CITS2211: Assignment One 2024

This assignment has 12 questions with a total value of 60 marks. Follow the instructions on LMS for submission.

1.	State whether each of the following propositions is a tautology or a contradiction or con-
	tingent (i.e. neither). For each of your answers, give a brief justification.

- (a) $P \vee (Q \vee \neg P)$
- (b) $(P \land \neg P) \lor \neg Q$
- (c) $Q \to (P \land \neg Q)$

/ 5

2. Use the equivalences listed in lectures to prove that the following equivalence:

$$P \vee \neg (P \vee \neg Q) \equiv P \vee Q$$

/ 5

3. We define a natural number to be *fluffy* if it has a factor other than one or itself. Express the statement

for every number n there exists a fluffy number between n and n + 5

in predicate logic. You should use no other predicates other than the \leq and = predicates commonly used in mathematics.

/ 5

- 4. Express the following colloquial English statements using predicate logic, where the domain of discourse is all people. Use the constants a = "Anna" and b = "Ben".
 - (a) Anna has no neighbours.
 - (b) Ben has two neighbours.
 - (c) If somebody is a neighbour of Ben, Ben is also a neighbour of that person.
 - (d) Except for Anna, everyone is the neighbour of someone.

/ 5

5.	Which of the following proposed inference rules are sound for propositional logic? If they are
	sound then give a brief justification. If they are unsound, then give a counter-example.

/ 5

6. Fill in the blanks in the following proof that

$$\forall x. (\neg Q(x) \land P(x)) \land \exists x. (Q(x) \lor (P(x) \land R(x))) \rightarrow \exists x. R(x)$$

1. $\forall x. (\neg Q(x) \land P(x))$	premise
2. $\exists x. (Q(x) \lor (P(x) \land R(x)))$	premise
3.	2, exist elimination
$4. \neg Q(a) \land P(a)$	
$5. \ \neg Q(a)$	4, conjunction elimination
6. $\neg Q(a) \to (P(a) \land R(a))$	3, implication law
7. $P(a) \wedge R(a)$	
8.	7, conjunction elimination
9. $\exists x.R(x)$	

/ 5

7. A number is squidgy if it can be represented as a fraction $\frac{p}{q}$ where both p and q are integers. Using a proof by contradiction, show that when you multiple the difference between a squidgy and a non-squidgy number by 2, the result is a non-squidgy number.

/ 5

8	Prove that	r is an	odd i	integer if	and	only if	5x - 1	is an	even integer
Ο.	1 TOVC tilat	ω is an	ouu i	inicgei n	. and	Omy m	ox	15 611	CVCII IIIIUCECI

/	5

9. In a badminton tournament of n players, each player plays exactly one match against every other player. There are no draws. Prove via induction that the players can be arranged in an order $p_1, p_2, ..., p_n$ such that p_i defeats p_{i+1} for all $i \in {1, 2, ..., n-1}$.

- 10. Consider the following formal language (no semantics provided):
 - Alphabet: a, b
 - Syntax: the symbols a and baa are formulae. If ψ and ϕ are formulae then so are $\psi a \phi$ and $aba\psi$.

Let $A(\psi)$ be the number of a symbols in formula ψ , and let $B(\psi)$ be the number of b symbols. Use structural induction to prove that:

$$\forall \phi. A(\phi) \ge 2B(\phi)$$

11. For each of the Venn diagrams below, write down a simple set theory expression which equals the shaded area of the diagram.

(i)

(ii)

/ 5

12. Consider two relations R, S on a set X. Let the relation T be defined as:

$$T = \{(x, z) \mid \exists y . (x, y) \in R \land (y, z) \in S\}$$

Either prove or disprove the following statements:

- (a) If T is reflexive then so are R and S.
- (b) If R and S are reflexive then so is T.
- (c) If R and S are symmetric then so is T.

/ 5