MLT Homework 8

Ana Borovac Jonas Haslbeck Bas Haver

November 1, 2018

Question 1

The Aggregating Algorithm plays $w_1^k = 1/K$ and updates as

$$w_{k+1}^k = \frac{w_t^k e^{-l_t^k}}{\sum_{j=1}^K w_t^j e^{-l_t^j}}$$

Let us define the Kullback-Leibler divergence aka relative entropy (notion of distance between probability distributions) from $p \in \Delta_K$ to $q \in \Delta_K$ by

$$KL(p.q) = \sum_{k=1}^{K} p_k \ln \frac{p_k}{q_k}$$

Fix $w_t \in \Delta_K$ and $l_t \in \mathbb{R}^K$. Consider the minimisation problem

$$\min_{w \in \Delta_K} w^T l_t + KL(w, w_t) \tag{1}$$

Subquestion 1.1

Show that the minimiser of problem (1) is w_{t+1} .

Solution

Subquestion 1.2

Show that the value of problem (1) is the mix loss.

Solution

Question 2

We saw in the lecture that the Hedge algorithm (for the dot-loss game) with learning rate $\eta = \sqrt{\frac{8 \ln K}{T}}$ has regret after T rounds bounded by $\sqrt{T/2 \ln K}$. In practice, we may not know T in advance, or we may even desire an algorithm that has good guarantees for all T simultaneously, i.e. that keeps on operating forever.

Prove that the overall accumulated regret of Hedge with this scheme is bounded above by a universal constant times $\sqrt{T \ln K}$. (Your argument should work for T that are not a power of 3).

Solution

Question 3

Consider the K=2 expert version of the T-round dot loss game (Definition 2). In this exercise we will prove that the worst-case expected regret is at least of order \sqrt{T} . Consider an adversary that for each $t=1,\ldots,T$ assigns loss vector $l_t=(0,1)$ or $l_t=(1,0)$ i.i.d uniformly at random.

Subquestion 3.1

Show that the expected loss of any learner is T/2.

Solution

Subquestion 3.2

Show that $2(1/2 - l_t^k)$ is Rademacher for each $k \in \{1, 2\}$.

Solution

Subquestion 3.3

Show that
$$\sum_{t=1}^{T} (1/2 - l_t^2) = -\sum_{t=1}^{T} (1/2 - l_t^1)$$
.

Solution

Subquestion 3.4

Argue that the expected loss of the best expert is bounded above by $\mathbb{E}[\min_k \sum_{t=1}^T l_t^k] \leq T/2 - c\sqrt{T}$ for some c > 0. You can use the following fact. Let X_1, \ldots, X_T be

 $i.i.d\ Rademacher\ random\ variables.\ Then$

$$\mathbb{E}\left[\sum_{t=1}^{T} X_t\right] \in \left[\sqrt{\frac{2(T-1)}{\pi}}, \sqrt{\frac{2(T+1)}{\pi}}\right].$$

Solution