Operators & Assignment

- 1. Increment & Decrement operators
- 2. Arithmetic operators
- 3. String concatenation operators
- **4. Relational Operators**
- **5. Equality Operators**
- **6. instanceof Operators**

- 7. Bitwise Operators
- 8. Short circuit Operators
- 9. Type cast Operators
- 10. assignment Operators
- **11. Conditional Operators**
- 12. new Operators

- 13. [] Operators
- 14. Precedence of java Operators
- **15.** Evaluation order of java Operands
- 16. new Vs newInstance()
- 17. Instanceof Vs isInstance()
- 18. ClassNotFoundException
 Vs
 NoClassDefFoundError

type of result = max(int, type of a, type of b)

```
max(int, type of a, type of b)
byte x = 10;
byte y = 2;
                 max(int, byte, byte) —— Datatype of <result> integer
int result = x + y;
                                      Example:
byte result = x + y;
                             ASSR int x = 9;
long y = 6L;
                                         int z = x + y; // line 3<sup>rd</sup> compilation error
                                       max(int, int, long )
                                          long z = x + y; // o/p 15
```

Expression:

max(int, type of a, type of b)

Type of a	Type of b	Type of result
byte	byte	int
byte	short	int
byte	int	int
char	char	int
Char A S S	Roint	int
byte	char	int
int	long	long
float	double	double
long	long	long
long	float	float
int	float	float

```
int x = 19;
```

int
$$y = 2$$
;

Case: 1

int
$$z = x / y$$
; $// z = 9$

Case: 2

int
$$z = x \% y; // z = 1$$

CLASSROOM

Integral data types:

char

1. There is no way to represents infinity as a result in Integral data types.

Example:

System.out.println(19/0); RE: ArithmeticException / by zero

2. There is no way to represent undefine the result in Integral data types.

Example:

System.out.println(0/0); RE: ArithmeticException / by zero

Floating point data types:

For the Float and Double classes contains following constants:

- 1. POSITIVE_INFINITY
- 2. Negative_INFYNITY
- 3. NaN
- 1. We represents infinity as a result in floatingpoint data types.

```
Example: System.out.println(19 / 0.0 ); Output:Infinity
```

2. We can also represent undefine as a result in Floating point data types.

