

PULSED NUCLEAR MAGNETIC RESONANCE: SPIN ECHOES

Laboratory Report

May 16 2025

Introduction to Quantum Hardware

Prof. Caterina Braggio Prof. Carmelo Mordini

ALESSANDRO MIOTTO

Experimental parameters

Sample: glicerine C₃H₈O₃

molar mass: 92.09382 g/mol

density: 1. **26** g/cm³

cylindrical container:

height: 19 mm

radius: 4.5 mm

Electromagnet: BE 15

current: I = 8.129 A

magnetic field: $B_0 = 0.526 \text{ T}$

Larmor frequency:

 $\omega_L = \gamma B_0 = 22.39 \text{ MHz}$

 $\gamma = 42.58 \,\mathrm{MHz/T}$

Theorethical background

Spin-lattice relaxation T_1

The longitudinal nuclear magnetic moment returns to thermodynamic equilibrium through a relaxation process. In fluids, $T_1 \simeq \mathcal{O}(1~\mathrm{s})$

$$M_z(t) = M_0(1 - e^{-t/T_1})$$

Spin-spin relaxation T_2

The transverse component of the nuclear magnetic moment relaxes due to dipole-dipole interaction with neighboring spins. In fluids, $T_2 \simeq \mathcal{O}(10~\mathrm{ms})$

$$M_{xy}(t) = M_0 e^{-t/T_2}$$
 FREE INDUCTION DECAY

Inhomogeneties in the external magnetic field ΔB_0 can increase the relaxation time T_2 :

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{1}{T_1} + \gamma \Delta B_0 \approx \frac{1}{T_2} + \gamma \Delta B_0$$

A spin echo (also known as a Hahn echo) is a sequence of pulses that can reverse the effects of magnetic field inhomogeneities

Experimental results: free induction decay

t (μs)	V (V)
158.0	36.10
195.6	23.75
232.0	12.30
266.4	6.15
322.4	1.80

$$V(t) = V_0 e^{-t/T_2^*}$$
$$\log V(t) = \frac{1}{T_2^*} t + \log V_0$$

$$T_2^* = 54.0 \pm 3.6 \,\mu\text{s}$$

Experimental results: echo

τ (ms)	$V_{\rm echo}$ (V)	
1.0	36.00	
2.0	37.10	
3.0	37.90	
4.0	38.20	
5.0	38.95	
6.0	34.25	
7.0	34.20	
10.0	30.42	
15.0	28.08	
25.0	21.90	
35.0	14.80	
50.0	8.44	
55.0	7.20	
64.0	5.92	

$$T_2^* = 32.3 \pm 0.7 \text{ ms}$$

Experimental results

$$\frac{1}{T_2^*} \approx \frac{1}{T_2} + \gamma \Delta B_0$$

$$\Delta B_0 = 4.34 \pm 0.15 \,\mathrm{G}$$

$$B_0 = 0.526 \text{ T}$$

 $\Delta B_0 / B_0 = 8.2 \times 10^{-4}$

$\mathbf{B_0}\left(\mathbf{T}\right)$	$\Delta B_0/B_0$	Gap (mm)
0.1	1×10^{-4}	30
0.5	1×10^{-4}	50
0.5	5×10^{-4}	80
1.0	1×10^{-4}	30

BE 15 electromagnet datasheet