重庆市高二数学试卷参考答案

- 1. D 因为 $A = \{x \mid x < -1 \text{ 或 } x > 1\}$,所以 $A \cap B = \{x \mid -5 < x < -1 \text{ 或 } 1 < x < 7\}$.
- 2. B 原直线的倾斜角为 60° ,旋转后倾斜角为 120° ,即所得新直线的斜率为 $\tan 120^{\circ} = -\sqrt{3}$.
- 3. D 因为z=2+i,所以 $(z+2)\overline{z}=(4+i)(2-i)=9-2i$.
- 4. B 由 $\cos(\frac{3\pi}{2}-\theta) = -2\cos(\pi+\theta)$,得 $-\sin\theta = 2\cos\theta$,则 $\tan\theta = -2$.
- 5. C 由 $k^2 + (-\sqrt{7})^2 4 \times 2k = k^2 8k + 7 > 0$,解得 k > 7 或 k < 1.
- 6. D 因为圆 C 的圆心为 C (-2,1),圆 D 的圆心为 D (3,-4),所以两圆的圆心距为 $|CD| = \sqrt{(-2-3)^2 + (1+4)^2} = 5\sqrt{2}$. 因为圆 C 的半径为 $2\sqrt{2}$,圆 D 的半径为 $3\sqrt{2}$,所以圆心距等于两圆的半径和,故两圆外切.
- 7. C 函数 $f(x) = \frac{3x^2 \cos x}{e^x e^{-x}}$ 的定义域 $\{x \mid x \neq 0\}$ 关于原点对称,且 $f(-x) = \frac{3(-x)^2 \cos(-x)}{e^{-x} e^x} = -f(x)$,则 f(x)为奇函数,其图象关于原点对称,排除 B和 D;又 $f(\frac{\pi}{2}) = 0$,当 $x \in (0, \frac{\pi}{2})$ 时, $3x^2 \cos x > 0$,且 $e^x > e^{-x}$, 所以f(x) > 0 在 $(0, \frac{\pi}{2})$ 内恒成立,排除 A;所以只有 C 正确.
- 8. D 因为 $\overline{EF} = \overline{EB} + \overline{BA} + \overline{AD} + \overline{DF} = -\frac{1}{3}\overline{BB_1} \overline{AB} + \overline{AD} + \frac{1}{2}\overline{DD_1}$ $= -\frac{1}{3}\overline{AA_1} \overline{AB} + \overline{AD} + \frac{1}{2}\overline{AA_1} = -\overline{AB} + \overline{AD} + \frac{1}{6}\overline{AA_1},$ 所以 $x = -1, y = 1, z = \frac{1}{6}$,故 $x + y + z = \frac{1}{6}$.
- 9. CD 因为 $a \perp b$,所以 $a \cdot b = (2k+2) \times (-2) + k \times 1 + (-4) \times 8 = 0$,解得 k = -12. 因为 b = (-2,1,8),所以 $|b| = \sqrt{4+1+64} = \sqrt{69}$.
- 10. BD 因为 $k_{CA} = 2 > 1$, $k_{CB} < 0$, 所以直线 x y = 0 与线段 AB 无公共点, A 错误. 因为 $k_{AB} = \frac{4 2}{-3 1} = -\frac{1}{2} > -1$, 所以直线 AB 的倾斜角大于 135° , B 正确. 因为线段 BC 的中点为 $(-\frac{5}{2}, 2)$, 且直线 BC 的斜率为 $\frac{4 0}{-3 + 2} = -4$, 所以 BC 上的中垂线所在直线的方程为 $y 2 = \frac{1}{4}(x + \frac{5}{2})$, 即 $y = \frac{1}{4}x + \frac{21}{8}$, C 错误. 因为 $k_{EC} = \frac{4}{-2 + 2} = -4$, 所以 BC 上的高所在直线的方程为 $y 2 = \frac{1}{4}(x 1)$, 即 x 4y + 7 = 0, D 正确.
- 11. BCD 以 O 为原点建立如图所示的空间直角坐标系 O-xyz. 可知 $AD = \sqrt{AO^2 + OD^2} = \sqrt{2}$, $SA = \sqrt{6}$,所以 $SO = \sqrt{SA^2 AO^2} = \sqrt{5}$. 因为 A(1,0,0), $S(0,0,\sqrt{5})$,C(-1,0,0), $E(0,\frac{1}{2},\frac{\sqrt{5}}{2})$,所以 $\overrightarrow{AE} = (-1,\frac{1}{2},\underline{0})$
 - $\frac{\sqrt{5}}{2}$), \overrightarrow{CS} =(1,0, $\sqrt{5}$). 因为 $\cos\langle \overrightarrow{AE}, \overrightarrow{SC} \rangle = \frac{\overrightarrow{AE} \cdot \overrightarrow{CS}}{|\overrightarrow{AE}| |\overrightarrow{CS}|} = \frac{-1 + \frac{5}{2}}{\sqrt{\frac{5}{2}} \times \sqrt{6}} = \frac{\sqrt{15}}{10}$,所以 A

异面直线 AE 与 SC 所成角的余弦值为 $\frac{\sqrt{15}}{10}$.

12. ABD 设 C(x,y). 因为 $\frac{|CA|}{|CB|} = \frac{1}{2}$,所以 $\frac{\sqrt{(x+1)^2 + y^2}}{\sqrt{(x-2)^2 + y^2}} = \frac{1}{2}$, 所以 $x^2 + y^2 + 4x = 0$,即 $(x+2)^2 + y^2 = 4$, 所以动点 C 的轨迹为以 N(-2,0) 为圆心, 2 为半径的圆, 故 A 正确.

因为直线 l 过定点 M(-1,1), 而点 M(-1,1) 在圆 N 内, 所以直线 l 与圆 N 相交, 故 B 正确.

当直线 l = NM 垂直时, 动点 C 到直线 l 的距离最大, 且最大值为 $r + |NM| = 2 + \sqrt{2}$, 故 C 错误.

记圆心 N 到直线 l 的距离为 d,则 $d = \frac{|m-1|}{\sqrt{m^2+1}}$.

因为 $|PQ|^2 = 4(r^2 - d^2)$,所以 $4(r^2 - d^2) = 8$.

因为 r=2,所以 $d=\sqrt{2}$. 由 $\frac{(m-1)^2}{m^2+1}=2$,得 m=-1,故 D 正确.

- 13. $\frac{3}{2}$ 因为直线 2x+y-5=0 与 mx-3y+6=0 垂直,所以 $2m+1\times(-3)=0$,故 $m=\frac{3}{2}$.
- 14. $\sqrt{11}$ 如图所示,以点 D 为坐标原点,以 DA,DC,DD, 所在直线分别为 x, y, z
- 轴,建立空间直角坐标系D-xyz,则M(3,1,1),N(4,4,2),|MN|= $\sqrt{1^2+3^2+1^2} = \sqrt{11}$.
- 15. $\frac{3}{10}$ 从 5 位学生中任选 2 人,全部事件有 AB, AC, AD, AE, BC, BD, BE, CD, CE.DE. 共 10 种,其中符合条件的事件有 AC.AD.AE. 共 3 种,故所求概率 为 $\frac{3}{10}$.

故直线 AP 与平面 ABC 所成角的正弦值为 $\frac{\sqrt{33}}{11}$.

则所求直线的方程为 3x-y+6=0. 4 分 (2)由题意得 $k_{MN} = \frac{4-3}{0-2} = -\frac{1}{2}$. 5 分

所求直线的斜率 $k = -\frac{1}{k_{MN}} = 2.$ 6 分

当 x=0 时, y=b; 当 y=0 时, $x=-\frac{b}{2}$.

18. \mathbf{M} : (1) 因为 $\cos A \cos B - 1 = \sin A \sin B - 2 \sin^2 C$,

所以 $\cos A \cos B - \sin A \sin B = 1 - 2\sin^2 C$,即 $\cos(A+B) = \cos 2C$, 2 分

所以 $C=\frac{\pi}{3}$. 6 分

(2)因为 $c^2 = a^2 + b^2 - 2ab\cos C = a^2 + b^2 - ab = 32 - ab = 4^2$, 所以 *ab*=16, 9 分 所以 $\triangle ABC$ 的面积 $S = \frac{1}{2}ab\sin C = \frac{1}{2} \times 16 \times \frac{\sqrt{3}}{2} = 4\sqrt{3}$. 12 分

• 22-09-112B •

19. 解:(1)设圆 M 的方程为 $x^2 + y^2 + Dx + Ey + F = 0$,

则
$$\left\{ egin{align*} 26-D+5E+F=0, \\ 8-2D-2E+F=0, \\ 50+5D+5E+F=0, \\ \end{array}
ight.$$
 解得 $D=-4, E=-2, F=-20,$ 4 分

解得
$$D=-4$$
, $E=-2$, $F=-20$, ……
所以圆 M 的方程为 $x^2+y^2-4x-2y-20=0$,

所以圆
$$M$$
的方程为 $x^2 + y^2 - 4x - 2y - 20 = 0$,
故圆 M 的标准方程为 $(x-2)^2 + (y-1)^2 = 25$. 6 分

故圆
$$M$$
的标准方程为 $(x-2)^2+(y-1)^2=25$. 6 分 (2)当切线斜率不存在时,切线方程为 $x=7$. 7 分

20. (1)证明:因为
$$E, F$$
 分别是 AD, BD 的中点,所以 $EF/\!\!/AB$,且 $EF = \frac{1}{2}AB = \frac{1}{2}$.

因为
$$\angle BCD = 90^{\circ}$$
,所以 $FC = \frac{1}{2}BD = \frac{1}{2}$,

因为
$$EF$$
二平面 EFC ,所以平面 EFC 上平面 BCD . 6 分 (2)解:分别以 CD , CB 所在直线为 x , y 轴,过 C 且与 EF 平行的直线为 z 轴建立 如图所示的空间直角坐标系 $C-xyz$.

由(1)可得 AB L平面 BCD,因为 BD,BC⊂平面 BCD,平面 ABD ∩平面 ABC=

$$\mathbb{H}^{\frac{1}{2}} \Lambda(0, \frac{\sqrt{3}}{3}, 1) F(\frac{1}{3}, \frac{\sqrt{3}}{3}, \frac{1}{3}) F(\frac{1}{3}, \frac{\sqrt{3}}{3}, 0)$$

因为
$$A(0,\frac{\sqrt{3}}{2},1),E(\frac{1}{4},\frac{\sqrt{3}}{4},\frac{1}{2}),F(\frac{1}{4},\frac{\sqrt{3}}{4},0),$$

$$(a_1, y_1, z_1)$$

设平面 EFC 的法向量是 $n=(x_2,y_2,z_2)$,

则
$$\begin{cases} \mathbf{n} \cdot \overrightarrow{CF} = \frac{1}{4} x_2 + \frac{\sqrt{3}}{4} y_2 = 0, \\ \mathbf{n} \cdot \overrightarrow{CE} = \frac{1}{4} x_2 + \frac{\sqrt{3}}{4} y_2 + \frac{1}{2} z_2 = 0, \end{cases}$$
 令 $y_2 = 1$, 得 $\mathbf{n} = (-\sqrt{3}, 1, 0)$. 10 分

