Prelucrarea Imaginilor Curs 4

... Îmbunătăţirea imaginilor Operaţiuni spaţiale

Îmbunătățirea imaginilor

- Tehnicile sunt grupate (după algoritmii utilizaţi) astfel:
 - Operaţiuni punctuale prin care se poate realiza creşterea contrastului, reducerea zgomotului, etc.
 - Operaţiuni spaţiale care permit eliminarea zgomotului, filtrări, etc.

2. Operaţiuni spaţiale

Transformările spațiale țin cont la schimbarea culorii unui punct și de culorilor punctelor din apropierea (vecinătatea) acestuia. De asemenea, imaginea poate fi filtrată printr-o mască spațială.

Operaţiuni spaţiale

1. Operațiuni punctuale

P.Cul=f (P.Cul), v=f(u), unde $f:[0,L] \rightarrow [0,L]$.

2. Operațiuni spatiale

Permit trecerea

- de la anumite nuante de gri $\mathbf{u}_{kl} \in [0,L]$, $k,l \in W_{ij}$
- la o altă nuantă de gri **v**_{ij}∈ [0,L],

conform unei transformări $\mathbf{v}=\mathbf{f}(\mathbf{u}_{\mathbf{k},\mathbf{l}})$, unde $\mathbf{f}:[0,L]^{|\mathbf{W}_{ij}|} \to [0,L]$.

P.Cul=
$$f(P_{kl}.Cul)$$
, k,l \in Wij

a) Mediere și filtrare spațială trece-jos

Aceste metode modifică culoarea fiecărui punct $P_{i,j}$ dintro imagine printro medie ponderată $(p_{k-i,l-j})$ a culorilor punctelor $P_{k,l}$ dintro vecinătate $W_{i,j}$ a acestuia.

Dacă notăm cu $u_{k,l}$ culoarea punctului $P_{k,l}$ atunci noua culoare a punctului $P_{i,j}$ notată cu $v_{i,j}$ se modifică după formula :

Ponderile $p_{k-i,l-j}$ sunt date de pozițiile relative ale punctelor $P_{k,l} \in W_{i,j}$ față de punctul $P_{i,j}$ pentru care se calculează culoarea. În funcție de alegerea acestor ponderi se obțin următoarele filtre spațiale uzuale:

a) Mediere și filtrare spațială trece-jos

pentru ponderi egale pentru toate punctele din vecinătate (conform figurilor alăturate, pentru vecinătăți de 2x2 respectiv de 3x3) formula de calcul este următoarea:

• unde prin |W| am notat aria ferestrei de calcul, adică numărul de pixeli pentru care se calculează media (în exemplele de mai sus fiind 4 respectiv 9).

1/4	1/4	
1/4	1/4	
2x2		

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

3x3

a) Mediere și filtrare spațială trece-jos

int $Med\mathbf{R}(int i, int j)$

a) Mediere și filtrare spaţială trece-jos

• pentru ponderi diferite în funcție de poziția punctului vecin (vezi figurile alăturate, pentru vecinătăți de 3x3) formula de calcul sunt următoarele:

$$v_{i,j} = (u_{ij+}(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1})/4)/2$$

0	1/8	0
1/8	1/2	1/8
0	1/8	0

$$v_{i,j} = \sum_{P_{k,l} \in W_{i,j}} 2^{-|\mathbf{k}-\mathbf{i}|-|\mathbf{l}-\mathbf{j}|-2} * u_{k,l}$$

1/16	1/8	1/16
1/8	1/4	1/8
1/16	1/8	1/16

a) ... Mediere și filtrare spaţială trece-jos

Mediere spaţială

Pentru o imagine dată de relația: $v_{i,j} = u_{i,j} + \tau_{i,j}$

unde $\tau_{i,j}$ reprezintă zgomotul alb (de valoare medie nulă), operația de mediere spațială este dată de formula :

$$v_{i,j} = \frac{1}{\sum_{k,l} u_{k,l} + \overline{\tau}_{i,j}}$$
 $|\mathbf{W}| P_{k,l} \in \mathbf{W}_{i,j}$

unde prin $|\mathbf{W}|$ am notat aria ferestrei de calcul, iar $\overline{\tau_{i,j}}$ este media zgomotului $\tau_{i,j}$.

> ...Mediere spaţială

> Filtrare direcţională

• Această transformare permite *protejarea conturului* atenuat în general prin operații de mediere spațială. Relația de calcul este următoarea:

$$\mathbf{v_{i,j}} = \mathbf{v_{i,j}} (\boldsymbol{\alpha^*})$$
 unde

 α^* este acel α pentru care se realizează minimul expresiei $|u_{i,j} - v_{i,j}(\alpha)|$ (direcția optimă),

$$v_{i,j} = \frac{1}{|\mathbf{W}_{\alpha}|} \sum_{\mathbf{W}_{k,l} \in \mathbf{W}_{i,j;\alpha}} u_{k,l}$$

> ... Filtrare direcţională

Initiala

Filtrare directionala 3x3

Mediere 2x2 Mediere 3x3

> Filtrare mediană

• Operația de *filtrare mediană* permite eliminarea punctelor (sau chiar a liniilor) izolate din imagine menținând aspectul spațial al imaginii. Transformarea este următoarea:

$$\mathbf{v_{i,j}} = \begin{cases} x_{(n+1)/2} & pentru \ n \ impar \\ (x_{n/2} + x_{n/2+1}) / 2 & pentru \ n \ par. \end{cases}$$

unde x_s ($s=1,2,\ldots,n=|W|$) este şirul ordonat (crescător sau descrescător) format din elementele mulțimii { $u_{k,l} / P_{k,l} \in W_{i,i}$ }.

> ... Filtrare mediană

Ignora	Mediere	Ignora
///////////////////////////////////////	////	////9//////////////////////////////////

Dupa ordonare, se ignora extremitatile si se face o mediere a zonei de mijloc care contine cel putin un element (pixel).

Teme

Aplicati Operațiuni spațiale pentru:

- Mediere şi filtrare spaţială trece-jos cu ponderi fixe si variabile (date de utilizator) ~ Mediere spaţială
 - Filtrare direcţională (urmarind protectia conturului)
 - Filtrare mediană (urmarind eliminarea zgomotului natural sau artificial)

a) Mediere și filtrare spaţială trece-jos

- 1. Mediere spațială
- 2. Filtrare direcțională
- 3. Filtrare mediană

23.03.2017

- b) Accentuarea contururilor
 - c) Filtrare trece-sus si trece-banda
 - d) Inversarea contrastului și scalare statistică
 - e) Dilatarea imaginilor
 - f) Îmbunătățirea imaginilor biomedicale
 - g) Pseudocolorarea imaginilor medicale

16/16