

We Claim:

- 1 1. A process for preparation of cefditoren or a pharmaceutically acceptable salt or
 2 ester thereof, the process comprising:
 3 a) reacting a compound of Formula IX with a compound of Formula X
 4 wherein Z is selected from Formulae Xa, Xb, Xc and Xd and R_c is selected
 5 from trityl (triphenylmethyl), acetyl, benzhydryl or acetamidophenyl, R is
 6 C₁ to C₇ straight or branched chain alkyl, alkenyl, alkynyl or C₆ to C₁₀ aryl
 7 or aralkyl, R₁ is C₁₋₆ straight or branched chain alkyl, cycloalkyl, aryl,
 8 aralkyl or a heterocycle residue,
 9 b) isolating cefditoren or pharmaceutically acceptable salt thereof from
 10 reaction mass, and
 11 c) optionally converting cefditoren or pharmaceutically acceptable salt thereof
 12 to a pharmaceutically acceptable ester of cefditoren.

FORMULA IX

Formula X

15

wherein Z is Compound of Formula Xa or Xb or Xc or Xd

Formula Xa

Formula Xb

Formula Xc

Formula Xd

16

17

- 1 2. The process according to claim 1, wherein the compound of Formula IX comprises
 2 less than 2% of E-isomer.

- 1 3. The process according to claim 1, wherein the compound of Formula X has Z =
2 Xa.
- 1 4. The process according to claim 3, wherein Formula X is *S*-(1,3-benzothiazol-2-yl)-(2-amino-1,3-thiazol-4-yl)(methoxyimino)ethanethioate.
- 1 5. The process according to claim 1, wherein step a) is carried out in presence of an
2 organic solvent.
- 1 6. The process according to claim 5, wherein the organic solvent is selected from the
2 group consisting of chlorinated hydrocarbon such as methylene chloride,
3 chloroform, ethylene chloride or ethylene bromide; ethers such as tetrahydrofuran
4 and diethyl ether; ketones such as acetone, methyl isobutyl ketone and methyl ethyl
5 ketone; alcohols such as methanol, ethanol, propanol, isopropanol and butanol or
6 mixtures thereof optionally containing water.
- 1 7. The process according to claim 1, wherein a base is used in step a).
- 1 8. The process according to claim 7, wherein the base is an inorganic base or an
2 organic base.
- 1 9. The process according to claim 8, wherein the inorganic base is selected from the
2 group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide,
3 magnesium hydroxide, aluminium hydroxide, sodium hydride, potassium hydride,
4 sodium carbonate, potassium carbonate, sodium bicarbonate or potassium
5 bicarbonate.
- 1 10. The process according to claim 8, wherein the organic base is selected from the
2 group consisting of an organic salt or an organic ammonium compound.
- 1 11. The process according to claim 10, wherein an organic salt is selected from sodium
2 methoxide, potassium t-butoxide or sodium ethoxide.
- 1 12. The process according to claim 10, wherein an organic ammonium compound is
2 selected from triethylamine, dicyclohexylamine or diphenylamine.
- 1 13. The process according to claim 1, wherein in step b) a salt of cefditoren is isolated.
- 1 14. The process according to claim 13, wherein a sodium or potassium salt of
2 cefditoren is isolated.

- 1 15. The process according to claim 1, wherein salt of cefditoren is reacted with
 2 compound of Formula XI, to get cefditoren pivoxil.

FORMULA XI

- 5 16. A crystalline hydrate of cefditoren sodium.
 1 17. A crystalline dihydrate of cefditoren sodium.
 1 18. A crystalline cefditoren sodium having about 5.5 to about 7.5% of water by
 2 weight.
 1 19. A crystalline hydrate of cefditoren potassium.
 1 20. A crystalline dihydrate of cefditoren potassium.
 1 21. A crystalline cefditoren potassium having about 5.5 to 7.5% of water.
 1 22. A process for preparation of cefditoren or a pharmaceutically acceptable salt or
 2 ester thereof comprising:
 3 a) enzymatically deacylating a compound of Formula VIII to get a compound
 4 of Formula IX,
 5 b) reacting the compound of Formula IX with a compound of Formula X
 6 wherein Z is selected from Formulae Xa, Xb, Xc and Xd, and R_c is selected
 7 from trityl (triphenylmethyl), acetyl, benzhydryl or acetamidophenyl, R is
 8 C₁ to C₇ straight or branched chain alkyl, alkenyl, alkynyl or C₆ to C₁₀ aryl
 9 or aralkyl, R₁ is C₁₋₆ straight or branched chain alkyl, cycloalkyl, aryl,
 10 aralkyl or a heterocycle residue,
 11 c) isolating cefditoren or a pharmaceutically acceptable salt thereof from
 12 reaction mass,
 13 d) optionally converting cefditoren or the pharmaceutically acceptable salt
 14 thereof to a pharmaceutically acceptable ester of cefditoren.
- 15

FORMULA VIII**FORMULA IX****Formula X**

20

wherein Z is Compound of Formula Xa or Xb or Xc or Xd

21

- 1 23. The process according to claim 22, wherein step a) is carried out in water,
2 optionally containing an organic solvent.
- 1 24. The process according to claim 23, wherein the organic solvent can be water
2 miscible or water immiscible.

3

4

5

6

- 1 25. The process according to claim 24, wherein the organic solvent is selected from the
2 group consisting of methanol, ethanol, n-propanol, n-butanol, isopropanol, t-
3 butanol, methyl formate, ethyl formate, ethyl acetate, n-butyl acetate, isopropyl
4 acetate, tetrahydrofuran, 1,4-dioxane, diethyl ether, chloroform, methylene
5 chloride, ethylene chloride, carbon tetrachloride, acetone, methyl isobutyl ketone,
6 diisobutyl ketone, ethyl methyl ketone, methyl t-butyl ketone.
- 1 26. The process according to claim 22, wherein pH is maintained between about 5 to
2 about 8 during step a).
- 1 27. The process according to claim 26, wherein the pH is maintained by using a base.
- 1 28. The process according to claim 27, wherein the base is selected from the group
2 consisting of sodium carbonate, sodium bicarbonate, sodium hydroxide, potassium
3 hydroxide, potassium bicarbonate, potassium carbonate or water soluble
4 ammonium compounds such as ammonium hydroxide or triethylamine.
- 1 29. The process according to claim 22, wherein step a) is carried out using an enzyme
2 belonging to the class of penicillin acylases or penicillin amidases.
- 1 30. The process according to claim 29, wherein the enzyme is penicillin G amidase.
- 1 31. The process according to claim 30, wherein the enzyme is used in immobilized
2 form.
- 1 32. A process for the preparation of a compound of Formula IX, comprising:
 - 2 a) treating a compound of Formula II with an alkali or alkaline earth metal
3 halide and a phosphorous-containing compound P(YR)_n, wherein Y is
4 absent or oxygen or sulphur, n is an integer 2, 3 or 4 and R is selected from
5 C₁ to C₇ straight or branched chain alkyl, alkenyl, alkynyl or C₆ to C₁₀ aryl
6 or aralkyl, in organic solvent, optionally containing water, at a temperature
7 of about -10 to about 50°C to produce a compound of Formula IV,
 - 8 b) converting the compound of Formula IV to an ylide of Formula V by
9 reacting with a base,
 - 10 c) reacting the ylide of Formula V with 4-methylthiazole-5-carboxaldehyde of
11 Formula VI in a mixture of organic solvent at a temperature of about -50 to
12 about 10°C to produce a compound of Formula VII,

- 13 d) deprotecting the carboxyl functionality of the compound of Formula VII
14 using phenol or its ether to produce a compound of Formula VIII, and
15 e) enzymatically deacylating the compound of Formula VIII to produce a
16 compound of Formula IX.

FORMULA II

FORMULA IV

FORMULA V

FORMULA VI

FORMULA VIII

- 1 33. The process according to claim 32, wherein the process is carried out without
2 isolating any intermediate.
- 1 34. A process for preparation of cefditoren or pharmaceutically acceptable salt or ester
2 thereof comprising:
- 3 converting a compound of Formula II to a compound of Formula IX,
4 through intermediates IV, V, VII and VIII with a proviso that the reaction
5 sequence is carried out without isolating any intermediate,
 - 6 reacting the compound of Formula IX with a compound of Formula X
7 wherein Z is selected from Xa, Xb, Xc and Xd, and R_c is selected from
8 Formulae Xa, Xb, Xc and Xd and R_c is selected from trityl
9 (triphenylmethyl), acetyl, benzhydryl or acetamidophenyl, R is C₁ to C₇
10 straight or branched chain alkyl, alkenyl, alkynyl or C₆ to C₁₀ aryl or
11 aralkyl, R₁ is C₁₋₆ straight or branched chain alkyl, cycloalkyl, aryl, aralkyl
12 or a heterocycle residue,
 - 13 c) isolating cefditoren or a pharmaceutically acceptable salt thereof from
14 reaction mass, and
 - 15 d) optionally converting cefditoren or a pharmaceutically acceptable salt
16 thereof to a pharmaceutically acceptable ester of cefditoren.
- 1 35. Z-isomer of cefditoren pivoxil having less than 2% of corresponding E-isomer.
- 2

- 1 36. Z-isomer of cefditoren pivoxil having less than 2% of corresponding E-isomer,
2 wherein the Z-isomer is isolated from reaction mass without any purification.
- 1 37. Z-isomer of 7-ATCA having less than 1% of corresponding E-isomer, wherein the
2 Z-isomer is isolated from reaction mass without any purification.
- 1 38. Use of the Z-isomer of 7-ATCA according to claim 37 in preparation of cefditoren
2 or pharmaceutically acceptable salt or ester thereof.