WHAT IS CLAIMED IS:

1	1. A substrate processing chamber having at least one component
2	bearing a rare earth-containing coating bound to a parent material by an intervening
3	adhesion layer, such that the component exhibits resistance to etching in a plasma
4	environment.
1	
1	2. The substrate processing chamber of claim 1 wherein said rare
2	earth-containing coating is selected from the group of Yttrium fluoride, Yttrium oxide
3	Yttrium-containing oxides of Aluminum, Erbium oxides, and Neodymium oxides.
1	3. The substrate processing chamber of claim 1 wherein the
2	component is selected from the group comprising a chamber liner, a chamber dome, a
3	chamber wall, a cover plate, a gas manifold, a faceplate, a substrate support, and a
4	substrate support/heater.
1	4. The substrate processing chamber of claim 1 wherein the
2	adhesion layer comprises a graded subsurface layer of rare earth material formed in the
3	surface of the parent material.
1	5. The substrate processing chamber of claim 4 wherein the
2	adhesion layer comprises a subsurface rare earth layer resulting from a changed energy
3	of bombardment during introduction of rare earth material into the parent material
4	through an IBAD process.
1	6. The substrate processing chamber of claim 4 wherein the
2	adhesion layer comprises a subsurface rare earth layer resulting from a changed
3	implantation energy during introduction of rare earth material into the parent material
4	through a MEPIIID process.
1	7. The substrate processing chamber of claim 1 wherein the parent
2	material comprises aluminum nitride or aluminum oxide.
1	8. A method for treating a parent material for corrosion resistance
2	to plasma comprising:
3	forming an adhesion layer over a parent material; and

4	forming a rare earth-containing coating over the adhesion layer.
1	9. The method of claim 8 wherein the rare earth-containing coating
2	is formed by deposition of rare earth-containing material.
1	10. The method of claim 9 wherein rare-earth ions are introduced by
2	conducting reactive sputter deposition in an oxygen-containing ambient.
1	11. The method of claim 8 wherein the adhesion layer is formed by
2	introducing rare earth metals into the parent material at varying energies to form a
3	graded implant layer.
1	12. The method of claim 11 wherein the adhesion layer is formed by
2	an ion bombardment assisted deposition (IBAD) technique employing bombardment of
3	a deposited rare earth layer with inert Argon lons at changed energies.
1	13. The method of claim 11 wherein the adhesion layer is formed by
2	accelerating rare-earth ions at the parent material at changed energies of implantation.
1	14. The method of claim 13 wherein rare-earth ions are accelerated
2	using a MEPIIID ion implanter.
1	15. The method of claim 8 wherein the rare-earth containing coating
2	is formed by exposing a rare earth present on a surface of the parent material to a
3	fluorine ambient.