## ∨ 2.6장 실습 - 타이타닉 생존자 예측

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
matplotlib inline

df = pd.read_csv('/content/train.csv')
df.head(3)
```

| $\Rightarrow$ |   | PassengerId | Survived | Pclass | Name                                                          | Sex    | Age  | SibSp | Parch | Ticket              |
|---------------|---|-------------|----------|--------|---------------------------------------------------------------|--------|------|-------|-------|---------------------|
|               | 0 | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | male   | 22.0 | 1     | 0     | A/5 21171           |
|               | 1 | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | female | 38.0 | 1     | 0     | PC 17599            |
|               | 2 | 3           | 1        | 3      | Heikkinen,<br>Miss.<br>Laina                                  | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 |

```
1 # 데이터 칼럼 타입 확인
2 print("학습 데이터 정보 \n")
3 df.info()
```

학습 데이터 정보

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

| # | Column      | Non-Null Count | Dtype   |
|---|-------------|----------------|---------|
|   |             |                |         |
| 0 | PassengerId | 891 non-null   | int64   |
| 1 | Survived    | 891 non-null   | int64   |
| 2 | Pclass      | 891 non-null   | int64   |
| 3 | Name        | 891 non-null   | object  |
| 4 | Sex         | 891 non-null   | object  |
| 5 | Age         | 714 non-null   | float64 |
| 6 | SibSp       | 891 non-null   | int64   |
| 7 | Parch       | 891 non-null   | int64   |
| 8 | Ticket      | 891 non-null   | object  |

```
891 non-null
                                     float64
        Fare
    10
        Cabin
                     204 non-null
                                     object
    11 Embarked
                     889 non-null
                                     object
   dtypes: float64(2), int64(5), object(5)
   memory usage: 83.7+ KB
1 # Null 값 처리
2 df['Age'].fillna(df['Age'].mean(), inplace = True)
3 df['Cabin'].fillna('N', inplace = True)
4 df['Embarked'].fillna('N', inplace = True)
5
6 print('데이터 세트 Null 값 개수: ', df.isnull().sum().sum())
   데이터 세트 Null 값 개수:
1 # 피처의 값 분류 살펴보기
2 print('Sex 값 분포: \n', df['Sex'].value_counts())
3 print('\n Cabin 값 분포: \n', df['Cabin'].value_counts())
4 print('\n Embarked 값 분포: \n', df['Embarked'].value_counts())
   Sex 값 분포:
    male
              577
   female
             314
   Name: Sex, dtype: int64
    Cabin 값 분포:
                   687
    Ν
   C23 C25 C27
                    4
   G6
                    4
   B96 B98
                    4
   C22 C26
                    3
   E34
                    1
   C7
                    1
   C54
                    1
   E36
                    1
                    1
   C148
   Name: Cabin, Length: 148, dtype: int64
    Embarked 값 분포:
    S
         644
   C
        168
   Q
         77
   Ν
          2
   Name: Embarked, dtype: int64
1 # Cabin 속성 앞 글자만 추출
2 df['Cabin'] = df['Cabin'].str[:1]
3 print(df['Cabin'].head(3))
   0
        Ν
   1
        C
   2
   Name: Cabin, dtype: object
```

1 # 성별에 따른 생존자의 수 비교

2 df.groupby(['Sex', 'Survived'])['Survived'].count()

| Sex    | Survived |     |
|--------|----------|-----|
| female | 0        | 81  |
|        | 1        | 233 |
| male   | 0        | 468 |
|        | 1        | 109 |

Name: Survived, dtype: int64

1 # 분석 결과 시각화 - 성별

2 sns.barplot(x = 'Sex', y = 'Survived', data = df)

<Axes: xlabel='Sex', ylabel='Survived'>



1 # 분석 결과 시각화 - 부자 + 성별

2 sns.barplot(x = 'Pclass', y = 'Survived', hue = 'Sex', data = df)

## <Axes: xlabel='Pclass', ylabel='Survived'>



```
1 # Age에 따른 생존 확률 비교
2 # 값을 범위별로 분류, 카테고리 값 할당
3 def get_category(age):
       cat = ''
 4
 5
       if age \leftarrow= -1:
6
           cat = 'Unknown'
7
       elif age <= 5:
           cat = 'Baby'
8
9
       elif age <= 12:
10
           cat = 'Child'
11
       elif age <= 18:
12
           cat = 'Teenager'
13
       elif age <= 25:
           cat = 'Student'
14
       elif age <= 35:
15
           cat = 'Young Adult'
16
17
       elif age <= 60:
18
           cat = 'Adult'
19
       else:
20
           cat = 'Elderly'
21
       return cat
```

```
1 plt.figure(figsize = (10, 6))
2
3 group_names = ['Unknown', 'Baby', 'Child', 'Teenager', 'Student', 'Young Adu 4
5 df['Age_cat'] = df['Age'].apply(lambda x: get_category(x))
6 sns.barplot(x = 'Age_cat', y = 'Survived', hue = 'Sex', data = df, order = curved of the control of the curve of the curv
```



여자 Baby의 경우 비교적 생존 확률이 높았다.

여자 Child의 경우 비교적 생존 확률이 낮았다.

여자 Elderly의 경우 생존 확률이 매우 높았다.

=> Sex, Age, PClass가 생존 여부를 결정하는 중요한 요소로 작용함을 확인.

```
1 # 문자열 피처 -> 숫자형 카테고리 피처로 변환
2 # 인코딩 - 레이블 인코더 객체 사용
3 from sklearn import preprocessing
 4
 5 def encode_features(dataDF):
 6
      features = ['Cabin', 'Sex', 'Embarked']
 7
      for feature in features:
 8
          le = preprocessing.LabelEncoder()
 9
          le = le.fit(dataDF[feature])
          dataDF[feature] = le.transform(dataDF[feature])
10
11
      return dataDF
12
13 df = encode_features(df)
14 df.head()
```

|   | PassengerId | Survived | Pclass | Name                                                          | Sex | Age  | SibSp | Parch | Ticket              |   |
|---|-------------|----------|--------|---------------------------------------------------------------|-----|------|-------|-------|---------------------|---|
| 0 | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | 1   | 22.0 | 1     | 0     | A/5 21171           |   |
| 1 | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | 0   | 38.0 | 1     | 0     | PC 17599            | 7 |
| 2 | 3           | 1        | 3      | Heikkinen,<br>Miss.<br>Laina                                  | 0   | 26.0 | 0     | 0     | STON/O2.<br>3101282 |   |
| 3 | 4           | 1        | 1      | Futrelle,<br>Mrs.<br>Jacques<br>Heath<br>(Lily May<br>Peel)   | 0   | 35.0 | 1     | 0     | 113803              | 5 |
| 4 | 5           | 0        | 3      | Allen, Mr.<br>William<br>Henry                                | 1   | 35.0 | 0     | 0     | 373450              | { |

Next steps: View recommended plots

## transform\_features(): 데이터의 전처리를 전체적으로 호출하는 함수

- Null 처리
- 포매팅
- 인코딩

```
1 # Null 처리 함수
 2 def fillna(df):
      df['Age'].fillna(df['Age'].mean(), inplace=True)
      df['Cabin'].fillna('N', inplace=True)
4
 5
      df['Embarked'].fillna('N', inplace=True)
 6
      df['Fare'].fillna(0, inplace=True)
 7
      return df
8
9 # 머신러닝 알고리즘에 불필요한 속성 제거
10 def drop_features(df):
      df.drop(['PassengerId', 'Name', 'Ticket'], axis=1, inplace=True)
11
12
      return df
13
14 # 레이블 인코딩 수행.
15 def format_features(df):
      df['Cabin'] = df['Cabin'].str[:1]
16
      features = ['Cabin', 'Sex', 'Embarked']
17
      for feature in features:
18
19
          le = preprocessing.LabelEncoder()
          le = le.fit(df[feature])
20
          df[feature] = le.transform(df[feature])
21
22
       return df
23
24 # 앞에서 설정한 데이터 전처리 함수 호출
25 def transform_features(df):
26
      df = fillna(df)
27
      df = drop_features(df)
28
      df = format_features(df)
29
      return df
 1 df = pd.read_csv('/content/train.csv')
 2 y_df = df['Survived']
3 x_df = df.drop('Survived', axis=1)
 5 x_df = transform_features(x_df)
 1 # 테스트 데이터 추출
2 from sklearn.model_selection import train_test_split
 3 x_train, x_test, y_train, y_test = train_test_split(x_df, y_df, test_size=0.
 1 from sklearn.tree import DecisionTreeClassifier
 2 from sklearn.ensemble import RandomForestClassifier
 3 from sklearn.linear_model import LogisticRegression
 4 from sklearn.metrics import accuracy_score
```

```
1 # 결정 트리, RandonForest, 로지스틱 회귀를 위한 사이킷런 Classifier 클래스 생성
 2 dt_clf = DecisionTreeClassifier(random_state=11)
 3 rf_clf = RandomForestClassifier(random_state=11)
 4 lr clf = LogisticRegression()
 5
 6 # DecisionTreeclassifier 학습/예측/평가
 7 dt_clf.fit(x_train, y_train)
 8 dt_pred = dt_clf.predict(x_test)
9 print('DecisionTreeClassifier 정확도: {0:.4f}'.format(accuracy_score(y_test, u
10
11 # RandomForestClassifier 학습/예측/평가
12 rf_clf.fit(x_train, y_train)
13 rf_pred = rf_clf.predict(x_test)
14 print('RandomForestClassifier 정확도: {0:.4f}'.format(accuracy score(y test,
15
16 # LogisticRegression 학습/ 예측/평가
17 lr_clf.fit(x_train, y_train)
18 lr_pred = lr_clf.predict(x_test)
19 print('LogisticRegression 정확도 : {0:.4f}'.format(accuracy_score(y_test, lr_|
    DecisionTreeClassifier 정확도: 0.7877
    RandomForestClassifier 정확도: 0.8547
    LogisticRegression 정확도 : 0.8492
    /usr/local/lib/python3.10/dist-packages/sklearn/linear model/ logistic.py:4
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
      n_iter_i = _check_optimize_result(
```

Logictic Regression이 높은 정확도를 보이고 있다.

그러나 아직 최적화 작업을 수행하지 않았고 데이터 양도 충분하지 않기에 평가하기에는 조금 이름.

```
1 # 교차 검증으로 결정 트리 모델 평가하기
2 from sklearn.model selection import KFold
3 def exec_kfold(clf, folds=5):
      # 폴드 세트를 5개인 KFoLd 객체를 생성, 폴드 수만큼 예측 결과 저장을 위한 리스트 객체 생성.
5
      kfold = KFold(n splits=folds)
6
      scores = []
7
8
      # KFold 교차검증 수행.
      for iter_count, (train_index, test_index) in enumerate(kfold.split(x_df)
9
      # x_df 데이터에서 교차검증별로 학습과 검증 데이터를 가리키는 index 생성
10
          x train, x test = x df.values[train index], x df.values[test index]
11
          y_train, y_test = y_df.values[train_index], y_df.values[test_index]
12
13
          # Classifier 학습, 예측, 정확도 계산
14
          clf.fit(x_train, y_train)
15
          predictions = clf.predict(x_test)
16
          accuracy = accuracy_score(y_test, predictions)
17
          scores.append(accuracy)
          print('교차 검증 {0} 정확도 : {1:.4f}'.format(iter_count, accuracy))
18
19 # 5개 fold에서의 평균 정확도 계산
20
      mean score = np.mean(scores)
      print('평균 정확도: {0:.4f}'.format(mean score))
21
22 # exec_kfold 호출
23 exec_kfold(dt_clf, folds = 5)
    교차 검증 0 정확도 : 0.7542
    교차 검증 1 정확도 : 0.7809
    교차 검증 2 정확도 : 0.7865
    교차 검증 3 정확도 : 0.7697
    교차 검증 4 정확도 : 0.8202
    평균 정확도: 0.7823
평균 정확도는 약 78.23%
1 # cross val score()를 이용해 교차 검증 수행하기
2 from sklearn.model_selection import cross_val_score
3 scores = cross_val_score(dt_clf, x_df, y_df, cv=5)
4 for iter_count, accuracy in enumerate(scores):
      print('교차 검증 {0} 정확도: {1:.4f}'.format(iter_count, accuracy))
6 print('평균 정확도: {0:.4f}'.format(np.mean(scores)))
    교차 검증 0 정확도: 0.7430
    교차 검증 1 정확도: 0.7753
    교차 검증 2 정확도: 0.7921
    교차 검증 3 정확도: 0.7865
    교차 검증 4 정확도: 0.8427
    평균 정확도: 0.7879
```

K 폴드와 cross\_val\_score()의 수치가 다른 이유:

cross\_val\_score()가 StratifiedKFold를 이용해 폴드 세트를 분할하기 때문.

```
1 # GridSearchCV를 이용해 DecisionTreeClassifier의 최적 하이퍼 파라미터를 찾고, 이를 예측
  2 from sklearn.model selection import GridSearchCV
   3 parameters = {'max_depth':[2, 3, 5, 10],
                                                     'min_samples_split': [2, 3, 5],
  5
                                                     'min samples leaf': [1, 5, 8]}
   6 grid_dclf = GridSearchCV(dt_clf, param_grid=parameters, scoring='accuracy',
   7 grid_dclf.fit(x_train, y_train)
  9 print('GridSearchCV 최적 하이퍼 파라미터: ', grid_dclf.best_params_)
10 print('GridSearchCV 최고 정확도: {0:.4f}'.format(grid_dclf.best_score_))
11 best dclf = grid dclf.best estimator
12
13 # GridSearchCV의 최적 하이퍼 파라미터로 학습된 Estimator로 예측 및 평가 수행.
14 dpredictions = best dclf.predict(x test)
15 accuracy = accuracy_score(y_test, dpredictions)
16 print('테스트 세트에서의 DecisionTreeClassifier 정확도:{0:.4f}'.format(accuracy))
             GridSearchCV 최적 하이퍼 파라미터: {'max_depth': 3, 'min_samples_leaf': 5, '
             GridSearchCV 최고 정확도: 0.7992
             테스트 세트에서의 DecisionTreeClassifier 정확도:0.8715
```

학습 후 예측 정확도가 87.15%로 향상됨.

## ∨ 3.6장 실습 - 피마 인디언 당뇨병 예측

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 %matplotlib inline
5
6 from sklearn.model_selection import train_test_split
7 from sklearn.metrics import accuracy_score, precision_score, recall_score, r
8 from sklearn.metrics import f1_score, confusion_matrix, precision_recall_cur
9 from sklearn.preprocessing import StandardScaler
10 from sklearn.linear_model import LogisticRegression
11
12 dd = pd.read_csv('/content/diabetes.csv')
13 print(dd['Outcome'].value_counts())
14 dd.head(3)
```

0 500 1 268

Name: Outcome, dtype: int64

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | Diabete: |
|---|-------------|---------|---------------|---------------|---------|------|----------|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 |          |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 |          |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 |          |

Next steps:

View recommended plots

1 # feature값과 Null 개수 살펴보기 2 dd.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns):

| 20.00 | cotamino (total o cotamino, | •              |         |
|-------|-----------------------------|----------------|---------|
| #     | Column                      | Non-Null Count | Dtype   |
|       |                             |                |         |
| 0     | Pregnancies                 | 768 non-null   | int64   |
| 1     | Glucose                     | 768 non-null   | int64   |
| 2     | BloodPressure               | 768 non-null   | int64   |
| 3     | SkinThickness               | 768 non-null   | int64   |
| 4     | Insulin                     | 768 non-null   | int64   |
| 5     | BMI                         | 768 non-null   | float64 |
| 6     | DiabetesPedigreeFunction    | 768 non-null   | float64 |
| 7     | Age                         | 768 non-null   | int64   |
| 8     | Outcome                     | 768 non-null   | int64   |
|       |                             |                |         |

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

Null값은 없으며, 피처 타입은 모두 숫자형이다.

• 별도의 피처 인코딩은 필요없음

```
1 # 사전 작업 - 함수 정의 - 정확도
2 from sklearn.base import BaseEstimator
3 from sklearn.datasets import load_digits
4 from sklearn.model_selection import train_test_split
5 from sklearn.base import BaseEstimator
6
7 from sklearn.metrics import accuracy_score, precision_score, recall_score, (
 9 import numpy as np
10 import pandas as pd
```

```
1 def get_clf_eval(y_test, pred=None, pred_proba=None):
      confusion = confusion matrix(y test, pred)
 3
      accuracy = accuracy_score(y_test, pred)
 4
      precision = precision_score(y_test, pred)
 5
      recall = recall score(y test, pred)
 6
      f1 = f1_score(y_test, pred)
 7
      roc auc = roc auc score(y test, pred proba)
8
      print ('오차행렬')
9
      print(confusion)
      print('정확도:{0:.4f}, 정밀도:{1:.4f}, 재현율:{2:.4f}, F1:{3:4f}, AUC:{4:.4f}
10
1 # 로지스틱 회귀를 이용한 예측 모델 생성
 3 # 피처 데이터 세트 X, 레이블 데이터 세트 v를 추출.
 4 \# 맨 끝이 outcome 칼럼으로 레이블값. 칼럼 위치 -1을 이용해 추출
5 X = dd.iloc[:, :-1]
6 y = dd.iloc[:, -1]
8 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, r
10 # 로지스틱 회귀로 학습, 예측 및 평가 수행.
11 lr_clf = LogisticRegression()
12 lr_clf.fit(X_train, y_train)
13 pred = lr_clf.predict(X_test)
14 pred_proba = lr_clf.predict_proba(X_test)[:, 1]
15 get_clf_eval(y_test, pred, pred_proba)
    오차행렬
    [[88 12]
     [23 31]]
    정확도:0.7727, 정밀도:0.7209, 재현율:0.5741, F1:0.639175, AUC:0.7919
    /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:4
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
      n iter i = check optimize result(
```

```
1 import matplotlib.pyplot as plt
 2 import matplotlib.ticker as ticker
 3 %matplotlib inline
4
 5 def precision_recall_curve_plot(y_test, pred_proba_c1):
      precisions, recalls, thresholds = precision_recall_curve(y_test, pred_pr
 6
7
      plt.figure(figsize=(8, 6))
      threshold_boundary = thresholds.shape[0]
8
      plt.plot(thresholds, precisions[0: threshold_boundary], linestyle='--',
9
      plt.plot(thresholds, recalls[0: threshold_boundary], label='recall')
10
11
12
      start, end = plt.xlim()
      plt.xticks(np.round(np.arange(start, end, 0.1), 2))
13
14
      plt.xlabel('Threshold value'); plt.ylabel('Precision and Recall value')
15
      plt.legend(); plt.grid()
      plt.show()
16
```

1 pred\_proba\_c1 = lr\_clf.predict\_proba(X\_test)[:, 1]
2 precision\_recall\_curve\_plot(y\_test, pred\_proba\_c1)



1 # 피처 값 분포도 살펴보기 2 dd.describe()

|       | Pregnancies | Glucose    | BloodPressure | SkinThickness | Insulin    |       |
|-------|-------------|------------|---------------|---------------|------------|-------|
| count | 768.000000  | 768.000000 | 768.000000    | 768.000000    | 768.000000 | 768.0 |
| mean  | 3.845052    | 120.894531 | 69.105469     | 20.536458     | 79.799479  | 31.   |
| std   | 3.369578    | 31.972618  | 19.355807     | 15.952218     | 115.244002 | 7.    |
| min   | 0.000000    | 0.000000   | 0.000000      | 0.000000      | 0.000000   | 0.0   |
| 25%   | 1.000000    | 99.000000  | 62.000000     | 0.000000      | 0.000000   | 27.3  |
| 50%   | 3.000000    | 117.000000 | 72.000000     | 23.000000     | 30.500000  | 32.0  |
| 75%   | 6.000000    | 140.250000 | 80.000000     | 32.000000     | 127.250000 | 36.6  |

<sup>1</sup> plt.hist(dd['Glucose'], bins=10)

<sup>2 # 0</sup>값이 일정 수준 존재함