Punktgruppen und Kristalle

Naoki Pross, Tim Tönz

Hochschule für Technik OST, Rapperswil

10. Mai 2021

2D Symmetrien

Algebraische Symmetrien

3D Symmetrien

Matrizen

Kristalle

Anwendungen

► Was heisst *Symmetrie* in der Mathematik?

- ► Was heisst *Symmetrie* in der Mathematik?
- ► Wie kann ein Kristall modelliert werden?

- ► Was heisst *Symmetrie* in der Mathematik?
- ► Wie kann ein Kristall modelliert werden?
- ► Aus der Physik: Piezoelektrizität

- ► Was heisst *Symmetrie* in der Mathematik?
- ► Wie kann ein Kristall modelliert werden?
- ► Aus der Physik: Piezoelektrizität

2D Symmetrien

Algebraische Symmetrien

Produkt mit i

$$\mathbf{1} \cdot i = i$$
 $i \cdot i = -\mathbf{1}$
 $-\mathbf{1} \cdot i = -i$
 $-i \cdot i = \mathbf{1}$

Produkt mit i

$$\mathbf{1} \cdot i = i$$
 $i \cdot i = -\mathbf{1}$
 $-\mathbf{1} \cdot i = -i$
 $-i \cdot i = \mathbf{1}$

Gruppe

$$G = \{\mathbf{1}, i, -\mathbf{1}, -i\}$$
$$= \{\mathbf{1}, i, i^2, i^3\}$$
$$C_4 = \{1, r, r^2, r^3\}$$

$$\mathbf{1} \cdot i = i$$
 $i \cdot i = -1$
 $-\mathbf{1} \cdot i = -i$
 $-i \cdot i = 1$

Gruppe

$$G = \{\mathbf{1}, i, -\mathbf{1}, -i\}$$

$$= \{\mathbf{1}, i, i^2, i^3\}$$

$$C_4 = \{\mathbb{1}, r, r^2, r^3\}$$

Darstellung $\phi: C_4 \to G$

$$\phi(\mathbb{1})=\mathtt{1} \qquad \phi(r^2)=i^2 \ \phi(r)=i \qquad \phi(r^3)=i^3$$

$$\mathbf{1} \cdot i = i$$
 $i \cdot i = -1$
 $-\mathbf{1} \cdot i = -i$
 $-i \cdot i = 1$

Gruppe

$$G = \{\mathbf{1}, i, -\mathbf{1}, -i\} \ = \{\mathbf{1}, i, i^2, i^3\} \ C_4 = \{\mathbb{1}, r, r^2, r^3\}$$

Darstellung $\phi:C_4\to G$

$$\phi(\mathbb{1})=\mathtt{1} \qquad \phi(r^2)=i^2 \ \phi(r)=i \qquad \phi(r^3)=i^3$$

Homomorphismus

$$egin{aligned} \phi(r \circ \mathbb{1}) &= \phi(r) \cdot \phi(\mathbb{1}) \ &= i \cdot \mathbf{1} \end{aligned}$$

Produkt mit *i*

$$\mathbf{1} \cdot i = i$$
$$i \cdot i = -\mathbf{1}$$

$$-\mathbf{1} \cdot i = -i$$

$$-i \cdot i = \mathbf{1}$$

Gruppe

$$G = \{\mathbf{1}, i, -\mathbf{1}, -i\}$$

= $\{\mathbf{1}, i, i^2, i^3\}$

$$= \{\mathbf{1}, i, i^2, i^3\}$$

$$C_4 = \{\mathbb{1}, r, r^2, r^3\}$$

Darstellung $\phi: C_4 \to G$

$$\phi(\mathbb{1})=\mathtt{1} \qquad \phi(r^2)=i^2 \ \phi(r)=i \qquad \phi(r^3)=i^3$$

Homomorphismus

$$\phi(r \circ 1) = \phi(r) \cdot \phi(1)$$
$$= i \cdot 1$$

$$\phi$$
 ist bijektiv $\implies C_4 \cong G$

$$1 \cdot i = i$$
$$i \cdot i = -$$

$$-1 \cdot i = -i$$
 $-i \cdot i = 1$

Gruppe

$$G = \{1, i, -1, -i\}$$
$$= \{1, i, i^2, i^3\}$$

$$= \{1, i, i^2, i^3\}$$

$$C_4 = \{1, r, r^2, r^3\}$$

$$i \cdot i = -1$$

$$-1 \cdot i = -i$$

Darstellung $\phi: C_{\Lambda} \to G$

$$= i \cdot \mathbf{1}$$

$$iioletiv \longrightarrow C \sim A$$

 $\phi(1) = \mathbf{1}$ $\phi(r^2) = i^2$ $\phi(r) = i \qquad \phi(r^3) = i^3$

 $\phi(r \circ 1) = \phi(r) \cdot \phi(1)$

$$\phi$$
 ist bijektiv $\implies C_4 \cong G$

$$\psi:C_4 o (\mathbb{Z}/4\mathbb{Z},+)$$

$$\psi(1 \circ r^2) = 0 + 2 \pmod{4}$$

3D Symmetrien

Matrizen

$$G = \{1, r, \sigma, \dots\}$$

$$G = \{1, r, \sigma, \dots\}$$

Matrixdarstellung

$$\Phi: G \to O(3)$$
$$g \mapsto \Phi_g$$

$$G = \{1, r, \sigma, \dots\}$$

Matrixdarstellung

$$\Phi: G \to O(3)$$
$$g \mapsto \Phi_g$$

Orthogonale Gruppe

$$O(n) = \left\{Q: QQ^t = Q^tQ = I\right\}$$

$$G = \{1, r, \sigma, \dots\}$$

$$\Phi: G \to O(3)$$
$$g \mapsto \Phi_g$$

$$\Phi_{1} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} = I$$

$$\Phi_{\sigma} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

$$\Phi_r = egin{pmatrix} \coslpha & -\sinlpha & \mathrm{o} \ \sinlpha & \coslpha & \mathrm{o} \ \mathrm{o} & \mathrm{o} & \mathrm{1} \end{pmatrix}$$

hogonale Gruppe
$$O(n) = \left\{Q: QQ^t = Q^tQ = I
ight\} \qquad \Phi_r = 0$$

Kristalle

Mögliche Kristallstrukturen

Kristallgitter: $n_i \in \mathbb{Z}, \vec{a}_i \in \mathbb{R}^3$ $\vec{r} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$

Kristallgitter: $n_i \in \mathbb{Z}, \vec{a}_i \in \mathbb{R}^3$ $\vec{r} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$

Invariant unter Translation

$$Q_i(\vec{r}) = \vec{r} + \vec{a}$$

Wie kombiniert sich Q_i mit der

anderen Symmetrien?

Λ'

$$A \stackrel{\circ}{\overline{\rho}} \stackrel{\circ}{A}$$

Sei $q = |\vec{Q}|$, $\alpha = 2\pi/n$ und $n \in \mathbb{N}$

Sei $q=|\vec{Q}|,\, lpha=2\pi/n \text{ und } n\in\mathbb{N}$ q'=nq=q+2x

Sei $q = |\vec{Q}|$, $\alpha = 2\pi/n$ und $n \in \mathbb{N}$ q' = nq = q + 2x $nq = q + 2q \sin(\alpha - \pi/2)$

Sei $q = |\vec{Q}|$, $\alpha = 2\pi/n$ und $n \in \mathbb{N}$ q' = nq = q + 2x $nq = q + 2q \sin(\alpha - \pi/2)$ $n = 1 - 2\cos\alpha$

Sei $q = |\vec{Q}|$, $\alpha = 2\pi/n$ und $n \in \mathbb{N}$

$$q' = nq = q + 2x$$

$$nq = q + 2q \sin(\alpha - \pi/2)$$

$$n = 1 - 2\cos\alpha$$

Somit muss

$$\alpha = \cos^{-1}\left(\frac{1-n}{2}\right)$$

$$\alpha \in \{0,60^{\circ},90^{\circ},120^{\circ},180^{\circ}\}$$

Anwendungen

Mit und Ohne

Polarisation Feld $ec{E}_p$

Symmetriezentrum

 $\overline{ ext{Polarisa}}$ tion $\overline{ ext{Feld}}$

Licht in Kristallen

Symmetriegruppe und Darstellung $G = \{1, r, \sigma, \dots\}$

$$\Phi:G o O(n)$$

$$U_{\lambda} = \{ v : \Phi v = \lambda v \}$$
$$= \text{null } (\Phi - \lambda I)$$

Helmholtz Wellengleichung

$$abla^2ec{E} = arepsilon \mu rac{\partial^2}{\partial t^2}ec{E}$$

Ebene Welle

$$ec{E} = ec{E}_{
m o} \exp \left[i \left(ec{k} \cdot ec{r} - \omega t
ight)
ight]$$

Anisotropisch Dielektrikum

$$(K\varepsilon)\vec{E} = \frac{k^2}{\mu\omega^2}\vec{E}$$

$$\vec{E} \in U_{\lambda} \implies (K\varepsilon)\vec{E} = \lambda\vec{E}$$