Введение в теорию Галуа - семинар 4

6 октября 2025

- (1) Пусть F поле характеристики p и α алгебраичен над F.
 - (a) Покажите, что минимальный многочлен α сепарабелен тогда и только тогда, когда $F(\alpha) = F(\alpha^{p^n})$ для всех $n \in \mathbb{N}$.
 - (b) Покажите, что если F совершенно, что α либо лежит в F, либо $F(\alpha) = F\left(\alpha^{p^n}\right)$ для всех $n \in \mathbb{N}$, то есть любое алгебраическое расширение совершенного поля совершенно.
- (2) Пусть ζ это прмитивный корень из 1 степени 7.
 - (a) Покажите, что $\mathbb{Q} \subset \mathbb{Q}[\zeta]$ это расширение Галуа и $G = \operatorname{Gal}(\mathbb{Q}[\zeta]/\mathbb{Q}) = (\mathbb{Z}/7\mathbb{Z})^{\times}$.
 - (b) Постройте промежуточное расширение $\mathbb{Q} \subset M_3 \subset \mathbb{Q}[\zeta]$, такое что $[M_3:\mathbb{Q}]=3$ и покажите, что M_3 это поле разложения многочлена X^3+X^2-2X-1 .
 - (c) Постройте промежуточное расширение $\mathbb{Q} \subset M_2 \subset \mathbb{Q}[\zeta]$, такое что $[M_2:\mathbb{Q}]=2$ и покажите, что $M_2=\mathbb{Q}[\sqrt{-7}]$.
- (3) Посчитайте группу Галуа для поля разложения многочлена X^5-2 над $\mathbb Q.$
- (4) Пусть F это поле характеристики 0 и пусть $E = F(X^2) \cap F(X^2 X)$.
 - (a) Найдите автоморфизм $\sigma \in \text{Aut}(F(X)/F)$ порядка 2, сохраняющий поле $F(X^2)$.
 - (b) Найдите автоморфизм $\tau \in \text{Aut}(F(X)/F)$ порядка 2, сохраняющий поле $F(X^2-X)$. Посчитайте порядок композиции $\sigma \circ \tau$.
 - (c) Докажите, что если $E \subset F(X)$ это конечное расширение, то $\mathrm{Aut}(F(X)/E)$ это конечная группа. Выведите отсюда, что E = F.
- (5) Циклотомические расширения Q.
 - (a) Пусть p простое число, $f \in \mathbb{Z}[X]$ многочлен со старшим коэффициентом 1, такой что многочлен $f \pmod{p} \in \mathbb{F}_p[X]$ не имеет кратных корней в поле разложения. Покажите, что многочлен f над \mathbb{Q} не имеет кратных корней.
 - (b) Пусть $\mathbb{Q} \subset L$ поле разложения многочлена f из пункта (a), $\alpha \in L$ некоторый корень многочлена f, и пусть P минимальный многочлен элемента α над \mathbb{Q} . Предположим, что $f(\alpha^p) = 0$. Докажите, что тогда $P(\alpha^p) = 0$.
 - (c) Пусть $\zeta \in \mathbb{C}$ примитивный корень степени n из 1. Покажите, что минимальный многочлен R элемента ζ над \mathbb{Q} обращается в нуль в ζ^p для любого p, взаимно простого с n.
 - (d) Покажите, что $R(X) = \prod_{i \in (\mathbb{Z}/n\mathbb{Z})^*} (X \zeta^i)$.
 - (e) Пусть E это поле разложения многочлена X^n-1 . Покажите $\mathrm{Gal}\,(E/\mathbb{Q})\simeq (\mathbb{Z}/n\mathbb{Z})^*.$
- (6) Пусть p это простое число, не равное 2, и пусть ζ это примитивный p-ый корень из 1 в \mathbb{C} . Пусть $E = \mathbb{Q}[\zeta]$ и пусть $G = \mathrm{Gal}(E/\mathbb{Q})$; тогда $G = (\mathbb{Z}/(p))^{\times}$. Пусть H это подгруппа индекса 2 в G. Положим $\alpha = \sum_{i \in H} \zeta^i$ и $\beta = \sum_{i \in G \setminus H} \zeta^i$. Покажите:
 - (a) α и β инвариантны относительно H;

- (b) если $\sigma \in G \backslash H$, то $\sigma \alpha = \beta, \sigma \beta = \alpha;$ (c) α и β это корни многочлена $X^2 + X + \alpha \beta \in \mathbb{Q}[X];$
- (d) Покажите равенство:

$$E^H = egin{cases} \mathbb{Q}[\sqrt{p}], & ext{если } p \equiv 1 \bmod 4; \\ \mathbb{Q}[\sqrt{-p}], & ext{если } p \equiv 3 \bmod 4. \end{cases}$$

- (7) Пусть $M = \mathbb{Q}[\sqrt{2}, \sqrt{3}]$ и $E = M[\sqrt{(\sqrt{2}+2)(\sqrt{3}+3)}]$ (и то, и другое подполя \mathbb{R}).
 - (а) Покажите, что M это расширение Галуа над $\mathbb Q$ и группа Галуа этого расширения равна $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - (b) Покажите, что E это расширение Галуа над $\mathbb Q$ и группа Галуа этого расширения равна группе кватернионов.