HEATER AND MANUFACTURE THEREOF

Patent Number:

JP11040330

Publication date:

1999-02-12

inventor(s):

FURUKAWA MASAKAZU

Applicant(s):

IBIDEN COLTD

Requested Patent:

☐ <u>JP11040330</u>

Application Number: JP19970210014 19970719

Priority Number(s):

IPC Classification:

H05B3/20; H05B3/12

EC Classification:

Equivalents:

JP3165396B2

Abstract

PROBLEM TO BE SOLVED: To provide a thin and light heater which can facilitate temperature control and prevent generation of thermal distortion by forming an heating element coated with a metal layer on its surface with metal particles or the metal particles and metallic oxide sintered on the surface of a plate-shaped body consisting of nitride ceramic or carbide ceramic.

SOLUTION: Fine particles of metal nitride ceramic such as AIN, or metal carbide ceramic such as SiC, are pressed and formed together with sintering assistant and binder and the like, and sintered at approx. 1,000 to 2,500 deg.C, so that a plate-shaped body made of ceramic (heater plate) 1 is obtained, whose thickness is approx. 0.5 to 5 mm, and which is formed with a through hole 8 or the like, if necessary. Metal particles of gold, tungsten or the like, and if necessary, conductive paste including metallic oxide, such as Al2 O3, are subjected to pattern printing, and heating sintering on the surface of the heater plate 1, and a metal coating layer 5 of Ni or the like is plating-coated on the metal particle sintered body 4 to form a heating element 2. After that, a terminal pin 3 is connected through a solder layer 6 of Ag-Pb alloy or the like.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-40330

(43)公開日 平成11年(1999)2月12日

(51) Int.Cl.*

H 0 5 B 3/20

3/12

£.

識別配号

393

FΙ

H05B 3/20

393

3/12

審査請求 未請求 請求項の数6 FD (全 5 頁)

(21)出願番号

特顧平9-210014

(71)出顧人 000000158

イビデン株式会社

岐阜県大垣市神田町2丁目1番地

(22)出顧日

平成9年(1997)7月19日

(72) 発明者 古川 正和

岐阜県揖斐郡揖斐川町北方1-1 イビデ

ン株式会社内

(54)【発明の名称】 ヒーターおよびその製造方法

(57)【要約】

【課題】 温度制御しやすく、薄くて軽いヒーターを提 供する。

【解決手段】 金属窒化物セラミックまたは金属炭化物 セラミックからなる板状体の表面に、金属粒子を焼結し て形成した発熱体を設けてなる。発熱体には金属酸化物 を含有してもよく、その表面をニッケル層などで被覆し てもよい。

【特許請求の範囲】

【請求項1】 窒化物セラミックまたは炭化物セラミッ クからなる板状体の表面に、金属粒子を焼結して形成し た発熱体を設けてなることを特徴とするヒーター。

【請求項2】 前記発熱体は、金属粒子および金属酸化 物を焼結して形成した請求項1に記載のヒーター。

【請求項3】 前記発熱体の表面は、金属層で被覆され てなる請求項1に記載のヒーター。

【請求項4】 少なくとも以下の①~③の工程を含むこ とを特徴とするヒーターの製造方法。

①窒化物セラミックまたは炭化物セラミックの粉体を焼 結させて窒化物セラミックまたは炭化物セラミックから なる板状体とする工程。

◎◎◎の板状体上に金属粒子からなる導電ペーストを印刷 する工程。

③加熱して導電ペーストを焼結させて、セラミックから なる板状体の表面に発熱体を設ける工程。

【請求項5】 前記工程②において、金属粒子および金 属酸化物からなる導電ペーストを印刷する請求項4に記 載のヒーターの製造方法。

【請求項6】 前記工程〇の後、発熱体表面にめっきを 行い、金属層で被覆する請求項4に記載のヒーターの製 造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本願発明は、主に半導体産業 において使用される乾燥用のヒーターに関し、特には、 温度制御しやすく、また、薄くて軽いヒーターに関す る。

[0002]

【従来の技術】半導体製品は、シリコンウエハー上に感 光性樹脂をエッチングレジストとして形成し、シリコン ウエハーをエッチングすることにより製造される。感光 性樹脂は、液状でスピンコーターなどでシリコンウエハ 一表面に塗布されるのであるが、塗布後に乾燥させなけ ればならず、塗布したシリコンウエハーをヒーター上に 載置して加熱することになる。 従来このようなヒーター としては、アルミニウム板の裏面に発熱体を配線したも のが採用されている。

[0003]

【発明が解決しようとする課題】ところが、このような 金属製のヒーターは次のような問題があった。まず、金 属製であるため、ヒーター板の厚みは15mm程度と厚 くしなければならない。なぜなら、薄い金属板では、加 熱に起因する熱膨張により、そり、歪みが発生してしま い、金属板上に載置されるウエハーが破損したり傾いた りしてしてしまうからである。このため、ヒーターの重 量が大きくなり、かさばってしまう。

【0004】また、発熱体に印加する電圧や電流量を変 えることにより、加熱温度を制御するのであるが、金属 50 【0012】前記ヒーター板は、0.5~5mm程度が

板が厚いために、電圧や電流量の変化に対してヒーター 板の温度が迅速に追従せず、温度制御しにくいという問 題があった。本願発明は、温度制御しやすく、薄くて軽 いヒーターを提供することを目的とする。

[0005]

【課題を解決するための手段】本願発明者らは鋭意研究 した結果、ヒーター板として、金属に代えて熱伝導性に 優れた窒化物セラミックまたは炭化物セラミックを使用 すると、薄くしてもそり歪みが発生せず、また、発熱体 10 に印加する電圧や電流量の変化に対してヒーター板の温 度が迅速に追従するという事実を知見した。

【0006】さらに、窒化物セラミックや炭化物セラミ ックは、金属粒子を含む導電ペーストとは密着しにくい のであるが、導電ペーストに金属酸化物を加えることに より、金属粒子が焼結して窒化物セラミックや炭化物セ ラミックと密着する事実も合わせて知見した。

【0007】本願発明の構成は次とおりである。

1. 窒化物セラミックまたは炭化物セラミックからなる 板状体の表面に、金属粒子を焼結して形成した発熱体を 20 設けてなることを特徴とするヒーター。

【0008】2. 前記発熱体は、金属粒子および金属酸 化物を焼結して形成した1に記載のヒーター。

3. 前記発熱体の表面は、金属層で被覆されてなる1に 記載のヒーター。

【0009】4. 少なくとも以下の〇~〇の工程を含む ことを特徴とするヒーターの製造方法。

①窒化物セラミックまたは炭化物セラミックの粉体を焼 結させて窒化物セラミックまたは炭化物セラミックから なる板状体とする工程。

30 ②①の板状体上に金属粒子からなる導電ペーストを印刷 する工程。

③加熱して導電ペーストを焼結させて、セラミックから なる板状体の表面に発熱体を設ける工程。

【0010】5. 前記工程②において、金属粒子および 金属酸化物からなる導電ペーストを印刷する4に記載の ヒーターの製造方法。

6. 前記工程③の後、発熱体表面にめっきを行い、金属 層で被覆する4に記載のヒーターの製造方法。

【0011】本願発明では、板状体(以下ヒーター板と 40 称す)は、窒化物セラミックまたは炭化物セラミックか らなることが必要である。窒化物セラミックまたは炭化 物セラミックは、熱膨張係数が金属より小さく、薄くし ても、加熱によりそったり、歪んだりしない。そのた め、ヒーター板を薄くて軽いものとすることができる。 また、ヒーター板の熱伝導率が高く、またヒーター板自 体薄いため、ヒーター板の表面温度が、発熱体の温度変 化に迅速に追従する。即ち、電圧、電流量を変えて発熱 体の温度を変化させることにより、ヒーター板の表面温 度を制御できるのである。

よい。薄すぎると破損しやすくなるからである。前記室 化物セラミックは、金属窒化物セラミック、例えば、窒 化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン から選ばれる少なくとも1種以上が望ましい。

【0013】また、炭化物セラミックは、金属炭化物セ ラミック、例えば、炭化ケイ素、炭化ジルコニウム、炭 化チタン、炭化タンタル、炭化タンステンから選ばれる 少なくとも1種以上が望ましい。 これらのセラミックの 中で窒化アルミニウムが最も好適である。 熱伝導率が1 80W/m·Kと最も高いからである。

【0014】本願発明では、発熱体は、導電ベースト中 の金属粒子を焼結して形成したものであることが必要で ある。加熱焼成によりセラミック板表面に焼き付けるこ とができるからである。なお、焼結は、金属粒子同士、 金属粒子とセラミックが融着していれば十分である。図 1に示すように発熱体2は、ヒーター板1全体の温度を 均一にする必要があることから、同心円状のパターンが よい。また、発熱体2のパターンの厚さは、1~20 μ mが望ましく、幅はO.5~5mmが望ましい。厚さ、 幅により抵抗値を変化させることができるが、この範囲 20 が最も実用的だからである。抵抗値は、薄く、細くなる ほど大きくなる。

【0015】導電ペーストは、金属粒子の他、樹脂、溶 剤、増粘剤などを含むものが一般的である。金属粒子と しては、金、銀、白金、パラジウム、鉛、タングステ ン、ニッケルから選ばれる少なくとも 1 種以上がよい。 これらの金属は比較的酸化しにくく、発熱するに十分な 抵抗値を有するからである。これら金属粒子の粒径は、 O. 1~100 μmであることが望ましい。微細すぎる と酸化しやすく、大きすぎると焼結しにくくなり、抵抗 30 値が大きくなるからである。

【0016】導電ペーストに使用される樹脂としては、 エポキシ樹脂、フェノール樹脂などがよい。また、溶剤 としては、イソプロピルアルコールなどが使用される。 増粘剤としては、セルロースなどが挙げられる。

【0017】前記導電ベーストには、金属粒子に加えて 金属酸化物を含ませて、発熱体を金属粒子および金属酸 化物を焼結させたものとすることが望ましい。この理由 は、窒化物セラミックまたは炭化物セラミックと金属粒 子を密着させるためである。金属酸化物により、窒化物 40 セラミックまたは炭化物セラミックと金属粒子との密着 性が改善される理由は明確ではないが、金属粒子表面お よび窒化物セラミックまたは炭化物セラミックの表面は わずかに酸化膜が形成されており、この酸化膜同士が金 属酸化物を介して焼結して一体化し、金属粒子と窒化物 セラミックまたは炭化物セラミックが密着するのではな いかと推定している。

【0018】前記金属酸化物としては、酸化鉛、酸化亜 鉛、シリカ、酸化ホウ素(B、O,)、アルミナ、イッ

い。これらの酸化物は、発熱体の抵抗値を大きくするこ となく、金属粒子と窒化物セラミックまたは炭化物セラ ミックとの密着性を改善できるからである。

【0019】本願発明では、発熱体の表面は、金属層で 被覆されてなることが望ましい。発熱体は、金属粒子の 焼結体であり、露出していると酸化しやすく抵抗値が変 化してしまう。そこで、表面を金属層で被覆することに より、酸化を防止できるのである。金属層の厚さは、

0. 1~10 µmが望ましい。発熱体の抵抗値を変化さ 10 せることなく、発熱体の酸化を防止できる範囲だからで ある。

【0020】被覆に使用される金属は、非酸化性の金属 であればよい。具体的には、金、銀、パラジウム、白 金、ニッケルから選ばれる少なくとも1種以上がよい。 なかでもニッケルが好適である。発熱体には電源と接続 するための端子が必要であり、この端子は、半田を介し て発熱体に取り付けるが、ニッケルは半田の熱拡散を防 止するからである。接続端子は、コバール製の端子ピン を使用することができる。

【0021】また、半田は銀一鉛、鉛-スズ、ビスマス - スズなどの合金を使用することができる。なお、半田 層の厚さは、0.1~50μmが望ましい。半田による 接続を確保するに充分な範囲だからである。本願発明で は、必要に応じてヒーター板に熱電対を埋め込んでおく ことができる。熱電対によりヒーター板の温度を測定 し、そのデータをもとに電圧、電流量を変えて、ヒータ 一板の温度を制御することができるからである。

【0022】また、図2に示すようにヒーター板1に貫 通孔8を複数設けてその孔8に支持ピン7を挿入し、半 導体ウエハー9をそのピン7上に載置することができ る。また、支持ピン7を上下させて半導体ウェハー9を 図示しない搬送機に渡したり、搬送機から半導体ウエハ ー9を受け取ったりすることができる。

【0023】ついで、ヒーターの製造方法について説明 する。

(1) 窒化物セラミックまたは炭化物セラミックの粉体 を焼結させて窒化物セラミックまたは炭化物セラミック からなる板状体(ヒーター板)を形成する工程。前述し た窒化アルミニウムなどの窒化物セラミックまたは炭化 ケイ素などの炭化物セラミックの粉体、必要に応じてイ ットリアなどの焼結助剤、バインダーをスプレードライ などの方法で顆粒状にし、この顆粒を金型などに入れて 加圧し、板状に成形して生成形体を製造する。

【0024】生成形体に、必要に応じて半導体ウエハー の支持ピンを挿入する貫通孔や熱電対を埋め込む凹部を 設けておくことができる。次に、この生成形体を加熱焼 成して焼結させてセラミック製の板状体を製造する。加 熱焼成の際、加圧することにより気孔のないヒーター板 を製造することができる。加熱焼成は、焼結温度以上で トリア、チタニアから選ばれる少なくとも1種以上がよ「50」あればよいが、窒化物セラミックまたは炭化物セラミッ

5

クでは、1000~2500℃である。

【0025】(2) ①のセラミック製の板状体(ヒーター板)に金属粒子からなる導電ペーストを印刷する工程。導電ペーストは、一般に、金属粒子、樹脂、溶剤からなる粘度の高い流動物である。この導電ペーストをスクリーン印刷などで発熱体を設けようとする部分に印刷する。発熱体は、ヒーター板全体を均一な温度にする必要があることから、図1に示すような同心円からなるパターンに印刷することが望ましい。

【0026】(3) 加熱して導電ペーストを焼結させて、セラミック製の板状体(ヒーター板)の表面に発熱体を設ける工程。導電ペーストを加熱焼成して、樹脂、溶剤を除去するとともに、金属粒子を焼結させる。加熱焼成温度は、500~1000℃である導電ペースト中に金属酸化物を添加しておくと、金属粒子、セラミック製の板状体および金属酸化物が焼結して一体化するため、発熱体とセラミック製の板状体との密着性が向上する。

【0027】(4) さらに発熱体表面に金属層を被覆することが望ましい。被覆は、電解めっき、無電解めっき、スパッタリングにより行うことができるが、量産性を考慮すると無電解めっきが最適である。

(5)発熱体のパターンの端部に電源との接続のための端子を半田にて取りつける。

【0028】取りつけ部位に半田ペーストを印刷した後、端子を乗せて、加熱してリフローする。加熱温度は、200~500℃が好適である。さらに、必要に応じて熱電対を埋め込むことができる。以下、実施例に沿って説明する。

[0029]

【実施例】

(実施例1) 窒化アルミニウムセラミック板

(1) 窒化アルミニウム粉末 (平均粒径 $1.1\mu m$) $100重量部、イットリア (酸化イットリウムのこと 平均粒径 <math>0.4\mu m$) 4重量部、アクリルバイダー <math>12重量部 量部 およびアルコールからなる組成物を、スプレードライヤー法にて顆粒状にした。

【0030】(2) 顆粒状粉末を金型に入れて、平板状に成形して生成形体を得た。生成形体にドリル加工して、半導体ウエハー支持ピンを挿入する孔8、図示しな 40いが、熱電対を埋め込むための凹部を設けた。

(3) 生成形体を1800℃、圧力230kg/cm²でホットプレスし、厚さ3mmの窒化アルミニウム板状体を得た。これを直径230mmの円状に切り出してセラミック製の板状体(ヒーター板)1とした。

【0031】(4)(3)で得たヒーター板1に、スクリーン印刷にて導電ペーストを印刷した。印刷パターンは、図1に示すような同心円のパターンとした。導電ペーストは、徳力化学研究所製のソルベストPS603を使用した。との導電ペーストは、銀/鉛ペーストであ

り、金属酸化物を含むものである。

(5) 導電ベーストを印刷したヒーター板を 780° でで加熱焼成して、導電ベースト中の銀、鉛を焼結させるとともにヒーター板1に焼き付けた。銀ー鉛の焼結体4によるパターンは、厚さが $5~\mu$ m、幅2.~4~mmであった。

【0032】(6)硫酸ニッケル80g/1、次亜リン酸ナトリウム24g/1、酢酸ナトリウム12g/1、ほう酸8g/1、塩化アンモニウム6g/1の濃度の水10 溶液からなる無電解ニッケルめっき浴に(5)のヒーター板を浸漬して、銀ー鉛の焼結体4の表面に厚さ1μmのニッケル層5を析出させて発熱体2とした。

【0033】(7)電源との接続を確保するための端子を取りつける部分に、スクリーン印刷1より、銀ー鉛半田ペーストを印刷して半田層(田中貴金属製)6を形成した。ついで、半田層6の上にコバール製の端子ピン3を載置して、420℃で加熱リフローし、端子ピン3を発熱体2の表面に取りつけた。

(8) 温度制御のための熱電対 (図示しない) を埋め込 20 み、ヒーター100を得た。

【0034】(実施例2) 炭化ケイ素セラミック板 実施例1と基本的に同様であるが、平均粒径1.0μm の炭化ケイ素粉末を使用し、焼結温度を1900℃とした。

【0035】実施例1、2のヒーターについて、電圧、電流量の変化に対する温度の追従性、発熱体のブル強度について測定した。ヒーターに電圧を印加したところ、実施例1のヒーターは0.5秒で温度変化が見られ、また、実施例2のヒーターは2秒で温度変化が観察され

30 た。発熱体2のブル強度については、実施例1のヒーターは、3.1kg/mm³、実施例2のヒーターは、3kg/mm³であった。

【0036】(比較例) アルミニウム板 発熱体としてシリコンゴムで挟持したニクロム線を用い、厚さ15mmのアルミニウム板とあて板を発熱体を挟み、ボルトで固定してヒーターとした。比較例のヒーターに電圧を印加したところ、温度変化が見られるまで 24秒を要した。

[0037]

【発明の効果】以上説明のように、本願発明のヒーターは、薄く、軽くすることができ、実用的である。また、板状体として窒化物セラミックまたは炭化物セラミックを使用し、かつ薄くしているため、電圧、電流量の変化に対する温度追従性に優れており、温度制御しやすい。【図面の簡単な説明】

【図1】本願発明のヒーターの模式図

【図2】本願発明のヒーターの使用状態を表す断面図 【符号の説明】

1 セラミック製の板状体(ヒーター板)

50 2 発熱体

- 金属(銀一鉛)粒子焼結体
- 5 金属(ニッケル)被覆層
- 6 半田層

【図1】

*7 半導体ウエハー支持ピン

8 貫通孔

9 半導体製品

100 ヒーター

【図2】

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第7部門第1区分

【発行日】平成13年3月23日(2001.3.23)

【公開番号】特開平11-40330

【公開日】平成11年2月12日(1999.2.12)

【年通号数】公開特許公報11-404

【出願番号】特願平9-210014

【国際特許分類第7版】

H05B 3/20

393

3/12

[FI]

H05B 3/20 393

3/12 A

【手続補正書】

【提出日】平成12年1月5日(2000.1.5)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0022

【補正方法】変更

【補正内容】

【0022】また、図2に示すように<u></u>ヒーター板に貫

通孔8を複数設けてその孔8に支持ピン7を挿入し、そ のピン7を介して発熱体2が設けられている側とは反対 側に半導体ウエハー9を載置することができる。また、 支持ピン7を上下させて半導体ウェハー9を図示しない 搬送機に渡したり、搬送機から半導体ウエハー9を受け 取ったりすることができる。

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第1区分

【発行日】平成13年7月6日(2001.7.6)

【公開番号】特開平11-40330

【公開日】平成11年2月12日(1999.2.12)

【年通号数】公開特許公報11-404

【出願番号】特願平9-210014

【国際特許分類第7版】

HO5B 3/20 393

3/12

- - 1

[FI]

H058 3/20 393

3/12 A

【手続補正書】

【提出日】平成12年6月26日(2000.6.26)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 窒化物セラミックまたは炭化物セラミックからなる円状の板状体の表面に、金属粒子を焼結して形成した発熱体を設けてなることを特徴とするヒーター

【請求項2】 前記発熱体は、金属粒子および金属酸化物を焼結して形成したものである請求項1に記載のヒーター

【請求項3】 前記金属酸化物は、酸化鉛、酸化亜鉛、シリカ、酸化ホウ素、アルミナ、イットリア、チタニアから選ばれるいずれか1種以上であることを特徴とする請求項2に記載のヒーター。

【請求項4】 <u>前記板状体には貫通孔が設けられている</u> ととを特徴とする請求項1~3のいずれか1に記載のヒ ーター。

【請求項5】 前記貫通孔は複数個設けられることを特徴とする請求項4に記載のヒーター。

【請求項6】 前記貫通孔には、支持ピンが挿入される ととを特徴とする請求項4または5に記載のヒーター。 【請求項7】 前記発熱体のバターンが同心円状である ことを特徴とする請求項1~6のいずれか1に記載のヒーター。

【請求項8】 とのヒーターが、半導体ウエハ用ヒータ

<u>ーとして用いられることを特徴とする請求項1~7のいずれか1に記載のヒーター。</u>

【請求項9】 半導体ウェハーの位置を、前記板状体の 発熱体形成面とは反対側の面とすることを特徴とする請 求項1~7のいずれか1に記載のヒーター。

【請求項10】 少なくとも以下のΦ~③の工程を含む ことを特徴とするヒーターの製造方法。

①窒化物セラミックまたは炭化物セラミックの粉体を焼結して窒化物セラミックまたは炭化物セラミックからなる円状の板状体を形成する工程。

②工程①の円状板状体上に、金属粒子からなる導電ペーストを印刷する工程。

⑤加熱して前記導電ペーストを焼結して、セラミック板 状体の表面に発熱体を形成する工程。

【請求項11】 前記工程のには、板状体に貫通孔を設ける工程を含むことを特徴とする請求項10に記載のヒーターの製造方法。

【請求項12】 前記工程のには、板状体に複数の貫通 孔を設ける工程を含むことを特徴とする請求項10に記 載のヒーターの製造方法。

【請求項13】 前記貫通孔に、支持ピンを取付けると とを特徴とする請求項10~12のいずれか1に記載の ヒーターの製造方法。

【請求項14】 前記工程**②**における導電ペーストが、 金属粒子および金属酸化物からなる<u>ものを用いる</u>ことを 特徴とする請求項10に記載のヒーターの製造方法。

【請求項15】 前記工程のにおける発熱体の印刷パターンが同心円状であることを特徴とする請求項11~1 4のいずれか1に記載のヒーターの製造方法。