4/16/23, 3:21 PM Liner Regression

```
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import numpy as np
         from scipy import stats
         import seaborn as sns
         import statsmodels.api as sm
         from sklearn import linear_model
         #read in the data for iris
In [2]:
         iris = sns.load dataset('iris')
         iris.head()
Out[2]:
            sepal_length sepal_width petal_length petal_width species
         0
                     5.1
                                 3.5
                                             1.4
                                                         0.2
                                                               setosa
         1
                     4.9
                                 3.0
                                              1.4
                                                         0.2
                                                               setosa
         2
                     4.7
                                 3.2
                                             1.3
                                                         0.2
                                                               setosa
         3
                                 3.1
                                              1.5
                                                         0.2
                     4.6
                                                               setosa
         4
                     5.0
                                 3.6
                                             1.4
                                                         0.2
                                                              setosa
In [5]: x = iris['petal_length']
         y = iris['petal_width']
         plt.scatter(x,y,marker = 'x')
         plt.xlabel('Petal Length')
         plt.ylabel('Petal Width')
         plt.show()
            2.5
            2.0
         Petal Width
           1.5
           1.0
            0.5
            0.0
                                    Petal Length
In [6]:
        #Linear Regression
         model = sm.OLS(y,x)
         result = model.fit()
         print(result.summary())
```

4/16/23, 3:21 PM Liner Regression

OLS Regression Results

```
______
                      R-squared (uncentered):
Dep. Variable:
              petal_width
                                              0.9
67
                   OLS
                      Adj. R-squared (uncentered):
Model:
                                              0.9
67
Method:
             Least Squares F-statistic:
                                              441
7.
      Wed, 03 Aug 2022 Prob (F-statistic):
                                           1.22e-1
Date:
12
Time:
                20:54:28
                     Log-Likelihood:
                                             -8.71
79
No. Observations:
                   150 AIC:
                                              19.
44
Df Residuals:
                   149
                      BIC:
                                              22.
45
Df Model:
                    1
Covariance Type:
          nonrobust
______
         coef std err t P>|t| [0.025 0.975]
 -----
petal length 0.3365 0.005 66.463 0.000 0.327
______
Omnibus:
                 19.720 Durbin-Watson:
                                         0.857
                 0.000 Jarque-Bera (JB):
Prob(Omnibus):
                                       23.498
Skew:
                 0.957
                      Prob(JB):
                                       7.90e-06
                 3.311 Cond. No.
Kurtosis:
                                         1.00
______
```

Notes:

- $\[1\]$ R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.

```
In [9]: # Linear Regression with intercept i.e with constant term
# we -need to add a conatant column
x1 = iris['petal_length']
y1 = iris['petal_width']
x1 = sm.add_constant(x1)#added a constant column
x1.head()
```

Out[9]: const petal_length 0 1.0 1.4 1 1.0 1.4 2 1.0 1.3 3 1.0 1.5 4 1.0 1.4

```
In [11]: #fittinf regression model
model1 = sm.OLS(y1,x1)
result1 = model1.fit()
print(result1.summary())
```

4/16/23, 3:21 PM Liner Regression

OLS Regression Results

______ Dep. Variable: petal_width R-squared: 0.927 Model: OLS Adj. R-squared: 0.927 Least Squares F-statistic: Method: 1882. Wed, 03 Aug 2022 Prob (F-statistic): 4.68e-86 Date: Time: 22:16:59 Log-Likelihood: 24.796 No. Observations: AIC: -45.59 150 Df Residuals: 148 BIC: -39.57 Df Model: 1 Covariance Type: nonrobust ______ coef std err t P>|t| [0.025 0.040 -9.131 0.000 0.010 43.387 0.000 -0.3631 0.000 0.040 -0.442 -0.285 petal_length 0.4158 0.435 0.397 _____ Omnibus: 5.765 Durbin-Watson: 1.455 Prob(Omnibus): 0.056 Jarque-Bera (JB): 5.555 Skew: 0.359 Prob(JB): 0.0622 Kurtosis: 3.611 Cond. No. 10.3 ______

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [12]: #conditions for linear regression
#loading iris data set
iris = sns.load_dataset('iris')
iris.head()

Out[12]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

In [13]: sns.pairplot(iris[['sepal_length','sepal_width','petal_length','petal_width']].dropna

Out[13]: <seaborn.axisgrid.PairGrid at 0x1af4e0f4fa0>

In [14]: #multi linear regression
 x2= iris[['sepal_length','sepal_width','petal_length']]
 y2= iris[['petal_width']]

#Adding constant column to my predictor variable

x2 = sm.add_constant(x2)
 x2.head()

Out[14]:		const	sepal_length	sepal_width	petal_length
	0	1.0	5.1	3.5	1.4
	1	1.0	4.9	3.0	1.4
	2	1.0	4.7	3.2	1.3
	3	1.0	4.6	3.1	1.5
	4	1.0	5.0	3.6	1.4

```
In [15]: #regression model fitting
model3 = sm.OLS(y2,x2)
result3 = model3.fit()

print(result3.summary())
```

OLS Regression Results

Dep. Variable:	petal_width	R-squared:	0.938			
Model:	OLS	Adj. R-squared:	0.937			
Method:	Least Squares	F-statistic:	734.4			
Date:	Wed, 03 Aug 2022	<pre>Prob (F-statistic):</pre>	7.83e-88			
Time:	23:09:40	Log-Likelihood:	36.751			
No. Observations:	150	AIC:	-65.50			
Df Residuals:	146	BIC:	-53.46			
Df Model:	3					

Covariance Type: nonrobust

==========		=========	=======	========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const sepal_length sepal_width petal_length	-0.2403 -0.2073 0.2228 0.5241	0.178 0.048 0.049 0.024	-1.347 -4.363 4.553 21.399	0.180 0.000 0.000 0.000	-0.593 -0.301 0.126 0.476	0.112 -0.113 0.320 0.572
Omnibus: Prob(Omnibus): Skew: Kurtosis:	=======	5.609 0.061 0.223 3.944	0.061 Jarque-Bera (JB): 0.223 Prob(JB):		======	1.573 6.811 0.0332 90.1

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.

```
In [16]: #for linear regression to work the residuals are normally distributed to check this we residuals = result3.resid sm.qqplot(residuals) plt.show()#since graph is a straignt line so residuals are normally distributed
```



```
In [18]: #evaluation of milti colinearity
    corelation = x2.corr()
    corelation
```

Out[18]:

	const	sepal_length	sepal_width	petal_length
const	NaN	NaN	NaN	NaN
sepal_length	NaN	1.000000	-0.11757	0.871754
sepal_width	NaN	-0.117570	1.00000	-0.428440
petal_length	NaN	0.871754	-0.42844	1.000000

In []: