

Tecnológico De Costa Rica Licenciatura Ingeniería en Mecatrónica

Microprocesadores y microcontroladores - MT7003

Avance 2 - Proyecto Microprocesador

Ing. Rodolfo Piedra Camacho

Giancarlo Alvarado Rivera - 2019065136 Kendell Calderón Lascarez - 2020044975 Nicole Jiménez Herrera - 2020035277 Emiliano Murillo Villalobos - 2018109598 Gustavo Enrique Varela Sojo - 2018027232

II Semestre - 2023

Cuadro comparativo:

	1 ^{era} Opción	2 ^{da} Opción	3 ^{era} Opción
Características	ESP-WROOM-32	FEATHER RP2040/ SparkFun Pro Micro RP2040	STM32 F103C8T6 ARM
Pines I/O	34 GPIO	30 GPIO	32 GPIO
Pines digitales	24	8	37
Pines analógicos	14	4	10
PWM	32	16	12
Procesador	Tensilica Xtensa LX6 Dual-core	RP2040 Cortex M0 Dual-core	ARM Cortex-M
Memoria RAM	Hasta 520 KB	Hasta 264 KB	Hasta 256 KB
Memoria ROM	448 KB	8 MB	2 MB
Frecuencia	Hasta 240 MHz	Hasta 133 MHz	Hasta 480 MHz
Consumo	Bajo (5µA en modo de suspensión)	Bajo	Bajo a medio
Precio	¢6000	\$11.95	\$16.95
Temperatura de operación	-40 a 85 °C	-20 a 85 °C	-40 a 85 °C
Wi-Fi	Sí (velocidad hasta 150 Mbps)	No	No
Bluetooth	Sí (4.2)	No	No
Comunicación	2xI2C, 4xSPI, 3xUART, 2xI2S	2xI2C, 2xSPI, 2xUART	I2C, SPI, UART, CAN
Voltajes Entrada/Salida	3.6 V DC / 3.3 V DC	3.3 V DC	5 V y 3.3 V / 3.3 V
Pico máximo de corriente	1200 mA	500mA	±20 mA máx por pin [3]
Programación	Arduino IDE Visual Studio Code MicroPython	MicroPython CircuitPython C/C++	STM32Cube IDE C/C++ Python

Luego de analizar este cuadro comparativo y ver todas las características y especificaciones de los microcontroladores descritos, se llegó a la conclusión que el ESP32 es la mejor opción para el proyecto del curso. Lo que más destaca de este microcontrolador es su comunicación mediante bluetooth y Wi-Fi. Esto hace que sea mucho más fácil enviar y recibir datos para controlar el sistema en caso de ser necesario. Además, al tener la mayor cantidad de pines de salidas y entradas tanto analógicas como digitales, es fundamental. Con esta característica, no tendremos que preocuparnos demasiado por quedarnos sin pines si se necesitarán incorporar más sensores o dispositivos en el futuro.

La gran variedad de los protocolos de comunicación que ofrece este microcontrolador permite idear una gran cantidad de soluciones según los problemas que se presenten en el proyecto.

Una de las grandes ventajas de este microcontrolador es que **el grupo ya cuenta con este dispositivo**, por lo que nos ahorramos el tiempo de compra-envío. La inversión adicional se justifica por las funcionalidades avanzadas que ofrece y permitirá una integración más fluida y eficiente en el desarrollo del proyecto. Otra ventaja que este microcontrolador ofrece es la compatibilidad con Python, lenguaje en el cual se ha realizado toda la programación del proyecto hasta el momento.

Bibliografía:

- [1] Datasheet ESP32 https://www.espressif.com/sites/default/files/documentation/esp32 datasheet en.pdf
- [2] Datasheet Feather https://learn.adafruit.com/adafruit-feather-rp2040-pico/overview
- [3] Pines STM32 https://www.chippiko.eu.org/2020/06/download-page.html
- [4] Datasheet STM 32 https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
- [5] Conectar ESP32 por SPI https://linuxhint.com/esp32-spi-arduino-ide/
- [6] Conectar ESP32 por I2C https://randomnerdtutorials.com/esp32-i2c-communication-arduino-ide/

Comparación UART, SPI, I2C https://www.totalphase.com/blog/2021/12/i2c-vs-spi-vs-uart-introduction-and-comparison-similarities-

 $\frac{differences/\#; \sim : text = I2C\% 20 can\% 20 support\% 20 multi\% 2D masters, in\% 20 speed\% 20 compare \\ \frac{d\% 20 to\% 20 I2C}{}.$