ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIO DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS MICROONES, PRIMAVERA 1997-98

EXAMEN FINAL

PROFESSORS: A. AGUASCA, A. COMERON

I. CORBELLA, N. DUFFO

Barcelona, 25 de juny de 1998

Cal realitzar **només tres** dels quatre problemes proposats Temps: 3 hores. Comenci cada exercici en un full apart.

PROBLEMA 1

En un cuadripolo pasivo, recíproco y sin pérdidas, si se conecta la puerta 2 a una resistencia de 50Ω , el coeficiente de reflexión de entrada en la puerta 1, referido a 50Ω , es Γ_i =0,45 \angle 26,5°. Y si se conecta la puerta 1 a una resistencia de 50Ω , entonces el coeficiente de reflexión de salida en la puerta 2 es de Γ_{out} =0,45 \angle 50°.

- a) Calcular los cuatro parámetros S referidos a Z_0 =50 Ω del cuadripolo en módulo y fase.
- b) Si el cuadripolo está formado por una línea de transmisión de longitud $\lambda/4$ e impedáncia característica $Z_0 \neq Z_0$, conectada a las puertas con tramos de línea de impedáncia característica $Z_0 = 50\Omega$ y longitudes ℓ_1 y ℓ_2 (ver figura), calcular Z_0 , ℓ_1/λ y ℓ_2/λ .

PROBLEMA 2

El sistema de la figura se utilitza para la medida de la impedáncia compleja de cargas Z_L , a partir del factor R, definido como $R=b_3'/b_3$. La señal b_3 ' se recoge en el acceso 3 de un circulador ideal, mientras que b_3 se obtiene en un divisor de Wilkinson, también ideal.

- a) Escrivid les matrius de les dues xarxes emprades en el sistema (divisor i circulador).
- b) Trobeu l'expressió que relaciona el terme R amb el coeficient de reflexió al pla de referència de l'accés 2' del circulador $\Gamma_{2'}$, i també amb el de la càrrega Γ_L
- c) Si en el lloc de la càrrega s'hi connecta un curtcircuit, el terme R mesurat val $R_{cc}=1 \angle -8^{\circ}$, mentre que si se li connecta la càrrega Z_L llavors $R=0,46 \angle -76^{\circ}$. Trobeu la longitud ℓ (en termes de λ) del tram de línia i el valor de la càrrega Z_L ($Z_0=50\Omega$).

PROBLEMA 3

El circuit de la figura és un commutador de dues vies a diodes PIN controlat pel corrent continu I_{DC} .

- a) Considerant els diodes ideals (curtcircuit en directa i circuit obert en inversa), calculeu els paràmetres S del circuit referits a Z_0 =50 Ω , tenint en compte el sentit indicat per a I_{DC}
- b) Suposant ara que la resistència en alterna dels diodes PIN, **per polarització directa**, és R_j =27,4/ I_{DC} (I_{DC} en mA i R_j en Ω); mentre que **en polarització inversa** són circuits oberts ideals, determineu el valor del corrent de polarització I_{DC} que cal per tal que la pèrdua d'inserció en la via commutada sigui de 1 dB. En aquest apartat es considera un generador canònic a la porta 1, i impedàncies Z_0 =50 Ω a les 2 i 3.

PIN

 $C \rightarrow \infty$

 $L \rightarrow \infty$

PROBLEMA 4

Els paràmetres S del transistor NE02135 a 1,5 GHz i amb les condicions de V_{CE} =10 V, I_{C} =20mA són els següents:

$$[S] = \begin{bmatrix} 0.64 \angle 160^{\circ} & 0.04 \angle 50^{\circ} \\ 4 \angle 65^{\circ} & 0.2 \angle -45^{\circ} \end{bmatrix}$$

El valor de $\Gamma_{\rm S}$ que proporciona màxim guany (sense fer aproximacions) és $\Gamma_{\rm S}$ =0,71 \angle -160°. Es desitja fer un amplificador seguint l'esquema de la figura, on totes les línies són microstrip amb $\epsilon_{\rm ref}$ =4:

- a) Trobeu les longituds ℓ_1 i ℓ_2 que sintetitzen Γ_S
- b) Quin valor ha de tenir Γ_L per tal que el guany G_T sigui màxim?
- c) Trobeu els valors de ℓ_3 i Z_0 ' que proporcionen aquest guany.
- d) Calculeu el guany total obtingut així com la pèrdua en dB que hagués suposat fer l'aproximació unilateral.

$$G_{T} = \frac{(1 - \left|\Gamma_{s}\right|^{2})\left|s_{21}\right|^{2}(1 - \left|\Gamma_{L}\right|^{2})}{\left|(1 - s_{11}\Gamma_{s})(1 - s_{22}\Gamma_{L}) - s_{12}s_{21}\Gamma_{s}\Gamma_{L}\right|^{2}}$$