# CS601: Software Development for Scientific Computing

Autumn 2023

Week2: Real Numbers, Programming Environment, ..

### Recap: Toward Scientific Software



### Real Numbers R

- Most <u>scientific software</u> deal with Real numbers.
   Our toy code dealt with Reals
  - Numerical software is scientific software dealing with Real numbers
- Real numbers include rational numbers (integers and fractions), irrational numbers (pi etc.)
- Used to represent values of <u>continuous quantity</u> such as time, mass, velocity, height, density etc.
  - Infinitely many values possible
  - But computers have limited memory. So, have to use approximations.

### Representing Real Numbers

- Real numbers are stored as floating point numbers
   (floating point system is a scheme to represent real numbers)
- E.g. floating point numbers:
  - $-\pi = 3.14159$ ,
  - $-6.03*10^{23}$
  - $-1.60217733*10^{-19}$



# 3-digit Calculator

Suppose base, b=10 and

• 
$$x = \pm d_0 \cdot d_1 d_2 \times 10^e$$
 where 
$$\begin{cases} 1 \le d_0 \le 9, \\ 0 \le d_1 \le 9, \\ 0 \le d_2 \le 9, \\ -9 \le e \le 9 \end{cases}$$

- precision = length of mantissa
  - What is the precision here?
- Exercise: What is the smallest positive number?
- Exercise: What is the largest positive number?
- Exercise: How many numbers can be represented in this format?
- Exercise: When is this representation not enough?

- Precision (p) Length of mantissa
  - E.g. p=3 in 1.00 x 10<sup>-1</sup>
- Unit roundoff (u) smallest positive number where the computed value of 1+u is different from 1
  - E.g. suppose p=4 and we wish to compute 1.0000+ 0.0001=1.0001
  - But we can't store the exact result (since p=4). We end up storing 1.000.
  - So, computed result of 1+u is same as 1
  - Suppose we tried adding 0.0005 instead. 1.0000+0.0005=1.0005
     Now, round this: 1.001
  - ⇒ u =0.0005
- Machine epsilon ( $\epsilon_{mach}$ ) smallest a-1, where a is the smallest representable number greater than 1
  - E.g. consider 1.001 1.000 = 0.001.
  - $\Rightarrow$  usually  $\epsilon_{mach} = 2 * u$

#### Forward error and backward error

Comp(f(x)) = 
$$(1+\epsilon_1)$$
f( $(1+\epsilon_2)$ x),  
where  $\epsilon_i \le u$  (u is unit roundoff)

Comp(f(x)) is the computed value i.e. machine representable value of f(x).

Suppose 
$$\epsilon_2$$
 is zero. Then  $\frac{\text{Comp}(f(x)) - f(x)}{f(x)} = \epsilon_1$ 

### Forward error example

Let 
$$y=\sqrt{2}$$
,  $z=y^2$  and  $y=\sqrt{2}$  implemented as:  $y=\operatorname{sqrt}(2)$ ;  $z=y^2$  implemented as:  $z=y*y$ ; with double precision floating point system

```
Then \frac{\{Comp(f(x))-f(x)\}}{f(x)}, can be calculated (note: f(x) = z =
```

2, and Comp $(f(x)) = y^*y$ 

```
y:1.41421356237
z:2
res1=z-2:4.4408920985e-16
res2=res1/z:2.22044604925e-16
```

Absolute error / relative error

Forward error
(also happens to be u
for double)

### Backward error example

Let  $z = \sin(2\pi)$ . Then forward error is infinity!

Subtract x with a multiple of  $2\pi$  to make  $0 \le x < 2\pi$ And then compute  $\sin(x)$  to get the absolute error for  $x \ge 2\pi$  at most u|x| (u is unit roundoff)

This is perturbing the argument x (argument reduction). Instead of computing sin(x) we are computing  $sin(1+\epsilon_2)x$ ). This is example of backward error.

# IEEE 754 Floating Point System

Prescribes single, double, and extended precision formats

| Precision | u                   | Total bits used (sign, exponent, mantissa) |
|-----------|---------------------|--------------------------------------------|
| Single    | 6x10 <sup>-8</sup>  | 32 (1, 8, 23)                              |
| Double    | 2x10 <sup>-16</sup> | 64 (1, 11, 52)                             |
| Extended  | 5x10 <sup>-20</sup> | 80 (1, 15, 64)                             |

# IEEE 754 Floating Point Arithmetic



 if exponent bits e<sub>1</sub>-e<sub>11</sub> are not all 1s or 0s, then the normalized number

$$n = \pm (1.m_1 m_2..m_{52})_2 \times 2^{(e_1 e_2..e_{11})_2 - 1023}$$

11

- Machine epsilon is the gap between 1 and the next largest floating point number.  $2^{-52} \approx 10^{-16}$  for double.
- Exercise: What is minimum positive normalized double number?
- Exercise: What is maximum positive normalized double number?