UNCLASSIFIED

AD 400 748

Reproduced by the

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

W1

TITAN II STORABLE PROPELLANT HANDBOOK

Final Handbook

Revision B

Prepared by

BELL AEROSYSTEMS COMPANY

Division of Bell Aerospace Corporation

Buffalo 5, New York

Ralph R. Liberto Project Engineer

Contract Number AF04(694)-72

ASTIA
PROFESSIVES
TISIA

00 748

Bell Report No. 8182-933004 March 1963

Prepared for
AIR FORCE BALLISTIC SYSTEMS DIVISION
Air Force Systems Command
Los Angeles 45, California

FOREWORD

This is the second revision to the "Titan II Storable Propellant Handbook." The work of developing data for this revision was accomplished by the Bell Aerosystems Company under Contract AF04(694)-72. The effort was concluded on 31 March 1963.

Captain C.D. James of AFBSD was the Project Officer and Mr. Glen W. Howell of the Space Technology Laboratories, Inc., Los Angeles, California, was the Technical Director. Mr. Ralph R. Liberto, Project Engineer, directed the study effort at the Bell Aerosystems Company.

The following technical personnel at Bell Aerosystems Company made major contributions to this handbook:

Biagio Castiglione William Clark Lincoln Foertter Ignatius Goss Thomas Greco Sam Long Anthony Misercola Frank Piccirillo
Joseph Pillittere
John Quinones
Russell Sperlazza
Leo Thompson
John Tynan
William Walters

Harold W. Stafford Technical Editor

NOTICES

Qualified requestors may obtain copies of this report from the Armed Services Technical Information Agency (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

This report has been released to the Office of Technical Services, U.S. Department of Commerce, Washington 25, D.C., for sale to the general public.

Original Publication:

AFFTC-TR-61-32 June 1961

First Revision - A: Second Revision - B:

AFBSD-TR-62-2 March 1962

AFBSD-TR-62-2 March 1963

ABSTRACT

Summarized are the physical properties, materials compatibility, handling techniques, flammability and explosivity hazards, and procedures for storing, cleaning, and flushing of the Titan II propellants, N_2O_4 as the oxidizer and a nominal 50/50 blend of UDMH and N_2H_4 as the fuel. The data presented was derived both from a literature survey and from a test program conducted at Bell Aerosystems Company and at the U. S. Bureau of Mines.

TABLE OF CONTENTS

Section		Page
	ABSTRACT	iii
	LIST OF ILLUSTRATIONS	vi
	LIST OF TABLES	vii
	SYMBOLS AND ABBREVIATIONS USED IN THE TEXT	viii
1.0	INTRODUCTION	1-1
2.0	PHYSICAL PROPERTIES OF 50/50 FUEL BLEND	2-1
	2.1 Fuel Blend Specification	2-3
	2.2 Melting Point	
	2.3 Density	
	2.4 Vapor Pressure	
	2.5 Viscosity	
	2.6 Specific Heat	
	2.7 Flash and Fire Points	2-12
	2.8 Distillation Range	
	2.9 Solubility of Pressurizing Gases	
	2.10 Shock Sensitivity	2-15
3.0	PHYSICAL PROPERTIES OF N2O4	3-1
	3.1 N ₂ O ₄ Specification	3-3
	3.2 N ₂ O ₄ Dissociation	3-4
	3.3 Vapor Pressure	3-6
	3.4 Density	
	3.5 Viscosity	
	3.6 Specific Heat	3-14
	3.7 Solubility of Pressurizing Gases	3-16
4.0	MATERIALS COMPATIBILITY, 50/50 FUEL BLEND	4-1
	4.1 Effects of Fuel Blend on Metals	4-1
	4.2 Effects of Fuel Blend on Nonmetals	4-18
	4.3 Effects of Fuel Blend on Materials of Construction	4-40
	4.4 Effects of Metals on Fuel Blend Decomposition	4-40
	4.5 Effects of Metal Filings and Lint on Fuel Blend	4-43
	4.6 Short-Term Compatibility	4-44
	4.7 Fire Hazard of Various Materials Exposed to Fuel Blend	4-49
	4.8 Effects of Fuel Blend Vapors on Various Materials	

TABLE OF CONTENTS (CONT)

Section		Page
5.0	MATERIALS COMPATIBILITY, N ₂ O ₄	. 5-1
	5.1 Effects of N ₂ O ₄ on Metals	. 5-1
	5.2 Effects of N ₂ O ₄ on Nonmetals	
	5.3 Effects of N ₂ O ₄ on Materials of Construction	
	5.4 Effects of Contaminants on N ₂ O ₄	
	5.5 Limited Exposure Tests of Various Materials	
	5.6 Fire Hazards of Various Materials Exposed to N2O4	
	5.7 Impact Tests of Various Nonmetals in N2O4	
	5.8 Permeability of Teflon to N2O4	
	5.9 Effects of N ₂ O ₄ Vapors on Various Materials	
6.0	PROPELLANT HANDLING	6-1
	6.1 Fire Fighting	6-1
	6.2 Fuel Mixing	
	6.3 Freeze and Thaw of 50/50 Fuel Blend	
	6.4 Storage	
	6.5 Cleaning and Flushing	
7.0	SAFETY	7-1
	7.1 Nominal 50/50 Fuel Blend	7-1
	7.1.1 Health Hazards	7-1
	7.1.2 Protective Clothing	7-2
	7.1.3 First Aid	7-2
	7.1.4 Disposal	
	7.1.5 Detection Devices	
	7.2 N ₂ O ₄ Oxidizer	
	7.2.1 Health Hazards	
	7.2.2 Protective Clothing	
	7.2.3 First Aid	_
	7.2.4 Disposal	
	7.2.5 Detection Devices	. 7-5
8.0	FLAMMABILITY AND EXPLOSIVITY	8-1
	8.1 Flammability	8-1
	8.2 Explosivity	
9.0	REFERENCES	9-1
10.0	APPENDIXES	
	Appendix A - Vendor Index for Nonmetallic Materials	. A-1

()

ILLUSTRATIONS

Figure		Page
2.1	Melting Point versus Percent Weight of UDMH in N2H4	2-4
2.2	Density of 50/50 Fuel Blend at Various Pressures	2-5
2.3	Specific Gravity of 50/50 Fuel Blend at Various Pressures	2-6
2.4	Vapor Pressure of 50/50 Fuel Blend	2-8
2.5	Viscosity of 50/50 Fuel Blend	2-9
2.6	Specific Heat of 50/50 Fuel Blend	2-11
2.7	Flash and Fire Points of 50/50 Fuel Blend with Various Water Dilutions	2-13
3.1	Equilibrium Values - Dissociation of N2O4	3-5
3.2	Vapor Pressure of N2O4	3-7
3.3	Density of N2O4 at Various Pressures	3-9
3.4	Specific Gravity of N2O4 at Various Pressures	3-10
3.5	Effect of Temperature on Viscosity, Liquid N2O4	3-12
3.6	Effect of Pressure on Viscosity, Liquid N2O4	3-13
3.7	Specific Heat of Liquid N2O4	3-15
5.1	Gas Transmission of N ₂ O ₄ Through Teflon FEP	
	(10 mil thick) at Various Differential Pressures	5- 55
8.1	Spontaneous Ignition Temperatures of Liquid 50/50 Fuel Blend, N ₂ H ₄ , and UDMH in Contact with N ₂ O ₄ - Air Mixtures at 740	
	±10 mm of Hg as a Function of N2O4 Concentration	8-2
8.2	Spontaneous Ignition Temperatures of Vaporized Fuel Blend and	
0,2	Air Atmospheres in Contact with Various N ₂ O ₄ - Air Atmospheres	
	at 740 ±10 mm of Hg	8-3
8.3	Spontaneous Ignition Temperature of Vaporized 50/50 Fuel Blend-	
0.0	Water Mixtures in Air on Contact with N ₂ O ₄ as a Function of	
	Combustible Vapor Concentration for Residence Times of 10	
	Seconds	8-4
8.4	Vapor-Liquid Equilibrium Temperatures of Fuel Blend Required	
•••	for Spontaneous Ignition of the Resulting Vapors in Contact	
	with N ₂ O ₄ - Air Mixtures	8-5
8.5	Lower Limit of Flammability of N ₂ H ₄ - UDMH Blend (Combustible)	
	in Air at 77°F as a Function of UDMH Concentrations in	
	Combustible	8-6
8.6	Pressure-Composition Diagram for the System N ₂ H ₄ - UDMH	
	at 72°F	8-7

LIST OF TABLES

Table		Page
2,1	Physical Properties of 50/50 Fuel Blend	2-2
2.2	Propellant Specification - 50/50 Fuel Blend	2-3
2.3	Vapor Pressure of 50/50 Fuel Blend at 46% Ullage	2-7
2.4	Specific Heat of 50/50 Fuel Blend	2-10
2.5	Flash and Fire Points of 50/50 Fuel Blend with Various Water	
	Dilutions Using a Modified Cleveland Open-Cup Tester	2-12
2.6	Distillation Range of the 50/50 Fuel Blend at 14.7 psia	2-14
2.7	Solubility of Various Gases in 50/50 Fuel Blend	2-15
3.1	Physical Properties of N ₂ O ₄	3-2
3.2	Propellant Specification - N2O4	3-3
3.3	Equilibrium Values - Percent Dissociation of N2O4	3-4
3.4	Vapor Pressure of N2O4	3-6
3.5	Density of Liquid N ₂ O ₄	3-8
3.6	Viscosity of N2O4 in the Liquid Phase	3-11
3.7	Specific Heat of Liquid N ₂ O ₄	3-14
3.8	Solubility of Nitrogen and Helium in Liquid N2O4	3-16
4.1	Compatibility of Metals with 50/50 Fuel Blend	4-5
4.2	Compatibility of Nonmetals with 50/50 Fuel Blend	4-21
4.3	Compatibility of Construction Materials with 50/50 Fuel Blend at 75°F	4-41
4.4	Effects of Metals on 50/50 Fuel Blend Decomposition After 14 Days	
4.5	Exposure at 160°F	4- 42
4.5	Effects of Contaminants on 50/50 Fuel Blend Decomposition After	4-43
4.0	14 Days Exposure at 160°F	4-43
4.6	Compatibility of Materials Exposed to 50/50 Fuel Blend Splash Tests	4-45
4.7	Fire Hazard Tests of Various Materials Exposed to 50/50 Fuel Blend at Room Temperature	4- 49
	Compatibility of Materials with Fuel Blend Vapors in Air	
4.8	at 80% Relative Humidity	4-51
5.1	Compatibility of Metals with N2O4	5-5
5.2	Compatibility of Nonmetals with N ₂ O ₄	5-21
5.3	Compatibility of Construction Materials with N ₂ O ₄	5-39
5.4	Compatibility of Materials Exposed to N2O4 Splash and Fume Tests	5-41
5.5	Fire Hazard Tests of Various Materials Exposed to N2O4	5-50
5.6	Results of Impact Tests in Liquid N2O4	5-53
5.7	Permeability Data for Various Teflons at \triangle P of 16 PSIA	5-54
5.8	Compatibility of Materials with N_2O_4 Vapors in Air at 80%	J-J4
J,0	Relative Humidity	5-57
7.1		7-1
7.2	Emergency Tolerance Limits for Brief Exposure of Man to UDMH Emergency Tolerance Limits for Brief Exposure of Man to NO2	7-1
1.6	Emergency reference Limits for Drief Exposure of Man to NO2	1-4

. 3

SYMBOLS AND ABBREVIATIONS USED IN THE TEXT

AFBMD Air Force Ballistic Missile Division

AFBSD Air Force Ballistic Systems Division

AFFTC Air Force Flight Test Center

ADL Arthur D. Little, Inc.

JPL Jet Propulsion Laboratory

STL Space Technology Laboratories, Inc.

AEROZINE-50 Trade name adopted by Aerojet-General, Propellant, Hydrazine-Uns-

Dimethylhydrazine (50% N₂H₄ -50% UDMH) MIL-P-27402 (USAF)

50/50 FUEL BLEND Propellant, Hydrazine-Uns-Dimethylhydrazine (50% N₂H₄ - 50% UDMH)

MIL-P-27402 (USAF)

NO₂ Nitrogen Dioxide

N₂H₄ Hydrazine, Specification Grade MIL-P-26536A (USAF)

N₂O₄ Nitrogen Tetroxide, Specification Grade MIL-P-26539 (USAF), an

Equilibrium Mixture of NO₂ and N₂O₄

RFNA Red Fuming Nitric Acid

UDMH Unsymmetrical Dimethylhydrazine, Specification Grade

MIL-D-25604B(ASG)

Calc Calculated

cc Cubic Centimeter(s)

Incl Inclusive

M.A.C. Maximum Allowable Concentration

MPY Mils per Year

ppm Parts per Million by Volume

SIT Spontaneous Ignition Temperature (s)

Metal and alloy designations used in this handbook, such as type 304SS, are those established by the cognizant agencies and used in the trade.

SECTION 2.0

PHYSICAL PROPERTIES OF 50/50 FUEL BLEND

The fuel blend, comprising a 50/50 mixture of UDMH and N_2H_4 , is a clear, colorless, hygroscopic (capable of absorbing moisture readily) liquid having a characteristic ammoniacal odor. When the blend is exposed to air, a distinct fishy odor is evident in addition to the ammonia odor; this is probably caused by the air oxidation of UDMH.

The UDMH and N_2H_4 are miscible in all proportions. When combined, there is an immediate tendency for each to dissolve in the other. However, because of their different densities, they are easily stratified; UDMH above the N_2H_4 , especially when UDMH is poured into a vessel containing N_2H_4 . Under these conditions, a distinct interface may form (Reference 1).

In the pages that follow, additional physical property data is presented for this fuel blend. The information was obtained from the literature or from laboratory tests conducted at Bell Aerosystems. Table 2.1 summarizes pertinent physical properties of the fuel blend.

TABLE 2.1
PHYSICAL PROPERTIES OF THE 50/50 FUEL BLEND

	N ₂ H ₄	Į	UDI	MH
Structural Formula of the Fuel	н	H	СН3(Н
	N –	N (N	– N
	н	H	CH_3	н
Molecular Weight (ave)		45.	0	
Melting Point ^a		18.	8°F	
Boiling Point UDMH ^c at 14.7 psia		146	°F	
Boiling Point N ₂ H ₄ c at 14.7 psia		235	°F	
Physical State		Col	orless Li	quid
Density of Liquid at 77°F and 14.7 psia ^a			1 lb/ft ³	•
Viscosity of Liquid at 77°F ^a		54.9	9 x 10 ⁻⁵ 1	b/ft-sec
Vapor Pressure at 77°F ^b		2.79	5 psia	•
Critical Temperature (calc)		634	°F	
Critical Pressure (calc)		169	6 psia	
Heat of Vaporization (calc)		42 5.	.8 BTU/11	b
Heat of Formation at 77°F (calc)		527	.6 BTU/II	b
Specific Heat at 77°F (calc)		0.69	94 BTU/11	o-°F
Thermal Conductivity at 77°F (calc)			51 BTU/ft	
Specific Resistance at 78°F ^a			to 161 oh	

All data is from Reference 1 except as noted.

- a Measured on samples of the fuel blend of typical composition (51.0% $\rm N_2H_4,~48.2\%~UDMH,~and~0.5\%~H_2O).$
- b Fuel blend composition 51.0% N_2H_4 , 48.4% UDMH, and 0.6% H_2O .
- c Fuel blend is not a constant boiling mixture (see Section 2.8).
- d Reference 68.

2.3 DENSITY

Figures 2.2 and 2.3 present density and specific gravity data for the fuel blend at various pressures as reported by Aerojet-General Corporation (References 1 and 35)! The specific gravity equation is

S.G. =
$$\left[5.1 \times 10^{-4} (114-T_F) + 0.880\right] + \left[\Delta P(5.9 \times 10^{-6})\right]$$

where:

S.G. = Specific gravity of fuel blend.

 T_F = Temperature of fuel blend, °F.

 \triangle P = Pressure difference between the desired point of measurement and atmospheric pressure, psi.

DENSITY - lb/cu ft

Figure 2.2. Density of 50/50 Fuel Blend at Various Pressures

SPECIFIC GRAVITY/39°F 0.93 0.92 1000 psi 0.91 500 psi 0.90 0.89 0.88 0.87 0.86 0.85

(References 1 and 35)

0

20

40

60

Figure 2.3. Specific Gravity of 50/50 Fuel Blend at Various Pressures

80

TEMPERATURE - °F

100

120

140

SECTION 3.0 PHYSICAL PROPERTIES OF N_2O_4

The compound N_2O_4 is an equilibrium mixture of nitrogen tetroxide and nitrogen dioxide ($N_2O_4 \implies 2NO_2$).

In the solid state, N_2O_4 is colorless; in the liquid state, the equilibrium mixture is yellow to red-brown; and in the gaseous state, it is red-brown. The fumes exhibit a characteristic pungent and irritating odor.

When exposed to water, N_2O_4 reacts to form nitric acid and nitrous acid. The nitrous acid decomposes immediately to form additional nitric acid and evolve nitric oxide (Reference 30). Also, N_2O_4 is hypergolic with fuels as UDMH, N_2H_4 , and aniline.

This section of the handbook contains physical property data for N_2O_4 based upon information obtained from a literature survey. Table 3.1 summarizes the pertinent physical properties of N_2O_4 .

$\begin{array}{c} \text{TABLE 3.1} \\ \text{PHYSICAL PROPERTIES OF N}_2 \text{O}_4 \end{array}$

		Reference
Empirical Formula	$N_2O_4 = 2NO_2$	5
Structural Formula	$\frac{O}{O}N - N = \frac{O}{O}$	6
Molecular Weight	92.016	5
Melting Point	11.84°F	5
Boiling Point at 14.7 psia	70.0 7°F	5
Physical State	Red-brown liquid	5
Density of Liquid at 77°F and 18.0 psia	89.34 lb/ft ³	5
Viscosity of Liquid at 77°F	0 0002796 lb/ft-sec 0.410 centipoise	7 7
Vapor Pressure at 77°F	17.7 psia	5
Critical Temperature	316.8°F	5
Critical Pressure	1469 psia	5
Heat of Vaporization (equilibrium mixture at 70°F)	178 BTU/lb	5
Heat of Formation at 77°F (calc for liquid equilibrium mixture)	-87.62 BTU/lb	41
Specific Heat at 77°F	0.374 BTU/lb °F	8
Thermal Conductivity at 77°F and at the bubble point	0.0 755 BTU/ft-hr-°F	5
Heat of Fusion	68.4 BTU/1b	5

3.1 N₂O₄ SPECIFICATION

The chemical requirements for procuring N_2O_4 were taken from Specification MIL-P-26539 (USAF) dated 18 July 1960. These requirements are presented in Table 3.2. The specification contains procedures for performing propellant analysis. The N_2O_4 assay is determined directly by titration. The water content is determined directly by evaporating N_2O_4 and weighing the nitric acid remaining. The water equivalent in this acidic non-volatile matter is based upon the assumption that it is 70% nitric acid. Nitrosyl chloride (NOCl) content is determined by colorimetric means. The non-volatile ash is determined by evaporating N_2O_4 to dryness and igniting the residue at high temperatures. The percentage of non-volatile ash is calculated from the ash that remains.

TABLE 3.2

PROPELLANT SPECIFICATION - N₂O₄

Chemical Requirements	Specification (wt %)
N ₂ O ₄ Assay	99.5 (min)
H ₂ O Equivalent	0.1 (max)
Chloride as NOCl	0.08 (max)
Non-Volatile Ash	0.01 (max)

3.2 N₂O₄ DISSOCIATION

The compound N_2O_4 is an equilibrium mixture of nitrogen tetroxide and nitrogen dioxide $(N_2O_4 = 2NO_2)$. At 68° F and at a pressure of one atmosphere, the vapor consists of 84.2% N_2O_4 in equilibrium with 15.8% NO_2 as shown in Table 3.3 and Figure 3.1.

N_2	O	=	2NO2
Z	4	-	- 2

Temperature (°F)		Weight Percent NC) ₂
	At 7.4 psia	At 14.7 psia	At 73.5 psia
68	19.5	15.8	7.2
104	38.7	31.0	15.1
140	66.0	50.4	28.2
176	85.0	73.8	46.7
212	93.7	88.0	66.5
(Reference 5)			

Figure 3.1. Equilibrium Values — Dissociation of Gaseous ${\rm N_2O_4}$

1 1 1

3.3 VAPOR PRESSURE

Vapor pressure data, as a function of temperature, is presented in Table 3.4 and plotted in Figure 3.2.

TABLE 3.4

VAPOR PRESSURE OF N2O4

Temperature (°F)	Vapor Pressure (psia)	Temperature (°F)	Vapor Pressure (psia)
11.8	2.70	180	163.29
14	2.90	190	196.35
32	5.08	200	235.01
50	8.56	210	281.56
68	13.92	220	332.8
70	14.78	230	393.2
80	18.98	240	463.3
90	24.21	250	543.9
100	30.69	260	636.3
110	38.62	270	732.6
120	48.24	280	864.1
130	59.98	290	1000.5
140	74.12	300	1160.1
150	91.06	310	1336.5 ^a
160	111.24	316.8 ^b	1469.0 ^a
170	135.14		

a - Value extrapolated.

(References 1 and 5)

b - Critical pressure estimated from measured critical temperature.

Figure 3.3 Density of $N_2^{\ O}_4$ at Various Pressures

Figure 3.4 Specific Gravity of $N_2^{O_4}$ at Various Pressures

Fuel blend spread on a rusted iron surface in contact with air may generate enough heat to cause spontaneous ignition. Experiments at Aerojet show that the probability of such reactions is low at ambient temperatures. Drops of fuel blend placed on heavily rusted surfaces in an air atmosphere at 150° to 160° F did not ignite (Reference 1).

During a test at Bell Aerosystems, 50/50 fuel blend was dripped onto reagent-grade iron oxide and rusted steel (Reference 51). The fuel blend ignited when the reagent-grade iron oxide was heated to 115°F; the fuel blend ignited when the rusted steel band was heated to 180°F.

Rust oxidizes N_2H_4 and may be a decomposition catalyst under certain conditions. At Aerojet, a laboratory quantity of N_2H_4 was rapidly added to a few grams of ferric oxide at room temperature without evidence of gross effects (Reference 1). However, if two to three drops of N_2H_4 are allowed to drip onto a layer of ferric oxide spread on the bottom of a glass flask, ignition will occur in air at room temperature (Reference 44). The N_2H_4 -air interface in the latter case is relatively large and the decomposition due to oxidation by both air and ferric oxide is so rapid that the N_2H_4 quickly ignites. In a nitrogen blanket, ignition did not occur.

These experiments indicate that the surface area of the rust, the volume of liquid N_2H_4 , and the presence of air are important factors in the rapid decomposition of N_2H_4 . Vapors of N_2H_4 near 235°F are especially susceptible to explosive decomposition and metal oxides such as rust undoubtedly contribute to this reaction.

4.1.4 Nickel Alloys

In general, nickel and nickel alloys are corrosion-resistant to the 50/50 fuel blend.

4.1.5 Titanium Alloys

Titanium alloys are resistant to 50/50 fuel blend corrosion. Titanium C120AV was tested with the 50/50 fuel blend containing as much as 16% water without adverse effects.

4.1.6 Magnesium Alloys

Magnesium alloys show poor resistance to the 50/50 fuel blend.

4.1.7 Cobalt Alloys

Haynes Stellites 6K, 21, and 25, which are cobalt-chrome alloys, exhibited good resistance to the fuel blend.

4.1.8 Copper and Copper Alloys

Because of the formation of copper oxide, a potential catalyst, the limited use of copper alloys is recommended. Berylco 25, a beryllium-copper alloy, darkened during exposure to the fuel blend, but exhibited good corrosion resistance.

4.1.9 Platings

Gold plating darkened during exposure to the fuel blend, but exhibited good corrosion resistance. Non-porous tin, silver, chromium, and nickel platings proved satisfactory; pore-free electroless nickel also was satisfactory.

4.1.10 Conversion Coatings

Sulfuric acid anodize, Hardas (hardcoat) anodize, iridite, and fluorine (Reference 45), are the most resistant conversion coatings used on aluminum alloys.

4.1.11 Brazing and Soldering

Tin and silver solder, nicrobrazing, and aluminum brazing (with aluminum-silicon alloy 718 filler) were resistant to the fuel blend at 160°F for 14 days. Also, a manganese brazing alloy (C-62) proved resistant to the fuel blend at 100°F for 7 days.

4.1.12 Miscellaneous

Titanium carbide with a nickel binder and tungsten carbide are resistant to the fuel blend.

4.1.13 Couples

Metal couples (aluminum-stainless steel, aluminum-titanium, copper-aluminum, and mercury-aluminum) including brazed joints showed no galvanic corrosion during exposure to the fuel blend.

TABLE 4.1 (CONT) COMPATIBILITY OF METALS WITH 50/50 FUEL BLEND

SECTION 4.0 50/50 FUEL BLEND

MATERIAL	TEM	IPE RA	TURE	:		STATIC EXPOSU				OSURI	RE		
					1	.IQUII)	1	/APO	R	INTERFACE		
		GREES IRENH	IEIT	DAYS	REFER	NE IS	DAYS	REFERE	ACT TO	DAYS PLATING	QUE REMARKS		
			KIT!	3R'/	AT .	44/	AR!		N.	RAY!	REMARKS		
TITANIUM ALLOYS													
B120 VCA	55-60	270	A	46	i		ļ]				
	160	90	Ab	4	90	Ab	4	90	A	4			
A110-AT	160	90	Ab	4	90	Ab	4	90	A	4			
C120 AV	55-60	270	A	46							2% H ₂ O		
	160	90	Ab	4	90	Ab	4	90	A	4	Up to 16% H ₂ O incl		
MAGNESIUM ALLOYS		i											
HM21A-T8	55-60	30	D	15							Grossly pitted		
AZ31	150	7	D	73	l l						Pitted		
COBALT ALLOYS													
Haynes			A ^b			A ^b							
Stellite 25	160	90		4	90		4	90	A	4			
Stellite 6K	160	90	Ab	51	90	Ab	51	90	A	51	Slight stain at interface		
Stellite 21	160	90	Ab	51	90	Ab	51	90	A	51	Slight stain at		
					,						interface		
			į										
											,		
	!												
	<u></u>	<u>L</u>	<u> </u>	L	l	L	L	L	L	L			

a - Definitions of ratings are given on page 4-1
 b - Predicted rating from interface data.

TABLE 4.1 (CONT) COMPATIBILITY OF METALS WITH 50/50 FUEL BLEND 50/50 FUEL BLEND

SECTION 4.0

MATERIAL	TEM	IPERA	TURE	<u> </u>	STATIC EXPOSURE						
	DEGREES FAHRENHEIT THE THE PARTIE					JQUII			APO	15	INTERFACE
			THEI	PATTA	REFER	THER	DAYS RATING	RE FERS	THE	A.A.A.A.	REMARKS
COPPER ALLOYS Berylco 25	160	90	Ab	4	90	A ^b	4	90	A	4	Darkened
PLATINGS Cadmium Chromium (non-porous)	55-60 55-60	360 360	D A	36 36							0.0005 to 0.003 in. thick
Copper Gold on Berylco 25	55-60 160	360 90	D A ^b	36 4	90	A ^b	4	90	A	4	Darkened
Nickel Electroly- tic (non- porous)	55-60	-	A	15							
Electroless	160 160	46 133	A A	51 51	46 133	A ^b	51 51	46 133	A A	51 51	On 2014 aluminum On 1018 steel
Silver	55-60	360	A	36		<u> </u>			1		0.0001 to 0.0005 in. thick
Tin	55-60	360	A	36							0.001 to 0.003 in. thick
Zinc	55-60	360	D	36							
a Definitions											

a - Definitions of ratings are given on page 4-1.b - Predicted rating from interface data.

TABLE 4.1 (CONT) COMPATIBILITY OF METALS WITH 50/50 FUEL BLEND 50/50 FUEL BLEND

SECTION 4.0

	MATERIAL	TEMPERATURE				STATIC EXPOSURE								
Ì	MATERIAL					L	IQUID	,	V	APO	R	INTERFACE		
			REES RENH	EIT THE IT	DAYS PATTAG	7			AL FERI	THE	DAYS QATTA	PER TEMARKS		
	COATINGS ON ALU- MINUM ALLOYS Iridite													
1	2014-T6	55-60	270	A	46									
	Alodine 2014-T6	160							90	В	4	Lost weight; stain at interface; up to 16% H ₂ O incl		
	6061-T6	160	90	A ^b	4	90	Ab	4	90	A	4	Gained weight; up to 16% H ₂ O incl		
	Hardas (Hardcoat) Anodize 2014-T6 Sulfuric Acid	55-60	270	A	46									
	Anodize 2014-T6	160	90	A ^b	4	90	A ^b	4	90	A	4	Lost weight; up to 16% H ₂ O incl; no deposit; some stain		
	6061-T6	160	90	A ^b	4	90	Ab	4	90	A	4	Gained weight; up to 16% H ₂ O incl; stain at interface		
	Fluoride									: :				
	2014-T6	70-80	9	A	45							"A" rating based on visual examination		

<sup>a - Definitions of ratings are given on page 4-1.
b - Predicted rating from interface data.</sup>

TABLE 4.1 (CONT)
COMPATIBILITY OF METALS WITH 50/50 FUEL BLEND

SECTION 4.0 50/50 FUEL BLEND

MATERIAL	TEMPERATURE				STATIC EXPOSURE								
	J.				LIQUII		VAPOR			INTERFACE			
		GREES IRENH	THE T	DAYS	REFER	TIME IS	DAYS ARTH	REFERENCE OF THE PARTY OF THE P	THE	ARTE C	REMARKS		
MISCELLA- NEOUS													
Titanium Carbide with Nickel binder	160	90	Λ ^b	4	90	A ^b	4	90	A	4			
Silver Solder	55-60	270	A	46									
Microseal 100-1 coating on AM 100A Magnesium	160							90	D	4	Coating porous, metal attacked		
Microseal 100-1 CG Coating on AZ 31 C Magnesium	160							3	D	4	Coating porous, metal attacked		
Tungsten Carbide	160	90	A ^b	79	90	A ^b	79	90	A	79			
									!				

a - Definitions of ratings are given on page 4-1.

b - Predicted rating from interface data.

TABLE 4.1 (CONT) COMPATIBILITY OF METALS WITH 50/50 FUEL BLEND 50/50 FUEL BLEND

SECTION 4.0

MATERIAL	TEM	PERA	TURE	3	STATIC EXPOSURE								
					LIQUID	y	APOR	INTERFACE					
		REES	EIT THE I	DAYS	REFERENCE DAY	ALL ALL	the day	ALT REMARKS					
BRAZING AND SOLDERING													
6061-T6 Al Brazed with 718 Filler	160	14	A	4									
303 SS Soldered with Pure Tin	160	14	A	4				Tin solder darkened					
347 Silver Brazed with Easy Flo per QQS-561 Class 4	160	14	A	4									
347 SS Ni- crobrazed AMS 4775	160	14	A	4									
347 SS Brazed with C-62 (Mn-Ni- Co)	100	7	A	61									
Easy Flo 45	100	7	В	61				Corrosion rate 2 to 3 MPY					

a - Definitions of ratings are given on page 4-1.

TABLE 4.1 (CONT)
COMPATIBILITY OF METALS WITH 50/50 FUEL BLEND

MATERIAL	TEM	IPERA	TURE	:	STATIC EXPOSURE							
					LIQUID	VAPOR	INTERFACE					
		REES IRENH	EIT	DAYS	REFERENCE IN DAYS	REFERENCE TO OFFE	REMARKS					
METAL COUPLES												
2014-T6 Al Bolted to	55-60	270	A	46			207 27 0					
321 SS 2014-T6 Al Bolted to 6A1 + 4V Titanium	55-60 55-60	180	A	46			2% H ₂ O 2% H ₂ O					
2014-T6 Al Welded to 6061-T6 Al	160	14	† A	4								
6061-T6 Al Ultrasonic Welded to 321 SS	55-60	18	A	46			2% H ₂ O, "D" rating because of visible cracks in area of poor fusion					
6061-T6 Al Bolted to 321 SS	55-60	270	A	46								
6061-T6 Al Spotwelded to 2014-T6 Al	55-60	180	В	46			2% H ₂ O, "B" rating because of cracks					
2014-T6 Al Spotwelded to 2014-T4 Al (bare)	55-60	180	A	46			3% H ₂ O added					
Copper/ 2014-T6 Al	160	90	A	79								
Mercury/ 2014-T6 Al	160	90	A	79								

a - Definitions of ratings are given on page 4-1.

TABLE 4.1 (CONT)

SECTION 4.0 50/50 FUEL BLEND

COMPATIBILITY OF METALS WITH 50/50 FUEL BLEND

MATERIAL	TEMPERATURE			STATIC EXPOSURE							
					JQUII			/APOI		INTERFACE	
	DEC FAI	GREES	EIT ,	DAYS		/5		REPERT	THE	DAYS RATING	REMARKS
METAL COUPLES (CONT) 2014-T6 Al Spotwelded to 2014-T4 Al (Clad)	55~60	180	A	46							1% H ₂ O added
304 SS/ Teflon bolted 321 SS	55~60	90	A	46							2% н ₂ 0

a - Definitions of ratings are given on page 4-1.

4.2 EFFECTS OF FUEL BLEND ON NONMETALS

Government specifications and on rubbers and plastic fabricated parts intended for packings and seals show that the physical property effects to be minimized are volume change, durometer change, effect on media, and visual examination in terms of surface appearance. The specifications contain different values for volume change and durometer change. Using the ranges called for in the specifications, the following ratings were derived for the nonmetals:

	A	B	<u>C</u>	D
Volume Change, %	0 to +25	-10 to +25	-10 to +25	<-10 or> +25
Durometer Reading Change	±3	±10	± 10	<-10 or > +10
Effect on Propellant	None	Slight Change	Moderate Change	Severe
Visual Examination	No Change	Slight Change	Moderate Change	Dissolved, severely blistered, or cracked

Definitions for these ratings are as follows:

- A: Satisfactory for service under conditions indicated.
- B: Use with knowledge that the material will swell, shrink, and/or change in hardness; also, other slight changes may occur on the material and/or in the propellant.
- C: Satisfactory for ground support where preventive maintenance can be scheduled.

 Also good for actual missile service where discoloration of propellant and/or extracted residue is tolerable.
- D: Unsatisfactory for use except where otherwise noted (Volume changes to 50% and hardness change of 25 units are included in these exceptions).

Table 4.2 contains compatibility data, references, and ratings for many nonmetals exposed to the 50/50 fuel blend.

The fuel blend can dissolve, attack, or decompose nonmetals such as plastics, elastomers, lubricants, and coatings. These reactions usually cause degradation or complete destruction of the material. The fuel can extract components from the material or be absorbed by the material, thereby altering the physical properties. The nonmetals investigated embrace a wide variety of chemical and physical structures; as such, methods of fabrication and geometrical factors greatly influence the behavior of the material.

MIL-R-2765A Rubber, Synthetic, Oil Resistant (Sheet, Strip, and Molded Shapes).

MIL-R-3065B Rubber Fabricated Parts.

MIL-R-8791A Retainer Packing, Hydraulic and Pneumatic, Tetrafluorethylene.

HH-P-131C Packing, Metallic and Nonmetallic, Plastic.

HH-P-166A Packing, Nonmetallic.

a - Government Specifications:

For example, many materials can be used as gaskets or seals where a definite compression set limitation, and in all probability a volume change limitation, is required for sealing. The gasket or seal can be enclosed between two metal surfaces with only a small portion exposed to the fuel. The swelling characteristics of this type exposure are of less importance than the swelling obtained from complete immersion in the fuel where volume change is magnified. Tensile properties play a small role in the application of a material as a gasket. For this reason, use of the nonmetals must be weighed in terms of the physical properties desired.

4.2.1 Plastics

1 }

Teflon and Teflon products are chemically resistant to the 50/50 fuel blend.

Nylons 31, 63, and 101 vary in composition and are highly inert to most solvents; however, the resistance of these Nylons to the 50/50 fuel blend is limited to 90 to 120 days at 70° to 80°F (References 1 and 15). At 160°F, the nylons failed within 30 days (Reference 4).

High-density polyethylene is subject to stress cracking in the fuel blend (Reference 1). Of the polyethylenes tested, low density polyethylene was the most resistant. Irradiated and high-density polyethylene were "D"-rated because of shrinkage.

Kel-F 300 showed a stress cracking tendency (Reference 1) after 70 days at 70° to 80°F, and darkened and became brittle within 30 days at 160°F (Reference 4). Mylar dissolved in the fuel blend at 55° to 60°F after 30 days exposure.

4.2.2 Elastomers

Some butyl rubbers are compatible with the 50/50 fuel for up to 30 days at 160° F. The fluorosilicone and fluororubbers show poor resistance to the fuel blend.

Dynamic seal tests, constituting approximately 1000 cycles, were conducted at room temperature and standard pressure with Parco 805-70 butyl rubber O-rings and various lubricants as stated in section 4.2.3 of this report (Reference 4). No leakage was detected during these tests. Similar tests were conducted on O-rings from Parker B496-7 (a butyl rubber), Parco 805-70, and Resistazine 74 (an ethylene-propylene rubber) with the fuel at 100 and 500 psig (Reference 74). No visible liquid leakage was detected during these tests and no significant physical damage was noted in any of the O-rings tested. Also, Reaction Motors (Reference 57) conducted dynamic seal tests (10,000 cycles) at 160°F and 1000 psig with butyl formulation 34 and cis-4-polybutadiene formulation 35; no leakage was detected.

4.2.3 Lubricants and Sealants

Most lubricants dissolve or wash out to varying degrees when exposed to the 50/50 fuel blend; dry lubes, such as Microseal, do not wash out. Some of the lubricants in Table 4.2, such as UDMH Lube, Lox Safe, and DC High Vacuum grease, can be used for limited service. Section 4.6 of this handbook lists a number of lubricants satisfactory for short-term service. Reddy Lubes 100 and 200 and water glass/graphite blend are satisfactory sealants with the fuel blend. Fluorinated lubricants such as Kel-F 90 grease react with the fuel blend.

4.2.4 Potting Compounds and Ceramics

Crystal M & CF, a potting compound, is satisfactory for limited use with the fuel blend.

Temporell, Sauereisen P-1, and Sauereisen 31 are ceramics satisfactory for service with the fuel blend.

4.2.5 Adhesives

The adhesives listed in Table 4.2 are not resistant to the fuel blend. Adhesives used on tapes and markings are compatible for short-term service (see Section 4.6).

4.2.6 Coatings

Most coatings are quickly removed by the fuel blend.

Proseal 333, a butyl rubber coating, exhibited slight blistering after 2 hours immersion in the fuel blend. This coating was resistant to splash and drip tests with fuel blend in Section 4.6.

4.2.7 Graphites

Of the graphites listed in Table 4.2, only Graphitar 14 was incompatible with the fuel blend.

TABLE 4.2 SECTION 4.0 COMPATIBILITY OF NONMETALS WITH 50/50 FUEL BLEND 50/50 FUEL BLEND

MATERIAL	TEM	IPE RA	TURE	;	STATIC EXPOSURE LIQUID VAPOR					
	DEC	REES				$\overline{}$		7	APOK	ļ
		IRENH	EIT	45	No. of the Party o	THE	48	/ ,		
			J.	PATTA	3/8	EN THE	ANTHE SALES	ALI FIRE		1
			THE	ARTV	SEC.	THE	ONIT	\$\$\$\frac{1}{2}\$	// REMARKS	
			_	_	_	<u> </u>	Ζ_			
PLASTICS										
POLYTETRA- FLUOR- ETHYLENE		,								
Teflon (TFE)	55-60	270	A	46						
	70-80	125	A	1		1		Į		
	160	30	В	4				Shrinl tensil	ks 4.5%, 7% e loss	
Teflon filled with graphite	55-60	360	A	46						
Teflon filled with molydisul- fide	55-60	360	A	46						
Teflon filled with asbestos	55-60	360	A	46						
Armalon 7700 im- pregnated with Teflon fibers	55-60	270	С	46				Fuel d	liscolored	
Armalon 7700B im- pregnated with Teflon fibers	55-60	270	С	46				Fuel d	discolored	

a - Definitions of ratings are given on page 4-18

MATERIAL	TEM	IPERA	TURE		STATIC EXPOSURE					
				j	LIQUID VAPOR					
		REES IRENH	EIT .	DAYS	C LEFT THE ARTHUR AS THE REMARKS					
PLASTICS (CONT)										
Fluoro- bestos filled with asbestos	55-60	90	A	15	2% H ₂ O, "A" rating based on visual observation					
TFE-felt 7550	55-60	270	В	46	Fuel discolored					
Fluorogreen FLUORIN- ATED ETHYL	55-60	180	A	46						
ENE PROPY- LENE CO- POLYMER				1 .						
Teflon (FEP)	55-60	180	A	46	Shore D increase 6 units					
	55-60	270	В	46						
ď	70-80	60	A	1						
	160	30	Dp	4	Shrinks 15.8%					
POLYCHLO- ROTRI- FLUORO- ETHYLENE										
Kel-F 300	55-60	360	В	46	Slightly discolored, shrinks ≤ 1%					
Unplasti- cized	70-80	8	D	65	Stress cracks, surface attack					

a - Definitions of ratings are given on page 4-18

b - Based on hardness and/or volume changes, otherwise satisfactory for use.

TABLE 4.2 (CONT) COMPATIBILITY OF NONMETALS WITH 50/50 FUEL BLEND

	COMPATIBILITY OF NONMETALS WITH 50/50 FUEL BLEND MATERIAL TEMPERATURE STATIC EXPOSURE										
MATERIAL	TEM	IPERA	TURE	;	-	LIQUID VAPOR					
		GREES IRENH	EIT	DAYS		THE ALTH SET SET SEMARKS					
PLASTICS (CONT)											
	160	6	D	79				Blackened, became			
Annealed	55-60	30	В	46				fragile Slightly discolored, shrinks < 1%			
	55-60	270	С	46				Sample brown			
POLYETHY- LENE											
Low Den- sity	55-60	360	A	46							
Hi-Density	160	30	Dρ	4				Shrinks 10.8%			
Marlex 50 Hi-Density	55-60 55-60	270 360	A B	46 46				Shrinks < 1%			
Irradiated	55-60	90	A	46							
	55~60	270	Dp	46]		Shrinks > 10%			
	55-60	180	В	46				Shrinks 9%			
POLYOLEFIN											
White insu- lation	160	30	A	4							
Black insu- lation	160	30	С	4				Fuel discolored in 1 hr			
[i						ł			

a - Definitions of ratings are given on page 4-18

b - Based upon hardness and/or volume changes, otherwise satisfactory for use.

TABLE 4.2 (CONT)

SECTION 4.0 50/50 FUEL BLEND

MATERIAL	TEM	IPERA	TURI	€	STATIC EXPOSURE				
l				ز	LIQUID VAPOR				
		REES IRENH	EIT	PATTA!	C LEFE TON ON THE REMARKS				
1		_		A VITA					
	L <u>-</u>		THE	PATTI	REAL THE REMARKS				
PLASTICS (CONT)	į								
POLYPROPY- LENE									
From Hercules	55-60 55-60	180 270	A B	46 46	Shrinks 0.5%				
From Chicago Molded Products	160	30	A	4	5.1% tensile loss				
POLYAMIDE-									
Zytel 31	70-80 70-80	50 60	A D	66,80 66,80	Crazed, cracked				
	160	7	D	4	Crumbled				
Zytel 63	70-80	_	D	1,80	Dissolved				
Zytel 101	55-60	360	A	46					
	70-80	50	В	65	Shore D decrease 6 units				
	70-80	55	D	65,80	Crazed, cracked				
	160	7	D	4	Crumbled				
POLYESTER									
Mylar	55-60 70-80	10 1	D D	66 69	Dissolved Dissolved				

a - Definitions of ratings are given on page 4-18

TABLE 4.2 (CONT)

MATERIAL	TEM	IPER/	TURE	C C	STATIC EXPOSURE						
					I	LIQUID VAPOR					
		GREES IRENI	THE	ANTHE RATIN	REFERE	TIME IN	DAYS	PE FERENCE REMARKS			
PLASTICS (CONT) LAMINATES- GLASS											
Silicone (composi- tion un- known)	55-60 55-60	30 90	A C	46 46				Partly delaminated			
Phenolic (composition unknown)	55-60 55-60	30 90	C D	46 46				Fuel and sample discolored Fuel discolored, resin dissolving			
Epoxy (com- position unknown)	55-60 55-60	90 180	C D	46 46				Partly delaminated Delaminated, 86% volume swell			
Polyester (composi- tion un- known)	55-60	30	D	11				Delaminated			
POLYVINY- LIDENE CHLORIDE					į						
Saran	55-60	10	D	66				Sample rubbery			
	70-80	-	С	69,74				Discolored in 2 hr			

a - Definitions of ratings are given on page 4-18.

MATERIAL	TEM	PERA	TURE	2	STATIC EXPOSURE				
					LIQUID VAPOR				
		REES IRENH	EIT	DAYS RATH	The REMARKS				
			40/	25/	AT AT AT REMARKS				
PLASTICS (CONT)									
POLYFOR- MALDEHYDE			l						
Delrin	55-60	30	В	46	Shrinks 7%				
	55-60	90	Dp	46	Shrinks 29%, Shore D decrease 19 units				
POLYCAR- BONATE									
Lexan	55-60	10	D	46	Dissolved				
	70-80	-	D	79,80	Dissolved in 2 min				
POLYVINYL FLUORIDE									
Tedlar	55-60	180	В	46	Shrinks 4.3% after 30 days, swells 9.3% after 180 days				
POLYVINYLI- DENE FLUORIDE									
Kynar	70-80	30	В	51	Sample discolored				
	70-80	30	A	69					
	160	30	D	51	Swollen, cracked				
Defi-141									

a - Definitions of ratings are given on page 4-18.

b - Based upon hardness and/or volume changes, otherwise satisfactory for use.

•	•
į	j

MATERIAL	TEM	PERA		1	STATIC EXPOSURE				
					L	IQUII		VAPOR	
		REES	EIT	DAYS RATHE	REFERE	ACE IN	DAYS RATIN	PER REMARKS	
PLASTICS (CONT)									
POLY- METHYL METHACRY- LATE				-					
Plexiglas CR 39 II	55-60 70-80	9	D D	66 69,80				Completely dissolved Disintegrating	
POLYVINYL CHLORIDE									
Opalons									
1219	55-60	-	D	36					
1220	55-60	-	D	36					
1444	55-სა	-	D	36					
81222	55-60	_	D	36					
Rigid PVC	55-60	-	D	36					
Amerplate	160	-	D	74				Dissolved overnight	
Tygon	70-80	-	Dp	80				Discolored, softened	
EPOXY			,						
Epon									
VI	55-60	_	D	36					
828	55-60	1	D	69				Decomposing	
1031 (with PMDA)	70-80	-	D	80				Disentegrating in 1 hr	
EC 1469	55-60	-	D	36					

a - Definitions of ratings are given on page 4-18.

b - Based upon hardness and/or volume changes, otherwise satisfactory for use.

SECTION 4.0
CONT) 50/50 FUEL BLEND

	TABLE 4.2 (CONT)	
COMPATIBILITY OF	NONMETALS WITH 50/50 FUEL BLEND	

			STATIC EXPOSURE					
MATERIAL	IEW	PERA	IURE		I	JQUID		VAPOR
		REES	EIT	DAYS		/5		REMARKS
PLASTICS (CONT)								
MISCELLA- NEOUS		,						
Hypalon 20	70-80	7	D	79				Black particles in fuel
Phenolic- asbestos	55-60	-	D	36				
F120-55	55-60	-	D	36				
Silicone R- 7001	55-60	-	D	36				
Narmco X3168	55-60	-	D	36				
P-4010	55-60		A	36				
30000	55-60	-	A	36				
H-Film	160	-	D	74				Dissolved immediatel
			•				_	

a - Definitions of ratings are given on page 4-18.

TABLE 4.2 (CONT)

MATERIAL	TEM	PERA	TURE	:	STATIC EXPOSURE				
					LIQUID VAPOR				
		GREES	EIT .	DAYS	ALT LINE OF THE PARTY OF THE REMARKS				
RUBBERS BUTYL									
Parco 823-	70-80	1	В	80	Shore A decrease 8				
1	70-80	27	С	80	Precipitate extracted				
Precision Rubber	70-80	1	В	1					
9357	70-80	3	Dp	1	Shore A decrease 11 units				
9257	70-80	1	Dp	65	Shore A decrease 12 units				
940 x 559	70-80 160	151 7	A D	80 51	Blistered				
Parker	70-80	2	A	65					
B480-7	70-80	30	С	65	Shore A decrease 10 units, precipitate extracted				
	70-80	365	Dp	65	Shore A decrease 17 units				
	160	7	D	51	Tacky and flowed				
Parco 805- 70	70-80 70-80	1 16	B C	1 1	Fuel dark amber				
	70-80	31	D	80	Crystals, fuel dark				
	160	2	С	4,79					
Goshen 1357	70-80	5	В	1	Shore A decrease 10 units				
	70-80	100	С	1,80	Shore A decrease 9 units, fuel dark amber				
	160	2	С	4,79					

<sup>a - Definitions of ratings are given on page 4-18.
b - Based upon hardness and/or volume changes otherwise satisfactory for use.</sup>

TABLE 4.2 (CONT)

COMPATIBILITY OF NONMETALS WITH 50/50 FUEL BLEND

STATIC EXPOSURE **TEMPERATURE MATERIAL** LIQUID **VAPOR DEGREES** THE IN DAYS THE IN DAYS **REFERENCE** REFERENCE **FAHRENHEIT** RATING RATING REMARKS 50-60 30 Α 46 Enjay 268 90 55-60 C 46 Fuel discolored D_p 50-60 180 46 Fuel discolored: Shore A decrease 12 units Enjay 551 55-60 90 C 46 Fuel discolored yellow with white precipitate Shore A decrease 6 55-60 30 46 В units Precision 160 1 D 4 Violent reaction 214-907-9 70-80 7 Slight reaction D 4 Hycar 2202 55-60 1 В 69 Fuel gassing 55-60 270 C 46 Fuel discolored, 14% volume swell $\mathbf{D}_{\mathbf{p}}$ 30 55-60 43% volume swell 46 Linear 7806-160 30 D 4 Precipitate extracted, 70 cracked 70-80 7 80 Salts formed, Shore D D decrease 13 units Hadbar 160 30 4 Tensile loss 6.8% Α XB800-71 160 30 Parker A 4 Tensile loss 11.4% B496-7 55-60 90 C 46 White crystals 4.79 Parker 160 1 С Heavy precipitate ex-318-70 tracted, tensile loss **||29.7%** Stillman SR 30 160 C 4 Heavy precipitate ex-613-75 tracted, tensile loss 16% 55-60 90 В 46 Shore A decrease 10 units 70-80 540 В Softened

a - Definitions of ratings are given on page 4-18.

b - Based upon hardness and/or volume changes, otherwise satisfactory for use.

"COMPATIBILITY OF NONMETALS WITH 50/50 FUEL BLEND

	ATIBILIT	Y OF	NONM	LETAI	LS WITH 50/50 FUEL BLEND					
MATERIAL	TEM	IPERA	TURE		<u> </u>	STATIC EXPOSURE				
					<u> </u>	IQUII)	VAPOR		
		REES								
	FAH	IRENH	THE IN	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
1				9 / 3	REMARKS					
					14	(4)	/ Clin			
			KIN.	DAY RATIN	RE!	M/	QXY/	REMARKS		
					_	Ζ.,				
Formula 120										
(resin										
cured)	160	5	С	79				Precipitate formed		
Formula 121										
(resin										
cured)	160	5	С	79				Precipitate formed		
DOL MONTA	}						i			
POLYBUTA- DIENE		•								
										
Acushnet	160	17	A	4				Precipitate extracted,		
BWK 442	160	30	С	4				fuel discolored, ten- sile loss 8.3%		
			_							
SWK 849	160	17	В	4				Slight turbidity		
	160	30	С	4				Precipitate extracted,		
								fuel discolored, ten-		
								sile loss 41.9 $\%$		
SWK 850	160	10	С	4				Precipitate extracted		
1	160	30	С	4				Precipitate extracted,		
								fuel discolored ten-		
								sile loss 23.6%		
SWK 851	160	30	В	4				Slight precipitate ex-		
	i							tracted, no strength		
Stillman	160	30	D_{p}	4				29% volume swell,		
EX 904-90								tensile loss 77.2%		
(Hydropol)		'			'			brittle		
1	160	1	С	79	}	ļ		Heavy precipitate		
						·		extracted		
FLUOROSIL-										
ICONE										
LS 53	55-60	30	D	15				Deco mposed		
1	70-80	1	D	69			}	Blistered		
	Î	i -	Dp							
Hadbar 58789-23GT	70-80	1	ט ו	77				Shore A decrease 25 units		
30108-23GT			l					units		
L	L		L	l	U	L		L		

1 1

a - Definitions of ratings are given on page 4-18.
b - Based upon hardness and/or volume changes, otherwise satisfactory for use.

TABLE 4.2 (CONT)

SECTION 4.0 50/50 FUEL BLEND

MATERIAL	TEM	IPE RA	TURE	<u> </u>	STATIC EXPOSURE					
					LIQUID VAPOR					
		GREES IRENI	IN HEIT THE I	CLASSI	ALF CHARLE CLASS RELEASED REMARKS					
FLUORO RUBBERS										
Stillman	55-60	30	D	46	Broke up					
EX 821-A70	70-80	-	D	69	Blistered in 4 hr					
Viton A °	55-60	10	D	66	Broke up					
	70-80	1	D	69	Dissolved					
Viton B	55-60	30	D	11	Dissolved					
	70-80	1	D.,	69	Dissolved					
Kel-F 5500	55-60	-	D	46	Dissolved in minutes					
Fluorel	55-60	30	D	46	Broken up less than 30 days					
	70-80	-	D	69	Blistered in 1 hr					
Precision Rubber 18007, 18057	160	1	D	51	Dissolved					
ETHYLENE PROPYLENE RUBBER Formula 132 MISCEL- IANEOUS	160	30	A	64	Volume swell not me ured					
Garlock 900	55-60	30	Dp	46	Fuel yellow, crystals on specimen, Shore I decrease 12 units					
	70-80	1	С	79						
Garlock 22	55-60	30	A	46						
	55-60	180	В	46	Shore A decrease 10 units					

a - Definitions of ratings are given on page 4-18.

b - Based upon hardness and/or volume changes, otherwise satisfactory for use.

MATERIAL	TEMPERATURE					STATIC EXPOSURE				
				ل		JQUID		VAPOR		
		REES	EIT THE IN	DAYS	ALI FERE	CHENCE AND				
<u> </u>	1	<u> </u>	\leftarrow	4		_	\leftarrow			
MISCEL- LANEOUS RUBBERS (CONT)										
	55-60	270	Dp	46				Fuel discolored yellow, Shore A decrease 21 units		
	70-80	1	В	79				Fuel slightly discol- ored		
Buna N	55-60	30	D	11				Sample blistered		
	70-80	1	D	69				Crystals on specimen		
Neoprene	55-60	30	D	46				Fuel discolored red, 38% volume swell		
	70-80	2	В	77				Shore A decrease 9 units		
	70-80	9	$\mathbf{D}_{\mathbf{p}}$	77				Shore A decrease 12 units		
Cohrlastic 500 (Sili-	55-60	30	$D_{\mathbf{p}}$	46		,		Shore A increase 11 units		
Cone) Parco B318-7	55-60	30	D_p	46				Shore A decrease 14 units, fuel red		
LUBRICANTS										
UDMH Lube	70-80	1 ^c	В	4				Some washed off		
S #58-M	70-80	1 ^c	В	4				Some washed off		
Lox Safe	70-80	1 ^c	В	4				Some washed off		
ANDOK-C	70-80	1 ^c	В	4				Some washed off		
DC-11	70-80	14	В	4	14	В	4	Washed off in liquid, partly in vapor		

a - Definitions of ratings are given on page 4-18.
b - Based upon hardness and/or volume changes, otherwise satisfactory for us.
c - Dynamic tests with Parco 805-70 butyl rubber O-rings.

TABLE 4.2 (CONT)

COMPATIBILITY OF NONMETALS WITH 50/50 FUEL BLEND

MATERIAL	TEMPERATURE			ļ			EXPOSURE	
	DE(FAI	DAY'S		TIME		VAPOR S REMARKS		
LUBRICANTS (CONT)								
Microscal 100-1 (dry lube)	70-80	90	A	4				Compatible
Rockwell Nordstrom 950	70-80	1 ^C	С	4				Some washed off
Valve Seal A	70-80	1	В	65				Some washed off
Flake Graphite	70-80	1	A	65	į			
DC-55	70~80	14	В	4	14	В	4	Washed off in liquid, partly in vapor
DC-Hi Vacuum	55~60	180	В	36				Some washed off
	70-80	14	В	4	14	В	4	Washed off in vapor, partly in vapor
Kel-F 90	55-60	30	D	11				Reacted
Molykote Z	55-60	30	D	11				Reacted and evolved gas immediately
Drilube 703	55-60	30	D	46				Broken up
Rayco-32	55-60	30	D	11				Decomposed
Electrofilm 66-C	55-60	180	С	46				Bond to glass broken loose otherwise compatible
Polyglycol Oils	70-80	14	В	1,4				Some washed off

a - Definitions of ratings are given on page 4-18.

b - Based upon hardware and/or volume changes, otherwise satisfactory for use.

c - Dynamic test with Parco 805-70 butyl rubber O-rings

TABLE 4.2 (CONT) 50/50 FUEL BLEND COMPATIBILITY OF NONMETALS WITH 50/50 FUEL BLEND STATIC EXPOSURE MATERIAL TEMPERATURE LIQUID **VAPOR DEGREES** THE IN DAYS THE IN DAYS REFERENCE REFERENCE. **FAHRENHEIT** RATING **ENTING** REMARKS Two phases, fuel 70-80 14 C FX 45 4 turned orange 70-80 65 Some washed off 1 В Apiezon L Some washed off 70-80 XC 150 1 65 В Material discolored 70-80 C 75 Fluorolube in 1 hr MG-600 Material discolored, Fluorothene 70-80 D 75 slight reaction in 1 hr THREAD SEALANTS Reddy Lube Satisfactory 4 100 70-80 14 Α Satisfactory 200 70-80 14 Α 4 Satisfactory Water Glass 70.80 14 4 Α Graphite 4 14 Material crusty in 70-80 В Oxylube Sealant Some washed off 14 4 Vydax A 70-80 В Α 75 Teflon Tape 1 70-80 (unsintered) **POTTING** COMPOUNDS Dissolved in few hours 30 11 PR 1422 55-60 D $\mathbf{D}^{\mathbf{b}}$ Shrinks 6.9%, Shore A 55-60 30 46 **RTV 20** decrease 13 units 3 69 70-80 A Decomposed 55-60 30 D 11 **Paraplex** P-43

30

D

55-60

11

Dissolved

Proseal 793

14

a - Definitions of ratings are given on page 4-18

b - Based upon hardware and/or volume changes, otherwise satisfactory for use.

TABLE 4.2 (CONT)
COMPATIBILITY OF NONMETALS WITH 50/50 FUEL BLEND

SECTION 4.0 50/50 FUEL BLEND

MATERIAL	TEMPE RATURE			2	STATIC EXPOSURE		
					LIQUID VAPOR		
		GREES HRENH	EIT	DAYS	LE THE ALTER PLEASE REMARKS		
				PATTA	the true of the property of the remarks		
			THE/	anti-	the street of the REMARKS		
			/	/	REMARKS		
POTTING COMPOUNDS							
Fairprene 5159	55-60	30	D	11	Swollen; became brittle		
Crystal M & CF	55-60	180	D	46	Brittle, appeared satisfactory after 30 days		
	55-60	30	A	46			
ADHESIVES							
Armstrong A-6	55-60	30	D	11	Fell apart		
EC 847	55-60	30	D	11	Fell apart		
HT 424	55-60	-	D	46	Reacted		
Epon 422 4-3	70-80 70-80	1 1	A D	67 67	Blistered and decomposed		
CERAMICS							
Temporell 1500	55-60	270	A	46	Satisfactory		
Sauereisen P-1	55-60	180	A	46	Satisfactory		
Sauereisen 31	55-60	270	A	46	Satisfactory		
Sauereisen 47	75	-	С	4	Partly removed within 7 hr, limited service		
Rockflux	75	-	A	4	Satisfactory for 10.5		
COATINGS							
Ероху No. 1	55-60	30	D	11	Dissolved		

a - Definitions of ratings are given on page 4-18

TABLE 4.2 (CONT) SECTION 4.0 COMPATIBILITY OF NONMETALS WITH 50/50 FUEL BLEND 50/50 FUEL BLEND

MATERIAL	TEMPERATURE				STATIC EXPOSURE
					LIQUID VAPOR
	DEGREES FAHRENHEIT PARTI				C PRINT PLANT PER LIBERT REMARKS
			N. C.	98/	AU AU AU REMARKS
COATINGS (CONT)					
Modified Epoxy No. 5	55-60	30	D	11	Edges swollen
Ероху №. 7	55-60	30	D	11	Stripped off
Ероху №. 9	55-60	30	D	11	Dissolved
Epoxy No. 6809	55-60	30	D	11	Peeled off
Alkyd No. 4	55-60	30	D	11	Stripped off
Polyure- thane	55-60	30	D	11	Stripped off
Acrylic Ni- trocellulose	55-60	30	D	11	Dissolved
Vinyl	55-60	30	D	11	Blistered
Primer MIL-P-6889	55-60	30	D	11	Stripped off
Catalac					
Primer and Finish	160	-	D	4	Coating lifted immediately
Improved	150	-	D	4	Coating lifted within 2 minutes
Tygon K	160	-	D	4	Coating blistered with in 1 hr

a - Definitions of ratings are given on page 4-18

TABLE 4.2 (CONT)

COMPATIBILITY OF NONMETALS WITH 50/50 FUEL BLEND

SECTION 4.0
50/50 FUEL BLEND

MATERIAL	TEMPERATURE						XPOSURE	
					1	JQUII		VAPOR
	DECREES FAHRENHEIT 15 PARTIE				REFERE	THE IT	DAYS	PER REMARKS
			\leq	\leftarrow		\leftarrow	\leftarrow	<i>[</i>
COATINGS (CONT)								
Co-Polymer P-200 G	160	-	D	4				Coating washed off within 3 min
CA 9747 Primer	160	-	D	4				Blistered and dis- solved within 10 min
Corrosite Clear 581	160	-	D	4				Blistered within 1 hr
Proseal 333	70-80	-	С	51				Slight blistering in 2 hr
Markal DA-8 DA-8 Gray, DA-9	70-80	-	D	51				Washed off
Aluminous	70-80	-	D	51				Blistered badly
GRAPHITES Graphitar								
14	160	30	D	51				Samples crumbled
39	160	30	D	51				
	70-80	6	A	37				Dynamic Test
84	70-80	10	A	37				Dynamic Test
86	160	30	A	51				

a - Definitions of ratings are given on page 4-18.

TABLE 4.2 (CONT)

COMPATIBILITY OF NONMETALS WITH 50/50 FUEL BLEND STATIC EXPOSURE MATERIAL **TEMPERATURE** LIQUID **VAPOR DEGREES** THE IN DAYS THE IN DAYS REFERENCE. it de training **FAHRENHEIT** RATING REMARKS GRAPHITES (CONT) 5 c National 160 30 Α Carbon CCP-72 Purebon P3N 160 30 Α 50 Slight shrinkage Purebon P5N 160 30 В 50

a - Definitions of ratings are given on page 4-18.

Û

4.3 EFFECTS OF FUEL BLEND ON MATERIALS OF CONSTRUCTION

Table 4.3 is a list of construction materials showing the compatibility results of short exposure to fuel blend liquid spillage, fuel blend vapors, and watered fuel blend. Details of these tests are given in References 4 and 51. Coatings and/or surface treatments were applied to various materials to ascertain life expectancy. The resistance of the material was determined by dripping 50/50 fuel blend at an approximate rate of 1.5 cc/min on the specimen while partly immersed in water. The fuel was allowed to drip on the portion of the specimen exposed to the atmosphere. Of the coatings, Sauereisen 47 and Proseal 333 exhibited the best resistance. Rockflux, an inorganic concrete coating material having a viscous consistency when mixed with water, appeared to be resistant to the 50/50 fuel blend. However, bare concrete was unaffected by the fuel blend.

TABLE 4.3

COMPATIBILITY OF CONSTRUCTION MATERIALS WITH 50/50 FUEL BLEND AT 75°F

Material	Exposure Time	Remarks	
Birch Wood	2 hr 30 min	Wood grain split	
Concrete			
Bare	13 hr	No visual effect	
Coated with water glass	1 hr 30 min	Water glass crystalized and powdered off	
Coated with water glass and floor enamel (Esco Brand 41138)	1 hr 15 min	Paint blistered	
Coated with water glass and Chex-Wear floor enamel	6 min	Paint blistered	
Coated with Rockflux	10 hr 30 min	No visual effect	
Mild Steel Coated with			
Tygon K paint	1 hr	Paint blistered	
Catalac improved paint	1 hr 30 min	Grainy appearance; lifted when totally immersed	
Co-Polymer P-200G	3 min	Paint was removed	
Sauereisen 47 (4 coatings)	7 hr	First coating was removed in one hour; blistered but did not penetrate 4 coatings	
CA 9747 Primer paint	10 min	Blistered and discolored	
Corrosite Clear 581	1 hr 15 min	Blistered	
Proseal 333	2 hr	Unaffected	

4.4 EFFECTS OF METALS ON FUEL BLEND DECOMPOSITION

To determine the effects of materials on fuel decomposition, portions of unwelded, welded, brazed, and soldered metal specimens were sealed in Pyrex glass ampules with a small quantity of 50/50 fuel blend and placed in test for 14 days at 160°F. A surface area of 0.4 sq in. was exposed to 0.16 cu in. of fuel blend which corresponds to a surface-to-volume ratio of 2.5 in. -1. Blanks containing only fuel blend also were included as controls. After test, a weight loss of the fuel blend was indicative of decomposition. Details of this test are presented in Reference 50. The metals tested and the results are shown in Table 4.4.

The average weight percent decomposition was used in determining the compatibility classification of the metal in the fuel under the test conditions stated in the foregoing paragraph. Three ratings were established as follows:

- A: These metals are exceptionally good even for elevated temperature service and will cause negligible fuel decomposition. The weight percent decomposition values are less than 0.10%.
- B: These metals are satisfactory for normal use and will cause only slight fuel decomposition. The weight percent decomposition range is 0.10% to 0.50%.
- C: These metals are suitable for limited use, such as spillage and brief contact. The weight percent decomposition range is 0.50% to 1.00%.
- D: These metals are not recommended because their decomposition percentages exceed 1.00%.

In general, the 50/50 fuel blend exhibited negligible to slight decomposition in the presence of aluminum alloy and stainless steel alloy.

One magnesium alloy (HK31A) caused sufficient pressure build-up to burst the glass ampules; the other magnesium alloy (AZ31BO) caused excessive fuel decomposition. A mild steel, and oxide coatings of molybdenum and copper, also exhibited excessive fuel decomposition. These metals were assigned "D" ratings.

4.5 EFFECTS OF METAL FILINGS AND LINT ON FUEL BLEND

Filings of 2014 aluminum alloy and types 304, 316, and 347 stainless steels were exposed to 50/50 fuel blend at 160°F for 14 days to determine the potential effects of contaminants on the fuel blend. The metal filings were sealed in Pyrex glass ampules with fuel blend; after test, the fuel blend weight loss indicated decomposition (Reference 50). The test results listed in Table 4.5 indicate higher decomposition rates with the filings than with the respective metals in massive form; this probably can be attributed to the greater surface area of the filings.

TABLE 4.4

EFFECTS OF METALS ON 50/50 FUEL BLEND DECOMPOSITION AFTER 14 DAYS EXPOSURE AT 160° F

	Decompo	sition Wt%		Rating
Material	Welded	Unwelded	Other	
CONTROLS - average of 10 = 0.03 (Fuel blend alone)				
ALUMINUM ALLOYS				
2014-T6 Manual Weld	0.03	0.04		Α
2014-T6 Machine Weld	0.05			Α
2014-6061 Manual Weld 2014 Nickel-Plated	0.02			A
(Electrolytic)		0.48		В
5086 H-36	0.02	0.02		Α
5456	0.07	0.04		Α
6061-T6	0.06	0		Α
6061-T6 Brazed			0.05	Α
7075		0		Α
STAINLESS STEELS				
301		0.06		A
302		0.20		В
303		0.07		Α
303 Tin-Soldered		0.31		В
304L Annealed	0	0.03		Α
304L Nichrome-Brazed			0.06	Α
304L Lead/Tin-Soldered			0.04	Α
316		0.21		В
321 Annealed	0.02	0.02		Α
347 Annealed	0.09	0.09		Α
347 Nichrome-Brazed			0.14	В
347 Silver-Brazed			0.06	A
347 Gold-Plated		1.87 ^b		D
347 Silver-Plated		0		A
410 H&T	0.21	0.21		В
410 Rusted		0.06 ^c		A
PH 15-7 Mo		0.04		A
PH 17-4		0.25		В
AM 355 A 286		0.02		A
A 200		0.67		С

a - Control value 0.03% was subtracted from decomposition values.

b - Test was repeated with same samples; 0.12% decomposition was obtained.

c - Also tested with N₂H₄. Result was 0.53% with 0.01% control for N₂H₄ subtracted.

d - All three samples burst in the bath during exposure period.

TABLE 4.4 (CONT)

EFFECTS OF METALS ON 50/50 FUEL BLEND DECOMPOSITION AFTER
14 DAYS EXPOSURE AT 160°F

Unwelded	Other	Rating
0		A
0		Α
0		Α
0		Α
1.26		D
0.60		C
1.26		D
1.24		D
d		D
0.65		С
1.45		D
0.04		Α
0		A
	0 0 1.26 0.60 1.26 1.24 d 0.65 1.45	0 0 0 1.26 0.60 1.26 1.24 d 0.65 1.45

- a Control value 0.03% was subtracted from decomposition values.
- b ~ Test was repeated with same samples; 0.12% decomposition was obtained.
- c Also tested with N₂H₄. Result was 0.53% with 0.01% control for N₂H₄ subtracted.
- d All three samples burst in the bath during exposure period.

TABLE 4.5
EFFECTS OF METAL FILINGS ON 50/50 FUEL BLEND DECOMPOSITION
AFTER 14 DAYS EXPOSURE AT 160°F

Material	% Decomposition a	Rating
2014 Aluminum Alloy Filings	0.16	В
316 Stainless Steel Filings	0.25	В
347 Stainless Steel Filings	0.15	В
304 Stainless Steel Filings	0.09	A
Controls (Fuel Blend alone)	0.03	-

a - Control value 0.03% was subtracted from decomposition values.

Tests were made with 6061 aluminum alloy, type 347 stainless steel shavings, and lint exposed to the 50/50 fuel blend contained in glass flasks fitted with reflux condensers (Reference 2). After one week at 160°F, no visual changes were detected in either the fuel or the metal, and spectral analyses of the fuel indicated no decomposition. With lint, the analysis of the fuel blend was hampered by the absorption of the lint dye; however, observations during test indicated no decomposition.

4.6 SHORT-TERM COMPATIBILITY

Components that are not designed to be in contact with propellants may be subjected to liquid or gaseous 50/50 fuel blend as a result of leakage or splashing during filling or storage periods. A number of these materials were exposed to fuel blend splash tests similar to a procedure outlined in Reference 47. Briefly, this procedure consists of wetting the surface of the material with fuel blend and air drying at 80°F for 24 hours at a relative humidity of less than 80%. Table 4.6 contains compatibility data for the various materials exposed to fuel blend splash tests.

4.6.1 Plastics

Of the plastics listed in Table 4.6, only Lexan (a polycarbonate) and Plexiglas CR-39 were incompatible for limited exposure to the fuel blend.

4.6.2 Elastomers

All the elastomers listed in Table 4.6 showed good resistance to the fuel blend.

4.6.3 Potting Compounds

Epon 828, PR 1422, and RTV 20 showed good resistance to the fuel blend.

4.6.4 Coatings

Of the coating materials listed in Table 4.6, Valdura, Swedlow RD101, Dimetcote, Proseal 333, and Magna Polyurethane NTH showed good resistance to the fuel blend.

4.6.5 Lubricants

All oils and greases listed in Table 4.6 washed off to varying degrees when exposed to the fuel blend splash test. All dry films listed in Table 4.6 are resistant to the fuel blend splash test.

4.6.6 Tapes and Markings

All the tapes and marking materials listed in Table 4.6 were resistant to the fuel blend splash test.

TABLE 4.6

COMPATIBILITY OF MATERIALS EXPOSED TO 50/50 FUEL BLEND SPLASH TESTS

Material	Ratinga	Reference	Remarks
PLASTICS			
Polytetrafluorethylene			
Teflon (TFE)	A	46	No visible change, swell $< 1\%$, Shore D hardness unchanged
Teflon TFE-Asbestos	A	46	No visible change, swell 4%, Shore D increase 1 unit
Teflon-Graphite	A	46	No visible change, swell $<$ 1%, Shore D hardness unchanged
Teflon-Molydisulfide	A	46	No visible change, swell $< 1\%$, Shore D hardness 1 unit
Armalon 7700B impregnated with Teflon fiber		46	No visible change, shrinkage < 1%, Shore A hardness unchanged
Fluorobestos, asbestos filled Teflon	s- B	46	No visible change, swell 1.3%, Shore D increase 4 units
Fluorogreen, ceramic- filled Teflon	. А	46	No visible change, swell $< 1\%$, Shore D increase unchanged
Fluorinated Ethylene Propylene Co-polymer Tef lon 100X (FEP)	A	46	No visible change, swell <1%, Shore D hardness unchanged
Polychlorotrifluorethyler Kel-F, annealed	ne A	46	No visible change, swell < 1%, Shore D hardness unchanged
Kel-F	A	46	No visible change, swell $< 1\%$, Shore D hardness unchanged
Polyethylene			
Low-density	В	46	No visible change, shrinkage <1%, Shore D decrease 5 units
High-density (Marlex 5	0) A	46	No visible change, swell <1%, Shore D decrease 1 unit
Polypropylene			
Hercules	A	46	No visible change, shrinkage <1%, Shore D hardness unchanged
Polyamide			
Nylon	A	46	No visible change, shrinkage <1%, Shore D hardness unchanged.

a - Definitions of ratings are given on page 4-18.

TABLE 4.6 (CONT)

COMPATIBILITY OF MATERIALS EXPOSED TO 50/50 FUEL BLEND SPLASH TESTS

Material	Ratinga	Reference	Remarks
PLASTICS (CONT)			
Laminate-Glass Silicone	A	46	No visible change, swell <1%
Polycarbonate Lexan	D	46	Surface sticky and cracked, shrinkage 4% , Shore D hardness unchanged
Polymethyl Methacrylate Plexiglas II UVA	В	46	Specimens brittle, swell <1%, Shore D hardness unchanged
Plexiglas CR-39	D	46	Surface sticky, swell $<1\%$, Shore D hardness unchanged
BUTYL RUBBERS			
Parker B496-7	A	46	No visible change, shrinkage $< 1\%$, Shore A hardness unchanged
Enjay 268	A	46	No visible change, shrinkage $<1\%$, Shore A hardness unchanged
FLUORO RUBBERS			
Viton A	В	46	No visible change, swell $< 1\%$, Shore A increase 10 units
Viton B	В	46	No visible change, shrinkage <1%, Shore A decrease 4 units
MISCELLANEOUS RUBBEF	ะร		
Buna N	— А	46	No visible change, shrinkage $<1^{\prime\prime}_{\rm T}$, Shore A decrease 2 units
Cohrlastic 500	В	46	No visible change, shrinkage <1%, Shore A decrease 5 units
Garlock 22	A	46	No visible change, shrinkage $<1\%$, Shore A decrease 2 units
Garlock 900	A	46	No visible change, swell 1.6%, Shore D hardness unchanged
Hypalon 20	A	46	No visible change, shrinkage <1%, Shore A increase 2 units

a - Definitions of ratings are given on page 4-18.

TABLE 4.6 (CONT)

COMPATIBILITY OF MATERIALS EXPOSED TO 50/50 FUEL BLEND SPLASH TESTS

Material	Ratinga	Reference	Remarks
Miscellaneous Rubbers (cor	nt)		
Natural rubber	В	46	No visible change, shrinkage 1.2%, Shore A increase 1 unit
Neoprene	A	46	No visible change, swell $<1\%$, Shore A hardness unchanged
B318-7	A	46	No visible change, swell $<1\%$, Shore A hardness unchanged
POTTING COMPOUNDS			
Epon 828	A	46	No visible change, shrinkage $<1\%$, Shore D hardness unchanged
Fairprene 5159	D	46	Surface dissolving and blistered, shrinkage 5.7% , Shore A increase 12 units
Paraplex P-43	В	46	Surface softened, swell 1.5%, Shore D decrease 1 unit
PR 1422	A	46	No visible change, shrinkage $<1^{or}_{\ \ \upsilon}$, Shore A increase 1 unit
Proseal 793	D	46	Turned powder brown, swell 5.4%, Shore A hardness unchanged
RTV 20	A	46	No visible change, swell $<1\%$, Shore A increase 3 units
COATINGS			
Proseal 333	A	51	No visible change even when fuel dripped on coating partly immersed in water (2 hours dripping)
Aluminous	D	51	Blistered
Markal DA8	D	51	Washed off
DA8-Grey	D	51	Washed off
DA8 Improved	D	51	Washed off
Magna Polyurethane N7	LH D	79	Blistered
Chem Seal	A	60	No apparent effect
	D	60	Attacked

a - Definitions of ratings are given on page 4-18.

1 1 1

TABLE 4.6 (CONT)

COMPATIBILITY OF MATERIALS EXPOSED TO 50/50 FUEL BLEND SLASH TESTS

Material	Rating	Reference	Remarks
COATINGS (CONT)			
Hysol 1 C	A	78	
Valdura	A	79	
Swedlow RD 101	A	79	Fuel slightly discolored
Dimetcote 1731/1741	A	79	
LUBRICANTS			
Braycote 660 AMS (Rayco 60 AMS)	В	58	Oil component is soluble and will wash off
Drilube 822	В	58	Oil component is soluble and will wash off
Drilube 842	В	58	Oil component is soluble and will wash off
Drilube 7, Type A	A	76	See footnote b
Drilube 1, Type B	Α	76	See footnote b
M8800, Type A	A	76	See footnote b
X106, Type B	A	76	
X15, Type C	Α	76	
LOX Safe	Α	75	See footnote b
Microsea	Α	4	
TAPES AND MARKINGS			
Mylar		26	
Metallized Declar 956	A A	36 36	
X9040 (Al backed)	A	36	
SL1-281011			
Al backed	A	36	
Tedlar backed Teflon backed	A A	36 36	
Butyl Phenolic Adhesive	A	30	
Polyethylene	Α	36	
Aluminum Fibreglass	A	36	
Y9050	A	36	
Polyplate Decal	A	36	
Black AX-Aero Metal Inl	ĸ A	36	
PD 455	Α	36	

a - Definitions of ratings are given on page 4-18.

b - Not recommended for extended fuel exposure, particularly in a confined area, because of slow catalytic decomposition of the fuel.

4.8 EFFECTS OF FUEL BLEND VAPORS ON VARIOUS MATERIALS

Compatibility tests were conducted (Reference 79) with various materials exposed to 1200 ppm and 12,000 ppm fuel blend vapors in an atmosphere at a relative humidity of at least 80%. These materials were also exposed to the high humidity alone as controls. Table 4.8 summarizes the test results of the materials exposed to these environments for 30, 60, and 90 days at temperatures ranging from 70° to 77° F.

TABLE 4.8

COMPATIBILITY OF MATERIALS WITH FUEL BLEND VAPORS
IN AIR AT 80% RELATIVE HUMIDITY

	Rating	Remarks
2014-T6 Al	A	Slight weight increase, slight stain on specimen
Zytel 101 (Nylon)	Α	2% weight increase in 90 days
7075 Al	Α	Slight weight increase
1010 Mild Steel	С	Slight weight increase, rust film present
AZ-31A Mg	В	< 1 MPY, but many fine pit marks
Copper	D	Black deposits owing to catalylic reaction
200 ppm Fuel Blend Vapors		
2014-T6 Al	A	< 1 MPY, localized superficial attack
Zytel 101 (Nylon)	Α	4% weight increase in 90 days
7075 Al	A	< 1 MPY, slight superficial attack
1010 Mild Steel	C	< 1 MPY, but all rust not removed
AZ-31A Mg	В	Slight weight increase with dull gray appearance
Copper	D	Black deposits owing to catalylic reaction
ontrols n air only at 80% relative humidity)		
2014-T6 Al	A	< 1 MPY
Zytel 101 (Nylon)	Ä	3% weight increase in 90 days
7075 Al	Â	< 1 MPY
1010 Mild Steel	В	Slight weight increase, few rust spots
AZ-31A Mg	B	Slight weight increase, some pitting
Copper	Ā	< 1 MPY

1)

5.1.4 Nickel Alloys

In general, oxidizing conditions promote corrosion of nickel alloys. Nickel can protect itself against certain forms of attack by developing a passive oxide film; thus, oxidizing conditions do not always accelerate the corrosion of nickel. While these alloys show good resistance to dry N_2O_4 , caution is advised in their use with moist N_2O_4 . An exception to this is Inconel which has good corrosion resistance to oxidizing conditions.

5.1.5 Titanium Alloys

Commercially pure titanium is outstanding among structural materials in its resistance at ordinary temperatures to oxidizing conditions. Titanium, when passivated, is the noble metal in a galvanic couple with all structural alloys except Monel and stainless steels.

Because of a known tendency toward impact sensitivity with strong oxidizers such as RFNA, liquid oxygen, and fluorine (References 27 and 28), titanium must be studied carefully before using it with any strong oxidizer. Extensive impact testing by the Nitrogen Division of Allied Chemical Corporation, the Martin Company, and Bell Aerosystems Company has shown that, except under extreme impact conditions, titanium is a satisfactory material for use with N₂O₄ (Reference 22).

Allied Chemical (Reference 55) reported that titanium alloy C120AV (6 aluminum 4 vanadium) soaked for 24 hours in N_2O_4 at $32^{\circ}F$ had an impact sensitivity threshold value of 220 to 250 foot-pounds, using a flat-end pin. However, no propagation of the ignition was observed on any of the titanium specimens. Ignition was rarely accompanied by noise or sparks and was evidenced by small fused areas on the specimen surface. (See Propellant Handling, Section 6.4, for additional impact data with titanium soaked in N_2O_4 .)

The data in Table 5.1 shows that the titanium alloys are virtually unaffected by N_2O_4 containing up to 25% water. No corrosion effects occur when titanium is coupled with 2014-T6 aluminum alloy in N_2O_4 . All corrosion testing to date indicates that titanium alloys are satisfactory for use with N_2O_4 .

5.1.6 Magnesium Alloys

In general, magnesium alloys are corroded in oxidizing media. While these alloys show fair resistance to dry N₂O₄, caution is advised in their use with moist N₂O₄.

5.1.7 Copper and Copper Alloys

Because of their poor resistance to nitric acid formed in moist N₂O₄, copper and copper alloys are not recommended for use. Although Berylco 25, a beryllium-copper alloy, exhibited good corrosion resistance to dry N₂O₄, caution is advised in its use with moist N₂O₄.

5.1.8 Cobalt Alloys

Haynes Stellites No. 6K, 21, and 25 exhibited good corrosion resistance with N_2O_4 .

5.1.9 Platings

Gold-plating exhibited a corrosion rate less than 1 MPY; however, corrosion products formed on the surface. Non-porous chromium, nickel plating, and electroless nickel are satisfactory for N₂O₄ service; however, both nickel platings are susceptible to attack by nitric acid and should be used with caution with moist N₂O₄.

5.1.10 Conversion Coatings

There is evidence to show that sulfuric acid anodize, Hardas anodize, and iridite aluminum conversion coatings are resistant to N_2O_4 exposure.

5.1.11 Brazing and Soldering

Included in Table 5.1 are specimens prepared by means of acceptable brazing and soldering techniques. Aluminum brazing and nicrobrazing techniques proved resistant to N_2O_4 . Tin solder and silver brazing (Easy Flo per QQS-561) were resistant to dry N_2O_4 , but were readily attacked by dilute nitric acid; therefore, these techniques must be used with discretion. Silver solder, as reported in Reference 10, and Easy Flo 45 for silver brazing became badly pitted in N_2O_4 .

5.1.12 Miscellaneous Metals

Tantalum and tungsten carbide exhibit good corrosion resistance to N2O4.

5.1.13 Couples

Various metal couples show no galvanic corrosion with N_2O_4 at 55° to 65° F; these couples are 2014-T6 Al and 321SS, 2014-T6 Al and titanium (6 Al + 4V), 2014-T6 Al and copper, 6061-T6 Al and 321SS, 356 Al and Nilvar (Nickel alloy), tin and 303SS, silver and 347SS, and nichrome and 347SS.

MATERIAL	TEN	/PERA	TURE		STATIC EXPOSURE								
			'		I	JQUII)		R	INTERFACE			
		GREES	EIT ,	DAYS	REFERE	THE I	DAYS	REFERS	THE	DAYS QAYTAG	REMARKS		
FERROUS ALLOYS													
ASTM A- 285 (Grade C)	15	27	A	16							Up to 3.2% H ₂ O incl		
	70	27	A	16							Up to 0.8% H ₂ O incl		
	70	27	В	16							1.6 to 3.2% H ₂ O		
	165	27	A	16							Up to 0.4% H ₂ O incl		
	165	27	В	16				1			0.8% н ₂ O		
	165	27	С	16							> 0.8% H ₂ O to 3.2% incl		
1020	55-60	180	A	46							Up to 0.2% H ₂ O incl		
	130	30	A	19									
8630	140	29	A	19									
NICKEL ALLOYS													
Inconel	55-65	33	Ab	19	33	Ab	19	33	A	19			
Monel ^C	55-65	63	Ab	19	63	Ab	19	63	A	19			
"A" Nickel ^C Welded and Unwelded	63-67	14	A	4			:						
Ni Span C	55-60	90	A	46	1						0. 2 % н ₂ O		
Nilvar	55-60	30	A	10							-		
						li e							

a - Definitions of ratings are given on page 4-1.

<sup>b - Predicted rating from interface data.
c - These alloys are highly susceptible to corrosion in nitric acid.</sup>

MATERIAL	TEL	(DEDA	TUDE	.]	STATIC EXPOSURE							
MAIERIAL	1 EW	IPE RA	IURE	Ì	I	IQUIE			APOI		INTERFACE	
		REES IRENH	EIT	DAYS								
			_	<u>~</u>	Z	<u> </u>	<u>~</u>		_	<u>~</u>	REMARKS	
TITANIUM ALLOY									:			
B120 VCA ^d	55-60	180	A	46	1							
C120 AV d	55-60	180	A	46							Up to 0.2% H ₂ O incl	
(6A1- ¿V)	70-165	27	A	16							Up to 3.2% H ₂ O	
75A ^d	70-165	27	A	16							Up to 3.2% H ₂ O	
Ti 65A ^d	100	14	A	18			:			:	Up to 25% H ₂ O	
RC 130 AM	100-150	Ĭ						14	A	18	3% H ₂ O, discoloration in vapor	
A 110 ATd	55-65	7	Ab	19	7	Ab	19	7	A	19		
MAGNESIUM ALLOYS												
HM 21A T8 ⁰	55-60	30	A	15								
AZ 31C ^c	55-65	63	Bp	19	63	Вþ	19	63	В	19	"B" rating because of slight corrosion products	
	150	7	С	73								
АМ 100А ^С	55-65	63	Вр	19	63	в	19	63	В	19	"B" rating because of slight corrosion products	
COPPER AND COP- PER ALLOYS Berylco 25	7.	90	Bb	4	90	Вр	4	90	В	4	Slight corrosion products	

a - Definitions of ratings are given on page 4-1.

<sup>b - Predicted rating from interface data.
c - These alloys are highly susceptible to corrosion in nitric acid.</sup>

d - Before using these materials, see Section 5.1.5 of this handbook.

TABLE 5.1 (CONT)

COMPATIBILITY OF METALS WITH NOO.

COMPATIBILITY OF METALS WITH N2O4											
MATERIAL	TEM	IPE RA	TURE		<u></u>			TATIO			
) l					<u> </u>	IQUIL		L}	ALOI	₹	INTERFACE
		REES			/			/	_/		
1	FAH	IRENH	EIT	15	/ ,	(4 A	45	/ ,	· · /	15	REMARKS
										10/2	(xix)
1	DEGREES FAHRENHEIT AND										
			M.	RAY	RE!	M.	QA.	&*//	My.		REMARKS
		<u>/</u>	ζ,		<u> </u>			<u>/</u>	<u> </u>	<u>/</u>	
COBALT											
ALLOYS											
						1	- 1				
Haynes Stellite											
		_ '					ŀ				
1 6K	100 55-65	63	A Ab	73 19	63	Ab	19	63	Α	19	
12	100	7	A	73	03	Α-	15	03	Λ.	13	
25	63-67	90	Αb	4	90	Ab	4	90	A	4	
21	63-67	145	Ab	51	145	Ab	51	145	A	51	
93	100	7	A	73							
PLATINGS											
Cadmium	55-60	_	D	36			ł				
H	55-60			36							0.0005 to 0.003 in.
(non-porous)	33-60	-	A	30			Ì	İ			thick
Copper ^C	55-60		D	36	ļ					i .	
1	1	-		1 1		_h	' . !		_		
Gold	63-67	30	Bp	4	30	Bp	4	30	В	4	Slight corrosion products
											_
ł	55-60	-	A	36						'	0,0001 to 0.001 in. thick
,c											liner
Nickel ^C											
Electroly-	55-60	-	Α -	15							
tic (non- porous)								1			
1	100	,		, ,				-		'	W- 4- 0 20 H O
Electro- less	100	7	Α	18							Up to 0.3% H ₂ O
1000	62 67	AC	Ab	51	40	Ab	e.	40		E 1	Diete on 2014
	63-67	46	A~	21	46	A~	51	46	Α	51	Plate on 2014 aluminum
	63-67	30	,	51	30	Ab	51	30	A	51	Plate on 1018 steel
1]]	A _		30	/A.~	21	30	A	31	Frate on 1010 Steel
Silver	55-60	-	D	15					}		
Zinc	55-60	-	D	15							
Tin ^C	55-60	-	A	36							0.001 to 0.003 in.
I	ļ										thick
I	ĺ		[1	L		

<sup>a - Definitions of ratings are given on page 4-1.
b - Predicted rating from interface data.</sup>

c - These alloys are highly susceptible to corrosion in nitric acid.

FAHI	REES RENH			$\overline{}$	IQUII the it		7	APOI NOTE IN		INTERFACE REMARKS
55-60				REFERE	HCE IN IN	DAYS RATING	REFERE	ALE LINE	DAYS	REMARKS
	180	В								
	180	В				i				
EE OA II			46							0.269% H ₂ O, "B" rating due to stress cracks
55-60	30	A	46	180	A	46				0.268% Н ₂ О
55-60	30	A	46					i		0.165% н ₂ 0
55-60	180	A	46							
55-60	180	A	46							
100	7	В	18							
100	7	В	18		_					
63-67	30	A ^b	4	30	Ab	4	30	A	4	
55-60	30	A	46							0.327% Н ₂ О
5 5 1 1 6	5-60 5-60 5-60 00 00 3-67	5-60 30 5-60 180 5-60 180 00 7 00 7 3-67 30	5-60 30 A 5-60 180 A 5-60 180 A 00 7 B 00 7 B 3-67 30 A	5-60 30 A 46 5-60 180 A 46 5-60 180 A 46 00 7 B 18 00 7 B 18 3-67 30 A ^b 4	5-60 30 A 46 5-60 180 A 46 5-60 180 A 46 00 7 B 18 00 7 B 18 3-67 30 A ^b 4 30	5-60 30 A 46 5-60 180 A 46 5-60 180 A 46 00 7 B 18 00 7 B 18 3-67 30 Ab 4 30 Ab	5-60 30 A 46 5-60 180 A 46 5-60 180 A 46 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5-60 30 A 46 5-60 180 A 46 5-60 180 A 46 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5-60 30 A 46 5-60 180 A 46 5-60 180 A 46 6 6 6 7 B 18 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	5-60 30 A 46 5-60 180 A 46 5-60 180 A 46 6 6 6 7 B 18 7 B

a - Definitions of ratings are given on page 4-1.

b - Predicted rating from interface data.

c - These alloys are highly susceptible to corrosion in nitric acid.

MATERIAL	TEM	IPERA	TURE		STATIC EXPOSURE LIQUID VAPOR INTERFACE									
				ار		IQUID								
		REES IRENH	EIT	DAYS	REFER	the is	DAYS	REF ERS	ACT S	DAYS RATING	AFE REMARKS			
			THE	DA THE	REFE	TIME	RATTAL RATTAL	REFE	THE	PATTACO PARTACO	REMARKS			
COATINGS ON ALUMI- NUM AI - LOYS (CONT)							į							
Hard Coat (Sanfor- dize)														
2014	100	7	В	18										
A 356	100	7	A	18										
7075	100	7	В	18										
MISCEL- LANEOUS														
Microseal 100-1 on AM 100A Magnesium	63-67							100	D	4	Coating porous, metal attacked			
Microseal 100-1 CG on AZ 31C Magnesium	63-67					ļ		75	D	4	Coating porous, metal attacked			
Microseal 100-1 on 2014-T6 A1	63-67							100	A	4	Coating porous, see data above for coatii on Magnesium			
Silver Solder ^C	55-60	30	D	10							Pitting			
Tantalum	55-65	30	A ^b	19	30	Ab	19	30	A	19				
Metco Hard Facing Alloy														
Н	100	7	В	73										
12C	100	7	В	73										
31C	100	7	B	73										
Tungsten	63-67	90	Вb	79	90	Вb	79	90	В	79	N2O4 darkened slightly			

SECTION 5.0 N₂O₄

<u></u>									4				
MATERIAL	TEM	IPERA	TURE	: 1	STATIC EXPOSURE LIQUID VAPOR INTERFACE								
					LIQ	UID	INTERFACE						
		GREES IRENH	EIT	DAYS	REFERENCE IN	E IN DAYS	S REFER	THE I	DAYS	AL LE REMARKS			
			rin'	ST.	RET TIM	Y RAIL	QU'	TIM	2MIL	REMARKS			
BRAZING AND SOLDERING													
6061-T6 Al brazed with 718 filler	63-67	14	A	4									
303 SS sol- dered with pure Tin	63-67	14	A	4						Tin is attacked by nitric acid			
347 SS silver brazed with Easy Flo per QQS-561 Class 4	63-67	14	A	4						Stilver is attacked by nitric acid			
Easy Flo 45	100	7	D	61						Heavy salting			
347 SS nic- robrazed AMS 4775	63-67	14	A	4									
347 SS brazed with C-62 (Mn- Ni-Co)	100	7	В	C1						Light salting			
	100	7	В	61						0.3% H ₂ O, light salting			

a - Definitions of ratings are given on page 4-1.

MATERIAL	TEM	IPE RA	TURE		STATIC EXPOSURE										
		,		إ	Ţ	IQUIL		L y	APO	₹	INTERFACE				
		DEGREES FAHRENHEIT THE THE PARTY OF				REES RENHEIT AS LINE HALL HALL AND									
METAL COUPLES															
2014-T6 Al coupled to Teflon	63-67							30	A	4	Teflon in tape or bar form had no effects				
2014-T6 Al bolted to 6A1-4V Ti- tanium	55-60	90	A	15							0.2% н ₂ 0				
2014-T6 Al bolted to 321 SS	55-60	180	A	46							Up to 0.2% H ₂ O incl				
2014-T6 Al welded to 6061-T6 Al	63-67	14	A	4											
2014-T6 Al spotwelded to 6061-T6 Al	55-60	180	A	46		,					0.2% н ₂ О				
6061-T6 Al ultrasonic weld to 321 SS	55-60	90	A	46							0.2% H ₂ O, cracks in weld due to poor fusion not N ₂ O ₄				
356-T6 Al bolted to Nilvar	55-60	180	A	46											
304SS/ Teflon/321 SS bolted	55-60	30	A	15							0.2% н ₂ 0				
Copper/ 2014-T6 Al	63-67	90	A	79							Copper tarnished slightly				
Mercury/ 2014-T6 Al	63-67	1	D	74							Amalgamated				
									L						

a - Definitions of ratings are given on page 4-1.

SECTION 5.0 N₂O₄

MATERIAL	TEN	/PERA	TURE	;		STATI	CEXP	OSURI		
					LIQUID		VAPOR	₹]	INTERFACE	
		DEGREES FAHRENHEIT 7. THE 20								
METAL COUPLES (CONT) 304L coupled with Teflon	15 115	56	A	16					Up to 1.6% H ₂ O incl	
	165	70	A	16						
	165 63-67	70	В	16		30	A	4	0.5% to 3.0% H ₂ O inc Tape or bar Teflon had no effect	
347 with Teflon	100	14	A	73					0.6% H ₂ O	

a - Definitions of ratings are given on page 4-1.

5.2 EFFECTS OF N₂O₄ ON NONMETALS

Table 5.2 contains compatibility data, references, and the ratings of several nonmetals exposed to N_2O_4 . The ratings are identical with those described in Section 4.0, page 4-18, on the 50/50 fuel blend materials compatibility.

The N₂O₄ can act on nonmetals in several ways. The propellant can dissolve, attack, and decompose the material causing degradation, or it can completely destroy the material. Moreover, the propellant can extract some components, thereby altering physical properties, or it can be absorbed by the material and thus affect the strength. In addition, the chemical environment can affect the dimensional stability and finish appearance without seriously affecting the mechanical properties. The nonmetals tested embrace a wide variety of chemical and physical structures and, as such, geometrical factors, methods of fabrication, and similar variables can greatly influence the behavior of a part fabricated from any of the nonmetals shown in Table 5.2.

5.2.1 Plastics

Of all the pastics tested, Teflon and Teflon products exhibited the best resistance to N_2O_4 ; however, the N_2O_4 permeated and was absorbed by the Teflon. The important considerations from these tests were the retention of properties after outgassing the N_2O_4 . Teflon swelled approximately 5% before outgassing and returned to its original volume after outgassing.

Omniseal^a, a Teflon seal with a stainless steel spring insert, showed promise as a dynamic seal in N_2O_4 . Omniseals were exposed to N_2O_4 at 500 psig for 1000 cycles without leakage (Reference 79).

The polyethylenes absorbed N_2O_4 and embrittled with time. High-density polyethylene showed good resistance to N_2O_4 for periods up to 30 days.

Kynar, a vinylidene fluoride, showed good resistance to N2O4 at 65°F for 30 days.

5.2.2 Elastomers

The fluororubbers swelled considerably in N_2O_4 and had a negative volume change after outgassing.

a - Trade name; manufactured by Reid Enterprises Inc., Long Beach, California.

Phenolic resin-cured butyls and fluorosilicone rubbers showed resistance to N₂O₄; the resin-cured butyls swelled approximately 45% as compared with 145% for the best fluorosilicone after being immersed in N₂O₄ at $65\,^{\circ}$ F for 30 days.

Dynamic seal tests with N₂O₄ and resin-cured butyl rubber O-rings (Formulation 121), lubricated with Nordcoseal 147S, failed after 250 cycles (Reference 51).

None of the ethylene-propylene rubbers showed resistance to N2O₄ at room temperature beyond 7 days.

5.2.3 Lubricants and Sealants

Reddy Lubes 100 and 200 unsintered Teflon tape, Oxylube Sealant, and water glass/graphite mixture proved to be satisfactory thread sealants. Most lubricants either reacted or washed off in N₂O₄; other lubricants were found satisfactory for short-term service. Dry lubricants Microseals, Molykote Z, Drilube 703, and Electrofilm 66C were satisfactory with N₂O₄.

5.2.4 Adhesives

The adhesives listed in Table 5.2 are not resistant to N_2O_4 . Adhesives used on tapes and markings are compatible for short-term service (see Section 5.5).

5.2.5 Ceramics and Potting Compounds

Only Sauereisen P-1, a ceramic, exhibited satisfactory resistance to N_2O_4 . Test results indicate that none of the potting compounds listed in Table 5.2 are compatible with N_2O_4 .

5.2.6 Coatings

Most coatings were attacked by N_2O_4 ; however, Proseal 333, a butyl rubber coating, was satisfactory for service with N_2O_4 for 35 days.

5.2.7 Graphites

Of the graphite materials listed in Table 5.2, only the Graphitars and CCP-72 proved satisfactory for service with N_2O_4 .

SECTION 5.0 N₂O₄

MATERIAL	TEM	IPERA	TURE	3				EXPOSURE
						JQUII		VAPOR
		REES	EIT	DAYS	REFER	THE I	DAYS RATIN	PER REMARKS
PLASTICS								
POLYTETRA- FLUORO- ETHYLENE								,
Teflon (TFE)	63-67	30	A	4				
	55-60	180	В	46				Shore D decrease 6 units, sample slightly yellow
Teflon filled with graphite	55-60	180	В	46				Shore D decrease 9 units
Teflon filled with molydisul- fide	55-60	180	В	46				Shore D decrease 7 units
Teflon filled with asbestos	55-60	180	A	46				
Teflon filled with glass	70-80	21	A	12				
Teflon filled with calcium fluoride	70-80	21	A	12				
Armalon 7700 im- pregnated with Teflon fibers	55-60	90	В	46				Shore A decrease 4 units, sample slightly yellow
-								

a - Definitions of ratings are given on page 4-18.

SECTION 5.0 N₂O₄

MATERIAL	TEN	IPERA	TURE			STATIC EXPOSURE				
					I	IQUII		VAPOR		
		GREES IRENH	EIT .	DAYS	THE AND AND THE REMARKS					
PLASTICS CONT) Armalon 7700B im- pregnated	55-60	180	В	46				Shore A increase 5 units, 1.5% shrink- age		
with Teflon fibers Fluorobestos-	55-60	180	A	46						
filled with asbestos								_		
TFE-felt 7550	55-60	30	D	11				Sample coming apart		
Fluorogreen filled with ceramic	55-60	180	A	46						
FLUORINA- TED ETHY- LENE PRO- PYLENE CO- POLYMER										
Teflon (FEP)	63-67	30	A	4				Hardness data after outgassing		
ļ	160	7	A	12						
	55-60	30	В	46				Shore D decrease 8 units		
	55-60	80	Dp	46				Shore D decrease 11 units, sample yellow		

a - Definitions of ratings are given on page 4-18.

b - Based upon hardness and/or volume changes, otherwise satisfactory for use.

TABLE 5.2 (CONT)

	COMPATIBILITY OF N	ONMETALS WITH	N2O4
MATERIAL	TEMPERATURE	STATIC E	XPOSURE
		LIQUID	VAPOR
	DEGREES FAHRENHEIT	SCR SKR	

MATERIAL	IEM	IPERA	URCE	•	1	JQUII)	VAPOR
		GREES IRENH	TIT	DAYS	S REFERENCE	THE	DAYS	The REMARKS
PLASTICS (CONT)								
POLYCHLO- RO TRI- FLUORO ETHYLENE								
Kel-F 300 Unplasti- sized	55-60	30	Dp	46				Shore D decrease 21 units, sample yellow
	70-80	1	D	1,80				Shore D decrease 29 units
Annealed	55-60	30	D	46				Shore D decrease 34 units, sample yellow
Genetron				ł		}	}	
GC	70-80	90	В	12		ļ		Shore C increases 8 units
	160	7	D	12				Shredded, 16% loss in strength
GCX-3B	55-65	30	A	19				Hardness not meas- ured
XE-2B	55-65	30	A	19				Hardness not meas- ured
Trithene A	70-80	90	В	12				Shore C increase 10 units, loss in strength 25%
1	160	7	D	12		}	ļ	Brittle
Aclar 191	63-67	30	A	51				Preliminary screen- ing test
	L							

a - Definitions of ratings are given on page 4-18.

b - Based upon hardness and/or volume changes, otherwise satisfactory for use.

TABLE 5.2 (CONT)

COMPATIBILITY OF NONMETALS WITH N2O4

MATERIAL		ATIBI IPERA						EXPOSURE
					I	JQUII		VAPOR
		GREES	THEIT	DAYS	REFER	THE P	DAYS	AL THE REMARKS
PLASTICS (CONT)								
POLYETHY- LENE								
Low Density	55-60	30	В	46				Shore D decrease 9 units
	55-60	90	D	46				Fell apart
Irradiated	55-60	90	С	46				No visible change, "C" rating because of 48% loss in strength
	55-60	270	D	46				Fell apart
Hi Density (Marlex 50)	55-60	30	В	46				Shore D decrease 4 units, sample slightly yellow
	55-60	90	D	46	:			Brittle and broke during handling
	70-80	4	В	70,80				Shore D decrease 8 units
POLYOLEFIN								
Raythene N (irradiated)	55-65 55-65	48 63	A D	19 19				Sample flexible Cracked
White and black insu- lation	63-67	30	A	4				Slight dimensional change
Polypropy- lene	55-60	30	В	46				Shrinks 3%
	55-60	90	$\mathbf{D}_{\mathbf{p}}$	46				Shore D decrease 21 units
	70-80	2	В	77				Shore D decreases 9 units
	70-80	8	D	77				Blistered

<sup>a - Definitions of ratings are given on page 4-18.
b - Based upon hardness and/or volume changes, otherwise satisfactory for use.</sup>

SECTION 5.0 N₂O₄

MATERIAL	TEM	PERA	TURE	:	STATIC EXPOSURE LIQUID VAPOR				
		REES	EIT	DAYS	$\overline{}$	4			
PLASTICS (CONT)									
POLYAMIDE- NYLON	55-60		7	್ಲ್ಸ್. 46,80				Disolving in minutes	
Zytel 101 Capran 391	63-67	-	D D	51				Dissolved on contact	
POLYESTER Mylar	55-60	1	D	11,12				Dissolved	
LAMINATES -									
Silicone (composition unknown)	55-60	30	D	11				Delaminated	
Phenolic (composition unknown)	55-60	30	В	11				Sample was bleached	
Epoxy (composition unknown)	55-60	30	a	11				Delaminated	
Polyester (composition unknown)	55-60	30	D	11				Delaminated	

a - Definitions of ratings are given on page 4-18.

TABLE 5.2 (CONT) COMPATIBILITY OF NONMETALS WITH $\rm N_2O_4$

SECTION 5.0 N₂O₄

MATERIAL	TEM	IPE RA	TUR	E	STATIC EXPOSURE				
		GREES	THE	PATE	LIQUID VAPOR LIQUID VAPOR LIQUID VAPOR LIQUID VAPOR REMARKS				
PLASTICS (CONT) POLYVINYL- DENE CHLORDE Saran	70-80	-	D	69	Dissolving in 1 hr				
VINYLIDENE FLUORIDE Kynar	70-80	90	A	65,80					
POLYFORM- ALDEHYDE Delrin	55-60	-	D	66,80	Reaction in 1 hr				
POLYCAR- BONATE Lexan	70-80	_	D	69,80	Dissolved in 1 hr				

a - Definitions of ratings are given on page 4-18.

TABLE 5.2 (CONT)

COMPATIBILITY OF NONMETALS WITH N2O4

MATERIAL		PERA			STATIC EXPOSURE					
MATERIAL	I 12141	Y D IV	LURE		LIQUID VAPOR					
		REES	EIT	DAYS	The County of the State of the County of the					
PLASTICS (CONT) POLYVINYL FLUORIDE				·						
Tedlar	63-67	30	A	4	8% volume swell beforoutgassing, (1% shrink age after outgassing)					
	160	7	D	12	Dissolved					
POLYME- THYL ME- THACRY- LATE Plexigias CR-39	70-80	-	D	69,80	Dissolving in 1 hr					
POLYVINYL CHLORIDE										
Ultron	70-80	42	В	12	Shore C increase 10 units					
	70-80	90	D	12	Surface tacky					
	160	1	A	12						
	160	7	D	12	Crumbled					
Opalons 1219	55-60	30	С	46	Shrinks 7% Sample yellow					
1220	55-60	30	Dp	46	Shrinks 10% Sample yellow					
1444	55-60	30	Dp	46	Shrinks 14% Sample yellow					
81222	55-60	30	Dp	46	Shrinks 18% Sample bleached					
Amerplate	63-67	-	Dp	79	Shore D decreases 30 units in 2 hr					

<sup>a - Definitions of ratings are given on page 4-18.
b - Based upon hardness and/or volume changes, otherwise satisfactory for use.</sup>

TABLE 5.2 (CONT)

	COMP	ATIBI	LITY	OF NO	ONME	TALS	WITH	N ₂ O ₄
MATERIAL	TEM	IPERA	TURE	:				EXPOSURE
)					I	LIQUII)	VAPOR
		GREES IRENH	EIT	DAYS	S / ST	THE IT	PATITA	REMARKS
Tygon	70-80	-	Dp	80				Discolored, hardened
PLASTICS (CONT) CELLUOSE ACETATE BUTYRATE								
Kodapak II	70-80	1	a	12				Disintegrated
MISCEL- LANEOUS				<u> </u>				
Hypalon 20	65	-	D	79				100% volume swell in 2 hours
H-Film	70-80	7	D	70	ļ			Crumbled
Epon 1031 (with PMDA)	70-80	1	D	80				Surface attack
ETHYLENE- PROPYLENE RUBBER								
Resistazine 74	65	5	С	79				Discolored N ₂ O ₄ and softened
Formula 132	60	3	A	71				
	60	5	В	71				Shore A decrease 8 units
	60	7	Dp	71				Shore A decrease 16 units
	68-72	1	В	72				Shore A decrease 9 units
	68-72	5	D	72				Degraded
j	63-67	30	D	51				Fell apart on handling
1							1 1	l

<sup>a - Definitions of ratings are given on page 4-18.
b - Based upon hardness and/or volume changes, otherwise satisfactory for use.</sup>

	COM	PATIB	ILITY	OF N	NONMETALS WITH N2O4					
MATERIAL	TEM	PERA	TURE		STATIC EXPOSURE					
					<u>_</u>	LIQUIE		VAPOR		
		REES IRENH	EIT .	DAYS	REFER	THE P	DAYS RATIN	REMARKS		
ETHYLENE- PROPYLENE RUBBER (CONT)										
X105	65	4	D	74				Soft and gummy		
E-612-2	65	4	D	74				Dissolved		
E-622-1	65	7	D	74				Soft and gummy		
X-7000- 1 thru 7, and 9 thru 11	63-67	18	D	51				Dissolved		
BUTYL RUBBERS Parco 846-80	65	1	Dp	79				35% volume swell		
Parker B496-7	70-80	-	D	69				Dissolving in 1 hr		
Enjay 268	65	1	D	79		ĺ		Dissolving		
Enjay 551	65	1	$\mathbf{D}_{\mathbf{p}}$	79		<u> </u>		40% volume swell		
Hycar 2202	65	1	D	79				Dissolving		
Parco 805-70	70-80	-	D	80				Blistered in 4 hr		
Parker XB- 1235-10	70-80	7	D	1,46				63% volume swell, Shore A decrease 50 units		
Stillman SR 613-75	65	-	D	79		:		Sample flowed in 3 hr		
11092-3A	70-80	1	Dp	65				Shore D decrease 14 units		
TC-419-19A	70-80	1	D	65				Shore D decrease 28 units		
Precision 1330 x 20	70	7	D	79				Became tacky		

<sup>a - Definitions of ratings are given on page 4-18.
b - Based upon hardness and/or volume changes, otherwise satisfactory for use.</sup>

TABLE 5.2 (CONT)

COMPATIBILITY OF NONMETALS WITH N2O4

MATERIAL	TEM	IPERA	TURE	;		STA	TIC E	EXPOSURE		
					LIQUID VAPOR					
		GREES IRENH	EIT	DAYS	REFER	THE	PARTE	PET THE REMARKS		
BUTYL RUBBERS (CONT)										
Formula 120 (resin cured)	63-67	-	D	79				55% volume swell in 2 hr		
Formula 121 (resin cured)	63-67	-	D	79				64% volume swell in 2 hr		
	140				-	D	79	90% volume swell in (hr		
FLUORO RUBBERS	!									
Parker										
XV-1235-2	70-80	7	D	1				500% volume swell, Shore A decrease 60 units		
XV-1235-5	70-80	7	D	1				43% volume swell, Shore A decrease 60 units		
TFNM-TFE (Trifluoro- nitroso- methane tetrafluoro- ethylene)	70-80	7	D	20				174% volume swell, poor elastomeric properties, different oven cures reduce swell to 48% but re- tain poor elastomeric properties		
Viton A	55-60	30	D	46				Fell apart		
	70-80	-	D	69				200% volume swell		
Viton B	55-60	30	Ð	46				Extremely swollen		
	70-80	-	D	69				100% volume swell in 1 hr, shrinkage in 24 hr		
Stillman Ex 774M-1	63-67	30	D	4				181% volume swell		

a - Definitions of ratings are given on page 4-18.

	COM	PATIB	ILITY	OF N	ONMETALS WITH N2O4
MATERIAL		IPERA			STATIC EXPOSURE
I E I GALE				i j	LIQUID VAPOR
		REES IRENH	TIME	DAYE	REMARKS
Omni X- FBF-4	70	-	D	79	300% volume swell in 3 hr
FLUORO RUBBERS (CONT)					
Parker V494-7	63-67	-	D	79	234% volume swell in 2 hours
(Viton B) EX 821-A70	55-60	30	D	46	170% volume swell, very soft
	70~80	1	D	69	Blistered
Formulas 75-79, 84, 85, and 94- 99	70~80	7	D	20,24	Fluoro rubbers with added fillers did not reduce volume swell below 199%, poor to good strength retentio
Kel-F]		}		
3700	55~65	-	D	15,19	> 300% volume swell in 45 min
5500	55-60	14	D	66	900% volume swell
	70-80	-	D	69	Dissolved in 2 hr
Stillman	55-65	31	a	19	205% volume swell
TH 1057	70-80	-	Dp	69	50% volume swell in 1 hr, shrinkage in 24 h
Fluorel	55-60	30	D	46	> 300% volume swell fell apart
	70-80	-	D	69	100% volume swell in 4 hr
Parker 77- 545 (Viton A)	60	-	Þ	79	90% volume swell in 0.5 hr

a - Definitions of ratings are given on page 4-18.
b - Based upon hardness and/or volume changes, otherwise satisfactory for use.

TABLE 5.2 (CONT)

C	COMP	ATI	BILI	ΤY	OF	NO	NME	TALS	WITH	N2O4	
_	-										•

COMPATIBILITY OF NONMETALS WITH N ₂ O ₄									
MATERIAL	TEM	PERA	TURE	:				XPOSURE]
					I	IQUIL)	VAPOR	j
1	DEG	REES							
1		RENH	EIT	15	REFER	/4.	15	REMARK	
				DAY		*CV	OP/		
				100	3/68	14			
			CHE	RATIN		ANK!		REMARK	
1			Y /	DAYS	~ /	THE R	QATING QATING	KEMARK	
								<u></u>	
FLUORO SILICONE									İ
RUBBERS		i		1					
Tropperson									
LS 53	55-60	5	D	66				>500% volume	swell
	70-80	-	$\mathbf{D_p}$	69				50% volume swell	
					ļ			hr shrinkage in 2	4 hr
LS 63	70-80	1	D	69				Crumbled	
Hadbar	70-80	7	D	1				> 185% volume	swell
Series				_					
58789-23									
58789-23GT	63-67	1	D	4,79				Swollen and blist	ered
				ļ					
MISCEL-				ł					
RUBBERS					ļ				i
RUBBERS									
Buna N	55-60	_	D	46				Dissolved	
Neoprene	70-80	-	D	48				Decomposed in 4	hr
В 318-7	70-80	-	D	69				Blistered in 1 hr	
Cohrlastic	55-60	30	D	46				Dissolved	
500 (Sili-									
cone)									
Garlock 900	65	1	D	79				Sample delamina	ted
						1		and swollen	
Garlock 22	65	1	D	79				Blistered badly	
Natural	70-80	_	D	69				Broke up in 30 s	ec
			_						
 									
						']		
								ŀ	
									Ì
il	L	<u> </u>	L		<u> </u>	<u> </u>		<u> </u>	

a - Definitions of ratings are given on page 4-18.

TABLE 5.2 (CONT)

COMPATIBILITY OF NONMETALS WITH N2O4

MATERIAL	TEM	PERA	TURE		STATIC EXPOSURE			
				J	I	JQUII		VAPOR
		REES RENH	EIT	DAYS	REFERS	ACT.	DAYS RATH	PE REMARKS
			THE	DATE!	REFER	THE	RATTRE	REMARKS
LUBRICANTS								
DC 11	63-67	14	В	4	14	В	4	Washed off in liquid, partly in vapor
DC55	70-80	7	В	75				Washed out
DC Hi VAC	63-67	14	В	4	14	В	4	Washed off in liquid, partly in vapor
XC150	70-80 70-80	1 1	B A	65 65				Washed out
Rayco -30 Grease	55-60	30	D	11				Decompos ed
Kel-F 90	55-60 70-80	30 1	B A	11 75				Washed out Very slightly soluble
Polygylcol Oils	63-67	14	D	4				Reaction
FX45	63-67	14	В	4				2-Phase layer washed off
Molykote Z	55-60	30	A	46				
Drilube 703	55-60 55-60	30 7	C A	46 66				Hard and brittle
Electrofilm 66-C	55-60	30	С	46				Softened, could be rubbed off
Rayco -32 Grease	55-60 55-60	30 7	D D	11 66				Decomposed Flaky
Halocarbon Grease	63-67	14	В	4	14	В	4	Washed off in liquid, partly in vapor
Nordcoseal 147S and 421	70-80	-	В	4,19				Partly washed off
Microseal 100-1	63-67	100	A	4				
PD 788	63-67	1	D	51				Washed off and left
Lox Safe	70-80	1	A	65				powdered residue
Flake Graphite	70-80	1	A	65				

a - Definitions of ratings are given on page 4-18.

()

TABLE 5.2 (CONT)

COMPATIBILITY OF NONMETALS WITH N2O4

MATERIAL		IPE RA			STATIC EXPOSURE			
						LIQUI	D	VAPOR
		REES IRENH	EIT	DAYS	3/3	PEFERENCE IN TONES REMARKS		
			THE	PATTH	REFER	TIME	PATTA	REMARKS
Valve Seal A	70-80	1	В	65				Some washed off
Apiezon L	70-80	1	С	75	!			Material hardened and discolored
Fluorolube MG600	70-80	1	A	75				
Fluorothene G	70-80	1	A	75				
THREAD SEALANTS						i		
Reddy Lube 100	63-67	14	A	4	14	A	4	
	160	30	A	65			Ì	
Reddy Lube 200	63-67	14	A	4	14	A	4	
	160	30	A	65		١.		
Waterglass Graphite	63-67	14	A	4	14	A	4	
Vydax A	63-67	14	C	4	14	C	4	Partly washed off
Oxylube Sealant	70-80	1	A	65				
Teflon Tape (Unsintered)	70-80	1	A	75				
ADHESIVES						1	1	
Armstrong A-6	55-60	-	D	46	,			Reaction
EC 847	55-60	-	D	46		1		Reaction
HT 424	55-60	-	D	46				Reaction
3M-AF-10	55-60	-	D	46				Reaction
4-3	70-80	1	A	67]		
Epon 422	70-80	1	D	67				Lost adhesion
CERAMICS								
Temporell 1500	55-60	30	В	11				Slight precipitate
Sauereisen P-1	55-60	30	A	11				

a - Definitions of ratings are given on page 4-18.

MATERIAL	TEM	IPE RA	TURE	;	STATIC EXPOSURE
-					LIQUID VAPOR
		GREES IRENH	EIT	DAYS RATIN	CO PETER THE AND THE PETER REMARKS
CERAMICS (CONT)					
Sauereisen 31	55-60	30	В	11	Slight precipitate
Sauereisen 47	75	-	D	4	Dissolved within 10 min
COATINGS	!				
Rockflux	75	-	С	4	N ₂ O ₄ was absorbed, slight lifting from concrete
Rezklad 1, 2, and 3	55-60	1	D	51	Concrete coating, binder dissolved
Aluminous	70-80	-	D	51	Blistered badly
Epoxy No. 1	55-60	-	D	66	Stripped immediately
Modified Epoxy No. 5	55-60	-	D	66	Stripped immediately
Epoxy No. 7	55-60	-	D	66	Stripped immediately
Epoxy No. 9	55-60	-	D	66	Stripped immediately
Epoxy 6809	55-60	-	D	66	Stripped immediately
Alkyd No. 4	55-60	-	D	66	Stripped immediately
Polyur- ethane	55-60	-	D	66	Stripped immediately
Catalac					
Primer and Fin- ished on Mild Steel	63-67	-	D	4	Paint lifted within minutes

a - Definitions of ratings are given on page 4-18.

SECTION 5.0 N₂O₄

MATERIAL	TEM	PERA	TURE	;	STATIC EXPOSURE			
					LIQUID VAPOR			
		REES IRENH	EIT	15				
			EIT THE P	PATRI	2 Literate A Drie 2 Literate REMARKS			
			CIME	P.A.L.	24 Thi 27 PE REMARKS			
		<u>/_</u>	_	_				
COATINGS (CONT)								
Catalac Improved	63 67		D	4	Paint lifted, and blistered within 2 min			
Acrylic Nitro-Cellu- lose	55-60	-	D	66	Stripped immediately			
Vinyl	55-60	-	D	66	Blisteredimmediately			
Primer MIL-P-6889	55-60	-	D	66	Stripped in minutes			
Tygon K	75	-	D	4	Blistered within 20 min			
Co-Polymer P-200G	75	-	D	4	Dissolved in 2			
CA 9747 Primer	75	-	D	4	Reacted and dissolved within 2 min			
Corrosite Clear 581	75	-	D	4	Blistered within 20			
Proseal 333	55-60	35	A	51				
Markal DA8, DA9, DA9 (grey)	70-80	-	D	51	Blistered badly			
POTTING COMPOUNDS								
PR 1422	55-60	-	D	66	Dissolved immediately			
RTV 20	55-60	14	D	66	Dissolved			
	70-80	1	D	69	Dissolved			
Epon 828	55-60	14	D	11	Dissolved			
	70-80	-	D	69	Decomposed in 1 hr			
L	L	L	L	L				

a - Definitions of ratings are given on page 4-18.

					STATIC EXPOSURE				
MATERIAL	TEM	IPE RA	TURE		I	JQUII		VAPOR	
		REES	THE	DAY'S					
POTTING COMPOUNDS (CONT)									
Paraplex P-43	55-60	14	D	66				Dissolved	
Proseal 793	55-60	14	D	66				Dissolved	
Fairprene 5159	55-60	14	D	66				400% volume swell	
Crystal M&CF	55-60 55-60	90 30	D A	46 46				Fell apart	
GRAPHITES									
Johns Manville No. 60	55-65	7	D	19				Salts formed	
Graphitar 2, 14, 39, 50, and 86	55-67	30	A	19,51					
CCP-72	63-67	30	A	51					
Purebon P3N and P5N	63-67	30	В	50				N ₂ O ₄ darkened	

a - Definitions of ratings are given on page 4-18.

5.3 EFFECTS OF N₂O₄ ON MATERIALS OF CONSTRUCTION

Table 5.3 lists materials frequently used for construction. Included are the compatibility results of short exposures to N_2O_4 drip tests (References 4 and 51). The resistance of the materials of construction was determined by dripping N_2O_4 at an approximate rate of 1.5 cc/min on the specimens while partly immersed in water. The N_2O_4 was allowed to drip on the portion of the specimen exposed to the atmosphere. Of the organic coatings, only Proseal 333 exhibited sufficient resistance to N_2O_4 . Water glass protected concrete from the N_2O_4 and from the nitric acid formed when N_2O_4 and water combined. The binder material in the Rezklad slowly washed away.

5.4 EFFECTS OF CONTAMINANTS ON N₂O₄

Traces of type 347SS, 6061 aluminum alloy, and lint can be found as contaminants in missile systems. To determine the effects of such contaminants on N_2O_4 , quantities of lint and shavings of type 347SS and 6061 aluminum alloy were exposed to N_2O_4 at 70°F for 7 days. No severe pressure build-ups were encountered during these tests and the N_2O_4 composition was unchanged (Reference 19). Water is a serious contaminant since it combines with N_2O_4 to form dilute nitric acid which exhibits more-corrosive properties than N_2O_4 . Also, the presence of organic compounds, such as alcohols, acetones, and gasoline, are undesirable contaminants because of their reactivity with N_2O_4 .

Material	Temperature (°F)	Exposure Time	Remarks
Birch Wood	75	30 min	Surface darkened; attacked at H ₂ O-N ₂ O ₄ interface
Concrete			2 2 3
Bare	75	1 hr 42 min	Concrete attacked
Coated with water glass	75	1 hr	No apparent reaction; affords protection
Coated with water glass	75	30 min	Reaction at H ₂ O-N ₂ O ₄ interface
and floor enamel (Esco Brand 41138)			after 6 minutes; stripped to water glass
Coated with water glass and Chex-Wear floor enamel	75	3 min	Only paint removed
Coated with Rockflux	75	1 hr 15 min	${ m N_2O_4}$ absorbed; adhesion weakene material turned white
Rezklad 1, 2, 3	75	1 hr 30 min	Binder washed away to a maximu depth of 0.05 inch
Mild Steel Coated with			
Tygon K paint	75	20 min	Paint blistered
Catalac, improved	75	10 min	Paint blistered; lifted when totally immersed
Co-Polymer P-200G	75	2 min	Dissolved immediately
Sauereisen 47 (4 coatings)	75	10 min	Dissolved
CA9747 Primer Paint	75	2 min	Reaction and discolored immediately
Corrosite Clear 581	75	30 min	Blistered
Proseal 333	75	2 hr	Unaffected

5.5 SHORT-TERM COMPATIBILITY

As was stated in Section 4.6 of this handbook, many components may be subjected to liquid or gaseous N_2O_4 as a result of leakage or splashing during filling or storage periods. Splash and fume tests were performed similar to the procedures outlined in Reference 47. The splash test consisted of wetting the surface of the material with N_2O_4 and air drying at 80° F for 24 hours at a relative humidity of less than 80° K. The fume test consisted of exposing the sample for one hour to N_2O_4 fumes in a chamber at 70° F and a relative humidity of no less than 80° K. After the exposure period, the sample was air-dried at 80° F for 24 hours at a relative humidity of less than 80° K. Table 5.4 contains compatibility data for various materials exposed to N_2O_4 splash and/or fume tests.

5.5.1 Plastics

Of the plastic materials listed in Table 5.4, only Nylon and Delrin were completely unsatisfactory for use with N_2O_4 under these test conditions.

5.5.2 Elastomers

Neoprene, Hycar 2202, and Buna N rubbers were the only elastomers completely unsatisfactory for use with $\rm N_2O_4$ under these test conditions.

5.5.3 Potting Compounds

Of the potting compounds listed in Table 5.4, only Paraplex P43 and RTV20 were satisfactory for use with $\rm N_2O_4$ under these test conditions.

5.5.4 Coatings

Valdura, Swedlow RD101, Dimetcote, and Proseal 333 proved to be satisfactory for use with $\rm N_2O_4$ under the conditions of the splash test.

5.5.5 Lubricants

All dry film lubricants listed in Table 5.4 are compatible with N_2O_4 under the conditions of the splash test.

5.5.6 Tapes and Markings

All the tapes and marking materials listed in Table 5.4 were resistant to the N_2O_4 splash test; only metallized Mylar tape and PD455 were not resistant to the N_2O_4 fume test.

TABLE 5.4 (CONT) COMPATIBILITY OF MATERIALS EXPOSED TO N $_2\mathrm{O}_4$ SPLASH AND FUME TESTS

Material	Rating	Test	Refer- ence	Remarks
PLASTICS (CONT)				
Polyamide				
Nylon	D	S	46	Surface dissolving, swell 3.5%, Shore D decrease 16 units
(Zytel 101)	D	F	46	Surface dissolving, swell 9.3%, Shore D decrease 19 units
Polyester				
Mylar	В	S	46	White spots, no volume change, Shore D increase 2 units
Laminates-Glass	A	F	46	No visible change, no volume change, Shore D hardness unchanged
Polyester	A	S	46	No visible change
Silicone	A	S	46	No visible change, swell < 1% Very slightly yellow,swell < 1%
Polyvinylidene				
Chloride				
Saran	A	S	46	No visible change, shrinkage <1%, Shore D decrease 1 unit
Polyformaldehyde	A	F	46	No visible change, swell 2.7%, Shore D increase 2 units
Delrin	D	s	46	Reacts vigorously
Polycarbonate				
Lexan	В	S	46	Surface softened, swell 3.1%, Shore D decrease 2 units
	В	F	46	Surface softened, swell < 1%, Shore D
Polymethyl				decrease 2 units
Methacrylate			•	
Plexiglas II UVA	С	S	46	Surface frosted, swell < 1%, Shore D hardness unchanged swell < 1%, Shore D
Plexiglas CR-39	С	F	46	Surface frosted, swell < 1%, Shore D decrease 2 units
	A	S	46	No visible change, shrinkage <1%, Shore D hardness unchanged
	В	F	46	Slightly yellow,swell 1.3%, Shore D increase 1 unit

a - Definitions of ratings are given on page 4-18

b - S - Splash Test

F - Fume Test

TABLE 5.4 (CONT) COMPATIBILITY OF MATERIALS EXPOSED TO ${\bf N_2O_4}$ SPLASH AND FUME TESTS

Material	Ratinga	Test ^b	Refer- ence	Remarks
BUTYL RUBBERS				
Parker B496-7	A	S	46	No visible change, swell < 1%, Shore A hardness unchanged
	A	F	46	No visible change, shrinkage <1%, Shore A decrease 2 units
Enjay 268	С	S	46	Pitted and sticky, swell 4.8%, Shore A decrease 9 units
Enjay 551	C	S	46	Sticky, swell < 1%, Shore A hardness unchanged
	С	F	46	Sticky, shrinkage < 1%, Shore A increase 1 unit
Hycar 2202	D	S	46	Very sticky, swell $<1\%$, Shore A decrease 2 units
_	В	F	46	Slightly sticky, shrinkage $< 1\%$, Shore A hardness unchanged
FLUORO RUBBERS				
Viton A	A	S	46	No visible change, swell 1.3% , Shore A hardness unchanged
	A	F	46	No visible change, swell $< 1\%$, Shore A decrease 3 units
Viton B	В	S	46	No visible change, swell $< 1\%$, Shore A decrease 4 units
Kel-F 5500	В	S	46	Slightly yellow, shrinkage $< 1\%$, Shore A decrease 4 units
	В	F	46	Light yellow, swell 4.4%, Shore A decrease 8 units
MISCELLANEOUS RUI	BERS			
Buna N	D	S	46	Cracked and blistered, swell 36.1%, Shore A decrease 5 units
Cohrlastic 500	В	F	46	No visible change, swell $< 1\%$, Shore A decrease 8 units
Garlock 22	A	S	46	No visible change, swell 1.2%, Shore A increase 1 unit
	С	F	46	White crystals formed, swell 1.4%, Shore A decrease 1 unit

<sup>a - Definitions of ratings are given on page 4-18
b - S - Splash Test
F - Fume Test</sup>

TABLE 5.4 (CONT)

COMPATIBILITY OF MATERIALS EXPOSED TO N₂O₄ SPLASH AND FUME TESTS

Material	Rating ^a		Refer- ence	Remarks
MISCELLANEOUS RUBE			46	Oklahu awali 1 400 Okana A dagagaa 9 walka
B318-7	С	s	46	Sticky, swell 1.4%, Shore A decrease 3 units
	C	F	46	Sticky, swell < 1%, Shore A decrease 1 unit
Garlock 900	С	S	46	Slightly yellow with crystals, swell 3.1%, Shore D hardness unchanged
	С	F	46	Slightly yellow with crystals, swell 3.7%, Shore D decrease 3 units
Hypalon 20	В	S	46	No visible change, swell < 1%, Shore A increase 4 units
	A	F	46	No visible change, swell $< 1\%$, Shore A increase 2 units
LS-53	A	S	46	No visible change, swell <1%, Shore A hardness unchanged
	A	F	46	No visible change, swell $< 1\%$, Shore A hardness unchanged
Natural Rubber	В	S	46	Surface hard, brittle, swell 3.7%, Shore A increase 3 units
	В	F	46	Surface hard, brittle, shrinkage 1.5%, Shore A increase 4 units
Neoprene	D	S	46	Pitted, cracked, brittle, swell 50%, Shore A increase 7 units
	С	F	46	Slightly cracked, no volume change, Shore A hardness unchanged
POTTING COMPOUND	o <u>s</u>			
Epon 828	. C	S	46	Dark yellow, swell <1%, Shore D hardness unchanged
	D	F	46	Surface dissolving, swell 8.2%, Shore D decrease 9 units
Fairprene 5159	D	s	46	Heavy blistering, swell 32.3%
	C	F	46	Slight blistering, swell 5.1%
PR 1422	D	s	46	Badly deformed due to dissolving
	D	F	46	Badly deformed due to dissolving

a - Definitions of ratings are given on page 4-18

b - S - Splash Test

F - Fume Test

Material	Ratinga	Test ^b	Refer- ence	Remarks
POTTING COMPOUNDS (CO	NT)			
Proseal 793	D	S	46	Dissolved
	D	F	46	Dissolved
RTV 20	В	S	46	No visible change, shrinkage 1.7% , Shore A hardness unchanged
	A	F	46	No visible change, swell 3.4%, Shore A hardness unchanged
Paraplex P43	A	S	46	No visible change, swell 3.0%, Shore D decrease 1 unit
COATINGS	В	F	46	No visible change, swell 2.1%, Shore D decrease 7 units
COATINGS		_		
Proseal 333	A	S	51	Paint unaffected even when immersed in N_2O_4 (5 weeks) and when N_2O_4 dripped on
				coating partly immersed in water (2 hr)
Aiuminous	D	S	51	Blistered badly
Markal				
DA8	D	S	51	Blistered badly
	D	F	59	Blistered badly
DA8-Grey	D	S	51	Blistered badly
Da-8 Improved	D	S	79	Blistered badly
DA9	D	S	51	Blistered badly
	D	F	59	Blistered badly
Magna Polyurethenes	В	S	60	Coating discolored
NTH	D	F	60	Coating destroyed
Chem Seal	D	S	60	Attacked
	D	F	60	Attacked
Hysol 1C	В	S	78	Surface discolored
Valdura (Vinyl)	B A	F S	78 79	
Swedlow RD101	A	s	79	
				•
Dimetcote 1731/1741	<u> </u>	S	79	

a - Definitions of ratings are given on page 4-18.

b - S - Splash Test

F - Fume Test

			Datas	2 4
Material	Ratinga	$\underline{\mathbf{Test}^{\mathbf{b}}}$	Refer- ence	Remarks
LUBRICANTS				
Braycote 660 AMS	C	- S	58]	Base oil is soluble, leaves residue
(Rayco 60 AMS)	C	F	58	harder than virgin grease
Drilube 822	В	s	58	Oil component is soluble, washes away
	В	F	58	
Drilube 842	В	S	58	Poor adhesion, washes off easily, good
	В	F	58	thread lubricant
Microseal	A	S	4	
Drilube 7, Type A	A A	S F	76 76	
M8800, Type A	A	S F	76 76	
X106, Type B	A A	S F	76 76	
Drilube 1, Type B	A A	S F	76 76	
X 15, Type C	A A	S F	76 76	
TAPES AND MARKINGS	3			
Mylar	-			
Matallized tape	Α	S	36	
	D	F	36	
Declar 956	A	S	36	
	A	F	36	
Y9040 (Al backed)	Α	S	36	
	Α	F	36	
SLI-281011				
Al backed	A	S	36	
	Α	, F	36	
Tedlar backed	A	S	36	
	A	F	36	
Teflon backed	Α	S	36	
	A	F	36	

a - Definitions of ratings are given on page 4-18.

b - S - Splash Test F - Fume Test

 ${\tt TABLE~5.4~(CONT)} \\ {\tt COMPATIBILITY~OF~MATERIALS~EXPOSED~TO~N_2O_4~SPIASH~AND~FUME~TESTS} \\$

Material	Ratinga	Test	Refer- ence	Remarks
TAPES AND MARKINGS (CO	ONT)			
Butyl Phenolic Adhesive				
Polyethylene	A	S	36	
	A	F	36	
Fiberglass	A	S	36	
	A	F	36	
Y 9050 Tape	A	S	36	
	A	F	36	
Black AX-Aero	Α	S	36	
Metal Ink	A	F	36	
PD 455	Α	S	36	
(Al backed)	D	F	36	
Polyplate Decal	A	s	36	
	A	F	36	

a - Definitions of ratings are given on page 4-18

b - S - Splash Test

F - Fume Test

5.7 IMPACT TESTS OF VARIOUS NONMETALS IN N_2O_4

The Martin Company (Reference 62) and Aerojet (Reference 48) performed drop-weight tests with a modified Army Ballistic Missile Agency impact tester. The materials were immersed in N_2O_4 and the plummet was dropped. The results of the tests as shown in Table 5.6 indicate that only polydimethylsiloxane and penton 1215 (a chlorinated polyether) detonated on impact. Some of the others exhibited chemical attack.

 ${\bf TABLE~5.6}$ RESULTS OF IMPACT TESTS IN LIQUID ${\bf N_{2}O_{4}}$

Material	Energy, ft-lb	Results	Reference
Polychloroprene	70	Passed	62
Polydimethylsiloxane	70	Failed	62
	60	Failed	62
	50	Passed	62
Polyethylene, Branched	70	Passed	62
Polyethylene, Linear	70	Passed	62
Polypropylene	70	Passed	48,62
Polyvinylidene Fluoride	70	Passed	62
Fluorel (Viton A)	70	Passed	48,62
Alathon 34 (Irradiated)	70	Passed	48
Parco 805-70	70	Passed	48
Linear 7806-70	70	Passed	48
Precision 9257	70	Passed	48
Kel-F 300	70	Passed	48
Penton 1215	70	Failed	48
	60	Failed	48
	50	Passed	48
Teflon TFE 1	70	Passed	48
Teflon 100X	70	Passed	48
Resin Cured Butyl (Formula 121)	400/in. ²	Passed	71
Ethylene Propylene Rubber (Formula 132)	400/in. ²	Passed	71

5.8 PERMEABILITY OF TEFLON TO N2O4

Permeability tests performed by Bell Aerosystems (References 51 and 79) showed that the permeability rate for Teflon TFE 7 is three times greater than for Teflon FEP (Table 5.7) and that permeability increases with an increases with an increase in pressure differential across the Teflon FEP (Figure 5.1). The tests were performed at room temperature and gas transmission rates were corrected to 60°F.

Aerojet-General Corporation (Reference 65) performed permeability tests with Teflon 100 (FEP) at various thicknesses and temperatures. Results show that permeability increases with increasing temperature and decreases with increasing thickness.

TABLE 5.7

PERMEABILITY DATA FOR VARIOUS TEFLONS AT△P OF 16 PSIA

CORRECTED TO 60°F

Teflon Specimen	Thickness (mils)	Density at 82°F (gm/cc)	Transmission Rate (cc/100 in. ² /24 hr) N ₂ O ₄
TFE 7	10.0	2.186	311.9
FEP	10.6	2,138	92.5
30	10.0	2,168	669.9

5.9 EFFECTS OF N₂O₄ VAPORS ON VARIOUS MATERIALS

Compatibility tests were conducted (Reference 79) with various materials exposed to 40 ppm, 1000 ppm, and concentrated N_2O_4 vapors in an atmosphere at a relative humidity of at least 80%. These materials also were exposed to the high-humidity atmosphere alone as controls. The results of the control tests appear in Table 4.8. Table 5.8 summarizes the test results of the materials exposed to these environments for 1 hour to 90 days at temperatures ranging from 70° to 77° F. All the metals exposed to these environments were adversely affected in some manner, resulting in pits and/or salt formations.

Nylon was compatible with 40 ppm N_2O_4 vapors for 90 days, but became tacky after 7 days exposure in 1000 ppm N_2O_4 vapors and after 1 hour exposure to concentrated N_2O_4 vapors.

Figure 5.1. Gas Transmission of ${
m N_2O_4}$ Through Teflon FEP (10 mil thick) at Various Differential Pressures

TABLE 5.8 COMPATIBILITY OF MATERIALS WITH $\rm N_2O_4$ VAPORS IN AIR AT 80% RELATIVE HUMIDITY

Material	Rating	Remarks
		Concentrated N ₂ O ₄ Vapors
2014-T6 Al	С	Visually unaffected after 5 hr, 3 to 12 MPY
Zytel 101 (Nylon)	D	Weight increase of 14.3% and tacky in 1 hr, flowed in 2 hr
7075 Al	C	Visually unaffected after 5 hr, 6 to 25 MPY
1010 Mild Steel	C	Rusted after 5 hr, weight increases
AZ-31A Mg	D	Severly attacked during 5 hr, 230 to 450 MPY
Copper	C	Slight discoloration after 5 hr, 5 to 20 MPY
		1000 ppm N ₂ O ₄ Vapors
2014-T6 Al	С	6 to 10 MPY through 90 days, salt deposits in 7 days
Zytel 101 (Nylon)	D	Weight increase 13.7% and tacky in 21 days, flowed in 60 days
7075 A1	С	8 to 19 MPY through 90 days, salt deposits in 7 days
1010 Mild Steel	D	36 to 53 MPY through 90 days, badly crusted in 7 days
AZ-31A Mg	D	24 to 32 MPY through 90 days, salts and badly pitted in 7 days
Copper	С	0.4 to 4 MPY through 90 days, salts in 4 days
		40 ppm N ₂ O ₄ Vapors
2014-T6 Al	В	< 1 MPY, salts in 17 days
Zytel 101 (Nylon)	A	Max. 4% weight increase, visually unaffected in 90 days
7075 Al	В	< 1 MPY, slight pitting in 17 days
1010 Mild Steel	С	< 5 MPY, heavy scattered rusting in 17 days
AZ-31A Mg	С	< 5 MPY, salts in 17 days
Copper	D	< 1 MPY, salts in 28 days

geneous mixture through diffusion was obtained (Reference 4). This method is not recommended for use because of the time element and the uncertainty of its effectiveness when blending large quantities.

6.2.3 Mixing by Mechanical Stirring

Approximately one quart of fuel blend was mixed in a glass container. Complete mixing was accomplished in a nitrogen atmosphere with a glass stirrer turning at 760 rpm for five minutes; complete mixing also was accomplished by stirring at 1 rpm for 72 hours. The ratio of the area of the stirrer (2.5 sq in.) to the volume of the blend (48.7 cu in.) was 0.005 If this technique is feasible for large-scale mixing, it can be used with success.

6.2.4 Mixing by Gas Bubbling

A nitrogen gas flow rate of 0.025 cu ft/min for two hours was sufficient to mix approximately one quart of fuel blend in a round bottom glass flask of 15 sq in. cross-sectional area. This method is not recommended because UDMH losses are incurred during the operation (Reference 4).

6.2.5 Mixing by Impingement

A mixing chamber similar to that described by W. R. Ruby (Reference 26) was used to mix laboratory quantities of the fuel blend. Photographs of the apparatus and a detailed procedure is presented in Reference 4. Mixing was accomplished when two streams of UDMH impinged with two streams of N_2H_A .

Wyle Laboratories (Reference 37) successfully mixed approximately 41,000 pounds (110 drums) of the fuel blend by recirculating the fuels through a blender (which caused mixing similar to the impingement technique) and into a storage tank. Following the initial transfer of each fuel into the storage tank, two centifugal pumps provided continuous circulation through the blender for approximately two hours before mixing was accomplished.

Aerojet-General Corporation (Reference 1) also has blended thousands of gallons of the fuel blend by pumping the fuel components simultaneously from each tank into a concentric nozzle (containing a swirling mechanism to enhance mixing) and then into the fuel blend storage tank.

6.2.6 Mechanical Mixing Unit

A Mixing unit has been developed under Air Force contract and installed at Rocky Mountain Arsenal, Denver, Colorado. Details of this unit can be obtained from Food Machinery Chemical, Ordnance Division, San Jose, California.

6.3 FREEZE AND THAW OF 50/50 FUEL BLEND

A laboratory test was conducted to determine the effect of alternate freezing and thawing of the fuel blend. The apparatus used, a description of the test procedure, and the detailed test results are presented in Reference 2. Results of these tests indicate that the fuel blend separates when subjected to freezing or thawing. When thawing, the UDMH melts at -71°F, followed by

 N_2H_4 which melts at 35°F. During the experiment, solid particles were detected falling to the bottom of the test container. It is suspected that these particles were predominantly N_2H_4 because N_2H_4 is more dense than UDMH. Since analyses indicate that separation of the fuel blend occurs during freezing, fuel blend known to have frozen should be re-mixed prior to use.

6.4 STORAGE

Fuel blend was stored for 15 months at 60° ±5°F in a two-quart 1100 aluminum alloy tank and a one-quart Pyrex glass bottle. No fuel decomposition was detected in either container (Reference 51).

Spectral analyses of the fuel blend in a one-quart Pyrex glass bottle gave no evidence of fuel blend separation after 12 months at 60° ± 5°F (Reference 51).

The fuel blend was stored in sealed Pyrex glass ampules at 200°F for 12 weeks (Reference 50). Using the weight loss technique for measuring fuel decomposition indicated that no significant decomposition occurred.

Low-temperature and high-temperature storage tests were conducted with N_2O_4 . Allied Chemical Corporation stored N_2O_4 out-of-doors in a small carbon steel container for nine years at temperatures ranging from 68° to 100°F. Analyses showed no change in propellant composition.

In another test, N_2O_4 was stored in 10-gallon tanks made from PH 15-7 Mo stainless steel and 6061-T6 aluminum alloy for six months at temperatures ranging from 0° to 100°F. Chemical analyses after this test showed no change in propellant composition and a visual examination of the interior of the tanks indicated no metal attack (Reference 19).

For three months, N_2O_4 was stored at 270°F .10°F in two-quart tanks made from PH 15-7 Mo and 347SS and from 6061-T6 aluminum alloy. The N_2O_4 remained unchanged except for a trace of nitric acid found by spectral means and an indication of the entry of water. Visual examination of the tanks disclosed salt deposits.

In the foregoing high-temperature storage tests, the salt deposits may have resulted from moisture entering the system and reacting with the N_2O_4 to form nitric acid. The acid in turn would have reacted with the stainless steel and aluminum alloy to form nitrates that are insoluable in N_2O_4 .

A one-month storage test of N_2O_4 in a titanium tank (C120AV) was conducted at cycling temperatures between 90° and 150°F (Reference 19). No abnormal pressures were detected during the test period; at the conclusion of the test, a 50-pound weight was dropped from a height of two feet onto the tank to determine if shock-sensitive deposits had formed. No reaction to this shock was observed. The chemical composition of the N_2O_4 remained unchanged and examination of the tank interior showed no signs of deposits.

- 53. Technical Manual, "Oxides of Nitrogen Toxicity," T.O. 00-80BB-2, 18 July 1961.
- 54. U. S. Bureau of Mines, "Flammability Characteristics of Hydrazine-Unsymmetrical Dimethylhydrazine-Nitrogen Tetroxide-Air-Water Mixtures," Final Report No. 3844, 12 December 1961.
- 55. Nitrogen Division of Allied Chemical Corporation, "Impact Sensitivity of Metals (Titanium) Exposed to Liquid Nitrogen Tetroxide," Alley, C. W., Hayford, A. W., and Scott, Jr., H. F., WADD Technical Report 61-175, May 1961.
- 56. Reaction Motors, Division of Thiokol Chemical Corporation, "Research on Elastomeric and Compliant Materials," Report RMD 2028-P4, 31 July 1961.
- 57. Reaction Motors, Division of Thiokol Chemical Corporation, "Elastomers and Compliant Materials for Contact with Liquid Rocket Fuels and Oxidizers,"

 Report ASD-TR 61-76, Part 1 May 1961.
- 58. Communication with McCullough, T. W., The Martin Company, Denver, Colorado, 6 February 1962.
- 59. The Martin Company, "Evaluation of Marked DA-8 and DA-9 Aluminum Coatings for Titan B Compatibility," Report No. ME-142, 11 October 1961.
- 60. The Martin Company, "Evaluation of Magna Polyurethane NTH Coating and Chem Seal Fluorinated Polymer Coating for Titan B Propellant Compatibility," Report No. ME-116, 10 August 1961.
- 61. Aerojet-General Corporation, "Compatibility Studies of Metals," Murchison, M. L., Report No. MM-155-4, 13 March 1961.
- 62. The Martin Company, "Mechanically Initiated Reactions of Organic Materials in Missile Oxidizers," ASD TR 61-324, October 1961.
- 63. Rocketdyne Letter 61RC2147 to Space Technology Laboratories, Inc.
- 64. Reaction Motors Division of Thiokol Chemical Corporation, "Elastomeric and Compliant Materials for Contact with Liquid Rockets Fuels and Oxidizer," Report RMD2028-P5, March 1962.
- 65. Aerojet-General Corporation, Liquid Rocket Plant, "Storable Liquid Propellants Nitrogen Tetroxide/Aerozine 50," Report LRP198, Second Edition, June 1962.
- 66. Visit to The Martin Company, 23 August 1962.

Mr 19 51

- 67. Aerojet-General Corporation, IDEP-501.01.60.80-A6-01 "Non-Metallic Materials, Adhesive Tapes, Rolled," LRP, 22 March 1962.
- 68. AFBSD, "An Investigation of Field Test Methods for Determining the Water Content of Titan II Propellants," Bell Aerosystems Company, Report No. BSD-TDR-62-45, May 1962.
- 69. Communication with Aerojet-General Corporation 12 September 1962.
- 70. Reaction Motors, Division of Thiokol Chemical Corporation, "Elastomeric and Compliant Materials for Contact with Liquid Rocket Fuels and Oxidizer,"

 Report ASD-TR-61-76, Part II, November 1961.
- 71. Reaction Motors, Division of Thiokol Chemical Corporation, "Elastomeric and Compliant Materials for Contact with Liquid Rocket Fuels and Oxidizers,"

 Report RMD2028-P7, September 1962.
- 72. Reaction Motors, Division of Thiokol Chemical Corporation, "Elastomeric and Compliant Materials for Contact with Liquid Rocket Fuels and Oxidizers," Report RMD2028-P6, June 1962.
- 73. Aerojet-General Corporation, "Compatibility Studies of Metals for Titan II Engines," Report No. Rm-7693(M155-5), 10 October 1961.
- 74. AFBSD, "Storable Propellant Data for the Titan II Program," Bell Aerosystems Company, Third Quarterly Progress Report, BSD-TDR-62-223, September 1962.
- 75. Visit with Aerojet-General Corporation, 7 June 1962.
- 76. Visit with The Martin Company, 5 June 1962.
- 77. Communication with Aerojet-General Corporation and Space Technology Laboratories, Inc., Material Compatibility-Extended Screening Tests, 15 July 1960.
- 78. The Martin Company, IDEP-085.50.00.00-F3-03, "Compatibility of Hysol 1C= with Storable Propellants," ME-40, 28 December 1960.
- 79. AFBSD, "Storable Propellant Data for the Titan II Program," Bell Aerosystems Company, Fourth Quarterly Report BSD-TDR-63-51, March 1963.
- 80. Aerojet-General Corporation, "The Effect of Nitrogen Tetroxide and Aerozine 50 on Nonmetallic Materials," Progress Report II, State of the Art, Technical Memorandum No. 151LRP, 28 December 1962.

APPENDIX A

VENDOR INDEX FOR NONMETALLIC MATERIALS

MATERIALS	COMPOSITION	SOURCE
CERAMICS		
Sauereisen 47, 31, and P-1	Not Known	Sauereisen Cements Co., Pittsburgh, Pa.
Temporell 1500	Not Known	Not Known
GRAPHITES		
Purebon P3N, P5N	Carbon - graphite	Purebon Carbon Co. Inc., St. Marys, Pa.
Graphitar 2, 14, 39, 50, 86	Carbon - graphite	U.S. Graphite Co., Saginaw, Mich.
CCP-72	Carbon - graphite	National Carbon Co., Pittsburgh, Pa.
Johns Manville No. 60	Carbon - graphite	Johns Manville Co., New York, N. Y.
PLASTICS		
Aclar 191	Fluorohalocarbon	Allied Chemical and Dye Corp., New York, N. Y.
Alathon 34 (Irradiated)	Low Density Polyethylene	Raytherm Corp., Redwood City, Cal.
Amerplate	Polyvinyl Chloride	Amercoat Corp., South Gate, Cal.
Armalon 7700, 7700B	Teflon TFE Fibers	DuPont, Wilmington, Del.
Capran 391	Polyamide	Allied Chemical and Dye Corp., New York, N. Y.
Delrin	Polyformaldehyde	DuPont, Wilmington, Del.
EC 1469	Ероху	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
Epon V1, 828, 1031 (with PMDA)	Ероху	Shell Chemical Co., San Francisco, Cal.
Fluorobestos	Asbestos-filled Teflon	Fluorocarbon Co., Fullerton, Cal.
Fluorogreen	Ceramic-filled Teflon	R. S. Hughes, Denver, Colo.
F120 - 55	Asbestos-filled Phenol - Formaldehyde	Reinhold Eng. and Plastics Co., Norwalk, Cal.
Genetron GCX3B	Polychlorotrifluoroethylene	Allied Chemical and Dye Corp., New York, N. Y.
Genetron XE2B	Polychlorotrifluoroethylene	Allied Chemical and Dye Corp., New York, N. Y.
H-Film	Proprietary	DuPont, Wilmington, Delaware

AFBSD-TR-62-2

MATERIALS	COMPOSITION	SOURCE
PLASTICS (CONT) Hypalon 20	Chlorosulfonated Polyethylene	DuPont, Wilmington, Delaware
Kel-F 300	Polychlorotrifluoroethylene	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
Kel-F (unplasticized)	Polychlorotrifluoroethylene	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
Kodapak II	Cellulose Acetate Butyrate	Eastman Kodak Co., Rochester, N.Y.
Kynar	Vinylidenefluoride	Pennsalt Chemical Corp., Philadelphia, Pa.
Lexan	Polycarbonate	Dow Chemical Co., Midland, Mich.
Marlex 50	High Density Polyethylene	Phillips Chemical Co., Bartlesville, Okla.
Marlex 5003	High Density Polyethylene	Phillips Chemical Co., Bartlesville, Okla.
M ylar	Terephthalate Polyester	DuPont, Wilmington, Del.
Narmco X3168	Not Known	Not Known
Nylon 31, 63, 101	Polyamide	DuPont, Wilmington, Del.
Opalon 1219, 1220, 1444 and 81222	Polyvinylchloride	Monsanto Chemical Co., St. Louis, Mo.
Penton 1215	Chlorinated Polyether	Hercules Powder Co., Wilmington, Del.
Phenolic - Asbestos	Phenolic - asbestos	Reinhold Eng. and Plastics Co., Norwalk, Cal.
Plexiglas	Polymethyl methacrylate	Rohm and Haas Co., Philadelphia, Pa.
Polyethylene HD	High Density Polyethylene	Visking Corp., Chicago, Iil.
Polyethylene (irradiated)	Polyethylene	General Electric, Pittsfield, Mass.
Polypropylene	Polypropylene	Campco Division, Chicago Molded Products, Chicago, Ill. and
		Hercules Powder Co., Wilmington, Del.
P-4010	Not Known	Dow Chemical Co., Midland, Mich.
Raythene N	Irradiated Polyolefin	Ray Chem Corp., Redwood City, Cal.
Rigid PVC	Polyvinyl Chloride	B. F. Goodrich Chemical Co., Cleveland, Ohio
Saran	Polyvinylidene Chloride	Dow Chemical Co., Midland, Mich.
Silicone R-7001	Silicone	Dow Chemical Co., Midland, Mich.
Teflon Asbestos	Teflon Asbestos	Fluorocarbon Co., Fullerton, Cal.
Teflon FEP (100X)	Tetrafluoroethylene- hexafluoropropylene	DuPont, Wilmington, Del.
AFBSD-TR-62-2	A-2	

MATERIALS	COMPOSITION	SOURCE
LASTICS (CONT)		
Teflon-Graphite	15% Graphite	Fluorocarbon Co., Fullerton, Cal.
Teflon Molydisulfide	2% Molybdenum Disulfide	Fluorocarbon Co., Fullerton, Cal.
Teflon TFE-1	Tetrafluoroethylene	DuPont, Wilmington, Del.
Teflon TFE Felt 7550	Teflon Felt	DuPont, Wilmington, Del.
Tedlar 30	Polyvinyl Fluoride Resin	DuPont, Wilmington, Del.
Trithene A	Polychlorotrifluoroethylene	Visking Corp., Chicago, Ill.
Ultron	Polyvinyl Chloride	Monsanto Chemical Co., St. Louis, Mo
30000	Not Known	Dow Chemical Co., Midland, Mich.
UTYL RUBBERS		
Enjay 268	Butyl	Enjay Co., Inc., New York, N. Y.
Enjay 551	Chlorobutyl	Enjay Co., Inc., New York, N. Y.
Goshen 1357	Butyl	Goshen Rubber Co., Inc. Goshen, Ind.
Hycar 2202	Bromo-butyl	B.F. Goodrich Chemical Co., Cleveland, Ohio
Linear 7806-70	Butyl	Linear, Inc., Philadelphia, Pa.
Parco 805-70	Butyl	Plastics and Rubber Products Co., Los Angeles, Cal.
Parco 823-70	Butyl	Plastics and Rubber Products Co., Los Angeles, Cal.
Parker B496-7	Butyl	Parker Seal Co., Cleveland, Ohio
Parker B480-7	Butyl	Parker Seal Co., Los Angeles, Cal.
Hadbar XB800-71	Butyl	Hadbar, Inc., Temple, Cal.
Parker B318-7	Butyl	Hercules Packing Co., Lancaster, N.Y
Precision 9257	Butyl	Precision Rubber Products Corp., Dayton, Ohio
Precision 9357	Butyl	Precision Rubber Products Corp., Dayton, Ohio
Precision 1330x20	Butyl	Precision Rubber Products Corp., Dayton, Ohio
Precision 214-907-9	Butyl	Precision Rubber Products Corp., Dayton, Ohio
Precision 940x559	Butyl	Precision Rubber Products Corp., Dayton, Ohio

MATERIALS	COMPOSITION	SOURCE
BUTYL RUBBERS (CONT)		
Stillman SR 613-75	Butyl	Stillman Rubber Co., Culver City, Cal.
Parker XB-1235-10	Butyl-phenolic	Parker Seal Co., Los Angeles, Cal.
Formulas 120, 121	Resin-cured Butyl	Reaction Motors Division, Denville, N. J.
11092-3A	Butyl-phenolic	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
TC-419-19A	Butyl-phenolic	Plastic and Rubber Products Co., Los Angeles, Cal.
EHTYLENE-PROPYLENE RUBBERS		
X-7000-1 thru 7, 9, 10, 11	Ethylene Propylene	Seals, East Orange, New Jersey
Formula 132		
Resistazine 74	Ethylene Propylene	Reaction Motors Division, Denville, N. J.
FLUOROSILICONE AND FLUORORUBBERS		
Fluorel	Vinylidene Fluoride-hexa- fluoropropylene Coplymer	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
Hadbar 58789-23GT	Fluorosilicone	Hadbar Inc., Temple, Cal.
Hadbar 58789-23	Fluorosilicone	Hadbar Inc., Temple, Cal.
Kel-F 3700, 5500	Polymer of Mono- chlorotrifluoroethylene and Vinylidene Fluoride	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
Omni X-FBF-4	Fluoro	Carlton Controls, East Aurora, N.Y.
Parker XV-1235-2	Fluoro	Parker Seal Co., Los Angeles, Cal.
Parker XV-1235-5	Fluoro	Parker Seal Co., Los Angeles, Cal.
Parker V-494-7 (Viton B)	Fluoro	Parker Seal Co., Cleveland, Ohio
Silastic LS 53	Fluorosilicone	Dow Corning Corp., Midland, Mich.
Silastic LS 63	Fluorosilicone	Dow Corning Corp., Midland, Mich.
Stillman Rubber EX774-M-1 (Viton B)	Fluoro	Balanrol Corp., Niagara Falls, N. Y.
Stillman SR 277-70 (Viton A)	Fluoro	Balanrol Corp., Niagara Falls, N. Y.
Stillman TH 1057	Fluoro	Stillman Rubber Co., Culver City, Cal.
EX821-A70	Fluoro	Stillman Rubber Co., Culver City, Cal.
TFNM-TFE	Trifluoronitrosomethane- Tetrafluoroethylene	U.S. Army Quartermaster Research and Engineering Center, Natick, Mass.

A-4

AFBSD-TR-62-2

MATERIALS	COMPOSITION	SOURCE
FLUOROSILICONE AND FLUORORUBBERS (CONT)		
18007 and 18057	Fluoro	Precision Rubber Products Corp., Dayton, Ohio
Viton A	Vinylidene Fluoride- hexafluoropropylene	DuPont, Wilmington, Delaware
Viton B	Vinylidene Fluoride- hexafluoropropylene	DuPont, Wilmington, Delaware
POLYBUTADIENE RUBBERS	-	
Acushnet	Polybutadiene	Acushnet Process Co., New Bedford, Mass.
Stillman EX904-90 (Hydropol)	Hydrogenated Polybutadiene	Stillman Rubber Co., Culver City, Cal.
MISCELLANEOUS RUBBERS	<u>3</u>	
Buna N	Styrene Butadiene	B.F. Goodrich Chemical Co., Cleveland, Ohio
В318-7	Not Known	Plastics and Rubber Products Co., Los Angeles, Cal.
Cohrlastic 500	Silicone	Connecticut Hard Rubber Co., New Haven, Conn.
Garlock 22	Natural	Garlock Packing Co., Culver City, Cal.
Garlock 900	Composite	Garlock Packing Co., Culver City, Cal.
Neoprene	Chloroprene	Delta Products, Houston, Texas
Amber Plus	Not Known	Pretty Products Inc. Coshocton, Ohio
Davol	Natural Rubber	Davol Rubber Co., Providence, R. I.
Ebonettes	Natural Rubber and Neoprene	Pioneer Co., Unknown
Latex, Seamless	Natural Rubber	Not Known
Neosole SA8-8N-3032	Not Known	Charleston Rubber Co., Unknown
National Glove	Not Known	Not Known
Rollproof 32894	Not Known	Braun Co.
PAINTS AND COATINGS		
Alkyd No. 4	Not Known	Not Known
Aluminous	Aluminum	Aluminous Coatings Inc., Hallandale, Fla.

MATERIALS	COMPOSITION	SOURCE	
AINTS AND COATINGS (CONT)			
Catalac	Not Known	Finch Paint and Chemical Co., Torrance, Cal.	
Chem Seal	Fluorinated Polymer	Chem Seal Corp., Los Angeles, Cal.	
Chex-Wear	Titanium Dioxide	Benjamin Moore and Co., New York, N. Y.	
Co-Polymer P-200G	Ероху	Co-Polymer Chemicals, Inc., Livonia, Mich.	
Corrosite Clear 581	Not Known	Corrosite Co., Chrysler Building, New York, N. Y.	
Dimetcote 1731/1741	Zinc Silicate	Amercoat Corp., South Gate, Cal.	
Epoxy 1, 5, 7, 9, and 6809	Epoxy	Not Known	
Floor Enamel 41138	Chlorinated Rubber Base	Schuele and Co., Buffalo, N. Y.	
Markal DA8 and DA8 Grey	Aluminum	Markal Co., Chicago, Ill.	
DA9	Aluminum-Silicone	Markal Co., Chicago, Ill.	
Magna Polyurethane NTH	Polyurethane	Magna Coatings and Chemical Corp., Los Angeles, Cal.	
Primer MIL-P-6889	Not Known	Not Known	
Primer CA9747	Zinc Chromate	Sherwin Williams Co., Cleveland, Ohio	
Proseal 333 (BLACK)	Butyl	Coast Pro-Seal and Mfg. Co., Los Angeles, Cal.	
Rezklad 1, 2, 3	Epoxy	Atlas Mineral Products Co., Mertztown, Pa.	
Swedlow HD 101	Butyl	Swedlow Inc., Los Angeles, Cal	
Tygon K	Polyvinyl Chloride	U.S. Stoneware, Plastics and Synthetic Division, New York, N.Y.	
Hysol 1C	Epoxy Resin	Hysol Corp., So. El Monte, Cal.	
Valdura	Vinyl	The Martin Company, Denver, Col.	
DHESIVES			
Armstrong A-6	Ероху	American Cyanamid Co., Oakland, Cal	
EC 847	Rubber base	Minnesota Mining and Manufacturing Co., St. Paul, Minn.	
HT 424	Not Known	Hadbar Inc., Rosemead, Cal.	
Rockflux	Cave Rock, Quartz, Cement	Flexrock Co., Philadelphia, Pa.	
3M-AF-10	Not Known	Not Known	

MATERIALS	COMPOSITION	SOURCE
ADHESIVES (CONT)		
Epon 422	Epoxy-Phenolic	Shell Chemical Co., San Francisco, Cal.
4-3	Epoxy-Phenolic-Silicone	Westech Co. Address unknown
LUBRICANTS, GREASES, AND OILS		
Andok C	Petroleum Base	Esso Standard Oil Co., New York, N.Y.
Apiezon L	Proprietary	Shell Chemical Co., San Francisco, Cal.
Braycote 660 AMS	MIL-G-25760 ± Molybdenum Disulfide	Bray Oil Co., Los Angeles, Cal.
DC 11	Silicone Grease	Dow Corning Corp., Midland, Mich.
DC 55	Silicone Grease	Dow Corning Corp., Midland, Mich.
DC High Vacuum Grease	Silicone Grease	Dow Corning Corp., Midland, Mich.
Drilube 1, Type B	Graphite-Molybdenum Disulfide	Drilube Corp., Glendale, Cal.
Orilube 703	Not Known	Drilube Corp., Glendale, Cal.
Drilube 7, Type A	Graphite-Molybdenum Disulfide	Drilube Corp., Glendale, Cal.
Drilube 822	Fluorocarbon Wax and Fluorinated Ester Oil	Drilube Corp., Glendale, Cal.
Drilube 842	Fluorinated Wax in Freon (in Aerosol Can)	Drilube Corp., Glendale, Cal.
Electrofilm 66C	Solid Film	Electrofilm Inc., North Hollywood, Cal.
Flake Graphite	Graphite	J. Dixon Crucible Co., Jersey City, N.J.
Halocarbon Grease	Halocarbon	Halocarbon Products Corp., Hackensack, N. J.
Kel-F 90	Chlorotrifluoro Grease	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
FX45	Fluorochemical	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
LOX Safe	Halogenated Oil	Redel Corp., Anaheim, Cal.
Microseal 100-1, 100-1 CG	Graphite Coating	Microseal Products Sales, Torrance, Cal.
Molykote Z	Molybdenum Disulfide	Alpha Molykote Corp., Stanford, Conn.
Nordcoseal 147S, 421	Proprietary	Rockwell Manufacturing Co., Pittsburgh, Pa.
Oxylube Sealant	Molybdenum Disulfide	Drilube Corp., Glendale, Cal.
PD788	Fluorocarbon	Frankford Arsenal, Philadelphia, Pa.
	1	

A-7

AFBSD-TR-62-2

MATERIALS	COMPOSITION	SOURCE
LUBRICANTS, GREASES, AND OILS (CONT)		
Polyglycol Oils	Polyglycol	Dow Chemical Co., Midland, Mich.
Rayco 30 and 32	Not Known	Royal Lubricants, Hanover, N. J.
Rayco 60 AMS	MIL-G-25760 + Molybdenum Disulfide	Royal Lubricants, Hanover, N. J.
Rockwell-Nordstrom No. 950	Proprietary	Rockwell Manufacturing Co., Pittsburgh, Pa.
S#58-M Oil	Petroleum Base	New York and New Jersey Lubricating Co., New York, N. Y.
UDMH Lube 50/50 Mixture of UDM Lube and Electro Mechanics No. 20057	Proprietary Silicone	Superlube Inc., Cleveland, Ohio Electro Mechanics, Inc., New Britian, Conn.
Valve Seal A	Silicone	Dow Corning Corp., Midland, Mich.
Vydax A	Tetrafluoroethylene	DuPont, Wilmington, Del.
XC150	Silicone	Dow Chemical Corp., Midland, Mich.
X15, Type C	Graphite	Alpha Molykote Corp., Stanford, Conn.
X106, Type B	Graphite-Molybdenum Disulfide	Alpha Molykote Corp., Stantord, Conn.
M8800	Graphite-Molybdenum Disulfide	Alpha Molykote Corp., Stanford, Conn.
Fluorolube MG600	Fluorinated	Hooker Electrochemical Co., Niagara Falls, N. Y.
Fluorothene G	Fluorinated	Hooker Electrochemical Co., Niagara Falls, N. Y.
THREAD SEALANTS AND POTTING COMPOUNDS		
Crystal M and CF	Not Known	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
Epon 828	Ероху	Shell Chemical Co., San Francisco, Cal.
Fairprene 5159	Not Known	Not Known
Paraplex P-43	Not Known	Not Known
Proseal 793	Polysulfide Sealant	Coast Pro-Seal and Mfg., Los Angeles, Cal.

SOURCE

Reddy Lube 100, 200 RTV 20 Teflon Tape (Unsintered)	Waterglass-graphite Silicone Tetrofluoroethylene	Redel Corp., Anaheim, Cal. General Electric Co., Pittsfield, Mass. Permacel, LePage's Inc., New Brunswick N. J.
		Permacel, LePage's Inc., New Brunswick
Teflon Tape (Unsintered)	Tetrofluoroethylene	, = ,
APES AND MARKINGS		
Y9050	Butyl-phenolic	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
Mylar		
Metallized	Terephthalate Polyester	Pee-Cee Tape and Label Co., Los Angeles, Cal.
Declar 956	Terephthalate Polyester	Permacel, LePage's Inc., New Brunswick, N. J.
Y9040	Not Known	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
SL1-281011	Butyl-phenolic	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
Butyl Phenolics	Butyl-phenolic	Minnesota Mining and Manufacturing Co., St. Paul, Minn.
Black AX - Aero	Ink	Speciality Ink Co., Brooklyn, N. Y.
PD455	Not Known	Mystik Adhesive Products, Inc., Chicago, Ill.
Polyplate Decal	Not Known	W. H. Brady Co., Milwaukee, Wis.

COMPOSITION

MATERIALS

UNCLASSIFIED 1. Physical Proparties of 50/50 fuel Slend and N ₂ 0 ₁ 2. Materials Compatibility, 50/50 fuel blend and N ₂ 0 ₁ 3. Propellant Handling, Safety, and Flarmability and Engrosivity Hazards 1. Liberto, R. R. UNCLASSIFIED	UNCLASSIFIED Oh(694)-72 UNCLASSIFIED
Bell Aerosystems Corpany, Division of Bell Aerospace Corporation, Buffalo 5, New York TITAN II STOKAELE FICTALLAN HAUBOOK, Gevision B, DV ñ. H. Liberto. March 1963. 188 p. incl. illus. tables (Fell Heport No. 9182-533001, AFBSD-TK-62-2) (Contract AFGL(691,)-72) Unclassified report Summarized are the physical properties, materials compatibility, hancling techniques, flammability and explosivity hazards, and procedures for storing, cleaning, and flushing of the Titan II propellants, N ₂ O ₁ as the oxidizer and a norinal 50/50 blend of UD:H and N ₂ O ₁ as the fuel. The data presented was derived both	from a literature survey and from a test program conducted at Bell Aerosystems Company and at the U. S. Bureau of Mines.
J. Physical Properties of 50/50 fuel blend and %20, 2. %aterials Compatibility, 50/50 fuel blend and W20, 3. Propellant Handling, Safety, and Flammability and Enamability and Enamability and explosivity liazards I. Liberto, f. R. UMCLASSIFILE	UNCLASSIFIED II. Contract AF O4(694)-72 UNCLASSIFIED
Bell Aerosystems Corpany, Division of Bell Aerospace Corporation, Buffalo 5, New York Titan II Stokelle Febrillant HAWDSONK, Revision B, by R. R. Liberto, Harch 1963. 188 p. incl. illus. tables (Hell Report No. 8182-933001; AFBSU-TR-62-2) (Contract AFG4(691)-72) Summarized are the paysical properties, materials compatibility, handling techniques, flammability and explosivity hazards, and procedures for storing, cleaning, and procedures for storing, cleaning, and Jushing of the Titan II propellants, No. as the oxidizer and a norinal 50/20 blend of UD:H and No. as the fuel. The data presented was derived both	from a literature survey and from a test program conducted at Bell Aerosystems Company and at the U. S. Bureau of Mines.