$\iiint \int \left(\frac{1}{6} \left(-4 t \underbrace{1}_{3} \mathcal{A}^{\alpha \prime}_{\alpha} \mathcal{A}_{i}^{\theta} + 6 \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} + 6 f^{\alpha \beta}_{3} \tau_{i} (\Delta + \mathcal{K})_{\alpha \beta} + 8 \underbrace{1}_{3} \mathcal{A}_{\alpha \theta}^{\theta} \partial_{i} f^{\alpha \prime}_{i} - 15 \underbrace{15}_{3} \partial_{\beta} \mathcal{A}_{i}^{\theta}_{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}_{\beta \theta}^{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} - 8 \underbrace{15}_{3} \mathcal{A}_{i}^{\theta}_{\theta} \partial^{i} f^{\alpha \gamma}_{\alpha} + 4 \underbrace{15}_{3} \mathcal{A}_{i}^{\theta}_{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}_{\beta \theta}^{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} - 8 \underbrace{15}_{3} \mathcal{A}_{i}^{\theta}_{\theta} \partial^{i} f^{\alpha \gamma}_{\alpha} + 4 \underbrace{15}_{3} \mathcal{A}_{i}^{\theta}_{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}_{\beta \theta}^{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} - 8 \underbrace{15}_{3} \mathcal{A}_{i}^{\theta}_{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}_{\beta \theta}^{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} - 8 \underbrace{15}_{3} \mathcal{A}_{i}^{\theta}_{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} - 8 \underbrace{15}_{3} \mathcal{A}_{i}^{\theta}_{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}_{\beta \theta}^{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} - 8 \underbrace{15}_{3} \mathcal{A}_{i}^{\theta}_{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}_{\beta \phi}^{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} - 8 \underbrace{15}_{3} \mathcal{A}_{i}^{\theta}_{\theta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}_{\beta \phi}^{\theta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} - 8 \underbrace{15}_{3} \mathcal{A}_{i}^{\theta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} - 8 \underbrace{15}_{3} \mathcal{A}_{i}^{\theta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}_{\beta \phi}^{\theta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}_{\beta \phi}^{\theta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}_{\beta \phi}^{\theta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}_{\beta \phi}^{\phi}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}^{\alpha \beta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}^{\alpha \beta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}^{\alpha \beta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\beta} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}^{\alpha \beta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\beta} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}^{\alpha \beta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\beta} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}^{\alpha \beta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\beta} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}^{\alpha \beta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\beta} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}^{\alpha \beta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\beta} + 9 \underbrace{15}_{3} \partial_{i} \mathcal{A}^{\alpha \beta}_{\beta} \partial^{i} \mathcal{A}^{\alpha \beta}_{\beta} \partial^{i$ $t. \frac{\partial_{i} f^{\theta}}{\partial_{i} f^{\alpha}} \frac{\partial_{i} f^{\alpha}}{\partial_{i} g^{\alpha}} + 9 \frac{\partial_{i} g^{\alpha}}{\partial_{i} g^{\alpha}} \frac{\partial_{i} g^{\alpha}}{\partial_{i}$ $8\,t.\,\partial^{i}f^{\alpha}_{\alpha}\partial_{\theta}f^{\beta}_{\alpha} + 8\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,i\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,\theta\,i}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,i} + 4\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 24\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 24\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,\theta}\partial^{\alpha}\mathcal{A}^{\alpha\beta\,i} - 24\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,\theta}\partial^{\alpha}\mathcal{A}^{\alpha\beta\,i} - 24\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,\theta}\partial^{\alpha}\mathcal{A}^{\alpha\beta\,i} - 24\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,\theta}\partial^{\alpha}\mathcal{A}^{\alpha\beta\,i} - 24\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,\theta}\partial^{\alpha}\mathcal{A}^{\alpha\beta\,i} - 24\,r.\,\partial_{\beta}\mathcal{A}_{$ $2\,r_{2}\,\partial_{i}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\,+\,2\,r_{2}\,\partial_{\theta}\mathcal{A}_{\alpha\beta\,i}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\,-\,4\,r_{2}\,\partial_{\theta}\mathcal{A}_{\alpha\,i\,\beta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\,+\,4\,t_{2}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+\,2\,t_{2}\,\partial_{\alpha}f_{i\,\theta}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}$ **Wave operator**

$t_{3} - i \sqrt{2} k t_{3} = 0$

 $\| \cdot \|_{f} \| + i \sqrt{2} kt. \quad 2k^{2}t. \quad 0$

PSALTer results panel

^{0⁻} Æ [∥] †	0	0	0	$k^2 r \cdot + t \cdot 2$	$\overset{1^{+}}{\boldsymbol{\cdot}}\mathcal{G}$	${\mathbb R}^{\parallel}{}_{\alpha\beta}$	${}^{1^+}_{\bullet}\mathcal{A}^{\perp}{}_{\alpha\beta}$	$f^{\dagger}f^{\dagger}_{\alpha\beta}$	${}^{1^{\scriptscriptstyle{-}}}_{\boldsymbol{\cdot}}\mathcal{A}^{\parallel}{}_{\alpha}$	${\stackrel{1}{\cdot}}\mathscr{R}^{\perp}{}_{\alpha}$	$ f^{-}f^{\parallel}_{\alpha}$	$^{1}_{\bullet}f^{\perp}{}_{\alpha}$			
				$^{1^{+}}_{\cdot}\mathcal{A}^{\parallel}$ † $^{\alpha\beta}$	2	t. 3	$\frac{\sqrt{2} t_{\frac{1}{2}}}{3}$	$\frac{1}{3} i \sqrt{2} kt.$	0	0	0	0			
				$^{1^{+}}_{\cdot}\mathcal{A}^{\perp}$ † $^{\alpha\beta}$		$\frac{\overline{2} \ t_{\frac{2}{2}}}{3}$	$\frac{t}{3}$	$\frac{1}{3} i \sqrt{2} kt.$ $\frac{ikt.}{2}$	0	0	0	0			
				$f^{\dagger}f^{\dagger}$	$-\frac{1}{3}i$	$\sqrt{2} kt$	$-\frac{1}{3} i k t_{2}$	$\frac{k^2 t}{3}$	0	0	0	0			
				$^{1}\mathcal{A}^{\parallel}$ †		0	0	0	$\frac{1}{6} \left(-9 k^2 r_{3} + 4 t_{3} \right)$	$-\frac{\sqrt{2}\ t_{\frac{1}{3}}}{3}$	0	$-\frac{2}{3}ikt$			
				$^{1}{\cdot}\mathcal{A}^{\perp}\dagger^{lpha}$		Θ	0	0	$-\frac{\sqrt{2}\ t_3}{3}$	$\frac{t_{3}}{3}$	0	$\frac{1}{3} i \sqrt{2} kt$			
				$^{1} \cdot f^{\parallel} \uparrow^{\alpha}$		0	0	0	0	0	0	0			
				$f^{\perp}f^{\perp}$		Θ	0	0	$\frac{2ikt.}{3}$	$-\frac{1}{3} i \sqrt{2} kt_{3}$	0	$\frac{2 k^2 t}{3}$	$^{2^{+}}_{\bullet}\mathcal{A}^{\parallel}_{\alpha\beta}$	$2^+_{\bullet}f^{\parallel}_{\alpha\beta}$	$^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
												${}^{2^{+}}_{\bullet}\mathcal{A}^{\parallel}$ † lphaeta	$-\frac{3k^2r_{\frac{1}{3}}}{2}$	0	0
												$^{2^{+}}_{\bullet}f^{\parallel}$ † $^{\alpha\beta}$	0	0	0
												${}^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}$ † ${}^{\alpha\beta\chi}$	0	0	0
Saturated propagator															
	0⁺ _σ ∥ 1	0 ⁺ τ i √2 k	0° τ [⊥]												
°• σ †	$(1+2k^2)^2t$	$\frac{1}{3} - \frac{i \sqrt{2} k}{(1+2k^2)^2 t}$	0	Θ											

o⁻ σ∥ †

• • •	$(3+k^-)$ t .	$(3+k^2)^2 t_{\frac{1}{2}}$	$(3+k^2)^2 t_{\frac{1}{2}}$	Ü	· ·	Ŭ	ŭ	l
$^{1^{+}}\sigma^{\perp}$ †	$\beta = \frac{3\sqrt{2}}{(3+k^2)^2 t_2}$ $\beta = -\frac{3i\sqrt{2}k}{(3+k^2)^2 t_2}$	$\frac{3}{(3+k^2)^2 t_{\cdot 2}}$	$\frac{3 i k}{(3+k^2)^2 t}$	0	0	0	0	
$\overset{1^+}{\cdot} \tau^{\parallel} + \overset{\alpha}{\cdot}$	$\beta = \frac{3 i \sqrt{2} k}{(3+k^2)^2 t_{\frac{1}{2}}}$	$-\frac{3 i k}{(3+k^2)^2 t}$	$\frac{3 k^2}{(3+k^2)^2 t_{\frac{1}{2}}}$	0	0	Θ	0	
$\overset{1}{\cdot}\sigma^{\parallel}$ †	Θ	Θ	0	$-\frac{2}{3 k^2 r_{\cdot 3}}$	$-\frac{2\sqrt{2}}{3k^2r_{3}+6k^4r_{3}}$	0	$-\frac{4 i}{3 k r_{.} + 6 k^{3} r_{.}}$	
¹- σ¹ †	Θ	0	0	$-\frac{2\sqrt{2}}{3k^2r_{3}+6k^4r_{3}}$	$\frac{9 k^2 r_3 - 4 t_3}{3 (k+2 k^3)^2 r_3 t_3}$	0	$\frac{i \sqrt{2} \left(9 k^2 r_3 - 4 t_3\right)}{3 k \left(1 + 2 k^2\right)^2 r_3 t_3}$	
1-τ †	Θ	0	0	Θ	0	0	0	
1- r [⊥] †	ο 0	0	0	$\frac{4i}{3kr.+6k^3r.}$	$-\frac{i\sqrt{2}\left(9k^2r_3-4t_3\right)}{3k\left(1+2k^2\right)^2r_3t_3}$	0	$\frac{2\left(9k^2r_{3}-4t_{3}\right)}{3\left(1+2k^2\right)^2r_{3}t_{3}}$	2 ⁺ σ α
							$^{2^{+}}\sigma^{\parallel}$ $+^{\alpha\beta}$	$-\frac{2}{3 k^2 r}$
							$\frac{2^+}{\bullet}\tau^{\parallel} \uparrow^{\alpha\beta}$	0

Source constraints

Spin-parity form	Covariant form	Multiplicities
⁰⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = 0$	1
$-2 i k^{0^+} \sigma^{\parallel} + 0^+ \tau^{\parallel} = 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$\frac{2 i k \cdot 1^{-} \sigma^{\perp}^{\alpha} + \cdot 1^{-} \tau^{\perp}^{\alpha} == 0}{$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- _τ ^α == Θ	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3
$ \frac{1}{i k 1_{\bullet}^{+} \sigma \ ^{\alpha \beta} + 1_{\bullet}^{+} \tau \ ^{\alpha \beta}} = 0 $	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta+\mathcal{K}\right)^{\beta\alpha} + \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi}$	
$\frac{1^* \sigma^{\parallel}^{\alpha\beta}}{} = \frac{1^* \sigma^{\perp}^{\alpha\beta}}{}$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\chi \alpha \beta} = 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi}$	3
$\frac{2^{-} \sigma^{\parallel}^{\alpha\beta\chi}}{2^{-} \sigma^{\parallel}} = 0$	$ 3 \ \partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} + 3 \ \partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta}_{ \ \delta} + 2 \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4 \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2 \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2 \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 2 \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 2 \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\delta} + 2 \ \partial_{\epsilon}\partial^{\kappa}\partial^{\chi}\sigma^{\delta\alpha\delta} + 2 \ \partial_{\epsilon}\partial^{\kappa}\partial^{\kappa}\sigma^{\delta\alpha\delta} + 2 \ \partial_{\epsilon}\partial^{\kappa}\sigma^{\delta\alpha\delta} + 2 \ \partial_{\epsilon}\partial^{\kappa}\partial^{\kappa}\sigma^{\delta\alpha\delta} + 2 \ \partial_{\epsilon}\partial^{\kappa}\sigma^{\delta\alpha\delta} + 2 \ \partial_{\epsilon}\partial^{\kappa}\partial^{\kappa}\sigma^{\delta\alpha\delta} + 2 \ \partial_{\epsilon}\partial^{\kappa}\partial^{\kappa}\sigma^{$	5
	$4 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 3 \ \eta^{\beta \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{\ \delta} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3 \ \eta^{\beta \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{\ \delta} = 0$	
	$3 \ \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \ \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \ \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{ \delta} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \beta}_{ \delta}$	
2 ⁺ τ ^{αβ} == 0	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}_{\tau} (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}_{\tau} (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi \tau} (\Delta + \mathcal{K})^{\chi \delta} = 0$	5
	$ 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}_{\tau} (\Delta + \mathcal{K})^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}_{\tau} (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi} $	
Total expected gau	ge generators:	24

Massive spectrum

		2						
	Square mass:	$-\frac{\frac{t}{2}}{\frac{r}{2}} > 0$						
	Spin:	0						
	Parity:	Odd						
•	Massless spectrum							
Massicss spectiani								

(No particles)

Unitarity conditions

r. < 0 & t. > 0