# AA 203 Optimal and Learning-Based Control

Nonlinear optimization theory

Autonomous Systems Laboratory

Stanford University

April 5, 2023





# Optimization in many dimensions



## **Unconstrained optimization**

Given an objective function  $f: \mathbb{R}^n \to \mathbb{R}$ , we denote an *unconstrained nonlinear* program with the notation

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x).$$

We usually assume either  $f\in\mathcal{C}^1$  (i.e., "continuously differentiable") or  $f\in\mathcal{C}^2$  (i.e., "twice continuously differentiable").

A solution candidate  $x^* \in \mathbb{R}^n$  can be a:

local minimum 
$$\exists \varepsilon > 0: f(x^*) \leq f(x), \ \forall x: \|x - x^*\| \leq \varepsilon$$
 global minimum  $f(x^*) \leq f(x), \ \forall x \in \mathbb{R}^n$ 

If the inequality is strict, i.e., "<", then  $x^*$  is a strict unconstrained local/global minimum. Any (strict) global minimum is also a (strict) local minimum.

There can be many minima, or none at all!

# First-order necessary optimality condition

Let  $x^*$  be a local minimum.

Suppose  $f \in \mathcal{C}^1$ . Then near  $x^*$  we have must have

$$f(x^* + \Delta x) - f(x^*) \approx \nabla f(x^*)^\mathsf{T} \Delta x \ge 0$$

For each i, take  $\Delta x = \delta e^{(i)}$  and  $\Delta x_i = -\delta e^{(i)}$  for small  $\delta > 0$ , where

$$e^{(i)} := (\underbrace{0, \dots, 0}_{i-1}, 1, 0, \dots, 0) \in \{0, 1\}^n.$$

Then we get

$$\frac{\partial f}{\partial x_i}(x^*)\delta \ge 0, \ -\frac{\partial f}{\partial x_i}(x^*)\delta \ge 0 \iff \frac{\partial f}{\partial x_i}(x^*) = 0.$$

Overall, we have  $\nabla f(x^*) = 0$ , i.e.,  $x^*$  must be a stationary point.

## Second-order necessary optimality condition

Let  $x^*$  be a local minimum.

Suppose  $f \in \mathcal{C}^2$ . Then near  $x^*$  we have must have

$$f(x^* + \Delta x) - f(x^*) \approx \nabla f(x^*)^\mathsf{T} \Delta x + \frac{1}{2} \Delta x^\mathsf{T} \nabla^2 f(x^*) \Delta x \ge 0$$

We know  $\nabla f(x^*) = 0$ , so we must have

$$\frac{1}{2}\Delta x^{\mathsf{T}} \nabla^2 f(x^*) \Delta x \ge 0.$$

Since we can choose  $\Delta x$  arbitrarily within an  $\varepsilon$ -sized ball around  $x^*$ , we must have  $\nabla^2 f(x^*) \succeq 0$ , i.e., the Hessian of f at  $x^*$  is a positive semi-definite matrix.

# Necessary optimality conditions (NOCs) for unconstrained problems

#### Theorem (NOCs for unconstrained problems)

Suppose  $x^* \in \mathbb{R}^n$  is an unconstrained (resp. strict) local minimum of  $f : \mathbb{R}^n \to \mathbb{R}$ .

- If  $f \in \mathcal{C}^1$  on an open set  $\mathcal{X} \subseteq \mathbb{R}^n$  containing  $x^*$ , then  $\nabla f(x^*) = 0$ .
- If  $f \in \mathcal{C}^2$  on  $\mathcal{X}$ , then  $\nabla^2 f(x^*) \succeq 0$  (resp.  $\nabla^2 f(x^*) \succ 0$ ).

# Sufficient optimality conditions (SOCs) for unconstrained problems

If  $\nabla f(x^*) = 0$  and  $\nabla^2 f(x^*) \succ 0$ , then  $f(x^* + \Delta x) - f(x^*) \approx \frac{1}{2} \Delta x^\mathsf{T} \, \nabla^2 f(x^*) \Delta x > 0$  for small  $\Delta x$ .

#### Theorem (SOCs for unconstrained problems)

Suppose  $f \in \mathcal{C}^2(\mathcal{X}, \mathbb{R})$  on some open set  $\mathcal{X} \subseteq \mathbb{R}^n$ . If  $x^* \in \mathcal{X}$  satisfies

$$\nabla f(x^*) = 0, \quad \nabla^2 f(x^*) \succ 0,$$

then  $x^*$  is an unconstrained strict local minimum of f.



We cannot just use  $\nabla^2 f(x^*) \succeq 0$  due to saddle points.

#### Convex sets and convex functions

A set  $\mathcal{X} \subseteq \mathbb{R}^n$  is *convex* if

$$\alpha x + (1 - \alpha)y \in \mathcal{X}, \ \forall x, y \in \mathcal{X}, \ \forall \alpha \in [0, 1].$$

A function  $f: \mathcal{X} \to \mathbb{R}^n$  is *convex* on  $\mathcal{X}$  if

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y),$$
  
$$\forall x, y \in \mathcal{X}, \ \forall \alpha \in [0, 1].$$



If the inequality is strict, then f is strictly convex.

A function  $f \in \mathcal{C}^2$  is (resp. strictly) convex on  $\mathcal{X}$  if and only if  $\nabla^2 f(x^*) \succeq 0$  (resp.  $\nabla^2 f(x^*) \succ 0$ ) for all  $x \in \mathcal{X}$ .

Important examples of convex functions for this course are:

Quadratic 
$$f(x) = x^{\mathsf{T}}Qx$$
 (where  $Q \succeq 0$ )  
Affine  $f(x) = Ax + b$  (both convex and concave)

#### **Unconstrained convex problems**

#### Theorem (NOCs are SOCs for unconstrained convex problems)

Let  $f: \mathcal{X} \to \mathbb{R}$  be a convex function over a convex set  $\mathcal{X} \in \mathbb{R}^n$ .

- If  $x^* \in \mathcal{X}$  is local minimum of f, then it is also a global minimum over  $\mathcal{X}$ .
- ullet If f is strictly convex, then there exists at most one global minimum of f over  $\mathcal{X}$ .
- Suppose additionally that  $\mathcal X$  is open and  $f \in \mathcal C^1(\mathcal X,\mathbb R)$ . Then  $\nabla f(x^*) = 0$  if and only if  $x^*$  is a global minimum of f over  $\mathcal X$ .

# Descent methods for unconstrained problems

Iterative descent methods start at an initial guess  $x^{(0)}$ , and try to successively generate vectors  $\{x^{(1)},x^{(2)},\dots\}$  such that the objective decreases at each iteration, i.e.,

$$f(x^{(k+1)}) \le f(x^{(k)}), \ \forall k \in \{0, 1, 2, \dots\}.$$

The hope is that we can decrease f all the way to a minimum.

Consider the update rule

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)},$$

where  $\alpha^{(k)}>0$  is the *step-size* and  $d^{(k)}\in\mathbb{R}^n$  is the *descent direction*. Then

$$f(x^{(k+1)}) \approx f(x^{(k)}) + \alpha^{(k)} \nabla f(x^{(k)})^{\mathsf{T}} d^{(k)}.$$

The goal is to choose  $\alpha^{(k)}>0$  and  $d^{(k)}\in\mathbb{R}^n$  such that this approximation is appropriate and  $\nabla f(x^{(k)})^{\mathsf{T}}d^{(k)}<0$ .

#### **Gradient descent directions**

Let  $d^{(k)} = -D^{(k)} \nabla f(x^k)$ , where  $D^{(k)} \succ 0$ . Then

$$f(x^{(k+1)}) \approx f(x^{(k)}) + \alpha^{(k)} \nabla f(x^{(k)})^{\mathsf{T}} d^{(k)}$$
$$= f(x^{(k)}) - \alpha^{(k)} \nabla f(x^{(k)})^{\mathsf{T}} D^{(k)} \nabla f(x^{(k)}).$$

Since  $D^{(k)} \succ 0$ , we have that  $f(x^{(k+1)}) \le f(x^{(k)})$  for small enough  $\alpha^{(k)} > 0$ .

Popular choices for  $D^{(k)}$  are

Steepest descent  $D^{(k)} = I$ .

Newton's method  $D^{(k)} = \nabla^2 f(x^{(k)})$ , provided that f is strictly convex.

Newton's method analytically minimizes the quadratic approximation

$$f(x^{(k+1)}) \approx f(x^{(k)}) + \nabla f(x^{(k)})^{\mathsf{T}} d^{(k)} + \frac{1}{2} d^{(k)}^{\mathsf{T}} \nabla^2 f(x^{(k)}) d^{(k)}$$

at each iteration k, for strictly convex f.

#### Selecting the step-size

Constant Choose  $\alpha^{(k)} \equiv \alpha > 0$ . Convergence can be slow, or the iterates could diverge if  $\alpha$  is too large.

Diminishing Ensure  $\alpha^{(k)} \to 0$  and  $\sum_{k=0}^{\infty} \alpha^{(k)} = \infty$ . This does not guarantee descent at each iteration, but it can avoid diverging iterates.

Line search Given the current iterate  $\boldsymbol{x}^{(k)}$  and a descent direction  $\boldsymbol{d}^{(k)}$ , compute

$$\alpha^{(k)} = \operatorname*{arg\,min}_{\alpha > 0} f(x^{(k)} + \alpha d^{(k)})$$

exactly if possible. Otherwise, do backtracking line search

$$\begin{array}{l} \text{initialize } \alpha^{(k)} = 1 \\ \text{while } f(x^{(k)} + \alpha d^{(k)}) > f(x^{(k)}) + \gamma \alpha^{(k)} \nabla f(x^{(k)})^\mathsf{T} d^{(k)} \\ \alpha^{(k)} \leftarrow \beta \alpha^{(k)} \end{array}$$

where  $\gamma \in (0, 0.5)$  and  $\beta \in (0, 1)$  are hyperparameters.

#### Further topics to explore

There is a wealth of mathematical analyses of descent methods involving:

- guarantees for convergence to a stationary point
- good convergence criteria (e.g.,  $\|x^{(k)}-x^{(k-1)}\|<\varepsilon$ ,  $|f(x^{(k)})-f(x^{(k-1)})|<\varepsilon$ ,  $\|\nabla f(x^{(k)})\|<\varepsilon$ )
- convergence rates (e.g.,  $f(x^{(k)}) f(x^*) \lesssim \frac{1}{k} \|x^{(0)} x^*\|_2^2$ )

There are other descent methods that can be implemented "derivative-free", such as

- coordinate descent
- Nelder-Mead algorithms

## **Equality-constrained optimization**

Given an objective function  $f: \mathbb{R}^n \to \mathbb{R}$  and a constraint function  $h: \mathbb{R}^n \to \mathbb{R}^m$ , we denote an equality-constrained nonlinear program with the notation

$$\begin{array}{l}
\text{minimize } f(x) \\
\text{subject to } h(x) = 0
\end{array}$$

We assume  $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$  and  $h \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^m)$ .

## Lagrange multipliers for equality-constrained problems

Define the Lagrangian function

$$L(x,\lambda) := f(x) + \lambda^{\mathsf{T}} h(x) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x),$$

where  $\lambda \in \mathbb{R}^m$  is a vector of Lagrange multipliers.

#### Theorem (First-order NOC for equality-constrained problems)

Suppose  $x^* \in \mathbb{R}^n$  is a local minimum of  $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$  subject to  $h(x^*) = 0$  with  $h \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^m)$ . Moreover, assume  $\{\nabla h_i(x^*)\}_{i=1}^m$  are linearly independent. Then there exists a unique  $\lambda^* \in \mathbb{R}^m$  such that

$$\nabla_x L(x^*, \lambda^*) = \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0.$$

Second-order NOCs and SOCs for constrained problems are discussed in AA203-Notes and (Bertsekas, 2016).

#### First-order NOC visualized

Re-arrange  $\nabla_{\!\! x}\,L(x^*,\lambda^*)=0$  to get

$$-\nabla f(x^*) = \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*).$$

Further reduction of the objective value would produce a change in the constraint function, thereby violating h(x) = 0.



## Regularity conditions for equality-constrained problems

The first-order NOC required that  $x^*$  is a regular point, i.e., that  $\{\nabla h_i(x^*)\}_{i=1}^m$  are linearly independent vectors. Since  $\nabla h_i(x^*) \in \mathbb{R}^n$ , this implicitly requires  $m \leq n$  (i.e., you cannot find more than n linearly independent vectors in  $\mathbb{R}^n$ ).

Solving  $\min_{x : h(x)=0} f(x)$  can be viewed as solving for n variables subject to m constraints.

The proof of the first-order NOC relies on eliminating m variables to arrive at an unconstrained problem in n-m variables, which in turn relies on  $\{\nabla h_i(x^*)\}_{i=1}^m$  being linearly independent to apply the implicit function theorem.

See (Bertsekas, 2016, §4.1.2) for further details.

## Inequality-constrained optimization

Given an objective function  $f: \mathbb{R}^n \to \mathbb{R}$  and constraint functions  $h: \mathbb{R}^n \to \mathbb{R}^m$  and  $g: \mathbb{R}^n \to \mathbb{R}^r$ , we denote an inequality-constrained nonlinear program with the notation

$$\begin{aligned}
&\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \\
&\text{subject to} \ h(x) = 0 \\
&g(x) \leq 0
\end{aligned}$$

We assume  $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$ ,  $h \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^m)$ , and  $g \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^r)$ . We use " $\preceq$ " to denote element-wise inequality in this scenario.

For any feasible point x, i.e., such that h(x)=0 and  $g(x) \leq 0$ , define the set of active inequality constraints by

$$A_g(x) := \{ j \in \{1, 2, \dots, r\} \mid g_j(x) = 0 \}.$$

## Karush-Kuhn-Tucker (KKT) NOC conditions

With Lagrangian multipliers  $\lambda \in \mathbb{R}^m$  and  $\mu \in \mathbb{R}^r$ , define the Lagrangian

$$L(x,\lambda,\mu) \coloneqq f(x) + \lambda^\mathsf{T} h(x) + \mu^\mathsf{T} g(x) = f(x) + \sum_{i=1}^m \lambda_i h_i(x) + \sum_{j=1}^r \mu_j g_j(x).$$

#### Theorem (First-order NOC for inequality-constrained problems)

Suppose  $x^* \in \mathbb{R}^n$  is a local minimum of  $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$  subject to  $h(x^*) = 0$  and  $g(x^*) \leq 0$  with  $h \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^m)$  and  $g \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^r)$ . Moreover, assume

$$\{\nabla h_i(x^*)\}_{i=1}^m \cup \{\nabla g_j(x^*)\}_{j \in \mathcal{A}_g(x^*)}$$

are linearly independent. Then there exist unique  $\lambda^* \in \mathbb{R}^m$  and  $\mu^* \in \mathbb{R}^r$  such that

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0, \qquad \mu^* \succeq 0, \qquad \mu_j^* = 0, \ \forall j \notin \mathcal{A}_g(x^*).$$

We can also write the last condition succinctly as  $\mu^{*T}g(x^*) = 0$ .

#### KKT conditions for convex problems

Consider when f is convex, each  $g_j(x)$  is convex, and h(x) is affine, i.e., h(x) = Ax - b. Then we have

$$\begin{aligned}
&\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \\
&\text{subject to } Ax = b \\
&g(x) \leq 0
\end{aligned}$$

for which the feasible set  $\mathcal{X} \coloneqq \{x \in \mathbb{R}^n \mid Ax = b, \ g(x) \leq 0\}$  is convex.

#### Theorem (KKT conditions are NOCs and SOCs for convex problems)

Suppose  $f \in \mathcal{C}^1(\mathbb{R}^n,\mathbb{R})$  and  $g \in \mathcal{C}^1(\mathbb{R}^n,\mathbb{R}^r)$  are convex, and that the feasible set  $\mathcal{X}$  is open, i.e., there exists at least one x such that Ax = b and  $g(x) \prec 0$ . Then  $(x^*,\lambda^*,\mu^*)$  describe a global minimum if and only if

$$Ax^* = b$$
,  $g(x^*) \leq 0$ ,  $\nabla_x L(x^*, \lambda^*, \mu^*) = 0$ ,  $\mu^* \geq 0$ ,  $\mu^{*\mathsf{T}} g(x^*) = 0$ .

# Example: Maximal rectangle inside a circle

maximize 
$$x_1 + x_2$$
  
subject to  $x_1^2 + x_2^2 = r^2$ 

We have 
$$f(x)=-x_1-x_2$$
 (for minimization) with  $h(x)=x_1^2+x_2^2-r^2$ , so 
$$L(x,\lambda)=-x_1-x_2+\lambda(x_1^2+x_2^2-r^2).$$

The first-order NOC at a local minimum  $(x^*, \lambda^*)$  is

$$\nabla_{x} L(x^*, \lambda^*) = \begin{pmatrix} -1 + 2\lambda^* x_1^* \\ -1 + 2\lambda^* x_2^* \end{pmatrix} \stackrel{!}{=} 0 \iff x_1^* = x_2^* = \frac{1}{2\lambda^*}.$$

Substitute into  $x_1^{*2} + x_2^{*2} = r^2$  to get  $\lambda^* = \pm \frac{1}{\sqrt{2}r} \implies x_1^* = x_2^* = \pm \frac{1}{\sqrt{2}}r$ . Of the two possible solutions,  $x_1^* = x_2^* = \frac{1}{\sqrt{2}}r$  is the global maximum (i.e., a square).

## Optimality conditions in algorithm design

Why should we care about characterizing optimality conditions?

- Even just NOCs can form a filter for distilling local minima from feasible points.
- NOCs and SOCs can serve as a means for "measuring progress" towards optimality during an optimization procedure, particularly for convex problems.
- Problem structure (e.g., quadratic objective with linear constraints) coupled with convexity and the KKT conditions can be leveraged to implement efficient solvers with good convergence properties (Boyd and Vandenberghe, 2004).
- Even for non-convex problems, convex solvers can be used in iterative convex sub-problems that can converge to a local minimum.

## Preview: Sequential Convex Programming (SCP)

Consider the non-convex problem

minimize 
$$f(x)$$
  
subject to  $h(x) = 0, g(x) \leq 0$ 

The basic idea of sequential convex programming (SCP) is to maintain an estimate  $x^{(k)}$  and iteratively solve for  $x^{(k+1)}$  via the convex sub-problem

minimize 
$$\hat{f}^{(k)}(x)$$
  
subject to  $\hat{h}^{(k)}(x) \coloneqq \hat{A}^{(k)}x - \hat{b}^{(k)} = 0, \ \hat{g}^{(k)}(x) \preceq 0, \ x \in \mathcal{T}^{(k)}$ 

where  $(\hat{f}^{(k)}, \hat{g}^{(k)})$  and  $\hat{h}^{(k)}$  are convex and affine, respectively, approximations of (f,g) and h, respectively, over a convex trust region constructed around  $x^{(k)}$ , e.g.,

$$\mathcal{T}^{(k)} := \{ x \mid ||x - x^{(k)}||_1 \le \rho \},\$$

for some  $\rho > 0$ .

#### **Next class**

Pontryagin's maximum principle and indirect methods for optimal control (i.e., applying NOCs to optimal control problems)

#### References

- D. Bertsekas. Nonlinear Programming. Athena Scientific, 3 edition, 2016.
- S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.