Efficient PageRank Tracking in Evolving Networks

Naoto Ohsaka (UTokyo)
Takanori Maehara (Shizuoka University)
Ken-ichi Kawarabayashi (NII)

ERATO Kawarabayashi Large Graph Project

Background

Personalized PageRank Tracking

Applications

Search engine [Brin-Page. '98]

Spam detection

[Chung-Toyoda-Kitsuregawa. '09, '10]

User recommendation

[Gupta-Goel-Lin-Sharma-Wang-Zadeh. '13]

Growth of real networks

	Size	Speed
WWW	60T	600K pages / s
Twitter	300M	5K tweets / s
Google+	700M	+19 users / s

Background

Existing Work for PageRank Tracking

	m random edge insertions	Scalability Update time < 0.1s Error ≈ 10 ⁻⁹
Aggregation/Disaggregation [Chien et al. '04]	$\mathcal{O}(m S \log 1/\epsilon)$	68M edges
Monte-Carlo [Bahmani et al. '10]	$\mathcal{O}(m + \log m / \epsilon^2)$	68M edges
Power method naive method	$\mathcal{O}(m^2 \log 1/\epsilon)$	11M edges

Our Contribution

Propose a simple, efficient, & accurate method for Personalized PageRank tracking in evolving networks

	m random edge insertions	Scalability Update time < 0.1s Error ≈ 10 ⁻⁹
This work	Ave. \square Max. out-deg $\mathcal{O}(m + \Delta \log m / \epsilon)$	3,700M edges
Aggregation/Disaggregation [Chien et al. '04]	$\mathcal{O}(m S \log 1/\epsilon)$	68M edges
Monte-Carlo [Bahmani et al. '10]	$\mathcal{O}(m + \log m / \epsilon^2)$	68M edges
Power method naive method	$\mathcal{O}(m^2 \log 1/\epsilon)$	11M edges

Preliminaries

Definition of Personalized PageRank

[Brin-Page. Comput. Networks ISDN Syst.'98] [Jeh-Widom. WWW'03]

Linear equation

A solution *x* of

Random-walk interpretation

Stationary distribution

 Random walk modeling web browsing **Moves** to a random out-neighbor w.p. α w.p. $1-\alpha$ Jumps to a random vertex

Preliminaries

Computing PageRank in Static Graphs

• Solving eq. $x = \alpha Px + (1 - \alpha)b$

Power method
$$x^{(\nu)} = \alpha P x^{(\nu-1)} + (1 - \alpha)b$$

Gauss-Seidel [Del Corso-Gullí-Romani. Internet Math.'05]

LU/QR factorization [Fujiwara-Nakatsuji-Onizuka-Kitsuregawa. VLDB'12]

Krylov subspace method [Maehara-Akiba-Iwata-Kawarabayashi. VLDB'14]

• Estimating the frequency x_v of visiting v

Monte-Carlo simulation

Preliminaries

Tracking PageRank in Evolving Graphs

Aggregation/disaggregation

[Chien-Dwork-Kumar-Simon-Sivakumar. Internet Math.'04]

Apply the power method to a subgraph

Monte-Carlo

[Bahmani-Chowdhury. VLDB'10]

Maintain & update random-walk segments

Problem Setting

Given G(0), α , b at time 0

Problem at time 0 Compute approx. PPR x(0) of G(0)

$$\|x(\mathbf{0}) - x^*(\mathbf{0})\|_{\infty} < \epsilon$$

Given at time t: Edges inserted to / deleted from

Problem at time tCompute approx. PPR x(t) of G(t)

The Idea

Solving eq.
$$x(t) = \alpha P(t)x(t) + (1 - \alpha)b$$

- **1.** x(t-1) is a GOOD initial solution for x(t)
- 2. Improving approximate solution locally

- We use the Gauss-Southwell method ② [Southwell. '40,'46]
 - a.k.a. Bookmark coloring algorithm [Berkhin. Internet Math.'06] Local algorithm

[Spielman-Teng. SIAM J. Comput.'13] [Andersen-Chung-Lang. FOCS'06]

Gauss-Southwell Method [Southwell. '40,'46]

- v^{th} solution $x^{(v)}$
- v^{th} residual $r^{(v)} = (1 \alpha)b (I \alpha P)x^{(v)}$

Goal:
$$r^{(\nu)} \rightarrow \mathbf{0}$$

$$u = 1,2,3, ...$$
 $i \leftarrow \text{a vertex with largest} \left| r_i^{(\nu-1)} \right|$
If $\left| r_i^{(\nu-1)} \right| < \epsilon$ terminate

Update $x^{(\nu-1)}$ & $r^{(\nu-1)}$ locally so that $r_i^{(\nu)} = 0$

iterations

Stops within
$$\frac{\|r^{(0)}\|}{(1-\alpha)\epsilon}$$
 iter.
$$\sqrt{\|r^{(\nu)}\|} \le \|r^{(\nu-1)}\| - (1-\alpha)\epsilon$$

Accuracy

$$\left\| \boldsymbol{x}^* - \boldsymbol{x}^{(\nu)} \right\|_{\infty} \le \frac{\epsilon}{1 - \alpha}$$

$$\checkmark \left| r_i^{(\nu)} \right| < \epsilon$$

Overview

```
At time t: x(t)^{(0)} = x(t-1) r(t)^{(0)} = r(t-1) + \alpha \big( P(t) - P(t-1) \big) x(t-1) Apply the Gauss-Southwell method
```

Performance Analysis

Computation time of $= \mathcal{O}(\Delta \times \text{#iters.})$

Max. out-deg û

How small?

Performance Analysis: Any Change

Consider any change including full construction

increase of $||r||_1 \leq 2\alpha$

Same as static computation

Performance Analysis: Random Edge Insertion

A single-edge is <u>randomly</u> inserted for each time

Monte-Carlo

Our method

[Bahmani-Chowdhury. VLDB'10]

$$\mathbf{E}[\# \text{ updated seg.}] = O(R \log m)$$

 $R = \Omega(1/\epsilon^2)$ is total $\# \text{ seg.}$

E[increase of
$$||r||_1$$
] $\leq 2\alpha/t$

Performance Analysis: Results

- Our result for random edge insertion (Prop. 6 in the paper) If m edges are randomly and sequentially inserted, expected total #iter. is $\mathcal{O}(\log m / \epsilon)$
- \Rightarrow expected total time is $\mathcal{O}(m + \Delta \log m / \epsilon)$

- Our result for any change (Prop. 5 in the paper) #iter. for any change is amortized $\mathcal{O}(1/\epsilon)$
- \Rightarrow Time is amortized $\mathcal{O}(\Delta/\epsilon)$

Setting: Single-edge Insertion

- Parameter settings
 - $\alpha = 0.85$
 - b has 100 non-zero elements
 - $\epsilon = 10^{-9}$

Efficiency Comparison: Time for an Edge Insertion

	web-Google [SNAP] $ V =1M$ $ E =5M$	Wikipedia [KONECT] $ V =2M$ $ E =40M$	twitter-2010 [LAW] $ V = 142M$ $ E = 1,500M$	uk-2007-05 [LAW] $ V = 105M$ $ E = 3,700M$
This work	7 µs	77 µs	29,383 µs	2 µs
Aggregation/Disaggregation [Chien et al. '04]	320 µs	40,336 µs	>100,000 µs	>100,000 µs
Monte-Carlo [Bahmani et al. '10]	444 µs	9,196 µs	>100,000 µs	>100,000 µs
Warm start power method	80,994 µs	>100,000 µs	>100,000 µs	>100,000 µs
From scratch power method	>100,000 µs	>100,000 µs	>100,000 µs	>100,000 µs

[KONECT] The Koblenz Network Collection http://konect.uni-koblenz.de/networks/
[LAW] Laboratory for Web Algorithmics http://law.di.unimi.it/datasets.php
[SNAP] Stanford Large Network Dataset Collection http://snap.stanford.edu/data/

Accuracy Comparison: Transition of Ave. L_1 Error

This work ---x--- Aggregation/Disaggregation [Chien et al.'04] --- *--- Monte-Carlo [Bahmani et al.'10] ······ Warm start (power method) From scratch (power method) 10^{-4} 10^{-4} 10⁻⁶ 10^{-6} 10^{-8} 10^{-8} 10⁻¹⁰ 10⁻¹⁰ 10⁻¹² 10⁻¹² 10⁻¹⁴ 10⁻¹⁴ 40000 40000 60000 80000 80000 soc-Epinions1 [SNAP] Wikipedia [KONECT] |V|=76K |E|=509K |V| = 2M |E| = 40MComparable (~10⁻⁹) to naive methods

Environment: Intel Xeon E5-2690 2.90GHz CPU with 256GB memory

Evaluation: Time & #Iter. for a Single-edge Insertion

Dataset [Source]	V	E	Max. Out-deg Δ	Ave. Time	Ave. #Iter.
wiki-Talk [SNAP]	2M	5M	100,022	589.6 µs	2.3
web-Google [SNAP]	1M	5M	3,444	7.2 µs	22.6
as-Skitter [SNAP]	2M	11M	35,387	288.4 µs	0.8
Flickr ^{Time} [KONECT]	2M	33M	26,367	95.3 µs	16.2
Wikipedia ^{Time} [KONECT]	2M	40M	6,975	76.8 µs	46.0
soc-LiveJournal1 [SNAP]	5M	68M	20,292	17.9 µs	7.6
twitter-2010 [LAW]	42M	1,500M	2,997,469	29,382.8 µs	0.7
uk-2007-05 [LAW]	105M	3,700M	15,402	2.3 µs	0.0

[KONECT] The Koblenz Network Collection http://konect.uni-koblenz.de/networks/
[LAW] Laboratory for Web Algorithmics http://law.di.unimi.it/datasets.php
[SNAP] Stanford Large Network Dataset Collection http://snap.stanford.edu/data/

Evaluation: Relationship between |E| & #lter.

Matches our theoretical result

Evaluation: Time & #Iter. for a Single-edge Insertion

Dataset [Source]	V	E	Max. Out-deg Δ	Ave. Time	Ave. #Iter.
wiki-Talk [SNAP]	2M	5M	100,022	589.6 µs	2.3
web-Google [SNAP]	1M	5M	3,444	7.2 µs	22.6
as-Skitter [SNAP]	2M	11M	35,387	288.4 µs	0.8
Flickr ^{Time} [KONECT]	2M	33M	26,367	95.3 µs	16.2
Wikipedia ^{Time} [KONECT]	2M	40M	6,975	76.8 µs	46.0
soc-LiveJournal1 [SNAP]	5M	68M	20,292	17.9 µs	7.6
twitter-2010 [LAW]	42M	1,500M	2,997,469	29,382.8 µs	0.7
uk-2007-05 [LAW]	105M	3,700M	15,402	2.3 µs	0.0

[KONECT] The Koblenz Network Collection http://konect.uni-koblenz.de/networks/ [LAW] Laboratory for Web Algorithmics http://law.di.unimi.it/datasets.php [SNAP] Stanford Large Network Dataset Collection http://snap.stanford.edu/data/ What Happens !?

Discussion: What is the Difference?

Celebrities cause the performance degradation!!

Summary

Proposed an efficient & accurate method for Personalized PageRank tracking in evolving networks

Theoretically

Ave. $O(m + \Delta \log m / \epsilon)$ for m edge insertions

Experimentally

Scales to a graph w/ 3.7B edges

Future Work

- Further Speed-up based on our observation
- Handle dangling nodes