

Conjugates of biologically stable polymers and polynucleotides for treating systemic lupus erythematosus.

Patent Number: EP0438259, B1

Publication date: 1991-07-24

Inventor(s): COUTTS STEPHEN (US); CONRAD MICHAEL J (US)

Applicant(s): JOLLA PHARMA (CA)

Requested Patent: JP2001354569

Application Number: EP19910300262 19910115

Priority Number (s): US19900466138 19900116; US19900494118 19900313

IPC Classification: A61K39/44; A61K47/48; A61K48/00

EC Classification: C07H21/00C4, A61K47/48R2T

Equivalents: AU640730, AU6941891, CA2034197, DE69120303D, DE69120303T, DK438259T,
ES2090233T, FI107514B, FI923241, GR3021113T, IE910131, NO303940B,
NO922781, PT96503, US5162515, WO9110426

Cited patent(s): US4191668; US4650675; WO8609628

Abstract

Chemically defined conjugates of biologically stable polymers, such as copolymers of D-glutamic acid and D-lysine, and polynucleotide duplexes of at least 20 base pairs that have significant binding activity for human lupus anti-dsDNA autoantibodies. The duplexes are preferably homogeneous in length and structure and are bound to the polymer via reaction between an amino-reactive functional group located at or proximate a terminus of each duplex. These conjugates are tolerogens for human systemic lupus erythematosus.

Data supplied from the esp@cenet database - I2

⑫ 公表特許公報 (A)

平5-505520

⑬ Int. Cl. [*]	識別記号	序内整理番号	審査請求未請求 予備審査請求有	部門(区分) 1 (1)
C 12 N 15/11 A 61 K 31/70 37/02	ABB ABC	8314-4C 8314-4C*		

(全 13 頁)

④ 発明の名称 全身性紅斑性狼瘡の治療のための生体内で安定なポリマーおよびポリヌクレオチドの複合体

⑤ 特 願 平3-503584

⑥ ⑦ 出 願 平3(1991)1月15日

⑧ 調証文提出日 平4(1992)7月16日

⑨ 国際出願 PCT/US91/00293

⑩ 国際公開番号 WO91/10426

⑪ 国際公開日 平3(1991)7月25日

優先権主張 ⑫ 1990年1月16日 ⑬ 米国(US) ⑭ 466,138

⑫ 発明者 コンラッド,マイケル ジエ アメリカ合衆国 カリフォルニア 92129 サンディエゴ,ベナノイ。

⑬ 出願人 ラホヤ フアーマシューティ アメリカ合衆国 カリフォルニア 92121 サンディエゴ,ナンシカル カンパニー リツジ ドライブ 6455

⑭ 代理人 弁理士 山本 秀策

⑮ 指定国 FI, JP, NO

最終頁に統く

請求の範囲

1. (a) 生体内で安定なポリマーと、(b) 各々が該ポリマーに結合した、少なくとも約20個の塩基対よりなる多様な二本鎖ポリヌクレオチドとの複合体であり、該二本鎖が各々ヒト全身性紅斑性狼瘡の抗dsDNA自己抗体に対して著しい結合活性を有する、複合体。

2. 前記生体内で安定なポリマーが、L-グルタミン酸(E)とL-リジン(K)とのコポリマーであり、分子量が約5,000から約50,000であり、そしてE:Iモル比事が約60:40である、請求項1に記載の複合体。

3. 前記二本鎖の長さが実質的に均一である、請求項1もしくは2に記載の複合体。

4. 前記二本鎖が、ヌクレオチド組成において実質的に均一である、請求項3に記載の複合体。

5. 前記二本鎖の長さが30から250bpである、請求項1、2、3、もしくは4に記載の複合体。

6. 前記二本鎖が末端の1つまたはその近くでポリマーに結合する、請求項1、2、3、4、もしくは5に記載の複合体。

7. 前記二本鎖が、二本鎖の一方の鎖の末端の1つにまたはその近くに位置する官能基と、前記ポリマーの遊離アミノ基との反応により該ポリマーに結合する、請求項6に記載の複合体。

8. 前記二本鎖ポリヌクレオチドが、異なる2から4塩基

の相補的な多量体反復ユニットにより構成される、請求項1、2、3、4、5、6、もしくは7に記載の複合体。

9. 前記二本鎖ポリヌクレオチドが、

ポリd(CC):ポリd(CG)、ポリd(AT):ポリd(TA)、

ポリd(IC):ポリd(CP)、ポリd(AC):ポリd(TG)、もしくは

ポリd(AG):ポリd(TC)である、請求項8に記載の複合体。

10. 前記二本鎖ポリヌクレオチドが、(AC)₂₀:(TG)₂₀である、請求項1もしくは2に記載の複合体。

11. 薬学的に受容され得る注射可能な賦形剤とともに処方される、請求項1、2、3、4、5、6、7、8、9、もしくは10に記載の複合体を含む、狼瘡治療のための薬剤組成物。

12. 少なくとも約20個の塩基よりなる一本鎖ポリヌクレオチドであって、末端の1つにまたはその近くに、遊離アミノ基と反応する官能基を有し、そして相補的な一本鎖ポリヌクレオチドにアニュールされると、ヒト全身性狼瘡の抗dsDNA自己抗体に対する著しい結合活性を有する、一本鎖ポリヌクレオチド。

13. 前記一本鎖ポリヌクレオチドが、異なる2から4塩基の多量体反復ユニットにより構成される、請求項1-2に記載の一本鎖ポリヌクレオチド。

14. 請求項1に記載の複合体を作製する方法であり、(a) 各々が少なくとも約20個の塩基対よりなり、末端の1つにまたはその近くに、アミノ基に反応する官能基を有する

明細書

多様な一本鎖ポリヌクレオチドを、ポリマーの逆離アミノ基と反応させて複合体を形成する工程；および

(b) 該ポリマーに結合された一本鎖ポリヌクレオチドに相補的な一本鎖ポリヌクレオチドをアニールさせて、二本鎖DNAのペンドント環を形成する工程；

を包含する、方法。

全身性紅斑性狼瘡の治療のための
生体内で安定なポリマーおよび
ポリヌクレオチドの複合体

記述

技術分野

本発明は、自己免疫疾患である全身性紅斑性狼瘡（SLEまたは「狼瘡」）の治療のための組成物に関する。詳しくは、生体内で安定なポリマー、好ましくはL-グルタミン酸（本明細書では1文字「E」で表す）とL-リジン（本明細書では1文字「K」で表す）とのコポリマーと、SLEに係わる自己抗原に対する対応性を誇示するのに効果的であると認められている特定のポリヌクレオチドとの複合体に関する。好適なコポリマーは本明細書では「L-EK」で表される。

背景

「免疫寛容」とは、個体が自らの組織と反応することを防ぐ、非常に長期的なおよび多くは永久的な形式の免疫抑制をもたらすメカニズムである。自己抗原に対する免疫寛容は、通常は動物の新生児の発育時に確立され、その生涯にわたって持続すると考えられている。しかし、この体系は時には不完全であり、個体の中には、典型的には生涯の後半に、自己免疫疾患にかかるものがある。このような疾患の1つがSLEである。

これは、個体のDNAに対する自己抗体を産生することを特徴とし、この結果、腎臓が進行性の炎症性変性に冒される。

SLEは、典型的には、シクロホスファミドまたはブレドニゾンなどの幅広い非特異的免疫抑制薬を投与することにより治療される。これらの薬剤は免疫系のすべての面を抑制することが多いため、SLEの原因となる有害な機能と同様に、必要とされる有益な機能をも抑制する。従って、これら薬剤の投与においては最善の注意が必要であり、疾患の標準的な治療に対してはいつでも適切であるとは限らない。さらに、薬剤治療により全身的におよび強度に免疫抑制されている個体は、他の合併症、特に感染病に対しては危険な状態にある。

SLE治療への好ましい対策は、免疫系の正常な機能に影響を及ぼさずに、SLEに係わる自己抗原に対する免疫寛容を再確立し得る薬剤を投与することである。不幸なことに、SLEまたはさらには言えばすべての自己免疫疾患に対して、その疾患に関する自己抗原に対して対応性を誇示する研究が行われ、発表されている。彼らの初期の研究は、モルモットおよびマウス中の合成ハプテン2,4-ジニトロフェニル（DNP）の複合体に係わるもので、この複合体が

DNPに対する対応性を誇示し得ることが示された。これらの初期の研究は、ブタクサ抗原およびベンジルペニシロイル（BPO）などの他のハプテン/抗原にも広められた。米国特許第4,191,666号および第4,220,585号参照。

米国特許第4,191,666号（実施例IV）は、L-EKと、子ウシの胸腺DNAをDNAアーゼで1回消化して単離したオリゴヌクレオチドとの複合体の調製について述べている。オリゴヌクレオチドは、「10個より少ないヌクレオチド」により構成されるという特徴を有した。米国特許第4,191,666号の第11欄において、この発明は自己免疫疾患の治療に対して治療上の価値を有すると述べ、SLEへの言及があるが、言及されたL-EK-オリゴヌクレオチド複合体の免疫学的效果についてはいかなるデータも提示されていない。

Iatzらの研究グループはまた、ヌクレオシド-L-EK複合体の、核酸決定因子に対する対応性を誇示する可能性を調査した。Eshharら、*J. Immunology* (1975) 114:872-876。これに関しては、個々のヌクレオシドは、狼瘡の抗血清における特異性の主要な決定因子であると広く考えられている。彼らはL-EKコポリマーと4種のリガヌクレオシドとの複合体をSJLまたはBalb/c系のマウスに投与し、引き続いてこれら処置されたマウスをキーホールリンベットヘモセニアシン(KLB)-リガヌクレオシド複合体により免疫した。両方の系統において、血清の抗ヌクレオシド抗原結合能はからうじて検出可能なレベルまで低下した。これらの研究により、このような複合体はヌ

特表平5-505520 (3)

クレオシドに対する免疫寛容性を產生し得ることが示されたが、このような複合体がSLEの治療に有用であることは示されなかつた。

他の研究者により、ヌクレオシドまたはDNAの他のキャリアーとの複合体が研究されている。Borelら (*Science* (1973) 182:76) は、同遺伝子系のマウスのIgG-ヌクレオシド複合体が、H2Bマウス系の若い動物の変性DNAへの抗体反応を低減させる能力を評価した。この系統はいくつかの自己免疫現象のためのモデルとして使用される。この複合体は、腎臓に宿り糸球腎炎へと導く免疫合併症を形成する接着因子に対する抗体を產生する傾向がある。これらの研究において、処置された動物は抗変性DNA抗体を產生する程度が著しく低下し、コントロール動物および遮離ヌクレオシド処理した動物より属性の小さい糸球体腎炎を示した。他の研究において、Park et al. (*J. Immunol.* (1974) 113:292) は、H2Bマウスにおける上述の症候群の進行に及ぼすポリ-L-リジンおよび/またはシクロホスファミドに結合された変性DNAの効果について評価した。これらの研究により、コントロールに比較して処置された動物に対しては、生存率が著しく上昇、およびDNA結合能が著しく低下することが示された。しかし、上述の研究はいずれも、ヒトSLEに係わる主要な自己抗原であるようにみえるd-DNAに対する対応性を產生することを目的としたものではなかつた。

後の論文 (*Ann NY Acad Sci* (1986) 475:298-306) で、Bo

reilらは、SLEに対する特異的免疫療法の実現が「DNA断片を可溶性タンパク質に結合することが不可能である」ことにより阻止されていると示唆している。彼らは、Stollerによる先行文献 (Papalianら, *J. Clin. Invest.* (1980) 65:489、ならびにStollerおよびPapalian, *J. Clin. Invest.* (1980) 65:210) を引用して、SLE患者に形成された抗DNA抗体を結合するためには、最小サイズとして少なくとも10-40個の塩基対のDNAが必要であると述べている。この論文には、結合剤としてグルタルアルデヒドを使用して「10個の塩基対より幾分長い」天然のDNA断片を結合することにより作製されるオリゴヌクレオチド-免疫グロブリン複合体について述べている。該論文の図2は、DNA断片を選択するために使用される研究について述べている。この図は、BFP(血清中に抗DNA抗体を有するグルタルアルデヒドを介してヒツジ赤血球に結合される様々なDNA断片の反応度を示している。これらの試験において「70-80」で示される断片が最も反応度が高かった。この断片のサイズは、「約10個のオリゴヌクレオチド」に対応する断片81-101よりも「幾分大きい」と述べられている。「40-69」で示される、70-80の次に大きな断片は、断片70-80に比較して反応度が著しく低下した。当然ながら、「10個の塩基対より幾分長い」断片はサイズが不均一であり、結合手順のために、鎖の任意の部位で免疫グロブリンに結合される。さらに、二官能基性の結合剤を使用するため、結合反応においてある程度の架橋が起こることがあり得る。従って、この論文で述べられた複合

体は以下の意味において化学的に定義された部分ではない。すなわち、(a)オリゴヌクレオチドの長さが特定されていない、(b)オリゴヌクレオチド断片は様々な長さの鎖を有する、(c)オリゴヌクレオチド鎖の長さに沿った免疫グロブリンへの付着部位は任意である、(d)ある程度の架橋が存在する、および(e)結合ではなく架橋されたオリゴヌクレオチドが結合された物質から分離され得ない。

Borelらは最近、カッピング剤としてグルタルアルデヒドを使用して、全DNA消化物 (N₁₀₋₁₀₀として示される) または20-30塩基対の断片 (N₂₀₋₃₀として示される) のいずれかに結合したヒト免疫グロブリンの複合体を使用したインピトロにおける研究について報告している (*J. Clin. Invest.* (1988) 81:1901-1907)。これらの複合体は、SLE患者からのPBLにインピトロにおける免疫対応性を示すことが報告された。しかし、これらの複合体は、彼らの1986年の論文において報告されたものと同様、非特異的に架橋されたネットワークを產生する方法を使用して、オリゴヌクレオチドの不均一な混合物によっても產生される。従って、これら複合体の化学的性質も生物学的活性も、これらが薬剤として認可され得る程に十分に再現可能ではない。

発明の開示

上の先行技術とは対照的に、本発明者は、生体内で安定なポリマーと、ヒトSLEに対して免疫対応性を有する二本鎖オリ

ヌクレオチドとの化学的に定義された複合体を開発した。これら二本鎖は長さ、ポリマーへの付着部位、らせん構造、およびヒトSLE抗d-DNA自己抗体への結合親和性に関して定義されている。従って、これらの化学的性質および免疫対応性は、これらの複合体を品質管理および薬剤としての認可に從わせ得る程度に再現可能である。

従って、本発明の1つの面は、生体内で安定なポリマーと、各々が該ポリマーに結合した、ヒトSLE抗d-DNA自己抗体に対する著しい結合能を有する、少なくとも約20個の塩基対よりなる多様な二本鎖ポリヌクレオチドとの複合体である。これらの複合体の好適な実施態様においては、二本鎖は長さが実質的に均一であり、それらの末端の1つまたはその近く(すなわち約5塩基対以内)でポリマーにカッピングされ、これにより二本鎖の各々は、二本鎖のポリマーへの付着部位から鎖の自由末端まで数えて少なくとも約10塩基対のペンドント鎖を形成する。

これらの複合体を含有する薬剤組成物およびこれらの複合体を使用するSLEを治療する方法が本発明の別の面である。

さらに別の面は、(a)生体内で安定なポリマーと(b)様々な二本鎖ポリヌクレオチドであり、その各々およびすべてが二本鎖の鎖の1つの末端にまたはその近くに位置する官能基によりポリマーに結合されることである。この複合体はヒトSLE免疫対応性を有する。

本発明のさらには別の面は、上述の複合体を作製する方法で

特表平5-505520 (4)

あり、各々が少なくとも約20個のスクレオチドの長さを有し、末端の1つにまたはその近くに、ポリマーの遊離アミノ基と反応する官能基を有する、多様な一本鎖ポリスクレオチドを反応させて複合体を形成する工程、およびポリマーに結合された该一本鎖ポリスクレオチドに、相補的な一本鎖ポリスクレオチドをアニールして二本鎖DNAのペンドント鎖を形成する工程を包含する。

図面の簡単な説明

図1は、実施例1に述べる試験から得られるデータのグラフである。

図2および3は、実施例3に述べるCDスペクトルの再生である。

図4は、異なるタイプのらせん構造を有するDNAのSLE抗血清結合能を比較するグラフである。

図5～8は、実施例5に述べる試験から得られるデータのグラフである。

実験を実施する形態

複合体のポリマー成分は生体内で安定している。すなわち、インビゴにおける排出の半減期が数日から数ヶ月である。これらのポリマーはまた実質的に非免疫原性であり（すなわち、動物に投与されても免疫原性を示さない、または弱い免疫原性しか示さない）。好ましくは、定義された組成の合成の一

本鎖より構成される。これらの平均分子量は、通常、約5,000から約200,000、好ましくは5,000から50,000の範囲である。このようなポリマーの例としては、ポリエテレンジリコール、ポリ-L-リジン、ポリビニルアルコール、ポリビニルピロリドン、免疫グロブリン、およびL-EKがある。特に好適なポリマーは、分子量が約5,000から約50,000およびE:Iモル比率が約60:40のL-EKである。

上記の生体内で安定なポリマーにカップリングされる合成の二本鎖ポリスクレオチドは、少なくとも約20bp、より一般的には少なくとも30bp、典型的には30～250bp、および好ましくは50～150bpにより構成される。好ましくは、二本鎖は長さが実質的に均一である。すなわち、葉團における長さの変動が通常は、塩基対における、二本鎖の平均長さの約±20%、好ましくは±10%を超えない。また、好ましくはスクレオチド組成が実質的に均一である。すなわち、塩基組成が約10%以上変動しない。最も好適には、スクレオチド組成が完全に均一である。組成物に関しては、好適な合成または組換えdsDNAは、好ましくは、以下のような2～4塩基の相補的な多量体の復数ユニット（すなわち、反復二量体、三量体、または四量体）の鎖より構成される：

(AC) _n	（二量体）
(TG) _n	
(TAC) _n	（三量体）
(ATG) _n	

(GCTA)_n （四量体）
(CGAT)_n

ここで、n、n'、およびn''は所望の数の塩基対が提供されるように選択される整数である。同質異性の二量体（isomeric dimers）により構成されるポリスクレオチド、例えば、ポリd(AC)：ポリd(GT)およびポリd(AG)：ポリd(CT)が最も好適である。

円二色性（CD）スペクトルの解釈に基づいて、本発明にて使用される二本鎖はB-DNAタイプのらせん構造であると考えられる。当然ながら、本発明はこの考えにより制限されない。また、さらに総合的な分析によればZ-DNAおよび/またはA-DNAタイプのらせん構造であることもあり得る。B-DNAは、他の2つのタイプのDNAらせんのらせん長軸にはほぼ直角の塩基対を有する右巻きのらせんを形成する。異なるタイプのDNAのらせん構造は、円二色性（CD）スペクトルにより特徴付けられ得る。B形態のDNAのCDスペクトルは、(1)250nmより下の部分のスペクトルは右巻きらせんに基づくものであり、206nmより上の波長の正の長い二色性バンドとは離れていて、240と280nmとの間の波長で明かな低小部分がある、正の二色性バンド、および(2)250nmより上に広い一重項ピークを示し、これはA形態のRNAおよびDNAのスペクトルにみられる最大値に対して、極大部分が背の方へ相対的に移動し、極大部分の中心が波長270と290nmとの間となる。DNAの他の2つのらせん形態を全体的に比較すれば、Z-DNAは、密な左巻きらせんねじれであり、塩基対がらせん軸の周りに左右対称に配置されていないという

特徴があり、A-DNAはより緩い右巻きらせんを形成し、これに塩基対が長いらせん軸に対して斜めに配向され、らせんの中心から引き離されている。

これらのポリスクレオチド二本鎖は天然のDNAにより合成され得るか、もしくは化学的または組換えの技術により合成され得る。天然または組換えにより產生される長さの長いdsDNAは（例えば、酵素により、化学的に、または機械的な切断により）消化され、（例えば、アガロースゲル、セファデックスコラムにより）所望の長さのポリスクレオチドが得られ得る。

もしくは、長さが約70塩基までの相補的な一本鎖ポリスクレオチドの対が、市販のDNA合成装置を使用して容易に調製され、次にアニールされて通常の手順により二本鎖が形成される。長さの長い合成dsDNAは、化学的に產生された短い鎖を酵素により伸長する（5'リソ酸化の後、連結する）ことにより得られ得る。

ポリスクレオチドはまた分子クローニングにより作製され得る。例えば、所望の長さおよび配列のオリゴスクレオチドを上述のように合成する。これらのオリゴスクレオチドは特定の制限部位に連結するための適切な末端を有するように設計され得る。これら複数連結したオリゴマーは縦に一列に並んで連結され、多数の複写複製を提供し得る。得られる複製物は標準のクローニングベクターに導入され、ベクターは形質転換により適切な微生物/細胞に導入される。形質転換

特表平5-505520 (5)

体は標準マーカーにより識別され、DNAの複製に有利な条件の下で増殖する。ポリヌクレオチドは、制限酵素による処理および従来のサイズ分離（例えば、アガロースゲル、セファデックスカラム）により、細胞／微生物の他のDNAから単離される。

もしくは、オリゴヌクレオチドはポリメラーゼ連鎖反応（PCR）技術により複製され得る。Salnik, R.K.ら、*Science* (1988) 230:1850; Sackiら、*Science* (1988) 231:487; Saenger, *In Molecular Cloning Techniques: A Laboratory Manual*, Vol. 12, P. 14.1-14.35 Cold Spring Harbor Press (1989)。

従来の複合体とは対照的に、本発明にて使用される二本鎖ポリヌクレオチドの各々はSLE抗血清に著しい結合活性を示す。好ましくは、これらは長さが実質的に均一である。この点で、従来のポリヌクレオチドは長さが不均一であり、一部またはすべてが短すぎるため上記の活性を示し得ないような類の混合物より構成される。ポリヌクレオチドは、実施例にて示されるアッセイによりスクリーニングして、SLE抗血清との結合活性を検査し得る。結合活性を I_{50} （半最大阻害が得られる分子ヌクレオチド中のポリヌクレオチド濃度）として表わし得るファーアッセイの変法が、好適なアッセイである。 I_{50} が約500nMより小さい、好ましくは50nMより小さい二本鎖ポリヌクレオチドは著しい結合活性を有し、従って、本発明の複合体の作製に有用である。

離アミノ基（例えば、D-EKのイブシロンアミノ基）を有する必要がある。このような複合体の合成は2段階において実行される。第1の段階は、上述の結合／還元反応を介して二本鎖ポリヌクレオチドの1つの鎖をポリマーにカップリングすることである。酸化3'末端リボースは、鎖を過ヨウ素酸塩により処理して3'末端リボース基を酸化リボース基に変換することにより、ポリヌクレオチドの一本の鎖に形成される。次に、一本鎖ポリヌクレオチドを、2-8°CでpHが約6.0から8.0のポリマーの水溶液に徐々に添加する。結合方法のすべてにおけるポリヌクレオチドとポリマーとのモル比は、通常は約1:1から約10:1、好ましくは約5:1から10:1の範囲である。結合反応（通常は反応時間は24から48時間）の間またはその後に、水素化シアノホウ素ナトリウムなどの強い還元剤を添加してモルフォリノ基を形成する。次に二本鎖の複合体を複合体に添加して、この混合物を加熱した後、徐々に冷却して二本の鎖をアニールする。複合体はゲル通過クロマトグラフィにより精製され得る。

他の方法には、オリゴヌクレオチドに末端のアルデヒド官能基を形成すること、およびこれら官能基を、オリゴヌクレオチドをポリマーにその上のアミノ基を介してカップリングするために使用することが含まれる。オリゴヌクレオチドの5'末端に付着されるジュム（*succ*）、ビシナル（*vicinal*）のジオールが過ヨウ素酸ナトリウムにより酸化され、ポリマーのアミノ基とにより結合し得るアルデヒドを生じ得る。ジオ

ポリヌクレオチドは結合活性を保存する方法でポリマーに結合する。これは、ポリヌクレオチドをポリヌクレオチド鎖の特定の部位でポリマーにカップリングし、これにより、ポリヌクレオチドがカップリング部位から鎖の自由な（付着されてない）末端まで数えて少なくとも約30塩基対のペンドント鎖を形成することにより行われる。対照的に、Borelらの参考文献により教示されたグルクルアルデヒド結合法では、鎖に沿った任意の部位でのカップリング、および架橋が生じる。従って、この技術を使用すると、20塩基対より長い鎖が、鎖の中間部位でカップリングして、長さが実質的に20塩基対より短いペンドント鎖を形成し得る、または鎖同士が結合して、固定されないサイズの架橋ネットワークを形成し得る。

好ましくは、本発明の複合体の二本鎖ポリヌクレオチドは、これらの末端の1つまたはこれに近い部位でポリマーにカップリングまたは結合される。オリゴヌクレオチドを生体高分子に上述のように付着するためには、いくつかの結合方法が利用可能である。ポリヌクレオチドは、ポリヌクレオチドの鎖の1方の酸化5'末端リボースを、ポリマーの遊離アミノ基と結合すること、および次にこの付加物を還元状態にさらしてモルフォリノ連結（morpholine linkage）を形成することにより形成されるモルフォリノ橋を介して、ポリヌクレオチドの5'末端でポリマーにカップリングされ得る。このようなカップリングにおいては、ポリマーが少なくとも、ポリマーに結合される二本鎖ポリヌクレオチドの数に等しい数の遊

アルが環式系、例えば5員環の中にあるとき、得られる結合生成物は窒素を含有する複素環式、例えば、6員モルフォリノ環またはビペリジン環である。イミノ結合生成物は、適切な還元剤、例えば、水素化ホウ素ナトリウムまたは水素化シアノホウ素ナトリウムによる還元により安定化される。ジオールが非環式であるとき、得られる酸化生成物はただ1つのアルデヒドを含むし、結合生成物は第2級アミンである。

ビシナルジオールの方法はまた5'末端リンカーのために使用され得る。これは、トリオールの第3ヒドロキシ基のシアノエチルホスホアミダイト誘導体を作製することにより行われる。ここで、残りのヒドロキシ基はビシナル、例えば3,4-シスジヒドロキシ、1-ヒドロキシメチルシクロヘキサンである。この特定の場合には、ビシナルのジヒドロキシ基はジメチルシランにより阻害され、第1ヒドロキシ基は2-シアノエチル-1,1-ジイソプロピルクロロホスホアミダイトにより誘導体化される。得られる誘導体は、標準オリゴヌクレオチド合成の最後の段階において使用され、5'末端残基となる。オリゴヌクレオチドを脱ブロックし、フッ素イオン、酸、または塩基によりジメチルシリル基を除去した後、上述のようにビシナルジオールは過ヨウ素酸塩により酸化され、アミノ基により結合され得る。5'末端リンカーとして使用される非環式トリオールのために、同様の方法が使用され得る。

別の方法は、適切なヌクレオチドの化学的性質、例えば、ホスホアミダートの化学的性質により、アルキルアミノまた

特表平5-505520 (6)

的抑制生成物として作用する能力は、実施例において述べるマウスモデルにおいて評価され得る。

複合体は通常は注射による投与（例えば、腹腔内注射、または筋肉注射）に対して処方される。従って、典型的には、生理食塩水、リンゲル液、デキストロース溶液などの薬学的に受容可能な水溶性キャリアーと組み合わされる。複合体は通常は、処方の約0.01から10重量%を構成する。複合体は、SLEを引き起こす自己抗原に対する寛容性を少なくとも部分的に再確立するに十分な量で個体に投与される。このような量は、本明細書では「治療上有効な」量と表現することがある。特定の投与頻度、すなわち投与量、投与時間および反復投与は特定の個体およびその個体の病歴に依存する。通常は、体重1kgにつき約1から1000μgの複合体の投与量が与えられる。免疫寛容の状態を獲得および／または維持するために、反復投与が必要であり得る。

以下の実施例において、本発明および本発明が先行技術からは予見し得ないことを述べる。これらの実施例はいかなる意味においても本発明を制限するものではない。

（以下余白）

はアルキルスルフィドリル部分をオリゴスクレオチドの3'または5'末端のいずれかに導入することを含む。次に、求核基を、アルキルアミン誘導体の場合には、ジメチルスペリミドートなどのカモニ官能性架橋剤の大過剰分と、またはアルキルスルフィドリル誘導体に対しては、 α -マレイミドベンソイル- β -ヒドロキシシクニミドエステル(MBS)またはスクシニミジル(4-ヨードアセチル)アミノベンゾエート(SIAB)などのヘテロ二官能性架橋剤の過剰分と反応させるために使用し得る。過剰の架橋剤を除去すると、オリゴスクレオチド誘導体はポリマーのアミノ基と反応する。

さらに別の方法は、改変スクレオシドを使用する。適切なデオキシスクレオシド誘導体は、標準DNA合成化学により、オリゴスクレオチドの所望の部位に、好ましくは5'または3'末端に組み入れられ得る。これらのスクレオシド誘導体は、次にポリマーのアルキルアミノ基と特異的におよび直接に反応し得る。もしくは、上述のジアルデヒドの化学的性質によりみられる、アミン触媒のペータ解離などの副反応は、適切なスクレオシド誘導体を付着する該の5'末端として使用することにより回避され得る。この例としては、リボースの5'-メチレンの延長、すなわち、5'-ヒドロキシメチル基の代わりの5'-(2-ヒドロキシエチル)基がある。対案として、ポリマーに付着するオリゴスクレオチドの3'末端ジスクレオチドのためにホスホキートまたはホスフィキートを使用することである。

複合体がSLE免疫原として、および抗ssDNA抗体の特異

実施例1

D-EKと個々のスクレオシドとの複合体の試験

前述通り、本発明の複合体の開発の前に、D-EKと個々のスクレオシドとの複合体がSLEネズミモデル((NZB×NZW)F₁系マウス)での抗DNA応答に寛容でないことを示す試験を行った。多くのD-EKを、BioMakor/Yeda (Rehovot, Israel) から得た。その相対分子量をHPLCゲル透過クロマトグラフィーにより、周知の球状タンパク質に対して標準化し、この物質を脱塩し、23kdカットオフ透析チューブにて0.1M K₂HPO₄、pH 9.5に対して徹底した透析を行うことにより、サイジングした。次に2回、水に対する透析を行った。この物質を、0.1M K₂HPO₄、pH 9.5緩衝液に4℃で貯蔵した。この産物の重量平均分子量は、沈降平衡、PAGE、およびHPLC-GPCと低角散乱を含む物理的方法により測定した結果、およそ28,000であった。脱塩加水分解によるアミノ酸分析の結果、このコポリマーの80%はグルタミン酸で、40%はリジンであった。

D-EKと、リボアデノシン、リボグアノシン、リボシトシン、およびリボチミジンとの複合体を、主にBsharら、Linal (1975) 111:872に記載通りに調製した。これら複合体(スクレオシド-D-EKと称される)の各々を等しい割合で混合したものを以下の試験で用いた。

6週目および17週目の(NZB×NZW)F₁雌マウスの2つのグループに、i.p.により生理食塩水もしくは1匹のマウスあたり1mgのスクレオシド-D-EKのいずれかを、3日間毎日注射し

た。7日後、それらのマウスから採血した。2週間後、同じ処置を繰り返した。7日後、それらのマウスから採血した。1回目および2回目の採血より得た血清を、以下の抗原特異性ELISAのプロトコールを用いて抗ssDNA抗体を試験した。

ssDNAをポリスチレンプレートのウェルに固定して、雄雄MRL (lpr/lpr) マウスの血清中の抗体と反応させる。抗ssDNA抗体をプレートのssDNAに結合する免疫グロブリンのイソタイプに特異的な、酵素を結合した抗体を添加することにより可視化する。続けて酵素の基質を添加することにより、分光光度計で読み取れる発色反応が起きる。

ssDNAを子牛胸腺dsDNAより調製する。市販の子牛胸腺dsDNAを、S-1スクレアーゼで処理して、均一のdsDNAを得る。dsDNAを5分間温浴で煮沸し、すばやく冷水浴で冷却する。各ssDNAバッテを試験直前に調製する。

使用前に、6ウェルの底が平らな96プレートを一晩Steril Gard Hood中で紫外線(UV)にさらす。プレートのウェルを一晩、4℃で、10μg/mlのメチル化ウシ血清アルブミンを含有する生理食塩水中、1μg/mlの濃度の100μlのssDNAで被膜する。翌朝、プレートを一度、リン酸緩衝生理食塩水(PBS)で洗浄し、各ウェルに37℃で45分間、1%のウシ血清アルブミンを含有するPBS (PBSA) を200μl入れてブロックする。ブロック後、プレートを2回PBSで洗浄し、水分を払い落として乾燥させる。次に0.5%のTween-20を含有する1%のPBSAで希釈した試験およびコントロールの血清の100μlの一連の希釈液を、

特表平5-505520 (7)

適切なウェルに入れる。プレートを37°Cで1時間インキュベートする。次に5回PBSで洗浄し、水分を払い落とし乾燥させた後、アルカリホスファターゼ結合のヤギ抗マウス(IgG、AおよびM)抗体を、100マイクロリッター添加する。プレートをもう1時間37°Cでインキュベートする。プレートを7回PBSで洗浄し、水分を払い落として乾燥させる。次に、50μlの1-β酵素基質を添加して、プレートを半時間室温でインキュベートする。50μlの0.2Mリン酸水素二ナトリウム、pH8.6を添加して反応を止める。550nmでの光学濃度値を、Titertek分光光度計で各ウェルごとに測定する。

データを図1に示す。図示した通りスクリオシド-I-EIはマウスにおける抗ssDNAの力値に対して検出可能な効果は示さなかった。

実験例2

SLE抗血清に対するポリスクリオチドの結合活性試験

本発明の複合体に用いられるポリスクリオチドに加えて、別に多様なDNAを調製して、そのSLE抗血清に対する結合活性を試験した。以下に示すこれらの試験は、本発明の複合体のポリスクリオチドの反応性が予想も予期もされなかつことを示す。

多様な一本鎖および二本鎖のポリスクリオチドを化学合成、および適切であれば、酵素による伸張および／もしくはアーリングにより調製した。オリゴスクリオチドの化学合成は並リン酸トリエステルの化学的性質を利用したクルアチャム

(Crusches) 調整可能カラムを用いたPharmacia Gene Assemblerで行った。固相は適切な3'-リボもしくは3'-デオキシリオチドで脱離基化された500オングストロームに調整された有孔ガラスピースであった。オリゴスクリオチドを簡単な透析を行うことにより精製した。70塩基より長いオリゴヌクレオチドの場合は、個々の鎖はATPおよびrT4ポリヌクレオチドキナーゼを用いてリン酸化した。Pharmacia PD10カラムで脱塩した後、リン酸化した鎖をrT4のDNAリガーゼを用いて、共有結合でカッティングさせた。全ての鎖は、特有の付着末端を備えた共通のCATG 5'末端配列を共有していた。適切であれば、dsDNAを形成するため一本鎖をアニールした。

抗SLE抗血清とのポリスクリオチドの結合を測定するため2通りのアセイを行った：(1) 放射標識したDNAを抗体との結合後、溶液から沈殿させるファーアッセイの変法、および(2) ELISA法。前者では、25μlの抗血清希釈液を、始めに0.1mg/mlのヒトガンマグロブリンを含むトリス緩衝生理食塩水(TBS、0.1M NaCl、0.01M Tris、pH7.5)で調製した。これらを125μlのTBSで希釈し、50μlの¹²⁵I-dsDNA(Diagnostics Products Corp.、Los Angeles, CA)を各試料に添加し、そして試料を37°Cで、半時間インキュベートした。次に500μlの飽和(NH₄)₂SO₄を添加し、試料を4°Cで15分間インキュベートし、そして遠心分離した。上清の放射活性をガンマカウンターで測定した。上清の放射活性の消耗により溶液中の抗体の濃度が直接測定された。ELISA法では、プレートのウェル

を、4°Cで10μg/mlのメチル化BSAを含む生理食塩水中の10μg/ml濃度の100μlのdsDNAにより被覆した。ウェルをPBSで洗浄した後、各ウェルにPBS(PBSA)中1%BSAの200μlを、37°Cで45分間入れることによりブロックした。プレートを再度PBSで洗浄した。次に、0.5%のTween20を含む1%のPBSAで希釈した100μlの試験血清を添加した。阻害剤を調べるため、阻害剤(ポリスクリオチド等)もまた添加した。プレートを37°Cで1時間インキュベートし、PBSで洗浄した。アルカリホスファターゼ標識のヤギ抗体を100μl/ウェル添加し、プレートを37°Cでもう1時間インキュベートした。その後、プレートを洗浄し、基質を添加し、そしてプレートを室温で半時間インキュベートした。リン酸水素二ナトリウムを添加して反応を止め、プレートを分光光度計で読み取った。

以下に掲げる表1および2は、今回の試験ではSLE自己抗体によりdsDNAの結合を有意に阻害しなかった多様な一本鎖ポリスクリオチドと二本鎖ポリスクリオチドをそれぞれ示す。

(以下余白)

表1

500nM以下ではdsDNAが
キズミ(MRL)もしくはヒトSLE自己抗体に結合するのを
阻害しない一本鎖ヌクレオチドホモポリマー

組成	n量体	組成	n量体	
A. ホモブリン	ポリd(C)n	12190	ポリd(A)n	3900
		3500		60
		32		32
		22		22
		12		12
		6		6
		3		3
B. ホモピリミジン	ポリd(C)n	3290	ポリd(T)n	2290
		60		60
		30		30
		24		22
		22		6
		12		3
		6		
		3		

* rT4DNAポリメラーゼを用いて酵素で合成。分子量はばらつきがあるので、酵素により合成したオリゴマーのロジックは重量平均値であり、それぞれSe.20倍から概算したものである。

表2

500mM以下ではdsDNAがネズミ(MBL)もしくはヒトSLE自己抗体に結合するのを阻害しない
最高12倍濃度を持つ二本縁オリゴスクレオチドの例

A. ホモポリマー

構成

例: $[A]_{10} : [T]_{10}$, $[G]_{10} : [C]_{10}$, $[I]_{10} : [C]_{10}$

B. ヘテロポリマー

1. 自己対列

例: $[G]_2 - [A]_2 - [C]_2 : [G]_2 - [T]_2 - [C]_2$

2. 反復二量体

例: $[AT]_{10} : [AT]_{10}$, $[AC]_{10} : [GT]_{10}$

3. 反復三量体

例: $[TTC]_6 : [GAA]_6$, $[TTG]_6 : [CAA]_6$

4. 反復四量体

例: $[ACGT]_6 : [ACGT]_6$

(以下余白)

表3

約500mM以下で (I_{so} が500mMより少ない) dsDNAがヒトSLE血清もしくはネズミ(MBL)血清に結合するのを有効に阻害する二本縁オリゴスクレオチドの例

組成	最低濃度	オリゴマーの長さ
d(AC) _n : d(TG) _n	20	40以上
d(AT) _n : d(TA) _n	20	40以上
d(GC) _n : d(CI) _n	20	40以上
d(AC) _n : d(TG) _n	20	40以上
d(AG) _n : d(TC) _n	20	40以上
d(ATC) _n : d(GAT) _n	15	45以上
d(TAC) _n : d(GTA) _n	15	45以上

(以下余白)

実施例3

結合活性とCDスペクトルとの相関関係

約225bpの長さのポリ(AT):ポリ(AT)（典型的なA-DNA）、約330bpの長さのポリ(GC):ポリ(GC)（典型的なZ-DNA）、平均の長さが1200bp以上の雄精子DNA（B-DNA型らせん構造を持つ天然DNAの例）、および上述の(AC)₁₀:(TG)₁₀二本縁のCDスペクトルの測定を行った。これらのオリゴスクレオチドおよびDNAのSLE抗血清結合アッセイを、ファーアッセイの変法により行った。

全てのDNAおよびオリゴスクレオチドを標準緩衝液（0.15M NaCl、0.01M クエン酸ナトリウム、pH 7.0）に溶解させ、S-SLE自己免疫血清との相対結合値を、右円偏光および左円偏光（CD分光計を使用）の相対吸収能と比較した。血清学的なデータは、dsDNAの血清との結合を阻害する能力を示すもので、スペクトルは、スクレオチド残基あたりのモル消光率を表す：

$$[\theta] = 100/c \cdot L$$

式中、 θ は度で示す消光率を表し、Lはセルの絶縁長cmであり、cは、リッターあたりのスクレオチドのモル濃度である。

図2は、ポリ(AT):ポリ(AT)のCDスペクトルを示す。

図3は、ポリ(GC):ポリ(GC)のCDスペクトル（黒丸で印をつけた実線）、雄精子のDNA（破線）、および(AC)₁₀:(TG)₁₀の二本縁（連続した実線）を示す。

図4は、異なる形のDNAがSLE抗血清と結合する相対的な能

力を示す。合成B型DNAが、天然B型DNA（ウシ胸腺DNAを用いた）と同じ反応性を有し、A型およびZ型DNAのいずれよりも大きい反応性を有することを示す。（らせん型はCDスペクトルにより特徴づけられたが、上述のように確かではない。）

実施例4

(AC)₁₀:(TG)₁₀-D-EK複合体の合成

結合活性および安定性に基づいて、上述の(AC)₁₀:(TG)₁₀二本縁を真空瓶を開けるため選択した。この二本縁およびD-EKコポリマーとの複合体を、上述した好適な合成手順により調製した。この合成を以下に詳しく記す。

D-EKコポリマー、G:Lモル比60:40、

Mr. avg=10,000ダルトンを BioMakor, Rehovot, Israelより得た物質から調製した。このコポリマーを、25,000ダルトンの分子量カットオフ透析チューブで、最終濃度が20mg/mlになるまで、0.1MのIECO₃、pH 9.5に対して透析を行った。その最終濃度は、1cmキュベット中で220nmにおける吸光度により、下記式で測定した。

$$D-EK \text{mg/ml} = A_{220} (30,000 \text{mg/mol}) / (168,000 \text{mL/cm mol})$$

(AC)₁₀を、DNAシンセサイザーで合成し、12,000~14,000ダルトンの分子量カットオフ透析チューブで、脱イオン水に対して透析を行った。得られた溶液を1cmキュベット中で260nmにおける吸光度により下記式で測定した最終濃度が35mg/mlになるよう調整した。

$$(AC)_{10} \text{ mg/ml} = A_{260} (18,105 \text{mg/mol}) / (458,160 \text{mL/cm mol})$$

特表平5-505520 (9)

0.1Mの過ヨウ素酸ナトリウムの水溶液と水とを(AC)₃₀に添加して、DNAに対して5:1モルの過剰の過ヨウ素酸塩を含有する反応混合物とする。その混合物をよく攪拌して、4℃で15分間放置する。過剰な過ヨウ素酸塩を過剰な塩化カリウムを添加することにより沈殿させ、沈殿物を遠心分離により取り除いた。

D-EKおよび水素化シアノホウ素ナトリウムの溶液をビベットでポリプロピレン反応容器に移し、pHを8.0から8.0になるように調整した。酸化された(AC)₃₀を、D-EKに滴下して、重量比率を8.035:1(10:1モル複合体比率)にして、4℃で24~48時間激しく攪拌した。濾経後、固体の水素化ホウ素ナトリウムを反応混合物に、最終濃度が1.0mg/mlに達するまで攪拌しながら添加する。反応容器をゆるくキャップし、攪拌せずに少なくとも30分間放置した。その後反応混合物を50,000ダルトンカットオフの透析チューブに移し、0.2Mのクエン酸ナトリウム、pH5.0に対して4℃にて十分に透析を行った。

次に複合体をSephacryl S-200ゲル通過クロマトグラフィーカラムにおいて、0.2Mのリン酸ナトリウム、0.5Mの塩化ナトリウム、pH7.2で精製した。固分をオリゴヌクレオチド濃度を測定するためOD_{260nm}により分析し、またD-EK濃度を測定するためにトリニトロベンゼンスルホン酸アセイにより分析した(Albers, R. T.ら, Analyt. Biochem (1983) 131:417-443)。遊離オリゴヌクレオチドからの複合体の分離を、オリゴヌクレオチド端の5'ヒドロキシ基を³²P-キナーゼにより標識し、

により特異を記録した。

実験例5

対照としての(TG)₃₀:(AC)₃₀-D-EK複合体の試験

上述の(TG)₃₀:(AC)₃₀-D-EK複合体を、MRL(1pr/1pr)ネズミモデルにおいてヒトSLEに対する試験を行った。このマウス系の遺伝的欠陥により、おそらく、自己反応性のB細胞分化にかかるヘルパーT細胞の大増殖が導かれた。このことは他の自己抗体過剰と同様に、DNAに対する自己抗体の分泌をきたす。前述通り、dsDNAに対する自己抗体はヒトSLEの特徴であり、これらの存在はヒトの病気の重篤さおよび腎臓病理学と相関関係にある。

複合体を、マウスにI.p.により注入するための所要の濃度を得るために、生理食塩水で希釈した。13週間目から14週間目の5つのグループのうち4つのマウスにそれぞれ適用した。1日目の午前に採血して、その午後に注射を行った。その後、5週間にわたって、毎週午前に採血して、午後に注射を行った。6週目および7週目は、採血のみを行った。グループ1(コントロール)には、毎週1匹あたり0.1mgのD-EKゴリマーを注射し、グループ2には毎週1匹あたり0.1mgの複合体を注射し、グループ3には毎週1匹あたり0.3mgの複合体を注射し、グループ4には毎週1匹あたり1.0mgの複合体を注射した。

マウスから集めた血液試料を1:10および1:50でトリス緩衝液(0.1M, pH7.4)で希釈し、¹²⁵I-dsDNAのかわりに³H-dsDN

その後10%のポリアクリルアミド、8M尿素記列決定用のゲルおよびオートラジオグラフィーにより評価した。ゲルを切断し、液体シンチレーションペーティカウンターで計数し、295%の精度を示す固分をプールし、0.01Mのクエン酸ナトリウム、0.1Mの塩化ナトリウム、pH7.0(調製用緩衝液)に対して透析を行い、アニーリングのための調製を行った。

(TG)₃₀を上述通りに調製し、(AC)₃₀と同様に調製用緩衝液に対して透析を行った。(TG)₃₀のスクレオチドモル濃度(MNC)を、1cmキュベット中で260nmにおける吸光度を測定することにより測定した。

$$MNC(TG)_{30} = A_{260nm} / (9184 \text{mL/cm mmol})$$

(AC)30-D-EK複合体のMNCを、260nmでの透析液の吸光度を測定することにより測定した。

$$MNC(AC)_{30}-D-EK = A_{260nm} / (7835 \text{mL/cm mmol})$$

(TG)₃₀を、(AC)₃₀-D-EK複合体に以下のようにアニールした。同じMNCの(TG)₃₀を、ポリプロピレンまたはガラス容器中で、(AC)₃₀-D-EK複合体に添加した。その混合物を95℃になるまで温浴で熱し、10分間95℃から88℃に保った。次に溶液を徐々に<10°/時間の割合で室温まで冷却した。

アニールした複合物を50,000ダルトンの分子量カットオフ透析チューブで、調製用緩衝液に対して透析を行った。十分に透析後、最終複合体を0.22μmの膜で漏斗通過した。漏斗通過の前にUV分光計、高性能ゲル通過液体クロマトグラフィー、ポリアクリルアミドゲル電気泳動、およびサーモグラフィー

Aを用いた上述のファーアッセイの変法を行い、試料の抗dsDNA抗体の力を測定した。ファーアッセイの変法により得たデータを抗原結合能に変換して図5に示した(複合体はLJP-105で表す)。

処理を終えて4週間後、各グループから2匹のマウスおよびコントロールグループから残りの1匹を雄性にし、各グループの抗dsDNA抗体の分離レベルを、2倍に希釈した1×10⁶から1.5×10⁴の脾臓細胞を各ウェルに入れた脾臓細胞ELISAで、測定した。これらの試験の結果を図6に報告する。

複合体の試験を22週から24週目のMRLマウスにおいても実行した。再び、マウスに4週間に渡って週に1度ずつI.p.により注射を行った。抗dsDNAの血清レベルを処理後1ヶ月経ってから測定し、最初に得た採血前の値と比較した。個々のマウスでの抗原結合能(ABC)を表すこれらのデータを図7に示す。図7はこれらの試験の平均データである。マウスに対する注射量を変えたことにより(複合体: 0.01, 0.1, 0.3, および1.0mg/マウス; コントロールマウスにはポリマーキャリアーおよび結合していない核酸代用物との混合物を与えた)、実験中の死亡数に変動がでた。

治療を目的とした実験により得た脾臓細胞アッセイのデータを図8に示す。これによると、コントロールと複合体により処理されたマウスとの間に著しい差異があることが再び示され、前回の血清学的な結果の正しさを確認した。コントロール実験において、可溶性dsDNAが脾臓細胞アッセイを阻害す

特表平5-505520 (10)

ることが示された。加えて、ポリスクリオチド処理された動物から得た脾臍細胞をコントロール脾臍細胞に添加しても発色の減少は生じず、むしろ効果が付加された。よって、細胞結合された複合体がアッセイを阻害することはあり得ない。

結果、複合体は i.p.、i.e.、および i.v. 経路により効能があることが示された。22週目の雌BALBマウスに4週間に渡って、0.1mgの複合体を毎週注射し、抗dsDNAに対する抗原結合能の変化の割合を測定した。コントロールマウスでは他の実験で見られたほど、増加は起きなかつたが、一方、皮下注射されたマウスと、i.p.、i.e.、および i.v. 経路で複合体投与された他のマウスでは、抗dsDNAの著しく高い効能が示された。

実施例6

この実施例は (AC)₁₈-(TQ)₁₈-Q-EK複合体を作製する他の手順を説明するものである。

60量体のクローニング

以下に挙げるプロトコールにより、分子クローニング法を用いて、60量体を作製する。5' AATTC(GT)₁₈G3' 配列から成る 64量体および 5' TCGAC(AC)₁₈G3' 配列から成る第2の 64量体を合成して、標準法によりリン酸化する。オリゴマーを等モル比で混合し、徐々に冷却して二本鎖生成およびオリゴマー生成を起こす。オリゴマーの突出はそれぞれ、オリゴマーの4塩基部分の重なりによりアニールして EcoRI部位をつくり、第2の突出で Sall部位 (HincII部位と同じく) を作りだす。徐々に冷却した後、その混合物を標準法で連結させ、EcoRIもし

くは Sall部位のいずれかに挟まれた60量体ユニットに共有結合で付着したオリゴマーを形成する。オリゴマー混合物をあらかじめ EcoRIおよび Sallで消化して pOC18 にライゲートする。ライゲーション混合物を形質転換により E.coli JM107 に導入する。

アンピシリン耐性コロニーを取り出し、培養し、プラスミドDNAを単離した。導入サイズを制限酵素による消化により測定した。所望のクローンは少なくともプラスミドの2分の1すなわち 50ユニットを越える 60量体を含有する導入物を有する。

得られたクローンを大規模に培養し、プラスミドを単離する。プラスミドを EcoRI および HincII で消化し、一方の末端には 4 塩基の EcoRI 突出、および他方の末端には HincII により生じた平滑末端を有する 60量体が放出される。オリゴマーを精製し、Q-EK にアニールする。この Q-EK は、3' T を介して Q-EK に共有結合で付着する 5' リン酸を有する 4 塩基オリゴマー 5' TTAA-P を有する。60量体は、アニールし、リガーゼにより Q-EK /TTAA に共有結合で付着させる。

60量体のPCR生成

ポリメラーゼ連鎖反応を用いて、先に引用した上述の方法により、60量体を Q-EK にカップリングさせる。

簡単には、(GT)₁₈を、(GT)₁₈の 5' および 3' 末端における GACT および CTGA のような短いランダム配列で化学的に合成する（以下に記す）。短いランダム配列は、テンプレートに対す

る適切なプライマーの正確な重ね合せを確実にする十分な長さを有す。プライマーはランダム配列に加えて、アニール反応の安定化に必要とされるいくつかの特別な OT 反復配列を含む。プライマーの 1 つは、5' 末端に、Q-EK と化学的にカップリングする特別な改変塩基もまた有する。

PCR 反応は上述の方法に従い、少なくとも 20 ナイクル行う。PCR により作製されたオリゴマーを、HPLC 等のクロマトグラフィーにより精製し、上述の手順の 1 つにより Q-EK に結合させる。

プライマー 1 : 5' (CA)-GACT5'
テンプレート 1 : 5' *NGACT-(GT)₁₈-CTGA5'
プライマー 2 : 5' *NGACT-(GT)₁₈
テンプレート 2 : 5' CTGA-(CA)₁₈-TACCG5'
*N = Q-EK カップリングに関与する改変塩基

FIG. 1

FIG. 2

FIG. 4

FIG. 3

FIG. 5

FIG. 7A

FIG 6

FIG. 7

抗 dsDNA ELISA

夏衍

L-グルタミン酸とL-リジンとのコポリマーのような生体内で安定なポリマーと、少なくとも約20個の塩基対よりなる二本鎖ポリヌクレオチドとの、化学的に定義された複合体であり、この複合体は、ヒト狼瘡の抗dsDNA自己抗体に対する著しい結合活性を有する。その二本鎖は、好ましくは長さおよび構造が均一であり、また各二本鎖の末端の1つにまたはその近くに位置するアミノ基に反応する官能基との間の反応により、ポリマーと結合する。これらの複合体はヒト全身性紅斑性狼瘡に対する寛容原である。

I. CLASSIFICATION		SUBJECT MATTER OF INVENTION PERTAINING TO SUBJECT MATTER AS STATED ON THE FACING PAGE		INVENTOR'S ADDRESS: 100 E. 15TH STREET, NEW YORK, NY 10003	
Assignment or Invention Name: Patent Application Serial No.: Date Filed:		Title of Invention: Method for Producing and Purifying Human Interleukin-2 and Interleukin-2 Receptor		Date of Interfacing:	
Docket No.: 4516 31421, 31/70, 3/6/81 CUS 1573 U.S. CL. 434/2, 44,685; 33/27; 33/200				Date of Interfacing:	
II. FIELD OF SEARCH		SEARCHED - EXAMINED - SERIALIZED - INDEXED		SEARCHED - EXAMINED - SERIALIZED - INDEXED	
Classification System		Classification System		Classification System	
U.S. CL.		SI4/2, 44,685; 33/27; 33/200			
Information Required under Rule 1.9(b) Disclosure Statement to the extent that such Disclosure is Required in the Patent Specified:					
 III. DOCUMENTS REFERRED TO IN THIS PATENT					
Category		Caption of Document, * with indication, where applicable, of the reference number(s)		Reference to Classification	
T	U.S. A. 4,751,181 (Keene) 14 June 1988. See Abstract and claims.				1-11.14
Y	WO. A. 86/04093. (Keene) 17 July 1986. July 1986. See Abstract and claim				1-11.14
Y	US. A. 4,191,668 (Katz) 04 March 1980. see abstract.				1-11.14
Y	J. Clin. Invest., Volume 65, issued February 1980, N. Papapoulos, et al. "Reaction of Systemic Lupus Erythemato- tous antinuclear DNA antibodies with native DNA Fragments from 20 to 1,300 Base Pairs". pages 469-477. see entire document.				1-14
<p>* Designates references of prior art documents</p> <p>** Denotes references of prior art documents which are considered to be of unusual interest</p> <p>*** Denotes references of prior art documents which are considered to be of great interest</p> <p>**** Denotes prior art which may be relevant to claims as filed or to claims which could be added during prosecution of this application</p> <p>***** Denotes prior art which may be relevant to claims as filed or to claims which could be added during prosecution of this application</p>					
<p>1. Designations of prior art documents</p> <p>2. * Denotes references of prior art documents which are considered to be of unusual interest</p> <p>3. ** Denotes references of prior art documents which are considered to be of great interest</p> <p>4. *** Denotes prior art which may be relevant to claims as filed or to claims which could be added during prosecution of this application</p> <p>5. **** Denotes prior art which may be relevant to claims as filed or to claims which could be added during prosecution of this application</p> <p>6. ***** Denotes prior art which may be relevant to claims as filed or to claims which could be added during prosecution of this application</p>					
<p>IV. CERTIFICATION</p> <p>Date of my Actual Completion of the Search and Serializing: 15 MAY 1991</p> <p>15 MAY 1991</p> <p>John V. Sullivan, Jr.</p> <p>John V. Sullivan, Jr.</p>					
<p>15 APRIL 1991</p> <p>15 APRIL 1991</p> <p>John V. Sullivan, Jr.</p>					
<p>SEARCHED - EXAMINED - SERIALIZED - INDEXED</p>					

第1頁の続き

⑥Int. Cl.	識別記号	斤内整理番号
A 61 K	39/00	H 8413-4C
	39/385	Z 8413-4C
C 07 H	21/04	Z 7822-4C
C 07 K	15/00	Z 8619-4H
G 01 N	33/53	M 8310-2J
	33/564	Z 9015-2J

優先権主張 @1990年3月13日@米国(US)@494,118
②発明者 クツツ, スティーブン アメ

アメリカ合衆国 カリフォルニア 92067 ランチョ サンタ フエ ランチョ デイエグエノ ロード 6151