3.4.1 – Диа- и парамагнетики.

Цель работы. Измерение магнитной восприимчивости диа- и парамагнетного образцов. В работе используются: электромагнит, аналитические весы, милливеберметр, амперметр постоянного тока, реостаты, образцы.

Теоретическая часть. Рассмотрим два крупных класса веществ относительно их поведения в магнитном поле. Суммарный магнитный момент электронов в атомах диамагнетиков в отсутствие внешнего магнитного поля равен нулю; при внесении вещества в магнитное поле возникают индуцированные атомные токи, создающие магнитные момент, направленный противоположно внешнему полю (проявление принципа Ле-Шателье). Атомы парамагнетика же обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее.

Рис. 1: Образец в электромагните

Для широкого класса веществ намагниченность (суммарный магнитный момент единицы объема вещества) и напряженность магнитного поля связаны линейно:

$$\mathbf{M} = \chi \mathbf{H},\tag{1}$$

где χ – магнитная восприимчивость (скаляр, а не тензор!). Для парамагнетиков $\chi > 0$, диамагнетиков – $\chi < 0$.

Рис. 2: Схема экспериментальной установки

В данной работе предлагается измерить магнитную восприимчивость различных материалов, используя метод Γrou . Тонкий длинный образец вещества вносится в узкий зазор электромагнита, измеряется сила, действующая на него со стороны поля. Найдем связь магнитной восприимчивости и силы. При смещении образца на Δl магнитная сила есть

$$F = \frac{\Delta W}{\Delta l},\tag{2}$$

где ΔW – изменение энергии поля. Магнитная энергия есть

$$W = \frac{1}{2} \int HB \, dV = \frac{1}{2\mu_0} \int \frac{B^2}{\mu} \, dV \,, \tag{3}$$

где интеграл берётся по всему пространству. При смещении образца внутрь зазора поле около верхнего конца поля остаётся практически неизменным. Принимая поле внутри стержня равным измеренному наму полю в зазоре, получим

$$\Delta W = \frac{1}{2\mu_0} \frac{B^2}{\mu} s \Delta l - \frac{1}{2\mu_0} B^2 s \Delta l = -\frac{\chi}{2\mu_0 \mu} B^2 s \Delta l; \tag{4}$$

отсюда следует, что на образец действует сила

$$F = -\frac{\chi}{2\mu_0 \mu} B^2 s. \tag{5}$$

В нашей работе сила определяется с помощью аналитических весов. Мы исследуем три образца – медь, алюминий, графит.

Результаты эксперимента. Построим градуировочную кривую для электромагнита. Калибровку мы проводим милливеберметром, измеряющим магнитный поток $\Phi = BSn$, где Sn = 72 см². Отсюда получаем B = f(I):

Рис. 3: Калибровочная кривая электромагнита, $k = 1.05 \pm 0.04~{\rm Tr/A}$.

Медь		Алюминий		Графит	
I, A	m , m Γ	I, A	m, мг	I, A	m, мг
1.17	-35	1.17	76	1.17	-187
0.94	-27	0.98	62	0.92	-141
0.77	-20	0.76	42	0.74	-98
0.62	-14	0.59	26	0.54	-54
0.49	-9	0.44	15	0.40	-32
0.31	-4	0.29	6	0.21	-10

Таблица 1: Экспериментальные данные.

Отрицательная масса здесь, конечно, свидетельствует не о существовании антимассы, а о том, что сила направлена противоположно вектору ${f g}$.

Рис. 4: Магнитная восприимчивость различных веществ.

По полученному наклону прямой мы можем, используя формулу 5, найти магнитную восприимчивость материала. Стержни представляют собой цилиндры диаметрами d=10 мм для меди, d=10 мм для алюминия и d=6.7 мм для графита соответственно. Отсюда получаем:

$$\chi_{\rm Cu} = (-7.8 \pm 0.5) \times 10^{-9} \,{\rm m}^3/{\rm kr}$$

$$\chi_{\rm Al} = (17 \pm 0.6) \times 10^{-9} \,{\rm m}^3/{\rm kr}$$

$$\chi_{\rm graphite} = (-0.98 \pm 0.5) \times 10^{-7} \,{\rm m}^3/{\rm kr}.$$

Между тем табличные данные есть $\chi_{\rm Cu}=-1.13\times 10^{-9}~{\rm m}^3/{\rm kr},~\chi_{\rm Al}=7.54\times 10^{-9}~{\rm m}^3/{\rm kr},~\chi_{\rm graphite}=-3.6\times 10^{-7}~{\rm m}^3/{\rm kr}.$

Вывод. Метод Гюи доказал свою применимость на практике и позволил измерить магнитную восприимчивость нескольких материалов в пределах известной погрешности. Кроме того, мы установили, что медь и графит – диамагнетики, а алюминий – парамагнетик.