Lecture 2: Extensive Form Games

Instructor: Fei Tan

@econdojo Decondojo Decond

Saint Louis University

Date: September 4, 2025

The Road Ahead

- 1. From Simultaneous to Sequential Games
- 2. Subgame Perfect Equilibrium
- 3. Backward Induction
- 4. Commitment Problems
- 5. Forward Induction

From Simultaneous to Sequential Games

Simultaneous Move Games: players move at the same time or cannot observe each other's moves

- Prisoner's dilemma: prisoners in separate interrogation rooms
- Football: offense and defense call plays simultaneously
- Meeting coordination: couple choosing locations without communication

Sequential Games: strategic interactions that flow over time in specific steps

- Military invasion followed by response decision
- Police officer requesting search permission, then deciding thoroughness
- Chess: white moves, black responds, cycle repeats
- Firm entry followed by incumbent's competitive response

Introducing Selten's Game

Firm 1 considers entering Firm 2's monopoly market. If Firm 1 enters, Firm 2 must decide whether to accommodate entry or wage a price war.

Payoff Structure:

- Price war: both firms earn 0 (profits eliminated)
- Accommodation: Firm 1 earns 3, Firm 2 earns 1
- No entry: Firm 1 earns 2 (saves investment), Firm 2 earns 2 (maintains monopoly)

	Firm 2: Accommodate	Firm 2: War
Firm 1: Enter	3, 1	0, 0
Firm 1: Stay Out	2, 2	2, 2

Extensive Form Games

Game Tree Representation of the firm entry game:

Key Elements:

- **Decision nodes**: where players make choices
- **Terminal nodes**: end points with payoffs
- Branches: represent available strategies
- Sequential structure: order of play is explicit

Multiple Nash Equilibria in Strategic Form

Recall Selten's game has multiple Nash equilibria:

1. Pure strategy equilibria:

- (Enter, Accommodate): (3, 1)
- (Stay Out, War): (2, 2)

2. Mixed strategy equilibria:

- Firm 1 plays Stay Out with probability 1
- \circ Firm 2 plays War with probability $\geq rac{1}{3}$

Multiple equilibria make prediction difficult. Which one will actually occur? **Sequential structure** helps us resolve this ambiguity!

Analyzing Sequential Play

If Firm 1 enters, Firm 2 faces this decision:

```
Firm 2
/ \
Accommodate War
/ (3, 1) (0, 0)
```

Firm 2's analysis: 1 > 0, so Firm 2 prefers Accommodate over War

Firm 1's analysis (knowing Firm 2 will accommodate):

- Enter → Firm 2 accommodates → payoff = 3
- Stay Out → payoff = 2
- Since 3 > 2, Firm 1 should enter

Unique sequential solution: (Enter, Accommodate) with payoffs (3, 1)

Subgame Perfect Equilibrium

A **Subgame Perfect Equilibrium (SPE)** is a strategy profile where each player's strategy constitutes a Nash equilibrium in every subgame.

Key insight: SPE ensures that threats are credible

- Firm 2's threat to wage war is NOT credible
- Once Firm 1 enters, Firm 2 has no incentive to follow through
- Firm 1 recognizes this and enters anyway

Refinement: SPE eliminates Nash equilibria that rely on non-credible threats

- All SPE are Nash equilibria
- Not all Nash equilibria are SPE
- SPE is the gold standard for extensive form games

Games with Simultaneous Moves in Extensive Form

Some extensive form games include simultaneous moves, e.g. matching pennies

```
Player 1

Heads Tails

Player 2 --- Player 2 <- information set

Heads Tails Heads Tails

(1,-1) (-1,1) (-1,1) (1,-1)
```

Information set: dashed line shows Player 2 cannot observe Player 1's choice

Solution method: convert to matrix form and solve as simultaneous game

Constructing Games with Simultaneous Moves

Critical rules for information sets:

- 1. Identical strategy sets: same available actions at all nodes in the information set
- 2. **Irrelevance of player order**: whoever plays first, the resulting payoff matrix must be the same

Example of violation:

```
If Player 1 chooses Heads → Player 2 chooses {A, B}
If Player 1 chooses Tails → Player 2 chooses {C, D}
```

Problem: Player 2 can infer Player 1's move from available actions, violating simultaneity

Backward Induction

Method: solve extensive form games by working backwards from the end:

- 1. Start at the final decision nodes and determine optimal actions
- 2. Work backwards using optimal future play to determine current optimal actions
- 3. Continue until reaching the initial node

Backward induction always finds the subgame perfect equilibrium

Note: complete strategy must specify actions at ALL decision nodes, even those not reached in equilibrium

Example: Escalation Game

Two countries are on the brink of war:

```
Player 1: Accept —— (0, 0)

Threaten — Player 2: Concede —— (1, -2)

Escalate — Player 1: War —— (-1, -1)

Back Down —— (-2, 1)
```

Step 1: Player 1 chooses between War (-1) and Back Down (-2). Since -1 > -2, choose War.

Step 2: Player 2 chooses between Concede (-2) and Escalate (leading to War: -1). Since -1 > -2, choose Escalate.

Step 3: Player 1 chooses between Accept (0) and Threaten (leading to Escalate → War: -1). Since 0 > -1, choose Accept.

SPE: ((Accept, War), Escalate) with outcome (0, 0)

Example: Ultimatum Game

Player 1 has a good worth 2 and must bargain with Player 2 over division

- Split: Offer equal division (1, 1)
- Take: Attempt to take everything (2, 0)
- Player 2 can Accept or Reject any proposal
- Rejection leads to (0, 0) for both

```
Player 1: Split — Player 2: Accept —— (1, 1)

Reject —— (0, 0)

Take — Player 2: Accept —— (2, 0)

Reject —— (0, 0)
```

Multiple SPE in Ultimatum Game

After Split: Player 2 prefers Accept (payoff 1) over Reject (payoff 0)

After **Take**: Player 2 is indifferent between Accept (payoff 0) and Reject (payoff 0)

Multiple equilibria arise from Player 2's indifference:

- 1. Player 2 always Accepts: Player 1 takes (payoff 2 > 1), so SPE is \(\tag{Take, (Accept, Accept})\)
- 2. **Player 2 always Rejects**: Player 1 splits (payoff 1 > 0), so SPE is <Split, (Accept, Reject)>
- 3. Player 2 mixes: Any probability p of accepting after "Take"
 - \circ If p > 1/2: Player 1 takes
 - ∘ If p < 1/2: Player 1 splits
 - If p = 1/2: Player 1 indifferent, can mix with any probability q

Example: Weighted Matching Pennies

Why backward induction fails? It requires every decision node to have unique history, but Player 1's last decision (Up/Down) violates this requirement.

Valid subgame: Only the simultaneous portion after "Go" forms a proper subgame since Player 2's choice has unique history.

Multiple SPE in Weighted Matching Pennies

Solution method:

- 1. Solve the simultaneous subgame first: Player 1 plays Up with prob 1/6; Player 2 plays Left with prob 1/3
- 2. Replace subgame with expected payoffs (-1/3, 1/3)
- 3. Player 1 compares Stay(-1/3) vs Go(-1/3) \rightarrow Indifferent!

Multiple SPE: Player 1 can mix with any probability between Stay and Go

Key insight: Simultaneous moves within extensive form games can create multiple SPE even when all payoffs are unique

Making Threats Credible

Two armies fight over an island. Each has a bridge for access:

- Island is valuable but not worth fighting for
- Each army prefers to concede rather than fight
- First army occupies island, second decides whether to invade

```
Army 1: Burn Bridge?

Burn Don't Burn

Army 2 Army 2

Invade Concede Invade Concede

(-1,-1) (1,0) Army 1 (1,0)

Fight Retreat

(-1,-1) (0,1)
```

Bridge Burning Analysis

Backward Induction:

Step 1 - If bridge not burned and Army 2 invades: Army 1 chooses Fight (-1) vs Retreat (0) → Choose Retreat

Step 2 - Army 2's decision if bridge not burned: Concede (0) vs Invade (1, since Army 1 retreats) → Choose Invade

Step 3 - Army 2's decision if bridge burned: Concede (0) vs Invade (-1, since Army1 must fight) → Choose Concede

Step 4 - Army 1's initial decision: Burn (1) vs Not Burn (0) → Choose Burn

SPE: ((Burn, Retreat), (Concede, Invade))

Tying Hands: Deliberately limiting your future options to make a threat or commitment **credible**!

Commitment Problems

Situations where the inability to commit to future actions leads to suboptimal outcomes. Consider a graduate student pulled over in Texas. Officer requests vehicle search but cannot credibly commit to "quick" search.

SPE: 〈Request K-9, Extensive〉 - Both prefer quick search (3,2) but can't achieve it **Key insight**: Words without credible commitment mechanisms are worthless

Example: Civil War

Dictator faces rebel revolution. Must choose: Fight (20% win, 80% lose) or Surrender immediately. If rebels win, they choose Forgive vs Execute dictator.

```
Dictator

Fight Surrender

Nature Rebels

Win Lose Forgive Execute

(7,-10) | (-5,8) (-10,10)

Rebels

Forgive Execute

(-8,5) (-13,7)
```

Expected payoffs when Dictator Fights: Dictator gets (.2)(7) + (.8)(-13) = -9, Rebels get (.2)(-10) + (.8)(7) = 3.6

SPE: 〈Fight, (Execute, Excute)〉 - Rebels cannot credibly commit to spare dictator if he surrenders, so civil wars rarely end in negotiated settlements

Fei Tan | Made on Earth by humans.

Example: Centipede Game

Two players alternate adding \$2 to a growing pot or taking \$2 plus splitting the pot. Player 1 starts, and the game can continue for up to 100 rounds.

Backward Induction: Player 2 takes in final round (\$101 > \$100) \rightarrow Player 1 takes in round 99 \rightarrow ... \rightarrow Both take immediately with (2,0)

SPE: Both players take at every opportunity → SPE gives worst possible outcome!

Paradox: Laboratory evidence shows players cooperate for many rounds, explained by irrationality, altruism, or strategic "feigning irrationality"

Forward Induction

Forward induction uses the assumption that all **past** play was rational to make inferences about opponents' private information or strategies

Forward induction selects unique equilibrium (Stag, Stag):

- 1. Hare is strictly dominated by Pub $(2.5 > 2) \rightarrow$ Player 1 never chooses Hare
- 2. Player 2 infers Player 1 chose Stag → Player 2 chooses Stag (payoff 3 > 2)
- 3. Player 1 anticipates this \rightarrow chooses Stag over Pub (payoff 3 > 2.5)