Chapter 7

Sequence and series of functions

List of Theorems

7.1	Definition	4
7.2	Example	5
7.3	Example	5
7.4	Definition	6
7.5	Γheorem	7
7.6	Γheorem	8
7.7	Γheorem	9
7.8	Гheorem	10
7.9	Гheorem	11
7.10	Γheorem	12
7.11	Definition	13
7.12	Гheorem	14
7.13	Гheorem	15
7.14	Corollary	15
7.15	Гheorem	16
7.16	Гheorem	17
7.17	Definition	18
7.18	Definition	19
7.19	Гheorem	20
7.20	Гheorem	21
7.21	Гheorem	22
7.22	Гheorem	23
7.23	Corollary	24
7.24	Definition	25
7.25	Гheorem	26
7.26	Definition	27
7.27	Гheorem	28
		29

Ch7. Sequence and series of functions

7.29	Lemma .																30
7.30	${\rm Lemma}\ .$																30
7.31	$\operatorname{Lemma}.$																31
7.32	Theorem																32
7.33	Theorem																33

Discussion of main problem

Definition 7.1. Suppose $\{f_n\}$, n = 1, 2, 3, ..., is a sequence of functions defined on a set E, and suppose that the sequence of numbers $\{f_n(x)\}$ converges for every $x \in E$. We can then define a function f by

$$f(x) = \lim_{n \to \infty} f_n(x) \quad (x \in E). \tag{1}$$

Under these circumstances we say that $\{f_n\}$ converges on E and that f is the limit, or the limit function, of $\{f_n\}$. Sometimes we shall use a more descriptive terminology and shall say that " $\{f_n\}$ converges to f **pointwise** on E" if (1) holds. Similarly, if $\sum f_n(x)$ converges for every $x \in E$, and if we define

$$f(x) = \sum_{n=1}^{\infty} f_n(x) \quad (x \in E),$$

the function f is called the sum of the series $\sum f_n$. To say that f is continuous at x means

$$\lim_{t \to x} f(t) = f(x).$$

Hence, to ask whether the limit of a sequence of continuous functions is continuous is the same as to ask whether

$$\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t), \tag{2}$$

i.e., whether the order in which limit processes are carried out is **immaterial**. On the left side of (2), we first let $n \to \infty$, then $t \to x$; on the right side, $t \to x$ first, then $n \to \infty$.

Example 7.2. For m = 1, 2, 3, ..., n = 1, 2, 3, ..., let

$$s_{m,n} = \frac{m}{m+n}.$$

Then, for every fixed n,

$$\lim_{m \to \infty} s_{m, n} = 1,$$

so that

$$\lim_{n\to\infty}\lim_{m\to\infty}s_{m\,n}=1.$$

On the other hand, for every fixed m,

$$\lim_{n\to\infty} s_{m\,n} = 0,$$

so that

$$\lim_{m \to \infty} \lim_{n \to \infty} s_{m,n} = 0.$$

Example 7.3. Let

$$f_n(x) = \frac{x^2}{(1+x^2)^n}$$
 (x is real; $n = 0, 1, 2, \ldots$),

and consider

$$f(x) = \sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}.$$

Prove that f(x) is convergences, and may have a discontinuous sum.

Uniform convergence

Definition 7.4. We say that a sequence of function $\{f_n\}$, $n=1, 2, 3, \ldots$, converges **uniformly** on E to a function f if for every $\varepsilon > 0$ there is an integer N such that $n \geq N$ implies

$$|f_n(x) - f(x)| \le \varepsilon$$

for all $x \in E$.

It is clear that every uniformly convergence sequence is pointwise convergent. (why?) We say that the series $\sum f_n(x)$ converges uniformly on E if the sequence $\{s_n\}$ of **partial sums** defined by

$$\sum_{i=1}^{n} f_i(x) = s_n(x)$$

converges uniformly on E.

Theorem 7.5. The sequence of functions $\{f_n\}$ defined on E, converges uniformly on E if and only if for every $\varepsilon > 0$ there exists an integer N such that $m \geq N, n \geq N, x \in E$ implies

$$|f_n(x) - f_m(x)| \le \varepsilon.$$

Note that suppose the cauchy condition holds, by Theorem 3.11, the sequence $\{f_n(x)\}$ converges.

Theorem 7.6. Suppose

$$\lim_{n \to \infty} f_n(x) = f(x) \quad (x \in E).$$

Put

$$M_n = \sup_{x \in E} |f_n(x) - f(x)|.$$

Then $f_n \to f$ uniformly on E if and only if $M_n \to 0$ as $n \to \infty$.

Theorem 7.7. Suppose $\{f_n\}$ is a sequence of functions defined on E, and suppose

$$|f_n(x)| \le M_n \quad (x \in E, \ n = 1, \ 2, \ 3, \ \ldots).$$

Then $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.

Note that the converse is not asserted (and is, in fact, not true). *Proof.*

Theorem 7.8. Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that

$$\lim_{t \to x} f_n(t) = A_n \quad (n = 1, 2, 3, \ldots).$$

Then $\{A_n\}$ converges, and

$$\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n.$$

i.e., the conclusion is that

$$\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t).$$

Theorem 7.9. If $\{f_n\}$ is a sequence of continuous functions on E, and if $f_n \to f$ uniformly on E, then f is continuous on E.

This is very important.

Theorem 7.10. Suppose K is compact, and

- (a) $\{f_n\}$ is a sequence of continuous functions on K,
- (b) $\{f_n\}$ converges pointwise to a continuous function f on K,
- (c) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K$, $n = 1, 2, 3, \dots$,

Then $f_n \to f$ uniformly on K.

Definition 7.11. If X is a metric space, $\mathscr{C}(X)$ will denote the set of all complex valued, continuous, bounded functions with domain X. We associate with each $f \in \mathscr{C}(X)$ its supremum norm

$$||f|| = \sup_{x \in X} |f(x)|.$$

Since f is assumed to be bounded, $||f|| < \infty$. It is obvious that ||f|| = 0 only if f(x) = 0 for every $x \in X$, that is, only if f = 0. If h = f + g, then

$$|h(x)| \le |f(x)| + |g(x)| \le ||f|| + ||g||$$

for all $x \in X$; hence

$$||f + g|| \le ||f|| + ||g||.$$

If we define the distance between $f \in \mathcal{C}(X)$ and $g \in \mathcal{C}(X)$ to be ||f - g||, it follows that **Axioms 2.15** for a metric are satisfied.

Theorem 7.12. The above metric makes $\mathscr{C}(X)$ into a complete metric space. *Proof.*

Uniform convergence and integration

Theorem 7.13. Let α be monotonically increasing on [a, b]. Suppose $f \in \mathcal{R}(\alpha)$ on [a, b], for $n = 1, 2, 3, \ldots$, and suppose $f_n \to f$ uniformly on [a, b]. Then $f \in \mathcal{R}(\alpha)$ on [a, b], and

$$\int_{a}^{b} f \, d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_n \, d\alpha.$$

(The existence of the limit is part of the conclusion.)

Proof.

Corollary 7.14. If $f_n \in \mathcal{R}(\alpha)$ on [a, b] and if

$$f(x) = \sum_{n=1}^{\infty} f_n(x) \quad (a \le x \le b),$$

the series converging uniformly on [a, b], then

$$\int_{a}^{b} f \, d\alpha = \sum_{n=1}^{\infty} \int_{a}^{b} f_n \, d\alpha.$$

i.e., the series may be integrated term by term.

Uniform convergence and differentiation

Theorem 7.15. Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f'_n\}$ converges uniformly on [a, b], then $\{f_n\}$ converges uniformly on [a, b], to a function f, and

$$f'(x) = \lim_{n \to \infty} f'_n(x) \quad (a \le x \le b).$$

Theorem 7.16. There exists a real continuous function on the real line which is nowhere differentiable.

Equicontinuous familites of functions

Definition 7.17. Let $\{f_n\}$ be a sequence of functions defined on a set E. We say that $\{f_n\}$ is **pointwise bounded** on E if the sequence $\{f_n(x)\}$ is bounded for every $x \in E$, that is, if there exists a finite-valued function ϕ defined on E such that

$$|f_n(x)| < \phi(x) \quad (x \in E, n = 1, 2, 3, \ldots).$$

We say that $\{f_n\}$ is uniformly bounded on E if there exists a number M such that

$$|f_n(x)| < M \quad (x \in E, \ n = 1, \ 2, \ 3, \ \ldots).$$

Definition 7.18. A family \mathscr{F} of complex functions f defined on a set E in a metric space X is said to be equicontinuous on E if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x) - f(y)| < \varepsilon$$

whenever $d(x, y) < \delta$, $x \in E$, $y \in E$, and $f \in \mathscr{F}$. Here d denotes the metric of X.

Theorem 7.19. If $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E, then $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}(x)\}$ converges for every $x \in E$.

Theorem 7.20. If K is a compact metric space, if $f_n \in \mathscr{C}(K)$ for $n = 1, 2, 3, \ldots$, and if $\{f_n\}$ converges uniformly on K, then $\{f_n\}$ is equicontinuous on K.

Theorem 7.21. If K is compact, if $f_n \in \mathcal{C}(K)$ for $n = 1, 2, 3, \ldots$, and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then

- (a) $\{f_n\}$ is uniformly bounded on K,
- (b) $\{f_n\}$ contains a uniformly convergent subsequence.

The stone-weierstrass theorem

Theorem 7.22. If f is a continuous complex function on [a, b], there exists a sequence of polynomials P_n such that

$$\lim_{n \to \infty} P_n(x) = f(x)$$

uniformly on [a, b]. If f is real, the P_n may be taken real.

This is the form in which the theorem was originally discovered by weier-strass.

Continued....

Corollary 7.23. For every interval [-a, a] there is a sequence of real polynomials P_n such that $P_n(0) = 0$ and such that

$$\lim_{n \to \infty} P_n(x) = |x|$$

uniformly on [-a, a].

Definition 7.24. A family \mathscr{A} of complex functions defined on a set E is said to be an **algebra** if (i) $f + g \in \mathscr{A}$. (ii) $fg \in \mathscr{A}$. (iii) $cf \in \mathscr{A}$ for all $f \in \mathscr{A}$, $g \in \mathscr{A}$, and for all complex constants c, that is, if \mathscr{A} is closed under addition, multiplication, and scalar multiplication. We shall also have to consider algebras of real functions; in this case, (iii) is of course only required to hold for all real c.

If \mathscr{A} has the property that $f \in \mathscr{A}$ whenever $f_n \in \mathscr{A}$ (n = 1, 2, 3, ...) and $f_n \to f$ uniformly on E, then \mathscr{A} is said to be uniformly closed.

Let \mathscr{B} be the set of all functions which are limits of uniformly convergent sequences of members of \mathscr{A} . Then \mathscr{B} is called the **uniform closure** of \mathscr{A} .

Theorem 7.25. Let $\mathcal B$ be the uniform closure of an algebra $\mathcal A$ of bounded functions. Then $\mathcal B$ is a uniformly closed algebra.

Definition 7.26. Let \mathscr{A} be a family of functions on a set E. Then \mathscr{A} is said to **separate points** on E if to every pair of distincts point $x_1, x_2 \in E$ there corresponds a function $f \in \mathscr{A}$ such that $f(x_1) \neq f(x_2)$.

If to each $x \in E$ there corresponds a function $g \in \mathscr{A}$ such that $g(x) \neq 0$, we say that \mathscr{A} vanishes at no point of E.

The algebra of all polynomials in one variable clearly has these properties on \mathbb{R} . An example of an algebra which does not separate points is the set of all even polynomials, say on [-1, 1], since f(-x) = f(x) for every even function f.

Theorem 7.27. Suppose \mathscr{A} is an algebra of functions on a set E, \mathscr{A} separates points on E, and \mathscr{A} vanishes at no point of E. Suppose x_1 , x_2 are distinct points of E, and c_1 , c_2 are constants (real if \mathscr{A} is a real algebra). Then \mathscr{A} contains a function f such that

$$f(x_1) = c_1, \quad f(x_2) = c_2.$$

Lemma 7.28. If $f \in \mathcal{R}$, then $|f| \in \mathcal{R}$.

Lemma 7.29. If $f \in \mathcal{R}$ and $g \in \mathcal{R}$, then $\max(f, g) \in \mathcal{R}$ and $\min(f, g) \in \mathcal{R}$. *Proof.*

Lemma 7.30. Given a real function f, continuous on K, a point $x \in K$, and $\varepsilon > 0$, there exists a function $g_x \in \mathcal{B}$ such that $g_x(x) = f(x)$ and

$$g_x(t) > f(t) - \varepsilon \quad (t \in K).$$

Lemma 7.31. Given a real function f, continuous on K, and $\varepsilon > 0$, there exists a function $h \in \mathcal{B}$ such that

$$|h(x) - f(x)| < \varepsilon \quad (x \in K).$$

Since $\mathcal B$ is uniformly closed, this statement is equivalent to the conclusion of the theorem.

Theorem 7.32. Let \mathscr{A} be an algebra of real continuous functions on a compact set K. If \mathscr{A} separates points on K and if \mathscr{A} vanishes at no point of K, then the uniform closure \mathscr{B} of \mathscr{A} consists of all real continuous functions on K.

Theorem 7.33. Suppose \mathscr{A} is a self-adjoint algebra of complex continuous functions on a compact set K, \mathscr{A} separates points on K, and \mathscr{A} vanishes at no point of K. Then the uniform closure \mathscr{B} of \mathscr{A} consists of all complex continuous functions on K. i.e., \mathscr{A} is dense $\mathscr{C}(K)$.