Metodi Matematici e Statistici Prova del 03/04/2023 A.A. 2022-2023

- · Durata della prova: 2 ore
- È vietato uscire dall'aula prima della consegna della prova
- Il codice usato per i calcoli NON deve essere consegnato
- · Consegnare solo la bella copia

Esercizio 1

Si considerino tre scatole, indicate con A_1 , A_2 e A_3 , contenenti la prima due monete da 50 centesimi, la seconda una da 50 e una da 100, la terza due monete da 100 centesimi. Si scelga a caso una delle tre scatole e da questa si estragga una moneta (con probabilità uguale per le due monete). Se la moneta estratta è da 50 centesimi, qual è la probabilità che la seconda moneta sia ancora da 50 centesimi?

Esercizio 2

Di una variabile aleatoria $X \sim Geo(p)$ si sa che $P(X \le 10) = 0.9$. Quanto vale p?

Esercizio 3

Un'azienda produce filo elettrico confezionato in matasse della lunghezza nominale di 10 metri. In realtà la lunghezza di ogni matassa (misurata in metri) è una variabile aleatoria $X \sim Norm(\mu=10.1\,,\sigma^2=0.2)\,.$

Le matasse aventi lunghezza inferiore alla lunghezza nominale vengono vendute a prezzo ribassato. Qual è la percentuale di queste matasse?

Presa una matassa venduta a prezzo pieno, qual è la probabilità che la sua lunghezza non superi 10.5 metri?

Esercizio 4

I seguenti valori provengono da una distribuzione $X \sim Norm(\mu, \sigma^2 = 0.8)$:

16.1, 13.9, 15.1, 17.5, 14.9, 15.8, 16.3

Testare l'ipotesi $H_0: \mu=15$ contro $H_1: \mu\neq 15$ attraverso il calcolo di un opportuno pvalue.