2022 CCF 非专业级软件能力认证模拟赛 - 入 门组

2022/8/3

(请选手务必仔细阅读本页内容)

题目名称	等式	变换	计数	距离
题目类型	传统型	传统型	传统型	传统型
英文题目名称	eq	change	count	distance
输入文件名	eq.in	change.in	count.in	distance.in
输出文件名	eq.out	change.out	count.out	distance.out
输出文件名	1s	1s	1s	1s
内存上限	512M	512M	512M	512M
测试点数目	20	10	10	10
每个测试点分值	5	10	10	10
附加样例文件	有	有	有	有
结果比较方式	全文比较	全文比较	全文比较	全文比较

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回类型必须是 int, 程序正常结束时的返回值必须是 0。

1 等式

(eq.cpp/c)

【题目描述】

给定等式: $(\sqrt{A} + \sqrt{B})^2 = C$ 。

当 A,B,C 均为正整数时,该式是一个完美等式。

现在问你, 当 $A \le n$, $B \le m$ 时, 能够找出多少个这样完美等式?

【输入输出格式】

【输入格式】

从文件 eq.in 中读入数据。

输入一行共两个正整数 n, m。

【输出格式】

输出到文件 eq.out 中。

输出共一行满足条件的方案数。

【样例】

【样例 1 输入】

3 4

【样例 1 输出】

4

(A, B) 取 (1,1),(1,4),(2,2),(3,3) 均可构成优美等式

【数据范围与提示】

对于 30% 的数据: $1 \le n, m \le 10^3$

对于 60% 的数据: $1 \le n, m \le 10^5$

对于 100% 的数据: $1 \le n, m \le 2 \times 10^6$

2 变换

(change.cpp/c/pas)

【题目描述】

Alice 有一个变换规则,如果他手里的数当前为w,那么下一秒变为 $(x_1*w+y_1)\%m$,Bob有一个变换规则,如果他手里的数当前为w,那么下一秒变为 $(x_2*w+y_2)\%m$

第 0 秒的时候,Alice 手上的数为 h_1 ,Bob 手上的数为 h_2 ,请问最快在第几秒恰好 Alice 手上的数字是 a_1 且 Bob 手上的数字是 a_2 ,若永远不可能则输出 -1

【输入输出格式】

【输入格式】

输入文件 change.in

第一行 T 表示数据组数

每一组数据第一行为 m,第二行两个正整数 h_1, a_1 ,第三行两个正整数 x_1, y_1 ,第三行两个正整数 h_2, a_2 ,第三行两个正整数 x_2, y_2

【输出格式】

输出文件 change.out 共 T 行, 如题目描述

【样例】

【样例 1 输入】

2

5

4 2

1 1

0 1

2 3

1023

1 2

1 0

1 2

1 1

【样例 1 输出】

3

-1

【数据范围与提示】

对于 30% 的据有 $m \le 1000$ 。

对于 100% 的据有 $T \le 5, h_1 \ne a_1, h_2 \ne a_2$,

 $2 \leq m \leq 1000000, 0 \leq h_1, a_1, x_1, y_1, h_2, a_2, x_2, y_2 \leq m$

3 计数

(count.cpp/c/pas)

【题目描述】

现在给你两个正整数 n 和 m,请问有多少种整数方案 x_1,x_2,\ldots_n 使得等式 $x_1+x_2+x_3+\cdots+x_n=m$ 成立,这些数值必须要满足 $0\leq x_1\leq x_2\leq x_3\cdots\leq x_n$

例如 m=3, n=2, 共有 2 种方案, $\{0,3\},\{1,2\},$ 答案可能很大,方案数对 10^8+7 取余输出即可。

【输入输出格式】

【输入格式】

从文件 count.in 中读入数据 第一行一个正整数 T, 表示数据组数 接下来 T 行, 每行两个正整数, 分别为 m 和 n

【输出格式】

输出到文件 count.out 输出 T 行,每行为要求的答案

【样例】

【样例 1 输入】

2

3 2

7 3

【样例 1 输出】

2

8

【数据范围与提示】

对于 10% 的数据, $1 \le n \le m \le 10$

对于 30% 的数据, $1 \le n \le m \le 50$

对于 50% 的数据, $1 \le n \le m \le 100$

对于 100% 的数据, $1 \le n \le m \le 100$, $1 \le n \le m \le 300$

4 距离

(distance.cpp/c/pas)

【题目描述】

现在定义两个长度为 L 的字符串 $s=s_1s_2s_3...s_L$ 和 $t=t_1t_2t_3...t_L$ 之间的距离为满足 $s_i\neq t_i$ 的位置 i 的个数。

例如字符串"abcac"和"cbcc"的距离为 2。因为第一位和第三位上对应的字符不同。

现在请你求出两个字符串 a 和 b 的距离。字符串 a 是将字符串 x 复制 n 份后拼接在一起的,相应的字符串 b 是将字符串 y 复制 m 份后拼接在一起的。

例如 x = "aba", n = 3, 则字符串 a = "abaabaaba"

【输入输出格式】

【输入格式】

从文件 distance.in 中读入数据 第一行两个正整数 n 和 m。 第二行是一个非空字符串 x 第三行是一个非空字符串 y

【输出格式】

输出到文件 distance.out 中输出一行表示 a 和 b 的距离。

【样例】

【样例 1 输入】

2 3

rzr

az

【样例 1 输出】

5

【数据范围与提示】

对于 20% 的分数, a 和 b 最终的长度不超过 106

对于 100% 的分数,保证 a 和 b 最终长度相等。 $1 \le n, m \le 10^{12}$,同时 x 和 y 全部由小 写字母组成且长度不超过 10^6