Ecuaciones Diferenciales Parciales Lección 22

Dr. Pablo Alvarado Moya

CE3102 Análisis Numérico para Ingeniería Área de Ingeniería en Computadores Tecnológico de Costa Rica

II Semestre 2017

Contenido

- Introducción
 - Ecuaciones diferenciales parciales
 - EDP de segundo orden
- Diferencias finitas: ecuaciones elípticas
 - Ecuación de Laplace
 - Método de Liebmann
 - Variables secundarias
 - Condiciones en la frontera
- 3 Diferencias finitas: ecuaciones parabólicas
 - Método explícito
 - Método implícito
- 4 Elementos finitos

• Dada una función u(x, y), sus derivadas parciales son

$$\frac{\partial u}{\partial x} = \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x}$$
$$\frac{\partial u}{\partial y} = \lim_{\Delta y \to 0} \frac{u(x, y + \Delta y) - u(x, y)}{\Delta y}$$

 Una ecuación diferencial parcial (EDP) se plantea en términos de derivadas parciales de una función desconocida

$$\frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial y^2} + u = 1 \qquad \frac{\partial^3 u}{\partial x^2 \partial y} + x \frac{\partial^2 u}{\partial y^2} + 8u = 5y$$
$$\left(\frac{\partial^2 u}{\partial x^2}\right)^3 + 6\frac{\partial^3 u}{\partial x \partial y^2} = x \qquad \frac{\partial^2 u}{\partial x^2} + xu \frac{\partial u}{\partial y} = x$$

- El orden de una EDP es el de la derivada parcial de mayor orden en la ecuación.
- La EDP es lineal si los coeficientes de las derivadas solo dependen de las variables independientes.
- Aquí nos concentraremos en ecuaciones diferenciales lineales de segundo orden:

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D = 0$$

- A, B, C son funciones de x e y
- D es una función de x, y, u, $\partial u/\partial x$ y $\partial u/\partial y$

Categorías de EDP de segundo orden

 La ecuación anterior cae en una de tres categorías con técnicas de solución particulares, y cada una asociada a problemas de ingeniería particulares.

$B^2 - 4AC$	Categoría	Ejemplo
< 0	Elíptica	Ecuación de Laplace $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$
= 0	Parabólica	Ecuación de conducción de calor $\frac{\partial T}{\partial t} + k' \frac{\partial^2 T}{\partial x^2}$
> 0	Hiperbólica	Ecuación de onda $\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$

- En general, $B^2 4AC$ depende de x e $y \Rightarrow$ tipo de EDP cambia dependiendo de esos valores
- Aquí se revisarán EDP que pertenecen a una única categoría en todo el dominio de solución (x, y)

- Las ecuaciones elípticas se utilizan para caracterizar sistemas en estado estacionario (no hay derivadas respecto al tiempo).
- Las ecuaciones parabólicas determinan la variación temporal de una incógnita espacial, como por ejemplo en problemas de propagación.
- Las ecuaciones hiperbólicas se asocian a problemas de propagación, pero con una segunda derivada respecto al tiempo que implica oscilaciones.

Ecuación de Laplace Método de Liebmann Variables secundarias Condiciones en la frontera

Diferencias finitas: ecuaciones elípticas

- Las ecuaciones elípticas se usan para caracterizar problemas en estado estacionario con valores en la frontera.
- La ecuación de Laplace (caso particular de ec. elíptica)

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

modela problemas relacionados con el "potencial" de una variable desconocida.

 Ejemplo: cómo se distribuye la temperatura en una placa caliente que tiene bordes en contacto con condiciones térmicas dadas. • La figura muestra un elemento sobre la cara de una placa rectangular delgada de espesor Δz

- La placa está aislada excepto en sus extremos, donde la temperatura se ajusta a un nivel preestablecido.
- El aislamiento y espesor de la placa permiten que transferencia de calor se limite a las dimensiones x e y.
- En estado estacionario el flujo de calor hacia el elemento en una unidad de tiempo Δt debe ser igual al flujo de salida:

$$q(x)\Delta y\Delta z\Delta t + q(y)\Delta x\Delta z\Delta t = q(x+\Delta x)\Delta y\Delta z\Delta t + q(y+\Delta y)\Delta x\Delta z\Delta t$$

donde $q(x)$ y $q(y)$ son los flujos de calor en x e y

respectivamente [cal/cm²s]

• Dividiendo entre $\Delta z \Delta t$ y reagrupando se obtiene

$$[q(x) - q(x + \Delta x)]\Delta y + [q(y) - q(y + \Delta y)]\Delta x = 0$$

Multiplicando lo primero por $\Delta x/\Delta x$ y lo segundo por $\Delta y/\Delta y$

$$\frac{[q(x) - q(x + \Delta x)]}{\Delta x} \Delta x \Delta y + \frac{[q(y) - q(y + \Delta y)]}{\Delta y} \Delta y \Delta x = 0$$

Dividiendo por $\Delta x \Delta y$ y haciendo el límite

$$-\frac{\partial q}{\partial x} - \frac{\partial q}{\partial y} = 0$$

Esta EDP expresa la conservación de la energía.

Ecuación de Laplace

(5)

 Si las condiciones de frontera se dan con temperatura, debe reformularse la ecuación, usando la ley de Fourier de conducción de calor:

$$q_i = k\rho C \frac{\partial T}{\partial i} = k' \frac{\partial T}{\partial i}$$

con q_i el flujo de calor en la dirección de la dimensión i [cal/cm²s], k el coeficiente de difusividad térmica [cm²s], ρ la densidad del material [g/cm³], C la capacidad calorífica del material [cal/g°C] y T la temperatura [°C] definida como

$$T = \frac{H}{\rho CV}$$

donde H es calor [cal] y V volumen [cm 3].

- El término k' = kρC se denomina coeficiente de conductividad térmica [cal/s cm °C]
- La ecuación de Fourier especifica que el flujo de calor perpendicular al eje i es proporcional al gradiente de la temperatura en dirección i
- Sustituyendo esta ley de Fourier en la ecuación diferencia resulta en

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

que es la ecuación de Laplace

 Si hay pérdidas o fuentes de calor, la ecuación se replantea como

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = f(x, y)$$

y se denomina ecuación de Poisson

- Se procede en dirección contraria a la deducción de la Ecuación de Laplace
- La solución numérica trata la placa como una malla de puntos discretos.
- Las diferencias centrales basadas en la malla usan la aproximación

$$\begin{split} \frac{\partial^2 T}{\partial x^2} &\approx \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{\Delta x^2} \\ \frac{\partial^2 T}{\partial y^2} &\approx \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{\Delta y^2} \end{split}$$

que tienen errores en el orden $\mathcal{O}\left((\Delta x)^2\right)$ y $\mathcal{O}\left((\Delta y)^2\right)$

Sustituyendo en la ecuación de Laplace resulta en

$$\frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{\Delta x^2} + \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{\Delta y^2} = 0$$

• Si la malla es cuadrada entonces $\Delta x = \Delta y$ y la ecuación se convierte en

$$T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} - 4T_{i,j} = 0$$

conocida como Ecuación laplaciana en diferencias

 Utilizando todos los puntos en la malla bajo consideración de las condiciones iniciales se plantea un sistema de ecuaciones lineales simultáneas.

Ejemplo: Malla de 3×3

Plantee el sistema de ecuaciones lineales para una malla de 3×3 con condiciones iniciales constantes en cada borde (condición de frontera de Dirichlet)

Método de Liebmann

- El sistema de ecuaciones planteado es **disperso**, esto es, tiene gran cantidad de ceros que ocupan espacio de memoria.
- Por eso, se emplean métodos aproximados para obtener soluciones de EDP elípticas.
- El método comúnmente empleado es el de Gauss-Seidel, que aplicado a las EDP se denomina método de Liebmann.
- La ecuación laplaciana de diferencias se reexpresa como

$$T_{i,j} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1}}{4}$$

que se resuelve de modo iterativo para $j = 1 \dots n$ e $i = 1 \dots m$.

Método de Liebmann

- Puesto que las matrices obtenidas son diagonalmente dominantes, el procedimiento converge a una solución estable.
- Se puede emplear la sobrerelajación (luego de cada iteración) para acelerar la velocidad de convergencia:

$$T_{i,j}^{\mathsf{nuevo}} \leftarrow \lambda T_{i,j}^{\mathsf{nuevo}} + (1 - \lambda) T_{i,j}^{\mathsf{anterior}}$$

con λ entre 1 y 2

• Como método de Gauss-Seidel, se itera hasta que el cambio en cada nodo sea inferior a un umbral.

Variables secundarias

- Hay aplicaciones donde variables secundarias interesan
- Por ejemplo, en ejemplo de placa caliente de temperatura se obtiene el flujo de calor como campo vectorial:

$$q_x = -k' \frac{T_{i+1,j} - T_{i-1,j}}{2\Delta x}$$
 $q_y = -k' \frac{T_{i,j+1} - T_{i,j-1}}{2\Delta y}$

que se pueden expresar en magnitud y ángulo

$$q_n = \sqrt{q_{\scriptscriptstyle X}^2 + q_{\scriptscriptstyle y}^2} \qquad \qquad heta = \arctan\left(rac{q_{\scriptscriptstyle X}}{q_{\scriptscriptstyle y}}
ight)$$

- La condición de frontera de Dirichlet (fija) es un caso particular.
- Otra condición usual es la condición de frontera de Neumann, donde no se da el valor de la función, sino de la derivada en la frontera.
- En el problema de la placa, esto corresponde a especificar el flujo de calor y no la temperatura
- Ejemplo: si la placa está aislada, el flujo de calor (la derivada) es cero. A esto se le conoce como condición de frontera natural.
- Estas condiciones permiten además modelar pérdidas de calor en los bordes.

• La figura muestra un nodo frontera (0, j).

• Aplicando la ecuación laplaciana de diferencias en ese punto

$$T_{1,j} + T_{-1,j} + T_{0,j+1} + T_{0,j-1} - 4T_{0,j} = 0$$

que utiliza un punto imaginario (-1,j) fuera de la placa que permite incluir la derivada.

• Utilizando la primera derivada respecto a x en (0,j) en diferencias divididas finitas

$$\frac{\partial T}{\partial x} \approx \frac{T_{1,j} - T_{-1,j}}{2\Delta x}$$

se despeja

$$T_{-1,j} = T_{1,j} - 2\Delta x \frac{\partial T}{\partial x}$$

• Sustityendo en la ecuación laplaciana de (0,j)

$$2T_{1,j} - 2\Delta x \frac{\partial T}{\partial x} + T_{0,j+1} + T_{0,j-1} - 4T_{0,j} = 0$$

• El procedimiento se puede repetir para las otras condiciones frontera.

Diferencias finitas: ecuaciones parabólicas

Ecuaciones parabólicas

- Las ecuaciones elípticas permitieron modelar el estado estacionario
- Las ecuaciones parabólicas permiten caracterizar problemas que varían en el tiempo.

- Asúmase una barra larga, delgada y aislada, sujeta en sus extremos por un material frío y otro caliente.
- A diferencia del estado estacionario, se considera la cantidad de calor que se almacena en un elemento en un periodo Δt .
- El resultado sigue la forma entradas salidas = acumulación:

$$q(x)\Delta y\Delta z\Delta t - q(x+\Delta x)\Delta y\Delta z\Delta t = \Delta x\Delta y\Delta z\rho C\Delta T$$

• Dividiendo entre el volumen $\Delta x \Delta y \Delta z$ y entre Δt

$$\frac{q(x) - q(x + \Delta x)}{\Delta x} = \rho C \frac{\Delta T}{\Delta t}$$

• Tomando los límites $\Delta t \to 0$ y $\Delta x \to 0$

$$\frac{\partial q}{\partial x} = \rho C \frac{\partial T}{\partial t}$$

 Con la ley de Fourier para conducción de calor, sustituyendo se obtiene

$$k\frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$$

que es la ecuación de conducción del calor

 Esta también se resuelve sustituyendo las derivadas parciales por diferencias divididas finitas.

- La diferencia con las EDP elípticas es que aquellas están acotadas en todas las dimensiones, pero las EDP parabólicas están abiertas en el tiempo.
- Por la dependencia temporal las soluciones tienen problemas de estabilidad.
- Existen métodos explícitos e implícitos de solución

La ecuación de conducción del calor

$$k\frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$$

requiere aproximaciones de la segunda derivada en el espacio, y la primera derivada en el tiempo.

 La segunda derivada se aproxima con la diferencia dividida finita centrada

$$\frac{\partial^2 T}{\partial x^2} \approx \frac{T'_{i+1} - 2T'_i + T'_{i-1}}{\Delta x^2}$$

con error $\mathcal{O}\left(\Delta x^2\right)$.

• El superíndice / denota tiempo y los subíndices el espacio.

 La aproximación hacia adelante sustituye a la derivada temporal

$$\frac{\partial T}{\partial t} = \frac{T_i^{l+1} - T_i^l}{\Delta t}$$

con error $\mathcal{O}(\Delta t)$.

 Con ambas aproximaciónes, a ecuación de conducción del calor es

$$k\frac{T_{i+1}^{l} - 2T_{i}^{l} + T_{i-1}^{l}}{\Delta x^{2}} = \frac{T_{i}^{l+1} - T_{i}^{l}}{\Delta t}$$

de donde resulta

$$T_i^{l+1} = T_i^l + \lambda (T_{i+1}^l - 2T_i^l + T_{i-1}^l)$$

donde $\lambda = k\Delta t/(\Delta x)^2$.

 El sistema de ecuaciones que se plantea para el próximo instante l + 1 contiene la ecuación anterior

$$T_i^{l+1} = T_i^l + \lambda (T_{i+1}^l - 2T_i^l + T_{i-1}^l)$$

para todos los nodos interiores de la barra (en el espacio) basándose en los valores presentes / del nodo y sus vecinos.

Método explícito

Convergencia y estabilidad

- Convergencia significa que conforme Δx y Δt tiendan a cero, los resultados de la técnica por diferencias finitas se aproximan a la solución verdadera.
- **Estabilidad** significa que los errores en cualquier etapa del cálculo se atenúna conforme este avanza.
- Carnahan et al. demostraron que el método explícito es convergente y estable si $\lambda \leq 1/2$ o

$$\Delta t \le \frac{1}{2} \frac{\Delta x^2}{k}$$

- Si bien con $\lambda \leq 1/2$ asegura que los errores no crecen, estos pueden oscilar.
- Con $\lambda \le 1/4$ se asegura que la solución no oscila.

Convergencia y estabilidad

- Con $\lambda = 1/6$ se minimizan los errores de truncamiento.
- Nótese que si el tamaño de paso espacial se reduce en 2, entonces el tamaño de paso temporal debe reducirse en 4 para mantener la estabilidad, lo que implica que el total de cálculos requeridos se multiplica por 8.
- Técnicas para introducir la derivada en condiciones frontera se deducen de igual forma que con las EDP elípticas.

 Las formulaciones explícitas por diferencias finitas tienen problemas asociados a la estabilidad, e ignoran información que afecta la solución.

- En la forma explícita se aproxima la derivada espacial para el tiempo I, de modo que en la aproximación de la EDP se tiene una sola incógnita T_i^{I+1}, lo que permite despejarla explícitamente.
- ullet En los métodos **implícitos**, la derivada se aproxima en un nivel de tiempo posterior l+1. Por ejemplo, la segunda derivada se aproxima con

$$\frac{\partial^2 T}{\partial x^2} \approx \frac{T_{i+1}^{l+1} - 2T_i^{l+1} + T_{i-1}^{l+1}}{(\Delta x)^2}$$

que tiene exactitud de segundo orden.

- Lo anterior evita que las ecuaciones se puedan resolver explícitamente y requiere el planteamiento y solución de un sistema completo de ecuaciones, solucionable cuando se consideran las condiciones de frontera.
- Utilizando la ecuación de conducción

$$k\frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$$

junto a la segunda derivada anterior y la derivada temporal

$$\frac{\partial T}{\partial t} = \frac{T_i^{l+1} - T_i^l}{\Delta t}$$

se obtiene

$$k\frac{T_{i+1}^{l+1} - 2T_i^{l+1} + T_{i-1}^{l+1}}{(\Delta x)^2} = \frac{T_i^{l+1} - T_i^l}{(\Delta x)^2}$$

Alvarado

Ecuaciones Diferenciales Parciales

• Con $\lambda = k\Delta t/(\Delta x)^2$ se expresa como

$$-\lambda T_{i-1}^{l+1} + (1+2\lambda)T_i^{l+1} - \lambda T_{i+1}^{l+1} = T_i^l$$

- Esta ecuación se aplica a todos los nodos excepto al primero y último de los nodos interiores que se deben modificar para incluir las condiciones frontera.
- En el extremo izquierdo (i = 0), por ejemplo

$$T_0^{i+1} = f_0(t^{l+1})$$

con $f_0(t^{l+1})$ una función que describe cómo cambia con el tiempo la temperatura en la frontera.

Para el primer nodo la ecuación cambia a

$$(1+2\lambda)T_1^{l+1} - \lambda T_2^{l+1} = T_1^l + \lambda f_0(t^{l+1})$$

De modo similar, para el último nodo

$$-\lambda T_{m-1}^{l+1} + (1+2\lambda)T_m^{l+1} = T_m^l + \lambda f_{m+1}(t^{l+1})$$

donde $f_{m+1}(t^{l+1})$ describe los cambios de temperatura en el extremo derecho (l=m+1)

- El sistema de ecuaciones resultante es tridiagonal, lo que permite emplear métodos más eficientes de solución (p.ej. algoritmo de Thomas).
- El método implícito es estable y convergente, pero tiene exactitud de primer orden para la componente temporal y de segundo orden para la espacial.

Método de Crank-Nicolson

- El método de Crank-Nicolson ofrece un esquema implícito alternativo que tiene exactitud de segundo orden tanto en espacio como en tiempo.
- Se utilizan aproximaciones por diferencia en el punto medio del incremento del tiempo $t^{l+1/2}$:

$$\frac{\partial T}{\partial t} \approx \frac{T_i^{l+1} - T_i^l}{\Delta t}$$

La segunda derivada espacial se determina en el punto medio promediando las aproximaciones por diferencias al principio (t^l) y al final (t^{l+1}) del incremento del tiempo:

$$\frac{\partial^2 T}{\partial x^2} \approx \frac{1}{2} \left[\frac{T'_{i+1} - 2T'_i + T'_{i-1}}{(\Delta x)^2} + \frac{T'_{i+1} - 2T'_i + T'_{i-1}}{(\Delta x)^2} \right]$$

Método de Crank-Nicolson

 Sustituyendo en la ecuación de conducción de calor y reagrupando

$$-\lambda T_{i-1}^{l+1} + 2(1+\lambda)T_i^{l+1} - \lambda T_{i+1}^{l+1} = \lambda T_{i-1}^{l} + 2(1-\lambda)T_i^{l} - \lambda T_{i+1}^{l}$$

$$con \lambda = k\Delta t/(\Delta x)^2$$

- Las condiciones de frontera las determinan $T_0^{l+1} = f_0(t^{l+1})$ y $T_{m+1}^{l+1} = f_{m+1}(t^{l+1})$.
- El primer nodo interior tiene la ecuación

$$2(1+\lambda)T_1^{l+1} - \lambda T_2^{l+1} = \lambda f_0(t^l) + 2(1-\lambda)T_1^l + \lambda T_2^l + \lambda f_0(t^{l+1})$$

El último nodo interior

$$-\lambda T_{m+1}^{l+1} + 2(1+\lambda) T_m^{l+1} = \lambda f_{m+1}(t^l) + 2(1-\lambda) T_m^l + \lambda T_{m-1}^l + \lambda f_{m+1}(t^{l+1})$$

 El sistema resultante también es tridiagonal, y por tanto eficientemente solucionable.

Hasta ahora...

Hasta ahora:

- Diferencias finitas para solucionar EDP
- Dominio de solución ha sido malla discreta
- Solución: derivadas parciales se reemplazan por diferencias divididas finitas
- Conceptualmente fáciles de entender
- No aplican a geometrías irregulares, con condiciones frontera complejas, o de composición heterogénea

Elementos finitos

 Elementos finitos son la alternativa usada para todas las condiciones anteriores

Elementos finitos

- Dominio de solución se divide en elementos
- Se desarrolla solución a EDP para cada elemento
- Solución total se genera uniendo soluciones individuales, y asegurando continuidad de solución en las fronteras entre elementos.

Enfoque general

- Discretización
- Ecuaciones de elementos
 - Elección de funciónes de aproximación
 - Ajuste de funciones a solución
- Condiciones de frontera
- Solución
- Operation of the property o

Resumen

- Introducción
 - Ecuaciones diferenciales parciales
 - EDP de segundo orden
- Diferencias finitas: ecuaciones elípticas
 - Ecuación de Laplace
 - Método de Liebmann
 - Variables secundarias
 - Condiciones en la frontera
- 3 Diferencias finitas: ecuaciones parabólicas
 - Método explícito
 - Método implícito
- Elementos finitos

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-LicenciarIgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2005-2017 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica