2.4 JARDUERA

2.4.- Simplex Algoritmoa

Zein da Simplex algoritmoaren filosofiaren interpretazio grafikoa?

Atal honetan PL ebazpen metodorik erabilienerako, Simplex metodorako, sarrera gisa erabiltzen diren definizioak eta funtsezko teoremak aurkezten dira.

2.4 JARDUERA

2.4.J Irakurri arretaz ondoko problema:

Pepek lurraren 60 hektarea ditu eta bere seme-alabekin batera, Cuqui eta Canelorekin, lantzea pentsatzen du.

Cuqui zainzuriak ereiten tematzen da, 300 €/ha-ko irabazi garbia dute eta, 10 €/ha-ko diren gastuak deskontatuta.

Canelok, berriz, 200 €/ha-ko irabazi garbia duen garia erein nahi du, ura urri dago eta. Gainera, gariak zainzuriek baino ur gutxiago behar du, hain zuzen, gariaren uraren beharra 2 m³/ha-koa da eta zainzuriena 4 m³/ha-koa (200 m³-ko ur dituzte sasoi larrirako)

Pepek 1200 € baino ez ditu haziak erosteko, langileak kontratatzeko eta beste gastu batzuentzako.Garien gastuak 30 €/ha-koak direla medio, ez dute diru nahikorik garia soilik ereiteko.

Zehaztu nahi da:

- Irabazia maximizatzen duen PL eredua.
- Soluzio optimoa Simplex algoritmoaren bidez.
- Ea soluzio bakarra den ala ez.

Komenta zure taldekideekin lortutako emaitzak eta idatz itzazue zuen konklusioak.

Baliteke Simplex algoritmoa ondoko problemari aplikatzea? Zergatik?

Max
$$Z = 300x_1 + 200x_2$$

 $x_1 + x_2 \ge 60$
 $10x_1 + 30x_2 \le 1200$
 $4x_1 + 2x_2 \le 200$
 $x_1, x_2 \ge 0$

xs= " Zainzuri hehtarea Kopurua"

X2 = "Gari hektarea Kopurva"

Hasierako soluzio bideragarria.

Hasierako Simplex toula:

Coin	Doin	8-6	300	700	0	0	0
			Xa	Xz	X3	Xų	Xs
0	X3	60	3	3	4	0	0
0	Хч	1200	70	30	0	7	0
0	X5	200	೩	4	0	0	1
2: O		2,	0	0	0	0	0
2. (Wj	- 300	-200	0	0	0

Jw; < 0 → forraite

Sartze erizpidea: min { W, / W, < 0 } = min { 300, -200} = -300 -> xs sartu

Iretze erizpidea: min { x8x/yex / yex > 0} = {60, 40, 500} = 40 - x3 irten

<u> </u>	A .	B-1.P	300	200	0	0	0
Coin	Doin	12 B	X3	XZ	Хз	X 4	Xs
0	×3	do	0	3/2	3	0	-3/4
0	Xq	700	0	25	0	4	-5/2
300	Χa	50	4	3/2	0	0	1/4
£= 15000		2;	300	150	0	0	45
		wj	0	- 50	٥	0	75

∃wj <0 → Jarraitu

Sortre iringidea: min {2j-cj/Wj<0}=-50 -> xe sorte

Irletze vizzoidea: min $\left\{\frac{30}{3/2}, \frac{30}{25}, \frac{50}{3/8}\right\} = 20 \longrightarrow \times 3$ irlen.

Coin	<u>A</u> ain	8-7	300	ಯಂ	0	0	0
			XΔ	ΧŁ	X3	X4	Xs
೨ ೧೦	X2	20	0	4	2	0	-3/2
0	X4	200	0	•	-30	4	70
300	Xs	40	7	٥	-4	0	1/2
3 -40	200	3,	300	200	700	0	50
# 3X		Wj	0	0	400	0	50

e16 ← 2·e3 e2 ← c2·25e16 e3 ← c3·½e16

∀wj>0 → Optimoo lortu dugu.

Bestolde, oinasrizkoak ez diren aldagaien (x3, x5) Kostu musuztuak ‡0 direnez, soluzio optimoa bakarra da. 2*=16000