

BAKALÁŘSKÁ PRÁCE

Mikuláš Matoušek

Srážky elektronů s dvouatomovými molekulami

Ústav teoretické fyziky

Vedoucí bakalářské práce: RNDr. Karel Houfek, Ph.D.

Studijní program: fyzika

Studijní obor: obecná fyzika

	zalářskou práci vypracoval(a) samostatně a výhradně enů, literatury a dalších odborných zdrojů.
zákona č. 121/2000 Sb., auto	noji práci vztahují práva a povinnosti vyplývající ze orského zákona v platném znění, zejména skutečnost, rávo na uzavření licenční smlouvy o užití této práce odst. 1 autorského zákona.
V dne	Podpis autora

Poděkování.

Název práce: Srážky elektronů s dvouatomovými molekulami

Autor: Mikuláš Matoušek

Ústav: Ústav teoretické fyziky

Vedoucí bakalářské práce: RNDr. Karel Houfek, Ph.D., Ústav teoretické fyziky

Abstrakt: Abstrakt.

Klíčová slova: klíčová slova

Title: Collisions of electrons with diatomic molecules

Author: Mikuláš Matoušek

Institute: Institute of theoretical physics

Supervisor: RNDr. Karel Houfek, Ph.D., Institute of theoretical physics

Abstract: Abstract.

Keywords: key words

Obsah

Ú	vod	2
1	Teorie 1.1 1.2 Metody 1.2.1 Hartree-Fock	3 3 3
2	Výsledky	4
Za	ávěr	8
Se	eznam použité literatury	9
Se	eznam obrázků	10
Se	eznam tabulek	11
Se	eznam použitých zkratek	12
A	Přílohy A.1 První příloha	13

$\mathbf{\acute{U}vod}$

Kvantová chemie je !!!TODO!!!!

1. Teorie

1.1

Základní cíl kvantově chemických výpočtů je najít řešení stacionární schrödingerovy rovnice

$$\mathbf{\hat{H}}|\Psi\rangle = E|\Psi\rangle,\tag{1.1}$$

kde $|\Psi\rangle$ je mnohačásticová vlnová funkce a $\hat{\mathbf{H}}$ je hamiltonián popisující daný systém. Protože se jedná o dost složitý problém na numerické výpočty, je nutné zavést několik zjednodušení.

První je Born-Oppenhaimerova aproximace, která vzhledem k řádově rozdílným hmotnostem jader a elektronů rozděluje pohyb jader a elektronů, čímž pádem $|\Psi\rangle$ závisí na souřadnicích jader jen parametricky, a nevystupují jako proměnné v řešené rovnici.

Další snahou je popis mnohaelektronové vlnové funkce $|\Psi\rangle:=f(\vec{x}_1\dots\vec{x}_N)$, kde \vec{x}_i jsou polohy jednotlivých elektronů, pomocí součinu jednoelektronových funkcí $|\Psi\rangle:=f_1(\vec{x}_1)f_2(\vec{x}_2)\dots f_N(\vec{x}_N)$. Pak ale narážíme na požadavek antisymetrie vlnové funkce vůči prohození libovolných 2 elektronů. Proto používáme vlnové funkce ve tvaru Slaterova determinantu

$$|\Psi\rangle = \frac{1}{\sqrt{N!}} \begin{vmatrix} f_1(\vec{x}_1) & f_2(\vec{x}_2) & \cdots & f_N(\vec{x}_1) \\ f_1(\vec{x}_2) & f_2(\vec{x}_2) & & f_N(\vec{x}_2) \\ \vdots & & \ddots & \vdots \\ f_1(\vec{x}_N) & f_2(\vec{x}_N) & \cdots & f_N(\vec{x}_N) \end{vmatrix}$$
(1.2)

Dále musíme tuto funkci rozvinout do nějaké báze. Úplná báze prostoru, na kterém pracujeme, by byla nekonečná. Proto musíme najít takovou bázi, abychom mohli problém řešit s dostatečnou přesností v konečné bázi. 1

1.2 Metody

1.2.1 Hartree-Fock

Hartree-Fockova metoda (HF), též nazývaná metoda self-konzistentního pole, je jedna z nejjednodušších ab-initio metod, spočívající v optimalizaci jediného Slaterova determinantu.

¹I když pořád platí: "Čím víc, tím líp."

2. Výsledky

Zkoumali jsme molekuly BeH/BeH⁻ a OH/OH⁻, protože se jedná o molekuly, které mají vázaný jak základní stav, tak anion, a zároveň se jedná o dostatečně malé systémy, aby bylo možné provádět výpočty přesnými metodami.

Ke kvantově chemickým výpočtům jsme používali program MOLPRO.[1][2]. Pro určitý soubor mezijaderných vzdáleností jsme napočítali energii základního stavu molekuly pro fixovaná jádra, u základního stavu, tak u aniontu. Ze znalosti těchto křivek jsme poté zjišťovali parametry molekul, které je možné nalézt experimentálně, což jsou disociační energie aniontu i neutrální molekuly a elektronové afinity vázané i úplně disociované² molekuly. Protože ale experimentální data nejsou určená minimem potenciální energie molekuly, ale základní vibrační hladinou, bylo třeba napočítat energetické hladiny získaného potenciálu. K tomu jsme použili ??? metodu výpočtu na na mříži ??? . Vzhledem k počtu geometrií, pro které jsme prováděli kvantově-chemické výpočty, který byl nedostatečný pro další numerické výpočty ³, jsme získané hodnoty proložili kubickým splinem, ze kterého jsme pak interpolovali hodnotu potenciálu v několika stovkách bodů. Poté jsme numericky získali energetické hladiny v daném potenciálové křivce pro částici o (redukované) hmotnosti $\mu = m_1 m_2/(m_1 + m_2)$, kde m_1, m_2 jsou hmotnosti jednotlivých jader. Získané vlastní stavy pak odpovídají vibračním stavům dané molekuly.

¹cca 35 hodnot

²Ta odpovídá odpovídá elektronové afinitě některého z prvků v molekule.

³a extrémní výpočetní náročnosti při případném výpočtu v dostatečném počtu geometrií

Obrázek 2.1: Nejnižší vibrační hladiny molekul $\mathrm{BeH/BeH^-}$

	Tabulka 2.1: BeH			
Method	$E_a(BeH)["eV"]$	$E_a(H)["eV"]$	$D_a(BeH)["eV"]$	$D_a(BeI$
Experimental:	0.70 ± 0.1	0.754195	2.18 ± 0.02	
FCI /aug-cc-pVDZ	0.542	0.679	1.895	
RCCSD(T) /aug-cc-pVDZ	0.534	0.679	1.888	
CI 5,1,1,0 / aug-cc-pVDZ	0.536	-0.325	1.892	
CI~6,2,2,0~/aug-cc-pVDZ	0.542	0.678	1.893	
FCI /aug-cc-pCVDZ	0.546	0.679	1.901	
RCCSD(T) /aug-cc-pCVDZ	0.538	0.679	1.894	
CI~5,1,1,0~/aug-cc-pCVDZ	0.540	0.603	1.898	
CI~6,2,2,0~/aug-cc-pCVDZ	0.528	0.670	1.899	
FCI/cc-pVTZ	0.326	-0.091	1.990	
RCCSD(T) / cc-pVTZ	0.320	-0.091	1.983	
CI 6,2,2,0 / cc-pVTZ	0.325	-0.091	1.988	
FCI /aug-cc-pVTZ	0.570	0.734	2.010	
RCCSD(T) /aug-cc-pVTZ	0.562	0.734	2.003	
CI~6,2,2,0~/aug-cc-pVTZ	0.569	0.732	2.006	
RCCSD(T) /aug-cc-pVQZ	0.566	0.746	2.034	
CI 5,1,1,0 / aug-cc-pVQZ	0.565	0.744	2.038	
CI~6,2,2,0~/aug-cc-pVQZ	0.572	0.746	2.039	
CI 9,3,3,1 / aug-cc-pVQZ	0.573	0.746	2.039	
CI~5,1,1,0~/aug-cc-pV5Z	0.567	0.750	2.044	
CI~6,2,2,0~/aug-cc-pV5Z	0.575	0.752	2.046	

Tabulka 2.2: BeH vibration states								
Method	$v_0["eV"]$	$v_1["eV"]$	$v_2["eV"]$	$v_3["eV"]$				
FCI /aug-cc-pVDZ	0.1240	0.3648	0.5953	0.8152				
RCCSD(T) /aug-cc-pVDZ	0.1244	0.3661	0.5975	0.8186				
${ m CI}$ 5,1,1,0 /aug-cc-pVDZ	0.1240	0.3649	0.5954	0.8153				
CI~6,2,2,0~/aug-cc-pVDZ	0.1240	0.3648	0.5953	0.8152				
FCI /aug-cc-pCVDZ	0.1245	0.3658	0.5966	0.8168				
RCCSD(T) /aug-cc-pCVDZ	0.1249	0.3670	0.5988	0.8201				
${ m CI}$ 5,1,1,0 /aug-cc-pCVDZ	0.1245	0.3658	0.5967	0.8169				
CI 6,2,2,0 / aug-cc-pCVDZ	0.1245	0.3658	0.5966	0.8168				
FCI/cc-pVTZ	0.1254	0.3688	0.6021	0.8252				
RCCSD(T) / cc-pVTZ	0.1257	0.3698	0.6039	0.8281				
CI~6,2,2,0~/cc-pVTZ	0.1254	0.3688	0.6021	0.8252				
FCI /aug-cc-pVTZ	0.1252	0.3682	0.6010	0.8234				
RCCSD(T) /aug-cc-pVTZ	0.1255	0.3692	0.6028	0.8263				
CI 6,2,2,0 / aug-cc-pVTZ	0.1254	0.3691	0.6032	0.8275				
RCCSD(T) /aug-cc-pVQZ	0.1261	0.3713	0.6065	0.8314				
CI~5,1,1,0~/aug-cc-pVQZ	0.1258	0.3704	0.6047	0.8287				
${ m CI~6,2,2,0~/aug\text{-}cc\text{-}pVQZ}$	0.1258	0.3704	0.6047	0.8286				
${ m CI}$ 9,3,3,1 /aug-cc-pVQZ	0.1258	0.3704	0.6047	0.8286				
${ m CI}$ 5,1,1,0 /aug-cc-pV5Z	0.1259	0.3707	0.6052	0.8293				
${ m CI~6,2,2,0~/aug\text{-}cc\text{-}pV5Z}$	0.1259	0.3707	0.6052	0.8293				

Tabulka 2.3: OH								
Method	$E_a(OH)["eV"]$	$E_a(O)["eV"]$	$D_a(OH)["eV"]$	$D_a(OH^-)["eV"]$				
Experimental:	1.82767	1.461	4.3914	5.120435				
CI 4,1,1,0 /aug-cc-pVDZ	1.345	-1.637	4.054	7.035				
CI 4,2,2,0 / aug-cc-pVDZ	1.559	1.084	4.090	4.565				
CI 6,2,2,0 /aug-cc-pVDZ	1.609	1.182	4.104	4.531				
CI 8,2,2,0 /aug-cc-pVDZ	1.614	1.188	4.101	4.527				
CI 4,1,1,0 /aug-cc-pVTZ	1.376	-1.517	4.234	7.127				
CI 4,2,2,0 / aug-cc-pVTZ	1.629	1.158	4.269	4.739				
CI 6,2,2,0 /aug-cc-pVTZ	1.687	1.303	4.306	4.690				
CI 8,2,2,0 /aug-cc-pVTZ	1.693	1.308	4.296	4.681				
CI 4,1,1,0 / aug-cc-pVQZ	1.413	-1.480	4.292	7.185				
CI 4,2,2,0 / aug-cc-pVQZ	1.674	1.218	4.332	4.789				
CI 6,2,2,0 / aug-cc-pVQZ	1.733	1.362	4.369	4.740				
CI~8,2,2,0~/aug-cc-pVQZ	1.740	1.368	4.359	4.730				

Tabulka 2.4: OH vibration states								
Method	$v_0["eV"]$	$v_1["eV"]$	$v_2["eV"]$	v_3 ["eV"]				
CI 4,1,1,0 /aug-cc-pVDZ	0.225	0.657	1.065	1.451				
CI 4,2,2,0 / aug-cc-pVDZ	0.224	0.656	1.063	1.448				
CI 6,2,2,0 /aug-cc-pVDZ	0.224	0.656	1.064	1.450				
CI 8,2,2,0 /aug-cc-pVDZ	0.224	0.656	1.063	1.449				
CI 4,1,1,0 / aug-cc-pVTZ	0.227	0.665	1.081	1.474				
CI 4,2,2,0 / aug-cc-pVTZ	0.227	0.664	1.078	1.469				
CI~6,2,2,0~/aug-cc-pVTZ	0.227	0.664	1.079	1.473				
CI 8,2,2,0 / aug-cc-pVTZ	0.227	0.664	1.078	1.471				
${ m CI}$ 4,1,1,0 /aug-cc-pVQZ	0.228	0.668	1.085	1.481				
CI 4,2,2,0 / aug-cc-pVQZ	0.227	0.665	1.080	1.474				
${ m CI~6,2,2,0~/aug\text{-}cc\text{-}pVQZ}$	0.227	0.667	1.084	1.479				
CI 8,2,2,0 /aug-cc-pVQZ	0.227	0.666	1.083	1.477				

Tabulka 2.5: OH- vibration states								
Method	$v_0["eV"]$	$v_1["eV"]$	$v_2["eV"]$	v_3 ["eV"]				
CI 4,1,1,0 /aug-cc-pVDZ	0.228	0.662	1.069	1.449				
CI 4,2,2,0 / aug-cc-pVDZ	0.221	0.647	1.047	1.426				
CI 6,2,2,0 / aug-cc-pVDZ	0.224	0.654	1.059	1.440				
CI 8,2,2,0 / aug-cc-pVDZ	0.224	0.653	1.057	1.437				
CI 4,1,1,0 /aug-cc-pVTZ	0.212	0.636	1.047	1.448				
CI 4,2,2,0 / aug-cc-pVTZ	0.221	0.649	1.054	1.439				
CI 6,2,2,0 / aug-cc-pVTZ	0.225	0.661	1.072	1.460				
CI 8,2,2,0 / aug-cc-pVTZ	0.225	0.660	1.070	1.457				
CI 4,1,1,0 / aug-cc-pVQZ	0.212	0.637	1.051	1.455				
CI 4,2,2,0 /aug-cc-pVQZ	0.224	0.657	1.065	1.450				
CI 6,2,2,0 / aug-cc-pVQZ	0.225	0.663	1.077	1.467				
CI~8,2,2,0~/aug-cc-pVQZ	0.225	0.662	1.075	1.463				

Závěr

Seznam použité literatury

- [1] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz. Molpro: a general-purpose quantum chemistry program package. *WIREs Comput Mol Sci*, 2:242–253, 2012.
- [2] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang. Molpro, version 2012.1, a package of ab initio programs, 2012. see.

Seznam obrázků

2.1	Nejnižší vi	ibrační hlad	diny moleku	l BeH/BeH ⁻											5
-----	-------------	--------------	-------------	------------------------	--	--	--	--	--	--	--	--	--	--	---

Seznam tabulek

2.1	ВеН	5
2.2	BeH vibration states	6
2.3	OH	6
2.4	OH vibration states	7
2.5	OH- vibration states	7

Seznam použitých zkratek

A. Přílohy

A.1 První příloha