DSA

Data Structures and Algorithms

Empowering Developers with Essential Data Skills for Efficient Problem Solving

What is Data Structure?

Data structures are fundamental constructs used in software engineering to organize and manage data efficiently. They provide a way to store and manipulate data so that operations like searching, sorting, inserting, and deleting can be performed quickly and effectively.

Data Structures are used to organize and store data to use it in an effective way when performing data operations.

Note:

Depending on your requirement and project, it is important to choose the right data structure for your project.

Then What is Algorithm?

Algorithms are step-by-step procedures or sets of rules followed to solve problems or accomplish specific tasks. In software engineering, algorithms are essential for performing computations, data processing, and automated reasoning. They serve as the backbone for computer programs, determining how data is processed, manipulated, and transformed.

{ }

Algorithm is a set of well-defined instructions to solve a particular problem. It takes a set of input(s) and produces the desired output.

An algorithm to add two numbers:

- 1. Take two number inputs
- 2. Add numbers using the + operator
- 3. Display the result

Qualities of a Good Algorithm

Here are some essential qualities that define a good algorithm:

- Input and output should be defined precisely.
- Each step in the algorithm should be clear and unambiguous.
- Algorithms should be most effective among many different ways to solve a problem.
- An algorithm shouldn't include computer code. Instead, the algorithm should be written in such a way that it can be used in different programming languages.

Key characteristics of algorithms include

Input	Algorithms take zero or more inputs. These inputs can be numbers, strings, arrays, or any other data type relevant to the problem being solved.
<u>Output</u>	Algorithms produce one or more outputs based on the inputs and the steps performed. The output could be a result, a modified input, or simply a signal indicating the completion of a task.
<u>Definiteness</u>	Algorithms are precise and unambiguous, with each step clearly defined and executable. This ensures that the algorithm can be followed exactly and consistently to produce the desired outcome.
<u>Finiteness</u>	Algorithms must terminate after a finite number of steps. They cannot run indefinitely, ensuring that the problem-solving process eventually reaches a conclusion.
<u>Effectiveness</u>	Algorithms must be effective in solving the problem they are designed for. This means they should correctly solve the problem, preferably in an efficient manner, within reasonable time and resource constraints.

Example 2

1 }

Find the largest number among three numbers

Example 2

- Start.
- Input the three numbers **a**, **b**, and **c**.
- Initialize a variable largest.
- Compare the first two numbers a and b:

If $\mathbf{a} > \mathbf{b}$, then assign largest = \mathbf{a} .

Otherwise, assign **largest = b**.

- Compare largest with the third number c:
- If c > largest, then assign largest = c.
- Output the value of largest.
- End.

Efficiency of Algorithm

- ❖ Time complexity
 - Amount of time required for execution
- Space complexity
 - Amount of memory space required when it runs

Time complexity: O(1) Order of 1

* Constant Time


```
int m(int i){
    int x = 10;
    int y = i + x;
    return y;
}
```

Time complexity: O(1) Order of 1

* Constant Time


```
void m(int n) {
  for (int i = 0; i < n; i++) {
    n += 10;
  }
}</pre>
```

Time complexity : O(n)

Linear Time

Time complexity: $O(n^2) / O(n^2)$

* Quadratic Time

Space complexity

nn

```
void m(){

int i = 20;

1

→ i += 50;

}
```

Space complexity: O(1)

Space complexity


```
void m(int n) {
  int ar[] = new int[n];
  for (int i = 0; i < n; i++) {
    ar[i] = 10;
  }
}</pre>
```

```
i = 32bit / 4 byte
n = 32bit / 4 byte
ar[] = 4n byte
```

Space complexity: O(n)

Space complexity

```
void m(int n) {
  int ar[][] = new int[n][n];
  for (int i = 0; i < ar.length; i++) {
    for (int j = 0; j < ar[i].length; j++) {
        ar[i][j] = i + 10;
    }
  }
}</pre>
```

```
i = 32bit / 4 byte
j = 32bit / 4 byte
n = 32bit / 4 byte
ar[][] = 4n * 4n byte
```

Space complexity: O(n²) / O(n^2)

Data Structure and Types

int arr[5]

Primitive data structure

The primitive data structure, also referred to as built-in data types, can only store data of a single type. This includes integers, floating points, characters, and similar types.

Non-Primitive Data Structure

Non-primitive data structures, unlike their primitive counterparts, can store data of multiple types. Examples include arrays, linked lists, stacks, queues, trees, and graphs. These are often termed derived data types.

Types of Data Structure

Data structures are divided into two categories:

- Linear data structure
- Non-linear data structure

Linear data structures

A Linear Data Structure maintains a straight-line connection between its data elements, where each element is linked to its predecessors and successors, except for the first and last elements. However, the physical arrangement in memory may not follow this linear sequence.

Linear Data Structures are categorized into two types based on memory allocation.

Static Data Structures

Static Data Structures have a predetermined size allocated during compilation, and users cannot alter this size after compilation. However, the data stored within these structures can be modified.

Dynamic Data Structures

Dynamic Data Structures are those whose size can change during runtime, with memory allocated as needed. Users can modify both the size and the data elements stored within these structures while the code is executing.

Non-Linear Data Structures

Non-linear data structures store data hierarchically, allowing it to exist at multiple levels and making traversal more complex than in linear data structures.

They address the limitations of linear data structures, such as inefficient memory allocation.

In linear structures, each element occupies an entire memory block, potentially wasting space if the element doesn't fully utilize the block.

Non-linear data structures optimize memory usage, reducing space complexity.

Array

An array is a type of linear data structure defined as a collection of elements, which can be of the same or different data types.

Arrays can be single-dimensional or multi-dimensional. They are used when there's a need to store multiple elements of a similar nature together in one place.

Array

Arrays are commonly used to solve a wide range of problems, from simple sorting tasks to complex ones.

While many data structures offer efficient time and space complexities, arrays have a significant advantage:

O(1) random access lookup time.

This means accessing any index in the array takes the same amount of time, regardless of its position.

This efficiency is due to arrays having a pointer to the memory location and an offset value indicating the distance to look within the memory.

Add:

·Algorithm:

- Start:
 - Check if the size of the array is less than the capacity. (O(1))
 - If there's space, insert the element at the next available index. (O(1))
 - Increment the size of the array. (O(1))
- End.

Add by Index:

•Algorithm:

- Start:
 - Check if the index is valid and if there's space in the array. (O(1))
 - Shift all elements from the specified index to the right by one position to make space for the new element. (O(n))
 - Insert the new element at the specified index. (O(1))
 - Increment the size of the array. (O(1))
- End.

Add by Index:

•Algorithm:

- Start:
 - Check if the index is valid and if there's space in the array. (O(1))
 - Shift all elements from the specified index to the right by one position to make space for the new element. (O(n))
 - Insert the new element at the specified index. (O(1))
 - Increment the size of the array. (O(1))
- End.

Find:

•Algorithm:

- Start:
 - Iterate over each element of the array. (O(n))
 - Compare each element with the given element. (O(1))
 - If a match is found, return the index. (O(1))
 - If no match is found, return -1. (O(1))
- End.

Array Example...

Delete:

•Algorithm:

- Start:
 - Find the index of the element to be deleted using the Find algorithm.
 (O(n))
 - If the element is found:
 - Shift all elements to the right of the index to the left by one position to fill the gap created by deleting the element. (O(n))
 - Decrement the size of the array. (O(1))
- End.

Array - Insertion Operation

In the insertion operation, one or more elements are added to the array. Depending on the requirement, a new element can be added at the beginning, end, or at any given index of the array. This is typically accomplished using input statements in programming languages.

In an unsorted array, the insert operation is faster as compared to a sorted array because we don't have to care about the position at which the element is to be placed.

Time Complexity: O(1)
Space Complexity: O(1)

Insert at any position:

Insert operation in an array at any position can be performed by shifting elements to the right, which are on the right side of the required position

Time Complexity: O(n) Space Complexity: O(1)

Array - Search Operation

In an unordered array, the elements are not arranged in any particular order. When you need to find a specific item in such an array, you typically have to check each element one by one until you find the desired item. This process is called linear traversal or linear search.

Search operation:

In an unsorted array, the search operation is less efficient compared to a sorted array because we cannot rely on the order of elements for quicker access.

Time Complexity: O(n) Space Complexity: O(1)

Array - Delete Operation

During the delete operation, the element slated for removal is located via linear search, after which the deletion is executed, leading to a subsequent adjustment of the array by shifting the remaining elements.

Delete operation:

In an unsorted array, the deletion operation can be less efficient compared to a sorted array due to the need for linear search to locate the element to be deleted, followed by the subsequent adjustment of the array by shifting the remaining elements

Time Complexity: O(n)
Space Complexity: O(1)

Stack Data Structure

A stack is a fundamental data structure in computer science that follows the **Last In, First Out (LIFO)** principle. It's similar to a stack of plates in a cafeteria: you can only take the top plate off, and to add a new plate, you place it on top of the stack.

Stack Data Structure

Stack Data Structure

This structure supports two main operations:

- Push: Adds an element onto the top of the stack.
- Pop: Removes the element from the top of the stack.

Additionally, stacks typically support auxiliary operations such as:

- Peek or Top: Returns the top element of the stack without removing it.
- **isEmpty:** Checks if the stack is empty.
- Size: Returns the number of elements in the stack.
- IsFull: Check if the stack is full.

Working of Stack Data Structure

The operations for managing a stack work as follows:

Initialization:

- A pointer called **TOP** is used to keep track of the top element in the stack.
- When initializing the stack, set **TOP** to **-1**. This initial value allows us to check if the stack is empty by comparing **TOP** == **-1**.

Push Operation:

- Before pushing an element, check if the stack is already full. If the stack is not full, increase the value of **TOP** by **1**.
- Place the new element in the position pointed to by TOP.

Pop Operation:

- Before popping an element, check if the stack is already empty. If the stack is not empty, return the element pointed to by **TOP**.
- Decrease the value of **TOP** by **1**.

Queue Data Structure

A Queue is a **linear data structure** in which deletions can only occur at one end, known as the **front**, and insertions can only occur at the other end, known as the **rear**. It is similar to the real-life queue where the first person entering the queue is the first person who comes out of the queue. Thus queues are also called **FIFO(First In First Out)** lists.

Basic Operations of Queue

A queue allows the following basic operations:

- **Enqueue:** Add new element to the end of the queue.
- **Dequeue:** Remove an element from the front of the queue.
- Additionally, queue typically support auxiliary operations such as:
- **Peek:** Get the value of the front of the queue without removing it.
- **isEmpty:** Checks if the queue is empty.
- IsFull: Check if the queue is full.

Every queue includes two pointers, **FRONT** and **REAR**, which indicate the position where deletion and insertion can be performed. Initially, values of **FRONT** and **REAR** is set to **-1**.

Queue Data Structure

Working of Queue Data Structure

The operations for managing a queue data structure are as follows:

Initialization:

- Two pointers, FRONT and REAR, are used to keep track of the first and last elements in the queue, respectively.
- When initializing the queue, set **FRONT** to **-1** and REAR to **-1**. This initial state helps in checking if the queue is empty.

Working of Queue Data Structure

The operations for managing a queue data structure are as follows:

Enqueue Operation:

- · Before adding an element, check if the queue is already full.
- If the queue is not full, proceed as follows:
 - If the queue is empty, set **FRONT** to **0**.
 - Increase the value of **REAR** by **1.**
 - Place the new element in the position pointed to by REAR.

Dequeue Operation:

- Before removing an element, check if the queue is already empty.
- If the queue is not empty, proceed as follows:
 - Return the element pointed to by FRONT.
 - If **FRONT** is equal to **REAR**, reset both **FRONT** and **REAR** to **-1** indicate that the queue is empty.
 - Otherwise, increase the value of **FRONT** by **1**.

Types of Queues

There are four different types of queues:

- Simple Queue
- Circular Queue
- Priority Queue
- Double Ended Queue (Deque)

Simple Queue

- Follows the First-In-First-Out (FIFO) principle.
- Elements are inserted to the rear and removed from the front.
- Linear structure with ordered collection of comparable data.
- Addition of new elements requires deletion of older elements in order.

Circular Queue

- Last member is linked to the first, forming a circular structure.
- Also known as a Ring Buffer.
- Insertion occurs at the front, and deletion at the end of the queue.

The main advantage of a circular queue over a simple queue is better memory utilization. If the last position is full and the first position is empty, we can insert an element in the first position. This action is not possible in a simple queue.

Working of Circular Queue Data Structure

The operations for managing a Circular Queue data structure are as follows:

Initialization:

- Allocate memory for an array items to hold the queue elements.
 - Initialize **FRONT** and **REAR** pointers to **-1** to indicate that the queue is empty.
 - Set the size of the queue to 0.
 - Store the maximum number of elements (capacity) that the queue can hold.

Working of Circular Queue Data Structure

The operations for managing a Circular Queue data structure are as follows:

Enqueue Operation:

- If (REAR + 1) % capacity == FRONT, the queue is full
- If the queue is empty (FRONT == -1), set FRONT to 0.
- Update REAR to the next position in a circular manner using (REAR + 1) % capacity.
- Insert the new element at the position pointed to by **REAR**.
- Increase the size of the queue by 1.

Dequeue Operation:

- If **FRONT == -1**, the queue is empty.
- Retrieve the element at the position pointed to by FRONT.
- If **FRONT** equals **REAR**, reset both **FRONT** and **REAR** to **-1** to indicate that the queue is now empty.
- Otherwise, update FRONT to the next position in a circular manner using (FRONT + 1) % capacity.
- Decrease the **size** of the queue by **1**.

Priority Queue

- Nodes have predefined priorities.
- Node with the least priority is removed first.
- Insertion based on the order of node arrival.
- Used in algorithms like Dijkstra's shortest path and Prim's algorithm, and in data compression techniques like Huffman coding.

Insertion occurs based on the arrival of the values and removal occurs based on priority.

Deque (Double Ended Queue)

- Allows insertion and deletion at both front and rear ends.
- Provides flexibility in managing data with operations from both ends.

Working of Deque Data Structure

The operations for managing a deque data structure are as follows:

Insertion Operations:

- Insert at Front (push_front or addFirst): Adds an element to the front of the deque.
- Insert at Back (push_back or addLast): Adds an element to the back of the deque.

Deletion Operations:

- Remove from Front (pop_front or removeFirst): Removes and returns the element from the front of the deque.
- Remove from Back (pop_back or removeLast): Removes and returns the element from the back of the deque.

Working of Deque Data Structure

The operations for managing a deque data structure are as follows:

Access Operations:

- Get Front (peek_front or getFirst): Returns the element at the front of the deque without removing it.
- Get Back (peek_back or getLast): Returns the element at the back of the deque without removing it.

Other Operations:

- Size (size): Returns the number of elements currently in the deque.
- Empty Check (isEmpty): Checks if the deque is empty.
- Clear: Removes all elements from the deque.

Linked list Data Structure

A linked list is a linear data structure that includes a series of connected nodes. Here, each node stores the **data** and the **address** of the next node.

Unlike arrays, linked lists allow for efficient insertion and deletion of elements because they do not require elements to be stored in contiguous memory locations.

Basic Concepts

Node: The basic unit of a linked list. Each node contains:

- Data: The value stored in the node.
- **Pointer** (or reference): The address of the next node in the sequence.

Head: The first node in a linked list.

Tail: The last node in a linked list, whose pointer is typically null

Types of Linked Lists

- 1. Singly Linked List: Each node points to the next node. The last node points to null.
- 2. **Doubly Linked List:** Each node has two pointers, one pointing to the next node and another pointing to the previous node.
- **3. Circular Linked List:** The last node points back to the first node, forming a circle.
 - Singly Circular Linked List: Only the next pointer connects to the first node.
 - **Doubly Circular Linked List:** Both next and previous pointers connect accordingly.

Operations on Linked Lists

- Insertion: Adding a new node to the list.
 - At the beginning
 - · At the end
 - At a specific position
- **Deletion:** Removing a node from the list.
 - From the beginning
 - · From the end
 - From a specific position
- Traversal: Accessing each node in the list to perform an operation.
- **Searching:** Finding a node with a specific value.
- **Reversal:** Reversing the order of nodes in the list.

Insertion at the End:

- Create a new node with the given data.
- If the list is empty, make the new node the head.
- Otherwise, traverse to the last node.
- Set the last node's next to the new node.

Insertion at the Beginning:

- Create a new node with the given data.
- Set the new node's **next** to the current head.
- Update the head to be the new node.

Insertion at a Specific Position:

- If the position is 0, perform insertion at the beginning.
- Otherwise, traverse to the node just before the specified position.
- · Create a new node with the given data.
- Set the new node's next to the current node's next.
- Set the current node's next to the new node.

Deletion by Value:

- If the list is empty, return.
- If the head node has the specified data, update the head to be the next node.
- Otherwise, traverse the list to find the node with the specified data.
- Update the **next** pointer of the previous node to skip the node with the specified data.

Deletion by Position:

- If the list is empty, return.
- If the position is **0**, update the head to be the next node.
- Otherwise, traverse to the node just before the specified position.
- Update the **next** pointer of the previous node to skip the node at the specified position.

Traversal:

- Start from the head node.
- Visit each node, processing the node's data as needed.
- Move to the next node using the next pointer.
- Continue until the end of the list (when the next node is null).

Search:

- Start from the head node.
- Traverse the list, comparing each node's data with the target data.
- If a node with the target data is found, return **true**.
- If the end of the list is reached without finding the target data, return false.

Reverse:

- Initialize three pointers: previous, current, and next.
- Set **previous** to null and **current** to the head node.
- Loop through the list:
 - Save the next node (next = current.next).
 - Reverse the next pointer of the current node (current.next = previous).
 - Move previous and current one step forward (previous = current, current = next).
 - Update the head to be the **previous** node (the new head of the reversed list).

These algorithms provide a structured approach to manipulating a singly linked list, adhering to standard DSA principles. The time complexity for each operation varies.

- Insertion at the end: O(n)
- Insertion at the beginning: O(1)
- Insertion at a specific position: O(n)
- Deletion by value: O(n)
- Deletion by position: O(n)
- Traversal: O(n)
- Search: O(n)
- Reverse: O(n)

Tree Data Structure

A tree is a nonlinear hierarchical data structure that consists of nodes connected by edges.

A tree is a widely used abstract data type (ADT) that simulates a hierarchical tree structure with a set of linked nodes. It is a non-linear data structure, as opposed to arrays, linked lists, stacks, and queues which are linear data structures.

Key Terms

- **Node:** The fundamental part of a tree. Each node contains a value or data, and it may have a link to other nodes.
- **Root:** The top node of a tree. It does not have a parent.
- **Edge:** The connection between two nodes.
- **Child:** A node directly connected to another node when moving away from the root.
- **Parent:** A node directly connected to another node when moving towards the root.
- **Leaf:** A node that does not have any children.
- **Siblings:** A nodes that belong to the same parent.
- **Depth:** The depth of a node is the number of edges from the node to the tree's root node.
- **Height:** The height of a node is the number of edges on the longest path from the node to a leaf.
- **Degree:** The number of children a node has.
- Subtree: A tree consisting of a node and its descendants.

Types of Trees

- Binary Tree: Each node has at most two children.
- **Binary Search Tree (BST)**: A binary tree where the left child contains values less than the parent and the right child contains values greater than the parent.
- AVL Tree: A self-balancing binary search tree where the height of the two child subtrees of any node differs by at most one.
- Red-Black Tree: A self-balancing binary search tree with additional properties to ensure the tree
 remains balanced.
- **B-Tree**: A self-balancing search tree in which nodes can have multiple children, often used in databases and file systems.
- Trie: A tree-like data structure used to store a dynamic set of strings, where the keys are usually strings.

Basic Operations

- Insertion: Adding a new node to the tree.
- **Deletion:** Removing a node from the tree.
- Traversal: Visiting all the nodes in a specific order:
 - In-order Traversal: Left, Root, Right (for BST, gives sorted order).
 - Pre-order Traversal: Root, Left, Right.
 - Post-order Traversal: Left, Right, Root.

Binary Tree

A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two children, referred to as the left child and the right child. It is commonly used for efficient storage and retrieval of data, with various operations such as insertion, deletion, and traversal.

Full Binary Tree

A full Binary tree is a special type of binary tree in which every parent node/internal node has either two or no children.

Perfect Binary Tree

A perfect binary tree is a type of binary tree in which every internal node has exactly two child nodes and all the leaf nodes are at the same level.

Complete Binary Tree

A complete binary tree is just like a full binary tree, but with two major differences

- · Every level must be completely filled
- · All the leaf elements must lean towards the left.
- The last leaf element might not have a right sibling.

Degenerate or Pathological Tree

A degenerate or pathological tree is the tree having a single child either left or right.

Skewed Binary Tree

A skewed binary tree is a pathological or degenerate form of a binary tree in which all the nodes are aligned either to the left or the right. Therefore, there are two types of skewed binary trees: **left-skewed binary trees**, where each node has only a left child, and **right-skewed binary trees**, where each node has only a right child.

Binary Tree Representation

A node of a binary tree is represented by a structure containing a data part and two pointers to other structures of the same type.

NULL

NULL

NULL

NULL

Inorder Traversal

Inorder traversal is a depth-first traversal method used primarily for binary trees.

In this method, nodes are visited in the following order:

- 1. Visit the left subtree. Inorder(left subtree)
- 2. Visit the root node.
- 3. Visit the right subtree. Inorder(right subtree)

Try to do Inorder Traversal

Preorder Traversal

Preorder traversal is a tree traversal method where you visit the root node first, then recursively visit the left subtree, and finally, the right subtree. The steps for preorder traversal can be summarized as:

- 1. Visit the **root** node.
- 2. Traverse the **left subtree** in **preorder**.
- 3. Traverse the **right subtree** in **preorder**.

Try to do Preorder Traversal В

Postorder Traversal

Postorder traversal is a type of depth-first traversal for trees where the nodes are recursively visited in the following order:

left subtree, right subtree, root node.

This means that each node is visited only after its children have been visited.

- 1. Traverse the **left subtree** by recursively applying **postorder**.
- 2. Traverse the **right subtree** by recursively applying **postorder**.
- 3. Visit the **root** node.

Try to do Postorder Traversal В

Binary Search Tree(BST)

- A binary search tree (**BST**) is a data structure that efficiently maintains a sorted collection of numbers.
- It is termed a binary tree because each node can have at most two children.
- It is referred to as a search tree because it supports fast searching for the presence of a number in O(log(n)) time.

The distinguishing properties of a binary search tree include:

- All nodes in the left subtree are less than the root node.
- All nodes in the right subtree are greater than the root node.
- Both the left and right subtrees of each node are also BSTs, adhering to the above two properties.

Binary Search Tree(BST)

Node Structure: Each node in the tree contains a key (and possibly associated data) and has at most two children referred to as the left child and the right child.

- All keys in the **left subtree** of **k** are less than **k**.
- All keys in the **right subtree** of **k** are greater than **k**.

No Duplicate Nodes: Each key in the BST is unique.

Basic Operations on a BST

Search:

- Start at the root and compare the key to be searched with the key of the current node.
- If the key is equal, the search is successful.
- If the key is less, search the left subtree.
- If the key is greater, search the right subtree.
- · Repeat until the key is found or the subtree becomes null.

Insertion:

- Start at the root and compare the key to be inserted with the key of the current node.
- If the key is less, recursively insert it into the left subtree.
- If the key is greater, recursively insert it into the right subtree.
- If the position is found (null), insert the new node there.

Basic Operations on a BST

Deletion:

There are three cases to consider when deleting a node:

- The node is a leaf (no children): Simply remove the node.
- The node has one child: Remove the node and link its parent to its child.
- The node has two children: Find the in-order predecessor (maximum node in the left subtree) or in-order successor (minimum node in the right subtree) to replace the node, then delete the predecessor or successor node.

Traversal:

- In-order (Left, Root, Right): Produces a sorted list of keys.
- Pre-order (Root, Left, Right): Useful for copying the tree.
- Post-order (Left, Right, Root): Useful for deleting the tree.

Draw binary tree for below data sets

40,20,60,10,30,50,70

Draw binary tree for below data sets

10,20,30,40,50,60,70

Or

70,60,50,40,30,20,10

AVL Tree

- An **AVL (Adelson-Velsky and Landis)** tree is a self-balancing binary search tree where the difference in heights between the left and right subtrees of any node is at most one.
 - This balancing ensures that the tree remains approximately balanced, leading to better performance for insertion, deletion, and lookup operations compared to unbalanced binary search trees.

Properties of AVL Trees

Balance Factor:

For every node in the AVL tree, the difference in heights (balance factor) of the left and right subtrees is -1, 0, or 1. If a node's balance factor becomes less than -1 or greater than 1, the tree needs to be rebalanced.

Height:

The height of an AVL tree with n nodes is **O(log n)**, ensuring that operations like search, insert, and delete are efficient.

Balance Factor

The balance factor of a node in an AVL tree is defined as the difference between the heights of its left subtree and its right subtree:

Balance Factor = Height of Left Subtree - Height of Right Subtree

- Balance Factor = 0: The heights of the left and right subtrees are equal.
- Balance Factor = 1: The height of the left subtree is greater than the height of the right subtree by 1.
- Balance Factor = -1: The height of the right subtree is greater than the height of the left subtree by 1.

- The height of the left subtree of node 10 is 0 (since it has no left child).
- The height of the right subtree of node 10 is 2

Balance Factor of 10 = 0 - 2 = -2

- The height of the left subtree of node 20 is 0
- The height of the right subtree of node 20 is 1

Balance Factor of 20 = 0 - 1 = -1

Insertion in AVL Tree

10,20,30

- 10, 20, 30
- 10, 30, 20
- 20, 30, 10
- 20, 10, 30
- 30, 20, 10
- 30, 10, 20

Highlight unbalanced BST

In rotation operation, the positions of the nodes of a subtree are interchanged.

- Left Condition (LL)
- Right Condition (RR)
- Left Right Condition (LR)
- Right Left Condition (RL)

In rotation operation, the positions of the nodes of a subtree are interchanged.

- Left Condition (LL)
- Right Condition (RR)
- Left Right Condition (LR)
- Right Left Condition (RL)

10,20,30

In rotation operation, the positions of the nodes of a subtree are interchanged.

- Left Condition (LL)
- Right Condition (RR)
- Left Right Condition (LR)
- Right Left Condition (RL)

In rotation operation, the positions of the nodes of a subtree are interchanged.

- Left Condition (LL)
- Right Condition (RR)
- Left Right Condition (LR)
- Right Left Condition (RL)

In rotation operation, the positions of the nodes of a subtree are interchanged.

- Right Condition (RR)
- Left Right Condition (LR)
- Right Left Condition (RL)

10,30,20

In rotation operation, the positions of the nodes of a subtree are interchanged.

- Right Condition (RR)
- Left Right Condition (LR)
- Right Left Condition (RL)

30,10,20

Priority Queue

A priority queue is a specialized queue where each element is assigned a priority value. Elements are processed based on their priority, with higher priority elements served before lower priority ones. In cases where elements share the same priority, they are processed according to their order in the queue.

Difference between Priority Queue and Normal Queue

In a queue, the **first-in-first-out** rule is implemented whereas, in a priority queue, the values are removed on the **basis of priority**. The element with the highest priority is removed first.

Implement Priority Queue

Priority queue can be implemented using the following data structures:

- Arrays
- Linked list
- Binary search tree

Operations	peek	insert	delete
Linked List	O(1)	O(n)	0(1)
Binary Search Tree	O(1)	O(log n)	O(log n)

Graph Data Structure

A Graph in Data Structure is a non-linear data structure that consists of nodes and edges which connects them.

A Graph in Data Structure is a collection of nodes that consists of data and are connected to other nodes of the graph.

Nodes

Nodes create complete network in any graph. They are one of the building blocks of a Graph in Data Structure. They connect the edges and create the main network of a graph. They are also called vertices. A node can represent anything such as any location, port, houses, buildings, landmarks, etc.

They basically are anything that you can represent to be connected to other similar things, and you can establish a relation between the them.

Edges

Edges basically connects the nodes in a Graph in Data Structure. They represent the relationships between various nodes in a graph. Edges are also called the path in a graph.

A graph data structure (V, E) consists of:

- A collection of vertices (V) or nodes.
- A collection of edges (E) or path

The below represents a set of edges and vertices

A graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, connecting the pairs of vertices.

$$V = \{a, b, c, d\}$$

 $E = \{ab, ac, ad, bc, cd\}$

In this graph, **|V| = 4** because there are four nodes (vertices) and, **|E| = 5** because there are five edges (lines).

Path

A path in a graph is a finite or infinite set of edges which joins a set of vertices. It can connect to 2 or more nodes. Also, if the path connects all the nodes of a graph in Data Structure, then it is a connected graph, otherwise it is called a disconnected graph.

There may or may not be path to each and every node of graph. In case, there is no path to any node, then that node becomes an isolated node.

In this graph, the path from 'a' to 'e' is = {a,b,c,d,e}

Closed Path

A path is called as closed path if the initial node is same as terminal (end) node. A path will be closed path if: $\mathbf{V_0} = \mathbf{V_{n_i}}$ where $\mathbf{V_0}$ is the starting node if the graph and $\mathbf{V_n}$ is the last node. So, the starting and the terminal nodes are same in a closed graph.

The this graph have a closed path, where the **initial node** = **{e}** is same as the **final node** = **{e}**. So, the path becomes = **{e,d,f,g,e}**.

Simple Path

A path that does not repeat any nodes (vertices) is called a simple path. A simple path in a graph exists if all the nodes of the graph are distinct, expect for the first and the last vertex.

In this graph, **a,b,c,d** is a simple path. Because, this graph do not have any loop or cycle and none of the paths point to themselves.

Cycle Graph

A path that does not repeat any nodes(vertices) is called a simple path. A simple path in a graph exists if all the nodes of the graph are distinct, expect for the first and the last vertex.

Connected Graph

Connected graph is a graph in which there is an edge or path joining each pair of vertices. So, in a connected graph, it is possible to get from one vertex to any other vertex in the graph through a series of edges.

Complete Graph

In a complete graph, there is an edge between every single pair of node in the graph. Here, every vertex has an edge to all other vertices. It is also known as a full graph.

Weighted Graph

In weighted graphs, each edge has a value associated with them (called weight). It refers to a simple graph that has weighted edges. The weights are usually used to compute the shortest path in the graph.

The above graph is a weighted graph, where each edge is associated with a weight. It is not mandatory in a weighted graph that all nodes have distinct weight. Some edges may have same weights.

Loop

A loop (also called a self-loop) is an edge that connects a vertex to itself. It is commonly defined as an edge with both ends as the same vertex.

Although all loops are cycles, not all cycles are loops. Because, cycles do not repeat edges or vertices except for the starting and ending vertex.

Types of Graph

Graphs are classified based on the characteristics of their edges. There are two types of graphs.

Directed Graphs

Directed graphs in graph data structure are the graphs where the edges have directions from one node towards the other node. In Directed Graphs, we can only traverse from one node to another if the edge have a direction pointing to that node.

Types of Graph

Undirected Graphs

Undirected graphs have edges that do not have a direction. Hence, the graph can be traversed in either direction.

Graph Representation

In graph data structure, a graph representation is a technique to store graph into the memory of computer. We can represent a graph in many ways.

The following two are the most commonly used representations of a graph.

- Adjacency Matrix
- Adjacency List

Adjacency Matrix

An Adjacency Matrix is a 2D array of size **V x V** where V is the number of nodes in a graph. It is used to represent a "**finite graph**", with 0's and 1's. Since, it's size is **V x V**, it is a square matrix. The elements of the matrix indicates whether pairs of vertices are adjacent or not in the graph

	А	В	С	D	Е
Α	0	1	0	1	0
В	1	0	1	1	1
С	0	1	0	0	1
D	1	1	0	0	1
Е	0	1	1	1	0

	1	2	3	4	5	6	7
1	0	1	0	0	0	1	0
2	1	0	1	0	0	0	0
3	0	1	0	1	1	0	0
4	0	0	1	0	0	1	1
5	0	0	1	0	0	0	1
6	1	0	0	1	0	0	1
7	0	0	0	1	1	1	0

	V1	V2	V3	V4	V5	V6	V7	V8
V1	0	1	1	0	0	0	0	0
V2	1	0	0	1	0	0	0	0
V3	1	0	0	1	1	1	0	0
V4	0	1	1	0	0	0	0	0
V5	0	0	1	0	0	0	1	0
V6	0	0	1	0	0	0	1	1
V7	0	0	0	0	1	1	0	0
V8	0	0	0	0	0	1	0	0

Adjacency Matrix

The adjacency Matrix for a directed graph also follows the same conventions, expect for, there is a 'l' in the matrix if there is an edge pointing from one node to another, say from node A to node B. But vice versa may not be applicable.

	А	В	С	D	Е
Α	0	0	0	0	0
В	1	0	0	0	1
С	1	0	0	0	0
D	0	0	1	0	0
Е	0	0	0	1	0

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	1
1	1	0	0	1	0	0	0	0
2	0	0	0	0	0	1	0	0
3	1	0	1	0	1	0	0	0
4	0	0	0	0	0	0	0	1
5	0	1	0	0	0	0	1	0
6	0	0	1	0	0	0	0	0
7	0	0	0	0	0	0	0	0

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	1
1	1	0	0	1	0	0	0	0
2	0	0	0	0	1	1	0	0
3	1	1	1	0	1	0	0	0
4	0	0	1	0	0	0	0	1
5	0	1	0	0	0	0	1	0
6	0	0	1	0	0	1	0	0
7	1	0	0	0	0	0	0	0

Adjacency List

- An adjacency list represents a graph as an array of linked lists.
- The index of the array represents a node.
- Each element in the linked list represents the nodes that are connected to that node by an edge.

Adjacency Matrix

Weighted Graph

	а	b	С	d	е	f	g
а	0	6	0	0	0	0	10
b	6	0	2	0	0	0	0
С	0	2	0	30	0	0	0
d	0	0	30	0	10	22	0
е	0	0	0	10	0	15	50
f	0	0	0	22	15	0	8
g	10	0	0	0	50	8	0

	V1	V2	V3	V4	V5	V6	V7	V8
V1	0	10	30	0	0	0	0	0
V2	10	0	0	5	0	0	0	0
V3	30	0	0	45	30	50	0	0
V4	0	5	45	0	0	0	0	0
V5	0	0	30	0	0	0	20	0
V6	0	0	50	0	0	0	70	10
V7	0	0	0	0	20	70	0	0
V8	0	0	0	0	0	10	0	0

Graph traversals

- Graph traversal means visiting every vertex and edge exactly once in a well-defined order. While using certain graph algorithms, you must ensure that each vertex of the graph is visited exactly once.
- The order in which the vertices are visited are important and may depend upon the algorithm or question that you are solving.

During a traversal, it is important that you track which vertices have been visited. The most common way of tracking vertices is to mark them.

Breadth First Search (BFS)

There are many ways to traverse graphs. BFS is the most commonly used approach.

As the name BFS suggests, you are required to traverse the graph breadthwise as follows:

- 1. First move horizontally and visit all the nodes of the current layer
- 2. Move to the next layer

Depth First Search (DFS)

The DFS algorithm is a recursive algorithm that uses the idea of backtracking. It involves exhaustive searches of all the nodes by going ahead, if possible, else by backtracking.

The word backtrack means that when you are moving forward and there are no more nodes along the current path, you move backwards on the same path to find nodes to traverse. All the nodes will be visited on the current path till all the unvisited nodes have been traversed after which the next path will be selected.

This recursive nature of DFS can be implemented using stacks. The basic idea is as follows:

- Pick a starting node and push all its adjacent nodes into a stack.
- Pop a node from stack to select the next node to visit and push all its adjacent nodes into a stack.

Repeat this process until the stack is empty. However, ensure that the nodes that are visited are marked. This will prevent you from visiting the same node more than once. If you do not mark the nodes that are visited and you visit the same node more than once, you may end up in an infinite loop.

Dijkstra's Algorithm

Dijkstra's algorithm finds the shortest path from one vertex to all other vertices.

It does so by repeatedly selecting the nearest unvisited vertex and calculating the distance to all the unvisited neighboring vertices.

Dijkstra's algorithm is often considered to be the most straightforward algorithm for solving the shortest path problem.

Dijkstra's algorithm is used for solving single-source shortest path problems for directed or undirected paths. Single-source means that one vertex is chosen to be the start, and the algorithm will find the shortest path from that vertex to all other vertices.

Algorithm Works

- Set initial distances for all vertices: 0 for the source vertex, and infinity for all the other.
- Choose the unvisited vertex with the shortest distance from the start to be the current vertex. So the algorithm will always start with the source as the current vertex.
- For each of the current vertex's unvisited neighbor vertices, calculate the distance from the source and update the distance if the new, calculated, distance is lower.
- We are now done with the current vertex, so we mark it as visited. A visited vertex is not checked again.
- Go back to step 2 to choose a new current vertex, and keep repeating these steps until all vertices are visited.
- In the end we are left with the shortest path from the source vertex to every other vertex in the graph.

	А	В	С	D	Е
А	0	INF	INF	INF	INF
В	0	5	10	INF	INF
С	0	5	10	40	15
Е	0	5	10	30	15
D	0	5	10	25	15

A, C, D, E, B, F, G

Bellman Ford's Algorithm

It is similar to Dijkstra's algorithm but it can work with graphs in which edges can have negative weights.

The Bellman-Ford algorithm is best suited to find the shortest paths in a directed graph, with one or more negative edge weights, from the source vertex to all other vertices.

It does so by repeatedly checking all the edges in the graph for shorter paths, as many times as there are vertices in the graph (minus 1).

Relaxation of Edges for Bellman-Ford

It states that for the graph having **N vertices**, all the edges should be relaxed **N-1** times to compute the single source shortest path.

In order to detect whether a negative cycle exists or not, relax all the edge one more time and if the shortest distance for any node reduces then we can say that a negative cycle exists. In short if we relax the edges **N times**, and there is any change in the shortest distance of any node between the **N-1th** and **Nth** relaxation than a negative cycle exists, otherwise not exist.

```
A B C D = 8bit \times 4 = 32bit
```

B - 01

 $\begin{array}{c} C-10 \\ D-11 \end{array}$

Huffman Coding

Huffman Coding is a technique that is used for compressing data to reduce its size without losing any of its details. It was first developed by **David Huffman** and was named after him.

Huffman Coding is generally used to compress the data which consists of the frequently repeating characters.

Huffman Coding is a famous **Greedy algorithm**. It is said to be a Greedy Algorithm because the size of code assigned to a character depends on the frequency of the character.

The character with higher frequency gets the short-length variable code and vice-versa for characters with lower frequency. It uses a variable-length encoding which means that it assigns a variable-length code to all the characters in the given stream of data.

Prefix Rule

This rule basically means that the code which is assigned to any character should not be the prefix of any other code.

If this rule is not followed, then some ambiguities can occur during the decoding of the Huffman tree formed.

Now assume that the generated bitstream is 001, while decoding the code it can be written as follows:

$$0 \ 0 \ 1 = aab$$

 $0 \ 01 = ac$

How does Huffman Coding work?

There are mainly two major steps involved in obtaining the Huffman Code for each unique character:

- 1. Firstly, build a Huffman Tree from the given stream of data(only taking the unique characters).
- 2. Secondly, we need to traverse the Huffman Tree which is formed and assign codes to characters and decode the given string using these huffman codes.

ABBCDBCCDAABBEEEBEAB

A-4	D - 2
B - 7	C - 3
C-3	A-4
D - 2	E – 4
E – 4	B – 7

How to Build a Huffman Tree from Input Characters?

Firstly, we need to calculate the frequency of each character in the given string.

ABBCDBCCDAABBEEEBEAB

\sim	1
~~	\sim
10	1)
_	_

Character	Frequency/count	Binary Code
А	4	
В	7	
С	3	
D	2	
Е	4	

How to Build a Huffman Tree from Input Characters?

- Sort the characters in ascending order of frequency. These are stored in a priority queue Q/min-heap.
- 2. Create a leaf node for every unique character and its frequency from the given stream of data.
- 3. Extract the two minimum frequency nodes from the nodes and the sum of these frequencies is made the new root of the tree.
- 4. While extracting the nodes with the minimum frequency from the min-heap:
 - Make the first extracted node its left child and the other extracted node as its right child.
 - Add this node to the min-heap.
 - · Since the minimum frequency should always be on the left side of the root.
- 5. Repeat steps 3 and 4 until the heap contains only one node(i.e, all characters are included in the tree). The remaining node is the root node and the tree is complete

How to Build a Huffman Tree from Input Characters

Firstly, we need to calculate the frequency of each character in the given string.

ABBCDBCCDAABBEEEBEAB -> 160bit

Character	Frequency/count	Binary Code
Α	4	01
В	7	11
С	3	101
D	2	100
E	4	00

0111111011001110110110001011111100000011000111 ABBCDBC

