Hypothesis Testing In Regression

Agenda

- 1. Sample Vs. Population
- 2. Regression Coefficients
- 3. Hypothesis Tests with Regression Coefficients

Parameter - Numerical Characteristic of a Population

Parameter - Numerical Characteristic of a <u>Population</u>

- Mean μ
- Standard Deviation σ

Parameter - Numerical Characteristic of a Population

- Mean μ
- Standard Deviation σ

Statistic - Numerical Characteristic of a Sample

Parameter - Numerical Characteristic of a Population

- Mean μ
- Standard Deviation σ

Statistic - Numerical Characteristic of a <u>Sample</u>

- Mean X
- Standard Deviation s

Parameter - Numerical Characteristic of a Population

- Mean μ
- Standard Deviation σ

Statistic - Numerical Characteristic of a <u>Sample</u>

- Mean X
- Standard Deviation s

Statistics are **ESTIMATES** of Parameters

Car Example

Car Example

2020 Cars Data (418 cars) Means					
Sample N MPG Wt (7					
Population (µ)	418	24.17	4.408		

Car Example

2020 Cars Data (418 cars) Means							
Sample N MPG Wt (7							
Population (µ)	418	24.17	4.408				
Sample 1 ($\overline{\overline{\mathbf{X}}}_1$)	100	23.84	4.48				
Sample 2 ($\overline{\mathbf{X}}_2$)	100	23.91	4.42				
Sample 3 ($\overline{\mathbf{X}}_3$)	100	24.67	4.39				

Car Example

2020 Cars Data (418 cars) Means							
Sample N MPG Wt (T)							
Population (µ)	418	24.17	4.408				
Sample 1 ($\overline{\mathbf{X}}_1$)	100	23.84	4.48				
Sample 2 ($\overline{\mathbf{X}}_2$)	100	23.91	4.42				
Sample 3 ($\overline{\mathbf{X}}_3$)	100	24.67	4.39				

What about the relationship between MPG & Weight?

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$
$$y = MPG$$
$$x_1 = Weight$$

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$
$$y = MPG$$
$$x_1 = Weight$$

2020 Cars Data (418 cars) Means					
Sample	Sample N MPG Wt				
Population (μ)	418	24.17	4.408		

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$
$$y = MPG$$
$$x_1 = Weight$$

2020 Cars Data (418 cars) Means				
Sample N MPG Wt β				
Population (μ)	418	24.17	4.408	-5.28

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$
$$y = MPG$$
$$x_1 = Weight$$

2020 Cars Data (418 cars) Means				
Sample N MPG Wt β ₁				
Population (μ)	418	24.17	4.408	-5.28

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$
$$y = MPG$$
$$x_1 = Weight$$

2020 Cars Data (418 cars) Means				
Sample N MPG Wt β				
Population (μ)	418	24.17	4.408	-5.28
Sample 1	100	23.84	4.48	

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$
$$y = MPG$$
$$x_1 = Weight$$

2020 Cars Data (418 cars) Means					
Sample	MPG	Wt	β ₁		
Population (μ)	418	24.17	4.408	-5.28	
Sample 1	100	23.84	4.48	-4.83	

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$
$$y = MPG$$
$$x_1 = Weight$$

2020 Cars Data (418 cars) Means					
Sample N MPG Wt β.					
Population (μ)	418	24.17	4.408	-5.28	
Sample 1	100	23.84	4.48	-4.83	

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$
$$y = MPG$$
$$x_1 = Weight$$

2020 Cars Data (418 cars) Means					
Sample N MPG Wt β					
Population (μ)	418	24.17	4.408	-5.28	
Sample 1	100	23.84	4.48	-4.83	

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$
$$y = MPG$$
$$x_1 = Weight$$

2020 Cars Data (418 cars) Means					
Sample	N MPG Wt β.				
Population (μ)	418	24.17	4.408	-5.28	
Sample 1	100	23.84	4.48	-4.83	
Sample 2	100	23.91	4.42	-5.11	
Sample 3	100	24.67	4.39	-5.31	

Coefficient Mean: -5.29 ≅ -5.28

Coefficient Mean: -5.29 ≅ -5.28

Coefficient SD: 0.48

Coefficient Mean: -5.29 ≅ -5.28

Coefficient SD: 0.48

Standard Error!

 Regression coefficients, like all other population parameters, have Standard Errors

- Regression coefficients, like all other population parameters, have Standard Errors
- Calculable Mathematically (No need to take 1000 samples!)

- Regression coefficients, like all other population parameters, have Standard Errors
- Calculable Mathematically (No need to take 1000 samples!)
 - Excel does this for you, we will not calculate them manually

- Regression coefficients, like all other population parameters, have Standard Errors
- Calculable Mathematically (No need to take 1000 samples!)
 - Excel does this for you, we will not calculate them manually
- Used for Hypothesis Testing as well!

Null Hypothesis (H₀)

Alternative Hypothesis (H_A)

Null Hypothesis (H₀)

Alternative Hypothesis (H_A)

$$\beta = 0$$

$$\beta$$
 <,>, \neq 0

Null Hypothesis (H₀)

$$\beta = 0$$

$$\beta$$
 <,>, \neq 0

Null Hypothesis (H₀)

$$\beta = 0$$

$$\beta$$
 <,>, \neq 0

 Regression Coefficients Follow a T - Distribution (Generally speaking)

$$t = (\beta_{\text{Estimate}} - \beta_{\text{Hypothesis}}) / SE_{\beta}$$

$$t = (\beta_{\text{Estimate}} - 0)/SE_{\beta}$$

$$t = (\beta_{\text{Estimate}} - 0)/SE_{\beta}$$

Compare this t to your Student's t distribution

Example:

Example: Sample 1

	N	MPG	Wt	β ₁	
Sample 1	100	23.84	4.48	-4.83	

Example: Sample 1

	N	MPG	Wt	β_1	$SE_{\pmb{eta}}$	t
Sample 1	100	23.84	4.48	-4.83	0.53	-9.11

Critical t-value (a = .99):

Example: Sample 1

	N	MPG	Wt	$\boldsymbol{\beta}_1$	$SE_{\pmb{eta}}$	t
Sample 1	100	23.84	4.48	-4.83	0.53	-9.11

Critical *t*-value (a = .01): ~ ± 2.626

Example: Sample 1

	N	MPG	Wt	$\boldsymbol{\beta}_1$	$SE_{\pmb{eta}}$	t
Sample 1	100	23.84	4.48	-4.83	0.53	-9.11

Critical *t*-value (a = .01): $\sim \pm 2.626$

Reject the Null!!