p-adic test functions

Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto

April 4, 2016

1 \mathbb{Q}_p^n

Let p be prime, let $N_p = \{0, \dots, p-1\}$, and let $\mathbb{Q}_p \subset \prod_{\mathbb{Z}} N_p$ be the p-adic numbers. For $x \in \mathbb{Q}_p$ let

$$v_p(x) = \inf\{k \in \mathbb{Z} : x(k) \neq 0\}, \qquad |x|_p = p^{-v_p(x)}.$$

For r > 0 and $a \in \mathbb{Q}_p$ let

$$B_{\leq r}(a) = \{ x \in \mathbb{Q}_p : |x - a|_p \le r \},$$

and let

$$\mathbb{Z}_p = \{ x \in \mathbb{Q}_p : v_p(x) \ge 0 \} = B_{<1}(0).$$

For $l \in \mathbb{Z}$, $v_p(p^l) = l$, $|p^l|_p = p^{-l}$, and

$$p^{l}\mathbb{Z}_{p} = \{x \in \mathbb{Q}_{p} : v_{p}(x) \ge l\} = B_{\le p^{-l}}(0).$$

Let μ be the Haar measure on the additive group \mathbb{Q}_p with $\mu(\mathbb{Z}_p) = 1$. It is a fact that if A is a Borel set in \mathbb{Q}_p and $x \in \mathbb{Q}_p$ then

$$\mu(x \cdot A) = |x|_n \mu(A).$$

In particular, for $l \in \mathbb{Z}$ and $x = p^l$, $\mu(p^l \cdot A) = |p^l|_p \mu(A) = p^{-l} \mu(A)$ and so

$$\mu(p^l \mathbb{Z}_p) = p^{-l}, \qquad l \in \mathbb{Z}.$$

Let $n \geq 1$. For $x \in \mathbb{Q}_p^n$ let

$$|x|_p = \max\{|x_j|_p : 1 \le j \le n\}.$$

For r > 0 and $a \in \mathbb{Q}_p$ let

$$B_{\leq r}^n(a) = \{x \in \mathbb{Q}_p^n : |x - a|_p \leq r\} = \prod_{j=1}^n B_{\leq r}(a_j).$$

For $l \in \mathbb{Z}$,

$$p^{l}\mathbb{Z}_{p}^{n} = p^{l}B_{\leq 1}^{n}(0) = B_{\leq p^{-l}}^{n}(0) = (p^{l}\mathbb{Z}_{p})^{n}.$$

Let $\mu_n = \bigotimes_{j=1}^n \mu$, the product measure on the Borel σ -algebra of \mathbb{Q}_p^n . Then

$$\mu_n(p^l \mathbb{Z}_p^n) = \prod_{j=1}^n \mu(p^l \mathbb{Z}_p) = \prod_{j=1}^n p^{-l} = p^{-nl}.$$

2 Locally constant functions

Let O be an open set in \mathbb{Q}_p^n . A function $\psi: O \to \mathbb{C}$ is called **locally constant** if for each $x \in O$ there is some neighborhood N_x of x such that $\psi(y) = \psi(x)$ for $y \in N_x$. In this case, there is some $l(x) \in \mathbb{Z}$ such that $x + p^{l(x)}\mathbb{Z}_p^n \subset N_x$, and so

$$\psi(x+h)=\psi(x), \qquad x\in O, \quad h\in p^{l(x)}\mathbb{Z}_p^n$$

It is immediate that a locally constant function is continuous. Let $\mathcal{E}(O)$ be the collection of locally constant functions $O \to \mathbb{C}$.

Because locally constant functions are used often in p-adic analysis, it is worthwhile working out some facts about them.¹

Lemma 1. If $\psi \in \mathcal{E}(\mathbb{Q}_p^n)$ and K is a compact set in \mathbb{Q}_p^n , then there is some $l \in \mathbb{Z}$ such that

$$\psi(x+h) = \psi(x), \qquad x \in K, \qquad h \in p^l \mathbb{Z}_p^n.$$

Proof. Because K is compact it is bounded and so is contained in $p^N\mathbb{Z}_p^n$ for some $m\in\mathbb{Z}$. Now, $\{x+p^{l(x)}\mathbb{Z}_p^n:x\in p^N\mathbb{Z}_p^n\}$ is an open cover of $p^N\mathbb{Z}_p^n$, and because $p^N\mathbb{Z}_p^n$ is compact there are $x^1,\ldots,x^m\in p^N\mathbb{Z}_p^n$ such that $K\subset\bigcup_{k=1}^m(x^k+p^{l(x^k)}\mathbb{Z}_p^n)$. We further specify that these sets are pairwise disjoint, which we can because two balls in \mathbb{Q}_p^n have nonempty intersection if and only if one is contained in another. Let $l=\max\{l(x^k):1\leq k\leq m\}$. For $x\in K$ there is some k for which $x\in x^k+p^{l(x^k)}\mathbb{Z}_p^n$, and as $x-x^k\in p^{l(x^k)}\mathbb{Z}_p^n$, for $h\in p^l\mathbb{Z}_p^n$,

$$|x - x^k + h|_p \le \max(|x - x^k|_p, |h|_p) \le \max(p^{-l(x^k)}, p^{-l}) = p^{-l(x^k)},$$

i.e. $x-x^k+h\in p^{l(x^k)}\mathbb{Z}_p^n.$ Then using that ψ is locally constant, with $O=x^k+p^{l(x^k)}\mathbb{Z}_p^n,$

$$\psi(x+h) = \psi(x^k + (x - x^k + h)) = \psi(x^k).$$

And $x - x^k \in p^{l(x^k)} \mathbb{Z}_p^n$ means that $\psi(x^k + x - x^k) = \psi(x^k)$, i.e. $\psi(x) = \psi(x^k)$, showing $\psi(x + h) = \psi(x)$.

¹S. Albeverio, A. Yu Khrennikov, and V. M. Shelkovich, *Theory of p-adic Distributions: Linear and Nonlinear Models*, p. 55, Lemma 4.2.1.

²This is not transparent but is straightforward to check.

p-adic test functions

Let $\mathcal{D}(\mathbb{Q}_p^n)$ be the set of those $\psi \in \mathcal{E}(\mathbb{Q}_p^n)$ such that $\operatorname{supp} \psi$ is a compact set. Elements of $\mathcal{D}(\mathbb{Q}_p^n)$ are called *p*-adic test functions.