CALIFORNIA STATE UNIVERSITY SACRAMENTO

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

EEE 108L
Electronics I_Laboratory, 1 unit

Summer_2022

Lab - 05 Report

Submitted to

Riaz Ahmad

By

Dated: 08-14-2022

Vigomar Kim Algador

TABLE OF CONTENTS

Introduction	3
<u>Part 1</u> - Preliminary Calculation	4
Part 2- Simulations Results	5 - 8
Part 3- Laboratory Measurements	9 - 11
Conclusions	12
Appendix	13

INTRODUCTION:

In this laboratory, the student needs to explore the DC characteristics of a MOS transistor. The student must use the model of an n-channel transistor in the CD4007 MOS transistor for both SPICE simulations and the actual laboratory measurements. To have a better understanding, this laboratory divided into three parts. For the first part, the student must the equations given to calculate for the initial questions that will be use to the later part of this laboratory. This also introduced the 3 different state: cutoff, saturation (forward active), and linear (triode) region. For the next part of the laboratory, the student must simulate the given circuit shown in figure 1. The circuit needs to be run with different simulation generating graphs requiring to analyze and gather data. For the last part of this laboratory, the student must build the actual circuit using the model that has separate source and bulk connections. Using the AD2, the student must utilize the settings for the graphs to generate and record the data that were asking.

Part1 – Preliminary Calculations

Figure 1

- 1. The condition for forward active (saturation) region $V_{DS} > (V_{GS} V_{th})$ is equivalent to $V_{GD} < V_{th}$. (Refer to appendix for full proving)
- 2. From figure 1, if $R_D = 4.7k\Omega$, $V_{DD} = 5V$, $\lambda = 0$,
 - When $V_{GS} = \mathbf{1}V$: $I_D = \mathbf{0}$ and the device is the cutoff region.
 - When $V_{GS} = 2V$: $I_D = 196.8 \,\mu A$ and the device is the saturation region.
 - When $V_{GS} = 4 V$: $I_D = 1.025 \, mA$ and the device is the linear (triode) region.
- 3. $I_D=35~\mu$ when $V_{GS}=1.46V$ and $I_D=430~\mu$ when $V_{GS}=2.18V$:

$$V_{th} = 1.172 V$$

Part2 - Simulations Results

For this part of the laboratory, the student simulated the circuit from the figure 1 into the SPICE and set the $V_{DD} = 5$ V and other specific values from preliminary calculations. The circuit in SPICE simulation is shown below.

Figure 2. Circuit in SPICE simulation

After entering the circuit in SPICE simulation, the student run DC Sweep for V_{GS} from 0 to 5V. With this, the student was able to generate a plot of I_D as a function of V_{GS} shown in figure 3. Additional, the student was able to gather the information for the model of the CD4007 n-channel transistor.

Figure 3. DC Sweep for I_D as a function of V_{GS}

On the other hand, the student add a plot showing V_{GS} , V_{GD} , and V_{th} shown in figure 4 below which uses a math function of two circuit voltages to plot V_{GD} and enter "1.6" as the trace expression for V_{th} . In the graph below, we can see that the blue trace is V_{GS} , the orange trace is V_{GD} , and the purple trace is V_{th} .

Figure 3. DC Sweep for V_{GS} , V_{GD} , and V_{th}

Using vertical lines from the previous graph, the student labeled the three regions of operation: cutoff, forward active, and linear (triode) which shown in figure below.

Figure 4. DC Sweep for V_{GS} , V_{GD} , and V_{th} showing the cutoff region and forward active region

Figure 5. DC Sweep for V_{GS} , V_{GD} , and V_{th} showing the linear (triode) region

Analyzing from the graphs figure 4, we can see that the red vertical line showing its in the cutoff region in which the cutoff region is below 1.5V while the black vertical line shows in the forward active region in which this region is between 1.5V to 2.5V. On the other hand, we can see in figure 5 that the green vertical line is in the linear region in which this region is anything above 2.5V.

After that, the student change the circuit by removing R_D and replacing it with a wire which makes $V_{DS} = V_{DD}$. Assigning a DC value of 2V to V_{GS} and sweep V_{DD} from 0 to 5V, the student was able to obtain a plot of I_D shown below.

Figure 6. DC Sweep as V_{DD} set as the voltage for I_D

Analyzing the graph above, we can see the red vertical line representing the transistor transitions into saturation which the value is at 0.5V.

On the other hand, the student find an approximate value for $\Delta V_{DS}/\Delta I_D$ in each region. The region that the student did are the linear region and the saturation region which shown in figure 7.

Figure 7. plot for ΔV_{DS} and ΔI_D

From the figure 7, we can see that the blue trace in the second graph is zoomed in which we can clearly see the values more clearly to identify the values for each regions. Looking at the graph, the red vertical line show as the linear region which is at $1.0144~k\Omega$ while the yellow line shown as the saturation region which is $535.889~k\Omega$.

After, the student put back the R_D in the circuit and simulated with the bulk of the transistor connected to -1V instead of ground shown in figure 8.

Figure 8. Circuit in PSPICE V_{bs} is set to -1V

After setting up the new circuit, the student run the bias point and found the value of V_{th} which is 2.58 V shown in the figure below.

Part3 – Laboratory Measurements

In this part of the laboratory, the student constructed the circuit from figure 1 into the breadboard using the laboratory kit given shown in figure 9.

Figure 9. Actual circuit in breadboard

After setting it up, the student set V_{DD} to 5V and sweep V_{GS} from 0 to 5V shown in figure below.

Figure 10. Simulated sweep V_{GS} from 0 to 5V

After the simulation, the student was able to record V_{GS} and V_{DS} as well as calculated I_D shown in table 1.

Table 1. Recorded V_{GS} , V_{DS} and calculated I_D

$V_{ m GS}$	V_{DS}	I_D
0.150895 V	4.97658 V	1.03172
0.690137 V	4.9729 V	0.91699
1.50668 V	4.91028 V	0.74325
2.30816 V	3.82106 V	0.57273
3.09209 V	1.8916 V	0.40593
3.89979 V	0.880527 V	0.23408

Other than that the student obtain data points for the forward active region shown in figure 11 and data points for the linear region shown in figure 12.

Figure 11. Graph and data points for the forward active region

Figure 12. Graph and data points for the linear region

Analyzing figures 11 and 12, we can both see the red lines which indicates each data points used consisting of 4 data points recorded below the graph. With this, the student was able to determine the value for V_{th} which is equal to 1.6 V.

On the other hand, the student adjusted the V_{GS} so that the $V_{DS} = 2V$ from the figure 1. With this adjustment, the student was able to record the values of V_{GS} shown below.

For that, the student vary V_{DD} from zero to about 7 volts and recorded V_{DS} and I_D with 4 data points in linear region and saturation region shown in table below.

Table 2. Recorded data V_{DS} and I_D for Linear and Saturation region

Volts	V _{DS} (Linear)	V _{DS} (Saturation)	I _D (Linear)	I _D (Saturation)
1	0.246095 V	0.332117 V	0.1604	0.1421
2	0.287919 V	0.2931303 V	0.3642	0.36316
3	2.97163 V	2.87718 V	0.00603	0.02613
4	3.72503 V	3.98142 V	0.0585	0.00395

After recording the values, the student then connect the bulk terminal of the transistor under test to a fixed voltage equal to -1V and found a new value of V_{th} equal to 2.58V.

CONCLUSION:

In this laboratory, the student explored the DC characteristics of a MOS transistor. There are 3 parts of MOS which consists of gain, source, and drain. On the other hand, there are also region operation including the cutoff region, forward active (saturation) region, and the linear (triode) region. To further understand the goal of this laboratory, the student worked with three different parts. The first part of this laboratory uses the skills and things learned from the lecture and apply the equations and calculations to the questions. We found out the that one of the conditions for forward active region $V_{DS} > (V_{GS} - V_{th})$ is equivalent to $V_{GD} < V_{th}$. We also investigated the different region with the given V_{GS} and calculated for the I_D . For the second part of the laboratory, the student used the SPICE simulation and also showed different regions. Stepby-step, the student showed each graph adding different voltages such as V_{GS} , V_{GD} , and V_{th} with different regions divided. On the last part of the laboratory, the student setup the actual circuit using the model CD4007 MOS transistor and used AD2 to simulate and measure. Same as the SPICE simulation and the hand calculation, the student obtain many data points for the regions.

Table 3. The comparison for three parts of the laboratory

	Preliminary	Simulation	Experimentation
$V_{\scriptscriptstyle GS}$	1.46	1.46	1.09
$V_{\scriptscriptstyle ext{th}}$	1.17	1.6	1.6
V _{th} with -1V	2.3	2.58	2.58

APPENDIX

