# 18ECO134T- INDUSTRIAL AUTOMATION

UNIT - 3
Distributed Control system (DCS)



### Contents

| Session | Topic                                                           |
|---------|-----------------------------------------------------------------|
| 19      | Evolution of DCS, Hybrid System Architecture                    |
| 20      | Central Computer system Architecture, DCS Architecture          |
| 21      | Comparison of Architecture, Local Control Unit Architecture     |
| 22      | Architectural Parameters, Comparison Of LCU Architecture        |
| 23      | LCU Language Requirements, Function Blocks                      |
| 24      | Function Block Libraries, Problem-Oriented Language             |
| 25      | LCU Process Interfacing Issues, Security Requirements           |
| 26      | Security Design Approach, On-Line Diagnostics                   |
| 27      | Redundant Controller Design, One-On-One, One-On-Many Redundancy |

# Introduction to control techniques

- Direct digital control- A single computer controls the entire process. It overcomes the interfacing problems but is vulnerable to failures and shut down
- Hybrid control An individual discrete-control hardware, typically PLCs or analog loop controllers to collect process information and generate reports
- Distributed control allows the application to be broken into subsystems that use digital, rather than analog, control techniques and that can be interfaced together easily.

# Centralized Control System(CCS)



### Centralized control

- Several machines/processes controlled by a central controller
- Control configuration to control diverse manufacturing process with help of a single controllor



# Drawbacks of centralized control

- All individual steps in the manufacturing process are handled by a stand-alone central controller
- Simple to implement, monitor and troubleshoot
- No exchange of controller status
- No exchange of data to other controllers
- If the main controller fails, the whole process stops

### Hybrid control system

- Combination of direct digital control and a central control hardware to implement control functions
- Local control of the plant is achieved by means of discrete analog controller
- A central monitoring system with SCADA for data logging, control, optimization & alarm management
- Dominated approach till 1970s in all industries
- Faced difficulties in maintenance of large volumes of data & centralized monitoring of complex industries

# Hybrid architecture



### Control architecture-Time line



# Evolution of Distributed Control System



### Need for distributed control

- Distributive control permits the distribution of the processing tasks among several controllers and is highly reliable.
- Distributive control drastically reduces field wiring and heightens performance because it places the controller and I/O close to the machine process being controlled.
- Depending on the process, one PLC failure would not necessarily halt the complete process.
- DCS is supervised by a host computer that may perform monitoring/supervising functions such as report generation and storage of data.

# Comparison between CCS and DCS

| Centralized control system                                                | Distributed control system                                                       |  |  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| Centralised repository                                                    | Distributed/ local repositories                                                  |  |  |
| Failure of central controller leads to shut down of the entire process    | Distribution of the process tasks among several controllers saves from shut down |  |  |
| Less reliable                                                             | Highly reliable                                                                  |  |  |
| Complexity in process dynamics and control affects the speed of operation | Improved speed of operation                                                      |  |  |
| Increased field wiring and hence difficult to troubleshoot                | Reduced field wiring and so easier to troubleshoot                               |  |  |
| Need for dedicated communication links                                    | Distributed communication highways                                               |  |  |
| Low installation but high maintenance cost                                | High initial cost but low maintenance cost                                       |  |  |
| No such centralised supervision of entire process                         | Supervision of entire process by means of SCADA software                         |  |  |

### **DCS-Manufacturers**

### Company

- Centum (first DCS unit in the year1975)
- ABB
- Honeywell
- Rockwell
- Invensys
- Siemens
- Emerson
- Yokogawa

### DCS architecture



### DCS hardware

- Local control unit (LCU)
- Data I/O (DIO) modules
- Human Machine Interface (HMI)- low and high level
- Process interfacing
- Shared data communication
- Field level communication

### Local control Unit (LCU)

- Represents a smallest collection of hardware in the DCS setup that performs the closed loop control
- Takes inputs from field devices and sensors
- Processes commands given by the operator
- Controls the output to actuators-motors, solenoids etc.,
- Communication between other LCUs
- Stand alone operation during changeovers
- Changeover from Auto to manual and vice versa

### Functions of LCU

- It receives the instructions from the engineering station like set point and other parameters and directly controls field devices.
- It can sense and control both analog and digital inputs/outputs by analog and digital I/O modules.
- It collects the information from discrete field devices and sends this information to operating and engineering stations.

# Block diagram of LCU



# LCU configurations-A,B,C

( utputs

Outputs

#### Configuration A Configuration B 2 Analog Digital Inputs Inputs Analog Digital Inputs Inputs Capacity: Capacity: Capacity: LCU B2 LCU B1 LCU A 40 Continuous 160 Logic 10 Continuous **Function Blocks** Function Blocks **Function Blocks** Function Blocks Analog Outputs Digital Outputs 2 Configuration C Analog Output Outputs Digital Analog I iputs Inputs C pacity: 640 Continuous LCU C. **Function Blocks** 1280 Logic **Function Blocks** .\nalog Digital

# Comparison of configurations

| Parameter                     | Configuration A                                                                                     | Configuration B                                                                                     | Configuration C                                                                                    |
|-------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Controller                    | Number of functions<br>needed for single<br>PID loop or motor<br>controller.                        | Includes functions<br>and I/O needed for<br>eight control loops<br>and a small logic<br>controller. | System size is equivalent to small DDC system.                                                     |
| Controller<br>functionality   | Uses both continuous and logic function blocks.                                                     | Continuous and logic<br>function blocks<br>split between con-<br>trollers.                          | Uses both continuous<br>and logic function<br>blocks; can support<br>high-level lan-<br>guages.    |
| Controller<br>scalability     | High degree of scala-<br>bility from small to<br>large systems                                      | Requires both con-<br>troller types even<br>in small systems.                                       | Not scalable to very small systems.                                                                |
| . Controller performance      | Requirements can be met with inexpensive hardware.                                                  | Because of functional<br>split, performance<br>requirements are<br>not excessive.                   | Hardware must be<br>high performance<br>to execute large<br>number of func-<br>tions.              |
| Communication                 | Need intermodule<br>communications for<br>control; only mini-<br>mum needed for<br>human interface. | Functional separation<br>requires close inter-<br>face between con-<br>troller types.               | Large communication<br>requirement to hu-<br>man interface; min-<br>imal between con-<br>trollers. |
| Controller output<br>security | Controller has single-<br>loop integrity; usu-<br>ally only manual<br>backup is needed.             | Lack of single-loop<br>integrity requires<br>redundancy in criti-<br>cal applications.              | Size of controller re-<br>quires redundancy<br>in all applications.                                |

## Functional Blocks (FB)

- To enter the control program and control system configuration in the processor memory of LCU
- High level (FORTRAN or BASIC) / block oriented
- Blocks with set of parameters can be sequentially connected to implement a particular process
- It overcomes the need to learn computer programming
- It also helps to avoid manual hardwiring as in the case of relay logic
- It helps in easy implementation of the changes to be made in configuration and troubleshooting
- Number of FBs used influences the size of the LCU

### Typical Functional blocks



### **Functional Block Libraries**

### 2 types of FB libraries:

- Complex FB library- for PID controller, sqrt etc.,
- Simple FB library- for single arithmetic/logic function
- Important factors to be considered- LCU utilization, Flexibility of modification, scalability and difficulty level of implementing algorithms
- Important functionalities in High level languages-Text editor, debugger and file manager

## Typical FB libraries

#### COMPUTATIONAL FUNCTIONS

Sum-2 input/4 input

Multiply Divide

Square root

y', c'

log x, ln x

Trigonometria:

Generalized polynomial

Function penerator

Two-dit per sional interpolation

Matrix addition

Matrix multiplication

#### CONTROL FUNCTIONS

PID control

Pulse positioner

Adapt block

Smith predictor

General digital controller

#### INTERMODULE COMMUNICATIONS

Analog input (local/plant level)

Analog input list

Analog output (local/plant level)

Digital input (local/plant level)

Digital input list

Digital output (local/plant level)

#### SIGNAL PROCESSING FUNCTIONS

Integrator

Lead/lag

Moving average

Analog time delay

High/low limit

Rate limit

#### SIGNAL STATUS FUNCTIONS

High/low alarm

High/low select

Analog transfer

Digital transfer

#### LOGIC FUNCTIONS

AND

OR

Qualified OR

NOT

Latch

Digital timer

Up/down counter

Remote control latch

Pulse rate counter

#### OPERATOR COMMUNICATIONS

Control station

Indicator station

Cascade station

Ratio station

### LCU Architecture parameters

- Size of the controller- Number of I/Os, processes and functional blocks that can be processed
- Functionality- Analog/ Digital, Continuous/ Discrete
- Performance Speed of performance, accuracy, scanning rate etc.,
- Communication channels- PC-PC communication, Interface devices, field level communication etc.,
- Output security- Fail safe operation, manual or

### Human Machine Interface

- Effective Control and visualization of the process
- Electronic interfacing between human and the process to control monitor and diagnose processes
- Graphical user interface to check:
  - Operation summary- routine monitoring of process
  - Configuration/setup- Control configuration and parametric values
  - Event history-Time stamped list of all significant events
  - Auto/manual changeover Bypass control during shutdown/maintenance
  - Trend values Flow, pressure, temperatures as a function of time
  - Diagnostics –cause and occurrence of failures

### Interfacing requirements

- Communication Interfaces are needed in order to:
  - Establish communication between LCUs
  - Allow transmission of process data to higher level elements
  - Transmit information command and requests to LCUs
  - Augment I/O capacity of LCU to DI/Ous
  - Implement redundancy operation of one or more LCUs

## Reliable interfacing

- For maximum reliability,
  - Minimise the number of components and electrical connections
  - Current value of output should be indicated to the LCUs
  - Powering the output circuitry from an independent supply to avoid loss of data
  - Analog output device should be able to indicate "last minimum output" "last maximum output" "go to last output"

## Sophisticated HMI



### High Level User Interface

- Interfacing with the process
- Real time control
- Interfacing with other elements in DCS
- Security features required for process application
- Supporting utilities
- Modifying the program

### Low level User Interface

- Field devices communication
- Directly communicates with LCU
- Plant operator can directly configure controller, switch control operation and override (Auto/Manual) control



### DI/OU modules

- A Microprocessor based data acquisition unit meant for receiving and generating inputs and outputs
- It can be used as an auxilliary unit capable of handling multiple I/Os (not possible with LCUs)
- Adds up to the installation and maintenance cost
- Similar to LCU but differs in two ways:
  - Lack of security features
  - No control but only data acquisition

# DI/OU Block diagram



Single loop controller



Multi loop controller

## Security features

- Objectives- safe transmission, Auto/manual switch over during shutdown and fail-safe operations
- Three security design approaches:
  - Manual backup only- Operator can take manual control and link inactive LCU with active ones
  - Standby redundant controller One LCU acts as master, remaining are redundant -bumpless transfer
  - Multiple active controllers- Multiple LCUs active at a time for control operation-decision by polling

# Security design approaches



#### (iii) Multiple active LCUs



## Online diagnostics

- Frequency of diagnostics- during start up, at regular intervals and upon occurrence of failure
- Onset of failure/shutdown, the LCU
  - should communicate the failure to LL and HL interfaces
  - should initiate hardware failure indicator/alarm
  - should be able to trigger internal process fail safe sequence and isolate the process
  - Safety precaution operations to shut down in orderly way

# Types of online diagnostics

| Service X                    | F.,                            |                                                                                                                        | Zilarili -                       |                                                                             |
|------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------|
| DIAGNOSTIC TYPE              | NAME                           | DESCRIPTION                                                                                                            | WHEN PERFORMED                   | ACTION<br>ON FAILURE                                                        |
|                              | A/D converter<br>check         | Processor applies known zero and spac<br>voltages to converter and uses measure-<br>ments to correct for input errors. | Periodically during operation    | If correction becomes too<br>great, sets alarm and shuts<br>converter down. |
| 10.5                         | Sensor out of range<br>check   | Processor checks that input from censor is in acceptable range.                                                        | Every input scan                 | Declares sensor input to have bad quality.                                  |
| Input<br>diagnostics         | Excessive rate of change check | Processor checks that time rate of change<br>of input from sensor is in acceptable<br>range.                           | During operation                 | Declares sensor input to have bad quality.                                  |
|                              | Open T/C detection             | Processor checks thermocouple for open circuit using standard methods.                                                 | During operation                 | Declares T/C input to have bad quality.                                     |
| Configuration<br>diagnostics | I/O hardware check             | Processor checks that selected I/O hard-<br>ware options are present.                                                  | At startup                       | Alarms and shuts LCU down.                                                  |
|                              | Memory check                   | Processor checks that selected memory options are present.                                                             | At startup                       | Alarms and shuts LCU down.                                                  |
| Memory<br>diagnostics        | ROM/EAROM<br>sumcheck          | Processor compares the computed sum of<br>the contents of memory with the pre-<br>stored correct value.                | Periodically during<br>Operation | Alarms a ROM failure and shuts LCU down.                                    |
|                              | RAM test                       | Processor writes a known pattern into<br>RAM, then reads back and checks the                                           | At startup                       | Alarms a RAM failure and shuts LCU down.                                    |

# Types of online diagnostics

| Output<br>diagnostics                            | D/A converter check      | Processor writes a known value to the D/A converter, reads it back through analog channel, and compares results. | Periodically during operation      | If error becomes too great,<br>sets alarm and shuts con-<br>verter down. |
|--------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------|
|                                                  | Output register<br>check | Processor writes a known number to the<br>D/A converter and reads digital value<br>back to verify number.        | During operation                   | Sets alarm and shuts convert-<br>er down.                                |
| End-to-end<br>processor/<br>memory<br>diagnostic | Test problem             | Processor executes a test control or crith-<br>metic algorithm, then comparex results<br>with prestored answer.  | At startup                         | Sets alarm and shuts LCU down.                                           |
| External<br>hardware check                       | Watchdog timer           | Processor sets an external timer periodi-<br>cally to confirm proper operation.                                  | Periodically during operation      | Timer hardware shots LCU down.                                           |
| Power system<br>diagnostics                      | Voltage monitor          | Processor uses external hardware to moni-<br>tor the voltages generated by the LCU<br>power supply.:             | Continuously dur-<br>ing operation | Alarms power supply failure and shuts LCU down.                          |

### Redundancy concept

- One-on-one
- One-on-many
- Multiple active

### One on one redundancy

- Total backup of LCU configurations to primary LCU
- No manual back up needed
- But expensive approach as all of the LCU elements needs to be duplicated and the redundant one has be safeguarded and has potential single point failure problems



# One on many redundancy

- Cost effective approach single LCU is used as standby to backup any one of the several LCUs
- Switching matrix essential, complex and so careful design needed

An arbitrator should carry the information regarding the LCU



# Comparison of architectures

|    | Feature                              | Hybrid control                                            | Centralized control                                                               | Distributed control                                                        |
|----|--------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 1. | Scalability and expandability        | Good due to modularity                                    | Poor—very limited range of system size                                            | Good due to modularity                                                     |
| 2  | Control capability                   | Limited by analog and sequential control hardware         | Full digital control capability                                                   | Full digital control capability                                            |
| 3. | Operator interfacing capability      | Limited by panelboard instrumentation                     | Digital hardware provides<br>significant improvement for<br>large systems         | Digital hardware provides<br>improvement for full range of<br>system sizes |
| 4  | Integration of system functions      | Poor due to variety of products                           | All functions performed by central computer                                       | Functions integrated in a family of products                               |
| 5. | Significance of single-point failure | Low due to modularity                                     | High                                                                              | Low due to modularity                                                      |
| 6. | Installation costs                   | High due to discrete wiring and large volume of equipment | Medium—saves control room<br>and equipment room space but<br>uses discrete wiring | Low—savings in both wiring costs and equipment space                       |
| j. | Maintainability                      | Poor—many module types, few diagnostics                   | Medium—requires nighly trained;<br>computer maintenance<br>personnel              | Excellent—automatic diagnostics and module replacement                     |

### References

### Book references:

Krishna Kant, Computer Based Industrial Control, Second edition, Prentice Hall of India, New Delhi, 2015

Michael P Lukas, Distributed Control Sytems- their evaluation and design, Van Nostrand Reinhold company, USA, 1986

### Video references:

Introduction to DCS

https://www.youtube.com/watch?v=jXRksET5vNo

Difference Between PLC and DCS

https://www.youtube.com/watch?v=iF99iKIDpxA