Nombres complexes \mathbb{C}

Module de z.
$$|z| = \sqrt{a^2 + b^2}$$

Argument de z.
$$arg(z) \equiv \theta \pmod{2\pi}$$

Écriture trigonométrique.
$$z = |z|(\cos \theta + i \sin \theta)$$

Écriture expenentielle.
$$z = |z|e^{i\theta}$$

Carré d'un nombre complexe. Soit $z_1 = \phi + i\omega$, et on sait que $|z^2| = |z_1|$. On cherche z tel que $z^2 = z_1 =$ $a^2 - b^2 + 2iab$. On en déduit le système suivant : On déduit de ce système les 2 couples solutions, suivant le signe de ab, avec $a = \Re(z)$ et $b = \Im(z)$.

Intégrales et décomposition en éléments simple

Puissance numérateur > puissance dénominateur. Réaliser une division euclidienne.

Méthode. Prenons
$$I_1 = \frac{x^3 + 2x - 4}{(x^2 + x + 1)^2}$$
.

Méthode. Prenons $I_1 = \frac{x^3 + 2x - 4}{(x^2 + x + 1)^2}$. On note I_1 sous la forme $I_1 = \frac{ax + b}{(x^2 + x + 1)} + \frac{cx + d}{(x^2 + x + 1)^2}$. On cherche les valeurs de a, b et c pour I_1 .

— Recherche de
$$c$$
 et $d:(x^2+x+1)^2I_1(x)=-4+i\sqrt{3}=ci+d$ avec $x=j=\frac{-1}{2}+i\sqrt{3}$

— Recherche de
$$a$$
 par la limite, on multiplie par $x: xI_1(x) = \frac{x^4 + 2x^2 - 4x}{(x^2 + x + 1)^2}$
avec $x = j = \frac{-1}{2} + i\sqrt{3}$
 $xI_1 = \frac{x^4 + 2x^2 - 4x}{(x^2 + x + 1)^2} = \frac{ax^2 + bx}{(x^2 + x + 1)} + \frac{cx^2 + dx}{(x^2 + x + 1)^2}$

avec
$$x = j = \frac{-1}{2} + i\sqrt{3}$$

 $xI_1 = \frac{x^4 + 2x^2 - 4x}{(x^2 + x + 1)^2} = \frac{ax^2 + bx}{(x^2 + x + 1)} + \frac{cx^2 + dx}{(x^2 + x + 1)^2}$
 $\lim_{x \to +\infty} xI_1 = 1 = a$

— Recherche de b par le calcul :
$$I_1(0) = -4 = b + d$$
, donc $b = -1$

Équation differentielle

Boite à z trouver un facteur à un membre exponentiel Rappel : $\cos(t) = RE(eit)$ et $\sin = IM(eît)$ tracer le tableau passant de u à z avec les exponentielles on trouve ensuite z-(lambda1+lambda2) z+(lambda1+lambda2)z = facteur de l'exponentielle on pose la forme de z et on trouve la forme de z et z puis on cherche les inconnues.

		1 ^{er} Ordre	2 ^e Ordre
		$u' + au = \phi(t)$	$u'' + au' + bu = \phi(t)$
u_h		Résoudre $u' + au = 0$ $\Leftrightarrow u' = \omega u.$ $u_h = \lambda^{\omega t}$	On pose $r^2 + \operatorname{ar} + \operatorname{b} = 0$ puis calculer le discriminant Δ . • $\Delta > 0$: solutions réelles r_1 et r_2 : $u_h = \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t}$ • $\Delta = 0$: solutions réelles doubles r_0 : $u_h = (\lambda_1 t + \lambda_2) e^{r_0 t}$ • $\Delta < 0$: solutions complexes r_i : $r_i = \delta \pm i\omega$: $u_h = e^{\delta t} (\lambda(\cos \omega t) + \mu(\sin \omega t))$
u_p	polynomial de degré d	• $\omega \neq 0 \rightarrow u_p$ de degré d • $\omega = 0 \rightarrow u_p$ de degré $d+1$ On trouve la forme de u_p avec ses inconnues, et de u_p' par dérivation. On résoud l'équation de départ avec u_p qui est solution.	• $b \neq 0 \rightarrow u_p$ de degré d • $b = 0$ et $a \neq 0 \rightarrow u_p$ de degré $d + 1$ • $b = 0$ et $a = 0 \rightarrow u_p$ de degré $d + 2$ On trouve la forme de u_p avec ses inconnues, ainsi que de u'_p et u''_p par dérivations, On résoud l'équation de départ avec u_p qui est solution.
	exponential $\phi(t) = e^{\nu t}$	• $\omega \neq a \rightarrow u_p = \beta e^{-\omega t}$ • $\omega = a \rightarrow u_p = \beta t e^{-\omega t}$ On trouve la forme de u_p avec son inconnue β , et de u'_p par dérivation. On résoud l'équation de départ avec u_p qui est solution.	• ν non racine $\rightarrow u_p = \beta e^{-\omega t}$ • ν racine simple $\rightarrow u_p = \beta t e^{-\omega t}$ • ν racine double $\rightarrow u_p = \beta t^2 e^{-\omega t}$ Utiliser la méthode de la boite à z
	trigonométrique $\phi(t) = (\cos/\sin)\nu t$	$u_p = \mu \cos \nu t + \alpha \sin \nu t$ On calcule u_p' et on résoud l'équation de départ avec u_p qui est solution.	Utiliser la méthode de la boite à z avec $\cos \omega t = \Re(e^{it})$ et $\sin \omega t = \Im(e^{it})$
Cauchy		Résoudre l'équation finale avec $u(0)$. On obtient une valeur de λ .	Calculer u' , puis résoudre l'équation finale avec $u(0)$ et $u'(0)$. On obtient une valeur pour les inconnues de u_h .