Projeto AOC

Anna Paula Meneghelli, Monique Hemily Almeida Mendes, Vinícius Hansen Junho 2023

1 Questão 1

O programa realiza um loop que decrementa o valor armazenado na posição de memória 0x08 até que o valor seja igual a zero. Dentro do loop, o valor atual de W é somado ao valor armazenado na posição de memória 0x08. Quando o loop termina, o valor final de W é armazenado novamente na posição de memória 0x08 antes de o programa ser encerrado. Em resumo o programa soma os valores de 9 até 1.

```
#include <stdio.h>
int main() {
    int W = 10;
    int mem = 0;

    mem = W;
    W = 0;

    while (mem > 0) {
        mem--;
        W += mem;
    }

    mem = W;

    return 0;
}
```

2 Questão 2

```
ORG 0x00
GOTO main
ORG 0x04
main:
              x = 4
   MOVLW 4
                  ; mem[0x20] = x
   MOVWF 0x20
            y = 7
21 ; mem[0x21] = y
   MOVLW 7
   MOVWF 0x21
loop:
   DECFZ 0x20 ; decrementa 1 de 0x20 e se for zero pula a prox instrução
   GOTO continue ; salta para continue
break:
   GOTO fim
continue:
   MOVFW 0x20
                 ; W = x
   ADDWF 0x21, W ; W = W + y
   MOVWF 0x22
                  ; mem[0x22] = z
   MOVF 0x20, W ; W = x
   ANDWF 0x21, W ; W = W and y
   MOVWF 0x23
                 ; mem[0x23] = q
   MOVF 0x22, W ; W = z
   SUBWF 0x23, W ; W = W - q
   BTFSC STATUS, 2; se W não definido NOP na próxima op.
   GOTO loop ; Salta para loop
fim:
   END
```

3 Questão 3

Faça o caminho de dados deste microcontrolador suficiente para executar os programas acima. Apresente a ALU, o registrador W, a memória de dados, os multiplexadores, os sinais de controle, o PC e demais componentes.

Figure 1: Caminho de Dados Geral

Table 1: Sinais de Controle Implementados

Instrução	Descrição
SZ	Caso seja skip if zero (1) ou não (0).
d	Se escreve no W (0) ou no f (1).
ImAluW	Se vem do imediato (1) ou da ALU (0).
ReadW	Se faz li no W (1) ou pega 1 (0).
ReadF	Se faz li no f (1) ou pega zero (0).
Goto	Se é um jump (1) ou não (0).
Status Write	Se escreve no Status (1) ou não (0).
AluReg	Se é do tipo f,d (1) ou do tipo f,b (0).
WriteReg	Se algo é escrito em W e f (1) ou não (0).

Figure 2: Caminho de Dados ANDWF e ADDWF

Figure 3: Caminho de Dados BTFSC

Figure 4: Caminho de Dados DECFSZ

Figure 5: Caminho de Dados GOTO

Figure 6: Caminho de Dados MOVLW

Figure 7: Caminho de Dados MOVWF

4 Questão 4

Indique em uma tabela os sinais de controle para cada instrução utilizada nas Questões 1 e 2 conforme seu projeto na Questão 3. Se duas ou mais instruções utilizam os mesmos sinais agrupe elas na tabela.

Table 2: Sinais de Controle

Sinal	Write Reg	SZ	d	${\rm ImAluW}$	ReadW	ReadF	Goto	StatusWrite	AluReg		
MOVLW	1	0	0	1	X	X	0	0	X		
GOTO	0	0	X	X	X	X	1	0	X		
ADDWF	1	0	X	0	1	1	0	1	1		
ANDWF	1	0	X	0	1	1	0	1	1		
MOVWF	1	0	1	X	1	0	0	0	1		
DECFSZ	1	1	X	0	0	1	0	0	1		
BTFSC	0	1	X	X	X	X	0	0	0		