

IIC1253 — Matemáticas Discretas — 1'2017

INTERROGACION 3

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

Pregunta 1

Demuestre que para todo b > 1 y $n \in \mathbb{N} - \{0\}$, n se puede escribir de forma única como:

$$n = a_{k-1}b^{k-1} + a_{k-2}b^{k-2} + \dots + a_1b + a_0 = \sum_{i=0}^{k-1} a_ib^i$$

con $k \ge 1$, $a_{k-1} \ne 0$ y $a_i < b$ para todo i < k.

Recuerde demostrar que la representación es única para todo $n \in \mathbb{N} - \{0\}$.

Pregunta 2

Para un alfabeto finito Σ se define el conjunto \mathcal{P}_{Σ} como el menor conjunto que satisface las siguientes reglas:

- $\epsilon \in \mathcal{P}_{\Sigma}$.
- $a \in \mathcal{P}_{\Sigma}$ para todo $a \in \Sigma$.
- si $u \in \mathcal{P}_{\Sigma}$, entonces $a \cdot u \cdot a \in \mathcal{P}_{\Sigma}$ para todo $a \in \Sigma$.

Por último, para una palabra $w = a_1 a_2 \dots a_n$ se define la palabra reversa $w^R = a_n \dots a_2 a_1$.

- 1. Demuestre que para toda palabra $w \in \Sigma^*$, si $w \in \mathcal{P}_{\Sigma}$, entonces $w = w^R$.
- 2. Demuestre que para toda palabra $w \in \Sigma^*$, si $w = w^R$, entonces $w \in \mathcal{P}_{\Sigma}$.

Pregunta 3

Demuestre que $\log_2(n!) \in \Theta(n \cdot \log_2(n))$ usando la definición de notación Θ (no puede usar límites). Para esta demostración, usted puede asumir la "fórmula de Stirling":

$$n! \in \Theta(\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n)$$

donde $\pi = 3,14...$ y e = 2,71... son constantes.

Pregunta 4

- 1. Para m > 1 demuestre que si $a \equiv b \pmod{m}$, entonces $\gcd(a, m) = \gcd(b, m)$.
- 2. Para m > 1 demuestre que si $ac \equiv bc \pmod{m}$, entonces $a \equiv b \pmod{\frac{m}{\gcd(m,c)}}$.