MA1521 Cheatsheet

AY20/21 Sem 1 | Chapter 1-3

01. FUNCTIONS & LIMITS

Rules of Limits

- 1. $\lim_{x \to a} (f \pm g)(x) = L \pm L'$
- 2. $\lim_{x \to \infty} (fg)(x) = LL'$
- 3. $\lim_{x \to a} \frac{f}{g}(x) = \frac{L}{L'}$, provided $L' \neq 0$
- 4. $\lim_{x \to a} kf(x) = kL$ for any real number k.

Estimation

first order estimate: $y' \approx y + \Delta x \times \frac{dy}{dx}$ second order estimate:

 $y' \approx 1$ st estimate $+\left(\frac{(\triangle x)^2}{2} \times \frac{d^2y}{dx^2}\right)$

pop. variance: $\sigma^2 = \frac{\sum x^2 - \frac{(\sum x)^2}{n}}{\pi}$

pop. covariance: $\mathrm{cov}(x,y) = \frac{\sum xy^2 - \frac{\sum x \sum y}{n}}{n}$

pop. correlation: $\frac{\text{cov}(x,y)}{\sigma_x \times \sigma_y}$

02. DIFFERENTIATION

extreme values:

- f'(x) = 0
- f'(x) does not exist
- ullet end points of the domain of f

parametric differentiaton: $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) = \frac{\frac{d}{dt}(\frac{dy}{dx})}{dx}$

Differentiation Techniques

f(x)	f'(x)		
$\tan x$	$\sec^2 x$		
$\csc x$	$-\csc x \cot x$		
$\sec x$	$\sec x \tan x$		
$\cot x$	$-\csc^2 x$		
$a^{f(x)}$	$\ln a \cdot f'(x) a^{f(x)}$		
$\log_a f(x)$	$\log_a e \cdot \frac{f'(x)}{f(x)}$		
$\sin^{-1} f(x)$	$\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, f(x) < 1$		
$\cos^{-1} f(x)$	$-\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, f(x) < 1$		
$\tan^{-1} f(x)$	$\frac{f'(x)}{1+[f(x)]^2}$		
$\cot^{-1} f(x)$	$-\frac{f'(x)}{1+[f(x)]^2}$		
$\sec^{-1} f(x)$	$\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$		
$\csc^{-1} f(x)$	$-\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$		

L'Hopital's Rule

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

- for indeterminate forms $(\frac{0}{0} \text{ or } \frac{\infty}{\infty})$, cannot directly substitute
- for other forms: convert to $(\frac{0}{0} \text{ or } \frac{\infty}{\infty})$ then apply L'Hopital's
- for exponents: use \ln , then sub into $e^{f(x)}$

03. INTEGRATION

Integration Techniques

f(x)	$\int f(x)$
$\tan x$	$\ln(\sec x), x < \frac{\pi}{2}$
$\cot x$	$\ln(\sin x)$, $0 < x < \pi$
$\csc x$	$-\ln(\csc x + \cot x), 0 < x < \pi$
$\sec x$	$\ln(\sec x + \tan x), x < \frac{\pi}{2}$
$\frac{\frac{1}{x^2 + a^2}}{\sqrt{a^2 - x^2}}$	$\frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right)$ $\sin^{-1}\left(\frac{x}{a}\right), x < a$ $\frac{1}{a} \ln(\frac{x-a}{a})$
$\frac{\overline{x^2 - a^2}}{\overline{a^2 - x^2}}$	$\frac{1}{2a}\ln\left(\frac{x-a}{x+a}\right), x > a$ $\frac{1}{2a}\ln\left(\frac{x+a}{x-a}\right), x < a$
a^x	$\frac{a^x}{\ln a}$

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

- indefinite integral the integral of the function without any
- antiderivative any function whose derivative will be the same as the original function

substitution: $\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$ by parts: $\int uv' dx = uv - \int u'v dx$

Volume of Revolution

about x-axis:

- (with hollow area) $V = \pi \int_a^b [f(x)]^2 [g(x)]^2 dx$
- (about line y=k) $V=\pi \int_a^b [f(x)-k]^2 dx$

Logistic Models

$$N = \frac{N_{t=\infty}}{1 + (\frac{N_{t=\infty}}{N_{t=0}} - 1)e^{-Bt}}$$

- N number
- B birth rate
- t time

04. SERIES

Geometric Series

sum (divergent) $a(1-r^n)$

sum (convergent)

MacLaurin Series

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} x^2 n$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n_1)!}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} n x^{n-1}$$

$$\frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=2}^{\infty} n(n-1) x^{n-2}$$

$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n$$

$$= 1 + kx + \frac{k(k-1)}{2!} x^2 + \dots$$

Power Series

power series about
$$x=0$$

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots$$

power series about x = a (a is the centre of the power series)

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots$$

Radius of Convergence

power series converges where $\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| < 1$

converge at	R	$\lim_{n \to \infty} \left \frac{u_{n+1}}{u_n} \right $
x = a	0	∞
(x-h,x+h)	$h, \frac{1}{N}$	$N \cdot x-a $
all x	∞	0

Differentiation/Integration

For
$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
 and $a-h < x < a+h$

differentiation of power series:

$$f'(x) = \sum_{n=0}^{\infty} n c_n (x-a)^{n-1}$$

integration of power series:

$$\int f(x)dx = \sum_{0}^{\infty} c_n \frac{(x-1)^{n+1}}{n+1} + c$$

if $R = \infty$, f(x) can be integrated to $\int_0^1 f(x) dx$

Taylor series

$$\sum_{k=0}^{\infty} \frac{f^k(a)}{k!} (x-a)^k$$
 MacLaurin series:
$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n$$
 Taylor polynomial of f at a :
$$P_n(x) = \sum_{n=0}^{\infty} \frac{f^k(a)}{k!} (x-a)^k$$

05. VECTORS

unit vector, $\hat{\boldsymbol{p}} = \frac{\boldsymbol{p}}{|\boldsymbol{p}|}$

Dot product

$$\begin{aligned} \boldsymbol{a} \cdot \boldsymbol{b} &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ \begin{pmatrix} \frac{a_1}{a_2} \\ \frac{a_2}{a_3} \end{pmatrix} \cdot \begin{pmatrix} \frac{b_1}{b_2} \\ \frac{b_2}{b_3} \end{pmatrix} &= a_1 b_1 + a_2 b_2 + a_3 b_3 \\ a \perp \boldsymbol{b} &\Rightarrow \boldsymbol{a} \cdot \boldsymbol{b} &= 0 \\ \boldsymbol{a} \parallel \boldsymbol{b} &\Rightarrow \boldsymbol{a} \cdot \boldsymbol{b} &= |\boldsymbol{a}| |\boldsymbol{b}| \\ a \cdot \boldsymbol{b} &< 0 : \boldsymbol{a} \text{ is acute} \end{aligned}$$

Cross product

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \hat{\mathbf{n}}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 b_3 - 1_3 b_2 \\ -(a_1 b_3 - a_3 b_1) \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

$$\mathbf{a} \perp \mathbf{b} \Rightarrow \mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}|$$

$$\mathbf{a} \parallel \mathbf{b} \Rightarrow \mathbf{a} \times \mathbf{b} = 0$$

$$\mathbf{a} \parallel \mathbf{b} \Rightarrow \mathbf{a} \times \mathbf{b} = 0$$

$$\lambda \mathbf{a} \times \mu \mathbf{b} = \lambda \mu (\mathbf{a} \times \mathbf{b})$$

Projection

•
$$|\overrightarrow{ON}| = |\boldsymbol{a} \cdot \hat{\boldsymbol{b}}| = \frac{|\boldsymbol{a} \cdot \boldsymbol{b}|}{|\boldsymbol{b}|}$$

• $\overrightarrow{ON} = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}} = \frac{|\boldsymbol{a} \cdot \boldsymbol{b}|}{|\boldsymbol{b}|^2}$

Planes

Equation of a Plane

n is a perpendicular to the plane; A is a point on the plane.

- parametric: $r = a + \lambda b + \mu c$
- scalar product: $r \cdot n = a \cdot n$
- standard form: $\mathbf{r} \cdot \hat{\mathbf{n}} = d$

• cartesian: ax + by + cz = pLength of projection of \boldsymbol{a} on $\boldsymbol{n} = |\boldsymbol{a} \cdot \hat{\boldsymbol{n}}| = \perp$ from O to π

Distance from a point to a plane

Shortest distance from a point $S(x_0, y_0, z_0)$ to a plane $\Pi: ax + by + c = d$ is given by: $|ax_0+by_0+cz_0+d|$