# Machine Learning (CE 40717) Fall 2024

Ali Sharifi-Zarchi

CE Department Sharif University of Technology

September 30, 2024





- 1 Introduction to Classification
- 2 Discriminant Functions
- 3 Linear Classifiers
- 4 Perceptron
- **5** Cost Functions
- **6** Cross Validation
- Multi-Category Classification



- 1 Introduction to Classification
- 2 Discriminant Functions
- 3 Linear Classifiers
- 4 Perceptron
- **6** Cost Functions
- **6** Cross Validation
- Multi-Category Classification



#### Definition

- Given: Training Set
  - A dataset *D* with *N* labeled instances  $D = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$
  - $y^{(i)} \in \{1, ..., K\}$
- Goal: Given an input x, assign it to one of K classes.
- Real-World Examples:
  - Email Spam Detection
  - Medical Diagnosis
  - Churn Prediction



## Real-World Example of Classification

Introduction to Classification

0000

#### Pima Indians Diabetes Dataset:

- **Problem**: Predict whether a patient has diabetes based on medical diagnostics.
- Context: Early detection of diabetes is critical for treatment and management.

|           | Number of times pregnant | Glucose | Blood Pressure | Skin Thickness | Insulin | Diabetes pedigree function | Age | BMI  | Label    |
|-----------|--------------------------|---------|----------------|----------------|---------|----------------------------|-----|------|----------|
| Patient 1 | 6                        | 148     | 72             | 35             | 0       | 0.627                      | 50  | 33.6 | Positive |
| Patient 2 | 1                        | 85      | 66             | 29             | 0       | 0.351                      | 31  | 26.6 | Negative |
| Patient 3 | 0                        | 137     | 40             | 35             | 168     | 2.288                      | 33  | 43.1 | Positive |
| Patient 4 | 1                        | 89      | 66             | 23             | 94      | 0.167                      | 21  | 28.1 | Negative |
|           |                          |         |                |                |         |                            |     |      |          |
|           | •                        |         |                |                |         |                            |     |      |          |
|           |                          |         |                |                |         |                            |     |      |          |

# Classification vs. Regression

|  | Aspect             | Linear Regression                 | Linear Classification            |  |  |  |
|--|--------------------|-----------------------------------|----------------------------------|--|--|--|
|  | <b>Output Type</b> | Continuous values (real numbers). | Binary or Multi-class labels     |  |  |  |
|  |                    | Continuous values (lear numbers). | (e.g., -1/+1, A/B/C)             |  |  |  |
|  | Usa Casas          | Predicting house prices,          | Email spam detection,            |  |  |  |
|  | Use Cases          | stock market trends.              | Credit Scoring, Churn Prediction |  |  |  |

- Introduction to Classification
- 2 Discriminant Functions
- 3 Linear Classifiers
- 4 Perceptron
- 6 Cost Functions
- **6** Cross Validation
- Multi-Category Classification



Introduction to Classification Octor University Discriminant Functions University Discrimination Function F

## Discriminant Functions in Machine Learning

#### Definition

- A function that assigns a score to an input vector *x*, to classify it into different classes.
- It maps the input  $\mathbf{x}$  to a real number  $g(\mathbf{x})$ , which represents the degree of confidence in assigning  $\mathbf{x}$  to a particular class.

## Discriminant Functions in Machine Learning

#### How it works

• Binary Classification: Two functions  $g_1(\mathbf{x})$  and  $g_2(\mathbf{x})$  for classes  $C_1$  and  $C_2$ , respectively. The class is predicted by comparing these two functions:

$$\hat{y} = \begin{cases} C_1 & \text{if } g_1(\mathbf{x}) > g_2(\mathbf{x}) \\ C_2 & \text{otherwise} \end{cases}$$

• General Case: For k-class problems, we compute  $g_i(\mathbf{x})$  for every class i, and assign x to class with highest score:

$$\hat{y} = \arg\max_{i} g_{i}(\mathbf{x})$$

Introduction to Classification Occident Functions Occident Functions University Perceptron Cost Functions Cross Validation Multi-Category Classification References Occident Perceptron O

## **Decision Boundary**

• **Definition**: A dividing hyperplane that separates different classes in a feature space, also known as "Decision Surface".



# Discriminant Functions: Two-Category

- Function: For two-category problem, we can only find a function  $g: \mathbb{R}^d \to \mathbb{R}$ 
  - $g_1(\mathbf{x}) = g(\mathbf{x}),$
  - $g_2(\mathbf{x}) = -g(\mathbf{x})$
- **Decision Boundary**:  $g(\mathbf{x}) = 0$
- At first, we start by explaining two-category classification for simplicity, and then extend the concept to multi-category classification for more complex problems.

- Introduction to Classification
- 2 Discriminant Functions
- 3 Linear Classifiers
- 4 Perceptron
- **6** Cost Functions
- **6** Cross Validation
- Multi-Category Classification



12 / 49

### Linear Classifiers

- **Definition**: In case of linear classifiers, decision boundaries are linear in d ( $\mathbf{x} \in \mathbb{R}^d$ ), or linear in some given set of functions of x.
- Linearly separable data: Data points that can be exactly separated by a linear decision boundary.
- Why are they popular?
  - Simplicity, Efficiency, Effectiveness.

## Two Category Classification

• 
$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = w_d \cdot x_d + \dots + w_1 \cdot x_1 + w_0$$

• 
$$\mathbf{x} = [x_1 ... x_d]$$

• 
$$\mathbf{w} = [w_1 \dots w_d]$$

•  $w_0$ : bias

$$\begin{cases}
C_1 & \text{if } \mathbf{w}^T \mathbf{x} + w_0 \ge 0 \\
C_2 & \text{otherwise}
\end{cases}$$

• Decision Surface:  $\mathbf{w}^T \mathbf{x} + w_0$ 



## Two Category Classification Cont.

- Decision Boundary is a (d-1)-dimensional hyperplane H in the d-dimensional feature space. Some properties of H are:
  - Orientation of *H* is determined by the normal vector  $\left[\frac{w_1}{\|w\|}, ..., \frac{w_d}{\|w\|}\right]$ .
  - $w_0$  determines the location of the surface.



## Non-linear decision boundary

#### Non-linear Decision Boundaries

- Feature Transformation: Nonlinearity is introduced by transforming features into a higherdimensional space.
- Linear in Transformed Space: The decision boundary becomes linear in the new space, but nonlinear in the original space.



- Introduction to Classification
- 2 Discriminant Functions
- 3 Linear Classifiers
- 4 Perceptron
- **6** Cost Functions
- **6** Cross Validation
- Multi-Category Classification



## What Is Perceptron?

## • Perceptron Unit:

- Basic Building Block: A perceptron is the simplest type of artificial neuron used in machine learning.
- Linear Classifier: It maps input features to an output by applying a linear combination and a threshold.
- **Binary Decision**: Outputs 1 if the weighted sum of inputs exceeds the threshold, otherwise 0.
- **Components**: Inputs, weights, bias, and an activation function (often a step or a sigmoid function).



## Inspired by Biology

- Biological Motivation Behind Perceptron:
  - Inspired by Neurons: Perceptron mimics the basic function of biological neurons in the brain.
    - Input and Output, Activation Function.



## Single Neuron

- Single Neuron as a Linear Decision Boundary
  - **Mathematical Form**: The output of a single neuron is computed as:

$$y = f(\mathbf{w}^T \mathbf{x} + w_0)$$

where:

- x is the input vector.
- w is the weight vector.
- $w_0$  is the bias term.
- f is an activation function (e.g., step function).
- Linear Separation: A neuron defines a linear decision boundary:
   w<sup>T</sup>x + w<sub>0</sub> = threshold (0 for step, 0.5 for sigmoid)
- **Decision Rule**:  $C_1$  if  $\mathbf{w}^T \mathbf{x} + w_0 \ge threshold$ , otherwise  $C_2$ .

 $Class = f(\mathbf{w}^T \mathbf{x} + w_0)$ 



## Limitations of a Single Perceptron

- What a Single Perceptron Can and Can't Do:
  - Performs Linear Separations: A perceptron can handle linearly separable problems such as:
    - AND operation
    - OR operation

• Fails on Non-Linear Problems: A single perceptron fails to solve non-linear problems like XOR, as the data points cannot be separated by a straight line.



Introduction to Classification Discriminant Functions Linear Classifiers O000 Coop O0000 O000 Cost Functions Cross Validation Multi-Category Classification References O0000 O0000 O0000 O00000 O00000 O00000 O00000 O00000

## **Towards Complex Decision Boundaries**

## • Multi-Layer Perceptron (MLP):

- Adding Layers for More Complexity: An MLP consists of multiple layers of neurons that allow us to model more complex functions than a single neuron.
  - Each layer introduces new decision boundaries, making it possible to separate non-linear data.

## Two-Layer Example:

- Input Layer  $\rightarrow$  Hidden Layer  $\rightarrow$  Output Layer
- Hidden layer introduces non-linear transformations that enable complex decision regions.





## Refining the Decision Boundary

- **New Neurons for Better Separation**: By adding more neurons to a layer, we can further refine the decision boundary to better separate complex data.
- Each additional neuron introduces new features that help the model make more accurate decisions.



- 1 Introduction to Classification
- 2 Discriminant Functions
- 3 Linear Classifiers
- 4 Perceptron
- **5** Cost Functions
- **6** Cross Validation
- Multi-Category Classification



24 / 49

#### **Cost Functions**

## Understanding the Goal

- In the perceptron, we use  $\mathbf{w}^T \mathbf{x}$  to make predictions.
- Goal is to find the optimal **w** so that the predicted labels match the true labels as much as possible.
- To achieve this, we define a cost function, which measures the difference between predicted and actual labels.
- Finding discriminant functions ( $\mathbf{w}^T$ ,  $w_0$ ) is framed as minimizing a cost function.
  - Based on training set  $D = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$ , a cost function  $J(\mathbf{w})$  is defined.
  - Problem converts to finding optimal  $\hat{g}(\mathbf{x}) = g(\mathbf{x}; \hat{\mathbf{w}})$  where

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} J(\mathbf{w})$$



## Sum of Squared Error Cost Function

- Sum of Squared Error (SSE) Cost Function
  - **Formula**:  $J(\mathbf{w}) = \sum_{i=1}^{n} (y^{(i)} \hat{y}^{(i)})^2$ ,  $\hat{y}^{(i)} = \mathbf{w}^T \mathbf{x}^{(i)} + w_0$
  - SSE minimizes the magnitude of the error, which is ideal for regression but irrelevant for classification.
  - If the model predicts close to the true class but not exactly  $C_1$  or  $C_2$ , SSE still shows positive error, even for correct predictions.

 SSE is also prone to overfitting noisy data, as small variations can cause significant changes in the cost.



#### An Alternative for SSE Cost Function

#### Number of Misclassifications

- **Definition**: Measures how many samples are misclassified by the model.
- Formula:

$$J(\mathbf{w}) = \sum_{i=1}^{n} (y^{(i)} - \text{step}(\hat{y}^{(i)}))^2, \quad \hat{y}^{(i)} = \mathbf{w}^T \mathbf{x}^{(i)} + w_0$$

Limitations:

 Piecewise Constant: The cost function is non-differentiable, so optimization techniques (like gradient descent) cannot be directly applied.



Introduction to Classification Discriminant Functions Linear Classifiers Perceptron Cost Functions Cross Validation Multi-Category Classification References

## Perceptron Algorithm

## • The Perceptron Algorithm

• **Purpose**: A simple algorithm for binary classification, separating two classes with a linear boundary.



# Perceptron Criterion

• Cost Function: The perceptron criterion focuses on misclassified points:

$$J_p(\mathbf{w}) = -\sum_{i \in M} y^{(i)} \, \mathbf{w}^T \mathbf{x}^{(i)}$$

where M is the set of misclassified points.

• Goal: Minimize the loss by correctly classifying all points.

## **Batch Perceptron**

- **Batch Perceptron**: Updates the weight vector using all misclassified points in each iteration.
- **Gradient Descent**: Adjusting weights in the direction that reduces the loss:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} J_p(\mathbf{w})$$

$$\nabla_{\mathbf{w}} J_p(\mathbf{w}) = -\sum_{i \in M} y_i \mathbf{x}_i$$

• Batch Perceptron converges in finite number of steps for linearly separable data.

## Single-sample Perceptron

- Single Sample Perceptron: Updates the weight vector after each individual point.
- Stochastic Gradient Descent (SGD) Update Rule:
  - Using only one misclassified sample at a time:

$$\mathbf{w} \leftarrow \mathbf{w} + \eta y_i \mathbf{x}_i$$

- Lower computational cost per iteration, faster convergence.
- If training data are linearly separable, the single-sample perceptron is also guaranteed to find a solution in a finite number of steps.

Introduction to Classification Discriminant Functions Linear Classifiers Perceptron Cost Functions Cross Validation Multi-Category Classification References

## Example

• Perceptron changes w in a direction that corrects error.





## Convergence of Perceptron

- **Non-Linearly Separable Data**: When no linear decision boundary can perfectly separate the classes, the Perceptron fails to converge.
  - If data is not linearly separable, there will always be some points that the model fails to classify.
  - As a result, the algorithm keeps adjusting the weights to fix the misclassified points, causing it to never converge.
  - For the data that are not linearly separable due to noise, Pocket Algorithm keeps in its pocket the best w encountered up to now.



# Pocket Algorithm

## Algorithm 1 Pocket Algorithm

```
1: Initialize w
 2: for t = 1 to T do
 3:
            i \leftarrow t \mod N
            if \mathbf{x}^{(i)} is misclassified then
 4:
                  \mathbf{w}^{new} = \mathbf{w} + \mathbf{x}^{(i)} \mathbf{v}^{(i)}
 5:
                  if E_{train}(\mathbf{w}^{new}) < E_{train}(\mathbf{w}) then
 6:
                         \mathbf{w} = \mathbf{w}^{new}
 7:
 8:
                  end if
            end if
 9:
10: end for
```

- 1 Introduction to Classification
- 2 Discriminant Functions
- 3 Linear Classifiers
- 4 Perceptron
- **6** Cost Functions
- **6** Cross Validation
- Multi-Category Classification



35 / 49

#### Model Selection via Cross Validation

#### Cross-Validation

- **Purpose**: Technique for evaluating how well a model generalizes to unseen data.
- How It Works: Split data into k folds; train on k-1 folds and validate on the remaining fold.
- **Repeat Process**: Repeat *k* times, rotating the test fold each time. Average of all scores is the final score of the model.
- Cross-validation reduces overfitting and provides a more reliable estimation of model performance.

#### K-Fold Cross Validation





### Leave-One-Out Cross-Validation (LOOCV)

- Leave-One-Out Cross-Validation (LOOCV)
  - How It Works: Uses a single data point as the validation set (k = 1) and the rest as the training set. Repeat for all data points.
  - Properties:
    - No Data Wastage: Every data point is used for both training and validation.
    - High Variance, Low Bias.
    - Computationally Expensive: Requires training the model N times for N data points, making it slow for large datasets.
    - Best for small datasets.



### Cross-Validation for Choosing Regularization Term



Introduction to Classification Discriminant Functions Linear Classifiers Perceptron Cost Functions Cross Validation Multi-Category Classification References

## Cross-Validation for Choosing Model Complexity



- Introduction to Classification
- 2 Discriminant Functions
- 3 Linear Classifiers
- 4 Perceptron
- 6 Cost Functions
- **6** Cross Validation
- Multi-Category Classification



## **Multi-Category Classification**

- Solutions to multi-category classification problem:
  - Extend the learning algorithm to support multi-class.
    - First, a function  $g_i$  for every class  $C_i$  is found.
    - Second, **x** is assigned to  $C_i$  if  $g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall i \neq j$

$$\hat{y} = \underset{i=1,\dots,c}{\operatorname{argmax}} g_i(\mathbf{x})$$

- Convert to a set of two-categorical problems.
  - Methods like One-vs-Rest or One-vs-One, where each classifier distinguishes between either one class and the rest, or between pairs of classes.

Introduction to Classification Discriminant Functions Linear Classifiers Perceptron Cost Functions Cross Validation Multi-Category Classification References

## Multi-Category Classification: Ambiguity

• One-vs-One and One-vs-Rest conversion can lead to regions in which the classification is **undefined**.





# Multi-Category Classification: Linear Machines

- **Linear Machines**: Alternative to One-vs-Rest and One-vs-One methods; Each class is represented by its own discriminant function.
- Decision Rule:

$$\hat{y} = \underset{i=1,\dots,c}{\operatorname{argmax}} g_i(\mathbf{x})$$

The predicted class is the one with the highest discriminant function value.

• **Decision Boundary**:  $g_i(\mathbf{x}) = g_j(\mathbf{x})$ 

$$(\mathbf{w}_i - \mathbf{w}_j)^T \mathbf{x} + (w_{0i} - w_{0j}) = 0$$

Introduction to Classification Discriminant Functions Linear Classifiers Perceptron Cost Functions Cross Validation Multi-Category Classification Reference

#### Linear Machines Cont.



• The decision regions of this discriminant are **convex** and **singly connected**. Any point on the line between two points within the same region can be expressed as

$$\mathbf{x} = \lambda \mathbf{x}_A + (1 - \lambda) \mathbf{x}_B$$
 where  $\mathbf{x}_A, \mathbf{x}_B \in C_k$ .

## Multi-Class Perceptron Algorithm

#### • Weight Vectors:

- Maintain a weight matrix  $W \in \mathbb{R}^{m \times K}$ , where m is the number of features and K is the number of classes.
- Each column  $w_k$  of the matrix corresponds to the weight vector for class k.

$$\hat{y} = \underset{i=1,...,c}{\operatorname{argmax}} \mathbf{w}_{i}^{T} \mathbf{x}$$
$$J_{p}(\mathbf{W}) = -\sum_{i \in M} (\mathbf{w}_{y^{(i)}} - \mathbf{w}_{\hat{y}^{(i)}})^{T} \mathbf{x}^{(i)}$$

where M is the set of misclassified points.

## Multi-Class Perceptron Algorithm

#### **Algorithm 2** Multi-class perceptron

- 1: Initialize  $\mathbf{W} = [\mathbf{w}_1, ..., \mathbf{w}_c], k \leftarrow 0$
- 2: while A pattern is misclassified do
- $k \leftarrow k + 1 \mod N$ 3.
- if  $\mathbf{x}^{(i)}$  is misclassified then 4:
- 5:
- $\mathbf{w}_{\hat{y}^{(i)}} = \mathbf{w}_{\hat{y}^{(i)}} \mathbf{x}^{(i)}$  $\mathbf{w}_{y^{(i)}} = \mathbf{w}_{y^{(i)}} + \mathbf{x}^{(i)}$ 6:
- 7: end if
- 8: end while

- Introduction to Classification
- 2 Discriminant Functions
- 3 Linear Classifiers
- 4 Perceptron
- **6** Cost Functions
- **6** Cross Validation
- Multi-Category Classification



- [1] C. M. Bishop, Pattern Recognition and Machine Learning.
- [2] R. O. Duda, P. E. Hart, and D. G. Stork, *Pattern Classification*. 2001.
- [3] M. Soleymani, "Machine learning." Sharif University of Technology.
- [4] S. F. S. Salehi, "Machine learning." Sharif University of Technology.
- [5] Y. S. Abu-Mostafa, "Machine learning." California Institute of Technology, 2012.
- [6] L. G. Serrano, *Grokking Machine Learning*. Manning Publications, 2020.

