

Факультет экономики Курс Экономика: исследовательская программа; Лекции

ономика: исследовательская программ Статистическое моделирование и актуарные расчеты Магистратура 1 к. 2022–2023

 Курс
 Эконометрика

 Лекции
 А. А. Пересецкий,

 Семинары
 П. В. Погорелова

Д3-02

РЕШЕНИЕ

Задача 1.

Дан набор наблюдений $(x1_i, x2_i, x3_i, y_i)$, i = 1...., n. Рассматривается регрессионная модель

$$y_i = \beta_1 x 1_i + \beta_2 x 2_i + \beta_3 x 3_i + \varepsilon_i$$
, $V(\varepsilon_i) = \sigma^2$, $E(\varepsilon_i) = 0$, все ε_i независимы.

Поскольку похоже, что имеется мультиколлинеарность, рассматривается следующий метод оценивания:

$$f(\beta) = \sum_{i=1}^{n} (y_i - \beta_1 x 1_i - \beta_2 x 2_i - \beta_3 x 3_i)^2 + \lambda \cdot \sum_{i=1}^{3} \beta_i^2 \xrightarrow{\beta} \min$$

Результат $\hat{\beta}(\lambda)$ зависит от заданного параметра λ . При $\lambda=0$ полученная оценка совпадает с оценкой МНК: $\hat{\beta}(0) = \hat{\beta}_{LS} = (X'X)^{-1}X'y$.

- (a) Найдите выражение для $\hat{\beta}(\lambda)$ в матричном виде.
- **(b)** Является ли оценка $\hat{\beta}(\lambda)$ несмещенной?
- (c) Найдите выражение для матрицы ковариаций $V(\hat{eta}(\lambda))$ в матричном виде.
- (**d**) Существует ли значение параметра $\hat{\lambda}$, такое, что оценка компоненты вектора параметров $\hat{\beta}_{j}(\lambda)$ имеет дисперсию меньше, чем у МНК-оценки $\hat{\beta}_{i,IS}$?
- (е) Пусть данные приведены в Таблице 1

Таблица 1								
x1	x2	x3	y					
1	0.67	0.32	3.030211					
1	0.98	0.03	3.317133					
1	0.31	0.68	3.050206					
1	0.21	0.80	2.882887					
1	0.70	0.29	3.083099					
1	0.01	0.99	2.845725					
1	0.49	0.50	2.765274					
1	0.30	0.69	2.583751					
1	0.50	0.51	2.814222					
1	0.34	0.65	2.999865					

Эти данные сгенерированы по (истинной) модели $y_i = 2 \cdot x \mathbf{1}_i + x \mathbf{2}_i + x \mathbf{3}_i + \varepsilon_i$, $\sigma^2 = 0.09$.

- **(e1)** Найдите МНК оценки коэффициентов β_j , j = 1, 2, 3, и точные дисперсии этих оценок. Значимы ли эти коэффициенты?
- (e2) Постройте на одном рисунке графики зависимости $\hat{\beta}_j(\lambda)$, j=1,2,3 от λ в диапазоно $\lambda \in (0.0001,100)$. Используйте логарифмические шкалы.
- (е3) Постройте на одном рисунке графики зависимости $MSE(\hat{\beta}_{j}(\lambda))$ (рассчитанные с учетом истинного значения $\sigma^{2}=0.009$), j=1,2,3 от λ в диапазоне $\lambda\in(0.0001,100)$. Используйте логарифмические шкалы. (е4) Прокомментируйте полученные результаты.

Решение

(a) $f(\beta) = (y - X\beta)'(y - X\beta)' + \lambda \beta' \beta$ условия первого порядка

$$\frac{\partial f}{\partial \beta} = -2X'y + 2X'X\beta + 2\lambda\beta = 0$$
, откуда $\hat{\beta}(\lambda) = (X'X + \lambda I)^{-1}X'y$.

(b) $E(\hat{\beta}(\lambda)) = (XX + \lambda I)^{-1} X E y = (XX + \lambda I)^{-1} X X \beta = \beta - \lambda (XX + \lambda I)^{-1} \beta$, оценка смещенная.

(c)
$$V(\hat{\beta}(\lambda)) = V((X'X + \lambda I)^{-1}X'y) = (X'X + \lambda I)^{-1}X' \cdot \sigma^2 I \cdot X(X'X + \lambda I)^{-1} =$$

= $\sigma^2 (X'X + \lambda I)^{-1}X'X(X'X + \lambda I)^{-1} = \sigma^2 ((X'X + \lambda I)^{-1} - \lambda(X'X + \lambda I)^{-2})$

(d) при $\lambda \geq 0$ имеем $V(\hat{\beta}_{LS})^{-1} = \sigma^{-2} X X \leq \sigma^{-2} (X X + \lambda I) = V(\hat{\beta}(\lambda))^{-1}$, т.е. $V(\hat{\beta}(\lambda)) \leq V(\hat{\beta}_{LS})$. (e) МНК оценка:

Source	•	df	MS		01 000	= 10
Model Residual	86.4330475	3 7	28.8110158 .030355859	Prob > R-squa	F red	= 949.11 = 0.0000 = 0.9975 = 0.9965
Total	•		8.66455385		-4	= 0.9965
У	Coefficient		t :	 P> t	[95% conf	. interval]
x1 x2 x3	.1908276 3.006852	6.124555 6.134351 6.151259	0.49	0.639	-14.29144 -11.49858 -11.99904	14.6731 17.51229 17.09179

Точные значения стандартных ошибок равны

10.546

10.563

10.592

Выокое значение R2 и большие стандартные ошибки коэффициентов. $Corr(x_2,x_3) = -0.9994$. Мультиколлинеарность.

При $\lambda \approx 1.58$ MSE оценок коэффициентов β_2 , β_3 наименьшие при этом оценки β_1 , β_2 , β_3 равны соответственно 1.78, 0.95, 0.82.

Задача 2

Пусть есть модель с пространственной зависимостью: $y_i = \mu + \varepsilon_i$. $E\varepsilon_i = 0$, $V(\varepsilon_i) = \sigma^2$, $\varepsilon_i \sim iid(0, \sigma^2)$, i = 1, ..., n. Ошибки коррелированы: $Corr(\varepsilon_i, \varepsilon_k) = \rho \ge 0$, $i \ne k$.

- (a) Найдите МНК-оценку $\hat{\mu}$ параметра μ . Верно ли что $\lim_{n\to\infty}V(\hat{\mu})=0$ при $\rho>0$? Сравните дисперсии оценок при $n=10,\ \rho=0$ и при $n=10,\ \rho=0.05$. Какое количество наблюдений m надо взять при $\rho=0.05$ чтобы достичь той же точности оценки, что и при $n=10,\ \rho=0$. Интерпретируйте результат как потерю информации при наличии зависимости.
- **(b)** Возьмите оценку s^2 дисперсии ошибки $V(\varepsilon_i) = \sigma^2$. Вычислите $E(s^2)$ при $\rho = 0$ и при $\rho \neq 0$.
- (c) Пусть ρ известно. Найдите GLS оценку $\hat{\mu}_{GLS}$ параметра μ .

Решение

(a)
$$X = t' = (1 \dots 1)', y = (y_1 \dots y_n)'$$
. Meem $\hat{\mu} = (X'X)^{-1}X'y = \overline{y}$.

$$V(\hat{\mu}) = V(\bar{y}) = V\left(\frac{1}{n}\sum_{i=1}^{n}y_{i}\right) = \frac{1}{n^{2}}V\left(\sum_{i=1}^{n}y_{i}\right) = \frac{1}{n^{2}}\left(\sum_{i=1}^{n}V(y_{i}) + \sum_{i,j=1,i\neq j}^{n}Cov(y_{i},y_{j})\right) = \frac{1}{n^{2}}\left(n\sigma^{2} + n(n-1)\rho\sigma^{2}\right) = \frac{\sigma^{2}}{n^{2}}\left(n + n(n-1)\rho\right) = \frac{\sigma^{2}}{n} + \frac{n-1}{n}\rho\sigma^{2} \ge \frac{\sigma^{2}}{n} \cdot \lim_{n\to\infty}V(\hat{\mu}) = \rho\sigma^{2} > 0.$$

При
$$n=10,\ \rho=0$$
 , $V(\hat{\mu})=\frac{\sigma^2}{10}$; при $n=10,\ \rho=0.05$, $V(\hat{\mu})=1.45\frac{\sigma^2}{10}$.

Должно быть
$$\frac{\sigma^2}{m} \left(1 + 0.05(m-1) \right) \le \frac{\sigma^2}{10}$$
, или $0.05 + \frac{0.95}{m} \le 0.01$, или $m \ge \frac{0.95}{0.05} = 19$.

Поскольку ε_i и ε_i коррелированы, то при известном ε_i уже известна часть информации о ε_i .

(b)
$$s^2 = \frac{e'e}{n-k} = \frac{e'e}{n-1} = \frac{1}{n-1} \sum_{1}^{n} (y_i - \overline{y})^2$$
.
 $E\left(\sum_{1}^{n} (y_i - \overline{y})^2\right) = E\left(\sum_{1}^{n} (y_i^2 - 2\overline{y}y_i + \overline{y}^2)\right) = nE(y_i^2) + nE(\overline{y}^2) - 2nE(\overline{y}y_1) =$
 $= n(\mu^2 + \sigma^2) + n\left(\mu^2 + \frac{\sigma^2}{n} + \frac{n-1}{n}\rho\sigma^2\right) - 2n\frac{1}{n}\sum_{i=1}^{n} E(y_i y_i) =$
 $= n(\mu^2 + \sigma^2) + n\left(\mu^2 + \frac{\sigma^2}{n} + \frac{n-1}{n}\rho\sigma^2\right) - 2\left(Ey_1^2 + \sum_{i=2}^{n} E(y_i y_i)\right) =$
 $= n(\mu^2 + \sigma^2) + n\left(\mu^2 + \frac{\sigma^2}{n} + \frac{n-1}{n}\rho\sigma^2\right) - 2\left(\mu^2 + \sigma^2 + (n-1)(\mu^2 + \rho\sigma^2)\right) =$
 $= \sigma^2\left(n + 1 + (n-1)\rho - 2 - 2(n-1)\rho\right) = \sigma^2(n-1)\left(1 - \rho\right)$. Thostomy $E(s^2) = (1 - \rho)\sigma^2$.
(c) $V(\varepsilon) = \sigma^2\left((1 - \rho)I_n + \rho u'\right) = \sigma^2(1 - \rho)\left(I_n + \gamma u'\right) = \sigma^2(1 - \rho)\Omega$, $\gamma = \frac{\rho}{1 - \rho}$.

Найдем обратную матрицу в виде $\Omega^{-1} = I_n + \delta t t'$.

$$\begin{split} I_{n} &= (I_{n} + \gamma \iota \iota')(I_{n} + \delta \iota \iota') = I_{n} + (\gamma + \delta + \delta \gamma)\iota \iota' \text{, откуда } \delta = -\frac{\gamma}{1 + \gamma} = -\rho \text{ .} \\ \hat{\beta}_{GLS} &= (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y = \left(\iota'(I_{n} - \rho \iota \iota')\iota\right)^{-1}\iota'(I_{n} - \rho \iota \iota')y = (n - \rho n^{2})^{-1}(n\overline{y} - \rho n^{2}\overline{y}) = \overline{y} = \hat{\beta} \text{ .} \end{split}$$

Задача 3.

Предположим, данные порождены моделью $y_t = \alpha + \beta x_t + \varepsilon_t$, t = 1,...,n, удовлетворяеющей условиям классической регрессии. $\hat{\alpha}$, $\hat{\beta}$ — оценки метода наименьших квадратов. Оценка $\tilde{\beta}$ получена по методу наименьших квадратов при дополнительном (вообще говоря, неверном) предположении, что $\alpha = 0$.

- (a) Найдите МНК-оценку $\tilde{\beta}$. При каких условиях она является несмещенной оценкой параметра β ?
- (6) Найдите дисперсию оценки $\tilde{\beta}$, сравните ее с дисперсией оценки $\hat{\beta}$.
- (в) Обсудите, какую из двух оценок лучше использовать.

Решение

(a) МНК-оценка параметра β в регрессии y на x при ограничении $\alpha = 0$ получается минимизацией (по β)

суммы
$$\sum_{t=1}^{n} (y_t - \beta x_t)^2$$
. Дифференцируя по β и приравнивая производную нулю, получаем $\tilde{\beta} = \frac{\sum_{t=1}^{n} x_t y_t}{\sum_{t=1}^{n} x_t^2}$.

Учитывая, что
$$y_t = \alpha + \beta x_t + \varepsilon_t$$
, получаем:
$$\tilde{\beta} = \beta + \alpha \frac{\sum_{t=1}^{n} x_t}{\sum_{t=1}^{n} x_t^2} + \frac{\sum_{t=1}^{n} x_t \varepsilon_t}{\sum_{t=1}^{n} x_t^2}$$
 (1)

Из (1) следует, что $E(\tilde{\beta}) = \beta + \alpha \frac{\sum_{t=1}^{n} x_{t}}{\sum_{t=1}^{n} x_{t}^{2}}$, поэтому оценка $\tilde{\beta}$ будет несмещенной, если либо $\alpha = 0$ (что оче-

видно), либо $\sum_{t=1}^{n} x_{t} = 0$ (ортогональность вектора x вектору констант).

(б) Из (1) в силу некоррелированности ошибок ε сразу следует, что $V(\tilde{\beta}) = \frac{\sigma^2}{\sum_{t=1}^n x_t^2}$. Как известно,

$$V(\hat{\beta}) = \frac{\sigma^2}{\sum_{t=1}^n x_t^2 - n\overline{x}^2}$$
, откуда вытекает неравенство $V(\hat{\beta}) < V(\hat{\beta})$. Это не противоречит теореме Гаусса-

Маркова, поскольку оценка $\tilde{\boldsymbol{\beta}}$, вообще говоря, смещена.

(в) Можно попытаться сравнить эти оценки по среднеквадратичной ошибке. Легко видеть, что

$$MSE(\hat{\beta}) = V(\hat{\beta}) = \frac{\sigma^2}{\sum_{t=1}^n x_t^2 - n\overline{x}^2}, \quad MSE(\tilde{\beta}) = \frac{\sigma^2}{\sum_{t=1}^n x_t^2} + \alpha^2 \left(\frac{\sum_{t=1}^n x_t}{\sum_{t=1}^n x_t^2}\right)^2 = \frac{\sigma^2}{\sum_{t=1}^n x_t^2} + \alpha^2 \frac{n^2 \overline{x}^2}{\left(\sum_{t=1}^n x_t^2\right)^2}$$
Точный и

полный анализ ситуаций, когда одна из ошибок больше другой, достаточно труден, но грубые прикидки показывают, что при малом разбросе переменной x дисперсия $V(\hat{\beta})$ становится очень большой, и тогда целесообразно использовать оценку $\tilde{\beta}$.

Задача 4

Процесс, порождающий данные (DGP) имеет вид

$$y_i = \beta_0 x_i + u_i$$
, $u_i = x_i \varepsilon_i$; $x_i \sim i.i.d.N(0,1)$; $\varepsilon_i \sim i.i.d.N(0,1)$.

Кроме того, все x_i и ε_i независимы для всех i, j.

Замечание. Если $\xi \sim N(0, \sigma^2)$, то $E(\xi) = E(\xi^3) = 0$, $E(\xi^2) = \sigma^2$, $E(\xi^4) = 3\sigma^4$.

- (a) Покажите, что ошибка u_i условно гетероскедастична (найдите $V(u \mid x)$).
- **(b)** Найдите $p \lim_{N \to \infty} \frac{1}{N} X X$.
- (c) Найдите $\sigma_0^2 = V(u_i)$. (Учитывая все случайные переменные в модели).
- (d) Найдите $p \lim \frac{1}{N} X' \Omega_0 X = \lim \frac{1}{N} E(X' \Omega_0 X)$, где $\Omega_0 = diag\{V(u_i \mid x_i)\}$.
- (e) Используя полученные результаты найдите асимптотическую дисперсию МНК оценки $\hat{\beta}_{oLS}$, (т.е. дисперсию предельного распределения $\sqrt{N}(\hat{\beta}_{oLS}-\beta_0)$) по стандартной формуле, игнорируя гетероскедастичность. Ответ должен быть численным.
- (f) Теперь найдите дисперсию предельного распределения $\sqrt{N}(\hat{\beta}_{OLS} \beta_0)$ учитывая гетероскедастичность. Ответ должен быть численным.
- (g) Как полученное различие в результатах (e) и (f) соответствует вашим ожиданиям?
- (h) Приведите код STATA, который генерирует данные в соответствии с DGP в условии, с N = 100.

Оценивая регрессию с предположением гомоскедастичности найдите оценку для (е).

Оценивая регрессию с робастными стандартными ошибками найдите оценку для (f).

Сравните с вашими теоретическими результатами.

Повторите для N = 1000.

Решение

(a) The error u is conditionally heteroskedastic, since $V(u \mid x) = V(x\varepsilon \mid x) = x^2V(\varepsilon \mid x) = x^2V(\varepsilon) = x^2 \cdot 1 = x^2$. which depends on the regressor x.

- (b) For scalar regressor $N^{-1}X'X = N^{-1}\sum_{i}x_{i}^{2}$. Here x_{i}^{2} are i.i.d. with mean 1 (since $E(x_{i}^{2}) = E(x_{i}^{2}) E(x_{i})^{2} = V(x_{i}) = 1$). Applying a LLN $p \lim N^{-1}X'X = p \lim N^{-1}\sum_{i}x_{i}^{2} = E(x_{i}^{2}) = 1$, so $M_{xx} = 1$.
- (c) $V(u) = V(x\varepsilon) = E[(x\varepsilon)^2] [E(x\varepsilon)]^2 = E(x^2)E(\varepsilon^2) [E(x)E(\varepsilon)]^2 = V(x)V(\varepsilon) 0 = 1$, where use independence of x and ε and fact that here $Ex = E\varepsilon = 0$.
- (d) For scalar regressor and diagonal Ω_0 , $N^{-1}X'\Omega_0X = \frac{1}{N}\sum_{i=1}^N \sigma_i^2 x_i^2 = \frac{1}{N}\sum_{i=1}^N x_i^4$. Here x_i^4 are i.i.d. with mean 3

(fourth central moment of normal is $3\sigma^4 = 3 \cdot 1 = 3$). Applying a LLN,

$$p \lim N^{-1} X' \Omega_0 X = p \lim \frac{1}{N} \sum_{i=1}^N x_i^4 = E(x_i^4) = 3$$
, so $M_{x\Omega_0 x} = 3$.

- (e) Default OLS result $\sqrt{N}(\hat{\beta}_{OLS} \beta) \xrightarrow{D} N(0, \sigma^2 M_{xx}^{-1}) = N(0, 1)$.
- (f) White OLS result $\sqrt{N}(\hat{\beta}_{OLS} \beta) \xrightarrow{D} N(0, \sigma^2 M_{xx}^{-1} M_{x\Omega x} M_{xx}^{-1}) = N(0, 3)$.
- (g) Yes. Expect that failure to control for conditional heteroskedasticity when should control for it will lead to inconsistent standard errors, though a priori the direction of the inconsistency is not known. That is the case here. What is unusual compared to many applications is that there is a big dimerence in this example the true variance is three times the default estimate and the true standard errors are $\sqrt{3}$ times larger.