IDS

ATTORNEY DOCKET NO. UCF-370

US DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

Page 1 of # 3 12/03

APPLICANT: YUHUA LI, ET AL.

FOR: <

ALL-OPTICAL REGENERATION

LIST OF ART CITED BY APPLICANT

U.S. PATENT DOCUMENTS

EXAMINER	DOCUMENT NO.	DATE	NAME	CLASS	SUBCLASS	
many	3,566,128	02/23/1971	Arnaud	250	199	
AB	5,828,478	10/27/1998	Thomine, et al.	359	181	•
Ac	5,933,265	08/03/1999	Nagarajan	359	189	
AD	6,078,416	06/20/2000	Yano	359	158	
4	6,108,125	08/22/2000	Yano	359	344	
AF	6,141,129	10/31/2000	Mamyshev	359	176	
ΑG	6,201,621	03/13/2002	Desuvire, et al.	359	158	
H	6,335,819	01/01/202	Cho, et al.	359	333	
min	6,437,320	08/20/2002	Yoshida, et al.	250'	227.11	

PATENT	APPLICATION PUBLICATIONS

MP/// PA US2001/0013965A1

·08/16/2001 Watanabe 359

161

FOREIGN ART

NONE

Exr.	OTHER ART (Including Date, Title, Author, Pertinent Pages, Etc.)				
AMM07/1993	Soliton Transmission Control Time And Frequence Domains	Hirkazu Kubota, Et Al.	2189-2197		
07/1993	A Terahertz Optical Asymmetric Ultiplexer (Toad)	J.P. Sokoloff, Et Al.	787-790		
gc]14/10 3/1996	Suppression of Signal Fluctuation Induced By Crosstalk Light In A Gain Saturated Laser Diode Amplifier	Kyo Inoue	458-460		

Mich P. Mooney 10/26/05

IDS

Pap 7 of 3 miles

Exc				10,273	9/14
mem	1	11/1997	Semiconductor Laser Amplifiers For Ultrafast All-Optical Signal Processing	R.J. Manning, Et Al.	3204-3216
might	E	03/1998	3.8-THz Wavelength Conversion of Picosecond Pulses Using a Semiconductor Delayed-Interference Signal-Wavelength Converter (DISC)	Yoshiyasu Ueno, Et Al.	346-348
0		03/1998	20Gbit/s Optical 3R Regeneration Using Polarisation-Independent Monolithically integrated Michelson Iterferometer	K.S. Jepsen, Et Al.	472-474
d	G	09/1998	All-Optical Data Regeneration Based on Self-Phase Modulation Effect	P.V. Mamyshev	475-476
	H * *	08/1999	80Gbit/S All-Optical Regenerative Wavelength Conversion Using Semiconductor Optical Amplifier Based Interferometer	A.E. Kelly	1477-1478
0	1	12/1999	All-Optical 2R Regeneration and Wavelength Conversion as 20 Gb/s Using an Electroabsorption	Pac S. Cho	1662-1664
d		01/2000	All-Optical Noise Suppression Using Two-Stage Highly-Nonlinear Fibre Loop Interferometers	S. Watanabe, Et Al.	52-53
0	K	01/2000	Experimental Demonstration of New Regeneration Scheme for 40Gbit/s Dispersion-Managed Long-Haul Transmissions	P. Brindel, Et Al.	61-62
φ		02/2000	Dense WDM (0.27bits/s/Hz) 4 x 40 Gbit/s Dispersion- Managed Transmission Over 1000km With In-Line Optical Regeneration by Channel Pairs	O. Leclerc, Et Al.	337-338
oi	1	02/2000	Efficient regenertive Wavelength Conversion at 10Gbit/s Over C- and L-band (80 nm span) using a Mach-Zehnder Interferometer With Monolithically Intergrated Semiconductor Optical Amplifiers	M. Dulk, Et Al	241-243
φ		03/2000	40-Gb/s All-Optical Wavelength Conversion, Regeneration, and Demultiplexing in an SOA-Based All-Active Mach-Zehnder Interferometer	D. Wolfson, Et Al.	332-334
0	b	Ô6/2000	100 Gbit/s All Optical Wavelength Conversion With Integrated SOA Delayed-Interference Configuration	J. Leuthold, Et Al.	1129-1130
o	Ρ .	08/2000	Simultaneously Regenerated 4 x 40 Gbit/s dense WDM Transmission Over 10,000km Using Single 40GHz InP Mach-Zehnder Modulator	O. Declerc, Et Al.	1574-1575
q	þ	2000	Simultaneous 3R Regeneration and Wavelength Using a Fiber-Parametric Limiting Amplifier	Yikai Su, Et Al.	1-3
•	R	2000	Novel Modulation Techniques	Nick J. Doran	91-92
d	S	2000	10 Gbits/s All-Optical 3R Regeneration and Forma Conversion Using a Gain-Switched DFB Laser	M. Owen, Et Al.	472-473
	Γ	10/2001	168-Gb/s All Optical Wavelegth Conversion With a Symmetric-Mach-Zehnder-Type Switch	Shigeru Nakamura, Et Al	1091-1093
-mpm o	B :	2002	40 Gbit/s Pseudo-Linear Transmission Over One Million Kilimeters	G. Raybon, Et Al.	1-3
1	ĭ				

Michael P. Mooney 10/26/05

All-Optical 3R Regeneration and Format Conversion in an Integrated SOA/DFB Laser

40 Gbit/s Signal Transmission using Optical 3R Regenerator based on Electroabsorption Modulators

20 Gbit/s all-optical Regeneration and Wavelength Conversion Using SOA Based Interferometers

M. Owen, Et Al.

1-3

T. Otani, Et Al

1-3

G. Raybon, Et Al.

27-29