VACON 20 AC DRIVES

COMPLETE USER MANUAL

TABLE OF CONTENTS	Doc: DPD00716A1, Date: 22	.11.11
1.Safety 1.1.Warnings 1.2.Safety instructions 1.3.Earthing and earth fault protection 1.4.Before running the motor		1 1 3 3 5
2.Receipt of delivery		6
2.1.Type designation code 2.2.Storage 2.3.Maintenance 2.3.1.Capacitor recharge		6 6 7 7
2.4.Warranty		8
2.5.Manufacturer's declaration of conformi	ty	9
3.Installation		10
3.1.Mechanical installation 3.1.1.Vacon 20 dimensions 3.1.2.Cooling 3.1.3.Power losses 3.1.4.EMC levels 3.1.5.Changing the EMC protection class 3.2.Cabling and connections 3.2.1.Power cabling 3.2.2.Control cabling 3.2.3.Screw of cables 3.2.4.Cable and fuse specifications 3.2.5.General cabling rules 3.2.6.Stripping lengths of motor and mai 3.2.7.Cable installation and the UL stand 3.2.8.Cable and motor insulation checks	ins cables Iards	10 12 14 15 22 25 25 27 31 33 36 37 37
4.Commissioning		38
4.1.Commissioning steps of Vacon 20		38
5.Fault tracing		40
6.Vacon 20 application Interface		44
6.1.Introduction		44
6.2.Control I / O		46
7.Control panel		48
7.1.General		48 48
7.2.Display 7.3.Keypad		48 49
7.4.Navigation on the Vacon 20 control pane	el	51

7.4.1.Main menu	51
7.4.2.Reference menu	52
7.4.3.Monitoring menu	53
7.4.4.Parameter menu	56
7.4.5.System menu	58
8.Standard application parameters	60
8.1.Quick setup par. (Virtual menu, shows when par. 17.2 = 1)	61
8.2.Motor settings (Control panel: Menu PAR -> P1)	63
8.3.Start / stop setup (Control panel: Menu PAR -> P2)	65 66
8.4.Frequency references (Control panel: Menu PAR -> P3) 8.5.Ramps and brakes setup (Control panel: Menu PAR -> P4)	67
8.6.Digital inputs (Control panel: Menu PAR -> P5)	69
8.7.Analogue inputs (Control panel: Menu PAR -> P6)	70
8.8. Pulse train / Encoder (Control panel: Menu PAR -> P7)	70
8.9.Digital outputs (Control panel: Menu PAR -> P8)	71
8.10.Analogue outputs (Control panel: Menu PAR -> P9)	72
8.11.Fieldbus Data-Mapping (Control panel: Menu PAR -> P10)	74
8.12.Prohibited Frequencies (Control panel: Menu PAR -> P11)	75
8.13.Limit Supervisions (Control panel: Menu PAR -> P12)	75
8.14.Protections (Control panel: Menu PAR -> P13)	76
8.15. Fault autoreset parameters (Control panel: Menu PAR -> P14)	77
8.16.PID control parameters (Control panel: Menu PAR -> P15)	78
8.17.Motor Pre-heat (Control panel: Menu PAR -> P16)	80
8.18.Easy usage menu (Control panel: Menu PAR -> P17)	80
8.19.System parameters	81
9.Parameter descriptions	83
9.1.Motor settings (Control panel: Menu PAR -> P1)	83
9.2.Start / stop setup (Control panel: Menu PAR -> P2)	88 96
9.3.Frequency references (Control panel: Menu PAR -> P3) 9.4.Ramps & brakes setup (Control panel: Menu PAR -> P4)	96 98
9.5.Digital inputs (Control panel: Menu PAR -> P5)	103
9.6.Analogue inputs (Control panel: Menu PAR -> P6)	103
9.7.Pulse train / Encoder (Control panel: Menu PAR -> P7)	105
9.8.Digital outputs (Control panel: Menu PAR -> P8)	106
9.9.Analogue outputs (Control panel: Menu PAR -> P9)	107
9.10.Fieldbus Data-Mapping (Control panel: Menu PAR -> P10)	108
9.11.Prohibited Frequencies (Control panel: Menu PAR -> P11)	109
9.12.Protections (Control panel:Menu Par->P13)	110
9.13.Automatic reset (Control panel: Menu PAR -> P14)	114
9.14.PID control parameters (Control panel: Menu PAR -> P15)	115
9.15.Application setting (Control panel: Menu PAR->P17)	118

9.16.System parameter	120
9.17.Modbus RTU	122
9.17.1.Termination resistor	122
9.17.2.Modbus address area	122
9.17.3.Modbus process data	123
10.Technical data	127
10.1.Vacon 20 technical data	127
10.2.Power ratings	129
10.2.1.Vacon 20 – Mains voltage 208-240 V	129
10.2.2.Vacon 20 – Mains voltage 115 V	130
10.2.3.Vacon 20 – Mains voltage 380-480 V	130
10.2.4.Vacon 20 – Mains voltage 575 V	131
10.3.Brake resistors	131

SAFETY VACON ● 1

1. SAFETY

ONLY A COMPETENT ELECTRICIAN IS ALLOWED TO CARRY OUT THE ELECTRICAL INSTALLATION!

This manual contains clearly marked cautions and warnings which are intended for your personal safety and to avoid any unintentional damage to the product or connected appliances.

Please read the information included in cautions and warnings carefully:

A	=Dangerous voltage Risk of death or severe injury	
Ŵ	=General warning Risk of damage to the product or connected appliances	

1.1 Warnings

The components of the power unit of the frequency converter are live when Vacon 20 is connected to mains. Coming into contact with this voltage is extremely dangerous and may cause death or severe injury. The control unit is isolated from the mains potential.

The motor terminals U, V, W $\{T1, T2, T3\}$ and the possible brake resistor terminals - /+ are live when Vacon 20 is connected to mains, even if the motor is not running.

The control I / 0-terminals are isolated from the mains potential. However, the relay output terminals may have a dangerous control voltage present even when Vacon 20 is disconnected from mains.

The earth leakage current of Vacon 20 frequency converters exceeds 3.5 mA AC. According to standard EN61800-5-1, a reinforced protective ground connection must be ensured.

If the frequency converter is used as a part of a machine, the machine manufacturer is responsible for providing the machine with a main switch (EN 60204-1).

If Vacon 20 is disconnected from mains while running the motor, it remains live if the motor is energized by the process. In this case the motor functions as a generator feeding energy to the frequency converter.

After disconnecting the frequency converter from the mains, wait until the fan stops and the indicators on the display go out. Wait 5 more minutes before doing any work on Vacon 20 connections.

The motor can start automatically after a fault situation, if the autoreset function has been activated.

1.2 Safety instructions

The Vacon 20 frequency converter has been designed for fixed installations only.

Do not perform any measurements when the frequency converter is connected to the mains.

Do not perform any voltage withstand tests on any part of Vacon 20. The product safety is fully tested at factory.

Prior to measurements on the motor or the motor cable, disconnect the motor cable from the frequency converter.

Do not open the cover of Vacon 20. Static voltage discharge from your fingers may damage the components. Opening the cover may also damage the device. If the cover of Vacon 20 is opened, warranty becomes void.

1.3 Earthing and earth fault protection

The Vacon 20 frequency converter **must always** be earthed with an earthing conductor connected to the earthing terminal. See figure below:

MI1 - MI3

- The earth fault protection inside the frequency converter protects only the converter itself against earth faults.
- If fault current protective switches are used they must be tested with the drive with earth fault currents that are possible to arise in fault situations

1.4 Before running the motor

Checklist:

Before starting the motor, check that the motor is mounted properly and ensure that the machine connected to the motor allows the motor to be started.

Set the maximum motor speed (frequency) according to the motor and the machine connected to it.

Before reversing the motor shaft rotation direction make sure that this can be done safely.

Make sure that no power correction capacitors are connected to the motor cable.

2. RECEIPT OF DELIVERY

After unpacking the product, check that no signs of transport damages are to be found on the product and that the delivery is complete (compare the type designation of the product to the code below).

Should the drive have been damaged during the shipping, please contact primarily the cargo insurance company or the carrier.

If the delivery does not correspond to your order, contact the supplier immediately.

2.1 Type designation code

Figure 2.1: Vacon 20 type designation code

2.2 Storage

If the frequency converter is to be kept in store before use make sure that the ambient conditions are acceptable:

Storing temperature -40...+70 °C

Relative humidity < 95%, no condensation

2.3 Maintenance

In normal operating conditions, Vacon 20 frequency converters are maintenancefree. However, regular maintenance is recommended to ensure a trouble-free operating and a long lifetime of the drive. We recommended to follow the table below for maintenance intervals.

Maintenance interval	Maintenance action
Whenever necessary	Clean headsink
Regular	Check tightening torques of terminals
12 months (If stored)	Check input and output terminals and control I / 0 terminals. Clean cooling tunnel. Check operation of cooling fan, check for corrosion on terminals, busbars and other surfaces.
6 - 24 months (depending on environment)	Chang cooling fans: Main fan Interminal fan
5 - 7 years	The motor cables should cross other cables at an angle of 90 degrees.

2.3.1 Capacitor recharge

After a longer storage time the capacitors need to be recharge in order to avoid capacitor damage. Possible high leakage current through the capacitors must be limited. The best way to achieve this is to use a DC-power supply with adjustable current limit.

- 1) Set the current limit to 300...800 mA according to the size of the drive.
- 2) Then connect the DC-power supply to the input phase L1 and L2.
- Then set the DC-voltage to the nominal DC-voltage level of the (1.35*Un AC) and supply the converter for at least 1 h.

If DC-voltage is not available and the unit has been stored much longer than 12 months deenergized, consult the factory before connecting power.

2.4 Warranty

Only manufacturing defects are covered by the warranty. The manufacturer assumes no responsibility for damages caused during or resulting from transport, receipt of the delivery, installation, commissioning or use.

The manufacturer shall in no event and under no circumstances be held responsible for damages and failures resulting from misuse, wrong installation, unacceptable ambient temperature, dust, corrosive substances or operation outside the rated specifications. Neither can the manufacturer be held responsible for consequential damages.

The Manufacturer's time of warranty is 18 months from the delivery or 12 months from the commissioning whichever expires first (Vacon Warranty Terms).

The local distributor may grant a warranty time different from the above. This warranty time shall be specified in the distributor's sales and warranty terms. Vacon assumes no responsibility for any other warranties than that granted by Vacon itself.

In all matters concerning the warranty, please contact first your distributor.

2.5 Manufacturer's declaration of conformity

EU DECLARATION OF CONFORMITY

We

Manufacturer's name: Vacon Oyj

Manufacturer's address: P.O.Box 25 Runsorintie 7

FIN-65381 Vaasa

Finland

hereby declare that the product

Product name: Vacon 20 Frequency Converter

Model designation: Vacon 20 1L 0001 2...to 0009 2 Vacon 20 3L 0001 2...to 0038 2

Vacon 20 3L 0001 4...to 0038 4

has been designed and manufactured in accordance with the following

standards:

Safety: EN 60204 -1 (2009) (as relevant),

EN 61800-5-1 (2007)

EMC: EN 61800-3 (2004)

and conforms to the relevant safety provisions of the Low Voltage Directive 2006/95/EC and EMC Directive 2004/108/EC.

It is ensured through internal measures and quality control that the product conforms at all times to the requirements of the current Directive and the relevant standards.

In Vaasa, 30th of July, 2010

Vesa Laisi President

The year the CE marking was affixed: 2011

3 INSTALLATION

3.1 Mechanical installation

There are two possible ways to mount Vacon 20 in the wall. For MI1-MI3, either screw or DIN-rail mounting; For MI4-MI5, screw or flange mounting. The mounting dimensions are given on the back of the drive and on the following page.

Figure 3.1: Screw mounting, MI1 - MI3

Figure 3.2: Screw mounting, MI4 - MI5

Figure 3.3: DIN-rail mounting, MI1 - MI3

Figure 3.4: Flange mounting, MI4 - MI5

3.1.1 Vacon 20 dimensions

Figure 3.5: Vacon 20 dimensions, MI1 - MI3

Туре	H1	H2	Н3	W1	W2	W3	D1	D2
MI1	160.1	147	137.3	65.5	37.8	4.5	98.5	7
MI2	195	183	170	90	62.5	5.5	101.5	7
MI3	254.3	244	229.3	100	75	5.5	108.5	7
MI4	370	350.5	336.5	165	140	7	165	-
MI5	414	398	383	165	140	7	202	-

Table 1: Vacon 20 dimensions in millimetres

Frame	Dimensi	ons(mm)	Weight*		
	W	Н	D	(kg.)	
MI1	66	157	98	0.5	
MI2	90	195	102	0.7	
MI3	100	262	109	1	
MI4	165	370	165	8	
MI5	165	414	202 10		
			*without shipping package		

Table 2: Vacon 20 frame dimensions (mm) and weights (kg)

Frame	Dimensions(Inches)		e Dimensions(Inches) Weight*			Weight*
	W	Н	D	(lbs.)		
MI1	2.6	6.2	3.9	1.2		
MI2	3.5	9.9	4	1.5		
MI3	3.9	10.3	4.3	2.2		
MI4	6.5	14.6	6.5	18		
MI5	6.5	16.3	8 22			
			*without shipping package			

Table 3: Vacon 20 frame dimensions (Inch) and weights (Ibs)

3.1.2 Cooling

Enough free space shall be left above and below the frequency converter to ensure sufficient air circulation and cooling. You will find the required dimensions for free space in the table below.

If several units are mounted above each other the required free space equals C+D (see figure below). Moreover, the outlet air used for cooling by the lower unit must be directed away from the air intake of the upper unit.

The amount of cooling air required is indicated below. Also make sure that the temperature of the cooling air does not exceed the maximum ambient temperature of the converter.

Min clearance (mm)					
Type	A*	B*	С	D	
MI1	20	20	100	50	
MI2	20	20	100	50	
MI3	20	20	100	50	
MI4	20	20	100	100	
MI5	20	20	120	100	

Table 3.1: Min. clearances around AC drive

*. Min clearance A and B for drives for MI1 ~ MI3 can be 0 mm if the ambient temperature is below 40 degrees.

Figure 3.7: Installation space

A = clearance around the freq. converter (see also B)

B = distance from one frequency converter to another or distance to cabinet wall

C = free space above the frequency converter

D = free space underneath the frequency converter

NOTE! See the mounting dimensions on the back of the drive.

Leave **free space** for cooling above **(100 mm)**, below **(50 mm)**, and on the sides **(20 mm)** of Vacon 20! [For MI1 - MI3, side-to-side installation allowed only if the ambient temperature is below 40 °C; For MI4-MI5, side-to-side installation is not allowed.

Type	Cooling air required (m³/h)			
MI1	10			
MI2	10			
MI3	30			
MI4	45			
MI5	75			

Table 3.2: Required cooling air

3.1.3 Power losses

If the operator wants to raise the switching frequency of the drive for some reason (typically e.g. in order to reduce the motor noise), this inevitably affects the power losses and cooling requirements, for different motor shaft power, operator can select the switching frequency according to the graphs below.

MI1 - MI5 3P 380 V POWER LOSS

MI1 - MI3 1P 230 V POWER LOSS

3.1.4 EMC levels

EN61800-3 defines the division of frequency converters into five classes according to the level of electromagnetic disturbances emitted, the requirements of a power system network and the installation environment (see below). The EMC class of each product is defined in the type designation code.

Category C1: Frequency converters of this class comply with the requirements of category C1 of the product standard EN 61800-3 (2004). Category C1 ensures the best EMC characteristics and it includes converters the rated voltage of which is less than 1000 V and which are intended for use in the 1st environment.

NOTE: The requirements of class C are fulfilled only as far as the conducted emissions are concerned

Category C2: Frequency converters of this class comply with the requirements of category C2 of the product standard EN 61800-3 (2004). Category C2 includes converters in fixed installations and the rated voltage of which is less than 1000 V. The class C2 frequency converters can be used both in the 1st and the 2nd environment.

Category C3: Frequency converters of this class comply with the requirements of category C3 of the product standard EN 61800-3 (2004). Category C3 includes converters the rated voltage of which is less than 1000 V and which are intended for use in the second environment only.

Category C4: The drives of this class do not provide EMC emission protection. These kinds of drives are mounted in enclosures.

Environments in product standard EN 61800-3 (2004)

First environment: Environment that includes domestic premises. It also includes establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for domestic purposes.

NOTE: houses, apartments, commercial premises or offices in a residential building are examples of first environment locations.

Second environment: Environment that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes.

NOTE: industrial areas, technical areas of any building fed from a dedicated transformer are examples of second environment locations.

3.1.5 Changing the EMC protection class from C2 or C3 to C4

The EMC protection class of MI1-3 frequency converters can be changed from class C2 or C3 to class C4 by **removing the EMC-capacitor disconnecting screw**, see figure below. MI4 $\&\,5$ can also be changed by removing the EMC jumpers.

Note! Do not attempt to change the EMC level back to class C2 or C3. Even if the procedure above is reversed, the frequency converter will no longer fulfil the EMC requirements of class C2 / C3!

Figure 3.8: EMC protection class, MI1 - MI3

Figure 3.9: EMC protection class, MI4

24 • VACON INSTALLATION

Figure 3.10: EMC protection class, MI5

Figure 3.11: Jumpers

- Remove the main cover and locate the two jumpers.
- Disconnect the RFI-filters from ground by lifting the jumpers up from their default positions. See Figure 3.11

3.2 Cabling and connections

3.2.1 Power cabling

Note! Tightening torque for power cables is 0.5 - 0.6 Nm

Figure 3.12: Vacon 20 power connections, MI1

Figure 3.13: Vacon 20 power connections, MI2 - MI3

26 VACON INSTALLATION

Figure 3.14: Vacon 20 power connections, MI4

Figure 3.15: Vacon 20 power connections, MI5

3.2.2 Control cabling

Figure 3.16: Mount the PE-plate and API cable support, MI1 - MI3

Figure 3.17: Mount the PE-plate and API cable support, MI4 - MI5

Figure 3.18: Open the lid, MI1 - MI3

Figure 3.19: Open the lid, MI4 - MI5

30 • VACON INSTALLATION

Figure 3.20: Install the control cables. MI1 - MI3. See Chapter 6.2

Figure 3.21: Install the control cables. MI4 - MI5. See Chapter 6.2

3.2.3 Screw of cables

Figure 3.22: MI1 screws

Figure 3.23: MI2 screws

32 • VACON INSTALLATION

Figure 3.24: MI3 screws

Figure 3.25: MI4 - MI5 screw

3.2.4 Cable and fuse specifications

Use cables with heat resistance of at least +70 $^{\circ}$ C. The cables and the fuses must be dimensioned according to the tables below. Installation of cables according to UL regulations is presented in Chapter 3.2.7.

The fuses function also as cable overload protection.

These instructions apply only to cases with one motor and one cable connection from the frequency converter to the motor. In any other case, ask the factory for more information.

EMC category	cat. C2	cat. C3	cat. C4
Mains cable types	1	1	1
Motor cable types	3	2	1
Control cable types	4	4	4

Table 3.3: Cable types required to meet standards. EMC categories are described in Chapter 3.1.4

Cable type	Description
1	Power cable intended for fixed installation and the specific mains voltage. Shielded cable not required. [NKCABLES / MCMK or similar recommended]
2	Power cable equipped with concentric protection wire and intended for the specific mains voltage. [NKCABLES / MCMK or similar recommended].
3	Power cable equipped with compact low-impedance shield and intended for the specific mains voltage. (INKCABLES / MCCMK, SAB / ÖZCUY-J or similar recommended). *360° earthing of both motor and FC connection required to meet the standard
4	Screened cable equipped with compact low-impedance shield (NKCA-BLES /Jamak, SAB / ÖZCuY-O or similar).

Table 3.4: Cable type descriptions

I				Mains Motor		Terminal cable size (min/max)			
	Frame	Туре	Fuse [A]	cable Cu [mm²]	cable Cu [mm²]	Main terminal [mm²]	Earth terminal [mm²]	Control terminal [mm²]	Relay terminal [mm²]
ı	MI2	0001-0004	20	2*2.5+2.5	3*1.5+1.5	1.5-4	1.5-4	0.5-1.5	0.5-1.5
ı	MI3	0005	32	2*6+6	3*1.5+1.5	1.5-4	1.5-4	0.5-1.5	0.5-1.5

Table 3.5: Cable and fuse sizes for Vacon 20, 115 V, 1~

			Mains	Motor	Terminal cable size (min/max)				
Frame	Туре	Fuse [A]	cable	cable Cu [mm²]	Main terminal [mm²]	Earth terminal [mm²]	Control terminal [mm ²]	Relay terminal [mm²]	
MI1	0001-0003	10	2*1.5+1.5	3*1.5+1.5	1.5-4	1.5-4	0.5-1.5	0.5-1.5	
MI2	0004-0007	20	2*2.5+2.5	3*1.5+1.5	1.5-4	1.5-4	0.5-1.5	0.5-1.5	
MI3	0009	32	2*6+6	3*1.5+1.5	1.5-6	1.5-6	0.5-1.5	0.5-1.5	

Table 3.6: Cable and fuse sizes for Vacon 20, 208 - 240 V, 1~

			Mains Motor		Terminal cable size (min/max)			
Frame	Туре	Fuse [A]	cable Cu [mm²]	cable Cu [mm²]	Main terminal [mm²]	Earth terminal [mm²]	Control terminal [mm²]	Relay terminal [mm²]
MI1	0001-0003	6	3*1.5+1.5	3*1.5+1.5	1.5-4	1.5-4	0.5-1.5	0.5-1.5
MI2	0004-0007	10	3*1.5+1.5	3*1.5+1.5	1.5-4	1.5-4	0.5-1.5	0.5-1.5
MI3	0011	20	3*2.5+2.5	3*2.5+2.5	1.5-6	1.5-6	0.5-1.5	0.5-1.5
MI4	0012-0025	20 25 40	3*6+6	3*6+6	1-10Cu	1-10	0.5-1.5	0.5-1.5
MI5	0031-0038	40	3*10+10	3*10+10	2.5-50 Cu / Al	2.5-35	0.5-1.5	0.5-1.5

Table 3.7: Cable and fuse sizes for Vacon 20, 208 - 240 V, 3~

			Mains			Terminal cable size (min/max)				
Frame	Туре	Fuse [A]	cable Cu [mm²]	cable Cu [mm²]	Main terminal [mm²]	Earth terminal [mm²]	Control terminal [mm ²]	Relay terminal [mm²]		
MI1	0001-0003	6	3*1.5+1.5	3*1.5+1.5	1.5-4	1.5-4	0.5-1.5	0.5-1.5		
MI2	0004-0006	10	3*1.5+1.5	3*1.5+1.5	1.5-4	1.5-4	0.5-1.5	0.5-1.5		
MI3	0008-0012	20	3*2.5+2.5	3*2.5+2.5	1.5-6	1.5-6	0.5-1.5	0.5-1.5		
MI4	0016-0023	25	3*6+6	3*6+6	1-10Cu	1-10	0.5-1.5	0.5-1.5		
MI5	0031-0038	40	3*10+10	3*10+10	2.5-50 Cu / Al	2.5-35	0.5-1.5	0.5-1.5		

Table 3.8: Cable and fuse sizes for Vacon 20, 380 - 480 V, 3~

			Mains	Motor	Terminal cable size (min/max)			
Frame	Туре	Fuse [A]	cable Cu [mm²]	cable Cu [mm²]	Main terminal [mm²]	Earth terminal [mm²]	Control terminal [mm²]	Relay terminal [mm ²]
MI3	0002-0004	6	3*1.5+1.5	3*1.5+1.5	1.5-4	1.5-4	0.5-1.5	0.5-1.5
MI3	0005-0006	10	3*1.5+1.5	3*1.5+1.5	1.5-4	1.5-4	0.5-1.5	0.5-1.5
MI3	0009	20	3*2.5+2.5	3*2.5+2.5	1.5-6	1.5-6	0.5-1.5	0.5-1.5

Table 3.9: Cable and fuse sizes for Vacon 20, 575 V

Note! To fulfil standard EN61800-5-1, the protective conductor should be **at least** 10 mm² Cu or 16 mm² Al. Another possibility is to use an additional protective conductor of at least the same size as the original one.

3.2.5 General cabling rules

1	Before starting the installation, check that none of the components of the fre- quency converter is live.
2	Place the motor cables sufficiently far from other cables: • Avoid placing the motor cables in long parallel lines with other cables. • If the motor cable runs in parallel with other cables, the minimum distance between the motor cable and other cables is 0.3 m. • The given distance also applies between the motor cables and signal cables of other systems. • The maximum length of the motor cables for MI1-3 is 30 m. For MI4 & 5, maximum length is 50 m, if use longer cable, current accuracy will be decreased. • The motor cables should cross other cables at an angle of 90 degrees.
3	If cable insulation checks are needed, see Chapter 3.2.8.
4	Connecting the cables: • Strip the motor and mains cables as advised in Figure 3.26. • Connect the mains, motor and control cables into their respective terminals, see Figures 3.12 - 3.21. • Note the tightening torques of power cables and control cables given in page 25 and page 30. • For information on cable installation according to UL regulations see Chapter 3.2.7. • Make sure that the control cable wires do not come in contact with the electronic components of the unit. • If an external brake resistor (option) is used, connect its cable to the appropriate terminal. • Check the connection of the earth cable to the motor and the frequency converter terminals marked with

3.2.6 Stripping lengths of motor and mains cables

Figure 3.26: Stripping of cables

Note! Strip also the plastic cover of the cables for 360 degree earthing. See Figures 3.12. 3.13 and 3.20.

3.2.7 Cable installation and the UL standards

To meet the UL (Underwriters Laboratories) regulations, a UL-approved copper cable with a minimum heat-resistance of +60 / $75\,^{\circ}$ C must be used.

3.2.8 Cable and motor insulation checks

These checks can be performed as follows if motor or cable insulations are suspected to be faulty.

1. Motor cable insulation checks

Disconnect the motor cable from terminals U / T1, V / T2 and W / T3 of the frequency converter and from the motor. Measure the insulation resistance of the motor cable between each phase conductor as well as between each phase conductor and the protective ground conductor.

The insulation resistance must be >1 M0hm.

2. Mains cable insulation checks

Disconnect the mains cable from terminals L1, L2 / N and L3 of the frequency converter and from the mains. Measure the insulation resistance of the mains cable between each phase conductor as well as between each phase conductor and the protective ground conductor. The insulation resistance must be >1 MOhm.

3. Motor insulation checks

Disconnect the motor cable from the motor and open the bridging connections in the motor connection box. Measure the insulation resistance of each motor winding. The measurement voltage must equal at least the motor nominal voltage but not exceed 1000 V. The insulation resistance must be > 1 MOhm.

4. COMMISSIONING

Before commissioning, read the warnings and instructions listed in Chapter 1!

4.1 Commissioning steps of Vacon 20

1	Read carefully the safety instructions in Chapter 1 and follow them.
2	After the installation, make sure that: • both the frequency converter and the motor are grounded. • the mains and motor cables comply with the requirements given in Chapter 3.2.4. • the control cables are located as far as possible from the power. cables (see Chapter 3.2.5, step 2) and the shields of the shielded cables are connected to protective earth.
3	Check the quality and quantity of cooling air [Chapter 3.1.2].
4	Check that all Start / Stop switches connected to the I / 0 terminals are in $\textbf{Stop}\mbox{-}position.$
5	Connect the frequency converter to mains.
6	Set the parameters of group 1 according to the requirements of your application. At least the following parameters should be set: • motor nominal speed (par. 1.3) • motor nominal current (par. 1.4) • application type (par. 17.1) You will find the values needed for the parameters on the motor rating plate.

10

7	A) Control from the I / 0 terminals: • Turn the Start/Stop switch to ON position. • Change the frequency reference (potentiometer). • Check the Monitoring Menu and make sure that the value of Output frequency changes according to the change of frequency reference. • Turn the Start / Stop switch to OFF position. B) Control from the keypad: • Select the keypad as the control place with par 2.1. You can also move to keypad control by pressing Loc / Rem button or select Local control with
	keypad control by pressing Loc / Nem button or select Local control with par 2.5. • Push the Start button on the keypad. • Check the Monitoring Menu and make sure that the value of Output frequency. changes according to the change of frequency reference. • Push the Stop button on the keypad.
8	Run the no-load tests without the motor being connected to the process, if possible. If this is impossible, secure the safety of each test prior to running it. Inform your co-workers of the tests. • Switch off the supply voltage and wait up until the drive has stopped. • Connect the motor cable to the motor and to the motor cable terminals of the frequency converter. • See to that all Start / Stop switches are in Stop positions. • Switch the mains ON. • Repeat test 7A or 7B.
9	Perform an identification run [see par. 1.18], especially if the application requires a high startup torque or a high torque with low speed.
10	Connect the motor to the process (if the no-load test was running without the motor being connected).

Before running the tests, make sure that this can be done safely.

Inform your co-workers of the tests.
Repeat test 7A or 7B.

Perform test run without motor. Perform either Test A or Test B:

5. FAULT TRACING

Note: The fault codes listed in this chapter are visible if the Application Interface has a display, like e.g. in control board or if a personal computer has been connected to the drive.

When a fatal fault is detected by the frequency converter control electronics, the drive will stop and the symbol FT and the fault code blinked on the display are in the following format, e.g.:

The active fault can be reset by pressing BACK / RESET button when the API is in active fault menu level (FT XX), or pressing BACK / RESET button with long time (> 2 s) when the API is in active fault submenu level (F5.x), or via the I / 0 terminal or field bus. Reset fault history (long push > 5 s), when the API is in fault history submenu level (F6.x). The faults with subcode and time labels are stored in the Fault history submenu which can be browsed. The different fault codes, their causes and correcting actions are presented in the table below.

Fault code	Fault name	Possible cause	Correcting actions	
1	Overcurrent	Frequency converter has detected too high a current [>4*I _N] in the motor cable: • sudden heavy load increase • short circuit in motor cables • unsuitable motor	Check loading. Check motor size. Check cables.	
2	Overvoltage	The DC-link voltage has exceeded the internal safety limit: • deceleration time is too short • high overvoltage spikes in mains	Increase the deceleration time (Par.4.3)	
3	Earth fault	Current measurement has detected extra leakage current at start: • insulation failure in cables or motor	Check motor cables and motor	

Table 5.1: Fault codes

Fault code	Fault name	Possible cause	Correcting actions	
8	System fault	component failure faulty operation	Reset the fault and restart. If the fault re-occurs, contact the distributor near to you. NOTE! If fault F8 occurs, find out the subcode of the fault from the Fault History menu under Id xxx!	
9	Undervoltage	The DC-link voltage has gone below the internal safety limit: • most probable cause: supply voltage is too low • frequency converter internal fault • Power outages	In case of temporary sup- ply voltage break reset the fault and restart the fre- quency converter. Check the supply voltage. If it is adequate, an internal fail- ure has occurred. Contact the distributor near to you.	
11	Output phase fault	Current measurement has detected that there is no current in one motor phase.	Check motor cable and motor.	
13	Frequency converter undertemperature	Heat sink temperature is under -10 °C	Check the ambient temperature.	
14	Frequency converter overtemperature	Heat sink is overheated.	Check that the cooling air flow is not blocked. Check the ambient temperature. Make sure that the switching frequency is not too high in relation to ambient temperature and motor load.	
15	Motor stalled	Motor stall protection has tripped.	Check that the motor is able to rotate freely.	
16	Motor overtempera- ture	Motor overheating has been detected by frequency converter motor temperature model. Motor is overloaded.	Decrease the motor load. If no motor overload exists, check the temper- ature model parameters.	
17	Motor underload	Motor underload protection has tripped.	Check motor and load, e.g. for broken belts or dry pumps.	

Table 5.1: Fault codes

Fault code	Fault name	Possible cause	Correcting actions		
22	EEPROM checksum fault	Parameter save fault • faulty operation • component failure	Contact the distributor near to you.		
25	Microcontroller watchdog fault	faulty operation component failure	Reset the fault and restart. If the fault re-occur, contact the distributor near to you.		
27	Back EMF protection	Drive has detected that the magnetized motor is running in start situation. • A rotating PM-motor	Make sure that there is no rotating PM-motor when the start command is given.		
34	Internal bus commu- nication	Ambient interference or defective hardware	If the fault re-occur, contact the distributor near to you.		
35	Application fault	Application is not working properly.	Contact the distributor near to you.		
41	IGBT Overtemperature	Overtemperature alarm is issued when the IGBT switch temperature exceeds 110 °C.			
50	Analog input select 20% - 100% (selected signal range 4 to 20 mA or 2 to 10 V)	Current at the analogue input is < 4mA; Voltage at the analogue input is < 2 V. • control cable is broken or loose. • signal source has failed.	Check the current loop circuitry.		
51	External fault	Digital input fault. Digital input has been programmed as exter- nal fault input and this input is active.			
52	Door Panel fault	Control place is keypad, but door panel has been disconnected.			
53	Fieldbus fault	The data connection between the fieldbus Master and the fieldbus of the drive has broken.	Check installation. If installation is correct, contact the nearest Vacon distributor.		
54	Slot fault	The connection between optional board and API has been broken.			

Table 5.1: Fault codes

Fault code	Fault name	Possible cause	Correcting actions
55	Wrong run fault	Run forward and backward are high at the same time. The drive will stop and jump Alarm 55.	
57	Idenfication fault	Identification run has failed.	Run command was removed before comple- tion of identification run. Motor is not connected to frequency converter. There is load on motor shaft.

Table 5.1: Fault codes

6. VACON 20 APPLICATION INTERFACE

6.1 Introduction

There is only one version of Control Board available for the Vacon 20 drive:

Version	Composition				
	6 Digital inputs				
	2 Analogue inputs				
Vacon 20	1 Analogue output				
Vacon 20	1 Digital output				
	2 Relay outputs				
	RS-485 Interface				

Table 6.1: Available Control Board

This section provides you with a description of the I / O-signals for these versions and instructions for using the Vacon 20 general purpose application.

The frequency reference can be selected from Preset Speed 0, Keypad, Fieldbus, Al1, Al2, Al1+Al2, PID, Motor potentiometer and Pulse train / Encoder.

Basic properties:

- Digital inputs DI1...DI6 are freely programmable. The user can assign a single input to many functions.
- Digital-, relay- and analogue outputs are freely programmable.
- · Analog output can be programmed as current or voltage output.
- Analog input 2 can be programmed as current or voltage input.
- . DI5/6 can be used as pulse train or Encoder.

Special features:

- · Programmable Start / Stop and Reverse signal logic
- · Motor pre-heat
- · Reference scaling
- · DC-brake at start and stop
- Programmable U / f curve
- · Adjustable switching frequency
- · Autoreset function after fault

- Protections and supervisions (all fully programmable; off, alarm, fault):
 - · Analog input low fault
 - External fault
 - · Undervoltage fault
 - Earth fault
 - · Motor thermal, stall and underload protection
 - Fieldbus communication
 - · Output phase fault
 - Thermistor fault
- · 8 preset speeds
- · Analogue input range selection, signal scaling and filtering
- · PID-controller

6.2 Control I / O

6.2 C 1-10 kΩ	onti	rol I / O	,	Vacon 20	
	Ter	minal	Signal	Factory preset	Description
─^ रे─	1	+10 Vre	Ref. voltage out		Maximum load 10 mA
	2	Al1	Analog signal in 1	Freq. reference Pl	0 - 10 V, Ri >= 200 kΩ
	3	GND	I / O signal ground		
	6	24 Vout	24 V output for DI's		± 20 %, max. load 50 mA
	7	DI_C •	Digital Input Com- mom		Digital Input Commom for DI1- DI6, refer to Table 6.3 for DI sink type
	8	DI1	Digital input 1	Start forward Pl	18 - 30 V, Ri > 5 kΩ
	9	DI2	Digital input 2	Start reverse Pl	
	10	DI3	Digital input 3	Fault reset Pl	
	Α	A	RS485 signal A	FB Communication	Negative
	В	В	RS485 signal B	FB Communication	Positive
	4	AI2	Analog signal in 2	PID actual value and Freq. refer- ence ^{P)}	Default: 0(4) - 20 mA, Ri <= $250~\Omega$ Other: 0 - 10 V, Ri >= $200~k~\Omega$ Selectable through microswitch
(mA)	5	GND ●	I / O signal ground		
	13	D0-	Digital Output Commom		Digital Output Commom
	14	DI4	Digital input 4	Preset speed B0 Pl	18 - 30 V, Ri > 5 kΩ
	15	DI5	Digital input 5	Preset speed B1 Pl	As DI, Other: Encoder Input A (frequency up to 10 kHz) Selectable through microswitch
	16	DI6	Digital input 6	External Fault ^{PJ}	As DI, Other: Encoder Input B (frequency up to 10 kHz), Pulse Train Input (fre- quency up to 5 kHz)
	18	AO	Analog Output	Output frequency P)	0 - 10 V, RL >1 K Ω 0(4) - 20 mA, RL < 500 Ω Selectable through microswitch
	20	D0	Digital signal out	Active = READY Pl	Open collector, max. load 48 V / 50 mA

Table 6.2: Vacon 20 General purpose application default I / O configuration and connections for control board

P) = Programmable function, see parameter lists and descriptions, chapters 8 and 9.

	minal	Signal	Factory preset	Description		
22	RO 13	Relay out 1		Max. switching load:		
23	RO 14	`	Active = RUN PJ	250 Vac / 2 A or 250 Vdc / 0.4 A		
24	RO 22	Relay out 2		Max. switching load:		
25	RO 21		Active = FAULT P)	250 Vac / 2 A or 250 Vdc /		
26	RO 24			0.4 A		

Table 6.2: Vacon 20 General purpose application default I / O configuration and connections for control board

P) = Programmable function, see parameter lists and descriptions, chapters 8 and 9.

	Terminal		Signal	Factory preset	Description	
	3	GND	I / O signal ground			
l 	6	24 Vout	24 V output for DI's		± 20 %, max. load 50 mA	
<u> </u>	7	DI_C	Digital Input Com- mom		Digital Input Commom for DI1-DI6	
	8	DI1	Digital input 1	Start forward Pl	18 - 30 V, Ri > 5 kΩ	
<u> </u>	9	DI2	Digital input 2	Start reverse Pl		
<u> </u>	10	DI3	Digital input 3	Fault reset P)		
	14	DI4	Digital input 4	Preset speed B0 P)	18 - 30 V, Ri > 5 kΩ	
	15	DI5	Digital input 5	Preset speed B1 Pl	As DI, Other: Encoder Input A (frequency up to 10 kHz) Selectable through microswitch	
	16	DI6	Digital input 6	External Fault ^{PJ}	As DI, Other: Encoder Input B (frequency up to 10 kHz), Pulse Train Input (fre- quency up to 5 kHz)	

Table 6.3: DI Sink Type, remove jumper J500 and connect the wire using table 6.3

Figure 6.1: Microswitchs

Vacon 20 I / O terminals:

AI2	GND	DO-	DI4	DI5	DI6	ΑО	DO+		R13	R14		*	R24	ļ
40	50	13	14	15 O	16 O	18 O	20		22	23 0	Г	0	26 O	7
1	2 0	3	6	7	. 8		9 10		0	0	1	2	5 2	24
+1	0VAI	1 GN	D 24	V DI	-C D	11 I	DI2 D	013	Ą	Ŗ	_	R	21 F	₹22

7. CONTROL PANEL

7.1 General

The panel is an irremovable part of the drive consisting of corresponding control board; The overlay with display status on the cover and the button are in clarifications in the user language.

The User Panel consists of an alphanumeric LCD display with backlight and a keypad with the 9 push buttons (see Figure 7.1).

7.2 Display

The display includes 14-segment and 7-segment blocks, arrowheads and clear text unit symbols. The arrowheads, when visible, indicate some information about the drive, which is printed in clear text in user language on the overlay (numbers 1...14 in the figure below). The arrowheads are grouped in 3 groups with the following meanings and Enqlish overlay texts (see Figure 7.1):

Group 1 - 5; Drive status

- 1= Drive is ready to start (READY)
- 2= Drive is running (RUN)
- 3= Drive has stopped (STOP)
- 4= Alarm condition is active (ALARM)
- 5= Drive has stopped due to a fault (FAULT)

Group 6 - 10; Control selections

When API is operated by PC control, there are no arrowhead at I / 0, KEYPAD and BUS.

- 6= Motor is rotating forward (FWD)
- 7= Motor is rotating reverse (REV)
- 8= I/O terminal block is the selected control place (I / O)
- 9= Keypad is the selected control place [KEYPAD]
- 10= Fieldbus is the selected control place (BUS)

Group 11 - 14; Navigation main menu

- 11= Reference main menu (REF)
- 12= Monitoring main menu (MON)
- 13= Parameter main menu (PAR)
- 14= System main menu (SYS)

Figure 7.1: Vacon 20 Control panel

7.3 Keypad

The keypad section of the control panel consists of 9 buttons (see Figure 7.1). The buttons and their functions are described as Table 7.1.

The drive stops by pressing the keypad STOP button, regardless of the selected control place when Par. 2.7 (Keypad stop button) is 1. If Par. 2.7 is 0, the drive stops by keypad STOP button only when control place is keypad. The drive starts by pressing the keypad START button when the selected control place is KEYPAD or LOCAL control.

Sym	nbol	Button Name	Function Description
		Start	Motor START from the panel
6	7	STOP	Motor STOP from the panel
0	K	ок	Used for confirmation
BA RES	CK SET	Back / Reset	Cancels edited parameter Move backwards in menu levels Reset fault indication
^	>	Up and Down	Navigation button: Select root parameter number on root- parameter list, Up decrease / Down increase parameter number, Up increase / Down decrease parame- ter value change
<	>	Left and Right	Available in MON, PAR and SYS men- uparameter, navigation and parameter digit setting MON can also use left and right button to navigate the menu from V1.x to V2.1 to V3.1
L <u>C</u> RE	DC EM	Loc / Rem	Change control place

Table 7.1: Keypad Function

NOTE! The status of all the 9 buttons are available for application program!

7.4 Navigation on the Vacon 20 control panel

This chapter provides you with information on navigating the menus on Vacon 20 and editing the values of the parameters.

7.4.1 Main menu

The menu structure of Vacon 20 control software consists of a main menu and several submenus. Navigation in the main menu is shown below:

Figure 7.2: The main menu of Vacon 20

7.4.2 Reference menu

Figure 7.3: Reference menu display

Move to the reference menu with the UP / DOWN button (see Figure 7.2). The reference value can be changed by 0.01 every time with UP / DOWN button as shown in Figure 7.3.

If the value has big change, first press Left and Right buttons to select the digit which has to be changed, then press Up button to increase and Down button to decreases the value in the selected digit. In the end, press OK button to take the setting value effective.

7.4.3 Monitoring menu

Figure 7.4: Monitoring menu display

Monitoring values are actual values of measured signals as well as status of some control settings. It is visible in Vacon 20 display, but it can not be edited. The monitoring values are listed in Table 7.2.

Pressing Left/Right button to change the actual parameter to the first parameter of the next group, to browse monitor menu from V1.x to V2.1 to V3.1 to V4.1. After entering the desired group, the monitoring values can be browsed by pressing UP / DOWN button, as shown in Figure 7.4.

In MON menu the selected signal and its value are alternateing in the display by pressing ${\sf OK}$ button.

Note! Turn on drive power, arrowhead of main menu is at MON, V x.x is displayed in Panel.

The value of "x" is determined by the last show before power shut down. E.g., it was V4.5, and it is also V4.5 when restart.

Code	Monitoring signal	Unit	ID	Description
V1.1	Output frequency	Hz	1	Output frequency to motor
V1.2	Frequency reference	Hz	25	Frequency reference to motor control
V1.3	Motor speed	rpm	2	Calculated motor speed
V1.4	Motor current	Α	3	Measured motor current
V1.5	Motor torque	%	4	Calculated actual / nominal torque of the motor
V1.6	Output Power	KW	79	Output power from drive to motor
V1.7	Motor voltage	٧	6	Motor voltage
V1.8	DC-link voltage	V	7	Measured DC-link voltage
V1.9	Drive temperature	°C	8	Heatsink temperature
V1.10	Motor temperature	%	9	Calculated motor temperature
V1.11	Motor shaft power	%	5	Calculated actual / nominal power of the motor
V2.1	Analog input 1	%	13	Al1 signal range in percent of used range
V2.2	Analog input 2	%	14	AI2 signal range in percent of used range
V2.3	Analog output	%	26	A0 signal range in percent of used range
V2.4	Digital input status DI1, DI2, DI3		15	Digital input status
V2.5	Digital input status DI4, DI5, DI6		16	Digital input status
V2.6	R01, R02, D0		17	Relay / digital output status
V2.7	Pulse train / encoder input	%	1234	0 - 100% scale value
V2.8	Encoder rpm	rpm	1235	Scaled according to Encoder pulses / revolution parameter
V3.1	Drive Status Word		43	Bit codes status of drive 80 = Ready 81 = Run 82 = Reverse 83 = Fault 86 = RunEnable 87 = AlarmActive 812 = RunRequest 813 = MotorRegulatorActive

Table 7.2: Vacon 20 monitoring signals

Code	Monitoring signal	Unit	ID	Description
V3.2	Application Status Word		89	Bit codes status of application: B3 = Ramp 2 Active B5 = Remote CTRL Place 1 active B6 = Remote CTRL Place 2 active B7 = Fieldbus Control Active B8 = Local Control Active B9 = PC Control Active B10 = Preset Frequencies Active
V3.3	DIN Status Word		56	
V4.1	PID setpoint	%	20	Regulator setpoint
V4.2	PID feedback value	%	21	Regulator actual value
V4.3	PID error	%	22	Regulator error
V4.4	PID output	%	23	Regulator output
V4.5	Process		29	Scaled process variable see par. 15.18

Table 7.2: Vacon 20 monitoring signals

7.4.4 Parameter menu

In Parameter menu only the Quick setup parameter list is shown as default. By giving the value 0 to the parameter 17.2, it is possible to open other advanced parameter groups. The parameter lists and descriptions can be found in chapters 8 and 9.

The following figure shows the parameter menu view:

Figure 7.5: Parameter menu

The parameter can be changed as the Figure 7.5.

Left / Right button is available inside Parameter menu. Pressing Left / Right button to change the actual parameter to the first parameter of the next group (Example: any parameter of P1... is displayed -> RIGHT button -> P2.1 is displayed -> RIGHT button -> P3.1 is displayed -...). After entering the desired group, pressing UP / DOWN button to select root parameter number, and then press OK button to display the value of the parameter and also enter edit mode.

In edit mode, Left and Right buttons are used to select the digit which has to be changed, and Up increases / Down decreases parameter value.

In edit mode, the value of Px.x is displayed blinkingly in the panel. After about 10 s, Px.x is displayed in the panel again if you don't press any button.

Note! In edit mode, if you edit the value and don't press OK button, the value isn't changed successfully.

In edit mode, if you don't edit the value, you can press Reset / Back button to display Px.x again.

7.4.5 System menu

SYS menu including fault submenu and system parameter submenu, and the display and operation of the system parameter submenu is similar to PAR menu or MON menu.In system parameter submenu, there are some editable parameter (P) and some uneditable parameter (V).

The Fault submenu of SYS menu includes active fault submenu and fault history submenu.

Figure 7.6: Fault menu

In active fault situation, FAULT arrow is blinking and the display is blinking active fault menu item with fault code. If there are several active faults, you can check it by entering the active fault submenu F5.x. F5.1 is always the latest active fault code. The active faults can be reset by pressing BACK / RESET button with long time [>2 s], when the API is in active fault submenu level [F5.x]. If the fault cannot be reset, the blinking continues. It is possible to select other display menus during active fault, but in this case the display returns automatically to the fault menu if no button is pressed in 10 seconds. The fault code, subcode and the operating day, hour and minute values at the fault instant are shown in the value menu (operating hours = displayed reading).

Note! Fault History can be reset by long pressing the BACK / RESET button for 5 second time, when the API is in fault history submenu level (F6.X), it will also clear all active faults.

See Chapters for fault descriptions

60

◆ VACON PARAMETERS

8. STANDARD APPLICATION PARAMETERS

On the next pages you can find the lists of parameters within the respective parameter groups. The parameter descriptions are given in Chapter 9.

Explanations:

Code: Location indication on the keypad: Shows the operator the present

Monitoring value number or Parameter number

Parameter: Name of monitoring value or parameter

Min: Minimum value of parameter

Max: Maximum value of parameter

Unit: Unit of parameter value; given if available

Default: Factory preset value

ID: ID number of the parameter (used with fieldbus control)

More information on this parameter available in chapter 9: 'Parameter descriptions' click on the parameter name.

Modifiable only in stop state

NOTE: On parameter code: Parameter value can only be changed after the FC has been stopped. This manual is for Vacon 20 standard application only. If you are using a special application, please download the appropriate user manual on http://www.vacon.com -> Support & Downloads.

8.1 Quick setup parameters (Virtual menu, shows when par. 17.2 = 1)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P1.1	Motor nominal voltage	180	690	٧	Varies	110	Check rating plate on the motor.
	P1.2	Motor nominal frequency	30,00	320,00	Hz	50,00 / 60,00	111	Check rating plate on the motor.
	P1.3	Motor nominal speed	30	20000	rpm	1440 / 1720	112	Default applies for a 4-pole motor.
	P1.4	Motor nominal current	0,2 x I _{Nunit}	2,0 x I _{Nunit}	А	I _{Nunit}	113	Check rating plate on the motor.
	P1.5	Motor cos φ (Power Factor)	0,30	1,00		0,85	120	Check rating plate on the motor.
①	P1.7	Current limit	0,2 x I _{Nunit}	2 x I _{Nunit}	А	1.5 x I _{Nunit}	107	Maximum motor current
①	P1.15	Torque boost	0	1		0	109	0 = Not used 1 = Used
①	P2.1	Remote control place 1 selection	0	2		0	172	0 = I / 0 terminal 1 = Fieldbus 2 = Keypad
①	P2.2	Start function	0	1		0	505	0 = Ramp 1 = Flying start
①	P2.3	Stop function	0	1		0	506	0 = Coasting 1 = Ramp
	P3.1	Min frequency	0,00	P3.2	Hz	0,00	101	Minimum freq reference
	P3.2	Max frequency	P3.1	320,00	Hz	50,00 / 60,00	102	Maximum freq reference
(i)	P3.3	Remote Control Place 1 frequency reference selec- tion	1	9		7	117	1 = Preset Speeds 0 2 = Keypad 3 = Fieldbus 4 = Al1 5 = Al2 6 = PID 7 = Al1 + Al2 8 = Motor potentiometer 9 = Pulse train / Encoder
(i)	P3.4	Preset speed 0	P3.1	P3.2	Hz	5,00	124	Preset speed 0 is used as frequency reference when P3.3 = 1
①	P3.5	Preset speed 1	P3.1	P3.2	Hz	10,00	105	Activated by digital inputs

Table 8.1: Quick setup parameters

1	Code	Parameter	Min	Max	Unit	Default	ID	Note
)	P3.6	Preset speed 2	P3.1	P3.2	Hz	15,00	106	Activated by digital inputs
)	P3.7	Preset speed 3	P3.1	P3.2	Hz	20,00	126	Activated by digital inputs
	P4.2	Acceleration time	0,1	3000,0	S	3,0	103	Acceleration time from 0 Hz to maximum fre- quency.
	P4.3	Deceleration time 1	0,1	3000,0	S	3,0	104	Deceleration time from maximum frequency to 0 Hz.
	P6.1	Al1 Signal range	0	1		0	379	0 = 0 - 100% 1 = 20% - 100% 20% is the same as 2 V minimum signal level.
	P6.5	AI2 Signal range	0	1		0	390	0 = 0 - 100% 1 = 20% - 100% 20% is the same as 2 V or 4 mA minimum signal level.
	P14.1	Automatic reset	0	1		0	731	0 = Disable 1 = Enable
	P17.2	Parameter conceal	0	1		1	115	0 = All parameters visible1 = Only quick setup parameter group visible

Table 8.1: Quick setup parameters

8.2 Motor settings (Control panel: Menu PAR -> P1)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P1.1	Motor nominal voltage	180	690	٧	Varies	110	Check rating plate on the motor
	P1.2	Motor nominal fre- quency	30,00	320,00	Hz	50,00 / 60,00	111	Check rating plate on the motor
	P1.3	Motor nominal speed	30	20000	rpm	1440 / 1720	112	Default applies for a 4-pole motor.
	P1.4	Motor nominal current	0,2 x I _{Nunit}	2,0 x I _{Nunit}	А	I _{Nunit}	113	Check rating plate on the motor
	P1.5	Motor cos φ (Power Factor)	0,30	1,00		0,85	120	Check rating plate on the motor
	P1.6	Motor type	0	1		0	650	0 = Induction 1 = Permanent magnet
①	P1.7	Current limit	0,2 x I _{Nunit}	2 x I _{Nunit}	А	1.5 x I _{Nunit}	107	Maximum motor current
①	P1.8	Motor control mode	0	1		0	600	0 = Frequency control1 = Open loop speed control
(i)	P1.9	U / f ratio	0	2		0	108	0 = Linear 1 = Quadratic 2 = Programmable
①	P1.10	Field weakening point	8,00	320,00	Hz	50,00 / 60,00	602	Field weakening point frequency
①	P1.11	Field weakening point voltage	10,00	200,00	%	100,00	603	Voltage at field weakening point as % of U _{nmot}
①	P1.12	U / f mid point frequency	0,00	P1.10	Hz	50,00 / 60,00	604	Mid point frequency for programmable U / f
(i)	P1.13	U / f mid point voltage	0,00	P1.11	%	100,00	605	Mid point voltage for pro- grammable U / f as % of U _{nmot}
①	P1.14	Zero freq voltage	0,00	40,00	%	Varies	606	Voltage at 0 Hz as % of U _{nmot}
①	P1.15	Torque Boost	0	1		0	109	0 = Disabled 1 = Enabled
<u>()</u>	P1.16	Switching fre- quency	1,5	16,0	kHz	4,0 / 2,0	601	PWM frequency. If values are higher than default, reduce the current capacity
(i)	P1.17	Brake Chopper	0	2		0	504	0 = Disabled 1 = Enabled: Always 2 = Run state

Table 8.2: Motor settings

1	Code	Parameter	Min	Max	Unit	Default	ID	Note
)	P1.18	Motor identifica- tion	0	1		0	631	0 = Not active1 = Standstill identification (need run command within 20 s to activate)
	P1.19	Rs voltage drop	0,00	100,00	%	0,00	675	Voltage drop over motor windings as % of U _{nmot} at nominal current.
	P1.20	Overvoltage con- troller	0	2		1	607	 0 = Disabled 1 = Enabled, Standard mode 2 = Enabled, Shock load mode
	P1.21	Undervoltage controller	0	1		1	608	0 = Disable 1 = Enable
	P1.22	Sine filter	0	1		0	522	0 = Not in use 1 = In use

Table 8.2: Motor settings

NOTE! These parameters are shown, when P17.2 = 0.

8.3 Start / stop setup (Control panel: Menu PAR -> P2)

	Code	Parameter	Min	Max	Unit	Default	D	Note
\odot	P2.1	Remote Control Place 1 Selection	0	2		0	172	0 = I / 0 terminals 1 = Fieldbus 2 = Keypad
\odot	P2.2	Start function	0	1		0	505	0 = Ramp 1 = Flying start
\odot	P2.3	Stop function	0	1		0	506	0 = Coasting 1 = Ramp
<u></u>	P2.4	I / O Start / Stop logic	0	4		2	300	I/O control signal 2 0 Forward Backward 1 Fwd(edge) Inverted Stop 2 Fwd(edge) Bwd(edge) 3 Start Reverse 4 Start(edge) Reverse
\odot	P2.5	Local / Remote	0	1		0	211	0 = Remote control 1 = Local control
	P2.6	Keypad control direction	0	1		0	123	0 = Forward 1 = Backward
	P2.7	Keypad stop but- ton	0	1		1	114	0 = Keypad control only1 = Always
	P2.8	Remote Control Place 2 Selection	0	2		0	173	0 = I / O terminals 1 = Fieldbus 2 = Keypad

Table 8.3: Start / stop setup

8.4 Frequency references (Control panel: Menu PAR -> P3)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P3.1	Min frequency	0,00	P3.2	Hz	0,00	101	
	P3.2	Max frequency	P3.1	320,00	Hz	50,00 / 60,00	102	
(i)	P3.3	Remote Control Place 1 fre- quency refer- ence selection	1	9		7	117	1 = Preset Speeds 0 2 = Keypad 3 = Fieldbus 4 = Al1 5 = Al2 6 = PID 7 = Al1+ Al2 8 = Motor potentiometer 9 = Pulse train / Encoder
①	P3.4	Preset speed 0	P3.1	P3.2	Hz	5,00	124	Preset speed 0 is used as frequency reference when P3.3 = 1
<u> </u>	P3.5	Preset speed 1	P3.1	P3.2	Hz	10,00	105	Activated by digital inputs
➀	P3.6	Preset speed 2	P3.1	P3.2	Hz	15,00	106	Activated by digital inputs
9	P3.7	Preset speed 3	P3.1	P3.2	Hz	20,00	126	Activated by digital inputs
$\overline{\bigcirc}$	P3.8	Preset speed 4	P3.1	P3.2	Hz	25,00	127	Activated by digital inputs
⑴	P3.9	Preset speed 5	P3.1	P3.2	Hz	30,00	128	Activated by digital inputs
\bigcirc	P3.10	Preset speed 6	P3.1	P3.2	Hz	40,00	129	Activated by digital inputs
⑴	P3.11	Preset speed 7	P3.1	P3.2	Hz	50,00	130	Activated by digital inputs
•	P3.12	Remote Control Place 2 fre- quency refer- ence selection	1	9		5	131	As the parameter P3.3
①	P3.13	Motor Poten- tionmeter Ramp	1	50	Hz/s	5	331	Speed variation rate
①	P3.14	Motor Poten- tionmeter Reset	0	2		2	367	0 = No Reset1 = Reset if stopped2 = Reset if powered down

Table 8.4: Frequency references

NOTE! These parameters are shown, when P17.2 = 0.

8.5 Ramps and brakes setup (Control panel: Menu PAR -> P4)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
\odot	P4.1	Ramp S-shape	0,0	10,0	S	0,0	500	0 = Linear >0 = S-curve ramp time
\odot	P4.2	Acceleration time 1	0,1	3000,0	s	3,0	103	
\odot	P4.3	Deceleration time 1	0,1	3000,0	s	3,0	104	
\odot	P4.4	Ramp S-shape 2	0,0	10,0	s	0,0	501	
\odot	P4.5	Acceleration time 2	0,1	3000,0	s	10,0	502	
\odot	P4.6	Deceleration time 2	0,1	3000,0	s	10,0	503	
<u>()</u>	P4.7	Flux Braking	0	3		0	520	0 = Off1 = Deceleration2 = Chopper3 = Full Mode
	P4.8	Flux Braking Cur- rent	0,5 x I _{Nunit}	2,0 x I _{Nunit}	Α	I _{Nunit}	519	
	P4.9	DC Braking Current	0,3 x I _{Nunit}	2,0 x I _{Nunit}	Α	I _{Nunit}	507	Defines the current injected into the motor during DC brakeing.
()	P4.10	Stop DC current time	0,00	600,00	s	0,00	508	Determines if braking is ON or OFF and the brak- ing time of the DC-brake when the motor is stop- ping. 0 = Not active
\odot	P4.11	Stop DC current frequency	0,10	10,00	Hz	1,50	515	The output frequency at which the DC-braking is applied.
\odot	P4.12	Start DC current time	0,00	600,00	s	0,00	516	0 = Not active
	P4.13	Accel2 Frequency Threshold	0.00	P3.2	Hz	0,00	527	0,00 = disabled
	P4.14	Decel2 Frequency Threshold	0,00	P3.2	Hz	0,00	528	0,00 = disabled
\odot	P4.15	External Brake: Open Delay	0,00	320,00	s	0,20	1544	

Table 8.5: Ramps and brakes setup

	Code	Parameter	Min	Max	Unit	Default	ID	Note
(i)	P4.16	External Brake: Open Frequency limit	0,00	P3.2	Hz	1,50	1535	
(i)	P4.17	External Brake : Close Frequency limit	0,00	P3.2	Hz	1,00	1539	
(i)	P4.18	External Brake : Close Frequency limit in Reverse	0,00	P3.2	Hz	1,50	1540	
(i)	P4.19	External Brake : Open/Close Cur- rent limit	0,0	200,0	%	20,0	1585	

Table 8.5: Ramps and brakes setup

8.6 Digital inputs (Control panel: Menu PAR -> P5)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
<u></u>	P5.1	I / O control signal 1	0	6		1	403	0 = Not used 1 = D11 2 = D12 3 = D13 4 = D14 5 = D15 6 = D16
	P5.2	I / O control signal 2	0	6		2	404	As parameter 5.1
	P5.3	Reverse	0	6		0	412	As parameter 5.1
	P5.4	Ext. fault Close	0	6		6	405	As parameter 5.1
	P5.5	Ext. fault Open	0	6		0	406	As parameter 5.1
	P5.6	Fault reset	0	6		3	414	As parameter 5.1
	P5.7	Run enable	0	6		0	407	As parameter 5.1
	P5.8	Preset speed B0	0	6		4	419	As parameter 5.1
	P5.9	Preset speed B1	0	6		5	420	As parameter 5.1
	P5.10	Preset speed B2	0	6		0	421	As parameter 5.1
<u>(i)</u>	P5.11	Ramp time 2 selec- tion	0	6		0	408	As parameter 5.1
	P5.12	Motor potentiome- ter up	0	6		0	418	As parameter 5.1
	P5.13	Motor potentiome- ter down	0	6		0	417	As parameter 5.1
	P5.14	Remote control place 2	0	6		0	425	Activates control place 2 As parameter 5.1
	P5.15	Remote control plece freq refer- ence 2	0	6		0	343	Activates control place 2 See parameter 5.1
①	P5.16	PID setpoint 2	0	6		0	1047	Activates reference 2 As parameter 5.1
\odot	P5.17	Motor PreHeat Active	0	6		0	1044	Activates the Motor Pre- Heat (DC-Current) in stop state when parame- ter Motor Preheat func- tion is set to 2 As parameter 5.1

Table 8.6: Digital inputs

70 VACON PARAMETERS

8.7 Analogue inputs (Control panel: Menu PAR -> P6)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P6.1	Al1 Signal range	0	1		0	379	0 = 0 - 100% (0 - 10 V) 1 = 20% - 100% (2 - 10 V)
(i)	P6.2	Al1 Custom min	-100,00	100,00	%	0,00	380	0,00 = no min scaling
\odot	P6.3	Al1 Custom max	-100,00	300,00	%	100,00	381	100,00 = no max scaling
(i)	P6.4	Al1 filter time	0,0	10,0	s	0,1	378	0 = no filtering
•	P6.5	Al2 signal range	0	1		0	390	0 = 0 -10 V / 0 - 20 mA 1 = 2 -10 V / 4 - 20 mA
\odot	P6.6	AI2 Custom min	-100,00	100,00	%	0,00	391	0,00 = no min scaling
()	P6.7	Al2 Custom max	-100,00	300,00	%	100,00	392	100,00 = no max scaling
(i)	P6.8	Al2 filter time	0,0	10,0	S	0,1	389	0 = no filtering

Table 8.7: Analogue inputs

8.8 Pulse train / Encoder (Control panel: Menu PAR -> P7)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
\odot	P7.1	Min pulse fre- quency	0	10000	Hz	0	1229	Pulse frequency to be interpreted as a 0% signal.
\odot	P7.2	Max pulse fre- quency	0,0	10000	Hz	10000	1230	Pulse frequency to be interpreted as a 100% signal.
\odot	P7.3	Freq. ref. at min pulse freq.	0,00	P3.2	Hz	0,00	1231	Frequency correspond- ing to 0% if used as fre- quency reference.
\odot	P7.4	Freq. ref. at max pulse freq.	0,00	P3.2	Hz	50,00 / 60,00	1232	Frequency correspond- ing to 100% if used as frequency reference.
(i)	P7.5	Encoder direc- tion	0	2		0	1233	0 = Disable 1 = Enable / Normal 2 = Enable / Inverted
(i)	P7.6	Encoder pulses / revolution	1	65535	ppr	256	629	Pulse count of encoder per round. Used for scal- ing encoder rpm monitor value only.
(i)	P7.7	Config DI5 and DI6	0	2		0	1800	0 = DI5 and DI6 are for normal digital input 1 = DI6 is for pulse train 2 = DI5 and DI6 are for encoder frequence mode

Table 8.8: Pulse train/Encoder

8.9 Digital outputs (Control panel: Menu PAR -> P8)

	Code	Parameter	Min	Max	Unit	Default	ID	Selections	
(i)	P8.1	RO1 signal selection	0	19		2	313	0 = Not used 1 = Ready 2 = Run 3 = Fault Inverted 5 = Warning 6 = Reversed 7 = At Speed 8 = Motor regulator active 9 = FB Control Word.B13 10 = FB Control Word.B14 11 = FB Control Word.B15 12 = Output freq superv. 13 = Output torque superv. 14 = Unit temperature superv. 15 = Analogue input superv. 16 = Preset Speed Active 17 = External Brake ctrl 18 = Keypad control active 19 = I / O control active	
\odot	P8.2	R02 signal sel- cetion	0	19		3	314	As parameter 8.1	
\odot	P8.3	D01 signal sel- cetion	0	19		1	312	As parameter 8.1	
	P8.4	R02 inversion	0	1		0	489	0 = No inversion 1 = Inverted	
	P8.5	R02 ON delay	0,00	320,00	S	0,00	460	0,00 = No delay	
	P8.6	R02 OFF delay	0,00	320,00	S	0,00	461	0,00 = No delay	
	P8.7	R01 inversion	0	1		0	1587	0 = No inversion 1 = Inverted	
	P8.8	R01 ON delay	0,00	320,00	S	0,00	458	0,00 = No delay	
	P8.9	R01 OFF delay	0,00	320,00	S	0,00	459	0,00 = No delay	
	P8.10	RO3 signal selection	0	19		0	317	As parameter 8.1,	
	P8.11	RO4 signal selection	0	19		0	318	RO3-RO5 implemented but hidden until an option board is connected.	
	P8.12	R05 signal selection	0	19		0	1386	is connected.	

Table 8.9: Digital outputs

72 • VACON PARAMETERS

8.10 Analogue outputs (Control panel: Menu PAR -> P9)

	Code	Parameter	Min	Max	Unit	Default	ID	Selections
Θ	P9.1	Analog output signal selection	0	14		1	307	0 = Not used 1 = Output freq. (0-f _{max}) 2 = Output terrent [0-I _{nMotor}] 3 = Motor torque (0-T _{nMotor}) 4 = PID output [0 - 100%) 5 = Freq. refer. (0-f _{max}) 6 = Motor speed (0-n _{max}) 7 = Motor power (0-P _{nMotor}) 8 = Motor Voltage (0-U _{nMotor}) 9 = DC-link Voltage (0 - 10000) 10 = Process Data In1 (0 - 10000) 11 = Process Data In2 (0 - 10000) 12 = Process Data In3 (0 - 10000) 13 = Process Data In4 (0 - 10000) 13 = Process Data In4 (0 - 10000) 14 = Test 100%
①	P9.2	Analog output minimum	0	1		0	310	0 = 0 V / 0 mA 1 = 2 V / 4 mA
	P9.3	Analog output scaling	0,0	1000,0	%	100,0	311	Scaling factor
	P9.4	Analog output fil- ter time	0,00	10,00	s	0,10	308	Filter time
	P9.5	Analog output 2 signal selection	0	14		1	472	As parameter 9.1, A02&A03 implemented but hidden until an option board is connected.
	P9.6	Analog output 2 minimum	0	1		0	475	As parameter 9.2, A02&A03 implemented but hidden until an option board is connected.
	P9.7	Analog output 2 scaling	0,0	1000,0	%	100,0	476	As parameter 9.3, A02&A03 implemented but hidden until an option board is connected.
	P9.8	Analog output filter time	0,00	10,00	s	0,10	473	As parameter 9.4, A02&A03 implemented but hidden until an option board is connected.

Table 8.10: Analogue outputs

Code	Parameter	Min	Max	Unit	Default	ID	Selections
P9.9	Analog output 3 signal selection	0	14		1	479	As parameter 9.5
P9.10	Analog output 3 minimum	0	1		0	482	As parameter 9.6
P9.11	Analog output 3 scaling	0,0	1000,0	%	100,0	483	As parameter 9.7
P9.12	Analog output 3 filter time	0,00	10,00	S	0,10	480	As parameter 9.8

Table 8.10: Analogue outputs

8.11 Fieldbus Data-Mapping (Control panel: Menu PAR -> P10)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
0	P10.1	FB Data Output 1 selection	0	15		0	852	0 = Frequency reference 1 = Output reference 2 = Motor speed 3 = Motor current 4 = Motor voltage 5 = Motor torque 6 = Motor power 7 = DC link voltage 8 = Active fault code 9 = Analogue Al1 10 = Analogue Al2 11 = Digital input state 12 = PID feedback value 13 = PID setpoint 14 = Pulse train / encoder input(%) 15 = Pulse train / encoder pulse()
	P10.2	FB Data Output 2 selection	0	15		1	853	Variable mapped on PD2
	P10.3	FB Data Output 3 selection	0	15		2	854	Variable mapped on PD3
	P10.4	FB Data Output 4 selection	0	15		4	855	Variable mapped on PD4
	P10.5	FB Data Output 5 selection	0	15		5	856	Variable mapped on PD5
	P10.6	FB Data Output 6 selection	0	15		3	857	Variable mapped on PD6
	P10.7	FB Data Output 7 selection	0	15		6	858	Variable mapped on PD7
	P10.8	FB Data Output 8 selection	0	15		7	859	Variable mapped on PD8
<u></u>	P10.9	Aux CW Data In selection	0	5		0	1519	PDI for Aux CW 0 = Not used 1 = PDI1 2 = PDI2 3 = PDI3 4 = PDI4 5 = PDI5

Table 8.11: Fieldbus Data-Mapping

8.12 Prohibited Frequencies (Control panel: Menu PAR -> P11)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
\odot	P11.1	Prohibit Frequency Range 1 Low Limit	0,00	P3.2	Hz	0,00	509	Low Limit 0 = Not used
\odot	P11.2	Prohibit Frequency Range 1 High Limit	0,00	P3.2	Hz	0,00	510	High Limit 0 = Not used
\odot	P11.3	Prohibit Frequency Range 2 Low Limit	0,00	P3.2	Hz	0,00		Low Limit 0 = Not used
\odot	P11.4	Prohibit Frequency Range 2 High Limit	0,00	P3.2	Hz	0,00	512	High Limit 0 = Not used

Table 8.12: Prohibited Frequencies

8.13 Limit Supervisions (Control panel: Menu PAR -> P12)

Code	Parameter	Min	Max	Unit	Default	ID	Note
P12.1	Output freq. supervision func- tion	0	2		0	315	0 = Not used 1 = Low limit 2 = High limit
P12.2	Output freq. supervision limit	0,00	P3.2	Hz	0,00	316	Output frequency super- vision threshold
P12.3	Torque supervi- sion function	0	2		0	348	0 = Not used 1 = Low limit 2 = High limit
P12.4	Torque supervi- sion limit	0,0	300,0	%	0,0	349	Torque supervision Threshold
P12.5	Unit Temperature Supervision	0	2		0	354	0 = Not used 1 = Low limit 2 = High limit
P12.6	Unit Temperature Supervision Limit	-10	100	°C	40	355	Unit temperature super- vision threshold
P12.7	Analogue input superv signal	0	1		0	356	0 = AI1 1 = AI2
P12.8	AI superv ON level	0,00	100,00	%	80,00	357	ON threshold AI superv.
P12.9	Al superv OFF level	0,00	100,00	%	40,00	358	OFF threshold AI superv.

Table 8.13: Limit Supervisions

8.14 Protections (Control panel: Menu PAR -> P13)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P13.1	Analog Input low fault	0	4		1	700	0 = No action 1 = Alarm 2 = Alarm, preset alarm frequency 3 = Fault: Stop function 4 = Fault: Coast
	P13.2	Under voltage fault	1	2		2	727	1 = No response (no fault generated but drive still stops modulation) 2 = Fault:Coast
	P13.3	Earth fault	0	3		2	703	0 = No action 1 = Alarm 2 = Fault:Stop function 3 = Fault:Coast
	P13.4	Output Phase Fault	0	3		2	702	As parameter 13.3
\odot	P13.5	Stall protection	0	3		0	709	As parameter 13.3
\odot	P13.6	Under load pro- tection	0	3		0	713	As parameter 13.3
\odot	P13.7	Motor thermal protection	0	3		2	704	As parameter 13.3
\odot	P13.8	Mtp:Ambient temperature	-20	100	°C	40	705	Environment tempera- tion
\odot	P13.9	Mtp:Zero speed cooling	0,0	150,0	%	40,0	706	Cooling as % at 0 speed
\odot	P13.10	Mtp:Thermal time constant	1	200	min	Varies	707	Motor thermal time con- stant
	P13.11	Stall Current	0,00	2,0 x I _{Nunit}	А	I _{Nunit}	710	
	P13.12	Stall time	0,00	300,00	S	15,00	711	Stall time limited
	P13.13	Stall frequency	0,10	320,00	Hz	25,00	712	Stall min. frequency
	P13.14	UL:Field weaken- ing load	10,0	150,0	%	50,0	714	Minimum torque at field weakening
	P13.15	UL:Zero freq load	5,0	150,0	%	10,0	715	Minimum torque at F0
	P13.16	UL:Time limit	1,0	300,0	S	20,0	716	
	P13.17	Analog Input low fault delay	0,0	10,0	S	0,5	1430	

Table 8.14: Protections

Code	Parameter	Min	Max	Unit	Default	ID	Note
P13.18	External fault	0	3		2	701	0 = No action 1 = Alarm 2 = Fault: Stop function 3 = Fault: Coast
P13.19	Fieldbus fault	0	4		3	733	As parameter 13.1
P13.20	Preset alarm fre- quency	P3.1	P3.2	Hz	25,00	183	Frequency used when fault response is Alarm + preset Frequency.
P13.21	Parameters edit lock	0	1		0	819	0 = Edit enabled 1 = Edit disabled
P13.22	Thermistor Fault	0	3		2	732	0 = No action 1 = Alarm 2 = Fault: Stop function 3 = Fault: Coast Hidden until an option board is connected.

Table 8.14: Protections

NOTE! These parameters are shown, when P17.2 = 0.

8.15 Fault autoreset parameters (Control panel: Menu PAR -> P14)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
①	P14.1	Automatic Reset	0	1		0	731	0 = Disabled 1 = Enable
	P14.2	Wait time	0,10	10,00	s	0,50	717	Waiting time after fault
①	P14.3	Trial time	0,00	60,00	s	30,00	718	Maximum time for trials
	P14.4	Trials number	1	10		3	759	Maximum trials
	P14.5	Restart Function	0	2		2		0 = Ramping 1 = Flying 2 = From Start Function

Table 8.15: Fault autoreset parameters

NOTE! These parameters are shown, when P17.2 = 0.

8.16 PID control parameters (Control panel: Menu PAR -> P15)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P15.1	Setpoint selec- tion	0	7		0	332	0 = Fixed setpoint % 1 = Al1 2 = Al2 3 = ProcessDataIn1 (0 -100%) 4 = ProcessDataIn2 (0 -100%) 5 = ProcessDataIn3 (0 -100%) 6 = ProcessDataIn4 (0 -100%) 7 = Pulse train/encoder
	P15.2	Fixed setpoint 1	0,0	100,0	%	50,0	167	Fixed setpoint
	P15.3	Fixed setpoint 2	0,0	100,0	%	50,0	168	Alternative fixed setpoint, selectable with DI
	P15.4	Feedback value selection	0	7		1	334	0 = Al1 1 = Al2 2 = ProcessDataIn1 (0 -100%) 3 = ProcessDataIn2 (0 -100%) 4 = ProcessDataIn3 (0 -100%) 5 = ProcessDataIn4 (0 -100%) 6 = Al2-Al1 7 = Pulse train / encoder
(i	P15.5	Feedback value minumum	0,0	50,0	%	0,0	336	Value at minimum signal
D	P15.6	Feedback value maximum	10,0	300,0	%	100,0	337	Value at maximum signal
じじご	P15.7	P gain	0,0	1000,0	%	10,00	118	Proportional gain
(i	P15.8	I time	0,00	320,00	S	10,00	119	Integrative time
(i	P15.9	D time	0,00	10,00	s	0,00	132	Derivative time
,	P15.10	Error inversion	0	1		0	340	0 = Direct (Feedback < Set- point ->Increase PID out- put) 1 = Inverted (Feedback > Setpoint ->Decrease PID output)

Table 8.16: PID control parameters

	Code	Parameter	Min	Max	Unit	Default	ID	Note
\odot	P15.11	Sleep minimum frequency	0,00	P3.2	Hz	25,00	1016	Drive goes to sleep mode when the output frequency stays below this limit for a time greater than that defined by parameter Sleep delay
\odot	P15.12	Sleep delay	0	3600	S	30	1017	Delay for enter sleep
(i)	P15.13	Wake up error	0,0	100,0	%	5,0	1018	Threshold for exit sleep
①	P15.14	Sleep setpoint boost	0,0	50,0	%	10,0	1071	Referred to setpoint
(i)	P15.15	Setpoint boost time	0	60	s	10	1072	Boost time after P15.12
(i)	P15.16	Sleep maxi- mum loss	0,0	50,0	%	5,0	1509	Referred to feedback value after boost
\odot	P15.17	Sleep loss check time	1	300	s	30	1511	After boost time P15.15
<u></u>	P15.18	Process display source select	0	6		0	1513	0 = PID feedback value 1 = Output frequency 2 = Motor speed 3 = Motor torque 4 = Motor power 5 = Motor current 6 = Pulse Train / Encoder
(i)	P15.19	Process display decimal digits	0	3		1	1035	Decimals on display
(i)	P15.20	Process display maximum value	0,0	3200,0		100,0	1034	Process max value

Table 8.16: PID control parameters

NOTE! These parameters are shown, when P17.2 = 0.

8.17 Motor Pre-heat (Control panel: Menu PAR -> P16)

Code	Parameter	Min	Max	Unit	Default	ID	Note
P16.1	Motor Pre-heat Function	0	2		0	1225	0 = Not used 1 = Always in stop state 2 = Controlled by digital input
P16.2	Motor Pre-heat Current	0	0,5 x I _{Nunit}	А	0	1227	DC current for Pre-heat- ing of motor and drive in stop state. Active in stop state or by digital input while in stop state.

Table 8.17: Motor Pre-heat

8.18 Easy usage menu (Control panel: Menu PAR -> P17)

	Code	Parameter	MIN	max	Unit	Detautt	טו	Note
)	P17.1	Application Type	0	3		0	540	0 = Basic 1 = Pump 2 = Fan drive 3 = High Torque NOTE! Visible only when Startup wizard is active.
	P17.2	Parameter conceal	0	1		1		0 = All parameters visible1 = Only quick setupparameter group visible

Table 8.18: Easy usage menu parameters

8.19 System parameters

Code	Parameter	Min	Max	Default	ID	Note
	Softwar	e infor	mation	(MENU P	'AR -> V1)	
V1.1	API SW ID				2314	
V1.2	API SW version				835	
V1.3	Power SW ID				2315	
V1.4	Power SW version				834	
V1.5	Application ID				837	
V1.6	Application revision				838	
V1.7	System load				839	
When I	Modbus and no Option boar	d has b	een in	stalled the	e comm. Par	ameters are as follows
V2.1	Communication status				808	Status of Modbus communication. Format: xx.yyy where xx = 0 - 64 (Number of error messages) yyy = 0 - 999 (Number of good messages)
P2.2	Fieldbus protocol	0	1	0	809	0 = Not used 1 = Modbus used
P2.3	Slave address	1	255	1	810	
P2.4	Baud rate	0	8	5	811	0 = 300 1 = 600 2 = 1200 3 = 2400 4 = 4800 5 = 9600 6 = 19200 7 = 38400 8 = 57800
P2.6	Parity type	0	2	0	813	0 = None 1 = Odd 2 = Even
P2.7	Communication time out	0	255	0	814	0 = Not used 1 = 1 sec 2 = 2 secs, etc
P2.8	Reset communication status	0	1	0	815	
١	When Canopen board has b	een in	stalled	the comn	n. Paramete	rs are as follows
V2.1	Canopen communication status				14004	

Table 8.19: System parameters

Ī	Code	Parameter	Min	Max	Default	ID	Note
t	P2.2	Canopen operation mode	1	2	1	14003	
t	P2.3	Canopen Node ID	1	127	1	14001	
t	P2.4	Canopen baud rate	1	8	6	14002	
t	When DeviceNet board has been installed the comm.						ers are as follows
İ	V2.1	Communication status				14014	
İ	P2.2	Output assembly type	20	111	21	14012	
İ	P2.3	MAC ID	0	63	63	14010	
İ	P2.4	Baud rate	1	3	1	14011	
Î	P2.5	Input assembly type	70	117	71	14013	
Ī	1	When ProfiBus board has b	een in:	stalled	the comn	n. Paramete	rs are as follows
Ī	V2.1	Communication status				14022	
Î	V2.2	Fieldbus protocol				14023	
Î	V2.3	Active protocol				14024	
Ī	V2.4	Active buad rate				14025	
Ī	V2.5	Telegram type				14027	
I	P2.6	Operate mode	1	3	1	14021	
I	P2.7	Slave address	2	126	126	14020	
I			Oth	er info	rmation		
I	V3.1	MWh counter				827	Million Watt Hour
I	V3.2	Power on days				828	
1	V3.3	Power on hours				829	
1	V3.4	Run counter: Days				840	
1	V3.5	Run counter: Hours				841	
1	V3.6	Fault counter				842	
	V3.7	Panel parameter set sta- tus monitor					Hidden when connect with PC.
	P4.2	Restore factory defaults	0	1	0	831	1 = Restores factory defaults for all param- eters
١	P4.3	Password	0000	9999	0000	832	
Ĭ	P4.4	Time for panel and lcd backlight active	0	99	5	833	
Î	P4.5	Save parameter set to panel	0	1	0		Hidden when connect with PC.
Ĵ	P4.6	Restore parameter set from panel	0	1	0		Hidden when connect with PC.
Ĵ	F5.x	Active Fault menu					
Î	F6.x	Fault History menu					

Table 8.19: System parameters

9. PARAMETER DESCRIPTIONS

On the next pages you can find the descriptions of certain parameters. The descriptions have been arranged according to parameter group and number.

9.1 Motor settings (Control panel: Menu PAR -> P1)

1.7 CURRENT LIMIT

This parameter determines the maximum motor current from the frequency converter. To avoid motor overload, set this parameter according to the rated current of the motor. The current limit is equal to $(1.5 \, \mathrm{M_{\odot}})$ by default.

1.8 MOTOR CONTROL MODE

With this parameter the user can select the motor control mode. The selections are:

0 = Frequency control:

Drive frequency reference is set to output frequency without slip compensation. Motor actual speed is finally defined by motor load.

1 = Open loop speed control:

Drive frequency reference is set to motor speed reference. The motor speed remains the same regardless of motor load. Slip is compensated.

1.9 U / FRATIO

There are three selections for this parameter:

0 = Linear:

The voltage of the motor changes linearly with the frequency in the constant flux area from 0 Hz to the field weakening point where the field weakening point voltage is supplied to the motor. Linear U/f ratio should be used in constant torque applications. See Figure 9.1.

This default setting should be used if there is no special need for another setting.

1 = Quadratic:

The voltage of the motor changes following a squared curve form with the frequency in the area from 0 Hz to the field weakening point where the field weakening point voltage is also supplied to the motor. The motor runs under magnetised below the field weakening point and produces less torque, power losses and electromechanical noise. Squared U / f ratio can be used in applications where torque demand of the load is proportional to the square of the speed, e.g. in centrifugal fans and pumps.

Figure 9.1: Linear and squared change of motor voltage

2 = Programmable U / f curve:

The U / f curve can be programmed with three different points. Programmable U / f curve can be used if the other settings do not satisfy the needs of the application.

Figure 9.2: Programmable U / f curve

1.10 FIELD WEAKENING POINT

The field weakening point is the output frequency at which the output voltage reaches the value set with par. 1.11.

1.11 FIELD WEAKENING POINT VOLTAGE

Above the frequency at the field weakening point, the output voltage remains at the value set with this parameter. Below the frequency at the field weakening point, the output voltage depends on the setting of the U / f curve parameters. See parameters 1.9-1.14 and Figures 9.1 and 9.2.

When the parameters 1.1 and 1.2 (nominal voltage and nominal frequency of the motor) are set, the parameters 1.10 and 1.11 are automatically given the corresponding values. If you need different values for the field weakening point and the voltage, change these parameters after setting the parameters 1.1 and 1.2.

1.12 U / F MIDDLE POINT FREQUENCY

If the programmable U / f curve has been selected with the parameter 1.9, this parameter defines the middle point frequency of the curve. See Figure 9.2.

1.13 U / F MIDDLE POINT VOLTAGE

If the programmable U / f curve has been selected with the parameter 1.9, this parameter defines the middle point voltage of the curve. See Figure 9.2.

1.14 ZERO FREQUENCY VOLTAGE

This parameter defines the zero frequency voltage of the curve. See Figures 9.1 and 9.2.

1.15 TORQUE BOOST

When this parameter has been activated, the voltage to the motor changes automatically with high load torque which makes the motor produce sufficient torque to start and run at low frequencies. The voltage increase depends on the motor type and power. Automatic torque boost can be used in applications with high load torque, e.g. in conveyors.

- 0 = Disabled
- 1 = Enabled

Note: In high torque - low speed applications - it is likely that the motor will overheat. If the motor has to run a prolonged time under these conditions, special attention must be paid to cooling the motor. Use external cooling for the motor if the temperature tends to rise too high.

Note: The best performance can be reached by running motor identification, see par. 1.18.

1.16 SWITCHING FREQUENCY

Motor noise can be minimised using a high switching frequency. Increasing the switching frequency reduces the capacity of the frequency converter unit.

Switching frequency for Vacon 20: 1.5...16 kHz.

1.17 BRAKE CHOPPER

Note! An internal brake chopper is installed in three phase supply MI2 and MI3 size drives

- 0 = Disable (No brake chopper used)
- 1 = Enable: Always (Used in Run and Stop state)
- 2 = Enable: Run state (Brake chopper used in Run state)

When the frequency converter is decelerating the motor, the energy stored to the inertia of the motor and the load are fed into an external brake resistor, if the brake chopper has been activated. This enables the frequency converter to decelerate the load with a torque equal to that of acceleration (provided that the correct brake resistor has been selected). See separate Brake resistor installation manual.

1.18 MOTOR IDENTIFICATION

- 0 = Not active
- 1 = Standstill identification

When Standstill identification is selected, the drive will perform an ID-run when it is started from selected control place. Drive has to be started within 20 seconds, otherwise identification is aborted.

The drive does not rotate the motor during Standstill identification. When ID run is ready the drive is stopped. Drive will start normally, when the next start command is given.

After end the identification, the drive need stop the start command. If control place is Keypad, user need press stop button. If control place is IO, user need put DI(Control signal) inactivate. If control place is fieldbus, user need set the control bit to 0.

The ID run improves the torque calculations and the automatic torque boost function. It will also result in a better slip compensation in speed control Impre accurate RPMI.

The parameters below will change after ID run successfully,

- a. P1.9 U / f ratio
- b. P1.12 U / f mid point frequency
- c. P1.13 U / f mid point voltage
- d. P1.14 Zero freg voltage
- e. P1.18 Motor identification (1->0)
- f. P1.19 Rs voltage drop

Note! The nameplate data of the motor has to be set BEFORE doing ID run.

9.2 Start / stop setup (Control panel: Menu PAR -> P2)

2.1 REMOTE CONTROL PLACE 1 SELECTION

With this parameter, the user can select the active control place. The selections are:

- 0 = 1 / 0 terminal (frequency reference can be selected with P3.3)
- 1 = Fieldbus
- 2 = Keypad

The priority order of selecting the control place is

- 1. PC control from Vacon live operation window
- 2 Loc / Rem button
- 3. Forced from I / 0 terminal

Note: You can select control place by pressing Loc / Rem button or with par. 2.5[Local / Remote]. P2.1 will have no effect in local mode.

Local = Keyp ad is the control place

Remote = 1 / 0 terminal or FieldBus

2.2 START FUNCTION

The user can select two start functions for Vacon 20 with this parameter:

0 = Ramp start

The frequency converter starts from 0 Hz and accelerates to the set frequency reference within the set acceleration time [See detailed description: ID103]. [Load inertia, torque or starting friction may cause prolonged acceleration times].

1 = Flying start

With this function the drive identifies the speed of the motor and starts to the corresponding frequency immediately.

Use this mode if the motor is rotating when the start command is given. With the flying start, it is possible to ride through short mains voltage interruptions.

2.3 STOP FUNCTION

Two stop functions can be selected in this application:

0 = Coasting

The motor coasts to a halt without control from the frequency converter after the Stop command.

1 = Ramping

After the Stop command, the speed of the motor is decelerated according to the set deceleration parameters.

If the regenerated energy is high it may be necessary to use an external braking resistor for to be able to decelerate the motor in acceptable time

2.4 I / O START STOP LOGIC

Values 0...4 offer possibilities to control the starting and stopping of the AC drive with digital signal connected to digital inputs. CS = Control signal.

The selections including the text 'edge' shall be used to exclude the possibility of an unintentional start when, for example, power is connected, re-connected after a power failure, after a fault reset, after the drive is stopped by Run Enable [Run Enable = False] or when the control place is changed to I/O control.

The Start / Stop contact must be opened before the motor can be started.

Accurate stop mode is that the stop time is fixed from falling edge of DI to motor stop.

I	Selection number	Selection name	Note
ĺ	0	CS1:Forward CS2:Backward	The functions take place when the contacts are closed. $ \\$

Figure 9.3: Start/Stop logic, selection 0

Exp	olanations		
1	Control signal (CS) 1 actives causing the output frequency to rise. The motor runs forward.	8	Run enable signal is set to FALSE, which drops the frequency to 0.The run enable signal is configured with par. 5.7.
2	If start forward signal [CS1] and start reverse signal [CS2] are active simultaneously, there is alarm55 in LCD panel and motor should be stopped.	9	Run enable signal is set to TRUE, which causes the frequency to rise towards the set frequency because CS1 is still active.
3	CS1 is inactivated which caused the direction to start changing (FWD to REV) because CS2 is still active, and Alarm 55 should be disappeared in a while time.	10	Keypad stop button is pressed and the frequency fed to the motor drops to 0.(This signal only works if Par. 2.7 [Keypad stop button] = 1]
4	CS2 inactivates and the frequency fed to the motor drops to 0.	11	The drive starts through pushing the Start button on the keypad.
5	CS2 actives again causing the motor to accelerate (REV) towards the set frequency.	12	The keypad stop button is pushed again to stop the drive. [This signal only works if Par. 2.7 [Keypad stop button] = 1]
6	CS2 inactivates and the frequency fed to the motor drops to 0.	13	The attempt to start the drive through pushing the Start button is not successful because CS1 is inactive.
7	CS1 actives and the motor accelerates (FWD) towards the set frequency.		

	Selection number	Selection name	Note
ĺ	1	CS1:Forward(edge) CS2:Inverted stop	

Figure 9.4: Start/Stop logic, selection 1

Ex	olanations		
1	Control signal (CS) 1 actives causing the output frequency to rise. The motor runs forward.		CS1 activates and the motor accelerates (FWD) towards the set frequency because the Run enable signal has been set to TRUE.
2	CS2 inactivates causing the frequency to drop to 0.	7	Keypad stop button is pressed and the frequency fed to the motor drops to 0.(This signal only works if Par.2.7 [Keypad stop button] = 1)
3	CS1 inactivates causing the output frequency to rise again. The motor runs forward.	8	CS1 activates causing the output frequency to rise again. The motor runs forward.
4	Run enable signal is set to FALSE, which drops the frequency to 0. The run enable signal is configured with par. 5.7.	9	CS2 inactivates causing the frequency to drop to 0.
5	Start attempt with CS1 is not successful because Run enable signal is still FALSE.		

I	Selection number	Selection name	Note
	2	CS1:Forward(edge) CS2:Backward(edge)	Shall be used to exclude the possibility of an unintentional start. The Start / Stop contact must be opened before the motor can be restarted.

Figure 9.5: Start/Stop logic, selection 2

Exp	Explanations:							
1	Control signal (CS) 1 actives causing the output frequency to rise. The motor runs forward.	7	Run enable signal is set to FALSE, which drops the frequency to 0.The run enable signal is configured with par. 5.7.					
2	If start forward signal [CS1] and start reverse signal [CS2] are active simultaneously, there is alarm55 in LCD panel and motor should be stopped.	8	CS1 activates again causing the motor to accelerate (REV) towards the set frequency.					
3	CS1 is inactivated the motor is still stopped though CS2 is still active, and Alarm 55 should be disappeared in a while time.	9	Keypad stop button is pressed and the frequency fed to the motor drops to 0.(This signal only works if Par.2.7 [Keypad stop button] = 1]					
4	CS2 activates again causing the motor to accelerate (REV) towards the set frequency.	10	CS1 activates again causing the motor to accelerate (REV) towards the set fre- quency.					
5	CS2 inactivates and the frequency fed to the motor drops to 0.	11	CS1 inactivates and the frequency fed to the motor drops to 0.					
6	CS1 activates and the motor accelerates (FWD) towards the set frequency.							

	Selection number	Selection name	Note
ĺ	3	CS1:Start CS2:Reverse	

Figure 9.6: Start/Stop logic, selection 3

Exp	Explanations:				
1	Control signal (CS) 1 actives causing the output frequency to rise. The motor runs forward.	7	Run enable signal is set to FALSE, which drops the frequency to 0.The run enable signal is configured with par. 5.7.		
2	CS2 activates which causes the direction to start changing (FWD to REV).		Run enable signal is set to TRUE, which causes the frequency to rise towards the set frequency because CS1 is still active.		
3	CS2 is inactivated which causes the direction to start changing (REV to FWD) because CS1 is still active.	9	Keypad stop button is pressed and the frequency fed to the motor drops to 0.(This signal only works if Par.2.7 [Key- pad stop button] = 1)		
4	Also CS1 inactivates and the frequency drops to 0.	10	The drive starts through pushing the Start button on the keypad.		
5	Despite the activates of CS2, the motor does not start because CS1 is inactive.	11	The drive is stopped again with the Stop button on the Keypad.		
6	CS1 activates causing the output fre- quency to rise again. The motor runs forward because CS2 is inactive.	12	The attempt to start the drive through pushing the Start button is not success- ful because CS1 is inactive.		

I	Selection number	Selection name	Note	
ľ	4	CS1:Start(edge)	Shall be used to exclude the possibility of an unin- tentional start. The Start / Stop contact must be opened before the motor can be restarted.	

Figure 9.7: Start/Stop logic, selection 4

Exp	Explanations:				
1	Control signal (CS) 1 actives causing the output frequency to rise. The motor runs forward because CS2 is inactive	7	Run enable signal is set to FALSE, which drops the frequency to 0.The run enable signal is configured with par. 5.7.		
2	CS2 activates which causes the direction to start changing (FWD to REV).	8	Before a successful start can take place, CS1 must be opened and closed again.		
3	CS2 is inactivated which causes the direction to start changing (REV to FWD) because CS1 is still active.	9	Keypad stop button is pressed and the frequency fed to the motor drops to 0.(This signal only works if Par.2.7 [Key- pad stop button] = 1]		
4	Also CS1 inactivates and the frequency drops to 0.	10	Before a successful start can take place, CS1 must be opened and closed again.		
5	Despite the activation of CS2, the motor does not start because CS1 is inactive.	11	CS1 inactivates and the frequency drops to 0.		
6	CS1 activates causing the output fre- quency to rise again. The motor runs forward because CS2 is inactive.				

2.5 LOCAL / REMOTE

This parameter defines whether the control place of the drive is remote (I / 0 or FieldBus) or local.

- 0 = Remote Control
- 1 = Local Control

The priority order of selecting control place is

- 1. PC control from Vacon live operation window
- 2. Loc / Rem button
- 3. Forced from I / O terminal

9.3 Frequency references (Control panel: Menu PAR -> P3)

3.3 REMOTE CONTROL PLACE 1 FREQUENCY REFERENCE SELECTION

It defines the selected frequency reference source when the drive is controlled by the I / 0 terminal. A second reference source is programmable in par. 3.12.

- 1 = Preset speed 0
- 2 = Keypad reference
- 3 = Fieldhus Reference
- 4 = AI1
- **5** = Al2
- **6** = PID
- 7 = AI1+AI2
- 8 = Motor potentiometer
- 9 = Pulse train / Encoder

3.4 - 3.11 PRESET SPEEDS 0 - 7

Preset speed 0 is used as frequency reference when P3.3 = 1.

Preset speeds 1 - 7 can be used to determine frequency references that are applied when appropriate combinations of digital inputs are activated. Preset speeds can be activated from digital inputs despite of the active control place.

Parameter values are automatically limited between the minimum and maximum frequencies. (par. 3.1, 3.2).

Speed	Preset speed B2	Preset speed B1	Preset speed B0
Preset speed 1			Х
Preset speed 2		Х	
Preset speed 3		Х	Х
Preset speed 4	Х		
Preset speed 5	Х		Х
Preset speed 6	Х	Х	
Preset speed 7	Х	Х	Х

Table 9.1: Preset speeds 1 - 7

3.13 MOTOR POTENTIOMETER RAMP

3.14 MOTOR POTENTIOMETER RESET

P3.13 is the speed variation ramp when motor potentiometer reference is increased or decreased.

P3.14 tells under which circumstances the potentiometers reference should be reset and start over from 0 Hz

- 0 = No reset
- 1 = Reset at stop and power down
- 2 = Reset at power down

P5.12 and P5.13 sets which digital inputs increase and decrease the motor potentiometers reference.

Figure 9.8: The change of motor potentiometers reference

9.4 Ramps & brakes setup (Control panel: Menu PAR -> P4)

4.1 RAMP S-SHAPE

The start and end of the acceleration and deceleration ramp can be smoothed with this parameter. Setting value $\bf 0$ gives a linear ramp shape which causes acceleration and deceleration to act immediately to the changes in the reference signal.

Setting value 0.1...10 seconds for this parameter produces an S-shaped acceleration/deceleration. The acceleration and deceleration times are determined with parameters 4.2 and 4.3.

Figure 9.9: S-shaped acceleration/deceleration

- 4.2 ACCELERATION TIME 1
- 4.3 DECELERATION TIME 1
- 4.4 RAMP S-SHAPE 2
- 4.5 ACCELERATION TIME 2
- 4.6 DECELERATION TIME 2

These limits correspond to the time required for the output frequency to accelerate from the zero frequency to the set maximum frequency, or to decelerate from the set maximum frequency to zero frequency.

The user can set two different acceleration/deceleration time and set two different ramps-shape for one application. The active set can be selected with the selected digital input (par. 5.11).

4.7 FLUX BRAKING

Instead of DC braking, flux braking is a useful form of braking with motors of max. 15 kW.

When braking is needed, the frequency is reduced and the flux in the motor is increased, which in turn increases the motor's capability to brake. Unlike DC braking, the motor speed remains controlled during braking.

0 = Off

1 = Deceleration

2 = Chopper

3 = Full Mode

Note: Flux braking converts the energy into heat at the motor, and should be used intermittently to avoid motor damage.

4.10 STOP DC CURRENT TIME

Determines if braking is ON or OFF and the braking time of the DC-brake when the motor is stopping. The function of the DC-brake depends on the stop function, par. 2.3.

0 = DC brake is not active

>0 = DC brake is active and its function depends on the Stop function, [par. 2.3]. The DC braking time is determined with this parameter.

Par. 2.3 = 0 (Stop function = Coasting):

After the stop command, the motor coasts to a stop without control from the frequency converter.

With the DC injection, the motor can be electrically stopped in the shortest possible time, without using an optional external braking resistor.

The braking time is scaled by the frequency when the DC-braking starts. If the frequency is greater, or equal to the nominal frequency of the motor, the set value of parameter 4.10 determines the braking time. For example, when the frequency is 10% of the nominal, the braking time is 10% of the set value of parameter 4.10.

Figure 9.10: DC-braking time when Stop mode = Coasting

Par. 2.3 = 1 (Stop function = Ramp):

After the Stop command, the speed of the motor is reduced according to the set deceleration parameters, if the inertia of the motor and load allows that, to the speed defined with parameter 4.11, where the DC-braking starts.

The braking time is defined with parameter 4.10. See Figure 9.11.

Figure 9.11: DC-braking time when Stop mode = Ramp

4.11 STOP DC CURRENT FREQUENCY

It is the output frequency at which the DC-braking is applied.

4.12 START DC CURRENT TIME

DC-brake is activated when the start command is given. This parameter defines the time of the DC-braking. After the brake is released, the output frequency increases according to the set start function by par. 2.2.

Figure 9.12: DC braking time at start

- 4.15 EXTERNAL BRAKE: OPEN DELAY
- 4.16 EXTERNAL BRAKE: OPEN FREQUENCY LIMIT
- 4.17 EXTERNAL BRAKE: CLOSE FREQUENCY LIMIT
- 4.18 EXTERNAL BRAKE: CLOSE FREQUENCY LIMIT IN REVERSE
- 4.19 EXTERNAL BRAKE: OPEN / CLOSE CURRENT LIMIT

External brake control is used for controlling a mechanical brake on the motor by digital / relay output by selecting value 12 for parameters P8.1, P8.2 or P8.3. Brake is closed while relay is open and vice versa.

Opening brake conditions:

There are three different conditions for opening the brake, all must be true, if used.

- 1. The Open frequency limit (P4.16) must be reached.
- When the Opening frequency limit has been reached the Open delay [P4.15] must also elapse. Note! The output frequency is held at the Open frequency limit until this.
- When the two previous conditions are reached. The brake will open if the output current is higher than the current limit. [P4.19]

Notice that any of the previous conditions can be left out by setting their values to zero.

Figure 9.13: Starting / opening sequence with external brake

Closing brake conditions:

There are 2 conditions for closing the brake again. It's enough that one is true for the brake to close.

- If there is no run command active and output frequency goes below Close frequency limit [P4.17] or Close frequency limit in reverse [P4.18], depending on direction of rotation.
 OR
- 2. Output current has gone below Current limit. (P4.19)

9.5 Digital inputs (Control panel: Menu PAR -> P5)

These parameters are programmed using the FTT-method (Function To Terminal), where you have a fixed input or output that you define a certain function for. You can also define more than one function to a digital input, e.g. Start signal 1 and Preset Speed B1 to D11.

The selections for these parameters are:

- 0 = Not used
- 1 = DI1
- 2 = DI2
- 3 = DI3
- 4 = DI4
- 5 = DI5
- 6 = DI6
- 5.1 I / O CTRL SIGNAL 1
- 5.2 I / O CTRL SIGNAL 2

P5.1 and P5.2 : See P2.4 (I/O start stop logic) for function

5.3 REVERSE

The digital input only active when P2.4 (I/O Start stop logic) =1 The motor will run in reverse when the rising edge of P5.3 is happened.

- 5.4 EXTERNAL FAULT CLOSE
- 5.5 EXTERNAL FAULT OPEN
- 5.6 FAULT RESET 5.7 RUN FNARIF
- 5.8 PRESET SPEED BO
- 5.8 PRESET SPEED BU
 5.9 PRESET SPEED B1
- 5.10 PRESET SPEED B2
- 5.11 RAMP TIME 2 SELECTION

Contact open: Acceleration / Deceleration time 1 and Ramp S-shape selected

Contact closed: Acceleration / Deceleration time 2 and Ramp S-shape2 selected

Set Acceleration / Deceleration times with parameters 4.2 and 4.3 and the alternative ramp times with 4.4 and 4.5.

Set Ramp S-shape with Par. 4.1 and the alternative Ramp S-shape 2 with Par. 4.4

- 5.12 MOTOR POTENTIOMETER UP
- 5.13 MOTOR POTENTIOMETER DOWN
- 5.14 REMOTE CONTROL PLACE 2

5.15 REMOTE CONTROL PLECE FREQ REFERENCE 2

5.16 PID SETPOINT 2

Digital input high activates setpoint 2 (P15.3), when P15.1=0.

5.17 MOTOR PREHEAT ACTIVE

Digital input high activates the Motor preheat function (if P16.1 = 2) which feeds DC-Current to the motor in stop state.

9.6 Analogue inputs (Control panel: Menu PAR -> P6)

6.4 AI1 FILTER TIME

6.8 AI2 FILTER TIME

This parameter, given a value greater than 0, activates the function that filters out disturbances from the incoming analogue signal.

Long filtering time makes the regulation response slower. See Figure 9.14.

Figure 9.14: AI1 and AI2 signal filtering

- 6.2 AI1 CUSTOM MINIMUM 6.3 AI1 CUSTOM MAXIMUM
- 0.3 ALL CUSTOM MAXIMUM
- 6.6 AI2 CUSTOM MINIMUM
- 6.7 AI2 CUSTOM MAXIMUM

These parameters set the analogue input signal for any input signal span from -100 to 100%.

9.7 Pulse train / Encoder (Control panel: Menu PAR -> P7)

7.1 MIN PULSE FREQUENCY

7.2 MAX PULSE FREQUENCY

Minimum and maximum pulse frequency correspond to a signal value of 0% and 100% respectively. Frequencies over Max pulse frequency are handled as constant 100% and below Min pulse frequency as constant 0%. The signal value of range 0 - 100% is shown in monitor value V2.7 and can be used as PID Controller feedback, or scaled to frequency with parameters P7.3 and P7.4, and used as frequency reference.

7.3 FREQ REF AT MIN PULSE FREQUENCY

7.4 FREQ REF AT MAX PULSE FREQUENCY

Pulse train/Encoder signal with range 0-100% and scaled by parameter P7.1 and P7.2, which can be used as frequency reference by telling what frequency corresponds to 0% and 100% with parameters P7.3 and P7.4 respectively. Then it can be selected as frequency reference for Remote control place.

7.5 ENCODER DIRECTION

It is possible to also take direction information from the encoder.

- 0 = Disable
- 1= Enable/Normal
- 2 = Enable/Inverted

7.6 ENCODER PULSES / REVOLUTION

Encoder pulses per revolution can be set in case an encoder is used, which is used to record the count of encoder per round. In this case monitor value V2.8 will show the actual rpm of the encoder.

Maximum pulse frequency is 10 kHz. It means that a 256 pulse per round encoder would allow shaft speeds up to 2300 rpm. [60*10000/256 = 2343]

7.7 CONFIG DI5 AND DI6

- 0 = DI5 and DI6 are for normal digital input
- 1 = DI6 is for pulse train
- 2 = DI5 and DI6 are for encoder frequency mode

When using pulse train / encoder input, the DI5 and DI6 has to be set to - Not Used

9.8 Digital outputs (Control panel: Menu PAR -> P8)

- 8.1 RO1 SIGNAL SELECTION
- 8.2 RO2 SIGNAL SELCETION
- 8.3 DO1 SIGNAL SELCETION

Setting	Signal content
0 = Not used	Output is not in operation.
1 = Ready	The frequency converter is ready to operate.
2 = Run	The frequency converter operates (motor is running).
3 = Fault	A fault trip has occurred.
4 = Fault inverted	A fault trip has not occurred.
5 = Warning	A warning is active.
6 = Reversed	The reverse command has been selected, output frequency to the motor is negative.
7 = At speed	The output frequency has reached the set reference.
8 = Motor regulator active	Each of motoring current regulator,generating current reg., over voltage reg., under voltage reg. is active.
9 = FB Control Word.B13	Output can be controlled with B13 in the fieldbus control word.
10 = FB Control Word.B14	Output can be controlled with B14 in the fieldbus control word.
11 = FB Control Word.B15	Output can be controlled with B15 in the fieldbus control word.
12 = Output frequency superv.	Output frequency is over / under the limits, set with parameters P12.1 and P12.2.
13 = Output torque superv.	Motor torque is over/under the limit, se t with parameter P12.3 and P12.4
14 = Unit temperature superv.	Unit temperature is over / under the limits, set with parameters P12.5 and P12.6.
15 = Analogue input superv.	Analogue inputs set with parameter P12.7 is over / under the limits, set in P12.8 and P12.9.
16 = Preset Speed Active	Preset speeds are activated through digital inputs.
17 = External Brake control	External Brake control. Closed = Brake open, Open = Brake closed.
18 = Keypad control active	Keypad is set as the current control place.
19 = I / O control active	I / 0 is set as the current control place.

Table 9.2: Output signals via RO1, RO2 and DO1

9.9 Analogue outputs (Control panel: Menu PAR -> P9)

9.1 ANALOG OUTPUT SIGNAL SELECTION

- 0 = Not used
- 1 = Output frequency (0 f_{max})
- 2 = Output current (0 I_{nMotor})
- $3 = Motor torque (0 T_{nMotor})$
- 4 = PID output (0 100%)
- 5 = Frequency reference (0 f_{max})
- 6 = Motor speed (0 n_{max})
- 7 = Motor power (0 P_{pMotor})
- 8 = Voltage (0 U_{nMotor})
- 9 = DC-link Voltage (0 1000V)
- 10 = Process Data In1 (0 10000)
- 11 = Process Data In2 (0 10000)
- 12 = Process Data In3 (0 10000)
- 13 = Process Data In4 (0 10000)
- 14 = Test 100%

9.2 ANALOG OUTPUT MINIMUM

- 0 = 0 V / 0 mA
- 1 = 2 V / 4 mA

9.10 Fieldbus Data-Mapping (Control panel: Menu PAR -> P10)

10.1 FB DATA OUT 1 SELECTION

Parameter couples read only variables to output process data 1.

- 0 = Frequency reference
- 1 = Output reference
- 2 = Motor speed
- 3 = Motor current
- 4 = Motor voltage
- 5 = Motor torque
- 6 = Motor power
- 7 = DC link voltage
- Bo time rockage
- 8 = Active fault code
- 9 = Analogue AI1
- 10 = Analogue AI2
- 11 = Digital input state
- 12 = PID feedback value
- 13 = PID setpoint
- 14 = Pulse train / encoder input(%)
- 15 = Pulse train / encoder pulse()
- 10.2 FB DATA OUT 2 SELECTION
- 10.3 FB DATA OUT 3 SELECTION
- 10.4 FB DATA OUT 4 SELECTION
- 10.5 FB DATA OUT 5 SELECTION
- 10.6 FB DATA OUT 6 SELECTION
- 10.7 FB DATA OUT 7 SELECTION
- 10.8 FB DATA OUT 8 SELECTION
- 10.9 AUX CW DATA IN SELECTION

Parameter defines the input process data coupled to Aux Control Word.

- 0 = Not used
- 1 = PDI1
- 2 = PDI2
- 3 = PDI3
- 4 = PDI4
- **5** = PDI5

9.11 Prohibited Frequencies (Control panel: Menu PAR -> P11)

- 11.1 PROHIBIT FREQUENCY RANGE 1: LOW LIMIT
- 11.2 PROHIBIT FREQUENCY RANGE 1: HIGH LIMIT 11.3 PROHIBIT FREQUENCY RANGE 2: LOW LIMIT
- 11.4 PROHIBIT FREQUENCY RANGE 2: LOW LIMIT

 11.4 PROHIBIT FREQUENCY RANGE 2: HIGH LIMIT

Two skip frequency regions are available if there is a need to avoid certain frequencies because of e.g. mechanical resonance. In this case the actual frequency reference sent to the motor control will be kept out of these ranges according to the example below, where one range is in use.

Figure 9.15: Frequency Range

9.12 Protections (Control panel: Menu Par->P13)

13.5 STALL PROTECTION

- 0 = No action
- 1 = Alarm
- 2 = Fault, stop function
- 3 = Fault, coast

The motor stall protection protects the motor from short time overload situations such as one caused by a stalled shaft. The stall current is $I_{nMotor}{}^{*}1.3$, stall time 15 seconds and stall frequency limit 25 Hz . If the current is higher than the limit and output frequency is lower than the limit, the stall state is true and the drive reacts according to this parameter. There is actually no real indication of the shaft rotation.

Figure 9.16: Stall characteristics

13.6 UNDER LOAD PROTECTION

- 0 = No action
- 1 = Alarm
- 2 = Fault, stop function
- 3 = Fault, coast

The purpose of the motor underload protection is to ensure that there is load on the motor when the drive is running. If the motor loses its load there might be a problem in the process, e.g., a broken belt or a dry pump.

The underload protection time limit is 20 seconds, which is the maximum time allowed for an underload state to exist before causing a trip according to this parameter.

Figure 9.17: Underload protection

13.7 MOTOR THERMAL PROTECTION

- 0 = No action
- 1 = Alarm
- 2 = Fault, stop function
- 3 = Fault, coast

If tripping is selected the drive will stop and activate the fault stage, if the temperature of the motor becomes too high. Deactivating the protection, i.e. setting parameter to 0, will reset the thermal model of the motor to 0%.

The motor thermal protection is to protect the motor from overheating. The drive is capable of supplying higher than nominal current to the motor. If the load requires this high current there is a risk that the motor will be thermally overloaded. This is the case especially at low frequencies. At low frequencies the cooling effect of the motor is reduced as well as its capacity. If the motor is equipped with an external fan the load reduction at low speeds is small.

The motor thermal protection is based on a calculated model and it uses the output current of the drive to determine the load on the motor.

The motor thermal protection can be adjusted with parameters. The thermal current I_T specifies the load current above which the motor is overloaded. This current limit is a function of the output frequency.

CAUTION! The calculated model does not protect the motor if the airflow to the motor is reduced by blocked air intake grill.

13.8 MTP: AMBIENT TEMPERATURE

When the motor ambient temperature must be taken into consideration, it is recommended to set a value for this parameter. The value can be set between -20 and 100 degrees Celsius.

13.9 MTP:ZERO SPEED COOLING

The cooling power can be set between 0 - 150.0% x cooling power at nominal frequency. See Figure 9.18.

Figure 9.18: Motor cooling power

13.10 MTP:THERMAL TIME CONSTANT

This time can be set between 1 and 200 minutes.

This is the thermal time constant of the motor. The bigger the motor, the longer the time constants. The time constant is the time within which the calculated thermal model has reached 63% of its final value.

The motor thermal time is specific to the motor design and it varies between different motor manufacturers.

If the motor's t6-time (t6 is the time in seconds the motor can safely operate at six times the rated current) is known (given by the motor manufacturer) the time constant parameter can be set basing on it. As a rule of thumb, the motor thermal time constant in minutes equals to 2 x t6. If the drive is in stop state the time constant is internally increased to three times the set parameter value. See also Figure 9.19.

Figure 9.19: Motor temperature calculation

9.13 Automatic reset (Control panel: Menu PAR -> P14)

14.1 AUTOMATIC RESET

Activate the Automatic reset after fault with this parameter.

NOTE: Automatic reset is allowed for certain faults only.

Fault: 1. Under voltage

- 2. Over voltage
- 3. Over current
- 4. Motor temperature
- 5 Under load

14.3 TRIAL TIME

The Automatic restart function restarts the frequency converter when the faults have disappeared and the waiting time has elapsed.

The time count starts from the first autoreset. If the number of faults occurring during the trial time exceeds three, the fault state becomes active. Otherwise the fault is cleared after the trial time has elapsed and the next fault starts the trial time count again. See Figure 9.20.

If a single fault remains during the trial time, a fault state is true.

Figure 9.20: Example of Automatic restarts with two restarts

9.14 PID control parameters (Control panel: Menu PAR -> P15)

15.7 P GAIN

This parameter defines the gain of the PID controller. If the value of the parameter is set to 100%, a change of 10% in the error value causes the controller output to change by 10%.

15.8 PID CONTROLLER I-TIME

This parameter defines the integration time of the PID controller. If this parameter is set to 1,00 second, the controller output is changed by a value corresponding to the output caused from the gain every second. (Gain*Error)/s.

15.9 PID CONTROLLER D-TIME

This parameter defines the derivative time of the PID controller. If this parameter is set to 1,00 second, a change of 10% in the error value causes the controller output to change by 10%.

15.5 FEEDBACK VALUE MINIMUM

15.6 FEEDBACK VALUE MAXIMUM

This parameter sets the minimum and maximum scaling points for feedback value.

Figure 9.21: Feedback minimum and maximum

15.11 SLEEP MIN FREQUENCY

15.12 SLEEP DELAY

15.13 WAKE-UP ERROR

This function will put the drive into sleep mode if the frequency stays below the sleep limit for a longer time than that set with the Sleep Delay [P15.12]. This means that the start command remains on, but the run request is turned off. When the actual value goes below, or above, the wake-up error depending on the set acting mode the drive will activate the run request again if the start command is still on

Figure 9.22: Sleep min frequency, Sleep delay, Wake-up error

- Some parameters like P15.16 seem to lack description in the manual, I think it would be good to review the parameter descriptions against the parameter list.
- System menu seem to lack description, e.g. the password procedure required some practicing to find out how it is to be used
- In page 53 with wiring examples the DI source is maybe not needed as the DI source wiring is already shown in the general wiring schematic on the previous page

15.14 SLEEP SETPOINT BOOST

15.15 SETPOINT BOOST TIME

15.16 SLEEP MAX LOSS

15.17 SLEEP LOSS CHECK TIME

These parameters manage a more complex sleep sequence. After the time in P15.12, the setpoint is increased of the term in P15.14, for the time in P15.15. This will cause a higher output frequency.

Frequency reference is then forced at minimum frequency and the feedback value is sampled.

If the variation on the feedback value stays then lower than P15.16 for the time in P15.17, the drive will enter sleep condition.

If this sequence is not needed, then program P15.14 = 0%, P15.15 = 0 s, P15.16 = 50%. P15.17 = 1 s.

15.18 PROCESS DISPLAY SOURCE

Monitor V4.5 can show a process value, proportional to a variable measured by the drive. Source variables are:

0 = PID feedback value (max: 100%)

1 = Output frequency (max: fmax)

2 = Motor speed (max: nmax)

3 = Motor torque (max: Tnom)

4 = Motor power (max: Pnom)

5 = Motor current (max: Inom)

6 = Pulse train/ Encoder (max: 100%)

15.19 PROCESS DISPLAY DECIMAL DIGITS

Number of decimals shown on monitor V4.5 and also on parameter P15.20

15.20 PROCESS DISPLAY MAX VALUE

Value shown on V4.5 when source variable is at its maximum. Proportionality is kept if source overtakes the maximum.

9.15 Application setting (Control panel: Menu PAR->P17)

17.1 DRIVE SETUP

With this parameter you can easily set up your drive for four different applications.

Note! This parameter is only visible when the Startup Wizard is active. The startup wizard will start in first power-up. It can also be started as follows. See the figures below.

NOTE! Running the startup wizard will always return all parameter settings to their factory defaults!

Figure 9.23: Startup wizard

Selections:

	P1.1	P1.2	P1.7	P1.8	P1.15	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.2	P4.3
0 = Basic	V*	50/60 Hz	1,5 x I _{NMOT}	0= Frequecny control	0= Not used	I/O	0= Ramp	0= Coast	0 Hz	50/60 Hz	4=AI1 0-10V	3s	3s
1 = Pump drive	V٠	50/60	1,1 x I _{NMOT}	0= Frequecny control	0= Not used	ΙO	0= Ramp	1= Ramp	20 Hz	50/60 Hz	4=AI1 0-10V	5s	5s
2 = Fan drive	V*	50/60	1,1 x I _{NMOT}	0= Frequecny control	0= Not used	I/O	1= Flying	0= Coast	20 Hz	50/60 Hz	4=AI1 0-10V	20s	20s
3 = High Torque drive	V*	50/60 Hz	1,5 x I _{NMOT}	1=Open loop speed ontrol	1= used	I/O	0= Ramp	0= Coast	0 Hz	50/60 Hz	4=AI1 0-10V	1s	1s

*Same as drive voltage, except in 115V drives this value is 230V

Parameters affected:

P1.1 Motor Un (V) P1.2 Motor fn (Hz) P1.7 Current limit (A)

P2.3 Stop function P3.1 Min frequency P3.2 Max frequency P1.8 Motor control mode P3.3 I/O reference P4.2 Acc. time (s)

P1.15 Torque boost P2.1 Control place P2.2 Start function P4.3 Dec time (s)

Press OK to confirm drive setup

Figure 9.24: Drive setup

9.16 System parameter

4.3 PASSWORD

VACON20 API provides password function that is used when changing parameter value.

Inside PAR or SYS menu the selected parameter symbol and its value are alternating in the display. The single OK button pressing causes entering to the parameter value change mode.

If password protection is ON, user is asked to enter the right password (defined with parameter P4.3) and press OK button before editing value is possible. The password consists of four digit numbers, factory default value is 0000 = Password Disabled. Editing of all the parameters (including System parameters) is prohibited if the correct password has not been entered. If wrong password is entered, pressing OK button causes return to the main level.

Password Parameters:

VACON20 API has one password parameter P4.3 "Password";

Parameter P4.3 is a 4 digit number. Factory default will be 0000 = Password disabled;

Any other value than 0000 will enable the password and it is not possible tochange parameters. In this status all parameters are visible;

When navigate to Parameter P4.3, show "PPPP" as a parameter value if password has been set.

Activating a password:

Navigate to Parameter P4.3;

Press OK button;

Cursor (lowest horizontal segment) of the very left digit flashes;

Select first digit of password by using UP and DOWN key:

Press RIGHT button:

Cursor of the second digit flashes;

Select second digit of password by using UP and DOWN key:

Press RIGHT button;

Cursor of the third digit flashes:

Select third digit of password by using UP and DOWN key;

Press RIGHT button:

Cursor of the fourth digit flashes;

Select fourth digit by using UP and DOWN key;

Press OK button --> the cursor of the first digit flashes;

Repeat insertion of password;

Press OK button --> password is locked;

In case of different values for the two passwords: display Fault;

Press OK button --> repeat password a second time;

To interrupt insertion of Password --> Press BACK / RES.

Disabling a password:

Insert the actual password --> Press OK --> Password is automatically set to 0000:

All parameters can then freely be changed:

To enable password again --> see 'Activating a password' procedure.

Change of one parameter:

User tries to change a parameter value when password is enabled --> display PW:

Press OK button:

Cursor (lowest horizontal segment) of the very left digit flashes;

Select first digit of password by using UP and DOWN key;

Press RIGHT button:

Cursor of the second digit flashes:

Select second digit of password by using UP and DOWN key:

Press RIGHT button:

Cursor of the third digit flashes:

Select third digit of password by using UP and DOWN key;

Press RIGHT button:

Cursor of the fourth digit flashes;

Select fourth digit by using UP and DOWN key;

Press OK button:

Current value of parameter to be changed will be display;

Change parameter value as normal;

Press OK --> New parameter value will be stored and Password is enabled again;

For changing another parameter the procedure has to be repeated:

In the case of wanting to change multiple parameters it is of advantage to set P4.3 to 0000;

After the change of the parameter values password has to be activated again;

Forgotten password:

Follow procedure "Disabling a password" and select 6020 as actual password.

9.17 Modbus RTU

Vacon 20 has a built-in Modbus RTU bus interface. The signal level of the interface is in accordance with the RS-485 standard.

The built-in Modbus connection of Vacon 20 supports the following function codes:

Function code	Function name	Address	Broadcast messages
03	Read Holding Registers	All ID numbers	No
04	Read Input Registers	All ID numbers	No
06	Write Single Registers	All ID numbers	Yes
16	Write multiple registers	All ID numbers	Yes

Table 9.3: Modbus RTII

9.17.1 Termination resistor

The RS-485 bus is terminated with termination resistors of 120 ohms in both ends. Vacon 20 has a built-in termination resistor which is switched off as a default (presented below). The termination resistor can be switched on and off with the right hand dip switch located above IO-terminals in the front of the drive (see below).

Figure 9.25: Termination resistor

9.17.2 Modbus address area

The Modbus interface of Vacon 20 uses the ID numbers of the application parameters as addresses. The ID numbers can be found in the parameter tables in chapter 8. When several parameters / monitoring values are read at a time, they must be consecutive. 11 addresses can be read and the addresses can be parameters or monitoring values.

9.17.3 Modbus process data

Process data is an address area for fieldbus control. Fieldbus control is active when the value of parameter 2.1 (Control place) is 3 [= fieldbus]. The content of the process data has been determined in the application. The following tables present the process data contents in the General Purpose Application.

ID	Modbus register	Name	Scale	Туре
2101	32101, 42101	FB Status Word	-	Binary coded
2102	32102, 42102	FB General Status Word	-	Binary coded
2103	32103, 42103	FB Actual Speed	0,01	%
2104	32104, 42104	Programmable by P10.1 (Default: Frequency reference)	-	-
2105	32105, 42105	Programmable by P10.2 (Default: Output frequency)	0,01	+/- Hz
2106	32106, 42106	Programmable by P10.3 (Default: Motor speed)	1	+/- Rpm
2107	32107, 42107	Programmable by P10.4 (Default: Motor voltage)	0,1	V
2108	32108, 42108	Programmable by P10.5 (Default: Motor torque)	0,1	+/- % (of nomi- nal)
2109	32109, 42109	Programmable by P10.6 (Default: Motor current)	0,01	А
2110	32110, 42110	Programmable by P10.7 (Default: Motor power) 0,1		+/- % (of nomi- nal)
2111	32111, 42111	Programmable by P10.8 (Default: DC link voltage)	1	V

Table 9.4: Output process data

ID	Modbus register	Name	Scale	Туре
2001	32001, 42001	FB Control Word	-	Binary coded
2002	32002, 42002	FB General Control Word	-	Binary coded
2003	32003, 42003	FB Speed Reference	0,01	%
2004	32004, 42004	Programmable		
2005	32005, 42005	Programmable		
2006	32006, 42006	Programmable		
2007	32007, 42007	Programmable		
2008	32008, 42008	Programmable		
2009	32009, 42009	-	-	-

Table 9.5: Input process data

	ID	Modbus register	Name	Scale	Туре
	2010	32010, 42010	-	-	-
Г	2011	32011, 42011	-	-	-

Table 9.5: Input process data

Note! 2004 - 2007 can set as PID Control Reference by setting P15.1(Setpoint selection) or PID Actual value by setting P15.4(Feedback value selection)!

2004 - 2007 can be set as the Analogue Output by P9.1, P9.5, P9.9.

2004 - 2008 can set as Aux Control Word with P10.9.

b0: Run enable

b1: acc / dec ramp 2 selection

b2: freq reference 2 selection

Note!- AUX CW is active when configured, even if control place is not the fieldbus

 - b0 Run enable is computed in AND with a possible Run enable signal from digital input. Fall of enable will cause coasting stop.

Status word (output process data)

Information about the status of the device and messages is indicated in the Status word. The Status word is composed of 16 bits the meanings of which are described in the table below:

Bit	Description				
ыс	Value = 0	Value = 1			
B0, RDY	Drive not ready	Drive ready			
B1, RUN	Stop	Run			
B2, DIR	Clockwise	Counter-clockwise			
B3, FLT	No fault	Fault active			
B4, W	No alarm	Alarm active			
B5, AREF	Ramping	Speed reference reached			
B6, Z	-	Drive is running at zero speed			
B7 - B15	-	-			

Table 9.6: Status word (output process data)

General status word (output process data)

Information about the status of the device and messages is indicated in the General status word. The General status word is composed of 16 bits the meanings of which are described in the table below:

Bit		Desc	ription		
DIL	Value = 0		Value = 1		
B0, RDY	Drive not ready		Drive ready		
B1, RUN	Stop		Run		
B2, DIR	Clockwise		Counter-clockwis	e	
B3, FLT	No fault		Fault active		
B4, W	No alarm		Alarm active		
B5, AREF	Ramping		Speed reference reached		
B6, Z	-		Drive is running at zero speed		
B7, F	-		Fieldbus control active		
B8 - B12	-		-		
Bit		Contro	ol place		
BIL	1/0	PC tool	Keypad	Fieldbus	
B13	1	0	0	0	
B14	0	1	1	0	
B15	0	1	0	1	

Table 9.7: General status word (output process data)

Actual speed (output process data)

This is actual speed of the frequency converter. The scaling is -10000...10000. The value is scaled in percentage of the frequency area between set minimum and maximum frequency.

Control word (input process data)

The three first bits of the control word are used to control the frequency converter. By using control word it is possible to control the operation of the drive. The meanings of the bits of control word are explained in the table below:

Bit	Des	scription	
ыс	Value = 0	Value = 1	
B0, RUN	Stop	Run	
B1, DIR	Clockwise	Counter-clockwise	
B2, RST	Rising edge of this bit will reset active fault		

Table 9.8: Control word (input process data)

Speed reference (input process data)

This is the Reference 1 to the frequency converter. Used normally as Speed reference. The allowed scaling is 0...10000. The value is scaled in percentage of the frequency area between the set minimum and maximum frequencies.

10. TECHNICAL DATA

10.1 Vacon 20 technical data

Mains connection	Input voltage U _{in}	115 V, -15%+10% 1- 208240 V, -15%+10% 1- 208240 V, -155%+10% 3- 380 - 480 V, -15%+10% 3- 575 V, -15%+10% 3-		
	Input frequency	4566 Hz		
	Line current THD	> 120%		
	Connection to mains	Once per minute or less (normal case)		
Supply network	Networks	Vacon 20 (400 V) cannot be used with corner grounded networks		
	Short circuit current	Maximum short circuit current has to be < 50 kA, For MI4 without DC-choke, maximum short circuit current has to be < 2.3 kA, for MI5 without DC-choke, maximun short circuit current has to be < 3.8 kA.		
	Output voltage	0 - U _{in}		
Motor connection	Output current	Continuous rated current I_N at ambient temperature max. $+50$ °C (depends on the unit size), overload $1.5 \times I_N$ max. 1 min $/$ 10 min		
connection	Starting current / torque	Current 2 x I _N for 2 sec in every 20 sec period. Torque depends on motor		
	Output frequency	0320 Hz		
	Frequency resolution	0,01 Hz		
	Control method	Frequency Control U / f Open Loop Sensorless Vector Control		
	Switching frequency	116 kHz; Factory default 4 kHz		
	Frequency reference	Resolution 0.01 Hz		
Control characteristics	Field weakening point	30320 Hz		
caracteristics	Acceleration time	0.13000 sec		
	Deceleration time	0.13000 sec		
	Braking torque	100%*T _N with brake option (only in 3~ drives sizes MI2-5) 30%*T _N without brake option		

Table 10.1: Vacon 20 technical data

	Ambient operating temperature Storage temperature Relative humidity	-10 °C (no frost)+40 /50 °C (depends on the unit size): rated loadability I _N Side by side installation for M11-3 it is always 40 °C; For IP21/Nema1 option in M11-3 the maximum temparture is also 40 °C40 °C+70 °C 095% RH, non-condensing, non-corrosive, no dripping water		
Ambient conditions	Air quality: - chemical vapours - mech. particles	IEC 721-3-3, unit in operation, class 3C2 IEC 721-3-3, unit in operation, class 3S2		
	Altitude	100% load capacity (no derating) up to 1000 m. 1% derating for each 100 m above 1000 m; max. 2000 m		
	Vibration: EN60068-2-6	3150 Hz Displacement amplitude 1(peak) mm at 315.8 Hz Max acceleration amplitude 1 G at 15.8150 Hz		
	Shock IEC 68-2-27	UPS Drop Test (for applicable UPS weights) Storage and shipping: max 15 G, 11 ms (in package)		
	Enclosure class	IP20 / IP21 / Nema1 for MI1-3, IP21 for MI4-5		
	Pollution degree	PD2		
	Immunity	Complies with EN50082-1, -2, EN61800-3		
EMC	Emissions	230V: Complies with EMC category C2; With an internal RFI filter. MI4&5 complies C2 with an optional DC choke and CM choke. 400V: Complies with EMC category C2; With an internal RFI filter MI4&5 complies C2 with an optional DC choke and CM choke. Both: No EMC emission protection (Vacon level N): Without RFI filter		
Standards		For EMC: EN61800-3, For safety: UL508C, EN61800-5		
Certificates and manufac- turer's decla- rations of conformity		For safety: CE, UL, cUL, For EMC: CE, c-tick (see unit nameplate for more detailed approvals)		

Table 10.1: Vacon 20 technical data

10.2 Power ratings

10.2.1 Vacon 20 - Mains voltage 208-240 V

Mains voltage 208-240 V, 50/60 Hz, 1~ series									
Freq. converter type	Rated loadability		Motor shaft power		Nominal input current	Mechanical	Weiaht		
	100% contin. current I _N [A]	150% over- load current [A]	P [HP]	P [KW]	[A]	size	(kg)		
0001	1.7	2.6	0.33	0.25	4.2	MI1	0.55		
0002	2.4	3.6	0.5	0.37	5.7	MI1	0.55		
0003	2.8	4.2	0.75	0.55	6.6	MI1	0.55		
0004	3.7	5.6	1	0.75	8.3	MI2	0.55		
0005	4.8	7.2	1.5	1.1	11.2	MI2	0.7		
0007	7	10.5	2	1.5	14.1	MI2	0.7		
0009*	9.6	14.4	3	2.2	22.1	MI3	0.99		

Table 10.2: Vacon 20 power ratings, 208-240 V

^{*} The maximum ambient operating temperature of this drive is 40 °C!

Mains voltage 208 - 240 V, 50/60 Hz, 3~ series									
Freq. converter type	Rated loadability		Motor shaft power		Nominal input current	Mechanical	Weight (kg)		
	100% contin. current I _N [A]	150% over- load current [A]	P HP	P [KW]	[A]	size	97		
0001	1.7	2.6	0.33	0.25	2.7	MI1	0.55		
0002	2.4	3.6	0.5	0.37	3.5	MI1	0.55		
0003	2.8	4.2	0.75	0.55	3.8	MI1	0.55		
0004	3.7	5.6	1	0.75	4.3	MI2	0.7		
0005	4.8	7.2	1.5	1.1	6.8	MI2	0.7		
0007*	7	10.5	2	1.5	8.4	MI2	0.7		
0011*	11	16.5	3	2.2	13.4	MI3	0.99		
0012	12.5	18.8	4	3	14.2	MI4	9		
0017	17.5	26.3	5	4	20.6	MI4	9		
0025	25	37.5	7.5	5.5	30.3	MI4	9		
0031	31	46.5	10	7.5	36.6	MI5	11		
0038	38	57	15	11	44.6	MI5	11		

Table 10.3: Vacon 20 power ratings, 208-240 V, 3~

^{*} The maximum ambient operating temperature of these drives is +40 °C.

10.2.2 Vacon 20 - Mains voltage 115 V

Mains voltage 115 V, 50/60 Hz, 1~ series									
Freq. converter type	Rated loadability		Motor shaft power		Nominal input current	Mechanical	Weight		
	100% contin. current I _N [A]	150% over- load current [A]	P [HP]	P [KW]	[A]	size	(Kg)		
0001	1.7	2.6	0.33	0.25	9.2	MI2	0.7		
0002	2.4	3.6	0.5	0.37	11.6	MI2	0.7		
0003	2.8	4.2	0.75	0.55	12.4	MI2	0.7		
0004	3.7	5.6	1	0.75	15	MI2	0.7		
0005	4.8	7.2	1.5	1.1	16.5	MI3	0.99		

Table 10.4: Vacon 20 power ratings, 115 V, 1~

10.2.3 Vacon 20 - Mains voltage 380-480 V

Mains voltage 380-480 V, 50/60 Hz, 3~ series									
Freq.	Rated loadability		Motor shaft power		Nominal input current	Mechanical	Weight		
type	100% contin. current I _N [A]	150% over- load current [A]	P [HP]	P [KW]	[A]	size	(kg)		
0001	1.3	2	0.5	0.37	2.2	MI1	0.55		
0002	1.9	2.9	0.75	0.55	2.8	MI1	0.55		
0003	2.4	3.6	1	0.75	3.2	MI1	0.55		
0004	3.3	5	1.5	1.1	4	MI2	0.7		
0005	4.3	6.5	2	1.5	5.6	MI2	0.7		
0006	5.6	8.4	3	2.2	7.3	MI2	0.7		
8000	7.6	11.4	4	3	9.6	MI3	0,99		
0009	9	13.5	5	4	11.5	MI3	0.99		
0012	12	18	7.5	5.5	14.,9	MI3	0.99		
0016	16	24	10	7.5	17.1	MI4	9		
0023	23	34.5	15	11	25.5	MI4	9		
0031	31	46.5	20	15	33	MI5	11		
0038	38	57	25	18.5	41.7	MI5	11		

Table 10.5: Vacon 20 power ratings, 380-480 V

^{*} The maximum ambient operating temperature of these drives is +50 °C.

1024	Vacon	20 -	Maine	voltage	575 V
10.2.4	vacun	2U -	Mailis	voitage	3/3 V

Mains voltage 575 V, 50/60 Hz, 3~ series									
Fre- quency converter type	Rated loadability		Motor shaft power		Nominal input current	Mechanical	Weight		
	100% contin. current I _N [A]	150% over- load current [A]	P [HP]	P [kw]	[A]	size	(kg)		
0002	1,7	2,6	1	0,75	2	MI3	0,99		
0003	2,7	4,2	2	1,5	3,6	MI3	0,99		
0004	3,9	5,9	3	2,2	5	MI3	0,99		
0006	6,1	9,2	5	3.7	7,6	MI3	0,99		
0009	9	13,5	7.5	5,5	10,4	MI3	0,99		

Table 10.6: Vacon 20 power ratings, 575 V

Note 1: The input currents are calculated values with 100 kVA line transformer supply.

Note 2: The mechanical dimensions of the units are given in Chapter 3.1.1.

10.3 Brake resistors

Vacon 20 type	Minimum brak-	Resistor type code (from Vacon NX family)					
vacon zo type	ing resistance	Light duty	Heavy duty	Resistance			
MI2 204-240V,3~	50 Ohm	-	-	-			
MI2 380-480V,3~	118 Ohm	-	-	-			
MI3 204-240V, 3~	31 0hm	-	-	-			
MI3 380-480V, 3~	55 Ohm	BRR-0022-LD-5	BRR-0022-HD-5	63 Ohm			
MI3 575V, 3~	100 Ohm	BRR-0013-LD-6	BRR-0013-HD-6	100 Ohm			
MI4 204-240V, 3~	14 0hm	BRR-0025-LD-2	BRR-0025-HD-2	30 Ohm			
MI4 380-480V, 3~	28 Ohm	BRR-0031-LD-5	BRR-0031-HD-5	42 0hm			
MI5 204-240V, 3~	9 0hm	BRR-0031-LD-2	BRR-0031-HD-2	20 0hm			
MI5 380-480V, 3~	17 0hm	BRR-0045-LD-5	BRR-0045-HD-5	21 0hm			

Note! For MI2 and MI3, only 3-phase units are equipped with brake chopper.

For further information on brake resistors, please download Vacon NX Brake Resistor Manual (UD00971C) on http://www.vacon.com/Support & Downloads

VACON DRIVEN BY DRIVES

Find your nearest Vacon office on the Internet at:

www.vacon.com

Manual authoring: documentation@vacon.com

VaconPlc Runsorintie 7 65380 Vaasa Finland D.P. D. O. O. 7. 1. 6.

Subject to change without prior notice ©2011 Vacon Plc.