Problems & Proofs in Elementary Inequality Bài Tập Bất Đẳng Thức & Chứng Minh

Nguyễn Quản Bá Hồng*

Ngày 20 tháng 5 năm 2023

Tóm tắt nội dung

A problem set for elementary inequality.

Mục lục

1	Introduction	1
2	Cauchy-Schwarz Inequality – Bất Đẳng Thức Cauchy-Schwarz	1
3	Áp Dụng Bất Đẳng Thức Cauchy–Schwarz Để Tìm Cực Trị	2
4	Uncategorized	4
5	Miscellaneous	5
Tà	i liệu	5

1 Introduction

The general structure of a problem on inequality is given by:

Problem 1. Let x_i , $\forall i = 1, 2, ..., n$ satisfy the condition $C(x_1, x_2, ..., x_n) = 0$ & $C^*(x_1, x_2, ..., x_n) \geq 0$. Prove that: (a) $A(x_1, x_2, ..., x_n) \leq 0$. (b) $B(x_1, x_2, ..., x_n) \geq 0$. (c) Find the minimum & maximum of $A(x_1, x_2, ..., x_n)$ & $B(x_1, x_2, ..., x_n)$.

Cấu trúc tổng quát của 1 bài toán bất đẳng thức:

Bài toán 1. Cho các biến x_i , $\forall i = 1, 2, \ldots, n$ thỏa mãn điều kiện $C(x_1, x_2, \ldots, x_n) = 0$. Chứng minh: (a) $A(x_1, x_2, \ldots, x_n) \leq 0$. (b) $B(x_1, x_2, \ldots, x_n) \geq 0$. (c) Tìm GTNN & GTLN của biểu thức $A(x_1, x_2, \ldots, x_n)$ & $B(x_1, x_2, \ldots, x_n)$.

Để nghiên cứu các bài toán bất đẳng thức & cực trị 1 cách có hệ thống, ta sẽ nghiên cứu 1 số dạng thường gặp của các $bi\mathring{e}u$ thức cần tìm cực trị A, B & đặc biệt là các đẳng thức điều $ki\mathring{e}n$ $C(x_1, x_2, \ldots, x_n) = 0$ & $b\mathring{a}t$ đẳng thức điều $ki\mathring{e}n$ $C^*(x_1, x_2, \ldots, x_n) \geq 0$.

2 Cauchy-Schwarz Inequality – Bất Đẳng Thức Cauchy-Schwarz

The most basic inequality: $x^2 \ge 0$, $\forall x \in \mathbb{R}$. $x^2 = 0 \Leftrightarrow x = 0$. $x^2 > 0 \Leftrightarrow x \ne 0$.

 \acute{Y} nghĩa hình học: Diện tích hình vuông thì không âm. Diện tích của hình vuông bằng $0 \Leftrightarrow$ hình vuông đó suy biến thành 1 điểm. Cụ thể, công thức tính diện tích hình vuông cạnh a: $S=a^2$. Khi đó $S=a^2 \geq 0$, $\forall a \geq 0 \& S=0 \Leftrightarrow a=0$.

Bài toán 2. Chứng minh:

$$4ab \le 2(|ab| + ab) \le (a+b)^2 \le (|a| + |b|)^2 \le 2(a^2 + b^2), \ \forall a, b \in \mathbb{R}.$$
 (1)

 $\begin{array}{l} \text{1st ching minh. (a) } 4ab \leq 2(|ab|+ab) \Leftrightarrow 2ab \leq 2|ab| \Leftrightarrow ab \leq |ab| \text{ luôn dúng } \forall a,b \in \mathbb{R}. \text{ "="} \Leftrightarrow ab \geq 0. \text{ (b) } 2(|ab|+ab) \leq (a+b)^2 \Leftrightarrow 2|ab| + 2ab \leq a^2 + 2ab + b^2 \Leftrightarrow 2|ab| \leq a^2 + b^2 \Leftrightarrow (|a|-|b|)^2 \geq 0 \text{ luôn dúng } \forall a,b \in \mathbb{R}. \text{ "="} \Leftrightarrow |a|=|b|. \\ \text{(c) } (a+b)^2 \leq (|a|+|b|)^2 \Leftrightarrow a^2 + 2ab + b^2 \leq |a|^2 + 2|a||b| + |b|^2 \Leftrightarrow ab \leq |ab| \text{ luôn dúng } \forall a,b \in \mathbb{R}. \text{ "="} \Leftrightarrow ab \geq 0. \text{ (d)} \\ (|a|+|b|)^2 \leq 2(a^2+b^2) \Leftrightarrow |a|^2 + 2|a||b| + |b|^2 \leq 2a^2 + 2b^2 \Leftrightarrow (|a|-|b|)^2 \geq 0 \text{ luôn dúng } \forall a,b \in \mathbb{R}. \text{ "="} \Leftrightarrow |a|=|b|. \end{array}$

2nd chứng minh. Áp dụng bất đẳng thức Cauchy cho 2 số

^{*}Independent Researcher, Ben Tre City, Vietnam e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

Lưu ý 1. Trị tuyệt đối của 1 số thực không nhỏ hơn số thực đó, i.e., $|x| \ge x$, $\forall x \in \mathbb{R}$. $|x| = x \Leftrightarrow x \ge 0$.

Bài toán 3. Bất đẳng thức $(a+b)^2 \ge 4|ab|$ đúng khi nào?

Bài toán 4 (Bất đẳng thức Cauchy-Schwarz cho 2 số không âm). Chứng minh:

$$a+b \ge 2\sqrt{ab}, \ \forall a, b \in \mathbb{R}, \ a, b \ge 0.$$

Đẳng thức xảy ra khi nào?

1st proof.
$$a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0 \Rightarrow a+b\geq 2\sqrt{ab}, \ \forall a,b\in\mathbb{R},\ a,b\geq 0.\ \text{``=''}\Leftrightarrow \sqrt{a}=\sqrt{b}\Leftrightarrow a=b.$$

$$2nd \ proof. \ (a+b)^2 - (2\sqrt{ab})^2 = a^2 + 2ab + b^2 - 4ab = a^2 - 2ab + b^2 = (a-b)^2 \geq 0 \Rightarrow (a+b)^2 \geq (2\sqrt{ab})^2 \Rightarrow a+b \geq 2\sqrt{ab} \ (\text{vi} \ a,b \geq 0 \ \text{n\'en} \ a+b \geq 0 \ \& \ 2\sqrt{ab} \geq 0). \ "=" \Leftrightarrow a=b.$$

Lưu ý 2. Ở 2nd proof, ta đã vận dụng tính chất cơ bản của căn bậc 2: $0 \le a \le b \Leftrightarrow \sqrt{a} \le \sqrt{b}$, $\forall a, b \in \mathbb{R}$. Phiên bản chặt/ngặt (strict) là: $0 \le a < b \Leftrightarrow \sqrt{a} < \sqrt{b}$, $\forall a, b \in \mathbb{R}$. Ý nghĩa hình học của 2 tính chất này: Hình vuông nào có cạnh lớn hơn thì có diện tích lớn hơn \mathscr{E} ngược lại, hình vuông nào có diện tích lớn hơn thì có cạnh lớn hơn.

3rd proof. Đặt
$$x := \sqrt{a}, y := \sqrt{b}, x, y \in \mathbb{R}, x, y \geq 0$$
. Có $a+b-2\sqrt{ab} = a+b-2\sqrt{a}\sqrt{b} = x^2+y^2-2xy = (x-y)^2 \geq 0 \Rightarrow a+b \geq 2\sqrt{ab}$. "=" $\Leftrightarrow x = y \Leftrightarrow \sqrt{a} = \sqrt{b} \Leftrightarrow a = b$.

Lưu ý 3. \mathring{O} 3rd proof, ta đã sử dụng tính chất giao hoán của phép nhân & phép khai phương: $\sqrt{ab} = \sqrt{a}\sqrt{b}$, $\forall a,b \in \mathbb{R}$, $a,b \geq 0$.

Bài toán 5. Với m, n, p nào thì bất đẳng thức $ma + nb \ge p\sqrt{ab}$ luôn đúng: (a) $\forall a, b \in \mathbb{R}$, $a, b \ge 0$. (b) $\forall a, b \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Bài toán 6 (Bất đẳng thức Cauchy–Schwarz cho 3 số không âm). Chứng minh:

$$a+b+c \ge 3\sqrt[3]{abc}, \ \forall a,b,c \in \mathbb{R}, \ a,b,c \ge 0.$$

Đẳng thức xảy ra khi nào?

Bài toán 7. Với m, n, p, q nào thì bất đẳng thức $ma + nb + pc \ge q\sqrt[3]{abc}$ luôn đúng: (a) $\forall a, b, c \in \mathbb{R}$, $a, b, c \ge 0$. (b) $\forall a, b, c \in \mathbb{R}$. Dẳng thức xảy ra khi nào?

Bài toán 8 (Bất đẳng thức Cauchy–Schwarz cho n số không âm). Chứng minh:

$$\sum_{i=1}^{n} a_{i} \geq n \sqrt[n]{\prod_{i=1}^{n} a_{i}}, i.e., a_{1} + a_{2} + \dots + a_{n} \geq \sqrt[n]{a_{1}a_{2} \cdots a_{n}}, \forall n \in \mathbb{N}^{*}, \forall a_{i} \in \mathbb{R}, a_{i} \geq 0, \forall i = 1, 2, \dots, n.$$

Đẳng thức xảy ra khi nào?

Bài toán 9. Cho $n \in \mathbb{N}^*$. Với bộ $(m, m_1, m_2, \dots, m_n)$ nào thì bất đẳng thức:

$$\sum_{i=1}^{n} m_{i} a_{i} \geq m \sqrt[n]{\prod_{i=1}^{n} a_{i}}, i.e., m_{1} a_{1} + m_{2} a_{2} + \dots + m_{n} a_{n} \geq m \sqrt[n]{a_{1} a_{2} \cdots a_{n}},$$

đúng với: (a) $\forall a_i \in \mathbb{R}, \ a_i \geq 0, \ \forall i = 1, 2, \dots, n.$ (b) $\forall a_i \in \mathbb{R}, \ \forall i = 1, 2, \dots, n.$ Đẳng thức xảy ra khi nào?

3 Áp Dụng Bất Đẳng Thức Cauchy–Schwarz Để Tìm Cực Trị

Bài toán 10 ([Tuy23], Ví dụ 9, p. 23). Cho $x, y \in \mathbb{R}$, x, y > 0 thỏa mãn điều kiện $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$. Tìm GTNN của biểu thức $A = \sqrt{x} + \sqrt{y}$.

$$\text{1st proof. Vì } x,y>0 \text{ nên } \frac{1}{x},\frac{1}{y},\sqrt{x},\sqrt{y}>0. \text{ Áp dụng bất đẳng thức Cauchy cho 2 số dương } \frac{1}{x},\frac{1}{y},\text{ được: } \sqrt{\frac{1}{x}\cdot\frac{1}{y}}\leq\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}\Rightarrow\frac{1}{\sqrt{xy}}\leq\frac{1}{4}\Rightarrow\sqrt{xy}\geq4. \text{ Áp dụng bất đẳng thức Cauchy cho 2 số dương } \sqrt{x},\sqrt{y},\text{ được: } A=\sqrt{x}+\sqrt{y}\geq2\sqrt{\sqrt{x}\sqrt{y}}=2\sqrt{\sqrt{x}}\geq2\sqrt{x}$$

$$2\sqrt{\sqrt{xy}}\geq2\sqrt{4}=4. \text{ "="}\Leftrightarrow x=y\text{ \& }\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\Leftrightarrow x=y=4. \text{ Vậy min } A=4\Leftrightarrow x=y=4.$$

2nd proof. Áp dụng bất đẳng thức Cauchy lần lượt cho (\sqrt{x}, \sqrt{y}) & $(\frac{1}{x}, \frac{1}{y})$, được:

$$A = \sqrt{x} + \sqrt{y} \ge 2\sqrt{\sqrt{x}\sqrt{y}} = 2\sqrt{\frac{1}{\frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{y}}}} \ge 2\sqrt{\frac{1}{\frac{1}{2}\left(\frac{1}{x} + \frac{1}{y}\right)}} = 2\sqrt{\frac{1}{\frac{1}{2} \cdot \frac{1}{2}}} = 4.$$

$$\text{``="} \Leftrightarrow \sqrt{x} = \sqrt{y} \ \& \ \tfrac{1}{x} + \tfrac{1}{y} = \tfrac{1}{2} \Leftrightarrow x = y \ \& \ \tfrac{1}{x} + \tfrac{1}{y} = \tfrac{1}{2} \Leftrightarrow x = y = 4. \text{ Vậy } \min_{x,y \in \mathbb{R}, \, x,y > 0} A = 4 \Leftrightarrow x = y = 4.$$

Nhận xét 1. "Trong thí dụ trên ta đã vận dụng bất đẳng thức Cauchy–Schwarz theo 2 chiều ngược nhau. Lần thứ nhất ta đã "làm trội" $\sqrt{\frac{1}{x} \cdot \frac{1}{y}}$ bằng cách vận dụng $\sqrt{ab} \leq \frac{a+b}{2}$ để dùng điều kiện tổng $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$, từ đó được $\sqrt{xy} \geq 4$. Lần thứ 2 ta đã "làm giảm" tổng $\sqrt{x} + \sqrt{y}$ bằng cách vận dụng bất đẳng thức Cauchy–Schwarz theo chiều $a + b \geq 2\sqrt{ab}$ để dùng kết quả $\sqrt{xy} \geq 4$. Không phải lúc nào ta cũng có thể dùng trực tiếp bất đẳng thức Cauchy–Schwarz đối với các số trong đề bài." – [Tuy23, p. 24]

Lưu \circ 4. TXD của A chỉ là $D_A := \{(x,y) \in \mathbb{R}^2 | x,y \geq 0\}$, nhưng để điều kiện $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$ có nghĩa thì cần thêm $x \neq 0, y \neq 0$, nên ta cần xét A trên tập $h \neq p$ $D := \{(x,y) \in \mathbb{R}^2 | x,y > 0, \frac{1}{x} + \frac{1}{y} = \frac{1}{2}\} \subset D_A$. Hơn nữa, nếu viết GTNN của biểu thức A = A(x,y) trên tập $D = \{(x,y) \in \mathbb{R}^2 | x > 0, y > 0\}$ 1 cách chính xác về mặt toán học thì nên viết tường minh là $\min_{x,y \in \mathbb{R}, x,y > 0} A(x,y)$ hoặc $\min_{(x,y) \in D} A(x,y)$

Ta có thể mở rộng & tổng quát bài toán trên như sau:

Bài toán 11. Cho $x, y \in \mathbb{R}$, x, y > 0 thỏa mãn điều kiện $\frac{1}{x} + \frac{1}{y} = m > 0$, $m \in \mathbb{R}$ cho trước. Có thể tìm GTNN & GTLN của các biểu thức nào? Liệt kê & chứng minh nhiều nhất có thể.

Bài toán 12. Cho $x, y \in \mathbb{R}$, x, y > 0 thỏa mãn điều kiện $\frac{a}{x} + \frac{b}{y} = m > 0$, $a, b, m \in \mathbb{R}$ cho trước. Có thể tìm GTNN & GTLN của các biểu thức nào? Liệt kê & chứng minh nhiều nhất có thể.

Bài toán 13. Cho $x,y\in\mathbb{R},\ x,y,z>0$ thỏa mãn điều kiện $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=m>0,\ a,b,c,m\in\mathbb{R}$ cho trước. Có thể tìm GTNN & GTLN của các biểu thức nào? Liệt kê & chứng minh nhiều nhất có thể.

Bài toán 14. Cho $n \in \mathbb{N}^*$, $x_i \in \mathbb{R}$, $x_i > 0$, $\forall i = 1, 2, ..., n$, thỏa mãn điều kiện $\sum_{i=1}^n \frac{a_i}{x_i} = m > 0$, $a_i, m \in \mathbb{R}$, $\forall i = 1, 2, ..., n$, cho trước. Có thể tìm GTNN & GTLN của các biểu thức nào? Liệt kê & chứng minh nhiều nhất có thể.

Bài toán 15 ([Tuy23], Ví dụ 10, p. 24). Tìm GTLN & GTNN của biểu thức $A = \sqrt{3x-5} + \sqrt{7-3x}$.

 $Giải. \ \ DKXD: \ \frac{5}{3} \leq x \leq \frac{7}{3}. \ A^2 = 3x - 5 + 7 - 3x + 2\sqrt{3x - 5}\sqrt{7 - 3x} \leq 2 + (3x - 5 + 7 - 3x) = 4 \Rightarrow A \leq 2 \ (A \geq 0 \ \text{vì} \ \sqrt{3x - 5} \geq 0, \\ \sqrt{7 - 3x} \geq 0). \ \ \text{``=''} \Leftrightarrow 3x - 5 = 7 - 3x \Leftrightarrow x = 2. \ \ \text{Mặt khác}, \ A^2 = 2 + 2\sqrt{3x - 5}\sqrt{7 - 3x} \geq 2. \ \ \text{``=''} \Leftrightarrow (3x - 5)(7 - 3x) = 0 \Leftrightarrow x \in \left\{\frac{5}{3}, \frac{7}{3}\right\}. \ \ \ \text{\Box}$

Bài toán 16 (Mở rộng [Tuy23], Ví dụ 10, p. 24). Biện luận theo các tham số $a,b,c,d \in \mathbb{R}$ để tìm GTLN & GTNN của biểu thức $A = \sqrt{ax+b} + \sqrt{cx+d}$.

Bài toán 17 ([Tuy23], Ví dụ 11, p. 25). Tìm GTLN & GTNN của biểu thức $A = \frac{\sqrt{x-9}}{5r}$.

Bài toán 18 ([Tuy23], Ví dụ 12, p. 25). Tìm GTNN của biểu thức $A = \frac{3x^4 + 16}{x^3}$. A có GTLN không?

Bài toán 19 ([Tuy23], Ví dụ 13, p. 26). *Cho* 0 < x < 2, *tìm* GTNN *của biểu thức* $A = \frac{9x}{2-x} + \frac{2}{x}$.

Bài toán 20 ([Tuy23], Ví dụ 14, p. 27). Cho $x,y,z\in\mathbb{R},\ x,y,z>0$ thỏa mãn điều kiện x+y+z=2. Tìm GTNN của biểu thức $A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}$.

Bài toán 21 ([Tuy23], 63., p. 28). Cho $a, x, y \in \mathbb{R}$, a, x, y > 0, x + y = 2a. Tìm GTNN của biểu thức $A = \frac{1}{x} + \frac{1}{y}$.

Bài toán 22 ([Tuy23], 64., p. 28). Tìm GTLN của biểu thức $A = \sqrt{x-5} + \sqrt{23-x}$.

Bài toán 23 ([Tuy23], 65., p. 28). Cho x + y = 15, tìm GTNN, GTLN của biểu thức $A = \sqrt{x - 4} + \sqrt{y - 3}$.

Bài toán 24 ([Tuy23], 66., p. 28). *Tìm* GTNN của biểu thức $A = \frac{2x^2 - 6x + 5}{2x}$ với $x \in \mathbb{R}$, x > 0.

Bài toán 25 ([Tuy23], 67., p. 28). Cho $a, b, x \in \mathbb{R}$, a, b, x > 0. Tim GTNN của biểu thức $A = \frac{(x+a)(x+b)}{x}$.

Bài toán 26 ([Tuy23], 68., p. 28). Cho $x \in \mathbb{R}$, $x \ge 0$, tìm GTNN của biểu thức $A = \frac{x^2 + 2x + 17}{2(x+1)}$.

Bài toán 27 ([Tuy23], 69., p. 28). Tìm GTNN của biểu thức $A = \frac{x + 6\sqrt{x} + 36}{\sqrt{x} + 3}$.

Bài toán 28 ([Tuy23], 70., p. 28). Cho $x \in \mathbb{R}$, x > 0, tìm GTNN của biểu thức $A = \frac{x^3 + 2000}{r}$.

Bài toán 29 ([Tuy23], 71., p. 28). Cho $x, y \in \mathbb{R}$, x, y > 0 & $x + y \ge 6$. Tim GTNN của biểu thức: $A = 5x + 3y + \frac{12}{x} + \frac{16}{y}$.

Bài toán 30 ([Tuy23], 72., p. 29). Cho $x, y \in \mathbb{R}$, x > y & xy = 5, tìm GTNN của biểu thức $A = \frac{x^2 + 1.2xy + y^2}{x - y}$.

Bài toán 31 ([Tuy23], 73., p. 29). Cho $x \in \mathbb{R}$, x > 1, tìm GTLN của biểu thức $A = 4x + \frac{25}{x-1}$

Bài toán 32 ([Tuy23], 74., p. 29). Cho $x \in \mathbb{R}$, 0 < x < 1, tìm GTNN của biểu thức $A = \frac{3}{1-x} + \frac{4}{x}$.

Bài toán 33 ([Tuy23], 75., p. 29). Cho $x,y,z\in\mathbb{R},\ x,y,z\geq0$ thỏa mãn điều kiện x+y+z=a. (a) Tìm GTLN của biểu thức A=xy+yz+zx. (b) Tìm GTNN của biểu thức $B=x^2+y^2+z^2.$

Bài toán 34 ([Tuy23], 76., p. 29). Cho $x,y,z\in\mathbb{R},\ x,y,z>0$ thỏa mãn điều kiện $x+y+z\geq 12$. Tìm GTNN của biểu thức $A=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}$.

Bài toán 35 ([Tuy23], 77., p. 29). Cho $x, y, z \in \mathbb{R}$, x, y, z > 0 thỏa mãn điều kiện x + y + z = a. Tìm GTNN của biểu thức $A = \left(1 + \frac{a}{x}\right)\left(1 + \frac{a}{y}\right)\left(1 + \frac{a}{z}\right)$.

Bài toán 36 ([Tuy23], 78., p. 29). Cho $a,b,c \in \mathbb{R}$, a,b,c > 0 thỏa mãn điều kiện a+b+c=1. Tìm GTNN của biểu thức $A = \frac{(1+a)(1+b)(1+c)}{(1-a)(1-b)(1-c)}$.

Bài toán 37 ([Tuy23], 79., p. 29). Cho $x, y \in \mathbb{R}$ thỏa mãn điều kiện x + y = 1 & x > 0. Tìm GTLN của biểu thức $B = x^2y^3$.

Bài toán 38 ([DCA20], Ví dụ 1.5.1, p. 73, TS PTNK ĐHQG T
p HCM 2006). Cho $x, y \in \mathbb{R}$ thỏa mãn x + y = 2. Chứng minh
 $xy(x^2 + y^2) \le 2$.

1st chứng minh. Sử dụng bất đẳng thức $ab \leq \frac{1}{4}(a+b)^2$ ở (1), có: $xy(x^2+y^2) = \frac{1}{2}(2xy)(x^2+y^2) \leq \frac{1}{8}[2xy+(x^2+y^2)]^2 = \frac{1}{8}(x+y)^4 = 2$. "=" $\Leftrightarrow x+y=2$ & $2xy=x^2+y^2 \Leftrightarrow x+y=2$ & $(x-y)^2=0 \Leftrightarrow x=y=1$.

2nd chứng minh. Sử dụng kỹ thuật đồng bậc, cần chứng minh $8xy(x^2+y^2) \le (x+y)^4$ (cả 2 vế đều là bậc 4). Bất đẳng thức này đúng vì $8xy(x^2+y^2) \le (x+y)^4 \Leftrightarrow 8xy(x^2+y^2) \le x^4+4x^3y+6x^2y^2+4xy^3+y^4 \Leftrightarrow x^4-4x^3y+6x^2y^2-4xy^3+y^4 \ge 0 \Leftrightarrow (x-y)^4 \ge 0$ hiển nhiên đúng $\forall x,y \in \mathbb{R}$. "=" $\Leftrightarrow x=y \ \& \ x+y=2 \Leftrightarrow x=y=1$.

Ta có thể mở rộng bài toán trên như sau:

Bài toán 39. Cho $x, y, m \in \mathbb{R}$ thỏa mãn x + y = m. Biện luận theo tham số m để tìm GTLN & GTNN của: (a) $A = xy(x^2 + y^2)$. (b) $B = xy(x^3 + y^3)$. (c) $B = xy(x^4 + y^4)$. (d*) $x^ay^a(x^b + y^b)$ với $a, b \in \mathbb{Z}$.

4 Uncategorized

Bài toán 40 ([Sơn+21], Bổ đề 1.1, p. 5). Chứng minh: $4ab \le (a+b)^2 \le 2(a^2+b^2)$, hay có thể viết dưới dạng $\frac{a^2+b^2}{2} \ge \left(\frac{a+b}{2}\right)^2$, $ab \le \frac{(a+b)^2}{4}$, $\forall a,b \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Hint.
$$(a+b)^2 - 4ab = (a-b)^2 \ge 0$$
, $2(a^2+b^2) - (a+b)^2 = (a-b)^2 \ge 0$, $\forall a,b \in \mathbb{R}$. "=" $\Leftrightarrow a=b$.

Bài toán 41 ([Sơn+21], Bổ đề 1.2, p. 5). Chứng minh: $3(ab+bc+ca) \le (a+b+c)^2 \le 3(a^2+b^2+c^2)$, hay có thể viết dưới dạng $ab+bc+ca \le \frac{1}{3}(a+b+c)^2$, $\forall a,b,c \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Bài toán 42 ([Sơn+21], Bổ đề 1.3, p. 6). Chứng minh: $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$, hay có thể viết dưới dạng $\frac{1}{a+b} \le \frac{1}{4} \left(\frac{1}{a} + \frac{1}{b} \right)$, $\forall a, b > 0$. Dằng thức xảy ra khi nào?

Hint.
$$\frac{1}{a} + \frac{1}{b} - \frac{4}{a+b} = \frac{(a-b)^2}{ab(a+b)} \ge 0, \forall a, b > 0.$$
 "=" $\Leftrightarrow a = b > 0.$

Bài toán 43 ([Sơn+21], Bổ đề 1.4, p. 6). Chứng minh: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{9}{a+b+c}$, hay có thể viết dưới dạng $\frac{1}{a+b+c} \le \frac{1}{9} \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$, $\forall a, b, c > 0$. Đẳng thức xảy ra khi nào?

Bài toán 44 ([Son+21], Mở rộng Bổ đề 1.3–1.4, p. 6 cho n số). Chứng minh:

$$\frac{1}{a_1} + \ldots + \frac{1}{a_n} \ge \frac{n^2}{a_1 + \cdots + a_n}, i.e., \frac{1}{a_1 + \cdots + a_n} \le \frac{1}{n^2} \left(\frac{1}{a_1} + \cdots + \frac{1}{a_n} \right), \forall a_i > 0, \forall i = 1, \ldots, n,$$

hay có thể được viết gọn lại như sau:

$$\sum_{i=1}^{n} \frac{1}{a_i} \ge \frac{n^2}{\sum_{i=1}^{n} a_i}, i.e., \frac{1}{\sum_{i=1}^{n} a_i} \le \frac{1}{n^2} \sum_{i=1}^{n} \frac{1}{a_i}, \forall a_i > 0, \forall i = 1, \dots, n.$$

Đẳng thức xảy ra khi nào?

Bài toán 45 ([Sơn+21], Bổ đề 1.5, p. 7). Chứng minh: $\sqrt{a+b} \le \sqrt{a} + \sqrt{b} \le \sqrt{2(a+b)}$, $\forall a,b \ge 0$. Đẳng thức xảy ra khi nào?

Bài toán 46 ([Sơn+21], Mở rộng Bổ đề 1.5, p. 7). Chứng minh: $\sqrt{a+b+c} \le \sqrt{a} + \sqrt{b} + \sqrt{c} \le \sqrt{3(a+b+c)}$, $\forall a,b,c \ge 0$. Dằng thức xảy ra khi nào?

Bài toán 47 ([Sơn+21], Mở rộng Bổ đề 1.5, p. 7 cho n số). Chứng minh: $\sqrt{a_1 + \cdots + a_n} \le \sqrt{a_1} + \cdots + \sqrt{a_n} \le \sqrt{n(a_1 + \cdots + a_n)}$, $\forall a_i \ge 0, \ \forall i = 1, \dots, n, \ hay \ có thể được viết gọn lại như sau:$

$$\sqrt{\sum_{i=1}^{n} a_i} \le \sum_{i=1}^{n} \sqrt{a_i} \le \sqrt{n \sum_{i=1}^{n} a_i}, \ \forall a_i \ge 0, \ \forall i = 1, \dots, n.$$

Đẳng thức xảy ra khi nào?

Bài toán 48 ([Sơn+21], Bổ đề 1.6, p. 7). Chứng minh: $a^3 + b^3 \ge ab(a+b)$, $\forall a,b \in \mathbb{R}$, $a+b \ge 0$. Dẳng thức xảy ra khi nào? Hint. $a^3 + b^3 - ab(a+b) = (a+b)(a-b)^2 \ge 0$, $\forall a,b \in \mathbb{R}$, $a+b \ge 0$. "=" $\Leftrightarrow a = \pm b$.

Bài toán 49 ([Sơn+21], Mở rộng Bổ đề 1.6, p. 7). Chứng minh: $a^4 + b^4 \ge ab(a^2 + b^2)$, $\forall a, b \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

5 Miscellaneous

Tài liệu

- [DCA20] Nguyễn Văn Dũng, Võ Quốc Bá Cẩn, and Trần Quốc Anh. Phương Pháp Giải Toán Bất Đẳng Thức & Cực Trị Dành Cho Học Sinh Lớp 8, 9. Tái bản lần thứ 4. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2020, p. 280.
- [Sơn+21] Nguyễn Ngọc Sơn, Chu Đình Nghiệp, Lê Hải Trung, and Võ Quốc Bá Cẩn. *Các Chủ Đề Bất Đẳng Thức Ôn Thi Vào Lớp 10*. Tái bản lần thứ 3. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2021, p. 143.
- [Tuy23] Bùi Văn Tuyên. *Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 9*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 340.