LOAD RESEARCH

Irrigation Load Study

Utah Cost of Service Task Force August 25, 2005

What is Load Research?

- The study of how and when our customers use energy so that PacifiCorp can most effectively:
 - Allocate Fixed Costs per Regulatory Mandates
 - Design or Maximize Customer Rates
 - Forecast Loads
 - Service Customer Data Requests
 - Size Distribution Circuits
 - Provide Customer Service

Load Research Data Process

Short Interval Data Manually Collected

Customer Service

Tariff Option Analysis, Facilities Planning, Bill Complaints

Totalization

Cost Allocation

Intra-Class Allocation & Rate Design

Scheduling/Billing/Settlement

Energy Profiler Online

New Products/Services

Distribution Planning

Outage Management & Transformer Sizing

Short Interval Data Remotely Collected

3

- Electric usage varies over time and by customer type
- PacifiCorp is obligated to provide electricity (load) when the customer demands (kW) and for the length of time that the customer needs it (kWh).

Regulatory Support

Load Research Meters

State	Class	# Recorders	State	Class	
Utah	Residential	169	Oregon	Residential	
	Rate 023	63		Rate 025	
	Rate 006	142		Large Load	
	Rate 008	190			
	Rate 009	20			
	Large Load	157	Washington	Residential	
		741		General Service	
				Large Load	
Idaho	Rate 001	52			
	Rate 036	45			
	Rate 006	89	Wyoming	Residential	
	Rate 008	4		General Service	
	Rate 009	12		Large Load	
	Rate 023	56			-
	Irrigation	88			
	Large Load	12	Other (DSM, F	inAnswer, etc.)	
		358			
			Total		-

Load Research Meters

M

Irrigation Load Study - Issues

- 1991-1993 3-year average for current reporting.
- Issues
 - Crop rotation
 - Weather impacts
 - Growing season
 - Access to water
 - Smaller family owned farms (vs. Corporations in Idaho)
- Options
 - Conduct new load studies
 - Use Idaho Data
 - Use system average costing/pricing

Sample Design

Bill Frequency Analysis Summary

Utah Irrigation Schedule 010

Five Strata

Customer Interval Count Factor (1K)

				actor (TIX)	Count			
	cum √μ <i>f</i>	$\sqrt{\mu f}$	μf	μ	f	1	Range	F
1,066	32.6	32.6	1,066.0	1.0	1066	25	to	0
423	52.8	20.2	406.1	1.0	423	50	to	26
	66.8	14.0	195.8	1.0	204	75	to	51
344	78.4	11.6	134.4	1.0	140	100	to	76
99	88.1	9.7	95.0	1.0	99	125	to	101
	95.5	7.4	54.7	1.0	57	150	to	126
	102.4	6.9	47.0	1.0	49	175	to	151
	107.5	5.1	25.9	1.0	27	200	to	176
	112.4	4.9	24.0	1.0	25	225	to	201
	115.6	3.2	10.6	1.0	11	250	to	226
	117.3	1.7	2.9	1.0	3	275	to	251
	118.3	1.0	1.0	1.0	1	300	to	276
	120.3	2.0	3.8	1.0	4	325	to	301
	122.5	2.2	4.8	1.0	5	350	to	326
	123.4	1.0	1.0	1.0	1	375	to	351
	124.8	1.4	1.9	1.0	2	400	to	376
	126.2	1.4	2.0	2.0	1	450	to	401
	127.2	1.0	1.0	1.0	1	475	to	451
	128.9	1.7	3.0	3.0	1	550	to	476
	130.3	1.4	2.0	2.0	1	600	to	551
	134.3	4.0	15.9	8.0	2	800	to	601
	137.1	2.8	8.0	8.0	1	1,000	to	801
	143.5	6.3	40.0	40.0	1	2,000	to	1,001
194	148.9 🖥	5.5	30.0	30.0	1	2,750	to	2,001
				•		•		

Total N 2,126

BOUNDARIES INDICATED FOR STRATA:									
	5	6							
1	49.6	37.2	29.8	24.8					
2	99.3	74.5	59.6	49.6					
3		111.7	89.4	74.5					
4			119.1	99.3					
5				124.1					

SAMPLING STATISTICA	Avg. kWh ²	Mean kW ²	Res. Variance ²
1	0	3.503	5.571
2	0	23.371	14.814
3	0	39.910	25.513
4	0	35.208	40.642
5	0	189.051	187.652

¹ Billing records for the twelve months ended June 2005

2,126

² Load Research estimates based on Idaho Schedule 010 sample data

Utah Irrigation Sample Designs

- 3 Strata 235 recorders
- 4 Strata 203 recorders
- 5 Strata 175 recorders
- 6 Strata 169 recorders

UTAH SCHEDULE 010 LOAD STUDY DESIGN OPTION FOR 2005 THREE STRATA, MEAN-PER-UNIT DESIGN

,		a Sample Mean kW	b Sample Mean kWh	c 2004 Pop N	d Variance of Mean	e Standard Deviation	f Wtd. Devtns. c*e	g Proprtn. row f/ sum f	h Optimal Allocation g*h total	i Optimal with Attrition	j Final with Attrition
STRATUM 1 STRATUM 2	0 - 50 kW 51- 100 kW	7.4760 39.9100	0	1,489 344	125.6417 650.9132	11.2090 25.5130	16690 8776	0.2130 0.1120	45 23	45 23	50 26
STRATUM 3	GT- 100 kW		0	293	32590.7198		52895	0.6750	142	142	159
EST POP I	MEAN (wtd bv N)	34.0608	0	2.126			78362	1.0000	210	210 [235

RELATIVE PRECISION OF SAMPLE KW ESTIMATE

	TOTAL KW	TOTAL KW	MEAN KW
	Optimal n (col. h)	Adjusted n (col. i)	Adj. n
Variance 1	6,139,641	6,139,641	1.358365
contribute(2	3,267,111	3,267,111	0.722832
by strata: 3	10,226,321	10,226,321	2.262522
Total Variance	19,633,072	19,633,072	4.343719
Standard Error	4430.922259	4430.922259	2.0841591
Desired Conf. Level	90%	90%	90%
(z two tailed)	1.645	1.645	1.645
Conf. Interval	7288.867115	7288.867115	3.4284417
MPU Est of kW	72413.239	72413.239	34.0608
Relative Conf. Int.	10.07%	10.07%	10.07%

Sample Adj Sample Estimate Estimate

235

210

UTAH SCHEDULE 010 LOAD STUDY DESIGN OPTION FOR 2005 FOUR STRATA, MEAN-PER-UNIT DESIGN

		a Sample Mean kW	b Sample Mean kWh	c 2004 Pop N	d Variance of Mean	e Standard Deviation	f Wtd. Devtns. c*e	g Proprtn. row f/ sum f	h Optimal Allocation g*h total	i Optimal with Attrition	j Final with Attrition
STRATUM 1	0 - 50 kW	7.4760	0	1,489	125.6417	11.2090	16690	0.2593	47	47	53
STRATUM 2	51 - 75 kW	25.5910		204	327.8634	18.1070	3694	0.0574	10	10	11
STRATUM 3	76 - 125 kW	48.9570	0	239	1008.1260	31.7510	7588	0.1179	21	21	24
STRATUM 4	GT- 125 kW	189.0510	0	194	35213.2731	187.6520	36404	0.5655	103	103	115
EST POP I	MEAN (wtd by N)	30.4464	0	2,126			64377	1.0000	182	181 [203
										Sample	Adj Sample

Estimate Estimate

RELATIVE PRECISION OF SAMPLE KW ESTIMATE

	TOTAL KW Optimal n (col. h)	TOTAL KW Adjusted n (col. i)	MEAN KW Adj. n
Variance 1	5,864,566	5,864,566	1.297506
contribute(2	1,441,725	1,441,725	0.318974
by strata: 3	2,626,269	2,626,269	0.581049
4	6,094,658	6,094,658	1.348413
Total Variance	16,027,218	16,027,218	3.545942
Standard Error	4003.40078	4003.40078	1.88306716
Desired Conf. Level	90%	90%	90%
(z two tailed)	1.645	1.645	1.645
Conf. Interval	6585.594284	6585.594284	3.09764548
MPU Est of kW	64728.945	64728.945	30.4464
Relative Conf. Int.	10.17%	10.17%	10.17%

UTAH SCHEDULE 010 LOAD STUDY DESIGN OPTION FOR 2005 FIVE STRATA, MEAN-PER-UNIT DESIGN

		а	b	С	d	е	f Wtd.	g Proprtn.	h Optimal	i Optimal	j Final
		Sample Mean kW	Sample / Mean kWh	2004 Pop N	Variance of Mean	Standard Deviation	Devtns. c*e	row f/ sum f	Allocation g*h total	with Attrition	with Attrition
STRATUM 1	0 - 25 kW	3.5030	0	1,066	31.0360	5.5710	5939	0.0967	15	15	17
STRATUM 2	26 - 50 kW	23.3710	0	423	219.4546	14.8140	6266	0.1020	16	16	18
STRATUM 3	51 - 100 kW	39.9100	0	344	650.9132	25.5130	8776	0.1429	22	22	25
STRATUM 4	101 - 125 kW	35.2080	0	99	1651.7722	40.6420	4024	0.0655	10	10	11
STRATUM 5	GT- 125 kW	189.0510	0	194	35213.2731	187.6520	36404	0.5928	93	93	104
EST POP	MEAN (wtd by N)	31.7548	0	2,126			61410	1.0000	156	156	175

Sample Estimate 156 Adj Sample Estimate 175

RELATIVE PRECISION OF SAMPLE KW ESTIMATE

	TOTAL KW	TOTAL KW	MEAN KW
	Optimal n (col. h)	Adjusted n (col. i)	Adj. n
Variance 1	2,483,695	2,483,695	0.549505
contribute(2	2,518,768	2,518,768	0.557265
by strata: 3	3,433,350	3,433,350	0.759612
4	1,617,085	1,617,085	0.357772
5	7,499,662	7,499,662	1.659263
Total Variance	17,552,559	17,552,559	3.883416
Standard Error	4189.577478	4189.577478	1.970638512
Desired Conf. Level	90%	90%	90%
(z two tailed)	1.645	1.645	1.645
Conf. Interval	6891.854951	6891.854951	3.241700353
MPU Est of kW	67510.657	67510.657	31.7548
Relative Conf. Int.	10.21%	10.21%	10.21%

UTAH SCHEDULE 010 LOAD STUDY DESIGN OPTION FOR 2005 SIX STRATA, MEAN-PER-UNIT DESIGN

		а	b	С	d	е	f Wtd.	g Proprtn.	h Optimal	i Optimal	j Final
		Sample	•	2004	Variance	Standard	Devtns.	row f/	Allocation	with	with
		Mean kW	/ Mean kWh	Pop N	of Mean	Deviation	c*e	sum f	g*h total	Attrition	Attrition
STRATUM 1	0 - 25 kV	V 3.5030	0	1,066	31.0360	5.5710	5939	0.1003	15	15	17
STRATUM 2	26 - 50 kV	V 23.3710	0	423	219.4546	14.8140	6266	0.1058	16	16	18
STRATUM 3	51 - 75 kV	V 25.5910	0	204	327.8634	18.1070	3694	0.0624	9	10	11
STRATUM 4	76 - 100 kV	V 59.9560	0	140	437.1026	20.9070	2927	0.0494	7	10	11
STRATUM 5	101 - 125 kV	V 35.2080	0	99	1651.772164	40.6420	4024	0.0680	10	10	11
STRATUM 6	GT- 125 kV	V 189.0510	0	194	35118.76	187.4000	36356	0.6141	90	90	101
EST POP N	MEAN (wtd by N)	31.7009	0	2,126			59205	1.0000	146	151	169

Sample dj Sample Estimate 146 169

RELATIVE PRECISION OF SAMPLE KW ESTIMATE

	TOTAL KW Optimal n (col. h)	TOTAL KW Adjusted n (col. i)	MEAN KW Adj. n
Variance 1	2,483,695	2,483,695	0.549505
contribute(2	2,518,768	2,518,768	0.557265
by strata: 3	1,630,301	1,441,725	0.318974
4	1,356,475	883,919	0.195563
5	1,617,085	1,617,085	0.357772
6	7,961,305	7,961,305	1.761399
Total Variance	17,567,629	16,906,496	3.740478
Standard Error	4191.375492	4111.750948	1.9340315
Desired Conf. Level	90%	90%	90%
(z two tailed)	1.645	1.645	1.645
Conf. Interval	6894.812684	6763.830309	3.1814818
MPU Est of kW	67396.021	67396.021	31.7009
Relative Conf. Int.	10.23%	10.04%	10.04%

Sample Design

Bill Frequency Analysis Summary

Utah Irrigation Schedule 010 Six Strata

Customer Interval Count Factor (1K)

		Count Tuctor (114)							
	F	Range	1	f	μ	μf	$\sqrt{\mu f}$	cum √μ <i>f</i>	
	0	to	25	1066	1.0	1,066.0	32.6	32.6	1,066
	26	to	50	423	1.0	406.1	20.2	52.8	423
	51	to	75	204	1.0	195.8	14.0	66.8	204
	76	to	100	140	1.0	134.4	11.6	78.4	140
	101	to	125	99	1.0	95.0	9.7	88.1	
	126	to	150	57	1.0	54.7	7.4	95.5	
	151	to	175	49	1.0	47.0	6.9	102.4	
	176	to	200	27	1.0	25.9	5.1	107.5	
	201	to	225	25	1.0	24.0	4.9	112.4	
_	226	to	250	11	1.0	10.6	3.2	115.6	268
	251	to	275	3	1.0	2.9	1.7	117.3	
	276	to	300	1	1.0	1.0	1.0	118.3	
	301	to	325	4	1.0	3.8	2.0	120.3	
	326	to	350	5	1.0	4.8	2.2	122.5	
	351	to	375	1	1.0	1.0	1.0	123.4	
	376	to	400	2	1.0	1.9	1.4	124.8	
	401	to	450	1	2.0	2.0	1.4	126.2	
	451	to	475	1	1.0	1.0	1.0	127.2	
	476	to	550	1	3.0	3.0	1.7	128.9	
	551	to	600	1	2.0	2.0	1.4	130.3	
	601	to	800	2	8.0	15.9	4.0	134.3	
	801	to	1,000	1	8.0	8.0	2.8	137.1	
	1,001	to	2,000	1	40.0	40.0	6.3	143.5	
	2,001	to	2,750	1	30.0	30.0	5.5	148.9	25
			-		•	-			

Total N 2,126 2,126

BOUNDARIES INDICATED FOR STRATA:								
	6							
1	49.6	37.2	29.8	24.8				
2	99.3	74.5	59.6	49.6				
3		111.7	89.4	74.5				
4			119.1	99.3				
5				124.1				

SAMPLING STATISTI Avg.	kWh ² I	Mean kW ²	Res. Variance ²
1	0	3.503	5.571
2	0	23.371	14.814
3	0	25.591	18.107
4	0	59.956	20.907
5	0	95.052	67.321
6	0	404.370	257.663

¹ Billing records for the twelve months ended June 2005

² Load Research estimates based on Idaho Schedule 010 sample data

UTAH SCHEDULE 010 LOAD STUDY DESIGN OPTION FOR 2005 SIX STRATA, MEAN-PER-UNIT DESIGN

			а	b	С	d	е	f Wtd.	g Proprtn.	h Optimal	i Optimal	j Final
			Sample	Sample	2004	Variance	Standard	Devtns.	row f/	Allocation	with	with
			Mean kW	Mean kWh	Pop N	of Mean	Deviation	c*e	sum f	g*h total	Attrition	Attrition
STRATUM 1	0 -	25 kW	3.5030	0	1,066	31.0360	5.5710	5939	0.1371	15	15	17
STRATUM 2	26 -	50 kW	23.3710	0	423	219.4546	14.8140	6266	0.1447	15	15	17
STRATUM 3	51	- 75 kW	25.5910	0	204	327.8634	18.1070	3694	0.0853	9	10	11
STRATUM 4	76 -	100 kW	59.9560	0	140	437.1026	20.9070	2927	0.0676	7	10	11
STRATUM 5	101 -	250 kW	95.0520	0	268	4532.117041	67.3210	18042	0.4166	44	44	49
STRATUM 6	GT-	250 kW	404.3700	0	25	66390.22157	257.6630	6442	0.1487	16	16	18
EST POP	MEAN (wtd	by N)	29.5474	0	2,126			43309	1.0000	106	110	123

RELATIVE PRECISION OF SAMPLE KW ESTIMATE

	TOTAL KW	TOTAL KW	MEAN KW	Weig	ghted
	Optimal n (col. h)	Adjusted n (col. i)	Adj. n	St.Dev	Variance
Variance 1	2,483,695	2,483,695	0.549505	2.793361	15.56182
contribute(2	2,705,311	2,705,311	0.598537	2.94747	43.66383
by strata: 3	1,630,301	1,441,725	0.318974	1.737454	31.46009
4	1,356,475	883,919	0.195563	1.376754	28.78381
5	6,327,257	6,327,257	1.399874	8.486373	571.3111
6	995,853	995,853	0.220328	3.029904	780.694
Total Variance	15,498,892	14,837,759	3.282780	20.37132	1471.475
Standard Error	3936.863223	3851.981227	1.8118444	V =	3.22631
Desired Conf. Level	90%	90%	90%		
(z two tailed)	1.645	1.645	1.645		
Conf. Interval	6476.140001	6336.509119	2.9804841		
MPU Est of kW	62817.721	62817.721	29.5474		
Relative Conf. Int.	10.31%	10.09%	10.09%		16

Sample dj Sample Estimate

123

106

Utah Irrigation Sample Designs

$$3 \text{ Strata} - 235 \text{ recorders} + 24 (10\%) = $78,218$$

$$4 \text{ Strata} - 203 \text{ recorders} + 20 = \$67,346$$

$$5 \text{ Strata} - 175 \text{ recorders} + 18 = $58,286$$

$$6 \text{ Strata} - 169 \text{ recorders} + 17 = $56,172$$

Data acquisition merged with FieldNet Pro operations for summer months only.

Sample Expansion

The expansion of sample data using mean-per-unit procedures are simple and straight forward. The estimate of the population mean (\hat{Y}) is derived by multiplying the sample mean (\hat{y}) against the total number of customers in the target group (N), as indicated below:

$$\hat{\mathbf{Y}} = \mathbf{N}\ddot{\mathbf{y}} = \mathbf{N} \stackrel{\text{n}}{\Sigma} \mathbf{y}_{i} / \mathbf{n}$$

If the sample mean (\ddot{y}) is derived from a stratified sample, the population mean (\hat{Y}) is derived by performing the above outlined procedure on the individual strata basis (h) and summing the strata totals to derive the estimate for the total population, as outlined below:

$$\hat{\mathbf{Y}} = \Sigma \mathbf{N}_{\mathrm{h}} \ddot{\mathbf{y}}_{\mathrm{h}} = \mathbf{N} \sum_{\mathbf{y}_{\mathrm{h}i}}^{\mathrm{n}} \mathbf{y}_{\mathrm{h}i}$$

Sample Design

Random Sample Selection

Wyoming Small General Service Sample Parameters Secondary Voltage Level

> Active Customers with kWh Meters March 2004 History

Stratum	1	2	3	4	5
Sampling Frame	9,239	6,933	1,537	450	137
Sample	10	16	15	10	10
Interval	923.90	433.31	102.47	45.00	13.70
Random Starts					
Primary Random No. ⁽¹⁾ Start	0.58586 541	0.09998 43	0.14346 15	0.74103 33	0.24200
Alternate 1 Random No. ⁽¹⁾ Start	0.87308 807	0.07351 32	0.96423 99	0.26432 12	0.66432
Alternate 2 Random No. ⁽¹⁾ Start	0.26422 244	0.94305 409	0. 77341 79	0.56170 25	0.55293 8
Alternate 3 Random No. ⁽¹⁾ Start	0.88640 819	0.12908 56	0.30134 31	0.49127 22	0.49618 7
Alternate 4 Random No. ⁽¹⁾ Start	0.78171 722	0.81263 352	0.64270 66	0.82765 37	0.46473 6

⁽¹⁾ Random numbers from Probability and Statistics in Engineering and Management Science, Hines & Montgomery, 2nd Ed, Pg. 628, beginning at row 19, col 4.