Overview

This MATLAB code uses the Robust Optimal Scoring Discriminant Analysis (ROSDA) algorithm presented by Huang & Zhang (2020).

1 Prerequisites

Any version of MATLAB will work for this implementation.

2 Input Data

The input data for the ROSDA algorithm consist of two matrices: X and Y. The matrix X is a feature matrix with dimensions $n \times p$, where n represents the number of samples and p denotes the number of features; in the example, a synthetic matrix 100×40 is created using the command $X = \text{randi}([0\ 10], 100, 40)$ and then normalized with X = normalize(X). This matrix can be replaced with an image matrix. The matrix Y is a target matrix of size $n \times K$, where K is the number of classes; the example creates random binary labels (0 or 1) for 100 samples, which are substituted for the classes for the image matrix.

3 Instructions

3.1 Set Parameters

The ROSDA algorithm begins by initializing key parameters. A convergence threshold for the residual sum of squares (RSS) change is established with tolerance = 1e-14, ensuring that the algorithm stops when convergence is reached. To ensure a particular number of loops are achieved, $max_iteration = 10000$ defines the maximum number of iterations needed before the cycle is complete. Parameter K = 2 specifies the number of classes and needs to be adjusted based on the classes needed. Initial values for the residual sum of squares are set as RSSold = 2 and RSS = 10. Finally, an iteration counter is initialized with iter = 0.

3.2 Prepare Data

In the ROSDA algorithm, we next initialize the matrices X and Y using the conditions defined previously. Again, X can be replaced with the image matrix, and Y can be replaced with the classes.

3.3 Initialize Variables

Next, we will initialize some variables needed for the ROSDA loop. The variable $n = \mathtt{size}(X,1)$ determines the number of rows within the image. The value Q = K-1 is established, where K is the number of classes. The initial discriminant

vectors are defined as betaj = ones(size(X,2), Q), creating a matrix of ones with dimensions $p \times Q$. Similarly, initialized is the scoring vectors Thetaj = ones (K, Q), a matrix of ones with dimensions $K \times Q$. Finally, the variable D is calculated as $D = \left(\frac{1}{n}\right) \times \operatorname{transpose}(Y) \times Y$.

3.4 Run ROSDA Algorithm

The code uses the following algorithm presented by Huang & Zhang (2020) [1].

Algorithm 1 Robust OSDA (ROSDA)

- 1: Input: Y is a $n \times K$ matrix, X is a $n \times p$ matrix, and Q = K 1.
- 2: Output: $(B_{p\times Q}^{(j)}, \Theta_{K\times Q}^{(j)})$. 3: Initialize $B^{(0)}$ and $\Theta^{(0)}$ as matrices of 1's.
- Standardize X.
- 5: Compute $D = \frac{1}{n} Y^{\top} Y$.
- 6: Run a loop until the criterion, |old RSS RSS|/RSS ≤ Tolerance and the number of iterations reach a maximum number, is achieved.
- 7: Compute $z_i^{(j-1)} = ||Y_i \Theta^{(j-1)} X_i B^{(j-1)}||_2^2$.
- 8: In jth iteration, compute the weight matrix $W = \operatorname{diag}(W_1, \dots, W_n) \in \mathbb{R}^{n \times n}$ with $W_i = \Psi'(z_i^{(j-1)})$.
- 9: Assign RSS as the old RSS
- 10: Compute $B^{(j)} = (X^T W X)^{-1} X^T W Y \Theta^{(j-1)}$ by backward substitution.
- 11: Compute P_Y as the matrix of the left singular vectors of Y.
- 12: Compute Θ_0 as the Q smallest right singular vectors of $(I_{n \times n} P_{WX}) W P_Y$.
- 13: Compute $\Theta = \frac{1}{\sqrt{n}} D^{-1} Y^{\top} P_Y \Theta_0$.
- 14: Update RSS as $\frac{1}{n} \sum_{i=1}^{n} \Psi(z_i)$, where $z_i = ||Y_i \Theta^{(j)} X_i B^{(j)}||_2^2$.
- 15: Repeat the above procedure 5-13 until the stopping criterion is satisfied.
- 16: For each data X_i , predict classes by finding which Θ_k is closest to X_iB for $1 \le k \le K$.

Within the function $\Psi(z_i)$ and the function $\Psi'(z_i)$, the tuning parameter ζ must be adjusted to meet optimal conditions.

3.5Predict Classes

To predict the classes, the code calculates XB and finds the closest Θ_k for X_iB .

3.6 Calculate Accuracy

The predicted_classes matrix is converted back to a vector of labels (0 or 1) to match the original format of Y_labels. The accuracy is then computed as accuracy = sum(predicted_labels == Y_labels) / n * 100, where the number of correct predictions (determined by comparing predicted_labels with Y_{labels}) is divided by the total number of samples (n) and multiplied by 100 to yield a percentage. The results are then displayed.

4 Notes

The same principles apply to the Python code as stated in this documentation using MATLAB code.

References

[1] Huang, H. H., & Zhang, T. (2020). Robust discriminant analysis using multidirectional projection pursuit. *Pattern Recognition Letters*, 138, 651-656.