Homework 2

Hsin-Wei, Chen B12902132 CSIE Introduction to Analysis II

June 27, 2024

Problem 1. Define the following set:

$$\mathbb{P}_{even}(I) = \{ p : I \to \mathbb{R}, \ p(x) = \sum_{k=0}^{n} a_k x^{2k} \ | a_k \in \mathbb{R}, n \in \mathbb{N} \}$$

$$\mathbb{P}(I^2) = \{ p(x, y) \ is \ polynomial \ on \ I \times I \}$$

$$C_s(A \times B) = \{ h(x, y) = \sum_{k=0}^{n} f_k(x) g_k(y) \ | \ n \in \mathbb{N}, f_k \in C(A), g_k \in C(B) \}$$

$$\mathcal{F}_{\sigma} = \{ g(x) = \sum_{k=0}^{n} a_k \sigma(b_k x + c_k) : [0, 100] \to \mathbb{R} \ | \ a_k, b_k, c_k \in \mathbb{R}, n \in \mathbb{N} \}$$

where $\sigma: \mathbb{R} \to \mathbb{R}$

- (a) Is $\mathbb{P}_{even}([0,1])$ is dense in C([0,1])?
- (b) Is $\mathbb{P}_{even}([-1,1])$ is dense in C([-1,1])?
- (c) Is $\mathbb{P}([0,1]^2)$ is dense in $C([0,1]^2)$?
- (d) Is $C_s([a,b] \times [c,d])$ is dense in $C([a,b] \times [c,d])$?
- (e) Is \mathcal{F}_{σ} is dense in C([0, 100])?

Proof.

- (a) Yes. Let p(x), $q(x) \in \mathbb{P}_{even}([0,1])$, $\alpha \in \mathbb{R}$ then we can write $p(x) = \sum_{k=0}^{n} a_k x^{2k}$, and $q(x) = \sum_{k=0}^{n} b_k x^{2k}$ (if the degrees of p and q are not the same we put 0 coefficient so that they are the same degree)
 - (1) (i) $p(x) + q(x) = \sum_{k=0}^{n} (a_k + b_k) x^{2k} \in \mathbb{P}_{even}([0, 1])$
 - (ii) $(\alpha p)(x) = \sum_{k=0}^{n} (\alpha a_k) x^{2k} \in \mathbb{P}_{even}([0,1])$
 - (iii) $p(x)q(x) = a_0b_0 + (a_1b_0 + a_0b_1)x + ... + a_nb_nx^n \in \mathbb{P}_{even}([0,1])$ Hence $\mathbb{P}_{even}([0,1])$ is an algebra.
 - (2) Constant function $1 \in \mathbb{P}_{even}([0,1])$
 - (3) Let $x_1, x_2 \in [0, 1]$ and without loss of generality, suppose $x_1 > x_2$, consider $r(x) = x^2 \in \mathbb{P}_{even}([0, 1])$ then $r(x_1) = x_1^2 > x_2^2 = r(x_2)$, hence $r(x_1) \neq r(x_2)$ Hence $\mathbb{P}_{even}([0, 1])$ separates points in [0, 1]

Since [0, 1] is compact, by Stone-Weierstass theorem, $\mathbb{P}_{even}([0,1])$ is dense in C([0,1])

- (b) No. By way of contradiction, suppose $\mathbb{P}_{even}([-1,1])$ is dense in C([-1,1]), then since $x \in C([-1,1])$, $\exists p_n$ sequence of even polynomial on [-1,1] such that $p_n(x) \rightrightarrows x$ as $n \to \infty$. Given $\epsilon > 0$ there exist N such that $|p_n(x) x| < \epsilon/2$, if n > N, $\forall x \in [-1,1]$. Then $|x (-x)| \le |x p_n(x)| + |p_n(x) + x| = |x p_n(x)| + |p_n(-x) (-x)| < \epsilon$ if n > N. Therefore, since ϵ is arbitrary, 2|x| = 0, $\forall x \in [-1,1] \to$
- (c) Yes. Let $p(x,y), q(x,y) \in \mathbb{P}([0,1]^2), \alpha \in \mathbb{R}$
 - (1) (i) $p(x,y) + q(x,y) \in \mathbb{P}([0,1]^2)$
 - (ii) $(\alpha p)(x,y) \in \mathbb{P}_{even}([0,1])$
 - (iii) $p(x,y)q(x,y) \in \mathbb{P}([0,1]^2)$ Hence $\mathbb{P}([0,1]^2)$ is an algebra.
 - (2) Constant $1 \in \mathbb{P}([0,1]^2)$
 - (3) Given $(x_1, y_1), (x_2, y_2) \in [0, 1]^2$, and $(x_1, y_1) \neq (x_2, y_2)$. Consider the function $r(x, y) = (x - x_1)^2 + (y - y_1)^2$, then $r(x_1, y_1) \neq r(x_2, y_2)$. Hence $\mathbb{P}([0, 1]^2)$ separates points in $[0, 1]^2$.

Then since $[0,1]^2$ is compact, by Stone-Weierstass theorem, $\mathbb{P}([0,1]^2)$ is dense in $C([0,1]^2)$.

- (d) Yes. Let h(x,y), $\tilde{h}(x,y) \in C_s([a,b] \times [c,d])$, then $h(x,y) = \sum_{k=0}^n f_k(x) g_k(y)$ and $\tilde{h}(x,y) = \sum_{k=0}^n \tilde{f}_k(x) \tilde{g}_k(y)$. (We can make the number of terms equal by considering $f_k(x)$ to be 0)
 - (1) (i) $h(x,y) + \tilde{h}(x,y) \in C_s([a,b] \times [c,d])$, by re-index $\tilde{f}_k = f_{k+n+1}$ and $\tilde{g}_k = g_{k+n+1}$.
 - (ii) $(\alpha h)(x,y) = \sum_{k=0}^{n} \alpha f_k(x) g_k(y) \in C_s([a,b] \times [c,d])$
 - (iii) $h(x,y)\tilde{h}(x,y) \in C_s([a,b] \times [c,d])$, since product of variable-seperable function is also variable-seperable

Hence $C_s([a,b] \times [c,d])$ is an algebra.

- (2) Constant $1 \in C_s([a, b] \times [c, d])$.
- (3) Given $(x_1, y_1), (x_2, y_2) \in [a, b] \times [c, d]$, and $(x_1, y_1) \neq (x_2, y_2)$. Consider the function $r(x, y) = (x - x_1)^2 + (y - y_1)^2$, then $r(x_1, y_1) \neq r(x_2, y_2)$. Hence $C_s([a, b] \times [c, d])$ separates points in $[a, b] \times [c, d]$

Then since $[a, b] \times [c, d]$ is compact, by Stone-Weierstass theorem, $C_s([a, b] \times [c, d])$ is dense in $C([a, b] \times [c, d])$.

- (e) Yes. Let $g(x), \tilde{g}(x) \in \mathcal{F}_{\sigma}$, then $g(x) = \sum_{k=0}^{n} a_k \cos(b_k x + c_k)$ and $\tilde{g}(x) = \sum_{k=0}^{n} \tilde{a}_k \cos(\tilde{b}_k x + \tilde{c}_k)$. (We can make the number of terms equal by considering the coefficient to be 0)
 - $(1) \quad \text{(i)} \ \ g(x)+\tilde{g}(x)\in\mathcal{F}_{\sigma} \ \text{, by re-index} \ \tilde{a}_k=a_{k+n+1}, \ \tilde{b}_k=b_{k+n+1}, \ \text{and} \ \tilde{c}_k=c_{k+n+1}.$
 - (ii) $(\alpha g)(x) = \sum_{k=0}^{n} \alpha a_k \cos(b_k x + c_k) \in \mathcal{F}_{\sigma}$
 - (iii) $g(x)\tilde{g}(x) \in \mathcal{F}_{\sigma}$, since the product of cosine functions can be expressed as sum of cosine functions Hence \mathcal{F}_{σ} is an algebra.
 - (2) By considering $a_k = 1, b_k = 0, c_k = 0$, constant $1 \in \mathcal{F}_{\sigma}$.

(3) Let $x_1, x_2 \in [0, 100]$ and $x_1 < x_2$ Take $b_k = \pi/200$,

$$cos(\pi/200x_2) - cos(\pi/200x_1) = sin(\xi)\pi/200(x_1 - x_2) \neq 0$$

, since $x_1 \neq x_2$ and $0 \leq \pi/200x_1 < \xi < \pi/200x_2 \leq \pi/2$., implies that $sin(\xi) \in (0,1)$. Then \mathcal{F}_{σ} separates points.

Then since [0, 100] is compact, by Stone-Weierstass theorem, \mathcal{F}_{σ} is dense in C([0, 100]).

Problem 2. (a) If $f:[0,1]\to\mathbb{R}$ is a continuous function such that

$$\int_0^1 f(x)x^n dx = 0$$

for each integer number $n \in \mathbb{R}$, prove that f(x) = 0 for all $x \in [0, 1]$

(b) If $f:[0,1]\to\mathbb{R}$ is a continuous function such that

$$\int_0^1 f(x)x^n dx = 0$$

for each integer number n > 2024, prove that f(x) = 0 for all $x \in [0, 1]$

Proof.

(a) Since f(x) is a continuous function on compact set [0,1], then $\exists p_n(x)$ a sequence of polynomial such that $p_n(x) \rightrightarrows f(x)$ as $n \to \infty$.

By the property given above,

$$\int_0^1 f(x)p_n(x)dx = 0, \quad \forall n \in \mathbb{N}$$

as $n \to \infty$,

$$\Rightarrow \int_0^1 f^2(x)dx = 0$$

Suppose $|f(x_0)| > 0$ for some $x_0 \in [0, 1]$, Since |f(x)| is continuous on [0, 1], $\exists \delta > 0$ such that |f(x)| > 0, if $|x - x_0| < \delta$.

Therefore,

$$\int_0^1 f^2(x) dx \ge \int_{x_0 - \delta/2}^{x_0 + \delta/2} f^2(x) dx = \delta \inf_{|x - x_0| \le \delta/2} [f^2(x)] \ge 0 - \mathsf{x}$$

Hence |f(x)| = 0, $\forall x \in [0, 1]$, it follows that f(x) = 0, $\forall x \in [0, 1]$.

(b) Let N = 2024. Consider $g(x) = x^N f(x)$ on [0, 1], Then since g(x) is continuous on [0, 1] and $\int_0^1 g(x) x^n dx = 0$, $\forall x \in [0, 1]$, By Problem 2.(a), g(x) = 0, $x \in [0, 1] \Rightarrow x^N f(x) = 0$, $x \in [0, 1] \Rightarrow f(x) = 0$, $x \in [0, 1]$, Since f(x) is continuous, f(x) = 0, $x \in [0, 1]$.

Problem 3. Please answer the following questions.

(a) Show that the derivative of $B_{n+1}f$ is

$$(B_{n+1}f)' = \sum_{k=0}^{n} {n \choose k} \frac{f(\frac{k+1}{n+1}) - f(\frac{k}{n+1})}{\frac{1}{n+1}} x^k (1-x)^{n-k}$$

(b) If $f : \to [0, 1]$ has a continuous first derivative on [0, 1] ,use the Mean Value Theorem and the uniform continuity to show that

$$\lim_{n \to \infty} ||(B_n f)' - f'||_{\infty} = 0$$

Proof. (a)

$$B_{n+1}f = \sum_{k=0}^{n+1} {n+1 \choose k} f(\frac{k}{n+1}) x^K (1-x)^{n+1-k}$$

$$\Rightarrow (B_{n+1}f)' = \sum_{k=0}^{n+1} \binom{n+1}{k} f(\frac{k}{n+1}) [kx^{k-1}(1-x)^{n+1-k} - (n+1-k)x^k(1-x)^{n-k}]$$

$$= \sum_{k=1}^{n+1} \frac{(n+1)!}{(k-1)!(n+1-k)!} f(\frac{k}{n+1}) x^{k-1} (1-x)^{n+1-k} - \sum_{k=0}^{n} \frac{(n+1)!}{k!(n-k)!} f(\frac{k}{n+1}) x^k (1-x)^{n-k}$$

$$= \sum_{k=0}^{n} \frac{(n+1)!}{k!(n-k)!} f(\frac{k+1}{n+1}) x^k (1-x)^{n-k} - \sum_{k=0}^{n} \frac{(n+1)!}{k!(n-k)!} f(\frac{k}{n+1}) x^k (1-x)^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} \frac{f(\frac{k+1}{n+1}) - f(\frac{k}{n+1})}{\frac{1}{n+1}} x^k (1-x)^{n-k}$$

(b) Suppose $f' \in C^1[0,1]$, let $M = \sup_{x \in [0,1]} |f'(x)|$, By Mean Value Theorem,

$$(B_{n+1}f)' = \sum_{k=0}^{n} \binom{n}{k} \frac{f(\frac{k+1}{n+1}) - f(\frac{k}{n+1})}{\frac{1}{n+1}} x^{k} (1-x)^{n-k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} f'(x_{k}) x^{k} (1-x)^{n-k}$$

where $\frac{k}{n+1} < x_k < \frac{k+1}{n+1}$.

Since f'(x) is uniform continuous on [0,1], given $\epsilon > 0$, $\exists \delta > 0$ such that $|f'(x) - f'(y)| < \epsilon/2$, if $|x - y| < \delta$, $\forall x \in [0,1]$, then

$$|(B_n f)' - f'| = |\sum_{k=0}^n \binom{n}{k} [f'(x_k) - f(x)] x^k (1 - x)^{n-k}|$$

$$\leq \sum_{|x_m - x| < \delta} |f(x) - f(x_k)| \binom{n}{k} x^k (1 - x)^{n-k} + \sum_{|x_m - x| \ge \delta} |f(x) - f(x_k)| \binom{n}{k} x^k (1 - x)^{n-k}$$

$$\leq \epsilon/2 + \sum_{|x_m - x| \ge \delta} 2M \binom{n}{k} x^k (1 - x)^{n-k}$$

$$\leq \epsilon/2 + 2M \sum_{k=0}^{n+1} \frac{(\frac{k}{n+1} - x)^2}{(\delta - 1/n + 1)^2} \binom{n+1}{k} x^k (1 - x)^{n+1-k} \frac{1}{(n+1)(1-x)}$$

Since $x \ge \delta + x_k \ge \frac{k}{n+1} + \delta$ and $x \le x_k - \delta \le \frac{k+1}{n+1} - \delta$ then $|x - \frac{k}{n+1}| \ge \delta - \frac{1}{n+1}$. Then

$$|(B_n f)' - f'| \le \epsilon/2 + \frac{2M(n+1)x(1-x)}{(n+1)^2(\delta - \frac{1}{n+1})^2(n+1)(1-x)}$$

$$= \epsilon/2 + \frac{2Mx}{(n+1)^2(\delta - \frac{1}{n+1})^2} \le \epsilon/2 + \frac{2M}{(n+1)^2(\delta - \frac{1}{2})^2} \le \epsilon/2 + \epsilon/2 = \epsilon$$

, if
$$n > \sqrt{\frac{4M}{\epsilon(\delta - 1/2)^2}}$$

Therefore, $\lim_{n\to\infty} ||(B_n f)' - f'||_{\infty} = 0.$

Problem 4.. Let $f: \mathbb{R} \to \mathbb{R}$ be uniform limit of a polynomial. Prove that f is a polynomial.

Proof. Let $f: \mathbb{R} \to \mathbb{R}$ and $p_n \rightrightarrows f$ as $n \to \infty$ on \mathbb{R} , By Cauchy criterion, there exist N, such that $\sup_{x \in \mathbb{R}} |p_m(x) - p_n(x)| < \epsilon$, if m, n > N, notice that $p_m(x) - p_n(x)$ is a polynomial, therefore if $p_m(x) - p_n(x)$ has degree at least 1, then $|p_m(x) - p_n(x)| \to \infty$ as $x \to \infty \to \infty$.

Hence $p_m(x) - p_n(x) \in \mathbb{R}$. In particular, let $p_{n+1}(x) - p_n(x) = a_n$, then

$$p_n(x) = p_0 + \sum_{k=0}^{n-1} a_k$$

Note that $|p_m(x) - p_n(x)| = |\sum_{k=n}^{m-1} a_k| < \epsilon$, if $m, n > N \Rightarrow \sum_{k=0}^{\infty} a_k$ converges. hence

$$f(x) = \lim_{n \to \infty} p_n(x) = p_0(x) + \sum_{k=0}^{\infty} a_k$$

Then since $p_0(x)$ is a polynomial, it follows that f(x) is a polynomial.