ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра общей физики

Лабораторная работа 5.4.2

Исследование энергетического спектра бета-частиц и определение их максимальной энергии при помощи магнитного спектрометра

Преподаватель: к.ф.-м.н. Юрьев Ю.В.

Обучающийся: Глотов А.А

1 Введение

1.1 Аннотация

Бета - распадом называется самопроизвольное превращение ядер, при котором их массовое число не меняется, а заряд увеличивается или уменьшается на единицу. Бета распад является внутренуклонным процессом, например, при β^- распаде нейтрон распадается на протон, электрон и электронное антинейтрино. В нашей работе мы будем иметь дело именно с таким типом распада:

$$_{Z}^{A}X - >_{Z+1}^{A}X + e^{-} + \tilde{\nu}$$
 (1)

Цель: исследовать энергетический спектр бета-частиц при распаде ядер $({}_{5}5^{1}37)$ Cs, определить их максимальную энергию.

1.2 Теоретические сведения

Результатом бета-распада, помимо вылета электрона, является также вылет антинейтрино. Почти вся энергия, выделяющаяся в ходе данного процесса, оказывается разделённой между этими двумя частицами, поэтому выполняется:

$$T_{max} - T_e - E_{\nu} = 0 \tag{2}$$

Здесь $T_m ax$ — максимально возможная в данном распаде кинетическая энергия электрона, T_e — его фактическая кинетическая энергия, E_{ν} — энергия антинейтрино.

Величиной $W(p_e)dp_e$ назовём вероятность того, что электрон получит при испускании импульс, лежащий в интервале $(p_e; p_e+dp_e)$. Имеем:

$$W(p_e)dp_e \propto p_e^2 (T_{max} - T_e)^2 dp_e \tag{3}$$

Исходя из этого выражения, можно видеть, что зависимость $\mathrm{W}(p_e)$ имеет вид колокола.

Дочерние ядра, образующиеся при бета-распаде, часто оказываются в возбуждённом состоянии, они отдают свою энергию либо испуская гамма квант, либо передавая избыток энергии одному из электронов. Излучаемые в таком процессе электроны имеют строго определённую энергию и называются конверсионными. В результате конверсии в спектре появляется монохроматическая линия, ширина которой обуславливается только лишь неточностью аппаратуры. По ней можно определить разрешающую силу спектрометра.

Рис. 1: Вид энергетического спектра бета-распада

1.3 Экспериментальная установка

Основным элементом установки является магнитная линза (катушка), по сути являющаяся аналогом обычной линзы для заряженных частиц. Её фокусное расстояние зависит от импульса электрона и индукции магнитного поля (т.е. силы тока в катушке) следующим образом:

При неизменной силе тока, на счётчик будут попадать электроны с определённым импульсом, другие же будут проходить мимо.

Рис. 2: Схема бета-спектрометра

Из-за конечных размеров источника, диафрагм, ограничивающих углы вылета, и окна счётчика, а также в следствие аберраций, при заданной величине тока в катушке, на счётчик попадают электроны имеющий импульс, лежащий в промежутке $(p_e^{-\frac{\Delta p_e}{2}}; p_e + (\frac{\Delta p_e}{2}))$. Величина Δp_e называется разрешающей способностью спектрометра. Разрешающая способность также зависит и от диаметра свинцового фильтра, необходимого для отсеивания электронов, летящих по центру, на траекторию которых не способно повлиять магнитное поле. Число частиц, регистрируемых установкой, связано с W следующим образом:

$$N(p_e) = CW(p_e)p_e \tag{4}$$

Где С – некоторая константа, определяемая геометрией установки.

С помощью форвакуумного насоса давление внутри спектрометра уменьшают до 0,1 Тор. Это сделано для того, чтобы вещество внутри не мешало прохождению электронов.

Рис. 3: Схема установки

2 Результаты измерений и обработка данных

Для различных значений тока компьютерная программа может посчитать, число электронов в единицу времени, которое попадает на счётчик. Зная, что произведение импульса конверсионного электрона на скорость света равно $1013.5~{\rm K}{\rm 9B}$ произведём пересчёт от тока к импульсу. Аналогично можно произвести пересчёт к энергии, зная, что энергия внутренней конверсии равна $634~{\rm K}{\rm 9B}$. Учитывая фон, по этим данным построим таблицу: (время измерения составляет $t{=}100~{\rm c}$).

$N_{\overline{0}}$	I, A	N - N_{Φ} , c ⁻¹	Т, кэВ	р, кэВ/с
1	0,00	-0,015	0,0	0,0
2	0,2	0,065	2,4	49,7
3	0,4	0,095	9,6	99,4
4	0,60	0,105	21,3	149,1
5	0,8	0,405	37,3	198,9
6	1,00	0,765	57,2	248,6
7	1,20	1,364	80,7	298,3
8	1,40	1,994	107,2	348,0
9	1,60	2,264	136,5	397,7
10	1,80	3,314	168,2	447,4
11	2,00	3,894	201,9	497,1
12	2,20	3,454	237,4	546,9
13	2,40	4,133	274,5	596,6
14	2,60	4,143	312,9	646,3
15	2,80	3,444	352,4	696,0
16	3,00	3,024	393,0	754,7
17	3,20	1,984	434,4	795,4
18	3,40	1,264	476,6	845,1
19	3,60	0,635	519,5	894,9
20	3,80	0,964	562,9	944,6
21	3,90	2,724	584,9	969,4
22	4,00	3,944	606,9	994,3
23	4,10	5,763	629,1	1019,1
24	4,20	5,143	651,3	1044,0
25	4,30	4,064	673,7	1068,9
26	4,40	1,164	696,2	1093,7

Здесь погрешность измерений : І ± 0.01 A, (N - N_{Φ}) $\pm \sqrt{N/100}$, Т ± 0.1 кэB, р ± 0.1 кэB/с. По этим данным построим график зависимости N - N_{Φ} =f(p)

Построим график Ферми-Кюри. По оси абсцисс будем откладывать энергию, а по оси ординат величину $\frac{\sqrt{(N-N_{\Phi})(p)}}{p^{3/2}}$. Из соотношений, приведённых в теоретических сведениях, можно получить, что выполнено следующее:

$$rac{\sqrt{(N-N_{\Phi})(p)}}{p^{3/2}}=T_{max}$$
 - T

Так график будет иметь отрицательный угол наклона и пересекать ось абсцисс в точке максимальной энергии бета-распада.

Используя линейную аппроксимацию по МНК получаем, что максимальная кинетическая энергия бета-распада равна:

$$T_{max} = (590 \pm 30)$$
 кэВ