ИССЛЕДОВАНИЕ ОПЕРАЦИЙ Поток в сети и его приложения

В.В. Лепин Институт математики НАН Беларуси, Минск

План

- Задача о максимальном потоке (MaxFlow): алгоритм Форда-Фалкерсона, теорема о макмимальном потоке и минимальном разрезе;
- Двойственное объяснение АЛГОРИТМА
 ФОРДА-ФАЛКЕРСОНА и ТЕОРЕМЫ О МАКМИМАЛЬНОМ
 ПОТОКЕ И МИНИМАЛЬНОМ РАЗРЕЗЕ;
- Эффективные алгоритмы для задачи о максимальном потоке: метод масштабирования, алгоритм Эдмонса-Карпа (Edmonds-Karp), алгоритм Диница (Dinic)
- Обобщения задачи о максимальном потоке : нижняя граница на пропускную способность, много источникков & много стоков, косвенный граф.

Краткая история Задачи о максимальном потоке I

Рис.: Железно-дорожная сеть СССР, 1955

Краткая история Задачи о максимальном потоке II

- "Принципиальная схема железнодорожной сети Советского Союза и стран Восточной Европы. Максимальный поток 163 000 тонн из России в Восточную Европу и разрез с пропускной способности 163 000 тонн, обозначен как "узкое место"..."
- Недавно рассекреченный отчет ВВС США указывает, что первоначальная мотивация Задачи о максимальном потоке и алгоритма Форда-Фалкерсона заключалась в том как наиболее эффективным образом нарушить экселезнодорожные перевозки Советского Союза [А. Шрайвер, 2002].

Задача о максимальном потоке и задача о минимальном разрезе

Задача о максимальном потоке

вход:

Ориентированный граф G = (V, E). Каждое ребро e имеет пропускную способность C_e . Два специальных узла:

источник s и сток t;

выход:

Для каждого ребра e=(u,v) назначить поток $f(u,v) \leq C(u,v)$ такой, чтобы $\sum_{u,(s,u)\in E} f(s,u)$ была максимальной.

Задача о максимальном потоке

вход:

Ориентированный граф G = (V, E). Каждое ребро e имеет пропускную способность C_e . Два специальных узла:

источник s и сток t;

выход:

Для каждого ребра e=(u,v) назначить поток $f(u,v) \leq C(u,v)$ такой, чтобы $\sum_{u,(s,u)\in E} f(s,u)$ была максимальной.

Цель: перевести как можно больше груза из источника s в сток t.

ПРЕОБРАЗОВАНИЕ НЕОРИЕНТИРОВАННОГО ГРАФА В СЕТЬ

s-t поток

 $f:E \to R^+$ называется s-t потоком если:

s-t поток

 $f: E \to R^+$ называется s-t потоком если:

• (Ограничения по пропускной способности): $0 \le f(e) \le C_e$ для всех ребер e;

s-t поток

 $f: E \to R^+$ называется s-t потоком если:

- (Ограничения по пропускной способности): $0 \le f(e) \le C_e$ для всех ребер e;
- ② (Сохранение потока): Для любой промежуточной вершины $v \in V \setminus \{s,t\}$, $f^{in}(v) = f^{out}(v)$, где $f^{in}(v) = \sum_{e \text{ into } v} f(e)$ и $f^{out}(v) = \sum_{e \text{ out of } v} f(e)$. (Т.е. вход = выходу для любой внутренней вершины.)

s-t поток

 $f: E \to R^+$ называется s-t потоком если:

- (Ограничения по пропускной способности): $0 \le f(e) \le C_e$ для всех ребер e;
- ② (Сохранение потока): Для любой промежуточной вершины $v \in V \setminus \{s,t\}, \ f^{in}(v) = f^{out}(v), \ \text{где}$ $f^{in}(v) = \sum_{e \text{ into } v} f(e)$ и $f^{out}(v) = \sum_{e \text{ out of } v} f(e)$. (Т.е. вход = выходу для любой внутренней вершины.)

Величина потока f равна $|f| = f^{out}(s)$.

s-t поток

 $f: V \times V \to R^+$ называется s-t потоком если:

- (Ограничения по пропускной способности): $0 \le x_{ij} \le c_{ij} \quad \forall (i,j) \in E \; ;$
- ② (Сохранение потока): Для любой промежуточной вершины $\sum_{(i,j)\in E} x_{ij} = \sum_{(j,k)\in E} x_{jk} \quad \forall j \in V, j \neq s, t$
- $3 \quad x_{ij} = 0 \quad (i,j) \notin E$

Величина потока f равна $|f| = \sum_{(s,i) \in E} x_{si} = \sum_{(j,s) \in E} x_{js}$.

Задача о минимальном разрезе

ВХОД:

Ориентированный граф G=(V,E). Каждое ребро e имеет пропускную способность C_e . Два специальных узла:

источник s и сток t;

выход:

Найти s-t разрез, имеющий минимальную пропускную способность.

$$C(S,\bar{S})=3$$

s-t PA3PE3

s-t paspe

s-t разрезом называется разбиение (S,\bar{S}) множества V такое, что $s\in S$ и $t\in \bar{S}$. Пропускная способность разреза (S,\bar{S}) определяется как $C(S,\bar{S})=\sum_{e\ {
m from}\ S\ {
m to}\ \bar{S}}C(e)$.

$$C(S, \bar{S}) = 3$$

НЕКОТОРЫЕ АЛГОРИТМЫ РЕШЕНИЯ ЗАДАЧИ

Год	Разработчик	Трудоемкость
1956	L. R. Ford and D. R. Fulkerson	O(mC)
1970	Y. Dinitz	$O(mn^2)$
1972	J. Edmonds and R. Karp	$O(m^2n)$
1974	A. Karzanov	$O(n^3)$
1986	A. Goldberg and R. Tarjan	$O(mn^2), O(n^3), O(mn\log(\frac{n^2}{m}))$
2013	J. Orlin	O(mn)

Алгоритм Форда — Фалкерсона [1956]

LESTER RANDOLPH FORD JR. AND DELBERT RAY FULKERSON

 ${\tt Puc.}$: Lester Randolph Ford Jr. and Delbert Ray Fulkerson

Замечание 1: Техника динамического программирования

• Динамическое программирование, кажется, не работает, поскольку нелегко определить соответствующие подзадачи. Фактически, не существует эффективного алгоритма, известного для Задачи о максимальном потоке, который действительно можно рассматривать как принадлежащий парадигме динамического программирования.

Замечание 1: Техника динамического программирования

- Динамическое программирование, кажется, не работает, поскольку нелегко определить соответствующие подзадачи. Фактически, не существует эффективного алгоритма, известного для Задачи о максимальном потоке, который действительно можно рассматривать как принадлежащий парадигме динамического программирования.
- Мы знаем, что Задача о максимальном потоке находится в классе **P**, поскольку ее можно сформулировать как задачу линейного программирования. Однако сетевая структура имеет свойство, позволяющее использовать более эффективный алгоритм, неофициально называемый сетевым симплекс методом. Кроме того, специальные алгоритмы более эффективны.

Замечание 2: Стратегия улучшения

• Рассмотрим общую Стратегию улучшения: Улудшение(f)1: $x = x_0$; //начинаем с исходного решения; 2: while TRUE do x = IMPROVE(x); //сделать один шаг к оптимальному; if Выполяется критекий остановки(x, f)then break; 5: 6: end if 7: end while 8: return x;

ТРИ КЛЮЧЕВЫХ ВОПРОСА СТРАТЕГИИ УЛУЧШЕНИЯ

Три ключевых вопроса:

- Как построить начальное решение?
 - Для Задачи о максимальном потоке, исходное решение может быть легко получено путем установки f(e) = 0 для каждого ребра e (называется 0—потоком). Легко проверить, что ограничения по пропускной способности и сохранению выполняются для 0-потока.

ТРИ КЛЮЧЕВЫХ ВОПРОСА СТРАТЕГИИ УЛУЧШЕНИЯ

Три ключевых вопроса:

- Как построить начальное решение?
 - Для Задачи о максимальном потоке, исходное решение может быть легко получено путем установки f(e) = 0 для каждого ребра e (называется 0—потоком). Легко проверить, что ограничения по пропускной способности и сохранению выполняются для 0-потока.
- Как улучшить решение?

ТРИ КЛЮЧЕВЫХ ВОПРОСА СТРАТЕГИИ УЛУЧШЕНИЯ

Три ключевых вопроса:

- Как построить начальное решение?
 - Для Задачи о максимальном потоке, исходное решение может быть легко получено путем установки f(e) = 0 для каждого ребра e (называется 0—потоком). Легко проверить, что ограничения по пропускной способности и сохранению выполняются для 0-потока.
- Как улучшить решение?
- Когда остановиться?

Идея: увеличивать поток вдоль пути в исходном графе

- Пусть p простой s-t путь в сети G.
 - 1: Инициализация f(e) = 0 для всех e.
 - 2: while существует s-t путь в графе G do
 - 3: **Произвольно** выбрать s t путь p в графе G;
 - 4: f =УВЕЛИЧЕНИЕ(p, f);
 - 5: end while
 - 6: $\mathbf{return} \ f$;

Увеличение потока вдоль пути

• Определим bottleneck(p,f) как наименьшую остаточную пропускную способность ребер в пути p. УВЕЛИЧЕНИЕ(p,f)

```
1: Пусть b = bottleneck(p, f);
```

- 2: for каждого ребра $e=(u,v)\in p$ do
- 3: Увеличить f(u, v) на b;
- 4: end for

Почему вожможна неудача?

- Рассмотрим следующий пример. Мы начинаем с 0-потока и находим путь s-t в G, скажем, $p=s \to u \to v \to t$, чтобы передать еще одну единицу товара для увеличения значения f.
- Однако мы не можем снова найти путь s-t в G для дальнейшего увеличения f (левый рисунок), хотя максимальное значение потока составляет 2 (правый рисунок).

Алгоритм Форда — Фалкерсона: Φ УНКЦИОНАЛЬНОСТЬ " \mathbf{otkat} "

- Ключевое наблюдение:
 - При построении потока f можно допустить ошибки на некоторых ребрах, то есть такие ребра не должны использоваться для продвижения потока. Например, ребро $u \to v$ не должно использоваться.

Алгоритм Форда — Фалкерсона: Φ УНКЦИОНАЛЬНОСТЬ "**откат**"

- Ключевое наблюдение:
 - При построении потока f можно допустить ошибки на некоторых ребрах, то есть такие ребра не должны использоваться для продвижения потока. Например, ребро $u \to v$ не должно использоваться.

• Чтобы улучшить текущий поток f, мы должны разработать способ исправлять такие ошибки, то есть "отменять" передачу потока, назначенную для ребра.

РЕАЛИЗАЦИЯ ФУНКЦИОНАЛЬНОСТИ "ОТКАТ"

• Но как реализовать функциональность "откат"?

РЕАЛИЗАЦИЯ ФУНКЦИОНАЛЬНОСТИ "ОТКАТ"

- Но как реализовать функциональность "откат"?
- Добовлять обратные ребра!

РЕАЛИЗАЦИЯ ФУНКЦИОНАЛЬНОСТИ "ОТКАТ"

- Но как реализовать функциональность "откат"?
- Добовлять обратные ребра!
- Предположим, мы добавляем обратное ребро $v \to u$ в исходный граф.

Затем мы можем исправить поток, направив его от v до u.

ОСТАТОЧНАЯ СЕТЬ С "**обратными**" РЕВРАМИ ДЛЯ КОРРЕКЦИИ ОШИВОК

DEFINITION

Для сети G = (V, E) с потоком f определяем **Остаточный** граф $G_f = (V, E')$.

ОСТАТОЧНАЯ СЕТЬ С "**обратными**" РЕБРАМИ ДЛЯ КОРРЕКЦИИ ОШИБОК

DEFINITION

Для сети G = (V, E) с потоком f определяем **Остаточный** граф $G_f = (V, E')$.

Для любого ребра $e = (u, v) \in E$ добавляются два ребра в E' следующим образом:

ОСТАТОЧНАЯ СЕТЬ С "**обратными**" РЕБРАМИ ДЛЯ КОРРЕКЦИИ ОШИБОК

DEFINITION

Для сети G = (V, E) с потоком f определяем **Остаточный** граф $G_f = (V, E')$.

Для любого ребра $e=(u,v)\in E$ добавляются два ребра в E' следующим образом:

Прямое ребро (u,v) с остаточной пропускной способностью: Если f(e) < C(e), то ребро e = (u,v) добовляется в G' с пропускной способностью C(e) = C(e) - f(e).

ОСТАТОЧНАЯ СЕТЬ С "**обратными**" РЕВРАМИ ДЛЯ КОРРЕКЦИИ ОШИВОК

DEFINITION

Для сети G = (V, E) с потоком f определяем **Остаточный** граф $G_f = (V, E')$.

Для любого ребра $e=(u,v)\in E$ добавляются два ребра в E' следующим образом:

- **1** Прямое ребро (u,v) с остаточной пропускной способностью: Если f(e) < C(e), то ребро e = (u,v) добовляется в G' с пропускной способностью C(e) = C(e) f(e).
- **2** Обратное ребро (v,u) с откатной пропускной способностью: Если f(e) > 0, то ребро e' = (v,u) добовляется в G' с пропускной способностью C(e') = f(e).

ПОИСК s-t ПУТИ В G_f ВМЕСТО G

• Обратите внимание, что мы не можем найти путь s-t в G; однако, мы можем найти s-t path $s\to v\to u\to t$ в G_f , который содержит обратное ребро (v,u).

Увеличение потока f вдоль пути s-t в G_f

• Используя обратное ребро $v \to u$, ранее принятая передача от u к v отбрасывается.

Увеличение потока f вдоль пути s-t в G_f

- Используя обратное ребро $v \to u$, ранее принятая передача от u к v отбрасывается.
- Более конкретно, поток f, меняет свой путь (передача по $s \to u \to v \to t$ заменяется на $s \to u \to t$), кроме того используется путь $s \to v \to t$.

Алгоритм Форда-Фалкерсона

• Каждый простой s-t путь p в G_f , называется увеличивающим. Пусть bottleneck(p,f) — минимальная пропускная способность ребер в пути p.

Алгоритм Форда-Фалкерсона

• Каждый простой s-t путь p в G_f , называется увеличивающим. Пусть bottleneck(p,f) — минимальная пропускная способность ребер в пути p.

FORD-FULKERSON algorithm:

```
1: Инициализация: f(e) = 0 для всех e.
```

2: while существует s-t путь в остаточной сети G_f do

```
3: Произвольно выбрать s-t путь p в G_f;
```

```
4: f = AUGMENT(p, f);
```

5: end while

6: $\mathbf{return} \ f;$

Корректность и трудоемкость алгоритма

Свойство 1: увеличение генерирует новый поток

LEMMA

Onepauus f' = AUGMENT (p, f) генерирует новый поток f' в G.

Свойство 1: увеличение генерирует новый поток

LEMMA

Onepauus f' = AUGMENT (p,f) генерирует новый поток f' в G.

• Проверим ограничения по пропускной способности: исследуем два возможных случая для ребра e = (u, v) в пути p.

- Проверим ограничения по пропускной способности: исследуем два возможных случая для ребра e = (u, v) в пути p.
 - (u, v) прямое ребро, возникшее из $(u, v) \in E$: $0 \le f(e) \le f'(e) = f(e) + bottleneck(p, f) \le f(e) + (C(e) f(e)) \le C(e)$.

- Проверим ограничения по пропускной способности: исследуем два возможных случая для ребра e = (u, v) в пути p.
 - (u, v) прямое ребро, возникшее из (u, v) $\in E$: $0 \le f(e) \le f'(e) = f(e) + bottleneck(p, f) \le f(e) + (C(e) f(e)) \le C(e)$.
 - ② (u,v) обратное ребро, возникшее из $(v,u) \in E$: $C(e) \ge f(e) \ge f'(e) = f(e) bottleneck(p,f) \ge f(e) f(e) = 0.$

- Проверим ограничения по пропускной способности: исследуем два возможных случая для ребра e = (u, v) в пути p.
 - (u, v) прямое ребро, возникшее из (u, v) $\in E$: $0 \le f(e) \le f'(e) = f(e) + bottleneck(p, f) \le f(e) + (C(e) f(e)) \le C(e)$.
 - ② (u, v) обратное ребро, возникшее из $(v, u) \in E$: $C(e) \ge f(e) \ge f'(e) = f(e) bottleneck(p, f) \ge f(e) f(e) = 0.$
- Провепим ограничение по сохранению потока: Для каждого узла v изменение количества потока, входящего в v, совпадает с изменением количества потока, выходящего из v.

Свойство 2: монотонное возрастание потока

Lemma

|f'| > |f|.

• Замечание: |f'| = |f| + bottleneck(p, f) > |f| поскольку bottleneck(p, f) > 0.

Свойство 3: тривиальная верхняя граница потока

LEMMA

|f| имеет верхнюю границу $C = \sum_{e \text{ смежно } c \text{ s}} C(e)$.

(Замечание: ребра из s полностью насыщены потоком f.)

Свойство 4: шаг увеличения

Theorem

Если все ребра имеют целочисленные значения, то на каждом промежуточном этапе выполнения Алгоритма Форда—Фалкерсона величина потока |f| и остаточные пропускные способности являются целыми числами, а bottleneck $(p,f) \geq 1$. В цикле while не более C итераций.

- Трудоемкость: O(mC).
 - O(C) итераций: при разумном предположении, что все емкости являются целыми числами, $bottleneck(p,f) \ge 1$ на каждой итерации и, таким образом, $|f'| \ge |f| + 1$.
 - На каждой итерации требуется выполнить O(m+n) операций, чтобы найти путь s-t в G_f , используя технику DFS или BFS.
- Обратите внимание, что оценка не является полиномиальной, так как C операций это экспоненциально от размера входных данных задачи.

Свойство 5: более точная верхняя граница

THEOREM

Для любого потока f и s-t разреза (S,\bar{S}) выполняется $|f| \leq C(S,\bar{S}).$

$$|f| = 2 \le C(S, \bar{S}) = 3$$

$$|f| = f^{out}(S) - f^{in}(S)$$
 (по лемме о величине потока)
$$\leq f^{out}(S) \qquad \text{(поскольку } f^{in}(S) \geq 0)$$

$$= \sum_{e \in S \to \bar{S}} f(e)$$

$$\leq \sum_{e \in S \to \bar{S}} C(e) \qquad \text{(поскольку } f(e) \leq C(e))$$

$$= C(S, \bar{S})$$

ЛЕММА О ВЕЛИЧИНЕ ПОТОКА

LEMMA

Для любого s-t потока f и любого s-t разреза (S,S) величина потока проходящего через разрез равна |f|. Формально, $|f| = f^{out}(S) - f^{in}(S)$.

$$|f| = 2 + 0 = 2$$

$$f^{out}(S) - f^{in}(S) = 2 + 1 - 1 = |f|$$

- Для любого узла $v \neq s$ и $v \neq t$ выполняется $0 = f^{out}(v) f^{in}(v)$
- Таким образом:

$$\begin{split} |f| &= f^{out}(s) - f^{in}(s) \qquad // \text{ поскольку: } f^{in}(s) = 0 \\ &= \sum_{v \in S} (f^{out}(v) - f^{in}(v)) \\ &= (\sum_{e \in S \to \bar{S}} f(e) + \sum_{e \in S \to S} f(e)) \\ &- (\sum_{e \in \bar{S} \to S} f(e) + \sum_{e \in S \to S} f(e)) \\ &= f^{out}(S) - f^{in}(S) \end{split}$$

Корректность

Theorem

Алгоритм Форда — Фалкерсона останавливается когда поток f наибольший и разрез (S,\bar{S}) — минимальный.

• Алгоритм Форда — Фалкерсона останавливается, когда не существует s-t пути в остаточной сети G_f . Пусть S — множество узлов достижимых из s в G_f , и $\bar{S} = V - S$. (S, \bar{S}) образует s-t разрез поскольку $S \neq \phi$ и $\bar{S} \neq \phi$.

- Алгоритм Форда Фалкерсона останавливается, когда не существует s-t пути в остаточной сети G_f . Пусть S множество узлов достижимых из s в G_f , и $\bar{S} = V S$. (S, \bar{S}) образует s-t разрез поскольку $S \neq \phi$ и $\bar{S} \neq \phi$.
- Давайте рассмотрим два типа ребер $e = (u, v) \in E$ проходящих через разрез (S, \bar{S}) :

- Алгоритм Форда Фалкерсона останавливается, когда не существует s-t пути в остаточной сети G_f . Пусть S множество узлов достижимых из s в G_f , и $\bar{S} = V S$. (S, \bar{S}) образует s-t разрез поскольку $S \neq \phi$ и $\bar{S} \neq \phi$.
- Давайте рассмотрим два типа ребер $e = (u, v) \in E$ проходящих через разрез (S, \bar{S}) :
 - $u \in S, v \in \bar{S}$: мы имеем f(e) = C(e). (Иначе, S можно расширить, включив v, так как (u,v) находится в G_f .)

- Алгоритм Форда Фалкерсона останавливается, когда не существует s-t пути в остаточной сети G_f . Пусть S множество узлов достижимых из s в G_f , и $\bar{S} = V S$. (S, \bar{S}) образует s-t разрез поскольку $S \neq \phi$ и $\bar{S} \neq \phi$.
- Давайте рассмотрим два типа ребер $e = (u, v) \in E$ проходящих через разрез (S, \bar{S}) :
 - $u \in S, v \in \bar{S}$: мы имеем f(e) = C(e). (Иначе, S можно расширить, включив v, так как (u, v) находится в G_f .)
 - $u \in \bar{S}, v \in S$: мы имеем f(e) = 0. (Иначе, S можно расширить, включив u так как (v,u) находится в G_f .)

- Алгоритм Форда Фалкерсона останавливается, когда не существует s-t пути в остаточной сети G_f . Пусть S множество узлов достижимых из s в G_f , и $\bar{S} = V S$. (S, \bar{S}) образует s-t разрез поскольку $S \neq \phi$ и $\bar{S} \neq \phi$.
- Давайте рассмотрим два типа ребер $e = (u, v) \in E$ проходящих через разрез (S, \bar{S}) :
 - $u \in S, v \in \bar{S}$: мы имеем f(e) = C(e). (Иначе, S можно расширить, включив v, так как (u,v) находится в G_f .)
 - $u \in S, v \in S$: мы имеем f(e) = 0. (Иначе, S можно расширить, включив u так как (v, u) находится в G_f .)
- Т.о., мы имеем

$$\begin{split} |f| &= f^{out}(S) - f^{in}(S) \\ &= f^{out}(S) \qquad \text{(поскольку } f^{in}(S) = 0) \\ &= \sum_{e \in S \to \bar{S}} f(e) \\ &= \sum_{e \in S \to \bar{S}} C(e) \qquad \text{(поскольку } f(e) = C(e)) \\ &= C(S, \bar{S}) \end{split}$$

Рассмотрим Алгоритм Форда — Фалкерсона с точки зрения теории двойственности

Объяснение двойственности MaxFlow-MinCut: двойственные задачи

Объяснение двойственности MaxFlow-MinCut: двойственные задачи

Пусть x_i обозначает поток через ребро i.

Объяснение двойственности MaxFlow-MinCut: двойственные задачи

Пусть x_i обозначает поток через ребро i.

Эквивалентная версия

 x_1 ,

Отметим, что: из ограничений (1), (2), (3), и (4) следует равенство $-x_2 - x_3 + x_5 = 0$. Таким же образом получим другие равенства.

 x_4

 x_5

 x_3

Основная задача: множество переменных z для узлов.

Основная задача: множество переменных z для узлов.

Отметим, что:

Основная задача: множество переменных z для узлов.

Отметим, что:

• Поскольку ограничения связаны с разницей между y_s, y_u, y_v и y_t , одно из них можно изменить без последствий. Зафиксируем $y_s = 0$. Получим $y_t \ge 1$ (из ограничения (6).

Основная задача: множество переменных z для узлов.

Отметим, что:

- Поскольку ограничения связаны с разницей между y_s, y_u, y_v и y_t , одно из них можно изменить без последствий. Зафиксируем $y_s = 0$. Получим $y_t \ge 1$ (из ограничения (6).
- ② Ограничение (4) требует $z_4 \ge y_t y_u$, и цель состоит в том, чтобы минимизировать функцию, содержащую $C_4 z_4$, потребуем $y_t = 1$.

Основная задача: множество переменных z для узлов.

Отметим, что:

- Поскольку ограничения связаны с разницей между y_s, y_u, y_v и y_t , одно из них можно изменить без последствий. Зафиксируем $y_s = 0$. Получим $y_t \geq 1$ (из ограничения (6).
- ② Ограничение (4) требует $z_4 \ge y_t y_u$, и цель состоит в том, чтобы минимизировать функцию, содержащую C_4z_4 , потребуем $y_t = 1$.
- **③** Ограничение (1) требует $z_1 \geq y_u$, и цель состоит в том, чтобы минимизировать функцию, содержащую C_1z_1 , потребуем $z_1 = y_u$. Так же поступим с ограничением (2)

Эквивалентная LP модель

ПРЯМАЯ: множество переменных для узлов.

Отметим, что: коэффициенты ограничений (3), (4) и (5) образуют вполне унимодулярную матрицу, поэтому оптимальное решение является целочисленным.

Эквивалентная ILP модель

ПРЯМАЯ: множество переменных для узлов.

MAXFLOW-MINCUT: ДВОЙСТВЕННОСТЬ

- Предположим, мы объясняем первичные переменные как:
 - y_i представляет находится ли узел i в S или \bar{S} : если узел i в S, то $y_i=0$, и $y_i=1$ иначе.
 - z_i представляет находится ли ребро в разрезе: например, $z_1 = 1$ если $y_s = 0$ и $y_u = 1$, т.е., ребро (s,u) разрезается.
- В основной задаче нужно найти минимальный разрез.
- Слабая двойственность дает $f \le c$, а сильная двойственность эквивалентна теореме о максимальном потоке и минимальном разрезе.

Алгоритм Форда — Фалкерсона является прямо-двойственным алгоритмом

ПРЯМО-ДВОЙСТВЕННЫЙ АЛГОРИТМ

- Напомним, что общий прямо-двойственный алгоритм можно описать следующим образом.
 - 1: Инициализируем \mathbf{x} как двойственное допустимое решение;
 - 2: while TRUE do
 - 3: Построить DRP соответствующее \mathbf{x} ;
 - 4: Пусть ω_{opt} оптимальное решение DRP;
 - 5: if $\omega_{opt} = 0$ then
 - 6: return x;
 - 7: **else**
 - 8: Исправить \mathbf{x} в соответствии с оптимальным решением DRP;
 - 9: end if
 - 10: end while
- Мы покажем, что решение DRP эквивалентно нахождению увеличивающего пути в остаточной сети.

Двойственная задача и DRP I

• Двойственная D: множество переменных для ребер;

Двойственная задача и DRP II

- Давайте рассмотрим двойное допустимое решение $\mathbf{x}=(1,0,1,0,1)$. Напомним, как формулируется DRP из D:
 - Замена правой стороны C_i на 0;
 - Добовляются ограничения: $x_i \le 1, f \le 1;$
 - Сохраняем только жесткие ограничения J. Делим J на два множества, т.е. $J = J^S \cup J^E$, где J^S содержит насыщенные ребра $J^S = \{i | x_i = C_i\}$, и J^E содержит пустые ребра $J^E = \{i | x_i = 0\}$. В приведенном примере, $J_S = \{3\}$, and $J_E = \{2,4\}$.

DRP соответствует нахождению

УВЕЛИЧИВАЮЩЕГО ПУТИ

• DRP:

• $\omega_{OPT} = 0$ подразумевает, что найдено оптимальное решение. Наоборот, $\omega_{OPT} = 1$ подразумевает, что найден увеличивающий s-t путь (с единичным потоком) в G_f .

DRP и увеличивающий путь в остаточной сети

- Обратите внимание, что DRP соответствует поиску увеличивающего пути в остаточной сети G_f .
 - $x_i \le 0, i \in J^S$, например, x_3 , обозначает обратное ребро.
 - $x_j \ge 0, j \in J^E$, например, x_2 , обозначает прямое ребро,
 - и для других ребер, не существует ограничений x_i , например, x_1 .
- Т.о., Алгоритм Форда Фалкерсона является по существу прямо-двойственным алгоритмом.

Плохой пример для алгоритма Ford-Fulkerson

• В анализе Алгоритм Форда — Фалкерсона, целочисленность ограничений важно: узкое место даст увеличение по меньшей мере на 1.

- В анализе Алгоритм Форда Фалкерсона, целочисленность ограничений важно: узкое место даст увеличение по меньшей мере на 1.
- Анализ не корректен, если пропускные способности могут быть нерациональными.

- В анализе Алгоритм Форда Фалкерсона, целочисленность ограничений важно: узкое место даст увеличение по меньшей мере на 1.
- Анализ не корректен, если пропускные способности могут быть нерациональными.

На самом деле поток может увеличиваться на все меньшее и меньшее число, и итераций будет бесконечно много.

- В анализе Алгоритм Форда Фалкерсона, целочисленность ограничений важно: узкое место даст увеличение по меньшей мере на 1.
- Анализ не корректен, если пропускные способности могут быть нерациональными.

На самом деле поток может увеличиваться на все меньшее и меньшее число, и итераций будет бесконечно много.

Хуже того, эти бесконечные итерации могут не сходиться к максимальному потоку.

Алгоритм Φ орда — Φ алкерсона: плохой пример 2

Плохой пример для алгоритма Φ орда — Φ алкерсона: Шаг 1

Плохой пример для алгоритма Φ орда — Φ алкерсона: Шаг 2

Плохой пример для алгоритма Форда — Фалкерсона: Шаг 3

• Обратите внимание, что после двух итераций эта проблема аналогична исходной, за исключением того, что пропусктные способности на (s,u),(s,v),(u,t),(v,t) уменьшаются на 1.

Плохой пример для алгоритма Форда — Фалкерсона: Шаг 3

- Обратите внимание, что после двух итераций эта проблема аналогична исходной, за исключением того, что пропусктные способности на (s,u),(s,v),(u,t),(v,t) уменьшаются на 1.
- Т.о., АЛГОРИТМ ФОРДА ФАЛКЕРСОНА остановится после выполнения 64 + 32 итераций, поскольку bottleneck = 1 на всех итерациях.

Слабость Алгоритма Форда — Фалкерсона

• Произвольный выбор увеличивающих путей приводит к следующим слабостям:

Слабость Алгоритма Форда — Фалкерсона

- Произвольный выбор увеличивающих путей приводит к следующим слабостям:
 - Путь с небольшой пропускной способностью выбирается как увеличивающий путь

Славость Алгоритма Форда — Фалкерсона

- Произвольный выбор увеличивающих путей приводит к следующим слабостям:
 - Путь с небольшой пропускной способностью выбирается как увеличивающий путь
 - Мы увеличиваем поток за много большее число шагов, чем в лудшем случае.

Славость Алгоритма Форда — Фалкерсона

- Произвольный выбор увеличивающих путей приводит к следующим слабостям:
 - Путь с небольшой пропускной способностью выбирается как увеличивающий путь
 - Мы увеличиваем поток за много большее число шагов, чем в лудшем случае.
- В оригинальной работе Форда и Фалкерсона было рассмотрено несколько эвристик для улучшения.

ullet Различные стратегии выбора увеличивающего пути в G_f :

- ullet Различные стратегии выбора увеличивающего пути в G_f :
 - 1 Толстые трубы:

- ullet Различные стратегии выбора увеличивающего пути в G_f :
 - Толстые трубы:
 - Выбрать увеличивающий путь с наибольшей пропускной способность или использовать масштабирование.

- ullet Различные стратегии выбора увеличивающего пути в G_f :
 - Толстые трубы:
 - Выбрать увеличивающий путь с наибольшей пропускной способность или использовать масштабирование.
 - Короткие трубы:

- ullet Различные стратегии выбора увеличивающего пути в G_f :
 - Толстые трубы:
 - Выбрать увеличивающий путь с наибольшей пропускной способность или использовать масштабирование.
 - Иороткие трубы:
 - Алгоритм Эдмонса-Карпа находит кратчайший увеличивающий путь.

- ullet Различные стратегии выбора увеличивающего пути в G_f :
 - Толстые трубы:
 - Выбрать увеличивающий путь с наибольшей пропускной способность или использовать масштабирование.
 - Короткие трубы:
 - Алгоритм Эдмонса-Карпа находит кратчайший увеличивающий путь.
 - Алгоритм Диница: расширяет **BFS дерево** чтобы построить **уровневую сеть** находит увеличение потока в уровневой сети. Для оценки выполняется аматризационный анализ.

- ullet Различные стратегии выбора увеличивающего пути в G_f :
 - Толстые трубы:
 - Выбрать увеличивающий путь с наибольшей пропускной способность или использовать масштабирование.
 - Короткие трубы:
 - Алгоритм Эдмонса-Карпа находит кратчайший увеличивающий путь.
 - Алгоритм Диница: расширяет **BFS дерево** чтобы построить **уровневую сеть** находит увеличение потока в уровневой сети. Для оценки выполняется аматризационный анализ.
 - Алгоритм Диница: выполняет **DFS** в уровневой сети чтобы найти блокирующий поток, который насыщает все кратчайшие увеличивающие пути.

- ullet Различные стратегии выбора увеличивающего пути в G_f :
 - Отрастые трубы:
 - Выбрать увеличивающий путь с наибольшей пропускной способность или использовать масштабирование.
 - Иороткие трубы:
 - Алгоритм Эдмонса-Карпа находит кратчайший увеличивающий путь.
 - Алгоритм Диница: расширяет BFS дерево чтобы построить уровневую сеть находит увеличение потока в уровневой сети. Для оценки выполняется аматризационный анализ.
 - Алгоритм Диница: выполняет **DFS** в уровневой сети чтобы найти блокирующий поток, который насыщает все кратчайшие увеличивающие пути.
 - Алгоритм Карзанова: насыщает ребра когда строит блокирующий поток. Используется идея предпотока.

- Различные стратегии выбора увеличивающего пути в G_f :
 - Толстые трубы:
 - Выбрать увеличивающий путь с наибольшей пропускной способность или использовать масштабирование
 - Короткие трубы:
 - Алгоритм Эдмонса-Карпа находит кратчайший увеличивающий путь.
 - Алгоритм Диница: расширяет **BFS** дерево чтобы построить уровневую сеть находит увеличение потока в уровневой сети. Для оценки выполняется аматризационный анализ.
 - Алгоритм Диница: выполняет **DFS** в уровневой сети чтобы найти блокирующий поток, который насыщает все кратчайшие увеличивающие пути.
 - Алгоритм Карзанова: насыщает ребра когда строит блокирующий поток. Используется идея предпотока.
 - Алгоритм «поднять в начало»: использует идею предпотока; однако, предпоток строитяся не в уровневой сети, а в остаточной сети. Используются метки расстояний чтобы оценить расстояние от 📱 🧳 🐧 узла до t.

59 / 108

Улучшение 1: Техника масштабирования (Диниц)

ТЕХНИКА МАСШТАБИРОВАНИЯ

• Вопрос: можем ли мы выбрать увеличивающий путь с **большой пропускной способностью**? Если bottleneck(p,f) большое, то, возможно, потребуется меньше итераций.

ТЕХНИКА МАСШТАБИРОВАНИЯ

- Вопрос: можем ли мы выбрать увеличивающий путь с **большой пропускной способностью**? Если bottleneck(p, f) большое, то, возможно, потребуется меньше итераций.
- s-t путь p в G_f с наибольшим bottleneck(p,f) можно найти, используя бинарный поиск, или немного измененным алгоритмом Дейкстры, за время $O(m+n\log n)$; однако, это все еще не совсем эффективно.

ТЕХНИКА МАСШТАБИРОВАНИЯ

- Вопрос: можем ли мы выбрать увеличивающий путь с **большой пропускной способностью**? Если bottleneck(p,f) большое, то, возможно, потребуется меньше итераций.
- s-t путь p в G_f с наибольшим bottleneck(p,f) можно найти, используя бинарный поиск, или немного измененным алгоритмом Дейкстры, за время $O(m+n\log n)$; однако, это все еще не совсем эффективно.
- Идея: ослабить требование "наибольшей" на "достаточно большой". В частности, мы можем установить нижнюю границу Δ для bottleneck(P,f) посредством удаления "малых" ребер, т.е. ребра с пропускной способностью меньше чем Δ удаляются из G(f). Такая остаточная сеть обозначается как $G_f(\Delta)$ и Δ будет уменьшаться по мере продолжения итераций.

- ullet Масштабирование-Форда Фалкерсона(G)
 - 1: Инициализация: f(e) = 0 для всех e.
 - 2: Пусть $\Delta = C$;
 - 3: while $\Delta \geq 1$ do
 - 4: while существует s-t путь в $G_f(\Delta)$ do
 - 5: Выбрать s-t путь p;
 - 6: f = AUGMENT(p, f);
 - 7: end while
 - 8: $\Delta = \frac{\Delta}{2}$;
 - 9: end while
 - 10: return f;

- ullet Масштабирование-Форда Фалкерсона(G)
 - 1: Инициализация: f(e) = 0 для всех e.
 - 2: Пусть $\Delta = C$;
 - 3: while $\Delta \geq 1$ do
 - 4: while существует s-t путь в $G_f(\Delta)$ do
 - 5: Выбрать s-t путь p;
 - 6: f = AUGMENT(p, f);
 - 7: end while
 - 8: $\Delta = \frac{\Delta}{2}$;
 - 9: end while
 - 10: return f;
- Замечание: поток увеличивается с большим шагом по мере возможности; в противном случае размер шага уменьшается. Размер шага контролируется путем удаления «маленьких» ребер из остаточной сети.

- Масштабирование-Форда Фалкерсона(G)
 - 1: Инициализация: f(e) = 0 для всех e.
 - 2: Пусть $\Delta = C$;
 - 3: while $\Delta > 1$ do
 - while существует s-t путь в $G_f(\Delta)$ do
 - 5: Выбрать s-t путь p;
 - 6: f = AUGMENT(p, f);
 - 7: end while
 - 8: $\Delta = \frac{\Delta}{2}$;
 - 9: end while
 - 10: return f;
- Замечание: поток увеличивается с большим шагом по мере возможности; в противном случае размер шага уменьшается. Размер шага контролируется путем удаления «маленьких» ребер из остаточной сети.
- Отметим, что Δ окончательно станет равной 1; таким образом, никакие ребра в остаточном графе не будут игнорироваться. 4□ > 4□ > 4□ > 4□ > 4□ > 9000

• Поток: нулевой поток;

- Поток: нулевой поток;
- $\quad \bullet \ \Delta : \ \Delta = 96;$

- Поток: нулевой поток;
- Δ : $\Delta = 96$;
- $G_f(\Delta)$: все ребра удаляются, поскольку их пропускные способности меньше 96.

- Поток: нулевой поток;
- Δ : $\Delta = 96$;
- $G_f(\Delta)$: все ребра удаляются, поскольку их пропускные способности меньше 96.
- \bullet s-tпути нет. Следовательно Δ масштабируется: $\Delta=\frac{\Delta}{2}=48.$

• Поток: нулевой поток;

- Поток: нулевой поток;
- $\quad \bullet \ \Delta \colon \Delta = 48;$

- Поток: нулевой поток;
- Δ : $\Delta = 48$;
- $G_f(\Delta)$: три ребра удаляются, поскольку их пропускные способности меньше 48.

- Поток: нулевой поток;
- Δ : $\Delta = 48$;
- $G_f(\Delta)$: три ребра удаляются, поскольку их пропускные способности меньше 48.
- ullet s-t путь: есть путь s-u-t. Выполняется операция увеличения потока.

Поток: 64;

- Поток: 64;
- $\quad \bullet \ \Delta : \ \Delta = 48;$

- Поток: 64;
- Δ : $\Delta = 48$;
- $G_f(\Delta)$: три ребра удаляются, поскольку их пропускные способности меньше 48.

- Поток: 64;
- Δ : $\Delta = 48$;
- $G_f(\Delta)$: три ребра удаляются, поскольку их пропускные способности меньше 48.
- $\bullet \ s-t$ путь: пути нет. Выполняется масштабирование: $\Delta=\frac{\Delta}{2}=24.$

Поток: 64;

- Поток: 64;
- $\quad \bullet \ \Delta \colon \Delta = 24;$

- Поток: 64;
- Δ : $\Delta = 24$;
- G_f(\(\Delta\)): одно ребро удаляется, поскольку его пропускная способность меньше 24.

- Поток: 64;
- Δ : $\Delta = 24$;
- G_f(\(\Delta\)): одно ребро удаляется, поскольку его пропускная способность меньше 24.
- s-t путь: найден путь: s-v-t. Выполняется операция увеличения потока.

• Поток: 96. Получен максимальный поток.

- Поток: 96. Получен максимальный поток.
- Δ : $\Delta = 24$;

- Поток: 96. Получен максимальный поток.
- $G_f(\Delta)$: одно ребро удаляется, поскольку его пропускная способность меньше 24.

- Поток: 96. Получен максимальный поток.
- Δ : $\Delta = 24$;
- $G_f(\Delta)$: одно ребро удаляется, поскольку его пропускная способность меньше 24.
- s-t путь: s-t пути нет.

Анализ: Вшешний цикл while

LEMMA

(Вшешний цикл while) Число итераций во внешнем цикле while не превосходит $1 + \log_2 C$.

Алгоритм Форда - Фалкерсона с масштабированием:

```
1: Инициализация: f(e) = 0 для всех e.

2: Пусть \Delta = C;

3: while \Delta \geq 1 do

4: while существует s - t путь в G_f(\Delta) do

5: Выбрать s - t путь p;

6: f = \text{AUGMENT}(p, f);

7: end while

8: \Delta = \Delta/2;

9: end while

10: return f;
```

THEOREM

(внутренний цикл while) При фиксированном Δ , число увеличений потока не превосходит 2m.

Алгоритм Форда - Фалкерсона с масштабированием:

```
1: Инициализация: f(e) = 0 для всех e.

2: Пусть \Delta = C;

3: while \Delta \geq 1 do

4: while существует s - t путь в G_f(\Delta) do

5: Выбрать s - t путь p;

6: f = \text{AUGMENT}(p, f);

7: end while

8: \Delta = \Delta/2;

9: end while

10: return f;
```

Доказательство.

① Пусть f — поток, полученный когда фаза с масштабом Δ завершилась, и f^* — максимальный поток. Мы имеем $|f| \geq |f^*| - m\Delta$.

- ① Пусть f поток, полученный когда фаза с масштабом Δ завершилась, и f^* максимальный поток. Мы имеем $|f| \geq |f^*| m\Delta$.
- ② На последующей фазе с масштабом $\frac{\Delta}{2}$, после каждого шага увеличения величина потока |f| увеличится по крайней мере на $\frac{\Delta}{2}$.

Доказательство.

- ① Пусть f поток, полученный когда фаза с масштабом Δ завершилась, и f^* максимальный поток. Мы имеем $|f| \geq |f^*| m\Delta$.
- ② На последующей фазе с масштабом $\frac{\Delta}{2}$, после каждого шага увеличения величина потока |f| увеличится по крайней мере на $\frac{\Delta}{2}$.

Доказательство.

- ① Пусть f поток, полученный когда фаза с масштабом Δ завершилась, и f^* максимальный поток. Мы имеем $|f| \geq |f^*| m\Delta$.
- ② На последующей фазе с масштабом $\frac{\Delta}{2}$, после каждого шага увеличения величина потока |f| увеличится по крайней мере на $\frac{\Delta}{2}$.

Т.о., будет выполнено не более чем 2m увеличений потока на фазе с масштабом $\frac{\Delta}{2}$.

• Трудоемкость: $O(m^2 \log_2 C)$.

Доказательство.

- ① Пусть f поток, полученный когда фаза с масштабом Δ завершилась, и f^* максимальный поток. Мы имеем $|f| \geq |f^*| m\Delta$.
- $oldsymbol{2}$ На последующей фазе с масштабом $\frac{\Delta}{2}$, после каждого шага увеличения величина потока |f| увеличится по крайней мере на $\frac{\Delta}{2}$.

- Трудоемкость: $O(m^2 \log_2 C)$.
 - $O(\log_2 C)$ раз выполняется внешний цикл while;

Доказательство.

- $oldsymbol{2}$ На последующей фазе с масштабом $\frac{\Delta}{2}$, после каждого шага увеличения величина потока |f| увеличится по крайней мере на $\frac{\Delta}{2}$.

- Трудоемкость: $O(m^2 \log_2 C)$.
 - $O(\log_2 C)$ раз выполняется внешний цикл while;
 - \bullet O(m) раз выполняется внутренний цикл;

Доказательство.

- ① Пусть f поток, полученный когда фаза с масштабом Δ завершилась, и f^* максимальный поток. Мы имеем $|f| \geq |f^*| m\Delta$.
- $oldsymbol{2}$ На последующей фазе с масштабом $\frac{\Delta}{2}$, после каждого шага увеличения величина потока |f| увеличится по крайней мере на $\frac{\Delta}{2}$.

- Трудоемкость: $O(m^2 \log_2 C)$.
 - $O(\log_2 C)$ раз выполняется внешний цикл while;
 - O(m) раз выполняется внутренний цикл;
 - ullet Каждый шаг увеличения требует O(m) времени.

Доказательство.

- ① Пусть f поток, полученный когда фаза с масштабом Δ завершилась, и f^* максимальный поток. Мы имеем $|f| \geq |f^*| m\Delta$.
- $oldsymbol{2}$ На последующей фазе с масштабом $\frac{\Delta}{2}$, после каждого шага увеличения величина потока |f| увеличится по крайней мере на $\frac{\Delta}{2}$.

- Трудоемкость: $O(m^2 \log_2 C)$.
 - $O(\log_2 C)$ раз выполняется внешний цикл while;
 - \bullet O(m) раз выполняется внутренний цикл;
 - ullet Каждый шаг увеличения требует O(m) времени.
- Масштабирование это один из способов сделать алгоритм расширения потока по путям полиномиальным по времени, если пропускные способности являются целыми числами.

Почему $|f| \ge |f^*| - m\Delta$?

Доказательство.

• Пусть S — множество узлов достижимых из s в остаточной сети $G_f(\Delta)$, и $\bar{S} = V - S$. Т.о., (S, \bar{S}) — разрез, поскольку $S \neq \phi$ и $\bar{S} \neq \phi$.

ПОЧЕМУ $|f| \geq |f^*| - m\Delta$?

- Пусть S множество узлов достижимых из s в остаточной сети $G_f(\Delta)$, и $\bar{S}=V-S$. Т.о., (S,\bar{S}) разрез, поскольку $S\neq \phi$ и $\bar{S}\neq \phi$.
- Исследуем два типа разрезаемых ребер $e = (u, v) \in E$.

ПОЧЕМУ $|f| \ge |f^*| - m\Delta$?

- Пусть S множество узлов достижимых из s в остаточной сети $G_f(\Delta)$, и $\bar{S}=V-S$. Т.о., (S,\bar{S}) разрез, поскольку $S \neq \phi$ и $\bar{S} \neq \phi$.
- Исследуем два типа разрезаемых ребер $e = (u, v) \in E$.
 - $u \in S, v \in \bar{S}$: мы имеем $f(e) \geq C(e) \Delta$. (Иначе, S должно быть расширино узлом v так как (u,v) в $G_f(\Delta)$.)

Почему $|f| \ge |f^*| - m\Delta$?

- Пусть S множество узлов достижимых из s в остаточной сети $G_f(\Delta)$, и $\bar{S} = V S$. Т.о., (S, \bar{S}) разрез, поскольку $S \neq \phi$ и $\bar{S} \neq \phi$.
- Исследуем два типа разрезаемых ребер $e = (u, v) \in E$.
 - $u \in S, v \in S$: мы имеем $f(e) \ge C(e) \Delta$. (Иначе, S должно быть расширино узлом v так как (u, v) в $G_f(\Delta)$.)
 - ② $u\in \bar{S}, v\in S$: мы имеем $f(e)\leq \Delta$. (Иначе, S должно быть расширино узлом v так как (u,v) в $G_f(\Delta)$.)

ПОЧЕМУ $|f| \geq |f^*| - m\Delta$?

- Пусть S множество узлов достижимых из s в остаточной сети $G_f(\Delta)$, и $\bar{S} = V S$. Т.о., (S, \bar{S}) разрез, поскольку $S \neq \phi$ и $\bar{S} \neq \phi$.
- Исследуем два типа разрезаемых ребер $e = (u, v) \in E$.
 - $u \in S, v \in S$: мы имеем $f(e) \ge C(e) \Delta$. (Иначе, S должно быть расширино узлом v так как (u, v) в $G_f(\Delta)$.)
 - ② $u\in \bar{S}, v\in S$: мы имеем $f(e)\leq \Delta$. (Иначе, S должно быть расширино узлом v так как (u,v) в $G_f(\Delta)$.)
- Следовательно:

$$\begin{split} |f| &= \sum_{\mathbf{e} \in S \to \bar{S}} f(e) - \sum_{\mathbf{e} \in \bar{S} \to S} f(e) \\ &\geq \sum_{\mathbf{e} \in S \to \bar{S}} (C(e) - \Delta) - \sum_{\mathbf{e} \in \bar{S} \to S} \Delta \\ &\geq \sum_{\mathbf{e} \in S \to \bar{S}} C(e) - m\Delta \\ &= C(S, \bar{S}) - m\Delta \\ &\geq |f^*| - m\Delta \end{split}$$

Улудшение 2: Алгоритм Эдмонса - Карпа. Использование **кратчайших увеличивающих путей**

Алгоритм Эдмонса - Карпа [1972]

Рис.: Jack Edmonds, and Richard Karp

• Алгоритм был опубликован Диницем в 1970 и независимо Эдмонсом и Карпом в 1972.

Алгоритм Эдмонса - Карпа

```
Edmonds-Karp(G)
```

- 1: Инициализация: f(e) = 0 для всех e.
- 2: while существует s-t путь в G_f do
- 3: Найти **кратчайший** s-t путь p в G_f используя BFS;
- 4: f = AUGMENT(p, f);
- 5: end while
- 6: **return** f;

Алгоритм Эдмонса - Карпа имеет трудоемкость $O(m^2n)$.

Доказательство.

• Во время выполнения Алгоритма Эдмонса - Карпа, ребро e=(u,v) может быть в качестве **bottleneck** не более чем $\frac{n}{2}$ раз.

Алгоритм Эдмонса - Карпа имеет трудоемкость $O(m^2n)$.

- Во время выполнения Алгоритма Эдмонса Карпа, ребро e = (u, v) может быть в качестве **bottleneck** не более чем $\frac{n}{2}$ раз.
- ullet Т.о., цикл while будет выполняться $\frac{n}{2}m$ раз.

Алгоритм Эдмонса - Карпа имеет трудоемкость $O(m^2n)$.

- Во время выполнения Алгоритма Эдмонса Карпа, ребро e = (u, v) может быть в качестве **bottleneck** не более чем $\frac{n}{2}$ раз.
- ullet Т.о., цикл while будет выполняться $\frac{n}{2}m$ раз.
- Потребуется O(m) времени чтобы найти кратчайший путь, используя BFS, а затем увеличить поток вдоль пути.

Theorem

Алгоритм Эдмонса - Карпа имеет трудоемкость $O(m^2n)$.

Доказательство.

- Во время выполнения Алгоритма Эдмонса Карпа, ребро e = (u, v) может быть в качестве **bottleneck** не более чем $\frac{n}{2}$ раз.
- Т.о., цикл while будет выполняться $\frac{n}{2}m$ раз.
- Потребуется O(m) времени чтобы найти кратчайший путь, используя BFS, а затем увеличить поток вдоль пути.

• Алгоритм Эдмонса - Карпа — полиномиальный: трудоемкость — полином от n и m, даже, если пропусктные способности являются вещественными числами, и предполагается, что операция над вещественными числами требует единицы времени. Строгая полиномиальность является более естественой с комбинаторной точки зрения.

Любое ребро (u,v) в G может быть в качестве bottleneck не более чем $\frac{n}{2}$ раз

Любое ребро (u,v) в G может быть в качестве bottleneck не более чем $\frac{n}{2}$ pas

Доказательство.

• Для остаточной сети G_f , разовьем узлы по уровням $L_0, L_1, ...$, где $L_0 = \{s\}$, и L_i содержит все узлы v такие, что кратчайший путь из s в v имеет длину i. Пусть $d_f(u)$ обозначает номер уровня узла u, т.е. расстояние от s до u в G_f .

Любое ребро (u,v) в G может быть в качестве ${\color{blue}bottleneck}$ не более чем ${n\over 2}$ раз

Доказательство.

 $L_0 = \{s\}$, и L_i содержит все узлы v такие, что кратчайший путь из s в v имеет длину i. Пусть $d_f(u)$ обозначает номер уровня узла u, т.е. расстояние от s до u в G_f .

• Для остаточной сети G_f , разобьем узлы по уровням $L_0, L_1, ...,$ где

• Рассмотрим два последовательных появления ребра (u,v) в качестве узкого места, пусть это произошло на шаге k и на шаге k'''.

Любое ребро (u,v) в G может быть в качестве $\frac{\mathsf{bottleneck}}{\mathsf{netheneck}}$ не более чем $\frac{n}{2}$ раз

Доказательство.

 $L_0 = \{s\}$, и L_i содержит все узлы v такие, что кратчайший путь из s в v имеет длину i. Пусть $d_f(u)$ обозначает номер уровня узла u, т.е. расстояние от s до u в G_f .

• Для остаточной сети G_f , разобьем узлы по уровням $L_0, L_1, ...,$ где

- Рассмотрим два последовательных появления ребра (u,v) в качестве узкого места, пусть это произошло на шаге k и на шаге k'''.
 - На шаге k, мы имеем $d_f(v) = d_f(u) + 1$. Отметим, что после увеличения потока, ребро e = (u,v) изменит свое направление.

Любое ребро (u,v) в G может быть в качестве ${\color{blue}bottleneck}$ не более чем ${n\over 2}$ раз

Доказательство.

 $L_0=\{s\},$ и L_i содержит все узлы v такие, что кратчайший путь из s в v имеет длину i. Пусть $d_f(u)$ обозначает номер уровня узла u, т.е. расстояние от s до u в G_f .

• Для остаточной сети G_f , разобьем узлы по уровням $L_0, L_1, ...,$ где

- Рассмотрим два последовательных появления ребра (u,v) в качестве узкого места, пусть это произошло на шаге k и на шаге k'''.
 - На шаге k, мы имеем $d_f(v) = d_f(u) + 1$. Отметим, что после увеличения потока, ребро e = (u, v) изменит свое направление.
 - На шаге k''', e=(u,v) становится воттleneck-ребром снова, поэтому ребро e'=(v,u) изменит направление, которое она имели на шаге предшествующем k''', скажем это шаг k''.

Любое ребро (u,v) в G может быть в качестве ${\color{blue}bottleneck}$ не более чем ${n\over 2}$ раз

Доказательство.

 $L_0 = \{s\}$, и L_i содержит все узлы v такие, что кратчайший путь из s в v имеет длину i. Пусть $d_f(u)$ обозначает номер уровня узла u, т.е. расстояние от s до u в G_f .

• Для остаточной сети G_f , разобьем узлы по уровням $L_0, L_1, ...,$ где

- Рассмотрим два последовательных появления ребра (u,v) в качестве узкого места, пусть это произошло на шаге k и на шаге k'''.
 - На шаге k, мы имеем $d_f(v) = d_f(u) + 1$. Отметим, что после увеличения потока, ребро e = (u,v) изменит свое направление.
 - На шаге k''', e = (u, v) становится воттьенск-ребром снова, поэтому ребро e' = (v, u) изменит направление, которое она имельна шаге предшествующем k''', скажем это шаг k''.
 - На шаге k'', мы имеем $d_{f''}(u) = d_{f''}(v) + 1$.

Любое ребро (u,v) в G может быть в качестве bottleneck не более чем $\frac{n}{2}$ раз

- Для остаточной сети G_f , разовьем узлы по уровням $L_0, L_1, ...$, где $L_0 = \{s\}$, и L_i содержит все узлы v такие, что кратчайший путь из s е v имеет длину i. Пусть $d_f(u)$ обозначает номер уровня узла u, т.е. расстояние от s до u в G_f .
- Рассмотрим два последовательных появления ребра (u,v) в качестве узкого места, пусть это произошло на шаге k и на шаге $k^{\prime\prime\prime}$.
 - На шаге k, мы имеем $d_f(v) = d_f(u) + 1$. Отметим, что после увеличения потока, ребро e = (u,v) изменит свое направление.
 - На шаге k''', e=(u,v) становится **bottleneck**-ребром снова, поэтому ребро e'=(v,u) изменит направление, которое она имели на шаге предшествующем k''', скажем это шаг k''.
 - На шаге k'', мы имеем $d_{f''}(u) = d_{f''}(v) + 1$.

• T.o., $d_{f''}(u) = d_{f''}(v) + 1 \ge d_{f'}(v) + 1 \ge d_{f}(u) + 2$.

$$d_{f}(u) \quad d_{f}(v) = d_{f}(u) + 1$$

$$Step \ k : \qquad s \longrightarrow u \longrightarrow v \longrightarrow t$$

$$d_{f'}(u) \quad d_{f'}(v) = d_{f}(u) + 1$$

$$d_{f'}(u) \quad d_{f'}(v) \ge d_{f}(v)$$

$$Step \ k + 1 : \qquad s \longrightarrow u \longleftarrow v \longrightarrow t$$

THEOREM

Pассмотрим поток f и соответствующую остаточную сеть G_f .

Theorem

Рассмотрим поток f и соответствующую остаточную сеть G_f . Предположим, что кратчайший путь p из s в t в сети G_f был выбран в качестве увеличивающего.

Theorem

Рассмотрим поток f и соответствующую остаточную сеть G_f . Предположим, что кратчайший путь p из s в t в сети G_f был выбран в качестве увеличивающего. После увеличения получен поток f'. Тогда для любого узла v, $d_f(v) \leq d_{f'}(v)$.

THEOREM

Рассмотрим поток f и соответствующую остаточную сеть G_f . Предположим, что кратчайший путь p из s в t в сети G_f был выбран в качестве увеличивающего. После увеличения получен поток f'. Тогда для любого узла v, $d_f(v) \leq d_{f'}(v)$.

Др. словами: Для любого узла v, расстояние $d_f(v)$ в остаточной сети G_f никогда не уменьшается, если кратчайший увеличивающий путь выбран для увеличения потока.

Theorem

Рассмотрим поток f и соответствующую остаточную сеть G_f . Предположим, что кратчайший путь p из s в t в сети G_f был выбран в качестве увеличивающего. После увеличения получен поток f'. Тогда для любого узла v, $d_f(v) \leq d_{f'}(v)$.

Др. словами: Для любого узла v, расстояние $d_f(v)$ в остаточной сети G_f никогда не уменьшается, если кратчайший увеличивающий путь выбран для увеличения потока.

• Вопервых мы утверждаем, что для любого ребра (v_i, v_j) в $G_{f'}, d_f(v_j) \leq d_f(v_i) + 1$.

- Вопервых мы утверждаем, что для любого ребра (v_i, v_j) в $G_{f'}, d_f(v_j) \leq d_f(v_i) + 1$.
 - ullet Случай 1: (v_i, v_j) в G_f , например (u, v): Очевидно.

- Вопервых мы утверждаем, что для любого ребра (v_i, v_j) в $G_{f'}, d_f(v_i) \leq d_f(v_i) + 1$.
 - Случай 1: (v_i, v_j) в G_f , например (u, v): Очевидно.
 - Случай 2: (v_i, v_j) не принадлежит G_f : В качестве примера возьмем (u, s). (s, u) должна быть в увеличивающем (кратчайшем) пути в G_f и следовательно $d_f(u) = d_f(s) + 1$.

- Вопервых мы утверждаем, что для любого ребра (v_i, v_j) в $G_{f'}, d_f(v_i) \leq d_f(v_i) + 1$.
 - ullet Случай 1: (v_i, v_j) в G_f , например (u, v): Очевидно.
 - Случай 2: (v_i, v_j) не принадлежит G_f : В качестве примера возьмем (u, s). (s, u) должна быть в увеличивающем (кратчайшем) пути в G_f и следовательно $d_f(u) = d_f(s) + 1$.
- Далее, предположим $d_{f'}(v) = r$. Пусть $(s, v_1, ..., v_{r-1}, v)$ кратчайший путь до v в $G_{f'}$.

- Вопервых мы утверждаем, что для любого ребра (v_i, v_j) в $G_{f'}, d_f(v_i) \leq d_f(v_i) + 1$.
 - \bullet Случай 1: (v_i, v_j) в G_f , например (u, v): Очевидно.
 - Случай 2: (v_i, v_j) не принадлежит G_f : В качестве примера возьмем (u, s). (s, u) должна быть в увеличивающем (кратчайшем) пути в G_f и следовательно $d_f(u) = d_f(s) + 1$.
- Далее, предположим $d_{f'}(v) = r$. Пусть $(s, v_1, ..., v_{r-1}, v)$ кратчайший путь до v в $G_{f'}$. Мы имеем:

$$d_f(v) \leq d_f(v_{r-1}) + 1$$

$$\leq d_f(v_{r-2}) + 2$$

$$\dots$$

$$\leq d_f(s) + r$$

Улудшение 3: Алгоритм Диница и его варианты

- Идея:
 - Ускорить АЛГОРИТМ ФОРДА ФАЛКЕРСОНА с помощью структуры данных.

- Идея:
 - Ускорить АЛГОРИТМ ФОРДА ФАЛКЕРСОНА с помощью структуры данных.
 - Отметим, что поиск увеличивающего пути занимает O(m) времени. В дереве BFS, есть ребра, которые можно насытить и они попадут в разрез между s и t. Т. о., весьма ценно сохранить **такую информацию**, для последующих итераций.

- Идея:
 - Ускорить АЛГОРИТМ ФОРДА ФАЛКЕРСОНА с помощью структуры данных.
 - Отметим, что поиск увеличивающего пути занимает O(m) времени. В дереве BFS, есть ребра, которые можно насытить и они попадут в разрез между s и t. Т. о., весьма ценно сохранить такую информацию, для последующих итераций.
 - BFS дерево дополняется до уровневой сети:

- Идея:
 - Ускорить АЛГОРИТМ ФОРДА ФАЛКЕРСОНА с помощью структуры данных.
 - Отметим, что поиск увеличивающего пути занимает O(m) времени. В дереве BFS, есть ребра, которые можно насытить и они попадут в разрез между s и t. Т. о., весьма ценно сохранить **такую информацию**, для последующих итераций.
 - BFS дерево дополняется до уровневой сети:
 - BFS дерево: содержит одно ребро, ведущее в узел v;

- Идея:
 - Ускорить АЛГОРИТМ ФОРДА ФАЛКЕРСОНА с помощью структуры данных.
 - Отметим, что поиск увеличивающего пути занимает O(m) времени. В дереве BFS, есть ребра, которые можно насытить и они попадут в разрез между s и t. Т. о., весьма ценно сохранить такую информацию, для последующих итераций.
 - BFS дерево дополняется до уровневой сети:
 - BFS дерево: содержит одно ребро, ведущее в узел v;
 - Уровневая сеть: содержит все ребра, находящиеся на кратчайших s-t путях в остаточной сети. Теперь, самый короткий s-t путь может быть найден за время O(n).

Остаточная сеть G_f

BFS дерево ч -- Уровневая сеть Му

■ Блокирующий поток так же известен как кратчайший насыщающий поток насыщает все кратчайшие s - t пути в остаточной сети. После увеличения потока блокирующим потоком, число уровней увеличивается и уровень узла t увеличивается по крайней мере на 1.

- Блокирующий поток так же известен как кратчайший насыщающий поток насыщает все кратчайшие s - t пути в остаточной сети. После увеличения потока блокирующим потоком, число уровней увеличивается и уровень узла t увеличивается по крайней мере на 1.
- **DFS**: Алгоритмом DFS ищется путь в уровневой сети. На это тратится O(n) времени (ипользуются номера уровней узлов). Наоборот, алгоритм Эдмонса Карпа использует BFS чтобы найти кратчайший путь в остаточной сети, что требует O(m) времени.

- Блокирующий поток так же известен как кратчайший насыщающий поток насыщает все кратчайшие s - t пути в остаточной сети. После увеличения потока блокирующим потоком, число уровней увеличивается и уровень узла t увеличивается по крайней мере на 1.
- **DFS**: Алгоритмом DFS ищется путь в уровневой сети. На это тратится O(n) времени (ипользуются номера уровней узлов). Наоборот, алгоритм Эдмонса Карпа использует BFS чтобы найти кратчайший путь в остаточной сети, что требует O(m) времени.

Отметим, что: при работе на двудольном графе алгоритм Диница совпадает с алгоритмом Хопкрофта-Карпа.

```
DINIC'S-MAX-FLOW(G)
1: Инициализация: f(e) = 0 для всех e.
2: while TRUE do
     Построить уровневую сеть N_f из остаточной сети
3:
     G_f, используя BFS;
     if t не достижим из s в G_f then
       break;
5:
    end if
6:
   Найти блокирующий поток b_f в N_f, используя DFS;
     Увеличить поток f = f + b_f;
9: end while
10: return f;
```

Построение уровневой сети из остаточной сети

```
Construct-Layered-Network (G_f)
1: Положить d_f(s) = 0, d_f(v) = \infty для всех узлов v \neq s, и добавить s в
   очередь Q;
2: Построить уровневую сеть N_f = (V_f, E_f), положив V_f = \{s\} и
   E_f = \{\};
3: while Q не пустая do
     v = Q.dequeue();
5:
      for каждого ребра (v, w) в G_f do
        if d_f(w) = \infty then
6:
7:
           Q.enqueue(w); d_f(w) = d_f(v) + 1;
           V_f = V_f \cup \{w\}; E_f = E_f \cup \{(v, w)\};
8:
        end if
9:
        if d_f(w) = d_f(v) + 1 then
10:
11:
           E_f = E_f \cup \{(v, w)\};
12:
         end if
13:
      end for
14: end while
15: Выполнить BFS в N_f из узла t, двигаясь по ребрам в обратном
   направлении, и удалить узел v из N_f, если v не достижим;
16: return N_f;
```

Построение уровневой сети из остаточной сети: пример

Построение уровневой сети из остаточной сети: пример

• Отличие от стандартной процедуры BFS в том, что каждое ребро (v,w) с $d_f(w)=d_f(v)+1$ добавляется в N_f даже, если w уже был добавлен в очередь Q. Т.о., для каждой вершины v, все ребра из крадчайших путей от s до v добавляются в N_f .

Построение уровневой сети из остаточной сети: пример

- Отличие от стандартной процедуры BFS в том, что каждое ребро (v,w) с $d_f(w)=d_f(v)+1$ добавляется в N_f даже, если w уже был добавлен в очередь Q. Т.о., для каждой вершины v, все ребра из крадчайших путей от s до v добавляются в N_f .
- Узлы (и инцидентные им ребра), не находящиеся на кратчайших путях от s до t, будут удалены из N_f , например, узел и ребра нарисованные пунктиром.

Нахождение влокирующего потока в уровневой сети N_f

DINIC-BLOCKING-FLOW (N_f)

```
1: Установить b_f как 0-поток;
2: while существует ребро исходящее из s в N_f do
     Найти путь p из s, имеющий максимальную длину в
3:
     N_f;
     \mathbf{if} p доходит до t \mathbf{then}
       b_f = AUGMENT(p, b_f);
5:
       Удалить из N_f насыщенные ребра пути p;
6:
    else
7:
        Удалить узел, являющийся последним в p (и
8:
       инцидентные ребра);
     end if
Q٠
10: end while
11: return b_f;
```

• Выполнение алгоритма можно разделить на фазы, каждая фаза состоит из построения уровневой сети и построения в ней блокирующего потока.

- Выполнение алгоритма можно разделить на фазы, каждая фаза состоит из построения уровневой сети и построения в ней блокирующего потока.
- Блокирующий поток содержит набор кратчайших s-t путей в G_f . После насыщения этих путей, узел t становится недостижимым из s.

- Выполнение алгоритма можно разделить на фазы, каждая фаза состоит из построения уровневой сети и построения в ней блокирующего потока.
- Блокирующий поток содержит набор кратчайших s-t путей в G_f . После насыщения этих путей, узел t становится недостижимым из s.
- Замечание: после построения уровневой сети за время O(m), находится блокирующий поток. На построение увеличивающего пути тратится O(n) времени. Напротив АЛГОРИТМ ЭДМОНСА КАРПА производит увеличение только по одному s-t пути после выполнения BFS. На это тратится время O(m).

Трудоемкость: $O(mn^2)$

• #WHILE = O(n). (Причина: После увеличения потока блокирующим потоком, расстояние $d_f(t)$ должно возрасти по крайней мере на 1.)

- #WHILE = O(n). (Причина: После увеличения потока блокирующим потоком, расстояние $d_f(t)$ должно возрасти по крайней мере на 1.)
- На каждой итерации тратится O(m) времени на построение уровневой сети, используя BFS, и тратится O(mn) времени на нахождение блокирующего потока, поскольку:

- #WHILE = O(n). (Причина: После увеличения потока блокирующим потоком, расстояние $d_f(t)$ должно возрасти по крайней мере на 1.)
- На каждой итерации тратится O(m) времени на построение уровневой сети, используя BFS, и тратится O(mn) времени на нахождение блокирующего потока, поскольку:
 - **①** Тратится O(n) времени на нахождение s-t пути в уровневой сети N_f , используя DFS.

- #WHILE = O(n). (Причина: После увеличения потока блокирующим потоком, расстояние $d_f(t)$ должно возрасти по крайней мере на 1.)
- На каждой итерации тратится O(m) времени на построение уровневой сети, используя BFS, и тратится O(mn) времени на нахождение блокирующего потока, поскольку:
 - **1** Тратится O(n) времени на нахождение s-t пути в уровневой сети N_f , используя DFS.
 - ② По крайней мере одно ребро в увеличивающем пути будет насыщено и, поэтому удалено из N_f .

- #WHILE = O(n). (Причина: После увеличения потока блокирующим потоком, расстояние $d_f(t)$ должно возрасти по крайней мере на 1.)
- На каждой итерации тратится O(m) времени на построение уровневой сети, используя BFS, и тратится O(mn) времени на нахождение блокирующего потока, поскольку:
 - Тратится O(n) времени на нахождение s-t пути в уровневой сети N_f , используя DFS.
 - ② По крайней мере одно ребро в увеличивающем пути будет насыщено и, поэтому удалено из N_f .
 - ③ Т.о., потребуется не более, чем m итераций для вычисления блокирующего потока.

РАССТОЯНИЕ $d_f(t)$ ВОЗРАСТАЕТ ПО КРАЙНЕЙ МЕРЕ НА 1 НА КАЖДОЙ ФАЗЕ

THEOREM

Рассмотрим поток f и соответствующую уровневую сеть N_f . Предположим, что блокирующий поток b_f найден в N_f и после увеличения построен новый поток f'. Тогда $d_{f'}(t) \geq d_f(t) + 1$.

РАССТОЯНИЕ $d_f(t)$ ВОЗРАСТАЕТ ПО КРАЙНЕЙ МЕРЕ НА 1 НА КАЖДОЙ ФАЗЕ

Theorem

Рассмотрим поток f и соответствующую уровневую сеть N_f . Предположим, что блокирующий поток b_f найден в N_f и после увеличения построен новый поток f'. Тогда $d_{f'}(t) \geq d_f(t) + 1$.

• Отметим: Если увеличение потока f осуществяется только вдоль одного кратчайшего пути, скажем, $s \to v \to t$ в следующем примере, то $d_{f'}(t) = d_f(t) = 2$. Напротив, когда увеличение потока f осуществяется вдоль всех кратчайших путей, то $d_{f'}(t) \ge d_f(t) + 1$.

ПРИМЕР

• Предположим противное, что выполняется $d_{f'}(t) = d_f(t) = r$. Пусть $p = (s, v_1, ..., v_{r-1}, t)$ кратчайший путь до t в $G_{f'}$. Тогда

$$d_f(t) \leq d_f(v_{r-1}) + 1$$

$$\dots$$

$$\leq d_f(s) + r = r$$

• Предположим противное, что выполняется $d_{f'}(t) = d_f(t) = r$. Пусть $p = (s, v_1, ..., v_{r-1}, t)$ кратчайший путь до t в $G_{f'}$. Тогда

$$d_f(t) \leq d_f(v_{r-1}) + 1$$
....
$$\leq d_f(s) + r = r$$

• По нашему предположению $d_f(t) = r$, все " \leq " в формуле выше должны быть "=". Из равенства $d_f(v_{i+1}) = d_f(v_i) + 1$ следует, что ребро (v_i, v_{i+1}) должно присутствовать в G_f (Иначе (v_i, v_{i+1}) должно генерироваться как обратное к (v_{i+1}, v_i) , и т.о., $d_f(v_i) = d_f(v_{i+1}) + 1$.).

• Предположим противное, что выполняется $d_{f'}(t) = d_f(t) = r$. Пусть $p = (s, v_1, ..., v_{r-1}, t)$ кратчайший путь до t в $G_{f'}$. Тогда

$$d_f(t) \leq d_f(v_{r-1}) + 1$$
....
$$\leq d_f(s) + r = r$$

- По нашему предположению $d_f(t) = r$, все " \leq " в формуле выше должны быть "=". Из равенства $d_f(v_{i+1}) = d_f(v_i) + 1$ следует, что ребро (v_i, v_{i+1}) должно присутствовать в G_f (Иначе (v_i, v_{i+1}) должно генерироваться как обратное к (v_{i+1}, v_i) , и т.о., $d_f(v_i) = d_f(v_{i+1}) + 1$.).
- Т.о., p является также путем в G_f . Более того, p должен быть кратчайшим путем в G_f так как p имеет длину r и $d_f(t) = r$.

• Предположим противное, что выполняется $d_{f'}(t) = d_f(t) = r$. Пусть $p = (s, v_1, ..., v_{r-1}, t)$ кратчайший путь до t в $G_{f'}$. Тогда

$$d_f(t) \leq d_f(v_{r-1}) + 1$$
....
$$\leq d_f(s) + r = r$$

- По нашему предположению $d_f(t) = r$, все " \leq " в формуле выше должны быть "=". Из равенства $d_f(v_{i+1}) = d_f(v_i) + 1$ следует, что ребро (v_i, v_{i+1}) должно присутствовать в G_f (Иначе (v_i, v_{i+1}) должно генерироваться как обратное к (v_{i+1}, v_i) , и т.о., $d_f(v_i) = d_f(v_{i+1}) + 1$.).
- Т.о., p является также путем в G_f . Более того, p должен быть кратчайшим путем в G_f так как p имеет длину r и $d_f(t) = r$.
- Напомним, что $G_{f'}$ построена из G_f посредством насыщения всех кратчайших путей (включая p) в G_f . Т.о., по крайней мере одно ребро в p полностью насыщается и не должно присутствовать в $G_{f'}$. Получили противоречие с предположением, что p является путем в $G_{f'}$.

 Максимальный поток в сети с неориентированными ребрами;

 Максимальный поток в сети с неориентированными ребрами;

Произвольное число источников и/или стоков;

- Максимальный поток в сети с неориентированными ребрами;
- Произвольное число источников и/или стоков;
- Нижняя граница на пропускную способность;

- Максимальный поток в сети с неориентированными ребрами;
- Произвольное число источников и/или стоков;
- Нижняя граница на пропускную способность;
- Ограничение пропускной способности вершин

• Превращаем неориентированный граф G в ориентированный граф G':

- Превращаем неориентированный граф G в ориентированный граф G':
 - ребра: для каждого ребра (u, v) из G, создается пара ориентированных рёбер e = (u, v) и e' = (v, u) в G';

- Превращаем неориентированный граф G в ориентированный граф G':
 - ребра: для каждого ребра (u, v) из G, создается пара ориентированных рёбер e = (u, v) и e' = (v, u) в G';
 - **2** пропускная способность: полагаем C(e') = C(e).

- Превращаем неориентированный граф G в ориентированный граф G':
 - ребра: для каждого ребра (u, v) из G, создается пара ориентированных рёбер e = (u, v) и e' = (v, u) в G';
 - **2** пропускная способность: полагаем C(e') = C(e).
- Алгоритм: сначала вычисляем максимальный поток f' для сети G'; затем преобразовываем f' в f.

Note: a/b means f(e) = a, and capacity C(e)=b.

Ключевое наблюдение: существует максимальный поток, который использует не более одного из двух противоположных ребер. Формально имеем:

Ключевое наблюдение: существует максимальный поток, который использует не более одного из двух противоположных ребер. Формально имеем:

THEOREM

Cуществует максимальный поток f для cemu G, гde f(u,v)=0 или f(v,u)=0.

Ключевое наблюдение: существует максимальный поток, который использует не более одного из двух противоположных ребер. Формально имеем:

THEOREM

Существует максимальный поток f для сети G, где f(u,v) = 0 или f(v,u) = 0.

Доказательство.

• Предположим f' — это максимальный поток для сети G', где f'(u,v) > 0 и f'(v,u) > 0. Заменим f' на f следующим образом:

Обовщение 1: Неориентированные рёбра

Ключевое наблюдение: существует максимальный поток, который использует не более одного из двух противоположных ребер. Формально имеем:

THEOREM

Существует максимальный поток f для $cemu\ G$, где f(u,v)=0 или f(v,u)=0.

- Предположим f' это максимальный поток для сети G', где f'(u,v) > 0 и f'(v,u) > 0. Заменим f' на f следующим образом:
- Пусть $\delta = \min\{f'(u, v), f'(v, u)\}.$

Обовщение 1: Неориентированные рёбра

Ключевое наблюдение: существует максимальный поток, который использует не более одного из двух противоположных ребер. Формально имеем:

THEOREM

Существует максимальный поток f для сети G, где f(u,v) = 0 или f(v,u) = 0.

- Предположим f' это максимальный поток для сети G', где f'(u,v) > 0 и f'(v,u) > 0. Заменим f' на f следующим образом:
- Пусть $\delta = \min\{f'(u, v), f'(v, u)\}.$
- Положим $f(u, v) = f'(u, v) \delta$, и $f(v, u) = f'(v, u) \delta$.

Обовщение 1: Неориентированные рёбра

Ключевое наблюдение: существует максимальный поток, который использует не более одного из двух противоположных ребер. Формально имеем:

THEOREM

Существует максимальный поток f для сети G, где f(u,v)=0 или f(v,u)=0.

- Предположим f' это максимальный поток для сети G', где f'(u,v) > 0 и f'(v,u) > 0. Заменим f' на f следующим образом:
- Пусть $\delta = \min\{f'(u, v), f'(v, u)\}.$
- Положим $f(u,v) = f'(u,v) \delta$, и $f(v,u) = f'(v,u) \delta$.
- f имеет то же значение, что и f', и, таким образом, оптимально. В тоже время f(u,v)=0 или f(v,u)=0.

Обобщение 2: Произвольное число источников и/или стоков

Циркуляция

ВХОД: сеть $G = \langle V, E \rangle$, каждое ребро e имеет пропускную способность C(e) > 0, несколько источников s_i и стоков t_j . Сток t_j имеет спрос $d_j > 0$, а источник s_i имеет запас (обозначаемый как $d_i < 0$). Для простоты мы определим $d_v = 0$ для других узлов. Таким образом, мы имеем $\sum_i d_i = 0$. Пусть $D = \sum_{d_v > 0} d_v - суммарный спрос.$

Обобщение 2: Произвольное число источников и/или стоков

Циркуляция

ВХОД: сеть $G = \langle V, E \rangle$, каждое ребро e имеет пропускную способность C(e) > 0, несколько источников s_i и стоков t_j . Сток t_j имеет спрос $d_j > 0$, а источник s_i имеет запас (обозначаемый как $d_i < 0$). Для простоты мы определим $d_v = 0$ для других узлов. Таким образом, мы имеем $\sum_i d_i = 0$. Пусть $D = \sum_{d_v > 0} d_v - cymmaphый cnpoc$. **ВЫХОД:** циркуляция f, удовлетворяющая всех потребителей с использованием доступного предложения, т. е.

- (Ограничение о пропускной способности): $0 \le f(e) \le C(e)$;
- ② (Ограничение по спросу): $f^{in}(v) f^{out}(v) = d_v$;

Отметим, что: Циркуляция отличается от Многопродуктовой задачи тем, что существует ТОЛЬКО один товар. Другими словами, приемник может принять товар из любого источника. И наоборот, в Многопродуктовой задаче t_i принимает только товар k_i из s_i .

Отметим, что: Циркуляция отличается от Многопродуктовой задачи тем, что существует ТОЛЬКО один товар. Другими словами, приемник может принять товар из любого источника. И наоборот, в Многопродуктовой задаче t_i принимает только товар k_i из s_i .

Сведение: строится сеть G' путем добавления суперисточника s^* , из которого идут ребра в каждый источник s_i с емкостью $C(s^*,s_i)=-d_i$. Аналогично, добавляется суперсток t^* , к которому идут ребра из каждого стока t_j с емкостью $C(t_j,t^*)=d(t_j)$.

Note: a/b means f(e) = a, and capacity C(e)=b.

Существует допустимое решение задачи Циркуляция, если величина максимального потока из s^* в t^* в G' совпадает с D.

Существует допустимое решение задачи Циркуляция, если величина максимального потока из s^* в t^* в G' совпадает с D.

Доказательство.

• \Leftarrow : Просто удалим все ребра (s^*, s_i) и (t_j, t^*) .

Существует допустимое решение задачи Циркуляция, если величина максимального потока из s^* в t^* в G' совпадает с D.

- \Leftarrow : Просто удалим все ребра (s^*, s_i) и (t_j, t^*) .
- ⇒:
 - **①** Построим поток f так: $f(s^*, s_i) = -d_i$ и $f(t_j, t^*) = d_j$.

Существует допустимое решение задачи Циркуляция, если величина максимального потока из s^* в t^* в G' совпадает с D.

- \Leftarrow : Просто удалим все ребра (s^*, s_i) и (t_i, t^*) .
- ⇒:
 - **①** Построим поток f так: $f(s^*, s_i) = -d_i$ и $f(t_j, t^*) = d_j$.
 - **2** Рассмотрим разрез (S, \bar{S}) , где $S = \{s^*\}$.

Существует допустимое решение задачи Циркуляция, если величина максимального потока из s^* в t^* в G' совпадает с D.

- \Leftarrow : Просто удалим все ребра (s^*, s_i) и (t_j, t^*) .
- ⇒:
 - **①** Построим поток f так: $f(s^*, s_i) = -d_i$ и $f(t_j, t^*) = d_j$.
 - **2** Рассмотрим разрез (S, \bar{S}) , где $S = \{s^*\}$.
 - **1** Имеем $C(S, \bar{S}) = D$. Таким образом, f является максимальным потоком, поскольку он достигает максимального значения.

ВХОД: сеть G=(V,E), каждое ребро e имеет верхнюю границу на пропускную способность C(e)>0, и нижнию границу на пропускную способность L(e)>0, несколько источников s_i и стоков t_j . Сток t_j имеет спрос $d_j>0$, а источник s_i имеет запас (обозначаемый как $d_i<0$). Для простоты мы определим $d_v=0$ для других узлов. Таким образом, мы имеем $\sum_i d_i=0$. Пусть $D=\sum_{d_v>0} d_v-$ суммарный спрос.

ВХОД: сеть G=(V,E), каждое ребро e имеет верхнюю границу на пропускную способность C(e)>0, и нижнию границу на пропускную способность L(e)>0, несколько источников s_i и стоков t_j . Сток t_j имеет спрос $d_j>0$, а источник s_i имеет запас (обозначаемый как $d_i<0$). Для простоты мы определим $d_v=0$ для других узлов. Таким образом, мы имеем $\sum_i d_i=0$. Пусть $D=\sum_{d_v>0} d_v-$ суммарный спрос.

ВЫХОД: циркуляция f удовлетворяющая всех потребителей с использованием доступного предложения, т. е.,

ВХОД: сеть G=(V,E), каждое ребро e имеет верхнюю границу на пропускную способность C(e)>0, и нижнию границу на пропускную способность L(e)>0, несколько источников s_i и стоков t_j . Сток t_j имеет спрос $d_j>0$, а источник s_i имеет запас (обозначаемый как $d_i<0$). Для простоты мы определим $d_v=0$ для других узлов. Таким образом, мы имеем $\sum_i d_i=0$. Пусть $D=\sum_{d_v>0} d_v-$ суммарный спрос.

ВЫХОД: циркуляция f удовлетворяющая всех потребителей с использованием доступного предложения, т. е.,

• (Ограничение о пропускной способности): $L(e) \le f(e) \le C(e)$;

ВХОД: сеть G=(V,E), каждое ребро e имеет верхнюю границу на пропускную способность C(e)>0, и нижнию границу на пропускную способность L(e)>0, несколько источников s_i и стоков t_j . Сток t_j имеет спрос $d_j>0$, а источник s_i имеет запас (обозначаемый как $d_i<0$). Для простоты мы определим $d_v=0$ для других узлов. Таким образом, мы имеем $\sum_i d_i=0$. Пусть $D=\sum_{d_v>0} d_v-$ суммарный спрос.

ВЫХОД: циркуляция f удовлетворяющая всех потребителей с использованием доступного предложения, т. е.,

- (Ограничение о пропускной способности): $L(e) \le f(e) \le C(e)$;
- ② (Ограничение по спросу): $f^{in}(v) f^{out}(v) = d_v$;

ВХОД: сеть G=(V,E), каждое ребро e имеет верхнюю границу на пропускную способность C(e)>0, и нижнию границу на пропускную способность L(e)>0, несколько источников s_i и стоков t_j . Сток t_j имеет спрос $d_j>0$, а источник s_i имеет запас (обозначаемый как $d_i<0$). Для простоты мы определим $d_v=0$ для других узлов. Таким образом, мы имеем $\sum_i d_i=0$. Пусть $D=\sum_{d_v>0} d_v-$ суммарный спрос.

ВЫХОД: циркуляция f удовлетворяющая всех потребителей с использованием доступного предложения, т. е.,

- (Ограничение о пропускной способности): $L(e) \le f(e) \le C(e);$
- ② (Ограничение по спросу): $f^{in}(v) f^{out}(v) = d_v$;

Сведение:

• Построим исходную циркуляцию f_0 , установив $f_0(e) = L(e)$.

Сведение:

- Построим исходную циркуляцию f_0 , установив $f_0(e) = L(e)$.
- ② Улудшим f_0 до циркуляции f'. Для этого решим еще одну задачу Циркуляция: создадим сеть G' без нижних границ на пропускную способность и со спросами: $d'_v = d_v L(w, v)$.

Note: a/[I,b] means f(e) = a, and capacity L(e)=I, and C(e)=b.

THEOREM

Существует циркуляция f в G (с нижними границами) тогда и только тогда, когда существует циркуляция f' в G'.

THEOREM

Существует циркуляция f в G (с нижними границами) тогда и только тогда, когда существует циркуляция f' в G'.

Доказательство.

Построим f': $f'(e) = f(e) + L_e$. Легко проверить, что все ограничения выполняются.

Обобщение 4: Ограничение пропускной способности вершин

Каждую вершину v с ограниченной пропускной способностью c_v расщепляем на две вершины v_{in} и v_{out} . Все рёбра, до расщепления входящие в v, теперь входят в v_{in} . Все рёбра, до расщепления исходящие из v, теперь исходят из v_{out} . Добавляем ребро (v_{in}, v_{out}) с пропускной способностью c_v .

Формулировка задачи:

① Как определить s и t? Иногда требуются суперисточник s^* и суперсток t^* .

Формулировка задачи:

- Как определить s и t? Иногда требуются суперисточник s^* и суперсток t^* .
- f 2 Как определить пропускные способности L_e и C_e ?

Формулировка задачи:

- Как определить s и t? Иногда требуются суперисточник s^* и суперсток t^* .
- lacktriangle Как определить пропускные способности L_e и C_e ?
- Иногда минимальный разрез более подходит в качестве критерия, чем максимальный поток.

Формулировка задачи:

- Как определить s и t? Иногда требуются суперисточник s^* и суперсток t^* .
- f 2 Как определить пропускные способности L_e и C_e ?
- № Иногда минимальный разрез более подходит в качестве критерия, чем максимальный поток.
- Необходимо доказать, что максимальный поток соответствует решению исходной задачи.

Формулировка задачи:

- Как определить s и t? Иногда требуются суперисточник s^* и суперсток t^* .
- f 2 Как определить пропускные способности L_e и C_e ?
- Иногда минимальный разрез более подходит в качестве критерия, чем максимальный поток.
- Необходимо доказать, что максимальный поток соответствует решению исходной задачи.

Примечание: большинство проблем используют свойство, что существует максимальный целочисленный поток, если существует максимальный поток.

Обобщение: задача с несколькими оптимальными решениями

НЕСКОЛЬКО ОПТИМАЛЬНЫХ РЕШЕНИЙ

• В некоторых случаях может быть несколько оптимальных решений, то есть несколько потоков с одинаковым максимальным значением потока.

НЕСКОЛЬКО ОПТИМАЛЬНЫХ РЕШЕНИЙ

- В некоторых случаях может быть несколько оптимальных решений, то есть несколько потоков с одинаковым максимальным значением потока.
- Кроме того, эти максимальные потоки могут иметь совпадающие потоки по некоторым ребрам. Другими словами, эти ребра являются «необходимыми» ребрами.

НЕСКОЛЬКО ОПТИМАЛЬНЫХ РЕШЕНИЙ

- В некоторых случаях может быть несколько оптимальных решений, то есть несколько потоков с одинаковым максимальным значением потока.
- Кроме того, эти максимальные потоки могут иметь совпадающие потоки по некоторым ребрам. Другими словами, эти ребра являются «необходимыми» ребрами.
- Иногда нам нужно перечислить все эти оптимальные решения или получить небольшую выборку из этих оптимальных решений.