

Exploratory Data Analysis

M Octaviano Pratama, S.Kom., M.Kom

Director BISA AI ACADEMY

(PT BISA ARTIFISIAL INDONESIA)

Data Science

Data Science Methodology

Contoh Kasus Data Science

Contoh Kasus Data Science

Contoh Kasus Data Science

Sentiment analysis is useful for detecting emotion or sentiment from topics or products. Data is gathered from social media like Twitter, then Machine Learning is performed to detect emotion or sentiment in topics or products.

Get Data

- From database or Big Data
- From public dataset
- Create by yourself

https://data.go.id/

Indonesia Dalam Data

kaggle

Data Science Requirement

Data Warehouse

Extract Transform Load

Python-libraries for ETL

- Pandas (General Format / Tabular Data)
- OpenCV (Image)
- Librosa (Speech/Music)
- Scikit-learn (Text)
- Mysql connector

Running python via colab Google

Getting Started: Pandas

```
In []: #Read csv file
    df = pd.read_csv("/drive/My Drive/heart.csv")
```

There is a number of pandas commands to read other data formats:

```
pd.read_excel('myfile.xlsx',sheet_name='Sheet1', index_col=None, na_values=['NA'])
pd.read_stata('myfile.dta')
pd.read_sas('myfile.sas7bdat')
pd.read_hdf('myfile.h5','df')
```

Exploring data frames

```
In [3]: df_data_1.head()
  Out[3]:
                age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
                                      233
                                                    0
                                                          150
                                                                   0
                                                                         2.3
                 37
                          2
                                 130
                                      250
                                                          187
                                                                         3.5
                                                                                         2
                                            0
                                                                   0
                 41
                                 130
                                      204
                                                                         1.4
                                                                                         2
                                            0
                                                          172
                 56
                                                                         8.0
                                                                                 2
                                                                                         2
                                 120
                                      236
                                            0
                                                          178
                                                                   0
                 57
                          0
                                 120
                                      354
                                            0
                                                          163
                                                                         0.6
                                                                                 2 0
                                                                                         2
```

Data Frames: Selecting rows

If we need to select a range of rows, we can specify the range using ":"

```
In [ ]: #Select rows by their position:
    df[10:20]
```

Notice that the first row has a position 0, and the last value in the range is omitted:

So for 0:10 range the first 10 rows are returned with the positions starting with 0 and ending with 9

Data Frames: method iloc

If we need to select a range of rows and/or columns, using their positions we can use method iloc:

```
In []: #Select rows by their labels:
    df_sub.iloc[10:20,[0, 3, 4, 5]]
```

Out[]:

	age	rresrops	CHOI	IDS
10	54	140	239	0
11	48	130	275	0
12	49	130	266	0
13	64	110	211	0
14	58	150	283	1
15	50	120	219	0
16	58	120	340	0
17	66	150	226	0
18	43	150	247	0
19	69	140	239	0

Exploratory Data Analysis

Exploratory Data Analysis (EDA) are very important steps in any analysis task.

```
get to know your data!
distributions (symmetric, normal, skewed)
data quality problems
outliers
correlations and inter-relationships
subsets of interest
suggest functional relationships
```

Summary Statistics

- mean: $\mu = \sum_{i} X_{i} / n$
- mode: most common value in X
- median: \mathbf{X} =sort(X), median = $\mathbf{X}_{n/2}$ (half below, half above)
- variance: $\sigma^2 = \sum_i (X_i \underline{\mu})^2 / n$

	Unnamed: 0	symboling	normalized- losses	wheel- base	length	width	height	curb-weight	engine- size	bore	stroke
count	201.000000	201.000000	164.000000	201.000000	201.000000	201.000000	201.000000	201.000000	201.000000	201.000000	201.00000
mean	100.000000	0.840796	122.000000	98.797015	174.200995	65.889055	53.766667	2555.666667	126.875622	3.319154	3.256766
std	58.167861	1.254802	35.442168	6.066366	12.322175	2.101471	2.447822	517.296727	41,546834	0.280130	0.316049
min	0.000000	-2.000000	65.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61.000000	2.540000	2.070000
25%	50.000000	0.000000	NaN	94.500000	166.800000	64.100000	52.000000	2169.000000	98.000000	3.150000	3.110000
50%	100.000000	1.000000	NaN	97.000000	173.200000	65.500000	54.100000	2414.000000	120.000000	3.310000	3.290000
75%	150.000000	2.000000	NaN	102.400000	183.500000	66.600000	55.500000	2926.000000	141.000000	3.580000	3.410000
max	200.000000	3.000000	256.000000	120.900000	208.100000	72.000000	59.800000	4066.000000	326.000000	3.940000	4.170000

Mean

Mean =
$$\frac{600 + 470 + 170 + 430 + 300}{5}$$
$$= \frac{1970}{5}$$
$$= 394$$

Variance

Variance

$$\sigma^{2} = \frac{206^{2} + 76^{2} + (-224)^{2} + 36^{2} + (-94)^{2}}{5}$$

$$= \frac{42436 + 5776 + 50176 + 1296 + 8836}{5}$$

$$= \frac{108520}{5}$$

$$= 21704$$

Standard deviation

Standard Deviation

 $\sigma = \sqrt{21704}$

= 147.32...

= 147 (to the nearest mm)

Data Normalization

- Simple Feature Scaling
- Min-Max
- Z-score

age	income
20	100000
30	20000
40	500000

age	income
0.2	0.2
0.3	0.04
0.4	1

Not-normalized

- "age" and "income" are in different range.
- hard to compare
- "income" will influence the result more

Normalized

- similar value range.
- similar intrinsic influence of analytical model.

Data Normalization: Simple Feature Scaling

- The first method, called "simple feature scaling", just divides each value by the maximum value for that feature.
- This makes the new values range between 0 and 1.

$$x_{new} = \frac{x_{old}}{x_{max}}$$

Data Normalization: Min Max Scaling

- The second method, called "Min-Max", takes each value, X_old, subtracted from the minimum value of that feature, then divides by the range of that feature.
- Again, the resulting new values range between 0 and 1.

$$x_{new} = \frac{x_{old} - x_{min}}{x_{max} - x_{min}}$$

Data Normalization: Z Score

- The third method is called "z-score" or "standard score". In this formula, for each value, you subtract the Mu which is the average of the feature, and then divide by the standard deviation (sigma).
- The resulting values hover around 0, and typically range between -3 and +3, but can be higher or lower.

$$x_{new} = \frac{x_{old} - \mu}{\sigma}$$

Binning

- Binning is when you group values together into "bins"
- Convert numeric into categorical variables
- For example, you can bin "age" into [0 to 5], [6 to 10], [11 to 15] apprice: 5000, 10000,12000,12000, 30000, 31000, 39000, 44000,44500

bins:

High

Binning Python

```
bins = np.linspace(min(df["price"]), max(df["price"]), 4)

Start

Stop

Number of dividers
```

```
group_names = ["Low", "Medium", "High"]
```

df["price-binned"] = pd.cut(df["price"], bins, labels=group_names, include_lowest=True)

Scatter Plot

• This is giving us an initial indication that there is a positive linear relationship between these two variables.

Correlation

- Correlation is **Positive** when the values **increase** together,
- Correlation is Negative when one value decreases as the other increases

Correlation

- 1 is a perfect positive correlation
- 0 is no correlation (the values don't seem linked at all)
- -1 is a perfect negative correlation

Case Study

Ice Cream Sales vs Temperature								
Temperature °C	Ice Cream Sales							
14.2°	\$215							
16.4°	\$325							
11.9°	\$185							
15.2°	\$332							
18.5°	\$406							
22.1°	\$522							
19.4°	\$412							
25.1°	\$614							
23.4°	\$544							
18.1°	\$421							
22.6°	\$445							
17.2°	\$408							

Case Study: Pearson correlation

- Step 1: Find the mean of x, and the mean of y
- Step 2: Subtract the mean of x from every x value (call them "**a**"), and subtract the mean of y from every y value (call them "**b**")
- Step 3: Calculate: **ab**, **a²** and **b²** for every value
- Step 4: Sum up ab, sum up a² and sum up b²
- Step 5: Divide the sum of ab by the square root of [(sum of a^2) × (sum of b^2)]

Case Study: Pearson correlation

		×	A	×	/	·
Temp °C	Sales	"a"	"b"	a×b	a ²	b ²
14.2	\$215	-4.5	-\$187	842	20.3	34,969
16.4	\$325	-2.3	-\$77	177	5.3	5,929
11.9	\$185	-6.8	-\$217	1,476	46.2	47,089
15.2	\$332	-3.5	-\$70	245	12.3	4,900
18.5	\$406	-0.2	\$4	-1	0.0	16
22.1	\$522	3.4	\$120	408	11.6	14,400
19.4	\$412	0.7	\$10	7	0.5	100
25.1	\$614	6.4	\$212	1,357	41.0	44,944
23.4	\$544	4.7	\$142	667	22.1	20,164
18.1	\$421	-0.6	\$19	-11	0.4	361
22.6	\$445	3.9	\$43	168	15.2	1,849
17.2	\$408	-1.5	\$6	-9	2.3	36
18.7	\$402			5,325	177.0	174,757
	1		<u> </u>	K	1	1

$$\frac{5,325}{\sqrt{177.0 \times 174,757}} = \frac{0.9575}{0.9575}$$

Case: Prediksi Harga Mobil

Automobile Data Set

Download: Data Folder, Data Set Description

Abstract: From 1985 Ward's Automotive Yearbook

Data Set Characteristics:	Multivariate	Number of Instances:	205	Area:	N/A
Attribute Characteristics:	Categorical, Integer, Real	Number of Attributes:	26	Date Donated	1987-05-19
Associated Tasks:	Regression	Missing Values?	Yes	Number of Web Hits:	544484

https://archive.ics.uci.edu/ml/datasets/automobile

Dataset

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	7.0 /1	drive- wheels	engine- location	wheel- base	length	width	height	,
0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8	
1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8	
2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	171.2	65.5	52.4	
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8	176.6	66.2	54.3	
4	2	164	audi	gas	std	four	sedan	4wd	front	99.4	176.6	66.4	54.3	

```
import pandas as pd #lib pandas:

df = pd.read_csv("/content/drive/My Drive/dataset/mobil/data.data",
df
```

Pre-Processing

```
df['price'] = df['price'].replace(to_replace = "?", value =df['price'].mean())

df['price'] = df['price'].astype("int64") #jadikan object --> int64

#simple normalization
df['length'] = df['length'] / df['length'].max()

#Min Max normalization
df['wheel-base'] = (df['wheel-base'] - df['wheel-base'].min() / df['wheel-base'].max() - df['wheel-base'].min())

#z score
df['width'] = (df['width'] - df['wheel-base'].mean()) / df['width'].std()
```

Pre-Processing

```
import numpy as np #numeric

print("MAX: " + str(df_new['compression-ratio'].max()))
print("MIN: " + str(df_new['compression-ratio'].min()))

bins = np.linspace(min(df['compression-ratio']), max(df['compression-ratio']), 4)
group_names = ["low", "medium", "high"]
df["compression-ratio"] = pd.cut(df["compression-ratio"], bins, labels=group_names, include_lowest=True)
```

Statistics Descriptive

df.describe()

	symboling	wheel- base	length	width	height	curb- weight	engine- size	compression- ratio	city-mpg	highway- mpg	
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	2
mean	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	126.907317	10.142537	25.219512	30.751220	129
std	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	41.642693	3.972040	6.542142	6.886443	80
min	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61.000000	7.000000	13.000000	16.000000	
25%	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	97.000000	8.600000	19.000000	25.000000	7€
50%	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	120.000000	9.000000	24.000000	30.000000	101
75%	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	141.000000	9.400000	30.000000	34.000000	165
max	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	326.000000	23.000000	49.000000	54.000000	454

Scatter Plot

```
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
                                                                                                 sns.regplot(x='engine-size',y='price',data=df_new)
                                                   plt.scatter(df['bore'], df['price'])
plt.scatter(df['engine-size'], df['price'])
                                                                                                 plt.ylim(0,)
                                                   plt.xlabel("Bore")
plt.xlabel("Engine Size")
                                                                                                 (0.0, 32915.73541112133)
plt.ylabel("Price")
                                                   plt.ylabel("Price")
                                                   plt.show()
plt.show()
                                                                                                    30000
                                                                                                    25000
                                                      40000
  40000
                                                                                                    20000
                                                                                                  발
15000
                                                      30000
  30000
                                                    발
20000
.
일
20000
                                                                                                    10000
                                                                                                     5000
                                                      10000
  10000
                                                                                                                                  150
                                                                                                         100
                                                                                                              110
                                                                                                                   120
                                                                                                                        130
                                                                                                                             140
                                                                                                                                       160
                                                                                                                                            170
                                                                                                                           engine-size
                                              300
       50
              100
                      150
                              200
                                      250
                                                            348436687936974534834666687593369444974
                                                                                 Bore
                          Engine Size
```

Pearson Correlation

```
import scipy
x, y = scipy.stats.pearsonr(df['engine-size'],df['price'])
print("pearson Coef: " + str(x))
print("p value: " + str(y))
pearson Coef: 0.838097285838633
p value: 2.4898087727398237e-55
df['bore'] = df['bore'].replace(to replace ="?", value ="0")
df['bore'] = df['bore'].astype("float")
x, y = scipy.stats.pearsonr(df['bore'],df['price'])
print("pearson Coef: " + str(x))
print("p value: " + str(y))
pearson Coef: 0.2640960301221321
p value: 0.00013007599065564113
```

References

- <a href="https://medium.com/wripolinema/yuk-kenalan-deng
- Bisa.ai
- Digitalent Scholarship Kominfo course Artificial Intelligence 2019