2020 V and C without Unemployment

This is the example vignette for function: **snw_a4chk_wrk_bisec_vec** from the **PrjOptiSNW Package.** This function solves for the V(states, check) for individuals working. Dense solution. Bisection, most time for the test here taken to generate the income matrixes. But these can be generated out of the check loops.

Test SNW_A4CHK_WRK_BISEC_VEC Defaults Dense

Call the function with default parameters. Solve first for non-covid value and policy. Then depending on 2020 taxes, solve for 2020 policy and value.

```
mp params = snw mp param('default docdense');
% mp params = snw mp param('default dense');
mp_params('beta') = 0.95;
mp_controls = snw_mp_control('default_test');
mp controls('bl print vfi') = false;
mp_controls('bl_timer') = true;
[V_ss,~,cons_ss,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
Completed SNW_VFI_MAIN_BISEC_VEC; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time=501.6001
CONTAINER NAME: mp_outcomes ND Array (Matrix etc)
idx
                           ndim
                                                         colN
                                                                                    mean
                                                                                               std
                                                                                                        coefvari
                                    numel
                                               rowN
   V VFI
               1
                     1
                            6
                                   4.37e+07
                                                83
                                                       5.265e+05
                                                                    -6.6619e+08
                                                                                   -15.245
                                                                                              21.865
                                                                                                        -1.4343
                     2
    ap_VFI
                2
                            6
                                   4.37e+07
                                                83
                                                       5.265e+05
                                                                     1.3967e+09
                                                                                    31.962
                                                                                              36.426
                                                                                                         1.1397
    cons_VFI
                     3
                            6
                                   4.37e+07
                                                83
                                                       5.265e+05
                                                                     2.3276e+08
                                                                                    5.3263
                                                                                              8.4413
                                                                                                         1.5848
xxx TABLE:V_VFI xxxxxxxxxxxxxxxxxx
                                             c4
                                                        c5
                                                                  c526496
                                                                               c526497
                                                                                            c526498
                                                                                                         c526499
            c1
                       c2
                                  с3
    r1
          -293.96
                     -293.57
                                -291.09
                                           -285.44
                                                      -276.41
                                                                   -4.3584
                                                                                -4.2643
                                                                                             -4.1713
                                                                                                          -4.0795
    r2
          -284.42
                     -284.03
                                -281.55
                                           -275.97
                                                      -267.24
                                                                   -4.2519
                                                                                -4.1612
                                                                                             -4.0717
                                                                                                          -3.9832
                                                      -258.33
    r3
          -274.87
                     -274.48
                                -272.03
                                           -266.62
                                                                   -4.1429
                                                                                -4.0559
                                                                                             -3.9698
                                                                                                          -3.8847
    r4
          -265.22
                     -264.86
                                -262.58
                                           -257.53
                                                      -249.74
                                                                   -4.0309
                                                                                -3.9475
                                                                                             -3.8649
                                                                                                          -3.7833
    r5
          -256.51
                     -256.17
                                -254.04
                                            -249.3
                                                      -241.96
                                                                   -3.9252
                                                                                -3.8452
                                                                                             -3.7659
                                                                                                          -3.6873
                     -13.628
                                                                                                         -0.19173
   r79
          -13.642
                                -13.535
                                           -13.298
                                                      -12.896
                                                                  -0.22092
                                                                               -0.21058
                                                                                            -0.20086
          -12.283
                                                      -11.537
    r80
                     -12.269
                                -12.176
                                           -11.939
                                                                  -0.16979
                                                                               -0.16182
                                                                                             -0.1543
                                                                                                         -0.14722
                                                      -9.8589
                                                                  -0.11712
    r81
          -10.605
                     -10.591
                                -10.498
                                           -10.261
                                                                               -0.11163
                                                                                            -0.10646
                                                                                                         -0.10157
                                           -8.0055
    r82
          -8.3494
                      -8.3358
                                -8.2424
                                                      -7.6035
                                                                 -0.065333
                                                                              -0.062242
                                                                                            -0.05936
                                                                                                        -0.056635
    r83
          -5.0665
                     -5.0529
                                -4.9595
                                           -4.7226
                                                      -4.3206
                                                                 -0.020968
                                                                              -0.019972
                                                                                           -0.019038
                                                                                                        -0.018161
xxx TABLE:ap VFI xxxxxxxxxxxxxxxxxx
                                                                                   c526498
                                                    c5
                                                             c526496
                                                                        c526497
                                                                                              c526499
                c2
                          c3
                                       c4
                                                                                                         c526500
          0
                0
                      0.00051498
                                    0.0066578
                                                 0.021589
                                                             112.13
                                                                        117.67
                                                                                    123.4
                                                                                              129.31
                                                                                                         135.72
    r1
          0
                      0.00051498
                                    0.0057684
                                                 0.020245
                                                             112.17
                                                                                              129.34
    r2
                0
                                                                        117.71
                                                                                   123,43
                                                                                                         135.76
   r3
          0
                0
                      0.00020768
                                    0.0041456
                                                 0.018539
                                                              112.2
                                                                        117.73
                                                                                   123.45
                                                                                              129.37
                                                                                                         135.78
   r4
                                                             112.86
          0
                0
                      0.00010346
                                    0.0041199
                                                 0.018307
                                                                        118.39
                                                                                   124.11
                                                                                              130.03
                                                                                                         136.44
          0
                0
    r5
                      5.2907e-06
                                    0.0041199
                                                 0.018091
                                                             113.53
                                                                        119.07
                                                                                   124.79
                                                                                              130.71
                                                                                                         137.12
    r79
          0
                0
                                                                        85.364
                               0
                                            0
                                                        0
                                                             81.091
                                                                                   89.335
                                                                                              93.258
                                                                                                         97.348
    r80
          0
                0
                               0
                                            0
                                                        0
                                                             76.124
                                                                        79.747
                                                                                   83.431
                                                                                              86.986
                                                                                                         90.578
    r81
          0
                0
                               0
                                            0
                                                        0
                                                             67.945
                                                                        70.639
                                                                                   73.673
                                                                                              76.991
                                                                                                         81.091
    r82
          0
                0
                               0
                                            0
                                                             50.126
                                                                        53.467
                                                                                   56.302
                                                                                              57.884
                                                                                                         60.587
```

vvv	TABLE . cons	V/FT	xxxxxxxxxxxxxxx	
XXX	TABLE COIIS	ΛLΤ	XXXXXXXXXXXXXXXXX	

		- 2	- 3	- 4	. =	- 506406		- 506400	- 506400
	c1	c2	c 3	c4	c 5	c526496	c526497	c526498	c526499
r1	0.036717	0.037251	0.040477	0.044486	0.049324	12.265	12.55	12.844	13.145
r2	0.036717	0.037251	0.040477	0.045375	0.050668	12.501	12.787	13.082	13.383
r3	0.036717	0.037251	0.040784	0.046998	0.052374	12.755	13.042	13.337	13.638
r4	0.038144	0.038678	0.042314	0.048449	0.054031	13	13.289	13.584	13.883
r5	0.039534	0.040068	0.043802	0.049839	0.055635	13.236	13.525	13.821	14.116
r79	0.19737	0.19791	0.20163	0.21175	0.23145	35.811	37.362	39.409	41.7
r80	0.19737	0.19791	0.20163	0.21175	0.23145	40.752	42.953	45.286	47.946
r81	0.19737	0.19791	0.20163	0.21175	0.23145	48.909	52.039	55.022	57.919
r82	0.19737	0.19791	0.20163	0.21175	0.23145	66.71	69.193	72.375	77.007
r83	0.19737	0.19791	0.20163	0.21175	0.23145	116.82	122.65	128.66	134.88

```
welf_checks = 2; % 2 checks is $200 dollar of welfare checks
xi=1; % xi=0 full income loss from covid shock, xi=1, no covid income losses
b=1; % when xi=1, b does not matter, no income losses
TR = 100/58056;
mp_params('TR') = TR;
mp_params('xi') = xi;
mp_params('b') = b;
% if = mp_params('a2_covidyr_manna_heaven'), V_emp_2020 same as V_ss if b=1
% or xi=1.
% if = mp_params('a2_covidyr_tax_fully_pay'), V_emp_2020 differ due to 2020
% tax differences
mp_params('a2_covidyr') = mp_params('a2_covidyr_manna_heaven');
% mp_params('a2_covidyr') = mp_params('a2_covidyr_tax_fully_pay');
[V_emp_2020,~,cons_emp_2020,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
```

Completed SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; times

CONTAINER NAME: mp outcomes ND Array (Matrix etc)

c1

c2

c3

c4

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	_									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-6.6619e+0	8 -15.245	21.865	-1.4343
ap_VF	I 2	2	6	4.37e+07	83	5.265e+05	1.3967e+0	9 31.962	36.426	1.1397
cons_	VFI 3	3	6	4.37e+07	83	5.265e+05	2.3276e+0	8 5.3263	8.4413	1.5848
xx TABLE	:V VFI xxx	xxxxxx	xxxxxx	X						
	c1	c2		с3	с4	c 5	c526496	c526497	c526498	c526499
r1	-293.96	-293	.57	-291.09	-285.44	-276.41	-4.3584	-4.2643	-4.1713	-4.0795
r2	-284.42	-284	03	-281.55	-275.97	-267.24	-4.2519	-4.1612	-4.0717	-3.9832
r3	-274.87	-274	.48	-272.03	-266.62	-258.33	-4.1429	-4.0559	-3.9698	-3.8847
r4	-265.22	-264	.86	-262.58	-257.53	-249.74	-4.0309	-3.9475	-3.8649	-3.7833
r5	-256.51	-256	.17	-254.04	-249.3	-241.96	-3.9252	-3.8452	-3.7659	-3.6873
r79	-13.642	-13.	628	-13.535	-13.298	-12.896	-0.22092	-0.21058	-0.20086	-0.19173
r80	-12.283	-12.	269	-12.176	-11.939	-11.537	-0.16979	-0.16182	-0.1543	-0.14722
r81	-10.605	-10.	591	-10.498	-10.261	-9.8589	-0.11712	-0.11163	-0.10646	-0.10157
r82	-8.3494	-8.3	358	-8.2424	-8.0055	-7.6035	-0.065333	-0.062242	-0.05936	-0.056635
	-5.0665	г о	529	-4.9595	-4.7226	-4.3206	-0.020968	-0.019972	-0.019038	-0.018161

c5

c526496

c526497

c526498

c526499

c526500

	r1	0	0	0.00051498	0.006657	8 0.021589	112.13	117.67	123.4	129.31	135.72
	r2	0	0	0.00051498	0.005768	4 0.020245	112.17	117.71	123.43	129.34	135.76
	r3	0	0	0.00020768	0.004145	6 0.018539	112.2	117.73	123.45	129.37	135.78
	r4	0	0	0.00010346	0.004119	9 0.018307	112.86	118.39	124.11	130.03	136.44
	r5	0	0	5.2907e-06	0.004119	9 0.018091	113.53	119.07	124.79	130.71	137.12
	r79	0	0	0		0 0	81.091	85.364	89.335	93.258	97.348
	r80	0	0	0		0 0	76.124	79.747	83.431	86.986	90.578
	r81	0	0	0		0 0	67.945	70.639	73.673	76.991	81.091
	r82	0	0	0		0 0	50.126	53.467	56.302	57.884	60.587
	r83	0	0	0		0 0	0	0	0	0	0
	. TABLE		\/FT								
XXX	X IABLE	_	_VF1 XX c1	c2	c3	c4	c5	c526496	c526497	c526498	c526499
	r1		36717	0.037251	0.040477	0.044486	0.049324	12.265	12.55	12.844	13.145
	r2		36717 36717	0.037251	0.040477	0.045375	0.050668	12.501	12.787	13.082	13.383
	r3		36717	0.037251	0.040784	0.046998	0.052374	12.755	13.042	13.337	13.638
	r4		38144	0.037231	0.042314	0.048449	0.054031	13	13.289	13.584	13.883
	r5		39534	0.040068	0.043802	0.049839	0.055635	13.236	13.525	13.821	14.116
	r79		19737	0.19791	0.20163	0.21175	0.23145	35.811	37.362	39.409	41.7
	r80		19737	0.19791	0.20163	0.21175	0.23145	40.752	42.953	45.286	47.946
	r81	0.3	19737	0.19791	0.20163	0.21175	0.23145	48.909	52.039	55.022	57.919
	r82	0.3	19737	0.19791	0.20163	0.21175	0.23145	66.71	69.193	72.375	77.007
	r83	0.3	19737	0.19791	0.20163	0.21175	0.23145	116.82	122.65	128.66	134.88
Γ٧	W 20	20 C	. M 30.	201 = snw :	a4chk wrk	bisec_vec(welf check	cs V emn	2020 cor	ns Amn 202	00 mn nara
Lv		20, 0		20] - 31W_0	u-terik_wi k_	D1300_V00(.	weil_eneer	(3, V_cmp_	_2020, 001	13_cmp_202	.o,p_para
Cor	mpleted	SNW_A	A4CHK_W	RK_BISEC_VEC	;SNW_MP_PARA	M=st_biden_or	_trump_unde	fined;welf_	checks=2;TR	=0.0017225;	SNW_MP_PARAM=
				xxxxxxxxxxxx							
				ntainer_map N		trix etc)					
XXX	XXXXXX	(XXXXX	XXXXXXX	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		mel rowN	L COIN	-	. Im	moon	c+d
				1 10X	ndim nu	mer LOMN	l colN	S	um	mean	std

	_								
C_W	1	1	6	4.37e+07	83	5.265e+05	2.3278e+08	5.3269	8.4
C_W_minus_C_ss	2	2	6	4.37e+07	83	5.265e+05	25096	0.00057428	0.0007
V_W	3	3	6	4.37e+07	83	5.265e+05	-6.6561e+08	-15.231	21
V_W_minus_V_ss	4	4	6	4.37e+07	83	5.265e+05	5.8108e+05	0.013297	0.06
mn MPC	5	5	6	4.37e+07	83	5.265e+05	7.2848e+06	0.1667	0.2

```
mn_V_W_gain_check = V_W_2020 - V_emp_2020;
mn_MPC_W_gain_share_check = (C_W_2020 - cons_emp_2020)./(welf_checks*mp_params('TR'));
```

Dense Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:100;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
```

```
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(MN_V_GAIN_CHECK(A,Z))

Tabulate value and policies along savings and shocks:

```
% Set
ar_permute = [1,4,5,6,3,2];
% Value Function
st_title = ['MEAN(MN V W GAIN CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str(r
tb az v = ff summ nd array(st title, mn V W gain check, true, ["mean"], 4, 1, cl mp datasetdeso
group
           savings
                      mean_eta_1
                                 mean_eta_2
                                             mean_eta_3
                                                         mean_eta_4
                                                                    mean_eta_5
                                                                                mean_eta_6
                                                                                           mean_
    1
                        0.94877
                                    0.84952
                                                 0.761
                                                           0.68204
                                                                       0.61169
                                                                                  0.54906
                                                                                              0.
          0.00051498
    2
                        0.93806
                                    0.84058
                                               0.75354
                                                            0.6758
                                                                       0.60645
                                                                                  0.54467
                                                                                              0.
    3
           0.0041199
                        0.78107
                                    0.71106
                                                0.6451
                                                           0.58402
                                                                       0.52829
                                                                                  0.47789
                                                                                              0.
    4
            0.013905
                        0.59646
                                    0.55133
                                               0.50699
                                                           0.46454
                                                                       0.42482
                                                                                  0.38817
                                                                                              0.
    5
            0.032959
                        0.43075
                                     0.404
                                               0.37635
                                                           0.3489
                                                                       0.3225
                                                                                  0.29766
                                                                                              0
            0.064373
                                                           0.25773
    6
                          0.309
                                    0.29293
                                               0.27555
                                                                       0.24021
                                                                                  0.22343
                                                                                              0.
% Consumption
st_title = ['MEAN(MN_MPC_W_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_W_gain_share_check, true, ["mean"], 4, 1, cl_mp_date
```

	EAN(MN_MPC_W_GA oup savings	_ ` ` '), welf_checks=2 a _1 mean_eta _	•		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx4 mean_eta_!		6 mean_
	 1	0 0.9979		-	0.99139	- 0.99133	0.99164	0.99
-	2 0.000514			0.99139	0.98982	0.98974	0.99011	0.99
3	3 0.00411	L99 0.8828	8 0.87696	0.87559	0.87507	0.87497	0.87532	0.87
4	4 0.0139	0.7964	1 0.79399	0.79087	0.78961	0.78966	0.79044	0.79
	5 0.0329	959 0.7144	2 0.70961	0.70732	0.70675	0.70741	0.70894	0.73
6	6 0.0643	0.6414	7 0.64074	0.64117	0.64223	0.64376	0.6456	0.6

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_W\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR='
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_W\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_W\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' num2support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_W\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = [...
    "k0M0", "K1M0", "K2M0", "K3M0", "K4M0", ...
    "k0M1", "K1M1", "K2M1", "K3M1", "K4M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {...
    'o', 'd', 's', 'x', '*', ...
    'o', 'd', 's', 'x', '*'};
mp_support_graph('cl_colors') = {...
    'red', 'red', 'red', 'red'...
    'blue', 'blue', 'blue', 'blue'};
```

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n jgrid,n agrid,n etagrid,n educgrid,n marriedgrid,n kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
st title = ['MEAN(MN V W GAIN CHECK(KM,J)), welf checks=' num2str(welf checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_v_W_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesd
group
          kids
                 marry
                         mean_age_18
                                     mean_age_19
                                                  mean_age_20
                                                              mean_age_21
                                                                                       mean_age_23
                                                                         mean_age_22
                          0.028443
                                                                0.023829
                                                                                         0.020387
    1
           1
                   0
                                       0.027382
                                                    0.02607
                                                                             0.021959
    2
           2
                   0
                          0.039131
                                       0.037712
                                                   0.035894
                                                                0.032743
                                                                            0.030106
                                                                                          0.02788
    3
           3
                   0
                          0.04572
                                        0.04432
                                                    0.04241
                                                                0.038719
                                                                            0.035631
                                                                                         0.033028
     4
           4
                                       0.050449
                   0
                         0.051937
                                                   0.048354
                                                                0.044164
                                                                            0.040661
                                                                                         0.037707
    5
           5
                   0
                         0.056986
                                         0.0555
                                                   0.053326
                                                                 0.04875
                                                                            0.044927
                                                                                         0.041707
    6
           1
                  1
                         0.008385
                                      0.0079795
                                                   0.0075874
                                                               0.0068616
                                                                            0.0062549
                                                                                        0.0057423
    7
           2
                  1
                         0.011253
                                       0.010708
                                                   0.010181
                                                               0.0092041
                                                                            0.0083817
                                                                                        0.0076884
    8
           3
                  1
                         0.013554
                                       0.012928
                                                   0.012313
                                                                0.011136
                                                                            0.010147
                                                                                        0.0093138
    9
           4
                   1
                         0.016251
                                       0.015529
                                                   0.014803
                                                                0.013404
                                                                            0.012225
                                                                                         0.011226
           5
    10
                   1
                         0.019768
                                       0.018969
                                                   0.018139
                                                                0.016444
                                                                            0.015026
                                                                                         0.013822
% Consumption Function
st_title = ['MEAN(MN_MPC_W_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_W_gain_share_check, true, ["mean"], 3, 1, cl_mp_date
```

group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.067542	0.074752	0.091075	0.088909	0.086942	0.085404
2	2	0	0.075256	0.083119	0.10165	0.099284	0.097581	0.095623
3	3	0	0.086542	0.095859	0.11593	0.11256	0.10948	0.10827
4	4	0	0.091496	0.10076	0.12129	0.11824	0.11514	0.11272
5	5	0	0.098346	0.10645	0.12728	0.12409	0.12073	0.11757
6	1	1	0.10277	0.10672	0.1125	0.11137	0.11019	0.10941

7	2	1	0.10343	0.1077	0.11433	0.11354	0.11208	0.11076
8	3	1	0.10875	0.11374	0.12309	0.11975	0.11861	0.1182
9	4	1	0.11014	0.11556	0.12324	0.12217	0.12228	0.11986
10	5	1	0.1166	0.1232	0.13246	0.13017	0.12661	0.12494

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_W\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_W\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_W\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_W\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,6,1,4,5];
% Value Function
st title = ['MEAN(MN V W GAIN CHECK(EM,J)), welf checks=' num2str(welf checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_v w gain_check, true, ["mean"], 3, 1, cl_mp_datasetdeso
group
                       mean_age_18
                                   mean_age_19
                                               mean_age_20
                                                            mean_age_21
                                                                        mean_age_22
                                                                                    mean_age_23
    1
           0
                 0
                        0.045692
                                    0.044619
                                                0.043207
                                                            0.040746
                                                                         0.03856
                                                                                     0.036612
                                    0.041526
                                                0.039215
                                                            0.034536
    2
           1
                 0
                        0.043194
                                                                         0.030754
                                                                                     0.027671
    3
                                    0.014079
           0
                 1
                        0.014697
                                                 0.01347
                                                            0.012491
                                                                         0.01163
                                                                                     0.010875
    4
           1
                 1
                        0.012987
                                    0.012367
                                                0.011739
                                                            0.010329
                                                                         0.009184
                                                                                     0.008242
% Consumption
st_title = ['MEAN(MN_MPC_W_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_W_gain_share_check, true, ["mean"], 3, 1, cl_mp_date
```

XXX	xx MEAN(MN_MPC_W_GAIN_CHECK(EM,J)), welf_checks=2, TR=0.0017225 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx											
	group	edu	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23			
	1	0	0	0.075296	0.080407	0.092505	0.091671	0.091522	0.091354			
	2	1	0	0.092377	0.10397	0.13038	0.12556	0.12042	0.11648			
	3	0	1	0.099842	0.10362	0.10816	0.10847	0.10824	0.10764			
	4	1	1	0.11684	0.12315	0.13408	0.13033	0.12767	0.12562			

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_W\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_W\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_W\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_W\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


