Atividade 1 (MAP0214) - 20 de agosto de 2025

Vitor Nirschl | vitor.nirschl@usp.br | N° USP 13685771

O modelo a ser utilizado nessa atividade é a Lei de resfriamento de Newton, que trata da perda de temperatura T(t) de um corpo, com capacidade térmica constante, para um ambiente com temperatura constante $T_{\rm amb}$. Ele é dado pela equação diferencial ordinária de primeira ordem

$$\frac{\mathrm{d}T}{\mathrm{d}t} = r(T(t) - T_{\mathrm{amb}})$$

em que r é o coeficiente de perda térmica, dado em unidades inversas de tempo.

Estamos interessados em fazer uma aproximação numérica para esse problema. Se reescrevemos

$$\frac{\mathrm{d}T}{\mathrm{d}t} = f(t, T(t))$$

então temos

$$f(t, T(t)) = r(T(t) - T_{amb})$$

Sendo t_0 um instante inicial em que conheçemos $T(t_0)\equiv T_0$, consideramos o intervalo de tempo de interesse $\left[t_0,t_f\right]$ e o particionamos em n intervalos (t_k,t_{k+1}) , em que

$$t_{k+1} = t_k + \Delta t$$
 com $k = 0, 1, \dots n-1$, sendo $\Delta t = \frac{t_f - t_0}{n}$

Sendo T_k a aproximação numérica de $T(t_k)\!$, teremos

$$T_{k+1} = T_k + \Delta t \phi_{\rm RK4}(t_k, T_k, \Delta t)$$

em que $\phi_{\rm RK4}$ é a função de discretização dada pelo método de Runge-Kutta clássico

$$\phi_{\text{RK4}}(t_k, T_k, \Delta t) = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

em que

$$\begin{split} k_1(t_k,T_k,\Delta t) &= f(t_k,T_k) \\ k_2(t_k,T_k,\Delta t) &= f\bigg(t_k + \frac{\Delta t}{2},T_k + \frac{\Delta t}{2}k_1\bigg) \\ k_3(t_k,T_k,\Delta t) &= f\bigg(t_k + \frac{\Delta t}{2},T_k + \frac{\Delta t}{2}k_2\bigg) \\ k_4(t_k,T_k,\Delta t) &= f(t_k + \Delta t,T_k + \Delta t k_3) \end{split}$$

Nossa EDO tem solução exata, que poderemos utilizar para avaliar a qualidade da aproximação feita. Ela é dada por

$$T(t) = T_0 e^{rt} + T_{\rm amb} \big(1-e^{rt}\big)$$

Implementando em Python o código exibido no Apêndice, utilizamos como parâmetros $r=-0.5 {\rm s}^{-1}$, $T(0)\equiv T_0=373{\rm K}$ e $T_{\rm amb}=273{\rm K}$, e o processo foi estudado num intervalo de 0s a 10s. O passo de integração escolhido foi $\Delta t=0.1{\rm s}$, observando graficamente a convergência das aproximações por passos de integração sucessivamente, em que os pontos cada vez mais sobrepuseram-se. Além disso, foi feita a comparação da aproximação com a solução exata.

A Tabela 1 apresenta 20 pontos das temperaturas T_K do corpo aproximadas em cada instante t_k .

Tempo (s)	Temperatura (K)
0.50	350.88
0.60	347.08
0.70	343.47
0.80	340.03
0.90	336.76
1.00	333.65
1.10	330.69
1.20	327.88
1.30	325.20
1.40	322.66
1.50	320.24
1.60	317.93
1.70	315.74
1.80	313.66
1.90	311.67
2.00	309.79
2.10	307.99
2.20	306.29
2.30	304.66
2.40	303.12

Tabela 1: Resultados de 20 dos pontos obtidos com a aproximação de Runge-Kutta clássica para o resultado da lei de resfriamento de Newton, utilizando passo de integração de $\Delta t = 0.1s$.

Figura 1: Aproximações com passos de integração sucessivamente menores para o problema, sendo aquela com $\Delta t=0.1s$ a escolhida.

Figura 2: Comparação da melhor aproximação, com passo de integração $\Delta t=0.1s$, com a solução exata do problema (linha contínua).

Apêndice: Código utilizado

Todo o código aqui apresentado e utilizado durante a atividade foi integralmente desenvolvido por mim, **sem** utilização de auxilio de inteligência artifícial generativa ou de outras espécies.

```
1
                                                                                    (py)
2
    Método de um passo explícito para a atividade 1 de cálculo numérico
3
4
    # imports
5
6
    import numpy as np
7
8
    # funções de consistência
10
    def verifica_tempo(tempo_inicial, tempo_final):
11
         Verifica que os tempos fornecidos são números; garante a ordenação
12
         temporal.
         1.1.1
13
14
         if tempo_inicial >= tempo_final:
             raise ValueError("O tempo inicial deve ser menor do que o tempo
15
             final.")
         if (not isinstance(tempo_inicial, (int, float))) or (not
16
         isinstance(tempo_final, (int, float))):
             raise TypeError("Os extremos do intervalo devem ser números.")
17
18
19
    def verifica_temperaturas(temperatura_corpo, temperatura_ambiente):
```

```
1 1 1
20
21
         Verifica que as temperaturas são números e garante que a
         temperatura ambiente seja inferior à do corpo.
22
         1.1.1
23
24
         if (not isinstance(temperatura_ambiente, (int, float))) or (not
25
             isinstance(temperatura_corpo, (int, float))):
26
             raise TypeError("As temperaturas devem ser números.")
27
         if not temperatura corpo > temperatura ambiente:
             raise ValueError("A temperatura do corpo deve ser maior do que a
28
             temperatura ambiente.")
29
30
    def verifica_coeficiente(r):
31
         Verifica que o coeficiente de perda térmica é um
32
33
         número negativo.
         1 1 1
34
35
         message = "O coeficiente de perda térmica deve ser um número negativo."
36
         if not isinstance(r, (int, float)):
37
             raise TypeError(message)
38
         if not r < 0:
39
             raise ValueError(message)
40
41
    def verifica_passo_integracao(dt):
42
43
         Verifica que o passo de integração é um número positivo.
44
45
        message = "O passo de inegração deve ser um número positivo."
46
         if not isinstance(dt, (int, float)):
47
             raise TypeError(message)
         if not dt > 0:
48
49
             raise ValueError(message)
50
51
    # funções do programa
52
53
    def partition_interval(t_start, t_end, n):
54
55
         Particiona um intervalo [t_start, t_end] em n intervalos.
         1.1.1
56
57
         # consistências
58
         verifica_tempo(t_start, t_end)
59
         if not isinstance(n, int) or n <= 0:</pre>
             raise TypeError("O número de passos deve ser um número inteiro
60
             positivo.")
61
62
         # time-steps
63
         dt = (t_end - t_start)/n
```

```
64
65
         # pontos de partição
         partitioned_interval = np.linspace(t_start, t_end, n+1)
66
         return dt, partitioned_interval
67
68
69
    def f(r, temperature, amb_temperature):
70
71
         Derivada da temperatura temperature(t) num instante arbitrário t.
72
73
        # consistências
74
        verifica coeficiente(r)
75
         verifica_temperaturas(temperature, amb_temperature)
         return r * (temperature - amb temperature)
76
77
    def rk4(r, dt, temperature k, amb temperature):
78
79
         Função de discretização runge-kutta clássica (RK4) para a lei de
80
         resfriamento de Newton.
81
         - r é o coeficiente de perda térmica
82
         - dt é o passo de integração
83
         - temperature k é a aproximação da temperatura do corpo no instante t k
84
         - amb temperature é a temperatura ambiente
         1.1.1
85
86
         # consistências
87
         verifica_passo_integracao(dt)
88
         verifica_coeficiente(r)
         verifica temperaturas(temperature k, amb temperature)
89
90
91
        # parâmetros auxiliares
92
        k1 = f(r, temperature_k, amb_temperature)
93
         k2 = f(r, temperature_k + (dt * k1)/2, amb_temperature)
94
         k3 = f(r, temperature_k + (dt * k2)/2, amb_temperature)
95
         k4 = f(r, temperature_k + dt * k3, amb_temperature)
96
97
         return (k1 + 2 * k2 + 2 * k3 + k4)/6
98
    def explicit_one_step(r, start_temperature, amb_temperature, dt,
99
    partitioned interval):
100
101
        Algoritmo de um passo explícito para a Lei de Resfriamento de Newton.
102
         r é o coeficiente de perda térmica
103
         start_temperature é a temperatura inicial do corpo
104
         amb temperature é a temperatura ambiente
105
        dt é o passo de integração
106
         partitioned interval é o intervalo de tempo particionado
107
```

```
108
        # consistências
109
        verifica coeficiente(r)
110
        verifica passo integracao(dt)
111
        verifica_temperaturas(start_temperature, amb_temperature)
112
        if not isinstance(partitioned interval, np.ndarray):
113
             raise TypeError("partitioned_interval deve ser um ndarray do numpy.")
114
115
        t0 = partitioned interval[0]
116
        approx_table = np.array([[t0, start_temperature]])
117
        temperature = start temperature
118
        for i in range(1, partitioned_interval.size):
119
            if temperature > amb_temperature:
                 temperature = temperature + dt * rk4(r, dt, temperature,
120
                 amb_temperature)
                 approx_table = np.append(approx_table, [[partitioned_interval[i],
121
                 temperature]], 0)
122
            else: break
123
124
        return approx_table
125
126
127 if name == " main ":
128
        # Intervalo de estudo
129
        TIME_START = 0
        TIME END = 2
130
131
        # Quantidade de partições
132
133
        N = 50
134
135
        # Temperatura inicial do corpo e temperatura ambiente
136
        INITIAL TEMP = 100
137
        AMBIENT TEMP = 10
138
139
        # Coeficiente de perda térmica
        R = -1
140
141
        delta_t, interval_partitioned = partition_interval(TIME_START, TIME_END, N)
142
        table = explicit_one_step(R, INITIAL_TEMP, AMBIENT_TEMP, delta_t,
143
        interval_partitioned)
144
145
        print(table)
146
        print(table.transpose())
                                                                                   (py)
   Gera tabelas e gráficos para a atividade 1 de cálculo numérico
3
4
```

```
5 # imports
6
7
   import numpy as np
   import explicit_one_step as eos
9
   import matplotlib.pyplot as plt
10
11 # funções do programa
12
13 def gera_tabela_typst():
14
15
        Recebe array (n, 1) do numpy, com n inteiro positivo, e retorna
16
        tabela formatada do typst, com cabeçalho (t, T(t)).
17
18
        return
19
20 def funcao_exata(params, t):
        1 1 1
21
        Solução exata para a Lei de Resfriamento de Newton, em que
22
23
       params[0] é a temperatura ambiente,
24
       params[1] é a temperatura inicial do corpo,
25
       params[2] é o coeficiente de perda térmica,
        t é uma array do numpy com o intervalo de tempo discretizado.
26
        1 1 1
27
28
        # consistências
29
        ambient_temperature = params[0]
30
        start_temperature = params[1]
31
        r = params[2]
32
33
        eos.verifica_temperaturas(start_temperature, ambient_temperature)
34
       eos.verifica_coeficiente(r)
35
        return start_temperature * np.exp(r * t) + ambient_temperature * (1 -
36
        np.exp(r * t))
37
38 if __name__ == "__main__":
        STEPS_NUMBERS = [5, 10, 15, 30, 100]
39
40
        STEPS SIZES = []
       TABLES = []
41
42
43
        R = -.5
44
        START_TEMPERATURE = 373
45
        AMBIENT TEMPERATURE = 273
46
47
       TIME START = 0
        TIME END = 10
48
49
```

```
50
                 # aproximações
51
                 for number in STEPS NUMBERS:
52
                          dt, intervals = eos.partition interval(TIME START, TIME END, number)
53
                          STEPS_SIZES.append(dt)
                         APPROX TABLE = eos.explicit_one_step(R, START_TEMPERATURE,
54
                         AMBIENT TEMPERATURE, dt,
55
                                   intervals)
                         TABLES.append(APPROX TABLE)
56
57
                 # função exata
58
59
                 TIME ARRAY = np.linspace(TIME START, TIME END, 500)
60
                 Y = funcao exata([AMBIENT TEMPERATURE, START TEMPERATURE, R], TIME ARRAY)
61
62
                 # gráfico de aproximações sucessivas
63
                 fig1, ax1 = plt.subplots()
64
                 ax1.plot(TABLES[0].transpose()[0], TABLES[0].transpose()[1], label="\Deltat = ax1.plot(TABLES[0].transpose()[1], label="\Delta t = ax1.plot()
65
                 2s", marker="v", linestyle="--")
                 ax1.plot(TABLES[1].transpose()[0], TABLES[1].transpose()[1], label="\Deltat =
66
                 1s", marker="x", linestyle="--", markersize="10")
                 ax1.plot(TABLES[3].transpose()[0], TABLES[3].transpose()[1], label="<math>\Delta t = 0
67
                 0.33s", marker="s", linestyle="--")
                 ax1.plot(TABLES[4].transpose()[0], TABLES[4].transpose()[1], label="\Deltat =
68
                 0.1s", marker=">", linestyle="--")
69
70
                 ax1.set xlabel('Tempo [s]')
                 ax1.set_ylabel('Temperatura [K]')
71
72
                 ax1.set_title('Lei de resfriamento de Newton')
                 ax1.legend()
73
74
                 ax1.grid()
75
                 fig1.savefig('aproximacoes.png')
76
77
                 # gráfico da aproximação final com resultado exato
78
                 fig2, ax2 = plt.subplots()
79
                 ax2.plot(TABLES[4].transpose()[0], TABLES[4].transpose()[1],
80
                 label="Aproximação", marker="x", linestyle="None")
                 ax2.plot(TIME_ARRAY, Y, label="Solução exata")
81
                 ax2.set xlabel('Tempo [s]')
82
83
                 ax2.set ylabel('Temperatura [K]')
84
                 ax2.set title('Lei de resfriamento de Newton')
85
                 ax2.legend()
86
                 ax2.grid()
87
                 fig2.savefig('comparacao com exata.png')
88
89
                 # tabela com todos os valores da aproximação final
                 data = ""
90
```

```
91     for point in TABLES[4]:
92         data += f"[{point[0]:.2f}], [{point[1]:.2f}],\n"
93
94         with open("tabela.txt", "w") as f:
95         f.write(data)
```