

Olimpiada Departamental de Física 2019 1Ra Ronda - Nivel II

Nombre:	
FECHA DE NACIMIENTO:	
Dirección:	
Departamento:	
Teléfono:	
INSTITUCIÓN EDUCATIVA:	

Problema 1: Un globo asciende en vertical con una velocidad constante de $5\,m/s$. Cuando se encuentra a $h=100\,m$ sobre la superficie terrestre se desprende del globo un objeto. Calcular el tiempo que tarda ese objeto en llegar al suelo y la velocidad en ese momento. El problema debe analizarse desde:

- a) Un sistema inercial ligado a la tierra.
- **b)** Un sistema inercial ligado al globo.

Problema 2: Una partícula se desplaza con una velocidad indicada por la semicircunferencia de la gráfica inferior. La máxima velocidad se indica por v_0 . Determinar el desplazamiento efectuado por la partícula en función de v_0 y t_0

Tiempo: 4.5 horas Cada problema vale: 7 puntos **Problema 3:** Un duende acróbata instalo una plataforma (ver la figura). El duende junto a su equipo tiene una masa m=2 kg se mueve siguiendo las trayectorias AB, BCB y DF de la figura. Parte del reposo a una altura $h_A=4$ m, desliza a lo largo del plano inclinado AB de 30° hasta B. A continuación se mueve por un círculo vertical BCB de radio r=1 m. Se desplaza por una superficie horizontal BD una distancia $S_{BD}=4$ m y cae desde una altura $h_{DE}=2$ m. El coeficiente de rozamiento dinámico entre las superficies AB y BD es $\mu=0.2$. Se supone que no hay rozamiento en el bucle BCB. Determinar:

- a) La fuerza normal que ejerce la superficie sobre el cuerpo en el punto C.
- **b)** El alcance S_{EF} .

Problema 4: Una barra homogénea se encuentra apoyada en el suelo por un extremo y por el otro descansa sobre una pared vertical. Los coeficientes de rozamiento sobre el suelo y la pared vertical son μ_1 y μ_2 respectivamente. Determinar el mínimo ángulo que la barra puede formar con el suelo para que no resbale.

Problema 5: En la figura inferior, la plataforma M carece de rozamiento sobre el suelo, x_0 representa la distancia que se ha comprimido el muelle. La masa m tiene un coeficiente de rozamiento cinético μ con la masa M y al dejar en libertad el muelle es empujada por éste y abandona la plataforma después de recorrer la distancia L.

 ${\it k}$ es la constante elástica del muelle. Calcular la velocidad de la masa ${\it M}$ en el instante en el que ${\it m}$ abandona la plataforma.

6 Agosto 2019 2 Tiempo: 4.5 horas Cada problema vale: 7 puntos