Логика предикатов

Теорема адекватности исчисления аналитических таблиц

Перязев Николай Алексеевич

Теорема адекватности исчисления аналитических таблиц

Теорема (Адекватность исчисления аналитических таблиц)

В семантике языка предикатов $\Phi \equiv \sigma$ тогда и только тогда, когда $\Phi = \bar{\sigma}$ опровержима в исчислении аналитических таблиц.

Теорема адекватности разбивается на две теоремы - теорему корректность и теорему полноты.

Теорема корректности исчисления аналитических таблиц

Теорема (Корректность исчисления аналитических таблиц)

Если $\Phi = \bar{\sigma}$ опровержима в исчислении аналитических таблиц, то $\Phi \equiv \sigma$.

Ветка таблицы выполнима, если существует интерпретация при которой истинностное значения всех формул на этой ветки совпадает с их отметками.

Для доказательства теоремы рассмотрим лемму.

Лемма

Если формула Φ является σ -выполнимой, то в любой аналитической таблице с корнем $\Phi = \sigma$ существует выполнимая ветка.

Теорема корректности исчисления аналитических таблиц

Доказательство леммы.

Доказательство индукцией по глубине s таблицы для $\Phi = \sigma$.

Базис индукции. s=0. По условию леммы существует интерпретация f при которой $f(\Phi) = \sigma$.

Шаг индукции. Пусть есть ветка, у которой все формулы на глубине s выполнимы. Формула на глубине s+1 получается применением правил образования таблиц.

lpha-правило и eta-правило очевидно,

$$\gamma$$
-правило: рассмотрим $\dfrac{\forall x_i \Phi = 1}{\Phi_{x_i}^{c_j} = 1}$, аналогично $\dfrac{\exists x_i \Phi = 0}{\Phi_{x_i}^{c_j} = 0}$.

По индукционному предположению существует интерпретация при которой $f(\forall x_i \Phi) = 1$, по определению семантики для любой расширяющей интерпретации выполняется $f(\Phi_{x_i}^{c_j}) = 1$, т.е. для всех возможных интерпретаций старых констант.

Доказательство леммы

$$\delta$$
-правило: рассмотрим $\cfrac{\exists x_i \Phi = 1}{\Phi_{x_i}^{c_j} = 1}$, аналогично $\cfrac{\forall x_i \Phi = 0}{\Phi_{x_i}^{c_j} = 0}$.

По индукционному предположению существует интерпретация при которой $f(\exists x_i \Phi) = 1$, по определению семантики для некоторой расширяющей интерпретации выполняется $f(\Phi_{x_i}^{c_j}) = 1$, где c_j - константа, соответствующая этому расширению.

Теорема корректности исчисления аналитических таблиц

Доказательство теоремы.

Доказательство теоремы проведем от противного.

Пусть Ф является $\bar{\sigma}$ -выполнимой. Так как все ветки таблицы с корнем $\Phi = \bar{\sigma}$ замкнуты, то по лемме существует ветка W у которой все формулы выполнимы. Это значит существует формула Ψ такая, что $\Psi = 0 \in W$ и $\Psi = 1 \in W$, следовательно $f(\Psi) = 0$ и $f(\Psi) = 1$, для некоторой интерпретации. Так как может выполняется только одно из условий, получили противоречие.

Теорема полноты исчисление аналитических таблиц

Теорема (Полнота исчисления аналитических таблиц)

Если $\Phi \equiv \sigma$, тогда $\Phi = \bar{\sigma}$ опровержима в исчислении аналитических таблиц, т.е. существует замкнутая аналитическая таблица с корнем $\Phi = \bar{\sigma}$.

Для доказательства теоремы рассмотрим лемму.

Лемма

Любая финальная открытая ветка таблицы является выполнимой (т.е. существует интерпретация, при которой истинностное значение всех формул ветки совпадает с их отметками).

Теорема полноты исчисление аналитических таблиц

Доказательство леммы.

Пусть V-финальная открытая ветка.

Универсум
$$A = \{c_i \mid c_i \in C(V)\}.$$

Интерпретация
$$g(c_i)\!=\!c_i,\; h(p^n)\!=\!p^n,\;$$
где $p^n\in P(V)$ и определяется

так:
$$(c_{i_1},\ldots,c_{i_n})\in p^n\Leftrightarrow p^n(c_{i_1},\ldots,c_{i_n})\!=\!1\in V$$

Докажем индукцией по глубине формул, входящих в V, что ветка V выполнима при так определенной интерпретации.

Базис индукции.
$$\Phi \equiv p^n(c_{i_1},\ldots,c_{i_n})$$

если
$$p^n(c_{i_1},\ldots,c_{i_n})\!=\!1\in V$$
, то $(c_{i_1},\ldots,c_{i_n})\!\in p^n$, получаем

$$f(p^{n}(c_{i_{1}},\ldots,c_{i_{n}}))=1;$$

если
$$p^n(c_{i_1},\ldots,c_{i_n})\!=\!0\in V$$
, то $(c_{i_1},\ldots,c_{i_n})\notin p^n$, получаем

$$f(p^n(c_{i_1},\ldots,c_{i_n}))=0.$$

Доказательство леммы

Шаг индукции.

- а) Если $\Phi = \sigma$ есть α -формула, так как V финальная ветка, то $\Psi_1 = \sigma_1 \in V$ и $\Psi_2 = \sigma_2 \in V$. Тогда по индуктивному предположению $f(\Psi_1) = \sigma_1$ и $f(\Psi_2) = \sigma_2$. По определению истинности α -формул получим $f(\Phi) = \sigma$.
- 6) Если $\Phi = \sigma$ есть β -формула, так как V финальная ветка, то $\Psi_1 = \sigma_1 \in V$ или $\Psi_2 = \sigma_2 \in V$. Тогда по индуктивному предположению $f(\Psi_1) = \sigma_1$ или $f(\Psi_2) = \sigma_2$. По определению истинности β -формул получим $f(\Phi) = \sigma$.

Доказательство леммы

- г) Если $\Phi = \sigma$ есть γ -формула. Рассмотрим случай $\forall x_j \Psi_{c_i}^{x_j} = 1$, а случай $\exists x_j \Psi_{c_i}^{x_j} = 0$ рассматривается аналогично. Так как V финальная ветка, то $\Psi_{x_j}^{c_k} = 1 \in V$ для всех c_k входящих в формулы V, т.е. для всех $c_k \in A$. Тогда по индукционному предположению $f(\Psi_{x_j}^{c_k}) = 1$ для всех c_k . Тогда по определению семантики $f(\forall x_j \Psi_{c_i}^{x_j}) = 1$, т.к. очевидно $\Psi \equiv (\Psi_{x_i}^{c_k})_{c_k}^{x_j}$.
- д) Если $\Phi = \sigma$ есть δ -формула. Рассмотрим случай $\forall x_j \Psi_{c_i}^{x_j} = 0$, а случай $\exists x_j \Psi_{c_i}^{x_j} = 1$ рассматривается аналогично. Так как V финальная ветка, то $\Psi_{x_j}^{c_k} = 0 \in V$ для некоторого $c_k \in A$. Тогда по индукционному предположению $f(\Psi_{x_j}^{c_k}) = 0$ для некоторого $c_k \in A$ Тогда по определению семантики $f(\forall x_i \Psi_{c_i}^{x_j}) = 0$.

Теорема полноты исчисление аналитических таблиц

Опираясь на лемму, докажем теорему полноты.

Доказательство теоремы.

Доказательство проведем от противного. Любая таблица для $\Phi = \bar{\sigma}$ содержит открытую ветку (возможно бесконечную). Построим финальную таблицу для $\Phi = \bar{\sigma}$.

Построение проведем индукцией (счетное число шагов):

Базис индукции. Начинаем с $\Phi = \bar{\sigma}$ и считаем ее не использованной; Шаг индукции. Проведем построения. Если $\Phi' = \tau$ появилась на минимальном уровне, не была использована и принадлежит открытой ветке, то каждую открытую ветку Θ , содержащую $\Phi' = \tau$, продолжаем применением правил построения таблиц к формуле $\Phi' = \tau$.

Доказательство теоремы

При этом если $\Phi'= au$ есть γ -формула ($\Phi'\equiv\exists x_i\Psi=0,\ \Phi'\equiv\forall x_i\Psi=1$), то берем первую сверху константу $c_j\in\Theta$,(если нет, то новую) такую что $\Psi^{c_j}_{x_i}= au\notin\Theta$ и продолжаем Θ на две вершины сначала $\Psi^{c_j}_{x_i}=0$ ($\Psi^{c_j}_{x_i}=1$), затем $\Phi'= au$ использованной, но если эта формула была с меткой (
u), то эту вершину удаляем. Считаем, что в построенной

использованы (возможно в этом случае бесконечная ветка). Индукцией по глубине *s* таблицы покажем, что применение правила избыточно, т.е., что эта таблица финальная.

таблице каждая ее ветка либо замкнута, либо все формулы

Доказательство теоремы

Базис индукции. $s\!=\!0$, т.е. $\Phi\!=\!\bar{\sigma}$ есть таблица с использованной вершиной.

Шаг индукции. Применение правил ко всем формулам на глубине s избыточно. $\Phi'=\tau$ на глубине (s+1). Т.к. ветка использована, то, если $\alpha-$, $\beta-$, $\sigma-$ формулы - применение правил избыточно. Если γ -формула и c_i i-тая сверху константа, входящая в ветку, то через i штук копий $\Phi'=\tau$ (с меткой ν) в ветку входит формула $\Phi'(c_i)=\tau$ и правило избыточно. Тем самым доказали шаг индукции. Так как финальная таблица для $\Phi=\bar{\sigma}$ содержит открытую ветку, то по лемме эта ветка выполнима. Значит существует интерпретация при которой $f(\Phi)=\bar{\sigma}$, что противоречит $\Phi\equiv\sigma$.

