Fraktale generowane metodą Newtona i Halleya

Kamil Woźniak

1 Wstęp

Program main.
py generuje fraktale wykorzystując metody Newtona i Halleya do iteracyjnego znajdowania pierwiastków zespolonych wielomianu postaci
 z^n+1 . Poszczególne wywołania funkcji zostały zapisane w plikach z opisem użytych warunków początkowych nad obrazkami.

2 Fraktale Metody Newtona

Metoda Newtona, proces iteracyjny drugiego rzędu, generuje fraktale z wyraźnymi basenami przyciągania odpowiadającymi pierwiastkom wielomianu. Fraktale te wykazują:

- "Baseny przyciągania" dla każdego pierwiastka.
- Chaotyczne zachowanie na granicach pierwiastków.
- Złożone struktury, których wygląd zależy od stopnia wielomianu.

3 Fraktale Metody Halleya

Metoda Halleya, proces iteracyjny trzeciego rzędu, udoskonala podejście metody Newtona poprzez włączenie drugiej pochodnej funkcji. Fraktale z metody Halleya wykazują:

- Szybszą zbieżność w porównaniu z metodą Newtona.
- Gładsze granice "basenów", dzięki poprawie wydajności w pobliżu krytycznych punktów (tam gdzie pierwsza pochodna jest mała).
- Inne ułożenie kolorów wynika ze zbieżności do różnych pierwiastków.

4 Wnioski

Obie metody produkują struktury fraktalne, których podobieństwo widać w sposobie rozmieszczenia "basenów". Metoda Halleya wprowadza optymalizacje, które mogą prowadzić do szybszej zbieżności oraz poprawy zachowania w pobliżu granic pomiędzy różnymi pierwiastkami.