Algebra Notes

D. Zack Garza

January 6, 2020

Contents

1	Gro	Group Theory					
	1.1	Big List of Notation					
	1.2	Basics					
	1.3	Finitely Generated Abelian Groups					
	1.4	The Symmetric Group					
	1.5	Counting Theorems					
		1.5.1 Examples of Orbit-Stabilizer					
		1.5.2 Sylow Theorems					
		1.5.3 Sylow 1 (Cauchy for Prime Powers)					
		1.5.4 Sylow 2 (Sylows are Conjugate)					
		1.5.5 Sylow 3 (Numerical Constraints)					
	1.6	Products					
	1.7	Isomorphism Theorems					
	1.8	Special Classes of Groups					
	1.9	Series of Groups					
2	Ring	gs 12					
	2.1	Definitions					
	2.2	Nontrivial Properties					
	2.3	Ideals					
		2.3.1 Maximal and Prime Ideals					
		2.3.2 Nilradical and Jacobson Radical					
		2.3.3 Zorn's Lemma					
3	Field	ds 15					
	3.1	Finite Fields					
	3.2	Galois Theory					
		3.2.1 Lemmas About Towers					
		3.2.2 Examples					
	3.3	Cyclotomic Polynomials					
4	Mod	Modules 20					
	4.1	General Modules					
	4.2	Classification of Modules over a PID					
	4.3	Minimal / Characteristic Polynomials					

4.4	Canonical Forms	2^{2}
	4.4.1 Rational Canonical Form	22
	4.4.2 Jordan Canonical Form	22
4.5	Using Canonical Forms	23
4.6	Diagonalizability	23
4.7	Matrix Counterexamples	24
18	Miscellaneous	2

1 Group Theory

1.1 Big List of Notation

C(x) =	$\left\{g \in G \mid gxg^{-1} = x\right\}$	$\subseteq G$	Centralizer
$C_G(h) =$	$\left\{ghg^{-1} \mid g \in G\right\}$	$\subseteq G$	Conjugacy Class
Gx =	$\{g.x \mid x \in X\}$	$\subseteq X$	Orbit
$G_x =$	$\left\{g \in G \mid g.x = x\right\}$	$\subseteq G$	Stabilizer
$X_g =$	$\{x \in X \mid \forall g \in G, \ g.x = x\}$	$\subseteq X$	Fixed Points
Z(G) =	$\left\{ x \in G \mid \forall g \in G, \ gxg^{-1} = x \right\}$	$\subseteq G$	Center
Inn(G) =	$\left\{\phi_g(x) = gxg^{-1}\right\}$	$\subseteq \operatorname{Aut}(G)$	Inner Aut.
$\operatorname{Out}(G) =$	$\operatorname{Aut}(G)/\operatorname{Inn}(G)$	$\hookrightarrow \operatorname{Aut}(G)$	Outer Aut.
N(H) =	$\left\{g \in G \mid gHg^{-1} = H\right\}$	$\subseteq G$	Normalizer

1.2 Basics

Definition (Centralizer):

$$C_G(H) = \left\{ g \in G \mid ghg^{-1} = h \ \forall h \in H \right\}$$

Definition (Normalizer):

$$N_G(H) = \left\{ g \in G \mid gHg^{-1} = H \right\}$$

Lemma: $C_G(H) \leq N_G(H)$

Lemma: The size of the conjugacy class of H is the index of its centralizer, i.e.

$$\left|\left\{gHg^{-1} \mid g \in G\right\}\right| = [G:C_G(H)].$$

Proof: Orbit-stabilizer.

Lemma ("The Fundamental Theorem of Cosets"):

$$aH = bH \iff a^{-1}b \in H \text{ or } aH \bigcap bH = \emptyset$$

Definition: $[x,y] = x^{-1}y^{-1}xy$ is the **commutator**, and $[G,G] := \{[x,y] \mid x,y \in G\}$ is the **commutator** subgroup.

Lemma:

$$[G,G] \leq H$$
 and $H \subseteq G \implies G/H$ is abelian.

Lemmas:

- Every subgroup of a cyclic group is itself cyclic.
- Intersections of subgroups are still subgroups
 - Intersections of distinct coprime-order subgroups are trivial
 - Intersections of subgroups of the same prime order are either trivial or equality
- The Quaternion group has only one element of order 2, namely -1.
 - They also have the presentation

$$Q = \langle x, y, z \mid x^2 = y^2 = z^2 = xyz = -1 \rangle$$

= $\langle x, y \mid x^4 = y^4 = e, x^2 = y^2, yxy^{-1} = x^{-1} \rangle$.

• A dihedral group always has a presentation of the form

$$D_n = \langle x, y \mid x^n = y^2 = (xy)^2 = e \rangle,$$

yielding at least 2 distinct elements of order 2.

1.3 Finitely Generated Abelian Groups

Invariant factor decomposition:

$$G \cong \mathbb{Z}^r \times \prod_{j=1}^m \mathbb{Z}/(n_j)$$
 where $n_1 \mid \cdots \mid n_m$.

Going from invariant divisors to elementary divisors:

- Take prime factorization of each factor
- Split into coprime pieces

Example:

$$\mathbb{Z}/(2) \oplus \mathbb{Z}/(2) \oplus \mathbb{Z}/(2^3 \cdot 5^2 \cdot 7)$$

$$\cong \mathbb{Z}/(2) \oplus \mathbb{Z}/(2) \oplus \mathbb{Z}/(2^3) \oplus \mathbb{Z}/(5^2) \oplus \mathbb{Z}/(7)$$

Going from elementary divisors to invariant factors:

- Bin up by primes occurring (keeping exponents)
- ullet Take highest power from each prime as last invariant factor
- Take highest power from all remaining primes as next, etc

Example: Given the invariant factor decomposition

$$G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{25},.$$

$$\implies n_m = 5^2 \cdot 3 \cdot 2$$

$$\frac{p=2}{2,2} \quad \frac{p=3}{3} \quad \frac{p=5}{\emptyset}$$

$$\implies n_{m-1} = 3 \cdot 2$$

$$\frac{p=2}{2} \quad \frac{p=3}{\emptyset} \quad \frac{p=5}{\emptyset}$$

$$\implies n_{m-2} = 2$$

and thus

$$G \cong \mathbb{Z}/(2) \oplus \mathbb{Z}/(3 \cdot 2) \oplus \mathbb{Z}/(5^2 \cdot 3 \cdot 2).$$

1.4 The Symmetric Group

Definitions:

- A cycle is **even** \iff product of an *even* number of transpositions.
 - A cycle of even length is odd
 - A cycle of odd *length* is **even**

Definition The alternating group is the subgroup of even permutations, i.e. $A_n := \{ \sigma \in S_n \mid \text{sign}(\sigma) = 1 \}$ where $\text{sign}(\sigma) = (-1)^m$ where m is the number of cycles of even length.

Corollary: Every $\sigma \in A_n$ has an even number of odd cycles (i.e. an even number of even-length cycles).

Example:

$$A_4 = \{ id,$$

$$(1,3)(2,4), (1,2)(3,4), (1,4)(2,3),$$

$$(1,2,3), (1,3,2),$$

$$(1,2,4), (1,4,2),$$

$$(1,3,4), (1,4,3),$$

$$(2,3,4), (2,4,3) \}.$$

Lemmas:

- The transitive subgroups of S_3 are S_3, A_3
- The transitive subgroups of S_4 are $S_4, A_4, D_4, \mathbb{Z}_2^2, \mathbb{Z}_4$.
- S_4 has two normal subgroups: A_4, \mathbb{Z}_2^2 .
- $S_{n\geq 5}$ has one normal subgroup: A_n .
- $Z(S_n) = 1$ for $n \ge 3$
- $Z(A_n) = 1$ for $n \ge 4$
- $\bullet \ [S_n, S_n] = A_n$
- $\bullet \ [A_4, A_4] \cong \mathbb{Z}_2^2$
- $[A_n, A_n] = A_n$ for $n \ge 5$, so $A_{n \ge 5}$ is nonabelian.
- $A_{n\geq 5}$ is simple.

1.5 Counting Theorems

Lagrange's Theorem:

$$H \le G \implies |H| \mid |G|.$$

Corollary: The order of every element divides the size of G, i.e.

$$g \in G \implies o(g) \mid o(G) \implies g^{|G|} = e.$$

Warning: There does **not** necessarily exist $H \leq G$ with |H| = n for every $n \mid |G|$. Counterexample: $|A_4| = 12$ but has no subgroup of order 6.

Cauchy's Theorem:

For every prime p dividing |G|, there is an element (and thus a subgroup) of order p.

This is a partial converse to Lagrange's theorem, and strengthened by Sylow's theorem.

Notation: For a group G acting on a set X,

- $G \cdot x = \{g \curvearrowright x \mid g \in G\} \subseteq X$ is the orbit
- $G_x = \{g \in G \mid g \curvearrowright x = x\} \subseteq G$ is the stabilizer
- $X/G \subset \mathcal{P}(X)$ is the set of orbits

• $X^g = \{x \in X \mid g \curvearrowright x = x\} \subseteq X$ are the fixed points

Orbit-Stabilizer:

$$|G \cdot x| = [G : G_x] = |G|/|G_x|$$
 if G is finite

Mnemonic: $G/G_x \cong G \cdot x$.

1.5.1 Examples of Orbit-Stabilizer

- 1. Let G act on itself by conjugation.
- $G \cdot x$ is the **conjugacy class** of x
- $G_x = Z(x) := C_G(x) = \{g \mid [g, x] = e\}, \text{ the centralizer of } x.$
- G^g (the fixed points) is the **center** Z(G).

Corollary: The number of conjugates of an element (i.e. the size of its conjugacy class) is the index of its centralizer, $[G:C_G(x)]$.

Corollary: the Class Equation:

$$|G| = |Z(G)| + \sum_{\substack{\text{One } x_i \text{ from each conjugacy} \\ \text{class}}} [G:Z(x_i)]$$

- 1. Let G act on S, its set of *subgroups*, by conjugation.
- $G \cdot H = \{gHg^{-1}\}$ is the set of conjugate subgroups of H
- $G_H = N_G(H)$ is the **normalizer** of in G of H
- S^G is the set of **normal subgroups** of G

Corollary: Given $H \leq G$, the number of conjugate subgroups is $[G:N_G(H)]$.

- 1. For a fixed proper subgroup H < G, let G act on its cosets $G/H = \{gH \mid g \in G\}$ by left-multiplication.
- $G \cdot gH = G/H$, i.e. this is a transitive action.
- $G_{qH} = gHg^{-1}$ is a conjugate subgroup of H
- $(G/H)^G = \emptyset$

Application: If G is simple, H < G proper, and [G : H] = n, then there exists an injective map $\phi : G \hookrightarrow S_n$.

Proof: This action induces ϕ ; it is nontrivial since gH = H for all g implies H = G; $\ker \phi \subseteq G$ and G simple implies $\ker \phi = 1$.

Burnside's Formula:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

1.5.2 Sylow Theorems

Notation: For any p, let $Syl_p(G)$ be the set of Sylow-p subgroups of G.

Write

- $|G| = p^n m$ where (m, p) = 1,
- S_p a Sylow-p subgroup, and
- n_p the number of Sylow-p subgroups.

Definition: A p-group is a group G such that every element is order p^k for some k. If G is a finite p-group, then $|G| = p^j$ for some j.

Lemma: *p*-groups have nontrivial centers.

Some useful facts:

- Coprime order subgroups are disjoint, or more generally \mathbb{Z}_p , $\mathbb{Z}_q \subset G \implies \mathbb{Z}_p \cap \mathbb{Z}_q = \mathbb{Z}_{(p,q)}$.
- The Chinese Remainder theorem: $(p,q) = 1 \implies \mathbb{Z}_p \times \mathbb{Z}_q \cong \mathbb{Z}_{pq}$

1.5.3 Sylow 1 (Cauchy for Prime Powers)

 $\forall p^n$ dividing |G| there exists a subgroup of size p^n .

If $|G| = \prod p_i^{\alpha_i}$, then there exist subgroups of order $p_i^{\beta_i}$ for every i and every $0 \le \beta_i \le \alpha_i$. In particular, Sylow p-subgroups always exist.

1.5.4 Sylow 2 (Sylows are Conjugate)

All sylow-p subgroups S_p are conjugate, i.e.

$$S^1_p, S^2_p \in \operatorname{Syl}_p(G) \implies \exists g \text{ such that } gS^1_p g^{-1} = S^2_p.$$

Corollary: $n_p = 1 \iff S_p \leq G$

1.5.5 Sylow 3 (Numerical Constraints)

- 1. $n_p \mid m$ (in particular, $n_p \leq m$),
- $2. \ n_p \equiv 1 \mod p,$
- 3. $n_p = [G: N_G(S_p)]$ where N_G is the normalizer.

Corollary: p does not divide n_p .

Lemma: Every p-subgroup of G is contained in a Sylow p-subgroup.

Proof: Let $H \leq G$ be a p-subgroup. If H is not p-roperly contained in any other p-subgroup, it is a Sylow p-subgroup by definition.

Otherwise, it is contained in some p-subgroup H^1 . Inductively this yields a chain $H \subsetneq H^1 \subsetneq \cdots$, and by Zorn's lemma $H := \bigcup H^i$ is maximal and thus a Sylow p-subgroup.

Fratini's Argument: If $H \subseteq G$ and $P \in \operatorname{Syl}_p(G)$, then $HN_G(P) = G$ and [G : H] divides $|N_G(P)|$.

1.6 Products

Characterizing direct products: $G \cong H \times K$ when

•
$$G = HK = \{hk \mid h \in H, k \in K\}$$

•
$$H \cap K = \{e\} \subset G$$

•
$$H, K \leq G$$

Can relax to only $H \subseteq G$ to get a semidirect product instead

Characterizing semidirect products: $G = N \rtimes_{\psi} H$ when

- G = NH
- $N \leq G$
- $H \curvearrowright N$ by conjugation via a map

$$\psi: H \to \operatorname{Aut}(N)$$

 $h \mapsto h(\cdot)h^{-1}.$

Useful Facts

- If $\sigma \in Aut(H)$, then $N \rtimes_{\psi} H \cong N \rtimes_{\psi \circ \sigma} H$.
- Aut $((\mathbb{Z}/(p)^n) \cong \operatorname{GL}(n, \mathbb{F}_p)$, which has size \$- $|\operatorname{Aut}(\mathbb{Z}/(p)^n)| = (p^n 1)(p^n p) \cdots (p^n p^{n-1})$.
 - If this occurs in a semidirect product, it suffices to consider similarity classes of matrices (i.e. just use canonical forms)
- Aut $(\mathbb{Z}/(n)) \cong \mathbb{Z}/(n)^{\times} \cong \mathbb{Z}/(\varphi(n))$ where φ is the totient function. $-\varphi(p^k) = p^{k-1}(p-1)$
- If G, H have coprime order then $\operatorname{Aut}(G \oplus H) \cong \operatorname{Aut}(G) \oplus \operatorname{Aut}(H)$.

1.7 Isomorphism Theorems

Lemma: If $H, K \leq G$ and $H \leq N_G(K)$ (or $K \leq G$) then $HK \leq G$ is a subgroup.

Note that this implies that HK is not always a subgroup.

Diamond Theorem / 2nd Isomorphism Theorem:

If $S \leq G$ and $N \leq G$, then

$$\frac{SN}{N} \cong \frac{S}{S \cap N}$$
 and $|SN| = \frac{|S||N|}{|S \cap N|}$

8

Mnemonic:

Note: for this to make sense, we also have

- $SN \leq G$, $S \cap N \leq S$,

Cancellation / 3rd Isomorphism Theorem

If $H, K \subseteq G$ with $H \subseteq K$, then

$$\frac{G/H}{G/K} \cong \frac{G}{K}$$

Note: for this to make sense, we also have $G/K \leq G/H$.

The Correspondence Theorem / 4th Isomorphism Theorem: Suppose $N \subseteq G$, then there exists a correspondence:

$$\left\{ H < G \;\middle|\; N \subseteq H \right\} \iff \left\{ H \;\middle|\; H < \frac{G}{N} \right\}$$

$$\left\{ \substack{\text{Subgroups of } G \\ \text{containing } N} \right\} \iff \left\{ \substack{\text{Subgroups of the} \\ \text{quotient } G/N} \right\}.$$

In words, subgroups of G containing N correspond to subgroups of the quotient group G/N. This is given by the map $H \mapsto H/N$.

Note: $N \subseteq G$ and $N \subseteq H < G \implies N \subseteq H$.

1.8 Special Classes of Groups

Definition: The "2 out of 3 property" is satisfied by a class of groups \mathcal{C} iff whenever $G \in \mathcal{C}$, then $N, G/N \in \mathcal{C}$ for any $N \leq G$.

Definition: If $|G| = p^k$, then G is a **p-group.**

Facts about p-groups:

- If k = 1 then G is cyclic
- If k = 2, then $G \cong \mathbb{Z}/(p)^2$ or $\mathbb{Z}/(p^2)$.
- p-groups have nontrivial centers
 - Proof: Use class equation.
- Every normal subgroup is contained in the center
- Normalizers grow
- Every maximal is normal
- Every maximal has index p
- p-groups are nilpotent
- p-groups are *solvable*

Facts about other special order groups:

General strategy: find a normal subgroup (usually a Sylow) and use recognition of semidirect products.

- |G| = pq: Two possibilities. By cases:
 - If p divides q-1, two cases:
 - $* G \cong \mathbb{Z}/(pq) \text{ or } \mathbb{Z}(p) \times \mathbb{Z}/(q)$
 - Otherwise, $G \cong \mathbb{Z}/(pq)$

Proof: Sylow theorems. Note: Such groups are never simple.

- $\bullet |G| = p^2q$:
 - $-q \mid p^2 1$: Two abelian possibilities, $\mathbb{Z}/(p) \times \mathbb{Z}/(q^2)$, or $\mathbb{Z}/(pq) \times \mathbb{Z}/(q)$.
 - Otherwise, the sylow-q subgroup H is normal and order q^2 , so either $\mathbb{Z}/(q)^2$ or $\mathbb{Z}/(q^2)$.
 - * Case 2: $\left|\operatorname{Aut}(\mathbb{Z}/(q)^2)\right| = q(q-1)$, so only trivial action
 - * Case 1: $\left| \operatorname{Aut}(\mathbb{Z}/(q^2)) \right| = q(q-1)^2(q+1)$
 - · If p doesn't divide q+1, noting new
 - · Otherwise, a nontrivial semidirect product.

Definition: A group G is **simple** iff $H \subseteq G \implies H = \{e\}, G$, i.e. it has no non-trivial proper subgroups.

Lemma: If G is not simple, then for any $N \subseteq G$, it is the case that $G \cong E$ for an extension of the form $N \to E \to G/N$. >

Definition: A group G is solvable iff G has a terminating normal series with abelian factors, i.e.

$$G \to G^1 \to \cdots \to \{e\}$$
 with G^i/G^{i+1} abelian for all i .

Lemmas:

 \bullet G is solvable iff G has a terminating derived series.

- Solvable groups satisfy the 2 out of 3 property
- \bullet Abelian \Longrightarrow solvable
- Every group of order less than 60 is solvable.

Definition: A group G is **nilpotent** iff G has a terminating central series, upper central series, or lower central series.

Moral: the adjoint map is nilpotent.

Lemma: For G a finite group, TFAE:

- \bullet G is nilpotent
- Normalizers grow (i.e. $H < N_G(H)$ whenever H is proper)
- Every Sylow-p subgroup is normal
- G is the direct product of its Sylow p-subgroups
- Every maximal subgroup is normal
- \bullet G has a terminating Lower Central Series
- \bullet G has a terminating Upper Central Series

Lemmas:

- G nilpotent $\implies G$ solvable
- Nilpotent groups satisfy the 2 out of 3 property.
- G has normal subgroups of order d for every d dividing |G|
- G nilpotent $\implies Z(G) \neq 0$
- Abelian \Longrightarrow nilpotent
- \bullet p-groups \Longrightarrow nilpotent

1.9 Series of Groups

Definition: A **normal series** of a group G is a sequence $G \to G^1 \to G^2 \to \cdots$ such that $G^{i+1} \subseteq G_i$ for every i.

Definition A composition series of a group G is a finite normal series such that G^{i+1} is a maximal proper normal subgroup of G^i .

Theorem (Jordan-Holder): Any two composition series of a group have the same length and isomorphic factors (up to permutation).1

Definition A derived series of a group G is a normal series $G \to G^1 \to G^2 \to \cdots$ where $G^{i+1} = [G^i, G^i]$ is the commutator subgroup.

The derived series terminates iff G is solvable.

Definition: A **central series** for a group G is a terminating normal series $G \to G^1 \to \cdots \to \{e\}$ such that each quotient is **central**, i.e. $[G, G^i] \leq G^{i-1}$ for all i.

Definition: A lower central series is a terminating normal series $G \to G^1 \to \cdots \to \{e\}$ such that $G^{i+1} = [G^i, G]$

Moral: Iterate the adjoint map $[\cdot, G]$.

G is nilpotent \iff the LCS terminates.

Definition: An upper central series is a terminating normal series $G \to G^1 \to \cdots \to \{e\}$ such that $G^1 = Z(G)$ and G^{i+1} is defined such that $G^{i+1}/G^i = Z(G^i)$.

Moral: Iterate taking "higher centers".

2 Rings

2.1 Definitions

Lemma: Intersections, products, and sums (but not necessarily unions) of ideals are ideals.

Definition: A ring R is **simple** iff every ideal $I \subseteq R$ is either 0 or R.

Definition: An element $r \in R$ is **irreducible** iff $r = ab \implies a$ is a unit or b is a unit.

Definition: An element $r \in R$ is **prime** iff $ab \mid r \implies a \mid r$ or $b \mid r$ whenever a, b are nonzero and not units.

Definition: \mathfrak{p} is a **prime** ideal $\iff ab \in \mathfrak{p} \implies a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.

Definition: Spec $(R) = \{ \mathfrak{p} \leq R \mid \mathfrak{p} \text{ is prime} \}$ is the **spectrum** of R.

Definition: \mathfrak{m} is maximal $\iff I \triangleleft R \implies I \subseteq \mathfrak{m}$.

Definition: Spec_{max} $(R) = \{ \mathfrak{m} \leq R \mid \mathfrak{m} \text{ is maximal} \}$ is the **max-spectrum** of R.

Note: nonstandard notation / definition.

Lemmas (Quotienting):

- R/I is a domain $\iff I$ is prime,
- R/I is a field $\iff I$ is maximal.
- For R a PID, I is prime \iff I is maximal.

Lemma (Characterizations of Rings):

- R a commutative division ring $\implies R$ is a field
- R a finite integral domain $\implies R$ is a field.
- \mathbb{F} a field $\Longrightarrow \mathbb{F}[x]$ is a Euclidean domain.
- \mathbb{F} a field $\Longrightarrow \mathbb{F}[x]$ is a PID.
- \mathbb{F} is a field $\iff \mathbb{F}$ is a commutative simple ring.
- R is a UFD \iff R[x] is a UFD.
- R a PID $\implies R[x]$ is a UFD
- R a PID $\implies R$ Noetherian
- R[x] a PID $\implies R$ is a field.

Lemma: Fields \subset Euclidean domains \subset PIDs \subset UFDs \subset Integral Domains \subset Rings

- A Euclidean Domain that is not a field: $\mathbb{F}[x]$ for \mathbb{F} a field
 - Proof: Use previous lemma, and x is not invertible
- A PID that is not a Euclidean Domain: $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$.
 - *Proof*: complicated.
- A UFD that is not a PID: $\mathbb{F}[x,y]$.

- Proof: $\langle x, y \rangle$ is not principal
- An integral domain that is not a UFD: $\mathbb{Z}[\sqrt{-5}]$
 - Proof: $(2+\sqrt{-5})(2-\sqrt{-5})=9=3\cdot 3$, where all factors are irreducible (check norm).
- A ring that is not an integral domain: $\mathbb{Z}/(4)$
 - Proof: 2 mod 4 is a zero divisor.

Lemma: In R a UFD, an element $r \in R$ is prime $\iff r$ is irreducible.

Note: For R an integral domain, prime \Longrightarrow irreducible, but generally not the converse. Example of a prime that is not irreducible: $x^2 \mod (x^2+x) \in \mathbb{Q}[x]/(x^2+x)$. Check that x is prime directly, but $x=x\cdot x$ and x is not a unit. Example of an irreducible that is not prime: $3\in\mathbb{Z}[\sqrt{-5}]$. Check norm to see irreducibility, but $3\mid 9=(2+\sqrt{-5})(2-\sqrt{-5})$ and doesn't divide either factor.

Lemma: If R is a PID, then every element in R has a unique prime factorization.

Definition: A nonzero unital ring R is **semisimple** iff $R \cong \bigoplus_{i=1}^n M_i$ with each M_i a simple module.

Theorem (Artin-Wedderubrn): If R is a nonzero, unital, semisimple ring then $R \cong \bigoplus_{i=1}^{m} \operatorname{Mat}(n_i, D_i)$, a finite sum of matrix rings over division rings.

Corollary: If M is a simple ring over R a division ring, the M is isomorphic to a matrix ring.

2.2 Nontrivial Properties

Lemma: Every $a \in R$ for a finite ring is either a unit or a zero divisor.

Proof: Let $a \in R$ and define $\phi(x) = ax$. If ϕ is injective, then it is surjective, so 1 = ax for some $x \implies x^{-1} = a$. Otherwise, $ax_1 = ax_2$ with $x_1 \neq x_2 \implies a(x_1 - x_2) = 0$ and $x_1 - x_2 \neq 0$, so a is a zero divisor.

2.3 Ideals

2.3.1 Maximal and Prime Ideals

Lemma: Maximal \implies prime, but generally not the converse.

Counterexample: $(0) \in \mathbb{Z}$ is prime since \mathbb{Z} is a domain, but not maximal since it is properly contained in any other ideal.

Proof: Suppose \mathfrak{m} is maximal, $ab \in \mathfrak{m}$, and $b \notin \mathfrak{m}$. Then there is a containment of ideals $\mathfrak{m} \subsetneq \mathfrak{m} + (b) \Longrightarrow \mathfrak{m} + (b) = R$. So

$$1 = m + rb \implies a = am + r(ab),$$

but $am \in \mathfrak{m}$ and $ab \in \mathfrak{m} \implies a \in \mathfrak{m}$.

Lemma: If x is not a unit, then x is contained in some maximal ideal \mathfrak{m} .

Proof: Zorn's lemma.

Lemma: R/\mathfrak{m} is a field $\iff \mathfrak{m}$ is maximal.

Lemma: R/\mathfrak{p} is an integral domain $\iff \mathfrak{p}$ is prime.

2.3.2 Nilradical and Jacobson Radical

Definition: $\mathfrak{N} := \{ x \in R \mid x^n = 0 \text{ for some } n \}$ is the **nilradical** of R.

Lemma: The nilradical is the intersection of all prime ideals, i.e.

$$\mathfrak{N}(R) = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}$$

Proof: $\mathfrak{N} \subseteq \bigcap \mathfrak{p} \colon x \in \mathfrak{N} \implies x^n = 0 \in \mathfrak{p} \implies x \in \mathfrak{p} \text{ or } x^{n-1} \in \mathfrak{p}.$ $\mathfrak{N}^c \subseteq \bigcup \mathfrak{p}^c \colon \text{ Define } S = \Big\{ I \subseteq R \ \Big| \ a^n \notin I \text{ for any } n \Big\}. \text{ Then apply Zorn's lemma to get a maximal ideal } \mathfrak{m}, \text{ and maximal } \Longrightarrow \text{ prime.}$

Lemma: $R/\mathfrak{N}(R)$ has no nonzero nilpotent elements.

Proof:

$$\begin{aligned} a + \mathfrak{N}(R) \text{ nilpotent} &\implies (a + \mathfrak{N}(R))^n := a^n + \mathfrak{N}(R) = \mathfrak{N}(R) \\ &\implies a^n \in \mathfrak{N}(R) \\ &\implies \exists \ell \text{ such that } (a^n)^\ell = 0 \\ &\implies a \in \mathfrak{N}(R). \end{aligned}$$

Definition: The **Jacobson radical** is the intersection of all **maximal** ideals, i.e.

$$J(R) = \bigcap_{\mathfrak{m} \in \operatorname{Spec}_{\max}} \mathfrak{m}$$

Lemma: $\mathfrak{N}(R) \subseteq J(R)$.

Proof: Maximal \implies prime, and so if x is in every prime ideal, it is necessarily in every maximal ideal as well.

2.3.3 Zorn's Lemma

Lemma: A field has no nontrivial proper ideals.

Lemma: If $I \subseteq R$ is a proper ideal $\iff I$ contains no units.

Proof:
$$r \in R^{\times} \bigcap I \implies r^{-1}r \in I \implies 1 \in I \implies x \cdot 1 \in I \quad \forall x \in R.$$

Lemma: If $I_1 \subseteq I_2 \subseteq \cdots$ are ideals then $\bigcup_j I_j$ is an ideal.

Example Application of Zorn's Lemma: Every proper ideal is contained in a maximal ideal.

Proof: Let 0 < I < R be a proper ideal, and consider the set

$$S = \left\{ J \mid I \subseteq J < R \right\}.$$

Note $I \in S$, so S is nonempty. The claim is that S contains a maximal element M. S is a poset, ordered by set inclusion, so if we can show that every chain has an upper bound,

is a poset, ordered by set inclusion, so if we can show that every chain has an upper two can apply Zorn's lemma to produce M.

Let
$$C \subseteq S$$
 be a chain in S , so $C = \{C_1 \subseteq C_2 \subseteq \cdots\}$ and define $\hat{C} = \bigcup_i C_i$.

 \hat{C} is an upper bound for C:

This follows because every $C_i \subseteq \hat{C}$.

 \hat{C} is in S:

Use the fact that $I \subseteq C_i < R$ for every C_i and since no C_i contains a unit, \hat{C} doesn't contain a unit, and is thus proper.

3 Fields

Let k denote a field.

Lemmas:

- The characteristic of \mathbb{F} is either 0 or p a prime.
- All fields are simple rings
- Any homomorphism of fields is either 0 or injective
- If L/k is algebraic, then $\min(\alpha, L)$ divides $\min(\alpha, k)$.

Lemma: Every finite extension is algebraic.

Eisenstein's Criterion: If $f(x) = \sum_{i=0}^{n} \alpha_i x^i \in \mathbb{Q}[x]$ and $\exists p$ such that

- p divides every coefficient except a_n and
- p^2 does not divide a_0 ,

then f is irreducible.

Definition: For R a UFD, a polynomial $p \in R[x]$ is **primitive** iff the greatest common divisors of its coefficients is a unit.

Gauss' Lemma: Let R be a UFD and F its field of fractions. Then a primitive $p \in R[x]$ is irreducible in $R[x] \iff p$ is irreducible in F[x].

Corollary: A primitive polynomial $p \in \mathbb{Q}[x]$ is irreducible iff p is irreducible in $\mathbb{Z}[x]$.

3.1 Finite Fields

Definition: The prime subfield of a field F is the subfield generated by 1.

Lemma (Characterization of Prime Subfields): The prime subfield of any field is isomorphic to either \mathbb{Q} or \mathbb{F}_p for some p.

Lemma ("Freshman's Dream"): If char k = p then $(a + b)^p = a^p + b^p$ and $(ab)^p = a^p b^p$.

Theorem (Construction of Finite Fields): $\mathbb{GF}(p^n) \cong \frac{\mathbb{F}_p}{(f)}$ where $f \in \mathbb{F}_p[x]$ is any irreducible of degree n, and $\mathbb{GF}(p^n) \cong \mathbb{F}[\alpha] \cong \operatorname{span}_{\mathbb{F}} \left\{ 1, \alpha, \cdots, \alpha^{n-1} \right\}$ for any root α of f.

Lemma (Prime Subfields of Finite Fields): Every finite field F is isomorphic to a unique field of the form $\mathbb{GF}(p^n)$ and if char F = p, it has prime subfield \mathbb{F}_p .

Lemma (Containment of Finite Fields): $\mathbb{GF}(p^{\ell}) \leq \mathbb{GF}(p^k) \iff \ell \text{ divides } k.$

Lemma (Identification of Finite Fields as Splitting Fields): $\mathbb{GF}(p^n)$ is the splitting field of $\rho(x) = x^{p^n} - x$, and the elements are exactly the roots of ρ .

Every element is a root by Cauchy's theorem, and the p^n roots are distinct since its derivative is identically -1.

Lemma (Splits Product of Irreducibles): Let $\rho_n := x^{p^n} - x$. Then $f(x) \mid \rho_n(x) \iff \deg f \mid n$ and f is irreducible.

Corollary: $x^{p^n} - x = \prod f_i(x)$ over all irreducible monic $f_i \in \mathbb{F}_p[x]$ of degree d dividing n.

 \iff : Suppose f is irreducible of degree d. Then $f \mid x^{p^d} - x$ (consider $F[x]/\langle f \rangle$) and $x^{p^d} - x \mid x^{p^n} - x \iff d \mid n$. \implies :

- $\alpha \in \mathbb{GF}(p^n) \iff \alpha^{p^n} \alpha = 0$, so every element is a root of ϕ_n and $\deg \min(\alpha, \mathbb{F}_p) \mid n$ since $\mathbb{F}_p(\alpha)$ is an intermediate extension.
- So if f is an irreducible factor of ϕ_n , f is the minimal polynomial of some root α of ϕ_n , so deg $f \mid n$. $\phi'_n(x) = p^n x^{p^{n-1}} \neq 0$, so ϕ_n has distinct roots and thus no repeated factors. So ϕ_n is the product of all such irreducible f.

Lemma: No finite field is algebraically closed.

3.2 Galois Theory

Definition: A field extension L/k is **algebraic** iff every $\alpha \in L$ is the root of some polynomial $f \in k[x]$.

Definition: Let L/k be a finite extension. Then TFAE:

- L/k is normal.
- Every irreducible $f \in k[x]$ that has one root in L has all of its roots in L
 - i.e. every polynomial splits into linear factors
- Every embedding $\sigma: L \hookrightarrow \overline{k}$ that is a lift of the identity on k satisfies $\sigma(L) = L$.
- If L is separable: L is the splitting field of some irreducible $f \in k[x]$.

Definition: Let L/k be a field extension, $\alpha \in L$ be arbitrary, and $f(x) := \min(\alpha, k)$. TFAE:

- L/k is separable
- \bullet f has no repeated factors/roots
- gcd(f, f') = 1, i.e. f is coprime to its derivative

• $f' \not\equiv 0$

Lemma: If char k = 0 or k is finite, then every algebraic extension L/k is separable.

Definition: Aut $(L/k) = \{ \sigma : L \to L \mid \sigma|_k = \mathrm{id}_k \}.$

Lemma: If L/k is algebraic, then Aut(L/k) permutes the roots of irreducible polynomials.

Lemma: $|\operatorname{Aut}(L/k)| \leq [L:k]$ with equality precisely when L/k is normal.

Definition: If L/k is Galois, we define Gal(L/k) := Aut(L/k).

3.2.1 Lemmas About Towers

Let L/F/k be a finite tower of field extensions

- Multiplicativity: [L:k] = [L:F][F:k]
- L/k normal/algebraic/Galois $\implies L/F$ normal/algebraic/Galois.
 - Proof (normal): $\min(\alpha, F) \mid \min(\alpha, k)$, so if the latter splits in L then so does the former.
 - Corollary: $\alpha \in L$ algebraic over $k \implies \alpha$ algebraic over F.
 - Corollary: E_1/k normal and E_2/k normal $\implies E_1E_2/k$ normal and $E_1 \cap E_2/k$ normal.

- F/k algebraic and L/F algebraic $\implies L/k$ algebraic.
- If L/k is algebraic, then F/k separable and L/F separable $\iff L/k$ separable

• F/k Galois and L/K Galois $\Longrightarrow F/k$ Galois **only if** $\operatorname{Gal}(L/F) \leq \operatorname{Gal}(L/k)$ $- \Longrightarrow \operatorname{Gal}(F/k) \cong \frac{\operatorname{Gal}(L/k)}{\operatorname{Gal}(L/F)}$

Common Counterexamples:

• $\mathbb{Q}(\zeta_3, 2^{1/3})$ is normal but $\mathbb{Q}(2^{1/3})$ is not since the irreducible polynomial $x^3 - 2$ has only one root in it.

Definition (Characterizations of Galois Extensions): Let L/k be a finite field extension. TFAE:

- L/k is Galois
- L/k is finite, normal, and separable.
- L/k is the splitting field of a separable polynomial
- $|\operatorname{Aut}(L/k)| = [L:k]$
- The fixed field of Aut(L/k) is exactly k.

Fundamental Theorem of Galois Theory: Let L/k be a Galois extension, then there is a correspondence:

$$\begin{split} \left\{ \mathrm{Subgroups} \ H &\leq \mathrm{Gal}(L/k) \right\} \iff \left\{ \begin{matrix} \mathrm{Fields} \ F \ \mathrm{such} \\ \mathrm{that} \ L/F/k \end{matrix} \right\} \\ H &\rightarrow \left\{ E^H \coloneqq \ \mathrm{The \ fixed \ field \ of} \ H \right\} \\ \left\{ \mathrm{Gal}(L/F) \coloneqq &\left\{ \sigma \in \mathrm{Gal}(L/k) \ \middle| \ \sigma(F) = F \right\} \right\} \leftarrow F. \end{split}$$

- This is contravariant with respect to subgroups/subfields.
- [F:k] = [G:H], so degrees of extensions over the base field correspond to indices of subgroups.
- $\bullet \ [K:F] = |H|$
- L/F is Galois and Gal(K/F) = H
- F/k is Galois \iff H is normal, and Gal(F/k) = Gal(L/k)/H.
- The compositum F_1F_2 corresponds to $H_1 \cap H_2$.
- The subfield $F_1 \cap F_2$ corresponds to H_1H_2 .

3.2.2 Examples

1. $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong \mathbb{Z}/(n)^{\times}$ and is generated by maps of the form $\zeta_n \mapsto \zeta_n^j$ where (j,n) = 1. I.e., the following map is an isomorphism:

$$\mathbb{Z}/(n)^{\times} \to \operatorname{Gal}(\mathbb{Q}(\zeta_n), \mathbb{Q})$$

 $r \mod n \mapsto (\phi_r : \zeta_n \mapsto \zeta_n^r).$

2. $Gal(\mathbb{GF}(p^n)/\mathbb{F}_p) \cong \mathbb{Z}/(n)$, a cyclic group generated by powers of the Frobenius automorphism:

$$\varphi_p: \mathbb{GF}(p^n) \to \mathbb{GF}(p^n)$$

 $x \mapsto x^p$.

Lemma: Every quadratic extension is Galois.

Lemma: If K is the splitting field of an irreducible polynomial of degree n, then $Gal(K/\mathbb{Q}) \leq S_n$ is a transitive subgroup.

Corollary: n divides the order $|Gal(K/\mathbb{Q})|$.

Definition: TFAE

- k is a **perfect** field.
- Every irreducible polynomial $p \in k[x]$ is separable
- Every finite extension F/k is separable.
- If char k > 0, the Frobenius is an automorphism of k.

Theorem:

- If char k = 0 or k is finite, then k is perfect.
- $k = \mathbb{Q}, \mathbb{F}_p$ are perfect, and any finite normal extension is Galois.
- Every splitting field of a polynomial over a perfect field is Galois.

Lemma (Composite Extensions): If F/k is finite and Galois and L/k is arbitrary, then FL/L is Galois and

$$\operatorname{Gal}(FL/L) = \operatorname{Gal}(F/F \cap L) \subset \operatorname{Gal}(F/k).$$

3.3 Cyclotomic Polynomials

Definition: Let $\zeta_n = e^{2\pi i/n}$, then

$$\Phi_n(x) = \prod_{\substack{k=1\\(j,n)=1}}^n \left(x - \zeta_n^k\right),\,$$

which is a product over primitive roots of unity.

Lemma: deg $\Phi_n(x) = \phi(n)$ for ϕ the totient function.

Computing Φ_n :

1.

$$\Phi_n(z) = \prod_{d|n,d>0} \left(z^d - 1\right)^{\mu\left(\frac{n}{d}\right)}$$

where

$$\mu(n) \equiv \left\{ \begin{array}{ll} 0 & \text{if n has one or more repeated prime factors} \\ 1 & \text{if $n=1$} \\ (-1)^k & \text{if n is a product of k distinct primes,} \end{array} \right.$$

2.

$$x^n - 1 = \prod_{d|n} \Phi_d(x) \implies \Phi_n(x) = \frac{x^n - 1}{\prod_{\substack{d|n \ d < n}} \Phi_d(x)},$$

so just use polynomial long division.

Lemma:

$$\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1$$

$$\Phi_{2p}(x) = x^{p-1} - x^{p-2} + \dots - x + 1.$$

Lemma:

$$k \mid n \implies \Phi_{nk}(x) = \Phi_n\left(x^k\right)$$

Definition: An extension F/k is **simple** if $F = k[\alpha]$ for a single element α .

Theorem (Primitive Element): Every finite separable extension is simple.

Corollary: $\mathbb{GF}(p^n)$ is a simple extension over \mathbb{F}_p .

4 Modules

4.1 General Modules

Definition: A module is **simple** iff it has no nontrivial proper submodules.

Definition: A free module is a module with a basis (i.e. a spanning, linearly independent set).

Example: $\mathbb{Z}/(6)$ is a \mathbb{Z} -module that is not free.

Definition: A module M is **projective** iff M is a direct summand of a free module $F = M \oplus \cdots$

Free implies projective, but not the converse.

Definition: A sequence of homomorphisms $0 \xrightarrow{d_1} A \xrightarrow{d_2} B \xrightarrow{d_3} C \to 0$ is *exact* iff im $d_i = \ker d_{i+1}$.

Lemma: If $0 \to A \to B \to C \to 0$ is a short exact sequence, then

- C free \implies the sequence splits
- C projective \implies the sequence splits
- A injective \implies the sequence splits

Moreover, if this sequence splits, then $B \cong A \oplus C$.

4.2 Classification of Modules over a PID

Let M be a finitely generated modules over a PID R. Then there is an invariant factor decomposition

$$M \cong F \bigoplus R/(r_i)$$
 where $r_1 \mid r_2 \mid \cdots$,

and similarly an elementary divisor decomposition.

4.3 Minimal / Characteristic Polynomials

Fix some notation:

 $\min_{A}(x)$: The minimal polynomial of A

 $\chi_A(x)$: The characteristic polynomial of A.

Definition: The minimal polynomial is the unique polynomial $\min_{A}(x)$ of minimal degree such that $\min_{A}(A) = 0$.

Definition: The **characteristic polynomial** of A is given by

$$\chi_A(x) = \det(A - xI) = \det(SNF(A - xI)).$$

Useful lemma: If A is upper triangular, then $det(A) = \prod_{i} a_{ii}$

Theorem (Cayley-Hamilton): The minimal polynomial divides the characteristic polynomial, and in particular $\chi_A(A) = 0$.

Lemma: Writing

$$\min_{A}(x) = \prod (x - \lambda_i)^{a_i}$$
$$\chi_A(x) = \prod (x - \lambda_i)^{b_i}$$

- $a_i \leq b_i$
- The roots both polynomials are precisely the eigenvalues of A.

Proof: By Cayley-Hamilton, min divides χ_A . Every λ_i is a root of μ_M : Let $(\mathbf{v}_i, \lambda_i)$ be a nontrivial eigenpair. Then by linearity,

$$\min_{A}(\lambda_i)\mathbf{v}_i = \min_{A}(A)\mathbf{v}_i = \mathbf{0},$$

which forces $\min_{\Lambda}(\lambda_i) = 0$.

Definition: Two matrices A, B are **similar** (i.e. $A = PBP^{-1}$) $\iff A, B$ have the same Jordan Canonical Form (JCF).

Definition: Two matrices A, B are **equivalent** (i.e. A = PBQ) \iff

- They have the same rank,
- They have the same invariant factors, and
- They have the same (JCF)

Finding the minimal polynomial:

Let m(x) denote the minimal polynomial A.

1. Find the characteristic polynomial $\chi(x)$; this annihilates A by Cayley-Hamilton. Then $m(x) \mid \chi(x)$, so just test the finitely many products of irreducible factors.

2. Pick any \mathbf{v} and compute $T\mathbf{v}, T^2\mathbf{v}, \cdots T^k\mathbf{v}$ until a linear dependence is introduced. Write this as p(T) = 0; then $\min_{A}(x) \mid p(x)$.

Definition: Given a monic $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + x^n$, the **companion matrix** of p is given by

$$C_p := \begin{bmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{bmatrix}.$$

4.4 Canonical Forms

4.4.1 Rational Canonical Form

Corresponds to the **Invariant Factor Decomposition** of T.

Lemma: RCF(A) is a block matrix where each block is the companion matrix of an invariant factor of A.

Derivation:

- Let $k[x] \curvearrowright V$ using T, take invariant factors a_i ,
- Note that $T \curvearrowright V$ by multiplication by x
- Write $\overline{x} = \pi(x)$ where $F[x] \xrightarrow{\pi} F[x]/(a_i)$; then span $\{\overline{x}\} = F[x]/(a_i)$.
- Write $a_i(x) = \sum b_i x^i$, note that $V \to F[x]$ pushes $T \curvearrowright V$ to $T \curvearrowright k[x]$ by multiplication by \overline{x}
- WRT the basis \overline{x} , T then acts via the companion matrix on this summand.
- Each invariant factor corresponds to a block of the RCF.

4.4.2 Jordan Canonical Form

Corresponds to the **Elementary Divisor Decomposition** of T.

Lemma: The elementary divisors of A are the minimal polynomials of the Jordan blocks.

Lemma: Writing

$$\min_{A}(x) = \prod_{A}(x - \lambda_i)^{a_i}$$
$$\chi_A(x) = \prod_{A}(x - \lambda_i)^{b_i}$$

- $a_i \leq b_i$
- a_i tells you the size of the **largest** Jordan block associated to λ_i ,
- b_i is the sum of sizes of all Jordan blocks associated to λ_i
- dim E_{λ_i} is the number of Jordan blocks associated to λ_i

4.5 Using Canonical Forms

Lemma: The characteristic polynomial is the *product of the invariant factors*, i.e.

$$\chi_A(x) = \prod_{j=1}^n f_j(x).$$

Lemma: The minimal polynomial of A is the *invariant factor of highest degree*, i.e.

$$\min_{A}(x) = f_n(x).$$

Lemma: For a linear operator on a vector space of nonzero finite dimension, TFAE:

- The minimal polynomial is equal to the characteristic polynomial.
- The list of invariant factors has length one.
- The Rational Canonical Form has a single block.
- The operator has a matrix similar to a companion matrix.
- There exists a cyclic vector \mathbf{v} such that $\operatorname{span}_k\left\{T^j\mathbf{v} \mid j=1,2,\cdots\right\}=V$.
- $\bullet \ T$ has $\dim V$ distinct eigenvalues

4.6 Diagonalizability

Notation: A^* denotes the conjugate transpose of A.

Lemma: Let V be a vector space over k an algebraically closed and $A \in \text{End}(V)$. Then if $W \subseteq V$ is an invariant subspace, so $A(W) \subseteq W$, the A has an eigenvector in W.

Theorem (The Spectral Theorem):

- 1. Hermitian matrices (i.e. $A^* = A$) are diagonalizable over \mathbb{C} .
- 2. Symmetric matrices (i.e. $A^t = A$) are diagonalizable over \mathbb{R} .

Proof: Suppose A is Hermitian. Since V itself is an invariant subspace, A has an eigenvector $\mathbf{v}_1 \in V$. Let $W_1 = \operatorname{span}_k \{\mathbf{v}_1\}^{\perp}$. Then for any $\mathbf{w}_1 \in W_1$,

$$\langle \mathbf{v}_1, A\mathbf{w}_1 \rangle = \langle A\mathbf{v}_1, \mathbf{w}_1 \rangle = \lambda \langle \mathbf{v}_1, \mathbf{w}_1 \rangle = 0,$$

so $A(W_1) \subseteq W_1$ is an invariant subspace, etc.

Suppose now that A is symmetric. Then there is an eigenvector of norm 1, $\mathbf{v} \in V$.

$$\lambda = \lambda \langle \mathbf{v}, \ \mathbf{v} \rangle = \langle A\mathbf{v}, \ \mathbf{v} \rangle = \langle \mathbf{v}, \ A\mathbf{v} \rangle = \overline{\lambda} \implies \lambda \in \mathbb{R}.$$

Lemma: $\{A_i\}$ pairwise commute \iff they are all simultaneously diagonalizable.

Proof: By induction on number of operators

- A_n is diagonalizable, so $V = \bigoplus E_i$ a sum of eigenspaces
- Restrict all n-1 operators A to E_n .
- The commute in V so they commute in E_n
- (Lemma) They were diagonalizable in V, so they're diagonalizable in E_n
- So they're simultaneously diagonalizable by I.H.
- But these eigenvectors for the A_i are all in E_n , so they're eigenvectors for A_n too.
- Can do this for each eigenspace.

Full details here

Theorem (Characterizations of Diagonalizability)

M is diagonalizable over $\mathbb{F} \iff \min_{M}(x,\mathbb{F})$ splits into distinct linear factors over \mathbb{F} , or equivalently iff all of the roots of \min_{M} lie in \mathbb{F} .

Proof: \Longrightarrow : If min factors into linear factors, so does each invariant factor, so every elementary divisor is linear and JCF(A) is diagonal.

 \Leftarrow : If A is diagonalizable, every elementary divisor is linear, so every invariant factor factors into linear pieces. But the minimal polynomial is just the largest invariant factor.

4.7 Matrix Counterexamples

- 1. A matrix that is:
- ullet Not diagonalizable over ${\mathbb R}$ but diagonalizable over ${\mathbb C}$
- ullet No eigenvalues in $\mathbb R$ but distinct eigenvalues over $\mathbb C$
- $\bullet \min_{M}(x) = \chi_{M}(x) = x^{2} + 1$

$$M = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \sim \left[\begin{array}{c|c} -1\sqrt{-1} & 0 \\ \hline 0 & 1\sqrt{-1} \end{array} \right].$$

2.

$$M = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \sim \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right].$$

- ullet Not diagonalizable over ${\mathbb C}$
- Eigenvalues [1, 1] (repeated, multiplicity 2)
- $\min_{M}(x) = \chi_{M}(x) = x^{2} 2x + 1$
- 3. Non-similar matrices with the same characteristic polynomial

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \text{ and } \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right]$$

24

4. A full-rank matrix that is not diagonalizable:

$$\left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right].$$

5. Matrix roots of unity:

$$\sqrt{I_2} = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

$$\sqrt{-I_2} = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right].$$

4.8 Miscellaneous

Lemma: $I \subseteq R$ is a free R-module iff I is a principal ideal.

Proof: \Longrightarrow :

Suppose I is free as an R-module, and let $B = \{\mathbf{m}_j\}_{j \in J} \subseteq I$ be a basis so we can write $M = \langle B \rangle$.

Suppose that $|B| \geq 2$, so we can pick at least 2 basis elements $\mathbf{m}_1 \neq \mathbf{m}_2$, and consider

$$\mathbf{c} = \mathbf{m}_1 \mathbf{m}_2 - \mathbf{m}_2 \mathbf{m}_1,$$

which is also an element of M .

Since R is an integral domain, R is commutative, and so

$$\mathbf{c} = \mathbf{m}_1 \mathbf{m}_2 - \mathbf{m}_2 \mathbf{m}_1 = \mathbf{m}_1 \mathbf{m}_2 - \mathbf{m}_1 \mathbf{m}_2 = \mathbf{0}_M$$

However, this exhibits a linear dependence between \mathbf{m}_1 and \mathbf{m}_2 , namely that there exist $\alpha_1, \alpha_2 \neq 0_R$ such that $\alpha_1 \mathbf{m}_1 + \alpha_2 \mathbf{m}_2 = \mathbf{0}_M$; this follows because $M \subset R$ means that we can take $\alpha_1 = -m_2, \alpha_2 = m_1$. This contradicts the assumption that B was a basis, so we must have |B| = 1 and so $B = \{\mathbf{m}\}$ for some $\mathbf{m} \in I$. But then $M = \langle B \rangle = \langle \mathbf{m} \rangle$ is generated by a single element, so M is principal.

⇐ :

Suppose $M \subseteq R$ is principal, so $M = \langle \mathbf{m} \rangle$ for some $\mathbf{m} \neq \mathbf{0}_M \in M \subset R$.

Then $x \in M \implies x = \alpha \mathbf{m}$ for some element $\alpha \in R$ and we just need to show that $\alpha \mathbf{m} = \mathbf{0}_M \implies \alpha = \mathbf{0}_R$ in order for $\{\mathbf{m}\}$ to be a basis for M, making M a free R-module.

But since $M \subset R$, we have $\alpha, m \in R$ and $\mathbf{0}_M = \mathbf{0}_R$, and since R is an integral domain, we have $\alpha m = \mathbf{0}_R \implies \alpha = \mathbf{0}_R$ or $m = \mathbf{0}_R$.

Since $m \neq 0_R$, this forces $\alpha = 0_R$, which allows $\{m\}$ to be a linearly independent set and thus a basis for M as an R-module.