《博弈论》第一次作业

(完全信息静态博弈作业)

1. 对于下面的每个矩阵博弈,找出参与者 1 的最大最小策略和参与者 2 的最小最大策略(仅考虑纯策略)。执行重复剔除劣策略的过程,有哪些策略被剔除?

		Player II							
		a b c d							
	γ	8	4	8	4				
Player I	β	2	5	3	8				
	α	6	1	4	5				
			Game	A					

	Player II							Player II				
		a	b	C	d			a	b	C	d	
Player I	δ	6	4	2	1	Player I	δ	3	6	5	5	
	γ	5	3	3	0		γ	5	5	5	5	
	β	1	0	5	4		$\boldsymbol{\beta}$	5	3	5	6	
	α	2	-3	2	3		α	6	5	5	3	
Game B									Gar	ne C	,	

- 2. 在下面的三个博弈中,甲是行参与者,乙是列参与者。采用重复剔除严格劣策略方法进行分析。在每个博弈中,
 - (1) 哪些策略是可以理性化的? 哪些策略是不可以理性化的?
 - (2) 是否存在重复剔除的占优均衡? 若有,需要满足几阶理性共识?
 - (3) 求出纯策略纳什均衡。

							a	b	c
	\boldsymbol{L}	R		\boldsymbol{L}	R	γ	1, 0	3, 0	2, 1
Н	4, 2	0, 1	Н	1, 3	2, 3	β	3, 1	0, 1	1, 2
T	1, 1	3, 3	T	0, 4	0, 2	α	2, 1	1,6	0, 2
,	Gar	ne A		Gan	ne B			Game C	

3. 对于下面的三人博弈:

		丙:Z ₁			丙: Z ₂				
		Z	Z				乙		
		\mathbf{Y}_1	Y_2				\mathbf{Y}_1	Y_2	
甲	X_1	0, 0, 0	6, 5, 4		甲	X_1	4, 6, 5	0, 0, 0	
	X_2	5, 4, 6	0, 0, 0			X_2	0, 0, 0	0, 0, 0	

- (1) 求出全部的(纯策略及混合策略)纳什均衡。
- (2) 是否存在强均衡? 是否存在抗联盟纳什均衡?

4. 从旧金山(San Francisco)到圣何塞(San Jose)有两条路,北路经过山景城(Mountain View),南路经过库比蒂诺(Cupertino)。每条路的车程时间取决于使用该条路的车有多少辆(x),如下图所示。

每个司机都要选择一条从旧金山到圣何塞的路,目标是尽量减少交通时间。假设有60辆车同时从旧金山出发前往圣何塞。

- (1)每个司机有几种策略?求出这个博弈的纳什均衡。在均衡中,每个司机的通勤时间是多少?
 - (2)加州交通部门在山景城和库比蒂诺之间新建了一条单向路,如图所示:

求出新博弈的均衡。在均衡中,每个司机的通勤时间是多少?

- 5. 设有一批选民,其政治观点在一个单位区间从左(*x*=0)至右(*x*=1)均匀分布。若干候选人同时选择其政治立场(即在 0 与 1 之间取一点)。选民观察候选人的选择,然后将选票投给与自己的立场最接近的候选人。假设有三个候选人。
 - (1) 假设每个候选人只希望得票越多越好, 你能不能找出一个纳什均衡?
- (2) 假设每个候选人只关心能否当选,而且每个候选人还可以选择不参加 竞选,这个选择的结果劣于与人并列第一,但优于输掉选举。你能不能找出一个 纳什均衡?