Introduction to Digital Logic

Assist. Prof. Hamza Osman ILHAN

hoilhan@yildiz.edu.tr

Course Outline

- 1. Digital Computers, Number Systems, Arithmetic Operations, Decimal, Alphanumeric, and Gray Codes
- 2. Binary Logic, Gates, Boolean Algebra, Standard Forms
- 3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level Circuit Optimization
- 4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, High-Impedance Outputs
- 5. Implementation Technology and Logic Design, Design Concepts and Automation, The Design Space, Design Procedure, The major design steps
- 6. Programmable Implementation Technologies: Read-Only Memories, Programmable Logic Arrays, Programmable Array Logic, Technology mapping to programmable logic devices
- 7. Combinational Functions and Circuits
- 8. Arithmetic Functions and Circuits
- 9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
- 10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
- 11. Counters, register cells, buses, & serial operations
- 12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
- 13. Memory Basics

Formulation: Finding a State Diagram

- In specifying a circuit, we use <u>states</u> to remember <u>meaningful properties</u> of <u>past input sequences</u> that are essential to predicting <u>future output values</u>.
- A <u>sequence recognizer</u> is a sequential circuit that produces a distinct output value whenever a prescribed pattern of input symbols occur in sequence, i.e, <u>recognizes</u> an input sequence occurence.
- We will develop a procedure <u>specific to sequence</u> <u>recognizers</u> to convert a problem statement into a <u>state</u> <u>diagram</u>.
- Next, the <u>state diagram</u>, will be converted to a <u>state table</u> from which the circuit will be designed.

Sequence Recognizer Procedure

- To develop a sequence recognizer state diagram:
 - Begin in an initial state in which NONE of the initial portion of the sequence has occurred (typically "reset" state).
 - Add a state that recognizes that the first symbol has occurred.
 - Add states that recognize each successive symbol occurring.
 - The final state represents the input sequence (possibly less the final input value) occurence.
 - Add state transition arcs which specify what happens when a symbol *not* in the proper sequence has occurred.
 - Add other arcs on non-sequence inputs which transition to states that represent the input subsequence that has occurred.
- The last step is required because the circuit must recognize the input sequence regardless of where it occurs within the overall sequence applied since "reset.".

State Assignment

- Each of the *m* states must be assigned a unique code
- Minimum number of bits required is *n* such that

$$n \ge \lceil \log_2 m \rceil$$
 where $\lceil x \rceil$ is the smallest integer $\ge x$

- There are useful state assignments that use more than the minimum number of bits
- There are 2^n m unused states

Sequence Recognizer Example

- Example: Recognize the sequence 1101
 - Note that the sequence 1111101 contains 1101 and "11" is a proper sub-sequence of the sequence.
- Thus, the sequential machine must remember that the first two one's have occurred as it receives another symbol.
- Also, the sequence 1101101 contains 1101 as both an initial subsequence and a final subsequence with some overlap, i. e., 1101101 or 1101101.
- And, the 1 in the middle, 110<u>1</u>101, is in both subsequences.
- The sequence 1101 must be recognized each time it occurs in the input sequence.

Example: Recognize 1101

- Define states for the sequence to be recognized:
 - assuming it starts with first symbol,
 - continues through each symbol in the sequence to be recognized, and
 - uses output 1 to mean the full sequence has occurred,
 - with output 0 otherwise.
- Starting in the initial state (Arbitrarily named "A"):
 - Add a state that recognizes the first "1."

- State "A" is the initial state, and state "B" is the state which represents the fact that the "first" one in the input subsequence has occurred.
- The output symbol "0" means that the full recognized sequence has not yet occurred.

- After one more 1, we have:
 - C is the state obtained when the input sequence has two "1"s.

• Finally, after 110 and a 1, we have:

- Transition arcs are used to denote the output function (Mealy Model)
- Output 1 on the arc from D means the sequence has been recognized
- To what state should the arc from state D go? Remember: 1101101?
- Note that D is the last state but the output 1 occurs for the input applied in D. This is the case when a *Mealy model* is assumed.

• Clearly the final 1 in the recognized sequence 1101 is a sub-sequence of 1101. It follows a 0 which is not a sub-sequence of 1101. Thus it should represent *the same state reached from the initial state after a first 1 is observed*. We obtain:

- The state have the following abstract meanings:
 - A: No proper sub-sequence of the sequence has occurred.
 - − B: The sub-sequence 1 has occurred.
 - C: The sub-sequence 11 has occurred.
 - − D: The sub-sequence 110 has occurred.
 - The 1/1 on the arc from D to B means that the last 1 has occurred and thus, the sequence is recognized.

- The other arcs are added to each state for inputs not yet listed. Which arcs are missing?
 - "0" arc from A
 - "0" arc from B
 - "1" arc from C
 - "0" arc from D.

• State transition arcs must represent the fact that an input subsequence has occurred. Thus we get:

• Note that the 1 arc from state C to state C implies that State C means two or more 1's have occurred.

Formulation: Find State Table

- From the State Diagram, we can fill in the State Table.
- There are 4 states, one input, and one output.
 We will choose the form with four rows, one for each current state.
- From State A, the 0 and input transitions have been filled in along with the outputs.

Present State	Next State x=0 x=1	Output x=0 x=1
A	A B	0 0
В		
C		
D		

Formulation: Find State Table

• From the <u>state diagram</u>, we complete the <u>state table</u>.

Present	Next	State	Out	
State	x=0	x=1	x=0	x=1
A	A	В	0	0
В	A	C	0	0
C	D	C	0	0
D	A	В	0	1

• What would the state diagram and state table look like for the Moore model?

Example: Moore Model for Sequence 1101

- For the Moore Model, outputs are associated with states.
- We need to add a state "E" with output value 1 for the final 1 in the recognized input sequence.
 - This new state E, though similar to B, would generate an output of 1 and thus be different from B.
- The Moore model for a sequence recognizer usually has *more states* than the Mealy model.

Example: Moore Model (continued)

A/0

- We mark outputs on for Moore model
- Arcs now show only state transitions
- Add a new state E to produce the output 1
- Note that the new state,
 E produces the same behavior
 in the future as state B. But it gives a different output at the present time. Thus these states do represent a *different*abstraction of the input history.

states

Example: Moore Model (continued)

• The state table is shown below

$ \begin{pmatrix} 0 \\ A/0 \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	0 E/1
ut	0

Present	Next State	Output
State	x=0 $x=1$	y
\mathbf{A}	A B	0
В	A C	0
С	D C	0
D	A E	0
E	A C	1

State Assignment – Example 1

Present	Next	State	Out	tput
State	x=0	x=1	x=0	x=1
A	A	В	0	0
В	A	В	0	1

• How may assignments of codes with a minimum number of bits?

-Two

$$A = 0, B = 1$$
 or $A = 1, B = 0$

- Does it make a difference?
 - −Only in variable inversion, so small, if any.

State Assignment – Example 2

Present	Next State	Output
State	x=0 $x=1$	x=0 x=1
\mathbf{A}	A B	0 0
В	A C	0 0
C	D C	0 0
D	A B	0 1

• How may assignments of codes with a minimum number of bits?

$$4 \times 3 \times 2 \times 1 = 24$$

 Does code assignment make a difference in cost?

State Assignment – Example 2 (continued)

- Assignment 1: A = 0.0, B = 0.1, C = 1.0, D = 1.1
- The resulting coded state table:

Present	Next	State	Out	put
State	$\mathbf{x} = 0$	x = 1	$\mathbf{x} = 0$	x = 1
0 0	00	0 1	0	0
01	0 0	10	0	0
10	11	10	0	0
11	00	01	0	1

State Assignment – Example 2 (continued)

- Assignment 2: A = 0.0, B = 0.1, C = 1.1, D = 1.0
- The resulting coded state table:

Present	Next	State	Out	put
State	x = 0	x = 1	$\mathbf{x} = 0$	x = 1
0 0	0 0	01	0	0
0 1	0 0	11	0	0
11	10	11	0	0
10	00	01	0	1

Find Flip-Flop Input and Output Equations: Example 2 - Assignment 1

- Assume D flip-flops
- Interchange the bottom two rows of the state table, to obtain K-maps for D_1 , D_2 , and Z:

Optimization: Example 2: Assignment 1

• Performing two-level optimization:

$$\begin{aligned} D_1 &= Y_1 \overline{Y}_2 + X \overline{Y}_1 Y_2 \\ D_2 &= \overline{X} Y_1 \overline{Y}_2 + X \overline{Y}_1 \overline{Y}_2 + X Y_1 Y_2 \\ Z &= X Y_1 \overline{Y}_2 \end{aligned} \qquad \text{Gate Input Cost} = 22$$

Find Flip-Flop Input and Output Equations: Example 2 - Assignment 2

- Assume D flip-flops
- Obtain K-maps for D_1 , D_2 , and Z:

Optimization: Example 2: Assignment 2

• Performing two-level optimization:

$$D_1 = Y_1Y_2 + XY_2$$
 Gate Input Cost = 9
 $D_2 = X$ Select this state assignment for
 $Z = XY_1Y_2$ completion of the design

Map Technology

Mapped Circuit - Final Result

State Assignment (continued)

• One-Hot Assignment : A = 1000, B = 0100, C = 0010, D = 0001 The resulting coded state table:

Table 5-3 with Names Replaced by a 4-Bit One-Hot Code

Present State	sent State Next State		Out	out <i>Z</i>
ABCD	X = 0	X = 1	X = 0	X = 1
1000 0100 0010	1000 1000 0001	0100 0010 0010	0 0 0	0 0 0
0001	1000	0100	0	1

Implementation

$$A(t+1) = D_A = A\overline{X} + B\overline{X} + D\overline{X}$$

$$= (A+B+D)\overline{X}$$

$$B(t+1) = D_B = AX + DX$$

$$= (A+D)X$$

$$C(t+1) = D_C = BX + CX$$

$$= (B+C)X$$

$$D(t+1) = D_D = C\overline{X}$$

$$Z = DX$$

Other Flip-Flop Types

- J-K and T flip-flops
 - -Behavior
 - -Implementation
- Basic descriptors for understanding and using different flip-flop types
 - -Characteristic tables
 - -Characteristic equations
 - -Excitation tables
- For actual use, see Reading Supplement Design and Analysis Using J-K and T Flip-Flops

J-K Flip-flop

Behavior

- Same as S-R flip-flop with J analogous to S and K analogous to R
- Except that J = K = 1 is allowed, and
- For J = K = 1, the flip-flop changes to the *opposite state*
- As a master-slave, has same "1s catching" behavior as
 S-R flip-flop
- If the master changes to the wrong state, that state will be passed to the slave
 - E.g., if master falsely set by J = 1, K = 1 cannot reset it during the current clock cycle

J-K Flip-flop (continued)

• Implementation

To avoid 1s catching behavior, one solution used is to use an edge-triggered D as the core of the flip-flop

Symbol

T Flip-flop

- Behavior
 - Has a single input T
 - For T = 0, no change to state
 - For T = 1, changes to opposite state
- Same as a J-K flip-flop with J = K = T
- As a master-slave, has same "1s catching" behavior as J-K flip-flop
- Cannot be initialized to a known state using the T input
 - Reset (asynchronous or synchronous) essential

T Flip-flop (continued)

• Implementation

 To avoid 1s catching behavior, one solution used is to use an edge-triggered D as the core of the flip-flop

Symbol

Basic Flip-Flop Descriptors

Used in analysis

- Characteristic table defines the next state of the flip-flop in terms of flip-flop inputs and current state
- Characteristic equation defines the next state of the flip-flop as a Boolean function of the flip-flop inputs and the current state

• Used in design

- Excitation table - defines the flip-flop input variable values as function of the current state and next state

D Flip-Flop Descriptors

• Characteristic Table

D	Q(t+1)	Operation
0	0	Reset
1	1	Set

• Characteristic Equation

$$Q(t+1) = D$$

• Excitation Table

$\mathbf{Q}(\mathbf{t} + 1)$	D	Operation
0	0	Reset
1	1	Set

T Flip-Flop Descriptors

• Characteristic Table

T	Q(t+1)	Operation
0	Q(t)	No change
1	$\overline{Q}(t)$	Complement

• Characteristic Equation

$$Q(t+1) = T \oplus Q$$

• Excitation Table

Q(t+1)	T	Operation
Q(t)	0	No change
$\overline{Q}(t)$	1	Complement

S-R Flip-Flop Descriptors

• Characteristic Table

S	R	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	?	Undefined

• Characteristic Equation

$$Q(t+1) = S + \overline{R} Q, S \cdot R = 0$$

• Excitation Table

Q(t)	Q(t+1)	S R	Operation
0	0	0 X	No change
0	1	1 0	Set
1	0	0 1	Reset
1	1	X = 0	No change

J-K Flip-Flop Descriptors

• Characteristic Table

J	K	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q}(t)$	Complement

• Characteristic Equation

$$Q(t+1) = J \overline{Q} + \overline{K} Q$$

• Excitation Table

Q(t)	Q(t+1)	J K	Operation
0	0	0 X	No change
0	1	1 X	Set Reset No Change
1	0	X 1	Reset
1	1	X 0	No Change

Flip-flop Behavior Example

• Use the characteristic tables to find the output waveforms for the flip-flops shown:

Flip-Flop Behavior Example (continued)

• Use the characteristic tables to find the output waveforms for the flip-flops shown:

J-K Flip-flop (example)

J-K Flip-flop (example)

Present State		Input	Next ut State		Flip-Flop Inputs			
A	В	x	A	В	JA	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	O	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	O	0	1	1	1	1
1	1	1	1	1	1	0	O	0

D Flip-flop (example)

D Flip-flop (example)

Present State				ext ate	Output	
A	В	x	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

T Flip-flop (example)

T Flip-flop (example)

Present State				ext ate	Output	
A	В	x	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	0	0	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	1	

Present State				ext ate	Output	
A	В	x	A	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

Q(t)	Q(t=1)	J	K	Q(t)	Q(t=1)	T
0	0	0	X	0	0	0
0	1	1	X	0	1	1
1	0	X	1	1	0	1
1	1	X	0	1	1	0

(a) JK Flip-Flop

(b) TFlip-Flop

Present State		Input		Next State		Flip-Flop Inputs		
A	В	X	A	В	J _A	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	\mathbf{X}	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

Example

Present State			Next State			Flip-Flop Inputs		
A ₂	A ₁	A ₀	A ₂	A ₁	A ₀	<i>T</i> _{A2}	<i>T</i> _{A1}	T _{AO}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

 A_1

Example

