# Predicting Vehicle Accident Severity

IBM Applied Data Science Capstone By Matt Guthrie

### Introduction/Business Problem

- Problem: In 2018, more than 36,000 people were killed in vehicle accidents in the United States [1].
- Therefore, understanding the types of vehicle accidents that lead to injury and death is of great interest to a number of parties:
  - First responders and public safety officials (e.g. allocation of ambulances and traffic regulations)
  - Drivers and Pedestrians (e.g. deciding where and when to travel)

### Introduction/Business Problem

 Determining relationships between certain accident conditions and injury probability would allow interested parties (e.g. local governments) to avoid injuries by affecting input conditions (e.g. imposing traffic restrictions in certain areas or during certain times)

#### Data

- The data used for the model was obtained from the Seattle Department of Transportation [2]
- It contains 38 features of 194,673 vehicle collisions
- The target variable in this case is SEVERITYCODE, which originally takes values of 1 (no injury) or 2 (injury)

#### Data

| PEDROWNOTGRNT  | 2.39735 |
|----------------|---------|
| SPEEDING       | 4.79419 |
| INATTENTIONIND | 15.3103 |
| JUNCTIONTYPE   | 96.7489 |
| х              | 97.26   |
| Υ              | 97.26   |
| LIGHTCOND      | 97.3443 |
| WEATHER        | 97.39   |
| ROADCOND       | 97.4254 |
| COLLISIONTYPE  | 97.4809 |
| ST_COLDESC     | 97.4809 |
| UNDERINFL      | 97.4912 |
| ADDRTYPE       | 99.0106 |
| SEVERITYCODE   | 100     |
| PEDCOUNT       | 100     |
| VEHCOUNT       | 100     |
| PERSONCOUNT    | 100     |
| INCDTTM        | 100     |
| PEDCYLCOUNT    | 100     |
| HITPARKEDCAR   | 100     |

- Out of the 37 remaining features, there are 20 features that appear useful for a model
- Location data: latitude and longitude data for the location of the vehicle accident is available
- Environmental Conditions: Weather, Light, Road conditions
- Collision Type & Vehicles Involved

## Methods - Missing Values

| PEDROWNOTGRNT  | 2.39735 |
|----------------|---------|
| SPEEDING       | 4.79419 |
| INATTENTIONIND | 15.3103 |
| JUNCTIONTYPE   | 96.7489 |
| x              | 97.26   |
| Υ              | 97.26   |
| LIGHTCOND      | 97.3443 |
| WEATHER        | 97.39   |
| ROADCOND       | 97.4254 |
| COLLISIONTYPE  | 97.4809 |
| ST_COLDESC     | 97.4809 |
| UNDERINFL      | 97.4912 |
| ADDRTYPE       | 99.0106 |
| SEVERITYCODE   | 100     |
| PEDCOUNT       | 100     |
| VEHCOUNT       | 100     |
| PERSONCOUNT    | 100     |
| INCDTTM        | 100     |
| PEDCYLCOUNT    | 100     |
|                |         |

- The first step was to check the degree of missingness for our initial set of features
- Most features are >96% populated, but the first three seem to be mostly missing
- After treating the missing rows as negative values, a chi-squared test shows all three variables to have a significant relationship with SEVERITYCODE. Cramer's V statistic shows that PEDROWNOTGRNT has most significant relationship

#### **Methods - Location Data**



 The X and Y coordinates can be plotted using the Folium package, but individual coordinates aren't of much use.

#### **Methods - Location Data**



 Using a geojson file from Seattle's Open Data Portal, we can map the coordinates to neighborhoods

## Methods - Categorical Features

- Many of the categorical features that have more than two levels were reduced down to flags (1/0) to remove unnecessary features once we one-hot encoded them.
- For example, the WEATHER feature was mapped to WEATHER\_IMPAIRED which indicates whether the weather conditions could impair the driver (e.g. Snowing).

### Methods - Categorical Features

|    | COLLISIONTYPE | ST_COLDESC                                     |
|----|---------------|------------------------------------------------|
| 0  | Angles        | Entering at angle                              |
| 1  | Sideswipe     | From same direction - both going straight - bo |
| 2  | Parked Car    | One parkedone moving                           |
| 3  | Other         | From same direction - all others               |
| 4  | Angles        | Entering at angle                              |
| 5  | Angles        | Entering at angle                              |
| 6  | Angles        | Entering at angle                              |
| 7  | Cycles        | Vehicle Strikes Pedalcyclist                   |
| 8  | Parked Car    | One parkedone moving                           |
| 9  | Angles        | Entering at angle                              |
| 10 | Other         | One car leaving driveway access                |
| 11 | Angles        | Entering at angle                              |
| 12 | Rear Ended    | From same direction - both going straight - on |
| 13 | Parked Car    | One parkedone moving                           |
| 14 | Head On       | From opposite direction - all others           |
| 15 | NaN           | NaN                                            |
| 16 | Left Turn     | From opposite direction - one left turn - one  |
| 17 | Rear Ended    | From same direction - both going straight - on |
| 18 | Rear Ended    | From same direction - both going straight - on |
| 19 | Parked Car    | One parked-one moving                          |

- Other features that appear to give similar information were compared and the most useful features were chosen.
- For example, COLLISIONTYPE and ST\_COLDESC both convey information on the type of vehicle collision, but COLLISIONTYPE has less levels while retaining the similar information.

## Methods - Categorical Features

- The dataset includes a feature for the date and time of the accident, INCDTTM, but the time is missing from many of the rows.
- From the date, YEAR and MONTH features were extracted



#### Methods - Numerical Features

|       | PERSONCOUNT   | PEDCOUNT      | VEHCOUNT      | PEDCYLCOUNT   |
|-------|---------------|---------------|---------------|---------------|
| count | 194673.000000 | 194673.000000 | 194673.000000 | 194673.000000 |
| mean  | 2.444427      | 0.037139      | 1.920780      | 0.028391      |
| std   | 1.345929      | 0.198150      | 0.631047      | 0.167413      |
| min   | 0.000000      | 0.000000      | 0.000000      | 0.000000      |
| 1%    | 0.000000      | 0.000000      | 0.000000      | 0.000000      |
| 5%    | 1.000000      | 0.000000      | 1.000000      | 0.000000      |
| 25%   | 2.000000      | 0.000000      | 2.000000      | 0.000000      |
| 50%   | 2.000000      | 0.000000      | 2.000000      | 0.000000      |
| 75%   | 3.000000      | 0.000000      | 2.000000      | 0.000000      |
| 90%   | 4.000000      | 0.000000      | 2.000000      | 0.000000      |
| 95%   | 5.000000      | 0.000000      | 3.000000      | 0.000000      |
| 99%   | 7.000000      | 1.000000      | 4.000000      | 1.000000      |
| max   | 81.000000     | 6.000000      | 12.000000     | 2.000000      |

- PEDCOUNT (# of Pedestrians) and
   PEDCYLCOUNT (# of Bicycles) are mostly
   0 so these features were converted to
   flags
- Accidents with PERSONCOUNT or VEHCOUNT equal to 0 were dropped since the accidents must include at least one person or vehicle. These features were then transformed to categorical features.

### Methods - Numerical Features





 The proportion of accidents with injury increases with the number of people involves, but the relation is more complex for vehicle count

#### **Methods - Dataset Finalization**

- After removing rows with unusable or missing data, we retain ~82% of the accidents in the original dataset
- Categorical features are one-hot encoded for model building
- The target variable is originally unbalanced, so we can upsample the minority rows to balance the dataset

Train set: (128150, 41) (128150,)
Validation set: (42717, 41) (42717,)
Test set: (42717, 41) (42717,)
Train Injury: 50.0 %

Validation Injury: 50.28 %

Test Injury: 49.72 %

#### **Methods - Dataset Finalization**

Finally, we split the data into train, validate, and test sets (60:20:20)

```
Train set: (128150, 41) (128150,)
Validation set: (42717, 41) (42717,)
Test set: (42717, 41) (42717,)
Train Injury: 50.0 %
Validation Injury: 50.28 %
Test Injury: 49.72 %
```

## Methods - Model Building



#### K-Nearest Neighbor (KNN)

Using the validation set we can see that K=5 gets the best performance

## Methods - Model Building

#### **Logistic Regression**

Using the validation set we can select the best value for C (the inverse of the regularization)

#### **Support Vector Machine (SVM)**

Using the validation set we can see that the rbf (radial basis function) kernel gets the best performance

### Methods - Model Building



#### **Decision Tree**

Using the validation set we can see that the best performance is achieved closer to max depth but only small marginal gains are achieved past a depth of around 15

### Results

|                    | Jaccard | F1-score | LogLoss |
|--------------------|---------|----------|---------|
| Algorithm          |         |          |         |
| KNN                | 0.6681  | 0.6680   | NA      |
| Decision Tree      | 0.6921  | 0.6918   | NA      |
| SVM                | 0.6808  | 0.6764   | NA      |
| LogisticRegression | 0.6832  | 0.6831   | 0.5639  |

Putting all of the results together, we can see that the Decision Tree model performs best on the test data

### Results



#### Discussion

- Generally, the choice when working with data is between prediction and inference, i.e. do
  we simply want to predict the value of the target variable given the feature set or would
  we like to learn about the relationships between certain features and the target variable?
- This dataset (and this problem) lend themselves to a more inferenced-based approach, however, many of the tools used in machine learning are targeted toward prediction.
- In our case, we were able to develop a model that does fairly well at prediction, but predicting the severity of an accident given all the other features of the accident has fairly limited uses. For example, if you know how many people are involved in the accident, you would presumably already know if any of those people are injured.
- Meanwhile, the best performing model in terms of prediction, a decision tree model, makes it a bit more difficult to make inferences about feature relationships.

#### Conclusion

In conclusion, there are many things we could improve in future projects:

- More feature engineering/transformation, e.g. some of the features we simplified to 1/0 flags may contain more important info with more levels
- Using more of the available features, e.g. the location data is useful, but there were too many levels to work with without a significant amount of effort
- Adding new features that have less obvious relationships with the target variable, e.g. adding a feature like vehicle model would allow use to check for the significance of the model while controlling for all other features
- More feature selection in models like the Logistic Regression model, e.g. in this case we used all features in the final model even if they were not very significant