Natural Language Processing with Disaster Tweets

R26091032 戴庭筠

- Motivation
- Problem statement
- Data Description
- Data Analysis (balanced data/ imbalanced data)
- Conclusion

Motivations

- X People use smartphone to announce an emergency they're observing in time, so twitter is an important communication channel under emergencies.
- X It's important for disaster relief organizations and news agencies to monitor and know the real situation with tweets.

Problem Statement

- X Input: text in twitter
- X Output: 1, tweet is real disaster; 0, tweet isn't real disaster

text

Our Deeds are the Reason of this #earthquake M...

Forest fire near La Ronge Sask. Canada

All residents asked to 'shelter in place' are ...

13,000 people receive #wildfires evacuation or...

Just got sent this photo from Ruby #Alaska as ...

Data Description

- X Dataset from Kaggle 'Natural Language Processing with Disaster Tweets'
- X There are 7613 samples in training set, and 3263 samples in testing set.

	id	keyword	location	text	target
0	1	NaN	NaN	Our Deeds are the Reason of this #earthquake M	1
1	4	NaN	NaN	Forest fire near La Ronge Sask. Canada	1
2	5	NaN	NaN	All residents asked to 'shelter in place' are	1
3	6	NaN	NaN	13,000 people receive #wildfires evacuation or	1
4	7	NaN	NaN	Just got sent this photo from Ruby #Alaska as	1

Data Description

x Balanced Data (4:3)

x Imbalanced Data (10:1)

Data Analysis – balanced data

Data Analysis – balanced data

Method	Naïve Bayes	LSTM	GRU	BERT
F-score	0.7992	0.8023	0.8063	0.8326

Choose BERT as main model in imbalanced data.

Data Analysis – imbalanced data

- x Adjust class weight
- x Data augmentation (increase sample size)
 - Back translation
 - Text generation
 - Random insertion

The number of sample size?

Combination of data augmentation?

Data Analysis – data augmentation

- x Back translation
 - o English ⇒ Spanish / German ⇒ English

Data Analysis – data augmentation

x Text generation

I went to see a movie in the theater.

╇

"I went to see a new movie in the theater." says Bobo.

x Random insertion

I went to see a movie in the theater.

I went to see a new movie in the theater.

Data Analysis – imbalanced data

Methods	Label Ratio	F-Score
Baseline	10 : 1	0.6745
Class weight	10 : 1	0.7873
Back translation * 1 + class weight	5 : 1	0.7928
Text generation * 1 + class weight	5 : 1	0.7689
Back translation * 1 + Text generation	3.4 : 1	0.7986
Back translation * 1 + Text generation + Random insertion	2.6 : 1	0.8044
Back translation * 2 + Text generation + Random insertion	2:1	0.7949

Conclusion

- BERT model has best performance.
- Optimal number of sample size we create is about 3 times.
- Back translation is best method in data augmentation.
- Data augmentation is better than adjust class weight.
- Balanced data F1-score = 0.8326 and imbalanced data F1-score = 0.8044

Thank you for your attention!