

© 2012 Sony Computer Entertainment Inc. All Rights Reserved. SCE Confidential

Table of Contents

Motion JPEG Decode Function	3
sceJpegInitMJpeg	4
sceJpegInitMJpegWithParam	5
sceJpegDecodeMJpeg	6
sceJpegDecodeMJpegYCbCr	8
sceJpegMJpegCsc	
sceJpegFinishMJpeg	
SceJpegMJpegInitParam	
Obtaining JPEG Information	
sceJpegGetOutputInfo	15
SceJpegOutputInfo	
Color Space Conversion Functions	19
Color Space Conversion FunctionssceJpegCsc	20
Split Decoding	22
sceJpegCreateSplitDecoder	22
sceJpegSplitDecodeMJpegsceJpegSplitDecodeMJpeg	23
see Inag Delete Split Deceder	24
sceJpegSplitDecoder	20
Constants	29
Color Space Type	30
Color Space Sampling	
Return Codes	32

sceJpegInitMJpeg

Initialize Motion JPEG Decoder

Definition

Arguments

maxSplitDecoder Maximum number of Split Decoders to be used simultaneously (0 to 8)

Return Values

Value	Description
0	Initialization succeeded
< 0	Error (for details, see "Return Codes")

Description

This function initializes Motion JPEG decoder.

To maxSplitDecoder, specify the maximum number of Split Decoders to be used simultaneously. Specify 0 if the split decoding feature will not be used.

This function is initialized to access only the video memory as input/output buffer region to pass data to decoder. In order to use the main memory, use sceJpegInitMJpegWithParam() instead of this function.

Notes

This function is not multithread safe

Example

```
int res = sceJpegInitMJpeg(0);
```

See Also

sceJpegFinishMJpeg()

sceJpegInitMJpegWithParam

Initialize Motion JPEG Decoder (parameter-specified version)

Definition

Arguments

pInitParam parameter to be used at initialization

Return Values

Value	Description
0	Initialization succeeded
< 0	Error (for details, see "Return Codes")

Description

This function initializes Motion JPEG decoder.

For pInitParam, specify parameters to be used at initialization.

Notes

This function is not multithread safe.

Examples

See Also

SceJpegMJpegInitParam, sceJpegFinishMJpeg()

sceJpegDecodeMJpeg

Decode and rapidly convert color space of Motion JPEG data

Definition

Arguments

pJpeg	Pointer to JPEG data to be decoded
isize	JPEG data size (in bytes)
pRGBA	Pointer to output buffer
osize	Output buffer size (in bytes)
decodeMode	Parameter related to decoding method
pTempBuffer	Pointer to color space conversion working buffer
tempBufferSize	Size of color space conversion working buffer (in bytes)
pCoefBuffer	Pointer to quantization coefficient buffer
coefBufferSize	Quantization coefficient buffer size (in bytes)

Return Values

Value	Description	
>0	Output data pixel cour	nt
< 0	Error (for details, see "Return Codes")	

Description

This function decodes JPEG data and stores it in RGBA8888 format in the specified area.

If the function completes normally, a value equal to (number of pixels in the x direction of the decoded data)* 65536 + (number of pixels in the y direction of the decoded data) will be returned. The output size (size after downscaling when downscaling) of supported JPEG data using YCbCr422/420 format is limited to the range between 64×64 pixels and 2032×1088 pixels.

To pJpeg and isize specify the JPEG data to be decoded.

To problem and osize, specify the buffer to store the decoded result data. The output data size will depend on the JPEG image size and the specification of <code>decodeMode</code> (explained below). Note that the specified number of pixels processed in the Decoder will be rounded to the nearest MCU unit (a multiple of 16 for YCbCr420).

To <code>decodeMode</code>, specify the parameter related to the decoding method. Select a value from the following table that indicates the processing method of the DHT segment and color space constraints. Add option values as necessary and specify the total value.

Value	Description
SCE_JPEG_MJPEG_WITH_DHT	Decodes JPEG data containing a DHT segment (limited to
	YCbCr422/420)
SCE_JPEG_MJPEG_WITHOUT_DHT	Decodes JPEG data without a DHT segment using the JPEG
	standard recommended Huffman table (limited to
	YCbCr422/420, for Motion JPEG)

The following options can be specified.

Downscale Magnification

To downscale the output image size, add one of the following values. When using this feature, the sizes of the decoded result output buffer (pRGB and osize) and the color space conversion working buffer (pTempBuffer and tempBufferSize) should be calculated based on the reduced image size.

Value	Description
SCE_JPEG_MJPEG_DOWNSCALE_1_2	Reduce image size to 1/2
SCE_JPEG_MJPEG_DOWNSCALE_1_4	Reduce image size to 1/4
SCE_JPEG_MJPEG_DOWNSCALE_1_8	Reduce image size to 1/8

To pTempBuffer and tempBufferSize, specify the working buffer where the decoded JPEG data in YCbCr will be temporarily stored. Round the JPEG image size to be decoded in MCU units (a multiple of 16 for YCbCr420). The pitch difference required by the color space conversion hardware (round the size of each line for Y, Cb, Cr to a multiple of 16) must be added to this size.

To pCoefBuffer and coefBufferSize, specify the quantization coefficient buffer that will be used to decode the progressive JPEG. If the JPEG data to be decoded is not a progressive JPEG, specify NULL to pCoefBuffer, and 0 to coefBufferSize. When decoding progressive JPEG data, first allocate the memory for the quantization coefficient buffer size obtained with sceJpegGetOutputInfo(), then specify this memory.

Notes

This function is multithread safe.

The buffer specifying the JPEG data (pupeg), output buffer (pRGBA), color space conversion working buffer (pTempBuffer), and quantization coefficient buffer (pCoefBuffer) have several restrictions. Refer to "Buffer Restrictions for Positioning I/O Data" in "Precautions" under the "JPEG Decoder Overview" document for details.

By using sceJpegGetOutputInfo(), the memory size required for the output buffer, color space conversion working buffer and quantization coefficient buffer can be obtained easily.

Example

See Also

sceJpegGetOutputInfo()

sceJpegDecodeMJpegYCbCr

Decode Motion JPEG data

Definition

Arguments

pJpeg Pointer to JPEG data to be decoded

isize JPEG data size (in bytes)

pYCbCr Pointer to output buffer

osize Output buffer size (in bytes)

decodeMode Parameter related to decoding method

pCoefBuffer Pointer to quantization coefficient buffer

coefBufferSize Quantization coefficient buffer size (in bytes)

Return Values

Value	Description
>0	Output data pixel count
< 0	Error (for details, see "Return Codes")

Description

This function decodes JPEC data and stores the results in a specified area.

If the function completes normally, a value equal to (number of pixels in the x direction of the decoded data)* 65536 + (number of pixels in the y direction of the decoded data) will be returned

To pJpeg and isize, specify the JPEG data to be decoded.

To pYCbCr and osize, specify the buffer for storing the decoded result data. The output data size will depend on the JPEG image size and the specification of decodeMode (explained below). Note that the specified number of pixels processed within the decoder will be rounded to the nearest MCU unit (a multiple of 16 for YCbCr420). Also note that when SCE_JPEG_MJPEG_WITH_DHT or SCE_JPEG_MJPEG_WITHOUT_DHT is specified to decodeMode, the pitch difference required by the color space conversion hardware (the size of each line for Y, Cb, Cr is rounded to a multiple of 16) will be added to this number.

To <code>decodeMode</code>, specify the parameters related to the decoding method. Select a value from the following table that indicates the processing method of the DHT segment and color space constraints. Add any option values as necessary, and specify the total value.

Value	Description
SCE_JPEG_MJPEG_WITH_DHT	Decodes JPEG data with a DHG segment
	(limited to YCbCr422/420)
SCE_JPEG_MJPEG_WITHOUT_DHT	Decodes JPEG data without a DHT segment
	using the JPEG standard recommended
	Huffman table (limited to YCbCr422/420, for
	Motion JPEG)
SCE_JPEG_MJPEG_ANY_SAMPLING_WITHOUT_DHT	Decodes JPEG data without a DHT segment
	using the JPEG standard recommended
	Huffman table (no color space constraints, for
	Motion JPEG)
SCE_JPEG_MJPEG_ANY_SAMPLING	Decodes general JPEG data (no color space
	constraints)

The following options can be specified.

Downscale Magnification

To downscale the output image size, add one of the following values. When using this feature, calculate the output buffer size of the decoded result (pYCbCr and osize) based on the reduced image size.

Value	Description
SCE_JPEG_MJPEG_DOWNSCALE_1_2	Reduce image size to 1/2
SCE_JPEG_MJPEG_DOWNSCALE_1_4	Reduce image size to 1/4
SCE_JPEG_MJPEG_DOWNSCALE_1_8	Reduce image size to 1/8

To pCoefBuffer and coefBufferSize, specify the quantization coefficient buffer that will be used to decode the progressive JPEG. If the JPEG data to be decoded is not a progressive JPEG, specify NULL to pCoefBuffer, and 0 to coefBufferSize. When decoding progressive JPEG data, first allocate the memory for the quantization coefficient buffer size obtained using sceJpegGetOutputInfo(), then specify this memory.

Notes

This function is multithread safe.

The buffer specifying the JPEG data (pJpeg), output buffer (pRGBA), and quantization coefficient buffer (pCoefBuffer) have several restrictions. Refer to "Buffer Restrictions for Positioning I/O Data" in "Precautions" under the "JPEG Decoder Overview" document for details.

By using sceJpegGetOutputInfo(), the memory size required for the output buffer and quantization coefficient buffer can be obtained easily.

Example

See Also

sceJpegGetOutputInfo()

sceJpegMJpegCsc

Convert color space of Motion JPEG decoded result

Definition

Arguments

pRGBA Pointer to frame buffer where color space conversion result is stored
 pYCbCr Pointer to input buffer where YCbCr data is stored
 xysize Horizontal and vertical pixel count of input buffer

iFrameWidth Width of output frame buffer (in pixels)colorOption Output data format and input data color space

sampling Color space sampling and conversion method of input data

Return Values

Value	Description		
0	Processing completed normally		
< 0	Error (for details, see "Return Codes")	l	

Description

This function performs color space conversion on the decoded result obtained from sceJpegDecodeMJpegYCbCr() to RGBA format.

Supported input images are limited to the result within the range of 64 x 64 pixels to 2032 x 1088 pixels in YCbCr422/420 format decoded with SCE_JPEG_MJPEG_WITH_DHT /

SCE_JPEG_MJPEG_WITHOUT_DHT specified to the argument decodeMode of the sceJpegDecodeMJpegYCbCr() function. If this function is used for any other images, its behavior is not guaranteed.

To probable, specify the pointer to the frame buffer where the color space conversion results are stored. The output buffer size will not be checked, so specify sufficient memory area to store the converted image.

To pYCbCr and xysize, specify the YCbCr image data to be performed color space conversion. To pYCbCr, specify the pointer to the decoded result buffer passed to the sceJpegDecodeMJpegYCbCr() function, and pass the return value of the same function to xysize.

To *iFrameWidth*, specify the width of the output frame buffer in pixels. The value can be specified in multiples of 4, ranging from the width of the input image to 2032.

To colorOption, specify the output data format and input data color space. For the output format, select one of the following values.

Value				Description
SCE	_JPEG_	PIXEL	RGBA8888	Output in RGBA8888 format

Value				Description	
SCE	JPEG	PIXEL	BGRA8888	Output in BGRA8888 format	

The input data color space can be specified by adding the following values to the values listed above.

Value	Description		
SCE_JPEG_COLORSPACE_JFIF	Color space defined by JFIF (default)		
SCE_JPEG_COLORSPACE_BT601	Color space defined by BT.601		

To sampling, specify the color space sampling and conversion method of the input data.

Use the following formula to calculate the color space sampling of the input data.

• (Vertical color space sampling coefficient) * 256 + (horizontal color space sampling coefficient)

This color space sampling can use the last 16 bits of the return value from sceJpegGetOutputInfo(), or a constant indicating the type of color space sampling (defined separately).

Notes

This function is multithread safe.

The input / output buffers (prober and pycbcr) have several restrictions. Refer to "Buffer Restrictions for Positioning I/O Data" in "Precautions" under the "JPEG Decoder Overview" document for details.

Example

See Also

sceJpegDecodeMJpegYCbCr()

sceJpegFinishMJpeg

Terminate Motion JPEG Decoder

Definition

Arguments

None

Return Values

Value	Description
0	Success
< 0	Error (for details, see "Return Codes")

Description

This function terminates Motion JPEG decoding

Notes

This function is not multithread safe.

Example

int res = sceJpegFinishMJpeg();

See Also

sceJpegInitMJpeg()

SceJpegMJpegInitParam

Initialization parameter of Motion JPEG Decoder

Definition

Members

size
maxSplitDecoder
option

Number of bytes of this structure (sizeof(SceJpegMJpegInitParam)) Maximum number of Split Decoders to be used simultaneously (0 to 8) Option

Description

This structure is used to store parameters to pass when initializing Motion JPEG decode with sceJpeqInitMJpeqWithParam().

To size, specify the size of this structure in bytes.

To maxSplitDecoder, specify the maximum number of Split Decoders to be used simultaneously. Specify 0 if the split decoding feature will not be used.

To option, specify an initialization option. Specify SCE_JPEG_MJPEG_INIT_OPTION_NONE to utilize video memory as an input/output buffer region to pass data to the decoder. If you wish to use only the main memory, or both video/main memories, use SCE_JPEG_MJPEG_INIT_OPTION_LPDDR2_MEMORY instead.

See Also

sceJpegInitMJpegWithParam()

sceJpegGetOutputInfo

Obtain JPEG Decoder output information

Definition

Arguments

pJpeg Pointer to JPEG data to be decoded

isizeoutputFormatOutput data format

decodeMode Parameter related to decoding method

pOutputInfo Pointer to where obtained information is stored

Return Values

Value	Description
0	Success
< 0	Error (for details, see "Return Codes")

Description

This function obtains the size of each buffer type, color space information and pitch information, all of which are required to decode the specified JPEG data.

To pJpeg and isize, specify the JPEG data containing the required information.

To outputFormat, specify the output data format. When sceJpegDecodeMJpeg() is used for output in RGBA format, specify $SCE_JPEG_PIXEL_RGBA8888$ or $SCE_JPEG_PIXEL_BGRA8888$, and when sceJpegDecodeMJpegYCbCr() is used for output without color space conversion, specify $SCE_JPEG_NO_CSC_OUTPUT$.

To decodeMode, specify the parameters related to the decoding method. Specify the value to be specified to sceJpegDecodeMJpeg() or sceJpegDecodeMJpegYCbCr(). Refer to the description of each function for details.

The obtained information is stored in poutputInfo.

Notes

This function is multithread safe.

The buffer specifying the JPEG data (pJpeg) has several restrictions. Refer to "Buffer Restrictions for Positioning I/O Data" in "Precautions" under the "JPEG Decoder Overview" document for details.

Example

See Also

SceJpegOutputInfo, sceJpegDecodeMJpeg(), sceJpegDecodeMJpegYCbCr()

SceJpegOutputInfo

JPEG Decoder output information

Definition

```
#include <scejpeg.h>
typedef struct {
    int colorSpace;
    unsigned short imageWidth;
    unsigned short imageHeight;
    SceSize outputBufferSize;
    SceSize tempBufferSize;
    SceSize coefBufferSize;
    struct {
        unsigned int x;
        unsigned int y;
    } pitch[4];
} SceJpegOutputInfo;
```

Members

colorSpace
imageWidth
imageHeight
outputBufferSize
tempBufferSize
coefBufferSize
pitch

Color space information
Image width (in pixels)
Image height (in lines)
Required size for output buffer (in bytes)
Required size for color space conversion working

Required size for color space conversion working buffer (in bytes) Required size for quantization coefficient buffer (in bytes)

Pitch information (in bytes/line)

Description

This structure is used to store information obtained from JPEG data using sceJpegGetOutputInfo().

colorSpace contains the total value of the constant indicating the color space type and the constant indicating the color space sampling. Refer to the description of each constant for details.

imageWidth and imageHeight contain the image size. This is the image size if decoding is performed at equal magnification without downscaling.

outputBufferSize contains the required output buffer size. If SCE_JPEG_PIXEL_RGBA8888 is specified using the outputFormat argument in sceJpegGetOutputInfo(), this is the size of the color space converted RGBA data. If -1 is specified, this is the data size of the color space in the JPEG data.

tempBufferSize contains the size required for the color space conversion working buffer.

coefBufferSize contains the size required for the quantization coefficient buffer. If the JPEG file is not progressive, the quantization coefficient buffer is unused, so the value will be 0.

pitch contains the pitch size for the x direction and y direction. If SCE_JPEG_PIXEL_RGBA8888 is specified in the outputFormat argument of sceJpegGetOutputInfo(), pitch[0] will contain pitch information in RGBA. If -1 is specified, pitch[0] will contain Y pitch information, pitch[1] will contain Cb pitch information, and pitch[2] will contain Cr pitch information. Concerning the starting addresses for Cb and Cr data, the starting address for Cb is pitch[0].xxpitch[0].y added to the head address of the output buffer. And the starting address for Cr is pitch[1].xxpitch[1].y added to the head address of Cb.

See Also

sceJpegGetOutputInfo()

sceJpegCsc

Color space conversion from YCbCr444 format

Definition

Arguments

pRGBAPointer to frame buffer where color space conversion result is storedpYCbCrPointer to input buffer where YCbCr data is storedxysizeHorizontal and vertical pixel count of input bufferiFrameWidthWidth of output frame buffer (in pixels)colorOptionOutput data format and input data color spacesamplingColor space sampling and conversion method of input data

Return Values

Value	Description	
0	Success	1
< 0	Error (for details, see "Return Co	des")

Description

This function performs color space conversion on the decoded result obtained from sceJpegDecodeMJpegYCbCr() to RGBA format.

Supported input images are limited to the YCbCr444 format data decoded with the sceJpegDecodeMJpegYCbCr() function with specification of SCE_JPEG_MJPEG_ANY_SAMPLING or SCE_JPEG_MJPEG_ANY_SAMPLING_WITHOUT_DHT to the argument decodeMode. While no restriction is implemented on the pixel count of an input image or the width of output frame buffer, color space is limited to SCE_JPEG_COLORSPACE_JFIF, and output format is limited to SCE_JPEG_PIXEL_RGBA8888, and speed may be slow.

Specification method of each argument is similar to sceJpegMJpegCsc(). For details, refer to the description of sceJpegMJpegCsc().

Notes

This function is multithread safe.

The input / output buffers (pRGBA and pYCbCr) have several restrictions. Refer to "Buffer Restrictions for Positioning I/O Data" in "Precautions" under the "JPEG Decoder Overview" document for details.

Examples

See Also

sceJpegMJpegCsc(), sceJpegDecodeMJpegYCbCr()

sceJpegCreateSplitDecoder

Generate Split Decoder

Definition

Arguments

pCtrl Storage location for split decoding control information

Return Values

Value	Description
0	Success
< 0	Error (for details, see "Return Codes")

Description

This function generates the Split Decoder.

To pCtrl, specify the storage location of the split decoding control information. Specify the allocated memory area by the user side. This control information is used to distinguish the Split Decoder instance until the Split Decoder is discarded.

The maximum number of Split Decoders that can be used simultaneously can be specified using the <code>maxSplitDecoder</code> argument in <code>sceJpegInitMJpeg()</code>. If the specified maximum number is reached, this function will return <code>SCE JPEG ERROR EXCEED MAX SPLIT DECODER</code>.

Notes

When this function uses a separate split decoder instance for each thread, it is multithread safe.

Example

```
SceJpegSplitDecodeCtrl ctrl;
int res = sceJpegCreateSplitDecoder(&ctrl);
```

See Also

SceJpegSplitDecodeCtrl, sceJpegDeleteSplitDecoder()

sceJpegSplitDecodeMJpeg

Process split decoding

Definition

Arguments

pCtrl Split decoding control information

Return Values

Refer to the description.

Description

JPEG data for 1 frame is split and entered into the Decoder several times, and the results are stored in the specified area.

To pCtrl, specify the split decoding control information obtained using sceJpegCreateSplitDecoder(). At the first call, the stream buffer (pStreamBuffer and streamBufferSize) and decode mode (decodeMode) must be specified to the control information, and the head section of the JPEG data to be decoded must be loaded into the stream buffer.

Although this function advances the decoding by loading the JPEG data in strips and repeatedly calling it, depending on the return value, appropriate processing may be required on the application side.

Return Values	Description		
SCE JPEG ERROR	Indicates completion of the JPEG data header decoding.		
INIT DONE	At this point, the decode output information is stored in the control		
	information member outputInfo. Use this information to allocate the		
	output buffer and quantization coefficient buffer, and specify them to the		
	members poutputBuffer and pcoefBuffer. (If the JPEG data to be		
	decoded is not progressive, the quantization coefficient buffer is not		
	required)		
	Then, call this function again to continue decoding.		
SCE JPEG ERROR			
INPUT SUSPENDED	Indicates completion of the decoding of the JPEG data section loaded in the		
_INIOI_SOSPENDED	stream buffer.		
	Load only the writeBufferSize of successive JPEG data to the address		
	indicated by pwriteBuffer in the control information. If the remaining		
	JPEG data size is equal to or less than writeBufferSize, specify the actual		
	size loaded to writeBufferSize, and 1 to isEndOfStream.		
	Then, call this function again to continue decoding.		
0 or higher	Indicates the normal completion of the decoding.		
	This value is the output pixel count expressed in the following format:		
	(number of pixels in the x direction)*65536+(number of pixels in the y		
	direction).		
	Then discard the Split Decoder.		
Other values	Indicates that the split decoding cannot continue due to an error.		
	Perform the required error handling and discard the Split Decoder.		

Notes

When this function uses a separate split decoder instance for each thread, it is multithread safe.

Example

```
SceJpegSplitDecodeCtrl ctrl;
int res = sceJpegCreateSplitDecoder(&ctrl);
if (res < 0) {
        /* Error handling */
ctrl.pStreamBuffer = streamBuffer;
ctrl.streamBufferSize = /* Specify the number of
                                                        in streamBuffer */;
ctrl.decodeMode = SCE JPEG MJPEG WITH DHT;
/* Load stream to ctrl.streamBuffer */
for (;;) {
        res = sceJpegSplitDecodeMJpeg(&ctrl);
        if (res == SCE JPEG ERROR INPUT SUSPENDED)
              /* Load stream to ctrl.pWriteBuffer
        } else if (res == SCE_JPEG_ERROR_INIT_DONE) {
              /*Specify output buffer and quantization coefficient buffer */
              ctrl.pOutputBuffer = ycbcr;
        } else if (res >= 0) {
              /* Decoding complete
              break;
        } else {
              /* Error handling
              break;
```

See Also

SceJpegSplitDecodeCtrl

sceJpegDeleteSplitDecoder

Discard Split Decoder

Definition

Arguments

pCtrl Split decoding control information

Return Values

Value	Description
0	Success
< 0	Error (for details, see "Return Codes")

Description

This function discards the Split Decoder.

To pCtrl, specify the Split Decoder control information to be discarded.

Notes

When this function uses a separate split decoder instance for each thread, it is multithread safe.

Example

```
SceJpegSplitDecodeCtrl ctrl;
int res = sceJpegDeleteSplitDecoder(&ctrl);
```

See Also

SceJpegSplitDecodeCtrl, sceJpegCreateSplitDecoder()

SceJpegSplitDecodeCtrl

Split decoding control information

Definition

```
#include <scejpeg.h>
typedef struct {
    unsigned char *pStreamBuffer;
    SceSize streamBufferSize;
    unsigned char *pWriteBuffer;
    SceSize writeBufferSize;
    int isEndOfStream;
    int decodeMode;
    SceJpegOutputInfo outputInfo;
    void *pOutputBuffer;
    void*pCoefBuffer;
    unsigned int internalData[3];
} SceJpegSplitDecodeCtrl;
```

Members

pStreamBuffer streamBufferSize pWriteBuffer writeBufferSize isEndOfStream decodeMode outputInfo pOutputBuffer pCoefBuffer internalData Pointer to stream buffer
Stream buffer size
Pointer to write buffer
Write buffer size
If data written this time is end of stream
Parameter related to decoding method
Decoding output information
Pointer to output buffer

Pointer to quantization coefficient buffer Area to be used within library

Description

This information is used to control the split decoding.

To pStreamBuffer and streamBufferSize, specify the start address and size of the stream buffer. Before calling sceJpegSplitDecodeMJpeg() for the first time, specify the memory allocated by the application. Once this memory is specified, the address and size cannot be changed until the Split Decoder is discarded. Be sure to specify the buffer size of the stream separated and input multiple times in multiples of 256.

By calling sceJpegSplitDecodeMJpeg(), information about the buffer where subsequent JPEG data can be written is stored in pWriteBuffer and writeBufferSize. This area always indicates the stream buffer range.

To *isEndOfStream*, specify if the data written this time to *pWriteBuffer* is the end of the stream. If the written data includes the end of the stream, specify 1. Otherwise, specify 0.

To decodeMode, specify the parameters related to the decoding method. The value that can be specified will be the same as decodeMode in sceJpegDecodeMJpegYCbCr(). Refer to the description of sceJpegDecodeMJpegYCbCr().

The decoded output information is stored in <code>outputInfo</code>. This will become valid when SCE <code>JPEG ERROR INIT DONE</code> is returned by calling <code>sceJpegSplitDecodeMJpeg()</code> repeatedly.

To poutputBuffer, specify the buffer where data from the decoding results are stored. Repeatedly call sceJpegSplitDecodeMJpeg() until SCE_JPEG_ERROR_INIT_DONE is returned. Then specify this before calling sceJpegSplitDecodeMJpeg(). The required buffer size is stored in outputInfo.outputBufferSize. Allocate this memory size and specify its head address.

To pCoefBuffer, specify the pointer to the quantization coefficient buffer that will be used for decoding the progressive JPEG. Repeatedly call <code>sceJpegSplitDecodeMJpeg()</code> until <code>SCE_JPEG_ERROR_INIT_DONE</code> is returned. Then specify this before calling <code>sceJpegSplitDecodeMJpeg()</code>. The required buffer size is stored in <code>outputInfo.coefBufferSize</code>. Allocate this memory size and specify its head address. If <code>outputInfo.coefBufferSize</code> is 0, the JPEG data is not progressive, so the buffer does not need to be specified.

Notes

Each type of buffers (pStreamBuffer, pOutputBuffer, and pCoefBuffer) has several restrictions. Refer to "Buffer Restrictions for Positioning I/O Data" in "Precautions" under the "JPEG Decoder Overview" document for details.

See Also

sceJpegCreateSplitDecoder(), sceJpegDeleteSplitDecoder(), sceJpegSplitDecodeMJpeg()

Color Space Type

Constants indicating color space type

Definition

#define SCE JPEG CS UNKNOWN	(0<<16)	/* unknown */
#define SCE JPEG CS GRAYSCALE	(1<<16)	/* Y only */
#define SCE JPEG CS YCBCR	(2<<16)	/* Y/Cb/Cr */

Description

These constants indicate the color space type.

See Also

SceJpegOutputInfo, sceJpegMJpegCsc()

Color Space Sampling

Constants indicating color space sampling types

Definition

```
/* 1:1 */
#define SCE JPEG CS H1V1
                              (0x101)
#define SCE JPEG CS H2V1
                              (0x201)
                                                2:1 */
#define SCE JPEG CS H4V1
                              (0x401)
                                               4:1 */
#define SCE JPEG CS H1V2
                                             /* 1:2 */
                              (0x102)
                                             /* 2:2 */
#define SCE JPEG CS H2V2
                              (0x202)
                                             /* 1:4 */
#define SCE JPEG CS H1V4
                              (0x104)
```

Description

These constants indicate the types of color space sampling.

The top 8 bits correspond to the color space sampling coefficient in the vertical direction, and the bottom 8 bits correspond to the color space sampling coefficient in the horizontal direction.

Currently, all other color space sampling is not supported.

See Also

SceJpegOutputInfo, sceJpegMJpegCsc()

Return Codes

List of JPEG Decoder Return Codes

Definition

Value	Hexadecimal	Description
SCE OK	0	Normal completion
SCE_JPEG_ERROR_IMAGE_EMPTY	0x80650003	Image size is 0
SCE_JPEG_ERROR_BAD_MARKER_LENGTH	0x80650004	Invalid size marker found
SCE_JPEG_ERROR_BAD_DHT_COUNTS	0x80650005	Number of Huffman tables is
		invalid
SCE_JPEG_ERROR_BAD_DHT_INDEX	0x80650006	A non-existent Huffman table has
		been specified
SCE_JPEG_ERROR_BAD_DQT_INDEX	0x80650007	A non-existent inverse quantization
		segment has been specified
SCE_JPEG_ERROR_DECODE_ERROR	0x80650009	Variable-length code decoding error
SCE_JPEG_ERROR_INVALID_POINTER	0x80650010	Invalid pointer argument
SCE_JPEG_ERROR_BAD_COMPONENT_ID	0x80650011	A non-existent color dimension has
		been specified
SCE_JPEG_ERROR_UNSUPPORT_COLORSPACE	0x80650013	An unsupported color space has
		been specified
SCE_JPEG_ERROR_BAD_MCU_SIZE	0x80650014	Invalid MCU size
SCE_JPEG_ERROR_BAD_PRECISION	0x80650015	Invalid DCT coefficient precision
SCE_JPEG_ERROR_UNSUPPORT_SAMPLING	0x80650016	Unsupported color space sampling
SCE_JPEG_ERROR_COMPONENT_COUNT	0x80650017	Number of color space dimensions
		is invalid
SCE_JPEG_ERROR_EOI_EXPECTED	0x80650019	No EOI was found
SCE_JPEG_ERROR_UNSUPPORT_IMAGE_SIZE	0x80650020	Image size is too big
SCE_JPEG_ERROR_NO_HUFF_TABLE	0x80650021	An undefined Huffman table has
COL THE EDDON NO ONLY TIPE	0.0045000	been used
SCE_JPEG_ERROR_NO_QUANT_TABLE	0x80650022	An undefined inverse quantization
SCE IDEC EDDOD NO SOT	090(E0022	coefficient has been used
SCE_JPEG_ERROR_NO_SOI	0x80650023	No SOI maker was found
SCE_JPEG_ERROR_BAD_DQT_MARKER	0x80650024	Invalid DQT marker found
SCE_JPEG_ERROR_BAD_DHT_MARKER	0x80650025	Invalid DHT marker found
SCE_JPEG_ERROR_BAD_DRI_MARKER SCE JPEG ERROR BAD SOF MARKER	0x80650026	Invalid DRI marker found Invalid SOF marker found
SCE JPEG_ERROR_BAD_SOF_MARKER SCE JPEG_ERROR_BAD_SOS_MARKER	0x80650027	
SCE JPEG ERROR SOF DUPLICATE	0x80650028	Invalid SOS marker found
	0x80650029	Multiple SOF markers exist
SCE_JPEG_ERROR_NO_LOSSLESS_SUPPORT	0x80650031	Lossless compression is not
SCE JPEG ERROR NO ARITH SUPPORT	0.00650022	supported
SCE_OPEG_ERROR NO_ARTH_SUPPORT	0x80650032	Arithmetic compression is not
SCE JPEG ERROR UNKNOWN MARKER	0.20650025	supported Unknown marker found
SCE JPEG_ERROR_UNEXPECTED MARKER	0x80650035	
SCE JPEG_ERROR_UNEXPECTED_MARKER SCE JPEG ERROR INVALID REGION	0x80650037	Unexpected marker found
	0x80650038	An invalid region was specified A function was called from an
SCE_JPEG_ERROR_INVALID_STATE	0x80650039	
SCE JPEG ERROR MEMORY SIZE	0x80650041	inappropriate state Invalid memory size was specified
SCE JPEG ERROR CANNOT INIT		Cannot initialize
SCE JPEG ERROR CANNOT FINISH	0x80650042	Cannot initialize Cannot finish
SCE JPEG ERROR INVALID COLOR FORMAT	0x80650043	
OCE_OLEG_EVVOV_INAUTID_COTOK_LOKMAI	0x80650050	Color space format is not supported
		by color space conversion feature

Value	Hexadecimal	Description
SCE_JPEG_ERROR_NOT_PHY_CONTINUOUS_MEMORY	0x80650053	Physical address of specified
		memory area is not continuous
SCE_JPEG_ERROR_INVALID_DECODE_MODE	0x80650060	Invalid decode mode was specified
SCE_JPEG_ERROR_BAD_PROGRESSIVE_PARAM	0x80650061	Invalid progressive parameter
SCE_JPEG_ERROR_EXCEED_MAX_SPLIT_DECODER	0x80650062	Maximum number of Split
		Decoders generated for
		simultaneous use has been
		exceeded
SCE_JPEG_ERROR_INIT_DONE	0x80650063	Initialization of Split Decoder has
		finished
SCE_JPEG_ERROR_INPUT_SUSPENDED	0x80650064	Split decoding processing has been
		suspended
SCE_JPEG_ERROR_INPUT_DATA_TOO_BIG	0x80650065	Input data size has exceeded stream
		buffer size
SCE_JPEG_ERROR_INVALID_DATA_SIZE	0x80650066	Specified data size is too big
SCE_JPEG_ERROR_INVALID_INIT_PARAM	0x80650067	Invalid value was specified to the
		initialization parameter

