Faktoryzacja Lyndona

Na podstawie "Factorizing Words over an Ordered Alphabet " – Duval

Krzysztof Pióro

Maj 2022

1 Wstęp

Słowo będziemy nazywać *prostym* (lub słowem Lyndona) jeśli jest ściśle mniejsze od wszystkich swoich nietrywialnych przesunięć cyklicznych.

Faktoryzacją Lyndona słowa w nazwiemy podział słowa $w = w_1 w_2 \dots w_k$ taki, że wszystkie słowa w_i są proste oraz zachodzi $w_1 \geqslant w_2 \geqslant \dots \geqslant w_k$. Taka faktoryzacja zawsze istnieje i jest unikalna.

Algorytm Duvala konstruuje faktoryzację Lyndona w czasie liniowym i stałej dodatkowej pamięci.

2 Własności faktoryzacji Lyndona

Obserwacja 1. Słowo w jest proste wtedy i tylko wtedy, gdy jest ściśle mniejsze niż wszystkie swoje nietrywialne sufiksy

Dowód. Załóżmy, że słowo w jest ściśle mniejsze niż wszystkie swoje nietrywialne sufiksy oraz, że nie jest proste. Wtedy mamy takie dwa słowa u,v, że w=uv, $vu\leqslant uv$ (vu jest świadkiem dla faktu, że w nie jest proste) oraz uv< v (uv jest ściśle mniejsze niż wszystkie inne sufiksy). Ale z uv< v możemy wywnioskować uv< vu, czyli mamy sprzeczność.

W drugą stronę załóżmy, że słowo w jest proste oraz, że nie jest ściśle mniejsze od wszystkich swoich nietrywialnych sufiksów. Wtedy mamy takie słowa u,v, że w=uv, uv < vu (w jest słowem prostym) oraz $v \leqslant uv$. Rozważmy dwa przypadki:

- v nie jest prefiksem uv wtedy vu < uv, czyli sprzeczność
- v jest prefiksem uv tutaj zauważamy, że u jest najmniejsze leksykograficznie spośród prefiksów długości |u| przesunięć cyklicznych słowa w. Zatem $vu \leq uv$, czyli sprzeczność.

Obserwacja 2. Słowa proste nie posiadają właściwych prefikso-sufiksów.

1

Obserwacja 3. Dla faktoryzacji Lyndona $w = w_1 w_2 \dots w_k$ słowo w_k jest minimalnym sufiksem słowa w.

Twierdzenie 1. Dla każdego słowa w istnieje faktoryzacja Lyndona.

Dowód. Pojedyncza litera jest słowem prostym, zatem możemy zacząć od podziału słowa w na pojedyncze literki. Łatwo zauważyć, że dla dwóch słów prostych u, v takich, że u < v słowo uv również jest słowem prostym. Zatem dopóki będą istniały dwa sąsiednie słowa u, v w naszej faktoryzacji takie, że u < v to możemy je łączyć w jedno słowo uv. Powtarzając tą procedurę otrzymamy faktoryzację Lyndona.

Twierdzenie 2. Dla każdego słowa w istnieje unikalna faktoryzacja Lyndona.

Dowód. Z poprzedniego twierdzenia wiemy, że faktoryzacja Lyndona zawsze istnieje. Pozostało nam pokazać jej unikalność. Wykorzystamy do tego celu fakt, że ostatnie słowo z faktoryzacji Lyndona słowa w jest minimalnym sufiksem słowa w. Możemy zatem odciąć minimalny sufiks słowa w i wywołać się indukcyjnie na krótszym słowie.

3 Algorytm Duvala

Zacznijmy od wprowadzenia dodatkowej definicji. Słowo nazwiemy prawie prostym jeśli jest postaci $w=u^t\bar{u}$, gdzie \bar{u} jest prefiksem słowa u (być może pustym).

Dodatkowo udowodnimy teraz, że słowo prawie proste ma tylko jeden okres u, który jest słowem prostym. W przeciwnym wypadku mielibyśmy dwa proste okresy u_1, u_2 . Załóżmy, że $|u_1| < |u_2|$. Wtedy u_1 jest okresem u_2 . Ale z tego wynikałoby, że u_2 ma właściwy prefikso-sufiks, co jest sprzeczne z tym, że u_2 jest słowem prostym.

Algorytm Duvala będzie utrzymywał podział słowa wejściowego w na 3 słowa $w = v_1v_2v_3$ takie, że dla fragmentu v_1 faktoryzacja Lyndona jest już znana, a fragment v_2 jest słowem prawie prostym.

Algorytm będzie utrzymywał ten podział za pomocą dwóch zmiennych i,j. Zmienna i będzie wskazywała na początek słowa v_2 , a zmienna j będzie wskazywała na początek słowa v_3 . W każdym kroku algorytmu będziemy próbowali doczepić literę w[j] do słowa v_2 . W tym celu będziemy porównywali ją z literą słowa v_2 wyznaczoną przez zmienną k (taką, że j-k to długość słowa u występującego w prawie prostym słowie $v_2=u^t\bar{u}$). Dokładniej będziemy mieli trzy przypadki:

• w[j] = w[k]: dodanie w[j] do v_2 nie narusza założenia, że v_2 jest prawie proste.

W tym przypadku zwiększamy zmienne j oraz k.

• w[j] > w[k]: słowo $v_2 + w[j]$ staje się proste. Aby to udowodnić zauważmy, że minimalny sufiks słowa $u^t \bar{u} w[j]$ musi zacząć się w pierwszym słowie u.

W przeciwnym przypadku moglibyśmy rozszerczyć go o długość |u| i z faktu, że w[j] > w[k] otrzymalibyśmy, że ten dłuższy sufiks jest mniejszy. Wiemy zatem, że minimalny sufiks zaczyna się w pierwszym fragmencie u, natomiast z faktu, że u jest proste otrzymujemy, że minimalny sufiks musi zacząć się od pierwszej litery u, czyli słowo $v_2 + w[j]$ staje się proste.

W tym przypadku zwiększamy i i ustawiamy k na poczatek słowa v_2 .

• w[j] < w[k]: słowo $v_2 + w[j]$ przestaje być prawie proste. Aby to udowodnić załóżmy, że słowo $v_2 + w[j]$ pozostaje prawie proste. Wtedy $v_2 + w[j] = s^t \bar{s}$ dla jakiegoś słowa prostego s. Oczywiście $s \neq u$. Ponadto s jest okresem słowa v_2 , co daje nam sprzeczność z tym, że prawie proste słowo ma tylko jeden prosty okres.

W tym przypadku dla naszego słowa $v_2 = u^t \bar{u}$ dzielimy u^t na t słów prostych, dodajemy je do v_1 (czyli wynikowej faktoryzacji Lyndona), ustawiamy zmienne i oraz k na początek pozostałej części słowa v_2 (\bar{u}), a zmienną j na jedną pozycję dalej.

Algorithm 1 Duval(w)

```
\begin{split} i &:= 1 \\ \text{factorization} &:= \text{empty list} \\ \textbf{while} \ i \leqslant n \ \textbf{do} \\ j &:= i+1; \ k := i; \\ \textbf{while} \ j \leqslant n \ \textbf{and} \ w[k] \leqslant w[j] \ \textbf{do} \\ \textbf{if} \ w[k] < w[j] \ \textbf{then} \\ k &:= i \\ \textbf{else} \\ k &:= k+1; \\ j &:= j+1; \\ \textbf{while} \ i \leqslant k \ \textbf{do} \\ \text{factorization append} \ w[i \dots i+j-k-1] \\ i &:= i+j-k; \\ \textbf{return} \ \text{factorization} \end{split}
```

 $Dowód\ poprawności$. Z powyższych przypadków możemy od razu wywnioskować, że algorytm Duvala rozkłada słowo w na $w=w_1w_2\dots w_k$ takie, że wszystkie w_i są słowami prostymi. Pozostało pokazać, że $w_1\geqslant w_2\geqslant \dots \geqslant w_k$. W tym celu zastanówmy się co dzieje się w trakcie kroku z trzeciego przypadku. Niech a:=w[j]. Zauważmy, że $\bar{u}av< u$ dla dowolnego słowa v. Zatem wszystkie prefiksy słowa v_2v_3 , które otrzymamy po kroku z trzeciego przypadku, będą ściśle mniejsze od słowa u, czyli od ostatniego słowa z faktoryzacji słowa v_1 . Z tego wynika, że słowa, które później będą dodane do faktoryzacji zachowają warunek monotoniczności.

Złożoność algorytmu. Pierwsza wewnętrzna pętla w każdym kroku zwiększa zmienną j. Zmienna ta może być jednak zmniejszana w wyniku trzeciego przy-

padku. Zauważmy jednak że, to o ile cofniemy tą zmienną wynosi co najwyżej tyle, jak długie jest poprzednio dodane słowo Lyndona. Dodatkowo za każdym razem kiedy cofamy zmienną j, ostatnie słowo w faktoryzacji jest inne, zatem możemy oszacować sumę cofnięć przez O(n). Otrzymujemy więc, że ta pętla działa w czasie O(n).

Druga wewnętrzna pętla w algorytmie działa sumarycznie w czasie O(n), bo wypisuje faktoryzację.

Ponadto zewnętrzna pętla algorytmu nie przekroczy n iteracji, bo jej każda iteracja zwiększa zmienną i, co pokazuje, że cały algorytm działa w czasie O(n).