The Lindstrom-Gessel-Viennot Method

Casey Warmbrand

Department of Mathematics, University of Arizona

13 Sep 2007

k-vertices and *k*-paths

- ▶ Let *D* be an acyclic digraph and fix a positive integer, *k*.
- A k-vertex is a k-tuple of vertices of D.
- ▶ Given 2 k-vertices of D, $\mathbf{u} = (u_1, \dots, u_k)$ and $\mathbf{v} = (v_1, \dots, v_k)$, a k-path from \mathbf{u} to \mathbf{v} is a k-tuple $\mathbf{A} = (A_1, \dots, A_k)$ such that A_i is a path from u_i to v_i consisting of directed edges in the graph D.

Disjoint *k*-paths

- ▶ We say that a k-path is disjoint if all of the paths A_i are vertex-disjoint.
- ▶ If $\pi \in S_k$ is a permutation in the permutation group on $\{1, \ldots, k\}$, then we use $\pi(\mathbf{v})$ to denote the k-vertex $(\mathbf{v}_{\pi(1)}, \ldots, \mathbf{v}_{\pi(k)})$.

Weightings

- ▶ Let us assign a weight to every edge in the digraph *D*.
- As we did last week, we define the weight of a path to be the product of the weights of its edges.
- ► The weight of a k-path is then the product of the weights of its components.

Collections of *k*-paths and their Weights

- Define P(u_i, v_j) to be the set of paths from u_i to v_j and P(u_i, v_j) to be the sum of their weights. We can then define P(u, v) and P(u, v) to be the set of all k-paths from u to v and the sum of their weights.
- Let $N(\mathbf{u}, \mathbf{v})$ be the subset of $P(\mathbf{u}, \mathbf{v})$ of all disjoint k-paths from \mathbf{u} to \mathbf{v} and $N(\mathbf{u}, \mathbf{v})$ to be the sum of their weights.

Lindström's Theorem

Given a permutation $\pi \in S_k$ we see that

$$P(\mathbf{u}, \pi(\mathbf{v})) = \prod_{i=1}^{k} P(u_i, v_{\pi(i)}).$$

Theorem (Lindström)

$$\sum_{\pi \in S_k} (\operatorname{sgn} \pi) N(\mathbf{u}, \pi(\mathbf{v})) = |P(u_i, v_j)|_1^k,$$

where we use $|m_{ij}|_r^s$ to denote the determinant of a matrix $M = (m_{ij})_{i,j=r,...,s}$.

Proof

Expanding the determinant on the right hand side,

$$\sum_{\pi \in S_k} (\operatorname{sgn} \pi) N(\mathbf{u}, \pi(\mathbf{v})) = \sum_{\pi \in S_k} (\operatorname{sgn} \pi) P(\mathbf{u}, \pi(\mathbf{v})), \qquad (1)$$

is equivalent to the theorem. We will prove this by constructing a bijection $\textbf{A} \to \textbf{A}^\star$ from

$$\Omega = \cup_{\pi \in \mathcal{S}_k} \left[\mathsf{P}(\mathbf{u}, \pi(\mathbf{v})) - \mathsf{N}(\mathbf{u}, \pi(\mathbf{v})) \right]$$

to itself, which satisfies the following three properties:

- $\mathbf{A}^{\star\star}=\mathbf{A}.$
- ii The weight of \mathbf{A}^* equals the weight of \mathbf{A} .
- iii For $\mathbf{A} \in P(\mathbf{u}, \pi(\mathbf{v}))$ and $\mathbf{A}^* \in P(\mathbf{u}, \sigma(\mathbf{v}))$, $(\operatorname{sgn} \sigma) = -(\operatorname{sgn} \pi)$.

Proof continued

- First note that the k-paths in Ω are all of the non-disjoint k-paths in P(u, v).
- Given that this supposed bijection exists, we can then pair up the k-paths which appear in Ω as {A, A*}.
- Since {A and A*} have the same weight and the signs of π and σ differ by a minus, these two terms on the right hand side of (1) cancel with each other.
- ► This leaves only the terms involving disjoint k-paths from the determinant, which is the left hand side of (1).
- So the existence of this bijection would prove the theorem.

Constructing the Bijection

- ▶ Let $\mathbf{A} = (A_1, \dots, A_k) \in \Omega$ be a non-disjoint k-path.
- Let *i* be minimal such that A_i intersects another path.
- Let w be the first vertex along the path A_i which is contained in another path.
- ▶ Let j > i be minimal such that A_j contains the vertex w.
- We construct A_i* by following A_i up to w and then following A_i to the end.
- Construct A_j* by following A_j up to w and then following A_i to the end.
- ▶ Let $A_I^* = A_I$ when $I \neq i, j$.

Verifying Properties i. ii. and iii.

- ▶ By construction (the use of the minimal i and j and choosing the first vertex w) property i., $\mathbf{A}^{**} = \mathbf{A}$ is completely clear.
- Since both A and A[⋆] contain exactly the same edges they must have the same weights, so ii. is obvious as well.
- ▶ In order to show iii. we need to relate π and σ to each other when $\mathbf{A} \in P(\mathbf{u}, \pi(\mathbf{v}))$ and $\mathbf{A}^* \in P(\mathbf{u}, \sigma(\mathbf{v}))$. From the construction it is clear that $\pi = \sigma \circ (ij)$, where (ij) denotes the transposition which flips i and j and leaves all others fixed. Thus $(\operatorname{sgn} \pi) = -(\operatorname{sgn} \sigma)$.

Gessel and Viennot's Corollary

We call a pair of k-vertices non-permutable if $N(\mathbf{u}, \pi(\mathbf{v})) = \emptyset$ whenever π is not the identity permutation.

Corollary (Gessel and Viennot)

If (\mathbf{u}, \mathbf{v}) is non-permutable, then Lindström's theorem says

$$N(\mathbf{u},\mathbf{v})=|P(u_i,v_j)|_1^k. \tag{2}$$

It is this corollary which can be applied to our Aztec diamond.

