Perfect Squares

$\sqrt{9} = 3$		√81 =	$\sqrt{1} =$
$\sqrt[5]{64} =$	$\sqrt[6]{0} =$	$\sqrt{49} =$	$\sqrt{144} =$
$\sqrt{100} =$	$\sqrt{36} =$	$\sqrt{16} =$	$\sqrt{225} =$
$\sqrt{169} =$	$\sqrt{121} =$	$\sqrt{196} =$	$\sqrt{9} =$
$2^2 = 4$	4 ² =	$0^{2} =$	$3^2 =$
$1^{21} =$	$5^2 =$	$10^2 =$	$8^2 =$
²⁵⁾ 7 ² =	$9^2 =$	$12^2 =$	$11^2 =$
$15^2 =$	$13^2 =$	$14^2 =$	$2^{2} =$

What Keeps a tree in place?

ANSWERS				
$\sqrt{9} = 3$	$\sqrt[2]{4} = 2$	$\sqrt[3]{81} = 9$	$\sqrt[4]{1} = 1$	
$\sqrt{64} = 8$	$\sqrt{0} = 0$	$\sqrt{49} = 7$	$\sqrt[8){144} = 12$	
$\sqrt[9]{100} = 10$	$\sqrt{36} = 6$	$\sqrt{16} = 4$	$\sqrt{225} = 15$	
$\sqrt{169} = 13$	$\sqrt{121} = 11$	$\sqrt{196} = 14$	$\sqrt{9} = 3$	
$2^2 = 4$	$4^2 = 16$	$0^{2} = 0$	$3^2 = 9$	
$1^{21} = 1$	$5^2 = 25$	$10^2 = 100$	$8^2 = 64$	
$7^2 = 49$	$9^2 = 81$	$12^2 = 144$	$11^2 = 121$	
$15^2 = 225$	$13^2 = 169$	$14^2 = 196$	$2^{2} = 4$	

Square Roots!