$12n_{0019} (K12n_{0019})$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle 222u^{17} + 1807u^{16} + \dots + 536b - 1177, -19u^{17} - 156u^{16} + \dots + 8a + 89, u^{18} + 8u^{17} + \dots - 8u + 1 \rangle$$

$$I_2^u = \langle b, -u^4a - 2u^3a + u^4 - 3u^2a - u^3 + a^2 - 2au - 2u^2 - a - 5u - 3, u^5 + u^4 + 2u^3 + u^2 + u + 1 \rangle$$

$$I_3^u = \langle -a^3u - a^3 - 3a^2 - au + 3b + 2a + u + 4, a^4 - a^3u + 3a^3 - a^2u + a^2 - 4a - u - 3, u^2 - u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 36 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 222u^{17} + 1807u^{16} + \dots + 536b - 1177, -19u^{17} - 156u^{16} + \dots + 8a + 89, u^{18} + 8u^{17} + \dots - 8u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{19}{8}u^{17} + \frac{39}{2}u^{16} + \dots + \frac{79}{2}u - \frac{89}{8} \\ -0.414179u^{17} - 3.37127u^{16} + \dots - 6.08769u + 2.19590 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2.78918u^{17} + 22.8713u^{16} + \dots + 45.5877u - 13.3209 \\ -0.414179u^{17} - 3.37127u^{16} + \dots + 45.5877u - 13.3209 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.65112u^{17} - 13.6642u^{16} + \dots - 27.3918u + 7.50560 \\ 0.430970u^{17} + 3.58396u^{16} + \dots + 6.21455u - 1.77985 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1.69590u^{17} - 13.9813u^{16} + \dots - 27.3134u + 7.47948 \\ 0.345149u^{17} + 2.83022u^{16} + \dots + 4.67724u - 1.35075 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.447761u^{17} + 3.79664u^{16} + \dots + 7.84142u - 0.613806 \\ -0.345149u^{17} - 2.83022u^{16} + \dots + 4.67724u + 1.35075 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.43657u^{17} + 11.9049u^{16} + \dots + 24.4235u - 6.30784 \\ -0.468284u^{17} - 3.88993u^{16} + \dots - 6.77425u + 2.21642 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{1867}{536}u^{17} + \frac{15631}{536}u^{16} + \dots + \frac{28407}{536}u \frac{3763}{268}u^{16} + \dots$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{18} + 2u^{17} + \dots - 34u + 1$
c_2, c_5	$u^{18} + 8u^{17} + \dots - 8u + 1$
c_3	$u^{18} - 8u^{17} + \dots - 16496u + 1921$
c_4, c_7	$u^{18} + 2u^{17} + \dots - 384u + 256$
c_{6}, c_{9}	$u^{18} + 2u^{17} + \dots + 1024u^2 + 1024$
c_8, c_{11}	$u^{18} - 9u^{17} + \dots + 5u + 1$
c_{10}, c_{12}	$u^{18} + u^{17} + \dots + 7u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{18} + 34y^{17} + \dots - 706y + 1$
c_2, c_5	$y^{18} + 2y^{17} + \dots - 34y + 1$
c_3	$y^{18} + 42y^{17} + \dots - 77040466y + 3690241$
c_4, c_7	$y^{18} + 30y^{17} + \dots + 409600y + 65536$
c_{6}, c_{9}	$y^{18} + 50y^{17} + \dots + 2097152y + 1048576$
c_8, c_{11}	$y^{18} - y^{17} + \dots - 7y + 1$
c_{10}, c_{12}	$y^{18} + 47y^{17} + \dots - 199y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.489678 + 0.809386I		
a = -3.46446 + 1.37116I	-0.02354 + 3.71255I	2.6622 - 33.9545I
b = -0.367948 - 0.217959I		
u = 0.489678 - 0.809386I		
a = -3.46446 - 1.37116I	-0.02354 - 3.71255I	2.6622 + 33.9545I
b = -0.367948 + 0.217959I		
u = -0.528473 + 1.113200I		
a = 0.884253 - 0.149684I	-6.98798 - 6.29888I	-7.63956 + 6.18005I
b = -0.293472 - 1.150100I		
u = -0.528473 - 1.113200I		
a = 0.884253 + 0.149684I	-6.98798 + 6.29888I	-7.63956 - 6.18005I
b = -0.293472 + 1.150100I		
u = 0.402685 + 0.640215I		
a = -0.600704 - 0.110262I	-0.176698 + 1.378410I	-2.62845 - 4.45652I
b = 0.079711 + 0.564353I		
u = 0.402685 - 0.640215I		
a = -0.600704 + 0.110262I	-0.176698 - 1.378410I	-2.62845 + 4.45652I
b = 0.079711 - 0.564353I		
u = 0.166779 + 0.714203I		
a = -0.576482 + 0.150196I	-0.194005 + 1.320020I	-1.40154 - 3.97468I
b = 0.406152 + 0.438776I		
u = 0.166779 - 0.714203I		
a = -0.576482 - 0.150196I	-0.194005 - 1.320020I	-1.40154 + 3.97468I
b = 0.406152 - 0.438776I		
u = -0.79804 + 1.31718I		
a = -1.30880 - 1.44991I	14.5520 - 13.1732I	-2.14093 + 5.47150I
b = -1.88686 + 2.04182I		
u = -0.79804 - 1.31718I		
a = -1.30880 + 1.44991I	14.5520 + 13.1732I	-2.14093 - 5.47150I
b = -1.88686 - 2.04182I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.48576 + 0.43889I		
a = -0.636632 - 0.933823I	17.4544 + 5.4859I	-0.93598 - 1.55559I
b = -2.70328 - 3.24263I		
u = -1.48576 - 0.43889I		
a = -0.636632 + 0.933823I	17.4544 - 5.4859I	-0.93598 + 1.55559I
b = -2.70328 + 3.24263I		
u = -1.39001 + 1.00947I		
a = -1.31713 + 0.69280I	-5.22275 + 0.41218I	-1.70669 + 0.I
b = -0.33733 + 5.04758I		
u = -1.39001 - 1.00947I		
a = -1.31713 - 0.69280I	-5.22275 - 0.41218I	-1.70669 + 0.I
b = -0.33733 - 5.04758I		
u = -1.06945 + 1.38280I		
a = 1.27493 + 1.39729I	11.82800 - 4.92111I	-2.64479 + 1.56009I
b = 3.58701 - 2.69224I		
u = -1.06945 - 1.38280I		
a = 1.27493 - 1.39729I	11.82800 + 4.92111I	-2.64479 - 1.56009I
b = 3.58701 + 2.69224I		
u = 0.212586 + 0.037327I		
a = -0.25498 + 2.94572I	0.024368 - 1.375910I	0.93572 + 4.18536I
b = 0.516021 - 0.465095I		
u = 0.212586 - 0.037327I		
a = -0.25498 - 2.94572I	0.024368 + 1.375910I	0.93572 - 4.18536I
b = 0.516021 + 0.465095I		

II.
$$I_2^u = \langle b, -u^4a + u^4 + \dots - a - 3, u^5 + u^4 + 2u^3 + u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} - u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{4} - u^{3} - 3u^{2} + a - 2u - 1 \\ -u^{4} - u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2u^{3}a - u^{4} - 2u^{3} + au - 3u^{2} + 2a - 2u - 1 \\ -2u^{4}a - 2u^{3}a - 2u^{2}a - au - 2a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^4a 3u^3a + u^4 4u^2a 5u^3 6u^2 2a 9u 5u^3 6u^2 6u^2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$ (u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^2 $
c_2	$(u^5 - u^4 + 2u^3 - u^2 + u - 1)^2$
c_3, c_4	$(u^5 + u^4 - 2u^3 - u^2 + u - 1)^2$
<i>c</i> ₅	$(u^5 + u^4 + 2u^3 + u^2 + u + 1)^2$
c_6, c_9	u^{10}
C ₇	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)^2$
c_8, c_{12}	$(u^2 - u + 1)^5$
c_{10}, c_{11}	$(u^2 + u + 1)^5$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2$
c_{2}, c_{5}	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$
c_3, c_4, c_7	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$
c_{6}, c_{9}	y^{10}
$c_8, c_{10}, c_{11} \\ c_{12}$	$(y^2 + y + 1)^5$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.339110 + 0.822375I		
a = 1.20942 + 2.19910I	-0.329100 - 0.499304I	2.94328 - 6.15174I
b = 0		
u = 0.339110 + 0.822375I		
a = -2.50919 - 0.05217I	-0.32910 + 3.56046I	-6.96704 - 8.14994I
b = 0		
u = 0.339110 - 0.822375I		
a = 1.20942 - 2.19910I	-0.329100 + 0.499304I	2.94328 + 6.15174I
b = 0		
u = 0.339110 - 0.822375I		
a = -2.50919 + 0.05217I	-0.32910 - 3.56046I	-6.96704 + 8.14994I
b = 0		
u = -0.766826		
a = 0.337181 + 0.584015I	-2.40108 + 2.02988I	-0.15429 - 1.95361I
b = 0		
u = -0.766826		
a = 0.337181 - 0.584015I	-2.40108 - 2.02988I	-0.15429 + 1.95361I
b = 0		
u = -0.455697 + 1.200150I		
a = 0.358089 + 0.327409I	-5.87256 - 2.37095I	-5.14480 + 4.03066I
b = 0		
u = -0.455697 + 1.200150I		
a = 0.104500 - 0.473819I	-5.87256 - 6.43072I	-0.67715 + 5.27500I
b = 0		
u = -0.455697 - 1.200150I		
a = 0.358089 - 0.327409I	-5.87256 + 2.37095I	-5.14480 - 4.03066I
b = 0		
u = -0.455697 - 1.200150I		
a = 0.104500 + 0.473819I	-5.87256 + 6.43072I	-0.67715 - 5.27500I
b = 0		

III.
$$I_3^u = \langle -a^3u - a^3 - 3a^2 - au + 3b + 2a + u + 4, \ a^4 - a^3u + 3a^3 - a^2u + a^2 - 4a - u - 3, \ u^2 - u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{3}a^{3}u + \frac{1}{3}au + \dots - \frac{2}{3}a - \frac{4}{3} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{3}a^{3}u - \frac{1}{3}au + \dots + \frac{5}{3}a + \frac{4}{3} \\ \frac{1}{3}a^{3}u + \frac{1}{3}au + \dots - \frac{2}{3}a - \frac{4}{3} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{3}a^{3}u - \frac{4}{3}a^{2}u + \dots - a - \frac{4}{3} \\ \frac{2}{3}a^{3}u + \frac{2}{3}a^{2}u + \dots + a + \frac{5}{3} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{3}a^{3}u - \frac{4}{3}a^{2}u + \dots + a + \frac{5}{3} \\ \frac{2}{3}a^{3}u + \frac{2}{3}a^{2}u + \dots + a + \frac{5}{3} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{3}a^{3}u - \frac{2}{3}a^{2}u + \dots + \frac{4}{3}a^{2} - \frac{5}{3} \\ \frac{2}{3}a^{3}u + \frac{2}{3}a^{2}u + \dots + a + \frac{5}{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{4}{3}a^{3}u + \frac{4}{3}a^{2}u + \dots + \frac{1}{3}a^{2} + \frac{1}{3} \\ -\frac{1}{3}a^{3}u - \frac{1}{3}a^{2}u + \dots + a + \frac{2}{3} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{7}{3}a^3u + \frac{11}{3}a^3 5a^2u + 4a^2 + \frac{11}{3}au \frac{25}{3}a + \frac{25}{3}u \frac{44}{3}au$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$(u^2 - u + 1)^4$
c_2	$(u^2 + u + 1)^4$
c_4, c_7	u^8
c_6,c_{10}	$(u^4 + u^3 + 3u^2 + 2u + 1)^2$
<i>c</i> ₈	$(u^4 + u^3 + u^2 + 1)^2$
c_{9}, c_{12}	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$
c_{11}	$(u^4 - u^3 + u^2 + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_3 \ c_5$	$(y^2 + y + 1)^4$
c_4, c_7	y^8
c_6, c_9, c_{10} c_{12}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$
c_8, c_{11}	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = -0.715307 - 0.631577I	0.211005 + 0.614778I	0.01166 + 7.13374I
b = -0.395123 + 0.506844I		
u = 0.500000 + 0.866025I		
a = 1.248740 + 0.225872I	-6.79074 - 1.13408I	-8.12668 + 3.09304I
b = -0.10488 + 1.55249I		
u = 0.500000 + 0.866025I		
a = -1.44025 - 0.04422I	-6.79074 + 5.19385I	-5.34148 - 0.51945I
b = -0.10488 - 1.55249I		
u = 0.500000 + 0.866025I		
a = -1.59319 + 1.31595I	0.21101 + 3.44499I	4.95650 - 5.37720I
b = -0.395123 - 0.506844I		
u = 0.500000 - 0.866025I		
a = -0.715307 + 0.631577I	0.211005 - 0.614778I	0.01166 - 7.13374I
b = -0.395123 - 0.506844I		
u = 0.500000 - 0.866025I		
a = 1.248740 - 0.225872I	-6.79074 + 1.13408I	-8.12668 - 3.09304I
b = -0.10488 - 1.55249I		
u = 0.500000 - 0.866025I		
a = -1.44025 + 0.04422I	-6.79074 - 5.19385I	-5.34148 + 0.51945I
b = -0.10488 + 1.55249I		
u = 0.500000 - 0.866025I		
a = -1.59319 - 1.31595I	0.21101 - 3.44499I	4.95650 + 5.37720I
b = -0.395123 + 0.506844I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 1)^{4}(u^{5} - 3u^{4} + 4u^{3} - u^{2} - u + 1)^{2}$ $\cdot (u^{18} + 2u^{17} + \dots - 34u + 1)$
c_2	$((u^{2}+u+1)^{4})(u^{5}-u^{4}+\cdots+u-1)^{2}(u^{18}+8u^{17}+\cdots-8u+1)$
c_3	$(u^{2} - u + 1)^{4}(u^{5} + u^{4} - 2u^{3} - u^{2} + u - 1)^{2}$ $\cdot (u^{18} - 8u^{17} + \dots - 16496u + 1921)$
c_4	$u^{8}(u^{5} + u^{4} + \dots + u - 1)^{2}(u^{18} + 2u^{17} + \dots - 384u + 256)$
c_5	$((u^{2}-u+1)^{4})(u^{5}+u^{4}+\cdots+u+1)^{2}(u^{18}+8u^{17}+\cdots-8u+1)$
c_6	$u^{10}(u^4 + u^3 + 3u^2 + 2u + 1)^2(u^{18} + 2u^{17} + \dots + 1024u^2 + 1024)$
c_7	$u^{8}(u^{5} - u^{4} + \dots + u + 1)^{2}(u^{18} + 2u^{17} + \dots - 384u + 256)$
c_8	$((u^2 - u + 1)^5)(u^4 + u^3 + u^2 + 1)^2(u^{18} - 9u^{17} + \dots + 5u + 1)$
<i>c</i> ₉	$u^{10}(u^4 - u^3 + 3u^2 - 2u + 1)^2(u^{18} + 2u^{17} + \dots + 1024u^2 + 1024)$
c_{10}	$((u^{2} + u + 1)^{5})(u^{4} + u^{3} + 3u^{2} + 2u + 1)^{2}(u^{18} + u^{17} + \dots + 7u + 1)$
c_{11}	$((u^{2} + u + 1)^{5})(u^{4} - u^{3} + u^{2} + 1)^{2}(u^{18} - 9u^{17} + \dots + 5u + 1)$
c_{12}	$((u^{2} - u + 1)^{5})(u^{4} - u^{3} + 3u^{2} - 2u + 1)^{2}(u^{18} + u^{17} + \dots + 7u + 1)$ 15

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{2} + y + 1)^{4}(y^{5} - y^{4} + 8y^{3} - 3y^{2} + 3y - 1)^{2}$ $\cdot (y^{18} + 34y^{17} + \dots - 706y + 1)$
c_2,c_5	$(y^{2} + y + 1)^{4}(y^{5} + 3y^{4} + 4y^{3} + y^{2} - y - 1)^{2}$ $\cdot (y^{18} + 2y^{17} + \dots - 34y + 1)$
c_3	$(y^{2} + y + 1)^{4}(y^{5} - 5y^{4} + 8y^{3} - 3y^{2} - y - 1)^{2}$ $\cdot (y^{18} + 42y^{17} + \dots - 77040466y + 3690241)$
c_4, c_7	$y^{8}(y^{5} - 5y^{4} + 8y^{3} - 3y^{2} - y - 1)^{2}$ $\cdot (y^{18} + 30y^{17} + \dots + 409600y + 65536)$
c_6, c_9	$y^{10}(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$ $\cdot (y^{18} + 50y^{17} + \dots + 2097152y + 1048576)$
c_8, c_{11}	$((y^2 + y + 1)^5)(y^4 + y^3 + 3y^2 + 2y + 1)^2(y^{18} - y^{17} + \dots - 7y + 1)$
c_{10}, c_{12}	$(y^{2} + y + 1)^{5}(y^{4} + 5y^{3} + 7y^{2} + 2y + 1)^{2}$ $\cdot (y^{18} + 47y^{17} + \dots - 199y + 1)$