MACHINE LEARNING AND PRIVACY

Pei-Yuan Wu
National Taiwan University
Dept. Electrical Engineering
peiyuanwu@ntu.edu.tw

OUTLINE

- Security against Attacks that use Machine Learning
 - ➤ Model Inversion Attack
 - ➤ Membership Inference Attack
 - > Adversarial examples attack
 - ➤ Differential Privacy
 - > Homomorphic Encryption
- Homomorphic encryption example
 - ➤ Privacy-Preserving Principle Component Analysis
- Secure Multi Party Computation
- Compressive Privacy Example
- Provable defense against adversarial example attack

SECURITY AGAINST ACTIONS THAT USE MACHINE LEARNING

MACHINE LEARNING PIPELINE

Learning algorithm 0/23456789 0/23456789 0/23456789 0/23456789 0/23456789 0/23456789 0/23456789

Training data

x 4

Test input

6 3% 7 10% 8 1% 9 15%

Test output

0 2%

1 10%

2 3%

2%

4 50%

MODEL INVERSION ATTACK

Adversary Target

 \triangleright Create dataset \widehat{X} resemble X used to create model θ

Attack Scheme

- Support Vector Machine model reveals training data as support vectors.
- > Exploit confidence information:
 - Many APIs reveal confidence values along with class predictions.
 - ✓ Find training samples for a peculiar class as the input yielding highest confidence on that peculiar class.

Remedy

- Only allow black-box access to the model.
- > Confidence values not revealed or rounded.

Support vectors

Face in training data

Reconstructed
Face by model
inversion attack

Black-box face reconstruction with rounding confidence

MEMBERSHIP INFERENCE ATTACK

Adversary Target

- The Determine if a sample is in X used to create model θ .
- ✓ Example: Was Bob's record used to train ML model associated with AIDS?

Attack Scheme

Exploits the difference between predictions made on training samples versus unseen samples.

Remedy

- Coarser precision of confidence values, only reveal top k confidence values.
- > Differential privacy.

R. Shokri, M. Stronati, C. Song and V. Shmatikov, "Membership Inference Attacks Against Machine Learning Models," *2017 IEEE Symposium on Security and Privacy (SP)*, San Jose, CA, 2017, pp. 3-18.

(ε,δ) -DIFFERENTIAL PRIVACY

 The presence/absence of an entry in the training data has little effect on the trained parameters → Difficult to perform membership inference attack

Small $\varepsilon \rightarrow \theta_1$ and θ_2 has similar probability distributions

 \rightarrow Difficult to infer **X** from θ

CRYPTOGRAPHIC APPROACHES TO DISTRIBUTED MACHINE LEARNING

- In collaborative learning involving multiple data owners, we need a privacyaware distributed approach:
 - ➤ The data user should build machine learning models, while the data owners keep their data *private*.
- Special cryptographic approaches allow computing the data without "seeing" it
 - Additive homomorphic encryption:
 Addition on original data = Modular multiplication on encrypted data $Enc[x + y] = Enc[x] \otimes Enc[y]$

HOMOMORPHIC ENCRYPTION EXAMPLE: PRIVACY-PRESERVING PRINCIPLE COMPONENT ANALYSIS

PRIVACY-PRESERVING PRINCIPLE COMPONENT ANALYSIS

Dimensionality Reduction:

- Map the original high-dimensional data onto a lower-dimensional subspace.
- Reduces the noise, compresses the data, decreases the computational cost, and prevents over-fitting.

Principle Component Analysis:

- ➤ Target: Find the best sub-space that preserves most of the variance in the original data
- ➤ The principal axes are orthogonal, uncorrelated and ordered by how much variability they retain.

CENTRALIZED PCA

 PCA performs Eigen-decomposition of the center-adjusted scatter matrix

$$S = \sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^T = U\Lambda U^T$$

$$U = [u_1][u_2]...[u_M] \text{ is a unitary matrix}$$

Principle axes

is a diagonal matrix

- In centralized PCA, the original data is needed to compute the scatter matrix (suitable only for single data owner)
- Privacy-aware distributed approach is needed for multiple data owners.

DISTRIBUTED SCATTER MATRIX COMPUTATION

> Rewrite scatter matrix as follows:

$$S = \sum_{i=1}^{N} (\boldsymbol{x}_i - \boldsymbol{\mu})(\boldsymbol{x}_i - \boldsymbol{\mu})^T = \sum_{i=1}^{N} \boldsymbol{x}_i \boldsymbol{x}_i^T - N \boldsymbol{\mu} \boldsymbol{\mu}^T = \boldsymbol{R} - \frac{1}{N} \mathbf{v} \mathbf{v}^T$$
where $\boldsymbol{R} = \sum_{i=1}^{N} \boldsymbol{x}_i \boldsymbol{x}_i^T$, $\mathbf{v} = \sum_{i=1}^{N} \boldsymbol{x}_i$

 \triangleright Each data owner computes the share: $DS^{\ell} = \{R_{\ell}, \mathbf{v}_{\ell}, N_{\ell}\}$

$$m{R}_\ell = \sum_{i \in P_\ell} m{x}_i m{x}_i^T$$
 , $m{v}_\ell = \sum_{i \in P_\ell} m{x}_i$, $N_\ell = |P_\ell|$

 P_{ℓ} is the set of training samples from data owner ℓ

> The scatter matrix is aggregated from all data owners:

$$S = R - \frac{1}{N} \mathbf{v} \mathbf{v}^T$$
, $R = \sum_{\ell} R_{\ell}$, $\mathbf{v} = \sum_{\ell} \mathbf{v}_{\ell}$, $N = \sum_{\ell} N_{\ell}$

ARCHITECTURE-SCATTER MATRIX COMPUTATION

> Additive homomorphic encryption:

Addition on original data = Modular multiplication on encrypted data $Enc[x + y] = Enc[x] \otimes Enc[y]$

ARCHITECTURE-PRINCIPLE AXIS COMPUTATION

ARCHITECTURE-PRINCIPLE AXIS COMPUTATION (CONT'D)

GARBLED CIRCUIT

Alice and Bob want to compute AND gate together, but not revealing their own inputs

Alice makes the keys and locks, and lock the cases

Alice shuffles the cases and gives them to Bob the locked cases, as well as her selected key

Bob picks his key from Alice without her knowing which (through oblivious transfer)

Bob sends the only successfully decrypted message to Alice

COMPUTATION COSTS

$Enc[DS^{\ell}]$

PCA Eigen Decomposition with Garbled circuit

Dataset	Features	Classes	Avg. DO time	Avg. DU Coll. / Add time	CSP Dec. time	DU PCA Comp. time
Diabetes	8	2	0.63 sec	10 ms	0.67 sec	28.3 sec (8)
Breast Cancer	10	2	0.93 sec	ll ms	l sec	49.6 sec (8)
Australian	14	2	1.7 sec	12 ms	1.8 sec	119.1 sec (8)
German	24	2	5 sec	17 ms	5 sec	16.3 min (15)
Ionosphere	34	2	9.8 sec	24 ms	9.9 sec	43.2 min (15)
SensIT Acoustic	50	3	22.5 sec	40 ms	22.7 sec	126.7 min (15)

$$Enc\left[B + \sum_{\ell} DS^{\ell}\right] = Enc[B] \bigotimes_{\ell} Enc[DS^{\ell}]$$

CPU: i5-6600K @ 3.5GHz

RAM: 8 GB

Paillier's Cryptosystem with 1024 bits key length

No multi-threading was used

$$Dec\left[Enc\left[B + \sum_{\ell} DS^{\ell}\right]\right] = B + \sum_{\ell} DS^{\ell}$$

SECURE MULTI-PARTY COMPUTATION

SECURE MULTI-PARTY COMPUTATION (SMPC)

• Goal: For multiple parties to jointly compute a function over their inputs, while each party keeping their inputs private from other parties.

• **Example:** Suppose we wish to train a diagnostic model by data from multiple hospitals, while each hospital wishes to keep their own data private.

Suppose three people have monthly salary 5K, 100K, 22K, respectively. How can they compute the average salary while keeping their own salary in secret?

Suppose three people have monthly salary 5K, 100K, 22K, respectively. How can they compute the average salary while keeping their own salary in secret?

Step 1: Every one split their own salary into three parts.

Suppose three people have monthly salary 5K, 100K, 22K, respectively. How can they compute the average salary while keeping their own salary in secret?

22K = (5K,

Suppose three people have monthly salary 5K, 100K, 22K, respectively. How can they compute the average salary while keeping their own salary in secret?

Step 1: Every one split their own salary into three parts.

Step 2: Every one exchange their splitted parts with each other arbitrarily.

Step 3: Every one computes the sum of their received part, then compute total average.

$$12K = 1K + 5K + 6K$$

SMPC FOR MACHINE LEARNING

- SecureML: Apply SMPC to linear regression, logistic regression and neural network training using the stochastic gradient descent method.
- CrypTen: Open source framework built on PyTorch. Developed by Facebook.
- Computation cost is a BIG issue:
 Upon training a 3-layer fully-connected neural network:
 - ► Plain model: 9 ms per epoch
 - > SecureML: 4 mins per epoch
 - ➤ CrypTen: 15 mins per epoch

COMPRESSIVE PRIVACY EXAMPLE

Compressive Privacy Paradigm

Kung, S. Y. (2018). A Compressive Privacy approach to Generalized Information Bottleneck and Privacy Funnel problems. *Journal of the Franklin Institute*, *355*(4), 1846-1872.

Compressive Privacy Generative Adversarial Network

$$\max_{\textbf{G}} \left(\min_{\textbf{R}} \sum_{i} \lVert \textbf{x} - \widehat{\textbf{x}} \rVert^2 + \lambda \max_{\textbf{C}} \sum_{i} \log P(\hat{t}_i = t_i) \right)$$

G

Compressed

data

Nonlinear Lossy compression

Private Space: Clients

Intruder

CPGAN FOR BENCHWARK DATASET

Synthetic dataset:

- Sampled from Gaussian mixture data model with binary class.
- Training/testing samples: 20K/2K

• MNIST:

- Training/testing samples: 55000/10000
- Examples: 0 / 2 3 Y 5 6 7 8 9

• UCI Human activity recognition (HAR) dataset

- Given the time-series sensor record from ten identities.
- Six activities: walking, sitting, standing e.t.c.

Genki-4K dataset:

- Face images with 400 sample. Detect the expression of this image.
- Example:

COMPARISON WITH PREVIOUS WORKS

CPGAN (Gray star) outperforms other methods on privacy perspective, but slightly drops (less than 1%) the utility accuracy (trade-off).

COMPARISON WITH PREVIOUS WORKS (CONT.)

CPGAN (Gray star) outperforms other methods on privacy perspective, but slightly drops (less than 1%) the utility accuracy (trade-off).

RESULTS ON CIFAR-10 AND SVHN

CPGAN defends the reconstruction attack while achieving satisfactory utility performance

Compressive Privacy on Videos

Identity Privacy Preserving

SBU Kinect Interaction Dataset:

Training / Testing: 346 / 36

Actor **Total 13 pairs** Pair 13 Pair 1 Pushing **Kicking Action Total 8 actions**

UCF101 Dataset

Training / Testing: 9537 / 3783

Source: YouTube

Action Total 101 actions Jump, walking, playing violin, ...

Attribute
Total 7 attributes
face, race, nudity, ...

ADVERSARIAL EXAMPLE ATTACK

ADVERSARIAL EXAMPLES

- Adversary Target
 - rightharpoonup Perturbs a sample x to $x + \Delta x$ to fool model θ .
- Possible Causes
 - Curse of dimensionality
 - Adversary generates unseen images off the manifold
 - > ReLU activation function
 - ReLU network is piecewise linear, so carefully designed small noise can aggregate to alter decision.
- Action Items
 - Detection and removal of adversarial examples
 - > Robust design of neural network.

"panda"
57.7% confidence

sign($\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)$)

"nematode"

8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_{x}J(\boldsymbol{\theta}, x, y))$ "gibbon"

99.3 % confidence

An example of manifold

RECAP: NEURAL NETWORK

- Different connection leads to different network structures
- Network parameter θ : all the weights and biases in the "neurons"

ADVERSARIAL EXAMPLE ATTACK REWEDIES

Attacker's goal

Architecture

minimize $e_{y*}^{T}\hat{\mathbf{z}} - e_{y}^{targ}\hat{\mathbf{z}}$ subject to $\|\Delta x\|_p \le \epsilon$

$$e_{y*} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$e_{y^{\mathrm{targ}}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Defender methods

- Enhance robustness against specific attack. (Cat-and-mouse game)
- Pre-processing the adversarial example (May also filter out the important feature)

 $\min_{\alpha} \sum_{i=1}^{N} L(f_{\theta}(x_i + \Delta x_i), y_i)$ where Δx_i is by some specific attack.

PROVABLE DEFENSE VIA CONVEX OUTER

ADVERSARIAL POLYTOPE

Base on deep fully-connected network (with ReLU activation)

Each network layer:

- Linear transform (convex constraint)
- > ReLU (*NOT* convex constraint)

Key idea:

- Convex relaxation on cover $\mathcal{Z}_{\epsilon}(x)$ with convex polytope $\mathcal{Z}_{\epsilon}(x)$
- Any solution in dual problem is a lower bound to primal problem.

Primal problem

$$\stackrel{k}{\geq} \min \frac{\mathbf{c}^T \hat{\mathbf{z}}_k}{\text{subject to } \hat{\mathbf{z}}_k \in \tilde{\mathcal{Z}}_{\epsilon}(\mathbf{x})} = \max_{\substack{\ell \in \mathcal{X} \\ \text{convex constraints}}} \frac{\max_{\substack{\ell \in \mathcal{X} \\ \text{convex constraints}}} \frac{\min_{\substack{\ell \in \mathcal{X} \\ \text{convex constraints}}} \frac{\max_{\substack{\ell \in \mathcal{X} \\ \text{convex constraints}}} \frac{\min_{\substack{\ell \in \mathcal{X} \\ \text{convex constrain$$

dual variables

Dual problem

 $|_{\mathcal{Z}_{\epsilon}(x)}$ (convex constraints) (convex constraints)

tunable parameter $\mathcal{N}_{\epsilon}(x, y^{\text{targ}}, \alpha)$

In neural network form!

Eric Wong and J. Zico Kolter, "Provable defenses against adversarial examples via the convex outer adversarial polytope" ICML 2018

Tractable bound on worst case adversarial attack scenario.

PRIMAL PROBLEM AFTER CONVEX RELAXATION

DERIVE THE DIAL PROBLEM

Introduce dual variables

$$\hat{z}_{i+1} = W_i z_i + b_i \Rightarrow \nu_{i+1} \in \mathbb{R}^{|\hat{z}_{i+1}|}$$

$$z_1 \leq x + \epsilon \Rightarrow \xi^+ \in \mathbb{R}^{|x|}$$

$$-z_1 \leq -x + \epsilon \Rightarrow \xi^- \in \mathbb{R}^{|x|}$$

$$-z_{i,j} \leq 0 \Rightarrow \mu_{i,j} \in \mathbb{R}$$

$$\hat{z}_{i,j} - z_{i,j} \leq 0 \Rightarrow \tau_{i,j} \in \mathbb{R}$$

$$-u_{i,j} \hat{z}_{i,j} + (u_{i,j} - \ell_{i,j}) z_{i,j} \leq -u_{i,j} \ell_{i,j} \Rightarrow \lambda_{i,j} \in \mathbb{R}$$

Write down the Lagranian

$$L(\mathbf{z},\hat{\mathbf{z}},\boldsymbol{\xi},\boldsymbol{\nu},\boldsymbol{\mu},\boldsymbol{\tau},\lambda) = \mathbf{c}^{T}\hat{\mathbf{z}}_{k} + \sum_{i=1}^{k-1} \boldsymbol{\nu}_{i+1}^{T}(\hat{\mathbf{z}}_{i+1} - (\mathbf{W}_{i}\mathbf{z}_{i} + \mathbf{b}_{i})) + \boldsymbol{\xi}_{+}^{T}(\mathbf{z}_{1} - (\mathbf{x} + \boldsymbol{\epsilon})) + \boldsymbol{\xi}_{-}^{T}(-\mathbf{z}_{1} + (\mathbf{x} - \boldsymbol{\epsilon}))$$

$$+ \sum_{i=2}^{k-1} \left(\sum_{j \in \mathcal{I}_{i}^{-} \cup \mathcal{I}_{i}} \boldsymbol{\mu}_{i,j}(-z_{i,j}) + \sum_{j \in \mathcal{I}_{i}^{+} \cup \mathcal{I}_{i}} \boldsymbol{\tau}_{i,j}(\hat{z}_{i,j} - z_{i,j}) + \sum_{j \in \mathcal{I}_{i}} \lambda_{i,j}((u_{i,j} - l_{i,j})z_{i,j} - u_{i,j}\hat{z}_{i,j} + u_{i,j}l_{i,j}) \right)$$

$$\theta(\xi, \nu, \mu, \tau, \lambda) = \inf_{\mathbf{z}, \hat{\mathbf{z}}} L(\mathbf{z}, \hat{\mathbf{z}}, \xi, \nu, \mu, \tau, \lambda)$$

Dual Problem

maximize
$$\theta(\xi, \nu, \mu, \tau, \lambda) = -\xi_{+}^{T}(\mathbf{x} + \epsilon) + \xi_{-}^{T}(\mathbf{x} - \epsilon) - \sum_{i=1}^{k-1} \nu_{i+1}^{T} \mathbf{b}_{i} + \sum_{i=2}^{k-1} \lambda_{i}^{T} (\mathbf{u}_{i} \odot \mathbf{l}_{i})$$
 $\nu_{k} = -\mathbf{c}$

subject to $\mathbf{W}_{1}^{T} \nu_{2} = \xi_{+} - \xi_{-}$
 $\tau_{i} + \nu_{i} = \mathbf{u}_{i} \odot \lambda_{i}$
 $\mathbf{W}_{i}^{T} \nu_{i+1} + \tau_{i} + \mu_{i} = (\mathbf{u}_{i} - \mathbf{l}_{i}) \odot \lambda_{i}$
 $\xi_{+}, \xi_{-} \in \mathbb{R}^{d_{0}}_{\geq 0}$
 $\nu_{i} \in \mathbb{R}^{d_{i}}, \ i = 2, ..., k$

variables $\mu_{i,j} \in \mathbb{R}, \quad \tau_{i,j} = 0, \quad \lambda_{i,j} = 0, \quad j \in \mathcal{I}_{i}^{-}$
 $\mu_{i,j} \geq 0, \quad \tau_{i,j} \geq 0, \quad \lambda_{i,j} \geq 0, \quad j \in \mathcal{I}_{i}$
 $\mu_{i,j} = 0, \quad \tau_{i,j} \in \mathbb{R}, \quad \lambda_{i,j} = 0, \quad j \in \mathcal{I}_{i}^{+}$
 $\mu_{i,j} = 0, \quad \tau_{i,j} \in \mathbb{R}, \quad \lambda_{i,j} = 0, \quad j \in \mathcal{I}_{i}^{+}$

DUAL PROBLEW IN NEURAL NETWORK FORM

$$\begin{array}{lll} \text{maximize} & J_{\epsilon}(\mathbf{x}, \boldsymbol{\nu}) = -\mathbf{x}^T \hat{\boldsymbol{\nu}}_1 - \epsilon |\hat{\boldsymbol{\nu}}_1| - \sum_{i=1}^{k-1} \mathbf{b}_i^T \boldsymbol{\nu}_{i+1} + \sum_{i=2}^{k-1} \sum_{j \in \mathcal{I}_i} \frac{u_{i,j} l_{i,j}}{u_{i,j} - l_{i,j}} [\boldsymbol{\nu}_{i,j}]_+ \\ & \frac{\boldsymbol{\nu}_k = -\mathbf{c}}{\hat{\boldsymbol{\nu}}_{i,j}} & \text{input} \\ & \hat{\boldsymbol{\nu}}_{i,j} = (\mathbf{W}_i^T \boldsymbol{\nu}_{i+1})_j, & \text{inear transform} \\ & \hat{\boldsymbol{\nu}}_{i,j} = (\mathbf{W}_i^T \boldsymbol{\nu}_{i+1})_j, & \text{inear transform} \\ & \boldsymbol{\nu}_{i,j} = \begin{cases} 0 & \text{input} \\ \frac{u_{i,j}}{u_{i,j} - l_{i,j}} [\hat{\boldsymbol{\nu}}_{i,j}]_+ - \alpha_{i,j} [\hat{\boldsymbol{\nu}}_{i,j}]_- & \text{if } j \in \mathcal{I}_i^- \\ \hat{\boldsymbol{\nu}}_{i,j} & \text{if } j \in \mathcal{I}_i^+ \\ 0 \leq \alpha_{i,j} \leq 1, & j \in \mathcal{I}_i & \text{Leaky ReLU} \end{cases} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} \\ & \mathbf{v}_{i,j} = (\mathbf{v}_{i,j})_{i,j} & \mathbf{v}_{i,j}$$

ROBUST LEARNING

$$\min \mathbf{e}_{y^*}^T \hat{\mathbf{z}}_k - \mathbf{e}_{y^{\text{targ}}}^T \hat{\mathbf{z}}_k$$
subject to $\|\Delta \mathbf{x}\|_{\infty} \le \epsilon$

$$\geq \mathcal{N}_{\epsilon}(\mathbf{x}, y^{\text{targ}}, \alpha)$$

If $\mathcal{N}_{\epsilon}(x, \alpha)$ is positive for all y^{targ} , then adversary cannot fool the classifier

Standard training

$$\min_{\theta} \sum_{i=1}^{N} L(f_{\theta}(x_i), y_i)$$

Robust training

$$\max_{\theta} \min_{y^{\text{targ}}} \sum_{i=1}^{N} \mathcal{N}_{\epsilon}(\mathbf{x}, y^{\text{targ}}, \alpha)$$

TAKE AWAY MESSAGES

- MLaaS raises security issues such as
 - > Model inversion attack: Infer training data from model.
 - > Membership inference attack: Infer membership from model.
 - Adversarial example attack: Fool the classifier with unperceivable noises. and many others...
- Methods for secure machine learning:
 - > Differential Privacy: Adding noise to machine learning models.
 - > Homomorphic Encryption: Cryptographic approach. Secure but costly.
 - Compressive Privacy: Nonlinear lossy compression
 - ✓ Preserve sufficient information for machine learning service.
 - ✓ Difficult for intruder to reconstruct from compressed data.
 - ✓ CPGAN defends the reconstruction attack while achieving satisfactory utility performance.

