НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ ЗНАЧЕНИЯ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ В ЗАМКНУТОЙ ОГРАНИЧЕННОЙ ОБЛАСТИ

TEOPEMA (Вейерштрасса). Всякая непрерывная в замкнутой ограниченной области функция достигает в этой области своих наибольшего и наименьшего значений.

(Без доказательства)

ЗАМЕЧАНИЕ. В случае функции одной переменной теорема Вейерштрасса была справедлива для функции, непрерывной на отрезке. Таким образом, аналогом отрезка на плоскости (или в пространстве) является замкнутая ограниченная область.

Рассмотрим непрерывную функцию z = z(x, y), $(x, y) \in D$, где D – замкнутая ограниченная область. Тогда по теореме Вейерштрасса она имеет в этой области наименьшее и наибольшее значения, которые достигаются либо во внутренних точках области – точках ее экстремума, – либо на границе области.

Будем считать, что z = z(x, y) дифференцируема во внутренних точках D.

Для того, чтобы найти наибольшее и наименьшее значения, надо

- 1) найти значения функции в стационарных точках, принадлежащих D,
- 2) найти наибольшее и наименьшее значения функции на границе D,
- 3) выбрать из найденных значений самое большое и самое маленькое.

ПРИМЕР. Найти наибольшее и наименьшее значения функции $z = x^2 + y^2 - xy + x + y$ в области $D: x \le 0, y \le 0, x + y \ge -3$ (рис. 21).

Рис. 21

1) Найдем стационарные точки функции, принадлежащие области D:

$$z'_{x} = 2x - y + 1, \ z'_{y} = 2y - x + 1 \implies$$

$$\begin{cases} 2x - y + 1 = 0 \\ -x + 2y + 1 = 0 \end{cases} \Rightarrow x = -1, \ y = -1.$$

Точка
$$M_1(-1,-1) \in D$$
 и $z(M_1) = -1$.

2) Исследуем функцию на границе. Граница состоит из трех участков *OA*, *OB* и *AB* (рис. 21). На каждом из этих участков будем решать задачу на условный экстремум.

На OA: y=0, $x \in [-3,0]$, поэтому $z_{OA} = x^2 + x$ — функция одной переменной, заданная на отрезке. Здесь уравнение связи y=0 учтено подстановкой в z(x,y).

Следуя алгоритму поиска наибольшего и наименьшего значений непрерывной на отрезке функции, найдем

$$z'_{OA} = 2x + 1 = 0 \Rightarrow x = -\frac{1}{2} \in [-3, 0].$$

Значит, $M_2\left(-\frac{1}{2},0\right)$ – стационарная точка на границе и $z(M_2) = -\frac{1}{4}$.

Кроме того, z(O) = 0 и z(A) = 6

Аналогично на OB: x=0, $y\in [-3,0]$, поэтому $z_{OB}=y^2+y$, $z'_{OB}=2y+1=0 \Rightarrow$ $y=-\frac{1}{2}\in [-3,0]$.

Ещё одна стационарная точка на границе — $M_3\bigg(0,-\frac{1}{2}\bigg)$ и $z(M_3)=-\frac{1}{4};$ z(B)=6.

На AB: x + y = -3 – уравнение связи для третьей задачи на условный экстремум. Подставим y = -x - 3 в z(x, y):

$$z_{AB} = x^2 + (-x - 3)^2 + x(3 + x) + x - 3 - x = 3x^2 + 9x + 6, \quad x \in [-3, 0].$$

$$z'_{AB} = 6x + 9 = 0 \Rightarrow x = -\frac{3}{2} \in [-3, 0] \Rightarrow y = -\frac{3}{2} \Rightarrow M_4\left(-\frac{3}{2}, -\frac{3}{2}\right)$$
 – стационарная

точка на AB и $z(M_4) = -\frac{3}{4}$.

3) Сравним найденные значения функции, выделенные рамкой. Она достигает наибольшего значения в двух точках на границе: z(A) = 6, z(B) = 6, а наименьшего – во внутренней точке области $D: z(M_1) = -1$.

ПРИМЕР. Найти наибольшее и наименьшее значения функции $z = x^2 + y^2 - 12x + 16y$ в круге $x^2 + y^2 \le 1$ (рис. 22).

Рис. 22

1) Найдем стационарные точки функции, принадлежащие области D:

$$z'_{x} = 2x - 12, \ z'_{y} = 2y + 16 \implies$$

$$\Rightarrow \begin{cases} 2x - 12 = 0 \\ 2y + 16 = 0 \end{cases} \Rightarrow M_1(6, -8) \notin D$$

Таким образом, внутри области стационарных точек нет.

2) Исследуем функцию на границе, то есть решим задачу на условный экстремум функции $z = x^2 + y^2 - 12x + 16y$ при условии $x^2 + y^2 = 1$.

В этом случае будем искать условный экстремум методом множителей Лагранжа. Функция Лагранжа имеет вид:

$$L(x, y, \lambda) = x^2 + y^2 - 12x + 16y + \lambda(x^2 + y^2 - 1).$$

Составим и решим систему (6.10):

$$\begin{cases} 2x - 12 + 2\lambda x = 0 \\ 2y + 16 + 2\lambda y = 0 \implies x = \frac{6}{1 + \lambda}, \ y = -\frac{8}{1 + \lambda} \implies \frac{36}{(1 + \lambda)^2} + \frac{64}{(1 + \lambda)^2} = 1 \implies x = \frac{6}{1 + \lambda} \implies \frac{36}{1 + \lambda} = 1 \implies x = \frac{6}{1 + \lambda}$$

$$\lambda_1 = 9, \ \lambda_2 = -11 \implies M_2\left(\frac{3}{5}, -\frac{4}{5}\right), \ M_3\left(-\frac{3}{5}, \frac{4}{5}\right)$$
 – стационарные точки на границе и

$$z(M_2) = -19, z(M_3) = 21.$$

3) Так как внутри области и на её границе есть только две стационарные точки, то, очевидно, что $z(M_2) = -19$ — наименьшее значение, а $z(M_3) = 21$ — наибольшее значение этой функции в заданном круге.