12. előadás

Konvex és konkáv függvények

Ebben a pontban függvénygrafikonok bizonyos "alaki" tulajdonságainak a leírásával foglalkozunk. A címben jelzett fogalmakat tetszőleges $I \subset \mathbb{R}$ intervallumon fogjuk értelmezni. I tehát lehet korlátos vagy nem korlátos, nyílt, zárt, félig nyílt vagy félig zárt intervallum.

A konvexitás és a konkávitás szemléletes jelentése

Gondoljunk valós-valós függvény monotonitásainak a fogalmaira. Világos, hogy egy intervallumon értelmezett függvény többféleképpen is lehet például szigorúan monoton növekedő:

A jobb oldali grafikonnal ellentétben a másik kettő bizonyos jellegzetes "szabályosságot" mutat. Ezeket a tulajdonságokat célszerű definiálni. Az f függvényt (bal oldali ábra) **konvexnek**, g-t pedig (középső ábra) **konkávnak** fogjuk nevezni. A definíciók megfogalmazásához húzzunk be húrokat:

Szemléletesen világos, hogy az I intervallum tetszőleges a < b pontjai esetén az f (a g) függvény grafikonjának az (a,b) intervallumhoz tartozó része a P_a és P_b pontokat összekötő húr alatt (felett) van. A szóban forgó húr egyenesének az egyenlete:

$$y = \frac{f(b) - f(a)}{b - a}(x - a) + f(a), \text{ vagy } y = \frac{f(b) - f(a)}{b - a}(x - b) + f(b).$$

1

A fentiek alapján eléggé természetesek a következő definíciók.

A konvexitás és a konkávitás fogalma

1. definíciók. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $I \subset \mathcal{D}_f$ egy intervallum. Ha $\forall a, b \in I$, a < b esetén igaz az, hogy

- $f(x) \le \frac{f(b) f(a)}{b a}(x a) + f(a) \quad (\forall x \in (a, b)),$ akkor azt mondjuk, hogy az f függvény **konvex az** I **intervallumon**;
- $f(x) \ge \frac{f(b) f(a)}{b a}(x a) + f(a) \quad (\forall x \in (a, b)),$ $akkor\ azt\ mondjuk,\ hogy\ az\ f\ f\"{u}ggv\'{e}ny\ konk\'{a}v\ az\ I\ intervallumon,$

Szigorú egyenlőtlenségek esetén **szigorúan konvex**, illetve **szigorúan konkáv** függvények-ről beszélünk.

Megjegyzés. Az a tulajdonság, hogy f konvex (ill. konkáv) I-n, szemléletesen tehát azt jelenti, hogy $\forall a, b \in I$, a < b esetén a függvény grafikonjának az (a, b) intervallumhoz tartozó része az (a, f(a)) és (b, f(b)) pontokat összekötő húr alatt (ill. felett) van.

Nyilvánvaló, hogy f akkor és csak akkor konvex I-n, ha -f konkáv I-n.

Egy függvény lehet konvex, de nem szigorúan konvex. Könnyű ellenőrizni, hogy például az $f(x) := |x| \ (x \in \mathbb{R})$ függvény konvex, de nem szigorúan konvex \mathbb{R} -en.

Ha az f függvény lineáris az I intervallumon, azaz f(x) = cx + d valamely c és d állandóval, akkor a fenti egyenlőtlenségekben egyenlőség áll minden x-re. Tehát egy lineáris függvény egyszerre konvex és konkáv is, de nem szigorú értelemben.

Egy ekvivalens átfogalmazás

Az alkalmazások szempontjából érdemes a konvexitást jellemző egyenlőtlenséget más formában is megadni.

1. tétel. $Az \ f \in \mathbb{R} \to \mathbb{R}$ függvény akkor és csak akkor konvex az $I \subset \mathbb{R}$ intervallumon, ha

$$\forall a, b \in I, \ a < b \ \text{\'es} \ \forall \lambda \in (0, 1) \ \text{eset\'en}$$

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b).$$

Megjegyzés. Szigorúan konvex, konkáv, illetve szigorúan konkáv függvényekre hasonló állítások érvényesek. ■

Bizonyítás. Legyen $a, b \in I$, a < b és $0 < \lambda < 1$. Ekkor

$$x = \lambda a + (1 - \lambda)b \in (a, b),$$

mert

$$a = \lambda a + (1 - \lambda)a < \lambda a + (1 - \lambda)b = x < \lambda b + (1 - \lambda)b = b.$$

Másrészt az (a, b) intervallum minden eleme előálll $\lambda a + (1 - \lambda)b$ alakban, ahol $0 < \lambda < 1$. Ha ugyanis $x \in (a, b)$, akkor a

$$\lambda := \frac{b - x}{b - a}$$

választás megfelelő, mert

$$\frac{b-x}{b-a} \cdot a + \left(1 - \frac{b-x}{b-a}\right) \cdot b = x.$$

A definíció szerint az f függvény konvex az I intervallumon, ha $\forall a, b \in I, a < b$ esetén

$$f(x) \le \frac{f(b) - f(a)}{b - a}(x - a) + f(a) \qquad (\forall x \in (a, b)).$$

Ha a < x < b és $x = \lambda a + (1 - \lambda)b$, akkor a fenti egyenlőtlenség azzal ekvivalens, hogy

$$f(\lambda a + (1 - \lambda)b) \le \frac{f(b) - f(a)}{b - a} (\lambda a + (1 - \lambda)b - a) + f(a) =$$

$$= \frac{f(b) - f(a)}{b - a} (1 - \lambda)(b - a) + f(a) = \lambda f(a) + (1 - \lambda)f(b),$$

és ez az állítás bizonyítását jelenti.

Példák

Most a definíciók alapján vizsgáljuk meg néhány "szokásos" alapfüggvény konvexitási és konkávitási tulajdonságait.

Ezek a példák azt is illusztrálják, hogy általában nem egyszerű feladat ellenőrizni a definíciókban megadott egyenlőtlenségeket.

Később fogunk megismerkedni a **differenciálszámítás** legfontosabb eredményeivel és eszköztárával. Ez a témakör a matematikai analízisnek, sőt az egész matematikának és az alkalmazásoknak is egyik igen fontos fejezete. A differenciálszámítás a gyakorlatban jól használható általános módszert ad többek között függvények tulajdonságainak (pl. monotonitás, konvexitás) a leírásához.

1. példa. Legyen

$$f(x) := x^n \quad (x \in \mathbb{R}).$$

Bizonyítsuk be a következő állításokat:

1º Ha $n=2,3,\ldots$ akkor f szigorúan konvex $[0,+\infty)$ -en.

2º Ha n=2k $(k=1,2,\ldots)$, akkor f szigorúan konvex $(-\infty,0]$ -n.

3º Ha n=2k+1 $(k=1,2,\ldots)$, akkor f szigorúan konkáv $(-\infty,0]$ -n.

 $\mathbf{4}^{o}$ Ha n=2k $(k=1,2,\ldots)$, akkor f szigorúan konvex \mathbb{R} -en.

Megoldás.

 ${\bf 1^o}$ Legyen $2 \le n \in \mathbb{N}$ egy rögzített természetes szám. Azt kell bebizonyítani, hogy tetszőleges $0 \le a < b < +\infty$ esetén

$$x^n < \frac{b^n - a^n}{b - a} (x - a) + a^n \quad (\forall x \in (a, b)).$$

Alkalmazzuk az $\alpha^n - \beta^n = (\alpha - \beta)(\alpha^{n-1} + \alpha^{n-2}\beta + \dots + \beta^{n-1})$ azonosságot az $\alpha = x, \beta = a$ és az $\alpha = b, \beta = a$ szereposztással, majd rendezzük a fenti egyenlőtlenséget. Ekkor azt kapjuk, hogy

$$x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1} < b^{n-1} + b^{n-2}a + \dots + ba^{n-2} + a^{n-1}$$

Mivel $0 \le a < x < b$, ezért ez az egyenlőtlenség nyilvánvaló. Ezzel az $\mathbf{1}^o$ állítást igazoltuk.

 2^{o} Legyen n=2k $(k=1,2,\ldots)$ egy rögzített páros szám. Azt kell megmutatni,

(*)
$$x^{2k} < \frac{b^{2k} - a^{2k}}{b - a} (x - a) + a^{2k}, \quad \text{ha } -\infty < a < x < b \le 0.$$

Az előzőekhez hasonlóan ebből az adódik, hogy

$$(**)$$

$$x^{2k-1} + x^{2k-2}a + x^{2k-3}a^2 + a^{2k-2} + a^{2k-1} < b^{2k-1} + b^{2k-2}a + b^{2k-3}a^2 + b^{2k-2} + a^{2k-1}.$$

Itt a $-\infty < a < x < b \le 0$ feltétel miatt az összegek mindegyik tagja ≤ 0 , és az egyenlőtlenség két oldalán a megfelelő tagok között a < reláció teljesül, mert a páratlan kitevőjű hatványfüggvények szigorúan monoton növekedők a $(-\infty,0]$ intervallumon. Következésképpen (**), így (*) is igaz. Ezzel az 2^o állítást igazoltuk.

 3^{o} Legyen n=2k+1 $(k=1,2,\ldots)$ egy rögzített páratlan szám. Azt kell igazolni,

$$x^{2k+1} > \frac{b^{2k+1} - a^{2k+1}}{b - a} (x - a) + a^{2k+1}, \quad \text{ha } -\infty < a < x < b \le 0.$$

Ebből az előzőekhez hasonlóan azt kapjuk, hogy

$$x^{2k} + x^{2k-1}a + x^{2k-2}a^2 + \dots + xa^{2k-1} + a^{2k} >$$

$$> b^{2k} + b^{2k-1}a + b^{2k-2}a^2 + \dots + ba^{2k-1} + a^{2k}.$$

 $A - \infty < a < x < b \le 0$ feltétel miatt az összegek mindegyik tagja ≥ 0 , és az egyenlőtlenség két oldalán a megfelelő tagok között a > reláció teljesül, mert a páros kitevőjű hatványfüggvények szigorúan monoton csökkenők a $(-\infty, 0]$ intervallumon. Ezzel az $\mathbf{3}^{o}$ állítást igazoltuk.

 ${\bf 4^o}$ Rögzítsünk egy n=2k $(k=1,2,\ldots)$ páros számot. Azt kell megmutatni, hogy

(
$$\triangle$$
) $x^{2k} < \frac{b^{2k} - a^{2k}}{b - a} (x - a) + a^{2k}, \text{ ha } -\infty < a < x < b < +\infty.$

Az a és b helyzetétől függően három esetet különböztetünk meg:

(i)
$$0 < a < b$$
, (ii) $-\infty < a < b < 0$, (iii) $-\infty < a < 0 < b < \infty$.

Az (i), illetve a (ii) esetekben az állítást 1^o -ben, illetve 2^o -ben már beláttuk.

A (iii) igazolása. A (\triangle) állítás bizonyításához tekintsük először a $0 \le x < b$ pontokat. Mivel f szigorúan konvex a $[0, +\infty)$ intervallumon, ezért

$$x^{2k} < \frac{b^{2k} - 0^{2k}}{b - 0}(x - 0) + 0^{2k} < \frac{b^{2k} - a^{2k}}{b - a}(x - b) + b^{2k} = \frac{b^{2k} - a^{2k}}{b - a}(x - a) + a^{2k},$$

vagyis (\triangle) teljesül, ha $0 \le x < b$. Az $x \in (a,0]$ pontokban (\triangle) igazolása hasonló. Így a ${\bf 4}^o$ állítást bebizonyítottuk. \blacksquare

2. példa. Legyen

$$f(x) := \frac{1}{x^n} \quad (x \in \mathbb{R} \setminus \{0\}).$$

Bizonyítsuk be a következő állításokat:

 $\mathbf{1}^{o}$ Ha $n=1,2,3,\ldots$, akkor f szigorúan konvex $(0,+\infty)$ -en.

2º Ha n=2k $(k=1,2,\ldots)$, akkor f szigorúan konvex $(-\infty,0)$ -n.

3º Ha n=2k+1 $(k=1,2,\ldots)$, akkor f szigorúan konkáv $(-\infty,0)$ -n.

Megoldás.

 $\mathbf{1}^{o}$ Legyen $n=1,2,\ldots$ egy rögzített természetes szám. Azt kell bebizonyítani, hogy

$$\frac{1}{x^n} < \frac{\frac{1}{b^n} - \frac{1}{a^n}}{b - a} (x - a) + \frac{1}{a^n}, \text{ ha } 0 < a < x < b < +\infty.$$

Ez az egyenlőtlenség elemi átalakításokkal igazolható. Például, ha $\underline{n=1}$, akkor

$$\frac{1}{x} < \frac{\frac{1}{b} - \frac{1}{a}}{b - a}(x - a) + \frac{1}{a} \iff 0 < a(b - x),$$

és ez nyilván igaz, ha $0 < a < x < b < +\infty$.

Ha n=2, akkor

$$\frac{1}{x^2} < \frac{\frac{1}{b^2} - \frac{1}{a^2}}{b - a}(x - a) + \frac{1}{a^2} \iff 0 < bx(x - a) + a(b^2 - x^2),$$

és ez nyilván igaz, ha $0 < a < x < b < +\infty$.

 ${f 2^o}$ Legyen $n=2k\ (k=1,2,\ldots)$ egy rögzített páros szám és $-\infty < a < x < b < 0$. Ekkor $0<-b<-x<-a<+\infty$. Mivel f szigorúan konvex $(0,+\infty)$ -n, ezért

$$\frac{1}{(-x)^{2k}} < \frac{\frac{1}{(-b)^{2k}} - \frac{1}{(-a)^{2k}}}{(-b) - (-a)} \left((-x) - (-a) \right) + \frac{1}{(-a)^{2k}}, \iff \frac{1}{x^{2k}} < \frac{\frac{1}{b^{2k}} - \frac{1}{a^{2k}}}{b - a} \left(x - a \right) + \frac{1}{a^{2k}}.$$

Ez pedig azt jelenti, hogy az f függvény szigorúan konvex a $(-\infty,0)$ intervallumon.

 ${f 3}^o$ Legyen n=2k+1 $(k=1,2,\ldots)$ egy rögzített páratlan szám és $-\infty < a < x < b < 0$. Ekkor $0<-b<-x<-a<+\infty$. Mivel f szigorúan konvex $(0,+\infty)$ -n, ezért

$$\frac{1}{(-x)^{2k+1}} < \frac{\frac{1}{(-b)^{2k+1}} - \frac{1}{(-a)^{2k+1}}}{(-b) - (-a)} \left((-x) - (-a) \right) + \frac{1}{(-a)^{2k+1}}, \iff \\
\iff -\frac{1}{x^{2k+1}} < -\frac{\frac{1}{b^{2k+1}} - \frac{1}{a^{2k+1}}}{b-a} (x-a) - \frac{1}{a^{2k+1}} \iff \\
\frac{1}{x^{2k+1}} > \frac{\frac{1}{b^{2k+1}} - \frac{1}{a^{2k+1}}}{b-a} (x-a) + \frac{1}{a^{2k+1}}.$$

Ez az egyenlőtlenség meg azt jelenti, hogy az f függvény szigorúan konkáv a $(-\infty, 0)$ intervallumon. \blacksquare

3. példa. Legyen $2 \le q \in \mathbb{N}$ és

$$f(x) := \sqrt[q]{x} \quad (x \in [0, +\infty)).$$

Mutassuk meg, hogy az f függvény szigorúan konkáv a $[0, +\infty)$ intervallumon.

Megoldás. Rögzítsünk egy $q \ge 2$ természetes számot. Azt kell bebizonyítani, hogy

(*)
$$\sqrt[q]{x} > \frac{\sqrt[q]{b} - \sqrt[q]{a}}{b - a}(x - a) + \sqrt[q]{a}, \text{ ha } 0 < a < x < b < +\infty.$$

Elemi átalakítások után azt kapjuk, hogy (*) ekvivalens a

$$(\sqrt[q]{b})^{q-1} + (\sqrt[q]{b})^{q-2} \cdot \sqrt[q]{a} + \dots + (\sqrt[q]{a})^{q-1} > (\sqrt[q]{x})^{q-1} + (\sqrt[q]{x})^{q-2} \cdot \sqrt[q]{a} + \dots + (\sqrt[q]{a})^{q-1}$$

egyenlőtlenséggel. Ez pedig nyilván igaz, hiszen az f függvény szigorúan monoton növekedő a $[0, +\infty)$ intervallumon és $0 < a < x < b < +\infty$. Ezzel az állítást bebizonyítottuk.

SPECIÁLIS FÜGGVÉNYEK 1.

1. Hatványfüggvények

Legyen $n=0,1,2,\ldots$ egy rögzített természetes szám. **Hatványfüggvénynek** nevezzük a

$$h_n(x) := x^n \quad (x \in \mathbb{R})$$

függvényt.

Ha $\underline{n} = 0$, akkor az

$$h_0(x) := 1 \quad (x \in \mathbb{R})$$

konstans függvényt kapjuk. Ennek tulajdonságai:

- $\mathcal{R}_{h_0} = \{1\},$
- páros,
- \nearrow és $\searrow \mathbb{R}$ -en,
- folytonos \mathbb{R} -en,
- $\bullet \lim_{x \to -\infty} h_0(x) = \lim_{x \to +\infty} h_0(x) = 1,$
- \bullet konvex és konkáv is \mathbb{R} -en.

Ha $\underline{n} = \underline{1}$, akkor az

$$h_1(x) := x \quad (x \in \mathbb{R})$$

identitás függvényt kapjuk. Ennek tulajdonságai:

- páratlan,
- \uparrow \mathbb{R} -en,
- folytonos \mathbb{R} -en,
- $\lim_{x \to -\infty} h_1(x) = -\infty$ és $\lim_{x \to +\infty} h_1(x) = +\infty$,
- $\bullet \mathcal{R}_{h_1} = \mathbb{R},$
- ullet konvex és konkáv is \mathbb{R} -en.

A függvények grafikonjai:

1. tétel. Legyen $2 \le n \in \mathbb{N}$ egy rögzített természetes szám. Ekkor a

$$h_n(x) := x^n \quad (x \in \mathbb{R})$$

hatványfüggvényre az alábbi tulajdonságok teljesülnek:

 $\mathbf{1}^o$ Ha n=2k $(k=1,2,\ldots)$ páros, akkor a h_{2k} függvény

- páros,
- \downarrow $(-\infty, 0]$ -n és \uparrow $[0, +\infty)$ -n,
- 0 abszolút minimumhely,
- $folytonos \mathbb{R}$ -en,
- $\lim_{x \to -\infty} h_{2k}(x) = \lim_{x \to +\infty} h_{2k}(x) = +\infty,$
- $\bullet \ \mathcal{R}_{h_{2k}} = [0, +\infty),$
- $szigor\'uan\ konvex\ \mathbb{R}$ -en.

 $\mathbf{2}^{o}$ Ha n=2k+1 $(k=1,2,\ldots)$ páratlan, akkor a h_{2k+1} függvény

- páratlan,
- \uparrow \mathbb{R} -en,
- $folytonos \mathbb{R}$ -en,
- $\lim_{x \to -\infty} h_{2k+1}(x) = -\infty$ és $\lim_{x \to +\infty} h_{2k+1}(x) = +\infty$,
- $\bullet \ \mathcal{R}_{h_{2k+1}} = \mathbb{R},$
- $szigorúan konkáv (-\infty, 0]$ -n és $szigorúan konvex [0, +\infty)$ -n.

A függvények garfikonjai:

$$n=2k\ (k=1,2,\ldots)$$

$$n = 2k + 1 \ (k = 1, 2, \ldots)$$

2. Reciprokfüggvények

2. tétel. Legyen $n = 1, 2, \ldots$ egy rögzített természetes szám. Ekkor a

$$h_{-n}(x) := \frac{1}{x^n} \quad (x \in \mathbb{R} \setminus \{0\})$$

függvényre az alábbi tulajdonságok teljesülnek:

 $\mathbf{1}^{o}$ Ha n=2k $(k=1,2,\ldots)$ páros, akkor a h_{-2k} függvény

- páros,
- \uparrow $(-\infty,0)$ -n és \downarrow $(0,+\infty)$ -n,
- folytonos az $\mathbb{R} \setminus \{0\}$ halmazon,
- $\lim_{x \to -\infty} \frac{1}{x^{2k}} = \lim_{x \to +\infty} \frac{1}{x^{2k}} = 0$, és $\lim_{x \to 0} \frac{1}{x^{2k}} = +\infty$,
- $\bullet \ \mathcal{R}_{h_{-2k}} = (0, +\infty),$
- szigorúan konvex a $(-\infty,0)$ és a $(0,+\infty)$ intervallumokon,

 $\mathbf{2}^{o}$ Ha n=2k+1 $(k=0,1,2,\ldots)$ páratlan, akkor a h_{-2k-1} függvény

- páratlan,
- \downarrow $(-\infty,0)$ -n és \downarrow $(0,+\infty)$ -n,
- folytonos az $\mathbb{R} \setminus \{0\}$ halmazon,
- $\lim_{x \to -\infty} \frac{1}{x^{2k+1}} = \lim_{x \to +\infty} \frac{1}{x^{2k+1}} = 0$ és $\lim_{x \to 0-0} \frac{1}{x^{2k+1}} = -\infty, \lim_{x \to 0+0} \frac{1}{x^{2k+1}} = +\infty,$
- $\bullet \ \mathcal{R}_{h_{-2k-1}} = \mathbb{R} \setminus \{0\},\$
- ullet szigorúan konkáv $(-\infty,0)$ és szigorúan konvex a $(0,+\infty)$ intervallumokon.

A függvények garfikonjai:

$$n=2k$$
 páros

3. Gyökfüggvények

Rögzítsünk egy 2 $\leq q \in \mathbb{N}$ természetes számot. Emlékeztetünk a gyökvonás fogalmára: bármely $x \geq 0$ esetén

$$\alpha := \sqrt[q]{x} = x^{\frac{1}{q}}$$

az az (egyértelműen létező) $\alpha \in [0, +\infty)$ szám, amelyre fennáll az $\alpha^q = x$ egyenlőség. Ennek alapján vezessük be a q-adik gyökfüggvény fogalmát:

$$\sqrt[q]{}: [0,+\infty) \to [0,+\infty)$$

legyen az a függvény, amelyre

$$\sqrt[q]{}(x) := \sqrt[q]{x} = x^{\frac{1}{q}} \quad (x > 0).$$

Ez a függvény a q-adik hatványfüggvény inverzeként is értelmezhető. Azt már tudjuk, hogy a q-adik hatványfüggvény szigorúan monoton növekedő \mathbb{R} -en, ha q páratlan, ezért invertálható. Ha q páros, akkor már nem invertálható, de ha leszűkítjük a $[0, +\infty)$ intervallumra, akkor invertálható, mert ott szigorúan monoton növekedő, azaz minden $q = 2, 3, \ldots$ esetén a

$$h_a(x): [0, +\infty) \to [0, +\infty), h_a(x) := x^q$$

függvény szigorúan monoton növekedő a $[0, +\infty)$ intervallumon, következésképpen invertálható. Egyszerűen meggondolható, hogy

$$h_q^{-1} = \sqrt[q]{}$$
.

Vezessük be a következő jelölést: ha $2 \le q \in \mathbb{N}$, akkor legyen

$$h_{\frac{1}{q}} := h_q^{-1} = \sqrt[q]{}.$$

A következő tételben a q-adik gyökfüggvény eddig megismert tulajdonságait soroljuk fel.

3. tétel. Legyen $q = 2, 3, \ldots$ egy rögzített természetes szám. Ekkor a

$$h_{\frac{1}{q}}(x) := \sqrt[q]{x} = x^{\frac{1}{q}} \quad (x \in [0, +\infty))$$

függvényre az alábbi tulajdonságok teljesülnek:

- $\bullet \uparrow [0, +\infty) n$
- folytonos a $[0, +\infty)$ halmazon,
- $\bullet \lim_{x \to +\infty} \sqrt[q]{x} = +\infty,$
- $\bullet \ \mathcal{R}_{h_{\frac{1}{a}}} = [0, +\infty),$
- szigorúan konkáv a $[0, +\infty)$ intervallumon.

A függvény garfikonja:

A következő ábrán egy koordináta-rendszerben szemléltetjük a h_q és a $\sqrt[q]{}$ függvényeket:

Jegyezzük meg, hogy ha q=2k+1 $(k=1,2,\ldots)$ páratlan szám, akkor a q-adik gyökfüggvényt az egész $\mathbb R$ halmazon is értelmezhetjük, mert a

$$h_{2k+1}(x) := x^{2k+1} \quad (x \in \mathbb{R})$$

függvény szigorúan monoton növekedő \mathbb{R} -en, következésképpen invertálható. A h_{2k+1}^{-1} függvényt (2k+1)-edik gyökfüggvénynek nevezzük. Ez a függvény páratlan és szigorúan monoton növekedő \mathbb{R} -en, szigorúan konvex $(-\infty,0]$ -n és szigorúan konkáv $[0,+\infty)$ -n.

