Sinkhorn Distributionally Robust Optimization

Jie Wang¹, Rui Gao², and Yao Xie¹

¹Georgia Institute of Technology

²The University of Texas at Austin

2022 INFORMS Annual Meeting

Decision-Making Under Uncertainty

Risk:
$$\mathscr{R}(\theta; \mathbb{P}) = \mathbb{E}_{\mathbb{P}}[f_{\theta}(z)]$$

Optimal Risk : $\mathscr{R}(\Theta;\mathbb{P}) = \inf_{\theta \in \Theta} \ \mathbb{E}_{\mathbb{P}}[f_{\theta}(z)]$

► Available Information:

Structual : \mathbb{P} is supported on $\Omega \subseteq \mathbb{R}^d$

Statistical: $\hat{x}_1, \dots, \hat{x}_n \sim \mathbb{P}$

Nominal Problem:

- Non-parametric estimators: $\hat{\mathbb{P}}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\hat{x}_i}$.
- ▶ Kernel density estimators: $\hat{\mathbb{P}}_n = \frac{1}{n} \sum_{i=1}^n K(\hat{x}_i)$.

Wasserstein DRO

Definition: $\mathscr{P} = \{ \mathbb{P} : W(\mathbb{P}, \hat{\mathbb{P}}_n) \leq \rho \}.$

Contain each \mathbb{P} such that $W(\mathbb{P}, \hat{\mathbb{P}}_n) \leq \rho$

Worst-case risk : $\sup_{\mathbb{P}\in\mathscr{P}} \mathbb{E}_{\mathbb{P}}[f_{\theta}(z)]$

Robust Optimal Risk : $\inf_{\theta \in \Theta} \sup_{\mathbb{P} \in \mathscr{P}} \mathbb{E}_{\mathbb{P}}[f_{\theta}(z)]$

Limitations of Wasserstein DRO

Worst-case distribution is discrete:

For WDRO with n-point nominal distribution, the worst-case distribution is supported on n+1 points¹.

► Tractability for limited scenarios:

Finite-dimensional convex reformulation is available if the objective is a pointwise maximum of finitely many concave functions².

► Some cases the same performance as SAA².

¹Rui Gao and Anton J. Kleywegt. "Distributionally Robust Stochastic Optimization with Wasserstein Distance". In: arXiv preprint arXiv:1604.02199 (Apr. 2016).

²Peyman Mohajerin Esfahani and Daniel Kuhn. "Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations". In:

Mathematical Programming 171.1 (July 2017), pp. 115–166.

Sinkhorn Distance

► Sinkhorn Distance [Cuturi 2013]:

$$W_{m{arepsilon}}(\mathbb{P},\mathbb{Q}) = \inf_{m{\gamma} \in \Gamma(\mathbb{P},\mathbb{Q})} \ \left\{ \mathbb{E}_{(X,Y) \sim m{\gamma}}[c(X,Y)] + m{arepsilon} H(m{\gamma} \, | \, \mathbb{P} \otimes m{
u})
ight\}.$$

▶ Relative Entropy between γ and $\mathbb{P} \otimes v$:

$$H(\gamma \mid \mathbb{P} \otimes v) = \int \log \left(\frac{\mathrm{d}\gamma(x,y)}{\mathrm{d}\mathbb{P}(x)\,\mathrm{d}v(y)} \right) \mathrm{d}\gamma(x,y).$$

Highlights of Sinkhorn Distance

Probability distance between distributions in \mathbb{R}^d using n samples:

	MMD	Wasserstein	Sinkhorn
Computation	O(n)	$\tilde{O}(n^3)$	$ ilde{O}(n^2)$ [Altschuler, Niles-Weed,
			and Rigollet 2017]
Sample Complexity	$O(n^{-1/2})$		$O(e^{\kappa/arepsilon}n^{-1/2}arepsilon^{-\lfloor d/2 floor})$ [Genevay et al. 2019]

- Fast algorithms for implementation;
- Sharp sample complexity rate;
- ► Encourage stochastic optimal transport (helpful in some applications, e.g., domain adaptation [Courty, Flamary, and Tuia 2014]).

Main Framework

► Sinkhorn DRO:

$$\begin{split} &\inf_{\theta} \sup_{\mathbb{P} \in \mathbb{B}_{\rho,\varepsilon}(\widehat{\mathbb{P}})} \mathbb{E}_{\mathbf{z} \sim \mathbb{P}}[f_{\theta}(z)], \\ &\text{where } \mathbb{B}_{\rho,\varepsilon}(\widehat{\mathbb{P}}) = \big\{\mathbb{P}: \ W_{\varepsilon}(\widehat{\mathbb{P}},\mathbb{P}) \leq \rho \, \big\}. \end{split}$$

General DRO Models

► KL-DRO:

$$\begin{split} &\inf_{\theta} \sup_{\mathbb{P} \in \mathbb{B}^{\mathsf{KL}}_{\rho}(\widehat{\mathbb{P}})} \ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)], \\ \text{where } \mathbb{B}^{\mathsf{KL}}_{\rho}(\widehat{\mathbb{P}}) = \big\{\mathbb{P}: \ D_{\mathsf{KL}}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \big\}. \end{split}$$

General DRO Models

Wasserstein-DRO:

$$\begin{split} &\inf_{\theta} \sup_{\mathbb{P} \in \mathbb{B}_{\rho}^{\mathsf{Wasserstein}}(\widehat{\mathbb{P}})} \ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)], \\ &\text{where } \mathbb{B}_{\rho}^{\mathsf{Wasserstein}}(\widehat{\mathbb{P}}) = \big\{\mathbb{P}: \ \textit{W}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \big\}. \end{split}$$

Ongoing Outline

► Sinkhorn DRO:

$$\inf_{\theta} \sup_{\mathbb{P} \in \mathbb{B}_{\rho, \varepsilon}(\widehat{\mathbb{P}})} \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)],$$
 where $\mathbb{B}_{\rho, \varepsilon}(\widehat{\mathbb{P}}) = \big\{ \mathbb{P} : \ W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \big\}.$

- Duality Formulation for Sinkhorn DRO
- First-order Optimization Algorithm
- Properties and Numerical Results

Tractable Formulation

Assume that

- (I) $v\{z: 0 \le c(x,z) < \infty\} = 1$ for $\widehat{\mathbb{P}}$ -almost every x;
- (II) The integral $\int e^{-c(x,z)/\varepsilon} dv(z) < \infty$ for $\widehat{\mathbb{P}}$ -almost every x;
- (III) Ω is a measurable space, and the function $f: \Omega \to \mathbb{R} \cup \{\infty\}$ is measurable.

Consider the primal

$$V_{\mathrm{P}} = \sup_{\mathbb{P} \in \mathbb{B}_{\rho, \varepsilon}(\widehat{\mathbb{P}})} \mathbb{E}_{z \sim \mathbb{P}}[f(z)], \quad \text{where } \mathbb{B}_{\rho, \varepsilon}(\widehat{\mathbb{P}}) = \big\{ \mathbb{P} : \ W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \big\}. \tag{Sinkhorn DRO}$$

It admits the strong dual reformulation:

$$V_{\mathrm{D}} = \inf_{\lambda > 0} \ \lambda \overline{\rho} + \lambda \varepsilon \int_{\Omega} \log \left(\mathbb{E}_{\mathbb{Q}_{x}} \left[e^{f(z)/(\lambda \varepsilon)} \right] \right) d\widehat{\mathbb{P}}(x),$$

where

$$\overline{\rho} = \rho + \varepsilon \int_{\Omega} \log \left(\int_{\Omega} e^{-c(x,z)/\varepsilon} \, \mathrm{d} \nu(z) \right) \, \mathrm{d} \widehat{\mathbb{P}}(x),$$
$$\mathrm{d} \mathbb{Q}_{x}(z) = \frac{e^{-c(x,z)/\varepsilon}}{\int_{\Omega} e^{-c(x,u)/\varepsilon} \, \mathrm{d} \nu(u)} \, \mathrm{d} \nu(z).$$

Interpretation of Worst-case Distribution

$$\widetilde{\mathbb{P}} = \underset{\mathbb{P}}{\arg\max} \ \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f(z)]: \ W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\}$$

► For each $x \in \text{supp}(\widehat{\mathbb{P}})$, optimal transport maps it to a (conditional) distribution γ_x such that

$$\frac{\mathrm{d}\gamma_x(z)}{\mathrm{d}\nu(z)} = \alpha_x \cdot \exp\Big(\big(f(z) - \lambda^* c(x,z)\big)/(\lambda^* \varepsilon)\Big),$$

where α_x is the normalizing constant.

▶ Closed-form expression on $\tilde{\mathbb{P}}$:

$$\frac{\mathrm{d}\widehat{\mathbb{P}}(z)}{\mathrm{d}\nu(z)} = \int \alpha_x \cdot \exp\left(\left(f(z) - \lambda^* c(x,z)\right) / (\lambda^* \varepsilon)\right) \mathrm{d}\widehat{\mathbb{P}}(x).$$

Worst-case distribution $\tilde{\mathbb{P}}$ support on whole space, while W-DRO is discrete.

Toy Example: Newsvendor

Newsvendor problem: (β : Demand); ($u\min\{\beta,z\}$: Earning); ($k\beta$: Loss). $\min_{\beta} \mathbb{E}_{\mathbb{P}_*} \big[k\beta - u\min\{\beta,z\} \big], \quad k=5, u=7.$

Performance and Visualization

Newsvendor problem:

$$\min_{\beta} \mathbb{E}_{\mathbb{P}_*} [k\beta - u \min\{\beta, \zeta\}], \quad k = 5, u = 7.$$

 $\mathbb{P}_* \sim \exp(1/s)$ with $s \in \{0.25, 0.5, 0.75\}$. Access to n = 20 samples.

Connection of Sinkhorn DRO with Wasserstein DRO

When $\varepsilon \to 0$, the dual objective of Sinkhorn DRO converges into

$$\lambda \rho + \int \ \mathrm{ess\text{-}sup}_{\nu} \ \left(f(\cdot) - \lambda \, c(x, \cdot) \right) \mathrm{d}\widehat{\mathbb{P}}(x).$$

When $supp(v) = \Omega$,

Optimization Algorithm for Sinkhorn DRO

► Based on strong duality,

$$\begin{split} & \min_{\theta \in \Theta} \sup_{\mathbb{P}} \; \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] : \quad W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ & = \min_{\lambda \geq 0} \; \left\{ \lambda \overline{\rho} + \min_{\theta \in \Theta} \; \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \; \left[\lambda \varepsilon \log \left(\mathbb{E}_{z \sim \mathbb{Q}_{x}} \left[e^{f_{\theta}(z)/(\lambda \varepsilon)} \right] \right) \right] \right\} \end{split}$$

► Solve the Monte-Carlo approximated formulation³:

$$V(\lambda) pprox \min_{ heta \in \Theta} \ rac{1}{n} \sum_{i=1}^n \lambda arepsilon \log \left(rac{1}{m} \sum_{j=1}^m e^{f_{ heta}(z_{l,j})/(\lambda arepsilon)}
ight),$$

where $\{\hat{x}_i\}_{i=1}^n \sim \widehat{\mathbb{P}}$ and $\{z_{i,j}\}_{j=1}^m$ are i.i.d. samples generated from $\mathbb{Q}_{\hat{x}_i}$.

Cons: It requires $\tilde{O}(\delta^{-3})$ samples to obtain δ -optimal solution.

³Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. *Lectures on stochastic programming: modeling and theory.* SIAM, 2014.

Optimization Algorithm for Sinkhorn DRO

► Based on strong duality,

$$\begin{split} & \min_{\theta \in \Theta} \sup_{\mathbb{P}} \; \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] : \quad W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ & = \min_{\lambda \geq 0} \; \left\{ \lambda \overline{\rho} + \min_{\theta \in \Theta} \; \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \; \left[\lambda \varepsilon \log \left(\mathbb{E}_{z \sim \mathbb{Q}_{x}} \left[e^{f_{\theta}(z)/(\lambda \varepsilon)} \right] \right) \right] \right\} \end{split}$$

► Solve the Monte-Carlo approximated formulation³:

$$V(\lambda) pprox \min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \lambda \varepsilon \log \left(\frac{1}{m} \sum_{j=1}^{m} e^{f_{\theta}(z_{i,j})/(\lambda \varepsilon)} \right),$$

where $\{\hat{x}_i\}_{i=1}^n \sim \widehat{\mathbb{P}}$ and $\{z_{i,j}\}_{i=1}^m$ are i.i.d. samples generated from $\mathbb{Q}_{\hat{x}_i}$.

Cons: It requires $\tilde{O}(\delta^{-3})$ samples to obtain δ -optimal solution.

³Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. *Lectures on stochastic programming: modeling and theory.* SIAM, 2014.

Optimization Algorithm for Sinkhorn DRO: Biased Gradient Update

► Goal: to solve the optimization

$$\min_{m{ heta} \in \Theta} \ \left\{ F(m{ heta}) := \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \ \left[m{\lambda} m{arepsilon} \log \left(\mathbb{E}_{z \sim \mathbb{Q}_x} \left[e^{f_{m{ heta}}(z)/(m{\lambda} m{arepsilon})} \right] \right) \right] \right\}.$$

- ▶ Biased gradient update: for each iteration *t*,
 - ▶ Construct a gradient estimate⁴ of $F(\theta_t)$, denoted as $v(\theta_t)$;
 - ▶ Update $\theta_{t+1} = \mathbf{Proximal}_{\theta_t} (\gamma_t v(\theta_t))$.

Estimator of solution: randomly selected from (or average over) $\{\theta_t\}_{t=1}^T$

⁴Yifan Hu, Xin Chen, and Niao He. "On the Bias-Variance-Cost Tradeoff of Stochastic Optimization". In: *Advances in Neural Information Processing Systems*. Dec. 2021.

Optimization Algorithm for Sinkhorn DRO: Biased Gradient Update

Goal: to solve the optimization

$$\min_{\boldsymbol{\theta} \in \Theta} \ \left\{ F(\boldsymbol{\theta}) := \mathbb{E}_{\boldsymbol{x} \sim \widehat{\mathbb{P}}} \ \left[\lambda \boldsymbol{\varepsilon} \log \left(\mathbb{E}_{\boldsymbol{z} \sim \mathbb{Q}_{\boldsymbol{x}}} \left[e^{f_{\boldsymbol{\theta}}(\boldsymbol{z}) / (\lambda \boldsymbol{\varepsilon})} \right] \right) \right] \right\}.$$

- Biased gradient update: for each iteration t,
 - ▶ Construct a gradient estimate⁴ of $F(\theta_t)$, denoted as $v(\theta_t)$;
 - ▶ Update $\theta_{t+1} = \mathbf{Proximal}_{\theta_t} (\gamma_t v(\theta_t))$.

Estimator of solution: randomly selected from (or average over) $\{\theta_t\}_{t=1}^T$

⁴Yifan Hu, Xin Chen, and Niao He. "On the Bias-Variance-Cost Tradeoff of Stochastic Optimization". In: *Advances in Neural Information Processing Systems*. Dec. 2021.

Optimization Algorithm for Sinkhorn DRO: Biased Gradient Update

▶ Goal: to solve the optimization

$$\min_{\boldsymbol{\theta} \in \Theta} \ \left\{ F(\boldsymbol{\theta}) := \mathbb{E}_{\boldsymbol{x} \sim \widehat{\mathbb{P}}} \ \left[\lambda \varepsilon \log \left(\mathbb{E}_{\boldsymbol{z} \sim \mathbb{Q}_{\boldsymbol{x}}} \left[e^{f_{\boldsymbol{\theta}}(\boldsymbol{z}) / (\lambda \varepsilon)} \right] \right) \right] \right\}.$$

- Biased gradient update: for each iteration t,
 - ▶ Construct a gradient estimate⁴ of $F(\theta_t)$, denoted as $v(\theta_t)$;
 - ▶ Update $\theta_{t+1} = \mathbf{Proximal}_{\theta_t} (\gamma_t v(\theta_t))$.

Estimator of solution: randomly selected from (or average over) $\{\theta_t\}_{t=1}^T$

Estimators	Convex Nonsmooth	Convex Smooth	Nonconvex Smooth
Vanilla SGD	$O(\delta^{-3})$	$O(\delta^{-3})$	$O(\delta^{-6})$
V-MLMC	N/A	$\tilde{O}(\delta^{-2})$	$\tilde{O}(\delta^{-4})$
RT-MLMC	N/A	$\tilde{O}(\delta^{-2})$	$\tilde{O}(\delta^{-4})$

⁴Yifan Hu, Xin Chen, and Niao He. "On the Bias-Variance-Cost Tradeoff of Stochastic Optimization". In: *Advances in Neural Information Processing Systems*. Dec. 2021.

Numerical Results

Portfolio Optimization:

$$\begin{split} &\inf_{x} \quad \mathbb{E}_{\mathbb{P}_{*}}\left[-\langle x,\zeta\rangle\right] + \rho \cdot \mathbb{P}_{*}\text{-CVaR}_{\alpha}(-\langle x,\zeta\rangle) \\ &\text{s.t.} \quad x \in \mathscr{X} = \{x \in \mathbb{R}^{D}_{+} : \ x^{\mathrm{T}}\mathbf{1} = 1\}. \end{split}$$

Numerical Results

Portfolio Optimization:

$$\begin{split} &\inf_{x} \quad \mathbb{E}_{\mathbb{P}_{*}}\left[-\langle x,\zeta\rangle\right] + \rho \cdot \mathbb{P}_{*}\text{-CVaR}_{\alpha}(-\langle x,\zeta\rangle) \\ &\text{s.t.} \quad x \in \mathscr{X} = \{x \in \mathbb{R}^{D}_{+}: \ x^{\mathrm{T}}\mathbf{1} = 1\}. \end{split}$$

Numerical Simulation Results

Semi-supervised Learning:

- ► Train classifiers based on data with labels and without labels;
- ► Two performance measures:
 - Training error for data without labels;
 - ► Testing error.

	SAA	Sinkhorn	Wasserstein	KL-divergence
Breast Cancer	$.20 \pm .068$ $.19 \pm .073$	$.12 \pm .068$ $.11 \pm .067$	$.17 \pm .073$ $.17 \pm .075$	$.19 \pm .038$ $.19 \pm .073$
Magic	$.28 \pm .082$ $.28 \pm .064$	$.25 \pm .091$ $.25 \pm .074$	$.27 \pm .077$ $.27 \pm .058$	$.26 \pm .078$ $.27 \pm .066$
QSAR Bio	$.25 \pm .057$ $.25 \pm .062$	$.22 \pm .063$ $.22 \pm .065$	$.23 \pm .073$ $.23 \pm .079$	$.25 \pm .037$ $.25 \pm .042$
Spambase	$.19 \pm .038$ $.19 \pm .032$	$.14 \pm .046 \\ .14 \pm .036$	$.16 \pm .036$ $.16 \pm .028$	$.18 \pm .034$ $.18 \pm .042$

Take Home Message

Sinkhorn DRO is a great notion of DRO models:

- ▶ Inherit geometric properties from optimal transport;
- Absolutely continuous worst-case distribution thanks to entropic regularization;
- Improve the out-of-sample performance of Wasserstein DRO;
- Optimization by Monte Carlo approximation and first order method;
- ▶ More applications in operations research with Sinkhorn DRO can be explored!

Sinkhorn Distributionally Robust Optimization

To be Submitted to Operations Research – INFORMS PUBs

Online Available: arxiv.org/abs/2109.11926

