PRÓBA ÉRETTSÉGI

INFORMATIKAI ISMERETEK

tantárgyból

2020.

Feladat Szerző Lektor

Hálózati ismeretek	Kovacsics Tamás	Horváth Norbert
Programozás	Nits László	Kottra Richárd
Web - Adatbázis-kezelés	Bognár Pál	Nits László

Feladatsor szerkesztő	Kottra Richárd
Programozás - Java megoldás	Kiss Balázs - People Come First egyesület

2020. április 8.

1. Hálózati ismeretek¹

40 pont

Az UTP Bt. három különböző városban lévő telephelyén szándékozik hálózatot kiépíteni. Az Ön feladata, hogy a megadott tervek alapján szimulációs programmal elkészítse a vállalat teszthálózatát. Munkáját utpbt néven mentse az Ön által használt szimulációs program alapértelmezett formátumában!

A hálózat topológiája

Hálózati címzés

Eszköz	IP cím	Alhálózati maszk	Alapértelmezett átjáró
	192.168.100.1	255.255.255.0	-
Вр	172.30.30.1	255.255.255.0	-
	200.10.10.65	255.255.255.240	-
	200.10.10.129	255.255.255.252	-
Bp-SW1	172.30.30.3	255.255.255.0	172.30.30.1
Bp-PC0	192.168.100.11	255.255.255.0	192.168.100.1
Bp-PC1		DHCP-kliens	
Bp-PC2	DHCP-knens		
Debrecen	10.20.30.1	255.255.255.0	
Deblecell	200.10.10.66	255.255.255.240	-
Debrecen-Szerver	10.20.30.99	255.255.255.0	10.20.30.1
Szagad	11.40.50.1	255.255.255.252	-
Szeged	200.10.10.130	255.255.255.252	-
Szeged-SOHO	192.168.22.1	255.255.255.0	-
	11.40.50.2	255.255.255.252	11.40.50.1
Szeged-Laptop0	DHCP-kliens		
Szeged-Tablet0	Direi -kiiciis		

¹ Forrás: Távközlés ismeretek középszintű érettségi vizsga 2018. október 19.

2020. április 8. 2/14

_

Próba érettségi

Beállítások

- 1. A szimulációs programban válassza ki a feladat megoldásához szükséges eszközöket a következő információk alapján:
 - a. A forgalomirányítók rendelkezzenek minimum két Ethernet interfésszel, amelyek legalább 1 Gb/s sebességűek, valamint két szinkron soros interfésszel!
 - b. A kapcsolók legalább 24 portosak legyenek!
- 2. A kiválasztott eszközöket kösse össze a topológiai ábrának megfelelően!
- 3. A hálózati eszközökön (kapcsolók, forgalomirányítók) a konfigurációban megjelenő eszköznév a topológiai ábrának megfelelő név legyen (kivéve a vezeték nélküli forgalomirányítón)!
- 4. Állítsa be a forgalomirányítók és az Bp-SW1 kapcsoló, illetve a Szeged-SOHO vezeték nélküli forgalomirányító IP-címeit a táblázatnak és a topológiai ábrának megfelelően!
- 5. A Bp forgalomirányítónál és az Bp-SW1 kapcsolónál biztosítani kell a távoli telnet protokollon keresztüli elérést! A távoli eléréshez használt jelszó **BPvty123** legyen!
- 6. A Bp forgalomirányítónál és az Bp-SW1 kapcsolónál a privilegizált módot védő jelszó a **BPena123** legyen!
- 7. Állítsa be a Debrecen-Szerver és a Bp-PC0 állomás számára az IP konfigurációt a táblázat alapján! A PC-n a DNS szerver címe Debrecen-Szerver IP-címe legyen!
- 8. A Bp forgalomirányító a LAN1 számára DHCP szerverszolgáltatást biztosít. A DHCP szervernél a következő beállításokat kell elvégeznie:
 - a. A címkiosztást a 100. IP-címmel kezdje!
 - b. A DNS szerver címe a Debrecen-Szerver címe legyen!
 - c. Az alapértelmezett átjárót állítsa be megfelelően!
- 9. Állítsa be a LAN1 hálózatban lévő munkaállomások számára, hogy IP-adataikat automatikusan kapják a DHCP szervertől!
- 10. A Szeged-SOHO nevű vezeték nélküli forgalomirányítón végezze el a következő beállításokat:
 - a. DHCP szerverként 192.168.22.50-nel kezdődően, 192.168.22.150-nel bezárólag osszon IP-címeket a klienseknek! A DNS szerver címe legyen a Debrecen-Szerver IP-címe!
 - b. A vezeték nélküli hálózaton az SSID SzegedNet legyen!
 - c. A vezeték nélküli hitelesítés WPA2/PSK, a titkosítás AES segítségével történjen! A kulcs **Paprika777** legyen!
- 11. Csatlakoztassa a vezeték nélküli klienseket a vezeték nélküli hálózathoz! Állítsa be, hogy a kliensek az IP-adataikat automatikusan kapják a DHCP szervertől!
- 12. A cégnél dinamikus forgalomirányítást kívánnak alkalmazni. Állítsa be a RIP forgalomirányító protokoll 2-es verzióját mindhárom forgalomirányítón a következők szerint:
 - a. Mindhárom forgalomirányítón hirdesse az összes közvetlenül csatlakoztatott hálózatot!
 - b. Mindhárom forgalomirányítón állítsa be, hogy a használt Ethernet típusú interfészeken ne történhessen meg a forgalomirányítási csomagok hirdetése, azaz ezek az interfészek legyenek passzívak!
 - c. Mindhárom forgalomirányítón tiltsa le az automatikus útvonalösszevonást a RIP protokoll esetén!

2020. április 8. 3/14

Győri Szakképzési Centrum Jedlik Ányos Gépipari és Informatikai Szakgimnáziuma,

Próba érettségi Szakközépiskolája és Kollégiuma

Informatikai ismeretek

- 13. A későbbiek során a Debrecen forgalomirányítón beállított tűzfal miatt kívülről nem lesznek elérhetőek a privát címek, ezért statikus NAT beállításával kell biztosítani a szerver elérhetőségét. A Debrecen forgalomirányítón állítson be statikus NAT szolgáltatást, amellyel biztosítja, hogy a Debrecen-Szerver a budapesti és a szegedi hálózatból a **200.10.10.67** IP-címmel legyen elérhető!
- 14. Minden hálózati eszközön mentse el a konfigurációt, hogy azok újraindítás után is a megadott beállításokkal működjenek!

2020. április 8. 4/14

Szakközépiskolája és Kollégiuma Informatikai ismeretek

2. Programozás

40 pont

Iskola²

A nevek . txt állományban rögzítettük egy középiskola tanulóinak néhány adatát. Feltételezheti, hogy nincs két azonos nevű tanuló egy osztályban. Az állomány tartalma soronként:

- iskola kezdésének éve (2004-2007)
- az osztály betűjele (a-e)
- a diák neve (ékezetek nélkül).

Az adattagok pontosvesszővel vannak elválasztva. Példa (részlet) a nevek.txt állományra:

```
2004;d;Vavrek Kristof
2006;e;Hidas Reka
2006;d;Kun Michael
```

Megoldásában:

- A képernyőre írást igénylő részfeladatok eredményének megjelenítése előtt írja a képernyőre a feladat sorszámát (például: 3. feladat)!
- Az egyes feladatokban a kiírásokat a minta szerint készítse el!
- Az ékezetmentes kiírások is elfogadottak.
- Az azonosítókat kis- és nagybetűkkel is kezdheti.
- A program megírásakor az állományban lévő adatok helyes szerkezetét nem kell ellenőriznie, feltételezheti, hogy a rendelkezésre álló adatok a leírtaknak megfelelnek.
- A megoldását úgy készítse el, hogy az azonos szerkezetű, de tetszőleges bemeneti adatok mellett is helyes eredményt adjon!

Oldja meg a következő feladatokat:

- 1. Készítsen Iskola néven **konzol típusú projektet**, melyben megoldja a következő feladatokat!
- 2. Olvassa be és tárolja el egy célszerűen megválasztott adatszerkezetben (pl.: vektor, lista) a nevek.txt állományban lévő adatokat!
- 3. Írja ki a képernyőre, hogy hány tanuló jár az iskolába!
- 4. Írja ki a képernyőre a minta szerint, hogy ki rendelkezik a leghosszabb névvel! A szóközöket ne számolja a név hosszához! Holtverseny esetén minden, leghosszabb névvel rendelkező tanuló neve jelenjen meg! Jelenítse meg a kiírásban a leghosszabb név/nevek hosszát is a minta szerint!
- 5. Az iskolai rendszergazdának egyedi azonosítókat kell készítenie a számítógép-hálózat használatához. Az azonosítókat a következő módon alakítja ki: első karaktere az évfolyam utolsó számjegye (pl.: 2006 esetén 6), következő karakter az osztály betűjele, majd a vezetékneve első három karaktere, végül első keresztneve első három karaktere következik. Az azonosítóban mindenütt kisbetűk szerepelnek. Feltételezhetjük, hogy a vezetéknév és az első keresztnév legalább 3 karakteres. Készítsen jellemzőt vagy függvényt, melyben meghatározza a rendelkezésre álló adatokból a tanuló azonosítóját! Az azonosítókat ne tárolja! Az elkészített jellemzőt/függvényt felhasználva írja ki az adatszerkezetben tárolt első és utolsó tanuló azonosítóját a minta szerint!

² Forrás: https://docplayer.hu/4402962-Informatika-emelt-szintu-probaerettsegi.html

2020. április 8. 5/14

Informatikai ismeretek

- 6. Kérjen be egy azonosítót és állapítsa meg, hogy ki tartozhat hozzá! A tanuló adatait írja a képernyőre! Ha nem talál megfelelő diákot, akkor a "Nincs megfelelő tanuló." mondatot jelenítse meg a minta szerint!
- 7. A forráskódjába a meglévő osztálydefiníció fölé illessze be a java.txt vagy a csharp.txt forrásállományból a JelszóGeneráló osztályt definiáló kódrészletet, majd hozzon létre belőle egy osztálypéldányt (objektumot)! Az osztálypéldány konstruktorát a véletlenszámok előállítására alkalmas beépített objektummal paraméterezze! Válaszon ki véletlenszerűen egy tanulót, majd a JelszóGeneráló osztály Jelszó() metódusának hívásával írjon ki egy 8 karakter hosszú jelszót a minta szerint!
- 8. Készítsen **grafikus alkalmazást** a következő feladatok megoldására, melynek projektjét IskolaGUI néven mentse el!
- 9. Az alkalmazás grafikus felhasználói felületét alakítsa ki a minta szerint! Az ablak címsorában a "Iskola GUI" szöveget jelenítse meg!
- 10. Az ablakon található listába a program induláskor töltse be a nevekGUI.txt állomány sorait! A lista elemei a forrásfájl egy-egy sora (továbbiakban tanulója) legyen!
- 11. Oldja meg, hogy a kijelölt tanuló a "Törlés" parancsgomb lenyomása után törlésre kerüljön a listából! Ha a listában nincs kijelölt tanuló, akkor törléskor a "Nem jelölt ki tanulót!" szöveg jelenjen meg egy felugró ablakban!
- 12. Ha az "Állomány mentése" parancsgombra kattintunk, akkor történjen meg a listából a tanulók mentése a nevekNEW.txt állományba, melynek szerkezete a forrásállomány szerinti legyen! Ha a mentés sikeres volt, akkor a "Sikeres mentés!" felirat jelenjen meg egy felugró ablakban! Ha az állomány mentése sikertelen, akkor a hibaüzenet (a hibához tartozó beépített üzenet/message) jelenjen meg egy felugró ablakban! Lehetséges hibaokokhoz tartozó beépített üzeneteket a minták között talál!

Minták a konzolos alkalmazás futására:

```
3. feladat: Az iskolába 650 tanuló jár.
4. feladat: A leghosszabb (25 karakter) nevű tanuló(k):
        Karatson Patricia Mercedesz
5. feladat: Azonosítók
        Első: Bodnar Szilvia - 6cbodszi
        Utolsó: Krizsan Vivien Evelin - 6ckriviv
6. feladat: Kérek egy azonosítót [pl.: 4dvavkri]: 4atolrek
        2004 a Tolcsvay-Nagy Reka Luca
7. feladat: Jelszó generálása
         Szabo Mihaly - hn4xyutl
3. feladat: Az iskolába 650 tanuló jár.
4. feladat: A leghosszabb (25 karakter) nevű tanuló(k):
        Karatson Patricia Mercedesz
5. feladat: Azonosítók
        Első: Bodnar Szilvia - 6cbodszi
        Utolsó: Krizsan Vivien Evelin - 6ckriviv
6. feladat: Kérek egy azonosítót [pl.: 4dvavkri]: 5cmodgab
        Nincs megfelelő tanuló.
7. feladat: Jelszó generálása
         Tompos Zsofia - smr94dud
```

2020. április 8. 6/14

Minták a grafikus alkalmazás futására:

Java hibaüzenetek:

2020. április 8. 7/14

3. Weboldalak kódolása és adatbázis-kezelés 20+20pont

Formula One³

A következő feladatban egy weboldalt kell készítenie a Forma-1 történetével kapcsolatban a feladatleírás és a minta szerint, valamint a 2019-es szezon adataiból álló adatbázisban kell műveleteket végrehajtania.

A két feladatrész egymástól függetlenül, tetszőleges sorrendben megoldható. Az első feladatrészben a forrásként kiadott weboldalon kell módosításokat végeznie a leírás és a minta alapján! Ahol a feladat másként nem kéri, a formázási beállításokat a site.css stílusállományban végezze el, az új szelektorokat az állomány végén helyezze el!

Nyissa meg az index.html állományt és szerkessze annak tartalmát az alábbiak szerint:

- 1. A weboldal karakterkódolása utf-8, a weboldal nyelve magyar, a böngésző címsorában megjelenő cím "Formula One" legyen!
- 2. A weboldal fejrészében helyezzen el hivatkozást a site.css stíluslapra, valamint a main.js állományra! Ügyeljen arra, hogy a jquery.min.js állomány hamarabb kerüljön betöltésre, mint a main.js!
- 3. A weboldalon készítsen egy újabb menüpontot az alábbi leírás és a minta alapján:
 - a. Az új menüpont a "Kezdőlap" és a "Leg-ek" menüpontok között helyezkedjen el! A neve "Történet" legyen és kattintásra az oldalon belül a history azonosítójú szekcióra ugorjon!
 - b. A history azonosítójú szekciót formázza meg az alábbi három osztályazonosítóval: section-100, bg-image és p-2!
 - c. A tortenete.txt állomány tartalmát másolja be a history azonosítójú szekcióba!
 - d. Alakítsa ki a history azonosítójú szekción belül a bekezdéseket és a címsorokat! A "Története" felirat második szintű címsor, az egyes alcímek ("A kezdetek", "A Formal születése", stb.) harmadik szintű címsorok legyenek!
 - e. A "Története" második szintű címsort formázza meg a text-center és py-3 osztályazonosítók segítségével!
- 4. A "Leg-ek" (records) szekcióban a képeken látható versenyzők nevét ("Rubens Barrichello", "Michael Schumacher", "Juan Manuel Fangio"), valamint a "Ferrari" csapatnevet a minta szerint alakítsa félkövérré! Ehhez hozzon létre a site.css stílusállományban egy saját szelektort, majd alkalmazza a kiemeléshez!
- 5. Az alábbi lépések segítségével alakítsa ki a legfiatalabb és legidősebb versenyző, valamint a legtöbb Grand Prix kereteket! (Az alábbi lépéseket háromszor kell végrehajtania, a három "leg"-hez kapcsolódóan. Mindhárom keretnek a helye egy-egy megjegyzéssel jelölve van az index.html dokumentumban.) A tartalomhoz tartozó szövegeket és fájlneveket megtalálja a legek.txt állományban.
 - a. Hozzon létre keretet (div) és formázza meg az alábbi osztályazonosítókkal: bg-black, col-sm-12, col-md-4, p-3 és text-center!
 - b. Az előző pontban létrehozott kereten belül hozzon létre egy harmadik szintű címsort, amit formázzon meg a következő osztályazonosítókkal: bg-dark, p-2 és w-100!
 - c. Az így létrehozott címsorba írja vagy másolja be a címet ("Legfiatalabb versenyző", "Legidősebb versenyző", "Legtöbb Grand Prix")!

³ Forrás: Ergast Developer API http://ergast.com/mrd/

2020. április 8. 8/14

Győri Szakképzési Centrum Jedlik Ányos Gépipari és Informatikai Szakgimnáziuma,

Szakközépiskolája és Kollégiuma

Informatikai ismeretek

Próba érettségi

- d. A cím alá szúrja be az img könyvtárban található képeket (max_verstappen.jpg, louis_chiron.jpg, monza_info.jpg)! A képeket formázza meg a w-100 osztályazonosítóval! Amennyiben a képek nem jelennek meg, vagy fölé viszik az egérkurzort, akkor a versenyző/pálya neve jelenjen meg ("Max Verstappen", "Louis Chiron", "Monza")!
- e. A képaláírásoknak hozzon létre a képek alatt egy-egy bekezdést, és másolja bele a képek alatti szövegeket a minta szerint!
- 6. Végezze el az alábbi műveleteket az index.html dokumentum "Átlagsebesség számítás" (avgspeed) szekciójában!
 - a. Az űrlap alatti JavaScript blokkban hívja meg a main.js fájlban definiált showCircuit nevű függvényt!
 - b. A pályákat tartalmazó (circuit azonosítójú) lenyíló listát bővítse ki a monzai pályával! A megjelenő szöveg "Monza" legyen, az opció értéke pedig "ITA"!
 - c. A köridő rögzítésére szolgáló beviteli (laptime azonosítójú) mezőt módosítsa úgy, hogy csak numerikus értéket (számot) lehessen rögzíteni benne!
 - d. A main.js állományban készítse el a calculate függvény törzsét! A függvénynek a pálya hosszából és a köridőből kell átlagsebességet számolnia: a kiválasztott pálya hosszát kell elosztani a köridővel (a köridőt mivel másodpercben van megadva el kell osztani 3600-zal). Az egyes pályák hossza km-ben:
 - Hungaroring (HUN): 4,381 km
 - Monaco (MON): 3,337 km
 - Spa-Francorchamps (BEL): 7,004 km
 - Monza (ITA): 5,793 km

A kapott eredményt – mértékegységgel (km/h) együtt – jelenítse meg az átlagsebesség (averagespeed azonosítójú) mezőben!

7. A láblécben (footer) található linkeket alakítsa hivatkozássá! A két linkhez tartozó szöveg legyen "F1 történet" és "Wikipedia"!

A következő beállításokat a site.css stíluslapon végezze!

- 8. Hozzon létre új elemszelektort a bekezdések formázásához! A bekezdések legyenek sorkizártak!
- 9. A weboldal háttérszíne legyen fekete (#000), a weboldalon megjelenő szöveg színe legyen fehér (#fff)!
- 10. Egészítse ki a láblécben található hivatkozáskra vonatkozó szelektort úgy, hogy a hivatkozások legyenek aláhúzva!

Minták a következő oldalakon:

2020. április 8. 9/14

Története

A kezdetek:

A Forma-1 gyökerei egészen a 20. század első éveiig vezethetők vissza, az autóversenyzés bölcsőjébe, Franciaországba. Az első nagydíjat, grand prix-t 1906-ban rendezték, a Renault-t vezető győztes pedig nem volt más, mint a magyar Szisz Ferenc.

A Forma-1 születése:

Már a 30-as években felmerült a grand prix-k világbajnokságba való szervezése, de a második világháború közbeszólt, így az európai autóversenyzés csak a 40-es évek végén éledt újra. Az első bajnoki idényt pedig 1950-ben rendezték, a legelső futam a silverstone-i Brit Nagydíj volt.

A Forma-1 aranykora:

Az F1-be 1977-ben belépő Renault hozta a sportág következő nágy újítását. A francia gyártó turbómotorjai kezdetben ugyan siralmasan megbízhatatlanok voltak, de a technológia elterjedt és egy évtizedig uralta a száguldó cirkuszt, az erőforrások az egészen elképesztő, 1000 lóerő feletti teljesítményt is hozták. Manapság talán az 1980-as évekre tekintenek legtöbben aranykorként, amikor Nelson Piquet, Alain Prost, Nigel Mansell, Ayrton Senna küzdött a Brabham, a McLaren, a Lotus és a Williams autóiban ülve.

A '90-es évek:

A Forma-1-ben tulajdonképpen csak Mansell '92-es révbe érése, Prost '93-as visszavonulása és Senna '94-es halála zárta le végleg a 80-as éveket, ezután emelkedtek fel a korszak új sztárjai.

Napjaink:

A Ferrari és Schumacher totálisan uralta a 2000-es évtized elejét, öt éven keresztül minden bajnoki címet begyűjtött. A Renault és Fernando Alonso 2005-2006-ban törte meg a sorozatot, a főszerep ezután már a következő generációé, napjaink sztárjaié lett.

2020. április 8.

Szakközépiskolája és Kollégiuma

Informatikai ismeretek

2020. április 8. 11/14

Szakközépiskolája és Kollégiuma

Informatikai ismeretek

2020. április 8. 12/14

Próba érettségi

Szakközépiskolája és Kollégiuma

Informatikai ismeretek

A második feladatrészben a Forma-1-es szezon 2019-es eredményeit tartalmazó adatbázissal kell dolgoznia! Az adatbázis a következő táblákat tartalmazza:

pilotak

Egész szám, a pilóta rekord azonosítója (PK) rajtszam Egész szám, a pilóta rajtszáma Szöveg, a pilóta vezetékneve vezeteknev Szöveg, a pilóta keresztneve keresztnev Dátum, a pilóta születési dátuma szuletesidatum rovidites Szöveg, rövidítés a pilóta azonosítására

Szöveg, annak a csapatnak (vagy csapatoknak) a neve, ahol csapatnev

a 2019-es szezonban a pilóta versenyzett

nagydijak

id Egész szám, a nagydíj azonosítója (PK) Szöveg, a nagydíj neve angolul nev

Dátum, a verseny megrendezésének napja versenynap Egész, a verseny során teljesítendő körök száma korokszama

eredmenyek

id Egész szám, a rekord azonosítója (PK) pilotaid Egész szám, a pilóta azonosítója (FK) nagydijid Egész szám, a nagydíj azonosítója (FK)

rajtpozicio Egész szám, a pilóta hányadik rajtrácsról indult a nagydíjon

helyezes Egész szám, a pilóta helyezése a nagydíjon

pontszam Egész szám, a pilóta hány bajnoki pontot kapott ezen a

nagydíjon

teljesitettkorok Egész szám, a pilóta által teljesített körök száma a nagydíjon leggyorsabbkor Szöveg, a pilóta leggyorsabb körének ideje a nagydíjon

Az elsődleges kulcsok PK-val, az idegenkulcsok FK-val lettek jelölve.

Az adattáblák közti kapcsolatokat az alábbi ábra mutatja:

2020. április 8. 13/14

Győri Szakképzési Centrum Jedlik Ányos Gépipari és Informatikai Szakgimnáziuma,

Próba érettségi

Szakközépiskolája és Kollégiuma

Informatikai ismeretek

A feladatok megoldására elkészített SQL parancsokat a megoldasok.sql állományba illessze be a feladatok végén zárójelben jelölt sor alá! A javítás során csak ennek az állománynak a tartalma lesz értékelve! Ügyeljen arra, hogy a lekérdezésben pontosan a kívánt mezők és mezőnevek szerepeljenek, és felesleges mezőt ne jelenítsen meg!

- 1. Hozzon létre a lokális SQL szerveren formulal néven adatbázis! Az adatbázis karakterkódolását állítsa be UTF-8-ra! (1. feladat)
- 2. Az adatok. sql állomány tartalmazza a táblákat létrehozó és az adatokat a táblába beszúró SQL parancsokat! Futtassa az adatok. sql parancsfájlt a formulal adatbázisban!
- 3. A magyar nagydíj ("Hungarian Grand Prix") versenyköreinek száma hibásan került az adatbázisba, javítsa ki a helyes értékre! A helyes érték: 70. (*3. feladat*)
- 4. Listázza ki az idényben részt vevő pilóták vezetéknevét, rajtszámát, csapatnevét és hogy a 2019-es idényben hány éves volt (2019 mínusz a születési év)! A számított mező címkéje legye "eletkor". Az eredményt rendezze életkor szerint csökkenő sorrendbe! (4. feladat)

vezeteknev	rajtszam	csapatnev	eletkor
Räikkönen	7	Alfa Romeo	40
Kubica	88	Williams	35
Hamilton	44	Mercedes	34
Grosjean	8	Haas F1 Team	33
Vettel	5	Ferrari	32
Hülkenberg	27	Renault	32

5. Listázza ki az egyes nagydíjak első helyezettjeit! A listában jelenítse meg a nagydíj nevét, a verseny dátumát és a győztes pilóta vezeték- és keresztnevét! A listát rendezze a verseny napja szerint növekvő sorrendbe! (5. feladat)

nev	vezeteknev	keresztnev	versenynap
Australian Grand Prix	Bottas	Valtteri	2019.03.17 0:00:00
Bahrain Grand Prix	Leclerc	Charles	2019.03.31 0:00:00
Chinese Grand Prix	Gasly	Pierre	2019.04.14 0:00:00
Azerbaijan Grand Prix	Leclerc	Charles	2019.04.28 0:00:00
Spanish Grand Prix	Hamilton	Lewis	2019.05.12 0:00:00
Monaco Grand Prix	Gasly	Pierre	2019.05.26 0:00:00

6. Listázza ki a 2019-es bajnoki szezon első három helyezettjét! A listában szerepeljen a pilóta teljes neve, a csapatának a neve, valamint a versenyek során elért összpontszáma! (6. feladat)

nev	csapatnev	osszpontszam
Lewis Hamilton	Mercedes	413
Valtteri Bottas	Mercedes	326
Max Verstappen	Red Bull	278

2020. április 8. 14/14