EPITA

Mathématiques

Partiel (S1)

Janvier 2020

Nom:		
Prénom :		
Classe:		

NOTE:

Mathématiques

 $Partiel-janvier\ 2020$

Exercice 1 (2 points)

exercice 1 (2 points)	
oit (u_n) une suite réelle. Écrire avec des quantificateurs les propriétés suivantes :	
1. (u_n) n'est pas bornée.	
2. (u_n) est monotone.	
Exercice 2 (3 points)	
	,,
oit (u_n) une suite réelle telle que : (u_{2n}) converge vers un réel l et (u_{3n}) converge vers un réel l . A l'aide d'une quite extraite bien chaisig mentren que $l = l'$	l' .
1. A l'aide d'une suite extraite bien choisie, montrer que $l=l'$.	
2. Peut-on conclure sur la convergence de (u_n) ? (Justifier votre réponse.)	

Exercice 3 (2 points)

On considère une suite $(u_n)_{n\in\mathbb{N}}$ qui vérifie la relation	n de récurrence $u_{n+1} = 10u_n + 27$.
---	--

1. Pour quelles valeurs de u_0 une telle suite est-elle constante?

2. On note ℓ la valeur trouvée à la question précédente. Montrer que la suite $(v_n) = (u_n - \ell)$ est géométrique et préciser sa raison.

4

3. On prend $u_0 = 1$. Exprimer u_n en fonction de n.

Olivier Rodot

Exercice 4 (2 points)

Soient $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ définies pour tout $n\in\mathbb{N}^*$ par $u_n=\sum_{k=0}^n\frac{1}{k!}$ et $v_n=\frac{1}{n!}+\sum_{k=0}^n\frac{1}{k!}$

Montrer que $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.

Exercice 5 (4,5 points)

Soit (u_n) la suite réelle définie par récurrence par : $u_0 \in \mathbb{R}_+$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$ où $f(x) = \frac{x^2 + 8}{6}$.

1. Trouver les valeurs de u_0 pour les quelles la suite est constante.

2. Montrer que les int En déduire que si	tervalles $I_1 = [0, 2[, I_0]]$ u_0 appartient à un d			

3. On suppose que $u_0 \in I_2$. Déterminer le sens de variation de la suite (u_n) . En déduire qu'elle est convergente puis déterminer sa limite.

En utilisant l'algo	rithme d'Euclide, dé	éterminer une so	lution particuliè	re de l'équation 3	329x - 217y = 21	1.

2. En utilisant obligatoirement le théorème de Gauss, déterminer l'ensemble des couples $(x,y) \in \mathbb{Z}^2$ tels que 329x-217y=21.

Olivier Rodot

Exercice 7 (2 points)

. Sans utili	ser l'algorithme d	'Euclide, en dédu	uire leur pgcd.		
. Sans utili	ser l'algorithme d	'Euclide, en dédu	uire leur pgcd.		
. Sans utili	ser l'algorithme d	'Euclide, en dédu	uire leur pgcd.		
. Sans utili	ser l'algorithme d	'Euclide, en dédu	uire leur pgcd.		
. Sans utili	ser l'algorithme d	'Euclide, en dédu	uire leur pgcd.		
. Sans utili	ser l'algorithme d	'Euclide, en dédu	uire leur pgcd.		
. Sans utili	ser l'algorithme d	'Euclide, en dédu	nire leur pgcd.		
. Sans utili	ser l'algorithme d	'Euclide, en dédu	uire leur pgcd.		
. Sans utili	ser l'algorithme d	'Euclide, en dédu	uire leur pgcd.		
. Sans utili	ser l'algorithme d	'Euclide, en dédu	uire leur pgcd.		
2. Sans utili	ser l'algorithme d	'Euclide, en dédu	uire leur pgcd.		

Exercice 8 (1,5 points)

Déterminer le reste de la division euclidienne de 751^{157} par 11.