Introduction
Minimization algorithms
Subspace iteration methods
Conclusion

Iterative eigensolvers for DFT

Clémentine Barat

CEA, DAM, DIF, F-91297 Arpajon, France

Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France

January 29, 2024

Contents

- Introduction
- Minimization algorithms
 - Conjugate Gradient
 - LOBPCG
 - Other minimization algorithms
- 3 Subspace iteration methods
 - Chebyshev filtering
- Conclusion

Eigensolver in the Self-consistent field

In the self consistent field, one needs to solve an eigenvalue problem at each step. This is a costly operation that can be optimized using iterative eigensolver, which can be mixed with the self-consistent iterations.

Algorithm Self-consistent iteration with an exact eigensolver

 $H \leftarrow \text{RandomHamiltonian}$ while H not converged do $\lambda, X \leftarrow \text{EigenSolver}(H)$ $H \leftarrow \text{Hamiltonian}(X)$ end while

Algorithm Self-consistent iteration with an iterative eigensolver

 $X \leftarrow \text{RANDOMVECTORS}(N, m)$ $H \leftarrow \text{HAMILTONIAN}(X)$ while H not converged do $\lambda, X \leftarrow \text{EigenSolverStep}(H, X)$ $H \leftarrow \text{HAMILTONIAN}(X)$ end while

The problem

We want to find the m smallest eigenvalues of a Hermitian matrix $H \in \mathbb{C}^{N \times N}$ (the discretized Hamiltonian) and the associated eigenvectors. We denote :

- $\lambda_1, \ldots, \lambda_N$ the eigenvalues of H in ascending order.
 - u_1, \ldots, u_N some associated (orthogonal) eigenvectors.
 - ullet $\mathcal{U} = \mathsf{Span}\{u_1, \dots, u_m\}$ the subspace of the eigenvectors we are looking for.

Iterative Eigensolvers

Abinit uses two types of iterative eigensolvers :

- Iterativ minimization on vectors: An iterative minimization method is used to minimize the energy, yielding a set of minimizing vectors.
- Iterativ methods on subspaces: The sought eigensubspace is computed iteratively.

In both cases, the algorithms have the same structure :

- A test vectors or a test subspace is build from the previous iteration.
- The Rayleigh-Ritz method is used to retrieve the eigenvalues from the set of minimizing vectors or estimated eigensubspace.

Rayleigh-Ritz method

The Rayleigh-Ritz method gives an approximation of the eigenvalues and eigenvectors in a given subspace.

Algorithm Rayleigh-Ritz

```
function RAYLEIGHRITZ(H, X)

X \leftarrow \text{ORTHO}(X)

R \leftarrow X^H H X

\lambda, Y \leftarrow \text{EIGEN}(R)

U \leftarrow XY

return \lambda, U

end function
```

Diagonalization of the matrix \boldsymbol{H} projected onto the subspace defined by \boldsymbol{X} .

The full diagonalization of the reduced matrix $X^H H X$ is done with iterative methods that usually scale as $\mathcal{O}(m^3)$ (where m is the matrix size).

Minimization algorithms for eigenvalue problems

• Eigenvalue problem : Find the m smallest eigenpairs $(\lambda_1, x_1), \dots, (\lambda_m, x_m)$ in $\mathbb{R} \times \mathbb{C}^N$ such that for $1 \leq i \leq m$,

$$Hx_i = \lambda_i x_i \tag{1}$$

• Constrained minimization problem :

$$\min_{X \in \mathbb{C}^{N \times m}} E(X) = X^H H X$$
s.t. $X^H X = I_m$ (2)

The solutions of (2) represent the same subspace as the solutions of (1).

The eigenvalue problem can be solved using an optimization algorithm and the the Rayleigh-Ritz procedure to retrieve the eigenvectors from the minimizing X.

Standard conjugate gradient algorithm for quadratic minimization

Quadratic optimization problem

$$\min_{x \in \mathbb{R}^N} q(x) = \frac{1}{2} x^T A x - b x$$

with $A \in \mathbb{R}^{N \times N}$ positive definite and $b \in \mathbb{R}^{N}$.

For a basis d_1, \ldots, d_N of \mathbb{R}^N with mutually A-conjugate vectors $(d_i^T A d_j = 0 \text{ for } i \neq j)$, q can be independently minimized on each direction d_i .

Initialisation step :

- Initial guess x₀.
- Initial line search direction, in the steepest descent direction d₀ = -g₀, g₀ = Ax₀ - b.
- Iterations :
 - New estimation by minimizing q along the line search direction

$$\alpha_{n+1} = \operatorname{arg\,min}_{\alpha \in \mathbb{R}} q(x_n + \alpha d_n) = \frac{-d_n^T g_n}{d_n^T A d_n}$$

$$x_{n+1} = x_n - \alpha_{n+1} d_n$$

 $g_{n+1} = Ax_{n+1} - b$

 New line search direction: the steepest descent direction modified to be A-conjugate to the already minimized directions

$$\beta_{n+1} = \frac{g_{n+1}^T A d_n}{d_n^H A d_n}$$

$$d_{n+1} = -g_{n+1} + \beta_{n+1} d_n$$

Conjugate gradient algorithm for eigenvalue problems

Eigenvalue problem

$$\min_{x \in \mathbb{C}^N} \lambda(x) = \frac{x^H H x}{x^H x}$$

with $H \in \mathbb{C}^{N \times N}$ hermitian.

The conjugate gradient algorithm can be applied to this non quadratic optimization problem, with the following modifications:

- The gradient of λ in x_n is now $g_n = Hx_n \lambda(x_n)x_n$.
- $d_n = -g_n + \beta_n d_{n-1}$ with several options for β_n . The directions d_n are "conjugated" with the previous direction d_{n-1} in a sense that depends on the choice of β .
- $\alpha_{n+1} = \arg\min_{\alpha \in \mathbb{C}} \lambda(x_n + \alpha d_n)$ is now the resolution of a 2 dimension eigenvalue problem (The Rayleigh-Ritz method on the subspace spanned by x_n and d_n).
 - 3-term variant : x_{n+1} obtained using Rayleigh-Ritz on Span $\{x_n, d_n, x_{n-1}\}$.

Preconditioning

Ideally, we would have the search direction directly proportional to the error $x_n - u_1$.

•
$$x_n = \sum a_i u_i$$

•
$$g_n = Hx_n - \lambda(x_n)x_n = \sum a_i(\lambda_i - \lambda(x_n))u_i$$

•
$$Tg_n = \sum a_i(\lambda_i - \lambda(x_n)) Tu_i$$

If for $i \neq 1$, $Tu_i \approx \frac{1}{\lambda_i - \lambda_1} u_i$, Tg_n will be close to be proportional to $x_n - u_1$. A preconditioner is an invertible matrix $T \in \mathbb{C}^{N \times N}$ such that $Tu_i \approx \frac{1}{\lambda_i - \lambda_1} u_i$ for $i \neq 1$.

Projected Conjugate Gradient algorithm

Entire constrained optimization problem :

$$\min_{X \in \mathbb{C}^{N \times m}} E(X) = X^H H X$$
s.t. $X^H X = I_m$

The bands are computed successively using the conjugate gradient method with $n_{\rm line}$ iterations, with the additional condition that the line search directions d_n must also be orthogonal to the already computed bands.

Iterations over the bands $1 \le i \le m$:

- Initialisation step :
 - Initial guess x_0^i orthogonal to x^1, \ldots, x^{m-1}
 - Initial line search direction orthogonal to the already computed bands $d_0^i = -Tg_0^i + \gamma^1 x^1 + \ldots + \gamma^{i-1} x^{i-1}$

$$d_0^i = -Tg_0^i + \gamma^1 x^1 + \ldots + \gamma^{i-1} x^{i-1}$$

(\gamma^1, \ldots, \gamma^{i-1} Gram-Schmidt coefficients).

- Iterations $1 \le n+1 \le n_{\mathsf{line}}$:
 - New estimate (2D or 3D Rayleigh-Ritz)

$$x_{n+1}^i = \alpha_1 x_n^i + \alpha_2 d_n \left(+\alpha_3 x_{n-1} \right)$$

 New line search direction orthogonal to the already computed bands

$$d_{n+1}^{i} = -Tg_{n+1}^{i} + \beta d_{n}^{i} + \gamma^{1}x^{1} + \ldots + \gamma^{i-1}x^{i-1}$$

 $x^i = x^i_{n_{line}}$

LOBPCG: Locally Optimised Block Preconditioned Conjugate Gradient

LOBPCG is similar to the Projected Conjugate Gradient but the bands are computed in blocks instead of individually.

Iterations over the blocks $1 \le i \le n_{blocks}$:

- Initialisation step :
 - Initial guess $x_0^{i,1}, \ldots, x_0^{i,m_b}$
 - Initial search directions orthogonal to the already computed blocks

$$d_0^{i,j} = -T(Hx_0^{i,j} - \lambda(x_0^{i,j})x_0^{i,j}) + \sum_{l=1}^{i-1} \sum_{k=1}^{m_b} \gamma^{l,k} x^{l,k}$$

- Iterations $1 \le n+1 \le n_{\text{line}}$:
 - New estimate $x_{n+1}^{i,1}, \ldots, x_{n+1}^{i,m_b}$ obtained with a Rayleigh-Ritz over Span $\{x_n^{i,1},\ldots,x_n^{i,m_b},d_n^{i,1},\ldots,d_n^{i,m_b},x_{n-1}^{i,1},\ldots,x_{n-1}^{i,m_b}\}$ (dimension $3m_b$). • New search directions for $1 \le j \le m_b$:

$$d_{n+1}^{i,j} = -T(Hx_{n+1}^{i,j} - \lambda(x_{n+1}^{i,j})x_{n+1}^{i,j}) + \sum_{k=1}^{m_b} \beta_k d_n^{i,k} + \sum_{l=1}^{i-1} \sum_{k=1}^{m_l} \gamma^{l,k} x^{l,k}$$

•
$$x^{i,j} = x_{n_{\text{line}}}^{i,j}$$
 for $1 \le j \le m_b$

Notes on LOBPCG

- Convergence rate is determined by n_{line} , which is the number of time the Hamiltonian operator H is applied.
- Parallelization possibilities in each block: The m_b new search directions can be computed in parallel for each block.
- n_{line} Rayleigh-Ritz in dimension $3m_b$ per blocks.
- The different blocks must be calculated one at a time.
- A balance must be found between parallelization of the Hamiltonian application and higher dimension Rayleigh-Ritz.
- Fast convergence thanks to preconditioning.
- One Rayleigh-Ritz in dimension *m* per SCF step.

Using LOBPCG in Abinit

Abinit keywords:

- wfoptalg : set to 4, 14 or 114 to select LOBPCG.
- bandpp: number of band per processor.
- npband : number of processor used to parallelize over bands.
- nline : number n_{line} of local search per SCF step.

 $\mathsf{Block}\;\mathsf{size}:\mathsf{npband}\times\mathsf{bandpp}$

 $Number\ of\ blocks: nband/(npband\times bandpp)$

RMM-DIIS : Residual Minimization Method - Direct Inversion in the Iterative Subspace

Minimizing the residual of each band $||Hx - \lambda(x)x||$ instead of the Rayleigh quotient $x^H Hx / x^H x$ to avoid orthogonalization at each step.

The residual has local minima at each eigenvectors. Once the m first local minima are roughly located, they can each be computed in parallel with a local minimization technique.

- Perform a few iterations of an iterative eigensolver (e.g. LOBPCG)
- **②** Perform an iterative minimization of each residual $||Hx_i \lambda(x_i)x_i||$ independently.
- The method is inherently parallel as each band can be computed independently.
- The method is unstable as the final result depends of the initial guess. Some eigenvalues could be missed.
- No final Rayleigh-Ritz diagonalization needed.

Subspace iteration methods

In subspace iteration methods, we try to approximate directly the subspace $\mathcal U$ spanned by sought eigenvectors.

ullet Initialization: Random initial subspace of dimension m:

$$\mathcal{X}_0 = \mathsf{Span}\{x_1^0, \dots, x_m^0\}$$

• Iterations : Applying a filter $f: \mathbb{C}^N \to \mathbb{C}^N$ well chosen :

$$\mathcal{X}_{k+1} = f(\mathcal{X}_k) = \mathsf{Span}\{f(x_1^k), \dots, f(x_m^k)\}$$

The filter must amplify the components of the vectors in \mathcal{U} and attenuate those in a complement of \mathcal{U} so that \mathcal{X}_k converges to \mathcal{U} .

 Final step: Applying the Rayleigh-Ritz method to retrieve the eigenvectors from the subspace estimation.

Polynomial and rational filters

For (λ_i, u_i) an eigenpair, $Hu_i = \lambda_i u_i$ and $H^{-1}u_i = \frac{1}{\lambda_i} u_i$. So for Q a polynomial or a rational fraction, $Q(H)u_i = Q(\lambda_i)u_i$ and for a vector $v = \sum_{i=1}^N \alpha_i u_i$, we have

$$Q(H)v = \sum_{i=1}^{N} \alpha_i Q(\lambda_i)u_i.$$

By choosing a large Q on $[\lambda_1,\lambda_m]$ and a small Q on $[\lambda_{m+1},\lambda_N]$ we obtain a suitable filter f=Q(H) which will allow us to extract from each vector its component on $\mathcal U$.

Chebyshev Filtering (ChebFi)

Chebyshev polynomials of the first kind

- $T_n(x) \in [-1,1]$ for $x \in [-1,1]$
- T_n grows rapidly outside of [-1,1]

Figure – Chebyshev polynomials

Chebyshev Filtering consists in translating $[\lambda_{m+1}, \lambda_N]$ (the part of the spectrum we don't want to amplify) onto [-1,1] and then applying a Chebyshev polynomial :

$$f = T_n\left(\frac{1}{r}(H - cI)\right) \text{ with } c = \frac{\lambda_{m+1} + \lambda_N}{2}, r = \frac{\lambda_N - \lambda_{m+1}}{2}$$

ChebFi in the Self-Consistent Field

Algorithm Chebyshev filtering in the SCF cycle

```
X \leftarrow \text{RANDOMVECTORS}(N, m)

H \leftarrow \text{HAMILTONIAN}(X)

while H not converged do

c \leftarrow \frac{1}{2}(E_{\text{cut}} + \lambda_m), c \leftarrow \frac{1}{2}(E_{\text{cut}} - \lambda_m)

X \leftarrow T_n(\frac{1}{r}(H - cI))(X)

\lambda, X \leftarrow \text{RAYLEIGHRITZ}(H, X)

H \leftarrow \text{HAMILTONIAN}(X)

end while
```

Notes on Chebyshev Filtering

- Convergence rate is linked to the polynomial degree, which is the number of time the Hamiltonian operator H needs to be applied to a vector (usually between 2 and 10, Abinit default value is 4).
- Significant possibilities of parallelization: The filter can be applied in parallel to each vector.
- One Rayleigh-Ritz in dimension m per SCF step.
- The last bands converge more slowly so we need to compute more bands than necessary.
- No preconditioning is possible.

Using ChebFi in Abinit

Abinit keywords:

- wfoptalg : set to 1 to select ChebFi.
- npband : number of processor used to parallelize over bands.
- nline: degree of the Chebyshev polynomial (should be between 2 and 10).

Comparison of the different algorithms

	LOBPCG	ChebFi
Cost per SCF step	$\mathcal{O}(n_{\text{block}} \cdot n_{\text{line}} \cdot (T_H \cdot m_b + (3m_b)^3) + m^3)$	$\mathcal{O}(n_{\mathrm{deg}} \cdot T_H \cdot m + m^3)$
Advantages	 Fast convergence thanks to preconditioning. Stable and well understood. 	Good scalability.
Drawbacks	 Fewer parallelization possibilities. Many calls to Rayleigh-Ritz that scales very poorly 	 No preconditioning possible. Last bands are poorly converged.

Outlook

Figure – Time spent in the filtering step and in the Rayleigh-Ritz step on CPU computers and CPU+GPU computers.

Introduction Minimization algorithms Subspace iteration methods Conclusion

Thanks for listening!