Verteilte Systeme

...für C++ Programmierer

Kryptographische Hashfunktionen

bν

Dr. Günter Kolousek

Hashfunktionen

► Hashfunktion h

$$h: \mathcal{K} \to \{0,\dots,m-1\}$$
 ordnet jedem Schlüssel $k \in \mathcal{K}$ einen Index $h(k)$ mit $0 \le h(k) \le m-1$ zu.

- Anforderungen
 - gleichmäßige Verteilung, um (Adress) Kollisionen zu vermeiden
 - Surjektivität, d.h. alle möglichen Hashwerte sollen auch durch Hashfunktion auch errechnet werden können
 - effizient berechenbar

Kryptographische Hashfunktion

- kollisionsresistente Einweghashfunktion
 - Einwegfunktion: kann in die eine Richtung leicht berechnet werden, die andere Richtung ist nicht berechenbar (oder nur mit extrem viel Aufwand).
 - ▶ Hashfunktion
 - kollisionsresistent
 - schwache Kollisionsresistenz: praktisch unmöglich zu gegebenen x einen unterschiedlichen Wert x' zu finden, der gleichen Hashwert aufweist
 - starke Kollisionsresistenz: praktisch unmöglich zwei verschiedene Werte x und x' zu finden, die gleiche Hashwerte aufweisen
- ▶ Einteilung
 - schlüssellose Hashfunktionen
 - schlüsselabhängige Hashfunktionen

Hashfunktionen

- MD5 (Message Digest 5): 128 Bits, unsicher
- ► SHA
 - ► SHA (auch SHA-1): 128 Bits, unsicher
 - SHA-2: Weiterentwicklung von SHA
 - ► SHA-224
 - ► SHA-256
 - ► SHA-384
 - ► SHA-512
- SHA-3: wird meist in Kombination zu SHA-2 eingesetzt
 - Neuentwicklung, Gewinner internationaler Ausschreibung
 - SHA3-224
 - ► SHA3-256
 - ► SHA3-384
 - ► SHA3-512
 - SHAKE128 und SHAKE256: beliebige Länge des Hashwertes