PNT2022TMID06977- LITERATURE SURVEY

Gas Leakage Monitoring and Alerting System

ABSTRACT:

The Internet of things (IoT) is the system of gadgets, vehicles, and home machines that contain hardware, programming, actuators, and network which enables these things to interface, collaborate and trade information. IoT includes broadening Internet network past standard device, for example, work areas, workstations, cell phones and tablets, to any scope of generally stupid or non-web empowered physical device and ordinary articles. Installed with innovation, these gadgets can convey and connect over the Internet, and they can be remotely observed and controlled [1]. The meaning of the Internet of things has advanced because of union of numerous innovations, ongoing examination, AI, ware sensors, and implanted frameworks. Conventional fields of installed frameworks, remote sensor systems, control frameworks computerization (counting home and building mechanization), and others all add to empowering the Internet of things. A gas spill alludes to a hole of petroleum gas or different vaporous item from a pipeline or other regulation into any territory where the gas ought not be available. Since a little hole may steadily develop a hazardous convergence of gas, spills are perilous. Notwithstanding causing flame and blast dangers, holes can slaughter vegetation, including huge trees, and may discharge amazing ozone harming substances to the environment.

INTRODUCTION:

The Internet of Things is a developing theme of specialized, social, and monetary centrality. Customer items, tough goods, cars and trucks, modern and utility segments, sensors, and other regular articles are being joined with Internet availability and amazing information systematic capacities that guarantee to change the manner in which we work, live, and play. Projections for the effect of IoT on the Internet and economy are amazing, with some foreseeing upwards of 100 billion associated IoT gadgets and a worldwide financial effect of more than \$11 trillion by 2025. The Internet of Things (IoT) is an essential theme in innovation industry, strategy, and designing circles.

NEED FOR GAS LEAKAGE MONITORING AND ALERTING SYSTEM:

We design and develop an propose system which include some safety factors. A safety has been a major issue in today's day to day life. LPG and CNG i.e. petroleum gas and compressed natural gas are most commonly used in residential and commercial places for cooking purpose and in various vehicles as a replacement for costly fuels like diesel, petrol [7]. These gases are filled in cylinders which are easily un-damageable. But leakage can take place through pipes or regulators or knobs which may cause accidents like suffocation, uneasiness or sometimes may catch fire and short circuit as well. The main aim of this project is developing a system that can detect gas leakage [8]. On detection it will send an alert SMS and the gas supply knob of cylinder will be switched off automatically.

LITERATURE REVIEW:

They proposed prototype depicts a mini mobile robot which is capable to detect gas leakage in hazardous places. Whenever there is an occurrence of gas leakage in a particular place the robot immediately read and sends the data to android mobile through wireless communication like Bluetooth. We develop an android application for android based smart phones which can receive data from robot directly through Bluetooth. The application warns with an indication whenever there is an occurrence of gas leakage and we can also control the robot movements via Bluetooth.

ADVANTAGES:

- Get real-time alerts about the gaseous presence in the atmosphere
- Prevent fire hazards and explosions
- Supervise gas concentration levels
- Ensure worker's health
- Real-time updates about leakages
- Cost-effective installation
- Data analytics for improved decisions
- Measure oxygen level accuracy
- Get immediate gas leak alerts

REFERENCES:

- [1]. Mr. Sameer Jagtap, Prajkta Bhosale, Priyanka Zanzane, Jyoti Ghogare, "LPG Gas Weight and Leakage Detection System Using IoT", International Journal for Research in Applied Science & Engineering Technology", Volume 4, Issue 3, March 2016, Pg 716 to 720.
- [2]. Arun Raj, Athira Viswanathan, Athul T S, "LPG Gas Monitoring System", International Journal of Innovative Technology and Research, Volume 3, Issue 2, February 2015, Pg 1957 to 1960.
- [3]. S Shyamaladevi, V. G. Rajaramya, P. Rajasekar, P. Sebastin Ashok, "ARM7 based automated high-performance system for lpg refill booking & leakage detection", Journal of VLSI Design and Signal Processing", Volume 3, Issue 2, 2014.
- [4]. S. Sharma, V. N. Mishra, R. Dwivedi, R. Das, "Classification of gases/odours using Dynamic Response of Thick Film Gas Sensor Array", IEEE Conference on Sensors Journal, 2013.
- [5]. Rajeev B. Ahuja, Jayant K. Dash, Prabhat Shrivastava, "A comparative analysis of liquefied petroleum gas (LPG) and kerosene related burns", Burns, Volume 37, Issue 8, December 2011, Pg 1403 to 1410.
- [6]. Prof. Pankaj C. Warule, Shivam Upadhyay, Snehal S. Shelke, Sumitra K. Khandade, "LPG Detection, Metering and Control System Using Microcontroller", IJARIIE, Volume 2, Issue 2, 2016, Pg 648 to 652.
- [7]. Ankit Sood, Babalu Sonkar, Atul Ranjan, Mr. Ameer Faisal, "Microcontroller Based LPG Gas Leakage Detector Using GSM Module", International Journal of Electrical and Electronics Research, Volume 3, Issue2, AprilJune 2015, Pg 264 to 269.