Tipagem das Relações Binárias.

CCMP0133 - Aula 09

Prof. Valdigleis S. Costa valdigleis.costa@univasf.edu.br

14 de junho de 2022

Universidade Federal do Vale do São Francisco Colegiado de Ciência da Computação *Campus* Salgueiro-PE

Roteiro

Tipo Identidade, Reflexivo e Irreflexivo

Tipo Simétrico, Assimétrico e Anti-simétrico

Tipo Transitivo e Intransitivo

Tipo Identidade, Reflexivo e

Irreflexivo

O Primeiro Tipo

Definição (Tipo Identidade)

Uma relação R é dita ser uma relação de identidade (ou relação idêntica) sempre que R é igual ao conjunto $\{(x,x) \mid x \in A\}$.

O Primeiro Tipo

Definição (Tipo Identidade)

Uma relação R é dita ser uma relação de identidade (ou relação idêntica) sempre que R é igual ao conjunto $\{(x,x) \mid x \in A\}$.

Exemplo

Considerando o conjunto $A = \{1, 2, 3, 4\}$ a relação $M = \{(3, 3), (1, 1), (2, 2)\}$ é uma relação de identidade, já a relação $Q = \{(1, 1), (2, 2), (3, 4)\}$ não é uma relações de identidade.

Propriedades das Relações de Identidade

Teorema (Neutralidade da relação de identidade)

Se R é uma relação sobre A, então as seguintes igualdade são verdadeiras:

- (i) $R \bullet Id_A = R$.
- (ii) $Id_A \bullet R = R$.

Teorema

Se A é um conjunto não vazio, então $I_A^{-1} = I_A$.

O Segundo Tipo

Definição (Tipo Reflexivo)

Uma relação R é dita ser reflexiva quando para todo $x \in A$ tem-se que x R x.

O Segundo Tipo

Definição (Tipo Reflexivo)

Uma relação R é dita ser reflexiva quando para todo $x \in A$ tem-se que x R x.

- Quando é que uma relação R não é reflexiva?
- Qual a diferença entre o tipo reflexivo e o tipo identidade?

O Segundo Tipo

Definição (Tipo Reflexivo)

Uma relação R é dita ser reflexiva quando para todo $x \in A$ tem-se que x R x.

- Quando é que uma relação R não é reflexiva?
- Qual a diferença entre o tipo reflexivo e o tipo identidade?

Exemplo

Dado o conjunto $A = \{a, b, c\}$ tem-se que:

- (a) $K = \{(a, a), (b, c), (b, b), (c, c), (a, c), (c, a)\}$ é uma relação reflexiva, mas não é a identidade do conjunto A.
- (a) $M = \{(a, a), (b, b), (c, c)\}$ é uma relação reflexiva e é também a relação identidade do conjunto A.

Propriedades do Tipo Reflexivo (1)

Teorema (Caracterização das Relações Reflexivas)

Uma relação R é reflexiva se, e somente se, $I_A \subset R$.

Propriedades do Tipo Reflexivo (1)

Teorema (Caracterização das Relações Reflexivas)

Uma relação R é reflexiva se, e somente se, $I_A \subset R$.

Corolário

Uma relação R é reflexiva se, e somente se, R^{-1} é reflexiva.

Propriedades do Tipo Reflexivo (1)

Teorema (Caracterização das Relações Reflexivas)

Uma relação R é reflexiva se, e somente se, $I_A \subset R$.

Corolário

Uma relação R é reflexiva se, e somente se, R^{-1} é reflexiva.

Teorema (Fecho Algébrico das Relações Reflexivas)

Se R_1 e R_2 são relações reflexivas sobre o mesmo conjunto, então $R_1 \cup R_2$ e $R_1 \cap R_2$ são também relações reflexivas.

Propriedades do Tipo Reflexivo (2)

Teorema

Seja R_1 uma relação reflexiva sobre um conjunto A e seja R_2 um relação qualquer sobre o conjunto A, tem-se $R_1 \cup R_2$ é uma relação reflexiva.

Propriedades do Tipo Reflexivo (2)

Teorema

Seja R_1 uma relação reflexiva sobre um conjunto A e seja R_2 um relação qualquer sobre o conjunto A, tem-se $R_1 \cup R_2$ é uma relação reflexiva.

Teorema

Se R é uma relação reflexiva, então $R \bullet R^{-1}$ e $R^{-1} \bullet R$ são também relações reflexivas.

Propriedades do Tipo Reflexivo (2)

Teorema

Seja R_1 uma relação reflexiva sobre um conjunto A e seja R_2 um relação qualquer sobre o conjunto A, tem-se $R_1 \cup R_2$ é uma relação reflexiva.

Teorema

Se R é uma relação reflexiva, então $R \bullet R^{-1}$ e $R^{-1} \bullet R$ são também relações reflexivas.

Teorema

Se R é uma relação reflexiva, então as seguintes afirmações são verdadeiras.

- (i) $R \subset R \bullet R$.
- (ii) R R é reflexiva.

O Terceiro Tipo

Definição (Tipo Irreflexivo)

Uma relação R é dita ser irreflexiva quando para todo $x \in A$ tem-se que $x \not R x$.

O Terceiro Tipo

Definição (Tipo Irreflexivo)

Uma relação R é dita ser irreflexiva quando para todo $x \in A$ tem-se que $x \not R x$.

Exemplo

Seja P o conjunto de todas as pessoas, e seja R a relação "ser vó", tem-se que R é irreflexiva pois é claro que ninguém pode ser vó de si próprio, portanto, para todo $x \in P$ tem-se que $x \not R x$.

Exemplo

A relação $R = \{(x, x) \in \mathbb{N}^2 \mid x \neq x\}$ é irreflexiva ou não?

Tipo Simétrico, Assimétrico e

Anti-simétrico

O Quarto Tipo

Definição (Tipo Simétrico)

Uma relação R é dita ser simétrica quando para todo $x,y \in A$ se x R y, então y R x.

Quando uma relação não é simétrica?

O Quarto Tipo

Definição (Tipo Simétrico)

Uma relação R é dita ser simétrica quando para todo $x, y \in A$ se x R y, então y R x.

Quando uma relação não é simétrica?

Exemplo

Dado o conjunto $A = \{-3, -2, -1, 0, 1, 2, 3, 4\}$ o conjunto $\{(x, y) \in A^2 \mid x + y \ge 6\}$ é claramente uma relação simétrica sobre A.

Exemplo

Sendo $B = \{1, 2, 3, 4\}$ o conjunto $\{(1, 1), (1, 3), (4, 2), (2, 4), (2, 2), (3, 1)\}$ é claramente uma relação simétrica sobre B.

Teorema (Caracterização das Relações Simétricas)

Uma relação R será simétrica se, e somente se, $R = R^{-1}$.

Teorema (Caracterização das Relações Simétricas)

Uma relação R será simétrica se, e somente se, $R = R^{-1}$.

Corolário

Se R é simétrica, então $R \bullet R^{-1} = R^{-1} \bullet R$.

Teorema (Caracterização das Relações Simétricas)

Uma relação R será simétrica se, e somente se, $R = R^{-1}$.

Corolário

Se R é simétrica, então $R \bullet R^{-1} = R^{-1} \bullet R$.

Teorema

Se R e S são relações simétricas, então $R \cup S$ e $R \cap S$ também são simétricas.

Teorema (Caracterização das Relações Simétricas)

Uma relação R será simétrica se, e somente se, $R = R^{-1}$.

Corolário

Se R é simétrica, então $R \bullet R^{-1} = R^{-1} \bullet R$.

Teorema

Se R e S são relações simétricas, então $R \cup S$ e $R \cap S$ também são simétricas.

Teorema

Se R é uma relação qualquer, então $R \bullet R^{-1}$ e $R^{-1} \bullet R$ são ambas simétricas.

Teorema (Caracterização das Relações Simétricas)

Uma relação R será simétrica se, e somente se, $R = R^{-1}$.

Corolário

Se R é simétrica, então $R \bullet R^{-1} = R^{-1} \bullet R$.

Teorema

Se R e S são relações simétricas, então $R \cup S$ e $R \cap S$ também são simétricas.

Teorema

Se R é uma relação qualquer, então $R \bullet R^{-1}$ e $R^{-1} \bullet R$ são ambas simétricas.

Teorema

Se R é uma relação qualquer, então $R \cup R^{-1}$ e $R \cap R^{-1}$ são ambas simétricas.

Definição (Tipo Assimétrico)

Uma relação R é dita ser assimétrica quando para todo $x, y \in A$ se x R y, então y R x.

Definição (Tipo Assimétrico)

Uma relação R é dita ser assimétrica quando para todo $x, y \in A$ se x R y, então $y \not R x$.

• Quando é que uma relação R não é assimétrica?

Definição (Tipo Assimétrico)

Uma relação R é dita ser assimétrica quando para todo $x, y \in A$ se x R y, então $y \not R x$.

• Quando é que uma relação R não é assimétrica?

Exemplo

A relação $R=\{(x,y)\in\mathbb{N}\mid x-y\leq 0\}$ é uma relação assimétrica

Exemplo

Considere que P é a relação de paternidade definida sobre o conjunto dos seres humanos, isto é, x P y significa que x é pai de y, obviamente esta relação é assimétrica pois dado que um indivíduo x é pai de um certo y é impossível que y seja pai de x, ou seja, sempre que x R y será verdade que y R x.

Definição (Tipo Assimétrico)

Uma relação R é dita ser assimétrica quando para todo $x, y \in A$ se x R y, então $y \not R x$.

• Quando é que uma relação R não é assimétrica?

Exemplo

A relação $R = \{(x,y) \in \mathbb{N} \mid x-y \leq 0\}$ é uma relação assimétrica

Exemplo

Considere que P é a relação de paternidade definida sobre o conjunto dos seres humanos, isto é, x P y significa que x é pai de y, obviamente esta relação é assimétrica pois dado que um indivíduo x é pai de um certo y é impossível que y seja pai de x, ou seja, sempre que x R y será verdade que y R x.

Teorema

Se R é uma relação assimétrica sobre A, então R é uma relação irreflexiva sobre A.

Definição (Tipo Anti-simétrico)

Uma relação R é dita ser anti-simétrica quando para todo $x,y \in A$ se x R y e y R x, então x=y.

Definição (Tipo Anti-simétrico)

Uma relação R é dita ser anti-simétrica quando para todo $x,y \in A$ se x R y e y R x, então x = y.

• Quando é que uma relação não é anti-simétrica?

Definição (Tipo Anti-simétrico)

Uma relação R é dita ser anti-simétrica quando para todo $x,y \in A$ se x R y e y R x, então x = y.

• Quando é que uma relação não é anti-simétrica?

Exemplo

Considerando $A = \{1, 2, 3, 4\}$ e $R = \{(1, 1), (2, 3), (4, 4), (4, 3)\}$ tem-se que R é claramente anti-simétrica.

Definição (Tipo Anti-simétrico)

Uma relação R é dita ser anti-simétrica quando para todo $x,y \in A$ se x R y e y R x, então x = y.

• Quando é que uma relação não é anti-simétrica?

Exemplo

Considerando $A = \{1, 2, 3, 4\}$ e $R = \{(1, 1), (2, 3), (4, 4), (4, 3)\}$ tem-se que R é claramente anti-simétrica.

Exemplo

Dado um conjunto A qualquer a relação de subconjunto \subseteq sobre $\wp(A)$ é uma relação que é anti-simétrica, pois para todo $X,Y\in\wp(A)$ quando $X\subseteq Y$ e $X\subseteq Y$ tem-se por definição que X=Y.

Teorema (Caracterização das Relações Anti-simétricas)

Uma relação R é anti-simétrica sobre A se, e somente se, $R \cap R^{-1} \subseteq I_A$.

Teorema (Caracterização das Relações Anti-simétricas)

Uma relação R é anti-simétrica sobre A se, e somente se, $R \cap R^{-1} \subseteq I_A$.

Corolário

Uma relação R é anti-simétrica se, e somente se, R^{-1} for anti-simétrica.

Teorema

Se R e S são relações anti-simétricas, então $R \cap S$ também é anti-simétrica.

Tipo Transitivo e Intransitivo

O Sétimo Tipo

Definição (O Tipo Transitivo)

Uma relação R é dita ser transitiva sempre que para todo $x, y, z \in A$ tem-se que se x R y e y R z, então x R z.

O Sétimo Tipo

Definição (O Tipo Transitivo)

Uma relação R é dita ser transitiva sempre que para todo $x, y, z \in A$ tem-se que se x R y e y R z, então x R z.

• Quando é que uma relação R não é transitiva?

O Sétimo Tipo

Definição (O Tipo Transitivo)

Uma relação R é dita ser transitiva sempre que para todo $x, y, z \in A$ tem-se que se x R y e y R z, então x R z.

• Quando é que uma relação R não é transitiva?

Exemplo

A relação $R = \{(i,j) \in \mathbb{Z}^2 \mid (\exists k \in \mathbb{Z})[i = kj]\}$ é uma relação transitiva.

Exemplo

Dado um conjunto A qualquer a relação de subconjunto \subseteq sobre $\wp(A)$ é uma relação que é transitiva, pois para todo $A, B, C \in \wp(A)$ quando $A \subseteq B$ e $B \subseteq C$ tem-se que $A \subseteq C$.

Propriedades das Relações Transitivas

Teorema (Caracterização das Relações Transitivas)

Uma relação R é transitiva sobre A se, e somente se, $R \bullet R \subset R$.

Propriedades das Relações Transitivas

Teorema (Caracterização das Relações Transitivas)

Uma relação R é transitiva sobre A se, e somente se, $R \bullet R \subset R$.

Corolário

Uma relação R é transitiva se, e somente se, R^{-1} for transitiva.

Teorema

Se R e S são relações transitivas, então $R \cap S$ também é transitiva.

Teorema

Se R é transitiva então, R • R também é transitiva.

O Oitavo Tipo

Definição (O Tipo Intransitivo)

Uma relação R é dita ser intransitiva sempre que para todo $x, y, z \in A$ tem-se que se x R y e y R z, então y R z.

O Oitavo Tipo

Definição (O Tipo Intransitivo)

Uma relação R é dita ser intransitiva sempre que para todo $x, y, z \in A$ tem-se que se x R y e y R z, então y R z.

• Quando é que uma relação R não é intransitiva?

O Oitavo Tipo

Definição (O Tipo Intransitivo)

Uma relação R é dita ser intransitiva sempre que para todo $x, y, z \in A$ tem-se que se x R y e y R z, então y R z.

• Quando é que uma relação R não é intransitiva?

Exemplo

A relação $R = \{(i,j) \in \mathbb{Z}^2 \mid i=2j\}$ é uma relação intransitiva.