Домашнее задание 5

МНК и ММП

Цель и результат

Выполняя это домашнее задание, вы закрепите основные знания и способы использования для метода наименьших квадратов (МНК) и метода максимального правдоподобия (ММП).

Задание

1. С помощью МНК (метод наименьших квадратов) найдите лучшую аппроксимирующую функцию, имеющую форму параболы, для точек:

x	0	1	2	3	4	5
f(x)	-100	-90	-76	-52	-12	50

Примечание. Формулу для параболы можно вывести как мы делали это на занятии для парной регрессии, но тут параметров больше. За функцию параболы взять $f(x) = ax^2 + bx + c$, где параметры a,b и c надо найти.

2. Пусть наблюдаемая величина X имеет нормальный закон распределения $\mathcal{N}(\theta_1;\theta_2)$ с неизвестным математическим ожиданием θ_1 и неизвестной дисперсией θ_2 , то есть имеет плотность вероятностей вида:

$$f(y) = \frac{1}{\sqrt{2\pi\theta_2}} e^{-\frac{(x-\theta_1)^2}{2\theta_2}}.$$

Найти по выборке X_1, \dots, X_n оценку максимального правдоподобия для параметра $\theta = (\theta_1; \theta_2)$

3. Пусть наблюдаемая величина X имеет биномиальный закон распределения: $f(y) = C_m^n \theta^m (1-\theta)^{n-m}$

с неизвестным параметром θ . Найти по выборке X_1, \dots, X_n оценку максимального правдоподобия для параметра θ .

За выборку взять следующие данные: n=65

X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
52	48	49	49	52	50	47	48

Критерии оценивания

- Каждый пункт оценивается в 1 балл
- Если пример решен верно (ответ корректный), то пример оценивается в 1 балл, в ином случае пример не оценивается
- Максимальное число баллов: 3