République Islamique de Mauritanie Ministère de l'Enseignement Fondamental et Secondaire Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2006

Session complémentaire

Honneur - Fraternité - Justice

Séries : C & TMGM Epreuve: Mathématiques Durée: 4 heures Coefficients: 9 & 6

Exercice 1 (5 points)

Dans tout l'exercice

- Le plan complexe (P) est muni d'un repère orthonormé direct (O; u, v);
- · a est un nombre réel strictement positif;
- · A est le point de coordonnées (a;0);
- (D) est la droite d'équation x = a ;
- f est une fonction réelle strictement positive de variable réelle t, définie sur $-\pi/2, \pi/2$.

Pour chaque valeur du paramètre t, on note s, l'application de (P) dans (P) qui à tout point M d'affixe z fait correspondre le point $M_t = s_t(M)$ d'affixe z_t telle que : $z_t = f(t)(\cos t + i\sin t)z$.

- 1.a) Quelle est la nature de l'application s, ? Donner ses éléments caractéristiques. (0,5pt)
- b) Donner les équations analytiques qui définissent \mathbf{s}_i et celles qui définissent \mathbf{s}_i^{-1} par rapport à $(\mathbf{O}; \mathbf{u}, \mathbf{v})$ (\mathbf{s}_i^{-1} est l'application réciproque de \mathbf{s}_i). (0,5pt)
- 2. Dans cette question, on pose : $f(t) = \frac{1}{\cos t}$ pour tout $t \in]-\pi/2,\pi/2[$.
 - a) Montrer que si $M \neq O$ alors $\forall t \in]-\pi/2,\pi/2[$, le triangle OMM, est rectangle en M. (0, 3pt)
 - b) Le point M étant fixe, quel est l'ensemble $\Gamma(M)$ décrit par M, lorsque t décrit $-\pi/2, \pi/2$ [?(0, 5pt)
- c) Montrer que l'image de la droite (D) par s_t est une droite (D_t) dont on donnera une équation cartésienne dépendant seulement de a et de tan(t). (0.5pt)
- 3. Dans cette question, on pose : $f(t) = \cos t$ pour tout $t \in [-\pi/2, \pi/2]$
 - a) Montrer que si $\mathbf{M} \neq \mathbf{O}$ alors $\forall \ \mathbf{t} \in \left] -\pi/2, \pi/2 \right[$ le triangle \mathbf{OMM}_{t} est rectangle en \mathbf{M}_{t} . (0.25pt)
 - b) Le point M étant fixe, quel est l'ensemble $\Gamma'(M)$ décrit par M, lorsque t décrit $-\pi/2,\pi/2[?(0.25pt)]$
- 4. On suppose toujours que $f(t)=\cos t$ mais avec $t\neq 0$. On pose $A_{_t}=s_{_t}(A)$.
 - a) Donner une mesure de l'angle $(\overline{AM}, \overline{A_iM_i})$. (0.5pt)
- b) Soit H_i le point d'intersection des droites (AM) et (A_iM_i). Montrer que les points O, H_i , A et A_i sont cocycliques. (0.5pr)
- c) Montrer que les points O, H, M et M, sont cocycliques. Quelle est la projection orthogonale de O sur la droite (AM)? (0,5pt)
- d) Soit (D_t) l'image de la droite (D) par s_t . Montrer que, lorsque t varie, (D_t) passe par un point fixe. (0.5pt)

Exercice 2 (4 points)

On considère, dans l'ensemble des nombres complexes, l'équation suivante : (E_n) $(iz)^n = (z+2i)^n$ où n est un entier supérieur ou égal à 2.

- 1.a) Déterminer et écrire sous forme trigonométrique les solutions \mathbf{z}_1 et \mathbf{z}_2 de l'équation (\mathbf{E}_2) , où \mathbf{z}_1 est la solution telle que : $\mathbf{Re}(\mathbf{z}_1) < \mathbf{0}$. (0.5pt)
 - b) Posons : $u = -\frac{\sqrt{2}}{2}z_1$. Montrer que : $\forall p \in IN$, $(u)^p + (\stackrel{-}{u})^p = 2\cos\left(\frac{p\pi}{4}\right)$ (où $\stackrel{-}{u}$ est le conjugué de u .) (0.5pt)
 - c) On considère l'application f définie de l'ensemble des nombres complexe sur lui-même par :

$$f(z) = \sum_{p=0}^{n} C_{\alpha}^{p} z^{p} \cos \left(\frac{p\pi}{4}\right)$$

Montrer que: $f(z) = \frac{1}{2} \left[(1 + uz)^n + (1 + uz)^n \right] (\theta, 5pi)$

d) Résoudre, dans l'ensemble des nombres complexes, l'équation f(z) = 0.(11,5pt)

Baccalauréat 2006

Session Complémentaire

Epreuve de Mathématiques

Séries : C & TMGM

1/3

- 2. On considère dans le plan complexe muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$ les deux points A(-2i) et M(z) où z est un nombre complexe.
 - a) Montrer que si z est solution de (E_n) alors OM = AM .(0.5pt)
- b) En déduire que toute solution de (E_n) peut s'écrire sous la forme a-1 où a est un réel. (0,5pt)
- 3.a) Résoudre, dans l'ensemble des nombres complexes, l'équation (E,).(0.5pt)
 - b) Montrer que les solutions de (E,) peuvent s'écrire sous la forme :

$$z_{\,k}\,=-i+tan\!\left(\frac{\pi}{4}-\frac{k\pi}{n}\right)\,\,\text{où}\,\,k\in\left\{0,1,\ldots,n-1\right\}.(\theta.5\text{pi}))$$

Problème (11 points)

Partie A

Soit f la fonction numérique définie par: $f(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$

- 1.a) Déterminer l'ensemble D de définition de f .(0,5pt)
- b) Montrer que f est une fonction impaire. (0,5pt)
- c) Dresser le tableau de variations de f .(0,5pi)
- d) Tracer la courbe représentative (C) de f dans un repère orthonormé (O; i, j) d'unité 4 cm .(0,5pt)
- 2.a) Montrer que f réalise une bijection de D sur IR (0.25pt)
- b) Soit g la réciproque de f . Montrer que pour tout réel x, $g(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$. (0,5pt)
- c) Tracer la courbe représentative (C') de g dans le repère (O; i, j) .(0,5pt)
- 3. Déterminer l'aire de la partie du plan comprise entre les deux courbes (C) et (C') et située dans le carré défini par : $-1 \le x \le 1$ et $-1 \le y \le 1$. (0,25pt)

Partie B

Pour tout entier naturel n et pour tout réel $x \ge 0$, on pose : $I_n(x) = \int_0^x [g(t)]^n dt$ et on convient que $[g(t)]^n = 1$.

- 1.a) Justifier l'existence de $I_n(x)$, $\forall n \in IN$ et $\forall x \ge 0$. (0.5pt)
- b) Calculer $I_n(x)$ et $I_1(x)$, (0.5pi)
- c) Montrer que $\forall p \ge 1$ et $\forall x \ge 0$, on a : $0 \le I_{2p}(x) \le x(g(x))^{2p}$. (0.5pt)
- d) Déduire que $\forall x \ge 0$, la suite $(I_{10}(x))$ est convergente et calculer sa limite. (0.5pi)
- 2.a) Vérifier que : $\forall t \in IR$, on a : $[g(t)]^2 = 1 g'(t) (\theta, \delta pt)$
 - b) Montrer que : $\forall n \in IN \text{ et } \forall x \geq 0$, on a : $I_{n+2}(x) = I_n(x) \frac{1}{n+1} [g(x)]^{n+1}$. (0.5pt)
 - c) Déduire alors que $\forall p \ge 1$ et $\forall x \ge 0$, on a :

$$I_{2p}(x) = x - \left\lceil (g(x)) + \frac{1}{3} (g(x))^3 + \ldots + \frac{1}{2p-1} (g(x))^{2p-1} \right\rceil \quad (0.5pt)$$

d) En utilisant les questions précédentes, calculer :
$$\lim_{p\to+\infty} \left[\frac{1}{3} + \frac{1}{3} \left(\frac{1}{3} \right)^3 + \frac{1}{5} \left(\frac{1}{3} \right)^5 + \ldots + \frac{1}{2p-1} \left(\frac{1}{3} \right)^{2p-1} \right] \ (0.5pt)$$

Partie C

Soit h la fonction numérique définie sur]-1; I[par: $h(x) = \int_0^x \frac{t^2}{1-t^2} dt$.

- 1.a) Justifier la définition de h sur]-1; 1[.(0,5pt)
- b) Montrer que : $\forall t \in IR \setminus \{-1;1\}$, $\frac{t^2}{1-t^2} = a + \frac{b}{1-t} + \frac{c}{1+t}$ où a, b et c sont des réels à déterminer. (0.5p1)
- c) En déduire que : $\forall x \in]-1$; 1[, h(x) = -x + f(x) où f est la fonction définie dans la partie A. (0.25pi)

In industrial best construire so courbe représentative (C'') dans un nouveau repère orthonormé. (n. 5/1) et que : $\forall x > 0$ et $\forall k \in IN^*$, on a : $\ln x \le \frac{x}{k} - 1 + \ln k$ (0.25/1) duire que : $\forall k \in IN^*$, $\int_{k-\frac{1}{2}}^{k-\frac{1}{2}} \ln x dx \le \ln k$ et que : $\forall k \in IN^*$, $\int_{\frac{1}{2}}^{n-\frac{1}{2}} \ln x dx \le \ln (n!)$ (0.5/1) duire que : $\forall n \in IN^*$ In $(n!) \ge (n+\frac{1}{2}) \ln (n+\frac{1}{2}) - n + \frac{1}{2} \ln 2$. (0.25/1) et que : $\forall n \in IN^*$, $U_n = U_n = \ln (n!) - (n+\frac{1}{2}) \ln (n) + n$. et que : $\forall n \in IN^*$, $U_n = U_n = (2n+1)f(\frac{1}{n})$ (0.35/1) et que : $\forall n \in IN^*$, $U_n = U_n = (2n+1)f(\frac{1}{n})$ (1.35/1)

er que : $\forall n \in IN^*$, $U_n - U_{n+1} = (2n+1)f\left(\frac{1}{2n+1}\right)$ (0.25 μ)

er.que $\forall n \in \mathbb{I}N^*$, $\dot{\mathbf{U}}_n \geq \frac{1}{2} \ln 2 \quad \mathcal{D}_{\mathcal{L}(Spt)}$

re alors que la suite $(\mathbf{U}_n)_{n \in \mathbb{N}}$ est convergente. (0,25pt)

Fin.