Growth of Functions Noah Buchanan

September 8, 2020

- 1. (a) $10^{n+1} = O(10^n)$, true, n plus a constant is negligible and equates to just n, thus it becomes exponential runtime, $O(k^n)...O(10^n)$
 - (b) $5^{3n} = O(5^n)$, false, $(O(5^n) * O(5^n) * O(5^n))$ does not equal $O(5^n)$
- 2. (a) $g(n) = \lg n^3$ and $f(n) = 150 \lg n + 30$, $f(n) = \Omega(n) : g(n)$ out grows f(n) so f(n) is the lower bound. $f(n) = \Omega(g(n))$
 - (b) $g(n) = \sqrt{n}$ and $f(n) = 23 \lg n^2$: f(n) out grows g(n) so f(n) is the upper bound. f(n) = O(g(n))
 - (c) $g(n) = \lg^2 n$ and $f(n) = 350 \lg n + O(1)$: f(n) out grows g(n) so f(n) is the upper bound. f(n) = O(g(n))
 - (d) g(n) = n and $f(n) = \lg^2 n : g(n)$ out grows f(n) so f(n) is the lower bound. $f(n) = \Omega(g(n))$
 - (e) $g(n) = n \lg n + n$ and $f(n) = 3 \lg n : g(n)$ out grows f(n) so f(n) is the lower bound. $f(n) = \Omega(g(n))$
 - (f) g(n) = 50 and $f(n) = \lg 50$: neither of these functions grow, they are both constant time so f(n) is the lower and upper bound. $f(n) = \Theta(g(n))$
 - (g) $g(n) = 2^n$ and $f(n) = 30n^5$: g(n) grows exponentially fast, and only factorial grows faster so f(n) must be the lower bound. $f(n) = \Omega(g(n))$
 - (h) $g(n) = 2^n$ and $f(n) = 4^n$: both functions grow exponentially fast, therefore f(n) is the lower and upper bound. $f(n) = \Theta(g(n))$
- 3. (a) $O(n^2) = 10n^2 + 15$: true, constants are negligible and can be removed
 - (b) $O(lgn) = 8\sqrt{n}$: false, \sqrt{n} grows much faster than lgn, they are not the same complexity
 - (c) $O(\sqrt{n}) = 14 \lg n + 1000$: false, 1000 and 14 can be removed because they are constants and once again \sqrt{n} grows faster than $\lg n$
 - (d) $O(n^2 \lg n) = 2n^2(5 + \sqrt{n})$: false, for the same reasons as item (b) and (c), \sqrt{n} and $\lg n$ are not equivalent in growth

- (e) $O(n^2)=5n^2+3\sqrt{n}$: true, n^2 is the upper bound for this expression so we take that as the big oh and ignore the constant multiplied by it and the \sqrt{n} times 3 is also negligible in comparison to n^2
- (f) $O(n)=3\sqrt{n}\lg n+15$: false, n grows much faster than \sqrt{n} which is the upper bound for the expression
- (g) $O(n^{-1/2}) = 5 \lg n$: false, lgn and $n^{-1/2}$ do not grow at the same rate