

Email antonio.pucc@gmail.com Phone +39 3426310876 Github antoniopucciarelli LinkedIn Antonio Pucciarelli Website antoniopucciarelli.github.io

SUMMARY

Five years ago, I moved from Salerno to Milano with the intent of building my career in the aerospace field. I started the MSc pointing to have a good comprehension of internal and external flows, so I decided to create a personalized learning track based on CFD, turbomachinery design and flows modeling. Over the next few years, I intend to develop as aerospace engineer in the field of turbulence modeling and combustion processes analysis, modeling and optimization. I am also interested in external aerodynamics, its modeling and the study of aeroelastic effects.

PROJECTS

Injector study and liquid jet breakup process in liquid rocket engines

May 2021 - Jun 2021

Politecnico di Milano, Milano - ITA

Study of injectors' properties and possible combustion chamber interactions. Analysis of conical jets, sprays and atomization process [link].

NASA CEA Python LATEX

Weissinger model • Study and modeling

Dec 2020 - Jan 2021

Politecnico di Milano. Milano - ITA

Study of steady incompressible flow around aircraft wings using Weissinger model. Worked on code scripting and its validation [link].

MATLAB git LATEX

Hess-Smith model • Study and modeling

Jul 2020 - Dec 2020

Politecnico di Milano, Milano - ITA

Study of flow around airfoils at steady and incompressible regime using Hess-Smith model. Coding fast and efficient script for modeling the problem [link].

LATEX.

Fortran BLAS LAPACK CMake

gnuplot

Pratt & Whitney RL10A-3 • Cooling jacket analysis and modeling

May 2020 - Jun 2020

Politecnico di Milano. Milano - ITA

Technical research on P&W RL10A-3 engine. Study of the heat exchange process phenomena and problem modeling. Analysis and comparison of results with collected data [link].

MATLAB NASA CEA Fortran git

PERSONAL PROJECTS

- Wrapping techniques between NASA CEA and Python
- · Airfoil generator program, easy and accessible way to make airfoils [link].
- · OpenFOAM airfoil's blockMesh generator [link].

SKILLS

Languages OpenFOAM, Fortran, Python, C++, C, CMake, MATLAB, Bash, LATEX, gnuplot

git, NumPy, SymPy, Pandas, FEniCS, vim, Tools **BLAS/LAPACK**

Softwares NASTRAN, NASA CEA, xFoil, Femap, Solid-Works, SolidEdge, Inventor, xflr5, ParaView

EDUCATION

Aeronautical engineering

Track Combustion/rocket & aerodynamics

Duration Mar 2021 - up to now

Master degree, Politecnico di Milano - Milano, ITA

Thesis CFD based, subject to be defined

Aerospace engineering

Final grade 101 / 110

Duration Sep 2017 - Sep 2020

Bachelor degree, Politecnico di Milano - Milano, ITA **Thesis** Prova finale, consisting of 3 projects:

Aerospace propulsion project

30L / 30

Orbital dynamics project

30 / 30

Technology and aerospace materials project 24 / 30

PERSONAL GOALS

- Pollution reduction.
- · Electric transition.
- · Hydrogen transition.
- · Green fuels transition.
- Manufacturing sustainability.

Master degree • Aeronautical engineering	120 CFU	26.78 / 30
o Combustion in thermochemical propulsion	8 CFU	28 / 30
∘ High-tech startups: creating and scaling up I	6 CFU	26 / 30
○ Numerical modeling of differential problems	6 CFU	30L/30
o Turbulence: physics and modeling	8 CFU	26 / 30
o Structural dynamics and aeroelasticity	10 CFU	25 / 30
Bachelor degree • Aerospace engineering	180 CFU	27.54 / 30
∘ Analisi e geometria 1	10 CFU	27 / 30
o Analisi e geometria 2	10 CFU	29 / 30
o Calcolo numerico ed elementi di analisi	10 CFU	27 / 30
o Dinamica di sistemi aerospaziali	8 CFU	27 / 30
o Elettrotecnica e elettronica applicata	10 CFU	27 / 30
∘ Fisica tecnica	10 CFU	27 / 30
o Fluidodinamica	10 CFU	21 / 30
o Fondamenti di automatica	8 CFU	28 / 30
o Fondamenti di chimica	7 CFU	24 / 30
o Fondamenti di fisica sperimentale	12 CFU	27 / 30
o Fondamenti di meccanica del volo atmosferico	5 CFU	28 / 30
o Fondamenti di meccanica strutturale	10 CFU	26 / 30
o Fondamenti di sperimentazione aerospaziale	6 CFU	20 / 30
o Impianti e sistemi aerospaziali	8 CFU	25 / 30
o Informatica	6 CFU	25 / 30
o Introduzione all'analisi di missioni aerospaziali	2 CFU	30 / 30
o Istituzioni di ingegneria aerospaziale	8 CFU	26 / 30
o Meccanica aerospaziale	10 CFU	27 / 30
o Metodi di rappresentazione tecnica	7 CFU	29 / 30
o Modellazione di strutture aerospaziali	6 CFU	22 / 30
o Propulsione aerospaziale	7 CFU	23 / 30
o Tecnologie e materiali aerospaziali	7 CFU	24 / 30
o Prova finale di analisi di missioni aerospaziali	1 CFU	30 / 30
o Prova finale di propulsione aerospaziale	1 CFU	30L/30
o Prova finale di tecnologie e material aerospaziali	1 CFU	24 / 30
LANGUAGES		

Italian Native speaker.

English Proficient user. Able to satisfy most work requirements with language that is often acceptable and effective.

Ligisi Floricient user. Able to satisfy most work requireme	ents with language that is often acceptable an	a ellective.
∘ TOEIC	860 / 990	B2 level
· Listening section	445 / 495	
· Reading section	415 / 495	
∘ PET		B1 level