IQR method:

Interquartile range (IQR) method for outlier detection

- 1. Use when data is skewed (Left or Right).
- 2. Use box plot for detect outliers.
- 3. If column has missing values fill them first.

Import Libaraies:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Load Dataset:

```
In [108... df=pd.read_csv('../Data/placement.csv')
    df.head()
```

Out[108...

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0

dtypes: float64(2), int64(1)
memory usage: 23.6 KB

	cgpa	placement_exam_marks	placed
count	1000.000000	1000.000000	1000.000000
mean	6.961240	32.225000	0.489000
std	0.615898	19.130822	0.500129
min	4.890000	0.000000	0.000000
25%	6.550000	17.000000	0.000000
50%	6.960000	28.000000	0.000000
75%	7.370000	44.000000	1.000000
max	9.120000	100.000000	1.000000

firslty check is that the column is normal or skewed.

```
In [110... plt.figure(figsize=(5,5))
    ax=plt.subplot(1,1,1)
    sns.histplot(df['placement_exam_marks'],kde=True)
    plt.show()
```

c:\Users\Admin\miniconda3\envs\main\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):


```
Out[111... <Axes: >
```


So we see the data is right skewed and the outliers are lies on the left side.

```
In [112... print('Mean value',df['placement_exam_marks'].mean())
    print('Std value',df['placement_exam_marks'].std())
    print('Min value',df['placement_exam_marks'].min())
    print('Max value',df['placement_exam_marks'].max())

Mean value 32.225
```

Std value 19.13082233892108 Min value 0.0

Find the IQR

Max value 100.0

- 1. Find the 25th percentile.
- 2. find the 75th percentile.
- 3. IQR = 75th percentile 25th percentile.

```
In [113...
    percentile25=df['placement_exam_marks'].quantile(0.25)
    print('25th percentile is',percentile25)

    percentile75=df['placement_exam_marks'].quantile(0.75)
    print('75th percentile is',percentile75)

25th percentile is 17.0
```

The IQR is 27.0

75th percentile is 44.0

Now find the upper and lower limit

```
Formula for upper limit = Q3 + 1.5 * IQR for lower limit = Q1 - 1.5 * IQR
```

```
upper_limit=percentile75 + 1.5 * IQR
print('The upper limit is',upper_limit)

lower_limit=percentile25 - 1.5 * IQR
print('The Lower limit',lower_limit)

The upper limit is 84.5
```

Now find the outliers

The Lower limit -23.5

```
In [116...
df[df['placement_exam_marks'] > upper_limit]
df[df['placement_exam_marks'] < lower_limit]</pre>
```

Trimming data

```
In [118...
trim = df[df['placement_exam_marks'].between(lower_limit, upper_limit)]
trim
```

Out[118...

Out[116...

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
•••			
995	8.87	44.0	1
996	9.12	65.0	1
997	4.89	34.0	0
998	8.62	46.0	1
999	4.90	10.0	1

cgpa placement_exam_marks placed

985 rows × 3 columns

```
In [131... plt.figure(figsize=(8,8))
    ax=plt.subplot(2,2,1)

sns.histplot(df['placement_exam_marks'],kde=True)

ax=plt.subplot(2,2,2)
sns.boxplot(df['placement_exam_marks'],orient='h')
```

```
ax=plt.subplot(2,2,3)
sns.histplot(trim['placement_exam_marks'],kde=True)
ax=plt.subplot(2,2,4)
sns.boxplot(trim['placement_exam_marks'],orient='h')
```

c:\Users\Admin\miniconda3\envs\main\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

c:\Users\Admin\miniconda3\envs\main\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

Out[131... <Axes: >

