← 確認事項 ─────	R^2
定数 $a(\neq 0), b, c$ を用いて、 1 次関数:	2 関数 $f(x) = x^2 + 3x + 4$ において、次の値を求めよ. (1) $f(1)$
2 次関数:	
企作 認事項	
関数 $y=f(x)$ において,	
f(a):	(2) $f(-3)$
確認事項 ————	
定義域:	
值域:	
1 関数 $f(x) = 2x + 3$ において、次の値を求めよ. (1) $f(2)$	(3) $f(a+1)$
(2) $f(-1)$	3 関数 $f(x) = 2x^2 - x + 5$ において、次の値を求めよ. (1) $f(2)$
(3) $f(a)$	(2) $f(-1)$
(4) $f(a-1)$	(3) $f(-a+1)$
	1年組番

4	底辺が x cm,高さ 3 cm の三角形の面積を y cm 2 とする.底 辺は 4 cm 以上とする.	R	4
	(1) 定義域を示せ.		
	(2) y を x の式で表せ.		
	(3) 値域を示せ.		
5	1 辺の長さが x cm の正方形の周の長さを y cm とおく. 1 辺		
	の長さは 3cm 以下とする. (1) 定義域を示せ.		
	(2) y を x の式で表せ.		
	(3) 値域を示せ.		
		1年番	

第1学年 数学 I 復習課題 (表)

確認事項

座標軸は、含む・含まない.

- 最大値:
- 最小值:
- 定義域:
- 値域:

1 $y = 2x + 1 \ (0 \le x \le 2)$ について、以下の問いに答えよ. (1) グラフを描け.

(2) 関数の値域を求めよ.

(3) 最大値, 最小値を求めよ.

1年__________番

第1学年 数学 I 復習課題 (裏)

2 $y = x + 2 (-3 \le x \le 1)$ について、以下の問いに答えよ. (1) グラフを描け.

(2) 関数の値域を求めよ.

(3) 最大値, 最小値を求めよ.

3 $y = -3x + 2 (-1 \le x \le 3)$ について、以下の問いに答えよ. (1) グラフを描け.

(2) 関数の値域を求めよ.

(3) 最大値,最小値を求めよ.

1年_____組____番

 $y = ax^2 \text{ } \mathcal{O}\mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J},$

a > 0 のとき

a < 0 のとき

____に凸

____に凸

 $\boxed{\mathbf{1}}$ 次の2次関数のグラフを描け.

(1) $y = 2x^2$

(2)
$$y = -2x^2$$

$$(3) \quad y = \frac{1}{2}x^2$$

1年_____組____番

確認事項

• $y = ax^2 + q \circ \mathcal{J} \supset \mathcal{J}$

 $y = ax^2 + q$ $y = ax^2$ のグラフを____軸方向へ____平行移動させたもの.

軸:_____

頂点:

 $y = x^2 + 1$ のグラフは · · ·

• $y = a(x-p)^2$ のグラフ

 $y = a(x-p)^2$ $y = ax^2$ のグラフを_____軸方向へ____平行移動させたもの.

軸:_____

頂点:_____

1 2 次関数 $y = 2x^2 + 3$ について、以下の問いに答えよ.

(1) グラフを描け.

(2) 頂点と軸を求めよ.

2 2 次関数 $y=2x^2-1$ について、以下の問いに答えよ.

(1) グラフを描け.

(2) 頂点と軸を求めよ.

1年_____組____番

第1学年数学 I 復習課題(裏)

R4. 5

3 2 次関数 $y = 2(x-1)^2$ について、以下の問いに答えよ. (1) グラフを描け.

(2) 頂点と軸を求めよ.

4 2 次関数 $y = 2(x+1)^2$ について、以下の問いに答えよ. (1) グラフを描け.

(2) 頂点と軸を求めよ.

5 2 次関数 $y = -3x^2 + 2$ について、以下の問いに答えよ. (1) グラフを描け.

(2) 頂点と軸を求めよ.

6 2 次関数 $y = -2(x+1)^2$ について、以下の問いに答えよ. (1) グラフを描け.

(2) 頂点と軸を求めよ.

1年_____組____番

第1学年数学 I 復習課題 (表)

確認事項

• $y = a(x-p)^2 + q$ のグラフ

 $y = a(x-p)^2 + q$ $y = ax^2$ のグラフを \cdots

 $\cdot y$ 軸方向へ $_$ ___平行移動させたもの.

軸:____

頂点:_____

 $y=(x-2)^2+1$ のグラフは · · ·

1 2 次関数 $y = 2(x-1)^2 + 1$ について、以下の問いに答えよ. (1) グラフを描け.

(2) 頂点と軸を求めよ.

2 2 次関数 $y = 2(x+1)^2 + 1$ について、以下の問いに答えよ. (1) グラフを描け.

(2) 頂点と軸を求めよ.

3 2次関数 $y = -2(x+2)^2 + 3$ について、以下の問いに答えよ. (1) グラフを描け.

(2) 頂点と軸を求めよ.

1年_____組____番

- 確認事項 -

 $y=ax^2+bx+c$ のグラフは、_____して、 $y=a(x-p)^2+q$ の形にしてからグラフを描く.

- 1 平方完成せよ.
 - (1) $x^2 + 4x$

(2) $x^2 - 6x + 1$

(3) $2x^2 + 4x + 1$

(4) $3x^2 - 6x + 2$

(5) $-2x^2 + 8x - 2$

2 次関数 $y=x^2+4x$ について、以下の問いに答えよ. (1) 平方完成することで、 $y=a(x-p)^2+q$ の形に変形せよ.

- (2) 軸を求めよ.
- (3) 頂点を求めよ.
- (4) グラフを描け.

1年_______番

第1学年 数学 I 復習課題 (裏)

R4. 5

3	2 次関数 $y = 2x^2 + 8x + 2$ について,	以下の問いに答えよ.

「1)平方完成することで, $y=a(x-p)^2+q$ の形に変形せよ.

 $\boxed{m{4}}$ 2 次関数 $y=-3x^2+3x-1$ について、以下の問いに答えよ.

(1) 平方完成することで、 $y = a(x-p)^2 + q$ の形に変形せよ.

(2) 軸を求めよ.

(3) 頂点を求めよ.

(4) グラフを描け.

(2) 軸を求めよ.

(3) 頂点を求めよ.

(4) グラフを描け.

1年_______番

氏名__

第1学年数学

 $\boxed{\mathbf{1}}$ 放物線 $y=x^2+4x+2$ を平行移動して、放物線 $y=x^2-2x-1$ に重ねるには、どのように平行移動すればよいか.

 I 復	習課	題 (表	₹)			
2					移動して うに平行	
1年		_組	番			

5

第1学年数学 I 復習課題 (表)

R4. 5

- 確認事項 -

2次関数 $y = a(x-p)^2 + q$ の最大・最小について、

a > 0 のとき、 $x = ____$ で最大・最小値: _____をとる.

a<0 のとき,x=____で最大・最小値:____をとる.

a > 0 のとき

a < 0 のとき

1 次の 2 次関数に最大値,最小値があれば,それを求めよ. (1) $y = (x+1)^2 + 1$

(2)
$$y = -2(x-3)^2 - 8$$

 $(2) \ y = -3x^2 + 6x - 2$

2 次の2次関数に最大値,最小値があれば,それを求めよ.

 $(1) \ y = x^2 + 4x + 1$

1年_______番

3 最大値、最小値はそれぞれどこか. 図の中に示せ.

(1)

(2)

(3)

(4)

4 次の関数の最大値、最小値を求めよ.

(1)
$$y = (x+1)^2 + 1 \ (0 \le x \le 2)$$

(2)
$$y = -2(x-2)^2 - 4 \ (0 \le x \le 1)$$

(3)
$$y = 2x^2 - 12x + 2 \quad (4 \le x \le 7)$$

(4)
$$y = -x^2 - 6x + 3 \quad (-3 \le x \le 0)$$

1年_____組____番

確認事項

頂点の y 座標だけが文字の場合.

→ 最大・最小の位置関係は決まる.

$$y = (x-1)^2 + c$$
 $(0 \le x \le 3)$

定義域に文字が含まれる場合.

→ 状況に応じて場合分け.

$$y = (x-1)^2 \qquad (-2 \le x \le c)$$

軸の値が変化する場合.

→ 状況に応じて場合分け.

$$y = (x - c)^2$$
 $(-1 \le x \le 1)$

1 $y = (x-1)^2 + c \ (0 \le x \le 3)$ について, (1) 最小値が 1 のときの c の値を求めよ.

(2) 最大値を求めよ.

1年 組 番

第1学年数学 I 復習課題(裏)

 $oldsymbol{2}$ c は正の定数とする.次の関数の最小値を求めよ.

$$y = x^2 - 2x + 1 \ (-2 \le x \le c)$$

 $oxed{4}$ c は正の定数とする.次の関数の最小値を求めよ.

$$y = -x^2 + 2ax - a^2 + 2 \ (0 \le x \le 2)$$

 $oxed{3}$ c は正の定数とする. 次の関数の最大値を求めよ.

$$y = x^2 - 4x + 4 \ (0 \le x \le c)$$

1年________番

,

第1学年 数学 I 復習課題 (表)

- 確認事項 —

2 次関数を決定するには

- 頂点や軸がわかっている場合 $\longrightarrow y = a(x-p)^2 + q \ {\it O}$ 形で考える.
- 通る 3 点のみがわかっている場合 $\longrightarrow y = ax^2 + bx + c \text{ on } \mathbb{R}$ で考える.
- **1** 頂点が (0,0) で,点 (1,1) を通る放物線をグラフにもつ 2 次 関数を求めよ.

1年	組	番		
				

	第1学年 数学	I 復皆	課題 (畏)			
3	頂点が $(1,-1)$ で,点 $(0,3)$ を通る放物線をグラフにもつ 2 次関数を求めよ.		次関数の 次関数を		3点(0,3),(2,3)	,(3,7) を通ると	R4. ? ごき,その
		1	年	_組	番		
		l B	名				

解の公式

2次方程式 $ax^2 + bx + c = 0$ は、______ のとき解をもち、その解は

r	=		

	,
1	次の2次方程式を解け.

$$(1) \ x^2 + 5x + 3 = 0$$

(2)	$3x^2$	+7x	+ 1	= (

$$(3) \ 5x^2 - 3x - 3 = 0$$

$$(4) -x^2 - x + 8 = 0$$

$$(5) \ x^2 - 10x + 25 = 0$$

$D = b^2 - 4ac$	D > 0	D=0	D < 0
実数解			
実数解の個数			

2 2 次方程式 $x^2 + 3x - m = 0$ が異なる 2 つの実数解をもつとき、定数 m の範囲を求めよ.

3 2 次方程式 $2x^2 - 5x - 2m = 0$ が実数解をもたないとき、定数 m の範囲を求めよ.

4 2次方程式 $x^2 - 4mx + 1 + m = 0$ が重解をもつとき、定数 m の範囲を求めよ. また、そのときの重解を求めよ.

1年_____組____番

第1学年数学 I 復習課題(裏)

R4. 5

$D = b^2 - 4ac$	D > 0	D=0	D < 0
a>0 のとき			
a < 0 のとき			
x軸との			
位置関係			
x 軸との			
共有点の個数			

6	$\left[\hspace{.08cm} 2\hspace{.08cm}$ 次関数 $y=x^2+6x+m$ のグラフと x 軸との共有点の個数
	は,定数 m の値によってどのように変わるか.

5 次の 2 次関数のグラフと x 軸との共有点を調べ、共有点がある場合は、その座標を求めよ.

$$(1) \ y = x^2 + 4x - 4$$

7 2 次関数 $y = -x^2 - 3x - m + 2$ のグラフと x 軸との共有点 の個数は、定数 m の値によってどのように変わるか.

$$(2) \ y = -2x^2 - 3x + 2$$

(3)
$$y = 3x^2 - 6x + 4$$

1年_______番

アル・ココーナーエ
6年 = 27 日 1日

解の公式

2次方程式 $ax^2 + bx + c = 0$ は、______ のとき解をもち、その解は

r	=			

1 次の2次方程式を

$$(1) \ x^2 + 5x + 3 = 0$$

(2)
$$3x^2 + 7x + 1 = 0$$

$$(3) \ 5x^2 - 3x - 3 = 0$$

$$(4) -x^2 - x + 8 = 0$$

$$(5) \ x^2 - 10x + 25 = 0$$

$$D=b^2-4ac$$
 $D>0$ $D=0$ $D<0$ 実数解 実数解の個数

2 次の2次方程式の実数解の個数を求めよ.

$$(1) \ x^2 + 4x + 3 = 0$$

$$(2) \ 3x^2 + 4x + 1 = 0$$

$$(3) \ 4x^2 + 3x - 3 = 0$$

$$(4) -x^2 + x + 8 = 0$$

$$(5) -x^2 + 8x - 16 = 0$$

1年______番

第1学年数学 I 復習課題 (裏)

R4. 5

	ı	ı	I.
$D = b^2 - 4ac$	D > 0	D = 0	D < 0
a > 0 のとき			
a < 0 のとき			
x軸との			
位置関係			
x 軸との			
共有点の個数			

$(1) \ y = 2x^2 + 3x - 1$	

6 次の 2 次関数のグラフと x 軸との共有点の座標を求めよ.

5 次の 2 次関数のグラフと x 軸との共有点は何個か.

$$(1) \ y = x^2 + 4x - 4$$

$$(2) \ y = -2x^2 - 3x + 2$$

$$(3) \ y = 3x^2 - 6x + 4$$

$$(4) \ \ y = x^2 - 4x + 4$$

$$(2) \ y = -x^2 - 5x + 2$$

(3)
$$y = 2x^2 - 6x$$

$$(4) \ y = x^2 - 6x + 36$$

1年________番

確認事項

不等式 2x-1>0 について

1 次の一次不等式を解け.

(1) 3x - 6 < 0

(2) $2x + 1 \ge 0$

確認事項

不等式 $x^2 - 1 < 0$ について

2 次の二次不等式を解け.

(1)
$$x^2 - 1 > 0$$

(2) $2x^2 - 4 \leq 0$

1年________番

3 次の二次不等式を解け. (1) $-x^2 + 1 > 0$

(1)
$$-x^2 + 1 > 0$$

(3)
$$x^2 + 2x + 1 > 0$$

(2)
$$2x^2 + x - 1 \le 0$$

$$(4) -2x^2 - 4x + 4 \le 0$$

1年_____組____番

氏名_

1 次の連立不等式を解け.
$$(1) \left\{ \begin{array}{ll} (x+1)(x-3) & <0 & \cdots (i) \\ (x-2)(x-4) & <0 & \cdots (ii) \end{array} \right.$$

(*i*) について.

グラフより,

(ii) について.

グラフより,

グラフより, 共通部分は,

<u>< x <</u>···(答)

(2)	$\bigg\{$	(x+1)(x-5) $(x+2)(x-2)$	< 0 < 0	$\cdots (i)$ $\cdots (ii)$

1年________番

氏名_

(3)
$$\begin{cases} x^2 + x - 2 & \leq 0 & \cdots(i) \\ x^2 + 2x & < 0 & \cdots(ii) \end{cases}$$

(4)
$$\begin{cases} x^2 + x - 2 & < 0 & \cdots (i) \\ x^2 - x - 2 & \ge 0 & \cdots (ii) \end{cases}$$

1年_____組____番

第1学年 数学 I 復習課題 (表)

1	以下の問いに答え	; }-
	以下の値いに合え	í L

(1) 2 次不等式 $x^2 + 2mx + 3 > 0$ の解が全ての実数であるとき、定数 m の値の範囲を求めよ.

2 以下の問いに答えよ.

(1) 2 次不等式 $ax^2 + 1 > 0$ の解が全ての実数であるとき、 定数 a の値の範囲を求めよ.

(2) 2 次関数 $y = x^2 - mx + m + 3$ が x 軸と共有点をもつとき,定数 m の値の範囲を求めよ.

(2) 2 次不等式 $ax^2 - 2x + a - 2 > 0$ が解を持たないとき、 定数 a の値の範囲を求めよ.

1年_____組____番

,

第1学年数学 I 復習課題 (表)

R4. 6

 $\fbox{m 1}$ 2 次関数 $y=x^2-2mx+2m^2-4$ のグラフと x 軸の正の部分

が、異なる2点で交わるとき、定数mの値の範囲を求めよ.

確認事項

2 次関数と x 軸の共有点の個数

→ ____を調べる.

グラフの位置関係

 $\longrightarrow \underline{x}=$ のときの の を調べる.

→ _____がどこにあるかを調べる.

上記から必要な事項を選択し、調べる.

1年_____組____番

氏名__

第1学年数学	I 復習課題 (裏)
2 2 次関数 $y=x^2-2mx+2m^2-2$ のグラフと x 軸の負の部分が,異なる 2 点で交わるとき,定数 m の値の範囲を求めよ.	R4. 6 3 2 次関数 $y=x^2-2mx+2m^2-3$ のグラフが、 x 軸の <u>正の部分と負の部分</u> の 2 点で交わるとき、定数 m の値の範囲 を求めよ.
	1年組番

氏名_

(1)

(1)

(2)

(3)

(2)

2 (1)

(3)

(2)

(3)

1年_____組____番

工夕

4 (1)

6 (1)

(2)

(3)

5 (1)

(2)

(3)

(2)

(3)

1年_________番

乒夕