Conformational Analysis

Conformational analysis

- The different arrangements of the atoms in space that result from rotations of groups about single bonds are called *conformations* of the molecule.
- •An analysis of the energy changes that a molecule undergoes as groups rotate about single bonds is called *conformational analysis*.

Different conformations

Different configurations

Conformations of ethane

Staggered conformation

Eclipsed conformation

Wedge-and-dash structures

Sawhorse projections

600

Newman projections

$$H \longrightarrow H$$

Torsion or Dihedral angle

$$\begin{array}{ccc}
& & & & \\
& & & \\
A - B & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

The single parameter to differentiate conformers is an angle between two planes that contain atoms ABC and BCD in themselves. This dihedral angle ω is called a "**torsion**" angle and is most frequently used for specification of the type of conformations.

Potential energy of ethane as function of torsion angles

- •staggered conformation has potential energy minimum
- •eclipsed conformation has potential energy maximum
- staggered conformation is lower in energy than the eclipsed by 2.9 kcal/mole (12 kJ/mole)

Why is the eclipsed conformation higher in energy than the staggered conformation?

•The H-atoms are too small to get in each other's way-steric factors make up < 10% of the rotational barrier in ethane

Torsional strain

Caused by repulsion of the bonding electrons of one substituent with the bonding electrons of a nearby substituent

filled orbitals repel

 Stabilizing interaction between filled C-H σ bond and empty C-H σ* antibonding bonding orbital

The real picture is probably a mixture of all 3 effects

• The rotational barrier is (12 kJ/mol) small enough to allow the conformational isomers to interconvert million of times per second

Conformations of butane

Potential energy of butane as a function of torsion angle

A → "synclinal" or "gauche"

B → "anticlinal"

C → "anti-periplanar" or "anti"

D

"syn-periplanar" or "fully eclipsed"

C → "anti-periplanar" or "anti"

No torsional strain as the groups are staggered and CH₃ groups are far away from each other

A → "synclinal" or "gauche"

H CH₂

van der Waals forces between two $\mathrm{CH_3}$ groups are repulsive: the electron clouds repel each other which accounts for 0.9 Kcal/mole more energy compared to anti conformer

• Calculations reveal that at room temperature ~72% of the molecules of butane are in the "anti" conformation, 28% are in "gauche" conformation

D

"syn-periplanar" or "fully eclipsed"

Highest energy due to torsional strain and large van der waals repulsive force between the CH₃ groups

Conformations and Conformers

Butane can exit in an infinite number of conformations (6 most important have been considered), but has only 3 conformers (potential energy minima)-the two "gauche" conformations and the "anti" conformations

• The preference for a staggered conformation causes carbon chains to orient themselves in a *zig zag* fashion, see structure of decane

Cycloalkanes

Is the energy per CH₂ is same in this series?

Is the energy per CH₂ is same in the straight chain alkanes?

$$CH_3$$
- $(CH_2)_n$ - CH_3

Does the value of n has an effect on combustion energy per CH₂?

Heats of combustion for straight chain alkanes of formula $CH_3(CH_2)_nCH_3$

Straight chain	n	-ΔHcombustion	Difference
alkanes		kJ mol ⁻¹	kJ mol ⁻¹
ethane	0	1560	
propane	1	2220	660
butane	2	2877	657
pentane	3	3536	659
hexane	4	4194	658
heptane	5	4853	659
octane	6	5511	658
nonane	7	6171	660
decane	8	6829	658
undecane	9	7487	658
dodecane	10	8148	661

 the difference between any two in series very nearly constant at around -660 kJ/mole (energy per CH₂) Therefore in cycloalkanes heat of combustion should be n X 658.7 kJ/mole.

If there is some strain, more energy should given out on combustion

Cycloalkanes:

Ring strain

^{*} a measure of strain per C-atom

- strain and ce are more in the 3-membered ring.
- strain decreases with ring size and reaches a minimum for 5-membered ring.
- ce decreases with ring size and reaches minimum for 6-membered ring
- The ce increases, but not as quickly as the angle calculation suggested: it reaches a maximum at 9 and then decreases.
- ce remain constant from ~14, not increases steadily as the angle-strain suggests.

Cyclic compounds twist and bend to minimize the 3 different kinds of strain 1. Angle strain 2. Torsional strain 3. Steric strain

HCH 115°

Cyclopropane

• banana bonds poor orbital overlap

•Torsional strain

For sp³: 25% s & 75% p charector Here the four hybrid orbitals of C are far from equivalent

External orbitals: 33% S & 67% p \rightarrow sp² Internal orbitals: 17% S & 83% p \rightarrow sp⁵

Electron density diverts away from the ring by 21°

Poor overlap Weak bond

Cyclobutane

to reduce torsional angle

Cyclobutane

Interplanar angle 35°

Cyclopentane

The energy difference is little

- •one carbon atom is bent upwards
- The molecule is flexible and shifts conformation constantly
- •Hence each of the carbons assume the pivotal position in rapid succession .
- •The additional bond angle strain in this structure is more than compensated by the reduction in eclipsed hydrogens.
- With little torsional strain and angle strain, cyclopentane is as stable as cyclohexane.

boat conformation

Interconversions of Cyclohexane

Cyclohexane energy profile for cyclohexane ring reversal

- The energy difference between the chair, boat, and twist conformation of cyclohexane are low enough to make their separation impossible at r.t. At room temperature approx. 1 million inter-conversions occur in each second.
- More than 99% of the molecules are estimated to be in chair conformation at any given time

Monosubstituted cyclohexane

This conformation is lower in energy

When X=CH₃, conformer with Me in axial is higher in energy by 7.3 kJ/mol than the corresponding equatorial conformer.

Result: 20:1 ratio of equatorial:axial conformer at 20° C

1,3-diaxial interaction

The black bonds are antiperiplanar (only one pair shown)

The black bonds are synclinal (gauche)

(only one pair shown)

X	Equilibrium constant	Energy diff. between axial and equatorial conformers kJ/mol	% with substitutent equatorial
H	1	0	50
Me	19	7.3	95
Et	20	7.5	95
i-Pr	42	9.3	98
t-Bu	>3000	>20	>99
OMe	2.7	2.5	73
Ph	110	11.7	99

Preferred Conformations

Write preferred conformation for

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{1 gauche-butane interaction} \\ \text{0.9 kcal/mol} \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{4 gauche-butane interaction} \\ \text{4 x 0.9 kcal/mol} \\ \text{3 chapped a constraint of the constraint of the$$

favoured

Difference in stability between \longrightarrow 3.6 - 0.9 = 2.7 kcal/mol the conformational isomeric, chiral and therefore resolvable

This has 3 gauche-butane interactions

CH₃ CH₃ CH₃ CH₃ CH₃ R

Chiral; ring inversion produces

Enontiomeric, chiral and not resolvable

ut since barrier of conversion is low to allow separation. is inseparable and hence the compound is optically inactive.

Diastereomers, achiral

It is a resolavable molecule 2-gauche-butane interaction = 1.8 kcal/mol

cis-isomer is stable than trans isomer

2-gauche-butane interaction, $2 \times 0.9 = 1.8 \text{ kcal/mol}$

Trans is stable than cis

DECALIN

cis-decalin

trans-decalin

cis-decalin

Ring flip occurs

trans-decalin

Would lead to breakage of C-C bond

Ring flip will not occur

cis-decalin

trans-decalin

Why is the eclipsed conformation higher in energy than the staggered conformation?

2.15

As two nonpolar groups approach each other, the van der Waals attractive force increases to a maximum,then decreases and becomes repulsive

van der Waals radii, ${f A}^0$					
H	N	0	\mathbf{F}		
1.2	1.5	1.4	1.35		
CH_2	P	S	Cl		
2.0	1.9	1.85	1.8		
CH ₃			Br		
2.0			1.95		
			I		

The van der Waals radius→ onehalf the distance between two equivalent atoms at the point of the energy minimum

It is more difficult to form an acetal of compound A than of B. Why?

$$H^{+}$$
 H^{-}
 H

Which compound should saponify faster (A or B)?

