ECE 4930 Course Project

Eric Paulz Jacary Richardson Matthew Lam Kyle Mcmindes

Introduction

- We will discuss:
 - Research questions
 - Resources
 - Methodology
 - Results
 - Challenges
 - Questions raised
 - Future work

Research Questions

- What are the raw number of single and double bit-flip errors encountered in the logs?
- What is the overall MTBF of the system (with given logs)
- What is the MTBF of each phase?
- What is the best way to parse this data?
- Are some nodes/GPUs more reliable than others? If so, which ones?

Resources

- Palmetto log files
- Python3
- Pandas
- Excel

Methodology

- Traverse the file hierarchy within Python script ('os' library)
- Extract relevant data from logs and store in a Pandas dataframe so it's easier to work with
- Export dataframe as a .CSV
- Perform analysis and graphing in Excel

	Single Bit	Double Bit
Device Memory	84057	193
Register File	35	0
L1 Cache	58	0
L2 Cache	17664526616	0
Texture Memory	0	0
Texture Shared	0	0
CBU	0	0
Total	17664610766	193

Overall MTBF

$$\frac{total\ hours\ represented\ in\ logs}{total\ failures} = \frac{3840}{755} = 5.086\ hours$$

MTBF by Phase

- *phase*08*a*: 320 hours
- phase08b: 10 hours
- *phase* 16: 46.829 hours
- *phase*17: 69.818 hours
- phase 18b: 17.297

^{*} all phases not shown did not experience any failures in the timeframe represented in the logs

Discussion

- When we created the graphs we had spikes in the graph
- What did you think went wrong
- How did we fix it?

Observations

- Not many double bit flip errors overall
- More phases with no bit-flips than expected
- Phases with bit-flip spikes
- Phases with evenly distributed bit-flips
- Most bit flip errors occurred between 6/8 and 7/4

Challenges

- Understanding the filetree
 - Deciding how to store the data for each nodes data by phase or date
 - Understanding the aggregate vs. volatile metrics given and how to use them
- Verifying that our data is correct
 - Using the filetree system we implemented, our data was out of order(or in date, phase, node order mak
 - We found anomalous data while tracking the bit flips due to days when the system was down
 - When tracking the change it would cause major spikes in our analysis

Future Work

- Which nodes are the most reliable?
- How do GPUs factor into that?

Questions?