Metody Numeryczne - Sprawozdanie 11

Piotr Moszkowicz 6 czerwca 2019

Spis treści

1	Wstęp Teoretyczny 1.1 Splot dwóch funkcji	
2	Opis problemu	2
3	Wyniki	3
	$3.1 k = 8 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	3
	$3.2 k = 10 \dots $	4
	3.3 k = 12	

1 Wstęp Teoretyczny

Na jedenastych zajęciach zajmowaliśmy się odszumianiem sygnału przy użyciu szybkiej transformaty Fouriera.

1.1 Splot dwóch funkcji

Splot dwóch funkcji f(x) oraz g(x) dany jest wzorem:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau \tag{1}$$

1.2 Szybka transformata Fouriera - algorytm radix-2

Algorytm radix-2 jest wykorzystywany przez bibliotekę GSL w momencie, gdy liczba węzłów jest potega 2. Celem jest wyliczenie współczynników transformaty Fouriera c_k .

$$x_j = \frac{2\pi}{N}j$$

 $j = 0, 1, 2, ..., N - 1$
 $N = 2^r, r \in N$

następnie wyliczamy parametr c_k dany wzorem:

$$c_{k} = \langle E_{k}, f \rangle = \sum_{j=0}^{N-1} E_{k}(x_{j}) f(x_{j})$$

$$= \sum_{j=0}^{N-1} f(x_{j}) exp(-Ix_{j}k)$$

$$= \sum_{j=0}^{N-1} f_{j} exp(-I\frac{2\pi}{N}jk)$$
(2)

następnie grupujemy parzyste (j = 2m)

i nieparzyste (j = 2m + 1) składniki:

$$c_{k} = \sum_{m=0}^{\frac{N}{2}-1} f_{2m} exp(-I\frac{2\pi}{N}(2m)k)$$

$$+ \sum_{m=0}^{\frac{N}{2}-1} f_{2m+1} exp(-I\frac{2\pi}{N}(2m+1)k)$$

$$c_{k} = \sum_{m=0}^{\frac{N}{2}-1} f_{2m} exp(-I\frac{2\pi}{N/2}mk)$$

$$+ exp(-I\frac{2\pi}{N/2}k) \sum_{m=0}^{\frac{N}{2}-1} f_{2m+1} exp(-I\frac{2\pi}{N/2}mk)$$

$$(3)$$

$$+ exp(-I\frac{2\pi}{N/2}k) \sum_{m=0}^{\frac{N}{2}-1} f_{2m+1} exp(-I\frac{2\pi}{N/2}mk)$$

$$(4)$$

Finalnie otrzymujemy wzór na c_k :

$$c_k = p_k + \varphi k q_k \tag{5}$$

gdzie:

$$p_{k} = \sum_{m=0}^{\frac{N}{2}-1} f_{2m} exp(-I\frac{2\pi}{N/2}mk)$$

$$q_{k} = \sum_{m=0}^{\frac{N}{2}-1} f_{2m+1} exp(-I\frac{2\pi}{N/2}mk)$$

$$\varphi_{k} = exp(-I\frac{2\pi}{N/2}k)$$

Korzystając z okresowości wyrazów p_k oraz q_k wyznaczamy tylko połowę z nich. Również korzystamy z poniższej własności czynnika fazowego:

$$\varphi_{k+N/2} = exp(-I\frac{2\pi}{N/2}(k + \frac{N}{2}))
= exp(-I\frac{2\pi}{N/2}(k)exp(-I\frac{2\pi}{N/2}(\frac{N}{2}))
= -exp(-I\frac{2\pi}{N/2}(k) = -\varphi_k$$
(6)

2 Opis problemu

Naszym problemem było odszumianie funkcji za pomocą filtru Gauss'a, bazującego na FFT. Nasz sygnał to splot funkcji, gdzie f(x) to sygnał, a g(x) to funkcja wagowa. Funkcje dane są poniższymi wzorami:

$$f(t) = f_0(t) + \Delta = \sin(1 \cdot \omega t) + \sin(2 \cdot \omega t) + \sin(3 \cdot \omega t) + \Delta \tag{7}$$

gdzie:

 Δ - liczba losowa $\omega = \frac{2\pi}{T}$ - pulsacja T - okres

$$g(t) = \frac{1}{\sigma\sqrt{2\pi}}exp(-\frac{t^2}{2\sigma^2}) \tag{8}$$

W związku z tym, iż funkcja g(t) będzie tylko połówką pełnej funkcji Gaussa, musimy dodać drugą funkcję, która będzie pozostałą częścią. Z tego powodu korzystamy z dwóch funkcji $g_1(t)$ oraz $g_2(t)$ danymi wzorami:

$$g_1(t) = FFTg(t > 0) = \frac{1}{N} \sum_{i=1}^{N} g(t_i) exp(-\frac{2\pi I \cdot k \cdot i}{N})$$
 (9)

$$g_2(t) = FFTg(t < 0) = \frac{1}{N} \sum_{i=1}^{N} g(t_i) exp(+\frac{2\pi I \cdot k \cdot i}{N}) = FFT^{-1}g(t > 0)$$
 (10)

Korzystając z powyższej wiedzy należało odszumić sygnał dla k=8,10,12, gdzie T=1, $t_{max}=3T$, $\sigma=\frac{T}{20}$. Dla każdego k alokowaliśmy tablicę sygnałów niezaburzonych $(f_0(t))$, tablice sygnałów zaburzonych (f(t)), dwie tablicę wag $(g_1(t), g_2(t))$. Następnie obliczaliśmy transformaty funkcji f(t), $g_1(t)$ oraz transformatę odwrotną funkcji $g_2(t)$. Następnie obliczaliśmy transformatę splotu - czyli iloczyn $f(k) \cdot (g_1(k) + g_2(k))$ i finalnie obliczaliśmy transformatę odwrotną tego wyrażenia. Na końcu szukaliśmy elementu o maksymalnym module $f_{max} = max|f(2 \cdot i)|$ oraz zapisywaliśmy wyniki do plików.

3 Wyniki

3.1 k = 8

Rysunek 1: Sygnał zaburzony oraz znormalizowany splot $\mathbf{k}=8$

Rysunek 2: Sygnał niezaburzony oraz znormalizowany splot k=8 Jak widać powyżej splot nie jest gładki, jakość odszumiania nie jest najlepsza.

3.2 k = 10

Rysunek 3: Sygnał zaburzony oraz znormalizowany spłot
k $=10\,$

Rysunek 4: Sygnał niezaburzony oraz znormalizowany spłot k $=\,10$

Na powyższych wykresach widać już poprawę dokładności odszumienia - między innymi ekstrema funkcji zaczynają się pokrywać.

3.3 k = 12

Rysunek 5: Sygnał zaburzony oraz znormalizowany spłot k $=\,12$

Rysunek 6: Sygnał niezaburzony oraz znormalizowany splot $\mathbf{k}=12$

Zwiększając ilość węzłów doszliśmy do największej gładkości funkcji.

3.4 Wnioski

Metoda nie pozwala na uzyskanie bardzo dokładnego wyglądu funkcji. Jak widać na powyższych porównaniach, zwiększanie ilości węzłów pozwala na uzyskanie gładszej funkcji - dokładniejszej reprezentacji. Prawdopodobnie zmiana szerokości okna pozwoliłaby nam na uzyskanie dokładniejszych wyników - z tego powodu wykresy nie pokrywają się dla każdego t_i .