

第二章 多 列极限

§3数列极限

66. (28. 45. S)

单调有界定理

单调有界定理例是

致密性定理

C 1 15 M of Black

第二章 数列极限

§3 数列极限存在的条件

§3数列极限

- 单调有界定理 单调有界定理例题
- 致密性定理
- Cauchy收敛准则 Cauchy收敛准则例题
- 定理和例题的证明过程

- 怎么知道一个数列是收敛的? 即极限的存在性问题;
- 之前的方法:定义.
 需要知道极限;
 具体的证明可能会很麻烦.
- 其他方法:夹逼性、四则运算.
- 寻找数列本身特征.

§3数列极限

- § 3 数列极限存在的条件
 - 单调数列
 - 单调有界定理
 - 单调有界定理例题
 - 致密性定理
 - Cauchy收敛准则
 - Cauchy收敛准则例题

定义

若数列 a_n 满足: 对于 $\forall x \in \mathbb{N}_+$

$$a_n \leqslant a_{n+1} \ (a_n \geqslant a_{n+1}),$$

则称数列 a_n 为递增(递减)数列.

单调递增数列与单调递减数列统称为单调数列.

- 类似,可以定义严格单调数列.
- 与单调函数的定义是统一的.
- 判断: $\frac{n}{n+1}$, n^2 , $\frac{(-1)^n}{n}$.

第二章 数列极限

§3数列极限

V 10 10 10 10 10 10 10

单调有界定理

平讷有芥定理

Cauchy收敛准则

Cauchy收敛准则例题作业

定理和例题的证明过

定理

在实数系中,有界的单调数列必有极限.

- 注1. 单增有上界的数列极限存在、为其上确界.
- 注2. 单减有下界的数列极限存在,为其下确界.
- 注3. 单增无上界 (单减无下界) 的数列 $\{a_n\}$ 有

$$\lim_{n \to \infty} a_n = +\infty \quad (\lim_{n \to \infty} a_n = -\infty).$$

§ 3 数列极限 存在的条件

平 明 政 为 並 调 者 界 定 理

单调有界定理例题

1 111111111111

Cauchy状效准则

Cauchy收敛准则例是

定理和例题的证明过

例

$$\alpha \geqslant 2$$
, 设

$$a_n = 1 + \frac{1}{2^\alpha} + \dots + \frac{1}{n^\alpha}.$$

证明: $\{a_n\}$ 收敛.

第二章 数 列极限

§3数列极限

並调有界を報

单调有界定理例题

.....

Cauchy收敛准具

Cauchy收敛准则例。

作型定理和例題的证明立

例

证明数列

$$\sqrt{2}$$
, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$, ..., $\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}$, ...

收敛,并求其极限.

- 注1. 此类问题一般使用数学归纳法.
- 注2. 如何快速找到"界"?.

二平 数列极限

§3数列极限 左左的冬件

並調有界字理

单调有界定理例题

Cauchy收敛准则

作业

例

下面的叙述错在哪儿?

"设
$$a_n = 2^n, n = 1, 2, \dots, 则$$

$$a_{n+1} = 2^{n+1} = 2a_n.$$

因为显然有 $a_n>0$,所以 $\{a_n\}$ 递增. 设 $\lim_{n\to\infty}a_n=A$,从而得出

$$A = 2A \Rightarrow A = 0$$

$$\operatorname{Fp} \lim_{n \to \infty} 2^n = 0.$$

5一平 g 列极限

§ 3 数列极限 左左的冬件

单调有界定理

单调有界定理例是

致密性定理

Cauchy收敛准则

Cauchy收敛准则例》

定理和例题的证明过

命题

设S为有界数集. 证明: 若 $\sup S = a \notin S$, 则存在严格递增数列 $x_n \subset S$, 使得

$$\lim_{n\to\infty} x_n = a.$$

▶ 证明过程

有界数集的下确界有类似结论.

第二章 数 列极限

§3数列极限 存在的条件

单调有界定理

单调有界定理例题

Cauchy收敛准则

作业 定理和例题的证明过 例 (4)

证明

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n$$

存在.

▶ 证明过程

注1. 定义

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n.$$

- 注2. e 为无理数, e ≈ 2.718281828459.
- 注3. 以e为底的对数称为自然对数,记为 $\ln x = \log_e x$.

从证明过程中我们可以得到:

§3数列极限 存在的条件

並调者界字理

单调有界定理例题

致密性定理

Cauchy收敛准则

作业

定理和例题的证明过 程

• 数列
$$\{(1+\frac{1}{n})^n\}$$
严格单增.

 $(1 + \frac{1}{n})^n < e.$

$$(1+\frac{1}{n})^n < e < (1+\frac{1}{n})^{n+1}.$$

需要证明: $\{(1+\frac{1}{n})^{n+1}.\}$ 为严格单减数列.

$$\frac{1}{n+1} < \ln x < \frac{1}{n}.$$

•

•

§ 3 数列极限 存在的条件

单调有界定理

1 111111111111

.....

Cauchy收敛准则

Cauchy收敛准则例

定理和例题的证明过

例

设
$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}, \ n = 1, 2, \dots,$$
 证明:
$$\lim_{n \to \infty} s_n = e.$$

利用上例题证明过程中的结果.

由公式
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right)$$
,可以较快地算出 e 的近似值.

$$0 < s_{n+m} - s_n = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots + \frac{1}{(n+m)!},$$

令
$$m \to \infty$$
, 得到

$$0 < e - s_n \le \frac{1}{n!n}, n = 1, 2, \cdots$$

取
$$n = 10$$
, $e \approx s_{10} \approx 2.7182818$, 其误差

$$0 < e - s_{10} \le \frac{1}{10 \cdot 10!} < 10^{-7}$$
.

§3数列极限

平明政門

並調者界定理個個

致密性定理

Cauchy收敛准则

Cauchy收敛准则例表

定理和例题的证明过

例

设数列

$$c_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n,$$

证明:数列 $\{c_n\}$ 收敛,并求

$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}\right).$$

注: 利用

$$\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n}.$$

§ 3 数列极限

单调有界定理

单调有界定理例题

Cauchy收敛准则例录

作业
定理和例题的证明立

例 (5)

任何数列都存在单调子列.

将数列分为两类:

- 有单减子列: $\forall k \in \mathbb{N}_+$, $\{a_{n+k}\}$ 有最大项;
- 有单增子列:存在 $k \in \mathbb{N}_+$, $\{a_{n+k}\}$ 无最大项.

单调有界定理 单调有界定理

单调有界定理例题 致密性定理

Cauchy收敛准则 Cauchy收敛准则例题

作业 定理和例题的证明过 超

定理

任何有界数列必定有收敛子列.

- 注1. 单调有界定理和例5的直接推论.
- 注2. 与Weierstrass定理 (第七章) 等价.

界二章 数 列极限

§3数列极限 存在的条件

单调有界定理

单调有界定理例题

Canchyalf State #1

Cauchy收敛准则例表

定理和例题的证明过程

例

设数列 $\{a_n\}$ 无上界,则存在 $\{a_n\}$ 的子列 $\{a_{n_k}\}$,

$$\lim_{k\to\infty} a_{n_k} = +\infty.$$

- 注1. 无下界有类似结论.
- 注2. 证明中构造子列的方法是常用技巧.

第二章 数
列极限

§3数列极限

单调数列

单调有界定理例题

致密性定理

Cauchy收敛准则

Cauchy收敛准则例表

定理和例题的证明过

定理

数列 $\{a_n\}$ 收敛的充要条件是:

 $\forall \varepsilon > 0$, 存在N > 0, 使得 $\forall n, m > N$ 时, 有 $|a_n - a_m| < \varepsilon$.

- 注1. 这一充要条件称为Cauchy条件.
- 注2. 类似定义形式,相对优势:不需要知道极限.
- 注3. 几何意义:收敛数列各项的值越到后面,彼此越接近.

Cauchv条件等价形式:

- $\forall \epsilon > 0$, 存在N > 0, 使得 $\forall n, m > N$ 时, 有 $|a_n a_m| < \varepsilon$.
- $\forall \epsilon > 0$, 存在N > 0, 使得 $\forall m > n > N$ 时, 有 $|a_n a_m| < \varepsilon$.
- $\forall \epsilon > 0$, $\forall \epsilon > 0$, $\forall n > N$, $\forall p \in \mathbb{N}_+$, $|a_{n+p} a_n| < \epsilon$.

逆否命题:

定理

数列 $\{a_n\}$ 发散的充要条件是:存在 $\epsilon_0 > 0$, $\forall N > 0$,存

6一平 致列板限

§ 3 数列极限

单调有界定理

单调有界定理例是

Cauchy收敛准则

Cauchy收敛准则例题 作业

定理和例题的证明过

例

证明: 任意无限十进制小数

$$\alpha = 0.b_1b_2\cdots b_n\cdots$$

的n(∈ \mathbb{N}_+)位不足近似

$$\frac{b_1}{10}$$
, $\frac{b_1}{10} + \frac{b_2}{10^2}$, $\cdots \frac{b_1}{10} + \frac{b_2}{10^2} + \cdots + \frac{b_n}{10^n}$, \cdots

满足Cauchy条件,其中 $b_k \in \{0, 1, 2, \dots, 9\}, k \in \mathbb{N}_+$.

循环小数
$$0.9$$
 的不足近似值组成的数列为 $a = \frac{9}{10} + \frac{9}{10} + \frac{9}{10} + \frac{9}{10} = \frac{9}{10} = \frac{9}{10}$

$$a_n = \frac{9}{10} + \frac{9}{10^2} + \dots + \frac{9}{10^n}, \quad n = 1, 2, \dots$$

利用等比数列求和公式, 可知

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{9}{10} \cdot \frac{1 - \left(\frac{1}{10}\right)^n}{1 - \frac{1}{10}} = 1.$$

这就是为什么可以将无限小数 0.9 表示为 1 的一个原因.

第二章 数
列极限

§ 3 数列极限 存在的条件

4 24 to 9 to 10

单调有界定理例

社密性定理

Cauchy收敛准具

Cauchy收敛准则例题

作业

定理和例题的证明的

例

设
$$x_n = 1 + \frac{1}{3} + \dots + \frac{1}{n}, n = 1, 2, \dots$$
 证明 $\{x_n\}$ 发散.

证明

取
$$\varepsilon_0 = \frac{1}{2}$$
, $\forall N > 0$, $\exists n_0 = N, m_0 = 2N$, 使得
$$|x_{n_0} - x_{m_0}| = \frac{1}{N+1} + \frac{1}{N+2} + \dots + \frac{1}{2N}$$
 $\geq \frac{1}{2N} + \frac{1}{2N} + \dots + \frac{1}{2N} \geq \varepsilon_0$.

由柯西收敛准则的否定陈述,可知 $\{x_n\}$ 发散

ALIK .

§3数列极限 存在的条件

单调数列单调有界定理

致密性定理 Cauchy收敛准则

Cauchy收敛准则例题

定理和例题的证明过程

例

设
$$x_n = 1 + \frac{1}{3} + \dots + \frac{1}{n}, n = 1, 2, \dots$$
. 证明 $\{x_n\}$ 发散.

证明

取
$$\varepsilon_0 = \frac{1}{2}$$
, $\forall N > 0$, $\exists n_0 = N, m_0 = 2N$, 使得
$$|x_{n_0} - x_{m_0}| = \frac{1}{N+1} + \frac{1}{N+2} + \dots + \frac{1}{2N}$$
 $\geq \frac{1}{2N} + \frac{1}{2N} + \dots + \frac{1}{2N} \geq \varepsilon_0$.

由柯西收敛准则的否定陈述,可知 $\{x_n\}$ 发散.

例

设
$$x_n=rac{\sin 1}{2^1}+rac{\sin 2}{2^2}+\cdots+rac{\sin n}{2^n},\ n=1,2,\cdots$$
. 求证 $\{x_n\}$ 收敛.

$$\forall \varepsilon>0, \exists N=\frac{-\log\varepsilon}{\log 2}, \; \text{$\underline{\sharp}$} \; n>m>N \; \text{$\underline{\mathtt{R}}$}$$

$$|x_n - x_m| = \left| \frac{\sin(m+1)}{2^{m+1}} + \dots + \frac{\sin n}{2^n} \right|$$

$$=\frac{2}{2^{m+1}}\left(1-\frac{1}{2^{n-m}}\right)\leq \frac{1}{2^m}<\varepsilon\Rightarrow \{x_n\}$$
收敛

例

设
$$x_n = \frac{\sin 1}{2^1} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{2^n}, \ n = 1, 2, \dots$$
 , 求证 $\{x_n\}$ 收敛.

证明

$$\forall \varepsilon > 0, \exists N = \frac{-\log \varepsilon}{\log 2}, \, \, \underline{\exists} \, \, n > m > N \, \, \text{时, 有}$$

$$||x_n - x_m|| = |\frac{\sin(m+1)}{2^{m+1}} + \dots + \frac{\sin n}{2^n}||$$

$$\leq \frac{1}{2^{m+1}} + \dots + \frac{1}{2^n} = \frac{1}{2^{m+1}} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{n-m-1}} \right)$$

$$= \frac{2}{2^{m+1}} \left(1 - \frac{1}{2^{n-m}} \right) \leq \frac{1}{2^m} < \varepsilon \Rightarrow \{x_n\} \, \, \, \& \underline{\S}.$$

§ 3 数列极限 存在的条件

单调有界定理

Cauchy收敛准则例题

作业 定理和例题的证明过

例

设
$$a_n = 1 + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}}$$
. 证明:

- (1) 当 $\alpha > 1$ 时, a_n 收敛;
- (2) 当 $\alpha \leq 1$ 时, a_n 发散.

例

设数列满足条件: $|a_{n+1} - a_n| < r^n, n = 1, 2, \dots$, 其中 $r \in (0, 1)$. 求证: $\{a_n\}$ 收敛.

列极限

§3数列极限 存在的各件

单调有界定理

单调有界定理例题

Cauchy收敛准则

Cauchy收敛准则例题

定理和例题的证明过程

柯西收敛准则的意义在于:

可以根据数列通项本身的特征来判断该数列是否收敛, 而不必依赖于极限定义中的那个极限值 A. 这一特点在理论上 特别有用,大家将会逐渐体会到它的重要性.

§3数列极限 存在的条件

单调有界定理

单调有界定理例是

Cauchy收敛准则例题

作业

定理和例题的证明的

- 1. 对于数列是否收敛的各种判别法加以总结.
- 2. 试给出 $\{a_n\}$ 不是Cauchy列的正面陈述.

§3数列极限 左左的冬件

平调数列单调有界定理

单调有界定理例题

致密性定理

Cauchy收敛准则

Cauchy收敛准则例表

定理和例题的证明过

• P37 习题2.3

1, 3(1), 5(1), 7.

• P39 总练习题

4, 5, 6.

证明

不妨设 $\{a_n\}$ 单调增,有上界. 由确界定理,存在 $\sup \{a_n\} = \xi$.

由上确界的定义,对于任意的 $\varepsilon > 0$,存在 a_{n_0} ,使 $a_{n_0} > \xi - \varepsilon$. 故当 $n > n_0 (= N)$ 时,

$$\xi - \varepsilon < a_{n_0} \le a_n \le \xi < \xi + \varepsilon,$$

这就证明了 $\lim_{n\to\infty} a_n = \xi$.

证明

显然数列 $\{a_n\}$ 单调递增. 下面只需要证明数列 $\{a_n\}$ 有界.

任意的 $n \in \mathbb{N}$,有

$$|a_n| = \left| \frac{1}{1^{\alpha}} + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}} \right|$$

$$\leq \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$$

$$\leq \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n}$$

$$= 1 - \frac{1}{n} < 1.$$

⇒ $\{a_n\}$ 有界,从而收敛.

解

记上述数列为

$$a_1 = \sqrt{2}, \ a_2 = \sqrt{2 + \sqrt{2}}, \cdots, \ a_n = \sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}, \cdots$$

显然 $a_n > 0$. 因 $a_2 = \sqrt{2 + \sqrt{2}}, \$ 故 $a_2 > a_1;$
设 $a_n > a_{n-1}, \$ 则有
$$a_{n+1} - a_n = \sqrt{2 + a_n} - \sqrt{2 + a_{n-1}}$$
$$= \frac{a_n - a_{n-1}}{\sqrt{2 + a_n} + \sqrt{2 + a_{n-1}}} > 0,$$

所以 $\{a_n\}$ 递增. 下面再来证明此数列有上界.

证明

显然,
$$a_1 = \sqrt{2} < 2$$
, 设 $a_n < 2$, 则
$$a_{n+1} = \sqrt{2 + a_n} < \sqrt{2 + 2} = 2.$$

由此得到 $\{a_n\}$ 有上界 2, 故极限 $\lim_{n\to\infty} a_n = A$ 存在.

于是由
$$\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} \sqrt{2+a_n}$$
,可得 $A^2 = 2+A$,

并解出 A = 2, A = -1.

由极限的不等式性,知道A > 0,所以

$$\lim_{n\to\infty} a_n = 2.$$

考察数列 $\{e_n\} = \left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ 的收敛性,下面的证法是最基本的,而教材上的证法技巧性较强.

证明

利用二项式展开, 得

$$e_n = 1 + n\frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^2} + \dots + \frac{n(n-1)\cdots 1}{n!} \frac{1}{n^n}$$

$$= + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right)$$

$$+ \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{n-1}{n}\right),$$

证明

由此得

$$e_{n+1} = 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right)$$

$$+ \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n-1}{n+1} \right)$$

$$+ \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n}{n+1} \right).$$

$$e_n \, \text{The } e_{n+1} \, \text{ORE FICE Like Signature}, e_n \, \text{ORE FICE Like Signature}.$$

把 e_n 和 e_{n+1} 的展开式作比较就可发现, e_n 的展开式 n+1 项,其中的每一项都比 e_{n+1} 的展开式中的前 n+1 项小,而 e_{n+1} 的最后一项大于零.

证明

因此

$$e_n < e_{n+1}, \quad n = 1, 2, \cdots,$$

从而 $\{e_n\}$ 是单调增数列,且

$$e_n \le 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}.$$

由此 $e_n \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 3$,这就证明了 $\{e_n\}$ 又是有界数列. 于是 $\lim_{n \to \infty} e_n$ 存在. 记此极限为 e,即

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

设数列为 $\{a_n\}$. 下面分两种情形来讨论.

1. 对于任意的 $k \in \mathbb{N}_+$,数列 $\{a_{n+k}\}$ 有最大项.

设 $\{a_{1+n}\}$ 的最大项为 $\{a_{n_1}\}$,因为 $\{a_{n_1+n}\}$ 也有最大项,设其最大项为 $\{a_{n_2}\}$,显然有 $n_2>n_1$,且因 $\{a_{n_1+n}\}$ 是 $\{a_{1+n}\}$ 的一个子列,故 $a_{n_2}\leqslant a_{n_1}$;

同理存在 $n_3 > n_2$,使得 $a_{n_3} \leq a_{n_2}$;

.

这样就得到一个单调递减的子列 $\{a_{n_k}\}$.

2. 至少存在某正整数k,数列 $\{a_{n+k}\}$ 没有最大项.

先取 $n_1 = k+1$,因为 $\{a_{k+n}\}$ 没有最大项,故 $\{a_{n_1}\}$ 后面总存在 $\{a_{n_2}\}(n_2>n_1)$,使得

$$a_{n_2} > a_{n_1};$$

同理存在 a_{n_2} 后面的项 $\{a_{n_3}\}(n_3>n_2)$, 使得

$$a_{n_3} > a_{n_2};$$

.

这样就得到一个严格递增的子列 $\{a_{n_k}\}$.

第二章 数 列极限

§ 3 数列极限 存在的条件

单调有界定理

致密性定理 Cauchy收敛准则

Cauchy收敛准则例题 作业

定理和例题的证明过程

证明

因为 $\{a_n\}$ 无上界,所以对于任意正数 M,存在 a_{n_0} ,使 得 $a_{n_0} > M$.

据此分别取

$$M_1 = 1$$
, 存在 $a_{n_1}, a_{n_1} > 1$;

$$M_2 = \max\{2, |a_1|, |a_2|, \cdots, |a_{n_1}|\},$$
存在

$$a_{n_2}(n_2 > n_1)$$
, $\notin \{a_{n_2} > M_2;$

.

§3数列极限

单调有界定理

单调有界定理例是

Cauchy收敛准则

Cauchy收敛准则例是

定理和例题的证明过

证明

$$M_k = \max\{k, |a_1|, |a_2|, \cdots, |a_{n_{k-1}}|\}$$
,存在 $a_{n_k}(n_k > n_{k-1})$,使得 $a_{n_k} > M_k$;

.

由此得到 $\{a_n\}$ 的一个子列 $\{a_{n_k}\}$, 满足 $a_{n_k}>M_k\geqslant k$, 推

得

$$\lim_{k\to\infty} a_{n_k} = +\infty.$$

$$\begin{tabular}{l} $i\hbox{$\rm l$}$ $a_n = \frac{b_1}{10} + \frac{b_2}{10^2} + \cdots + \frac{b_n}{10^n}. \ \mbox{$\it T$} $ \mbox{$\it id$} $n > m$, 则有 \\ $|a_n - a_m| = \frac{b_{m+1}}{10^{m+1}} + \frac{b_{m+2}}{10^{m+2}} + \cdots + \frac{b_n}{10^n} \\ & \leqslant \frac{9}{10^{m+1}} \left(1 + \frac{1}{10} + \cdots + \frac{1}{10^{n-m-1}}\right) \\ & = \frac{1}{10^m} \left(1 - \frac{1}{10^{n-m}}\right) < \frac{1}{10^m} < \frac{1}{m}. \\ & \mbox{$\it id$} $f = b < 0$, \Bar{N} $n > 0$, $\Bar{N$$

这就证明了数列满足柯西条件.

二章 数
列极限

§ 3 数列极限 存在的条件

单调有界定理

致密性定理 Cauchy收敛准则

Cauchy收敛准则例题 作业

程

例

设
$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}, \ n = 1, 2, \dots,$$
 证明:
$$\lim_{n \to \infty} s_n = e.$$

证明

显然 $\{s_n\}$ 是单调增数列,且由上例证明中可知,

$$e_n \le 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

= $s_n < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 3$,

因此 $\lim_{n\to\infty} s_n$ 存在且由极限的保不等式性,

$$e = \lim_{n \to \infty} e_n \leqslant \lim_{n \to \infty} s_n$$
.

列极限

§3数列极限

单调有界定理

致密性定理 Cauchy收敛准则

Cauchy收敛准则例题 作业

定理和例题的证明过 程

证明

又对任意 n > m,

$$e_n = 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right)$$

$$+ \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{n-1}{n} \right)$$

$$> 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right)$$

$$+ \dots + \frac{1}{m!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{m-1}{n} \right) ,$$

§ 3 数列极限 左左的各件

单调有界定理

我密性定理

Cauchy收敛准则 Cauchy收敛准则例题

定理和例题的证明过

证明

因此,在上式中两边令 $n \to \infty$,得

$$e = \lim_{n \to \infty} e_n \ge 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{m!} = s_m.$$

当 $m \to \infty$ 时,由极限的保不等式性,

$$e \geqslant \lim_{m \to \infty} s_m$$
.

从而

$$e = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right).$$

因 $a \in S$ 的上界,故对 $\forall \varepsilon > 0$, $\exists x \in S$,使得 $x > a - \varepsilon$.

又因 $a \notin S$, 故 x < a, 从而有

$$a - \varepsilon < x < a$$
.

现取 $\varepsilon_1 = 1$,则 $\exists x_1 \in S$,使得

$$a - \varepsilon_1 < x_1 < a$$
.

再取
$$\varepsilon_2 = \min \left\{ \frac{1}{2}, \ a - x_1 \right\}, \ \ 则 \ \exists x_2 \in S, \ \ 使得$$
 $a - \varepsilon_1 < x_2 < a,$

且有

$$x_2 > a - \varepsilon_2 > a - (a - x_1) = x_1$$
.

一般地,按上述步骤得到 x_{n-1} 之后,取

$$\varepsilon_n = \min\left\{\frac{1}{n}, a - x_{n-1}\right\},$$

则存在 $x_n \in S$, 使得

$$a - \varepsilon_n < \mathbf{x}_n < a$$

且有 $x_n > a - \varepsilon_n \ge a - (a - x_{n-1}) = x_{n-1}$. 于是得到 $\{x_n\} \subset S$, 它是严格单调的,满足

$$a - \varepsilon_n < \mathbf{x}_n < \mathbf{a}$$

因此, $|x_n - a| < \varepsilon_n \le \frac{1}{n}, n = 1, 2, \cdots$. 这就证明了 $\lim_{n \to \infty} x_n = a$. 第二章 参列极限

§3数列极限 存在的条件

单调有界定理

单调有界定理例

Cauchy收敛准则

Cauchy收敛准则例表

定理和例题的证明过

证明

$$c_{n+1} - c_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1}$$
$$-\ln(n+1) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n\right)$$
$$= \frac{1}{n+1} - \ln(1 + \frac{1}{n}) < 0.$$

故数列 $\{c_n\}$ 单调递减.

下面需证数列 $\{c_n\}$ 有下界.

第二章 数 列极限

§3数列极限

平明权列

id and the fill the sense has

致密性定理

Cauchy收敛准则

Cauchy收敛准则例题

定理和例题的证明过

证明

由例4推得的不等式,有

$$\frac{1}{2} < \ln(1+1) < 1,$$

$$\frac{1}{3} < \ln(1+\frac{1}{2}) < 1,$$

$$\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n}.$$

综上可得,

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln 2 + \ln \frac{3}{2} + \ln \frac{4}{3} + \dots + \ln \frac{n+1}{n}$$

$$< 1 + \frac{1}{2} + \dots + \frac{1}{n}.$$

第二章 列极限

§ 3 数列极限 左左的冬件

单调有界定理

单调有界定理例

Cauchy收敛准则

Cauchy收敛准则例题

定理和例题的证明过

证明

不等式两边减去 $\ln n$, 得到

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$

$$< \ln \left(2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{n+1}{n} \right) - \ln n$$

$$= \ln(n+1) - \ln n > 0.$$

由单调有界定理可知,数列 $\{c_n\}$ 收敛.

§ 3 数列极限 存存的条件

单调有界定理

单调有界定理例

Cauchy收敛准则

定理和例题的证明过

解

设
$$\lim_{n \to \infty} c_n = c$$
,故 $\lim_{n \to \infty} c_{2n} = c$.从而有
$$\lim_{n \to \infty} (c_{2n} - c_n)$$

$$= \lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} - \ln(2n) + \ln n \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} - \ln 2 \right)$$

$$= 0,$$

所以, $\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \ln 2.$

§ 3 数列极限 存在的各件

单调有界定理 单调有界定理例题 及密性定理

Cauchy收敛准则 Cauchy收敛准则例题 作业

定理和例题的证明过 程 证 设 $\lim_{n\to\infty} a_n = A$. 由极限定义, $\forall \varepsilon > 0$, $\exists N > 0$, 当 n, m > N(或 $n, m \ge N$) 时,有 $|a_n - A| < \frac{\varepsilon}{2}$, $|a_m - A| < \frac{\varepsilon}{2}$. 由此推得 $|a_n - a_m| \le |a_n - A| + |a_m - A|$

柯西(Cauchy,A.L. 1789-1857 ,法国)

 $<\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

第二章 数 列极限

§3数列极限

证明

若
$$n < m$$
, 则

$$|a_n - a_m| \le |a_n - a_{n+1}| + |a_{n+1} - a_{n+2}| + \dots + |a_{m-1} - a_m|$$

 $\le r^n + r^{n+1} + \dots + r^{m-1} = \frac{r^n - r^m}{1 - r} < \frac{r^n}{1 - r}.$

由于
$$\lim_{n\to\infty} \frac{r^n}{1-r} = 0$$
, 于是 $\forall \varepsilon > 0$, $\exists N, n > N$,

$$\left|\frac{r^n}{1-r}\right| < \varepsilon.$$

若 m > n > N, 就有

$$|a_n - a_m| \le \left| \frac{r^n}{1 - r} \right| < \varepsilon.$$

由柯西准则, $\{a_n\}$ 收敛.