Another approach: gradient magnitude

- Don't need 2nd derivatives
- Just use magnitude of gradient
- Are we done? No!

What we really want: line drawing

Canny Edge Detection

- Your first image processing pipeline!
 - Old-school CV is all about pipelines

Algorithm:

- Smooth image (only want "real" edges, not noise)
- Calculate gradient direction and magnitude
- Non-maximum suppression perpendicular to edge
- Threshold into strong, weak, no edge
- Connect together components

Smooth image

- You know how to do this, gaussians!

Gradient magnitude and direction

- Sobel filter

- Want single pixel edges, not thick blurry lines
- Need to check nearby pixels
- See if response is highest

Non-maximum suppression Grodhent

Non-maximum suppression Gradient

Threshold edges

- Still some noise
- Only want strong edges
- 2 thresholds, 3 cases
 - R > T: strong edge
 - R < T but R > t: weak edge
 - R < t: no edge
- Why two thresholds?

Connect 'em up!

- Strong edges are edges!
- Weak edges are edges
 iff they connect to strong
- Look in some neighborhood (usually 8 closest)

not noise)
.tude
to edge

Canny Edge Detection

