8051 AND ADVANCED PROCESSOR ARCHITECTURES – Lesson-5: Hardware Interrupts of 8051

Interrupt Sources

- External INT0 interrupt
- T0 overflow interrupt
- External INT1 interrupt
- T1 overflow interrupt
- SI serial UART or Synchronous mode interrupt
- SI synchronous serial mode interrupt (separate in few families of 8051)
- Timer 2 interrupt in 8052

SFR IE for interrupts enabling bits

SFR to mask (disable) or unmask (enable) the interrupts in 8051

- Programming of SFR IE (Interrupt Enable) register at address 0xA8 for the byte or
- Programming of IE using Bit addresses
 0xA8 to 0xAF for the individual bits

SFR IP for interrupt priority bits

- Individual interrupt priorities set high or low bits
- Set priorities in IP override default priorities for executing the ISRs
- Byte address 0xB8 for the byte and at bit addresses 0x88 to 0x8C or 0x8D or 0x8E for the individual bits in the register, an instruction can define that a given interrupt is of higher (=1) or lower priority (=0) among the various interrupts

8051 system Interrupt Features

- 8051 permits when executing low- priority ISR the in-between program flow on interrupt to higher priority ISR
- Permits masking all by a primary level bit or individual sources by secondary level bits by setting bits in SFR IE
- Assigns default priorities
- Permits overriding of default priorities by setting bits in SFR IP

Vector Addresses

- An address from where either an ISR of maximum 8-bytes executes or a Jump to a programmed ISR starting address takes place
- When EA bit (primary level interrupt bit) is set as well as specific interrupt bit (secondary level interrupt bit) is set

External hardware Interrupts INTO and INT1

programmable for

- Two external interrupt pins, INTO and INT1 at P3.2 and P3.2 used for interrupt
- P3.2 and P3.3 as pins for INTO and INTI external interrupt pins when bit 7 IE (interrupt enable SFR) EA (enable all) bit is 1, and bits 0 and 2 are 1 and 1, respectively
- Programmed by TCON lower 4 bits and the IE register bits IE.2 and IE.0

INT1 and INT0 status bits

- Status bit TCON.3 for status of interrupt at INT1
- TCON.3 auto resets to 0 when ISR for servicing INT1 interrupt starts.
- Status bit TCON.1 for status of interrupt at INT0 and
- TCON.1 auto resets to 0 when ISR for servicing INT0 starts.

INT1 and INT0 Edge or level type control bits

- TCON.2 for type of interrupt at INT1 and is 1 if it is edge-triggered type else 0.
- TCON.0 for type of interrupt at INT0 and is 1 if it is edge-triggered type else 0.

INTO	0x0003	† High
TO	0x000B	Default Priorities
INT1	0x0013	by hardware (Software
T1	0x001B	assigned high
Carial	0x0023	priority setting in
Serial T2	0x002B	IP overrides the
Syn Serial	0x0053 in few versions	default)
		Low

Vector Addresses and Default priorities

Summary

We learnt

- Interrupt sources
- Interrupt system features
- Vector addresses
- Default priorities
- SFR IE for enabling all and enabling individual sources
- SFR IP for setting priority low or high for individual sources of interrupts

End of Lesson 5 of Chapter 2