Drones

Artificial Intelligence

"All our knowledge begins with the senses, proceeds then to the understanding, and ends with reason. There is nothing higher than reason."

Immanuel Kant

Autonomous Navigation of Forest Trails

In this example we will look at a drone trained using a Deep Neural Network to navigate a forest trail.

Useful for allowing a robot to explore an isolated area, maybe during a search and rescue situation.

The only sensor the drone has in this is example is an ordinary color camera.

Perception of real world from complex imagery.

Challenge

Perceiving a real world trail from images without a brain is extremely difficult!

This is a pattern recognition problem

Solution: Use an award winning image analysis algorithm.

Mitosis Detection in Breast Cancer Histology Images using Deep Neural Networks

Joint work with Dan Ciresan.

News:

- Nov, 2014: The Medical Image Analysis paper describing the MICCAI 2013 Grand
 Challenge "Assessment of Mitosis Detection Algorithms" has been accepted (preprint, pubmed, arxiv).
- Jan, 2014: The user testing website for the paper "A Comparison of Algorithms and Humans for Mitosis Detection" is online. <u>Take the test!</u>
- Sept, 2013: With <u>Dan Ciresan</u>, we won the MICCAI 2013 Grand Challenge "Assessment of Mitosis <u>Detection Algorithms"</u>, with a significant advantage over the closest competitor (results).

- Images using Deep Neural Networks
- Segmentation of Neural Structures from Electron Microscopy Stacks using Deep Neural Networks
- Image Analysis (and Statistical Modeling) for Human Embryo Grading
- Zygote Segmentation and 3D Reconstruction
- 4-Cell Embryo
 Segmentation and 3D

 Reconstruction
- Statistics
- Novel Statistical Methods for Analyzing Images of Fibre-like Structures
- Other work
- Oct, 2012: With <u>Dan Ciresan</u>, we won the ICPR 2012 challenge on <u>mitosis detection</u> in breast cancer histology images. The paper describing the approach was published at MICCAI 2013.

211

Neural Network Elements

 Neural networks are a set of algorithms, modeled loosely after the human brain.

- That are designed to recognize patterns. They interpret sensory data through a kind of machine perception, labeling or clustering raw input.
- The patterns they recognize are numerical, contained in vectors, into which all real-world data, be it images, sound, text or time series, must be translated.

Neural networks help us cluster and classify.

Deep Neural Network Elements

 Deep learning is the name we use for "stacked neural networks"; that is, networks composed of several layers.

• The layers are made of *nodes*. A node is just a place where computation happens, loosely patterned on a neuron in the human brain, which fires when it encounters sufficient stimuli.

- A node combines input from the data with a set of coefficients, or weights, that either amplify or dampen that input, thereby assigning significance to inputs for the task the algorithm is trying to learn.
- These input-weight products are summed and the sum is passed through a node's so-called activation function, to determine whether and to what extent that signal progresses further through the network to affect the ultimate outcome.

How the classifier works

Training the Classifier

Video was taken while hiking trails in the Alps.

3 GoPro cameras were strapped to a hiker's head.

The hiker acquires imagery that is assigned to the three classes simultaneously.

20^K images

Single-image accuracy

O NAVANA

Our classifier accuracy:

85.23%

Saliency accuracy:

52.32%

Human accuracy:

82.00%

Autonomous flight

Exciting Implications

- Drone swarms
- Smart Farming
- Monitor Wildlife
- Deliver Pizza
- Deliver all sorts of things
- Monitoring & mapping Railways
- Monitoring & mapping NG pipelines
- Creating Art
- Monitor Skyscraper Fabrication
- Construct 3d environments.
- Sports Video
- Catastrophe Disaster Relief
- Forestry Health Monitoring
- Fighting Fires
- etc...

Resources:

A. Giusti et al.: "A Machine Learning Approach to the Visual Perception of Forest Trails for Mobile Robots". IEEE Robotics and Automation Letters (2016) and ICRA 2016

https://www.newscientist.com/article/mg23130842-600-how-drones-are-learning-to-find-their-own-way-in-the-world/

http://news.mit.edu/2016/algorithm-robot-teams-moving-obstacles-0421

http://people.idsia.ch/~guzzi/DataSet.html #Download the dataset

http://www.leet.it/home/giusti/website/doku.php?id=wiki:biomedical_image_analysis #DNN used

http://people.idsia.ch/~giusti/forest/web/ #actual video of autonomous drone

http://deeplearning4j.org/neuralnet-overview.html