מבוא לקריפטולוגיה - דף תרגילים מספר 2

הנושא: צופני זרם

- Blum לפי שיטת PRG שהוצפן באמצעות ciphertext 1. (20%) כיתבו תוכנית לפיענוח הקבצים שהוצפן באמצעות Blum Shub. השתמשו בה לפענוח הקבצים הנתונים. בכל הקבצים המוצפנים הסיסמה היא שם הקובץ (ללא הסיומת bbs.).
- בטוח. לכל אחד מהבאים יש לקבוע האם PRG הוא האם פוח. לכל האח מהבאים יש לקבוע האם .2 (30%) מניח שיו לנמק (אם אין תשובה אין תשובה אין תשובה פוח ולנמק (אם אין תשובה אין תשובה חד משמעית. הסבירו למה אין ראם אין תשובה חד משמעית.
 - $G': \{0,1\}^s \to \{0,1\}^n, \quad G'(k) = G(k \oplus 1^s)$.
 - $G': \{0,1\}^s \to \{0,1\}^n, \quad G'(k) = G(k) \oplus 1^n \quad .$
 - $G': \{0,1\}^s \to \{0,1\}^{n-1}, \quad G'(k) = G(k)[0,...,n-2]$
 - ר. $G': \{0,1\}^s \to \{0,1\}^{2n}, \quad G'(k) = G(k) \parallel G(k)$ ד.
 - מתקבל מהיפוך G(k)') $G':\{0,1\}^s \to \{0,1\}^{2n}, \quad G'(k) = G(k) \parallel G(k)'$. ה. הביטים ב
- הביטים מתקבל מהיפוך מתקבל (0,1) $G':\{0,1\}^s \to \{0,1\}^{2n}, \quad G'(k) = G(k) \parallel G(k')$.
 - אסמן , $G'\colon\{0,1\}^{2s}\to\{0,1\}^n$, $G'(k_1\parallel k_2)=G(k_1)\wedge G(k_2)$. bitwise and
- , $G:\{0,1\}^4 \to \{0,1\}^{16}:$ באופן הבא PRG באופן הבא (20%) .3 PRG באופן הבא הבא $G(k)=k \parallel ls(k) \parallel ls(k)^{(2)} \parallel ls(k)^{(3)}$ בק ש $G(k)=k \parallel ls(k) \parallel ls(k)^{(2)} \parallel ls(k)^{(3)}$ בק אם ורק אם A(k)=1 אם ורק אם A(k)=1 היא המחרוזת המורכבת מ 3 הביטים הגבוהים ביותר ב- A(k)=1 . Adv PRG A(k)=1 .
- .4 (C- ו M אין צורך לדעת מיהם (30%). 4 (E,D) אופן על (30%) אופן על (E,D) ויהי (30%) אופן על (M,C,K), כך ש $k\in K$ ווברים יחד ניתן נניח שרוצים לחלק מפתח $k\in K$ בין שני אנשים, כך שרק אם שניהם חוברים יחד ניתן לדעת את המפתח k ניתן לעשות זאת באופן הבא בוחרים באופן אקראי מחרוזת $k_1=\{0,1\}^\ell$ ומחשבים את $k_2=k_1\oplus k$ נותנים לאחד האנשים את $k_1\in\{0,1\}^\ell$
 - א) הראו שאם שני האנשים חוברים יחד, אז הם יודעים את המפתח א, אבל כל אחד (ג. הראו איז כלום אודות המפתח לא יודע כלום אודות המפתח .k
- ב) עכשיו רוצים לחלק את המפתח k בין שלושה אנשים p_1,p_2,p_3 כך שכל שניים מהם יוכלו לדעת את k, אבל לאף אחד מהם לבד אין שום מידע על המפתח. לשם כך ווכלו לדעת את $k_1 = k_1 \oplus k$ ומחשבים את $k_1 = k_1 \oplus k$ מייצרים שתי מחרוזות בינאריות $k_1, k_2 \in \{0,1\}^\ell$ מחרוזות הנייל בין $k_2 = k_2 \oplus k$ בדי לחלק את המחרוזות המייל בין p_1,p_2,p_3 כדי להשיג את המטרה: (רמז: ניתן לתת לאדם יותר ממחרוזת אחת)

יש להגיש שני קבצים במוודל:

- 1) קובץ py ובו פתרון שאלה 1.
- 2,3,4 ובו פתרון שאלות pdf (2