Quizlet

CS433 Chapter 6 - Deadlock and Starvation

Study online at quizlet.com/_3e56yr

	All deadlocks involve conflicting needs for resources by two or more processes. The allows multiple threads to have	True readers/writer	17. 6	For deadlock to occur, there must not only be a fatal region, but also a sequence of resource requests that has led into the fatal region.	True
3.	simultaneous read-only access to an object protected by the lock. allows the three necessary conditions but makes judicious choices to	Deadlock avoidance		If access to a resource requires mutual exclusion then mutual exclusion must be supported by the OS	True
	assure that the deadlock point is never reached.	avoidance		An indirect method of deadlock prevention is to prevent the occurrence of a circular	False
4.	An atomic operation executes without interruption and without interference.	True		wait. Inspired by the concept of co-routines, a is a circular buffer allowing two processes to communicate on the producer-consumer model.	pipe
5.	can be defined as the permanent blocking of a set of processes that either compete for system resources or communicate with	Deadlock	1		
6.	each other. A closed chain of processes exists, such that each process holds at least one	Circular wait	i	Interrupts, signals, messages, and information in I/O buffers are all examples of reusable resources.	False
	resource needed by the next process in the chain is the condition of		:	The is a directed graph that depicts a state of the system of resources and	resource allocation
7.	The condition can be prevented by defining a linear ordering of resource	circular wait	ı	rocesses, with each process and each esource represented by a node.	graph
8.	The condition can be prevented by	Hold and	i	A is a software mechanism that informs a process of the occurrence of asynchronous events.	Signal
	requiring that a process request all of its required resources at one time and blocking the process until all requests can be granted simultaneously.	Wait	23.	The is useful in sending a signal to a thread indicating that a particular event has occurred.	event object
9.	Deadlock avoidance is more restrictive than deadlock prevention	False	fa co	 24. Linux provides three types of semaphore facilities in the kernel: binary semaphores, counting semaphores, and 25. The most common technique used for protecting a critical section in Linux is the 26. A mutex is used to ensure that only one thread at a time can access the resource protected by the mutex. 27. The of the system reflects the current allocation of resources to processes. 	reader- writer semaphores
10.	Deadlock avoidance requires knowledge of future process resource requests.	True			
11.	Deadlock is permanent because none of the events are ever triggered.	True			spinlock
	The dining philosophers' problem can be representative of problems dealing with the coordination of shared resources which may occur when an application includes	True	1		True
13	concurrent threads of execution. Examples of include processors,	Reusable			state
	I/O channels, main and secondary memory, devices, and data structures such as files,	Resources	28.	Once the processes have progressed into the, those processes will deadlock.	Fatal Region
14.	databases, and semaphores. An executable entity within a process is a object.	thread	ı	29. One of the most significant contributions of UNIX to the development of operating systems is the	Pipe
15.	The fastest form of interprocess communication provided in UNIX is	Shared Memory	30.	The OS may preempt the second process and require it to release its resources if a process requests a resource that is currently held by another process.	True

31. A program invocation, including the address space and resources required to run the program is a object.	process
32. Requested resources are granted to processes whenever possible with	deadlock detection
33. A resource is one that can be created and destroyed.	consumable
34. A resource is one that can be safely used by only one process at a time and is not depleted by that use	reusable
35. A set of processes is when each process in the set is blocked awaiting an event that can only be triggered by another blocked process in the set.	Deadlocked
36. A signal is similar to a hardware interrupt but does not employ priorities.	True
37 strategies are very conservative and solve the problem of deadlock by limiting access to resources and by imposing restrictions on processes.	Deadlock prevention
38. The strategy of deadlock is to design a system in such a way that the possibility of deadlock is excluded.	Prevention
39. The strategy of resource allocation denial is referred to as the	banker's algorithm
40. Three conditions of policy must be present for a deadlock to be possible: mutual exclusion, no preemption, and	hold and wait
4). Three general approaches exist for dealing with deadlock: prevent, avoid, and	detect
42. Two types of atomic operations are defined in Linux: integer operations and	bitmap operations
43. An unsafe state is one in which there is at least one sequence of resource allocations to processes that does not result in a deadlock.	False
44. A useful tool in characterizing the allocation of resources to processes is the resource allocation graph.	True
45. With only one process may use a resource at a time and no process may access a resource unit that has been allocated to another process.	mutual exclusion