3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities

Definition

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

- \bullet f is concave if -f is convex
- ullet f is strictly convex if $\operatorname{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{dom} f$, $x \neq y$, $0 < \theta < 1$

Examples on R

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on Rⁿ and R^{$m \times n$}

affine functions are convex and concave; all norms are convex

examples on R^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_\infty = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

• affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

spectral (maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Restriction of a convex function to a line

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \to \mathbf{R}$,

$$g(t) = f(x + tv),$$
 $\operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$

is convex (in t) for any $x \in \operatorname{dom} f$, $v \in \mathbf{R}^n$

can check convexity of f by checking convexity of functions of one variable

example. $f: \mathbf{S}^n \to \mathbf{R}$ with $f(X) = \log \det X$, $\operatorname{dom} f = \mathbf{S}_{++}^n$

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$
$$= \log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$

g is concave in t (for any choice of $X \succ 0$, V); hence f is concave

Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \notin \operatorname{dom} f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbf{R} \cup \{\infty\}$), means the same as the two conditions

- $\operatorname{dom} f$ is convex
- for $x, y \in \operatorname{dom} f$,

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order condition

f is **differentiable** if $\operatorname{dom} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$

first-order approximation of f is global underestimator

Second-order conditions

f is **twice differentiable** if $\operatorname{dom} f$ is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

 \bullet f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{dom} f$

ullet if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \succeq 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T(Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{\mathbf{diag}}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v:

$$v^{T} \nabla^{2} f(x) v = \frac{\left(\sum_{k} z_{k} v_{k}^{2}\right) \left(\sum_{k} z_{k}\right) - \left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \ge 0$$

since $(\sum_k v_k z_k)^2 \le (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy-Schwarz inequality)

geometric mean: $f(x) = (\prod_{k=1}^n x_k)^{1/n}$ on \mathbb{R}^n_{++} is concave (similar proof as for log-sum-exp)

Epigraph and sublevel set

 α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ x \in \mathbf{dom} \, f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f : \mathbb{R}^n \to \mathbb{R}$:

$$epi f = \{(x, t) \in \mathbf{R}^{n+1} \mid x \in dom f, \ f(x) \le t\}$$

f is convex if and only if epi f is a convex set

Jensen's inequality

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

$$f(\mathbf{E} z) \leq \mathbf{E} f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$$

Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Composition with scalar functions

composition of $g: \mathbf{R}^n \to \mathbf{R}$ and $h: \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x))$$

f is convex if $\begin{array}{c} g \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing} \\ g \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing} \end{array}$

• proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^{2} + h'(g(x))g''(x)$$

ullet note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^n \to \mathbf{R}^k$ and $h: \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{c} g_i \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing in each argument} \\ \\ \text{proof (for } n=1 \text{, differentiable } g,h) \end{array}$

$$f''(x) = g'(x)^{T} \nabla^{2} h(g(x)) g'(x) + \nabla h(g(x))^{T} g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

• $f(x,y) = x^T A x + 2x^T B y + y^T C y$ with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \qquad C \succ 0$$

minimizing over y gives $g(x)=\inf_y f(x,y)=x^T(A-BC^{-1}B^T)x$ g is convex, hence Schur complement $A-BC^{-1}B^T\succeq 0$

• distance to a set: $\operatorname{dist}(x,S) = \inf_{y \in S} \|x - y\|$ is convex if S is convex