$Test\ report\ No.\ :\ 10279740H\text{-}A\text{-}R1$

Page : 157 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014

Revised date : September 2, 2014

3. Dosimetric E-Field Probe Calibration (EX3DV4, S/N: 3922)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL Japan (PTT)

Certificate No: EX3-3922_Jun14

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3922

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,

QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

June 13, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	J-11-
Approved by:	Katja Pokovic	Technical Manager	Real
			Issued: June 13, 2014

Certificate No: EX3-3922_Jun14

Page 1 of 11

 $Test\ report\ No.\ :\ 10279740H\text{-}A\text{-}R1$

Page : 158 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3922_Jun14

Page 2 of 11

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1 Page : 159 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

EX3DV4 - SN:3922 June 13, 2014

Probe EX3DV4

SN:3922

Manufactured: Marc Calibrated: June

March 8, 2013 June 13, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3922_Jun14

Page 3 of 11

: 160 of 186 Page

: YR7AERODRP5 FCC ID Issued date : August 19, 2014 Revised date : September 2, 2014

June 13, 2014 EX3DV4-SN:3922

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.37	0.45	0.50	± 10.1 %
DCP (mV) ^B	102.0	99.8	102.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	144.1	±2.7 %
		Y	0.0	0.0	1.0		134.8	
		Z	0.0	0.0	1.0		143.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page : 161 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

June 13, 2014 EX3DV4-SN:3922

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
650	42.5	0.89	10.78	10.78	10.78	0.13	1.00	± 13.3 %
750	41.9	0.89	10.44	10.44	10.44	0.22	1.31	± 12.0 %
835	41.5	0.90	10.03	10.03	10.03	0.26	1.14	± 12.0 %
900	41.5	0.97	9.94	9.94	9.94	0.34	0.93	± 12.0 %
1450	40.5	1.20	8.80	8.80	8.80	0.62	0.68	± 12.0 %
1640	40.3	1.29	8.44	8.44	8.44	0.73	0.61	± 12.0 %
1750	40.1	1.37	8.28	8.28	8.28	0.80	0.58	± 12.0 %
1810	40.0	1.40	8.10	8.10	8.10	0.80	0.58	± 12.0 %
1900	40.0	1.40	8.10	8.10	8.10	0.48	0.73	± 12.0 %
1950	40.0	1.40	7.84	7.84	7.84	0.44	0.78	± 12.0 %
2450	39.2	1.80	7.29	7.29	7.29	0.37	0.86	± 12.0 %
2600	39.0	1.96	7.11	7.11	7.11	0.35	0.94	± 12.0 %
5200	36.0	4.66	5.35	5.35	5.35	0.30	1.80	± 13.1 %
5300	35.9	4.76	4.94	4.94	4.94	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.76	4.76	4.76	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.61	4.61	4.61	0.40	1.80	± 13.1 9
5800	35.3	5.27	4.56	4.56	4.56	0.40	1.80	± 13.1 9

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3922_Jun14

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

: 162 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

EX3DV4-SN:3922 June 13, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
650	55.9	0.96	10.78	10.78	10.78	0.05	1.10	± 13.3 %
750	55.5	0.96	10.04	10.04	10.04	0.41	0.89	± 12.0 %
835	55.2	0.97	9.98	9.98	9.98	0.27	1.19	± 12.0 %
900	55.0	1.05	9.77	9.77	9.77	0.54	0.75	± 12.0 %
1450	54.0	1.30	8.57	8.57	8.57	0.67	0.66	± 12.0 %
1640	53.8	1.40	8.57	8.57	8.57	0.37	0.88	± 12.0 %
1750	53.4	1.49	8.09	8.09	8.09	0.33	0.95	± 12.0 %
1810	53.3	1.52	7.96	7.96	7.96	0.49	0.77	± 12.0 %
1900	53.3	1.52	7.85	7.85	7.85	0.44	0.80	± 12.0 %
1950	53.3	1.52	8.05	8.05	8.05	0.38	0.85	± 12.0 %
2450	52.7	1.95	7.36	7.36	7.36	0.76	0.56	± 12.0 %
2600	52.5	2.16	7.13	7.13	7.13	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.42	4.42	4.42	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.15	4.15	4.15	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.89	3.89	3.89	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.85	3.85	3.85	0.50	1.90	± 13.1 %
5800	48.2	6.00	3.98	3.98	3.98	0.50	1.90	± 13.1 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

Certificate No: EX3-3922_Jun14 Page 6 of 11

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip disprets from the boundary.

diameter from the boundary

Test report No. : 10279740H-A-R1 Page : 163 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

EX3DV4- SN:3922 June 13, 2014

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3922_Jun14

Page 7 of 11

Test report No. : 10279740H-A-R1
Page : 164 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

EX3DV4- SN:3922 June 13, 2014

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Test report No.: 10279740H-A-R1 Page : 165 of 186 FCC ID : YR7AERODRP5 Issued date

: August 19, 2014 **Revised date** : September 2, 2014

EX3DV4-SN:3922 June 13, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3922_Jun14

Page 9 of 11

Test report No. : 10279740H-A-R1 Page : 166 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

EX3DV4- SN:3922 June 13, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3922_Jun14

Page 10 of 11

Page : 167 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

EX3DV4-SN:3922

June 13, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-107
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3922_Jun14

Page 11 of 11

Page : 168 of 186

: YR7AERODRP5 FCC ID Issued date : August 19, 2014 Revised date : September 2, 2014

4. Dosimetric E-Field Probe Calibration (EX3DV4, S/N: 3825)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL Japan (PTT)

Certificate No: EX3-3825_Dec13

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3825

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

December 13, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753F	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Function Name Laboratory Technician Calibrated by: Jeton Kastrati Katja Pokovic Technical Manager Approved by: Issued: December 14, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3825_Dec13

Page 1 of 11

Page : 169 of 186

: YR7AERODRP5 FCC ID Issued date : August 19, 2014

Revised date : September 2, 2014

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z

diode compression point

DCP CF A, B, C, D

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization o

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3825_Dec13

Page 2 of 11

Test report No. : 10279740H-A-R1
Page : 170 of 186
FCC ID : YR7AERODRP5

FCC ID : YR7AERODRPS
Issued date : August 19, 2014
Revised date : September 2, 2014

EX3DV4 - SN:3825 December 13, 2013

Probe EX3DV4

SN:3825

Manufactured: Calibrated:

September 6, 2011 December 13, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3825_Dec13

Page 3 of 11

Page : 171 of 186

: YR7AERODRP5 FCC ID Issued date : August 19, 2014 Revised date : September 2, 2014

December 13, 2013 EX3DV4- SN:3825

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3825

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.43	0.39	0.43	± 10.1 %
DCP (mV) ^B	100.5	105.0	99.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	198.2	±2.2 %
		Y	0.0	0.0	1.0		196.8	
		Z	0.0	0.0	1.0		147.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Test report No.: 10279740H-A-R1 Page : 172 of 186

: YR7AERODRP5 FCC ID : August 19, 2014 Issued date Revised date : September 2, 2014

December 13, 2013 EX3DV4-SN:3825

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3825

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.84	9.84	9.84	0.27	0.95	± 12.0 %
835	41.5	0.90	9.58	9.58	9.58	0.29	0.97	± 12.0 %
900	41.5	0.97	9.44	9.44	9.44	0.80	0.50	± 12.0 %
1750	40.1	1.37	8.13	8.13	8.13	0.42	0.74	± 12.0 %
1810	40.0	1.40	7.90	7.90	7.90	0.75	0.56	± 12.0 %
1900	40.0	1.40	7.93	7.93	7.93	0.79	0.57	± 12.0 %
2000	40.0	1.40	7.94	7.94	7.94	0.56	0.65	± 12.0 %
2450	39.2	1.80	7.25	7.25	7.25	0.39	0.76	± 12.0 %
2600	39.0	1.96	7.06	7.06	7.06	0.45	0.75	± 12.0 %
5200	36.0	4.66	5.17	5.17	5.17	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.87	4.87	4.87	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.82	4.82	4.82	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.61	4.61	4.61	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.57	4.57	4.57	0.40	1.80	± 13.1 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

diameter from the boundary.

Page : 173 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

EX3DV4- SN:3825 December 13, 2013

		de Simi	deline Ma	ed?a			College	Parameter I	lala min
9.44 9.64 0.65 0.81 4.12.0 % 760 53.6 9.45 9.41 0.42 0.88 6.12.0 % 566 58.2 9.23 9.23 9.20 0.82 0.67 4.12.0 % 50.0 65.0 7.68 7.86 7.86 0.83 6.21 6.12.0 % 180 58.1 7.77 7.77 7.77 0.43 0.71 6.12.0 % 1810 58.3 7.86 7.66 7.86 0.43 0.72 8.12.0 % 1810 58.3 7.87 7.66 7.86 0.43 0.72 8.12.0 % 1800 58.3 7.83 7.66 7.82 0.27 0.87 8.12.0 % 2000 58.2 7.23 7.23 7.20 0.80 0.80 2.12.0 % 2000 52.5 6.53 4.23 6.28 0.80 1.80 4.12.1 % 58.0 50.0 3.60 3.20 8.20 0.50		nace annimitation	n President de Constituto	in marin - and al		· ·	part is feet, it can be take	TO STATE	Conce
2A1 2A1 CA2 D80 a:20% 595 653 9.23 9.20 0.52 0.57 a:20% 500 65.0 7.68 7.88 7.85 0.48 0.27 a:12.0% 180 53.3 7.65 7.65 7.86 0.48 0.72 a:12.0% 180 53.3 7.65 7.65 0.48 0.72 a:12.0% 1900 53.3 7.65 7.65 0.48 0.72 a:12.0% 1900 50.3 7.65 7.66 7.86 0.48 0.57 a:12.0% 1900 50.3 7.65 7.66 7.86 0.48 0.57 a:12.0% 2000 50.3 7.65 7.86 7.26 0.57 a:12.0% 20.0% 50.3 7.65 7.26 7.27 0.80 0.50 a:12.0% 20.0% 50.5 7.65 7.26 7.27 0.80 0.50 a:12.0% 20.0% 50.5 </th <th></th> <th>2011</th> <th>Convic</th> <th>Alohe</th> <th></th> <th>Action to be formation and</th> <th>1.10004</th> <th>Personal</th> <th></th>		2011	Convic	Alohe		Action to be formation and	1.10004	Personal	
S.23 9,23 9,25 9,52 9,57 1,52,0 % 500 65,0 T.60 Y.80 Y.80 Y.80 D.60 12,0 % 1150 59,4 7.77 7.77 9,48 9,71 12,0 % 1810 53,3 7.80 7,80 9,48 0,72 12,0 % 1800 53,3 7.80 7,80 9,48 0,72 12,0 % 2000 50,3 7.80 7,80 7,50 0,27 9,77 2,20 % 2000 50,3 7.80 7,80 0,27 0,37 2,50 2,12,0 % 2000 50,3 7.80 7,80 7,20 0,37 0,50 2,12,0 % 2000 50,5 7.80 7,80 7,20 0,37 0,50 2,12,0 % 2000 50,5 7.80 7,80 0,20 0,50 2,12,0 % 2000 50,5 7.80 7,80 0,20 0,50 2,12,0 % 2000	2/4	9.44	A11, 244	280	7,61	Section and Company	1 700	1.12 - 1.24 D.	
7.88 7.88 7.85 0.46 0.66 ±13.0 % 1800 53.4 7.77 7.77 0.48 0.71 ±12.0 % 1810 53.3 7.85 7.85 0.43 0.72 ±12.0 % 1800 53.3 7.85 7.85 0.43 0.72 ±12.0 % 1800 53.3 7.80 7.80 7.80 0.43 0.72 ±12.0 % 7.80 7.80 58.3 7.80 58.3 7.80 7.80 7.80 7.80 0.80 5.50 5.12.0 % 7.80 7.80 7.80 0.80 58.3 7.80 58.3 7.80 58.3 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80	945	949	941	0.42	7.86	Brot mointain to			- 1
7.77 7.77 7.77 0.48 0.71 ±12.6% 1910 . 53.3 7.85 7.85 7.86 0.43 0.72 ±12.0% 1920 . 58.3 7.83 7.85 7.86 0.43 0.72 ±12.0% 200 . 58.3 7.83 7.83 7.83 0.53 0.55 ±12.0% 200 . 58.3 7.83 7.83 7.83 0.50 0.50 ±12.0% 200 . 58.5 6.53 4.85 6.78 0.50 1.80 ±13.1% 5000 . 68.5 3.63 3.62 3.62 3.60 0.50 ±13.1% 5000 . 68.5	9.93	9.23	2.22	0.62	0.67	±120%		4	-1
7.88 7.88 7.88 0.48 0.72 ±12.0 %. 1200 88.3	7.80	7.80	Total Bechan	2.46	0.69	±120%	1750	584	
7,80 7.85 7.80 0.27 0.87 2.20% 2000 38.2 7,20 7.23 7.20 0.70 0.80 0.50 2.72.9% 2000 50.5 6,83 4,85 6,38 0.50 1.80 2.73.1% 5000 60.5 6,83 4,85 6,38 0.50 1.80 2.73.1% 5000 60.5 3,00 3,00 3,00 60.5 3,00 3,00 60.5 3,00 3,00 60.5 3,00 3,00 60.5	7.77	3.77	7.77	0.48	971	± 20%	1019	43.3	1.5
7,80 7.80 7.80 0.37 0.87 8.20.54 2000 50.3 7,70 7.00 7.00 0.50 2.72.0 % 2000 50.5 6,60 4.50 6.30 0.50 1.80 1.31.1% 5000 60.0 2,60 2.50 1.80 4.13.1% 5000 60.0 2,60 2.50 2.50 4.31.1% 5000 60.0	7,60	7.69	7.86	0.48	0.72	2120%	1990	58.8	1.5
7.73 7.23 7.23 7.23 7.77 0.55 5.12.58 7430 52.7 7.32 7.32 7.42 0.50 0.50 5.12.58 7430 52.5 6.58 4.58 6.38 0.50 1.50 5.13.1% 52.00 63.5 6.58 4.58 6.38 0.50 1.50 5.13.1% 52.00 63.5 6.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	7.03	7.88	7.92	0.27	0.97	20%		. 55.3	
7.92 7.93 7.92 0.80 0.50 2.720% 2000 50.5 6.85 4.55 4.78 0.50 1.80 2.131% 5200 60.0 2.63 4.23 6.78 0.50 1.80 2.13.1% 5200 60.0 3.64 3.82 3.92 0.50 1.80 2.13.1% 5800 68.6	7.23	7.23	7.23	0.79	0.56	n 12.0 %	2630	527	
6.55 4.55 4.38 0.50 1.89 6.79.1 % 5200 49.0 5.63 4.83 6.78 9.50 1.80 6.13.1 % 5200 69.0 3.63 3.92 3.92 9.50 1.80 513.1 % 5300 68.0 3.90 2.90 0.50 1.80 513.1 % 5000 48.0	7.00	7.50	7.52	0.80	0.50	2.20%	2660		
103 423 678 0.50 1.90 618.1% 5909 50.0 304 307 307 0.50 1.80 618.1% 5900 58.6 300 307 200 0.50 1.80 613.1% 5000 58.6	4.58	4.38	4.38	0.50	5,89	±*21%	5200	1	8.3
2.00 2.00 2.00 2.00 ±13.1% 500 48.5		d 32	2.72	0.50	911 04 5-10 05 05 05 05	1		The same of the sa	6.6
390 390 890 050 590 573.1% 1000 48.6	2.66	2.02	78 39 28	0.50	4,90		FILES		A SECOND
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.55	7 G5	movement (SEA FIFTH)	TOTAL SUPPLIES			Samuel Williams	A COLUMN SET OF THE PARTY OF THE	www.mareninist
The second secon	7 100	. A State of the last	LESKI HILLIANS	Total and the Springer				5	
	. 792	e de la companya de l		-	a are strate no.	According to the Control of the Control	1 1000	1 190.2	6.0
	and blitter be	sa Baran M	and the second		of the cas	sedebeke bi Pro 1900	Name and the St.	March AND M. Same	Secret Confin
					eller thought	Paramatan.	11 500000000000000000000000000000000000	PROPERTY OF THE PROPERTY OF	
	ON THE STREET					0.00			20 (20 (20 (20)
		0250 m m							tofilorovon# Stretov#J*Or

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1 Page : 174 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

EX3DV4- SN:3825 December 13, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3825_Dec13 Page 7 of 11

Test report No. : 10279740H-A-R1
Page : 175 of 186
FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

EX3DV4- SN:3825 December 13, 2013

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Test report No.: 10279740H-A-R1
Page : 176 of 186
ECC ID : VP74 EPODPP5

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

EX3DV4- SN:3825 December 13, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3825_Dec13

Page 9 of 11

Test report No.: 10279740H-A-R1 Page : 177 of 186 FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

December 13, 2013 EX3DV4-SN:3825

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3825_Dec13

Page 10 of 11

Page : 178 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

EX3DV4- SN:3825 December 13, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3825

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-27.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3825_Dec13

Page 11 of 11