

Lecture 11

- 5.5 Fundamental Matrices
- 5.6 Repeated Eigenvalues

Now consider

$$\mathbf{x}' = P(t)\mathbf{x}$$

where P is an $n \times n$ matrix.

Now consider

$$\mathbf{x}' = P(t)\mathbf{x}$$

where P is an $n \times n$ matrix. Suppose that $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(n)}$ are linearly independent solutions to this ODE. In other words, suppose that $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(n)}$ form a fundamental set of solutions to this ODE.

Definition

The matrix

$$\Psi(t) = \begin{bmatrix} \mathbf{x}^{(1)} & \mathbf{x}^{(2)} & \dots & \mathbf{x}^{(n)} \end{bmatrix} = \begin{bmatrix} x_1^{(1)}(t) & x_1^{(2)}(t) & \dots & x_1^{(n)}(t) \\ x_2^{(1)}(t) & x_2^{(2)}(t) & \dots & x_2^{(n)}(t) \\ \vdots & \vdots & & \vdots \\ x_n^{(1)}(t) & x_n^{(2)}(t) & \dots & x_n^{(n)}(t) \end{bmatrix}$$

is called a fundamental matrix of $\mathbf{x}' = P(t)\mathbf{x}$.

Example

Find a fundamental matrix for

$$\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}.$$

Example

Find a fundamental matrix for

$$\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}.$$

Recall that

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t}$$
 and $\mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}$

form a fundamental set of solutions to this ODE.

Example

Find a fundamental matrix for

$$\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}.$$

Recall that

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t}$$
 and $\mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}$

form a fundamental set of solutions to this ODE. Therefore

$$\Psi(t) = \begin{bmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{bmatrix}$$

is a fundamental matrix of this ODE.

Now, the general solution to

$$\mathbf{x}' = A\mathbf{x}$$

is

$$\mathbf{x}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t) + \dots + c_n \mathbf{x}^{(n)}(t)$$

Now, the general solution to

$$\mathbf{x}' = A\mathbf{x}$$

is

$$\mathbf{x}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t) + \dots + c_n \mathbf{x}^{(n)}(t) = \Psi(t)\mathbf{c}$$

where

$$\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n.$$

Now, the general solution to

$$\mathbf{x}' = A\mathbf{x}$$

is

$$\mathbf{x}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t) + \dots + c_n \mathbf{x}^{(n)}(t) = \Psi(t)\mathbf{c}$$

where

$$\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n.$$

If we have an initial condition $\mathbf{x}(t_0) = \mathbf{x}^0$, then

$$\Psi(t_0)\mathbf{c} = \mathbf{x}^0.$$

$$\mathbf{x}(t) = \Psi(t)\mathbf{c} \qquad \qquad \Psi(t_0)\mathbf{c} = \mathbf{x}^0$$

But

$$\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$$
 are linearly independent

$$\mathbf{x}(t) = \Psi(t)\mathbf{c}$$
 $\Psi(t_0)\mathbf{c} = \mathbf{x}^0$

But

$$\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$$
 are linearly $\Longrightarrow \Psi(t)$ is invertible independent

$$\mathbf{x}(t) = \Psi(t)\mathbf{c} \qquad \qquad \Psi(t_0)\mathbf{c} = \mathbf{x}^0$$

But

$$\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$$
 are linearly $\Longrightarrow \Psi(t)$ is invertible independent $\Longrightarrow \mathbf{c} = \Psi^{-1}(t_0)\mathbf{x}^0.$

$$\mathbf{x}(t) = \Psi(t)\mathbf{c}$$
 $\Psi(t_0)\mathbf{c} = \mathbf{x}^0$

But

$$\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$$
 are linearly $\Longrightarrow \Psi(t)$ is invertible independent $\Longrightarrow \mathbf{c} = \Psi^{-1}(t_0)\mathbf{x}^0.$

Therefore the solution to the IVP

$$\begin{cases} \mathbf{x}' = A\mathbf{x} \\ \mathbf{x}(t_0) = \mathbf{x}^0 \end{cases}$$

is

$$\mathbf{x}(t) = \Psi(t)\Psi^{-1}(t_0)\mathbf{x}^0.$$

Theorem

Suppose that $\Psi(t)$ is a fundamental matrix for $\mathbf{x}' = P(t)\mathbf{x}$. Then $\Psi(t)$ solves the differential equation $\Psi' = P(t)\Psi$.

(You prove)

Remark

It is possible to find a special fundamental matrix, $\Phi(t)$, which satisfies

$$\Phi(t_0) = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} = I.$$

Remark

It is possible to find a special fundamental matrix, $\Phi(t)$, which satisfies

$$\Phi(t_0) = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} = I.$$

We will use Φ for this special fundamental matrix, and Ψ for any fundamental matrix.

Example

Consider

$$\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}.$$

Find the special fundamental matrix which satisfies $\Phi(0) = I$.

To find the matrix Φ which satisfies

$$\Phi(0) = \begin{bmatrix} 1 & \mathbf{0} \\ 0 & \mathbf{1} \end{bmatrix},$$

we must solve two IVPs:

$$\begin{cases} \mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x} \\ \mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{cases} \text{ and } \begin{cases} \mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x} \\ \mathbf{x}(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

The general solution to the ODE is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}.$$

We calculate that

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} \implies \begin{aligned} c_1 &= \frac{1}{2} \\ c_2 &= \frac{1}{2} \end{aligned}$$
$$\implies \mathbf{x}(t) = \begin{bmatrix} \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} \\ e^{3t} - e^{-t} \end{bmatrix}$$

We calculate that

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} \implies \begin{aligned} c_1 &= \frac{1}{2} \\ c_2 &= \frac{1}{2} \end{aligned}$$
$$\implies \mathbf{x}(t) = \begin{bmatrix} \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} \\ e^{3t} - e^{-t} \end{bmatrix}$$

and

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} \implies \begin{aligned} c_1 &= \frac{1}{4} \\ c_2 &= -\frac{1}{4} \end{aligned}$$
$$\implies \mathbf{x}(t) = \begin{bmatrix} \frac{1}{4}e^{3t} - \frac{1}{4}e^{-t} \\ \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} \end{bmatrix}.$$

Therefore the special fundamental matrix is

$$\Phi(t) = \begin{bmatrix} \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} & \frac{1}{4}e^{3t} - \frac{1}{4}e^{-t} \\ e^{3t} - e^{-t} & \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} \end{bmatrix}.$$

What is e^{At} ?

Recall that the solution to

$$\begin{cases} x' = ax \ (a \in \mathbb{R}) \\ x(0) = x_0 \end{cases}$$

is

$$x(t) = x_0 e^{at} = x_0 \exp(at)$$

and recall that

$$\exp(at) = 1 + \sum_{n=1}^{\infty} \frac{a^n t^n}{n!}.$$

Now consider

$$\begin{cases} \mathbf{x}' = A\mathbf{x} \\ \mathbf{x}(0) = \mathbf{x}^0 \end{cases}$$

for $A \in \mathbb{R}^{n \times n}$.

Now consider

$$\begin{cases} \mathbf{x}' = A\mathbf{x} \\ \mathbf{x}(0) = \mathbf{x}^0 \end{cases}$$

for $A \in \mathbb{R}^{n \times n}$.

Definition

$$\exp(At) = I + \sum_{n=1}^{\infty} \frac{A^n t^n}{n!} = I + At + \frac{A^2 t^2}{2!} + \frac{A^3 t^3}{3!} + \dots$$

$$\frac{d}{dt}\exp(At) = \frac{d}{dt}\left(I + \sum_{n=1}^{\infty} \frac{A^n t^n}{n!}\right) =$$

$$= =$$

$$=$$

$$\frac{d}{dt}\exp(At) = \frac{d}{dt}\left(I + \sum_{n=1}^{\infty} \frac{A^n t^n}{n!}\right) = 0 + \sum_{n=1}^{\infty} \frac{d}{dt}\left(\frac{A^n t^n}{n!}\right)$$

$$= = =$$

$$=$$

Note that

$$\frac{d}{dt}\exp(At) = \frac{d}{dt}\left(I + \sum_{n=1}^{\infty} \frac{A^n t^n}{n!}\right) = 0 + \sum_{n=1}^{\infty} \frac{d}{dt}\left(\frac{A^n t^n}{n!}\right)$$
$$= \sum_{n=1}^{\infty} \frac{A^n t^{n-1}}{(n-1)!} =$$
$$=$$

17 of 56

$$\frac{d}{dt}\exp(At) = \frac{d}{dt}\left(I + \sum_{n=1}^{\infty} \frac{A^n t^n}{n!}\right) = 0 + \sum_{n=1}^{\infty} \frac{d}{dt}\left(\frac{A^n t^n}{n!}\right)$$

$$= \sum_{n=1}^{\infty} \frac{A^n t^{n-1}}{(n-1)!} = A + \sum_{n=2}^{\infty} \frac{A^n t^{n-1}}{(n-1)!}$$

$$=$$

$$\frac{d}{dt} \exp(At) = \frac{d}{dt} \left(I + \sum_{n=1}^{\infty} \frac{A^n t^n}{n!} \right) = 0 + \sum_{n=1}^{\infty} \frac{d}{dt} \left(\frac{A^n t^n}{n!} \right)$$

$$= \sum_{n=1}^{\infty} \frac{A^n t^{n-1}}{(n-1)!} = A + \sum_{n=2}^{\infty} \frac{A^n t^{n-1}}{(n-1)!}$$

$$= A + \sum_{k=1}^{\infty} \frac{A^{k+1} t^k}{(k)!} \qquad (k = n - 1)$$

$$= \sum_{n=1}^{\infty} \frac{A^{k+1} t^k}{(k)!} = 0$$

$$\frac{d}{dt} \exp(At) = \frac{d}{dt} \left(I + \sum_{n=1}^{\infty} \frac{A^n t^n}{n!} \right) = 0 + \sum_{n=1}^{\infty} \frac{d}{dt} \left(\frac{A^n t^n}{n!} \right)$$

$$= \sum_{n=1}^{\infty} \frac{A^n t^{n-1}}{(n-1)!} = A + \sum_{n=2}^{\infty} \frac{A^n t^{n-1}}{(n-1)!}$$

$$= A + \sum_{k=1}^{\infty} \frac{A^{k+1} t^k}{(k)!} \qquad (k = n-1)$$

$$= A \left(I + \sum_{k=1}^{\infty} \frac{A^k t^k}{(k)!} \right) =$$

$$\frac{d}{dt} \exp(At) = \frac{d}{dt} \left(I + \sum_{n=1}^{\infty} \frac{A^n t^n}{n!} \right) = 0 + \sum_{n=1}^{\infty} \frac{d}{dt} \left(\frac{A^n t^n}{n!} \right)$$

$$= \sum_{n=1}^{\infty} \frac{A^n t^{n-1}}{(n-1)!} = A + \sum_{n=2}^{\infty} \frac{A^n t^{n-1}}{(n-1)!}$$

$$= A + \sum_{k=1}^{\infty} \frac{A^{k+1} t^k}{(k)!} \qquad (k = n-1)$$

$$= A \left(I + \sum_{k=1}^{\infty} \frac{A^k t^k}{(k)!} \right) = A \exp(At).$$

This means that $\exp(At)$ solves

$$\begin{cases} \left(\exp(At)\right)' = A\exp(At) \\ \exp(At)|_{t=0} = I. \end{cases}$$

This means that $\exp(At)$ solves

$$\begin{cases} \left(\exp(At)\right)' = A\exp(At) \\ \exp(At)|_{t=0} = I. \end{cases}$$

But remember that Φ solves

$$\begin{cases} \Phi' = A\phi \\ \Phi(0) = I. \end{cases}$$

This means that $\exp(At)$ solves

$$\begin{cases} \left(\exp(At)\right)' = A\exp(At) \\ \exp(At)|_{t=0} = I. \end{cases}$$

But remember that Φ solves

$$\begin{cases} \Phi' = A\phi \\ \Phi(0) = I. \end{cases}$$

Therefore

$$\Phi(t) = \exp(At).$$

Example

Let
$$A = \begin{bmatrix} 8 & -1 \\ 6 & 1 \end{bmatrix}$$
. Find $\exp(At)$.

Example

Let
$$A = \begin{bmatrix} 8 & -1 \\ 6 & 1 \end{bmatrix}$$
. Find $\exp(At)$.

We have previously found that the general solution to $\mathbf{x}' = A\mathbf{x}$ is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{7t} + c_2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} e^{2t}.$$

To satisfy
$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 we require $c_1 = \frac{6}{5}$ and $c_2 = -\frac{1}{5}$. Hence

$$\mathbf{x}(t) = \frac{6}{5} \begin{bmatrix} 1\\1 \end{bmatrix} e^{7t} - \frac{1}{5} \begin{bmatrix} 1\\6 \end{bmatrix} e^{2t} = \begin{bmatrix} \frac{6}{5}e^{7t} - \frac{1}{5}e^{2t}\\ \frac{6}{5}e^{7t} - \frac{6}{5}e^{2t} \end{bmatrix}.$$

To satisfy
$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 we require $c_1 = \frac{6}{5}$ and $c_2 = -\frac{1}{5}$. Hence

$$\mathbf{x}(t) = \frac{6}{5} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{7t} - \frac{1}{5} \begin{bmatrix} 1 \\ 6 \end{bmatrix} e^{2t} = \begin{bmatrix} \frac{6}{5}e^{7t} - \frac{1}{5}e^{2t} \\ \frac{6}{5}e^{7t} - \frac{6}{5}e^{2t} \end{bmatrix}.$$

To satisfy
$$\mathbf{x}(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 we require $c_1 = -\frac{1}{5}$ and $c_2 = \frac{1}{5}$. Hence

$$\mathbf{x}(t) = -\frac{1}{5} \begin{bmatrix} 1\\1 \end{bmatrix} e^{7t} + \frac{1}{5} \begin{bmatrix} 1\\6 \end{bmatrix} e^{2t} = \begin{bmatrix} -\frac{1}{5}e^{7t} + \frac{1}{5}e^{2t}\\ -\frac{1}{5}e^{7t} + \frac{6}{5}e^{2t} \end{bmatrix}.$$

Therefore the answer is

$$\exp(At) = \Phi(t) = \begin{bmatrix} \frac{6}{5}e^{7t} - \frac{1}{5}e^{2t} & -\frac{1}{5}e^{7t} + \frac{1}{5}e^{2t} \\ \frac{6}{5}e^{7t} - \frac{6}{5}e^{2t} & -\frac{1}{5}e^{7t} + \frac{6}{5}e^{2t} \end{bmatrix}.$$

Diagonalisable Matrices

If

$$D = \begin{bmatrix} r_1 & 0 & 0 & \dots & 0 \\ 0 & r_2 & 0 & \dots & 0 \\ 0 & 0 & r_3 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & r_n \end{bmatrix}$$

is a diagonal matrix, then it is easy to calculate $\exp(Dt)$. We simply have

$$\exp(Dt) = \begin{bmatrix} e^{r_1t} & 0 & 0 & \dots & 0 \\ 0 & e^{r_2t} & 0 & \dots & 0 \\ 0 & 0 & e^{r_3t} & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & e^{r_nt} \end{bmatrix}.$$

Now consider

$$\mathbf{x}' = A\mathbf{x}$$

for $A \in \mathbb{R}^{n \times n}$.

Now consider

$$\mathbf{x}' = A\mathbf{x}$$

for $A \in \mathbb{R}^{n \times n}$. Recall how we diagonalise a matrix: If $\boldsymbol{\xi}^{(1)}$, $\boldsymbol{\xi}^{(2)}$, ..., $\boldsymbol{\xi}^{(n)}$ are the eigenvectors of A, we let

$$T = egin{bmatrix} oldsymbol{\xi}^{(1)} & oldsymbol{\xi}^{(2)} & \dots & oldsymbol{\xi}^{(n)} \end{bmatrix}.$$

Now consider

$$\mathbf{x}' = A\mathbf{x}$$

for $A \in \mathbb{R}^{n \times n}$. Recall how we diagonalise a matrix: If $\boldsymbol{\xi}^{(1)}$, $\boldsymbol{\xi}^{(2)}$, ..., $\boldsymbol{\xi}^{(n)}$ are the eigenvectors of A, we let

$$T = \begin{bmatrix} \boldsymbol{\xi}^{(1)} & \boldsymbol{\xi}^{(2)} & \dots & \boldsymbol{\xi}^{(n)} \end{bmatrix}.$$

Then

$$\det(T) \neq 0 \implies \begin{array}{c} T^{-1} \\ \text{exists} \end{array}$$

Now consider

$$\mathbf{x}' = A\mathbf{x}$$

for $A \in \mathbb{R}^{n \times n}$. Recall how we diagonalise a matrix: If $\boldsymbol{\xi}^{(1)}$, $\boldsymbol{\xi}^{(2)}$, ..., $\boldsymbol{\xi}^{(n)}$ are the eigenvectors of A, we let

$$T = \begin{bmatrix} \boldsymbol{\xi}^{(1)} & \boldsymbol{\xi}^{(2)} & \dots & \boldsymbol{\xi}^{(n)} \end{bmatrix}.$$

Then

$$\det(T) \neq 0 \implies \begin{array}{c} T^{-1} \\ \text{exists} \end{array} \implies \begin{array}{c} T^{-1}AT \\ \text{is diagonal} \end{array}$$

Now consider

$$\mathbf{x}' = A\mathbf{x}$$

for $A \in \mathbb{R}^{n \times n}$. Recall how we diagonalise a matrix: If $\boldsymbol{\xi}^{(1)}$, $\boldsymbol{\xi}^{(2)}$, ..., $\boldsymbol{\xi}^{(n)}$ are the eigenvectors of A, we let

$$T = \begin{bmatrix} \boldsymbol{\xi}^{(1)} & \boldsymbol{\xi}^{(2)} & \dots & \boldsymbol{\xi}^{(n)} \end{bmatrix}.$$

Then

$$\det(T) \neq 0 \implies \begin{array}{c} T^{-1} \\ \text{exists} \end{array} \implies \begin{array}{c} T^{-1}AT \\ \text{is diagonal} \end{array} \implies \begin{array}{c} A \text{ is} \\ \text{diagonalisable.} \end{array}$$

Example

Diagonalise

$$A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}.$$

Example

Diagonalise

$$A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}.$$

The eigenvalues are $r_1 = 3$ and $r_2 = -1$. The corresponding eigenvectors are $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

Example

Diagonalise

$$A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}.$$

The eigenvalues are $r_1 = 3$ and $r_2 = -1$. The corresponding eigenvectors are $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Thus

$$T = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}$$

Example

Diagonalise

$$A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}.$$

The eigenvalues are $r_1 = 3$ and $r_2 = -1$. The corresponding eigenvectors are $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Thus

$$T = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} \quad \text{and} \quad T^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{4} \end{bmatrix}.$$

Example

Diagonalise

$$A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}.$$

The eigenvalues are $r_1 = 3$ and $r_2 = -1$. The corresponding eigenvectors are $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Thus

$$T = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}$$
 and $T^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{4} \end{bmatrix}$.

It follows that

$$D = T^{-1}AT = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}.$$

Now consider

$$\mathbf{x}' = A\mathbf{x}.$$

Now consider

$$\mathbf{x}' = A\mathbf{x}$$
.

Define a new variable \mathbf{y} by

$$\mathbf{x} = T\mathbf{y}$$
 or $\mathbf{y} = T^{-1}\mathbf{x}$.

Now consider

$$\mathbf{x}' = A\mathbf{x}$$
.

Define a new variable \mathbf{y} by

$$\mathbf{x} = T\mathbf{y}$$
 or $\mathbf{y} = T^{-1}\mathbf{x}$.

Then we calculate that

$$\mathbf{x}' = A\mathbf{x}$$

Now consider

$$\mathbf{x}' = A\mathbf{x}$$
.

Define a new variable \mathbf{y} by

$$\mathbf{x} = T\mathbf{y}$$
 or $\mathbf{y} = T^{-1}\mathbf{x}$.

Then we calculate that

$$\mathbf{x}' = A\mathbf{x}$$
$$T\mathbf{y}' = AT\mathbf{y}$$

Now consider

$$\mathbf{x}' = A\mathbf{x}$$
.

Define a new variable \mathbf{y} by

$$\mathbf{x} = T\mathbf{y}$$
 or $\mathbf{y} = T^{-1}\mathbf{x}$.

Then we calculate that

$$\mathbf{x}' = A\mathbf{x}$$

 $T\mathbf{y}' = AT\mathbf{y}$
 $\mathbf{y}' = T^{-1}AT\mathbf{y} = D\mathbf{y}$.

We know that a fundamental matrix for $\mathbf{y}' = D\mathbf{y}$ is

$$\exp(Dt) = \begin{bmatrix} e^{r_1t} & 0 & \dots & 0 \\ 0 & e^{r_2t} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & e^{r_nt} \end{bmatrix}.$$

We know that a fundamental matrix for $\mathbf{y}' = D\mathbf{y}$ is

$$\exp(Dt) = \begin{bmatrix} e^{r_1t} & 0 & \dots & 0 \\ 0 & e^{r_2t} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & e^{r_nt} \end{bmatrix}.$$

Therefore a fundamental matrix for $\mathbf{x}' = A\mathbf{x}$ is

$$\Psi = T \exp(Dt) = \begin{vmatrix} \boldsymbol{\xi}^{(1)} e^{r_1 t} & \boldsymbol{\xi}^{(2)} e^{r_2 t} & \dots & \boldsymbol{\xi}^{(n)} e^{r_n t} \end{vmatrix}.$$

Example

Find a fundamental matrix for

$$\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}.$$

Example

Find a fundamental matrix for

$$\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}.$$

Recall that
$$T = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}$$
.

Example

Find a fundamental matrix for

$$\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}.$$

Recall that
$$T = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}$$
. Letting $\mathbf{y} = T^{-1}\mathbf{x}$, we have

$$\mathbf{y}' = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{y}.$$

A fundamental matrix for
$$\mathbf{y}' = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{y}$$
 is

$$\exp(Dt) = e^{Dt} = \begin{bmatrix} e^{3t} & 0\\ 0 & e^{-t} \end{bmatrix}.$$

A fundamental matrix for
$$\mathbf{y}' = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{y}$$
 is

$$\exp(Dt) = e^{Dt} = \begin{bmatrix} e^{3t} & 0\\ 0 & e^{-t} \end{bmatrix}.$$

Hence a fundamental matrix for $\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}$ is

$$\Psi(t) = T \exp(Dt)$$

A fundamental matrix for
$$\mathbf{y}' = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{y}$$
 is

$$\exp(Dt) = e^{Dt} = \begin{bmatrix} e^{3t} & 0\\ 0 & e^{-t} \end{bmatrix}.$$

Hence a fundamental matrix for $\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}$ is

$$\Psi(t) = T \exp(Dt) = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} e^{3t} & 0 \\ 0 & e^{-t} \end{bmatrix}$$

A fundamental matrix for
$$\mathbf{y}' = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{y}$$
 is

$$\exp(Dt) = e^{Dt} = \begin{bmatrix} e^{3t} & 0\\ 0 & e^{-t} \end{bmatrix}.$$

Hence a fundamental matrix for $\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}$ is

$$\Psi(t) = T \exp(Dt) = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} e^{3t} & 0 \\ 0 & e^{-t} \end{bmatrix} = \begin{bmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{bmatrix}.$$

Repeated Eigenvalues

5.6 Repeated Eigenvalues

Example

Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$.

5.6 Repeated Eigenvalues

Example

Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$.

We calculate that

$$0 = \det(A - rI) = \begin{vmatrix} 1 - r & -1 \\ 1 & 3 - r \end{vmatrix} = r^2 - 4r + 4 = (r - 2)^2.$$

Therefore $r_1 = 2 = r_2$.

5.6 Repeated Eigenvalues

Example

Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$.

We calculate that

$$0 = \det(A - rI) = \begin{vmatrix} 1 - r & -1 \\ 1 & 3 - r \end{vmatrix} = r^2 - 4r + 4 = (r - 2)^2.$$

Therefore $r_1 = 2 = r_2$. Moreover

$$\mathbf{0} = (A - rI)\,\boldsymbol{\xi} = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \implies \xi_1 + \xi_2 = 0 \implies \boldsymbol{\xi} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Example

Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$.

We calculate that

$$0 = \det(A - rI) = \begin{vmatrix} 1 - r & -1 \\ 1 & 3 - r \end{vmatrix} = r^2 - 4r + 4 = (r - 2)^2.$$

Therefore $r_1 = 2 = r_2$. Moreover

$$\mathbf{0} = (A - rI)\,\boldsymbol{\xi} = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \implies \xi_1 + \xi_2 = 0 \implies \boldsymbol{\xi} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Note that A has only one linearly independent eigenvector.

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} \mathbf{x}.$$

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} \mathbf{x}.$$

We know that

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t}$$

is a solution. But we need two solutions.

Guess 1: I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t}$$

for some $\boldsymbol{\xi} \in \mathbb{R}^2$.

Guess 1: I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t}$$

$$\mathbf{x}^{(2)\prime} = A\mathbf{x}^{(2)}$$

Guess 1: I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t}$$

$$\xi e^{2t} + 2\xi t e^{2t} = \mathbf{x}^{(2)\prime} = A\mathbf{x}^{(2)}$$

Guess 1: I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t}$$

$$\boldsymbol{\xi}e^{2t} + 2\boldsymbol{\xi}te^{2t} = \mathbf{x}^{(2)\prime} = A\mathbf{x}^{(2)} = A\boldsymbol{\xi}te^{2t}$$

Guess 1: I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t}$$

$$\xi e^{2t} + 2\xi t e^{2t} = \mathbf{x}^{(2)\prime} = A\mathbf{x}^{(2)} = A\xi t e^{2t}$$

 $\xi + (2\xi - A\xi)t = \mathbf{0} \quad \forall t$

Guess 1: I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t}$$

for some $\boldsymbol{\xi} \in \mathbb{R}^2$. Then we have

$$\boldsymbol{\xi}e^{2t} + 2\boldsymbol{\xi}te^{2t} = \mathbf{x}^{(2)\prime} = A\mathbf{x}^{(2)} = A\boldsymbol{\xi}te^{2t}$$
$$\boldsymbol{\xi} + (2\boldsymbol{\xi} - A\boldsymbol{\xi})t = \mathbf{0} \qquad \forall t$$
$$\implies \boldsymbol{\xi} = \mathbf{0}.$$

This guess did not work.

Guess 2: Now I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t} + \boldsymbol{\eta} e^{2t}$$

for some $\boldsymbol{\xi}, \boldsymbol{\eta} \in \mathbb{R}^2$.

Guess 2: Now I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t} + \boldsymbol{\eta} e^{2t}$$

for some $\boldsymbol{\xi}, \boldsymbol{\eta} \in \mathbb{R}^2$. Then we have

$$\mathbf{x}^{(2)\prime} = A\mathbf{x}^{(2)}$$

Guess 2: Now I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t} + \boldsymbol{\eta} e^{2t}$$

for some $\boldsymbol{\xi}, \boldsymbol{\eta} \in \mathbb{R}^2$. Then we have

$$\xi e^{2t} + 2\xi t e^{2t} + 2\eta e^{2t} = \mathbf{x}^{(2)\prime} = A\mathbf{x}^{(2)}$$

Guess 2: Now I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t} + \boldsymbol{\eta} e^{2t}$$

for some $\boldsymbol{\xi}, \boldsymbol{\eta} \in \mathbb{R}^2$. Then we have

$$\xi e^{2t} + 2\xi t e^{2t} + 2\eta e^{2t} = \mathbf{x}^{(2)\prime} = A\mathbf{x}^{(2)} = A\left(\xi t e^{2t} + \eta e^{2t}\right)$$

Guess 2: Now I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t} + \boldsymbol{\eta} e^{2t}$$

for some $\boldsymbol{\xi}, \boldsymbol{\eta} \in \mathbb{R}^2$. Then we have

$$\boldsymbol{\xi}e^{2t} + 2\boldsymbol{\xi}te^{2t} + 2\boldsymbol{\eta}e^{2t} = \mathbf{x}^{(2)\prime} = A\mathbf{x}^{(2)} = A\left(\boldsymbol{\xi}te^{2t} + \boldsymbol{\eta}e^{2t}\right)$$

and

$$(2\boldsymbol{\xi} - A\boldsymbol{\xi}) t + (\boldsymbol{\xi} + 2\boldsymbol{\eta} - A\boldsymbol{\eta}) = \mathbf{0}.$$

Guess 2: Now I guess that

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t} + \boldsymbol{\eta} e^{2t}$$

for some $\boldsymbol{\xi}, \boldsymbol{\eta} \in \mathbb{R}^2$. Then we have

$$\boldsymbol{\xi}e^{2t} + 2\boldsymbol{\xi}te^{2t} + 2\boldsymbol{\eta}e^{2t} = \mathbf{x}^{(2)\prime} = A\mathbf{x}^{(2)} = A\left(\boldsymbol{\xi}te^{2t} + \boldsymbol{\eta}e^{2t}\right)$$

and

$$(2\boldsymbol{\xi} - A\boldsymbol{\xi}) t + (\boldsymbol{\xi} + 2\boldsymbol{\eta} - A\boldsymbol{\eta}) = \mathbf{0}.$$

Since this must be true $\forall t$, we must have

$$(A-2I)\boldsymbol{\xi} = \mathbf{0}$$
 and $(A-2I)\boldsymbol{\eta} = \boldsymbol{\xi}$.

5.6

$(A-2I)\boldsymbol{\xi} = \boldsymbol{0} \qquad (A-2I)\boldsymbol{\eta} = \boldsymbol{\xi}$

Clearly
$$\boldsymbol{\xi} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
.

Clearly
$$\boldsymbol{\xi} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
. Then we calculate that

$$\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \implies \eta_1 + \eta_2 = -1$$

Clearly $\boldsymbol{\xi} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Then we calculate that

$$\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \implies \eta_1 + \eta_2 = -1$$

$$\implies \boldsymbol{\eta} = \begin{bmatrix} k \\ -1 - k \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} + k \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

for some k.

Clearly $\boldsymbol{\xi} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Then we calculate that

$$\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \implies \eta_1 + \eta_2 = -1$$

$$\implies \boldsymbol{\eta} = \begin{bmatrix} k \\ -1 - k \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} + k \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

for some k. So

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t} + \boldsymbol{\eta} e^{2t} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} t e^{2t} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} e^{2t} + k \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t}$$

Clearly $\boldsymbol{\xi} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Then we calculate that

$$\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \implies \eta_1 + \eta_2 = -1$$

$$\implies \boldsymbol{\eta} = \begin{bmatrix} k \\ -1 - k \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} + k \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

for some k. So

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t} + \boldsymbol{\eta} e^{2t} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} t e^{2t} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} e^{2t} + k \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t}$$
$$= \begin{bmatrix} 1 \\ -1 \end{bmatrix} t e^{2t} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} e^{2t} + k \mathbf{x}^{(1)}(t).$$

$$\mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} t e^{2t} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} e^{2t} + k\mathbf{x}^{(1)}(t)$$

Because we already have $\mathbf{x}^{(1)}(t)$, we can choose k=0. So

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t} + \boldsymbol{\eta} e^{2t} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} t e^{2t} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} e^{2t}.$$

The general solution of $\mathbf{x}' = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} \mathbf{x}$ is therefore

$$\mathbf{x}(t) = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} = c_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t} + c_2 \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} t e^{2t} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} e^{2t} \right).$$

Example

Find a fundamental matrix for

$$\mathbf{x}' = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} \mathbf{x}.$$

Then find the special fundamental matrix $\Phi(t)$ which satisfies $\Phi(0) = I$.

Since
$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t}$$
 and $\mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} t e^{2t} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} e^{2t}$ we have that

$$\Psi(t) = \begin{bmatrix} \mathbf{x}^{(1)} & \mathbf{x}^{(2)} \end{bmatrix} = \begin{bmatrix} e^{2t} & te^{2t} \\ -e^{2t} & -te^{2t} - e^{2t} \end{bmatrix}$$

is a fundamental matrix for this system.

$\Psi(t) = \begin{bmatrix} e^{2t} & te^{2t} \\ -e^{2t} & -te^{2t} - e^{2t} \end{bmatrix}$

Now

$$\Psi(0) = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$$
 and $\Psi^{-1}(0) = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$.

Now

$$\Psi(0) = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$$
 and $\Psi^{-1}(0) = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$.

Therefore

$$\exp(At) = \Phi(t) = \Psi(t)\Psi^{-1}(0)$$

$$\Psi(t) = \begin{bmatrix} e^{2t} & te^{2t} \\ -e^{2t} & -te^{2t} - e^{2t} \end{bmatrix}$$

Now

$$\Psi(0) = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} \quad \text{and} \quad \Psi^{-1}(0) = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}.$$

Therefore

$$\exp(At) = \Phi(t) = \Psi(t)\Psi^{-1}(0) = e^{2t} \begin{bmatrix} 1 & t \\ -1 & -1 - t \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$$

$$\Psi(t) = \begin{bmatrix} e^{2t} & te^{2t} \\ -e^{2t} & -te^{2t} - e^{2t} \end{bmatrix}$$

Now

$$\Psi(0) = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} \quad \text{and} \quad \Psi^{-1}(0) = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}.$$

Therefore

$$\exp(At) = \Phi(t) = \Psi(t)\Psi^{-1}(0) = e^{2t} \begin{bmatrix} 1 & t \\ -1 & -1 - t \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$$
$$= e^{2t} \begin{bmatrix} 1 - t & -t \\ t & 1 + t \end{bmatrix}.$$

Remark

$$\mathbf{x}' = A\mathbf{x}$$

For two repeated eigenvalues (but with only one linearly independent eigenvector), the key equations to remember are

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{rt} + \boldsymbol{\eta} e^{rt}$$
 and $(A - rI)\boldsymbol{\eta} = \boldsymbol{\xi}$.

$$(A - rI)\boldsymbol{\eta} = \boldsymbol{\xi}$$

Remark

$$\mathbf{x}' = A\mathbf{x}$$

For two repeated eigenvalues (but with only one linearly independent eigenvector), the key equations to remember are

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{rt} + \boldsymbol{\eta} e^{rt}$$
 and $(A - rI)\boldsymbol{\eta} = \boldsymbol{\xi}$.

Definition

 η is called a generalised eigenvector of A.

Remark

If you have 2 repeated eigenvalues (but with only one linearly independent eigenvector), the method is:

- 1 Find the eigenvalues and eigenvectors;
- **2** The first solution is $\mathbf{x}^{(1)}(t) = \boldsymbol{\xi} e^{rt}$;
- Use $(A rI)\eta = \xi$ to find a generalised eigenvector η ;
- **4** The second solution is $\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{rt} + \boldsymbol{\eta} e^{rt}$.

Example

Solve

$$\begin{cases} \mathbf{x}' = \begin{bmatrix} -\frac{5}{2} & \frac{3}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{bmatrix} \mathbf{x}, \\ \mathbf{x}(0) = \begin{bmatrix} 3 \\ -1 \end{bmatrix}. \end{cases}$$

The only eigenvalue of the matrix is r=-1. The corresponding eigenvector is $\boldsymbol{\xi}=\begin{bmatrix}1\\1\end{bmatrix}$. Therefore one solution of the linear system is

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi} e^{rt} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t}.$$

We need to find a second, linearly independent solution. We will consider the ansatz

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{-t} + \boldsymbol{\eta} e^{-t}$$

where $\boldsymbol{\xi} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ as above and $\boldsymbol{\eta}$ is a generalised eigenvector solving $(A - rI)\boldsymbol{\eta} = \boldsymbol{\xi}$.

Solving the latter equation,

$$(A-rI)\pmb{\eta}=\pmb{\xi}$$

Solving the latter equation,

$$(A - rI)\boldsymbol{\eta} = \boldsymbol{\xi}$$

$$\begin{bmatrix} -\frac{3}{2} & \frac{3}{2} \\ -\frac{3}{2} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Solving the latter equation,

$$(A - rI)\boldsymbol{\eta} = \boldsymbol{\xi}$$

$$\begin{bmatrix} -\frac{3}{2} & \frac{3}{2} \\ -\frac{3}{2} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$-\frac{3}{2}\eta_1 + \frac{3}{2}\eta_2 = 1$$

Solving the latter equation,

$$(A - rI)\boldsymbol{\eta} = \boldsymbol{\xi}$$

$$\begin{bmatrix} -\frac{3}{2} & \frac{3}{2} \\ -\frac{3}{2} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$-\frac{3}{2}\eta_1 + \frac{3}{2}\eta_2 = 1$$

$$-\eta_1 + \eta_2 = \frac{2}{3}$$

Solving the latter equation,

$$(A - rI)\boldsymbol{\eta} = \boldsymbol{\xi}$$

$$\begin{bmatrix} -\frac{3}{2} & \frac{3}{2} \\ -\frac{3}{2} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$-\frac{3}{2}\eta_1 + \frac{3}{2}\eta_2 = 1$$

$$-\eta_1 + \eta_2 = \frac{2}{3}$$

we can choose
$$\boldsymbol{\eta} = \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix}$$
.

Note that we don't need to find every generalised eigenvector

$$\boldsymbol{\eta} = \begin{bmatrix} k \\ k + \frac{2}{3} \end{bmatrix} = k \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix} = k\boldsymbol{\xi} + \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix}$$

because we already have $\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}e^{rt}$.

Note that we don't need to find every generalised eigenvector

$$\eta = \begin{bmatrix} k \\ k + \frac{2}{3} \end{bmatrix} = k \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix} = k \xi + \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix}$$

because we already have $\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}e^{rt}$.

Instead we only need to find one generalised eigenvector – that means that we can choose any k that we want.

Note that we don't need to find every generalised eigenvector

$$\boldsymbol{\eta} = \begin{bmatrix} k \\ k + \frac{2}{3} \end{bmatrix} = k \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix} = k\boldsymbol{\xi} + \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix}$$

because we already have $\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}e^{rt}$.

Instead we only need to find *one* generalised eigenvector – that means that we can choose any k that we want.

Hence I have chosen k = 0 which gives $\eta = \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix}$.

eigenvector

generalised eigenvector

$$\boldsymbol{\xi} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\eta = \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix}$$

Thus

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi} e^{-t} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t}$$

and

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{-t} + \boldsymbol{\eta} e^{-t} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-t} + \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix} e^{-t}.$$

eigenvector

generalised eigenvector

$$\boldsymbol{\xi} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\boldsymbol{\eta} = \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix}$$

Thus

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi} e^{-t} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t}$$

and

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{-t} + \boldsymbol{\eta} e^{-t} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-t} + \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix} e^{-t}.$$

Hence the general solution to the linear system is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-t} + \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix} e^{-t} \right).$$

The initial condition gives

$$\begin{bmatrix} 3 \\ -1 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix}$$

which implies that $c_1 = 3$ and $c_2 = -6$.

The initial condition gives

$$\begin{bmatrix} 3 \\ -1 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix}$$

which implies that $c_1 = 3$ and $c_2 = -6$.

$$\mathbf{x}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t} - 6 \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-t} + \begin{bmatrix} 0 \\ \frac{2}{3} \end{bmatrix} e^{-t} \right) = \begin{bmatrix} 3 \\ -1 \end{bmatrix} e^{-t} - 6 \begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-t}.$$

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} 1 & -4 \\ 4 & -7 \end{bmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$$

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} 1 & -4 \\ 4 & -7 \end{bmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$$

The only eigenvalue of the matrix is r=-3. The corresponding eigenvector is $\boldsymbol{\xi}=\begin{bmatrix}1\\1\end{bmatrix}$.

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} 1 & -4 \\ 4 & -7 \end{bmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$$

The only eigenvalue of the matrix is r=-3. The corresponding eigenvector is $\boldsymbol{\xi}=\begin{bmatrix}1\\1\end{bmatrix}$. Therefore one solution of the linear system is

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}e^{rt} = \begin{bmatrix} 1\\1 \end{bmatrix} e^{-3t}.$$

Next we need to find a generalised eigenvector η .

$$(A-rI)\eta=\xi$$

$$\begin{bmatrix} 4 & -4 \\ 4 & -4 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$4\eta_1 - 4\eta_2 = 1$$

$$-\eta_1 + \eta_2 = -\frac{1}{4}$$

$$\eta_2 = \eta_1 - \frac{1}{4}.$$

We calculate that

$$\eta_2 = \eta_1 - \frac{1}{4}.$$

We can choose any vector $\boldsymbol{\eta}$ that satisfies $\eta_2 = \eta_1 - \frac{1}{4}$.

We calculate that

$$\eta_2 = \eta_1 - \frac{1}{4}.$$

We can choose any vector $\boldsymbol{\eta}$ that satisfies $\eta_2 = \eta_1 - \frac{1}{4}$. Thus we may choose $\boldsymbol{\eta} = \begin{bmatrix} 0 \\ -\frac{1}{4} \end{bmatrix}$.

eigenvector

generalised eigenvector

$$\boldsymbol{\xi} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\eta = \begin{bmatrix} 0 \\ -\frac{1}{4} \end{bmatrix}$$

Therefore

$$\mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-3t} + \begin{bmatrix} 0 \\ -\frac{1}{4} \end{bmatrix} e^{-3t}.$$

Hence the general solution to the ODE is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-3t} + c_2 \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-3t} + \begin{bmatrix} 0 \\ -\frac{1}{4} \end{bmatrix} e^{-3t} \right).$$

The initial condition gives

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ -\frac{1}{4} \end{bmatrix}$$

which implies that $c_1 = 3$ and $c_2 = 4$.

$$\mathbf{x}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-3t} + 4 \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-3t} + \begin{bmatrix} 0 \\ -\frac{1}{4} \end{bmatrix} e^{-3t} \right)$$

$$=$$

$$=$$

$$=$$

$$\mathbf{x}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-3t} + 4 \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-3t} + \begin{bmatrix} 0 \\ -\frac{1}{4} \end{bmatrix} e^{-3t} \right)$$
$$= \begin{bmatrix} 3 \\ 2 \end{bmatrix} e^{-3t} + 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-3t}$$
$$= .$$

$$\mathbf{x}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-3t} + 4 \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-3t} + \begin{bmatrix} 0 \\ -\frac{1}{4} \end{bmatrix} e^{-3t} \right)$$
$$= \begin{bmatrix} 3 \\ 2 \end{bmatrix} e^{-3t} + 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-3t}$$
$$= \begin{bmatrix} 3 + 4t \\ 2 + 4t \end{bmatrix} e^{-3t}.$$

Next Time

■ 5.7 Nonhomogeneous Linear Systems