2024年度 線形数学演習 I 期末試験 問題用紙(片面1枚)

 $\boxed{1}$ 実数 a,b に対し $\max(a,b)$ を

 $\max(a,b) = \begin{cases} a & (a \ge b \text{ のとき}) \\ b & (a < b \text{ のとき}) \end{cases}$

と定める. 正の整数 n に対して

$$S_n = \sum_{i=1}^n \sum_{j=1}^n \max(i,j)$$

とするとき,次の問に答えよ.

- (1) S_3 を求めよ.
- (2) S_n を n の式で表せ.
- $oxed{2}$ 行列 X の (i,j) 成分を $X_{i,j}$ とかく.次の文章の空欄をうめよ.
 - $A & em \times n$ 行列, $B & ep \times q$ 行列とする.積 AB は ((1)) のときに定義され,その型は((2)) であり,(i,j) 成分は $(AB)_{i,j} = ($ (3)) である.
 - $m \times n$ 行列 C の転置行列 tC とは,型が((4)) の行列で (i,j) 成分が $({}^tC)_{i,j}=$ ((5))で定まる 行列である.
 - 正方行列 M は((6))を満たすとき対称行列といい,((7))を満たすとき交代行列という.また,ある自然数 k に対して((8))を満たす行列をべき零行列といい,((9))を満たす行列をべき等行列という.
- $oxed{3}$ k を実数とする.連立方程式

$$\begin{cases} 3x - 2y + z &= k \\ 2x + y - z &= 1 \\ 5x - y &= 6 \end{cases}$$

について、以下の問に答えよ.

- (1) この連立方程式が解をもつようにkの値を定めよ.
- (2) k を (1) で求めた値とする. この連立方程式を解け.

 $4 \mid x$ を実数とし、行列 A を

$$\begin{bmatrix} x-1 & x & x \\ x & x-1 & x \\ x & x & x-1 \end{bmatrix}$$

とする. 次の問に答えよ.

- (1) x=2 のときの A の階数を求めよ.
- (2) x の値によって場合分けをして一般の x に対して A の階数を求めよ.
- |5| k を実数とし,行列 A を

$$\begin{bmatrix} 1 & 0 & k & k \\ 0 & 1 & k & k \\ k & k & 1 & 0 \\ k & k & 0 & 1 \end{bmatrix}$$

とする. 次の問に答えよ.

- (1) k=2 のときの A の行列式を求めよ.
- (2) A の行列式を k の式で表せ.
- ; | | 行列 A を

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 4 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

と定める.次の間に答えよ.

- (1) A の行列式を求めよ.
- (2) A の (2,2) 余因子を求めよ.
- (3) Aの(2,3)余因子を求めよ.
- (4) A の逆行列を求めよ.
- 7 行列 A, P をそれぞれ

$$A = \begin{bmatrix} 7 & -4 \\ 6 & -3 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

と定める. 次の問に答えよ.

- (1) A^2 を求めよ.
- (2) P の逆行列 P^{-1} を求めよ.
- (3) $P^{-1}AP$ を求めよ.
- (4) 正の整数 n に対して A^n を求めよ.
- $oxed{8}$ A, B を n 次正方行列とするとき、 $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ が成り立つことを示せ、

2024年度 線形数学演習 I 期末試験 解答用紙(両面1枚)

	字籍畨号					名前		
1	(1)				(2)			
2	(1)		(2)			(3)		
	(4)		(5)			(6)		
	(7)	(8)				(9)		
3	(1)				(2)			
4	(1)				(2)			
5	(1)				(2)			
6	(1)				(2)	(2)		
	(3)	(3)			(4)			

7	(1)	(2)	
•	(3)	(4)	
8			