RISK CLASSIFICATION FOR LIFE INSURANCE

Contents

- Objective
- Exploratory data analysis
- Modeling
- Result and evaluation
- Visualization

Objective

- Problem: Identifying risk classification and eligibility is labor intensive and slow, for life insurance.
- Solution: Automatically classifying the risk level, given the data of clients.

Exploratory data analysis (EDA)

- Data with 126 features, and a Y variable.
- Y variable is the risk level, from level 1 to level 8.
- Among the 126 features, 60 are categorical, 13 continuous, 53 are discrete.
- So the objective is to make a classification of the risk level according to the 126 features.
- For better understanding of the variables, visualize it with two graph.

A first look at the features (EDA)

description of the variables

A first look at Y (EDA)

response value

response at different value

Source: localhost:8888:Untitled.ipynb

Data manipulation (EDA)

- Create dummy values for categorical variables
- Missing value:

continuous: using mean to replace

categorical: create dummy variable,

0-missing, 1-non-missing

- Normalization.
- Split the data into train data and test data for cross validation

Models

- Random forest
- Adaptive boosting tree (Adaboosting)
- Gradient boosting Linear Regression
- Gradient boosting Possion Regression
- Artificial neural network

Model: Random Forest

- Using Bootstraping to train the trees
- Ensemble the result, make prediction.

Model: Random Forest

Result

training and test result regarding to number of trees

Number of trees in random forest

Model: Adaboosting

- Combine weak learners to get a strong learner.
- Iteratively adjust the weight of samples.
- Add more weight to wrongly classified samples.

Algorithm 16.2: Adaboost.Ml, for binary classification with exponential loss

```
1 w_i = 1/N;

2 for m = 1 : M do

3 Fit a classifier \phi_m(\mathbf{x}) to the training set using weights \mathbf{w};

4 Compute \operatorname{err}_m = \frac{\sum_{i=1}^N w_{i,m} \mathbb{I}(\tilde{y}_i \neq \phi_m(\mathbf{x}_i))}{\sum_{i=1}^N w_{i,m}};

5 Compute \alpha_m = \log[(1 - \operatorname{err}_m)/\operatorname{err}_m];

6 Set w_i \leftarrow w_i \exp[\alpha_m \mathbb{I}(\tilde{y}_i \neq \phi_m(\mathbf{x}_i))];

7 Return f(\mathbf{x}) = \operatorname{sgn}\left[\sum_{m=1}^M \alpha_m \phi_m(\mathbf{x})\right];
```

Model: Adaboosting

After 1000 iterations, the improvement of prediction accuracy for training and testing data:

Accuracy improvement over iterations

Why I use regression?

- Risk level from 1 to 8, its rank cardinal variable, it's meaningful!
- Classification don't consider ranking.
- Regression may fit better for continuous variable, for this discrete variable, using poisson regression.
- 4. Too many features (over 900): using stochastic gradient boosting.

My parameter setting. (Using xgboost package)

```
def get params():
    ** ** **
    eta: actually shrinks the feature weights afte each iteration of boosting,
    to make the boosting process more conservative
    objective: I tried linear regression and poisson regression, poission is better.
    min child weight: minimum sum of instance weight needed in a child
    .....
    params = \{\}
    params["objective"] = "reg:linear"
    params["eta"] = 0.06
    params["min child weight"] = 80
    params["subsample"] = 0.85
    params["colsample bytree"] = 0.30
    params["max depth"] = 9
    plst = list(params.items())
    return plst
```

SGB Linear Regression tree

- Before using offsetTrain vs test0.6910 vs 0.6169
- After using offset:Train vs test0.7410 vs 0.6440

SGB Poisson Regression tree

- □ Before using offsetTrain vs test0.7090 vs 0.6179
- After using offset:Train vs test0.7669 vs 0.6493

compare models

■ What is offset?

Adjust the predicted value by adding a constant to make it fitting the real value better.

For example.

Predicted value {2.71, 2.84, 2.91, 3.1, 3.43, 3.45} is labeled as class 3.

If the real value is {3, 3, 3, 4, 4}. Then adding 0.2 to the predicted value can make the overrall result better.

Evaluation

Efficiency vs Effectivenss

The end

Thank you for your time.

Sorry for the lack of neural network in my ppt.

Some Links:

https://plot.ly/~jy2641/ (plots for this ppt)

https://www.kaggle.com/c/prudential-life-insurance-

<u>assessment</u> (link for the data)

https://github.com/Larryjianfeng (my github)