LEKCIJA NR. 5. DIFERENCĒŠANA I

Pieskares jēdziens Momentānais ātrums Atvasinājuma definīcija Funkcijas atvasinājums un nepārtrauktība Atvasinašanas likumi Elementāro funkciju atvasināšana 5.mājas darbs

Pieskares jēdziens

Pieņemsim, ka P ir patvaļīgi fiksēts punkts uz līnijas un Q ir tuvs kustīgs punkts [5.1.zīm.] arī uz līnijas.

- **5.1. DEFINĪCIJA.** Taisni, kas iet caur punktiem P un Q, sauc par sekanti.
- **5.2. DEFINĪCIJA.** Par līnijas **pieskari** punktā P sauc sekantes robežpozīciju (ja tāda eksistē), kad punkts Q tuvojas un sasniedz punktu P.

Pieņemsim, ka līnijas vienādojums ir y = f(x) un punkta P koordinātas ir $(x_0, f(x_0))$, savukārt tuvam punktam Q koordinātas ir $(x_0 + \Delta x, f(x_0 + \Delta x))$.

Sekantes caur punktiem P un Q virziena koeficients atrodams kā [sk. 5.1. zīm.]:

$$m_{sec} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{|QN|}{|PN|}.$$

Pieskares jēdziens 4

Pieskares (ja tāda eksistē), kas iet caur punktu P, virziena koeficients meklējams kā šāda robeža:

$$m_{pieskares} = \lim_{\Delta x \to 0} m_{sec} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Lai atrastu pieskares vienādojumu $y=m_px+b$ ar zināmu virziena koeficientu m_p punktā (x_0,y_0) , tad mums jānoskaidro koeficienta b vērtība. Tā kā līnija iet caur punktu (x_0,y_0) , tad

$$y_0 = m_p x_0 + b \text{ jeb } b = y_0 - m_p x_0.$$

Galarezultātā pieskares vienādojumu punktā (x_0,y_0) varam uzrakstīt šādi

$$y - y_0 = m_p(x - x_0).$$

Momentānais ātrums

Funkciju s=s(t), kas izsaka materiāla punkta koordinātas s atkarību no laika t, sauc par materiāla punkta kustības likumu. Pieņemsim, ka laika momentā t punkta koordināta ir s(t), bet momentā $t+\Delta t$ tā ir $s(t+\Delta t)$. Intervālā starp minētajiem laika momentiem punkts ir veicis attālumu $\Delta s=s(t+\Delta t)-s(t)$. Kustības vidējo ātrumu intervālā $[t;t+\Delta t]$ definē kā noietā ceļa attiecību pret kustības laiku, t.i.,

$$v_{vid} = \frac{\Delta s}{\Delta t} = \frac{s(t + \Delta t) - s(t)}{\Delta t}.$$

Lai raksturotu kustību laika momentā t, izmanto momentānā ātruma jēdzienu. Vidējā ātruma v_{vid} robežu, kad $\Delta t \rightarrow 0$, sauc par momentāno ātrumu laika momentā t, t.i.,

$$v = \lim_{\Delta t \to 0} v_{vid} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t}.$$

Atvasinājuma definīcija

Organismu pieaugums (bioloģijā), robežpeļņa (ekonomikā), vadu blīvums (fizikā), vielas šķīšanas ātrums (ķīmijā) ir citas versijas par to pašu tēmu kā pieskares virziena koeficients vai momentānais ātrums.

5.3. DEFINĪCIJA. Pieņemsim, ka $\mathfrak{U}(x_0, \delta_0) \subseteq Dom(f)$. Funkciju f sauc par atvasināmu punktā x_0 , ja eksistē robeža

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \in \mathbb{R}.$$

Šīs robežas vērtību sauc par funkcijas atvasinājumu punktā x_0 un apzīmē ar $f'(x_0)$. Atvasinājuma atrašanas darbību sauc gan par atvasināšanu, gan par diferencēšanu.

Tātad funkcijas f atvasinājums ir vienāds ar funkcijas un argumenta pieaugumu attiecības robežu, kad argumenta pieaugums tiecas uz 0. Tas nozīmē, ka atvasinājuma definīcijā minēto robežu var pierakstīt arī šādi:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Funkcijas $f(x)=x^3$ atvasinājumu punktā 7 var pierakstīt šādi:

$$f'(7) = \lim_{\Delta x \to 0} \frac{(7 + \Delta x)^3 - 7^3}{\Delta x}$$
 vai arī $f'(7) = \lim_{x \to 7} \frac{x^3 - 7^3}{x - 7}$.

Atvasinājuma darbības apzīmēšanai lieto vairākus atšķirīgus apzīmējumus:

$$f', y', Df, \frac{dy}{dx}, \frac{df}{dx}.$$

5.4. Piemērs. Atradīsim funkcijas $f(x) = \sqrt{5x-2}, x > \frac{2}{5},$ atvasinājumu:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\sqrt{5(x + \Delta x) - 2} - \sqrt{5x - 2}}{\Delta x} = \lim_{\Delta x \to 0} \frac{5(x + \Delta x) - 2 - (5x - 2)}{\Delta x(\sqrt{5(x + \Delta x) - 2} + \sqrt{5x - 2})} = \lim_{\Delta x \to 0} \frac{5\Delta x}{\Delta x(\sqrt{5(x + \Delta x) - 2} + \sqrt{5x - 2})} = \frac{5}{2\sqrt{5x - 2}}.$$

VINGRINĀJUMS. Atrast $y = x^2 + 2x$ atvasinājumu punktā 5.

Funkcijas atvasinājums un nepārtrauktība

Ja līnijai eksistē pieskare dotā punktā, tad līnija šajā punktā nevar izdarīt "lēcienu", t.i., tā ir nepārtraukta šajā punktā.

5.5. TEORĒMA. Ja funkcijai f punktā x_0 eksistē atvasinājums, tad f ir nepārtraukta punktā x_0 .

Pretējais apgalvojums vispārīgā gadījumā nav spēkā – no funkcijas nepārtrauktības punktā neseko funkcijas atvasinājuma eksistence šajā punktā.

Piemēram, funkcija f(x)=|x| ir nepārtraukta 0 punktā, bet tai neeksistē atvasinājums punktā 0:

$$\lim_{\Delta x \to 0} \frac{|0 + \Delta x| - |0|}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}, \quad \text{bet}$$

$$\lim_{\Delta x \to 0^+} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{\Delta x}{\Delta x} = 1 \neq -1 = \lim_{\Delta x \to 0^-} \frac{-\Delta x}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{|\Delta x|}{\Delta x}.$$

Atvasināšanas likumi

- 5.6. TEORĒMA. Ja f un g ir diferencējamas funkcijas, tad
- 1. (kf(x))' = kf'(x), kur $k \in \mathbb{R}$ konstante;
- **2.** (f(x) + g(x))' = f'(x) + g'(x);
- 3. (f(x) g(x))' = f'(x) g'(x);
- **4.** (f(x)g(x))' = f'(x)g(x) + f(x)g'(x);
- 5. $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}, \quad g(x) \neq 0.$

□ Pierādīsim 2. likumu.

$$(f(x) + g(x))' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) + g(x + \Delta x) - f(x) - g(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{g(x + \Delta x) - g(x)}{\Delta x} \right) =$$

Sadalīšana robežās ir pieļaujama, jo atsevišķās robežas eksistē:

$$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = f'(x) + g'(x). \blacksquare$$

Elementāro funkciju atvasināšana

5.7. TEORĒMA. Ir spēkā sekojošas formulas:

- 1. k' = 0, kur $k \in \mathbb{R}$ konstante,
- 2. $(x^n)' = nx^{n-1}, n \in \mathbb{R},$
- $3. (\sin x)' = \cos x,$
- $4. (\cos x)' = -\sin x,$
- 5. $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$,
- 6. $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$,
- 7. $(a^x)' = a^x \ln a, \ a > 0,$
- 8. $(e^x)' = e^x$,

9.
$$(\log_a x)' = \frac{1}{x \ln a}, \ a > 0, \ a \neq 1,$$

10.
$$(\ln x)' = \frac{1}{x}$$
,

11.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
,

12.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}},$$

13.
$$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$$
,

14.
$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$$
.

 \square No skolas kursa noteikti ir pazīstamas funkcijas a^x un $\log_a x$, funkcijas $\ln x$ un e^x ir to speciālgadījumi: $\ln x = \log_e x$, kur e ir Eilera skaitlis. Skaitlis e ir iracionāls, tā tuvinātā vērtība ir 2,718281828459.

Daži pierādījumi:

1.
$$(k)' = \lim_{\Delta x \to 0} \frac{k-k}{\Delta x} = \lim_{\Delta x \to 0} \frac{0}{\Delta x} = \lim_{\Delta x \to 0} 0 = 0$$

3.
$$(\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\sin x \cos \Delta x + \cos x \sin \Delta x - \sin x}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left(-\sin x \frac{1 - \cos \Delta x}{\Delta x} + \cos x \frac{\sin \Delta x}{\Delta x} \right) =$$

$$= -\sin x \lim_{\Delta x \to 0} \frac{1 - \cos \Delta x}{\Delta x} + \cos x \lim_{\Delta x \to 0} \frac{\sin \Delta x}{\Delta x} =$$

$$= -\sin x \cdot 0 + \cos x \cdot 1 = \cos x.$$

jo var pierādīt, ka
$$\lim_{\Delta x \to 0} \frac{1 - \cos \Delta x}{\Delta x} = 0$$
 un $\lim_{\Delta x \to 0} \frac{\sin \Delta x}{\Delta x} = 1$.

5.
$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)' \cos x - \sin x (\cos x)'}{(\cos x)^2} =$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}. \quad \blacksquare$$

5.8. Piemēri. 1. $(3x^4 - \sqrt{x} + 5\sin x)' = 12x^3 - \frac{1}{2\sqrt{x}} + 5\cos x$.

2.
$$((2x^3 - x + 2) \ln x)' = (2x^3 - x + 2)' \ln x + (2x^3 - x + 2)(\ln x)' =$$

= $(6x^2 - 1) \ln x + \frac{2x^3 - x + 2}{x}$.

$$3. \left(\frac{12+3\sin x}{\cos x}\right)' = \frac{(12+3\sin x)'\cos x - (12+3\sin x)(\cos x)'}{\cos^2 x} =$$

$$= \frac{3\cos x\cos x - (12+3\sin x)(-\sin x)}{\cos^2 x} = \frac{3\cos^2 x + 12\sin x + 3\sin^2 x}{\cos^2 x} =$$

$$= \frac{3+12\sin x}{\cos^2 x}. \blacksquare$$

VINGRINĀJUMS. Atrast f'(x), ja

1)
$$f(x) = \frac{12}{x^6} + \frac{3}{x} - 4\sqrt[3]{x^2} + 7\arcsin x;$$

2)
$$f(x) = (2^x + 3 \cdot 5^x) (\operatorname{tg} x - \operatorname{ctg} x)$$
.

5.MĀJAS DARBS

9. Atrast funkcijas f(x) atvasinājumu pēc definīcijas:

a)
$$f(x) = \frac{2x-1}{x-4}$$
 b) $f(x) = \frac{3}{\sqrt{x-2}}$ Atbilde: $\frac{-7}{(x-4)^2}$ Atbilde: $\frac{-3}{2(x-2)\sqrt{x-2}}$

 $10.\ Atrast atvasinājumus funkcijām, izmantojot formulas un likumus:$

a)
$$f(x) = 3x^{-4} + \frac{5}{\sqrt{x}} - 2\sqrt[5]{x^3} + \ln x + 5\sin x - 7\cdot 9^x$$

b)
$$g(t) = (15t^4 - 6t + 9) \cdot e^t$$

c)
$$h(x) = \frac{4x^2 - 7}{\sin x - \cos x}$$