

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE

Simulating Aeration at Birth: building an Open-Source Newborn Lung Model

Tesi di Laurea Magistrale in Biomedical Engineering - Ingegneria Biomedica

Luca Andriotto, 928454

Advisor: Prof. Raffaele Dellaca'

Co-advisors:
Dr. Chiara Veneroni

Academic year: 2023-2024

Abstract: During pregnancy, the fetal airways are filled with a fluid known as fetal lung fluid, which is essential for the development of airway width. Consequently, at birth, the respiratory system must expel this fluid to allow aeration. Fluid reabsorption begins a few days before birth. During natural childbirth, fluid is expelled from the mouth and nose due to the compression of the neonate's chest. In full-term infants, the likelihood of complications during aeration is very low. However, the scenario is vastly different for preterm infants. Aims of this projects are:

Generate a model from neonatal CT scans to optimize the generation of airways, ensuring they adhere to the morphometric characteristics at various ages.

Develop an open-source mechanical model that allows for the simulation of mechanical properties along with fluid dynamics.

Using a CT scan of a newborn infant, we extracted the centreline of major airways and the lobe surfaces. We then reconstructed the anatomy of the missing airways using a statistical algorithm originally proposed for adult lungs, which we adapted for the newborn lung. This algorithm assigned airway diameters based on proportions measured in the newborn lung. We implemented a mechanical analog of the airway and acini in Julia. This model accounts for changes related to aeration at birth, allowing the simulation of the flow of fetal fluid towards the periphery as air enters the airways.

Key-words: morphometric model, aeration process, lung, newborn, respiratory system

1. Introduction

During pregnancy, the fetal airways are filled with a fluid known as fetal lung fluid, which is essential for the development of airway width. Consequently, at birth, the respiratory system must expel this fluid to allow air to enter and exit, a process necessary for breathing (aeration). Fluid reabsorption begins a few days before birth through chemical processes involving sodium channels, and during natural childbirth, fluid is expelled from the mouth and nose due to the compression of the neonate's chest. In full-term infants, the likelihood of complications during aeration is very low. However, the scenario is vastly different for preterm infants, who are born before 37 weeks of gestation compared to the typical 40 weeks of a normal pregnancy.

Applying pressure at the entrance of the airways helps preterm infants remove the fluid and open the closed acini. Once the acini are recruited, less pressure is needed to keep them open and ventilate the lung. Thus,

employing recruitment strategies at birth has the advantage of initiating ventilation in a more recruited lung, using lower pressures, achieving more homogeneous lung aeration, and reducing the stress applied to the tissues. It is important to note, however, that at birth, the lung is more delicate and thus more susceptible to damage, even with routine ventilation procedures. Therefore, developing protective recruitment strategies at birth could lead to significant improvements in this area.

Although recruitment maneuvers have gained more interest in preterm ventilation, there is still no common medical strategy. Experimental procedures are tested on animals, presenting challenges in obtaining results due to the invasiveness of the procedures and associated ethical issues[7, 3]. In silico modeling of the adult lung has been useful for understanding pathophysiology and making diagnoses. Thus, the same approach could help analyze various recruitment strategies and their impact on the lung during initial aeration at birth. However, in silico models of neonatal lungs are limited to describing up to the first generation of the bronchial tree resulting inadequate for simulating the physiological changes that occur at birth. Anatomical models of the adult lung were scaled to match the newborns one. However, there are differences between airway length and diameter proportion between infants and adults[5]. Moreover, the immature lung structure results in different mechanical properties[12].

Alternatively, anatomical properties .. scaled r.

Consequently, both the anatomical and mechanical characteristics of the tissues must be appropriately modified to achieve a consistent model for the neonatal case in the time domain. Finally, to implement the changes occurring at birth, the mechanical properties of each airway must change when the fetal fluid is replaced by air. A previous thesis work developed an in silico model able to simulate the mechanical changes occurring in the airways during aeration at birth in the time domain. However, the anatomical structure was scaled for the adult one, and the mechanical model was implemented in "CADENCE.", a platform optimised for the analysis of integrated circuits. The use of «CADENCE» platform results in limitations related to the need for proprietary software licenses and difficulties in implementing time-varying phenomena not easily described by standard electronic components.

Using open-source strategies for the model eliminates the need for proprietary software licenses, making the development process more accessible [11].

Aims of this projects are:

Generate a model from neonatal CT scans to optimize the generation of airways, ensuring they adhere to the morphometric characteristics at various ages.

Develop an open-source mechanical model that allows for the simulation of mechanical properties along with fluid dynamics [11, Ch. 1.9 - 1.11] (capillary pressure associated with the air-fluid interface).

2. Anatomical Models

The structure of the internal lung is significantly influenced by the hierarchical arrangement of the airways, which resemble a fractal branching tree[16]. The design of this airway tree is crucial for its function, as the branching pattern affects both airflow and particle deposition. In modeling the human airway tree, it is widely accepted that the airways follow an irregular dichotomy pattern. Unlike regular dichotomy, where each branch splits into two identical daughter branches, irregular dichotomy results in daughter branches that can vary significantly in length and diameter.

Figure 1: Representation of the major airways.

Mathematical models developed for adult lungs cannot simply be scaled down to fit the lungs of newborns. In fact, newborn lungs are not simply one miniature version of adult lungs, but they present significant differences in terms of bronchial branch proportions, constituents of the airways[12], morphometric characteristics[5] and composition[4]. These differences must be taken into account when developing or adapting mathematical models to accurately represent the functioning of the lungs of the newborns. The structure of the lungs of newborns presents proportions different than that of adults. The branches of the airways they can have different sizes and arrangements. The components of lungs, like tissue and cells, can vary between newborns and adults. Morphometric studies, which analyze the shape and the structure of the lungs, show that there are differences between newborns and adults that need to be considered in the models[11, Ch. 1.1]. There are differences in the composition of lung tissue between newborns and adults who influence how the lungs function and respond to therapies.

Mani [11] considered an adult lung model linearly scaled to match newborn anatomical features. The advantage of this approach is that it respects the dimensions of trachea and bronchioles. It doesn't guarantee that the morphometric characteristics of the entire airway tree are respected. In this work, there are few airway generation parameters that can in fact be adapted, in order to better approximate the target morphometric characteristics.

Figure 2: The dichotomous bronchial tree.

Figure 2 serves as a reference for constructing anatomically coherent adult lungs. In a dichotomous tree, each airway (excluding the trachea) has a single parent branch and two daughter branches (excluding the acini). Asymmetrical bronchial trees are a specific class presenting uneven splitting: Horsfield orders of two siblings are in fact different (causing recursion index Δ to exist, see fig. 3). Branching angles, lengths and diameters can vary, resulting then in different mechanical properties.

Newborn lung can be considered as having an analogous structure.

Da tac, .. estratto centerline e ricostruito con diversi algoritmi la parte mancante (Nora, Tawn..).

Instead for infants, there exist models based on the ovine[7] and canine[3] anatomy.

3. Mechanical Model of Airways and Acini

The adult airway can be likened to a transmission line (see fig. 3), with resistors, capacitors and inductors having constant values. These components form a circuit as illustrated. Moreover, tissues properties $(Z_{\rm w})$ are incorporated. Figures 3 and 4 are modules connected according to the structure of newborn airway, which is comparable to that depicted in Figure 2. Z(n) represents the parent branch as a function of the Horsfield order, while Z(n-1) and $Z(n-1-\Delta)$ denote the two daughters branches. Z(2) represents the terminal airway. Each airway has a parent branch (excluding the trachea) and two daughter branches (excluding the acini).

The electrical equivalent of tissues properties is modified to test the physiological change impact on aeration process.

Air-fluid interface modulates the values of resistances and inductances in both the modules types.

Moreover, this fluid is incompressible, whereas air is not. This introduces an additional element in the electrical equivalent of air, as the compressibility of the gas is modeled through a capacitance.

During the aeration process, an air-liquid interface is created, which in turn generates surface tension that must be overcome to allow fluid movement within the bronchial tree. Once this surface tension is overcome, the diameters can expand, leading to an increase in lung volume.

Lutchen and Gillis [8] have developed a mechanical lung model in frequency-domain, describing airways and acini modules as displayed in fig. 3 and fig. 4, respectively.

Figure 3: Impedance (Z) of a given order (n) of a single airway generation is calculated via an acoustic transmission line analysis, which accounts for shunting into gas compression in the tube $(C_g(n))$ and into nonrigid airway walls (Z_w) . R: resistance; Δ : recursion index[8].

Figure 4: An alveolar-tissue element is attached to the terminal airways in the tree. There is gas compression corresponding to volume of the acinus (C_g) and the tissue element is viscoelastic containing a tissue damping (G) coupled to elastance (H) to ensure a constant tissue hysteresis. j: imaginary unit, $I_{t,i}$: tissue inertance[8].

In this thesis, as well as in [11], a mechanical model is defined in time-domain starting from the modules described in this section and properly adapted.

Capillary pressure is due to air-fluid interface in the airway tree. It was taken into account and modeled as a diode component: opening threshold voltage is correspondent to aforementioned capillary pressure for a generic airway.

A first implementation has been performed on «CADENCE» platform. This has the advantage of parallelism and speed. There are also some drawbacks to this approach: this framework is designed to simulate standard electrical components and it is not well-suited to develop time- and current integral-dependent components. Furthermore license is proprietary and machine specific. This limits the accessibility of of model design process.

4. Model Development

This chapter describes the methods used to develop an open-source, 3D morphometrical neonatal lung model that allows simulations of lung aeration at birth.

An anatomically coherent 3D lung model is combined with a mechanical model of the airways and acini, able to simulate changes in the mechanical properties of the airways when the lung fluid is replaced by air entering the lung.

The sequence for model development is reported in Figure 5. We extract a 3D surface mesh of lung lobes and airway centrelines from a lung CT of a newborn. We implemented a statistical method, previously described for adult lung models, able to generate distal airways that were not visible on the CT. We adapted the method for the newborn lung.

We implemented a mechanical model of the airways and acini whose parameters are dependent on the airway length and diameters and the presence of fetal fluid, fetal fluid-air interface, or air in the airway. We exploited an open-source solver for differential equations to simulate the network.

Figure 5: Data pipeline. The process begins with a patient-specific image (i.e. CT) of a premature newborn. The extracted data, comprising two segmentations, are then processed to obtain an anatomical surrogate of the airway tree. This is necessary due to scanner resolution not allowing for the discrimination and localization of small branches. From the resulting morphometric model, the mechanical parameters can be derived, which are essential for generating an accurate simulation model. Finally, a numerical solver for differential equations provides the final output.

4.1. Anatomical Model

Morphology generation process is required as it is not possible to obtain high generations (aka small airways) by means of standard high-resolution CT[1].

There are different open-source platforms available for generating adult morphometric models. In particular:

- 1. AVATree (Windows-only)
- 2. Chaste (crossplatform) library

Due to problems related to «AVATree» source code compilation for Windows with «VisualStudio», Chaste library is selected for this project.

Chaste is a C++ open-source (BSD licensed) library developed by Oxford University. It has multiple use cases across various biomedical fields, with an emphasis on cardiac electrophysiology and cancer development[13]. It can be integrated into a C++ program or used via «User Project» (i.e. ctest). Specifically, the "AirwayGenerationTutorial" is considered as a first codebase and properly adapted to match newborn parameters[18].

The required input consists of two pieces of information:

- A mesh of centreline points. This mesh is provided in TetGen format, comprising "airways.node" and "airways.edge" files. The first file lists centreline points coordinates, respective sampled airways radius and a boolean value to indicate if the point is generative. The second one contains all the connections between pairs of points.
- Four (or five) *lobes segmentations* in STL format. These segmentations are necessary as they physically impose a limit on the growth algorithm.

4.1.1 CT Image Processing: Lung Segmentation, Centreline and Radii Extraction

«3D Slicer» is an open-source software used for CT image processing. Two extensions are installed:

«Chest_imaging_platform»: This extension enables semi-automatic segmentation of major airways from a single fiducial point. It can also extract adult lobes using three fiducial points per lung fissure. However, in our case, the fissures are not visible, necessitating manual intervention.

«SlicerVMTK»: This extension is used for extracting centreline points.

4.1.2 Algorithmic Generation of the Distal Airway Centreline

The Chaste User Project reads the input files (see Section 4.1), and begins growing the anatomical surrogate from the points labeled as «generative». The algorithm operating under the hood is a modified version of the one described in [17, 1]. The generated output is available in various formats:

- vtu: Unstructured Grid (base64 encoded) format used by VTK library. It can be displayed by ParaView, an open-source viewer.
- node and edge: TetGen format. Such files are better suited for further processing.

This process is required as it is not possible to obtain high generations (aka small airways) by means of standard high-resolution CT[1].

The algorithm is based on a modified version of Tawhai, Pullan, and Hunter [17]. A uniform grid of seed points is created within each segmented lobar surface. Seed points approximately correspond to terminal bronchioles. Spacing of the seed point grid is set so that the mean volume around each of such points corresponded to the acinar volume (for adult being 187mm³, for 5 weeks old newborn 5.3mm³).

The starting points of the algorithm are the distal ends of the segmented airway centrelines. These points are referred to as growth apices.

An *adaptive threshold* on the distance between the seed points and growth apices is required to prevent spurious long airways being generated in the last few generations. Equation (1) describes such threshold:

$$T = \max(V_{\rm b} - n \cdot D_{\rm l}, 5 \,\mathrm{mm}) \tag{1}$$

Where:

 $V_{\rm b}$ is the diagonal size of the bounding box of the lobe being generated into

 $D_{\rm l}(=V_{\rm b}/N)$ is the distance limit.

N is the maximum number of generations.

n is the current generation number.

With these definitions, the **growing algorithm** is described as such:

- 1. Each seed point is associated to the closest growth apex within its lobe. Seed point having a distance with respect to a growth apex greater than the aforementioned adaptive threshold is not associated to that distal end. If all distal ends are further than the threshold from the seed point, the seed point remains unlabeled.
- 2. Calculation of the centroid of points assigned to each distal branch.
- 3. The plane defined by the centroid and the parent branch is used to split the points into two unequal sets.
- 4. Centroids of each of the new point sets are calculated.
- 5. For each set of points a new airway is generated starting at the distal end and extending 40% of the distance towards the centroid of the point set. This value is arbitrary but kept as for adults. It must be optimised in future developments.
- 6. Generated branches are checked to determine whether it is terminal. Branches whose length is less than 2mm (for adults, to be changed with .12mm for newborns) are considered terminal. Also branches whose point set contains just a single point solely are considered terminal points. For all terminal branches their associated seed point is discarded from the global set.
- 7. Iterate until no seed point is available.

Diameters are computed by means of Equation (2).

$$\log D(x) = (x - N)\log(R_{\rm d}H) + \log(D_{\rm N}) \tag{2}$$

Where:

D is the aiway diameter.

x is the current Horsfield order.

N is the maximum Horsfield order.

 $D_{\rm N}$ is the maximum diameter.

 $R_{\rm d}H$ is the anti-log of the slope of airway diameter plotted against Horsfield order and is set to 1.15 for adults, 1.33 for 5w newborns[5, Tab. 2]. This parameter in the code is named "DiameterRatio".

4.2. Mechanical Simulator Model

In order to perform simulation it is required to use an efficient differential equation solver. «DifferentialEquations.jl» wraps all available solvers (even C and Fortran ones) and it is very efficient [2, 15].

Julia is a free, open-source (MIT licensed), fast, scientific and numerical computing-oriented programming language. Its computational efficiency is comparable to that of statically-typed languages like C or Fortran. Moreover, its high-level code expressivity rivals that of languages like Python, R and MATLAB[6].

Two key features, inspired by the *Lisp Language*, are highlighted here.

Metaprogramming: Code is treated as any other Julia data structure, thus can be dynamically generated and manipulated at runtime.

Macros: They help instantiate the generated code in the body of a program.

Their importance is closely tied to the concept of Domain-Specific Languages (aka DSLs). These dialects are composed by abstractions that can be properly exploited to solve particular problems (e.g. modeling complex systems, solving differential equations).

Julia REPL has a built-in package manager (i.e. «Pkg.jl») used for managing project dependencies and ensuring the *repeatability* of computational setups. This is achieved by saving the required package names and commits into 'Project.toml' and 'Manifest.toml' files.

4.2.1 Programming Language — Model Designing & Instantiating

This Julia package encompasses all the tools necessary for model design. «ModelingToolkit.jl» is equation-driven, requiring each system to be described by Differential-Algebraic Equations (i.e. DAEs) for subsequent solving[10]. Its built-in DSL optimizes every stage of modeling, from prototyping components to instantiating the complete system.

An acausal paradigm can be adopted, allowing users to reason in terms of *components*[14]. This modularity facilitates system extensibility compared to the causal approach, where the entire system of Differential-Algebraic Equations must be considered and manually simplified[9].

In particular, the usage of <code>@mtkmodel</code> macro enables hierarchical generation of building blocks recurring in the highest-order model (i.e. «Lungs»). Here is how information is structured within <code>@mtkmodel</code> macro.

Listing 1: @mtkmodel: a macro for systems prototyping.

```
@mtkmodel <name_of_model> begin
    @parameters begin
         (Optional) Some constant (e.g. Resistance, Capacitance) ...
    end
    @components begin
        # (Optional) Some dependency system (e.g. Resistor, Capacitor) ...
    @variables begin
        # (Optional) Internal variables ...
    end
    @equations begin
        # Differential Algebraic Equations describing the model's behavior.
    end
    @continuous_events begin
         (Optional) Some callback function ...
    end
end
```

Replicating the behavior of electrical components using this language is straightforward, once you are familiar with the syntax and understand the Differential-Algebraic Equations that represent their characteristics. Each generated system can then be composed into more complex ones, using the internal @components macro, thereby implementing the hierarchical structure mentioned earlier.

After describing the highest-order system, Julia compiler requires its instantiation before any simulation can be performed. This is accomplished using @mtkbuild macro, which minimizes the number of equations that need to be solved.

Code modularity is directly reflected in the electrical equivalent circuit. Specifically, by encapsulating systems with the internal @components macro, it becomes possible to generate models of increasing complexity. This approach enables a clear separation between components belonging to different hierarchical levels and facilitate compartmentalization during the model design phase.

Callbacks' Role in State Variables Discontinuity Handling Not all characteristics of electrical components can be defined solely by DAEs. Voltages or currents may suddently change, triggered by a circuit event. In such cases, *continuous callback functions* can be employed to appropriately alter the value of state variables. These callbacks consist of two functions:

- condition: Specifies the event to be tested.
- affect: Defines how the state variable(s) should be changed.

The component-based approach allows for the definition of callbacks directly within the (sub)system being modeled.

4.2.2 Airways and Acini Models

The following blocks are listed in a bottom-up order (from lowest to highest).

1. Mathematical and Electrical Components. The simplest blocks are derived from the standard library of components (aka «ModelingToolkitStandardLibrary»), while integral-dependent ones rely on a modified mathematical block to manage both current integration and its timing correctly. Their behavior varies based on the neonatal pulmonary fluid interface.

Current Integrator: it computes the current integral and manages integration timing by means of a Callback function (see aforementioned Callbacks Section).

Current Integral-Dependent Inductor: It takes the current integral value from Current Integrator and computes the inductance value according to this formula $L(t) = L_{\rm a} + L_{\rm b} \cdot \left(1 - \frac{\int i(t)dt}{V_{\rm FRC}}\right)$, where $L_{\rm a}$ is the inductance when air-filled, $L_{\rm b}$ is the difference between liquid and air inductances, $V_{\rm FRC}$ is the volume at FRC (i.e., Functional Residual Capacity).

Current Integral-Dependent Resistor: It takes the current integral value from Current Integrator and computes the resistance value according to this formula $R(t) = R_{\rm a} + R_{\rm b} \cdot \left(1 - \frac{\int i(t)dt}{V_{\rm FRC}}\right)$, where $R_{\rm a}$ is the resistance when air-filled, $R_{\rm b}$ is the difference between liquid and air resistances, $V_{\rm FRC}$ is the volume at FRC.

Diode: It is modeled as a voltage generator whose activation state is dependent on the fill-up states of the previous and the current module (trigger_{in} and trigger_{out}, respectively). Its behavior is summarized by the following formula: $\Delta V = \text{trigger}_{\text{in}} \cdot (1 - \text{trigger}_{\text{out}}) \cdot V_{\text{in,th}}$, where ΔV is the voltage drop across the component and $V_{\text{in,th}}$ is the diode voltage threshold. This is a custom component and it does not come as part of the standard library.

Inductor: Constant component.

Resistor: Constant component.

2. **Modules**. Obtained by connecting the aforementioned components together into functional models representing a physiological structure.

Acinus

Airway. It has a similar behavior with respect to a transmission line.

3. Lungs. Highest order model as it is a combination of acini and airways.

Figure 6: Airway equivalent circuit. In blue: all current integral-dependent components.

Figure 7: Acinus equivalent circuit. In blue: all current integral-dependent components.

4.2.3 Model Testing

Simulations are executed starting from a subnet, as the full circuit (comprising over 50k modules) requires more memory space than typically available on a common laptop.

Figure 8: The simulated subtree. Airways are represented in light blue, acini in light green.

5. Results

5.1. Anatomical

A CT of a 40 week infant was collected. We segmented and extracted the centreline of XX airways , down to XX generation. We also obtained four lobes.

Figure 9: Major Airways and Lobes segmentations. Cyan: Upper Left Lung; Blue: Lower Left Lung; Orange: Upper Right Lung; Red: Lower Right Lung.

Using the developed program, based on Lung Chaste library, we managed to reconstruct the missing generations. The lowest generation was XX. The obtained airway tree can be displayed by ParaView.

Figure 10: Complete Airways generated by Chaste User Project (major airways are here excluded). They are colorcoded with respect to their radii.

The lobes are fully covered by the statistically-generated airways and this allows to move a step forward in newborn lung simulation.

5.2. Mechanical Simulation

These simulations are to verify the various components and modules coherence. This model is still very far from its conceived application in a clinical context. Two tests have been designed as follows. A step voltage generator is applied to the electrical equivalent of the newborn lung. The step amplitude is 10V for the first test, 8V for the second one.

The reason why these values for voltage have been chosen are related both to the airway subtree described in Figure 8 and to the diode threshold values "vin_th" for airways and acini in Tables 1 to 4.

The first test employs a step amplitude for voltage generator which ovecomes every module diode threshold. It is possible to check-out in Figures 11 and 12 modules opening times and activation orders. Airways open from the most proximal to the most distal one. It is more interesting to analyze the activation order of the acini. They open following a proximal to distal order but high diode thresholds introduce delays.

Figure 11: (Electrically equivalent) mechanical simulation for acini and aiways. Step amplitude is 10V.

Airways	IAD	IAF	IAH	IBL
$V_{ m in,th}$ [V]	4.67	4.99	5.29	5.59
$T_{\rm open}$ [s]	1.00246	1.00356	1.00501	1.00611
Activ. order	1°	2°	4°	5°

Table 1: Airways opening times values and total activation order when test #1 is performed.

Acini	IAE	IAG	IAI	IBA	IBB
$V_{ m in,th}$ [V]	7.96	8.69	9.25	6.79	7.01
$T_{\rm open}$ [s]	1.00411	1.00616	1.03686	1.00781	1.00796
Activ. order	3°	6°	9°	7°	8°

Table 2: Acini opening times values and total activation order when test #1 is performed.

The second test is providing a voltage capable of opening some of the modules constituting the subtree. Opening times and activation orders are summarized into Tables 3 and 4. Relative airway activation order is increasing from proximal to distal. Only distal acini are activated due to their lower diode thresholds, the rest remains closed.

Figure 12: (Electrically equivalent) mechanical simulation for acini and aiways. Step amplitude is 8V.

AIRWAYS	IAD	IAF	IAH	IBL
$V_{ m in,th}$ [V]	4.67	4.99	5.29	5.59
$T_{\rm open}$ [s]	1.00361	1.00536	1.00781	1.00961
Activ. order	1°	2°	3°	4°

Table 3: Airways opening times values and total activation order when test #2 is performed.

Acini	IAE	IAG	IAI	IBA	IBB
$V_{ m in,th}$ [V]	7.96	8.69	9.25	6.79	7.01
$T_{\rm open}$ [s]	$+\infty$	$+\infty$	$+\infty$	1.01316	1.01636
Activ. order	_	_	_	5°	6°

Table 4: Acini opening times values and total activation order when test #2 is performed.

6. Conclusion and Future Development

Anatomical morphometric models of the adult lung have been extensively developed and used in the literature to enhance our understanding of pulmonary pathologies and to guide treatments. In contrast, anatomical morphometric models of the newborn lung are largely absent. It is not sufficient to simply scale down models developed for adult lungs to fit newborn lungs. Newborn lungs are not merely smaller versions of adult lungs; they exhibit significant differences in morphometric characteristics, airway wall structure, and tissue composition and properties. These differences must be considered when developing or adapting mathematical models to accurately represent the functioning of newborn lungs.

We developed an anatomical morphometric model of the newborn lung. Using a CT scan of a newborn infant, we extracted the centreline of XX generations and the lobe surfaces. We then reconstructed the anatomy of the missing airways using a statistical algorithm originally proposed for adult lungs, which we adapted for the newborn lung. This algorithm assigned airway diameters based on proportions measured in the newborn lung, providing several advantages over previous approaches. Previous work, such as Mani [11], rescaled adult models to match the diameters and lengths of the trachea and terminal bronchioles in newborns. However, this method may not accurately preserve the morphometric characteristics (Rb, Rd, and Rl – see Chapter 1.XXX) of the entire airway tree. Our approach allows for the direct setting of the desired Rd parameter in the model, which differs between adults and newborns. Further analysis of the generated tree can determine if all known morphometric characteristics of newborn lungs (e.g., Rb and Rl) are respected or if optimization of the arbitrary parameters initially set for adults (e.g., branching length) is necessary.

We implemented a mechanical analog of the airway and acini in Julia. This model accounts for changes related to aeration at birth, allowing the simulation of the flow of fetal fluid towards the periphery as air enters the airways. The model incorporates changes in resistance (R) and compliance (I), as well as capillary pressure developed in the airways at the fluid-air interface. Testing on a subset of the anatomical tree yielded consistent results, demonstrating the model's ability to simulate the phenomena involved in lung aeration. Future developments will include simulating the entire airway tree and analyzing the time required for full network simulation.

This model enables open-source simulation of various aeration strategies that can be applied at birth. Such simulations are crucial for defining protective lung strategies that may reduce long-term sequelae in preterm infants.

References

- [1] Rafel Bordas et al. "Development and analysis of patient-based complete conducting airways models". en. In: *PLoS One* 10.12 (Dec. 2015), e0144105. DOI: 10.1371/journal.pone.0144105.
- [2] DifferentialEquations.jl Documentation. URL: https://docs.sciml.ai/DiffEqDocs/stable/.
- [3] Jacob Herrmann, Merryn H Tawhai, and David W Kaczka. "Regional gas transport in the heterogeneous lung during oscillatory ventilation". en. In: *J. Appl. Physiol.* 121.6 (Dec. 2016), pp. 1306–1318. DOI: 10.1152/japplphysiol.00097.2016.
- [4] A A Hislop and S G Haworth. "Airway size and structure in the normal fetal and infant lung and the effect of premature delivery and artificial ventilation". en. In: Am. Rev. Respir. Dis. 140.6 (Dec. 1989), pp. 1717–1726. DOI: 10.1164/ajrccm/140.6.1717.
- [5] K Horsfield et al. "Growth of the bronchial tree in man". en. In: Thorax 42.5 (May 1987), pp. 383–388. DOI: 10.1136/thx.42.5.383.
- [6] Julia Documentation. URL: https://docs.julialang.org/.
- [7] Ahmed M Al-Jumaily et al. "Pressure oscillation delivery to the lung: Computer simulation of neonatal breathing parameters". en. In: *J. Biomech.* 44.15 (Oct. 2011), pp. 2649–2658. DOI: 10.1016/j.jbiomech.2011.08.012.
- [8] Kenneth R Lutchen and Heather Gillis. "Relationship between heterogeneous changes in airway morphometry and lung resistance and elastance". en. In: *J. Appl. Physiol.* 83.4 (Oct. 1997), pp. 1192–1201. DOI: 10.1152/jappl.1997.83.4.1192.
- [9] Yingbo Ma. Scaling Equation-based Modeling to Large Systems. 2024. URL: https://www.youtube.com/watch?v=c-bZ2v1uF14.
- [10] Yingbo Ma et al. ModelingToolkit: A Composable Graph Transformation System For Equation-Based Modeling. 2021. arXiv: 2103.05244 [cs.MS].
- [11] Elisa Mani. An in-silico morphometric model of the respiratory system for simulating the dynamics of lung aeration at birth during respiratory support. Master Thesis. June 2020. URL: https://www.politesi.polimi.it/handle/10589/165063.

- [12] P J Merkus, A A ten Have-Opbroek, and P H Quanjer. "Human lung growth: a review". en. In: *Pediatr. Pulmonol.* 21.6 (June 1996), pp. 383-397. DOI: 10.1002/(sici)1099-0496(199606)21:6%3C383::aid-ppul6%3E3.0.co;2-m.
- [13] Gary R. Mirams et al. "Chaste: An Open Source C++ Library for Computational Physiology and Biology". In: *PLOS Computational Biology* 9.3 (Mar. 2013), pp. 1–8. DOI: 10.1371/journal.pcbi.1002970. URL: https://doi.org/10.1371/journal.pcbi.1002970.
- [14] Modeling Toolkit.jl Documentation. URL: https://docs.sciml.ai/ModelingToolkit/stable/.
- [15] Chris Rackauckas, Christopher, and Qing Nie. "DifferentialEquations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia". In: *Journal of Open Research Software* 5.1 (2017). DOI: 10.5334/jors.151.
- [16] Béla Suki, Dimitrije Stamenović, and Rolf Hubmayr. "Lung parenchymal mechanics". en. In: Compr. Physiol. 1.3 (July 2011), pp. 1317–1351. DOI: 10.1002/cphy.c100033.
- [17] M. Howatson Tawhai, A. J. Pullan, and P. J. Hunter. "Generation of an Anatomically Based Three-Dimensional Model of the Conducting Airways". In: *Annals of Biomedical Engineering* 28.7 (July 2000), pp. 793–802. ISSN: 1573-9686. DOI: 10.1114/1.1289457. URL: https://doi.org/10.1114/1.1289457.
- [18] TestAirwayGeneration (Chaste Tutorial). URL: https://chaste.github.io/docs/user-tutorials/airwaygeneration/.

Abstract in lingua italiana

Durante la gravidanza, le vie aeree fetali sono riempite con un liquido noto come fluido polmonare fetale, essenziale per lo sviluppo della larghezza delle vie aeree. Di conseguenza, alla nascita, il sistema respiratorio deve espellere questo liquido per permettere l'aerazione. L'assorbimento del liquido inizia pochi giorni prima della nascita. Durante il parto naturale, il liquido viene espulso dalla bocca e dal naso a causa della compressione del torace del neonato. Nei neonati a termine, la probabilità di complicazioni durante l'aerazione è molto bassa. Tuttavia, lo scenario è notevolmente diverso per i neonati pretermine. Gli obiettivi di questo progetto sono:

Generare un modello a partire dalle scansioni TC neonatali per ottimizzare la generazione delle vie aeree, assicurando che aderiscano alle caratteristiche morfometriche a diverse età.

Sviluppare un modello meccanico open-source che consenta la simulazione delle proprietà meccaniche insieme alla dinamica dei fluidi.

Utilizzando una scansione TC di un neonato, abbiamo estratto la linea centrale delle principali vie aeree e le superfici dei lobi. Successivamente, abbiamo ricostruito l'anatomia delle vie aeree mancanti utilizzando un algoritmo statistico originariamente proposto per i polmoni degli adulti, che abbiamo adattato per il polmone del neonato. Questo algoritmo ha assegnato i diametri delle vie aeree in base alle proporzioni misurate nel polmone del neonato. Abbiamo implementato un analogo meccanico delle vie aeree e degli acini in Julia. Questo modello tiene conto dei cambiamenti relativi all'aerazione alla nascita, permettendo la simulazione del flusso del liquido fetale verso la periferia mentre l'aria entra nelle vie aeree.

Parole chiave: modello morfometrico, processo di aerazione, polmone, neonato, sistema respiratorio