Welcome from the Department of Mathematics at the University of Southern Mississippi

RBF Hermite Interpolation

Thir Dangal

The University of Southern Mississippi

THE UNIVERSITY OF SOUTHERN MISSISSIPPI.

November 6, 2014

Outline

- ▶ RBF Interpolation
- ► RBF Hermite Interpolation
- ► Comparison of results
- ► Conclusion

Surface Reconstruction Scheme

Assume that $f(\mathbf{x}) \approx s(\mathbf{x})$

Data set $\left\{\mathbf{x}_i\right\}_1^N$ of pairwise distinct centres with the imposed

conditions $f(\mathbf{x}_i) = s(\mathbf{x}_i), \quad 1 \le i \le N.$

The linear system $s(\mathbf{x}_i) = \sum_{j=1}^{N} a_j \varphi(||\mathbf{x}_i - \mathbf{x}_j||), \quad 1 \le i \le N,$

is well-posed if the interpolation matrix is non-singular

$$A_{\varphi} = \left[\left. \varphi \left\| \mathbf{x}_i - \mathbf{x}_j \, \right\| \right. \right]_{1 \leq i,j \leq N}$$

$$s(x_i) = \sum_{j=1}^{5} a_j \varphi(\|\mathbf{x}_i - \mathbf{x}_j\|), \quad 1 \le i \le 5,$$

$$\begin{bmatrix} \varphi_{11} & \varphi_{12} & \varphi_{13} & \varphi_{14} & \varphi_{15} \\ \varphi_{21} & \varphi_{22} & \varphi_{23} & \varphi_{24} & \varphi_{25} \\ \varphi_{31} & \varphi_{32} & \varphi_{33} & \varphi_{34} & \varphi_{35} \\ \varphi_{41} & \varphi_{42} & \varphi_{43} & \varphi_{44} & \varphi_{45} \\ \varphi_{51} & \varphi_{52} & \varphi_{53} & \varphi_{54} & \varphi_{55} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ f(x_4) \\ f(x_5) \end{bmatrix}$$

Interpolation Matrix

Note:
$$\varphi_{ij} = \varphi(\|\mathbf{x}_i - \mathbf{x}_j\|)$$

- ► This scheme use the data and the derivative informations of the data.
- ▶ Let us consider the data $(x_i, \lambda_i f)$, i = 1, 2, ...N, $x_i \in \mathbb{R}^s$.
- ▶ Here, λ_i are the continuous linear functionals and f is some data function.

- ► This scheme use the data and the derivative informations of the data.
- ▶ Let us consider the data $(x_i, \lambda_i f)$, i = 1, 2, ...N, $x_i \in \mathbb{R}^s$.
- ▶ Here, λ_i are the continuous linear functionals and f is some data function.

- ► This scheme use the data and the derivative informations of the data.
- ▶ Let us consider the data $(x_i, \lambda_i f)$, i = 1, 2, ...N, $x_i \in \mathbb{R}^s$.
- ► Here, λ_i are the continuous linear functionals and f is some data function.

► The generalized Hermite interpolant is of the form

$$P_{f}(x) = \sum_{i=1}^{N} c_{j} \lambda_{j}^{\xi} \phi(\|x - \xi\|), \ x \in \mathbb{R}^{s}.$$
 (1)

► The interpolant must satisfy the following relation:

$$\lambda_i P_f = \lambda_i f$$
, $i = 1, 2, ...N$.

► The generalized Hermite interpolant is of the form

$$P_f(x) = \sum_{i=1}^{N} c_i \lambda_i^{\xi} \phi(\|x - \xi\|), \ x \in \mathbb{R}^s.$$
 (1)

► The interpolant must satisfy the following relation:

$$\lambda_i P_f = \lambda_i f, \quad i = 1, 2, ... N. \tag{2}$$

► The linear system

$$Ac = f_{\lambda} \tag{3}$$

has to be solved to get c.

▶ The entries of the interpolation matrix has the form :

$$A_{ij} = \lambda_i \lambda_i^{\xi} \phi, \ i, j = 1, 2, ...N$$

► The linear system

$$Ac = f_{\lambda} \tag{3}$$

has to be solved to get c.

► The entries of the interpolation matrix has the form :

$$A_{ij} = \lambda_i \lambda_j^{\xi} \phi, \ i, j = 1, 2, ...N.$$
 (4)

▶ The vector f_{λ} is of the form:

$$f_{\lambda} = [\lambda_1 f, ..., \lambda_N f]^T \tag{5}$$

► The value of c obtained from equation (3) is then put to equation (1) to get the approximate surface.

▶ The vector f_{λ} is of the form:

$$f_{\lambda} = [\lambda_1 f, ..., \lambda_N f]^T \tag{5}$$

► The value of c obtained from equation (3) is then put to equation (1) to get the approximate surface.

$$RMSE = \sqrt{\frac{1}{n_t} \sum_{i=1}^{n_t} (\hat{u}_i - u_i)^2},$$
 (6)

where n_t is the number of test points in the domain and \hat{u}_j and u_j are the approximate and exact solution of the partial differential equation at the j^{th} computational point respectively.

$$RMSE = \sqrt{\frac{1}{n_t} \sum_{i=1}^{n_t} (\hat{u}_i - u_j)^2},$$
 (6)

where n_t is the number of test points in the domain and \hat{u}_j and u_j are the approximate and exact solution of the partial differential equation at the j^{th} computational point respectively.

► For the regular domain, we chose the uniform 1089 points on a unit square.

► For the regular domain, we chose the uniform 1089 points on a unit square.

