AVANCES DE TESIS SEMANA 21/OCT/2024

Espectros Experimentales

A cada renglon del area activa se le resta la media delrenglon del oScan para disminuir el ruido.

Posteriormente se obtiene la ganancia de la extensión ajustando una gaussiana doble a los pixeles del oScan. El valor de la ganancia es alrededor de 200-210 ADU/e-.

Aquí algunos de los ajustes fallan y se debe descartar la extensión, se está trabajando en un algoritmo para arreglar esto y no perder estadística.

Despues los datos se calibran en KeV y se crea un dataframe para identificar a cada cluster, para ello se usan 4σ .

	Image ID	Extension	Matrix Size (px)	Event Size (px)	Total Charge (KeV)	Mean Charge (KeV)	Barycenter (px)
Event ID		Execusion	macin size (px)	272112 3122 (px)		mean energe (mer)	Daily centeer (pxy
1	200	1	2x2	4	32.735107	8.184	[0.5, 0.5]
2	200	1	35x1	35	174.998688	5.000	[17.0, 0.0]
3	200	1	5x4	17	65.697685	3.865	[1.8824, 1.5882]
4	200	1	16x1	16	86.366058	5.398	[7.5, 0.0]
5	200	1	11x5	26	58.689526	2.257	[4.5769, 2.2308]
6	200	1	9x18	55	261.182617	4.749	[1.9818, 9.3818]
7	200	1	5x4	16	6.397971	0.400	[2.0, 1.5]
8	200	1	4x1	4	1.143663	0.286	[1.5, 0.0]
9	200	1	11x1	11	84.249397	7.659	[5.0, 0.0]
10	200	1	6x1	6	36.058304	6.010	[2.5, 0.0]
11	200	1	9x5	32	143.801117	4.494	[3.625, 1.4375]
12	200	1	97x42	434	933.868591	2.152	[43.871, 17.9171]
13	200	1	20x26	165	331.068146	2.006	[11.3879, 12.6667]
14	200	1	26x15	156	400.270996	2.566	[13.3782, 5.8526]
15	200	1	9x30	150	927.318604	6.182	[4.1467, 16.3133]
16	200	1	26x68	333	600.156311	1.802	[10.7237, 25.5556]
17	200	1	52x47	193	444.506805	2.303	[21.5959, 19.3679]
18	200	1	5x4	17	8.289812	0.488	[2.1176, 1.5882]
19	200	1	8x8	51	72.136673	1.414	[3.3529, 3.3137]
20	200	1	39x1	39	50.745640	1.301	[19.0, 0.0]

Posteriormente se les aplica el filtro de muones (que claramente tiene fallas) para poder identificarlos y obtener su información.

Tambien se les puede poner "faldas" de ser necesario, como para los muones verticales y horizontales.

De esta manera se obtienen los espectros de energía. Abajo se muestran los espectros de las imágenes de NSAMP324. El de la extensión 4 no se encuentra donde debería.

Se muestran las distribuciones de ganancias por imagen por cada extensión.

Simulaciones

Se implemento en PyROOT la distribución de Landau, ahora para simular 1 millon de muones se requiere alrededor de 1 dia. Se está trabajando en implementar otra función que ocupa todos los nucleos de la computadora para hacerlo mas rápido.

Sin embargo esta versión no se puede correr en el cluster por un error, ya se está trabajando en ello.

Se simularon 100K de muones, a continuación se muestran los espectros obtenidos.

Claramente debe haber algún error en el código ya que antes se obtenía la disctribución correcta de longitudes.

Parece que el espectro de longitudes cambia de acuerdo al tamaño de los planos tangentes a la esfera, mientras mas grandes parece que pierde la forma deseada.

