231B: Angular momentum and hydrogenic atoms

Quiz 2', Winter 2020 (Dated: February 2, 2020)

1. Find $\langle 2|p|1\rangle$ for a harmonic oscillator.

 $i\sqrt{\omega}$

2. For a particle on a ring of radius 2, write down a normalized first excited state wavefunction.

 $\frac{e^{i\phi}}{\sqrt{2\pi}}$

3. What is the eigenvalue of L^2 of $Y_2^{-1}(\theta,\phi)$?

6

4. Repeat previous problem for L_z .

 $-\hbar$

5. What is $[L_{y}^{2} + L_{x}^{2}, L_{z}]$?

0

6. What is $(2, 1|L_x|2, 2)$?

1

7. What is the transition frequency between the ground and second excited states in He⁺?

3/2 Hartree

8. The usual sequence of atomic orbitals is s, p, d, and f. If the next set is g orbitals, what is the degeneracy of the first hydrogenic level that has g-orbitals?

Degeneracy of 0

9. Knowing $E_0 = -Z^2/2$ for the hydrogenic atom, deduce T_0 , the expectation value of the kinetic energy.

 $\frac{Z^2}{2}$

10. If $\hat{H} = \hat{T} + \lambda \hat{V}$, and $E(\lambda) = 2\lambda^2$, what is $\langle V \rangle$ at $\lambda = 1$?

V = 4