Machine Learning

Deep Learning Application

Dr. Shuang LIANG

Recall: CNN Layer

Fully Connected Layer

Recall: CNN Layer

Convolution Layer

activation map

Recall: CNN Layer

Pooling Layer

Single depth slice

У

max pool with 2x2 filters and stride 2

6	8
3	4

Recall: CNN Architecture

Today's Topics

- Deep Learning & Computer Vision
- Deep Learning & Natural Language Process (NLP)
- Deep Learning & Medicine
- AIGC

Today's Topics

- Deep Learning & Computer Vision
- Deep Learning & Natural Language Process (NLP)
- Deep Learning & Medicine
- AIGC

Computer Vision

Evolution's Big Bang

This image is licensed under CC-BY 2.5

543million years, B.C.

This image is licensed under CC-BY 2.5

This image is licensed under CC-BY 3.0

Gemma Frisius, 1545

This work is in the public domain

Camera Obscura

Leonardo da Vinci, 16th Century AD

Encyclopedie, 18th Century

This work is in the public domain

Cat image by CNX OpenStax is licensed under CC BY 4.0; changes made

(end point)

Block world

Larry Roberts, 1963

(a) Original picture

(b) Differentiated picture

(c) Feature points selected

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

David Marr, 1970s

Input image

Edge image

Stages of Visual Representation, David Marr, 1970s

3-D model

This image is CC0 1.0 public domain

Input **Image**

Perceived intensities

Primal Sketch

Zero crossings, blobs, edges, bars, ends, virtual lines, groups, curves boundaries

2 ½-D Sketch

Local surface orientation and discontinuities in depth and in surface orientation

3-D Model Representation

3-D models hierarchically organized in terms of surface and volumetric primitives

Generalized Cylinder Brooks & Binford, 1979

Pictorial Structure

Fischler and Elschlager, 1973

Image is CC BY-SA 4.0

David Lowe, 1987

Normalized Cut (Shi & Malik, 1997)

Image is public domain

Image is CC BY-SA 2.0

"SIFT" & Object Recognition, David Lowe, 1999

Spatial Pyramid Matching, Lazebnik, Schmid & Ponce, 2006

Image is CC0 1.0 public domain

Histogram of Gradients (HoG)
Dalal & Triggs, 2005

Deformable Part Model Felzenswalb, McAllester, Ramanan, 2009

PASCAL Visual Object Challenge (20 object categories)

[Everingham et al. 2006-2012]

Image is CC BY-SA 3.0

Image is CC0 1.0 public domain

This image is licensed under CC BY-SA 2.0; changes made

IM GENET

www.image-net.org

22K categories and 14M images

- Animals
 - Bird
 - Fish
 - Mammal
 - Invertebrate

- Plants
 - Tree
 - Flower
- Food
- Materials

- Structures
- Artifact
 - Tools
 - Appliances
 - Structures

- Person
- Scenes
 - Indoor
 - Geological Formations
- Sport Activities

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

Machine Learning

Dr. Shuang LIANG, Tongji

DL & CV

- Deep learning methods (like CNN) have become an important tool for computer vision
- Deep learning methods perform well in most tasks in computer vision

- The most important problems of visual recognition image classification
- There is a number of visual recognition problems that are related to image classification

Image by US Army is licensed under CC BY 2.0

Image by Kippelboy is licensed under CC BY-SA 3.0

Image by Christina C. is Ilcensed under CC BY-SA 4.0

Why CNN performs so well on this task?

Why CNN performs so well on this task?

- Some patterns are much smaller than the whole image.
- The same patterns appear in different regions.

Other Basic Tasks on CV

 Besides classification, there are other basic tasks in computer vision, including localization, detection and segmentation.

Object Detection

Impact of deep learning

Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection

As regression

Each image needs a different number of outputs!

CAT: (x, y, w, h) 4 numbers

DOG: (x, y, w, h)

DOG: (x, y, w, h)

16 numbers

CAT: (x, y, w, h)

DUCK: (x, y, w, h) Many

DUCK: (x, y, w, h) numbers!

. . . .

Object Detection

As classification

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? NO Background? YES

Semantic Segmentation

- Label each pixel in the image with a category label
- Don't differentiate instances, only care about pixels

Human Pose Estimation

Represent pose as a set of 14 joint positions:

Left / right foot
Left / right knee
Left / right hip
Left / right shoulder
Left / right elbow
Left / right hand
Neck
Head top

Dense Captioning

• Self-driving: Tesla

Self-driving: Xiao Peng

智能驾驶

我们基于持续提升的自研软件架构,以及全闭环、自成长的 AI和数据体系,将实现无人驾驶前,辅助驾驶的终极技术形态

城市NGP~

智能辅助驾驶系统XNGP~

深度视觉神经网络XNETへ

将多个摄像头采集的数据,进行多帧时序前融合,输出BEV视 角下的动态目标物的4D信息和静态目标物的3D信息,利用神 经网络实现端到端数据驱动算法迭代

- Self-driving: Baidu Apollo
- You can experience it near Jiading Campus!

Image Generation

Denoising

Super-Resolution

Action Recognition

• • • • •

If you want to know more...

https://paperswithcode.com/area/computer-vision

Browse SoTA > Computer Vision

Computer Vision

2625 benchmarks • 938 tasks • 1724 datasets • 22899 papers with code

New trend: Transformer-based Methods

- Transformer: An encoder-decoder architecture
- Can be used as a very strong feature extractor
- Consists of a few simple units with no CNN or RNN layers

Scaled Dot-Product Attention

New trend: Transformer-based Methods

 Al engineer Sudharshan gave GPT-4 a photo of a refrigerator and asked it to come up with a recipe within 60 seconds.

Recommended Reading

- The Transformer Architecture
 - Attention is all you need
- Transformer & Image Classification
 - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Known as ViT)
- Transformer & Object Detection
 - <u>End-to-End Object Detection with Transformers</u> (Know as DETR)

Today's Topics

- Deep Learning & Computer Vision
- Deep Learning & Natural Language Process (NLP)
- Deep Learning & Medicine
- AIGC

What we want to do with NLP

Natural Language can be <u>Speech</u> or <u>Text</u>

NLP is popular

Human Language is Complex

1 second has 16K sample points
Each point has 256 possible values.

William Faulkner, "Absalom, Absalom.": "Just exactly like Father if Father had known" (1289 words)

Jonathan Coe's *The Rotters' Club* has a sentence with 13,955 words (2014)

Faulkner wrote, "Just exactly like Father ..."

Pinker said Faulkner wrote, "Just exactly like Father ..."

Who cares that Pinker said Faulkner wrote, "Just exactly like Father ..."

The Language Instinct: How the Mind Creates Language (Steven Arthur Pinker)

Successful Model - BERT

- BERT: Bidirectional Encoder Representations from Transformers
- Devlin et al., 2018 proposed the "Masked Language Model" objective and released the weights of a pretrained Transformer, a model they labeled BERT.
- BERT was massively popular and hugely versatile; finetuning BERT led to new state-of-the-art results on a broad range of tasks.
- Two models are released:

	Layers	Hidden states	Attention heads	Params
BERT-base	12	768-dim	12	110M
BERT-large	24	1024-dim	16	340M

Successful Model – GPT-3

A large language model

Model	# Parameters	
Medium-sized LSTM	10M	
ELMo	90M	
GPT	110M	
BERT-Large	320M	
GPT-2	1.5B	
Honey Bee Brain	~1B synapses	
GPT-3	175B	
Cat	~10 Trillion synapses	
Human	~100 Trillion synapses	

Trained on 500 billion tokens from

Transformer Based

Natural Language to Bash

Using GPT-3 to convert natural language commands to bash

one-liners

```
Q: List files in this directory, including hidden files
A: Is -a
Q: Go to the home directory
A: cd ~
Q: Move cat.jpg to my Desktop
A: mv cat.jpg ~/Desktop
Q: List running processes
A: ps aux
Q: find occurrences of the string "pepsi" in every file in the current directory recursively
A: grep -r "pepsi" *
Q: copy the file testing.txt onto a remote server at remoteserver.com
A: scp testing.txt remoteserver.com:~/
Q: start the node program at index.js
A: node index.js
Q: start a simple web server with python
A: python -m SimpleHTTPServer
```

Blending Concepts

Idea 1: Two-Dimensional Space Idea 2: Three-Dimensional Space

Blended Idea: 2.5-Dimensional Space

Idea 1: Old

Idea 2: New

Blended Idea: Recycled

Idea 1: Geology

Idea 2: Neurology Blended Idea: Sediment neurology: When sediments are buried deep under the ground, they can act like a soft layer of neurological tissue in that they will be compressed over time and can get folded and distorted. In neurology, this is called cortical folding. In geology, this is called tectonic folding.

Idea 1: Mathematics

Idea 2: Fecal matter

Blended Idea: Brownian motion: Brownian motion is a type of random motion that happens when you observe the movements of fecal matter (such as protozoans) under a microscope.

Idea 1: More

Idea 2: Less

Blended Idea: Just-Right Idea 1: Triangle

Idea 2: Square

Blended Idea: Trapezoid

Some generated samples

Copycat analogy problems

```
Q: If a b c changes to a b d what does p q r change to?
A: p q r changes to p q s
```

```
Q: If a b c changes to a b d what does p q r s change to?
A: p q r s changes to p q r t
```

```
Q: If a b c changes to a b d what does p p q q r r change to?
A: p p q q r r changes to p p q q s s
```

```
Q: If a b c changes to a b d what does p p p q q q r r r change to?
```

```
A: pppqqrrrchanges to pppqqsss
```

```
Q: if a b c changes to a b d what does i j k change to?
A: i j k changes to i j l
```

```
Q: If a b c changes to a b d what does <code>iijjk</code> k change to?
A: <code>iijjk</code> k changes to <code>iijjll</code>
```

Q: If a b c changes to a b d what does x y z change to?

```
A: x y z changes to x z
```

GPT-3 output in red

If you want to know more...

https://paperswithcode.com/area/natural-language-processing

Browse SoTA > Natural Language Processing

Natural Language Processing

1249 benchmarks • 444 tasks • 1261 datasets • 13138 papers with code

Today's Topics

- Deep Learning & Computer Vision
- Deep Learning & Natural Language Process (NLP)
- Deep Learning & Medicine
- AIGC

Organ Segmentation

Example of semantic segmentation in knee MR image.

Lesion Detection

Preliminary results of lesion detection on chest radiographs, by using faster R-CNN architecture

If you want to know more...

https://paperswithcode.com/area/medical

Browse SoTA > Medical

Medical

228 benchmarks • 199 tasks • 111 datasets • 1529 papers with code

Today's Topics

- Deep Learning & Computer Vision
- Deep Learning & Natural Language Process (NLP)
- Deep Learning & Medicine
- AIGC

AIGC (AI Generated Content)

- The hottest AI topic at present
- Create digital content, such as images, music, and natural language, through AI models.

AIGC (AI Generated Content)

Company	Product	Applications
OpenAI	ChatGPT	Text generation, chatbots, and
		text completion
Google	LaMDA	Question answering and chatbots
NVIDIA	StyleGAN	Image generation, art, and design
Microsoft	Turing-NLG	Summarization, translation, and
		question answering
DeepMind	DVD-GAN	Video generation
Stability.AI	Stable Diffusion	Text to images
EleutherAI	GPT-Neo	Text generation
Baidu	ERNIE	Question answering and chatbots

OpenAl GPT

- GPT-2:
 - Pre-training Fine-tuning
- GPT-3:
 - Contextual learning
 - Chain of Thought (CoT) reasonin
- GPT-3.5:
 - instruction learning
 - RLHF (Reinforcement Learning from Human Feedback)
- GPT-4:
 - Supports multiple modes

问: 取单词"Lady Gaga"的最后一个字母,将它们连接在一起

答: "Lady" 的最后一个字母是 "y" , "Gaga" 的最后一个字母是 "a" 。连接一起它们是 "ya" 。所以答案是"ya"。

Helpful, Honest, Harmless

数据集: Instruction-input-output 训练/微调: translate、summarize 用于新问题: Summarize in Chinese

Image to Image Translation

Model: <u>CycleGAN</u>

Text to Image

• Model: <u>Diffusion</u> (扩散模型)

"A street sign that reads 'Latent Diffusion'

"An oil painting of a space shuttle"

Text to Image

Stable Diffusion

Input

Beautiful waterfall in a lush jungle, with sunlight shining through the trees

Output

DALL·E 2

Input

An astronaut riding a horse in photorealistic style.

Output

Text to Image

Different prompt:

Pictures Sketches human skeleton posture

Vocal Synthesis

A popular and interesting application

[AI 孙燕姿] 《发如雪》cover 周杰伦_哔哩哔哩_bilibili

ChatBot

Model: GPT-3 (Release) → GPT-4 (Current)

GPT-4 surpasses ChatGPT in its advanced reasoning capabilities.

• Model: ERNIE 3.0

Input (Factural QA)	问题:发明加减消元法的数学家所在国家有哪些品牌汽车? 答:		
Generation	有很多, 比如说奔驰、宝马、奥迪、大众、保时捷。		
Input (Opinion QA)	问题:宝宝眼睛流泪是怎么回事? 答:		
Generation	这种情况可能有三个原因:一是宝宝泪腺的炎症。二是宝宝的眼睛有倒睫毛或者睫毛刺激眼球引起流泪。三是宝宝有结膜炎。所以如果宝宝眼睛流泪,首先要排除宝宝倒睫毛刺激眼球引起的流泪,如果不是倒睫毛引起的流泪,还要考虑有没有泪腺炎症或者结膜炎的可能。		
Input (Reverse Dictornary)	问题:描写"人的品质优良"的词语有哪些? 答:		
Generation	品质优良,品德高尚,诚实,忠厚,老实		
Input (Novel Generation)	江西孟龙潭与朱孝廉客都中, 偶涉一兰若, 殿宇禅舍, 俱不甚弘敞, 惟一老僧挂褡其中。见客入, 肃衣出迓, 导与随喜。殿中塑志公像, 两壁画绘精妙, 人物如生。东壁画散花天女, 内一垂髫者, 拈花微笑, 樱唇欲动, 眼波将流。		
Generation	西壁画一小沙弥,面目奇古,双手合十,似在祈祷。客大骇,请问之。僧曰:"此乃佛经也。"客曰:"此何所谓?"僧曰:"此有佛性,无所不有。"客曰:"何以见之?"僧曰:"佛性即是佛性。佛性无所不有,所以不能言说。"客大悟,遂去。		
Input (Couplet Generation)	上联:口十心思, 思乡, 思友, 思父母 下联:		
Generation	眼四面观,观景、观人、观自己		
Input (News Summarization)	花盆里有黑色小飞虫,这应该是夏天大家都比较头疼的问题。灭小飞虫方法很多,给大家分享几种。电蚊拍电,粘虫板粘,杀虫剂喷,烟蒂水灌根,诱杀法,其他异味水灌根。消灭花盆里的小黑飞虫,可以把烟蒂水灌根和电蚊拍拍打结合起来,坚持一段时间就能彻底消灭。大蒜香烟泡一泡,用这一碗水,小虫去无踪。文章标题是《		
Generation	花盆里有黑色小飞虫怎么办?》		

- Misunderstanding 1
- ChatGPT uses data prepared by developers to respond

Prepared by developers

- Misunderstanding 2
- ChatGPT searches answers from the web

What is Diffusion Model?

Diffusion Model is ...

(Sentences from web)

(Papers from web)

What are Diffusion Models?

uly 11, 2021 - 26 min - Lilian Weng

Diffusion Models: A Con

Ling Yang, Zhilong Zhang, Yang Song Hsuan Yang

Diffusion models have emerged as a pow applications, including image synthesis, v expanding body of work on diffusion mod estimation, and handling data with special models for enhanced results. We further in natural language processing, temporal data provide a contextualized, in-depth look at further exploration. Github: this https URL

Dr. Shuang LIANG, Tongji

own.

their

- Misunderstanding 2
- ChatGPT searches answers from the web
- Most of ChatGPT's answers cannot be found on the Internet in the exact same sentence
- There are even a lot of imaginary answers

4. Can I trust that the AI is telling me the truth?

 ChatGPT is not connected to the internet, and it can occasionally produce incorrect answers. It has limited knowledge of world and events after 2021 and may also occasionally produce harmful instructions or biased content.

What is ChatGPT? | OpenAl Help Center

• What ChatGPT really did – 文字接龙

There may be more than **170 billion** parameters!

2 parameters

• What ChatGPT really did – 文字接龙

ChatBot

- Technology Behind: RLHF
- Reinforcement Learning from Human Feedback
- Core Steps
 - 1. Pretraining a language model (LM),
 - 2. gathering data and training a reward model, and
 - 3. fine-tuning the LM with reinforcement learning.
- See <u>Illustrating Reinforcement Learning from Human Feedback</u> (RLHF) (huggingface.co) for more details

Contrast and deficiency

• 阿里云Qwen-VL

BingChat

At the end of the course...

- Deep learning is hot, but it doesn't solve all problems
- Need a lot of data, a lot of computing power
- There is still a lack of interpretability, which brings uncontrollability
- When solving practical problems, it is necessary to comprehensively consider factors such as cost and complexity

Tradeoff