MCE 412- Autonomous Robotics

A compact course on linear algebra

Motivation

The linear systems are used extensively in the course, perhaps their most critical application in robotics is the representation of position and orientation.

Vectors

- Arrays of numbers
- Represents a point in a n-dimensional space

Vectors: Scalar Product

- lacktriangle Scalar-vector product $k \cdot \mathbf{a}$
- Changes the length of the vector, but not its direction

Vectors: Sum

Sum of vectors (is commutative)

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Can be visualized as chaining the vectors

Vectors: Dot Product

Inner product of vectors (is a scalar)

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \sum_{i} a_i \cdot b_i$$

- Length of vector
- If one of the two vectors ${\bf a}$ has $||{\bf a}||=1$ the inner product $|{\bf a}\cdot{\bf b}|$ returns the length of the projection of ${\bf b}$ along the direction of a
- $lackbox{ If } \mathbf{a} \cdot \mathbf{b} = \mathbf{0}$ the two vectors are orthogonal

Vectors: Linear (In)Dependence

- lacktriangle A vector ${f b}$ is **linearly dependent** from $\{{f a_1,a_2,\ldots,a_n}\}$ if ${f b}=\sum k_i\cdot {f a_i}$
- In other words if b can be obtained by summing up the \mathbf{a}_i properly scaled.
- If there exists no $\{k_i\}$ such that $\mathbf{b}=\sum_i k_i\cdot \mathbf{a}_i$ then \mathbf{b} is independent from $\{\mathbf{a}_i\}$

Matrices

A matrix is a collection of vectors and also a matrix is written as a table of values.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}$$

- Can be used in many ways
- Multiplication by a scalar, sum, multiplication by a vector, inversion, transposition are the examples of matrix operation.

Matrices as Collections of Vectors

Column vectors

Matrices as Collections of Vectors

Row Vectors

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{1*}^{I} \\ \mathbf{a}_{2*}^{T} \\ \vdots \\ \mathbf{a}_{*n}^{T} \end{pmatrix}$$

Matrices Operations

- Sum (commutative, associative)
- Product (not commutative)
- Inversion (square, full rank)
- Transposition
- Multiplication by a scalar
- Multiplication by a vector

Matrix Vector Product

- lacktriangle The i-th component of ${f A}\cdot{f b}$ is the dot product ${f a}_{i*}^T\cdot{f b}$
- lacktriangle The vector ${f A}\cdot{f b}$ is linearly dependent from $\{{f a}_{*i}\}$ with coefficients $\{b_i\}$

$$\mathbf{A} \cdot \mathbf{b} = \begin{pmatrix} \mathbf{a}_{1*}^T \\ \mathbf{a}_{2*}^T \\ \vdots \\ \mathbf{a}_{n*}^T \end{pmatrix} \cdot \mathbf{b} = \begin{pmatrix} \mathbf{a}_{1*}^T \cdot \mathbf{b} \\ \mathbf{a}_{2*}^T \cdot \mathbf{b} \\ \vdots \\ \mathbf{a}_{n*}^T \cdot \mathbf{b} \end{pmatrix} = \sum_k \mathbf{a}_{*k} \cdot b_k$$

Matrix Vector Product

If the column vectors of **A** represents a reference system, the product $\mathbf{A} \cdot \mathbf{b}$ computes the global transformation of the vector \mathbf{b} according to $\{\mathbf{a}_{*i}\}$

Matrix Vector Product

- $a_{i,j}$ can be seen as a linear mixing coefficient that tells how it contributes to $({f A}\cdot{f b})_j$
- Example: Jacobian of a multi-dimensional function

$$\mathbf{y} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{x}) \end{pmatrix} \mathbf{J}_f = \begin{pmatrix} \frac{d\mathbf{f}_1}{dx_1} & \frac{d\mathbf{f}_1}{dx_2} & \cdots & \frac{d\mathbf{f}_1}{dx_m} \\ \frac{d\mathbf{f}_2}{dx_1} & \frac{d\mathbf{f}_2}{dx_2} & \cdots & \frac{d\mathbf{f}_2}{dx_m} \\ \vdots & \ddots & \vdots \\ \frac{d\mathbf{f}_n}{dx_1} & \frac{d\mathbf{f}_n}{dx_2} & \cdots & \frac{d\mathbf{f}_n}{dx_m} \end{pmatrix}$$

Matrix Matrix Product

- Can be defined through
 - the dot product of row and column vectors
 - the linear combination of the columns of A scaled by the coefficients of the columns of B

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} \\
= \begin{pmatrix}
\mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*m} \\
\mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*m} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*m}
\end{pmatrix}$$

$$= \begin{pmatrix}
\mathbf{A} \cdot \mathbf{b}_{*1} & \mathbf{A} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{A} \cdot \mathbf{b}_{*m}
\end{pmatrix}$$

Matrix Matrix Product

- If we consider the second interpretation we see that the columns of C are the projections of the columns of B through A.
- All the interpretations made for the matrix vector product hold.

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$$

$$= \begin{pmatrix} \mathbf{A} \cdot \mathbf{b}_{*1} & \mathbf{A} \cdot \mathbf{b}_{*2} & \dots \mathbf{A} \cdot \mathbf{b}_{*m} \end{pmatrix}$$

$$\mathbf{c}_{*i} = \mathbf{A} \cdot \mathbf{b}_{*i}$$

Linear Systems

Ax = b

- Interpretations
 - Find the coordinates **x** in the reference system of **A** such that **b** is the result of the transformation of **Ax**.
 - Many efficient solvers
 - Conjugate gradients
 - Sparse Cholesky Decomposition (if SPD)
 - .
 - The system may be over or under constrained.
 - One can obtain a reduced system (A'b') by considering the matrix (A,b) and suppressing all the rows which are linearly dependent.

Linear Systems

- The system is **over-constrained** if the number of linearly independent columns or rows of **A**' is greater than the dimension of **b**'.
- An over constrained system does not admit a solution, however one may find a minimum norm solution by pseudo inversion

$$\mathbf{x} = \underset{\mathbf{x}}{\operatorname{argmin}} ||\mathbf{A}'\mathbf{x} - \mathbf{b}'|| = (\mathbf{A'}^T\mathbf{A}')^{-1}\mathbf{A'}^T\mathbf{b}'$$

Linear Sytems

- The system is **under-constrained** if the number of linearly independent columns or rows of **A**' is smaller than the dimension of **b**'.
- An under constrained system admits infinite solutions.

Trace

- Only defined for square matrices
- Sum of the elements on the main diagonal, that is

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

- It is a linear operator with the following properties
 - Additivity: $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
 - lacktriangle Homogeneity: $\operatorname{tr}(c \cdot A) = c \cdot \operatorname{tr}(A)$
 - Pairwise commutative: $\operatorname{tr}(AB) = \operatorname{tr}(BA), \quad \operatorname{tr}(ABC) \neq \operatorname{tr}(ACB)$
- Trace is similarity invariant $\operatorname{tr}(P^{-1}AP) = \operatorname{tr}((AP^{-1})P) = \operatorname{tr}(A)$
- Trace is transpose invariant $\operatorname{tr}(A) = \operatorname{tr}(A^T)$

21

Rank

- Maximum number of linearly independent rows (columns)
- lacktriangle Dimension of the image of the transformation $f(\mathbf{x}) = A\mathbf{x}$
- When A is $m \times n$ we have
 - $\operatorname{rank}(A) \geq 0$ and equality holds iff A is the null matrix
 - ightharpoonup . $\operatorname{rank}(A) \le \min(m, n)$
 - If m=n and A is invertible iff $\operatorname{rank}(A)=n$
- Computation of the rank is done by
 - Perform Gaussian elimination on the matrix
 - Count the number of non-zero rows

Identity Matrix

3x3 identity matrix

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrix Inversion

AB = I

- If A is a square matrix of full rank, then there is a unique matrix B=A⁻¹ such that the above equation holds.
- The ith row of A and the jth column of A⁻¹ are
 - Orthogonal if i≠j
 - Or their scalar (dot) product is 1 (if i=j)
- The ith column of A⁻¹ can be found by solving the following system

$$\mathbf{A}\mathbf{a}^{-1}{}_{*i}=\mathbf{i}_{*i}$$
 — This is the i^{th} column of the identity matrix

- Only defined for square matrices
- $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}$ if and only if $det(\mathbf{A}) \neq 0$
- For 2x2 matrices

Let
$$\mathbf{A} = [a_{ij}]$$
 and $|\mathbf{A}| = det(\mathbf{A})$ then

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

For 3x3 matrices

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11} \end{vmatrix}$$

For general n x n matrices

Let \mathbf{A}_{ij} be the submatrix obtained from A by deleting the i-th row and the j-th column

Rewrite the determinant for 3x3 matrices

$$det(\mathbf{A}_{3\times 3}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11}$$
$$= a_{11} \cdot det(\mathbf{A}_{11}) - a_{12} \cdot det(\mathbf{A}_{12}) + a_{13} \cdot det(\mathbf{A}_{13})$$

For general n x n matrices

$$det(\mathbf{A}) = a_{11}det(\mathbf{A}_{11}) - a_{12}det(\mathbf{A}_{12}) + \dots + (-1)^{1+n}a_{1n}det(\mathbf{A}_{1n})$$
$$= \sum_{j=1}^{n} (-1)^{1+j}a_{1j}det(\mathbf{A}_{1j})$$

Let $\mathbf{C}_{ij} = (-1)^{i+j} det(\mathbf{A}_{ij})$ be the (i,j)-cofactor, then

$$det(\mathbf{A}) = a_{11}\mathbf{C}_{11} + a_{12}\mathbf{C}_{12} + \dots + a_{1n}\mathbf{C}_{1n}$$
$$= \sum_{j=1}^{n} a_{1j}\mathbf{C}_{1j}$$

This is called the **cofactor expansion** across the first row.

- Problem: Take a 25x25 matrix (which considered small). The cofactor expansion method requires n! multiplications.
- There are much faster methods, namely using Gaussian elimination to bring the matrix into triangular form. Then

$$\mathbf{A} = \begin{bmatrix} d_1 & * & * & * \\ 0 & d_2 & * & * \\ 0 & 0 & d_3 & * \\ 0 & 0 & 0 & d_4 \end{bmatrix} \qquad det(\mathbf{A}) = \prod_{i=1}^n d_i$$

Because for triangular matrices (with A being invertible), the determinant is the product of diagonal elements

Determinant Properties

- Row operations (A still a n x n square matrix)
 - ▶ If B results from A by interchanging two rows, then $det(\mathbf{B}) = -det(\mathbf{A})$
 - ▶ If B results from A by multiplying one row with a number c, then $det(\mathbf{B}) = c \cdot det(\mathbf{A})$
 - ▶ If B results from A by adding a multiple of one row to another row, then $det(\mathbf{B}) = det(\mathbf{A})$
- Transpose: $det(\mathbf{A}^T) = det(\mathbf{A})$
- lacktriangle Multiplication: $det(\mathbf{A} \cdot \mathbf{B}) = det(\mathbf{A}) \cdot det(\mathbf{B})$
- Does not apply to addition $det(\mathbf{A} + \mathbf{B}) \neq det(\mathbf{A}) + det(\mathbf{B})$

Determinant: Applications

- Solve the characteristic polynomial $det(\mathbf{A}-\lambda\cdot\mathbf{I})=0$
- Area and Volume: $area = |det(\mathbf{A})|$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
area
$$\begin{bmatrix} a & b \\ ad-bc \end{bmatrix}$$

(r_i is i-th row)

Orthogonal Matrix

A matrix Q is orthogonal iff its column (row) vectors represent an orthonormal basis

$$q_{*i} \cdot q_{*j} = \begin{cases} 1 & \text{if} & i = j \\ 0 & \text{if} & i \neq j \end{cases}, \forall i, j$$

- As linear transformation, it is norm preserving, and acts as an isometry in Euclidean space (rotation, reflection)
- Some properties:
 - $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \hline \end{$
 - Determinant has unity norm (± 1)

$$1 = det(I) = det(Q^T Q) = det(Q)det(Q^T) = det(Q)^2$$

Rotational Matrix

- Important in robotics
 - 2D rotations

$$R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

3D Rotations along the main axes

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \quad R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

Important: Rotations are not commutative

$$R_x(\frac{\pi}{4}) \cdot R_y(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & 0 & -0.707 \\ -0.5 & 0.707 & -0.5 \\ 0.5 & 0.707 & 0.5 \end{bmatrix}, R_x(\frac{\pi}{4}) \cdot R_y(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.414 \\ 0.586 \\ 3.414 \end{bmatrix}$$

$$R_y(\frac{\pi}{4}) \cdot R_x(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & -0.5 & -0.5 \\ 0 & 0.707 & -0.707 \\ 0.707 & 0.5 & 0.5 \end{bmatrix}, R_y(\frac{\pi}{4}) \cdot R_x(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.793 \\ 0.707 \\ 3.207 \end{bmatrix}$$

Matrices as Affine Transformations

A general and easy way to describe a 3D transformation is via matrices

- Homogeneous behavior in 2D and 3D
- Takes naturally into account the noncommutativity of the transformations

Combining Transformations

- Simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame (the sensor has no clue on where it is in the world)
 - Where is the object in the global frame?

Combining Transformations

- Simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame (the sensor has no clue on where it is in the world)
 - Where is the object in the global frame?

Bp gives me the pose of the object wrt the robot

Combining Transformations

- Simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame (the sensor has no clue on where it is in the world)
 - Where is the object in the global frame?

Bp gives me the pose of the object wrt the robot

ABp gives me the pose of the object wrt the world

Symmetric matrix

- A matrix A is symmetric if $A=A^T$, e.g. $\begin{bmatrix} 1 & 4 & -2 \\ 4 & -1 & 3 \\ -2 & 3 & 5 \end{bmatrix}$
- A matrix A is anti-symmetric if $A=-A^T$, e.g. $\begin{bmatrix} 0 & 4 & -2 \\ -4 & 0 & 3 \\ 2 & -3 & 0 \end{bmatrix}$
- Every symmetric matrix
 - lacktriangleq Can be diagonalizable $\,D=QAQ^T\,$ where D is a diagonal matrix of eigenvalues and Q is an orthogonal matrix whose columns are the eigenvectors of A
 - Define a quadratic form

$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = \sum_{i,j=1}^n a_{ij} x_i x_j$$

Positive definite matrix

- The analogous of positive number
- Definition

$$M > 0 \text{ iff } \forall z \neq 0 : z^T M z > 0$$

Examples

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} z_1 & z_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = z_1^2 + z_2^2 > 0$$

$$M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} z_1 & z_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = 2z_1z_2 < 0, z_1 = -z_2$$

Positive definite matrix

- Properties
 - Invertible, with positive definite inverse
 - All eigenvalues >0
 - Trace >0
 - For any positive definite A, AA^T , A^TA are positive definite
 - Cholesky decomposition $A = LL^T$

Jacobian Matrix

- It is a non-square matrix nxm in general
- Suppose you have a vector valued function

$$f(\mathbf{x}) = \left[\begin{array}{c} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{array} \right]$$

Let the gradient operator be the vector of (first order) partial derivatives

$$\nabla_{\mathbf{x}} = \begin{bmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \dots & \frac{\partial}{\partial x_n} \end{bmatrix}^T$$

Then the Jacobian matrix is defined as

$$\mathbf{F}_{\mathbf{x}} = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x_1} & \dots & \frac{\partial}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \dots & \frac{\partial f_2}{\partial x_n} \end{bmatrix}$$

Jacobian Matrix

It is the orientation of the tangent plane to the vector valued function at a given point

- Generalizes the gradient of a scalar valued function
- Heavily used for first order error propagation

$$\mathbf{C}_{out} = \mathbf{F} \cdot \mathbf{C}_{in} \cdot \mathbf{F}^T$$

Quadratic Forms

Many important functions can be locally approximated with a quadratic form

$$f(\mathbf{x}) = \sum_{i,j} a_{ij} x_i x_j + \sum_i b_i x_i + c$$
$$= \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b} \mathbf{x} + c$$

 Often one is interested in finding the minimum (or maximum) of a quadratic form

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})$$

Quadratic Forms

How can we use the matrix properties to quickly compute a solution to this minimization problem?

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})$$

At the minimum we have

$$f'(\hat{\mathbf{x}}) = 0$$

By using the definition of matrix product we can compute f'

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b} \mathbf{x} + c$$

 $f'(\mathbf{x}) = \mathbf{A}^T \mathbf{x} + \mathbf{A} \mathbf{x} + \mathbf{b}$

Quadratic Forms

- The minimum of $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b} \mathbf{x} + c$ is where its derivative is set to O
- Thus we can solve the system

$$0 = \mathbf{A}^T \mathbf{x} + \mathbf{A} \mathbf{x} + \mathbf{b}$$
$$(\mathbf{A}^T + \mathbf{A})\mathbf{x} = -\mathbf{b}$$

If the matrix is symmetric, the system becomes

$$2Ax = -b$$

References

Matrix Cookbook, http://matrixcookbook.com