Análisis Matemático II 4 de mayo de 2021

- 1. Definir la medida de Lebesgue
- 2. Enunciar los resultados referentes a la continuidad creciente y decreciente de la medida de Lebesgue
- 3. Enunciar y demostrar los teoremas de unicidad de la medida de Lebesgue
- **4.** Para cada $n \in \mathbb{N}$, se considera la función $f_n : \mathbb{R} \to \mathbb{R}$ definida por

$$f_n(x) = n x e^{-n^2 x^2/2} \qquad \forall x \in \mathbb{R}$$

Dado $\delta \in \mathbb{R}^+$, probar que la serie $\sum_{n \geq 1} f_n$ converge absoluta y uniformemente en el conjunto $A_{\delta} = \{x \in \mathbb{R} : |x| \geq \delta\}$, pero no converge uniformemente en \mathbb{R} .

5. Para cada $n \in \mathbb{N}$ sea $g_n : \mathbb{R} \to \mathbb{R}$ una función continua. Supongamos que la sucesión $\{g_n\}$ converge a una función $g : \mathbb{R} \to \mathbb{R}$, uniformemente en cada subconjunto compacto de \mathbb{R} . Probar que g es continua y que, si $\{x_n\}$ es una sucesión de números reales, con $\{x_n\} \to x \in \mathbb{R}$, entonces $\{g_n(x_n)\} \to g(x)$.