1)
$$a$$
) $e^{2}e^{3\pi i \hat{c}} = e^{2}e^{2\pi i \hat{c}}e^{2\pi i} = e^{2}(i)(-1) = -c^{2}$
b) $\left(e^{\frac{1}{2}}e^{\frac{\pi}{4}i}\right)^{2} = \left(\sqrt{\frac{e}{2}}\left(1+i\right)\right)^{2}$

$$e' e^{\frac{\pi i}{2}} = \frac{e}{2} (1 + i)^{2}$$

$$\frac{2e^{\frac{\pi i}{2} + 1}}{e} = (1 + i)^{2}$$

$$2e^{\frac{5/i}{2}}=(1+i)^2=1+2i-1=2i$$

5) $|c^{2z}e^{i}| = e^{2x}$ $|e^{i(x^{2}+2xy-y^{2})}|$ 1e + e 2 | Le2+ + e - 2 xx ≤ 1e2x +e-2xy let 16v= e^{2 = +i} { \ \ = e^{2 = 2} V++15 1V1+14 (V) le22 / 5 e 12/2 12/2= x2+1,2 1 = 2 = x2+y2 1e22 = (ex2+2xyi-12) = (x2-12) ex2-12 < cx2+12 $(x^{2}-y^{2}) = (x^{2}+y^{2})$ $(x^{2}-y^{2}) = (x^{2}+y^{2})$ $(x^{2}-y^{2}) = (x^{2}+y^{2})$ $(x^{2}-y^{2}) = (x^{2}+y^{2})$

· · · · log (1-i) = ½ ln 2 - - 1

3)
$$Log i^{3} \neq 3Log i$$
 $Log (i^{3}) = Log (liii) = Log(-i)$
 $Log(i) = r = -1, \quad 460 = -\frac{77}{2}$
 $Log(i) = ln(-1) - \frac{2}{2}i$
 $3log(i) = r = -1 \quad \theta = \frac{7}{2}$
 $-7) \quad 43 \quad ln(4) + \frac{7}{2}i$

=
$$2 \ln(i) + (7 + 2n\pi)i$$
 $n = (11, 12, 13)...$

8)
$$l_{09}(2) = i \frac{\pi}{2}$$

$$l_{09}(2) = l_{09}r + i\theta$$

$$l_{09}(2) = l_{09}r$$

3,36

(1)
$$(1+i)^{\frac{1}{n}} - 7 = \sqrt{2}$$

(2) $(1+i)^{\frac{1}{n}} - 7 = \sqrt{2}$

(3) $(1+i)^{\frac{1}{n}} = \sqrt{2} = \sqrt{$

n=71,5

$$0) \frac{1}{i^{2i}} = e^{(in+1)\pi}$$

2)
$$(-i)^{i}$$
 $(-i)^{i}$ $(-i)^{$

b)
$$le+(-1-\sqrt{3}i=Z) r=2, \theta=\frac{\pi}{3}$$

= $\left(2e^{\frac{\pi}{3}i}\right)e^{\frac{\pi}{3}}=\left(ee^{\frac{\pi}{3}i}\right)^{\frac{3\pi}{3}i}=e^{2\pi^{2}i}$

Since
$$x = 2\pi^{2}$$

() $(1-i)^{4i}$
 $1-i = 7$ $r = \sqrt{2}$
 $\theta = -\frac{2}{4}$
 $\left(-\sqrt{2}e^{4}\right)^{4i}$
 $= 4\pi$
 $4e^{-\pi i}$

3) $(-1+\sqrt{3}i)^{\frac{3}{2}}=\pm 2\sqrt{2}$ EN 3/3/2/2-3 (26/3/3/2/2/2012) (32) log (1+ √34) V=2 0= 3 $e^{\frac{3}{2}(\ln 2 + \frac{7i}{3})} = e^{\frac{3}{2}\ln 2 + 2\pi i}$ $e^{\frac{3}{2}\ln 2} = 2\sqrt{2}$ $e^{2\pi i} = 1$ $2\sqrt{2}e^{25/i}=\pm 2\sqrt{2}$ $i' = e^{\log i} = e^{\left(\left(i + \frac{\pi}{2}\right)\right)} = e^{\left(i + \frac{\pi}{2}\right)} = e^{\left(i + \frac{\pi}{2}\right)}$ ci = cos (tasin c e (Lose + isinc) Sin C must be gone, Thankfor Comust be real.