Лабораторная работа №2

Тема: Определение однородности данных. Метод отклонений.

Цель работы: получить навыки определения однородности данных путем разбиения исходного набора на однородные изоморфические подмножества.

Методические указания к выполнению работы

Пускай в результате измерений получена совокупность значений x_{ij} , $i = \overline{1,N}$, $j = \overline{1,n}$, N - количество объектов, n - количество измеряемых признаков.

Введем обозначения:

Признак X_i называется стимулятором, если выполняется условие

$$x_{ii} \ge x_{ki} \Longrightarrow w_i \succ w_k \,, \tag{2.1}$$

т.е. условие (2.1) подразумевает, что объект w_i доминирует над объектом w_k .

Признак X_i называется дестимулятором, если выполняется условие

$$x_{ii} \ge x_{ki} \Longrightarrow w_i \prec w_k \,, \tag{2.2}$$

т. е. условие (2.2) подразумевает, что объект w_k доминирует над объектом w_i .

Признак X_i называется номинатором, если выполняется условие

$$x_{pj} \ge x_{ij} \ge x_{kj} \Longrightarrow w_i > w_k, x_{ij} \ge x_{kj} \ge x_{pj} \Longrightarrow w_i < w_k,$$

$$(2.3)$$

т. е. к некоторому значению x_{pj} признак ведет себя как стимулятор, а потом – как дестимулятор (или наоборот). Подобное разделение признаков позволяет учесть их "экономическое" содержание.

Рассмотренный метод отклонений позволяет определить форму следа распределения многомерного признака. Разбиение исходного множества на однородные в содержании изоморфического подмножества позволяет осуществить метод диаграмм Чекановского.

Для использования метода необходимо:

- 1. Превратить дестимуляторы в стимуляторы. Это необходимо для получения позитивной корреляционной зависимости между признаками. Превращение осуществляется заменой знаков значений признаков на противоположные: $x_{ii} = -x_{ii}$.
- 2. Определить координаты нижнего полюса $P(y_{01}, y_{02}, ..., y_{0n})$ и верхнего полюса $Q(y_{01}', y_{02}', ..., y_{0n}')$ по формуле:

$$y_{01} = \min_{i} \{x_{ij}\},\$$

$$y'_{01} = \max_{i} \{x_{ij}\}.$$
(2.4)

3. Перенести начало координат в нижний полюс. Этот шаг осуществляется превращением значений признаков по формуле:

$$u_{ij} = x_{ij} - y_{0j}. (2.5)$$

4. Записать уравнение линии, проходящей через оба полюса (линии совокупности), и которая имеет вид:

$$y_j = y'_{0j}t. (2.6)$$

5. Записать координаты проекций точек-наблюдений $P_i\left(u_{i1},u_{i2},...,u_{in}\right)$ на ось совокупности, которые определяются по формулам:

$$y_{sj} = y'_{0j}t_{s}$$

$$t_{s} = \frac{\sum_{j=1}^{n} y'_{0j}u_{sj}}{\sum_{j=1}^{n} (y'_{0j})^{2}}.$$
(2.7)

6. Определить значение показателей W и M по формулам:

$$m_{s}^{*} = \sqrt{\sum_{j=1}^{n} y_{ij}^{2}}, \quad w_{s}^{*} = \sqrt{\sum_{j=1}^{n} (u_{sj} - y_{sj})^{2}},$$

$$m_{s} = \frac{m_{s}^{*}}{\max_{s} \{m_{s}^{*}\}}, \quad w_{s} = \frac{w_{s}^{*}}{\max_{s} \{w_{s}^{*}\}}.$$
(2.8)

- 7. Построить в плоскости *MOW* диаграмму рассеивания признаков. По ее виду определить след распределения признаков.
- 8. По значениям преобразованных признаков u_{ij} получить матрицу изоморфических расстояний D по формуле:

$$d_{ik} = \sqrt{\sum_{j=1}^{n} \left(u_{ij} - u_{kj} \right)^2} . {(2.9)}$$

- 9. По матрице расстояний построить диаграмму Чекановского. Для этого следует прибавить к матрице расстояний столбец и строку с номерами признаков, а каждому из значений расстояний поставить в соответствие графический символ. Классу с меньшими числовыми значениями присвоить знак X, а классу с большими значениями знак Y. Как критическое расстояние взять значение $d_{\kappa p} = 0,5$.
- 10. Упорядочить диаграмму путем перестановки строк и столбцов диаграммы. При этом знаки X по возможности необходимо сосредоточить вдоль главной диагонали.
 - 11. По диаграмме определить однородные подмножества объектов.

Задание для самостоятельного выполнения

В результате проведения эксперимента по изучению 2-х свойств было обследовано N объектов. Результаты измерений свойств представлены в таблице 2.1. Необходимо провести превращение полученной совокупности данных по методу отклонений. Как результат представить:

- 1) расчеты по формулам (2.4)-(2.9) (координаты полюсов, преобразованные значения признаков и так далее);
 - 2) координаты точек в системах координат X_1OX_2 , U_1OU_2 и MOW;

- 3) совокупность однородных подмножеств;
- 4) выводы.

Исходные даны для каждого варианта записаны в таблице 2.1.

Таблица 2.1

Вариант 1		Вариант 2		Вариант 3		Вариант 4		Вариант 5		Вариант 6	
X_1	X_2										
1,2	3,6	1,2	1,8	1,2	2,9	4,1	5,9	4,5	4,2	2,1	1,8
1,5	2,8	1,5	1,9	1,5	3,2	4,3	5,8	4,4	4,6	2,4	1,8
1,6	3,4	1,6	2	1,6	3,5	4,6	5,8	4,2	4,8	2,5	1,9
1,8	3,6	1,8	2,2	1,8	3,7	4,7	5,7	4	5,1	2,7	2
2,1	4,1	2,1	2,6	2,1	3,9	4,8	4,9	3,7	5,2	2,8	2,2
2,2	2,9	2,2	2,5	2,2	4,1	4,9	5,2	3,5	5,4	3,1	2,6
2,3	3,5	2,3	2,8	2,3	4,2	5,2	5	3,3	5,8	3,6	2,5
2,6	3,8	2,6	2,9	2,6	4,5	5,5	4,8	3,3	5,7	3,8	2,8
2,7	4,1	2,7	2,7	2,7	4,8	5,6	4,8	3,2	6,1	4,1	2,9
2,9	4,2	2,9	3,2	2,9	4,9	5,8	4,7	3,1	6,4	4,2	3
Вариант 7		Вариант 8		Вариант 9		Вариант 10		Вариант 11		Вариант 12	
X_1	X_2	X_{1}	X_2	X_{1}	X_2	X_{1}	X_2	X_1	X_2	X_{1}	X_2
1,2	3,6	1,2	1,8	1,2	2,9	4,1	5,9	4,8	4,2	2,1	1,8
1,5	2,8	1,5	1,9	1,5	3,2	4,3	5,8	4,7	4,6	2,4	1,8
1,6	3,4	1,6	2	1,6	3,5	4,6	5,8	4,5	4,8	2,5	1,9
1,8	3,6	1,8	2,2	1,8	3,7	4,7	5,7	4,3	5,1	2,7	2
2,1	4,1	2,1	2,6	2,1	3,9	4,8	4,9	4,2	5,2	2,8	2,2
2,2	2,9	2,2	2,5	2,2	4,1	4,9	5,2	4,2	5,4	3,1	2,6
2,3	3,5	2,3	2,8	2,3	4,2	5,2	5	3,9	5,8	3,6	2,5
2,6	3,8	2,6	2,9	2,6	4,5	5,5	4,8	3,6	5,7	3,8	2,8
2,7	4,1	2,7	2,7	2,7	4,8	5,6	4,8	3,2	6,1	4,1	2,9
2,9	4,2	2,9	3,2	2,9	4,9	5,8	4,7	3	6,4	4,2	3
Вариант 13		Вариант 14		Вариант 15		Вариант 16		Вариант 17		Вариант 18	
X_1	X_2										
1,2	3,6	1,1	1,8	1,2	2,9	4,1	5,9	4,5	4,2	2,1	1,8
1,5	2,8	1,3	1,9	1,5	3,2	4,3	5,8	4,4	4,6	2,4	1,8
1,6	3,4	1,5	2	1,6	3,5	4,6	5,8	4,2	4,8	2,5	1,9

1,8	3,6	1,7	2,2	1,8	3,7	4,7	5,7	4	5,1	2,7	2	
2,1	4,1	1,9	2,6	2,1	3,8	4,8	4,9	3,7	5,2	2,8	2,2	
2,2	2,9	2	2,5	2,2	4,1	4,9	5,2	3,5	5,4	3,1	2,6	
2,3	3,5	2,3	2,8	2,3	4,2	5,2	5	3,3	5,8	3,6	2,5	
2,6	3,8	2,5	2,9	2,6	4,5	5,5	4,8	3,3	5,7	3,8	2,8	
2,7	4,1	2,8	2,7	2,7	4,8	5,6	4,8	3,2	6,1	4,1	2,9	
2,9	4,2	3,1	3,2	2,9	4,9	5,8	4,7	3,1	6,4	4,2	3	
Вариант 19		Вариант 20		Вариант 21		Вариант 22		Вариант 23		Вариант 24		
X_1	X_2											
1,2	3,9	1,2	1,8	1,2	2,9	4,1	4,4	4,1	4,4	8,1	1,8	
1,5	3,8	1,5	1,9	1,5	3,2	4,3	4,5	4,4	4,7	8,3	1,8	
1,4	4,4	1,6	2	1,6	3,5	4,6	4,8	4,2	4,8	8,5	1,9	
1,8	3,9	1,8	2,2	1,8	3,7	4,7	4,7	4	5,1	8,6	2	
2,1	4,4	2,3	2,6	2,1	3,9	4,8	4,9	3,7	5,2	8,8	2,2	
2,2	3,9	2,5	2,5	2,2	4,1	4,9	5,1	3,9	5,5	9,1	2,6	
2,3	3,8	2,6	2,8	2,3	4,2	5,2	5,3	3,3	5,8	10	2,5	
2,8	4,2	2,7	2,9	2,6	4,5	5,5	5,4	3,6	5,6	9,5	2,8	
2,9	4,5	2,8	2,7	2,7	4,8	5,6	5,8	3,2	6,1	10,1	2,9	
3,1	4,7	3,1	3,2	2,9	4,9	5,8	6,7	3,4	6,4	10,2	3	
Вариа	Вариант 25		Вариант 26		Вариант 27		Вариант 28		Вариант 29		Вариант 30	
X_1	X_2	X_{1}	X_2	X_{1}	X_2	X_{1}	X_2	X_1	X_2	X_1	X_2	
2,1	4,2	2,4	4	3	4	4,2	8,1	2,2	5,3	1	2,4	
2,3	4,4	2,1	4,1	3,2	3,6	4,5	8,6	2,4	5,6	1,2	2,5	
2,4	4,9	2,5	5	3,5	3,9	1,6	3,7	2,5	6	1,3	2,6	
2,8	6,2	2,8	5,5	3,5	4	1,8	2,2	1,9	2,1	1,5	2,4	
4,2	8,1	4,2	7,3	3,7	4,5	2,1	2,3	2,1	2,3	2,1	3,9	
4,4	8,4	4,6	7,5	5,6	6,6	2,2	4,6	2,2	4,6	2,2	4,1	
5,2	9,1	4,7	7,6	5,7	7,4	2,3	4,5	2,4	6,5	2,4	4,5	
5,5	10,3	4,8	8,2	5,9	7,2	2,6	8,2	2,6	8,2	2,8	4,6	
5,7	10,2	6,1	8,6	6	7,6	2,7	5,2	5,4	8,1	2,8	5,2	
6,9	12,1	6,6	10,3	6,2	7,3	2,9	5,3	5,9	8,4	2,9	5,5	

Рекомендуемая литература

- 1. Вознесенский В.А. Статистические методы планирования эксперимента в техникоэкономических исследованиях / В.А. Вознесенский. – М.: Статистика, 1974. – 192 с.
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика. Уч. пособие для втузов. М.: Высш. школа, 2002. 479 с.
- 3. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. Уч. пособие для втузов. М.: Высш. Школа, 2002. –ы 400 с.
- 4. Ивченко Г.И. Математическая статистика: учеб. пособие для втузов / Г.И. Ивченко, Ю.И. Медведев. М.: Высш. шк., 1984. 248 с.
- 5. Методичні рекомендації до виконання лабораторних робіт з навчальної дисципліни "Моделювання систем" для студентів напрямку підготовки 0804 "Комп'ютерні науки" всіх форм навчання / укл. В. М. Задачин, І. Г. Конюшенко. Харків : Вид. ХНЕУ, 2007. 96 с.
- 6. Тарасова П.В. Введение в математическое моделирование: учеб. пособие для вузов / под ред. П.В. Тарасова. М.: Интермет Инжиниринг, 2000. 200 с.