Building your Deep Neural Network: Step by Step

Welcome to your week 4 assignment (part 1 of 2)! Previously you trained a 2-layer Neural Network with a single hidden layer. This week, you will build a deep neural network with as many layers as you want!

- In this notebook, you'll implement all the functions required to build a deep neural network.
- For the next assignment, you'll use these functions to build a deep neural network for image classification.

By the end of this assignment, you'll be able to:

- Use non-linear units like ReLU to improve your model
- Build a deeper neural network (with more than 1 hidden layer)
- · Implement an easy-to-use neural network class

Notation:

- Superscript [I] denotes a quantity associated with the lth layer.
 - **Example:** $a^{[L]}$ is the L^{th} layer activation. $W^{[L]}$ and $b^{[L]}$ are the L^{th} layer parameters.
- Superscript (i) denotes a quantity associated with the ith example.
 - Example: $x^{(i)}$ is the i^{th} training example.
- Lowerscript i denotes the i^{th} entry of a vector.
 - **Example:** $a_i^{[l]}$ denotes the i^{th} entry of the l^{th} layer's activations).

Let's get started!

Important Note on Submission to the AutoGrader

Before submitting your assignment to the AutoGrader, please make sure you are not doing the following:

- 1. You have not added any extra print statement(s) in the assignment.
- 2. You have not added any extra code cell(s) in the assignment.
- 3. You have not changed any of the function parameters.
- 4. You are not using any global variables inside your graded exercises. Unless specifically instructed to do so, please refrain from it and use the local variables instead.
- 5. You are not changing the assignment code where it is not required, like creating extra variables.

If you do any of the following, you will get something like, Grader Error: Grader feedback not found (or similarly unexpected) error upon submitting your assignment. Before asking for help/debugging the errors in your assignment, check for these first. If this is the case, and you don't remember the changes you have made, you can get a fresh copy of the assignment by following these instructions (https://www.coursera.org/learn/neuralnetworks-deep-learning/supplement/iLwon/h-ow-to-refresh-your-workspace).

Table of Contents

- 1 Packages
- 2 Outline
- 3 Initialization
 - 3.1 2-layer Neural Network
 - Exercise 1 initialize_parameters
 - 3.2 L-layer Neural Network
 - Exercise 2 initialize_parameters_deep
- 4 Forward Propagation Module
 - 4.1 Linear Forward
 - Exercise 3 linear_forward
 - 4.2 Linear-Activation Forward
 - Exercise 4 linear_activation_forward
 - 4.3 L-Layer Model
 - Exercise 5 L_model_forward
- <u>5 Cost Function</u>
 - Exercise 6 compute_cost
- 6 Backward Propagation Module
 - 6.1 Linear Backward
 - Exercise 7 linear backward
 - 6.2 Linear-Activation Backward
 - Exercise 8 linear_activation_backward
 - 6.3 L-Model Backward
 - Exercise 9 L_model_backward
 - 6.4 Update Parameters
 - Exercise 10 update parameters

1 - Packages

First, import all the packages you'll need during this assignment.

- numpy (www.numpy.org) is the main package for scientific computing with Python.
- matplotlib (http://matplotlib.org) is a library to plot graphs in Python.
- dnn_utils provides some necessary functions for this notebook.
- · testCases provides some test cases to assess the correctness of your functions
- np.random.seed(1) is used to keep all the random function calls consistent. It helps grade your work. Please don't change the seed!

In []:

```
### v1.2
```

In [4]:

```
import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases import *
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
from public_tests import *

import copy
%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
%load_ext autoreload
%autoreload 2
np.random.seed(1)
```

2 - Outline

To build your neural network, you'll be implementing several "helper functions." These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network.

Each small helper function will have detailed instructions to walk you through the necessary steps. Here's an outline of the steps in this assignment:

- Initialize the parameters for a two-layer network and for an L-layer neural network
- Implement the forward propagation module (shown in purple in the figure below)
 - Complete the LINEAR part of a layer's forward propagation step (resulting in $\mathbb{Z}^{[I]}$).
 - The ACTIVATION function is provided for you (relu/sigmoid)
 - Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
 - Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer L). This gives you a new L_model_forward function.
- Compute the loss
- Implement the backward propagation module (denoted in red in the figure below)
 - Complete the LINEAR part of a layer's backward propagation step
 - The gradient of the ACTIVATION function is provided for you(relu_backward/sigmoid_backward)
 - Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function
 - Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L model backward function
- · Finally, update the parameters

Figure 1

Note:

For every forward function, there is a corresponding backward function. This is why at every step of your forward module you will be storing some values in a cache. These cached values are useful for computing gradients.

In the backpropagation module, you can then use the cache to calculate the gradients. Don't worry, this assignment will show you exactly how to carry out each of these steps!

3 - Initialization

You will write two helper functions to initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one generalizes this initialization process to *L* layers.

3.1 - 2-layer Neural Network

Exercise 1 - initialize_parameters

Create and initialize the parameters of the 2-layer neural network.

Instructions:

- The model's structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
- Use this random initialization for the weight matrices: np.random.randn(d0, d1, ..., dn) * 0.01 with the correct shape. The documentation for np.random.randn (https://numpy.org/doc/stable/reference/random/generated/numpy.random.randn.html)
- Use zero initialization for the biases: np.zeros(shape). The documentation for np.zeros (https://numpy.org/doc/stable/reference/generated/numpy.zeros.html)

In [7]:

```
# GRADED FUNCTION: initialize_parameters
def initialize_parameters(n_x, n_h, n_y):
    import numpy as np
   Argument:
   n_x -- size of the input layer
   n_h -- size of the hidden layer
n_y -- size of the output layer
   Returns:
   parameters -- python dictionary containing your parameters:
                     W1 -- weight matrix of shape (n_h, n_x)
                     b1 -- bias vector of shape (n_h, 1)
                     W2 -- weight matrix of shape (n_y, n_h)
                     b2 -- bias vector of shape (n_y, 1)
    0.00
   np.random.seed(1)
   #(≈ 4 lines of code)
   # W1 = ...
    # b1 = ...
    \# W2 = ...
    \# b2 = ...
    # YOUR CODE STARTS HERE
    W1 = np.random.randn(n h, n x) * 0.01
   b1 = np.zeros((n_h, 1))
    W2 = np.random.randn(n_y, n_h) * 0.01
   b2 = np.zeros((n_y, 1))
    # YOUR CODE ENDS HERE
    parameters = {"W1": W1,
                   "b1": b1,
                   "W2": W2,
                   "b2": b2}
    return parameters
```

```
In [8]:
print("Test Case 1:\n")
parameters = initialize_parameters(3,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
initialize parameters test 1(initialize parameters)
print("\033[90m\nTest Case 2:\n")
parameters = initialize_parameters(4,3,2)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
initialize_parameters_test_2(initialize_parameters)
Test Case 1:
W1 = [[ 0.01624345 -0.00611756 -0.00528172]
 [-0.01072969 0.00865408 -0.02301539]]
b1 = [[0.]]
 [0.]]
W2 = [[ 0.01744812 - 0.00761207]]
b2 = [[0.]]
All tests passed.
Test Case 2:
W1 = [[0.01624345 - 0.00611756 - 0.00528172 - 0.01072969]]
 b1 = [[0.]]
 [0.]
 [0.]]
W2 = [[-0.00322417 -0.00384054 0.01133769]]
 [-0.01099891 -0.00172428 -0.00877858]]
b2 = [[0.]]
 [0.]]
 All tests passed.
```

Expected output

```
Test Case 1:
W1 = [[ 0.01624345 -0.00611756 -0.00528172]
[-0.01072969 0.00865408 -0.02301539]]
b1 = [[0.]]
[0.]]
W2 = [[ 0.01744812 -0.00761207]]
b2 = [[0.]]
All tests passed.
Test Case 2:
W1 = [[0.01624345 - 0.00611756 - 0.00528172 - 0.01072969]]
[ 0.00865408 -0.02301539  0.01744812 -0.00761207]
b1 = [0.]
[0.]
W2 = [[-0.00322417 -0.00384054 0.01133769]
[-0.01099891 -0.00172428 -0.00877858]]
b2 = [[0.]]
All tests passed.
```

3.2 - L-layer Neural Network

The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize_parameters_deep function, you should make sure that your dimensions match between each layer. Recall that $n^{[l]}$ is the number of units in layer l. For example, if the size of your input X is (12288, 209) (with m = 209 examples) then:

	Shape of W	Shape of b	Activation	Shape of Activation
Layer 1	$(n^{[1]}, 12288)$	$(n^{[1]},1)$	$Z^{[1]} = W^{[1]}X + b^{[1]}$	$(n^{[1]}, 209)$
Layer 2	$(n^{[2]}, n^{[1]})$	$(n^{[2]}, 1)$	$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$	$(n^{[2]}, 209)$
:	:	:	:	:
Layer L-1	$(n^{[L-1]}, n^{[L-2]})$	$(n^{[L-1]},1)$	$Z^{[L-1]} = W^{[L-1]} A^{[L-2]} + b^{[L-1]}$	$(n^{[L-1]}, 209)$
Layer L	$(n^{[L]}, n^{[L-1]})$	$(n^{[L]},1)$	$Z^{[L]} = W^{[L]} A^{[L-1]} + b^{[L]}$	$(n^{[L]}, 209)$

Remember that when you compute WX + b in python, it carries out broadcasting. For example, if:

$$W = \begin{bmatrix} w_{00} & w_{01} & w_{02} \\ w_{10} & w_{11} & w_{12} \\ w_{20} & w_{21} & w_{22} \end{bmatrix} \quad X = \begin{bmatrix} x_{00} & x_{01} & x_{02} \\ x_{10} & x_{11} & x_{12} \\ x_{20} & x_{21} & x_{22} \end{bmatrix} \quad b = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}$$

Then WX + b will be:

$$WX + b = \begin{bmatrix} (w_{00}x_{00} + w_{01}x_{10} + w_{02}x_{20}) + b_0 & (w_{00}x_{01} + w_{01}x_{11} + w_{02}x_{21}) + b_0 & \cdots \\ (w_{10}x_{00} + w_{11}x_{10} + w_{12}x_{20}) + b_1 & (w_{10}x_{01} + w_{11}x_{11} + w_{12}x_{21}) + b_1 & \cdots \\ (w_{20}x_{00} + w_{21}x_{10} + w_{22}x_{20}) + b_2 & (w_{20}x_{01} + w_{21}x_{11} + w_{22}x_{21}) + b_2 & \cdots \end{bmatrix}$$

Exercise 2 - initialize parameters deep

Implement initialization for an L-layer Neural Network.

Instructions

- The model's structure is [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID. I.e., it has L 1 layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
- ullet Use random initialization for the weight matrices. Use <code>np.random.randn(d0, d1, ..., dn) * 0.01.</code>
- Use zeros initialization for the biases. Use np. zeros (shape).
- You'll store $n^{[I]}$, the number of units in different layers, in a variable layer_dims. For example, the layer_dims for last week's Planar Data classification model would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. This means W1's shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to L layers!
- Here is the implementation for L = 1 (one layer neural network). It should inspire you to implement the general case (L-layer neural network).

```
if L == 1:
    parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
    parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
```

```
In [2]:
```

```
# GRADED FUNCTION: initialize_parameters_deep
def initialize_parameters_deep(layer_dims):
   Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
   parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    Wl -- weight matrix of shape (layer dims[l], layer dims[l-1])
                    bl -- bias vector of shape (layer_dims[l], 1)
   np.random.seed(3)
   parameters = \{\}
   L = len(layer dims) # number of layers in the network
   for l in range(1, L):
        #(≈ 2 lines of code)
        # parameters['W' + str(l)] = ...
        \# parameters['b' + str(l)] = ...
        # YOUR CODE STARTS HERE
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01
        parameters['b' + str(l)] = np.zeros((layer dims[l], 1))
        # YOUR CODE ENDS HERE
        assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l - 1]))
        assert(parameters['b' + str(l)].shape == (layer dims[l], 1))
    return parameters
```

In [3]:

```
print("Test Case 1:\n")
parameters = initialize_parameters_deep([5,4,3])

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

initialize_parameters_deep_test_1(initialize_parameters_deep)

print("\033[90m\nTest Case 2:\n")
parameters = initialize_parameters_deep([4,3,2])

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("W2 = " + str(parameters["b2"]))
initialize_parameters_deep_test_2(initialize_parameters_deep)
```

Test Case 1:

```
NameFrror
                                          Traceback (most recent call last)
<ipython-input-3-734da98fbcf7> in <module>
     1 print("Test Case 1:\n")
----> 2 parameters = initialize_parameters_deep([5,4,3])
      4 print("W1 = " + str(parameters["W1"]))
      5 print("b1 = " + str(parameters["b1"]))
<ipython-input-2-0677058fcf26> in initialize_parameters_deep(layer_dims)
     12
     13
    14
           np.random.seed(3)
     15
            parameters = {}
           L = len(layer dims) # number of layers in the network
NameError: name 'np' is not defined
```

Expected output

```
Test Case 1:
W1 = [0.01788628 \quad 0.0043651 \quad 0.00096497 \quad -0.01863493 \quad -0.00277388]
[-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
 [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034]
 [-0.00404677 - 0.0054536 - 0.01546477 0.00982367 - 0.01101068]]
b1 = [[0.]]
 [0.]
 [0.]
 [0.]]
W2 = [[-0.01185047 - 0.0020565 0.01486148 0.00236716]]
 [-0.01023785 -0.00712993  0.00625245 -0.00160513]
 [-0.00768836 -0.00230031 0.00745056 0.01976111]]
b2 = [[0.]]
 [0.]
 [0.]]
All tests passed.
Test Case 2:
W1 = [0.01788628 \ 0.0043651 \ 0.00096497 \ -0.01863493]
 [-0.00277388 -0.00354759 -0.00082741 -0.00627001]
 [-0.00043818 -0.00477218 -0.01313865 0.00884622]]
b1 = [[0.]]
 [0.]
 [0.]]
W2 = [[ 0.00881318 \ 0.01709573 \ 0.00050034]
 [-0.00404677 -0.0054536 -0.01546477]]
b2 = [[0.]]
 [0.]]
All tests passed.
```

4 - Forward Propagation Module

4.1 - Linear Forward

Now that you have initialized your parameters, you can do the forward propagation module. Start by implementing some basic functions that you can use again later when implementing the model. Now, you'll complete three functions in this order:

- LINEAR
- LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.
- [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID (whole model)

The linear forward module (vectorized over all the examples) computes the following equations:

$$Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$$

where $A^{[0]} = X$.

Exercise 3 - linear_forward

Build the linear part of forward propagation.

Reminder: The mathematical representation of this unit is $Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$. You may also find np.dot() useful. If your dimensions don't match, printing W.shape may help.

In [6]:

```
# GRADED FUNCTION: linear_forward
def linear_forward(A, W, b):
   Implement the linear part of a layer's forward propagation.
   Arguments:
   A -- activations from previous layer (or input data): (size of previous layer, number of examples)
   W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
   b -- bias vector, numpy array of shape (size of the current layer, 1)
   Returns:
   Z -- the input of the activation function, also called pre-activation parameter
   cache -- a python tuple containing "A", "W" and "b"; stored for computing the backward pass efficiently
   #(≈ 1 line of code)
   \# Z = ...
   # YOUR CODE STARTS HERE
   Z = np.dot(W, A) + b
   # YOUR CODE ENDS HERE
   cache = (A, W, b)
   return Z, cache
```

In [7]:

```
t_A, t_W, t_b = linear_forward_test_case()
t_Z, t_linear_cache = linear_forward(t_A, t_W, t_b)
print("Z = " + str(t_Z))
linear_forward_test(linear_forward)
```

```
Z = [[ 3.26295337 -1.23429987]]
All tests passed.
```

Expected output

```
Z = [[ 3.26295337 -1.23429987]]
```

4.2 - Linear-Activation Forward

In this notebook, you will use two activation functions:

• **Sigmoid**: $\sigma(Z) = \sigma(WA + b) = \frac{1}{1 + e^{-(WA + b)}}$. You've been provided with the sigmoid function which returns **two** items: the activation value " a " and a " cache " that contains " Z " (it's what we will feed in to the corresponding backward function). To use it you could just call:

```
A, activation_cache = sigmoid(Z)
```

• **ReLU**: The mathematical formula for ReLu is A = RELU(Z) = max(0, Z). You've been provided with the relu function. This function returns **two** items: the activation value " A " and a " cache " that contains " Z " (it's what you'll feed in to the corresponding backward function). To use it you could just call:

```
A, activation_cache = relu(Z)
```

For added convenience, you're going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you'll implement a function that does the LINEAR forward step, followed by an ACTIVATION forward step.

Exercise 4 - linear_activation_forward

Implement the forward propagation of the LINEAR->ACTIVATION layer. Mathematical relation is: $A^{[I]} = g(Z^{[I]}) = g(W^{[I]}A^{[I-1]} + b^{[I]})$ where the activation "g" can be sigmoid() or relu(). Use linear forward() and the correct activation function.

```
In [10]:
```

```
# GRADED FUNCTION: linear_activation_forward
def linear_activation_forward(A_prev, W, b, activation):
   Implement the forward propagation for the LINEAR->ACTIVATION layer
   Arguments:
   A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
   W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
   b -- bias vector, numpy array of shape (size of the current layer, 1)
   activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
   A -- the output of the activation function, also called the post-activation value
   cache -- a python tuple containing "linear_cache" and "activation_cache";
            stored for computing the backward pass efficiently
   Z, linear cache = linear forward(A prev, W, b)
   # Apply the activation function
   if activation == "sigmoid":
       A, activation_cache = sigmoid(Z)
   elif activation == "relu":
       A, activation cache = relu(Z)
       # YOUR CODE ENDS HERE
   cache = (linear cache, activation cache)
   return A, cache
```

In [11]:

```
t_A_prev, t_W, t_b = linear_activation_forward_test_case()

t_A, t_linear_activation_cache = linear_activation_forward(t_A_prev, t_W, t_b, activation = "sigmoid")
print("With sigmoid: A = " + str(t_A))

t_A, t_linear_activation_cache = linear_activation_forward(t_A_prev, t_W, t_b, activation = "relu")
print("With ReLU: A = " + str(t_A))

linear_activation_forward_test(linear_activation_forward)

With sigmoid: A = [[0.96890023 0.11013289]]
With ReLU: A = [[3.43896131 0. ]]
```

Expected output

All tests passed.

```
With sigmoid: A = [[0.96890023 \ 0.11013289]]
With ReLU: A = [[3.43896131 \ 0.]]
```

Note: In deep learning, the "[LINEAR->ACTIVATION]" computation is counted as a single layer in the neural network, not two layers.

4.3 - L-Layer Model

For even *more* convenience when implementing the L-layer Neural Net, you will need a function that replicates the previous one (linear_activation_forward with RELU) L-1 times, then follows that with one linear_activation_forward with SIGMOID.

Figure 2 : *[LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID* model

Exercise 5 - L_model_forward

Implement the forward propagation of the above model.

Instructions: In the code below, the variable AL will denote $A^{[L]} = \sigma(Z^{[L]}) = \sigma(W^{[L]}A^{[L-1]} + b^{[L]})$. (This is sometimes also called Yhat , i.e., this is \hat{Y} .)

Hints:

- Use the functions you've previously written
- Use a for loop to replicate [LINEAR->RELU] (L-1) times
- Don't forget to keep track of the caches in the "caches" list. To add a new value c to a list, you can use list.append(c).

```
In [12]:
```

```
# GRADED FUNCTION: L_model_forward
def L_model_forward(X, parameters):
    Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
   Arguments:
   X -- data, numpy array of shape (input size, number of examples)
   parameters -- output of initialize parameters deep()
   Returns:
   AL -- activation value from the output (last) layer
   caches -- list of caches containing:
               every cache of linear activation forward() (there are L of them, indexed from 0 to L-1)
   caches = []
   A = X
   L = len(parameters) // 2
                                              # number of layers in the neural network
   \# Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
   # The for loop starts at 1 because layer 0 is the input
   for l in range(1, L):
        A prev = A
        #(≈ 2 lines of code)
        \# A, cache = ...
        # caches ..
        # YOUR CODE STARTS HERE
        A, cache = linear activation forward(A prev, parameters["W" + str(l)], parameters["b" + str(l)], activati
on="relu")
        caches.append(cache)
        # YOUR CODE ENDS HERE
   # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
   #(≈ 2 lines of code)
   # AL, cache = ...
   # caches ..
   # YOUR CODE STARTS HERE
   AL, cache = linear_activation_forward(A, parameters["W" + str(L)], parameters["b" + str(L)], activation="sigm
oid")
   caches.append(cache)
   # YOUR CODE ENDS HERE
    return AL, caches
```

In [13]:

```
t_X, t_parameters = L_model_forward_test_case_2hidden()
t_AL, t_caches = L_model_forward(t_X, t_parameters)
print("AL = " + str(t_AL))
L_model_forward_test(L_model_forward)
```

Expected output

```
AL = [[0.03921668 \ 0.70498921 \ 0.19734387 \ 0.04728177]]
```

Awesome! You've implemented a full forward propagation that takes the input X and outputs a row vector $A^{[L]}$ containing your predictions. It also records all intermediate values in "caches". Using $A^{[L]}$, you can compute the cost of your predictions.

5 - Cost Function

Now you can implement forward and backward propagation! You need to compute the cost, in order to check whether your model is actually learning.

Exercise 6 - compute_cost

Compute the cross-entropy cost *J*, using the following formula:

$$-\frac{1}{m}\sum_{i=1}^{m} (y^{(i)}\log(a^{[L](i)}) + (1-y^{(i)})\log(1-a^{[L](i)}))$$

In [14]:

```
# GRADED FUNCTION: compute cost
def compute_cost(AL, Y):
   Implement the cost function defined by equation (7).
   Arguments:
   AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
   Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
   cost -- cross-entropy cost
   m = Y.shape[1]
   # Compute loss from aL and y.
   # (≈ 1 lines of code)
   \# cost = ...
   # YOUR CODE STARTS HERE
   cost = -np.sum(Y * np.log(AL) + (1 - Y) * np.log(1 - AL)) / m
   # YOUR CODE ENDS HERE
                              # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into
   cost = np.squeeze(cost)
17).
    return cost
```

In [15]:

```
t_Y, t_AL = compute_cost_test_case()
t_cost = compute_cost(t_AL, t_Y)
print("Cost: " + str(t_cost))
compute_cost_test(compute_cost)
```

Cost: 0.2797765635793423 All tests passed.

Expected Output:

cost 0.2797765635793422

6 - Backward Propagation Module

Just as you did for the forward propagation, you'll implement helper functions for backpropagation. Remember that backpropagation is used to calculate the gradient of the loss function with respect to the parameters.

Reminder:

Figure 3: Forward and Backward propagation for LINEAR->RELU->LINEAR->SIGMOID

The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.

Now, similarly to forward propagation, you're going to build the backward propagation in three steps:

- 1. LINEAR backward
- 2. LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation
- 3. [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID backward (whole model)

For the next exercise, you will need to remember that:

- b is a matrix(np.ndarray) with 1 column and n rows, i.e: b = [[1.0], [2.0]] (remember that b is a constant)
- · np.sum performs a sum over the elements of a ndarray
- axis=1 or axis=0 specify if the sum is carried out by rows or by columns respectively
- · keepdims specifies if the original dimensions of the matrix must be kept.
- · Look at the following example to clarify:

In [16]:

```
A = np.array([[1, 2], [3, 4]])

print('axis=1 and keepdims=True')
print(np.sum(A, axis=1, keepdims=True))
print('axis=1 and keepdims=False')
print(np.sum(A, axis=1, keepdims=False))
print('axis=0 and keepdims=True')
print(np.sum(A, axis=0, keepdims=True))
print('axis=0 and keepdims=False')
print(np.sum(A, axis=0, keepdims=False))
```

```
axis=1 and keepdims=True
[[3]
  [7]]
axis=1 and keepdims=False
[3 7]
axis=0 and keepdims=True
[[4 6]]
axis=0 and keepdims=False
[4 6]
```

6.1 - Linear Backward

For layer l, the linear part is: $Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$ (followed by an activation).

Suppose you have already calculated the derivative $dZ^{[l]} = \frac{\partial \mathcal{L}}{\partial Z^{[l]}}$. You want to get $(dW^{[l]}, db^{[l]}, dA^{[l-1]})$.

Figure 4

The three outputs $(dW^{[l]}, db^{[l]}, dA^{[l-1]})$ are computed using the input $dZ^{[l]}$.

Here are the formulas you need:

$$dW^{[l]} = \frac{\partial \mathcal{J}}{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1]T}$$

$$db^{[l]} = \frac{\partial \mathcal{J}}{\partial b^{[l]}} = \frac{1}{m} \sum_{i=1}^{m} dZ^{[l](i)}$$

$$dA^{[l-1]} = \frac{\partial \mathcal{L}}{\partial A^{[l-1]}} = W^{[l]T} dZ^{[l]}$$

 $A^{[l-1]T}$ is the transpose of $A^{[l-1]}$.

Exercise 7 - linear_backward

Use the 3 formulas above to implement linear backward().

Hint:

• In numpy you can get the transpose of an ndarray A using A.T or A.transpose()

```
In [17]:
# GRADED FUNCTION: linear_backward
def linear_backward(dZ, cache):
    Implement the linear portion of backward propagation for a single layer (layer l)
    Arguments:
    dZ -- Gradient of the cost with respect to the linear output (of current layer l)
    cache -- tuple of values (A prev, W, b) coming from the forward propagation in the current layer
    Returns:
    dA prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A p
rev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    A prev, W, b = cache
    m = A prev.shape[1]
    ### START CODE HERE ### (≈ 3 lines of code)
    \# db = ... sum by the rows of dZ with keepdims=True
    \# dA\_prev = \dots
    # YOUR CODE STARTS HERE
    dW = np.dot(dZ, A\_prev.T) / m
    db = np.sum(dZ, axis=1, keepdims=True) / m
    dA prev = np.dot(W.T, dZ)
    # YOUR CODE ENDS HERE
    return dA prev, dW, db
In [4]:
t dZ, t linear cache = linear backward test case()
t_dA_prev, t_dW, t_db = linear_backward(t_dZ, t_linear_cache)
print("dA_prev: " + str(t_dA prev))
print("dW: " + str(t dW))
print("db: " + str(t db))
linear backward test(linear backward)
NameError
                                          Traceback (most recent call last)
<ipython-input-4-3427f65cb756> in <module>
      1 t_dZ, t_linear_cache = linear_backward_test case()
----> 2 t_dA_prev, t_d\overline{W}, t_db = linear_backward(t_d\overline{Z}, t_linear_cache)
      3
      4 print("dA_prev: " + str(t_dA_prev))
      5 print("dW: " + str(t dW))
```

```
NameError: name 'linear backward' is not defined
Expected Output:
```

```
dA prev: [[-1.15171336 0.06718465 -0.3204696
                                   2.098127121
[ 0.60345879 -3.72508701 5.81700741 -3.84326836]
[-0.4319552 -1.30987417 1.72354705 0.05070578]
[-0.38981415  0.60811244 -1.25938424  1.47191593]
dW: [[ 0.07313866 -0.0976715 -0.87585828 0.73763362 0.00785716]
[ 0.97913304 -0.24376494 -0.08839671  0.55151192 -0.10290907]]
db: [[-0.14713786]
[-0.11313155]
[-0.13209101]]
```

6.2 - Linear-Activation Backward

Next, you will create a function that merges the two helper functions: **linear_backward** and the backward step for the activation **linear_activation_backward**.

To help you implement linear activation backward, two backward functions have been provided:

• sigmoid backward: Implements the backward propagation for SIGMOID unit. You can call it as follows:

```
dZ = sigmoid backward(dA, activation cache)
```

• relu backward: Implements the backward propagation for RELU unit. You can call it as follows:

```
dZ = relu_backward(dA, activation_cache)
```

If g(.) is the activation function, sigmoid_backward and relu_backward compute

$$dZ^{[l]} = dA^{[l]} * g'(Z^{[l]}).$$

Exercise 8 - linear_activation_backward

Implement the backpropagation for the LINEAR->ACTIVATION layer.

In [19]:

```
# GRADED FUNCTION: linear activation backward
def linear_activation_backward(dA, cache, activation):
   Implement the backward propagation for the LINEAR->ACTIVATION layer.
   dA -- post-activation gradient for current layer l
   cache -- tuple of values (linear cache, activation cache) we store for computing backward propagation efficie
ntlv
   activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
   Returns:
    dA prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A p
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
   db -- Gradient of the cost with respect to b (current layer l), same shape as b
   linear_cache, activation_cache = cache
   if activation == "relu":
       dZ = relu backward(dA, activation cache)
    elif activation == "sigmoid":
       dZ = sigmoid backward(dA, activation cache)
   dA prev, dW, db = linear backward(dZ, linear cache)
   return dA prev, dW, db
```

```
In [5]:
```

```
t_dAL, t_linear_activation_cache = linear_activation_backward_test_case()

t_dA_prev, t_dW, t_db = linear_activation_backward(t_dAL, t_linear_activation_cache, activation = "sigmoid")
print("With sigmoid: dA_prev = " + str(t_dA_prev))
print("With sigmoid: dW = " + str(t_dW))
print("With sigmoid: db = " + str(t_db))

t_dA_prev, t_dW, t_db = linear_activation_backward(t_dAL, t_linear_activation_cache, activation = "relu")
print("With relu: dA_prev = " + str(t_dA_prev))
print("With relu: dW = " + str(t_dW))
print("With relu: db = " + str(t_db))

linear_activation_backward_test(linear_activation_backward)
```

NameError: name 'linear activation backward' is not defined

Expected output:

6.3 - L-Model Backward

Now you will implement the backward function for the whole network!

Recall that when you implemented the L_model_forward function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you'll use those variables to compute the gradients. Therefore, in the L_model_backward function, you'll iterate through all the hidden layers backward, starting from layer L. On each step, you will use the cached values for layer I to backpropagate through layer I. Figure 5 below shows the backward pass.

Figure 5: Backward pass

Initializing backpropagation:

To backpropagate through this network, you know that the output is: $A^{[L]} = \sigma(Z^{[L]})$. Your code thus needs to compute $dAL = \frac{\partial \mathcal{L}}{\partial A^{[L]}}$. To do so, use this formula (derived using calculus which, again, you don't need in-depth knowledge of!):

```
dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) \# derivative of cost with respect to AL
```

You can then use this post-activation gradient dAL to keep going backward. As seen in Figure 5, you can now feed in dAL into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L_model_forward function).

After that, you will have to use a for loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula:

 $grads["dW" + str(I)] = dW^{[I]} \setminus \{15\}$

For example, for l=3 this would store $dW^{[l]}$ in grads["dW3"].

Exercise 9 - L_model_backward

Implement backpropagation for the [LINEAR->RELU] \times (L-1) -> LINEAR -> SIGMOID model.

```
In [21]:
```

dW2 = [[-0.39202432 -0.13325855 -0.04601089]]

db1 = [[-0.22007063]

[-0.02835349]] db2 = [[0.15187861]] All tests passed.

[0.

```
def L_model_backward(AL, Y, caches):
              Implement the backward propagation for the entire deep neural network.
             Arguments:
             AL -- Probability vector from forward propagation.
             Y -- True label vector.
             caches -- List of caches from forward propagation.
             grads -- Dictionary containing gradients for dA, dW, and db for each layer.
             grads = \{\}
             L = len(caches) # Number of layers
             m = AL.shape[1]
             Y = Y.reshape(AL.shape) # Ensure Y has same shape as AL
             # Compute dAL
             dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
             # Backpropagation for last layer (sigmoid activation)
             current cache = caches[-1]
              grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_activation_backward(dAL, current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_activation_backward(current_act
cache, activation="sigmoid")
              # Backpropagation for layers L-1 to 1 (ReLU activation)
              for l in reversed(range(L-1)):
                           current cache = caches[l]
                           grads["dA" + str(l)], grads["dW" + str(l+1)], grads["db" + str(l+1)] = linear activation backward(grads["dA" + str(l+1)]) = linear activ
dA" + str(l+1)], current cache, activation="relu")
             return grads
In [22]:
t_AL, t_Y_assess, t_caches = L_model_backward_test_case()
grads = L model backward(t AL, t Y assess, t caches)
print("dA0 = " + str(grads['dA0']))
print("dA1 = " + str(grads['dA1']))
print("dW1 = " + str(grads['dW1']))
print("dW2 = " + str(grads['dW2']))
print("db1 = " + str(grads['db1']))
print("db2 = " + str(grads['db2']))
L_model_backward_test(L_model_backward)
dA\theta = [[ \theta.
                                                                       0.52257901]
   [ 0.
                                              -0.3269206 ]
   [ 0.
                                              -0.32070404]
   [ 0.
                                               -0.74079187]]
dA1 = [[ 0.12913162 - 0.44014127]
   [-0.14175655 0.48317296]
   [ 0.01663708 -0.05670698]]
dW1 = [[0.41010002 \ 0.07807203 \ 0.13798444 \ 0.10502167]
                                          0.
                                                                              0.
   [0.05283652 0.01005865 0.01777766 0.0135308 ]]
```

Expected output:

```
dA\theta = [[ \theta.
                     0.52257901]
ſ O.
            -0.3269206 1
         -0.32070404]
[ 0.
 [ 0.
            -0.74079187]]
dA1 = [[ 0.12913162 -0.44014127]
[-0.14175655 0.48317296]
 [ 0.01663708 -0.05670698]]
dW1 = [[0.41010002 \ 0.07807203 \ 0.13798444 \ 0.10502167]
           0.
                      0.
 [0.05283652 0.01005865 0.01777766 0.0135308 ]]
dW2 = [[-0.39202432 -0.13325855 -0.04601089]]
db1 = [[-0.22007063]]
[ 0.
            - 1
[-0.02835349]]
db2 = [[0.15187861]]
```

6.4 - Update Parameters

```
In this section, you'll update the parameters of the model, using gradient descent:  W^{[]]} = W^{[]]} - \lambda + text{} dW^{[]]} + b^{[]]} - \lambda + text{} db^{[]]} + text{} db^{[]} + text{} db^{
```

where \alpha is the learning rate.

After computing the updated parameters, store them in the parameters dictionary.

Exercise 10 - update parameters

Implement update_parameters() to update your parameters using gradient descent.

Instructions: Update parameters using gradient descent on every W^{[i]} and b^{[i]} for i = 1, 2, ..., L.

In [34]:

```
# GRADED FUNCTION: update parameters
def update parameters(params, grads, learning rate):
   Update parameters using gradient descent
   Arguments:
   params -- python dictionary containing your parameters
   grads -- python dictionary containing your gradients, output of L_model_backward
   Returns:
   parameters -- python dictionary containing your updated parameters
                  parameters["W" + str(l)] = ...
                  parameters["b" + str(l)] = ...
   parameters = copy.deepcopy(params)
   L = len(parameters) // 2 # number of layers in the neural network
   # Update rule for each parameter. Use a for loop.
   #(≈ 2 lines of code)
    for l in range(L):
        # parameters["W" + str(l+1)] = ...
       # parameters["b" + str(l+1)] = ...
        # YOUR CODE STARTS HERE
       parameters["W" + str(l+1)] -= learning_rate * grads["dW" + str(l+1)]
       parameters["b" + str(l+1)] -= learning_rate * grads["db" + str(l+1)]
       # YOUR CODE ENDS HERE
   return parameters
```

In [35]:

```
t_parameters, grads = update_parameters_test_case()
t_parameters = update_parameters(t_parameters, grads, 0.1)

print ("W1 = "+ str(t_parameters["W1"]))
print ("b1 = "+ str(t_parameters["b1"]))
print ("W2 = "+ str(t_parameters["W2"]))
print ("b2 = "+ str(t_parameters["b2"]))

update_parameters_test(update_parameters)

W1 = [[-0.59562069 -0.09991781 -2.14584584     1.82662008]
```

```
 \begin{aligned} & \text{W1} = [[-0.59562069 \ -0.09991781 \ -2.14584584 \ \ 1.82662008] \\ & [-1.76569676 \ -0.80627147 \ \ 0.51115557 \ -1.18258802] \\ & [-1.0535704 \ \ -0.86128581 \ \ 0.68284052 \ \ 2.20374577]] \\ & \text{b1} = [[-0.04659241] \\ & [-1.28888275] \\ & [\ 0.53405496]] \\ & \text{W2} = [[-0.55569196 \ \ 0.0354055 \ \ \ 1.32964895]] \\ & \text{b2} = [[-0.84610769]] \\ & \text{All tests passed.} \end{aligned}
```

Expected output:

```
W1 = [[-0.59562069 -0.09991781 -2.14584584  1.82662008]

[-1.76569676 -0.80627147  0.51115557 -1.18258802]

[-1.0535704 -0.86128581  0.68284052  2.20374577]]

b1 = [[-0.04659241]

[-1.28888275]

[ 0.53405496]]

W2 = [[-0.55569196  0.0354055  1.32964895]]

b2 = [[-0.84610769]]
```

Congratulations!

You've just implemented all the functions required for building a deep neural network, including:

- Using non-linear units improve your model
- Building a deeper neural network (with more than 1 hidden layer)
- Implementing an easy-to-use neural network class

This was indeed a long assignment, but the next part of the assignment is easier. ;)

In the next assignment, you'll be putting all these together to build two models:

- A two-layer neural network
- An L-layer neural network

You will in fact use these models to classify cat vs non-cat images! (Meow!) Great work and see you next time.