Definición de Laplace:

$$P(A) = \frac{m_a}{m} = \frac{Casos Favorables}{Casos Posibles}$$

Ley aditiva de probabilidades

Probabilidad condicionada:

$$\rightarrow P(A/B) = \frac{P(A \cap B)}{P(B)} ; Si:P(B) > 0$$

$$\rightarrow P(B/A) = \frac{P(A \cap B)}{P(A)} ; Si:P(A) > 0$$

Independencia:

$$P(A/B) = P(A); P(B/A) = P(B)$$

$$P(A \cap B) = P(A) \times P(B)$$

Teorema partición o Probabilidad total:

$$P(B) = \sum_{i=1}^{n} P(E_i) \times P(B_i)$$

Teorema de Bayes:

$$P\begin{pmatrix} E_{j} \\ B \end{pmatrix} = \frac{P(E_{j}) \times P\begin{pmatrix} B \\ E_{j} \end{pmatrix}}{\sum_{i=1}^{n} P(E_{i}) \times P\begin{pmatrix} B \\ E_{i} \end{pmatrix}}$$

COMBINATORIA

	COMBINITORIA			
		REPETICIONES		
		SIN	CON	
ORDEN	SI	$V_{m,n} = V_m^n = \frac{m!}{(m-n)!}$ $P_m = V_{m,m} = m!$	$VR_{m,n} = m^n$ $PR_{m,a,b,c,k} = \frac{m!}{a!b!c!k!}$	
10	5	$C_{m,n} = C_m^n = {m \choose n} = \frac{m!}{n!(m-n)!}$	$CR_{m,n} = {m+n-1 \choose n} = \frac{(m+n-1)!}{n!(m-1)!}$	