

Зафиксируем сигнатуру σ . Алфавит логики предикатов сигнатуры σ — это множество $\sigma_{A\Pi\Pi} = \sigma \cup \{x_1, x_2, \dots, \&, \lor, \to, \leftrightarrow, \neg, \lor, \exists, (,), =, ,\}$

Определение. Терм - слово алфавита логики предикатов, построенное по правилам:

- 1. символ переменной терм
- 2. константный символ терм
- 3. если $t_1, \ldots t_n$ термы, $f^{(n)} \in \sigma$, то и $f(t_1, \ldots, t_n)$ терм

Определение. Атомарная формула сигнатуры σ - это слово одного из двух видов:

- 1. $t_1 = t_2$, где t_1, t_2 термы
- 2. предикат $P(t_1, \ldots, t_n), P^{(n)} \in \sigma, t_1, \ldots t_n$ термы

Определение. Формула ЛП сигнатуры σ - слово, построенное по правилам:

- 1. атомарная формула формула
- 2. если ϕ_1 и ϕ_2 формулы, то слова $(\phi_1 \& \phi_2)$, $(\phi_1 \lor \phi_2)$, $(\phi_1 \leftrightarrow \phi_2)$, $(\phi_1 \to \phi_2)$, $\neg \phi_1$ тоже формулы
- 3. если ϕ формула, то слова ($\forall x \phi$) и ($\exists x \phi$) тоже формулы

3.4 Свободные и связанные переменные. Замкнутые формулы

Определение. Вхождение переменной х в формулу ϕ **связанное**, если х попадает в область действия квантора $\exists x/\forall x$, в противном случае вхождение х **свободное**

Определение. Переменная х **свободна** в формуле ϕ , если есть хотя бы одно свободное вхождение х в ϕ , в противном случае она **связанная**

Определение. Формула замкнутая, если она не содержит свободных переменных.

3.5 Истинность формул на алгебраической системе

Определение. Множество истинности формулы ϕ в алгебраической системе \mathfrak{a} - это $A_{\phi} = \{(a_1, \dots, a_n) | a_i \in A, \mathfrak{a} \models \phi(a_1, \dots, a_n)\}$

Определение. Множество $B\subseteq A^n$ выразимо в алгебраической системе $\mathfrak{a},$ если \exists формула ϕ такая , что $A_\phi=B$ ИЛИ ПО ШЕВЛЯКОВУ

Предикат $Q(x1,...,x_n)$ называется выразимым на AC $\mathfrak{A} = < A, \sigma >$ сигнатуры σ , если существует формула $\phi(x1,...,x_n)$ сигнатуры σ со свободными переменными $x1,...,x_n$ такая, что $\mathfrak{A} \models \phi(a_1,...,a_n) \Leftrightarrow Q(a_1,...,a_n)$.

Определение. Функция $f:A^n\to A$ выразима, если выразимо множество $\Gamma_f=\{(a_1,\ldots,a_n,b)|a_i,b\in A,b=f(a_1,\ldots,a_n)\}$

Определение. Предикат $P:A^n \to \{0,1\}$ выразим, если выразимо его множество истинности. !!!

Каждый терм $t(x_1, ..., x_n)$ определяет в системе \mathfrak{a} функцию $t_{\mathfrak{a}}: A^n \to A$ следующим образом: в терме все функциональные и константные символы заменяются на их интерпретации в системе A, после чего вычисляется полученная суперпозиция от входных аргументов.

Пусть также $\phi(x_1, \dots, x_n)$ — формула со свободными переменными x_1, \dots, x_n . Определим понятие истинности формулы ϕ на наборе элементов $a_1, \dots a_n \in \mathfrak{a}$ в алгебраической системе \mathfrak{a} (обозначение: $\mathfrak{a} \models \phi(a_1, \dots a_n)$) следующим образом.

Определение. 1. Пусть ϕ имеет вид $t_1 = t_2$. Тогда $A \models \phi(a_1, \dots a_n) \Leftrightarrow t_{1A}(a_1, \dots a_n) = t_{2A}(a_1, \dots a_n)$ (здесь t_{iA} — функция, определяемая термом t_i в системе A).

- 2. Пусть ϕ имеет вид $P(t_1,\ldots,t_k)$. Тогда $A\models\phi(a_1,\ldots a_n)\Leftrightarrow P_A(t_{1A}(a_1,\ldots a_n),\ldots,t_{kA}(a_1,\ldots a_n))=1$, где P_A интерпретация предикатного символа P в системе A.
- 3. Пусть ϕ имеет вид $(\phi_1 \& \phi_2), (\phi_1 \lor \phi_2), (\phi_1 \to \phi_2), (\phi_1 \leftrightarrow \phi_2), \neg \phi_1$. Тогда истинность формулы ϕ определяется по значениям $\phi_1(a_1, \dots a_n)$ и $\phi_2(a_1, \dots a_n)$ по таблицам истинности логических связок.
- 4. Пусть $\phi(x_1, \dots, x_n)$ имеет вид $(\forall x \phi(x, x_1, \dots x_n))$. Тогда $A \models \phi(a_1, \dots a_n) \Leftrightarrow$ для всех элементов $b \in A$ выполнено $A \models \phi(b, a_1, \dots a_n)$.
- 5. Пусть $\phi(x_1, \ldots, x_n)$ имеет вид $(\exists x \phi(x, x_1, \ldots x_n))$. Тогда $A \models \phi(a_1, \ldots a_n) \Leftrightarrow$ для некоторого элемента $b \in A$ выполнено $A \models \phi(b, a_1, \ldots a_n)$.

3.6 Изоморфизм систем. Теорема о сохранении значений термов и формул в изоморфных системах. Автоморфизм

Определение. АС $\mathfrak{a}=< A, \sigma>, \mathfrak{b}=< B, \sigma>$ сигнатуры σ изоморфны, если существует отображение $F:A\to B$ со свойствами: 1. F - биекция между основными множествами A и B; 2. $F(c_A)=c_B$, где c_A, c_B интерпретации константного символа $\mathfrak{c}\in\sigma$ в AC \mathfrak{a} и \mathfrak{b} соответственно (биекция F должна переводить константы одной AC в константы другой AC); 3. $F(f_A(x_1,\ldots,x_n))=f_B(F(x_1),\ldots F(x_n)),$ где f_A, f_B интерпретации функционального символа $f\in\sigma$ в AC \mathfrak{a} и \mathfrak{b} соответственно (говорят, что биекция F сохраняет значение функции \mathfrak{f}); 4. $P_A(x_1,\ldots,x_n)=1\Leftrightarrow P_B(F(x_1),\ldots,F(x_n))=1,$ где P_A, P_B интерпретации предикатного символа $P\in\sigma$ в AC \mathfrak{a} и \mathfrak{b} соответственно (то есть биекция F отображает отображает область истинности предиката P_A на область истинности предиката P_B).

Определение. Алгебраические системы A и B изоморфны (обозначение: A \cong B), если существует изоморфизм A на B.

Утверждение. Отношение изоморфизма есть отношение эквивалентности.

Определение. Автоморфизм - изоморфизм алгебраической системы самой на себя.

Теорема 3.1 (Теорема о сохранении значений термов и формул в изоморфных системах). $\alpha(x)$ - изоморфизм, $\mathfrak{a} = < A, \sigma >$, на $\mathfrak{b} = < B, \sigma >$

 $Tor \partial a$:

- 1. Для любого терма $t(x_1, ..., x_n)$ сигнатуры σ $\forall a_1, ..., a_n \in A : \alpha(t_{\mathfrak{a}}(a_1, ..., a_n)) = t_{\mathfrak{b}}(\alpha(a_1), ..., \alpha(a_n))$
- 2. Для любой формулы $\phi(x_1,...,x_n)$ сигнатуры σ $\forall a_1,...,a_n \in A: \mathfrak{a} \models \phi(a_1,...,a_n) \Leftrightarrow \mathfrak{b} \models \phi(\alpha(a_1),...,\alpha(a_n))$

Доказательство. Индукция по построению термов. Основание: const/переменная

- 1. $t(x_1,\ldots,x_n)=x_i \implies \alpha(t_A(a_1,\ldots,a_n))=\alpha(a_i)=t_B(\alpha(a_1),\ldots,\alpha(a_n))$
- 2. $t(x_1, ..., x_n) = c \implies \alpha(t_A(a_1, ..., a_n)) = [t_A(a_1, ..., a_n) = c_A] = c_B = t_B(\alpha(a_1), ..., \alpha(a_n))$

Шаг индукции

Пусть утверждение теоремы доказано для термов $t_1(x_1,\ldots,x_n),\ldots,t_k(x_1,\ldots,x_n)$

3.7 Элементарная теория алгебраической системы. Элементарная эквивалентность систем. Связь понятий изоморфизма и элементарной эквивалентности

Определение. Пусть $\mathfrak A$ AC сигнатуры σ . Множество всех замкнутых формул сигнатуры σ , истинных на A называется теорией AC $\mathfrak A$ и обозначается $\mathrm{Th}(\mathfrak A)$. Более формально, $Th(\mathfrak a)=\{\phi|\mathfrak a\models\phi\}$

Определение. AC $\mathfrak{a}=< A, \sigma>, \mathfrak{b}=< B, \sigma>$ элементарно эквивалентны, если $Th(\mathfrak{a})=Th(\mathfrak{b})$. Обозначается $\mathfrak{a}\equiv\mathfrak{b}$

Теорема 3.2. Если две алгебраические системы изоморфны, то они элементарно эквивалентны

 $A \cong B => A \equiv B$. $\mathfrak{a}, \mathfrak{b}$ изоморфны, берем произвольную замкнутую формулу, по теореме о сохранении изоморфизмом значений термов и формул

$$(\mathfrak{a} \models \phi \Leftrightarrow \mathfrak{b} \models \phi) \Leftrightarrow \mathfrak{a} \equiv \mathfrak{b}$$

Замечание. Обратное не верно в общем случае.

$$\sigma = \{P^{(2)}\}, \mathfrak{A} = <\mathbb{Q}, \sigma>, \mathfrak{B} = <\mathbb{R}, \sigma>P_A(x,y)=P_B(x,y)=\{x < y\}$$

Их элементарные теории совпадают, однако они не изоморфны $(|\mathbb{Q}| \neq |\mathbb{R}|)$

Однако для конечных множеств выполняется следующее:

Теорема 3.3. Конечные AC изоморфны \Leftrightarrow элементарно эквивалентны.

 $A \cong B <= A \equiv B$. Построим формулу, которая кодирует операции, предикаты и константы на $\mathfrak{A}: \phi_{\mathfrak{A}}$ $\sigma = P \cup f \cup c, |a| = n, x_1, \ldots, x_n$ — пронумерованные элементы A $\phi_A = \exists x_1, \ldots, \exists x_n (\neg (x_1 = x_2) \& \neg (x_1 = x_3) \ldots \& \neg (x_n = x_{n-1})) \&$ [равенство / неравенство элементов A] $P_1(x_i), \ldots P_1(x_j) \&$ [множество истинности всех предикатов] $(f(x_l) = x_r) \ldots \&$ [значения для операций]

 $(c = x_v) \dots \& [$ значения для констант]

 $\forall x[(x=x_1)\lor\cdots\lor(x=x_n)])\ [\forall x$ зависит от кванторов существования]

Так как $\mathfrak{A}\models\phi_A$, то из элементарной эквивалентности следует что и $\mathfrak{B}\models\phi_A$

Это означает, что B состоит из того же кол-ва элементов, функции, предикаты, константы устроены точно так же, как и на A, поэтому они изоморфны.

Замечание. Это док-во показывает, почему для бесконечных АС теорема не верна. Дело в том, чтобы описать бесконечное множество необходимо бесконечное количество переменных, а формула - конечное выражение.

Чтобы определить, что AC элементарно не эквивалентны, необходимо сформулировать свойство, которое верно для одной AC, и ложно в другой, и записать свойство в виде замкнутой формулы сигнатуры.

3.8 Выразимость свойств в логике предикатов. Умение записать формулой различные свойства систем и элементов систем

3.9 Эквивалентность формул логики предикатов

Определение. Формулы $\phi(x_1, ..., x_n)$ и $\psi(x_1, ..., x_n)$ сигнатуры σ эквивалентны в алгебраической системе $\mathfrak{a} = < A, \sigma > (\phi \sim_{\mathfrak{a}} \psi)$, если

$$\forall a_1, \dots, a_n \in A \quad \mathfrak{a} \models \psi(a_1, \dots, a_n)$$

Определение. Формулы $\phi(x_1,\ldots,x_n)$ и $\psi(x_1,\ldots,x_n)$ сигнатуры σ эквивалентны $(\phi\sim\psi),$ если

$$\forall \mathfrak{a} = \langle A, \sigma \rangle (\phi \sim_{\mathfrak{a}} \psi)$$

3.10 Тождественно истинные (ложные) и выполнимые формулы

Определение. Формула $\phi(x_1, ..., x_n)$ сигнатуры σ тождественно истинная (ложна) в алгебраической системе $A = < A, \sigma >$, если для всех наборов элементов $a_1 ... a_n \in A$ выполнено $A \models \phi(a_1 ... a_n)(A \not\models \phi(a_1 ... a_n))$.

Определение. Формула $\phi(x_1, \ldots, x_n)$ выполнима в алгебраической системе $A = < A, \sigma >$, если для хотя бы одного набора элементов $a_1 \ldots a_n \in A$ выполнено $A \models \phi(a_1 \ldots a_n)$.

Определение. Формула ϕ сигнатуры σ тождественно истинная (ложна), если ϕ тождественно истинна (ложна) во всех алгебраических системах сигнатуры σ .

Определение. Формула ϕ сигнатуры σ выполнима, если ϕ выполнима хотя бы в одной алгебраической системе сигнатуры σ .

3.11 Пренексный вид формулы

Определение. Формула ϕ находится в пренексном виде, если она

- либо не содержит кванторов (бескванторная)
- ullet либо имеет вид $Q_1x_1\dots Q_nx_n\psi$, где Q_i кванторы, а формула ψ бескванторная.

Теорема 3.4 (о приведении формулы логики предикатов в пренексный вид). Любая формула логики предикатов может быть преобразована в эквивалентную формулу в пренексном виде.

 $Доказатель \, cm 60$. На основании предложения о эквивалентностях логики высказываний выразим все связки через $\&, \lor, \neg$. Получим эквивалентную формулу Ψ .

Индукция по построению формулы Ψ .

Основание - ψ - бескванторная, то есть уже в ПН Φ .

Предположение индукции: допустим, теорема доказана для формул с $\leq k$ логическими знаками и кванторами. Шаг индукции: докажем теорему для формул с k+1 логическими знаками и кванторами. Рассмотрим последний логический знак или квантор, входящий в формулу:

- 1. $A = \neg A_1$,
- 2. $A = A_1 \vee A_2$,
- 3. $A = A_1 \& A_2$,

- 4. $A = A_1 \rightarrow A_2$,
- 5. $A = \exists x A_1(x),$
- 6. $A = \forall x A_1(x)$,

причем формулы A_1,A_2 содержат $\leq k$ логических знака и квантора и для них теорема доказана. Значит, для них существуют эквивалентные формулы, находящиеся в пренексной нормальной форме. Обозначим их через B_1,B_2 : $A_1 \sim B_1$ и $A_2 \sim B_2$. Можно считать, что связанные переменные, входящие в формулу B_1 , не совпадают со связанными переменными, входящими в формулу B_2 (иначе их можно переименовать).

Пусть B_1, B_2 имеют вид:

$$\begin{split} B_1 &= Q_1 y_1 Q_2 y_2 \dots Q_n y_n C_1(y_1,y_2,\dots,y_n,u_1,u2,\dots,u_{l_1}), \\ B_2 &= R_1 z_1 R_2 z_2 \dots R_m z_m C_2(z_1,z_2,\dots,z_m,v_1,v_2,\dots,v_{l_2}), \\ \text{где } C_1(y_1,y_2,\dots,y_n,u_1,u_2,\dots,u_{l_1}), C_2(z_1,z_2,\dots,z_m,v_1,v_2,\dots,v_{l_2}) \end{split}$$

- формулы, не содержащие кванторов. Чтобы не загромождать запись, будем писать просто C_1, C_2 , не указывая переменные.

В каждом из 6 случаев построим формулу, эквивалентную А и находящуюся в пренексной нормальной форме, используя эквивалентности логики предикатов. Последняя формула в цепочке эквивалентностей находится в пренексной нормальной форме.

1.
$$A = \neg A_1 \sim \neg B_1 \sim Q_1' y 1 Q_2' y_2 \dots Q_n' y_n \neg C_1$$
, где

$$Q_i' = \begin{cases} \exists, \text{если} Q_i = \forall, \\ \forall, \text{если} Q_i = \exists \end{cases}$$

- 2. $A = A_1 \lor A_2 \sim B_1 \lor B_2 = Q_1 y_1 Q_2 y_2, \dots, Q_n y_n C_1 \lor R_1 z_1 R_2 z_2 \dots R_m z_m C_2$ $\sim Q_1 y_1 Q_2 y_2, \dots, Q_n y_n R_1 z_1 R_2 z_2 \dots R_m z_m (C_1 \lor C_2)$
- 3. $A = A_1 \& A_2 \sim B_1 \& B_2 = Q_1 y_1 Q_2 y_2, \dots, Q_n y_n C_1 \& R_1 z_1 R_2 z_2 \dots R_m z_m C_2$ $\sim Q_1 y_1 Q_2 y_2, \dots, Q_n y_n R_1 z_1 R_2 z_2 \dots R_m z_m (C_1 \& C_2)$
- 4. $A = A_1 \to A_2 \sim B_1 \to B_2 = Q_1 y_1 Q_2 y_2, \dots, Q_n y_n C_1 \to R_1 z_1 R_2 z_2 \dots R_m z_m C_2$ $\sim Q_1 y_1 Q_2 y_2, \dots, Q_n y_n R_1 z_1 R_2 z_2 \dots R_m z_m (C_1 \to C_2)$
- 5. $A = \exists x A_1(x) \sim \exists x B_1(x) \sim \exists x Q_1 y_1 Q_2 y_2, \dots, Q_n y_n C_1$
- 6. $A = \forall x A_1(x) \sim \forall x B_1(x) \sim \forall x Q_1 y_1 Q_2 y_2, \dots, Q_n y_n C_1$

Алгоритм приведения ф. ЛП в $\Pi H \Phi$:

- 1. Выразить все связки через &, ∨,′
- 2. Переименовать все связанные переменные так, чтобы они отличались друг от друга и от связанных переменных
- 3. Действуя от внутренних подформул к внешним, выносим кванторы влево.

(нельзя переименовывать свободную формулу)

3.12 Основные эквивалентности логики предикатов

Утверждение (Об эквивалентностях ЛВ). Пусть $\phi(x_1, \ldots, x_n), \psi(x_1, \ldots, x_n)$ от булевых переменных, ϕ_1, \ldots, ϕ_n - формулы ЛП

Тогда если $\phi \sim \psi$ В ЛВ, то результат подстановки эквивалентен в ЛП

Доказательство. $\mathfrak a$ - произвольная алг. система сигнатуры $\sigma, a_1, \dots, a_n \in A$, тогда $b_i = \phi_i(a_1, \dots, a_k) \in \{0, 1\}$ $\phi \sim \psi$ в ЛВ $\Leftrightarrow \forall b_1, \dots, b_n \in \{0, 1\} \phi(b_1, \dots, b_n) = \psi(b_1, \dots, b_n)$

Теорема 3.5 (Основные эквивалентности $\Pi\Pi$). След. пары формул эквивалентны [свободные переменные остаются свободными]:

1. (Перестановка одноименных кванторов)

$$\forall y \forall x P(x) \sim \forall x \forall y P(x) \qquad \exists y \exists x P(x) \sim \exists x \exists y P(x)$$

2. (Переименование связанных переменных) нельзя брать свободные переменные

$$\forall x \psi(x) \sim \forall y \psi(y) \qquad \exists x \psi(x) \sim \exists y \psi(y)$$

3. (Отрицание и кванторы)

$$\neg(\forall x\psi(x)) \sim \exists x \neg \psi(x) \qquad \neg(\exists x\psi(x)) \sim \forall x \neg \psi(x)$$

4.

$$(\forall x \phi(x)) \& (\forall x \psi(x)) \sim \forall x \phi(x) \& \psi(x) \qquad (\exists x \phi(x)) \lor (\exists x \psi(x)) \sim \exists x \phi(x) \lor \psi(x)$$

5.

$$(\forall x \phi(x)) \lor (\forall y \psi(y)) \sim \forall x \forall y (\phi(x) \lor \psi(y)) \qquad (\exists x \phi(x)) \& (\exists y \psi(y)) \sim \exists x \exists y (\phi(x) \& \psi(y))$$

6.

$$(\forall x \phi(x)) \& / \lor (\exists y \psi(y)) \sim \forall x \exists y (\phi(x) \& / \lor \psi(y)) \sim \exists y \forall x (\phi(x) \& / \lor \psi(y))$$

7. переменная x не входит свободно в ψ

$$(\forall x \phi(x)) \& / \lor \psi \sim \forall x (\phi(x) \& / \lor \psi) \qquad (\exists x \phi(x)) \& / \lor \psi \sim \exists x (\phi(x) \& / \lor \psi)$$

Доказательство. Для доказательства эквивалентности необходимо показать, что на любой модели, сигнатура которой содержит сигнатуру формул, при любых значениях свободных переменных обе формулы либо истинны, либо ложны одновременно.

- 1. Очевидно
- 2. Очевидно
- 3. Пусть $\neg \forall x A(x)$ истинна при заданной фиксации свободных переменных, тогда $\forall x A(x)$ ложь. То есть формула A(x) ложна при некотором значении х. Тогда при этом значении х формула $\neg A(x)$ истинна. Значит, истинна и формула $\exists x \neg A(x)$.

Пусть теперь истинна формула $\exists x \neg A(x)$ при заданной фиксации свободных переменных. Тогда формула $\neg A(x)$ истинна при некотором значении х. Значит, формула A(x) ложна при этом значении х. По смыслу квантора всеобщности, ложна формула $\forall x A(x)$. Следовательно, формула $\neg \forall x A(x)$ истинна.

4. Пусть M - модель, сигнатура которой содержит предикаты A(x) и B(x). Если предикаты содержат другие свободные переменные, кроме переменной x, то фиксируем произвольные значения для них.

Пусть $\exists x A(x) \lor \exists x B(x)$ - ложна при заданных значениях свободных переменных. Тогда ложна как формула $\exists x A(x)$, так и формула $\exists x B(x)$. По смыслу квантора существования, A(x) и B(x) ложны при любом значении х. Значит, при любом х ложна формула $A(x) \lor B(x)$. По смыслу квантора существования, формула $\exists x (A(x) \lor B(x))$ также ложна.

Пусть $\exists x(A(x) \lor B(x))$ ложна при заданных значениях свободных переменных. Тогда $A(x) \lor B(x)$ ложна при любом значении х. Значит, A(x) и B(x) ложны при любом значении х. Отсюда следует, что ложны формулы $\exists x A(x)$ и $\exists x B(x)$ и ложна их дизъюнкция $\exists x A(x) \lor \exists x B(x)$

3.13 Классы формул $\Sigma_n, \Pi_n, \Delta_n$. Соотношения между классами

Вид кванторного префикса в ПНФ - показатель сложности формулы

Определение. Класс Σ_n (n > 0) состоит из всех формул в пренексном виде, у которых кванторный префикс начинается с квантора существования и содержит (n-1) перемену кванторов.

Определение. Класс Π_n (n > 0) состоит из всех формул в пренексном виде, у которых кванторный префикс начинается с квантора всеобщности и содержит (n-1) перемену кванторов.

Определение. Класс Δ_n (n > 0) состоит из всех формул, которые можно привести как к виду Π_n , так и к виду Σ_n .

При n=0 классы $\Sigma_0=\Pi_0=\Delta_0$ — все бескванторные формулы.

Теорема 3.6 (соотношения между классами формул). $i, j > 0, \phi$ ормулы из Π_i и Σ_i можно преобразовать в Δ_{i+1} , а формулы из Δ_i можно преобразовать в формулы из Π_{i+1} и Σ_{i+1}

Доказательство. Поскольку каждая формула первого порядка имеет ПНФ, каждой формуле присваивается по крайней мере одна классификация. Поскольку избыточные кванторы могут быть добавлены к любой формуле, как только формуле присваивается классификация Σ_n или Π_n ему будут присвоены классификации Σ_r и Π_r для каждого r>n. Таким образом, единственной релевантной классификацией, присвоенной формуле, является классификация с наименьшим числом n; все остальные классификации могут быть определены на ее основе.

Из Δ_n Π_n и Σ_n выводятся по определению класса дельта.

3.14 Нормальная форма Сколема, ее построение (на примерах)

3.15 Проверка существования вывода методом резолюций (алгоритм)

3.16 Логическое следование в логике предикатов

Определение. Пусть Γ — множество формул логики предикатов сигнатуры σ , $\phi(x_1,\ldots,x_n)$ — формула сигнатуры σ . Тогда формула ϕ логически следует из множества $\Gamma(\Gamma \models \phi)$, если для любой алгебраической системы $\mathfrak{a} = \langle A, \sigma \rangle$ и любых элементов $a_1,\ldots,a_n \in A$, если на этих элементах в системе \mathfrak{a} истинны все формулы из Γ , то истинна и $\phi(a_1,\ldots,a_n)$.

3.17 Исчисление предикатов (ИП) Гильберта. Свойства выводов

3.18 Теория. Модель теории

Определение. Теория сигнатуры σ - это произвольное множество замкнутых формул сигнатуры σ .

Определение. Модель теории T — это алгебраическая система A, в которой истинны одновременно все формулы теории T.

3.19 Непротиворечивая теория. Полная теория. Свойства непротиворечивых и полных теорий

Определение. Теория T противоречивая, если существует формула ϕ такая, что одновременно $T \models \phi$ и $T \models \neg \phi$. В противном случае теория T непротиворечивая.

3.20 Теорема о существовании модели (без доказательства)

Теорема 3.7 (Теорема о существовании модели). Каждая непротиворечивая теория имеет модель.

3.21 Теорема о связи выводимости и противоречивости

3.22 Теоремы о корректности и полноте ИП

3.23 Теорема компактности

Теорема 3.8 (Теорема компактности). *Теория имеет модель* \Leftrightarrow *каждая ее конечная подтеория имеет модель*.

- 3.24 Аксиоматизируемые и конечно аксиоматизируемые классы. Конечно аксиоматизируемые теории
- 3.25 Обоснование нестандартного анализа (построение алгебраической системы, элементарно эквивалентной полю вещественных чисел, содержащей бесконечно малые элементы)
- 3.26 Метод резолюций для логики предикатов (без доказательства корректности)