🧩 Tamizhan Skills SE RISE Internship – Machine Learning & AI

Project 3: Loan Eligibility Predictor Using Logistic Regression & Random Forest

Name: Prachee

n College: CRSSIET, Jhajjar

Tourse: B.Tech CSE (AI & ML), 2023–2027

Project Summary:

> Objective:

To build a classification model that predicts whether a person is eligible for a loan based on personal and financial information.

>Dataset Description:

Column	Description		
Age	Age of applicant		
Income	Monthly income		
Education	Graduate or Not Graduate		
Credit_Score	Numeric credit score		
Employment_Status	Employed / Self-employed /Unemployed		
Loan_Status Target	Variable: (Approved), N (Rejected)		

Dataset used: loan_data.csv

✓ Total entries: 10✓ No missing values

≥ Tools & Libraries Used:

Python
Google Colab
Pandas, Numpy, Matplotlib, Seaborn
Scikit-learn (for model building & evaluation)

Code Used :

Import Libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, roc_curve

Load Dataset

df = pd.read_csv('/content/loan_data.csv')
df.head()

	Age	Income	Education	Credit_Score	Employment_Status	Loan_Status
0	25	50000	Graduate	700	Employed	Y
1	35	60000	Not Graduate	650	Self-employed	N
2	45	80000	Graduate	800	Employed	Y
3	29	45000	Graduate	600	Unemployed	N
4	62	90000	Not Graduate	750	Employed	Y

Data Preprocessing

```
le = LabelEncoder()
df['Education'] = le.fit_transform(df['Education'])
df['Employment_Status'] = le.fit_transform(df['Employment_Status'])
df['Loan_Status'] = df['Loan_Status'].map({"Y": 1, 'N": 0})
df.head()
```

	Age	Income	Education	Credit Score	Employment_Status		
0	25	50000	0	700	Linkoyment_Status	Loan_Status	
1	35	60000			0	1	
2	45	80000	0	650	1	0	
		45000	0	800	0	1	
1	62		0	600	2	0	
	02	90000	1	750	0	THE PARTY IN	

Train-Test Split

```
X = df.drop('Loan_Status', axis=1)
y = df['Loan_Status']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
```

• Logistic Regression

```
Ir = LogisticRegression()
Ir.fit(X_train, y_train)
y_pred_Ir = Ir.predict(X_test)
```

Random Forest

```
rf = RandomForestClassifier()
rf.fit(X_train, y_train)
y_pred_rf = rf.predict(X_test)
```

- Model Evaluation
- 1) Logistic Regression Evaluation
 - a) Confusion Matrix

sns.heatmap(confusion_matrix(y_test, y_pred_lr), annot=True, fmt='d')

b) Classification Report

print(classification_report(y_test, y_pred_lr))

	Logistic Regression Classification Report:						
	recision	recall	f1-score	support			
0	0.00	0.00	0.00	1			
1	0.50	1.00	0.67	1			
accuracy			0.50	2			
macro avg	0.25	0.50	0.33	2			
weighted avg	0.25	0.50	0.33	2			

c) ROC Curve

fpr_Ir, tpr_Ir, _ = roc_curve(y_test, Ir.predict_proba(X_test)[:,1])
plt.plot(fpr_Ir, tpr_Ir, label='Logistic Regression')

2) Random Forest Evaluation

a) Confusion Matrix

sns.heatmap(confusion_matrix(y_test, y_pred_rf), annot=True, fmt='d')

b) Classification Report

print(classification_report(y_test, y_pred_rf))

	Random Forest	Classificat precision		t: f1-score	support	
	9 1	0.00 0.50	0.00 1.00	0.00 0.67	1 1	
	accuracy			0.50	2	
	macro avg	0.25 0.25	0.50 0.50	0.33 0.33	2	

c) ROC Curve

```
fpr_rf, tpr_rf, _ = roc_curve(y_test, rf.predict_proba(X_test)[:,1])
plt.plot(fpr_rf, tpr_rf, label='Random Forest')
plt.show()
```


3) Combined ROC Curve

```
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve Comparison")
plt.legend()
plt.grid(True)
```


>Result Summary:

Model Performance Accuracy (Visual)

Logistic Regression Simple, fast Moderate

Random Forest More accurate High

☑ Best Model: Random Forest

Best use-case: Fintech mock apps or fast eligibility checks