1-5. Lesigning	= =	= () 1-0=	
=0=0	logic device	25		
PLD (Programa				
= = 0 = =	Memor	(y)		
Loron Cread	and logic	Array)	1.01 8	hits
-) PLA (Program	Maure cogne	u logic)	1 Byto = 8	24 bits = 210
> PAL (Program)			2/	
Memory:-	RAM - volat	lile	30	/
premay.	20M - Real		(10)0	
			1600d=	2 Bytes
Block	diagram of	memory unit		
	n da 1	ita i/p lines		
k address	lines Menory	unit		
Read		vords		
write	n bit per	r word		
		J. J. Jimas		
		ata of lines		
	1024 × 16	menory — c	address	
	menory.	address	/ /	
binary de	ana/	Memory	content	
5000000000	0	View of the second of		
5000000001	1	10101010000	701700	
000000000	2	T-		
(
1		,		
1				
111		!		
1111110 - 10.				
1111111 10.	243	[10/1/006/	101010	

programming ROM using T-T

Q) Design a combinational circuit using ROM. The circuit accepts

s bit number and olp's a binary no equal to square of ilp n

5011-

Truth table for given problem Deginal outputs Inputs Bs By Bz B, Bo Ar Ao 0 · () 0 0 16 \circ 25 0 36 0 49

8X4 Block diagram Rom Truth table outputs Inputs B5 B4 B3 B2 Az AI AO 0 0 0 0 0 0 0 0 0 0 0 0 10 0 1 0 0 1 1 0 0 ypes of RUM (2M): *** ROM PROM - Programmable ROM EPROM - Grasable programmble RUM EEPROM - Electrical " " ROM Flash memory Flash memory devices are similar to EEPROM but have additional built in circuitary to selectively program, and cross the device in circuit without need of a special program.

a) Programmable Kead-Unig-1 Kilong (1201) fixed AND > programmable outputs

oray (decoder) OR array b) Programmable array logic (PAL) c) Programmable logic array (PLA) imputs | Rogrammable | Programmable outputs

AND array | OR array a) Design a PLA which implements the boolean functions Fr = AB'+ AC + A'BC' $F_2 = (AC+BC)'$

 $\Theta \oplus 1 = \theta'$

A + 0 = A

Q) Design a PLA which implements the boolean functions $F_1 = AB' + AC + A'BC'$

$$F_2 = (AC+BC)'$$

Product term		, ,	Inputs			Outputs				
		term	A	B	C		T	(c) F2		
	AB1	1	/	0	_		1			
	AC	2	1	_	1		1	1		
	BC	3	-	1	1)		
	A'BC'	4	0	1	0		1	_		
a) Inj	olement	the follow	wing (two b	polean	funci	tions	with	RA	
F, (A,13,C) = E(0,1,2,4)										
	F	(A,BCC)	= E(0	1,5,6,3	7)					
a BC o		10	0 1			F2 = AC	+ AB+	ABC		
Fi:	BC + AB	+ 50	6							
Fi =	ABTACT	30			i.					
F1 =	(AB+AC+	BO)								
		PLA P	ogra <u>m</u> m	ing tai	ble	<i>?</i>				
Pro	oduct terr		Inp	outs		- ,	itputs (c)	(1)		
		,	A	BC			Fi	F ₂		
	93	5) / c	· /. · · /	1,5				1		
1-	Эc .			- 1 - s				n j kui	,	
. 6	3C		_	<i>1</i> .			1 / .	_		
A	'β'c'		0	0 (-	_	1		

Q) Consider the following boolean functions given in sum of min terms form and design c-c using PAL.

$$\omega(A_{r}B_{r}C_{r}D) = \Xi(2_{r}12_{r}13)$$

$$\infty(A_{r}B_{r}C_{r}D) = \Xi(7_{r}8_{r}9_{r}10_{r}11_{r}12_{r}13_{r}14_{r}15)$$

$$y(A_{r}B_{r}C_{r}D) = \Xi(0,2,3,4,5,6,7,8,10,11,15)$$

$$z(A_{r}B_{r}C_{r}D) =$$

