

Homework 6 Cryptography

Rick Staals 0716184 Erwin van Duijnhoven 0719562

October 16, 2013

1 Exercise 1

Consider the residue classes of $\mathbb{F}_2[x]$ modulo $f(x) = x^n + 1$ for some positive integer n > 1, i.e. $R = \mathbb{F}_2[x]/(x^n + 1)$. Note that R can be represented as

$$R = \{a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} | a_i \in \mathbb{F}_2\}$$

Show that R is not a field, i.e. find a non-zero element that is not invertible or that gives 0 when multiplied with another non-zero element.

1.1 Answer

Nonzero

If we take the elements x+1 and $1+x+x^2+\ldots+x^{n-1}$ then the two multiplied is equal to x^n+1 . This is equal to zero, therefore R is not a field. $x^n+2x^n+2x^2+2x+1$

Let K be a field of characteristic p, where p is prime. Show that for any integer $n \ge 0$ one has

$$(a+b)^{p^n} = a^{p^n} + b^{p^n}$$

for all $a, b \in K$.

Hint: You can use the binomial theorem and use proof by induction.

2.1Answer

By the binomial theorem we know.

$$(a+b)^p = a^p + pa^{p-1}b + (p(p-1)/2!)a^{p-2}b^2 + \dots + b^p$$

 $(a+b)^p = a^p + pa^{p-1}b + (p(p-1)/2!)a^{p-2}b^2 + \dots + b^p$ Because every binomial coefficient except the first and last is divisible by p, this reduces to reduces to

$$\text{ OK. Prover for } \underset{\text{res. And } 1=0}{\text{Or}} , \\ \text{ and } \underset{\text{res. } 1=0}{\text{OK.}}$$

By induction we now only have to prove that the same is true for n+1, where

we assume it is true for $(a+b)^{p^n} = a^{p^n} + b^{p^n}$.

$$(a+b)^{p^{n+1}} = ((a+b)^{p^n})^p = (a^{p^n} + b^{p^n})^p = (a^{p^n} + b^{p^n})^p = (a^{p^n})^p + p(a^{p^n})^{p-1}(b^{p^n}) + (p(p-1)/2!)(a^{p^n})^{p-2}(b^{p^n})^2 + \dots + (b^{p^n})^p = a^{p^{n+1}} + a^{p^{n+1}}$$

It is true for n+1 so by induction it is true for all $n \ge 0$

3 Exercise 3

Compute $N_3(4)$, the number of irreducible polynomials of degree 4 over \mathbb{F}_3 .

3.1Answer

By the lemma given in class we know the following

$$N_q(m) = \frac{1}{m} (q^M - \sum_{d \mid m, d \neq m} dN_q(d))$$

We also know that $N_q(1) = q$. In this particular case it means that.

$$\begin{array}{l} N_3(2) = \frac{1}{2}(3^2 - 1 \cdot N_3(1)) = 3 \\ N_3(4) = \frac{1}{4}(3^4 - 2 \cdot N_3(2) - 1 \cdot N_3(1)) \\ = \frac{1}{4}(3^4 - 2 \times 3 - 3) = 18 \end{array}$$

therefore the number of irreducible polynomials of degree 4 over \mathbb{F}_3 is 18.

4 Exercise 4

Use the Rabin test to prove that $x^{121} + x^2 + 1$ is not irreducible over \mathbb{F}_2 . For this exercise you should use a computer algebra system. Please document the results of all steps in the algorithm and show how they were obtained; show how you worked around needing to work with polynomials of degree 2^{121} .

4.1Answer

We use the Rabin test on $f=x^{121}+x^2+1$. This means that n=121 and $n_1=\frac{n}{p_1}=\frac{121}{11}=11$. Because we only have one prime divisor of 121, the algorithm only has one step. $h=x^{(2^{11})}+x\mod f=x^{112}+x^{25}+x^{23}+x$.

 $n=x^{-1}+x\mod f=x^{112}+x^{23}+x$. If gcd(h,f)=1, f possibly is irreducible over \mathbb{F}_2 . To calculate this, we use Mathematica. We get $PolynomialGCD[x^{112}+x^{25}+x^{23}+x^{23}+x^{23}+x^{24}+x^{25}$ $x^{23} + x, x^{121} + x^2 + 1, Modulus - > 2$, so f possibly is irreducible over \mathbb{F}_2 .

The only thing we need to check now is if f is a divisor of $x^{2^{121}} + x$, therefor we calculate $PolynomialMod[x^{(2^{121})} + x, x^{121} + x^2 + 1, Modulus - > 2]$. The answer is a very large polynomial of degree 120, but not 0. Therefore f is not irreducible over \mathbb{F}_2 .

how do you handle 2

X in Matlematica?

