Лабораторна робота

Діаграма Вороного, тріангуляція Делоне і побудова лінійної опуклої оболонки на плошині

- 1. Реалізувати алгоритм Форчуна побудови діаграми Вороного його поточну візуалізацію (*5 балів*).
- --

i

- 2. Здійснити тріангуляцію Делоне (1 бал), тобто побудувати діаграму, двоїсту до діаграми Вороного.
- 3. Реалізувати алгоритм Кейла-Кіркпатрика побудови лінійної опуклої оболонки N точок на площині з цілочисельними координатами $(1 \le x_i \le m_x; 1 \le y_i \le m_y; i = \overline{1,N})$. Складність алгоритму лінійна: N+M, де $M=\max\{m_x,m_y\}$. (1 бал)

Ідея:

- 1) відсортувати задані точки за y-координатою кишеньковим сортуванням; при цьому для кожного $i=\overline{1,m_y}$ визначити крайні ліву та праву точки серед заданих точок, y-координата яких дорівнює i. В результаті буде отримано 2 масиви A_i, A_r «лівих» та »правих» точок, які містять в собі вершини лівої та правої частини опуклої оболонки.
- 2) зробити обхід (напр. знизу вгору) по A_i ; при цьому відсіяти точки, які не є вершинами лівої частини опуклої оболонки (умова: в результаті при обході A_i знизу вгору поворот має здійснюватися завжди НАПРАВО). Аналогічно зробити обхід A_i . Результат вивести на екран.
- 4. Реалізувати мішаний алгоритм Ендрю та Джарвіса побудови лінійної опуклої оболонки N точок на площині $(1 \le x_i \le m_x; 1 \le y_i \le m_y; i = \overline{1,N})$. Складність алгоритму N^2 . (1 бал)

Ідея:

1) відсортувати множину заданих точок за x-координатою; при цьому визначити крайню ліву та крайню праву точки.

- 2) послідовно визначити ребра верхньої частини оболонки, використовуючи правило: відрізок γ , що визначається двома точками є ребром опуклої оболонки тоді і тільки тоді, коли всі інші точки заданої множини розташовані на γ або з одного боку від нього. Аналогічно побудувати множину ребер нижньої частини опуклої оболонки. Результат вивести на екран.
- 5. Реалізувати алгоритм Грехема побудови лінійної опуклої оболонки N точок на площині $(1 \le x_i \le m_x; 1 \le y_i \le m_y; i = \overline{1, N})$. Складність алгоритму: $N \log N$. (1 бал)

Ідея:

1) відсортувати точки по полярному куту з центром в точці q як показано на рисунку, де q-внутрішня точка лінійної оболонки, яка вважається відомою. При цьому можна скористатися правилом: кут точки p_2 більше кута точки $p_1 \Leftrightarrow$, коли трикутник qp_1p_2 має строго додатно орієнтовану площу;

2) зробити повторний обхід відсортованого масиву (списку) точок. При цьому вилучити зайві точки так, як показано на рис.

Рис. Начало обхода точек в методе Грэхема. Вершина p_2 удаляется, если угол $p_1p_2p_3$ оказывается вогнутым.

Результат вивести на екран.

6. Реалізувати швидкий рекурсивний алгоритм побудови лінійної опуклої оболонки N точок на площині $(1 \le x_i \le m_x; 1 \le y_i \le m_y; i = \overline{1,N})$. Складність алгоритму: $N \log N$. (1 бал)

Ідея:

1) відсортувати множину заданих точок за x-координатою; при цьому визначити крайню ліву l та крайню праву r точки.

Множину S, що складена з N заданих точок розбити на дві підмножини, кожна з яких буде містити відповідно верхню та нижню ламані, з'єднання яких дає багатокутник випуклої оболонки.

Нехай при цьому $S^{(1)}$ - підмножина точок, що розташовані вище чи на прямій lr, що сполучає крайні ліву та праву точки множини S, та $S^{(2)}$ - підмножина точок, що розташовані нижче чи на прямій lr.

2) На кожному наступному кроці обробка множин, подібних до $S^{(1)}$ чи $S^{(2)}$ здійснюється таким чином (на прикладі множини $S^{(1)}$ - див. рис.):

визначається точка h, для якої трикутник hlr має найбільшу площу серед всіх трикутників $\{(plr), p \in S^{(1)}\}$, а якщо таких точок є більше однієї, тоді вибираємо ту з них, у якої кут (hlr) більше. Точка h при цьому належить опуклій оболонці. Нехай L_1 -пряма, що сполучає l,h; L_2 -пряма, що сполучає r,h. Множину $S^{(1)}$ розбиваємо на підмножини $S^{(1,1)}$ та $S^{(1,2)}$ таким чином: до $S^{(1,1)}$ відносимо точки $S^{(1)}$, що розташовані зліва від L_1 або на ній, до $S^{(1,2)}$ відносимо точки $S^{(1)}$, що розташовані справа від L_1 або на ній. Далі множини $S^{(1,1)}, S^{(1,2)}, S^{(2,2)}, S^{(2,2)}$ передаються на наступний рівень рекурсивної обробки.