

Tutorial – Power Analysis

Prof. Dr. Teena Hassan teena.hassan@h-brs.de

Department of Computer Science

Hochschule Bonn-Rhein-Sieg Sankt Augustin

27 June 2024

Content

- Libraries and software for power analysis
- More on power analysis and hypothesis testing
- Revision quiz on conducting HRI experiments
- Two Jupyter notebooks for self-study and preparation for next lecture
 - Descriptive statistics
 - Drawing graphs

b-it O

G*Power

- A tool (software) for power analysis from Uni Düsseldorf.
 - Only on Windows and macOS!

Power Analysis – Python Library

- Python library: statsmodels
 - https://www.statsmodels.org/dev/stats.html#power-and-sample-size-calculations
- Demo (Jupyter notebook for lecturer only; not for upload in LEA)

Errors Induced by Sampling – Type I, Type II

	Reject H0 Accept H1	Accept H0 Reject H1
H0 is True H1 is False	α False positive rate (Type I error)	1- α True negative rate
H0 is False H1 is True	1- β True positive rate (POWER)	β False negative rate (Type II error)

More on Power Analysis and Hypothesis Testing 1-

- https://wise1.cgu.edu/power/power_sample.asp
- https://www.geo.fu-berlin.de/en/v/soga-r/Basics-of-statistics/Hypothesis-Tests/ Introduction-to-Hypothesis-Testing/Critical-Value-and-the-p-Value-Approach/ index.html
- Important: We accept or reject hypotheses based on the critical-value or p-value approach. However, it is important to report the post-hoc statistical power of the experiment.

Computing Effects Using t-tests

Independent t-test

Paired t-test

- Between subject
 - Two separate groups of subjects A and B
 - Each group exposed to only one condition
 - Two sampling distributions
- Computes means of dependent variable in either distribution: μ_A, μ_B
- Difference between means: $\Delta = \mu_A \mu_B$
- Effect: Compares Δ to zero.
- Effect size (Cohen's d): Δ / σpooled

- Within subject
 - One group of subjects
 - Each subject exposed to both conditions
 A and B
- One sampling distribution S based on difference Δ_s in response of each subject s in condition A and condition B.

$$\Delta_s = a_s - b_s$$

- μ_S = Mean Δ_s over all s
- Effect: Compares μ_S to zero.
- Effect size (Cohen's d): μ_S / σ_S

$$\sigma_{pooled} = \sqrt{\left(\sum (a - \mu_A)^2 + \sum (b - \mu_B)^2\right) / (n_A + n_B - 2)}$$

Revision Quiz

b-it O

- Time: 12 mins
- Please enter your first and last name.
- Registration is not possible after the start of the test.
- Preferably, use Chrome as browser.
- Do not close, refresh or reload the page!
 - It would not be possible to enter the exam again.
 - Answers will not be saved!
- Do not forget to <u>click "log in your answer".</u>
- Finally, <u>click Submit</u>.
- Participation is voluntary.
- Link to quiz: https://u.quizacademy.io/EAGEMX

Learning Statistics with Python

- Excellent resources prepared by Ethan Weed, based on the book "Learning Statistics with R" by Danielle Navarro.
- https://ethanweed.github.io/pythonbook/landingpage.html
- Please go through the notebooks on "Descriptive Statistics" and "Drawing Graphs".
 - Have been uploaded under Tutorials in LEA.
 - Would be helpful to understand the next class.

