EE 235, Winter 2018, Homework 7: Fourier Transforms Due Friday February 16, 2018 in class Write down ALL steps for full credit

HW7 Topics:

- Fourier Transforms: Analyze (Transform) and Synthesize (Inverse Transform)
- Fourier Transforms: Periodic Signals
- Parseval's Theorem

HW7 Course Learning Goals Satisfied:

- Goal 1: Describe signals in different domains (time, frequency) and map characteristics in one domain to those in another.
- Goal 3: Perform convolutions for arbitrary and closed-form continuous-time signals
- Goal 4: Analyze LTI system given different system representations (including input-output equations, impulse response, frequency response) and translate between these representations.

HW7 References: OWN Sections 4.1 - 4.6

HW7 Problems (Total = 106 pts):

- 1. Review (20 pts)
 - (a) Partial Fraction Expansion. (4 pts) Let $H(s) = \frac{s+2}{(s+3)(s^2+2s+1)}$. Write H(s) as a sum of partial fractions.

$$\begin{array}{l} \textbf{Solution.} \ H(s) = \frac{s+2}{(s+3)(s^2+2s+1)} = \frac{s+2}{(s+3)(s+1)^2} = \frac{A}{(s+1)^2} + \frac{B}{s+1} + \frac{C}{s+3} \\ A(s+3) + B(s+1)(s+3) + C(s+1)^2 = s+2 \\ By \ comparing \ coefficients, \\ B+C=0 \\ A+4B+2C=1 \\ 3A+3B+C=2 \\ A=\boxed{0.5}, B=\boxed{0.25}, \ C=\boxed{-0.25} \\ \end{array}$$

(b) Unit Impulse. (4 pts)

Suppose we have an impulse train signal $h(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$. Given an arbitrary signal x(t), find x(t)h(t) and x(t)*h(t) in terms of x(t).

Solution. According to the sampling property of unit impulse, we have

$$x(t)h(t) = x(t) \sum_{k=-\infty}^{\infty} \delta(t - kT) = \sum_{k=-\infty}^{\infty} x(t)\delta(t - kT) = \sum_{k=-\infty}^{\infty} x(kT)\delta(t - kT)$$

According to the echo property of unit impulse, we have

$$x(t)*h(t) = x(t)*\left[\sum_{k=-\infty}^{\infty} \delta(t-kT)\right] = \sum_{k=-\infty}^{\infty} \left[x(t)*\delta(t-kT)\right] = \left|\sum_{k=-\infty}^{\infty} x(t-kT)\right|$$

- (c) System Properties. (3 pts)
 - i. (1 pt) In general, if an LTI system has a causal impulse response, does it mean the system is also stable? Justify your response (with a proof if "true", or a counter-example if "false").

Solution. No, this is not true. Consider the system with impulse response h(t) = u(t). This system is causal, but not stable.

- ii. (1 pt) What about the reverse of the previous question: if an LTI system has a stable impulse response, does it mean the system is causal? Justify your response (with a proof if "true", or a counter-example if "false").
 - **Solution.** No. Consider the system with impulse response $h(t) = e^t u(-t)$. This is stable, because $\int_{t-\infty}^{\infty} |h(t)| dt = \int_{-\infty}^{0} e^t dt = 1$. However, it is not causal, because $h(t) \neq 0$ for t < 0.
- iii. (1 pt) In general, if an LTI system has a periodic impulse response, what can you say about its stability?

Solution. Not stable, since it won't be absolutely summable, by the nature of the periodic impulse response.

(d) Fourier Series. (9 pts)
Consider an LTI system with frequency response

$$H(jw) = \begin{cases} -2, & -2 \le w \le 3\\ 0, & otherwise \end{cases}$$

i. (3 pts) Suppose the input is a periodic signal x(t) with the Fourier Series representation $w_o=\frac{1}{2},\ a_0=1,\ a_2=a_{-2}^*=e^{-j\frac{\pi}{2}},\ a_4=2,\ a_{-4}=-1,\ a_7=5,\ \text{and}\ a_k=0$ for k otherwise. Find the output Fourier coefficients b_k , and specify your answer for all k. Show that $b_0=-2,\ b_2=-2e^{-j\frac{\pi}{2}},\ b_{-2}=-2e^{j\frac{\pi}{2}},\ b_4=-4,\ b_{-4}=2,\ b_7=0,\ \text{and}\ b_k=0$ otherwise.

Solution.
$$b_k = a_k H(jkw_o) = a_k H(j\frac{k}{2})$$

 $b_0 = (1)H(j0) = (1)(-2) = -2$
 $b_2 = (e^{-j\frac{\pi}{2}})H(j1) = (e^{-j\frac{\pi}{2}})(-2) = -2e^{-j\frac{\pi}{2}}$
 $b_{-2} = (e^{j\frac{\pi}{2}})H(-j1) = (e^{j\frac{\pi}{2}})(-2) = -2e^{j\frac{\pi}{2}}$
 $b_4 = (2)H(j2) = (2)(-2) = -4$
 $b_{-4} = (-1)H(-j2) = (-1)(-2) = 2$
 $b_7 = (5)H(-j3.5) = (5)(0) = 0$

ii. (3 pts) Using your results from (A), find the output y(t). Simplify y(t) as much as possible. Show that $y(t) = -2 - 4\cos(t - \frac{\pi}{2}) - 4j\sin(2t) - 2e^{j2t}$.

iii. (3 pts) If x(t) is delayed by 2, then what are the output coefficients b_k now? Show that $b_0 = -2$, $b_2 = -2e^{-j(\frac{\pi}{2}+2)}$, $b_{-2} = -2e^{j(\frac{\pi}{2}+2)}$, $b_4 = -4e^{-j4}$, $b_{-4} = 2e^{j4}$, $b_k = 0$ otherwise.

Solution. According to the Fourier Series property of shifting, we have $y(t) = x(t-t_o) \leftrightarrow c_k^y = c_k^x e^{-jkw_o t_o}$ $b_0 = -2e^{-jk(\frac{1}{2})(2)} = -2e^{-j0} = -2$ $b_2 = -2e^{-j\frac{\pi}{2}}e^{-jk(\frac{1}{2})(2)} = -2e^{-j(\frac{\pi}{2}+k)} = -2e^{-j(\frac{\pi}{2}+2)}$ $b_{-2} = -2e^{j\frac{\pi}{2}}e^{-jk(\frac{1}{2})(2)} = -2e^{j(\frac{\pi}{2}+2)}$ $b_4 = -4e^{-jk(\frac{1}{2})(2)} = -4e^{-j4}$ $b_{-4} = 2e^{-jk(\frac{1}{2})(2)} = 2e^{j4}$ $b_7 = 0e^{-jk(\frac{1}{2})(2)} = 0$

- 2. Fourier Transform: Analysis (27 pts)
 - (a) (3 pts) $x(t)=2+e^{-|t|}$. Show that $X(j\omega)=4\pi\delta(\omega)+\frac{2}{1+\omega^2}$

$$\begin{array}{l} \textbf{Solution.} \ x(t) = 2 + e^{-t}u(t) + e^tu(-t) \\ X(j\omega) = 2(2\pi\delta(\omega)) + \frac{1}{1+j\omega} + \frac{1}{1-j\omega} \\ X(j\omega) = 4\pi\delta(\omega) + \frac{2}{1+\omega^2} \end{array}$$

(b) (5 pts) $x(t) = rect(2(t + \frac{3}{4})) - rect(2(t + \frac{1}{4}))$. Show that $Xj\omega = je^{j\frac{\omega}{2}}\sin(\frac{\omega}{4})\mathrm{sinc}(\frac{\omega}{4})$.

$$\begin{split} & \textbf{Solution.} \ X(j\omega) = e^{j\omega\frac{3}{4}}(\frac{1}{2}sinc(\frac{\omega}{4})) - e^{j\omega\frac{1}{4}}(\frac{1}{2}sinc(\frac{\omega}{4})) \\ & X_{j\omega} = \frac{1}{2}(e^{j\omega\frac{3}{4}} - e^{j\omega\frac{1}{4}})sinc(\frac{\omega}{4}) \\ & X_{j\omega} = \frac{1}{2}e^{j\frac{\omega}{2}}(e^{j\frac{\omega}{4}} - e^{-j\frac{\omega}{4}})sinc(\frac{\omega}{4}) \\ & X_{j\omega} = \frac{1}{2}e^{j\frac{\omega}{2}}(2j)\frac{e^{j\frac{\omega}{4}} - e^{-j\frac{\omega}{4}}}{2j}sinc(\frac{\omega}{4}) \\ & X_{j\omega} = je^{j\frac{\omega}{2}}\sin(\frac{\omega}{4})sinc(\frac{\omega}{4}) \end{split}$$

(c) (3 pts) $x(t) = \frac{1}{2}e^{-j\frac{\pi}{4}}\delta(t-3) + \frac{1}{2}e^{j\frac{\pi}{4}}\delta(t+3)$. Show that $X(j\omega) = \cos(\frac{\pi}{4} + 3\omega)$.

Solution.
$$X(j\omega) = \frac{1}{2}e^{-j\frac{\pi}{4}}e^{-j3\omega} + \frac{1}{2}e^{j\frac{\pi}{4}}e^{j3\omega}$$

 $X(j\omega) = \frac{1}{2}\left(e^{-j(\frac{\pi}{4}+3\omega)} + e^{j(\frac{\pi}{4}+3\omega)}\right)$
 $X(j\omega) = \cos(\frac{\pi}{4}+3\omega)$

(d) (3 pts) $x(t) = \frac{j}{\pi} \sin t + \frac{1}{\pi} \cos(3t)$. Show that $X(j\omega) = \delta(\omega - 1) - \delta(\omega + 1) + \delta(\omega - 3) + \delta(\omega + 3)$.

Solution.
$$X(j\omega) = \frac{j}{\pi} \frac{\pi}{j} (\delta(\omega - 1) - \delta(\omega + 1)) + \frac{1}{\pi} \pi (\delta(\omega - 3) + \delta(\omega + 3))$$

 $X(j\omega) = \delta(\omega - 1) - \delta(\omega + 1) + \delta(\omega - 3) + \delta(\omega + 3)$

(e) (3 pts) x(t) is given as $x(t)=(e^{-t}-e^{-2t})u(t)$. Find $X(j\omega)$. Show that $X(j\omega)=\frac{1}{(1+j\omega)(2+j\omega)}$.

Solution.
$$x(t) = e^{-t}u(t) - e^{-2t}u(t)$$

$$X(j\omega) = \frac{1}{1+j\omega} - \frac{1}{2+j\omega} = \frac{2+j\omega-1-j\omega}{(1+j\omega)(2+j\omega)} = \frac{1}{(1+j\omega)(2+j\omega)}$$

(f) (5 pts) x(t) is given as $x(t) = e^{-3|t|} \sin t$. Find $X(j\omega)$. Show that $X(j\omega) = -\frac{3j}{9+(\omega-1)^2} + \frac{3j}{9+(\omega+1)^2}$. Hint: $X(j\omega) = \frac{1}{2\pi}(X_1(j\omega) * X_2(j\omega))$ Solution. Let $x(t) = x_1(t)x_2(t)$, such that $X(j\omega) = \frac{1}{2\pi}(X_1(j\omega) * X_2(j\omega))$ $x_1(t) = e^{-3|t|}$ and $x_2(t) = \sin t$ $X_1(j\omega) = \frac{6}{9+\omega^2}$ $X_2(j\omega) = \frac{\pi}{j}(\delta(\omega-1) - \delta(\omega+1))$ $X(j\omega) = \frac{1}{2\pi}(X_1(j\omega) * X_2(j\omega))$ $X(j\omega) = -\frac{3j}{9+(\omega-1)^2} + \frac{3j}{9+(\omega+1)^2}$

(g) (5 pts)
$$x(t)$$
 is given as
$$x(t) = 4\pi \text{sinc}(4\pi t) \cos(4\pi t).$$

Find $X(j\omega)$.

Solution. If
$$x(t) = x_1(t)x_2(t)$$
, $X(j\omega)$ can be represented as $X(j\omega) = \frac{1}{2\pi}(X_1(j\omega) * X_2(j\omega))$. $x_1(t) = 4\pi \operatorname{sinc}(4\pi t)$ and $x_2(t) = \cos(4\pi t)$ $X_1(j\omega) = 4\pi \left(\frac{\pi}{4\pi}\operatorname{rect}\left(\frac{\omega}{(2)(4\pi)}\right)\right) = \pi\operatorname{rect}\left(\frac{\omega}{8\pi}\right)$ $X_2(j\omega) = \pi\delta(\omega - 4\pi) + \pi\delta(\omega + 4\pi)$ $X(j\omega) = \frac{1}{2\pi}X_1(j\omega) * X_2(j\omega)$
$$X(j\omega) = \frac{\pi}{2}\operatorname{rect}\left(\frac{\omega - 4\pi}{8\pi}\right) + \frac{\pi}{2}\operatorname{rect}\left(\frac{\omega + 4\pi}{8\pi}\right)$$

- 3. Fourier Transform: Synthesize (Inverse Transform). (25 pts) Using common Fourier Transform pairs and properties, find the signal x(t) given:
 - (a) $(2 \text{ pts}) X(jw) = 3[\delta(w-1) + \delta(w+1)] + 2[\delta(w-2\pi) + \delta(w+2\pi)].$ Show that $\frac{3}{\pi}cos(t) + \frac{2}{\pi}cos(2\pi t)$.

Solution.
$$x(t) = \frac{3}{\pi}\pi[\delta(w-1) + \delta(w+1)] + \frac{2j}{\pi}\frac{\pi}{j}[\delta(w-2\pi) + \delta(w+2\pi)] = \frac{3}{\pi}\cos(t) + \frac{2}{\pi}\cos(2\pi t)$$

(b) (2 pts) $X(jw) = \delta(w) + 2\delta(w+3) + 2\delta(w-3)$. Show that $x(t) = \frac{1}{2\pi} + \frac{2}{\pi}cos(3t)$.

Solution.
$$x(t) = \frac{1}{2\pi} + 2\frac{1}{2\pi}e^{j(-3)t} + 2\frac{1}{2\pi}e^{j(3)t}$$

= $\frac{1}{2\pi} + \frac{2}{\pi}cos(3t)$

(c) (2 pts) $X(jw) = cos(w + \frac{\pi}{6})$.

Hint: Write X(jw) as a sum of complex exponentials first. Show that $x(t) = \frac{1}{2}e^{j\frac{\pi}{6}}\delta(t+1) +$ $\frac{1}{2}e^{-j\frac{\pi}{6}}\delta(t-1).$

Solution. Rewriting X(jw) using Euler's relation

$$X(jw) = \frac{1}{2}e^{j(w+\frac{\pi}{6})} + \frac{1}{2}e^{-j(w+\frac{\pi}{6})}$$

$$X(jw) = \frac{1}{2}e^{j\frac{\pi}{6}}e^{jw} + \frac{1}{2}e^{-j\frac{\pi}{6}}e^{-jw}$$

$$x(t) = \frac{1}{2}e^{j\frac{\pi}{6}}\delta(t+1) + \frac{1}{2}e^{-j\frac{\pi}{6}}\delta(t-1)$$

(d) (2 pts) $X(jw) = \frac{1}{2}e^{j2w} + \frac{1}{3}$. Show that $x(t) = \frac{1}{2}\delta(t+2) + \frac{1}{3}\delta(t)$.

Solution.
$$X(jw) = \frac{1}{2}e^{-jw(-2)} + \frac{1}{3}$$

 $x(t) = \frac{1}{2}\delta(t+2) + \frac{1}{3}\delta(t)$

(e) (5 pts) $X(jw) = \frac{2sin(3(w-2\pi))}{w-2\pi}$. Show that $x(t) = rect(\frac{t}{6})e^{j2\pi t}$.

Hint: represent X(jw) using a sinc function.

Solution. We already knew that when $x(t) = rect(\frac{t}{T})$, X(jw) = Tsinc(wT/2).

when
$$x(t) = x(t - t_o)$$
, $X(jw) \to e^{-jwt_o}X(jw)$

T is 6, and this was delayed 2π

So
$$x(t) = e^{j2\pi t}$$
 for $|t| < 3$

And x(t) = 0 for otherwise.

Thus, $x(t) = rect(\frac{t}{6})e^{j2\pi t}$.

(f) (5 pts) $X(jw) = \frac{2-jw}{12-7jw-w^2}$.

Hint: Use partial fractions. Show that $x(t) = 2e^{4t}u(-t) - e^{3t}u(-t)$.

Solution.
$$X(jw) = \frac{2-jw}{12-7jw+(jw)^2}$$

 $X(jw) = \frac{2-jw}{(4-jw)(3-jw)} = \frac{A}{4-jw} + \frac{B}{3-jw}$
 $A = \frac{2-jw}{3-jw}|_{jw=4} = \frac{2-4}{3-4} = 2$
 $B = \frac{2-jw}{4-jw}|_{jw=3} = \frac{2-3}{4-3} = -1$

$$A = \frac{2-jw}{3-jw}|_{jw=4} = \frac{2-j}{3-4} = 2$$

$$2-jw|_{jw=4} = \frac{2-j}{3-4} = 2$$

$$X(jw) = \frac{2}{4-jw} - \frac{1}{3-jw}$$
$$x(t) = 2e^{4t}u(-t) - e^{3t}u(-t)$$

$$(\mathrm{g}) \ (5 \ \mathrm{pts}) \ X(jw) = \begin{cases} 1, & -2 < w < 0 \\ -1, & 0 \leqslant w < 2 \\ 0, & otherwise \end{cases} .$$

Hint: Write this as a sum of two shifted rect functions. Show that $x(t) = -\frac{2j}{\pi} sinc(t) sin(t)$.

Solution.
$$X(jw) = rect(\frac{w+1}{2}) - rect(\frac{w-1}{2})$$

$$x(t) = \frac{1}{\pi} sinc(t)e^{-jt} - \frac{1}{\pi} sinc(t)e^{jt} = -\frac{2j}{\pi} sinc(t)\frac{e^{jt} - e^{-jt}}{2i} = -\frac{2j}{\pi} sinc(t)sin(t)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(jw)e^{jwt}dw$$

$$x(t) = \frac{1}{2\pi} \int_{-2}^{0} e^{jwt} dw + \frac{1}{2\pi} \int_{0}^{2} -e^{jwt} dw$$

Solution.
$$X(jw) = rect(\frac{w+1}{2}) - rect(\frac{w-1}{2})$$

Using the properties of Fourier transform, we have $x(t) = \frac{1}{\pi} sinc(t) e^{-jt} - \frac{1}{\pi} sinc(t) e^{jt} = -\frac{2j}{\pi} sinc(t) \frac{e^{jt} - e^{-jt}}{2j} = -\frac{2j}{\pi} sinc(t) sin(t)$
Another way to solve this problem: $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(jw) e^{jwt} dw$
 $x(t) = \frac{1}{2\pi} \int_{-2}^{0} e^{jwt} dw + \frac{1}{2\pi} \int_{0}^{2} -e^{jwt} dw$
 $x(t) = \frac{1}{2\pi} (\frac{1}{jt} - \frac{e^{-j2t}}{jt}) + \frac{1}{2\pi} (-\frac{e^{j2t}}{jt} + \frac{1}{jt}) = -\frac{2j}{\pi} sinc(t) sin(t)$

(h) (2 pts) $X(jw) = e^{-j3w}[u(w+\pi) - u(w-\pi)].$

Show that $x(t) = sinc(\pi(t-3))$.

Solution.
$$X(jw) = e^{-jw(3)}X_1(jw)$$

$$x(t) = x_1(t-3)$$

$$X_1(jw) = rect(\frac{w}{2})$$

$$X_1(jw) = rect(\frac{w}{2\pi})$$

$$x_1(t) = \frac{\pi}{\pi} sinc(\pi t) = sinc(\pi t)$$

$$x(t) = sinc(\pi (t-3))$$

$$x(t) = sinc(\pi(t-3))$$

- 4. Fourier Transform: Periodic Signals (8 pts)
 - (a) (4 pts) Find the Fourier Transform of $x(t) = e^{j\pi t} + \sin(2\pi t)$ without using the table of pairs (applying the formula of Fourier Transform in Continuous Time).

Solution.
$$x(t) = e^{j\pi t} + \frac{e^{j2\pi t} - e^{-j2\pi t}}{2j}$$

 $\omega_0 = \pi, a_1 = 1, a_2 = \frac{1}{2j}, a_{-2} = \frac{-1}{2j}$
 $Hence, X(jw) = (2\pi)(1)\delta(w - \pi) + (2\pi)(\frac{1}{2j})\delta(w - 2\pi) + (2\pi)(\frac{-1}{2j})\delta(w + 2\pi)$
 $= 2\pi\delta(w - \pi) + \frac{\pi}{j}[\delta(w - 2\pi) - \delta(w + 2\pi)]$

(b) (4 pts) Find the Fourier Transform of $x(t) = \sum_{k=-\infty}^{\infty} \delta(t-2k)$.

Hint: Find the Fourier series coefficients a_k of the signal first, and then apply the formula $X(jw) = \sum_{k=0}^{\infty} 2\pi a_k \delta(w - kw_o).$

Solution. The Fourier series coefficients for this signal were computed by:

$$a_k = \frac{1}{2} \int_{-1}^{1} \delta(t) e^{-jkw_o t} dt = \frac{1}{2}$$

That is, every Fourier coefficient of the periodic impulse train has the same value, $\frac{1}{2}$. Substituting

this value for a_k in $X(jw) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(w - kw_o)$ yields

$$X(jw) = \frac{2\pi}{2} \sum_{k=-\infty}^{\infty} \delta(w - \frac{2\pi k}{2}) = \pi \sum_{k=-\infty}^{\infty} \delta(w - \pi k)$$

- 5. Fourier Transforms: Other Properties (16 pts)
 - (a) (4 pts) Suppose x(t) has the Fourier series representation $w_o = \frac{\pi}{8}$ and nonzero coefficients $a_1 = 2j$, $a_{-1} = -2j$, $a_3 = 3e^{j\frac{\pi}{4}}$, $a_{-3} = 3e^{-j\frac{\pi}{4}}$. Without synthesizing and calculating x(t), what is P_{∞} ?

Solution.
$$P_{\infty} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$$

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\pi/8} = 16$$

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{16} \int_{-8}^{8} |x(t)|^2 dt$$
By Parseval's Theorem:
$$P_{\infty} = \sum_{k=0}^{\infty} |a_k|^2$$

$$P_{\infty} = \sum_{k=-\infty}^{\infty} |a_k|^2$$

$$P_{\infty} = |a_1|^2 + |a_{-1}|^2 + |a_3|^2 + |a_{-3}|^2$$

$$P_{\infty} = (2j)(-2j) + (-2j)(2j) + (3e^{j\frac{\pi}{4}})(3e^{-j\frac{\pi}{4}}) + (3e^{-j\frac{\pi}{4}})(3e^{j\frac{\pi}{4}})$$

$$P_{\infty} = 4 + 4 + 9 + 9 = \boxed{26}$$

(b) (4 pts) Given X(jw) below, what is E_{∞} of x(t)?

Solution. In the frequency domain, energy of signal can be expressed in terms of the Fourier Transform of the time domain representation:

Transform of the time domain repres
$$E_{\infty} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$$

$$E_{\infty} = \frac{1}{2\pi} \left[\int_{-3}^{-1} |-j|^2 d\omega + \int_{1}^{3} |j|^2 d\omega \right]$$

$$E_{\infty} = \left[\frac{1(-1-(-3))+1(3-1)}{2\pi} \right]$$

$$E_{\infty} = \left[\frac{2}{\pi} \right]$$

(c) Let $X(j\omega)$ denote the Fourier transform of the signal x(t) shown in the figure. Note: The top part in the figure is a triangle.

Using the properties of the Fourier transform (and without explicitly evaluating $X(j\omega)$),

i. (4 pts) Find X(0).

Hint: Apply the definition of the Fourier transform formula.

Solution. Setting $\omega = 0$ in the definition of the Fourier transform,

$$\begin{split} X(jw) &= \int_{-\infty}^{\infty} x(t)e^{-jwt}dt \\ X(0) &= X(jw)\big|_{w=0} = \int_{-\infty}^{\infty} x(t)e^{-j0t}dt \\ &= \int_{-\infty}^{\infty} x(t)dt \end{split}$$

so X(0) is the area under x(t). From the figure this is the sum of the areas of a rectangle and a triangle, 2+1=3

ii. (4 pts) Find $\int_{-\infty}^{\infty} X(j\omega)d\omega$. Hint: Apply the definition of the inverse Fourier transform formula.

Solution. Setting t = 0 in the inverse Fourier transform formula,

$$\begin{split} x(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{jwt} d\omega \\ x(0) &= x(t) \big|_{t=0} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{jw0} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) d\omega \\ 2\pi x(0) &= \int_{-\infty}^{\infty} X(j\omega) d\omega \end{split}$$

so we get
$$\int_{-\infty}^{\infty} X(j\omega)d\omega = 2\pi x(0) = \boxed{4\pi}$$
.

6. Homework Self-Reflection

(10 pts) After completing your homework, go to the following link to rate your skill or concept understanding level for each item listed. Your self-reflection must be completed by the due date. All submissions are time-stamped, so please give yourself plenty of time to complete and submit your self-reflection.

http://bit.ly/2s2mQ1o