N16ADFP -- Logic Synthesis

Click to add subtitle

I

Lecturer: Yu-Chi Lin

Agenda

- 01_RTL
- 02_SYN
- 03_GATE
- 04_MEM
- 05_APR
- · 06_POST
- 07_PX
- 08_JG

01_RTL Assertion (Lab07 / Lab10)

☐ Use assertion to check synchronizer specification in RTL simulation stage (JG will also check these spec.)

```
ACK WO SREQ: assert property (@(posedge dclk) disable iff (~drst n) (dack && dreq) |=> dack)
    else $fatal ("ACK WO SREO fail at %t", $time);
DAT HS STBL: assert property (@(posedge dclk) disable iff (~drst n) (dreq && dack) |=> $stable(din))
    else $fatal ("DAT_HS_STBL fail at %t", $time);
NAK WO SREQ: assert property (@(posedge dclk) disable iff (~drst n) (!dack && !dreq) |=> !dack)
    else $fatal ("NAK WO SREQ fail at %t", $time);
NRQ WO DACK: assert property (@(posedge sclk) disable iff (~srst n) (!sreq && sack) |=> !sreq)
    else $fatal ("NRQ WO DACK fail at %t", $time);
REQ NO HOLD: assert property (@(posedge sclk) disable iff (~srst n) (sreq && !sack) |=> sreq)
    else $fatal ("REQ NO HOLD fail at %t", $time);
POP ON EMTY: assert property (@(posedge rclk) rinc |-> !rempty)
    else $fatal ("POP ON EMTY fail at %t", $time);
PSH ON FULL: assert property (@(posedge wclk) winc |-> !wfull)
    else $fatal ("PSH ON FULL fail at %t", $time);
RPT NO GRAY: assert property (@(posedge rclk) disable iff (~rrst n) ##1 $changed(rptr) |-> $onehot(rptr ^ $past(rptr)))
    else $fatal ("RPT NO GRAY fail at %t", $time);
WPT NO GRAY: assert property (@(posedge wclk) disable iff (~wrst n) ##1 $changed(wptr) |-> $onehot(wptr ^ $past(wptr)))
    else $fatal ("WPT NO GRAY fail at %t", $time);
```

System Integration Silicon Implementation

5

Office Theme

Slide 5 / 28

02_SYN Synthesis: Library - stdcell

TSMC ADFP N16 Std-Cell DataBook

Type	Sub-Type	Cell Name Keyword
	Simple Logic	INV, BUFF, ND, NR, OR, XOR
	Complex Logic	AO, OA, AOI, IAO, IOA, OAI, IND, INR, IIND, IINR, MUX
Combinational	Adder	FA1, HA1
	Tie-high / Tie-low Cell	TIEH, TIEL
	Delay Cell	DEL
	Latch	LH
Storage	Flip-Flop	DF
	Scan Flip-Flop	SDC, SDFK, SEDF
	Clock Buffer	CKB, CKN
	Clock And	CKND2, CKAN2
Clock Cell	Clock Or	CKOR2
	Clock Multiplexer	CKMUX2
	Gated Clock Latch	CKLNQ

System Integration Silicon Implementation

12

< != > □ 웹 □ ፡፡ □

Slide 12 / 28 Gffice Theme

Type	Name	# of words	# bits per word
	TS1N16ADFPCLLLVTA128x64M4SWSHOD	128	64
Single Port SRAM	TS1N16ADFPCLLLVTA16x88M2SWSHOD	16	88
Single Fort SIVAIVI	TS1N16ADFPCLLLVTA16x96M2SWSHOD	16	96
	TS1N16ADFPCLLLVTA512x45M4SWSHOD	512	45
	TS6N16ADFPCLLLVTA128X32M4FSWHOD	128	32
	TS6N16ADFPCLLLVTA128X64M4FSWHOD	128	64
Two port SRAM	TS6N16ADFPCLLLVTA16X120M2FSWHOD	16	120
TWO POIT SIXAM	TS6N16ADFPCLLLVTA16X32M2FSWHOD	16	32
	TS6N16ADFPCLLLVTA16X72M2FSWHOD	16	72
	TS6N16ADFPCLLLVTA32X32M2FSWHOD	32	32

We use TS6N16ADFPCLLLVTA128X32M4FSWHOD in this lab.

System Integration Silicon Implementation

14

□ 1

Slide 14 / 28 Gffice Theme

02_SYN Synthesis: Library - SRAM (Lab05)

Single-port SRAM simulation

Signal Name	I/O	Width	Description
CLK	Input	1	Positive edge triggered clock
CEB	Input	1	Chip enable, active low
WEB	Input	1	Write enable, active low
BWEB	Input	Word length (# bits per word)	Write enable bit mask, active low
Α	Input	Address width (\$log2(# of word))	Address
D	Input	Word length (# bits per word)	Data In
Q	Output	Word length (# bits per word)	Data Out
SLP	Input	1	Sleep (We fixed it to 0)
DSLP	Input	1	Deep Sleep (We fixed it to 0)
SD	Input	1	Shut down (We fixed it to 0)
PUDELAY	Output	1	Delayed signal of SD to inform shut-down process is completed
RTSEL	Input	2	For testing (We fixed it to 2'b01)
WTSEL	Input	2	For testing (We fixed it to 2'b01)

System Integration Silicon Implementation

15

□ £

Slide 15 / 28 Gffice Theme

02_SYN Synthesis: Library - SRAM (Lab05)

Two-port SRAM simulation

Signal Name	I/O	Width	Description
CLKW	Input	1	Positive edge triggered write clock
AA	Input	Address width (\$log2(# of word))	Write address
D	Input	Word length (# bits per word)	Write data
WEB	Input	1	Write enable, active low
BWEB	Input	Word length (# bits per word)	Write enable bit mask, active low
CLKR	Input	1	Positive edge triggered read clock
AB	Input	Address width (\$log2(# of word))	Read address
REB	Input	1	Write enable, active low
Q	Output	Word length (# bits per word)	Read data
SLP	Input	1	Sleep (We fixed it to 0)
DSLP	Input	1	Deep Sleep (We fixed it to 0)
SD	Input	1	Shut down (We fixed it to 0)
PUDELAY	Output	1	Delayed signal of SD to inform shut-down process is completed
RTSEL	Input	2	For testing (We fixed it to 2'b01)
WTSEL	Input	2	For testing (We fixed it to 2'b01)
KP .	Input	3	For testing (We fixed it to 3'b011)

System Integration Silicon Implementation

02_SYN Synthesis - Clock Gating (Lab08)

- Use the function in Design Compiler to automatically clock gating.
- Use the clock gating stdcell in ADFP (CKLNQ*) set compile clock gating through hierarchy true

```
set clock gating style -sequential cell latch \
```

- -max fanout 32 \
- -minimum bitwidth 3 \
- -positive edge logic "integrated" \
- -control point before \
- -control signal scan enable \
- -num stages 4 compile ultra -gate clock

report clock gating > Report/\$DESIGN\.cg

Only available in N16ADFP_cg

Clock Gating Summary			
Number of Clock gating elements	11		
Number of Gated registers	 185 (64	.46%)	1
Number of Ungated registers	102 (35	.54%)	1
Total number of registers	 287		1
Clock Gating Report b	y Origin		
	······	Act	ual (%)
		Act Cou	
Number of tool-inserted clock gating		Cou	nt
Number of tool-inserted clock gating Number of pre-existing clock gating e	İ	Cou 11	nt
	İ	11 0	nt (100.00%)
Number of pre-existing clock gating e	lements 	Cou 11 0 185	nt (100.00%) (0.00%)
Number of pre-existing clock gating e	lements 	11 0 185 185	(100.00%) (0.00%) (64.46%)
Number of pre-existing clock gating e Number of gated registers Number of tool-inserted gated registe	lements 	11 0 185 185	(100.00%) (0.00%) (64.46%) (64.46%)

System Integration Silicon Implementation

20

< != > □ 웹 □ :::

Office Theme

Slide 20 / 28

02_SYN Synthesis - PRGN_TOP.sdc / pt.tcl (Lab07)

The design constraints for CDC and RDC design in synthesis stage.

```
set clock groups -name group1 -asynchronous -group {clk1} -group {clk2} -group {clk3}
set false path -from [get ports rst n] -to [all clocks]
```

Remove timing check using PrimeTime for gate level simulation.

```
foreach_in_collection x [get_cell */A1_reg] {
  set annotated check -0 -setup -from [get object name $x]/CP -to [get object name $x]/D -clock rise
  set annotated check -0 -hold -from [get object name $x]/CP -to [get object name $x]/D -clock rise
foreach in collection x [get cell */B1 reg] {
  set annotated check -0 -recovery -from [get object name $x]/CP -to [get object name $x]/CDN -clock rise
  set annotated check -0 -removal -from [get object name $x]/CP -to [get object name $x]/CDN -clock rise
```

System Integration Silicon Implementation

21

〈 ≔ 〉 □ 웹 □ ፡፡:

02_SYN Synthesis - PRGN_TOP.sdc / pt.tcl (Lab07)

After PrimeTime, In the sdf file

```
(CELL
 (CELLTYPE "DFCNQD1BWP16P90LVT")
 (INSTANCE u Handshake syn u ack syn/A1 reg)
   (ABSOLUTE
   (IOPATH (posedge CP) Q (0.033::0.033) (0.039::0.039))
   (COND CP==1'b1&&D==1'b1 (IOPATH (negedge CDN) Q () (0.031::0.033)))
   (COND CP==1'b0&&D==1'b0 (IOPATH (negedge CDN) Q () (0.031::0.034)))
   (COND CP==1'b0&&D==1'b1 (IOPATH (negedge CDN) Q () (0.031::0.034)))
   (COND CP==1'b1&&D==1'b0 (IOPATH (negedge CDN) Q () (0.031::0.033)))
 (TIMINGCHECK
   (WIDTH
             (COND CDN D SDFCHK (posedge CP)) (0.016::0.016))
   (WIDTH
             (COND CDN nD SDFCHK (posedge CP)) (0.019::0.019))
   (WIDTH
             (COND CDN D SDFCHK (negedge CP)) (0.023::0.023))
             (COND CDN nD SDFCHK (negedge CP)) (0.023::0.023))
   (HOLD (posedge CDN)
                       (COND D SDFCHK (posedge CP)) (0.031::0.031))
   (RECOVERY (posedge CDN) (COND D SDFCHK (posedge CP)) (0.021::0.021))
             (COND CP_D_SDFCHK (negedge CDN)) (0.016::0.016))
   (WIDTH
             (COND CP nD SDFCHK (negedge CDN)) (0.016::0.016))
             (COND nCP D SDFCHK (negedge CDN)) (0.010::0.010))
   (WIDTH (COND nCP nD SDECHK (negedge CDN)) (0.010::0.010))
   (SETUP D (COND CDN SDFCHK (posedge CP)) (-0.000::-0.000))
   (HOLD D
             (COND CDN_SDFCHK (posedge CP)) (-0.000::-0.000))
```

```
(CELLTYPE "DFCNQD1BWP16P90LVT")
(INSTANCE u rst3 syn/B1 reg)
(DELAY
 (ABSOLUTE
 (IOPATH (posedge CP) Q (0.033::0.033) (0.039::0.039))
 (COND CP==1'b1&&D==1'b1 (IOPATH (negedge CDN) Q () (0.012::0.013)))
 (COND CP==1'b0&&D==1'b0 (IOPATH (negedge CDN) 0 () (0.012::0.013)))
 (COND CP==1'b0&&D==1'b1 (IOPATH (negedge CDN) Q () (0.012::0.013)))
 (COND CP==1'b1&&D==1'b0 (IOPATH (negedge CDN) Q () (0.012::0.013)))
(TIMINGCHECK
           (COND CDN_D_SDFCHK (posedge CP)) (0.016::0.016))
           (COND CDN_nD_SDFCHK (posedge CP)) (0.019::0.019))
           (COND CDN_D_SDFCHK (negedge CP)) (0.023::0.023))
 (WIDTH (COND CDN nD SDFCHK (negedge CP)) (0.023::0.023))
  (HOLD (posedge CDN) (COND D SDFCHK (posedge CP)) (-0.000::-0.000))
  (RECOVERY (posedge CDN) (COND D SDFCHK (posedge CP)) (-0.000::-0.000))
 (WIDTH (COND CP D SDFCHK (negedge CDN)) (0.016::0.016))
           (COND CP_nD_SDFCHK (negedge CDN)) (0.016::0.016))
           (COND nCP D SDFCHK (negedge CDN)) (0.010::0.010))
           (COND nCP nD SDFCHK (negedge CDN)) (0.010::0.010))
 (SETUP (posedge D)
                    (COND CDN SDFCHK (posedge CP)) (0.015::0.015))
 (SETUP (negedge D)
                      (COND CDN SDFCHK (posedge CP)) (0.002::0.002))
                      (COND CDN SDFCHK (posedge CP)) (-0.006::-0.006))
 (HOLD (posedge D)
                      (COND CDN_SDFCHK (posedge CP)) (0.010::0.010))
 (HOLD (negedge D)
```

System Integration Silicon Implementation

22

