Locality sensitive hashing and semantic hashing

Tianpei Xie

Sep. 3rd., 2022

Contents

1	Definitions of locality sensitive hashing	2
2	Hamming-based Locality Hashing	2
3	Jaccard-based Locality Hashing	3
4	Angular-based Locality Hashing	4
5	Minkowski-based LSH Techniques	4

1 Definitions of locality sensitive hashing

- Given a dataset \mathcal{D} with n points and d dimensions and a query point q in the same space as the dataset, the goal of \underline{c} - \underline{ANN} \underline{search} (where $c = (1+\epsilon) > 1$ is an approximation ratio) is to return points $o \in \mathcal{D}$ such that $\operatorname{dist}(o,q) \leq c \times \operatorname{dist}(o^*,q)$, where o^* is the true nearest neighbor of q in \mathcal{D} and dist is the distance between the two points. Similarly, \underline{c} - \underline{k} - \underline{ANN} \underline{search} aims at returning top-k points such that $\operatorname{dist}(o_i,q) \leq c \times \operatorname{dist}(o_i^*,q)$, where $1 \leq i \leq k$. [Jafari et al., 2021] c-ANN is also called ϵ - \underline{ANN} given $c = (1 + \epsilon) > 1$.
- Hashing-based methods try to find the nearest neighbors in high-dimensional datasets by **projecting** them into one or more low-dimensional spaces using *hash functions*. **Locality sensitive hashing (LSH)** is a famous hashing-based method that creates the lowd-imensional projections such that the *localities of the original space are preserved* in them (i.e. two nearby points in the original space are also nearby in the projected space).
- For two points \boldsymbol{x} and \boldsymbol{y} in a d-dimensional dataset $\mathcal{D} \subset \mathbb{R}^d$, we say a **hash function** H is (R, cR, p_1, p_2) -sensitive if it satisfies the following two conditions:

1. if
$$|\boldsymbol{x} - \boldsymbol{y}| \leq R$$
, then $\mathbb{P}[H(\boldsymbol{x}) = H(\boldsymbol{y})] \geq p_1$, and

2. if
$$|\mathbf{x} - \mathbf{y}| > cR$$
, then $\mathbb{P}[H(\mathbf{x}) = H(\mathbf{y})] \leq p_2$

Here, c is an approximation ratio and p_1 and p_2 are probabilities. In order for this definition to work, c > 1 and $p_1 > p_2$.

The definition states that two points x and y are hashed to the **same bucket** in the projection with a *very high probability* $\geq p_1$ if they are close to each other, and if they are not close to each other, then they will be hashed to the same bucket with a *low probability* $\leq p_2$. Next, we present the popular hash function families for the Hamming, Minkowski, Angular, and Jaccard distances.

2 Hamming-based Locality Hashing

Locality Sensitive Hashing was first proposed in [Indyk and Motwani, 1998] for the Hamming distance to solve the (R, c)-near neighbor search problem. The proposed method uses multiple hash functions and hash tables to be able to guarantee a good search quality. Moreover, authors theoretically find the optimal number of hash functions and hash tables in order to have constant hashing probabilities.

The **Hamming distance** for comparing two **binary** data strings of equal length is the number of positions at which the corresponding symbols are different.

$$\operatorname{dist}_{H}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i}^{d} |x_{i} - y_{i}|$$

where $x_i, y_i \in \{0, 1\}$ for all $i \in [1, d]$. [Indyk and Motwani, 1998] defined the LSH function as

$$H(\boldsymbol{x}) = x_i, \tag{1}$$

where x_i is the *i*-th dimension of the point x for some $i \in [1, d]$. Therefore, for two points x and y with a **Hamming distance** of r, the probability that they have the same hash value is

$$\mathbb{P}[H(\boldsymbol{x}) = H(\boldsymbol{y})] = 1 - \frac{r}{d}$$

. This LSH function is called $\underline{bit \ sampling}$. A random function H simply selects $a \ random \ bit$ from the input point.

3 Jaccard-based Locality Hashing

The **Jaccard distance** between two sets A and B is defined as

$$\operatorname{dist}_{J}(A,B) = \frac{|A \cap B|}{|A \cup B|} \tag{2}$$

It is also called **set resemblance** in [Indyk and Motwani, 1998, Broder et al., 2000].

Assume that for all documents of interest $S \subset [1, ..., n]$. The LSH functions that preserve the **Jaccard distance** [Broder et al., 2000] is defined as

$$H(A) = \min_{x_i \in A} \{ \pi(x_i) \}, \tag{3}$$

where $x_i \in A \subset S$ and π is a **random permutation** on the index set S from the set of all possible permutations Π . Therefore, for two points A and B with a Jaccard similarity of J, the probability that they have the same hash value is

$$\mathbb{P}[H(A) = H(B)] = J$$

Define the function family \mathcal{H} to be the set of all such functions and let D be the uniform distribution. Given two sets $A, B \subset S$, and H(A) = H(B), we need to show that the minimizer in $A \cup B$, $x_s := \arg\min_{x_i \in A \cup B} \{\pi(x_i)\}$ lies in $A \cap B$, i.e. $x_s \in A \cap B$

$$x_s := \arg\min_{x_i \in A \cup B} \{\pi(x_i)\}$$
since
$$\min_{x_i \in A} \{\pi(x_i)\} = \min_{x_i \in B} \{\pi(x_i)\}$$

$$\Rightarrow r = \pi(x_s) = \min_{x_i \in A} \{\pi(x_i)\} = \min_{x_i \in B} \{\pi(x_i)\}$$

$$\Rightarrow r = \min_{x_i \in A \cap B} \{\pi(x_i)\} \Rightarrow x_s = \arg\min_{x_i \in A \cap B} \{\pi(x_i)\}$$

As H was chosen uniformly at random, $\mathbb{P}[H(A) = H(B)] = \mathbb{P}\{x_s = \arg\min_{x_i \in A \cup B} \{\pi(x_i)\} : x_s \in A \cap B, \pi \in D\} = \mathbb{P}\{A \cap B | A \cup B\} = J.$

In practice, as in the case of hashing discussed in [Broder et al., 2000], we have to deal with the sad reality that it is impossible to choose π uniformly at random in Π . We are thus led to consider smaller families of permutations that still satisfy the *min-wise independence condition*.

Let Π be the set of all permutations of [n]. We say that a family of permutations $\mathcal{F} \subset \Pi$ is **pair-wise independent** if for any $\{x_1, x_2, y_1, y_2\} \subset [n]$ with $x_1 \neq x_2$ and $y_1 \neq y_2$,

$$\mathbb{P}\left\{\pi(x_1) = y_1 \ \land \ \pi(x_2) = y_2\right\} = \frac{1}{n(n-1)}$$

In a similar vein, in this paper, we say that a family of permutations $\mathcal{F} \subset \Pi$ is exactly **min-wise independent** (or just min-wise independent where the meaning is clear) if for any set $A \subset [n]$ and any $x \in A$, when π is chosen at random in \mathcal{F} we have

$$\mathbb{P}\{\min\{\pi(A)\} = \pi(x)\} = \frac{1}{|A|}.$$

We say that $\mathcal{F} \subset \Pi$ is **k-restricted min-wise independent** (or just restricted min-wise independent where the meaning is clear) if for any set $A \subseteq [n]$ with $|A| \leq k$ and any $x \in A$, when π is chosen at random in \mathcal{F} we have

$$\mathbb{P}\{\min\{\pi(A)\} = \pi(x)\} = \frac{1}{|A|}, \quad |A| \le k.$$

4 Angular-based Locality Hashing

Euclidean distance on a sphere corresponds to the angular distance or **cosine similarity**. For $x, y \in \mathcal{S}_d \subset \mathbb{R}^d$, i.e. $\|x\|_2 = \|y\|_2 = 1$. The **cosine similarity** is defined as

$$\cos(\theta_{x,y}) = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\|_2 \|\boldsymbol{y}\|_2} \tag{4}$$

And the normalized angle, referred to as <u>angular distance</u>, between any two vectors $x, y \in \mathcal{S}_d \subset \mathbb{R}^d$ is a formal distance metric and can be calculated from the cosine similarity.

$$\operatorname{dist}_{\theta}(\boldsymbol{x}, \boldsymbol{y}) = \frac{\theta_{x,y}}{\pi} = \frac{\arccos(\langle \boldsymbol{x}, \boldsymbol{y} \rangle)}{\pi}$$
 (5)

For the angular metric, [Chávez et al., 2001] defined the LSH functions as

$$H(\mathbf{x}) = \operatorname{sgn}\{\langle \mathbf{a}, \mathbf{x} \rangle\},\tag{6}$$

where $sgn(\cdot) \in \{-1, 1\}$ is the **sign function** and **a** is a random vector drawn from the **Normal** distribution. In this case, for two points x and y with $\theta_{x,y}$ defined as the angle between them, the probability that they have the same hash value is

$$\mathbb{P}[H(\boldsymbol{x}) = H(\boldsymbol{y})] = 1 - \frac{\theta_{x,y}}{d}$$

.

5 Minkowski-based LSH Techniques

The ℓ_p norm is

$$\|\boldsymbol{x}\|_p = \left(\sum_i |x|^p\right)^{\frac{1}{p}}$$

A distribution D over \mathcal{R} is called p-stable, if there exists $p \geq 0$ such that for any n real numbers v_1, \ldots, v_n and i.i.d. variables X_1, \ldots, X_n with distribution D, the random variable $\sum_i v_i X_i$ has the same distribution as the variable $\|\mathbf{v}\|_p X = (\sum_i |x|^p)^{\frac{1}{p}} X$, where X is a random variable with distribution D.

• The Cauchy distribution D_C , defined by the density function

$$f_1(x) = \frac{1}{\pi} \frac{1}{1+x^2}$$

is 1-stable

• The Gaussian (normal) distribution D_G , defined by the density function

$$f_2(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

is 2-stable

For the ℓ_p norm, [Datar et al., 2004] defined the LSH functions as

$$H_{\mathbf{a},b}(\mathbf{x}) = \left| \frac{\langle \mathbf{a}, \mathbf{x} \rangle + b}{w} \right| \tag{7}$$

where \boldsymbol{a} is a d-dimensional random vector chosen from the standard p-stable distribution and b is a real number chosen uniformly from [0, w), such that w is the width of the hash bucket. For two points \boldsymbol{x} and \boldsymbol{y} with a ℓ_p distance of r, the probability that they have the same hash value is

$$\mathbb{P}[H(oldsymbol{x}) = H(oldsymbol{y})] = \int_0^w rac{1}{r} f_p\left(rac{t}{r}
ight) \left(1 - rac{t}{w}
ight) dt.$$

Here, $f_{p}\left(t\right)$ is the density function of the p-stable distribution.

References

- Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher. Min-wise independent permutations. *Journal of Computer and System Sciences*, 60:630–659, 2000.
- Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroquín. Searching in metric spaces. ACM computing surveys (CSUR), 33(3):273–321, 2001.
- Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In *Proceedings of the twentieth annual symposium on Computational geometry*, pages 253–262, 2004.
- Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In *Proceedings of the thirtieth annual ACM symposium on Theory of computing*, pages 604–613, 1998.
- Omid Jafari, Preeti Maurya, Parth Nagarkar, Khandker Mushfiqul Islam, and Chidambaram Crushev. A survey on locality sensitive hashing algorithms and their applications. arXiv preprint arXiv:2102.08942, 2021.