Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

27 de enero del 2021

Unicidad de la forma de Jordan nilpotente.

Recordemos:

Sean V un espacio vectorial, con dim(V)=n, y $T:V\longrightarrow V$ una tranformación lineal nilpotente de índice n, y $v\in V$ tal que $T^n(v)=\mathbf{0}$ y $T^{n-1}(v)\neq \mathbf{0}$ y por tanto

$$\mathcal{B} = \{v, T(v), T^{2}(v), \cdots, T^{n-1}(v)\}$$

es una base para V. Además

$$T_{_{\mathcal{B}}} = \left[egin{array}{ccccc} 0 & 0 & \cdots & 0 & 0 \ 1 & 0 & \cdots & 0 & 0 \ 0 & 1 & \cdots & 0 & 0 \ \cdots & \cdots & \cdots & \cdots & \cdots \ 0 & 0 & \cdots & 1 & 0 \ \end{array}
ight]$$

Definición

Sea $J \in \mathbb{K}(n,n)$ una matriz, diremos que J es un bloque de Jordan nilpotente si

$$J = \left[egin{array}{ccccc} 0 & 0 & \cdots & 0 & 0 \ 1 & 0 & \cdots & 0 & 0 \ 0 & 1 & \cdots & 0 & 0 \ \cdots & \cdots & \cdots & \cdots & \cdots \ 0 & 0 & \cdots & 1 & 0 \ \end{array}
ight]$$

Teorema

Sean V un espacio vectorial, con dim $(V) = n, y T : V \longrightarrow V$ una tranformación lineal nilpotente de índice k. Entonces existe una base \mathcal{B} de V tal que

$$T_{\scriptscriptstyle\mathcal{B}}=\left[egin{array}{cccc} J_1 & 0 & \cdots & 0 \ 0 & J_2 & & dots \ dots & & \ddots & 0 \ 0 & \cdots & 0 & J_r \end{array}
ight]$$

donde, para cada $i = 1, 2, \dots, r$, la matriz J_i es un bloque de Jordan nilpotente y $k = n_1 > n_2 > \cdots > n_r$.

Lema

Sean V un espacio vectorial, con $\dim(V) < \infty$, $y \ T : V \longrightarrow V$ una tranformación lineal $e \ i \in \mathbb{N}$. Consideremos $\{v^1, \cdots, v^r\} \subset V$ l. i. tal que $\mathcal{N}(T^i) \cap \mathcal{L}(\{v^1, \cdots, v^r\}) = \{\mathbf{0}\}$. Entonces $\{T(v^1), \cdots, T(v^r)\}$ es l. i. $y \ \mathcal{N}(T^{i-1}) \cap \mathcal{L}(\{T(v^1), \cdots, T(v^r)\}) = \{\mathbf{0}\}$

Definición

Una matriz $A \in \mathbb{K}(n,n)$ es una forma de Jordan nilpotente si

$$A = \left[\begin{array}{cccc} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & J_r \end{array} \right]$$

con $J_i \in \mathbb{K}(n_i, n_i)$ bloques de Jordan nilpotentes $i = 1, 2, \dots, r$ y $n_1 \ge n_2 \ge \dots \ge n_r$.

Teorema

Sea $A \in \mathbb{K}(n, n)$ una matriz nilpotente. Entonces A es semejante a una forma de Jordan nilpotente.

Una base \mathcal{B} de $\mathbb{K}(n,1)$ tal que $T_{A_{\mathcal{B}}}=J_{A}$ es una forma de Jordan nilpotente se llamará una base de Jordan para A, y la matriz J_{A} una forma de Jordan para A.

Ejemplo

Halle una forma de Jordan y una base de Jordan para $A \in \mathbb{K}(6,6)$, donde

$$A = \left[egin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 & 0 \ -1 & -1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 \ -1 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & -1 & 0 \ \end{array}
ight]$$

Note

Consideremos $\{e^1,e^2,e^3,e^4,e^5,e^6\}$ la base canónica de \mathbb{R}^6 . Entonces $\mathcal{N}(B_1)=\{e^3,e^4,e^6\}$, $\mathcal{N}(B_2)=\{e^3,e^4,e^6,e^2,e^5\}$ y $\mathcal{B}_3=\{e^3,e^3,e^6,e^2,e^5,e^1\}$ son las base de $\mathcal{N}(A)$, $\mathcal{N}(A^2)$ y $\mathcal{N}(A^3)$ respectivamente. Notamos que

$$\{\mathbf{0}\} \subsetneq \mathcal{N}(A) \subsetneq \mathcal{N}(A^2) \subsetneq \mathcal{N}(A^3) = \mathbb{R}^6$$

Extendemos la base \mathbb{B}_2 de $\mathcal{N}(A^2)$ a una base $\mathcal{N}(A^3) = \mathbb{R}^6$, por decir, agregamos el vector e^1 que completa \mathcal{B}_3 .

Consideremos $Ae^1=(0,1,-1,0,-1,1)^t\in\mathcal{N}(A^2)$. Entonces

$$\{\mathbf{0}\} \subsetneq \mathcal{N}(A) \subsetneq \mathcal{N}(A^2) \subsetneq \mathcal{N}(A^3) = \mathbb{R}^6$$

$$Ae^1 \qquad e^1$$

Ahora consideremos la base \mathcal{B}_1 de $\mathcal{N}(A)$, tomamos el conjunto $\mathcal{B}_1 \cup \{Ae^1\} \subset \mathcal{N}(A)$, y extendemos este conjunto a una base de $\mathcal{N}(A^2)$.

Para ello, por ejemplo, elegimos el vector $e^5 \in \mathcal{N}(A^2)$ y con ello tenemos

$$\{A^2e^1,Ae^5\}=\{(0,0,-1,0,0,1)^t,(0,0,0,1,0,-1)^t\}\subset\mathcal{N}(A^2)$$

$$\{\mathbf{0}\} \ \subsetneq \ \mathcal{N}(A) \ \subsetneq \ \mathcal{N}(A^2) \ \subsetneq \ \mathcal{N}(A^3) \ = \ \mathbb{R}^6$$

$$Ae^5 \qquad e^5 \qquad e^5$$

Finalmente, extendemos el conjunto $\{A^2e^1, Ae^5\}$ a una base de $\mathcal{N}(A)$, por decir, el vector e^3 , de dónde tenemos

$$\begin{cases}
\mathbf{0} \end{cases} \subsetneq \mathcal{N}(A) \subsetneq \mathcal{N}(A^2) \subsetneq \mathcal{N}(A^3) = \mathbb{R}^6 \\
A^2 e^1 \qquad Ae^1 \qquad e^1 \\
Ae^5 \qquad e^5
\end{aligned}$$

Entonces, una base de Jordan para A es

$$\mathcal{B} = \{e^1, Ae^1, A^2e^1, e^5, Ae^5, e^3\}$$

$$= \{e^1, (0, 1, -1, 0, -1, 1)^t, (0, 0, -1, 0, 0, 1)^t, e^5, (0, 0, 0, 1, 0, -1)^t, e^3\}$$

y una forma de Jordan de A es

$$J_A = \left[egin{array}{cccccc} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array}
ight]$$

Unicidad de la forma de Jordan nilpotente. Semejanza

Veamos el siguiente

Lema

Sea $J \in \mathbb{K}(m, m)$ un bloque de Jordan nilpotente. Entonces el rango $(J^i) = m - i$ para cada $i = 1, 2, \dots, m$.

Proposición

Sea $A \in \mathbb{K}(n,n)$ una forma de Jordan nilpotente de índice k. Entonces el bloque de Jordan más grande que aparece en A es de tamaño $k \times k$. Además, para cada $0 \le i \le k-1$ la cantidad de bloques de Jordan nilpotentes de tamaño mayor que i que aparecen en A es

$$b_i = rango(A^i) - rango(A^{i+1}).$$

En particular, la cantidad de bloques de Jordan que aparecen en A es $b_0 = n - rango(A) = dim(\mathcal{N}(A))$.

Corolario

Sea $A \in \mathbb{K}(n,n)$ una forma de Jordan nilpotente de índice k. Entonces para cada $i=1,2,\cdots,k$, la cantidad de bloques de Jordan nilpotentes de tamaño $i \times i$ que aparecen en A está dado por

$$c_i = rango(A^{i+1}) - 2rango(A^i) + rango(A^{i-1}).$$

Ejemplo

Diga si existe una matriz $A \in \mathbb{R}(15, 15)$ tal que rango(A) = 10, rango $(A^4) = 3$ y rango $(A^5) = 0$.

Note que si $rango(A^5) = 0$ y $rango(A^4) = 3$, entonces $A^5 = 0$ y $A^4 \neq 0$, donde A es nilpotente de índice 5.

Entonces A es semejante a una forma de Jordan nilpotente J_A cuyo bloque de tamaño más grande es de 5×5 .

Luego por la proposición anterior J_A tiene $rango(A^4) - rango(A^5) = 3$ bloques de 5×5 y como $J_A \in \mathbb{R}(15, 15)$, entonces estos son los únicos bloque que aparecen.

Pero la cantidad de bloques en J_A debe ser 15-rango(A)=15-10=5, esto contradice lo anterior.

Por tanto no existe tal matriz que satisfaga las condiciones dadas.

El corolario anterior nos conduce al siguiente

Lema

Sean J y J' formas de Jordan nilpotentes, si J y J' son semejantes (es decir, existe una matriz P no singular tal que $J = P^{-1}J'P$), entonces J = J'.

Teorema

Consideremos $A, B \in \mathbb{K}(n, n)$ matrices nilpotentes, J y J' formas de Jordan nilpotentes tales que A es semejante a J y B es semejante a J'. Entonces A es semejante a B si, y solo si J = J'.

Caso general

Sean V un espacio vectorial, con $\dim(V)=n, T:V\longrightarrow V$ una transformación lineal tal que $\varphi_{\tau}(\lambda)=(\lambda-\lambda_1)^k$, para algún $k\le n$. Entonces se tiene que $(T-\lambda \mathrm{I})^k=0$ y $(T-\lambda \mathrm{I})^{k-1}\ne 0$, esto nos indica que $T-\lambda \mathrm{I}$ es nilpotente de índice k.

Luego existe una base \mathcal{B} de V tal que $T - \lambda I \Big|_{\mathcal{B}} \in \mathbb{K}(n, n)$ es una forma nilpotente de Jordan, es decir,

$$T - \lambda I \Big|_{\mathcal{B}} = \left[egin{array}{cccc} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & & dots \\ dots & & \ddots & 0 \\ 0 & \cdots & 0 & J_r \end{array}
ight]$$

donde, para cada $1 \le i \le r$, $J_i \in \mathbb{K}(n_i, n_i)$ es un bloque de Jordan nilpotente y $k = n_1 > n_2 > \cdots > n_r$.

notar que $T_{\mathcal{B}} = (T - \lambda I)\Big|_{\mathcal{B}} + (\lambda I)\Big|_{\mathcal{B}} = (T - \lambda I)\Big|_{\mathcal{B}} + \lambda I_n$, donde

$$T_{\mathcal{B}} = \left[egin{array}{cccc} J_1(\lambda, n_1) & 0 & \cdots & 0 \ 0 & J_2(\lambda, n_2) & & dots \ dots & & \ddots & 0 \ 0 & \cdots & 0 & J_r(\lambda, n_r) \end{array}
ight]$$

donde, para cada $1 \le i \le r$,

$$J(\lambda,n_i)=\left[egin{array}{ccccc} \lambda & 0 & \cdots & 0 & 0 \ 1 & \lambda & & 0 & 0 \ 0 & 1 & & 0 & 0 \ \cdots & \cdots & \cdots & \cdots & \cdots \ 0 & 0 & \cdots & 1 & \lambda \end{array}
ight]\in \mathbb{K}(n_i,n_i).$$

$$k = n_1 > n_2 > \cdots > n_r$$

Definición

Sea $\lambda \in \mathbb{K}$. Se llama bloque de Jordan asociado al valor propio λ de tamaño n a la matriz

$$J(\lambda,n)=\left[egin{array}{ccccc} \lambda & 0 & \cdots & 0 & 0 \ 1 & \lambda & & 0 & 0 \ 0 & 1 & & 0 & 0 \ \cdots & \cdots & \cdots & \cdots \ 0 & 0 & \cdots & 1 & \lambda \end{array}
ight]\in\mathbb{K}(n,n).$$

la existencia de forma de Jordan se basa en el siguiente

Lema

Sean V un espacio vectorial, con $\dim(V) < \infty$, $T: V \longrightarrow V$ una transformación lineal tal que $\varphi_T = PQ$, donde P y Q son polinomios tales que MCD(P,Q) = 1. entonces

- 1. $\mathcal{N}(P(T))$ y $\mathcal{N}(Q(T))$ son subespacios invariantes bajo T,
- 2. $V = \mathcal{N}(P(T)) \oplus \mathcal{N}(P(T))$,
- 3. $\varphi_{\tau|_{\mathcal{N}(P(T))}} = P$ y $\varphi_{\tau|_{\mathcal{N}(Q(T))}} = Q$.

Definición

Diremos que $J \in \mathbb{K}(n, n)$ es una matriz de Jordan o una forma de Jordan si

$$J = \left[egin{array}{ccccc} J_1 & 0 & \cdots & 0 & 0 \ 0 & J_2 & & 0 & 0 \ 0 & 0 & & 0 & 0 \ \cdots & \cdots & \cdots & \cdots & \cdots \ 0 & 0 & \cdots & 0 & J_r \end{array}
ight]$$

donde, para cada $1 \le i \le s$, J_i es la forma

$$J_i = \left[egin{array}{cccc} J(\lambda_i, n_1^{(i)}) & 0 & \cdots & 0 \ 0 & J(\lambda_i, n_2^{(i)}) & 0 \ \cdots & \cdots & \cdots \ 0 & 0 & \cdots & J(\lambda_i, n_{r_i}^{(i)}) \end{array}
ight]$$

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

con $n_1^{(i)} \ge \cdots \ge n_{r_i}^{(i)}$ y $\lambda_i \ne \lambda_j$, es decir, cada J_i está formado por (varios) bloques de Jordan de valor propio λ_i ubicados en la diagonal.

Teorema

Sean V un espacio vectorial, con $\dim(V)<\infty$, $T:V\longrightarrow V$ una transformación lineal tal que φ_{τ} se factoriza linealmente sobre \mathbb{K} . Entonces existe una base \mathcal{B} de V tal que $T\Big|_{\mathcal{B}}$ es una forma de Jordan.

Esta base $\mathcal B$ es llamada base de Jordan para $\mathcal T$ y la matriz $\mathcal T_{\mathcal B}$ una forma de Jordan para $\mathcal T$.