

FSL-SAGE: Accelerating Federated Split Learning via Smashed

Activation Gradient Estimation

Srijith Nair¹

Michael Lin¹ Peizhong Ju²

Peizhong Ju² Amirezza Talebi¹

Elizabeth Bentley³

Jia Liu¹

 1 The Ohio State University 2 University of Kentucky 3 Air Force Research Laboratory

SUMMARY

- Problem: Traditional Federated Learning (FL) is fast but assumes that clients can store and train large-scale models; Recent works have tried to combine split learning (SL) with FL (jointly called FSL), but are communication inefficient and/or learn a suboptimal joint model.
- Solution: We propose to use auxiliary models as estimators of the server-side model in FSL; our proposed algorithm, FSL-SAGE, provably converges at a $\mathcal{O}\left(1/\sqrt{T}\right)$ rate for T rounds, and we save communication costs by more than 50%.

FEDERATED SPLIT LEARNING (FSL)

- Model split into client-side (CSM) and server-side (SSM)
- CSMs train in parallel \rightarrow send data to SSM \rightarrow wait for SSM to sequentially process each request
- Drawback: Slow and communication inefficient

Efficient FSL

Picture credit (Mu & Shen 2022)

- Use local auxiliary models to train CSMs in parallel
- Drawback: Sub-optimal due to lack of SSM feedback

SMASHED ACTIVATION GRADIENT ESTIMATION (SAGE)

Idea: Use auxiliary
models (AMs) as explicit
estimators of gradients
returned by the SSM.

- Train CSMs in parallel via AMs: every iter
- Update SSM at S: every K/Q iters
- Aggregate CSMs at F:

 every K iters := 1

 round.
- lacktriangledown Align AMs at S: every l rounds

Alignment:

$$\min_{oldsymbol{x}_a} rac{1}{2} \sum_{j=1}^{Qt} \left\| \widehat{oldsymbol{z}}_{i,b}(oldsymbol{x}_a) - oldsymbol{z}_{i,b}^j
ight\|_2^2$$

FINITE-TIME CONVERGENCE GUARANTEE

- First convergence guarantee on the joint model for AM based FSL!
- <u>Assumptions:</u> (1) loss function smoothness, (2) bounded heterogeneity of gradients (standard in FL); and, (3) *In-Expectation Learnability* of AMs.

Definition (In-Expectation Learnability): The function $f(\cdot)$ is in-expectation learnable by class \mathcal{G} parametrized by $\boldsymbol{\theta}$ iff $\forall \epsilon > 0, \exists r_{\mathcal{G}}(\epsilon)$ such that, for $r \geq r_{\mathcal{G}}(\epsilon)$ training samples ($\mathbb{E}[\cdot]$ taken over $\widehat{\boldsymbol{\theta}}_r \& \boldsymbol{x}$):

$$\mathbb{E}\left[\left\|\boldsymbol{g}(\widehat{\boldsymbol{\theta}}_r;\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x})\right\|^2\right] \leq \min_{\boldsymbol{\theta}} \mathbb{E}\left[\left\|\boldsymbol{g}(\boldsymbol{\theta};\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x})\right\|^2\right] + \epsilon.$$

Theorem: At the T^{th} round for step-sizes (η, η_L) , the joint model \boldsymbol{x} satisfies:

$$\min_{n \in [\lfloor T/l \rfloor]} \mathbb{E} \left[\left\| \nabla f(\boldsymbol{x}^{nl-1}) \right\|^{2} \right] \leq \frac{f(\boldsymbol{x}_{0}) - f^{*}}{c \min\{\boldsymbol{\eta}_{L}, m\boldsymbol{\eta}\}Q\boldsymbol{T}} + \frac{3CK\boldsymbol{\eta}_{L}}{2Q\min\{\boldsymbol{\eta}_{L}, m\boldsymbol{\eta}\}\sqrt{\boldsymbol{T}}} + \frac{\Phi(\boldsymbol{\eta}_{L}, \boldsymbol{\eta})}{\boldsymbol{T}} + \frac{3K\eta_{L}L_{f}^{2}}{2cQ\min\{\boldsymbol{\eta}_{L}, m\boldsymbol{\eta}\}} \frac{1}{\boldsymbol{T}} \sum_{i=1}^{T} \boldsymbol{\varepsilon}_{\star}^{t}$$

where C > 0 and c > 0 are constants, and ε_{\star}^{t} is the minimum estimation error of AM at the t^{th} round.

Corollary: For the step-size choices $\eta_L = \mathcal{O}(1/\sqrt{T})$ and $\eta = \mathcal{O}(1/(m\sqrt{T}))$, the non-lazy FSL-SAGE with PAC-learnable auxiliary models achieves a finite-time convergence rate of $\mathcal{O}(1/\sqrt{T}) + \mathcal{O}(1/T) \sum_{t=1}^{T} \varepsilon_{\star}^{t}$.

Takeaways:

- Convergence rate is equal to that of FedAvg (FL)
- Last term in Corollary is irreducible error; depends on the architecture of the AM

Experimental Results

1) Image Classification Results

Figure 1 (Efficiency): Accuracy vs. comm load for ResNet-18 on CIFAR-10 (L) & CIFAR-100 (R); (Takeaway: FSL-SAGE saves comm load by more than 50%)

Figure 2 (Robustness): Best accuracy up to comm budget vs. data heterogeneity on CIFAR-10; (Takeaway: FSL-SAGE is very robust to data heterogeneity)

2) LoRA Fine-Tuning:

Figure 3 (LLM): Test loss vs. comm load for GPT2-m on WebNLG E2E dataset using LoRA. (Takeaway: FSL-SAGE attains loss comparable to SL)

ACKNOWLEDGMENTS

This work is supported in part by ONR grant N00014-24-1-2729; NSF grants CAREER 2110259, 2112471, and 2324052; DARPA YFA D24AP00265 and DARPA HR0011-25-2-0019.

Correspondence to:

- Srijith Nair (nair.203@osu.edu)
- Jia Liu (liu@ece.osu.edu)

Arxiv paper

Source code