
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2009; month=12; day=24; hr=7; min=21; sec=57; ms=467;]

Validated By CRFValidator v 1.0.3

Application No: 10589253 Version No: 1.0

Input Set:

Output Set:

Started: 2009-12-04 14:25:34.960

Finished: 2009-12-04 14:25:36.433

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 473 ms

Total Warnings: 14

Total Errors: 0

No. of SeqIDs Defined: 17

Actual SeqID Count: 17

Error code		Error Descripti	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)

SEQUENCE LISTING

<110>	The University of York
	Milner, Anne J
<120>	Induction of Apoptosis by Inhibition of Sirtuin SIRT1 Expression
<130>	5229-2
<140>	10589253
<141>	2009-12-04
<150>	PCT/GB2005/000459
<151>	2005-02-11
<150>	GB 0403041.7
<151>	2004-02-11
<160>	17
<170>	PatentIn version 3.1
<210>	1
<211>	2241
<212>	DNA
<213>	Homo sapiens
<400>	
atggco	gacg aggcggccct cgcccttcag cccggcggct cccctcggc ggcggggcc 6
gacago	gagg ccgcgtcgtc ccccgccggg gagccgctcc gcaagaggcc gcggagagat 12

ggtcccggcc tcgagcggag cccgggcgag cccggtgggg cggccccaga gcgtgaggtg 180

ccggcggcgg ccaggggctg	cccgggtgcg	gcggcggcgg	cgctgtggcg	ggaggcggag	240
gcagaggcgg cggcggcagg	cggggagcaa	gaggcccagg	cgactgcggc	ggctggggaa	300
ggagacaatg ggccgggcct	gcagggccca	tctcgggagc	caccgctggc	cgacaacttg	360
tacgacgaag acgacgacga	cgagggcgag	gaggaggaag	aggcggcggc	ggcggcgatt	420
gggtaccgag ataaccttct	gttcggtgat	gaaattatca	ctaatggttt	tcattcctgt	480
gaaagtgatg aggaggatag	agcctcacat	gcaagctcta	gtgactggac	tccaaggcca	540
cggataggtc catatacttt	tgttcagcaa	catcttatga	ttggcacaga	tcctcgaaca	600
attcttaaag atttattgcc	ggaaacaata	cctccacctg	agttggatga	tatgacactg	660
tggcagattg ttattaatat	cctttcagaa	ccaccaaaaa	ggaaaaaaag	aaaagatatt	720
aatacaattg aagatgctgt	gaaattactg	caagagtgca	aaaaaattat	agttctaact	780
ggagctgggg tgtctgtttc	atgtggaata	cctgacttca	ggtcaaggga	tggtatttat	840
gctcgccttg ctgtagactt	cccagatctt	ccagatcctc	aagcgatgtt	tgatattgaa	900
tatttcagaa aagatccaag	accattcttc	aagtttgcaa	aggaaatata	tcctggacaa	960
ttccagccat ctctctgtca	caaattcata	gccttgtcag	ataaggaagg	aaaactactt	1020
cgcaactata cccagaacat	agacacgctg	gaacaggttg	cgggaatcca	aaggataatt	1080
cagtgtcatg gttcctttgc	aacagcatct	tgcctgattt	gtaaatacaa	agttgactgt	1140
gaagctgtac gaggagatat	ttttaatcag	gtagttcctc	gatgtcctag	gtgcccagct	1200
gatgaaccgc ttgctatcat	gaaaccagag	attgtgtttt	ttggtgaaaa	tttaccagaa	1260
cagtttcata gagccatgaa	gtatgacaaa	gatgaagttg	acctcctcat	tgttattggg	1320
tcttccctca aagtaagacc	agtagcacta	attccaagtt	ccatacccca	tgaagtgcct	1380
cagatattaa ttaatagaga	acctttgcct	catctgcatt	ttgatgtaga	gcttcttgga	1440
gactgtgatg tcataattaa	tgaattgtgt	cataggttag	gtggtgaata	tgccaaactt	1500
tgctgtaacc ctgtaaagct	ttcagaaatt	actgaaaaac	ctccacgaac	acaaaaagaa	1560
ttggcttatt tgtcagagtt	gccacccaca	cctcttcatg	tttcagaaga	ctcaagttca	1620
ccagaaagaa cttcaccacc	agattcttca	gtgattgtca	cacttttaga	ccaagcagct	1680
aagagtaatg atgatttaga	tgtgtctgaa	tcaaaaggtt	gtatggaaga	aaaaccacag	1740
gaagtacaaa cttctaggaa	tgttgaaagt	attgctgaac	agatggaaaa	tccggatttg	1800
aagaatgttg gttctagtac	tggggagaaa	aatgaaagaa	cttcagtggc	tggaacagtg	1860

ć	agaaaatgct	ggcctaatag	agtggcaaag	gagcagatta	gtaggcggct	tgatggtaat	1920
(cagtatctgt	ttttgccacc	aaatcgttac	attttccatg	gcgctgaggt	atattcagac	1980
1	cctgaagatg	acgtcttatc	ctctagttct	tgtggcagta	acagtgatag	tgggacatgc	2040
(cagagtccaa	gtttagaaga	acccatggag	gatgaaagtg	aaattgaaga	attctacaat	2100
(ggcttagaag	atgagcctga	tgttccagag	agagctggag	gagctggatt	tgggactgat	2160
(ggagatgatc	aagaggcaat	taatgaagct	atatctgtga	aacaggaagt	aacagacatg	2220
ć	aactatccat	caaacaaatc	a				2241

<210> 2

<211> 747

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Asp Glu Ala Ala Leu Ala Leu Gln Pro Gly Gly Ser Pro Ser 1 10 15

Ala Ala Gly Ala Asp Arg Glu Ala Ala Ser Ser Pro Ala Gly Glu Pro 20 25 30

Leu Arg Lys Arg Pro Arg Arg Asp Gly Pro Gly Leu Glu Arg Ser Pro 35 40 45

Gly Glu Pro Gly Gly Ala Ala Pro Glu Arg Glu Val Pro Ala Ala Ala 50 55 60

Arg Gly Cys Pro Gly Ala Ala Ala Ala Ala Leu Trp Arg Glu Ala Glu 65 70 75 80

Ala Glu Ala Ala Ala Gly Gly Glu Glu Ala Gln Ala Thr Ala 85 90 95

Ala Ala Gly Glu Gly Asp Asn Gly Pro Gly Leu Gln Gly Pro Ser Arg

Glu Pro Pro Leu Ala Asp Asn Leu Tyr Asp Glu Asp Asp Asp Asp Glu
115 120 125

Gly	Glu 130	Glu	Glu	Glu	Glu	Ala 135	Ala	Ala	Ala	Ala	Ile 140	Gly	Tyr	Arg	Asp
Asn 145	Leu	Leu	Phe	Gly	Asp 150	Glu	Ile	Ile	Thr	Asn 155	Gly	Phe	His	Ser	Cys 160
Glu	Ser	Asp	Glu	Glu 165	Asp	Arg	Ala	Ser	His 170	Ala	Ser	Ser	Ser	Asp 175	Trp
Thr	Pro	Arg	Pro 180	Arg	Ile	Gly	Pro	Tyr 185	Thr	Phe	Val	Gln	Gln 190	His	Leu
Met	Ile	Gly 195	Thr	Asp	Pro		Thr 200		Leu	Lys	Asp	Leu 205	Leu	Pro	Glu
Thr	Ile 210	Pro	Pro	Pro	Glu	Leu 215	Asp	Asp	Met.	Thr	Leu 220	Trp	Gln	Ile	Val
Ile 225	Asn	Ile	Leu	Ser	Glu 230	Pro	Pro	Lys	Arg	Lys 235	Lys	Arg	Lys	Asp	Ile 240
Asn	Thr	Ile	Glu	Asp 245	Ala	Val	Lys	Leu	Leu 250	Gln	Glu	Cys	Lys	Lys 255	Ile
Ile	Val	Leu	Thr 260	Gly	Ala	Gly	Val	Ser 265	Val	Ser	Cys	Gly	Ile 270	Pro	Asp
Phe	Arg	Ser 275	Arg	Asp	Gly	Ile	Tyr 280	Ala	Arg	Leu	Ala	Val 285	Asp	Phe	Pro
Asp	Leu 290	Pro	Asp	Pro	Gln	Ala 295	Met	Phe	Asp	Ile	Glu 300	Tyr	Phe	Arg	Lys
Asp 305	Pro	Arg	Pro	Phe	Phe 310	Lys	Phe	Ala	Lys	Glu 315	Ile	Tyr	Pro	Gly	Gln 320
Phe	Gln	Pro	Ser	Leu 325	Cys	His	Lys	Phe	Ile 330	Ala	Leu	Ser	Asp	Lys 335	Glu
Gly	Lys	Leu	Leu	Arg	Asn	Tyr	Thr	Gln	Asn	Ile	Asp	Thr	Leu	Glu	Gln

Val	Ala	Gly 355	Ile	Gln	Arg	Ile	Ile 360	Gln	Cys	His	Gly	Ser 365	Phe	Ala	Thr
Ala	Ser 370	Cys	Leu	Ile	Cys	Lys 375	Tyr	Lys	Val	Asp	Cys 380	Glu	Ala	Val	Arg
Gly 385	Asp	Ile	Phe	Asn	Gln 390	Val	Val	Pro	Arg	Cys 395	Pro	Arg	Cys	Pro	Ala 400
Asp	Glu	Pro	Leu	Ala 405	Ile	Met	Lys	Pro	Glu 410	Ile	Val	Phe	Phe	Gly 415	Glu
Asn	Leu	Pro	Glu 420	Gln	Phe	His	Arg	Ala 425	Met	Lys	Tyr	Asp	Lys 430	Asp	Glu
Val	Asp	Leu 435	Leu	Ile	Val	Ile	Gly 440	Ser	Ser	Leu	Lys	Val 445	Arg	Pro	Val
Ala	Leu 450	Ile	Pro	Ser	Ser	Ile 455	Pro	His	Glu	Val	Pro 460	Gln	Ile	Leu	Ile
Asn 465	Arg	Glu	Pro	Leu	Pro 470	His	Leu	His	Phe	Asp 475	Val	Glu	Leu	Leu	Gly 480
Asp	Cys	Asp	Val	Ile 485	Ile	Asn	Glu	Leu	Cys 490	His	Arg	Leu	Gly	Gly 495	Glu
Tyr	Ala	Lys	Leu 500	Cys	Cys	Asn	Pro	Val 505	Lys	Leu	Ser	Glu	Ile 510	Thr	Glu
Lys	Pro	Pro 515	Arg	Thr	Gln	Lys	Glu 520	Leu	Ala	Tyr	Leu	Ser 525	Glu	Leu	Pro
Pro	Thr 530	Pro	Leu	His	Val	Ser 535	Glu	Asp	Ser	Ser	Ser 540	Pro	Glu	Arg	Thr
Ser 545	Pro	Pro	Asp	Ser	Ser 550	Val	Ile	Val	Thr	Leu 555	Leu	Asp	Gln	Ala	Ala 560
Lys	Ser	Asn	Asp	Asp 565	Leu	Asp	Val	Ser	Glu 570	Ser	Lys	Gly	Cys	Met 575	Glu

Glu Lys Pro Gln Glu Val Gln Thr Ser Arg Asn Val Glu Ser Ile Ala Glu Gln Met Glu Asn Pro Asp Leu Lys Asn Val Gly Ser Ser Thr Gly Glu Lys Asn Glu Arg Thr Ser Val Ala Gly Thr Val Arg Lys Cys Trp Pro Asn Arg Val Ala Lys Glu Gln Ile Ser Arg Arg Leu Asp Gly Asn Gln Tyr Leu Phe Leu Pro Pro Asn Arg Tyr Ile Phe His Gly Ala Glu Val Tyr Ser Asp Ser Glu Asp Asp Val Leu Ser Ser Ser Cys Gly Ser Asn Ser Asp Ser Gly Thr Cys Gln Ser Pro Ser Leu Glu Glu Pro Met Glu Asp Glu Ser Glu Ile Glu Glu Phe Tyr Asn Gly Leu Glu Asp Glu Pro Asp Val Pro Glu Arg Ala Gly Gly Ala Gly Phe Gly Thr Asp Gly Asp Asp Gln Glu Ala Ile Asn Glu Ala Ile Ser Val Lys Gln Glu Val Thr Asp Met Asn Tyr Pro Ser Asn Lys Ser <210> 3 <211> 21

<220>

<212> DNA

<223> SIRT1 sense primer

<213> Artificial sequence

<400> tcagtgt	3 ccat ggttcctttg c	21
<210>	4	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	SIRT1 antisense primer	
<400>	4	
aatctg	ctcc tttgccactc t	21
<210>	5	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Lamin A sense primer	
<400>	5	
aagcag	cgtg agtttgagag c	21
<210>	6	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Lamin A antisense primer	

<400> 6

agggtgaact ttggtgggaa c

<210>	7	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	GAPDH sense primer	
<400>	7	
cggagt	caac ggatttggtc gtat	24
<210>	8	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	GAPDH antisense primer	
<400>	8	
agcctt	ctcc atggtggtga agac	24
<210>	9	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Vimentin sense primer	
<400>		
qccaact	taca tcgacaaggt g	21

```
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Vimentin antisense primer
<400> 10
gagcaggtct tggtattcac g
                                                                   21
<210> 11
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> SIRT1 siRNA sequence
<400> 11
acuuugcugu aacccuguat t
<210> 12
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> SIRT1 siRNA sequence
<400> 12
                                                                   21
uacaggguua cagcaaagut t
<210> 13
```

<211> 21

```
<212> DNA
<213> Artificial sequence
<220>
<223> Lamin A/C siRNA sequence
<400> 13
                                                                   21
cuggacuucc agaagaacat t
<210> 14
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Lamin A/C siRNA sequence
<400> 14
uguucuucug gaaguccagt t
                                                                   21
<210> 15
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> BRC-ABL siRNA sequence
<400> 15
                                                                   21
agaguucaaa agcccuucat t
<210> 16
<211> 21
<212> DNA
```

<213> Artificial sequence

<223> BRC-ABL siRNA sequence

<400> 16

ugaagggcuu uugaacucut t

<210> 17

<211> 2241

<212> DNA

<213> Homo sapiens

<400> 17						
tgatttgttt	gatggatagt	tcatgtctgt	tacttcctgt	ttcacagata	tagcttcatt	60
aattgcctct	tgatcatctc	catcagtccc	aaatccagct	cctccagctc	tctctggaac	120
atcaggctca	tcttctaagc	cattgtagaa	ttcttcaatt	tcactttcat	cctccatggg	180
ttcttctaaa	cttggactct	ggcatgtccc	actatcactg	ttactgccac	aagaactaga	240
ggataagacg	tcatcttcag	agtctgaata	tacctcagcg	ccatggaaaa	tgtaacgatt	300
tggtggcaaa	aacagatact	gattaccatc	aagccgccta	ctaatctgct	cctttgccac	360
tctattaggc	cagcattttc	tcactgttcc	agccactgaa	gttctttcat	ttttctcccc	420
agtactagaa	ccaacattct	tcaaatccgg	attttccatc	tgttcagcaa	tactttcaac	480
attcctagaa	gtttgtactt	cctgtggttt	ttcttccata	caaccttttg	attcagacac	540
atctaaatca	tcattactct	tagctgcttg	gtctaaaagt	gtgacaatca	ctgaagaatc	600
tggtggtgaa	gttctttctg	gtgaacttga	gtcttctgaa	acatgaagag	gtgtgggtgg	660
caactctgac	aaataagcca	attctttttg	tgttcgtgga	ggtttttcag	taatttctga	720
aagctttaca	gggttacagc	aaagtttggc	atattcacca	cctaacctat	gacacaattc	780
attaattatg	acatcacagt	ctccaagaag	ctctacatca	aaatgcagat	gaggcaaagg	840
ttctctatta	attaatatct	gaggcacttc	atggggtatg	gaacttggaa	ttagtgctac	900
tggtcttact	ttgagggaag	acccaataac	aatgaggagg	tcaacttcat	ctttgtcata	960
cttcatggct	ctatgaaact	gttctggtaa	attttcacca	aaaaacacaa	tctctggttt	1020

catgatagca agcggttcat cagctgggca cctaggacat cgaggaacta cctgattaaa

aatatctcct cgtacagctt	cacagtcaac	tttgtattta	caaatcaggc	aagatgctgt	1140
tgcaaaggaa ccatgacact	gaattatcct	ttggattccc	gcaacctgtt	ccagcgtgtc	1200
tatgttctgg gtatagttgc	gaagtagttt	tccttcctta	tctgacaagg	ctatgaattt	1260
gtgacagaga gatggctgga	attgtccagg	atatatttcc	tttgcaaact	tgaagaatgg	1320
tcttggatct tttctgaaat	attcaatatc	aaacatcgct	tgaggatctg	gaagatctgg	1380
gaagtctaca gcaaggcgag	cataaatacc	atcccttgac	ctgaagtcag	gtattccaca	1440
tgaaacagac accccagctc	cagttagaac	tataattttt	ttgcactctt	gcagtaattt	1500
cacagcatct tcaattgtat	taatatcttt	tcttttttc	ctttttggtg	gttctgaaag	1560
gatattaata acaatctgcc	acagtgtcat	atcatccaac	tcaggtggag	gtattgtttc	1620
cggcaataaa tctttaagaa	ttgttcgagg	atctgtgcca	atcataagat	gttgctgaac	1680
aaaagtatat ggacctatcc	gtggccttgg	agtccagtca	ctagagcttg	catgtgaggc	1740
tctatcctcc tcatcacttt	cacaggaatg	aaaaccatta	gtgataattt	catcaccgaa	1800
cagaaggtta tctcggtacc	caatcgccgc	cgccgccgcc	tcttcctcct	cctcgccctc	1860
gtcgtcgtcg tcttcgtcgt	acaagttgtc	ggccagcggt	ggctcccgag	atgggccctg	1920
caggcccggc ccattgtctc	cttccccagc	cgccgcagtc	gcctgggcct	cttgctcccc	1980
gcctgccgcc gccgcctctg	cctccgcctc	ccgccacagc	gccgccgccg	ccgcacccgg	2040
gcagcccctg gccgccgccg	gcacctcacg	ctctggggcc	gccccaccgg	gctcgcccgg	2100
gctccgctcg aggccgggac	catctctccg	cggcctcttg	cggagcggct	ccccggcggg	2160
ggacgacgcg gcctccctgt	cggcccccgc	cgccgagggg	gagccgccgg	gctgaagggc	2220
gagggccgcc tcgtccgcca	t				2241