Cache-Efficient Parallel Partition Algorithms Using Exclusive-Read-and-Write Memory

William Kuszmaul, Alek Westover

July 1, 2020

THE PARTITION PROBLEM

An unpartitioned array:

THE PARTITION PROBLEM

An unpartitioned array:

An array partitioned relative to a pivot value:

EXAMPLE APPLICATIONS

- ► Parallel Partition
- ► Parallel Quicksort
- ► Filtering Operations

WHAT IS A PARALLEL ALGORITHM?

Fundamental primitive: Parallel for loop

PARALLEL ALGORITHM PERFORMANCE METRICS

 T_p : Time to run on p processors

Work: T_1

► time to run in serial

Span: T_{∞}

time to run on infinitely many processors

Brent's Theorem:

$$T_p = \Theta\left(\frac{T_1}{p} + T_\infty\right)$$

WHAT IS CACHE EFFICIENCY?

Roughly, an algorithm is cache-efficient if it

- ► Performs low number of passes over the data
- ▶ Doesn't use extra memory (i.e. is *In-Place*)
- Opperates on elements close together in memory at the same time

Cache-Efficiency makes an algorithm faster in practice.

THE PROBLEM

Standard Algorithm span $O(\log n)$ but is slow in practice

- Uses extra memory
- ► Makes multiple passes over array

bad cache behavior

Fastest algorithms in practice lack theoretical guarantees

- ► Lock based and atomic-variable based algorithms [Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders, 2017; Philip Heidelberger, Alan Norton, and John T. Robinson, 1990; Philippas Tsigas and Yi Zhang, 2003]
- ► The Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

No locks or atomic-variables, but no bound on span

OUR QUESTION

Can we create an algorithm with *theoretical guarantees* that is *fast in practice*?

OUR RESULT

The Smoothed-Striding Algorithm

Key Features:

- ► linear work and polylogarithmic span (like the Standard Algorithm)
- fast in practice (like the Strided Algorithm)
- theoretically optimal cache behavior (unlike any past algorithm)

STRIDED VERSUS SMOOTHED-STRIDING ALGORITHM

Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

- Good cache behavior in practice
- ► Worst case span is $T_{\infty} \approx n$

• On random inputs span is $T_{\infty} = \tilde{O}(n^{2/3})$

STRIDED VERSUS SMOOTHED-STRIDING ALGORITHM

Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

- Good cache behavior in practice
- Worst case span is $T_{\infty} \approx n$

• On random inputs span is $T_{\infty} = \tilde{O}(n^{2/3})$

Smoothed-Striding Algorithm

- Provably optimal cache behavior
- Span is $T_{\infty} = O(\log n \log \log n)$ with high probability in n
- Uses randomization inside the algorithm

SMOOTHED-STRIDING ALGORITHM'S PERFORMANCE

The Smoothed-Striding Algorithm

Logically partition the array into chunks of adjacent elements

Form groups U_i that contain a **random** element from each chunk (the Strided Algorithm forms groups P_i that contain the i-th element from each chunk)

Perform serial partitions on each U_i in parallel over the U_i 's

This step is highly parallel.

Define v_i = index of first element greater than the pivot in U_i

Identify leftmost and rightmost v_i

Final step: Recursively partition the subarray

Final step: Recursively partition the subarray

- Recursion is now possible! (unlike in the Strided Algorithm, where the subproblem is a worst case input)
- ▶ Randomness guarantees that $v_{\rm max} v_{\rm min}$ is small (unlike in the Strided Algorithm, where $v_{\rm max} v_{\rm min}$ could be as large as $\Theta(n)$)

A KEY CHALLENGE

How do we store the U_i 's if they are all random?

Storing which elements make up each U_i takes too much space!

Strided Algorithm P_i .

Smoothed-Striding Algorithm U_i .

HOW TO STORE THE GROUPS

Key Insight: While each U_i does need to contain a random element from each chunk, the U_i 's don't need to be *independent*.

We store U_1 , and all other groups are determined by a "circular shift" of U_1 (wraparound within each chunk).

AN OPEN QUESTION

Our algorithm: span $T_{\infty} = O(\log n \log \log n)$

Standard Algorithm: span $T_{\infty} = O(\log n)$.

Can we get optimal cache behavior and span $O(\log n)$?