Data Dictionary

Merge 2011 and 2013 dataset based on VALUE. Note due to memory error, use 2011 dataset alone to predict value

Using data on 'Single Family Housing'. TYPE = 1 and STRUCTURETYPE = 1

Import Libraries

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import sklearn
        import xgboost as xgb
        from xgboost import XGBRegressor
        from xgboost import plot_importance
        %matplotlib inline
        sns.set_style('dark')
        sns.set(font_scale=1.2)
        from sklearn.model_selection import cross_val_score, train_test_split, GridSearchC
        V, RandomizedSearchCV
        from sklearn.preprocessing import LabelEncoder, StandardScaler, MinMaxScaler, OneHo
        tEncoder
        from sklearn.metrics import confusion_matrix, classification_report, mean_absolute_
        error, mean_squared_error, r2_score
        from sklearn.metrics import plot_confusion_matrix, plot_precision_recall_curve, plo
        t_roc_curve, accuracy_score
        from sklearn.metrics import auc, f1_score, precision_score, recall_score, roc_auc_s
        core
        import warnings
        warnings.filterwarnings('ignore')
        import pickle
        from pickle import dump, load
        np.random.seed(0)
        pd.set_option('display.max_columns',100)
        #pd.set_option('display.max_rows',100)
        pd.set_option('display.width', 1000)
```

Data Exploration and Analysis

```
In [2]: df1 = pd.read_csv("2011.csv")
```

In [3]: df1

Out[3]:

	CONTROL	AGE1	METRO3	REGION	LMED	FMR	IPOV	PER	ZINC2	ZADEQ	ZSMHC	STAT
0	'036000001146'	34	2	4	84200	2580	17849	3	159972	1	4240	
1	'036000001147'	43	2	4	84200	2241	22629	4	156772	1	3502	
2	'036000001149'	60	2	4	84200	2577	17399	3	1488496	1	5014	
3	'036000001150'	37	2	4	84200	2241	14985	2	124944	1	4609	
4	'036000001151'	33	2	4	84200	2580	22557	4	149972	1	4891	
145526	'999900022229'	30	1	3	69100	891	17960	3	800	1	543	
145527	'999900022230'	80	1	4	74900	1406	17504	3	67000	1	301	
145528	'999900022231'	56	3	4	67985	1615	23524	4	66982	1	1622	
145529	'999900022232'	23	4	2	61959	663	11642	1	27000	1	650	
145530	'999900022233'	32	1	4	75202	1052	29721	6	33972	1	1484	

145531 rows × 27 columns

In [4]: dfla = dfl[(dfl["TYPE"] == 1) & (dfl["STRUCTURETYPE"] == 1)]

In [5]: df1a

Out[5]:

	CONTROL	AGE1	METRO3	REGION	LMED	FMR	IPOV	PER	ZINC2	ZADEQ	ZSMHC	STAT
0	'036000001146'	34	2	4	84200	2580	17849	3	159972	1	4240	
1	'036000001147'	43	2	4	84200	2241	22629	4	156772	1	3502	
2	'036000001149'	60	2	4	84200	2577	17399	3	1488496	1	5014	
3	'036000001150'	37	2	4	84200	2241	14985	2	124944	1	4609	
4	'036000001151'	33	2	4	84200	2580	22557	4	149972	1	4891	
145525	'999900022228'	48	1	1	64200	1403	27127	5	35164	1	1161	
145526	'999900022229'	30	1	3	69100	891	17960	3	800	1	543	
145527	'999900022230'	80	1	4	74900	1406	17504	3	67000	1	301	
145528	'999900022231'	56	3	4	67985	1615	23524	4	66982	1	1622	
145530	'999900022233'	32	1	4	75202	1052	29721	6	33972	1	1484	

In [6]: dfla.describe()

Out[6]:

	AGE1	REGION	LMED	FMR	IPOV	PER	ZINC2	
count	97199.000000	97199.000000	97199.000000	97199.000000	97199.000000	97199.000000	9.719900e+04	ξ
mean	49.466209	2.801438	69564.176741	1263.172728	16623.397761	2.303378	7.657368e+04	
std	20.311459	1.000996	11363.282757	466.143109	6876.018447	2.351663	8.668939e+04	
min	-9.000000	1.000000	33700.000000	419.000000	-9.000000	-6.000000	-3.440000e+02	
25%	38.000000	2.000000	62800.000000	975.000000	13364.000000	2.000000	2.564850e+04	
50%	50.000000	3.000000	67985.000000	1134.000000	14942.000000	2.000000	5.598200e+04	
75%	63.000000	4.000000	72403.000000	1430.000000	22488.000000	4.000000	9.998750e+04	
max	93.000000	4.000000	126600.000000	3586.000000	49801.000000	17.000000	2.977104e+06	

In [7]: df2 = pd.read_csv("2013.csv")

In [8]: df2

Out[8]:

	CONTROL	AGE1	METRO3	REGION	LMED	FMR	IPOV	BEDRMS	BUILT	STATUS	TYPE	VALU
0	'100003130103'	82	3	1	73738	956	11067	2	2006	1	1	4000
1	'100006110249'	50	5	3	55846	1100	24218	4	1980	1	1	13000
2	'100006370140'	53	5	3	55846	1100	15470	4	1985	1	1	15000
3	'100006520140'	67	5	3	55846	949	13964	3	1985	1	1	20000
4	'100007130148'	26	1	3	60991	737	15492	2	1980	1	1	
64530	'999900056779'	55	1	4	55929	556	12019	1	1930	1	1	
64531	'999900056781'	37	1	2	73600	966	28229	2	1950	1	1	
64532	'999900056784'	23	2	4	86300	2701	15517	3	1940	1	1	
64533	'999900056785'	57	1	4	79659	770	12055	1	1930	1	1	
64534	'999900056786'	66	4	3	50723	542	11114	1	2012	1	1	

```
In [9]: df2a = df2[(df2["TYPE"] == 1) & (df2["STRUCTURETYPE"] == 1)]
```

```
df2a
In [10]:
Out [10]:
                        CONTROL AGE1 METRO3 REGION LMED FMR
                                                                           IPOV BEDRMS BUILT STATUS TYPE VALU
                 0 '100003130103'
                                      82
                                                 3
                                                             73738
                                                                                         2
                                                                                                                    4000
                                                          1
                                                                     956
                                                                           11067
                                                                                             2006
                                                                                                         1
                                                                                                                1
                    '100006110249'
                                                 5
                 1
                                      50
                                                          3
                                                             55846
                                                                     1100
                                                                          24218
                                                                                         4
                                                                                             1980
                                                                                                         1
                                                                                                                   13000
                                                                                                                1
                    '100006370140'
                                      53
                                                 5
                                                             55846
                                                                     1100
                                                                          15470
                                                                                         4
                                                                                             1985
                                                                                                         1
                                                                                                                   15000
                    '100006520140'
                                                 5
                                                          3
                                      67
                                                             55846
                                                                      949
                                                                           13964
                                                                                         3
                                                                                             1985
                                                                                                         1
                                                                                                                   20000
                    '100007540148'
                                      50
                                                          3
                                                             60991
                                                                     988
                                                                           18050
                                                                                         3
                                                                                             1985
                                                                                                                   26000
                 6
                                                 1
                                                                                                         1
                                                                                                                1
             64530
                    '999900056779'
                                      55
                                                 1
                                                          4
                                                             55929
                                                                     556
                                                                          12019
                                                                                         1
                                                                                             1930
                                                                                                         1
                                                                                                                1
                                                          2
                                                             73600
                                                                                         2
             64531
                    '999900056781'
                                      37
                                                                     966
                                                                          28229
                                                                                             1950
                                                                                                                1
             64532
                    '999900056784'
                                      23
                                                 2
                                                             86300
                                                                    2701
                                                                                         3
                                                                                             1940
                                                                                                         1
                                                                           15517
                                                                                                                1
                                                             79659
             64533
                    '999900056785'
                                      57
                                                                      770
                                                                          12055
                                                                                             1930
                                                                                                                1
             64534
                    '999900056786'
                                      66
                                                             50723
                                                                     542
                                                                           11114
                                                                                             2012
                                                                                                                1
            41216 rows × 27 columns
In [11]:
            df2a.describe()
Out [11]:
                           AGE1
                                      METRO3
                                                    REGION
                                                                     LMED
                                                                                     FMR
                                                                                                  IPOV
                                                                                                             BEDRMS
             count 41216.000000
                                  41216.000000
                                               41216.000000
                                                               41216.000000
                                                                            41216.000000
                                                                                          41216.000000
                                                                                                        41216.000000
                                                    2.420322
             mean
                       50.676800
                                      2.410714
                                                              67897.371579
                                                                              1256.214334
                                                                                          17182.425636
                                                                                                             3.156371
                       20.464115
                                      1.281523
                                                    1.025246
                                                               12437.306212
                                                                               396.242730
                                                                                           7106.034151
                                                                                                             0.886295
               std
               min
                       -9.000000
                                      1.000000
                                                    1.000000
                                                              38500.000000
                                                                               421.000000
                                                                                              -6.000000
                                                                                                             0.000000
              25%
                       39.000000
                                      2.000000
                                                    2.000000
                                                              60060.000000
                                                                               984.000000
                                                                                          13936.000000
                                                                                                             3.000000
              50%
                       52.000000
                                      2.000000
                                                    2.000000
                                                              64810.000000
                                                                              1185.000000
                                                                                           15492.000000
                                                                                                             3.000000
                       64.000000
                                      3.000000
                                                    3.000000
                                                                                          23401.000000
              75%
                                                              74008.000000
                                                                              1436.000000
                                                                                                             4.000000
              max
                       93.000000
                                      5.000000
                                                    4.000000
                                                             115300.000000
                                                                              3511.000000 51635.000000
                                                                                                             7.000000
In [12]:
            #df3 = pd.merge(left=df1a, right=df2a, how='inner',on='VALUE',suffixes=('_2011',
            2013'))
In [13]:
            #df3
```

Data Visualization

In [14]:

Univariate Data Exploration

#df3.to_csv()

In [15]: dfla.hist(bins=50, figsize=(20,15))
 plt.tight_layout()
 plt.show()

In [16]: dfla.describe(include='all')

Out[16]:

	CONTROL	AGE1	METRO3	REGION	LMED	FMR	IPOV	
count	97199	97199.000000	97199.0	97199.000000	97199.000000	97199.000000	97199.000000	971
unique	97199	NaN	11.0	NaN	NaN	NaN	NaN	
top	'376000014086'	NaN	2.0	NaN	NaN	NaN	NaN	
freq	1	NaN	42592.0	NaN	NaN	NaN	NaN	
mean	NaN	49.466209	NaN	2.801438	69564.176741	1263.172728	16623.397761	
std	NaN	20.311459	NaN	1.000996	11363.282757	466.143109	6876.018447	
min	NaN	-9.000000	NaN	1.000000	33700.000000	419.000000	-9.000000	
25%	NaN	38.000000	NaN	2.000000	62800.000000	975.000000	13364.000000	
50%	NaN	50.000000	NaN	3.000000	67985.000000	1134.000000	14942.000000	
75%	NaN	63.000000	NaN	4.000000	72403.000000	1430.000000	22488.000000	
max	NaN	93.000000	NaN	4.000000	126600.000000	3586.000000	49801.000000	

In [17]: dfla.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 97199 entries, 0 to 145530
Data columns (total 27 columns):

#		Non-Null Count	Dtype
0	 CONTROL	97199 non-null	object
1	AGE1	97199 non-null	_
2	METRO3	97199 non-null	
3	REGION	97199 non-null	_
4	LMED	97199 non-null	
5	FMR	97199 non-null	
6	IPOV	97199 non-null	
7	PER	97199 non-null	
8	ZINC2	97199 non-null	
9	ZADEO	97199 non-null	
10	ZSMHC	97199 non-null	
11	STATUS	97199 non-null	int64
12	BEDRMS	97199 non-null	
13	BUILT	97199 non-null	int64
14	TYPE	97199 non-null	int64
15	VALUE	97199 non-null	int64
16	NUNITS	97199 non-null	int64
17	ROOMS	97199 non-null	int64
18	STRUCTURETYPE	97199 non-null	int64
19	OWNRENT	97199 non-null	int64
20	UTILITY	97199 non-null	float64
21	OTHERCOST	97199 non-null	float64
22	COST06	97199 non-null	float64
23	COST12	97199 non-null	float64
24	COST08	97199 non-null	float64
		97199 non-null	
	ASSISTED	97199 non-null	
		int64(19), obje	ct(2)
memo	ry usage: 20.8+	MB	

In [18]: df1a

Out[18]:

	CONTROL	AGE1	METRO3	REGION	LMED	FMR	IPOV	PER	ZINC2	ZADEQ	ZSMHC	STATI
	0 '036000001146'	34	2	4	84200	2580	17849	3	159972	1	4240	
	1 '036000001147'	43	2	4	84200	2241	22629	4	156772	1	3502	
	2 '036000001149'	60	2	4	84200	2577	17399	3	1488496	1	5014	
	3 '036000001150'	37	2	4	84200	2241	14985	2	124944	1	4609	
	4 '036000001151'	33	2	4	84200	2580	22557	4	149972	1	4891	
												
14552	5 '999900022228'	48	1	1	64200	1403	27127	5	35164	1	1161	
14552	6 '999900022229'	30	1	3	69100	891	17960	3	800	1	543	
14552	7 '999900022230'	80	1	4	74900	1406	17504	3	67000	1	301	
14552	8 '999900022231'	56	3	4	67985	1615	23524	4	66982	1	1622	
14553	o '999900022233'	32	1	4	75202	1052	29721	6	33972	1	1484	

0 1		\sim	
()111	- 1	 ()	
Ou	- 1	 U	

	CONTROL	AGE1	METRO3	REGION	LMED	FMR	IPOV	PER	ZINC2	ZADEQ	ZSMHC	STATU
0	'036000001146'	34	2	4	84200	2580	17849	3	159972	1	4240	
1	'036000001147'	43	2	4	84200	2241	22629	4	156772	1	3502	
2	'036000001149'	60	2	4	84200	2577	17399	3	1488496	1	5014	
3	'036000001150'	37	2	4	84200	2241	14985	2	124944	1	4609	
4	'036000001151'	33	2	4	84200	2580	22557	4	149972	1	4891	
97194	'999900022228'	48	1	1	64200	1403	27127	5	35164	1	1161	
97195	'999900022229'	30	1	3	69100	891	17960	3	800	1	543	
97196	'999900022230'	80	1	4	74900	1406	17504	3	67000	1	301	
97197	'999900022231'	56	3	4	67985	1615	23524	4	66982	1	1622	
97198	'999900022233'	32	1	4	75202	1052	29721	6	33972	1	1484	

In [21]: df1a.corr()

Out[21]:

	AGE1	REGION	LMED	FMR	IPOV	PER	ZINC2	ZADEQ	ZSM
AGE1	1.000000	-0.030955	0.027561	0.030896	0.094115	0.336538	0.046371	0.629915	0.027
REGION	-0.030955	1.000000	0.196705	0.520480	0.052567	0.037338	0.071225	-0.001720	0.167
LMED	0.027561	0.196705	1.000000	0.695302	0.078362	0.072938	0.197487	0.036113	0.317
FMR	0.030896	0.520480	0.695302	1.000000	0.201313	0.171381	0.267816	0.049625	0.442
IPOV	0.094115	0.052567	0.078362	0.201313	1.000000	0.939215	0.254810	0.531811	0.348
PER	0.336538	0.037338	0.072938	0.171381	0.939215	1.000000	0.264924	0.775399	0.357
ZINC2	0.046371	0.071225	0.197487	0.267816	0.254810	0.264924	1.000000	0.183488	0.506
ZADEQ	0.629915	-0.001720	0.036113	0.049625	0.531811	0.775399	0.183488	1.000000	0.253
ZSMHC	0.027638	0.167809	0.317332	0.442831	0.348631	0.357018	0.506021	0.253351	1.000
STATUS	-0.641274	0.000706	-0.041163	-0.056931	-0.538887	-0.786610	-0.196801	-0.985366	-0.266
BEDRMS	0.012849	0.034816	0.052675	0.407749	0.301361	0.250235	0.273090	0.052235	0.331
BUILT	-0.062295	0.185210	-0.069982	0.071314	0.089366	0.076472	0.147503	0.010289	0.184
TYPE	NaN	l							
VALUE	0.137732	0.171838	0.345398	0.464327	0.065034	0.079957	0.417900	0.058190	0.541
NUNITS	NaN	l							
ROOMS	0.066275	-0.014606	0.062643	0.290822	0.244578	0.217438	0.344084	0.068893	0.378
STRUCTURETYPE	NaN	l							
OWNRENT	-0.293108	0.085058	0.000734	-0.059917	-0.012364	-0.071441	-0.195138	-0.129494	-0.164
UTILITY	0.110868	-0.039971	0.035877	0.161919	0.314848	0.306349	0.286467	0.174207	0.411
OTHERCOST	0.118070	0.106464	0.136610	0.223425	0.015561	0.036239	0.271081	0.043782	0.381
COST06	0.090690	0.210810	0.383990	0.514116	0.096505	0.096966	0.432566	0.044549	0.606
COST12	0.108741	0.198075	0.372739	0.499745	0.085648	0.091446	0.430515	0.049925	0.587
COST08	0.098305	0.205733	0.379718	0.508685	0.092088	0.094772	0.432179	0.046836	0.598
COSTMED	0.087281	0.212949	0.385690	0.516264	0.098409	0.097889	0.432526	0.043517	0.608
ASSISTED	-0.141489	0.087393	0.011446	-0.042270	0.124868	0.126562	-0.155379	0.116745	-0.105

```
plt.figure(figsize=(16,16))
In [22]:
                    sns.heatmap(df1a.corr(),cmap="coolwarm",annot=True,fmt='.2f',linewidths=2)
                   plt.show()
                                                                                                                                                                                           1.00
                                             <mark>.00</mark>-0.030.03 0.03 <mark>0.09 0.34</mark> 0.05 <mark>0.63</mark> 0.03 <mark>0.64</mark> 0.01-0.06
                                                                                                             0.14
                                                                                                                        0.07
                                                                                                                                  -0.03<mark>1.00</mark> 0.20 0.52 0.05 0.04 0.07-0.00<mark>0.17</mark> 0.00 0.03 <mark>0.19</mark>
                                                                                                             0.17
                                                                                                                       -0.01
                                                                                                                                  0.09-0.040.11 0.21 0.20 0.21 0.21 0.09
                                   LMED 0.03 0.20 1.00 0.70 0.08 0.07 0.20 0.04 0.32 0.040.05 0.07
                                                                                                                                  0.000.04 0.14 0.38 0.37 0.38 0.39 0.01
                                                                                                             0.35
                                                                                                                       0.06
                                                                                                                                                                                          - 0.75
                                           0.03 0.52 0.70 1.00 0.20 0.17 0.27 0.05 0.44-0.060.41 0.07
                                                                                                                                  -0.060.16 0.22 <mark>0.51 0.50 0.51 0.52</mark>-0.04
                                                                                                                       0.29
                                                                                                             0.46
                                           0.09 0.05 0.08 0.20 1.00 0.94 0.25 0.53 0.35 0.54 0.30 0.09
                                                                                                                                 -0.01<mark>0.31</mark> 0.02 0.10 0.09 0.09 0.10 0.12
                                                                                                             0.07
                                                                                                                        0.24
                                           0.34 0.04 0.07 0.17 <mark>0.94 1.00 0.26 0.78 0.36 0.79 0.25</mark> 0.08
                                                                                                             0.08
                                                                                                                       0.22
                                                                                                                                  -0.07<mark>0.31</mark> 0.04 <mark>0.10 0.09 0.09 0.10 0.13</mark>
                                                                                                                                                                                          - 0.50
                                           0.05 0.07 0.20 0.27 0.25 0.26 1.00 0.18 0.51-0.200.27 0.15
                                                                                                             0.42
                                                                                                                       0.34
                                                                                                                                 -0.200.29 0.27 0.43 0.43 0.43 0.43 0.43
                                  ZINC2
                                             0.63-0.000.04 0.05 <mark>0.53 0.78 0.18 1.00 0.25 0.99</mark> 0.05 0.01
                                                                                                                                 -0.13<mark>0.17</mark> 0.04 0.04 0.05 0.05 0.04 <mark>0.12</mark>
                                                                                                             0.06
                                                                                                                       0.07
                                 ZADEQ
                                           0.03 0.17 0.32 0.44 0.35 0.36 0.51 0.25 1.00 0.27 0.33 0.18
                                                                                                                                  0.38
                                             0.64<mark>0.00-0.040.06</mark>0.54<mark>0.79-0.20</mark>0.99-0.27<mark>1.00</mark>-0.060.03
                                                                                                             -0.07
                                                                                                                       -0.08
                                                                                                                                  0.14-0.180.050.050.060.060.050.11
                                                                                                                                                                                          - 0.25
                                           0.01 0.03 0.05 0.41 0.30 0.25 0.27 0.05 0.33 0.06 1.00 0.20
                                                                                                             0.30
                                                                                                                                  -0.240.37 0.18 0.30 0.30 0.30 0.30-0.22
                               BEDRMS
                                   BUILT -0.06<mark>0.19</mark>-0.070.070.09 0.08 0.15 0.01 0.18-0.030.20 1.00
                                                                                                                                  -0.100.07 <mark>0.19</mark> 0.10 0.09 0.10 0.10-0.09
                                                                                                             0.09
                                                                                                                        0.19
                                   TYPE
                                                                                                                                                                                          - 0.00
                                           0.14 0.17 0.35 0.46 0.07 0.08 0.42 0.06 0.54 0.07 0.30 0.09
                                                                                                                                  <mark>-0.37</mark>0.27 <mark>0.47</mark> 0.97 0.99 0.98 0.96<mark>-0.35</mark>
                                                                                                             1.00
                                                                                                                        0.36
                                  VALUE
                                 NUNITS
                                ROOMS 0.07-0.010.06 0.29 0.24 0.22 0.34 0.07 0.38-0.08 0.79 0.19
                                                                                                             0.36
                                                                                                                        1.00
                                                                                                                                  -0.290.42 0.25 0.36 0.37 0.37 0.36-0.27
                                                                                                                                                                                          - -0.25
                     STRUCTURETYPE
                                                                                                                                  1.00<mark>-0.190.35</mark>0.220.280.240.21<mark>0.93</mark>
                             OWNRENT -0.290.090.00-0.060.010.07-0.200.130.160.14-0.240.10
                                                                                                             -0.37
                                                                                                                       -0.29
                                UTILITY 0.11-0.040.04 0.16 0.31 0.31 0.29 0.17 0.41-0.18 0.37 0.07
                                                                                                                        0.42
                                                                                                                                  -0.19<mark>1.00</mark> 0.20 <mark>0.32 0.30 0.31 0.32</mark>-0.19
                                                                                                             0.27
                                                                                                                                                                                          - -0.50
                                                                                                                                  -0.350.20 <mark>1.00</mark> 0.47 <mark>0.48 0.48 0.47-0.33</mark>
                           OTHERCOST 0.12 0.11 0.14 0.22 0.02 0.04 0.27 0.04 0.38 0.050.18 0.19
                                                                                                             0.47
                                                                                                                       0.25
                                                                                                                                  COST06 0.09 0.21 0.38 0.51 0.10 0.10 0.43 0.04 0.61-0.050.30 0.10
                                                                                                                        0.36
                                                                                                                                  COST12 0.11 0.20 0.37 0.50 0.09 0.09 0.43 0.05 0.59 0.060.30 0.09
                                                                                                                        0.37
                                                                                                                                                                                          - -0 75
                                COST08 0.10 0.21 0.38 0.51 0.09 0.09 0.43 0.05 0.60 -0.06 0.30 0.10
                                                                                                                        0.37
                                                                                                                                  -0.24<mark>0.31 0.48 1.00 1.00 1.00 1.00-0.23</mark>
                             COSTMED 0.09 0.21 0.39 0.52 0.10 0.10 0.43 0.04 0.61-0.050.30 0.10
                                                                                                                        0.36
                                                                                                                                 -0.21<mark>0.32</mark> <mark>0.47</mark> 1.00 0.99 1.00 1.00-0.19
                                                                                                             -0.35
                                                                                                                                  0.93<mark>-0.190.33</mark>0.210.260.230.19<mark>1.00</mark>
                              ASSISTED -0.140.090.01-0.040.120.13-0.160.12-0.11-0.11-0.220.09
                                                                                                                       -0.27
                                                                                                                                       UTILITY
                                                                                                                        ROOMS
                                                                                                                             STRUCTURETYPE
                                                                                                                                   OWNRENT
```

Data Preprocessing

In []:

Treat Missing Values

```
In [23]: dfla.isnull().sum()
Out[23]: CONTROL
                        0
        AGE1
                        0
        METRO3
                        0
                        0
        REGION
        LMED
                        0
                        0
        FMR
                        0
        IPOV
                        0
        PER
        ZINC2
                        0
        ZADEQ
                        0
        ZSMHC
                        0
                        0
        STATUS
                        0
        BEDRMS
                        0
        BUILT
        TYPE
                        0
        VALUE
                        0
                        0
        NUNITS
        ROOMS
                        0
        STRUCTURETYPE 0
        OWNRENT
                        0
        UTILITY
                        0
                       0
        OTHERCOST
                       0
        COST06
                        0
        COST12
        COST08
                        0
                        0
        COSTMED
        ASSISTED
        dtype: int64
```

Treat Duplicate Values

```
In [24]: df1a.duplicated(keep='first').sum()
Out[24]: 0
```

Treat Outliers

```
In [25]: dfla.describe()
```

Out [25]:

	AGE1	REGION	LMED	FMR	IPOV	PER	ZINC2	
count	97199.000000	97199.000000	97199.000000	97199.000000	97199.000000	97199.000000	9.719900e+04	ξ
mean	49.466209	2.801438	69564.176741	1263.172728	16623.397761	2.303378	7.657368e+04	
std	20.311459	1.000996	11363.282757	466.143109	6876.018447	2.351663	8.668939e+04	
min	-9.000000	1.000000	33700.000000	419.000000	-9.000000	-6.000000	-3.440000e+02	
25%	38.000000	2.000000	62800.000000	975.000000	13364.000000	2.000000	2.564850e+04	
50%	50.000000	3.000000	67985.000000	1134.000000	14942.000000	2.000000	5.598200e+04	
75%	63.000000	4.000000	72403.000000	1430.000000	22488.000000	4.000000	9.998750e+04	
max	93.000000	4.000000	126600.000000	3586.000000	49801.000000	17.000000	2.977104e+06	

Drop unwanted features

Drop all strings and some categoricals

In [28]: df1a

Out [28]:

	AGE1	LMED	FMR	IPOV	PER	ZINC2	ZSMHC	BEDRMS	VALUE	ROOMS	UTILITY	OTHERCO:
0	34	84200	2580	17849	3	159972	4240	4	720000	8	300.000000	248.3333
1	43	84200	2241	22629	4	156772	3502	3	550000	5	256.000000	362.5000
2	60	84200	2577	17399	3	1488496	5014	5	720000	11	233.000000	180.0000
3	37	84200	2241	14985	2	124944	4609	3	450000	5	152.000000	290.0000
4	33	84200	2580	22557	4	149972	4891	4	700000	9	656.166667	181.6666
97194	48	64200	1403	27127	5	35164	1161	2	-6	5	61.000000	0.0000
97195	30	69100	891	17960	3	800	543	2	-6	5	142.500000	0.0000
97196	80	74900	1406	17504	3	67000	301	2	-6	4	62.000000	5.5833
97197	56	67985	1615	23524	4	66982	1622	3	350000	6	227.583333	87.5000
97198	32	75202	1052	29721	6	33972	1484	2	-6	4	134.000000	0.0000

97199 rows × 13 columns

```
In [29]: #Remove negative values
```

```
In [30]: df3 = df1a[df1a["VALUE"] >= 0 ]
```

```
In [31]: df3
Out [31]:
                  AGE1 LMED FMR IPOV PER
                                                 ZINC2 ZSMHC BEDRMS VALUE ROOMS
                                                                                             UTILITY OTHERCO
                0
                     34 84200 2580 17849
                                                 159972
                                                                        4 720000
                                                                                        8 300.000000
                                                                                                       248.3333
                                              3
                                                            4240
                     43 84200 2241 22629
                                                  156772
                                                            3502
                                                                        3 550000
                                                                                        5 256.000000
                                                                                                       362.5000
                1
                                              4
                2
                     60 84200 2577 17399
                                              3 1488496
                                                            5014
                                                                        5 720000
                                                                                       11 233.000000
                                                                                                       180.0000
                3
                     37 84200 2241 14985
                                              2
                                                  124944
                                                            4609
                                                                        3
                                                                         450000
                                                                                        5 152.000000
                                                                                                       290.0000
                4
                     33 84200 2580 22557
                                              4
                                                  149972
                                                            4891
                                                                        4 700000
                                                                                        9
                                                                                          656.166667
                                                                                                       181.6666
                                 ...
                                                   77982
            97174
                     40 57215
                                619 18012
                                              3
                                                            392
                                                                        1 250000
                                                                                        2
                                                                                            0.000000
                                                                                                       100.0000
            97180
                     49 62806
                                659 14895
                                              2
                                                  125564
                                                                           44000
                                                                                        3
                                                                                            0.000000
                                                                                                        11.0000
                                                            11
            97189
                     61 67715
                                648 11536
                                              1
                                                    2200
                                                            245
                                                                        1 105000
                                                                                        3 107.666667
                                                                                                        26.2500
            97192
                     70 53300
                                662 13487
                                                   77200
                                                            285
                                                                           30000
                                                                                           93.000000
                                                                                                       108.3333
                                              2
                                                   66982
            97197
                     56 67985 1615 23524
                                                            1622
                                                                        3 350000
                                                                                        6 227.583333
                                                                                                        87.5000
           77007 rows × 13 columns
```

```
In [32]: df3["VALUE"].value_counts()
Out[32]: 200000
                   3460
         150000
                   3175
                   2590
         250000
         100000
                   2502
         300000
                   2487
                    . . .
         127400
                      1
         203148
                      1
         51471
                      1
         495
                      1
                      1
         Name: VALUE, Length: 1699, dtype: int64
In [33]: df3.columns
Out[33]: Index(['AGE1', 'LMED', 'FMR', 'IPOV', 'PER', 'ZINC2', 'ZSMHC', 'BEDRMS', 'VALUE
         ', 'ROOMS', 'UTILITY', 'OTHERCOST', 'COSTMED'], dtype='object')
In [34]: df3 = df3[['AGE1', 'LMED', 'FMR', 'IPOV', 'PER', 'ZINC2', 'ZSMHC', 'BEDRMS', 'ROOMS
         ', 'UTILITY', 'OTHERCOST', 'COSTMED', 'VALUE']]
```

In [35]: df3

Out[35]:

	AGE1	LMED	FMR	IPOV	PER	ZINC2	ZSMHC	BEDRMS	ROOMS	UTILITY	OTHERCOST	CO
0	34	84200	2580	17849	3	159972	4240	4	8	300.000000	248.333333	5026
1	43	84200	2241	22629	4	156772	3502	3	5	256.000000	362.500000	4039
2	60	84200	2577	17399	3	1488496	5014	5	11	233.000000	180.000000	4891
3	37	84200	2241	14985	2	124944	4609	3	5	152.000000	290.000000	3240
4	33	84200	2580	22557	4	149972	4891	4	9	656.166667	181.666667	5191
97174	40	57215	619	18012	3	77982	392	1	2	0.000000	100.000000	1654
97180	49	62806	659	14895	2	125564	11	1	3	0.000000	11.000000	284
97189	61	67715	648	11536	1	2200	245	1	3	107.666667	26.250000	786
97192	70	53300	662	13487	2	77200	285	1	4	93.000000	108.333333	387
97197	56	67985	1615	23524	4	66982	1622	3	6	227.583333	87.500000	2492

77007 rows × 13 columns

```
In [36]: df3.reset_index(inplace=True, drop=True)
```

In [37]: df3

Out[37]:

	AGE1	LMED	FMR	IPOV	PER	ZINC2	ZSMHC	BEDRMS	ROOMS	UTILITY	OTHERCOST	CO
0	34	84200	2580	17849	3	159972	4240	4	8	300.000000	248.333333	5026
1	43	84200	2241	22629	4	156772	3502	3	5	256.000000	362.500000	4039
2	60	84200	2577	17399	3	1488496	5014	5	11	233.000000	180.000000	4891
3	37	84200	2241	14985	2	124944	4609	3	5	152.000000	290.000000	3240
4	33	84200	2580	22557	4	149972	4891	4	9	656.166667	181.666667	5191
77002	40	57215	619	18012	3	77982	392	1	2	0.000000	100.000000	1654
77003	49	62806	659	14895	2	125564	11	1	3	0.000000	11.000000	284
77004	61	67715	648	11536	1	2200	245	1	3	107.666667	26.250000	786
77005	70	53300	662	13487	2	77200	285	1	4	93.000000	108.333333	387
77006	56	67985	1615	23524	4	66982	1622	3	6	227.583333	87.500000	2492

77007 rows × 13 columns

Create and save processed dataset

```
In [38]: #df3.to_csv("house.csv",index=False)
```

Load Data

```
In [39]: df = pd.read_csv("house.csv")
```

n [40]:	df												
t[40]:		AGE1	LMED	FMR	IPOV	DER	7INC2	78MHC	BEDRMS	ROOMS	IITII ITV	OTHERCOST	cc
	0				17849	3	159972		4			248.333333	
	1	43	84200	2241	22629	4	156772	3502	3	5	256.000000	362.500000	
	2	60	84200	2577	17399	3	1488496	5014	5	11	233.000000	180.000000	4891
	3	37	84200	2241	14985	2	124944	4609	3	5	152.000000	290.000000	3240
	4	33	84200	2580	22557	4	149972	4891	4	9	656.166667	181.666667	519
	77002	40	57215	619	18012	3	77982	392	1	2	0.000000	100.000000	1654
	77003	49	62806	659	14895	2	125564	11	1	3	0.000000	11.000000	284
	77004	61	67715	648	11536	1	2200	245	1	3	107.666667	26.250000	786
	77005	70	53300	662	13487	2	77200	285	1	4	93.000000	108.333333	387
	77006	56	67985	1615	23524	4	66982	1622	3	6	227.583333	87.500000	2492
	77007	rows ×	13 colu	mns									
[41]:	df.sh	ape											
t[41]:	(77007, 13)												
F 4 O 1	1.51	1.5		6	0 10		1						
[42]:	ail =	ai.sa	ampie(irac=	=0.13,	rand	dom_sta	te=U)					
[43]:	df1.s	hape											
t[43]:	(1001	1, 13)											
[//].	df1												
[44]: t[44]:	dii												
		AGE1	LMED	FMR	IPOV	PER	ZINC2	ZSMHC	BEDRMS	ROOMS	UTILITY	OTHERCOST	CO
	58408	53	75159	1518	15026	2	78010	2197	3	6	180.666667	62.500000	802.
	71564	54	74900	1999	17454	3	134000	532	3	6	250.333333	123.333333	2550.
	36241	29	58300	1010	17849	3	110657	1432	3	6	211.000000	74.000000	1149.
	59739	61	75202	1520	14895	2	229972	2116	3	6	324.000000	100.000000	4155.
	32138	67	64028	963	13403	2	59286	1027	3	7	194.750000	41.000000	1255.
	11817	67	67109	779	13445	2	20400	658	2	5	253.666667	62.500000	502.
	2510	-9	60802	1010	-9	-6	-6	-6	4	8	130.916667	100.000000	666.
	23898	66	61864	882	13364	2	189964	1342	3	10	637.666667	91.666667	4834.
	14750	30	69100	1160	22694	4	88000	816	3	6	438.916667	36.250000	1377.
	23715	67	51913	848	13403	2	74504	419	3	7	329.000000	43.750000	1461.

10011 rows × 13 columns

```
In [45]: X = df1.iloc[:,0:12]
          y = df1.iloc[:,12]
In [46]:
Out [46]:
                                 IPOV PER
                                            ZINC2 ZSMHC BEDRMS ROOMS
                                                                             UTILITY OTHERCOST
                                                                                                 COS
                 AGE1 LMED FMR
           58408
                                             78010
                                                                        6 180.666667
                                                                                                 802.9
                   53 75159 1518 15026
                                          2
                                                      2197
                                                                 3
                                                                                       62.500000
           71564
                   54 74900 1999 17454
                                          3 134000
                                                      532
                                                                 3
                                                                        6 250.333333
                                                                                      123.333333 2550.6
           36241
                      58300 1010 17849
                                          3 110657
                                                      1432
                                                                 3
                                                                        6 211.000000
                                                                                       74.000000 1149.5
                                          2 229972
                                                                        6 324.000000
           59739
                      75202 1520 14895
                                                      2116
                                                                 3
                                                                                      100.000000 4155.8
                   61
           32138
                      64028
                             963 13403
                                             59286
                                                      1027
                                                                        7 194.750000
                                                                                       41.000000 1255.8
                   67
                                          2
                                                                 3
                               ...
                                                       ...
           11817
                   67 67109
                             779 13445
                                          2
                                             20400
                                                      658
                                                                 2
                                                                        5 253.666667
                                                                                       62.500000
                                                                                                 502.7
           2510
                                                                        8 130.916667
                                                                                                 666.3
                   -9 60802 1010
                                     -9
                                          -6
                                                       -6
                                                                                      100.000000
                                                -6
           23898
                                          2 189964
                                                      1342
                                                                 3
                                                                       10 637.666667
                                                                                       91.666667 4834.4
                   66 61864
                             882 13364
                                                                        6 438.916667
           14750
                   30 69100 1160 22694
                                             88000
                                                      816
                                                                                       36.250000 1377.0
           23715
                   67 51913
                             848 13403
                                          2
                                             74504
                                                      419
                                                                 3
                                                                        7 329.000000
                                                                                       43.750000 1461.2
          10011 rows × 12 columns
In [47]: X.values, y.values
Out[47]: (array([[5.30000000e+01, 7.51590000e+04, 1.51800000e+03, ...,
                    1.80666667e+02, 6.25000000e+01, 8.02951665e+02],
                   [5.40000000e+01, 7.49000000e+04, 1.99900000e+03, ...,
                    2.50333333e+02, 1.23333333e+02, 2.55060833e+03],
                   [2.90000000e+01, 5.83000000e+04, 1.01000000e+03, ...,
                    2.11000000e+02, 7.40000000e+01, 1.14955683e+03],
                   [6.60000000e+01, 6.18640000e+04, 8.82000000e+02, ...,
                    6.37666667e+02, 9.16666667e+01, 4.83442332e+03],
                   [3.00000000e+01, 6.91000000e+04, 1.16000000e+03, ...,
                    4.38916667e+02, 3.62500000e+01, 1.37704250e+03],
                   [6.70000000e+01, 5.19130000e+04, 8.48000000e+02, ...,
                    3.29000000e+02, 4.37500000e+01, 1.46122083e+03]]),
           array([ 90000, 350000, 139000, ..., 660000, 145000, 175000], dtype=int64))
In [48]: X_train, X_test, y_train, y_test = train_test_split(X.values, y.values, test_size=
          0.2, random_state=0)
In [49]: X_train.shape, X_test.shape, y_train.shape, y_test.shape
```

Feature Scaling

Out [49]: ((8008, 12), (2003, 12), (8008,), (2003,))

```
In [50]: X_train
Out[50]: array([[5.000000000e+01, 6.91320000e+04, 1.01700000e+03, ...,
                 2.57000000e+02, 1.16666667e+02, 1.43103833e+03],
                [5.90000000e+01, 7.52020000e+04, 1.52000000e+03, ...,
                 1.97666667e+02, 0.00000000e+00, 7.57451665e+02],
                [3.70000000e+01, 6.99000000e+04, 1.31900000e+03, ...,
                 2.57000000e+02, 7.37500000e+01, 2.16560083e+03],
                [4.80000000e+01, 6.91000000e+04, 1.16000000e+03, ...,
                 4.50000000e+02, 8.33333333e+01, 1.44764883e+03],
                [3.90000000e+01, 6.55000000e+04, 1.59600000e+03, ...,
                 4.02000000e+02, 5.00000000e+01, 2.31795000e+03],
                [3.70000000e+01, 6.80420000e+04, 1.06800000e+03, ...,
                 3.67333333e+02, 6.50000000e+01, 1.42750666e+03]])
In [51]: | scaler = StandardScaler()
In [52]: | X_train_scaled = scaler.fit_transform(X_train)
In [53]: X_test_scaled = scaler.transform(X_test)
In [54]: X_train_scaled
Out [54]: array([[-0.12068029, -0.03780161, -0.55955832, ..., -0.13124982,
                  0.22176716, -0.30580565],
                [0.34964198, 0.50132567, 0.51414939, ..., -0.57334221,
                 -0.95056768, -0.63667274],
                [-0.80003467, 0.03041087, 0.08509323, ..., -0.13124982,
                 -0.20948458, 0.05501289],
                [-0.22519635, -0.04064379, -0.25430941, ..., 1.30679228,
                 -0.11318565, -0.29764654],
                [-0.69551861, -0.36038979, 0.67637958, ..., 0.9491445,
                 -0.44813846, 0.1298471 ],
                [-0.80003467, -0.13461359, -0.45069332, ..., 0.69084333,
                 -0.2974097 , -0.30754041]])
In [55]: | X_test_scaled
Out [55]: array([[ 0.61093213,  0.66102103, -0.43148185, ...,  0.82620308,
                 -0.53187666, -0.34063023],
                [0.0360938, -0.04064379, -0.25430941, ..., 0.09228004,
                  0.47298177, -0.34864045],
                [-0.06842226, -1.08790075, -0.51046234, ..., 0.19659397,
                 -0.12993329, -0.27083288],
                [0.19286789, 1.30051303, 2.05320158, ..., 1.38316498,
                  1.38572818, 1.01190256],
                [-0.43422847, -1.56716447, -1.33015172, ..., -1.49478197,
                 -0.89530046, -0.90246965],
                [-0.27745438, 2.01994152, 1.30181965, ..., -0.58576054,
                  0.93354188, 1.47103721]])
 In [ ]:
```

Using XGBoost (Scikit-Learn)

Using RandomSearchCV

```
model = XGBRegressor(random_state=0, n_estimators=100, objective='reg:squarederror
In [56]:
In [57]: parameters = {'max_depth': np.arange(3,10,1),
                        'learning rate': np.arange(0.05,0.3,0.03),
                        'n_estimators':np.arange(100,1000,100),
                       'min_child_weight': np.arange(1,4,1),
                        'gamma':np.arange(0,50,2),
                        'subsample':np.arange(0.5,0.9,0.1),
                        'colsample_bytree':np.arange(0.5,0.9,0.1)
In [58]: randm = RandomizedSearchCV(estimator=model, param_distributions = parameters, cv =
         5, n_{iter} = 20,
                                    n_jobs=-1, scoring='neq_mean_squared_error')
In [59]: randm.fit(X_train_scaled, y_train)
Out[59]: RandomizedSearchCV(cv=5, estimator=XGBRegressor(objective='reg:squarederror'),
                            n_{iter=20}, n_{jobs=-1},
                            param_distributions={'colsample_bytree': array([0.5, 0.6, 0.
         7, 0.8]),
                                                  'gamma': array([ 0, 2, 4, 6, 8, 10,
         12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
                34, 36, 38, 40, 42, 44, 46, 48]),
                                                  'learning rate': array([0.05, 0.08, 0.1
         1, 0.14, 0.17, 0.2, 0.23, 0.26, 0.29]),
                                                  'max_depth': array([3, 4, 5, 6, 7, 8,
         9]),
                                                  'min_child_weight': array([1, 2, 3]),
                                                  'n_estimators': array([100, 200, 300, 40
         0, 500, 600, 700, 800, 900]),
                                                  'subsample': array([0.5, 0.6, 0.7, 0.
         8])},
                             scoring='neg_mean_squared_error')
In [60]: randm.best estimator
Out[60]: XGBRegressor(colsample_bytree=0.79999999999999, gamma=8, learning rate=0.2,
                      min_child_weight=3, n_estimators=300, objective='reg:squarederror',
                      subsample=0.6)
In [61]: randm.best_score_
Out [61]: -410930042.38920146
```

In [64]: xgbmodel.fit(X_train_scaled,y_train,eval_set=[(X_test_scaled,y_test)],eval_metric='
rmse',early_stopping_rounds=10)

```
validation_0-rmse:306347
[0]
Will train until validation_0-rmse hasn't improved in 10 rounds.
[1]
        validation_0-rmse:246520
[2]
        validation_0-rmse:198875
[3]
        validation_0-rmse:161143
[4]
        validation_0-rmse:131475
[5]
        validation_0-rmse:106631
[6]
        validation_0-rmse:93525.4
[7]
        validation_0-rmse:84150.6
[8]
        validation_0-rmse:70259.1
[9]
        validation_0-rmse:59517.9
[10]
        validation_0-rmse:51879
[11]
        validation_0-rmse:45746.2
[12]
        validation_0-rmse:43873.9
[13]
        validation_0-rmse:40069.6
[14]
        validation_0-rmse:39038.6
[15]
        validation_0-rmse:36270
[16]
        validation_0-rmse:34093.7
        validation_0-rmse:33658.4
[17]
[18]
        validation_0-rmse:31805.3
[19]
        validation_0-rmse:30040.8
[20]
        validation_0-rmse:29616
[21]
        validation_0-rmse:29143.6
[22]
        validation_0-rmse:28868.6
[23]
        validation_0-rmse:27960.5
[24]
        validation_0-rmse:27030.5
[25]
        validation_0-rmse:26077.5
[26]
        validation_0-rmse:25720
[27]
        validation_0-rmse:25066.7
[28]
        validation_0-rmse:24045.1
[29]
        validation_0-rmse:23355.5
[30]
        validation_0-rmse:22645
[31]
        validation_0-rmse:22077.1
[32]
        validation_0-rmse:21684
[33]
        validation_0-rmse:21277.7
[34]
        validation_0-rmse:20704.9
[35]
        validation_0-rmse:20026.5
        validation_0-rmse:19790.4
[36]
[37]
        validation_0-rmse:19244.9
[38]
        validation_0-rmse:18930.8
[39]
        validation_0-rmse:18616.4
        validation_0-rmse:18437.8
[40]
[41]
        validation_0-rmse:17993.9
[42]
        validation_0-rmse:17710.7
[43]
        validation_0-rmse:17501.2
[44]
        validation_0-rmse:16861.3
[45]
        validation_0-rmse:16659.2
[46]
        validation_0-rmse:16357.3
[47]
        validation_0-rmse:16086.2
        validation_0-rmse:15824.3
[48]
[49]
        validation_0-rmse:15692.2
[50]
        validation_0-rmse:15285.3
[51]
        validation_0-rmse:15175.1
[52]
        validation_0-rmse:14853
[53]
        validation_0-rmse:14626.9
[54]
        validation_0-rmse:14341.5
[55]
        validation_0-rmse:14236.8
[56]
        validation_0-rmse:13972
[57]
        validation_0-rmse:13889.9
        validation_0-rmse:13862.5
[58]
[59]
        validation_0-rmse:13797.7
[60]
        validation_0-rmse:13743.3
[61]
        validation_0-rmse:13717.1
        validation_0-rmse:13601
[62]
[63]
        validation_0-rmse:13463.9
```

```
[64]
        validation_0-rmse:13183.9
[65]
        validation_0-rmse:13024.9
[66]
        validation_0-rmse:13033.6
[67]
        validation_0-rmse:12984.9
[68]
        validation_0-rmse:12831.7
[69]
        validation_0-rmse:12720.5
[70]
        validation_0-rmse:12627.1
[71]
        validation_0-rmse:12580.7
[72]
        validation_0-rmse:12508.1
[73]
        validation_0-rmse:12474.8
[74]
        validation_0-rmse:12384.6
[75]
        validation_0-rmse:12317.5
        validation_0-rmse:12207.4
[76]
[77]
        validation_0-rmse:12190.8
[78]
        validation_0-rmse:12159.3
[79]
        validation_0-rmse:12169.5
[80]
        validation_0-rmse:12146.6
[81]
        validation_0-rmse:12118.1
[82]
        validation_0-rmse:12060.9
[83]
        validation_0-rmse:11993.2
[84]
        validation_0-rmse:11851.2
[85]
        validation_0-rmse:11702.3
[86]
        validation_0-rmse:11631.7
[87]
        validation_0-rmse:11647.4
[88]
        validation_0-rmse:11594.1
[89]
        validation_0-rmse:11526.7
[90]
        validation_0-rmse:11504.9
        validation_0-rmse:11481.7
[91]
[92]
        validation_0-rmse:11348.5
[93]
        validation_0-rmse:11277.6
        validation_0-rmse:11131.6
[94]
[95]
        validation_0-rmse:11067
[96]
        validation_0-rmse:11057.2
[97]
        validation_0-rmse:11011.3
[98]
        validation_0-rmse:10992.4
[99]
        validation_0-rmse:10914.1
[100]
        validation_0-rmse:10871.5
[101]
        validation_0-rmse:10792.5
[102]
        validation_0-rmse:10693.6
        validation_0-rmse:10658.4
[103]
[104]
        validation_0-rmse:10657.8
        validation_0-rmse:10552.1
[105]
[106]
        validation_0-rmse:10544.3
[107]
        validation_0-rmse:10511.4
[108]
        validation_0-rmse:10535
[109]
        validation_0-rmse:10567.7
        validation_0-rmse:10573.3
[110]
[111]
        validation_0-rmse:10520.6
[112]
        validation_0-rmse:10462
[113]
        validation_0-rmse:10388.2
[114]
        validation_0-rmse:10366.2
[115]
        validation_0-rmse:10351.4
[116]
        validation_0-rmse:10353.8
[117]
        validation_0-rmse:10311.3
[118]
        validation_0-rmse:10321.5
[119]
        validation_0-rmse:10313.4
[120]
        validation_0-rmse:10217.4
[121]
        validation_0-rmse:10195.5
[122]
        validation_0-rmse:10113.6
        validation_0-rmse:10049.3
[123]
[124]
        validation_0-rmse:9921.02
        validation_0-rmse:9861.99
[125]
[126]
        validation_0-rmse:9859.48
[127]
        validation_0-rmse:9845.17
[128]
        validation_0-rmse:9837.61
```

```
[129]
        validation_0-rmse:9764.51
[130]
        validation_0-rmse:9740.27
        validation_0-rmse:9726.12
[131]
[132]
        validation_0-rmse:9697.77
[133]
        validation_0-rmse:9629.73
        validation_0-rmse:9615.9
[134]
[135]
        validation_0-rmse:9612.57
       validation_0-rmse:9607.93
[136]
[137]
        validation_0-rmse:9590.58
[138]
        validation_0-rmse:9594.4
[139]
        validation_0-rmse:9594.21
[140]
        validation_0-rmse:9563.47
[141]
        validation_0-rmse:9546.27
[142]
        validation_0-rmse:9441.99
[143]
        validation_0-rmse:9475.52
        validation_0-rmse:9451.41
[144]
[145]
        validation_0-rmse:9410.16
[146]
        validation_0-rmse:9400.48
[147]
        validation_0-rmse:9388.4
[148]
        validation_0-rmse:9371.49
[149]
        validation_0-rmse:9321.24
[150]
        validation_0-rmse:9287.12
[151]
        validation_0-rmse:9283.12
[152]
        validation_0-rmse:9316.25
[153]
        validation_0-rmse:9326.12
[154]
        validation_0-rmse:9314.78
[155]
        validation_0-rmse:9314.74
        validation_0-rmse:9263.54
[156]
[157]
        validation_0-rmse:9214.01
[158]
        validation_0-rmse:9204.26
[159]
        validation_0-rmse:9189.57
[160]
        validation_0-rmse:9175.91
[161]
        validation_0-rmse:9209.61
[162]
        validation_0-rmse:9181.77
[163]
        validation_0-rmse:9178.97
[164]
        validation_0-rmse:9168.02
        validation_0-rmse:9135
[165]
[166]
        validation_0-rmse:9100.88
[167]
        validation_0-rmse:9124.11
[168]
        validation_0-rmse:9109.22
        validation_0-rmse:9087.11
[169]
[170]
        validation_0-rmse:9071.96
[171]
        validation_0-rmse:9052.74
[172]
        validation_0-rmse:9023.11
[173]
        validation_0-rmse:8974.05
[174]
        validation_0-rmse:9001.82
[175]
        validation_0-rmse:8955.05
[176]
        validation_0-rmse:8943.46
[177]
        validation_0-rmse:8960.63
        validation_0-rmse:8945.86
[178]
        validation_0-rmse:8936.03
[179]
[180]
        validation_0-rmse:8931.21
[181]
        validation_0-rmse:8961.66
[182]
        validation_0-rmse:8927.66
[183]
        validation_0-rmse:8883.47
        validation_0-rmse:8876.89
[184]
[185]
        validation_0-rmse:8877.62
[186]
        validation_0-rmse:8841.79
[187]
        validation_0-rmse:8812.77
        validation_0-rmse:8807.95
[188]
[189]
        validation_0-rmse:8795.41
[190]
        validation_0-rmse:8779.35
[191]
        validation_0-rmse:8764.14
[192]
        validation_0-rmse:8755.41
        validation_0-rmse:8742.67
[193]
```

```
[194]
        validation_0-rmse:8737.15
        validation_0-rmse:8723.52
[195]
        validation_0-rmse:8743.2
[196]
[197]
        validation_0-rmse:8750.08
[198]
        validation_0-rmse:8744.57
[199]
        validation_0-rmse:8744.94
[200]
        validation_0-rmse:8734.89
        validation_0-rmse:8710.95
[201]
[202]
        validation_0-rmse:8743.59
[203]
        validation_0-rmse:8718.02
[204]
        validation_0-rmse:8696.01
[205]
        validation_0-rmse:8685.91
[206]
        validation_0-rmse:8692.97
[207]
        validation_0-rmse:8695.6
[208]
        validation_0-rmse:8684.63
        validation_0-rmse:8678.82
[209]
[210]
        validation_0-rmse:8663.99
[211]
        validation_0-rmse:8670.15
[212]
        validation_0-rmse:8645.76
        validation_0-rmse:8647.29
[213]
[214]
        validation_0-rmse:8638.28
[215]
        validation_0-rmse:8605.57
[216]
        validation_0-rmse:8606.19
[217]
        validation_0-rmse:8603.52
[218]
        validation_0-rmse:8616.96
[219]
        validation_0-rmse:8621.61
[220]
        validation_0-rmse:8589.86
        validation_0-rmse:8584.12
[221]
[222]
        validation_0-rmse:8573.62
[223]
        validation_0-rmse:8576.38
[224]
        validation_0-rmse:8574.49
[225]
        validation_0-rmse:8570.71
[226]
        validation_0-rmse:8558.77
[227]
        validation_0-rmse:8563.56
[228]
        validation_0-rmse:8561.9
[229]
        validation_0-rmse:8563.8
        validation_0-rmse:8531.46
[230]
[231]
        validation_0-rmse:8534.44
[232]
        validation_0-rmse:8542
[233]
        validation_0-rmse:8539.86
[234]
        validation_0-rmse:8534.27
[235]
        validation_0-rmse:8519.79
[236]
        validation_0-rmse:8523.64
[237]
        validation_0-rmse:8520.25
[238]
        validation_0-rmse:8511.65
[239]
        validation_0-rmse:8522.4
[240]
        validation_0-rmse:8511.42
[241]
        validation_0-rmse:8513.41
[242]
        validation_0-rmse:8476.84
[243]
        validation_0-rmse:8470.21
        validation_0-rmse:8456.24
[244]
[245]
        validation_0-rmse:8437.35
[246]
        validation_0-rmse:8430.54
[247]
        validation_0-rmse:8422.75
[248]
        validation_0-rmse:8412.72
        validation_0-rmse:8410.29
[249]
[250]
        validation_0-rmse:8409.39
[251]
        validation_0-rmse:8422.19
[252]
        validation_0-rmse:8403.75
        validation_0-rmse:8374.26
[253]
[254]
        validation_0-rmse:8341.24
       validation_0-rmse:8320.52
[255]
[256]
        validation_0-rmse:8295.95
[257]
        validation_0-rmse:8317.43
[258]
        validation_0-rmse:8305.65
```

```
[259]
        validation_0-rmse:8298.65
        validation_0-rmse:8288.64
[260]
        validation_0-rmse:8285.11
[261]
[262]
        validation_0-rmse:8284.73
[263]
        validation_0-rmse:8272.5
        validation_0-rmse:8260
[264]
[265]
        validation_0-rmse:8239.67
        validation_0-rmse:8230.58
[266]
[267]
        validation_0-rmse:8231.08
[268]
        validation_0-rmse:8233.48
[269]
        validation_0-rmse:8231.14
[270]
        validation_0-rmse:8223.31
[271]
        validation_0-rmse:8218.93
[272]
        validation_0-rmse:8211.24
[273]
        validation_0-rmse:8202.64
        validation_0-rmse:8202.92
[274]
[275]
        validation_0-rmse:8204.48
[276]
        validation_0-rmse:8209.05
[277]
        validation_0-rmse:8208.7
[278]
        validation_0-rmse:8226.79
[279]
        validation_0-rmse:8203.83
[280]
        validation_0-rmse:8206
[281]
        validation_0-rmse:8181.95
[282]
        validation_0-rmse:8160.87
[283]
        validation_0-rmse:8175.25
[284]
        validation_0-rmse:8166.4
[285]
        validation_0-rmse:8165.82
[286]
        validation_0-rmse:8187.87
[287]
        validation_0-rmse:8177.68
[288]
        validation_0-rmse:8180.08
[289]
        validation_0-rmse:8183.94
[290]
        validation_0-rmse:8153.91
[291]
        validation_0-rmse:8143.01
[292]
        validation_0-rmse:8129.65
        validation_0-rmse:8146.84
[293]
[294]
        validation_0-rmse:8137.54
        validation_0-rmse:8159.54
[295]
[296]
        validation_0-rmse:8154.02
[297]
        validation_0-rmse:8139.15
[298]
        validation_0-rmse:8162.39
[299]
        validation_0-rmse:8160.86
[300]
        validation_0-rmse:8161.86
[301]
        validation_0-rmse:8127.09
[302]
        validation_0-rmse:8118.24
[303]
        validation_0-rmse:8109.6
[304]
        validation_0-rmse:8104.89
[305]
        validation_0-rmse:8113.9
[306]
        validation_0-rmse:8107.1
[307]
        validation_0-rmse:8095.15
[308]
        validation_0-rmse:8088.12
[309]
        validation_0-rmse:8101.78
[310]
        validation_0-rmse:8104.05
[311]
        validation_0-rmse:8095.88
[312]
        validation_0-rmse:8092.81
[313]
        validation_0-rmse:8095.98
        validation_0-rmse:8075.13
[314]
[315]
        validation_0-rmse:8064.88
[316]
        validation_0-rmse:8044.5
[317]
        validation_0-rmse:8036.14
        validation_0-rmse:8042.1
[318]
[319]
        validation_0-rmse:8035.65
        validation_0-rmse:8035.76
[320]
[321]
        validation_0-rmse:8038.84
[322]
        validation_0-rmse:8036.75
        validation_0-rmse:8030.32
[323]
```

```
validation_0-rmse:8031.37
         [325]
                 validation_0-rmse:8025.75
         [326]
         [327]
                 validation_0-rmse:8020.95
         [328]
                 validation_0-rmse:8005.22
                 validation_0-rmse:7998.32
         [329]
         [330]
                 validation_0-rmse:7997.68
         [331]
                 validation_0-rmse:7994.55
         [332]
                 validation_0-rmse:7987.29
         [333]
                 validation_0-rmse:7988.17
         [334]
                 validation_0-rmse:7976.72
         [335]
                 validation_0-rmse:7952.68
         [336]
                 validation_0-rmse:7942.03
         [337]
                 validation_0-rmse:7962.13
         [338]
                 validation_0-rmse:7958.61
                 validation_0-rmse:7952.73
         [339]
         [340]
                 validation_0-rmse:7951.35
         [341]
                 validation_0-rmse:7949.31
                 validation_0-rmse:7948.9
         [342]
                 validation_0-rmse:7923.9
         [343]
         [344]
                 validation_0-rmse:7909.56
         [345]
                 validation_0-rmse:7905.37
         [346]
                 validation_0-rmse:7903.81
         [347]
                 validation_0-rmse:7893.32
                 validation_0-rmse:7900.47
         [348]
         [349]
                 validation_0-rmse:7901.41
         [350]
                 validation_0-rmse:7873.41
         [351]
                 validation_0-rmse:7866.24
         [352]
                 validation_0-rmse:7861.57
         [353]
                 validation_0-rmse:7857.11
         [354]
                 validation_0-rmse:7856.24
         [355]
                 validation_0-rmse:7855.39
         [356]
                 validation_0-rmse:7838.3
         [357]
                 validation_0-rmse:7840.04
                 validation_0-rmse:7827.7
         [358]
                 validation_0-rmse:7820.83
         [359]
                 validation_0-rmse:7833.01
         [360]
         [361]
                 validation_0-rmse:7839.33
         [362]
                 validation_0-rmse:7846.39
                 validation_0-rmse:7857.2
         [363]
                 validation_0-rmse:7841.41
         [364]
                 validation_0-rmse:7834.43
         [365]
         [366]
                 validation_0-rmse:7835.18
         [367]
                 validation_0-rmse:7838.01
                 validation_0-rmse:7848.69
         [368]
                 validation_0-rmse:7840
         [369]
         Stopping. Best iteration:
Out[64]: XGBRegressor(colsample_bytree=0.8, gamma=8, learning_rate=0.2,
                      min_child_weight=3, n_estimators=600, objective='reg:squarederror',
                      subsample=0.6)
In [65]: y_pred = xgbmodel.predict(X_test_scaled)
In [66]: y_pred
Out[66]: array([149618.08 , 147258.4 , 175656.98 , ..., 552318.9 , 20316.541,
                777536.5 ], dtype=float32)
In [67]: y_test
Out[67]: array([150000, 147137, 180000, ..., 550000, 22000, 750000], dtype=int64)
```

[324]

validation_0-rmse:8033.03

Model Evaluation

```
In [68]: mse = mean_squared_error(y_test,y_pred)
          mse
Out [68]: 61165427.647468194
In [69]: | rmse = np.sqrt(mse)
          rmse
Out[69]: 7820.832925428607
In [70]: | r2score = r2_score(y_test,y_pred)
          r2score
Out [70]: 0.9991812748989954
In [71]: fig, ax = plt.subplots(figsize=(10,8))
          sns.regplot(x=y_test, y=y_pred, ax=ax)
          plt.title("Plot to compare actual vs predicted")
          plt.ylabel("Predicted")
          plt.xlabel("Actual")
          plt.show()
                                       Plot to compare actual vs predicted
                 1e6
             3.5
             3.0
             2.5
          Predicted 72
             1.5
             1.0
             0.5
             0.0
                          0.5
                                    1.0
                                              1.5
                                                                  2.5
                                                                            3.0
                                                                                      3.5
                                                        2.0
                                                                                        1e6
                                                   Actual
 In [ ]:
```

```
In [72]: X.columns
Out[72]: Index(['AGE1', 'LMED', 'FMR', 'IPOV', 'PER', 'ZINC2', 'ZSMHC', 'BEDRMS', 'ROOMS
    ', 'UTILITY', 'OTHERCOST', 'COSTMED'], dtype='object')
In [73]: xgbmodel.get_booster().feature_names = ['AGE1', 'LMED', 'FMR', 'IPOV', 'PER', 'ZINC 2', 'ZSMHC', 'BEDRMS', 'ROOMS', 'UTILITY', 'OTHERCOST', 'COSTMED']
In [74]: fig, ax = plt.subplots(figsize=(20,10))
    xgb.plot_importance(xgbmodel.get_booster(),ax=ax)
    plt.show()
```


Cross-Validation