Dynamic Divide-and-Conquer Adversarial Training For Robust Semantic Segmentation

ICCV 2021 Xiaogang Xu, Hengshuang Zhao

论文主要成果概述

文章探索了在语义分割领域通过对抗训练提高模型鲁棒性的方法。

- ▶ 优点:
 - 提出了一种语义分割对抗训练的训练框架: SAT
 - 在SAT的基础上进行了改进: DDC-AT
- > 不足:
 - 缺少对于时间成本的对比
 - 损失函数由三部分构成,可以再探究一下模型在训练过程中,倾向于通过 提升哪一方面的准确率来降低损失值。

语义分割相关背景

常用损失函数: 交叉熵Loss

$$L = -\sum_{c=1}^{M} y_c log(p_c)$$

segmented

- 2: Purse
- 3: Plants/Grass
- 4: Sidewalk
- 5: Building/Structures

Label Map

Standard Adversarial Training (SAT)

Algorithm 1 Standard Adversarial Training

Parameter: clean training set **X**, segmentation network f, maximum number of training iterations T_{max} , $T \leftarrow 0$

- 1: while $T \neq T_{max}$ do
- 2: Load a mini-batch of data $\mathbf{D}_b = \{x_1^{clean}, ..., x_m^{clean}\}$ from the training set \mathbf{X} .
- 3: Get adversarial samples $\mathbf{A}_b = \{x_1^{adv}, ..., x_m^{adv}\}$ from \mathbf{D}_b .
- 4: Set batch as $\{x_1^{clean}, ..., x_{\lfloor m/2 \rfloor}^{clean}, x_{\lfloor m/2 \rfloor+1}^{adv}, ..., x_m^{adv}\}$ from \mathbf{D}_b and \mathbf{A}_b , and compute the loss for this training batch. Update parameters of f. $T \leftarrow T+1$.
- 5: end while

SAT基础上进行改进: DDC-AT

改进动机: 专人专事以降低学习难度

- ▶ 根据像素是否具有"边界属性"来对像素进行分类:
 - 像素边界属性的确定:训练一个模型 (fm) 用于判断像素是否具有边界属性
- ▶ 根据像素种类的不同,分别训练出对应种类的模型:
 - 具有边界属性的像素:训练一个模型 (fa) 用来预测具有边界属性的像素的类别
 - 不具有边界属性的像素:训练一个模型 (fn) 用来预测不具有边界属性的像素的类别

DDC-AT 损失函数:

Combined with Eqs. (3) and (4), the overall loss term is

$$\mathcal{L}_{all} = \lambda_1 \mathcal{L}_n + \lambda_2 \mathcal{L}_a + \lambda_3 \mathcal{L}_m, \tag{5}$$

where λ_1 , λ_2 , and λ_3 are set to 1 in experiments. Overall training procedure is concluded in Alg. 3.

The loss of x for f_n and f_a is written as

$$\mathcal{L}_{n} = \mathbb{E}\left(-\sum_{i=0}^{K-1} [y(:,:,i) \cdot \log(f_{n}(x)(:,:,i))] \odot q\right),$$

$$\mathcal{L}_{a} = \mathbb{E}\left(-\sum_{i=0}^{K-1} [y(:,:,i) \cdot \log(f_{a}(x)(:,:,i))] \odot p\right),$$
(3)

the loss for f_m becomes

$$\mathcal{L}_m = \mathbb{E}\left(-\sum_{i=0}^1 [\widetilde{M}(:,:,i) \cdot \log(f_m(x)(:,:,i))]\right). \tag{4}$$

Algorithm 2 Algorithm to obtain ground truth (mask label) for training of mask branch f_m

Parameter: clean data x^{clean} with one-hot label y, all-zero matrix $\mathbf{0}$, function $\mathcal{F} = \mathbf{1}[\mathcal{N}]$ ($\mathcal{F}(i,j) = 1$ if $\mathcal{N}(i,j)$ is True)

- 1: **Obtain** output o_n^{clean} , o_a^{clean} , and o_m^{clean} for x^{clean} from f_n , f_a , and f_m . Label map of o_m^{clean} is p^{clean} .
- 2: Compute $o^{clean} = o^{clean}_a \odot p^{clean} + o^{clean}_n \odot (1 p^{clean})$, its label map is B^{clean} , $B^{clean}(i,j) \in \{0,1,...K-1\}$.
- 3: Use loss $\mathcal{L}(o_n^{clean}, y)$ to generate adversarial examples x^{adv} .
- 4: **Obtain** output o_n^{adv} , o_a^{adv} , and o_m^{adv} for x^{adv} from f_n , f_a , and f_m . The label map of o_m^{adv} is p^{adv} .
- 5: Compute $o^{adv} = o^{adv}_a \odot p^{adv} + o^{adv}_n \odot (1 p^{adv})$ with label map B^{adv} , where $B^{adv}(i,j) \in \{0,1,...K-1\}$.
- 6: Generate $M^{clean} = \mathbf{1}[B^{clean} \neq B^{adv}], M^{clean} \in \mathbb{R}^{H \times W}$.
- 7: Generate $M^{adv} = \mathbf{0}$ with the same shape of M^{clean} .
- 8: **return** M^{clean} , M^{adv} , x^{clean} , and x^{adv} .

Algorithm 3 Dynamic divide-and-conquer adversarial training for semantic segmentation networks

Parameter: clean training set **X**, shared backbone S, main branch f_n , auxiliary branch f_a , mask branch f_m , training batch size m, and maximum training iteration T_{max} , the number of iterations $T \leftarrow 0$

- 1: while $T \neq T_{max}$ do
- 2: **Load** a mini-batch of data $\mathbf{D}_b = \{x_1^{clean}, ..., x_b^{clean}\}$ from \mathbf{X} with one-hot labels $\mathbf{Y}_b = \{y_1, ..., y_b\}$.
- Use the current state of network $\{S, f_n, f_a, f_m\}$, \mathbf{D}_b , and \mathbf{Y}_b to generate adversarial examples as $\mathbf{A}_b = \{x_1^{adv}, ..., x_b^{adv}\}$, and obtain "mask label" for \mathbf{D}_b and \mathbf{A}_b as $\mathbf{M}_b^{clean} = \{M_1^{clean}, ..., M_b^{clean}\}$ and $\mathbf{M}_b^{adv} = \{M_1^{adv}, ..., M_b^{adv}\}$.
- 4: **Compute** output from f_m for \mathbf{D}_b , and obtain the label map $\{p_1^{clean}, ..., p_b^{clean}\}$.
- 5: Compute output from f_m for \mathbf{A}_b , and obtain the label map $\{p_1^{adv}, ..., p_b^{adv}\}$.
- 6: **Compute** $\{q_1^{clean}, ..., q_b^{clean}\}$ and $\{q_1^{adv}, ..., q_b^{adv}\}$, where $q_i^{clean} = 1 p_i^{clean}, q_i^{adv} = 1 p_i^{adv}$.
- 7: $\mathbf{T}_{b} = \{x_{1}^{clean}, ..., x_{\lfloor b/2 \rfloor}^{clean}, x_{\lfloor b/2 \rfloor+1}^{adv}, ..., x_{b}^{adv}\}, \mathbf{M}_{b} = \{M_{1}^{clean}, ..., M_{\lfloor b/2 \rfloor}^{clean}, M_{\lfloor b/2 \rfloor+1}^{adv}, ..., M_{b}^{adv}\}, \mathbf{P}_{b} = \{p_{1}^{clean}, ..., p_{\lfloor b/2 \rfloor}^{clean}, p_{\lfloor b/2 \rfloor+1}^{adv}, ..., p_{b}^{adv}\}, \mathbf{Q}_{b} = \{q_{1}^{clean}, ..., q_{\lfloor b/2 \rfloor}^{clean}, q_{\lfloor b/2 \rfloor+1}^{adv}, ..., q_{b}^{adv}\}.$
- 8: Compute loss by (3) with T_b , Y_b , P_b and Q_b . Update weights of network $\{S, f_n, f_a\}$.
- 9: Compute loss by (4) using \mathbf{T}_b and \mathbf{M}_b . Update weights of $\{S, f_m\}$. $T \leftarrow T + 1$.
- 10: end while

Dynamic:

Figure 4. The proportion of predicted/real \mathcal{B} in one clean image with respect to the number of training epoch.

实验结果

实验对比的结论:

- ➤ 普通的SAT训练方法就可以有效提高鲁棒性
- ➤ DDC-AT相比于SAT,有小幅度的提升

	米 文	女据 红	集:	VC	C						
		clean		Model: PSPNet							
			2	4	6	DeepFool	C&W	BIM L_2			
	No Defense	76.9	18.9	7.8	5.4	40.3	3.3	15.7			
	SAT (Mean)	74.3	68.1	44.5	27.9	59.0	65.5	36.4			
White	DDC-AT (Mean)	76.0	75.6	47.9	33.8	61.2	67.4	37.1			
_	SAT (Std)	0.5	1.8	2.9	3.2	1.4	1.2	4.1			
Вох	DDC-AT (Std)	0.1	0.5	2.2	4.0	1.1	1.1	1.8			
attack		clean				del: DeepLab					
attack			2	4	6	DeepFool	C&W	$BIM L_2$			
	No Defense	77.5	19.6	8.1	5.5	39.3	3.9	16.7			
	SAT (Mean)	72.7	62.4	43.1	28.8	59.0	66.0	37.0			
	DDC-AT(Mean)	75.2	69.9	43.6	32.3	60.4	67.1	37.8			
	SAT (Std)	1.0	0.6	1.9	2.0	0.4	1.2	1.1			
	DDC-AT (Std)	0.1	1.3	0.5	1.2	0.4	0.4	0.1			
		clean	2 4 6 DeepFool C&W BIM L ₂								
	No Defense	76.9	24.0	10.6	6.0	46.6	15.6	20.9			
	SAT (Mean)	74.3	56.5	51.3	44.9	64.0	68.5	58.7			
Dlade	DDC-AT (Mean)	76.0	61.5	53.4	46.1	68.4	70.5	59.6			
Black	SAT (Std)	0.5	2.9	2.8	4.2	2.1	1.3	3.0			
Вох	DDC-AT (Std)	0.1	1.7	1.8	3.9	0.3	0.1	0.8			
		clean				Model: DeepLabv3					
attack			2	4	6	DeepFool	C&W	$BIM L_2$			
	No Defense	77.5	24.6	10.5	7.0	49.1	19.6	20.9			
	SAT (Mean)	72.7	51.8	51.0	45.0	64.4	68.5	64.5			
	DDC-AT (Mean)	75.2	60.4	52.6	46.0	68.7	70.6	65.9			

3.7

1.8

4.1

1.6

1.8

1.0

1.6

0.5

0.4

1.0

3.8

5.1

SAT (Std)

DDC-AT (Std)

1.0

数据集: Cityscapes

	clean	Model: PSPNet							
	Clean	2	4	6	DeepFool	C&W	BIM L_2		
No Defense	74.6	26.2	5.5	2.1	35.8	13.8	22.7		
SAT (Mean)	69.0	46.7	32.9	25.8	56.0	49.1	45.8		
DDC-AT (Mean)	71.7	50.2	34.7	28.7	57.2	50.8	46.7		
SAT (Std)	1.0	1.0	0.3	1.0	3.0	1.5	1.8		
DDC-AT (Std)	0.1	0.2	0.2	0.3	0.1	0.1	0.1		
	clean	Model: DeepLabv3							
		2	4	6	DeepFool	C&W	BIM L_2		
No Defense	74.8	26.0	5.7	2.3	31.5	13.8	22.6		
SAT (Mean)	69.4	46.1	31.8	26.2	56.7	48.4	45.0		
DDC-AT (Mean)	71.3	50.9	34.9	29.0	57.4	50.5	46.8		
SAT (Std)	1.0	1.0	0.6	0.4	1.7	1.3	0.9		
DDC-AT (Std)	0.3	0.4	0.2	0.2	0.2	1.5	0.4		

	clean	Model: PSPNet							
	Clean	2	4	6	DeepFool	C&W	$\overline{\text{BIM } L_2}$		
No Defense	74.6	28.0	6.9	3.3	35.6	21.1	25.3		
SAT (Mean)	69.0	44.4	36.7	30.8	57.7	57.8	56.6		
DDC-AT (Mean)	71.7	50.6	37.9	32.3	58.6	58.4	57.4		
SAT (Std)	1.0	3.0	3.3	2.6	2.4	2.0	2.5		
DDC-AT (Std)	0.1	1.0	1.0	0.2	0.1	0.1	0.3		
	clean	Model: DeepLabv3							
	Clean	2	4	6	DeepFool	C&W	$BIM L_2$		
No Defense	74.8	29.9	7.6	3.1	35.8	27.3	27.3		
SAT (Mean)	69.4	43.2	36.1	31.6	58.4	58.3	57.4		
DDC-AT (Mean)	71.3	47.8	1.8 37.8 32		59.6	59.7	59.2		
SAT (Std)	1.0	3.0	3.0	2.3	1.1	1.8	2.3		
DDC-AT (Std)	0.3	1.9	1.0	0.3	0.7	0.5	0.2		

Table 6. Evaluation under white- and black-box attack on Cityscapes.

		PSPNet (w	vhite-bo	ox)	PSPNet (black-box)				
	2	DeepFool	C&W	$\operatorname{BIM} L_2$	2	DeepFool	C&W	BIM L_2	
multi-task [23]	38.4	40.6	26.3	34.2	40.1	42.4	28.6	35.5	
multi-task [30]	30.3	37.6	17.3	25.8	31.4	38.2	23.6	27.3	
TS [3]	41.6	54.3	40.4	43.8	43.2	55.7	42.6	49.2	
TS [4]	47.9	56.8	44.5	45.2	48.3	57.1	47.2	51.8	
DDC-AT	50.2	57.2	50.8	46.7	50.6	58.6	58.4	57.4	
	De	DeepLabv3 (white-box)			DeepLabv3 (black-box)				
	2	DeepFool	C&W	$\operatorname{BIM} L_2$	2	DeepFool	C&W	BIM L_2	
multi-task [23]	37.5	41.2	27.4	35.8	41.6	44.1	32.3	37.9	
multi-task [30]	28.9	35.3	16.8	25.5	31.8	38.7	30.2	31.4	
TS [3]	42.3	54.0	41.1	42.4	44.5	56.2	44.8	51.5	
TS [4]	48.1	55.3	46.5	45.3	50.3	57.6	50.3	53.7	
DDC-AT	50.9	57.4	50.5	46.8	47.8	59.6	59.7	59.2	

END