Goals for today

- Verification of PTO Force and Power
- PTO-SIM Design Requirements
- Verification of Added Mass and Damping
- Added Mass at Infinity Frequency Questions

PTO (Regular Wave)

 $F_{PTO} = -K_{PTO}X_{rel} - C_{PTO}\dot{X}_{rel}$, where C_{PTO} equals to 1,200,000 Ns/m

 $F_{PTO} = -C_{PTO}\dot{X}_{rel} (Assuming K_{PTO} = 0)$

 $\dot{X}_{rel} = \dot{X}_{body(2)} - \dot{X}_{body(1)}$, where body(2) is the spar plate and body (1) is the float

 $F_{PTO} = C_{PTO} \dot{X}_{rel}$

 $\dot{X}_{rel} = \dot{X}_{body(1)} - \dot{X}_{body(2)}$

ForceOrTorque vs. Cpto*Vrel (Regular Wave)

ForceOrTorque vs. Cpto*Vrel
(Wave Spectrum Type = Pierson-Moskowitz)

Power vs. Fpto*Vrel
(Wave Spectrum Type = Pierson-Moskowitz)

Questions/Comments

• Both PTO force and power are verified.

PTO-SIM

- PTO-Sim Simulink library to model PTO components
- Hydraulic and mechanical drivetrains

- Inputs:
 - Fpto
 - Ppto

- Outputs:
 - Electrical Power

$$A(\omega_r = 0.78 \, rad/s)$$

$B(\omega_r = 0.78 rad/s)$

	1	2	3	4	5	6
1	1370645	0.4835	-1.0197e+03	-0.4986	6.8237e+05	-1.9523
2	-1.1291	1382176	-2.1509	-7.4311e+05	0.3136	163.7706
3	-2.3775e+03	-0.1425	1451279	-1.1539	287.4529	0.0766
4	0.2505	-8.2571e+05	-2.6155	26924760	3.7247	-404.8612
5	7.8609e+05	-0.4075	953.8560	1.5533	26928890	0.2343
6	0.1623	-0.8898	0.3412	-235.9423	-4.4102	480.0662

	1	2	3	4	5	6
1	2.9391e+04	-0.0043	117.5565	0.7374	2.5918e+05	0.9303
2	-0.0026	2.9892e+04	0.2876	-2.6135e+05	0.0608	4.9881
3	-175.2406	0.0015	5.7519e+05	-0.4901	-242.3328	-0.1923
4	0.0367	-2.5567e+05	0.1984	2.2354e+06	0.1831	-35.7695
5	2.5299e+05	0.0069	-692.1261	0.5600	2.2310e+06	1.4808
6	0.0033	2.7449	0.8429	-24.0194	-0.0917	0.0051

- Confirmed $A(\omega_r = 0.78 \, rad/s)$ comes from Body(1,1).hydro.data.fAddedMass(:,:,8)
- Confirmed $B(\omega_r = 0.78 \, rad/s)$ comes from Body(1,1).hydro.data.fDamping(:,:,8)

 $A_0(\omega_r)$ Body(1,1).hydro.data.fAddedMassZero

	1	2	3	4	5	6
1	4.6455e+05	0.9692	1.4212e+03	1.1077	9.8858e+04	0.8341
2	0.6318	431969	0.3426	-1.3039e+05	-0.7378	-129.8300
3	1.5304e+03	-0.0195	1217046	5.4848	-471.8530	-0.1841
4	0.3498	-175782	4.2358	20469330	2.5568	-248.2081
5	1.7380e+05	-0.7355	-101.4807	-0.2945	20477370	-1.6005
6	0.0510	-60.7217	-0.1648	-151.1746	1.0135	426.6893

 $A_{\infty}(\omega_r)$ Body(1,1).hydro.data.fAddedMassInf

	1	2	3	4	5	6
1	1257291	1.7102	-784.3863	-0.7625	3.2828e+05	0.7757
2	3.2883	1255002	-2.2918	-3.8632e+05	-1.0621	96.2949
3	-1.2875e+03	-0.3841	1764947	0.8388	111.6839	0.0150
4	0.8862	-4.7069e+05	-3.5640	24314360	-4.3264	-380.3777
5	4.3317e+05	-0.1005	591.8496	-2.6286	24321060	-0.9040
6	0.5045	-13.9747	0.5082	-199.3879	1.1287	478.8055

 $B(\omega_r)$

	1	2	3	4	5	6
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

$$A_0(\omega_r = ?)$$

	1	2	3	4	5	6
1	4.6455e+05	0.9692	1.4212e+03	1.1077	9.8858e+04	0.8341
2	0.6318	431969	0.3426	-1.3039e+05	-0.7378	-129.8300
3	1.5304e+03	-0.0195	1217046	5.4848	-471.8530	-0.1841
4	0.3498	-175782	4.2358	20469330	2.5568	-248.2081
5	1.7380e+05	-0.7355	-101.4807	-0.2945	20477370	-1.6005
6	0.0510	-60.7217	-0.1648	-151.1746	1.0135	426.6893

• What is A_0 ? At what frequency?

$$A_{\infty}(\omega_r = ?)$$

	1	2	3	4	5	6
1	1257291	1.7102	-784.3863	-0.7625	3.2828e+05	0.7757
2	3.2883	1255002	-2.2918	-3.8632e+05	-1.0621	96.2949
3	-1.2875e+03	-0.3841	1764947	0.8388	111.6839	0.0150
4	0.8862	-4.7069e+05	-3.5640	24314360	-4.3264	-380.3777
5	4.3317e+05	-0.1005	591.8496	-2.6286	24321060	-0.9040
6	0.5045	-13.9747	0.5082	-199.3879	1.1287	478.8055

• It seems $A_{\infty}(\omega_r=?)$ came from Body(1,1).hydro.data.fAddedMass at period between 11 and 12 seconds. Correct? If so, the table still doesn't match.

Body(1,1).hydro.data.fAddedMass(:,:,11)

ı		1	2	3	4	5	6
ı	1	1314441	2.2990	-872.6020	3.7009	5.1956e+05	1.1410
ı	2	1.4954	1318854	-4.7641	-5.7947e+05	-1.7594	131.7646
ı	3	-1.8991e+03	-0.4360	1736950	-0.5368	186.9174	0.0451
ı	4	0.9452	-6.6213e+05	-3.0601	25865580	2.0046	-394.2339
ı	5	6.2316e+05	-1.7528	632.3061	-1.9444	25871040	-0.5361
	6	-0.4639	-7.4140	-0.2155	-218.9182	-0.7918	479.4542

Body(1,1).hydro.data.fAddedMass(:,:,12)

	1	2	3	4	5	6
1	1304177	1.6188	-852.1775	2.5184	4.8260e+05	0.8937
2	1.6111	1307422	-0.0255	-5.4221e+05	0.5897	124.8041
3	-1.8053e+03	0.1651	1784104	-0.2909	166.5770	-0.0617
4	-0.9076	-6.2507e+05	-0.1078	25578960	-1.6629	-393.6356
5	5.8636e+05	-0.0596	575.9863	-2.6888	25584730	-0.0533
6	-0.0543	-8.5204	-0.5956	-215.1004	-0.0429	479.3520

$$F_{rad} = -A_{\infty} \ddot{X} - \int_{0}^{t} K(t - \tau) \dot{X}(\tau) d\tau$$

It seems $A_0(\omega_r)$ is used instead of $A_{\infty}(\omega_r)$. Why?

$A(\omega_r)$	$\rightarrow A_0$	(ω_r)
$TT(\omega_T)$		(ω_r)

	1	2	3	4	5	6
1	4.6455e+05	0.9692	1.4212e+03	1.1077	9.8858e+04	0.8341
2	0.6318	431969	0.3426	-1.3039e+05	-0.7378	-129.8300
3	1.5304e+03	-0.0195	1217046	5.4848	-471.8530	-0.1841
4	0.3498	-175782	4.2358	20469330	2.5568	-248.2081
5	1.7380e+05	-0.7355	-101.4807	-0.2945	20477370	-1.6005
6	0.0510	-60.7217	-0.1648	-151.1746	1.0135	426.6893