A universal tradeoff between power, precision and speed in physical communication

Subhaneil Lahiri, Jascha Sohl-Dickstein and Surya Ganguli

Department of Applied Physics, Stanford University, Stanford CA

April 8, 2016

Introduction

Physical devices and biological systems must perform their function

- precisely,
- in a reasonable time frame,
- without consuming too much energy.

Information theory and thermodynamics provide limits on the accuracy and energy efficiency of physical systems.

However, they assume infinite time / infinitesimal speed.

Can we extend this to systems operating at nonzero speed?

We show that power consumption bounds speed and precision of physical communication channels.

Outline

- Background and motivation
- 2 General framework
- 3 Derivation of power-precision-speed tradeoff
- Example systems
- Conclusions

Section 1

Background and motivation

Previous work in biophysics

Sensory adaptation: three-way tradeoff between energy, speed and accuracy for a specific model. [Lan et al. (2012)]

Kinetic proofreading: two-way tradeoff between energy and accuracy.

[Hopfield (1974), Freter and Savageau (1980), Ehrenberg and Blomberg (1980)]

[Savageau and Lapointe (1981), Qian (2006), Murugan et al. (2014)],

two-way tradeoff between speed and accuracy

[Murugan et al. (2012)]

Cellular chemosensation: two-way tradeoff between energy and precision.

[Endres and Wingreen (2009), Mehta and Schwab (2012), Lang et al. (2014)]

[Barato et al. (2014), Govern and Ten Wolde (2014), Sartori et al. (2014)]

Section 2

General framework

Model of physical signaling substrate

Channel dynamics: arbitrary Markov process.

Detailed balance: $\pi_i K_{ij} = \pi_j K_{ji}$.

Signal: control parameters for transition rates & energies.

Receiver: estimate λ^{μ} by observing state of channel.

Causes of energy dissipation

Move at nonzero speed \rightarrow out of equilibrium.

 $\mathbf{p}(t)$: current probability distribution,

 $\pi(\lambda(t))$: equilibrium distribution for current λ .

[Mandal and Jarzynski (2015)]

Move faster \to further out of equilibrium \to more energy. More precision \to more sensitivity to $\lambda \to$ more energy.

⇒ three-way tradeoff between energy, speed and precision.

Section 3

Derivation of power-precision-speed tradeoff

Dissipation and the friction tensor

When λ is small on channel dynamics' timescales, dissipation rate is:

[Sivak and Crooks (2012)]

$$\mathcal{P}_{\mathsf{ex}} = \mathsf{g}_{\mu
u} \, \dot{\lambda}^{\mu} \dot{\lambda}^{
u},$$

 $g_{\mu\nu} = \text{friction tensor}$:

$$\begin{split} g_{\mu\nu} &= k_{\rm B} T \int_0^\infty \!\! {\rm d}t' \, \left\langle \delta \phi_\mu(0) \delta \phi_\nu(t') \right\rangle_{\pi(\lambda(t))}, \\ \phi_\mu &= -\beta \frac{\partial E}{\partial \lambda^\mu}, \qquad \delta \phi_\mu = \phi_\mu - \left\langle \phi_\mu \right\rangle. \end{split}$$

Riemannian metric on λ manifold \rightarrow thermodynamic distance. Optimal protocol = shortest path.

Dissipation and the friction tensor

When λ is small on channel dynamics' timescales, dissipation rate is:

[Sivak and Crooks (2012)]

$$\mathcal{P}_{\mathsf{ex}} = \mathsf{g}_{\mu
u} \, \dot{\lambda}^{\mu} \dot{\lambda}^{
u},$$

 $g_{\mu\nu} = \text{friction tensor}$:

$$\begin{split} g_{\mu\nu} &= k_{\rm B} T \int_0^\infty \!\! {\rm d}t' \, \left\langle \delta \phi_\mu(0) \delta \phi_\nu(t') \right\rangle_{\boldsymbol{\pi}(\lambda(t))}, \\ \phi_\mu &= -\beta \frac{\partial E}{\partial \lambda^\mu}, \qquad \delta \phi_\mu = \phi_\mu - \left\langle \phi_\mu \right\rangle. \end{split}$$

Riemannian metric on λ manifold \rightarrow thermodynamic distance. Optimal protocol = shortest path.

Friction tensor and Fisher information

We can show that

$$\mathbf{g} = k_{\mathrm{B}} T \sum_{a} \tau_{a} \mathbf{F}^{a},$$

 τ_a = time constant of eigenmode a,

 \mathbf{F}^a = Fisher information from eigenmode a,

$$\boldsymbol{\eta}^{\mathsf{a}} \, \mathsf{K} = -\tau_{\mathsf{a}}^{-1} \boldsymbol{\eta}^{\mathsf{a}}, \qquad F_{\mu\nu}^{\mathsf{a}} = (\boldsymbol{\eta}^{\mathsf{a}} \cdot \delta \boldsymbol{\phi}_{\mu}) (\boldsymbol{\eta}^{\mathsf{a}} \cdot \delta \boldsymbol{\phi}_{\nu}).$$

Then

$$\mathbf{g} \geq k_{\mathrm{B}} T \tau_{\mathrm{min}} \mathbf{F},$$

 $au_{\min} = \min_a au_a$ (only over eigenmodes with $\mathbf{F}^a \not\approx 0$).

Power-precision-speed bound

Define precision $\Psi=1/\text{std. error}^2$ of unbiased estimator $\hat{\lambda}$. Cramér-Rao bound:

$$\Psi \leq F$$
.

Define $V = \dot{\lambda}^2$,

$$\Psi V \leq \frac{\mathcal{P}_{\mathsf{ex}}}{k_{\mathsf{B}} T \, \tau_{\mathsf{min}}}.$$

This bound is tightest when

- \bullet λ couples to a narrow range of timescales,
 - ullet estimator $\hat{\lambda}$ is efficient.

Section 4

Example systems

Heavily damped harmonic oscillator

Obeys Langevin equation:

$$\zeta \dot{x} = \kappa (\lambda(t) - x) + \sqrt{2\zeta k_{\rm B} T} \xi(t).$$

Let
$$\tau = \frac{\zeta}{\kappa}$$
 and $\sigma = \sqrt{\frac{k_{\rm B}T}{\kappa}}$.

Solution is Gaussian with:

$$\begin{split} \langle x(t) \rangle &= \int_0^\infty \!\! \frac{\mathrm{d} \, t'}{\tau} \, \mathrm{e}^{-t'/\tau} \lambda(t-t') = \sum_n \left[-\tau \frac{\mathrm{d}}{\mathrm{d} t} \right]^n \lambda(t) \\ &\approx \lambda(t), \\ \langle \delta x(t) \delta x(t') \rangle &= \sigma^2 \mathrm{e}^{-|t-t'|/\tau}. \end{split}$$

Heavily damped harmonic oscillator (continued)

Excess power:

$$\mathcal{P}_{\mathsf{ex}} = \zeta \dot{\lambda}(t) \int_0^\infty \!\!\!\!\! rac{\mathsf{d} \, t'}{ au} \, \mathrm{e}^{-t'/ au} \dot{\lambda}(t-t') pprox \zeta \dot{\lambda}(t)^2.$$

Eigenmodes: $\tau_n = \frac{\tau}{n}$.

But: $\eta^n \cdot \delta \phi = \frac{\delta_{n,1}}{\sigma}$.

Combining all these results:

$$\frac{\Psi\,V}{\mathcal{P}_{\rm ex}} = \frac{[\sigma^{-2}][\dot{\lambda}^2]}{[\zeta\dot{\lambda}^2]} = \frac{1}{k_{\rm B}\,T\,\tau_{\rm min}}.$$

Saturates bound!

Ising model

$$E = -h \sum_{n} \sigma_{n} - J \sum_{n} \sigma_{n} \sigma_{n+1}.$$

Estimate $\tilde{\lambda} = e^{2\beta J} \tanh \beta h$ with $\hat{\tilde{\lambda}} = \frac{\sum_{n} \sigma_{n}}{NJ}$.

At the instant we pass through h = 0, we find:

$$\begin{split} \Psi &= \textit{N} e^{-2\beta \textit{J}}, \quad \mathcal{P}_{\text{ex}} = \frac{\textit{N} \; \textit{k}_{\text{B}} \, \textit{T} \; \textit{V} \; \text{cosh} \, 2\beta \textit{J}}{\alpha}, \quad \tau_{\text{min}} = \frac{e^{2\beta \textit{J}} \; \text{cosh} \, 2\beta \textit{J}}{\alpha}, \\ &\implies \frac{\Psi \textit{V}}{\mathcal{P}_{\text{ex}}} = \frac{\alpha}{\textit{k}_{\text{B}} \, \textit{T} \; e^{2\beta \textit{J}} \; \text{cosh} \, 2\beta \textit{J}} \end{split}$$

Saturates bound!

Ising model

$$E = -h \sum_{n} \sigma_{n} - J \sum_{n} \sigma_{n} \sigma_{n+1}.$$

Also estimate $\tilde{\lambda}^2 = \tanh \beta J$ with $\hat{\tilde{\lambda}}^2 = \frac{\sum_n \sigma_n \sigma_{n+1}}{N}$.

At the instant we pass through h = 0, we find:

$$\begin{split} \Psi_{11} &= \textit{N} e^{-2\beta \textit{J}}, & \mathcal{P}_{\text{ex}} &= \cosh 2\beta \textit{J} \left[(\mathring{\lambda}^1)^2 + \cosh^2\!\beta \textit{J} (\mathring{\lambda}^2)^2 \right], \\ \Psi_{22} &= \textit{N} \cosh^2\beta \textit{J}, & \tau_{\text{min}} &= \frac{e^{-2\beta |\textit{J}|} \cosh 2\beta \textit{J}}{2\alpha}, \\ &\Longrightarrow \frac{\text{tr}(\boldsymbol{\Psi}\boldsymbol{V})}{\mathcal{P}_{\text{ex}}} \leq \frac{\frac{1}{2}e^{-2\beta [\textit{J}]_+}}{(\textit{k}_{\text{B}}\,\textit{T})\,\tau_{\text{min}}.} \end{split}$$

Nonequilibrium receptor

Define:

[Skoge et al. (2013)]

$$\begin{split} \kappa &= \ln \frac{k_-^{\rm off}}{k_-^{\rm on}}, \qquad \gamma = \ln \frac{k_-^{\rm off} w_-^{\rm b} k_+^{\rm on} w_+^{\rm u}}{k_+^{\rm off} w_+^{\rm b} k_-^{\rm on} w_-^{\rm u}}, \\ \lambda &= \ln \frac{k_+[L]}{k_-}, \qquad \alpha = w_+^{\rm u/b} + w_-^{\rm u/b}, \\ k_- &= \sqrt{k_-^{\rm off} k_-^{\rm on}}. \end{split}$$

Assume $k_+^{\text{on}} = k_+^{\text{off}} = k_+$ and $\alpha \ll k_-$.

Estimate $\tilde{\lambda}$ with #active - #inactive.

Nonequilibrium receptor (continued)

Estimate $\tilde{\lambda}$ with #active - #inactive.

At the instant we pass through $\lambda = 0$:

$$\Psi = \textit{N}, \quad \mathcal{P}_{\rm ex} = \frac{\textit{N} \; \textit{k}_{\rm B} \, \textit{T} \; \textit{V} \, {\rm cosh} \left(\frac{\kappa - \gamma}{4}\right) \, {\rm cosh} \left(\frac{\kappa}{4}\right)}{\alpha \, {\rm cosh} \left(\frac{\gamma}{4}\right)}, \quad \tau_{\rm min} = \frac{1}{\textit{k}_{-} \big(1 + \textit{e}^{|\kappa|/2}\big)}.$$

Satisfies bound, but a long way from saturating it, as $\tau_3 \sim \mathcal{O}(1/\alpha)$.

Section 5

Conclusions

Summary and future directions

We derive general relations between friction and information \implies speed \times precision bounded by power consumption.

We did this for an extremely general class of physical channels.

How close does biology get to this bound? Need to *simultaneously* measure power, precision and speed.

Observations extended in time? Beyond the slow signal limit?

Acknowledgements

Thanks to:

- Madhu Advani
- Gavin Crooks
- Dibyendu Mandal
- Jim Crutchfield
- Sarah Marzen
- Paul Riechers
- Grant Rotskoff
- Everyone at Lineq

Funding:

- Genentech
- Office of Naval Research
- Burroughs-Wellcome Fund
- Alfred P. Sloan Foundation
- James S. McDonnell Foundation
- Simons Foundation
- McKnight Foundation

Section 6

Bonus slides

Autocorrelation of forces

$$\begin{split} \left\langle \delta\phi_{\mu}(0)\delta\phi_{\nu}(t')\right\rangle &= \sum_{ij} p_{ij}(0,t')\,\delta\phi_{\mu}^{i}\delta\phi_{\nu}^{j} \\ &= \sum_{ij} \pi_{i} \left[\exp(\mathbf{K}t')\right]_{ij}\delta\phi_{\mu}^{i}\delta\phi_{\nu}^{j} \\ &= \sum_{ij} \sum_{a} \pi_{i}u_{i}^{a}\,\mathrm{e}^{-t'/\tau_{a}}\eta_{j}^{a}\,\delta\phi_{\mu}^{i}\delta\phi_{\nu}^{j} \\ &= \sum_{ij} \sum_{a} \eta_{i}^{a}\,\mathrm{e}^{-t'/\tau_{a}}\,\eta_{j}^{a}\delta\phi_{\mu}^{i}\delta\phi_{\nu}^{j} \\ &= \sum_{a} \mathrm{e}^{-t'/\tau_{a}}\left(\boldsymbol{\eta}^{a}\cdot\delta\phi_{\mu}\right)\left(\boldsymbol{\eta}^{a}\cdot\delta\phi_{\nu}\right). \end{split}$$

 $au_a=$ time constant of eigenmode a, $\eta^a/\mathbf{u}^a=$ left/right eigenvectors.

Beyond detailed balance

In general:

$$\zeta_{\mu\nu} = -\sum_{ij} \pi_i K_{ij}^{\mathsf{D}} \, \delta\phi_{\mu}^i \delta\phi_{\nu}^j, \qquad g_{\mu\nu} = \frac{1}{2} \left(\zeta_{\mu\nu} + \zeta_{\nu\mu} \right).$$

[Mandal and Jarzynski (2015)]

$$\text{But:} \quad \mu \leftrightarrow \nu \quad \Longleftrightarrow \quad \mathbf{K}^{\text{D}} \leftrightarrow \mathbf{K}^{\text{D}\dagger} = \mathbf{K}^{\dagger \text{D}}.$$

$$\implies$$
 use $\hat{\mathbf{K}}^D = \frac{1}{2} \left(\mathbf{K}^D + \mathbf{K}^{D\dagger} \right)$.

Satisfies detailed balance \rightarrow use its eigenmodes.

Dual coordinates for exponential families

We're dealing with Boltzmann distributions:

$$\pi_i = \frac{\mathrm{e}^{-\beta E_i}}{\mathcal{Z}}.$$

Exponential coordinates:

$$E = \sum_{\mu} \lambda^{\mu} \, \mathcal{O}_{\mu}.$$

Dual coordinates:

$$\tilde{\lambda}^{\mu} = \langle \mathcal{O}_{\mu} \rangle \,, \qquad \hat{\tilde{\lambda}}^{\mu} = \mathcal{O}_{\mu}.$$

These are the only coordinates that saturate the Cramér-Rao bound

[Amari and Nagaoka (2007)].

References I

Ganhui Lan, Pablo Sartori, Silke Neumann, Victor Sourjik, and Yuhai Tu.

"The energy-speed-accuracy tradeoff in sensory adaptation".

Nature physics, 8(5):422-428, (May, 2012).

"Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosynthetic Processes Requiring High Specificity".

Proc. Natl. Acad. Sci. U.S.A., 71(10):4135-4139, (October, 1974) .

Rolf R. Freter and Michael A. Savageau.

"Proofreading systems of multiple stages for improved accuracy of biological discrimination".

Journal of Theoretical Biology, 85(1):99-123, (July, 1980).

"Thermodynamic constraints on kinetic proofreading in biosynthetic pathways". Biophysical journal, 31(3):333–58, (September, 1980).

References II

Michael A. Savageau and David S. Lapointe.

"Optimization of kinetic proofreading: A general method for derivation of the constraint relations and an exploration of a specific case".

Journal of Theoretical Biology, 93(1):157-177, (November, 1981) .

"Reducing intrinsic biochemical noise in cells and its thermodynamic limit". *Journal of molecular biology*, 362(3):387–92, (September, 2006).

Arvind Murugan, David A Huse, and Stanislas Leibler.

"Discriminatory Proofreading Regimes in Nonequilibrium Systems".

Phys. Rev. X, 4(2):021016, (April, 2014), arXiv:1312.2286 [cond-mat.stat-mech].

Arvind Murugan, David A Huse, and Stanislas Leibler.

"Speed, dissipation, and error in kinetic proofreading".

Proc. Natl. Acad. Sci. U.S.A., 109(30):12034-9, (July, 2012) .

References III

Robert G. Endres and Ned S. Wingreen.

"Maximum likelihood and the single receptor".

Phys. Rev. Lett., 103(15):158101, (October, 2009), arXiv:0909.4710 [q-bio.SC].

Pankaj Mehta and David J Schwab.

"Energetic costs of cellular computation".

Proc. Natl. Acad. Sci. U.S.A., 109(44):17978-82, (October, 2012), arXiv:1203.5426 [q-bio.MN].

Alex H. Lang, Charles K. Fisher, Thierry Mora, and Pankaj Mehta.

"Thermodynamics of statistical inference by cells".

Phys. Rev. Lett., 113(14):148103, (May, 2014), arXiv:1405.4001 [physics.bio-ph].

Andre C. Barato, David Hartich, and Udo Seifert.

"Efficiency of cellular information processing".

New Journal of Physics, 16, (may, 2014), arXiv:1405.7241.

References IV

Christopher C Govern and Pieter Rein Ten Wolde.

"Optimal resource allocation in cellular sensing systems".

Proc. Natl. Acad. Sci. U.S.A., 111(49):17486-17491, (November, 2014).

Pablo Sartori, Léo Granger, CF Lee, and JM Horowitz.

"Thermodynamic costs of information processing in sensory adaptation".

PLoS computational biology, 10(12):e1003974, (December, 2014), arXiv:1404.1027 [cond-mat.stat-mech].

Dibyendu Mandal and Christopher Jarzynski.

"Analysis of slow transitions between nonequilibrium steady states".

(jul, 2015), arXiv:1507.06269.

David A. Sivak and Gavin E. Crooks.

"Thermodynamic Metrics and Optimal Paths".

Phys. Rev. Lett., 108(19):190602, (May, 2012), arXiv:1201.4166 [cond-mat.stat-mech].

References V

Monica Skoge, Sahin Naqvi, Yigal Meir, and Ned S Wingreen. "Chemical Sensing by Nonequilibrium Cooperative Receptors".

Phys. Rev. Lett., 110(24):248102, (June, 2013), arXiv:1307.2930 [q-bio.MN].

Shun-ichi Amari and Hiroshi Nagaoka.

Methods of information geometry, volume 191.

American Mathematical Soc., 2007.

