ETC3250 - Project Presentation

William Chan (25961039), Yung Chyi Siah (27717518), Connor Lickliter (27794628), Mihir Bhatt (25175319), Alec Kajewski (26895765)

Introduction

- To produce the most accurate prediction model for how likely it is a client will subscribe to a bank term deposit.
- 7 predictors and 7 variables related to previous campaign

Methodology

- Initially the data set was examined to show the range/concentration of values and to identify potential outliers
- Various methods were used including logistic regression, probit models and decision trees

admin.	blue-collar	entrepreneur	housemaid	management	retired
7496	7054	1175	858	2233	961
self-employed	services	student	technician	unemployed	unknown
1099	2999	305	5280	718	258

Methodology

- The predictions from the model were then calculated
- To compare model predictions, the in sample log loss was calculated using the following function in R

```
log_loss = function(prediction) {
  log_loss = -mean(my_data$y*log(prediction) + (1 - my_data$y)*log(1-prediction))
  return(log_loss)
}
```

Results and Discussion

- Evaluation Method
 - In Sample Log loss
 - Overfitting

Results and Discussion

- Data set manipulation and reduction
- fit = glm(y ~ retiredstudent + single + poutcome_binary, data = my_data, family = binomial) (In sample log loss = 0.26835 vs out of sample = 0.55529)

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.61321  0.02654 -98.473 < 2e-16 ***
retiredstudent  0.76599  0.08278  9.253 < 2e-16 ***
single  0.25854  0.04731  5.465 4.63e-08 ***
poutcome_binary  1.98677  0.20530  9.678 < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Investigation into best model
- fit = glm(y ~ marital + default + loan + pdays + poutcome, data=my_data, family=binomial) (In sample log loss = 0.26879 vs out of sample = 0.54941)

Results and Discussion

Alternative Methods

- Tree functions
- Random Forests

