Variable Selection

version: 2018-01-26 · 11:39:52

Motivation

- ▶ Linear Regression Model: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\boldsymbol{\beta}, \sigma^2)$
 - ▶ *n* observations $\mathbf{y} = (y_1, \dots, y_n)$
 - ightharpoonup p covariates $\beta = (\beta_1, \dots, \beta_p)$
- ▶ Maximum Likelihood: (assume $\sigma = 1$)
 - Likelihood: $\ell(\beta \mid \mathbf{y}, \mathbf{X}) = -\frac{1}{2} \sum_{i=1}^{n} (y_i \mathbf{x}_i' \beta)^2$.
 - ► For $p \le n$: $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$. $\mathbf{X}'\mathbf{X}$ is almost surely invertible when $p \le n$.
 - ► For p > n: X'X is singular \implies infinitely many likelihood-maximizing values:

$$\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\alpha}} + \operatorname{span}\{\hat{\gamma}_1, \dots, \hat{\gamma}_{p-n}\} \implies \sup \|\hat{\boldsymbol{\beta}}\| = \infty.$$

- ► Application of p > n:
 - ► y_i: level of cancer-associated antigen in subject i.
 - $ightharpoonup x_{ij}$: expression level for gene j.
 - ▶ Typical data: $n \sim 100$ 1K, $p \sim 1$ M.

Penalized Likelihood

- ► Model: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\beta, \mathbf{1}) \implies \ell(\beta \mid \mathbf{y}, \mathbf{X}) = -\frac{1}{2} \sum_{i=1}^n (y_i \mathbf{x}_i'\beta)^2$.
- ▶ Unconstrained MLE: $\hat{\beta} = \arg\min_{\beta} S(\beta)$, $S(\beta) = \sum_{i=1}^{n} (y_i \mathbf{x}_i'\beta)^2$.
 - For $p \leq n$: $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.
 - For p > n: $\hat{\alpha} + \operatorname{span}\{\hat{\gamma}_1, \dots, \hat{\gamma}_{p-n}\}$.
- ► Penalized Likelihood:

$$\tilde{\beta} = \operatorname*{arg\,min} \sum_{i=1}^n (y_i - \mathbf{x}_i' oldsymbol{eta})^2$$
 subject to $\rho(oldsymbol{eta}) < t$,

for some penalty function $\rho(\beta) \geq 0$.

- ▶ For p > n: Typically $\rho(\beta) < t \implies \|\beta\| < C \implies \tilde{\beta}$ is *likely* to be unique.
- For p < n: Bias $(\hat{\beta}) = E[\hat{\beta}] \beta_{\text{true}} = 0$, but Bias $(\tilde{\beta}) \neq 0$. However, for $p \approx n$ var $(\tilde{\beta}) \ll \text{var}(\hat{\beta})$, such that PL can have smaller mean squared error (MSE):

$$\mathsf{MSE}(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}_\mathsf{true}) \stackrel{\mathsf{def}}{=} \sum_{i=1}^p E[(\hat{\theta}_i - \theta_{i,\mathsf{true}})^2] = \sum_{i=1}^p \mathsf{Bias}(\hat{\theta}_i)^2 + \mathsf{var}(\hat{\theta}_i).$$

Ridge Regression

- ► Model: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\beta, 1) \implies \ell(\beta \mid \mathbf{y}, \mathbf{X}) = -\frac{1}{2} \sum_{i=1}^n (y_i \mathbf{x}_i'\beta)^2$.
- ▶ Unconstrained MLE: $\hat{\beta} = \arg \min_{\beta} \sum_{i=1}^{n} (y_i \mathbf{x}_i'\beta)^2$.
- ▶ L₂-Constraint:

$$\tilde{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \mathbf{x}'_i \beta)^2$$
 subject to $\sum_{j=1}^{p} \beta_j^2 \le t$.

Note: the constraint assumes equally weighted β_j . This is because the data are assumed to have been standardized, i.e., if $\mathbf{X}_j = (x_{1j}, \dots, x_{nj})$ is all observations of covariate j, then

$$x_{ij} \leftarrow \frac{x_{ij} - \mathsf{mean}(\mathbf{X}_j)}{\mathsf{sd}(\mathbf{X}_j)},$$

i.e., \mathbf{X}_j has mean 0 and variance 1. Thus, β_j is the change in $E[y \mid \mathbf{x}]$ per standard deviation of \mathbf{X}_j , with all other covariates being fixed. (For linear regression, it is also common to get rid of the intercept β_0 by setting $y_i \leftarrow y_i - \bar{\mathbf{y}}$.)

Ridge Regression

- ► Model: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\boldsymbol{\beta}, 1)$.
- ▶ Penalized Likelihood: Let $S(\beta) = \sum_{i=1}^{n} (y_i \mathbf{x}_i'\beta)^2$ and $\rho(\beta) = \sum_{j=1}^{p} \beta_j^2$. Constrained minimization

$$\tilde{\beta} = \operatorname*{arg\,min}_{\beta} S(\beta) \quad \text{subject to} \quad \rho(\beta) \leq t.$$
 (1)

Unconstrained Formulation:

$$\tilde{\beta} = \arg\min_{\beta} S(\beta) + \lambda \cdot \rho(\beta). \tag{2}$$

Proof: Let $\tilde{\beta}$ be the solution to (2) and $t = \rho(\tilde{\beta})$.

Then for
$$\beta$$
 subject to $\rho(\beta) \leq t = \rho(\tilde{\beta})$,
$$S(\tilde{\beta}) + \lambda \cdot \rho(\tilde{\beta}) \leq S(\beta) + \lambda \cdot \rho(\beta) \leq S(\beta) + \lambda \cdot \rho(\tilde{\beta})$$
$$\implies S(\tilde{\beta}) \leq S(\beta).$$

Ridge Regression

- ▶ Model: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\boldsymbol{\beta}, 1)$.
- ► Parameter Estimation:
 - ▶ Penalized likelihood with L_2 penality: $\tilde{\beta} = \arg\max \ell(\beta \mid \mathbf{y}, \mathbf{X}) \lambda \sum_{j=1}^p \beta_j^2$
 - ► Unconstrained formulation:

$$\tilde{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i' \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

▶ Solution: PL is quadratic in β , so use complete-the-squares to obtain

$$\tilde{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X} + \lambda^2 \mathbf{I}_p)^{-1} \mathbf{X}' \mathbf{y}.$$

- Questions:
 - **1.** How to pick λ ?
 - **2.** How to make PL-based confidence intervals for β ?

Lasso Regression

- ► Model: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\boldsymbol{\beta}, 1)$.
- ▶ Unconstrained MLE: $\hat{\beta} = \arg \min_{\beta} \sum_{i=1}^{n} (y_i \mathbf{x}_i'\beta)^2$.
- ▶ L₁ Constraint:

$$\begin{split} \tilde{\beta} &= \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \mathbf{x}_i' \boldsymbol{\beta})^2 \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \leq t \\ &= \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \mathbf{x}_i' \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} |\beta_j|. \end{split}$$

Lasso Regression

Advantage of Lasso over Ridge: Variable selection, i.e., some of the $\tilde{\beta}_j$ in Lasso can equal 0. The black contours correspond to the shape of $S(\beta) = \sum_{i=1}^n (y_i - \mathbf{x}_i'\beta)^2$. The corners of the contraint region allow Lasso to perform variable selection.

Elastic Net

- ► Model: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\boldsymbol{\beta}, 1)$.
- ▶ Penalized Likelihood: $\tilde{\beta} = \arg \max_{\beta} \ell(\beta \mid \mathbf{y}, \mathbf{X}) \lambda \rho(\beta)$.
 - Ridge Regression: $\rho(\beta) = \sum_{j=1}^{p} \beta_j^2$.
 - Lasso Regression: $\rho(\beta) = \sum_{i=1}^{p} |\beta_i|$.
- ▶ Advantage of Lasso over Ridge: Variable selection, i.e., some of the $\tilde{\beta}_j$ in Lasso can equal 0.
- ► Advantage of Ridge over Lasso: Better performance when covariates are highly correlated. (To see this, run demo posted online)
- ▶ Elastic Net Regression: Compromise between L_1 and L_2 constraints:

$$\tilde{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i' \boldsymbol{\beta})^2 + \lambda \cdot \rho_{\alpha}(\boldsymbol{\beta}),$$

where $\rho_{\alpha}(\beta) = \sum_{i=1}^{p} (1-\alpha)\beta_i^2 + \alpha|\beta_i|$ for $\alpha \in [0,1]$.

Elastic Net Regression

Constraint shapes for different penalty functions.

Elastic Net Regression

- ► Model: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\boldsymbol{\beta}, 1)$.
- ► Parameter Estimation:

$$\tilde{\beta} = \arg\min_{\beta} \underbrace{\sum_{i=1}^{n} (y_i - \mathbf{x}_i' \beta)^2}_{S(\beta)} + \lambda \cdot \underbrace{\sum_{j=1}^{p} (1 - \alpha) \beta_j^2 + \alpha |\beta_j|}_{\rho_{\alpha}(\beta)}.$$

- ▶ Lots of methods of solution, but the simplest and most effective for $p \gg n$ (and fixed λ , α) is **Coordinate Descent:**
 - ▶ Minimize $\Omega(\beta) = S(\beta) + \lambda \rho_{\alpha}(\beta)$ one β_j at a time holding the others fixed.
 - ▶ Continue cycling throught β_j 's until relative tolerance is reached.

Elastic Net Regression

Coordinate Descent

▶ Minimize $\Omega(\beta_1, \beta^*)$ as a function of β_1 with $\beta^* = (\beta_2, \dots, \beta_p)$ fixed:

$$\Omega(\beta_1, \boldsymbol{\beta}^*) = \sum_{i=1}^n (y_i - x_{1i}\beta_1 - \mathbf{x}_i^{*'}\boldsymbol{\beta}^*)^2 + \lambda\alpha|\beta_1| + \lambda(1-\alpha)\beta_1^2$$
$$+ \lambda \sum_{j=2}^p (1-\alpha)\beta_j^2 + \alpha|\beta_j|$$
$$= A\beta_1^2 + B\beta_1 + \lambda\alpha|\beta_1| + C$$

$$\implies \qquad \hat{\beta}_1 = \frac{\mathcal{Q}(\frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{x}_i^{\star \prime} \boldsymbol{\beta}^{\star}), 2n\lambda\alpha)}{1 + 2n\lambda(1 - \alpha)}, \qquad \text{wh}$$

$$Q(z, w) = \operatorname{sgn}(z)(|z| - w)_{+} = \begin{cases} z - w & z > 0, w < |z| \\ z + w & z < 0, w < |z| \\ 0 & w > z \end{cases}$$

Least-Angle Regression (LARS)

► Elastic Net:

$$\tilde{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i' \boldsymbol{\beta})^2 + \lambda \cdot \sum_{j=1}^{p} (1 - \alpha)\beta_j^2 + \alpha |\beta_j|.$$

- ▶ **Motivation:** Coordinate descent is best for fixed λ . But how to pick λ ?
- ▶ LARS: Calculates $\tilde{\beta}$ at every λ in only p steps.

Least-Angle Regression (LARS)

Basic Idea:

As explained by Robert Tibshirani here:

- **1.** Start with all coefficients β_i equal to zero.
- **2.** Find the predictor x_j most correlated with y. Increase the coefficient β_j in the direction of the sign of its correlation with y. Take residuals $r = y \hat{y}$ along the way. Stop when some other predictor x_k has as much correlation with r as x_j has.
- **3.** Increase (β_j, β_k) in their joint least squares direction, until some other predictor x_m has as much correlation with the residual r.
- 4. Continue until: all predictors are in the model.

Least-Angle Regression (LARS)

Illustration

From the original LARS paper by Efron et al (2004). The LARS estimator at step k is $\hat{\mu}_k$. Between step k and k+1, the estimator goes towards the OLS estimate \bar{y}_{k+1} .

Picking the Value of λ

Objective 1: Minimize Prediction Error

- ▶ Model: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\boldsymbol{\beta}, \sigma^2)$
- **Parameter Estimation:** Elastic net for fixed α as a function of λ :

$$\tilde{\beta}_{\lambda} = \operatorname*{arg\,min}_{\beta} \sum_{i=1}^{n} (y_i - \mathbf{x}_i'\beta)^2 + \lambda \cdot \sum_{j=1}^{p} (1 - \alpha)\beta_j^2 + \alpha |\beta_j|.$$

▶ **Objective:** Suppose that $(y, \mathbf{x}) \sim f(y, \mathbf{x})$ have a joint distribution. Let $\tilde{\beta}_{\lambda}^{\text{obs}}$ denote the elastic net estimator for the given dataset $(\mathbf{y}_{\text{obs}}, \mathbf{X}_{\text{obs}})$. Then we wish to minimize the mean square prediction error (MSPE)

$$\hat{\lambda} = \arg\min \mathsf{MSPE}(\lambda), \qquad \mathsf{MSPE}(\lambda) = E[\{y - \mathbf{x}' \tilde{\beta}^{\mathsf{obs}}_{\lambda}\}^2].$$

Picking the Value of λ

Objective 1: Minimize Prediction Error

- ▶ Model: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\boldsymbol{\beta}, \sigma^2)$
- ▶ Parameter Estimation: $\tilde{\beta}_{\lambda} = \underset{\beta}{\arg\min} \sum_{i=1}^{n} (y_i \mathbf{x}_i'\beta)^2 + \lambda \cdot \sum_{i=1}^{p} (1 \alpha)\beta_j^2 + \alpha|\beta_j|.$
- ▶ Prediction Error: $\hat{\lambda} = \arg\min_{\lambda} \mathsf{MSPE}(\lambda)$, $\mathsf{MSPE}(\lambda) = E[\{y x'\tilde{\beta}_{\lambda}^{\mathsf{obs}}\}^2]$.
- ► MSPE Estimation: Use cross-validation:
 - ▶ Separate data into training and test sets: (y_{train}, X_{train}) and (y_{test}, X_{test}) .
 - ► MSPE estimate: $\widehat{\text{MSPE}}(\lambda) = \sum_{i=1}^{n_{\text{test}}} \{y_i^{\text{test}} \mathbf{x}_i^{\text{test}}/\widetilde{\beta}_{\lambda}^{\text{train}}\}^2$, where $\widetilde{\beta}_{\lambda}^{\text{train}}$ is calculated from $(\mathbf{y}_{\text{train}}, \mathbf{X}_{\text{train}})$.
 - ► *K-Fold CV*: (i) Randomly separate separate data into *K* sets (ii) MSPE estimate is

$$\widehat{\mathsf{MSPE}}(\lambda) = \sum_{k=1}^K \widehat{\mathsf{MSPE}}_k(\lambda),$$

where $\widehat{\mathsf{MSPE}}_k(\lambda)$ has subset k as test set, and remaining data as training set.

Picking the value of λ

Objective 2: Don't miss any non-zero β_j 's

- ▶ Model: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\boldsymbol{\beta}, \sigma^2)$
- ▶ **Covariance Test:** For each step k of LARS, can construct a test statistic T_{k+1} such that under

 H_0 : All k non-zero β_i 's have been identified,

as $n, p \to \infty$ (but p < n) we have

$$T_{k+1} \mid H_0 \rightarrow \mathcal{F}(2, n-p).$$

▶ In Practice: Stop LARS at first value of k-1 such that

$$pval \leftarrow pf(q = Tk, df1 = 2, df2 = n-p, lower.tail = FALSE)$$

is greater than 5%.

Resources

- ▶ lars: Package for LARS and Lasso.
- ► covTest: Implementation of covariance test. Paper by Lockhart et al (2014) can be found here.
- ▶ glmnet: Very efficient LARS-type elastic net calculation for many GLMs.