

USB Packet Viewer 使用说明

版本: 1.4

版本历史

版本	修改说明	备注
1.0	创建文档	
1.1	增加硬件包过滤说明	
1.2	增加软件版本 1.7x 新增的功能说明	
1.3	增加颜色编辑功能和恢复功能说明	
1.4	增加快捷键编辑功能说明	
	解码器配置增加可选端点和双向端点	
	增加更多设备连接方式	

目录

U	SB Pacl	ket V	iewer 使用说明	1
1	USB	B Pacl	ket Viewer 简介	4
	1.1	抓包]设备	4
	1.1.	1	设备外观	4
	1.1.2	2	接口说明	5
	1.1.3	3	LED 指示灯	5
	1.1.4	4	功能特性	5
	1.1.	5	规格参数	5
	1.2	USB	协议解析软件	6
	1.2.	1	运行环境	6
2	设备	连接	· 接及驱动安装	6
	2.1	驱动	b安装	6
	2.1.	1	使用其它方式安装驱动	6
	2.2	设备	·连接	6
	2.2.2	1	监听与测试主机使用同一台 PC	7
	2.2.2	2	测试嵌入式主机	8
3	协议	以解析	f软件	8
	3.1	菜单	9栏	9
	3.1.	1	【文件】菜单	9
	3.1.2	2	【工具】菜单	10
	3.1.3	3	【视图】菜单	15
	3.1.4	4	【搜索】菜单	18
	3.1.	5	【语言】菜单	19
	3.1.6	6	【帮助】菜单	20
	3.2	标题	5栏	20
	3.3	语言	[切换	20
	3.4	工具	!栏	20
	3.4.	1	基本功能	21
	3.4.2	2	包过滤	21
	3.4.3	3	地址过滤	21

	3.4.4	4	查找	21
	3.5	状态	·桂	21
	3.6	数据	台视图	22
	3.7	图形	视图	23
	3.7.2	1	图形视图上下文件菜单	23
	3.8	解码]视图	24
	3.8.2	1	解码视图上下文菜单	24
	3.9	数据	· · · · · · · · · · · · · · · · · · ·	25
	3.10	娄	ɪ据恢复	25
4	插件	井井发	<u> </u>	25
	4.1	文件	-读写插件	26
	4.2	协议	以解析插件	26
5	服务	茶端模	克式	26
	5.1	启动]方式	26
	5.2	服务	·器配置(图形)	27
	5.3	服务	· 器配置(命令行)	28
	5.4	通讯	l协议	28
	5.4.2	1	获取设备列表	29
	5.4.2	2	打开设备	29
	5.4.3	3	关闭设备	30
	5.4.4	4	数据包	31
	5.4.5	5	错误码对照表	32
6	调试	大模 式	<u></u>	32

1 USB Packet Viewer 简介

USB Packet Viewer 由 USB 数据包抓包设备和配套的协议解析软件组成,能够对 USB 通讯数据进行可视化分析。

1.1 抓包设备

1.1.1 设备外观

1.1.2 接口说明

编号	接口名称	功能	规格
1	Monitor	供电和监听,连接监听电脑	Type-C 母座
2	Device	连接待测试从机	USB-A 母座
3	Mode	设备运行状态指示	红绿双色 LED 灯
4	Host	连接待测试主机	Type-C 母座

1.1.3 LED 指示灯

LED 状态	说明
红灯亮	电源接通
红灯闪	等待设备连接
绿灯闪	抓包设备工作中,闪烁频率越高连接设备的通讯速率越高

1.1.4 功能特性

- 支持低速、全速和高速
- 通讯速率自动检测
- 32MB 硬件缓存深度
- 支持实时协议解析
- 支持硬件级包过滤
- 协议解析功能开源,解码功能支持二次开发(<u>查看代码</u>)
- 支持多种文件格式,文件解析支持二次开发(查看代码)

1.1.5 规格参数

- 尺寸: 101mm × 61mm × 13mm
- 重量: 70g
- USB 5V 供电,工作电流 250mA

● 监听及供电口: Type-C 母座

● 主机接口: Type-C 母座

● 设备接口: USB-A 母座

1.2 USB 协议解析软件

1.2.1 运行环境

● Window: XP 及之后的 Windows 操作系统

MacOS: 暂未支持Linux: 暂未支持

2 设备连接及驱动安装

2.1 驱动安装

前往 http://pv.tusb.org 网址,进入下载页面,下载驱动程序。 驱动程序绿色免安装,解压后可以直接运行,运行后自动安装驱动程序。 在 Windows XP 上需要先插入设备,再运行驱动安装程序。

2.1.1 使用其它方式安装驱动

USB Packet Viewer 通过 libusb 与 USB 设备进行通讯,任何兼容 libusb 的驱动都可以作为 USB Packet Viewer 的驱动程序。

2.2 设备连接

典型的设备连接方式如下图所示

监听 PC 上运行 USB Packet Viewer 协议解析软件,通过 Type-C 数据线与抓包设备相连,同时也向抓包设备提供电源。

待测试的 USB 主设备通过 Type-C 数据线与抓包设备的 Host 接口相连

待测试的 USB 从设备通过 USB-A 数据线与抓包设备的 Device 接口相连

Device 接口上的设备需要通过 Host 接口供电和提供主机功能,因此在测试时 Host 接口和 Device 接口必须要同时接上合适的设备。

2.2.1 监听与测试主机使用同一台 PC

监听与测试主机也可以使用同一台 PC 机,连接方式如下图:

2.2.2 测试嵌入式主机

待测试主机也可以是嵌入式设备,如带 USB HOST 接口的开发板。测试嵌入式主机时连接方式如下图所示:

3 协议解析软件

协议解析软件默认布局如下图所示

3.1 菜单栏

3.1.1 【文件】菜单

3.1.1.1 打开

清除当前内容再打开数据包文件。

默认支持 USB Packet Viewer 数据格式和 Wireshark 的 USB Low Level 数据包。可以通过 lua 脚本插件的方式支持更多的文件格式。

3.1.1.2 保存

保存当前工作区中的数据包。

3.1.1.3 保存可见包

只保存当前工作区中的可见数据包。

通常情况下数据中都会包含大量的 NAK 包和 SOF 包,这些包对协议解析没有意义。通过包过滤器关闭 NAK 包和 SOF 包的显示,再使用【保存可见包】功能,就能排除掉 NAK 包和 SOF 包。

3.1.1.4 追加

不清除当前内容,直接打开数据包文件。数据包文件的内容会追加在现有数据之后。

3.1.1.5 导入数据包颜色

导入 Json 格式的数据包颜色配置,颜色配置包含【数据包视图配色】、【图形视图配色】 以及【解码视图】的样式表。

3.1.1.6 导出数据包颜色

导出 Json 格式的颜色配置。

3.1.1.7 退出

退出程序。

3.1.2 【工具】菜单

3.1.2.1 开始抓包

使用 USB Packet Viewer 抓包器进行抓包,如果连接了多个设备,可以通过序列号对其进行区分,点击【OK】按钮后开始抓包。

注意: 当选择 AutoSpeed 时,需要将待测试设备重新插拔一下才收收到正确的数据包。如果使用指定速度模式,则不需要插拔设备。

3.1.2.1.1硬件包过滤

勾先上【高级选项】复选框,可以看到如下图的硬件包过滤功能界面。

数据包可以按照类型和按地址与端点进行过滤。

按类型过滤: 要接收相应的包,将对应的复选框勾上即可。

按地址和端点过滤:分为【接受】和【丢弃】两种情况。

当选择接受时,满足下列地址和端点条件的包才会收上来,其它包会丢弃。

当选择丢弃时,满足下列地址和端点条件的包会被丢弃,其它包会收上来。

当地址为-1时,表示不匹配地址。当端点为-1时,表示不匹配端点。

当地址与端点都为-1时,表示忽略此项条件。

【生效】复选框未勾选时,表示忽略此项条件。如果所有的条件都没有生效,表示忽略掉匹配条件,接收所有的包。

SOF 包不受地址和端点过滤器影响。

3.1.2.2 使用插件抓包

使用兼容 USB Packet Viewer 协议解析软件的工具来抓包。 将抓包插件的动态库放入插件目录中,然后选择【使用插件抓包】。 如果只有一个插件,则直接进入插件配置界面。如下图:

如果有多个插件, 进入插件选择界面, 选择插件后进入插件配置界面。

3.1.2.3 停止抓包

停止当前正在运行的抓包器。

3.1.2.4 清除

清除当前工作区中的数据。

3.1.2.5 记录到文件

启动抓包后,同时将数据包保存在文件中。保存在文件中的数据包可以大于数据包显示数量。

3.1.2.6 启停解码器

启动或停止解码器,解码器工作时,此选项图标处于选中状态。解码停止后,数据包只会显示在【数据包视图】中,不会发给后台的解码器。

可以在抓包过程中随时启停解码器,解码器停止后再启动,会从上一次停止处继续解码。

3.1.2.7 刷新解码器

清除已经解码的数据内容再重新解码,手动设置解码器之后需要使用此功能对解码视图内容进行刷新。

3.1.2.8 配置解码器

启动【解码器配置】对话框,内容如下图所示

上面序号带*号灰色的内容为协议解析时自动配置的解码器,只能进行查看,不能删除和修改。

下面普通显示的为用户手动配置的解码器,可以修改及删除。如果地址端点被同时配置了多个解码器,使用优先级为:用户配置>自动配置。

【解码器配置】对话框中各按钮功能如下:

【添加】: 增加一个解码器

【删除】: 删除选中的解码器

【启用自动解码】: 勾先上时,使用协议解析时自动配置的解码器。否则不使用自动配置的解码器。

【确定并重新解析】: 关闭此对话框,更新解码器配置,更新解码视图。

【确定】: 关闭此对话框,更新解码器配置,不更新解码视图。

【取消】: 关闭此对话框,不更新解码器配置。

有一些设备类端点是双向的,接口中的端点既可以是 IN,也可以是 OUT。如音频类设备,当接口配置为麦克风时,需要 IN 端点;当接口配置为音箱时,需要 OUT 端点。这样的设备类可以在【解码器配置】对话框中设置端点方向。

有一些设备类的端点是可选的,如自定义的 HID 设备,其 IN 和 OUT 端点都不是必须的。这样的设备在其端点的描述中带有(opt.)标志。

3.1.2.9 选项

调用【选项】对话框 选项配置内容如下图所示:

遞 选项 - USB Packet Viewer	×						
数据包显示数量: 10000000 ● 百万包 大于【数据包显示数量】的包不会显示和解析,但是会记录在文件中。							
临时文件目录 设置临时文件目录 选择目录 显示							
主题: 浅色 ▼ 样式表: 留空以使用默认样式							
未知速度当作 未知速度 ▼							
时间戳格式: 相对时间 ▼							
解码器选项							
最大内存: 1024 ᡨ MB							
当超过最大内存时,解码器将停止。您可以增加内存并继续解码。							
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□							
☑ 解码 应答包 Ack ☑ 解码 同步包 Iso							
☐ 解码 否定包 Nak ☑ 解码 停止包 Stall							
☐ 解码 帧起始包 SOF ☐ 解码 乒包/前导包 Ping/Preamble							
□ 解码 缺失包 Incomplete □ 解码 错误包 Error							
确定 取消 应用							

【数据包显示数量】: 单位为百万包,当数据包大于此设置时不会在软中显示,如果启动了 【记录到文件】功能,超出显示数量的数据包会记录到文件中。

【临时文件目录】数据包查看时会存储到临时文件中,默认使用系统临时目录,可以通过【选择目录】修改临时目录,通过【显示】查看临时目录中的内容。

【主题】 默认支持【浅色】和【深色】两种主题,如果样式表文件有效,则会使用样式表文件中的主题。

【未知速度当作】当遇到速度未知的包时,可以指定其速度。例如 Wireshark 文件中的数据 没有速度信息,可以在此指定其速度。

【时间戳格式】: 支持【相对时间】和【绝对时间】两种格式。使用【相对时间】时,可以调整时间原点,方便分析数据包之间消耗的时间。

【解码器选项】 解码器相关的参数

【最大内存】 设置解码器允许使用的内存大小,超过此值后解码器会停止,可以调整内存后通过【启停解码器】再次启动,解码器将会从上一次停止的位置继续解码。

【解码 xxx】选项。默认只打开了应答包、同步包和停止包的解码,其它数据都不会发往解码器处理。(这些数据依然可以在【数据包视图】中查看)

通常情况下 NAK、SOF、Ping、Preamble 以及不完整的数据包不会影响解码结果。在高速通讯时,会有大量的 Nak、SOF 和 Ping 包,这些包发往解码器会占用大量的处理能力,因

此默认这些包不会发往解码器。

3.1.2.10 配置快捷键

调用【配置快捷键】对话框,配置功能快捷键。

选择需要配置快捷的【操作】,点击右侧的【快捷键】设置框,按下需要配置的快捷键,同一个功能最多可以配置4个快捷键。

如果要清除配置的快捷键,点击快捷键设置框右侧的清除按键。

3.1.3 【视图】菜单

3.1.3.1 隐藏/显示列

隐藏或显示【数据包视图】中的列。

3.1.3.2 隐藏/显示包

隐藏或显示指定的数据包。数据显示以事务(Transaction)为单位,例如隐藏 NAK 包,那么整个 NAK 事务中的令牌包(Token)都不会显示。

3.1.3.3 放大、缩小、还原

【放大】、【缩小】或【还原】图形视图中的图像大小。

3.1.3.4 工具栏

显示/隐藏 工具栏和状态栏。

3.1.3.5 数据包颜色

调整【数据包视图】中的数据包颜色和字体。分为【浅色】和【深色】两种风格,默认颜色方案如下图:

点击上图中的色块后, 在右方进行颜色设置。

点击【改变字体】可以修改【数据包视图】中的字体样式和大小。

点击【更多色彩】可以选择更多的颜色,如下图:

3.1.3.6 图形视图颜色

调整【图形视图】中的数据包颜色和字体,配色方案与当前主题相同。若要设置其它主题的配色,在【选项】中切换主题,再进行配置。界面如下图所示:

点击要修改颜色的元素,会在元素下方打开颜色修改器,然后对其配色进行修改。

3.1.3.7 切换视图顺序

切换【数据包视图】和【图形视图】的顺序。

3.1.3.8 切换视图布局

切换【数据包视图】和【图形视图】的布局,水平或垂直。

3.1.3.9 自动选中

开关自动选中功能。当【自动选中】打开时,当选中【数据包视图】中的数据包时,【图形 视图】中对应的数据包同时也会被选中,反之亦然。

3.1.3.10 解码视图

打开/关闭【解码视图】

3.1.3.11 数据视图

打开/关闭【数据视图】

3.1.4 【搜索】菜单

3.1.4.1 查找

打开【查找数据包】对话框,如下图所示:

查找数据格式有【HEX】、【ASCII】、【Unicode】三种。【HEX】可以与【ASCII】和【Unicode】

互相转换。

例如要查找含有"Viewer"的字符描述符,需要选择【Unicode】格式,然后输入"Viewer"进行 查找。

而要查找数据中含有"Viewer"的数据包时,需要选择【ASCII】格式。

【更多参数】

数据查找以事务包(Transaction)为单位,通过更多参数可以指定要查找的事务类型。

【令牌阶段】这里可以设置事务类型,以及数据包的地址和端点。

【数据阶段】这里可以选择数据包的类型,通常使用【Any】类型。

【握手阶段】这里可以选择事务包握手类型。

3.1.4.2 查找下一个

查找下一个数据包。

3.1.4.3 查找上一个

查找上一个数据包。

3.1.5 【语言】菜单

3.1.5.1 中文

UI 切换为中文

3.1.5.2 English

UI 切换为英文

3.1.5.3 加载翻译文件

加载其它编译后的 gm 翻译文件。

3.1.5.4 创建新的翻译

跳转至 http://pv-trans.tusb.org,可以通过这里的 ts 文件创建新的翻译文件。

3.1.6 【帮助】菜单

3.1.6.1 在线帮助

跳转至在线帮助页面。

3.1.6.2 报告问题

跳转至问题反馈页面。

3.1.6.3 获取最新解析器

跳转至解析器托管页面。

3.1.6.4 显示插件目录

显示插件目录,如果没有,会自动创建。

3.1.6.5 关于

显示【关于】对话框。

3.2 标题栏

当有文件打开时,标题栏会将文件名显示在软件名前面。

3.3 语言切换

在【中文】和【English】间切换。

3.4 工具栏

工具栏上包含了多个子工具栏。这些子工具栏可以调整位置。

3.4.1 基本功能

【打开】、【保存】说明 见【文件】菜单

【开始抓包】、【停止抓包】、【记录到文件】 见【工具】菜单。

【启停解码器】、【刷新解码器】、【配置解码器】、【选项】 见【工具】菜单。

【放大】、【缩小】、【还原】 见【视图】菜单。

3.4.2 包过滤

【应答包】、【同步包】、【否定包】、【停止包】 见【视图】菜单。 【帧起始包】、【Ping 包】、【缺失包】、【错误包】 见【视图】菜单。

3.4.3 地址过滤

【地址】 -1 表示不过滤, 其它值, 只显示此地址的包

【端点】 -1 表示不过滤, 其它值, 只显示此端点的包

【 】 应用当前设置

3.4.4 查找

【查找】、【查找上一个】、【查找下一个】 见【搜索】菜单。

3.5 状态栏

搜索中 100% 已解码:279253,内存消耗 788 KB 总共: 279253.解析: 279253.可见: 279253.

100%

【左侧进度条】操作进度。当进行费时操作时显示当前进度,操作完成后此进度条自动隐藏。

【待解码】 等待解码的数据包

【内存消耗】 解码器内存消耗

【总共】 总共接收到的数据包数量。

【解析】 解析后数据包数量,大于【数据包显示数量】不会解析。

【可见】 当前可以看见的,改变数据包过滤选项会改变可见包的数量。

【右侧进度条】 当【打开】或【保存】文件时,显示文件加载和保存进度。

USB

当抓包器工作时,显示抓包器内存使用状态,进度前面会显示内存总大小。 如下图所示:

3.6 数据包视图

类型		时间戳	信息	目的	长度	数据
> 501	Fs	100.025050 ms		[HS]		
> IN	Transaction	100.032067 ms	NAK	[HS] 12.00		
∨ IN	Transaction	100.057200 ms	ACK	[HS] 12.00	18	12 01 00 02 09 00
	IN	100.057200 ms	CRC5: 0b	[HS] 12.00		RAW: 69 0c 58
	DATA1	100.057517 ms	CRC16: 6bee	[HS]	18	RAW: 4b 12 01 ee 6b
	ACK	100.058317 ms		[HS]		RAW: d2
~ OU	Transaction	100.061633 ms	ACK	[HS] 12.00	0	
	OUT	100.061633 ms	CRC5: 0b	[HS] 12.00		RAW: e1 0c 58
	DATA1	100.061967 ms	CRC16: 0000	[HS]	0	RAW: 4b 00 00
	ACK	100.062283 ms		[HS]		RAW: d2
> 501	Fs	100.150050 ms		[HS]		
	TUD T	402 525550	ACIZ	Fuc1 42 00	^	00 00 00 00 00 00 00

以事务(Transaction)为单位显示数据包,双击数据包的第一列,可以展开或收起令牌包。 双击其它列显示数据包查看器,如下图:

右键点击数据包会打开数据包上下文菜单

可在菜单中调出【包查看器】或是将当前包设置为时间戳原点。

3.7 图形视图

以传输层(Transfer)为单位显示数据包,双击可以展开或关闭子数据包。

当【图形视图】中的数据包选中时,会同时更新【解码视图】和【数据视图】中的内容。

3.7.1 图形视图上下文件菜单

右键可以调出上下文菜单,如下图所示:

【设置为时间戳原点】 设置当前数据包时间戳为时间戳原点。

【解码为:】 手动配置当前数据包的解码器。

如果解码器只需要一个端点的数据,设置后立即生效,并刷新【图形视图】内容。

如果解码器需要多个端点数据,上下文菜单中会出现【继续设置】项,继续设置当前解码器的其它端点,已经设置的端点信息会在了菜单中显示,如下图所示:

有一些设备的端点为可选的,如果不需要继续配置其它端点,点击【完成设置】选项结束当前解码器的端点配置。

3.8 解码视图

【解码视图】显示数据包解码后的内容,内容为渲染后 html 数据。

3.8.1 解码视图上下文菜单

【Copy Html】 复制当前内容为 Html 格式。

【Edit CSS】 修改当前主题样式表。

3.9 数据视图

【数据视图】显示解码后的数据内容,数据内容可以【另存为】二进制格式,也可【复制为】 多种格式:

【Text】: 文本格式,文本编码格式可以在编码框中选择 【Hex data】: 16 进制数据数据,数据间由空格隔开隔开

【Array data】: 可以在代码中使用的数组数据 【Hex string】: 16 进制形式的的字符串数据

3.10 数据恢复

当软件异常关闭时,已经抓取的数据不会丢失。下一次打开软件时,会提示是否需要恢 复上次未正常关闭的数据。

4 插件开发

USB Packer Viewer 的协议解析和文件解析采用 lua 开发。 代码托管在 http://pv-parser.tusb.org/。

4.1 文件读写插件

file_pcap.lua 是 Wireshark 文件读写功能的实现文件,可以根据此文件添加新的文件格式。 新的文件解析器可以从 init.lua 中加载,也可以放在插件目录中自动加载。

4.2 协议解析插件

usb_class_xxxx.lua 是 USB 协议栈解析功能的实现文件,可以根据此文件添加新的协议。新的协议解析器可以从 init.lua 中加载,也可以放在插件目录中自动加载。

5 服务端模式

USB Packet Viewer 可以工作在服务端模式,在此模式下可以通过 TCP 或 UDP 连接进行抓包操作。所有命令行参数大小写不敏感,参数支持 IPv6。

服务端通讯示例代码地址: http://pv-server.tusb.org

5.1 启动方式

启动时加入 server 参数进入服务器模式。可以通过命令行方式进入服务器模式,如下图:

也可以通过设置快捷方式参数进入服务器模式,如下图:

5.2 服务器配置(图形)

服务器启动后会在系统托盘中创建图标, 务器配置界面。 ,双击托盘图片可以打开服

服务器可以同时工作在 UDP 模式和 TCP 模式。

5.3 服务器配置(命令行)

在启动服务器时传入参数,使用命令配置服务器。参数说明如下:

C:\>usbpv.exe server tcp

启动服务器并打开 TCP 服务,使用上一次的 TCP 服务参数。

C:\>usbpv.exe server tcp 1234

启动服务器并打开 TCP 服务, 使用上一次的 TCP 服务地址参数, 端口使用 1234

C:\>usbpv.exe server tcp 192.168.1.1

启动服务器并打开 TCP 服务,使用上一次的 TCP 服务端口参数,地址使用 192.168.1.1

C:\>usbpv.exe server tcp 192.168.1.1 1234

启动服务器并打开 TCP 服务, 地址使用 192.168.1.1, 端口使用 1234

C:\>usbpv.exe server ucp

启动服务器并打开 UDP 服务,使用上一次的 UDP 服务参数。

C:\>usbpv.exe server udp 1234

启动服务器并打开 UDP 服务, 使用上一次的 UDP 服务地址参数, 端口使用 1234

C:\>usbpv.exe server udp 192.168.1.1

启动服务器并打开 UDP 服务,使用上一次的 UDP 服务端口参数,地址使用 192.168.1.1

C:\>usbpv.exe server udp 192.168.1.1 1234

启动服务器并打开 UDP 服务, 地址使用 192.168.1.1, 端口使用 1234

C:\>usbpv.exe server tcp udp

同时打开 TCP 和 UDP 服务,都使用上一次的参数。

C:\>usbpv.exe server udp 192.168.1.1 1234 tcp 192.168.1.1 1234

同时打开 TCP 和 UDP 服务,UDP 地址 192.168.1.1,端口 1234。TCP 地址 192.168.1.1,端口 1234。

5.4 通讯协议

TCP 与 UDP 采用相同的通讯协议。每一包数据内容由数据头和数据内容构成,数据头固定为 4 字节,数据内容长度由数据头指定,数据内容长度最大为 4096 字节。

	说明
Byte0	协议头,必须为 0x58 (ASCII: 'X')
Byte1	命令或响应

Byte2	数据长度低 8 位
Byte3	数据长度高8位

5.4.1 获取设备列表

命令: 0x4c, (ASCII: 'L'). 方向: 客户端->服务器

数据内容:

Byte0	Byte1	Byte2	Byte3	
0x58	0x4C	0x00	0x00	

成功响应: 0x50, (ASCII: 'P')。数据内容为当前可用设备的序列号。

方向: 服务器->客户端

数据内容:

Byte0	Byte1	Byte2	Byte3	可用设备序列号, 逗号分隔
0x58	0x50	Len&0xff	Len>>8	长度为 Len

失败响应: 0x45, (ASCII: 'E'), 数据内容失败原因, 长度 2 字节。

方向: 服务器->客户端

数据内容:

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5
0x58	0x50	0x02	0x00	保留	错误码

5.4.2 打开设备

命令: 0x4F, (ASCII: 'O'). 方向: 客户端->服务器

数据内容:

Byte0	Byte1	Byte2	Byte3	设备打开参数
0x58	0x4F	Len&0xff	Len>>8	长度为 Len 的设备打开参数

成功响应: 0x50, (ASCII: 'P')。数据内容为当前可用设备的序列号。

方向:服务器->客户端

数据内容:

Byte0	Byte1	Byte2	Byte3
0x58	0x50	0x00	0x00

失败响应: 0x45, (ASCII: 'E'), 数据内容失败原因, 长度 2 字节。

方向:服务器->客户端

数据内容:

Byte0 Byte1	Byte2	Byte3	Byte4	Byte5	
-------------	-------	-------	-------	-------	--

0x58	0x50	0x02	0x00	保留	错误码

5.4.2.1 设备打开参数

设备打开参数长度不固定, 内容如下

	说明		默认值
Byte0 – Byte(N-1)	长度为 N 的设备序列号	必填	N/A
ByteN	0x00,序列号结尾符	可选	0x00
ByteN+1	抓包速度	可选	3
	0-高速, 1-全速, 2-低速,		
	3-自动识别		
ByteN+2	按类型过滤数据包。	可选	0xff
	1接收,0丢弃。		
	Bit0 - 应答包		
	Bit1 - 同步包		
	Bit2 - 否定包		
	Bit3 - 停止包		
	Bit4 - 帧起始包		
	Bit5 - 乒包/前导包		
	Bit6 - 缺失包		
	Bit7 - 错误包		
ByteN+3	按地址和端点过滤包。	可选	0x01
	0-丢弃,1-接收		
ByteN+4+(M*2)	过滤器 M 地址参数, 大于	可选	0xff
M∈[0, 3]	等于 0, 小于等于 127 有		
	效,其它值无效		
ByteN+5+(M*2)	过滤器 M 端点参数, 大于	可选	0xff
M∈[0, 3]	等于0,小于等于15有效,		
	其它值无效		

5.4.3 关闭设备

命令: 0x43, (ASCII: 'C'). 方向: 客户端->服务器

数据内容:

Byte0	Byte1	Byte2	Byte3
0x58	0x43	0x00	0x00

成功响应: 0x50, (ASCII: 'P')。数据内容为当前可用设备的序列号。

方向: 服务器->客户端

数据内容:

Byte0	Byte1	Byte2	Byte3
0x58	0x50	0x00	0x00

失败响应: 0x45, (ASCII: 'E'),数据内容失败原因,长度2字节。

方向: 服务器->客户端

数据内容:

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5
0x58	0x50	0x02	0x00	保留	错误码

5.4.4 数据包

当设备打开成功后, 服务端会将收收到的数据包发送到客户端数据格式如下。

方向: 服务器->客户端

数据内容:

Byte0	Byte1	Byte2	Byte3	由数据包类型确定的数据包内容
0x58	数据包类型	Len&0xff	Len>>8	长度为 Len 的数据包内容

5.4.4.1 数据包类型及内容

数据包类型表

值	说明	
0x42 (ASCII:'B')	总线事件	详见《总线事件格式》
0x30 (ASCII:'0')	未知速度数据包	详见《数据事件格式》
0x31 (ASCII:'1')	低速数据包	详见《数据事件格式》
0x32 (ASCII:'2')	全速数据包	详见《数据事件格式》
0x33 (ASCII:'3')	高速数据包	详见《数据事件格式》

5.4.4.1.1总线事件格式

	说明	
Byte0-Byte3	单位为秒的时间戳,小端格式	
Byte4-Byte7	单位为纳秒的时间戳,小端格式	
Byte8	事件类型:	
	1 - 复位开始	
	2 - 复位结束	
	3 - 暂停开始	
	4 - 暂停结束	
	15 – 缓存溢出	
Byte9	当事件类型为缓存溢出时,这里	
	表示丢弃的数据包数量	

5.4.4.1.2数据事件格式

	说明	
Byte0-Byte3	单位为秒的时间戳,小端格式	
Byte4-Byte7	单位为纳秒的时间戳,小端格式	
Byte8	数据包 PID	
Byte9-N	数据包数据,如果 PID 为无数据	
	的类型,例如 ACK、NAK,则无	
	此项内容	

5.4.5 错误码对照表

错误码	说明
1	未发现设备
2	设备打开失败
3	设备状态错误
4	设备初始化失败
5	设备配置失败
12	操作系统资源错误
13	设备查询失败
14	操作系统文件错误
15	设备通讯失败
20	设备已打开
其它值	未知错误

6 调试模式

C:\>usbpv.exe debug

在启动 USB Packet Viewer 时加入 debug 参数,打开调试模式。

在调试模式下,【抓包配置】对话框中会出现【调试模式】选项,选择调试模式以及日志文件名,并启动抓包,抓包器调试信息会记录在日志文件中。

