

Automatic Machine Learning (AutoML): A Tutorial

Frank Hutter

University of Freiburg fh@cs.uni-freiburg.de

Joaquin Vanschoren

Eindhoven University of Technology j.vanschoren@tue.nl

Slides available at automl.org/events -> AutoML Tutorial (all references are clickable links)

Motivation: Successes of Deep Learning

Speech recognition

Computer vision in self-driving cars

Reasoning in games

One Problem of Deep Performance is very sensitive to many hyperparameters Performance is very sensitive to many hyperparameters

 Optimization algorithm, learning rates, momentum, batch normalization, batch sizes, dropout rates, weight decay, data augmentation, ...

→ Easily 20-50 design decisions

Deep Learning and AutoML

Current deep learning practice

AutoML: true end-to-end learning

Learning box is not restricted to deep learning

- Traditional machine learning pipeline:
 - Clean & preprocess the data
 - Select / engineer better features
 - Select a model family
 - Set the hyperparameters
 - Construct ensembles of models

— ...

AutoML: true end-to-end learning

Outline

- 1. Modern Hyperparameter Optimization
- 2. Neural Architecture Search
- 3. Meta Learning

For more details, see: <u>automl.org/book</u>

AutoML: true end-to-end learning

Outline

1. Modern Hyperparameter Optimization

- AutoML as Hyperparameter Optimization
- Blackbox Optimization
- Beyond Blackbox Optimization

Based on: Feurer & Hutter: Chapter 1 of the AutoML book: Hyperparameter Optimization

2. Neural Architecture Search

- Search Space Design
- Blackbox Optimization
- Beyond Blackbox Optimization

Hyperparameter Optimization

Definition: Hyperparameter Optimization (HPO)

Let

- ullet λ be the hyperparameters of a ML algorithm A with domain Λ ,
- $\mathcal{L}(A_{\lambda}, D_{train}, D_{valid})$ denote the loss of A, using hyperparameters λ trained on D_{train} and evaluated on D_{valid} .

The hyperparameter optimization (HPO) problem is to find a hyperparameter configuration λ^* that minimizes this loss:

$$\lambda^* \in \operatorname*{arg\,min}_{\lambda \in \Lambda} \mathcal{L}(A_{\lambda}, D_{train}, D_{valid})$$

Types of Hyperparameters

- Continuous
 - Example: learning rate
- Integer
 - Example: #units
- Categorical
 - Finite domain, unordered
 - Example 1: algo ∈ {SVM, RF, NN}
 - Example 2: activation function ∈ {ReLU, Leaky ReLU, tanh}
 - Example 3: operator ∈ {conv3x3, separable conv3x3, max pool, ...}
 - Special case: binary

Conditional hyperparameters

- Conditional hyperparameters B are only active if other hyperparameters A are set a certain way
 - Example 1:
 - A = choice of optimizer (Adam or SGD)
 - B = Adam's second momentum hyperparameter (only active if A=Adam)
 - Example 2:
 - A = type of layer k (convolution, max pooling, fully connected, ...)
 - B = conv. kernel size of that layer (only active if A = convolution)
 - Example 3:
 - A = choice of classifier (RF or SVM)
 - B = SVM's kernel parameter (only active if A = SVM)

AutoML as Hyperparameter Optimization

Definition: Combined Algorithm Selection and Hyperparameter Optimization (CASH)

Let

- $\mathcal{A} = \{A^{(1)}, \dots, A^{(n)}\}$ be a set of algorithms
- ullet $oldsymbol{\Lambda}^{(i)}$ denote the hyperparameter space of $A^{(i)}$, for $i=1,\ldots,n$
- $\mathcal{L}(A_{\lambda}^{(i)}, D_{train}, D_{valid})$ denote the loss of $A^{(i)}$, using $\lambda \in \Lambda^{(i)}$ trained on D_{train} and evaluated on D_{valid} .

The Combined Algorithm Selection and Hyperparameter Optimization (CASH) problem is to find a combination of algorithm $A^*=A^{(i)}$ and hyperparameter configuration $\boldsymbol{\lambda}^*\in\boldsymbol{\Lambda}^{(i)}$ that minimizes this loss:

$$A_{\boldsymbol{\lambda}^*}^* \in \operatorname*{arg\,min}_{A^{(i)} \in \mathcal{A}, \boldsymbol{\lambda} \in \boldsymbol{\Lambda}^{(i)}} \mathcal{L}(A_{\boldsymbol{\lambda}}^{(i)}, D_{train}, D_{valid})$$

 \longrightarrow

Simply a HPO problem with a top-level hyperparameter (choice of algorithm) that all other hyperparameters are conditional on

- E.g., Auto-WEKA: 768 hyperparameters, 4 levels of conditionality