

PLANO DE ENSINO

I. IDENTIFICAÇÃO			
Unidade Acadêmica: Instituto de Ciências Exatas e Tecnológicas - ICET			
Curso: Bacharelado em Ciência da Computação			
Disciplina: Física para Ciência da Computação			
Carga horária semestral: 64	Teórica: 64 Prática: 00		
Semestre/ano: 2016.2	Turma/turno: A		
Professor (a): Esdras Lins Bispo Junior			

II. Ementa

Medidas físicas e vetores. Movimento em uma dimensão. Movimento em um plano. Dinâmica da partícula. Trabalho e energia. Conservação da energia. Conservação do momento linear. Colisões. Cinemática da rotação. Dinâmica da rotação. Equilíbrio de corpos rígidos. Hidrostática e hidrodinâmica.

III. Objetivo Geral

A disciplina visa dar ao aluno uma visão teórica básica sobre cinemática, dinâmica, hidrostática e hidrodinâmica bem como suas aplicações, além de desenvolver a intuição física e a habilidade do estudante para modelar e resolver problemas voltados para a sua formação.

IV. Objetivos Específicos

- Estudar os conceitos da disciplina aplicados ao desenvolvimento de software;
- Construir algoritmos que simulem os conceitos físicos abordados na disciplina;
- Discutir contribuições científicas da Física para a Computação.

V. Conteúdo

- 1. FUNDAMENTOS MATEMÁTICOS
- a. Conceitos em trigonometria
- b. Conceitos em geometria analítica
- c. Conceitos em álgebra linear
- 2. MEDIDAS FÍSICAS E VETORES
- a. Medidas físicas
- b. Vetores

- 3. MOVIMENTOS
- a. Movimento em uma dimensão
- b. Movimento em um plano
- c. Dinâmica da partícula
- 4. TRABALHO E ENERGIA
- a. Conceitos iniciais
- b. Conservação da energia
- c. Conservação do momento linear
- 5. COLISÕES
- a. Colisões em uma dimensão
- b. Colisões em um plano
- 6. HIDROSTÁTICA
- a. Hidrostática
- b. Hidrodinâmica
- 7. OUTROS TÓPICOS
- a. Cinemática da rotação
- b. Dinâmica da rotação
- c. Equilíbrio de corpos rígidos

VI. Metodologia

- Aulas expositivas utilizando quadro negro (ou branco) e DataShow;
- Atendimento individual ou em grupos;
- Aplicação de listas de exercícios.
- TIC Tecnologia de Informação e Comunicação:
- Aplicação de atividades utilizando o ambiente virtual (AVA).
- Tempo de Aula: 50 minutos*

*Obs.: Para complementar os 10 minutos, esta disciplina fará uso do AVA para supervisionar atividades práticas, em consonância com a resolução abaixo:

RESOLUÇÃO CNE/CES Nº 3, DE 02 DE JULHO DE 2007

I – preleções e aulas expositivas;

II – atividades práticas supervisionadas, tais como laboratórios, atividades em biblioteca, iniciação científica, trabalhos individuais e em grupo, práticas de ensino e outras atividades no caso das licenciaturas.

VII. Processos e critérios de avaliação

Serão ministrados 04 (quatro) testes que serão analisados da seguinte forma:

- Primeiro teste equivale a 20% da pontuação total;
- Segundo teste equivale a 20% da pontuação total;
- Terceiro teste equivale a 20% da pontuação total;
- Quarto teste equivale a 20% da pontuação total.

Será ministrada 01 (uma) prova substitutiva que será analisada da seguinte forma:

- Prova equivale a 20% da pontuação total.

Serão propostos exercícios-bônus durante toda a disciplina.

O cálculo da média final será dada da seguinte forma:

MF = MIN(10, PONT)

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina.

VIII. Local de divulgação dos resultados das avaliações

Os resultados das avaliações serão divulgados através do ambiente virtual de aprendizagem (AVA).

XI. Bibliografia básica e complementar BÁSICA: HALLIDAY, D.; RESNICK, R.; KRANE, K. Física v1, 4ª Edição, LTC, Rio de Janeiro, 2003.

TIPLER, P. A.; MOSTA, G. Física para cientistas e engenheiros. Vol. 1, Ed. LTC, Rio de Janeiro, 2003.

YOUNG, H. D.; FREEDMAN, A.; SEARS, F.; ZEMANSK, M. W. Física 1. Ed. Addison Wesley, São Paulo, 2008.

COMPLEMENTAR:

ALONSO, M.; FINN, E. Física: um curso universitário. Vol. 1, 2ª Edição, Edgard Blucher, São Paulo, 2002.

CHAVES, A.; SAMPAIO, J. L. Física básica: mecânica. Vol. 1, LTC, Rio de Janeiro, 2007.

NUSSENZVEIG, H.; MOYSÉS, H. Curso de física básica. Vol. 1, Edgar Blucher, São Paulo, 2002.

CUTNELL, J. D.; JOHNSON, K. W. Física. Vol. 1, LTC, Rio de Janeiro, 2006.

TIPLER, P. A. Física. Vol. 1 e Vol. 2. Guanabara 2, Rio de Janeiro, 1984.

GAREY, M. R.; JONHSON, D. S.: Computers and Intractability: a guide to the theory of NPCompleteness. New York: W. H. Freeman and Company, 1979.

OUTROS:

RAMTAL, D.; DOBRE, A. Physics for JavaScript Games, Animation, and Simulations with HTML5 Canvas, Apress, 2014.

X. Cronograma

Nº da Aula Conteúdo CH T/P

01	Apresentação da disciplina e Fundamentos Matemáticos	2h	Т
02	Fundamentos Matemáticos	2h	Т
03	Medidas Físicas e Vetores	2h	Т
04	Medidas Físicas e Vetores	2h	Т
05	Teste 01	2h	Т
06	Entrega de notas e Resolução do Teste 01	2h	Т
07	Movimentos	2h	Т
08	Movimentos	2h	Т
09	Movimentos	2h	Т
10	Movimentos	2h	Т
11	Trabalho e Energia	2h	Т
12	Teste 02	2h	Т
13	Entrega de notas e Resolução do Teste 02	2h	Т
14	Colisões	2h	Т
15	Colisões	2h	Т
16	Colisões	2h	Т

•	17	Colisões	2h	Т	
•	18	Hidrostática	2h	Т	
7	19	Hidrostática	2h	Т	
2	20	Teste 03	2h	Т	
2	21	Entrega de notas e Resolução do Teste 03	2h	Т	
2	22	Outros tópicos	2h	Т	
2	23	Outros tópicos	2h	Т	
2	24	Outros tópicos	2h	Т	
2	25	Teste 04	2h	Т	
2	26	Entrega de notas e Resolução do Teste 04	2h	Т	
2	27	Resolução de exercícios e dúvidas	2h	Т	
2	28	Resolução de exercícios e dúvidas	2h	Т	
2	29	Prova	2h	Т	
3	30	Entrega de notas e Resolução da Prova	2h	Т	
3	31	Confraternização	2h	Т	
3	32	Fechamento das médias finais	2h	Т	

Data	Jataí, 02 de setembro de 2016.

Esdras Lins Bispo Junior Professor Assistente – Ciência da Computação