Notes on the book: $A postol, \ Introduction \ to \ Analytic \\ Number \ Theory$

Meng-Gen Tsai plover@gmail.com

August 20, 2021

Contents

Chapter 1: The Fundamental Theorem of Arithmetic	2
Exercise 1.14	2
Exercise 1.15	2
Exercise 1.30	2
Chapter 2: Arithmetical functions and Dirichlet multiplication	4
Exercise 2.1	4
Exercise 2.2	5
Exercise 2.3	6
Supplement 2.3.1. (Chinese remainder theorem)	7
Exercise 2.4	7
Exercise 2.6	8
Exercise 2.7	6
	10
	11
	11
	12
Chapter 3: Average of arithmetical functions	13
1	13
	14
	15

Chapter 1: The Fundamental Theorem of Arithmetic

Exercise 1.14.

Prove that $n^4 + 4$ is composite if n > 1.

Proof.

$$n^4 + 4 = (\underbrace{(n-1)^2 + 1}_{>1})(\underbrace{(n+1)^2 + 1}_{>1})$$

since n > 1. \square

Exercise 1.15.

Prove that every $n \ge 12$ is the sum of two composite numbers.

Proof. Write n=2m (resp. n=2m+1) where $m\in\mathbb{Z},\ m\geq 6$. Then n=8+2(m-4) (resp. n=9+2(m-4)) is the sum of two composite numbers. \square

Exercise 1.30.

If n > 1 prove that the sum

$$\sum_{k=1}^{n} \frac{1}{k}$$

is not an integer.

Proof.

(1) (Reductio ad absurdum) Suppose

$$H := \sum_{k=1}^{n} \frac{1}{k}$$

were an integer.

(2) Let s be the largest integer such that $2^s \leq n$. So the integer number

$$2^{s-1}H = \sum_{k=1}^{n} \frac{2^{s-1}}{k}$$
$$= 2^{s-1} + 2^{s-2} + \frac{2^{s-1}}{3} + 2^{s-3} + \frac{2^{s-1}}{5} + \frac{2^{s-2}}{3} + \dots + \frac{1}{2} + \dots$$

has only one term of even denominators (as n>1) if we write all terms in irreducible fractions. That is,

$$2^{s-1}H = \frac{1}{2} + \frac{c}{d} \in \mathbb{Z}$$

where $\frac{c}{d}$ is an irreducible fraction with odd d. Hence it suffices to show that 2 $|\ d$ to get a contradiction.

(3) By

$$\frac{1}{2} + \frac{c}{d} = \frac{d+2c}{2d} \in \mathbb{Z}$$

we have d+2c=2dd' for some $d'\in\mathbb{Z}$. Note that 2 is a prime. So $2\mid (d+2c)$ or $2\mid d$, which is absurd.

Chapter 2: Arithmetical functions and Dirichlet multiplication

Exercise 2.1.

Find all integers n such that

- (a) $\varphi(n) = \frac{n}{2}$,
- (b) $\varphi(n) = \varphi(2n)$,
- (c) $\varphi(n) = 12$.

Proof of (a).

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right) = \frac{n}{2}$$

(Theorem 2.4) implies that n=2. \square

Proof of (b).

(1) $\varphi(n) = \varphi(2n)$ implies that

$$n\prod_{p|n}\left(1-\frac{1}{p}\right) = 2n\prod_{p|(2n)}\left(1-\frac{1}{p}\right).$$

- (2) If 2|n, then n = 2n or n = 0, which is absurd.
- (3) If $2 \nmid n$, then

$$n\prod_{p|n}\left(1-\frac{1}{p}\right) = 2n\prod_{p|(2n)}\left(1-\frac{1}{p}\right) = \underbrace{2n\left(1-\frac{1}{2}\right)}_{=n}\prod_{p|n}\left(1-\frac{1}{p}\right)$$

is always true. Hence n is odd if $\varphi(n) = \varphi(2n)$.

Proof of (c).

(1) Show that the solutions of $\varphi(n) = 12$ are n = 13, 26, 21, 28, 42, 36. Write $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ where $p_1 < p_2 < \dots$ Then

$$12 = \varphi(n) = \prod_{i=1}^{r} p_i^{\alpha_i - 1} (p_i - 1).$$

(Theorem 2.5). It implies that $p_i \in \{2, 3, 5, 7, 13\}$ if $\alpha_i > 0$. Consider all possible cases of the greatest prime divisor p_r of n as follows.

(2) If $p_r = 13$, then $\alpha_r = 1$ since $13 \nmid 12$. So

$$12 = \varphi(n) = \underbrace{\varphi(13)}_{=12} \varphi\left(\frac{n}{13}\right)$$

or $1 = \varphi\left(\frac{n}{13}\right)$. Hence $\frac{n}{13} = 1, 2$. In this case n = 13, 26.

(3) If $p_r = 7$, then $\alpha_r = 1$ since $7 \nmid 12$. So

$$12 = \varphi(n) = \underbrace{\varphi(7)}_{=6} \varphi\left(\frac{n}{7}\right)$$

or $2 = \varphi(\frac{n}{7})$. Hence $\frac{n}{7} = 3, 4, 6$. In this case n = 21, 28, 42.

- (5) If $p_r = 5$, then $\alpha_r = 1$ since $5 \nmid 12$. So $12 = \varphi(5)\varphi\left(\frac{n}{5}\right)$ or $3 = \varphi\left(\frac{n}{5}\right)$, which is impossible.
- (6) If $p_r = 3$, then $\alpha_r = 1, 2$. $\alpha_r = 1$ is impossible since 3|12. So

$$12 = \varphi(n) = \underbrace{\varphi(3^2)}_{-6} \varphi\left(\frac{n}{3^2}\right)$$

or $2 = \varphi\left(\frac{n}{3^2}\right)$. Hence $\frac{n}{3^2} = 4$. (By assumption $\frac{n}{3^2}$ cannot have any prime factor > 3.) In this case n = 36.

Exercise 2.2.

For each of the following statements either give a proof or exhibit a counter example.

- (a) If (m, n) = 1 then $(\varphi(m), \varphi(n)) = 1$.
- (b) If n is composite, then $(n, \varphi(n)) > 1$.
- (c) If the same primes divide m and n, then $n\varphi(m) = m\varphi(n)$.

Proof of (a). It is false since (5,13)=1 and $(\varphi(5),\varphi(13))=(4,12)=4$. \square

Proof of (b). It is false since $(15, \varphi(15)) = (15, 8) = 1$. \square

Proof of (c).

(1) It is true.

(2) If the same primes divide m and n, then

$$\frac{\varphi(n)}{n} = \prod_{p|n} \left(1 - \frac{1}{p} \right) = \prod_{p|m} \left(1 - \frac{1}{p} \right) = \frac{\varphi(m)}{m}$$

(Theorem 2.4). Hence $n\varphi(m) = m\varphi(n)$.

Exercise 2.3.

Prove that

$$\frac{n}{\varphi(n)} = \sum_{d|n} \frac{\mu(d)^2}{\varphi(d)}.$$

Proof.

(1) Note that fg, f/g and f*g are multiplicative if f and g are multiplicative (Example 5 on page 34 and Theorem 2.14). Hence $\frac{n}{\varphi(n)}$ and $\sum_{d|n} \frac{\mu^2(d)}{\varphi(d)}$ are multiplicative. Hence it might assume that $n=p^a$ for some prime p and integer $a \geq 1$. (The case n=1 is trivial.)

(2)

$$\frac{p^a}{\varphi(p^a)} = \frac{p^a}{p^a - p^{a-1}} = \frac{p}{p-1}.$$

(3)

$$\sum_{d|p^a} \frac{\mu(d)^2}{\varphi(d)} = \frac{\mu(1)^2}{\varphi(1)} + \frac{\mu(p)^2}{\varphi(p)} + \frac{\mu(p^2)^2}{\varphi(p^2)} + \dots + \frac{\mu(p^a)^2}{\varphi(p^a)}$$

$$= 1 + \frac{1}{p-1} + 0 + \dots + 0$$

$$= \frac{p}{p-1}.$$

(4) Or apply Theorems 2.4 and 2.18 to get

$$\begin{split} \sum_{d|n} \frac{\mu(d)^2}{\varphi(d)} &= \prod_{p|n} \left(1 - \frac{\mu(p)}{\varphi(p)} \right) \\ &= \prod_{p|n} \left(1 - \frac{-1}{p-1} \right) \\ &= \prod_{p|n} \frac{p}{p-1} \\ &= \frac{n}{\varphi(n)}. \end{split}$$

Supplement 2.3.1. (Chinese remainder theorem)

(Exercise I.3.5 in the textbook: Jörgen Neukirch, Algebraic Number Theory.) The quotient ring \mathcal{O}/\mathfrak{a} of a Dedekind domain by an ideal $\mathfrak{a} \neq 0$ is a principal ideal domain. (Hint: For $\mathfrak{a} = \mathfrak{p}^n$ the only proper ideals of \mathcal{O}/\mathfrak{a} are given by $\mathfrak{p}/\mathfrak{p}^n, \ldots, \mathfrak{p}^{n-1}/\mathfrak{p}^n$. Choose $\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$ and show that $\mathfrak{p}^{\nu} = \mathcal{O}\pi^{\nu} + \mathfrak{p}^n$.)

Proof.

- (1) By the Chinese remainder theorem, it suffices to show the case $\mathfrak{a} = \mathfrak{p}^n$ where \mathfrak{p} is prime.
- (2) There is a natural correspondence between

 $\{\text{ideals of } \mathcal{O}/\mathfrak{p}^n\} \longleftrightarrow \{\text{ideals of } \mathcal{O} \text{ containing } \mathfrak{p}^n\}.$

Hence the proper ideals of $\mathcal{O}/\mathfrak{p}^n$ are given by $\mathfrak{p}/\mathfrak{p}^n, \dots, \mathfrak{p}^{n-1}/\mathfrak{p}^n$.

(3) Similar to Exercise I.3.4, choose $\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$ and thus $\mathfrak{p}^{\nu} = \mathcal{O}\pi^{\nu} + \mathfrak{p}^n$ $(\nu = 1, ..., n-1)$ since they have the same prime factorization. Hence $\mathfrak{p}^{\nu}/\mathfrak{p}^n = (\pi^{\nu} + \mathfrak{p}^n)$ is principal.

Exercise 2.4.

Prove that $\varphi(n) > \frac{n}{6}$ for all n with at most 8 distinct prime factors.

Proof.

(1)

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right)$$

$$\geq n \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{3} \right) \left(1 - \frac{1}{5} \right) \left(1 - \frac{1}{7} \right)$$

$$\left(1 - \frac{1}{11} \right) \left(1 - \frac{1}{13} \right) \left(1 - \frac{1}{17} \right) \left(1 - \frac{1}{19} \right)$$

$$= \frac{55296}{323323} n$$

$$> \frac{n}{6}.$$
(Theorem 2.4)

(2) The conclusion does not hold if n has more than 9 distinct prime factors.

Exercise 2.6.

Prove that

$$\sum_{d^2|n} \mu(d) = \mu(n)^2$$

and, more generally

$$\sum_{\substack{d^k \mid n}} \mu(d) = \begin{cases} 0 & \textit{if } m^k \mid n \textit{ for some } m > 1, \\ 1 & \textit{otherwise}. \end{cases}$$

The last sum is extended over all positive divisors d of n whose kth power also divide n.

Proof.

- (1) Write $n=p_1^{\alpha_1}\cdots p_r^{\alpha_r}q_1^{\beta_1}\cdots q_s^{\beta_s}$ where $\alpha_i\geq 2$ and $\beta_j=1$. The proof is similar to Theorem 2.1.
- (2) If $p_1^{\alpha_1} \cdots p_r^{\alpha_r} = 1$, then $\sum_{d^2 \mid n} \mu(n) = \mu(1) = 1$.
- (3) If $p_1^{\alpha_1} \cdots p_r^{\alpha_r} > 1$, then

$$\sum_{d^2|n} \mu(d) = \mu(1) + \mu(p_1) + \cdots + \mu(p_r)$$

$$+ \mu(p_1 p_2) + \cdots + \mu(p_{r-1} p_r) + \cdots + \mu(p_1 \cdots p_r)$$

$$= 1 + \binom{r}{1}(-1) + \binom{r}{2}(-1)^2 + \cdots + \binom{r}{r}(-1)^r$$

$$= (1-1)^k$$

$$= 0.$$

(4) By (2)(3), $\sum_{d^2|n} \mu(d) = \mu(n)^2$. Besides, we have

$$\sum_{d^k|n} \mu(d) = \begin{cases} 0 & \text{if } m^k|n \text{ for some } m > 1, \\ 1 & \text{otherwise} \end{cases}$$

by the same argument as (1)(2)(3).

Exercise 2.7.

Let $\mu(p,d)$ denote the value of the Möbius function at the gcd of p and d. Prove that for every prime p we have

$$\sum_{d|n} \mu(d)\mu(p,d) = \begin{cases} 1 & if \ n = 1, \\ 2 & if \ n = p^a, \ a \ge 1, \\ 0 & otherwise. \end{cases}$$

Proof.

(1) It suffices to show that $\mu(p,n)$ is multiplicative. If so, then

$$h(n) := \sum_{d|n} \mu(d)\mu(p,d)$$

is also multiplicative by taking $f(n) := \mu(n)\mu(p,n)$ and g(n) := 1 in Theorem 2.14.

(2) A direct calculation shows that h(1) = 1 (or by Theorem 2.12) and

$$h(p^a) = \mu(1)\mu(p, 1) + \mu(p)\mu(p, p) = 1 \cdot 1 + (-1) \cdot (-1) = 2,$$

$$h(q^b) = \mu(1)\mu(p, 1) + \mu(q)\mu(p, q) = 1 \cdot 1 + (-1) \cdot 1 = 0$$

where $q \neq p$ and $a, b \geq 1$. Hence (1) and Theorem 2.13 show that

$$h(n) = \begin{cases} 1 & \text{if } n = 1, \\ 2 & \text{if } n = p^a, \ a \ge 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (3) Show that $\mu(p,n)$ is multiplicative. Suppose (m,n)=1. There are two possible cases: $p \nmid mn$ and p|mn.
 - (a) If $p \neq mn$, then all $\mu(p, mn), \mu(p, m), \mu(p, n)$ are equal to $\mu(1) = 1$.
 - (b) If p|mn, then p|m or p|n. Note that (m,n)=1 and thus p cannot be a common divisor of m,n. Hence $\mu(p,mn)=\mu(p)=-1$ and $\mu(p,m)\mu(p,n)=\mu(p)\mu(1)=-1$.

In any case $\mu(p, mn) = \mu(p, m)\mu(p, n)$ if (m, n) = 1.

Exercise 2.9.

If x is real, $x \ge 1$, let $\varphi(x,n)$ denote the number of positive integers $\le x$ that are relatively prime to n. [Note that $\varphi(n,n) = \varphi(n)$.] Prove that

$$\varphi(x,n) = \sum_{d|n} \mu(d) \left[\frac{x}{d}\right], \qquad \sum_{d|n} \varphi\left(\frac{x}{d}, \frac{n}{d}\right) = [x].$$

Proof.

(1) Show that $\varphi(x,n) = \sum_{d|n} \mu(d) \left[\frac{x}{d}\right]$. Similar to the proof of Theorem 2.3. $\varphi(x,n)$ can be written in the form

$$\varphi(x,n) = \sum_{1 \le k \le x} \left[\frac{1}{(n,k)} \right],$$

where now k runs through all integers $\leq x$. Now we use Theorem 2.1 with n replaced by (n, k) to obtain

$$\varphi(x,n) = \sum_{1 \le k \le x} \sum_{d|(n,k)} \mu(d) = \sum_{1 \le k \le x} \sum_{\substack{d|n\\d|k}} \mu(d).$$

For a fixed divisor d of n we must sum over all those k in the range $1 \le k \le x$ which are multiples of d. If we write k = qd then $1 \le k \le x$ if and only if $1 \le q \le \left\lceil \frac{x}{d} \right\rceil$. Hence the last sum for $\varphi(x, n)$ can be written as

$$\varphi(x,n) = \sum_{d|n} \sum_{1 \leq q \leq \left\lceil \frac{x}{d} \right\rceil} \mu(d) = \sum_{d|n} \mu(d) \sum_{1 \leq q \leq \left\lceil \frac{x}{d} \right\rceil} 1 = \sum_{d|n} \mu(d) \left\lceil \frac{x}{d} \right\rceil.$$

(2) Show that $\sum_{d|n} \varphi\left(\frac{x}{d}, \frac{n}{d}\right) = [x]$. Similar to the proof of Theorem 2.2. Let S denote the set $\{1, 2, \ldots, [x]\}$. We distribute the integers of S into disjoint sets as follows. For each divisor d of n, let

$$A(d) = \{k : (k, n) = d, 1 \le k \le x\}.$$

That is, A(d) contains those elements of S which have the gcd d with n. The sets A(d) form a disjoint collection whose union is S. Therefore if f(d) denotes the number of integers in A(d) we have

$$\sum_{d|n} f(d) = [x].$$

But (k,n)=d if and only if $\left(\frac{k}{d},\frac{n}{d}\right)=1$, and $0< k \leq x$ if and only if $0<\frac{k}{d}\leq \frac{x}{d}$. Therefore, if we let $q=\frac{k}{d}$, there is a one-to-one correspondence between the elements in A(d) and those integers q satisfying $0< q\leq \frac{x}{d}$, $\left(q,\frac{n}{d}\right)=1$. The number of such q is $\varphi\left(\frac{x}{d},\frac{n}{d}\right)$. Hence $f(d)=\varphi\left(\frac{x}{d},\frac{n}{d}\right)$ and thus

$$\sum_{d|n} \varphi\left(\frac{x}{d}, \frac{n}{d}\right) = [x].$$

In Exercise 2.10, 2.11 and 2.12, d(n) denotes the number of positive divisors of n.

Exercise 2.10.

Prove that $\prod_{t|n} t = n^{\frac{d(n)}{2}}$.

Proof.

(1) Note that d(1) = 1 and

$$d(p_1^{\alpha_1} \cdots p_r^{\alpha_r}) = (\alpha_1 + 1) \cdots (\alpha_r + 1) = d(p_1^{\alpha_1}) \cdots d(p_r^{\alpha_r}).$$

Hence d(n) is multiplicative (Theorem 2.13).

(2) Show that $\prod_{t|n} t = n^{\frac{d(n)}{2}}$. n = 1 is trivial. Assume $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} > 1$. Then t|n if and only if $t = p_1^{x_1} \cdots p_r^{x_r}$ with $0 \le x_i \le \alpha_i$ $(i = 1, \dots, r)$. So

$$\begin{split} \prod_{t|n} t &= \prod_{\substack{0 \leq x_1 \leq \alpha_1 \\ 0 \leq x_r \leq \alpha_r}} p_1^{x_1} \cdots p_r^{x_r} \\ &= p_1^{(0+1+\cdots+\alpha_1)(\alpha_2+1)\cdots(\alpha_r+1)} \cdots p_r^{(\alpha_1+1)\cdots(\alpha_{r-1}+1)(0+1+\cdots+\alpha_r)} \\ &= p_1^{\frac{\alpha_1(\alpha_1+1)}{2} \cdot (\alpha_2+1)\cdots(\alpha_r+1)} \cdots p_r^{(\alpha_1+1)\cdots(\alpha_{r-1}+1) \cdot \frac{\alpha_r(\alpha_r+1)}{2}} \\ &= p_1^{\alpha_1}^{\frac{d(n)}{2}} \cdots p_r^{\alpha_r}^{\frac{d(n)}{2}} \\ &= (p_1^{\alpha_1} \cdots p_r^{\alpha_r})^{\frac{d(n)}{2}} \\ &= (p_1^{\alpha_1} \frac{d(n)}{2}). \end{split}$$

Exercise 2.11.

Prove that d(n) is odd if, and only if, n is a square.

Proof.
$$n=1$$
 is trivial. Assume $n=p_1^{\alpha_1}\cdots p_r^{\alpha_r}>1$. Then
$$d(n)=(\alpha_1+1)\cdots(\alpha_r+1) \text{ is odd} \qquad \text{(Exercise 2.10)}$$
 $\iff \alpha_1+1,\ldots,\alpha_r+1 \text{ are odd}$ $\iff \alpha_1,\ldots,\alpha_r \text{ are even}$ $\iff n \text{ is a square.}$

Exercise 2.12.

Prove that $\sum_{t|n} d(t)^3 = \left(\sum_{t|n} d(t)\right)^2$.

Proof.

- (1) Exercise 2.10 shows that d(n) is multiplicative. Similar to the proof of Exercise 2.7, both $f(n) := \sum_{t|n} d(t)^3$ and $g(n) := \left(\sum_{t|n} d(t)\right)^2$ are multiplicative. So it suffices to show that $f(p^a) = g(p^a)$ (Theorem 2.13).
- (2) A direct calculation shows that

$$f(p^{a}) = \sum_{t|p^{a}} d(t)^{3}$$

$$= d(1)^{3} + d(p)^{3} + \dots + d(p^{a})^{3}$$

$$= 1^{3} + 2^{3} + \dots + (a+1)^{3}$$

$$= \left(\frac{(a+1)(a+2)}{2}\right)^{2}$$

and

$$g(p^{a}) = \left(\sum_{t|p^{a}} d(t)\right)^{2}$$

$$= (d(1) + d(p) + \dots + d(p^{a}))^{2}$$

$$= (1 + 2 + \dots + (a+1))^{2}$$

$$= \left(\frac{(a+1)(a+2)}{2}\right)^{2}$$

are equal.

Chapter 3: Average of arithmetical functions

Exercise 3.1.

Use Euler's summation formula to deduce the following for $x \geq 2$:

(a) $\sum_{n \le x} \frac{\log n}{n} = \frac{1}{2} (\log x)^2 + A + O\left(\frac{\log x}{x}\right)$, where A is a constant.

(b) $\sum_{2 \le n \le x} \frac{1}{n \log n} = \log \log x + B + O\left(\frac{1}{x \log x}\right)$, where B is a constant.

Proof of (a).

(1) Similar to the proof of Theorem 3.2. We take $f(t) = \frac{\log t}{t}$ in Euler's summation formula to obtain

$$\begin{split} \sum_{n \leq x} \frac{\log n}{n} &= \int_{1}^{x} \frac{\log t}{t} dt + \int_{1}^{x} (t - [t]) \frac{1 - \log t}{t^{2}} dt \\ &+ \frac{\log x}{x} ([x] - x) - \underbrace{\frac{\log(1)}{1} ([1] - 1)}_{=0} \\ &= \frac{1}{2} (\log x)^{2} + \int_{1}^{x} (t - [t]) \frac{1 - \log t}{t^{2}} dt + O\left(\frac{\log x}{x}\right) \\ &= \frac{1}{2} (\log x)^{2} + \int_{1}^{\infty} (t - [t]) \frac{1 - \log t}{t^{2}} dt \\ &- \int_{x}^{\infty} (t - [t]) \frac{1 - \log t}{t^{2}} dt + O\left(\frac{\log x}{x}\right). \end{split}$$

- (2) The improper integral $\int_1^\infty (t-[t]) \frac{1-\log t}{t^2} dt$ exists since it is dominated by $\int_1^e \frac{1-\log t}{t^2} dt + \int_e^\infty \frac{\log t 1}{t^2} dt = 2e^{-1}.$
- (3) Might assume that $x \geq e$. So

$$0 \le -\int_x^\infty (t-[t]) \frac{1-\log t}{t^2} dt \le \int_x^\infty \frac{\log t - 1}{t^2} dt = \frac{\log x}{x}.$$

(4) Therefore

$$\sum_{n \le x} \frac{\log n}{n} = \frac{1}{2} (\log x)^2 + A + O\left(\frac{\log x}{x}\right)$$

where $A = \int_1^\infty (t - [t]) \frac{1 - \log t}{t^2} dt$ is a constant.

Proof of (b).

(1) We take $f(t) = \frac{1}{t \log t}$ in Euler's summation formula to obtain

$$\begin{split} \sum_{2 \leq n \leq x} \frac{1}{n \log n} &= \int_{2}^{x} \frac{1}{t \log t} dt + \int_{2}^{x} -(t - [t]) \frac{\log t + 1}{t^{2} (\log t)^{2}} dt \\ &+ \frac{1}{x \log x} ([x] - x) - \underbrace{\frac{1}{2 \cdot \log(2)} ([2] - 2)}_{=0} \\ &= \log \log x - \log \log 2 - \int_{2}^{x} (t - [t]) \frac{\log t + 1}{t^{2} (\log t)^{2}} dt \\ &+ O\left(\frac{1}{x \log x}\right) \\ &= \log \log x - \log \log 2 - \int_{2}^{\infty} (t - [t]) \frac{\log t + 1}{t^{2} (\log t)^{2}} dt \\ &+ \int_{x}^{\infty} (t - [t]) \frac{\log t + 1}{t^{2} (\log t)^{2}} dt + O\left(\frac{1}{x \log x}\right). \end{split}$$

(2) The improper integral $\int_2^\infty (t-[t]) \frac{\log t+1}{t^2(\log t)^2} dt$ exists since it is dominated by $\int_2^\infty \frac{\log t+1}{t^2(\log t)^2} dt = \frac{1}{2\log 2} < \infty.$

(3) $0 \le \int_{\pi}^{\infty} (t - [t]) \frac{\log t + 1}{t^2 (\log t)^2} dt \le \int_{\pi}^{\infty} \frac{\log t + 1}{t^2 (\log t)^2} dt = \frac{1}{x \log x}.$

(4) Therefore

$$\sum_{2 \le n \le x} \frac{1}{n \log n} = \log \log x + B + O\left(\frac{1}{x \log x}\right)$$

where $B = -\log\log 2 - \int_2^{\infty} (t - [t]) \frac{\log t + 1}{t^2(\log t)^2} dt$ is a constant.

Exercise 3.2.

If $x \geq 2$ prove that

$$\sum_{n \le x} \frac{d(n)}{n} = \frac{1}{2} (\log x)^2 + 2C \log x + O(1),$$

where C is Euler's constant.

Proof. Similar to the proof of Theorem 3.3, we have

$$\sum_{n \le x} \frac{d(n)}{n} = \sum_{n \le x} \frac{1}{n} \sum_{d|n} 1 = \sum_{\substack{q,d \\ qd \le x}} \frac{1}{qd} = \sum_{d \le x} \frac{1}{d} \sum_{q \le \frac{x}{d}} \frac{1}{q}.$$

Now we use Theorem 3.2(a) to obtain

$$\sum_{q \leq \frac{x}{d}} \frac{1}{q} = \log \frac{x}{d} + C + O\left(\frac{d}{x}\right) = \log x - \log d + C + O\left(\frac{d}{x}\right).$$

Using this along with Theorem 3.2(a) and Exercise 3.1 we find

$$\sum_{n \le x} \frac{d(n)}{n} = \sum_{d \le x} \frac{1}{d} \left\{ \log x - \log d + C + O\left(\frac{d}{x}\right) \right\}$$

$$= (\log x + C) \sum_{d \le x} \frac{1}{d} - \sum_{d \le x} \frac{\log d}{d} + \sum_{d \le x} O\left(\frac{1}{x}\right)$$

$$= (\log x + C) \left\{ \log x + C + O\left(\frac{1}{x}\right) \right\}$$

$$- \left\{ \frac{1}{2} (\log x)^2 + A + O\left(\frac{\log x}{x}\right) \right\} + O(1)$$

$$= (\log x)^2 + 2C \log x - \frac{1}{2} (\log x)^2 + O(1)$$

$$= \frac{1}{2} (\log x)^2 + 2C \log x + O(1).$$

Exercise 3.3.

If $x \geq 2$ and $\alpha > 0$, $\alpha \neq 1$, prove that

$$\sum_{n \le x} \frac{d(n)}{n^{\alpha}} = \frac{x^{1-\alpha} \log x}{1-\alpha} + \zeta(\alpha)^2 + O(x^{1-\alpha}).$$

Proof.

(1) Similar to Exercise 3.2.

$$\sum_{n \le x} \frac{d(n)}{n^{\alpha}} = \sum_{n \le x} \frac{1}{n^{\alpha}} \sum_{d \mid n} 1 = \sum_{\substack{q, d \\ qd \le x}} \frac{1}{q^{\alpha} d^{\alpha}} = \sum_{d \le x} \frac{1}{d^{\alpha}} \sum_{q \le \frac{x}{d}} \frac{1}{q^{\alpha}}.$$

Now we use Theorem 3.2(b) to obtain

$$\sum_{q \le \frac{x}{d}} \frac{1}{q^{\alpha}} = \frac{1}{d^{1-\alpha}} \cdot \frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O\left(\frac{d^{\alpha}}{x^{\alpha}}\right).$$

Using this along with Theorem 3.2 we find

$$\begin{split} \sum_{n \leq x} \frac{d(n)}{n^{\alpha}} &= \sum_{d \leq x} \frac{1}{d^{\alpha}} \left\{ \frac{1}{d^{1-\alpha}} \cdot \frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O\left(\frac{d^{\alpha}}{x^{\alpha}}\right) \right\} \\ &= \frac{x^{1-\alpha}}{1-\alpha} \sum_{d \leq x} \frac{1}{d} + \zeta(\alpha) \sum_{d \leq x} \frac{1}{d^{\alpha}} + \sum_{d \leq x} O(x^{-\alpha}) \\ &= \frac{x^{1-\alpha}}{1-\alpha} \left\{ \log x + C + O(x^{-1}) \right\} \\ &+ \zeta(\alpha) \left\{ \frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{-\alpha}) \right\} + O(x^{1-\alpha}) \\ &= \frac{x^{1-\alpha} \log x}{1-\alpha} + \zeta(\alpha)^2 + O(x^{1-\alpha}). \end{split}$$