Tutorial 7

 A transformer has a primary coil and a secondary coil with the number of loops are 500 and 5000. Input voltage is 220 V. What is the output voltage?

- Primary coil $(N_p) = 500 loops$
- Secondary coil (N_s) = 5000 loops
- Primary voltage (V_P) = 220 Volt
- Secondary voltage $(V_s) = ?$
- Solution:
- $V_s / N_s = V_p / N_p$
- $V_s / 5000 = 220 / 500$
- $V_s / 5000 = 0.44$
- $V_s = (0.44)(5000)$
- $V_s = 2200 \text{ Volt}$

 A transformer has primary coil with 1200 loops and secondary coil with 1000 loops. If the current in the primary coil is 4 Ampere, then what is the the current in the secondary coil.

- Solution:
- $I_S/I_P = N_P/N_S$
- The current in the secondary coil :
- $I_S/4 = 1200/1000$
- $I_{S}/4 = 1.2$
- $I_S = 1.2 (4)$
- $I_S = 4.8$ Ampere

 The secondary voltage is 220 Volt and primary voltage is 110 volt, then a comparison of the secondary coil and primary coil is...

Given:

- Secondary voltage (V_S) = 220 Volt
- Primary voltage (V_P) = 110 Volt

Required N_S/N_P

- Solution:
- $V_S/V_P = N_S/N_P$
- $220/110 = N_S/N_P$
- $22/11 = N_S/N_P$
- $2/1 = N_S/N_P$
- $12/6 = N_S/N_P$

 Based on figure below, what is the primary voltage of the transformer.

Given:

- Secondary voltage (V_s) = 24 Volt
- Primary loops $(N_P \text{ or } N_1) = 11 \text{ N}$
- Secondary loops (N_{S or} N₂) = 1 N = N
 Primary voltage (V_P) = ?
- Solution:
- $V_s / N_s = V_p / N_p$
- $24/1 = V_p/11$
- $24 = V_p / 11$
- $V_p = (24)(11)$
- $V_p = 264 \text{ Volt}$

 Based on figure below, what is the input voltage of the transformer

Given:

- Primary coil $(N_1) = 21 N$
- Secondary coil (N₂) = 3 N
- Secondary voltage $(V_2) = 20 \text{ Volt}$
- Primary voltage (V₁) = ?
- Solution:
- $V_2/N_2 = V_1/N_1$
- $20/3 N = V_1/21 N$
- $20/1 = V_1/7$
- $20 = V_1 / 7$
- $V_1 = (7)(20)$
- $V_1 = 140 \text{ Volt}$

 According to figure below, what is the amount of the secondary loops of the transformer.

- $V_s / N_s = V_p / N_p$
- 1100 Volt / N_s = 220 Volt / 200 loops
- $1100 / N_s = 220 / 200$
- $1100 / N_s = 1.1$
- $N_s = 1100 / 1.1$
- $N_s = 1000 loops$

• If the primary coil has 800 loops, then determine the secondary coil.

- $V_s / N_s = V_p / N_p$
- $55 / N_s = 220 / 800$
- $55 / N_s = 22 / 80$
- $N_S = (80)(55) / 22$
- $N_s = 4400 / 22$
- $N_S = 200 loops$

Based on the above figure, which of the following statements about the figure above is correct.

- A. Figure 1 is a step-up transformer and figure 2 is a step-down transformer
- B. Figure 1 is a step-down transformer and figure 2 is a step-up transformer
- C. Figure 1 and 2 are a step-down transformer
- D. Figure 1 and 2 are a step-up transformer

Transformers	
P	Q
110 V	220 V
200 V	110 V
4 A	1 A
2 A	2 A
400 W	220 W
	P 110 V 200 V 4 A 2 A

The correct statement about transformer P and Q is...

- A. P is a step-down transformer because of Is < Ip
- B. P is a step-up transformer because of V_p ≤ V_s
- C. Q is a step-up transformer because of Vp > Vs
- D. Q is a step-up transformer because Is > Ip

Turns ratio of the transformer is directly proportional to

- a) Resistance ratio
- b) Currents ratio
- c) Voltage ratio
- d) Not proportional to any terms

- Which of the following statement is correct regarding turns ratio?
 - a) Current ratio and turns ratio are inverse of each other
 - b) Current ratio is exactly same to the voltage ratio
 - c) Currents ratio is exactly same to the turns ratio
 - d) Voltage ratio and turns ratio are inverse of each other