FRM Notebook 4

http://www.ster.kuleuven.be/~pieterd/python/html/core/scipystats.html

Quantifying Volatility in VaR Models

- VaR 在险价值
 - o Potential loss over a given time and for a given distribution of returns
 - The loss >=VaR only X percent of the time
 - o 1%, 5%, 10% (daily)
- Calculating
 - Assume a standard normal distribution
 - o Z: -2.33 (1%), -1.65(5%), -1.28 (10%)
 - \circ VaR(x%) = Z_(x%) sigma = z*sigma
 - One-tailed test
- Expected return is given
 - VaR(x%) = E |z| * sigma (default is 0)
- J-day: VaR(x%) = sqrt(J) * VaR(daily)
 - Weekly: sqrt(5)
 - Monthly: sqrt(20)
 - Semiannual: sqrt(125)
 - Yearly: sart(250)
- Confidence level
 - \circ Var(x%) / z(x%) = sigma
- Methods
 - Linear methods
 - Replace positions with linear exposures on risk factor
 - Options: delta, bond positions: duration
 - Fast and efficient
 - Good for non option-like exposures
 - Full valuation
 - Reprice each scenario over a historical period
 - Historical simulation, monte carlo simulation
 - Accurate and expensive
 - Good for option-like exposures, a wider range of risks, a longer-term
- Delta-Normal valuation method
 - \circ V_0 = V(s_0)
 - o dV = delta 0 dS
 - VaR = |delta_0| (z sigma S_0) = |delta_0| VaR_s
 - VaR = modified duration * z * annualized yield volatility * portfolio value
 - Good for short period
 - o convexity: delta-gamma method
 - o fail? Underestimate
 - Skewed return distributions (options)
 - Leptokurtosis (fat tails)
 - Props
 - Easy to implement, quick
 - Cons

- Need a normal distribution
- Fat tails
- Non-linear
- Historical simulation
 - Historical data
 - o Props
 - Easy to use historical data
 - Simple and quick
 - No model risk
 - Cons
 - Not enough data
 - Only one path is used
 - Cannot represent the future
 - Slow to adapt to new volatilities EWMA
 - Small number lead to tails
- monte Carlo simulation
 - more distributions samples
 - o more portfolio follow normal distribution -> u and sigma
 - o then it is similar to delta-normal method
 - o props
 - more powerful, both linear and nonlinear risks
 - can include time variation in risk and correlations
 - flexible
 - o cons
 - computational expensive
 - model risk chosen
 - sampling

Quantifying Volatility in VaR Models

- deviations
 - o fat-tailed (kurto), skewed, unstable
- fat tail
 - o reasons: volatility of unconditional dis, mean change over time
 - o unconditional distribution
 - o conditional distribution (change over time)
 - second reason
 - second moment or volatility is time=varying
- market regimes and conditional distributions
 - o regime-switching volatility model
 - o capture conditional normally and may resolve fat-tailed problem
 - o different market exists with high or low volatility
 - o constant mean, but either high or low volatility
 - o stress testing, scenario analysis
 - extreme value theory (EVT)
- value at risk
 - historical approach or implied-volatility-based
- historical-based approach

- o parametric approach
 - distribution: normal or lognormal
 - variance: a window of K most recent
 - example: delta-normal
 - if random walk, mean=0
- o non-parametric
 - no assumption about distribution
 - use historical simulation method
- hybrid approach
 - use both to estimate volatility using historical data
- implied-volatility-based
 - o use pricing model such as BSM to estimate
 - o based on current market data instead of historical data
- Parametric approach for VaR
 - RiskMetrics EWMA (exponentially weighted moving average)
 - o GARCH exponentially smoothing
 - o Parametric, estimate conditionally volatility, use historical data
 - Historically std assume K returns with equal weight
 - Weight=1/K
 - Exponentially: Decay factor lambda, 0.9 1, lambda^k
 - RiskMetrics
 - Sigma^2 = (1-lambda) (lambda^0 r (t-1,t) + lambda^i r (t-i-1,t-i))
 - Weight = (1-lambda) lambda ^t, t=0,1,2...
 - Shorter window
 - More volatile, can adapt to change
 - Smaller lambda
 - Higher weight to recent observations and a smaller window
 - o GRACH(p,q)
 - Sigma 2 = a + b $_1$ r 2 (t-1,t) + b $_2$ r 2 (t-2,t-1) + .. bp
 - + c_1 sigma_(t-1)^2 + ... c_q sigma_(t-q)^2
 - p lagged terms on historical returns squared
 - and q lagged terms on historical volatility
 - sigma_t^2 = a + b r_(t-1,t)^2 + c sigma_(t-1)^2
- Nonparametric vs parametric approach
 - Props
 - No assumption about distribution
 - Fat tails, skewness and other derivations are no longer a concern
 - MDE allows for weights to vary based on relevance to current market data
 - MDE introducing dependency on economic variables
 - Hybrid approach no assumption, use historical simulation and exponential weighting scheme
 - Cons
 - Data is used more efficiently in parametric
 - Need a large sample sizes of data
 - Separating full sample data into different market regimes reduce the amount of data

- MDE lead to snooping or over-fitting
- MDE a large number of data w.r.t. #conditioning variables used
- Nonparametric approach
 - Historical simulation
 - Six lowest returns for window of 100 days
 - Hybrid approach
 - Assign weight 1, r, r^2, r^(k-1)
 - sum = $1+ r + ... + r^{(k-1)} = (1-r^k)/(1-r)$
 - order the returns
 - accumulating weights until x percentages is reached
 - Multivariate density estimation (MDE)
 - Sigma^2 = $\sum_{i=1^K} w(x t-1) r (t-1)^2$
- Return aggregation
 - o Portfolio.
 - o Parametric: Delta-normal
 - Estimate N variances and n(n-1)/2 covariance for N positions
 - Historical simulation
 - Estimate return
 - Weight return by relative size of each position. Current
 - Third
 - Estimate volatility of vector aggregated returns
 - Normality based on strong law of large number
- Implied volatility
 - o Estimate future volatility using historical data
 - Time to adjust to changes in the market
 - o BSM model,
 - o Props
 - Predictive nature, react immediately to changing
 - Cons
 - Assume return a continuous time lognormal diffusion process
 - Volatility is constant
 - Implied volatility is > realized volatility
 - Available data is limited
- Mean reversion
 - X_i = a + b X_i-1 (auto regressive model)
 - \circ Long-run mean = a / (1-b)
 - o B=1
 - Infinite
 - Two periods: 2s^2
 - o B<1
 - Mean reversion
 - Two periods: S^2, (1+b^2)s^2 < 2s^2
- Backtesting VaR
 - Unbiased
 - Random events, exception 1 or 0
 - Adaptable
 - Return increase its sizes, the VaR should be adjusted

- Robust
 - Deviation | real expected | small

Putting VaR to Work

- Linear and non-linear
- •

Measures of Financial Risk

- Mean-variance framework
 - o Efficient frontier
 - o Risk-free security, market portfolio
 - o Limitation: elliptical (i.e., normal) distribution
- VaR
 - o Maximum loss at a confidence level over a time period
 - U z sigma
 - o Elements
 - Return distribution:
 - Confidence level: increase
 - Holding period:
 - u=0, sqrt(n)
 - u>0, lower rate
 - o Model risk, implementation risk
 - Major limitation
 - No amount or magnitude of the actual loss
 - Work well with elliptical distribution
 - Cannot satisfy subadditivity when distribution is non elliptical
- Coherent Risk measures
 - o monotonicity: higher return less risk
 - \circ subadditivity: $r(R1+R2) \le r(R1) + z(R2)$
 - positive homogeneity: r(bR) = b r(R)
 - translation invariance r(c+R) = r(R) -c
- Expected shortfall/expected tail loss (ETL)/conditional VaR
 - o Expected loss when return lie below the worst case quantile
 - o Convex: adjust holding period and confidence level
 - o Better
 - Satisfy all properties of risk measurements, VaR only when normal
 - Portfolio risk surface is convex
 - Magnitude of a loss
 - less assumptions about the risk/return decision rules
- spectral risk
 - o weighted average of return quantiles from loss distribution
 - o ES: 1/(1-confidence) for tail loss, rest=0. Risk neutral
 - VaR: 1 for p=confidence, rest=0. Risk seekers
- Scenario analysis
 - Assign probability to loss outcomes, compute ES for each
 - o Highest from m Is still coherent

Binomial Trees

- One-step binomial model
 - Step
 - Bankruptcy-free portfolio: stock-pus-borrowing
 - Borrow S_D/(1+r)^t, buy stock S可期还 S D。
 - Net cash outlay = S S_D/(1+r)^t 最少付出
 - Net stock value: S U-S or 0 盈利表
 - Replicating the future return option
 - Bankruptcy-free portfolio = x * options
 - 等价 Align the dollar cost of the option and the portfolio
 - Net cash outlay / x
 - Value the option
 - Net cash outlay / x
- Perfect hedge
 - Hedge ratio/delta delta hedging
 - #asset units eliminate price volatility of one call option
 - delta: # stocks to hold per call option to be shorted
 - delta=(C_U C_D) / (S_U S_D)
 - Synthetic call replication
 - Call price = delta * (stock price PV(borrowing))
 - Borrowing = S D
- Risk-neutral valuation
 - Stock price
 - U = size of up-move factor = exp(s * sqrt(t))
 - S: annualized volatility
 - D = size of down-move factor = 1/U
 - S U = S*U, S D = S*D
 - Option value
 - C_U, C_D
 - Probability
 - P U = probability of an up move = (exp(rt) D) / (U-D)
 - P-D = 1-P U
 - Expected value of the option
 - C U*P U+C D*P D
 - o PV
- Two-step binomial model
 - o P^2, S U^2
 - o 2P(1-P), S U D
 - o (1-P)^2, S D^2
- Modifying the binomial model
 - o Dividend yield q
 - P U = (exp((r-q)t) D / (U D)
 - Currency
 - P U = (exp((r D R F)t) D/(U D)

- o Future
 - PU = (1 D/(UD)
- American Options
 - Whether early exercise if optimal at the end of the first step
 - o 正向推导 stock tree
 - o 反向推导 option tree
 - 第一次结束后,和第二次的分别对比,是否需要提前执行。
 - 最后结束后,和根节点对比,是否需要提前执行。
- increasing the number of time periods
 - o time small, -> continuous -> converge BSM

The Black-Scholes-Merton Model

- stock price: lognormal distributed
- In S_T = N(u,s)
 - \circ u = In S_0 + (u-s^2/2)T
 - \circ s' = s * sqrt(T)
- stock price: lognormal, stock return: normal
- continuous return distribution
 - \circ S_T = S_0 exp(uT) => u = (lnS_T-ln S_0)/T = N(u1,s1)
 - \circ u s²/2
 - s/sqrt(T)
- Expected Value
 - E(S T) = S 0 exp(u T), u is the expected rate of return
- Expected return u (arithmetic), mean return u s^2/2 (geometric)
- Realized return: chain-like return (geometric mean)
 - ((1+r1)(1+r2)...(1+r n))^(1/n) 1
- estimating historical volatility
 - o Price S_1, S_2,
 - o Return lg S 2/S 1, ...
- BSM
 - o No-arbitrage, portfolio yield risk-free rate
 - Price lognormal
 - Risk-free rate is constant and known
 - Volatility is constant and known
 - Market are frictionless (no tax, no txn cost,)
 - Asset has no cash flow
 - o European options
- BSM
 - c = S* N(d_1) X exp(-rT) * N(d_2) 累计概率分布
 - \circ p = X exp(-rt) (1-N(d_2)) S(1-N(d_1))
 - $p = X \exp(-rt) N(-d 2) S N(-d 1)$
 - o $d1 = (\ln(S/X) + (r + s^2/2)T) / (s sqrt(T))$
 - \circ d2 = d1 (s * sqrt(T))
- BSM with dividend
 - o S_0 → S_0 exp(-qT) 连续利率
 - o S O→S O PV(dividend) 折旧法

- o Decrease call value, increase put value
- American Options
 - o No dividend: no difference between EUR and USD call options
 - $S X \exp(-rT) > S X$
 - Assume the last dividend date before expiration t, exercised value
 - = S(t) X
 - Unexercised
 - $S(t) D(t) X \exp(-r (T-t))$
 - o Exercise when, 以时刻 t 来看,折现到 t 时刻
 - $S(t) X > S(t) D(t) X \exp(-r (T-t))$
 - \blacksquare => D > X (1 exp(-r (T-t)))
 - Black's approximation, use the larger of the two
 - Price on t, price on T
- Valuation of warrants
 - Warrants, bond issue, holder can purchase a security at a stated price
 - o Buy warrant from firm, increase outstanding
 - o 原则
 - n \detal_p = m c' 价格下降的市值 = 新增的 warrant 市值
 - \dela_p = \delta_c 价格下降的幅度= warrant 下降的幅度
 - n (c-c')=mc' => c'= n/(n+m)c
 - Value of warrant
 - C'= N / (N+M)* C (value of regular call option),m 的单调递减函数
 - N: # shares outstanding, M: #new warrants
 - o 价格的下降 = 新发的 warrant
 - n delta p = m * c' = m n /(m+n)c
 - = => delta p = m / (m+n) c = c c'
- volatility estimation
 - historical volatility
 - n price to returns
 - R i = (P i P (i-1))/P (i-1), I = 1 to NH
 - Return to continuously compound return
 - r i = ln(1+R i) = ln (P i / P (i-1))
 - $s^2 = \sum (r avg(r)) / (n-1)$
 - implied volatility

•

The Greek Letters

- naked position
 - o sell a call option without owning the asset
- covered position
 - o sell a call option owning the asset
- stop-loss strategy (cover a naked position)
 - o purchase stock when price > strike price
 - o sold as soon as it goes below the strike price
 - hold a naked position when option is out-of-money
 - o hold a covered position when the option is in-the-money

- draw back
 - the transaction cost and price uncertainty
- Delta hedging
 - o Delta, the price change of a call option c to the change of asset s
 - Delta = d c / d s
 - o Call, delta > 0, increase as s increase
 - Put, delta < 0, decrease as s increase
 - o Options Delta
 - Hedge a long stock or short call, buy delta * # options sold
 - Delta-neutral, delta=N(d1), put delta=N(-d1) =1 N(d1)
 - Pay dividend q, call delta = exp(-q T) N(d1), put delta=exp(-qT)N(-d1)
 - Forward Delta
 - Delta=1
 - Futures Delta F=S exp(rT)
 - Delta = exp(rT) or delta=exp ((r-q) T) with q dividend
- Dynamic hedge: cost high
 - Stock, sell call #option =#stock / delta
- Static hedge: hedge-and-forget
- Other portfolio hedging
 - Buy put option 1/(#call delta 1)
 - Sell 1/#call delta call options
 - C P = S \delta => delta call delta put =1
- Delta of a portfolio
 - O Delta = \sum w i delta i
- Theta 时间
 - o Theta = dc / dt, time decay
 - o Function of time and price
 - o Stock price: 正态分布
 - o Time: 指数分布
- Gamma 股票价格 2 次
 - O Gamma = d^2 c / d S^2
 - = f(d1) / (S O s sqrt(T)),
 - $N(x) = 1/(2 \operatorname{sqrt}(pi)) \exp(-x^2/2)$
 - Largest at the money
 - 。 像正态分布
 - o gamma-neurtal,甩非线性的 option,不能用线性的 asset, forward
 - Gamma p / Gamma T
 - gamma_p of a existing portfolio,
 - gamma T of a traded option that can be added
 - 买了 trade option 后,改变了 delta,因此需要卖以前的资产
- relation
 - \circ r P = theta + r S delta + 0.5 s^2 S^2 gamma
 - o dollar risk-free return: rP
- Vega 波动
 - Vega = dc / ds, price change in the volatility
 - Call European, vega = S 0 f(d1) sqrt(T)

- o 和 gamma 很像
- RHO
 - \circ Rho = d c / dr
 - EUR call, rho = X Texp(-rT) N(d2)
 - o 影响最小。但是对于 fixed-income 很大
- hedging in practice
 - o delta-neutral position, and monitor exposure to other Greeks
- portfolio insurance
 - o an underlying instrument and either cash/derivative that generates value.
 - o Buy put options for portfolio
 - A synthetic put position: sell index future contracts
 - Lower trading cost, high liquidity

Prices, Discount Factors, and Arbitrage

- Steps
 - o Estimate the cash flow
 - o Determine the discount rate
 - Treasury: A single rate or a series of rate
 - Non-treasury: risk premium
 - o Compute the PV
- Single yield
 - PMT: Annuity (principal * coupon)
 - Future value: principal
- Price-yield curve
 - Option-free bond, convex, half
- Bond price quotations
 - Percentage relative to par value (100)
 - o Treasury notes and bonds: 32nds
 - 97-6, 97:06, 97.6 -> 97+6/32=
 - o corporate and municipal bonds: 8ths
 - 102-1 -> 102+1/8
 - + = half
 - 101-12+ => 101+12.5/32
- discount factors 折现因子,零息 zero-coupon
 - o bootstrap, 从到期快的推算, d(t1), d(t2)
 - o 和 spot rate 类似 discount factor = exp(-s t)
- law of one price
- Strip
 - Zero-coupon bond = Strips (separate trading of registered interest and principal securities)
 - Ocupon = P-Strip + c-strip
 - C-strip can be put with any bond
 - o P-strip are identified with specific bonds
 - Props
 - Create any type of cash flow and match cash flows with liability cash flows. Mitigates reinvestment risk

- Sensitive to interest change
- Cons
 - Illiquid
 - Shorter c-strip trade rich, longer c-strip trade cheap
 - P-strip trade at fair value
 - Large institutions can profit from strip mispricing
- Replicating portfolio
 - o 现金流线性组合,按照 expiry date,倒推法
- compute price between coupon dates
 - o 前面假设 bond valuation 发生在 coupon date
 - o accrued interest, fractional period compounding, day-count convention
- accrued interest (AI)
 - AI = c (#days since last coupon to settlement date) / # days in coupon period
- Day-count convention
 - o Government bond
 - Actual / Actual
 - o Corporate and municipal bond
 - **30/360**
 - o government agencies annually, semi-annual, quarterly
 - **30/360**
- Dirty price/full price/invoice price
 - o w, 1+w, 2+w, ..., n-1+w
 - w: #days until the next payment/ # days in coupon period
 - O Dirty price $P = C/(1+y)^w + C/(1+y)^(1+w) + ... + C/(1+y)^(n-1+w)$, $M(1+y)^(n-1+w)$
 - 。 这种思路好理解
 - 折价到上次付息日期 payment date,再折算到开始日期
 - P2 = $C/(1+y) + ... + C/(1+y)^n$
 - $P = P2 * (1+y)^{(1-w)}$
- Clean price/flat price/quoted price
 - o = dirty price accrued interest C*(1-w)
 - \circ =P2*(1+y)^(1-w) c(1-w)
 - w=1, P2=P,上次付息之后,就是 clean price
 - w=0, P2(1+y)-c 刚好付一次息

Spot, Forward, and Par Rates

- Compounding
 - \circ FV = PV(1+r/m) $^{(mn)}$
- Holding period return
 - $\circ r = m((FV/PV)^{(1/mn)}-1)$
- Interest rate swap
 - No exchange of principal
 - o If hypothetically exchange the notional amount, it is similar to bond
 - o 交换本金的话,等价于 bond 的 return
- spot rate and discount rate
 - O PV = FV d(t)

- \circ PV (1+z(t)/m)^(mt) = FV
 - $d(t) (1+z(t)/m)^{mt} = 1$
 - $z(t) = m(1(/d(t))^{1/mt} 1)$
- PV exp(z(t) * t) = FV
 - $d(t) \exp(z(t) * t) = 1$
- forward rate
 - bootstrapping: spot rate, derive forward rate
 - compounding
 - $(1+z2/m)^T = (1+z1/m)^t * (1+f/m)^(T-t)$
- par rate
 - o semi-annual
 - par rate/2 (d(0.5) + d(1) + d(1.5) + d(2)) + 100 d(2) = 100
 - o par rate = spot rate, when bond is issued at its par value
 - o C T / 2 \sum $\{i=1^T\} d(t/2) + d(T) = 1$
 - A_t =\sum_{i=1^T} d(t/2) annuity factor
- Discount factor, Spot, forward, par rates
 - A bond can be split into a series of strips
 - Coupon rate -> zero-coupon
 - $\circ FV = PV (1+z(t)/m)^{n}(mn)$
 - PV = FV d(t)
 - \circ (1+z2/m)^T = (1+z1/m)^t * (1 + f(t,T-t)/m)^(T-t)
 - o par rate
 - par rate/2 (d(0.5) + d(1) + d(1.5) + d(2)) + 100 d(2) = 100
 - coupon rate $\frac{1}{2}$ (d(0.5) + d(1) + d(1.5)+d(2)) + 100 d(2) = bond price
 - bond price = 100 + (coupon par)/2 (d(0.5) + d(1) + d(1.5) + d(2))
 - bond price = 100 + (coupon par)/2 annuity factor
 - upward-sloping curve, spot rate > par rate
 - downward-sloping spot, par < spot rate
- effect of maturity on bond price and return
 - o coupon rate vs. forward rate
 - coupon rate > forward rate
 - price increase
 - o short-term rate > forward rate
 - short-term return > long-term return
- yield curve shapes
 - o normal, flat, inverted
 - o parallel shift
 - nonparallel shifts
 - twists
 - flatten: spread narrowed
 - o upward flatten
 - steepening: spread widen
 - downward steepening
 - if upward steepen, long-term rate increase, bond price drop
 - sell long-term and buy-short term
 - butterfly
 - positive butterfly: yield curve less curved

• negative butterfly: more curvature

Returns, Spreads, and Yields

- gross realized return
 - o r = (P2 + C P1)/P1, P1 bond initial price, C is coupon
- net realized return (-finance cost)
 - o r borrow rate /t
- reinvestment risk
 - o if interest rate go down across the board, the reinvestment rate will be lower
 - \circ P2 + C1 + C2*(1 + r invest)
- bond spread
 - market price calculated price
 - \circ P = C / (1 + f(1)) + (C+P) / (1+f(1)) (1+f(2))
 - o market = C / (1 + f(1) + s) + (C+P) / (1+f(1) + s) (1+f(2) + s)
 - o spread
- yield to maturity 复利回报率
 - yield to maturity, = internal rate of return (for fixed-income security)
 - \circ P = C1/(1+y) + C2 / (1+y)^2 + ... + Cn / (1+y)^n
 - o P(1+y)^n = C1 (1+y)^(n-1) + ... _+ Cn 等价于中途的现金流又被重新投资了
 - o 等于 realized return,中途金流重新被投资
- bond equivalent yield (BEY) semiannual YTM or semiannual-pay YTM
- make annual payment: annual-pay yield to maturity
- traditional yield measures
 - o reinvestment risk: coupon, repayment of principal
 - long-term bond with a larger coupons
- annuity
 - N, PMT, YTM => PV
- Perpetuity
 - \circ PV = PMT / YTM (y)
- Spot rates and YTM
 - \circ PV = C/(1+z1) + C/(1+z2)^2 + ... + (C+P) / (1+zn)^n (discount)
 - \circ PV = C/(1+y) + C/(1+y)^2 + ... + (C+P) / (1+y)^n (discount)
- Ytm, coupon rate, price
 - o Issue at par: market rate = par rate
 - Market rate drop coupon rate > ytm
 - Coupon higher, price increase, premium bond
 - Market rate increase coupon rate < ytm
 - Coupon lower, price drop, discount bond
 - Pull to par
- Coupon effect
 - Smaller coupon, more sensitive to interest rate change
 - Lower coupon rate, greater interest-rate risk
- Return decomposition
 - Overall
 - P(R_t, S_t) P(R_(t-1),S_(t-1))
 - Carry-and-roll (original to expected)

- P(R_t', S_(t-1)) P(R_(t-1),S_(t-1))
- o Rate change
 - P(R_t, S_(t-1)) P(R_t',S_(t-1))
- Spread change (trade cheap or high)
 - P(R_t, S_t) P(R_t,S_(t-1))
- Call-roll-down scenarios
 - o Realized forward rate vs. implied forward rate
 - Unchanged term structure
 - o Unchanged yield

One-Factor Risk Metrics and Hedges

- 所有的不同时期的利率都一起变化
- DV01, duration, convexity
- Dollar value of a basis point DV01 (1 basis point, 0.0001)
 - PVBP (PV of one basis point)
 - o DV01 = delta P / delta y /10000 相对值
- Hedge ratio
 - O HR = DV01 (position) / DV01 (hedging instrument)
 - Face value * DV01(bond) = position * DV01 (option)
 - Face value = position * HR
- Duration 百分比 investing 反向定义
 - Volatility: coupon, maturity, initial yield -> duration
 - Macaulay duration (option-free bond)
 - In vears
 - Modified duration
 - Modified = macaulay / (1+market yield)
 - Modified = delta P / delta y / P
 - o Effective
 - Effective = (P(-delta y) P(+delta y)) / 2 delta y / P_0
- DV01 vs duration
 - o DV01: dollar value of every 0.01% change in rates
 - o Duration: **percentage** change of 1 unit in rates
 - DV01 / 0.0001 = bond value * duration
 - DV01 = duration * 0.0001 * bond value
- Convexity
 - \circ Convexity = 1/P D^2 P / Dy^2
 - Convexity = $1/P * (P(-dy) + P(dy) 2)/ dy^2$
- Percentage change
 - Percentage change = duration + convexity
 - Percentage change = (- duration * dy + 0.5 convexity * dy^2)*100%
- Portfolio duration
 - Duration portfolio = \sum_i w_i D_i
 - By market value
 - Assumption: they are perfectly correlated
- Negative convexity
 - Callable bond, (left side)
- Barbell portfolio

- o Babell portfolio: use short and long bonds volatily
- o Bullet strategy: use intermediate maturity range

Multi-Factor Risk Metrics and Hedges

- Yield-curve risk
- Key rate exposure
 - o Key rate exposure: most liquid
 - o Partial'01
 - Swap portfolio: bond, swaps
 - o Forward-bucket'01
 - Swaps and predefined regions
 - Change in the shape of the yield curve
- Key rate shift
 - 0 2,5,10,30
 - o if one of these rates shifts by one basis point, -> key rate shift
 - 0 1,7,20
 - o 1 year -> [0,7]
 - o 7 year -> [1,20]
 - o 20 year -> [7,]
 - o a combination of rates that's close to them
- hedging
 - o rates of a given term is affected by key rates surround it.
 - Rates are not perfectly linear
- Partial and forward-bucket '01s
 - Swaps, use partial and forward-bucket
 - Fit a par rate curve daily or more frequently.
 - Measure the change in One basis point decrease, and refitting the curve
- Forward-bucket
 - Divide into bucket, shift one region at a time, each by 0.01
- Estimating portfolio volatility
 - o Can include volatility impacts of each key rate
 - o But also the correlation between each key rate
 - o Bucket: estimate forward rate

Country Risk: Determinants, Measures and Implications

- Country risk 政治、法律、经济
 - o Financial market: RETF, ADR, GDR
 - Company are global
- Risk
 - Economic, political (structure, efficiency), legal, disproportionate reliance of commodity or service
- Economic growth life cycle 经济周期
 - Early growth and emerging market
- Political risk
 - o Continuous vs discontinuous 政治结构
 - Democracy: risk continuous but low
 - Autocratic: risk discontinuous but sever

- o Corruption 腐败
- o Physical violence 暴力
 - Economic cost (insurance, security cost)
 - Physical cost (physical harm)
- Nationalization and expropriation risk
- Legal 法律结构和效率
 - o Property rights (structure) and the speed with which disputes are settled
- Economic Structure 经济结构
 - o Reliance on a single commodity or service
- Evaluating country risk
 - Political Risk Services (PRS)
 - Euromoney
 - Survey 4000 economists
 - The economist: currency, sovereign debt risk, banking risk
 - o The world bank
- Sovereign defaults
 - Government-issued debt
 - Foreign currency default
 - Countries more likely to default on funds borrowed from banks than on sovereign bond issues
 - Latin America accounts
 - Local currency
 - Can print money. But why?
 - Gold standard, 1971, follow gold standard.
 - Gold reserve to back currency
 - Shared currency
 - Euro,
 - Currency debasement
 - Consequences
 - Military actions
 - GDP growth falls between 0.5% to 2%, the decline is short-lived
 - Sovereign Rating and borrowing cost
 - Ratings defaulted one or two grades lower
 - Borrowing cost 0.5% to 1% higher
 - Trade retaliation, up to 15 years
 - Fragile banking system
 - Political change
- FACTORS
 - Level of indebtedness
 - Pension funds and social services
 - Higher, old population-> more defaults
 - Tax receipts
 - High tax -> low default
 - Stability of tax receipts
 - Diversified -> stable tax
 - Political risk
 - Backing from other countries/entities

- Rating Agencies and default risk
 - Moody and S&P
 - Local currency >= foreign currency
- How rating agencies measure risk
 - o Faced by banks and private bondholders
 - o S&P
 - Probability of default
 - Moody's
 - Probability of default and the severity of the default
 - Default
 - Outright default:
 - Rescheduling or restructuring the debt
 - o Process
 - Factors that contribute to default
 - Political risk, economic structure, economic growth
 - Fiscal flexibility, debt burden
 - Offshore and contingent liabilities
 - Ratings recommendation
 - 5-10 people, debates each
 - foreign currency vs local currency ratings
 - notch-up approach
 - o foreign currency is the key
 - notch-down approach
 - o local currency is the key, foreign is down
 - o review
 - periodic basis
 - news can trigger a ratings review
- How Ratings measure risk?
 - Ratings are biased upward too optimistic
 - Herd behaviour
 - Not timely enough
 - o Overreaction leads to a vicious cycle lower too much
 - Rating failures
 - Bad information
 - Overburdened analyst
 - Conflicts of interests
- Sovereign Default spread
 - Same currency and maturity
 - o Compared to us
- spread vs rating
 - o props
 - change occur in real time
 - granularity
 - adjust quickly to new information
 - o cons
 - need a risk-free security
 - cannot compare local currency bonds

- greater volatility
 - unrelated to default risk of sovereign
- Latin America is responsible for the greatest number of foreign currency defaults over the last five decades with more than 60% of defaults in each decade with the exception of the 1990s.

External and Internal Ratings

- External rating
 - Specific instrument: Issue-specific credit rating
 - Entity that issued the instrument: issuer credit rating
- Rating scale Moody's rating
 - o Aaa, Aa, A, Baa, Ba, B, Caa, Ca, C
 - o Each move increase in expected loss caused by a default
 - o bonds
 - Investment grade: >=Baa
 - Non-investment grade (junk bond): <Ba
- Rating scale S&P
 - o AAA, AA, A, BBB, BB, B, CCC, CC, C, D
 - Investment grade: >=BBB
 - D is the default rating
- Rating Process
 - Qualitative analysis
 - Quantitative analysis (financial ratio analysis)
 - Meeting with firm's management
 - Meeting of the committee in the rating agency assigned to rating the firm
 - Notifying the rated firm of the assigned rating
 - Opportunity for the firm to appeal or offer new information
 - o Disseminating the rating to the public via the news media
- Rating Review
 - After the initial rating, ratings agency monitors the firm and adjusts the ratin as needed
- Rating transition matrix
 - o Row: Rating from,
 - Column: rating to (The last column: default)
 - Value: percentage
- Impact of time horizon, economic cycle, industry, geography
 - o Increase with horizon
 - Economic and industrial cycles
 - Average cycle
 - Over-or underestimating when deviate too far
 - default rate of lower-grade bonds is correlated with cycle
 - high-grade bond sis fairly stable
 - vary from industry
 - o geographic location does not seem to cause a similar variation of default for
- impact of rating change on bond and stock prices
 - o bond
 - rating downgrade -> bond price decrease (stronger evidence)

- rating upgrade -> increase (weaker evidence)
- stock price
 - rating downgrade -> price decrease (moderate)
 - upgrade -> increase (mixed)
- internal credit rating
 - o at-the-point
 - short time
 - quantitative
 - procyclical amplify the business cycle
 - economic down -> downgrade -> decrease in loan
 - o through-the-cycle
 - long time
 - qualitative
 - lag economic cycle
- process
 - o weights to financial ratios and risk factors
 - o purpose
 - determine the credit risk of a loan
 - manage loan portfolio
 - o should reflect information from cumulative default probability tables
- backtest link between rating and default rates
 - 11-18 years data, validate these ratings
- biases
 - o time horizon bias: mix rating from different approaches
 - o homogeneity bias: inability to maintain consistent rating
 - o principallagent bias: moral hazard
 - o information: insufficient information
 - o criteria: unstable criteria to set rating
 - o scale: rating unstable over time
 - o backtesting: incorrectly link
 - o distribution: incorrect distribution to model PD

Capital Structure in Banks

- probability of default (PD)
 - o EDF
- Exposure amount (EA)/ Exposure At default (EAD)
 - Loan balance outstanding/dollar amount
 - Can be percentage of the nominal amount/maximum amount
- Loss rate(LR)/loss given default (LGD)
 - o Percentage loss if borrow defaults
 - LGD = 10 recover rate (RR)
- Expected loss
 - EL = PD * LGD * LR
 - o Fail to capture the variation of the asset value
 - Incidence of default
 - Credit migration
 - deterioration

- Unexpected loss
 - Variation in expected loss
 - O UL = sqrt(Var)
 - O UL = EAD * sqrt(PD*sigma_LR^2 + LR^2 sig_PD^2)
 - Sig PD^2 = PD *(1-PD) binomial
- Portfolio
 - o EL_p = sum EL_i
 - \circ UL p^2 = \sum \sum j r(I,j) UL i UL j
- Risk contribution RC/ULC
 - o RC_i = UL_i d UL_p/ d UL_i
 - = UL i/UL p \sum UL j p(I,j)
- effect of correlation
 - o concentration risk
- Economic capital
 - 。 经济资本是描述在一定的置信度水平上(如 99%),一定时间内(如一年),为了弥补银行的非预计损失(unexpected losses)所需要的资本
 - Hold capital reserve to buffer unexpected loss
 - o Economic capital = excess capital
 - Capital multiplier (CM)
 - O = UL * CM
- modelling credit risk
 - beta distribution
 - mean: EL, variance: UL
 - shape, a, and b (symmetric or skewed)
- challenge
 - o credits are presumed to be illiquid assets
 - with bottom-up, risk contribution, not influenced by the correlation
 - o one-year horizon. Should use more years
 - o other risks are separated

Operational Risk

- define
 - o not credit or market
 - direct and indirect loss resulting from inadequate or failed internal processes, people, and system or from external events.
 - o Includes legal risk, not reputational risk or strategic ris
 - o 不包含 credit and market risks
- 7种风险,8个业务线
- Risk capital
 - o Basic indicator approach 小银行 gross income
 - o Standardized approach 8 个业务线
 - o Advanced measurement 大银行,减少 capital
- Basic indicator
 - Capital = 15% * annual gross income over a 3-year period
- Standard
 - o Eight business lines with different beta factors

- Have
 - Operational risk mgt
 - Document losses for each line
 - Report loss on a regular basis
 - Have a system
 - Conduct independent audits with both internal and external auditors
- Advanced
 - Approximate unexpected losses
 - Use operational VaR
 - o 99.9% percentile in 1-year time
- Operational Risk Categories
 - Clients, products, business
 - Failure to perform obligations. Confidential information, money laundering
 - Internal fraud: insider trading,
 - o External fraud: robbery, computer hacking
 - o Damage to physical assets: natural disasters, fires, earthquakes
 - Execution, delivery, and process management
 - o Business disruption and system failures
 - Computer failures, hardware/software
 - o Employment practices and workplace safety
 - Not follow laws related to employment or health and safety
- Loss frequency and loss severity
 - Loss frequency: #losses over a period/one year
 - Poisson distribution
 - Short period, #=lambda t
 - P(n) = exp(-lamba T) (lambda T)^n / n!
 - Loss severity: value of loss suffered / size of loss
 - Lognormal distribution
 - Asymmetric, fat-tailed
 - Covolution
 - Monte Carlo simulation
- Data limitation
 - Insufficient
 - o Frequency: internal data
 - Severity: internal and external
 - Sharing agreements with other banks
 - Public data
 - Large losses from weak controls
 - Should adjust for inflation
 - Loss Y = loss Z (revenue Y/ revenue Z)^0.23
- Scenario analysis
 - Incorporate events that have not yet occurred
 - o Drawback: time
- Forward-looking approaches
 - o Risk Control Self-Assessment (RCSA)
 - Key Risk Indicators (KRI)

- Prepare for future losses
 - Learn from mistakes of other companies
- Causal relationships
 - Correlation between firm actions and operational risk losses
 - RCSA and KRI
- Scorecard data
 - Allocate risk capital
 - Scorecard approach
 - Ask managers questions, answered, scored
 - Questions
 - Ratio of supervisors to staff
 - Employee turnover rate
 - #open positions
 - presence of confidential information
- Power law
 - Extreme value theory (EVT)
 - \circ P(V > X) = K X^(-alpha)
- Insurance
 - Use AMA can use insurance to reduce capital charge
 - Moral hazard
 - Deductible, policy limits, coinsurance
 - Do not reveal insurance to traders
 - Adverse selection
 - Bad banks with poor internal controls more likely to desire

Governance Over Stress Testing

- Key elements of effective governance and controls
 - Governance structure
 - Policy and procedures
 - o Documentation
 - Validation and independent review
 - o Internal audit
- Responsibilities of BOD and SM
 - Separation of duties between BOD and SM
- BOD
 - Oversight for key strategies and decisions
 - Critical of stress tests by actively challenging assumptions
 - Sufficiently knowledgeable about stress testing
 - Stress testing results
 - Risk appetite and risk profile
 - Capital and liquidity adequacy and capital funding plans
 - Early warning sign
 - Forward-looking assessments
- SM
 - Implementation of stress testing
 - Not a single stress test, but a series of stress tests

- o Results aggregated, remedial actions, documented
- Activities, assumptions, limitations
- Policies, procedures and documentation
 - o Clear and comprehensive
 - o Policies and procedures, clear, concise, reviewed and approved annually
 - Documentation
 - Desc, results, assumptions, limitations, constraints
 - Track, and analyse results
- Validation and independent review
 - o Nonstress periods in models to test predictive power
 - Model validation
 - Expert-based judgment, sensitivity analysis, simulation tech
- Role of internal audits
 - o Integrity and reliability
- Key aspects of ST
 - Coverage
 - Portfolios, liabilities, exposures
 - Detect risk concentrations
 - Short and long term
 - Types and approaches
 - Scenario analysis
 - Firm-specific and system-wide
 - Capital and liquidity ST
 - Earnings, losses, cash flows, capital and liquidity

Stress Testing and Other Risk Management Tools

- ST vs VAR/EC
 - o ST define losses from an accounting perspective
 - EC take a market view of losses
 - o ST look **longer** time horizon, VAR point-in-time losses only
 - ST not probability, but ordinal rankings, VAR cardinal probabilities and MC
 - ST conditional scenarios, VAR unconditional
- Using VAR in ST
 - EL = PD * LGD * EAD
 - Merton model
 - A factor model
- Stressed inputs and VAR
 - Stressed inputs: market risk
 - 10-day, 99%, one-tailed confidence
 - stressed parameters -> counterparty credit risk
 - CVA (capital valuation adjustments)
- Pros
 - Conservative
- Cons
 - Respond to current market conditions

Principles for Sound Stress Testing Practices and Supervision

- Internal Models Approach (IMA) -> market risk
- Infernal ratings-based (IRB) -> credit risk
- ST and risk governance
- Weakness
 - Lack of involvement of BOD and SM
 - No overall organizational view
 - Separated in function or line
 - No fully developed ST
 - Market > credit > operational
 - Correlated exposures and risk concentrations
 - No adequate response to crisis
- Recommendations
 - o BOD and SM actively and fully engaged in ST
 - Comprehensive ST program
 - Risk identification & mgt
 - Alternative risk perspective
 - Liquidity and capital mgt
 - Communication
 - Multiple perspective and tech
 - Sensitivity analysis
 - Scenario analysis
 - Risk simulation
 - Written policies and documentation
 - Sound infra
 - Regular assessment
- ST methodologies
 - Weakness
 - Inadequate infra
 - Inadequate risk assessment
 - Inadequate recognition of interaction effects
 - Inadequate firm-wide perspective
 - o Recom
 - Comprehensive ST
 - Business areas and risk exposures
 - Risk concentration
 - Name, industry, region, correlated factors, off blance sheet
 - Multiple measures
- ST scenarios
 - Weakness
 - Lack of depth and breadth
 - Lack of tech
 - Lack of forward-looking
 - Recommendations
 - A variety of events
 - Futuristic outlook
 - New products/emerging risks
 - Synergy effect

- Time horizon
- Reverse ST
 - Outcome, events, hedging
- ST handling
 - o Structured products: MBS, ASB, CDO
 - Market condition: prepayment risk
 - o Contractual obligation
 - o Basis risk
 - Future contract to hedge
 - Short hedge, sell future contract
 - Basis risk = S F
 - Counterparty credit risk
 - Swaps, options, forward, insurance
 - Monoline issuer: default protection insurance
 - Wrong-way risk: PD increase as of market conditions
 - o Pipeline risk
 - Securitization
 - Pipeline/warehouse risk
 - o Contingent risk
 - Off-balance sheet exposure
 - Off-balance sheet commitments: liquidity, credit, market
 - o Funding liquidity risk
 - Nature, size, duration, intensity
 - Interrelationship between liquidity and market risk
 - Correlation
 - Recommendation
 - assess stress testing methods
 - take corrective action
 - challenge firm-wide scenario
 - evaluate capital and liquidity needs
 - apply additional stress scenarios
 - consult additional resources

market values (par value x price as percent of par)

• par value 2m, mkt price: 93, market value: 93%*2

one basis point change