

KARADENİZ TEKNİK ÜNİVERSİTESİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DERSİN ADI: AĞ VE VERİ GÜVENLİĞİ

PROJE RAPORU

I.ÖĞRETİM II.ÖĞRETİM X	I.ÖĞRETİM		II.ÖĞRETİM	X	
-------------------------------	-----------	--	------------	---	--

NUMARA	AD SOYAD
330152	Onur BUDAK
330188	Batuhan EKİCİ
330192	Hakan AKSOY

PROJE RAPORU

Görüntüleme teknolojilerindeki gelişmeler ile dijital görüntüler somut bir bilgi kaynağı haline gelmektedir. Bu süreçte, birçok resim düzenleme araçları, dijital fotoğrafçılığın orijinalliğini inceler.

RGB uzayından YUV'a geçiş sırasında yaptığımız araştırmalarımızda; Y: bir görüntüdeki siyah-beyaz bilgisini ve U ve V ise renk bilgisini ifade etmektedir. Aşağıda U ve V eksenli sistemde bu iki bileşen arasındaki ilişki söz konusudur.

R, G, B değerleri 0 ile 255 arasındaki değerleri belirtir. Bu değerleri kullanarak;

Y = (0.257*R) + (0.504*G) + (0.098*B) + 16

U = -(0.148*R)-(0.291*G)+(0.439*B)+128

V = (0.439*R)-(0.368*G)-(0.071*B)+128

formülleri yardımıyla YUV değerlerini hesaplayabiliriz.

Resmimizin her pikseli için bu pikseli ifade eden RGB değerine bu işlem uygulandığında o pikselin YUV değeri elde edilmiş olur.

Bu renk sisteminde Y bileşeni 0-255 arasında, U bileşeni -112 ile +112 arasında, V ise -157 ile +157 arasında değerler almaktadır. Bu sistem videolarla ilgili işlemlerde yaygın olarak kullanılabilir.

Fotoğraflar üzerindeki sahtecilik tespiti yaparken 2 farklı resim kullanıldı. Bu resimlerden ilki olan forged1.png ile forged1_maske.png resimlerini kullanarak gerekli testler yapıldı. Bu testleri yaparken yapılan karşılaştırmalar; bakılması gereken vektör sayısı, eşik değeri ve yakınlık eşiğidir.

Resim üzerindeki quantalama değeri başta bir dizi şeklinde belirlenerek düzenlendi. Daha sonra bu değer verilen kaynaktaki değer olan 16 ile değiştirilip, işlemler tekrarlandı. Zigzag vektörlerinin konumlarını bulmak için 16+2 (x-y koordinat) değerli dizi tasarlanmıştır.

UYGULAMA ÜZERİNDEKİ TEST GÖRÜNTÜLERİ

bakilacak_vektor = 25
benzerlik_esigi = 0.3
yakinlik_esigi = 5

50 -100 -150 -200 -250 -0 50 100 150 200 250

6738 degerde 5798 tanesi bulundu ²⁰⁰ Dogruluk = 0.8604927278124073

bakilacak_vektor = 25
benzerlik_esigi = 20
yakinlik_esigi = 175

6738 degerde 5512 tanesi bulundu Dogruluk = 0.8180468981893737

DEGER SETLEMELERÎ
bakilacak_vektor = 15

benzerlik_esigi = 20 yakinlik_esigi = 175

6738 degerde 4864 tanesi bulundu Dogruluk = 0.721875927574948

DEGER SETLEMELERİ
bakilacak_vektor = 10
benzerlik_esigi = 0.7
yakinlik_esigi = 5

4244 degerde 2346 tanesi bulund Dogruluk = 0.5527803958529689