

TÉCNICO LISROA Lógica para Programação

Solução da Repescagem do Primeiro Teste

1 de Julho de 2014

15:00-16:30

- 1. **(1.0)** Escolha a *única* afirmação *correcta* entre as seguintes afirmações. Uma resposta certa vale 1 valor e *uma resposta errada desconta 0.4 valores*.
 - A. Um argumento com as premissas verdadeiras e a conclusão verdadeira é válido.
 - B. Um argumento com as premissas falsas e a conclusão verdadeira é inválido.
 - C. Um argumento com as premissas verdadeiras e a conclusão falsa é inválido.
 - D. Um argumento com as premissas falsas e a conclusão falsa é inválido.

Resposta:

В

- 2. **(2.0)** Para cada uma das seguintes questões, indique se é verdadeira ou falsa. Cada resposta certa vale 0.5 valores e *cada resposta errada desconta* 0.2 *valores*.
 - (a) O princípio da forma afirma que se dois argumentos têm a mesma forma, então as conclusões dos dois argumentos têm o mesmo valor lógico.

Resposta:

Falsa

(b) Numa lógica completa é possível demonstrar todos os argumentos válidos.

Resposta:

Verdadeira

(c) A regra de inferência derivada conhecida por *modus tollens* afirma que numa prova que contém $\neg \alpha$ e $\alpha \to \beta$ se pode derivar $\neg \beta$.

Resposta:

Falca

(d) Uma fórmula na forma clausal corresponde a uma disjunção de conjunções de literais.

Resposta:

Falsa

3. **(2.0)** Considere o conjunto $\Delta = \{A\}$. Para cada um dos seguintes conjuntos diga se está ou não contido em $Th(\Delta)$. Cada resposta certa vale 0.5 valores e *cada resposta errada desconta* 0.2 *valores*.

(a) $\{\neg A\}$

Resposta:

Não contido

(b) $\{(P \land \neg P) \rightarrow Q\}$

Resposta:

Contido

(c) $\{P, Q\}$

Resposta:

Não contido

(d) $\{A \vee \neg A\}$

Resposta:

Contido

- 4. **(1.5)** Complete as seguintes frases, com uma das palavras *transitividade*, *dedução* ou *monotonicidade*. Cada resposta certa vale 0.5 valores e *cada resposta errada desconta* 0.2 valores.
 - (a) Sabendo que $\{P, P \to Q\} \vdash Q$, podemos garantir que $\{P, P \to Q, \neg P\} \vdash Q$ pelo teorema da ______.

Resposta:

Monotonicidade

(b) Sabendo que $\{P,P\to Q,Q\to R\}\vdash Q$, $\{P,P\to Q,Q\to R\}\vdash R$ e $\{Q,R\}\vdash R\lor Q$ podemos garantir que $\{P,P\to Q,Q\to R\}\vdash R\lor Q$ pelo teorema da

Resposta:

Transitividade

- 5. Considere a linguagem da lógica proposicional e a sua semântica como definida nas aulas. Suponha que o sistema dedutivo desta lógica utilizava a abordagem da dedução natural e apenas continha duas regras de inferência, a regra da premissa e a seguinte regra de inferência (*Liberalização*, abreviada por "Lib"): em qualquer ponto de uma prova, podemos introduzir qualquer *fbf* por liberalização. Diga, justificando, se esta lógica é:
 - (a) (1.0) Correta.

Resposta:

A lógica não é correcta pois qualquer argumento é demonstrável. Considermos o argumento inválido ($\{\alpha, \alpha \to \beta\}, \neg \beta$). A seguinte prova corresponde a uma demonstração deste argumento:

$$\begin{array}{ccc} 1 & \alpha & & \text{Prem} \\ 2 & \alpha \rightarrow \beta & & \text{Prem} \\ 3 & \neg \beta & & \text{Lib} \end{array}$$

(b) (1.0) Completa.

Resposta:

A lógica é completa pois como qualquer argumento é demonstrável, todos os argumentos válidos também são demonstráveis.

6. **(1.0)** Usando o sistema de dedução natural da lógica proposicional, demonstre o teorema $((P \to R) \lor (Q \to R)) \to ((P \land Q) \to R)$, completando a seguinte prova (apenas pode usar as regras Prem, Hip, Rep, Reit e introdução e eliminação de cada uma das conetivas):

1		Hip
2		Hip
3	P	
4	Q	
5		Rei, 1
6	$P \rightarrow R$	Hip
7		
8		
9		$E\rightarrow$, $(7, 8)$
10		Hip
11		Rei, 4
12		Rep, 10
13		$E\rightarrow$, (11, 12)
14	R	
15		$I\rightarrow$, $(2, 14)$
16	•	

1	$(P \to R) \lor (Q \to R)$	Hip
2	$P \wedge Q$	Hip
3	P	E∧, 2
4	Q	E∧, 2
5	$(P \to R) \lor (Q \to R)$	Rei, 1
6	$(P \to R) \lor (Q \to R)$ $P \to R$	Hip
7	P	Rei, 3
8	P o R	Rep, 6
9	R	$E\rightarrow$, $(7, 8)$
10	$Q \to R$	Hip
11	$\begin{array}{c} Q \to R \\ \hline Q \\ Q \to R \end{array}$	Rei, 4
12	$Q \to R$	Rep, 10
13	R	$E\rightarrow$, (11, 12)
14	R	E∨, (5, (6, 9), (10, 13))
15	$(P \land Q) \to R$	$I\rightarrow$, (2, 14)
16	$((P \to R) \lor (Q \to R)) \to ((P \land Q) \to R)$	$I\rightarrow$, $(1, 15)$

7. (1.0) Usando o sistema de dedução natural da lógica proposicional, demonstre o teorema ¬¬P ↔ P. Apenas pode usar as regras Prem, Hip, Rep, Reit e introdução e eliminação de cada uma das conetivas.

Resposta:

Para simplificar a prova, provamos, separadamente, cada uma das implicações:

i.
$$\neg \neg P \rightarrow P$$

$$\begin{array}{ccc}
1 & & \neg P & & \text{Hip} \\
2 & & P & & E \neg, 1 \\
3 & \neg \neg P \rightarrow P & & I \rightarrow, (1, 2)
\end{array}$$

ii.
$$P \rightarrow \neg \neg P$$

1 | P | Hip
2 |
$$\neg P$$
 | Hip
3 | P | Rei, 1
4 | P | Rep, 2
5 | P |

8. Considere uma prova por refutação usando resolução.

(a) (1.0) Preencha a informação em falta na figura que se segue.

Resposta:

(b) (0.5) Suponha que esta prova por refutação corresponde a um teorema. Escreva esse teorema.

Resposta:

$$\neg((\neg A \lor B \lor C) \land (B \lor \neg C) \land (\neg B \lor \neg C) \land (A \lor \neg C) \land C)$$

(c) (0.5) Qual a estratégia de selecão de cláusulas que foi usada nesta prova por refutação?

Resposta:

Resolução linear.

9. Considere a seguinte árvore de resolução SLD parcialmente preenchida.

(a) (2.0) Preencha na figura a informação em falta. Resposta:

(b) (0.5) Indique as soluções encontradas. Resposta:

As soluções são: $\{a/x\}$ e $\{c/x\}$.

10. (1.0) Considere os seguintes predicados:

Inteiro(x) = x é um número inteiro

Par(x) = x é um número par

Impar(x) = x é um número ímpar

Maior(x, y) = x é maior que y

Para cada uma das seguintes afirmações escolha a fórmula que a representa. Cada resposta certa vale 0.5 valores e *cada resposta errada desconta 0.2 valores*.

(a) Para qualquer número par, existe um número ímpar maior do que esse número par.

A.
$$\forall x [Par(x) \land \exists y [Impar(y) \rightarrow Maior(y, x)]]$$

B.
$$\forall x [Par(x) \rightarrow \exists y [Impar(y) \land Maior(y, x)]]$$

$$C. \forall x, y[Par(x) \land Impar(y) \land Maior(y, x)]$$

Resposta:

В

(b) Não existe nenhum inteiro que seja maior que todos os inteiros.

A.
$$\neg \exists x [Inteiro(x) \land \forall y [Inteiro(y) \rightarrow Maior(x, y)]]$$

B.
$$\neg \exists x [Inteiro(x) \rightarrow \forall y [Inteiro(y) \rightarrow Maior(x, y)]]$$

C.
$$\neg \exists x, y [Inteiro(x) \land Inteiro(y) \land Maior(x, y)]$$

Resposta:

Α

11. (1.0) Usando o sistema de dedução natural da lógica de primeira ordem, demonstre o argumento $\{\forall x[\neg P(x)]\} \vdash \forall x[P(x) \rightarrow Q(x)]$ (apenas pode usar as regras Prem, Hip, Rep, Reit e introdução e eliminação de cada uma das conetivas e quantificadores).

Resposta:

12. **(2.0)** Preencha a seguinte tabela, tendo em conta a fórmula dada e a etapa da conversão para a forma clausal pedida.

Fórmula Original	Eliminação de	Fórmula resultante
$\exists z [A(z)] \land \forall x, y [\neg B(x) \lor \exists w [C(y, x, w)]]$	3	
$(P \to \neg Q) \land (P \to R) \land (P \to S)$	\rightarrow	
$(\neg P \vee \neg Q) \wedge (\neg P \vee R) \wedge (\neg P \vee S)$	٨	
$\forall z [A(z)] \land \exists x, y [\neg B(x) \lor \exists w [C(y, x, w)]]$	3	

Resposta:

Fórmula Original	Eliminação de	Fórmula resultante
$\exists z [A(z)] \land \forall x, y [\neg B(x) \lor \exists w [C(y, x, w)]]$	3	$A(a) \land \forall x, y[\neg B(x) \lor [C(y, x, f(x, y))]]$
$(P \to \neg Q) \land (P \to R) \land (P \to S)$	\rightarrow	$(\neg P \lor \neg Q) \land (\neg P \lor R) \land (\neg P \lor S)$
$(\neg P \lor \neg Q) \land (\neg P \lor R) \land (\neg P \lor S)$	^	$\{\neg P \lor \neg Q, \neg P \lor R, \neg P \lor S\}$
$\forall z[A(z)] \land \exists x, y[\neg B(x) \lor \exists w[C(y, x, w)]]$	3	$\forall z [A(z)] \wedge [\neg B(a) \vee [C(b,a,c)]]$

13. **(1.0)** Considere o seguinte conjunto de *fbfs*:

$${Q(a, x, y, z), Q(x, z, b, f(w))}$$

Indique qual o unificador mais geral para o conjunto de *fbfs*, ou escreva que as *fbfs* não são unificáveis. Justifique a sua resposta.

Resposta:

As fbfs não são unificáveis porque, para haver unificação, as variáveis x e z teriam de ser substituídas pela constante a, e é impossível haver unificação entre a e f(w) pois nenhuma delas é uma variável.