2 - Analisis Kompleksitas Komputasional

[KOMS120403]

Desain dan Analisis Algoritma (2022/2023)

Dewi Sintiari

Prodi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 2 (February 2023)

Daftar isi

- Review algoritma fpb
- Model kompleksitas komputasi
- Notasi asimtotik dan ordo besaran (order of magnitude)
- Big-O notasi: batas atas asimtotik
 - Definisi
 - Linear & fungsi polinomial
 - Operasi aritmatika di O
 - Fungsi logaritmik
 - Klasifikasi algoritma
 - Menentukan kompleksitas asimtotik
- Notasi Big-Omega
- Notasi Big-Theta
- Quiz

Tujuan pembelajaran

Anda diharapkan mampu untuk:

- Menjelaskan konsep kompleksitas algoritma
- Menjelaskan perbedaan worst-case, best-case, dan average-case algoritma
- Menggunakan notasi Big-O, Big-Omega, dan Big-Theta dalam menuliskan kompleksitas
- Menghitung kompleksitas algoritma
- Mengklasifikasikan algoritma berdasarkan kelas kompleksitasnya

Bagian 1: Contoh motivasi

Perhatikan lagi algoritma penghitungan fpb dua integer

Ingatlah materi minggu lalu...

Menghitung fpb:

- Input: bilangan bulat a dan b
- Output: fpb dari m dan n

$\textbf{Algorithm 1} \ \, \textbf{Algoritma sederhana fpb dari dua bilangan bulat}$

```
    procedure FPB(a, b)
    r = 1
    x = min(a, b)
    for i = 1 to x do
    if a mod i == 0 and b mod i == 0 then r = i
    end if
    end for
    end procedure
```


Coba bandingkan algoritma tersebut dengan algoritma berikut (yang disebut dengan algoritma Euclid)

Algoritma Euclid untuk menghitung fpb (1)

Contoh

Menggunakan algoritma Euclid, tentukan fpb dari 210 dan 45.

Solusi:

Algoritma Euclid untuk menghitung fpb (1)

Contoh

Menggunakan algoritma Euclid, tentukan fpb dari 210 dan 45.

Solusi:

$$210 = 4 \cdot 45 + 30$$
$$45 = 1 \cdot 30 + 15$$

$$30 = 2 \cdot 15 + 0$$

Jadi
$$fpb(210, 45) = 15$$

Algoritma Euclidean untuk menghitung fpb (2)

Algorithm 2 Euclidean algorithm

```
1: procedure EUCLIDFPB(a, b)
2: while b \neq 0 do
3: r = a \mod b
4: a = b
5: b = r
6: end while
7: return a
8: end procedure
```

Questions:

- Mengapa algoritma tersebut berakhir (tidak mengalami infinite looping)? (lihat Teorema Lame https://www.cut-the-knot.org/blue/LamesTheorem.shtml)
- Tentukan kompleksitas algoritma! kerjakan sebagai latihan!

Bagian 2: Kompleksitas algoritma

Model kompleksitas komputasi (1)

Dapatkah Anda menjelaskan kembali definisi dari kompleksitas algoritma, dan mengapa hal tersebut penting?

Model kompleksitas komputasi (2)

Bagian dari *analisis algoritma* adalah menghitung *kompleksitas komputasional* dari suatu algoritma.

Kompleksitas komputasional (atau cukup disebut kompleksitas) dari sebuah algoritma adalah banyaknya sumber daya (*waktu* dan *memori*) yang diperlukan untuk menjalankannya.

- Kompleksitas waktu: seberapa cepat suatu algoritma dijalankan
- Kompleksitas ruang: berapa banyak memori yang dibutuhkan untuk mengeksekusi suatu algoritma

Bagaimana menghitung kompleksitas suatu algoritma?

Bagaimana pengaruh kompleksitas algoritma?

Contoh

Misalkan sebuah **superkomputer** mengeksekusi algoritma A, dan sebuah **PC** (personal computer) mengeksekusi algoritma B. Kedua komputer harus mengurutkan 1 juta elemen. Superkomputer dapat mengeksekusi 100 juta instruksi dalam satu detik, sedangkan PC hanya mampu mengeksekusi 1 juta instruksi dalam satu detik.

- Algoritma A membutuhkan 2n² instruksi untuk mengurutkan n elemen;
- Algoritma B membutuhkan 50n log n instruksi

Hitunglah banyaknya waktu yang dibutuhkan untuk mengurutkan 1 juta elemen di setiap komputer (superkomputer dan PC)!

Bagaimana pengaruh kompleksitas algoritma?

Dapatkah Anda menebak, secara intuitif, komputer manakah yang memiliki waktu eksekusi lebih singkat?

Bagaimana pengaruh kompleksitas algoritma?

Dapatkah Anda menebak, secara intuitif, komputer manakah yang memiliki waktu eksekusi lebih singkat?

Solusi: running time masing-masing komputer

- Superkomputer: $\frac{2 \cdot (10^6)^2 \text{ instructions}}{10^8 \text{ instructions / sec}} = 20000 \text{ sec} \approx 5.56 \text{ hours}$
- PC: $\frac{50\cdot10^6\log10^6\ \text{instructions}}{10^6\ \text{instructions}\ /\ \text{sec}} \approx 1000\text{sec} \approx 16.67\ \text{minutes}$

Apa yang dapat Anda simpulkan?

Apa yang memengaruhi kompleksitas komputasi?

Running time bergantung pada banyak hal seperti *hardware, OS, processors, programming language* dan *compiler,* dll. Tapi kita tidak pertimbangkan faktor-faktor ini saat menganalisis **kompleksitas** algoritma.

Beberapa catatan dalam memplejari kompleksitas algoritma:

- Fokus kita pada perkuliahan ini adalah pada kompleksitas waktu.
- Kita berasumsi bahwa mesin kita hanya menggunakan satu prosesor (yaitu generic one-processor).
- Kompleksitas waktu dihitung berdasarkan banyaknya operasi/instruksi
- Running time dari suatu algoritma dihitung sebagai ukuran input (n), dan merupakan fungsi yang tak-turun (non-decreasing).

Contoh penghitungan kompleksitas komputasi

Algorithm 3 Rata-rata array bilangan bulat

```
1: procedure AVERAGE(A[1..n])

2: sum \leftarrow 0

3: for i = 1 to n do

4: sum \leftarrow sum + A[i]

5: end for

6: avg \leftarrow sum/n

7: end procedure
```

Jumlah operasi:

- Penugasan: baris 2, 4, 6; dengan operasi 1 + n + 1 = n + 2
- Penjumlahan: baris 4, dengan operasi n
- Divisi: baris 6, dengan 1 operasi

Kompleksitas waktu: T(n) = (n+2) + n = 2n + 2 operations.

Bagian 3: Tiga model kompleksitas algoritma

Tiga macam pengukuran penggunaan sumber daya

- Kasus terburuk ($T_{\text{max}}(n)$): ini mengukur sumber daya (mis. running time, memori) yang diperlukan algoritma dalam kasus terburuk yaitu paling sulit case, diberi input ukuran acak n (biasanya dilambangkan dengan notasi asimtotik).
- Kasus terbaik $(T_{\min}(n))$: menjelaskan perilaku algoritma dalam kondisi optimal.
- Kasus rata-rata $(T_{avg}(n))$: menghitung jumlah waktu komputasi yang digunakan oleh algoritma, rata-rata dari semua input yang mungkin.

Notasi asimtotik dan ordo besarannya (1)

- Kompleksitas waktu suatu algoritma diukur sebagai fungsi dari ukuran inputnya.
- Rate of growth dari fungsi kompleksitas mengukur seberapa cepat suatu fungsi meningkat dengan peningkatan ukuran input. Secara asimptotis berarti fungsi itu penting hanya untuk nilai n yang besar.
- Order of magnitude dari fungsi menjelaskan bagian dari fungsi yang meningkat paling cepat saat nilai *n* meningkat.

Notasi asimtotik dan ordo besarannya (2)

Contoh

Misalkan sebuah algoritma dijalankan pada input berukuran n, membutuhkan sebanyak $6n^2 + 100n + 300$ eksekusi.

Kita hanya menyimpan suku yang paling "penting". Dalam hal ini, fungsi $6n^2$ memiliki nilai yang lebih dari 100n + 300 untuk setiap nilai n dalam batas bawah tertentu.

3.1. Big-O

Notasi \mathcal{O} (O-besar/big-O): Batas-atas asimtotik

Kompleksitas kasus terburuk mengukur sumber daya yang dibutuhkan algoritma dalam *kasus terburuk*. Ini memberikan upper bound pada sumber daya yang dibutuhkan oleh algoritma.

Mengapa mempelajari kompleksitas kasus terburuk?

- memberikan informasi tentang kebutuhan sumber daya maksimum
- secara alami, hal ini sering terjadi pada suatu sistem

Notasi Big-O $(\mathcal{O}(\cdot))$: notasi matematika yang menjelaskan perilaku pembatas fungsi ketika argumen cenderung ke nilai tertentu atau tak terhingga.

Definisi

$$g(n) \in \mathcal{O}(f(n))$$
 if $\exists k > 0$ dan n_0 s.t. $g(n) \leq k \cdot f(n)$, $\forall n \geq n_0$.

Notasi \mathcal{O} (O-besar/big-O): Batas atas asimtotik

Definisi

 $g(n) \in \mathcal{O}(f(n))$ if $\exists k > 0$ dan n_0 s.t. $g(n) \le k \cdot f(n)$, $\forall n \ge n_0$.

Contoh notasi \mathcal{O} (1): Fungsi linier

Contoh

Tunjukkan bahwa g(n) = 5n + 3 ada di O(n).

Contoh notasi \mathcal{O} (1): Fungsi linier

Contoh

Tunjukkan bahwa g(n) = 5n + 3 ada di O(n).

Solusi:

Perhatikan bahwa $5n+3 \le 5n+3n=8n$ untuk semua $n \ge 1$. Dalam hal ini, k=8 dan $n_0=1$. Jadi, $g(n) \in \mathcal{O}(n)$.

Contoh notasi \mathcal{O} (2): Fungsi polinomial

Contoh

Tunjukkan bahwa $g(n) = 3n^2 - 5n + 6$ ada di $\mathcal{O}(n^2)$.

Contoh notasi \mathcal{O} (2): Fungsi polinomial

Contoh

Tunjukkan bahwa $g(n) = 3n^2 - 5n + 6$ ada di $\mathcal{O}(n^2)$.

Solusi:

Perhatikan bahwa $3n^2-5n+6\leq 3n^2+0+6n^2=9n^2$ untuk semua $n\geq 1$. Dalam hal ini, k=9 dan $n_0=1$. Jadi, $g(n)\in \mathcal{O}(n^2)$.

Bagian 3: Operasi aritmatika di \mathcal{O}

Operasi aritmatika di ${\cal O}$

Fungsi kompleksitas waktu dilambangkan dengan T(n).

Teorema (Big-O dari kompleksitas polinomial)

Jika $T(n) = a_m n^m + a_{m-1} n^{m-1} + \cdots + a_1 n + a_0$ polinomial dengan ordo m, maka $T(n) \in \mathcal{O}(n^m)$.

Teorema (Operasi aritmatika dengan Big-O)

Let $T_1(n) \in \mathcal{O}(f(n))$ dan $T_2(n) \in \mathcal{O}(g(n))$, then:

- $T_1(n)T_2(n) \in \mathcal{O}(f(n))\mathcal{O}(g(n)) \in \mathcal{O}(f(n)g(n))$
- $O(cf(n)) \in \mathcal{O}(f(n)), dimana c adalah konstanta$
- $f(n) \in \mathcal{O}(f(n))$

Proof: kerjakan sebagai latihan!

Operasi aritmatika dengan ${\mathcal O}$

Contoh (Operasi aritmatika dengan Big-O)

1 Misalkan $T_1(n) \in \mathcal{O}(n)$ dan $T_2(n) \in \mathcal{O}(n^2)$, maka:

$$T_1(n) + T_2(n) \in \mathcal{O}(\max(n, n^2)) \in \mathcal{O}(n^2)$$

② Misalkan $T_1(n) \in \mathcal{O}(n)$ dan $T_2(n) \in \mathcal{O}(n^2)$, maka:

$$T_1(n)T_2(n) \in \mathcal{O}(n \cdot n^2) = \mathcal{O}(n^3)$$

- $n^2 \in \mathcal{O}(n^2)$

Review fungsi logaritma

Pratinjau fungsi logaritma dan eksponensial

$$\log_b \mathbf{a} = c \Leftrightarrow \mathbf{b}^c = \mathbf{a}$$

- a > 0 adalah "pangkat logaritma"
- b > 0 adalah "basis logaritma"
- c adalah "hasil logaritma"

Catatan. Jika basis b = 2, maka disebut logaritma biner (binary logarithm). Dalam hal ini, basisnya seringkali tidak dituliskan.

Notasi \mathcal{O} pada fungsi logaritma

Dalam Ilmu Komputer, kita biasanya menggunakan kompleksitas logaritma basis-dua secara standar (*default*). Mengapa?

Notasi \mathcal{O} pada fungsi logaritma

Dalam Ilmu Komputer, kita biasanya menggunakan kompleksitas logaritma basis-dua secara standar (*default*). Mengapa?

- Dalam Ilmu Komputer, seringkali kita bekerja dengan bilangan biner atau membagi data input menjadi dua
- Dalam notasi Big-O (pertumbuhan batas atas), semua logaritma bersifat setara secara asimtotik (satu-satunya perbedaan adalah faktor konstanta perkalian)
- Jadi, kita biasanya tidak menentukan basisnya, dan hanya menuliskannya sebagai $\mathcal{O}(\log n)$

Notasi $\mathcal O$ pada fungsi logaritma

Sifat-sifat fungsi logaritma

- $\log_b 1 = 0$ untuk setiap $b \ge 0$
- Penggantian basis: $\log_b a = \frac{\log_p a}{\log_p b}$
- Penjumlahan: $\log_p m + \log_p n = \log_p mn$
- Pengurangan: $\log_p m \log_p n = \log_p \frac{m}{n}$
- Pangkat: $\log_p a^x = x \cdot \log_p a$
- Invers: $\log_p \frac{1}{a} = -\log_p a$
- dsb...

Contoh notasi \mathcal{O} (3): Fungsi logaritma

Contoh

Tunjukkan bahwa $g(n) = (n+3)\log(n^2+1) + 2n^2$ ada di $\mathcal{O}(n^2)$

Contoh notasi \mathcal{O} (3): Fungsi logaritma

Contoh

Tunjukkan bahwa
$$g(n) = (n+3)\log(n^2+1) + 2n^2$$
 ada di $\mathcal{O}(n^2)$

Solusi:

Perhatikan bahwa:

$$\log(n^2 + 1) \le \log(2n^2) = \log 2 + \log n^2 \le 2 \log n^2 = 4 \log n$$
. Jadi, $\log(n^2 + 1) \in \mathcal{O}(\log n)$.

Karena
$$n + 3 \in \mathcal{O}(n)$$
, maka $(n+3)\log(n^2+1) \in \mathcal{O}(n) \cdot \mathcal{O}(\log n) \in \mathcal{O}(n\log n)$.

Karena
$$2n^2 \in \mathcal{O}(n^2)$$
, dan $\max(n \log n, n^2) = n^2$, maka $g(n) \in \mathcal{O}(n^2)$.

Bagian 4: Klasifikasi algoritma berdasarkan kompleksitas waktu terburuk

Klasifikasi algoritma berdasarkan kompleksitas waktu terburuk

Complexity	Class
$\mathcal{O}(1)$	constant
$\mathcal{O}(\log n)$	logarithmic
$\mathcal{O}(n)$	linear
$\mathcal{O}(n \log n)$	quasilinear /linearithmic
$\mathcal{O}(n^2)$	square
$\mathcal{O}(n^3)$	cubic
$\mathcal{O}(n^k), k \geq 2$	polynomial
$\mathcal{O}(2^n)$	exponential
$\mathcal{O}(n!)$	factorial

$$\underbrace{\mathcal{O}(1) < \mathcal{O}(\log n) < \mathcal{O}(n) < \mathcal{O}(n\log n)}_{\text{polynomial algorithms}} < \underbrace{\mathcal{O}(n^3) < \dots < \underbrace{\mathcal{O}(2^n) < \mathcal{O}(n!)}_{\text{exponential algorithms}}$$

Klasifikasi algoritma berdasarkan kompleksitas waktu terburuk

Bagian 5: Penghitungan banyaknya operasi pada algoritma

Menghitung jumlah operasi algoritma: Operasi dasar

- **① Operasi assign (deklarasi)** (perbandingan, operasi aritmatika, baca, tulis) membutuhkan $\mathcal{O}(1)$
- **Mengakses** elemen array, atau mengambil nilai yang tersimpan memerlukan $\mathcal{O}(1)$

Contoh

- $ightharpoonup read(x)
 ightarrow \mathcal{O}(1)$
- $x: x + a[k] \rightarrow \mathcal{O}(1)$
- $ightharpoonup print(x)
 ightarrow \mathcal{O}(1)$

Menghitung jumlah operasi algoritma: If-Else

If-Else condition: If C then A1 else A2 membutuhkan waktu: $T_C + \max(T_{O1}, T_{O2})$

Contoh (Operasi dasar)

```
    read(x)
    if x mod 2 = 0 then
    x := x + 1
    print("Even")
    else
    print("Odd")
    end if
```

Kompleksitas waktu asimtotik:

$$\mathcal{O}(1) + \mathcal{O}(1) + \max(\mathcal{O}(1) + \mathcal{O}(1), \mathcal{O}(1)) \in \mathcal{O}(1)$$

Menghitung jumlah operasi algoritma: For loop

§ For loop: kompleksitas waktu adalah jumlah iterasi dikalikan dengan kompleksitas waktu *body loop* (yaitu *pernyataan loop*)

Contoh (Single for loop)

```
1: for i = 1 to n do
```

2: sum := sum + a[1]

3: end for

Kompleksitas waktu asimtotik: $n \cdot \mathcal{O}(1) = \mathcal{O}(n)$

Menghitung jumlah operasi algoritma: Loop bersarang

Contoh (Two nested for loops with one instruction)

```
1: for i = 1 to n do
2: for j = 1 to n do
3: a[i,j] := i + j
4: end for
```

5: end for

Kompleksitas waktu asimtotik: $n \cdot \mathcal{O}(n) = \mathcal{O}(n^2)$

Menghitung jumlah operasi algoritma: Loop bersarang

Contoh (Two nested for loops with two instructions)

```
1: for i = 1 to n do

2: for j = 1 to i do

3: a := a + 1

4: b := b - 1

5: end for

6: end for
```

Loop luar dieksekusi n kali, dan loop dalam dieksekusi i kali untuk setiap j. Jumlah iterasi: $1+2+\cdots+n=\frac{n(n+1)}{2}\in\mathcal{O}(n^2)$.

Perulangan pada body membutuhkan waktu $\mathcal{O}(1)$.

Asymptotic time complexity: $O(n^2)$

Menghitung jumlah operasi algoritma: While loop

While loop: WHILE C DO A; and REPEAT A UNTIL C. Time complexity = # iterations \times T_{body}

Contoh (Single loop with n-1 iterations)

- 1: i := 2
- 2: while $i \leq n$ do
- 3: sum:= sum + a[i]
- 4: i := i + 1
- 5: end while

Kompleksitas waktu asimtotik:

$$\mathcal{O}(1) + (n-1)(\mathcal{O}(1) + \mathcal{O}(1) + \mathcal{O}(1)) = \mathcal{O}(1) + \mathcal{O}(n-1) \in \mathcal{O}(n)$$

Menghitung jumlah operasi algoritma: Infinite loop

Contoh (Infinite loop)

```
1: x := 0
```

2: while x < 5 do

3: x := 1

4: x := x + 1

5: end while

Dalam situasi ini, x tidak akan pernah lebih besar dari 5, karena pada awal perulangan while, x diberi nilai 1, sehingga perulangan akan selalu berakhir dengan 2 dan perulangan tidak akan pernah terputus.

3.2. Big-Omega

Notasi Ω : Batas-bawah (*lower-bound*) asimptotik

Kita juga dapat mengatakan bahwa suatu algoritma membutuhkan minimal sejumlah waktu tertentu, tanpa memberikan batas atas.

Big-Omega $(\Omega(\cdot))$ notation

Definisi

 $g(n) \in \Omega(f(n))$ jika $\exists \ k > 0$ dan n_0 sedemikian sehingga $g(n) \ge k \cdot f(n)$, $\forall n \ge n_0$.

3.3. Big-Theta

Notasi Θ: Batas-ketat (tight-bound) asimptotik

Batas ketat dari suatu fungsi berarti suatu fungsi lain yang membatasi fungsi tersebut dari atas dan bawah. Secara formal, didefinisikan sebagai berikut:

Definisi

 $g(n) \in \Theta(f(n))$ jika $\exists k_1, k_2 > 0$ dan n_0 sedemikian sehingga $k_1 \cdot f_n \leq g(n) \leq k_2 \cdot f(n)$, $\forall n \geq n_0$.

end of slide...