問05

RLC直列回路を考える。電圧源の電圧は $E\cos(\omega t)$ とする。 $E=1[V], L=10[mH], R=0.5[\Omega]$ とする。

- (a) ωが共振角周波数のとき, 電流の大きさは最大でい くらになるか?
- (b) ωが共振角周波数のとき, Lの両端の電圧が最大 314[V]だったとする. 共振 角周波数にもっとも近い ものはどれか?

$$1/0.5=2[A]$$

$$314 = 2 \times 10 \times 10^{-3}$$
 ω $\omega = 15700 = 5000\pi$ [rad/s]

RL直列回路の過渡現象

- ●仮定
 - 時刻*t*=0でスイッチを閉じる
- ●回路の動作
 - ■電流がLに流れ,Lに電圧が生じる E

$$\bullet v_L = L \frac{di}{dt}$$

- ■電流は徐々に増加し, $v_L = 0$ になる
- ●得られる微分方程式
 - $\mathbf{v}_R = Ri, E = v_L + v_R \downarrow 0$
 - $i + \frac{L}{R} \frac{di}{dt} = \frac{E}{R}$

RL直列回路の過渡現象

- ●定常解
 - $\bullet i = \frac{E}{R}$
- ●過渡解

$$= i = Ae^{-\frac{R}{L}t}$$

- ─般解
 - $= i = Ae^{-\frac{R}{L}t} + \frac{E}{R}$
 - t=0 のときi=0より $A=-\frac{E}{R}$ よって, $i=-\frac{E}{R}\mathrm{e}^{-\frac{R}{L}t}+\frac{E}{R}=\frac{E}{R}(1-\mathrm{e}^{-\frac{R}{L}t})$

$$i + \frac{L}{R}\frac{di}{dt} = \frac{E}{R}$$

RL直列回路の過渡現象

$$\bullet i = \frac{E}{R} (1 - e^{-\frac{R}{L}t})$$

$$i + \frac{L}{R} \frac{di}{dt} = \frac{E}{R}$$

- $v_R = E(1 e^{-\frac{R}{L}t})$
- 時定数 time constant
 - 電流, 電圧を示す式にe^{-at}があるとき, ¹/₋
 - ◆上の例. ^L_R
 - ■過渡現象における変化の大きさを表す
 - ・時定数が大きい→変化に必要な時間が長い

ダイオード

- ●一方向だけに電流が流れる半導体素子
 - ■p型半導体とn型半導体を接合
 - p→n の方向に電流が流れる

ダイオードの簡略化した特性

- ●左図のような特性と見なす
- ●2段階の簡略化
 - $V_F>0$
 - ◆シリコンの場合 0.6~0.8[V]
 - $V_F = 0$
- ●順方向電圧
 - V_Fの値のこと

半波整流回路 half-wave rectifier

- ●整流
 - ■交流を直流に変換すること
- ●半波整流回路
 - ■電圧の+または-だけを取り出す回路

全波整流回路 full-wave rectifier

- ●ブリッジ整流回路
 - ■ブリッジダイオードによる整流回路

ブリッジ整流回路の動作

平滑回路 Smoothing circuit

- ●平滑
 - 交流電流を減少させて、滑らかな直流をえること
 - ここでは、キャパシタの放電

AC/DC電源 AC-DC power supply

- ・以下から構成
 - ■トランス (transformer)
 - ◆交流電圧の電圧を変える回路.変圧器
 - ■整流回路
 - ■平滑回路

問06

Cに電荷がたまっていて $v_c(0)=1$ とする。時刻t=0でスイッチを閉じる。E=2, C=1, R=1とする。

(a) $V_c(t)$ の式

 $v_c(t)$ (b) $v_c(t)=1.86$ になる時刻t