Trabajo Práctico 2 Reconocimiento de dígitos Fundamentos teóricos

Métodos Numéricos

Segundo cuatrimestre - **2017** - 22 de septiembre

Donde estamos parados

y qué vimos hasta ahora

- Errores numéricos.
- Resolución de sistema lineales.
- Eliminación gaussiana, LU, matrices SDP, Factorización de Cholesky
- Aplicación a la Digitalización 3D.
- Fotometría estéreo.

Qué vamos a ver hoy

Fundamentos para el trabajo práctico

- ► *kNN*: k Nearest Neighbors
- ▶ *PCA*: Principal Component Analysis
- Autovalores y autovectores.
- Método de la Potencia Deflación
- Diagonalización de una matriz
- K-Fold Cross Validation
- Competencia

Trabajo Práctico 2

Reconocimiento de dígitos

- ▶ Datos: base de datos etiquetada de imágenes de dígitos manuscritos (0-9) tomadas de una forma particular.
- ► Objetivo: dada una nueva imagen de un dígito, ¿A qué clase corresponde?

Problema a resolver Recibimos un nuevo

Recibimos un nuevo dígito manuscrito, ¿Podemos determinar automáticamente a cuál pertenece?

Contexto

Objetivo

Desarrollar un clasificador que permita reconocer dígitos manuscritos.

Contexto

- Disponemos de una base de datos etiquetada (train), y un conjunto de datos cuya etiqueta desconocemos (test). Este último conjunto nos permitirá evaluar como se comporta nuestro clasificador.
- Consideraremos la base MNIST, en la versión utilizada en Kaggle.
 42k dígitos en train, 18k dígitos en test.
- ► Cada dígito es una imagen en escala de grises de 28 × 28.

Vecino más cercano

Idea general

- Consideramos cada imagen i como un vector $x_i \in \mathbb{R}^m$, $m = 28 \times 28$, $i = 1, \ldots, n$. Para las imágenes en la base de datos, sabemos además a que clase pertenece.
- Cuando llega una nueva imagen de un dígito z, con el mismo formato, recorremos toda la base y buscamos aquella que minimice

$$\arg \min_{i=1,...,n} ||z - x_i||_2$$

Luego, le asignamos la clase del representante seleccionado.

Generalización

Considerar más de un vecino.

Vecinos más cercanos: kNN

- Consideramos los k vecinos más cercanos.
- Entre ellos hacemos una votación, eligiendo como clase la moda¹ del conjunto. En otras palabras, hacemos una votación y se elige aquella clase con más votos.

Imagen tomada de EN.PROFT.ME

¹moda: valor con mayor frecuencia en una distribución de datos → ⟨ ₺ → ⟩ ₺ ◆ ९ ०

kNN: Ejemplo de clasificación y definición de fronteras

Imagen tomada de SCIKIT-LEARN.ORG

Algunos pros & cons

- + Es conceptualmente simple.
- Funciona bien en general para dimensiones bajas, y puede ser utilizado con pocos ejemplos.
- Sufre de La maldición de la dimensionalidad (efecto Hughes).
- La clasificación puede ser lenta dependiendo del contexto.

Ejemplo datos en \mathbb{R}^2

Sea $x^{(1)}, x^{(2)}, \dots, x^{(n)}$ una secuencia de n datos, con $x^{(i)} \in \mathbb{R}^2$. Formamos la matriz X con los $x^{(i)^t}$ como filas:

$$X = \begin{bmatrix} x^{(1)^t} \\ x^{(2)^t} \\ x^{(3)^t} \\ x^{(4)^t} \\ x^{(5)^t} \\ x^{(6)^t} \\ \vdots \\ x^{(n)^t} \end{bmatrix} = \begin{bmatrix} 26.4320 & 27.7740 \\ 26.8846 & 26.5631 \\ 23.3309 & 26.6983 \\ 30.6387 & 31.5619 \\ 30.5171 & 30.8993 \\ 45.6364 & 36.6035 \\ \vdots & \vdots \\ 16.0650 & 24.0210 \end{bmatrix}$$

Ejemplo datos en \mathbb{R}^2

$$X = \begin{bmatrix} 26.4320 & 27.7740 \\ 26.8846 & 26.5631 \\ 23.3309 & 26.6983 \\ 30.6387 & 31.5619 \\ 30.5171 & 30.8993 \\ 45.6364 & 36.6035 \\ \vdots & & \vdots \\ 16.0650 & 24.0210 \end{bmatrix}$$

$\frac{\text{Media:}}{\mu = \frac{1}{n}(x^{(1)} + \dots + x^{(n)})}$ $\mu = (29.3623, 29.7148)$

Varianza de una variable x_k : Medida para la dispersión de los datos.

$$\sigma_{x_k}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_k^{(i)} - \mu_k)^2
\sigma_{x_i}^2 = 66.2134, \ \sigma_{x_2}^2 = 12.5491$$

Ejemplo datos en \mathbb{R}^2 - Covarianza

$$X = \begin{bmatrix} 26.4320 & 27.7740 \\ 26.8846 & 26.5631 \\ 23.3309 & 26.6983 \\ 30.6387 & 31.5619 \\ 30.5171 & 30.8993 \\ 45.6364 & 36.6035 \\ \vdots & \vdots \\ 16.0650 & 24.0210 \end{bmatrix}$$

<u>Covarianza</u>: Medida de cuánto dos variables se correlacionan, o varían de forma similar. Variables con mayor covarianza inducen la presencia de cierta dependencia o relación.

$$\sigma_{x_j x_k} = \frac{1}{n-1} \sum_{i=1}^{n} (x_j^{(i)} - \mu_j) (x_k^{(i)} - \mu_k)$$

Ejemplo datos en \mathbb{R}^2 - Covarianza

Dadas *n* observaciones de dos variables x_k , x_j , y $v = (1, ..., 1)^t$:

$$\sigma_{x_j x_k} = \frac{1}{n-1} \sum_{i=1}^n (x_j^{(i)} - \mu_j) (x_k^{(i)} - \mu_k) = \frac{1}{n-1} (x_j - \mu_j v)^t (x_k - \mu_k v)$$

Matriz de Covarianza:

$$X = \begin{bmatrix} 26.4320 - \mu_1 & 27.7740 - \mu_2 \\ 26.8846 - \mu_1 & 26.5631 - \mu_2 \\ 23.3309 - \mu_1 & 26.6983 - \mu_2 \\ 30.6387 - \mu_1 & 31.5619 - \mu_2 \\ 30.5171 - \mu_1 & 30.8993 - \mu_2 \\ 45.6364 - \mu_1 & 36.6035 - \mu_2 \\ \vdots & \vdots & \vdots \\ 16.0650 - \mu_1 & 24.0210 - \mu_2 \end{bmatrix} \qquad M_X = \frac{1}{n-1} X^t X = \begin{bmatrix} \sigma_{x_1 x_1} & \sigma_{x_1 x_2} \\ \sigma_{x_1 x_2} & \sigma_{x_2 x_2} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{x_1}^2 & \sigma_{x_1 x_2} \\ \sigma_{x_1 x_2} & \sigma_{x_2}^2 \end{bmatrix}$$

$$M_X = \begin{bmatrix} 66.2134 & 27.1263 \\ 27.1263 & 12.5491 \end{bmatrix}$$

¿Cómo expresar mejor nuestros datos?

Objetivo

Buscamos una transformación de los datos que disminuya la redundancia (es decir, disminuir la covarianza).

- ► Cambio de base: $\hat{X}^t = PX^t$.
- Cómo podemos hacerlo? Diagonalizar la matriz de covarianza. Esta matriz tiene la varianza de cada variable en la diagonal, y la covarianza en las restantes posiciones. Luego, al diagonalizar buscamos variables que, de a pares, tengan covarianza cero y la mayor varianza posible.

Autovalores y Autovectores

Definición

Sea $A \in \mathbb{R}^{n \times n}$. Un *autovector* de A es un vector no nulo tal que $Ax = \lambda x$, para algun escalar λ . Un escalar λ es denominado *autovalor* de A si existe una solución no trivial x del sistema $Ax = \lambda x$. En este caso, x es llamado *autovector asociado* a λ .

Consideramos:

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}, u = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$Au = \begin{bmatrix} -5 \\ -1 \end{bmatrix}, Av = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2v$$

Gráficamente....A sólo estira (o encoge) el vector v.

Diagonalización

En muchos casos, la presencia de autovectores-autovalores puede ser utilizada para encontrar una factorización $A=PDP^{-1}$, donde D es una matriz diagonal.

Intuición

Podemos encontrar una base donde la transformación lineal A se comporta como si fuese diagonal.

Observación

No toda matriz $A \in \mathbb{R}^{n \times n}$ es diagonalizable.

Teorema

Una matriz $A \in \mathbb{R}^{n \times n}$ es diagonalizable sí y solo sí A tiene n autovectores linealmente independientes (las columnas de P).

Teorema

Si $A \in \mathbb{R}^{n \times n}$ es simétrica, entonces existe una base ortonormal de autovectores $\{v_1, \dots, v_n\}$ asociados a $\lambda_1, \dots, \lambda_n$.

Consecuencia: Existe P, y $P^{-1}=P^t$. Luego, $A=PDP^t$.

Cálculo de autovalores/autovectores

- Vamos a necesitar calcular los autovectores v de una matriz para poder calcular las transformaciones de los métodos que estamos viendo.
- ► Consideremos A^tA , y supongamos $\lambda_1 > \lambda_2 > \cdots > \lambda_k$. A^tA es simétrica y semidefinida positiva.
- ▶ Podemos considerar el <u>Método de la Potencia</u> para calcular λ_1 y v_1 .
 - 1. MetodoPotencia($B, x_0, niter$)
 - 2. $v \leftarrow x_0$.
 - 3. Para $i = 1, \ldots, niter$
 - 4. $v \leftarrow \frac{Bv}{||Bv||}$
 - 5. Fin Para
 - 6. $\lambda \leftarrow \frac{v^t B v}{v^t v}$
 - 7. Devolver λ , ν .

Cálculo de autovalores/autovectores

Una vez que tenemos λ_1 y v_1 , como seguimos?

Deflación

Sea $B \in \mathbb{R}^{n \times n}$ una matriz con autovalores distintos $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$ y una base ortonormal de autovectores. Entonces, la matriz $B - \lambda_1 v_1 v_1^t$ tiene autovalores $0, \lambda_2, \ldots, \lambda_n$ con autovectores asociados v_1, \ldots, v_n .

- $(B \lambda_1 v_1 v_1^t) v_1 = B v_1 \lambda_1 v_1 (v_1^t v_1) = \lambda_1 v_1 \lambda_1 v_1 = 0 v_1.$
- $(B \lambda_1 v_1 v_1^t) v_i = B v_i \lambda_1 v_1 (v_1^t v_i) = \lambda_i v_i.$

Observación

En nuestro caso, no hace falta que todos los autovalores tengan magnitudes distintas.

¿Cómo expresar mejor nuestros datos?

► Cambio de base: Â^t = PX^t.
Sea P ortogonal y M_{X̂} la matriz de covarianza de Â̂.

$$M_{\hat{X}} = \frac{1}{n-1} \hat{X}^t \hat{X}$$

$$= \frac{1}{n-1} (PX^t) (XP^t)$$

$$= P \frac{X^t X}{n-1} P^t$$

$$= P M_X P^t$$

▶ M_X es simétrica, entonces existe V ortogonal tal que $M_X = VDV^t$.

$$\begin{aligned} M_{\hat{X}} &= PM_X P^t \\ &= P(VDV^t)P^t & \text{tomamos } P = V^t \\ &= (V^t V)D(VV^t) = D \end{aligned}$$

¿Cómo expresar mejor nuestros datos?

Volvemos al ejemplo

$$M_X = \begin{bmatrix} 66.2134 & 27.1263 \\ 27.1263 & 12.5491 \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} 0.9228 & -0.3852 \\ 0.3852 & 0.9228 \end{bmatrix}}_{V} \underbrace{\begin{bmatrix} 77.5362 & 0 \\ 0 & 1.2263 \end{bmatrix}}_{D=M_{\hat{Y}}} \underbrace{\begin{bmatrix} 0.9228 & 0.3852 \\ -0.3852 & 0.9228 \end{bmatrix}}_{V^t}$$

Resumen hasta acá

- ▶ Tenemos *n* muestras de *m* variables.
- ightharpoonup Calculamos el vector μ que contiene la media de cada de una las variables.
- ► Construimos la matriz $X \in \mathbb{R}^{n \times m}$ donde cada muestra corresponde a una fila de X y tienen media cero (i.e., $x^{(i)} := (x^{(i)} \mu)/\sqrt{n-1}$).
- Diagonalizamos la matriz de covarianzas M_X. La matriz V (ortogonal) contiene los autovectores de M_X.

Propiedades del cambio de base

- Disminuye redundancias.
- ► El cambio de base $\hat{X}^t = PX^t = V^tX^t$ asigna a cada muestra un nuevo *nombre* mediante un cambio de coordenadas.
- Las columnas de V (autovectores de M_X) son las componentes principales de los datos.
- ► En caso de *m* grande, es posible tomar sólo un subconjunto de las componentes principales para estudiar (i.e., aquellas que capturen mayor proporción de la varianza de los datos)

Autodígitos (Eigendigits)

Los primeros 6 autovectores en V.

¿Cómo reconocemos un dígito?

Idea

- Utilizar el cambio de base, transformando cada imagen convenientemente.
- Reducir la dimensión de los datos utilizando sólo algunas de las nuevas variables (eligiendo aquellas que capturan una fracción mayor de la varianza).

Procedimiento

- ▶ Reducción de la dimensión: parámetro de entrada que indica cuántas componentes principales considerar, α . Es decir, tomaremos $\bar{V} = [v_1 \ v_2 \ \dots \ v_{\alpha}].$
- ► <u>Transformación característica</u>: Aplicamos el cambio de base a cada muestra $x^{(i)}$, definimos $tc(x^{(i)}) = \bar{V}^t x^{(i)} = (v_1^t x^{(i)}, \dots, v_{\alpha}^t x^{(i)})$.

Reducción + Transformación (k = 2)

¿Cómo reconocemos un dígito?

Finalmente, dada una imagen de un dígito que no se encuentra en la base:

- ▶ Vectorizamos la imagen en $x^* \in \mathbb{R}^m$.
- ▶ Definimos $\bar{x}^* = (x^* \mu)/\sqrt{n-1}$.
- Aplicamos la transformación característica, $tc(\bar{x}^*)$ y buscamos (de alguna manera) a que dígito pertenece.

Pregunta:

Sugerencias para buscar a qué dígito pertenece?

Metodología de evaluación

Elegimos un numero de vecinos k (adicionalmente un número α de componentes). Como evaluamos si el método funciona?

Como medimos la efectividad del método?

Metodología de evaluación

Elegimos un numero de vecinos k (adicionalmente un número α de componentes). Como evaluamos si el método funciona?

- Como medimos la efectividad del método?
- Tiene sentido probarlo sobre la base de training?

Metodología de evaluación

Elegimos un numero de vecinos k (adicionalmente un número α de componentes). Como evaluamos si el método funciona?

- Como medimos la efectividad del método?
- Tiene sentido probarlo sobre la base de training?
- ▶ De alguna forma defino una instancia, pruebo todas las combinaciones de parámetros sobre la misma. Es correcto? Puede surgir algún problema?

Metodología de evaluación

Elegimos un numero de vecinos k (adicionalmente un número α de componentes). Como evaluamos si el método funciona?

- Como medimos la efectividad del método?
- Tiene sentido probarlo sobre la base de training?
- De alguna forma defino una instancia, pruebo todas las combinaciones de parámetros sobre la misma. Es correcto? Puede surgir algún problema?

Idea

Utilizar la base de entrenamiento convenientemente para estimar y proveer suficiente evidencia respecto a la efectividad del método.

K-Fold Cross Validation

- ▶ Particionamos de forma aleatoria nuestra base de training en K subconjuntos de casi igual tamaño.
- ▶ Uno de los subconjuntos se utiliza como datos de testing y los otros K-1 (todos juntos), como datos de training.

K-Fold Cross Validation

- ▶ Se realiza K iteraciones, cada una de ellas reteniendo uno de los conjuntos para validación y utilizando los restantes K-1 para entrenamiento.
- ▶ Suelen realizarse varias corridas para un mismo valor de K.
- ▶ Ejemplos: K = 2, K = 10, K = cantidad de muestras (leave-one-out cross validation)

Reportamos valores promedio de efectividad en el reconocimiento para cada combinación de parámetros.

Sugerencia

Considerar el comando CVPARTITION de MATLAB.

¿Qué hay que hacer en el TP?

Objetivos generales

- Implementar el método kNN.
- Implementar el método de PCA, y combinarlos con kNN.
- Experimentar variando: k, α, K. Analizar los resultados en términos de diferentes métricas (mirando al menos la tasa de efectividad) aplicando cross validation sobre la base de training.
- Para encontrar los autovectores necesarios, utilizar el Método de la Potencia + Deflación.

¿Qué hay que hacer en el TP?

Objetivos generales

- Implementar el método kNN.
- Implementar el método de PCA, y combinarlos con kNN.
- Experimentar variando: k, α, K. Analizar los resultados en términos de diferentes métricas (mirando al menos la tasa de efectividad) aplicando cross validation sobre la base de training.
- Para encontrar los autovectores necesarios, utilizar el Método de la Potencia + Deflación.

Algunas (posibles) preguntas y dificultades

- kNN y 42k imágenes de 28 × 28?
- Tolerancia de corte Método de la Potencia? Se cumplen las condiciones para aplicar deflación?
- Cuántas componentes principales tomar?
- Que combinación de parámetros (modelo) da los mejores resultados?

Por último...

Competencia activa en KAGGLE.COM

Por último...

Competencia activa en KAGGLE.COM

******	eare Surrey			
1	Bag of Words Meets Bags of Popcorn Use Google's Word2'Vec for movie reviews	Knowledge	383	2 months
1665 3134 1742	Digit Recognizer Classify handwritten digits using the famous MNIST data	Knowledge	571	8 months
	Titanic: Machine Learning from Disaster Predict survival on the Titanic (using Excel, Python, R, and Random Forests)	Knowledge	2562	8 months
Q _{a e}	Facial Keypoints Detection Detect the location of keypoints on face Images	Knowledge	79	8 months
j^{ulli}a	First Steps With Julia Identify characters from Google Street View Pictures + tutorial with Julia.	Knowledge	80	8 months
	Ilmited 15.071x - The Analytics Edge (Spring 2015) Test your analytics skills by predicting which New York Times blog articles will be the most popular	Private	1399	11 days

174	:25	max777alex	0.97486	2
175	:25	Ye Han	0.97471	14
176	125	Subkhan - Denis 🗈	0.97457	1
177	new	AIX1	0.97457	3
178	126	Ohad Zadok	0.97414	3
179	:25	Ј ЈМВ	0.97400	2
180	:25	Qizhen	0.97400	8
181	:25	Rangudu Venkata Pavan Kumar 🛝	0.97386	6
182	:25	Alexander Vasyuk	0.97371	4
183	:25	Muhammed Miah	0.97371	2
184	:25	Laurent Van Winckel	0.97357	4
185	:25	Chi-Ming Chang	0.97357	4
186	new	Vignesh Panneerselvam	0.97357	5
187	126	Prashant Dheeraj	0.97343	9
188	126	bowen	0.97329	2
189	:18	Constant	0.97314	3

Cronograma sugerido

- ▶ Viernes 29 de Septiembre: Lectura base de training, kNN.
- ▶ Viernes 6 de Octubre: Método de la potencia, Deflación, *PCA*.
- Viernes 13 de Octubre: Desarrollo de experimentos, hipótesis y primeras discusiones.

Fecha de entrega

- Formato electrónico: Jueves 19 de Octubre de 2017, hasta las 23:59 hs., enviando el trabajo (informe+código) a metnum.lab@gmail.com.
- ▶ Formato físico: Viernes 20 de Octubre de 2017, a las 18:00 hs.