Solution to Introduction to the Theory of Computation

Lwins_Lights

Contents

1	Regular Languages	2
2	Context-Free Languages	3
3	The Church–Turing Thesis	4
4	Decidability	5
5	Reducibility	7
6	Advanced Topics in Computability Theory	9
7	Time Complexity	11

1 Regular Languages

2 Context-Free Languages

3 The Church–Turing Thesis

4 Decidability

- 4.10 Refer to the textbook.
- 4.11 By the pumping lemma, L(M) is an infinite language $\iff L(M)$ includes a string of at least length p. Since $R = \Sigma^p \Sigma^*$ is a regular language, it is easy to design a PDA P recognizing $L(M) \cap R$. Then use E_{PDA} 's decider to decide whether $L(M) \cap R = \emptyset$.
- 4.12 Refer to the textbook.
- $4.13 \ L(R) \subseteq L(S) \iff L(R) \cup L(S) = L(S)$, which can be decided by EQ_{DFA} 's decider.
- 4.14 Refer to the textbook.
- *4.15 By the pumping lemma, $\mathbf{1}^k \in L(G) \implies \mathbf{1}^{k+p!} \in L(G)$ for every $k \geq p$. Therefore $\mathbf{1}^* \subseteq L(G) \iff \{\mathbf{1}^k \mid k \leq p+p!\} \subseteq L(G)$, which can be easily checked by a TM in finite time.
- 4.16 Since $A = \{\langle R \rangle \mid R \text{ is a regular expression, } R \cap \Sigma^* 111\Sigma^* \neq \emptyset \}$, we only need an E_{DFA} 's decider.
- 4.17 Suppose we have two DFAs D_1 and D_2 . Let D be a DFA recognizing $L(D_1) \oplus L(D_2)$, where \oplus means symmetric difference. By the pumping lemma, $L(D) \cap (\Sigma \cup \epsilon)^p = \emptyset \implies L(D) = \emptyset$, thus p can be the required length.
- *4.18 \Leftarrow : It is enough to design a TM, which recognizes C by checking whether $\langle x, y \rangle \in D$ for all possible y one by one.
 - \Rightarrow : Suppose TM M recognizes C. Let $D = \{\langle x, y \rangle \mid x \in C \text{ and } y \text{ is the computation history of } M \text{ on input } x\}$, which is obviously decidable.
- *4.19 Let C be a recognizable but undecidable language, e.g., A_{TM} . Construct D provided by Problem 4.18. Letting homomorphism f satisfy $f(\langle x,y\rangle)=x$ for every x,y we obtain f(D)=C.
- 4.20 Let M be a TM which runs both \overline{A} 's recognizer and \overline{B} 's recognizer on its own input. M accepts when \overline{B} 's recognizer accepts and rejects when \overline{A} 's recognizer accepts. Clearly C = L(M) separates A and B
- 4.21 M is a DFA that accepts $w^{\mathcal{R}}$ whenever it accepts $w \iff L(M) = L(M)^{\mathcal{R}}$, which can be decided by EQ_{DFA} 's decider.
- 4.22 In order to determine whether L(R) is prefix-free, it suffices to check whether the DFA recognizing L(R) has the property that from a reachable accept state we could arrive an accept state again by several transitions.
- *4.23 Refer to the textbook.
- 4.24 A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ has an useless state $q \in Q$ if and only if PDA $P' = (Q, \Sigma, \Gamma, \delta, q_0, \{q\})$ recognizes \varnothing . Therefore we can use E_{PDA} 's decider to solve it.
- *4.25 Refer to the textbook.
- *4.26 M is a DFA that accepts some palindrome \iff CFL $\{w \mid w = w^{\mathcal{R}}\} \cap L(M)$ is not empty, which can be decided by E_{PDA} 's decider.
- *4.27 Refer to the solution to Problem 4.26.
- 4.28 x is a substring of some $y \in L(G) \iff L(G) \cap \Sigma^* x \Sigma^* \neq \emptyset$, which can be decided by E_{PDA} 's decider.
- 4.29 By the pumping lemma, L(G) is an infinite language \iff L(G) includes a string of at least length p. So we can first use $INFINITE_{PDA}$ from Problem 4.11 to check whether $|L(G)| = \infty$, and then check whether $x \in L(G)$ for all x of less-than-p length, one by one.
- 4.30 Let E be A's enumerator which generates $\langle M_1 \rangle, \langle M_2 \rangle, \ldots$ in order. Construct $D = \{ \langle n \rangle \mid \langle n \rangle \notin L(M_n) \}$.

- 4.31 First, recursively determine whether $V \stackrel{*}{\Rightarrow} w$ with some $w \in \Sigma^*$, for all variables V. Then, recursively determine whether $V \stackrel{*}{\Rightarrow} xAy$ with some $x,y \in \Sigma^*$, for all variables V.
- 4.32 Construct DPDA $P'_{(q,x)}$ by modifying P, such that $L(P'_{(q,x)}) = \emptyset$ if and only if (q,x) is a looping situation for P. Then we only need E_{PDA} .

5 Reducibility

- 5.9 Reduce from A_{TM} . To determine whether $\mathsf{TM}\ M$ accepts w, construct $\mathsf{TM}\ N$ which always accepts $\mathsf{01}$ but accepts $\mathsf{10}$ if and only if M accepts w.
- 5.10 Refer to the textbook.
- 5.11 Refer to the textbook.
- 5.12 Reduce from E_{TM} . To determine whether TM M accepts nothing, construct TM N which simulates M on N's own input w but never writes a blank symbol over a nonblank symbol unless when M accepts.
- 5.13 Reduce from E_{TM} . To determine whether TM M accepts nothing, construct TM N which simulates M on N's own input w and obviously has no useless state except the one q_{accept} .
- 5.14 Reduce from A_{TM} . To determine whether $\mathsf{TM}\ M$ accepts w, construct $\mathsf{TM}\ N$ which simulates M on N's own input w but never attempts to move its head left when its head is on the left-most tape cell unless when M accepts.
- 5.15 Let M' be M after modifying all its transitions $\delta(q_i, a) = (q_{\text{accept}}, b, X)$ to $\delta(q_i, a) = (q_{\text{reject}}, b, X)$, and then modifying all $\delta(q_i, a) = (q_j, b, L)$ to $\delta(q_i, a) = (q_{\text{accept}}, b, R)$. The problem is now reduced to checking whether M', as a TM with stay put instead of left described in Problem 3.13, accepts w. It is easy since L(M') is regular by the solution to Problem 3.13.
- 5.16 Suppose for the sake of contradiction that BB is computable. Then obviously there exists a TM M having k states (let k be sufficiently large), which writes BB(n) + 1 1s on the tape, when given input $\langle n \rangle$. Further, using M we can construct a series of TMs M_n having exactly k + n/2 states for large n, which writes BB(n) + 1 1s on the tape when started with a blank tape. However, then M_{2k} , as a 2k-state TM, would write BB(2k) + 1 1s. Absurd.
- 5.17 Obviously, in this case a PCP instance P always has a match unless all dominos in P have longer top strings, or they all have longer bottom strings.
- 5.18 Reduce from *PCP*, since any string with finite alphabet can be encoded to a binary one.
- 5.19 Trivial.
- 5.20 We can encode any language to the one over the unary alphabet.
- 5.21 The hint in the textbook is sufficient.
- $5.22 \Leftarrow: Trivial.$
 - \Rightarrow : Let $f(x) = \langle M, x \rangle$, where TM M is A's recognizer.
- 5.23 \Leftarrow : Trivial, since 0^*1^* is surely decidable.
 - \Rightarrow : Suppose there is an A's decider, then f defined as follows is computable.

$$f(x) = \begin{cases} 01, & x \in A \\ 10, & x \notin A \end{cases}$$

- 5.24 It immediately follows from $A_{\mathsf{TM}}, \overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} J$.
- 5.25 $\overline{E_{\mathsf{TM}}} \leq_{\mathsf{m}} A_{\mathsf{TM}}$ by Problem 5.22 and it is well known that $A_{\mathsf{TM}} \leq_{\mathsf{m}} E_{\mathsf{TM}}$. By the way, it is not difficult to construct an undecidable language B such that $B =_{\mathsf{m}} \overline{B}$.
- 5.26 The idea is the same as how we deal with A_{LBA} and E_{LBA} .
- 5.27 Prove that $A_{\mathsf{TM}} \leq_{\mathrm{m}} E_{\mathsf{2DIM-DFA}} \leq_{\mathrm{m}} EQ_{\mathsf{2DIM-DFA}}$, in which the former reduction can be done by computation history method.

- *5.28 Refer to the textbook.
- 5.29 The case P is not nontrivial is trivial. As for the second condition, let $P = \{\langle M \rangle \mid \mathsf{TM} \ M \text{ has } 100 \text{ states} \}$.
- 5.30 Trivial.
- 5.31 Let M be a TM which on input $\langle x \rangle$ $(x \in \mathbb{Z}^+)$ calculates $x, f(x), f(f(x)), \ldots$ until it finds some $f^{(n)}(x) = 1$, and then accepts. Let N be a TM uses H to calculate whether $\langle M, x \rangle \in A_{\mathsf{TM}}$ for $x = 1, 2, \ldots$ in order, until it finds some $\langle M, x \rangle \notin A_{\mathsf{TM}}$, and then accepts. We have the positive answer to the 3x + 1 problem if and only if $\langle N, 0 \rangle \notin A_{\mathsf{TM}}$.
- 5.32 a. As hinted, reduce from *PCP*.
 - b. Reduce from $OVERLAP_{\mathsf{CFG}}$ by constructing a grammar whose rules are G's and H's rules and $S \to S_G \$ | $S_H \$, where S_G and S_H are G's and H's start variables.
- 5.33 Refer to the proof of undecidability of ALL_{CFG} . Let $w = \#C_1 \#C_3 \#C_5 \#\cdots \#C_6^{\mathcal{R}} \#C_4^{\mathcal{R}} \#C_2^{\mathcal{R}} \#$.
- 5.34 Reduce from A_{TM} . To determine whether $\mathsf{TM}\ N$ accepts w, construct $\mathsf{TM}\ M$ which simulates N on M's own input w but never modifies the portion of the tape that contains the input w unless when N accepts.
- 5.35 a. Just enumerate w.
 - b. Reduce from ALL_{CFG} . In order to determine wether $L(G) = \Sigma^*$, construct a grammar whose rules are G's rules and $S \to S_G \mid T$; $T \to aT \mid \epsilon \ (a \in \Sigma)$, where S_G are G's start variable.
- *5.36 See https://cstheory.stackexchange.com/q/39407/46760 for two different solutions.

6 Advanced Topics in Computability Theory

- 6.6 Let $M = P_{\langle N \rangle}$ and N print $q(\langle N \rangle) = \langle M \rangle$.
- 6.7 A TM that always loops.
- *6.8 Suppose for the sake of contradiction that f is a reduction from EQ_{TM} to $\overline{EQ_{\mathsf{TM}}}$. It is easy to generalize the fixed-point version of the recursion theorem to find $f(\langle M, N \rangle) = \langle M', N' \rangle$ such that M, N simulate M', N' respectively. Then $\langle M, N \rangle \in EQ_{\mathsf{TM}} \iff \langle M', N' \rangle \in \overline{EQ_{\mathsf{TM}}} \iff \langle M, N \rangle \in \overline{EQ_{\mathsf{TM}}}$. Absurd.
- 6.9 Refer to the textbook.
- 6.10 Refer to the textbook.
- *6.11 ($\mathbb{R}, =, <$).
- 6.12 Refer to the textbook.
- 6.13 Since \mathbb{Z}_m is finite, any sentence in the language of \mathcal{F}_m can be decided by brute-force checking.
- 6.14 Let $J = 0A \cup 1B$.
- 6.15 Let $B = A_{\mathsf{TM}^A} = \{ \langle M^A, w \rangle \mid M^A \text{ accepts } w \}$. Then apply any classical method used in proving undecidablity of A_{TM} .
- *6.16 (Kleene-Post) For convenience let any language L be a subset of \mathbb{N} instead of Σ^* . Denote $\{0, 1, \ldots, m\}$ by [m]. Define

$$\mathcal{L}_m(A) = \{ L \subseteq \mathbb{N} \mid L \cap [m] = A \} \quad (A \subseteq [m])$$

Let $M_0, M_1, M_2, ...$ be all possible oracle TMs. We will give two series of families of languages $A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots$ and $B_0 \supseteq B_1 \supseteq B_2 \supseteq \cdots$ such that

$$\forall A \in \mathcal{A}_n, B \in \mathcal{B}_n, \ M_n^A$$
 is not B's decider and M_n^B is not A's decider.

Then taking arbitrary $A \in \mathcal{A} = \bigcap_{n \in \mathbb{N}} \mathcal{A}_n$ and $B \in \mathcal{B} = \bigcap_{n \in \mathbb{N}} \mathcal{B}_n$ we have $A \nleq_{\mathbb{T}} B$ and $B \nleq_{\mathbb{T}} A$. We build them by induction. Given $\mathcal{A}_{n-1} = \mathcal{L}_m(X)$ and $\mathcal{B}_{n-1} = \mathcal{L}_m(Y)$, we first find $\mathcal{A}'_n \subseteq \mathcal{A}_{n-1}$ and $\mathcal{B}'_n \subseteq \mathcal{B}_{n-1}$ such that $\forall A \in \mathcal{A}'_n, B \in \mathcal{B}'_n, M_n^A$ is not B's decider.

- If there is no $A \in \mathcal{A}_{n-1}$ such that M_n^A is a decider, let $\mathcal{A}'_n = \mathcal{A}_{n-1}$ and $\mathcal{B}'_n = \mathcal{B}_{n-1}$.
- Suppose M_n^A is a decider with some $A \in \mathcal{A}_{n-1}$, then there exists an m' > m such that

$$\forall A' \in \mathcal{L}_{m'}(A \cap [m']), \ m+1 \in L(M_n^A) \iff m+1 \in L(M_n^{A'}).$$

Then, let $\mathcal{A}'_n = \mathcal{L}_{m'}(A \cap [m'])$, $\mathcal{B}'_n = \mathcal{L}_{m'}(Y)$ or $\mathcal{L}_{m'}(Y \cup \{m+1\})$, depending on whether $m+1 \in L(M_n^A)$.

The same method can be also used to find $\mathcal{A}_n \subseteq \mathcal{A}'_n$ and $\mathcal{B}_n \subseteq \mathcal{B}'_n$ such that $\forall A \in \mathcal{A}_n, B \in \mathcal{B}_n, M_n^B$ is not A's decider.

*6.17 Let

$$A = \{ \langle M, w \rangle \mid \mathsf{TM}\ M \text{ on input } w \text{ halts with 0 on its tape} \}$$

$$B = \{ \langle M, w \rangle \mid \mathsf{TM}\ M \text{ on input } w \text{ halts with 1 on its tape} \}$$

If there is a C's decider N, we can construct TM M which on input w first run N on $\langle M, w \rangle$ to know that M would not halt with $x \in \{0, 1\}$ on M's tape, and then violates it.

- 6.18 Suppose $L(M) \neq L(N)$, we can enumerate x to find one such that $\langle M, x \rangle \in A_{\mathsf{TM}} \oplus \langle N, x \rangle \in A_{\mathsf{TM}}$ holds, where \oplus means exclusive or.
- 6.19 $|\{L(M^A) \mid M^A \text{ is an oracle TM}\}| \leq |\{M^A \mid M^A \text{ is an oracle TM}\}| \leq \aleph_0 < 2^{\aleph_0} = |\{L \mid L \text{ is a language}\}|$.

- 6.20 Let M be PCP's recognizer. Then check whether $\langle M, \langle P \rangle \rangle \in A_{\mathsf{TM}}$ to know if instance P has a match.
- 6.21 Since $K(x) \leq |x| + c$, we can check all possible minimal description $\langle M, w \rangle$ to see if M on input w halts with x on its tape by simulating M, where "possible" means that $|\langle M, w \rangle| < |x| + c$ and $\langle M, w \rangle \in A_{\mathsf{TM}}$.
- 6.22 Trivial.
- 6.23 Reduce from Problem 6.24.
- 6.24 Reduce from Problem 6.25.
- 6.25 If not, there is an enumerator E which would print infinite many incompressible strings one by one: s_1, s_2, \ldots By using E we can construct TM M, which prints an incompressible string s_i , such that $|s_i| > |\langle M, 0 \rangle|$, on its tape. Then we have $K(s_i) \le |\langle M, 0 \rangle| < |s_i|$. Absurd.
- *6.26 Suppose for the sake of contradiction that $K(xy) \leq K(x) + K(y) + c$ always holds. Define

$$f_n = \sum_{|x|=n} 2^{-K(x)}.$$

Then $K(xy) \leq K(x) + K(y) + c \implies f_{n+m} \geq 2^{-c} f_n f_m \implies f_{kn} \geq (2^{-c} f_n)^k$. On the other hand, Corollary 6.30 implies $f_n \leq n+1$. Therefore,

$$f_n \le 2^c \sqrt[k]{f_{kn}} \le 2^c \sqrt[k]{kn+1}$$
.

Letting $k \to +\infty$ we obtain that $f_n \leq 2^c$ for all n. However, there is a TM M which on input $\langle p,q \rangle$ $(p,q \in \mathbb{N} \text{ and } q < 2^{2^p})$ halts with r(p,q), a 2^p -bits binary representation of q, on its tape. So $K(r(p,q)) \leq 2\log_2 p + \log_2 q + d$ with some constant d. Then, if $n = 2^p$ for some large p,

$$f_n = \sum_{|x|=n} 2^{-K(x)} \ge \sum_{q < 2^n} 2^{-K(r(p,q))} \ge 2^{-2\log_2 p - d} \sum_{q < 2^n} \frac{1}{q} \ge \frac{n}{2^d (\log_2 n)^2},$$

which apparently contradicts with $f_n \leq 2^c$.

- 6.27 Show that $\overline{HALT_{\mathsf{TM}}} \leq_{\mathsf{m}} S, \overline{S}$.
- 6.28 a. $x = 0 \iff \forall y, x + y = y$
 - b. $x = 1 \iff \forall y, \ y = 0 \land x + y = 1$
 - c. $x = y \iff \forall z, z = 0 \land x + z = y$
 - d. $x < y \iff \exists z, \ \neg(z = 0) \land x + z = y$

7 Time Complexity

7.13 $a^b = (a^{\lfloor b/2 \rfloor})^2 \cdot a^{b \mod 2}$, where $a, b \in \mathbb{N}$.

7.14 $q^t = (q^{\lfloor t/2 \rfloor})^2 \cdot q^{t \mod 2}$, where $q \in S_k$ and $t \in \mathbb{N}$.

7.15 The hint in the textbook is sufficient.

7.16 Refer to the textbook.

7.17 Use dynamic programming. Denote $dp[i][j] = \mathbf{1}\{\langle \{x_1, \dots, x_i\}, j \rangle \in SUBSET\text{-}SUM\}$, where $\alpha \implies \mathbf{1}\{\alpha\} = 1$ and $\neg \alpha \implies \mathbf{1}\{\alpha\} = 0$.

7.18 First $A \in P = NP$. Then since there exist $x \in A$ and $y \notin A$, for an arbitrary language $B \in NP = P$, f defined as follows is polynomial time computable.

$$f(w) = \begin{cases} x, & w \in B \\ y, & w \notin B \end{cases}$$

*7.19 Let the certificate of $q \in \mathbb{P}$ consist of

 $-g \in \mathbb{Z}_m^*$ such that $g^{m-1} = 1$ and $g^{(m-1)/q} \neq 1$ for all prime $q \mid m-1$,

- the standard factorization of $m-1 = \prod q_i^{r_i}$,

– certificates of $q_i \in \mathbb{P}$.

7.20 It follows from the result of Problem 7.18.

7.21 a. Modify the proof of $PATH \in P$.

b. Reduce from UHAMPATH by setting k to the amount of nodes in G minus 1.

7.22 Reduce from SAT. In order to determine whether $\langle \phi \rangle \in SAT$, construct $\phi' = \phi \wedge (z \vee \overline{z})$.

7.23 Refer to the textbook.

*7.36 Reduce from 3SAT. If there is no limitation on Σ , let the following DFA correspond to an assignment to variables x_1, x_2, \ldots, x_n in 3cnf-formula ϕ . You may need some extra states and transitions.

Once you solved the problem without regard to the limitation on Σ , based on your solution, consider how to build a reduction where $\Sigma = \{0, 1\}$.

7.37 Using the computation history as certificate we easily obtain $U \in \text{NP}$. And it is easy to show that $3SAT \leq_{\text{P}} U$, by designing an NTM M, which accepts $\langle \phi \rangle$ in polynomial time on at least one branch if and only if $\langle \phi \rangle \in 3SAT$.

*7.38 Let $\phi(x/t)$ denote the Boolean formula ϕ after replacing every existence of x in ϕ with t. Suppose there are n variables x_1, \ldots, x_n in ϕ . $\langle \phi \rangle \in SAT \Longrightarrow \langle \phi(x_1/0) \rangle \in SAT$ or $\langle \phi(x_1/1) \rangle \in SAT$, so we can directly assign 0 or 1 to x_1 . Recursively assigning x_2, \ldots, x_n in this way we have done.

*7.39 Construct language $L = \{\langle n, x, y \rangle \mid n \text{ has a nontrivial factor in interval } [x, y] \}$, which is apparently in NP = P. Then refer to the solution to Problem 7.38.

*7.40 Refer to the textbook.

- 7.41 Trivial.
- *7.42 For b), note that the complement graph of G induces an equivalence relation \sim on Q ([q] is exactly the equivalence class under \sim including q), which has much to do with $\equiv_{L(M)}$ defined in Problem 1.51.
- 7.43 Here is a sample for $\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee \overline{x_3})$.

And $\langle \phi \rangle \notin SAT \iff$ the equivalent minimal NFA is a trivial one.

- *7.44 It is a classical problem. See https://en.wikipedia.org/wiki/2-satisfiability or refer to Problem 7.51.
- 7.45 Trivial.
- 7.46 Since P is closed under complement, we only need to show that $\overline{MIN\text{-}FORMULA} \in NP = P$. It is easy to do because $SAT \in NP = P$, and then the certicifate for $\langle \phi \rangle \in \overline{MIN\text{-}FORMULA}$ can be $\langle \phi' \rangle$ such that $|\phi'| < |\phi|$ and they are equivalent.
- 7.47 $Z = \{\langle G_1, k_1, G_2, k_2 \rangle \mid \langle G_1, k_1 \rangle \in CLIQUE\} \{\langle G_1, k_1, G_2, k_2 \rangle \mid \langle G_2, k_2 \rangle \in CLIQUE\}.$
- *7.48 Obviously MAX- $CLIQUE \in DP$. Suppose there is a graph G = (V, E) with $V = \{v_1, v_2, \dots, v_n\}$. Denote $[n] = \{1, 2, \dots, n\}$. Let $G_+ = (V_+, E_+)$, where

$$\left\{ \begin{array}{l} V_{+} = \{(i,v_{j}) \mid i \in [n+1], \ v_{j} \in V\} \cup \{(i,\alpha) \mid i \in [n+1] - [k]\} \\ E_{+} = \{\{(i,u),(j,v)\} \mid i \neq j, \ \{u,v\} \in E\} \cup \{\{(i,\alpha),(j,v)\} \mid i \neq j, \ v \in V \cup \{\alpha\}\} \end{array} \right.$$

Then $\langle G, k \rangle \in CLIQUE \iff \langle G_+, n+1 \rangle \in MAX\text{-}CLIQUE$. Let G_- consist of G_+ and a n-clique (i.e., complete graph K_n). Then $\langle G, k \rangle \notin CLIQUE \iff \langle G_-, n \rangle \in MAX\text{-}CLIQUE$. Try to build a reduction by taking advantage of G_+ and G_- .

- *7.49 Need a solution.
- *7.50 $\overline{EQ}_{\mathsf{SF-REX}} = \{\langle R, S \rangle \mid \exists c, \ c \in L(R) \oplus c \in L(S) \}$. Determining whether $c \in L(R)$ can be achieved in (deterministic) polynomial time by constructing a corresponding NFA. Note that any $c \in L(R)$ for a star-free REX satisfies $|c| \leq \operatorname{Poly}(|R|)$.
- *7.51 Trivial.
- *7.52 Need a solution.
- *7.53 Need a solution.
- 7.54 Need a solution.