

www.ti.com

LVDS SERDES RECEIVER

FEATURES

- 4:28 Data Channel Expansion at up to 1.904 Gigabits per Second Throughput
- Suited for Point-to-Point Subsystem Communication With Very Low EMI
- 4 Data Channels and Clock Low-Voltage Differential Channels in and 28 Data and Clock Out Low-Voltage TTL Channels Out
- Operates From a Single 3.3-V Supply and 250 mW (Typ)
- 5-V Tolerant SHTDN Input
- Rising Clock Edge Triggered Outputs
- Bus Pins Tolerate 4-kV HBM ESD
- Packaged in Thin Shrink Small-Outline Package With 20 Mil Terminal Pitch
- Consumes <1 mW When Disabled
- Wide Phase-Lock Input Frequency Range 20 MHz to 68 MHz
- No External Components Required for PLL
- Meets or Exceeds the Requirements of ANSI EIA/TIA-644 Standard
- Industrial Temperature Qualified
 T_A = -40°C to 85°C
- Replacement for the DS90CR286

DESCRIPTION

The SN65LVDS94 LVDS serdes (serializer/deserializer) receiver contains four serial-in 7-bit parallel-out shift registers, a 7x clock synthesizer, and five low-voltage differential signaling (LVDS) line receivers in a single integrated circuit. These functions allow receipt of synchronous data from a compatible transmitter, such as the SN65LVDS93 and SN65LVDS95, over five balanced-pair conductors and expansion to 28 bits of single-ended LVTTL synchronous data at a lower transfer rate.

When receiving, the high-speed LVDS data is received and loaded into registers at the rate seven times the LVDS input clock (CLKIN). The data is then unloaded to a 28-bit wide LVTTL parallel bus at the CLKIN rate. A phase-locked loop clock synthesizer circuit generates a 7× clock for internal clocking and an output clock for the expanded data. The SN65LVDS94 presents valid data on the rising edge of the output clock (CLKOUT).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONTINUED)

The SN65LVDS94 requires only five line termination resistors for the differential inputs and little or no control. The data bus appears the same at the input to the transmitter and output of the receiver with the data transmission transparent to the user(s). The only user intervention is the possible use of the shutdown/clear (SHTDN) active-low input to inhibit the clock and shut off the LVDS receivers for lower power consumption. A low level on this signal clears all internal registers to a low level.

The SN65LVDS94 is characterized for operation over ambient air temperatures of -40°C to 85°C.

FUNCTIONAL BLOCK DIAGRAM

Figure 1. SN65LVDS94 Load and Shift Sequences

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature (unless otherwise noted) (1)

			UNIT
V _{CC} ⁽²⁾	Supply voltage range	-0.3 V to 4 V	
	Voltage range at any terminal (except SHTDN)	-0.5 V to V _{CC} + 0.5 V	
	Voltage range at SHTDN terminal	-0.5 V to V _{CC} + 3 V	
		Bus pins (Class 3A)	4 KV
		Bus pins (Class 2B)	200 V
	Electrostatic discharge (3)	All pins (Class 3A)	3 KV
		All pins (Class 2B)	200 V
	Continuous total power dissipation	<u> </u>	(see Dissipation Rating Table)
T _A	Operating free-air temperature range		-40°C to 85°C
T _{stg}	Storage temperature range	-65°C to 150°C	
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		260°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR ⁽¹⁾	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
DGG	1377 mW	11 mW/°C	882 mW	717 mW

⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	3	3.3	3.6	
V_{IH}	High-level input voltage (SHTDN)	2			
V _{IL}	Low-level input voltage (SHTDN)			0.8	
V _{ID}	Magnitude of differential input voltage	0.1		0.6	V
V _{IC} , see Figure 2 and Figure 3	Common-mode input voltage	$\frac{ V_{ID} }{2}$		$2.4 - \frac{ V_{1D} }{2}$	·
				V _{CC} -0.8	
T _A	Operating free-air temperature	-40		85	°C

TIMING REQUIREMENTS

		MIN	NOM	MAX	UNIT
t _c ⁽¹⁾	Input clock period	14.7	t _c	50	ns

⁽¹⁾ t_c is defined as the mean duration of a minimum of 32,000 clock periods.

⁽²⁾ All voltage values are with respect to the GND terminals unless otherwise noted.

⁽³⁾ This rating is measured using MIL-STD-883C Method, 3015.7.

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{IT+}	Positive-going differential input voltage threshold				100	
V _{IT-}	Negative-going differential input voltage threshold (2)		-100			mV
V_{OH}	High-level output voltage	I _{OH} = -4 mA	2.4			V
V_{OL}	Low-level output voltage	I _{OL} = 4 mA			0.4	V
		Disabled, all inputs open			280	μA
I _{CC}	Quiescent current (average)	Enabled, AnP at 1 V and AnM at 1.4 V, $t_c = 15.38 \; \text{ns}$		62	84	mA
		Enabled, C_L = 8 pF (5 places), Worst-case pattern, see Figure 4, t_c = 15.38 ns		107		mA
I_{IH}	High-level input current (SHTDN)	$V_{IH} = V_{CC}$			±20	μA
I_{IL}	Low-level input current (SHTDN)	V _{IL} = 0 V			±20	μA
I _{IN}	Input current (A and CLKIN inputs)	0 V ≤ V _I ≤ 2.4 V			±20	μA
I_{OZ}	High-impedance output current	$V_O = 0 \text{ V or } V_{CC}$			±10	μΑ

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

PARAM	1ETER	TEST CONDITIONS		MIN	TYP ⁽¹⁾	MAX	UNIT
t _{su}	Data setup time, D0 through D27 to CLKOUT	0 0 - 5	Con Figure 5	4	6		
t _h	Data hold time, CLKOUT to D0 through D27	C _L = 8 pF	See Figure 5	4	6		ns
	Receiver input skew margin ⁽¹⁾ , see	$t_c = 15.38 \text{ ns } (\pm 0.2\%),$	$T_A = 0$ °C to 85°C	490	800		
t _{RSKM}	Figure 6	Input clock jitter <50 ps ⁽²⁾	$T_A = -40$ °C to 0°C	390			ps
t _d	Delay time, input clock to output clock, see Figure 6	t _c = 15.38 ns (±0.2%)			3.7		ns
	Change in output clock period from cycle to	t_c = 15.38 + 0.75 sin (2π500E3t)±0.05 ns, See Figure 7 t_c = 15.38 + 0.75 sin (2≠3E6t) ±0.05 ns, See Figure 7			±80		
$\Delta t_{C(O)}$	cycle (3)				±300		ps
t _{en}	Enable time, SHTDN to phase lock	See Figure 8			1		ms
t _{dis}	Disable time, SHTDN to Off state	See Figure 9			400		ns
t _t	Output transition time (t _r or t _f)	C _L = 8 pF			3		ns
t _w	Output clock pulse duration				0.43 t _c		ns

All typical values are $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for the negative-going input voltage threshold only.

 t_{RSKM} is the timing margin available to allocate to the transmitter and interconnection skews and clock jitter. It is defined by $\frac{t_C}{14}$ -ts/h. |Input clock jitter| is the magnitude of the change in the input clock period. $\Delta t_{C(O)}$ is the change in the output clock period from one cycle to the next cycle observed over 15,000 cycles.

PARAMETER MEASUREMENT INFORMATION

Figure 2. Voltage Definitions

COMMON-MODE INPUT VOLTAGE DIFFERENTIAL INPUT VOLTAGE AND V_{CC} 2.5 MAX at >3.15 V V_{IC} - Common-Mode Input Voltage - V MAX at 3 V 2 1.5 0.5 MIN 0.1 0.2 0.3 0.4 0.6 $|V_{ID}|$ – Differential Input Voltage and V_{CC} – V

Figure 3. Recommended V_{IC} Versus V_{ID} and V_{CC}

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 4. Worst-Case Power Test Pattern

Figure 5. Setup and Hold Time Measurements

PARAMETER MEASUREMENT INFORMATION (continued)

CLKIN is advanced or delayed with respect to data until errors are observed at the receiver outpu The magnitude of the advance or delay is $t_{\rm RSKM}$.

Figure 6. Receiver Input Skew Margin and t_d Definitions

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 7. Output Clock Jitter Test Setup

Figure 9. Disable Time Waveforms

TYPICAL CHARACTERISTICS

WORST-CASE SUPPLY CURRENT

APPLICATION INFORMATION

16-BIT BUS EXTENSION

In a 16-bit bus application (Figure 11), TTL data and clock coming from bus transceivers that interface the backplane bus arrive at the Tx parallel inputs of the LVDS serdes transmitter. The clock associated with the bus is also connected to the device. The on-chip PLL synchronizes this clock with the parallel data at the input. The data is then multiplexed into three different line drivers which perform the TTL to LVDS conversion. The clock is also converted to LVDS and presented to a separate driver. This synchronized LVDS data and clock at the receiver, which recovers the LVDS data and clock, performs a conversion back to TTL. Data is then demultiplexed into a parallel format. An on-chip PLL synchronizes the received clock with the parallel data, and then all are presented to the parallel output port of the receiver.

Figure 11. 16-Bit Bus Extension

16-BIT BUS EXTENSION WITH PARITY

In the previous application we did not have a checking bit that would provide assurance that the data crosses the link. If we add a parity bit to the previous example, we would have a diagram similar to the one in Figure 12. The device following the SN74FB2032 is a low cost parity generator. Each transmit-side transceiver/parity generator takes the LVTTL data from the corresponding transceiver, performs a parity calculation over the byte, and then passes the bits with its calculated parity value on the parallel input of the LVDS serdes transmitter. Again, the on-chip PLL synchronizes this transmit clock with the eighteen parallel bits (16 data + 2 parity) at the input. The synchronized LVDS data/parity and clock arrive at the receiver.

The receiver performs the conversion from LVDS to LVTTL and the transceiver/parity generator performs the parity calculations. These devices compare their corresponding input bytes with the value received on the parity bit. The transceiver/parity generator will assert its parity error output if a mismatch is detected.

APPLICATION INFORMATION (continued)

Figure 12. 16-Bit Bus Extension With Parity

LOW COST VIRTUAL BACKPLANE TRANSCEIVER

Figure 13 represents LVDS serdes in an application as a virtual backplane transceiver (VBT). The concept of a VBT can be achieved by implementing individual LVDS serdes chipsets in both directions of subsystem serialized links.

Depending on the application, the designer will face varying choices when implementing a VBT. In addition to the devices shown in Figure 13, functions such as parity and delay lines for control signals could be included. Using additional circuitry, half-duplex or full-duplex operation can be achieved by configuring the clock and control lines properly.

The designer may choose to implement an independent clock oscillator at each end of the link and then use a PLL to synchronize LVDS serdes's parallel I/O to the backplane bus. Resynchronizing FIFOs may also be required.

Figure 13. Virtual Backplane Transceiver

com 6-Dec-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65LVDS94DGG	ACTIVE	TSSOP	DGG	56	35	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN65LVDS94DGGG4	ACTIVE	TSSOP	DGG	56	35	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN65LVDS94DGGR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN65LVDS94DGGRG4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LVDS94DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVDS94DGGR	TSSOP	DGG	56	2000	367.0	367.0	45.0

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts		Applications
	ti aaaa/adia	A

Pr

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

www.ti-rfid.com