ĐỀ KIỂM TRA MÔN ĐẠI SỐ

(Bộ môn Toán, thời gian làm bài 180p)

Bài 1. Tìm ma trận thực vuông cấp hai $X_{2\times 2}$ thỏa mãn đẳng thức

$$X^2 + 2X = \begin{pmatrix} -1 & 0 \\ 4 & 3 \end{pmatrix}.$$

Bài 2. Chứng minh rằng hệ phương trình tuyến tính:

$$\begin{cases} ax_1 + bx_2 + cx_3 + dx_4 = a, \\ -bx_1 + ax_2 + dx_3 - cx_4 = b, \\ -cx_1 - dx_2 + ax_3 + bx_4 = c, \\ -dx_1 + cx_2 - bx_3 + ax_4 = d, \end{cases}$$

có nghiệm với mọi giá trị thực a, b, c, d.

Bài 3. Tìm a để hệ phương trình sau có nghiệm không tầm thường

$$\begin{cases} ax_1 + x_2 + ... + x_{n-1} + x_n = 0 \\ x_1 + ax_2 + ... + x_{n-1} + x_n = 0 \\ \\ x_1 + x_2 + ... + x_{n-1} + ax_n = 0 \end{cases}.$$

Bài 4. Gọi P_n là không gian véctơ các đa thức với hệ số thực có bậc nhỏ hơn hoặc bằng n:

$$P_n = \{ p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n | a_i \in R, \forall i = 0, 1, \dots, n \}.$$

a) Chứng minh rằng

$$B_n = \{1, x, x^2, ..., x^n\}$$
 là một cơ sở trong P_n .

b) Xét ánh xạ

$$f: P_n \longrightarrow P_{n+1}$$

xác đinh bởi biểu thức

$$f(p)(x) = f[p(x)] = \int_0^x p(t) dt.$$

Tìm ma trận của ánh xạ tuyến tính f đối với cơ sở B_n trong P_n và cơ sở B_{n+1} trong P_{n+1} .

Bài 5. Cho T là một ma trận vuông cấp n và véc tơ cột $x \in \mathbb{R}^n$.

Biết rằng $T^mx=0$; $T^{m-1}x\neq 0$ trong đó m là một số nguyên dương. Chứng minh rằng hệ véc tơ $x,Tx,...,T^{m-1}x$ độc lập tuyến tính trong R^n .

Bài 6. Tìm một ma trận vuông thực cấp 3, không phải là ma trận tam giác, sao cho 2015, 2016, 2017 là các giá trị riêng của nó.

Bài 7. Cho p(x) là đa thức bậc 2 với các hệ số nguyên. Giả sử p(k) chia hết cho 5 với mọi số nguyên k. Chứng minh rằng tất cả các hệ số của p(x) đều chia hết cho 5.

Câu 8. Tìm đa thức P(x) thỏa mãn hệ thức sau

$$P(x)P(3x) + P^{2}(-x) = P^{2}(2x) \ (\forall x \in R).$$