Simulazione dell'esame di Logica, Università degli Studi di Torino, Filosofia

Seed: 345162, v.1

Punti:	_ / 30	Гетро:
 Formalizzar classica. Dimostrare lo è. 	l'argomento, se esiste. re l'argomento, se formalizzabile secon	do il linguaggio della logica enunciativa l linguaggio della logica enunciativa classica, se
	a pizza qui sotto non mi piac. Inoltre, in	o resto a casa oppure vado a mangiare una pizza televisione non c'è niente di interessante. Quindi
siano contrado		ogni enunciato 2. determinare se (x_n, x_{n+1}) ieme coerente 3. determinare se il secondo $x_n \models x_{n-1}$ oppure $(x_n \not\models x_{n-1})$.
a_1 . Non è ve	ro che Flavio non programma o che	il pc non va.
a_{2} . Flavio pr	ogramma.	
$oldsymbol{b_1}$. Se mi dist	turbi, allora esci.	
$oldsymbol{b_2}$. O esci, op	ppure non mi disturbi.	
$oldsymbol{c_1}$. Se non pi	ove, allora piove.	
$c_{2}.$ Piove.		

3 (9 pt)

a.
$$((p \supset q) \land q) \land r \vdash q \land \sim \sim r$$

$$\mathbf{b.} \sim p \land \sim q \vdash \sim (p \lor q)$$

c.
$$(p\supset q)\wedge (r\supset q)\vdash (p\vee r)\supset q$$

4 (15 pt)

Teoria (1). Spiegare perché vale quanto seguente: se $\alpha \in \Gamma$, allora $\Gamma \models \alpha$.

Teoria (2). Fornire un esempio di fallacia (diverso da quelli forniti nel manuale).

Teoria (3). Dimostrare che per ogni coppia di insiemi A, B si ha $A \cup (B \setminus A) = A \cup B$

Teoria (4). Dato l'insieme $A = \{x, y, z, u, w\}$ e la relazione R su A definita come: $R = \{(x, x), (y, y), (z, z), (u, u), (w, w)(x, y), (y, x), (x, z), (z, x), (y, z), (u, w), (w, u)\}$

- 1. Determinare se R è riflessiva.
- 2. Determinare se R è simmetrica.
- 3. Determinare se R è transitiva.

Teoria (5). Fornire un esempio di argomento deduttivamente invalido dotato di forza induttiva (senza usare esempi contenuti nel manuale).