SMART INDIA HACKATHON 2025

- SMART INDIA HACKATHON 2025

TITLE PAGE

- Problem Statement ID 25018
- Problem Statement Title Telemedicine

Access for Rural Healthcare in Nabha

- Theme Healthcare
- PS Category Software
- Team ID -
- Team Name Debug Thugs

DEBUG THUGS

NIRAMYA: FREE FROM ILLNESS

DETAILED EXPLAINATION OF THE PROPOSED SOLUTION

- A multilingual, Al-enabled telemedicine application designed for rural patients in Nabha and surrounding villages.
- Video Consultation with Doctors Patients can connect with doctors and specialists remotely.
- Multilingual Support Interfaces and medical advice available in local languages.
- Offline Health Records Patients' digital records stored securely and accessible without internet.
- Real-time Medicine Stock Updates Integration with local pharmacies to provide live information on availability of medicines.
- Al Symptom Checker (Chatbot) Low-bandwidth optimized Al chatbot for preliminary health assessment.
- Voice/Mic Feature in Chatbot Allows people with low literacy to interact easily using voice commands.
- Scalable Architecture Solution adaptable for other rural regions across India.

HOW IT ADDRESSES THE PROBLEM

INNOVATIONS AND UNIQUENESS

Combines offline accessibility, multilingual support, realtime pharmacy integration, and AI chatbot with mic feature—a rare combination targeting rural healthcare challenges.

TECHNICAL APPROACH

TECHNOLOGIES USED

Programming Python, Node.js NLP for multilingual chatbot & voice recognition

CloudAWS for secure storage

Database APIs

MongoDB Telemedicine with offline sync video API,

METHODOLOGY

IMPLEMENTATION PROCESS:

- User registers with Aadhaar/phone number.
- Patient can consult doctor via video call.
- Al chatbot provides initial triage using voice/text.
- Offline records sync with cloud when internet available.
- Local pharmacy dashboard updates stock availability in real-time.
- Admin/Health Dept. gets analytics dashboard.

FEASIBILITY AND VIABILITY

FEASIBILITY OF THE IDEA

1. Technical Feasibility

Al chatbot with voice support ensures access for low-literacy users

2. Operational Feasibility

Hospital staff and pharmacies can easily update records and stock in real-time.

Doctors save time by remote consultations, and health dept. gets analytics dashboard.

3. Economic Feasibility

Reduces travel costs and income loss for patients from 173 villages.

Cloud-based system is low-cost to deploy and scale across regions.

4. Social Feasibility

Improves timely healthcare access and reduces health risks. Multilingual and voice-enabled support ensures easy community adoption.

POTENTIAL CHALLENGES AND RISKS

MITIGATION STRATEGIES

- Voice-enabled chatbot for low-literate users.
- Offline records with periodic sync.
- Government partnerships for hospital & pharmacy integration.

IMPACT AND BENEFITS

POTENTIAL IMPACTS BENEFITS OF THE SOLUTION

1. Healthcare Impact

- a. Early detection of diseases through AI triage reduces complications.
- b. Continuous medical support improves overall community health index.

2. Economic Impact

- a. Prevents loss of daily wages by avoiding unnecessary hospital trips.
- b. Cuts extra spending on transport, food, and lodging during hospital visits.

3. Social Impact

- a. Empowers rural families with self-reliant healthcare access.
- b. Builds trust between villagers and healthcare system.

4. Government & Systemic Impact

- a. Provides real-time data to health authorities for better planning.
- b. Reduces pressure on understaffed rural hospitals.

5. Scalability & Long-term Benefit

- a. Creates a replicable model for rural healthcare across India.
- b. Promotes digital health literacy and long-term adoption of telemedicine.

WORKFLOW DIAGRAM

RESEARCH AND REFERENCES

- 1. National Digital Health Mission (NDHM), Govt. of India Guidelines for digital health ecosystem.
- https://ndhm.gov.in
- 2. Disease Symptom & Patient Dataset (Kaggle) For AI chatbot & symptom checker training.
- https://www.kaggle.com/datasets/itachi9604/disease-symptom-description-dataset
- 3. OpenFDA Drug Database Standard drug & prescription data for medicine recommendations.
- https://open.fda.gov/apis/drug/
- 4. eSanjeevani Telemedicine Platform (Govt. of India) Reference for telemedicine best practices.
- https://esanjeevani.in
- 5. WHO ICD-10 Codes Global standard for disease classification.
- https://icd.who.int/