Large-scale data analysis in R

Research Computing Center and the Dept. of Human Genetics University of Chicago

Peter Carbonetto pcarbo@uchicago.edu

November 14, 2017

Initial setup:

- Wifi
- Power outlets
- RCC cluster access
- Yubikeys (rcc-guest-xxxx)
- Helper(s)
- Handout / exercises
- Pace, questions (e.g., keyboard shortcuts)

1. Download workshop packet.

```
$ cd ~
$ wget https://tinyurl.com/yad63z9c \
     -0 temp.tar.gz
$ tar zxvf temp.tar.gz
$ cd R-large-scale
$ cd code
```

2. Add these three lines to your .bashrc file.

```
# SLURM.
```

export SACCT_FORMAT="jobid,partition,user,account%12,alloccpus,node%12,elapsed,totalcpu,maxRSS,ReqM" export SQUEUE FORMAT="%13i %12j %10P %10u %12a %8T %9r %10l %.11L %5D %4C %8m %N"

3. Start up three midway2 sessions.

```
File Edit Options Buffers Tools Imenu-S ESS Help
                                                                                   MASTClassic 0.933.tar.gz
                                                                                                                   matlab_simple.m
                                                                                                                  matlab_simple.sbatch rstudio-server midway2_batch.sh rstudio-test-j
                                                                                   R-large-scale-packet.tar.gz
                                                                                                                   notes.txt
                                                                                   SIMLR_1.4.0.tar.gz
                                                                                                                                        test1.ipynb
 ource("functions.R")
                                                                                   azure-cli.tar.gz
                                                                                                                  pardiso.lic
                                                                                                                                        test2.ipynb
                                                                                                                  partis.txt
                                                                                   data.tar.gz
                                                                                                                         29 [
30 [
                                                                                                      16 [|||||76.2%]
17 [||||100.0%]
                                                                                               5.1%
                                                                                                                                           44 [
                                                                                                                                    0.0%]
                                                                                                                                                     52.8%]
                                                                                               3.8%
                                                                                                                        31
                                                                                                                                    0.6%]
                                                                                                                                          45 [||
                                                                                                                 0.0%]
                                                                                                      18 [ 0.0%]
19 [|||||44.4%]
                                                                                                                                          46 [|
                                                                                               4.3%
                                                                                                                        32 [|
                                                                                                                                   3.1%
                                                                                                                         33
                                                                                                                                    0.0%
                                                                                                                                                      1.2%
                                                                                               3.1%]
                                                                                                      20 [|||||93.8%]
                                                                                                                         34
                                                                                                                                    0.0%
                                                                                                                                           48
                                                                                                                                                      0.0%]
                                                                                                                                                     |75.2%]
|68.1%]
                                                                                              31.1%
                                                                                                      22 [|
                                                                                                                 4.4%
                                                                                                                        36 [
                                                                                                                                   6.9%
                                                                                                                                           50
cat("Loading RegMap data.\n")
                                                                                               5.0%
                                                                                                                 3.1%
                                                                                                                         37
                                                                                                                                    0.0%
load("../data/regmap.RData")
                                                                                               5.1%
                                                                                                             | | | 43.1%]
                                                                                                                         38 []]
                                                                                                                                   13.9%]
                                                                                                                                                      3.1%]
                                                                                                      25 [|
                                                                                                             33.5%
                                                                                                                         39 [
                                                                                                                                           53
                                                                                               4.5%
                                                                                                                                   0.0%
                                                                                                                         40
                                                                                    12 [
                                                                                               3.1%
                                                                                                      26 [||
                                                                                                                35.6%
                                                                                                                                   3.1%
                                                                                                                                           54 [|||||65.2%]
                                                                                                      27 [|
                                                                                              10.6%]
                                                                                                                         41
                                                                                    13 [|
                                                                                                                                   0.0%
                                                                                                                                                      0.6%
                                                                                               1.3%] 28 [|||||50.6%]
                                                                                                                         42 [|||| 31.4%] 56 [
                                                                                                                                                      1.9%
                                                                                          Mem[
                                                                                                                        Tasks: 1885; 14 running
----:---F1 pca.regmap.R Top L1 Git-master (ESS[S] [none] Rox) ------
                                                                                                                         Load average: 19.41 18.81 17.92
Loading vc-git...done
                                                                                                                         Uptime: 54 days, 19:58:26
```

4. Request a compute node.

```
$ screen -S rcc_workshop
$ sinteractive --partition=broadwl \
    --time=2:00:00 --account=rcc-guest \
    --reservation=rworkshop2
$ echo $HOSTNAME
```

5. Start up R programming environment.

```
$ module load R/3.4.1
$ R
R> getwd()
```

Aims of workshop

- Do an analysis of a large-scale data set in R.
- Develop some useful skills for large-scale data analysis in R within a high-performance computing environment, and apply these skills to a medium-scale data set.

Outline

- Initial setup.
- Brief introduction.
- Part 1: Warm-up with PCA of RegMap data.
- Part 2: Implementing multithreaded computation in R for analysis of genetic adaptation to climate.
- Brief recap.

Part 1: PCA of the RegMap data

Adaptation to Climate Across the Arabidopsis thaliana Genome

Angela M. Hancock, Benjamin Brachi, Nathalie Faure, Matthew W. Horton, Lucien B. Jarymowycz, F. Gianluca Sperone, Chris Toomajian, Fabrice Roux, Joy Bergelson*

www.sciencemag.org SCIENCE VOL 334 7 OCTOBER 2011

- 1. Inspect RegMap data.
- 2. Run PCA interactively and assess time & memory needs.
- 3. Examine PCA results.
- 4. Run PCA using Rscript.
- 5. Run PCA using SLURM job engine, and inspect output.

Exercise: Run PCA using SLURM job engine, and inspect output.

```
sbatch pca.sbatch
```

Useful commands while job is running:

```
squeue --user=<cneitd> | less -S
ssh midway2-xxxx
```

Useful commands after job has completed:

```
htop --user=<cnetid>
sacct --user=<cnetid> --units=G | less -S
less ../output/pca_err.txt
less ../output/pca_out.txt
```

Part 2: Genetic analysis of climate variables in RegMap data

- 1. Inspect climate ("phenotype") data.
- 2. Run analysis interactively and assess time & memory needs.
- 3. Experiment with multithreaded matrix operations to improve computation time.
- 4. Experiment with parallel computation of the weights using mclapply.
- 5. Automate climate.R analysis using command-line arguments.
- 6. Run analysis using SLURM job engine, and inspect output.
- 7. Use SLURM job engine to automate analysis of all 48 climate variables.

There is no best tool—use whatever works for you.

Some general advice

- 1. help(package = cool_package).
- 2. Use **midway2**, not midway1.
- 3. Email help@rcc.uchicago.edu R help on the RCC cluster.
- 4. Learn to avoid loops as much as possible; e.g., use apply(), lapply(), tapply(), do.call().
- 5. Document your setup—start with sessionInfo().

After the workshop

- Feedback.
- Suggestions for future R workshop topics (e.g., Rcpp).