| Aula – Computação Gráfica                                                                                                                                                                                                           | , |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|                                                                                                                                                                                                                                     | _ |  |
|                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                     | , |  |
| Espasa da Caras                                                                                                                                                                                                                     |   |  |
| Espaço de Cores                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                     |   |  |
| ides para uso pessoal e exclusivo durante o período de aula. Distribuição ou                                                                                                                                                        |   |  |
|                                                                                                                                                                                                                                     | 1 |  |
|                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                     |   |  |
| Visão Geral                                                                                                                                                                                                                         |   |  |
| Visao Gerai                                                                                                                                                                                                                         | , |  |
| Diagrama CIE                                                                                                                                                                                                                        | _ |  |
| Modelos de Cores     Prós e Contras                                                                                                                                                                                                 |   |  |
| • Interpolação                                                                                                                                                                                                                      |   |  |
|                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                     | 2 |  |
|                                                                                                                                                                                                                                     | , |  |
|                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                     |   |  |
| Diagrama CIE                                                                                                                                                                                                                        |   |  |
| Notem o formato irregular do gamut no CIE                                                                                                                                                                                           | _ |  |
| Número de cores do monitor é bem menor do que do CIE                                                                                                                                                                                |   |  |
| Note a distorção do espaço RGB                                                                                                                                                                                                      |   |  |
| M [X] [0.4124 0.3576 0.1805] [Ritnear]                                                                                                                                                                                              |   |  |
| $ \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.4124 \ 0.3576 \ 0.1805 \\ 0.2126 \ 0.7152 \ 0.0722 \\ 0.0193 \ 0.1192 \ 0.9505 \end{bmatrix} \begin{bmatrix} R_{linear} \\ G_{linear} \\ B_{linear} \end{bmatrix} $ | , |  |
| BIR                                                                                                                                                                                                                                 |   |  |
| Hankwang                                                                                                                                                                                                                            |   |  |
| Finituding and Microstonius, wikimedia org/wiki/File/Gamut.rgb.png SC 957-68-32  Gamut de cor para um monitor RGB                                                                                                                   |   |  |
| Camar ac co. para dili lilolillo NOD                                                                                                                                                                                                |   |  |

# Diagrama CIE

• Espaço de cores CIE (matemático)



Projeção do plano X + Y + Z = 1
No plano (X, V, Z = 0)
Chamado de diagrama de cromaticidade (CIE)

4

# Diagrama CIE

• Mostra todas as cores visíveis

 Cores com mesma cromaticidade mapeiam para um mesmo ponto independente da luminância

Cores puras estão na curva

- Pontos na linha são misturas de duas cores
- Pontos relacionados luminância não mostrados
  - Ex. Marrom = vermelho+laranja com baixa luminância

 O iluminante C está próximo ao x=y=z=1/3



5

## Diagrama CIE

- Cores são somadas linearmente no CIE
  - Mixturas de I e J estão em uma linha
- Portanto, todas as misturas de 3 cores
   Estão no Gamut (Gama de cores)
- Não há combinação de 3 cores que represente todas as cores visíveis
- DEMO

http://www.cs.rit.edu/~ncs/color/a\_chroma.html



# Diagrama CIE

- Cores são somadas linearmente no CIE
  - Mixturas de I e J estão em uma linha
- Portanto, todas as misturas de 3 cores
   Estão no Gamut (Gama de cores)
- Não há combinação de 3 cores que represente todas as cores visíveis
- DEMO: <a href="http://www.cs.rit.edu/~ncs/color/a\_chro">http://www.cs.rit.edu/~ncs/color/a\_chro</a> <a href="mailto:ma.html">ma.html</a>



7

# Espaços de Cores

- É uma maneira de ordenar cores
- Em uma, duas, três ou mais dimensões geométricas
- De 600 BC a 1600AD
  - Cores eram ordenadas por brilho
- Newton demonstrou uma ordenação familiar com um prisma
  - Arco íris
  - Primeiro a ordenar em um círculo





8

## **Modelos de Cores**

- Situações diferentes sugerem modelos diferentes
  - Padrões da industria requerem um modelo CIE
    - Espaço CIE
  - Programar para monitores é mais fácil com monitor RGB
    - Espaço RGB
  - Impressoras usam CMY(K) (ciano, magenta, amarelo)
    - Espaço CMYK
  - User-friendly: Matiz(Hue), Saturação, Valor HSV
    - Espaço HSV
  - Uniformidade perceptiva
    - Espaço CIELAb
  - É possível criar o seu próprio espaço

#### **Modelo RGB**

• As cores primarias são aditivas

• RGB define um cubo

• Tons de cinza estão na diagonal

- Preto é (0, 0, 0)

- Branco é (1, 1, 1)

• Gamut de cores RGB

Varia de monitor para monitor

Varia por empresa também

Adobe RGB

Mais cores

sRGB (HP/Microsoft)

- Menos cores com mais profundidade

https://www.kenrockwell.com/tech/adobe-rgb.htm

http://www.cambridgeincolour.com/tutorials/sRGB-AdobeRGB1998.htm

10

#### **Modelo RGB**

• Conversão entre espaços RGB

- Converta um para CIE X Y Z

- Converta de CIE X Y Z para o outro

• M é uma matriz 3x3 de coeficientes

• Onde,  $X_p$ ,  $X_q$ ,  $X_b$  são os pesos aplicados para achar  $X_p$ , e etc

Se M<sub>1</sub> e M<sub>2</sub> são as matrizes de conversão de cada monitor

• Então  $M_2^{-1} \, M_1$  converte do monitor 1 para o 2

$$\begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = M \begin{vmatrix} R \\ G \\ B \end{vmatrix}$$

$$M = \begin{bmatrix} X_r X_g X_b \\ Y_r Y_g Y_b \\ Z_r Z_g Z_r \end{bmatrix}$$

11

## **Modelo RGB**

• Conversão entre espaços RGB

- Mas e se C<sub>1</sub> está no gamut do monitor 1 mas não está no 2

- C<sub>2</sub> cai fora do cube e portanto não é visível

• Solução 1:

- Truncar o RGB em 0 e 1

- Simples, mas distorce a relação entre as cores

Solução 2:

- Comprimir o gamut de 1 em direção ao centro

- Garantir que todas as cores estão no gamut de 2

# Modelo CMY(K)

- Usado em impressoras que depositam pigmento no papel
- Ciano C, Magenta M, Amarelo (Y)
  - São complementos de vermelho (R), verde (G) e azul (B)
- · Cores primarias subtrativas
  - Cores são determinados pelo que é retirado do branco
  - Ao invés de o que é adicionado ao preto
- · Sistema de coordenadas cartesianas
- É representado por um cubo
  - Branco é origem (0,0,0)
  - Preto é (1,1,1)





13

# Modelo CMY(K)

- Maioria das impressoras usa CMY-K (preto)
- K é usado para evitar usar quantidades iguais de CMY
  - Menor quantidade de tinta é colocada no papel
  - Seca mais rápido
  - Chamada de undercolor
  - Preto enriquecido

K = min(C, M, Y) C' = C - K Y' = Y - K M' = M - K

um dos C', Y', M' será 0

.

14

### **Modelo HSV**

- Matiz (H Hue), Saturação (S), Valor (V) Brilho
- · O espaço HSV foi inventado por Alvy Ray Smith
  - SIGGRAPH 1978
- · Hexcone de coordenadas polares
- É intuitivo para humanos
  - Artistas (Tinta, sombra e tom)
- Tinta: Adicionar pigmento branco
  - Manter V e decrementar S
- · Sombra: Adicionar pigmento preto
  - Manter S e decrementar V
- Tom
  - Decrementar S e V



(3ucky(3all https://commons.wikimedia.org/wiki/File:HSV\_cone.pn CC BY-SA 3.0

15

|    | Modelo HSV                                                                                              |   |
|----|---------------------------------------------------------------------------------------------------------|---|
| _  |                                                                                                         |   |
|    | <ul> <li>Cores no plano V = 1 não são igualmente brilhosas</li> </ul>                                   |   |
|    | <ul> <li>Cores complementares estão a 180°</li> </ul>                                                   |   |
|    | Saturação é medida em relação ao gamut                                                                  |   |
|    | <ul> <li>Portanto não representa pureza de excitação</li> </ul>                                         |   |
|    | Topo do HSV é uma visão                                                                                 |   |
|    | <ul> <li>Ao longo da diagonal principal do RGB</li> <li>Caminho linear no RGB</li> </ul>                | - |
|    | - É diferente de caminho linear no HSV                                                                  |   |
|    | E difference de carrillino inical no risv                                                               |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    | 16                                                                                                      |   |
| 16 |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    | Modelo HSV                                                                                              |   |
|    |                                                                                                         |   |
| -  | RGB para HSV e vice versa                                                                               |   |
|    | Basta seguir as fórmulas                                                                                | - |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    | 17                                                                                                      |   |
| 17 |                                                                                                         |   |
| Τ, |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    |                                                                                                         |   |
|    | Modelo HLS                                                                                              |   |
|    |                                                                                                         |   |
| -  |                                                                                                         |   |
|    | Matiz (H - Hue), Luminosidade (L), Saturação (S)     Haveaga due la                                     |   |
|    | <ul> <li>Hexcone duplo</li> <li>Saturação máxima do Matiz ocorre com S = 1 e L = 0.5</li> </ul>         |   |
|    | Menos atrativo para sliders ou dials     1.0      Branco                                                |   |
|    | Conceitualmente mais fácil para algumas pessoas                                                         |   |
|    | //   \/                                                                                                 |   |
|    | Verde                                                                                                   |   |
|    | 0;5 Vermelho                                                                                            |   |
|    | Azal Magenta                                                                                            |   |
|    |                                                                                                         |   |
|    | Imagem adaptada de: Anderson Luís Furlan.                                                               |   |
|    | Imagem adaptata de: Anderson Luís Eurian. https://commons.wikimedia.org/wikiFile:HLS_pda CC BYSA 4.0 18 |   |

|    | Uniformidade Perceptiva                                                                                                               |    |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------|----|--|
|    | <ul> <li>RGB, HSV, HSL não são percebidos uniformemente</li> <li>– Mudança de C1 para C1' de um Δ e de C2 para C2' de um Δ</li> </ul> |    |  |
|    | <ul> <li>São matematicamente equivalentes</li> </ul>                                                                                  |    |  |
|    | São percebidas de forma diferente                                                                                                     |    |  |
|    |                                                                                                                                       |    |  |
|    |                                                                                                                                       |    |  |
|    |                                                                                                                                       |    |  |
|    |                                                                                                                                       | 19 |  |
| 19 |                                                                                                                                       |    |  |
|    |                                                                                                                                       |    |  |
|    |                                                                                                                                       |    |  |
|    | Modelo CIE Lab                                                                                                                        |    |  |
|    |                                                                                                                                       |    |  |
|    | <ul> <li>Popular na medição de objetos reflexivos e transmissivos</li> <li>Baseado nos 3 receptores do olho humano</li> </ul>         |    |  |
|    | Três componentes                                                                                                                      |    |  |
|    | <ul> <li>L* é luminosidade</li> <li>a* é o eixo vermelho/verde</li> </ul>                                                             |    |  |
|    | - b* é o eixo amarelo/azul                                                                                                            |    |  |
|    | Espaço descrito matematicamente                                                                                                       |    |  |
|    | <ul> <li>Percepção das cores é uniforme</li> <li>O espaço depende do branco</li> </ul>                                                |    |  |
|    | – Branco é dado (Xn, Yn, Zn)                                                                                                          |    |  |
|    | https://www.youtube.com/watch?v=99GczKnEObw                                                                                           | 20 |  |
| 20 |                                                                                                                                       | -  |  |
|    |                                                                                                                                       |    |  |
|    |                                                                                                                                       |    |  |
|    |                                                                                                                                       |    |  |
|    | Modelo CIECAM02                                                                                                                       |    |  |
|    | Modelo da aparência da cor                                                                                                            |    |  |
|    | <ul> <li>Mesmo modelos com percepção uniforme</li> <li>Não levam em conta a interação entre as cores</li> </ul>                       |    |  |
|    | nad levali elli conta a intelação entre as coles                                                                                      |    |  |
|    |                                                                                                                                       |    |  |
|    |                                                                                                                                       |    |  |
|    |                                                                                                                                       |    |  |
|    |                                                                                                                                       |    |  |
|    |                                                                                                                                       |    |  |

#### **Modelo CIECAM02**

- Modelo da aparência da cor
- Mesmo modelos com percepção uniforme
  - Não levam em conta a interação entre as cores



23

#### **Modelo CIECAM02**

- Modelo da aparência da cor
- Mesmo modelos com percepção uniforme
  - Não levam em conta a interação entre as cores



24

## **Modelo CIECAM02**

- Modelo da aparência da cor
- Mesmo modelos com percepção uniforme
  - Não levam em conta a interação entre as cores



25

| Prós e Contras do Modelos de Cores                                          |    |   |
|-----------------------------------------------------------------------------|----|---|
|                                                                             |    |   |
| • RGB                                                                       |    |   |
| <ul> <li>+ Sistema de coordenadas cartesianas</li> </ul>                    |    |   |
| - + Linear                                                                  |    |   |
| <ul> <li>+ Baseado em hardware (facilita conversão para vídeo)</li> </ul>   |    | _ |
| - + Tri-estímulo                                                            |    |   |
| Difícil de usar para pegar e nomear cores                                   |    |   |
| <ul> <li>Não cobre o gamut das cores percebidas</li> </ul>                  |    |   |
| Não uniforme:                                                               |    |   |
| <ul> <li>Distancia geométrica igual é percebida diferente</li> </ul>        |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             | 26 |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
| Duás a Cambusa da Madalas da Carra                                          |    |   |
| Prós e Contras do Modelos de Cores                                          |    |   |
|                                                                             |    |   |
| • HSV                                                                       |    |   |
| - + Intuitivo sistema de coordenadas polares                                |    |   |
| ·                                                                           |    |   |
| - + Fácil de especificar cores (intuitivo)                                  |    |   |
| - + Fácil de converter para RGB                                             |    |   |
| Não linear                                                                  |    |   |
| <ul> <li>- Não cobre o gamut das cores percebidas</li> </ul>                |    |   |
| Não uniforme:                                                               |    |   |
| <ul> <li>Distancia geométrica igual é percebida diferente</li> </ul>        |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             | 27 |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
| Duás a Cautura da Madalas da Causa                                          |    |   |
| Prós e Contras do Modelos de Cores                                          |    |   |
|                                                                             |    |   |
| CIEXYZ                                                                      |    |   |
| - + Cobre todo gamut de cores percebidas                                    |    |   |
| - + Cobre todo garriat de Cores percebidas  - + Baseado na percepção humana |    |   |
|                                                                             |    |   |
| - + Linear                                                                  |    |   |
| - + Contém todos os outros espacos                                          |    |   |
| - Não mostra a luminância (no plano X Y - horseshoe)                        |    |   |
| Não uniforme:                                                               |    |   |
| <ul> <li>Distancia geométrica igual é percebida diferente</li> </ul>        |    |   |
|                                                                             |    | - |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             |    |   |
|                                                                             | 28 |   |
|                                                                             |    |   |

| F                                                | Prós e Contras do Modelo                                                                          | s de Cores                                                                                             |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| •                                                | CIE Lab  — + Uniforme em percepção                                                                |                                                                                                        |  |  |
| - + Baseado em cores psicológica (y-b, r-g, w-b) |                                                                                                   |                                                                                                        |  |  |
|                                                  | <ul> <li>- interface geralmente difícil de</li> <li>- Visualização do espaço é difícil</li> </ul> |                                                                                                        |  |  |
|                                                  | Inicialmente usado para conver                                                                    |                                                                                                        |  |  |
|                                                  |                                                                                                   |                                                                                                        |  |  |
|                                                  |                                                                                                   |                                                                                                        |  |  |
|                                                  |                                                                                                   |                                                                                                        |  |  |
|                                                  |                                                                                                   |                                                                                                        |  |  |
| 20                                               |                                                                                                   | 29                                                                                                     |  |  |
| 29                                               |                                                                                                   |                                                                                                        |  |  |
|                                                  |                                                                                                   |                                                                                                        |  |  |
|                                                  |                                                                                                   |                                                                                                        |  |  |
| 1                                                | nterpolação de Cores                                                                              |                                                                                                        |  |  |
|                                                  | • •                                                                                               |                                                                                                        |  |  |
| •                                                | Interpolação é necessária para                                                                    |                                                                                                        |  |  |
|                                                  | <ul><li>Gouraud shading</li><li>Antialising</li></ul>                                             |                                                                                                        |  |  |
|                                                  | <ul> <li>Junção de imagens</li> </ul>                                                             |                                                                                                        |  |  |
| •                                                | Resultados dependem do model  – RGB, CMY, YIQ, CIE estão relacio                                  |                                                                                                        |  |  |
|                                                  | afim, portanto linhas são mantic<br>– Isso não é válido para HSV e HLS                            | das no mapeamento                                                                                      |  |  |
|                                                  | <ul> <li>Exemplo</li> <li>Interpolar vermelho e verde</li> </ul>                                  | vermelho = (1, 0, 0), verde = (0, 1, 0)<br>interpolado = (0.5, 0.5, 0)                                 |  |  |
|                                                  |                                                                                                   | vermelho = (0°, 1, 1); verde = (120°, 1, 1)<br>interpolado = (60°, 1, 1)<br>RGB_to_HSV = (60°, 1, 0.5) |  |  |
|                                                  |                                                                                                   | 30                                                                                                     |  |  |
| 30                                               |                                                                                                   |                                                                                                        |  |  |
|                                                  |                                                                                                   |                                                                                                        |  |  |
|                                                  |                                                                                                   |                                                                                                        |  |  |
|                                                  | mtawa alaasa da Canaa                                                                             |                                                                                                        |  |  |
|                                                  | nterpolação de Cores                                                                              |                                                                                                        |  |  |
| •                                                | RGB, vermelho é (1, 0, 0) e ciano (0.5, 0.5, 0.5), cinza                                          | é (0, 1, 1) que interpola para                                                                         |  |  |
|                                                  | – Em HSV, isso é (UNDEFINED, 0, 0                                                                 |                                                                                                        |  |  |
| •                                                | Em HSV, vermelho é (0°, 1, 1) e c<br>interpola para (90°, 1,1)<br>— Nova matiz com máximo valor e |                                                                                                        |  |  |
|                                                  | Porém, o resultado esperado de cores complementares seria um                                      | combinar porções iguais de                                                                             |  |  |
| •                                                | (,,,,                                                                                             | formar, interpolar)                                                                                    |  |  |
|                                                  | Usar um modelo aditivo, como F                                                                    | RGB                                                                                                    |  |  |
|                                                  |                                                                                                   |                                                                                                        |  |  |
|                                                  |                                                                                                   | 31                                                                                                     |  |  |

| Perguntas ????? |   |  |
|-----------------|---|--|
|                 | _ |  |
|                 | • |  |
|                 | • |  |
|                 |   |  |
|                 |   |  |
| 3:              | 2 |  |