		No	te
		-	
		I	II
Name Vorname	1		
	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Zentrum Mathematik	6		
Zenti ani matnematik			
Wiederholungsklausur	7		
Mathematik für Physiker 2	'		
(Analysis 1)			
(Tillal) 010 1)	8		
Prof. Dr. Oliver Matte			
	\sum		
18. April 2011, 8:30–10:00 Uhr, MI HS 1			
Hörsaal: Platz:	I	 Erstkorre	ektur
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	II	7	
Bearbeitungszeit: 90 min		Zweitkor	rektur
Erlaubte Hilfsmittel: 1 selbsterstelltes DIN A4-Blatt			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berück-			

Vorzeitig abgegeben um

Besondere Bemerkungen:

$1.\ {\bf Parameter abh\"{a}ngiges\ Integral}$

Betrachten Sie die Funktion

$$f(x) = \int_0^\infty \mathrm{d}s \, \frac{e^{-xs}}{\sqrt{1+s^2}},$$

die als parameterabhängiges Integral definiert ist.

- (i) Überprüfen Sie, für welche $x \in \mathbb{R}$ das uneigentliche Integral f(x) konvergiert.
- (ii) Zeigen Sie, dass f monoton fallend ist.

2. Taylor-Entwicklung

[8 Punkte]

Betrachten Sie die Funktion $f:\mathbb{R}\setminus\{0\}\longrightarrow\mathbb{R}$, $f(x)=\dfrac{\ln(1+x^2)}{x}$.

- (i) Setzen Sie f stetig in 0 fort. Begründen Sie Ihre Antwort.
- (ii) Wie lauten die ersten drei nichtverschwindenden Terme der Taylor-Entwicklung der stetigen Fortsetzung von f um x=0. Welche Ordnung hat der Fehlerterm?

$$f(x) = +\mathcal{O}(x^{\square})$$

(iii) Bestimmen Sie den Konvergenzradius der Taylor-Reihe um x=0.

 $\square \ 2 \qquad \square \ \frac{\sqrt{2}}{2} \qquad \square \ \frac{1}{2} \qquad \square \ \sqrt{2} \qquad \square \ 0 \qquad \square \ 1 \qquad \square \ +\infty$

[6 Punkte]

3. Ableitung der Umkehrfunktion des Sinus Hyperbolicus Betrachten Sie die Funktion $\sinh:\mathbb{R}\longrightarrow\mathbb{R}$, $x\mapsto\sinh x=\frac{1}{2}\big(e^{+x}-e^{-x}\big)$.

- (i) Begründen Sie, wieso sinh invertierbar ist. Bestimmen Sie den Definitionsbereich der Umkehrfunktion $arsinh := (sinh)^{-1}.$
- (ii) Berechnen Sie die Ableitung der Umkehrfunktion arsinh $= (\sinh)^{-1}$.

4. **Diverse Integrale**Bestimmen Sie folgende Stammfunktionen:

(i)
$$\int dx (x-5) \sqrt{x-5} =$$

(ii) Für a>0, bestimmen Sie

$$\int_1^a \mathrm{d} x \, x^n \, \ln x =$$

$$\int \mathrm{d}x \, \frac{1}{x \left(1 + (\ln x)^2\right)} =$$

5. Rekursionen mit Integralen

[12 Punkte]

Wir definieren $F_n(x) = \int dx \sin^{2n}(x)$.

(i) Zeigen Sie: für alle $n \in \mathbb{N}$ gilt

$$F_{n+1}(x) = \frac{2n+1}{2n+2}F_n(x) - \frac{1}{2n+2}\sin^{2n+1}(x)\cos(x).$$

(ii) Zeigen Sie: für alle $n \in \mathbb{N}$ gilt

$$I_n = \int_0^{\pi/2} \mathrm{d}x \, \sin^{2n}(x) = \frac{\pi}{2} \prod_{k=1}^n \frac{2k-1}{2k}.$$

Bestimmen Sie das Verhalten für $n \to \infty$ der unten stehenden Folgen:

(i)
$$a_n = \sum_{k=2}^n \frac{1}{k \ln k}$$

- □ konvergiert nach dem Integralkriterium nicht
- □ konvergiert nach dem Integralkriterium
- $\hfill \square$ konvergiert nicht, da $\left(\frac{1}{k \ln k}\right)_{k \in \mathbb{N}}$ keine Nullfolge ist
- $\ \square$ konvergiert, da $\left(\frac{1}{k \ln k}\right)_{k \in \mathbb{N}}$ absolut summierbar ist
- $\hfill \Box$ konvergiert nicht, da $\left(\frac{1}{k \ln k}\right)_{k \in \mathbb{N}}$ wie $(1/k)_{k \in \mathbb{N}}$ gegen 0 geht

(ii)
$$b_n = (n^2 + 7n + 4) e^{-n}$$

- $\Box + \infty \qquad \Box \qquad 1 \qquad \Box \qquad 2 \qquad \Box \qquad \frac{2}{e}$

- \Box 0

(iii)
$$c_n = \frac{e^{-n} \, 2^{n^2}}{7^n}$$

- $\Box \frac{2}{7e} \qquad \Box + \infty \qquad \Box \frac{2}{7} \qquad \Box 0$
- - \Box 1

 \Box 1

(iv)
$$d_n = \frac{1}{n^2} \sum_{k=1}^n k$$

- $\Box + \infty \qquad \Box \frac{1}{2} \qquad \Box 3$

7. Potenzreihen

[4 Punkte]

Bestimmen Sie die Konvergenzradien für folgende Potenzreihen:

- (i) $\sum_{n=1}^{\infty} 2^{n^2} x^n$
- \square 2 \square $\frac{1}{2}$ \square $+\infty$ \square 0 \square
- (ii) $\sum_{n=1}^{\infty} (-1)^n \frac{n(n+1)(n+2)}{3^n} x^n$
 - $\Box + \infty \qquad \Box \ \frac{1}{3} \qquad \Box \ 0 \qquad \Box \ 1 \qquad \Box \ 3$

(i) Für die Meng	ge der Häufungspunkte HP (a) gilt: $\sup\{a_n\mid n\in\mathbb{N}\}\in \mathrm{HP}(a)$
□ Wahr	□ Falsch
ii) $\limsup(a_n +$	$(b_n) = \limsup a_n + \limsup b_n$
$n o \infty$ \ \square Wahr	$n \to \infty$ $n \to \infty$
ii) Ist b eine kon	evergente Folge, dann gilt: $\limsup_{n \to \infty} (a_n + b_n) = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$.
□ Wahr	□ Falsch