* Recurrence Relation

A recurrence relation for a sequence {an't is an equation that expresses an in terms of one or more of the previous terms of the sequence, pamely 90, a, a, a, a, a, a to with n>, no where no is non-negative integer.

A bequence is called Solution of a recurrence reth if its terms satisfys the recurrence reth.

Ex. 0 an = any +3 , nz, 1 with a0=2

 $Q_0 = 2$ $Q_1 = Q_0 + 3 = 2 + 3 = 5$

 $q_1 = q_1 + 3 = 5 + 3 = 8$

93 = 92 + 3 = 8+3 = 11

Numeric Function / solution {2,5,8,11,....}

Ex. @ fibonacci Sequence

an = anz + and, my 2 with a = 1 49,=1

90=1

 \rightarrow

9,=1

92=90+9,=1+1=2

93=91+92=1+2=2

94 = 92+93 = 2+3=5

Solution {1,1,2,3,5,...}

Ex. (a)
$$a_{n-1} - a_{n-2}$$
 for $n = 2,3,4,...$

Let $a_{0} = 3$, $a_{1} = 5$ find $a_{2} < a_{3} < a_{1} < 5$
 $a_{1} = 5$
 $a_{2} = 0, 7, a_{0} = 5, -3 = 2$
 $a_{3} = a_{2} - a_{1} = 2, -5 = -3$

Ex. (a) find first five terms

— i> $a_{0} = 2$
 $a_{1} = 6, a_{0} = 6, 2 = 12$
 $a_{1} = 6, a_{0} = 6, 2 = 12$
 $a_{1} = 6, a_{0} = 6, 2 = 12$
 $a_{1} = 6, a_{1} = 6, 12 = 72$

...

{ 2, 12, 72, }

— ii) $a_{1} = a_{1} - a_{1} + 3a_{1} - 2$, with $a_{0} = 1, 2, 2$
 $a_{1} = 3$
 $a_{1} = 3$
 $a_{1} = 3$
 $a_{1} = 3$

Ex. (a) $a_{1} = 3, a_{1} = 3, a_{2} = 3$

Ex. (b) $a_{1} = 2, a_{1} = 3, a_{2} = 3$

Ex. (c) $a_{1} = 2, a_{1} = 3, a_{2} = 3$

Ex. (c) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (c) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (d) $a_{2} = 3, a_{3} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3, a_{3} = 3, a_{3} = 3$

Ex. (e) $a_{1} = 2, a_{2} = 3, a_{3} = 3, a_{3} =$

117
$$a_2 = 5a_1 - 6a_0$$

LHS $a_1 = 2^2 + 5 \cdot 3^4 = 4 + 5 \cdot 9 = 4 + 45 = 49$

PHS $5a_1 - 6a_0 = 5(17) - 6(6)$

= $85 - 26$
= 49

LHS = PHS

EX. © Determine whether $3e_0 \cdot \{a_n\}$, where $a_n = 3n$ for every non-negative integer $a_n \cdot a_n = 2a_{n-1} - a_{n-2}$

For $a_n \cdot a_n \cdot a_n \cdot a_n = a_{n-1} - a_{n-2}$

117 $a_n \cdot a_n \cdot a_n \cdot a_n \cdot a_n \cdot a_{n-1} - a_{n-2}$

118 $a_n \cdot a_n \cdot a_n \cdot a_n \cdot a_{n-1} - a_{n-2}$

119 $a_n \cdot a_n \cdot a_n \cdot a_n \cdot a_{n-1} - a_{n-2}$

110 $a_n \cdot a_n \cdot a_n \cdot a_n \cdot a_{n-1} - a_{n-2}$

111 $a_n \cdot a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-2}$

112 $a_n \cdot a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-2}$

113 $a_n \cdot a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-2}$

114 $a_n \cdot a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-2}$

115 $a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-2}$

116 $a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-2}$

117 $a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-2}$

118 $a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-2}$

119 $a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-2}$
 $a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-2}$
 $a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-1}$
 $a_n \cdot a_n \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-1}$
 $a_n \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-1} \cdot a_{n-1}$