Лабораторный практикум по курсу «Математическая статистика»

Лабораторная работа № 3 «Однофакторный дисперсионный анализ»

студента Розинко Е.Д.	группы Б21	1-524	Дата сдачи: 01.12.2023
Ведущий преподаватель:	Трофимов А.Г.	оценка:	подпись:

Вариант № 4

Цель работы: изучение функций Statistics and Machine Learning Toolbox™ MATLAB / Python SciPy.stats для проведения однофакторного дисперсионного анализа (*One-Way ANOVA*).

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, <i>m</i> _i	Дисперсия, σ_i^2	Объем выборки, <i>n</i> _i
X_1	R(5, 15)	R(a, b)	10	8,3	100
X_2	<i>N</i> (10, 5)	$N(m, \sigma)$	10	25	100
X_3	N(10, 2) N	$N(m, \sigma)$	10	4	100
X_4	<i>N</i> (10, 5)	$N(m, \sigma)$	10	25	100

Количество случайных величин k = 4

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \overline{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i	
X_1	9.967	8.699	2.935	
X_2	9.812	19.188	4.358	
X_3	9.650	3.975	1.984	
X_4	10.031	23.111	4.783	
Pooled	9.865	13.743	6.872	

2. Визуальное представление выборок

Диаграммы Box-and-Whisker:

Лабораторный практикум по курсу «Математическая статистика»

Примечание: для построения диаграмм использовать функции **boxplot**, vartestn (matplotlib.pyplot.boxplot)

3

3. Проверка условия применимости дисперсионного анализа

Статистическая гипотеза: $H_0: \sigma_1^2 = ... = \sigma_k^2$

Критерий Бартлетта:

1

Aphrephin Bup inerra.				
Выборочное		Статистическое		
значение статистики	p-value	решение при	Ошибка стат. решения	
критерия		$\alpha = 0.05$		
83.236	6.203	Но принимается	2 рода	

Примечание: для проверки гипотезы использовать функцию vartestn (scipy.stats.bartlett)

4. Однофакторный дисперсионный анализ

Таблица дисперсионного анализа:

` / \ I			
Источник вариации	Показатель вариации	Число степеней свободы	Несмещённая оценка
Группировочный признак	D_b * = 0.022	k - 1 = 3	$(n/(k-1))D_b^* = 2.895$
Остаточные признаки	D_w * = 13.606	n - k = 396	$(n/(n-k))D_w^* = 13.743$
Все признаки	D_x * = 13.628	n - 1 = 399	$(n/(n-1))D_x^* = 13.662$

Эмпирический коэффициент детерминации $\eta^2 = 0.002$

Эмпирическое корреляционное отношение $\eta = 0.040$

Статистическая гипотеза: $H_0: m_1 = ... = m_k$

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
0.211	0.889	H_0 принимается	нет

Примечание: при расчетах использовать функцию anoval (scipy.stats.f oneway)

5. Метод линейных контрастов

Доверительные интервалы для $m_1, ..., m_k$:

Лабораторный практикум по курсу «Математическая статистика»

Попарные сравнения m_i и m_j :

Гипотеза	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
H_0 : $m_1 = m_2$	-0.1545	0.9911	Но принимается	Нет
H_0 : $m_1 = m_3$	-0.3165	0.9308	Но принимается	Нет
H_0 : $m_2 = m_3$	-0.1621	0.9897	Но принимается	Нет
H_0 : $m_1 = m_4$	0.0643	0.9993	Но принимается	Нет
H_0 : $m_2 = m_4$	0.2188	0.9755	Но принимается	Нет
H_0 : $m_3 = m_4$	0.3809	0.8865	Но принимается	Нет

Примечание: при расчетах использовать функцию multcompare (statsmodels.stats.multicomp.pairwise_tukeyhsd)