M5. Minería de Texto + webscraping

Clase 4. Modelado de tópicos 1. LDA

¿Cómo representar "matemáticamente" un texto?

No es la conciencia (...) la que determina su ser sino (...) el ser social lo que determina su conciencia.

doc	word	
1	no	
1	es	
1	la	
1	conciencia	
1	la	
1	que	
1	determina	
1	su	
1	ser	

Un fantasma recorre Europa: el fantasma del comunismo

doc	word	
2	un	
2	fantasma	
2	recorre	
2	europa	
2	el	
2	fantasma	
2	del	
2	comunismo	

No es la conciencia (...) la que determina su ser sino (...) el ser social lo que determina su conciencia.

Un fantasma recorre Europa: el fantasma del comunismo

doc	word	
1	no	
1	es	
1	la	
2	el	
2	fantasma	
2	del	
2	comunismo	

doc	word	
1	no	
1	es	
1	la	
2	el	
2	fantasma	
2	del	
2	comunismo	

group_by(doc) %>% count(word)

doc	word	count
1	no	1
1	es	1
1	la	2
1	conciencia	2
2	el	1
2	fantasma	2
2	del	1
2	comunismo	1

Document-Term Matrix (TFM)

doc	no	es	la	conciencia	 el	fantasma	del	comunismo
1	1	1	2	2	 0	0	0	0
2	0	1	0	0	 1	2	1	1

Document-Term Matrix (TFM)

Fuente: https://github.com/gefero/ws_text_mining/blob/master/slides/04_pinto.pdf

Document-Term Matrix (TFM)

Palabras, bigramas, trigramas, lemas, solo la raíz de la palabra...

F términos

Frecuencia del término

Bag of Words (BoW)

- Representación de cada documento en función de las palabras que contiene
- Características:
 - Es simple de generar
 - Se asume que las palabras son "independientes"
 - Los vectores son claramente no independientes
 - La gramática y el orden de las palabras se pierden

Modelado de tópicos

¿Qué es?

- Hasta aquí => conteo de palabras "crudos", ponderados de alguna forma y/o mediante lexicones
- ¿Qué pasa si no queremos (o no podemos) usar lexicones? ¿Cómo detectamos los temas de un corpus sin leerlo y sin buscar palabras específicas?
- Tenemos un corpus documental muy grande y queremos una herramienta para hacer una primera "lectura" sin leer uno por uno los documentos.

¿Qué es?

 Las técnicas de modelado de tópicos apuntan eso: buscan detectar grupos o conjuntos de textos con una temática similar. Algoritmos basados en descomposición de matrices (NMF: Non-Negative Factorization) y modelos probabilísticos (LDA: Latent Dirichlet Allocation).

Vamos a centrarnos en LDA.

- La matriz de documentos-términos suele tener muchos ceros
- Problema: se hace difícil medir la relación entre los distintos documentos o términos

	Palabra 1	Palabra 2	Palabra 3	Palabra 4	Palabra 5	1
Relato 1	0	0.12	0.01	0	0	
Relato 2	0	0	0.44	0.15	0.65	
Relato 3	0.11	0.31	0.28	0	0	(···)
Relato 4	0	0	0.05	0.21	0	
Relato 5	0	0.13	0	0.07	0	
			(…)			

La correlación lineal entre <u>filas</u> nos da una idea de la similitud del significado entre <u>relatos</u>

La correlación lineal entre <u>columnas</u> nos da una idea de la similitud del significado entre <u>palabras</u>

Pero hay un problema: la mayor parte de los valores son 0

¿Qué es un tópico?

¿Cómo se ve una matriz de documentos por términos real?

En blanco las componentes igual a cero; en negro las componentes distintas de cero.

¿Qué es un tópico?

Ordenando la matriz por filas y columnas...

¿Qué es un tópico?

Emergencia de bloques: Conjunto de documentos que usan términos similares. Estos bloques emergen naturalmente del "ordenamiento" de la matriz de documentos por términos.

A los bloques los identificamos como **tópicos** o **ejes temáticos**.

¿Cómo hacemos el ordenamiento? Algoritmos de detección de tópicos

Modelo probabilístico generativo (modelo para describir la forma en que se produjo la TFM)

Supuestos:

- un tópico es una distribución en el espacio de términos;
- un documento es una distribución en el espacio de tópicos (es una mixtura de tópicos).

¿Cuál es el modelo generativo? La idea es ir construyendo término a término un documento. Supongamos que ya conocemos todas las distribuciones:

Elijo un tópico de la distribución del documento en el espacio de tópicos

life	0.02
evolve	0.01
organism	0.01

Elijo un término de la distribución del tópico elegido en el espacio de términos

El término elegido forma parte del documento e itero hasta completar los N términos del documentos

¿Dónde está el problema? En tratar de inferir las distribuciones de los documentos y tópicos a partir de los datos.

https://www.mygreatlearning.com/blog/understanding-latent-dirichlet-allocation/

Algoritmo

LDA assumes the following generative process for each document **w** in a corpus \mathcal{D} :

- 1. Choose $N \sim \text{Poisson}(\xi)$.
- 2. Choose $\theta \sim Dir(\alpha)$.
- 3. For each of the N words w_n :
 - (a) Choose a topic $z_n \sim \text{Multinomial}(\theta)$.
 - (b) Choose a word w_n from $p(w_n | z_n, \beta)$, a multinomial probability conditioned on the topic z_n .

Figure 1: Graphical model representation of LDA. The boxes are "plates" representing replicates. The outer plate represents documents, while the inner plate represents the repeated choice of topics and words within a document.

No vamos a ver en detalle la matemática ni los procesos de estimación pero esta ecuación da una intuición de lo que está pasando:

$$\left(p(\mathbf{w} \mid \alpha, \beta)\right) = \int p(\theta \mid \alpha) \left(\prod_{n=1}^{N} \sum_{z_n} p(z_n \mid \theta) p(w_n \mid z_n, \beta)\right) d\theta.$$

Proba de obtener un documento dado parámetros del modelo

Probabilidad de elegir el tópico del documento

Proba de elegir un término dado un tópico

Objetivo: inferir estos objetos (a través de inferir los parámetros de las distintas distribuciones).

Del texto crudo al texto como dato

De la matriz de términos a la matriz de tópicos

	hurlingham	noche	paisano	pompeya	techos	vernes
C1	1	1	1	0	0	0
C2	0	0	0	1	1	0
C3	0	1	0	0	0	1

Matriz de Frecuencia de términos

	hurlingham	noche	paisano	pompeya	techos	vernes
T1	0.8	0.4	0.8	0.9	0.6	0.2
T2	0.3	0.9	0.1	0.3	0.4	0.9

Matriz de Documentos x Tópicos

	T1: Barrios	T2: Fiesta
C1	0.9	0.1
C2	0.9	0.1
C3	0.15	0.85

Matriz de Términos x Tópicos

Ventajas de los modelos generativos:

- Supuestos explícitas: si el modelo falla (por ejemplo, no encuentra los tópicos correctos en un corpus bien definido) se puede chequear si es porque los datos no cumplen alguna. De variar las hipótesis vienen las extensiones de LDA (STM vamos a ver la semana que viene).
- Generación de datos sintéticos y autoconsistencia: podemos inicializar el modelo con ciertos parámetros, generar datos sintéticos y ver si recuperamos los parámetros originales.

Un caso de aplicación (autobombo)

"El tango, como hemos visto, empezó, surge de la milonga, y es al principio un baile valeroso y feliz. Y luego, el tango va languideciendo y entristeciéndose..."

III Conferencia, p.80-81

Enfoque tradicional

- Problema: analizar los temas de las letras de tango
- Enfoque "hermenéutico": analizar pocas letras en profundidad
- Temas comunes: representaciones de género, figuras del "guapo", representaciones del arrabal, etc.

Enfoque tradicional

- Problema: analizar los temas de las letras de tango
- Enfoque "estadístico"
- Cantón (1972), analiza ciertos aspectos relevantes de las letras de los tangos cantados por Gardel

Enfoque propio

- Scrap de letras del sitio todotango.com
- Corpus: 5.700 letras
- Problema: analizar un corpus de ~5.700 letras de tango para detectar "tópicos" - Detección automática: Latent Dirichlet Allocation

espera

despues estrella nombre sombra tiempo

viento final

sueño solluna tarde

vez Cielo, adios

luz VOZ dos

manos mar gris

silenciosombras camino

sueños calle soledad

libre historia

calles aires pais aire

plaza sur alli libertad Cada rio vino lugar

encuentro gente

nueva siempre esquina algun

noches amores canto flores pasion linda dulce OIOS labios nido ilusion cancion emocion mujer junto sueño ternura ^{querer}

gritar cruza triste alguien medio mano aun dice momento dia mia pues toda fondo copa historia voy razon mundo cabeza sigue loco aqui almas entero cara

05 Campo y gauchesca

06 Tango y arrabal

07 Tiempo, recuerdos

aquellos viejos

recuerdo nuevo

barrio parece horas

siempre

08 Misc

12 temas detectados

bajo muerto gloria dios juan pronto hizo rancho alli dio dijohabia vio dije pobre tierra tenia criollo grito don iba patria pampa gaucho huella perro largo llego despues camino blanca

09 Emociones negativas cruel nunca siento siempre puedo ojos

porteño cantando gardel emocion notas cancionarrabal triste compas canto cantor cantar barrio viejo bajo 1 alma milonga bailar bandoneon tangos amigos pasado lejos canta corazon hace quitarra muchachos

10 Candombe

seda coro NIÑO candombe

carnaval hacen mismo agua pasar

sangre negra toca

mundo

saben risa negro blanco negros pelo maria

11 Misc v familia

domingo alla niños _ casi lado coraje grita cara circo alegria dia hora toda dire adentro dicho rato alcanza sangre pues vieja cerca deja quede queda

noches aquella entonces recuerdos dias amigo hombre nunca cosas años queda puede vida aunque ver mundo vivir dos sernadie ahora sabe voyaqui mejor mismo gente vamos mañana

andar hacer

12 Misc v lunfardo

bronca pinta haces sabes hace tenes hermano queres despues ver

Composición de tópicos de 4 tangos

factor~data

IDAES UNSAM

Evolución de los tópicos, 1900-2010 (suavizado GAM)

Resumen

- La TFM es un insumo para detectar tópicos
- Un "tópico" emerge como un de términos comunes usados por ciertos conjunto de documentos
- LDA es un método generativo para esa tarea

Vamos al notebook...

