PORTFOLIO

TABLE OF CONTENTS

01

Introduction

02 Projects

ByungJoo Chae

+82 10-28030965 wpdhkd1642@gmail.com

www.linkedin.com/in/byungjoo-chaebaa661198

Experience

2025.01 -2024.03 **DexterStudios R&D Department ML Engineer**

● 회사에서 필요로 하는 AI 솔루션을 개발하고 배포하는 역할을 하고 있음.

Education

- 충남대 전자공학과 석사과정
- 2024.02 - 2022.03
- 연구실: CVIP Lab
- 지도 교수: 조동현 교수님

2022.02 - 2016.03

● 충남대학교 전자공학과 학사과정

Project List

Project title	Keywords	Date	Role
Financial Agent AI	Agent AI, LLM	2025.03 -	Developer
Poptale – Translator	Poptale – Translator LLM, Prompt Engineering		Developer
De-aging for VFX	Diffusion, De-aging, Video Consistency	2024.05 - 2025.01	Developer
Light Weight Ultra Style transfer Model	LightWeight Model, Ultra Style transfer	2023.12 - 2024.02	Developer
Patch-based Painterly Harmonization for High Resolution Images	Painterly Dataset, Image Harmonization	2023.05 - 2023.12	1 st Author (graduation thesis)
Development of Deep Real Technology	Harmonization, Synthetic Dataset	2022.06 - 2023.07	Developer
Online Learning for Reference- Based Super-Resolution	Online learning, Super Resolution, Reference Image	2021.06 - 2022.03	1 st Author (MDPI, Electronics)

Projects - Financial Agent Al

Introduction

• 한국투자증권 API를 사용하여 해외 밈 주식 추천과 주식 매매를 할 수 있는 Agent AI 만드는 것을 목표

Duration / People

- 2025.03 ~
- 개발자 4명

Skill

- 기술 스택: langchain, langgraph, Airflow, postgresql
- Language: Python

Contribution

역할 요약: 개발자 역할 담당

세부 내용:

- Airflow를 이용하여 주기적으로 해외 사이트 정보를 크롤링하고 postgresql에 저장하는 ETL 파이프라인 구성.
- 크롤링한 정보를 바탕으로 IIm을 이용하여 밈 주식 기능을 하는 AI 개발

Ж

- 해당 프로젝트는 추후 6월 중 오픈소스로 공개 예정.
- 활동 링크 첨부: https://github.com/Pseudo-Lab/Agent is all you need/discussions/3

Projects - Poptale: Translator

Introduction

• Text-to-image 서비스에서 User 편의성을 위해 한글 입력을 영어 이미지 프롬프트로 바꾸는 것을 목표

Duration / People

- 2025.02 ~
- 개발자 1명

Skill

- 기술 스택: langchain, fastapi
- Language: Python

Contribution

역할 요약 : 개발자 역할 담당

세부 내용 :

- Text-to-image 서비스의 기존 Google 번역기를 사용하던 구조에서 Gemma3 모델을 활용하여 text-toimage 유저의 한글 입력을 영어 프롬프트로 번역하도록 하여 비용 감축함.
- key-value 형태로 입력된 정보를 기반으로 이미지 프롬프트를 생성하는 프롬프트 엔지니어링을 수행하여 자체 서비스에 도입함.

Pipeline

입력: 성별: 여자, 나이 대: 5-year-old, 헤어 색: 딸기우유 색깔, 헤어스타일: 양 갈래로 묶은 머리, 눈 색상: bright hazel, 추가묘사: 항상 웃고 다니며 고양이 인형을 들고 다닌다

출력: A 5-year-old girl has strawberry milk-colored hair styled in pigtails and bright hazel eyes, she is a person who always smiles and carries a cat doll.

[유저의 선택 사항을 프롬프트로 만들어주는 예시]

입력: 그는 행복한 표정을 지으면서, 산 아래에서 등산할 준비를 하고 있다.

출력: He's smiling as he prepares to hike down the mountain.

[한영 번역 예시]

 유저가 이미지 생성 전 선택할 수 있는 prompt 제공 후 해당 프롬프트를 영어로 된 이미지 프롬프트로 바꿔주기 위해 few shot prompting 하여 진행.

Projects – De-aging for VFX

Introduction

• Drama와 영화에서 요구하는 나이가 어리게 만드는 De-aging solution을 제공 하는 것을 목표

Duration / People

- 2024.04 ~ 2025.01
- Supervisor 1명, 개발자 1명

Skill

- Framework : Pytorch
- Language : Python

Contribution

역할 요약 : 개발자 역할 담당

세부 내용:

Version 1

- 디퓨전을 사용한 디에이징 모델을 연구하고, 동아시아 얼굴 데이터셋을 이용하여 모델을 finetuning 하여 디에이징 가능한 연령대를 확장함.
- 프레임 전반에 걸쳐 일관되고 효율적인 디에이징 효과를 보장하는 비디오 디에이징 파이프라인을 개발함.

Version 2

 Version 1의 De-aging Image 모델의 속도를 개선하기 위하여 Instructpix2pix모델을 사용하여 약 90% inference 속도를 줄임.

Pipeline

- De-aging diffusion model Fading을 이용하여 만든 De-aging Image pipeline 및 De-aging Image를 video에 적용할 수 있는 Video Consistency pipeline으로 구성
- 기존 Fading 모델의 경우 age estimation이 서양인 dataset으로 학습되어 동양인의 나이를 너무 어리게 예측하는 경우가 많아 de-aging 할 수 있는 폭을 줄이거나 어린아이를 만들어 냄.

Dataset Re-labeling

Dataset Re-labeling

- Kaggle에서 East Asian Dataset을 구한 후 pretrained age estimation Dex 모델을 이용하여 labeling 값에 random으로 10~20세를 더하여 labeling 진행
- → 기존 age estimation은 동양인을 10~20세 어리게 예측하는 경향이 있음 (예시: 전지현 기존 age estimation: 20대 초반으로 예측, 실제 나이 : 40대 중반)

Video Consistency

- Video Consistency 모델의 학습은 original image를 입력으로 사용하고, De-aging image를 GT로 사용하여 학습 진행
- 한 인물에 대해서 overfitting을 진행하기 때문에 한 scene의 동일 인물에 대해서는 de-aging된 결과를 만들 수 있음.

Result

- De-aging 결과 피부 측면에서 깨끗해진 것을 확인할 수 있음.
- Consistency도 잘 유지된 것을 확인할 수 있음.

Deployment and Serving

- Dockerfile을 이용하여 build 하여 Docker Image를 만들어 De-aging solution을 사용할 수 있는 server로 만듬.
- Docker Image에는 server 환경 구축을 하기 위하여 Redis, Celery와 FastAPI를 사용하였음.

Deployment and Serving

- Client가 httpx를 이용해서 Server에 Request 했을 시에 Server에서 Response 받는 식으로 동작 하도록 구성
- Client는 Nuke 환경에서 실행하도록 하며, Docker image로 만들어 gpu 가 탑재된 각 사용자의 local 데스크탑에 배포하여 사용하도록 함.
- → 이 방법이 server computer를 구축하여 만드는 것 보다 효율적이라고 판단

De-aging Image 0.2v

Purpose: 0.1v의 De-aging Image의 inference 속도가 90sec/image가 걸리기 때문에 속도 개선하는 것을 목표

Model Dataset

- InstructPix2Pix 모델 선택: prompt-to-prompt 방식이라서 Inference 속도가 빠름.
- Dataset: 동양인 Dataset in kaggle

De-aging Image 0.2v

Data Preparation

- 기존에 사용하고 있던 De-aging model을 이용하여 Input 이미지를 De-aging 하여 학습에 이용할 Data Pair를 생성
- 기존 나이를 예측 후 50대,40대,30대,20대, 20대 이하에 따라서 각 다른 age 범위를 줘서 Dataset 생성.
- Data 생성 기준은 20세 이상의 사람에 대해서 random으로 De-aging을 함.

De-aging Image 0.2v

- 기존에 사용하고 있던 De-aging model을 이용하여 Input 이미지를 De-aging 하여 학습에 이용할 Data Pair를 생성
- Data 생성 기준은 20세 이상의 사람에 대해서 random으로 De-aging을 함.

Projects – Light Weight Ultra Style Transfer Model

Introduction

• Ultra resolution의 Style Transfer를 할 수 있는 light weight model을 개발하는 것을 목표

Duration / People

- 2023.12 ~ 2024.02
- 개발자 1명

Skill

• Framework : Pytorch

Language: Python

Contribution

역할 요약 : 개발자 역할 담당

세부 내용 :

- 전체적인 모델의 구조를 ConvMixer라는 모듈을 이용하여 가볍게 만듬.
- Learnable한 module을 이용하여 Global한 정보와 local한 정보를 이용하여 style 정보를 전달

Pipeline

Overall Pipeline

- ConvMixer 모듈을 이용하여 lightweight backbone을 제작
- Style Encoder로부터 얻게 되는 feature 정보를 증폭시키기 위하여 Triple Modulator 방법을 사용
- Style dataset인 Wikiart dataset의 Class imbalance를 고려하여 Negative sample을 제작할 때 jittering을 사용

FIGURE 4. Details of our Triple Modulator

Results

-Distill

Method	Parmas/10 ⁶	Storage/MB	GFLOPs	Time/sec	Content Loss	Style Loss
AdaIN-U [2]	7.011	94.100	5841.9	3.59	2.086	1.209
LST-U [2]	12.167	48.600	6152.1	3.61	1.920	0.949
Collab-Distill [21]	2.146	9.659	1338.9	8.03	3.363	0.295
MicroAST [24]	0.472	1.857	374.9	0.62	2.120	0.584
Ours	0.306	1.239	226.2	0.56	1.990	0.579

• 가벼웠던 모델인 MicroAST 보다 30% parameter와 GFLOPs를 줄이면서 style 정보 전달과 content 보존을 잘하는 Ultra-Style transfer 모델을 제작

Projects – Patch-based Painterly Harmonization for High Resolution Images

Introduction

• Painterly Harmonization 학습을 위한 Dataset 구축 및 성능 향상을 높이기 위한 것을 목표

Duration / People

- 2023.05 ~ 2023.12
- 개발자 1명

Skill

- Framework : Pytorch
- Language: Python

Contribution

역할 요약 : 개발자 역할 담당

세부 내용 :

- Painterly Harmonization Dataset 구축
- Painterly Harmonization 환경에서 patch기반 Image harmonization에서 성능을 높임.

Data Generation

[Data Generate Overview]

- High Resolution Painterly Dataset의 부재로 인하여 Dataset 생성.
- Image harmonization의 benchmark dataset인 HAdobe5k, Style dataset wikiart dataset을 이용하여 생성.

Architecture

• High Resolution 이미지에 관련된 HRNet-idih를 Base model로 사용.

Model

2 Patch-wise Method (Feature Extractor)

▶ Style patch selection use VGG Network to use semantic feature

Patch-wise Method(Style Transfer) Global Style transfer Resize feature Foreground(f) Input Patch(Ip) Harmonization Background Background Harmonization Decoder

Global Style transfer = Decoder_feature * std + mean

② Patch-wise Method(Style Transfer)

- · 주변과 유사하게 만들 foreground와 유사한 특징을 갖는 patch를 찾아 style 전달하는 방식으로 진행.
- Global한 정보와 local 한 정보를 모두 전달하기 위한 방식으로 진행.

Local Style transfer = (f - mean(f))/std(f) *std(s)+ mean(s)

Results

Quantitative Results

1024 x 1024

Model	PSNR	fMSE	MSE		
Composite Image	24.12	4360.57	674.27		
ldih ^[5]	28.21	1487.14	252.86		
Is²am ^[5]	30.71	849.09	135.93		
HRNET-Idih ^[5]	30.76	809.16	137.60		
Ours	31.11	725.79	127.97		

Qualitative Results

1024 x 1024

- High Resolution Painterly Dataset을 제작
- Local한 정보와 Global 정보를 이용하여 성능을 높임.
- Painterly Harmonization 환경에서 patch기반 Image harmonization에서 성능을 높임.

Projects – Development of Deep Real Technology

Introduction

 Synthetic한 환경에서 배경에 전경을 합성할 수 있는 Harmonization에 맞는 Dataset 습득 및 모델 학습하는 것을 목표.

Duration / People

- 2022.07 ~ 2023.06
- 개발자 1명, 업체 1곳

Skill

- Framework : Pytorch
- Language : Python

Contribution

역할 요약 : 개발자 역할 담당

세부 내용 :

- Data Generation 하는 방식을 제안
- Synthetic한 Harmonization dataset 만드는 것을 자동화 함.

Data Generate

1. Data Generate

Data Generation Synthetic Dataset

2. Mask Generate

3. Composite Image Generate

Mask

Foreground

Target

Objld

Copy

and Paste

- Synthetic한 Harmonization dataset 만드는 것을 자동화 함.
- Unreal 환경에서 얻을 수 있는 Raw Dataset으로 부터 학습에 필요한, composite Image, Mask, GT를 얻는 절차를 진행.

Pipeline

Harmonization Model

Image

Metric

Model	MSE	fMSE	PSNR
Base Model	162.81	2145.53	27.36
Fine-tuning	49.00	549.05	32.43

- 26,157장의 train dataset을 이용하여 Harmonization 모델을 fine-tuning 하고 1,000장의 evaluate dataset으로 평가를 진행함.
- 결과적으로 mask 부분이 주변과 어울리는 결과를 만들 수 있었음.

Projects – Online Learning for Reference-Based Super-Resolution

Introduction

• Reference 이미지를 이용하여 SR 모델의 성능향상을 목표로 함.

Duration

2023.05 ~ 2023.12

Skill

Framework : PytorchLanguage : Python

Contribution

역할 요약 : 공동 1저자

세부 내용 :

- 다양한 데이터 쌍을 학습하기 위한 Reference-based Super Resolution를 위한 온라인 학습 방법 제안
- 간단하지만 효과적이며, SISR와 RefSR 모델 모두에 원활하게 결합될 수 있음
- Reference image와 Input 이미지간의 유사성 정도에 크게 영향을 받지 않고 일관된 성능향상을 보임.

Pipeline

Online learning (SISR)

Online learning(RefSR)

Model SISR RefSR D_s^{Ref} D_r^{Ref1} D_r^{Ref2} D_s^{LR} D_s^{Pse} D_r^{Pse} Data Pair D_r^{LR} $I^{LR} \downarrow$ $I^{LR} \downarrow$ $\bar{I}^{HR} \downarrow$ $I^{Ref} \downarrow$ \bar{I}^{HR} | $I^{Ref} \downarrow$ I^{Ref} . X I^{LR} \bar{I}^{HR} I^{Ref} R \bar{I}^{HR} Y I^{LR} I^{Ref} I^{LR} \bar{I}^{HR} I^{Ref} I^{Ref}

- Data Pair(X)
 - Network Data Pair(Y) Data Pair(R)
- Inference Test LR Network SR Ref

- Reference Image를 포함한 다양한 Data Pair에 대해서 실험.
 - SISR, RefSR 모두에서 추가적인 모듈없이 좋은 성능을 얻음.

Results

Model	Method	PSNR↑	SSIM↑	LPIPS↓
RCAN	Pre-trained	26.243	0.774	0.2906
	D _s ^{Ref}	26.703	0.782	0.2856
O DCAN	$D_{\text{s}}^{LR} + D_{\text{s}}^{Ref}$	26.810	0.785	0.2796
Ours + RCAN	$D_{\text{s}}^{\text{Pse}} + D_{\text{s}}^{\text{Ref}}$	26.634	0.781	0.2887
	$D_{\text{s}}^{\text{LR}} + D_{\text{s}}^{\text{Pse}} + D_{\text{s}}^{\text{Ref}}$	26.681	0.782	0.2862

Model	Method	PSNR↑	SSIM↑	LPIPS↓
SRNTT	Pre-trained	25.17	0.734	0.2099
$SRNTT-l_2$	Pre-trained	26.06	0.765	0.2758
SSEN	Pre-trained	26.412	0.776	0.2915
	$\mathrm{D_{r}^{LR}}$	26.112	0.764	0.2884
	$\mathrm{D_{r}^{Pse}}$	26.527	0.777	0.2930
Ours + SSEN	$\mathrm{D_{r}^{Refl}}$	26.276	0.770	0.2895
Ours + SSEN	$\mathrm{D_r^{Ref2}}$	26.675	0.780	0.2874
	$D_{\mathrm{r}}^{\mathrm{LR}} + D_{\mathrm{r}}^{\mathrm{Ref1}}$	26.257	0.769	0.2946
	$D_{r}^{Pse} + D_{r}^{Ref2}$	26.568	0.777	0.2924
TTSR-rec	Pre-trained	27.039	0.799	0.2653
	$\mathrm{D_{r}^{LR}}$	26.812	0.788	0.2545
	$\mathrm{D_{r}^{Pse}}$	27.337	0.801	0.2663
Ours +	D _r ^{Ref1}	26.986	0.794	0.2614
TTSR-rec	$\mathrm{D_{r}^{Ref2}}$	27.383	0.802	0.2578
	$D_{r}^{LR} + D_{r}^{Ref1}$	26.900	0.790	0.2529
	$D_{r}^{\text{Pse}} + D_{r}^{\text{Ref2}}$	27.400	0.801	0.2663

Results

Model	Kernel	Blind	Method	PSNR	SSIM	LPIPS	Model	Kernel	Blind	Method	PSNR	SSIM	LPIPS
	$g_{0.2}^d$	-	Pre-trained	17.938	0.497	0.4111		$g_{0.2}^d$	-	Pre-trained	18.415	0.524	0.4039
		2 Non-blind	$D_s^{LR} + D_s^{Ref}$	24.532	0.727	0.2010			Non-blind	D_r^{Ref1}	23.489	0.688	0.3423
		Non-onnu	$D_s + D_s$	24.332	0.737	0.2910			Non-billiu	D_r^{Ref2}	24.168	0.717	0.3232
		-	Pre-trained	21.131	0.597	0.3335		$g_{2.0}^d$	-	Pre-trained	21.211	0.609	0.3127
	$g_{2.0}^d$	Non-blind	$D_s^{LR} + D_s^{Ref}$	26.545	0.783	0.2586			Non-blind	D_r^{Ref1}	25.911	0.760	0.2647
		140ii-biilid	$D_s + D_s$	20.545	0.765	0.2300	Ours+TTSR-rec [18]		INOH-DIIII	D_r^{Ref2}	26.561	0.784	0.2624
	g ^d S _{ani}	-	Pre-trained	21.198	0.587	0.3609		$g^d_{\it ani}$	-	Pre-trained	21.199	0.596	0.3367
Ours+RCAN [7]		Non-blind D_{c}^{IJ}	$D_s^{LR} + D_s^{Ref}$ 26.4	26.414 0.	0.775	0.2679			Non-blind	D_r^{Ref1}	25.512	0.741	0.2841
		140ii-biilid	$D_s + D_s$	20.414	0.775	0.2077				D_r^{Ref2}	26.199	0.768	0.2754
		-	Pre-trained	25.484	0.738	0.3314			-	Pre-trained	26.147	0.767	0.2912
	$g_{1.3}^{b}$	Non-blind	$D_s^{LR} + D_s^{Ref}$	26.909	0.700	0.2507		$g_{1.3}^b$	Non-blind	D_r^{Ref1}	26.599	0.781	0.2471
		Non-onnu	$D_s + D_s$	20.909	0.790	0.2391				D_r^{Ref2}	26.989	0.796	0.2471
		-	Pre-trained	21.798	0.606	0.3914		-	-	Pre-trained	21.820	0.615	0.3603
	-	Blind	$D_s^{LR} + D_s^{Ref}$	24 277	0.602	0.3480			Blind	D_r^{Ref1}	23.928	0.672	0.3535
		Dilliu	$D_S + D_S$	24.211	0.092	0.5480			Dillid	D_r^{Ref2}	24.010	0.684	0.3461

• Isotropic ,anisotropic한 다양한 kernel에 대해서도 Reference 영상을 사용함으로써 더 좋은 결과를 만들어 냄.

THANKS!

Do you have any questions?

wpdhkd1642@gmail.com

+82 10-2803-0965