A Mini-Replication of CNM06

John Cooper

JLCOOPER@UCSD.EDU

Abstract

Drawing from the CNM06 paper, I attempt to perform a mini-scale replication of its methods and results, using only three algorithms and five scoring metrics (some of which are not used in the original paper). I compare KNN, SVM, and Logistic Regression.

Keywords: *CNM06* - Caruana Paper, *COV* - Cover Type Data, *Letter OPos* - Letter Data "O" positive classification, *Letter AMPos* - Letter Data "AM" positive classification

1. Introduction

This project presents a small-scale analysis of a select subset of data sets, algorithms, and performance metrics found CNM06. I attempt to compare the binary-classification performances of SVM, KNN, and Logit across four data sets and five scoring metrics.

By undertaking a small-scale analysis (voluntarily) constrained by four data sets and classifiers with the sole intention of comparing performance, bluntly using a single performance metric alone (accuracy) did not seem like an appropriate method to capture the differences between these classifiers. As two of the four data sets analyzed were quite imbalanced (ADULT, LetterO-Pos), more metrics were needed to compensate for this, including Precision, Recall, F1, and ROC-AUC.

To address certain classifiers, such as SVM, which are not meant to predict probabilities (Caruana, 2006), I did **not** calibrate with Platt Scaling or Isotonic Regression as

CNM06 does. Instead, the decision outputs were mapped to probabilities through an **untrained** logit function. The pitfalls of this post-scaling are not addressed, and so rocperformance comparisons between SVM and the other classifiers should be taken hesitantly.

The results of this analysis were surprisingly consistent with the CNM06 paper. Table 2 (Mini-Replication) shows the performances over metrics for each algorithm, where SVM scores slightly higher than KNN and significantly higher than LOGIT under all metrics. This is consistent with the Table 2 in the CNM06 paper (6-6). The difference in per-metric-scoring means between the SVM and the other classifiers were also found to be statistically significant.

By problem, SVM outscored KNN on all data sets and LOGIT on all but one. Interestingly, the scores of KNN on LetterOPos and LetterAMPos were statistically indistinguishable from greater SVM scores on those data sets. This is relatively consistent with CNM06, wherein Table 3 (CNM06) KNN actually outperforms SVM on few metrics, although not by much (6-6).

2. Methods

For the algorithms selected, their hyperparameter selection follows those presented in CNM06 almost verbatim, while the performance metrics slightly differ.

2.1. Classifiers

SVMs: Kernels used were radial basis function, linear, and polynomial kernels. For the rbf, gammas used were $\{.001, .005, .01, .05, .1, .5, 1, 2\}$, and for the polynomial kernel, degrees $\{2, 3\}$ were used. For each of these, their regularization parameter varied from 10^{-7} to 10^4 .

KNN: Hyperparameters varied were the number of neighbors and the types of weights. Number of neighbors took equally spaced (20-step) values between 1 and 500 (exclusive). Weights searched were {uniform, distance}.

Logit: This classifier was initialized with solver set to Limited-memory BFGS and max iterations set to 1000, the latter to encourage convergence. The penalization term took values in $\{l2, none\}$ and the regularization term ranged from 10^{-8} to 10^{5} .

2.2. Metrics

The performance metrics used in this analysis are Accuracy, ROC, Precision, Recall, and F1.

Accuracy is used as the base measure for comparison across algorithms and data sets, although as mentioned in Section 1 this metric fails to capture to the true performance of algorithms on imbalanced data sets. Even a poor classifier will produce high accuracy on a data set with extreme class imbalance, since by simply guessing at the over-represented classification, the proportion of correct guesses should roughly parallel the over-represented class. For this reason, in negative-class imbalanced data sets, we turn to ROC, Precision, Recall, and F1.

ROC and Precision operate irrespective of class distribution, and measure the ef-

ficiency with which classifiers order positive cases before negative cases (Caruana, 2006). Precision provides information on how well our classifier is able to correctly predict positive cases from the pool of all existing positive labels. Recall, in the case of negative imbalance, will tend to be small if the classifier is leans towards negative classification, as the trade-off between true positive and false negative will favor the latter. F1 is used to incorporate both these ideas. All four will provide us a measure of how poorly our classifier is actually doing despite high accuracy.

2.3. Comparisons Across Metrics

Unlike CNM06, calibration is not used due to (1) the computational load of five-fold grid searches nested in multiple three-fold cross-validated calibrations (Platt/Iso), and (2) time constraints. Both KNN and Logit are equipped with simple probability mappings, whereas SVM outputs decisions which can be mapped to probabilities through a sigmoid function (Platt)(6-1)

$$P(y = 1|x) = \frac{1}{1 + e^{Af(x) + B}}$$

whose parameters $\{A, B\}$ are tuned through a k-fold cross validation on the training set. As mentioned in Section 1, this procedure was not followed. The decisions of the SVM were simply mapped to probabilities through

$$\frac{e^x}{1+e^x},$$

which is clearly not best practice, especially since we are training highly non-linear SVMs. Aside from SVM performance, performance on other metrics and algorithms are not calibrated. Instead,

their probability prediction functions are used, which internally seem to use a sigmoid for mapping (6-3).

2.4. Data

The four data sets used were LET-TER1(OPos), LETTER2 (AMPos), COVTYPE, and ADULT (6-7). For each data set, all categorical features were converted using one-hot-encoding.

For the ADULT data set, the target variable (income) was converted to binary classification through assigning the mapping $(>50k) \rightarrow 1$ and $(<=50k) \rightarrow 0$.

For COV, the target variable ("cov") was converted to binary by assigning the largest class to 1 and the rest to 0.

For LETTER, the target variable ("lettr") was split into two cases as in CNM06. First, "O" was mapped to 1 and the rest of the letters were mapped to 0. Next, "A-M" was mapped to 1, and the rest of the letters were mapped to 0. Classification was done on both targets.

3. Training and Testing Framework

First a data set is chosen and randomly sampled from three times, each time breaking the data into a training set (5000) and a testing set (# samples - 5000).

A classifier is then selected. For each of train/test splits, a five-fold-cv gridsearch with this classifier is run to obtain the best parameters. The classifier with the best parameters is then retrained on the entire train set and used to make predictions on the test set, yielding a test score.

This train/test process is repeated on the two remaining train-test pairs, yielding two more test scores.

From these we obtain three test scores for a single classifier over a single data set.

This entire process is repeated for every classifier-dataset pair. Thus, under a performance single metric, one classifier will have a total of 12 test scores to report as well as 12 validation scores.

Table 1 lists the set-up of each problem: the data set, the number of features, the train size, test size, and train size percentage of total data

Note:

The actual implementation differs in structure from what is described above, but only superficially. The implementation runs a for loop to simulate trials, and within each loop splits the data with a random seed corresponding to the trial number before the classifier is trained. The random seed acts to preserve consistency in splitting (as if the actual implementation followed the above).

4. Performance

Tables are presented which summarize performances.

In Table 2, the rows list the three classifiers, while the columns list the metrics. For each classifier-data combo, three scoring performances are produced. This produces nine scoring performances (each performance encapsulating the five metrics used) in total for each classifier. The entries in this table represent the *averaged* scores per classifier, by metric. Boldfaced scores represent a score (under a specific metric and algorithm) whose population mean has been determined to be larger than the others under a 95% confidence process.

In Table 3, the rows list the three classifiers used, while the columns list the data sets. The entries represent the averages of each classifier across all five metrics on a single data set. Since there are three trials, each metric corresponds to three performance instances over those three trials. Given that there are five metrics, we sum over the five metrics entry-wise (by trial) adn divide by the number of metrics to obtain an average over the five metrics per trial. After this we sum these averages and divide by the number of trials.

Note:

Within the testing/training framework, the grid search selects the optimal classifier based on the classifier's internal scoring method - for SVM, Logit, and KNN, this scoring method is ACC. So when we tune our parameters, we are optimizing based on this metric. Thus when we compare classifiers with metrics other than ACC, we are actually comparing how well classifiers, which are optimized on accuracy, perform under criterion not inherent to the optimization process. This is why there are no validation errors for metrics other than mean accuracy in Table 4.

5. Discussion-Conclusion

5.1. Test Performance Summary

The best classifier on the LetterOPos and LetterAMPos data sets is SVM, whereas on the COV and ADULT data sets, SVM and LOGIT show the best performances, respectively. LOGIT surprisingly outperforms SVM and KNN on the ADULT data set. In the case of LOGIT on the ADULT data set, there is no other score that rivals it with statistical significance, whereas in the case of LetterOPos and LetterAMPos, SVM and KNN perform at statistically indistinguishable levels (Table 3, Table 6).

Over scoring metrics, SVM uniformly outperforms the other classifiers, with LOGIT performing uniformly worse

across all metrics against the other two classifiers. While this seems to show that SVM performs better on all metrics, by problem, we see that some uniformly-best classifier does not exist (Table 2, Table 5).

5.2. Validation Performance

One concerning aspect of this analysis was that validation performance and test performance seemed to run in parallel - sometimes they were equal, other times test performance actually exceeded validation performance (Table 2, Table 4). This is referring specifically to accuracy, as those are the only validation metrics which were saved. In the case of testing scoring on non-accuracy metrics outperforming validation scores computed internally with an accuracy, this shouldn't be too much of a concern. Since the classifiers are optimized on accuracy, it makes that their testing performance under different metrics would not naturally produce a score bounded by accuracy validation scores.

5.3. Non-accuracy metrics

It was necessary to include other metrics to gauge classifier performance, especially on the imbalanced data sets COV and ADULTOPos. Table 3 shows the difference between performance metrics, with ROC and ACC showing the best performances respectively, followed by REC, PREC, and F1, not exactly in that or-The introduction of these metrics was the only way for us to see how poorly LOGIT actually performs relative to the other classifiers on most data sets. Furthermore, accuracy would have generally inflated our view of all classifiers performances, especially on imbalanced data (Table 2), in some cases widening and other cases shrinking the performance margins.

5.4. Calibration

As mentioned, calibration was not used in this analysis. Without a uniform mapping of prediction (or decision functions) to probabilities, especially between SVM and the other classifiers, the ROC score comparison between SVM and the other classifiers is most likely flawed.

6. Citations and Bibliography

1. "Platt Scaling" Wikipedia, Wikimedia Foundation, 6 Dec. 2020,

en.wikipedia.org/wiki/Platt_
scaling

2. Scikit-learn.org.
 2020.
 Sklearn.Neighbors.Kneighborsclassifier
 — Scikit-Learn 0.23.2 Documentation. [online] Available at:

https://scikit-learn. org/stable/modules/ generated/sklearn.neighbors. KNeighborsClassifier.html [Accessed 15 December 2020].

3. GitHub. 2020. Scikit-Learn/Scikit-Learn. [online] Available at:

https://github.com/ scikit-learn/scikit-learn/ blob/95d4f0841/sklearn/ neural_network/_multilayer_ perceptron.py [Accessed 15 December 2020].

4. Scikit-learn.org. 2020. Sklearn.Svm.SVC — Scikit-Learn 0.23.2 Documentation. [online] Available at:

https://scikit-learn.org/ stable/modules/generated/ sklearn.svm.SVC.html [Accessed
15 December 2020].

5. Scikit-learn.org. 2020. Sklearn.LinearModel.Logisticregression— Scikit-Learn 0.23.2 Documentation. [online] Available at:

https://scikit-learn. org/stable/modules/ generated/sklearn.linear_ model.LogisticRegression. html[Accessed 15 December 2020].

Caruana, R. and Niculescu-Mizil, A.,
 2020. An Empirical Comparison
 Of Supervised Learning Algorithms.
 [online] Cs.cornell.edu. Available at:

https://www.cs.cornell. edu/~caruana/ctp/ct.papers/ caruana.icml06.pdf

7. Archive.ics.uci.edu. 2020. UCI Machine Learning Repository. [online] Available at: https://archive.ics.uci.edu/ml/index.php [Accessed 15 December 2020].

Tables

Table 1: Problem descriptions

	#ATTR	TRAIN SIZE	TEST SIZE	%POZ
ADULT	106	5000	40222	24%
COV	54	5000	576012	49%
LETTEROPos	16	5000	15000	4%
LETTERAMPos	16	5000	15000	50%

Table 2: Performance over metrics (over four problems)

	ACC	PREC	REC	ROC	F1	MEAN
KNN	.885	.826	.777	.892	.795	.835
SVM	.899	.850	.804	.936	.824	.863
LOGIT	.82	.546	.527	.842	.534	.706

Table 3: Performance by problem (averaged over four metrics)

	COV	ADULT	LetterOPos	LetterAMPos	MEAN
KNN	.777	.696	.914*	.749*	.784
SVM	.812	.732	.937	.753	.807
LOGIT	.769	.743	.359	.437	.577

Table 4: Validation performance over single metric (over four problems)

	MEAN ACC
KNN	.882
SVM	.897
LOGIT	.823

Tables Cont.

Table 5: P-Vals for Table 2 (SVM compared with Logit/KNN)

	Pval-Logit	Pval-KNN
SVM-ACC	.021	.0004
SVM-PREC	.019	.0025
SVM-REC	.025	.030
SVM-ROC	.002	.0002
SVM-F1	.023	.0005

Table 6: P-Vals for Table 3(SVM versus rest over data sets)

	SVM
COV (KNN)	.045
COV(LOGIT)	.008
ADULT(KNN)	.006
ADULT(LOGIT)	.023
LETTER-O(KNN)	.08
LETTER-O(LOGIT)	5.36e(-5)
LETTER-AM (KNN)	.310
LETTER-AM (LOGIT)	.0001

Table 7: Validation scores over data sets (ordered tuple represents score by trial)

	KNN	SVM	LOGIT		
COV	(0.764, 0.771, 0.762)	(0.799, 0.793, 0.786)	(0.759, 0.762, 0.753)		
ADULT	(0.827, 0.835, 0.828)	(0.845, 0.846, 0.844)	(0.841, 0.847, 0.842)		
LETTER-O	(0.988, 0.989, 0.991)	(0.993,0.992,0.992)	(0.966, 0.962, 0.961)		
LETTER-AM	(0.947, 0.943, 0.944)	(0.960, 0.957, 0.954)	(0.736, 0.721, 0.731)		

Figures

(KNN)

Figures Cont.

(SVM)

Figures Cont.

(LOGIT)

118AProj

December 15, 2020

```
[1]: import matplotlib.pyplot as plt
     import numpy as np
     import pandas as pd
     from sklearn.pipeline import Pipeline
     from sklearn.preprocessing import StandardScaler
     from sklearn.preprocessing import MinMaxScaler
     from sklearn.preprocessing import RobustScaler
     from sklearn.model_selection import KFold
     from sklearn.model_selection import cross_val_score
     from sklearn.model_selection import validation_curve
     from sklearn.svm import SVC
     from sklearn.model_selection import learning curve
     from sklearn.model_selection import GridSearchCV
     from sklearn.model_selection import StratifiedKFold
     from sklearn.model_selection import train_test_split
     from sklearn.linear_model import LogisticRegression
     from sklearn.linear_model import LinearRegression
     from sklearn.metrics import accuracy_score
     from sklearn.metrics import f1 score
     from sklearn.metrics import roc_auc_score
     from sklearn.metrics import roc curve
     from sklearn.metrics import confusion_matrix
     from sklearn.metrics import make_scorer
     from sklearn.metrics import mean_squared_error
     from sklearn.metrics import r2_score
     from sklearn.metrics import precision_score
     from sklearn.metrics import recall_score
     from sklearn.metrics import average_precision_score
     from sklearn.metrics import precision_recall_curve
     from sklearn.metrics import log_loss #cross-entropy
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.svm import SVC
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.calibration import CalibratedClassifierCV #platt scaling/isotonic,
     \rightarrowregression
     import pandas as pd
```

```
[2]: adult_main = pd.read_csv("adult_dat.data")
    adult_test = pd.read_csv("adult_test.test")
    letters_dat = pd.read_csv("letter-recognition.data")
    cov_dat = pd.read_csv("covtype.data")
```

1 Adult Data Processing

```
[3]: | adult = pd.concat([adult_main,adult_test], ignore_index = True)
     adult.isnull().values.any()
[3]: False
[4]: work = pd.get_dummies(adult['workclass']) ##
     work.rename(columns = {' ?': 'NA_Work'}, inplace = True)
     education = pd.get_dummies(adult['education'])
     marital = pd.get_dummies(adult['marital-status'])
     occu = pd.get_dummies(adult['occupation']) ##
     occu.rename(columns = {' ?': 'NA_Occu'}, inplace = True)
     relat = pd.get_dummies(adult['relationship'])
     race = pd.get dummies(adult['race'])
     sex = pd.get_dummies(adult['sex'])
     country = pd.get_dummies(adult['native-country']) ##
     country.rename(columns = {' ?': 'NA_Country'}, inplace = True)
[5]: adult_hot= pd.concat([work,education,marital,occu,relat,race,sex,country], axis_
      \rightarrow = 1)
[6]: adult hot = pd.
      -concat([adult[['age','fnlwgt','education-num','capital-gain','capital-loss','hours-per-week
      \rightarrowaxis =1)
     adult['income'] = adult['income'].replace([' >50K.'], ' >50K')
     adult['income'] = adult['income'].replace([' <=50K.'], " <=50K")</pre>
[7]: | income_binary = (adult['income'] == ' >50K').astype(int)
     adult_hot = pd.concat([adult_hot,income_binary],axis = 1)
     adult_hot = adult_hot[adult_hot.NA_Work == 0]
     adult_hot = adult_hot[adult_hot.NA_Occu == 0]
     adult_hot = adult_hot[adult_hot.NA_Country == 0]
     adult_hot.shape
[8]: (45222, 109)
[9]: adult_hot.drop(['NA_Work','NA_Occu','NA_Country'],axis = 1, inplace=True)
```

```
[10]: adult_hot.shape
[10]: (45222, 106)
[11]: adult_hot.reset_index(inplace = True)
[88]: len(adult_hot.columns)
[88]: 107
```

2 Cov Data Processing

3 Letter Data Processing

```
[17]: switch = letters_dat['lettr']
    del letters_dat['lettr']
    letters_dat = pd.concat([letters_dat,switch],1)

[18]: O_pos = pd.DataFrame((letters_dat['lettr'] == '0').astype(int))
    O_pos = O_pos.rename(columns = {'lettr':'O_pos'})

[19]: letters_dat = pd.concat([letters_dat,O_pos],axis = 1)
```

```
[20]: AM_pos = pd.DataFrame((letters_dat['lettr'] == 'A').astype(int))
    for i in ['B','C','D','E','F','G','H','I','J','K','L','M']:
        AM_pos = AM_pos + pd.DataFrame((letters_dat['lettr'] == i).astype(int))

[21]: AM_pos = AM_pos.rename(columns = {'lettr':'AM_pos'})

[22]: letters_dat = pd.concat([letters_dat,AM_pos], axis = 1)

[23]: del letters_dat['Unnamed: 17']

[24]: letters_dat.shape
[24]: (20000, 19)
```

3.0.1 Function for plotting ROC/Precision-Recall with KNN/Logit

```
[25]: ##different than SVM since we have to use best_fit.decision_function(..)
##predict_proba with SVM is both computationally expensive and doesn't give

→ consistent results
```

```
[26]: def roc_PR_plot(results, dataset_string, classifier_string):
          fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (15,5))
          tru_ys = results.get('y_true')
          probabilities_pos = results.get('tst_prob').loc[:,1]
          fp1, tp1, thresholds1 = roc_curve(tru_ys.get('y1'), probabilities_pos.iloc[:
       \hookrightarrow,0])
          fp2, tp2, thresholds2 = roc_curve(tru_ys.get('y2'), probabilities_pos.
       \rightarrowiloc[:,1])
          fp3, tp3 , thresholds3 = roc_curve(tru_ys.get('y3'), probabilities_pos.
       \rightarrowiloc[:,2])
          ax[0].plot([0, 1], [0, 1], color='blue', linestyle='--', label = "diagonal")
          ax[0].plot(fp1, tp1, color='orange', label='ROC1')
          ax[0].plot(fp2, tp2, color='red', label='ROC2')
          ax[0].plot(fp3, tp3, color='green', label='ROC3')
          ax[0].set_xlabel('False Positive Rate')
          ax[0].set_ylabel('True Positive Rate')
          ax[0].set_title('ROC' + classifier_string + ' over 3 trials, Dataset = ' +__
       →dataset_string)
          ax[0].legend()
          f1, t1, thres1 = precision_recall_curve(tru_ys.get('y1'), probabilities_pos.
          f2, t2, thresh2 = precision_recall_curve(tru_ys.get('y2'),__
       →probabilities_pos.iloc[:,1])
          f3, t3 , thresholds3 = precision_recall_curve(tru_ys.get('y3'),__
       →probabilities_pos.iloc[:,2])
```

```
ax[1].plot([0, 1], [1,0], color='blue', linestyle='--', label = "diagonal")
ax[1].plot(f1, t1, color='orange', label='PR1')
ax[1].plot(f2, t2, color='red', label='PR2')
ax[1].plot(f3, t3, color='green', label='PR3')
ax[1].set_xlabel('Recall')
ax[1].set_ylabel('Precision')
ax[1].set_title('Precision-Recall ' + classifier_string + ' over 3 trials, \( \subset \) \rightarrow \( \rightarrow \) \rightarrow \( \text{ataset} = ' + \) dataset = ' + dataset_string)
ax[1].legend()
plt.show()
```

4 Begin KNN Trials

```
[75]: def KNN(dataset, target, lower, upper, test_size, scaler):
         grid = np.arange(1,500,20)
         tst_predictions = pd.DataFrame()
         validation_scores = np.zeros(3)
         tst_prob = pd.DataFrame()
         params_best = {}
         y_true = {}
         acc_scores = np.zeros(3)
         precision_scores = np.zeros(3)
         recall_scores = np.zeros(3)
         roc_scores_1 = np.zeros(3)
         f1_scores = np.zeros(3)
         for j in [1,2,3]:
             X_tr, X_tst, y_tr, y_tst = train_test_split(dataset.iloc[:,lower:
       →upper], dataset.loc[:,target], test_size= test_size, random_state = j,
       ⇒shuffle = True)
             sca = scaler
             X_tr = sca.fit_transform(X_tr)
             X_tst = sca.transform(X_tst)
             five_fold = KFold(n_splits = 5, shuffle = True)
             knn = KNeighborsClassifier()
             parameters = {'n_neighbors': list(grid), 'weights':__
      print(X_tr.shape[0]) #print statement for progress
             GS = GridSearchCV(estimator = knn, param_grid = parameters, cv = __
      →five_fold, n_jobs = 4, verbose = 0, refit = True)
             best fit = GS.fit(X tr,y tr)
             validation_scores[j-1] = best_fit.best_score_
```

```
print(best_fit.best_score_) #print statement for progress
      predictions = best_fit.predict(X_tst)
      prediction_prob = best_fit.predict_proba(X_tst)
      tst_predictions = pd.concat([tst_predictions, pd.DataFrame(predictions,_u
\rightarrowcolumns = [str(j)])], axis = 1)
      tst_prob = pd.concat([tst_prob,pd.DataFrame(prediction_prob).
→reset_index(drop = True)], axis = 1)
      params_best['best' + str(j)] = best_fit.best_params_
      y_true['y' + str(j)] = y_tst
      acc_scores[j-1] = accuracy_score(y_tst, predictions)
      precision_scores[j-1] = precision_score(y_tst, predictions)
      recall_scores[j-1] = recall_score(y_tst, predictions)
      roc_scores_1[j-1] = roc_auc_score(y_tst, prediction_prob[:,1])
      f1_scores[j-1] = f1_score(y_tst,predictions)
  dict_of_vals = {'best_validation': validation_scores, 'best_params':u
→params_best, 'tst_predictions': tst_predictions, 'tst_prob': tst_prob,
→precision_scores, 'recall_scores': recall_scores, 'roc_scores': □
→roc_scores_1, 'f1_scores': f1_scores}
  return dict_of_vals
```

4.1 Letter Dat

```
[76]: results = KNN(letters_dat, 'O_pos', 0, 16, .75, StandardScaler()) #unbalanced

5000
0.9884
5000
0.9888
5000
0.9906

[29]: roc_PR_plot(results, 'Letter_OPos', 'KNN')
```


[30]: results_AM = KNN(letters_dat, 'AM_pos', 0, 16, .75, StandardScaler()) #balanced

5000

0.9468

5000

0.943

5000

0.944

[32]: roc_PR_plot(results_AM, 'Letter_AM', 'KNN')

4.2 Cov Dat

[28]: results_cov = KNN(cov_bin, 'class2', 0,54, 576012, StandardScaler())

5000

0.7644

```
5000
0.771
5000
0.7616
```

```
[30]: roc_PR_plot(results_cov, 'COV', 'KNN')
```

/opt/conda/lib/python3.7/site-packages/IPython/core/pylabtools.py:128: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.

--- diagonal --- PR1

— PR3

0.8

1.0

fig.canvas.print_figure(bytes_io, **kw)

4.3 Adult Dat

```
[31]: results_adult = KNN(adult_hot, 'income', 0, 105, 40222, StandardScaler())
     5000
     0.8272
     5000
     0.8346
     5000
     0.8278
[32]: roc_PR_plot(results_adult, 'ADULT', 'KNN')
```


5 Begin SVM Trials

```
[78]: def roc_PR_plot_SVM(results, dataset_string, classifier_string):
          fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (15,5))
          tru ys = results.get('y true')
          probabilities_pos = results.get('tst_prob')
          fp1, tp1, thresholds1 = roc_curve(tru_ys.get('y1'), probabilities_pos.iloc[:
       \rightarrow,0])
          fp2, tp2 , thresholds2 = roc_curve(tru_ys.get('y2'), probabilities_pos.
       \rightarrowiloc[:,1])
          fp3, tp3, thresholds3 = roc_curve(tru_ys.get('y3'), probabilities_pos.
       \rightarrowiloc[:,2])
          ax[0].plot([0, 1], [0, 1], color='blue', linestyle='--', label = "diagonal")
          ax[0].plot(fp1, tp1, color='orange', label='ROC1')
          ax[0].plot(fp2, tp2, color='red', label='ROC2')
          ax[0].plot(fp3, tp3, color='green', label='ROC3')
          ax[0].set_xlabel('False Positive Rate')
          ax[0].set_ylabel('True Positive Rate')
          ax[0].set_title('ROC' + classifier_string + ' over 3 trials, Dataset = ' +u
       →dataset_string)
          ax[0].legend()
          f1, t1, thres1 = precision_recall_curve(tru_ys.get('y1'), probabilities_pos.
       \rightarrowiloc[:,0])
          f2, t2, thresh2 = precision_recall_curve(tru_ys.get('y2'),_
       →probabilities_pos.iloc[:,1])
          f3, t3, thres3 = precision_recall_curve(tru_ys.get('y3'),_
       →probabilities_pos.iloc[:,2])
          ax[1].plot([0, 1], [1,0], color='blue', linestyle='--', label = "diagonal")
          ax[1].plot(f1, t1, color='orange', label='PR1')
          ax[1].plot(f2, t2, color='red', label='PR2')
```

```
ax[1].plot(f3, t3, color='green', label='PR3')
ax[1].set_xlabel('Recall')
ax[1].set_ylabel('Precision')
ax[1].set_title('Precision-Recall ' + classifier_string + ' over 3 trials,__
Dataset = ' + dataset_string)
ax[1].legend()
plt.show()
```

```
[58]: def SVM(dataset, target, lower, upper, test_size, scaler):
          import re
          tst predictions = pd.DataFrame()
          validation_scores = np.zeros(3)
          tst_prob = pd.DataFrame()
          params_best = {}
          y_true = {}
          acc_scores = np.zeros(3)
          precision_scores = np.zeros(3)
          recall_scores = np.zeros(3)
          roc_scores_1 = np.zeros(3)
          f1_scores = np.zeros(3)
          def unpack_more(params):
              new dict = {}
              test_dict = params
              for key in test dict.keys() :
                  new_dict[re.sub('classifier__', '', key)] = (test_dict[key])
              return new dict
          for j in [1,2,3]:
              pipe = Pipeline([('std', scaler), ('classifier', SVC())])
              param_grid = [{'classifier__kernel': ['rbf'], 'classifier__C': np.
       \rightarrowpower(10., np.arange(-7, 4)),
                              'classifier_gamma':[0.001,0.005,0.01,0.05,0.1,0.5,1,2]},
                        {'classifier_kernel': ['poly'], 'classifier_C': np.power(10.

→, np.arange(-7, 4)), 'classifier__degree': [2,3]},
                          {'classifier_kernel': ['linear'], 'classifier_C': np.
       \rightarrowpower(10., np.arange(-7, 4))}]
```

```
X_tr, X_tst, y_tr, y_tst = train_test_split(dataset.iloc[:,lower:
→upper], dataset.loc[:,target], test_size= test_size, random_state = j,__
⇒shuffle = True)
       five fold = KFold(n splits = 5, shuffle = True)
       print(X tr.shape[0]) ##print statement to track progress
       GS = GridSearchCV(estimator = pipe, param_grid = param_grid, cv = _ _
→five_fold, n_jobs = -1, verbose = 0, refit = True)
       best_fit = GS.fit(X_tr,y_tr)
       print(best_fit.best_score_) ##print statement to track progress
       validation_scores[j-1] = best_fit.best_score_
       predictions = best fit.predict(X tst)
       decision = best_fit.decision_function(X_tst)
       prediction_prob = np.exp(decision)/(np.exp(decision)+1) ##bad practice
       tst_predictions = pd.concat([tst_predictions, pd.DataFrame(predictions,__
\rightarrowcolumns = [str(j)])], axis = 1)
       tst_prob = pd.concat([tst_prob,pd.DataFrame(prediction_prob).
→reset_index(drop = True)], axis = 1)
       params best['best' + str(j)] = best fit.best params
       y true['v' + str(j)] = y tst
       acc scores[j-1] = accuracy score(y tst, predictions)
       precision_scores[j-1] = precision_score(y_tst, predictions)
       recall_scores[j-1] = recall_score(y_tst, predictions)
       roc_scores_1[j-1] = roc_auc_score(y_tst, prediction_prob)
       f1_scores[j-1] = f1_score(y_tst,predictions)
   dict_of_vals = {'best_validation': validation_scores, 'best_params':__
→params_best, 'tst_predictions': tst_predictions, 'tst_prob': tst_prob,□
→'y_true': y_true, 'acc_scores': acc_scores, 'precision_scores': □
⇔precision_scores, 'recall_scores': recall_scores, 'roc_scores': __
→roc_scores_1, 'f1_scores': f1_scores}
   return dict_of_vals
```

5.1 Letter Data

```
[59]: letter_SVM = SVM(letters_dat, '0_pos', 0,16,.75, StandardScaler())

5000
0.9934
5000
0.9924
```

```
5000
0.9924
```

```
[81]: roc_PR_plot_SVM(letter_SVM, 'Letter_Opos', 'SVM')
```



```
[62]: letter_SVM_AM = SVM(letters_dat, 'AM_pos', 0,16,.75, StandardScaler())
```

5000

0.9602

5000

0.9572

5000

0.9542

```
[69]: AM_svm_val = np.array([0.9602, 0.9572, 0.9542])
AM_svm_acc = np.array([0.9624 , 0.96606667, 0.96606667])
AM_svm_prec = np.array([0.96103198, 0.96797297, 0.96727273])
AM_svm_recall = np.array([0.96310261, 0.96341627, 0.96428571])
AM_svm_roc = np.array([0.99276918, 0.99314926, 0.993619 ])
AM_svm_f1 = np.array([0.96206618, 0.96568925, 0.96577691])
```

[82]: roc_PR_plot_SVM(letter_SVM_AM, 'Letter_AMPos', 'SVM')

5.2 Adult Data

[63]: adult_svm = SVM(adult_hot, 'income', 0, 105, 40222, StandardScaler())

5000

0.8452

5000

0.846

5000

0.8444

[83]: roc_PR_plot_SVM(adult_svm, 'ADULT', 'SVM')

5.3 Cov Data

```
[65]: cov_svm = SVM(cov_bin, 'class2', 0,54, 576012, StandardScaler())

5000
0.799
5000
0.7926
5000
0.7862

[84]: roc_PR_plot_SVM(cov_svm, 'COV', 'SVM')
```

/opt/conda/lib/python3.7/site-packages/IPython/core/pylabtools.py:128: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.

fig.canvas.print_figure(bytes_io, **kw)

6 Begin Logit Trials

```
[69]: def Logistic(dataset, target,lower,upper,test_size,scaler):
    tst_predictions = pd.DataFrame()
    validation_scores = np.zeros(3)
    tst_prob = pd.DataFrame()
    params_best = {}
    y_true = {}
    acc_scores = np.zeros(3)
    precision_scores = np.zeros(3)
    recall_scores = np.zeros(3)
    roc_scores_1 = np.zeros(3)
```

```
f1_scores = np.zeros(3)
      for j in [1,2,3]:
              param_grid = [{'classifier__penalty': ['12'], 'classifier__C': np.
\rightarrowpower(10., np.arange(-8, 5))},
                              {'classifier_penalty': ['none'], 'classifier_C': np.power(10., __
\rightarrownp.arange(-8, 5))}]
              X_tr, X_tst, y_tr, y_tst = train_test_split(dataset.iloc[:,lower:
→upper], dataset.loc[:,target], test_size= test_size, random_state = j,__
⇒shuffle = True)
              five fold = KFold(n splits = 5, shuffle = True)
              print(X tr.shape[0]) #print statement to check progress
              GS = GridSearchCV(estimator = pipe, param_grid = param_grid, cv = colored = param_grid, cv = colored = param_grid = param_grid, cv = colored = param_grid = param_grid = param_grid, cv = colored = param_grid = param_grid = param_grid = param_grid, cv = colored = param_grid = par
→five_fold, n_jobs = 4, verbose = 0, refit = True)
              best_fit = GS.fit(X_tr,y_tr)
              validation_scores[j-1] = best_fit.best_score_
              print(best_fit.best_score_) #print statement to check progress
              predictions = best_fit.predict(X_tst)
              prediction_prob = best_fit.predict_proba(X_tst)
              tst_predictions = pd.concat([tst_predictions, pd.DataFrame(predictions,_
\rightarrow columns = [str(j)])], axis = 1)
              tst_prob = pd.concat([tst_prob,pd.DataFrame(prediction_prob).
→reset_index(drop = True)], axis = 1)
              params_best['best' + str(j)] = best_fit.best_params_
              y_true['y' + str(j)] = y_tst
              acc scores[j-1] = accuracy score(y tst, predictions)
              precision_scores[j-1] = precision_score(y_tst, predictions)
              recall_scores[j-1] = recall_score(y_tst, predictions)
              roc_scores_1[j-1] = roc_auc_score(y_tst, prediction_prob[:,1])
              f1_scores[j-1] = f1_score(y_tst,predictions)
      dict_of_vals = {'best_validation': validation_scores, 'best_params':u
→params_best, 'tst_predictions': tst_predictions, 'tst_prob': tst_prob,
→precision_scores, 'recall_scores': recall_scores, 'roc_scores': 

¬roc_scores_1, 'f1_scores': f1_scores}
```

```
return dict_of_vals
[70]: results_0_log = Logistic(letters_dat, '0_pos', 0, 16, .75, StandardScaler())_
       \rightarrow#unbalanced
     5000
     0.9656
     /opt/conda/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437:
     UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no
     predicted samples.
       'precision', 'predicted', average, warn_for)
     /opt/conda/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437:
     UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no
     predicted samples.
       'precision', 'predicted', average, warn_for)
     5000
     0.962
     /opt/conda/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437:
     UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no
     predicted samples.
       'precision', 'predicted', average, warn_for)
     /opt/conda/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437:
     UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no
     predicted samples.
       'precision', 'predicted', average, warn_for)
     5000
     0.9608
     /opt/conda/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437:
     UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no
     predicted samples.
       'precision', 'predicted', average, warn_for)
     /opt/conda/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437:
     UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no
     predicted samples.
       'precision', 'predicted', average, warn_for)
[72]: roc_PR_plot_SVM(results_0_log, 'Letter', 'logit')
```


[73]: results_AM_log = Logistic(letters_dat, 'AM_pos', 0, 16, .75, StandardScaler())

→#balanced

5000

0.736

5000

0.7206

5000

0.731

[75]: roc_PR_plot_SVM(results_AM_log, 'Letter', 'logit')

[76]: cov_log= Logistic(cov_bin, 'class2', 0,54, 576012, StandardScaler())

5000

0.7592

5000

0.7616

```
5000
0.7532
```

```
[78]: roc_PR_plot_SVM(cov_log, 'Cov', 'logit')
```

/opt/conda/lib/python3.7/site-packages/IPython/core/pylabtools.py:128: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.

fig.canvas.print_figure(bytes_io, **kw)

[79]: adult_log = Logistic(adult_hot, 'income', 0, 105, 40222, StandardScaler())

5000

0.841

5000

0.8466

5000

0.8418

[81]: roc_PR_plot_SVM(adult_log, 'Adult', 'logit')

6.1 ALL RESULTS.

6.1.1 -had to retrieve them manully from the returned dictionary since jupyter lab shut down

```
[2]: ##Need O_pos KNN
     ## Need all results from SVM
     O_{knn_val} = np.array([0.9884, 0.9888, 0.9906])
     0 \text{ knn acc} = \text{np.array}([0.99133333, 0.99026667, 0.99093333])
     O_{knn_prec} = np.array([0.89630931, 0.84124386, 0.88766114])
     O_{knn\_recall} = np.array([0.8777969, 0.91296625, 0.86535009])
     O_{knn_roc} = np.array([0.93685254, 0.9531237, 0.9305633])
     O_{knn_f1} = np.array([0.88695652, 0.87563884, 0.87636364])
     cov knn val = np.array([0.7644, 0.771, 0.7616])
     cov_knn_acc = np.array([0.77929279, 0.76678784, 0.77316792])
     cov_knn_prec = np.array([0.76566599, 0.75334624, 0.76028943])
     cov_knn_recall = np.array([0.78872482, 0.77579572, 0.7809207])
     cov_knn_roc = np.array([0.77952156, 0.84640168, 0.77335698])
     cov_knn_f1 = np.array([0.77702437, 0.76440619, 0.77046698])
     adult_knn_val = np.array([0.8272, 0.8346, 0.8278])
     adult_knn_acc = np.array([0.82442444, 0.82474765, 0.82526975])
     adult knn prec = np.array([0.71873596, 0.70062112, 0.73140367])
     adult_knn_recall = np.array([0.48071722, 0.50984331, 0.46990602])
     adult_knn_roc = np.array([0.8749578 , 0.87187256, 0.87591739])
     adult_knn_f1 = np.array([0.57611044, 0.59019824, 0.57219382])
     AM_knn_val = np.array([0.9468, 0.943, 0.944])
     AM knn acc = np.array([0.9546])
     AM_knn_prec = np.array([0.95177495, 0.95087672, 0.95254692])
     AM_knn_recall = np.array([0.9567735, 0.95548083, 0.95408163])
     AM_knn_roc = np.array([0.95462124, 0.95348397, 0.95360332])
     AM_knn_f1 = np.array([0.95426768, 0.95317322, 0.95331366])
     cov_log_val = np.array([0.7592, 0.7616, 0.7532])
     cov_log_acc = np.array([0.75468567, 0.75341312, 0.75970987])
     cov_log_prec = np.array([0.73840708, 0.74472044, 0.74148755])
     cov_log_recall = np.array([0.7694581 , 0.75221513, 0.77852404])
     cov_log_roc = np.array([0.82486558, 0.82433487, 0.82397922])
     cov log f1 = np.array([0.75361288, 0.74844903, 0.75955458])
```

```
AM_log_val = np.array([0.736, 0.7206, 0.731])
AM_{log_acc} = np.array([0.7262, 0.7258, 0.727])
AM_log_prec = np.array([0.71240241, 0.7159948, 0.71685422])
AM_log_recall = np.array([0.74952868, 0.74055145, 0.74409237])
AM_log_roc = np.array([0.81066856, 0.8131976, 0.8124264])
AM_log_f1 = np.array([0.73049413, 0.72806612, 0.73021938])
adult log val = np.array([0.841, 0.8466, 0.8418])
adult_log_acc = np.array([0.84456268, 0.84391626, 0.84289692])
adult log prec = np.array([0.72853118, 0.7222088, 0.72681365])
adult_log_recall = np.array([0.59571271, 0.6003415 , 0.589982 ])
adult log roc = np.array([0.89477575, 0.89843187, 0.89665055])
adult_log_f1 = np.array([0.65546126, 0.65566038, 0.65128856])
O_{\log_{10}} = np.array([0.9656, 0.962, 0.9608])
O_{log_acc} = np.array([0.96126667, 0.96246667, 0.96286667])
O_{\log_p} = p_{\max}([0,0,0])
O_{\log_{100}} = np.array([0,0,0])
O_{\log_{100}} = p.array([0.82614902, 0.83762008, 0.84356906])
0_{\log_{1}} = np.array([0., 0., 0.])
cov_svm_val = np.array([0.799, 0.7926, 0.7862])
cov svm acc = np.array([0.80562558, 0.78864329, 0.8025805])
cov_svm_prec = np.array([0.7852103 , 0.77481568, 0.78118153])
cov svm recall = np.array([0.82777455, 0.79874621, 0.82657127])
cov_svm_roc = np.array([0.8693234 , 0.85813217, 0.87016745])
cov svm f1 = np.array([0.80593083, 0.78659898, 0.80323569])
adult_svm_val = np.array([0.8452, 0.846 , 0.8444])
adult_svm_acc = np.array([0.84222565, 0.83822286, 0.83926707])
adult_svm_prec = np.array([0.73786789, 0.7174379 , 0.73489175])
adult_svm_recall = np.array([0.5650606 , 0.57151466, 0.55318936])
adult_svm_roc = np.array([0.89260571, 0.88584867, 0.89383485])
adult_svm_f1 = np.array([0.64000454, 0.63621625, 0.63122469])
0 \text{ svm val} = \text{np.array}([0.9934, 0.9924, 0.9924])
O_svm_acc = np.array([0.99113333, 0.9932], 0.99326667])
0 \text{ svm prec} = \text{np.array}([0.91481481, 0.92449355, 0.94357977])
0 \text{ sym recall} = \text{np.array}([0.85025818, 0.89165187, 0.87073609])
0 \text{ svm roc} = \text{np.array}([0.99675533, 0.99784277, 0.99772609])
0_svm_f1 = np.array([0.88135593, 0.90777577, 0.90569561])
AM_svm_val = np.array([0.9602, 0.9572, 0.9542])
AM_svm_acc = np.array([0.9624], 0.96606667, 0.96606667])
AM_svm_prec = np.array([0.96103198, 0.96797297, 0.96727273])
AM_svm_recall = np.array([0.96310261, 0.96341627, 0.96428571])
```

```
AM_svm_roc = np.array([0.99276918, 0.99314926, 0.993619])
     AM_svm_f1 = np.array([0.96206618, 0.96568925, 0.96577691])
[3]: # table 4
     KNN_val = (sum(0_knn_val) + sum(cov_knn_val) + sum(adult_knn_val) + __
     ⇒sum(AM_knn_val))/12
     SVM_val = (sum(0_svm_val) + sum(cov_svm_val) + sum(adult_svm_val) +
     →sum(AM_svm_val))/12
     LOGIT_val = (sum(0_log_val) + sum(cov_log_val) + sum(adult_log_val) +
     →sum(AM_log_val))/12
[4]: KNN_val, SVM_val, LOGIT_val
[4]: (0.882350000000001, 0.896933333333332, 0.823283333333333)
[5]: #Compute Stats for table1
     adult_attr = len(adult_hot.columns) - 1
     adult_tr = 5000
     adult_tst = adult_hot.shape[0]-5000
     adult_percentage = sum(adult_hot.income)/adult_hot.shape[0]
     cov_attr = len(cov_bin.columns)-1
     cov tr = 5000
     cov_tst = cov_bin.shape[0]-5000
     cov percentage = sum(cov bin.class2)/cov bin.shape[0]
     lettersO_attr = len(letters_dat.columns)-3
     letters0 tr = 5000
     lettersO_tst = letters_dat.shape[0]-5000
     lettersO_percentage = sum(letters_dat.O_pos)/letters_dat.shape[0]
     lettersAM_attr = len(letters_dat.columns)-3
     lettersAM_tr = 5000
     lettersAM_tst = letters_dat.shape[0]-5000
     lettersAM_percentage = sum(letters_dat.AM_pos)/letters_dat.shape[0]
     lettersAM_attr,lettersAM_tr,lettersAM_tst,lettersAM_percentage
            NameError
                                                      Traceback (most recent call
     →last)
            <ipython-input-5-204cdd2bb7b9> in <module>
```

```
1 #Compute Stats for table1
2
----> 3 adult_attr = len(adult_hot.columns) - 1
4 adult_tr = 5000
5 adult_tst = adult_hot.shape[0]-5000
```

NameError: name 'adult_hot' is not defined

```
[6]: #Compute stats for table2
     ##knn
     knn_acc = (sum(O_knn_acc) + sum(AM_knn_acc) + sum(cov_knn_acc) +
     ⇒sum(adult_knn_acc))/12
     knn prec =
     →(sum(0_knn_prec)+sum(AM_knn_prec)+sum(cov_knn_prec)+sum(adult_knn_prec))/12
     knn_recall = (sum(0_knn_recall)+sum(AM_knn_recall) +__
     →sum(cov_knn_recall)+sum(adult_knn_recall))/12
     knn_roc = (sum(0_knn_roc)+sum(AM_knn_roc)+sum(cov_knn_roc)+sum(adult_knn_roc))/
     →12
     knn_f1 = (sum(0_knn_f1) + sum(AM_knn_f1) + sum(cov_knn_f1) + sum(adult_knn_f1))/12
     knn_mean = (knn_acc + knn_prec + knn_recall + knn_roc + knn_f1)/5
     ##svm
     svm_acc = (sum(0_svm_acc)+sum(AM_svm_acc)+sum(cov_svm_acc)+sum(adult_svm_acc))/
     →12
     svm prec =
     →(sum(0_svm_prec)+sum(AM_svm_prec)+sum(cov_svm_prec)+sum(adult_svm_prec))/12
     svm_recall = (sum(0_svm_recall)_
     -+sum(AM_svm_recall)+sum(cov_svm_recall)+sum(adult_svm_recall))/12
     svm_roc = (sum(0_svm_roc)+sum(AM_svm_roc)+sum(cov_svm_roc)+sum(adult_svm_roc))/
     →12
     svm_f1 = (sum(0_svm_f1) + sum(AM_svm_f1) + sum(cov_svm_f1) + sum(adult_svm_f1))/12
     svm_mean = (svm_acc+svm_prec+svm_recall+svm_roc+svm_f1)/5
     ##logit
     log_acc = (sum(0_log_acc)+sum(AM_log_acc)+sum(cov_log_acc)+sum(adult_log_acc))/
     →12
     log_prec =
     →(sum(0_log_prec)+sum(AM_log_prec)+sum(cov_log_prec)+sum(adult_log_prec))/12
     log_recall = (sum(O_log_recall)+sum(AM_log_recall) +__
     →sum(cov_log_recall)+sum(adult_log_recall))/12
```

[7]: ##Compute stats for table3

```
[8]: KNN_COV = sum((cov_knn_acc + cov_knn_prec + cov_knn_recall + cov_knn_roc +
      \rightarrowcov_knn_f1)/5)/3
     KNN_adult = sum((adult_knn_acc+ adult_knn_prec + adult_knn_recall +__
     →adult_knn_roc + adult_knn_f1)/5)/3
     KNN_letter1 = sum((0_knn_acc + 0_knn_prec + 0_knn_recall + 0_knn_roc +
      \rightarrow 0_knn_f1)/5)/3
     KNN_letter2 = sum((AM_knn_acc + AM_knn_prec + AM_knn_recall+0_knn_recall)/5)/3
     KNN_mean = (KNN_COV + KNN_adult + KNN_letter1 + KNN_letter2)/4
     SVM COV = sum((cov_svm_acc + cov_svm_prec + cov_svm_recall + cov_svm_roc +
      \rightarrowcov_svm_f1)/5)/3
     SVM_adult = sum((adult_svm_acc+ adult_svm_prec + adult_svm_recall +_u
     →adult_svm_roc + adult_svm_f1)/5)/3
     SVM_letter1 = sum((0_svm_acc + 0_svm_prec + 0_svm_recall + 0_svm_roc +__
      \rightarrow 0_svm_f1)/5)/3
     SVM letter2 = sum((AM svm acc + AM svm prec + AM svm recall+0 svm recall)/5)/3
     SVM_mean = (SVM_COV + SVM_adult + SVM_letter1 + SVM_letter2)/4
     LOG_COV = sum((cov_log_acc + cov_log_prec + cov_log_recall + cov_log_roc +
     \rightarrowcov log f1)/5)/3
     LOG_adult = sum((adult_log_acc+ adult_log_prec + adult_log_recall +u
     ⇒adult_log_roc + adult_log_f1)/5)/3
     LOG_letter1 = sum((O_log_acc + O_log_prec + O_log_recall + O_log_roc +__
     \rightarrow 0_log_f1)/5)/3
     LOG_letter2 = sum((AM_log_acc + AM_log_prec + AM_log_recall+0_log_recall)/5)/3
     LOG_mean = (LOG_COV + LOG_adult + LOG_letter1 + LOG_letter2)/4
```

[26]: #t test for table 3

```
knn_adult_ba = (adult_knn_acc+ adult_knn_prec + adult_knn_recall +_
       →adult_knn_roc + adult_knn_f1)/5
      knn_letter1_ba = (0_knn_acc + 0_knn_prec + 0_knn_recall + 0_knn_roc + 0_knn_f1)/
      knn_letter2_ba = (AM_knn_acc + AM_knn_prec + AM_knn_recall+0_knn_recall)/5
      log_cov_ba = (cov_log_acc + cov_log_prec + cov_log_recall + cov_log_roc +__
      \rightarrowcov_log_f1)/5
      log_adult_ba = (adult_log_acc+ adult_log_prec + adult_log_recall +_u
      →adult_log_roc + adult_log_f1)/5
      log_letter1_ba = (0_log_acc + 0_log_prec + 0_log_recall + 0_log_roc + 0_log_f1)/
      →5
      log_letter2_ba = (AM_log_acc + AM_log_prec + AM_log_recall+0_log_recall)/5
[48]: ttest_rel(knn_letter2_ba, svm_letter2)
      ttest_rel(svm_letter2,knn_letter2_ba)
[48]: Ttest relResult(statistic=1.3481545484571051, pvalue=0.3100001731773808)
[40]: svm letter1
      log_letter1_ba
[40]: array([0.35748314, 0.36001735, 0.36128715])
[11]: ##t test for table 2
      from scipy.stats import ttest_rel
[12]: knn_acc_vec = np.concatenate((0_knn_acc, AM_knn_acc, cov_knn_acc,
      →adult_knn_acc))
      svm_acc_vec = np.concatenate((0_svm_acc, AM_svm_acc, cov_svm_acc,_u
      →adult_svm_acc)) ##better than knn/logit
      logit_acc_vec = np.concatenate((0_log_acc, AM_log_acc, cov_log_acc,_u
      →adult_log_acc))
      knn_prec_vec = np.concatenate((0_knn_prec, AM_knn_prec, cov_knn_prec,_u
      →adult_knn_prec))
      svm_prec_vec = np.concatenate((O_svm_prec, AM_svm_prec, cov_svm_prec,__
      →adult_svm_prec)) ##better than knn/logit
      logit_prec_vec = np.concatenate((O_log_prec, AM_log_prec, cov_log_prec,_u
      →adult_log_prec))
      knn_recall_vec = np.concatenate((0 knn_recall, AM_knn_recall, cov_knn_recall,_
       →adult_knn_recall))
      svm_recall_vec = np.concatenate((0_svm_recall, AM_svm_recall, cov_svm_recall,__
       →adult_svm_recall)) ##better than knn/logit
```

```
logit_recall_vec = np.concatenate((0_log_recall, AM_log_recall, cov_log_recall,_u
       →adult_log_recall))
      knn_roc_vec = np.concatenate((O_knn_roc, AM_knn_roc, cov_knn_roc, __
       →adult_knn_roc))
      svm_roc_vec = np.concatenate((0_svm_roc, AM_svm_roc, cov_svm_roc,__
      →adult_svm_roc)) #better than both
      logit_roc_vec = np.concatenate((O_log_roc, AM_log_roc, cov_log_roc, __
      →adult_log_roc))
      knn_f1_vec = np.concatenate((0_knn_f1,AM_knn_f1,cov_knn_f1,adult_knn_f1))
      svm_f1_vec = np.concatenate((0_svm_f1,AM_svm_f1,cov_svm_f1,adult_svm_f1))__
       \hookrightarrow#better than both
      logit_f1_vec = np.concatenate((0_log_f1,AM_log_f1,cov_log_f1,adult_log_f1))
[25]: ## t_tests for table 2
[13]: ttest_rel(svm_acc_vec, logit_acc_vec)
[13]: Ttest relResult(statistic=2.691412825053217, pvalue=0.020976129833102677)
[14]: ttest_rel(svm_acc_vec, knn_acc_vec)
[14]: Ttest_relResult(statistic=4.956872955702661, pvalue=0.00043091511348148975)
[15]: ttest_rel(svm_prec_vec,knn_prec_vec)
[15]: Ttest_relResult(statistic=3.899000623781768, pvalue=0.002480841886663993)
[16]: ttest_rel(svm_prec_vec,logit_prec_vec)
[16]: Ttest_relResult(statistic=2.724939353033039, pvalue=0.019756256264367063)
[17]: ttest_rel(svm_recall_vec, knn_recall_vec)
[17]: Ttest_relResult(statistic=2.4844287869016473, pvalue=0.03033415889370753)
[18]: ttest_rel(svm_recall_vec,logit_recall_vec)
[18]: Ttest relResult(statistic=2.5921017215449846, pvalue=0.02504420630192683)
[19]: ttest rel(svm roc vec,knn roc vec)
[19]: Ttest relResult(statistic=5.407850247640286, pvalue=0.0002140905264235102)
[20]: ttest_rel(svm_roc_vec,logit_roc_vec)
```