Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБШЕЙ ФИЗИКИ ФТФ

Группа: <u>R3137</u>	_K работе допущен <u>: .</u>
Студент: <u>Нестеров И.А.</u>	Работа выполнена:
Преподаватель: Крылов В А	Отчет принят:

Рабочий протокол и отчет по лабораторной работе № 5.02.

«Внешний фотоэффект. Исследование характеристик

фотоэлемента с внешним фотоэффектом».

- 1. Цель работы.
 - 1. Исследование характеристик фотоэлемента с внешним фотоэффектом
- 2. Задачи, решаемые при выполнении работы.
 - 1. Проверка опытным путем справедливости законов фотоэффекта
 - 2. Определение порога фотоэффекта по вольт-амперной и спектральной характеристикам
- 3. Объект исследования.

Вырывающиеся из вещества электроны

4. Метод экспериментального исследования.

Наблюдение фотоэффекта

- 5. Рабочие формулы и исходные данные.
 - 1. Длина волны света: $\lambda = \frac{c}{v}$
 - 2. Частота волны: $\nu = \frac{c}{\lambda}$
 - 3. Второй закон фотоэффекта: $E_k^{max} = eU_3$

6. Измерительные приборы.

№ п/п	Наименование	Цена деления	Сласс точности	Δи
1	Амперметр	0,01 A	-	0,005 A
2	Вольтметр	0,1 B	-	0,05 B

7. Схема установки

Модульный учебный комплекс МУК-ОК

- 1. ИПС-1
- 2. AB-1
- 3. С3-ОК01 и источник питания.

8. Результаты прямых измерений и их обработки.

Табпина 1 1 $I/I_0 = 1.114$. п = 2

Taon	Таолица 1.1. $f/f_0 = 1.114, 11 - 2$												
Измерить	U,	0.1	1	2	3	4	5	6	7	8	9	10	
	прямое,												
	В												
	$I_{ m cset}$, мк ${\sf A}$	1.25	2.74	3.34	3.56	3.69	3.77	3.85	3.9	3.94	3.98	4	
	$I_{ m TEMH}$, мк ${\sf A}$	0	0	0	0	0	0	0	0	0	0	0	
Вычислить	$I_{ m \phi o au o}$, мк ${\sf A}$	1.25	2.74	3.34	3.56	3.69	3.77	3.85	3.9	3.94	3.98	4	
Измерить	U,	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	
	обратное,												
	В												
	$I_{ m cBeT}$, мк ${\sf A}$	1.48	0.23	0	0	0	0	0	0	0	0	0	
	$I_{\scriptscriptstyle{\mathrm{TeMH}}}$, мкА	0.01	0	0	0	0	0	0	0	0	0	0	
Вычислить	$I_{ m \phi o au o}$, мк ${\sf A}$	1.47	0.23	0	0	0	0	0	0	0	0	0	

Таблица 1.2. $I/I_0 = 1.119$. $\pi = 3$

Таолица 1.2. 7/70 = 1.119, л = 3													
Измерить	U,	0.1	1	2	3	4	5	6	7	8	9	10	
	прямое,												ĺ

	В											
	$I_{ m \scriptscriptstyle CBET}$, мк ${\sf A}$	0.9	1.6	1.8	1.9	2.0	2.0	2.0	2.1	2.1	2.1	2.1
		6	5	8	8	3	6	9	1	3	4	7
	$I_{ m TEMH}$, мк ${\sf A}$	0	0	0	0	0	0	0	0	0	0	0
Вычислит	$I_{ m \phi o au o}$, мк ${\sf A}$	0.9	1.6	1.8	1.9	2.0	2.0	2.0	2.1	2.1	2.1	2.1
Ь		6	5	8	8	3	6	9	1	3	4	7
Измерить	U,	0.1	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
-	обратное											
	, B											
	$I_{ m cвет}$, мк ${\sf A}$	0.9	0.0	0.0	0	0	0	0	0	0	0	0
	CBC1	7	6	1								
	$I_{\mathrm{темн}}$, мкА	0	0	0	0	0	0	0	0	0	0	0
Вычислит	$I_{ m \phi o au o}$, мкА	0.9	0.0	0.0	0	0	0	0	0	0	0	0
Ь	1	7	6	1								

Таблица 1.3. $I/I_0 = 1.121$, $\pi = 4$

Taon	Таолица 1.3. $J/J_0 = 1.121$, $J = 4$											
Измерить	U,	0.1	1	2	3	4	5	6	7	8	9	10
	прямое,											
	В											
	$I_{ m cBeT}$, мк ${\sf A}$	0.46	0.77	0.86	0.9	0.92	0.94	0.95	0.96	0.97	0.98	0.99
	$I_{ m TEMH}$, мк ${\sf A}$	0	0	0	0	0	0	0	0	0	0	0
Вычислить	$I_{ m \phi o au o}$, мк ${\sf A}$	0.46	0.77	0.86	0.9	0.92	0.94	0.95	0.96	0.97	0.98	0.99
Измерить	U,	0.1	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
	обратное,											
	В											
	$I_{ m cBeT}$, мк ${\sf A}$	0.44	0	0	0	0	0	0	0	0	0	0
	$I_{ m TEMH}$, мк ${\sf A}$	0.01	0.01	0	0	0	0	0	0	0	0	0
Вычислить	$I_{ m \phi o au o}$, мк ${\sf A}$	0.43	-	0	0	0	0	0	0	0	0	0
	•		0.01									

Таблица 2.1. U = 18, $I_{\text{темн}} = 0.01$, A = 6

Измерить	U, B		Диапазон от 9 до 22									
	$I_{ m cset}$, мк ${\sf A}$	0.09	0.09	0.09	0.09	0.09						
Вычислить	$I_{ m \phiотo}$, мк ${\sf A}$	0.08	0.08	0.08	0.08	0.08						

Таблица 2.2. U = 18, $I_{\text{темн}} = 0.01, A = 1$

Измерить	U, B	7 TCMH	Диапазон от 9 до 22									
	$I_{ m cset}$, мк ${\sf A}$	0.13	0.13	0.13	0.13	0.13						
Вычислить	$I_{ m \phiотo}$, мк ${\sf A}$	0.12	0.12	0.12	0.12	0.12						

Таблица 3.

Измерить	Номер волны	0	1	2	3	4	5	6	7
	А, нм	430	470	520	565	590	660	700	860
	<i>I</i> _{свет} , мкА	6	5.39	4.33	2.46	1.114	0.16	0.11	0
	I _{фото} , мкА	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Вычислить	V, c ⁻¹								
	I _{фото} , мкА	5.99	5.38	4.32	2.45	1.104	0.15	0.1	-0.01

9. Результаты косвенных измерений и их обработки.
1. Частота волны:
$$\nu = \frac{c}{\lambda} = \frac{3 \cdot 10^8}{520 \cdot 10^{-9}} = 5,769 \cdot 10^{14} \ \Gamma \text{ц} = 6 \cdot 10^{14} \ \Gamma \text{ц}$$

2. Частота волны: $\nu = \frac{c}{\lambda} = \frac{3 \cdot 10^8}{565 \cdot 10^{-9}} = 5$, $3 \cdot 10^{14} \ \Gamma$ ц $= 5 \cdot 10^{14} \ \Gamma$ ц

3. Частота волны: $\nu = \frac{c}{\lambda} = \frac{3 \cdot 10^8}{590 \cdot 10^{-9}} = 5,085 \cdot 10^{14} \ \Gamma \text{ц} = 5 \cdot 10^{14} \ \Gamma \text{ц}$

Порог фотоэффекта равен $3,49 \cdot 10^{14}$ Гц.

1. Выводы:

В данной лабораторной работе я опытным путем проверил справедливость законов фотоэффекта: рассчитал частоту волны и значение фототока. По вольт-амперной и спектральной характеристикам мне удалось определить порог фотоэффекта, который равен $3,49 \cdot 10^{14}$ Γ ц. Анализ данного результата позволяет сделать вывод о том, что данный свет не лежит в диапазоне видимого излучения. Этот вывод можно подкрепить эмпирически: при проведении измерений казалось, будто исправная лампочка на приборе не загоралась, однако сам прибор при этом был включен.