Amplificadores de pequenos sinais (emissor comum)

Agora que sabemos polarizar um transistor para operar na região linear podemos aplicar um pequeno sinal AC na entrada.

Para darmos inicio a nosso analise AC, necessitamos encontrar IE ≈ ICq.

Encontrando VB:

```
VB = R2 / (R1 + R2).VCC

VB = 6,8kΩ / ( 36kΩ + 6,8kΩ ).12V

VB = 1,9 V
```

Encontrando IE = IC quiescente:

```
IE = (VB - VBE) / RE

IE = (1,9 V - 0,7 V)/620Ω

IE = 1,95 mA
```

Calculando a resistência AC do emissor (r'e)

Como os capacitores separam o sinal AC do DC a impedância da fonte de sinal e o resistor de emissor deixam de existir (para o sinal AC) havendo assim uma pequena impedância interna do emissor do transistor chamada de r'e.

O r'e pode ser calculado através da seguinte equação :

```
r'e = 25,7mV \div IE

r'e = 25,7mV \div 1,95mA

r'e = 13,18\Omega
```

Uma pergunta sempre surge, de onde saiu esse 25,7mV, Vamos a dedução matemática.

```
r'e = (K.T)/q
```

onde:

K = constante de Boltzmann = 1,38 E-23 joule/kelvin T = temperatura absoluta em Kelvin 273 K

Q = carga do elétron 1,6E-19 coulomb

Como a maioria dos projetos é feita para operar a uma temperatura de 25° C (ambiente) teremos:

```
r'e = (K.T)/q.IE
r'e = (1,38 E-23. 298) ÷1,6E-19.IE
r'e = 25,70 mV / IE
```

Agora que temos o r'e podemos calcular o ganho de tensão do circuito.

Calculando o ganho de tensão

Pela lei de Ohm podemos dizer que:

Ventrada = ie. r'e

Como ie = ic

Vsaída =ie.RC

Sabemos que ganho AV = saída /entrada daí:

AV = Vsaída ÷ Ventrada

 $AV = ie.RC \div ie.r'e$

Então AV = RC÷ r'e essa conclusão é verdadeira exceto pela inversão de fase que ocorrerá no circuito, então devemos fazer :

 $AV = -RC \div r'e$

Então teremos:

 $AV = -2400\Omega \div 13,18\Omega$

AV = - 182 (adimensional)

Porque o ganho é negativo ?

A inversão de fase

Nota: em toda configuração emissor comum haverá inversão de fase

Durante o semiciclo positivo da tensão de entrada, a corrente de base aumenta, fazendo crescer a corrente de coletor, produzindo uma queda de tensão no resistor de coletor; assim, diminuindo a tensão no coletor e obtendo assim o primeiro semiciclo negativo. Reciprocamente, no semiciclo negativo da tensão de entrada, flui uma corrente menor na base, diminuindo também a corrente de coletor, e a queda de tensão sobre o resistor de coletor diminui, aumentando a tensão do coletor e produzindo o semiciclo positivo.

Calculando a impedância da base do transistor:

Pela lei de ohm temos

Ventrada = Zentrada . Ibase

Então:

Zentrada = Ventrada ÷ Ibase

Como Ventrada = ie.r'e e ie = β .lbase então :

Ventrada = β .Ibase.r'e

Então Zentrada (base) pode ser simplificada

Zentrada = β .lbase.r'e ÷ lbase daí:

Zentrada (base) = β .r'e Zentrada (base) = $110.13,18\Omega$ Zentrada (base) = $1449,74\Omega$

Agora que encontramos a impedância de base podemos encontrar a impedância de entrada do circuito.

Calculando a impedâncias de entrada e saída do circuito :

Como o RE não existe para o sinal AC teremos como impedância de entrada Zi impedâncias em paralelo. Veja representação:

Assim, a impedância de entrada do amplificador emissor comum pode ser dado por :

```
ZI = R1 // R2 // r'e.β

ZI = 36000Ω // 6800Ω // 1449,74Ω

ZI = 1156,58 Ω
```

A impedância de saída será somente o resistor RC, assim:

```
Zo = RC
Zo = 2400\Omega
```

O modelo AC simplificado

Nota: Os capacitores são considerados ideais.

Vout

Os capacitores de acoplamento e desvio

O capacitor de acoplamento C1 ⇒ Permite a passagem do sinal AC da fonte geradora ao circuito amplificador, mas não permite a passagem do sinal DC (polarizador do circuito) para a fonte geradora do sinal AC.

O capacitor de acoplamento C2 ⇒ Somente permite a passagem do sinal AC para a carga e não do sinal DC.

O capacitor de desvio C3 ⇒ Tem a finalidade de desviar o sinal AC para terra, de forma que a tensão no resistor de emissor VRE não seja perturbada pelo sinal AC, mantendo assim a estabilidade DC do circuito.

(O Capacitor, quando bem dimensionado, permite a passagem do sinal AC, nunca do sinal DC.)

Ilustrando

A reatância capacitiva (XC)

Quando um sinal AC passa por um capacitor há uma queda de sinal, isso devido a reatância capacitiva, assim devemos dimensionar os capacitores C1, C2 e C3 de maneira que essa queda de sinal seja a menor possível, buscando um acoplamento ideal.

Dimensionando os capacitores do Emissor comum:

O acoplamento ideal (ou quase)

O valor do capacitor depende da freqüência do sinal aplicado, que pode ser proveniente de varias fontes. O capacitor deve ser dimensionado para a menor freqüência que o projetista deseja acoplar, por exemplo o seu sinal que será amplificado opera numa faixa de 1kHz a 20kHz devemos usar 1kHz.

Para obtermos um bom acoplamento a reatância capacitiva XC deve ser menor ou igual a um décimo do valor total das resistências em série, daí:

$XC \le 0,1.R$

Dedução:

Sabemos que $V = Z \cdot I : I = V \div Z$; E que $Z^2 = R^2 + XC^2$, assim

$$I = V \div (\sqrt{R^2 + XC^2})$$

Para um acoplamento próximo do ideal, fazemos XC = 0,1 . R

$$I = V \div [\sqrt{R^2 + (0,1.R)^2}]$$

$$I = V \div (0,01.R)^2$$

$$I = V \div 1,005.R$$

 $V \div R = 0,995$

Essa regra mostra que 99,5% da corrente de entrada passa pelo capacitor sem problemas.

Tabel	a d	e ca	nacit	ores	comerc	ais
IUDCI	u u	C Cu	paci	LOI C3	COLLICIO	luis

1.0F	1.1F	1.2F	1.3F					
1.5F	1.6F	1.8F	2.0F					
2.2F	2.4F	2.7F	3.0F					
3.3F	3.6F	3.9F	4.3F					
4.7F	5.1F	5.6F	6.2F					
6.8F	7.5F	8.2F	9.1F					

Para obter os demais valores multiplique pelos seus submultiplos: mili, micro, nano e pico.

Dimensionando o capacitor C1 de acoplamento

XC = 0,1 . (Zi + RS)
XC = 0,1 . (1156,58
$$\Omega$$
 + 1000 Ω)
XC = 215,66 Ω
C1 = 1 ÷ (2. π . 1000Hz . 215,66 Ω)
C1 = 738,37nF (comercial de 0,75 μ F)

Dimensionando o capacitor C2 de acoplamento:

XC = 0,1 . (Zo + RL)
XC = 0,1 . (2400
$$\Omega$$
 + 1500 Ω)
XC = 390 Ω
C2 = 1 ÷ (2. π . 1000Hz . 390 Ω)
C2 = 408,3nF (comercial de 0,43 μ F)

Dimensionando o capacitor C3 de desvio:

$$\begin{aligned} &\text{XC} = 0,1 \; . \; \left(\text{r'e} + \frac{\text{(RS //R1 //R2)}}{\text{\betaDC}} \right) \\ &\text{XC} = 0,1 \; . \; \left(13,18\Omega + \frac{\text{($1 \text{k}\Omega //$ $36 \text{k}\Omega //$ $6,8 \text{k}\Omega)}}{110} \right) \\ &\text{XC} = 2,09 \; \Omega \\ &\text{C3} = 1 \div (2.\pi. \; 1000 \text{Hz} \; . \; 2,09\Omega \;) \\ &\text{C3} = 76,12 \mu \text{F} \; \text{($comercial de 82 \mu \text{F})} \end{aligned}$$

Simulação no Electronics workbench

O sinal de saída

A maravilhosa disposição e harmonia do universo só pode ter tido origem segundo o plano de um Ser que tudo sabe e tudo pode. Isto fica sendo a minha última e mais elevada descoberta.

(Isaac Newton)

www.clubedaeletronica.com.br

Referências bibliográficas

- Malvino, A.P. Eletrônica volume I. São Paulo: McGraw Hill , 1987.
- Boylestad, R. e Nashelsky, L. Dispositivos Eletrônicos e Teoria dos Circuitos. Rio de Janeiro: Prentice-Hall, 1994.
- ☐ Marcus, O. Circuitos com diodos e Transistores. São Paulo: Érica, 2000
- Lalond, D.E. e Ross, J.A. Princípios de dispositivos e circuitos eletrônicos. São Paulo: Makron Books, 1999.