

DESIGN DE ESTRUTURAS AEROESPACIAIS

Daniel Afonso

Escola Superior Aveiro Norte, Universidade de Aveiro Centro de Tecnologia Mecânica e Automação (TEMA) dan@ua.pt www.ua.pt/pt/p/16609746

SUMÁRIO

Apresentação

- Dossier Pedagógico da UC
- Objetivos
- Conteúdos
- Bibliografia
- Avaliação
- Plano de aulas

Design de Estruturas

- Definição de estruturas
- O projeto estrutural

Estruturas aeroespaciais

- Tipologias de estruturas
- Definição e tipos de treliças
- Avaliação de treliças

APRESENTAÇÃO

Dossier pedagógico da unidade curricular

DOCENTES

Daniel Afonso

- dan@ua.pt
- Eng. Mecânica

Ricardo Torcato

- ricardo.torcato@ua.pt
- Eng. Tecnologia Industrial

Augusto Coelho

- augustodesousacoelho@ua.pt
- Design

OBJETIVOS

- Conhecer e compreender os requisitos e tipologias de estruturas e mecanismos aeroespaciais;
- Conceber e comunicar propostas de estruturas aeroespaciais com base em desenho manual;
- Traduzir, de forma eficaz, especificações geométricas e dimensionais de estruturas aeroespaciais recorrendo a desenho manual e a modelos virtuais tridimensionais (3D) em aplicações informáticas de Desenho Assistido por Computador (CAD);
- Executar, modificar e gerir modelos CAD 3D de componentes e montagens de estruturas aeroespaciais;
- Simular a cinemática de componentes e sistemas com base em modelos CAD 3D.

CONTEÚDOS PROGRAMÁTICOS

Introdução às estruturas aeroespaciais

- Tipologias de estruturas e mecanismos
- Cinemática de mecanismos
- Componentes de estruturas
- Componentes de mecanismos

Desenho e conceção de estruturas aeroespaciais

- O desenho livre como ferramenta de design conceptual
- O desenho livre como instrumento de comunicação

Desenho e montagem de estruturas aeroespaciais com recurso ao CAD

- Desenvolvimento de modelos CAD 3D
- Montagens de estruturas e mecanismos
- Gestão de recursos digitais

Simulação cinemática de componentes e sistemas

- Graus de liberdade de movimento
- Parametrização de movimento
- Simulação cinemática

BIBLIOGRAFIA PRINCIPAL

Introduction to Aerospace Structures and Materials, René Alderliesten, TU Delft Open, 2018

Aerospace Structures- an Introduction to Fundamental Problems, Terry Weisshaar, Purdue University, 2011

- Advanced CAD Modeling: Explicit, Parametric, Free-Form CAD and Re-engineering, Nikola Vukašinović, Jože Duhovnik, Springer, 2019
- Sketching: Drawing Techniques for Product Designers, Roselien Steur, Koos Eissen, BIS Publishers, 2019

AVALIAÇÃO DISCRETA

AVALIAÇÃO FINAL

30%

Teste prático: Modelação 3D, montagens e simulação 04/11/2022

30%

Desenvolvimento de projeto e apresentação 06/01/2023

40%

Exame teórico-prático Época normal 60%

Exame prático: Desenho livre, Modelação 3D, montagens e simulação

Época normal

40%

Exame teórico-prático

Época normal

MOMENTOS DE AVALIAÇÃO

Teste prático

 Teste prático de modelação CAD 3D, montagem de estruturas e mecanismos e simulação de mecanismos a 04/11/2022

Projeto

- Projeto de design e conceção de um sistema aeroespacial
 - Desenho manual da proposta
 - Seleção de componentes
 - Modelação e montagem
 - Simulação de movimentos
- Entrega de projeto e apresentação na aula de 06/01/2023

Exame teórico prático

• Exame escrito sobre conteúdos abordados nas aulas teorico-práticas

PLANO DE AULAS

TP

- Airframe Design: Truss structures
- Airframe Design: Shell structures
- Airframe Design: Sandwish structures
- Mechanism kinematics: motion and DOF
- Mechanism kinematics: overconstrained mechanisms
- Mechanism kinematics: deployable structures
- Sketching and design aerospace structures
- Complient bi-stable and Origami Designs
- Structures components: joining and fixing
- Structures components: motion guidance
- Structures components: power transmission
- Design for X
- Tolerance analysis and assembly design

P

- CAD modelling
- CAD modelling
- CAD modelling
- CAD kin. sim. assembly
- CAD kin. sim. kin. sim.
- CAD kin. sim. din. sim.
- Freehand sketch
- Freehand sketch
- Project freehand sketch
- Project select components
- Project modeling
- Project assembly
- Project simulation

DESIGN DE ESTRUTURAS

Introdução ao design de estruturas

O QUE É UMA ESTRUTURA

Segundo dicionários

- O que permite que uma construção se sustente e se mantenha sólida
- O que serve de sustento ou de apoio.
- A sustentação de uma obra.
- Something made up of a number of parts that are held or put together in a particular way

Do ponto de vista da engenharia

 O elemento (ou conjunto de elementos) que suporta e permite o funcionamento /utilização de um sistema mecânico

O QUE É UMA ESTRUTURA

Do ponto de vista da engenharia aeroespacial

- a aeronave ou espaçonave sem equipamentos e equipamentos instalados
- a pele e a construção (esqueleto) que fornecem formas aerodinâmicas
- as peças de suporte de carga que suportam forças durante o voo normal, manobras, decolagem, aterrissagem etc.
- as partes que juntas protegem o conteúdo do meio ambiente

HIERARQUIA DE ESTRUTURAS

estruturas primárias

- Os elementos estruturais que cumprem uma função crítica
- Elementos que, em caso de dano ou falha, podem levar à falha de toda a aeronave ou nave espacial

estruturas secundárias

- Os elementos estruturais que cumprem funções não críticas
- Elementos que suportam apenas cargas aerodinâmicas e inerciais de componentes não críticos

OBJETIVO DO PROJETO ESTRUTURAL

Obter uma estrutura adequada à utilização pretendida

- Suportar esforços que o equipamento vai sofrer durante a utilização
- Manter geometria adequada ao bom funcionamento de todos os componentes
- Garantir durabilidade no tempo
- Garantir segurança de utilização

Preocupações gerais no projeto

- Minimizar o custo: material, produção, montagem, manutenção
- Minimizar a massa da estrutura

ESPECIFICAÇÕES DE UM PROJETO ESTRUTURAL

Geometria de referência (limites e restrições dimensionais e de massa)

constrangimentos (fixações necessárias e/ou obrigatórias)

Tipos de apoio ou

carregamento (valor e distribuição de carga a suportar)

Condições de

Condições ambientais (ambiente a que a estrutura está sujeita)

Limites de operação (deformação máxima, tensão máxima, condutividade elétrica ou térmica)

Fator de segurança (ordem de grandeza de sobre--dimensionamento do projeto)

PRINCÍPIO DO PROJETO ESTRUTURAL

projetar para a resistência

- Utiliza a resistência máxima dos materiais
- Preocupação com integridade da peça, e não da sua geometria

projetar para a rigidez

- Relação entre carga aplicada e deformação resultante
- Preocupação com integridade da peça e da sua geometria

PROJETAR PARA A RESISTÊNCIA

resistência é definida pela carga máxima que uma peça pode suportar sem provocar a sua falha

- Dependendo da aplicação, pode considerar-se falha:
 - Deformação plástica da peça
 - Quebra da peça
 - Fissuração do material
- Preocupação com integridade da peça, e não da sua geometria
- Utiliza-se este principio de projeto estrutural quando as deformações não prejudicam o funcionamento da peça projetada.

PROJETAR PARA A RESISTÊNCIA

A rigidez é definida como a razão entre as cargas e a deformação: quanto maior a rigidez, menos a deformação para a mesma carga.

- Dependendo da aplicação, pode considerar-se falha:
 - Deformação plástica da peça
 - Deformação superior a um valor estipulado para o projeto (função da peça)
 - Fissuração do material
- Utiliza-se este principio de projeto estrutural quando a deformação exagerada prejudica o funcionamento da peça projetada.

CRITÉRIOS PARA OTIMIZAÇÃO DE UMA ESTRUTURA

Otimização da rigidez ou resistência / massa

- Seleção do material
- Considerações geométricas
- Adição de material apenas nas zonas de maior solicitação
- Remoção de material em zonas sobredimensionadas

Otimização da rigidez ou resistência / custo

- Custos do material
- Custos de produção
- Minimização da complexidade do processo de fabrico

COMO RESOLVER UM PROBLEMA ESTRUTURAL

Por experiência

- Simples
- Rápido
- Sujeito a falhas

Experimentalmente

- Lento
- Dispendioso
- Sujeito a falhas

De forma analítica

- teoricamente
- Complexo
- Limitações geométricas

Numericamente

- Solução simples
- Rápido
- Sujeito a erros

COMO RESOLVER UM PROBLEMA ESTRUTURAL

ESTRUTURAS AEROESPACIAIS

Tipologia de estruturas -Treliças

Estruturas de treliças

 Estrutura baseada em elementos que suportam maioritariamente tensões de tração ou compressão

Estruturas de casca

 Estrutura baseada em chapas finas, com rigidez obtida a partir da geometria da peça

Estruturas Sandwich

 Estrutura baseada em duas chapas finas, ligadas por elementos de baixa densidade

Estruturas integralmente reforçadas

 Estruturas com principio semelhante a estruturas de casca ou sandwich, com possibilidade de reforços adaptados continuamente.

Estruturas de treliças

Estruturas de casca

Estruturas Sandwich

Estruturas integralmente reforçadas

Estruturas de vigas

 Estrutura baseada em elementos que suportam maioritariamente esforços de flexão ou torção

Estruturas de pórticos

 Estrutura baseada num conjunto de elementos que suportam esforços de flexão, torção e carregamento axial

Estruturas com carregamentos tridimensionais

 Estrutura ou componentes de estruturas sujeitas a forças e momentos segundo vários eixos (geometria 3d livre)

Placas de circuito empilhadas

 Estrutura de suporte de componentes eletrónicos

Estruturas de vigas

Estrutura formada por vários elementos ligados entre si

Barras rígidas (strut)

- Cada barra suporta apenas esforços axiais
- A disposição das barras é responsável pela rigidez da estrutura

Ligações articuladas entre as barras: nós (nodes)

- Permitem a rotação livre das barras
- São geralmente articulações simples (2D) ou juntas esféricas (3D)

Por motivos construtivos, as juntas podem ser substituídas por ligações rígidas

- Fabrico de várias barras num único componentes
- Facilidade de ligação mecânica
 - Apesar da ligação rígida a tornar num pórtico, a escala entre comprimentos de barras e ligações mantem o seu comportamento estrutural próximo de uma treliça

ANÁLISE DE TRELIÇAS

Treliças Estaticamente Determinadas

• hipostática

• isoestática

• hiperestática

ANÁLISE ESTRUTURAS ISOSTÁTICAS

Cálculo de forças externas

$$\sum \vec{F} = \vec{0}$$

$$\sum \vec{M_o} = \vec{0}$$

ANÁLISE ESTRUTURAS ISOSTÁTICAS

Cálculo de forças internas

ANÁLISE ESTRUTURAS ISOSTÁTICAS

Barras à tração

Barras à compressão

Os apoios devem impedir o movimento como corpo rígido uma vez por grau de liberdade

- Restrição de 3 DoF em 2D
- Restrição de 6 DoF em 3D
- Número de apoios depende do número e disposição de barras

O movimento (rotação) de cada barra deve ser restrito apenas uma vez pelas restantes barras

- A organização espacial de barras promove a rigidez da estrutura
- Barras apenas sujeitos a tração podem ser substituídos por elementos flexíveis
- Barras sujeitas a compressão podem (por vezes) ser substituídas pela diagonal oposta (à tração)

Definição e otimização da geometria

Definição e otimização da geometria

a - c elementos flexíveis

d diagonal rígida

e - h diagonal substituída por chapa

Seleção de materiais e definição do método de construção

APLICABILIDADE DE ESTRUTURAS RETICULADAS

Estruturas de baixo peso

Estruturas reconfiguráveis

