TRIGONOMETRY

Tomo 05

FEEDBACK

HELICO-MOTIVACIÓN

Del gráfico, calcule 10sen θ .

Recordar:

$$r = \sqrt{x^2 + y^2}$$
 sen $\theta = \frac{y}{r}$

Resolución:

Del punto P, tenemos:

$$x = 6$$
; $y = -8$

$$r = \sqrt{(6)^2 + (-8)^2}$$

$$r = \sqrt{36 + 64} = 10$$

Calculamos:

$$10 \operatorname{sen}\theta = 10(\frac{-8}{10}) = -8$$

Si el punto T(5;-12) pertenece al lado final del ángulo en posición normal β , efectúe K = csc β + cot β .

$$\csc \beta = \frac{r}{y} \quad \cot \beta = \frac{x}{y}$$

Resolución:

Del punto T, tenemos:

$$x = 5$$
; $y = -12$

$$r = \sqrt{(5)^2 + (-12)^2}$$

Efectuamos:

K=csc
$$\beta$$
 + cot β = $\left(\frac{13}{-12}\right)$ + $\left(\frac{5}{-12}\right)$ = $\frac{18}{-12}$ = $-\frac{3}{2}$

Del gráfico, efectúe K = sen⊕·cosΦ

Resolución:

Del punto B, tenemos:

$$x = -3$$
; $y = 2$

$$r = \sqrt{x^2 + y^2} \implies r = \sqrt{(-3)^2 + (2)^2}$$

$$r = \sqrt{9 + 4}$$

$$r = \sqrt{13}$$

Efectuamos:

sen
$$\Phi$$
.cos Φ = $(\frac{2}{\sqrt{13}})(\frac{-3}{\sqrt{13}}) = -\frac{6}{13}$

Si $\alpha \in IIC$ y $\theta \in IVC$, indique los signos de:

$$P = cos\theta \cdot csc\alpha$$
 $Q = \frac{sen\theta}{sec\alpha}$

$$P = cos\theta . csc\alpha$$

$$P = (+).(+)$$

$$P = +$$

$$Q = \frac{sen\theta}{sec\alpha}$$

$$Q = \frac{(-)}{(-)}$$

$$Q = +$$

Indique los signos de A y B.

$$A = sen170^{\circ}.cos70^{\circ}$$

$$A = (+) \cdot (+)$$

$$A = +$$

$$B = \frac{tan240^{\circ}. \ csc310^{\circ}}{sec295^{\circ}}$$

$$B = \frac{(+) \cdot (-)}{(+)}$$

$$B = -$$

Indique el cuadrante al cuál pertenece β si

 $tan\beta.sen140^{\circ} > 0$

 $csc280^{\circ}.cos\beta < 0$

$$tan\beta$$
. $sen140^{\circ} > 0$

$$(+)$$
 $(+)$ $= (+)$

$$tan\beta = (+)$$
 $\beta \in IC$ \vee $\beta \in IIIC$

$$csc280^{\circ}.cos\beta < 0$$

$$(-)$$
 $(+) = (-)$

$$\cos\beta = (+) \quad \beta \in IC \quad \forall \quad \beta \in IC$$

Efectúe

$$A = \frac{5csc90^{\circ} - 3cos360^{\circ}}{sec180^{\circ} + cot270^{\circ}}$$

Recordar:

csc90° = 1 cos360° = 1

 $sec180^{\circ} = -1$ $cot270^{\circ} = 0$

$$A = \frac{5csc90^{\circ} - 3cos360^{\circ}}{sec180^{\circ} + cot270^{\circ}}$$

$$A = \frac{5(1) - 3(1)}{(-1) + (0)}$$

$$A = \frac{5-3}{-1}$$

Indique cuál de los siguientes ángulos coterminales.

a. 250° y -130°

b. 800° y 80°

c. 430° y 170°

Recordar:

$$\alpha - \beta = 360^{\circ}k$$
 , $\forall k \in \mathbb{Z} - \{0\}$

Resolución:

a. 250° y -130°

250° - (-130°) = 380° (No son ángulos coterminales)

b. 800° y 80°

800° - 80° = 720°

(Si son ángulos coterminales)

c. 430° y 170°

430° - 170° = 260° (No son ángulos coterminales)

Del gráfico, simplifique E = $3 \frac{\sec \alpha}{\sec \beta}$ + $5 \tan \alpha . \cot \beta$

Recordar:

$$RT(\alpha) = RT(\beta)$$

$$\cot \alpha = \cot \beta$$

$$sec\alpha = sec\beta$$

$$E = 3\frac{sec\alpha}{sec\beta} + 5tan\alpha.cot\beta$$

$$E = 3 \frac{\sec \alpha}{\sec \alpha} + 5 \tan \alpha \cdot \cot \alpha$$

$$E = 3 + 5$$

Víctor es un joven deportista que recorre el campo deportivo de su distrito tres veces ¿Cuántos metros recorrerá?

Recordar:

 $\cos 360^{\circ} = 1$

 $cos180^{\circ} = -1$ $sen270^{\circ} = -1$

Resolución:

Dato: recorre 1 vuelta por día

* 60(csc90°.cos360°)m

$$60(1).(1) = 60m$$

*30(sen270°.cos180°)m

$$30(-1).(-1) = 30m$$

$$2p = 2(60m) + 2(30m)$$

$$2p = 180m$$

Recorrido total = 3(180m) = 540m