Term Project

Mini-ADAS Development with Embedding System

SWIP 5G

[김영훈 / 이홍규 / 조형찬 / 홍세정]

Contents

- I. Development Introduction
- II. Schedule
- III. Development Process
 - ① System Architecture
 - ② S/W & H/W Development
 - 3 Result

Group Introduction

❖ 5 Group – Development Role & Contribution

Design
Development
Documentation

Main role

-. SW development

(Ultrasonic / RGB / Buzzer System)

Sub role

- -. Operation Verification
- -. Documentation

Main role

-. SW development(Button / LED System)

Sub role

- -. Operation Verification
- -. Documentation

Leader Main role

- -. Build SW architecture
- -. Design System block diagram

Sub role

-. Presentation

-. SW development

(Motor / Potentiometer System)

Sub role

-. HW development

	-
(0)	
-	

Member	Brainstorming	Building SW Architecture	Block diagram	SW Coding	HW Connection	Verify Operation	Documentation	Presentation
김영훈	30%	50%	50%	30%	20%	30%	-	100%
이홍규	30%	30%	30%	30%	10%	30%	50%	-
조형찬	20%	10%	10%	20%	60%	20%	-	-
홍세정	20%	10%	10%	20%	10%	20%	50%	-

I. Development Introduction

Purpose

- Development of Ultrasonic Sensor-based Collision Warning
 System during forward/backward driving
- Embedded System-Based HW/SW Interlocking

Fig 1, ADAS - BSD

◆ Functional Specification

- Setting the direction of motor drive according to the driving mode (Gear D/R)
- Changing Collision Warning System by driving mode (D BSD / R PCA)
- Visual/Audible Collision Warning System Operation based on Proximity Object Recognition
- Steering system Implementation with Switch Button & Potentiometer

	Α	В	С	D	E	F	G	Н	1	J	K	L
1	제목	내용	GPIO	LED	버튼(엣지)	가변저항	ADC	TIMER	PWM	부저	모터	초음파센서
5	핸들 조향각 기반 및 전방 차량 감지 LED 밝기 조절	핸들 (가변저항)을 돌리면 그 각도에 따라서, LED 왼쪽 오른쪽의 밝기를 조절, 초음파 센서를 이용하여 전방 차량이 감지되면 LED밝기를 낮추기	0	0		0	0	0	0			0

Fig 2.Recommanded Sample Project

II. Schedule

♦ Gantt Chart

Plan
Actual Progress

Tab 1. Gantt Chart - Project schedule

① System Architecture

Fig 3. Flow Chart according to Driving Mode

② S/W Development

• Sequence Diagram [Dual Board]

Fig 4. Sequence Diagram according to Board

② S/W Development

- New Port Open
 - 3. External Interrupt Process of Ultrasonic sensor
- 1) Confirm GPIO Push button connection in ERS: ERS6 REQ12 (P11.10)
- 2) Set ERU External Input Channel (EICR Register): EICR3
- 3) Select channel (EXIS): EXISO
- 4) Generate Trigger event (ETL): FENO, RENO, EIENO
- 5) Set trigger event Output channel (OGU): 0X2
- 6) Set trigger event as ERU final output : IGP0 enable(0X1)

External Request Unit (ERU) External Request Unit (ERU) External Request External Trigger Logic Unit (CGU) Input Channel 1 Input Channel 1 Input Channel 2 Input Channel 3 Input Channel 3 Input Channel 4 Input Channel 4 Input Channel 5 Input Channel 5 Input Channel 5 Input Channel 6 Input Channel 7 Input Channel 7

4. Result Code

```
void initUSonic(void)
{
    P02_I0CR4.B.PC6 = 0x10;
    P11_I0CR8.B.PC10 = 0x01;
}

P02_OUT.U &= ~(0x1 << P6_BIT_LSB_IDX);</pre>
```

T12 & T13 Both use

② S/W Development

- > CCU6x Enable Segmentation
 - 1. Problem
- LED (Constant pulse Timer), Ultrasonic sensor (Need to wait re-start signal after previous trigger pulse ends)
- \rightarrow Can't control both constant and variable signal in single timer.

2. Solution

- Need to be set up for each module's purpose of use
- * LED
 - # CCU60 T12 LED Blink
- * Ultrasonic sensor
 - # CCU60 T13 Generate trigger pulse
 - # CCU61 T12 Measure Echo pulse time

[Single Shot]

CCUEO	T12		LED Blink
CCU60	T13		U.Sonic Trig

CCU61 T12 U.Sonic Echo

② S/W Development

- Dual Board Control using GPIO signal
 - 1. Problem
- To control the motor, three parameters are needed; Direction(P10,0), Speed(P02.1), Break(P02.7).
- → However, these pins overlap with LED2, switch2, RGB(R) and cannot be used together in the same board.

2. Solution

- Two boards are used Board 1 performs the main function and sends a motor control signal to board 2.
- Board 2 receives the motor control signal to control the motor.
- Communication between the two boards uses 3 GPIO PINs to create a total of 8 signal combinations.

⟨Board2⟩ ⟨Board1⟩

Channel	Motor Parameter	Easy shield Parametor	Pin Shield buddy
	Direction	LED2	P10_1
А	Speed(PWM)	SW2	P2_1
	Break	RGB(R)	P02_7

② S/W Development

Direction bit value Direction Dual Board – Control using GPIO signal CW 0 3. External GPIO Connection between two boards. CCW 1) PIN23 <-> PIN22 (Motor Direction bit) -2) PIN25 <-> PIN24 (Motor Speed Bit1) Speed bit1 Speed bit2 **Speed** 3) PIN27 ⟨-⟩ PIN26 (Motor Speed Bit2) 0 0 Zero 4) PIN35 ⟨-⟩ PIN35 (GND) 0 Low Middle 0 High

4. Result Code

```
// [Master] Motor Control Output to Slave Board
void initGPIOMaster()
{
    P14_IOCR0.B.PC1 = 0x10; // PIN23, P14.1 Output
    P00_IOCR0.B.PC0 = 0x10; // PIN25, P00.0 Output
    P00_IOCR0.B.PC1 = 0x10; // PIN27, P00.1 Output
}

// [Slave] Motor Control Input from Master Board
void initGPIOSlave()
{
    P14_IOCR0.B.PC0 = 0x02; // PIN 22, P14.0 Input
    P15_IOCR4.B.PC6 = 0x02; // PIN 24, P15.6 Input
    P00_IOCR8.B.PC9 = 0x02; // PIN 26, P00.8 Input
}
```

② H/W Development

- Board 1
 - ✓ Main Board
 - ✓ Timer (CCU6x)
 - ✓ Ultra Sonic Sensor
 - ✓ Button
 - √ RGB LED / LED
 - ✓ Buzzer
 - ✓ Potentiometer

GPIO Signal

- Board 2
 - ✓ Motor Controller

Fig5 . H/W Configuration

③ Result

• 영상 1 – [D Gear] A.E.B

③ Result

• 영상 2 - [D Gear] Signal Light + B.S.D

③ Result

• 영상 3 - [D Gear] Signal Light + Steering

③ Result

• 영상 4 - [D->R Gear] Gear Shift

③ Result

• 영상 5 - [R Gear] P.C.A

X Reference

- AURIX TC27x-D User's Manual
- 교수님과 조교님의 ♥