

rcontroll : une interface R pour le simulateur de croissance forestière individu-centré TROLL

Sylvain Schmitt
Guillaume Salzet

Un ensemble de modèles forestiers selon l'échelle

Exemple en Guyane

Des modèles reposant sur des hypothèses +/- fortes

Fonctionnement de TROLL : processus démographiques

- Individu centré

Espèce

Masse foliaire surfacique
Azote foliaire
Phosphore foliaire
Densité du bois
Diamètre seuil
Hauteur asymptotique
Coefficient a_b

Processus **Démographiques**

Fonctionnement de TROLL : processus physiologique / traits

- □ Spatial
- Individu centré
- ☐ Mécaniste
- Processusphysiologiques
- ☐ Traits fonctionnels

Fonctionnement de TROLL : processus emboîtés & données

Simulation jointe du carbone et de la diversité en Amazonie

Simulation jointe du carbone et de la diversité en Amazonie

Simulation jointe du carbone et de la diversité en Amazonie

Exemple en Guyane

60 assemblages simulés

60 assemblages simulés

3 intensités de Perturbation

60 assemblages simulés

3 intensités de Perturbation

rcontroll

rcontroll

La diversité fonctionnelle améliore la résilience des forêts

Exploitation sélective dans TROLL : un premier essai

Avenir

Exploitation sélective dans TROLL : un premier essai

Exemple en Guyane

TROLL

17

Avenir

rcontroll

TROLL

Améliorer les allométrie en fusionnant modèles forestiers et télédétection

Améliorer les allométrie en fusionnant modèles forestiers et télédétection

Fischer et al. 2019. New Phytologist

Avenir

Simulateur

$$\begin{split} \Delta V &= C*\tfrac{1}{2}*\pi*h*dbh*\Delta dbh + C*\pi*(\tfrac{dbh}{2})^2*h \\ \Delta V &= V*\tfrac{\Delta dbh}{dbh}*(3-\tfrac{dbh}{dbh+ah}) \end{split}$$

TROLL

rcontroll

rcontroll - motivation

$$\Delta V = C * \frac{1}{2} * \pi * h * dbh * \Delta dbh + C * \pi * (\frac{dbh}{2})^2 * h$$

$$\Delta V = V * \frac{\Delta dbh}{dbh} * (3 - \frac{dbh}{dbh + ah})$$

rcontroll - motivation

Développeurs

23

rcontroll - contenu

inputs.Rdata

TROLL

fonctions et méthodes

classes

données

rcontroll - contenu

fonctions et méthodes

classes

données

generate_parameters()

compile_troll()

Simulations

trollsimfull

trollsimreduced

trollsimabc

inputs.Rdata

TROLL

fonctions et méthodes

classes

données

rcontroll - contenu

fonctions et méthodes

classes

troll()

stack()

données

Pré-simulations

Post-simulations

generate parameters()

compile troll()

Simulations

trollsimfull

trollsimreduced

trollsimabc

load()

print()

summary()

autoplot()

inputs.Rdata

```
TROLLv3_input$value[6] <- 12 # Nb iterations per Year
TROLLv3 input$value[5] <- Nyears*12 # iterations
sim1 <- trol1(#name = "test",
            # path = "./",
            full = TRUE,
            abc = FALSE,
            random = TRUE,
            global = TROLLv3 input,
            species = TROLLv3 species,
            climate = TROLLv3 climatedaytime12,
            daily = TROLLv3 daytimevar)
#> /home/sylvain/R/x86 64-pc-linux-gnu-library/3.6/rcontroll/troll/un
siml
#> Object of class : trollsimfull
#> Name : sim Fri Oct 1 09-07-04 2021
#> Path :
#> Forest : FALSE
#> Random : TRUE
#> 2D discrete network: horizontal step = 1 m, one tree per 1 m^2
#> Number of sites
                      : 200 x 200
#> Number of iterations : 12
#> Duration of timestep : 30.41667 days
#> Number of Species : 45
```


29

200

rcontroll - démo

```
Object of class : trollsimfull
Name : sim_Wed_Sep_29_22-25-49_2021
Path :
Forest : FALSE
Random : TRUE
2D discrete network: horizontal step = 1 m, one tree per 1 m^2
Number of sites
                    : 200 x 200
Number of iterations: 30000
Duration of timestep: 30.41667 days
Number of Species
> autoplot(sim1, what = "final pattern") +
```


100

150

Simulation des procédures d'exploitation forestière → ManagForest

Selected

Probed hollow

Visible defect

Liaison directe avec le Canopy constructor

Fischer, Fabian Jörg, Nicolas Labrière, Grégoire Vincent, Bruno Hérault,
Alfonso Alonso, Hervé Memiaghe, Pulchérie Bissiengou, David
Kenfack, Sassan Saatchi, and Jérôme Chave. 2020. "A Simulation
Method to Infer Tree Allometry and Forest Structure from Airborne
Laser Scanning and Forest Inventories." Remote Sensing of
Environment 251 (December): 112056.

Mise en place d'une interface graphique

Conclusion : TROLL disponible pour les utilisateur de R

Réalisé:

Rendre techniquement le modèle TROLL accessible facilement

En projet :

Proposer des méthodes de calibration / analyse de sensibilité générique

Assurer la reproductibilité des résultats

Lier le modèle à d'autres outils de simulations et d'analyses

Bureau d'économie théorique et appliquée (BETA)

Merci de votre attention!

Sylvain Schmitt

PhD postdoctoral researcher
TreeMutation project
UMR EcoFoG
sylvain.m.schmitt@gmail.com

Guillaume SALZET

PhD Student in Tropical Forest Bioeconomics UMR BETA & UMR EcoFoG guillaume.salzet@inrae.fr