Drawing graphs with calculus

4.5.1

I a) Domain: $x \neq 1$, y-intercept: $y \neq f(0) = \frac{1 \cdot (-2)}{(-1)^2} = -2$, x-intercepts: $f(x) = 0 \Leftrightarrow x = \frac{1}{2}$ and x = 2, symmetry: NONE, vertical asymptote(s): x = 1, horizontal asymptote(s): y = -2 ($\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{(\frac{1}{x} - 2) \cdot (1 - \frac{2}{x})}{(1 - \frac{1}{x})^2} = \frac{(0 - 2) \cdot (1 - 0) = -2}{(1 - 0)^2}$

interval(s) of increase: (-1,1), int. of decrease: $(-\infty,1)$ and $(1,\infty)$ local min at x=-1: $f(-1)=\frac{3\cdot(-3)}{(-2)^2}=-\frac{9}{4}$ - point $(-1,-\frac{9}{4})$,

f": = + + ×

f is concave up on (-2,1) and $(1,\infty)$, f is conc. down on $(-\infty,2)$. inflection point at x=-2: $f(-2)=\frac{5\cdot(-4)}{(-2-1)^2}=-\frac{20}{9}$ - point $(-2,-\frac{20}{9})$.

