7 弱収束と汎弱収束

7.1 弱収束

• $(X, \|\cdot\|)$ をノルム空間とする. X の点列 $\{x_n\}$ が $x \in X$ に収束するとは

$$\lim_{n \to \infty} ||x_n - x|| = 0$$

が成り立つことであり

$$x_n \to x \ (n \to \infty) \ \text{in } X$$

とかくのであった. このとき $\{x_n\}$ は x に強収束するともいう.

• これに対し、 $\{x_n\}$ が x に**弱収束**するとは、任意の $f \in X^*$ に対して

$$\lim_{n \to \infty} f(x_n) = f(x)$$

が成り立つことをいう。このとき

$$x_n \rightharpoonup x \ (n \to \infty)$$
 in X , $x_n \stackrel{\text{w}}{\rightharpoonup} x \ (n \to \infty)$ in X

などと表す.

• H が (\cdot, \cdot) を内積とする Hilbert 空間のとき、任意の $f \in H^*$ はある $x_f \in H$ を用いて $f(x) = (x, x_f)$ と表されるので、 $x_n \rightharpoonup x \ (n \to \infty)$ in H は

$$\lim_{n \to \infty} (x_n, y) = (x, y) \quad (\forall y \in H)$$

と同値である.

命題 7.1

 $(X, \|\cdot\|)$ をノルム空間とする. $\{x_n\}$ が x および y に弱収束するならば x=y である.

証明

- 仮定から任意の $f \in X^*$ に対し $\lim_{n \to \infty} f(x_n) = f(x)$ でありかつ $\lim_{n \to \infty} f(x_n) = f(y)$ であるから f(x) = f(y) である.
- したがって f(x-y) = 0 ($\forall f \in X^*$) が成り立つ.
- 定理 6.1 より $x y = o_X$ つまり x = y である. \square
- $\{x_n\}$ が x に弱収束するとき

$$\text{w-}\lim_{n\to\infty}x_n=x$$

と表す. このとき x を $\{x_n\}$ の弱極限という.

命題 7.2

 $(X,\|\cdot\|)$ をノルム空間とする。 $\{x_n\}$ が x に強収束するならば $\{x_n\}$ は x に弱収束する.

証明 $f \in X^*$ を任意にとると

$$|f(x_n) - f(x)| = |f(x_n - x)| \le ||f||_{X^*} ||x_n - x|| \to 0 \quad (n \to \infty)$$

したがって $\lim_{n\to\infty} f(x_n) = f(x)$ が成り立つ. \square

命題 7.3

 $(X,\|\cdot\|)$ をノルム空間とする。 $\{x_n\}$ が x に弱収束するならば $\{\|x_n\|\}$ は有界な実数列であり

$$||x|| \le \liminf_{n \to \infty} ||x_n||$$

が成り立つ.

証明

• $f \in X^*$ に対して $T_n(f) = f(x_n)$, T(f) = f(x) とおくと

$$|T_n(f)| \le ||f|| ||x_n||, |T(f)| \le ||f|| ||x||$$

より $T_n, T \in X^{**}$ である.

• X^* は Banach 空間で各 $f \in X^*$ に対して $\lim_{n \to \infty} T_n(f) = \lim_{n \to \infty} f(x_n) = f(x) = T(f)$ であるから Banach-Steinhaus の定理(定理 2.3)より

$$\sup_{n\in\mathbb{N}} \|T_n\|_{X^{**}} < \infty$$

でありかつ

$$||T||_{X^{**}} \le \liminf_{n \to \infty} ||T_n||_{X^{**}} \tag{7.1}$$

が成り立つ.

• また $T_n = Jx_n$, T = Jx とかけるので 定理 6.4 より

$$||T_n||_{X^{**}} = ||Jx_n||_{X^{**}} = ||x_n||, ||T||_{X^{**}} = ||x||$$

が成り立つ. したがって $\{||x_n||\}$ は有界列である.

• 最後に(7.1)より

$$||x|| = ||T||_{X^{**}} \le \liminf_{n \to \infty} ||T_n||_{X^{**}} = \liminf_{n \to \infty} ||x_n||$$

が成り立つ. □

命題 7.4

H を (\cdot,\cdot) を内積とする Hilbert 空間とする. $\{x_n\}$ が x に弱収束し $\lim_{n\to\infty}\|x_n\|=\|x\|$ が成り立つならば $\{x_n\}$ は x に強収束する.

証明

$$||x_n - x||^2 = (x_n - x, x_n - x) = ||x_n||^2 - 2\operatorname{Re}(x_n, x) + ||x||^2$$

であり、仮定から $\lim_{n\to\infty}(x_n,x)=(x,x)=\|x\|^2$ であるので

$$\lim_{n \to \infty} ||x_n - x||^2 = ||x||^2 - 2\operatorname{Re}(x, x) + ||x||^2 = 0$$

である. □

 $\boxed{\pmb{\theta}}$ $H=l^2$ つまり $\sum\limits_{n=1}^{\infty}|x_n|^2<\infty$ を満たす複素数列 $\pmb{x}=\{x_n\}_n$ 全体とする. $\pmb{x}=\{x_n\}_n,\, \pmb{y}=\{y_n\}_n\in l^2$ に対して内積 (\pmb{x},\pmb{y}) は

$$(\boldsymbol{x}, \boldsymbol{y}) = \sum_{n=1}^{\infty} x_n \overline{y_n}$$

で定義される。 $e_k = \{\delta_{kn}\}_n$ とする。つまり e_k は第 k 項は 1 でその他 0 である数列 である。明らかに $e_k \in l^2$ $(k=1,2,\cdots)$ である。任意の $\mathbf{x} = \{x_n\}_n \in l^2$ に対して $x_k = (\mathbf{x}, \mathbf{e}_k) = \overline{(e_k, \mathbf{x})}$ で $|x_k| = |(\mathbf{e}_k, \mathbf{x})|$ であり

$$\sum_{n=1}^{\infty} |x_n|^2 = \sum_{n=1}^{\infty} |(\boldsymbol{e}_n, \boldsymbol{x})|^2 < \infty$$

である。収束する級数の性質から $\lim_{n\to\infty}(e_n,x)=0$ が成り立つ。 $x\in l^2$ は任意であるから l^2 の点列 $\{e_n\}$ は 0 つまり全ての項が 0 である数列に弱収束する。しかし

$$\|\boldsymbol{e}_n - \boldsymbol{0}\| = 1 \ (\forall n \in \mathbb{N})$$

より強収束はしない.

7.2 弱収束と閉凸包

• X をベクトル空間とする. $x_1, \dots, x_N \in X$ に対して

$$\sum_{k=1}^{N} \lambda_k x_k, \quad \left(\lambda_k \ge 0, \quad \sum_{k=1}^{n} \lambda_k = 1\right)$$

の形に表されるベクトルを x_1, \dots, x_n の**凸結合**という.

補題 7.5

X をベクトル空間,C を X の空でない部分集合で凸集合であるとする.このとき 任意の $x_1, \cdots, x_N \in C$ に対してこれらの凸結合は C の要素である.

|**証明**| 凸結合 $\lambda_1 x_1 + \cdots + \lambda_N x_N$ が C の要素であることを N に関する帰納法で示す.

- N=1 のとき C の 1 個のベクトル x_1 の凸結合は x_1 自身であるので N=1 のときは明らかに成り立つ.
- C の任意の N 個のベクトルの凸結合が C の要素であると仮定する.このとき C の任意の N+1 個のベクトル x_1, \dots, x_N, x_{N+1} の凸結合

$$\lambda_1 x_1 + \cdots + \lambda_N x_N + \lambda_{N+1} x_{N+1}$$

を考える. $\lambda_{N+1}=0$ のときは帰納法の仮定からこれは C の要素である. $\lambda_{N+1}=1$ のときは $\lambda_1=\cdots=\lambda_N=0$ より N=1 の場合に帰着されるのでこの場合も C の要素である.

• $0 < \lambda_{N+1} < 1$ の場合を考える. このとき $\lambda_1 + \cdots + \lambda_N = 1 - \lambda_{N+1}$ より $0 < \lambda_1 + \cdots + \lambda_N < 1$ である.

$$\lambda(\lambda_1 + \dots + \lambda_N) = 1 \quad \text{of} \quad \lambda = \frac{1}{\lambda_1 + \dots + \lambda_N}$$

とおくと $\lambda > 1$ である。帰納法の仮定から

$$x := (\lambda \lambda_1) x_1 + \dots + (\lambda \lambda_N) x_N \in C$$

である $(x \ tal \ x_1, \cdots, x_N \ o$ 凸結合である).

C は凸であるから

$$\lambda_1 x_1 + \dots + \lambda_N x_N + \lambda_{N+1} x_{N+1} = \frac{1}{\lambda} x + \left(1 - \frac{1}{\lambda}\right) x_{N+1} \in C$$

- 以上帰納法により任意の N 個の C のベクトルの凸結合は C の要素である. \square
- S を X の部分集合とするとき S の有限個のベクトルの凸結合全体を S の凸 包といい $\cos(S)$ とかく:

$$co(S) = \left\{ \sum_{k=1}^{N} \lambda_k x_k : N \in \mathbb{N}, x_k \in S, \lambda_k \ge 0 (k = 1, \dots, N), \sum_{k=1}^{N} \lambda_k = 1 \right\}$$

co(S) は S を含む凸集合である (証明せよ).

• $(X, \|\cdot\|)$ をノルム空間, S を X の空でない部分集合とするとき, co(S) の閉包 $\overline{co(S)}$ を S の**閉凸包**といい, $\overline{co}(S)$ とも書く. 凸集合の閉包は凸集合であるので(証明せよ) $\overline{co}(S)$ は S を含む閉凸集合である.

• 実際 $\overline{\operatorname{co}}(S)$ は S を含む最小の閉凸集合である。 C を S を含む閉凸集合とするとき $\overline{\operatorname{co}}(S) \subset C$ を示せばよい。 $x \in \overline{\operatorname{co}}(S)$ とすると $y_n \to x$ $(n \to \infty)$ となる $\{y_n\} \subset \operatorname{co}(S)$ が存在する。したがって各 n に対して $N_n \in \mathbb{N}$ が存在して y_n は N_n 個の S の要素の凸結合で表される,つまり y_n は次のように表される:

$$y_n = \sum_{k=1}^{N_n} \lambda_k^{(n)} x_k^{(n)} \quad \left(x_k^{(n)} \in S, \ \lambda_k^{(n)} \ge 0, \ \sum_{k=1}^{N_n} \lambda_k^{(n)} = 1 \right)$$

- $S \subset C$ より y_n は C の N_n 個のベクトルの凸結合であるから補題 7.5 により $y_n \in C$ である. 一方 $y_n \to x(n \to \infty)$ で C は閉集合であるから $x \in C$ である.
- 以上で $\overline{\operatorname{co}}(S) \subset C$ であり $\overline{\operatorname{co}}(S)$ は S を含む閉凸集合で最小のものであることが示された.

命題 7.6(Mazur **の補**題) –

 $(X,\|\cdot\|)$ をノルム空間, $\{x_n\}$ を X の点列で $x\in X$ に弱収束するとする.このとき x は $S=\{x_n\}$ (集合として)の閉凸包の要素である.いいかえると,任意の $\varepsilon>0$ に対してある $N(\varepsilon)\in\mathbb{N}$ と $x_1,\cdots,x_{N(\varepsilon)}$ の凸結合 $\sum_{k=1}^{N(\varepsilon)}\lambda_k^{(\varepsilon)}x_k$ が存在して

$$\left\| x - \sum_{k=1}^{N(\varepsilon)} \lambda_k^{(\varepsilon)} x_k \right\| < \varepsilon$$

が成り立つ.

証明 もし $x \notin \overline{\operatorname{co}}(S)$ とする.このとき閉凸集合 $A := \overline{\operatorname{co}}(S)$ とコンパクト凸集合 $B := \{x\}$ に関する Hahn-Banach の分離定理(定理 5.6, 定理 5.9)より($A \cap B = \emptyset$ は明らか),ある $f \in X^*$ が存在して

$$\operatorname{Re} f(x_n) \le \sup_{y \in A} \operatorname{Re} f(y) < \inf_{z \in B} \operatorname{Re} f(z) = \operatorname{Re} f(x) \ (\forall n \in \mathbb{N})$$

が成り立つが、これは $f(x_n) \to f(x) (n \to \infty)$ に矛盾する. \square

| $(X, \|\cdot\|)$ をノルム空間, C を空でない X の凸な部分集合とする。このとき次の (i), (ii) は同値であることを示せ:

- (i) *C* は閉集合である.
- (ii) $\{x_n\} \subset C$ が x に弱収束するならば $x \in C$ である.

7.3 汎弱収束

• $(X, \|\cdot\|)$ をノルム空間とする.このとき X^* は Banach 空間であるから X^* における弱収束を考えることができる. $\{f_n\}\subset X^*$ が $f\in X^*$ に弱収束するとは

$$\lim_{n \to \infty} F(f_n) = F(f) \quad (\forall F \in X^{**})$$

が成り立つことである.

• X^* には弱収束の他にもう 1 つの収束が定義される. $\{f_n\} \subset X^*$ が $f \in X^*$ に**汎弱収束**あるいは * **弱収束**するとは

$$\lim_{n \to \infty} f_n(x) = f(x) \quad (\forall x \in X)$$

が成り立つことである。このとき

$$x_n \stackrel{*}{\rightharpoonup} x \ (n \to \infty) \text{ in } X^*, \qquad x_n \stackrel{\text{w}^*}{\rightharpoonup} x \ (n \to \infty) \text{ in } X^*$$

と表す。

• 汎弱収束は X^* の弱収束より弱い条件である。 つまり X^* において弱収束するならば汎弱収束する。実際 $\{f_n\}\subset X^*$ が $f\in X$ に弱収束するとする。 $J:X\to X^{**}$ を 6 節で定義された標準的単射とすると任意の $x\in X$ に対して

$$f_n(x) = Jx(f_n) \to Jx(f) = f(x) \ (n \to \infty)$$

が成り立つ

• 一般に上の事実の逆は成り立たないが X が反射的 Banach 空間であれば逆も成り立つ。実際, $\{f_n\}$ が f に汎弱収束するとし, $F \in X^{**}$ を任意にとると,F = Jx なる $x \in X$ がただ 1 つ存在する。したがって

$$F(f_n) = Jx(f_n) = f_n(x) \to f(x) = Jx(f) = F(f) \quad (n \to \infty)$$

が成り立つ.

命題 7.7 ——

 $(X,\|\cdot\|)$ をノルム空間とする. $\{f_n\}\subset X^*$ が f に汎弱収束し、かつ g に汎弱収束するならば f=g である.

証明 $x \in X$ を任意にとると仮定から $\lim_{n \to \infty} f_n(x) = f(x)$ でありかつ $\lim_{n \to \infty} f_n(x) = g(x)$ であるから f(x) = g(x) が成り立つ. $x \in X$ は任意なのでこれは X^* の元として f = g であることを意味する. \square

• $\{f_n\} \subset X^*$ が $f \in X^*$ に汎弱収束するとき

$$\mathbf{w}^*\text{-}\lim_{n\to\infty}f_n=f$$

などと表す.

命題 7.8

 $(X,\|\cdot\|)$ をBanach 空間 とする. $\{f_n\}\subset X^*$ が f に汎弱収束するとき, $\{\|f_n\|_{X^*}\}$ は有界で

$$||f||_{X^*} \leq \liminf_{n \to \infty} ||f_n||_{X^*}$$

が成り立つ.

証明 Banach-Steinhaus の定理 (定理 2.3) より明らかである. □

命題 7.9

 $(X, \|\cdot\|)$ を Banach 空間とし $\{f_n\} \subset X^*$ とする. 任意の $x \in X$ に対して $\{f_n(x)\}$ が \mathbb{R} or \mathbb{C} の Cauchy 列となるならば $\{f_n\}$ はある $f \in X^*$ に汎弱収束する.

証明

- 任意の $x \in X$ に対して $\{f_n(x)\}$ は \mathbb{R} or \mathbb{C} の Cauchy 列であるので収束する.
- $f(x) := \lim_{n \to \infty} f_n(x)$ とすれば f は X 上の線形汎関数である(証明せよ).
- Banach-Steinhaus の定理(定理 2.3)より $f \in X^*$ である.したがって $\{f_n\}$ は f に汎弱収束する. \square
- |**注**| 命題 7.9 の事実を「X* は * **弱完備**である」という.

命題 7.10

 $(X, \|\cdot\|)$ を反射的 Banach 空間とし $\{x_n\} \subset X$ とする。このとき任意の $f \in X^*$ に対して $\{f(x_n)\}$ が \mathbb{R} or \mathbb{C} の Cauchy 列となるならば $\{x_n\}$ はある $x \in X$ に 弱収束する.

証明

• $J: X \to X^{**}$ を標準的単射とする.このとき任意の $f \in X^{*}$ に対して

$$f(x_n) = Jx_n(f)$$

である。

• 任意の $f \in X^*$ に対して $\{Jx_n(f)\}$ は Cauchy 列であるから命題 7.9 より $\{Jx_n\} \subset (X^*)^*$ はある $F \in (X^*)^*$ に汎弱収束する:

$$\lim_{n \to \infty} Jx_n(f) = F(f) \quad (\forall f \in X^*)$$

• X は反射的 Banach 空間であるから Jx = F となる $x \in X$ が存在する. したがって

$$f(x_n) = Jx_n(f) \to F(f) = Jx(f) = f(x) \ (n \to \infty)$$

が成り立つ. これは $\{x_n\}$ が x に弱収束することを意味する.

注 命題 7.10 の事実を「反射的 Banach 空間は**弱完備**である」という.

● 最後に弱収束・汎弱収束に基づいたコンパクト性に関する応用上極めて重要な 事実を述べる.「可分な」Banach 空間という条件のもとで証明するため、まず 可分という条件を述べよう.

定義 -

 $(X, \|\cdot\|)$ をノルム空間とする. X の部分集合で可算でありかつ稠密であるものが存在するとき X は**可分** (separable) であるという.

M 絶対値を備えた \mathbb{R} は稠密な可算集合 \mathbb{Q} をもつので可分である.

| 例 | Weierstrass の多項式近似定理により C([0,1]) は可分である(証明は略).

- 定理 7.11(Banach-Alaoglu **の**定理) —

 $(X,\|\cdot\|)$ を可分なノルム空間とし $\{f_n\}\subset X^*$ は有界,つまりある M>0 が存在して $\|f_n\|_{X^*}\leq M$ $(n\in\mathbb{N})$ が成り立つする.このとき $\{f_n\}$ は汎弱収束する部分列 $\{f_{n_k}\}$ が存在する.

注 可分でなくても成り立つが、証明を簡単にするために可分の場合のみ示す。

証明 (Ascoli-Arzela の定理の前半の証明を思い出してみよう)

x∈X を任意にとると

$$|f_n(x)| \le ||f||_{X^*} ||x|| \le M||x|| \quad (n \in \mathbb{N})$$
 (7.2)

が成り立つので任意の $x \in X$ に対して $\{f_n(x)\}$ は有界(数)列である.

- X は可分なので稠密な可算部分集合 $S = \{x_1, x_2, \cdots, x_n, \cdots\}$ が存在する.
- $\{f_n(x_1)\}$ は有界であるのでBolzano-Weierstrassの定理により、ある自然数の単調増加列 $\{n_1(k)\}_k$ が存在して $\{f_{n_1(k)}(x_1)\}_k$ は収束する: $\{f_{n_1(k)}(x)\}$ は $x=x_1$ で収束する.
- $\{f_{n_1(k)}(x_2)\}_k$ は有界であるので Bolzano-Weierstrass の定理により、 $\{n_1(k)\}_k$ の部分列 $\{n_2(k)\}$ が存在して $\{f_{n_2(k)}(x_2)\}$ は収束する: $\{f_{n_2(k)}(x)\}$ は $x=x_1$ 、 x_2 で収束する.
- 自然数の単調増加列 $\{n_j(k)\}_k$ に対して $\{f_{n_j(k)}(x)\}$ が $x=x_1,x_2,\cdots,x_j$ で 収束するとする。このとき $\{f_{n_j(k)}(x_{j+1})\}$ は有界であるので $\{n_j(k)\}$ の部分 列 $\{n_{j+1}(k)\}_k$ が存在して $\{f_{n_{j+1}(k)}(x_{j+1})\}$ は収束する: $\{f_{n_{j+1}(k)}(x)\}$ は $x=x_1,x_2,\cdots,x_j,x_{j+1}$ で収束する。
- 自然数列 $n(k)=n_k(k)$ とすると n(k) は単調増加列である.実際 $\{n_{j+1}(k)\}$ は $\{n_j(k)\}$ の部分列であるから $n_{j+1}(j+1)\geq n_j(j+1)>n_j(j)$ である.

- このとき $\{f_{n(k)}(x)\}$ は任意の $x \in S$ で収束する. 実際, $x = x_j$ とすると $\{n(k)\}_{k \geq j} \subset \{n_j(k)\}_k$ であるからである.
- 最後に $\{f_{n(k)}(x)\}$ は全ての $x \in X$ で収束することを示す.そのためには $\{f_{n(k)}(x)\}$ が Cauchy 列であることを示ばよい.任意に $x \in X$ と任意に $\varepsilon > 0$ をとる.このとき S は稠密だから $\|x x_j\| < \frac{\varepsilon}{3M}$ となる $x_j \in S$ が存在する.
- $\{f_{n(k)}(x_j)\}_k$ は収束するので Cauchy 列である. したがってある $k_0 \in \mathbb{N}$ が存在して

$$k, l \ge k_0 \implies |f_{n(k)}(x_j) - f_{n(l)}(x_j)| < \frac{\varepsilon}{3}$$

が成り立つ $(k_0$ は ε と x のみから定まっていることに注意).

• したがって $k, l \geq k_0$ ならば

$$|f_{n(k)}(x) - f_{n(l)}(x)| \leq |f_{n(k)}(x) - f_{n(k)}(x_j)| + |f_{n(k)}(x_j) - f_{n(l)}(x_j)| + |f_{n(l)}(x_j) - f_{n(l)}(x)| < ||f_{n(k)}||_{X^*} ||x - x_j|| + \frac{\varepsilon}{3} + ||f_{n(k)}||_{X^*} ||x_j - x|| < M \cdot \frac{\varepsilon}{3M} + \frac{\varepsilon}{3} + M \cdot \frac{\varepsilon}{3M} = \varepsilon$$
(7.3)

が成り立つ. これは $\{f_{n(k)}(x)\}$ が Cauchy 列であることを意味する. $f(x):=\lim_{k\to\infty}f_{n(k)}(x)$ とおく. $f\in X^*$ であり $\{f_{n(k)}\}$ が f に汎弱収束することを見よう.

- (7.2) より $|f_{n(k)}(x)| \leq M||x||$ $(x \in X, k \in \mathbb{N})$ が成り立つので $k \to \infty$ として $|f(x)| \leq M||x||$ が成り立つ. これより $f \in X^*$ である.
- 次に (7.3) で $l \to \infty$ とすると $k \ge k_0$ ならば

$$|f_{n(k)}(x) - f(x)| \le \varepsilon$$

が成り立つ. これは $\{f_{n(k)}(x)\}$ が f(x) に収束することを意味する. $x \in X$ は任意だったので $\{f_{n(k)}\}$ は f に汎弱収束する. \square

|**注** この事実は 「 X^* の単位球は * **弱コンパクト**」であるといわれる.

• 次の事実は非常によく用いられる.

系 7.12

 $(X,\|\cdot\|)$ を可分な反射的 Banach 空間とし $\{x_n\}\subset X$ は有界,つまりある M>0 が存在して $\|x_n\|_X\leq M$ $(n\in\mathbb{N})$ が成り立つする.このとき $\{x_n\}$ は弱収束する部分列 $\{x_{n_k}\}$ が存在する.

証明

- $J: X \to X^{**}$ を標準的単射とする.
- $\{x_n\} \subset X$ を有界列とすると定理 6.4 より $\|Jx_n\|_{(X^*)^*} = \|x_n\|$ が成り立つので $\{Jx_n\} \subset (X^*)^*$ は有界列である.
- したがって Banach-Alaoglu の定理(定理 7.11)より $\{Jx_n\}$ はある $F \in (X^*)^*$ に汎弱収束する部分列 $\{Jx_{n_k}\}$ が存在する.
- X は反射的 Banach 空間であるから Jx = F となる $x \in X$ が存在する. したがって任意の $f \in X^*$ に対して

$$f(x_{n_k}) = Jx_{n_k}(f) \to F(f) = Jx(f) = f(x) \quad (k \to \infty)$$

が成り立つ. これは $\{x_{n_k}\}$ が x に弱収束することを意味する. \square

注 この事実は「反射的 Banach 空間の単位球は**弱コンパクト**である」という.

命題 7.13

 $(X,\|\cdot\|)$ を可分な反射的 Banach 空間, $C\subset X$ を空でない閉凸集合とする.このとき任意の $x\in X$ に対し,

$$||x - y|| = \inf_{z \in C} ||x - z|| = \operatorname{dist}(x, C)$$

となる $y \in X$ が存在する.

注 上のような y は一意とは限らない. X が Hilbert 空間であれば一意である.

証明

- inf の定義から $\{y_n\} \subset C$, $\|x-y_n\| \to \operatorname{dist}(x,C)$ $(n \to \infty)$ となる $\{y_n\}$ が存在する.
- $\varepsilon = 1$ に対して $n_0 \in \mathbb{N}$ が存在して $n \ge n_0$ ならば $||x y_n|| \le \operatorname{dist}(x, C) + 1$ が成り立つ. よって $n \ge n_0$ ならば

$$||y_n|| \le ||y_n - x|| + ||x|| \le \operatorname{dist}(x, C) + 1 + ||x||$$

である. したがって $\{y_n\}$ は有界である.

- 系 7.12 より $\{y_n\}$ は弱収束する部分列 $\{y_{n_k}\}$ をもつ. $y_{n_k} \to y \ (k \to \infty)$ とすると p.45 の問より $y \in C$ である. 当然 $x y_{n_k} \to x y \ (k \to \infty)$ である.
- したがって命題7.3より

$$||x - y|| \le \liminf_{k \to \infty} ||x - y_{n_k}|| = \lim_{k \to \infty} ||x - y_{n_k}|| = \operatorname{dist}(x, C)$$

である。一方 $\mathrm{dist}(x,C) \leq \|x-y\|$ より $\|x-y\| = \mathrm{dist}(x,C)$ が成り立つ。 \square