Ondorengo problema grafikoki eta analitikoki Adarkatze- eta Bornatze- metodoa erabiliz ebatzi:

Max
$$Z = 4x_1 + 6x_2$$

non $2x_1 + 4x_2 \le 12$
 $4x_1 + 3x_2 \le 16$
 $x_1, x_2 \ge 0$ eta x_1, x_2 osoak

1. pausua: Hasieraketa

P1 problema erlaxatua ebazten da:

Max
$$Z = 4x_1 + 6x_2$$

 $2x_1 + 4x_2 \le 12$
 $4x_1 + 3x_2 \le 16$
 $x_1, x_2 \ge 0$

Soluzio optimoa
$$A = \left(\frac{14}{5}, \frac{8}{5}\right) = (2.8, 1.6)$$
 da eta $Z_1 = \frac{104}{5} = 20.8$ dira

Behe-bornea hasieratzen da: $\underline{Z} = -\infty$

2. pausua: Adarkatzea

 $\operatorname{Ez} x_1 \operatorname{ez} \ x_2$ aldagaia ez dira osoak. Bietako bat aukeratu behar dugu. x_1 aukeratzen dugu.

 $[x_1] = 2 \Longrightarrow P2$ eta P3 problemas sortzen dira

$$x_1 \le [x_1] = 2 \Longrightarrow P2$$

$$x_1 \ge [x_1] + 1 = 3 \Rightarrow P3$$

3. pausua: Bornatzea

Max
$$Z = 4x_1 + 6x_2$$

 $2x_1 + 4x_2 \le 12$
 $4x_1 + 3x_2 \le 16$
 $x_1 \le 2$
 $x_1, x_2 \ge 0$

Optimoa B = (2,2) da eta $Z_2 = 20$ $dira \Rightarrow$ Behe-bornea eguneratzen da \underline{Z} =20

P2 problema azkeneko problema da, izan ere bere soluzioa osoa da eta ez da adarkatu behar. Bere soluzioa problemaren soluziogaia da.

P3 problema

Max
$$Z = 4x_1 + 6x_2$$

 $2x_1 + 4x_2 \le 12$
 $4x_1 + 3x_2 \le 16$
 $x_1 \ge 3$
 $x_1, x_2 \ge 0$

Soluzio optimoa
$$C = \left(3, \frac{4}{3}\right) = (3, 1.33)$$
 da eta $Z_3 = 20$

Bere soluzioa ez da osoa, hortaz problema ez da azkeneko problema, adarkatu egin behar da. x_1 osoa da, beraz x_2 aldagaian adarkatu eta 2. pausura joan.

2. pausua: Adarkatzea

$$[x_2] = 1 \Rightarrow P4$$
 eta P5 problemak sortzen dira

$$x_2 \le [x_2] = 1 \Longrightarrow P4$$

$$x_2 \ge [x_2] + 1 = 2 \Rightarrow P5$$

3. pausua: Bornatzea

$$Max \quad Z = 4x_1 + 6x_2$$

$$2x_1 + 4x_2 \le 12$$

$$4x_1 + 3x_2 \le 16$$

$$x_1 \ge 3$$

$$x_2 \le 1$$

$$x_1, x_2 \ge 0$$

Soluzio optimoa $D=\left(\frac{13}{4},1\right)=(3.25,1)~da~eta~Z_4=19$. Problemaren soluzioa osoa izan ez arren, problema azkenekoa da $Z_4=19<\underline{Z}=20$ betezen delako.

Max
$$Z = 4x_1 + 6x_2$$

 $2x_1 + 4x_2 \le 12$
 $4x_1 + 3x_2 \le 16$
 $x_1 \ge 3$
 $x_2 \ge 2$
 $x_1, x_2 \ge 0$

Problema bideraezina da.

4. pausua: Azkeneko problemak

Ondorioz, problemaren soluzioa B = (2,2) eta $Z_2 = 20$ da

Problema analitikoki Adarkatze- eta Bornatze- metodoa erabiliz ebatzi:

$$\max \quad Z = 4x_1 + 6x_2$$

$$non \quad 2x_1 + 4x_2 \le 12$$

$$4x_1 + 3x_2 \le 16$$

$$x_1, x_2 \ge 0 \quad eta \quad x_1, x_2 \quad \text{osoak}$$

1. pausua: Hasieraketa

P1 problema erlaxatua ebazten da:

Max
$$Z = 4x_1 + 6x_2$$

 $2x_1 + 4x_2 \le 12$
 $4x_1 + 3x_2 \le 16$
 $x_1, x_2 \ge 0$

Problema hau Simplex metodoa erabiliz ebazten da:

Problema era estandarrean idazten da:

Max
$$Z = 4x_1 + 6x_2$$

 $2x_1 + 4x_2 + x_3 = 12$
 $4x_1 + 3x_2 + x_4 = 16$
 $x_1, x_2, x_3, x_4 \ge 0$

Hasierako oinarrizko soluzio bideragarria $x_3=12$, $x_4=16$ da eta Simplex metodoaren hasierako taula eraikitzen da:

		\mathbf{C}_{j}	4	6	0	0
СВ	OA _B	B-1.b	x_1	x_2	x_3	x_4
0	x_3	12	2	4	1	0
0	X_4	16	4	3	0	1
Z=	÷0	\mathbf{Z}_{j}	0	0	0	0
		\mathbf{Z}_{j} - \mathbf{C}_{j}	-4	-6	0	0

Kostu-murriztuak kalkulatzen dira. $\exists W_{j} < 0$, algoritmoarekin jarraitu beharra dago.

Sartze-irizpidea:

$$W_j = \min_{k \in \{1,2,\dots,4\}} \left\{ z_k - c_k \right\} = -6 \Longrightarrow x_2 \ \text{ oinarrira sartzen da}.$$

Irtetze-irizpidea:

$$x_{B_i} = min\left\{\frac{x_{B_k}}{y_{kj}} / y_{kj} > 0\right\} = min\left\{\frac{12}{4}, \frac{16}{3}\right\} = \frac{12}{4} = 3 \Rightarrow x_3 \text{ oinarritik irtetzen da}$$

Taula berria eraikitzen da: $e_1 \leftarrow e_1/4$, $e_2 \leftarrow e_2-3$ e_1

		C _j	4	6	0	0
СВ	OAB	B-1.b	\mathcal{X}_1	x_2	x_3	X_4
6	x_2	3	1/2	1	1/4	0
0	X_4	7	5/2	0	-3/4	1
Z=	Z=18		3	6	3/2	0
	Z-18		-1	0	3/2	0

 $\exists W_j < 0$, jarraitu

Sartze-irizpidea:

$$W_j = \min_{k \in \{1,2,\dots,4\}} \left\{ z_k - c_k \right\} = -1 \Longrightarrow x_1 \ \text{ oinarrira sartzen da}.$$

Irtetze-irizpidea:

$$x_{B_i} = m i n \left\{ \frac{x_{B_k}}{y_{kj}} / y_{kj} > 0 \right\} = m i n \left\{ \frac{3}{1/2}, \frac{7}{5/2} \right\} = \frac{14}{5} = 3 \Rightarrow x_4 \text{ oinarritik irtetzen da}$$

Taula berria eraikitzen da: $e_2 \leftarrow 2$ $e_2/5$, $e_1 \leftarrow e_1$ -(1/2) e_2

		\mathbf{C}_{j}	4	6	0	0
СВ	OA _B	B-1.b	x_1	x_2	x_3	X_4
6	x_2	8/5	0	1	2/5	-1/5
4	x_1	14/5	1	0	-3/10	2/5
Z=10)4/5	\mathbf{Z}_{j}	4	6	6/5	2/5
	•	\mathbf{Z}_{j} - \mathbf{C}_{j}	0	0	6/5	2/5

Kostu-murriztu guztiak ez-negatiboak direnez, taula optimoa lortu dugu.

Problemaren erlaxazio linealaren soluzioa
$$A = \left(\frac{14}{5}, \frac{8}{5}\right) = (2.8, 1.6)$$
 eta $Z_1 = \frac{104}{5} = 20.8$ da

Behe-bornatua hasieratu egiten da: $\underline{Z} = -\infty$

2. pausua: Adarkatzea

 $\mbox{Ez} \; x_{\!\scriptscriptstyle 1} \, \mbox{ez} \; x_{\!\scriptscriptstyle 2} \, \mbox{aldagaia ez dira osoak.} \; \mbox{Bietako bat aukeratu behar dugu.} \; x_{\!\scriptscriptstyle 1} \; \mbox{aukeratzen dugu.}$

$$[x_1] = 2 \Rightarrow P2$$
 eta P3 problemas sortzen dira

$$x_1 \le [x_1] = 2 \Rightarrow P2$$

 $x_1 \ge [x_1] + 1 = 3 \Rightarrow P3$

3. pausua: Bornatzea

P2 eta P3 problemak ebazten dira:

P2 problema

Max
$$Z = 4x_1 + 6x_2$$

 $2x_1 + 4x_2 \le 12$
 $4x_1 + 3x_2 \le 16$
 $x_1 \le 2$
 $x_1, x_2 \ge 0$

Simplex metodoaren taula optimoan $x_1 \le 2 \Rightarrow x_1 + x_5 = 2$ murrizketa sartzen da:

		C _j	4	6	0	0	
СВ	OA _B	B-1.b	x_1	x_2	x_3	X_4	x_5
6	x_2	8/5	0	1	2/5	-1/5	0
4	X_1	14/5	1	0	-3/10	2/5	0
0	X_5	2	1	0	0	0	1
Z=10)4/5	\mathbf{Z}_{j}	4	6	6/5	2/5	0
	•	Z _j -C _j	0	0	6/5	2/5	0

 x_1 zutabe-bektorea, bektore kanoniko bat izan behar denez: $e_3 \leftarrow e_3$ - e_2

		C _j	4	6	0	0	0
СВ	OA _B	B-1.b	\mathcal{X}_1	x_2	x_3	X_4	x_5
6	x_2	8/5	0	1	2/5	-1/5	0
4	x_1	14/5	1	0	-3/10	2/5	0
0	x_5	-4/5	0	0	3/10	-2/5	1
Z=10)4/5	\mathbf{Z}_{j}	4	6	6/5	2/5	0
		\mathbf{Z}_{j} - \mathbf{C}_{j}	0	0	6/5	2/5	0

 $\exists x_{Dk} < 0$ bideragarritasuna galdu da, ondorioz Simplex Dual metodoa erabili behar da:

Irtetze-irizpidea:

$$\max \{|x_{DK}| / x_{DK} < 0 \} = \frac{4}{5} \Rightarrow x_5 \text{ oinarritik irtetzen da.}$$

Sartze-irizpidea:

$$\min\left\{\frac{\left|z_{k}-c_{k}\right|}{\left|a_{ik}\right|} \mid a_{ik}<0\right.\right\} = \min\left\{\frac{2/5}{2/5}\right\} = 1 \Rightarrow x_{4} \text{ Oinarrian sartzen da.}$$

Taula berria: $e_3 \leftarrow (-5/2) e_3$, $e_1 \leftarrow e_1 + (1/5) e_3$, $e_2 \leftarrow e_2 - (2/5) e_3$

		\mathbf{C}_{j}	4	6	0	0	0
СВ	OA _B	B-1.b	x_1	x_2	x_3	x_4	x_5
6	x_2	2	0	1	1/4	0	-2/25
4	x_1	2	1	0	0	0	4/25
0	X_5	2	0	0	-3/4	1	-2/5
Z=.	20	\mathbf{Z}_{j}	4	6	3/2	2/5	4/25
		\mathbf{Z}_{j} - \mathbf{C}_{j}	0	0	3/2	2/5	4/25

Taula optimoa da. P2 problemaren soluzioa $B=\left(2,2\right)\;da\;eta\;Z_{2}=20$. Behe-bornea eguneratu egiten da: \underline{Z} =20 . P2 problema azkeneko problema da, izan ere bere soluzioa osoa da eta ez da adarkatu behar. Bere soluzioa problemaren soluziogaia da.

P3 problema ebazten da:

Max
$$Z = 4x_1 + 6x_2$$

 $2x_1 + 4x_2 \le 12$
 $4x_1 + 3x_2 \le 16$
 $x_1 \ge 3$
 $x_1, x_2 \ge 0$

Simplex metodoaren taula optimoan $x_1 \ge 3 \Rightarrow x_1 - x_5 = 3 \Rightarrow -x_1 + x_5 = -3$ murrizketa sartzen da:

		\mathbf{C}_{j}	4	6	0	0	
СВ	OA _B	B-1.b	x_1	x_2	x_3	x_4	x_5
6	x_2	8/5	0	1	2/5	-1/5	0
4	x_1	14/5	1	0	-3/10	2/5	0
0	x_5	-3	-1	0	0	0	1
Z=10)4/5	\mathbf{Z}_{j}	4	6	6/5	2/5	0
	•	Z _j -C _j	0	0	6/5	2/5	0

 x_1 zutabe-bektorea, bektore kanoniko bat izan behar denez: $e_3 \leftarrow e_3 - + e_2$

		C _j	4	6	0	0	
СВ	OA _B	B-1.b	x_1	x_2	x_3	x_4	X_5
6	x_2	8/5	0	1	2/5	-1/5	0
4	x_1	14/5	1	0	-3/10	2/5	0
0	x_5	-1/5	0	0	-3/10	2/5	1
Z=10)4/5	\mathbf{Z}_{j}	4	6	6/5	2/5	0
	•	\mathbf{Z}_{j} - \mathbf{C}_{j}	0	0	6/5	2/5	0

 $\exists x_{\!\scriptscriptstyle D\!k} < 0 \; {\rm bideragarritasuna} \; {\rm galdu} \; {\rm da}$, ondorioz Simplex Dual metodoa erabili behar da:

Irtetze-irizpidea:

 $\max \{|x_{DK}| / x_{DK} < 0 \} = 3 \Rightarrow x_5 \text{ oinarritik irtetzen da.}$

Sartze-irizpidea:

$$min \left\{ \frac{\left|z_k - c_k\right|}{\left|a_{ik}\right|} / a_{ik} < 0 \right\} = min \left\{ \frac{6/5}{3/10} \right\} \Rightarrow x_3 \text{ oinarrira sartzen da.}$$

Taula berria: $e_3 \leftarrow (-10/3) e_3$, $e_1 \leftarrow e_1 - (2/5) e_3$, $e_2 \leftarrow e_2 + (3/10) e_3$

		\mathbf{C}_{j}	4	6	0	0	0
СВ	OA _B	B-1.b	x_1	x_2	x_3	X_4	x_5
6	x_2	4/3	0	1	0	1/3	4/3
4	x_1	3	1	0	0	0	-1
0	x_3	2/3	0	0	1	-4/3	-10/3
Z=	20	\mathbf{Z}_{j}	4	6	0	2	4
		\mathbf{Z}_{j} - \mathbf{C}_{j}	0	0	0	2	4

Soluzio optimoa
$$C = \left(3, \frac{4}{3}\right) = (3, 1.33)$$
 da eta $Z_3 = 20$

Bere soluzioa ez da osoa, hortaz problema ez da azkeneko problema, adarkatu egin behar da. x_1 osoa da, beraz x_2 aldagaian adarkatu eta 2. pausura joan.

2. pausua: Adarkatzea

 $[x_2] = 1 \Rightarrow P4$ eta P5 problemak sortzen dira

$$x_2 \le [x_2] = 1 \Rightarrow P4$$

$$x_2 \ge [x_2] + 1 = 2 \Rightarrow P5$$

3. pausua: Bornatzea

P4 eta P5 problemak ebazten dira

P4 problema

Max
$$Z = 4x_1 + 6x_2$$

 $2x_1 + 4x_2 \le 12$
 $4x_1 + 3x_2 \le 16$
 $x_1 \ge 3$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$

P3 problemaren taula optimoan $x_2 \le 1 \Rightarrow x_2 + x_6 = 1$ murrizketa sartzen da:

		\mathbf{C}_{j}	4	6	0	0	0	0
СВ	OA _B	B-1.b	x_1	x_2	x_3	X_4	X_5	x_6
6	X_2	4/3	0	1	0	1/3	4/3	0
4	x_1	3	1	0	0	0	-1	0
0	x_3	2/3	0	0	1	-4/3	-10/3	0
0	x_6	1	0	1	0	0	0	1
Z=.	20	\mathbf{Z}_{j}	4	6	0	2	4	0
		Z _j -C _j	0	0	0	2	4	0

 x_2 zutabe-bektorea, bektore kanoniko bat izan behar denez: $e_4 \leftarrow e_4 - e_1$

		\mathbf{C}_{j}	4	6	0	0	0	0
СВ	OA _B	B-1.b	x_1	x_2	x_3	\mathcal{X}_4	X_5	x_6
6	X_2	4/3	0	1	0	1/3	4/3	0
4	x_1	3	1	0	0	0	-1	0
0	x_3	2/3	0	0	1	-4/3	-10/3	0
0	x_6	-1/3	0	0	0	-1/3	-4/3	1
Z=.	20	\mathbf{Z}_{j}	4	6	0	2	4	0
		\mathbf{Z}_{j} - \mathbf{C}_{j}	0	0	0	2	4	0

Irtetze-irizpidea:

 $\max \{|x_{DK}| / x_{DK} < 0 \} = \frac{1}{3} \Rightarrow x_6 \text{ irtetzen da.}$

Sartze-irizpidea:

$$\min\left\{\frac{\left|z_{k}-c_{k}\right|}{\left|a_{ik}\right|} \mid a_{ik}<0\right.\right\} = \min\left\{\frac{2}{1/3},\frac{4}{4/3}\right\} = 3 \Rightarrow x_{5} \text{ oinarrira sartzen da.}$$

Taula berria: $e_4 \leftarrow (-3/4)e_4$, $e_1 \leftarrow e_1 - (-4/3)e_4$, $e_2 \leftarrow e_2 + e_4$, $e_3 \leftarrow e_3 + (10/13)e_4$

		\mathbf{C}_{j}	4	6	0	0	0	0
СВ	OA _B	B-1.b	\mathcal{X}_1	x_2	x_3	X_4	<i>X</i> ₅	x_6
6	x_2	1	0	1	0	0	0	1
4	x_1	13/4	1	0	0	1/4	0	-3/4
0	x_3	3/2	0	0	1	-1/2	0	-5/2
0	x_5	1/4	0	0	0	1/4	1	-3/4
Z=	19	\mathbf{Z}_{j}	4	6	0	1	0	3
		Z _j -C _j	0	0	0	1	0	3

Soluzio optimoa $D=\left(\frac{13}{4},1\right)=(3.25,1)~da~eta~Z_4=19$. Problemaren soluzioa osoa izan ez arren, problema azkenekoa da $Z_4=19<\underline{Z}=20~$ betezen delako.

Max
$$Z = 4x_1 + 6x_2$$

 $2x_1 + 4x_2 \le 12$
 $4x_1 + 3x_2 \le 16$
 $x_1 \ge 3$
 $x_2 \ge 2$
 $x_1, x_2 \ge 0$

P3 problemaren taula optimoan $x_2 \ge 2 \Rightarrow x_2 - x_6 = 2 \Rightarrow -x_2 + x_6 = -2$ murrizketa sartzen da:

		\mathbf{C}_{j}	4	6	0	0	0	0
СВ	OA _B	B-1.b	x_1	x_2	x_3	x_4	x_5	x_6
6	x_2	4/3	0	1	0	1/3	4/3	0
4	x_1	3	1	0	0	0	-1	0
0	x_3	2/3	0	0	1	-4/3	-10/3	0
0	x_6	-2	0	-1	0	0	0	1
Z=20		\mathbf{Z}_{j}	4	6	0	2	4	0
		Z _j -C _j	0	0	0	2	4	0

 x_2 zutabe-bektorea, bektore kanoniko bat izan behar denez: $e_4 \leftarrow e_4 + e_1$

		C _j	4	6	0	0	0	0
СВ	OA _B	B-1.b	x_1	x_2	x_3	x_4	x_5	x_6
6	x_2	4/3	0	1	0	1/3	4/3	0
4	X_1	3	1	0	0	0	-1	0
0	X_3	2/3	0	0	1	-4/3	-10/3	0
0	x_6	-2/3	0	0	0	1/3	4/3	1
Z=20		\mathbf{Z}_{j}	4	6	0	2	4	0
		Z _j -C _j	0	0	0	2	4	0

 $\exists x_{\it Dk} < 0 \; {
m bideragarritasuna} \; {
m galdu} \; {
m da}.$

Irtetze-irizpidea:

$$\max \; \left\{ \left| x_{DK} \right| \; / \; x_{DK} < 0 \; \; \right\} = \frac{2}{3} \Longrightarrow x_6 \; \; \text{oinarritik irtetzen da}$$

Sartze-irizpidea:

 $a_{ik}>0$ $\forall k$ betetzen denez, problema duala bornatugabea da. Hortaz, P5 problema bideraezina da.

Ondorioz, problema osoaren soluzioa P2 problemaren soluzioa da.