CONTAMINATION BIAS IN LINEAR REGRESSIONS

Paul Goldsmith-Pinkham, Peter Hull, Michal Kolesár

Joseph Paul

April, 2024

R&R @ American Economic Review

KEY TAKEAWAYS

- Regressions with multiple treatments and flexible controls generally fail to estimate a convex weighted average of heterogeneous treatment effects
- This is due to the coefficients of each treatment being biased or 'contaminated' by the effect of the other treatments.
- Not adjusting for this contamination bias results in economically meaningful bias in studies with multiple treatments.

KEY TAKEAWAYS

- Regressions with multiple treatments and flexible controls generally fail to estimate a convex weighted average of heterogeneous treatment effects
- This is due to the coefficients of each treatment being biased or 'contaminated' by the effect of the other treatments.
- Not adjusting for this contamination bias results in economically meaningful bias in studies with multiple treatments.

MOTIVATION AND EXAMPLE (PROJECT STAR - KRUEGER (1999))

$$Y_i = \alpha + \beta D_i + \gamma W_i + e_i$$

where

- $D_i \in \{0,1\}$ Single Treatment Small Class Size
- $W_i \in \{0, 1\}$ Single Control (Strata) Different Schools
- e_i Uncorrelated Residual

Using potential outcome notation, let $Y_i(d)$ denote test scores when $D_i = d$.

- Individual treatment effect $\tau_{1i} = Y_i(1) Y_i(0)$
- By assumption $(Y_i(0), Y_i(1)) \perp D_i \mid W_i$

MOTIVATION AND EXAMPLE (PROJECT STAR - KRUEGER (1999))

$$Y_i = \alpha + \beta D_i + \gamma W_i + e_i$$

where

- $D_i \in \{0, 1\}$ Single Treatment Small Class Size
- $W_i \in \{0, 1\}$ Single Control (Strata) Different Schools
- e_i Uncorrelated Residual

Using potential outcome notation, let $Y_i(d)$ denote test scores when $D_i = d$.

- Individual treatment effect $\tau_{1i} = Y_i(1) Y_i(0)$
- By assumption $(Y_i(0), Y_i(1)) \perp D_i \mid W_i$

ANGRIST (1998)

Angrist (1998) showed that the coefficient β identifies a convexly weighted average of within strata ATE:

$$\beta = \phi \tau_1(0) + (1 - \phi)\tau_1(1)$$

where

$$\Phi = \frac{var(D_i|W_i=0)Pr(W_i=0)}{\sum_{w=0}^{1} var(D_i|W_i=w)Pr(W_i=w)}$$

•
$$\tau_1(w) = \mathbb{E}[Y_i(1) - Y_i(0) \mid W_i = w]$$
 is the ATE within strata $w \in \{0, 1\}$

Thus β identifies a weighted average of strata effects across the two groups.

DERIVATION USING FRISCH-WAUGH-LOWELL THEOREM

Using FWL theorem, we can write our multivariate regression as a univariate regression:

Let
$$M_W = I - W_i (W_i'W_i)^{-1}W_i'$$

$$M_{W_i}Y_i = M_{W_i}D_i\beta + M_{W_i}e_i$$

$$\implies Y_i = \tilde{D}_i\beta + e_i$$

$$\tilde{D}_iY = \tilde{D}_i\tilde{D}_i\beta + \tilde{D}_ie_i$$

$$\implies \beta = \frac{\mathbb{E}\tilde{D}_iY_i}{\mathbb{E}\tilde{D}_i^2}$$

DERIVATION (CONT.)

Note that:

$$Y_{i} = D_{i}Y_{i}(1) + (1 - D_{i})Y_{i}(0)$$
 and $Y_{i}(1) = Y_{i}(0) + \tau$

Substituting back in:

$$Y_{i} = D_{i}(Y_{i}(0) + \tau_{i}) + (1 - D_{i})Y_{i}(0)$$

$$= D_{i}Y_{i}(0) + D_{i}\tau_{i} + Y_{i}(0) - D_{i}Y_{i}(0)$$

$$= Y_{i}(0) + D_{i}\tau_{i}$$

DERIVATION (CONT.) Substituting into β:

$$\beta = \frac{\mathbb{E}[D_i(Y_i(0) + D_i\tau_{1i})]}{\mathbb{E}[\tilde{D}_i^2]}$$
$$= \frac{\mathbb{E}[\tilde{D}_iY_i(0)]}{\mathbb{E}[\tilde{D}_i^2]} + \frac{\mathbb{E}[\tilde{D}_iD_i\tau_{1i}]}{\mathbb{E}[\tilde{D}_i^2]}$$

Using LIE and conditional random assignment

$$\mathbb{E}[D_i Y_i(0)] = \mathbb{E}[\mathbb{E}[D_i Y_i(0) \mid W_i]] = \mathbb{E}[\mathbb{E}[D_i \mid W_i] \mathbb{E}[Y_i(0) \mid W_i]] = 0$$

Therefore,

$$\beta = \frac{\mathbb{E}[\tilde{D}_i Y_i(0)]}{\mathbb{E}[\tilde{D}_i^2]} + \frac{\mathbb{E}[\tilde{D}_i D_i \tau_{1i}]}{\mathbb{E}[\tilde{D}_{i2}]} = \frac{\mathbb{E}[\tilde{D}_i D_i \tau_{1i}]}{\mathbb{E}[\tilde{D}_{i2}]}$$

DERIVATION (CONT.) Substituting into β:

$$\beta = \frac{\mathbb{E}[D_i(Y_i(0) + D_i\tau_{1i})]}{\mathbb{E}[\tilde{D}_i^2]}$$
$$= \frac{\mathbb{E}[\tilde{D}_iY_i(0)]}{\mathbb{E}[\tilde{D}_i^2]} + \frac{\mathbb{E}[\tilde{D}_iD_i\tau_{1i}]}{\mathbb{E}[\tilde{D}_i^2]}$$

Using LIE and conditional random assignment:

$$\mathbb{E}[\tilde{D}_i Y_i(0)] = \mathbb{E}[\mathbb{E}[\tilde{D}_i Y_i(0) \mid W_i]] = \mathbb{E}[\mathbb{E}[\tilde{D}_i \mid W_i] \mathbb{E}[Y_i(0) \mid W_i]] = 0$$

Therefore,

$$\beta = \frac{\mathbb{E}[\tilde{D}_i Y_i(0)]}{\mathbb{E}[\tilde{D}_i^2]} + \frac{\mathbb{E}[\tilde{D}_i D_i \tau_{1i}]}{\mathbb{E}[\tilde{D}_{i^2}]} = \frac{\mathbb{E}[\tilde{D}_i D_i \tau_{1i}]}{\mathbb{E}[\tilde{D}_{i^2}]}$$

DERIVATION (CONT.) Substituting into β:

$$\beta = \frac{\mathbb{E}[D_i(Y_i(0) + D_i\tau_{1i})]}{\mathbb{E}[\tilde{D}_i^2]}$$

$$= \frac{\mathbb{E}[\tilde{D}_iY_i(0)]}{\mathbb{E}[\tilde{D}_i^2]} + \frac{\mathbb{E}[\tilde{D}_iD_i\tau_{1i}]}{\mathbb{E}[\tilde{D}_i^2]}$$

Using LIE and conditional random assignment:

~ ~

$$\mathbb{E}[\tilde{D}_i Y_i(0)] = \mathbb{E}[\mathbb{E}[\tilde{D}_i Y_i(0) \mid W_i]] = \mathbb{E}[\mathbb{E}[\tilde{D}_i \mid W_i] \mathbb{E}[Y_i(0) \mid W_i]] = 0$$

Therefore,

$$\beta = \frac{\mathbb{E}[\tilde{D}_i Y_i(0)]}{\mathbb{E}[\tilde{D}_i^2]} + \frac{\mathbb{E}[\tilde{D}_i D_i \tau_{1i}]}{\mathbb{E}[\tilde{D}_{i2}]} = \frac{\mathbb{E}[\tilde{D}_i D_i \tau_{1i}]}{\mathbb{E}[\tilde{D}_{i2}]}$$

DERIVATION (CONT.)

Again, using LIE:

$$\begin{split} \mathbb{E}[\tilde{D}_i D_i \tau_{1i}] &= \mathbb{E}[\mathbb{E}[\tilde{D}_i D_i \tau_{1i} \mid W_i]] \\ &= \mathbb{E}[\mathbb{E}[\tilde{D}_i D_i \mid W_i] \mathbb{E}[\tau_{1i} \mid W_i]] \\ &= \mathbb{E}[var(D_i \mid W_i) \tau_{1i}(W_i)] \end{split}$$

Note that $\mathbb{E}[\tilde{D}_i^2] = \mathbb{E}[\mathbb{E}[\tilde{D}_i^2 \mid W_i]] = \mathbb{E}[var(D_i \mid W)]$, which gives us:

$$S = \frac{\mathbb{E}[\bar{D}_i D_i \tau_{1i}]}{\mathbb{E}[\tilde{D}_i^2]} = \frac{\mathbb{E}[var(D_i \mid W_i) \tau_{1i}(W_i)]}{\mathbb{E}[var(D_i \mid W)]}$$
$$= \phi \tau_1(0) + (1 - \phi)\tau_1(1)$$

DERIVATION (CONT.)

Again, using LIE:

$$\mathbb{E}[\tilde{D}_i D_i \tau_{1i}] = \mathbb{E}[\mathbb{E}[\tilde{D}_i D_i \tau_{1i} \mid W_i]]$$

$$= \mathbb{E}[\mathbb{E}[\tilde{D}_i D_i \mid W_i] \mathbb{E}[\tau_{1i} \mid W_i]]$$

$$= \mathbb{E}[var(D_i \mid W_i) \tau_{1i}(W_i)]$$

Note that $\mathbb{E}[\tilde{D}_i^2] = \mathbb{E}[\mathbb{E}[\tilde{D}_i^2 \mid W_i]] = \mathbb{E}[var(D_i \mid W)]$, which gives us:

$$\beta = \frac{\mathbb{E}[\tilde{D}_i D_i \tau_{1i}]}{\mathbb{E}[\tilde{D}_i^2]} = \frac{\mathbb{E}[var(D_i \mid W_i) \tau_{1i}(W_i)]}{\mathbb{E}[var(D_i \mid W)]}$$
$$= \phi \tau_1(0) + (1 - \phi)\tau_1(1)$$

CONTAMINATION BIAS WITH TWO RANDOMISED TREATMENTS Consider an example with:

- A Control Group: $D_i = 0$
- A treatment that reduces class sizes: $D_i = 1$
- A treatment that introduces full time teaching aids: $D_i = 2$

Let $X_i = (X_{1i}, X_{2i})'$, where $X_{ki} = \mathbb{1}\{D_i = k\}$ indicates assignment to treatments k = 1, 2. We include a constant and school indicators W_i .

$$Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \gamma W_i + e_i$$

With potential outcomes: $Y_i = Y_i(0) + \tau_{1i}X_{1i} + \tau_{2i}X_{2i}$

$$\tau_{1i} = Y_i(1) - Y_i(0), \ \tau_{2i} = Y_i(2) - Y_i(0)$$

And again assuming conditional random assignment: $(Y_i(0), Y_i(1), Y_i(2)) \perp X_i \mid W_i$

DERIVATION WITH TWO TREATMENTS USING FWL Denote $Q_i := (\mathbf{1}, X_{2i}, W_i)$, then:

$$M_{Q_{i}}Y_{i} = \beta M_{Q_{i}}X_{1i} + M_{Q_{i}}e_{i}$$

$$\implies Y_{i} = \beta \tilde{\tilde{X}}_{1i} + e_{i}$$

$$\implies \beta = \frac{\mathbb{E}[\tilde{\tilde{X}}_{1i}Y_{i}]}{\mathbb{E}[\tilde{\tilde{X}}_{1i}^{2}]}$$

Substituting potential outcomes:

$$\begin{split} \beta &= \frac{\mathbb{E}[\tilde{\tilde{X}}_{1i}(Y_i(0) + \tau_{1i}X_{1i} + \tau_{2i}X_{2i})]}{\mathbb{E}[\tilde{\tilde{X}}_{1i}^2]} \\ &= \frac{\mathbb{E}[\tilde{\tilde{X}}_{1i}Y_i(0)]}{\mathbb{E}[\tilde{\tilde{X}}_{1i}^2]} + \frac{\mathbb{E}[\tilde{\tilde{X}}_{1i}X_{1i}\tau_{1i}]}{\mathbb{E}[\tilde{\tilde{X}}_{1i}^2]} + \frac{\mathbb{E}[\tilde{\tilde{X}}_{1i}X_{2i}\tau_{2i}]}{\mathbb{E}[\tilde{\tilde{X}}_{1i}^2]} \end{split}$$

KEY DIFFERENCE WITH TWO TREATMENTS

$$\beta = \frac{\mathbb{E}[\tilde{\tilde{X}}_{1i}Y_i(0)]}{\mathbb{E}[\tilde{\tilde{X}}_{1i}^2]} + \frac{\mathbb{E}[\tilde{\tilde{X}}_{1i}X_{1i}\tau_{1i}]}{\mathbb{E}[\tilde{\tilde{X}}_{1i}^2]} + \frac{\mathbb{E}[\tilde{\tilde{X}}_{1i}X_{2i}\tau_{2i}]}{\mathbb{E}[\tilde{\tilde{X}}_{1i}^2]}$$

We still have $\mathbb{E}[\tilde{X}_{1i}Y_i(0)] = 0$ since the auxiliary regression residuals are uncorrelated with potential outcomes.

However, we do not generally have $\mathbb{E}[\tilde{X}_{i1}X_{i2}\tau_{i2}] = 0$

The key difference here is that \tilde{X}_{1i} is uncorrelated with W_i, X_{2i} , but it is not mean independent.

KEY DIFFERENCE WITH TWO TREATMENTS

$$\beta = \frac{\mathbb{E}[\tilde{\tilde{X}}_{1i}Y_i(0)]}{\mathbb{E}[\tilde{\tilde{X}}_{1i}^2]} + \frac{\mathbb{E}[\tilde{\tilde{X}}_{1i}X_{1i}\tau_{1i}]}{\mathbb{E}[\tilde{\tilde{X}}_{1i}^2]} + \frac{\mathbb{E}[\tilde{\tilde{X}}_{1i}X_{2i}\tau_{2i}]}{\mathbb{E}[\tilde{\tilde{X}}_{1i}^2]}$$

We still have $\mathbb{E}[\tilde{X}_{1i}Y_i(0)] = 0$ since the auxiliary regression residuals are uncorrelated with potential outcomes.

However, we do not generally have $\mathbb{E}[\tilde{X}_{i1}X_{i2}\tau_{i2}] = 0$.

The key difference here is that \tilde{X}_{1i} is uncorrelated with W_i, X_{2i} , but it is not mean independent.

CONTAMINATION BIAS TERM

This is because the dependence between X_{1i} and X_{2i} is non-linear as they are mutually exclusive treatments:

- If $X_{2i} = 1$, then $X_{1i} = 0$
- If $X_{2i} = 0$, then $Pr(X_{1i} = 1)$ depends on W_i

Thus, $\tilde{\tilde{X}}_{1i} \neq X_{1i} - \mathbb{E}[X_{1i} \mid W_i, X_{2i}].$

Because \tilde{X}_{i1} does not coincide with the conditionally demeaned X_{i1} , we cannot generally reduce the expression to only involve the effects of the first treatment, τ_{i1} .

"CONTAMINATED" ESTIMATE

Instead, β_1 simplifies to:

$$\beta_1 = \mathbb{E}[\lambda_{11}(W_i)\tau_1(W_i)] + \mathbb{E}[\lambda_{12}(W_i)\tau_2(W_i)]$$

where:

- $\lambda_{11}(W_i) = \frac{\mathbb{E}[\tilde{X}_{1i}X_{1i}|W_i]}{\mathbb{E}\tilde{X}_{1i}^2}$ is non-negative and averages to one
- $\lambda_{12}(W_i) = \frac{\mathbb{E}[\tilde{X}_{1i}X_{2i}|W_i]}{E[\tilde{X}_{1i}^2]}$ is the contamination bias term and is generally non-zero

The second term includes conditional effects of the other treatment $\tau_2(W_i) = \mathbb{E}[Y_i(2) - Y_i(0) \mid W_i]$, causing the bias.

UNDERSTANDING THE CONTAMINATION BIAS

The contamination bias term arises because the residualised treatment \tilde{X}_{1i} is not conditionally independent of the second treatment X_{2i} within strata, despite being uncorrelated with X_{2i} by construction.

This can be understood by interpreting \tilde{X}_{1i} as the result of a two-step residualization process:

First, demean treatments within strata:

$$\tilde{X}_{1i} = X_{1i} - \mathbb{E}[X_{1i} \mid W_i] = X_{1i} - p_1(W_i)$$

 $\tilde{X}_{2i} = X_{2i} - \mathbb{E}[X_{2i} \mid W_i] = X_{2i} - p_2(W_i)$

where $p_i(W_i)$ gives the propensity score for treatment j within strata.

UNDERSTANDING THE CONTAMINATION BIAS

The contamination bias term arises because the residualised treatment \tilde{X}_{1i} is not conditionally independent of the second treatment X_{2i} within strata, despite being uncorrelated with X_{2i} by construction.

This can be understood by interpreting $\tilde{\tilde{X}}_{1i}$ as the result of a two-step residualization process:

First, demean treatments within strata:

$$\tilde{X}_{1i} = X_{1i} - \mathbb{E}[X_{1i} \mid W_i] = X_{1i} - p_1(W_i)$$

 $\tilde{X}_{2i} = X_{2i} - \mathbb{E}[X_{2i} \mid W_i] = X_{2i} - p_2(W_i)$

where $p_i(W_i)$ gives the propensity score for treatment j within strata.

UNDERSTANDING THE CONTAMINATION BIAS (CONT.)

$$\begin{split} \tilde{X}_{1i} &= X_{1i} - \mathbb{E}[X_{1i} \mid W_i] = X_{1i} - p_1(W_i) \\ \tilde{X}_{2i} &= X_{2i} - \mathbb{E}[X_{2i} \mid W_i] = X_{2i} - p_2(W_i) \end{split}$$

Second, regress \tilde{X}_{1i} on \tilde{X}_{2i} to generate the residuals \tilde{X}_{1i} .

When the propensity scores differ across strata ($p_j(0) \neq p_j(1)$), the relationship between these residuals varies by school, and the line of best-fit averages across this relationship.

As a result, the line of best fit does not isolate the conditional (within strata) variation in X_{1i} : the remaining variation of \tilde{X}_{1i} will tend to predict X_{2i} within schools, making the contamination weight $\lambda_{12}(W_i)$ non-zero.

UNDERSTANDING THE CONTAMINATION BIAS (CONT.)

$$\begin{split} \tilde{X}_{1i} &= X_{1i} - \mathbb{E}[X_{1i} \mid W_i] = X_{1i} - p_1(W_i) \\ \tilde{X}_{2i} &= X_{2i} - \mathbb{E}[X_{2i} \mid W_i] = X_{2i} - p_2(W_i) \end{split}$$

Second, regress \tilde{X}_{1i} on \tilde{X}_{2i} to generate the residuals \tilde{X}_{1i} .

When the propensity scores differ across strata ($p_j(0) \neq p_j(1)$), the relationship between these residuals varies by school, and the line of best-fit averages across this relationship.

As a result, the line of best fit does not isolate the conditional (within strata) variation in X_{1i} : the remaining variation of \tilde{X}_{1i} will tend to predict X_{2i} within schools, making the contamination weight $\lambda_{12}(W_i)$ non-zero.

Relationship between Demeaned Treatments

- OLS assumes the black line, such that the variation in X_{i1} after resdualsing linearly for X_{i1} and W_i tends to predict the X_{i2} treatment.
- The treated X_{i1} units are picking up "treated" X_{i2} units

ILLUSTRATION

Suppose that:

- In school 0 ($W_i = 0$):
 - 5% assigned to small classroom treatment ($X_{1i} = 1$)
 - 45% assigned to full-time aid treatment ($X_{2i} = 1$)
 - Remaining assigned to control
- In school 1 ($W_i = 1$):
 - 45% assigned to both treatments
- Schools have the same number of students: $Pr(W_i = 1) = 0.5$

Assume:

- $\tau_1(W_i) = 0$
- $\tau_2(0) = 0$ and $\tau_2(1) = 1$

ILLUSTRATION - CODE

```
1 # Generate strata indicators
2 strata = np.random.choice([0, 1], size=n, p=[0.5, 0.5])
3 group 1 = np.random.choice([0, 1, 2], size=n, p=[0.5, 0.05, 0.45])
4 group 2 = np.random.choice([0, 1, 2], size=n, p=[0.10, 0.45, 0.45])
6 D[strata == 0] = group_1[strata == 0]
7 D[strata == 1] = group_2[strata == 1]
9 treatment1 = np.where(D == 1, 1, 0)
10 treatment2 = np.where(D == 2, 1, 0)
12 # Generate heterogeneous treatment effects
13 yO = np.random.normal(0, 1, n) # Potential outcome under control
14 v1 = v0
                              # Potential outcome under treatment 1
15 v2 0 = v0
                              # Potential outcome under treatment 2 for strata 0
16 y2_1 = y0 + 1
                              # Potential outcome under treatment 2 for strata 1
18 # Generate observed outcomes
np.random.normal(0, 1, n)
21 # Estimate the treatment effect
22 X = np.array([np.ones like(v), treatment1, treatment2, strata]).T
23 reg(X, y, print=True)
```

ILLUSTRATION - RESULTS

$$\beta_0 = -0.118(SE: 0.027)$$
!! $\beta_1 = -0.471(SE: 0.046)$!! $\beta_2 = 0.285(SE: 0.035)$
 $\beta_3 = 0.652(SE: 0.034)$

CONTAMINATION BIAS SUMMARY

- Unlike with a binary D, the estimates of β_1 and β_2 are not convex estimates of $\tau_1(W_i)$ and $\tau_2(W_i)$, but are contaminated by the other treatment effects.
- Why?
 - Controlling for W_i is analogous to controlling for the propensity score $Pr(D_i = 1 \mid W_i)$
 - But with two treatment, X_{1i} is a function of both the conditioning variables W_i
 and X_{2i}
 - Therefore, the propensity score will not be correctly estimated. We are measuring the "overall" propensity score, not within a given stratum.

CONTAMINATION BIAS SUMMARY

- Unlike with a binary D, the estimates of β_1 and β_2 are not convex estimates of $\tau_1(W_i)$ and $\tau_2(W_i)$, but are contaminated by the other treatment effects.
- Why?
 - Controlling for W_i is analogous to controlling for the propensity score $Pr(D_i = 1 \mid W_i)$
 - But with two treatment, X_{1i} is a function of both the conditioning variables W_i and X_{2i}
 - Therefore, the propensity score will not be correctly estimated. We are measuring the "overall" propensity score, not within a given stratum.

SOLUTION - INTERACTIVE REGRESSION

The interactive regression model takes the form:

$$Y_i = X_i \beta + q_0(W_i) + \sum_{k=1}^K X_{ik} \left(q_k(W_i) - \mathbb{E}[q_k(W_i)] \right) + \dot{U}_i$$

where β , $\{q_k\}_{k=0}^K \in \mathcal{G}^{K+1}$ are minimizers of $\mathbb{E}[\dot{U}_i]$.

For linear functions:

$$Y_{i} = \alpha_{0} + \sum_{k=1}^{K} X_{ik} \tau_{k} + W'_{i} \alpha_{W,0} + \sum_{k=1}^{K} X_{ik} (W_{i} - \bar{W})' \gamma_{W,k} + \dot{U}_{i}$$

which can be estimated by OLS, where \bar{W} is the sample mean of W_i (Imbens & Wooldridge, 2009). This can be easily extended to basis functions such as polynomials or splines for q_k .

SOLUTION - INTERACTIVE REGRESSION

The interactive regression model takes the form:

$$Y_i = X_i \beta + q_0(W_i) + \sum_{k=1}^K X_{ik} (q_k(W_i) - \mathbb{E}[q_k(W_i)]) + \dot{U}_i$$

where β , $\{q_k\}_{k=0}^K \in \mathcal{G}^{K+1}$ are minimizers of $\mathbb{E}[\dot{U}_i]$. For linear functions:

$$Y_{i} = \alpha_{0} + \sum_{k=1}^{K} X_{ik} \tau_{k} + W'_{i} \alpha_{W,0} + \sum_{k=1}^{K} X_{ik} (W_{i} - \bar{W})' \gamma_{W,k} + \dot{U}_{i}$$

which can be estimated by OLS, where \bar{W} is the sample mean of W_i (Imbens & Wooldridge, 2009). This can be easily extended to basis functions such as polynomials or splines for q_k .

```
INTERACTIVE REGRESSION - CODE

Z = np.concatenate((X, W.T. interactions), axis=1)
```

```
1 Z = np.concatenate((X, W.T, into
2
3 reg(Z, y, print=True)
```

```
\beta 0 = -0.005(SE:375063.470)
\beta 1 = 0.003 (SE: 0.058)
\beta 2 = 0.480 (SE : 0.040)
\beta3 = 0.026 (SE: 761704.854)
\beta 4 = 0.029 \ (SE : 761704.854)
\beta 5 = -0.099 (SE: 0.116)
\beta 6 = 0.963 \ (SE : 0.081)
```

DECOMPOSING CONTAMINATION

We can decompose the OLS estimate of $\hat{\beta}$ from the uninteracted regression

$$Y_i = \alpha + \sum_k X_{ik} \beta_k + W_i' \gamma + U_i$$

Contamination bias weights are identified by the linear regression of X_i on the residuals \tilde{X}_i . Specifically $\lambda_{kl}(W_i)$ is given by (k, l)th element of

$$\hat{\Lambda}_i = (\dot{X}'\dot{X})^{-1}\dot{X}_i'X_i'$$

where X_i is the sample residuals from an OLS regression of X_i on W_i .

DECOMPOSING CONTAMINATION (CONT.)

 $\hat{\beta}$ from the uninteracted regression model is equivalent to

$$\hat{\beta} = \sum_{i=1}^{n} \operatorname{diag}(\hat{\Lambda}_{i}) \hat{\tau}(W_{i}) + \sum_{i=1}^{n} [\hat{\Lambda}_{i} - \operatorname{diag}(\hat{\Lambda}_{i})] \hat{\tau}(W_{i})$$

The first term estimates the own-treatment effect components, while the second term estimates the contamination bias components.

$$\hat{\lambda}_{kl}(w) = \frac{\sum_{i} \mathbb{1}\{W_i = w\} \hat{\Lambda}_{i,kl}}{\sum_{i} \mathbb{1}\{W_i = w\}}$$

$$\beta_1 = \mathbb{E}[\lambda_{11}(W_i)\tau_1(W_i)] + \sum_{k=2}^K \mathbb{E}[\lambda_{1k}(W_i)\tau_k(W_i)]$$

APPLICATION - PROJECT STAR

- The project STAR as studied by Kruger (1999) randomised 11, 600 students in 79 public school to one of three types of classes:
 - 1. regular sized (20-25 students)
 - 2. small (13-17 students)
 - 3. with extra teaching aid
- Proportion of students randomised to the small class size and teaching aide treatment varied across schools
- Y_i is the average percentile of student i's math, reading and word recognition at the end of kindergarten.

APPLICATION - RESULTS

Column 1 are estimates of

	$\hat{\beta}$	Own	ATE	EW	CW
	(1)	(2)	(3)	(4)	(5)
Small	5.357	5.202	5.561	5.295	5.577
	(0.778)	(0.778)	(0.763)	(0.775)	(0.764)
			[0.744]	[0.743]	[0.742]
Aide	0.177	0.360	0.070	0.263	0.011
	(0.720)	(0.714)	(0.708)	(0.715)	(0.712)
			[0.694]	[0.691]	[0.695]
Number of controls	77				
Sample size	5,868				
	B. Contamir	nation bias e	estimates		
	Worst-Case Bias				

A Treatment effect estimates

Column 2 are the estimates the own-treatment effect from the above decomposition.

kindergarten treatment effects in the

uninteracted regression model.

Column 3 are the estimates from the interacted regression model.

Small class size 0.155-1.6541.670 (0.185)(0.160)(0.187)Teaching aide -0.183-1.5291.530 (0.176)(0.149)(0.177)Notes: Panel A gives estimates of small class and teaching aide treatment effects for the

Negative

(2)

Positive

(3)

Bias

(1)

Project STAR kindergarten analysis. Col. 1 reports estimates from a partially linear model in eq. (21), col. 2 reports the own-treatment component of the decomposition in eq. (23), col. 3 reports the interacted regression estimates based on eq. (17), col. 4 reports estimates heard on the EW scheme using one treatment at a time representation in eq. (24) and call 5 uses

APPLICATION - RESULTS

ATE EWCWOwn (1)(2)(3)(4)(5)5.577 Small 5.357 5.202 5.561 5.295 (0.778)(0.778)(0.775)(0.764)(0.763)[0.744][0.743][0.742]Aide 0.1770.3600.0700.2630.011 (0.720)(0.714)(0.708)(0.715)(0.712)[0.694][0.691][0.695]77 Number of controls Sample size 5.868

A. Treatment effect estimates

Column 1 in panel B reports the contamination bias, which appears minimal.

They show this is due to weak correlation between the contamination weights and the treatment effects.

	B. Contamination bias estimates			
	Bias (1)	Worst-Case Bias		
		Negative (2)	Positive (3)	
Small class size	0.155	-1.654	1.670	
Teaching aide	(0.160) -0.183 (0.149)	(0.185) -1.529 (0.176)	(0.187) 1.530 (0.177)	

Notes: Panel A gives estimates of small class and teaching aide treatment effects for the Project STAR kindergarten analysis. Col. 1 reports estimates from a partially linear model in eq. (21), col. 2 reports the own-treatment component of the decomposition in eq. (23), col. 3 reports the interacted regression estimates based on eq. (17), col. 4 reports estimates based on the FW scheme using one-treatment-at-a-time regressions in eq. (24) and col. 5 uses

AER?

- Widely Applicable
- Rigorous characterisation of the problem
- Provides useful practical guidance and tools for measuring and avoiding contamination bias

However

The empirical application isn't the strongest

AER?

- Widely Applicable
- Rigorous characterisation of the problem
- Provides useful practical guidance and tools for measuring and avoiding contamination bias

However

The empirical application isn't the strongest

