Homework 1

Matthew Cocci

February 9, 2014

1. (a) We want to show that, for all P,

$$U_{\alpha}(f, P) - L_{\alpha}(f, P) \le w_f(||P||) (\alpha(b) - \alpha(a))$$

By the definition of the Upper and Lower Darboux sums,

$$U_{\alpha}(f,P) - L_{\alpha}(f,P) = \sum_{i=1}^{n} M_{i}(f) \Delta \alpha_{i} - \sum_{i=1}^{n} m_{i}(f) \Delta \alpha_{i}$$
$$= \sum_{i=1}^{n} \left[M_{i}(f) - m_{i}(f) \right] \Delta \alpha_{i}$$
(1)

Now let \overline{x}_i and \underline{x}_i be the points such that

$$f(\underline{x}_i) = m_i(f) = \inf_{x \in [x_i, x_{i-1}]} f(x)$$
$$f(\overline{x}_i) = M_i(f) = \sup_{x \in [x_i, x_{i-1}]} f(x)$$

Now since \underline{x}_i and \overline{x}_i are both in $[x_{i-1}, x_i]$, we can combine this with the definition of ||P|| to get

$$|\underline{x}_i - \overline{x}_i| \le |x_i - x_{i-1}| \le ||P||$$

By the definition of the modulus of continuity,

$$|\underline{x}_i - \overline{x}_i| \le ||P|| \quad \Rightarrow \quad |f(\underline{x}_i) - f(\overline{x}_i)| \le w_f(||P||)$$

$$\Leftrightarrow \quad |M_i(f) - m_i(f)| \le w_f(||P||)$$

Substituting this fact back into 1, and using the properties of telescoping sums, we get that

$$\sum_{i=1}^{n} [M_i(f) - m_i(f)] \Delta \alpha_i \le \sum_{i=1}^{n} w_f(||P||) \Delta \alpha_i = w_f(||P||) \sum_{i=1}^{n} \Delta \alpha_i$$

$$\le w_f(||P||) (\alpha(b) - \alpha(a))$$

(b) We know f is monotone on [a, b]. Suppose that f is monotone increasing. Then given any partition, P,

$$f(x_{i-1}) \le f(c) \le f(x_i) \quad \forall i, c \in [x_{i-1}, x_i]$$

This implies that

$$M_i = f(x_i) \quad m_i = f(x_{i-1}) \qquad \forall i \tag{2}$$

Writing $U_{\alpha} - L_{\alpha}$ as above in Equation 1, we see that the expression reduces to

$$\sum_{i=1}^{n} [M_i(f) - m_i(f)] \Delta \alpha_i = \sum_{i=1}^{n} [f(x_i) - f(x_{i-1})] \Delta \alpha_i$$
 (3)

Now let's consider $w_{\alpha}(||P||)$. By definition, it is

$$w_{\alpha}\left(||P||\right) := \sup_{|x-y| \le ||P||} |\alpha(x) - \alpha(y)|$$

It's clear that for each sub-interval, $[x_{i-1}, x_i]$, we have

$$|x_i - x_{i-1}| < ||P|| \quad \forall i$$

This implies that

$$|\Delta \alpha_i| = |\alpha(x_i) - \alpha(x_{i-1})| \le w_\alpha(||P||) \quad \forall i$$

Subbing this into the right-hand side of equation 3, we can simplify using the properties of telescoping sums to get

$$\sum_{i=1}^{n} [f(x_{i}) - f(x_{i-1})] \Delta \alpha_{i} \leq \sum_{i=1}^{n} [f(x_{i}) - f(x_{i-1})] w_{\alpha} (||P||)$$

$$\leq w_{\alpha} (||P||) \sum_{i=1}^{n} [f(x_{i}) - f(x_{i-1})]$$

$$\Leftrightarrow U_{\alpha}(f, P) - L_{\alpha}(f, P) \leq w_{\alpha} (||P||) [f(b) - f(a)]$$
(4)

Finally, since α is assumed continuous on the compact interval [a, b], α is uniformly continuous on [a, b]. That means

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \text{s.t.} \quad |x - y| < \delta \quad \Rightarrow \quad |\alpha(x) - \alpha(y)| < \epsilon$$

¹ Note that I'll lose no generality in assuming that the function f was monotone increasing. If it's monotone decreasing instead, swap the values of M_i and m_i in Equation 2, and proceed in exactly the same way.

So if we can make $w_{\alpha}(||P||) < \epsilon$, by choosing our partition P such that $||P|| \le \delta$. With Equation 4, we therefore ensure that

$$U_{\alpha}(f, P) - L_{\alpha}(f, P) \le \epsilon [f(b) - f(a)] \tag{5}$$

for any arbitrary ϵ . And so by Riemann's Condition, $f \in \mathcal{R}_{\alpha}([a,b])$ because for any $\epsilon > 0$, we can ensure the upper and lower sums are within that distance of each other by choosing a sufficiently fine partition.

2.

3.

4.

5.