TOSHIBA TA1242N

東芝バイポーラ形リニア集積回路 シリコン モノリシック

TA1242N

NTSC カラーTV 用バスコントロールIC

TA1242N は、NTSC 方式カラーテレビ用のPIF、SIF、輝度 信号、クロマ信号、同期信号処理回路およびAVスイッチ、テ キストインタフェースを1チップ化した56ピンシュリンク DIPパッケージの集積回路です。

バスコントロールシステムによる調整工程、各種コント ロールの合理化が可能です。

特 長

PIF 回路

- PLL 完全同期検波 (バス調整)
- 無調整タンクレス単極性AFT
- RF AGC 出力 (ディレイポイントバス調整)
- 2 重時定数高速AGC

ビデオ回路

- 黒伸張回路
- 直流再生回路
- DLアパコン型シャープネス回路(バス)
- 内部フィルタ自動調整回路 (f_{sc} 連動タイプ)
- ユニカラー回路(バス)
- 3.58トラップ回路(バスにてオン/オフ)
- Y-DL 回路

クロマ回路

- カラー調整回路(バス)
- 色相調整回路(バス)
- BPF/TOF回路(バス)
- ACC/キラーフィルタ内蔵

SIF 回路

- インタキャリヤSIFシステム
- 外部音声切り替えスイッチ (バス)
- アッテネータ回路(バス)

質量 : 5.55g (標準)

テキスト回路

- リニアRGB入力
- カットオフ/ドライブ調整(バス)
- RGB 原色出力

同期回路

- オートスライサ型高性能同期分離回路
- 無調整カウントダウンシステム
- 同期分離出力
- X線保護回路
- 垂直ランプ出力
- 2 重AFC 回路
- 水平垂直画面位置調整 (バス)
- 垂直振幅調整(バス)

- 当社は品質、信頼性の向上に努めていますが、一般に半導体製品は誤作動したり故障することがあります。当社半導体製品をご使用頂く場合は、半導体製品の誤作動や故障により、他人の生命身体財産が侵害されることのないように、購入者側の責任において、装置の安全設計を行うことをお願いします。なお、設計に際しては、最新の製品仕様をご確認の上、製品保証範囲内でご使用頂くとともに、考慮されるべき注意事項や条件について「東芝半導体製品の取り扱い上のご注意とお願い」、「半導体信頼化ハンドブック」などで活用ください。本資料に掲載されている製品は、外国為替および外国貿易管理法により、輸出または海外への提供が規制されているものです。本資料に掲載されている技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当社および第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。

ブロック図

端子機能

端子 番号	名 称	機能	インタフェース
1 2	音声出力	音声出力端子です。 TV 選択時はモノラルにて端子 1、2 同一出力となります。 最大ドライブ電流3.6mA ドライブ可能最小負荷1kΩ	1 200Ω (C)
3	RF AGC	RF AGC 出力端子です。	30kΩ 30kΩ 30kΩ 43kΩ 66
4	SIF タンク	音声検波コイル接続端子です。 ミュートスイッチを兼ね、端子 を接地することにより音声を ミュートすることができます。	48 5.5pF 48 48 5,5pF
5	AGC フィルタ	PIF 2nd AGC フィルタ接続端子です。	(S) TRF AGC AGC アンブ (S) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G
6	PIF GND	PIF GND 端子です。	_
7 8	PIF 入力	IF 入力端子です。 標準入力90dB <i>μ</i> V です。	7 100kΩ 100kΩ 20pF 2

端子 番号	名 称	機能	インタフェース
9	PIF V _{CC}	PIF V _{CC} 端子です。	_
10	ループフィルタ	PIF PLL ループフィルタ接続端子です。	48 APC 検出 500Ω 51
11	APC フィルタ	f _{sc} 発振のAPC フィルタの接続端 子です。	11 300Ω CONS TO STATE OF STATE
12	VCXO	3.58MHz VCXO 回路用水晶発振子の接続端子です。 水晶発振子にはMIL 規格「HC-49 /U」を推奨します。	2.5kΩ 2.5kΩ 46 2.5kΩ 2.5kΩ 46 2.5kΩ 2.5kΩ 46 2.5kΩ 2.5kΩ 46 2.5kΩ 2.5kΩ 46 2.5kΩ 3.5kΩ 46 2.5kΩ 3.5kΩ 46 2.5kΩ 46 2.5k
13	GND	V/C/D GND端子です。	_
14	ファースト ブランキング	RGB 入力のファーストブランキング信号入力端子です。 スレッシュレベルは1.5V です。	46 46 46 46 46 46 46

端子 番号	名 称	機能	インタフェース
15 16 17	アナログRGB IN	RGB 信号入力端子です。	15 16 16 17 2kΩ 2kΩ 17 2kΩ 18 19 19 19 19 19 19 19 19 19 19 19 19 19
18	D.V _{CC}	デジタルV _{CC} 端子です。	_
19 20 21	RGB 出力	RGB 原色出力端子です。	46 400Ω 400Ω 19 20 21 21
22	垂直出力	垂直パルス出力端子です。	(3) (1000) (2) (1000) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
23 24	NFB V.RAMP	NFB 入力、V.RAMP 出力端子です。	46 COST SkΩ 23 (23) 13 V V V V V V V V V V V V V V V V V V V

端子 番号	名 称	機能	インタフェース
25	垂直同期分離フィルタ	垂直同期分離フィルタ接続端子 です。	2 5 μη (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
26	H.V _{CC}	H.V _{CC} 端子です。	_
27 28	SCL SDA	I ² C バス入出力端子です。	SCA 1kΩ SDA 100Ω SDA O A O A 350 m 355
29	X-RAY	過電圧保護回路です。 スレッシュレベルは3.5Vでこれ 以上の電圧が加わると水平出力 をローレベルにします。	(3) 1k(C) 100 th
30	フライバックパルス 入力	フライバックパルス入力端子で す。 AFC、ゲートパルスなどの基準 信号になります。	30 200Ω * フライバックバルス位相 13
31	同期信号出力	同期信号出力端子です。 流入電流1mA 以下としてください。	30kΩ 31)

端子 番号	名 称	機能	インタフェース
32	水平出力	水平出力端子です。	26 1kΩ 1kΩ 50Ω 32
33	H.AFC	AFC フィルタ接続端子です。 H.AFC は入力される水平同期と 32f _H をカウントダウンして作 られる水平パルスとの同期合わ せを行います。	33 H C.D 入力
34	32f _H VCO	セラミック発振子を接続して 32f _H (503kHz) 発振回路を構成し ます。発振子にはCSB503F30 (村 田製作所製) を推奨します。	26 1kΩ 1kΩ 1kΩ 26 1kΩ 26 1kΩ 27 28 29 30 30 30 30 30 30 30 30 30 30
35	D.GND	デジタルGND 端子です。	_
36	ABL	ABL端子です。	36
37	TV 入力	TV 検波出力の入力端子です。 標準1V _{p-p} 入力です。	37 — 46

端子 番号	名 称	機能	インタフェース
38	ACL	ACL 端子です。	33 10kΩ 10kΩ 10kΩ 13kΩ 13kΩ 13kΩ 13kΩ 13kΩ 13kΩ 13kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10
39	外部ビデオ入力	外部ビデオ信号入力端子です。 標準1V _{p-p} 入力です。	(3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
40	黒ピーク検出	黒レベル検出フィルタ接続端子 です。	3.3kΩ 2.8kΩ 1.8kΩ 1.8kΩ (3)
41	AV スイッチ出力	TV 入力、外部入力のスイッチ出力端子です。 標準出力1.9V _{p-p} です。 (×2 アンプゲイン:最小1.7、 標準1.9、最大2.1 倍となって)	41 200Ω 46 50Ω 44 46 50Ω 13
42	直流再生	APL 検出フィルタ接続端子です。	42 2kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3

端子 番号	名 称	機能	インタフェース
43	Y入力	Y信号の入力端子です。 標準入力1V _{p-p} です。	46 1.5kΩ 48 1.5kΩ 49 1.5kΩ 49 1.5kΩ 49 13
44	AFT	AFT 出力端子です。 バス選択によりモニタ出力が得られます。 BO B1 出力 0 O AFT 0 1 テスト:禁止 1 O B 1 1 RF AGC/2	48 C 200Ω C 300Ω C
45	クロマ入力	クロマ信号入力端子です。 標準286mV _{p-p} (バースト) です。 この端子の電圧が4.5V 以上にな るとテストモードに入ります。	46 46 40 11 11 11 11 11 11 11 11 11 1
46	V/C/D V _{CC}	V/C/D V _{CC} 端子です。	_
47	TV 検波出力	TV 検波出力端子です。	48 2kΩ 4000 S 1kΩ 2kΩ 4000 S 1000 S 1000 S
48	SIF V _{CC}	SIF V _{CC} 端子です。	_

端子 番号	名 称	機能	インタフェース
49 50	PIF タンク	TV 検波用タンクコイル接続端子です。 東光 (株) 製 タ ン ク コ イ ル 、 292GJAS-7475BS (45.75MHz)、 292GJAS-7476BS (58.75MHz) を推奨いたします。	(3) 500Ω (4) 500Ω (5) 500Ω (5) 500Ω (6) 500Ω (7) 500Ω (8) 500Ω (8) 500Ω (8) 500Ω (9) 500Ω (10) 500Ω
51	SIF GND	SIF GND 端子です。	_
52	リミッタ入力	SIF 入力端子です。	37 20kΩ 38 20kΩ 39 20kΩ 4.5kΩ 200 μΑ 4.5kΩ
53	TV 音声信号入力	TV 音声信号の入力端子です。 デエンファシス (端子54) と容量 結合にて使用してください。	53 Z200Ω C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
54	デエンファシス	SIF 検波デエンファシス用フィルタ接続端子です。	24 Cλώς 1 4 100 1 200 Ω (48)
55 56	外部オーディオ入力	外部オーディオ入力端子です。	23.5kΩ 55 56 23.5kΩ 57 AV Z 1 y ≠ 30 0s

スレーブアドレス:88H

機		能	サブ			デ	_	タ			
1茂		ĦE.	アドレス	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
カ	ラ	_	00	トラップ (0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
色	あ	L١	01	バンドパス							
<u> </u>				フィルタ (1)	(1)	(0)	(0)	(0)	(0)	(0)	(0)
明	る	さ	02	Aスイッチ							
<u> </u>				(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
ᇫ	カ	ラー	03	ブラキング							
				(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
画		質	04	л П							
				(0)	(1)	(1)	(0)	(0)	(0)	(0)	(0)
水平	垂i	直位相	05		垂直位相				水平位相		
				(0)	(0)	(0)	(1)	(0)	(0)	(0)	(0)
		・ータ	06	B_0 (0)	B_1 (0)	(0)	(0)	(0)	(0)	(0)	(0)
バラ	ا ج	ンス	07	B ₂ (0)		(1)	(0)	(0)	(0)	(0)	(0)
R F	,	A G C	08	B ₄	Vスイッチ						
IX I		, , ,	00	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
垂直	直	振 幅	09	AFC (0)	WPS (0)	(1)	(0)	(0)	(0)	(0)	(0)
PIF	'	v с о	0A	B ₅ (0)	(1)	(0)	(0)	(0)	(0)	(0)	(0)
Rカ、	ット	オフ	0B	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Gカ	ット	オフ	0C	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Βカ、	ット	オフ	0D	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Gケ	ř -	イン	0E	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Bゲ	<u> </u>	イ ン	0F	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)

(注) (0)、(1) はプリセットデータ値を表します。

項目	内 容 (最小~最大)	デフォルト
カラー	-60~0dB	– 60dB
色あい	± 42°	0°
明るさ	1.34~2.6~3.86V	1.34V
ユニカラー	- 24~0dB	– 24dB
画質	– 18~6~14dB (4MHz 時のゲイン)	6dB
アッテネータ	-85~6dB	– 85dB
バランス	-70~0~70dB	0dB
RF AGC	65dBμV~105dBμV	0dB
垂直振幅	1.6~2.4V	センタ
PIF VCO	± 2.2MHz (35kHz / bit)	センタ
RGB カットオフ	-0.4~0.4V	-0.4V
GBドライブゲイン	-3.1~3.1dB	– 3.1dB
3.58 トラップ	(0): オン/(1): オフ	オン
バンドパスフィルタ	(0):バンドパスフィルタ/(1):テイクオフフィルタ	TOF
A, Vスイッチ	(0): TVモード/(1):外部モード	TV
ブランキング	(0): ブランキングオン / (1): ブランキングオフ	オン
ミュート	(00) : オフ/(01) : Yミュート/(10) : 水平出力停止/(11) : Yミュート + V ストップ	(01)
AFC	(0): AFC1 電流×2/(1): AFC1 電流ノーマル	(0)
WPS	(0):オフ/(1):オン <77IRE 以上で – 7dB>	オフ
B ₀ , B ₁ (モニタ出力)	端子44 からの出力信号を切り替えます。 (00): AFT 電圧/(01): テストモード/(10): B 出力/ (11): RF AGC 電圧/2	AFT 電圧
B ₅ , B ₁ (V 固定モード)	(00): V-Pull in, H-Pull in/(01): V-Pull in, H-Pull in (10): V-262.5H 固定, H-Free Run/(11): V-262.5H 固定 H-Pull in (Low Gain)	(00)
B ₂ , B ₃ , B ₄ (テストモード)	テストモード用ビットです。 デフォルト値 (000) で使用してください。	(000)

リードモード

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
POR	AFT	IF LOCK	AFT	_	V LOCK	H LOCK	X-RAY

項目	内容
POR (Power On Reset)	(0):2回目からのリード値/ (1):1回目のリード値
AFT	(0): 下図
IF LOCK	(0) : LOCK OUT/(1) : LOCK IN
V LOCK	(0): LOCK IN/(1): LOCK OUT: V=262~263Hにて判定
н госк	(0):LOCK OUT/(1):LOCK IN: V _p で強制アンロックのため50H 以降で 読出。
X-RAY	(0): X-RAY オフ/(1): X-RAY オン

○ 垂直位相 (3 ビット)

垂直出力パルスのタイミングを変化させるモードです。 (垂直画面位置は右表に従い0~7H 分移動します。)

○ 水平位相 (5 ビット)

水平の画面位置を変化させるモードです。 水平出力パルスの位相を最大 $\pm 3\mu$ s 変化させることができます。

○ AFT リードバス仕様

D ₇	D ₆	D ₅	モード
0	0	0	基準
0	0	1	1H 遅れ
0	1	0	2H 遅れ
0	1	1	3H 遅れ
1	0	0	4H 遅れ
1	0	1	5H 遅れ
1	1	0	6H 遅れ
1	1	1	7H 遅れ

TOSHIBA

I²Cバスコントロールフォーマット概要

TA1242NのバスコントロールフォーマットはPHILIPS 社I 2 C バスコントロールフォーマットに準拠しています。

データ転送フォーマット

(1) 開始条件、終了条件

(2) ビット転送

(3) 確認応答

(4) スレーブアドレス

А6	Α5	Α4	А3	A2	Α1	Α0	R/W
1	0	0	0	1	0	0	0

Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

最大定格 (Ta = 25℃)

	項	I		記号	定格	単位
電	源	電	圧	VCC	12	V
許	容	損	失	P _D max	2.19 (注1)	W
入	力 端	子 電	田	V _{in}	GND - 0.3~V _{CC} + 0.3	٧
入	力 信	号 電	圧	e _{in}	4	V _{p-p}
動	作	温	度	T _{opr}	- 20∼65	°C
保	存	温	度	T_{stg}	- 55∼150	°C

- (注1) 25℃以上で使用する場合は、1℃につき17.5mW 減じてください。
- (注2) 本製品はサージ電圧に弱いため、取り扱いには十分ご注意ください。

推奨動作条件

項	E	1		記号	最小	標準	最大	単位	備考
P I F 電	源	電	圧	V_{CCP}	8.5	9.0	9.5	V	_
S I F 電	源	電	圧	V _{CCS}	8.5	9.0	9.5	V	
V/C/D 冒	源	電	圧	VCCV	8.5	9.0	9.5	>	
H.VCC 冒		電	圧	H.V _{CC}	8.5	9.0	9.5	>	
D.Vcc 🖥	源	電	圧	D.V _{CC}	2.7	3.3	3.8	>	
T V 、 外	部	入	カ	V _{in37/39}		1.0	_	V _{p-p}	同期信号含む
標 準 ビ	デュ	大 入	カ	V _{in43}		1.0		V _{p-p}	同期信 号 含む
標 準 ク		7 入	カ	V _{in45}		286		mV _{p-p}	バースト信 号 振幅
フライバ	ックノ	パル ス	幅	T _{FBP}	10	12		μ s	$V_{th} = 1.4V, V_{CC} - 1.4V$
フライバック	パルス入	、力流入電	電流	IFBPmax			2	mΑ	
検 波 出	力 負	荷抵	抗	ROP	2	8.2		k Ω	
音 声 出	力 負	荷抵	抗	ROS	1	8.2		k Ω	
R/G/B出	力 負	荷抵	抗	RORGB		1.8		k Ω	_
水 平 出	力 負	荷抵	抗	R _{HOUT}	330	800	_	Ω	最大10mA
垂直出	力 負	荷抵	抗	RVOUT	4.1	5.7	_	k Ω	_
同期分離	出力剂	九 電	流	Isyncmax	_	_	1	mA	_

電気的特性

直流特性 (特に指定のない場合、V_{CC} = 9V、Ta = 25℃)

端子 番号	端 子 名	記 号	測定 回路	測定条件	最小	標準	最大	単位
1	音声出力	٧1	_	-	3.20	3.70	4.20	V
2	音声出力	V ₂	_	-	3.20	3.70	4.20	V
3	RF AGC	V ₃	_		_	0.00	0.50	V
4	SIF タンク	V ₄	_	-	_	_		V
5	AGC フィルタ	V ₅	_	-	7.00	7.50	8.00	V
6	PIF GND	GND	_	-	_	0.00	_	V
7	PIF 入力	V ₇	_	_	1.50	2.00	2.50	V
8	PIF 入力	V ₈	_	_	_	0.00	0.50	V
9	PIF V _{CC}	Vcc	_	_	_	9.00	_	V
10	ループフィルタ	V ₁₀	_		_	4.50		V
11	APC フィルタ	V ₁₁	_	-	6.00	6.50	7.00	V
12	VCXO	V ₁₂	_	-	5.30	5.80	6.30	V
13	V/C/D GND	GND	_	-	_	0.00		V
14	ファーストブランキング	V ₁₄	_	-	_	0.00		V
15	アナログR入力	V ₁₅	_	-	4.4	4.9	5.4	V
16	アナログG入力	V ₁₆	_	-	4.4	4.9	5.4	V
17	アナログB入力	V ₁₇	_		4.4	4.9	5.4	V
18	D.V _{CC}	۷ _{CC}	_	-	_	3.30		V
19	R 出力	V ₁₉	_	ブライト, カットオフセンタ	2.4	2.7	2.9	V
20	G 出力	V ₂₀	_	ブライト, カットオフセンタ	2.4	2.7	2.9	V
21	B 出力	V ₂₁	_	ブライト, カットオフセンタ	2.4	2.7	2.9	V
22	垂直出力	V ₂₂	_	_	_	_		_
23	NFB	V ₂₃	_	_	_	_	_	_
24	V.RAMP	V ₂₄	_	_	_	_	_	_
25	垂直同期分離フィルタ	V ₂₅	_	_	5.80	6.30	6.80	V
26	H.V _{CC}	V ₂₆	_	_	_	9.00	_	V
27	SCL	V ₂₇	_	_	4.50	5.00	5.50	V
28	SDA	V ₂₈	_	_	4.50	5.00	5.50	V
29	X-RAY	V ₂₉	_	_	_	0.00	_	V
30	フライバックパルス入力	V ₃₀	_	-	_	_	_	_
31	同期信号出力	V ₃₁	_	_	_	_	_	_
32	水平出力	V ₃₂	_	_	_	_	_	_
33	AFC フィルタ	V ₃₃	_	_	7.00	7.50	8.00	V
34	32f _H VCO	V ₃₄	_	_	5.50	6.00	6.50	V
35	D.GND	GND	_	_	_	0.00	_	V
36	ABL	V ₃₆	_	ブライト, カラーセンタ	2.90	3.40	3.90	V
37	TV 入力	V ₃₇	_	_	2.90	3.00	3.90	V
38	ACL	V ₃₈	_	ブライト, カラーセンタ	2.90	3.40	3.90	V

端子 番号	端 子 名	記 号	測定 回路	測定条件	最小	標準	最大	単位
39	外部ビデオ入力	V39	_	_	1.10	1.60	2.10	V
40	黒ピーク検出	V ₄₀	_	_	6.10	6.60	7.10	V
41	AVスイッチ出力	V ₄₁	_	_	1.80	2.30	2.80	V
42	直流再生	V ₄₂	_	_	5.50	6.00	6.50	V
43	Y入力	V ₄₃	_	_	4.00	4.50	5.00	V
44	AFT	V ₄₄	_	_	2.00	2.50	3.00	V
45	クロマ入力	V ₄₅	_	_	1.60	1.85	2.10	V
46	V/C/D V _{CC}	Vcc	_	_	_	9.00		V
47	TV 検波出力	V ₄₇	_	_	4.70	5.20	5.70	V
48	SIF V _{CC}	۷cc	_	_		9.00		V
49	PIFタンク	V ₄₉	_	_	_		_	V
50	PIFタンク	V ₅₀	_	_				V
51	SIF GND	GND	_	_		0.00		V
52	リミッタ入力	V ₅₂	_	_	_	0.00	0.50	V
53	TV 音声信号入力	V ₅₃	_	_	2.50	3.00	3.50	V
54	デエンファシス	V ₅₄	_	端子4 GND	4.00	4.50	5.00	V
55	外部オーディオ入力	V ₅₅	_		2.50	3.00	3.50	V
56	外部オーディオ入力	V ₅₆	_		2.50	3.00	3.50	V

消費電流

	項		E			記号	測 定 条 件	最小	標準	最大	単位
ΙF	電	源	Ē	Ē	流	I _{cci}	_	32.8	46	52.0	mA
V /	C/D	電	源	電	流	I _{ccv}	_	52.7	71	76.8	mA
Н.	۷сс	電	源	電	流	I _{cch}	_	10.7	14	18.4	mA
D.	۷сс	電	源	電	流	l _{ccd}		5.2	10	11.6	mA

交流特性 (特に指定のない場合、V_{CC} = 9V、H.V_{CC} = 9V、Ta = 25°C) PIF 部

項目	記号	測定 回路	測定条件	最小	標準	最大	単位
映像検波出力	V ₀₁		(注1)	1.7 2.0	2.0	2.3 3.0	V _{p-p}
	V ₀₂ V _{IN MIN}			2.0	42	3.0	
への心及 最大許容入力	VIN MAX		(注2)	100	107		$d B \mu V$
同期信号先端レベル	VSYNC		(注3)	2.6	2.9	3.2	V
無信号出力レベル	VIF		(注4)	4.8	5.2	5.6	V
微分利得	DG		(分下)	_	2	5	%
微分位相	DP	-	(注5)		2	5	0
PIF 出力周波数特性	f _C	_	(注6)	5	7	_	MHz
搬送波抑圧比	CR		(注7)	50	55	_	dB
第二高調波抑圧比	HR		(圧7)	50	55	_	3
PIF 入力抵抗	R _{iPIF}		(注8)	1	1.5	_	$\mathbf{k}\Omega$
PIF 入力容量	CiPIF		,		3.8	_	pF
S/N	S/N	_	(注9)	52	55	_	dB
920kHz ビート	l ₉₂₀	_	(注10)	42	45	_	dB
IF AGC レンジ	RWAGC	_	(注11)	61	65	69	dB
	V ₅ MEAN			4.2	4.5	4.8	
IF AGC 電圧	V _{5MAX}	—	(注12)	7.4	7.6	_	V
	V _{5MIN}			_	3.8	_	
 RF AGC電圧	V _{3MAX}		(注13)	7.7	8.2	_	V
	V _{3MIN}		,	_	0	0.5	•
RF AGC 可変幅	⊿G _{RFAGC}	_	(注14)	35	40	_	dB
AFT 中点電位	V ₄ CENT	_	(注15)	2.2	2.5	2.8	V
 AFT電圧	V _{4MAX}		(注16)	4.4	4.8	_	V
	V _{4MIN}			_	0.2	0.5	_
AFT 感度	μ AFT	_	(注17)	_	40	_	kHz/V
AFT 出力抵抗	RAFTOUT		(注18)	40	50	60	kΩ
PIF VCO 制御感度	β IFVCO	_	(注19)	2.0	2.5	_	MHz/V
PIF VCO 引き込み範囲	fph]]	(注20)	1.0	1.5	_	MHz
	fpl			1.0	1.5	_	141112
PIF VCO 可変幅	∆fpifvco		(注21)		4.4	_	MHz

SIF部

項	目	記号	測定 回路	測定条件	最小	標準	最大	単位
音声出力レベル		V _{AAC}		(注22)	400	500	600	mV _{rms}
自用面がレベル		V _{ADC}		(/±22)	_	4.5	_	V
音声歪率		VAUDIO	_	(注23)	_	0.3	1.0	%

項目	記号	測定 回路	測定条件	最小	標準	最大	単位
AMR	AMR	_	(注24)	50	60	_	dB
リミッティング感度	V _{LIM}	_	(注25)	_	35		$dB\muV$
帯域特性	fAUDIOH		(注26)		130		kHz
市場付任	fAUDIOL		(/±26)		- 130		KIIZ
音声出力抵抗	RSOUT	_	(注27)	24	30	36	kΩ

アッテネータ部

項	目	記号	測定 回路	測定条件	最小	標準	最大	単位
		GATTMAXE			- 2.0	0.0	2.0	
┃ ┃アッテネータ利得		GATTMAXT	1	(注28)	4.0	6.0	8.0	dB
		GATTMEAN	_	(Æ20)	- 16	- 12	- 9	ав
		GATTMIN			- 99	- 85		
直流電圧変動		V _{1VAR}		(注29)			50	mV
但		V _{1DC}		(Æ29)	3.2	3.7	4.2	V
入力インピーダンス		R ₁₅₃		(注30)	_	30	_	$\mathbf{k}\Omega$
人がインピーダンス		R ₁₅₅		(注30)		47		K 2 L
バランス特性	_	BMAX		(注31)	45	58	70	dB
ハノノへ付任		BMIN		(注31)	– 70	- 58	- 45	uв

ビデオ部

項目	記号	測定 回路	測定条件	最小	標準	最大	単位
入力インピーダンス	R _{i41}	_	(注32)	100	_	_	k Ω
入力ダイナミックレンジ	V _{di41}		(注33)	1.0	1.2	1.5	V
ビデオ総合利得	GY	_	(注34)	4.5	5.0		
ビデオ周波数特性	fY		(注35)	6.0	7.0		MHz
最大出力	V_{do1}	_	(注36)	7.5	8.0		V
黒伸張アンプ利得	G_BAMP		(注37)	1.18	1.43	1.68	
黒伸張スタートポイント	G _{BSTP}		(左37)	40	50	60	IRE
直流再生率	T_{DC}	_	(注38)	100	103	105	%
	G _{SHcent}			1	4	7	
シャープネス調整特性	G _{SHmax}	_	(注39)	9	12	15	dB
	GSHmin				- 18	- 9.0	
シャープネス遅延時間	^t SHDLY		(注40)		125		ns
コントラスト調整特性	GCNcent		(注41)	4.5	6	7.5	dB
コンドノヘド調査付注	GCNmin		(/エ4)	22.5	24	28.5	<u>ub</u>
水平、垂直ブランキング出力電圧	V _{BLK}	_	(注42)		0.7	1.0	V
垂直ブランキング幅	TVBLK	_	(注43)	_	3.5~24	_	Н
f _{SC} トラップ利得	G _{TRAP}	_	(注44)	_	- 28	- 20	dB

OSD 部

項目	記号	測定 回路	測定条件	最小	標準	最大	単位
OSD 切り替え電圧	V _{th} OSD	_	(注45)	0.7	1.0	1.3	V
OSD 遅れ時間	tosddly			_	15	30	
OSD 遅れ時間3 軸差	∆tosdd		(注46)		5	10	ns
OSD 立ち上がり時間	auR	_	(/±46)	_	15	30	113
OSD立ち下がり時間	τF			_	15	30	
入力クランプ電圧	Vospc	_	(注47)	4.5	4.9	5.4	V
OSD ゲイン	GOSD	_	(注48)	1.8	2.0	2.2	
入力ダイナミックレンジ	V _{diOSD}	_	(注49)	2.0	2.2	2.4	V

カットオフ、ドライブ調整部

項目	記号	測定 回路	測定条件	最小	標準	最大	単位
	V _{BRTmax}			3.6	4.0	4.3	
ブライト調整特性	VBRTcen] —	(注50)	2.4	2.7	3.0	V
	V _{BRTmin}			1.0	1.4	1.7	
ブライト3 軸間差	△V _{RGB}		(注51)	- 50	0	50	mV
	V _{cutmax}			0.5	0.65	0.8	
カットオフ調整	V _{cutcen}	—	(注52)		0.00	_	V
	V _{cutmin}			- 0.8	- 0.65	- 0.5	
ドライブ調整	G _{drvmax}		(注53)	3.75	4.25	4.75	dB
ドノコノ調金	G _{drvmin}		(Æ33)	- 4.0	- 3.5	- 3.0	uв

クロマ部

項目	記号	測定 回路	測定条件	最小	標準	最大	単位
入力ダイナミックレンジ	V _{di45}	_	(注54)	0.95	1.5	1.7	V
	ea			- 23	- 20	- 17	dB
ACC 特性	eb	_	(注55)	3	6	9	иь
	Α			0.9	1.0	1.1	
キラー動作点	EK	_	(注56)	- 48	- 46	- 43	dB
VCXO 周波数可変範囲	∆f∨cxo	_	(注57)	± 500	± 600	_	Hz
VCXO 周波数制御感度	β vcxo	_	(注58)	_	1.0	_	Hz/mV
VCXO 引き込み範囲	fVCXOPL	_	(注59)	± 300	± 450	_	Hz
復調相対振幅	R/B			0.80	0.84	0.90	
1支前列1口入1 <i>1</i> 以中田 	G/B		(注 60)	0.25	0.29	0.33	
復調相対位相	R-B	_	(/±60)	101	108	115	٥
1支刷作以 少作	G-B			236	243	250	

項目	記号	測定 回路	測定条件	最小	標準	最大	単位
	ECR				20	40	·
復調出力残留搬送波	ECB	_	(注61)		20	40	mV_{p-p}
	ECG			_	20	40	
	VCLRmax			3.9	4.1	4.3	V_{p-p}
カラー調整特性	GCLRcen	_	(注62)	4.5	6	7.5	dB
	GCLRmin			38	40	_	uв
ユニカラー調整特性	G _{UNIcen}		(注63)	4.5	6	7.5	dB
ユーカノ - 桐宝付任	GUNImin		(Æ 0 3)	22	24	26	uв
ティント調整特性	hetaTNTcen		(注64)	-7	0	7	0
ノインド側定付は	$\Delta \theta_{TNT}$		(注04)	± 35	± 45	± 55	
ビデオ、クロマ遅延時間	t _{V-C}	_	(注65)	- 30	0	30	ns

偏向部

項目	記号	測定 回路	測定条件	最小	標準	最大	単位
水平発振周波数	fH	_	(注66)	- 100	0	100	Hz
水平出力パルスデューティ	TH	_	(注67)	38	41	44	%
水平出力電圧	V _{HL}		(注68)	_	0.2	0.3	٧
小十山万竜圧	V_{HH}		(/±00)	2.5	3.0	3.6	V
VCO 発振開始電圧	VOSCmin	_	(注69)	3.0	3.5	4.0	V
水平出力開始電圧	V _{HST}	_	(注70)	3.7	4.0	_	V
水平周波数可変範囲	⊿f _H	_	(注71)	± 500	± 650		Hz
水平周波数制御感度	etaH	_	(注72)		500		Hz/V
水平同期引き込み範囲	∆f _{HPUL}	_	(注73)	± 450	± 500		Hz
水平引き込み停止期間	T _{HSTP}	_	(注74)		259 ~272		п
AFC-2 調整範囲	T _{AFC2}	_	(注75)	16	17	_	μs
水平画面位置調整	T _{PAFC2}	_	(注76)	_	± 3		μ s
過電圧保護検出電圧	V _{XDET}			3.35	3.5	3.65	\
過電圧保護保持電圧	VXHLD	_	(注77)	3.9	4.2	4.5	•
過電圧保護保持電流	^I XLD			80	100	120	μ A
無入力時垂直発振周波数	f _V	_	(注78)		295		Η
垂直同期引き込み範囲	T _{VST}		(注79)		224	_	н
平直 朔기で匹が戦団	TVEND		(Æ/ 9)		295	_	
垂直出力パルス幅	T _V	_	(注80)	_	8	_	Н
 垂直ランプ振幅調整	V _{VL}		(注81)	2.2	2.4	_	V
	v_{VH}		(/エロ۱/		1.6	1.8	<u> </u>
水平同期分離レベル	R _{sepa}	_	(注82)	30	35	40	%
垂直周波数強制262.5H	fV60	_	(注83)	_	60	_	Hz

#	
4	
₹\	
Fi.	
117	
=	
灬	

		L		["	ļ,	1	×	ŧ	(本) お中の かい 担今 //で-0// エュー2に+30//
#	Д П			2 -	1 H	¥ 1	ĸ		
Ħ		(90)	(50)	(\0)(80)(\20)(\90)	1 ()				河 定 方 法
'	+ 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	(00)			(2)				コーチロー/ 十 : - : : : - : : : : : : : : : : : : :
-		(00)	(00) (20) (20)	(420)	[(1) 10 =45.73Nn142 07.3% ANI 冬嶋 31.0111Vrms こく 4 ほうをに入力する。
									(2) 端子47 検波出力の出力振幅を測定。 - プト・「T
									AM 変調 31.6mV _{rms} 信号をIF つくし
									ハガチで。 (4) 端子47 検波出力の出力振幅を測定。(V ₀₂)
٦	九二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	+	+	+	←				(1) fc - 45 75MH+ 30% AM ช調 31 GmV アデナ信号を正
7	人の形成一部大許容人力	_	_	_	_				ハリローキシンフivilit フロル Aim 文画 フロロロVMS Cノコ 目の Eill 入力する。
	I								(2) F入力レベルを下げていき、端子47 検波出力の出力振幅
	,i								が - 3dB となるときの入力レベルを測定する。(VIN MIN)
									(3) IF 入力レベルを上げていき、雑子47 検波出力の出力振幅が – 0.548 となるときの入力レベルを遡定する。
									(VIN MAX)
٥	同能を早生業にベル	+	+	+	•				(1) fo – 45 75MHz 31 6mV 無効調信号をIE 3 カオス
n		_	_	_					(2) 端子47 検波出力の直流レベルを デジタルボルトメータ で測 デオス (7) 端子3 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)
									AE 9 % (VSYNC)
4	無信号出力レベル	←	←	←	←				(1) IF 入力は、無入力。
									(2) 端子5 に3.0V 印加する。 (3) 端子47 検波出力の直流レベルをデジタルボルトメータで測
									定する。(V _I F)
	-				ļ .				
Ŋ	(—							(1) t0 = 45./5MHz 8/.5% AM 変調ヒアオ信号をIF 人刀する。 (2) 端子47 検波出力をDG/DP 測定器にて測定する。
- [\dashv				

TA1242N - 22

					戸	宗	巛	华	(特に指定のない場合、V _{CC} =9V、Ta=25±3°C)
烘	項目				バスモ	<u>ئد</u> ا			-
!		(90)	(07)	(06) (07) (08) (0A)	(0A)				第 定 万 法
9	PIF 出力周波数特性	(00)	(20)	(00) (20)	I				 (1) 注3の (1) と同じ。 (2) 端子5 の電圧をその状態に固定する。 (3) f₀ = 45.75MHz 31.6mVrms f₁ = 45.65MHz~32MHz 3.16mVrms 信号をド入力する。 (4) 端子47 検波出力の出力レベルが – 3dB となるf₁ を測定する。 f_c = f₀ - f₁
7	搬送波抑圧比第二高調波抑圧比	←	←	←	←		:		 (1) f₀ = 45.75MHz f_m = 15.75kHz 78% AM 変調 31.6mV_{rms} 信号を IF 入力する。 (2) 端子47 検波出力の出力レベルが2V_{p-p} となるように、端子5 に外部電圧を 印加する。 (3) IF 入力無変調時の端子47 検波出力への撤送波漏れをスペクトラムアナライザで測定する。 CR = 20ℓog (2 (V_{p-p})/搬送波漏れ (mV_{rms})) (4) 第二高調波抑圧比も同様に測定する。 HR = 20ℓog (2 (V_{p-p})/第二高調波漏れ (mV_{rms}))
∞	PIF 入力抵抗 PIF 入力容量	←	←	←	← ,				(1) 端子5 に3.0v 印加する。 (2) 端子7、8 間でインピーダンスを測定する。
6	N/S	←	-	←	←				(1) 注2の (1) と同じ。 (2) 端子47 検波出力レベルを測定。(VA) (3) 注3の (1) と同じ。 (4) 端子47 検波出力レベルを測定。(VB) S/N=20ℓog (VA/VB*6)

				 ~~	戸	压	₩	世	(特に指定のない場合、V _{CC} =9V、Ta=25±3°C)
烘	項目				バスモー	1 1	1		+ 1 頁
		(90)	(07)	(06) (07) (08) (0A)	(0A)				漁 定 力 広
10	920kHz ビート	(00)	(20)	(00) (20) (20)	ļ.				(1) f ₀ = 45.75MHz 31.6mV _{rms} f _c = 42.17MHz 10.0mV _{rms} f _S = 41.25MHz 10.0mV _{rms} f _S = 41.25MHz 10.0mV _{rms} 信号を合成パッドでIF 入力する。 (2) 端子47 検波出力の下端とV _{Sync} とが等しくなるように端子5 に 外部電圧を 印加する
									────────────────────────────────────
11	IF AGCレンジ	←	+	.	←		:		RWAGC = VINMAX - VINMIN
12	IF AGC 電圧	←	←	←	←				(1) 注3 の (1) と同じ。(2) 端子5 の電圧を測定する。(V5MEAN)(3) 無入力時の端子5 の電圧を測定する。(V5MAX)(4) 178mV_{rms} 入力したときの端子5 の電圧を測定する。(V5MIN)
13	RF AGC電圧	←	←	驅 槲	<				 (1) 注3 の (1) と同じ。 (2) 端子3 電圧が4.5V となるようにサブアドレス (08) (RFAGC) のデータを調整する。 (3) 無入力時の端子3 の電圧を測定する。(V3MAX) (4) 178mVrms 入力したときの端子3 の電圧を測定する。(V3MIN)

L				***	測	型	巛	井	(特に指定のない場合、V _C C=9V、Ta=25±3°C)
烘	西				バスモ	<u>ئد</u> ا			
		(90)	(07)	(06) (07) (08) (0A)	(0A)				测作力放
41	RF AGC 可変幅	(00) (20)	(20)	篇 罄	l				 (1) 注3(1) と同じ。 (2) サブアドレス (08) のデータを (00) とし、IF 入力レベルを減少していき、端子3 直流電圧が4.5V となるときの入力レベルをベルを測定する。(VRFMIN) (3) サブアドレス (08) のデータを (3F) とし、IF 入力レベルを増加していき、端子3 直流電圧が4.5V となるときの入力レベルを対加していき、端子3 直流電圧が4.5V となるときの入力レベルを対加していき、WFFMAX)
15	S AFT 中点電位	←	←	(20)	←				(1) IF 入力は、無入力。 (2) 端子5 に3.0V を印加する。 (3) 端子44 直流電圧を測定する。(V4CENT)
16) AFT 電圧	←	←	←	←				 (1) f=44.75MHz 30% AM 変調31.6mV_{rms} ビデオ信号をIF 入力する。 (2) 端子44 出力電圧を測定する。(V4MAX) (3) f=46.75MHz 30% AM 変調31.6mV_{rms} ビデオ信号をIF 入力する。 (4) 端子4 出力電圧を測定する。(V4MIN)
17	/ AFT 感度	←	←	←	←				(1) 注3 (1) と同じ。 (2) 入力信号の周波数を可変したときの端子44 の電圧変化を測定して算出する。(Δf/ΔV)
18	AFT 出力抵抗	←	←	←	←				端子44 出力インピーダンスを測定する。

L				兩		定	₩	艹	(特に指定のない場合、V _C C=9V、Ta=25±3°C)
洪	項目			1	バスモー	34			力 中 勇
		(06) (07) (08) (0A))) (/()) (80	(A)				た 刀
19	PIF VCO制御感度	(00) (20) (20)	(07)						 (1) f=45.75MHz 31.6mV_{rms} 無変調信号をIF 入力する。 (2) 端子10 の直流電圧を測定する。(V10A) (3) f=45.55MHz 31.6mV_{rms} 無変調信号をIF 入力する。 (4) 端子10 の直流電圧を測定する。(V10B) βIFVCO = 0.2 (MHz)/(V10B - V10A)(V) [MHz/V]
20	PIF VCO引き込み範囲	←	←	←	←		;		(1) f_0 = 45.75MHz 31.6mVrms 無変調信号をIF 入力する。 (2) 検波出力 (端子47) をモニタしながら、 f_0 を高い方から低い方へ次第に変化させていったとき、ちょうどPLL がロックするときの周波数と、45.75MHz との差を測定する。 (f_0h) (3) 検波出力 (端子47) をモニタしながら、 f_0 を低い方から高い方へ次第に変化させていったとき、ちょうどPLL がロックするときの周波数と、45.75MHz との差を測定する。 (f_0h)
21	PIF VCO 可変幅	-	<u>←</u>	— — — — — — — — — — — — — — — — — — —	麗 鞠				 (1) IF 入力は無入力。 (2) 端子5 に3.0V 印加する。 (3) サブアドレス (0A) のデータを (00) としたときの PIF VCO 発振周波数をスペクトラムアナライザで測定する。 (fpifmin) (4) サブアドレス (0A) のデータを (7F) としたときの PIF VCO 発振周波数をスペクトラムアナライザで測定する。 (fpifmax)

				展		迅	巛	#	(特に指定のない場合、V _{CC} =9V、Ta=25±3°C)
烘	型				バスモー	<u>ئے</u> ا			一
		(90)	(0)	(80)	(OA)	(06) (07) (08) (0A) SW ₅₂			\ \ -
22	音声出力レベル	(00) (20) (50)	(20)	(20)	1	NO			(1) f ₀ = 4.5MHz f _m = 400Hz 25kHz / devi FM 変調100mV _{rms} 信号を端子52 リミッタ入力する。 (2) 端子54 出力振幅を測定する。
23	幸 是	←	←	←	←	←			(1) 注22 の (1) と同じ。 (2) 端子54 出力の歪率を測定する。
24	AMR	←	←	←	←	-	a		 (1) 端子52リミッタ入力f₀ = 4.5MHz FM : 400Hz 25kHz/devi 100mV_{rms} AM : 400Hz 30% 100mV_{rms} (2) それぞれの入力に対する端子54 出力レベルを測定する。AMR = 20ℓog (FM / AM)
25	リミッティング感度	-	←	←	←	←			(1) 注22 の (1) と同じ。 (2) 入力レベルを可変させ、100mVrms 入力に対する端子54 FM 検波出力の – 3dB になるときの入力レベルを測定す る。
26	帯域特性	←	←	←	←	←			(1) 注22 の (1) と同じ。 (2) 搬送波周波数を可変させ、端子54 FM 検波出力のピークから - 3dB レベルになる搬送波周波数を測定する。
27	音声出力抵抗	₩.	←	←	←	OFF			端子54 出力インピーダンスを測定する。

		_			T .	
(特に指定のない場合、V _C C=9V、Ta=25±3°C)	運 店 九 米	\ \ \	(1) 外部入力 (端子55、56) に1kHz 500mVrms 信号を入力する。 る。 (2) サブアドレス (02) のデータを (80) にする。 (外部入力を選択) (3) サブアドレス (06) のデータを (3F) にしたときの端子1、2 出力レベルを測定する。(VATTMAX) GATTMAX=20ℓog (VATTMAX/500mVrms) (4) サブアドレス (06) のデータを (20) にしたときの端子1、2 出力レベルを測定する。(VATTMEAN) GATTMEAN = 20ℓog (VATTMEAN/VATTMAX) (5) サブアドレス (06) のデータを (00) にしたときの端子2 出力レベルを測定する。(VATTMEAN) GATTMIN = 20ℓog (VATTMIN)	(1) 注28 の (1) と同じ。 (2) 注28 の (2) と同じ。 (3) 端子1、2 出力のオフセット直流電圧を測定する。(V2DC) (4) サブアドレス (06) のデータを (20) から (00) にしたときの 端子1、2 の直流電圧変動を測定する。(V2VAR)	端子53 および、端子55、56 の入力インピーダンスを測定する。	(1) 注28の (1) と同じ。 (2) 注28の (2) と同じ。 (3) サブアドレス (07) のデータを (00) (3F) としたときの端子 1、2 出力レベルの差を測定する。
年						
₩	ا عن					
迅		(0A)		←	←	←
厕	バスモ	(02) (06) (02) (08) (0A)	(20) (20)	←	←	←
		6		←	←	調製
		90)	a	←	(20)	←
		[0]	(80)	←	←	←
	通		アッテネータ利得	直流電圧変動	入力インピーダンス	バランス特性
	烘		28	29	30	31

				**	画	迅	₩		年	(特に指定のない場合、V _{CC} =9V、Ta=25±3°C)
烘	項目	00,		/ [20]	バスモード	1 1				
T		9	(70	3	(40)	(DR)	(UU) (UZ) (U3) (U4) (UB) (UC) (UD)	(00)		
32	入力インピーダンス	(00)	(00)	(40)	(20)	(80)	(00) (00) (40) (20) (80) (80)	(80)		端子37 および端子39 入力インピーダンスを測定する。
33	入力ダイナミックレンジ	←	←	←	←	←	←	←		(1) TV モード : TV 入力 (端子37) の絵柄期間電圧を変化させる。 る。 外部モード: 外部入力 (端子39) の絵柄期間電圧を変化させる。
				·						(2) R 出力 (端子19) の出力変化を100% とし、出力変化の10%となる端子19 の直流電圧 (Ndi1) および出力変化90%となる端子41の直流電圧 (Ndi2)を測定する。 Vdi41=Vdi2-Vdi1
34	ビデオ総合利得	←	←	↑ (ZF)	← .	←		←		 (1) TV モード : TV 入力 (端子37) にf₀ = 10kHz 0.5V_{p-p}の入力 信号1を入力する。 外部モード : 外部入力 (端子39) にf₀ = 10kHz 0.5V_{p-p}の入力信号1を入力する。 (2) R 出力 (端子19) の正弦波振幅を測定する。(V₉) G-Y = 20ℓog (V₉ / 0.5V_{p-p})
35	ビデオ周波数特性	←	←	1 (40)	←	←	←	←		入力周波数を可変させ出力が – 3dB となるときの入力周波数を 測定する。
36	最大出力	←	←	(7F)	←	←	←	←		(1) 注33 の (1) と同じ。 (2) R 出力 (端子19) の出力変化の最大値を測定する。

(特に指定のない場合、V _{CC} =9V、Ta=25±3°C) 測 定 方 法	(1) ビデオ入力に下図の1V _{p-p} 映像信号を入力する。 (2) R 出力 (端子19) より 黒伸張スタートポイント、アンプ利得をそれぞれ測定する。 H ^{IAD} 黒伸張 アンガ制 (FE	(1) TVモード : TV 入力 (端子37) に f ₀ = 10kHz 0.5V _{P-p} の入力 信号1を入力する。 外部モード : 外部入力 (端子39) に f ₀ = 10kHz 0.5V _{P-p} の入力 信号1を入力する。 力信号1を入力する。 (2) 端子42をオープンとし、B 出力 (端子21) の絵柄期間振幅が 0.5V _{P-p} となるようにサブアドレス (03) (ユニカラー) の データを調整する。 (3) 入力信号のルミナンスを0としたときのB 出力 (端子21) のペデスタルレベルを測定する。 (4y) TCD = (4y/0.5V)*100% [%]	(1) 外部入力 (端子39) に20mV _{P-P} の入力信号1を入力する。 (2) サブアドレス (04) のデータを (3F) とする。 (3) f ₀ = 10kHz 入力時のB 出力振幅 (V ₁ 0k) とf ₀ = 4MHz 入力時のB 出力振幅 (V ₁ 0k) とf ₀ = 4MHz 入力時のB 出力振幅 (V ₁ 0k) とf ₀ = 4MHz 入力時のB 出力振幅 (V ₁ 0k) とする。 GSHMAX = 20ℓog (V _{PK} / V ₁ 0k) (4) サブアドレス (04) のデータを (00) とする。 GSHMIN = 20ℓog (V _{PK} / V ₁ 0k) (5) f ₀ = 2.4MHz 入力時のB 出力振幅 (V _{PK}) を測定する。 GSHMIN = 20ℓog (V _{PK} / V ₁ 0k) (6) サブアドレス (04) のデータを (20) とする。 GSHCENT = 20ℓog (V _{PK} / V ₁ 0k)
年			
瀬 定 条 バスモード (00) (02) (03) (04) (0B)	(00) (00) (40) (20) (80) (80)	←	←
¥ (0C)	(80)		←
元 (08)	(80)	←	←
<u>瀬</u> バスモー)(04)(0E	(20)	÷	電 翻
(603)	(40)		↑ (40)
(02)	(00)	←	←
(00)	(00)	←	←
通	黒伸張アンプ利得 黒伸張スタート ポイント	直流再生率	シャープネス調整特性
烘	37	88	<u>ი</u>

TA1242N-30

		Т		to IDE IIK			ר ווא איא
(特に指定のない場合、V _{CC} =9V、Ta=25±3°C)	测 定 方 法		シャープネス付加パルス幅を測定する。	(1) 外部入力 (端子39) に f ₀ = 10kHz 0.5V _{P-P} 入力信号1を入力する。 (2) サブアドレス (03) のデータを (40) にする。 (3) B 出力 (端子21) 振幅を測定する。(VCNCENT) (4) サブアドレス (03) のデータを (7F) としたときのB 出力振幅を測定する。(VCNMAX) (5) サブアドレス (03) のデータを (00) としたときのB 出力振幅値を測定する。(VCNMIN) GCNMAX = 20ℓ0g (VCNMIN) GCNMIN = 20ℓ0g (VCNMIN / VCNMAX)	B 出力 (端子21) ブランキングバルスの電圧を測定する。 	B 出力 (端子21) ブランキングパルスのパルス幅を測定する。	(1) 外部入力 (端子39) にf ₀ = 3.58MHz 0.5V _{P-P} 入力信号2 を入力する。 (2) サブアドレス (00) のデータを (80) としたときのB 出力振幅を測定する。(VTON) (3) サブアドレス (00) のデータを (00) としたときのB 出力振幅を測定する。(VTOFF)
世							
₩		(00) (02) (03) (04) (0B) (0C) (0D)	(00) (00) (40) (3F) (80) (80) (80)	←	←	←	←
	<u>ا</u> کے		(80)	←	←	←	←
河	H 6	8 	(80)	←	←	←	←
展	バスモー	04	(3F)	(20)	←	←	←
) [6	93	(40)	驅 翻	(40)	←	←
	(0)	(05)	(00)	←	←	←	←
	(0,0)		(00)	←	←	←	(00) ↑
4	四層		シャープネス遅延時間	コントラスト調整特性	水平、垂直ブランキング	垂直ブランキング幅	fsc トラップ利得
<u></u>	世		40	14	42	43	44

TA1242N - 31

					戸	迅	巛		艹	(特に指定のない場合、V _{CC} =9V、Ta=25±3°C)
	西田			1	バスモード	1				+
		(00)	(02)	(03)	(00) (02) (03) (04) (0B) (0C) (0D)	(0B)	(0C)	(ao)		测
48	OSD 利得	(00)	(00)	(40)	(00) (00) (40) (20) (80) (80)	(80)	(08)	(80)		 (1) ファーストブランキング (端子14) に外部電圧1.5V を印加する。 (2) RGB 入力 (端子15、16、17) に10kHz 0.5V_{P-P} の正弦波を入力する。 (3) RGB 出力 (端子19、20、21) の正弦波振幅を測定する。(V41) G-OSD = (V41/0.5V_{P-P})
49	人 ななイナ ジンン シッパ	←	←	←	←	←	←	←		 (1) ファーストブランキング (端子14) に外部電圧1.5V を印加する。 (2) RGB 入力 (端子15、16、17) に10kHz 正弦波を入力し振幅を変化させる。 (3) RGB 出力 (端子19、20、21) の出力変化を100% とし出力変化の10% となる入力電圧(Vdi1) および出力変化の90% となる入力振幅(Vdi2)を測定する。 VdiOSD = Vdi2 - Vdi1

TA1242N-33

TA1242N - 34

_			r									
(特に指定のない場合、V _{CC} =9V、Ta=25±3℃)		関 正 カ 広	(40) (40) (80) (80) (80) (80) 調 調 (1) 外部入力 (端子39) にfg = 10kHz 0.5V _{p-p} の入力信号1 を入力	°° C	(2) サブアドレス (0E、0F) のデータを (80) としたときのGB 出	力 (端子20、21) の絵柄期間振幅を測定する。(Vdrvcen)	(3) サブアドレス (OE、OF) のデータを (FF) としたときのGB 出	力 (端子20、21) の絵柄期間振幅を測定する。(Vdrvmax)	Gdrvmax = 20log (Vdrvmax / Vdrvcen)	(4) サブアドレス (0E、0F) のデータを (00) としたときのGB 出	カ (端子20、21) の絵柄期間振幅を測定する。(Vdrvmin)	Gdrvmin = 20log (Vdrvmin / Vdrvcen)
牡		(0F)	西田	く								
N/A		(00) (02) (03) (0B) (0C) (0D) (0E) (0E)	副	く								
巛	2	(GD)	(80)									
沪	— — —	(0C)	(80)									
戸	バスモード	(0B)	(80)									
)	(03)	(40)									
		(02)	(00)									
		(00)	(40)									
	西		ライブ調整									

53

烘

TA1242N - 35

-		L			戸	₩	₩	#	(特に指定のない場合、VCC=9V、Ta=25±3°C)
	旦					1 } 			
		(00)	(01)	(02)	(00) (01) (02) (03) (0E) (0F)	(0E)	(0F)		測 定 方 法
54	入力ダイナミック レンジ	(40)	(40)	(00)	(40) (40) (00) (80) (80)	(80)	(80)		(1) 外部入力 (端子39) の絵柄期間振幅を変化させる。 (2) B 出力 (端子21) の出力変化を100% とし出力変化の10% となる端なる端子21の振幅 (Vdi1) および出力変化の90% となる端子21の振幅 (Vdi2) を測定する。 Vdi45 = Vdi2 - Vdi1
555	ACC 特性	←	←	←	←	←	-		(1) 外部入力 (端子39) にレインボーカラーバー信号を入力する。 (2) 入力クロマ振幅レベルを100、300mV _{p-p} としたときのRGB 出力 (端子19、20、21) をそれぞれF ₁ 、F ₃ とし測定する。 A=F ₁ /F ₃
									ラー
26	キラー動作点	←	←	←	←	←	←		外部入力 (端子39) に50mV _{p-p} のバースト信号を入力し、この信号を減衰器で減衰させて、RGB 出力 (端子19、20、21) のクロマ成分がでなくなるときのバーストレベルを求める。
22	VCXO 周波数可変範囲	←	←	←	←	←	←		(1) APC 端子 (端子11) の直流電圧を測定する。(V11) (2) APC 端子 (端子11) に外部電源を接続し、電圧をV ₁₁ - 0.5V からV ₁₁ + 0.5V と可変したときの端子12 発振周波数可変範 囲をスペクトラムアナライザで測定する。
58 \	VCXO 周波数制御感度	←	←	←	←	←	←		(1) 注57 の (1) と同じ。 (2) 注57 の (2) と同じ。 (3) 端子11 外部電源電圧1mV に対するフリーラン感度を測定する。
1									

A1242N - 3

				 	戸	业	₩	#	(特に指定のない場合、Vcc=9V、Ta=25+3°C)
†	T I				1	H			
Ħ		(00)	(01)	(02)	(00) (01) (05) (03) (0E) (0F)	(0E)	(0F)		測 定 方 法
59	VCXO 引き込み範囲	(40)	(40)	(00)	(40) (00) (80) (80) (80)	(80)	(80)		 (1) 外部入力 (端子39) にレインボーカラーバー信号を入力する。 (2) RGB 出力 (端子19、20、21) を観測しながら、入力のf_{Sc} を±3KHz 範囲において、10Hz ステップで可変する。 白黒→カラーモードを引き込み、カラー→白黒モードを保持として、それぞれf_c からの±偏差を求める。
09	復調相対振幅復調相対位相	←	←	-	←	←	←		(1) 外部入力 (端子39) にf _{SC} = 3.479545MHz 0.3V _{p-p} のレインボーカラーバー信号を入力する。 (2) RGB 出力 (端子19、20、21) の100KHz 成分の振幅、位相を測定しR/B、G/B、R-B、G-B をそれぞれ求める。
61	復調出力残留搬送波	←	監 鞠	←	←	←	←		 (1) 外部入力 (端子39) にレインボーカラーバー信号を入力する。 (2) RGB 出力 (端子19、20、21) の振幅が最大となるようにサブアドレス (01) のデータを調整する。 (3) 外部入力 (端子39) にバースト/シンク信号のみを入力する。 (4) RGB 出力 (端子19、20、21) を、それぞれ (2) の調整をした後スペクトラムアナライザでfsc 成分を測定する。
62	カラー調整特性	ء 数	(40)	←	←	←	←		(1) 外部入力 (端子39) にレインボーカラーバー信号を入力する。 (2) サブアドレス (00) のデータを (7F) としたときのRGB 出力 (端子19、20、21) 振幅を測定する。(VCLRmax) (3) サブアドレス (00) のデータを (40) としたときのRGB 出力 (端子19、20、21) 振幅を測定する。(VCLRcen) GCLRcen = 20€0g (VCLRmax / CCLRcen) (4) サブアドレス (00) のデータを (00) としたときのRGB 出力 (端子19、20、21) 振幅を測定する。(VCLRmin) GCLRmin = 20€0g (VCLRmax / VCLRmin)

L				戸		出	₩	世	(特に指定のない場合、VCC=9V、Ta=25±3°C)
#	互			۲	H 1 % 1	2			,
Ħ,	Й Й	(00)	(00) (01) (02) (03) (0E) (0F)	(02)	(03) (03)	OE) ((0F)		測 定 方 法
93	ユニカラー調整特性	(40) (40) (00)	(40)		電	(80)	(08)		(1) 外部入力 (端子39) にレインボーカラーバー信号を入力する。 る。 (2) サブアドレス (03) のデータを (7F) としたときのRGB 出力 (端子19、20、21) 振幅を測定する。(VUNImax) (3) サブアドレス (03) のデータを (40) としたときのRGB 出力 (端子19、20、21) 振幅を測定する。(VUNIcen) GUNIcen = 20ℓ0g (VUNImax / VUNIcen) (4) サブアドレス (03) のデータを (00) としたときのRGB 出力 (端子19、20、21) 振幅を測定する。(VUNImin) GUNImin = 20ℓ0g (VUNImax / VUNImin)
64	ティント調整特性	←	體糊	<u> </u>	(40)	←	←		(1) 外部入力 (端子39) にレインボーカラーバー信号を入力する。 (2) B 出力 (端子21) で6 バーピークになるようにサブアドレス(01) のデータを調整する。(θTNTcen) (3) サブアドレス(01) のデータを最大(7F) ~最小(00) と可変したときのB 出力 (端子21) 可変範囲を測定する。(ΔθTNT)
65	ビデオ、クロマ 遅延時間	(40) (40) (00) (00)		←	← -	←	←		 (1) 外部入力 (端子39) にカラーバー信号を入力する。 (2) サブアドレス (04) のデータを (60) としたとき (Y ミュート) のRGB 出力 (端子19、20、21) の色信号立ち上がり時間を測定する。(DTC) (3) サブアドレス (00) のデータを (00) としたとき (C ミュート) のRGB 出力 (端子19、20、21) のY信号立ち上がり時間を測定する。(DTY) tv-C = DTY - DTC

				** 	測定	₩	井	: (特に指定のない場合、V _{CC} =9V、Ta=25±3°C)
烘	一 一 一			1	バスモード			
		(02)		(00) (OV)				た ク
99	3 水平発振周波数	(10)	(20)	(10) (20) (40)				水平出力 (端子32) の発振周波数を測定する。(fH′) fH = fH′ – 15.734kHz
29	/ 水平出力パルス デューティ	-	←	←				水平出力 (端子32)パルスのデューティを測定する。
89	3 水平出力電圧	←	←	←				水平出力 (端子32)パルスのローレベル電圧およびハイレベル電圧を測定する。
69	VCO 発振開始電圧	←	- ←	←				H.VCC (端子26) を0V より上昇させていき、32fH VCO (端子34) が発振開始するときの電圧を測定する。
70	水平出力開始電圧	←	←	←				H.Vcc (端子26)を0Vより上昇させていき、水平出力(端子32)が発振開始するときの電圧を測定する。
71	水平周波数可変範囲	←	←	←	·			(1) AFC1 (端子33) の直流電圧を測定する。(V33) (2) AFC1 (端子33) に外部電源を接続し、電圧をV33 – 0.5V からV33 + 0.5V と可変したときの水平出力 (端子32) 発振周波数可変範囲を測定する。
72	水平周波数制御感度	←	←	←				(1) 注71 の (1) と同じ。 (2) 注71 の (2) と同じ。 (3) 端子33 外部電源電圧1V に対するフリーラン感度を測定する。

TA1242N - 39

L		L			戸	""	谷	#	(姓に 指完の ない 場合 - VCC = QV - Ts = 25 + 3°C)
#	<u> </u>			-	۲ H	2		=	
Ħ	Ϋ́,	(05)	(60)	(0A)	(05) (09) (00)				测 定 方 法
73	水平同期引き込み範囲	(10)	(10) (20) (40)	(40)	OFF				(1) 外部入力 (端子39) に同期信号を入力する。(2) 水平出力 (端子32) を観測しながら、入力のf_{SC} を±3kHz 範囲において、10Hz ステップで可変する。 入力同期信号と水平出力とで引き込み範囲をf_{SC} からの±偏差で測定する。
74	水平引き込み停止期間	←	←	←	· ←				(1) 外部入力 (端子39) に同期信号を入力する。 (2) 入力同期信号とAFC1 (端子33) を観測し、AFC1 の引き込み 停止期間を測定する。
75	AFC-2 調整範囲	←	←	←	N → PHO				(1) SW_{30} をオンし、フライバックバルスジェネレータ出力立ち上がりを水平出力立ち上がりより $_{\mu S}$ ずつずらしていく。 (2) SW_{30} をオフし、AFC2 がロックできる最大遅れ時間を測定する。
									本平出力
9/	水平画面位置調整	←-	←	←	OFF				サブアドレス (05) のデータを (00) (1F) としたときの (10) に対する水平出力位相差を±偏差で測定する。
TA1	TA1242N - 40			1				1	

1				j			Į	100	
				买		Ή	*	t	(特に指定のない場合、VCC=9V、Ia=25±3°C)
烘	通			~	バスモ-	<u>ئد</u> ا			4
		(02)	(05) (09) (0A)	(0A)					M た カ 広
77	. 過電圧保護検出電圧 過電圧保護保持電圧 . 過電圧保護保持電流	(10)	(10) (20) (40)	(40)					(1) X-RAY (端子29) に外部電源を印加し、VX を変化させる。 (2) 下図に従い各ポイントを測定する。 XLD = (V290FF - VX0FF) / 10kΩ
									VXHLD VX90FF VXDFF 分部稿簿稿压 VX
78	無入力時垂直発振周波数	←	←	←		'			垂直出力 (端子22) 発振周波数を測定する。(fv') fv = fv' / 15.734kHz
79	垂直同期引き込み範囲	←	←	←					(1) 外部入力 (端子39) に同期信号を入力する。 (2) 垂直出力 (端子22) を観測しながら、入力のfv を0.5h テップで可変する。 入力同期信号と垂直出力とで引き込み範囲を測定する。
30	垂直出力パルス幅	←	←	←					V.RAMP (端子24) を観測し、下図に従い測定する。

	r
	ċ
	-
	_
	4
	r
	↸
	r
	÷
	<

				河	三 定		巛	#	(特に指定のない場合、V _{CC} =9V、Ta=25±3°C)
洪	項目			_	バスモー	<u>.</u>			· · · · · · · · · · · · · · · · · · ·
		(02)	(05) (09) (0A)	(0A)					た カ
81	垂直ランプ振幅調整	(10)	調整	(40)		,			(1) サブアドレス (09) のデータを (3F) としたときのV.RAMP (端子24) 出力振幅を測定する。(VVH) (2) サブアドレス (09) のデータを (00) としたときのV.RAMP (端子24) 出力振幅を測定する。(VVL)
82	水平同期分離レベル	←	(20)	←					(1) 外部入力 (端子39) に白100%で10Hに1回同期レベルが小さい信号を入力する。 (2) 同期信号出力 (端子31) の同期パルスを観測しながら、同期パルスが現れなくなるRsepaを測定する。
	:		:	J.					9H Rsepa 100%
83	垂直周波数強制262.5H	←	←	(CO)					(1) サブアドレス (0A) のデータを (CO) とする。 (2) 垂直出力 (端子22) の発振周波数を測定する。

測定用信号

① 入力信号1

② 入力信号2

測定回路

TOSHIBA TA1242N

外形図

SDIP56-P-600-1.78

単位: mm

質量: 5.55g (標準)