Jacob John 16BCE2205

30th October 2017

Experiment #08 - VERTICAL DEFLECTION IN SWIMMING POOL DIVING BOARD

Aim: Finding the vertical deflection in a cantilever beam subjected to variable load and material properties and visualization of it.

Methodology:

Solving governing equation of vertical deflection in swimming pool diving board using Laplace transform.

Laplace Transform

The Laplace Transform of a function f(t), defined for all real numbers t > 0 is the function F(s) defined by:

$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt = F(s)$$

Inverse laplace transform

The inverse Laplace Transform of F(s) is defined by:

$$f(t) = L^{-1}[F(s)] = \int_0^\infty e^{-st} F(s) dt$$

MATLAB syntax

laplace(f)	Returns the Laplace transform of f using the default independent variable t and the default transformation variable s.
laplace(f, transVar)	Uses the specified transformation variable transVar instead of s.
laplace(f, var, transVar)	Uses the specified independent variable var and transformation variable transVar instead of t and s respectively.
ilaplace(F)	Returns the inverse Laplace transform of F using the default independent variable s for the default transformation variable t. If F does not contain s, ilaplace

1

	uses symvar.
ilaplace(F, transVar)	Uses the specified transformation variable transVar instead of t.
<pre>ilaplace(F, var, transVar)</pre>	Uses the specified independent variable var and transformation variable transVar instead of s and t respectively.
heaviside(t - a)	To input the heaviside's unit step function $H(t-a)$.
dirac(t - a)	To input the dirac delta function $\delta(t-a)$.
<pre>laplace(diff(f(t), t), t, s)</pre>	laplace(diff(f(t), t), t, s)

Example 1:

Write the MATLAB code which computes the Laplace Transform of

$$f(t) = \begin{cases} t^2, & t < 2, \\ t - 1, & 2 < t < 3, \\ 7, t > 3. \end{cases}$$

```
clear all
clc
syms t
f=input('Enter the function in terms of t: ');
F=laplace(f );
F=simplify(F)
```

Output

```
Enter the function in terms of t: 2 * (heaviside(t - 0) - heaviside(t - 2)) + (t - 1) * (heaviside(t - 2) - heaviside(t - 3)) + 7 * (heaviside(t - 3))

F = (2*s + exp(-2*s) - exp(-3*s) - s*exp(-2*s) + 5*s*exp(-3*s))/s^2
```

Jacob John 16BCE2205

30th October 2017

Example 2:

```
Solve y'' + 2y' + 10y = 1 + 5(t - 5), y(0) = 1, y'(0) = 2
```

```
clc
clear all
syms t s Y
y2=diff(sym('y(t)'),2);
y1=diff(sym('y(t)'),1);
y0=sym('y(t)');
a = input('The Coefficient of D2y = ');
b = input('The Coefficient of Dy = ');
c = input('The Coefficient of y = ');
nh = input('Enter the non homogenous part = ');
eqn=a*y2+b*y1+c*y0-nh;
LTY=laplace(eqn,t,s);
if (a==0)
d = input('The initial value at 0 is ');
LTY=subs(LTY, 'laplace(y(t), t, s)', 'y(0)', Y, d)
d = input('The initial value at 0 is ');
e = input('The initial value at 0 is ');
LTY=subs(LTY, {'laplace(y(t), t, s)', 'y(0)', 'D(y)(0)'}, {Y,d,e})
eq=collect(LTY,Y);
Y=simplify(solve(eq,Y));
y=simplify(ilaplace(Y,s,t))
```

```
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
 In sym>convertChar (line 1491)
 In sym>tomupad (line 1243)
 In sym (line 199)
 In experiment7_2 (line 4)
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
 In sym>convertChar (line 1491)
 In sym>tomupad (line 1243)
 In sym (line 199)
 In experiment7_2 (line 5)
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
 In sym>convertChar (line 1491)
 In sym>tomupad (line 1243)
 In sym (line 199)
 In experiment7_2 (line 6)
The Coefficient of D2y = 1
```

Jacob John

```
The Coefficient of Dy = 2
The Coefficient of y = 10
Enter the non homogenous part = 1+5*dirac(t-5)
The initial value at 0 is 1
The initial value at 0 is 2
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
  In sym>convertChar (line 1491)
  In sym>tomupad (line 1243)
  In sym (line 199)
  In sym/subs>@(x)sym(x) (line 156)
  In sym/subs>normalize (line 156)
  In sym/subs>mupadsubs (line 147)
  In sym/subs (line 135)
  In experiment7_2 (line 19)
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
  In sym>convertChar (line 1491)
  In sym>tomupad (line 1243)
  In sym (line 199)
  In sym/subs>@(x)sym(x) (line 156)
  In sym/subs>normalize (line 156)
  In sym/subs>mupadsubs (line 147)
  In sym/subs (line 135)
  In experiment7_2 (line 19)
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
  In sym>convertChar (line 1491)
  In sym>tomupad (line 1243)
  In sym (line 199)
  In sym/subs>@(x)sym(x) (line 156)
  In sym/subs>normalize (line 156)
  In sym/subs>mupadsubs (line 147)
  In sym/subs (line 135)
  In experiment7_2 (line 19)
LTY =
10*Y - s - 5*exp(-5*s) + 2*Y*s + Y*s^2 - 1/s - 4
(9*\cos(3*t)*\exp(-t))/10 + (29*\sin(3*t)*\exp(-t))/30 + (5*heaviside(t - 5)*\exp(5 - t)*\sin(3*t)
-15))/3 + 1/10
```

Jacob John 16BCE2205

30th October 2017

Mathematical Model

Assumptions:

- Stress is proportional to strain. Thus, the equation is valid only for beams that are not stressed beyond the elastic limit.
- The curvature is always small.
- Any deflection resulting from the shear deformation of the material or shear stresses is neglected.
- For the deflected shape of the beam, the slope α at any point is defined as $\tan \alpha = dy/dx$. Assuming $\tan \alpha = \alpha$ we can write $\alpha = dy/dx$.
- The curvature of a plane curve at a point can be expressed as: $\frac{1}{\rho} = \frac{y''}{(1+y^2)^{3/2}}$
- In the elastic curve of beam dy/dx is very small so we can neglect its higher order terms. $1/\rho = d^2y/d^2x$
- From the theory of elasticity, if x is the distance of the section from the left end of the beam then $1/\rho = M(x)/EI$ where is the M-Bending moment, E-Modulus of Elasticity and I-Moment of inertia of the cross section.
- $d^2y/d^2x = -M(x)/EI$ is the governing equation for an elastic curve.

When a beam supports a distributed load w(x) then dM/dx = V(Shear force) and , dV/dx = -w Therefore $d^4y/d^4x = w(x)/EI$,

subjected to the boundary conditions y(0) = y'(0) = y''(L) = y'''(L) = 0.

Note. y''(L) = 0 because there is no bending moment and y'''(L) = 0 because there is no shear at that point.

MATLAB code:

```
clc;clear all

syms x s C D Y

y4 = diff(sym('y(x)'), 4);
y0 = sym('y(x)');

L = input('Enter the length of the beam: ');
E = input('Enter Modulus of elasticity: ');
I = input('Enter Moment of inertia of the cross section: ');
```

16BCE2205

Jacob John

```
w = x\% input('Enter distributive load w(x): ');
eqn = E*I*y4 - w;
LTY = laplace(eqn, x, s)
% a = input('Enter y(0): ');
% b = input('Enter y''(0): ');
% c = input('Enter y'''(L): ');
% d = input('Enter y''''(L): ');
a = 0; b = 0; c = 0; d = 0;
LTY = subs(LTY, {'laplace(y(x), x, s)', 'y(0)', 'D(y)(0)', 'D(D((y)))(0)',
'D(D(D((y))))(0)'}, {Y, a, b, C, D})
eq = collect(LTY, Y)
Y = simplify(solve(eq, Y))
y = simplify(ilaplace(Y, s, x))
eq1 = subs(diff(y, x, 2), x, L);
eq2 = subs(diff(y, x, 3), x, L);
[C, D] = solve(eq1, eq2)
def = subs(y);
gen = subs(def, heaviside(x - L), 0)
ezplot(-gen, [0, L])
title('Vertical deflection in cantilever beam')
xlabel('Length of the beam')
ylabel('Deflection')
```

Output:

```
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
 In sym>convertChar (line 1491)
  In sym>tomupad (line 1243)
  In sym (line 199)
  In experiment7_3 (line 5)
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
  In sym>convertChar (line 1491)
  In sym>tomupad (line 1243)
  In sym (line 199)
  In experiment7_3 (line 6)
Enter the length of the beam: 3
Enter Modulus of elasticity: 2.1*(10^11)
Enter Moment of inertia of the cross section: 4.5*(10^-11)
w =
```

Jacob John

```
LTY =
(189*s^4*laplace(y(x), x, s))/20 - (189*D(D(D(y)))(0))/20 - (189*s^3*y(0))/20 - 1/s^2 -
(189*s*D(D(y))(0))/20 - (189*s^2*D(y)(0))/20
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
  In sym>convertChar (line 1491)
  In sym>tomupad (line 1243)
  In sym (line 199)
  In sym/subs>@(x)sym(x) (line 156)
  In sym/subs>normalize (line 156)
  In sym/subs>mupadsubs (line 147)
  In sym/subs (line 135)
  In experiment7_3 (line 22)
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
  In sym>convertChar (line 1491)
  In sym>tomupad (line 1243)
  In sym (line 199)
  In sym/subs>@(x)sym(x) (line 156)
  In sym/subs>normalize (line 156)
  In sym/subs>mupadsubs (line 147)
  In sym/subs (line 135)
  In experiment7 3 (line 22)
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
  In sym>convertChar (line 1491)
  In sym>tomupad (line 1243)
  In sym (line 199)
  In sym/subs>@(x)sym(x) (line 156)
  In sym/subs>normalize (line 156)
  In sym/subs>mupadsubs (line 147)
  In sym/subs (line 135)
  In experiment7_3 (line 22)
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
  In sym>convertChar (line 1491)
  In sym>tomupad (line 1243)
  In sym (line 199)
  In sym/subs>@(x)sym(x) (line 156)
  In sym/subs>normalize (line 156)
  In sym/subs>mupadsubs (line 147)
  In sym/subs (line 135)
```

```
In experiment7_3 (line 22)
Warning: Support of character vectors that are not valid variable names or define a number
will be removed in a future
release. To create symbolic expressions, first create symbolic variables and then use
operations on them.
> In sym>convertExpression (line 1586)
  In sym>convertChar (line 1491)
  In sym>tomupad (line 1243)
  In sym (line 199)
 In sym/subs>@(x)sym(x) (line 156)
 In sym/subs>normalize (line 156)
 In sym/subs>mupadsubs (line 147)
  In sym/subs (line 135)
  In experiment7_3 (line 22)
LTY =
(189*Y*s^4)/20 - (189*C*s)/20 - (189*D)/20 - 1/s^2
eq =
((189*s^4)/20)*Y - (189*D)/20 - (189*C*s)/20 - 1/s^2
Y =
(189*C*s^3 + 189*D*s^2 + 20)/(189*s^6)
y =
(x^2*(x^3 + 189*D*x + 567*C))/1134
C =
20/21
D =
-10/21
gen =
(x^2*(x^3 - 90*x + 540))/1134
>>
```


	EXPERIMENT-8 30/10/17
	POOL DIVING BOARD
A	cantilever beam subjection in raciable load and material
f	respective and visulalization of it-