Assignment 1

Author: Lan Stare Date: 4. 9. 2025

Question 1

- 2.8×10^6 Explanation: We want $n \log(n) \le 6.0 \times 10^7$. I will use base 2 for logarithms. I tried to use n = 4000000 and got a too big number, so through trial and error I got to $n \approx 2.8 \times 10^6$ and got the number: $5.996 \ldots \times 10^6$ which is a good enough approximation. I followed a similar procedure for the following examples. I have also rounded values so the number of elements processed might be a bit less.
- 1.5×10^5
- 1.3×10^1
- 1.7×10^2
- 2.0×10^0
- 1.1×10^1
- 4.0×10^6

Question 2

It is not always true that for every function f:

$$f(n)\in \mathcal{O}(f(n+1))$$

for example if we take $f:\mathbb{N} o \mathbb{N}$ by

$$f(n) = \left\{ egin{aligned} n, & ext{if n is even} \ 1, & ext{if n is odd.} \end{aligned}
ight.$$

This function is a counterexample, since we can always choose k large enough so that 2k > c, giving a contradiction. Therefore no such constant c exists, so $f(n) \notin O(f(n+1))$.

Question 3

Proof 1

If we choose c:=2 and $n_0:=1$, then we get: $2n \leq 2n$ for all $n \geq n_0$

• Proof 2

If we choose c:=6 and $n_0:=5$, then we get: $3n+5\leq 6n$ for all $n\geq n_0$ due to the fact that 3*5+5=20 and 6*5=30 and the fact that the linear function 6n is increasing faster than 3n on the $\mathbb R$.

Question 4

- a) The worst case scenario is if n is a large number and all elements of the vector v[] have to be odd from the element 5 onwards. This is when the function will keep executing untill i runs through all n. Time complexity: 2., 3., 6., 8., 10. rows happen in constant time since they only happen once. 4. and 5. row happen in $\mathcal{O}(n)$ since they have to compare i with n until i == n and since the function will keep executing due to oddness of elements of vector v[], this comparisson will happen n times. Therefore worst case complexity is $\mathcal{O}(n)$.
- **b)** The best case scenario is if $n \le 0$ then the time complexity of row 4 is constant, since it only has to compare two known elements and then the function jumps to return i, which is also constant. Time complexity is therefore constant. It only executes 4 constant operations.

Question 5

```
In [4]: def recursion(n):
    if n <= 1:
        return 1
    return n * recursion(n - 1)</pre>
```

Time complexity of the function recursion(n) is $\mathcal{O}(n)$: in the first row we have a constant operation since we only compare n to a constant 1, the second row is also a constant operation since we only return a constant 1. The final row multiplies n with the result of function recursion(n). Multiplication is a constant operation, but the function recursion(n) is called again with argument n - 1. This means that the function will be called n times until it reaches the base case, which has constant time complexity. Therefore the time complexity is $\mathcal{O}(n)$.