1. The block below is a right triangular wedge. Vector bases \hat{u} and \hat{s} are dextral, orthonormal triads and fixed in the block. Note that $\bar{H} = H\,\hat{u}_3$ and \hat{u}_1 is normal to the top surface.

(a) Determine the direction cosine matrix that relates \hat{u} and \hat{s} . Note that the relationship can be written in the forms

$$\begin{bmatrix} \hat{s}_1 \\ \hat{s}_2 \\ \hat{s} \end{bmatrix} = L \begin{bmatrix} \hat{u}_1 \\ \hat{u}_2 \\ \hat{u} \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \hat{s}_1 & \hat{s}_2 & \hat{s}_3 \end{bmatrix} = \begin{bmatrix} \hat{u}_1 & \hat{u}_2 & \hat{u}_3 \end{bmatrix} C$$

Write out both L and C. Evaluate the measure numbers and test the orthogonality conditions.

Problem 2: Given that the rigid body B from problem 2 moves relative to A, suppose its orientation is known at a given instant. Let this new orientation be given as

$${}^{A}C^{B} = \begin{bmatrix} .4638 & .3607 & .8091 \\ -.6082 & -.0052 \\ -.6442 & -.4897 & .5876 \end{bmatrix}$$

(a) Determine the missing element in the ${}^AC^B$ Verify that all orthogonality conditions are satisfied. What is the accuracy?

Problem 3: Assume that a rigid body B (e.g., a rigid spacecraft) can move with respect to a frame A. Let unit vectors \hat{b} be fixed in body B; unit vectors \hat{a} are fixed in A. At the initial time, $\hat{a}_i = \hat{b}_i$ (that is, $\hat{a}_1 = \hat{b}_1$, $\hat{a}_2 = \hat{b}_2$, $\hat{a}_3 = \hat{b}_3$

At some later time, the orientation of B in A is described in terms of the simple rotation:

$${}^{A}\overline{L}^{B} = -1\hat{a}_{1} + 2\hat{a}_{2} + 2\hat{a}_{3}$$
 ${}^{A}\theta^{B} = -120^{\circ}$

(a) Sketch $\hat{\lambda}$ (and \overline{L}) in 3-D. Add the direction of θ to the sketch.

(c) Define a vector \overline{k} that is fixed in \hat{a} initially such that $\overline{k}=1\hat{a}_1-2\hat{a}_2$. Label $\overline{k}=\overline{k}_a$ to reflect the vector prior to the rotation; then, $\overline{k}=\overline{k}_b$ represents the vector after the rotation. The vector \overline{k}_b is fixed in the body B such that $\overline{k}_a=\overline{k}_b$ at the initial time. After the simple rotation, express \overline{k}_b in terms of unit vectors \hat{b} ; \hat{a} . (Use the simple rotation theorem!) Since $\overline{k}_a=1\hat{a}_1-2\hat{a}_2$, does $\overline{k}_b=1\hat{b}_1-2\hat{b}_2$ $\overline{k}_b=1\hat{a}_1-2\hat{a}_2$? After the rotation, should the measure numbers be the same in both \hat{a} and \hat{b} ?