```
clear all;
%% Background Information
stu no = 1008247531;
      %TUVWXYZ
TU = 82;
V = 4;
WX = 75;
YZ = 31;
AF = 250 - (2*TU);
BF = 10 + (8*V);
CF = WX;
DF = -20 - YZ;
t = 0.125;
%Iterations with 6 don't go below 2 completely, no matter the arrangement, so moved
%on to 7
%theta = [0 90 35 -45 90 0]; % In Degrees - For six it doesn't converge for any solution
theta = [5 0 50 2 50 0 5]; % Works for Both Tsai-hill and Tsai-wu with equally distributed loads around the center -a
ny further distribution around this works nicely
theta = theta.*(pi/180); % Conversion to Radians - I my system Default is radians
E1 = 125;
E2 = 9.8;
G12 = 5.5;
nu 12 = 0.24;
s1 up = 900:
sl down = 800;
st up = 55;
st down = 170;
tau = 90;
S = [1/E1 - nu 12/E1 0; -nu 12/E1 1/E2 0; 0 0 1/G12];
Q local = S^{-1};
T = @(x) [(\cos(x))^2 (\sin(x))^2 2*\cos(x)*\sin(x); (\sin(x))^2 (\cos(x))^2 -2*\cos(x)*\sin(x); -\cos(x)*\sin(x) \cos(x)*\sin(x)]
(\cos(x))^2 - (\sin(x))^2;
%% 1.) Calculating ABD Matrix
A = zeros(3);
B = zeros(3);
D = zeros(3);
for k = 1:4
 z k = (k-2)*0.125;
 z k1 = z k - 0.125;
 Q global = ((inv(T(theta(k))))*(Q_local)*(inv(transpose(T(theta(k))))));
 A = A + 0.125*Q global;
 B = B + (0.125*(z k + z k1))*Q global;
 D = D + (0.125*(z k^2 + z k^2 + z k^2 + z k^2 k^2))*Q global;
```

```
end
```

```
abd = [A B;B D];
fm = [AF;BF;CF;DF;0;0];
e mat = abd \cdot fm;
%% 2.) Using epsilon matrix for calculations of Stresses
tsai hill = zeros(length(theta),1);
tsai wu = zeros(length(theta),1);
sigma all = zeros(length(theta),3);
strain global all = zeros(length(theta),3);
sigma global all = zeros(length(theta),3);
for p = 1:length(theta)
curr stack = p;
center = t*(length(theta)/2); % Calculating center from bottom
dist = t*((2*curr stack-1)/2); % Calculating Dist from bottom
epsilon = e mat(1:3) + (abs(center-dist))*e mat(4:6);
qbar = ((inv(T(theta(p))))*(Q local)*(inv(transpose(T(theta(p))))));
sigma global = qbar*epsilon;
sigma global all(p,:) = sigma global;
strain global all(p,:) = epsilon; %capturing sigma global for each ply
F11 = abs(1/(s1 up*s1 down));
F22 = abs(1/(st down*st up));
F66 = abs(1/(tau^2));
F1 = (1/s1 \text{ up - abs}(1/s1 \text{ down}));
F2 = (1/st \text{ up - abs}(1/st \text{ down}));
F12 = 0.5*sqrt(F11*F22);
      sigma = T(theta(curr stack))*sigma global;
      sigma all(p,:) = sigma;
      if sigma(2) \ge 0
            st = 55;
      else
            st = 170;
      end
      if sigma(1) \ge 0
            s1 = 900:
      else
            s1 = 800;
      end
      tsai\ hill(p) = (sigma(1)^2)/(sl^2) - (sigma(1)*sigma(2))/(sl^2) + (sigma(2)^2)/(st^2) + (sigma(3)^2)/(tau^2);
      tsai wu(p) = F11*sigma(1)^2 + F22*sigma(2)^2 + F66*sigma(3)^2 + F1*sigma(1) + F2*sigma(2) + 2*F12*sigma(3)^2 + F1*sigma(1)^2 + F2*sigma(2)^2 + F1*sigma(1)^2 + F1*sigma(1)^2 + F1*sigma(2)^2 + F1*sigma(1)^2 + F1*sigma(2)^2 + F1*sigma(2)^2
a(1)*sigma(2);
```

```
end
```

```
transpose(fm)
transpose(strain_global_all)
transpose(sigma_global_all)
transpose(tsai_hill)
transpose(tsai_wu)
```

------Code Ends-----

Forces: 86 42 75 -51 0 0

Stack: [5 0 50 2 50 0 5]

Full Stiffness Matrix:

```
    50.7545
    4.5943
    4.6780
    -1.4060
    0.3795
    0.1025

    4.5943
    10.1254
    4.2053
    0.3795
    0.6469
    0.5061

    4.6780
    4.2053
    6.1630
    0.1025
    0.5061
    0.3795

    -1.4060
    0.3795
    0.1025
    3.7129
    0.1383
    0.2322

    0.3795
    0.6469
    0.5061
    0.1383
    0.3897
    0.0716

    0.1025
    0.5061
    0.3795
    0.2322
    0.0716
    0.2364
```

plies:

12 3 4 5 67

Strain(global):

```
-4.7964 -3.1378 -1.4793 0.1793 -1.4793 -3.1378 -4.7964
-4.5922 -3.0805 -1.5687 -0.0569 -1.5687 -3.0805 -4.5922
11.6897 12.3264 12.9630 13.5997 12.9630 12.3264 11.6897
```

Strain at mid plane = strain in 4(the center plate)

sigma(global):

```
      -495.6932
      -401.2878
      217.7413
      75.4801
      217.7413
      -401.2878
      -495.6932

      -56.3358
      -37.7393
      306.4547
      1.6180
      306.4547
      -37.7393
      -56.3358

      25.7561
      67.7950
      325.6448
      77.2898
      325.6448
      67.7950
      25.7561
```

tsai_hill:

0.9634 0.8447 0.6514 0.6946 0.6514 0.8447 0.9634

tsai wu:

AS it can be seen, for the arrangement, the most close to failing is the edges, and as we move to the center, the stress

loading

and the chances to fail, both decrease, resulting in a lower absolute value of both the tsai-hill and tsai-wu criterion.

Practical Considerations taken while designing this laminate:

- 1. Temperature Effects should be take into considering while designing for practical life.
- 2. Moisture sensitivity can be a major issue in some conditions
- 3. Fabrication practicality(Rod example given in class by professor) is an important part to be taken in design conside rations.
- 4. Proper design to avoid delamination needs to be done apart from deciding the stack angles
- 5.A proper stress analysis using FEA should be performed for a validation and further fine tuning.