Marek Polewski Mechanika Lotu 2 Prowadzący: dr. inż Maciej Lasek

WTOREK 14:15-16:00

Projekt 9 "Równowaga podłużna samolotu i siły na sterownicy wysokości"

DATA ODDANIA PROJEKTU:	OCENA:

Spis treści

0.1 Wstęp

Celem projektu jest wyznaczenie kątów wychylenia usterzenia poziomego samolotu koniecznych do zachowania równowangi oraz wyznaczenia siły na drążku. Obliczenia zostały wykonane w Pythonie.

Wysokość przyjęta do obliczeń to h=3000m. Gęstość jej odpowiadająca wynosi $\rho=0.908kg\,m^{-3}$. Dane z poprzednich projektów:

- powierzchnia skrzydeł $S = 15m^2$,
- powierzchnia usterzenia poziomego $S_h = 2.2m^2$,
- $\left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 = 0.85$,

Do obliczeń zostały wykorzystane wartości środków ciężkości wyliczone [?]

	$\bar{x}_c[-]$
\bar{x}_{c_1}	0.12
\bar{x}_{c_2}	0.25
\bar{x}_{c_3}	0.38

Tab. 1: Położenia środka ciężkości samolotu

0.2 Współczynnik momentu podłużnego usterzenia wysokości

0.2.1 Cecha objętościowa usterzenia poziomego

Wzór na cechę usterzenia:

$$\kappa_h' = (\bar{x}_{SA_H} - \bar{x}_c) \cdot \frac{S_H}{S} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \tag{1}$$

, gdzie $\bar{x}_{SA_{H}} = 2.86$.

Na podstawie powyższego wzoru uzyskałem:

\bar{x}_i	κ'_{Hi}
0.25	0.33
0.12	0.34
0.38	0.31

Tab. 2: Cecha objętościowa usterzenia poziomego

0.2.2 Współczynnik siły nośnej usterzenia poziomego

Współczynnik siły nośnej usterzenia poziomego wyrażam

$$C_{z_H} = a_1 \alpha_H + a_2 \delta_H + a_3 \delta_{H_k}$$

- procetowa grubość profilu: 10%,
- położenie szczeliny w stosunku do średniej cięciwy płata stabilizatora 0.428%,
- wydłużenie efektywne usterzenia poziomego: $\Lambda_H = 4.118$
- odwrotność zbierzności usterzenia poziomego: $\frac{1}{\lambda_H} = 0.667$

Rys. 1: Odczyt charakterystyki $a_1 = \frac{dC_z}{d\alpha}$ dla usterzenia poziomego

Wyznaczanie współcznnika a2

$$a_2 = 1.27 \cdot a_1 \cdot \sqrt{\frac{S_{sH}}{S_H}} \left(1 - 0.2 \cdot \frac{S_{sH}}{S_H} \right)$$

gdzie $\frac{S_{sh}}{S_H} = \frac{0.934}{2.2} = 0.425$ to stosunek powierzchni steru (?? w ??) do powierzchni usterzenia.

$$a_2 = 1.27 \cdot 3.1 \cdot \sqrt{0.425} \left(1 - 0.2 \cdot 0.425 \right) = 2.218 rad^{-1}$$
 (2)

0.3 Kat zaklinowania usterzenia wysokości

Obliczenia przyjmę dla prędkości przelotowej równej V = 106kt = 54.4m/s oraz wysokości h = 0m. Przy tej prędkości płat będzie musiał wytworzyć współczynnik C_z o pewnej wartości.

$$C_z = \frac{2mg}{\rho SV^2} = \frac{2 \cdot 726 \cdot 9.81}{1.225 \cdot 15 \cdot 54^2} = 0.262$$
 (3)

Równanie kąta zaklinowania łopaty:

$$\alpha_{zH} = \frac{C_{mbu}}{\kappa'_{H} \cdot a_{1}} - \frac{C_{z}}{a} \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)$$

gdzie

$$\frac{\partial \varepsilon}{\partial \alpha} = \frac{2a}{\pi \Lambda} = \frac{2 \cdot 4.452}{\pi \cdot 6.59} = 0.430 \tag{4}$$

\bar{x}_c	C_{mbu}	κ_H'	$\alpha_{zH}[rad]$	$\alpha_{zH}[deg]$
0.12	-0.074	0.34	-0.10	-5.95
0.25	-0.039	0.32	-0.07	-4.16
0.38	-0.004	0.31	-0.03	-2.17

Tab. 3: Wyznaczanie α_{zH} - kąta zaklinowania płata

Jako podstawową wartość przyjmuję $\alpha_{zH} \approx -0.007 rad^{-1} = -4.16 deg$.

0.4 Kat wychylenia steru

Kąt wychylenia steru δ_h z równania równowagi:

$$\delta_h = \frac{C_{mbu}}{\kappa'_H \cdot a_2} - \frac{a_1}{a_2} \cdot \left[\frac{C_z}{a} \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) + \alpha_{zH} \right]$$
 (5)

Rys. 2: Kąt wychylenia steru niezbędny do zachowania równowagi dla różnego \mathcal{C}_z

Rys. 3: Kąt wychylenia steru niezbędny do zachowania równowagi dla różnego ${\cal V}$

$V[ms^{-1}]$	C_z	δ_{h1} [°]	δ_{h2} [°]	δ_{h3} [°]
24	1.253	-12.720	-10.166	-7.392
25	1.155	-11.713	-9.158	-6.384
26	1.068	-10.819	-8.265	-5.490
27	0.990	-10.023	-7.468	-4.694
28	0.921	-9.310	-6.756	-3.981
29	0.858	-8.670	-6.116	-3.341
30	0.802	-8.093	-5.539	-2.764
31	0.751	-7.571	-5.016	-2.242
32	0.705	-7.097	-4.542	-1.768
33	0.663	-6.665	-4.111	-1.336
34	0.624	-6.271	-3.717	-0.942
35	0.589	-5.910	-3.356	-0.582
36	0.557	-5.579	-3.025	-0.250
37	0.527	-5.274	-2.720	0.054
38	0.500	-4.993	-2.439	0.335
39	0.475	-4.734	-2.180	0.595
40	0.451	-4.493	-1.939	0.835
41	0.429	-4.270	-1.716	1.058
42	0.409	-4.063	-1.509	1.265
43	0.390	-3.870	-1.316	1.458
44	0.373	-3.690	-1.136	1.638
45	0.356	-3.522	-0.968	1.806
46	0.341	-3.365	-0.811	1.964
47	0.327	-3.218	-0.663	2.111
48	0.313	-3.079	-0.525	2.249
49	0.301	-2.950	-0.395	2.379
50	0.289	-2.827	-0.273	2.501
51	0.278	-2.712	-0.158	2.616
52	0.267	-2.604	-0.050	2.724
53	0.257	-2.502	0.052	2.827

Tab. 4: Kąt wychylenia stery niezbędnego do zachowania równowagi

0.5 Siła na drążku w warunkach równowagi

W celu wyznaczenia siły na drążku w warunkach równowagi przyjmuję prędkość $V=54\,ms^{-1}$.

$$P_{dh} = \frac{1}{2} \cdot S_{sH} \cdot c_{sH} \cdot K_{sd} \cdot V_H^2 \cdot C_{m_{zh}}$$

$$\tag{6}$$

gdzie:

• $S_{sH} = 2.2$ - pole powierzchni steru wysokości

- $c_{sH} = 0.934$ średnia cięciwa steru wysokości
- $K_{sd} = \frac{1}{l_d} \cdot \frac{d\delta_h}{d\delta_{dh}} = ???$ przełożenie liniowe sterownica-ster wysokości
- $l_d = 1$ przełożenie kątowe sterownica-sterk wysokości
- $C_{m_{zh}}$ współczynnik momentu zawiasowego

Na podstawie instrukcji [**?**], $C_{m_{zh}}$ wyznaczam wzorem:

$$C_{m_{zh}} = b_0 + b_1 * \alpha_H + b_2 \delta_H + b_3 \delta_{Hk}$$
 (7)

$$\delta_{Hk} = -\frac{b_1}{b_3} \alpha_H - \frac{b_2}{b_3} \delta_H \tag{8}$$

gdzie α_H wyznaczam wzorem:

$$\alpha_H = \frac{C_z}{a} \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) + \alpha_{zH} \tag{9}$$

natomiast współczynnki b_1 , b_2 i b_3 na podstawie:

$$b_1 = b_{1_{\infty}} \cdot \frac{a_1}{a_{1_{\infty}}} = -0.229 \cdot \frac{3.1}{4.9} = -0.145$$
 (10)

$$b_2 = b_{2\infty} + \left(\frac{a_1}{a_{1\infty}} - 1\right) \cdot b_1 \eta_{sH} = -0.354 + \left(\frac{3.1}{4.9} - 1\right) \cdot -0.145 \cdot 0.600 = -0.322 \tag{11}$$

$$b_3 = b_{3_{\infty}} K_{kl} - \left(1 - \frac{a_1}{a_{1_{\infty}}}\right) b_1 \eta_{skH} = -1.432 \cdot 0.5 - \left(1 - \frac{3.1}{4.9}\right) \cdot -0.145 \cdot 0.470 = -0.388$$
 (12)

Wartości współczynników $b_{1_\infty}, b_{2_\infty}, b_{3_\infty}, \eta_{sH}, \eta_{skH}$ odczytane zostały z tabeli z intrukcji [?]:

- $b_{1_{\infty}} = -0.00400[1/deg] = -0.229[1/rad]$
- $b_{2\infty} = -0.00618[1/deg] = -0.354[1/rad]$
- $b_{3_{\infty}} = -1.4321/rad$ na podstawie tabeli 9.2 z [**?**] oraz wartość $\frac{csh}{c_h} = 0.56 \frac{c_{kh}}{c_{sh}} = 0.345$
- $\eta_{sH} = 0.600 \text{ bo } \frac{S_{sH}}{S_H} = 0.425$
- $\eta_{skH} = 0.470$ bo $\frac{S_{skh}}{S_{sh}} = 0.270$

gdzie $\frac{c_{snh}}{c_{sh}}=0.3$ i oznacza stosunek średniej cięciwy części steru przed osią obrotu do średniej cięciwy całego steru.

Wartość K_{kl} wycznaczam z równania:

$$K_{kl} = \frac{S_{sH} \cdot b_{kh}}{S_{kh} \cdot b_{sH}} = \frac{0.934 \cdot 1.615}{0.471 \cdot 3.01} = 0.5$$
 (13)

Teraz na podstawie równania (8) jestem w stanie wyznaczyć współczynniki przy oraz zależność $\delta_{Hk}(\delta_H)$

$$\delta_{Hk} = -\frac{-0.145}{-0.388} \alpha_H - \frac{-0.322}{-0.388} \delta_H \tag{14}$$

Rys. 4: Siła na drążku w zależnośći V

Dodatek A

Obliczenia powierzchni steru

Rys. A.1: Obliczanie pola S_{sH} z rysunku z Projektu 1 [?]

Bibliografia

- [1] Marek Polewski. Projekt 1 Wybór samolotu. 2023.
- [2] Marek Polewski. Projekt 8 Moment podłużny samolotu. 2023.