Computation and Konane

The Game

- 2 Players (Black and White)
- Rectangular grid (size varies)
- Move: Capture by jumping \uparrow , \downarrow , \leftarrow , \rightarrow

Example Games

Example: Move

Example: Move

Example: Move

Solid Linear Patterns

Who Wins?

Who Wins?

Who Wins?

- Only white can move if there's an odd number of stones
- Both can move if there's an even number of stones

Base Case

Now we need to know the outcome of SLP(2) and SLP(1)

Inductive Case

• After a jump to the left or right the stone moves out of reach

Inductive Case

• After a jump to the left or right the stone moves out of reach

- So, we can think of this new position as SLP(6)
- In fact, any move by either player moves to $\mathrm{SLP}(N-2)$

Putting it Together

- If n is even then $SLP(n) = \{SLP(n-2) \mid SLP(n-2)\}$
- If n is odd then $SLP(n) = \{ | SLP(n-2) \}$
- SLP(2) = *
- SLP(0) = SLP(1) = 0

Putting it Together

- If n is even then $SLP(n) = {SLP(n-2) \mid SLP(n-2)}$
- If n is odd then $SLP(n) = \{ | SLP(n-2) \}$
- SLP(2) = *
- SLP(0) = SLP(1) = 0

If n is **odd** then n-2 is still odd

If n is **even** then n-2 is still even

Putting it Together

- If n is even then $SLP(n) = {SLP(n-2) \mid SLP(n-2)}$
- If n is odd then $SLP(n) = \{ | SLP(n-2) \}$
- SLP(2) = *
- SLP(0) = SLP(1) = 0

If n is **odd** then n-2 is still odd

If n is **even** then n-2 is still even

Solid Linear Pattern

- If *n* is odd, white always wins.
- If n is even, then the game has n/2 moves
 - ► Each player has the same option on every turn

Representing Konane on Computers

	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4	D1	D2	D3	D4
White	0	1	0	1	1	0	1	0	0	1	0	1	1	0	1	0
Black	1	0	1	0	0	1	0	1	1	0	1	0	0	1	0	1

Representing Konane on Computers

	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4	D1	D2	D3	D4
White	0	1	0	1	1	0	1	0	0	1	0	1	1	0	1	0
Black	1	0	1	0	0	1	0	1	1	0	1	0	0	1	0	1

Solving Games

1. Recursively generate moves

- 2. Determine winners of the leaf nodes
- 3. Determine winners of ancestor nodes

Conjecturing

Games	#Black (I_1)	#White (I_2)	#Moves (I_3)		
	2	1	0		
	2	2	1		
	2	2	2		

Conjecturing

Games	#Black (I_1)	#White (I_2)	#Moves (I_3)
	2	1	0
	2	2	1
	2	2	2

$$\begin{split} I_2 & \leq \max(I_1, I_2) \\ I_2 & \leq I_1 + I_2 \\ I_2 & \leq I_1 + 1 \\ I_2 & \leq I_1 * I_2 + 1 + 1 \end{split}$$

Looking at Results

Questions?