MATH326: Mathématiques pour les sciences 3

Contrôle continu n° 2 : durée une heure.

Les documents sont interdits de même que l'usage de la calculatrice.

Mercredi 23 novembre 2011.

Exercice 1 (6 points).

- 1. Déterminer la nature de la série $\sum e^{-\sqrt{n}}$.
- 2. Pour quelles valeurs de $x \in \mathbf{R}$ la série $\sum x^n$ est-elle convergente? (dans cette question, on ne demande pas de justification)
- 3. Pour |x| < 1, donner la valeur de la somme $\sum_{n=0}^{+\infty} x^n$.
- 4. Montrer que la série de fonctions $\sum x^n$ est normalement convergente sur [0,1/2].
- 5. On pose, pour $n \in \mathbf{N}^*$ et $x \in \mathbf{R}$, $f_n(x) = \frac{\cos(n^3 x^2)}{n}$.
 - (a) Montrer que la suite de fonctions $(f_n)_{n\geqslant 1}$ converge uniformément vers 0 sur **R**.
 - (b) Calculer $\lim_{n \to +\infty} \int_0^1 f_n(x) dx$.

Exercice 2 (4 points).

On considère, pour $x \in [-1,1]$ et $n \in \mathbf{N}^*$, $f_n(x) = \frac{nx}{x^2 + n}$.

- 1. Déterminer la limite simple de la suite $(f_n)_{n\geqslant 1}$. On note f cette limite.
- 2. Montrer que $(f_n)_{n\geq 1}$ converge uniformément vers f sur [-1,1].

Exercice 3 (10 points).

On considère, pour $n \in \mathbf{N}^*$ et $x \in \mathbf{R}$, $u_n(x) = \frac{e^{-nx}}{n}$.

1. Montrer que la série $\sum u_n(x)$ est convergente si et seulement si x > 0.

Pour
$$x > 0$$
, on note $S(x) = \sum_{n=1}^{+\infty} u_n(x)$.

- 2. Soit a > 0. Montrer que S est dérivable sur $[a, +\infty[$ et calculer, pour $x \ge a$, la valeur de la somme S'(x). En déduire que S est dérivable sur $[0, +\infty[$.
- 3. Montrer que, pour tout x > 0, $0 \le S(x) \le -S'(x)$.
- 4. Déterminer $\lim_{x\to +\infty} S(x)$. En déduire que, pour tout $x>0,\ S(x)=-\ln{(1-e^{-x})}$.
- 5. (a) Calculer la limite $\lim_{x\to 0^+} \frac{S(x)}{|\ln x|}$
 - (b) La série de fonctions $\sum \frac{u_n(x)}{|\ln x|}$ est-elle uniformément convergente sur]0,1/2]?