Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2034 - Análisis de Variable Real 2 - Catedrático: Dorval Carías 1 de agosto de 2021

HT 2

Problema 1. Pruebe que si $f \in R[a,b]$ entonces $f^2 \in R[a,b]$.

Demostración. Conocemos que $f \in R[a,b]$, por definición f es acotada en [a,b]. $\Longrightarrow \exists M > 0 \ni |f| \le M$. Por otra parte, nótese que $|f^2| = |f||f| \le 2M$, por lo que f^2 también es acotada en [a,b]. Ahora bien, por el *criterio de Cauchy* aplicado a f, sabemos que $\forall \varepsilon/2M > 0, \exists P \in P[a,b] \ni$

$$U(P, f) - L(P, f) < \frac{\varepsilon}{2M}$$
.

Definamos la partición $P = a = x_0 < x_1 < x_2 < \cdots < x_n = b$. Ahora considérese,

$$M_k(f) = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$$
 y $m_k(f) = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$
 $M_k^*(f^2) = \sup\{f^2(x) : x \in [x_{k-1}, x_k]\}$ y $m_k^*(f^2) = \inf\{f^2(x) : x \in [x_{k-1}, x_k]\}$

Arbitrariamente, tomamos $x, y \in [x_{k-1}, x_k]$ tal que,

$$|f^{2}(x) - f^{2}(y)| = |f(x) - f(y)||f(x) + f(y)| \le 2M|f(x) - f(y)|. \tag{1}$$

Nótese que,

$$|f^2(x) - f^2(y)| \le M_k^*(f^2) - m_k^*(f^2)$$

Además,

$$|f(x) - f(y)| \le M_k(f) - m_k(f)$$

Por (1) podemos concluir que,

$$M_k^*(f^2) - m_k^*(f^2) \le 2M[M_k(f) - m_k(f)]$$

Como queremos comprobar que f^2 es integrable, proponemos :

$$U(P, f^{2}) - L(P, f^{2}) = \sum_{k=1}^{n} \left[M_{k}^{*}(f^{2}) - m_{k}^{*}(f^{2}) \right] \Delta x_{k}$$

$$\leq 2M \sum_{k=1}^{n} \left[M_{k}(f) - m_{k}(f) \right] \Delta x_{k} =$$

$$= 2M \left[U(P, f) - L(P, f) \right] < 2M \frac{\varepsilon}{2M} = \varepsilon.$$

 \therefore Por el criterio de Cauchy $f^2 \in R[a,b]$.

Problema 2. Indique si el enunciado a continuación es verdadero o falso, justificando su respuesta: "Si $f \ge 0$ en [a,b], y si la integral superior de f se anula en [a,b], entonces $f \in R[a,b]$ ".

Demostración. Por hipótesis, tenemos que $f \ge 0$ y $\overline{\int_a^b} = 0$ en el intervalo [a,b]. Por propiedad, sabemos que

$$\int_{a}^{b} f \le \overline{\int_{a}^{b}} f = 0.$$

Pero, como sabíamos que f > 0, entonces:

$$\int_{a}^{b} f = 0.$$

Por lo tanto,

$$\underline{\int_a^b} f = \overline{\int_a^b} f = 0, \qquad f \in R[a, b].$$

Problema 3. Sean $g \in R[a,b]$; $f : [a,b] \to \mathbb{R}$ una función acotada; (x_n) una sucesión de puntos en [a,b], tales que f(x) = g(x), para todos los $x \in [a,b]$, $x \neq x_n$. Presente un ejemplo que muestre que f no necesariamente es Riemann integrable.

Solución. Proponemos un intervalo [0, 1], tal que:

- 1. $g(x) = 0, \forall x \in [0, 1] \ni \int_0^1 g(x) = 0.$
- 2. $(x_n) \in [0,1]$, donde (x_n) es una sucesión de racionales.

Supóngase que $f(x_n) = 1$ y f(x) = 0 si $x \neq x_n$. Por lo tanto, $\int_0^1 f(x)$ no existe y consecuentemente, no es Riemann integrable.

Problema 4. Sea $f \in C[a,b]$, tal que $\int_a^b f = 0$. Pruebe que existe $x_0 \in [a,b] \ni f(x_0) = 0$.

Demostración. Por reducción al absurdo, supóngase que $f(x) \neq 0, \forall x \in [a,b]$. $\Longrightarrow f > 0$ o f < 0. Además, conocemos que $f \in C[a,b]$, tal que $\int_a^b f = 0$. Por la **HT 1**, conocemos si f es continua, $f \geq 0$ y $\int_a^b f = 0$; entonces $f(x) = 0, \forall x \in [a,b]$. $(\to \leftarrow)$ Por lo tanto,

$$\exists x_0 \in [a, b] \ni f(x_0) = 0.$$

2

Problema 5. Si $f, g \in R[a, b]$, pruebe que $h(x) = \max\{f(x), g(x)\}\ y \ k(x) = \min\{f(x), g(x)\}\$ son Riemann-integrables en [a, b]. Además, compruebe que:

$$\int_a^b h + \int_a^b k = \int_a^b f + \int_a^b g$$

Demostración. Comenzaremos comprobando que h(x) y k(x) son integrables ¹, haciéndole un cambio de forma a las expresiones

$$h(x) = \max\{f(x), g(x)\} = \frac{1}{2}(f(x) + g(x) + |f(x) - g(x)|)$$

$$k(x) = \min\{f(x), g(x)\} = \frac{1}{2}(f(x) + g(x) - |f(x) - g(x)|)$$

Por hipótesis, conocemos que f(x) y g(x) son integrables. Previamente, ya se había demostrado que las sumas, el valor absoluto y la resta no afectan la integrabilidad de las funciones. Por lo tanto, h(x) y k(x) son integrables.

Ahora bien,

$$\begin{split} \int_a^b h + \int_a^b k &= \int_a^b \max\{f(x), g(x)\} + \int_a^b \min\{f(x), g(x)\} \\ &= \frac{1}{2} \int_a^b (f(x) + g(x) + |f(x) - g(x)|) + \frac{1}{2} \int_a^b (f(x) + g(x) - |f(x) - g(x)|) \\ &= \frac{1}{2} \int_a^b f(x) + \frac{1}{2} \int_a^b g(x) + \frac{1}{2} \int_a^b |f(x) - g(x)| + \frac{1}{2} \int_a^b f(x) + \frac{1}{2} \int_a^b g(x) - \frac{1}{2} \int_a^b |f(x) - g(x)| \\ &= \int_a^b f(x) + \int_a^b g(x). \end{split}$$

Documentando ampliamente en la literatura, máx $\{a,b\} = \frac{1}{2}(a+b+|a-b|)$ y mín $\{a,b\} = \frac{1}{2}(a+b-|a-b|)$