Contents

Pı	Preface				
1	Introduction				
2	Sta	tistical	l Learning	15	
	2.1	What	Is Statistical Learning?	15	
		2.1.1	Why Estimate f ?	17	
		2.1.2	How Do We Estimate f ?	21	
		2.1.3	The Trade-Off Between Prediction Accuracy		
			and Model Interpretability	24	
		2.1.4	Supervised Versus Unsupervised Learning	26	
		2.1.5	Regression Versus Classification Problems	28	
	2.2	Assess	sing Model Accuracy	29	
		2.2.1	Measuring the Quality of Fit	29	
		2.2.2	The Bias-Variance Trade-Off	33	
		2.2.3	The Classification Setting	37	
	2.3	Lab: I	Introduction to R	42	
		2.3.1	Basic Commands	42	
		2.3.2	Graphics	45	
		2.3.3	Indexing Data	47	
		2.3.4	Loading Data	48	
		2.3.5	Additional Graphical and Numerical Summaries	49	
	2.4	Exerc	ises	52	

3	Lin	ear Regression	59
	3.1	Simple Linear Regression	61
		3.1.1 Estimating the Coefficients	61
		3.1.2 Assessing the Accuracy of the Coefficient	
		Estimates	63
		3.1.3 Assessing the Accuracy of the Model	68
	3.2	Multiple Linear Regression	71
		3.2.1 Estimating the Regression Coefficients	72
		3.2.2 Some Important Questions	75
	3.3	Other Considerations in the Regression Model	82
		3.3.1 Qualitative Predictors	82
		3.3.2 Extensions of the Linear Model	86
		3.3.3 Potential Problems	92
	3.4		102
	3.5	Comparison of Linear Regression with K -Nearest	
			104
	3.6		109
		g ·	109
			110
			113
			115
			115
			117
		•	119
	3.7	g	120
4	Cla	ssification	127
	4.1	An Overview of Classification	128
	4.2		129
	4.3		130
			131
			133
			134
			135
			137
	4.4		138
		4.4.1 Using Bayes' Theorem for Classification	138
			139
			142
		v -	149
	4.5	- *	151
	4.6		154
		, , , , , , , , , , , , , , , , , , ,	154
			156
		8 8	161

		4.6.4	Quadratic Discriminant Analysis	
		4.6.5	K-Nearest Neighbors	
		4.6.6	An Application to Caravan Insurance Data	
	4.7	Exerci	ises	168
5	Res	amplir	ng Methods	175
	5.1	_	-Validation	176
		5.1.1	The Validation Set Approach	176
		5.1.2	Leave-One-Out Cross-Validation	
		5.1.3	k-Fold Cross-Validation	181
		5.1.4	Bias-Variance Trade-Off for k -Fold	
			Cross-Validation	183
		5.1.5	Cross-Validation on Classification Problems	184
	5.2	The B	Bootstrap	187
	5.3	Lab: (Cross-Validation and the Bootstrap	190
		5.3.1	The Validation Set Approach	191
		5.3.2	Leave-One-Out Cross-Validation	
		5.3.3	k-Fold Cross-Validation	193
		5.3.4	The Bootstrap	194
	5.4	Exerci	ises	197
6	Lin	oor Ma	odel Selection and Regularization	203
U	6.1		t Selection	
	0.1	6.1.1	Best Subset Selection	
		6.1.2	Stepwise Selection	
		6.1.3	Choosing the Optimal Model	
	6.2		Rage Methods	
		6.2.1	Ridge Regression	215
		6.2.2	The Lasso	219
		6.2.3	Selecting the Tuning Parameter	
	6.3	Dimer	nsion Reduction Methods	
		6.3.1	Principal Components Regression	
		6.3.2	Partial Least Squares	
	6.4	Consid	derations in High Dimensions	
		6.4.1	High-Dimensional Data	
		6.4.2	-	239
		6.4.3	Regression in High Dimensions	241
		6.4.4	Interpreting Results in High Dimensions	243
	6.5	Lab 1:	: Subset Selection Methods	244
		6.5.1	Best Subset Selection	244
		6.5.2	Forward and Backward Stepwise Selection	247
		6.5.3	Choosing Among Models Using the Validation	
			Set Approach and Cross-Validation	248

	6.6		51 51	
		6.6.2 The Lasso	55	
	6.7	Lab 3: PCR and PLS Regression 2	56	
		1 1 0	56	
		<u>.</u>	58	
	6.8	Exercises	59	
7				
	7.1	v e	66	
	7.2	1	68	
	7.3		70	
	7.4	0 1	71	
		v	71	
		<u>.</u>	71	
		1	73	
		7.4.4 Choosing the Number and Locations	- .	
			74	
		1 0	76	
	7.5	G 1	77	
		8 I	77	
		9	78	
	7.6		80	
	7.7		82	
		0	83	
			86	
	7.8		87	
		v c	88	
		1	93	
			94	
	7.9	Exercises	97	
8	Tree		03	
	8.1	The Basics of Decision Trees	03	
		8.1.1 Regression Trees	04	
		8.1.2 Classification Trees	11	
		8.1.3 Trees Versus Linear Models	14	
		8.1.4 Advantages and Disadvantages of Trees 3	15	
	8.2	Bagging, Random Forests, Boosting	16	
		8.2.1 Bagging	16	
		8.2.2 Random Forests	19	
			21	
	8.3	ě	23	
			23	
			27	

		Contents	xiii
		8.3.3 Bagging and Random Forests	328
		8.3.4 Boosting	330
	8.4	Exercises	332
9	Cun	port Vector Machines	337
9	9.1	Maximal Margin Classifier	338
	9.1	9.1.1 What Is a Hyperplane?	338
		9.1.2 Classification Using a Separating Hyperplane	339
		9.1.3 The Maximal Margin Classifier	341
		9.1.4 Construction of the Maximal Margin Classifier	342
		9.1.5 The Non-separable Case	343
	9.2	Support Vector Classifiers	344
	0.2	9.2.1 Overview of the Support Vector Classifier	344
		9.2.2 Details of the Support Vector Classifier	345
	9.3	Support Vector Machines	349
		9.3.1 Classification with Non-linear Decision	0 -0
		Boundaries	349
		9.3.2 The Support Vector Machine	350
		9.3.3 An Application to the Heart Disease Data	354
	9.4	SVMs with More than Two Classes	355
		9.4.1 One-Versus-One Classification	355
		9.4.2 One-Versus-All Classification	356
	9.5	Relationship to Logistic Regression	356
	9.6	Lab: Support Vector Machines	359
		9.6.1 Support Vector Classifier	359
		9.6.2 Support Vector Machine	363
		9.6.3 ROC Curves	365
		9.6.4 SVM with Multiple Classes	366
		9.6.5 Application to Gene Expression Data	366
	9.7	Exercises	368
10	Uns	upervised Learning	373
		The Challenge of Unsupervised Learning	373
		Principal Components Analysis	
		10.2.1 What Are Principal Components?	375
		10.2.2 Another Interpretation of Principal Components	379
		10.2.3 More on PCA	380
		10.2.4 Other Uses for Principal Components	385
	10.3	Clustering Methods	385
		10.3.1 K -Means Clustering	386
		10.3.2 Hierarchical Clustering	390
		10.3.3 Practical Issues in Clustering	399
	10.4	Lab 1: Principal Components Analysis	401

xiv Contents

In	Index			
	10.7	Exercis	ses	413
		10.6.2	Clustering the Observations of the NCI60 Data	410
		10.6.1	PCA on the NCI60 Data	408
	10.6	Lab 3 :	NCI60 Data Example	407
		10.5.2	Hierarchical Clustering	406
		10.5.1	K-Means Clustering	404
	10.5	Lab 2:	Clustering	404