Quiz 3.1 –	Entropy
------------	---------

Carnot cycle			
· ·			

Consider a heat engine based around the Carnot cycle. Sketch this cycle on a p/V diagram, labeling the states in the process as A, B, C, and D $\,$

Tell which direction around this cycle operates as a heat engine, and which direction operates as a heat pump

- A-B-C-D-A:
- A-D-C-B-A:

Fill in the table below for the cycle when operating as a heat engine. Use generic variables (C_V , T_H , T_C , V_A , V_B , etc.)

Step	w	q	ΔU	ΔS
A-B				
В-С				
C-D				
D-A				
net (A-B-C-D-A)				

A car engine is a type of heat engine, and burns gasoline burns at about $600\,^{\circ}C$. If the ambient temperature is $25\,^{\circ}C$, what is the thermodynamic maximum efficiency a car engine can achieve?

Measuring molar entropy

He has $T_{boil}=4.25~K$ and $\Delta H_{vap}=83\frac{J}{mol}$. The isobaric heat capacity for liquid helium is very complex, but can be approximated as $C_p(l)\approx 7.4\times 10^{-3}T^3\frac{J}{mol~K^4}$. The isobaric heat capacity for gaseous He is simply $C_p(g)=\frac{5}{2}R$. Use these data to calculate the molar entropy for He gas at room temperature, and compare it to the value given in our textbook appendix.

Irreversibility in Mechanical Systems

Consider a spring which obeys Hook's law: F=-kx where x is the displacement away from equilibrium and $k=650\frac{N}{m}$. The acceleration due to gravity is $9.80665\,\frac{m}{s^2}$.

 \circ Calculate the equilibrium displacement if a $10 \ kg$ weight is placed on the spring

Considering the same weight-on-a-spring in Problem 1:

• Calculate the work done by the falling weight.

How much work would be done if instead the spring was stretched reversibly to the same equilibrium displacement. Bonus – Explain the discrepancy!

The spring-weight system will lose kinetic energy through friction with the air until it rests at its equilibrium position. What is $\Delta S_{universe}$ for both the reversible and irreversible processes if they are done at room temperature (25°C)?

Who Has Seen the Wind?

By Christina Rossetti

Who has seen the wind? Neither I nor you: But when the leaves hang trembling, The wind is passing through.

Who has seen the wind?
Neither you nor I:
But when the trees bow down their heads,
The wind is passing by.