

Predicting the energy consumption of buildings

FEBRUARY 2022

Presentation Outline

- 1. Objectives
- 2. Dataset Preparation
- 3. Modeling process
- 4. Final model overview

Objectives

Context

- Seattle to become carbon neutral by 2050
- Consumption data available for buildings in the city of Seattle for the years 2015 and 2016

Business Problem

• Significant cost of obtaining statements / tedious to collect

Mission

- Predict CO2 emissions and total energy consumption without annual readings and from existing data
- Assess the value of the ENERGY STAR Score
- Set up a reusable prediction model

Objectives

Approach

Interpretation

- 2 final models to identify regression models:
 - Model to predict CO2 emissions
 - Model to predict total energy consumption
- Features:
 - intrinsic to buildings (easy to obtain)
 - EnergyStarScore feature: Testing without and with

Methodology

1. Carry out an AED to identify and observe targets and features

Cleaning

Feature Engineering

Exploratory Analysis

2. Evaluate different prediction models

Pre-processing

Modeling

Optimisation

Dataset

Dataset

Observations

- A dataset: 2 files representing the year 2015 and the year 2016
- 3000 rows (buildings) and more than 46 columns (variables).
- Buildings: identified by a Unique ID
- Variables: 55% qualitative and 45% quantitative, some different variables
- A well-filled dataset 14%
 NaN

Variables fill rate - 2015

Variables fill rate - 2016

Methodology

Cleaning

Process followed in 4 steps

Aggregation of the 2 files

- Homogenisation of variable names
- Homogenisation of modalities

Selection of observations

- Non-duplicate buildings
- Buildings in Seattle
- Non-Residential Buildings

Selecting variables

- Variables filled in
- Non-redundant variables
- Relevant variables

Cleaning

- Handling missing values
- Removing outliers

Feature Engineering

Process followed in 3 steps

Creating variables

- Age = DataYear YearBuilt
- FloorGFA = GFAB / (NbFloors + 1)
- ParkingRate = GFAParking / GFAT

Combining modalities

• PropertyType - 15 modalities

Transforming variables

- PropertyType onehotencoder
- Variables distributed in log/sqrt

Exploratory Analysis

Distribution of variables

Observations

- Many distributions with a strong skewness on the right, hence the consideration of the transition to the log
- Many outliers

Exploratory Analysis

ANOVA – Distribution of targets based on PropertyTypeUse

Observations

Variables to predict linked to the PropertyType.

Exploratory Analysis

Correlation between quantitative variables

Observations

- Strong correlation between variables EnergyUse and GHGEmissions
- Strong correlation between the variables to be predicted and the surfaces
- Strong correlation between surfaces
- No correlation between the variables to be predicted and *EnergyStarCode*

Exploratory Analysis

Principal Component Analysis Eboulis des valeurs propres

Observations

- The first 4 components contain 77% of the variance
- Axis PC1 representing 45% is related to targets and surfaces to be heated mainly

Exploratory Analysis

Selecting variables

Target variables

- EnergyUse
- EnergyUseWN
- GHGEmissions

Variables features - quantitatives

Selection of variables a minimum correlated to the variables to be predicted, not correlated to other features.

CouncilDistrictCode

NbofBuildings

NbofFloors

GFAParking

GFABuilding

ENERGYSTARScore

SteamUse

GasUse

Age

FloorGFA

ParkingRatio

247Essential

247 Nonessential Accommodation

Education

Food

Large Office

Leisure

Mixed Use Property

Other

Parking

Retail Store

Services

Small- and Mid-Sized Office Worship Facility'

Methodology

Energy Consumption

(without
EnergyScore)

Dummy and Baseline

	Dummy	Linear (baseline)		
RMSE	1e7	6.9e6		
R2	0.00	0.64		

Energy Consumption

(without EnergyScore)

Elements of pre-processing

Dataset selection

- Dataset 1A EnergyUseLog / All features
- Dataset 1B EnergyUseLog / All features including those relevant to the Log
- Dataset 2A EnergyUseLog / 4 Features quant. + PtyType
- Dataset 2B EnergyUseLog / 4 Features quant. to log+ PtyType

Features transformation selection

- No additional transformation
- PolynomialFeatures
- PCA

Scaling selection

- StandardScaler
- RobustScaler
- QuantileTransformer

Energy Consumption

(without
EnergyScore)

First Iteration

Dataset selection

 Dataset 1A -EnergyUseLog / all features

Feature transformation selection

Poly1

Scaling selection

Quantile100

Estimator	Best params	RMSE	R2	Time
RamdomForest	{'max_features': 'sqrt', 'min_samples_leaf': 1, 'n_estimators': 600}	0.42	0.72	1.18
XGBRegressor	{'n_estimators': 20}	0.47	0.70	0.13
LinearRegression		0.48	0.67	0.00

Energy Consumption

(without
EnergyScore)

Second iteration

Dataset selection

Dataset 1B -EnergyUseLog / all features log

Feature transformation selection

Aucune

Scaling selection

Robust

Estimator	Best params	RMSE	R2	Time
SVR	{'C': 10, 'epsilon': 0.1, 'gamma': 0.01}	0.41	0.72	0.05
LinearRegression		0.41	0.72	0.00
ElasticNet	{'alpha': 0.01}	0.41	0.72	0.00

Energy Consumption

(without
EnergyScore)

Third Iteration

Dataset selection

Dataset 2A
 EnergyUseLog / 4
 Features quant. +
 PtyType

Feature transformation selection

• PCA4

Scaling selection

Standard

Estimator	Best params	RMSE	R2	Time
RandomForest	{'max_features': 'sqrt', 'min_samples_leaf': 5, 'n_estimators': 800}	0.55	0.62	1.05
KNN	{'n_neighbors': 15}	0.57	0.62	0.00
XGBRegressor	{'n_estimators': 20}	0.58	0.61	0.11

Energy Consumption

(without
EnergyScore)

Fourth Iteration

Dataset selection

 Dataset 2B - EnergyUseLog / 4 Features quant. to log+ PtyType

Feature transformation selection

Poly1

Scaling selection

Robust

Estimator	Best params	RMSE	R2	Time
RandomForest	{'max_features': 'sqrt', 'min_samples_leaf': 3, 'n_estimators': 500}	0.43	0.71	1.00
LinearRegression	{}	0.44	0.70	0.00
SVR	'C': 10, 'epsilon': 0.01, 'gamma': 0.01}	0.44	0.70	0.05

Energy Consumption

(without
EnergyScore)

Final model

Dataset	Dataset 1B - EnergyUseLog / all features log
Scaler	RobustScaler
Features transfo	None
Estimator	SVR
Params	{'C': 10, 'epsilon': 0.1, 'gamma': 0.01}
RMSE	0.41
R2	0.73
Time	0.05

CO2 Emission

(sans EnergyScore)

Final model

Dataset	Dataset 3B - GHGEmissionsLog / all features log
Scaler	StandardScaler
Features transfo	Non
Estimator	XGBRegressor
Params	n_estimators = 20
RMSE	0.61
R2	0.68
Time	0.13

Impact of the EnergyStarScore

EnergyStarScore's impact on the Best Prediction Model of each target

Impact on EnergyUse's Best Prediction Model (dataset reduced to buildings with energystarScore)

	Without EnergyStarScore	With EnergyStarScore
RMSE	0.26	0.15
R2	0.82	0.89
Time	0.02	0.02

Impact on Best GHGEmissions prediction model (dataset reduced to buildings with energystarScore)

	Without EnergyStarScore	With EnergyStarScore
RMSE	0.44	0.34
R2	0.75	0.81
Time	0.02	0.02

Conclusions

Relevance and areas of improvement

Relevance of models

- Two models were identified for the two target variables.
- These models are significantly improved with the consideration of EnergyStarScore.

Areas for model improvement

- Identification of optimal features for better modeling
- Further identification of outliers
- Further identification of the most optimal hyperparameters for each model
- Consideration of the EnergyUseWN target variable?

Thank you for your attention!