Name:	Date:

Note: The purpose of the following questions is:

Enhance learning	Summarized points	Analyze abstract ideas
------------------	-------------------	------------------------

Class 4: Properties of Regular Languages

- 1. [Slide 2-4] Prove that any NFA can be converted to an equivalent NFA with a single final state.
- 2. [Slide 5] Extreme case: show that an NFA *without* final state be converted to an equivalent NFA with a single final state.
- 3. [Slide 7-22] For regular languages L_1 and L_2 prove that:

Show that your proof works for the following example:

4. [Slide 24-30] One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings and symbols from some alphabet ∑, parentheses, and the operators +, ., and *. The simplest case is the language {a}, which will be denoted by a regular expression a. We will use + do denote union. We use . for concatenation and * for a star-closure. Complete the following table

	Language	Corresponding regular expression
1.	{a}	а
2.	{a, b, c}	
3.		(a + (b.c))*

5. A regular language over an alphabet Σ is one that can be obtained from the very simplest languages over Σ , those containing a single string of length 0 or 1, using only the operations of union, concatenation, and Kleene *. A regular language can therefore be described by an explicit formula.

a) Find the corresponding regular expression for each of the following languages:

	Language	Corresponding regular expression
1.	{a}	
2.	{0}	
3.	{001} (i.e., {0}{0}{1})	
4.	{0, 1} (i.e., {0} ∪ {1})	
5.	{0, 10} (i.e., {0} ∪ {10})	
6.	$\{1, \lambda\}\{001\}$	
7.	{110} [*] {0, 1}	
8.	{1} [*] {10}	
9.	{10, 111, 11010} [*]	
10.	$\{0, 10\}^*(\{11\}^* \bigcup \{001, \lambda \})$	

6. [Slide 31-34] Complete the following table

	Language	Corresponding regular expression
1.	:	$r = (a + b)^*(a + bb)$
2.		r = (aa)*(bb)*b
3.		$r = (0+1)^*00(0+1)^*$
4.		$r = (1+01)^*(0+\lambda)$

7. [Slide 33] For $\Sigma = \{0, 1\}$, give the regular expression r such that

$$L(r) = \{w \in \sum^* : w \text{ has at least one pair of consecutive zeros}\}.$$

8. [Slide 34] Find a regular expression for the language

$$L(r) = \{w \in \{0,1\}^* : w \text{ has no pair of consecutive zeros}\}.$$

9. [Slide 38-50] Prove the following **Theorem:** Let r be a regular expression. Then there exists some nondeterministic finite acceptor that accepts L(r). Consequently, L(r) is a regular language.

10. [Slide 51] From *M* construct the equivalent **Generalized Transition Graph (GTG)** in which transition labels are regular expressions:

11. [Slide 52-56] Find regular expressions for the languages accepted by the following automata.

