

Universidad de las Fuerzas Armadas ESPE

Departamento: Ciencias de la computacion

Carrera: Ingeniria en Tecnologias de la Informacion

Taller académico Na: 1

1. Información General

• Asignatura: Metodologia de Desarrollo de Software

• Apellidos y nombres de los estudiantes: Kevin Cañola, Alexandro Molina

• NRC: 20967

Fecha de realización: 11/06/2025

2. Objetivo del Taller y Desarrollo

Objetivo del Taller:

Elaborar un análisis y comprensión de las disciplinas del proceso RUP (Rational Unified Process), mediante la identificación y emparejamiento correcto de cada disciplina con su definición correspondiente, con el fin de fortalecer el conocimiento en metodologías de desarrollo de software y su aplicación práctica en proyectos reales.

Desarrollo:

Realizar las siguientes preguntas:

1. Junte los objetivos con la correspondiente fase del Proceso Unificado de

Desarrollo.

1. Lograr versiones	A. Inicio/Elaboración/Construcción/
útiles (alfa, beta y otras	Transición
versiones de prueba) tan	
rápido como sea práctico	
2. Lograr que las	B. Inicio/Elaboración/Construcción/
partes interesadas estén de	Transición
acuerdo en que las líneas de	

base de implementación	
están completas	
3. Discriminar los	C. Inicio/Elaboración/Construcción/
casos de uso críticos del	Transición
sistema, que son los	
escenarios principales de	
operación que impulsarán	
las principales	
compensaciones de diseño	
4. Lograr la	D. Inicio/Elaboración/Construcción/
autosuficiencia del usuario.	Transición

RESPUESTA:

5.	Lograr versiones útiles (alfa, beta y otras versiones de prueba) tan	E. Construcción
	rápido como sea práctico	
6.	Lograr que las partes interesadas estén de acuerdo en que las líneas de base de implementación están completas	F. Transición
7.	Discriminar los casos de uso críticos del sistema, que son los escenarios principales de operación que impulsarán las principales compensaciones de diseño	G. Elaboración
8.	Lograr la autosuficiencia del usuario.	H. Inicio

2. Seleccione la opción correcta. El Proceso Unificado de Desarrollo es.

Seleccione una:

Metodología para el desarrollo de software que define claramente: quién, cómo, cuándo y qué debe hacerse en el proyecto

Programa para desarrollar software con poca documentación, que permite el cambio ágil dentro del proyecto

Herramienta que permite el desarrollo de software avanzado, sin necesidad de datos específicos.

Metodología ágil para el desarrollo de software

RESPUESTA:

Metodología para el desarrollo de software que define claramente: quién, cómo, cuándo y qué debe hacerse en el proyecto

Metodología ágil para el desarrollo de software

3. Seleccione las opciones correctas. El Proceso Unificado de Desarrollo se basa en las siguientes características fundamentales: Seleccione una o más de una:

Exige poca documentación

Dirigido por casos de uso

Proceso secuencial

Iterativo e incremental

Centrado en la arquitectura

Centrado en el diseño

RESPUESTA:

Dirigido por casos de uso

Iterativo e incremental

Centrado en la arquitectura

4.	Una metodología de desarrollo de software es un conjunto de técnicas y		
	en fases para el desarrollo de	, de manera eficaz, y abarca el	
	del mismo. Es una colección	para la resolución de una clase de	
probl	emas. Las metodologías de desarrollo	de software descomponen el proceso en	
activi	dades.		

Procedimientos organizados

Productos software

Ciclo de vida

Métodos

RESPUESTA:

Una metodología de desarrollo de software es un conjunto de **técnicas y procedimientos organizados** en fases para el desarrollo de **productos software**, de manera eficaz, y abarca el **ciclo de vida** del mismo. Es una colección **métodos** para la resolución de una clase de problemas.

5. En las siguientes oraciones complete con el término correspondiente:

Metodología. -

es un conjunto de técnicas y procedimientos organizados en fases para el desarrollo de productos software, de manera eficaz, y abarca el ciclo de vida del mismo.

Notación. -

es una técnica repetible para la resolución de un problema específico.

Método. -

es un conjunto de reglas gráficas o textuales para representar un modelo

6. Seleccione los términos correctos. RUP tiene dos dimensiones:

1.	El eje representa	A. Horizontal/el tiempo/ ciclo de
	y muestra los aspectos	vida/
	del del proceso a medida	
	que se desarrolla en iteraciones.	
2.	1. El eje representa	B. Vertical/las disciplinas/las
	como requisitos, análisis	actividades/
	y diseño, implementación, que	
lógicamente agrupan		
por afinidad		

RESPUESTA:

A. Horizontal / el tiempo / ciclo de vida

✓ El eje horizontal representa el tiempo y muestra los aspectos del ciclo de vida del proceso a medida que se desarrolla en iteraciones.

B. Vertical / las disciplinas / las actividades

✔ El eje vertical representa las disciplinas como requisitos, análisis y diseño, implementación, que lógicamente agrupan actividades por afinidad.

7. Empareje las disciplinas con su definición.

1	Pone el sistema a	А	Entrega/Implementación/Modelamiento/Gestión
1.	disposición de los	1 2.	de Proyecto/Prueba/Entorno/Entrega/Gestión de
	usuarios finales		la configuración.
2.		R	Entrega/Implementación/Modelamiento/Gestión
۷.	acceso a los	ъ.	de Proyecto/Prueba/Entorno/Entrega/Gestión de
	artefactos del		·
			la configuración
	proyecto y controla		
	y gestiona los		
	cambios		
3.	- · · · · · ·	C.	Entrega/Implementación/Modelamiento/Gestión
	negocio y el		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	dominio del		la configuración.
	problema y presenta		
	una solución viable		
4.	Gestionar riesgos y	D.	Entrega/Implementación/Modelamiento/Gestión
	dirige y coordinar		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	personas		la configuración
5.	Asegura la calidad	E.	Entrega/Implementación/Modelamiento/Gestión
	verifica que los		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	requisitos se		la configuración
	cumplan		Ç
6.	Asegurar que el	F.	Entrega/Implementación/Modelamiento/Gestión
	equipo cuente con		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	lo necesario,		la configuración
	orientación y		5
	herramientas		
	adecuados		
	udccuudob		

7. Transforma los modelos en código fuente

G. Implementación/Modelamiento/Gestión de Proyecto/Prueba/Entorno/Entrega/Gestión de la configuración.

RESPUESTA:

Nº	Definición	Respuesta Correcta
1	Pone el sistema a disposición de los usuarios finales	A. Entrega
2	Administrar el acceso a los artefactos del proyecto y controla y gestiona los cambios	B. Gestión de la configuración
3	Comprende el negocio y el dominio del problema y presenta una solución viable	C. Modelamiento
4	Gestionar riesgos y dirige y coordina personas	D. Gestión de Proyecto
5	Asegura la calidad verifica que los requisitos se cumplan	E. Prueba
6	Asegurar que el equipo cuente con lo necesario, orientación y herramientas adecuados	F. Entorno
7	Transforma los modelos en código fuente	G. Implementación

3. Referencias (Norma APA 7.0)

- Pressman, R. S., & Maxim, B. R. (2020). *Ingeniería de software: Un enfoque práctico* (9ª ed.). McGraw-Hill Education.
- Sommerville, I. (2011). *Ingeniería de software* (9ª ed.). Pearson Educación.
- Kruchten, P. (2004). *The Rational Unified Process: An Introduction* (3rd ed.). Addison-Wesley Professional.
- Villalobos, J., & Alva, J. (2016). Metodologías ágiles y tradicionales en proyectos de software: un análisis comparativo. Revista de Investigación en Tecnologías de la Información, 4(8), 35–45. https://doi.org/10.36825/RITI.v4i8.123
- IEEE Computer Society. (2014). *Guide to the Software Engineering Body of Knowledge (SWEBOK Guide)* (Version 3.0). IEEE. https://doi.org/10.1109/9780769551660