Lecture 4: Option Markets

Modeling and Marketing Making in Foreign Exchange

- Consider what happens to implied volatility as time crosses an event
- Event: Friday morning at 8:30am, Non-Farm Payrolls announcement
 - Assume that counts as 0.5 days worth of variance
- Pricing options for Monday 10am exercise
 - 10am is the "New York cut" the standard expiration time for most G7 options
 - We'll assume weekend days have zero variance for simplicity
- Implied volatility for Monday exercise is quoted at 10% on Friday at 8:29:59am: what should it be at 8:30:01am?

- What is the trading time?
 - We'll choose to count hours here, but units aren't that important because we go back and forth
 - 25.5 normal "trading hours" from Fri 8:30am to Mon 10:00am
 - We're counting weekend hours as worth zero, and weekend goes from Fri 5pm->Sun 5pm
 - Plus 12 extra trading hours from the NFP event
 - Totals 37.5 trading hours
- What is the calendar time?
 - Actual days/365 = 3/365

- Get the total variance from implied vol^2 * calendar time
 - 0.1² * 3/365 = 8.219x10⁻⁵ (unitless)
- Convert that into a trading time vol using trading time vol^2 * trading time = total variance
 - TT vol = $sqrt(8.219x10^{-5}/37.5) = 0.001480$
 - Units are per sqrt(hours), so it doesn't look like a marketconvention volatility – but that's fine

- Now we roll time ahead across the event
 - Zero move in calendar time since that's still just days/365
 - Trading time drops by the event weight to 25.5 hours
- Use new trading time to get new total variance
 - Variance = (TT vol)² * (trading time in hours)
 - Keep the same TT vol as before we assume this is smooth in calendar time
 - Variance = 0.001480² * 25.5 = 5.589x10⁻⁵
- Convert total variance to market-convention implied vol
 - Implied vol = sqrt(total variance/calendar time)
 - Results in a vol of 8.25%, so crossing the event made vol drop

Source of RR and BF

- All stochastic volatility models have a qualitatively similar behavior in driving risk reversal and butterfly
 - Spot/vol correlation drives RR
 - Volatility of volatility drives BF
- Specific models give different quantitative impacts, but one can develop useful intuition about stochastic volatility models without getting to that level of detail
- We'll think about RR and BF value from the perspective of how traders really work
 - Won't talk about skewness and kurtosis of spot distribution

Source of BF

- Start with the butterfly (smile)
- The butterfly comes from "vega gamma", the derivative of vega with respect to volatility
 - Convexity of option price with respect to volatility ("vomma")

Vega Gamma vs Strike for Vanilla Options

Source of BF

- Buy an option with strike such that vega gamma is large
 - Now long vega (long an option) and long vega gamma
- Vega hedge with an appropriate amount of ATM option
 - ATM option has zero vega gamma, so still long vega gamma
- Now whichever way vol moves you make money!
 - Happy to buy high strike or low strike options at the flat-vol price
 - Bids them up and raises their prices, and therefore their implied volatilities: that's a smile because the effective is the same for high and low strike options
- More volatility of volatility, bigger the smile

Source of BF

PNL of Option Portfolio vs Volatility When Long Vega Gamma

 The convexity that drives risk reversal (skew) value is vega dspot: d(vega)/d(spot), or the cross gamma between spot and volatility ("vanna")

Vega DSpot vs Strike for Vanilla Options

- Buy a high strike option
 - Positive vega dspot, positive vega
- Sell enough ATM to vega hedge
 - ATM option has zero vega dspot, still long vega dspot
- Assume positive spot/vol correlation
 - Spot moves up, vol moves up, vega turns positive
 - Make money!
 - Spot moves down, vol moves down, vega turns negative
 - Make money!

- Reverse is true if you buy a low strike option and hedge its vega with an ATM option
 - Negative vega dspot
- Assume positive spot/vol correlation
 - Spot moves up, vol moves up, vega turns negative
 - Lose money.
 - Spot moves down, vol moves down, vega turns positive
 - Lose money.
- With positive spot/vol correlation, traders bid up high strike options and offer on low strike options
 - Drives the skew

- Positive spot/vol correlation leads to positive skew
 - Magnitude of the skew is proportional to spot/vol correlation and volatility of volatility
- Negative spot/vol correlation leads to negative skew
 - All the signs of PNLs in previous examples flip

Source of RR and BF

- This analysis holds for any stochastic volatility model
 - Including local volatility models
 - And just qualitatively details depend on specific model
- Butterfly comes from volatility of volatility
 - Via symmetric vega gamma profile of vanilla options
- Risk reversal comes from spot/vol correlation
 - Via asymmetric vega dspot profile of vanilla options
 - Also proportional to volatility of volatility

Delta

- What does delta mean?
- Market convention for quoting options/volatility
 - Keeps vol-by-strike fixed
- However, implied volatility as a function of strike does not stay fixed as spot moves
- Need some "market model" that defines how implied volatility moves when spot moves

Some example volatility market models

- "Sticky delta": vol-by-delta stays fixed as spot moves
 - Most common in FX markets since vol-by-delta is quoting convention
- "Sticky strike": vol-by-strike stays fixed as spot moves
 - Rare in FX markets, as market doesn't move that way
 - Common in equity markets as vol quoted by strike
- Models
 - eg local volatility or Heston model predict how vol moves
- Ad hoc
 - eg incorporate historical covariance btw vols and spot

 For a vanilla option: the delta differs from BS delta by a correction based on vega

$$\frac{dV}{dS} = \frac{\partial V_{BS}}{\partial S} + \frac{\partial V_{BS}}{\partial \sigma} \frac{d\sigma}{dS}$$

- v is the price of an option; v_{BS} is the Black-Scholes price of the option using the implied volatility for the strike σ
- First term is the Black-Scholes delta, assuming strike vol is unchanged
- Second term is Black-Scholes vega * derivative of strike vol with respect to spot (which comes from market model)

- What does the slope of strike vol vs spot look like?
 - Sticky delta: a function of the slope of implied vol vs strike

Implied Volatility vs Strike Under a Sticky Delta Model (Spot up 5%)

- What is the right market model to use?
- Most desks use sticky delta
 - Mostly because they mark vol by delta and want to think about PNL that way
- Not the most efficient way to delta hedge!
 - There really is some correlation between moves in spot and moves in volatility
- If volatility (as an asset) is relatively liquid then it doesn't matter much

- The delta adjustment we saw before works for portfolios of options in addition to regular options
- If a portfolio's vega is small, the vega correction to delta is small, and the choice of market model doesn't impact delta
- In general: if an option market is liquid, people don't spend a lot of time thinking about how to hedge vol moves most efficiently with spot
 - True in G7 FX markets
 - Less true in some EM FX markets, or in other markets like interest rates

Volatility Market Models

- What is the best market model to use to have the most effective delta?
 - One that includes spot/vol correlation and that includes spot/RR correlation
 - We already saw that spot/RR correlation is significant (the risk reversal beta)
- Spot/vol correlation is not that stable
 - But the risk reversal is proportional to spot/vol correlation, as we saw earlier
 - Can use that in a regression

Volatility Market Models

Sensible way to regression vol move against spot return:

$$\Delta \sigma(T) = A RR(T) \Delta \ln(S)$$

- σ(T) is implied volatility for tenor T
- RR(T) is 25-delta risk reversal for tenor T
- S is the underlying spot
- A is the regression slope (to be determined)
- Get decent R² with this regression
 - Significantly better than if you leave out the RR(T) factor if RR moves a lot

Volatility Market Models

Regression Slope for ATM Change vs Spot Return*RR

Vega

- Vega is risk to moves in implied volatility
- More specifically in FX it means risk to moves in ATM implied volatility
 - Separate risks to moves in RR and moves in BF
 - In vega calculation, keep RR and BF fixed
 - Does not result move vol-by-strike in parallel; instead vol-by-delta moves in parallel
 - Risk orthogonalized along the ATM/RR/BF axes because that's how options are quoted in the inter-dealer market
- Separate vegas for each benchmark tenor
 - Dimensionality reduction is key here to get manageable risks

RR/BF Risk

- Vega is risk to ATM vol moves; RR risk is risk to RR moves; BF risk is risk to BF moves
- RR risk: 25-delta or 10-delta?
 - In general consider risks to both, separately
 - In practice, look at risks to 25d RR assuming that the 10d:25d RR ratio stays fixed
- BF risk: same thing
- Separate RR and BF risks for each benchmark tenor

Correlation Risk

- How is vega defined for a cross pair?
- For liquid pairs, just look at vega to implied volatilities
 - They trade in the market so are valid hedge instruments
- Less liquid pairs, however, have less liquid option markets
 - Maybe try to hedge with USD pairs?

Correlation Risk

 Consider a Black-Scholes world where there are two USD pairs, and a cross pair defined as the ratio of the two USD pair spots

$$dS_{1} = \sigma_{1}S_{1}dz_{1}$$

$$dS_{2} = \sigma_{2}S_{2}dz_{2}$$

$$E[dz_{1}dz_{2}] = \rho dt$$

$$dS_{x} = d\left(\frac{S_{1}}{S_{2}}\right) = (\sigma_{1}dz_{1} - \sigma_{2}dz_{2}) S_{x} = \sigma_{x}S_{s}dz_{x}$$

 $\sigma_x = \sqrt{\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2}$ • So the cross volatility σ_x can be expressed in terms of the two USD-pair volatilities plus a correlation

Correlation Risk

- Can think of cross-pair vega then as vega to the two USD-pair volatilities plus risk to a correlation
- That correlation is observable in the market (via the cross-pair options market implied volatilities)
- If it is sufficiently stable, hedging cross-pair options with USDpair options can be efficient
 - No need to do this if the cross-pair options market is liquid
 - But hedging costs this way can be lower if the cross-pair market is illiquid

- Options risk management is complex and has a lot of moving parts
- That complexity also leads to opportunities for market inefficiencies
 - Usually small, but if you are efficient about picking up nickels and dimes every day you can make a nice profit over the long run
- In fact it's hard to make money market-making if you do not look for relative value opportunities
 - Bid/ask spreads too tight currently to make much money with naïve market-making
 - Increasingly this is what quants spend time doing on the sell side

- One relative value signal: ATM curve relative value
- If one point on the ATM volatility curve seems out of whack with the rest, buy/sell that point and sell/buy the rest
 - In practice you do not run a separate strategy for this and pay spreads on all the legs
 - Instead you use relative value to decide which is the best hedge to do
 - eg imagine long 6m vega
 - Could hedge by selling 6m vega: low residual risk
 - Or could hedge by selling 3m vega if 3m vol is too high relative to 6m
 - Higher residual risk but perhaps good return

- Need to start with a model to help define relative value
- Consider a Black-Scholes model with time-dependent but deterministic "mean reverting" volatility
 - Like Heston but with zero vol of vol

$$dM(t) = \beta(\nabla - V(t)) dt$$

$$V(0) = V_0$$

- v(t) is instantaneous volatility^2 of spot= $\sigma^2(t)$
- Three parameters: initial v, mean v, and mean reversion speed

- Best-fit those three parameters to ATM vols at benchmark tenors
 - Really should fit against trading time vols, especially if you include short-dated tenors

$$\sigma_{I}(T) = \sqrt{\nabla + \frac{(V_0 - \nabla)}{\beta T}} (1 - e^{-\beta T})$$

- $\sigma_{l}(T)$ is the implied volatility for expiration time T in this simple model
 - Function of the three parameters

- Define a trading signal:
 - Do a best fit of that form against benchmark ATM vols from 1w to
 1y tenor
 - If any residual is above a given threshold (in absolute value), signal to do a trade
 - Trading signal is buy(/sell) ATM option at the tenor with the residual, sell(/buy) ATM options at spanning tenors
 - Notional of hedge options set to hedge triangle shocks
 - Delta hedge package
 - Hold for one day then take off and record PNL
 - All trades done at mid, trade 1 unit of vega of the target option
 - Then average PNL represents average vol spread capture
 - Can have more than one trade/day if multiple residuals appear, and may have days with no trades at all

Vol Relative Value Strategy Cumulative PNL

