Алгебра I, листочек 10

1. Положим $q=p^n$. Докажите, что поле \mathbb{F}_q имеет единственное расширение степени k. Докажите, что $\overline{\mathbb{F}_p}=\bigcup_{n\in\mathbb{N}}\mathbb{F}_{p^n}$

Расширение степени k поля \mathbb{F}_q будет иметь q^k , так как оно векторное пространство размерности k над \mathbb{F}_q . Точно также как на лекции заметим, что для $q'=q^k$, $x^{q'}-x$ имеет корнем любой элемент поля, так как для $x\in\mathbb{F}_{q'}$ либо x=0, либо порядок ненулевого элемента делит порядок мультипликавной группы, а тогда $x^{q'-1}=1$. При этом других коней у полинома нет, так как мы уже нашли их в количестве, равном его степени. Тогда $\mathbb{F}_{q'}$ является полем разложения многочлена $x^{q'}-x\in\mathbb{F}_q[x]$, как мы видели на лекции оно единственно и сущесвует.

Пусть $L=\bigcup_{n\in\mathbb{N}}\mathbb{F}_{p^n}$. Покажем, что это поле. Пусть $\alpha,\beta\in L$, тогда можно предположить, что $\alpha\in\mathbb{F}_{p^m}$ и $\beta\in\mathbb{F}_{p^k}$, тогда на самом деле по предыдущему утверждению $\alpha,\beta\in\mathbb{F}_{p^{\mathrm{lcm}(k,m)}}$, заначит определены их обратные, противоположные, сумма и произведение. Расширение L/\mathbb{F}_q алгебраичено, так каждый элемент из L лежит в конечном алгебраическом расширении. Теперь проверим алгебраическую замкнутость L. Пусть $P=a_0+a_1x+...+a_nx^n\in L[x]$, тогда каждые коэффициент лежит в каком-то конечном расширении $a_i\in\mathbb{F}_{p^n}$. Положим $m=\mathrm{lcm}(n_0,...,n_n)$, тогда на самом деле $P\in\mathbb{F}_{p^m}$, если у P есть корень \mathbb{F}_{p^m} , то победа. Если нет, то P неприводим, а значит $\mathbb{F}_{p^m}[x]/(P)=\mathbb{F}_{p^{m(n-1)}}$, по единственности расширения. И найдется корень в $\mathbb{F}_{p^{m(n-1)}}$. А тогда поле L агебраически замкнуто и $L=\overline{\mathbb{F}_p}$ – алгебраическое замыкание.

2. Опишите все автоморфизмы поля $\mathbb C$ над $\mathbb R$. Опишите все автоморфизмы поля $\mathbb F_{q^n}$ над $\mathbb F_q$, где $q=p^k$.

Заметим, что $\mathbb{C}=\mathbb{R}(i)$ расширяет \mathbb{R} со степенью 2, а тогда у нас не может быть больше автоморфизмов над \mathbb{R} , чем 2 по следствию с лекции. Мы можем предъявить эти 2, а именно тождественный и сопряжение.

Мы знаем, что $\mathbb{F}_{p^{nk}}$ обладает nk автоморфизмами над \mathbb{F}_p , тогда $\mathrm{Aut}_{\mathbb{F}_q}(\mathbb{F}_{q^n})$ образуют подгруппу в $\mathrm{Aut}_{\mathbb{F}_p}(\mathbb{F}_{q^n})$, так как если автоморфизм переводит тождественно \mathbb{F}_q в себя, то он тем более переводит тождественно \mathbb{F}_p в себя. Давайте возьмём какой-нибудь автоморфизм f над простым подполем. Пусть $f=x\mapsto x^{p^l}$, так как они все имеют такой вид. Если мы хотим f(a)=a для любого $a\in\mathbb{F}_q$, то нам необходимо и достаточно, чтобы это было верно для элемента ζ , порождающего мультипликативную группу. $\zeta^{p^l-1}=1$ означает, что $p^n-1\mid p^l-1$, это возможно если $n\mid l$, так как тогда l=mn и $q-1\mid q^m-1$ верно. Покажем, что если $n\nmid l$, то $p^n-1\nmid p^l-1$. Для этого заметим, что $p^n-1=p^{n-l}(p^l-1)+p^{n-l}$ и продолжив так полинмиально делить с остатком, мы получим $p^n-1=g(p)(p^l-1)+p^{r-1}$, где r остаток при делении n на l. Если мы хотим, чтобы $p^r-1=0$, то необходимо, чтобы r=0, а это ровно то, что нам нужно. Тогда все автоморфизмы \mathbb{F}_{q^n} над \mathbb{F}_q имеют вид $x\mapsto x^{q^m}$, и они порождены $x\mapsto x^{q^m}$. Так как $x\mapsto x^{q^n}$ тождественен, то их не более n штук. С другой стороны как мы видели на лекции все автоморфизмы $x\mapsto x^{p^{km}}$ различны для $0< m\le n$, а значит они и будут всеми автоморфизмами и они образуют циклическую группу.

3. Опишите все автоморфизмы поля \mathbb{R} . Конечно ли множество автоморфизмов поля \mathbb{C} ?

Пусть f – автоморфизм поля $\mathbb R$. Тогда f отправляет простое подполе в простое подполе, так как оно образовано единицей. То есть для любого рационального q верно f(q)=q. Пусть теперь a,b – действительные числа и пусть a>b. Заметим, что мы найдём число x, что $x^2=(a-b)$, а тогда $f(a)-f(b)=f(a-b)=f(x^2)=f(x)^2>0$, а тогда f строго возрастает. Пусть $s\in\mathbb R$ обозначим за $S_-=\{q\in\mathbb Q\mid q< s\}$ и за $S_+=\{q\in\mathbb Q\mid q> s\}$ из курса анализа известно, что такое сечение однозначно определяет число s. После автоморфизма сечения перейдут в сечения, а так как f строго возрастает, то f(s) окажется зажат между S_- и S_+ , а значит f(s)=s, тогда у $\mathbb R$ есть единственный автоморфизм – тождественный.

Множество автоморфизмов $\mathbb C$ не конечно. Пусть $a\in\mathbb C$ трансцедентное число над $\mathbb Q$, такое есть из соображения о кардиналах. Тогда $\mathbb Q(a)$ – счетно, так как изморфно $\mathbb Q(x)$, тогда

вновь по соображению о кардиналах есть бесконечность трансцендентных комплексных чисел над $\mathbb{Q}(a)$. Давайте покажем, что по каждому такому выбору числа b можно построить автоморфизм \mathbb{C} , что переставляет a и b, пречем каждый такой выбор даст нам новый автоморфизм \mathbb{C} .

Покажем, что есть автоморфизм $\mathbb{Q}(a,b)$, что переставляет a и b. Для этого заметим, что если для $f(x,y) \in \mathbb{Q}(x,y)$ верно, что f(a,b) = 0, то в частности левую часть можно переписать как g(b) = 0 для некоторого $g(y) \in \mathbb{Q}(a)(y)$, а тогда g(y) = 0, но тогда f(x,y) = 0, так как каждый коэффициент g(y) является вычислением некого $h(x) \in \mathbb{Q}$ в a, и так как вычисление нулевое и a трансцендентное, то h(x) = 0. Более того вычисление f(a,b) можно всегда произвести, так как a и b по выбору алгебраически независимы и знаменатель не зануляется. Тогда зададим авитоморфизм $f(a,b) \mapsto f(b,a)$ для любого $f(x,y) \in \mathbb{Q}(x,y)$. Если $f \neq g$ для некоторых $f(x,y), g(x,y) \in \mathbb{Q}(x,y)$, то $f(a,b) \neq g(a,b)$ и $f(b,a) \neq g(b,a)$, так как $f - g \neq 0$ и по предыдущему наблюдению $(f - g)(a,b) \neq 0$ например. Тогда у нас есть автоморфизм и мы его назовём ϕ . Покажем, что его можно продлить до $\mathbb{C} \to \mathbb{C}$. Мы будем продлевать именно автоморфизмы, а не морфизмы, чтобы не получим случаем подполя \mathbb{C} изоморфного \mathbb{C} .

Устроим частично упорядоченное множество автоморфизмов подполей комплексных чисел $K \to K$, таких что они продолжают ϕ с порядком $(f: K \to K) \le (g: L \to L)$, если $K \le L$ и $g|_K = f$. Покжем, что есть максимальный элемент. Пусть $\{f_i: K_i \to K_i\}$ возрастающая цепь, тогда её точная верхняя грань – автоморфизм $f: \bigcup_i K_i \to \bigcup_i K_i$, отправляющий $a \in K_i$ в $f_i(a)$, как нетрудно видеть, он корректен и является автоморфимом поля. Тогда применив лемму Цорна мы получим, что есть максимальный элемент $m: M \to M$.

Если $M=\mathbb{C}$, то победа, иначе мы можем взять $a\in\mathbb{C}\setminus M$, и продолжить $m:M\to M$ до $m':M(a)\to M(a)$, просто отправив $a\mapsto a$ в случае, когда a трансцендентно, так как разные $f(x)\in M(x)$ имеют разные значения в точке a. Для алгебраического a мы можем продлить $m:M\to M$ до $m'':\overline{M}\to\overline{M}$, так как расширение \overline{M}/M алгебраично, а значит есть продолжение $\overline{m}:M\to\overline{M}$ до m''. В обоих случая мы прийдем к противоречию, а значит $M=\mathbb{C}$ и мы построили новый автоморфизм \mathbb{C} .

4. Докажите, что расширение полей степени 2 нормально. Докажите, что расширение полей $\mathbb{Q}[\sqrt[4]{2}]/\mathbb{Q}$ не нормально.

Пусть L/K расширение степени 2, тогда на самом деле $L=K[\alpha]$ для некого $\alpha\in L$. Пусть $p(x)=\operatorname{Irr}_{\alpha}^K(x)$, его степень 2. В L многочле p(x) имеет один корень α , а тогда поделив p(x) на $x-\alpha$ мы найдем и второй корень. А значит L – поле разложения p(x) на K, а тогда расширение нормально.

Расширение $\mathbb{Q}[\sqrt[4]{2}]/\mathbb{Q}$ не нормально, так как например у неприводимого x^4-2 есть корень $\sqrt[4]{2}$, но в $x^4-2=(x^2-\sqrt{2})(x^2+\sqrt{2})$ правый множитель не раскладывается на линейные множители, так как у него нет корней, потому как квадрат действительного числа всегда положителен

5. Пусть $F \leq K \leq L$ – башня полей, и L/F нормально. Докажите, что L/K нормально. Приведите пример башни полей $F \leq K \leq L$, в которой K/F и L/K нормальны, но L/F не нормально.

Пусть $f(x) \in K[x]$ неприводим и у него есть корень $\alpha \in L$, тогда положим $p(x) = \operatorname{Irr}_{\alpha}^K(x) \in L[x]$. Устроим морфизм $\theta : K(x) \to L = f(x) \mapsto f(\alpha)$, его ядро максимальный идеал, в котором лежат f(x) и p(x). Так как f(x) неприводим, то $\operatorname{Ker}(\theta) = (f(x))$, а значит $f(x) \mid p(x)$. С другой стороны, так как $p(x) \in F(x)$ и L/F нормально и у p(x) есть корень α в L, то p(x) раскладывается на линейные множители, а значит f(x) тоже.

Начнем с $\mathbb Q$, нормально расширим его до $\mathbb Q(i)$. Далеьше нормально расширим, добавив корень полинома $x^2+(1+i)x+(1+i)$. Найдем его корень $D=(1+i)^2-4(1+i)=-2i-4$, и $\alpha=(-(1+i)+i\sqrt{2}\sqrt{i+2})/2$. Покжем, что $\alpha\notin\mathbb Q(i)$. Пусть это не так, тогда есть $a,b\in\mathbb Q$, что $\sqrt{2}\sqrt{i+2}=a+ib$. Покажем, что такого быть не может, так как

$$a + ib = \sqrt{2}\sqrt{i+2}$$

$$a^{2} - b^{2} + 2abi = 4 + 2i$$

$$a^{2} - b^{2} = 4 & ab = 1$$

$$a^{2} - 1/a^{2} = 4$$

$$a^{4} + 4a^{2} - 1 = 0$$

$$a^{2} = -2 \pm \sqrt{5}$$

Тогда $\mathbb{Q}(i,\alpha)/\mathbb{Q}(i)$ вновь расширение степени 2, а значит нормально. Теперь покажем, что $\mathbb{Q}(i,\alpha)/\mathbb{Q}$ не нормально. Для начала построим неприводимый над \mathbb{Q} многочлен. У нас уже был $x^2 + (1+i)x + 1 + i$, возмём сопряженный к нему и перемножим их

$$(x^{2} + (1+i)x + 1 + i)(x^{2} + (1-i)x + 1 - i)$$

$$= x^{4} + (1-i)x^{3} + (1-i)x^{2} + (1+i)x^{3} + 2x^{2} + 2x + (1+i)x^{2} + 2x + 2$$

$$= x^{4} + 2x^{3} + 4x^{2} + 4x + 2$$

Покажем, что у него не корней в \mathbb{Q} . Из школьного курса алгебры известно, что все возможные рациональные корни можно получить, посмотрев на делители старшего и младшего члена. Возможные рациональные корни $\pm 1, \pm 2$. Но очевидно, что ни один не зануляет многочлен

$$1^{4} + 2 \cdot 1^{3} + 4 \cdot 1^{2} + 4 \cdot 1 + 2 > 0$$

$$2^{4} + 2 \cdot 2^{3} + 4 \cdot 2^{2} + 4 \cdot 2 + 2 > 0$$

$$(-1)^{4} + 2(-1)^{3} + 4(-1)^{2} + 4(-1) + 2 = 1$$

$$(-2)^{4} + 2(-2)^{3} + 4(-2)^{2} + 4(-2) + 2 = 10$$

Покажем, что $x^4 + 2x^3 + 4x^2 + 4x + 2$ не раскладывается в произведение 2х полиномов степени 2. Пусть он разложился, тогда найдутся $a, b, p, q \in \mathbb{Q}$, что

$$x^{4} + 2x^{3} + 4x^{2} + 4x + 2$$

$$= (x^{2} + ax + b)(x^{2} + px + q)$$

$$= x^{4} + (a + p)x^{3} + (ap + q + b)x^{2} + (aq + bp)x + bq$$

Тогда мы получим следующую систему уравнений

$$\begin{cases} a+p=2\\ ap+q+b=4\\ aq+bp=4\\ bq=2 \end{cases}$$

Заменим везде p на 2 - a

$$\begin{cases} a(2-a) + q + b = 4 \\ aq + b(2-a) = 4 \\ bq = 2 \end{cases}$$

А теперь заменим везде q на 2/b, так как b не ноль

$$\begin{cases} a(2-a) + 2/b + b = 4 \\ 2a/b + b(2-a) = 4 \end{cases}$$

Домножим оба равенства на $b \neq 0$.

$$\begin{cases} ba(2-a) + 2 + b^2 = 4b \\ 2a + b^2(2-a) = 4b \end{cases}$$

Заметим, что второе раветнство можно переписать

$$2a+b^2(2-a)=4b$$
 $(b^2-2)(2-a)+4=4b$ $2-a=(4b-4)/(b^2-2)$ можем поделить, так как $\sqrt{2}\notin\mathbb{Q}$ $a=2-\frac{4b-4}{b^2-2}=\frac{2b^2-4b}{b^2-2}$

Подствив выражения для a и 2-a от b в первое уравнение системы, мы получим уравнение на b

$$b\frac{2b^2 - 4b}{b^2 - 2}\frac{4b - 4}{b^2 - 2} + 2 + b^2 = 4b$$
$$b(2b^2 - 4b)(4b - 4) + (b^2 - 4b + 2)(b^2 - 2)^2 = 0$$

У нас вновь получилось полиномиальное уравнение со старшим коэффициентом 1 и младшим 8, тогда возможные рациональные корни только $\pm 1, \pm 2, \pm 4, \pm 8$. Проверим, что ни один не подходит

$$b(2b^2 - 4b)(4b - 4) + (b^2 - 4b + 2)(b^2 - 2)^2$$

$$1(2 \cdot 1^2 - 4 \cdot 1)(4 \cdot 1 - 4) + (1^2 - 4 \cdot 1 + 2)(1^2 - 2)^2 = -1$$

$$(-1)(2 \cdot (-1)^2 - 4 \cdot (-1))(4 \cdot (-1) - 4) + ((-1)^2 - 4 \cdot (-1) + 2)((-1)^2 - 2)^2 = 55$$

$$2(2 \cdot 2^2 - 4 \cdot 2)(4 \cdot 2 - 4) + (2^2 - 4 \cdot 2 + 2)(2^2 - 2)^2 = -8$$

$$(-2)(2 \cdot (-2)^2 - 4 \cdot (-2))(4 \cdot (-2) - 4) + ((-2)^2 - 4 \cdot (-2) + 2)((-2)^2 - 2)^2 = 440$$

$$4(2 \cdot 4^2 - 4 \cdot 4)(4 \cdot 4 - 4) + (4^2 - 4 \cdot 4 + 2)(4^2 - 2)^2 = 1160$$

$$(-4)(2 \cdot (-4)^2 - 4 \cdot (-4))(4 \cdot (-4) - 4) + ((-4)^2 - 4 \cdot (-4) + 2)((-4)^2 - 2)^2 = 10504$$

$$8(2 \cdot 8^2 - 4 \cdot 8)(4 \cdot 8 - 4) + (8^2 - 4 \cdot 8 + 2)(8^2 - 2)^2 = 152200$$

$$(-8)(2 \cdot (-8)^2 - 4 \cdot (-8))(4 \cdot (-8) - 4) + ((-8)^2 - 4 \cdot (-8) + 2)((-8)^2 - 2)^2 = 4222792$$

Тогда наш изначальный многочлен $x^4+2x^3+4x^2+4x+2$ не раскладывается в произведение квадратов и не имеет рациональных корней, а значит он неприводим над $\mathbb Q$. С другой стороны, в $\mathbb Q(i,\alpha)$ он раскладывается в $(x^2+(1+i)x+1+i)(x^2+(1-i)x+1-i)$ и левый множитель раскладывается на линейные. Давайте убедися, что у правого множителя нет корней в $\mathbb Q(i,\alpha)$. В $\mathbb C$ у правого множителя корни следующие

$$D = (1-i)^2 - 4(1-i) = 2i - 4$$
$$x_{1,2} = (-(1-i) \pm \sqrt{2i-4})/2$$

И то что они лежат в $\mathbb{Q}(i,\alpha)$ эквивалентно тому, что $\sqrt{2i-4}\,\mathbb{Q}(i)$ -линейно выражается через $1,\sqrt{2i+4}$, так как расширение $\mathbb{Q}(i,\alpha)/\mathbb{Q}(i)$ – степени 2. Пусть $a,b,c,d\in\mathbb{Q}$ такие, что

$$\sqrt{2i-4} + (ai+b)\sqrt{2i+4} = ci+d$$

$$(\sqrt{2i-4} + (ai+b)\sqrt{2i+4})^2 = (ci+d)^2$$

$$2i-4+(b^2-a^2+2iab)(2i+4)+2(ai+b)\sqrt{(2i-4)(2i+4)} = (ci+d)^2$$

$$2i-4+(b^2-a^2+2iab)(2i+4)+2(ai+b)\sqrt{-20} = (ci+d)^2$$

Но так как $\sqrt{-20}$ ∉ $\mathbb{Q}(i)$, ai + b = 0, а тогда

$$2i - 4 = d^2 - c^2 + 2icd$$

 $cd = 1$ & $c^2 - d^2 = 4$

Но как мы уже видели у такой системы нет рациональных решений, а значит мы получили неприводимый многочлен, что не раскладывается на линейные множители в $\mathbb{Q}(i,\alpha)$, а значит расширение $\mathbb{Q}(i,\alpha)/\mathbb{Q}$ не нормально и контр-пример построен.