Mobile Application Security

Promises and Pitfalls in the New Computing Model

Alex Stamos
Partner

Agenda

- Mobile Computing Today
- Security Challenges
- Supporting Security
- Mobile Web Security
- Actions

Mobile Computing Today

Trends

Attack Surfaces

Mobile Phone Sales Per Year

Major Smartphone Platforms

- Symbian
- Windows Mobile
- iPhone
- RIM (Blackberry)
- Android
- Palm Pre?

Trend Catalysts

- Sexier Devices
- Younger Generation
- F500 Acceptance
- Multi-Environment Phones

- Unlimited Data Plans
- Provider App Stores

Security Challenges

Defining Security

Challenges

Defining the Customer

What is Security?

- Not the PC or Server Model
 - Single User
 - High-Value Information
 - Low-Value Applications
- Availability and Power
- Local Attacker Resistance

The Airline Pocket

- Physical Security Just Doesn't Exist
- Phones will Be Lost
- Need Ways of Protecting Data
 - Local encryption
 - Cloud storage

Hardware Limitations

Limited Bandwidth

Power

CPU

Technology Will Solve These

Screen Size

Poor Keyboards

C)sOz*ao1pdn

Regulations

User Identification

- Real Time
- Must be Available Immediately
- One Handed Interface
- More Prompts than PC

"Ownership"

- OS Vendor
- Carrier

- User
- Application Developer

All "Own" the Phone and Have Differing Objectives

Distribution Challenges

- Indirect Customer Relationship
- Patching Difficulties
 - Carriers are anti-patch
- Long Update Lag
- Multiple Hardware Platforms

Unsafe Languages

- Windows Mobile (C/C++)
 - .Net Mobile Framework (safe)
 - /GS, SafeCRT
- iPhone (Objective-C)
 - Has C Constructs
 - NX Stack/Heap
- Symbian (Symbian C++)
 - C++ with more Complex Memory Management

Desktop Heritage

PARTNERS

Vulnerability Count by Platform

Growing Security Activity

- Targeted by Security Community
- CanSecWest
- Asian & European Research
- Commercial Spy Products

Supporting Security

Security Goals
Shift in Computing Models
Platform Comparison

Security Goals

- Users can Safely Run Applications
- OS Protected from Applications
 - A.K.A. Steal Carrier Revenue
- Per-Application Private Data
- Contain Vulnerabilities

Two Models

Old Way

- Windows Mobile
- All or Nothing
- Signatures Defines Permission Level
- No or Limited File Permission Systems
- No "users"
 - Good, because it doesn't make sense

Pros/Cons

Pros

- Easy to Understand
- Easy to Test

Cons

- No Exploit Containment
- User can't Make Granular Choices

Windows Mobile

Blackberry

- J2ME Based
 - MIDP 2.0 with modifications
 - Class based security
- No Raw Device Access
- Web Services and Web Based Models

Security Opportunities

- More Granular Permissions
- Sandboxed Applications
- Reduced Attack Surface
- Give Users Control of Data

iPhone

iPhone

- One Distribution Method
- Strict AppStore Policy
- Non-Technological Policy Enforcement

Application Store is a Security Barrier

Android & Symbian

Benefits

- Extensible to Custom Data Types
- Users Have Control
- Same-Developer Sandbox
 - An Office Suite is Possible
 - Attack Surface Increased

Challenges

Android Market

- Self-Signed Certificates
- Community Reputation
- No Unsigned Code Allowed

Application Store is a Minor Security Barrier

Technical Comparison

Feature	Blackberry	WinMo 6.x	iPhone 2.2.1	Android
Enterprise Mail and Calendar				
Remote Wipe				
Side-Load Applications				
Application Sandbox				
User permission UI				
App Signing				
Browser				

Technical Comparison

Feature	Blackberry	WinMo 6	iPhone 2.2.1	Android
Application Language				
Permission Model				
App Buffer Overflows				
OS Buffer Overflow Protections				
Signature Required?				

Securing the Mobile Web

Mobile Web Browsers
Mobile Portal Mistakes
Choosing Thick or Thin

Mobile browsers are pulled in two ways:

- Simple
 - Speed over low-bandwidth
 - Rendering on small screens
 - Better user experience without scrolling
 - BB Browser, Feature Phones,
- Compatible
 - Renders like desktop
 - AJAX support (JS and XHR)
 - Plugins?
 - Mobile Safari, Android, Opera Mini

- Simple
 - Pros
 - Less attack surface
 - No JS
 - Cons
 - Proxied TLS, W-TLS
 - Bad Security UX

- Compatible
 - Pros
 - More professional security work
 - Real TLS
 - Cons
 - Full browser bugs might port
 - Much more complex
 - Too much WebKit
 - Still bad security UX

Common problem: bad security UX

Mobile Portals

- Multiple Internet Presences
- Both are on the Internet
 - Generally both will "accept" connections from both types of browsers
 - We generally pen-test mobile sites from desktops
- Common Real World Result:
 - Primary website highly secured
 - Mobile site unprotected

Common Mobile Portal Mistakes

- Using a different SLD
 - Bank.mobilecorp.com
 - Mobilecorp.com/bank
- Massively sets back fight against phishing
- Users need to be taught to:
 - Only go to your SLD
 - Use HTTPS
 - Not click on email links
- Use one standard for the Enterprise
 - Ilike m.*

Common Web Portal Mistakes

- Poor Crypto Practices
 - You do not want to allow for proxied TLS
 - W-TLS, old phones, Opera Mini
 - Need to blacklist old browsers by User-Agent
- Do not mix HTTP/HTTPS
 - Mobile phones are always on insecure networks
 - Even desktop browsers handle this poorly

Mobile Web - Authentication

Most mobile sites use www creds

- Bad idea
 - Users downgrade their credentials
 - Mobile phishing is still easier
 - Eliminates ability for per-browser auth
- One option:
 - Shorter "mobile PIN" for m.*
 - Limited functionality with this PIN

Mobile Web - Authentication

- Mobile sites destroy best anti-fraud weapon, user analytics
- For example, the iPhone:
 - Roaming AT&T IP
 - Same User-Agent
 - Much more difficult geo-location
- Many browsers don't support persistent cookies
- No flash cookies

Authentication

This problem is much easier with a thick app:

One Time PIN

Crypto Key

Key(Request)

m.bank.com

Choices

- So should I build a thick app? Big question these days...
- From a security perspective, thick apps help with:
 - Authentication
 - Fraud analytics
 - Crypto
- Thick client apps can introduce flaws, so you need to be mindful
 - Still, the sandbox on phones is better
 - Most phones have anti-overflow technologies

Actions

For Enterprises

- Define a Mobile Application Security Policy
- Set User Application Security Policy
 - Are App Stores Allowed?
- Build Secure Line of Business Applications
- Create a Unified Model for Mobile Interactions
 - Don't mix "m." with /mobile or .mobi domains
- Be firm on enforcing access to your network from random devices

For Developers

- Define Security Assertions for Users
- Define Threats
 - Lost Phone
 - Network Attacks
- Create Limits
 - E.g. Read-only Mobile Endpoints
- Apply Secure Development Guidelines
- Test on Real Devices

For Mobile Web Developers

- Disallow Older Browsers
- Do Not Decrease Overall Security
 - Tightly-Scope Functionality
 - Use SSL and Proper Domains
- Strong Authentication
 - Unique Authentication for Mobile Sites
- Don't Make Phishing Easier
 - Keep Links out of Email
 - Maintain Clear Message

Questions? alex@isecpartners.com

