GENERACIÓN Y CARACTERIZACIÓN DE VÓRTICES ÓPTICOS MEDIANTE MODULADORES ESPACIALES DE LUZ

TRABAJO DE GRADO

Santiago Echeverri Chacón sechev14@eafit.edu.co

ESCUELA DE CIENCIAS DEPARTMENTO DE CIENCIAS FÍSICAS MAESTRÍA EN FÍSICA APLICADA UNIVERSIDAD EAFIT 2015

GENERACIÓN Y CARACTERIZACIÓN DE VÓRTICES ÓPTICOS MEDIANTE MODULADORES ESPACIALES DE LUZ

Santiago Echeverri Chacón sechev14@eafit.edu.co

TRABAJO DE GRADO PARA OPTAR AL TÍTULO DE MÁGISTER EN FÍSICA APLICADA

DIRECTOR: René Restrepo Gómez rrestre6@eafit.edu.co

ESCUELA DE CIENCIAS
DEPARTMENTO DE CIENCIAS FÍSICAS
MAESTRÍA EN FÍSICA APLICADA
UNIVERSIDAD EAFIT
2015

"The first principle is that you must not fool yourself - and you are the easiest person to fool..."

Richard P. Feynman

Agradecimientos

Muchas gracias. A mis padres por su apoyo. A René y Luciano por su dirección, amistad, apoyo, y por aceptarme en su grupo. A Carlos y Camilo por su ayuda y trabajo duro en el proyecto.

Santiago

abril 2015

Resumen

Se desarrolló un método novedoso de reconstrucción de fase basado en la técnica de Diversidad de Fase (PD) para la caracterización de aberraciones ópticas en sistemas 4F con iluminación coherente. La novedad del metodo resulta del uso de máscaras de fase espiral como diverisdad de fase, que producen haces portadores de momento orbital distinto de cero. Nuestras simulaciones y experimentos demuestran que el uso de haces con dislocaciones mejora la precición de la aproximación y permite generar haces de alta calidad.

Índice general

A	crónimos y Nomenclatura	XI
1.	Introducción	1
	1.1. Estado del arte del estudio de haces Laguerre-Gauss	3
	1.2. Motivación	4
	1.3. Planteamiento del problema	5
	1.4. Objetivos	5
	1.4.1. Objetivo General	5
	1.4.2. Objetivos Específicos	5
	1.5. Estructura del documento	6
Ι	Generación de haces Laguerre-Gauss por medio de un SLM	11
2.	Generación de Vórtices Ópticos	12
	2.1. Estado del Arte	12
	2.1.1. Moduladores Espaciales de Luz	13
	2.1.1.1. Moduladores basados en micro espejos	13

			2.1.1.2. Moduladores de cristal líquido	14
		2.1.2.	Aberraciones ópticas	15
	2.2.	Marco	Teórico de la Caracterización de SLMs de Trasmisión	17
		2.2.1.	Cristales líquidos	17
			2.2.1.1. Características de los CL	17
			2.2.1.2. Clasificación de los CL	19
			2.2.1.3. Las pantallas de cristal líquido nematico retorcido	21
		2.2.2.	Polarización de la luz	22
		2.2.3.	El formalismo de Jones	29
			2.2.3.1. Algunos estados de polarización importantes	30
			2.2.3.2. Elementos ópticos como operadores en la representación de Jones	31
		2.2.4.	Propiedades ópticas de los cristales líquidos nemáticos enroscados (TN-LCD)	39
	2.3.	Revisio	ón de la literatura	44
	2.4.	Caract	terización de TN-SLM	46
II	Ca	aractei	rización y corrección de aberraciones de VO	52
3.	Car	acteriz	zación de aberraciones en Vórtices Ópticos	53
	3.1.	Introd	lucción	53
	3.2.	Estado	o del Arte	53
	3.3.	Marco	Teórico	55
		3.3.1.	PD tradicional	57

	3.3.2.	PD con iluminación coherente	59
	3.3.3.	Máscaras espirales como diversidades de fase	60
3.4.	Mater	iales y Métodos	61
3.5.	Result	cados	66
	3.5.1.	Resultados de simulaciones	66
		3.5.1.1. Preparación de las fases de referencia	66
	3.5.2.	Descripción y análisis de resultados simulados	68
		3.5.2.1. Discusión sobre GS	69
	3.5.3.	Resultados experimentales	70
4. Coi	nclusio	nes y perspectivas	74
A. Ap	A. Apéndice Planos de rotadores		

Índice de figuras

1.1.	Comparación entre haces Gaussianos y haces Laguerre-Gauss	2
2.1.	Comparación entre TN-SLM	13
2.2.	Modulador espacial basado en arreglos de micro espejos	14
2.3.	Efecto de pixelado eb el SLM sobre las aberraciones en VO	16
2.4.	Dos estados de la materia comunes en la naturaleza	17
2.5.	Esquema de la composición química general en una molécula de CL	18
2.6.	Orientación de una molécula de CL con respecto al ángulo director en su vecindad	20
2.7.	Clasificación de los cristales líquidos según su orden	21
2.8.	Arquitectura de un TN-LCD	22
2.9.	Distintas representaciones del campo eléctrico para ilustrar la polarización .	24
2.10.	Rotación del sistema de coordenadas de la elipse de polarización	26
2.11.	Estados de polarización circular	27
2.12.	Propagación de un estado de polarización lineal a través de un polarizador horizontal	34
2.13.	Generación de estados de polarización circulares	37

2.14.	Generación de estados de polarización lineales	38
2.15.	Propagación de la luz en un TN-LC	39
2.16.	Modelos de TN-LCD	43
2.17.	Publicaciones en relación a la caracterización de TN-LCD	45
3.1.	Relaciones entre funciones de transferencia ópticas y sus FT	57
3.2.	Diagrama de flujo del PD con iluminación coherente	62
3.3.	Diagrama del sistema óptico para PD con iluminación coherente	64
3.4.	Ejemplo de una máscara tenedor con astigmatismo	65
3.5.	Resultados de simulaciones con PD de iluminación coherente	68
3.6.	Comparación visual y de coeficientes entre uno de los frentes de onda aleatorios de escala $1/14\lambda$ y las fases reconstruidas con PD y GS	70
3.7.	Comparación visual y de coeficientes entre uno de los frentes de onda aleatorios de escala $1/14\lambda$ y las fases reconstruidas con PD y GS	71

Acrónimos y Nomenclatura

- **AO** Óptica Adaptativa Adaptive Optics
- APSF Función de Punto Extendido de Amplitud Amplitude Point Spread Function
- FT Transformada de Fourier Fourier Transform
- GP Pupila Generalizada Generalized Pupil
- NI-WFS Sensado Remoto No Interferométrico Non Interferometric Wavefront Sensing
- **OAM** Momento Angular Orbital Optical Angular Momentum
- OTF Función de transferencia óptica Optical transfer function
- **PSF** Función de Dispersión de Punto Point Spread Function
- **TN-LCD** Pantalla de Cristál Líquido tipo Nemático Retorcido Twisted Nematic Liquid Crystal Display
- **VO** Vórtices Ópticos Optical Vortices (OV)

CAPÍTULO 1

Introducción

Como es bien sabido, la luz transporta energía; esto se hace evidente al comparar las temperaturas en el día y en la noche o al iluminar una celda fotovoltáica. En su representación cuántica, la luz está compuesta por partículas sin masa llamadas fotones. Al no tener masa, su energía está directamente asociada a su momento, y el momento de los fotones así como el de otras partículas en la mecánica cuántica puede ser tanto lineal como angular. El momento angular se compone a su vez de dos contribuciones, la de spin y la orbital. Desde un punto de vista macroscópico, el momento angular de spin se asocia con la polarización de la luz, es decir con la dirección de oscilación de los campos eléctrico y magnético con respecto a un eje coordenado. Asimismo, el momento angular orbital (OAM) se asocia con las distribuciones espaciales de la amplitud y la fase, tal y como se observan en un plano perpendicular a la propagación de la luz. Para aclarar esta idea comparemos dos haces polarizados linealmente, uno con OAM cero, y el otro con OAM +1. El haz de luz que carece de momento angular orbital presenta una distribución de fase constante. Si éste tiene una distribución de amplitud Gaussiana, al ser enfocado por una lente, en un plano de observación veremos que la distribución de intensidad está dada por una función de Airy como la que se ilustra en la figura 1.1c).

Por el contrario, el haz con OAM +1 posee una distribución de fase helicoidal donde el valor de la fase varía azimutalmente desde π a $-\pi$ radianes como se muestra en la figura 1.1b). Haces con distribuciones de fase de este tipo poseen una indeterminación de la fase en el centro dado que en la coordenada r=0 confluyen fotones con todos los valores posibles de fase. La consecuencia directa de la indeterminación en este tipo de puntos es

la ausencia de luz por efecto de superposición. Si, como en el caso anterior, observamos la intensidad en un plano de enfoque veremos perfil con forma de dona como la de la figura 1.1 d).

Figura 1.1: Las figuras a) y b) representan mapas de fase de haces con OAM 0 y +1 definidos en el intervalo $[-\pi,\pi]$. Las intensidades correspondientes luego de enfocar los haces en un plano de observación se muestran en las figuras c) y d).

Por su naturaleza rotacional, los puntos alrededor de los cuales la fase varía de $-\pi$ a π se conocen como **vórtices ópticos** (VO), y están presentes siempre que haya haces con momento angular orbital distinto de cero. Por otra parte, de forma similar a cómo se describe la amplitud en haces con OAM cero como "Gaussiana", los haces con momento angular distinto de cero se describen matemáticamente como haces "Laguerre-Gauss" (LG). Esto se debe a que soluciones de la ecuación de onda en coordenadas cilíndricas incluyen no sólo una componente de amplitud Gaussiana, sino también una dependencia radial y azimutal descrita por polinomios de Laguerre, con los cuales se pueden representar vórtices ópticos de fase y amplitudes del tipo dona. El estudio, y el desarrollo de aplicaciones sobre los haces Laguerre-Gauss y por consecuencia, de los VO, requiere entonces de la capacidad de manipular el OAM de haces de luz.

1.1 Estado del arte del estudio de haces Laguerre-Gauss

El momento angular orbital añade un grado de libertad al conjunto de propiedades que pueden ser manipuladas y que caracterizan a la luz, en particular: la polarización o espin, la coherencia, el espectro y la cantidad de energía. Siendo así, la posibilidad de manipular el momento angular orbital abre camino a un amplio rango de aplicaciones en numerosas áreas de la ciencia y la tecnología, tanto en el mundo microscópico (células y micromanipulación) como en el macroscópico (astronomía y telecomunicaciones).

Por listar brevemente algunas aplicaciones de los haces con OAM distinto de cero se pueden mencionar: El uso de OAM en telecomunicaciones ópticas como una nueva variable para multiplexación de señales en fibra y en espacio libre [1, 2, 2-4]. En microscopía óptica para resaltar bordes de muestras biológicas transparentes [5, 6], e identificar curvaturas de objetos de fase por medio de interferometría espiral [7]. Además, es una herramienta esencial para la manipulación de objetos en la escala micro al ser usados como pinzas ópticas capaces de atrapar y mover partículas [8]. Se espera también un avance importante en el campo de la computación cuántica vía entrelazamiento cuántico de OAM en fotones [9]. Fuera de las anteriores, cabe destacar algunas de las patentes relacionadas con el tema como: aplicaciones en imagenología médica de resonancia magnética n uclear [10], y teledetección de objetivos militares [11]. También han sido patentadas herramientas y métodos para micromanipulación de partículas microscópicas[12], con posibles aplicaciones en bombas peristálticas para microfluidos [13]. Para concluir, cabe mencionar que hoy en día la radiación óptica no es la única que está siendo usada para la propagación del momento angular orbital; destacan trabajos en los cuales se utilizan los regímenes de ondas de radio [14], rayos X [15], e inclusive haces de electrones [13] para transmitir OAM.

Las referencias y ejemplos mencionados respaldan e ilustran el intenso interés que se ha generado sobre el tema en la comunidad científica, y en particular en las áreas de óptica aplicada y fotónica. En Colombia, el tema de los vórtices ópticos es un area incipiente pero fértil. A nivel nacional se destaca una primera iniciativa teórica por parte del grupo de óptica e información cuántica de la Universidad Nacional sede Bogotá, en la cual se estudió la propagación de haces con OAM distinto de cero en elementos ópticos conocidos como axicones [16]. Asimismo, en el grupo de óptica y tratamiento de señales de la Universidad Industrial de Santander han trabajado en el diseño de un codificador optoelectrónico basado en el momento angular [17, 18]. Es, sin embargo en el ámbito regional de Antioquia

en el cual se concentra la mayor cantidad de esfuerzos en Colombia. El grupo de Óptica y Procesamiento Opto-digital de la Universidad Nacional sede Medellín desarrolló un sistema de pinzas ópticas para la manipulación de microsistemas [19], mientras que el grupo de Óptica y Fotónica de la Universidad de Antioquia ha estudiado la Multiplexación de Información Encriptada y Codificación con Momento Angular Orbital [20], así como la generación experimental de vórtices ópticos con moduladores de transmisión [21, 22]. Además de los esfuerzos de cada institución, destaca el trabajo colaborativo que se ha afianzado en el marco de convenios de cooperación tales como el proyecto interinstitucional titulado: Aberraciones ópticas en haces Laguerre-Gaussianos: corrección y aplicaciones metrológicas

Este es un proyecto cuya duración es de 24 meses, que comenzó a ejecutarse el 5 de agosto de 2013 y que culminará el 5 de agosto de 2015. Se desarrolla con la participación de grupos de la Universidad EAFIT, la Universidad de Antioquia, el Centro de Investigaciones Ópticas de Argentina, el Politécnico Colombiano Jaime Isaza Cadavid, y el Instituto Tecnológico Metropolitano.

De proyectos como este, se ha formado una red de grupos interesados específicamente en el estudio de VO. En particular, la cooperación entre algunos de ostos grupos derivó en trabajos en los cuales se estudió el efecto de la birrefringencia inducida por cristales birrefringentes en vórtices ópticos [23], y la posibilidad de generar vórtices con una cantidad reducida de niveles de gris en moduladores de transmisión [22, 24]. De forma similar, la Universidad EAFIT, a través de su grupo de Óptica Aplicada y en cooperación con el Centro de Investigaciones Ópticas de Argentina, ha contribuido con el desarrollo de técnicas metrológicas computacionales basadas en el estudio de vórtices en patrones de speckle [25–29].

1.2 Motivación

Con la iniciativa de adquirir las capacidades técnicas y experimentales necesarias para el desarrollo de aplicaciones metrológicas de vórtices ópticos, el grupo de Óptica Aplicada de la Universidad EAFIT abrió dos proyectos internos, y fue merecedor de una beca del programa Jóvenes Investigadores de Colciencias, convocatoria 645 a cursar en el 2015. Las prioridades del grupo, y asimismo los temas de trabajo de estos dos proyectos son:

• El desarrollo de aplicaciones metrológicas de haces Laguerre Gauss.

 La implementación de técnicas basadas en los haces con OAM distinto de cero para instrumentos de microscopia de objetos de fase.

1.3 Planteamiento del problema

En este proyecto se busca generar y caracterizar haces LG por medio de un instrumento electro óptico conocido como modulador espacial de luz (SLM) que previamente debe ser caracterizado.

La propuesta del presente proyecto consiste entonces en caracterizar haces LG por medio de un SLM a partir de la integración de algoritmos de identificación de aberraciones, y una plataforma experimental sistematizada para la generación de haces del tipo LG. Adicionalmente, se propone estudiar posibles aplicaciones de la observación o manipulación de las aberraciones ópticas presentes en haces LG una vez haya sido dominada la capacidad para identificarlas y corregirlas.

1.4 Objetivos

A continuación se listan el objetivo general y los objetivos específicos.

1.4.1 Objetivo General

Desarrollar la capacidad para generar y caracterizar vórtices de fase mediante un SLM de transmisión.

1.4.2 Objetivos Específicos

- Identificar y apropiar los conceptos y procedimientos necesarios para caracterizar moduladores espaciales de luz de transmisión, con miras a la producción y análisis de vórtices ópticos.
- Implementar una plataforma experimental para caracterizar la modulación de amplitud y fase de un SLM a partir de un montaje interferométrico automatizado.

- Obtener experimentalmente vórtices ópticos del tipo Laguerre-Gauss mediante el uso de un SLM y estudiar las distribuciones de intensidad y fase alrededor de los vórtices.
- Proponer alternativas para el desarrollo de aplicaciones metrológicas basadas en la generación de VO y el estudio de sus propiedades.

1.5 Estructura del documento

El texto principal de este trabajo, está dividido en 2 partes temáticas que agrupan los Capítulos. A continuación, se presenta la estructura general de la disertación por Partes y Capítulos:

Parte I: Generación de haces Laguerre-Gauss por medio de un SLM

Parte II: Caracterización y corrección de aberraciones de VO

Bibliografía

- [1] J. Lin, X.-C. Yuan, S. H. Tao, and R. E. Burge. Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states. *Applied Optics*, 46(21): 4680–4685, July 2007. doi: 10.1364/AO.46.004680.
- [2] Graham Gibson, Johannes Courtial, Miles Padgett, Mikhail Vasnetsov, Valeriy Pas'ko, Stephen Barnett, and Sonja Franke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum. *Optics Express*, 12(22):5448–5456, November 2004. doi: 10.1364/OPEX.12.005448.
- [3] Nicolas K. Fontaine, Christopher R. Doerr, and Larry Buhl. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In *Optical Fiber Communication Conference*, OSA Technical Digest, page OTu1I.2. Optical Society of America, March 2012. doi: 10.1364/OFC.2012.OTu1I.2.
- [4] Nenad Bozinovic, Yang Yue, Yongxiong Ren, Moshe Tur, Poul Kristensen, Hao Huang, Alan E. Willner, and Siddharth Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. *Science*, 340(6140):1545–1548, June 2013. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1237861.
- [5] Alexander Jesacher, Severin Fürhapter, Stefan Bernet, and Monika Ritsch-Marte. Shadow effects in spiral phase contrast microscopy. *Physical Review Letters*, 94(23):233902, June 2005. doi: 10.1103/PhysRevLett.94.233902.
- [6] Petr Bouchal and Zden?k Bouchal. Selective edge enhancement in three-dimensional vortex imaging with incoherent light. Optics Letters, 37(14):2949–2951, July 2012. doi: 10.1364/OL.37.002949.
- [7] Severin Fürhapter, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte. Spiral interferometry. *Optics Letters*, 30(15):1953–1955, August 2005. doi: 10.1364/OL. 30.001953.
- [8] David G. Grier. A revolution in optical manipulation. *Nature*, 424(6950):810–816, 2003. doi: 10.1038/nature01935.
- [9] Alois Mair, Alipasha Vaziri, Gregor Weihs, and Anton Zeilinger. Entanglement of the orbital angular momentum states of photons. *Nature*, 412(6844):313–316, July 2001. ISSN 0028-0836. doi: 10.1038/35085529.

- [10] Daniel R. Elgort and Lucian Remus Albu. Active device tracking using light with orbital angular momentum to hyperpolarized MRI, December 2013. URL http://www.google.com/patents/US8611982. U.S. Classification 600/423, 324/307, 600/420; International Classification G01V3/00; Cooperative Classification A61B2019/5231, A61B19/5244, A61B5/055, A61B2019/5251, A61B5/06, A61B2019/5236.
- [11] Harry A. Schmitt, Donald E. Waagen, Nitesh N. Shah, Delmar L. Barker, and Andrew D. Greentree. System and method of orbital angular momentum (OAM) diverse signal processing using classical beams, April 2010. URL http://www.google.com/patents/US7701381. U.S. Classification 342/42, 340/572.7, 340/572.2; International Classification G01S13/74; Cooperative Classification G01S7/499, G01S7/024, G01S17/74, G01S13/78, G01S13/751; European Classification G01S17/74, G01S13/75C, G01S7/499, G01S7/02P, G01S13/78.
- [12] David G. Grier. Holographic microfabrication and characterization system for soft matter and biological systems, April 2013. URL http://www.google.com/patents/ US8431884. U.S. Classification 250/251; International Classification H01S3/10; Cooperative Classification G02B5/001, G03H1/08, G02B21/32, G02B5/32, G03H1/2294, G03H2001/0077.
- [13] Giulio Guzzinati, Laura Clark, Armand Béché, and Jo Verbeeck. Measuring the orbital angular momentum of electron beams. *Physical Review A*, 89(2):025803, February 2014. doi: 10.1103/PhysRevA.89.025803.
- [14] B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov, and R. Khamitova. Utilization of photon orbital angular momentum in the low-frequency radio domain. *Physical Review Letters*, 99(8):087701, August 2007. doi: 10.1103/PhysRevLett.99.087701.
- [15] Shigemi Sasaki and Ian McNulty. Proposal for generating brilliant x-ray beams carrying orbital angular momentum. *Physical Review Letters*, 100(12):124801, March 2008. doi: 10.1103/PhysRevLett.100.124801.
- [16] Angela M. Guzmán, Claudia P. Barrera, Jefferson Flórez, and Florencio E. Hernández. Difracción de luz con momento angular orbital por un axicon. *Bistua: Revista de la Facultad de Ciencias Básicas*, 7(2):31–36, 2009.
- [17] Cristian Acevedo. Análisis teórico-experimental de un haz con momento angular orbital entero y no entero. PhD thesis, Universidad Industrial de Santander, Bucara-

- manga, Santander Colombia, 2012. URL http://repositorio.uis.edu.co/jspui/bitstream/123456789/7339/2/144386.pdf.
- [18] Carlos Fernando Díaz Meza, Cristian Hernando Acevedo Cáceres, Yezid Torres Moreno, and Jaime Guillermo Barrero Pérez. Modelado preliminar de un codificador optoelectrónico para la transferencia de datos sobre el momento angular orbital de la luz. REVISTA UIS INGENIERÍAS, 11(1), May 2013. ISSN 2145-8456. URL http://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/3193.
- [19] María Isabel Alvarez. Implementación de Pinzas Ópticas Holográficas para la Manipulación de Microsistemas. Maestría, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia, 2011. URL http://www.bdigital.unal.edu.co/6814/1/43977451._1_2012.pdf.
- [20] Carlos Andres Rios. Procesamiento Óptico para la Multiplexación de Información Encriptada y Codificación con Momento Angular Orbital. Pregrado, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2010.
- [21] David Muñeton. Generación y caracterización de vórtices ópticos. Pregrado, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2012. URL http://barlai.udea.edu.co/index.php/es/docencia/trabajos-pregrado/637-generacion-y-caracterizacion-de-vortices-opticos.
- [22] E. Rueda, D. Muñetón, J. A. Gómez, and A. Lencina. High-quality optical vortex-beam generation by using a multilevel vortex-producing lens. *Optics Letters*, 38(19): 3941, October 2013. ISSN 0146-9592, 1539-4794. doi: 10.1364/OL.38.003941.
- [23] Jorge A. Gómez, Edgar Rueda, Ángel Salazar, Myriam Tebaldi, Nestor Bolognini, and Alberto Lencina. Effects of the induced birefringence in photorefractive crystals on speckle optical vortices. *Optics and Lasers in Engineering*, 50(3):359–365, March 2012. ISSN 01438166. doi: 10.1016/j.optlaseng.2011.10.021.
- [24] N. Londoño, E. Rueda, J. A. Gómez, and A. Lencina. Generation of optical vortices by using binary vortex producing lenses. *Applied Optics*, 54(4):796–801, February 2015. doi: 10.1364/AO.54.000796.
- [25] Luciano Angel-Toro, Daniel Sierra-Sosa, Myrian Tebaldi, and Néstor Bolognini. Speckle decorrelation influence on measurements quality in vortex metrology. Optics Communications, 285(21–22):4312–4316, October 2012. ISSN 0030-4018. doi: 10.1016/j.optcom.2012.07.021.

- [26] Luciano Angel-Toro, Daniel Sierra-Sosa, Myrian Tebaldi, and Néstor Bolognini. Vortex metrology using fourier analysis techniques: vortex networks correlation fringes. Applied Optics, 51(30):7411-7419, October 2012. ISSN 1539-4522.
- [27] Luciano Angel-Toro, Daniel Sierra-Sosa, Myrian Tebaldi, and Néstor Bolognini. Inplane displacement measurement in vortex metrology by synthetic network correlation fringes. *Journal of the Optical Society of America. A, Optics, Image Science, and Vision*, 30(3):462–469, March 2013. ISSN 1520-8532.
- [28] Daniel Sierra-Sosa, Luciano Angel-Toro, Nestor Bolognini, and Myrian Tebaldi. Novel vortex-transform for high frequency modulated patterns. *Optics Express*, 21(20):23706–23711, October 2013. doi: 10.1364/OE.21.023706.
- [29] Daniel Sierra-Sosa and Luciano Angel-Toro. VORTEX-SIM, October 2013.

Parte I

Generación de haces Laguerre-Gauss por medio de un SLM

CAPÍTULO 2

Generación de Vórtices Ópticos

2.1 Estado del Arte

Los haces con OAM distinto de cero inicialmente fueron generados en el laboratorio por medio de técnicas analógicas entre las que se destacan el uso de conversores modales [1], placas de fase espiral grabadas en sustratos transparentes [2], y hologramas de fase impresos en acetato [3]. La conversión modal utiliza sucesiones de lentes astigmáticas para convertir los modos Hermite Gauss en modos Laguerre Gauss, y fue la primera forma en la cual se produjeron VO en el laboratorio. A diferencia de la conversión modal, - que requiere un montaje experimental muy sensible - las técnicas que utilizan máscaras de fase se caracterizan por necesitar sólo un elemento óptico que permite modificar punto a punto la fase de un haz que originalmente carecía de momento angular, para convertirlo en un haz con vorticidad óptica. El uso de placas físicas grabadas con un patrón espiral tiene la ventaja de generar haces LG con sólo ubicarlas en el camino óptico del haz, y tiene la desventaja de que una vez fabricadas no se pueden modificar. En situaciones donde es requerido generar haces del tipo LG con la suficiente flexibilidad como para corregir aberraciones ópticas, se necesita de dispositivos digitales con propiedades similares a los dispositivos analógicos mencionados anteriormente. Estos dispositivos se conocen como moduladores espaciales de luz o SLM por sus siglas en inglés. En este proyecto se pretende generar VO y caracterizar su frente de onda utilizando un tipo de SLM's que modifican la fase de la luz cuando ésta pasa a través de ellos.

2.1.1 Moduladores Espaciales de Luz

Como su nombre lo indica, los moduladores espaciales de luz sirven para modular punto a punto las propiedades de la luz sobre un plano. Ya sea solamente su amplitud como en los dispositivos de visualización de cristal líquido (pantallas LCD), o su fase como en los dispositivos que se ilustran en la figura 2.1.

Figura 2.1: Moduladores espaciales PLUTO y LC2012 de reflexión y transmisión marca Holoeye basados en la tecnología de cristal líquido. Por ser hecho a partir de un LCD comercial el modulador de la derecha es ensamblado a una cuarta parte del costo del izquierdo.

Si diferenciamos los SLM por el tipo de tecnología, estos pueden ser agrupados en dos categorías: basados en cristales líquidos, o en arreglos de micro espejos (figura 2.2), mejor conocidos en la industria de la proyección como DLP (de Digital Light Processing).

2.1.1.1 Moduladores basados en micro espejos

En su mayoría, los moduladores comerciales basados en arreglos de micro espejos funcionan con micro mecanismos que inclinan la superficie reflectiva de tal forma que se modifique la cantidad de luz que un observador ve desde una perspectiva dada, es decir que modulan intensidad. Sin embargo, con el interés de modular fase además de intensidad se han desarrollado nuevos micro mecanismos que permiten desplazar verticalmente el espejo sin modificar su inclinación introduciendo así un cambio en la longitud del camino óptico y por ende la fase tal y como se presenta en [4, 5]. Dado que es una tecnología incipiente y ha tenido menor tiempo en el mercado que los cristales líquidos, estos sistemas y en particular los de tipo pistón, siguen teniendo precios elevados y aún están lejos de ser utilizados en muchos laboratorios.

Figura 2.2: Modulador espacial basado en arreglos de micro espejos marca Texas Instruments.

2.1.1.2 Moduladores de cristal líquido

Los SLM basados en Cristales Líquidos (CL) aprovechan las propiedades físicas de ciertos polímeros que dada su forma alargada y propiedades electrónicas polares, cambian su orientación ante la presencia de campos eléctricos. Esta sensibilidad a los campos eléctricos, en conjunto con sus propiedades ópticas anisotrópicas permitió que desde los años 70s se implementaran CL para generar imágenes en pantallas de dispositivos como relojes, calculadoras y luego televisores y proyectores. Fue más adelante cuando estudios más especializados de las propiedades de los cristales líquidos como los realizados por Yariv y Yeh en [6, 7], y experimentos como los de Konforti et al. [8] demostraron que los LCD pueden ser usados como moduladores de solo fase. Aunque la aplicación de cristales líquidos para modulación de fase es relativamente reciente, el estudio de sus propiedades físicas no lo es y desde los años 60's la investigación ha sido respaldada por grandes empresas interesadas en desarrollar productos tecnológicos de generación y procesamiento de imágenes como RTC, Hamamatsu, Hitachi, HP, Texas Instruments, Sony y otros. Dado este interés por entender los CL, se ha llegado a modelos matemáticos y técnicas de caracterización robustas que permiten extraer los parámetros de un SLM para simular su comportamiento. El desarrollo de estas técnicas ha permitido a investigadores alrededor del mundo implementar moduladores de fase a partir de elementos LCD extraídos de dispositivos de proyección comerciales, entre ellos se encuentran los trabajos de [9-24]. Mientras que autores como Mahmud, [25], Roopahsree [26], y David [27] caracterizaron un Holoeye LC2002 que es vendido comercialmente como modulador de amplitud y fase. Ejemplo de la práctica de reensamblar un LCD v venderlo como SLM es el modulador marca Holoeve LC2012 que gracias a usar un LCD comercial marca Sony es ensamblado a una cuarta parte del precio de otros moduladores.

Adicionalmente, cabe mencionar que los moduladores en base a CL se dividen en dos tipos, de reflexión y de transmisión. Sin entrar en detalle, los primeros permiten modulaciones

de fase que van hasta 2π radianes, tienen mayor resolución, necesitan menos elementos de polarización para su uso, tienen altas velocidades de operación y el hecho de que la electrónica esté detrás del cristal (y detrás de la superficie reflectiva) hace que se produzcan menos efectos indeseados de difracción. Todo esto a costa de desarrollar CL y electrónica personalizados. En cambio, los moduladores de transmisión se desarrollan a partir de CL comerciales que fuera de polarizar la luz retardan su fase. Esto implica un acople entre modulación de fase y modulación de intensidad que se traduce en menor calidad de la modulación de fase total. Para lograr una buena modulación se necesitan polarizadores y retardadores que generan un estado de polarización específico a la entrada del SLM. Por otra parte, al tener la electrónica acoplada sobre el cristal, se limita la resolución; no todo el volumen de CL se aprovecha y se introducen efectos indeseados de difracción. No obstante, los SLM de transmisión son muy económicos y algunos autores como Davis et al. [28, 29] han propuesto que se podrían usar como dispositivos para modular polarización. En base a esto otros como Moreno et al. [30, 31] han combinado el formalismo de Fourier con el de las matrices de Jones para modelar el comportamiento de dispositivos ópticos de Fourier que involucran polarización. En el laboratorio de metrología óptica del grupo de Optica Aplicada se encuentran dos moduladores de transmisión marca Holoeye modelos LC-2002 y LC- 2012 que necesitan ser caracterizados para optimizar su uso en aplicaciones metrológicas tales como la creación de vórtices ópticos. La generación de VO se da entonces una vez se tenga apropiada la herramienta que los produce. El resto de esta sección se enfoca en la segunda mitad del problema, es decir, ¿Cómo caracterizar y corregir las aberraciones ópticas de un VO?

2.1.2 Aberraciones ópticas

Los VO generados en el laboratorio están sujetos a aberraciones ópticas que se asocian a situaciones tales como:

- Problemas en la alineación de componentes ópticos como lentes o espejos.
- Deformaciones en las superficies de elementos como polarizadores, lentes, espejos, láminas retardadoras, e incluso de las céldas de cristal líquido en el SLM.
- Presencia de partículas de polvo en las superficies de las componentes ópticas que inducen efectos indeseados de difracción.

Adicionalmente, y siguiendo con el tema de la sección anterior, los SLM de transmisión basados en pantallas de CL introducen otras fuentes de aberraciones. En primera medida, las pantallas son dispositivos discretos en dos de los sentidos de la palabra. Por un lado, son discretos espacialmente y las señales de control son asignadas a subdivisiones del cristal de tamaño finito conocidas como pixeles. El arreglo rectangular de todos los pixeles genera efectos de difracción similares a los de rejillas verticales y horizontales combinadas. Esto quiere decir que el SLM separa los órdenes de difracción de la luz que pasa a travez de él. Asimismo, el hecho de ser una cuadrícula discreta hace que el modulador obviamente no pueda generar distribuciones de fase en regiones infinitamente pequeñas como sería deseado alrededor de una singularidad óptica. Como ejemplo, en la figura 2.3 a) se muestra una imagen del la máscara que se envía al SLM en la región donde resultaría una singularidad óptica. Como se puede ver, la máscara de fase discreta resulta muy distinta a la máscara ideal que se presentó en la figura 1.1b), y por lo tanto introduce deformaciones en el haz Laguerre-Gauss que resulta a la salida del SLM.

Figura 2.3: a) Magnificación de una mascara tipica proyectada al SLM. b) Imagen de un VO de poca calidad producido con un SLM de transmisión modelo Holoeye LC2002.

Por otra parte, el SLM es discreto en la medida que sólo puede asignar níveles de voltaje discretos (0-255 divisiónes de 5V) a cada una de las celdas. Este fenómeno también es observable en la figura 2.3a) y puede introducir efectos indeseados. Más aún, si cómo el nuestro, el modulador no llega a una modulación de sólo fase, o tiene una modulación que no llega a completar el ciclo de 2π radianes. Todas las posibles fuentes de error mencionadas anteriormente se combinan para generar haces Laguerre-Gauss de poca calidad como el que se muestra en la figura 2.3 b).

(b) Moléculas desordenadas pero cercanas en un líquido.

Figura 2.4: Dos estados de la materia comunes en la naturaleza.

2.2 Marco Teórico de la Caracterización de SLMs de Trasmisión

Hace falta una buena introduccíon

2.2.1 Cristales líquidos

2.2.1.1 Características de los CL

Un cristal Líquido es una sustancia que posee propiedades que se asemejan tanto a las de los sólidos cristalinos como a las de los líquidos. También puede ser visto como un líquido en el cual existe orden entre sus moléculas. Para ilustrar esta idea recordemos que los sólidos cristalinos son un estado de la materia que se caracteriza por su rigidez y fuertes enlaces químicos, en el cual se puede establecer un orden posicional en todas las direcciones tal y como se ilustra en la figura 2.4a. Esto implica que la posición de las moléculas o átomos que lo componen puede ser abstraída como una red periódica que cumple ciertas reglas de simetría. En cambio, un líquido amorfo como el de la figura 2.4b tiene enlaces más débiles por lo cual puede fluir, y está compuesto por moléculas que están completamente desorganizadas. Los cristales líquidos son sustancias que como los sólidos poseen cierto orden y que pueden fluir como los líquidos.

Los CL líquidos pueden ser clasificados en tres tipos o fases distintas conocidas como, nemáticos, smeticos y colestéricos, y más adelante se abordará esta clasificación, no obstante su diversidad (más de 100.000 compuestos distintos según http://www.lci-publisher.

com), la característica común de los CL es que están compuestos de moléculas muy anisotrópicas, esto es, que sus propiedades (ópticas, eléctricas y mecánicas) dependen de la dirección desde la que se observen. La anisotropía se debe tanto a la geometría alargada o achatada de las moléculas, como a las propiedades electrónicas de sus componentes. En el caso de moléculas alargadas como en la figura 2.5 su estructura química se compone de un sistema de anillos aromáticos que pueden ser o no saturados conectados por un grupo de conexión A, y sujetos a dos cadenas o grupos terminales X y Y [6]. La presencia de los

Figura 2.5: Esquema de la composición química general en una molécula de CL.

anillos proporciona las fuerzas intermoleculares de corto alcance que son necesarias para formar fases nemáticas y el tipo de anillos (saturado o no saturado) determina la presencia o no de enlaces π que se asocian a orbitales P_z de los electrones. Esto a su vez afecta la absorción en el ultravioleta y la birefringencia, se observa mayor birefringencia en CL con anillos no saturados y mejor comportamiento en el ultravioleta para anillos saturados. Luego, las cadenas del grupo terminal X pueden ser de tres tipos:

- Cadenas alquilos (alkyl) $C_n H_{2n+1}$:
- Grupos alcoxy $C_n H_{2n+1} O$
- Grupos alilos (alkenyl) $CH_2 = CH CH_2 -$

La longitud de las cadenas X influencia tanto las constantes elásticas como las temperaturas de transición de fase. Para cadenas cortas con uno o dos átomos de carbono los grupos son muy cortos como para presentar fases de CL. Los grupos terminales de tamaño medio: n = 3-8 son los más adecuados para para construir fases nemáticas por su mayor anisotropía, y los compuestos con cadenas aún más largas exhiben fases smeticas. La temperatura a la cual la solución pasa de ser nemática a isotrópica se conoce como el punto de aclarado o clearing point, en términos generales, esta temperatura disminuye en la medida en la que se alargan los tamaños del grupo terminal X. La función que relaciona el punto de aclarado con el número de átomos de carbono es una función suave en la cual los números pares generan temperaturas más bajas que los impares. Fuera de esto, las propiedades mecánicas como la

viscosidad también se ven afectadas por el tamaño de los grupos terminales, cadenas largas implican viscosidades más altas, y por ello frecuencias de operación más bajas. Finalmente, las cadenas que forman el grupo terminal Y son las que tienen mayor influencia en las constantes dieléctricas de la molécula (ϵ_x, ϵ_y) , y asimismo su anisotropía dieléctrica $\Delta \epsilon$ variables que como veremos más adelante son las que determinan la birrefringencia del CL asociada a la modulación de fase. Las cadenas del grupo terminal Y pueden ser:

- No polares: No Influencian mucho la anisotropía dieléctrica, un ejemplo es el grupo alquilo CnH2n + 1.
- Polares: Como CN, F, y Cl. Su alta polaridad induce en la molécula una alta anisotropía dieléctrica y por tanto alta birrefringencia. La alta anisotropía se obtiene a costa de alta viscosidad, resistividad insuficiente y problemas de estabilidad bajo iluminación ultravioleta. Los grupos Y muy polares como los que contienen cianuro CN No son buenos para operar a altas temperaturas como por ejemplo proyectores, y sufren de degradación en el UV. Para esas aplicaciones se utilizan compuestos menos polares como el flúor o cloro que tienen menor birrefringencia.

2.2.1.2 Clasificación de los CL

En 1922 y sintetizando los hallazgos de 30 años desde su descubrimiento el cristalógrafo George Friedel publicó un artículo [32] en el que clasifica los CL en tres tipos básicos conocidos como cristales smeticos, nemáticos y colestéricos. En términos de orden, los CL sméticos son los más similares a un sólido, y los nemáticos se asemejan más a un líquido, y en la medida en la que se calienta un CL este realiza una transición desde cristal smetico hasta líquido isotrópico pasando por la fase nemática. Los estados colestéricos son un tipo particular de CL nemáticos que a diferencia de los anteriores tienen propiedades inhomogeneas. La principal característica que le da una medida de orden a los CL es la tendencia de sus moléculas a orientarse en una dirección preferente gracias a su distribución polar de cargas. Esta tendencia se puede observar claramente en las figuras 2.7a y 2.7b como si las moléculas fueran vagones de un tren que se siguen uno detrás del otro en forma de hilo ¹.

La orientación preferencial de las moléculas les otorga una cierta medida de orden a los CL que en adelante llamaremos orden orientacional. La *cantidad* de orden se medirá por

De hecho, la palabra Nematic proviene de la expresión griega nema que significa hilo.

medio de un parámetro estadístico conocido como parámetro de orden que relaciona la orientación de las moléculas individuales con la orientación preferencial o vector director \vec{n} en las vecindades de la molécula. Si se tiene un conjunto de moléculas como la que se ilustra en la figura 2.6 dónde θ es el ángulo que se forma entre el eje mayor de la molécula \vec{v} y el vector director, el parámetro de orden orientacional del cristal se da como el siguiente promedio estadístico sobre todas las moléculas.

$$S = \frac{1}{2} \left\langle 3\cos^2\theta - 1 \right\rangle$$

Figura 2.6: Orientación de una molécula de CL con respecto al ángulo director en su vecindad.

Un CL con sus moléculas alineadas perfectamente paralelas tiene un parámetro de orden S=1, mientras que un CL con moléculas orientadas aleatoriamente posee un parámetro S=0. El parámetro de orden depende tanto del tipo de molécula como de la temperatura, en la medida en la que aumenta la temperatura las moléculas pierden su alineación y el CL se convierte en un líquido isotrópico. El parámetro de orden gana importancia cuando se necesita seleccionar un CL que deba ser usado en rangos de temperatura especiales y se necesite garantizar anisotropía.

Los Cristales smeticos como el que se ilustra en la figura 2.7a se diferencian de los nemáticos en que poseen orden posicional en una dirección además de orden orientacional. Sin embargo, este orden viene acompañado de propiedades mecánicas que son menos convenientes para la construcción de LCDs y por ello las fases nemáticas y colestéricas son las que tienen mayor número de aplicaciones en dispositivos electro ópticos. A diferencia de las fases smetica y nemática que tienen un solo vector de orientación, en los cristales líquidos colestéricos el vector director varía a través del medio de una forma bien definida y por ello se consideran medios inhomogeneos. Generalmente la variación es helicoidal como la que se ve en la figura 2.7c. La variable que caracteriza un cristal líquido colestérico es el

ángulo de inclinación o pitch que forman las moléculas inclinadas con respecto al eje óptico del material.

Figura 2.7: Clasificación de los cristales líquidos según su orden.

2.2.1.3 Las pantallas de cristal líquido nematico retorcido.

Los moduladores de CL de transmisión que se usan para proyección se construyen usando una configuración conocida como Twisted Nematic (TN-LCD) o nematicos retorcidos. Los TN-LCD son dispositivos como el que se ilustra en la figura 2.8 en los cuales una solución de cristal líquido nemático se inyecta entre dos superficies rígidas transparentes que han sido frotadas a lo largo de una dirección preestablecida. Las moléculas del CL en contacto con las superficies transparentes se adhieren a los canales microscópicos que resultan del frotado, tomando así su dirección. Cuando las direcciones de frotado de las superficies en ambos extremos no coinciden, la dirección preferente de orientación de las moléculas cambia gradualmente en profundidad desde la dirección del plano de entrada hasta la del plano de salida como se ve en la figura 2.8a. El resultado es un cristal líquido inhomogeneo parecido a un cristal colestérico en el cual la orientación de las moléculas varía de forma lineal.

Generalmente las direcciones de frotado en las superficies de entrada y salida son orto-

(b) Esquema de un TN-LCD dónde se aplica una diferencia de potencial entre placas

Figura 2.8: Arquitectura de un TN-LCD cuando (a) está apagado, y (b) se le aplica una diferencia de potencial. Tomado de Nestor Uribe [33]

gonales de tal forma que las moléculas experimentan una rotación de 90 grados. Ante la presencia de un campo eléctrico a lo largo del cristal las moléculas experimentan una inclinación que es proporcional a la diferencia de potencial entre las placas como en la figura 2.8b. Al ser moléculas alargadas y polares experimentan un torque que atrae a la parte negativa de la molécula hacia el electrodo positivo del dispositivo y viceversa. La inclinación es proporcional al voltaje aplicado y es de mayor magnitud en las regiones más alejadas de las paredes del dispositivo. La configuración Twisted Nematic ha sido seleccionada para muchos dispositivos electro ópticos comerciales porque afecta la polarización de la luz que incide sobre ella. El objetivo de los autores que han caracterizado moduladores de transmisión ha sido principalmente el de describir matemáticamente y de forma robusta las propiedades ópticas dispositivos que tienen cristales líquidos de esta naturaleza.

En lo que sigue se presentarán las herramientas matemáticas que son base para la descripción matemática de campos ópticos polarizados, y se aplicará para la descripción de un modelo de CL.

2.2.2 Polarización de la luz

En la teoría electromagnética de la luz se representan los campos ópticos como ondas que se propagan en el espacio. Un haz de luz se puede representar tanto por su vector de campo eléctrico como magnético y ambos son perturbaciones de carácter periódico. Si el medio de propagación es isotrópico, la dirección de la perturbación es transversal, es decir ortogonal a la dirección de propagación ($\mathbf{k} \cdot \mathbf{E}$). Para haces planos monocromáticos se suele usar la siguiente expresión para el campo eléctrico:

$$\mathbf{E} = \Re \left[\mathbf{A} e^{i(\omega t - \mathbf{k} \cdot \mathbf{r})} \right],$$

$$\mathbf{E} = \mathbf{A} \cos (\omega t - \mathbf{k} \cdot \mathbf{r}),$$
(2.1)

dónde, $i = \sqrt{-1}$, ω es la frecuencia temporal, \mathbf{k} es el vector de onda o frecuencia espacial, y \mathbf{A} determina la amplitud. Las frecuencias espacial y temporal se relacionan por medio de la longitud de onda (λ) y el índice de refracción del medio (\mathbf{n}) con la siguiente expresión:

$$\mathbf{k} = \mathbf{n} \frac{2\pi}{\lambda}.$$

Dado que son ortogonales, las variaciones del campo se pueden representar sobre un plano que es ortogonal a la dirección de propagación (z en nuestro caso), y ese plano se puede representar a su vez por dos vectores que son ortogonales entre si (x, y). Cuando la variación del campo sucede sobre una dirección preferencial se dice que la luz es polarizada, y esa dirección se puede descomponer como una combinación lineal de las variaciones mutuamente independientes sobre cada uno de los ejes que forman el plano:

$$\mathbf{E} = E_x + E_y,$$

$$E_x = A_x \cos(\omega t - kz + \delta_x),$$
(2.2)

$$E_y = A_y \cos(\omega t - kz + \delta_y). \tag{2.3}$$

Se ha separado entonces el campo en sus componentes vertical (y) y horizontal (x), cada una con su respectiva amplitud (A_x, A_y) y retardo en fase (δ_x, δ_y) . Dado que las amplitudes son positivas las fases se dan en el rango $-\pi < \delta_{x,y} < \pi$. La representación en componentes perpendiculares se asemeja a un sistema acoplado de osciladores armónicos que oscilan a una misma frecuencia. Si se dibuja la suma vectorial de las componentes x, y y como un vector que va desde el origen hasta el punto (E_x, E_y) y luego se avanza en el tiempo, la

trayectoria que describe la punta del vector será una figura elíptica como la que se muestra en 2.9a . Si en cambio se congela el tiempo y se gráfica el desplazamiento de la punta del vector en el espacio se obtiene una figura helicoidal como en 2.9b. En estos dibujos se ha escogido representar una elipse por que es el caso más general de polarización, sin embargo, la relación entre las amplitudes (A_y/A_x) y la diferencia de fases $(\delta = \delta_y - \delta_x)$ entre las componentes del campo determina si la polarización es lineal $(\delta = 0)$, circular $(\delta = \pm \frac{\pi}{2})$ o elíptica, y la orientación del eje mayor con respecto a x.

Figura 2.9: Representaciones de la posición de un vector de campo eléctrico con polarización elíptica cuando (a) se analiza en un punto en el espacio, y (b) se congela el tiempo.

Desde el punto de vista matemático, la figura 2.9a se describe por medio de la ecuación 2.6 que es la ecuación de una cónica y se puede obtener a partir de las expresiones 2.2 y 2.3 como se muestra a continuación.

Si
$$\delta = \delta_y - \delta_x$$
 y $z = 0$, entonces:

$$E_x = A_x \cos(\omega t),$$

$$E_y = A_y \cos(\omega t - \delta).$$

Luego:

$$\cos \omega t = \frac{E_x}{A_x},$$

$$\sin^2 \omega t = 1 - \left(\frac{E_x}{A_x}\right)^2,$$

$$\sin \omega t = \sqrt{1 - \left(\frac{E_x}{A_x}\right)^2}.$$

Por otra parte se tiene:

$$E_y = A_y \left(\cos \omega t \cos \delta + \sin \omega t \sin \delta\right). \tag{2.4}$$

Reemplazando $\sin \omega t$ y $\cos \omega t$ en la expresión 2.4 obtenemos:

$$E_y = \frac{A_y E_x}{A_x} \cos \delta + A_y \sqrt{1 - \frac{E_x}{A_x}} \sin \delta,$$

$$\frac{E_y}{A_y} - \frac{E_x}{A_x} \cos \delta = \sqrt{1 - \left(\frac{E_x}{A_x}\right)^2} \sin \delta.$$
(2.5)

Elevando al cuadrado la igualdad 2.5 y organizando términos, obtenemos la ecuación general de una elipse inscrita en un rectángulo con lados $2A_x$, $2A_y$:

$$\left(\frac{E_x}{A_x}\right)^2 + \left(\frac{E_y}{A_y}\right)^2 - 2\frac{\cos\delta}{A_x A_y} E_x E_y = \sin^2\delta. \tag{2.6}$$

Se puede ahora plantear una rotación de un ángulo ϕ con respecto al eje horizontal (x) sobre el sistema de coordenadas como se muestra en la figura 2.10 para que el eje mayor de la elipse quede alineado con el eje horizontal del nuevo sistema. Haciendo esto, se lleva la ecuación 2.6 a la forma más conocida de la ecuación 2.7.

$$\left(\frac{E_{x'}}{a}\right)^2 + \left(\frac{E_{y'}}{b}\right)^2 = 1,$$
(2.7)

dónde a y b son los semi ejes mayor y menor, y $E_{x'}, E_{y'}$ son las componentes del campo

Figura 2.10: Rotación del sistema de coordenadas un ángulo ϕ .

eléctrico en las direcciones x', y'. Los semiejes de la elipse están dados por las siguientes expresiones:

$$a^2 = A_x \cos^2 \phi + A_y^2 \sin^2 \phi + 2A_x A_y \cos \delta \cos \phi \sin \phi,$$

$$b^2 = A_x \sin^2 \phi + A_y^2 \cos^2 \phi - 2A_x A_y \cos \delta \cos \phi \sin \phi.$$

La elipticidad se define como la razón entre el eje menor y el eje mayor de la elipse $e=\pm \frac{b}{a}$ de tal forma que si el semi eje menor es cero, la elipse se vuelve una linea y por tanto se dice que la polarización es lineal en la dirección de a. Si por el contrario los dos semi ejes tienen la misma longitud, la ecuación de la elipse se vuelve la de un círculo, y se dice que la polarización es circular como en la figura 2.11a. El signo de la elipticidad determina el sentido de giro de la hélice, si el signo es positivo la elipse es circular izquierda como en la figura 2.11b y es circular derecha cuando el signo es negativo 2.11c. Cabe anotar que el sentido de giro de la polarización es una convención que varía según el autor, algunos interpretan el sentido de giro como si se congelara el tiempo y se siguiera la punta del vector $\mathbf E$ desde el cero en adelante. Sin embargo otros autores interpretan el sentido de giro como si en un punto fijo vieran girar el vector $\mathbf E$ que les llega en la medida que pasa el tiempo.

Una ellipse de polarización arbitraria se puede expresar entonces conociendo su elipticidad y su ángulo de inclinación con respecto al eje horizontal. Estas dos características se pueden parametrizar como dos ángulos que se dan en términos de las amplitudes máximas del

Figura 2.11: (a) Esquema de una polarizaciónes circular en donde los semiejes de la elipse son iguales. La polarización circular izquierda (b) se da cuando $e = \frac{b}{a}$ y la derecha (c) cuando $e = -\frac{b}{a}$.

campo A_x , A_y y el retardo entre componentes δ . Por una parte, el ángulo de inclinación se encuentra interpretando la ecuación 2.6 en su forma bilineal de la forma:

$$\begin{pmatrix} E_x & E_y \end{pmatrix} \begin{pmatrix} \frac{1}{A_x^2} & -\frac{\cos \delta}{A_x A_y} \\ -\frac{\cos \delta}{A_x A_y} & \frac{1}{A_y^2} \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix} = \sin^2 \delta, \tag{2.8}$$

sacando factor común $\frac{1}{A_x^2}$ se obtiene:

$$\begin{pmatrix} E_x & E_y \end{pmatrix} \begin{pmatrix} 1 & -\frac{A_x \cos \delta}{A_y} \\ -\frac{A_x \cos \delta}{A_y} & \frac{A_x/2}{A_y^2} \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix} = A_x/2 \sin^2 \delta, \tag{2.9}$$

o en forma compacta:

$$\begin{pmatrix} E_x & E_y \end{pmatrix} \begin{pmatrix} 1 & a \\ a & b \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix} = c.$$
(2.10)

Una cuádrica o superficie cuádrica es una hipersuperficie D-dimensional representada por una ecuación de segundo grado con coordenadas espaciales. Si estas coordenadas son $\{x_1, x_2, ... x_D\}$, entonces la cuádrica típica en ese espacio se define mediante la ecuación algebraica:

$$\sum_{i,j=1}^{D} Q_{i,j} x_i x_j + \sum_{i=1}^{D} P_i x_i + R = 0.$$

El caso particular en el cual solo hay dos dimensiones y los valores P_i son todos 0, es el de una elipse. En nuestro caso, tenemos en notación matricial:

$$\mathbf{E}^T Q \mathbf{E} + R = 0,$$

con

$$Q = \begin{pmatrix} 1 & a \\ a & b \end{pmatrix}.$$

y $R = -c = -A_x/2\sin^2\delta$. Ahora los autovalores de una elipse representada por su forma matricial están asociados con la direcciones de sus ejes principales, y apuntan en la dirección de los puntos máximos [34]. Como nuestra incógnita es el ángulo que determina la dirección de los puntos máximos podemos escribir la siguiente ecuación de autovalores para despejar ϕ http://en.wikipedia.org/wiki/Quadratic_form

$$\begin{pmatrix} 1 & a \\ a & b \end{pmatrix} \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} = \lambda \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix},$$

desarrollando, se obtienen las siguientes dos ecuaciones:

$$\cos \phi + a \sin \phi = \lambda \cos \phi,$$

$$a \cos \phi + b \sin \phi = \lambda \sin \phi.$$

Despejando λ e igualando las ecuaciones se llega a una expresión dependiente de un ángulo doble:

$$1 + a \tan \phi = \frac{a}{\tan \phi} + b,$$
$$b - 1 = a \tan \phi - \frac{a}{\tan \phi},$$
$$b - 1 = a \left(\frac{\tan^2 \phi - 1}{\tan \phi}\right),$$

$$\tan 2\phi = \frac{2a}{b-1}.$$

Finalmente, reemplazando a, y b se tiene el ángulo de inclinación de la elipse:

$$\phi = \frac{1}{2} \tan^{-1} \left(\frac{2A_x A_y}{A_x^2 - A_y^2} \cos \delta \right).$$

Siguiendo un esquema similar, aunque más tedioso se encuentra el ángulo de elipticidad $(\theta = \tan^{-1} e)$ en términos de la función seno como:

$$\theta = \frac{1}{2}\sin^{-1}\left(\frac{2A_x A_y}{A_x^2 + A_y^2}\sin\delta\right).$$

A la hora de despejar ϕ y θ reemplazando valores en la primera ecuación usando un computador se aconseja reemplazar la función \tan^{-1} por la función atan2, que es popular en paquetes de cálculos numéricos (como numpy) o lenguajes de programación como Matlab, porque permite evitar las singularidades que ocurren cuando el argumento de la función tangente inversa es $\pi/2$.

2.2.3 El formalismo de Jones

Se conoce como formalismo de Jones al uso de una representación vectorial para describir campos ópticos coherentes y monocromáticos cuando es importante la naturaleza vectorial de la luz y la polarización. En el esquema de Jones los campos ópticos con dos componentes ortogonales se representan como un vector con elementos complejos conocido como vector de Jones. Las dos componentes complejas del campo en la ecuación 2.1 se representan como elementos de un vector columna conocido como vector de Jones:

$$\mathbf{J} = \begin{pmatrix} A_x e^{i\delta_x} \\ A_y e^{i\delta_y} \end{pmatrix}. \tag{2.11}$$

Siendo un vector complejo, **J** no es una cantidad observable en el espacio físico. Para obtener obtener por ejemplo, la componentente x del campo eléctrico se hace la operación $E_x(t) = \Re \left[J_x e^{i\omega t}\right]$. Para el estudio de la polarización conviene representar el vector de

Jones en su forma normalizada, es decir tal que cumpla la condición:

$$\mathbf{J}^{\dagger}\mathbf{J}=1.$$

La normalización se logra parametrizando las amplitudes con el ángulo del vector que forman:

$$\tan \psi = \frac{\sin \psi}{\cos \psi} = \frac{A_y}{A_x},$$

de esta forma $A_y = \sin \psi$ y $A_x = \cos \psi$. Adicionalmente, la fase de las componentes se acostumbra a escribir en su forma relativa y con respecto a la componente y como se muestra en la expresión 2.12.

$$\mathbf{J}(\psi, \delta) = \begin{pmatrix} \cos \psi \\ \sin \psi e^{i\delta} \end{pmatrix}. \tag{2.12}$$

2.2.3.1 Algunos estados de polarización importantes

Como se dijo antes, las polarizaciones lineales se obtienen cuando las componentes están en fase, es decir que $\delta = \delta_y - \delta_x = 0$, sin embargo, también se cumple cuando las diferencias de fase entre las componentes son múltiplos de π .

La polarizaciónes lineales ($\delta=n\pi$) horizontal y vertical se dan cuando $\psi=n\pi$ y $\psi=\frac{\pi}{2}(2n+1)$ respectivamente:

$$\mathbf{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \qquad \mathbf{V} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

La polarización lineal a 45° se da cuando las componentes x y y tienen la misma magnitud y dirección, es decir cuando $\psi = \frac{\pi}{4}(4n+1)$. La polarización a -45° se da cuando $\psi = \frac{\pi}{4}(4n-1)$.

$$\mathbf{45}^{\circ} = \begin{pmatrix} \cos \pi/4 \\ \sin \pi/4 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \qquad -\mathbf{45}^{\circ} = \begin{pmatrix} \cos -\pi/4 \\ \sin -\pi/4 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Las polarizaciones circular izquierda y circular derecha son tales que ambas componentes tienen la misma magnitud como en la de 45°, pero el retardo en fase es de $\delta = \frac{\pi}{2}$:

$$\mathbf{CD} = \begin{pmatrix} \cos \pi/4 \\ \sin \pi/4 e^{i\frac{\pi}{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}, \qquad \mathbf{CI} = \begin{pmatrix} \cos -\pi/4 \\ \sin -\pi/4 e^{i\frac{\pi}{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}.$$

Una característica interesante de los estados lineales y circulares es que se pueden dar unos como combinación lineal de los otros:

$$\mathbf{CD} = \frac{1}{\sqrt{2}} (\mathbf{H} - i\mathbf{V}),$$

$$\mathbf{CI} = \frac{1}{\sqrt{2}} (\mathbf{H} + i\mathbf{V}),$$

$$\mathbf{H} = \frac{1}{\sqrt{2}} (\mathbf{CD} + \mathbf{CI}),$$

$$\mathbf{V} = \frac{i}{\sqrt{2}} (\mathbf{CD} - \mathbf{CI}).$$

2.2.3.2 Elementos ópticos como operadores en la representación de Jones

Así como en el álgebra lineal se usan matrices para transformar vectores, en el formalismo de Jones existen operadores que se representan como matrices 2x2 y que tienen la cualidad de transformar los campos. Las matrices de Jones deben cumplir algunas propiedades generales [7]:

1. La dirección de propagación de un campo determina las componentes de la matriz que representa al elemento polarizador. Si la incidencia es desde la izquierda (z=0) definimos la matriz M como aquella que transforma el vector de entrada en el de salida:

$$\begin{pmatrix} V_x^{out} \\ V_y^{out} \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} V_x^{in} \\ V_y^{in} \end{pmatrix}, \tag{2.13}$$

si el vector de entrada ingresa desde la derecha entonces definiremos una matriz distinta N para representar la transformación:

$$\begin{pmatrix} V_x^{out} \\ V_y^{out} \end{pmatrix} = \begin{pmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{pmatrix} \begin{pmatrix} V_x^{in} \\ V_y^{in} \\ V_y^{in} \end{pmatrix}.$$

Para que se cumpla el principio de simetría temporal, se debe cumplir que NM = 1. Si se rebobina la propagación en la expresión 2.13 el haz de salida debería seguir el mismo camino que recorrió a la entrada, y ser afectado por la matriz N de tal forma que vuelva a la forma que tenía en un principio:

$$\begin{pmatrix} V_x^{in} \\ V_y^{in} \end{pmatrix} = \begin{pmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{pmatrix} \begin{pmatrix} V_x^{out} \\ V_y^{out} \end{pmatrix},$$

$$= \begin{pmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{pmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} V_x^{in} \\ V_y^{in} \end{pmatrix}.$$

Conociendo que las matrices están asociadas a un mismo elemento se debe cumplir que N sea la transpuesta de M:

$$N_{11} = M_{11}, \qquad N_{12} = M_{21}, \qquad N_{21} = M_{12}, \qquad N_{22} = M_{22}.$$

Esta relación es importante para analizar sistemas en los cuales la luz debe pasar dos veces por el CL en sentidos opuestos, caso especial es el de los SLM's de reflexión en los cuales hay una superficie especular de un lado.

2. Tanto la matriz M como la N son operadores unitarios:

$$M^{\dagger}M = 1, \qquad N^{\dagger}N = 1.$$

Dónde el símbolo \dagger indica que se saca el conjugado hermítico de M:

$$M^{-1} = M^{\dagger} = \begin{pmatrix} M_{11}^* & M_{21}^* \\ M_{12}^* & M_{22}^* \end{pmatrix}.$$

3. Las matrices de Jones son unimodulares es decir:

$$det(M) = det(M^{\dagger}) = M_{11}M_{22} - M_{12}M_{21} = 1.$$

Si asumimos que M^{-1} es:

$$M = \begin{pmatrix} M_{22} & -M_{12} \\ -M_{21} & M_{11} \end{pmatrix},$$

se ve que cumple con la relación $M^{-1}M = 1$:

$$\begin{pmatrix} M_{22} & -M_{12} \\ -M_{21} & M_{11} \end{pmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} = \begin{pmatrix} M_{22}M_{11} - M_{12}M_{21} & M_{22}M_{12} - M_{12}M_{22} \\ -M_{11}M_{21} + M_{11}M_{21} & -M_{12}M_{21} + M_{11}M_{22} \end{pmatrix},$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Con esto, se puede simplificar la forma de una matriz de Jones a partir de las siguientes relaciones:

$$M_{21} = -M_{12}^*, M_{22} = M_{11}^*,$$

obteniendo una forma de la matriz que depende de sólo dos números complejos:

$$M = \begin{pmatrix} A & B \\ -B^* & A^* \end{pmatrix} \tag{2.14}$$

Tener la matriz en esta forma facilita encontrar los parámetros de elementos ópticos desconocidos como un SLM.

Los operadores que se verán a continuación hacen referencia a dos tipos de elementos ópticos que se utilizan en el laboratorio para modificar los estados de polarización de una onda, estos son polarizadores y retardadores. Los polarizadores son elementos que afectan únicamente la amplitud y los retardadores introducen un retardo en fase entre las componentes del campo.

Por una parte, los polarizadores horizontales son elementos que sólo dejan pasar la componente x del campo, y se representan con la matriz de la expresión 2.15.

$$P_x = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}. \tag{2.15}$$

Si llega cualquier campo al polarizador horizontal este dejará pasar sólo la componente x tal y como se muestra en la figura 2.12.

Figura 2.12: Propagación de un estado de polarización lineal a través de un polarizador horizontal.

La operación vectorial correspondiente a este fenómeno se da como la multiplicación entre la matriz del polarizador y el vector de Jones que representa al campo, en este caso un campo con polarización lineal a 45°:

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1 & 0\\0 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}.$$

Los polarizadores que no están orientados con el eje x se pueden obtener a partir de la matriz de P_x por medio de la siguiente operación de rotación:

$$P_{\theta} = R^{T}(\theta) P_{x} R(\theta)$$

$$P_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

En adelante se seguirá usando este método para representar la matriz de cualquier elemento óptico rotado. Reemplazando $\theta = \frac{\pi}{2}$ y $\theta = \frac{\pi}{4}$ obtenemos las matrices P_V y P_{45° correspondientes al polarizador horizontal y al que está inclinado 45° :

$$P_{V} = \begin{pmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cos\frac{\pi}{2} & \sin\frac{\pi}{2} \\ -\sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{pmatrix},$$

$$= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$P_{45^{\circ}} = \begin{pmatrix} \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cos\frac{\pi}{4} & \sin\frac{\pi}{4} \\ -\sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{pmatrix},$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},$$
$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Por otra parte, los retardadores ópticos modifican tanto la amplitud como la fase de las componentes del campo y sus elementos son complejos. La matriz general para un retardador óptico con desfase β y orientación del eje rápido con el eje x es:

$$WP = \begin{pmatrix} e^{i\beta/2} & 0\\ 0 & e^{-i\beta/2} \end{pmatrix}$$

Los retardadores ópticos se construyen a partir de materiales birrefringentes donde el retardo de fase β de una componente con respecto a otra es proporcional a la diferencia de índices de refracción, y a la profundidad d del medio birrefringente como se muestra a continuación:

$$\beta = \frac{\pi}{2}d\left(n_e - n_o\right).$$

Dónde el índice de refracción extraordinario corresponde al eje rápido del medio, y el extraordinario al eje lento. Si multiplicamos la ecuación 2.2.3.2 por $e^{-i\beta/2}$ obtenemos la forma no normalizada que es muy común en los libros de texto porque se hace evidente que la componente E_y del campo sufre un retardo en fase de β con respecto a E_x :

$$WP = \begin{pmatrix} 1 & 0 \\ 0 & e^{-i\beta} \end{pmatrix}.$$

Los retardadores más usados en el laboratorio son aquellos que introducen retardos de cuarto de onda:

$$QWP = \begin{pmatrix} e^{i\frac{\pi}{4}} & 0\\ 0 & e^{-i\frac{\pi}{4}} \end{pmatrix},$$
$$= \begin{pmatrix} 1 & 0\\ 0 & e^{-i\frac{\pi}{2}} \end{pmatrix},$$
$$= \begin{pmatrix} 1 & 0\\ 0 & -i \end{pmatrix},$$

y retardos de media onda:

$$HWP = \begin{pmatrix} e^{i\frac{\pi}{2}} & 0\\ 0 & e^{-i\frac{\pi}{2}} \end{pmatrix},$$
$$= \begin{pmatrix} 1 & 0\\ 0 & e^{-i\frac{\pi}{2}} \end{pmatrix},$$
$$= \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix},$$

Los de cuarto de onda permiten obtener polarizaciones circulares o elípticas a partir de polarizaciones lineales. La figura 2.13 muestra cómo conseguir un campo con polariza-

ción circular derecha a partir de polarización lineal y un retardador QWP. La operación

Figura 2.13: Propagación de un estado de polarización lineal a 45° a través de una placa de retardo de cuarto de onda vertical que genera un estado de polarización circular derecho. Las placas de cuarto de onda introducen un retardo de fase de $\frac{\pi}{2}$ radianes.

correspondiente en el formalismo de Jones es:

$$\begin{split} \mathbf{C}\mathbf{D} &= R^T \left(\frac{\pi}{2}\right) \left(QWP\right) R \left(\frac{\pi}{2}\right) \mathbf{45}^\circ, \\ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} e^{i\frac{\pi}{4}} & 0 \\ 0 & e^{-i\frac{\pi}{4}} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \\ &= \begin{pmatrix} e^{-i\frac{\pi}{4}} & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \\ &= \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \end{split}$$

En cambio, los de media onda permiten rotar el estado de polarización sin afectar la intensidad a la salida. En la figura 2.14 se muestra cómo una placa de media onda orientada a 45° puede rotar un estado de polarización lineal horizontal a uno vertical.

Como en los casos anteriores, se puede representar la rotación de la polarización usando el formalismo de Jones:

Figura 2.14: Propagación de un estado de polarización lineal horizontal a través de una placa de retardo de media onda vertical a 45° que genera un estado de polarización lineal vertical. Las placas de media onda introducen un retardo de fase de π radianes.

$$\mathbf{V} = R^{T} \begin{pmatrix} \frac{\pi}{4} \end{pmatrix} (HWP) R \begin{pmatrix} \frac{\pi}{4} \end{pmatrix} \mathbf{H},$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

$$= \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Combinando rotadores ópticos (HWP) y retardadores de cuarto de onda (QWP), podemos generar polarizaciones elípticas con cualquier inclinación y elipticidad. Esto será de utilidad más adelante pues los autovectores de las matrices de Jones indican los estados de polarización para los cuales el sistema es transparente, es decir, no se modifica el vector tras la operación de la matriz:

$$\mathbf{M}J_{\lambda}=\lambda J_{\lambda}.$$

Cuando se desea modulación de sólo fase en un SLM lo que se busca es precisamente que no se modifique la polarización y por ende la amplitud. El problema de calibrar moduladores se reduce a encontrar la matriz que define el CL y extraer sus autoestados tal y como dicen Pezzanitti y Davis en [9, 15, 35]. En la sección que sigue se construirá un modelo para describir el comportamiento de un cristal líquido enroscado (TN-LCD) en términos de matrices de Jones.

2.2.4 Propiedades ópticas de los cristales líquidos nemáticos enroscados (TN-LCD)

Los cristales líquidos del tipo TN-LCD son medios ópticos inhomogeneos y anisotrópicos que localmente actúan como si fueran cristales birrefringentes uniaxiales con su eje óptico orientado en la dirección preferente de las moléculas. Como se mencionó en la sección 2.2.1.2 la anisotropía se debe a la forma obloide de las moléculas del cristal, y en el caso de los TN la inhomogeneidad viene dada por la orientación preferencial de las moléculas que es función de su posición. Las propiedades ópticas se estudian suponiendo que el material se puede representar como láminas delgadas perpendiculares a la dirección de propagación, cada una de ellas actuando como si fuera un cristal birrefringente uniaxial con su eje óptico rotado respecto al eje x un ángulo ψ como se ilustra en la figura 2.15.

Figura 2.15: Propagación de la luz en un cristal líquido del tipo Twisted Nematic. En este diagrama el ángulo de entorchado es de 90° .

La rotación de cada *lámina* de moléculas se asume proporcional a la distancia desde la superficie de entra da del LCD:

$$\psi(z) = \alpha z. \tag{2.16}$$

Aquí la constante α se conoce como coeficiente de torsión, y el ángulo a la salida viene dado por:

$$\phi \equiv \psi(d) = \alpha d.$$

Si se divide el cristal en N láminas, cada una tendrá un grosor d/N y estará orientada en los ángulos $\rho, 2\rho, 3\rho, \dots (N-1)\rho, N\rho$ con $\rho = \phi/N$. Si cada una representa un cristal

birrefringente, este tendrá una birrefringencia asociada al grosor dada por:

$$\beta_N = \frac{\pi d}{2N} \left(n_e - n_o \right).$$

La matriz de Jones general para el conjunto de todas las láminas se encuentra como la multiplicación de cada una como se muestra a continuación:

$$M = W_N W_{N-1} \cdots W_3 W_2 W_1 = \prod_{m=1}^N W_m = \prod_{m=1}^N R(m\rho)^T W_0 R(m\rho),$$

dónde R es la matriz de rotación, y W_m es la matriz de Jones para el retardador m rotada, y W_0 es aquella donde el eje rápido está orientado con el eje x:

$$W_0 = \begin{pmatrix} e^{i\beta/2N} & 0\\ 0 & e^{-i\beta/2N} \end{pmatrix}.$$

Las matrices de rotación cumplen la siguiente regla:

$$\begin{split} R^{T}(\psi_{m})R^{T}(\psi_{m-1}) &= R^{T}\left(\psi_{m} + \psi_{m-1}\right), \\ &= \begin{pmatrix} \cos\psi_{m} & -\sin\psi_{m} \\ \sin\psi_{m} & \cos\psi_{m} \end{pmatrix} \begin{pmatrix} \cos\psi_{m-1} & -\sin\psi_{m-1} \\ \sin\psi_{m-1} & \cos\psi_{m-1} \end{pmatrix}, \\ &= \begin{pmatrix} \cos\psi_{m}\cos\psi_{m-1} - \sin\psi_{m}\sin\psi_{m-1} & -(\cos\psi_{m}\sin\psi_{m-1} + \sin\psi_{m}\cos\psi_{m-1}) \\ \sin\psi_{m}\cos\psi_{m-1} + \cos\psi_{m}\sin\psi_{m-1} & -\sin\psi_{m}\sin\psi_{m-1} + \cos\psi_{m}\cos\psi_{m-1} \end{pmatrix}, \\ &= \begin{pmatrix} \cos\left(\psi_{m} + \psi_{m-1}\right) & -\sin\left(\psi_{m} + \psi_{m-1}\right) \\ \sin\left(\psi_{m} + \psi_{m-1}\right) & \cos\left(\psi_{m} + \psi_{m-1}\right) \end{pmatrix}. \end{split}$$

Usando esto sobre las matrices de rotación, se puede realizar el siguiente razonamiento, si N=1:

$$M = R^T(\rho)W_0R(\rho).$$

Si en cambio N=2:

$$M = R^{T}(2\rho)W_0R(2\rho)R^{T}(\rho)W_0R(\rho),$$

= $R^{T}(2\rho)W_0R(\rho)R(\rho)R^{T}(\rho)W_0R(\rho).$

Como $R(\rho)R^T(\rho) = 1$ se tiene:

$$M = R^{T}(2\rho)W_0R(\rho)W_0R(\rho),$$

= $R^{T}(2\rho)[W_0R(\rho)]^2.$

Para N = 3:

$$\begin{split} M &= R^T(3\rho)W_0R(3\rho)R^T(2\rho)W_0R(2\rho)R^T(\rho)W_0R(\rho), \\ &= R^T(3\rho)W_0R(3\rho)R^T(2\rho)\left[W_0R(\rho)\right]^2, \\ &= R^T(3\rho)W_0R(\rho)R(2\rho)R^T(2\rho)\left[W_0R(\rho)\right]^2, \\ &= R^T(3\rho)W_0R(\rho)\left[W_0R(\rho)\right]^2, \\ &= R^T(3\rho)\left[W_0R(\rho)\right]^3. \end{split}$$

Ahora para una cantidad arbitraria m:

$$\begin{split} M &= R^T(m\rho) W_0 R(m\rho) R^T((m-1)\rho) \left[W_0 R(\rho) \right]^{m-1}, \\ &= R^T(m\rho) W_0 R(\rho) R((m-1)\rho) R^T((m-1)\rho) \left[W_0 R(\rho) \right]^{m-1}, \\ &= R^T(m\rho) W_0 R(\rho) \left[W_0 R(\rho) \right]^{m-1}, \\ &= R^T(m\rho) \left[W_0 R(m\rho) \right]^m. \end{split}$$

Y así se obtiene la matriz general del TN-LCD según Yariv et.al [7] en términos de dos matrices, una que cambia el estado de polarización y otra que simplemente lo rota:

$$M = R^{T}(\phi) \left[W_0 R\left(\frac{\phi}{N}\right) \right]^N, \tag{2.17}$$

$$= R^{T}(\phi) \begin{pmatrix} \cos \frac{\phi}{N} e^{i\beta/N} & \sin \frac{\phi}{N} e^{i\beta/N} \\ -\sin \frac{\phi}{N} e^{-i\beta/N} & \cos \frac{\phi}{N} e^{-i\beta/N} \end{pmatrix}^{N}.$$
 (2.18)

La ecuación 2.18 puede ser simplificada aún mas como muestra Yeh en [6] si se usa la identidad de Chebyshev 2.19 para matrices unimodulares:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^m = \begin{pmatrix} \frac{A\sin(mZ) - \sin(m-1)Z}{\sin Z} & \frac{B\sin(mZ)}{\sin Z} \\ \frac{C\sin(mZ)}{\sin Z} & \frac{D\sin(mZ) - \sin(m-1)Z}{\sin Z} \end{pmatrix}, \tag{2.19}$$

con

$$Z = \cos^{-1}\left[\frac{1}{2}(A+D)\right].$$

Si se saca el límite cuando $(N \to \infty)$ se obtiene la siguiente matriz:

$$M = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} \cos \gamma + i\beta \frac{\sin \gamma}{\gamma} & \phi \frac{\sin \gamma}{\gamma} \\ -\phi \frac{\sin \gamma}{\gamma} & \cos \gamma - i\beta \frac{\sin \gamma}{\gamma} \end{pmatrix}, \tag{2.20}$$

dónde:

$$\gamma = \sqrt{\phi^2 + \beta^2}.$$

Ahora, esta es la matriz que todos los autores encontrados en el estudio del estado del arte referencian y a partir de la cual se basan para caracterizar moduladores. La matriz que representa un SLM tal como se estudió en esta sección es la forma más simple de representar un cristal líquido del tipo twisted nematic y se conoce como el modelo de Lu y Saleh [36]. Este modelo parte de asumir las siguientes aproximaciones:

- El TN-LCD se comporta como una sucesión de láminas retardadoras en las cuales la orientación del vector director varía gradualmente desde un ángulo a la entrada hasta un ángulo a la salida y formando un ángulo de rotación conocido como twist angle.
- El ángulo de rotación (twist angle) es una función lineal proporcional a la profundidad en el cristal tal y como se expresa en la ecuación 2.16.

• El ángulo de inclinación (tilt angle) se produce cuando se introduce un campo eléctrico que hace rotar las moléculas para alinearlas en su dirección. Éste ángulo se asume constante a lo largo del cristal para un voltaje específico. Si la birrefringencia es proporcional al ángulo de inclinación entonces al variar el voltaje esta variará linealmente con respecto al voltaje.

En modelos posteriores como los de Coy et al [37] y Marquez et al [38] se construyen matrices para el LCD que corrigen comportamientos no lineales no previstos por Lu y Saleh. El principal factor a corregir en un LCD es la tendencia de las moléculas cercanas a las paredes del cristal a conservar la dirección de pulido de los vidrios que las contienen como se ilustra en la figura 2.16. Este efecto hace que el ángulo de rotación no sea una

Fig. 1 Sketch of the behavior of the twist angle and the birefringence as a function of the depth in the modulator: (a) and (b) Berreman model, (c) and (d) Lu and Saleh model, (e) and (f) Coy et al. model, and (g) and (h) our model.

Figura 2.16: Modelos de TN-LCD tomado de Marquez et al en [38].

función lineal lo largo de la profundidad y que la birrefringencia no sea una función lineal del voltaje.

2.3 Revisión de la literatura

Se realizó una revisión de la literatura en el contexto de calibración de moduladores basados en TN-LCD y se encontró que para poder utilizar una pantalla de cristal líquido como un modulador de sólo fase se debe caracterizar el dispositivo como si fuera un elemento óptico que afecta tanto la polarización como la fase de la luz. La mayoría de los autores usan el cálculo de Jones para representar el efecto del SLM sobre la luz como la operación de la matriz del SLM sobre un vector de polarización a la entrada. Sin embargo, algunos autores como Yu et al. [24], Moreno et al. [?] y Durán et al. [19] utilizan también la medida de parámetros de Stokes y matrices de Muller para obtener curvas de calibración de los dispositivos. El reto en ambos casos es encontrar una matriz que modele con precisión el comportamiento del modulador para diferentes valores de voltaje aplicado.

Hay dos formas básicas de caracterizar el SLM, por una parte se puede seguir el camino riguroso y analizar el TN-LCD desde el punto de vista físico como se hizo en la sección anterior. Para este caso se deben encontrar los parámetros físicos que determinan la matriz que se presentó en la fórmula 2.20, es decir, la birrefringencia como función del voltaje, el ángulo de rotación de las moléculas a la entrada del modulador, y el ángulo de rotación total que experimentan las moléculas hasta la salida del modulador. Estos parámetros son encontrados en la mayoría de los casos por medio de ajuste de curvas con medidas experimentales de la tramitancia. La otra forma en la que se obtiene la matriz de Jones es asumiendo que el sistema es como una caja negra que debe cumplir reglas menos exigentes. En la figura 2.17 se ilustra por medio de dos columnas la cantidad y fecha en las cuales se han publicado artículos científicos en los cuales se usa uno u otro método para caracterizar los moduladores. Adicionalmente se identificaron los grupos que más han publicado sobre el tema. De la figura 2.17 y de las fechas en los artículos de la bibliografía se puede observar que la investigación en TN-LCD para aplicación en procesamiento óptico tuvo su auge entre 1990 y 2010 aproximadamente, esto se debe como afirma Kirsch en [39] a que a finales de los 80s las pantallas de CL para televisores portátiles resultaron interesantes a los investigadores como dispositivos para generación dinámica de máscaras de amplitud y fase. El declive en cambio, se debe a que los moduladores de reflexión han ido reemplazando a los de transmisión por no necesitar de una caracterización y tener mejores prestaciones. También se ha concluido que los artículos que buscaban encontrar todos los parámetros del modulador como el de Marquez et al del 2000[38] y el de Yun et al. en 1998 [40] preceden en el tiempo a los artículos donde se busca simplificar el modelo y asumir el comportamiento del LCD como una caja negra, como los dos artículos de Ma et al. en 2010 y 2011 [22, 23] o el de Ignacio Moreno en 2003 [16] (que es el que actualmente intentamos replicar en el laboratorio). Al parecer los autores de estos últimos identificaron una necesidad de simplificar el proceso de caracterización, y entre sus argumentos están: la simplicidad matemática y número reducido de medidas necesarias.

Figura 2.17: Tabla de publicaciones en relación con caracterización de moduladores tipo TN-LCD. Los rectángulos representan los grupos que han publicado más en el tema y que resultan de mayor interés para este trabajo.

El principal resultado del estudio del estado del arte fue encontrar un patrón en la evolución del tema en la literatura desde los primeros métodos para pantallas de televisor [12] hasta campos dónde se modula la polarización producidos por moduladores en [31]. Este patrón tiene como columna vertebral al investigador Ignacio Moreno que, junto con otros investigadores en universidades de España y California ha dirigido los avances en aplicaciones científicas de pantallas TN-LCD. En el momento, en el laboratorio de Óptica y Fotónica del Grupo de Óptica Aplicada nos encontramos apropiando las técnicas que se referencian en dos de sus artículos para encontrar ya sea la matriz de "caja negra" del modulador o la matriz con los parámetros de fabricación. Una vez caracterizado se procederá a encontrar los autovalores de la matriz de Jones (como se explica en [35]), y usarlos para plantear estados de polarización a la entrada y la salida del SLM que permitan una modulación de solo fase con la cual se puedan hacer elementos difractivos digitales tales como máscaras espiral de fase o lentes de Fresnel. Los elementos difractivos producidos de forma digital son la clave para investigar aberraciones ópticas en haces Laguerre-Gauss y

sus aplicaciones.

2.4 Caracterización de TN-SLM

- Describir el sistema de rotadores
- Describir las aplicaciones para caracterización de motores
- Describir los dos algor[itmos que usamos para la reconstrucción de la modulación de fase y el de reconstrucción de modulación de amplitud.
- Describir el funcionamiento y la idea detrás de los programas de iPython para la detección de las matrices de Jones.
- Describir la idea que tenemos para caracterizar CL utilizando interferometría.
- mostrar los Vórtices obtenidos con buenas modulaciones y compararlos con los v[ortices que se obtenían antes.

Bibliografía

- A. N. Alekseev, K. N. Alekseev, O. S. Borodavka, A. V. Volyar, and Yu A. Fridman. Conversion of hermite-gaussian and laguerre-gaussian beams in an astigmatic optical system. 1. experiment. *Technical Physics Letters*, 24(9):694–696, 1998. doi: 10.1134/ 1.1262248.
- [2] Chen Jun, Kuang Deng-Feng, Gui Min, and Fang Zhi-Liang. Generation of optical vortex using a spiral phase plate fabricated in quartz by direct laser writing and inductively coupled plasma etching. *Chinese Physics Letters*, 26(1):014202, 2009. doi: 10.1088/0256-307X/26/1/014202.
- [3] Alicia V. Carpentier, Humberto Michinel, Jose Salgueiro, and David Olivieri. Making optical vortices with computer-generated holograms. *American Journal of Physics*, 76(10):916, 2008. ISSN 00029505. doi: 10.1119/1.2955792.
- [4] Lei Wu, S. Dooley, E.A. Watson, Paul F. McManamon, and Huikai Xie. A tip-tilt-piston micromirror array for optical phased array applications. *Journal of Microelectromechanical Systems*, 19(6):1450–1461, December 2010. ISSN 1057-7157. doi: 10.1109/JMEMS.2010.2076777.
- [5] Jan Liesener and Wolfgang Osten. Wavefront optimization using piston micro mirror arrays. In Professor Dr Wolfgang Osten, editor, *Fringe 2005*, pages 150–157. Springer Berlin Heidelberg, January 2006. ISBN 978-3-540-26037-0, 978-3-540-29303-3. URL http://link.springer.com/chapter/10.1007/3-540-29303-5_17.
- [6] Pochi Yeh and Gu Claire. Optics of liquid crystal displays. 1999.
- [7] Amnon Yariv and Pochi Yeh. Optical Waves in Crystals: Propagation and Control of Laser Radiation. Wiley-Interscience, Hoboken, N.J., November 2002. ISBN 9780471430810.
- [8] Naim Konforti, S.-T. Wu, and E. Marom. Phase-only modulation with twisted nematic liquid-crystal spatial light modulators. *Optics letters*, 13(3):251–253, 1988. doi: 10. 1364/OL.13.000251.
- [9] J. L. Pezzaniti and R. A. Chipman. Phase-only modulation of a twisted nematic liquidcrystal TV by use of the eigenpolarization states. *Optics letters*, 18(18):1567–1569, 1993. doi: 10.1364/OL.18.001567.

- [10] Colin Soutar and Kanghua Lu. Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell. Optical engineering, 33(8):2704–2712, 1994. doi: 10.1117/12.173544.
- [11] Zheng Zhang, Guowen Lu, and T. S. Francis. Simple method for measuring phase modulation in liquid crystal televisions. *Optical Engineering*, 33(9):3018–3022, 1994. doi: 10.1117/12.177518.
- [12] Ignacio Moreno, Jeffrey A. Davis, Kevin G. DNelly, and David B. Allison. Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators. *Optical Engineering*, 37(11):3048–3052, 1998. doi: 10.1117/1.601976.
- [13] Jeffrey A. Davis, Ignacio Moreno, Philbert Tsai, and Kevin G. DÑelly. Simple technique for determining the extraordinary axis direction for twisted-nematic liquid crystal spatial light modulators. Optical Engineering, 38(5):929–932, 1999. doi: 10.1117/1.602052.
- [14] Claudio Iemmi, Ignacio Moreno, Jeffrey A. Davis, Juan Campos, and Maria J. Yzuel. Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model. *Optical Engineering*, 40(11):2558–2564, 2001. doi: 10.1117/1.1412228.
- [15] Jeffrey A. Davis, Maria J. Yzuel, Juan Campos, Ignacio Moreno, Andres Marquez, and Josep Nicolas. Review of operating modes for twisted nematic liquid crystal displays for applications in optical image processing. In *Optical Science and Technology, SPIE's* 48th Annual Meeting, pages 120–131. International Society for Optics and Photonics, 2003. doi: 10.1117/12.510257.
- [16] I. Moreno, P. Velaśquez, C. R. Fernańdez-Pousa, M. M. Sańchez-Lopez, and F. Mateos. Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display. *Journal of Applied Physics*, 94(6):3697, 2003. ISSN 00218979. doi: 10.1063/1.1601688.
- [17] Hyun Kim and Yeon H. Lee. Unique measurement of the parameters of a twisted-nematic liquid-crystal display. Applied optics, 44(9):1642–1649, 2005. doi: 10.1364/AO.44.001642.

- [18] V. Durán, J. Lancis, E. Tajahuerce, and M. Fernández-Alonso. Phase-only modulation with a twisted nematic liquid crystal display by means of equi-azimuth polarization states. Optics express, 14(12):5607–5616, 2006. doi: 10.1364/OE.14.005607.
- [19] Vicente Duran, Jess Lancis, Enrique Tajahuerce, and Vicent Climent. Poincaré sphere method for optimizing the phase modulation response of a twisted nematic liquid crystal display. *Journal of Display Technology*, 3(1):9–14, March 2007. ISSN 1551-319X. doi: 10.1109/JDT.2006.890710.
- [20] Andrés Márquez, Sergi Gallego, David Méndez, Mariela L. Álvarez, Elena Fernández, Manuel Ortuño, Augusto Beléndez, and Inmaculada Pascual. <title>characterization and optimization of liquid crystal displays for data storage applications</title>. pages 658715–658715–12, May 2007. doi: 10.1117/12.722647.
- [21] Meng-Han Liu, Wen-Chuan Kuo, Hsiang-Chun Wei, Chien-Chung Tsai, Chih-Jen Yu, Bau-Jy Liang, and Chien Chou. Cell parameter measurement of a twisted nematic liquid crystal device using interferometric polarimeter under normal incidence. *Optics express*, 18(9):8759–8766, 2010. doi: 10.1364/OE.18.008759.
- [22] Baiheng Ma, Baoli Yao, Tong Ye, and Ming Lei. Prediction of optical modulation properties of twisted-nematic liquid-crystal display by improved measurement of jones matrix. *Journal of Applied Physics*, 107(7):073107, 2010. ISSN 00218979. doi: 10. 1063/1.3361238.
- [23] Baiheng Ma, Baoli Yao, Ze Li, and Tong Ye. Improvement of the performance of the twisted-nematic liquid-crystal display as a phase modulator. *Applied optics*, 50(17): 2588–2593, 2011. doi: 10.1364/AO.50.002588.
- [24] Chih-Jen Yu, Yao-Teng Tseng, Kuei-Chu Hsu, and Chien Chou. Full-field characterization of a twisted nematic liquid-crystal device using equivalence theorem of a unitary optical system. *Applied optics*, 51(2):238–244, 2012. doi: 10.1364/AO.51.000238.
- [25] Mohammad Sultan Mahmud, Izabela Naydenova, and Vincent Toal. Implementation of phase-only modulation utilizing a twisted nematic liquid crystal spatial light modulator. *Journal of Optics A: Pure and Applied Optics*, 10(8):085007, August 2008. ISSN 1464-4258, 1741-3567. doi: 10.1088/1464-4258/10/8/085007.

- [26] M. B. Roopashree, Akondi Vyas, Ravinder Kumar Banyal, and B. Raghavendra Prasad. Phase characteristics of reflecting and transmitting type twisted nematic spatial light modulators. arXiv preprint arXiv:0911.0817, 2009.
- [27] Kapil Dev and Anand Asundi. Mueller–stokes polarimetric characterization of transmissive liquid crystal spatial light modulator. Optics and Lasers in Engineering, 50 (4):599–607, April 2012. ISSN 01438166. doi: 10.1016/j.optlaseng.2011.10.004.
- [28] Jeffrey A. Davis, Dylan E. McNamara, Don M. Cottrell, and Tomio Sonehara. Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator. Applied Optics, 39(10):1549–1554, 2000. doi: 10.1364/AO.39.001549.
- [29] Jeffrey A. Davis, Don M. Cottrell, Brandon C. Schoonover, Johnathan B. Cushing, Jorge Albero, and Ignacio Moreno. Vortex sensing analysis of radially and pseudoradially polarized beams. *Optical Engineering*, 52(5):050502-050502, 2013. doi: 10. 1117/1.OE.52.5.050502.
- [30] Ignacio Moreno, María J. Yzuel, Juan Campos, and Asticio Vargas. Jones matrix treatment for polarization fourier optics. *Journal of Modern Optics*, 51(14):2031– 2038, September 2004. ISSN 0950-0340, 1362-3044. doi: 10.1080/09500340408232511.
- [31] Ignacio Moreno, Claudio Iemmi, Juan Campos, and Maria J. Yzuel. Jones matrix treatment for optical fourier processors with structured polarization. *Optics express*, 19(5):4583–4594, 2011. doi: 10.1364/OE.19.004583.
- [32] Georges Friedel. The mesomorphic states of matter. Ann. phys, 18:273-474, 1922. URL http://www.personal.southampton.ac.uk/tim/crystals_that_flow/georges_friedel1922.pdf.
- [33] Nestor Uribe-Patarroyo. Optical Space Applications of Liquid Crystals: Polarimetry and Photon Orbital Angular Momentum in Remote Sensing. Tesis doctoral, Universidad Complutense de Madrid, Laboratorio de Instrumentación Espacial Instituto Nacional de Técnica Aeroespacial, 2011.
- [34] Patricia Cladis and Peter Palffy-Muhoray. Dynamics and Defects in Liquid Crystals: A Festschrift in Honor of Alfred Saupe. CRC Press, Amsterdam, July 1998. ISBN 9789056996499.
- [35] Jeffrey A. Davis, Ignacio Moreno, and Philbert Tsai. Polarization eigenstates for twisted-nematic liquid-crystal displays. Applied optics, 37(5):937–945, 1998. doi: 10. 1364/AO.37.000937.

- [36] Bahaa EA Saleh and Kanghua Lu. Theory and design of the liquid crystal TV as an optical spatial phase modulator. *Optical Engineering*, 29(3):240–246, 1990. URL http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1066772.
- [37] Julio A. Coy, Diego F. Grosz, and Oscar Eduardo Marti. Characterization of a liquid crystal television as a programmable spatial light modulator. *Optical Engineering*, 35 (1):15–19, 1996. doi: 10.1117/1.600886.
- [38] Andres Marquez, Ignacio Moreno, Jeffrey A. Davis, and Claudio Iemmi. Characterization of edge effects in twisted nematic liquid crystal displays. Optical Engineering, 39(12):3301–3307, 2000.
- [39] James C. Kirsch, Don A. Gregory, Melissa W. Thie, and Brian K. Jones. Modulation characteristics of the epson liquid crystal television. *Optical Engineering*, 31(5):963– 970, 1992. doi: 10.1117/12.56170.
- [40] Yun Zhisheng, Li Yulin, Liu Jifang, and He Zhengquan. Measurement of the phase modulation of liquid-crystal televisions by a noninterferometric technique. *Applied optics*, 37(14):3069–3075, 1998. doi: 10.1364/AO.37.003069.

Parte II

Caracterización y corrección de aberraciones de VO

CAPÍTULO 3

Caracterización de aberraciones en Vórtices Ópticos

3.1 Introducción

En capítulos anteriores ha quedado claro que para producir VO es necesario contar con un sistema óptico en el cual sea posible manipular con precisión la fase de un frente de onda. Asimismo, se presentó un montaje experimental en el cual logramos generar VO a partir del uso de dispositivos difractivos conocidos como SLMs. No obstante, los VO obtenidos distan de ser de suficiente calidad como para ser usados en aplicaciones científicas o tecnológicas.

Esta segunda parte de la tesis abarca el trabajo que se realizó para mejorar la calidad óptica de nuestro montaje con el fin de mejorar los VO que se obtuvieron en la parte anterior.

3.2 Estado del Arte

Los sistemas ópticos formadores de imagen que se encuentran en aplicaciones de la vida real están sujetos a aberraciones de fase que limitan su resolución. Es por ello que en la industria y en laboratorios se hace un gran esfuerzo para detectar aberraciones y corregirlas vía Óptica Adaptativa (AO) [1] o por medio de técnicas digitales posteriores a la adquisición [2].

Las aberraciones ópticas en un sistema formador de imagen pueden proceder de fuentes intrínsecas tales como imperfecciones en el diseño, los materiales, la manufactura o la alineación de los elementos que los componen. O de fuentes extrínsecas como variaciones en el índice de refracción de muestras microscópicas y turbulencia atmosférica en imágenes capturadas usando telescopios. La presencia de aberraciones del último tipo en imágenes procedentes de telescopios terrestres, y la dificultad de modificar los sistemas para incluir brazos de referencia han sido la motivación para el desarrollo de varias técnicas de Sensado de Fase no Interferométricas (NI-WFS). La técnica de Diversidad de Fases o Phase Diversity (PD) pertenece a una familia de NI-WFS conocida como de Reconstrucción de Fase o Phase Retrieval. A diferencia de técnicas directas que requieren de óptica y sensores adicionales como los sistemas que usan sensores Shack-Hartman, las técnicas de Phase Retrieval consisten en la determinación de la fase de una función compleja a partir de medidas de su magnitud usando información a priori de la función o de su transformada [3]. Específicamente, la técnica de reconstrucción PD ha sido usada exitosamente en el contexto de sistemas de AO para incrementar la resolución de sistemas ópticos tales como el Telescopio Espacial Hubble [3], y en post procesamiento de imágenes de astronomía en las cuales la resolución es crítica. Dos casos muy relevantes son el estudio de manchas solares y la detección de planetas extrasolares [2, 4–7]. Así como con otras técnicas desarrolladas para aplicaciones en astronomía, los métodos de reconstrucción de fase como el Gerchberg-Sachston (GS) y PD han migrado a aplicaciones en el laboratorio, y más específicamente a aplicaciones en microscopía de fase [8?, 9]. Tal es el caso del trabajo de Jesacher et al. [8] que implementó una versión del método GS para la optimización de pinzas ópticas utilizadas como iluminación en sistemas de microscopía de contraste de fase espiral. En este capítulo se presenta un método novedoso de reconstrucción de fase del tipo PD inspirado en la aplicación antes mencionada, y por medio del cual fue posible detectar y corregir las aberraciones ópticas del sistema generador de VO presentado en el capítulo 2. A continuación, se presenta el marco teórico que soporta la implementación del método. En la sección 3.4 se presenta el montaje óptico y se describe el algoritmo general para la reconstrucción de fase. Lugo, en la sección 3.5 se presentan los resultados de simulaciones y experimentos que permiten corroborar la efectividad del método para la corrección de aberraciones.

3.3 Marco Teórico

Los métodos de reconstrucción de fase no interferométricos dependen de la medida de la intensidad del campo óptico que se propaga a traves de un sistema formador de imagen. Si el sistema formador de imagen se caracteriza por su Función de Dispersión de Punto (PSF), la intensidad a la salida puede ser descrita como una convolución entre la imagen a la entrada y la PSF tal y como se ilustra en la ecuación (3.1).

$$d(\vec{x}) = d_{obj}(\vec{x}) \otimes s(\vec{x}). \tag{3.1}$$

En este caso hemos usado la notación de Paxman et al. [10] dónde la PSF se representa como s, d_{obj} es la intensidad del objeto a la entrada y d es la intensidad de la imagen a la salida, todas ellas evaluadas en el espacio de coordenadas naturales (\vec{x}) . El Teorema de Convolución permite representar la operación de la expresión (3.1) como un simple producto punto entre las Transformadas de Fourier (FT) de la intensidad a la entrada y la PSF como se muestra a continuación.

$$D(\vec{u}) = D_{obj}(\vec{u})S(\vec{u}). \tag{3.2}$$

En 3.2 el término S denota la Función de Transferencia Óptica (OTF) del sistema formador de imagen, y así como con los otros términos, letras mayúscula denotan una transformada de Fourier sobre la función con notación minúscula.

$$S(\vec{u}) = \mathcal{F}\{s(\vec{x})\}, \qquad D(\vec{u}) = \mathcal{F}\{d(\vec{x})\}, \qquad D_{obj}(\vec{u}) = \mathcal{F}\{d_{obj}(\vec{x})\}.$$

Hasta el momento hemos trabajado únicamente con funciones reales que representan la intensidad del campo punto a punto en los planos objeto e imagen de un sistema óptico. Este tipo de notación es de gran utilidad para las aplicaciones clásicas del método PD que hacen imagen de objetos lejanos, y con fuentes de iluminación no coherentes. Sin embargo, en sistemas ópticos con fuentes de iluminación coherentes, como el que se presentó en la primera parte de este documento para la generación de VO, tenemos la ventaja de trabajar con campos complejos que proporcionan información de amplitud y fase. Para adaptar el método clásico de PD a una versión de iluminación coherente es necesario trabajar con campos complejos. Es bien sabido que la OTF y la PSF forman un par de Fourier en el dominio no coherente, y cada una de ellas tiene un equivalente en el dominio de la luz coherente. Por una parte, la contraparte coherente de la PSF es la Función de Respuesta al Impulso en amplitud o PSF de amplitud y de aquí en adelante se denotará como $h(\vec{x})$.

La PSF es el módulo cuadrado de la PSF de amplitud (APSF),

$$s(\vec{x}) = |h(\vec{x})|^2. \tag{3.3}$$

Y así como la PSF relaciona intensidades de campo a la entrada y salida de un sistema por medio de una convolución, la PSF de amplitud relaciona los campos ópticos complejos.

$$u(\vec{x}) = u_{obj}(\vec{x}) \otimes h(\vec{x}). \tag{3.4}$$

Del otro lado, el equivalente coherente de la OTF es la Función de Transferencia Óptica de amplitud, o Pupila Generalizada del sistema (GP) y por ser el par de Fourier de la APSF se cumple la relación (3.5).

$$H(\vec{u}) = \mathcal{F}\{h(\vec{x})\} = A(\vec{u})e^{i\phi(\vec{u})} \tag{3.5}$$

En (3.5) se observa que fuera de ser la FT de la APSF, la GP es una función compleja que describe tanto la forma y tramitancia de la apertura $A(\vec{u})$ como la fase introducida por sistema óptico $\phi(\vec{u})$. Esta fase generalmente es sinónimo de las aberraciones del sistema y se describe matemáticamente de forma parametrizada como una combinación de polinomios de polinomios de Zernike.

La OTF de un sistema formador de imagen con iluminación coherente se puede obtener mediante la autocorrelación normalizada de la GP como se muestra a continuación.

$$S(\vec{u}) = \frac{H(\vec{u}) \star H(\vec{u})}{|H(\vec{u})|^2} \tag{3.6}$$

Todo lo mencionado anteriormente ha sido ingeniosamente condensado por Uribe-Patarroyo [33] en una versión de la figura 3.1. Ahora bien, las expresiones (3.3) y (3.6) nos permiten llevar sistemas ópticos descritos por campos complejos a la notación tradicional del PD. A continuación se describen los aspectos generales de la reconstrucción de fase con PD, en la sección 3.3.2 se describirán las modificaciones que hacemos al PD tradicional para aprovechar el tipo de iluminación no coherente, y en la sección 3.3.3 se explica el efecto de introducir máscaras espiral como diversidades de fase.

Figura 3.1: Relaciones entre funciones de transferencia ópticas y sus transformadas de Fourier en los dominios coherente y no coherente. Inspirado en una versión similar de Uribe-Patarroyo [33].

3.3.1 PD tradicional

Si la GP del sistema es modificada por un cambio conocido en la fase o diversidad de fase de la forma:

$$H_{\Delta} = e^{\phi_1(\vec{u})}.$$

Obtenemos una nueva GP que se puede describir como el producto entre la GP original (H_0) y la GP con el cambio o diversidad de fase (H_{Δ}) . Estas diversidades son generalmente desenfoques introducidos al cambiar el camino óptico de haces esféricos, o pueden ser otro tipo de distribuciones de fase fácilmente parametrizables en polinomios de Zernike como el astigmatismo. Tomando la autocorrelación normalizada de la GP con diversidad como

se muestra en la expresión (3.7)

$$S_1 = \frac{H_1 \star H_1}{|H_1|^2} = \frac{H_0 H_\Delta \star H_0 H_\Delta}{|H_0 H_\Delta|^2} \tag{3.7}$$

obtenemos una OTF con diversidad ϕ_1 que nos permitirá predecir cómo son las imagenes registradas a la salida del sistema cuando se introduce un cambio de fase:

$$D_1 = D_{obj} S_1.$$

La tarea de encontrar las aberraciones del sistema óptico en el PD tradicional consiste entonces en encontrar una distribución de fase inicial $\phi(\vec{u})$ que en combinación con la función pupila $A(\vec{u})$ componga una OTF capaz de modelar el sistema. Esta OTF debe predecir, a partir de una entrada dada (D_{obj}) no solo la imagen nominal (D_0) , sino tambien las imágenes distorsionadas $D_{1...k}$ que resultan de la adición de k diversidades de fase distintas. Y la adición de más de una diversidad de fase es la que diferencia al método PD de métodos similares, en particular, la inclusión de diversidades implica que la fase del frente de onda recuperado debe ser una solución para un conjunto de sistemas y no sólo para uno, esto le otorga al método una mayor precisión. La fase del frente de onda a recuperar puede ser encontrada utilizando Algoritmos de Propagación Iterativos como el GS o por métodos de búsqueda basados en el Gradiente [3]. Las implementaciones de PD basadas en algoritmos de búsqueda del gradiente usan métodos de búsqueda de la mayor pendiente para minimizar funcionales de la forma:

$$L(\bar{D}_{obj}, \phi) = \sum_{j=0}^{K} \sum_{u,v}^{M,N} |D_j - \bar{D}_{obj} S_j|^2.$$
 (3.8)

Dónde \bar{D}_{obj} es la FT del objeto a la entrada limitada por las frecuencia de corte establecidas en la apertura, y D_j es la FT de la intensidad medida experimentalmente por una cámara en el pixel con coordenadas (u, v) luego de introducir una diversidad de fase conocida con índice j. Este funcional actua como una medida de la similitud entre la intensidad de un objeto que se propaga por un sistema modelado por S_j y la medida real de su imagen. Obtener un valor mínimo al evaluar el funcional para todas las diversidades j implica que el objeto a la entrada y la OTF del sistema se conocen de forma suficientemente precisa como para emular el sistema real.

Es importante fijarse en que el funcional clásico de PD (3.8) debe solucionarse simultanea-

mente con respecto a dos variables. Esto se debe a que en aplicaciones de PD para sensado remoto se desconoce tanto la fase introducida por el sistema, como las propiedades del objeto a la entrada. Puesto que solucionar un funcional simultaneamente para dos funciones resulta complejo y muy costoso computacionalmente, desde los inicios de la técnica autores como Gonsalves [11] han propuesto una transformación de (3.8) que permite describir el funcional sólo en términos de la fase del frente de onda. Esta transformación está descrita de forma muy completa y generalizada en el trabajo de Paxman et al. [10], y ha sido implementada exitosamente por Katkovnik and Astola [12]. No obstante, ha sido demostrado que la forma reducida del funcional es mucho más susceptible a devolver mínimos locales en la presencia de ruido Gaussiano, y por tanto se ha propuesto el uso de métodos de regularización y metaheurísticos para incrementar la convergencia.

En la siguiente sección se propone una modificación al PD clásico que soluciona estos problemas con la condición de limitar el método a rangos de aplicación en los cuales es posible conocer el frente de onda a la entrada del sistema óptico.

3.3.2 PD con iluminación coherente

La variación de PD que nosotros proponemos puede llamarse PD con iluminación coherente, y requiere de conocer el frente de onda a la entrada del sistema. En nuestro caso, como los VO van a ser generados para aplicaciones en microscopia, el sistema óptico es un microscopio 4F compuesto por dos lentes. Dado que en el montaje que usamos para generar VO usamos una fuente laser, podemos asumir que el campo óptico a la entrada (u_{obj}) se puede representar como un haz de luz coherente con perfil Gaussiano y frente de onda plano.

$$u_{obj} = e^{\frac{-(x^2 + y^2)}{\sigma}}.$$

Ese sería el campo óptico a la entrada del 4F, es decir, a una distancia focal de la primera lente. La FT del objeto (U_{obj}) con coordenadas de frecuencia espacial puede ser observada en el plano focal de la primera lente (2F), y el campo a la salida del sistema está de nuevo en coordenadas naturales y se puede observar a 4 distancias focales. Si se define la GP en términos de la apertura en el dominio de Fourier, y la fase de la GP se asocia a la fase introducida tanto por aberraciones del sistema como por las diversidades, el campo a la salida se puede expresar en términos del campo a la entrada como se muestra en la ecuación 3.9.

$$u_i(\vec{x}) = \mathcal{F}^{-1}\{U_{obj}H_0(\vec{u})H_i(\vec{u})\}.$$
 (3.9)

Con la expresión (3.9) se puede plantear un equivalente coherente del funcional (3.8) en el cual la única incógnita son las aberraciones introducidas por el sistema óptico.

$$L_j(\phi) = \sum_{j=0}^K \sum_{u,v}^{M,N} \left| d_j - |u_j|^2 \right|^2.$$
 (3.10)

Si la apertura es circular y el objeto es un haz Gaussiano con frente de onda plano, las distribuciones de intensidad a la salida para cada diversidad (d_j) son patrones de Airy distorsionados localizados en el centro de la imagen. Es importante notar que a diferencia del PD tradicional, nosotros comparamos las imágenes en coordenadas naturales en vez del dominio de frecuencia espacial. Esto se debe a que el sistema formador de imágenes es un 4F. Otra diferencia muy importante es que podemos saber cómo será la fase a la salida, cosa que no se podría hacer con iluminación no coherente. Esto es esencial si queremos garantizar un perfil de fase específico como por ejemplo una vorticidad particular.

3.3.3 Máscaras espirales como diversidades de fase

Como se mencionó en la introducción, Jesacher et al. [8] propusieron el uso de máscaras espirales para mejorar el desempeño en la reconstrucción de aberraciones por medio del método GS en un sistema formador de imagen. El GS es un método iterativo de reconstrucción de fase que funciona con sólo una imagen como entrada. En ese trabajo mostraron que si el sistema óptico se ilumina con haces portadores de OAM 1, la imagen a la salida (que tiene forma de dona) responde con mucha mayor sensibilidad a aberraciones que las imagenes observadas cuando la iluminación es de fase plana (OAM 0). Ese incremento en la sensibilidad se ve traducido en una mayor precisión, y en un aumento en la convergencia que hacen del método una alternativa atractiva para la optimización de sistemas ópticos en los cuales se necesita contról preciso de la fase.

Los resultados de Jesacher et al. [8] pueden ser extendidos al método de PD con iluminación coherente si se modifica el funcional (3.10) de la sección 3.3.2 para recibir una nueva familia de diversidades de fase que introduzcan OAM al haz de entrada.

Estas diversidades son máscaras espiral de fase parametrizadas por el valor de su carga topológica l y definidas como:

$$\psi_l = arg(\exp{(il\theta)})$$

tal y como se mostró en la sección (referenciar la sección en la que se habla del programa para generación de máscaras).

Al incluir las máscaras espiral en un plano de Fourier del sistema, la fase del frente de onda se puede representar aproximadamente suma de:

- Las aberraciones inherentes al sistema (ϕ) representadas como una combinación ponderada de polinomios de Zernike. En nuestro caso la combinación se hace con los primeros 15 coeficientes siguiendo la convención de numeración de ?].
- La diversidad de fase espiral (ψ_l) .
- La diversidad de fase de aberración (ψ_l) que consiste en un solo elemento de la base de Zernike, como desenfoque o astigmatismo.

El campo complejo a la salida del sistema cuando se introduce una diversidad de aberración j y una diversidad de espiral de fase l en un plano de Fourier es entonces:

$$u_i^l = \mathcal{F}^{-1}\{U_{obj}Ae^{i(\phi+\psi_l+\phi_j)}\}.$$
 (3.11)

Usando la ecuación (3.11) se puede definir el funcional de PD coherente mejorado con VO que se muestra en la ecuación (3.12).

$$L(\phi) = \sum_{l=0}^{L} \sum_{j=0}^{K} \sum_{u,v}^{M,N} \left| d_j^l - |u_j^l|^2 \right|^2.$$
 (3.12)

Con ese funcional se puede plantear una metodología de solución para el problema de reconstrucción de fase como se ilustra en el diagrama de flujo de la figura 3.2.

A continuación, en lo que resta de este capitulo se ahondará en el método y en los detalles del proceso para entender qué es lo que sucede en cada una de las etapas.

3.4 Materiales y Métodos

Como se mencionó en la sección 3.3.2, para poder generar imágenes simuladas $|u_j^l|^2$ nuestro método se basa en la premisa de conocer el campo óptico a la entrada del sistema formador

Figura 3.2: Diagrama de flujo de una implementación de PD con iluminación coherente mejorado con VO.

de imagen. Es decir que si usamos un láser de buena calidad para obtener las imágenes del brazo izquierdo del diagrama 3.2 podemos asumir que el campo a la entrada del sistema simulado (u_{obj}) , tiene las características ópticas de una fuente láser coherente, es decir: amplitud Gaussiana, perfil de fase plano, y que además está limitado por una apertura circular correspondiente a la geometría de las lentes (En esta parte se podría hacer referencia a un montaje óptico descrito en el capítulo pasado. Idealmente a una fotografía).

Como el nuestro es un sistema formador de imagen y vamos a introducir las máscaras de diversidades en un plano de Fourier para simular la autocorrelación, se debe obtener la transformada de Fourier del campo mencionado anteriormente y colimar el haz para evitar que siga divergiendo. En adelante haremos referencia a la figura 3.3 para ilustrar las diferentes partes del sistema para reconstrucción de fase como si se tratara de un sistema 4F. Suponiendo que el frente de onda ya ha sido transformado al dominio de Fourier y que se encuentra colimado, representamos en el extremo izquierdo de la figura 3.3 la FT del campo a la entrada (U_{obj}) como un haz circular que incide sobre un TN-SLM (El mismo

Holoeye 2002 que se present[o anteriormente). Dado que el campo ha sido colimado luego de obtener su FT, se puede asumir que todos los planos desde que se colima el haz hasta que vuelve a pasar por una lente son equivalentes al plano de Fourier de un sistema 4F, y eso nos brinda un espacio adecuado para introducir el SLM como se muestra en el recuadro azul de la figura 3.3.

Si se trabaja en aplicaciones de microscopía en las cuales los objetos son de tamaños micrométricos, sus transformadas de Fourier son campos ópticos más extensos y la información en coordenadas de frecuencia espacial puede dispersarse en tamaños comparativamente más grandes. Una ventaja significativa de modificar el PD para que las diversidades de fase se introduzcan en un plano de Fourier es el hecho de que se pueden aprovechar más pixeles, y por ende se aumenta la resolución espacial de la modulación de fase.

El uso de dispositivos de modulación espacial de la fase para aplicaciones en PD se ha extendido en la literatura [2, 9, 12, 13] debido a la flexibilidad con la que se pueden generar máscaras de fase arbitrarias como diversidades de fase, a diferencia de métodos tradicionales como desenfoques que dependen de desplazamientos y alineación muy precisos de elementos ópticos. Más aún, el uso de elementos de la base de Zernike (diferentes al desenfoque) como diversidad de aberración tiene la ventaja de producir distorsiones más grandes y más facilmente detectables en la distribución de intensidad del plano imagen. Esto es particularmente cierto cuando los las distribuciones pertenecen a objetos altamente sensibles a aberraciones como es el caso de los OV. Polinomios de Zernike como los dos correspondientes al astigmatismo primario han sido usados por Kner [14] como diversidad de aberración en PD para reconstrucción de fase de objetos tridimensionales en aplicaciones de microscopía donde el desenfoque no añade una cantidad significante de información.

Cuando U_{obj} llega al SLM se encuentra con una combinación de tres máscaras de fase que han sido asignadas a los píxeles del CL. La primera de estas máscaras, visible en la figura 3.3(a) es una máscara de espiral de fase con carga topologica l que (como se vio en la sección "referenciar sección") introduce un una singularidad de fase de orden l al campo. La segunda máscara (3.3(b)) corresponde a una rejilla de difracción del tipo blazed que se usa para separar la luz que ha sido difractada al primer orden del resto. Esta rejilla mejora de forma significativa la calidad de los vórtices ópticos porque evita efectos de interferencia causados por partes del campo que no son correctamente difractadas por el modulador. La poca eficiencia de difracción se debe a la no linealidad de la modulación y al hecho de que los TN-SLM de transmisión no logran modulaciones de 2π . Finalmente, la tercera máscara (Fig. 3.3(c)) introduce la diversidad de fase de aberración, en este caso, y

Figura 3.3: Un SLM es usado para introducir diversidades de fase en un plano de Fourier. La máscara que se asigna al CL es una combinación de: (a) Máscara espiral de fase con OAM 1, (b) rejilla de difracción tipo Blazed, y (c) +0.5 astigmatismo primario como diversidad de aberración. El primer orden de difracción producido por la rejilla es usado como portador de los haces Laguerre-Gauss con OAM1 enfocados en el plano imagen.

en adelante corresponde al polinomio de Zernike de astigmatismo primario (De índice 4 en la notación de Noll). La suma de las tres máscaras tal y como se le presenta al SLM en el montaje experimental se muestra en la figura ?? superpuesta a una apertura circular que corresponde al tamaño del haz en el SLM.

Luego de atravesar el SLM el haz encuentra el resto del sistema óptico y se enfoca para formar imagen $(|u_j^l|^2)$ en el plano de observación o plano imagen. Como se puede ver en el extremo derecho de la figura 3.3, los perfiles de intensidad que se usan como entrada para el algoritmo de la figura 3.2 corresponden sólo a una pequeña parte de la imagen en la cual está el orden +1 de la rejilla de difracción. Dado que los spots tienen un tamaño microscópico, para observar sólo el orden 1 en el plano de enfoque usamos un objetivo de microscopio de magnificación 10x y una cámara CCD marca Imaging Source.

En conclusión, para realizar la reconstrucción de fase de un sistema óptico formador de imagen usando nuestro método, se deben registrar varias de las imágenes que éste forma cuando se le introducen cambios conocidos en la fase. Los cambios en la fase se introducen a partir de máscaras de fase localizadas en uno de sus planos de Fourier por medio de un

Figura 3.4: Ejemplo de una máscara tenedor que resulta de combinar una máscara de espiral con l=1, con una red de difracción y una máscara de diversidad de aberración con astigmatismo primario de $Z_4=0.5\lambda$.

TN-SLM. Introducir las máscaras de fase genera distorsiones en la distribución a la salida que además dependen de las aberraciones ópticas desconocidas del sistema en cuestión. El hecho de generar varias combinaciones de diversidades y registrar varias imagenes con distorsiones distintas, lleva a limitar el espacio de soluciones posibles y acerca el método a una solución única. Esta es la gran ventaja del PD sobre otros métodos de reconstrucción de fase.

Adicionalmente, el hecho de usar la familia de diversidades de espiral, aumenta la sensibilidad del método ante aberraciones ya que los haces portadores de OAM tienen cambios más drásticos en sus distribuciones de intensidad cuando hay aberraciones. Aumentar la sensibilidad tiene un efecto positivo sobre la exactitud de la solución porque se encuentra de forma más precisa el valor y tipo de aberraciones que producen una distribución particular.

El conjunto de imágenes tomadas experimentalmente (d_j^l) , y las condiciones particulares con las cuales fueron producidas, tales como: la forma de la apertura, el tipo de iluminación y la selección de diversidades, son el argumento de la rutina de PD. En el interior de la rutina de PD, simulamos el sistema óptico y producimos imágenes artificiales $(|u_j^l|^2)$ que

son comparadas píxel a píxel con las imágenes experimentales. Así como las distorsiones en las imágenes experimentales son función de las aberraciones que desconocemos, las distorsiones de las imágenes artificiales van a ser función de una fase conocida y parametrizada (ϕ) que vamos a variar hasta que el funcional 3.12 retorne un mínimo. Cuando acabe el esquema de búsqueda de un mínimo, y la fase propuesta (ϕ) produzca imágenes artificiales $(|u_j^l|^2)$ idénticas a las imágenes experimentales, y siempre y cuando las condiciones de la simulación sean idénticas a las condiciones del laboratorio, significará que hemos identificado las aberraciones del sistema óptico correctamente.

Una vez presentado el método, procedemos a presentar los resultados logrados.

3.5 Resultados

Nuestro método fue probado extensivamente con el fin de validar nuestras premisas y evaluar su comportamiento ante diversas entradas. En esta sección se describen las pruebas simuladas y experimentales que se realizaron, y se muestran los resultados para cada una.

3.5.1 Resultados de simulaciones

En primera medida se requería simular el método para corroborar que funcionaba en sistemas ideales. La simulación de reconstrucción de fases consiste en reemplazar el conjunto de imagenes de referencia d_j^l por un conjunto de imágenes artificiales que han sido afectadas por una aberración conocida inherente al sistema óptico simulado. La aberración conocida será nuestra fase de referencia, es decir, la fase con la cual compararemos la exactitud de la reconstrucción. Una vez comprobamos que nuestra implementación del PD reconstruía de forma precisa aberraciones simples, procedimos a probarlo con aberraciones generadas aleatoriamente, y luego con aberraciones aleatorias de diferente magnitud. Asimismo, comparamos el desempeño del PD contra el método GS con y sin VO, y contra sí mismo con conjuntos diferentes de diversidades con y sin VO.

3.5.1.1 Preparación de las fases de referencia

Si las aberraciones se conforman como una combinación lineal de elementos de la base de Zernike como se muestra en 3.13, un frente de onda aleatorio puede ser facilmente compuesto asignando valores aleatorios a los coeficientes a_i .

$$\phi(\vec{u}) = \sum_{i=1}^{N=15} a_i Z_i(\vec{u}). \tag{3.13}$$

Para generar los coeficientes utilizamos la función **normrnd** de Matlab® que produce una lista de números aleatorios pertenecientes a una distribución Gaussiana con media y desviación estándar definidas por el usuario. En nuestro caso se quería una misma probabilidad para coeficientes positivos y negativos así que se asignó la media como 0λ . La desviación estándar se asignó como 0.5λ como valor tentativo previo al escalamiento.

La exactitud de los métodos de reconstrucción de fase en algunos casos está ligada a la magnitud de las aberraciones. Aberraciones de magnitud muy pequeña pueden producir resultados similares a aberraciones de igual magnitud pero distinta forma. Esto es un problema si los métodos no son lo suficientemente sensibles como para distinguirlas. Asimismo, aberraciones de magnitudes muy altas pueden introducir distorsiones tan grandes en las imágenes de entrada que impiden que los métodos converjan a un mínimo global, o incluso pueden causar divergencia. Con el fin de evaluar el desempeño de nuestro PD ante magnitudes variables, generamos aberraciones aleatorias en diferentes escalas. Se tomó como métrica de la escala el valor de la media cuadrática (RMS) del frente de onda, que para una base normalizada es:

$$RMS = \sqrt{\sum_{i=1}^{N=15} a_i^2}.$$

Los coeficientes aleatorios que entrega la función **normrnd** fueron escalados en una rutina de minimización (Referenciar el código) hasta obtener una combinación con RMS definido. Se corrió la rutina de PD para 6 escalas distintas desde $RMS = 1/14\lambda$ (límite de difracción) hasta $RMS = 1\lambda$. Y cada una de las reconstrucciones de una escala particular fue repetida con fases distintas 15 veces para que el resultado fuera estadísticamente significativo. Es decir que en total se hicieron 90 reconstrucciones de fase por cada método a evaluar. Se evaluó el método de GS con y sin VO, y el método de PD de iluminación coherente sin VO, y con VO bajo dos combinaciones distintas de diversidades haciendo un total de 450 reconstrucciones de fase. Los resultados de estas simulaciones se han condensado en la figura 3.5 y se discuten en adelante.

Escala de la aberración medida en términos de su RMS (λ)

Figura 3.5: Las marcas en el eje x denotan el error RMS para diferentes escalas con respecto a un haz plano para cada conjunto de 15 réplicas. El eje y denota el error RMS promedio para entre la aberración de referencia y la aberración reconstruída.

3.5.2 Descripción y análisis de resultados simulados

Comenzamos por describir brevemente los datos que componen la gráfica 3.5. De un lado están los cuadrados rojos que representan el error para cada escala cuando se reconstruyen las aberraciones usando el método GS tradicional. Los rombos azules son también de GS y representan la solución cuando se añaden VO de OAM1 a la entrada, tal y como lo presenta Jesacher et al. [8]. Por otra parte, del lado de PD con iluminación coherente, los datos con cruces verdes representan el método PD cuando no ha sido mejorado con diversidades de fase espiral. En ese caso se usaron sólo tres imágenes como entrada, la nominal y dos con diversidades. No se usaron máscaras espiral (l=0), y las diversidades de aberración consisten en los siguientes dos valores de astigmatismo $j=Z_4:\pm 0,5$. Tanto los datos con triángulos dorados como los que tienen \times púrpura representan resultados del método de PD con iluminación coherente mejorado con VO y fueron obtenidos con nueve imágenes. Las diversidades de aberración para estos casos son las mismas y se añaden las diversidades de espiral l=0,1,2 para el primer caso y l=-2,0,2 para el segundo.

Se puede observar claramente que el m[etodo de PD coherente supera

3.5.2.1 Discusión sobre GS

Analizar correctamente los resultados de la figura 3.5 depende de entender las diferencias entre la reconstrucción con GS y la reconstrucción con PD. Comenzaremos por identificar algunas propiedades de la reconstrucción con el método GS.

El método GS es un algoritmo cíclico de una sola imagen en el cual se llega a la solución haciendo múltiples propagaciones hacia adelante y hacia atrás del sistema óptico. Se parte de un campo complejo conocido en un plano de Fourier, que se debe propagar por medio de una FT a través del sistema para obtener el campo en el plano imagen. La amplitud del campo resultante se reemplaza por la raíz cuadrada de la intensidad medida experimentalmente, y el resultado se propaga en sentido contrario a través del sistema por medio de una FT inversa. De nuevo en el plano de Fourier, la amplitud del campo se reemplaza por una equivalente a la que habría en la entrada del sistema y se repite el ciclo hasta que la fase converja a la aberración del sistema que produce amplitudes a la salida iguales a la raíz cuadrada de las intensidades tomadas experimentalemente.

Si el campo óptico propuesto en el plano de Fourier del sistema es tal que su imagen resulta similar a la imagen de entrada, la convergencia es casi segura, el error desciende en cada iteración y se necesita de muy pocas iteraciones para alcanzar convergencia. En estos casos, podemos suponer que el algoritmo ha retornado un mínimo global. Sin embargo, aberraciones de mayor magnitud, o con formas complejas, pueden hacer que el error aumente antes de comenzar a descender, y entregar resultados que, aunque generan magnitudes del campo similares a la raíz cuadrada de las imágenes experimentales, no tienen fases similares a la fase de referencia. Estos serían entonces mínimos locales, y no representarían una solución aceptable a la hora de comparar con una métrica como el RMS del frente de onda. Este fenómeno ha sido estudiado ya por varios autores [8, 10] que han mostrado que la unicidad de la solución no está garantizada cuando se ejecutan métodos de propagación como el GS.

Viendo que distribuciones de fase aleatorias probablemente impedirían implementar un método de análisis de convergencia basado en búsqueda de una variación del error por debajo de un cierto umbral, decidimos ejecutar el algoritmo de GS de tal forma que se detuviera una vez hubieran pasado 60 iteraciones independientemente del caso. Esto aseguraría que las simulaciones que iban en buen camino alcanzaran un cambio en el error suficientemente bajo, y le impediría a las soluciones que divergían seguir aumentando el error indefinidamente.

La presencia de mínimos locales y la imprecision pueden entenderse si se observa que, a

diferencia de métodos basados en búsqueda del gradiente, en los cuales la fase se compone de forma parametrizada, el proceso cíclico del GS retorna la fase como una imagen por el simple hecho de propagar campos complejos en forma iterativa. Como resultado se corre el riesgo de obtener distribuciones de fase que no representan adecuadamente el sistema.

Más aún, las propagaciones pueden propiciar la aparición de aberraciones del tipo Pistón (Z_0) o plano inclinado $(Z_{1,2})$ que no afectan la forma de la distribución de intensidad y que pueden invalidar la comparación con la fase de referencia. A fin de que la comparación entre el método de GS y el PD sea justa se sustrajeron las máscaras espiral cuando estaban presentes y la fase del frente de onda se proyectó al equivalente en la base Zernike tal y como muestra en el capítulo 5 de [15].

Frente de onda aberrado con RMS de $1/14\lambda$ generados aleatoriamente.

Figura 3.6: Comparación visual y de coeficientes entre uno de los frentes de onda aleatorios de escala $1/14\lambda$ y las fases reconstruidas con PD y GS.

3.5.3 Resultados experimentales

Frente de onda aberrado con RMS de $1/14\lambda$ generados aleatoriamente.

Figura 3.7: Comparación visual y de coeficientes entre uno de los frentes de onda aleatorios de escala $1/14\lambda$ y las fases reconstruidas con PD y GS.

Bibliografía

- [1] Joel A. Kubby, editor. *Adaptive Optics for Biological Imaging*. CRC Press, Boca Raton, 1 edition edition, April 2013. ISBN 9781439850183.
- [2] Visa Korkiakoski, Christoph U. Keller, Niek Doelman, Rufus Fraanje, and Michel Verhaegen. Joint optimization of phase diversity and adaptive optics: demonstration of potential. *Applied optics*, 51(1):102–113, 2012. doi: 10.1364/AO.51.000102.
- [3] J. R. Fienup. Phase-retrieval algorithms for a complicated optical system. Applied $Optics,\ 32(10):1737-1746,\ April\ 1993.\ doi:\ 10.1364/AO.32.001737.$
- [4] M. G. Löfdahl and G. B. Scharmer. Wavefront sensing and image restoration from focused and defocused solar images. Astronomy and Astrophysics Supplement Series,

- 107:243-264, October 1994. ISSN 0365-0138. URL http://adsabs.harvard.edu/abs/1994A%26AS..107..243L.
- [5] J. A. Bonet, I. Marquez, R. Muller, M. Sobotka, and Th. Roudier. Phase diversity restoration of sunspot images: II. dynamics around a decaying sunspot. *Astronomy* and *Astrophysics*, 430(3):1089–1097, February 2005. ISSN 0004-6361, 1432-0756. doi: 10.1051/0004-6361:20041356.
- [6] J.-F. Sauvage, T. Fusco, G. Rousset, and C. Petit. Calibration and pre-compensation of non-common path aberrations for extreme adaptive optics. *Journal of the Optical Society of America A*, 24(8):2334, 2007. ISSN 1084-7529, 1520-8532. doi: 10.1364/ JOSAA.24.002334.
- [7] J.-F. Sauvage, L. Mugnier, Baptiste Paul, and Rémi Villecroze. Coronagraphic phase diversity: a simple focal plane sensor for high-contrast imaging. *Optics letters*, 37(23): 4808–4810, 2012. doi: 10.1364/OL.37.004808.
- [8] A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte. Wavefront correction of spatial light modulators using an optical vortex image. Optics express, 15(9):5801–5808, 2007. doi: 10.1364/OE.15.005801.
- [9] Luis Camacho, Vicente Micó, Zeev Zalevsky, and Javier García. Quantitative phase microscopy using defocusing by means of a spatial light modulator. *Optics express*, 18(7):6755–6766, 2010. doi: 10.1364/OE.18.006755.
- [10] Richard G. Paxman, Timothy J. Schulz, and James R. Fienup. Joint estimation of object and aberrations by using phase diversity. JOSA A, 9(7):1072–1085, 1992. doi: 10.1364/JOSAA.9.001072.
- [11] Robert A. Gonsalves. Phase retrieval and diversity in adaptive optics. *Optical Engineering*, 21(5):215829-215829, 1982. URL http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1222372.
- [12] Vladimir Katkovnik and Jaakko Astola. Phase retrieval via spatial light modulator phase modulation in 4f optical setup: numerical inverse imaging with sparse regularization for phase and amplitude. *JOSA A*, 29(1):105–116, 2012. doi: 10.1364/JOSAA.29.000105.
- [13] Néstor Uribe-Patarroyo, Alberto Alvarez-Herrero, and Tomás Belenguer. Measurement of the quantum superposition state of an imaging ensemble of photons prepared

- in orbital angular momentum states using a phase-diversity method. *Physical Review A*, 81(5):053822, May 2010. doi: 10.1103/PhysRevA.81.053822.
- [14] Peter Kner. Phase diversity for three-dimensional imaging. *Journal of the Optical Society of America A*, 30(10):1980–1987, October 2013. doi: 10.1364/JOSAA.30.001980.
- [15] Jason D. Schmidt. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB. SPIE, 1000 20th Street, Bellingham, WA 98227-0010 USA, July 2010. ISBN 9780819483263. URL http://ebooks.spiedigitallibrary.org/book.aspx? doi=10.1117/3.866274.

CAPÍTULO 4

Conclusiones y perspectivas

En el marco de esta tésis se implementó un sistema para la generación de vórtices ópticos por medio de SLMs de trasmisión y un método para la caracterización y corrección de aberraciones ópticas en haces Laguerre-Gausianos. La combinación de ambos cumple con los objetivos del proyecto de grado y de los proyectos internos del grupo de investigación en óptica aplicada. Y le deja al laboratório de Fotónica una herramienta para el desarrollo de técnicas de micoscopía basadas en iluminación con haces portadores de OAM. Específicamente.

- Se mostró el resultado de una labor investigativa con la cual fue posible establecer un marco conceptual y teórico para la caracterización y puesta a punto de un modulador espacial de luz de trasmisión basado en cristales líquidos del tipo twisted nematic.
- Se presentó un sistema automatizado para la caracterización de pantallas de cristál líquido que se compone de una parte física, que involucra cuatro rotadores ópticos mecatrónicos, y una parte de software que adquiere los datos y los procesa para obtener las matrices de Jones que describen el elemento birrefringente para cada nivel de gris.
- Asimismo, se desarrolló una aplicacion de software en la plataforma Matlab ® para la generación de máscaras de fase arbitrarias a ser proyectadas en el SLM. Esta aplicación permite:
 - Crear máscaras de fase espiral de carga entera arbitraria sumadas a:

- o Lentes.
- o Rejillas de difracción de varios tipos.
- Aberraciones ópticas compuestas a partir de polinomios de Zernike.
- Discretizar las máscaras de fase en la cantidad de niveles deseados, y asignando valores predeterminados a cada uno.
- Por otra parte, se propuso un método novedoso para la caracterización de SLMs basado en el análisis de desplazamiento de franjas en un interferómetro con brazos que no comparten el mismo estado de polarización. Este método ha sido demostrado en simulaciones y nos encontramos en el proceso de corroboración experimental para validarlo.
- Utilizando una configuración de estados de polarización que producen alta modulación de fase y baja modulación de amplitud se generaron VO en un sistema óptico 4F y se detectó que aún con buena modulación no se corrigen del todo las aberraciones.
- Dado lo anterior se implementó un método traído de aplicaciones en astronomía para la detección y corrección de aberraciones ópticas en haces con vorticidad óptica.
- Este método fue validado mediante numerosas simulaciones, y experimentos. Concluimos que hemos desarrollado la capacidad para detectar y corregir aberraciones ópticas en sistemas ópticos iluminados con haces portadores de OAM.

CAPÍTULO A

Apéndice Planos de rotadores

Aquí deberían ir los planos del sistema de rotadores.