Data Fallacies

Lennart Dobs (340472), Niklas Dunkel (340715)

July 24, 2025

Gliederung

- Definition Data Fallacies
- Survivorship Bias
- Base Rate Fallacy
- Simpson's Paradox
- Danger of Summary Metrics
- False Causality
- Quiz
- Fazit und Abschluss

Definition von Data Fallacies¹

- Data Fallacies sind häufige Ursachen für Fehlinterpretationen von (statistischen) Daten
- Diese Fehler können verschiedene Ursprünge haben und werden deshalb mit verschiedenen Fallacy-Arten beschrieben
- Data Fallacies sind problematisch, da Fehlinterpretationen von Daten, je nach Anwendungsfall der Daten, weitreichende negative Folgen haben können.
- Data Fallacies können auch absichtlich zur Manipulation der Dateninterpretation angewendet werden.

¹Quelle: Ogbonnaya et al. (2019). S. 297.

Survivorship Bias²

- Basiert auf dem menschlichen Instinkt, von "Überlebenden" bzw. "Gewinnern" zu lernen
- Beschreibt die Verzerrung, die entsteht, wenn bei der Analyse von Daten nur die "Gewinner" betrachtet werden und die Gesamtheit nicht korrekt abgebildet wird
- Fälschliche Schlussfolgerung: Eigenschaften oder gewissen Handlungen, die bei allen "Survivors" vorliegen, haben zum "Überleben" geführt
- Dass "Verlierer" diese Eigenschaften möglicherweise auch gehabt haben, welche aber in den Daten nicht auftauchen, wird vernachlässigt
- Somit können falsche Schlussfolgerungen und Entscheidungen entstehen

²Quelle: Miller (2020).

Survivorship Bias - Beispiel

³Quelle: © Martin Grandjean (vector) McGeddon (picture). US Air Force (hit plot concept) /

Survivorship Bias / CC BY-SA 4.0 (Ausschnitt). (o.J.).

3

マロトマ部トマミトマミト

Survivorship Bias⁴

- Weiteres Beispiel: Annahme, dass Dinge aus älteren Generationen langlebiger sind:
- Nur Dinge, die wenig genutzt wurden oder von besonderer Qualität waren, können noch vorgefunden werden – Gegenstände, die nicht "überlebt" haben, können nicht gesehen werden
- Handlungsempfehlung: Vollständigkeit des Datensatzes hinterfragen

⁴Quelle: Elston (2021).

Survivorship Bias - Datensatz

:	Startup	RiskTolerance	Survived5Years
C	Startup_01	0.91	True
1	Startup_02	0.79	False
2	Startup_03	0.77	True
3	Startup_04	0.87	False
4	Startup_05	0.92	True
5	Startup_06	0.83	True
6	Startup_07	0.99	True
7	Startup_08	0.91	True
8	Startup_09	0.84	False
9	Startup_10	0.82	True
10	Startup_11	0.80	True

⁵Quelle: Selbsterstellter Datensatz

Survivorship Bias

⁶Quelle: Eigene Darstellung

Survivorship Bias

⁷Quelle: Eigene Darstellung

Survivorship Bias

⁸Quelle: Eigene Darstellung

Base Rate Fallacy⁹

- Aufgabe:
- In einer Stadt gibt es nur Autos in zwei Farben: 85% der Autos sind blau und 15% sind grün.
- Eine Person beobachtet einen Autounfall mit Fahrerflucht und behauptet, dass das Auto grün war.
- Zeugen identifizieren die Farbe von Autos in 80% der Fälle korrekt.
- Wie groß ist die Wahrscheinlichkeit, dass das Auto tatsächlich grün war?

⁹Quelle: Flyvbjerg (2022).

Base Rate Fallacy¹⁰

- Beschreibt einen Fehler in der Beurteilung von Wahrscheinlichkeiten, der durch die Vernachlässigung von Basiswahrscheinlichkeiten entsteht, wenn eine Person spezifischere Informationen erhält
- Menschen neigen dazu, unterbewusst vorhandene
 Informationen nach ihrer subjektiven Relevanz zu sortieren
- Relevanz wird dabei meist dadurch bestimmt, wie spezifisch eine Information ist
- In Entscheidungen und Beurteilungen werden meistens nur die subjektiv relevantesten Informationen berücksichtigt

¹⁰Quelle: Bar-Hillel (1979). S. 211.

Base Rate Fallacy¹¹

- Grund für diese Art der Entscheidungsfindung sind Heuristiken
- Eine Heuristik, die zu dem beschriebenen Ablauf führt, ist die Repräsentativitäts-Heuristik
- Bei der Representativitäts-Heuristik bewerten Menschen die Relevanz einer Information basierend auf ihrer Ähnlichkeit zu dem untersuchten Objekt und blenden somit häufig Basiswahrscheinlichkeiten aus
- Handlungsempfehlung: Hinterfragen, welche
 Basiswahrscheinlichkeit einer spezifischen Wahrscheinlichkeit
 zu Grunde liegt und diese einbinden oder WK mit Bayes-Regel
 berechnen

¹¹Quelle: Kahneman & Tversky (1974). S. 1124.

Base Rate Fallacy - Datensatz

5]:		Model	Repaired
	0	А	False
	1	А	False
	2	А	False
	3	А	False
	4	А	False
	5995	В	False
	5996	В	False
	5997	В	False
	5998	В	False
	5999	В	False

⁶⁰⁰⁰ rows × 2 columns

¹²Quelle: Selbsterstellter Datensatz

Base Rate Fallacy

¹³ Quelle: Eigene Darstellung

Base Rate Fallacy

¹⁴ Quelle: Eigene Darstellung

Base Rate Fallacy

¹⁵Quelle: Eigene Darstellung

Simpson's Paradox¹⁶

- Beschreibt Verzerrung, bei der ein Zusammenhang zwischen 2 Variablen erkennbar ist, welcher sich umkehrt, wenn die Daten in Gruppen geteilt werden
- Dabei kehrt sich der Effekt in beiden Gruppen um oder ist nicht mehr zu erkennen
- Simpson Paradoxon entsteht dabei durch eine verdeckte Störvariable (confounding variable)
- Die Störvariable hängt dabei mit der Gruppenzugehörigkeit und dem Ergebnis zusammen.

¹⁶Quelle: Ameringer et al. (2009). S. 2.

Simpson's Paradox¹⁷

- Der wahre Effekt zwischen den beiden betrachteten Variablen wird damit erst aufgedeckt, wenn die Daten nach der Störvariable gruppiert werden
- Erforderlich für Simpson Paradoxon: Störvariable muss erkennbaren Effekt auf die Variablen haben und ungleichmäßig auf Gruppen verteilt sein
- Handlungsvorschlag: Korrelationen immer hinterfragen und nicht voreilig auf Kausalität schließen

¹⁷ Quelle: Ameringer et al. (2009). S. 2.; Hintzman (1980) zitiert nach Ameringer et al. (2009). S. 2.; Hsu (1989) zitiert nach Ameringer et al. (2009). S. 2.

- Der wahre Effekt zwischen den beiden betrachteten Variablen wird damit erst aufgedeckt, wenn die Daten nach der Störvariable gruppiert werden¹⁸
- Erforderlich für Simpson Paradoxon: Störvariable muss erkennbaren Effekt auf die Variablen haben und ungleichmäßig auf Gruppen verteilt sein¹⁹
- Handlungsvorschlag: Korrelationen immer hinterfragen und nicht voreilig auf Kausalität schließen

¹⁸Quelle: Ameringer et al. (2009). S. 2.

¹⁹Quelle: Hintzman (1980) zitiert nach Ameringer et al. (2009). S. 2.

²⁰Quelle: Hsu (1989) zitiert nach Ameringer et al. (2009). S. 2. $\langle \square \rangle$ $\langle \square \rangle$

Simpson's Paradox - Datensatz

:	age_group	vaccine_status	outcome
0	under 50	vaccinated	death
1	under 50	vaccinated	death
2	under 50	vaccinated	death
3	under 50	vaccinated	death
4	under 50	vaccinated	death
268161	50 +	unvaccinated	survived
268162	50 +	unvaccinated	survived
268163	50 +	unvaccinated	survived
268164	50 +	unvaccinated	survived
268165	50 +	unvaccinated	survived

²⁶⁸¹⁶⁶ rows × 3 columns

²¹

²²Quelle: Eigene Darstellung

Sterberate nach Altersgruppe und Impfstatus Altersgruppe

²³Quelle: Eigene Darstellung

outcome	age_group	vaccine_status	death	survived	death_rate	
0	50 +	unvaccinated	205	3235	0.059593	
1	50 +	vaccinated	460	26847	0.016845	
2	under 50	unvaccinated	48	147564	0.000325	
3	under 50	vaccinated	21	89786	0.000234 24	

²⁴Quelle: Eigene Darstellung

- Summary Metrics sind Aggregationsmaße von Daten bzw.
 zusammenfassende Metriken
- Beispiele für Summary Metrics sind: arithmetisches Mittel,
 Median, Standardabweichung, Prozentwerte, KPIs, . . .
- Das Problem von diesen ist, dass bei alleiniger Betrachtung dieser viele Informationen aus dem Datensatz nicht abgebildet sind, da bei der Zusammenfassung Details verloren gehen
- Ausreißer, Unterschiede zwischen Gruppen, Verteilungen, etc. gehen verloren

Danger of Summary Metrics - Anscombe's Quartett

²⁵Quelle: Anscombe (1973). S.19-20.

Danger of Summary Metrics²⁶

- Die vernachlässigten Informationen können für die Entscheidungsfindung von großer Bedeutung sein
- Beispiele: durchschnittliches Einkommen, prozentuale
 Wirksamkeit von Medikamenten ohne Betrachtung von
 Gruppen, Erfolgsrate von Suchanfragen in einer App über alle
 Sprachen hinweg
- Handlungsempfehlung: Entscheidungen nicht nur auf zusammenfassenden Metriken aufbauen; Graphiken (z.B. Streudiagramme) anschauen

²⁶Quelle: Anscombe (1973). S. 17.

Danger of Summary Metrics - Datensatz

	Year	Major	Gender	Admission
0	1973	C	F	Rejected
1	1973	В	М	Accepted
2	1973	Other	F	Accepted
3	1973	Other	М	Accepted
4	1973	Other	М	Rejected
12758	1973	Other	М	Accepted
12759	1973	D	М	Accepted
12760	1973	Other	F	Rejected
12761	1973	Other	М	Rejected
12762	1973	Other	М	Accepted

12763 rows × 4 columns

27

²⁷Quelle: https://waf.cs.illinois.edu/discovery/berkeley.csv

²⁸Quelle: Eigene Darstellung

Aggregierte Tabelle nach Gender:

	Gender	Total_Applications	Total_Admissions	Admission_Rate
0	F	4321	1494	0.345753
1	М	8442	3738	0.442786 ₂₉

²⁹Quelle: Eigene Darstellung

³⁰Quelle: Eigene Darstellung

	Major	Gender	Total_Applications	Total_Admissions	Admission_Rate	
0	Α	F	108	89	0.824074	
1	Α	М	1138	825	0.724956	
2	В	F	25	17	0.680000	
3	В	М	560	353	0.630357	
4	С	F	593	201	0.338954	
5	С	М	325	120	0.369231	
6	D	F	375	131	0.349333	
7	D	М	417	138	0.330935	
8	Е	F	393	94	0.239186	
9	E	М	191	53	0.277487	
10	F	F	341	25	0.073314	
11	F	М	373	22	0.058981	
12	Other	F	2486	937	0.376911	
13	Other	М	5438	2227	0.409526	31

³¹ Quelle: Eigene Darstellung

Bewerbungen & Zulassungsraten nach Fach und Geschlecht Geschlecht

³² Quelle: Eigene Darstellung

Ø Zulassungsquote der Majors, in die sich Bewerber*innen einschreiben

³³

False Causality³⁴

- Korrelation ist nicht gleich Kausalität!
- Das Auffinden kausaler Zusammenhänge ist eine wichtige Aufgabe in der Datenanalyse und ist vor allem für Prognosen und datengetriebene Entscheidungen relevant
- Ein häufiger Fehler ist es, von einer Korrelation auf einen kausalen Zusammenhang zu schließen
- Korrelationen ohne Kausalität nennt man Scheinkorrelationen
- Scheinkorrelationen entstehen i.d.R. durch eine unbekannte Variable, die die Variablen X und Y beeinflusst

³⁴ Quelle: Backhaus et al. (2022). S. 46.

False Causality³⁵

- Beispiele für Korrelationen ohne Kausalität:
- Geburtenrate und Storchpopulation
- Schuhgröße von Schulkindern und deren Lesekompetenz
- Hopfenerträge und Konsum von Bier
- Kennt ihr noch weitere Korrelationen ohne Kausalität? Welche verdeckten Variablen könnten die beschriebenen Fälle verursachen?

³⁵ Quelle: Backhaus et al. (2022). S. 46.

False Causality³⁶

- Handlungsempfehlung:
- Korrelationskoeffizienten betrachten: passt die Richtung des Zusammenhangs; ist Zusammenhang stark genug?
- Plausibilität prüfen: ist ein kausaler Zusammenhang logisch; gibt es einen zeitlichen Verzug in der Zeitreihe bei Ursache und Wirkung?
- Alternative Hypothesen aufstellen: welche verdeckten Variablen könnte es geben, die X und Y beeinflussen?

³⁶Quelle: Backhaus et al. (2022). S. 46-47.

False Causality - Datensatz

	date	temperature	ice_cream_sales	drownings
0	2023-01-01	13.70	119.79	0.86
1	2023-01-02	11.14	104.20	0.30
2	2023-01-03	12.47	109.21	0.74
3	2023-01-04	15.17	123.71	0.47
4	2023-01-05	14.59	113.95	3.96
360	2023-12-27	10.71	96.45	0.19
361	2023-12-28	9.49	89.99	0.72
362	2023-12-29	11.52	117.54	-0.49
363	2023-12-30	10.51	109.04	0.32
364	2023-12-31	9.97	104.54	3.15

³⁶⁵ rows × 4 columns

³⁷

³⁷Quelle: Selbsterstellter Datensatz

³⁸ Quelle: Eigene Darstellung

OLS Regression Results

Dep. Variable:		drownings	R-squared:		0	.328
Model:	OLS		Adj. R-squa	red:	0.327	
Method:	Leas	t Squares	F-statistic	:	177.6	
Date:	Mon, 09	Jun 2025	Prob (F-sta	tistic):	2.97	e-33
Time:		17:52:45	Log-Likelih	ood:	-50	1.06
No. Observations:		365	AIC:		1	006.
Df Residuals:		363	BIC:		1	014.
Df Model:		1				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	-0.7126	0.138	-5.176	0.000	-0.983	-0.442
ice_cream_sales				0.000	0.015	0.020
Omnibus:		5.263	Durbin-Wats			126
						.126
Prob(Omnibus):		0.072		(JR):	_	.219
Skew:		0.293				0736
Kurtosis:		3.006	Cond. No.			292.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. 39

³⁹Quelle: Eigene Darstellung

⁴⁰Quelle: Eigene Darstellung

OLS Regression Results

===========		=======				====
Dep. Variable:	drownings R-squared:			e	.348	
Model:	OLS		Adj. R-squa	red:	e	.345
Method:	Leas	t Squares	F-statistic	:	9	6.78
Date:	Mon, 09	Jun 2025	Prob (F-sta	tistic):	2.13	le-34
Time:		17:52:45	Log-Likelih	ood:	-49	5.55
No. Observations:		365	AIC:		9	97.1
Df Residuals:		362	BIC:		1	.009.
Df Model:		2				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975
const	0.2111	0.309	0.683	0.495	-0.396	0.819
ice cream sales	-0.0027	0.006	-0.437	0.662	-0.015	0.009
temperature						
Omnibus:			====== Durbin-Wats			:==== 1.096
Prob(Omnibus):		0.020	Jarque-Bera	(JB):	7	.702
Skew:		0.347	Prob(JB):		0.	0213
Kurtosis:		3.159	Cond. No.			671.
=============		=======		========	========	====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. $41\,$

⁴¹Quelle: Eigene Darstellung

Quiz

Join at menti.com | Use vote code 2409 3670

Instructions

Go to

www.menti.com

Enter the code

2409 3670

Or use QR code

42

⁴²Quelle: Eigene Darstellung

Fazit und Abschluss

- Data Fallacies können zu datenbasierten Fehlentscheidungen führen, welche weitreichende Konsequenzen haben können
- Um die Risiken von Data Fallacies zu vermeiden, ist es sinnvoll, diese zu kennen und stets zu prüfen, ob eine Fallacy oder mehrere vorliegen

Vielen Dank für eure Aufmerksamkeit und Mitarbeit

Literaturverzeichnis

- Ameringer, S., Serlin, R. C., & Ward, S. (2009). Simpson's Paradox and Experimental Research. Nursing Research, 58(2), 123–127. https://doi.org/10.1097/NNR.0b013e318199b517
- Anscombe, F. J. (1973). Graphs in Statistical Analysis. The American Statistician, 27(1), 17-21. https://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf
- Backhaus, K., Erichson, B., Gensler, S., Weiber, R., & Weiber, T. (2022). Multivariate Analysemethoden (17. Aufl.). Springer Gabler.
- Bar-Hillel, M. (1980). The Base-Rate Fallacy in Probability Judgements. Acta Psychologica, 44, 211-233. https://bear.warrington.ufl.edu/brenner/mar7588/Papers/barhillel-acta1980.pdf
- Elston, D. (2021). Survivorship Bias. Journal of the American Academy of Dermatology, 1-2. https://www.sciencedirect.com/science/article/abs/pii/S0190962221019861?fr=RR-2&ref=pdf_downloadkrr=94e38a7b2e1b4534
- Flyvbjerg, B. (2022, Februar 1). The Base-Rate Fallacy. Towards Data Science. https://towardsdatascience.com/the-base-rate-fallacy-b94c0a1b9938/
- Grandjean, M., & McGeddon. (o.J.). US Air Force (Hit Plot Concept) [Graphic].
- Hintzman, D. L. (1980). Simpson's Paradox and the Analysis of Memory Retrieval. Psychological Review, 87(4), 398-410. https://www.researchgate.net/publication/20508020_Random_Sampling_Randomization_and_Equivalence_of_Contrasted_Groups_in_Psychotherapy_Outcome_Research

Literaturverzeichnis

- Hsu, L. M. (1989). Random Sampling, Randomization, and Equivalence of Contrasted Groups in Psychotherapy Outcome Research. Journal of Consulting and Clinical Psychology, 57(1), 131-137. https://www.researchgate.net/publication/20508020_Random_Sampling_Randomization_ and Equivalence of Contrasted Groups in Psychotherapy Outcome Research
- Kahneman, D., & Tversky, A. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, New Series, 185(4157), 1124-1131. http://www.jstor.org/stable/1738360
- Miller, B. (2020, August 29). How 'survivorship bias' can cause you to make mistakes. BBC. https://www.bbc.com/worklife/article/ 20200827-how-survivorship-bias-can-cause-you-to-make-mistakes
- Ogbonnaya, K. E., Okechi, B. C., & Nwankwo, B. C. (2019). Statistical Fallacy: A Menace to the Field of Science. International Journal of Scientific and Research Publications (IJSRP), 9(6), p9048. https://doi.org/10.2932/IJSRP.9.06.2019.p9048
- OpenIntro. (n.d.). Simpson's paradox and COVID-19 vaccine effectiveness. OpenIntro. https://www.openintro.org/data/index.php?data=simpsons_paradox_covid
- University of Illinois Urbana-Champaign. (n.d.). UC Berkeley Admissions Data [Berkeley Gender Bias Dataset]. Discovery: Illinois Data Science Initiative. https://discovery.cs.illinois.edu/dataset/berkeley/