6.8 Calculate the temperature at which the vapor pressure of n-decane corresponds to a stocihiometric vapor-air mixture. Compare your result with the value quoted for the firepoint of n-decane in Table 6.1

$$C_{10} \cdot H_{22}$$
 $M1 := 12 \cdot 10 + 22$ $M1 = 142$ $hfg := 0.28 \cdot 1000$ $\frac{kJ}{kg}$

Tb := 447 Pkpa :=
$$101000$$
 xl := 0.006 Rgas := 8.314

C10H22 + a(O2+3.76N2) -> 10CO2 + 11H2O + 3.76aN2
$$a := \frac{31}{2}$$

$$x_{st} := \frac{1}{1 + a \cdot 4.76}$$
 $x_{st} = 0.013$

$$Tl := \left(\frac{1}{Tb} - \frac{Rgas \cdot ln(xl)}{hfg \cdot M1}\right)^{-1} \qquad Tl = 302.397 \qquad \begin{array}{l} \text{T flash point is found using the lower limit} \\ \text{flammability} \end{array}$$

For the stoichiometric case we get

$$T_{st} \coloneqq \left(\frac{1}{Tb} - \frac{Rgas \cdot ln(x_{st})}{hfg \cdot M1}\right)^{-1} \qquad T_{st} = 318.539 \quad \text{is the temperature associated with a stocihiometric mixture in the gas phase.}$$