

Nisal Mihiranga

Facilitator

Nisal Mihiranga

Al, Technology, Science, Teaching, Consulting, Mentoring

Head of AI and Data Science, Architect at Zone24x7 pvt Ltd Corporate Trainer

12 Years of Industry exposure to Data Engineering, Data Science and Business Intelligence

Credentials:

M.Sc in Data Science

B.Sc in Information Technology

Microsoft Certified Trainer

Curriculum

Week	Module	
Week 1	Python for Machine Learning	
Week 2	Introduction to Machine Learning	
Week 3	Data Transformation and Analysis	
Week 4	Regression Analysis	
Week 5	Classification, KNN, DT, SVM, Ensemble Systems	
Week 6	Clustering Algorithms	
Week 7	Neural Networks	
Week 8	MLOPS, Machine Learning in Cloud	

Agenda

Week	2 nd Week	
Day	7 th of Sep	
Duration	4hrs	

TIME	TOPIC & ACTIVITY	COMPLETED-
60 Mins	Intro to ML	Yes
60 Mins	Types of ML	Yes
20 Mins	Break	
45 Mins	ML Life cycle	Yes
30 Mins	Frameworks and getting started to develop	Yes
5 Mins	Q&A Session on lesson learn	Yes

Introduction to Machine Learning

Tic Tac Toe Game

Move 1:

Place an X in a corner.

Move 2:

IF the other player did not place an O in the opposite corner THEN place an X in the opposite corner to move 1. ELSE place an X in a free corner.

Move 3:

IF there are 2 Xs and a space in a line THEN place an X in the free space on that line. ELSE IF there are 2 Os and a space in a line THEN place an X in that space. ELSE place an X in a free corner.

Move 4:

IF there are 2 Xs and a space in a line THEN place an X in the free space on that line. ELSE IF there are 2 Os and a space in a line THEN place an X in that space. ELSE place an X in a free corner.

Move 5:

Place an X in the free space.


```
def make move 1():
    return "Place X in a corner"
def make move 2(opponent move):
    if opponent_move != "opposite corner":
        return "Place X in the opposite corner to move 1"
    else:
        return "Place X in a free corner"
def make move 3(board state):
    if "2 Xs in a line" in board state:
        return "Place X in the free space on the line"
    elif "2 Os in a line" in board_state:
        return "Place X in that space to block"
    else:
        return "Place X in a free corner"
def make_move_4(board_state):
    if "2 Xs in a line" in board_state:
        return "Place X in the free space on the line"
    elif "2 Os in a line" in board_state:
        return "Place X in that space to block"
    else:
        return "Place X in a free corner"
def make_move_5():
    return "Place X in the free space"
def play_game():
    print(make_move_1())
    opponent move = "side"
    print(make_move_2(opponent_move))
    board_state = ["no win or block available"]
    print(make_move_3(board_state))
    print(make_move_4(board_state))
    print(make_move_5())
play_game()
```

Key points in Rule-based

Fixed Logic: This follows strict rules that do not change, regardless of how many games it plays. There is no learning or adaptation.

Predictability: The system always behaves in the same way given the same conditions.

Manual Setup: All rules must be predefined by humans, which means the system will not improve unless we explicitly add more complex rules.

The system cannot adapt or learn. It works well for structured, deterministic tasks like Tic-Tac-Toe, but as the complexity of the problem increases (e.g., Chess or Go), writing explicit rules becomes extremely difficult.

What is Machine Learning

ML is a subset of AI that focuses on algorithms that allow machines to **learn from** data and improve their performance over time without being explicitly programmed.

What is Machine Learning

Unlike rule-based systems, machine learning (ML) algorithms allow a computer to learn patterns from data rather than follow predefined rules. This behavior allow machine learning to solve complex problems which involves training on historical data.

What is a ML Model

A ML Model is a representation of a real-world context.

Train on historical Data

Types of Data

Structured Data

SQL Databases, Excel File Data

Semi-structured
Data

XML/JSON Data

Unstructured Data

Video, Audio, Image Data, Documents

Classroom Activity

Duration: 10 mins

1. Discuss real-world examples for different data types

What is Deep Learning

DL is a specialized subset of ML that uses neural networks with many layers (hence "deep") to analyze various factors of data. These neural networks attempt to simulate the behavior of the human brain, enabling it to "learn" from large amounts of data.

Neural Networks

• Deep learning primarily uses neural networks, which are computational models inspired by the human brain

Structure of a Neural Net

What Is Data Science?

Computer Science Machine Learning

Data Science Maths & Statistics

Data

Analysis

Data science is the field of study that combines domain expertise, computer science programming skills, and knowledge of mathematics and statistics to extract meaningful insights from data.

Traditional

Software

Main Types of ML Problems?

Classification

Supervised learning

Classroom Activity

Duration: 10 mins

1. Discuss real world use cases of Classification

Classification

Classify Spam Emails

Is this A or B?

Classification

Is this A or B?

Classify brain tumors from MRI

Anomaly Detection

PROFESSIONAL DEVELOPMENT UNIT

2

Is this different?

Detect the red apple in the box of green apples

Both Supervised and unsupervised learning

Classroom Activity

Duration: 10 mins

1. Discuss real world use cases of Anomaly Detection

Anomaly Detection

2

Is this different?

Credit Card Fraud Detection

Regression Analysis

PROFESSIONAL DEVELOPMENT UNIT

3

How much or How many?

How much will this cost?

Classroom Activity

Duration: 10 mins

1. Discuss real world use cases of Regression Analysis

Regression

Stock Price Prediction

3

How much or How many?

Clustering

PROFESSIONAL DEVELOPMENT UNIT

4

How it is organized?

How is products portfolio organized?

Unsupervised learning

Classroom Activity

Duration: 10 mins

1. Discuss real world use cases of Cluster Analysis

Clustering

Segment customers and target marketing

4

How it is organized?

Young Tech Savvy

"One" Big Mass Segment

Young Families

Reinforcement Learning

RL is a type of machine learning where an agent learns to make decisions by interacting with an environment. The agent receives rewards or penalties (positive or negative feedback) based on its actions and aims to maximize cumulative reward over time.

Reinforcement Learning

5

What should I do next?

Command

Bring me the ball

mistakes

No toys

Classroom Activity

Duration: 5 mins

. Discuss real world use cases of Reinforcement Learning

Reinforcement Learning

5

What should I do next?

Training a self-driving car to navigate complex environments and make safe driving decisions.

20 mins Break

Developing Machine Learning Models

Libraries for Machine Learning

Data Sources for ML

<u>Operational Data</u>

<u>Data for Machine</u> <u>Learning</u>

Data Splitting

Data Splitting is a fundamental concept in machine learning used to evaluate the performance of a model. The process involves dividing a dataset into two main subsets: the training set and the testing set.

Training set

Used to train the machine learning model. The model learns the relationships between the input features and the target variable from this subset.

Testing set

Used to evaluate the performance of the trained model. It provides an unbiased assessment of how well the model generalizes to new, unseen data.

Data Splitting

Data Splitting is a fundamental concept in machine learning used to evaluate the performance of a model. The process involves dividing a dataset into two main subsets: the training set and the testing set.

80% Training / 20% Testing is the most widely used split ratio, suitable for many machine learning tasks. It works well when you have a reasonably large dataset. 70%/30% ratio used when you want to allocate a larger portion of the data for testing, especially in cases where ensuring good model evaluation is critical or when you have a smaller dataset.

How It Works

Machine Learning Life Cycle

Thank You

Nisal Mihiranga Head of AI & DS at Zone24x7 Consultant, Trainer **M:** +94 71 726 3044

