CLAIMS

We Claim:

1	1. A method for searching a database for data satisfying a property specified		
2	by a query, the database containing data within an application domain and encoded in a		
3	group theory representation, comprising:		
4	formulating the query in terms of the group theory representation;		
5	executing the query on the data in the database within the application domain		
6	and encoded in the group theory representation to identify zero or		
7	more database elements and group elements in the group theory		
8	representation satisfying the query; and		
9	outputting the zero or more database elements and group elements satisfying		
10	the query.		
1	2. The method of claim 1, wherein the data within the application domain are		
2	represented as one or more augmented clauses, where each augmented clause has a pair		
3	(c,G) including a database element c and an associated group G of group elements g		
4	acting on c .		
1	3. The method of claim 2, wherein the group elements g are permutations.		
_			
1	4. The method of claim 2, wherein the query is of a type "find an element x		
2	that satisfies a property P " and wherein formulating the query in terms of the group		
3	theory representation comprises:		
4	formulating the query as a type "find database element c and element g of the		
5	associated group G , such that $g(c)$ satisfies property P ."		

	5.	The method of claim 1, wherein outputting the zero or more database			
2	elements an	d group elements satisfying the query comprises:			
3	C	converting the zero or more database elements and group elements satisfying			
4		the query from the group theory representation to a native			
5		representation of the data within the application domain; and			
6	C	outputting the zero or more converted database elements satisfying the query.			
1	6.	The method of claim 5, wherein a database element satisfying the query			
2	includes a database element c and a group element g of an associated group G , wherein				
3	the converting comprises:				
4	C	constructing $g(c)$ to produce the database element in its native representation.			
1	7.	The method of claim 1, wherein the query comprises a high-level query,			
2	the method further comprising:				
3		generating one or more low-level queries from the high-level query, wherein			
4	·	the formulating step formulates the low-level queries in the group			
5		theory representation and wherein the executing step executes the low-			
6		level queries on the data in the database.			
1	8.	The method of claim 7, the method further comprising:			
2	٤	generating one or more additional low-level queries responsive to one or more			
3		results of one or more previously-executed low-level queries, wherein			
4		the formulating step formulates the one or more additional low-level			
5		queries in the group theory representation and wherein the executing			
6		step executes the one or more additional low-level queries on the data			
7		in the database.			
1	9.	The method of claim 1, further comprising:			
2	r	epresenting the zero or more database elements and group elements satisfying			
3		the query as a subgroup, wherein some elements are described			

4	explicitly and remaining elements are described in terms of the
5	explicitly described group elements.
1	10. The method of claim 1, wherein the data within the application domain
2	describe a digital logical device and wherein the query performs a verification and/or test
3	of the device.
1	11. A system for using group theory to manipulate data in a database,
2	comprising:
3	a query execution module for executing a query on the data in the database,
4	wherein the data in the database are within an application domain and
5	are encoded in a group theory representation and wherein the query
6	specifies a search for database elements and group elements satisfying
7	a property specified by the query.
1	12. The system of claim 11, further comprising:
2	a database construction module for receiving input data within the application
3	domain in a native representation and for encoding the input data in a
4	group theory representation.
1	13. The system of claim 12, wherein the input data in the group theory
2	representation include one or more augmented clauses, where each augmented clause has
3	a pair (c,G) including a database element c and a group G of group elements g acting on
4	c.
1	14. The system of claim 13, wherein the group elements g are permutations.
1	15. The system of claim 13, further comprising:
2 .	a query formation module for receiving an input query, the input query
3	specifying a search for database elements satisfying a property in a
4	native representation of the data, and for converting the input query

J	into a search for equivalent database elements and associated group			
6	elements in the group theory representation of the data.			
1	16. The system of claim 15, wherein the input query is of a type "find an			
2	element x that satisfies property P " and wherein the converted input query is of a type			
3	"find database element c and element g of an associated group G , such that $g(c)$ satisfies			
4	property P."			
1	17. The system of claim 11, wherein the query execution module identifies			
2	zero or more database elements and group elements satisfying the query and further			
3	comprising:			
4	a result construction module for converting the zero or more database			
5	elements and group elements satisfying the query from the group			
6	theory representation to a native representation of the data within the			
7	application domain.			
1	18. The system of claim 17, wherein a database element satisfying the query			
2	includes a database element c and a group element g of an associated group G , and			
3	wherein the result construction module constructs $g(c)$ to produce the database element in			
4	its native representation.			
1	19. The system of claim 11, further comprising:			
2	a query formation module for receiving a high-level input query, and for			
3	generating one or more low-level queries responsive to the high-level			
4	input query, the one or more low-level queries specifying searches for			
5	database elements and group elements in the group theory			
6	representation of the data.			
1	20. The system of claim 19, wherein the query formation module is further			
2	adapted to generate one or more additional low-level queries in response to one or more			
3	results of one or more previously-executed low level queries.			

1	21. The system of claim 11, wherein the query execution module identifies
2	zero or more database elements and group elements satisfying the query and further
3	comprising:
4	a result construction module for representing the zero or more database
5	elements and group elements satisfying the query as a subgroup,
6	wherein some elements are described explicitly and remaining
7	elements are described in terms of the explicitly described group
8	elements.
1	22. The system of claim 11, wherein the data within the application domain
2	describe a digital logical device and wherein the query performs a verification and/or test
3	of the device.
1	23. A computer program product comprising:
2	a computer-readable medium having computer program code embodied
3	therein for encoded thereon computer program modules for using
4	group theory to manipulate data in a database, the computer program
5	modules comprising:
5	a query execution module for executing a query on the data in the
7	database, wherein the data in the database are within an application
3	domain and are encoded in a group theory representation and
9	wherein the query specifies a search for database elements and
)	group elements satisfying a property specified by the query.
1	24. The computer program product of claim 23, the computer program
2	modules further comprising:
3	a database construction module for receiving input data within the application
4	domain in a native representation and for encoding the input data in a
5	group theory representation.

1	25.	The computer program product of claim 24, wherein the input data in the	
2	group theory representation include one or more augmented clauses, where each		
3	augmented clause has a pair (c,G) including a database element c and a group G of		
4	group elemen	ts g acting on c .	
1	26.	The computer program product of claim 25, wherein the group elements g	
2	are permutation	ons.	
1	27		
1	27.	The computer program product of claim 25, the computer program	
2	modules further comprising:		
3	ac	query formation module for receiving an input query, the input query	
4		specifying a search for database elements satisfying a property in a	
5		native representation of the data, and for converting the input query	
6		into a search for equivalent database elements and associated group	
7		elements in the group theory representation of the data.	
1	28.	The computer program product of claim 27, wherein the input query is of	
2	a type "find a	n element x that satisfies property P " and wherein the converted input query	
3	is of a type "find database element c and element g of an associated group G , such that		
4	g(c) satisfies property P ."		
	-		
1	29.	The computer program product of claim 23, wherein the query execution	
2	module identi	fies zero or more database elements and group elements satisfying the	
3	query, the cor	mputer program modules further comprising:	
4	a r	esult construction module for converting the zero or more database	
5		elements and group elements satisfying the query from the group	
6		theory representation to a native representation of the data within the	
7		application domain.	
1	30.	The computer program product of claim 29, wherein a database element	
2	satisfying the	query includes a database element c and a group element g of an associated	

3	group G , and wherein the result construction module constructs $g(c)$ to produce the		
4	database element in its native representation.		
1	31. The computer program product of claim 23, the computer program		
2	modules further comprising:		
3	a query formation module for receiving a high-level input query, and for		
4	generating one or more low-level queries responsive to the high-level		
5	input query, the one or more low level queries specifying searches for		
6	database elements in the group theory representation of the data.		
1	32. The computer program product of claim 31, wherein the query formation		
2	module is further adapted to generate one or more additional low-level queries in		
3	response to one or more results of one or more previously-executed low-level queries.		
1	33. The computer program product of claim 23, wherein the query execution		
2	module identifies zero or more database elements and group elements satisfying the		
3	query and further comprising:		
4	a result construction module for representing the zero or more database		
5	elements and group elements satisfying the query as a subgroup,		
6	wherein some elements are described explicitly and remaining		
7	elements are described in terms of the explicitly described group		
8	elements.		
1	34. The computer program product of claim 23, wherein the data in the		
2	application domain describe a digital logical device and wherein the query performs a		
2	varification and/or test of the device		