模式分解是否为无损连接的判断方法

方法一: 无损连接定理

关系模式R(U, F)的一个分解, $\rho = \{R_1 < U_1, F_1 > , R_2 < U_2, F_2 > \}$ 具有无损连接的充分必要条件是:

方法二: 算法

 ρ ={R₁<U₁,F₁>,R₂<U₂,F₂>,...,R_k<U_k,F_k>}是关系模式R<U,F>的一个分解,U={A₁,A₂,...,A_n},F={FD₁,FD₂,...,FD_p},并设F是一个最小依赖集,记FD_i为X_i→A_{li},其步骤如下:

- ① 建立一张n列k行的表,每一列对应一个属性,每一行对应分解中的一个关系模式。若属性 A_j U_i ,则在j列i行上真上 a_j ,否则填上 b_{ij}
- ② 对于每一个FDi做如下操作:找到Xi所对应的列中具有相同符号的那些行。考察这些行中li列的元素,若其中有ai,则全部改为ai,否则全部改为bmli,m是这些行的行号最小值。

如果在某次更改后,有一行成为: $a_1,a_2,...,a_n$,则算法终止。且分解ρ具有无损连接性,否则不具有无损连接性。

对F中p个FD逐一进行一次这样的处理,称为对F的一次扫描。

(3)

比较扫描前后,表有无变化,如有变化,则返回第② 步,否则算法终止。如果发生循环,那么前次 扫描至少应使该表减少一个符号,表中符号有限,因此,循环必然终止。

举例1:已知R<U,F>, U={A,B,C}, F={A→B}, 如下的两个分解:

- (1) $\rho 1 = \{AB, BC\}$
- ② $\rho 2=\{AB,AC\}$

判断这两个分解是否具有无损连接性。

①因为ABNBC=B, AB-BC=A, BC-AB=C

所以B→A ¢F+, B→C ¢ F+

故ρ1是有损连接。

② 因为AB∩AC=A, AB-AC=B, AC-AB=C

所以A→B €F+, A→C ¢F+

故p2是无损连接。

举例2: 已知R<U,F>, U={A,B,C,D,E}, F={A \rightarrow C,B \rightarrow C,C \rightarrow D,DE \rightarrow C,CE \rightarrow A}, R的一个分解为 R₁(AD), R₂(AB), R₃(BE), R₄(CDE), R₅(AE), 判断这个分解是否具有无损连接性。

① 构造一个初始的二维表, 若"属性"属于"模式"中的属性, 则填ai, 否则填bii

模式属性	А	В	С	D	Е
R ₁ (AD)	a ₁	b ₁₂	b ₁₃	a ₄	b ₁₅
R ₂ (AB)	a ₁	a ₂	b ₂₃	b ₂₄	b ₂₅
R ₃ (BE)	b ₃₁	a ₂	b ₃₃	b ₃₄	a ₅
R ₄ (CDE)	b ₄₁	b ₄₂	a ₃	a ₄	a ₅
R ₅ (AE)	a ₁	b ₅₂	b ₅₃	b ₅₄	a ₅

② 根据A \rightarrow C,对上表进行处理,由于属性列A上第1、2、5行相同均为 a_1 ,所以将属性列C上的 b_{13} 、 b_{23} 、 b_{53} 改为同一个符号 b_{13} (取行号最小值)。

模式属性	Α	В	O	О	Е
R ₁ (AD)	a ₁	b ₁₂	b ₁₃	a ₄	b ₁₅
R ₂ (AB)	a ₁	a ₂	b ₁₃	b ₂₄	b ₂₅
R ₃ (BE)	b ₃₁	a ₂	b ₃₃	b ₃₄	a ₅
R ₄ (CDE)	b ₄₁	b ₄₂	a ₃	a ₄	a ₅
R ₅ (AE)	a ₁	b ₅₂	b ₁₃	b ₅₄	a ₅

③ 根据 $B\to C$,对上表进行处理,由于属性列B上第2、3行相同均为 a_2 ,所以将属性列C上的 b_{13} 、 b_{33} 改为同一个符号 b_{13} (取行号最小值)。

模式属性	А	В	С	D	Е
R ₁ (AD)	a ₁	b ₁₂	b ₁₃	a ₄	b ₁₅
R ₂ (AB)	a ₁	a ₂	b ₁₃	b ₂₄	b ₂₅
R ₃ (BE)	b ₃₁	a ₂	b ₁₃	b ₃₄	a ₅
R ₄ (CDE)	b ₄₁	b ₄₂	a ₃	a ₄	a ₅
R ₅ (AE)	a ₁	b ₅₂	b ₁₃	b ₅₄	a ₅

④ 根据 $C \rightarrow D$,对上表进行处理,由于属性列C上第1、2、3、5行相同均为 b_{13} ,所以将属性列D上的值均改为同一个符号 a_4 。

模式属性	А	В	С	D	Е
R ₁ (AD)	a ₁	b ₁₂	b ₁₃	a ₄	b ₁₅
R ₂ (AB)	a ₁	a ₂	b ₁₃	a ₄	b ₂₅
R ₃ (BE)	b ₃₁	a ₂	b ₁₃	a ₄	a ₅
R ₄ (CDE)	b ₄₁	b ₄₂	a ₃	a ₄	a ₅
R ₅ (AE)	a ₁	b ₅₂	b ₁₃	a ₄	a ₅

- ⑤ 根据DE \rightarrow C,对上表进行处理,由于属性列DE上第3、4、5行相同均为 a_4a_5
- ,所以将属性列C上的值均改为同一个符号a₃。

模式属性	А	В	С	D	Е
R ₁ (AD)	a ₁	b ₁₂	b ₁₃	a ₄	b ₁₅
R ₂ (AB)	a ₁	a ₂	b ₁₃	a ₄	b ₂₅
R ₃ (BE)	b ₃₁	a ₂	a ₃	a ₄	a ₅
R ₄ (CDE)	b ₄₁	b ₄₂	a ₃	a ₄	a ₅
R ₅ (AE)	a ₁	b ₅₂	a ₃	a ₄	a ₅

⑥ 根据 $CE \rightarrow A$,对上表进行处理,由于属性列CE上第3、4、5行相同均为 a_3a_5 ,所以将属性列A上的值均改为同一个符号 a_1 。

模式属性	А	В	С	D	Е
R ₁ (AD)	a ₁	b ₁₂	b ₁₃	a ₄	b ₁₅
R ₂ (AB)	a ₁	a ₂	b ₁₃	a ₄	b ₂₅
R ₃ (BE)	a ₁	a ₂	a ₃	a ₄	a ₅
R ₄ (CDE)	a ₁	b ₄₂	a ₃	a ₄	a ₅
R ₅ (AE)	a ₁	b ₅₂	a ₃	a ₄	a ₅

⑦通过上述的修改,使第三行成为 $a_1a_2a_3a_4a_5$,则算法终止。且分解具有无损连接性。