The state of the s	VISION:2015 URSE TITLE:REFRIGERATION & AIRCONDITIONIN		RSE CODI	E:6023
Q. No.	SCORING INDICATOR	SPLIT UP SCORE	SUB TOTAL	TOTAL
	PART-A (Answer all questions)			
1	$COP = \frac{Refrigeration\ effect}{Work\ input}$	2	2	
2	1.Isentropic compression	0.5	-	
	2.Isothermal heat rejection	0.5		
	3.Isentropic expansion	0.5	2	
	4.Isothermal heat absorption	0.5		
3	NH ₃ -H ₂ O	1		
	LiBr – H ₂ O	1	2	
4	Specific humidity is defined as the mass of water vapour			
	per unit mass of dry air in a mixture of air and water vapour	2	2	10
5	Effective temperature is defined as the sensory index that			
	combines into single factor the effects of temperature,			
	humidity and air movement on human comfort in a noise free pure environment	2	2	
	PART-B (Answer any 5 questions)			30
1	Mass of milk,m = 1500 kg			30
•	Initial temperature of milk, $T_i = 30$ °C			
	Final temperature of milk, $T_f = 3$ °C		×.	
	Time for cooling $t = 3hr = 3 \times 60 \times 60$ seconds			
	=10800 seconds			
	Specific heat of milk C _p =3.92 kJ/kg.K.			
	프로그 시간 100 HT - 12 HT 1 H		6	
	1 TR = 3.5 kW	1	1701	
	Rate of cooling required = $\frac{mCp(Ti-Tf)}{t}$	2		
	$\frac{-1500\times3.92\times(30-3)}{10800} = 14.7 \text{ kW}$	2		

	147			
	capacity of refrigerating machine $=\frac{14.7}{3.5} = 4.2 \text{ TR}$	1		
	3.3			
			1	
	* .			
		:		
2.				
	Open air refrigeration system: In this system, the cold			
	air expanded to atmospheric pressure is supplied to the			
	space to be cooled.			-
		1		
	Heat exchanger			
	3			
	₩ _{act,in}			
	Turbine Compressor			
		2		
	4			
	Cool air Warm air			
	out in			
	Open air refrigeration system			
	*		6	
	closed air refrigeration system: In this system, the air		0	
	refrigerant remains with in the refrigeration system. The			
	air absorbs and releases heat through heat exchangers.			
	Warm region Tu T,	1		
	Sa changer.			
	mogen Heaten			
	Compressor Heat exchanger 3			
	Was Turbine			
	Compressor Turbine	2		
	Heat exchanger			
	Heat excharger			
	Sa T			
2	Cold region T ₁ L			
3.	Primary refrigerants are those working substances which	2	,	
	directly take part in the refrigeration process and cool the			
	substance by the absorption of latent heat.			
	Eg: Ammonia, Freon group refrigerants, Methyl chloride	1		
	(1 example)			
	,			

	Secondary refrigerants are those circulating substances which are first cooled with the help of the primary refrigerants and are then employed for cooling purpose.	2	6	
	Eg: water, carbon dioxide, brines etc. (1 example)	1		
4	In hermetic compressors, the most			
	In hermetic compressors, the motor and the compressor are enclosed in the same housing. The housing has welded connection of	2		
	The housing has welded connections for refrigerant inlet and outlet and for power input socket.	1		
		1	-	
	As a result of this, there is virtually no possibility of refrigerant leakage from the compressor.	. 1	6	
	In some hermetic units, the cylinder head is usually removable so that the valves and di			
5	serviced. This type of unit is called a semi-hermetic (or semi-sealed) compressor	2		
5	Instrument capable of measuring the psychrometric state of air is called a psychrometer.	1		
	r - y smorrotor.			
	The sling psychrometer consists comprises of two thermometers with the bulb of one covered by a moist wick.	2		
l I I	The thermometers are mounted side by side and fitted in a frame with a handle for whirling the device through air. The required air circulation (≈ 3 to 5 m/s) over the sensing bulbs is obtained by whirling the psychrometer (≈ 300 RPM). Readings are taken when both the thermometers show steady-state readings.	3	6	
C	n cascade system, the condenser for low temperature 2		6	
C	ycle.			
Iı	n cascade system, a series of refrigerants with			-
1	rogressively lower freezing points is used in a series of 1 ngle stage units.			
			9 e 1	
				-

		9		
III.b	$T_L = -10^{\circ}\text{C} = 263 \text{ K}$ $T_H = 30^{\circ}\text{C} = 303 \text{ K}$			1
	$COP = \frac{T_L}{T_H - T_L}$	1		
	$=\frac{263}{303-263}=6.575$	1		
	Refrigeration effect = 10 TR = $10 \times 3.5 = 35 \text{ kW}$			
	$COP = \frac{Refrigeration\ effect}{work\ input}$	1	7	
	35 work input			
	Work input = $\frac{35}{COP} = \frac{35}{6.575} = 5.323 \text{ kW}$	1		
	Rate of heat rejection = Refrigeration effect + work input			
	=35 + 5 222 + 40 000	2		
V.a		8		
-		0		
	₹ Qout			
	Condenser 2			
	Expansion Compressor Win 2			
	Evaporator			
	4		-	
	\mathcal{Q}_{bi}			

Flow diagram

Process 1-2: Isentropic compression of saturated vapour in compressor

Process 2-3: Isobaric heat rejection in condenser

Process 3-4: Isenthalpic expansion of saturated liquid in expansion device

Process 4-1: Isobaric heat extraction in the evaporator

2

The low temperature, low pressure vapour at state 1 is compressed by a compressor to high temperature and pressure vapour at state 2. This vapour is condensed into high pressure liquid at state 3 in the condenser and then passes through the expansion valve. Here, the liquid is throttled down to a low pressure liquid and passed on to an evaporator, where it absorbs heat from the surroundings from the circulating fluid (being refrigerated) and vaporizes into low pressure vapour at state 1. The cycle then repeats.

P-h diagram

1

	$\frac{T_3}{T_4} = \left(\frac{P_3}{P_4}\right)^{\frac{\gamma-1}{\gamma}}$		
	$T_4 = \frac{288}{51.4} = 181.84 \text{ K}$]]	
	Heat absorbed = $C_p(T_1 - T_4)$		
	= 1.005 (283-181.84) = 101.67 kJ/kg.		
	Heat released = $C_p(T_3 - T_2)$		
	=1.005(448.22 - 288) = 161.0211 kJ/kg.		
	Work input = Heat released - Heat absorbed		
	=161.0211 -101.67 = 59.35 kJ/kg	2	
	$COP = \frac{Refrigeration \ effect}{Work \ input}$		
	_ 101.67		
V.a	$=\frac{101.67}{59.35}=1.713$	1	
	High pressure liquid Sound deadner Expansion device (Capillary tube) Expansion device (Capillary tube) The low pressure and low temperature refrigerant vapour is drawn through the	4	
	suction line to the compressor. The accumulator provided between the suction line and the evaporator collects liquid refrigerant coming out of the evaporator due to incomplete evaporation, if any, prevents it from entering the compressor. The compressor then compresses the refrigerant vapour to high pressure and high temperature. The compressed vapour flows through the discharge line into condenser. In the condenser the vapour refrigerant at high pressure and at high temperature is condensed to the liquid refrigerant at high pressure and low temperature. The liquid refrigerant then flows through the filter and then enters the capillary tube. The capillary tube expands the liquid refrigerant at high pressure to the liquid refrigerant at low pressure. The refrigerant then enters the evaporator	4	

b	The ammonia vapour leaving the evaporator is readily absorbed in the		
	low temperature hot solution in the absorber, releasing the latent heat of		
	condensation. The temperature of the solution tends to rise, while the absorber is		
	cooled by the circulating water. Strong solution is pumped to the generator where		
	heat is supplied from an external source .The high pressure ammonia vapour goes	3	7
	to condenser where it is condensed to high pressure liquid ammonia .The weak		
	solution returns to the absorber through a pressure reducing valve. The liquid		
	ammonia from the condenser is throttled by the expansion valve and then enters to		
	the evaporator. In the evaporator, the liquid ammonia absorbs heat from the		
	surrounding and become ammonia vapour.		
	High pressure NH ₃ vnpour		
	Q _G 2		
	Steam or electricity Generator Condenser Cooling water		
	3 NH ₃ liquid	4	
	W _p — Reducing Expansion valve		
	Strong Weak		
	solution solution 4 *		
	Low pressure NH ₃ vapour QE		
	QA Absorber 1 Evaporator		
	Cooling		
- 19	water		
a	Bulb pressure (p ₂)	1	8
	Needle Needle	4	0
	Evaporator pressure (p_1) Strainer	-	-
	Spring pressure (p ₂) Spring		
	Remote bulb		
	Adjusting		
	The remote bulb (feeler bulb) charged with refrigerant which is open on one side		

	outlet. The pressure of the liquid in the bulb tends to open the valve. This pressure is balanced by pressure due to spring and pressure in the evaporator. When the cooling load increases, the refrigerant evaporates at a faster rate in the evaporator than the compressor can suck. As a result the pressure and degree of superheat in the evaporator increases. This causes the valve to open more and allows more refrigerant to enter the evaporator when the cooling load decreases, the refrigerant evaporates at a slower rate than the compressor can suck. As a result, the evaporator pressure drops and the degree of superheat decreases. The valve tends to close and the refrigerant supply decreases.	4		
VI.b	A flooded type evaporator is one wherein the amount of liquid refrigerant from receiver receiver receiver and the evaporator is considerably in excess of that which can be vaporised. A float valve is used as the throttling device which maintains a constant liquid level in the evaporator. Refrigerant absorbs heat and gets vaporised. So the liquid level falls down. The float valve opens to admit more liquid and thus maintains a constant liquid level. As a result the evaporator is always filled with liquid to the level determined by the float adjustment.	3	7	
VII .a	$\phi_2 = 40\%$ h_1 h_2 h_3 W_2 g_3 g_4 W_2 g_4 g_5 g_4 g_5 g_6 g_7 g_8 g_8 g_8 g_9	1	8	

5	$h_1 = 22.7 \text{ kJ/kg}$		1	_
	$h_2 = 62.3 \text{ kJ/kg}$			
	$h_A = 40 \text{ kJ/kg}$		-	
	$W_1 = 0.003 \text{ kg/kg}$ of dry air.	1		
	W_2 = 0.0171 kg/kg of dry air.	1		
	Heat added to air = h_2 - h_1 = 62.3 -22.7 =39.6 kJ/kg	1		
	Moisture added to air = W_2 - W_1 = 0.0171 - 0.003 = 0.0088 kg/kg of dry air.	1		
VII.b	Sensible cooling	-		
	Cold Refrigerant in			
		-	-	
	Warm air		7	
		1	,	
	Cold air			
	In this process air is passed through a series			
	In this process, air is passed through a cooling coil whose surface temperature is	1		
	kept greater than the dew point temperature of the air.	-		
	During this process, the moisture content of air remains constant but its			
	temperature decreases as it flows over a cooling coil.			
- 1				
	h _o			
			-	
-				
	A O W	1		
U. R	DBT		-	

	Cooling & dehumidification.			
	In this process, the air is passed through a cooling coil having surface temperature	1		
	less than the dew point temperature of air.	1		
	The moisture in the air begins to condense as it comes in contact with the cooling	1		
	coil. During this process	-1		
	both dry bulb temperature and humidity of air decreases.			
	A DBT	1		
VIII.a	From psychrometric chart			1.
	$h_1 = 35.4 \text{ kJ/kg}$	1		
	$h_2 = 45.2 \text{ kJ/kg}$	1		
	$v_1 = 0.8267 \text{ m}^3/\text{kg}$	1		
	RH of heated air =41% WBT of heated air = 16.1°C	1 1 7	7	
	Heat added to air =m $(h_2 - h_1)$	1		
		-		}

1 1	=200(45.2 -	33.4)		
	= 1960 kJ		1	
X/III	A 41			
VIII.b	Applications of cryogenics		-	
	Space	Mechanical	8	8
	 Rocket propulsion Cooling of IR sensor Space simulation Medicine 	Magnetic SeparationManufacturingHeat treatmentRecycling		
	 Cryosurgery Cell preservation 	High Energy Physics • ITER		
	 Food preservation Gas Industry 	• CERN		
	LiquefactionSeparationStorage	 Superconductivity NMR, MRI Maglev Locomotion SC Transformer & Generator 		
	Anv. 9 1'			
	Any 8 application from 4 areas			
				_
			1 1	
X.a	• Air supplied to the con	ditioned		
X.a	Air supplied to the con winter air conditioning s	ditioned space is heated and humidified in the	1	
X.a	• Air supplied to the conwinter air conditioning smoisture content.	ditioned space is heated and humidified in the system to the required level of temperature and	1	
X.a	winter air conditioning s moisture content.	system to the required level of temperature and	1	
X.a	 winter air conditioning semisture content. The mixed air (mixture or 	f return and outdoor air) is first pre-heated (m-1)	1	
K.a	 winter air conditioning semisture content. The mixed air (mixture or 	f return and outdoor air) is first pre-heated (m-1) midified using a humidifier or an air washer (1-2)	1	

 Pre-heating of air is advantageous as it ensure humidifier/air washer does not freeze. 	es that water in th	ne	1
Return air (i)			
Exhaust air	Q _s ,Q _l		8
Recirculated Conditioned space			
air (i)			
OD air (o) (1) (1) supply air	(s)	4	
Pre-heater Humidifier Re-heater			
Cooling load is the rate at which sensible and latent heat must			
the space to maintain a constant space dry-bulb air temperature	be removed from	2	7
For air-conditioning, the cooling load can be classified as follows:	e and humidity.		
of some fold can be classified as follows:	WS		
1.Room load – which falls on the room directly			
2. Total load- Which falls on the air-conditioning apparatus.			
on the an-conditioning apparatus.	9	1	
Room load			
Room sensible heat	=		
1. Solar and transmission heat gain through walls, roof, glass etc.			
2.Infiltration	2.		
3. Internal heat gain from people, power, lights, appliances etc		1	
4. supply duct heat gain, supply duct leakage loss and fan power		1	-
Room Latent Heat			
1.Infiltration			4
2.Internal heat from people, steam, appliances			
3. Vapour transmission	1		
Grand total load			
(a) Sensible heat:			-
1. Effective room sensible heat			
2. Sensible heat of the outside air that is not by-passed		1	-

	3. Return duct heat gain, return duct leakage gain		
	duct leakage gain		
	(b)Latent heat		
	1.effective room latent heat		
	2.latent heat of outside air which is not by-passed		
	3.return duct leakage gain	1	
W			
X.a	Cooling air . Hot air		
	Comp- ressor Blower		
	Evaporator Wall Conditioned air	5	7
	A window type air-conditioner is basically designed for cooling of room where it is installed. The entire system consists of following subassemblies.		
	1.system assembly: evaporator, capillary tube, condenser, strainer, compressor. 2.Motor, fan and blower assembly:		
	and blower assembly: fan, blower motor motor motor	2	
I Y	and grin assembly : cabinet orill		
	4.switch board panel: selector switch, relay, thermostat, fan motor capacitor		
b	FERSION AND AND AND AND AND AND AND AND AND AN		
	Outside air Conditioned space Perforated membrane	1 8	
	Damper Filter Cooling		
	Cooling Sump Heating coill Summer air conditioning system,		
R	ecirculated air from the conditioned space mixes with the outside air and flows		

through the filter. The filter removes dust and other impurities from air.

The air then passes through the cooling coil whose temperature is lower than the dew point temperature of air. The moisture in the air begins to condense. The perforated membrane separates the water droplets from air. The water droplets are collected in a sump. The air is the heated to the required temperature using a heating coil. The air is then supplied to the conditioned space using a fan