Objective Functions

MLAI: Week 2

Neil D. Lawrence

Department of Computer Science Sheffield University

7th October 2014

Outline

Supervised Learning

Classification

- We are given data set containing "inputs", X, and "targets", y.
- ▶ Each data point consists of an input vector $\mathbf{x}_{i,:}$ and a class label, y_i .
- ► For binary classification assume y_i should be either 1 (yes) or -1 (no).
- ► Input vector can be thought of as features.

Classification Examples

- Classifying hand written digits from binary images (automatic zip code reading).
- ▶ Detecting faces in images (e.g. digital cameras).
- ▶ Who a detected face belongs to (e.g. Picasa).
- ► Classifying type of cancer given gene expression data.
- Categorization of document types (different types of news article on the internet).

The Perceptron

- ▶ Developed in 1957 by Rosenblatt.
- ► Take a data point at, x_i .
- ▶ Predict it belongs to a class, $y_i = 1$ if $\sum_j w_j \mathbf{x}_{i,j} + b > 0$ i.e. $\mathbf{w}^{\top} \mathbf{x}_i + b > 0$. Otherwise assume $y_i = -1$.

Perceptron-like Algorithm

- 1. Select a random data point *i*.
- 2. Ensure *i* is correctly classified by setting $\mathbf{w} = y_i \mathbf{x}_i$.
 - i.e. $\operatorname{sign}(\mathbf{w}^{\top}\mathbf{x}_{i,:}) = \operatorname{sign}(y_i\mathbf{x}_{i,:}^{\top}\mathbf{x}_{i,:}) = \operatorname{sign}(y_i) = y_i$

Perceptron Iteration

- 1. Select a misclassified point, i.
- 2. Set $\mathbf{w} \leftarrow \mathbf{w} + \eta y_i \mathbf{x}_{i,:}$.
 - If η is large enough this will guarantee this point becomes correctly classified.
- 3. Repeat until there are no misclassified points.

▶ Iteration 1 data no 29

- ► Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$

- ▶ Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$
- ► First Iteration

- ▶ Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$
- ► First Iteration
- Set weight vector to data point.

- ▶ Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$
- ► First Iteration
- Set weight vector to data point.
- $\mathbf{w} = y_{29}\mathbf{x}_{29,:}$

- ▶ Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$
- ► First Iteration
- Set weight vector to data point.
- $\mathbf{w} = y_{29}\mathbf{x}_{29,:}$
- Select new incorrectly classified data point.

► Iteration 2 data no 16

- ▶ Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$

- ▶ Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$
- ► Incorrect classification

- ▶ Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$
- ► Incorrect classification
- Adjust weight vector with new data point.

- ▶ Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$
- ► Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{16} \mathbf{x}_{16,:}$

- ▶ Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$
- ► Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{16} \mathbf{x}_{16,:}$
- Select new incorrectly classified data point.

▶ Iteration 3 data no 58

- ▶ Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$

- ▶ Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- ► Incorrect classification

- ▶ Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- ► Incorrect classification
- Adjust weight vector with new data point.

- ▶ Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- ► Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{58} \mathbf{x}_{58}$

- ▶ Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- ► Incorrect classification
- ► Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{58} \mathbf{x}_{58,:}$
- All data correctly classified.

Regression Examples

- ▶ Predict a real value, y_i given some inputs x_i .
- Predict quality of meat given spectral measurements (Tecator data).
- ▶ Radiocarbon dating, the C14 calibration curve: predict age given quantity of C14 isotope.
- Predict quality of different Go or Backgammon moves given expert rated training data.

Linear Regression

Is there an equivalent learning rule for regression?

- ▶ Predict a real value *y* given *x*.
- ► We can also construct a learning rule for regression.
 - Define our prediction

$$f(x) = mx + c.$$

Define an error

$$\Delta y_i = y_i - f(x_i).$$

Updating Bias/Intercept

► *c* represents bias. Add portion of error to bias.

$$c \to c + \eta \Delta y_i.$$

$$\Delta y_i = y_i - mx_i - c.$$

- 1. For +ve error, c and therefore $f(x_i)$ become larger and error magnitude becomes smaller.
- 2. For -ve error, c and therefore $f(x_i)$ become smaller and error magnitude becomes smaller.

Updating Slope

▶ *m* represents Slope. Add portion of error × input to slope.

$$m \to m + \eta \Delta y_i x_i$$
.
 $\Delta y_i = y_i - m x_i - c$.

- 1. For +ve error and +ve input, m becomes larger and $f(x_i)$ becomes larger: error magnitude becomes smaller.
- 2. For +ve error and -ve input, m becomes smaller and $f(x_i)$ becomes larger: error magnitude becomes smaller.
- 3. For -ve error and -ve slope, m becomes larger and $f(x_i)$ becomes smaller: error magnitude becomes smaller.
- 4. For -ve error and +ve input, m becomes smaller and $f(x_i)$ becomes smaller: error magnitude becomes smaller.

► Iteration 1 $\hat{m} = -0.3$ $\hat{c} = 1$

- ► Iteration 1 $\hat{m} = -0.3$ $\hat{c} = 1$
 - Present data point 4

- ► Iteration 1 $\hat{m} = -0.3$ $\hat{c} = 1$
 - Present data point 4

- ► Iteration 1 $\hat{m} = -0.3$ $\hat{c} = 1$
 - ▶ Present data point 4

 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_4 \Delta y_4$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_4$

- ► Iteration 1 $\hat{m} = -0.3$ $\hat{c} = 1$
 - ▶ Present data point 4

- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_4 \Delta y_4$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_4$
- Updated values

$$\hat{m} = -0.25593 \ \hat{c} = 1.0175$$

► Iteration 2 $\hat{m} = -0.25593$ $\hat{c} = 1.0175$

- ► Iteration 2 $\hat{m} = -0.25593$ $\hat{c} = 1.0175$
 - Present data point 7

- ► Iteration 2 $\hat{m} = -0.25593$ $\hat{c} = 1.0175$
 - Present data point 7

- ► Iteration 2 $\hat{m} = -0.25593$ $\hat{c} = 1.0175$
 - Present data point 7

 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_7 \Delta y_7$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_7$

- ► Iteration 2 $\hat{m} = -0.25593$ $\hat{c} = 1.0175$
 - Present data point 7

Adjust
$$\hat{m}$$
 and \hat{c}
 $\hat{m} \leftarrow \hat{m} + \eta x_7 \Delta y_7$
 $\hat{c} \leftarrow \hat{c} + \eta \Delta y_7$

Updated values

$$\hat{m} = -0.20693 \ \hat{c} = 1.0358$$

► Iteration 3 $\hat{m} = -0.20693$ $\hat{c} = 1.0358$

- ► Iteration 3 $\hat{m} = -0.20693$ $\hat{c} = 1.0358$
 - Present data point 10

- ► Iteration 3 $\hat{m} = -0.20693$ $\hat{c} = 1.0358$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$

- ► Iteration 3 $\hat{m} = -0.20693$ $\hat{c} = 1.0358$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$

- ► Iteration 3 $\hat{m} = -0.20693$ $\hat{c} = 1.0358$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$
- Updated values

$$\hat{m} = -0.085591 \ \hat{c} = 1.0617$$

► Iteration 4 $\hat{m} = -0.085591$ $\hat{c} = 1.0617$

- ► Iteration 4 $\hat{m} = -0.085591$ $\hat{c} = 1.0617$
 - Present data point 7

- ► Iteration 4 $\hat{m} = -0.085591$ $\hat{c} = 1.0617$
 - Present data point 7

- ► Iteration 4 $\hat{m} = -0.085591$ $\hat{c} = 1.0617$
 - Present data point 7

 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_7 \Delta y_7$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_7$

- ► Iteration 4 $\hat{m} = -0.085591$ $\hat{c} = 1.0617$
 - Present data point 7

 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_7 \Delta y_7$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_7$
- ► Updated values $\hat{m} = -0.050355 \, \hat{c} = 1.0749$

► Iteration 5 $\hat{m} = -0.050355$ $\hat{c} = 1.0749$

- ► Iteration 5 $\hat{m} = -0.050355$ $\hat{c} = 1.0749$
 - ▶ Present data point 4

- ► Iteration 5 $\hat{m} = -0.050355$ $\hat{c} = 1.0749$
 - Present data point 4

- ► Iteration 5 $\hat{m} = -0.050355$ $\hat{c} = 1.0749$
 - Present data point 4

 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_4 \Delta y_4$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_4$

- Iteration 5 $\hat{m} = -0.050355$ $\hat{c} = 1.0749$
 - Present data point 4
 - $\Delta y_4 = (y_4 \hat{m}x_4 \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{\boldsymbol{m}} \leftarrow \hat{\boldsymbol{m}} + \eta x_4 \Delta y_4$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_4$
- Updated values

$$\hat{m} = -0.024925 \ \hat{c} = 1.0849$$

► Iteration 6 $\hat{m} = -0.024925$ $\hat{c} = 1.0849$

- ► Iteration 6 $\hat{m} = -0.024925$ $\hat{c} = 1.0849$
 - Present data point 5

- ► Iteration 6 $\hat{m} = -0.024925$ $\hat{c} = 1.0849$
 - Present data point 5

- ► Iteration 6 $\hat{m} = -0.024925$ $\hat{c} = 1.0849$
 - Present data point 5

 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_5 \Delta y_5$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_5$

- ► Iteration 6 $\hat{m} = -0.024925$ $\hat{c} = 1.0849$
 - ▶ Present data point 5
 - $\Delta y_5 = (y_5 \hat{m}x_5 \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_5 \Delta y_5$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_5$
- ▶ Updated values $\hat{m} = 0.00098511 \, \hat{c} = 1.0949$

► Iteration 7 $\hat{m} = 0.00098511$ $\hat{c} = 1.0949$

- ► Iteration 7 $\hat{m} = 0.00098511$ $\hat{c} = 1.0949$
 - ▶ Present data point 10

- ► Iteration 7 $\hat{m} = 0.00098511$
 - $\hat{c} = 1.0949$
 - ▶ Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$

- ▶ Iteration 7 $\hat{m} = 0.00098511$ $\hat{c} = 1.0949$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$

$$\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$$
$$\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$$

- ▶ Iteration 7 $\hat{m} = 0.00098511$ $\hat{c} = 1.0949$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$
- Updated values

► Iteration 8 $\hat{m} = 0.072529$ $\hat{c} = 1.1101$

- ► Iteration 8 $\hat{m} = 0.072529$ $\hat{c} = 1.1101$
 - Present data point 10

- ► Iteration 8 $\hat{m} = 0.072529$ $\hat{c} = 1.1101$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$

- ► Iteration 8 $\hat{m} = 0.072529$ $\hat{c} = 1.1101$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$

- ► Iteration 8 $\hat{m} = 0.072529$ $\hat{c} = 1.1101$
 - Present data point 10

$$\Delta y_{10} = (y_{10} - \hat{m}x_{10} - \hat{c})$$

Adjust
$$\hat{m}$$
 and \hat{c}
 $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$
 $\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$

► Updated values

$$\hat{m} = 0.1282 \ \hat{c} = 1.122$$

► Iteration 9 $\hat{m} = 0.1282$ $\hat{c} = 1.122$

- ► Iteration 9 $\hat{m} = 0.1282$ $\hat{c} = 1.122$
 - ▶ Present data point 7

- ► Iteration 9 $\hat{m} = 0.1282$ $\hat{c} = 1.122$
 - ▶ Present data point 7

- ► Iteration 9 $\hat{m} = 0.1282$ $\hat{c} = 1.122$
 - Present data point 7

 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_7 \Delta y_7$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_7$

- ► Iteration 9 $\hat{m} = 0.1282$ $\hat{c} = 1.122$
 - Present data point 7
 - $\Delta y_7 = (y_7 \hat{m}x_7 \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{\boldsymbol{m}} \leftarrow \hat{\boldsymbol{m}} + \eta x_7 \Delta y_7$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_7$
- ► Updated values

$$\hat{m} = 0.14634 \ \hat{c} = 1.1288$$

- ► Iteration 10 $\hat{m} = 0.14634$ $\hat{c} = 1.1288$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$

- ► Iteration 10 $\hat{m} = 0.14634$ $\hat{c} = 1.1288$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$
- Updated values

$$\hat{m} = 0.18547 \ \hat{c} = 1.1372$$

- ► Iteration 20 $\hat{m} = 0.27764$ $\hat{c} = 1.1621$
 - Present data point 6

 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_6 \Delta y_6$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_6$

- ► Iteration 20 $\hat{m} = 0.27764$ $\hat{c} = 1.1621$
 - Present data point 6

$$\Delta y_6 = (y_6 - \hat{m}x_6 - \hat{c})$$

Adjust
$$\hat{m}$$
 and \hat{c}
 $\hat{m} \leftarrow \hat{m} + \eta x_6 \Delta y_6$
 $\hat{c} \leftarrow \hat{c} + \eta \Delta y_6$

Updated values

$$\hat{m} = 0.28135 \ \hat{c} = 1.1635$$

- ► Iteration 30 $\hat{m} = 0.30249$ $\hat{c} = 1.1673$
 - ▶ Present data point 9

 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_9 \Delta y_9$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_9$

- ► Iteration 30 $\hat{m} = 0.30249$ $\hat{c} = 1.1673$
 - Present data point 9

$$\Delta y_9 = (y_9 - \hat{m}x_9 - \hat{c})$$

Adjust
$$\hat{m}$$
 and \hat{c}
 $\hat{m} \leftarrow \hat{m} + \eta x_9 \Delta y_9$
 $\hat{c} \leftarrow \hat{c} + \eta \Delta y_9$

Updated values

$$\hat{m} = 0.31119 \ \hat{c} = 1.1693$$

- ► Iteration 40 $\hat{m} = 0.33551$ $\hat{c} = 1.1754$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$

- ► Iteration 40 $\hat{m} = 0.33551$ $\hat{c} = 1.1754$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$
- Updated values

$$\hat{m} = 0.33503 \ \hat{c} = 1.1753$$

- ► Iteration 50 $\hat{m} = 0.34126$ $\hat{c} = 1.1763$
 - Present data point 8

 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_8 \Delta y_8$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_8$

- ► Iteration 50 $\hat{m} = 0.34126$ $\hat{c} = 1.1763$
 - Present data point 8

$$\Delta y_8 = (y_8 - \hat{m}x_8 - \hat{c})$$

Adjust
$$\hat{m}$$
 and \hat{c}
 $\hat{m} \leftarrow \hat{m} + \eta x_8 \Delta y_8$
 $\hat{c} \leftarrow \hat{c} + \eta \Delta y_8$

Updated values

$$\hat{m} = 0.3439 \ \hat{c} = 1.177$$

- ► Iteration 60 $\hat{m} = 0.34877$ $\hat{c} = 1.1775$
 - Present data point 2

 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_2 \Delta y_2$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_2$

- ► Iteration 60 $\hat{m} = 0.34877$ $\hat{c} = 1.1775$
 - Present data point 2

Adjust
$$\hat{m}$$
 and \hat{c}
 $\hat{m} \leftarrow \hat{m} + \eta x_2 \Delta y_2$
 $\hat{c} \leftarrow \hat{c} + \eta \Delta y_2$

Updated values

$$\hat{m} = 0.34621 \ \hat{c} = 1.1757$$

- ► Iteration 70 $\hat{m} = 0.34207$ $\hat{c} = 1.1734$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$

- ► Iteration 70 $\hat{m} = 0.34207$ $\hat{c} = 1.1734$
 - Present data point 10
 - $\Delta y_{10} = (y_{10} \hat{m}x_{10} \hat{c})$
 - Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m} + \eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c} + \eta \Delta y_{10}$
- ► Updated values

$$\hat{m} = 0.34088 \ \hat{c} = 1.1732$$

Basis Functions

Nonlinear Regression

- ► Problem with Linear Regression—x may not be linearly related to y.
- ▶ Potential solution: create a feature space: define $\phi(\mathbf{x})$ where $\phi(\cdot)$ is a nonlinear function of \mathbf{x} .
- Model for target is a linear combination of these nonlinear functions

$$f(\mathbf{x}) = \sum_{i=1}^{K} w_i \phi_i(\mathbf{x})$$
 (1)

Quadratic Basis

▶ Basis functions can be global. E.g. quadratic basis:

$$[1,x,x^2]$$

Figure : A quadratic basis.

Quadratic Basis

▶ Basis functions can be global. E.g. quadratic basis:

$$[1, x, x^2]$$

Figure : A quadratic basis.

Quadratic Basis

▶ Basis functions can be global. E.g. quadratic basis:

$$[1, x, x^2]$$

Figure : A quadratic basis.

Functions Derived from Quadratic Basis

$$f(x) = w_1 + w_2 x + w_3 x^2$$

Figure : Function from quadratic basis with weights $w_1 = 0.87466$, $w_2 = -0.38835$, $w_3 = -2.0058$.

Functions Derived from Quadratic Basis

$$f(x) = w_1 + w_2 x + w_3 x^2$$

Figure : Function from quadratic basis with weights $w_1 = -0.35908$, $w_2 = 1.2274$, $w_3 = -0.32825$.

Functions Derived from Quadratic Basis

$$f(x) = w_1 + w_2 x + w_3 x^2$$

Figure : Function from quadratic basis with weights $w_1 = -1.5638$, $w_2 = -0.73577$, $w_3 = 1.6861$.

Radial Basis Functions

► Or they can be local. E.g. radial (or Gaussian) basis $\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{\ell^2}\right)$

Figure: Radial basis functions.

Radial Basis Functions

► Or they can be local. E.g. radial (or Gaussian) basis $\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{\ell^2}\right)$

Figure: Radial basis functions.

Radial Basis Functions

► Or they can be local. E.g. radial (or Gaussian) basis $\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{\ell^2}\right)$

Figure: Radial basis functions.

Functions Derived from Radial Basis

$$f(x) = w_1 e^{-2(x+1)^2} + w_2 e^{-2x^2} + w_3 e^{-2(x-1)^2}$$

Figure : Function from radial basis with weights $w_1 = -0.47518$, $w_2 = -0.18924$, $w_3 = -1.8183$.

Functions Derived from Radial Basis

$$f(x) = w_1 e^{-2(x+1)^2} + w_2 e^{-2x^2} + w_3 e^{-2(x-1)^2}$$

Figure : Function from radial basis with weights $w_1 = 0.50596$, $w_2 = -0.046315$, $w_3 = 0.26813$.

Functions Derived from Radial Basis

$$f(x) = w_1 e^{-2(x+1)^2} + w_2 e^{-2x^2} + w_3 e^{-2(x-1)^2}$$

Figure : Function from radial basis with weights $w_1 = 0.07179$, $w_2 = 1.3591$, $w_3 = 0.50604$.

- ▶ Iteration 1
 - $w_1 = 0.13018,$ $w_2 = -0.11355,$ $w_3 = 0.15448$
 - Present data point 4

- ▶ Iteration 1
 - $w_1 = 0.13018,$ $w_2 = -0.11355,$ $w_3 = 0.15448$
 - Present data point 4

- ▶ Iteration 1
 - $w_1 = 0.13018,$ $w_2 = -0.11355,$ $w_3 = 0.15448$
 - ▶ Present data point 4
 - $\Delta y_4 = y_4 \phi_4^{\dagger} \mathbf{w}$
 - ► Adjust ŵ

- Iteration 1
 - $w_1 = 0.13018$, $w_2 = -0.11355$, $w_3 = 0.15448$
 - Present data point 4

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_4 \Delta y_4$$

- ▶ Iteration 2
 - $w_1 = 0.33696,$ $w_2 = 0.11481,$ $w_3 = 0.1591$
 - Present data point 7

- ▶ Iteration 2
 - $w_1 = 0.33696,$ $w_2 = 0.11481,$ $w_3 = 0.1591$
 - Present data point 7
 - $\Delta y_7 = y_7 \phi_7^{\dagger} \mathbf{w}$

- ▶ Iteration 2
 - $w_1 = 0.33696,$ $w_2 = 0.11481,$ $w_3 = 0.1591$
 - Present data point 7

 - ► Adjust ŵ

- ▶ Iteration 2
 - $w_1 = 0.33696,$ $w_2 = 0.11481,$ $w_3 = 0.1591$
 - Present data point 7

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_7 \Delta y_7$$

- ▶ Iteration 3
 - $w_1 = 0.18076,$ $w_2 = -0.4266,$ $w_3 = 0.12473$
 - ▶ Present data point 10

- ▶ Iteration 3
 - $w_1 = 0.18076,$ $w_2 = -0.4266,$ $w_3 = 0.12473$
 - ▶ Present data point 10
 - $\Delta y_{10} = y_{10} \phi_{10}^{\mathsf{T}} \mathbf{w}$

- ▶ Iteration 3
 - $w_1 = 0.18076,$ $w_2 = -0.4266,$ $w_3 = 0.12473$
 - Present data point 10
 - $\Delta y_{10} = y_{10} \hat{\phi}_{10}^{\mathsf{T}} \mathbf{w}$
 - ► Adjust ŵ

- ▶ Iteration 3
 - $w_1 = 0.18076,$ $w_2 = -0.4266,$ $w_3 = 0.12473$
 - ▶ Present data point 10
 - $\Delta y_{10} = y_{10} \hat{\phi}_{10}^{\mathsf{T}} \mathbf{w}$
 - ► Adjust ŵ
- ► Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_{10} \Delta y_{10}$$

- ▶ Iteration 4
 - $w_1 = 0.18076,$ $w_2 = -0.42893,$ $w_3 = -0.14306$
 - Present data point 7

- ▶ Iteration 4
 - $w_1 = 0.18076,$ $w_2 = -0.42893,$ $w_3 = -0.14306$
 - Present data point 7
 - $\Delta y_7 = y_7 \phi_7^{\dagger} \mathbf{w}$

- ▶ Iteration 4
 - $w_1 = 0.18076,$ $w_2 = -0.42893,$ $w_3 = -0.14306$
 - Present data point 7

 - ► Adjust ŵ

- ▶ Iteration 4
 - $w_1 = 0.18076,$ $w_2 = -0.42893,$ $w_3 = -0.14306$
 - Present data point 7

 - ► Adjust ŵ
- ► Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_7 \Delta y_7$$

- ▶ Iteration 5
 - $w_1 = 0.17372,$ $w_2 = -0.45335,$ $w_3 = -0.14461$
 - Present data point 4

▶ Iteration 5

- $w_1 = 0.17372,$ $w_2 = -0.45335,$ $w_3 = -0.14461$
- Present data point 4
- $\Delta y_4 = y_4 \phi_4^{\mathsf{T}} \mathbf{w}$

- ▶ Iteration 5
 - $w_1 = 0.17372,$ $w_2 = -0.45335,$ $w_3 = -0.14461$
 - Present data point 4
 - $\Delta y_4 = y_4 \phi_4^{\dagger} \mathbf{w}$
 - ► Adjust ŵ

- Iteration 5
 - $w_1 = 0.17372$, $w_2 = -0.45335$, $w_3 = -0.14461$
 - Present data point 4

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_4 \Delta y_4$$

- ▶ Iteration 6
 - $w_1 = 0.47971,$ $w_2 = -0.11541,$ $w_3 = -0.13778$
 - Present data point 5

 - ► Adjust ŵ
- ► Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_5 \Delta y_5$

- ▶ Iteration 6
 - $w_1 = 0.47971,$ $w_2 = -0.11541,$ $w_3 = -0.13778$
 - Present data point 5

 - ► Adjust ŵ
- ► Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_5 \Delta y_5$$

- ▶ Iteration 7
 - $w_1 = 0.46599,$ $w_2 = -0.13952,$ $w_3 = -0.13855$
 - Present data point 10
 - $\Delta y_{10} = y_{10} \phi_{10}^{\mathsf{T}} \mathbf{w}$
 - ► Adjust ŵ
- ► Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_{10} \Delta y_{10}$$

- ▶ Iteration 7
 - $w_1 = 0.46599,$ $w_2 = -0.13952,$ $w_3 = -0.13855$
 - Present data point 10
 - $\Delta y_{10} = y_{10} \phi_{10}^{\mathsf{T}} \mathbf{w}$
 - ► Adjust ŵ
- ► Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_{10} \Delta y_{10}$$

- ▶ Iteration 8
 - $w_1 = 0.46599,$ $w_2 = -0.14144,$ $w_3 = -0.35924$
 - Present data point 10
 - $\Delta y_{10} = y_{10} \phi_{10}^{\mathsf{T}} \mathbf{w}$
 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_{10} \Delta y_{10}$$

- ▶ Iteration 8
 - $w_1 = 0.46599,$ $w_2 = -0.14144,$ $w_3 = -0.35924$
 - Present data point 10
 - $\Delta y_{10} = y_{10} \phi_{10}^{\mathsf{T}} \mathbf{w}$
 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_{10} \Delta y_{10}$$

- ▶ Iteration 9
 - $w_1 = 0.46599,$ $w_2 = -0.14307,$ $w_3 = -0.54679$
 - Present data point 7

 - ► Adjust ŵ
- ► Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_7 \Delta y_7$

- ▶ Iteration 9
 - $w_1 = 0.46599,$ $w_2 = -0.14307,$ $w_3 = -0.54679$
 - Present data point 7

 - ► Adjust ŵ
- ► Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_7 \Delta y_7$

- ▶ Iteration 10
 - $w_1 = 0.38071,$ $w_2 = -0.43867,$ $w_3 = -0.56556$
 - Present data point 10
 - $\Delta y_{10} = y_{10} \phi_{10}^{\mathsf{T}} \mathbf{w}$
 - ► Adjust ŵ
- ► Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_{10} \Delta y_{10}$$

- ▶ Iteration 10
 - $w_1 = 0.38071,$ $w_2 = -0.43867,$ $w_3 = -0.56556$
 - Present data point 10
 - $\Delta y_{10} = y_{10} \phi_{10}^{\mathsf{T}} \mathbf{w}$
 - ► Adjust ŵ
- ► Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_{10} \Delta y_{10}$$

- Iteration 11
 - $w_1 = 0.38071$, $w_2 = -0.44002$, $w_3 = -0.7208$
 - Present data point 8
- Updated values

2

- ▶ Iteration 11
 - $w_1 = 0.38071,$ $w_2 = -0.44002,$ $w_3 = -0.7208$
 - Present data point 8
 - $\Delta y_8 = y_8 \phi_8^{\dagger} \mathbf{w}$
 - ► Adjust ŵ
- ► Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_8 \Delta y_8$

- ▶ Iteration 12
 - $w_1 = 0.37237,$ $w_2 = -0.90666,$ $w_3 = -1.1987$
 - Present data point 5

 - ► Adjust ŵ
- ► Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_5 \Delta y_5$$

- ▶ Iteration 12
 - $w_1 = 0.37237,$ $w_2 = -0.90666,$ $w_3 = -1.1987$
 - Present data point 5

 - ► Adjust ŵ
- ► Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_5 \Delta y_5$

- ▶ Iteration 13
 - $w_1 = 0.62833,$ $w_2 = -0.45691,$ $w_3 = -1.1842$
 - ▶ Present data point 10
 - $\Delta y_{10} = y_{10} \phi_{10}^{\mathsf{T}} \mathbf{w}$
 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_{10} \Delta y_{10}$$

- ▶ Iteration 13
 - $w_1 = 0.62833,$ $w_2 = -0.45691,$ $w_3 = -1.1842$
 - ▶ Present data point 10
 - $\Delta y_{10} = y_{10} \phi_{10}^{\mathsf{T}} \mathbf{w}$
 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_{10} \Delta y_{10}$$

- ▶ Iteration 14
 - $w_1 = 0.62833$, $w_2 = -0.4575$, $w_3 = -1.252$
 - Present data point 2

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_2 \Delta y_2$$

- ▶ Iteration 14
 - $w_1 = 0.62833,$ $w_2 = -0.4575,$ $w_3 = -1.252$
 - Present data point 2

 - ► Adjust ŵ
- ► Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_2 \Delta y_2$$

- ▶ Iteration 15
 - $w_1 = 0.7016$, $w_2 = -0.45646$, $w_3 = -1.252$
 - Present data point 1

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_1 \Delta y_1$$

- ▶ Iteration 15
 - $w_1 = 0.7016,$ $w_2 = -0.45646,$ $w_3 = -1.252$
 - Present data point 1
 - $\Delta y_1 = y_1 \phi_1^{\dagger} \mathbf{w}$
 - ► Adjust ŵ
- ► Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_1 \Delta y_1$

- ▶ Iteration 16
 - $w_1 = 0.7109$, $w_2 = -0.45641$, $w_3 = -1.252$
 - Present data point 5

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_5 \Delta y_5$$

- ▶ Iteration 16
 - $w_1 = 0.7109$, $w_2 = -0.45641$, $w_3 = -1.252$
 - Present data point 5

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_5 \Delta y_5$$

- ▶ Iteration 17
 - $w_1 = 0.77022$, $w_2 = -0.35219$, $w_3 = -1.2487$
 - Present data point 9

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \boldsymbol{\phi}_9 \Delta y_9$$

- ▶ Iteration 17
 - $w_1 = 0.77022$, $w_2 = -0.35219$, $w_3 = -1.2487$
 - Present data point 9

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_9 \Delta y_9$$

- ▶ Iteration 18
 - $w_1 = 0.77019,$ $w_2 = -0.3832,$ $w_3 = -1.8175$
 - ▶ Present data point 4

 - ► Adjust ŵ
- ► Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_4 \Delta y_4$

- ▶ Iteration 18
 - $w_1 = 0.77019,$ $w_2 = -0.3832,$ $w_3 = -1.8175$
 - ▶ Present data point 4

 - ► Adjust ŵ
- ► Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_4 \Delta y_4$

- ▶ Iteration 19
 - $w_1 = 0.86321$, $w_2 = -0.28046$, $w_3 = -1.8154$
 - Present data point 7

 - ► Adjust ŵ
- Updated values

- ▶ Iteration 19
 - $w_1 = 0.86321$, $w_2 = -0.28046$, $w_3 = -1.8154$
 - Present data point 7

 - ► Adjust ŵ
- Updated values

- ▶ Iteration 20
 - $w_1 = 0.80681$, $w_2 = -0.47597$, $w_3 = -1.8278$
 - Present data point 6

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_6 \Delta y_6$$

- ▶ Iteration 20
 - $w_1 = 0.80681$, $w_2 = -0.47597$, $w_3 = -1.8278$
 - Present data point 6

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_6 \Delta y_6$$

- ▶ Iteration 50
 - $w_1 = 0.9777$, $w_2 = -0.4076$, $w_3 = -2.038$
 - Present data point 8

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_8 \Delta y_8$$

- ▶ Iteration 100
 - $w_1 = 0.98593$, $w_2 = -0.49744$, $w_3 = -2.046$
 - Present data point 8

 - ► Adjust ŵ
- Updated values

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_8 \Delta y_8$$

- ▶ Iteration 200
 - $w_1 = 0.95307$ $w_2 = -0.48041$, $w_3 = -2.0553$
 - Present data point 4
- Updated values

2

2

x

- ▶ Iteration 300
 - $w_1 = 0.97066,$ $w_2 = -0.44667,$ $w_3 = -2.0588$
 - Present data point 1

 - ► Adjust ŵ
- ► Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_1 \Delta y_1$

- ▶ Iteration 400
 - $w_1 = 0.95515,$ $w_2 = -0.40611,$ $w_3 = -2.0289$
 - Present data point 8

 - ► Adjust ŵ
- ► Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} + \eta \phi_8 \Delta y_8$

Mathematical Interpretation

- ► What is the mathematical interpretation?
 - ► There is a cost function.
 - ► It expresses mismatch between your prediction and reality.

$$E(\mathbf{w}) = \sum_{i=1}^{N} \left(\sum_{j=1}^{K} w_j \phi_j(x_i) - y_i \right)^2$$

► This is known as the sum of squares error.

Mathematical Interpretation

- What is the mathematical interpretation?
 - ► There is a cost function.
 - ▶ It expresses mismatch between your prediction and reality.

$$E(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_{i} - y_{i})^{2}$$

- This is known as the sum of squares error.
- ► Defining $\phi_i = [\phi_1(x_i), \dots, \phi_K(x_i)]^{\mathsf{T}}$.

Learning is Optimization

- ▶ Learning is minimization of the cost function.
- ▶ At the minima the gradient is zero.
- Gradient of error function:

$$\frac{\mathrm{d}E(\mathbf{w})}{\mathrm{d}\mathbf{w}} = -2\sum_{i=1}^{N} \boldsymbol{\phi}_{i} \left(y_{i} - \mathbf{w}^{\top} \boldsymbol{\phi}_{i} \right)$$

Learning is Optimization

- ► Learning is minimization of the cost function.
- ▶ At the minima the gradient is zero.
- Gradient of error function:

$$\frac{\mathrm{d}E(\mathbf{w})}{\mathrm{d}\mathbf{w}} = -2\sum_{i=1}^{N} \phi_i \Delta y_i$$

• Where $\Delta y_i = (y_i - \mathbf{w}^{\top} \boldsymbol{\phi}_i)$.

Minimization via Gradient Descent

- ▶ One way of minimizing is steepest descent.
- ▶ Initialize algorithm with w.
- ► Compute gradient of error function, $\frac{dE(\mathbf{w})}{d\mathbf{w}}$.
- ► Change **w** by moving in steepest downhill direction.

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{\mathrm{d}E(\mathbf{w})}{\mathrm{d}\mathbf{w}}$$

Steepest Descent

- For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- ► For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{\mathrm{d}E(\mathbf{w})}{\mathrm{d}\mathbf{w}}$$

- For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- ► For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - 2\eta \sum_{i=1}^{N} \phi_i \left(\mathbf{w}^{\mathsf{T}} \phi_i - y_i \right)$$

- ► For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - \eta' \sum_{i=1}^{N} \boldsymbol{\phi}_i (\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_i - y_i)$$

- For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - \eta' \sum_{i=1}^{N} \phi_i \left(\mathbf{w}^{\mathsf{T}} \phi_i - y_i \right)$$

- ► For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - \eta' \sum_{i=1}^{N} \phi_i \Delta y_i$$

How does this relate to learning rules we presented?

- ► For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - \eta' \sum_{i=1}^{N} \boldsymbol{\phi}_i \Delta y_i$$

And the stochastic approximation is

$$\mathbf{w} \leftarrow \mathbf{w} - \eta' \boldsymbol{\phi}_i \Delta y_i$$

Modern View of Error Functions

- Error function has a probabilistic interpretation (maximum likelihood).
- ► Error function is an actual loss function that you want to minimize (empirical risk minimization).
- ► For these interpretations probability and optimization theory become important.
- Much of the last 15 years of machine learning research has focused on probabilistic interpretations or clever relaxations of difficult objective functions.

Important Concepts Not Covered

- Optimization methods.
 - Second order methods, conjugate gradient, quasi-Newton and Newton.
 - Effective heuristics such as momentum.
- ► Local vs global solutions.

Mathematical Interpretation

- ► What is the mathematical interpretation?
 - ► There is a cost function.
 - ► It expresses mismatch between your prediction and reality.

$$E(\mathbf{w}) = \sum_{i=1}^{N} \left(\sum_{j=1}^{K} w_j \phi_j(x_i) - y_i \right)^2$$

► This is known as the sum of squares error.

Mathematical Interpretation

- What is the mathematical interpretation?
 - ► There is a cost function.
 - ▶ It expresses mismatch between your prediction and reality.

$$E(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_{i} - y_{i})^{2}$$

- This is known as the sum of squares error.
- ► Defining $\phi_i = [\phi_1(x_i), \dots, \phi_K(x_i)]^{\mathsf{T}}$.

Learning is Optimization

- ▶ Learning is minimization of the cost function.
- ▶ At the minima the gradient is zero.
- Gradient of error function:

$$\frac{\mathrm{d}E(\mathbf{w})}{\mathrm{d}\mathbf{w}} = -2\sum_{i=1}^{N} \boldsymbol{\phi}_{i} \left(y_{i} - \mathbf{w}^{\top} \boldsymbol{\phi}_{i} \right)$$

Learning is Optimization

- ► Learning is minimization of the cost function.
- ▶ At the minima the gradient is zero.
- Gradient of error function:

$$\frac{\mathrm{d}E(\mathbf{w})}{\mathrm{d}\mathbf{w}} = -2\sum_{i=1}^{N} \phi_i \Delta y_i$$

• Where $\Delta y_i = (y_i - \mathbf{w}^{\top} \boldsymbol{\phi}_i)$.

Minimization via Gradient Descent

- ▶ One way of minimizing is steepest descent.
- ► Initialize algorithm with w.
- ► Compute gradient of error function, $\frac{dE(\mathbf{w})}{d\mathbf{w}}$.
- ► Change **w** by moving in steepest downhill direction.

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{\mathrm{d}E(\mathbf{w})}{\mathrm{d}\mathbf{w}}$$

Steepest Descent

Figure: Steepest descent on a quadratic error surface.

- For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- ► For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{\mathrm{d}E(\mathbf{w})}{\mathrm{d}\mathbf{w}}$$

- ► For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- ► For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - 2\eta \sum_{i=1}^{N} \phi_i \left(\mathbf{w}^{\mathsf{T}} \phi_i - y_i \right)$$

- ► For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - \eta' \sum_{i=1}^{N} \boldsymbol{\phi}_i (\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_i - y_i)$$

- For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - \eta' \sum_{i=1}^{N} \phi_i \left(\mathbf{w}^{\mathsf{T}} \phi_i - y_i \right)$$

- ► For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - \eta' \sum_{i=1}^{N} \phi_i \Delta y_i$$

How does this relate to learning rules we presented?

- ► For regression, the learning rule can be seen as a variant of gradient descent.
- ► This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$\mathbf{w} \leftarrow \mathbf{w} - \eta' \sum_{i=1}^{N} \boldsymbol{\phi}_i \Delta y_i$$

▶ And the stochastic approximation is

$$\mathbf{w} \leftarrow \mathbf{w} - \eta' \boldsymbol{\phi}_i \Delta y_i$$

Modern View of Error Functions

- Error function has a probabilistic interpretation (maximum likelihood).
- ► Error function is an actual loss function that you want to minimize (empirical risk minimization).
- ► For these interpretations probability and optimization theory become important.
- Much of the last 15 years of machine learning research has focused on probabilistic interpretations or clever relaxations of difficult objective functions.

Important Concepts Not Covered

- Optimization methods.
 - Second order methods, conjugate gradient, quasi-Newton and Newton.
 - Effective heuristics such as momentum.
- ► Local vs global solutions.

References I