Departamento de Informática, Programas de Pós-Graduação em Informática e Engenharia Mecânica - UFES/CT

Disciplina: Algoritmos Numéricos II, Computação Científica - 13/1 Exercício 3 - Aplicações de Problemas de Valor no Contorno

Equação do Calor Unidimensional Transiente

Data de entrega:18/05/2016

Considerar os algoritmos explícitos, implícito e Crank-Nicolson para resolver a equação do calor unidimensional pelo método das diferenças finitas. Desejamos encontrar u(x,t) que satisfaça a equação diferencial:

$$\frac{\partial u}{\partial t} - a(x, t) \frac{\partial^2 u}{\partial x^2} = f(x, t) \tag{1}$$

onde $0 < x < l, \, a(x,t) > 0$ e t > 0. A equação diferencial (1) satisfaz a condições do tipo:

• Condições de Contorno:

$$u(0) = u_0(t) \qquad u(l) = u_l(t) \qquad ou$$

$$\frac{\partial u(0,t)}{\partial x} = \sigma_0(t) \qquad \frac{\partial u(l,t)}{\partial x} = \sigma_l(t) \qquad ou$$

$$\alpha_0 \frac{\partial u(0,t)}{\partial x} + \beta_0 u(0,t) = \gamma_0(t) \quad \alpha_l \frac{\partial u(l,t)}{\partial x} + \beta_b u(l,t) = \gamma_l(t)$$

onde u_0 , u_l , σ_0 , σ_l , α_0 , β_0 , α_l , β_l , γ_0 e γ_l são conhecidas.

• Condições Iniciais: u(x,0) = g(x) em (0,l)

Deseja-se obter a solução u(x,t) no interior de (0,l) para $t \in (0,T)$. Considere uma subdivisão do intervalo (0,l) em n-1 subintervalos de tamanho h e uma divisão no tempo $t_k = k\Delta t$, para $k = 0,1,2,\ldots$

Faça uma implementação em Octave (ou MatLab) para os esquemas explícito, implícito e Crank-Nicolson de diferenças finitas para resolver a equação (1). Para cada caso analise qual seria a melhor escolha, considerando tamanho do Δt , acuidade, e tempo computacional.

Testes Numéricos

- 1. Equação do calor com condutividade térmica $a(x,t)=0.835\ cm^2/s$ e fonte de calor nula:
 - Parâmetros básicos: $a(x,t)=0.835,\, f(x,t)=0,\, (0,l)=(0,10)$ e número de passos no tempo igual a 60.
 - Condições de contorno e iniciais: $u(0,t) = 100^{0}C$, $u(10,t) = 50^{0}C$ e u(x,0) = 0, para $x \in (0,10)$
 - Parâmetros dos métodos de aproximação:

-
$$h = 1$$
 e $\Delta t_1 < \frac{h^2}{2a}$, $\Delta t_2 = \frac{h^2}{2a}$ e $\Delta t_3 > \frac{h^2}{2a}$
- $h = 0.1$ e $\Delta t_1 < \frac{h^2}{2a}$, $\Delta t_2 = \frac{h^2}{2a}$ e $\Delta t_3 > \frac{h^2}{2a}$

- 2. Equação do calor com condutividade térmica $a(x,t)=0.835\ cm^2/s$ e fonte de calor nula:
 - Parâmetros básicos: $a(x,t)=0.835,\, f(x,t)=0,\, (0,l)=(0,10)$ e número de passos no tempo igual a 60.
 - Condições de contorno e iniciais: $u(0,t)=100^0C, \frac{\partial u(10,t)}{\partial x}=0 \text{ e } u(x,0)=0, \text{ para } x\in(0,10]$
 - Parâmetros dos métodos de aproximação:

-
$$h = 1$$
 e $\Delta t_1 < \frac{h^2}{2a}$, $\Delta t_2 = \frac{h^2}{2a}$ e $\Delta t_3 > \frac{h^2}{2a}$
- $h = 0.1$ e $\Delta t_1 < \frac{h^2}{2a}$, $\Delta t_2 = \frac{h^2}{2a}$ e $\Delta t_3 > \frac{h^2}{2a}$

- 3. Equação do calor com condutividade térmica $a(x,t)=0.835\ cm^2/s$ e fonte de calor unitária:
 - Parâmetros básicos: $a(x,t)=0.835,\, f(x,t)=1,\, (0,l)=(0,10)$ e número de passos no tempo igual a 60.
 - Condições de contorno e iniciais: $u(0,t)=100^{0}C, \frac{\partial u(10,t)}{\partial x}=0$ e u(x,0)=0, para $x\in(0,10]$
 - Parâmetros dos métodos de aproximação:

-
$$h = 1$$
 e $\Delta t_1 < \frac{h^2}{2a}$, $\Delta t_2 = \frac{h^2}{2a}$ e $\Delta t_3 > \frac{h^2}{2a}$
- $h = 0.1$ e $\Delta t_1 < \frac{h^2}{2a}$, $\Delta t_2 = \frac{h^2}{2a}$ e $\Delta t_3 > \frac{h^2}{2a}$

Faça um relatório suscinto, apresente gráficos da solução para alguns testes e apresente suas conclusões sobre métodos de avanço no tempo para problemas transientes.