Codification et Représentation de l'Information (CRI)

MI – USTHB – SFC4 Par Dr L.ABADA

abada.lyes@gmail.com références : CRI - N.HADJI

- Chapitre 1 : Codification et représentation des nombres,
- Chapitre 2 : Algèbre de Boole,
- Chapitre 3: circuits combinatoires:
 - L'Additionneur,
 - Le Décodeur,
 - Le Multiplexeur
 - •

Introduction

- Notre langage écrit utilise un code basé sur 26 lettres (majuscules et minuscules), 10 chiffres, des symboles de ponctuation et des signes mathématiques.
- Grâce à ce code et à ces règles nous pouvons transmettre des informations, donner des instructions, dénombrer...
- Bien que les ordinateurs soient qualifiés "d'intelligence artificielle", ils n'ont aucune faculté d'appréhender le monde extérieur.

Introduction

- Bien que les ordinateurs soient qualifiés "d'intelligence artificielle", ils n'ont aucune faculté d'appréhender le monde extérieur.
- Leur seule intelligence réside dans leur rapidité d'exécution de combinaisons d'ordre à deux états (0, 1)équivalent à (éteint, allumé).
- Le terme bit signifie « binary digit ». Il s'agit de la plus petite unité d'information manipulable par une machine numérique.
- Il est possible de représenter physiquement cette information binaire par un signal électrique ou magnétique

Introduction

 La codification consiste à établir une correspondance entre la représentation externe de l'information dont nous sommes utilisateurs et sa représentation interne dans la machine, qui est une suite de bits (suite de 0 et 1)

Systèmes de numération

- Un système de numération est défini par un ensemble de symboles (chiffres ou lettres) et des règles d'écriture pour le positionnement de ces symboles.
- L'exemple le plus répandu de système de numération est la numération décimale.
- Ce système est composé de dix chiffres : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Un nombre est représenté par une succession de chiffres.
- Chaque chiffre possède un poids.

Systèmes de numération

$$2_3 3_2 4_1 1_0 = 2*10^3 + 3*10^2 + 4*10^1 + 1*10^0$$

 $abcd = a*10^3+b*10^2+c*10^1+d*10^0$

Base	Base16	Base12	Base 10	Base 9	Base8	Base 5	Base 3	Base 2	
	0123456789ABCDEF0123 19ABC 21F	0123456789AB0123456789AB0 111111111112	00123456789011234567890 1 234 90 10 10 10 10 10 10 10 10 10 10 10 10 10	00 00 00 00 00 00 00 00 00 00 00 00 00	0123456701234567 11123456701223456 77	0 12 34 10 12 13 14 22 22 23 4 10 10 10 10 10 10 10 10 10 10 10 10 10	0 12 10 11 20 21 100 101 110 111 120 121 200 201		00 01 10 100 101 100 1010 1001 1100 1111 10000 10010

0123456701234567012345670123

$$(24)_8 = 2*8^1 + 4*8^0 = 16 + 4 = (20)_{10}$$

$$(24)_8 = 2*8^1 + 4*8^0 = 16 + 4 = (20)_{10}$$

$$(a_3a_2a_1a_0)_{10} = a_3*10^3 + a_2*10^2 + a_1*10^1 + a_0*10^0$$

$$(a_3 a_2 a_1 a_0)_8 = a_3 * 8^3 + a_2 * 8^2 + a_1 * 8^1 + a_0 * 8^0$$

$$(a_3 a_2 a_1 a_0)_{10} = a_3 * 10^3 + a_2 * 10^2 + a_1 * 10^1 + a_0 * 10^0$$

 $(a_3 a_2 a_1 a_0)_8 = a_3 * 8^3 + a_2 * 8^2 + a_1 * 8^1 + a_0 * 8^0$

Bases

Un système de numération à base B est défini par B symboles (chiffres ou lettres) Soit N un nombre de n chiffres représenté en base B

$$N = a_{n-1}a_{n-2}...a_{i}...a_{0} i a_{i} < B$$

(Tous les symboles sont strictement inférieurs à B)

Quelque soit la base, la forme polynomiale de N est :

$$N = a_{n-1} * B^{n-1} + a_{n-2} * B^{n-2} + ... + a_i * B^i + ... + a_0 * B^0$$

Système Binaire (Base 2)

 \rightarrow {0,1}

Système Octal (Base 8)

 \rightarrow {0,1,2,3,4,5,6,7}

Système Hexadécimal (Base 16)

 \rightarrow {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Changement de base : Base B→Base 10:

il suffit de représenter le nombre sous sa forme polynomiale et calculer la somme de tous les termes

Bases

Un système de numération à base B est défini par B symboles (chiffres ou lettres) Soit N un nombre de n chiffres représenté en base B

$$N = a_{n-1}a_{n-2}...a_{i}...a_{0} i a_{i} < B$$

(Tous les symboles sont strictement inférieurs à B)

Quelque soit la base, la forme polynomiale de N est :

$$N = a_{n-1}^{} * B^{n-1} + a_{n-2}^{} * B^{n-2} + a_{i}^{} * B^{i} + a_{0}^{} * B^{0}$$

Changement de base : Base B→Base 10:

Exemple:

B = 2
N=
$$(1111011)_2 = 1*2^6 + 1*2^5 + 1*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 = (123)_{10}$$

B = 16
N =
$$(7B)_{16}$$
 = $(7*16^1 + 11*16^0)_{10}$ = 123

Changement de base : Base B→Base 10:

Pour les nombres décimaux, on utilisera des exposants négatifs.

Exemple:

$$B = 16$$

$$N = (7_1B_0, 8_14_2)_{16} = 7*16^1 + 11*16^0 + 8*16^{-1} + 4*16^{-2} = (123,515625)_{10}$$

Changement de base : Base 10 → Base B:

La règle à suivre est celle des divisions successives,

- On divise le nombre par <u>B</u>
- 2. On sauvegarde le reste puis on divise le quotient par B
- 3. Ainsi de suite jusqu'à obtention d'un quotient nul

La suite des restes correspond au nombre de la base visée Le premier reste correspond au poids faible et le dernier au poids fort

Changement de base : Base 10 → Base B

Exemple: binaire (base2) \rightarrow N=(58)₁₀ \rightarrow (???)₂

La règle à suivre est celle des divisions successives,

- 1. On divise le nombre par **B**
- On sauvegarde le reste puis on divise le quotient par B
- 3. Ainsi de suite jusqu'à obtention d'un quotient nul

La suite des restes correspond au nombre de la base visée

Le premier reste correspond au poids faible et le dernier au poids fort

Changement de base : Base 10 → Base B:

Exemple: octale (base8)
$$\rightarrow$$
 N=(58)₁₀ \rightarrow (???)₈

La règle à suivre est celle des divisions successives,

- On divise le nombre par <u>B</u>
- On sauvegarde le reste_puis on divise le quotient par B
- Ainsi de suite jusqu'à obtention d'un quotient nul

La suite des restes correspond au nombre de la base visée Le premier reste correspond au poids faible et le dernier au poids fort 72

Changement de base : Base 10 → Base B:

Exemple: hexadécimale (base16) \rightarrow N=(58)₁₀ \rightarrow (???)₁₆

La règle à suivre est celle des divisions successives,

- On divise le nombre par <u>B</u>
- On sauvegarde le reste_puis on divise le quotient par B
- 3. Ainsi de suite jusqu'à obtention d'un quotient nul

La suite des restes correspond au nombre de la base visée Le premier reste correspond au poids faible et le dernier au poids fort **3A**

Changement de base : Base B1 → Base B2:

Pour passer d'une base B1 vers une base B2 il faut 2 opérations.

- 1. Il faut d'abord passer de la base B1 vers la base 10
- 2. puis de la base 10 vers la base B2

Changement de base : Base B1 → Base B2:

Exemple: Convertir (3141)5 vers la base 16

$$(3141)_5 = (421)_{10}$$

 $(421)_{10} = (1A5)_{16}$

$$\rightarrow$$
 (3141)₅ = (1A5)₁₆

Pour passer d'une base B1 vers une base B2 il faut 2 opérations.

- 1. Il faut d'abord passer de la base B1 vers la base 10
- 2. puis de la base 10 vers la base B2

Changement de base :

Applications aux bases 2, 8 et 16

2→ 8

Pour convertir un nombre de la base 2 vers la base 8, il faut découper ce nombre en groupes de 3 bits et remplacer chaque groupe par sa valeur octale (en partant de la droite).

Exemple : Convertir $(1\ 011\ 010)_2$ vers la base 8 $(001\ 011\ 010)_2 = (1\ 3\ 2)_8$

Changement de base :

Applications aux bases 2, 8 et 16

2 ← 8

Pour convertir un nombre de la base 8 vers la base 2, il suffit de transcrire chaque chiffre de ce nombre en binaire sur 3 bits (en partant du poids faible).

Exemple: Convertir (645)₈ vers la base 2

 $(420)_8 = (100 \ \underline{0}10 \ 000)_2$

2 → **16**

Pour convertir un nombre de la base 2 vers la base 16, il faut découper le nombre en groupes de 4 bits et remplacer chaque groupe par sa valeur hexadécimale (en partant de la droite).

Exemple:

Convertir $(101 \ 1010)_2$ vers la base 16 $(0101 \ 1010)_2 = (5 \ A)_{16}$

Base 2	Base 16
0000 0001 0010 0101 0110 0111 1001 1011 1100 1111 1110	0123456789ABCDEF

2 ← 16

Pour convertir un nombre de la base 16 vers la base 2, il suffit de transcrire chaque chiffre de ce nombre en binaire sur 4 bits en partant du poids faible.

Exemple: Convertir (A15)₁₆ vers la base 2

 $(A15)_{16} = (1010 \ 0001 \ 0101)_2$

Base 2	Base 16
0000 0001 0010 0101 0110 0111 1000 1011 1100 1111 1110	0123456789ABCDEF

8 → **16**

Pour convertir un nombre de la base 8 vers la base 16 ou inversement, on peut transiter par la base 10 mais on peut également passer par la base 2

Base8 \rightarrow base2 \rightarrow base16
Base16 \rightarrow base2 \rightarrow base8

Exemple: Convertir $(232)_8$ vers la base 16 $(232)_8 = (010 \ 011 \ 010)_2 = (0000 \ 1001 \ 1010)_2 = (0 9 \ A)_{16}$

des nombres décimaux

Pour la conversion des nombres décimaux, on sépare la partie entière de la partie décimale.

La partie entière est traitée comme indiqué précédemment. La conversion de la partie décimale se fait de droite à gauche.

```
(011101,010\ 110)_2 = (\ \underline{0}11\ 101,010\ 11\underline{0}\ )_2 = (35,26)_8

(0001\ 1101\ ,0101\ 1000)_2 = (\ \underline{000}1\ 1101,0101\ 1\underline{000}\ )_2 =

(1D,58)_{16}
```

Base 2 Base 16

1

(Exemples d'opérations réalisées en binaire)

Addition

29

+ 111

+ 7

100100

36

$$0+0=0$$

 $0+1=1$
 $1+0=1$
 $1+1=10=2_{10}$
 $1+1+1=11=3_{10}$

(Exemples d'opérations réalisées en binaire)

1

Soustraction

 $1 \quad 1 \quad \boxed{1} \quad \boxed{0} \quad 1$

27

- 11

- 9

1 0 1 10

22

0-0 = 0

0-1 =

1-0 = 1

1-1 = 0

(Exemples d'opérations réalisées en binaire)

(Exemples d'opérations réalisées en binaire)

Division

(Exemples d'opérations réalisées en binaire)

Division

1100001	101	193	5
001000	100110	4 3	38
00110		3	
0011			

Représentation des nombres entiers relatifs

Les entiers relatifs sont représentés en binaire dans un format fixe (on ne peut pas comparer par exemple un nombre de 5 bits avec un nombre de 8 bits).

Le bit de poids fort représente le signe, il est égal à 0 si le nombre est positif et il est égal à 1 si le nombre est négatif

Représentation des nombres entiers relatifs

- Représentation en signe et valeur absolue (SVA)
- Représentation en complément à 1 (C1)
- Représentation complément à 2 (C2)
- Représentation d'un nombre en virgule flottante dans le format IEEE 754

Représentation en Signe et valeur absolue (SVA)

Le <u>bit de poids fort</u> représente le signe du nombre (0 pour + et 1 pour –) Les autres bits représentent la valeur absolue du nombre. X représenté sur un format de n bits - ($2^{n-1} - 1$) < X < + ($2^{n-1} - 1$)

$$000 = 7 = 2^{n}-1$$

Exemples : Représentation sur **8 bits**

$$A = +25$$

$$-(2^7-1) < X < +(2^7-1)$$

$$A = -25$$

10011001.....

Représentation en signe et valeur absolue (SVA)

Le bit de poids fort représente le signe du nombre (0 pour + et 1 pour -) Les autres bits représentent la valeur absolue du nombre. X représenté sur un format de n bits - ($2^{n-1} - 1$) < X < + ($2^{n-1} - 1$)

```
Exemples : Représentation sur n=8 bits
```

$$B = +525 = 10\ 0000\ 1101_{(2)}$$

 $525 > 2^{11} - 1 = 127$

525:

N'est pas possible,

Représentation en complément à 1 (C1)

Le complément à 1 d'un nombre est obtenu en inversant tous les bits. Le bit de poids fort représente le signe du nombre (0 pour + et 1 pour –). X représenté sur un format de n bits - $(2^{n-1} - 1) < X < + (2^{n-1} - 1)$

Exemple: Représentation sur 8 bits

$$A = 10011001$$

 $C1(A) = 01100110$

$$A + C1(A) = 1111111111+1 = 00000000$$

Représentation complément à 2 (C2)

Le complément à 2 d'un nombre est égal au complément à 1 (C1) du nombre auquel on ajoute 1 : C(2) = C(1) + 1, X représenté sur un format de n bits - $(2^{n-1}) < X < + (2^{n-1} - 1)$ (-X) = C2(X)

```
Exemples : représentation sur 8 bits A = 25 = 00011001_{(2)} CA1(25) = 11100110_{(ca1)} CA2(25) = 11100110 + 1 = 11100111_{(ca2)} CA2(25) = -25 \text{ (sur 8bit)}
```

Représentation complément à 2 (C2)

```
Exemple avec n=4:
E = \begin{bmatrix} -2^{4-1} & 2^{4-1} & -1 \end{bmatrix}
E = [-8,7]
0= 0000 1111+1 = 0000
1= 0001 1110+1=1111
2= 0010 1101+1 = 1110
3= 0011 1100+1 = 1101
4= 0100
5= 0101
6= 0110
7= 0111 1000+1 = 1001
1111
```

```
1110→ 0001+1
= 0010
-0 = C2(0) = 0000
-1 = C2(1) = 1111
-2 = C2(2) = 1110
-3 = C2(3) = 1101
-4 = C2(4) = 1100
-5 = C2(5) = 1011
-6 = C2(6) = 1010
-7 = C2(7) = 1001
-8= C2(8)= 1000
```

Représentation complément à 2 (C2)

Soit A et B 2 nombres représentés en C2 sur 8 bits, trouver leurs valeurs décimales.

Représenter en CA2 :

```
A = 53
```

$$A = 00110101_{(2)} = 00110101_{(ca2)}$$

$$A = -53$$

$$A = -53 = CA2(53) = CA2(00110101) = CA1(00110101) + 1$$

$$= 11001010+1 = 11001011_{(ca2)}$$

Calculer le CA2:

$$A = 13$$

$$CA2(A) = CA2(13) = CA1(00001101) + 1 = 11110010 + 1 = 11110011 = -13$$

Opérations arithmétiques en complément à 2

Dans cette représentation la soustraction doit est traitée comme une addition. Pour les opérations arithmétiques on doit appliquer la règle suivante :

$$\forall (A,B) \in E \text{ si } X = A + B \text{ alors } X \in E$$

Exemples d'opérations arithmétiques avec n=4 (E = [- 8,+ 7]) :

Opérations arithmétiques en complément à 2

Dans cette représentation la soustraction doit est traitée comme une addition. Pour les opérations arithmétiques on doit appliquer la règle suivante :

$$\forall (A,B) \in E \text{ si } X = A + B \text{ alors } X \in E$$

Exemples d'opérations arithmétiques avec n=4 (E = [- 8,+ 7]) :

Opérations arithmétiques en complément à 2

Dans cette représentation la soustraction doit est traitée comme une addition. Pour les opérations arithmétiques on doit appliquer la règle suivante :

$$\forall (A,B) \in E \text{ si } X = A + B \text{ alors } X \in E$$

Exemples d'opérations arithmétiques avec n=4 (E = [- 8,+ 7]) :

Dépassement ?

Traitement du dépassement de capacité pour une addition:

- Si les deux opérandes sont de même signe et que le résultat est du même signe que les opérandes, il n'y a pas de dépassement
- \triangleright 0001 + 0101 = 0110 \Leftrightarrow 1+5= 6
- **▶** 1111 + 1011 = 11010 ⇔ -1-5=-6
- Si les deux opérandes sont de même signe et que le résultat est du signe opposé alors il y a dépassement.
- \rightarrow 0101+0100=1001 \Leftrightarrow 5+4 = -7
- Si les deux opérandes sont de signes opposés, il n'y a jamais de dépassement
- \rightarrow 1110+0111= $\frac{1}{1}$ 0101 \Leftrightarrow -2 + 7 = 5

Traitement du dépassement de capacité pour une addition:

Remarque:

- Il ne faut pas confondre les 2 expressions :
- 1. « Représenter X en format C2 » : revient à écrire X en C2
- 2. « Donner le C2 de X » reviens à écrire l'opposé de X

Ex : X = 35

Représenter 35 en CA2

$$35 = 00100011_{(ca2)}$$

Représenter -35 en CA2

$$-35 = CA2(35) = CA1(00100011) + 1 = 110111101$$

Calculer/donner le CA2 de 35

$$CA2(35) = -35 = CA1(00100011) + 1 = 110111101$$

Le code BCD

Le code BCD, Binary Coded Decimal (Décimal Codé en Binaire) est un code qui s'applique uniquement aux chiffres de la base 10. Chaque chiffre décimal est représenté directement par sa valeur binaire sur un format de 4 bits

Table des codes BCD

DEC → BCD

0 > 0000

1 **→** 0001

2 **→** 0010

3 **→** 0011

4 → 0100

5 **→** 0101

6 **→** 0110

7 **→** 0111

8 **→** 1000

9 → 1001

Exemple:

$$(987)_{10} = (1001 1000 0111)_{BCD}$$

$$(13)_{10} = (0001 \ 0011)_{BCD}$$

Addition BCD

Binaire 0 • 0000 1 **→** 0001 2 **→** 0010 3 **→** 0011 4 **→** 0100 5 **→** 0101 6 **→** 0110 7 **→** 0111 8 **→** 1000 9 1001 10**→**1010 11**→**1011 12**→**1100 13**→**1101 14**→**1110 15**→**1111 16**→**10000

```
BCD
    0000 🗲 0
    0001 	 1
    0010 	 2
    0011 ← 3
    0100 	 4
    0101 	 5
    0110 	 6
    0111 	 7
    1000 	 8
    1001 ← 9
0001 0000  
0001 0001  
0001 0010 \( \bigcup 12
0001 0011  
0001 0100←14
0001 0101 15
   1 0110←16
```

```
+
1 0011
```

Addition BCD

SI la somme de 2 chiffres codés en BCD est inférieure ou égale à 9 (1001) alors on ne fait rien sinon on ajoute 6 (0110) pour corriger et on retient 1.

Addition BCD

SI la somme de 2 chiffres codés en BCD est inférieure ou égale à 9 (1001) alors on ne fait rien sinon on ajoute 6 (0110) pour corriger et on retient 1.

Exemple 2	
4	0000 0100
+ 3	0000 0011
=	0000 0111

Le code GRAY

Le code de Gray est un code binaire qui permet de passer d'un nombre entier N au nombre suivant (N+1) en changeant un seul digit(bit). (On l'appelle également Code Réfléchi). Ce code sera utilisé principalement dans les Tableaux de Karnaugh pour simplifier les fonctions booléennes.

0000	0	11	22
0001	1	12	23
0011	2	13	24
0010	3	14	25
0110	4	15	26
0111	5	16	27
0101	6	17	28
0100	7	18	29
1100	8	19	30
1101	9	20	31
1111	10	21	32

Conversion du code binaire vers le code Gray

Soit $X = B_n B_{n-1}.... B_0$ représenté en binaire Pour convertir X en code de Gray il faut suivre les règles suivantes :

$$G_n = B_n$$

 $G_i = 0$ si $B_i = B_{i+1}$
 $G_i = 1$ si $B_i <> B_{i+1}$

Exemple: pour n = 4 X = 10001 en binaire

 $X = (11001)_{gray}$

1 0 0 0 1 B4 B3 B2 B1 B0

1 1 0 0 1 G4 G3 G2 G1 G0

Le code GRAY

Le code de Gray est un code binaire qui permet de passer d'un nombre entier N au nombre suivant (N+1) en changeant un seul digit. (On l'appelle également Code Réfléchi). Ce code sera utilisé principalement dans les Tableaux de Karnaugh pour simplifier les fonctions booléennes.

22	11101	11	1110	0	0000
23	11100	12	1010	1	0001
24	10100	13	1011	2	0011
25	10101	14	1001	3	0010
26	10111	15	1000	4	0110
27	10110	16	11000	5	0111
28	10010	17	11001	6	0101
29	10011	18	11011	7	0100
30	10001	19	11010	8	1100
31	10000	20	11110	9	1101
32	110000	21	11111	10	1111

Conversion du code Gray vers le code binaire

Soit $X = G_n G_{n-1}....G_0$ représenté en code Gray Pour convertir X en binaire il faut suivre les règles suivantes :

Bn = Gn

$$B_i = 0 \text{ si } B_{i+1} = G_i$$

 $B_i = 1 \text{ si } B_{i+1} <> G_i$

Exemple : pour n = 4 X = 10101 en code Gray $X = (11001)_2$

1 0 1 0 1 G4 G3 G2 G1 G0

B4 B3 B2 B1 B0

Codification et représentation - Numérique

Le code ASCII

Définition Le code ASCII: American Standard Code For Information Interchange,

Est une norme de codage en informatique mise au point dans les années 60.

Ce code définit 128 caractères représentés sur 8 bits.

Cadification at raprácantation Numárique : La cada ACCII

Cette table est présentée sous une forme condensée, fondée sur la base 16. Chaque caractère se trouve au croisement d'une ligne et d'une colonne. Le numéro de la ligne suivi du numéro de la colonne représentent le code du caractère en hexadécimal.

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	нт	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	!	=	#	\$	%	&	1	()	*	+	,	-	•	/
3	0	1	2	3	4	5	6	7	8	9	:	;	٧	II	۸	?
4	@	Α	В	С	D	E	F	G	Н	ı	J	К	L	М	Ν	0
5	Р	ď	R	S	T	U	V	w	X	Y	Z	[\]	<	ı
6	,	а	b	С	d	е	f	g	h	i	j	k	1	m	n	0
7	n	a	r	٠	+		v	١٨/	v	v	7	Į.	ı	3	2	DEL

Exemple : La lettre M se trouve au croisement de la ligne 4 et de la colonne D son code est 4D en hexadécimal.

Sa représentation est donc : 0100 1101 en code ASCII 0

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	нт	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	!	=	#	\$	%	&	-	()	*	+	,	•		/
3	0	1	2	3	4	5	6	7	8	9	:	;	٧	II	۸	?
4	@	Α	В	С	D	E	F	G	Н	ı	J	К	L	М	Ν	0
5	Р	Q	R	S	Т	U	V	W	X	Υ	Z]	\]	<	1
6	`	а	b	С	d	е	f	g	h	i	j	k	-	m	n	0
7	n	a	r	٠			V	۱۸/	v	v	,	Į	ı	3	2	DEL

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	нт	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
_					_	0.4			,	,	44					,

Caractères de contrôle :

On peut considérer que l'ASCII dispose d'une trentaine de caractères de contrôle plus ou moins utilisés.

Les caractères usuels sont NUL, LF, CR, DEL et ESC

- > NUL: indique la fin d'une chaine de caractères notamment en langage C.
- LF et CR: indiquent la fin d'une ligne.
- On utilisera LF, CR ou les 2 selon le système d'exploitation :
 - Sous Linux par exemple ce sera LF,
 - sous Mac OS on utilise CR
 - sous Windows ce sera CR suivi de LF.
- **ESC** indique la sortie d'un texte.
- > **DEL** indique l'effacement d'un caractère.

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	нт	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	!	=	#	\$	%	&	•	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	;	٧	=	۸	?
4	@	Α	В	С	D	E	F	G	Н	ı	J	К	L	М	N	0

Exemple : Dans un éditeur de texte ou dans un champ de saisie taper sans relâcher la touche alt + le code de caractère en décimal :

$$4D_{(16)} = 77_{(10)} \rightarrow M$$

 $30_{(16)} = 48_{(10)} \rightarrow 0$
 $3F_{(16)} = 63_{(10)} \rightarrow ?$
 $45_{(16)} = 69_{(10)} \rightarrow E$

Exercise N°7: (à faire comme un exemple en cours)

1/ En code ASCII (41)16 correspond à 'A' et (30)16 correspond à '0', sans l'utilisation de la table du code ASCII déduire le codage du message suivant : Covid-19

2/ Décoder le message suivant :4269656E76656E757320656E204F51

Exercice N°7: (à faire comme un exemple en cours)

1/ En code ASCII

$$(41)_{16} \rightarrow 'A'$$

$$(61)_{16} \rightarrow 'a'$$

$$(30)_{16} \rightarrow '0',$$

$$(2D)_{16} \rightarrow '-'$$

Sans l'utilisation de la table du code ASCII déduire le codage du message suivant :

Covid-19

$$'C' = 43$$

$$'0' = 6F$$

$$o' = 6F$$
 $v' = 76$ $i' = 69$ $d' = 64$

$$d' = 64$$

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	нт	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	!	"	#	\$	%	&	1	()	*	+	,	•		/
3	0	1	2	3	4	5	6	7	8	9	:	;	٧	II	۸	?
4	@	Α	В	С	D	E	F	G	Н	ı	J	К	L	М	N	О
5	Р	Q	R	S	Т	U	V	W	х	Υ	Z	[\]	^	_
6	`	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n	o
7	р	q	r	s	t	u	v	w	x	у	z	{	1	}	~	DEL

Exercice N°7:

2/ Décoder le message suivant :42 69 65 6E 76 65 6E 75 73 20 65 6E 20 4D 49

Le code UNICODE

'Unicode est une norme de codage mise au point dans les années 90; il définit plus de <u>60000</u> caractères de plusieurs langues, codés sur <u>16 bits</u>. Le code ASCII est inclus dans l'Unicode.

Le code ASCII est uniquement basé sur les lettres anglo-saxonnes, on n'y trouve pas les lettres accentuées de la langue française comme le **à** ou le **é** par exemple. On peut retrouver ces lettres dans le tableau UNICODE suivant :

Le code UNICODE

,		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	
	800	PAD	НОР	врн	NBH	IND	NEL	SSA	ESA	HTS	НТЈ	VTS	PLD	PLU	RI	SS2	SS3	
	009	DCS	PU1	PU2	STS	ссн	MW	SPA	EPA	sos	SGCI	SCI	CSI	ST	osc	PM	APC	
	00A	NBSP	i	¢	£	×	¥	1	8	•	©	<u>a</u>	«	7	SHY -	®	-	e
	00B	•	±	2	3	,	μ	¶	•	,	1	Q	»	1/4	1/2	3/4	خ	
	00C	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	ì	ĺ	Î	Ϊ	
	00D	Ð	Ñ	Ò	Ó	ô	õ	Ö	×	ø	Ù	Ú	Û	Ü	Ý	Þ	ß	
	00E	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï	
	00F	ð	ñ	ò	ó	ô	õ	ö	÷	ø	ù	ú	û	ü	ý	þ	ÿ	

25

Le code UNICODE

,		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	
	800	PAD	НОР	врн	NBH	IND	NEL	SSA	ESA	HTS	НТЈ	VTS	PLD	PLU	RI	SS2	SS3	
	009	DCS	PU1	PU2	STS	ссн	MW	SPA	EPA	sos	SGCI	SCI	CSI	ST	osc	PM	APC	
	00A	NBSP	i	¢	£	×	¥	1	8	•	©	<u>a</u>	«	7	SHY -	®	-	e
	00B	•	±	2	3	,	μ	¶	•	,	1	Q	»	1/4	1/2	3/4	خ	
	00C	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	ì	ĺ	Î	Ϊ	
	00D	Ð	Ñ	Ò	Ó	ô	õ	Ö	×	ø	Ù	Ú	Û	Ü	Ý	Þ	ß	
	00E	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï	
	00F	ð	ñ	ò	ó	ô	õ	ö	÷	ø	ù	ú	û	ü	ý	þ	ÿ	

25

Le code UNICODE

		0	1	2	3	4	5	6	7	8	9	Α	В	С	D
	060	_	···	٦	صد								ė		,
	061	سَ	سئ	س	3 ،	سّ	سُ	<u></u>	سِ	ين	<u>.</u>	<u></u>	£	ALM	
Ī	062		۶	Ĩ	i	ؤ	1	ئ	1	ŀ	š	Ċ	Ļ	ق	۲
	063	ì	٦	Ç	Ç	ů	ص	ض	ㅂ	ä	ع	غ			
	064	-	ف	ق	٤	ل	م	ن	٥	و	ی	ي	سڻ	سنّ	سٍ
	065	سِ	سَ	ن	ىن	سئ	س	سِ	سن	سن	س	سّ	سن	سر	ن
	066	•	١	۲	٣	٤	٥	*	٧	٨	٩	7.	,		*
	067	-3	ī	Í	1	£	۴	ۇ	ٷ	ئى	ٿ	ٽ	Ļ	ţ	ك
	068	J	ځ	ċ	ق	ق	څ	હ	હ	à	J	ڊ	ż	3	š
	069	2	ני	j	7	7	ų	3	5	رہ	Š	ښ	پر	پژ	یں
	06A	ڠ	9	ŗ	ڣ	ث	ŗ	ٿ	ڧ	ڨ	ک	2	ګ	Ŀ	٤
	06B	گ	گ	ڲ	ڳ	ػٞ	ڵ	J	ڵ	ڸ	ڼ	ن	ڻ	ڼ	ڽ
	066								į	1			į.		