Today's class:

Absorption Spectroscopy

This lecture follows the materials from the following books

- Spectroscopy for the Biological Sciences, by GG Hammes, Wiley, 2005 Chapter 3
- Physical Chemistry for Life Sciences, by PW Atkins and JD Paula, Oxford, 2006

The ultraviolet and visible spectra

An artist's color wheel

Absorption spectra may not always predict the colors

This absorption band has peaks but also long tails that makes it hard to predict colors

Electronic excitation in molecules

How long does it take to absorb?

Timescale of electronic excitation

For any quantum mechanical transition with a time-scale τ : $\tau \Delta E \sim \hbar$

$$\Delta E = |E_1 - E_2| = h\nu$$

 $\Delta E = |E_1 - E_2| = h\nu$ Here, $\nu = \text{Bohr frequency}$

This relation often written with wavelength of light, $\lambda = \frac{c}{-}$

Or with the wavenumber,
$$\bar{\nu}=\frac{\nu}{c}=\frac{1}{\lambda}$$
 Unit of $\bar{\nu}=\mathrm{cm}^{-1}$

Unit of
$$\bar{\nu} = \text{cm}^{-1}$$

$$\implies \tau \sim \frac{\hbar}{\Delta E} = \frac{\hbar \lambda}{hc} = \frac{\lambda}{2\pi c} = \frac{1}{2\pi c\bar{\nu}}$$

For UV-VIS, $\lambda \sim 100 - 800 \text{ nm}$

For
$$\lambda = 500$$
 nm, $\bar{\nu} = 20000$ cm⁻¹ $\Longrightarrow \tau \approx 0.3$ fs

Typical timescales of electronic excitations are ~ femtoseconds

How much light is absorbed by the sample?

Beer-Lambert law

The measured absorbance for a single compound is directly proportional to the concentration of the compound and the length of the light path through the sample

Measured absorbance or optical density is defined as

$$A = log\left(rac{I_0}{I}
ight) \qquad \propto c \quad ext{Beer law}$$
 $\propto l \quad ext{Lambert law}$

Understanding the Beer-Lambert law

Decrease in intensity of light through sample

$$dI \propto c \times I \times dx$$

$$\implies dI = -\kappa cIdx$$

$$\implies \frac{dI}{I} = -\kappa c dx$$

This is for one slice of sample

For the entire sample thickness

$$\implies \int_{I_0}^{I} \frac{dI}{I} = -\kappa c \int_{0}^{l} dx \qquad \implies \ln\left(\frac{I}{I_0}\right) = -\kappa c l$$

This can be rearranged to

$$\implies \log\left(\frac{I_0}{I}\right) = (\kappa \ln 10) cl \implies A = \epsilon cl \qquad \text{where, } \epsilon = \frac{\kappa}{\ln 10}$$

Final form of Beer-Lambert law

where,
$$\epsilon = \frac{\kappa}{ln10}$$

molar extinction coefficient

Alternate versions of the Beer-Lambert law

$$A = log\left(\frac{I_0}{I}\right) = \epsilon cl$$

This is often written as

$$A = -\log\left(\frac{I}{I_0}\right) = -\log T = \epsilon cl$$

Where T= transmittance of the sample $=\frac{I}{I_0}$

$$\log\left(\frac{I}{I_0}\right) = -\epsilon cl$$

$$\implies I = I_0 \ 10^{-\epsilon cl}$$

Thickness of sample, I

Units of molar extinction coefficient

$$A = \epsilon cl$$
 Dimensionless
$$[\epsilon] = \frac{[A]}{[c][l]}$$

$$[\epsilon] = \frac{1}{[ML^{-3}][L]}$$

Where $c \sim \mathrm{M} \sim \mathrm{moles/L}$, and path length, $l \sim \mathrm{cm}$

Then unit of $\epsilon \sim L \text{ mol}^{-1} \text{ cm}^{-1}$

Sometimes also used unit of $\epsilon \sim M^{-1} cm^{-1}$

Here, M = molarity

 ϵ is also called molar absorption coefficient

Determination of molar extinction coefficient

From such a plot we can calculate two things

- Molar extinction coefficient from the slope
- Any unknown concentration of the absorbing species

The molar extinction coefficient depends of wavelength

Figure 2. Dominant absorbers of breast tissue in the UV-visible spectrum. Molar extinction coefficient of oxy- and deoxy- hemoglobin and β -carotene in the 400–600 nm range.

 λ_{max} = wavelength at which absorption is maximum

Lo et al Plos One 2013

Experimentally we use: $\epsilon(\lambda_{max})$ is the dependence is sharp

Alternatively, an integrated absorption coefficient can also be used

$$\mathscr{A} = \int_{\lambda} \epsilon(\lambda)$$

The Beer-Lambert law in action: monitoring concentration

From Beer-Lambert law,
$$c = \frac{A}{\epsilon l}$$

Concentration can be determined for species with known ϵ

Radiation of wavelength 280 nm passed through 1.0 mm of a sample containing an aqueous solution of the amino acid tryptophan and the measured absorbance was A = 0.27.

$$\epsilon_{tryp}(280 \text{ nm}) = 5.4 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1}$$

$$c = \frac{0.27}{(5.4 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1}) \times (0.10 \text{ cm})}$$
$$= 5.0 \times 10^{-4} \text{ mol } L^{-1} = 0.50 \text{ mmol } L^{-1} \blacksquare$$

The Beer-Lambert law can be used to measure protein conc

FIG. 5-4 UV absorbance spectra of phenylalanine, **tryptophan**, and **tyrosine**. Here the **molar absorptivity** (ε when c is expressed in mol \cdot L⁻¹) for each aromatic amino acid is displayed on a log scale. [After Wetlaufer, D.B., *Adv. Prot. Chem.* **7**, 310 (1962).]

- Protein absorbance depends on the amino acid composition as they primarily absorb strongly in UV region
- Absorbance of a protein in range 200-400 nm can be converted into conc of a protein
- However, some chromophores in proteins can be responsible for the color as they absorb in visible region (> 400 nm)

Chromophores: parts of molecule responsible for color, like aromatic rings, double bonds, carbonyl groups

Electronic absorption properties of amino acids and bases

In water and at pH = 7

Compound	λ_{max} /nm	$\varepsilon_{\text{max}}/(10^3 \text{ L mol}^{-1} \text{ cm}^{-1})$
Tryptophan	280	5.6
Tyrosine	274	1.4
Phenylalanine	257	0.2
Adenine	260	13.4
Guanine	275	8.1
Cytosine	267	6.1
Uracil	260	9.5