Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 2 - Examen Julio 2024

Consigna

Ejercicio 2

Se considera la matriz

$$A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -1 & \beta \\ 3 & 0 & \alpha \end{pmatrix} \in M_{3 \times 3}(\mathbb{R})$$

donde $\alpha, \beta \in \mathbb{R}$.

Indicar la opción correcta:

- **A.** Existe un único valor de α y un único valor de β para los cuales la matriz A **NO** es diagonalizable.
- **B.** Existe un único valor de α pero infinitos valores de β para los cuales la matriz A **NO** es diagonalizable.
- C. Existen exactamente dos valores de α para los cuales la matriz A **NO** es diagonalizable $\forall \beta \in \mathbb{R}$.
- **D.** Existe un único valor α para el cual la matriz A **NO** es diagonalizable $\forall \beta \in \mathbb{R}$.

Resolución

Calculemos el polinomio característico $X_A(\lambda)$:

$$\begin{split} \mathbf{X}_A(\lambda) &= \begin{vmatrix} 5-\lambda & 0 & 0 \\ 0 & -1-\lambda & \beta \\ 3 & 0 & \alpha-\lambda \end{vmatrix} \\ &= (5-\lambda) \begin{vmatrix} -1-\lambda & \beta \\ 0 & \alpha-\lambda \end{vmatrix} \\ &= (5-\lambda)(1-\lambda)(\alpha-\lambda) \end{split}$$

De donde obtenemos que los valores propios son:

•
$$\lambda_1 = 5$$

$$\begin{array}{ll} \bullet & \lambda_2 = -1 \\ \bullet & \lambda_3 = \alpha \end{array}$$

•
$$\lambda_3 = \alpha$$

Si $\alpha \neq 5$ y $\alpha \neq -1$ entonces A es diagonalizable porque tenemos 3 valores propios distintos dos a dos.

Analicemos los dos casos que quedan.

CASO 1:
$$\alpha = -1$$

Deberíamos verificar que ma(-1) = mg(-1) = 2, por lo que investiguemos sobre el subespacio propio.

Tenemos que resolver el siguiente sistema:

•
$$(A+Id)v=0$$

$$\left(\begin{array}{ccc|c}
6 & 0 & 0 & 0 \\
0 & 0 & \beta & 0 \\
3 & 0 & 0 & 0
\end{array}\right)$$

De esto, la única forma de que mg(-1)=2 es que $\beta=0.$

Por lo tanto T es diagonalizable en este caso sii $\beta = 0$

CASO 2:
$$\alpha = 5$$

Deberíamos verificar que ma(5) = mg(5) = 2, por lo que investiguemos sobre el subespacio propio.

Tenemos que resolver el siguiente sistema:

•
$$(A - 5Id)v = 0$$

$$\left(\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
0 & -6 & \beta & 0 \\
3 & 0 & 0 & 0
\end{array}\right)$$

De donde obtenemos que:

$$\bullet \quad x = 0$$

•
$$y = \frac{\beta z}{6}$$

• $z \in \mathbb{R}$

•
$$z \in \mathbb{R}$$

Observemos que sin importar el valor de β , mg(5) = 1, por lo que T no es diagonalizable para ningún valor de β en este caso.

Por lo que la opción correcta es la opción D