Packet Inspection Using Python

Why?

- Access to low-level kernel packet processing via a high-level API.
- Excellent for quick experiments & prototypes.
- Can implement features not easy to implement with existing tooling:
 - Log specific packets or connection attempts for further analysis.
 - Identify overly chatty programs.
 - Develop an outbound firewall to help protect against trojans.

Primary Building Blocks

iptables

Direct packets to a netfilter queue

nfqueue

Hook your program into a netfilter queue.

scapy

Intuitive packet inspection

iptables

Need to send packets to the netfilter queue using iptables. Start with simple rules to minimize negative impacts to your network.

Only outbound packets to a specific address:

```
$ iptables -A OUTPUT --dst www.orvant.com -j NFQUEUE --queue-bypass
```

 Only initial packets of outbound connections. Otherwise, will process & log all the packets for a connection:

```
$ iptables -A OUTPUT -m state --state NEW -j NFQUEUE --queue-bypass
```

 Send packets to specific queues, allowing for multiple processes: \$ iptables -A INPUT -j NFQUEUE --queue-bypass --queue-num 0
\$ iptables -A OUTPUT -j NFQUEUE --queue-bypass --queue-num 1

nfqueue

Python bindings to *libnetfilter_queue*. Example "Hello, world!":

```
import socket, nfqueue, atexit
                                     # callback method
def process(packet):
    print("Hello, packet!")
    print(packet.get data())
    packet.set verdict(nfqueue.NF ACCEPT)
def shutdown(q):
                                     # cleanup method
    q.unbind(socket.AF_INET)
    q.close()
```

```
q = nfqueue.queue()
q.set_callback(process) # register callback
```

q.fast_open(0, socket.AF_INET) # bind to queue 0
atexit.register(shutdown, q) # make sure to clean up
q.try_run() # start processing the queue

scapy

The Scapy library is a good option for inspecting packets (see dpkt or impacket for alternatives).

```
from scapy.all import IP, TCP, UDP, Raw
# Easy to add new protocols to scapy [1]
from HTTP import HTTPRequest
def log http domains(packet):  # our nfqueue callback
   packet.set_verdict(nfqueue.NF_ACCEPT)
    ip = IP(packet.get data())
    if HTTPRequest in ip:
                        # only HTTP request packets
       request = pkt[HTTPRequest] # how to access layers
       print("HOST:", request.Host)
```

orvant-snitch

Inspired by Little Snitch for OSX. Is a small, headless version for Linux machines. Useful to answer questions like: "What traffic is program X causing?"

```
$ iptables -A OUTPUT -m state --state NEW \
    -j NFQUEUE --queue-bypass --queue-num 1
$ cat /etc/ov-snitch.conf
  rules:
    /usr/bin/curl:
      443: {deny: true}
  queue: 1
$ ov-snitch
$ tail /var/log/syslog | \
```

Some Caveats

- Make sure to use --queue-bypass in iptables rules.
 Otherwise, packets will hang if there is no active program processing the queue.
- These libraries are getting stale.
- Working at the packet level. Easy to mess up the connection if you want to mangle a packet (e.g. alter the payload, IP address, or port). Have to worry about checksums, sequence numbers, etc.

Some References

- NFQueue Bindings
 https://www.wzdftpd.net/redmine/projects/nfqueue-bindings
- Scapy http://www.secdev.org/projects/scapy/
- NetFilter http://www.netfilter.org/
 - https://home.regit.org/netfilter-en/using-nfqueue-and-libnetfi
- Alternatives to nfqueue-bindings:
 - http://code.google.com/p/python-libnetfilter-queue/ (uses ctypes)
 - https://github.com/kti/python-netfilterqueue (uses cython, in pypi)

Thank You!

- Erik Stephens
 - erik@orvant.com
- code for orvant-snitch:
 - https://github.com/orvant/orvant-snitch
- Network Vulnerability Assessments:
 - https://www.orvant.com

1 scapy-http https://github.com/invernizzi/scapy-http