Report

1 – Arithmetic

1. 4-bit Adder:

We already implemented the 1 bit adder in one of the labs before, so the only thing we need to implement here is the overflow flag.

The circuit is implemented using a full 4-bit adder with a carry flag and an overflow flag. The carry flag is a single pin which lights up whenever there is a carry by the adder.

The circuit is designed to make the following operation:

$$A_3 A_2 A_1 A_0 + B_3 B_2 B_1 B_0 = F_3 F_2 F_1 F_0$$

The overflow flag $(O) = A_3 B_3 \overline{F_3} + \overline{A_3} \overline{B_3} F_3$

2. 4-bit Subtracter:

The circuit is implemented using a full 4-bit subtractor and a borrow flag and an overflow flag.

The circuit is designed to make the following operation:

$$A_3 A_2 A_1 A_0 - B_3 B_2 B_1 B_0 = F_3 F_2 F_1 F_0$$

The borrow flag maps to the borrow output of the subtractor.

The overflow bit $(O) = A_3 \overline{B_3} \overline{F_3} + \overline{A_3} B_3 F_3$

3. Multiplication:

Multiplication:

- Subtract the bit of sign (B3) if it =1, and if it =0 no problem.
- Add 1 to MSB in each number to remove the extension of the sign.
- Subtract the ones I have added(in consider that each number =8bit).

P4

Overflow flag:

To be no overflow all bits P3-P7 must express the sign (all = 0,all=1) no one of them
different

РЗ

PO

The circuit is very big and I simply can't include it in the report.

$\mathbf{2}$ – Logic

In Logisim, if you have 2 4-bit buses then by connecting them to any kind of gate would perform that gate to each bit.

For example, if you connect 2 4-bit buses to an AND gate, it would AND each bit with its corresponding bit.

This is how we did the 4 required logical operations.

Bit-wise operations:

1. Display A in 2's complement:

• Truth Table:

Input (A3 A2 A1 A0)	Output (B3 B2 B1 B0)	Zero Flag (F)
0000	0000	1
0001	1111	0
0010	1110	0
0011	1101	0
0100	1100	0
0101	1011	0
0110	1010	0
0111	1001	0
1000	1000	0
1001	0111	0
1010	0110	0
1011	0101	0
1100	0100	0
1101	0011	0
1110	0010	0
1111	0001	0

• Minterms:

$$-B_o = \sum m(1,3,5,7,9,11,13,15)$$

$$-B_1 = \sum m(1, 2, 5, 6, 9, 10, 13, 14)$$

$$-B_2 = \sum m(1, 2, 3, 4, 9, 10, 11, 12)$$

$$-B_3 = \sum m(1, 2, 3, 4, 5, 6, 7, 8, 9)$$

$$-B_{2} = \sum m(1, 2, 3, 4, 9, 10, 11, 12)$$

$$-B_3 = \sum m(1,2,3,4,5,6,7,8,9)$$

• Kmaps:

 $- B_3:$

• Equations:

$$B_0 = A_0$$

$$B_1 = A_1 \oplus A_0$$

$$B_2 = A_2 \oplus (A_1 + A_0)$$

Equations:

$$B_0 = A_0$$

 $B_1 = A_1 \oplus A_0$
 $B_2 = A_2 \oplus (A_1 + A_0)$
 $B_3 = A_3 \oplus (A_2 + A_1 + A_0)$
 $F = \overline{A_3} \overline{A_2} \overline{A_1} \overline{A_0}$

$$F = \overline{A_3} \, \overline{A_2} \, \overline{A_1} \, \overline{A_0}$$

• Final Circuit Diagram:

The equations would give the following circuit:

But..... Another good way is to do 1's complement and add 1 to it:

2. Display B in 1's complement:

• Truth Table:

Input (A3 A2 A1 A0)	Output (B3 B2 B1 B0)	Zero Flag (F)
0000	1111	1
0001	1110	0
0010	1101	0
0011	1100	0
0100	1011	0
0101	1010	0
0110	1001	0
0111	1000	0
1000	0111	0
1001	0110	0
1010	0101	0
1011	0100	0
1100	0011	0
1101	0010	0
1110	0001	0
1111	0000	1

• Minterms:

$$-B_o = \sum m(0, 2, 4, 6, 8, 10, 12, 14)$$

$$-B_1 = \sum m(0, 1, 4, 5, 8, 9, 12, 13)$$

$$-B_2 = \sum m(0, 1, 2, 3, 8, 9, 10, 11)$$

$$-B_3 = \sum m(0, 1, 2, 3, 4, 5, 6, 7)$$

$$-B_1 = \sum m(0, 1, 4, 5, 8, 9, 12, 13)$$

$$-B_2 = \sum m(0, 1, 2, 3, 8, 9, 10, 11)$$

$$-B_3 = \sum m(0,1,2,3,4,5,6,7)$$

• Kmaps:

 $- B_3:$

• Equations:

$$B_o = \overline{A_0}$$

$$B_1 = \overline{A}$$

$$B_2 = A_2$$

$$B_3 = \overline{A_3}$$

Equations:

$$B_o = \overline{A_0}$$

$$B_1 = \overline{A_1}$$

$$B_2 = \overline{A_2}$$

$$B_3 = \overline{A_3}$$

$$F = \overline{A_3} \overline{A_2} \overline{A_1} \overline{A_0} + A_3 A_2 A_1 A_0$$

• Final Circuit Diagram:

3. Shift A left logical:

A logical shift to the left for an 8-bit number is done according to this diagram:

But we will only consider the 4-bit case.

• Truth Table:

A_3	A_2	A_1	A_0	A_3'	A_2'	A'_1	A_0'
0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0 0
0	0	1	0	0	1	0	
0	0	0 1 1	1	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	0
0	1 1	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0 1 1		0	0
0		0	1	1	0	1	0
0	1	0 1 1	0	1 1	0 1 1	0	0
0 0 0 0 0 0 0 0 0 1 1 1	1	1	1	1	1	1	0 0 0 0 0 0 0
1	0	0	0	0	0	0	0
1	0	0	1		0	1	0
1	0	0 1 1	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	0
1 1 1	0	1	1	0	1	1	0
1	1	0	0	1	0	0	0
1	1	0 1	1	1	0	1	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
1	1		0	1	1	0	0
1	1	1	1	1	1	1	0

• Equations: $A'_0 = 0$ $A'_1 = A_0$ $A'_2 = A_1$ $A'_3 = A_2$

$$A_0' = 0$$

$$A_1' = A_0$$

$$A_2' = A_1$$

$$A_{\circ}^{\bar{I}} = A_{\circ}$$

 \bullet This can easily be done with a splitter:

4. Shift A right logical:

A logical shift to the right for an 8-bit number is done according to this diagram:

But we will only consider the 4-bit case.

• Truth Table:

A_3	A_2	A_1	A_0	A_3'	A_2'	A'_1	A'_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	1
0	0	1	1		0	0	1
0	1 1	$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$	0	0 0 0 0 0	0	1 1	0
0		0	1	0	0		0
0	1 1	1	0	0	0	1	1
0	1	1	1	0	0	1	1
1	0	0	0	0	1	0	0
1	0	0	1	0	1	0	0
1	0	1	0	0 0	1	0	1
0 0 0 0 0 0 0 0 0 1 1 1 1 1	0	1	1	0	1	0	1
1	1	0	0	0	1	1	0
1	1	$ \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 $	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	0 0 0 0 0 0 0 1 1 1 1 1 1	1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1
1 1	1	1	0	0 0	1	1	1
1	1	1	1	0	1	1	1

• Equations:

$$A_0' = A_1$$

$$A_1 = A_2$$

$$A'_{0} = A_{1}$$

$$A'_{1} = A_{2}$$

$$A'_{2} = A_{3}$$

$$A'_{3} = 0$$

$$A_3' = 0$$

• This can easily be done with a splitter:

5. Shift A left Arithmetic:

An Arithmetic shift to the left for an 8-bit number is done according to

this diagram:

It can be seen that the left Arithmetic shift is identical to the left logical shift, so there is no need for a truth table.

• Equations:

$$A_0' = 0$$

$$A_1' = A_1$$

$$A_2' = A$$

Equation
$$A'_{0} = 0$$

$$A'_{1} = A_{0}$$

$$A'_{2} = A_{1}$$

$$A'_{3} = A_{2}$$

• This can easily be done with a splitter:

6. Shift A right Arithmetic:

An Arithmetic shift to the right for an 8-bit number is done according to this diagram:

But we will only consider the 4-bit case.

• Truth Table:

A_3	A_2	A_1	A_0	A_3'	A_2'	A'_1	A'_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
1	0	0	0	1	1	0	
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	0
1	0	1	1	1	1	1	1
1	1	0	0	1	1	0	0
1	1	0	1	1	1	0	1
1	1	1	0	1	1	1	0
1	1	1	1	1	1	1	1

• Equations: $A'_0 = A_1$ $A'_1 = A_2$ $A'_2 = A_3$ $A'_3 = A_3$

$$A_0' = A_1$$

$$A_1' = A_2$$

$$A_2^7 = A_3$$

$$A_3^7 = A_3$$

• This can easily be done with a splitter:

7. Shift A left Circular:

A Circular shift to the left for an 8-bit number is done according to this diagram:

But we will only consider the 4-bit case.

• Truth Table:

A_3	A_2	A_1	A_0	A_3'	A_2'	A'_1	A_0'
0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
0	0	1 1	0	0	1 1	0	0
0	0	1	1	0	1	1	0
0	1	0	0	1	0	0	0
	1		1	1 1 1		1	0 0 0 0
0	1	0 1	0		0 1 1 0	0	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
0 1 1 1 1 1 1	0	0	1	0	0	1	1
1	0	0 1 1	0	0	1	0	1
1	0	1	1	0	0 1 1 0	1	1
1	1	0	0	1	0	0	1
1	1	0	1	1	0	1	0 1 1 1 1 1 1 1
1	1	1	0	1	1	0	1
1	1	1	1	1	1	1	1

• Equations: $A'_0 = A_3$ $A'_1 = A_0$ $A'_2 = A_1$ $A'_3 = A_2$

$$A_0' = A_3$$

$$A_1' = A_0$$

$$A_2^{\bar{i}} = A_1$$

$$A_3^7 = A_2^7$$

• This can easily be done with a splitter:

8. Shift A Right Circular:

A Circular shift to the left for an 8-bit number is done according to this diagram:

But we will only consider the 4-bit case.

• Truth Table:

A_3	A_2	A_1	A_0	A_3'	A_2'	A'_1	A'_0
0	0	0	0	0	0	0	0
$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	0	0	1	1	0	0	0
0	0	1	0	0	0	0	1
0	0	1	1	1	0	0	1
	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	0	0	0 1	0	1	0
0	1		1	1	0	1	0
0	1	0 1	0	0	0	1	1
0	1	1	1	1	0	1	1
1	0	0	0	0	1	0	0
1	0	0 1	1	1	$\begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix}$	0	0
1	0	1	0	0	1	0	1
1	0	1	1	1	1 1 1	0	1
1	1	0	0	0	1	1	0
1 1 1 1	1	0 1	1	1	1	1	0 1 1 0 0 1 1 0 0 1 1 0 0 1
	1		0	0	1	1	1
1	1	1	1	1	1	1	1

• Equations: $A'_0 = A_1$ $A'_1 = A_2$ $A'_2 = A_3$ $A'_3 = A_0$

$$A_0' = A_1$$

$$A_{1}^{r} = A_{2}$$

$$A_2^{\prime} = A_3$$

$$A_{3}^{7} = A_{0}$$

 \bullet This can easily be done with a splitter:

Le finale:

