System Identification in the frequency domain

Peter de Lange

UC DAVIS

April 14, 2011

System Identification

- System Identification involves the estimation of relationships between signals.
- Noise is the common enemy: Introduces uncertainty in terms of variance (random errors).
- Learning goals;
 - How to estimate relationships
 - How to minimize uncertainty

Systems and Models

A system N transforms input $\mathbf{u}(t)$ into output $\mathbf{y}(t)$:

$$\mathbf{y}(t) = N(\mathbf{u}(t)) \tag{1}$$

A model M estimates output $\hat{\mathbf{y}}(t)$ from input $\mathbf{u}(t)$ based on its model parameters $\boldsymbol{\theta}$:

$$\hat{\mathbf{y}}(t) = M(\boldsymbol{\theta}, \mathbf{u}(t)) \tag{2}$$

- Parametricmodels: few parameters, in many cases with a physical meaning.
- Nonparametric models: many parameters with no physical meaning.

Assumptions

The following assumptions are made for the rest of the analysis.

System is time invariant:

$$\mathbf{y}(t) = N(\mathbf{u}(t)) \rightarrow \mathbf{y}(t-\tau) = N(\mathbf{u}(t-\tau)) , \forall \tau \in R$$
 (3)

- No process noise $\mathbf{w}(t)$, e.i. the system is deterministic.
- Observer noise $\mathbf{n}(t)$ is assumed to be Gaussian white noise.

Correlation functions

Correlation functions reveal structures of signals that are not apparently detectable in the time series.

Correlation function:

$$\Phi_{uy}(\tau) = E\left[u(t-\tau)y(t)\right] \tag{4}$$

Covariance function:

$$C_{uy}(\tau) = E[(u(t-\tau) - \mu_u)(y(t) - \mu_y)] = \Phi_{uy}(\tau) - \mu_y \mu_y$$
 (5)

Correlation coefficient:

$$r_{uy}(\tau) = E\left[\left(\frac{u(t-\tau) - \mu_u}{\sigma_u}\right)\left(\frac{y(t) - \mu_y}{\sigma_y}\right)\right] = \frac{C_{uy}(\tau)}{\sqrt{C_{uu}(0)C_{yy}(0)}}$$
(6)

Fourier transformation

Maps time domain signals into the frequency domain.

Discrete Fourier transform:

$$\mathbf{u}(\omega) = \mathfrak{F}(\mathbf{u}(t)) = 2\pi \sum_{t=1}^{N} \mathbf{u}(t) e^{-j\omega\pi \frac{t}{N}}$$
 (7)

Inverse discrete Fourier transform

$$\mathbf{u}(t) = \mathfrak{F}^{-1}(\mathbf{u}(\omega)) = \frac{1}{2\pi N} \sum_{f=1}^{N} \mathbf{u}(\omega) e^{j\omega \pi \frac{t}{N}}$$
(8)

Spectral functions

Next we take the Fourier transformation of the correlation functions. By doing so we obtain:

• Spectral density:

$$\hat{S}_{uy}(\omega) = \mathfrak{F}\{\Phi_{uy}\} = \frac{1}{N}u^*(\omega)y(\omega) \tag{9}$$

Coherence:

$$\hat{\gamma}_{uy}^{2}(\omega) = \frac{\left|\hat{S}_{uy}(\omega)\right|^{2}}{\hat{S}_{uu}(\omega)\hat{S}_{yy}(\omega)}$$
(10)

Overview signal functions

The following table gives an overview of the correlatation and spectral functions and how they can be obtained:

Time domain		FT	Free	Frequency domain		
Input, output	u(t), y(t)	\rightarrow	$u(\omega), y(\omega)$	Input, output		
Cross-correlation	$\mathop{\Phi_{\mathit{uy}}}^{\downarrow}(\tau)$	\leftrightarrow	$S_{uy}(\omega)$	Cross-spectral density		
Cross-covariance	$\stackrel{\downarrow}{C_{\mathit{uy}}(au)}$		+			
Correlation coefficient	$\stackrel{\downarrow}{r_{uy}(au)}$		$\gamma_{uy}(\omega)$	Coherency		

Experiment considerations

• Measurement time T: Determines frequency resolution:

$$\Delta f = \frac{1}{T} \tag{11}$$

• Sampling frequency f_s : Determines frequency bandwidth:

$$f_n = \frac{f_s}{2} \tag{12}$$

• Input signal u(t)

Input signal design

Commonly used input signals for frequency domain estimation:

	White noise	Swept sine	Multisine	Crested
Mean (μ_u) :	0	0	0	0
Correlation (R_{uu}) :	1	1	1	1
Spectral density (S_{uu}) :	1.0145	2.4912	2.5000	2.5000
Crest factor (C) :	3.6129	1.4026	3.2857	2.3943
Predictable:	no	yes	no	no

Input signal design

Frequency averaging

Welch method

- Divide data in multiple segments
- Calculate spectral density for each segment
- Average over the segments
- D-time segments
- Drawback: reduced spectral resolution with factor D:

$$\hat{S}_{uy}(\omega) = \frac{1}{D} \sum_{d=1}^{D} S_{uy}(\omega)$$
 (13)

Frequency averaging

- Calculate the raw spectral density
- Average over adjacent frequencies over bandwidth D

$$\hat{S}_{uy}(\omega_c) = \frac{1}{D} \sum_{d=1}^{D} \hat{S}_{uy}(\omega_d)$$
 (14)

• Drawback: Introduces bias at sharp transitions in FRF.

Open loop SISO Identification

Considering the following SISO system $H(\omega)$ with white observation noise n:

Solving the block diagram for the unknown system $H(\omega)$ gives:

$$Hu = y - n \tag{15}$$

Unfortunately we cant solve for H, since the noise term is unknown. However, assuming the noise n is uncorrelated with u we can estimate the system:

$$u^{*}Hu = u^{*}(y - n)$$

$$H = \frac{u^{*}(y - n)}{u^{*}u} = \frac{\hat{S}_{uy} - \hat{S}_{un}}{\hat{S}_{uu}}$$

$$\hat{H} = \frac{\hat{S}_{uy}}{\hat{S}_{uu}} , \text{ if } \hat{S}_{un} \approx 0$$
(16)

SISO example

Open loop MIMO Identification

Similar to the SISO case, we can use the same strategy to solve for the MIMO case:

$$HU = Y - N$$

$$U^*H^* = Y^* - N^*$$

$$UU^*H^* = U(Y^* - N^*)$$

$$H^* = (UU^*)^{-1}U(Y^* - N^*)$$

$$H = (Y - N)U^*(UU^*)^{-1}$$
(17)

Next we define the estimated transferfunction $\hat{\mathbf{H}}$ to be the transferfunction that linearly correlates the input/output data, assuming that the input is uncorrelated with the noise.

$$\hat{\mathbf{H}} = \mathbf{Y}\mathbf{U}^* \left(\mathbf{U}\mathbf{U}^*\right)^{-1} = \hat{\mathbf{S}}_{yu}\hat{\mathbf{S}}_{uu}^{-1} \tag{18}$$

MIMO example

Close loop identification

Suppose we have a closed loop system shown in the block diagram below:

Than the open loop estimator $\hat{H} = S_{uy}/S_{uu}$ no longer holds, because the noise is correlated with the input signal through the feedback loop:

$$\hat{H} \neq \frac{S_{uy}}{S_{uu}} \tag{19}$$

Not discussed

- Windowing techniques: prevents or reduces spectral leaking.
- MIMO coherence: seperating coherent inputs/outputs.
- Closed loop system estimation
- Parameter Estimation in the frequency domain

Conclusions

- Frequency domain estimation techniques are well suited for linear dynamic deterministic systems.
- Proper input signal design can boost the signal to noise ratio.
- Frequency averaging should be applied to average out the noise.
- Don't use openloop SISO estimator when feedback is present in the system!

Further information

Some references about system identification and parameter estimation.

- System Identification: A frequency domain approach Pintelon and Schoukens
- Filtering and Identification Verhaegen and Verdult