SAP-ID : 60004200132 Name: Ayush Jain 1/03/202 Engineering Mathematics Tutorial (1): Matrices 1) Show that every square matrix can be expressed uniquely as the sum of a Hermitian matrix and a skew Hermition matrix. 2) Prove that matrix A is unitory

A = [i/2 \sqrt{312}]

[\sqrt{312} \times il2] enallianolt of 9 3) Find the rank of the matrix by reducing it to Echelon form. $A = \begin{bmatrix} 3 & -2 & 0 & -1 \\ 0 & 2 & 2 & 1 \end{bmatrix}$ $\begin{vmatrix} 1 & -2 & -3 & 2 \\ 0 & 1 & 2 & 1 \end{vmatrix}$ soften P & Hermiller and S is alread the million 4) Find non-singular matrix P and Q such that PAQ is in normal form. Hence find the rank of A. Examine the consistency and solve 5) 21 + 222 - 23 =1 321-222 + 223 = 2 721-222 +323=5

00152	Page 2 1/A CONTON
	Solutions:
	We can write,
	$A = \frac{1}{2} (A + A^{\circ}) + \frac{1}{2} (A - A^{\circ}) = P + Q$
0 670	where P = 1 (A+A0), Q = 1 (A-A0)
	where 1 = 1 (h+h), g
	NOW, proting of Assistant Forth
	PG = 1 (A+AG) = 1 (AG+AG) = 1 (AG+A) = P
	2 2 2
	Pis Hermition.
	Also, province of window and the form of his to
	$A^{0} = \frac{1}{2} (A - A^{0})^{0} = \frac{1}{2} (A^{0} - A^{0^{0}}) = \frac{1}{2} (A^{0} - A) = \frac{-1}{2} (A - A^{0^{0}}) = 0$
	g is skew-Hermition.
	Thus, A is sum of Hermitian and skew-Hermitian matrix.
	To prove uniqueness,
	where R is Hermitian and S is skew-Hermitian
013	
	$A^{\circ} = (R+S)^{\circ} = R^{\circ} + S^{\circ} = R-S [::R^{\circ} = R, S^{\circ} = -S]$
	P= 1 (A+A0) = 1 (P+S+R-S) = R
	-'. R=P
	ond, $Q = \frac{1}{2}(A - A^{\circ}) = \frac{1}{2}(R+S - R+S) = S$
	:. Q=S
	Hence, the representation A = P+Q is unique.
	2 - 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4
P	FOR EDUCATIONAL USE
REEGAL	

