CS550/DSL501: Machine Learning (2024–25–M) Project Phase-II

Team Name: Model Mavericks

Team Members

Arey Pragna Sri - 12240230

Matcha Jhansi Lakshmi - 12241000

Nannepaga Vanaja - 12241110

GitHub Link: Link

1 Individual Contributions

1.1 Setup and Data Preparation

Contributed by: Pragna

Purpose: To import necessary libraries and load the MNIST dataset.

Reshaping: The images are reshaped to include a channel dimension (needed for CNNs),

from (28, 28) to (28,28,1).

Data Normalization: This normalizes the pixel values of the MNIST images from 0-255

to 0-1.

1.2 Model Creation

Contributed by: Vanaja

Purpose: Defines the structure of the Convolutional Neural Network (CNN) used to

classify MNIST digits.

CNN Architecture: The model consists of 2 convolutional layers with 32 and 64 filters, respectively, followed by max-pooling layers to down-sample the feature maps. A fully connected (Dense) layer with 128 units is added before the final output layer, which uses softmax activation for classification across the 10 possible digit classes.

1.3 Initial Training on Clean Data

Contributed by: Vanaja

Purpose: To train the CNN model on the original, unmodified MNIST dataset.

Training Details: The model is trained for 5 epochs with a batch size of 128. The data is split into training and validation sets, and the model's accuracy and loss are calculated on both the clean training and validation datasets.

1.4 PGD (Projected Gradient Descent) Adversarial Attack

Contributed by: Pragna

Purpose: To generate adversarial examples using PGD.

PGD Process: For each image, the gradient of the loss with respect to the image is computed. A small step (α) is taken in the direction of the gradient to modify the image. The perturbed image is clipped to stay within a predefined range (ϵ) from the original image and to ensure pixel values remain between 0 and 1. The process is repeated for a set number of iterations $(num_iterations)$ to create adversarial examples that fool the model.

1.5 Visualization

Contributed by: Jhansi

Purpose:To demonstrate the extent of perturbations applied to input data to mislead the model's predictions.

It provides a clear comparison between clean and adversarial examples, highlighting how minimal but targeted alterations in the input can cause the model to make incorrect predictions.

1.6 Adversarial Training

Contributed by: Jhansi

Purpose:Retraining the model on both clean and adversarial images to make it robust against adversarial attacks.

Training Process:Clean images and adversarial counterparts are combined to form a new training set. The model is retrained on this mixed dataset, which helps it learn to recognize both clean and adversarial inputs to improve its robustness.

1.7 Evaluation

Contributed by: Jhansi

Purpose:Evaluating the model's performance after adversarial training on both clean and adversarial test data.

Evaluation on Clean Data: The model is tested on unmodified images to check how well it performs on the original dataset after adversarial training.

Evaluation on Adversarial Data: The model is also evaluated on adversarial examples to measure how resistant it is to attacks after adversarial training.

2 Tasks and Milestones

2.1 List of Tasks and Milestones Achieved in This Phase

- Successfully built and trained a CNN model tailored for handwritten digit recognition with two convolutional layers, max-pooling, and fully connected layers.
- Generated adversarial examples using the PGD method with epsilon constraints to simulate real-world adversarial attacks.
- Combined adversarial and clean examples to perform adversarial training and improved the model's robustness against adversarial inputs.

2.2 Pending Tasks to be Addressed in the Final Phase

- Hyperparameter Tuning: Need to test different values for epsilon, alpha, and num_iterations to improve the effectiveness of adversarial training.
- Advanced Adversarial Attack Techniques: Involves implementing and testing other adversarial attack strategies (e.g., FGSM, CW attacks) to evaluate the model's robustness across multiple attack methods.
- Model Evaluation Metrics: To Use additional evaluation metrics (e.g., precision, recall, F1-score) to get a more comprehensive understanding of the model's performance.
- Robustness Visualization: Visualizing decision boundaries and perturbation effects for clean vs. adversarial examples.
- Model Fine-Tuning: Fine-tune the CNN architecture for better performance under adversarial attacks, potentially adding regularization techniques.
- Website Development: To create a website to showcase the digit recognition model, demonstrating its performance and robustness against adversarial attacks.