Skew-Normal (version 1 and 2)

Parametrisation

The Skew-Normal distribution is

$$f(y) = 2\frac{\sqrt{w\tau}}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}w\tau (y-\mu)^2\right) \Phi(a \ a_{\max}[w\tau (y-\mu)])$$

for continuously responses y where $\Phi(\cdot)$ is the cumulative distribution function for a standard Normal, and

 μ : is the the location parameter

 τ : is the inverse scale

w: is a fixed weight, w > 0,

a: is the shape parameter

 a_{max} : is the (fixed) maximum value of the shape paramter (added for stability reasons). Default value is 5.

Link-function

The location parameter is linked to the linear predictor by

$$\mu = \eta$$

Hyperparameters

The inverse scale is represented as

$$\theta_1 = \log \tau$$

and the prior is defined on θ_1 .

The shape parameter is

$$a = 2\frac{\exp(\theta_2)}{1 + \exp(\theta_2)} - 1$$

and the prior is defined on θ_2 .

Specification

- family = sn
- Required arguments: y and w (keyword scale). The weights has default value 1.
- Optional control arguments: sn.shape.max. Default value is 5.0.

Hyperparameter spesification and default values

hyper

theta1

name log inverse scale
short.name iscale

initial 4

```
fixed FALSE
         prior loggamma
         param 1 5e-05
     theta2
         name logit skewness
         short.name skew
         initial 0
         fixed FALSE
         prior gaussian
         param 0 10
         to.theta function(x, shape.max = 1) log((1+x/shape.max)/(1-x/shape.max))
         from.theta function(x, shape.max = 1) shape.max*(2*exp(x)/(1+exp(x))-1)
survival FALSE
discrete FALSE
link default identity
pdf sn
```

Example

This is a simulated example requiring the package sn.

Notes

An simpler approximation to $\Phi(\cdot)$ is used to improve the speed, which has maximum absolute error of 0.00197323; see the source code for further details.

Skew-Normal (version 2)

Parametrisation (version 2)

In the family "sn2" we offer an alternative parametersisation of the skew-normal with moment parameters, precision $w\tau$ (where w is a fixed weight or scale) and standarized skewness γ (where $|\gamma| < 1$ due to the skew-normal family¹). In this parameterisation, the location parameter is linked to the linear predictor by

$$\mu = \eta$$

and μ equals ξ in the parameterisation below.

Hyperparameters

The precision τ is represented as

$$\theta_1 = \log \tau$$

and the prior is defined on θ_1 . The (standarized) skewness γ is

$$\gamma = 2\frac{\exp(\theta_2)}{1 + \exp(\theta_2)} - 1$$

and the prior is defined on θ_2 .

The function INLA:::inla.sn.reparam offer the mapping between the moments (mean, variance and skewness) and the parameters used in the skew-normal density in the format used in the package sn, which are (ξ, ω, α) , where

$$f(x) = \frac{2}{\omega} \phi\left(\frac{x-\xi}{\omega}\right) \Phi\left(\alpha\left[\frac{x-\xi}{\omega}\right]\right)$$

where $\phi(\cdot)$ and $\Phi(\cdot)$ is the density and cumulative distribution function for the standard Gaussian distribution.

Hyperparameter spesification and default values for sn2

hyper

theta1

name log precision

short.name prec

initial 1

fixed FALSE

prior loggamma

param 1 5e-05

theta2

name logit skewness

short.name skew

initial 0

fixed FALSE

prior gaussian

 $\mathbf{param} \ 0 \ 10$

¹or to be presice, $|\gamma| < \frac{4-\pi}{2(\pi/2-1)^{3/2}} = 0.995271746...$

```
to.theta function(x) log((1+x)/(1-x))
from.theta function(x) (2*exp(x)/(1+exp(x))-1)
survival FALSE
discrete FALSE
link default identity
status experimental
pdf sn2
```

Example for sn2

This is a simulated example requiring the package sn.

```
library(sn)
n = 500
x = rnorm(n)
eta = 1/2 + 2*x
w = runif(n, min = 0.5, max = 2)
prec = 1 * w
skewness = 0.25
y = numeric(n)
for(i in 1:n) {
    param = INLA:::inla.sn.reparam(moments = c(eta[i], 1/prec[i], skewness))
    y[i] = rsn(1, xi=eta[i], omega = param$omega, alpha = param$alpha)
}
r = inla(y ~ 1 + x, family = "sn2", scale = w, data = data.frame(y, x, w), verbose=T)
summary(r)
```

Notes for sn2

In this parametersiation there is no sn.shape.max.

An simpler approximation to $\Phi(\cdot)$ is used to improve the speed, which has maximum absolute error of 0.00197323; see the source code for further details.