Importing Libraries

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
```

Reading Data Set

```
In [2]: #loading the dataset in pandas dataframe
df_drug = pd.read_csv("drug200.csv")
```

In [3]: #check first five rows of the dataset
df_drug.head()

Out[3]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY

In [4]: #check last five rows of the dataset
df_drug.tail()

Out[4]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

In [5]: #check shape of the dataset
df_drug.shape

Out[5]: (200, 6)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Age	200 non-null	int64
1	Sex	200 non-null	object
2	BP	200 non-null	object
3	Cholesterol	200 non-null	object
4	Na_to_K	200 non-null	float64
5	Drug	200 non-null	object
dty	pes: float64(1), int64(1), obj	ect(4)
memo	ory usage: 9.5	+ KB	

In [7]: #check mathamic realtion ship of the dataset

df_drug.describe()

Out[7]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

Out[8]:

	Age	Na_to_K
Age	1.000000	-0.063119
Na_to_K	-0.063119	1.000000

Categorical Variables

In [11]: sns.countplot(df_drug["Drug"])

/Users/vikky/opt/anaconda3/lib/python3.9/site-packages/seaborn/_de corators.py:36: FutureWarning: Pass the following variable as a ke yword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[11]: <AxesSubplot:xlabel='Drug', ylabel='count'>


```
In [12]: df_drug["Drug"].value_counts().plot(kind='pie',autopct='%.2f')
```

Out[12]: <AxesSubplot:ylabel='Drug'>


```
In [14]: #count the value of sex
df_drug["Sex"].value_counts()
```

Out[14]: M 104

F 96

Name: Sex, dtype: int64

In [15]: sns.countplot(df_drug["Drug"])

/Users/vikky/opt/anaconda3/lib/python3.9/site-packages/seaborn/_de corators.py:36: FutureWarning: Pass the following variable as a ke yword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[15]: <AxesSubplot:xlabel='Drug', ylabel='count'>


```
In [16]: df_drug["Sex"].value_counts().plot(kind='pie',autopct='%.2f')
```

Out[16]: <AxesSubplot:ylabel='Sex'>

In [18]: #cout the value of BP
df_drug["BP"].value_counts()

Out[18]: HIGH 77

LOW 64 NORMAL 59

Name: BP, dtype: int64

In [19]: sns.countplot(df_drug["BP"])

/Users/vikky/opt/anaconda3/lib/python3.9/site-packages/seaborn/_de corators.py:36: FutureWarning: Pass the following variable as a ke yword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[19]: <AxesSubplot:xlabel='BP', ylabel='count'>


```
In [20]: df_drug["BP"].value_counts().plot(kind='pie',autopct='%.2f')
```

Out[20]: <AxesSubplot:ylabel='BP'>

In [21]: #count the value of cholesterol
df_drug["Cholesterol"].value_counts()

Out[21]: HIGH 103 NORMAL 97

Name: Cholesterol, dtype: int64

In [22]: sns.countplot(df_drug["Cholesterol"])

/Users/vikky/opt/anaconda3/lib/python3.9/site-packages/seaborn/_de corators.py:36: FutureWarning: Pass the following variable as a ke yword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[22]: <AxesSubplot:xlabel='Cholesterol', ylabel='count'>

In [23]: df_drug["Cholesterol"].value_counts().plot(kind='pie',autopct='%.2f

Out[23]: <AxesSubplot:ylabel='Cholesterol'>

Numerical Variables

In [24]: df_drug.describe()

Out[24]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

```
In [25]: skewAge = df_drug.Age.skew(axis = 0, skipna = True)
print('Age skewness: ', skewAge)
```

Age skewness: 0.03030835703000607

```
In [26]: skewNatoK = df_drug.Na_to_K.skew(axis = 0, skipna = True)
print('Na to K skewness: ', skewNatoK)
```

Na to K skewness: 1.039341186028881

In [27]: | sns.distplot(df_drug['Age']);

/Users/vikky/opt/anaconda3/lib/python3.9/site-packages/seaborn/dis tributions.py:2619: FutureWarning: `distplot` is a deprecated func tion and will be removed in a future version. Please adapt your co de to use either `displot` (a figure-level function with similar f lexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

In [28]: sns.distplot(df_drug['Na_to_K']);

/Users/vikky/opt/anaconda3/lib/python3.9/site-packages/seaborn/dis tributions.py:2619: FutureWarning: `distplot` is a deprecated func tion and will be removed in a future version. Please adapt your co de to use either `displot` (a figure-level function with similar f lexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

EDA

This section will explore variables in the dataset using different various plots/charts.

Drug Type Distribution

```
In [29]: sns.set_theme(style="darkgrid")
    sns.countplot(y="Drug", data=df_drug, palette="flare")
    plt.ylabel('Drug Type')
    plt.xlabel('Total')
    plt.show()
```


Gender Distribution

```
In [30]: sns.set_theme(style="darkgrid")
    sns.countplot(x="Sex", data=df_drug, palette="rocket")
    plt.xlabel('Gender (F=Female, M=Male)')
    plt.ylabel('Total')
    plt.show()
```


Blood Pressure Distribution

```
In [31]: sns.set_theme(style="darkgrid")
sns.countplot(y="BP", data=df_drug, palette="crest")
            plt.ylabel('Blood Pressure')
            plt.xlabel('Total')
            plt.show()
```


Cholesterol Distribution


```
In [32]: sns.set_theme(style="darkgrid")
    sns.countplot(x="Cholesterol", data=df_drug, palette="magma")
    plt.xlabel('Blood Pressure')
    plt.ylabel('Total')
    plt.show()
```


Gender Distribution based on Drug Type

```
In [33]: pd.crosstab(df_drug.Sex,df_drug.Drug).plot(kind="bar",figsize=(12,5)
         plt.title('Gender distribution based on Drug type')
         plt.xlabel('Gender')
         plt.xticks(rotation=0)
         plt.ylabel('Frequency')
         plt.show()
```


Blood Pressure Distribution based on Cholesetrol

Sodium to Potassium Distribution based on Gender and Age / 100

```
In [35]: plt.scatter(x=df_drug.Age[df_drug.Sex=='F'], y=df_drug.Na_to_K[(df_
plt.scatter(x=df_drug.Age[df_drug.Sex=='M'], y=df_drug.Na_to_K[(df_
plt.legend(["Female", "Male"])
plt.xlabel("Age")
plt.ylabel("Na_to_K")
plt.show()
```


Dataset Preparation

This section will prepare the dataset before building the machine learning models.

Data Binning

Age

The age will be divided into 7 age categories:

- Below 20 y.o.
- 20 29 y.o.
- 30 39 y.o.
- 40 49 y.o.
- 50 59 y.o.
- 60 69 y.o.
- Above 70.

```
In [36]: bin_age = [0, 19, 29, 39, 49, 59, 69, 80]
    category_age = ['<20s', '20s', '30s', '40s', '50s', '60s', '>60s']
    df_drug['Age_binned'] = pd.cut(df_drug['Age'], bins=bin_age, labels
    df_drug = df_drug.drop(['Age'], axis = 1)
```

```
In [37]: bin_NatoK = [0, 9, 19, 29, 50]
    category_NatoK = ['<10', '10-20', '20-30', '>30']
    df_drug['Na_to_K_binned'] = pd.cut(df_drug['Na_to_K'], bins=bin_Nat
    df_drug = df_drug.drop(['Na_to_K'], axis = 1)
```

Splitting the dataset

```
In [38]: from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
```

```
In [39]: X = df_drug.drop(["Drug"], axis=1)
y = df_drug["Drug"]

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size)
```

Feature Engineering

```
In [40]: X_train = pd.get_dummies(X_train)
X_test = pd.get_dummies(X_test)
```

In [41]: X_train.head()

Out[41]:

	Sex_F	Sex_M	BP_HIGH	BP_LOW	BP_NORMAL	Cholesterol_HIGH	Cholesterol_NORI
131	0	1	0	1	0	0	
96	1	0	0	1	0	1	
181	1	0	0	0	1	1	
19	1	0	1	0	0	0	
153	1	0	0	1	0	0	

In [42]: X_test.head()

Out [42]:

	Sex_F	Sex_M	BP_HIGH	BP_LOW	BP_NORMAL	Cholesterol_HIGH	Cholesterol_NORI
18	0	1	0	1	0	1	
170	1	0	0	0	1	1	
107	0	1	0	1	0	1	
98	0	1	1	0	0	0	
177	0	1	0	0	1	1	

SMOTE Technique ☆

Since the number of 'DrugY' is more than other types of drugs, **oversampling is carried out to avoid overfitting**.

```
In [45]: from imblearn.over_sampling import SMOTE
X_train, y_train = SMOTE().fit_resample(X_train, y_train)
```

```
In [46]: sns.set_theme(style="darkgrid")
    sns.countplot(y=y_train, data=df_drug, palette="mako_r")
    plt.ylabel('Drug Type')
    plt.xlabel('Total')
    plt.show()
```


Models

Logistic Regression

```
In [47]: from sklearn.linear_model import LogisticRegression
    LRclassifier = LogisticRegression(solver='liblinear', max_iter=5000
    LRclassifier.fit(X_train, y_train)

y_pred = LRclassifier.predict(X_test)

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
    LRAcc = accuracy_score(y_pred,y_test)
    print('Logistic Regression accuracy is: {:.2f}%'.format(LRAcc*100))

precision recall f1-score support
```

	p			
drugA	0.71	1.00	0.83	5
drugB	0.75	1.00	0.86	3
drugC	0.67	1.00	0.80	4
drugX	0.82	0.78	0.80	18
drugY	0.85	0.73	0.79	30
accuracy macro avg weighted avg	0.76 0.81	0.90 0.80	0.80 0.82 0.80	60 60 60

```
[[ 5  0  0  0  0]
 [ 0  3  0  0  0]
 [ 0  0  4  0  0]
 [ 0  0  0  14  4]
 [ 2  1  2  3  22]]
```

Logistic Regression accuracy is: 80.00%

K Neighbours

```
In [48]: from sklearn.neighbors import KNeighborsClassifier
KNclassifier = KNeighborsClassifier(n_neighbors=20)
KNclassifier.fit(X_train, y_train)

y_pred = KNclassifier.predict(X_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
KNAcc = accuracy_score(y_pred,y_test)
print('K Neighbours accuracy is: {:.2f}%'.format(KNAcc*100))
```

	precision	recall	f1-score	support
drugA drugB drugC drugX drugY	0.40 0.67 0.57 0.76 0.89	0.80 0.67 1.00 0.89 0.57	0.53 0.67 0.73 0.82 0.69	5 3 4 18 30
accuracy macro avg weighted avg	0.66 0.78	0.78 0.72	0.72 0.69 0.72	60 60 60

```
[[4 1 0 0
             0]
[ 1
    2 0 0
             01
[ 0
    0 4 0
             01
[ 0
       0 16
     0
             2]
[ 5
       3
          5 17]]
     0
```

K Neighbours accuracy is: 71.67%

```
In [49]: scoreListknn = []
for i in range(1,30):
    KNclassifier = KNeighborsClassifier(n_neighbors = i)
    KNclassifier.fit(X_train, y_train)
    scoreListknn.append(KNclassifier.score(X_test, y_test))

plt.plot(range(1,30), scoreListknn)
plt.xticks(np.arange(1,30,1))
plt.xlabel("K value")
plt.ylabel("Score")
plt.ylabel("Score")
plt.show()
KNAccMax = max(scoreListknn)
print("KNN Acc Max {:.2f}%".format(KNAccMax*100))
```


KNN Acc Max 78.33%

Support Vector Machine (SVM)

```
In [50]: from sklearn.svm import SVC
SVCclassifier = SVC(kernel='linear', max_iter=251)
SVCclassifier.fit(X_train, y_train)

y_pred = SVCclassifier.predict(X_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
SVCAcc = accuracy_score(y_pred,y_test)
print('SVC accuracy is: {:.2f}%'.format(SVCAcc*100))
```

	precision	recall	f1-score	support
drugA	0.71	1.00	0.83	5
drugB	0.75	1.00	0.86	3
drugC	0.67	1.00	0.80	4
drugX	0.82	1.00	0.90	18
drugY	1.00	0.70	0.82	30
20011201			0.85	60
accuracy	0.70	0.04		
macro avg	0.79	0.94	0.84	60
weighted avg	0.89	0.85	0.85	60

```
[[5 0 0 0 0]

[0 3 0 0 0]

[0 0 4 0 0]

[0 0 0 18 0]

[2 1 2 4 21]]

SVC accuracy is: 85.00%
```

/Users/vikky/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_base.py:299: ConvergenceWarning: Solver terminated early (max_it er=251). Consider pre-processing your data with StandardScaler or MinMaxScaler.

warnings.warn(

Naive Bayes

Categorical NB

```
In [51]: from sklearn.naive_bayes import CategoricalNB
    NBclassifier1 = CategoricalNB()
    NBclassifier1.fit(X_train, y_train)

y_pred = NBclassifier1.predict(X_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
    NBAcc1 = accuracy_score(y_pred,y_test)
    print('Naive Bayes accuracy is: {:.2f}%'.format(NBAcc1*100))
```

	precision	recall	T1-score	support
drugA	0.71	1.00	0.83	5
drugB	0.75	1.00	0.86	3
drugC	0.50	0.50	0.50	4
drugX	0.70	0.78	0.74	18
drugY	0.84	0.70	0.76	30
accuracy			0.75	60
macro avg	0.70	0.80	0.74	60
weighted avg	0.76	0.75	0.75	60
[[5 0 0 0	0]			
[0 3 0 0	0 1			

```
[[ 5  0  0  0  0]
 [ 0  3  0  0  0]
 [ 0  0  2  2  0]
 [ 0  0  0  14  4]
 [ 2  1  2  4  21]]
```

Naive Bayes accuracy is: 75.00%

Gaussian NB

	precision	rccacc	11-30010	Support
drugA	0.60	0.60	0.60	5
drugB	0.75	1.00	0.86	3
drugC	0.67	1.00	0.80	4
drugX	1.00	0.39	0.56	18
drugY	0.66	0.83	0.74	30
accuracy			0.70	60
macro avg	0.73	0.76	0.71	60
weighted avg	0.76	0.70	0.68	60
[[3 0 0 0	2]			
[0300	0]			
	αl			

[0 3 0 0 0] [0 0 4 0 0] [0 0 0 7 11] [2 1 2 0 25]]

Gaussian Naive Bayes accuracy is: 70.00%

Decision Tree

```
In [53]: from sklearn.tree import DecisionTreeClassifier
DTclassifier = DecisionTreeClassifier(max_leaf_nodes=20)
DTclassifier.fit(X_train, y_train)

y_pred = DTclassifier.predict(X_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
DTAcc = accuracy_score(y_pred,y_test)
print('Decision Tree accuracy is: {:.2f}%'.format(DTAcc*100))
```

	precision	recall	f1-score	support
drugA	0.71	1.00	0.83	5
drugB	0.75	1.00	0.86	3
drugC	0.67	1.00	0.80	4
drugX	0.82	1.00	0.90	18
drugY	1.00	0.70	0.82	30
accuracy			0.85	60
macro avg	0.79	0.94	0.84	60
weighted avg	0.89	0.85	0.85	60
[[5 0 0 0	0 1			

```
[[ 5  0  0  0  0]
 [ 0  3  0  0  0]
 [ 0  0  4  0  0]
 [ 0  0  0  18  0]
 [ 2  1  2  4  21]]
```

Decision Tree accuracy is: 85.00%

```
In [54]: scoreListDT = []
for i in range(2,50):
    DTclassifier = DecisionTreeClassifier(max_leaf_nodes=i)
    DTclassifier.fit(X_train, y_train)
    scoreListDT.append(DTclassifier.score(X_test, y_test))

plt.plot(range(2,50), scoreListDT)
plt.xticks(np.arange(2,50,5))
plt.xlabel("Leaf")
plt.ylabel("Score")
plt.show()
DTAccMax = max(scoreListDT)
print("DT Acc Max {:.2f}%".format(DTAccMax*100))
```


DT Acc Max 85.00%

Random Forest

```
In [55]: from sklearn.ensemble import RandomForestClassifier
         RFclassifier = RandomForestClassifier(max_leaf_nodes=30)
         RFclassifier.fit(X_train, y_train)
         y pred = RFclassifier.predict(X test)
         print(classification_report(y_test, y_pred))
         print(confusion_matrix(y_test, y_pred))
         from sklearn.metrics import accuracy_score
         RFAcc = accuracy_score(y_pred,y_test)
         print('Random Forest accuracy is: {:.2f}%'.format(RFAcc*100))
                                    recall f1-score
                       precision
                                                        support
                                                 0.77
                                                              5
                drugA
                            0.62
                                       1.00
                                                              3
                drugB
                            0.75
                                       1.00
                                                 0.86
                drugC
                            0.67
                                       1.00
                                                 0.80
                                                              4
                drugX
                            0.82
                                      1.00
                                                 0.90
                                                             18
                drugY
                            1.00
                                      0.67
                                                 0.80
                                                             30
                                                 0.83
                                                             60
             accuracy
                            0.77
                                      0.93
                                                 0.83
                                                             60
            macro avq
                                                 0.83
         weighted avg
                            0.88
                                      0.83
                                                             60
         [[5 0 0
                        01
          [0300
                        01
          [0 0 4 0
                        01
          [0 \ 0 \ 0 \ 18 \ 0]
               1 2 4 20]]
         Random Forest accuracy is: 83.33%
 In [*]: | scoreListRF = []
         for i in range(2,50):
```

```
In [*]: scoreListRF = []
for i in range(2,50):
    RFclassifier = RandomForestClassifier(n_estimators = 1000, rand
    RFclassifier.fit(X_train, y_train)
    scoreListRF.append(RFclassifier.score(X_test, y_test))

plt.plot(range(2,50), scoreListRF)
plt.xticks(np.arange(2,50,5))
plt.xlabel("RF Value")
plt.ylabel("Score")
plt.show()
RFAccMax = max(scoreListRF)
print("RF Acc Max {:.2f}%".format(RFAccMax*100))
```

Model Comparison

Output

The next step will make output results in csv file.

Transforming prediction in appropriate output format

```
In [*]:
        pred lr = NBclassifier1.predict(X test)
        prediction = pd.DataFrame({'Sex_F': X_test.loc[:,"Sex_F"],
                                    'Sex_M': X_test.loc[:,"Sex_M"],
                                    'BP_HIGH': X_test.loc[:,"BP_HIGH"],
                                    'BP_LOW': X_test.loc[:,"BP_LOW"],
                                    'BP_NORMAL': X_test.loc[:,"BP_NORMAL"],
                                    'Cholesterol HIGH': X test.loc[:,"Choles
                                    'Cholesterol_NORMAL': X_test.loc[:,"Chol
                                    'Age_binned_<20s': X_test.loc[:,"Age_bin
                                    'Age_binned_20s': X_test.loc[:,"Age_binn
                                    'Age_binned_30s': X_test.loc[:,"Age_binn
                                    'Age binned 40s': X test.loc[:,"Age binn
                                    'Age_binned_50s': X_test.loc[:,"Age_binn
                                    'Age binned 60s': X test.loc[:,"Age binn
                                    'Age_binned_>60s': X_test.loc[:,"Age_bin
                                    'Na_to_K_binned_<10': X_test.loc[:,"Na_t
                                    'Na_to_K_binned_10-20': X_test.loc[:,"Na
                                    'Na to K binned 20-30': X test.loc[:,"Na
                                    'Na_to_K_binned_>30': X_test.loc[:,"Na_t
```

```
In [*]: Sex
       rediction['Sex_F'] = prediction['Sex_F'].replace([1, 0],['Female',
       ВP
       rediction['BP HIGH'] = prediction['BP_HIGH'].replace([1, 0],['High',
       rediction['BP LOW'] = prediction['BP LOW'].replace([1, 0],['Low', ''
       rediction['BP_NORMAL'] = prediction['BP_NORMAL'].replace([1, 0],['No
       rediction['BP_HIGH'] = np.where((prediction['BP_HIGH'] == ''), predi
       rediction['BP HIGH'] = np.where((prediction['BP HIGH'] == ''), predi
       Cholestrol
       rediction['Cholesterol_HIGH'] = prediction['Cholesterol_HIGH'].repla
       Age binned
       rediction['Age_binned_<20s'] = prediction['Age_binned_<20s'].replace
       rediction['Age_binned_20s'] = prediction['Age_binned_20s'].replace([
       rediction['Age_binned_30s'] = prediction['Age_binned_30s'].replace([
       rediction['Age binned 40s'] = prediction['Age binned 40s'].replace([
       rediction['Age_binned_50s'] = prediction['Age_binned_50s'].replace([
       rediction['Age_binned_60s'] = prediction['Age_binned_60s'].replace([
       rediction['Age binned >60s'] = prediction['Age binned >60s'].replace
       rediction['Age binned <20s'] = np.where((prediction['Age binned <20s
       rediction['Age_binned_<20s'] = np.where((prediction['Age_binned_<20s
       rediction['Age binned <20s'] = np.where((prediction['Age binned <20s
       rediction['Age_binned_<20s'] = np.where((prediction['Age_binned_<20s
       rediction['Age_binned_<20s'] = np.where((prediction['Age_binned_<20s
       rediction['Age_binned_<20s'] = np.where((prediction['Age_binned_<20s
       Na to K
       rediction['Na_to_K_binned_<10'] = prediction['Na_to_K_binned_<10'].r
       rediction['Na_to_K_binned_10-20'] = prediction['Na_to_K_binned_10-20
       rediction['Na to K binned 20-30'] = prediction['Na to K binned 20-30
       rediction['Na_to_K_binned_>30'] = prediction['Na_to_K_binned_>30'].r
       rediction['Na_to_K_binned_<10'] = np.where((prediction['Na_to_K_binn
       rediction['Na to K binned <10'] = np.where((prediction['Na to K binn
       rediction['Na to K binned <10'] = np.where((prediction['Na to K binn
        Drop columns
       rediction = prediction.drop(['Sex_M', 'BP_LOW', 'BP_NORMAL', 'Choles
                        'Age_binned_40s', 'Age_binned_50s', 'Age_binned_60s'
                       'Na_to_K_binned_10-20', 'Na_to_K_binned_20-30', 'Na_t
In [*]: # Rename columns name
        new_name = {'Sex_F': 'Sex', 'BP_HIGH': 'BP', 'Cholesterol_HIGH': 'C
                  'Na to K binned <10': 'Na to K binned'}
        prediction.rename(columns=new name, inplace=True)
```

Generating output file (CSV)

In	[*]:	<pre>prediction.to_csv('prediction.csv', index=False) predictioncsv = pd.read_csv('./prediction.csv') predictioncsv.head()</pre>
In	[]:	
In	[]:	
In	11:	