Section 2: Electromagnetics AE435

AE435 Spring 2018

In this section, we will review the basics of charge, electricity, magnetism, and Maxwell equations.

4 Magnetostatics with Magnetic Media

Contents

4	4 Magnetostatics with Magnetic Media		38
	4.1	Effect of Magnetic Media	39
	4.2	Total Magnetic Field	41
	4.3	Constitutive Equations/Relations	43
	4.4	Boundary Conditions	46
	4 5	Magnetic Flux	47

4.1 Effect of Magnetic Media

In our previous discussion, we only considered magnetostatics involving steady currents in a vacuum. Now we will examine...

- Question: What happens if matter is present?
- Answer: The magnetic field \vec{B} changes!
- Reason: Matter has micro-currents associated with the motion of the electrons around atoms, "atomic currents"
- Aftermath: So now we must consider two kinds of currents:
 - Conduction currents, involving free charges
 - Atomic currents, with no charge transport (to the first order)

Each atom has a magnetic dipole moment.

Magnetic Dipole Moment

$$\vec{m}_i = \frac{1}{2} J_i \oint_{\mathcal{C}} \vec{r}_i \times d\vec{l}$$
 (75)

We can define a macroscopic vector quantity analogous to polarization, known as the **magnetization** or the magnetic dipole moment per unit volume.

Magnetization

$$\overrightarrow{M} = \lim_{\Delta V \to 0} \frac{1}{\Delta V} \sum_{i} \overrightarrow{m}_{i} \tag{76}$$

In the **unmagnetized state**, $\overrightarrow{M} = 0$ because \overrightarrow{m}_i have random orientations that cancel out. In the presence of an external \overrightarrow{B} , matter becomes organized and \overrightarrow{M} can become nonzero depending on the material properties.

Magnetization Current: How does magnetization give rise to currents?

Figure 20

For a uniform \overrightarrow{M} , currents cancel in the interior but not on the exterior. The result is a net surface current as shown in Figure 20.

Similarly, if \overrightarrow{M} is non-uniform, we can have an internal net current.

We can define a Magnetization Current Density:

$$\overrightarrow{j}_m = \nabla \times \overrightarrow{M} \tag{77}$$

4.2 Total Magnetic Field

To incorporate \overrightarrow{j}_m into Ampere's Law (Equation 72) we have to modify the magnetic field equations, just as we modified Gauss' law to include ρ_e .

As before, we still have no monopoles:

$$\nabla \cdot \vec{B} = 0$$

But now, Ampere's law becomes:

$$\nabla \times \vec{B} = \mu_o \left(\vec{j} + \vec{j}_m \right) \tag{78}$$

Using Equation 77, we can write this as:

$$\nabla \times \left(\frac{1}{\mu_o} \vec{B} - \vec{M} \right) = \vec{j}$$

Where $(\frac{1}{\mu_o} \vec{B} - \vec{M})$ depends only on conduction current density \vec{j} as its source. As a results, we define a vector field:

Magnetic Intensity or "H"-field

$$\vec{H} = \frac{1}{\mu_o} \vec{B} - \vec{M} \qquad \left[\frac{A}{m}\right] = [Oersted]$$
 (79)

Note: $1 \frac{A}{m} = 0.01257$ Oersted

Finally, Ampere's Law for Magnetic Media is:

$$\nabla \times \overrightarrow{H} = \overrightarrow{j} \tag{80}$$

A comparison of Magnetostatics and Electrostatics:

Electrostatics	${f Magnetostatics}$	
In vacuum (no ρ_p)	In vacuum (no \overrightarrow{j}_m)	
$\nabla \cdot \overrightarrow{E} = \frac{q}{\epsilon_o}$ (isolated charges)	$\nabla \cdot \vec{B} = 0$	
$\nabla \cdot \overrightarrow{E} = \frac{\rho_e(\overrightarrow{r})}{\epsilon_o}$ (distributed charges)		
$\nabla \times \overrightarrow{E} = 0$	$\nabla \times \vec{B} = \mu_o \vec{j}$	
With media effects (finite ρ_p)	With media effects (finite \overrightarrow{j}_m)	
$ abla \cdot \overrightarrow{E} = (ho_f +_p)/\epsilon_o$	$ abla \cdot \vec{B} = 0$	
$ abla \cdot ec{D} = ho_f$		
$\nabla imes \vec{E} = 0$	$\nabla \times \vec{B} = \mu_o(\vec{j} + \vec{j}_m)$	
	$ abla imes ec{H}=ec{j}$	

We can also derive the integral equation for magnetic intensity. From Equation 80, if we integrate over a surface element and apply Stokes theorem on a closed curve surrounding the surface, we get:

$$\int_{S} \nabla \times \overrightarrow{H} \cdot \hat{n} \, dA = \oint_{C} \overrightarrow{H} \cdot d\overrightarrow{l} = \int_{S} \overrightarrow{j} \cdot \hat{n} \, dA = J$$
 (81)

Important Note: This only applies for Magnetostatics. It does not work for time-varying fields.

4.3 Constitutive Equations/Relations

Define magnetization as a response to external \overrightarrow{H} :

$$\overrightarrow{M} = \chi_m(\overrightarrow{H}) \overrightarrow{H} \tag{82}$$

If material is linear and isotropic, the magnetic susceptibility χ_m is constant.

$$\overrightarrow{M} = \chi_m \overrightarrow{H}$$

This is analogous to the electric susceptibility leading to $\overrightarrow{D} = \chi \overrightarrow{E}$ (Equation 39).

- All dielectrics oppose applied \vec{E} due to dipole orientation with \vec{E}
- ullet Magnetic materials can either add to or subtract from the external \overrightarrow{H}
 - Positive $\chi_m = \mathbf{paramagnetic}$ materials, add to \overrightarrow{H} . Rare gases, like neon, also titanium, oxygen.
 - Negative $\chi_m =$ **diamagnetic** material, subtracts from \overrightarrow{H} . Bismuth floats over permanent magnet
 - For both paramagnetic and diamagnetic materials, , on the order of $10^{-5}-10^{-6}$, very small, $|\chi_m| << r1$

Material	Susceptibility	Material	Susceptibility
Diamagnetic:		Paramagnetic:	
Bismuth	-1.7×10^{-4}	Oxygen (O_2)	1.7×10^{-6}
Gold	-3.4×10^{-5}	Sodium	8.5×10^{-6}
Silver	-2.4×10^{-5}	Aluminum	2.2×10^{-5}
Copper	-9.7×10^{-6}	Tungsten	7.0×10^{-5}
Water	-9.0×10^{-6}	Platinum	2.7×10^{-4}
Carbon Dioxide	-1.1×10^{-8}	Liquid Oxygen	3.9×10^{-3}
		(-200° C)	
Hydrogen (H_2)	-2.1×10^{-9}	Gadolinium	4.8×10^{-1}

Ferromagnetic materials are different. They're super-paramagnetic (really, really add to the external \overrightarrow{H}), and are highly nonlinear. Ex: Iron (Fe) and Hiperco (Cobalt-Iron, Co-Fe) where we need the experimental B-H curve to accurately model.

In ferromagnets, each magnetic dipole likes to point in the same direction as its neighbors. But this common alignment occurs over a "domain", a small region (microscopic but containing billions of dipoles). With no H-field, domains are oriented randomly, no net effect, no permanent net magnetization. But when H-field applied, domains line up, resulting in strong magnetization. For permanent magnets (also ferromagnets) the domains remain aligned.

Hiperco 50 (50-50 Co-Fe), also 30, 15 varieties (Co%)

Low Carbon Steel

Curie Temperature refers to the temperature at which material loses its ferromagnetic properties and becomes paramagnetic.

- \bullet Fe 770° C
- Co 1130° C

Samarium Cobalt (SmCo) is an example of high-temperature permanent magnets. SmCo is commonly found in electric propulsion systems since it operates at $300\text{-}500^{\circ}$ C and has a Curie Temperature of 700° C.

Relative Permeability

We know from Equation 79 that,

$$\vec{B} = \mu_o \left(\vec{H} + \vec{M} \right)$$

Substituting in the magnetic susceptibility (Equation 82), such that:

$$\vec{B} = \mu_o(\vec{H} + \vec{M}) = \mu_o(\vec{H} + \chi_m \vec{H}) = \mu_o(1 + \chi_m)\vec{H}$$
(83)

We define **Permeability** (a material property) as

$$\mu = \mu_o \left(1 + \chi_m \right) \tag{84}$$

And (as we did with permittivity) we can define relative permeability as:

$$K_m = \frac{\mu}{\mu_o} = 1 + \chi_m \tag{85}$$

4.4 Boundary Conditions

Similar to our Electrostatic Boundary Conditions, we can show that for a surface current density, \overrightarrow{j}_s (Equation 71)

$$(B_{\perp})_2 = (B_{\perp})_1 \tag{86}$$

And from Equation 80

$$(H_{||})_2 - (H_{||})_1 = \overrightarrow{j}_s \cdot \hat{n}$$
 (87)

Figure 21

4.5 Magnetic Flux

Magnetic flux is the flux through a given surface.

$$\Phi_m = \int_S \vec{B} \cdot \hat{n} \, dA \qquad [Webers] = [T \cdot m^2]$$
(88)

Note that flux through a closed surface is zero by Gauss's theorem and the magnetic monopole law.

$$\int_{S} \vec{B} \cdot \hat{n} \, dA = \int_{V} \nabla \cdot \vec{B} \, dV = 0$$
(89)