First-Year Exam (June 2014): Solutions to 205B Question

- (1) You can see, both from rough sketches of the likelihood function $\ell(\theta|y)$ for several values of y (which will look like the curves in Figure 1 below) and from the repeated-sampling mean, that all three of (a)–(c) are desirable qualitative behaviors for a good estimator in this problem.
- (2) Solving $E_{RS}(Y|\theta) = \frac{\theta}{\theta+1} = y$ for θ yields $\hat{\theta}_{MoM} = \frac{y}{1-y}$. This estimator behaves sensibly at y = 0 and is monotonically increasing in y thus properties (1)(a) and (1)(b) are satisfied but $\hat{\theta}_{MoM}$ goes to $+\infty$ as $y \uparrow 1$, and in fact $\hat{\theta}_{MoM} \ge 1$ (thereby violating the basic range restriction for θ) for all $y \ge \frac{1}{2}$.
- (3) The log-likelihood function is $\ell\ell(\theta|y) = \log\theta + (\theta 1)\log y$, from which $\frac{\partial}{\partial\theta}\ell\ell(\theta|y) = \frac{1}{\theta} + \log y$; this first partial derivative has a unique zero at $-\frac{1}{\log y}$, which is a monotonically increasing function of y. This is the global maximum of $\ell\ell(\theta|y)$ in (0,1) as long as $-\frac{1}{\log y} < 1$, which is true only for $0 < y < \frac{1}{e} \doteq 0.37$; for any $y \ge \frac{1}{e}$, the maximum occurs at the boundary $\theta = 1$, so in that case $\hat{\theta}_{MLE} = 1$. Thus $\hat{\theta}_{MLE} = \min\left(-\frac{1}{\log y}, 1\right)$. In this setting $\hat{\theta}_{MLE}$ satisfies all three of the desirable qualitative behaviors in (1).
- (4) Evidently $\frac{\partial^2}{\partial \theta^2} \ell \ell(\theta|y) = -\frac{1}{\theta^2}$, from which the observed information is

$$\hat{I}(\hat{\theta}_{MLE}) = \left[-\frac{\partial^2}{\partial \theta^2} \ell \ell(\theta|y) \right]_{\theta = \hat{\theta}_{MLE}} = (\log y)^2$$
(1)

for $0 < y < \frac{1}{e}$; for $y \ge \frac{1}{e}$, $\hat{I}(\hat{\theta}_{MLE}) = 1$. For $0 < y < \frac{1}{e}$, the usual standard error (SE) associated with the MLE is then $\widehat{SE}(\hat{\theta}_{MLE}) = \sqrt{\hat{I}^{-1}(\hat{\theta}_{MLE})} = \frac{1}{\lceil \log y \rceil}$, with associated approximate 95% confidence interval $-\frac{1}{\log y} \pm \frac{1.96}{\lceil \log y \rceil} = \frac{1\pm 1.96}{\lceil \log y \rceil}$; for $y \ge \frac{1}{e}$ the corresponding interval is 1 ± 1.96 . This method assumes that the sample size n is big enough (a) for observed information to provide an accurate SE and (b) for the repeated-sampling distribution of the MLE (for the actual n in the problem under study) to be close to Gaussian; here, with n = 1, neither of these assumptions is anywhere near correct. Moreover, you can readily see that (i) the left endpoint of the interval $\frac{1\pm 1.96}{\lceil \log y \rceil}$ is guaranteed to be negative, (ii) the right endpoint of that interval will only be less than 1 iff $\log y < -2.96$, i.e., iff y is less than about 0.05, and (iii) the interval 1 ± 1.96 runs from -0.96 to 2.96. Fisher did not have n = 1 in mind when he proposed this method.

(5) The fact that $V=-\theta\log Y$ has the Exponential(1) distribution can be shown directly using the change-of-variables formula, or (if You forget it) You can derive it as follows: the CDF $F_V(v)$ of V is $F_V(v)=P(V\leq v)=P(-\theta\log Y\leq v)=P(\log Y\geq -\frac{v}{\theta})=1-P(Y\leq e^{-\frac{v}{\theta}})=1-F_Y\left(e^{-\frac{v}{\theta}}\right)$, where $F_Y(\cdot)$ is the CDF of Y. Thus the density of V is (chain rule) $p(v)=-p_Y\left(e^{-\frac{v}{\theta}}\right)e^{-\frac{v}{\theta}}\left(-\frac{1}{\theta}\right)$, where $p_Y(\cdot)$ is the density of Y; this reduces after simplification to $p(v)=e^{-v}$, as desired. All of this means that in repeated sampling $1-\alpha=P_{RS}\left[F_{\mathcal{E}}^{-1}\left(\frac{\alpha}{2}\right)<-\theta\log Y< F_{\mathcal{E}}^{-1}\left(1-\frac{\alpha}{2}\right)\right]$, where $F_{\mathcal{E}}^{-1}(\cdot)$ is the inverse CDF of the standard exponential distribution; after some rearrangement this becomes $P_{RS}\left[-\frac{F_{\mathcal{E}}^{-1}\left(\frac{\alpha}{2}\right)}{\log Y}<\theta<-\frac{F_{\mathcal{E}}^{-1}\left(1-\frac{\alpha}{2}\right)}{\log Y}\right]=1-\alpha$, so that $\left[-\frac{F_{\mathcal{E}}^{-1}\left(\frac{\alpha}{2}\right)}{\log Y},-\frac{F_{\mathcal{E}}^{-1}\left(1-\frac{\alpha}{2}\right)}{\log Y}\right]$ is a frequentist-valid $100(1-\alpha)\%$ confidence interval for θ in this model. The left and right endpoints of this interval cannot go negative for any $Y\in(0,1)$, which is the good news; but it's easy to show (based on the CDF of the Exponential(1) distribution, which is $F_{\mathcal{E}}^{-1}(p)=-\log(1-p)$) that the right endpoint will be bigger than 1 whenever $Y>\frac{\alpha}{2}$ and the left endpoint will also be bigger than 1 for all $Y>1-\frac{\alpha}{2}$. Valid and sensible frequentist inference is difficult when n is small.

Figure 1: Un-normalized likelihood function, for y = (0.1, 0.5, 0.9).