ECA706 - Sistemas de Controle Digital

Universidade Federal de Itajubá - Campus Itajubá

Engenharia Elétrica

Aula 07

Projeto de Controladores Digitais

Prof. Jeremias Barbosa Machado jeremias@unifei.edu.br 23 de junho de 2020

Introdução

- Até as aulas anteriores a preocupação primária era com a análise de sistemas a tempo discreto. Desta forma, ou o compensador discreto era fornecido ou era calculado de forma bastante elementar, como um ganho proporcional para atingir requisitos de erro em regime permanente;
- Agora veremos como fazer o projeto de um controlador digital de forma a atingir alguns dos objetivos principais das malhas de controle: estabilizar sistemas instáveis, rejeitar distúrbios, melhorar a resposta transitória, eliminar ou atenuar o erro em regime permanente, etc;
- É importante frisar que, em geral, os objetivos da malha de controle são conflitantes. Tome como exemplo o ganho: se o aumentarmos, o erro em regime permanente diminui. No entanto, o aumento do ganho, como vimos, em geral tende levar o sistema à instabilidade;
- O projeto de controladores no tempo discreto é, sem dúvida, muito mais complexo do que em tempo contínuo, devido a diversos fatores.
 Um dos exemplos é a falta de correspondência entre as especificações de projeto no domínio da frequência e a resposta temporal discreta;
- Veremos os seguintes projetos: controlador Lead/Lag via Lugar das Raízes, controlador Lead/Lag via resposta em frequência e controlador PID via resposta em frequência.

Erro em Regime Permanente

- Como sabemos, uma importante característica de sistemas de controle em geral é a capacidade de seguir, ou rastrear, certas entradas com o menor erro possível;
- O projeto do sistema de controle deve levar em consideração a minimização deste erro para uma classe de entradas já conhecidas. Tais entradas são, tipicamente, o degrau e em alguns casos a rampa;
- Considere, então, a malha de controle típica:

Sabemos que o erro é dado por:

$$E(z) = \frac{1}{1 + G(z)} ;$$

• Podemos representar G(z) através de:

$$G(z) = K \frac{\prod_{p}^{m} (z - z_{j})}{(z - 1)^{N} \prod_{p}^{m} (z - z_{i})} \qquad z_{i} \neq 1 , \qquad z_{j} \neq 1 ;$$

Erro em Regime Permanente

- Para sistemas contínuos, o tipo do sistema é definido como a quantidade de pólos na origem que a planta possui. Vimos que o pólo na origem no plano-s é mapeado como um pólo em z = 1 no plano-z. Portanto, o tipo de um sistema discreto está relacionado à quantidade de pólos que este sistema possui em z = 1. Representamos o tipo do sistema na equação de G(z) com o índice N;
- De acordo com o teorema do valor final, tem-se que:

$$\lim_{n \to \infty} e(nT) = \lim_{z \to 1} (z - 1)E(z) ;$$

Tomando-se então o erro em regime permanente, tem-se:

$$e_{ss} = \lim_{z \to 1} (z - 1) \frac{1}{1 + G(z)} R(z) ;$$

• Para a entrada degrau, tem-se:

$$e_{ss} = \lim_{z \to 1} (z - 1) \frac{1}{1 + G(z)} \frac{z}{z - 1} = \frac{1}{1 + \lim_{z \to 1} G(z)}$$
;

Erro em Regime Permanente

- Se a planta é tipo 1 ou superior $(N \ge 1)$, vemos claramente que $G(z) \to \infty$ à medida que $z \to 1$. Logo, vemos que para entrada degrau, um sistema do tipo 1 possui erro em regime permanente nulo, ou seja, $e_{ss} = 0$;
- $\bullet\,$ Se a planta é tipo 0, então tem-se que o erro em regime permanente para entrada degrau é:

$$e_{ss} = \frac{1}{1 + K_{dc}} ,$$

onde K_{dc} é o ganho de da planta;

Para entrada rampa, o erro em regime permanente é dado por:

$$e_{ss} = \lim_{z \to 1} (z - 1) \frac{1}{1 + G(z)} \frac{Tz}{(z - 1)^2} = \lim_{z \to 1} \frac{Tz}{(z - 1) + (z - 1)G(z)} = \frac{T}{\lim_{z \to 1} (z - 1)G(z)}$$

- Desta forma, vemos que se N=0, e_{ss} tende ao infinito, uma vez que $\lim_{z\to 1}(z-1)G(z)$ tende a zero;
- Se N=1, $\lim_{z\to 1}(z-1)G(z)$ tende a K_{dc} , e então:

$$e_{ss} = \frac{T}{K_{dc}}$$
;

• Se $N \geq 2$, $\lim_{z \to 1} (z-1)G(z)$ tende ao infinito, e então e_{ss} tende a zero.

- No projeto via Lugar das Raízes, o objetivo é o projeto de um compensador que faça com que o diagrama de Lugar das Raízes passe por um determinado ponto no plano-z cujo mapeamento do plano-s forneça um desempenho satisfatório;
- Neste caso, o projeto do controlador Lead (Avanço de Fase) é diferente do projeto Lag (Atraso de Fase);
- A malha de controle geral a ser considerada é dada pela figura a seguir;

• G(s) compreende a função de transferência da planta e do retentor de ordem zero. A transformada-z é representada então por G(z);

 O controlador Lead/Lag discreto é representado através da seguinte função de transferência no domínio-z:

$$D(z) = \frac{K_d(z - z_0)}{z - z_p}$$

- Se $z_0 > z_p$, então temos um controlador Lead (Avanço). Se $z_0 < z_p$, então temos um controlador Lag (Atraso);
- O controlador Lead é empregado quando se deseja efetivamente uma mudança significativa no diagrama de Lugar das Raízes, isto é, quando os pólos desejados não fazem parte do Lugar das Raízes de G(z). Lembre-se que o controlador Lead, por natureza, tende a melhorar a resposta transitória do sistema;
- Já o controlador Lag é empregado quando se deseja apenas um aumento no ganho para diminuir o erro em regime permanente, e que não altere o diagrama de Lugar das Raízes resultante se os pólos desejados fizerem parte dele. Lembre-se que o controlador Lag, por natureza, pode levar os sistema à instabilidade, mas diminui o erro em regime permanente;
- Desta forma, é possível que em determinadas situações os dois projetos devam ser feitos em cascata, formando um controlador Lead-Lag. Neste caso, faz-se primeiro o projeto Lead e depois o projeto Lag, já considerando a malha com o controlador Lead;

• Começamos com o projeto Lag. Considere a malha de controle geral:

• Suponha, sem perda de generalidade, que G(z) é escrita da seguinte forma:

$$G(z) = K_u \frac{(z - z_{0_1})(z - z_{0_2}) \dots (z - z_{0_m})}{(z - z_{p_1})(z - z_{p_2}) \dots (z - z_{p_n})},$$

onde K_u é o ganho K do sistema não-compensado e $m \leq n$.

 Incluindo o controlador Lag, temos que a função de transferência da malha aberta é:

$$K_c D(z)G(z) = K_c \frac{K_d(z-z_0)}{z-z_p} \frac{(z-z_{0_1})(z-z_{0_2})\dots(z-z_{0_m})}{(z-z_{p_1})(z-z_{p_2})\dots(z-z_{p_m})}$$

onde K_c é o ganho K para o sistema já compensado;

- Escolha os pólos desejados que já fazem parte do Lugar das Raízes de G(z). Chamaremos estes pólos de z_a ;
- ullet Com os pólos escolhidos, encontre o ganho K_u que impõe estes pólos para o sistema não-compensado;
- Através da especificação de erro em regime permanente, encontre K_c , ou seja, o ganho do sistema compensado;
- Posicione o pólo do compensador próximo de z = 1;
- Calcule o ganho do compensador K_d da seguinte forma:

$$K_d = K_u/K_c$$
;

• Finalmente, calcule o zero do compensador da seguinte forma:

$$z_0 = 1 - \frac{1 - z_p}{K_d}$$

- Se o sistema não possuir um pólo em z=1, pode-se posicionar o pólo e o zero do controlador próximos de z=1;
- Este procedimento é apenas uma aproximação. Mais iterações e alterações nas especificações - podem ser necessárias;

Exemplo 7.1

Faça o projeto de um controlador Lag para uma malha de controle discreta, cuja função de transferência da planta é:

$$G_p(s) = \frac{1}{s(s+1)} ,$$

o tempo de amostragem é T=1 s, os pólos dominantes desejados são $z=0,576\pm j0,435$ e o erro em regime permanente para a entrada rampa deve ser 2 vezes menor que o original. Dado: diagrama de Lugar das Raízes de G(z).

Resolução do Exemplo 7.1

- \bullet Do gráfico de Lugar das Raízes, vemos que os pólos desejados são $z_a=0,576\pm j0,435$ e o ganho necessário para impor estes pólos para o sistema não-compensado é $K_u=0,583;$
- Sabendo que o erro em regime permanente deve ser 2 vezes menor que o original, temos:

$$K_c = 2K_u = 2.0, 583 = 1, 166$$
;

• Logo, o ganho do compensador Lag é:

$$K_d = \frac{0,583}{2.0,583} = 0,5 \; ;$$

• Escolhendo-se $z_p = 0,999$. Logo:

$$z_0 = 1 - \frac{1 - 0,999}{0.5} = 0,998$$
;

• Logo:

- Veremos agora o projeto Lead. No projeto Lead, é desejado modificar o Lugar das Raízes, pois os polos desejados agora não estão sobre o Lugar das Raízes de G(z);
- \bullet O primeiro passo é escolher os polos dominantes z_b que sejam mais rápidos que os naturalmente obtidos pelo Lugar das Raízes de G(z)
- Agora escolha um valor de z_0 para cancelar um polo de G(z). Observe que cancelamento de polos e zeros não é fisicamente factível, então escolhemos um valor muito próximo de um polo de G(z). Via de regra, nunca escolhemos o polo z=1 ou outro próximo dele;
- Se for desejado impor o polo do controlador, determinamos um valor para z_p de forma que $z_p < z_0$ e então calculamos K_c da seguinte forma:

$$K_c D(z_b) G(z_b) = -1$$
,

lembrando que para que o compensador possua ganho unitário, temos que:

$$K_d = \frac{1 - z_p}{1 - z_0} \; ;$$

• Se for desejado impor o valor de K_c , então determinamos um valor de K_c e então calculamos z_p da seguinte forma:

$$K_c D(z_b) G(z_b) = -1 .$$

Exemplo 7.2

Faça o projeto de um controlador Lead para uma malha de controle discreta, cuja função de transferência da planta é:

$$G_p(s) = \frac{1}{s(s+1)} ,$$

o tempo de amostragem é T=1s, os polos dominantes desejados são $z=0,4\pm j0,4.$ Dado: diagrama de Lugar das Raízes de G(z).

Resolução do Exemplo 7.2

• Função de Transferência

$$G(z) = \frac{0,3679(z+0,7181)}{(z-1)(z-0,3679)};$$

- Vamos cancelar o polo z = 0,3679 com um zero do controlador em $z_0 = 0,367$;
- Vamos posicionar o polo do controlador em $z_p = 0, 2;$
- Calculando K_d :

$$K_d = \frac{1-z_p}{1-z_0} = \frac{0.8}{0.633} = 1,2638$$
;

• Logo:

$$D(z) = \frac{1,2638(z-0,367)}{z-0.2}$$
;

• Calculando K_c :

$$K_{c}\frac{1,2638}{0,4+j0,4-0,2}\frac{0,3679(0,4+j0,4+0,7181)}{(0,4+j0,4-1)}=-1$$

$$K_c = -0.5737 - i0.1018$$
.

Continuação da Resolução do Exemplo 7.2

• O ganho K_c obtido anteriormente é complexo, o que indica que os pontos desejados não irão fazer parte do Lugar das Raízes da malha aberta (controlador + planta). Vamos tentar outra abordagem, especificando um ganho e então calculando o valor do polo do controlador. Escolhendo $K_c = 1$, temos:

$$\frac{1-z_p}{1-0,367}\frac{1}{0,4+j0,4-z_p}\frac{0,3679(0,4+j0,4+0,7181)}{(0,4+j0,4-1)}=-1$$

- A equação acima não tem solução, isto é, não há valor de z_p que iguale as partes real e imaginária. Logo, vemos que não é possível mover o Lugar das Raízes para os polos desejados com o controlador Lead e o ganho K_c desejado;
- Uma solução bastante comum em termos de projeto do controlador Lead via LR é especificar os polos desejados sendo o ponto de separação dentro do círculo unitário. Neste caso, teríamos dois polos reais e iguais, e um comportamento parecido com o de um sistema de primeira ordem, caso estes sejam dominantes;
- Também poderíamos especificar outros polos quaisquer sobre o eixo real. No entanto, caso eles não estejam próximos ao ponto de separação, um deles será dominante:
- Invariavelmente, se desejarmos polos complexo-conjugados, o procedimento acaba sendo exclusivamente por tentativa e erro.

Continuação da Resolução do Exemplo 7.2 - Solução Real

• Escolha os polos presentes no ponto de separação

ullet Na resposta em frequência trabalharemos no plano-w ao invés do plano-z. Com isso, o controlador Lead/Lag no domínio z

$$D(z) = \frac{K_d(z - z_0)}{z - z_n}$$

por meio da transformação bilinear é reescrito no domínio w como

$$D(w) = \frac{a_1 w + a_0}{b_1 w + 1} \; ;$$

 A frequência de cruzamento de ganho no plano-w deve ser corrigida a partir da especificação no plano-s, num processo que é conhecido como "pre-warping":

$$\omega_{w_c} = \frac{2}{T} \tan \left(\frac{\omega_c T}{2} \right) ,$$

onde ω_c é a frequência de cruzamento de ganho no plano-s;

$$\theta = 180^{\circ} + \phi_m - \angle G(j\omega_{w_c})$$

$$a_1 = \frac{1 - a_0|G(j\omega_{w_c})|\cos\theta}{\omega_{w_c}|G(j\omega_{w_c})|\sin\theta}$$

$$b_1 = \frac{\cos\theta - a_0|G(j\omega_{w_c})|}{\omega_w \sin\theta}.$$

- Lembre-se que para que o controlador seja estável é necessário que os ganhos a₁ e b₁ sejam positivos;
- O ganho a₀ pode ser determinado através de especificação de erro em regime permanente ou simplesmente designado livremente;
- \bullet A correspondência entre o controlador Lead/Lag no plano-we no plano-zé:

$$\begin{split} K_d &= a_0 \left[\frac{1/b_1 \left(a_0/a_1 + 2/T \right)}{a_0/a_1 \left(1/b_1 + 2/T \right)} \right] \\ z_0 &= \frac{2/T - a_0/a_1}{2/T + a_0/a_1} \\ z_p &= \frac{2/T - 1/b_1}{2/T + 1/b_1} \ ; \end{split}$$

• Lembrar que todo o procedimento não garante a estabilidade, sendo necessário checá-la ao final do projeto do compensador. Em geral, faremos isso através do critério de Nyquist.

Exemplo 7.3

Faça o projeto de um controlador Lead/Lag via Resposta em Frequência para uma malha de controle discreta, cuja função de transferência da planta é:

$$G_p(s) = \frac{1}{s(s+1)} ,$$

o tempo de amostragem é T=1 s, margem de fase $\phi_m=45^\circ$ e frequência de cruzamento de ganho igual a $\omega_c=1$ rad/s. Com base no controlador encontrado, responda se o mesmo é Lead ou Lag. Dado: diagrama de Bode de G(w).

Resolução do Exemplo 7.3

Frequência de warping:

$$\omega_{w_c} = \frac{2}{T} \tan \left(\frac{\omega_c T}{2} \right) = 2 \tan \left(\frac{1}{2} \right) \approx 1, 1 \text{ rad/s};$$

- Escolheremos $a_0 = 0, 8$;
- Do gráfico, tem-se que |G(j1,1)| = 0,6701 e $\angle G(j1,1) = 196,3793^{\circ}$;
- Angulo do compensador:

$$\theta = 180^{\circ} + 45^{\circ} - \angle G(j1, 1) = 28,62^{\circ}$$

Ganhos:

$$a_1 = \frac{1 - 0, 8.0, 6701.\cos 28, 62^{\circ}}{1, 1.0, 6701.\sin 28, 62^{\circ}} = 1,4995$$

$$b_1 = \frac{\cos 28,62^{\circ} - 0,8.0,6701}{1,1.\sin 28,62^{\circ}} = 0,6486$$
;

Continuação da Resolução do Exemplo 7.3

 \bullet Controlador no plano-w:

$$D(w) = \frac{1,4995w + 0,8}{0,6486w + 1}$$

• Ganhos no plano-z:

$$K_d = 1,7408$$

 $z_0 = 0,4998$
 $z_p = 0,1294$

 \bullet Controlador no plano-z:

$$D(z) = \frac{1,7408(z - 0,4998)}{z - 0,1294}$$

• O controlador é Lead e temos várias maneiras de confirmar isso. O ângulo θ é positivo. Outra forma de verificar é $a_0/a_1>b_1$ ou equivalentemente $z_0>z_p$.

ullet O controlador PID padrão no plano-w é definido como

$$D(w) = K_P + \frac{K_I}{w} + K_D w ;$$

ullet Com a transformação bilinear, no plano-z o controlador PID padrão é

$$D(z) = K_P + \frac{K_I T}{2} \frac{z+1}{z-1} + \frac{K_D 2}{T} \frac{z-1}{z+1} ;$$

- Um problema óbvio ocorre com o controlador PID padrão: conforme a frequência cresce, o ganho do controlador cresce ilimitadamente. Isso pode ser visto da seguinte forma: à medida que ω_w se aproxima do infinito, ω se aproxima de $\omega_s/2$, ou seja, do limite da estabilidade segundo o teorema de Shannon. Isto obviamente é visto na equação de D(z), que possui um polo em z=-1. Com isto, uma vez que G(z) em geral não possui zeros em z=-1, o módulo de D(z)G(z) será muito grande próximo de z=-1, fatalmente criando circulações em torno do ponto -1+j0 no diagrama de Nyquist, tornando o sistema instável em malha fechada. Com isto, o controlador PID padrão não é aceitável sob o ponto de vista prático!
- Uma solução é redefinir o controlador PID da seguinte forma

$$D(z) = K_P + \frac{K_I T}{2} \frac{z+1}{z-1} + K_D \frac{z-1}{Tz} ,$$

no qual a derivada é substituída pela aproximação retangular para trás.

Então, aplicando-se a transformação bilinear no controlador PID prático resulta em

$$D(w) = K_P + \frac{K_I}{w} + \frac{K_D w}{1 + (T/2)w} ;$$

- Novamente, a frequência de cruzamento de ganho no plano-w deve ser corrigida de acordo com o pre-warping;
- As equações de projeto se tornam:

$$\begin{split} \theta &= 180^{\circ} + \phi_m - \angle G(j\omega_{w_c}) \\ K_P &+ \frac{K_D \omega_{w_c}^2 (2/T)}{\omega_{w_c}^2 + (2/T)^2} = \frac{\cos \theta}{|G(j\omega_{w_c})|} \\ \frac{K_D \omega_{w_c} (2/T)^2}{\omega_{w_c}^2 + (2/T)^2} - \frac{K_I}{\omega_{w_c}} = \frac{\sin \theta}{|G(j\omega_{w_c})|} \ ; \end{split}$$

- Observe que há apenas duas equações para determinar três parâmetros, sendo que K_D ou K_I deve ser designado à priori. Geralmente, K_I é fixado em função do erro em regime permanente;
- Novamente, convém lembrar que para que o controlador seja estável é necessário que os ganhos K_P, K_I e K_D sejam positivos;
- Lembrar novamente que todo o procedimento não garante a estabilidade, sendo necessário checá-la ao final do projeto do compensador. Em geral, faremos isto através do critério de Nyquist.

Exemplo 7.4

Faça o projeto de um controlador PI via Resposta em Frequência para uma malha de controle discreta, cuja função de transferência da planta é:

$$G_p(s) = \frac{1}{s+1} ,$$

o tempo de amostragem é T=0,1 s, margem de fase $\phi_m=45^\circ$ e frequência de cruzamento de ganho igual a $\omega_c=10$ rad/s. Dado: diagrama de Bode de G(w).

Resolução do Exemplo 7.4

Frequência de warping:

$$\omega_{w_c} = \frac{2}{T} \tan \left(\frac{\omega_c T}{2} \right) = 20 \tan \left(\frac{1}{2} \right) \approx 10,926 \text{ rad/s};$$

- Do gráfico, temos |G(j10, 926)| = 0,1038 e $\angle G(j10, 926) = 246,58^{\circ}$;
- Ângulo do compensador:

$$\theta = 180^{\circ} + 45^{\circ} - \angle G(j10, 926) = -21, 58^{\circ}$$

• Ganhos:

$$K_P = \frac{\cos(-21, 58^\circ)}{0.1038} = 8,9612$$

$$K_I = -\frac{10,926.\sin(-21,58^\circ)}{0,1038} = 38,7206$$
;

Continuação da Resolução do Exemplo 7.4

• Controlador no plano-w:

$$D(w) = 8,9612 + \frac{38,7206}{w}$$

• Controlador no plano-z:

$$D(z) = 8,9612 + 38,7206.0,05 \frac{z+1}{z-1}$$

$$D(z) = \frac{10,8973z - 7,0252}{z - 1}$$

Projeto PID via Método Empírico

O quadro abaixo descreve de forma empírica como ajustar os parâmetros do Controlador PID.

Se o desempenho do processo	Tente uma das opções:
Está quase bom, mas o overshoot está um pouco alto	Diminuir K _P em 20% Diminuir K _I em 20% Aumentar K _D em 50%
Está quase bom, não tem overshoot e demora para atingir o setpoint	Aumentar K _P em 20% Aumentar K _I em 20% Diminuir K _D em 50%
Está ruim. Após a partida o transitório dura vários períodos de oscilação, que reduz lentamente ou não reduz.	Diminuir K _P em 50%
Está ruim. Após a partida avança lentamente em direção ao setpoint, sem overshoot. Ainda está longe do setpoint e a ação de controle é baixa.	Aumentar K _P em 50% Aumentar K _I em 50% Diminuir K _D em 70%