Health Insurance, Moral Hazard, and Managed Care

Ching-To Albert Ma and Michael H. Riordan

Discussion by Samantha Grewal

January 17, 2025

Motivation: Moral Hazard Problem

It is commonly believed that health insurance can lead to excessive treatment uptake:

- Moral hazard: occurs in situations where two parties with different incentives interact:
 - Each party maximizes their own expected payoff → they act in their own best interest
 - When one party does not bear the full cost of their actions, they do not have incentives to act optimally
 - Can lead to inefficient and undesirable outcomes
- Ex: Patients with health insurance may over-use health services since they face lower costs → inefficient if the total cost of these services exceeds the benefits

Motivation: Moral Hazard Problem

- **Demand management instruments** have been used to limit patients' demand for health care:
 - Commonly used instruments include deductibles and copayments
 - These instruments shift a portion of the treatment cost to the patient → When deciding whether to receive treatment, patients now consider the cost of that treatment
 - Their incentives are more closely aligned with the insurance providers' → avoids excessive demand for treatment
- These instruments can also expose patients to significant financial risk in cases where expensive treatments are necessary

Research Question

- lacktriangleright It is widely believed that demand management does not solve the moral hazard problem ightarrow demand for treatment still excessive
- A more nuanced understanding of health insurance design is necessary:
 - lacktriangleright Treatment not always excessive under demand management ightarrow need to characterize conditions in which it is
 - Other instruments, such as supply management instruments, may be more effective

Research Question

Does moral hazard always lead to excessive treatment? How do different insurance arrangements affect consumers' treatment decisions and welfare?

Basic Model

Consumer Preferences:

$$U(y - aI) - bI$$

- /: illness severity
- $U(\cdot)$: concave function \rightarrow consumers risk-averse to income fluctuations
- *y*: expenditure on other goods
- a, b: non-negative parameters, allow for 'special cases'

Special Cases:

- 1. Monetary Loss Model: b = 0 and a > 0
- 2. Utility Loss Model: a = 0 and b > 0

Evaluation of Model

1. Monetary Loss Model

- Implies health losses fully represented by their monetary equivalent
- lacktriangle Demand for treatment will be independent of income ightarrow unrealistic assumption for discretionary treatments

2. Utility Loss Model

- Health losses directly reduce utility
- \blacksquare Demand for treatment not independent of income \to more realistic assumption supported by empirical evidence
- Assumes illness does not affect income risk-aversion → difficult to test empirically

Ideal Insurance

- Consumer pays fixed premium P and receives treatment whenever the benefit I is above a fixed threshold, L. When treatment is withheld, consumer compensated with indemnity payment t(I)
- They become ill with probability λ
- There is no moral hazard:
 - $lue{}$ / is observed ightarrow Illness and loss completely contractible
 - Payments and treatment decisions can be contingent on the severity of the illness

Ideal Insurance

The consumer's expected utility will be given by:

$$(1-\lambda)U(Y-P) \\ +\lambda \left\{ \int_0^L [U(Y-P-a\ell+t(\ell))-b\ell]f(\ell)d\ell + [1-F(L)]U(Y-P) \right\}.$$

The premium must cover the expected costs of treatment and the indemnity payments:

$$P \ge \lambda \left(\int_0^L t(\ell) f(\ell) \, d\ell + [1 - F(L)] C \right).$$

Ideal Insurance

Optimal Contract: Maximizes consumer's expected utility subject to the premium constraint → yields optimal **treatment threshold**, **indemnity payments**, and **premium**:

$$U'(Y - P^*)aL^* + bL^* = U'(Y - P^*)C;$$

- Utility of treatment exactly equal to cost of treatment, measured in utility
- Indemnity payments exactly compensate for monetary losses from untreated illness
- Premium exactly covers expected costs
- Fewer patients receive treatment when the cost is higher

Demand Management

- Consumer pays fixed premium P up front and copayment D for treatment → demand treatment whenever the benefits exceed the utility cost of the copayment
- They become ill with probability λ
- Moral hazard may be an issue here:
 - \blacksquare Insurance company does not directly observe illness \to illness and loss no longer contractible
 - Treatment decision delegated to consumer
 - Since a portion of the total cost is shifted to the insurer, consumers may demand treatment when the cost exceeds the benefit

Demand Management

The consumer's expected utility will be given by:

$$(1-\lambda)U(Y-P) + \lambda \left(\int_0^L [U(Y-P-a\ell)-b\ell] f(\ell) d\ell + [1-F(L)]U(Y-P-D) \right).$$

Consumers demand treatment whenever the benefits exceed the utility cost of copayment \rightarrow occurs when illness severity exceeds threshold L

$$U(Y - P - aL) - bL = U(Y - P - D).$$

The premium must cover the expected liability of the insurance company:

$$P = \lambda [1 - F(L)](C - D).$$

Demand Management

Optimal Contract: Maximizes consumer's expected utility subject to the consumer's constraint and the premium constraint \rightarrow yields optimal **copayment**, **premium**, and **treatment thresholds**:

$$\begin{split} &-\bigg((1-\lambda)U'(Y-P)+\lambda\int_0^L U'(Y-P-a\ell)f(\ell)\,d\ell\\ &+\lambda[1-F(L)]U'(Y-P-D)\bigg)\frac{dP}{dD}=\lambda[1-F(L)]U'(Y-P-D), \end{split}$$

- Expected utility cost of a marginally higher copayment (resulting from income risk) = corresponding benefit of a lower premium
- lacktriangle Optimal copayment depends on consumer's risk aversion and on price-elasticity of demand for treatment o depends on the curvature of the utility function
- Consumers do not demand treatment for less severe illnesses

Does Moral Hazard Affect Treatment?

The authors compare the treatment threshold L under:

- 1. Ideal Insurance \rightarrow no moral hazard exists; used to identify the optimal threshold
- Demand Management → moral hazard is now a concern; consumers may choose a different treatment threshold

This can be used to identify whether treatment is excessive or deficient under moral hazard.

Does Moral Hazard Affect Treatment?

When probability of illness (λ) is small:

- 1. Monetary Loss Model: b = 0 and a > 0
 - Illness equivalent to a loss of monetary income
 - The threshold *L* is lower under demand management
 - → Moral hazard leads to excessive treatment
- 2. Utility Loss Model: a = 0 and b > 0
 - Illness results in an additive utility loss
 - The threshold is lower than ideal when the price elasticity of demand is low
 - → moral hazard leads to excessive treatment
 - The threshold is higher than ideal when the price elasticity of demand is sufficiently high
 - → moral hazards leads to deficient treatment

Strengths and Weaknesses

Strengths:

- 1. Theoretical Contribution: The authors show that established beliefs about moral hazard are incorrect under certain conditions \rightarrow improves understanding of this topic
- Model: The model is tractable but incorporates several realistic elements, including illness severity and income risk-aversion → this allows for better understanding of the mechanisms influencing treatment decisions
- 3. **Relevant Topic:** The topic of this paper is very policy relevant \rightarrow can be used to inform better health insurance design

Strengths and Weaknesses

Weaknesses:

- 1. Unrealistic Assumptions: many assumptions are difficult to justify
 - Possible that illness affects risk-aversion
 - Treatment may not be 100% effective or completely eliminate losses
 - lacktriangle Focuses on consumers o simplifies provision of health insurance
 - \rightarrow If these assumptions are unrealistic, predictions made by the model may not be accurate.
- 2. **Limited Empirical Evidence:** the authors do not provide evidence to support their findings
 - Comparing health insurance claims under demand management and managed care plans could provide additional support for their findings
 - Do not consider which parameter values (a and b) best fit consumer behaviour

Conclusion

Overall, this paper makes an important contribution to the literature:

- The authors challenge commonly-held beliefs about the role of moral hazard in treatment decisions, and demonstrate that this topic is more nuanced than originally thought
- Their findings serve as an important starting point for future research, including:
 - Extending the model to more accurately reflect treatment decisions
 - Providing empirical evidence to support the conclusions made in this paper

Thank you for listening!

