Solution 1) This is just a couple examples of what you can do in LATEX. You may delete it all.

Solution 1a) It isn't considered sufficient to explain your algorithm through pseudocode only, however here is a basic example using the **algorithmicx package**.

Algorithm 1 This squares every element of a list

Require: Integer list of size n

- 1: **function** SQUARE(*elements*)
- 2: **for** (index, element) $\in \{1, 2, \dots, n\} \times elements$ **do**
- 3: list[index] \leftarrow element \cdot element

Solution 1b) Algorithm 1 is O(n) because if T(n) is a function which counts the number of O(1) operations, then T(n) is upper bounded by some constant multiple of n, i.e. there exists C such that $T(n) \leq C \cdot n$ for all n large enough.

Solution 1c) For a predicate P, $P(0) \wedge (P(k) \rightarrow P(k+1)) \rightarrow (\forall k \in \mathbb{N}, P(k))$. A function $x : \mathbb{N} \longrightarrow \mathbb{R}$ can be represented as a sequence $\{x_n\}_{n \in \mathbb{N}}$. $\log_2(n) = \log(n)$ in COMP2123!

Solution 2a) Start a new question on a new page each time to make it easier and to hand in on gradescope.