# Cache-oblivius algoritmy a dátové štruktúry

Intro text - obsah kapitoly (alg/ds, analyza, ...)

## 1.1 Základné algoritmy

Na demonštráciu *cache-oblivious* algoritmov a ich analýzy v *external-memory* modeli použijeme jednoduchý algoritmus, ktorý počíta agregačnú funkciu nad hodnotami uloženými v poli.

### 1.1.1 Popis algoritmu

Majme pole A veľkosti |A|=N a označme jeho prvky  $A=\{a_1,\ldots,a_N\}\in X^N$ . Chceme vypočítať hodnotu  $f_g(A)$ , kde  $g:X\times Y\to Y$  je agregačná funkcia,  $g_0\in Y$  je počiatočná hodnota a  $f_g:X^\infty\to Y$  je rozšírenie agregačnej funkcie definované následovne:

$$f_g(\{a_1, \dots, a_k\}) = g(a_k, f(\{a_1, \dots, a_{k-1}\}))$$
  
 $f_g(\emptyset) = g_0$ 

Túto funkciu je možné implementovať jednoducho ako jeden cyklus. Schematickú verziu implementácie uvádzame v algoritme 1.1.

**Algoritmus 1.1** Implementácia agregačnej funkcie  $f_g$ 

- 1: function  $AGGREGATE(g, g_0, A)$
- 2:  $y \leftarrow g_0$
- 3: for  $i \leftarrow 1, \ldots, |A|$  do
- 4:  $y \leftarrow g(A[i], y)$
- 5: return y

Spravna notacia pre x infinity? Tento algoritmus s použitím vhodnej funkcie g a hodnoty  $g_0$  je možné použiť na rôzne, často užitočné výpočty, ako napríklad maximum, minimum, suma a podobne:

$$g^{\max}(x,y) = \max(x,y)$$
  $g_0^{\max} = -\infty$   
 $g^{\sup}(x,y) = x+y$   $g_0^{\sup} = 0$ 

#### 1.1.2 Analýza zložitosti

#### Časová analýza

Klasická časová analýza tohto algoritmu je triviálna ak uvažujeme  $RAM \ model$ . Keďže prístup ku každému prvku A[i] zaberie konštantný čas a za predpokladu, že čas na výpočet funkcie  $g,\ T_g,$  je nezávislý na vstupe, bude výsledný čas na výpočet tejto funkcie

$$T(N) = \mathcal{O}(1) + N[\mathcal{O}(1) + T_a + \mathcal{O}(1)] = T_a \cdot \mathcal{O}(N)$$

#### Pamäťová analýza

V prípade cache-aware algoritmu by sme pole A mali uložené v  $\lceil \frac{N}{B} \rceil$  blokoch veľkosti B. Pri výpočte by sme postupne tieto bloky načítali do cache a pracovali s nimi. V rámci jedného bloku počas výpočtu nedochádza k pamäťovým presunom. Zároveň stačí každý prvok spracovať raz a teda celkový počet pamäťových operácií bude presne rovný počtu blokov,  $\lceil \frac{N}{B} \rceil$ . Tento algoritmus však požaduje znalosť parametra B a explicitný presun blokov.

Jednoducho však vieme dosiahnuť (takmer) rovnakú zložitosť aj v prípade cache-oblivious algoritmu 1.1, ktorý žiadne parametre pamäte zjavne nevyužíva a nepozná. Budeme predpokladať, že pole A je uložené v súvislom úseku pamäte - to je možné dosiahnuť aj bez znalosti parametrov pamäte. Zvyšok algoritmu prebieha rovnako ako v predchádzajúcom prípade. Každý blok obsahujúci nejaký prvok poľa A bude teda presunutý do cache práve raz, a žiadne iné presuny nenastanú. Ostáva zistiť, koľko takých blokov môže byť.

Keďže nepoznáme veľkosti blokov v pamäti, nevieme pri ukladaní prvkov poľa zaručiť zarovnanie so začiatkom bloku. V najhoršom prípade uložíme do prvého bloku iba jeden prvok. Potom bude nasledovať  $\lfloor \frac{N}{B} \rfloor$  plných blokov a nakoniec ešte najviac jeden blok, ktorý opäť nie je plný. Spolu máme teda  $\lfloor \frac{N}{B} \rfloor + 2$  blokov.

Pokiaľ  $\lfloor \frac{N}{B} \rfloor < \lceil \frac{N}{B} \rceil$  máme spolu najviac  $\lceil \frac{N}{B} \rceil + 1$  blokov. V opačnom prípade B delí N, teda v prvom a poslednom bloku je spolu presne B prvkov a medzi nimi sa nachádza najviac  $\frac{N-B}{B} = \frac{N}{B} - 1$  plných. Teda blokov je vždy najviac  $\lceil \frac{N}{B} \rceil + 1$ .

Zostrojili sme teda cache-oblivious algoritmus s asymptoticky rovnakou zložitosťou  $\mathcal{O}(\frac{N}{B})$  ako optimálny cache-aware algoritmus, ktorého implementácia je však jednoduchšia, keďže nemusí explicitne spravovať presun blokov do cache.



Obrázok 1.1: Test

# 1.2 Vyhľadávacie stromy