Variables & Equations

ProMo

August 8, 2025

Contents

1	Variables	
2	root	
3	physical	į
4	macroscopic	,
5	reactions	1
6	macroscopic-reactions	13
7	reactions-macroscopic	1
8	Equations	1
9	Generic	1
10	Interface Link Equation	2

1 Variables

2 root

	var	symbol	documentation	type	units	eqs
11	_	I_tu	identity mapping from $<$ t $>$ to $<$ u $>$	network		
21	$\begin{vmatrix} I_{t,u} \\ u_{N,t,u} \end{vmatrix}$	u_Ntu	input signal in control domain	network		
9	$oxed{S_{I,p}}$	S_Ip	selection matrix interface to control input	network		
3	$F^{source}_{N,I}$	F_NI_source	incidence matrix NI source	network		
2	$F_{N,A}$	F	incidence matrix	network		
19	4	A_Npq	mapping from inputs to outputs	network		
7	$egin{array}{c} A_{N,p,q} \ F^{source}_{N,A} \end{array}$	F_NA_source	incidence matrix NA source	network		
5	$F^{source}{}_{A,I}$	F_AI_source	incidence matrix AI source	network		
17	cz_N	cz_N	output from control	network		
13	C	S_Aq	selection matrix arcs to outputs	network		
14	$egin{array}{c} S_{I,q} \ S_{N,p,q} \end{array}$	S_Npu	selection matrix for stacker	network		
16	mv_I	mv_I	interface variable macro -> control	network		

	var	symbol	documentation	type	units	eqs
20	$A_{N,t,u}$	A_Ntu	mapping from input elements to outputs	network		
6	$F^{sink}{}_{A,I}$	F_AI_sink	incidence matrix AI sink	network		
10	$S_{I,q}$	S_Iq	selection matrix interface to control output	network		
22	$y_{N,t,u}$	y_Ntu	output signal in control domain	network		
8	$F^{sink}_{N,A}$	F_NA_sink	incidence matrix NA sink	network		
4	$F^{sink}_{N,I}$	F_NI_sink	incidence matrix NI sink	network		
15	$S_{N,q,t}$	S_Nqt	selection matrix or splitter	network		
12	$S_{A,p}$	S_Ap	selection matrix interface species-related measures	network		
18	cz_I	cz_I	interface variable macro -> control	network		
27	$I_{N,A}$	I_NA	identity mapping from $<$ N $>$ to $<$ A $>$	network		
105	t^o	to	starting time	frame	s	4
1	t	t	time	frame	s	
107	Δt	t_interval	time interval	frame	s	6
106	t^e	te	end time	frame	s	5

	var	symbol	documentation	type	units	eqs
104		oneHalf	numerical value one half	constant		3
	0.5					
101		value	numerical value	constant		
	#					
102		zero	numerical value zero	constant		1
	0					
103		one	numerical value one	constant		2
	1					

3 physical

	var	symbol	documentation	type	units	eqs
23		r_x	x-coordinate	frame	m	
25	$egin{array}{c} r_{xN} \ & & & \\ r_{zN} \ & & \end{array}$	r_z	z-coordinate	frame	m	
24	r_{yN}	r_y	y-coordinate	frame	m	
110	V_N	v	volume	state	m^3	7
111	$n_{N,S}$	n	fundamental state – molar mass	state	mol	93
109	S_N	S	fundamental state – internal entropy	state	$kg m^2 K^{-1} s^{-2}$	
144	C_N	С	$fundamental\ state-charge$	state	A s	
137	m_N	m	mass	state	kg	30
108	U_N	U	fundamental state – internal energy	state	kgm^2s^{-2}	
123	R	R	gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-2}$	17
122	k^B	Boltz	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$	
121	N^A	Avo	Avogadro constant	constant	mol^{-1}	
132	λ_S	Mm	molecular masses	constant	$kgmol^{-1}$	

	var	symbol	documentation	type	units	eqs
143		rho	density	secondaryState	$kg m^{-3}$	36
1.10	$ ho_N$				9	
149	A_{xzN}	Axz	cross sectional are xz	secondaryState	m^2	41
150	2214	Ayz	cross sectional area yz	secondaryState	m^2	42
	A_{yzN}					
148		Axy	cross sectional area xy	secondaryState	m^2	40
	A_{xyN}					

4 macroscopic

	var	symbol	documentation	type	units	eqs
210		aq_z	accumulation due to heat flow in z-direction	transport	kgm^2s^{-3}	105
152	\dot{q}_{zN}	fq_y	heat flow in y-direction	transport	$kg m^2 s^{-3}$	44
208	\hat{q}_{yA}	aq_x	accumulation due to heat flow in x-direction	transport	$kg m^2 s^{-3}$	103
211	\dot{q}_{xN}	fw	a fixed work flow to start with	transport	$kg m^2 s^{-3}$	106
151	\hat{w}_A	fq_x	heat flow in x-direction	transport	kgm^2s^{-3}	43
156	$egin{aligned} \hat{q}_{xA} \ & \hat{n}^d_{zA,S} \end{aligned}$	fnd_z	diffusion flow in z-direction	transport	$mol s^{-1}$	48 91
158		c_AS	concentration in convective event-dynamic flow	transport	$m^{-3} mol$	50
212	$\dot{n}_{yN,S}^d$	and_y	accumulation due to diffusion in y-direction	transport	$mol s^{-1}$	107
160	$\hat{n}^c_{xA,S}$	fnc_x	molar convective flow in x-direction	transport	$mol s^{-1}$	52
206	\dot{H}_{yN}^d	aHnd_y	accumulation of enthalpy due to diffusional mass flow in y-direction	transport	kgm^2s^{-3}	101
214	\dot{w}_N	aw	accumulation of enthalpy due to work flow	transport	$kg m^2 s^{-3}$	109
155	$\hat{n}_{yA,S}^d$	fnd_y	diffusion flow in y-direction	transport	$mol s^{-1}$	47 90
194	$\dot{n}_{xN,S}^{c}$	anc_x	accumulation of molar mass due to convection	transport	$mol s^{-1}$	87

	var	symbol	documentation	type	units	eqs
159	\hat{V}_A	fV	volumetric flow in x-direction	transport	$m^3 s^{-1}$	51
154	$\hat{n}^d_{xA,S}$	fnd_x	diffusion flow in x-direction	transport	$mol s^{-1}$	46 89
207	\dot{H}^d_{zN}	aHnd_z	accumulation of enthalpy due to diffusional mass flow in z-direction	transport	$kg m^2 s^{-3}$	102
195	$\dot{n}^d_{xN,S}$	and_x	accumulation due to diffusion in x-direction	transport	$mol s^{-1}$	88
209	\dot{q}_{yN}	aq_y	accumulation due to heat flow in y-direction	transport	kgm^2s^{-3}	104
213	$\dot{n}_{zN,S}^d$	and_z	accumulation due to diffusion in z-direction	transport	$mol s^{-1}$	108
153	\hat{q}_{zA}	fq_z	heat flow in z-direction	transport	$kg m^2 s^{-3}$	45
205	\dot{H}^d_{xN}	aHnd_x	accumulation of enthalpy due to diffusional mass flow in x-direction	transport	$kg m^2 s^{-3}$	100
157	d_A	d	flow direction of convective flow	transport		49
204	\dot{H}^c_{xN}	aHnc_x	accumulation of enthalpy due to convective mass flow in x-direction	transport	$kg m^2 s^{-3}$	99
234	$\hat{m}_{N,A}$	fm	convective mass flow	transport	$kg s^{-1}$	133
191	$\hat{k}_{y}^{d,Fick}{}_{A,S}$	kdAFick_y	Fick diffusivity in arc and y-direction	properties	ms^{-1}	84
186	k_{xA}^q	kqA_x	thermal conductivity in arc and x-direction	properties	$kg K^{-1} s^{-3}$	79
189	ρ_A	rhoA	density in arc	properties	$kg m^{-3}$	82

	var	symbol	documentation	type	units	eqs
185	k_{zA}^c	kcA_z	convecive mass conductivity in arc and y-direction	properties	$m^{-1} s$	78
188	$oxed{k_{zA}^q}$	kqA_z	thermal conductivity in arc and z-direction	properties	$kg K^{-1} s^{-3}$	81
181	$k_{yA,S}^d$	kdA_y	diffusivity in arc and y-direction	properties	$kg^{-1} m^{-4} mol^2 s$	74
184	$egin{array}{c} k_{yA}^c \end{array}$	kcA_y	convective mass conductivity in arc and y-direction	properties	$m^{-1} s$	77
193	$h_{A,S}$	hA	partial molar enthalpiies in arc	properties	$kg m^2 mol^{-1} s^{-2}$	86
187	k_{yA}^q	kqA_y	thermal conductivity in arc and y-direction	properties	$kg K^{-1} s^{-3}$	80
182	$k_{zA,S}^d$	kdA_z	diffusivity in arc and z-direction	properties	$kg^{-1} m^{-4} mol^2 s$	75
183	k_{xA}^c	kcA_x	convective mass conductivity in arc and x diretion	properties	$m^{-1} s$	76
180	$k^d_{xA,S}$	kdA_x	diffusivity in arc and x-direction	properties	$kg^{-1} m^{-4} mol^2 s$	73
190	$\hat{k}_{x}^{d,Fick}{}_{A,S}$	kdAFick_x	Fick's diffusivity in arc and x-direction	properties	ms^{-1}	83
192	$\hat{k}_z^{d,Fick}{}_{A,S}$	kdAFick_z	Fick diffusivity in arc and z-direction	properties	ms^{-1}	85
219	$R^e_{\ N}$	elResistant	electrical resistant	properties	$kg m^2 A^{-2} s^{-3}$	115
116	A_N	A	Helmholtz energy	state	kgm^2s^{-2}	12
203	$n^o{}_{N,S}$	no	initial mass	state	mol	98

	var	symbol	documentation	type	units	eqs
117	G_N	G	Gibbs free energy	state	kgm^2s^{-2}	13
216	$H^o{}_N$	Но	initial enthalpy	state	$kg m^2 s^{-2}$	111
115	H_N	н	Enthalpy	state	kgm^2s^{-2}	11 112
112	p_N	р	thermodynamic pressure	effort	$kgm^{-1}s^{-2}$	8
161	$\mu^{o}{}_{N,S}$	chemPotStandard	instantiating standard chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	53
113	T_N	Т	temperature	effort	K	9 121
114		chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	10 54
217	$\mu_{N,S}$	Ue	electrical potential – voltage	effort	$kg m^2 A^{-1} s^{-3}$	113
140	$U^e{}_N$	x	mole fraction	secondaryState		33
119	$x_{N,S}$	v_y	velocity in y-direction	secondaryState	ms^{-1}	15
118	v_{yN}	v_x	velocity in x-direction	secondaryState	ms^{-1}	14
139	v_{xN}	nt	total number of moles	secondaryState	mol	32
124	$n^t{}_N$	Ср	total heat capacity at constant pressure	secondaryState	$kg m^2 K^{-1} s^{-2}$	18 117
141	$egin{array}{ccc} C_{pN} & & & & \\ c_{pN} & & & & \end{array}$	ср	specific heat capacity at constant pressure	secondaryState	$m^2 K^{-1} s^{-2}$	34 120

	var	symbol	documentation	type	units	eqs
120		v_z	velocity in z-direction	secondaryState	ms^{-1}	16
222	$egin{array}{c} v_{zN} \\ T^{ref}{}_{N} \end{array}$	T_ref	reference temperature	secondaryState	K	119
125	C_{VN}	CV	total heat capacity at constant volume	secondaryState	$kg m^2 K^{-1} s^{-2}$	19
142	c_{VN}	cV	specific heat capacity at constant volume	secondaryState	$m^2 K^{-1} s^{-2}$	35
138	$c_{N,S}$	С	molar concentration	secondaryState	$m^{-3} mol$	31
136	$h_{N,S}$	h	partial molar enthalpies	secondaryState	$kg m^2 mol^{-1} s^{-2}$	29
202	$ ilde{n}_{N,S}$	np	link variable np to interface macroscopic	conversion	$m^{-3} mol s^{-1}$	97
220	$\dot{U}^e{}_A$	dUe	Kirkhoffs first law	diffState	$kg m^2 A^{-1} s^{-3}$	116
215	\dot{H}_N	dH	accumulation of enthalpy	diffState	$kg m^2 s^{-3}$	110
196	$\dot{n}_{N,S}$	an	differential mass balance without reaction	diffState	$mol s^{-1}$	92
218	$I^e{}_N$	current	current definition	internalTransport	A	114
223	$T^n{}_N$	T_meas_norming	value to norm measurement of temperature	observation	K	122
224	$ar{T}_N$	T_meas	temperature measurement	observation		123

5 reactions

	var	symbol	documentation	type	units	eqs
26		N	stoichiometric matrix	constant		
197	$N_{S,K}$ $E^a{}_K$	Ea	Arrhenius activation energy	constant	$kg m^2 mol^{-1} s^{-2}$	
198	$K^o{}_K$	Ко	Arrhenius frequency factor	constant	$m^{-3} mol s^{-1}$	
167	$T_{N,p}$	Т	link variable T to interface reactions	effort	K	60
163	$c_{N,S,p}$	С	link variable c to interface reactions	secondaryState	$m^{-3} mol$	56
165	$x_{N,S,p}$	x	link variable x to interface reactions	secondaryState		58
168	$f_{N,S,K,p}$	factor	factor for probability computation	conversion		61
169	$\xi_{N,K,p}$	probability	probability of reaction to take place	conversion		62
200	$ ilde{n}_{N,S,q}$	np	production from reaction set	conversion	$m^{-3} mol s^{-1}$	95
199	$K_{N,K,p}$	K	Arrhenius reaction "constant"	conversion	$m^{-3} mol s^{-1}$	94

6 macroscopic-reactions

	var	symbol	documentation	type	units	eqs
164	$_x_{I,S}$	_x	$\begin{array}{c} \mbox{link variable x to interface macroscopic } > \mbox{reactions} \\ \mbox{with source:} \mbox{node} \end{array}$	get		57
166	$_T_I$	_Т	link variable T to interface macroscopic »> reactions with source:node	get	K	59
162	$_c_{I,S}$	_c	link variable c to interface macroscopic »> reactions with source:node	get	$m^{-3} mol$	55

7 reactions-macroscopic

	var	symbol	documentation	type	units	eqs
201	$_np_{I,S}$	_np	link variable np to interface reactions »> macroscopic with source:node	get	$m^{-3} mol s^{-1}$	96

8 Equations

9 Generic

no	equation	documentation	layer
1	$0 := \mathbf{Instantiate}(\#, \#)$	numerical value zero	root
2	$1 := \mathbf{Instantiate}(\#, \#)$	numerical value one	root
3	$0.5 := \mathbf{Instantiate}(\#, \#)$	numerical value one half	root
4	$t^o := \mathbf{Instantiate}(t, \#)$	starting time	root
5	$t^e := \mathbf{Instantiate}(t, \#)$	end time	root
6	$\Delta t := \mathbf{Instantiate}(t,\#)$	time interval	root
7	$V_N := r_{xN} \cdot r_{yN} \cdot r_{zN}$	volume	physical
8	$p_N := \frac{\partial U_N}{\partial V_N}$	thermodynamic pressure	physical
9	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	macroscopic
10	$\mu_{N,S} := \frac{\partial U_N}{\partial n_{N,S}}$	chemical potential	macroscopic
11	$H_N := U_N - p_N \cdot V_N$	Enthalpy	macroscopic
12	$A_N := U_N - T_N \cdot S_N$	Helmholtz energy	macroscopic
13	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs free energy	macroscopic
14	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	velocity in x-direction	macroscopic
15	$v_{yN} := \frac{\partial r_{yN}}{\partial t}$	velocity in y-direction	macroscopic

no	equation	documentation	layer
16	$v_{zN} := \frac{\partial r_{zN}}{\partial t}$	velocity in z-direction	macroscopic
17	$R := N^A \cdot k^B$	gas constant	physical
18	$C_{pN} := \frac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure	macroscopic
19	$C_{VN} := \frac{\partial U_N}{\partial T_N}$	total heat capacity at constant volume	macroscopic
29	$h_{N,S} := H_N \cdot \left(n_{N,S} \right)^{-1}$	partial molar enthalpies	macroscopic
30	$m_N := \lambda_S \stackrel{S}{\star} n_{N,S}$	mass	macroscopic
31	$c_{N,S} := (V_N)^{-1} \cdot n_{N,S}$	molar concentration	macroscopic
32	$n^{t}{}_{N} := \mathbf{reduceSum}\left(n_{N,S}, S\right)$	total number of moles	macroscopic
33	$x_{N,S} := \left(n^t{}_N\right)^{-1} \cdot n_{N,S}$	mole fraction	macroscopic
34	$c_{pN} := C_{pN} \cdot (m_N)^{-1}$	specific heat capacity at constant pressure	physical
35	$c_{VN} := C_{VN} \cdot \left(m_N \right)^{-1}$	specific heat capacity at constant volume	macroscopic
36	$\rho_N := (V_N)^{-1} \cdot m_N$	density	physical
40	$A_{xyN} := r_{xN} . r_{yN}$	cross sectional area xy	physical
41	$A_{xzN} := r_{xN} \cdot r_{zN}$	cross sectional are xz	physical
42	$A_{yzN} := r_{yN} \cdot r_{zN}$	cross sectional area yz	physical
43	$\hat{q}_{xA} := k_{xA}^q \cdot A_{yzN} \cdot F_{N,A} \stackrel{N}{\star} T_N$	heat flow in x-direction	macroscopic
44	$\hat{q}_{yA} := k_{yA}^q \cdot A_{xzN} \cdot F_{N,A} \stackrel{N}{\star} T_N$	heat flow in y-direction	macroscopic

no	equation	documentation	layer
45	$\hat{q}_{zA} := k_{zA}^q \cdot A_{xyN} \cdot F_{N,A} \stackrel{N}{\star} T_N$	heat flow in z-direction	macroscopic
46	$\hat{n}^d_{xA,S} := \hat{k}^{d,Fick}_{x}{}_{A,S} \cdot A_{yzN} \cdot F_{N,A} \stackrel{N}{\star} c_{N,S}$	Fick diffusion flow in x-direction	macroscopic
47	$\hat{n}_{yA,S}^d := \hat{k}_y^{d,Fick}{}_{A,S} \cdot A_{xzN} \cdot F_{N,A} \stackrel{N}{\star} c_{N,S}$	Fick diffusion flow in y-direction	macroscopic
48	$\hat{n}_{zA,S}^d := \hat{k}_z^{d,Fick}{}_{A,S} \cdot (A_{xyN} \cdot F_{N,A}) \stackrel{N}{\star} c_{N,S}$	Fick diffusion flow in z-direction	macroscopic
49	$d_A := \mathbf{sign}\left(F_{N,A} \overset{N}{\star} p_N\right)$	flow direction of convective flow	macroscopic
50	$c_{A,S} := (0.5 \cdot (F_{N,A} - d_A \cdot F_{N,A})) \stackrel{N}{\star} c_{N,S}$	concentration in convective event- dynamic flow	macroscopic
51	$\hat{V}_A := (\rho_A)^{-1} \cdot k_{xA}^c \cdot A_{yzN} \cdot F_{N,A} \stackrel{N}{\star} p_N$	volumetric flow in x-direction	macroscopic
52	$\hat{n}^c_{xA,S} := \hat{V}_A \cdot c_{A,S}$	molar convective flow in x-direction	macroscopic
53	$\mu^o{}_{N,S} := \mathbf{Instantiate}(\mu_{N,S}, \#)$	instantiating standard chemical potential	macroscopic
54	$\mu_{N,S} := \mu^o{}_{N,S} + R \cdot T_N \cdot \ln\left(x_{N,S}\right)$	chemical potential standard model with mole fraction	macroscopic
61	$f_{N,S,K,p} := x_{N,S,p}((N_{S,K}))$	factor for probability computation	reactions
62	$\xi_{N,K,p} := \prod_S f_{N,S,K,p}$	probability of reaction to take place	reactions
73	$k_{xA,S}^d := I_{N,A} * \left(\left(\mu_{N,S} \right)^{-1} \cdot \left(v_{xN} \cdot \left(\left(V_N \right)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and x-direction	macroscopic
74	$k_{yA,S}^d := I_{N,A} * \left((\mu_{N,S})^{-1} \cdot \left(v_{yN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and y-direction	macroscopic
75	$k_{zA,S}^d := I_{N,A} * \left((\mu_{N,S})^{-1} \cdot \left(v_{zN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and z-direction	macroscopic
76	$k_{xA}^c := I_{N,A} \stackrel{N}{\star} \left(\left(\lambda_S \stackrel{S}{\star} (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN} \right)$	convective mass conductivity in arc and x diretion	macroscopic

no	equation	documentation	layer
77	$k_{yA}^c := I_{N,A} \stackrel{N}{\star} \left(\left(\lambda_S \stackrel{S}{\star} (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{yN} \right)$	convective mass conductivity in arc and y-direction	macroscopic
78	$k_{zA}^c := I_{N,A} * \left(\left(\lambda_S * (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{zN} \right)$	convecive mass conductivity in arc and y-direction	macroscopic
79	$k_{xA}^{q} := I_{N,A} * \left(\left(V_{N} \right)^{-1} . C_{pN} . v_{xN} \right)$	thermal conductivity in arc and x-direction	macroscopic
80	$k_{yA}^q := I_{N,A} \stackrel{N}{\star} \left((V_N)^{-1} \cdot C_{pN} \cdot v_{yN} \right)$	thermal conductivity in arc and y-direction	macroscopic
81	$k_{zA}^q := I_{N,A} \stackrel{N}{\star} \left((V_N)^{-1} \cdot C_{pN} \cdot v_{zN} \right)$	thermal conductivity in arc and z-direction	macroscopic
82	$ \rho_A := I_{N,A} \overset{N}{\star} \rho_N $	density in arc	macroscopic
83	$\hat{k}_x^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{xN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick's diffusivity in arc and x-direction	macroscopic
84	$\hat{k}_y^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{yN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick diffusivity in arc and y-direction	macroscopic
85	$\hat{k}_z^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{zN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick diffusivity in arc and z-direction	macroscopic
86	$h_{A,S} := I_{N,A} \stackrel{N}{\star} h_{N,S}$	partial molar enthalpiies in arc	macroscopic
87	$\dot{n}_{xN,S}^c := F_{N,A} \stackrel{A}{\star} \hat{n}_{xA,S}^c$	accumulation of molar mass due to convection	macroscopic
88	$\dot{n}^d_{xN,S} := F_{N,A} \stackrel{A}{\star} \hat{n}^d_{xA,S}$	accumulation due to diffusion in x-direction	macroscopic
89	$\hat{n}_{xA,S}^d := k_{xA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) \overset{N}{\star} \mu_{N,S}$	Fick diffusion flow in x-direction	macroscopic
90	$\hat{n}_{yA,S}^d := k_{yA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) \stackrel{N}{\star} \mu_{N,S}$	Fick diffusion flow in y-direction	macroscopic
91	$\hat{n}_{zA,S}^d := k_{zA,S}^d \cdot (A_{xyN} \cdot F_{N,A}) \stackrel{N}{\star} \mu_{N,S}$	mass diffusion flow in z-direction	macroscopic

no	equation	documentation	layer
92	$\dot{n}_{N,S} := \dot{n}_{xN,S}^c + \dot{n}_{xN,S}^d + V_N \cdot \tilde{n}_{N,S}$	differential mass balance without reaction	macroscopic
93	$n_{N,S} := \int_{t^o}^{t^e} \dot{n}_{N,S} \ dt + n^o{}_{N,S}$	fundamental state – molar mass	macroscopic
94	$K_{N,K,p} := K^{o}_{K} \cdot \exp\left((-E^{a}_{K}) \cdot (R \cdot T_{N,p})^{-1}\right)$	Arrhenius reaction "constant"	reactions
95	$\tilde{n}_{N,S,q} := A_{N,p,q} \star \left(N_{S,K} \star \left(K_{N,K,p} \cdot \xi_{N,K,p} \right) \right)$	production from reaction set	reactions
98	$n^o{}_{N,S} := \mathbf{Instantiate}(n_{N,S}, \#)$	initial mass	macroscopic
99	$\dot{H}_{xN}^c := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{xA,S}^c \stackrel{S}{\star} h_{N,S} \right)$	enthalpy accumulation due to convective flow in x-direction	macroscopic
100	$\dot{H}_{xN}^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{xA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in x-direction	macroscopic
101	$\dot{H}_{yN}^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{yA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in y-direction	macroscopic
102	$\dot{H}_{zN}^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{zA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in z-direction	macroscopic
103	$\dot{q}_{xN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{xA}$	accumulation due to heat flow in x-direction	macroscopic
104	$\dot{q}_{yN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{yA}$	accumulation due to heat flow in y-direction	macroscopic
105	$\dot{q}_{zN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{zA}$	accumulation due to heat flow in z-direction	macroscopic
106	$\hat{w}_A := \mathbf{Instantiate}(\hat{q}_{xA}, \#)$	a fixed work flow to start with	macroscopic
107	$\dot{n}_{yN,S}^d := F_{N,A} \stackrel{A}{\star} \hat{n}_{yA,S}^d$	accumulation due to diffusion in y-direction	macroscopic

no	equation	documentation	layer
108	$\dot{n}^d_{zN,S} := F_{N,A} \overset{A}{\star} \hat{n}^d_{zA,S}$	accumulation due to diffusion in z-direction	macroscopic
109	$\dot{w}_N := F_{N,A} \stackrel{A}{\star} \hat{w}_A$	accumulation of enthalpy due to work flow	macroscopic
110	$\dot{H}_N := \dot{H}_{xN}^c + \dot{H}_{xN}^d + \dot{H}_{yN}^d + \dot{H}_{zN}^d + \dot{q}_{xN} + \dot{q}_{yN} + \dot{q}_{zN} + \dot{w}_N$	accumulation of enthalpy	macroscopic
111	$H^o{}_N := \mathbf{Instantiate}(H_N, \#)$	initial enthalpy	macroscopic
112	$H_N := \int_{t^o}^{t^e} \dot{H}_N \ dt + H^o{}_N$	Enthalpy	macroscopic
113	$U^e{}_N := \left(C_N\right)^{-1} . U_N$	electrical potential – voltage	macroscopic
114	$I^e{}_N := \frac{dC_N}{dt}$	current definition	macroscopic
115	$R^{e}{}_{N} := (I^{e}{}_{N})^{-1} . U^{e}{}_{N}$	electrical resistant	macroscopic
116	$\dot{U}^e{}_A := F_{N,A} \stackrel{A}{\star} (R^e{}_N . I^e{}_N)$	Kirkhoffs first law	macroscopic
117	$C_{pN} := m_N \cdot c_{pN}$	total heat capacity at constant pressure	macroscopic
119	$T^{ref}{}_N := \mathbf{Instantiate}(T_N, \#)$	reference temperature	macroscopic
120	$c_{pN} := \mathbf{Instantiate}(c_{pN}, \#)$	constant specific heat capacity at constant pressure	macroscopic
121	$T_N := H_N \cdot (C_{pN})^{-1} + T^{ref}{}_N$	temperature from constant heat capacity	macroscopic
122	$T^n{}_N := \mathbf{Instantiate}(T_N, \#)$	value to norm measurement of temperature	macroscopic
123	$\bar{T}_N := T_N \cdot \left(T^n{}_N\right)^{-1}$	temperature measurement	macroscopic

no	equation	documentation	layer
133	$\hat{m}_{N,A} := \hat{V}_A \cdot ho_N$	convective mass flow	macroscopic

10 Interface Link Equation

no	equation	documentation	layer
55	$_c_{I,S} := F^{source}{}_{N,I} \overset{N}{\star} c_{N,S}$	interface equation	macroscopic -> reactions
56	$c_{N,S,p} := \left(F^{sink}_{N,I} \cdot _c_{I,S}\right) \stackrel{I}{\star} S_{I,p}$	interface equation	reactions
57	$x_{I,S} := F^{source}_{N,I} \overset{N}{\star} x_{N,S}$	interface equation	macroscopic -> re- actions
58	$x_{N,S,p} := (F^{sink}_{N,I} \cdot _x_{I,S}) \overset{I}{\star} S_{I,p}$	interface equation	reactions
59		interface equation	macroscopic -> reactions
60	$T_{N,p} := (F^{sink}_{N,I} \cdot _T_I) \overset{I}{\star} S_{I,p}$	interface equation	reactions
96	$_np_{I,S} := \mathbf{reduceSum}\left(\left(\left(F^{source}_{N,I} \stackrel{N}{\star} \tilde{n}_{N,S,q}\right).S_{I,q}\right), q\right)$	interface equation	reactions -> macroscopic
97	$\tilde{n}_{N,S} := F^{source}{}_{N,I} \stackrel{I}{\star} _np_{I,S}$	interface equation	macroscopic