Vibrations and Waves

Basic Formulas

By

H. Rahimzadeh

$$T = \frac{dt}{n}$$

$$v = \frac{dx}{dt} = \frac{n\lambda}{nT} = \frac{\lambda}{T}$$

$$\lambda = \frac{n}{dx}$$

Maves

Period & Wavelength

$$T = \frac{dt}{n}$$

$$\lambda = \frac{n\lambda}{dx}$$

$$\lambda = \frac{n}{dx}$$

Period	Wavelength
The time for one complete oscillation	The length of one complete wave

Frequency & Wave number

$$v = \frac{n}{dt}$$

$$v = \frac{dx}{dt} = \frac{n/\tilde{v}}{n/v} = \frac{v}{\tilde{v}}$$

$$v = \frac{n}{dt}$$

Frequency	Wave number
The N° of complete oscillation per unit time	The N° of complete wave per unit length

Angular Frequency & Angular Wave number

$$\omega = \frac{d\varphi}{dt}$$

$$v = \frac{dx}{dt} = \frac{d\varphi/k}{d\varphi/\omega} = \frac{\omega}{k}$$

$$k = \frac{d\varphi}{dx}$$

Angular Frequency	Angular wave number
The rate of change in phase per unit time	The rate of change in phase per unit length