Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів»

Варіант <u>26</u>

Виконав студент	III-12, Саркісян Валерія Георгіївна	
Перевірив		
• •	(прізвище, ім'я, по батькові)	

Лабораторна робота 6 Дослідження рекурсивних алгоритмів

Мета - дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Задача 26.

Задано натуральне п. Обчислити

$$\sum_{k=m}^{n} \frac{\left(-1\right)^{k}}{k!} \left(\frac{a_{k}+2}{3}\right)^{k} \quad a_{0} = 1, \ a_{k} = \sqrt{|4a_{k-1}+2|}$$

1. Постановка задачі.

У результаті розв'язку отримаємо число, яке дорівнює сумі елементів з m по n. У виразі присутній факторіал числа, тому задача буде виконуватися тільки якщо m та n невід'ємні і m менше n. Для розв'язання задачі доцільно буде розбити виконання на підпрограми, використовуючи функції. Окремо пропишемо функцію для знаходження факторіалу числа, для обчислення значення параметра a. Суму також обчислимо в окремій функції з використанням двох попередніх функцій. Для обчислення кореня квадратного використаємо функцію sqrt(), а для знаходження модуля виразу — функцію abs().

2. Побудова математичної моделі.

Змінна	Тип	Ім'я	Призначення
Початкове значення	цілий	m	Початкове дане
Кінцеве значення	цілий	n	Початкове дане
	(натуральне)		
Лічильник	цілий	k	Проміжне дане, лічильник
Факторіал числа	функція	factorial()	Знайти факторіал k
Параметр функції	цілий	С	Формальний параметр, проміжне дане
factorial()			
Факторіал числа k	цілий	fact	Результат функції factorial(), вихідне
			дане
Значення ак	функція	a_k()	Знаходження поточного значення а _к
Параметр функції a_k()	цілий	a1	Формальний параметр, проміжне дане
Параметр функції a_k()	цілий	a2	Формальний параметр, проміжне дане
Значення ак	дійсний	a	Результат функції a_k(), вихідне дане
Значення суми	функція	sum()	Обчислення кінцевого результату
			виразу
Параметр функції sum()	цілий	from	Формальний параметр, проміжне дане
Параметр функції sum()	цілий	to	Формальний параметр, проміжне дане
Значення суми	дійсний	suma	Результат, вихідне дане

Значення виразу	дійсний	dodanok	Поточне значення виразу, проміжне
			дане
Корінь з числа	функція	sqrt()	Знаходження кореня квадратного з
			виразу
Степінь числа	функція	pow()	Піднесення чисел(виразів) до степенів
Сума	дійсний	S	Результат

3. Розв'язання.

Основна програма:

Крок 1. Визначимо основні дії.

<u>Крок 2</u>. Деталізуємо дію перевірки відповідності введених даних умовам, необхідним для правильного функціонування програми.

Крок 3. Деталізуємо дію знаходження суми.

Підпрограми:

Крок 3.2. Деталізуємо дію обчислення факторіалу.

Крок 3.3. Деталізуємо дію обчислення значення числа a.

Крок 3.4. Деталізуємо дію обчислення суми.

Псевдокод.

Крок 1

Початок

Введення п, т

перевірка відповідності введених даних умовам

знаходження суми

Виведення Ѕ

Кінець

Крок 2

Початок

Введення п, т Введення п, т

виконати виконати

Очистити екран Очистити екран

Виведення "Помилка" Виведення "Помилка"

Крок 3

Початок

Введення п, т

Все поки Все поки

3находження суми S = sum (m, n)

Виведення Ѕ Виведення Ѕ

Кінець Кінець

Псевдокод підпрограм.

```
Крок 3.1. Функція factorial (с)
                                        Крок 3.2. Функція a_k (a1, a2)
 Початок factorial (c)
                                        Початок a_k (a1, a2)
   Якщо c > 1
                                           Якщо a1 == a2
    To
                                            To
       fact = c * factorial (c-1)
                                               a = 1
   інакше
                                           інакше
       fact = 1
                                               a = sqrt (abs (4 * a_k (a1 - 1, a2) + 2))
                                           все якщо
    все якщо
   повернути fact
                                           повернути а
 Кінець factorial
                                        Кінець a_k
Крок 3.3. Функція sum (from, to)
Початок sum (from, to)
     Для k від from до to(включно) із кроком 1 повторити
            dodanok = (pow (-1, k) / factorial (k)) * pow ((a_k (k, from) + 2) / 3, k)
            suma = suma + dodanok
      все повторити
повернути suma
Кінець sum
```

4. Блок-схема.

Підпрограми:

5. Код програми (С++):

```
#include <iostream>
#include <cmath>
using namespace std;
int factorial(int k);
double a_k(int a1, int a2);
double sum(int from, int to);
int main(){
      int n, m;
      cout << "Enter m :"; cin >> m;
      cout << "\nEnter n :"; cin >> n;
      while (n \le 0 \text{ or } m < 0 \text{ or } m > n) {
            system("cls");
            cout <<"Please enter correct numbers\n" << "Enter m :"; cin >> m;
            cout << "\nEnter n :"; cin >> n;
      }
      double S = sum(m, n);
      cout << "\nResult: " << S;</pre>
      return 0;
}
int factorial(int c) {
      int fact;
      if (c > 1) {
            fact = c * factorial(c - 1);
      }
      else
            fact = 1;
      return fact;
}
double a k(int a1, int a2) {
      double a;
      if (a1 == a2)
            a = 1;
      else
            a = sqrt(abs(4 * a_k(a1 - 1, a2) + 2));
      return a;
}
double sum(int from, int to) {
      double suma = 0;
      for (int k = from; k <= to; k++) {</pre>
            double dodanok = (pow(-1, k) / factorial(k)) * pow((a_k(k, from) + 2) / 3, k);
            suma = suma + dodanok;
      }
      return suma;
}
```

Тестування:

6. Випробування алгоритму. Перевіримо правильність роботи алгоритму для довільних значень m і n:

```
Блок
                                                  Дія
           Початок
           Введення m=-3, n=5
1
2
           m<0
           Очистити екран
3
4
           Виведення "Please enter correct numbers"
           Введення m=0, n=5
5
6
           k=0
              factorial (c=0):
                   c! > 1
                   fact=1
              a_k(a1=0, a2=0):
                   a1 == a2
                   a = 1.0
              dodanok=(pow(-1, 0) / 1) * pow((1+2) / 3, 0)=1
              suma = 0 + 1 = 1
7
           k=1
              factorial (c=1):
                   c!>1
                   fact=1
              a_k(a1=1, a2=0):
                   a1!=a2
                        a = sqrt (abs (4 * a_k (a1 - 1, a2) + 2))
                        a_k (a1 - 1, a2)=1
                   a=sqrt (abs (4 *1 + 2)) \approx 2,45
              dodanok=(pow (-1, 1) / 1) * pow ((2,45+2) / 3, 1) \approx -1,483
              suma=1-1,483≈-0,483
```

```
8
            k=2
               factorial (c=2):
                     c>1
                     fact=2*1=2
               a_k(a1=2, a2=0):
                     a1!=a2
                         a=sqrt (abs (4 * a_k (a1 - 1, a2) + 2))
                         a_k (a1 - 1, a2) \approx 2.45
                     a=sqrt (abs (4*2,45+2)) \approx 3,435
               dodanok=(pow (-1, 2) / 2) * pow ((3,435+ 2) / 3, 2) \approx 1,64
               suma=-0,483+1,64≈1,158
9
            k=3
               factorial (c=3):
                     c>1
                     fact=3*2*1=6
               a_k(a1=3, a2=0):
                     a1!=a2
                         a=sqrt (abs (4 * a_k (a1 - 1, a2) + 2))
                         a_k (a1 - 1, a2) \approx 3,435
                     a=sqrt (abs (4*3,435+2)) \approx 3,97
               dodanok=(pow (-1, 3) / 6) * pow ((3,97+ 2) / 3, 3) \approx -1,31
               suma=1,158-1,31\approx-0,154
10
            k=4
               factorial (c=4):
                     c>1
                     fact=4*3*2*1=24
               a_k(a1=4, a2=0):
                     a1!=a2
                         a = sqrt (abs (4 * a_k (a1 - 1, a2) + 2))
                         a k (a1 - 1, a2) \approx 3.97
                     a=sqrt (abs (4*3,97+2)) \approx 4,23
               dodanok=(pow (-1, 4) / 24) * pow ((4,23+2) / 3, 4) \approx 0,77
               suma = -0.154 + 0.77 \approx 0.62
11
            k=5
               factorial (c=5):
                     c>1
                     fact=5*4*3*2*1=120
               a_k(a1=5, a2=0):
                     a1!=a2
                         a = sqrt (abs (4 * a_k (a1 - 1, a2) + 2))
```

	$a_k (a1 - 1, a2) \approx 4,23$
	$a=sqrt (abs (4*4,23+2)) \approx 4,35$
	dodanok=(pow (-1, 5) / 120) * pow ((4,35+2) / 3, 5) \approx -0,35
	suma=0,62-0,35≈0,266055
12	$S = sum(0, 5) \approx 0.266055$
13	Виведення $S = 0,266055$
	Кінець

7. Висновки.

На цій лабораторній роботі було досліджено особливості роботи рекурсивних алгоритмів та набуто практичних навичок їх використання під час складання програмних специфікацій підпрограм. Для розв'язання поставленої задачі було використано 3 допоміжних алгоритми-функції, у 2 з яких були використовували просту рекурсію (функції factorial() та a_k()), а в третій використовуючи складну рекурсію викликано 2 попередні функції.