

TECHNOLOGY

Hierarchical architectures for spiking Winner-Take-All networks

Christoph Rieger 10.01.2025

Outline

- 1 Introduction
- 2 Experiments
- 3 Results

1

Biological background

- Spiking neural networks
- Winner-Take-All networks
- Probabilistic brain
- Synaptic plasticity
 - Spike Timing Dependent Plasticity used as learning rule

Biological background

- Biological neural networks consist of many modules
- Networks are organized in hierarchical structure
- Feedback used for attention / biased competition
- Lee TS (2003) found that feedback could let neurons

Kanizsa square, Lee TS (2003)

TU

Theoretical background

- Bayesian inference gives the probability of an hypothesis given related evidence
- $P(H|E) = \frac{P(E|H)P(H)}{P(E)}$
- Network model of Nessler et al. (2013) used and expanded
- Nessler et al. (2013) claimed that synaptic weights converge towards the log of probability

The network

Goals

- Further the understanding of the network model
- Simulate feedback found in the visual cortex
- Show connection between Bayesian inference and network model

Methodology

- Simulation was performed in Python
- Simulation step size was 1 ms
- Pixels of input images and the prior had a noise level of 10%

Ambiguous visual stimuli 1

- Network learned to group horizontal and vertical bars into 10 groups
- After training ambiguous images with 1 horizontal and 1 vertical bar were shown
- Network was able to focus on individual bars, due to prior neurons

4

Ambiguous visual stimuli 2

Training plot

Ambiguous visual stimuli 3

Analysis and simulation of the network 1

- usage of smaller 1-D images to make network easier to analyse
- Mathematical derivation of Bayesian likelihood, prior and posterior
- Derived synaptic weights from Bayesian likelihood and prior
- Simulated network with those weights and fitted hyperparameters
- Compared Bayesian posterior to output of the simulation

Analysis and simulation of the network 2

15

Transferability of hyperparameters 1

- Input size and prior neuron firing rate was doubled
- Network was simulated with same hyperparameters of smaller network, to check if they are applicable to any network size

L

Transferability of hyperparameters 2

Training with predetermined hyperparameters 1

- Determined hyperparameters were used to train weights
- Trained weights were compared to analytically determined weights

Training with predetermined hyperparameters 2

C

Training with predetermined hyperparameters 3

D

Α	Learned $P^{X Y}$								
	0.52	0.49	0.53	0.06	0.1	0.08	0.12	0.11	0.06
	0.09	0.07	0.49	0.49	0.51	0.09	0.09	0.09	0.06
	0.07	0.08	0.08	0.06	0.51	0.5	0.52	0.07	0.1
	0.11	0.1	0.12	0.07	0.09	0.06	0.53	0.46	0.51

٠	12 0.	07 0.	09 0.	06 0.	53	0.46		
Learned P ^{Y Z}								
	1.14	0.02	0.02	0.02				
	0.03	1.17	0.03	0.01				
	0.02	0.02	1.15	0.02				
	0.02	0.03	0.03	1.17				

В	Calculated P ^{X Y}								
	0.9	0.9	0.9	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.1	0.9	0.9	0.9	0.1	0.1	0.1	0.1
	0.1	0.1	0.1	0.1	0.9	0.9	0.9	0.1	0.1
	0.1	0.1	0.1	0.1	0.1	0.1	0.9	0.9	0.9

_ Calculated P							
0.9	0.03	0.03	0.03				
0.03	0.9	0.03	0.03				
0.03	0.03	0.9	0.03				
0.03	0.03	0.03	0.9				

Calculated DYIZ

Analysis of model

- Analysed impact of hyperparameters
 - Firing rate of input neurons
 - Firing rate of prior neurons
 - Decay time constant
- Connection between model and Bayesian inference was shown
 - Network outputs spike according to Bayesian posterior
 - Trained weights converge towards the log of their respective probabilities

Conclusion

- Thesis provided insight to hierarchical spiking Winner-Take-All network model
- Showed that the network model can simulate effects like attention and changing beliefs through feedback
- Provided ideas on how to further analyse and improve the model

Sources

- Lee TS, Mumford D. (July 2003). "Hierarchical Bayesian inference in the visual cortex." In: J Opt Soc Am A Opt Image Sci Vis. DOI: doi:10.1364/josaa.20.001434
- Nessler, Bernhard et al. (Apr. 2013). "Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plastic ity." In: PLOS Computational Biology 9.4, pp. 1–30. doi: 10.1371/journal. pcbi.1003037. url: https://doi.org/10.1371/journal.pcbi.1003037