Advanced Databases

Parallel & Replicated
Databases

Using Parallelism within the Servers

- Multiprocessor machines
- Identical computation on each processor
- Goal: increasing performances

→ PARALLEL DATABASE

Database server With parallelism

Architecture comparison

SHARED-NOTHING

Fast network

Architecture comparison

Architecture comparison

SHARED-DISKS

Application scalability

- Load: set of all the applications (queries)
- Scalability: capability of a system to increase performance under an increased load
- Load growth dimensions:
 - Number of queries
 - Complexity of queries

Two Load Types

- Transactional
 - Load: short transactions
 - Measure: tps (transactions per second)
 - Response time: few seconds
- Data analysis
 - Load: complex SQL query
 - Response time: variable

Parallelism

- Obtained through several cooperating processors, installed in a single system architecture
- Two types of parallelism:
 - Inter-query: each query is performed by a single processor (for transactional loads)
 - Intra-query: each query is performed by several processors (for data analysis loads)

Benchmark

- Methods for comparing performances of different (competing) systems
- Standardization
 - Of the Database
 - Of the load
 - Code of the transactions
 - Transmission
 - Frequency
 - Of the measuring conditions

- Different load types
 - Tpc-a: transactional
 - Tpc-b: mixed
 - Tpc-c: data analysis

Speed-up curve

 Measures the increase of efficiency wrt the increasing number of processors

Scale-up curve

Measures the total cost per transaction wrt the increasing number of processors

Distributed Join

- The most expensive distributed data analysis operation
- Let's consider:

Account

JOIN

Transaction

Distributed Join UNION Account2 Account1 Account3 **JOIN JOIN JOIN** Trans1 Trans2 Trans3

Requirements for Distributed Join

- The domains of the join attributes must be partitioned and each partition must be assigned to a couple of fragments
- Example: for numeric values between 1 and 30,000:
 - Partition 1 to 10,000
 - Partition 10,001 to 20,000
 - Partition 20,001 to 30,000
- Some parallel systems distribute the data on the disks at the beginning, to obtain this distribution

Data Replication

- Motivation:
 - Higher availability, efficiency, reliability,
 - Different data management
- → Replicated Databases

Data Replication

- A fundamental ingredient in information systems
- Motivations:
 - Efficiency
 - Reliability
 - Autonomy

Replication Methods

Asymmetric Replication

Replication Methods

Symmetric replication

Transmission of Updates

Asynchronous transmission

Transmission of Updates

Synchronous transmission

Alignment Techniques

Refresh

- Alignment can be:
 - Periodic
 - On command
 - On update accumulation

Alignment Techniques

Incremental

- Alignment can be:
 - Periodic
 - On command
 - On update accumulation

Replication Mechanisms

- asymmetric, asynchronous, incremental
- Product: Replication Manager
- Two modules: Capture and Apply

Replication Triggers

- Capture data variations within the tables Delta-Plus and Delta-Minus, transparently wrt the applications
- This technique was initially used to support replication, currently most systems prefer extracting deltas from logs and not from the database

Replication Triggers

CREATE TRIGGER Capture-Ins
AFTER INSERT ON PRIMARY
FOR EACH ROW
INSERT INTO Delta-Plus VALUES (NEW.*)

CREATE TRIGGER Capture-Del
AFTER DELETE ON PRIMARY
FOR EACH ROW
INSERT INTO Delta-Minus VALUES (OLD.*)

CREATE TRIGGER Capture-Upd
AFTER UPDATE ON PRIMARY
FOR EACH ROW
BEGIN
INSERT INTO Delta-Plus VALUES (NEW.*)
INSERT INTO Delta-Minus VALUES (OLD.*)
END

A Special Case: Replication in Mobile Computers

- Mobile computers: occasionally connected to the network
- Copies can be disconnected for hours or even days, then reconnected (reconciliation)
- Example Application: mobile sales agents

Disconnected Copies Re-alignement

Often requires symmetric replication

