07 DMRG

DMRG is the best method for finding ground states of 1d Hamiltonians

Want to solve
$$\;H|\Psi\rangle=E|\Psi\rangle$$

Think of H as MPO

Important: MPS should be in definite gauge I.e. most tensors unitary

Important: MPS should be in definite gauge I.e. most tensors unitary

This way, tensors left/right of center define orthonormal bases

This way, tensors left/right of center define orthonormal bases

This way, tensors left/right of center define orthonormal bases

Can project Hamiltonian into this basis

Can project Hamiltonian into this basis

Doing the same on the right gives

Doing the same on the right gives

Doing the same on the right gives

Order important!

Order important!

Order important!

Order important!

 $2 \sim m^3$

 $3 \sim m^2$

Order important!

 $2 \sim m^3$

 $3 \sim m^2$

 $4 \sim m^2$

Order important!

 $2 \sim m^3$

 $3 \sim m^2$

 $4 \sim m^2$

 $5 \sim m^3$

Use Lanczos/Davidson to solve (sparse matrix eigensolver)

Noack, Manmana, AIP Conf. Proc. 789, 93 (2005)

Now, with improved wavefunction, shift orthogonality center (using SVD)

Important to truncate to m singular values ("number of states kept" in DMRG)

Now, with improved wavefunction, shift orthogonality center (using SVD)

Important to truncate to m singular values ("number of states kept" in DMRG)

Recover older projected Hamiltonian saved in memory

- I. Solve eigenproblem
- II. SVD wavefunction
- III. Grow effective H

We'll implement a key missing step of the DMRG algorithm

```
library folder>/tutorial/06_DMRG
```

- I. Read through dmrg.cc; compile; and run
- 2. SVD the two-site tensor phi into factors A, D, B
 The last argument to svd should be "opts" to pass
 through parameters controlling truncation:

```
svd(phi, ..., opts);
```

- 3. Multiply the singular-value tensor D back into A or B as appropriate to shift orthogonality center of MPS.
- 4. Add code to print out the energy at each step (or even to measure other local operators).