Tutorium Hardware- und Systemgrundlagen

Gruppe 1

Raum F109 | Mittwoch, 11.30 Uhr

Mirko Bay

[mirko.bay@htwg-konstanz.de]

Gruppe 2

Raum F110 | Mittwoch, 11.30 Uhr

Michael Bernhardt

[michael.bernhardt@htwg-konstanz.de]

Zahlensysteme III

Dual-, Oktal-, Dezimal-, Hexadezimalsystem

Betrag + Vorzeichen Einer- / Zweierkomplement

IEEE Floating-Point-Standard BCD-Zahl

IEEE 32-Bit Gleitkomma-Standard

Zahl mit Basis 10 als IEEE-Zahl darstellen

Beispiel: Stellen Sie die Zahl (69,125)₁₀ als Zahl im IEEE 32-Bit-Standard dar!

69:2=34 Rest 1
34:2=17 Rest 0
17:2=8 Rest 1
8:2=4 Rest 0
4:2=2 Rest 0
2:2=1 Rest 0
1:2=0 Rest 1

$$0,125 \cdot 2 = 0$$
 ,25
 $0,250 \cdot 2 = 0$,50
 $0,500 \cdot 2 = 1$,00

$$(69,125)_{10} = (1\ 000\ 101\ ,\ 001)_{2}$$

Vorzeichen-Bit = 0 weil positiv (1 wenn negativ)

 $(1\ 000\ 101\ ,001)_2 = (1\ ,000\ 101\ 001)_2 \cdot 2^6$

Exponent (Character) = $\frac{6}{1} + 127 = (133)_{10} = (1000\ 0101)_{2}$

Fraction = Nachkomma-Anteil der Mantisse = 000 101 001

1.

Die Dezimalzahl umwandeln in Dualzahl! (z.B. mit Horner Schema)

4.

Eintragen des Vorzeichen-Bits und Übertragen der 8-Bit-Dualzahl des Exponenten (inkl. Bias) 5.

Übertragen des Nachkomma-Anteils der ursprünglichen Zahl. Leere Stellen mit 0 auffüllen.

2.

Umschreiben der Dualzahl in Schreibweise mit Exponent sodass die Zahl immer mit 1, beginnt!

Wenn Komma-Verschiebung nach links: positiver Exp. Wenn Komma-Verschiebung nach rechts: negativer Exp.

3.

Den Exponent mit dem fixen Wert 127 (Bias) addieren (=Character) und umschreiben des Ergebnisses als 8-Bit Dualzahl

BCD - Codierung

Zahl mit Basis 10 als BCD-Zahl darstellen

Beispiel: Stellen Sie die Zahl (69,125)₁₀ als BCD-Zahl dar!

Jede Dezimal-Ziffer wird als 4-stellige Dualzahl angegeben!

Tutorium Hardware- & Systemgrundlagen Sommersemester 2015 Mirko Bay & Michael Bernhardt

Aufgabe 1: Gegeben sei eine Gleitkommazahl im IEEE-P 754 32-Bit Standard:

VZ		expo	nen	t (cha	aract	ter):	8 bit	t										f	racti	ion: i	23 bi	t									
1	1	L 0	0	0	0	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Geben Sie die dargestellte Zahl in Dezimaldarstellung an!

(Testat WS 06/07)

```
Vorzeichen: 1 = negativ Fixer Wert!

Character = (1000\ 0110)_2 Fraction = (1,0000\ 1101\ 1000)_2 \cdot 2^7 Komma um 7 Stellen nach links verschieben = (1000110,11)_2 = (134)_{10} - 127 (Bias) = 128 + 4 + 2 + 0,5 + 0,25 = (134,75)_{10}
```

Tutorium Hardware- & Systemgrundlagen Sommersemester 2015 Mirko Bay & Michael Bernhardt

Aufgabe 2:

- a) Stellen Sie die BCD-Zahl (0001 0010 1000 , 0010 0101) $_{\text{BCD}}$ als Zahl im Maschinenformat des IEEE 32-Bit Gleitkomma-Standards dar!
- b) -(2¹⁰)₁₀ als Zweierkomplement-Zahl mit einer Breite von 16 Bit.

 (Testat WS 10/11)

Aufgabe 3: - (57,625)₁₀ als Zahl im Maschinenformat des IEEE 32-Bit-Gleitkomma-Standards.

(Klausur WS 02/03)

$$-(57,625)_{10} = -(0011\ 1001,101)_2$$

= $-(1,1100\ 1101)_2 \cdot 2^5$
 $5 + 127 = (132)_{10}$ (=Character)
= $(1000\ 0100)_2$

vz	(cha	ara	ıct	er:	8	bit	t									fı	rac	ctic	n:	23	3 b	it								
1	1	0	0	0	0	1	0	0	1	1	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Aufgabe 4:

Stellen Sie die Zahl (98)₁₀ als BCD-Zahl dar und interpretieren Sie diese dann als Zweierkomplement-Zahl. Geben Sie die dazu entsprechende Dezimalzahl an!

(Klausur WS 04/05)

$$(98)_{10} = (1001\ 1000)_{BCD}$$

$$(1001\ 1000)_{ZK} = -128 + 16 + 8$$

= $-(104)_{10}$

Aufgabe 5: Eine Zahl lässt sich darstellen als: $Z = 2^{15} + 2^{10} + 2^{5} + 2^{0}$

Tutorium Hardware- & Systemgrundlagen

Stellen Sie Z im Maschinenformat des IEEE-P 754 32-Bit-Gleitkomma-

Standards dar. (Klausur WS 05/06)

Es wird einfach nur 1 bei den erwähnten Stellen gesetzt $Z = 2^{15} + 2^{10} + 2^{5} + 2^{0}$ $Z = (1000 \ 0100 \ 0010 \ 0001)_{2}$ $_{15\ 14\ 13\ 12\ 11\ 10\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1\ 0}$

 $Z = 1,0000100001000001 \cdot 2^{15}$ Exponent:

Character: =15 + 127 $=(142)_{10}$ $=(1000\ 1110)_2$

fraction: 23 bit character: 8 bit

Aufgabe 6:

Ein pfiffiger WIN-Student hat eine platzsparende Darstellung von Gleitkomma-Zahlen in einem einzigen Byte entwickelt. Das höchstwertige Bit stellt das Vorzeichen V dar, die vier niedrigstwertigen Bit die Fraction F und die drei Bit in der Mitte den Exponenten E (siehe Bild). (Klausur SS 05)

V	E		I	7	

Für alle möglichen binären Belegungen ergibt sich der Dezimalwert Z aus der nachstehenden Formel: $Z = (-1)^V \cdot 2^{E-3} \cdot (1, F)$

- a) Berechnen Sie den Dezimalwert der Belegung 1001 1000.
- b) Geben Sie die größte Dezimalzahl an, die mit diesem 8-Bit-Gleitkomma-Format dargestellt werden kann.
- c) Geben Sie die kleinste positive Dezimalzahl an, die mit diesem 8-Bit-Gleitkomma-Format dargestellt werden kann.
- d) Welche elementare Zahl kann mit der oben vereinbarten Interpretation der 8 Bit nicht dargestellt werden?

a)
$$1001\ 1000$$
: $Z = (-1)^{1} \cdot 2^{1-3} \cdot (1,1000)$ $2^{-2} \cdot (1,1000)_{2} = (0,011\ 00)_{2} = (0,25+0,125)_{10}$ $= (-1) \cdot 0,375$ $= (0,375)_{10}$

b) Größte Dezimalzahl: Belegung (0111 1111)

0111 1111 :
$$Z = (-1)^0 \cdot 2^{7-3} \cdot (1,1111)$$
 $2^4 \cdot (1,1111)_2 = (11 111)_2 = (16 + 8 + 4 + 2 + 1)_{10}$ $= (31)_{10}$ $= (31)_{10}$

c) Kleinste positive Dezimalzahl : Belegung (0000 0000)

0000 0000 :
$$Z = (-1)^0 \cdot 2^{0-3} \cdot (1,0000)$$
 $2^{-3} \cdot (0001,0000)_2 = (0,001)_2 = (0,125)_{10}$
= 1 \cdot 31
= (31)₁₀

d) Die Zahl "0", da für diese keine spezielle Sonderbelegung vorgesehen ist.

Beim IEEE-Format wird die "0" durch Character = 0 und Fraction = 0 dargestellt!

Aufgabe 7: Geben Sie die Dezimalzahl -(0,625)₁₀ im Maschinenformat des IEEE-P 754 32-Bit-Gleitkomma-Standards an.

(Klausur WS 06/07)

$$-(0,625)_{10}$$
 = $-(0,101)_2$ = $-(1,01)_2 \cdot 2^{-1}$ = $(126)_{10}$ (= Character) = $(0111 \ 1110)_2$

vz	(cha	ara	ıct	er:	8	bit	t									fı	rac	ctic	n:	23	B b	it								
1	1	1	1	1	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Aufgabe 8: Geben Sie die Dezimalzahl -(47,125)₁₀ im Maschinenformat des IEEE-P 754 32-Bit-Gleitkomma-Standards an.

(Klausur WS 04/05)

$$-(47,125)_{10} = -(0010 \ 1111,001)_2$$

= $-(1,0111 \ 1001)_2 \cdot 2^5$ 5 + 127 = (132)₁₀ (=Character)
= (1000 \ 0100)₂

vz	(cha	ara	ıct	er:	8	bit	t									fı	rac	ctic	n:	23	3 b	it								
1	1	0	0	0	0	1	0	0	0	1	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0