DM 10 : Magnétostatique Éléments de correction

01-08	Imagerie par Résonance Magnétique nucléaire ou IRM	
01-08	Comportement d'un dipôle dans un champ magnétique	
01-08	Rapports gyromagnétiques	
1	Faire un schéma. On remarque que le courant qui traverse la boucle de courant est porté par un électron qui traverse une section toute les périodes de rotation. Donc $i=-\frac{e}{T}$, or il se déplace à la vitesse v donc $v=\frac{2\pi r_B}{T}$. On en déduit $i=-\frac{ev}{2\pi r_B}$. L'électron se déplace dans le sens direct donc le courant est orienté dans le sens donné par la définition $\mu_e=iS$. La surface plane est la surface	
	d'un disque $S = \pi r_B^2$, donc $\mu_e = -\frac{ev}{2\pi r_B} \pi r_B^2 = -\frac{ev r_B}{2}$	
2	Par définition du moment cinétique $\vec{\sigma}(O) = \overrightarrow{OM} \wedge \vec{p} = r_B \vec{e}_r \wedge mv\vec{t} = mr_B v\vec{e}_z$	
3	On a démontré que $\mu_e = -\frac{evr_B}{2}$ et $\sigma_e = mr_B v$, donc $\gamma_e = \frac{\mu_e}{\sigma_e}$	
4	$-\frac{evr_B}{2mr_Bv} = -\frac{e}{2m}. \text{ Donc } \gamma_e = -8, 8.10^{10} \text{ C.kg}^{-1}$ On nous donne les valeurs de $\gamma_p = \frac{\mu_p}{\sigma_p}$ et de $\sigma_p = \frac{\hbar}{2}$. Donc $\gamma_p = \frac{\hbar}{2}$	
	$\frac{2\mu_p}{\hbar}$, d'où $\mu_p = \frac{\gamma_p \hbar}{2}$. Ce qui donne $\mu_p = 1, 4.10^{-26}$ J.T ⁻¹ . On obtient bien la valeur de l'énoncé.	
05-08	Précession d'un dipôle	
5	On applique le théorème du moment cinétique au dipôle du proton en son centre O. On obtient $\frac{d\vec{\sigma}_O}{dt} = \vec{\Gamma}(O) = \vec{\mu} \wedge \vec{B}_0$. Or $\gamma_p = \frac{\mu_p}{\sigma_p}$,	
C	$\operatorname{donc} \frac{\operatorname{d}\vec{\mu_p}}{\operatorname{d}t} = -\gamma_p \vec{B}_0 \wedge \vec{\mu_p} \operatorname{d'où} \vec{\omega}_0 = -\gamma_p \vec{B}_0$ $ \mu^2 = \vec{\mu} ^2 = \vec{\mu}.\vec{\mu} \operatorname{donc} \frac{\operatorname{d}\mu^2}{\operatorname{d}t} = 2\vec{\mu}.\frac{\operatorname{d}\vec{\mu}}{\operatorname{d}t} = 2\vec{\mu}.(\vec{\omega}_0 \wedge \vec{\mu}) = 0. \operatorname{Donc} \vec{\mu}^2$	
6	est une constante, donc $\mu = \vec{\mu} $ est une constante. $\vec{\omega}_0 = -\gamma_p \vec{B}_0$ donc $\vec{\omega}_0 \parallel \vec{B}_0$ et $\frac{d}{dt} (\vec{\omega}_0 . \vec{\mu}) = \vec{\omega}_0 . \frac{d\vec{\mu}}{dt} = \vec{\omega}_0 . (\vec{\omega}_0 \wedge \vec{\mu}) = 0$. Donc la composante de $\vec{\mu}$ dans la direction de \vec{B}_0 est bien constante.	
7	$\frac{\mathrm{d}\vec{\mu_p}}{\mathrm{d}t} = \vec{\omega}_0 \wedge \vec{\mu_p}$ et si on décompose le moment magnétique en une composante parallèle à \vec{B}_0 par l'indice $_{\parallel}$ et perpendiculaire par l'indice $_{\perp}$. On a montré aux questions précédentes que la composante parallèle est constante et que la norme est constante. On peut simplifier l'équation par $\frac{\mathrm{d}\vec{\mu}_{\perp}}{\mathrm{d}t} = \vec{\omega}_0 \wedge \vec{\mu}_{\perp}$, à l'aide d'un schéma en 2D avec $\vec{\mu}_{\perp}$ et le couple et d'une analyse dimensionnelle sur ω_0 on justifie que le vecteur $\vec{\mu}_{\perp}$ tourne sur lui même à la vitesse appropries $\vec{\mu}_{\perp}$	
8	angulaire ω_0 . Faire un schéma en 3D en conbinant $\vec{\mu}_{\parallel}$, $\vec{\mu}_{\perp}$, $\vec{\omega}_0$ et $\vec{\mu}$. Le dipôle effectue un mouvement de précession dans le sens direct autour de $\vec{\omega}_0$ et balaye la surface latérale d'un cône d'axe $\vec{\omega}_0$ et de hauteur μ_{\parallel} .	