Modèle standard et théories de jauge

PHY 575 B

Vincent Verbavatz & Mikael Frosini 11 novembre 2016

Table des matières

I\ Introduction .	
II\ Équations rela	tivistes du mouvement
1. Équation	n de Klein-Gordon
1.1.	Principe de correspondance
1.2.	Équation de Klein-Gordon pour une particule libre de
1.2.	spin 0
1.3.	Invariance de jauge
1.4.	Optionnel: Limite non relativiste
2 Équation	n de Dirac
2.1.	title
`	et formalisme Lagrangien
1.1.	Champs relativistes et champs quantiques
1.2.	Lagrangiens et champs
1.3.	Seconde quantification
	électromagnétique
2.1.	Formalisme tensoriel et équations de Maxwell
2.2.	Équations de Lagrange du champ électromagnétique
	de Klein-Gordon
3.1.	Formalisme Lagrangien pour une particule chargée
3.2.	Quantification du champ
3.3.	Interprétation
	de Dirac
4.1.	Formalisme Lagrangien
4.2.	Quantification du champ
4.3.	Interprétation
	ige
•	ce de jauge
	de Jauge
	e entre matière et jauge
	rd et brisure de symétrie
	ation qualitative du modèle standard
	ions électro-faibles
	dynamique quantique
	de Higgs et brisure de symétrie
	odèle standard
1	Formalisme lagrangien classique
	s et énergie du vide

I\ Introduction

II\ Équations relativistes du mouvement

- 1. Équation de Klein-Gordon
- 1.1. Principe de correspondance
- 1.2. Équation de Klein-Gordon pour une particule libre de spin 0
- 1.3. Invariance de jauge
- 1.4. Optionnel: Limite non relativiste
- 2. Équation de Dirac
- 2.1. Établissement de l'équation de Dirac libre
- 2.2. Spineur de Dirac
- 2.3. Covariance de l'équation de Dirac
- 2.4. Symétries discrètes

III\ Champs

- 1. Champs et formalisme Lagrangien
- 1.1. Champs relativistes et champs quantiques
- 1.2. Lagrangiens et champs
- 1.3. Seconde quantification
- 2. Champ électromagnétique
- 2.1. Formalisme tensoriel et équations de Maxwell
- 2.2. Équations de Lagrange du champ électromagnétique
- 3. Champ scalaire de Klein-Gordon
- 3.1. Formalisme Lagrangien pour une particule chargée
- 3.2. Quantification du champ
- 3.3. Interprétation
- 4. Champ de Dirac
- 4.1. Formalisme Lagrangien
- 4.2. Quantification du champ
- 4.3. Interprétation

IV\ Théorie de Jauge

- 1. Invariance de jauge
- 1.1. Exemple 1 : Champ électromagnétique
- 1.2. Exemple 2 : SU(2)