

planetmath.org

Math for the people, by the people.

coset

Canonical name Coset

Date of creation 2013-03-22 12:08:10 Last modified on 2013-03-22 12:08:10

Owner djao (24) Last modified by djao (24)

Numerical id 9

Author djao (24) Entry type Definition Classification msc 20A05

Defines index
Defines left coset
Defines right coset

Let H be a subgroup of a group G, and let $a \in G$. The *left coset* of a with respect to H in G is defined to be the set

$$aH := \{ah \mid h \in H\}.$$

The right coset of a with respect to H in G is defined to be the set

$$Ha := \{ ha \mid h \in H \}.$$

Two left cosets aH and bH of H in G are either identical or disjoint. Indeed, if $c \in aH \cap bH$, then $c = ah_1$ and $c = bh_2$ for some $h_1, h_2 \in H$, whence $b^{-1}a = h_2h_1^{-1} \in H$. But then, given any $ah \in aH$, we have $ah = (bb^{-1})ah = b(b^{-1}a)h \in bH$, so $aH \subset bH$, and similarly $bH \subset aH$. Therefore aH = bH.

Similarly, any two right cosets Ha and Hb of H in G are either identical or disjoint. Accordingly, the collection of left cosets (or right cosets) partitions the group G; the corresponding equivalence relation for left cosets can be described succintly by the relation $a \sim b$ if $a^{-1}b \in H$, and for right cosets by $a \sim b$ if $ab^{-1} \in H$.

The index of H in G, denoted [G:H], is the cardinality of the set G/H of left cosets of H in G.