personnal_assignment_1.md 2025-09-07

Personal Assignment Calculus 1

1. Bagaimana kalkulus dapat digunakan dalam sains dan teknologi

Kalkulus adalah alat matematika untuk menganalisis perubahan (derivatif/turunan) dan akumulasi (integral). Dua konsep ini sangat penting dalam hampir semua bidang sains dan teknologi karena banyak fenomena alam dan buatan manusia bersifat dinamis (berubah seiring waktu atau ruang).

2. Apa peran fungsi dalam kalkulus? Sebutkan minimal 3 contoh fungsi beserta variabel dependent dan independent-nya

Fungsi adalah jembatan utama dalam kalkulus.

- Kalkulus mempelajari perubahan (turunan/derivative) dan akumulasi (integral) dari suatu fungsi.
- Fungsi menghubungkan variabel bebas (independent) dengan variabel terikat (dependent).
- Dengan fungsi, kita bisa memodelkan fenomena alam, teknologi, maupun sosial sehingga dapat dianalisis secara matematis.

Tanpa fungsi, kalkulus tidak punya "objek" yang bisa dianalisis.

3 Contoh Fungsi dalam Kalkulus

Fungsi Suhu Air yang Dipanaskan

• Fungsi: T(t) = 20 + 2t

• Variabel independent: t (waktu, menit)

• Variabel dependent: T (suhu air, °C)

Fungsi Harga Buah

• Fungsi: H(w) = 10w

• Variabel independent: w (berat buah, kg)

• Variabel dependent: H (harga dalam ribu rupiah)

Fungsi Jarak Tempuh

• Fungsi: s(t) = 60t

• Variabel independent: t (waktu, jam)

• Variabel dependent: s (jarak, km)

3. Sebutkan 3 jenis fungsi dan gambarkan dalam bentuk graph

1. Fungsi Linear

• Bentuk umum: f(x) = ax + b

 \circ Contoh: f(x) = 2x + 1

o Ciri: garis lurus, perubahan konstan.

2. Fungsi Kuadrat

• Bentuk umum: $f(x) = ax^2 + bx + c$

• Contoh: $f(x) = x^2 - 2x + 1$

 \circ Ciri: parabola, bisa membuka ke atas (a > 0) atau ke bawah (a < 0).

3. Fungsi Eksponensial

• Bentuk umum: $f(x) = a^x$, dengan a > 1

 \circ Contoh: $f(x) = 2^x$

o Ciri: pertumbuhan cepat, grafik naik tajam.

4. Tentukan nilai limit berikut

a)
$$\lim_{x\to 4} \frac{x^2 + 3x}{x^2 - x - 12}$$

1. Faktorkan pembilang dan penyebut:

$$x^{2} + 3x = x(x + 3),$$

 $x^{2} - x - 12 = (x - 4)(x + 3).$

2. Sederhanakan (untuk $x \neq -3$):

$$\frac{x(x+3)}{(x-4)(x+3)} = \frac{x}{x-4}.$$

3. Periksa limit saat $x \rightarrow 4$:

$$\bullet \quad \mathsf{Jika} \; \mathbf{x} \to \mathbf{4}^- \,, \; \mathsf{maka} \; \mathbf{x} = \mathbf{4} \to \mathbf{0}^- \, \Rightarrow \frac{\mathbf{x}}{\mathbf{x} = \mathbf{4}} \to -\infty.$$

$$\quad \text{o Jika } x \to 4^+ \text{ , maka } x - 4 \to 0^+ \to \frac{x}{x - 4} \to +\infty.$$

Kesimpulan: Limit **tidak ada** (divergen ke $-\infty$ dan $+\infty$).

b)
$$\lim_{x \to 9} \frac{9 - x}{3 - \sqrt{x}}$$

1. Kalikan dengan sekawan penyebut:

$$\frac{9-x}{3-\sqrt{x}} \cdot \frac{3+\sqrt{x}}{3+\sqrt{x}} = \frac{(9-x)(3+\sqrt{x})}{9-x}.$$

2. Sederhanakan:

$$= 3 + \sqrt{x}, \quad (x \neq 9).$$

3. Ambil limit saat $x \rightarrow 9$:

$$\lim_{x\to 9} (3+\sqrt{x}) = 3+3=6.$$

Kesimpulan: Nilai limit = 6.

5. Tentukan nilai limit berikut

a)
$$\lim_{x \to 3} \frac{\frac{1}{x} - \frac{1}{3}}{x - 3}$$

1. Satukan pembilang:

$$\frac{1}{x}-\frac{1}{3}=\frac{3-x}{3x}.$$

2. Substitusi ke bentuk awal:

$$\frac{\frac{3-x}{3x}}{x-3} = \frac{3-x}{3x(x-3)}.$$

3. Perhatikan 3 - x = -(x - 3), jadi:

$$\frac{3-x}{3x(x-3)} = \frac{-(x-3)}{3x(x-3)} = -\frac{1}{3x}.$$

4. Ambil limit saat $x \rightarrow 3$:

$$\lim_{x \to 3} -\frac{1}{3x} = -\frac{1}{9}.$$

Kesimpulan (a): $-\frac{1}{9}$.

b)
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{16x - x^2}$$

1. Cek substitusi langsung x = 16:

• Pembilang: $4 - \sqrt{16} = 0$.

• Penyebut: $16 \cdot 16 - 16^2 = 0$.

 \rightarrow Bentuk tak tentu $\frac{0}{0}$.

2. Faktorkan penyebut:

$$16x - x^2 = x(16 - x).$$

 $16x - x^2 = x(16 - x).$ Jadi bentuk menjadi $\frac{4 - \sqrt{x}}{x(16 - x)}.$

3. Kalikan pembilang dan penyebut dengan sekawan
$$4+\sqrt{x}$$
:
$$\frac{4-\sqrt{x}}{x(16-x)}\cdot\frac{4+\sqrt{x}}{4+\sqrt{x}}=\frac{(4-\sqrt{x})(4+\sqrt{x})}{x(16-x)(4+\sqrt{x})}.$$

4. Sederhanakan karena
$$(4 - \sqrt{x})(4 + \sqrt{x}) = 16 - x$$
:
$$= \frac{16 - x}{x(16 - x)(4 + \sqrt{x})} = \frac{1}{x(4 + \sqrt{x})}.$$

5. Ambil limit saat $x \rightarrow 16$:

$$\lim_{x \to 16} \frac{1}{x(4+\sqrt{x})} = \frac{1}{16(4+4)} = \frac{1}{128}.$$

Kesimpulan (b): $\frac{1}{128}$