A Macaulay 2 Package for Computing Rational Sum of Squares Decompositions

PABLO A. PARRILO HELFRIED PEYRL

Laboratory for Information and Decision Systems, MIT HTTP://LIDS.MIT.EDU

Automatic Control Laboratory, ETH Zurich HTTP://WWW.CONTROL.ETHZ.CH

Outline

- 1. Introduction: Sum of squares (SOS)
- 2. Computing rational SOS
- 3. Macaulay 2 SOS package
- 4. Outlook

Polynomial Nonnegativity

Given a polynomial $p(x) \in \mathbb{R}[x_1, \dots, x_n]$ of degree d, consider the question

$$p(x) \ge 0$$
 for all $x \in \mathbb{R}^n$?

If true, p(x) is called positive semidefinite (PSD).

- Problem NP-hard, but decidable
- Many applications

A sufficient condition: there exist polynomials $g_i(x)$ s.t.

$$p(x) = \sum_{i} g_i(x)^2 ,$$

i. e., f(x) can be written as a sum of squares (SOS).

SOS - Background Information

Hilbert 1888: SOS=PSD only in 3 special cases

- $\rightarrow d = 1$, i.e., univariate polynomials
- $\rightarrow n = 2$, i.e., quadratic polynomials
- $\rightarrow d = 4, n = 2$, i.e., quartic polynomials in two variables

Famous counter examples for SOS≠PSD found by

Motzkin, Robinson, Choi and Lam

The good news: SOS condition is "easily checkable".

 \Rightarrow Semidefinite Programming (SDP)

goes back to Shor (1987) and Choi, Lam, Reznick (1995)

SDP Formulation

Suppose $p(x) \in \mathbb{R}[x_1, \dots, x_n]$ with degree 2d.

Express p(x) as a quadratic form in the monomials:

$$p(x) = z^T Q z$$

z: vector of monomials of degree less than or equal to d

- O not unique
- ▶ Matching coefficients yields linear constraints on Q (denote this affine space by \mathcal{L})

p(x) is SOS if and only if there exists a Q s.t.:

$$\begin{array}{rcl}
Q & \succeq & 0 \\
p(x) & = & z^T Q z
\end{array}$$

SDP Formulation

$$\begin{array}{rcl}
Q & \succeq & 0 \\
p(x) & = & z^T Q z
\end{array}$$

This is an SDP

- solvable in polynomial time by interior point methods (for fixed d or n)
- efficient free solvers available (e.g. SeDuMi, SDPT3, CSDP, ...)
- ▶ problem is linear in coefficients of p(x)⇒ optimization over coefficients possible

Numerical SOS Packages

Available numerical SOS packages:

- ► YALMIP (Löfberg) http://control.ee.ethz.ch/~joloef/yalmip.php
- ► SOSTOOLS (Prajna, Papachristodoulou, Seiler, Parrilo) http://www.cds.caltech.edu/sostools/

Both packages

- are free
- depend on MATLAB
- give numerical answers

Rational SOS

- Interior point solvers attain only finite accuracy
- ▶ We want an exact solution

Rational SOS

Given $p(x) \in \mathbb{Q}[x]$, if there exist $g_i(x) \in \mathbb{Q}[x]$ s.t.

$$p(x) = \sum g_i(x)^2,$$

then we call p(x) a rational sum of squares.

Rational SOS - Some Background

Is every SOS $p(x) \in \mathbb{Q}[x]$ a rational SOS?

Some results:

- Landau 1906: true for n = 1
- Schweighofer 1999: algorithmic proof, n = 1
- ► Hillar 2007: If p(x) is SOS in K[x], K being a totally real number field, then p(x) is a rational SOS.

In general: open problem (to our knowledge)

Rational SOS - SDP connection

Rational SOS \iff rational Gram matrix Q

Assume $Q \in \mathbb{Q}^{k \times k}$. Consider L^TDL decomposition:

$$p(x) = z^T Q z = z^T L^T D L z = \sum_{i=1}^k d_i (L_i z)^2 = \sum_{i=1}^k d_i g_i(x)^2,$$

where $0 < d_i \in \mathbb{Q}$ and $g_i(x) \in \mathbb{Q}[x]$.

Lagrange's Theorem: d_i is a sum of at most 4 squares.

 $\implies p(x)$ is a sum of at most 4k squares in $\mathbb{Q}[x]$.

Ouestion: How do we obtain a rational Q?

Outline

- 1. Introduction: Sum of squares (SOS)
- 2. Computing rational SOS
- 3. Macaulay 2 SOS package
- 4. Outlook

1. Compute numerical approximate solution *Q*

- 1. Compute numerical approximate solution *Q*
- 2. Round to rational matrix \tilde{Q}

- 1. Compute numerical approximate solution *Q*
- 2. Round to rational matrix \tilde{Q}
- 3. Project back onto \mathscr{L}

- 1. Compute numerical approximate solution *Q*
- 2. Round to rational matrix \tilde{Q}
- 3. Project back onto \mathcal{L}
- 4. Check whether $Q \succeq 0$
 - yes: done
 - no: increase precision back to step 2.

Computing Rational SOS - Remarks

Proposition

Assume $\delta < \varepsilon$, $\tau \le \sqrt{\varepsilon^2 - \delta^2}$. Then the projected matrix \tilde{Q}_P describes a valid a rational SOS decomposition of p(x).

Hence: if SDP is strictly feasible (and $\delta < \varepsilon$), rational SOS (in principle) always possible by using sufficiently many digits.

Computing Rational SOS - Remarks

Catch: strict feasibility crucial

Partial remedy: eliminate unnecessary monomials in z

- Newton polytope
- Symmetry reduction

Caveat: not strictly feasible problems usually fail

Outline

- 1. Introduction: Sum of squares (SOS)
- 2. Computing rational SOS
- 3. Macaulay 2 SOS package
- 4. Outlook

SOS.m2 - A M2 package

► Algorithm implemented in MACAULAY 2 http://www.math.uiuc.edu/Macaulay2/

► Code may be downloaded for free from http://www.control.ee.ethz.ch/~hpeyrl

Main package: SOS.m2

exports the functions:

getSOS computes weighted SOS decomposition findSOS same as getSOS, returns Gram matrix sumSOS just for checks

Usage: (g,d) = getSOS(f)

Example

Is $p(x, y) = 4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4$ a SOS?

<u>Usage – getSOS, sumSOS</u>

Usage: (g,d) = getSOS(f)

Example

Is $p(x,y) = 4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4$ a SOS?

... omitted output ...

Usage: (g,d) = getSOS(f)

Example

Is
$$p(x,y) = 4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4$$
 a SOS?

Usage: (g,d) = getSOS(f)

Example

Is
$$p(x,y) = 4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4$$
 a SOS?

Hence:

$$p = 10\left(-\frac{11}{25}x^2 - \frac{1}{10}xy + y^2\right)^2 + \frac{258}{125}\left(x^2 + \frac{65}{86}xy\right)^2 + \frac{112}{215}(xy)^2$$

Let's check ...

Usage: p = sumSOS(g,d)

Example

Is
$$p(x,y) = 4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4$$
 a SOS?

$$4$$
 3 22 3 4 $05 = 4x + 4x y - 7x y - 2x*y + 10y$

o5 :
$$QQ [x, y]$$

idgenössische Technische Hochschule Zürich

Usage – More Possibilities

Linearly parameterized SOS

```
Usage: (g,d,tQ) = getSOS(p,t)
          t a list of parameters
         tQ a list in Q s.t. p is SOS
Minimizing a linear functional
  Usage: (g,d,tQ) = getSOS(p,t,ob,rndTol=>x)
          t a list of parameters
         ob a linear function in t
    rndTol optional minimal rounding precision in x
            binary digits
```

tQ a list in Q s.t. p is SOS

Usage – More Possibilities

Example

Compute a lower bound on $p(x) = x^4 - 2x$

```
i5 : R = QQ[x,t];
i6 : f = x^4 - 2*x - t;
i7 : (g,d,tval) = getSOS (f,{t},-t,rndTol=>10)
... omitted output ...
```

Usage – More Possibilities

Example

Compute a lower bound on $p(x) = x^4 - 2x$

Future

Planned features:

- Support multiple SOS constraints (for e.g., Lyapunov stability problems)
- ► Interface 3rd party SDP solvers (e.g., CSDP)
- Exploit symmetries to reduce SDP size
- Your feature request ???

The last slide

Thanks for your attention!