Title: Measuring Impact of Natural Events

Snopysis

This analysis measures the impact of natural events. The two metrics used to measure the impact of the natural events are fatalities and economic damage.

Data Processing

```
require("data.table")
## Loading required package: data.table
setwd("C:/Users/Eric.Kim/Desktop/TSA Files/Coursera/Reproducible
Research/Assignment 2")
#read bz2 file
storm<-read.csv("repdata-data-StormData.csv.bz2")</pre>
#aggregate fatalities by event
storm<-data.table(storm)</pre>
setkey(storm, EVTYPE)
health<-data.frame(storm[,sum(FATALITIES), by=EVTYPE])
names(health)[1]<-"event"</pre>
names(health)[2]<-"fatalities"</pre>
health<-health[with(health, order(-fatalities)),]
health<-head(health, 20)
#convert storm from data table to data frame
storm<-data.frame(storm)</pre>
#Transform the costs data by multipling by thousands or millions. The reason
for the transformation
#is to add the crop and property damage as total costs
storm$CROPDMG2<-ifelse(storm$CROPDMGEXP=='K', storm$CROPDMG*1000,</pre>
       ifelse(storm$CROPDMGEXP=='M', storm$CROPDMG*1000000, storm$CROPDMG))
storm$PROPDMG2<-ifelse(storm$PROPDMGEXP=='K', storm$PROPDMG*1000,</pre>
       ifelse(storm$PROPDMGEXP=='M', storm$PROPDMG*1000000, storm$PROPDMG))
#sum damage costs
storm$damage<-rowSums(storm[,38:39])</pre>
storm<-data.table(storm)</pre>
setkey(storm, EVTYPE)
damage<-data.frame(storm[,sum(damage), by=EVTYPE])</pre>
names(damage)[1]<-"event"</pre>
names(damage)[2]<-"damage"</pre>
damage<-damage[with(damage, order(-damage)),]</pre>
damage<-head(damage, 20)</pre>
```

Results

The most destructive natural events are tornados. They caused the most fatalities and economic damage is Tornado, resulting in 5,633 deaths and causing \$52B in damages.

Events Most Harmful to Public Health

```
#display to 20 fatal events
health
##
                          event fatalities
                       TORNADO
## 834
                                      5633
## 130
                EXCESSIVE HEAT
                                      1903
## 153
                   FLASH FLOOD
                                       978
## 275
                          HEAT
                                       937
## 464
                     LIGHTNING
                                       816
## 856
                                       504
                     TSTM WIND
## 170
                          FL00D
                                       470
## 585
                   RIP CURRENT
                                       368
## 359
                     HIGH WIND
                                       248
## 19
                     AVALANCHE
                                       224
                  WINTER STORM
                                       206
## 972
## 586
                                       204
                  RIP CURRENTS
## 278
                     HEAT WAVE
                                       172
## 140
                  EXTREME COLD
                                       160
## 760
             THUNDERSTORM WIND
                                       133
## 310
                    HEAVY SNOW
                                       127
## 141 EXTREME COLD/WIND CHILL
                                       125
## 676
                   STRONG WIND
                                       103
## 30
                      BLIZZARD
                                       101
                     HIGH SURF
## 350
                                       101
#plot fatalities by event
library(ggplot2)
ggplot(health, aes(event,
fatalities))+geom bar(stat="identity")+theme(axis.text.x = element text(angle
= 90, hjust = 1))+ggtitle("Events Most Harmful to Public Health")
```


Figure Description: The figure above lists the top 20 events that have caused the most fatalities

Events with the Greatest Economic Damage

```
#display events that cause the most economic damaging
damage
##
                     event
                              damage
                  TORNADO 5.204e+10
## 834
                     FLOOD 2.782e+10
## 170
## 244
                     HAIL 1.695e+10
## 153
              FLASH FLOOD 1.656e+10
## 95
                  DROUGHT 1.352e+10
## 402
                HURRICANE 8.910e+09
## 856
                TSTM WIND 5.039e+09
        HURRICANE/TYPHOON 4.904e+09
## 411
## 359
                HIGH WIND 4.609e+09
## 957
                 WILDFIRE 4.021e+09
## 427
                ICE STORM 3.967e+09
## 760
        THUNDERSTORM WIND 3.898e+09
## 848
           TROPICAL STORM 3.232e+09
## 786 THUNDERSTORM WINDS 1.924e+09
## 972
             WINTER STORM 1.715e+09
## 955
         WILD/FOREST FIRE 1.609e+09
##
  290
               HEAVY RAIN 1.428e+09
## 140
             EXTREME COLD 1.361e+09
```

```
## 212 FROST/FREEZE 1.104e+09
## 310 HEAVY SNOW 1.067e+09

#graph economic damage
ggplot(damage, aes(event,
damage))+geom_bar(stat="identity")+theme(axis.text.x = element_text(angle = 90, hjust = 1))+ggtitle("Events that Cause the Most Economic Damage")
```


Figure Description: The figure above lists the top 20 events that have caused the most economic damage