MATH355 2017-09-29

If $f: V \to W$ is a linear map, we call V the *domain* of f and W the *codomain* of f. In the definition of surjective, the codomain matters.

Example 1. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$. Then f is NOT surjective, for example $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ can never by $f\begin{pmatrix} x \\ y \end{pmatrix}$, for any values x, y.

Example 2. Let $g: \mathbb{R}^2 \to \mathbb{R}$ given by $f\begin{pmatrix} x \\ y \end{pmatrix} = x$. The map g is surjective. Indeed, if $a \in \mathbb{R}$ is arbitrary, then $a = f\begin{pmatrix} a \\ 129 \end{pmatrix}$.

In the two examples above, although f and g look like they are defining the same function, they are *NOT*! Their codomains are different.

What is an isomorphism? It's the correct way to identify one vector space with another.

Example 3. Let $P_2 = \{a + bx + cx^2 \mid a, b, c \in R\}$ the vector space of polynomials of degree at most two. We have a map $P_2 \to R^3$ given by

$$a + bx + cx^2 \mapsto \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

This is an example of an isomorphism.

Example 4. Let V be an abstract vector space and let $B = (\vec{v}_1, \dots, \vec{v}_n)$ be an ordered basis. Then

$$Rep_B: V \to \mathbf{R}^n$$

$$\vec{v} \mapsto Rep_B \vec{v}$$

is another example of an isomorphism.

Date: John Calabrese, September 29, 2017.

I

Example 5. Another example is

$$M_{1\times n} \to M_{n\times 1}$$

$$\left(a_1 \right)$$

$$(a_1,\ldots,a_n)\mapsto \begin{pmatrix} a_1\\ \vdots\\ a_n \end{pmatrix}$$

This is taking a row vector to its transpose, which is a column vector.

OK, let's give the precise definition.

Definition 6. A map $f: V \to W$ is a (linear) isomorphism if

- f is linear
- f is bijective

We write $V \simeq W$.

More examples! (page 170 of the book)

Example 7. Dilations. Pick $s \in \mathbf{R}$. Define

$$d_s \colon \mathbf{R}^2 \to \mathbf{R}^2$$

 $\vec{v} \mapsto d_s \vec{v} \coloneqq s \vec{v}$

the dilation of factor s. Check that, for $s \neq 0$, d_s is an isomorphism.

Example 8. Same example as before, but for an abstract vector space. Let $s \in \mathbb{R}$, V a vector space. Define $d_s: V \to V$ by $d_s(\vec{v}) = s\vec{v}$. If $s \neq 0$, then d_s is an isomorphism.

Example 9. A rotation of the plane by an angle θ , that's also an isomorphism.

Example 10. A reflection of the plane about some axis (through the origin), that's also an isomorphism.

OK, take a break from linear algebra to review some terminology.

Definition II. If $f: X \to Y$ is a bijection, we may define $g: Y \to X$ by

$$g(y) = x$$

where

 $x \in X$ is the unique element of X such that f(x) = y.

One usually calls this map the *inverse of* f and denotes it f^{-1} .

Example 12. Consider $f: \mathbf{R} \to \mathbf{R}$ given by $f(x) = x^3$. Then f is bijective. Its inverse is given by $f^{-1}(y) = \sqrt[3]{y}$.

Example 13. Consider $g: \mathbf{R} \to \mathbf{R}$ given by $g(x) = x^2$. Then g is neither injective nor surjective.

Example 14. Consider h: $\mathbf{R} \to \mathbf{R}_{\geq 0}$, given by $h(x) = x^2$. Here $\mathbf{R}_{\geq 0}$ means all $x \in \mathbf{R}$ satisfying $x \geq 0$. Then h is surjective but not injective.

Example 15. Consider $\sigma: \mathbf{R}_{\geq 0} \to \mathbf{R}_{\geq 0}$ given by $\sigma(x) = x^2$. Then σ is a bijection.

Finally, we recall a useful criterion to know when a function is bijective.

Theorem 16. Let $f: X \to Y$ be a function. Then f is bijective if and only if there exists $g: Y \to X$ such that

$$g \circ f = id_X$$

 $f \circ g = id_Y$

OK, let's go back to linear algebra.

Fair question: if $f: V \to W$ is an isomorphism, then it has an inverse map $f^{-1}: W \to V$: is f^{-1} linear?

Yes.

Proposition 17. Let $f: V \to W$ be an isomorphism. Let $f^{-1}: W \to V$ be the inverse. Then f^{-1} is also an isomorphism.

Proof. For ease of notation, call $g := f^{-1}$. We need to check that

- $g(\vec{w}_1 + \vec{w}_2) = g(\vec{w}_1) + g(\vec{w}_2)$
- $g(\alpha \vec{w}) = \alpha g(\vec{w})$

for all $\vec{w}_1, \vec{w}_2, \vec{w} \in W$ and $\alpha \in \mathbf{R}$.

OK, let's do the first. call $\vec{v} := g(\vec{w}_1 + \vec{w}_2), \vec{v}_1 := g(\vec{w}_1), \vec{v}_2 := g(\vec{w}_2)$. By definition, \vec{v} is the *unique* vector such that $f(\vec{v}) = \vec{w}_1 + \vec{w}_2$. Similarly for \vec{v}_1, \vec{v}_2 . But f is *linear*, so

$$f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2) = \vec{w}_1 + \vec{w}_2 = f(\vec{v})$$

But f is injective, so $\vec{v}_1 + \vec{v}_2 = \vec{v}$. Hence,

$$g(\vec{w}_1 + \vec{w}_2) = \vec{v} = \vec{v}_1 + \vec{v}_2 = g(\vec{w}_1) + g(\vec{w}_2).$$

OK, let's do the second. Call $\vec{v} = g(\vec{w}), \vec{v}' = g(\alpha \vec{w})$. Since f is linear we have

$$f(\alpha \vec{v}) = \alpha f(\vec{v}) = \alpha \vec{w} = f(\vec{v}')$$

and since f is injective, we have $\alpha \vec{v} = \vec{v}'$. Hence,

$$q(\alpha \vec{w}) = \vec{v}' = \alpha \vec{v} = \alpha q(\vec{w}).$$

And we are done.