## **Esercizio**



Iniziamo con lo scrivere i flussi in entrata:

$$\{\lambda_1 = \gamma + \lambda_2 \ \{\lambda_2 = (1-p)\lambda_1 \}$$

Sostituendo  $\lambda_2$  in  $\lambda_1$  otteniamo:  $\lambda_1=rac{\gamma}{p}$  ;  $\lambda_2=rac{\gamma(1-p)}{p}$ 

La product form è data dalle equazioni:

$$\pi(n_1,n_2) = \pi_1(n_1)\pi_2(n_2)\ \pi_2(n) = (1-
ho_i)
ho_i^{n_i}$$
 Le visite sono:

$$v_1=rac{\lambda_1}{\gamma}=rac{1}{p}$$
 e  $v_2=rac{\lambda_2}{\gamma}=rac{(1-p)}{p}$ 

Parametri:  $\gamma=1.3j/s$ ,  $\mu_1=30j/s$ ,  $\mu_2=25j/s$  Nel caso bilanciato, cioè p=0.5, il 50% cicla. Nel centro 1 abbiamo 1 visita in più rispetto al centro 2. Se P = 0.5 ho R = 0.1152 s, Se P = 0.6 ho R = 0.0865 s Se p = 0.05 ho 20 visite ad 1, 19 visite a 2, il tempo di risposta R = 68.333 s  $\rho_1=0.8666$ ,  $\rho_2=0.988$   $E(n_1)=6.5s$ ,  $E(n_2)=82.333$ 

Nelle forme prodotto aperte, le marginali già sono in forma prodotto, nel caso chiuso no.

 $\pi(n_1,...,n_M)=rac{1}{G(n)}\prod_{i=1}^N f_i(...)$  con  $f_i$  formula dipendente dal centro i. La funzione G serve per normalizzare ad 1. Voglio probabilità del centro i di contenere n job, ovvero  $P_i(n)=\sum_{ar s:n_i=n}\pi(ar s)$ 

Esistono algoritmi per calcolare gli indici senza necessità della soluzione. Noi vedremo l'algoritmo di **Mean Value Analysis**, perchè molto semplice e diffuso (accettato in ambiti industriali).