State Estimation

EE468/CE468: Mobile Robotics

Dr. Basit Memon

Electrical and Computer Engineering Habib University

October 4, 9, 11, 2023

Table of Contents

- 1 Overview of State Estimation
- 2 Pose Estimation using odometry
- 3 Characterizing uncertainty [1, 5.1]
- 4 Propagation of Uncertainty
- Estimation
- References

Table of Contents

- 1 Overview of State Estimation
- 2 Pose Estimation using odometry
- 3 Characterizing uncertainty [1, 5.1]
- 4 Propagation of Uncertaint
- 5 Estimation
- 6 References

Navigation problem for mobile robots

4/47 Basit Memon

Four fundamental blocks in navigation are:

Remember the pose for a planar robot is $\begin{bmatrix} x \\ y \end{bmatrix}$ with respect to a global or inertial frame.

- Perception: Extract meaningful information from sensors
- **Localization:** Where am I? A robot must determine its pose in its environment.
- **Cognition:** Decide a plan for achieving its goals.
- **Motion Control:** Modulate motor outputs to achieve desired trajectory.

Example 1: Self-driving car

Figure: Source: https://blog.google/alphabet/the-latest-chapter-for-self-driving-car/

Sensors: GPS, LiDAR, Camera, IMU

World Model: Location, People, Cars, Signs

Example 2: GPS-denied forest harvesting

Figure: Source: https://youtu.be/1FLD0djPFgU

Sensors: LiDAR, IMU

World Model: Location, Trees

7/47 Basit Memon State Estimation ECE468

State Estimation is generalization of Localization.

■ We may want to estimate more to add to the world model, e.g. velocities, location of other objects, etc.

Given data of measurements and actions \longrightarrow Estimate \longrightarrow State of the system

What is state of system?

- State of system, (x(t)), is set of variables sufficient to predict the future of the system (at least predict what we care about).
- Examples:
 - Pose of robot;
 - Configuration of manipulator;
 - Location of cars, people, position of car on the road;

What is measurement?

- Measurements of system, (z(t)), are sensor readings that provide information about the state at current time.
- It is seldom possible for state to be directly measurable.
- Examples:
 - Wheel encoder data;
 - Laser scan relative positions of objects in environment;
 - Camera image information about color, texture, relative positions.

What are actions?

- Actions on system, (u(t)), are the influence under which the state of the system evolves.
- Examples:
 - Actions taken by the robot change velocity of wheels;
 - Disturbances effects of weather and other agents;
 - Doing nothing

State estimation solves ...

- Fundamental problem: State is unknown, but all decision making depends on it.
- Robot can only see measurements and actions!
- Can you always estimate state?
- No! Observability of a system tells us whether the state can be determined or not.

Table of Contents

- 1 Overview of State Estimation
- 2 Pose Estimation using odometry
- 3 Characterizing uncertainty [1, 5.1]
- 4 Propagation of Uncertainty
- 5 Estimation
- 6 References

Our robot has wheel encoders. [2, 5.2.4]

Figure: Quadrature Encoder Disk

- Assume that initial pose of the robot is known.
- Wheel encoders provide information about incremental wheel motion, i.e. Δs_r and Δs_l .
- If r is radius of wheel, n_0 is number of ticks of encoder per revolution, then

$$\Delta s_l = n_l \frac{2\pi r}{n_0}$$
.

Use kinematic model to find change in pose. [2, 5.2.4]

 $\Delta x = \Delta s \cos \left(\phi + \frac{\Delta \phi}{2} \right)$

$$\Delta y = \Delta s \sin \left(\phi + \frac{\Delta \phi}{2} \right),$$

where

$$\Delta \phi = \frac{\Delta s_r - \Delta s_l}{L}$$
$$\Delta s = \frac{\Delta s_r + \Delta s_l}{2}$$

Kinematics find pose change (Slides: Kinematics - Geometric appro

Let
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ \phi \end{bmatrix}$$
. Then,

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \begin{bmatrix} \Delta s \cos\left(\phi + \frac{\Delta \phi}{2}\right) \\ \Delta s \sin\left(\phi + \frac{\Delta \phi}{2}\right) \\ \Delta \phi \end{bmatrix}$$

$$= \mathbf{x}_k + \begin{bmatrix} \frac{\Delta s_r + \Delta s_l}{2} \cos\left(\phi + \frac{\Delta s_r - \Delta s_l}{2L}\right) \\ \frac{\Delta s_r + \Delta s_l}{2} \sin\left(\phi + \frac{\Delta s_r - \Delta s_l}{2L}\right) \\ \frac{\Delta s_r - \Delta s_l}{L} \end{bmatrix}$$

$$= f(\mathbf{x}_k, \Delta s_l, \Delta s_r).$$

Is our pose estimate accurate? [2, 5.2]

- No! There are many sources of error.
- Error in our knowledge of initial state
- Sensor Errors (Resolution, Noise)
- Limited resolution during integration (time increments)
- Control signal errors (voltage discretization, communication lag)
- Unknown parameters (Inaccurate wheel radii, friction of carpet,
)
- Incorrect physics (Misalignment of wheels, ignoring tire deformation, ignoring slippage, nonplanar surface)

What to do?

- - True value of any error is unknown.
 - By understanding different types of error, we can be better
 equipped to tolerate them.

Table of Contents

- 1 Overview of State Estimation
- 2 Pose Estimation using odometry
- 3 Characterizing uncertainty [1, 5.1]
- 4 Propagation of Uncertainty
- 5 Estimation
- 6 References

Uncertainty is modeled by adding an unknown ϵ .

Measurements are generally modeled with an additive error model:

$$x_{meas} = x_{true} + \epsilon$$
.

- ullet ϵ could be deterministic or stochastic or combination of both.
- Types of error:
 - Outliers: Error is very far off from true value occasionally.
 - **Systematic Error:** Error follows a deterministic relationship.
 - **Random:** Error possesses a random distribution.

Removing Uncertainty

■ Error in figure can be modeled as:

$$\epsilon = a + b\theta + N(\mu, \sigma).$$

(a, b) are parameters of systematic error and $N(\mu, \sigma)$ represents a random Gaussian variable.

- Random error is unbiased (mean is zero), if systematic error is removed.
- Systematic error can be removed through calibration.
- Some random errors and outliers are removed by filtering. Otherwise, they are tolerated.

PDF, PMF, Mean, and Variance [1, 5.1]

22/47 Basit Memon State Estimation ECE468

Samples Representation of a 2D PDF

Probability Digression

Covariance [1, 5.1]

Let x be a vector of random variables and $\mu = E[x]$. Then, covariance is a matrix defined as:

$$\Sigma_{xx} = E\left[(x-\mu)(x-\mu)^T\right].$$

- Note that diagonal entries are the variances of different components of vector *x*.
- Covariance matrix provides information about spread of data or how uncertain are we about each component of the vector *x*.

Why use Gaussian to model random errors?

Probability Digression

- The sum of a number of independent variables has a Gaussian distribution, regardless of their individual distributions, by Central Limit Theorem.
- A Gaussian pdf is completely characterized by its expectation and variance. Higher moments are all zero.

Figure: Contours of Constant Probability

Table of Contents

- 1 Overview of State Estimation
- 2 Pose Estimation using odometry
- 3 Characterizing uncertainty [1, 5.1]
- 4 Propagation of Uncertainty
- 5 Estimation
- 6 References

Model the error in encoder measurements as random.

■ Let's model Δs_l and Δs_r , as random variables whose mean is the true value and they have finite variance.

$$\Delta s_I = \Delta s_I^{true} + \epsilon_I,$$
 where $\epsilon_I \sim \mathcal{D}(0,\sigma^2).$

■
$$E[\Delta s_l] = ?$$
 and $Var[\Delta s_l] = ?$

$$E[\Delta s_l] = \Delta s_l^{true}$$

$$Var[\Delta s_l] = Var[\epsilon_l]$$

We usually know statistics about the errors.

- Assumed that two errors are independent of each other.
- Variance of error is proportional to absolute traveled distance. Let $u = (\Delta s_l, \Delta s_r)$. Then,

$$\Sigma_{uu} = \begin{bmatrix} k_l | \Delta s_l | & 0 \\ 0 & k_r | \Delta s_r | \end{bmatrix}.$$

■ How does the uncertainty in Δs_l and Δs_r affect the pose x_k ?

Underlying PDF for pose estimation is: $p(x_k|x_{k-1}, u_k)$

If
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ \phi \end{bmatrix}$$
. Then,

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \begin{bmatrix} \frac{\Delta s_r + \Delta s_l}{2} & \cos\left(\phi + \frac{\Delta s_r - \Delta s_l}{2L}\right) \\ \frac{\Delta s_r + \Delta s_l}{2} & \sin\left(\phi + \frac{\Delta s_r - \Delta s_l}{2L}\right) \end{bmatrix} \\ = f(\mathbf{x}_k, \Delta s_l, \Delta s_r).$$

■ We know uncertainty in $(\Delta s_l, \Delta s_r)$, can we find uncertainty in x, $\Sigma_{xx} = ?$

Transformation of uncertainty [1, 5.1.3]

- Let x and y be vectors of random variables, such that y = Fx and F is independent of x.
- The mean of y is:

$$E[y] = \mu_y = E[Fx] = F E[x].$$

 \blacksquare Covariance of y is:

$$\Sigma_{yy} = E \left[(y - \mu_y)(y - \mu_y)^T \right]$$

$$= E[yy^T] - E[y]\mu_y^T - \mu_y E[y^T] + \mu_y \mu_y^T$$

$$= E[Fxx^T F^T] - F\mu_x \mu_x^T F^T$$

$$= F \left(E[xx^T] - E[x]E[x^T] \right) F^T = F\Sigma_{xx} F^T$$

Probability Digression

Transformation of uncertainty [1, 5.1.3]

Probability Digression

- What if y = f(x)?
- Linearly approximate y with first term of Taylor series about some reference value x', i.e.

$$y = f(x' + \epsilon) \approx f(x') + J\epsilon$$
,

where
$$J = \frac{\partial f}{\partial x}|_{x'}$$
 is Jacobian.

■ Mean of y is:

$$\mu_{V} = E[f(x')] + JE[\epsilon]$$

Transformation of uncertainty [1, 5.1.3]

- If $x' = \mu_x$ and ϵ is unbiased, i.e. $E[\epsilon] = 0$ then $\mu_y = f(\mu_x)$.
- You can show that

$$\Sigma_{yy} \approx J \Sigma_{xx} J^T$$
.

■ If $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is a partition of x, and x_1 and x_2 are uncorrelated, then

$$\Sigma_{yy} = \textit{J}_{1} \; \Sigma_{x_{1}x_{1}} \; \textit{J}_{1}^{T} + \textit{J}_{2} \; \Sigma_{x_{2}x_{2}} \; \textit{J}_{2}^{T} \text{,}$$

where $J_1 = \nabla_{x_1} f$ and $J_2 = \nabla_{x_2} f$.

How does uncertainty in $(\Delta s_l, \Delta s_r)$ impacts (x, y, ϕ) ?

- $\blacksquare \text{ Recall } \mathbf{x}_{k+1} = f(\mathbf{x}_k, u).$
- Assume that covariance of \mathbf{x}_k is known, say P_k .
- Reasonable to assume that \mathbf{x}_k and measurement errors in Δs_l , Δs_r are uncorrelated.
- Then,

$$P_{k+1} = J_1 \, P_k \, J_1^T + J_2 \, \Sigma_{uu} \, J_2^T$$

What are the Jacobians?

$$\begin{split} J_1 &= \nabla_{\mathbf{x}_k} f = \left[\frac{\partial f}{\partial \mathbf{x}} \quad \frac{\partial f}{\partial \mathbf{y}} \quad \frac{\partial f}{\partial \phi} \right] \\ &= \begin{bmatrix} 1 & 0 & -\Delta s \sin \left(\phi + \frac{\Delta \phi}{2} \right) \\ 0 & 1 & \Delta s \cos \left(\phi + \frac{\Delta \phi}{2} \right) \\ 0 & 0 & 1 \end{bmatrix} \\ J_2 &= \nabla_u f \\ &= \begin{bmatrix} \frac{\Delta s}{2L} \sin \left(\phi + \frac{\Delta \phi}{2} \right) + \frac{1}{2} \cos \left(\phi + \frac{\Delta \phi}{2} \right) & -\frac{\Delta s}{2L} \sin \left(\phi + \frac{\Delta \phi}{2} \right) + \frac{1}{2} \cos \left(\phi + \frac{\Delta \phi}{2} \right) \\ -\frac{\Delta s}{2L} \cos \left(\phi + \frac{\Delta \phi}{2} \right) + \frac{1}{2} \sin \left(\phi + \frac{\Delta \phi}{2} \right) & \frac{\Delta s}{2L} \cos \left(\phi + \frac{\Delta \phi}{2} \right) + \frac{1}{2} \sin \left(\phi + \frac{\Delta \phi}{2} \right) \\ & -\frac{1}{L} \end{bmatrix} \end{split}$$

ECE468

Uncertainty in our pose estimate grows unbounded.

Center indicates the ideal path and ellipses contain samples from distribution. Small errors in orientation have a larger cumulative effect on position than longitudinal errors.

Evolution of state of robot system

Figure: Relationship between state, action, measurements [3]

Table of Contents

- 1 Overview of State Estimation
- 2 Pose Estimation using odometry
- 3 Characterizing uncertainty [1, 5.1]
- 4 Propagation of Uncertainty
- 5 Estimation
- 6 References

Obtain the best estimate of a variable.

- A robot is measuring temperature of the ocean with two sensors.
- Both sensors take a reading at the same time.
- Two readings, x_1 and x_2 , are noisy and $x_1 \neq x_2$.
- What is the best estimate of the true value of temperature, which is not changing?

What do we know?

■ Suppose noise model for both sensors is known:

$$x_1 = x + \epsilon_1$$
$$x_2 = x + \epsilon_2$$

where $\epsilon_i \sim \mathcal{D}(0, \sigma_i^2)$.

■ Reasonable to assume that two errors are independent.

Idea: Take average of the two measurements.

- See MATLAB live script *averaging*.
- Is average the optimal estimate? What do we mean by optimal?
 - Estimate can also be viewed as a random variable
 - We want the mean of estimate distribution to be equal to true value of unknown. Unbiased estimator.
 - We want the variance to be small or the expected value of square of the error.

Idea: Take weighted average of the two measurements.

■ Take a weighted average. Linear Estimator

$$\hat{x} = a_1 x_1 + a_2 x_2$$

- Idea: Choose weights that reduces the variance. Best Linear Unbiased Estimator
- Unbiased, i.e. $E[x \hat{x}] = 0$

$$\Rightarrow x - a_1 x - a_2 x = 0$$

$$\Rightarrow a_1 + a_2 = 1$$

What is the expectation of the error between estimate and true val

$$E\left[(x-\hat{x})^{2}\right] = ?$$

$$= E[x^{2} - 2x\hat{x} + \hat{x}^{2}]$$

$$= x^{2} - 2(a_{1} + a_{2})x^{2} + a_{1}^{2}E[x_{1}^{2}] + a_{2}^{2}E[x_{2}^{2}] + 2a_{1}a_{2}E[x_{1}x_{2}]$$

$$= -x^{2} + a_{1}^{2}(Var[x_{1}] + x^{2}) + a_{2}^{2}(Var[x_{2}] + x^{2})$$

$$+ 2a_{1}a_{2}E[x_{1}]E[x_{2}]$$

$$= a_{1}^{2}Var[x_{1}] + a_{2}^{2}Var[x_{2}] - x^{2} + (a_{1} + a_{2})^{2}x^{2}$$

$$= a_{1}^{2}Var[x_{1}] + a_{2}^{2}Var[x_{2}]$$
as x_{1} and x_{2} are independent.

 $= (1-a)^2 \sigma_1^2 + a^2 \sigma_2^2$

Choose a that minimizes the mean square error.

$$C = E\left[(x - \hat{x})^2 \right] = (1 - a)^2 \sigma_1^2 + a^2 \sigma_2^2$$
$$\frac{\partial C}{\partial a} = -2(1 - a)\sigma_1^2 + 2a\sigma_2^2 = 0$$
$$\Rightarrow a = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$$

Consequently,

$$\hat{x} = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} x_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} x_2$$

Error variance can be computed as:

$$E\left[(x - \hat{x})^2\right] = (1 - a)^2 \,\sigma_1^2 + a^2 \,\sigma_2^2$$

$$= \frac{\sigma_2^4}{(\sigma_1^2 + \sigma_2^2)^2} \sigma_1^2 + \frac{\sigma_1^4}{(\sigma_1^2 + \sigma_2^2)^2} \sigma_2^2$$

$$= \frac{\sigma_1^2 \,\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

This can also be written as:

$$E\left[(x-\hat{x})^2\right] = \sigma_1^2 - \frac{\sigma_1^4}{\sigma_1^2 + \sigma_2^2}$$

- x_1 and x_2 are noisy versions of x with variances σ_1^2 and σ_2^2 respectively.
- The best linear estimate $(\hat{x} = a_1x_1 + a_2x_2)$ is:

$$\hat{\mathbf{x}} = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} \, \mathbf{x}_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \, \mathbf{x}_2$$

Best is defined as \hat{x} such that $E[\hat{x}] = E[x]$ and $E[(x - \hat{x})^2]$ is minimized.

Table of Contents

- 1 Overview of State Estimatio
- 2 Pose Estimation using odometry
- 3 Characterizing uncertainty [1, 5.1]
- 4 Propagation of Uncertainty
- 5 Estimation
- 6 References

- [1] Alonzo Kelly.

 Mobile robotics: mathematics, models, and methods.

 Cambridge University Press, 2013.
- [2] Roland Siegwart, Illah R Nourbakhsh, and Davide Scaramuzza. Autonomous mobile robots, volume 15.

 MIT press, 2011.
- [3] Sebastian Thrun, Wolfram Burgard, and Dieter Fox.

 Probabilistic robotics.

 2006.