CÔNG THỨC VÀ THỦ THUẬT TÍNH NHANH BÀI TOÁN CỰC TRỊ SỐ PHỨC

Sưu tầm & biên soan: CAO VĂN TUẤN

Bài toán cơ bản: Cho số phức z thỏa mãn điều kiện (*) cho trước. Tìm giá trị nhỏ nhất, lớn nhất của |z|.

Phương pháp chung:

- **Bước 1:** Tìm tập hợp (H) các điểm biểu diễn số phức z thỏa mãn điều kiện (*).
- **Bước 2:** Tìm số phức z tương ứng với điểm biểu diễn $M \in (H)$ sao cho khoảng cách OMlớn nhất, nhỏ nhất.

VÍ DU MINH HOA

Ví dụ 1: Biết các số phức z có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là hình vuông tô đậm như hình vẽ bên. Môđun lớn nhất của số phức z là

A.
$$|z|_{z=1}$$

A.
$$|z|_{\text{max}} = 1$$
. **B** $|z|_{\text{max}} = \frac{1}{2}$.

C.
$$|z|_{\text{max}} = \sqrt{2}$$
.

C.
$$|z|_{\text{max}} = \sqrt{2}$$
. **D.** $|z|_{\text{max}} = \frac{\sqrt{2}}{2}$.

Lời giải:

 $|z|_{\max}$ bằng nửa độ dài đường chéo của hình vuông cạnh bằng $2 \Rightarrow \textit{Chọn đáp án C}$.

Ví dụ 2: Biết các số phức z có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là hình vuông tô đậm như hình vẽ bên. Môđun nhỏ nhất của số phức z là

A.
$$|z|_{\min} = 0$$
.

B.
$$|z|_{\min} = 1$$
.

C.
$$|z|_{\min} = \sqrt{2}$$
.

C.
$$|z|_{\min} = \sqrt{2}$$
. D. $|z|_{\min} = \frac{\sqrt{2}}{2}$.

Lời giải:

 $\left|z\right|_{\min}=0$, điểm biểu diễn là điểm $O\Rightarrow$ Chọn đáp án A.

Ví dụ 3: Biết các số phức z có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là hình tròn tô đậm như hình vẽ bên. Môđun lớn nhất của số phức z là

$$\mathbf{B} |z|_{\max} = 2.$$

C.
$$|z| = 3$$
.

C.
$$|z|_{\text{max}} = 3$$
. **D.** $|z|_{\text{max}} = \sqrt{3}$.

Lòi giải:

Tam giác OAB có góc OAB là góc tù nên

$$OA < OB \Rightarrow |z| \le OB = 3.$$

Vậy
$$|z|_{\text{max}} = 3 \Rightarrow$$
 Chọn đáp án C.

f Vi f du f 4: Biết các số phức z có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là phần tô đậm (kể cả đường viền). Môđun nhỏ nhất của số phức z là

A.
$$|z|_{\min} = 1$$
. **B** $|z|_{\min} = \frac{1}{2}$.

C.
$$|z|_{\min} = \frac{2}{3}$$
. D. $|z|_{\min} = \sqrt{3}$.

D.
$$|z|_{\min} = \sqrt{3}$$
.

Tam giác OAB có góc OBA là góc tù nên

$$OA > OB \Rightarrow |z| \ge OB = 1.$$

Vậy
$$|z|_{\min} = 1 \Rightarrow$$
 Chọn đáp án A.

 $Vi d\mu 5$: Biết các số phức z có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là đường elip như hình vẽ bên. Môđun nhỏ nhất của số phức z là

A.
$$|z| = 1$$

A.
$$|z|_{\min} = 1$$
. **B** $|z|_{\min} = 2$.

C.
$$|z|_{\min} = \frac{1}{2}$$
.

C.
$$|z|_{\min} = \frac{1}{2}$$
. **D.** $|z|_{\min} = \frac{3}{2}$.

Lời giải:

Elip có độ dài trục nhỏ bằng $2b = 2 \Rightarrow |z|_{\min} = 1 \Rightarrow Chọn đáp án A.$

Vi dụ 6: Biết số phức z có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là hình elip tô đậm như hình vẽ bên. Môđun lớn nhất của số phức z là

A.
$$|z|_{\max} = 1$$
.

$$\mathbf{B} \left| z \right|_{\max} = 2.$$

C.
$$|z|_{\text{max}} = \frac{1}{2}$$
. D. $|z|_{\text{max}} = \frac{3}{2}$.

D.
$$|z|_{\text{max}} = \frac{3}{2}$$
.

Elip có độ dài trục lớn bằng $2a = 4 \Rightarrow |z|_{\text{max}} = 2 \Rightarrow \textit{Chọn đáp án B.}$

Ví dụ 7: Tập hợp các điểm biểu diễn hình học của số phức z là đường thẳng Δ như hình vẽ. Khi đó, |z| có giá trị nhỏ nhất bằng

C.
$$\sqrt{2}$$
.

D.
$$\frac{1}{\sqrt{2}}$$
.

Lời giải:

Phương trình d: x+y-1=0.

Gọi M là điểm biểu diễn hình học của số phức $z \Rightarrow \begin{cases} M \in d \\ |z| = OM \end{cases}$

$$Vi M \in d: x + y - 1 = 0 \Longrightarrow M(t; 1 - t).$$

Suy ra
$$|z| = \sqrt{t^2 + (1-t)^2} = \sqrt{2t^2 - 2t + 1} = \sqrt{2\left(t^2 - t + \frac{1}{4}\right) + \frac{1}{2}} = \sqrt{2\left(t - \frac{1}{2}\right)^2 + \frac{1}{2}} \ge \frac{1}{\sqrt{2}}$$
.

Vậy
$$|z|_{\min} = \frac{1}{\sqrt{2}} \Rightarrow$$
 Chọn đáp án D.

MỘT SỐ BÀI TOÁN QUAN TRỌNG THƯỜNG GẶP

Bài toán 1: Cho số phức z thỏa mãn |z-(a+bi)|=c, (c>0), tìm giá trị nhỏ nhất, giá trị lớn nhất của |z|.

Lời giải:

|z-(a+bi)|=c, (c>0) \Rightarrow Tập hợp các điểm M biểu diễn số phức z là đường tròn có tâm I(a;b) và bán kính R=c.

Tìm tọa độ điểm M_1 , M_2 (tức là, tìm số phức z có môđun nhỏ nhất, lớn nhất).

+ Phương trình đường tròn (C) quỹ tích của điểm M biểu diễn số phức z là:

$$(C):(x-a)^2+(y-b)^2=c^2$$

+ Phương trình đường thẳng d đi qua hai điểm O, I là: d: Ax + By + C = 0. Khi đó, M_1 , M_2 là giao điểm của (C) và d.

Giải hệ phương trình:
$$\begin{cases} \left(x-a\right)^2 + \left(y-b\right)^2 = c^2 \\ Ax + By + C = 0 \end{cases} \Rightarrow \text{hai nghiệm} \Rightarrow \text{tọa độ hai điểm.}$$

So sánh khoảng cách từ hai điểm vừa tìm được tới O, khoảng cách nào nhỏ hơn thì điểm đó ứng với điểm M_1 và điểm còn lại là điểm M_2 .

Tổng quát: Cho số phức z thỏa mãn $|z_1.z+z_2|=r$, (r>0). Tìm giá trị nhỏ nhất, lớn nhất của |z|.

Giải:
$$\begin{cases} \max|z| = \left|\frac{z_2}{z_1}\right| + \frac{r}{|z_1|} \\ \min|z| = \left|\left|\frac{z_2}{z_1}\right| - \frac{r}{|z_1|}\right| \end{cases}$$

VÍ DỤ MINH HỌA

Ví dụ 1: Nếu các số phức z thỏa mãn $|z-2-4i|=\sqrt{5}$ thì |z| có giá trị lớn nhất bằng

A. $3\sqrt{5}$.

C. $\sqrt{5}$. D. $\sqrt{13}$.

Tập hợp các điểm M(z) là đường tròn có tâm I(2;4) và bán kính $R = \sqrt{5}$.

Vậy max $|z| = OM = OI + R = \sqrt{2^2 + 4^2} + \sqrt{5} = 3\sqrt{5}$.

⇒ Chọn đáp án A.

Câu hỏi bổ sung 1: |z| có giá trị nhỏ nhất bằng bao nhiêu?

<u>Trả lời</u>: $\min |z| = ON = OI - R = \sqrt{2^2 + 4^2} - \sqrt{5} = \sqrt{5}$.

Câu hỏi bổ sung 2: Tìm số phức z có môđun nhỏ nhất, lớn nhất. <u>Trả lời</u>: Phương trình đường thẳng OI là y = 2x.

Tọa độ hai điểm M, N là nghiệm của hệ phương trình:

$$\begin{cases} y = 2x \\ (x-2)^2 + (y-4)^2 = 5 \end{cases} \Leftrightarrow \begin{cases} y = 2x \\ (x-2)^2 + (2x-4)^2 = 5 \end{cases} \Leftrightarrow \begin{cases} y = 2x \\ x^2 - 4x + 3 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 2 \end{cases} \Rightarrow N(1;2) \\ \begin{cases} x = 3 \\ y = 6 \end{cases} \Rightarrow M(3;6) \end{cases}.$$

- + Số phức z có môđun lớn nhất là z=3+6i ứng với điểm M(3;6).
- Số phức z có môđun nhỏ nhất là z=1+2i ứng với điểm N(1;2).

Ví du 2 [Trích đề thi thử chuyên KHTN – Lần 1]:

Nếu các số phức z thỏa mãn $\left| \left(1+i \right) z + 1 - 7i \right| = \sqrt{2}$ thì $\left| z \right|$ có giá trị lớn nhất bằng

Ta có:
$$\left| (1+i)z + 1 - 7i \right| = \sqrt{2} \Leftrightarrow \left| (1+i)\left(z + \frac{1-7i}{1+i}\right) \right| = \sqrt{2}$$

$$\Leftrightarrow |1+i||z-(3+4i)| = \sqrt{2} \Leftrightarrow \sqrt{2}|z-(3+4i)| = \sqrt{2} \Leftrightarrow |z-(3+4i)| = 1$$

Tập hợp các điểm M(z) là đường tròn có tâm I(3;4) và bán kính R=1.

Vậy $\max |z| = OI + R = \sqrt{3^2 + 4^2} + 1 = 6 \Rightarrow$ Chọn đáp án D.

Ví dụ 3: Nếu các số phức z thỏa mãn $\left| \frac{-2-3i}{3-2i}z+1 \right| = 1$ thì |z| có giá trị nhỏ nhất bằng

A. 1. B. 2. C. √2. D. 3.

Ta có:
$$\left| \frac{-2-3i}{3-2i}z+1 \right| = 1 \Leftrightarrow \left| -iz+1 \right| = 1 \Leftrightarrow \left| -i \right| \left| z+\frac{1}{-i} \right| = 1 \Leftrightarrow \left| z+i \right| = 1 \Leftrightarrow \left| z-\left(-i\right) \right| = 1.$$

Tập hợp các điểm M(z) là đường tròn có tâm I(0;-1) và bán kính R=1.

Vậy $\max |z| = OI + R = \sqrt{0^2 + (-1)^2} + 1 = 2 \Rightarrow Chọn đáp án B.$

Bài toán 2: Trong các số phức z thỏa mãn $|z-z_1|=r_1$, $(r_1>0)$. Tìm giá trị nhỏ nhất, lớn nhất của $P = |z - z_2|.$

Lời giải:

Gọi
$$I(z_1)$$
, $A(z_2)$, $M(z)$.

Khi đó:
$$IA = |z_1 - z_2| = r_2 \Rightarrow \begin{bmatrix} \max P = AM_1 = r_1 + r_2 \\ \min P = AM_2 = |r_1 - r_2| \end{bmatrix}$$

Muốn tìm các số phức sao cho P_{\max} , P_{\min} thì ta đi tìm hai giao điểm M_1 , M_2 của đường tròn (I, r_1) với đường thẳng AI.

Tổng quát: Cho số phức z thỏa mãn $|z_1.z-z_2|=r_1$, $(r_1>0)$. Tìm giá trị nhỏ nhất, lớn nhất của $P = |z - z_3|.$

Giải:
$$\max P = \left| \frac{z_2}{z_1} - z_3 \right| + \frac{r_1}{|z_1|} \text{ và } \min P = \left| \frac{z_2}{z_1} - z_3 \right| - \frac{r_1}{|z_1|}$$

VÍ DU MINH HỌA

Ví dụ 1: Cho số phức z thỏa mãn |z-3+2i|=2. Giá trị nhỏ nhất của |z+1-i| lần lượt là

Ta có:
$$|z-3+2i| = \left|z - \underbrace{(3-2i)}_{z_1}\right| = 2 = r_1 \text{ và } |z+1-i| = \left|z - \underbrace{(-1+i)}_{z_2}\right|$$

$$\Rightarrow |z_1 - z_2| = |(3 - 2i) - (-1 + i)| = 5 = r_2 \Rightarrow \min|z + 1 - i| = 5 - 2 = 3 \Rightarrow Chon \text{ d\'ap \'an B.}$$

Ví dụ 2: Trong các số phức z thỏa mãn $|z-5i| \le 3$, số phức có |z| nhỏ nhất thì có phần ảo bằng bao nhiêu?

A. 4.

Tập hợp các điểm M(z) là đường tròn có tâm I(0;5) và bán kính R=3.

Vì |z| = OM nên số phức z có môđun nhỏ nhất là z = 2i ứng với điểm $M_1(0;2)$.

⇒ Chọn đáp án C.

Ví dụ 3 [Trích đề thi HK 2 – THPT Phan Đình Phùng – HN]: Trong tất cả các số phức z thỏa mãn |z-2+2i|=1, gọi z=a+bi, $(a,b\in\mathbb{R})$ là số phức có |z+4i| đạt giá trị nhỏ nhất. Tính giá trị biểu thức P = a(b+2).

A.
$$P = \sqrt{2} - \frac{1}{2}$$

A.
$$P = \sqrt{2} - \frac{1}{2}$$
. **B.** $P = -\sqrt{2} - \frac{1}{2}$. **C.** $P = \frac{1}{2} + \sqrt{2}$. **D.** $P = \frac{1}{2} - \sqrt{2}$. **Lòi giải:**

C.
$$P = \frac{1}{2} + \sqrt{2}$$
.

D.
$$P = \frac{1}{2} - \sqrt{2}$$
.

Ta có:
$$|z-2+2i| = \left|z - \underbrace{\left(2-2i\right)}_{z_1}\right| = 1 \Rightarrow I\left(2;-2\right) \text{ và } \left|z+4i\right| = \left|z-\left(-4i\right)\right| \Rightarrow A\left(0;-4\right).$$

Tập hợp các điểm M(z) là đường tròn có tâm I(2;-2) và bán kính $r_1 = 1$.

Phương trình đường thắng IA là: x-y-4=0.

Tọa độ hai điểm M, N là nghiệm của hệ phương trình:

$$\begin{cases} (x-y-4) = 0 \\ (x-2)^2 + (y+2)^2 = 5 \end{cases} 1 \Leftrightarrow \begin{cases} (y=x-4) \\ (x-2)^2 + (x-4+2)^2 = 1 \end{cases} \Leftrightarrow \begin{cases} (y=x-4) \\ (x-2)^2 = \frac{1}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} y = x - 4 \\ x - 2 = \pm \frac{1}{\sqrt{2}} \Leftrightarrow \begin{cases} x = 2 + \frac{1}{\sqrt{2}} \\ y = -2 + \frac{1}{\sqrt{2}} \end{cases} \lor \begin{cases} x = 2 - \frac{1}{\sqrt{2}} \\ y = -2 - \frac{1}{\sqrt{2}} \end{cases} \Rightarrow M_1 \left(2 + \frac{1}{\sqrt{2}}; -2 + \frac{1}{\sqrt{2}} \right); M_2 \left(2 - \frac{1}{\sqrt{2}}; -2 - \frac{1}{\sqrt{2}} \right).$$

Khi đó:
$$\begin{cases} \overrightarrow{AM_1} = \left(2 + \frac{1}{\sqrt{2}}; 2 + \frac{1}{\sqrt{2}}\right) \\ \overrightarrow{AM_2} = \left(2 - \frac{1}{\sqrt{2}}; 2 - \frac{1}{\sqrt{2}}\right) \Rightarrow AM_1 > AM_2 \Rightarrow M_2 \text{ là điểm biểu diễn số phức cần tìm.} \end{cases}$$

$$\Rightarrow z = 2 - \frac{1}{\sqrt{2}} + \left(-2 - \frac{1}{\sqrt{2}}\right)i \xrightarrow{z = a + bi} \begin{cases} a = 2 - \frac{1}{\sqrt{2}} \\ b = -2 - \frac{1}{\sqrt{2}} \end{cases} \Rightarrow P = a(b+2) = \sqrt{2} - \frac{1}{2} \Rightarrow Chọn đáp án A.$$

Bài toán 3: Trong số phức z thỏa mãn $|z-z_1|+|z-z_2|=k$, (k>0). Tìm giá trị nhỏ nhất, lớn nhất của P=|z|.

Lời giải:

Gọi M(z), $M_1(z_1)$, $M_2(z_2)$.

Khi đó: $|z-z_1|+|z-z_2|=k \Leftrightarrow MM_1+MM_2=k \Leftrightarrow M\in elip(E)$ nhận M_1 , M_2 làm tiêu điểm và có độ dài trục lớn bằng k=2a.

Vì ở chương trình Toán 10, chỉ được học elip có hai tiêu điểm là $F_1(-c;0)$, $F_1(c;0)$ nên thường đề bài sẽ cho dưới dạng: |z-c|+|z-c|=k, $(0 < c, k \in \mathbb{R})$

 $\Rightarrow M \in elip(E)$ nhận $F_1(-c;0)$, $F_1(c;0)$ làm tiêu điểm và có độ dài trục lớn bằng k=2a

$$\Rightarrow \begin{cases} \left| z \right|_{\text{max}} = a = \frac{k}{2} \\ \left| z \right|_{\text{min}} = b = \frac{\sqrt{k^2 - 4c^2}}{2} \end{cases}$$

Tổng quát: Cho số phức z thỏa mãn $|z_1.z+z_2|+|z_1.z-z_2|=k$, (k>0). Tìm giá trị nhỏ nhất, lớn nhất của P=|z|.

Giải: $\max |z| = \frac{k}{2|z_1|}$ và $\min |z| = \frac{\sqrt{k^2 - 4|z_2|^2}}{2|z_1|}$

VÍ DỤ MINH HỌA

Ví dụ: Trong tất cả các số phức z thỏa mãn |z+4|+|z-4|=10, gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất |z|. Khi đó, giá trị biểu thức $P=M-m^2$ bằng

$$\Delta P = -6$$

B.
$$P = -13$$

C.
$$P = -5$$
.

D.
$$P = -4$$
.

Lời giải

Áp dụng công thức trên, ta có: $\begin{cases} M = |z|_{\text{max}} = \frac{10}{2} = 5 \\ m = |z|_{\text{min}} = \frac{\sqrt{10^2 - 4.4^2}}{2} = 3 \end{cases} \Rightarrow P = M - m^2 = 5 - 3^2 = -4.$

⇒ Chọn đáp án D.

Bài toán 4: Cho hai số phức z_1 , z_2 thỏa mãn $z_1 + z_2 = m + ni$ và $|z_1 - z_2| = p > 0$. Tìm giá trị lớn nhất của $P = |z_1| + |z_2|$.

Giả sử:
$$\begin{cases} z_1 = a + bi \\ z_2 = c + di \end{cases} \Rightarrow z_1 + z_2 = a + c + (b + d)i = m + ni \Rightarrow \begin{cases} a + c = m \\ c + d = n \end{cases}.$$

Ta có:
$$z_1 - z_2 = a - c + (b - d)i \Rightarrow |z_1 - z_2|^2 = (a - c)^2 + (b - d)^2 = p$$
.

Khi đó:
$$P = |z_1| + |z_2| = \sqrt{a^2 + b^2} + \sqrt{c^2 + d^2} \le \sqrt{(1^2 + 1^2)[(a^2 + b^2) + (c^2 + d^2)]} = \sqrt{2(a^2 + b^2 + c^2 + d^2)}$$
.

Mà
$$a^2 + b^2 + c^2 + d^2 = \frac{(a+c)^2 + (b+d)^2 + (a-c)^2 + (b-d)^2}{2} = \frac{m^2 + n^2 + p^2}{2}$$

Suy ra:
$$2(a^2+b^2+c^2+d^2) = m^2+n^2+p^2 \Rightarrow P \le \sqrt{m^2+n^2+p^2} \Rightarrow \max P = \sqrt{m^2+n^2+p^2}$$
.

VÍ DỤ MINH HỌA

Ví dụ [Trích đề thi thử chuyên KHTN – Lần 4]: Với hai số phức phức z_1, z_2 thỏa mãn $z_1+z_2=8+6i \ \text{và} \ \left|z_1-z_2\right|=2. \ \text{Tìm giá trị lớn nhất của} \ P=\left|z_1\right|+\left|z_2\right|.$

A.
$$4\sqrt{6}$$
.

B.
$$5+3\sqrt{5}$$
.

C.
$$2\sqrt{26}$$
.

D.
$$34 + 3\sqrt{2}$$
.

A. $4\sqrt{6}$. B. $5+3\sqrt{5}$. C. $2\sqrt{26}$. D. $34+3\sqrt{2}$.

Lòi giải:

Áp dụng công thức trên ta được: $P = |z_1| + |z_2| \le \sqrt{8^2 + 6^2 + 2^2} = 2\sqrt{26} \Rightarrow$ Chọn đáp án C.

CÂU HỎI TRẮC NGHIỆM RÈN LUYỆN

Câu 1. Cho số phức z thỏa mãn |z+2-2i|=1. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là

A.
$$2\sqrt{2} + 1$$
; $2\sqrt{2} - 1$. **B.** $\sqrt{2} + 1$; $\sqrt{2} - 1$. **C.** 2; 1.

B.
$$\sqrt{2} + 1$$
; $\sqrt{2} - 1$.

D.
$$\sqrt{3} + 1$$
; $\sqrt{3} - 1$.

Câu 2. Cho số phức z thỏa mãn $|z+1+2i|=4\sqrt{5}$. Giá trị nhỏ nhất của |z| lần lượt là

A.
$$\sqrt{5}$$
.

B.
$$3\sqrt{5}$$
.

C.
$$5\sqrt{5}$$

D.
$$5\sqrt{3}$$
.

Câu 3. Trong các số phức z thỏa mãn: |z-3+4i|=|z| thì số phức z có modul nhỏ nhất là

A.
$$z = \frac{11}{2} + i$$
.

B.
$$z = \frac{3}{2} - 2i$$
.

C.
$$z = -5 - \frac{5}{2}i$$
.

A.
$$z = \frac{11}{2} + i$$
. **B.** $z = \frac{3}{2} - 2i$. **C.** $z = -5 - \frac{5}{2}i$. **D.** $z = -3 + \frac{1}{6}i$.

Câu 4. Trong các số phức z thỏa mãn: |z-2-4i|=|z-2i| thì số phức z có modul nhỏ nhất là

A.
$$z = -2 + 2i$$
. **B.** $z = -2 - 2i$. **C.** $z = 2 - 2i$.

B.
$$z = -2 - 2i$$
.

C.
$$z = 2 - 2i$$

D.
$$z = 2 + 2i$$

Câu 5. Trong các số phức z thỏa mãn: $|\overline{z}-3+4i|=|z|$, biết rằng số phức z=a+bi, $(a,b\in\mathbb{R})$ có modul nhỏ nhất. Khi đó, giá trị của $P = a^2 - b$ là

A.
$$P = \frac{1}{4}$$
.

B.
$$P = \frac{1}{2}$$
.

C.
$$P = -\frac{1}{4}$$
.

B.
$$P = \frac{1}{2}$$
. **C.** $P = -\frac{1}{4}$. **D.** $P = -\frac{1}{2}$.

Câu 6. Trong các số phức z thỏa mãn: $|z+1-5i|=|\overline{z}+3-i|$, biết rằng số phức z=a+bi, $(a,b\in\mathbb{R})$ có modul nhỏ nhất. Khi đó, tỉ số $\frac{a}{h}$ bằng

B.
$$\frac{1}{3}$$
.

C.
$$\frac{2}{3}$$

D.
$$P = -\sqrt{2}$$
.

Câu 7. Cho số phức z thỏa mãn điều kiện |z-2-i|=1. Giá trị lớn nhất của |z-1| là

A. $\sqrt{2} + 1$.

B. $\sqrt{2}-1$.

C. $\sqrt{2}$.

Câu 8. Cho số phức z thỏa mãn |z+1-2i|=2. Tích giá trị lớn nhất và giá trị nhỏ nhất của |z-i|bằng

A. 5.

D. 3.

Câu 9. Cho số phức z thỏa mãn |(2+i)z+1|=1. Tổng giá trị lớn nhất và giá trị nhỏ nhất của |z-1| bằng

A. 3.

B. $2\sqrt{2}$.

C. $\frac{2}{\sqrt{5}}$. D. $2\sqrt{3}$.

Câu 10. Cho số phức z thỏa mãn $|\overline{z}-1+2i|=\sqrt{10}$. Giá trị lớn nhất của |z+1-4i| bằng

A. $\sqrt{10}$.

B. $10\sqrt{3}$.

C. $3\sqrt{10}$.

D. $4\sqrt{10}$.

Câu 11. Cho số phức z thỏa mãn |z-1-2i|=4. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z+2+i|. Giá trị của $T=M^2+m^2$ là

A. T = 50.

B. T = 64.

C. T = 68.

D. T = 16.