14_Stochastic_Gradient_Descent

Martin Reißel

27. Juni 2022

Inhaltsverzeichnis

-	2000	Stochastic Gradient Descent	
	1.1	Überblick	
		Vorüberlegungen	
	1.3	Konvergenz	
	1.4	Zusammenfassung	

1 Stochastic Gradient Descent

1.1 Überblick

In viele Anwendungen hat f die Struktur

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$
, f_i differenzierbar,

z.B. wenn f_i die Loss-Funktion zum i-ten Trainings-Datensatz ist.

Bei einfachem Gradient-Descent muss in jedem Schritt

$$f'(x) = \frac{1}{n} \sum_{i=1}^{n} f'_i(x),$$

berechnet werden. Dies wird nun wie folgt vereinfacht:

- wähle in jedem Schritt zufällig (gleichverteilt) ein $i_t \in \{1, ..., n\}$ aus
- setze

$$x_{t+1} = x_t - \gamma_t f'_{i_t}(x_t)$$

Man bezeichnet

$$g_t = g(i_t, x_t) = f'_{i_t}(x_t)$$

als *stochastischen Gradienten*. Der Aufwand pro Schritt wird im Vergleich zum einfachen Gradient-Descent-Verfahren um den Faktor *n* reduziert.

1.2 Vorüberlegungen

Eine direkte Übertragung der Konvergenzanalysen des Gradient-Descent-Verfahrens funktioniert zunächst nicht.

Bei Gradient-Descent hatten wir aus der Konvexitätsbedingung

$$f(y) \ge f(x) + f'(x)(y - x)$$

Stochastic Gradient Descent 1.2 Vorüberlegungen

die Ungleichung

$$f_t - f_* \le f_t'(x_t - x_*)$$

abgeleitet und die weiteren Untersuchungen darauf aufgebaut.

Bei Stochastic-Gradient-Descent geht das nicht, da $g_t \neq f'(x_t)$. Wir können aber zeigen, dass die Ungleichung für Erwartungswerte gilt:

• ist $i_t \in \{1, ..., n\}$ eine gleichverteilte Zufallsvariable, dann gilt

$$\mathbb{P}(i_t = k) = \frac{1}{n} \quad \forall k \in \{1, \dots, n\}$$

und somit

$$\mathbb{E}_{i_t}(g_t) = \sum_{k=1}^{n} f'_{i_t}(x_t) \mathbb{P}(i_t = k)$$

$$= \frac{1}{n} \sum_{k=1}^{n} f'_{i_t}(x_t)$$

$$= f'(x_t)$$

• g_t ist also ein erwartungstreuer Schätzer von $f'(x_t)$

Wir beginnen mit einer grundlegenden Abschätzung für Stochastic-Gradient-Descent

$$x_{t+1} = x_t - \gamma \underbrace{g(i_t, x_t)}_{g_t}.$$

Lemma: Ist f' Lipschitz-stetig mit Konstante L, dann gilt

$$\mathbb{E}_{i_t}(f_{t+1}) - f_t \le -\gamma f_t' \, \mathbb{E}_{i_t}(g_t) + \frac{1}{2} \gamma^2 L \, \mathbb{E}_{i_t}(\|g_t\|_2^2).$$

Beweis:

• ist f' Lipschitz-stetig dann gilt (siehe Gradient-Descent)

$$f(y) \le f(x) + f'(x)(y-x) + \frac{1}{2}L\|y-x\|_2^2$$

• mit $y = x_{t+1}$, $x = x_t$ erhalten wir

$$f_{t+1} - f_t \le f_t'(x_{t+1} - x_t) + \frac{1}{2}L||x_{t+1} - x_t||_2^2$$

• wegen $x_{t+1} - x_t = -\gamma g_t$ ist

$$f_{t+1} - f_t \le -\gamma f_t' g_t + \frac{1}{2} \gamma^2 L \|g_t\|_2^2$$

• bilden wir auf beiden Seiten \mathbb{E}_{i_t} und beachten wir, dass f_t , f_t' nicht von i_t abhängen, dann folgt

$$\mathbb{E}_{i_t}(f_{t+1}) - f_t \le -\gamma f_t' \, \mathbb{E}_{i_t}(g_t) + \frac{1}{2} \gamma^2 L \, \mathbb{E}_{i_t}(\|g_t\|_2^2)$$

Bemerkung:

1 Stochastic Gradient Descent 1.2 Vorüberlegungen

• der erwartete Abstieg ist beschränkt durch den Erwartunsgwert der Richtungsableitung von f in Richtung g_t

$$f_t' \mathbb{E}_{i_t}(g_t) = \mathbb{E}_{i_t}(g_t)^T f_t'$$

sowie

$$\mathbb{E}_{i_t}(\|g_t\|_2^2)$$

- wie man zu x_t gekommen ist, spielt keine Rolle (Markov-Eigenschaft)
- ist g_t ein erwartungstreuer Schätzer, d.h. $\mathbb{E}_{i_t}(g_t) = f_t'$, dann folgt

$$\mathbb{E}_{i_{t}}(f_{t+1}) - f_{t} \leq -\gamma f'_{t} \mathbb{E}_{i_{t}}(g_{t}) + \frac{1}{2}\gamma^{2}L \mathbb{E}_{i_{t}}(\|g_{t}\|_{2}^{2})$$

$$\leq -\gamma \|f'_{t}\|_{2}^{2} + \frac{1}{2}\gamma^{2}L \mathbb{E}_{i_{t}}(\|g_{t}\|_{2}^{2})$$

• kann $\mathbb{E}_{i_t}(\|g_t\|_2^2)$ "deterministisch" beschränkt werden, dann erhalten wir wieder einen hinreichenden Abstieg

Definition: Es sei

$$V_{i_t} = \mathbb{E}_{i_t}(\|g_t\|_2^2) - \|\mathbb{E}_{i_t}(g_t)\|_2^2.$$

Für den Rest des Kapitels treffen wir folgende Annahmen:

- $x_t \in X$, X offen, $f|_X \ge \bar{f}$
- $\exists c_G \ge c > 0$ so dass $\forall t$ gilt

$$f_t \mathbb{E}_{i_t}(g_t) \ge c \|f_t'\|_2^2, \quad \|\mathbb{E}_{i_t}(g_t)\|_2 \le c_G \|f_t'\|_2$$

• $\exists M, M_V \ge 0 \text{ mit}$

$$V_{i_t} \leq M + M_V ||f_t'||_2^2$$

Bemerkung: Ist g_t ein erwartungstreuer Schätzer von f'_t , dann ist $c = c_G = 1$.

Aus der Annahme folgt nun

$$\begin{split} \mathbb{E}_{i_{t}}(\|g_{t}\|_{2}^{2}) &= \mathbb{V}_{i_{t}} + \|\mathbb{E}_{i_{t}}(g_{t})\|_{2}^{2} \\ &\leq M + M_{V} \|f'_{t}\|_{2}^{2} + c_{G}^{2} \|f'_{t}\|_{2}^{2} \\ &\leq M + \underbrace{(M_{V} + c_{G}^{2})}_{M_{G} \geq 0} \|f'_{t}\|_{2}^{2}. \end{split}$$

Kombiniert mit dem letzten Lemma erhalten wir

$$\mathbb{E}_{i_{t}}(f_{t+1}) - f_{t} \leq -\gamma f_{t}' \mathbb{E}_{i_{t}}(g_{t}) + \frac{1}{2}\gamma^{2}L \mathbb{E}_{i_{t}}(\|g_{t}\|_{2}^{2})$$

$$\leq -\gamma c \|f_{t}'\|_{2}^{2} + \frac{1}{2}\gamma^{2}L(M + M_{G}\|f_{t}'\|_{2}^{2})$$

$$= -\gamma (c - \frac{\gamma L}{2}M_{G})\|f_{t}'\|_{2}^{2} + \frac{1}{2}\gamma^{2}LM$$

und somit

Lemma:

$$\mathbb{E}_{i_t}(f_{t+1}) - f_t \le -\gamma \left(c - \frac{\gamma L}{2} M_G\right) \|f_t'\|_2^2 + \frac{1}{2} \gamma^2 L M$$

Bemerkung:

- die rechte Seite der Abschätzung ist deterministisch
- die Schranke für $\mathbb{E}_{i_t}(f_{t+1}) f_t$ hängt nur von x_t und i_t ab und *nicht* von früheren x_s , s < t
- ist γ klein genug, dann ist $\mathbb{E}_{i_t}(f_{t+1}) f_t < 0$

Stochastic Gradient Descent 1.3 Konvergenz

1.3 Konvergenz

f sei jetzt differenzierbar, L-glatt und μ -konvex und zusätzlich soll x_* mit $f_* = f(x_*) = \inf_x f(x)$ existieren. Wir werden nun zeigen, dass wir unter diesen Voraussetzungen bei konstanter Schrittweite γ zwar keine Konvergenz erhalten, aber zumindest in eine Umgebung von x_* gelangen, deren Größe asymptotisch proportional zu γ ist.

Wir verwenden im Folgenden die Notation

$$\mathbb{E}(f_t) = \mathbb{E}_{i_0} \dots \mathbb{E}_{i_{t-1}}(f_t).$$

Satz: Es sei f differenzierbar, L-glatt, μ -konvex und es existiere x_* mit $f_* = f(x_*) = \inf_x f(x)$. Ist

$$0 < \gamma \le \frac{c}{LMC}$$

dann gilt

$$\mathbb{E}(f_t - f_*) \leq \frac{\gamma LM}{2\mu c} + (1 - \gamma \mu c)^{t-1} \Big(\mathbb{E}(f_1 - f_*) - \frac{\gamma LM}{2\mu c} \Big)$$

$$\xrightarrow{t \to \infty} \frac{\gamma LM}{2\mu c}.$$

Beweis:

• aus dem letzten Lemma im vorherigen Abschnitt wissen wir

$$\begin{split} \mathbb{E}_{i_{t}}(f_{t+1} - f_{t}) &= \mathbb{E}_{i_{t}}(f_{t+1}) - f_{t} \\ &\leq -\gamma \left(c - \frac{\gamma L}{2} M_{G}\right) \|f'_{t}\|_{2}^{2} + \frac{1}{2} \gamma^{2} L M \end{split}$$

wegen

$$0 < \gamma \le \frac{c}{LM_G}$$

ist

$$\frac{\gamma L}{2}M_G \leq \frac{c}{2}$$

und deshalb

$$\mathbb{E}_{i_t}(f_{t+1}) - f_t \le -\frac{\gamma c}{2} \|f_t'\|_2^2 + \frac{1}{2} \gamma^2 LM$$

ullet oben hatten wir gesehen, dass für μ -konvexe Funktionen auf \mathbb{R}^d

$$f(x) - f_* \le \frac{1}{2\mu} \|f'(x)\|_2^2$$

gilt, also

$$||f_t'||_2^2 \ge 2\mu(f_t - f_*)$$

und somit

$$\mathbb{E}_{i_t}(f_{t+1} - f_*) - (f_t - f_*) \le -\gamma \mu c(f_t - f_*) + \frac{1}{2}\gamma^2 LM$$

• nun bilden wir auf beiden Seiten die Erwartungswerte $\mathbb{E}_{i_1} \dots \mathbb{E}_{i_{t-1}}$ und erhalten

$$\mathbb{E}(f_{t+1} - f_*) - \mathbb{E}(f_t - f_*) \le -\gamma \mu c \mathbb{E}(f_t - f_*) + \frac{1}{2} \gamma^2 LM$$

also

$$\mathbb{E}(f_{t+1} - f_*) \leq (1 - \gamma \mu c) \mathbb{E}(f_t - f_*) + \frac{1}{2} \gamma^2 LM$$

Stochastic Gradient Descent 1.3 Konvergenz

• subtrahiert man $\frac{\gamma LM}{2\mu c}$ auf beiden Seiten, so ergibt sich

$$\begin{split} \mathbb{E}(f_{t+1} - f_*) - \frac{\gamma LM}{2\mu c} &\leq (1 - \gamma \mu c) \mathbb{E}(f_t - f_*) + \frac{1}{2} \gamma^2 LM - \frac{\gamma LM}{2\mu c} \\ &= (1 - \gamma \mu c) \left(\mathbb{E}(f_t - f_*) - \frac{\gamma LM}{2\mu c} \right) \end{split}$$

• wegen $\mu \le L$ und $M_G \ge c_G^2 \ge c^2$ ist

$$0 < \gamma \mu c \le \frac{\mu c^2}{LM_G} \le \frac{c^2}{M_G} \le 1$$

Ohne "Rauschen" ist M = 0 und

$$\mathbb{E}(f_t - f_*) \le (1 - \gamma \mu c)^{t-1} \mathbb{E}(f_1 - f_*)$$

so dass wir eine Komplexität von $\mathcal{O}(\log(\frac{1}{\varepsilon}))$ erhalten.

Mt "Rauschen" haben wir

$$\mathbb{E}(f_t - f_*) \leq \underbrace{\frac{\gamma L M}{2\mu c}}_{\text{fix}} + \underbrace{(1 - \gamma \mu c)^{t-1} \left(\mathbb{E}(f_1 - f_*) - \frac{\gamma L M}{2\mu c}\right)}_{\text{geometrische Reduktion}},$$

d.h. wir erreichen

$$\mathbb{E}(f_t - f_*) \le \frac{\gamma LM}{2\mu c} + \varepsilon$$

in

$$t = \mathcal{O}\left(\log(\frac{1}{\varepsilon})\right)$$

Schritten.

 $\frac{\gamma LM}{2\mu c}$ wird klein, wenn γ klein wird, wobei dann aber $1-\gamma\mu c$ nahe bei 1 liegt, so dass die geometrische Reduktion nur sehr langsam ist.

Dies führt auf die Idee des Restarts:

• starte mit einer Schrittweite $\gamma^{(1)}$ und iteriere bis

$$\mathbb{E}(f_t - f_*) \le \frac{\gamma^{(1)} LM}{2\mu c} + \varepsilon^{(1)}$$

• verkürze die Schrittweite auf $\gamma^{(2)} < \gamma^{(1)}$ und iteriere bis die rechte Seite hinreichend klein ist

Das kann man soweit ausbauen, dass man in jedem Schritt die Schrittweite γ anpasst.

Satz: Es sei f differenzierbar, L-glatt, μ -konvex. Es existiere ein x_* mit $f_* = f(x_*) = \inf_x f(x)$ und es sei

$$\gamma_t = \frac{\beta}{\gamma + t}, \quad \beta > \frac{1}{\mu c}, \quad \gamma > 0, \quad \gamma_1 < \frac{c}{LM_G}.$$

Dann gilt

$$\mathbb{E}(f_t - f_*) \le \frac{\nu}{\gamma + t}$$

mit

$$\nu = \max\left(\frac{\beta^2 LM}{2(\beta\mu c - 1)}, (\gamma + 1) \mathbb{E}(f_1 - f_*)\right).$$

Beweis:

Stochastic Gradient Descent 1.3 Konvergenz

• aus den Voraussetzungen folgt

$$\gamma_t LM_G \le \gamma_1 LM_G \le c \quad \forall t$$

• mit $\gamma = \gamma_t$ folgt aus dem letzten Lemma

$$\begin{split} \mathbb{E}_{i_t}(f_{t+1}) - f_t &\leq -\gamma_t \Big(c - \frac{\gamma_t L}{2} M_G \Big) \|f_t'\|_2^2 + \frac{1}{2} \gamma_t^2 L M \\ &= \Big(-\gamma_t c + \gamma_t \frac{\gamma_t L M_G}{2} \Big) \|f_t'\|_2^2 + \frac{1}{2} \gamma_t^2 L M \\ &\leq -\frac{1}{2} \gamma_t c \|f_t'\|_2^2 + \frac{1}{2} \gamma_t^2 L M \end{split}$$

• wegen der μ -Konvexität von f auf \mathbb{R}^d gilt wieder

$$||f_t'||_2^2 \ge 2\mu(f_t - f_*)$$

und somit

$$\mathbb{E}_{i_t}(f_{t+1}) - f_t \leq -\gamma_t \mu c(f_t - f_*) + \frac{1}{2} \gamma_t^2 LM,$$

bzw.

$$\mathbb{E}_{i_t}(f_{t+1}) - f_* - (f_t - f_*) \le -\gamma_t \mu c(f_t - f_*) + \frac{1}{2} \gamma_t^2 LM$$

ullet nun bilden wir auf beiden Seiten die Erwartungswerte $\mathbb{E}_{i_1} \dots \mathbb{E}_{i_{t-1}}$ und erhalten

$$\mathbb{E}(f_{t+1}-f_*) \leq (1-\gamma_t\mu c)\,\mathbb{E}(f_t-f_*) + \frac{1}{2}\gamma_t^2 LM$$

- per Induktion können wir nun die Aussage des Satzes beweisen
- für t = 1 folgt die Behauptung direkt aus der Definition von ν
- für den Schritt $t \rightarrow t + 1$ erhalten wir

$$\mathbb{E}(f_{t+1} - f_{*}) \leq (1 - \gamma_{t}\mu c) \, \mathbb{E}(f_{t} - f_{*}) + \frac{1}{2}\gamma_{t}^{2}LM$$

$$\leq \left(1 - \frac{\beta}{\gamma + t}\mu c\right) \, \mathbb{E}(f_{t} - f_{*}) + \frac{1}{2}\frac{\beta^{2}}{(\gamma + t)^{2}}LM$$

$$\leq \left(1 - \frac{\beta}{\gamma + t}\mu c\right) \frac{\nu}{\gamma + t} + \frac{1}{2}\frac{\beta^{2}}{(\gamma + t)^{2}}LM$$

$$= \frac{(\gamma + t - \beta\mu c)\nu}{(\gamma + t)^{2}} + \frac{\beta^{2}LM}{2(\gamma + t)^{2}}$$

$$= \frac{\gamma + t - 1}{(\gamma + t)^{2}}\nu - \frac{\beta\mu c - 1}{(\gamma + t)^{2}}\nu + \frac{\beta^{2}LM}{2(\gamma + t)^{2}}$$

$$= \frac{\gamma + t - 1}{(\gamma + t)^{2}}\nu + \frac{\beta^{2}LM - 2(\beta\mu c - 1)\nu}{2(\gamma + t)^{2}}$$

• nach Definition von ν gilt

$$\nu \geq \frac{\beta^2 LM}{2(\beta\mu c - 1)}$$

also

$$\beta^2 LM - 2(\beta \mu c - 1)\nu \le 0$$

1 Stochastic Gradient Descent 1.4 Zusammenfassung

und somit

$$\mathbb{E}(f_{t+1} - f_*) \leq \frac{\gamma + t - 1}{(\gamma + t)^2} \nu$$

$$\leq \frac{(\gamma + t - 1)(\gamma + t + 1)}{(\gamma + t)^2} \frac{\nu}{\gamma + t + 1}$$

$$= \frac{(\gamma + t)^2 - 1}{(\gamma + t)^2} \frac{\nu}{\gamma + t + 1}$$

$$\leq \frac{\nu}{\gamma + t + 1}$$

1.4 Zusammenfassung

Ist $f: \mathbb{R}^d \to \mathbb{R}$ differenzierbar, L-glatt und μ -konvex mit $f_* = f(x_*) = \inf_x f(x)$ dann haben wir für Stochastic-Gradient-Descent

$$x_{t+1} = x_t - \gamma_t f'_{i_t}(x_t)$$

folgende Ergebnisse gezeigt:

• ist γ konstant, dann ist

$$\mathbb{E}(f_t) - f_* \le c(\gamma) + \varepsilon$$

in $\mathcal{O}(\log \frac{1}{\varepsilon})$ Schritten

• ist $\gamma \sim \frac{1}{t}$, dann ist

$$\mathbb{E}(f_t) - f_* \le \varepsilon$$

$$mit t = \mathcal{O}(\frac{1}{\varepsilon})$$

• Gradient-Descent liefert für f L-glatt und μ -konvex , $0 < \gamma \le \frac{1}{L}$

$$f_t - f_* \le \varepsilon$$

in
$$t = \mathcal{O}\left(\log\left(\frac{1}{\varepsilon}\right)\right)$$
 Schritten

Bei Stochastic-Gradient-Descent benötigen wir also deutlich mehr Schritte, wobei jeder einzelne Schritt wegen der vereinfachten Gradientenberechnung f'_{i_t} sehr viel weniger Aufwand verursacht.

Proximal- bzw. Subgradienten-Verfahren können analog "umgebaut" werden.