Week 08: Graph Algorithms 2

Weighted Graphs

Weighted Graphs

2/61

Graphs so far have considered

- edge = an association between two vertices/nodes
- may be a precedence in the association (directed)

Some applications require us to consider

- a cost or weight of an association
- modelled by assigning values to edges (e.g. positive reals)

Weights can be used in both directed and undirected graphs.

... Weighted Graphs

3/61

Example: major airline flight routes in Australia

Representation: edge = direct flight; weight = approx flying time (hours)

... Weighted Graphs

4/61

Weights lead to minimisation-type questions, e.g.

- 1. Cheapest way to connect all vertices?
 - a.k.a. minimum spanning tree problem
 - assumes: edges are weighted and undirected
- 2. Cheapest way to get from A to B?
 - a.k.a *shortest path* problem
 - assumes: edge weights positive, directed or undirected

Exercise #1: Implementing a Route Finder

5/61

If we represent a street map as a graph

- what are the vertices?
- what are the edges?
- are edges directional?
- what are the weights?
- are the weights fixed?

What kind of algorithm would ...

• help us find the "quickest" way to get from A to B?

Weighted Graph Representation

6/61

Weights can easily be added to:

- adjacency matrix representation (0/1 → int or float)
- adjacency lists representation (add int/float to list node)

An alternative representation useful in this context:

• edge list representation (list of (s,t,w) triples)

All representations work whether edges are directed or not.

... Weighted Graph Representation

7/61

Adjacency matrix representation with weights:

Weighted Digraph

Adjacency Matrix

Note: need distinguished value to indicate "no edge".

... Weighted Graph Representation

8/61

Adjacency lists representation with weights:

Note: if undirected, each edge appears twice with same weight

... Weighted Graph Representation

9/61

Edge array / edge list representation with weights:

Note: not very efficient for use in processing algorithms, but does give a possible representation for min spanning trees or shortest paths

... Weighted Graph Representation

10/61

Sample adjacency matrix implementation in C requires minimal changes to previous Graph ADT:

```
WGraph.h
```

```
// edges are pairs of vertices (end-points) plus positive weight
typedef struct Edge {
   Vertex v;
   Vertex w;
   int
          weight;
} Edge;
// returns weight, or 0 if vertices not adjacent
int adjacent(Graph, Vertex, Vertex);
```

... Weighted Graph Representation

11/61

WGraph.c

```
typedef struct GraphRep {
   int **edges; // adjacency matrix storing positive weights
                 // 0 if nodes not adjacent
                 // #vertices
   int
         nV:
                 // #edges
   int
         nE;
} GraphRep;
```

```
void insertEdge(Graph g, Edge e) {
   assert(g != NULL && validV(g,e.v) && validV(g,e.w));
   if (g->edges[e.v][e.w] == 0) { // edge e not in graph}
      q->edges[e.v][e.w] = e.weight;
      q->nE++;
}
int adjacent(Graph q, Vertex v, Vertex w) {
   assert(q != NULL && validV(q,v) && validV(q,w));
   return g->edges[v][w];
}
```

Minimum Spanning Trees

Exercise #2: Minimising Wires in Circuits

13/61

Electronic curcuit designs often need to make the pins of several components electrically equivalent by wiring them together.

To interconnect a set of n pins we can use an arrangement of n-l wires each connecting two pins.

What kind of algorithm would ...

• help us find the arrangement with the least amount of wire?

Minimum Spanning Trees

14/61

Reminder: Spanning tree ST of graph G=(V,E)

- *spanning* = all vertices, *tree* = no cycles
- ST is a subgraph of G (G'=(V,E') where $E' \subseteq E$)
- ST is connected and acyclic

Minimum spanning tree MST of graph G

- *MST* is a spanning tree of *G*
- sum of edge weights is no larger than any other ST

Applications: Computer networks, Electrical grids, Transportation networks ...

Problem: how to (efficiently) find MST for graph G?

NB: MST may not be unique (e.g. all edges have same weight ⇒ every ST is MST)

... Minimum Spanning Trees

15/61

Example:

An MST ...

... Minimum Spanning Trees

16/61

Brute force solution:

```
findMST(G):
    Input graph G
    Output a minimum spanning tree of G

    bestCost=∞
    for all spanning trees t of G do
        if cost(t)<bestCost then
            bestTree=t
            bestCost=cost(t)
        end if
    end for
    return bestTree</pre>
```

Example of generate-and-test algorithm.

Not useful because #spanning trees is potentially large (e.g. nⁿ⁻² for a complete graph with n vertices)

... Minimum Spanning Trees

17/61

Simplifying assumption:

• edges in G are not directed (MST for digraphs is harder)

Kruskal's Algorithm

18/61

One approach to computing MST for graph G with V nodes:

- 1. start with empty MST
- 2. consider edges in increasing weight order
 - o add edge if it does not form a cycle in MST
- 3. repeat until *V-1* edges are added

Critical operations:

- iterating over edges in weight order
- · checking for cycles in a graph

... Kruskal's Algorithm

19/61

Execution trace of Kruskal's algorithm:

Exercise #3: Kruskal's Algorithm

20/61

Show how Kruskal's algorithm produces an MST on:

After 3rd iteration:

After 6th iteration:

After 7th iteration:

After 8th iteration (*V*-1=8 edges added):

... Kruskal's Algorithm

end if

Pseudocode:

```
KruskalMST(G):
   Input graph G with n nodes
   Output a minimum spanning tree of G
   MST=empty graph
   sort edges(G) by weight
   for each e∈sortedEdgeList do
      MST = MST \cup \{e\}
      if MST has a cyle then
         MST = MST \setminus \{e\}
      end if
      if MST has n-1 edges then
         return MST
```

end for

... Kruskal's Algorithm

23/61

Rough time complexity analysis ...

- sorting edge list is $O(E \cdot log E)$
- at least V iterations over sorted edges
- on each iteration ...
 - getting next lowest cost edge is O(1)
 - checking whether adding it forms a cycle: cost = ??

Possibilities for cycle checking:

- use DFS ... too expensive?
- could use *Union-Find data structure* (see Sedgewick Ch.1)

Prim's Algorithm

24/61

Another approach to computing MST for graph G=(V,E):

- 1. start from any vertex v and empty MST
- 2. choose edge not already in MST to add to MST
 - must be incident on a vertex s already connected to v in MST
 - must be incident on a vertex t not already connected to v in MST
 - o must have minimal weight of all such edges
- 3. repeat until MST covers all vertices

Critical operations:

22/61

- checking for vertex being connected in a graph
- finding min weight edge in a set of edges

... Prim's Algorithm

25/61

Execution trace of Prim's algorithm (starting at *s*=0):

Show how Prim's algorithm produces an MST on:

Start from vertex 0

After 1st iteration:

0 3 1

After 2nd iteration:

0 3 1 4 1 3

After 3rd iteration:

After 4th iteration:

After 8th iteration (all vertices covered):

... Prim's Algorithm

Pseudocode:

Critical operation: finding best edge

... Prim's Algorithm

29/61

Rough time complexity analysis ...

- Viterations of outer loop
- in each iteration ...
 - find min edge with set of edges is $O(E) \Rightarrow O(V \cdot E)$ overall
 - find min edge with priority queue is $O(\log E) \Rightarrow O(V \cdot \log E)$ overall

Sidetrack: Priority Queues

30/61

Some applications of queues require

- items processed in order of "priority"
- rather than in order of entry (FIFO first in, first out)

Priority Queues (PQueues) provide this via:

- join: insert item into PQueue with an associated priority (replacing enqueue)
- leave: remove item with highest priority (replacing dequeue)

Time complexity for naive implementation of a PQueue containing N items ...

• O(1) for join O(N) for leave

Most efficient implementation ("heap") ...

• $O(\log N)$ for join, leave

28/61

Other MST Algorithms

31/61

Boruvka's algorithm ... complexity $O(E \cdot log V)$

- the oldest MST algorithm
- start with V separate components
- join components using min cost links
- continue until only a single component

Karger, Klein, and Tarjan ... complexity O(E)

- based on Boruvka, but non-deterministic
- randomly selects subset of edges to consider
- for the keen, here's the paper describing the algorithm

Shortest Path

33/61 **Shortest Path**

Path =sequence of edges in graph $G = (v_0, v_1), (v_1, v_2), ..., (v_{m-1}, v_m)$

cost(path) = sum of edge weights along path

Shortest path between vertices s and t

- a simple path p(s,t) where s = first(p), t = last(p)
- no other simple path q(s,t) has cost(q) < cost(p)

Assumptions: weighted digraph, no negative weights.

Finding shortest path between two given nodes known as source-target SP problem

Variations: single-source SP, all-pairs SP

Applications: navigation, routing in data networks, ...

Single-source Shortest Path (SSSP)

Given: weighted digraph G, source vertex s

Result: shortest paths from s to all other vertices

- dist[] V-indexed array of cost of shortest path from s
- pred[] V-indexed array of predecessor in shortest path from s

Example:

Edge Relaxation

Assume: dist[] and pred[] as above (but containing data for shortest paths discovered so far)

```
dist[v] is length of shortest known path from s to v
dist[w] is length of shortest known path from s to w
```

Relaxation updates data for w if we find a shorter path from s to w:

Relaxation along edge e = (v, w, weight):

• if dist[v]+weight < dist[w] then update dist[w]:=dist[v]+weight and pred[w]:=v

Dijkstra's Algorithm

One approach to solving single-source shortest path problem ...

Data: G, s, dist[], pred[] and

• *vSet*: set of vertices whose shortest path from *s* is unknown

Algorithm:

34/61

```
dist[] // array of cost of shortest path from s
pred[] // array of predecessor in shortest path from s
dijkstraSSSP(G,source):
  Input graph G, source node
  initialise dist[] to all \infty, except dist[source]=0
  initialise pred[] to all -1
  vSet=all vertices of G
  while vSet≠∅ do
     find s∈vSet with minimum dist[s]
     for each (s,t,w)∈edges(G) do
```

35/61

36/61

| relax along (s,t,w)
| end for
| vSet=vSet\{s}
end while

Exercise #5: Dijkstra's Algorithm

37/61

Show how Dijkstra's algorithm runs on (source node = 0):

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	<u></u>	<u>∞</u>	<u>∞</u>	<u></u>	<u>∞</u>
pred	_	_	_	-	-	-

dist	0	14	9	7	<u></u>	∞
pred	_	0	0	0	-	-

dist	0	14	9	7	∞	22
pred	_	0	0	0	_	3

dist	0	13	9	7	∞	12
pred	_	2	0	0	_	2

dist	0	13	9	7	20	12	
pred	_	2	0	0	5	2	

dist	0	13	9	7	18	12
pred	_	2	0	0	1	2

... Dijkstra's Algorithm

39/61

Why Dijkstra's algorithm is correct:

Hypothesis.

- (a) For visited s ... dist[s] is shortest distance from source
- (b) For unvisited t ... dist[t] is shortest distance from source via visited nodes

Proof.

Base case: no visited nodes, dist[source]=0, $dist[s]=\infty$ for all other nodes

Induction step:

- 1. If s is unvisited node with minimum dist[s], then dist[s] is shortest distance from source to s:
 - if \(\frac{1}{3}\) shorter path via only visited nodes, then \(dist[s]\) would have been updated when processing the predecessor of \(s\) on this path
 - if \(\frac{\partial}{s}\) horter path via an unvisited node \(u\), then \(dist[u] < dist[s]\), which is impossible if \(s\) has min distance of all unvisited nodes
- 2. This implies that (a) holds for s after processing s
- 3. (b) still holds for all unvisited nodes t after processing s:
 - if \exists shorter path via s we would have just updated dist[t]
 - \circ if \exists shorter path without s we would have found it previously

... Dijkstra's Algorithm

40/61

Time complexity analysis ...

Each edge needs to be considered once $\Rightarrow O(E)$.

Outer loop has O(V) iterations.

Implementing "find s∈vSet with minimum dist[s]"

- 1. try all $s \in vSet \Rightarrow cost = O(V) \Rightarrow overall cost = O(E + V^2) = O(V^2)$
- 2. using a PQueue to implement extracting minimum
 - \circ can improve overall cost to $O(E + V \cdot log V)$ (for best-known implementation)

All-pair Shortest Path (APSP)

41/61

Given: weighted digraph G

Result: shortest paths between all pairs of vertices

- dist[][] $V \times V$ -indexed matrix of cost of shortest path from v_{row} to v_{col}
- path[][] $V \times V$ -indexed matrix of next node in shortest path from v_{row} to v_{col}

Example:

Weighted	Digraph

V	0	I	2	3	4	
0	0	0.3	0.7	1.1	inf	dist
1	1.8	0	0.6	1.0	inf	
2	1.2	0.5	0	0.4	inf	
3	0.8	1.1	1.5	0	inf	
4	1.3	0.6	0.1	0.5	0	
0	-	1	2	2	-	path
1	2	_	2	2	_	
2	3	1	-	3	_	
3	0	0	0	-	-	
4	2	2	2	2	-	

Shortest paths between all vertices

Floyd's Algorithm

One approach to solving all-pair shortest path problem...

```
Data: G, dist[][], path[][] Algorithm:
dist[][] // array of cost of shortest path from s to t
path[][] // array of next node after s on shortest path from s to t
floydAPSP(G):
   Input graph G
   initialise dist[s][t]=0 for each s=t
                         =w for each (s,t,w)∈edges(G)
                         =∞ otherwise
   initialise path[s][t]=t for each (s,t,w) \in edges(G), otherwise to -1
   for all i∈vertices(G) do
      for all severtices(G) do
         for all t∈vertices(G) do
            if dist[s][i]+dist[i][t] < dist[s][t] then</pre>
               dist[s][t]=dist[s][i]+dist[i][t]
               path[s][t]=path[s][i]
            end if
         end for
      end for
   end for
```

Exercise #6: Floyd's Algorithm

43/61

42/61

Show how Floyd's algorithm runs on:

After 1st iteration i=0: unchanged

After 2^{nd} iteration i=1:

dist	[0]	[1]	[2]	[3]	[4]	[5]	path	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	14	9	7	19	8	[0]	_	1	2	3	1	_
[1]	∞	0	∞	∞	5	8	[1]	_	_	_	_	4	_
[2]	∞	4	0	∞	9	3	[2]	_	1	_	_	1	5
[3]	∞	<u></u>	10	0	<u></u>	15	[3]	_	_	2	_	_	5
[4]	∞	<u></u>	∞	∞	0	8	[4]	_	_	_	_	_	_
[5]	∞	<u>∞</u>	∞	∞	2	0	[5]	_	_	_	_	4	_

After 3^{rd} iteration i=2:

dist	[0]	[1]	[2]	[3]	[4]	[5]	path	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	13	9	7	18	12	[0]	_	2	2	3	2	2
[1]	∞	0	<u></u>	<u></u>	5	8	[1]	_	_	_	_	4	_
[2]	∞	4	0	∞	9	3	[2]	_	1	_	_	1	5
[3]	∞	14	10	0	19	13	[3]	_	2	2	_	2	2
[4]	∞	∞	<u></u>	∞	0	8	[4]	_	_	_	_	_	_
[5]	∞	∞	∞	∞	2	0	[5]	_	_	_	_	4	_

After 4th iteration i=3: unchanged

After 5th iteration i=4: unchanged

After 6th iteration i=5:

dist	[0]	[1]	[2]	[3]	[4]	[5]	path	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	13	9	7	14	12	[0]	_	2	2	3	2	2
[1]	∞	0	<u></u>	∞	5	∞	[1]	_	_	_	_	4	-
[2]	∞	4	0	∞	5	3	[2]	_	1	_	_	5	5
[3]	∞	14	10	0	15	13	[3]	_	2	2	_	2	2
[4]	∞	<u></u>	∞	<u></u>	0	8	[4]	_	_	_	_	_	_
[5]	∞	∞	∞	∞	2	0	[5]	_	_	_	_	4	_

... Floyd's Algorithm

Why Floyd's algorithm is correct:

A shortest path from s to t using only nodes from $\{0,...,i\}$ is the shorter of

- a shortest path from s to t using only nodes from $\{0, ..., i-1\}$
- a shortest path from s to i using only nodes from $\{0, ..., i-1\}$ plus a shortest path from i to t using only nodes from $\{0, ..., i-1\}$

Also known as Floyd-Warshall algorithm (can you see why?)

... Floyd's Algorithm

46/61

45/61

Cost analysis ...

- initialising dist[][], path[][] $\Rightarrow O(E)$
- *V* iterations to update dist[][], path[][] $\Rightarrow O(V^3)$

Time complexity of Floyd's algorithm: $O(V^3)$ (same as Warshall's algorithm for transitive closure)

Network Flow

48/61

Exercise #7: Merchandise Distribution

Lucky Cricket Company ...

- produces cricket balls in Fairfield
- has a warehouse in Rozelle that stocks them
- ships them from factory to warehouse by leasing space on trucks with limited capacity:

What kind of algorithm would ...

• help us find the maximum number of crates that can be shipped from Fairfield to Rozelle per day?

Flow Networks

Flow network ...

- weighetd graph G=(V,E)
- distinct nodes $s \in V(source), t \in V(sink)$

Edge weights denote capacities

Applications:

- Distribution networks, e.g.
 - o source: oil field
 - o sink: refinery
 - o edges: pipes
- · Traffic flow

... Flow Networks 50/61

Flow in a network G=(V,E) ... nonnegative f(v,w) for all vertices $v,w \in V$ such that

- $f(v,w) \le capacity$ for each edge $e=(v,w,capacity) \in E$
- f(v,w)=0 if no edge between v and w
- total flow *into* a vertex = total flow *out of* a vertex:

$$\sum_{x \in V} f(x, v) = \sum_{y \in V} f(v, y) \quad \text{for all } v \in V \setminus \{s, t\}$$

Maximum flow ... no other flow from s to t has larger value

... Flow Networks

51/61

Example:

A (maximum) flow ...

Augmenting Paths

Assume ... f(v,w) contains current flow

Augmenting path: any path from source s to sink t that can currently take more flow

Example:

Residual Network

Assume ... flow network G=(V,E) and flow f(v,w)

Residual network (V,E'):

- same vertex set V
- for each edge $v \rightarrow^{c} w \in E \dots$

∘
$$f(v,w) < c$$
 ⇒ add edge $(v \rightarrow^{c-f(v,w)} w)$ to E'

•
$$f(v,w) > 0$$
 \Rightarrow add edge $(v \leftarrow^{f(v,w)} w)$ to E'

Example:

Exercise #8: Augmenting Paths and Residual Networks

Find an augmenting path in:

54/61

53/61

and show the residual network after augmenting the flow

1. Augmenting path:

maximum additional flow = 1

2. Residual network:

Can you find a further augmenting path in the new residual network?

Edmonds-Karp Algorithm

56/61

One approach to solving maximum flow problem ...

maxflow(G):

- 1. Find a shortest augmenting path
- 2. Update flow[][] so as to represent residual graph
- 3. Repeat until no augmenting path can be found

... Edmonds-Karp Algorithm

57/61

Algorithm:

```
initialise flow[v][w]=0 for all vertices v, w
maxflow=0
while ∃shortest augmenting path visited[] from s to t do

df = maximum additional flow via visited[]

// adjust flow so as to represent residual graph
v=t
while v≠s do

flow[visited[v]][v] = flow[visited[v]][v] + df;
flow[v][visited[v]] = flow[v][visited[v]] - df;

v=visited[v]
end while
maxflow=maxflow+df
end while
return maxflow
```

Shortest augmenting path can be found by standard BFS

... Edmonds-Karp Algorithm

Time complexity analysis ...

- *Theorem*. The number of augmenting paths needed is at most *V·E/2*. ⇒ Outer loop has *O(V·E)* iterations.
- Finding augmenting path $\Rightarrow O(E)$.

Overall cost of Edmonds-Karp algorithm: $O(V \cdot E^2)$

Note: Edmonds-Karp algorithm is an implementation of general Ford-Fulkerson method

Exercise #9: Edmonds-Karp Algorithm

59/61

58/61

Show how Edmonds-Karp algorithm runs on:

flow	[0]	[1]	[2]	[3]	[4]	[5]	c-f	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	0	0	0	0	0	[0]	_	2	3	_	_	-
[1]	0	0	0	0	0	0	[1]	_	_	_	3	1	_
[2]	0	0	0	0	0	0	[2]	_	_	_	1	1	_
[3]	0	0	0	0	0	0	[3]	_	_	_	_	_	2
[4]	0	0	0	0	0	0	[4]	_	_	_	_	_	3

[5] 0 0 0 0 0 0 [5] - - - - -			- -	- -	_
---	--	--	-------	-------	---

augmenting path: 0-1-3-5, df: 2

flow	[0]	[1]	[2]	[3]	[4]	[5]	c-f	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	2	0	0	0	0	[0]	_	0	3	_	_	_
[1]	-2	0	0	2	0	0	[1]	2	_	_	1	1	_
[2]	0	0	0	0	0	0	[2]	_	_	_	1	1	_
[3]	0	-2	0	0	0	2	[3]	_	2	_	_	_	0
[4]	0	0	0	0	0	0	[4]	_	_	_	_	_	3
[5]	0	0	0	-2	0	0	[5]	_	_	_	2	_	_

augmenting path: 0-2-4-5, df: 1

flow	[0]	[1]	[2]	[3]	[4]	[5]	c-f	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	2	1	0	0	0	[0]	_	0	2	_	_	_
[1]	-2	0	0	2	0	0	[1]	2	_	_	1	1	-
[2]	-1	0	0	0	1	0	[2]	1	_	_	1	0	-
[3]	0	-2	0	0	0	2	[3]	_	2	_	_	_	0
[4]	0	0	-1	0	0	1	[4]	_	_	1	_	_	2
[5]	0	0	0	-2	-1	0	[5]	_	_	_	2	1	_

augmenting path: 0-2-3-1-4-5, df: 1

flow	[0]	[1]	[2]	[3]	[4]	[5]	c-f	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	2	2	0	0	0	[0]	_	0	1	_	_	_
[1]	-2	0	0	1	1	0	[1]	2	_	_	2	0	_
[2]	-2	0	0	1	1	0	[2]	2	_	_	0	0	_
[3]	0	-1	-1	0	0	2	[3]	_	1	1	_	_	0
[4]	0	-1	-1	0	0	2	[4]	_	1	1	_	_	1
[5]	0	0	0	-2	-2	0	[5]	-	_	-	2	2	_

Summary

Weighted graph representations

- Minimum Spanning Tree (MST)
 - Kruskal, Prim
- Shortest path problems

61/61

- Dijkstra (single source SPP)Floyd (all-pair SSP)Flow networks
- - Edmonds-Karp (maximum flow)
- Suggested reading (Sedgewick):
 - o MST ... Ch.20-20.4
 - o SSP ... Ch.21-21.3
 - Flow ... Ch.22.1-22.2

Produced: 17 Sep 2018