THE LATTICE-BASED DIGITAL SIGNATURE SCHEME QTESLA

ACNS 2020

October 2020

Erdem Alkim

Paulo S. L. M. Barreto

Nina Bindel

Juliane Krämer

Patrick Longa

Jefferson E. Ricardini

Shor's quantum algorithm [Shor97]:

 \Longrightarrow Recover sk

Generate RSA-

CONTRIBUTION

- Description of the lattice-based digital signature scheme qTESLA
- Sketch of a security reduction from the hardness of the decisional LWE problem
- Instantiation with provable secure parameters
- Constant-time reference implementation
- AVX2-optimized implementation
- Comparison

DESIGN OF QTESLA

QTESLA'S SECURITY ASSUMPTION

D-RLWE problem [Regev05,LPR12]

QTESLA SIGN AND VERIFY

Signature generation

Signature verification

Input: pk, (z, c), mSimple operations: Sampling Hashing Comparison Multiplication and addition Check security property Output: \checkmark or $\stackrel{\bigstar}{\checkmark}$

SECURITY OF QTESLA

SECURITY OF QTESLA

qTESLA is secure against quantum adversaries as long as D-RLWE is quantum hard.

Security reduction:

If there exists a polynomial-time quantum adversary A that breaks the security of qTESLA then there exists an algorithm S that solves D-RLWE in polynomial time.

SECURITY REDUCTION

If there exists a quantum adversary A that breaks qTESLA

then there exists an algorithm S that solves D-RLWE.

... #ops to solve/break instance

$$\mathbf{\epsilon_A} \le \mathbf{\epsilon_S} + \epsilon(\mathbf{q_s}, \mathbf{q_h}, \lambda, \mathbf{m}, \mathbf{d})$$

$$\mathbf{t_A} \ge \mathbf{t_S} - \mathbf{t}(\mathbf{q_h}, \mathbf{q_s}, \mathbf{d}, \mathbf{B}, \mathbf{q}, \mathbf{h}, \mathbf{L_S}, \mathbf{L_E})$$

Bit hardness η of D-RLWE

Bit security $\lambda(\eta)$ of qTESLA

QUANTUM SECURE PARAMETERS

QTESLA'S PARAMETERS

							E = S			001171
qTESLA-p-I 95	256	1024	4	343,576,577	8.5	25	554	$2^{19} - 1$	22	108
qTESLA-p-III 160	256	2048	5	856, 145, 921	8.5	40	901	$2^{21} - 1$	24	180

EXPERIMENTAL EVALUATION OF QTESLA

COMPARISON (REFERENCE IMPLEMENTATION)

Scheme Cycle counts [k-cycles] Security const. Sizes [B] [bit] time Reference AVX2 Lattice qTESLA-p-I a 14,880 sign: 3,089.91,759.0 95^{b} 2,592 verify: (this paper) 678.5814.3 qTESLA-p-III a 38, 432 sign: 7, 122.6 4,029.5 160^{b} (this paper) 5,664 verify: 2,102.3 1,746.4

Speed-up 1.5x (mainly due to polynomial multiplication)

Symmetric

Multivariate

SUMMARY

- ★ Simple arithmetic operations
- ★ Tight quantum reduction from D-RLWE
- Provably-secure parameters
- ★ Implementation security

ACKNOWLEDGMENTS

Special thanks to
Edward Eaton, Vadim Lyubashevsky,
Greg Zaverucha, Joo Woo,
Fernando Virdia, Martin Albrecht
and Shi Bai.

Round 2 submission in PQ standardization

Reference C implementation

qTESLA on FPGA-based CPU

BouncyCastle library

