BIOR90 Evolutionary Biology - Methods and Applications 2023

Molecular phylogenetics

Teachers Jadranka Rota, Etka Yapar, Niklas Wahlberg, Sridhar Halali

Recap: Why *molecular* systematics?

- Ease of data generation for large numbers of taxa
- Ease of generating a large number of independent data sets for given taxa
- Molecular characters behind the morphological characters we see

DNA as a source of information

DNA has four characters

Each base has a distinct shape that can be used to distinguish it form the others. 3D representations of the four bases are shown, with the corresponding chemical structures drawn above.

Maximum Likelihood

For reconstructing phylogenies

Model

Data

• which tree topology (τ), branch lengths, and parameters of DNA evolution model (θ) (e.g. transition/transversion ratio, base frequencies, ...) are maximizing the probability of observing the sequences at hand?

$$L(\tau,\theta) = Pr(Data \mid \tau,\theta)$$

ML analysis in short

- Tree topology is obtained
- Branch lengths and parameters of the DNA substitution model are optimized
- Different topologies (with branch lengths and DNA substitution model parameters optimized) are compared based on their likelihood as the optimality criterion
- The topology with the highest likelihood needs to be found

A Bayesian approach compared to ML

- The likelihood is the probability of observing the data given a hypothesis
 - L = Pr (D $| \theta$).
- **In ML** we search for the parameter values of the model that maximize the likelihood function

- In a Bayesian analysis, we get the probability of a hypothesis given the data (probability of the tree given the sequences)
 - We combine the likelihood of a given hypothesis with a prior expectation for this
 hypothesis to obtain a posterior probability of the hypothesis

Bayes' rule in statistics

17

Uncorrelated relaxed clocks

- Models available in BEAST
 - Lognormal distribution
 Most rates cluster around the mean
 - Exponential distribution
 Most rates are quite low

This week in BIOR90 – how to analyse data

Hours\Days	May 2	May 3	May 4	May 5
9:00-10:00	Module outline by Charlie Cornwallis	Tutorials 3-5 – models, ML, Bayesian (JR, EY)	Tutorial 8 – diversification (JR, EY)	Tutorial 8 – diversification (cont.) (JR, EY)
10:00-12:00	Introduction to alignments, different file formats (NW)	Tutorials 3-5 – models, ML, Bayesian (cont.) (JR, EY)	Tutorial 8 – diversification (cont.) (JR, EY)	Tutorial 9 – mapping characters (SH, EY)
12:00-13:00	Lunch	Lunch	Lunch	Lunch
13:00-14:30	Tutorial 1 – creating datasets (NW, EY)	Tutorial 6 – timing of divergence (EY, NW)	free	Tutorial 9 – mapping characters (cont.) (SH, EY)
14:30-16:00	Tutorial 2 – alignment (NW, EY)	Tutorial 7 – tree manipulation (EY, NW)	free	Tutorial 9 – mapping characters (cont.) (SH, EY)

Tutorials on: https://github.com/NymphalidNiklas/EB2_2023

Multiple Sequence Alignment

Alignment can be easy...

...or difficult

Homology: Definition

- Homology: similarity that is the result of inheritance from a common ancestor - identification and analysis of homologies is central to phylogenetic systematics
- An alignment is a hypothesis of positional homology between bases/amino acids

Multiple sequence alignment- goals

- To generate a concise, information-rich summary of sequence data
- Alignments can be treated as models that can be used to test hypotheses
- Does this model of events accurately reflect known biological evidence?

Multiple sequence alignment

- Manual
- Dynamic programming
- Heuristic methods
 - Progressive alignment
 - Consistency-based scoring
 - Iterative refinement methods

Manual alignment - reasons

- Might be carried out because:
- Alignment is easy
- There is some extraneous information (structural)
- Automated alignment methods have encountered a local minimum problem
- An automated alignment method can be "improved"

Protein-coding genes can often be manually aligned

How to align these sequences:

AGGGCTTTAA
AGGCTA
AATGGCTCTAA
GGAGCCCTAA

How to align these sequences:

A-GGGCTTTAA
A-GGCT--AAATGGCTCTAA
GGAG-CCCTAA

How to align these sequences:

- -AGGGCTTTAA
- -A-GGC--TA-
- **AATGGCTCTAA**
- -GGAGCCCTAA

Multiple sequence alignment

- Is not easy! How to be objective?
- Dynamic programming
- Heuristic methods
 - Progressive alignment
 - Consistency-based scoring
 - Iterative refinement methods

Dynamic programming

- For two sequences, the best alignment can be found by scoring all possible pairs of aligned nucleotides and penalizing gaps
- An optimality criterion
- Time and computer memory needed grows exponentially with number of sequences
- Becomes impossible to align more than 4 sequences of modest length
- Fails to fully exploit phylogeny and does not incorporate an evolutionary model

Heuristics: Progressive alignment

- Devised by Feng and Doolittle in 1987
- A heuristic method and as such is not guaranteed to find the 'optimal' alignment
- Requires *n-1+n-2+n-3...n-n+1* pairwise alignments as a starting point
- Most successful implementation is Clustal
 - ClustalW
 - ClustalX

Overview of Clustal procedure

Euphydryas 1 Melitaea 2 .17 Lebadea 3 .59 .60 Tanaecia 4 .59 .59 .13 Lycaena 5 .77 .77 .75 .75 -

Quick pairwise alignment: calculate distance matrix

Neighbour-joining tree (guide tree)

Lycaena hell GCCCGTG---CAGAGGAACGATGCGGGGACCGAAGAGTTCC

Euphydryas m GCCCCTTACGACAACGAAACGATGCAGCACCGCACAGAGTTCC

Melitaea amb GCCCTTACGACAACGAAACGATGCAGCACCGCACAGAATTCC

Lebadea mart TCCGGTT---CAACGAAATGATGCAGTAGCTCACAGAGTTCC

Tanaecia jul TCCAGTT---CAGCGAAATGACGCCGCGCGCACAGAGTTCC

2

Lebadea

Tanaecia

Lycaena

Progressive alignment following guide tree

Clustal - pairwise alignments

- First perform all possible pairwise alignments between each pair of sequences
- Calculate the 'distance' between each pair of sequences based on these isolated pairwise alignments
- Generate a distance matrix

Taxon	Euphydryas	Melitaea	Lebadea	Tanaecia	Lycaena
Euphydryas	-				
Melitaea	0.17	-			
Lebadea	0.59	0.60	-		
Tanaecia	0.59	0.59	0.13	-	
Lycaena	0.77	0.77	0.75	0.75	-

Clustal - guide tree

- Generate a Neighbour-Joining 'guide tree' from these pairwise distances
- This guide tree gives the order in which the progressive alignment will be carried out

Multiple alignment- first pair

- Align the two most closely-related sequences first
- This alignment is then 'fixed' and will never change
- If a gap is to be introduced subsequently, then it will be introduced in the same place in both sequences, but their relative alignment remains unchanged

Clustal - decision time

- Consult the guide tree to see what alignment is performed next.
 - Align a third sequence to the first two
 Or
 - Align two entirely different sequences to each other.

Clustal - progression

 The alignment is progressively built up in this way, with each step being treated as a pairwise alignment, sometimes with each member of a 'pair' having more than one sequence

Clustal - good points/bad points

- Advantages:
 - Speed
- Disadvantages:
 - Hierarchic structure introduced that is not necessarily phylogenetic
 - No way of quantifying whether or not the alignment is good
 - No way of knowing if the alignment is 'correct'
 - Local minimum problem. If an error is introduced early in the alignment process, it is impossible to correct this later in the procedure
 - Arbitrary alignment

Increasing the sophistication of the alignment process

- Should we treat all the sequences in the same way?
 - some sequences are closely related and some sequences are distant relatives.
- Should we treat all positions in the sequences as though they were the same?
 - they might have different functions and different locations in the 3-dimensional structure.
 - codon structure how to retain this?

Consistency-based scoring

- One way to avoid the problems of getting stuck in local minima or fixed gaps
- Based on optimizing a multiple alignment using information from all pairwise alignments
- Identifies those nucleotides that are aligned most consistently across the different alignments
- Used in e.g. T-Coffee

Iterative refinement methods

- Initial alignments split into two groups randomly
- Within groups the alignment is kept fixed
- Dynamic programming used to align the two groups to each other
- This is repeated until score converges
- Used in e.g. Muscle and MAFFT

Using models in alignment

- New methods are being developed all the time
- Latest methods include using a Bayesian statistic framework, DNA evolutionary models and alignment concomitantly with estimation of phylogentic relationships
- Still not feasible with a moderately sized dataset

Bottom line

- Alignments are extremely important in phylogenetics
- A bad alignment means many wrong statements of homology, which means pure rubbish as output
- A good alignment can be hard to attain

The Tree

Finding the optimal trees

Numbers of possible trees for N taxa

```
2
3
         3
                                          How can
5
         15
                                          we find
6
         105
        945
                                          the most
8
         10395
         135135
                                          optimal
10
        2027025
11
        34459425
                                          tree?
12
        654729075
13
         13749310575
14
        316234143225
15
        7905853580625
16
        213458046676875
17
        6190283353629370
18
         191898783962510625
19
        6332659870762850625
20
        221643095476699771875 (2 x 10<sup>20</sup>)
        3 \times 10^{74}
50
```

Tree space may be populated by local optima and islands of optimal trees

Finding optimal trees - exact solutions

- Exact solutions can only be used for small numbers of taxa
- Exhaustive search examines all possible trees
- Branch and bound does not examine all trees, but will find optimal tree(s)
- Typically used for problems with 10 -20 taxa

- The number of possible trees increases faster than exponentially with the number of taxa making exhaustive searches impractical for many data sets (an NP-complete problem)
- Heuristic methods are used to search tree space for optimal trees by building or selecting an initial tree and swapping branches to search for better ones
- The trees found are not guaranteed to be optimal they are best guesses

Stepwise addition

Asis - the order in the data matrix

Closest -starts with shortest 3-taxon tree, adds taxa in order that produces the least increase in tree length (greedy heuristic)

Simple - the first taxon in the matrix is taken as a reference - taxa are added to it in the order of their decreasing similarity to the reference

Random - taxa are added in a random sequence, many different sequences can be used

Finding optimal trees – branch swapping

- Nearest neighbor interchange (NNI)
- Subtree pruning and regrafting (SPR)
- Tree bisection and reconnection (TBR)

Nearest neighbor interchange (NNI)

Subtree pruning and regrafting (SPR)

Tree bisection and reconnection (TBR)

Searching with topological constraints

- Topological constraints are user-defined phylogenetic hypotheses
- Can be used to find optimal trees that either:
 - 1. include a specified clade or set of relationships
 - 2. exclude a specified clade or set of relationships (reverse constraint)

Searching with topological constraints

Compatible with constraint tree Incompatible with reverse constraint tree

Searching with topological constraints backbone constraints

 Backbone constraints specify relationships among a subset of the taxa

BACKBONE CONSTRAINT ((A,B)(D,E))

relationships of taxon C are not specified

A D B E

possible positions of taxon C
 Compatible with backbone constraint
 Incompatible with reverse constraint

Incompatible with backbone constraint Compatible with reverse constraint

Consensus methods

Multiple optimal trees

- Many methods can yield multiple equally optimal trees
- We can further select among these trees with additional criteria, but
- Typically, relationships common to all the optimal trees are summarised with *consensus trees*

Consensus methods

- A consensus tree is a summary of the agreement among a set of fundamental trees
- There are many consensus methods that differ in:
 - 1. the kind of agreement
 - 2. the level of agreement
- Consensus methods can be used with multiple trees from a single analysis or from multiple analyses

Strict consensus methods

- Strict consensus methods require agreement across all the fundamental trees
- They show only those relationships that are unambiguously supported by the parsimonious interpretation of the data
- The commonest method (*strict component consensus*) focuses on clades/components/full splits
- This method produces a consensus tree that includes all and only those full splits found in all the fundamental trees
- Other relationships (those in which the fundamental trees disagree) are shown as unresolved polytomies

Strict consensus methods

Majority-rule consensus methods

- Majority-rule consensus methods require agreement across a majority of the fundamental trees
- May include relationships that are not supported by the most parsimonious interpretation of the data
- The commonest method focuses on clades/components/full splits
- This method produces a consensus tree that includes all and only those full splits found in a majority (>50%) of the fundamental trees
- Other relationships are shown as unresolved polytomies
- Of particular use in bootstrapping

Majority rule consensus

THREE FUNDAMENTAL TREES

MAJORITY-RULE CONSENSUS TREE

Reduced consensus methods

- Focuses upon any relationships (not just full splits)
- Reduced consensus methods occur in strict and majority-rule varieties
- Other relationships are shown as unresolved polytomies
- May be more sensitive than methods focusing only on clades/components/full splits

Reduced consensus methods

TWO FUNDAMENTAL TREES

STRICT REDUCED CONSENSUS TREE
Taxon G is excluded

Consensus methods

Three fundamental trees Strict (component)

Strict reduced cladistic Euplotes excluded

Majority-rule

Consensus methods – use

- Currently majority-rule methods mainly used
 - bootstrapping
 - Bayesian methods
- Reduced methods can be useful to identify problem taxa
 - E.g. RogueNaRok
- Strict methods mainly used in parsimony analyses
 - rarely used with molecular data

Take home messages from today

- Statements of homology are the basis of phylogenetics
- Alignments of molecular sequences are very strong statements of positional homology
- Finding an optimal tree is not a trivial task

The Data

File formats and alignments

Computer programs

- Multitude of programs available for free!
- Most have their own input format
- Many are "black box" programs
- Input files are always simple text files!!!

No good online resource available

http://evolution.gs.washington.edu/phylip/software.html
was an attempt but not updated for a long time

Computer programs - ML

- IQ-TREE (recommended)
- RAxML (recommended)
- PHYML
- GARLI

Computer programs- Bayesian inference

- MrBayes (recommended)
- BEAST (recommended)
- BAMBE
- BayesPhylogenies

Viewing trees

- FigTree (recommended)
- TreeView
- Winclada
- Dendroscope (for large trees >200 taxa)

Three most common data formats

- FASTA
- Phylip
- Nexus

Input format - FASTA

```
>Papilio glaucus 69 3
GAGATGGAAGACAAGGTTTCGTCGACCCTGTCCGGCCTCGAGGGCGAACT
>Hamearis84 13
GGaATGGAaGAGAAGTCTCCACAACCCTCTCCGGACTCGAAGGTGAGCT
>Danaus plexippus108 21
GAGATGGAGGAGAGGTCTCCTCCACCCTCTCAGGTCTCGAAGGTGAACT
>Greta oto70 9
GGAATGGAAGAGGTCTCCTCGACCCTCTCAGGCCTTGAAGGTGAACT
>Amathusia phidippus114 17
GGaATGGAaGACAAaGTCTCCTCAaCCCTCTCCGGTCTTGAGGGTGAACT
>Morpho peleides66 5
GGaATGGAGAGAAAaGTCTCTACTACCCTGTCTGGCCTCGAAGGCGAACT
>BrintesiaB01
GGAATGGAAGACAAAGTCTCGTCCACCCTCTCCGGGCTGGAAGGCGAGCT
>Elymnias casiphone121 20
GAGAWGGaAGACAAAGTATCCTCCACCCTCTCTGGTCTTGAAGCTGAACT
>Erebia oemeEW24 7
gGaATGGAaGACAAaGTCTCCTCGACTCTCTCTGGCCTCGAAGGCGAGCT
```

Input format – PHYLIP

```
Papilio_gl GAGATGGAAGACAAGGTTTCGTCGACCCTGTCCGGCCTCGAGGGCGAACT
Hamearis84 GGAATGGAAGAGAGAGAGTCTCCACAACCCTCTCCGGACTCGAAGGTGAGCT
Danaus_ple GAGATGGAAGAGAGAGAGGTCTCCTCCACCCTCTCAGGTCTCGAAGGTGAACT
Greta_oto7 GGAATGGAAGAGAGAGAGGTCTCCTCGACCCTCTCAGGCCTTGAAGGTGAACT
Amathusia_ GGAATGGAAGACAAAGTCTCCTCAACCCTCTCCGGTCTTGAGGGTGAACT
Morpho_pel GGAATGGAGAGAAAGTCTCTACTACCCTGTCTGGCCTCGAAGGCGAACT
BrintesiaB GGAATGGAAGACAAAGTCTCGTCCACCCTCTCCGGGCTGGAAGGCGAGCT
Elymnias_c GAGAWGGAAGACAAAGTCTCCTCCACCCTCTCTGGTCTTGAAGCTGAACT
Erebia_oem gGaATGGAAGACAAAGTCTCCTCCACCCTCTCTGGCCTCGAAGGCGAGCT
```

Input format - NEXUS

```
#NEXUS
BEGIN DATA;
   DIMENSIONS NTAX=9 NCHAR=50;
   FORMAT DATATYPE=DNA MISSING=? GAP=- INTERLEAVE=No;
   Matrix
[ArgKin 596]
Papilio glaucus 69 3
                            GAGaTGGAaGACAaGGTTTCGTCGACCCTGTCCGGCCTCGAGGGCGAACT
Hamearis84 13
                            GGaATGGAaGAGAAGTCTCCACAACCCTCTCCGGACTCGAAGGTGAGCT
Danaus plexippus108 21
                            GAGAtGGAGGAGAGGTCTCCTCCACCCTCTCAGGTCTCGAAGGTGAACT
Greta oto70 9
                            GGAATGGAAGAGAGGTCTCCTCGACCCTCTCAGGCCTTGAAGGTGAACT
\overline{\text{Amathusia}} \overline{\text{phidippus}} 17 \overline{\text{GGaATGGAaGACAAaGTCTCCTCAaCCCTCTCCGGTCTTGAGGGTGAACT}
Morpho peleides66 5
                            GGaATGGAGAGAAAaGTCTCTACTACCCTGTCTGGCCTCGAAGGCGAACT
BrintesiaB01
                            GGAATGGAAGACAAAGTCTCGTCCACCCTCTCCGGGCTGGAAGGCGAGCT
Elymnias casiphone121 20 GAGAwGGaAGAcaAAGTATCCTCCACCCTCTCTGGTCTTGAAGCTGAACT
Erebia oemeEW24 7
                           gGaATGGAaGACAAaGTCTCCTCGACTCTCTCTGGCCTCGAAGGCGAGCT
end;
```

Input format – NEXUS interleaved

```
#NEXUS
BEGIN DATA;
   DIMENSIONS NTAX=9 NCHAR=121;
   FORMAT DATATYPE=DNA MISSING=? GAP=- INTERLEAVE=Yes;
  Matrix
[ArgKin 50 bp]
Papilio glaucus 69 3
                         GAGaTGGAaGACAaGGTTTCGTCGACCCTGTCCGGCCTCGAGGGCGAACT
Hamearis84 13
                         GGaATGGAaGAGAAGTCTCCACAACCCTCTCCGGACTCGAAGGTGAGCT
Danaus_plexippus108 21
                         GAGAtGGAGGAGAGGTCTCCTCCACCCTCTCAGGTCTCGAAGGTGAACT
Greta oto70 9
                         GGAATGGAAGAGAGGTCTCCTCGACCCTCTCAGGCCTTGAAGGTGAACT
Amathusia phidippus114 17 GGaATGGAaGACAAaGTCTCCTCAaCCCTCTCCGGTCTTGAGGGTGAACT
Morpho peleides66 5
                         GGaATGGAGAGAAAaGTCTCTACTACCCTGTCTGGCCTCGAAGGCGAACT
BrintesiaB01
                         GGAATGGAAGACAAaGTCTCGTCCACCCTCTCCGGGCTGGAAGGCGAGCT
Elymnias casiphone121 20
                         GAGAWGGaAGAcaAAGTATCCTCCACCCTCTCTGGTCTTGAAGCTGAACT
Erebia oemeEW24 7
                         qGaATGGAaGACAAaGTCTCCTCGACTCTCTCTGGCCTCGAAGGCGAGCT
[COI 71 bp]
Papilio glaucus 69 3
                         taAaqAtaTTqGaACATTATACTTTATTTTTGGAATTTTGAGCAAGAATATTAGGAACTTCTTTAAGTTTAT
Hamearis84 13
                         ???????????????????????????????TGAGCAGGAATAGTAGGAACATCATTAAGATTAC
Libythea celtis71 1
                         ???????????????????????????????TGAGCAGGAATAGTAGGAACTTCATTAAGTCTAT
Danaus plexippus108 21
                         ???????????????????????????????TGAGCAGGAATAGTTGGGACATCTTTAAGTCTTT
Greta oto70 9
                         ????????????????????????????????TGAGCAGGAATAGTAGGAACATCTTTAAGTTTAT
Amathusia phidippus114 17 ????????????????????????????????TGATCTGGAATAGTAGGAACATCCCTCAGTCTTA
Morpho peleides66 5
                         ???????????????????????????????TGAGCCGGTATAATTGGTACATCCCTAAGTCTTA
BrintesiaB01
                         ????????????????????????????????TGAGCAGGTATAGTAGGAACATCTCTTAGTTTAA
Elymnias casiphone121 20 ?????????????????????????????TGATCAGGAATAGTAGGAACTTCCCTCAGTCTTA
Erebia oemeEW24 7
                         ????????????????????????????????TGAGCAGGTATAGTAGTACTTCCCTTAGTCTTA
end;
```