Math 6330 Homework 1

Jacob Hauck and Rajrani Gupta January 30, 2024

1.3 (iv)

Let $\mathbb{T} = {\sqrt{n} \mid n \in \mathbb{N}_0}$. Then for $t = \sqrt{n} \in \mathbb{T}$,

- the next point to the right of \sqrt{n} is $\sqrt{n+1}$, so $\sigma(t) = \sigma(\sqrt{n}) = \sqrt{n+1} = \sqrt{t^2+1}$,
- the next point to the left of \sqrt{n} is $\sqrt{n-1}$ if n>0. If n=0, then there is no point in \mathbb{T} to the left of t=0, so

$$\rho(t) = \rho(\sqrt{n}) = \begin{cases} \sqrt{n-1} & n > 0 \\ 0 & n = 0 \end{cases}$$
$$= \begin{cases} \sqrt{t^2 - 1} & t > 0 \\ 0 & t = 0. \end{cases}$$

• $\mu(t) = \sigma(t) - t = \sqrt{t^2 + 1} - t$.

Every point in \mathbb{T} is right-scattered because $\sigma(t) = \sqrt{t^2 + 1} > t$. If t > 0, then t is left-scattered because $\rho(t) = \sqrt{t^2 - 1} < t$. The point $0 \in \mathbb{T}$ is not left-scattered because $\rho(0) = 0$, and it is not left-dense either because $0 = \inf \mathbb{T}$.

1.4 (ii)

Let $\mathbb{T} = \{0\} \cup [1, 2]$. Then \mathbb{T} is a time-scale, and $1 \in \mathbb{T}$ does not satisfy $\rho(\sigma(1)) = 1$. Indeed, $\sigma(1) = 1$, and $\rho(1) = 0$, so $\rho(\sigma(1)) = 0 \neq 1$.

Given any time-scale \mathbb{T} and $t \in \mathbb{T}$, then $\rho(\sigma(t)) = t$ if and only if t is not left-scattered or t is right-scattered.

Proof. Suppose that t is left-scattered and not right-scattered. Then $\sigma(t) = t$, so $\rho(\sigma(t)) = \rho(t) \neq t$. Hence, $\rho(\sigma(t)) = t$ implies that t is not left-scattered or t is right-scattered.

Conversely, if t is right-scattered, then $\sigma(t) \in \mathbb{T}$ is left-scattered with $\rho(\sigma(t)) = t$. If t is not right-scattered and not left-scattered, then $\rho(t) = t$ and $\sigma(t) = t$, so $\rho(\sigma(t)) = t$.

1.14 (i)

Define $f: \mathbb{T} \to \mathbf{R}$ by $f(t) = t^2$. Then $f^{\Delta}(t) = t + \sigma(t)$.

Proof. Let $t \in \mathbb{T}$, and let $\varepsilon > 0$ be given. Set $\delta = \varepsilon$. Then for all $s \in (t - \delta, t + \delta) \cap \mathbb{T}$,

$$\begin{split} |f(\sigma(t))-f(s)-(t+\sigma(t))(\sigma(t)-s)| &= |\sigma(t)^2-s^2-(t+\sigma(t))(\sigma(t)-s)|\\ &= |ts+\sigma(t)s-s^2-t\sigma(t)|\\ &= |(s-t)(\sigma(t)-s)|\\ &< \varepsilon |\sigma(t)-s|, \end{split}$$

so $f^{\Delta}(t) = t + \sigma(t)$ by definition.

1.19 (i) (derivative at 0 only)

Let $\mathbb{T} = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \cup \{0\}$, and define $f : \mathbb{T} \to \mathbf{R}$ by $f(t) = \sigma(t)$. Recalling from class that $\sigma(t) = \frac{t}{1-t}$ when $t \neq 1$, we see that $\sigma(0) = 0$, so 0 is right-dense, and

$$\lim_{s \to 0} \frac{f(0) - f(s)}{0 - s} = \lim_{s \to 0} \frac{0 - \frac{s}{1 - s}}{0 - s} = \lim_{s \to 0} \frac{1}{1 - s} = 1.$$

Therefore, by Theorem 1.16, $f^{\Delta}(0) = 1$.

1.19 (ii)

Let $\mathbb{T} = \{\sqrt{n} \mid n \in \mathbb{N}_0\}$, and define $f : \mathbb{T} \to \mathbf{R}$ by $f(t) = t^2$. Recall from 1.3 (iv) that $\sigma(t) = \sqrt{t^2 + 1}$, and every point in \mathbb{T} is right-scattered. Note that every point $t \in \mathbb{T}$ is (topologically) isolated, so f is continuous on \mathbb{T} . Therefore, by Theorem 1.16, f is differentiable everywhere on \mathbb{T} , and for $t \in \mathbb{T}$,

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t} = \frac{\left(\sqrt{t^2 + 1}\right)^2 - t^2}{\sqrt{t^2 + 1} - t} = \sqrt{t^2 + 1} + t.$$

1.19 (iii)

Let $\mathbb{T} = \left\{ \frac{n}{2} \mid n \in \mathbb{N}_0 \right\}$, and define $f : \mathbb{T} \to \mathbf{R}$ by $f(t) = t^2$. Then for $t = \frac{n}{2} \in \mathbb{T}$, the next point to the right of t is $\frac{n+1}{2} = t + \frac{1}{2}$. Hence, $\sigma(t) = t + \frac{1}{2}$. Moreover, every point in \mathbb{T} is right-scattered, and every point in \mathbb{T} is (topologically) isolated, so f is continuous on \mathbb{T} . By Theorem 1.16, for $t \in \mathbb{T}$,

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t} = \frac{\left(t + \frac{1}{2}\right)^2 - t^2}{t + \frac{1}{2} - t} = 2\left(t + \frac{1}{4}\right) = 2t + \frac{1}{2}.$$

1.21 (iv)

Suppose that $f: \mathbb{T} \to \mathbf{R}$ is differentiable at $t \in \mathbb{T}$, and $f(t)f(\sigma(t)) \neq 0$. Then $\frac{1}{f}$ is differentiable at t, and

$$\left(\frac{1}{f}\right)^{\Delta}(t) = -\frac{f^{\Delta}(t)}{f(t)f(\sigma(t))}.$$

Proof. We know from Theorem 1.16 that f is continuous at t. Since $f(t) \neq 0$ by assumption, it follows that f is bounded away from 0 in a neighborhood of t. That is, there exists C > 0 and $\delta_0 > 0$ such that for all $s \in (t - \delta_0, t + \delta_0) \cap \mathbb{T}$, we have $|f(s)| \geq C$.

Let $\varepsilon > 0$ be given, and set

$$\varepsilon^* = \varepsilon \left(\frac{1}{C|f(\sigma(t))|} + \frac{|f^{\Delta}(t)|}{C|f(t)f(\sigma(t))|} \right)^{-1}.$$

Since f is continuous and delta-differentiable at t, we can choose $\delta \in (0, \delta_0]$ such that for all $s \in (t-\delta, t+\delta) \cap \mathbb{T}$,

1.
$$|f(\sigma(t)) - f(s) - f^{\Delta}(t)(\sigma(t) - s)| < \varepsilon^* |\sigma(t) - s|$$
,

2. $|f(t) - f(s)| \le \varepsilon^*$.

Note also that $|f(s)| \geq C$ for all $s \in (t - \delta, t + \delta) \cap \mathbb{T}$ because $\delta \leq \delta_0$.

Then

$$\begin{split} \left| \frac{1}{f(\sigma(t))} - \frac{1}{f(s)} - \left(-\frac{f^{\Delta}(t)}{f(t)f(\sigma(t))} \right) (\sigma(t) - s) \right| \\ &= \left| \frac{f(t)f(s) - f(t)f(\sigma(t)) + f(s)f^{\Delta}(t)(\sigma(t) - s)}{f(t)f(\sigma(t))f(s)} \right| \\ &= \left| \frac{f(t)\left[f(s) - f(\sigma(t)) + f^{\Delta}(t)(\sigma(t) - s)\right] + (f(s) - f(t))f^{\Delta}(t)(\sigma(t) - s)}{f(t)f(\sigma(t))f(s)} \right| \\ &\leq \frac{\varepsilon^* |\sigma(t) - s|}{|f(\sigma(t))f(s)|} + \frac{\varepsilon^* |f^{\Delta}(t)| \cdot |\sigma(t) - s|}{|f(t)f(\sigma(t))f(s)|} \\ &\leq \left(\frac{1}{C|f(\sigma(t))|} + \frac{|f^{\Delta}(t)|}{C|f(t)f(\sigma(t))|} \right) \varepsilon^* |\sigma(t) - s| \\ &= \varepsilon |\sigma(t) - s|, \end{split}$$

so

$$\left(\frac{1}{f}\right)^{\Delta}(t) = -\frac{f^{\Delta}(t)}{f(t)f(\sigma(t))}$$

by definition.

1.22

Let x, y and z be delta-differentiable at t. Then xyz is delta-differentiable at t, and

$$(xyz)^{\Delta} = x^{\Delta}yz + xy^{\Delta}z + xyz^{\Delta}$$
 at t .

Proof. By the product rule, yz is delta-differentiable at t. By the product rule again, xyz = x(yz) is also delta-differentiable at t. Furthermore, at t, the product rule gives (putting σ always on the second term)

$$(xyz)^{\Delta} = (x(yz))^{\Delta} = x^{\Delta}yz + x^{\sigma}(yz)^{\Delta} = x^{\Delta}yz + x^{\sigma}y^{\Delta}z + x^{\sigma}y^{\sigma}z^{\Delta},$$

as desired. \Box

1.26

(i) Let $\mathbb{T} = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \cup \{0\}$, and let $f(t) = \sigma(t)$. Recall from class that

$$\sigma(t) = \begin{cases} \frac{t}{1-t} & \text{if } 0 \le t < 1, \\ 1 & \text{if } t = 1. \end{cases}$$

Since we $1 \notin \mathbb{T}^{\kappa}$, we can get $f^{\Delta} = \sigma^{\Delta}$ by taking $f(t) = \frac{t}{1-t}$. We can apply the product rule easily once we know $\left(\frac{1}{1-t}\right)^{\Delta}$. By Theorem 1.24,

$$\left(\frac{1}{1-t}\right)^{\Delta} = \frac{1}{(\sigma(t)-1)(t-1)}.$$

Hence,

$$f^{\Delta}(t) = \frac{\sigma(t)}{(\sigma(t) - 1)(t - 1)} + \frac{1}{1 - t} = \frac{1}{(\sigma(t) - 1)(t - 1)} = \frac{1}{-t - (t - 1)} = \frac{1}{1 - 2t}, \quad t \in \mathbb{T}^{\kappa}.$$

(ii) Let $\mathbb{T} = {\sqrt{n} \mid n \in \mathbb{N}_0}$, and let $f(t) = t^2$. Recall from 1.3 (iv) that $\sigma(t) = \sqrt{t^2 + 1}$. Then, by Theorem 1.24,

$$f^{\Delta}(t) = \sigma(t)t^{0} + (\sigma(t))^{0}t = t + \sigma(t) = t + \sqrt{t^{2} + 1}$$

which agrees with the calculation in 1.19 (ii).

(iii) Let $\mathbb{T} = \left\{ \frac{n}{2} \mid n \in \mathbb{N}_0 \right\}$, and let $f(t) = t^2$. Recall from 1.19 (iii) that $\sigma(t) = t + \frac{1}{2}$. Then, by Theorem 1.24,

$$f^{\Delta}(t) = t + \sigma(t) = 2t + \frac{1}{2},$$

which agrees with the calculation in 1.19 (iii).

(iv) Let $\mathbb{T} = \{\sqrt[3]{n} \mid n \in \mathbb{N}_0\}$, and let $f(t) = t^3$. If $t = \sqrt[3]{n} \in \mathbb{T}$, then

$$\sigma(t) = \sigma(\sqrt[3]{n}) = \sqrt[3]{n+1} = \sqrt[3]{t^3+1}$$

By Theorem 1.24, we have

$$f^{\Delta}(t) = \sum_{\nu=0}^{2} (\sigma(t))^{\nu} t^{2-\nu} = t^2 + \sigma(t)t + (\sigma(t))^2$$
$$= t^2 + (t^3 + 1)^{\frac{1}{3}}t + (t^3 + 1)^{\frac{2}{3}}.$$

1.28

(i) Let $\mathbb{T} = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \cup \{0\}$, and let $f(t) = \sigma(t)$. Recall from 1.26 (i) that $\sigma(t) = \frac{t}{1-t}$, and $f^{\Delta}(t) = \frac{1}{1-2t}$ for $t \in \mathbb{T}^{\kappa}$. By the quotient rule,

$$f^{\Delta\Delta}(t) = \left(\frac{1}{1-2t}\right)^{\Delta} = -\frac{-2}{(1-2t)(1-2\sigma(t))} = \frac{2}{(1-2t)\left(1-\frac{2t}{1-t}\right)} = \frac{2(1-t)}{(1-2t)(1-3t)}, \qquad t \in \mathbb{T}^{\kappa^2}.$$

(ii) Let $\mathbb{T} = \{\sqrt{n} \mid n \in \mathbb{N}_0\}$, and let $f(t) = t^2$. Recall from 1.26 (ii) that $\sigma(t) = \sqrt{t^2 + 1}$, and $f^{\Delta}(t) = t + \sqrt{t^2 + 1}$. Since every point $t \in \mathbb{T}$ is right-scattered, and f^{Δ} is continuous (because every point $t \in \mathbb{T}$ is also topologically isolated), we can use Theorem 1.16 to find that

$$f^{\Delta\Delta}(t) = \left(t + \sqrt{t^2 + 1}\right)^{\Delta} = 1 + \frac{\sqrt{\sigma(t)^2 + 1} - \sqrt{t^2 + 1}}{\sqrt{t^2 + 1} - t} = 1 + \left(\sqrt{t^2 + 1} + 1\right)\left(\sqrt{t^2 + 2} - \sqrt{t^2 + 1}\right)$$
$$= \sqrt{(t^2 + 1)(t^2 + 2)} + \sqrt{t^2 + 2} - t^2 - \sqrt{t^2 + 1}.$$

- (iii) Let $\mathbb{T} = \left\{ \frac{n}{2} \mid n \in \mathbb{N}_0 \right\}$, and let $f(t) = t^2$. Recall from 1.26 (iii) that $f^{\Delta}(t) = 2t + \frac{1}{2}$. Then by linearity and Theorem 1.24, $f^{\Delta\Delta}(t) = 2$.
- (iv) Let $\mathbb{T} = \{\sqrt[3]{n} \mid n \in \mathbb{N}_0\}$, and let $f(t) = t^3$. Recall from 1.26 (iv) that $\sigma(t) = \sqrt[3]{t^3 + 1}$, and $f^{\Delta}(t) = t^2 + (t^3 + 1)^{\frac{1}{3}}t + (t^3 + 1)^{\frac{2}{3}}$. Since every point of \mathbb{T} is right-scattered and f^{Δ} is continuous on \mathbb{T} (because every point of \mathbb{T} is topologically isolated), we can use Theorem 1.16 to find that

$$\begin{split} f^{\Delta\Delta}(t) &= \frac{f^{\Delta}(\sigma(t)) - f^{\Delta}(t)}{\sigma(t) - t} \\ &= \frac{(t^3 + 1)^{\frac{2}{3}} + (t^3 + 2)^{\frac{1}{3}}(t^3 + 1)^{\frac{1}{3}} + (t^3 + 2)^{\frac{2}{3}} - t^2 - (t^3 + 1)^{\frac{1}{3}}t - (t^3 + 1)^{\frac{2}{3}}}{\sqrt[3]{t^3 + 1} - t} \\ &= \frac{(t^3 + 2)^{\frac{1}{3}}(t^3 + 1)^{\frac{1}{3}} + (t^3 + 2)^{\frac{2}{3}} - t^2 - (t^3 + 1)^{\frac{1}{3}}t}{\sqrt[3]{t^3 + 1} - t} \end{split}$$

1.36 (i)

Suppose the μ is differentiable, and $f^{\Delta^{\sigma}}$ and $f^{\sigma^{\Delta}}$ both exist. If f is twice differentiable, then

$$(f^{\sigma})^{\Delta} = (f + \mu f^{\Delta})^{\Delta} = f^{\Delta} + \mu^{\Delta} (f^{\Delta})^{\sigma} + \mu f^{\Delta\Delta},$$

and

$$f^{\Delta^{\sigma}} = f^{\Delta} + \mu f^{\Delta\Delta}.$$

Substituting the second equation into the first gives

$$f^{\sigma^{\Delta}} = f^{\Delta^{\sigma}} + \mu^{\Delta} f^{\Delta^{\sigma}} = (1 + \mu^{\Delta}) f^{\Delta^{\sigma}}.$$