CFA 2025 - 27-30 avril 2025, Paris

Influence de la dynamique des paramètres de contrôle et phénomène de basculement dans un modèle simple d'instrument à anche

Baptiste Bergeot^a, Soizic Terrien^b and Christophe Vergez^c

^a INSA Centre Val de Loire, Univ. Orléans, Univ. Tours, LaMé EA 7494, Blois, France
^b LAUM, UMR 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, France
^c Aix Marseille Univ, CNRS, Centrale Med, LMA UMR 7031, Marseille, France

OUTLINE

Introduction

1. INTRODUCTION

- 2. THE CHOSEN SIMPLIFIED MODEL OF SINGLE-REED INSTRUMEN
- 3. Previous results: analysis of the model with constant control parameter
- 4. Novel results: analysis of the model with time-varying control parameter
- 5. CONCLUSIONS AND PERSPECTIVES

Single-reed musical instruments:

Single-reed musical instruments:

Introduction 0000

Modeled by nonlinear dynamical systems linking control parameters (mouth pressure γ , lip force F) to output variables (acoustic pressure p inside the mouthpiece)

 γ : mouth pressure

F: force applied by the lip on the reed

Single-reed musical instruments:

Introduction

- Modeled by nonlinear dynamical systems linking control parameters (mouth pressure γ , lip force F) to output variables (acoustic pressure p inside the mouthpiece)
- Previous theoretical studies on sound production performed with control parameters constant in time show that:
 - Appearance of sound = Hopf bifurcation of the trivial equilibrium (silence, i.e., p = 0) to a stable periodic solution (musical note)
 - Several stable solutions coexist in general = Multistability

 γ : mouth pressure

F: force applied by the lip on the reed

OBSERVATION

During transients the musician varies the control parameters in time

$$\dot{\gamma} = rg(\gamma)$$

OBSERVATION

During transients the musician varies the control parameters in time

RESEARCH QUESTIONS

- ▶ In the context of musical acoustics: during transient phases, when the control parameters vary in time:
 - Do the dynamic characteristics of the control parameters impact the sound produced by the instrument? If they do, in what way?

$$\dot{y} = rg(\gamma)$$

OBSERVATION

During transients the musician varies the control parameters in time

RESEARCH QUESTIONS

- ▶ In the context of musical acoustics: during transient phases, when the control parameters vary in time:
 - Do the dynamic characteristics of the control parameters impact the sound produced by the instrument? If they do, in what way?
- Open problems in nonlinear dynamics: behavior of multistable nonlinear dynamical systems with time-varying parameters

How can Critical transition (or tipping, see e.g. [Ashwin et al. (2012), Philos Trans R Soc Lond, A]) be predicited?

PRESENTED WORK

Predicting the global dynamic behavior (i.e., tipping or not) of a simple bistable model in the case of a attack transient, i.e., when only the mouth pressure x increase in time.

$$\dot{\gamma} = rg(\gamma)$$

 $g(\gamma)$: describes the shape of the ime profile of γ

: rate of growtl

DBSERVATION

During transients the musician varies the control parameters in time

RESEARCH QUESTION

- ▶ In the context of musical acoustics: during transient phases, when the control parameters vary in time:
 - Do the dynamic characteristics of the control parameters impact the sound produced by the instrument? If they do, in what way?
- Open problems in nonlinear dynamics: behavior of multistable nonlinear dynamical systems with time-varying parameters

How can Critical transition (or tipping, see e.g. [Ashwin et al. (2012), Philos Trans R Soc Lond, A]) be predicited?

PRESENTED WORK

Predicting the global dynamic behavior (i.e., tipping or not) of a simple bistable model in the case of a attack transient, i.e., when only the mouth pressure γ increase in time.

$$\dot{\gamma} = rg(\gamma)$$

 $g(\gamma)$: describes the shape of the time profile of γ

r: rate of growth

OUTLINE

- 1. INTRODUCTION
- 2. THE CHOSEN SIMPLIFIED MODEL OF SINGLE-REED INSTRUMENT
- 3. PREVIOUS RESULTS: ANALYSIS OF THE MODEL WITH CONSTANT CONTROL PARAMETER
- 4. Novel results: analysis of the model with time-varying control parameter
- 5. CONCLUSIONS AND PERSPECTIVES

OUTLINE

- 1 INTRODUCTIO
- 2. THE CHOSEN SIMPLIFIED MODEL OF SINGLE-REED INSTRUMENT
- 3. Previous results: analysis of the model with constant control parameter
- 4. Novel results: analysis of the model with time-varying control parameter
- 5. CONCLUSIONS AND PERSPECTIVES

The model

0

⇒ System of coupled nonlinear ODEs

⇒ System of coupled nonlinear ODEs

SIMPLEST MODEL HAVING BISTABILITY

⇒ One-dimensional ODE:

$$\dot{x}=f(x,\gamma)$$

x: amplitude of the mouthpiece pressure p

 γ : control (or bifurcation) parameter

⇒ System of coupled nonlinear ODEs

SIMPLEST MODEL HAVING BISTABILITY

⇒ One-dimensional ODE:

$$\dot{x} = f(x, \gamma)$$

x: amplitude of the mouthpiece pressure p

 γ : control (or bifurcation) parameter

Silence:
$$x = 0$$

Musical note: x = constant

- 1. INTRODUCTIO
- 2. THE CHOSEN SIMPLIFIED MODEL OF SINGLE-REED INSTRUMENT
- 3. PREVIOUS RESULTS: ANALYSIS OF THE MODEL WITH CONSTANT CONTROL PARAMETER
- 4. Novel results: analysis of the model with time-varying control parameter
- 5. CONCLUSIONS AND PERSPECTIVES

BIFURCATION DIAGRAM

Model with a constant γ

$$\dot{x} = f(x, \gamma)$$
 with $\gamma = \text{constant}$

BIFURCATION DIAGRAM

Model with a constant γ

$$\dot{x} = f(x, \gamma)$$
 with $\gamma = \text{constant}$

BIFURCATION DIAGRAM

Computing the equilibria x^e of the model solving $f(x, \gamma) = 0$, they can be:

- ► Zero (silence) or nonzero (musical note)
- ▶ Stable (if $\frac{\partial f(x^{\theta}, \gamma)}{\partial x^{\theta}} < 0$) or unstable (if $\frac{\partial f(x^{\theta}, \gamma)}{\partial x^{\theta}} > 0$)

Model with a constant γ

$$\dot{x} = f(x, \gamma)$$
 with $\gamma = \text{constant}$

BIFURCATION DIAGRAM

Computing the equilibria x^e of the model solving f(x, y) = 0they can be:

- ► Zero (silence) or nonzero (musical note)
- ► Stable (if $\frac{\partial f(x^e, \gamma)}{\partial x}$ < 0) or unstable (if $\frac{\partial f(x^e, \gamma)}{\partial x}$ > 0)

Model with a constant γ

$$\dot{x} = f(x, \gamma)$$
 with $\gamma = \text{constant}$

BIFURCATION DIAGRAM

Computing the equilibria x^e of the model solving f(x, y) = 0they can be:

- Zero (silence) or nonzero (musical note)
- ▶ Stable (if $\frac{\partial f(x^{\theta}, \gamma)}{\partial x^{\theta}} < 0$) or unstable (if $\frac{\partial f(x^{\theta}, \gamma)}{\partial x^{\theta}} > 0$)

Bistability domain with coexistence:

- Two stable equilibria (silence/musical note)
- One unstable equilibrium (musical note)

BASIN OF ATTRACTION

DEFINITION (BASIN OF ATTRACTION)

For a given stable equilibrium, the basin of attraction (BA) is the set of initial conditions leading to this equilibrium.

DEFINITION (SEPARATRIX BETWEEN 2 BAS)

Boundary in phase space separating two BAs.

BASIN OF ATTRACTION

DEFINITION (BASIN OF ATTRACTION)

For a given stable equilibrium, the basin of attraction (BA) is the set of initial conditions leading to this equilibrium.

DEFINITION (SEPARATRIX BETWEEN 2 BAS)

Boundary in phase space separating two BAs.

NATURE OF THE SEPARATRIX

Unstable equilibrium

BASIN OF ATTRACTION

DEFINITION (BASIN OF ATTRACTION)

For a given stable equilibrium, the basin of attraction (BA) is the set of initial conditions leading to this equilibrium.

DEFINITION (SEPARATRIX BETWEEN 2 BAS)

Boundary in phase space separating two BAs.

NATURE OF THE SEPARATRIX

Unstable equilibrium

QUESTION

Can we define a **basin of attraction** and a **separatrix when** γ increases over time to reach a target value within the bistability domain?

OUTLINE

- 1. INTRODUCTIO
- 2. The chosen simplified model of single-reed instrumen
- 3. Previous results: analysis of the model with constant control parameter
- 4. Novel results: analysis of the model with time-varying control parameter
- 5. CONCLUSIONS AND PERSPECTIVES

$$\dot{x} = f(x, \gamma)$$

$$\dot{\gamma} = rg(\gamma)$$

$$\qquad \qquad \operatorname{lim}_{t \to \infty} \gamma(t) = \gamma_{\operatorname{targ}} \text{ (always the same) with } g(\gamma_{\operatorname{targ}}) = 0$$

Novel results: time-varying parameter

$$\dot{x} = f(x, \gamma)$$
$$\dot{\gamma} = rg(\gamma)$$

- ▶ $\lim_{t\to\infty} \gamma(t) = \gamma_{\text{targ}}$ (always the same) with $g(\gamma_{\text{targ}}) = 0$
- ► Equilibria: $P_i^e = (\gamma_{\text{targ}}, x_i^e)$ (i = 1, 2, 3) with x_i^e solutions of $f(x, \gamma_{\text{targ}}) = 0$

Novel results: time-varying parameter

$$\dot{x} = f(x, \gamma)$$

$$\dot{\gamma} = rg(\gamma)$$

- $g(\gamma) = \gamma(1 \gamma/\gamma_{targ})$ (tanh-like profile)
- $\lim_{t\to\infty} \gamma(t) = \gamma_{\text{targ}}$ (always the same) with $g(\gamma_{\text{targ}}) = 0$
- Equilibria: $P_i^e = (\gamma_{targ}, x_i^e)$ (i = 1, 2, 3) with x_i^e solutions of $f(x, \gamma_{targ}) = 0$

Example 1: THE RATE OF GROWTH I IS FIXED AND THE INITIAL CONDITION IS CHANGED

$$\dot{x} = f(x, \gamma)$$

$$\dot{\gamma} = rg(\gamma)$$

- $g(\gamma) = \gamma(1 \gamma/\gamma_{targ})$ (tanh-like profile)
- $\lim_{t\to\infty} \gamma(t) = \gamma_{\text{targ}}$ (always the same) with $g(\gamma_{\text{targ}}) = 0$
- Equilibria: $P_i^e = (\gamma_{targ}, x_i^e)$ (i = 1, 2, 3) with x_i^e solutions of $f(x, \gamma_{targ}) = 0$

Example 1: THE RATE OF GROWTH I IS FIXED AND THE INITIAL CONDITION IS CHANGED

▶ N_1 : no sound is produced \Rightarrow NO TIPPING

N₂: a sound is produced ⇒ TIPPING

$$\dot{x} = f(x, \gamma)$$
$$\dot{\gamma} = rg(\gamma)$$

- $g(\gamma) = \gamma(1 \gamma/\gamma_{targ})$ (tanh-like profile)
- $\lim_{t\to\infty} \gamma(t) = \gamma_{\text{targ}}$ (always the same) with $g(\gamma_{\text{targ}}) = 0$
- Equilibria: $P_i^e = (\gamma_{targ}, x_i^e)$ (i = 1, 2, 3) with x_i^e solutions of $f(x, \gamma_{targ}) = 0$

Novel results: time-varying parameter

Example 2: THE INITIAL CONDITION IS FIXED AND THE RATE OF GROWTH I' IS CHANGED

$$\dot{x} = f(x, \gamma)$$

$$\dot{\gamma} = rg(\gamma)$$

- $g(\gamma) = \gamma(1 \gamma/\gamma_{targ})$ (tanh-like profile)
- $\lim_{t\to\infty} \gamma(t) = \gamma_{\text{targ}}$ (always the same) with $g(\gamma_{\text{targ}}) = 0$
- Equilibria: $P_i^e = (\gamma_{targ}, x_i^e)$ (i = 1, 2, 3) with x_i^e solutions of $f(x, \gamma_{targ}) = 0$

Example 2: THE INITIAL CONDITION IS FIXED AND THE RATE OF GROWTH I' IS CHANGED

▶ N_1 : no sound is produced \Rightarrow NO TIPPING

N₂: a sound is produced ⇒ TIPPING

PREDICTING TIPPING

TIPPING SEPARATRIX

P_2^e is a saddle equilibrium point with:

- Unstable manifold
- - Stable manifold

PREDICTING TIPPING

TIPPING SEPARATRIX

TIPPING SEPARATRIX

P₂^e is a saddle equilibrium point with:

— Unstable manifold

- - - Stable manifold

- ▶ Initial condition $\in B_1$: P_1^e is reached \Rightarrow **NO TIPPING**
- ▶ Initial condition $\in B_2$: P_3^e is reached \Rightarrow **TIPPING**

PREDICTING TIPPING

TIPPING SEPARATRIX

 P_2^e is a saddle equilibrium point with:

Unstable manifold

- - - Stable manifold

- ▶ Initial condition $\in B_1$: P_1^e is reached \Rightarrow **NO TIPPING**
- ▶ Initial condition $\in B_2$: P_3^e is reached \Rightarrow **TIPPING**
- \Rightarrow Stable manifold of $P_2^e = \text{TIPPING SEPARATRIX}$

Back to Example 1

Back to Example 1

Back to Example 1

Back to Example 2

0.5

0

 γ_{targ} 1.5

Back to Example 2

OUTLINE

- 1. INTRODUCTIO
- 2. THE CHOSEN SIMPLIFIED MODEL OF SINGLE-REED INSTRUMENT
- 3. Previous results: analysis of the model with constant control parameter
- 4. Novel results: analysis of the model with time-varying control parameter
- 5. CONCLUSIONS AND PERSPECTIVES

Conclusions and perspectives

Conclusion

Results from [Bergeot et al. (2024), Chaos: An Interdisciplinary Journal of Nonlinear Science]

The case where the bistability domain is crossed without any saturation occurring within it is also considered:

A more complex mathematical framework must be used (Geometric Singular Perturbation Theory) to define the tipping separatrix

- In both cases:
 - The knowledge of the single solution (the tipping sepratrix) can be used to describe the global behavio of the model
- Final objective: to understand and predict the content of the transient when multiple multistability domains are crossed before saturation.

Aix Marseille Univ. CNRS. Centrale Med. LMA UMR 7031. Marseille. France

Conclusion

Results from [Bergeot et al. (2024), Chaos: An Interdisciplinary Journal of Nonlinear Science]

The case where the bistability domain is crossed without any saturation occurring within it is also considered:

A more complex mathematical framework must be used (Geometric Singular Perturbation Theory) to define the tipping separatrix

- In both cases:
- The knowledge of the single solution (the tipping sepratrix) can be used to describe the global behavio of the model
- Final objective: to understand and predict the content of the transient when multiple multistability domains are crossed before saturation

Conclusion

Results from [Bergeot et al. (2024), Chaos: An Interdisciplinary Journal of Nonlinear Science]

The case where the bistability domain is crossed without any saturation occurring within it is also considered:

A more complex mathematical framework must be used (Geometric Singular Perturbation Theory) to define the tipping separatrix

- In both cases:
- The knowledge of the single solution (the tipping sepratrix) can be used to describe the global behavior of the model
- Final objective: to understand and predict the content of the transient when multiple multistability domains are crossed before saturation.

Aix Marseille Univ. CNRS. Centrale Med. LMA UMR 7031. Marseille. France

CONCLUSION

Results from [Bergeot et al. (2024), Chaos: An Interdisciplinary Journal of Nonlinear Science]

 The case where the bistability domain is crossed without any saturation occurring within it is also considered:

A more complex mathematical framework must be used (Geometric Singular Perturbation Theory) to define the tipping separatrix

- In both cases:
- The knowledge of the single solution (the tipping sepratrix) can be used to describe the global behavior of the model
- Final objective: to understand and predict the content of the transient when multiple multistability domains are crossed before saturation

▶ Multistability in more refined model of reed instruments

- ▶ Multistability in more refined model of reed instruments
 - Equivalent of the tipping separatrix in the case of a bistability between musical notes or tristability

- ▶ Multistability in more refined model of reed instruments
 - Equivalent of the tipping separatrix in the case of a bistability between musical notes or tristability
 - Compute separatrices using advanced numerical methods like continuation, machine learning (talk of S. Terrien)

- ▶ Multistability in more refined model of reed instruments
 - Equivalent of the tipping separatrix in the case of a bistability between musical notes or tristability
 - Compute separatrices using advanced numerical methods like continuation, machine learning (talk of S. Terrien)
- ► The tipping separatrix can correspond to very small amplitude values for some ranges of the mouth pressure:
 - The effect of noise must be taken into account

Thank you for your attention Questions?