Solutions of Exercise v2.0

RULES

1. This is the **version 1.0**. In case there are any corrections for the solutions of Exercise 1, we will post an updated version on our website. You can follow the changes in the exercises by the **Version History** section below.

Version History

v1.0 Solutions of Exercise 1 are released.

1.

a) Rearranging the equations:

$$5 \cdot c - 7 \cdot b + 0 \cdot a = 50$$

$$7 \cdot c + 4 \cdot b + 0 \cdot a = -30$$

$$-7 \cdot c + 3 \cdot b - 4 \cdot a = 40$$

Now it is easier to construct matrix system:

$$Ax = b \rightarrow \begin{bmatrix} 5 & -7 & 0 \\ 7 & 4 & 0 \\ -7 & 3 & -4 \end{bmatrix} \begin{bmatrix} c \\ b \\ a \end{bmatrix} = \begin{bmatrix} 50 \\ -30 \\ 40 \end{bmatrix}$$

b) To find the consistency of the system, the rank of A and the rank of A|b should be found. Therefore, the row reduced form of A|b must be found.

$$\begin{bmatrix} 5 & -7 & 0 & | & 50 \\ 7 & 4 & 0 & | & -30 \\ -7 & 3 & -4 & | & 40 \end{bmatrix} \xrightarrow{\text{by elementary row operations}} \begin{bmatrix} 1 & 0 & 0 & | & -0.1449 \\ 0 & 1 & 0 & | & -7.2464 \\ 0 & 0 & 1 & | & -15.1812 \end{bmatrix}$$

Ranks are determined as rank(A)=3 where rank(A|b)=3. Note that there are 3 unknowns.

Since rank(A)=rank(A|b)=3, this system is consistent and has a unique solution.

CE305 Numerical Methods for Civil Engineers

Solutions of Exercise v2.0

2) $\underline{A} = \begin{vmatrix} 8 & -1 & 3 & 0 \\ 3 & 24 & 5 & -2 \\ 1 & -8 & -16 & -3 \\ 2 & 2 & 1 & 10 \end{vmatrix} = \begin{vmatrix} 1 \\ l_{21} & 1 \\ l_{31} & l_{32} & 1 \\ l & l & l & 1 \end{vmatrix} \begin{vmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ u_{22} & u_{23} & u_{24} \\ u_{33} & u_{34} \\ u_{41} & u_{42} & u_{43} & u_{44} \end{vmatrix}$

$$u_{11} = A_{11} = 8.000000$$

 $u_{12} = A_{12} = -1.000000$

$$u_{13} = A_{13} = 3.000000$$

$$u_{14} = A_{14} = 0.000000$$

$$l_{21} \cdot u_{11} = 3$$
 $l_{21} = \frac{3}{8} = 0.375000$

$$l_{21} \cdot u_{12} + u_{22} = 24$$
 $u_{22} = 24 - 0.375000 \cdot (-1) = 24.375000$
 $l_{21} \cdot u_{13} + u_{23} = 5$ $u_{23} = 5 - 0.375000 \cdot (3) = 3.875000$
 $l_{21} \cdot u_{14} + u_{24} = -2$ $u_{24} = -2 - 0.375000 \cdot (0) = -2.000000$

$$l_{21} \cdot u_{13} + u_{23} = 5$$
 $u_{23} = 5 - 0.375000 \cdot (3) = 3.875000$

$$l_{21} \cdot u_{14} + u_{24} = -2$$
 $u_{24} = -2 - 0.375000 \cdot (0) = -2.0000000$

$$l_{31} \cdot u_{11} = 1$$
 $l_{31} = \frac{1}{8} = 0.125000$

$$l_{31} \cdot u_{12} + l_{32} \cdot u_{22} = -8$$

$$l_{32} = \frac{-8 - 0.125000 \cdot (-1)}{24375000} = -0.323077$$

$$l_{31} \cdot u_{13} + l_{32} \cdot u_{23} + u_{33} = -16 \qquad u_{33} = -16 - 0.125000 \cdot 3 - (-0.323077) \cdot 3.875000 = -15.123077$$

$$l_{31} \cdot u_{14} + l_{32} \cdot u_{24} + u_{34} = -3$$

$$u_{34} = -3 - 0.125000 \cdot 0.000000 - \left(-0.323077\right) \cdot \left(-2.000000\right) = -3.646154$$

$$l_{41} \cdot u_{11} = 3 \qquad l_{41} = \frac{3}{8} = 0.375000$$

$$l_{41} \cdot u_{12} + l_{42} \cdot u_{22} = -2$$

$$l_{42} = \frac{-2 - 0.375000 \cdot (-1)}{24.375000} = -0.066667$$

$$l_{41} \cdot u_{11} = 3$$

$$l_{41} = \frac{3}{8} = 0.375000$$

$$l_{41} \cdot u_{12} + l_{42} \cdot u_{22} = -2$$

$$l_{42} = \frac{-2 - 0.375000 \cdot (-1)}{24.375000} = -0.066667$$

$$l_{41} \cdot u_{13} + l_{42} \cdot u_{23} + l_{43} \cdot u_{33} = -1$$

$$l_{43} = \frac{-1 - 0.375000 \cdot 3 - (-0.066667) \cdot 3.875000}{-15.123077} = 0.123431$$

$$l_{41} \cdot u_{14} + l_{42} \cdot u_{24} + l_{43} \cdot u_{34} + u_{44} = 10$$

$$u_{44} = 10 - 0.375000 \cdot 0 - (-0.066667) \cdot (-2.000000) - 0.123431 \cdot (-3.646154) = 10.316718$$

Solutions of Exercise v2.0

$$\underline{U} = \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ & u_{22} & u_{23} & u_{24} \\ & & u_{33} & u_{34} \\ & & & u_{44} \end{bmatrix} = \begin{bmatrix} 8.000000 & -1.000000 & 3.000000 & 0.000000 \\ 0.000000 & 24.375000 & 3.875000 & -2.000000 \\ 0.000000 & 0.000000 & -15.123077 & -3.646154 \\ 0.000000 & 0.000000 & 0.000000 & 10.316718 \end{bmatrix}$$

$$\underline{L} = \begin{bmatrix} 1 & & & \\ l_{21} & 1 & & \\ l_{31} & l_{32} & 1 \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.375000 & 1.000000 & 0.000000 & 0.000000 \\ 0.125000 & -0.323077 & 1.000000 & 0.000000 \\ 0.375000 & -0.066667 & 0.123432 & 1.000000 \end{bmatrix}$$

Check the results with MATLAB

```
>> [L U]=lu(A)
L =
   1.0000000000000000
                                                             0
   0.3750000000000000
                       1.0000000000000000
   0.12500000000000 -0.323076923076923
                                            1.0000000000000000
   0.37500000000000 -0.06666666666667
                                            0.123431671753137
                                                                 1.0000000000000000
   8.000000000000000
                       -1.0000000000000000
                                            3.000000000000000
                       24.3750000000000000
                                            3.8750000000000000
                                                                -2.0000000000000000
                                        0 -15.123076923076923
                                                                -3.646153846153846
                                                                10.316717531366566
```

To Solve

Ax = b

Where:

$$\underline{A} = \begin{bmatrix} 8 & -1 & 3 & 0 \\ 3 & 24 & 5 & -2 \\ 1 & -8 & -16 & -3 \\ 3 & -2 & -1 & 10 \end{bmatrix} \quad \underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \quad \underline{b} = \begin{bmatrix} 25 \\ 87 \\ -108 \\ -9 \end{bmatrix}$$

CE305 Numerical Methods for Civil Engineers

Solutions of Exercise v2.0

 $\underline{L}\underline{d} = \underline{b}$ solve the system for \underline{d}

$$\begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.375000 & 1.000000 & 0.000000 & 0.000000 \\ 0.125000 & -0.323077 & 1.000000 & 0.000000 \\ 0.375000 & -0.066667 & 0.123432 & 1.000000 \\ \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{bmatrix} = \begin{bmatrix} 25 \\ 87 \\ -108 \\ -9 \end{bmatrix}$$

 $d_1 = 25.000000$

$$d_2 = 87 - 0.375000 \cdot d_1 = 87 - 0.375000 \cdot 25.000000 = 77.625000$$

$$d_3 = -108 - 0.125000 \cdot d_1 - (-0.323077 \cdot d_2)$$

$$d_3 = -108 - 0.125000 \cdot 25.000000 + 0.323077 \cdot 77.625000 = -86.046148$$

$$\begin{aligned} d_4 &= -9 - 0.375000 \cdot d_1 - \left(-0.066667 \cdot d_2\right) - 0.123432 \cdot d_3 \\ d_4 &= -9 - 0.375000 \cdot 25.000000 + 0.066667 \cdot 77.625000 - 0.123432 \cdot \left(-86.046148\right) = -2.579126 \\ \underline{Ux} &= \underline{d} \qquad \text{solve the system for } \underline{x} \end{aligned}$$

$$\begin{bmatrix} 8.000000 & -1.000000 & 3.000000 & 0.000000 \\ 0.000000 & 24.375000 & 3.875000 & -2.000000 \\ 0.000000 & 0.000000 & -15.123077 & -3.646154 \\ 0.000000 & 0.000000 & 0.000000 & 10.316718 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 25.000000 \\ 77.625000 \\ -86.046148 \\ -2.579126 \end{bmatrix}$$

$$x_4 = \frac{-2.579126}{10.316718} = -0.250000$$

$$x_3 = \frac{-86.046148 - \left(-3.646154 \cdot x_4\right)}{-15.123077} = \frac{-86.046148 - \left(-3.646154 \cdot \left(-0.250000\right)\right)}{-15.123077} = 5.750000$$

2012 Fall

CE305 Numerical Methods for Civil Engineers

Solutions of Exercise v2.0

$$x_2 = \frac{77.625000 - (-2.000000 \cdot x_4) - 3.875000 \cdot x_3}{24.375000}$$
$$x_2 = \frac{77.625000 - (-2.000000 \cdot (-0.250000)) - 3.875000 \cdot 5.750000}{24.375000} = 2.250000$$

$$x_1 = \frac{25.000000 - 0.0000000 \cdot x_4 - 3.0000000 \cdot x_3 - \left(-1.0000000 \cdot x_2\right)}{8.000000}$$

$$x_1 = \frac{25.000000 - 0.000000 \cdot (-0.250000) - 3.000000 \cdot 5.750000 - (-1.000000 \cdot 2.250000)}{8.000000} = 1.250000$$

$$\underline{x} = \begin{bmatrix} 1.250000 \\ 2.250000 \\ 5.750000 \\ -0.250000 \end{bmatrix}$$

Solutions of Exercise v2.0

3. Rearranging the equations, we can get:

$$x_1 = \frac{6 - x_3 + x_2}{3}$$

$$x_2 = \frac{-4 + x_1 + 2x_3}{3}$$

$$x_3 = \frac{6 - 2x_2}{3}$$

a) By Gauss-Jacobi method, the results can be obtained as:

Iteration #	\mathbf{x}_1	\mathbf{x}_1	\mathbf{x}_1	Error
0	1.4000	0.4000	1.9000	-
1	1.5000	0.4000	2.0667	0.1667
2	1.4444	0.5444	2.0667	0.1444
3	1.4926	0.5259	1.9704	0.0963
4	1.5185	0.4778	1.9827	0.0481
5	1.4984	0.4947	2.0148	0.0321
6	1.4933	0.5093	2.0036	0.0147
7	1.5019	0.5001	1.9938	0.0098

b) By Gauss-Seidel method, the results can be obtained as:

Iteration #	\mathbf{x}_1	$\mathbf{x_1}$	\mathbf{x}_1	Error	
0	1.4000	0.4000	1.9000	ı	
1	1.5000	0.4333	2.0444	0.1444	
2	1.4630	0.5173	1.9885	0.0840	
3	1.5096	0.4955	2.0030	0.0466	
4	1.4975	0.5012	1.9992	0.0121	
5	1.5006	0.4997	2.0002	0.0031	

c) It is obvious that Gauss-Seidel is faster than Gauss-Jacobi method because of the algorithm.