ITROB1 - Robotics 1

Peter Ahrendt

Course Intro

- Lecturers
 - Peter Ahrendt and Mads Dyrmann
- Mondays 12:00 16:00
 - Robotics theory + Matlab exercises
 - Robotic software development + Crustcrawler exercises
- Group exam based on final report (12-grade scale)
 - 30 min. oral defence (robot demo + presentation + questions)
- Three mandatory assignments to attend exam

Course content

- Robotics theory
 - Coordinate transforms, kinematics, control, ...
- ROS (Robot Operating System)
- Hands-on robot programming
 - Python and Matlab
- Computer vision and robotics sensors
- Project-based exam
 - Crustcrawler + ROS + vision + ..

What is robotics?

Key facts about the vehicle Sensors and hardware components that have .- Seats for two passengers and a space for their belongings A button to start or pull over, and been custom-built for self-driving New technologies to protect • an emergency stop button • A screen showing the route pedestrians, including a flexible windscreen and front made of a foam-like material · Software designed to drive from point A to point B without requiring any An electric battery +human intervention Speed capped * Primary and backup systems at 25 mph for steering and braking

Robots

One definition :

"A goal-oriented machine that can sense, plan and act"

- Robota (slave) work, hard work
 - Dirty, Dangerous and Dull

Industrial robots

Application examples

Autonomous Underwater Vehicle (AUV)

Exoskeleton

CrustCrawler

http://www.crustcrawler.com/

Example final projects

- Locate + pick-and-place
- Parts assembly
- Motion planning using manual guiding
- Combinations of sensor/actuator technology + robot programming/simulation/theory
 - Kinect or Force sensor (eg. Flexiforce)
- Note:
 - Vision has to be in-the-loop
 - Has to use ROS node abstraction (at least 2 nodes)

Robotic systems overview

Figure 1.4: The integration of a mechanical arm, sensing, computation, user interface and tooling forms a complex robotic system. Many modern robotic systems have integrated computer vision, force/torque sensing, and advanced programming and user interface features.

Kinematic structures

SCARA - (RRP)

Kinematic structure

Articulated Manipulator (RRR)

Spherical wrist

Kinematic structures

Figure 1.16: The Epson Cartesian Robot. Cartesian robot designs allow increased structural rigidity and hence higher precision. Cartesian robots are often used in pick and place operations. (Photo courtesy of Epson Robots.)

Workspace

Degrees-of-freedom (DOF)

Forward and inverse kinematics

Figure 1.20: Coordinate frames attached to the links of a two-link planar robot. Each coordinate frame moves as the corresponding link moves. The mathematical description of the robot motion is thus reduced to a mathematical description of moving coordinate frames.

Robot planning

Force sensors / control

Figure 9.2: Robot end effector in contact with a rigid surface.

Robotic vision systems

Rigid motions and homogeneous transformations

Angles – cosine/sine

sine:
$$\sin \theta = \frac{b}{c} = \frac{side\ opposite}{hypotenuse}$$

cosine:
$$\cos \theta = \frac{a}{c} = \frac{side \ adjacent \ \theta}{hypotenuse}$$

tangent:
$$\tan \theta = \frac{b}{a} = \frac{side\ opposite\ \theta}{side\ adjacent\ \theta} = \frac{\sin \theta}{\cos \theta}$$

cotangent:
$$\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}$$

secant:
$$\sec \theta = \frac{1}{\cos \theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

Atan2 function

Vectors

- E.g. p = [1, 2] (or sometimes \vec{p})
- Can represent a point / position
 - .. or a translation
 - (and many other things)
- Can be added (parallellogram-rule)
 - eg. p1=[1,2], p2=[3,5] and p1+p2 = [4, 7]

Vectors for translation

The blue object has been translated by what vector to produce the red image?

B.
$$\binom{5}{-2}$$

c.
$$\binom{5}{2}$$

C.
$$\binom{5}{2}$$
D. $\binom{-2}{5}$

Matrices

• Eg.
$$R = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

- Can represent rotation
 - (and many other things..)
- Can be multiplied with vector

$$- \text{ E.g p} = {5 \choose 10} \text{ then Rp} = {25 \choose 55}$$

• Or other matrix..

$$-R_1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, R_2 = \begin{pmatrix} 2 & 4 \\ 7 & 9 \end{pmatrix}$$
 and $R_1R_2 = \begin{pmatrix} 16 & 22 \\ 34 & 48 \end{pmatrix}$

Multiplication order is important!

Matrices for rotation

• E.g.
$$\theta = \frac{\pi}{2} = 90$$
 degrees, $R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

- When $p_1 = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$ then $p_0 = R$ $p_1 = \begin{pmatrix} -10 \\ 5 \end{pmatrix}$

Rigid motions

- Rigid motion = translation + rotation
- Eg. $p_0 = R_1^0 p_1 + d_0$
 - d_0 = translation and R_1^0 = rotation between o_0 and o_1
 - p₁ is coordinates of point in frame o₁ and p₀ is the coordinates of same point in frame o₀

Example: (2D) Planar robot arm

Joints, Links and Frames + Rigid motion

Figure 3.6: Two-link planar manipulator. The z-axes all point out of the page, and are not shown in the figure.

Homogeneous Transformation

Combination of translation and rotation

• In 2D : H =
$$\begin{pmatrix} R & d \\ 0 & 1 \end{pmatrix}$$

• .. or explicit H =
$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) & d_x \\ \sin(\theta) & \cos(\theta) & d_y \\ 0 & 0 & 1 \end{pmatrix}$$

• For example H =
$$\begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$
 = "translate to [2,3] and rotate 90 degrees"

Homogeneous Representation

- Generalization of a point
- $P = {p \choose 1}$ where p is a point

- Eg.
$$P_0 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
 or $P_1 = \begin{pmatrix} 15 \\ 18 \\ 1 \end{pmatrix}$

Using homogeneous transformations

Calculating rigid motions

$$-P_0 = HP_1 = \begin{pmatrix} R^0_1 & d_0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p_1 \\ 1 \end{pmatrix} = R^0_1 p_1 + d_0$$

For example, finding end effector position

- ie.
$$P_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 and then $P_0 = H P_1 = d_0$

Kinematic chains and transformation matrices

 Complete transformation from frame 0 to frame n is given by

$$T_{n}^{0} = A_{1}^{0} A_{2}^{1} ... A_{n}^{n-1}$$

(The A-matrices are the homogeneous transformation matrices between frames)

- Similar results between other frames...
 - Eg. finding the origin of joint 2 in a 4-joint robot would just use $T_2^0 = A_1^0 A_2^1$

Exercises

- Form groups of 3-4 persons (ideally multidisciplinary!)
- Week 1 Exercises and Assignment
 - (MANDATORY) Robot example assignment
 - Exercise: 2D Planar Robot in MATLAB
- Install:
 - MATLAB
 - Robotics Toolbox (from petercorke.com)