

Fig. 3: Ranking and significance diagrams of the investigated GasPSes (NEB $_{\rm N}$  [Pts./m³ gas] and IgEYE [-] as median; modified Eco-Indicator 95). The middle column shows the ranking with the corresponding indicator value. The significance is indicated for each comparison as the probability of the actual ranking (P(X>0) in %).

## 4 Summary

The defined performance indicators and the adapted evaluation methods allow an integrated evaluation of gas purification systems with respect to their effectiveness and efficiency. Based on these indicators, various optimisation approaches and their potentials could be identified for the investigated GasPSes. In addition, the ability of the GasPSes to adapt to changes in the pollutant load or waste gas volume was discussed. Finally, the clean air legislation was analysed with respect to their effectiveness and efficiency. A simplified LCA for the evaluation of GasPSes was proposed in the thesis.

#### Acknowledgement

This project was funded by Ciba Speciality Chemicals Inc. (Basle), Siegfried Chemistry Inc. (Zofingen), H. Brechbühl Inc. (Steffisburg) and by the Commission of Technology and Innovation (KTI) of the Swiss Government (KTI-Project 2827.2).

### Reference

MEIER, M.A. (1997): Eco-Efficiency Evaluation of Waste Gas Purification Systems in the Chemical Industry; LCA documents, Vol. 2 (edited by Walter Klöpffer and Otto Hutzinger); Ecoinforma Press, Bayreuth (Germany)

# New LCA Theses: Announcement

# Spatial Differentiation in Life Cycle Impact Assessment

A Framework, and Site-Dependent Factors to Assess Acidification and Human Exposure\*

## José Potting

IPU/LCC-DTU Building 424, DK-2800 Lyngby, Denmark; e-mail: jp@ipt.dtu.dk

| Tab  | ole of Contents                                                     |    | 4.5  | Existing modelling of human toxicity in LCA                                 | 52  |
|------|---------------------------------------------------------------------|----|------|-----------------------------------------------------------------------------|-----|
|      | Andrew descriptions                                                 |    | 4.6  | Integration of principles and methods                                       | 54  |
| 1    | Introduction                                                        | 1  | 4.7  | Human toxicity from air emissions in LCA                                    | 56  |
| 1.0  | Abstract                                                            | 1  | 4.8  | Conclusions                                                                 | 57  |
| 1.1  | Introduction                                                        | 1  | 4.9  | References                                                                  | 59  |
| 1.2  | Methodology development in progress                                 | 2  | 5    | Human exposure from air emissions                                           | 63  |
| 1.3  | General framework                                                   | 3  | 5.0  | Abstract                                                                    | 63  |
| 1.4  | Spatial differentiation and threshold exceedance                    | 6  | 5.1  | Introduction                                                                | 63  |
| 1.5  | Problem-setting, research question and outline of this dissertation | 7  | 5.2  | Human exposure from air emissions                                           | 65  |
| 1.6  | References                                                          | 9  | 5.3  | Identification of source types, and classification of processes             | 68  |
| 2    | The linear nature of environmental impact                           | 13 | 5.4  | Accumulated human exposure increase local to the source                     | 71  |
| 2.0  | Abstract                                                            | 13 | 5.5  | Accumulated human exposure increase regional to the source                  | 76  |
| 2.1  | Introduction                                                        | 13 | 5.6  | Total increase of accumulated exposure from air emissions                   | 82  |
| 2.2  | Necessity of the impact assessment phase                            | 14 | 5.7  | Identification of the exposure situation being above or below the threshold | 85  |
| 2.3  | Cause/effect relationships                                          | 15 | 5.8  | Conclusions                                                                 | 86  |
| 2.4  | Predicted impact and expected occurrence of actual impact           | 17 | 5.9  | Acknowledgement                                                             | 87  |
| 2.5  | Product oriented environmental policy                               | 18 | 5.10 | References                                                                  | 88  |
| 2.6  | Regional, continental and global impact categories                  | 19 |      | Appendix                                                                    | 90  |
| 2.7  | Local impact categories                                             | 20 | 6    | Acidification                                                               | 95  |
| 2.8  | Conclusions                                                         | 22 | 6.0  | Summary                                                                     | 95  |
| 2.9  | Outlook                                                             | 23 | 6.1  | Introduction                                                                | 95  |
| 2.10 | Acknowledgement                                                     | 23 | 6.2  | Life cycle inventory and impact assessment                                  | 96  |
| 2.11 | References                                                          | 24 | 6.3  | The RAINS model                                                             | 98  |
| 3    | Framework for spatial differentiation                               | 27 | 6.4  | Mathematical framework                                                      | 108 |
| 3.0  | Abstract                                                            | 27 | 6.5  | Acidification factors                                                       | 110 |
| 3.1  | Introduction                                                        | 27 | 6.6  | Discussion                                                                  | 120 |
| 3.2  | The linear nature of environmental impact in LCA                    | 28 | 6.7  | Conclusions and recommendations                                             | 123 |
| 3.3  | Levels of detail in characterisation                                | 29 | 6.8  | Acknowledgement                                                             | 124 |
| 3.4  | Cause/effect relationships in characterisation modelling            | 33 | 6.9  | References                                                                  | 124 |
| 3.5  | Temporal aspects in characterisation modelling                      | 34 | 7    | Discussion                                                                  | 127 |
| 3.6  | Spatial aspects in characterisation modelling                       | 36 | 7.1  | Introduction                                                                | 127 |
| 3.7  | Site-dependent assessment                                           | 37 | 7.2  | The basis for spatial differentiation                                       | 128 |
| 3.8  | Conclusions                                                         | 39 | 7.3  | Levels of sophistication and uncertainties in impact modelling              | 130 |
| 3.9  | Acknowledgement                                                     | 40 |      | The mathematical framework for spatial differentiation                      | 132 |
| 3.10 | References                                                          | 40 |      | Application of site-dependent impact factors                                | 134 |
| 4    | Thresholds in human toxicity in life cycle                          | 45 |      | LCA in relation to RA and EIA                                               | 136 |
| 4.0  | Abstract                                                            | 45 |      | Threshold exceedance in LCA                                                 | 138 |
| 4.1  | Introduction                                                        | 45 | 7.8  | Site-dependent normalisation                                                | 141 |
| 4.2  | "Less is better" and "only above threshold"                         | 47 |      | Temporal differentiation in LCA                                             | 144 |
| 4.3  | No-effect-levels                                                    | 49 |      | Conclusions and issues for further research                                 | 145 |
|      | Data availability                                                   | 51 |      | References                                                                  | 145 |
|      | ——————————————————————————————————————                              | JI | 7.11 | Helelendes                                                                  | 147 |

Josepha Maria Barbara (José) Potting got her doctorate at the University of Utrecht, March 8th, 2000, 15.30 o'clock.

Int. J. LCA **5** (2) 2000