Problem I Inspecting Radars

 $Source\ file\ name:$ inspecting.c, inspecting.cpp or inspecting.java

Radars Inc. is a worldwide renowned radar maker, whose excellent reputation lies on strict quality assurance procedures and a large variety of radar models that fit all budgets. The company hired you to develop a detailed *inspection* that consists of a sequence of *E experiments* on a specific *surveillance model*.

There is a *field* represented with a polar coordinate plane that contains N objects placed at positions with integer polar coordinates. The inspected model is located at the origin (0,0) of the field and can detect objects at a distance less than its *detection range* R through a *scan area* defined by four adjustment parameters α , A, h, and H, whose meaning is illustrated with the following figure:

Formally, the scan area of the model is the region described by the set of polar points

$$\{(r,\theta)|\; h\!\leq\! r\!<\! h\!+\! H,\; \alpha\!\leq\! \theta\!\leq\! \alpha\!+\! A\}$$

 α , A, h and H are four integer values where:

- α specifies the start angle of the radar's scan area ($0 \le \alpha < 360$);
- A specifies the opening angle of the radar's scan area $(0 \le A \le 360)$;
- h gives the internal radius of the radar's scan area $(0 \le h < R)$; and
- H gives the *height* of the radar's scan area $(1 \le H \le R)$.

An object placed at (r, θ) will be displayed by the model if $h \le r < h + H$ and $\alpha \le \theta \le \alpha + A$, where the last inequality should be understood modulo 360° (i.e., adding and comparing angles in a circle).

Given N objects placed on the field, you must develop an inspection of the surveillance model through the implementation of E experiments with specific parameterizations. For each experiment you have to find the maximal number of objects on the field that the radar should display if the parameters α ($0 \le \alpha < 360$) and h ($0 \le h < R$) are free to set (as integer numbers), and the parameters H ($1 \le H \le R$) and A ($0 \le A < 360$) are given.

Input

The input consists of several test cases. Each test case is described as follows:

- A line with two integer numbers N and R separated by blanks, representing (respectively) the number of objects located on the field and the detection range of the model $(1 \le N \le 10^4, 2 \le R \le 10^2)$.
- Each one of the following N lines contains two integer numbers r_i and θ_i separated by blanks, specifying the integer polar coordinates (r_i, θ_i) of the i-th object $(1 \le r_i < R, 0 \le \theta_i < 360, 1 \le i \le N)$.
- The next line has an integer number E indicating the number of experiments of the inspection ($1 \le E \le 10^2$).
- Each one of the following E lines contains two integer numbers H_j and A_j separated by blanks, representing (respectively) the fixed height and the fixed opening angle that parameterize the j-th experiment $(1 \le H_j \le R, 0 \le A_j < 360, 1 \le j \le E)$.

For each test case you can suppose that there are not two different objects placed at the same integer polar coordinate. The last test case is followed by a line containing two zeros.

The input must be read from the file inspecting.in.

Output

For each test case of the input, print E lines where the j-th line contains the maximal number of objects on the field that the radar should display according to the parameterization given for the j-th experiment $(1 \le j \le E)$.

The output must be written to standard output.

Sample Input	Sample output
6 100	1
15 7	6
15 60	9
40 15	5
50 15	3
45 30	3
45 90	2
2	2
2 1	
100 359	
9 100	
15 7	
15 60	
40 15	
50 15	
45 30	
45 90	
40 45	
50 45	
78 100	
6	
100 359	
11 30	
10 30	
11 29	
5 30	
11 10	
0 0	