

NAT'L INST. OF STAND & TECH
A11106 137871

NIST
PUBLICATIONS
REFERENCE

NISTIR 7203

Spaceborne Optoelectronic Sensors and their Radiometric Calibration. Terms and Definitions.

Part 1. Calibration Techniques

Alexander V. Prokhorov
Raju U. Datla
Vitaly P. Zakharenkov
Victor Privalsky
Thomas W. Humpherys
Victor I. Sapritsky

Editors:

Albert C. Parr
Lev K. Issaev

QC
100
U56
#7203
2005

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Spaceborne Optoelectronic Sensors and their Radiometric Calibration. Terms and Definitions.

Part 1. Calibration Techniques

Alexander V. Prokhorov
Raju U. Datla
Vitaly P. Zakharenkov
Victor Privalsky
Thomas W. Humpherys
Victor I. Sapritsky

Editors:

Albert C. Parr
Lev K. Issaev

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

NISTIR 7203

Spaceborne Optoelectronic Sensors and their Radiometric Calibration. Terms and Definitions

Part 1. Calibration Techniques

Alexander V. Prokhorov

Raju U. Datla

NIST

Vitaly P. Zakharenkov

Vavilov State Optical Institute, S.-Petersburg, Russia

Victor Privalsky

Thomas W. Humpherys

Space Dynamics Laboratory/Utah State University, Logan, UT

Victor I. Sapritsky

All-Russian Research Institute for Optical and Physical Measurements, Moscow, Russia

Editors:

Albert C. Parr

NIST

Lev K. Issaev

Russian Institute of Metrological Service, Moscow, Russia

March 2005

U.S. DEPARTMENT OF COMMERCE

Carlos M. Gutierrez, Secretary

TECHNOLOGY ADMINISTRATION

Phillip J. Bond, Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

Hratch G. Semerjian, Acting Director

Оптико-электронные датчики космического базирования и их радиометрическая калибровка

Термины и определения Часть 1. Методы калибровки

Александр Прохоров, Раджу Датла,

Национальный институт стандартов и технологий, Гейтесберг, штат Мериленд, США

Виталий Захаренков,

Государственный оптический институт им. С. И. Вавилова, Санкт-Петербург,
Российская Федерация

Виктор Привальский, Томас Хамфриз,

Лаборатория космической динамики Университета штата Юта, Логан, Юта, США

Виктор Саприцкий,

Всероссийский Научно-исследовательский Институт Оптико-физических Измерений,
Москва, Российская Федерация

Редакторы:

Альберт Парр,

Национальный институт стандартов и технологий, Гейтесберг, штат Мериленд, США

Лев Исаев,

Всероссийский институт метрологии, Москва, Российская Федерация

Гейтесберг, Мэриленд, 2005

Contents

Authors' preface.....	13
Предисловие авторов.....	16
1. Basic concepts – Основные положения.....	19
1.1. Electromagnetic radiation – Электромагнитное излучение.....	19
1.1.1. Amplitude – Амплитуда	19
1.1.2. Frequency – Частота	19
1.1.3. Wavelength – Длина волны.....	20
1.1.4. Wavenumber – Волновое число.....	20
1.1.5. Optical radiation – Оптическое излучение.....	21
1.1.6. Radiometry – Радиометрия	21
1.1.7. Visible radiation – Видимое излучение.....	21
1.1.8. Infrared radiation – Инфракрасное излучение	22
1.1.9. Ultraviolet radiation – Ультрафиолетовое излучение	23
1.1.10. Monochromatic radiation – Монохроматическое излучение	23
1.1.11. Spectrum – Спектр	24
1.1.12. Spectral line – Спектральная линия.....	24
1.1.13. Point source – Точечный источник.....	25
1.1.14. Isotropic point source – Изотропный точечный источник.....	25
1.2. Optical remote sensing – Оптическое дистанционное зондирование	25
1.2.1. Active system – Активная система	26
1.2.2. Passive system – Пассивная система	26
1.2.3. Pointing – Наведение	26
1.2.4. Sounding – Зондирование	27
1.2.5. Oblique sensing – Наклонное зондирование	27
1.2.6. Surveying – Обзор.....	27
1.2.7. Monitoring – Мониторинг	28
1.2.8. Sensor – Датчик	28
1.2.9. Sensor optical system – Оптическая система датчика.....	29
1.2.10. Image – Изображение.....	29
1.2.11. Imaging – Обработка изображений	30
1.2.12. Imaging sensor – Датчик изображений	30
1.2.13. Stereoscopic imaging – Получение стереоизображений.....	30
1.2.14. Staring – Смотрение	31
1.2.15. Tracking – Слежение	31
1.2.16. Step-staring – Пошаговое смотрение	31
1.2.17. Step-tracking – Пошаговое слежение.....	32
1.2.18. Scanning – Сканирование	32
1.2.19. Target – Цель.....	33
1.2.20. Signature – Сигнатура	33
1.2.21. Platform – Платформа	33
1.2.22. Zenith angle – Зенитный угол	33

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

1.2.23. Nadir angle – Надирный угол	34
1.2.24. Geostationary orbit – Геостационарная орбита	34
1.3. Radiometric calibrations for remote sensing – Радиометрические калибровки для дистанционного зондирования	34
1.3.1. Radiometric calibration – Радиометрическая калибровка.....	34
1.3.2. Radiometric measurement system – Радиометрическая измерительная система.....	35
1.3.3. Measurement equation – Уравнение измерения.....	35
1.3.4. Calibration coefficients – Калибровочные коэффициенты	36
1.3.5. Calibration equation – Уравнение калибровки	36
1.3.6. Radiometric calibration system – Радиометрическая калибровочная система	36
1.3.7. Radiometric standard – Радиометрический эталон.....	37
1.3.8. Primary radiometric standard – Первичный радиометрический эталон.....	37
1.3.9. Secondary radiometric standard – Вторичный радиометрический эталон.	38
1.3.10. Background radiation – Фоновое излучение	38
1.3.11. Low background conditions – Низкоуровневый фон	38
1.3.12. Medium background conditions – Среднеуровневый фон	39
1.3.13. Ground calibration – Наземная калибровка	39
1.3.14. Onboard calibration – Бортовая калибровка	39
1.3.15. Test site – Тестовая зона	40
1.3.16. Test target – Тестовый объект	40
1.3.17. Calibration attitude maneuver – Ориентационный маневр для калибровки	40
1.3.18. Vicarious calibration – Замещающая калибровка.....	41
1.3.19. Validation – Проверка	41
1.3.20. Verification – Проверка	41
1.3.21. Uniformity of measurements - Единство измерений.....	42
1.3.22. Traceability of measurements – Привязка к эталонам	42
2. Quantities, Symbols, and Units – Величины, символы и единицы измерения	43
2.1. Geometrical quantities – Геометрические величины.....	43
2.1.1. Solid angle – Телесный угол	43
2.1.2. Projected area – Площадь проекции	44
2.1.3. Projected solid angle – Проекция телесного угла	45
2.1.4. Geometric extent – Геометрический фактор	46
2.1.5. Optical extent – Оптический фактор	47
2.2. Radiometric quantities – Радиометрические величины.....	48
2.2.1. Radiant flux – Поток излучения	48
2.2.2. Photon flux – Поток фотонов	48
2.2.3. Radiant energy – Энергия излучения	49
2.2.4. Number of photons – Число фотонов.....	50
2.2.5. Radiant exposure – Энергетическая экспозиция	50
2.2.6. Photon exposure – Фотонная экспозиция.....	51
2.2.7. Radiant intensity – Сила излучения	51

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

2.2.8. Photon intensity – Фотонная сила излучения	52
2.2.9. Radiance – Энергетическая яркость.....	52
2.2.10. Photon radiance – Фотонная яркость.....	55
2.2.11. Irradiance – Облученность	55
2.2.12. Photon irradiance – Фотонная облученность	56
2.2.13. Radiant exitance – Энергетическая светимость.....	57
2.2.14. Photon exitance – Фотонная светимость	58
2.3. Spectral radiometric quantities – Спектральные радиометрические величины	59
2.3.1. Spectral radiant flux – Спектральная плотность потока излучения.....	59
2.3.2. Spectral photon flux – Спектральная плотность фотонного потока	59
2.3.3. Spectral radiant energy – Спектральная плотность энергии излучения	60
2.3.4. Spectral number of photons – Спектральная плотность числа фотонов	61
2.3.5. Spectral radiant exposure – Спектральная плотность энергетической экспозиции.....	61
2.3.6. Spectral photon exposure – Спектральная плотность фотонной экспозиции	62
2.3.7. Spectral radiant intensity – Спектральная плотность силы излучения	62
2.3.8. Spectral photon intensity – Спектральная плотность фотонной силы излучения	63
2.3.9. Spectral radiance – Спектральная плотность энергетической яркости.....	64
2.3.10. Spectral photon radiance – Спектральная плотность фотонной яркости.	64
2.3.11. Spectral irradiance – Спектральная плотность облученности.....	65
2.3.12. Spectral photon irradiance – Спектральная плотность фотонной облученности.....	66
2.3.13. Spectral radiant exitance – Спектральная плотность энергетической светимости	66
2.3.14. Spectral photon exitance – Спектральная плотность фотонной светимости	67
3. Optical phenomena – Оптические явления	68
3.1. Coherent radiation – Когерентное излучение	68
3.2. Interference – Интерференция	68
3.3. Diffraction – Дифракция	68
3.4. Emission – Эмиссия.....	69
3.4.1. Thermal radiation – Тепловое излучение	69
3.4.2. Thermal radiator – Тепловой излучатель	69
3.4.3. Perfect blackbody – Абсолютно черное тело.....	70
3.4.4. Planck's law – Закон Планка.....	71
3.4.5. Stefan-Boltzmann law – Закон Стефана-Больцмана	72
3.4.6. Lambert's law – Закон Ламберта	72
3.4.7. Lambertian surface – Ламбертовская поверхность	73
3.4.8. Luminescence – Люминесценция	73
3.4.9. Stimulated emission – Вынужденное излучение	74
3.4.10. Synchrotron radiation – Синхротронное излучение	74
3.5. Reflection – Отражение	75

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

3.5.1. Specular reflection – Зеркальное отражение	75
3.5.2. Diffuse reflection – Диффузное отражение.....	75
3.5.3. Mixed reflection – Смешанное отражение.....	76
3.5.4. Retroreflection – Возвратное отражение.....	76
3.5.5. Perfectly diffuse reflection – Идеально диффузное отражение	76
3.5.6. Total internal reflection – Полное внутреннее отражение	77
3.5.7. Interreflection – Многократные отражения	77
3.6. Transmission – Пропускание	77
3.6.1. Regular transmission – Направленное пропускание.....	78
3.6.2. Diffuse transmission – Диффузное пропускание.....	78
3.6.3. Mixed transmission – Смешанное пропускание	78
3.6.4. Perfectly diffuse transmission – Идеально диффузное пропускание.....	78
3.7. Absorption – Поглощение	79
3.7.1. Transparent medium – Прозрачная среда.....	79
3.7.2. Translucent medium – Просвечивающая среда	79
3.7.3. Opaque medium – Непрозрачная среда.....	80
3.8. Scattering – Рассеяние	80
3.9. Refraction – Преломление.....	80
3.10. Polarization – Поляризация	81
3.10.1. Polarized radiation – Поляризованное излучение	81
3.10.2. Linearly polarized radiation – Линейно поляризованное излучение.....	81
3.10.3. Circularly polarized radiation – Излучение, поляризованное по кругу....	82
3.10.4. Elliptically polarized radiation – Эллиптически поляризованное излучение	82
3.10.5. Unpolarized radiation – Неполяризованное излучение	83
3.10.6. Partially polarized radiation – Частично поляризованное излучение.....	83
3.10.7. Degree of polarization – Степень поляризации.....	83
3.11. Dispersion – Дисперсия	84
3.12. Photoeffect – Фотоэффект	84
4. Optical characteristics of surfaces and media – Оптические характеристики поверхностей и сред	85
4.1. Geometry of radiation transfer – Геометрия переноса излучения.....	85
4.1.1. Incidence angle – Угол падения	85
4.1.2. Reflection angle – Угол отражения.....	85
4.1.3. Refraction angle – Угол преломления	86
4.1.4. Angle factor – Угловой коэффициент	86
4.2. Characteristics of thermal emission – Характеристики теплового излучения ..	88
4.2.1. Spectral directional emissivity – Спектральная направленная излучательная способность	88
4.2.2. Total directional emissivity – Интегральная направленная излучательная способность	89
4.2.3. Spectral normal emissivity – Спектральная нормальная излучательная способность	89

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

4.2.4. Total normal emissivity – Интегральная нормальная излучательная способность	90
4.2.5. Spectral conical emissivity – Спектральная коническая излучательная способность	91
4.2.6. Total conical emissivity – Интегральная коническая излучательная способность	92
4.2.7. Spectral hemispherical emissivity – Спектральная полусферическая излучательная способность	93
4.2.8. Total hemispherical emissivity – Интегральная полусферическая излучательная способность	94
4.2.9. Selective radiator – Селективный излучатель	95
4.2.10. Non-selective radiator – Неселективный излучатель	95
4.2.11. Radiance temperature – Яркостная температура	95
4.2.12. Total radiance temperature – Радиационная температура	96
4.2.13. Distribution temperature – Температура распределения	96
4.3. Characteristics of reflection – Характеристики отражения	97
4.3.1. Reflectance – Коэффициент отражения	97
4.3.2. Specular reflectance – Коэффициент зеркального отражения	98
4.3.3. Diffuse reflectance – Коэффициент диффузного отражения	99
4.3.4. Bidirectional reflectance distribution function – Функция распределения двунаправленного коэффициента отражения	99
4.3.5. Bidirectional reflectance – Двунаправленный коэффициент отражения	100
4.3.6. Directional-conical reflectance – Направленно-конический коэффициент отражения	101
4.3.7. Biconical reflectance – Двуконический коэффициент отражения	102
4.3.8. Conical-directional reflectance – Коническо-направленный коэффициент отражения	103
4.3.9. Directional-hemispherical reflectance – Направленно-полусферический коэффициент отражения	104
4.3.10. Hemispherical-directional reflectance – Полусферическо-направленный коэффициент отражения	104
4.3.11. Conical-hemispherical reflectance – Коническо-полусферический коэффициент отражения	105
4.3.12. Hemispherical-conical reflectance – Полусферическо-конический коэффициент отражения	106
4.3.13. Bihemispherical reflectance – Двуполусферический коэффициент отражения	106
4.3.14. Reflectance factor – Фактор отражения	107
4.3.15. Radiance factor – Коэффициент энергетической яркости	108
4.3.16. Albedo – Альбедо	109
4.4. Characteristics of transmission – Характеристики пропускания	110
4.4.1. Transmittance – Коэффициент пропускания	110
4.4.2. Regular transmittance – Коэффициент направленного пропускания	110
4.4.3. Diffuse transmittance – Коэффициент диффузного пропускания	111

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

4.4.4. Bidirectional transmittance distribution function – Функция распределения двунаправленного коэффициента пропускания.....	111
4.4.5. Bidirectional transmittance – Двунаправленный коэффициент пропускания	112
4.4.6. Directional-conical transmittance – Направленно-конический коэффициент пропускания.....	113
4.4.7. Biconical transmittance – Двуконический коэффициент пропускания ...	114
4.4.8. Conical-directional transmittance – Коническо-направленный коэффициент пропускания.....	114
4.4.9. Directional-hemispherical transmittance – Направленно-полусферический коэффициент пропускания.....	115
4.4.10. Hemispherical-directional transmittance – Полусферическо-направленный коэффициент пропускания.....	116
4.4.11. Conical-hemispherical transmittance – Коническо-полусферический коэффициент пропускания.....	117
4.4.12. Hemispherical-conical transmittance – Полусферическо-конический коэффициент пропускания.....	117
4.4.13. Bihemispherical transmittance – Двуполусферический коэффициент пропускания.....	118
4.5. Characteristics of absorption – Характеристики поглощения	119
4.5.1. Absorptance – Коэффициент поглощения	119
4.5.2. Directional absorptance – Направленный коэффициент поглощения	119
4.5.3. Conical absorptance – Конический коэффициент поглощения.....	120
4.5.4. Hemispherical absorptance – Полусферический коэффициент поглощения	120
4.5.5. Spectral linear scattering coefficient – Спектральный натуральный показатель рассеяния	121
4.5.6. Spectral linear absorption coefficient – Спектральный натуральный показатель поглощения	122
4.5.7. Spectral linear attenuation coefficient – Спектральный натуральный показатель ослабления	123
4.5.8. Spectral mass attenuation coefficient – Спектральный показатель ослабления на единицу массы	124
4.5.9. Spectral optical thickness – Спектральная оптическая толщина	124
4.6. Characteristics of refraction – Характеристики преломления.....	126
4.6.1 Refractive index – Показатель преломления	126
4.6.2 Spectral absorption index – Спектральный главный показатель поглощения	126
4.6.3 Complex refractive index – Комплексный показатель преломления	127
4.6.4. Brewster angle – Угол Брюстера.....	127
4.7. Characteristics of scattering – Характеристики рассеяния	128
4.7.1 Scattering indicatrix – Индикатриса рассеяния.....	128
4.7.2 Bidirectional scattering distribution function – Функция распределения двунаправленного рассеяния	129

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

5. Components of Radiometric Systems – Компоненты радиометрических систем .	130
5.1. Radiation Sources – Источники излучения	130
5.1.1. Blackbody – Черное тело	130
5.1.2. Globar – Глобар	130
5.1.3. Nernst's glower – Штифт Нернста	131
5.1.4. Laser – Лазер	131
5.1.5. Light emitting diode – Светоизлучающий диод	131
5.1.6. Overfilling beam – Широкий пучок	132
5.1.7. Underfilling beam – Узкий пучок	132
5.1.8. Extended-area source – Протяженный источник	132
5.2. Spectral Instruments – Спектральные приборы	133
5.2.1. Filter – Фильтр	133
5.2.2. Interference filter – Интерференционный фильтр	133
5.2.3. Longpass filter – Длинноволновый пропускающий фильтр	134
5.2.4. Shortpass filter – Коротковолновый пропускающий фильтр	134
5.2.5. Bandpass filter – Полосовой пропускающий фильтр	134
5.2.6. Band reject filter – Полосовой вырезающий фильтр	135
5.2.7. Blocking filter – Блокирующий фильтр	135
5.2.8. Neutral density filter – Нейтральный фильтр	135
5.2.9. Circular variable filter – Круговой переменный фильтр	136
5.2.10. Monochromator – Монохроматор	136
5.2.11. Filter monochromator – Фильтровый монохроматор	136
5.2.12. Prism monochromator – Призменный монохроматор	136
5.2.13. Diffraction monochromator – Дифракционный монохроматор	137
5.2.14. Michelson's interferometer – Интерферометр Майкельсона	137
5.2.15. Fourier transform spectrometer – Фурье-спектрометр	137
5.3. Optical Components – Оптические компоненты	138
5.3.1. Window – Окно	138
5.3.2. Mirror – Зеркало	138
5.3.3. Lens – Линза	139
5.3.4. Objective – Объектив	139
5.3.5. Collimator – Коллиматор	140
5.3.6. Beamsplitter – Делитель пучка	140
5.3.7. Dichroic – Цветоделитель	141
5.3.8. Polarizer – Поляризатор	141
5.4. Detectors of Optical Radiation – Приемники оптического излучения	142
5.4.1. Detector – Приемник оптического излучения	142
5.4.2. Standard detector – Эталонный приемник излучения	142
5.4.3. Selective detector – Селективный приемник излучения	143
5.4.4. Non-selective detector – Неселективный приемник излучения	143
5.4.5. Photoelectric detector – Фотоэлектронный приемник излучения	143
5.4.6. Photoemissive cell – Фотоэлемент	144
5.4.7. Photoresistor – Фоторезистор	144
5.4.8. Photocathode – Фотокатод	145

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

5.4.9. Photomultiplier – Фотоэлектронный умножитель	145
5.4.10. Photovoltaic cell – Вентильный фотоэлемент	146
5.4.11. Photodiode – Фотодиод	146
5.4.12. Avalanche photodiode – Лавинный фотодиод	146
5.4.13. Phototransistor – Фототранзистор	147
5.4.14. Quantum detector – Квантовый приемник излучения	147
5.4.15. Photon counter – Счетчик фотонов.....	148
5.4.16. Charge-coupled device – Прибор с зарядовой связью.....	148
5.4.17. Thermal detector of radiation – Тепловой приемник излучения.....	148
5.4.18. Absolute thermal detector – Абсолютный тепловой приемник излучения	149
5.4.19. Radiation thermocouple – Радиационный термоэлемент	149
5.4.20. Radiation thermopile – Радиационная термобатарея.....	150
5.4.21. Bolometer – Болометр	150
5.4.22. Pyroelectric detector – Пироэлектрический приемник	150
5.4.23. Matrix detector – Матричный приемник.....	151
5.5. Radiometric Instrumentation for Remote Sensing – Радиометрическая аппаратура для дистанционного зондирования	152
5.5.1. Radiometer – Радиометр.....	152
5.5.2. Spectroradiometer – Спектрорадиометр.....	152
5.5.3. Filter radiometer – Фильтровый радиометр.....	152
5.5.4. Spectrophotometer – Спектрофотометр	153
5.5.5. Gonioradiometer – Гониорадиометр.....	153
5.5.6. Reflectometer – Рефлектометр	153
5.5.7. Optical scatterometer – Оптический скаттерометр.....	153
5.5.8. Polarimeter – Поляриметр	154
5.5.9. Imaging radiometer – Изображающий радиометр.....	154
5.5.10. Focal plane array – Фокальная матрица	154
5.5.11. Multispectral imaging radiometer – Мультиспектральный изображающий радиометр.....	155
5.5.12. Hyperspectral radiometer – Гиперспектральный радиометр	155
5.5.13. Thermal imager – Тепловизор	155
5.5.14. Sounder – Зондирующий прибор	156
5.5.15. Tracking sensor – Следящий датчик.....	156
5.5.16. Step-tracking sensor – Пошагово-следящий датчик.....	156
5.5.17. Staring sensor – Сматрящий датчик	156
5.5.18. Step-stare sensor – Пошагово-сматрящий датчик	157
5.5.19. Scanning sensor – Сканирующий датчик.....	157
5.5.20. Across-track scanning sensor – Поперечно-сканирующий датчик	157
5.5.21. Along-track scanning sensor – Продольно-сканирующий датчик	158
5.6. Radiometric Accessories – Радиометрические принадлежности	159
5.6.1. Chopper – Прерыватель	159
5.6.2. Shutter – Затвор.....	159
5.6.3. Modulator – Модулятор	159

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

5.6.4. Diffuser – Рассеиватель.....	160
5.6.5. Reference panel – Эталонная отражательная панель.....	160
5.6.6. Integrating sphere – Интегрирующая сфера.....	161
5.6.7. Attenuator – Ослабитель	161
5.6.8. Diaphragm – Диафрагма.....	162
5.6.9. Aperture stop – Апертурная диафрагма	162
5.6.10. Field stop – Полевая диафрагма	162
5.6.11. Blend – Бленда	163
6. Characteristics of radiometric system components – Характеристики компонентов радиометрических систем	164
6.1. Characteristics of optical systems – Характеристики оптических систем.....	164
6.1.1. Point spread function – Функция рассеяния точки	164
6.1.2. Impulse function of optical system – Импульсная функция оптической системы	164
6.1.3. Spread circle – Кружок рассеяния	165
6.1.4. Encircled energy – Коэффициент концентрации энергии в круге.....	166
6.1.5. Ensquared energy – Коэффициент концентрации энергии в квадратной площадке.....	166
6.1.6. Line spread function – Функция рассеяния линии	167
6.1.7. Optical transfer function – Оптическая передаточная функция	167
6.1.8. Modulation transfer function – Модуляционная передаточная функция.	168
6.1.9. Field-of-view – Поле зрения	169
6.1.10. Field-of-regard – Поле обзора	169
6.1.11. Instantaneous field-of-view – Элементарное поле зрения.....	170
6.1.12. Footprint – Зона наблюдения.....	170
6.1.13. Focal length – Фокусное расстояние	170
6.1.14. Relative aperture – Относительное отверстие	171
6.1.15. Entrance pupil – Входной зрачок.....	171
6.1.16. Exit pupil – Выходной зрачок.....	172
6.2. Characteristics of spectral instruments – Характеристики спектральных приборов	172
6.2.1. Spectral bandwidth – Спектральный интервал	172
6.2.2. Instrument function – Аппаратная функция.....	173
6.2.3. Bandpass – Полоса пропускания	174
6.2.4. Slope of transmission – Крутизна пропускания	174
6.2.5. Out-of-band leakage – Внеполосовое пропускание.....	175
6.3. Parameters and characteristics of radiometric devices – Параметры и характеристики радиометрических устройств.....	176
6.3.1. Input – Входная величина.....	176
6.3.2. Output – Выходная величина	176
6.3.3. Response matrix – Матрица откликов	177
6.3.4. Electronic gain – Коэффициент усиления.....	177
6.3.5. Photocurrent – Фототок	178
6.3.6. Dark current – Темновой ток.....	178

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

6.3.7. Background signal – Фоновый сигнал	179
6.3.8. Responsivity – Чувствительность	179
6.3.9. Relative responsivity – Относительная чувствительность	180
6.3.10. Spectral responsivity – Спектральная чувствительность	180
6.3.11. Relative spectral responsivity – Относительная спектральная чувствительность	181
6.3.12. Peak spectral responsivity – Максимальная спектральная чувствительность	181
6.3.13. Effective value of radiant quantity – Эффективное значение энергетической величины	182
6.3.14. Response time – Время реакции	183
6.3.15. Time constant – Постоянная времени	183
6.3.16. Rise time – Время нарастания	184
6.3.17. Fall time – Время спада	184
6.3.18. Noise – Шум	185
6.3.19. Signal-to-noise ratio – Отношение сигнал/шум	185
6.3.20. Noise equivalent input – Эквивалентный входной сигнал шума	186
6.3.21. Noise equivalent power – Эквивалентная мощность шума	186
6.3.22. Noise equivalent irradiance – Эквивалентная облученность по шуму	187
6.3.23. Noise equivalent radiance – Эквивалентная энергетическая яркость по шуму	187
6.3.24. Noise equivalent difference of temperatures – Эквивалентная разность температур по шуму	188
6.3.25. Detectivity – Обнаружительная способность	188
6.3.26. Normalized detectivity – Удельная обнаружительная способность	189
6.3.27. Spectral distribution of normalized detectivity – Спектральное распределение удельной обнаружительной способности	190
6.3.28. Quantum efficiency – Квантовая эффективность	190
6.3.29. Generalized quantum efficiency – Обобщенная квантовая эффективность	191
6.3.30. Resolving power – Разрешающая способность	191
6.3.31. Spatial resolution – Пространственное разрешение	191
6.3.32. Spectral resolution – Спектральное разрешение	192
6.3.33. Temporal resolution – Временное разрешение	192
6.3.34. Optical crosstalk – Оптическая перекрестная помеха	193
6.3.35. Non-linearity of responsivity – Нелинейность чувствительности	193
6.3.36. Relative spatial responsivity – Зонная характеристика чувствительности	193
6.3.37. Relative angular responsivity – Относительная угловая чувствительность	194
REFERENCES IN ENGLISH	195
REFERENCES IN RUSSIAN	198
English Index	200
Russian Index	210

Authors' preface

The uniformity of terms and definitions in the area of radiometric calibration of spaceborne optoelectronic sensors is a critically important problem for international space programs, in particular, for space research undertaken in cooperation between the United States and the Russian Federation. The solution to this problem should be based upon the past experience gained by the leading industrial nations in the standardization of technical and scientific terminology, in our case – in optics, optical instrumentation, photometry, radiometry, light engineering, image processing, and optical radiation transfer.

Over the last 25 years, such important national and international agencies such as the Russian Committee for Standards and American National Institute of Standards and Technologies, National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), American National Standard Institute (ANSI), American Society for Testing and Materials (ASTM), Illuminating Engineering Society of North America (IESNA), Bureau International des Poids et Mesures (BIPM), International Organization for Standardization (ISO), and International Commission on Illumination (CIE) of International Electrotechnical Commission (IEC) have been involved in efforts made in the area of unification of technical and scientific, especially optical and radiometric, terminology.

In the former Soviet Union, the uniformity assurance of terminology in the areas of optics, photometry and radiometry had been made at the government level. The State Standard (GOST) document, *Physical Optics. Terms, Symbols, and Definitions of Basic Quantities* [R4]¹, which contains 87 standard definitions in physical optics, radiometry, photometry, and optical properties of surfaces and media, had been issued in 1978. An additional GOST document, *Photometry. Terms and Definitions* [R5], had been published with improved and more detailed definitions of radiometry and photometry terms in 1984. An important contribution towards the unification of Russian terminology in the above areas was made in 1974 with the publication in the USSR of the third edition of the *International Lighting Vocabulary* [R25].

There were practically no joint Russian-American space programs with optoelectronic sensors, a fact which has delayed the development of a unified Russian and American terminology in optical remote sensing.

In the U.S.A., in 1963, R. C. Jones proposed a nomenclature for radiometric and photometric quantities [35], which is still being used in near original form. A well-ordered nomenclature of optical properties of objects was introduced into the scientific community in 1967 [26]. In later years, serious contribution in the uniformity assurance

¹ References to literature in the Russian language are given as [R+#].

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

of terms and definitions in physical optics, photometry and radiometry were made by National Institute of Standards and Technology (NIST, until 1988 – National Bureau of Standards, NBS).

The efforts towards standardizing the terminology of optical measurements, illumination technology, optical properties of materials and media had been made previously, and are still being made, by The American National Standard Institute (ANSI), The American Society for Testing and Materials (ASTM), and The Illuminating Engineering Society of North America (IESNA).

It is the responsibility of ANSI to coordinate and manage voluntary efforts to standardize terminology in the private sector. It represents the interests of approximately 1000 companies, organizations, governmental agencies and international members. ANSI does not itself develop American National Standards but rather distributes the task among groups of experts.

ASTM standards are developed by volunteers from more than 100 countries. The team includes manufacturers, users and interested academic or governmental institutions and the standards are used on a voluntary basis.

The Internet thesauri developed by NASA and its affiliates have played an important role in creating a unity of terms and definitions for optical remote sensing and space-borne radiometric instrumentation.

A standard for international terminology in the areas of optical phenomenology, radiometry and optical measurement technology is *The International Lighting Vocabulary* [3] (which we used extensively to compile our dictionary), along with some other publications by the International Lighting Commission (CIE). The last (4th) edition of *The International Lighting Vocabulary* was published in 1987, and since then, several suggestions have been rejected in practice (e.g. *spectral radiance* rather than the suggested term *spectral concentration of radiance*), while other concepts believed to be rarely used in practice have proven to be quite customary in science terminology.

The current document “*Spaceborne Optoelectronic Sensors and their Radiometric Calibration. Terms and Definitions. Part 1. Calibration Techniques*” contains close to 500 terms and definitions from the optical remote sensing field and related areas. Currently, the document is under review by American experts. The second part of the document will cover terms and definitions relating to theoretical modeling, measurements, analysis of data and uncertainties in radiometric calibration of spaceborne optoelectronic sensors.

The main goal of the document was to develop a one-to-one correspondence between terms, which are used by the Russian and American specialists. Keeping in mind that this

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

is a compilation work, the authors did not attempt to introduce any new terms or concepts and did not redefine any existing ones. Comparative assessments of definitions from the Russian (Soviet) State Standards and ANSI, ISA, NASA glossaries and thesauri were given in doubtful cases. The decisive criteria were the practice of usage and the unambiguous understanding of terms and definitions by governmental agencies of both nations – NIST, NASA, NOAA etc. (in USA) and VNIIIOFI, GOI, VNIIM, VNIIFTRI, VNIIMS etc. (in Russian Federation). The significant part of definitions from Sections 1.1, 2.1, 2.2, 3, 4, 5.4, 6.3 were adopted from International Lighting Vocabulary [3].

This bilingual document consists of 6 chapters. The text is two-columned, each article is arranged in table-like form containing the mandatory fields “Term” (or “Quantity” for physical quantities), “Definition”, “Symbol” (for physical quantities), “Unit” (for physical quantities), as well as optional fields “Synonyms” and “Comments”. For physical quantities that have no unit, the dash was placed in appropriate field.

Document ends by two indices (English-Russian and Russian-English), and the lists of references in both English and Russian.

Предисловие авторов

Единство терминологии и определений в области оптико-электронных датчиков космического базирования представляет собой критически важную проблему для международных космических программ, в частности, для программ, выполняемых совместно Российской Федерацией и Соединенными Штатами Америки. Решение этой проблемы должно базироваться на опыте, накопленном ведущими промышленными странами в деле стандартизации научно-технической терминологии, в нашем случае – в оптике, оптическом приборостроении, фотометрии, радиометрии, светотехнике, обработке изображений и теории переноса оптического излучения.

За последние 25 крупнейшие национальные и международные учреждения, такие как Комитет стандартов Российской Федерации, американские Национальный институт стандартов и технологий (NIST), Национальное управление аэронавтики и космоса (NASA), Национальное управление по изучению океанов и атмосферы (NOAA), Американский национальный институт стандартов (ANSI), Американское общество по испытаниям и материалам, Светотехническое общество Северной Америки (IESNA), Международное бюро мер и весов (BIPM), Международная организация стандартизации (ISO), и Международная комиссия по освещенности (CIE) Международной электротехнической комиссии (IEC) предпринимали усилия по унификации научно-технической терминологии, в том числе в оптике и радиометрии.

В Советском Союзе обеспечение единства терминологии в оптике, радиометрии и фотометрии осуществлялось на государственном уровне. Государственный общесоюзный стандарт (ГОСТ) «Физическая оптика. Термины, буквенные обозначения и определения основных величин» [R4]¹, содержащий 87 определений по физической оптике, радиометрии, фотометрии и оптическим свойствам поверхностей и сред, был выпущен в 1978 году. Дополнительный ГОСТ «Фотометрия. Термины и определения» [R5], содержащий более детальные определения терминов радиометрии и фотометрии, был опубликован в 1984 году. Важным вкладом в дело унификации терминологии на русском языке была публикация в Советском Союзе третьего издания «Международного электротехнического словаря» в 1974 году [R25].

Совместных российско-американских космических проектов с оптико-электронными датчиками практически не было, что задержало разработку единой

¹ Ссылки на литературу на русском языке даются в виде [R + номер ссылки в списке русской литературы].

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

русско- и англоязычной терминологии в области оптического дистанционного зондирования.

В 1963 году Р. Джонс (R. Jones) предложил в США номенклатуру радиометрических и фотометрических величин [35], которая до сих пор используется практически в неизменном виде. Тщательно продуманная номенклатура оптических характеристик была введена в научную среду в 1967 году [26]. Впоследствии серьезный вклад в достижение единобразия терминологии и определений в физической оптике, радиометрии и фотометрии был внесен Национальным Институтом Стандартов и Технологии США (NIST, до 1988 года – Национальное Бюро Стандартов, NBS).

Усилия по стандартизации терминологии по оптическим измерениям, светотехнике и оптическим свойствам сред и материалов делались ранее и продолжают делаться Американским национальным институтом стандартов (ANSI), Американским обществом по испытаниям и материалам (ASTM) и Светотехническим обществом Северной Америки (IESNA).

Американский национальный институт стандартов координирует добровольно выполняемые работы по стандартизации терминологии в промышленности. Он представляет интересы примерно 1000 компаний, организаций, государственных и международных учреждений. Сам ANSI стандарты не разрабатывает, а распределяет эту работу по группам экспертов.

Стандарты ASTM разработаны добровольцами из более чем 100 стран. Над ними работали представители промышленности, научные и государственные учреждения. Однако, применение этих стандартов не является обязательным.

Важную роль в создании единой терминологии и единства определений в оптическом дистанционном зондировании и радиометрической аппаратуры космического базирования играют помещаемые на Интернете тезаурусы и толковые словари, разработанные НАСА и сотрудничающими с ней организациями.

Международный стандарт по терминологии в областях оптической феноменологии, радиометрии и методов оптических измеренийдается «Международным электротехническим словарем» [3], который широко использовался для составления нашего словаря, а также некоторыми публикациями Международной светотехнической комиссии. К сожалению, последнее, четвертое издание Международного электротехнического словаря было опубликовано еще в 1987 году. С тех пор какие-то принятые ранее термины были отвергнуты практикой (например, вместо термина «концентрация спектральной яркости» используется

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART I. CALIBRATION TECHNIQUES

термин «спектральная плотность яркости»), а некоторые редко используемые термины стали вполне привычными; наконец, появились и новые термины.

Настоящий документ «Оптико-электронные датчики космического базирования и их радиометрическая калибровка. Термины и определения. Часть I. Методы калибровки» содержит около 500 терминов и определений по оптическому дистанционному зондированию Земли и смежным областям. Вторую часть планируется посвятить терминологии и определениям в области анализа данных, моделирования и оценивания погрешностей при радиометрической калибровке оптико-электронных датчиков космического базирования.

Основная цель документа состояла в выработке взаимно-однозначной англо-русской терминологии для использования специалистами США и России. Имея в виду компилятивный характер работы, авторы не вводили новые термины и концепции и не давали новых определения уже существующим терминам. При принятии решений производилось сопоставление определений из российских (или советских) стандартов и из глоссариев и тезаурусов ANSI, ISA и NASA и других официальных документов. Окончательным критерием для выбора термина или определения служили практика его использования и однозначное толкование государственными учреждениями обеих стран – NIST, NASA, NOAA и т. д. (в США) и ВНИИОФИ, ГОИ, ВНИИМ, ВНИИФТРИ, ВНИИМС и т. д. (в Российской Федерации). Значительная часть определений из разделов 1.1, 2.1, 2.2, 3, 4, 5.4, 6.3 заимствована из Международного Светотехнического Словаря [3].

Настоящий двуязычный документ состоит из шести глав. Текст представлен в двух колонках и размещен в табличной структуре, содержащей обязательные поля «Термин» (или «Величина» для физических величин), «Определение», «Обозначение» (для физических величин), «Единица» (для физических величин), а также необязательные – «Синонимы» и «Примечания». Для физических величин, не имеющих единицы измерения, в соответствующем поле ставился прочерк.

Документ завершается двумя индексами (англо-русским и русско-английским) и списками литературы на английском и русском языках.

1. Basic concepts – Основные положения

1.1. Electromagnetic radiation – Электромагнитное излучение

Term

Electromagnetic radiation

Definition

1. Emission or transfer of energy in the form of electromagnetic waves with the associated photons.
2. These electromagnetic waves or these photons. [3]

Термин

Электромагнитное излучение

Определение

1. Испускание или распространение электромагнитных волн (фотонов).
2. Электромагнитные волны (фотоны). [3]

1.1.1. Amplitude – Амплитуда

Term

Amplitude

Definition

The maximum value of a harmonically oscillating quantity.

Термин

Амплитуда

Определение

Наибольшее значение величины, совершающей гармонические колебания.

1.1.2. Frequency – Частота

Quantity

Frequency

Symbol

ν

Definition

The number of oscillation cycles per unit of time.

Unit

Hz, s^{-1}

Величина

Частота

Обозначение

ν

Определение

Число периодов колебаний в единицу времени.

Единица

Гц, s^{-1}

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART I. CALIBRATION TECHNIQUES**

1.1.3. Wavelength – Длина волны

Quantity
Wavelength

Symbol

λ

Definition

Distance in the direction of propagation of a periodic wave between two successive points at which the phase is same [3].

Unit
m, μ m, nm, \AA

Comments

1. The wavelength in medium is equal to the wavelength *in vacuo* divided by the refractive index of the medium. Unless otherwise stated, values of wavelength are generally those in air. The refractive index of standard air (for spectroscopy: $t = 15^\circ\text{C}$, $p = 101325 \text{ Pa}$) lies between 1.00027 and 1.00029 for visible radiations [3].
2. If ν is the frequency and c is the phase velocity in a medium, then the wavelength in that medium is

$$\lambda = \frac{c}{\nu}.$$

Величина
Длина волны

Обозначение

λ

Определение

Расстояние в направлении распространения периодической волны между двумя последовательными точками с одной и той же фазой колебания [3].

Единица
м, мкм, нм, \AA

Примечания

Длина волны в среде равна отношению длины волны в вакууме к показателю преломления среды. Обычно значения длин волн даются для воздуха.

Показатель преломления стандартного воздуха (для спектроскопии: $t = 15^\circ\text{C}$, $p = 101325 \text{ Па}$) лежит в пределах между 1,00027 и 1,00029 для видимого излучения [3].

2. Если ν – частота, c – фазовая скорость в среде, то длина волны в этой среде

$$\lambda = \frac{c}{\nu}$$

1.1.4. Wavenumber – Волновое число

Quantity
Wavenumber

Symbol

σ

Definition

The reciprocal of the wavelength [3]:

Величина
Волновое число

Обозначение

σ

Определение

Величина, обратная длине волны [3]:

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

$$\sigma = \frac{1}{\lambda}.$$

$$\sigma = \frac{1}{\lambda}.$$

Unit
 m^{-1} , cm^{-1}

Единица
 м^{-1} , см^{-1}

Synonyms

Wave number (GB)

Синонимы

Repetency

1.1.5. Optical radiation – Оптическое излучение

Term

Optical radiation

Definition

Electromagnetic radiation at wavelengths between the region of transition to X-rays ($\lambda \approx 1 \text{ nm}$) and the region of transition to radio waves ($\lambda \approx 1 \text{ mm}$) [3].

Термин

Оптическое излучение

Определение

Электромагнитное излучение с длинами волн, лежащими в пределах между областью перехода к рентгеновским лучам ($\lambda \approx 1 \text{ нм}$) и областью перехода к радиоволнам ($\lambda \approx 1 \text{ мм}$) [3].

1.1.6. Radiometry – Радиометрия

Term

Radiometry

Definition

Measurement of the quantities associated with radiant energy [3].

Synonyms

Optical radiometry

Термин

Радиометрия

Определение

Измерение величин, связанных с энергией излучения [3].

Синонимы

Оптическая радиометрия

1.1.7. Visible radiation – Видимое излучение

Term

Visible radiation

Definition

Any optical radiation capable of causing a visual sensation directly [3].

Термин

Видимое излучение

Определение

Оптическое излучение, которое может непосредственно вызывать зрительное

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Synonyms

Light

Comments

There are no precise limits for the spectral range of visible radiation since they depend upon the amount of radiant power reaching the retina and the responsivity of the observer. The lower limit is generally taken between 360 nm and 400 nm and the upper limit between 760 nm and 830 nm. [3]

ощущение [3].

Синонимы

Свет

Примечания

Не существует точных пределов спектрального диапазона видимого излучения, так как они зависят от мощности достигающего ретины излучения и чувствительности наблюдателя. За нижний предел обычно принимается диапазон от 360 нм до 400 нм, а за верхний предел диапазон между 760 нм и 830 нм. [3]

1.1.8. Infrared radiation – Инфракрасное излучение

Term

Infrared radiation

Definition

Optical radiation for which the wavelengths are longer than those for visible radiation [3].

Synonyms

IR (abbreviation)

Comments

There are several classifications of subranges for the infrared radiation. In optical radiometry, the range between 780 nm and 1 mm is subdivided into [3]:
IR-A 780 nm ... 1400 nm
IR-B 1.4 μm ... 3 μm
IR-C 3 μm ... 1mm.

Another classification is used in electro – optical engineering and remote sensing:

Near infrared

(NIR) (0.75...0.76) ... (1.2...1.5) μm
Short-wave infrared

(SWIR) (1.2...1.5) ... 3 μm
Mid-wave infrared

Термин

Инфракрасное излучение

Определение

Оптическое излучение, у которого длины волн больше видимого излучения [3].

Синонимы

ИК (сокращение)

Примечания

Существует несколько классификаций поддиапазонов для инфракрасного излучения. В оптической радиометрии диапазон между 780 нм и 1 мм подразделяется на поддиапазоны [3]:
ИК-А 780 нм ... 1400 нм
ИК-В 1,4 мкм ... 3 мкм
ИК-С 3 мкм ... 1 мм.

Другая классификация используется в оптоэлектронике и дистанционном зондировании:

Ближний ИК

диапазон (0,75...0,76) ... (1,2...1,5) мкм
Коротковолновый
ИК диапазон (1,2...1,5) ... 3 мкм

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

(MWIR)	3 ... (5...6) μm	Средневолновый
Long-wave infrared		ИК диапазон
(LWIR)	(5...6) ... (14...15) μm	Длинноволновый
Far infrared		ИК диапазон
(FIR)	(14...15) ... (300...100) μm	Дальний ИК
Submillimeter	100... 1000 μm	диапазон (14...15) ... (30...100) μm
		Субмиллиметровый
		ИК диапазон 100 ... 1000 μm

1.1.9. Ultraviolet radiation – Ультрафиолетовое излучение

Term

Ultraviolet radiation

Definition

Optical radiation for which the wavelengths are shorter than those for visible radiation [3].

Synonyms

UV (abbreviation)

Comments

In optical radiometry, the range between 100 and 400 nm is subdivided into:

UV-A 315.....400 nm

UV-B 280.....315 nm

UV-C 100.....280 nm [3].

In remote sensing the UV range is usually subdivided into:

Far ultraviolet (FUV) 0.01 ... 0.10 μm

Middle ultraviolet (MUV) 0.20 ... 0.30 μm

Near ultraviolet (NUV) 0.30 ... 0.38 μm .

Termin

Ультрафиолетовое излучение

Определение

Оптическое излучение, у которого длины волн меньше длин видимого излучения [3].

Синонимы

Ультрафиолет, УФ (сокращение)

Примечания

В оптической радиометрии, диапазон между 100 нм и 400 нм разбивается на поддиапазоны:

УФ-А 315 400 нм

УФ-В 280..... 315 нм

УФ-С 100..... 280 нм [3].

В дистанционном зондировании УФ диапазон обычно подразделяется на:

Дальний УФ 0,01 ... 0,10 μm

Средний УФ 0,20 ... 0,30 μm

Ближний УФ 0,30 ... 0,38 μm .

1.1.10. Monochromatic radiation – Монохроматическое излучение

Term

Monochromatic radiation

Definition

Radiation characterized by a single

Termin

Монохроматическое излучение

Определение

Излучение, характеризуемое одной

frequency. In practice, radiation of a very small range of frequencies which can be described by stating a single frequency [3].

Comments

The wavelength in air or *in vacuo* is also used to characterize a monochromatic radiation [3].

частотой. На практике, излучение очень малого диапазона частот, которое может быть описано установлением одной частоты [3].

Примечания

Для описания монохроматического излучения используется также длина волны, измеренная в воздухе или вакууме [3].

1.1.11. Spectrum – Спектр

Term

Spectrum (of a radiation)

Definition

Display or specification of the monochromatic components of the radiation considered [3].

Comments

There are line spectra, continuous spectra, and spectra exhibiting both these characteristics [3].

Термин

Спектр (излучения)

Определение

Воспроизведение или определение монохроматических составляющих рассматриваемого излучения [3].

Примечания

Существуют линейчатые спектры, сплошные спектры и спектры, в которых представлены обе эти характеристики [3].

1.1.12. Spectral line – Спектральная линия

Term

Spectral line

Definition

1. Monochromatic radiation emitted or absorbed in a transition between two energy levels.
2. Its manifestation in a spectrum [3].

Термин

Спектральная линия

Определение

1. Монохроматическое излучение, испускаемое или поглощаемое при переходе между двумя энергетическими уровнями.
2. Отображение данного перехода в спектре [3].

1.1.13. Point source – Точечный источник

Term

Point source

Definition

Source of radiation the dimensions of which are small enough, compared with the distance between the source and the irradiated surface, for them to be neglected in calculations and measurements [3].

Термин

Точечный источник

Определение

Источник излучения, размеры которого настолько малы по сравнению с расстоянием до облучаемой поверхности, что ими можно пренебречь в вычислениях и измерениях [3].

1.1.14. Isotropic point source – Изотропный точечный источник

Term

Isotropic point source

Definition

A point source, which emits uniformly in all directions [3].

Synonyms

Uniform point source

Термин

Изотропный точечный источник

Определение

Точечный источник, излучающий равномерно во всех направлениях [3].

Синонимы

1.2. Optical remote sensing – Оптическое дистанционное зондирование

Term

Optical remote sensing

Definition

A collection of methods and means of measuring the electromagnetic radiation from remote objects for obtaining quantitative or qualitative information about these objects.

Термин

Оптическое дистанционное зондирование

Определение

Совокупность методов и средств измерения, использующих электромагнитное излучение удаленных объектов для получения количественной или качественной информации об этих объектах.

1.2.1. Active system – Активная система

Term

Active system

Definition

A remote sensing system that sends the energy of its own source towards the object and derives the measurement information from its reflection or scattering by this object.

Термин

Активная система

Определение

Система дистанционного зондирования, посылающая энергию собственного источника в направлении объекта и извлекающая измерительную информацию из ее отражения или рассеяния этим объектом.

1.2.2. Passive system – Пассивная система

Term

Passive system

Definition

A remote sensing system that measures the energy emitted by the object or energy from natural sources reflected or scattered by the object.

Термин

Пассивная система

Определение

Система дистанционного зондирования, регистрирующая излучение, испущенное объектом, или излучение естественных источников, отраженное или рассеянное этим объектом.

1.2.3. Pointing – Наведение

Term

Pointing

Definition

Orienting the instrument's field-of-view in such a way that it encompasses the observed object.

Synonyms

Boresighting

Термин

Наведение

Определение

Ориентация поля зрения прибора таким образом, чтобы оно охватывало объект наблюдения.

Синонимы

Прицеливание

Визирование

1.2.4. Sounding – Зондирование

Term

Sounding

Definition

Determination of vertical distribution of temperature, pressure, humidity, chemical composition and other atmospheric parameters, using an active or passive system.

Термин

Зондирование

Определение

Определение пространственного распределения температуры, влажности, давления, химического состава и других параметров среды с помощью активной или пассивной системы.

1.2.5. Oblique sensing – Наклонное зондирование

Term

Oblique sensing

Definition

Sensing in which the optical axis of the sensor is not perpendicular to the Earth's surface.

Термин

Наклонное зондирование

Определение

Зондирование, при котором оптическая ось датчика не перпендикулярна земной поверхности.

1.2.6. Surveying – Обзор

Term

Surveying

Definition

The process of sequential re-orientation of the instrument's field-of-view required for observing or measuring objects' radiative properties over a spatial domain whose size exceeds the field of view.

Термин

Обзор

Определение

Процесс последовательной переориентации поля зрения прибора, осуществляемый для наблюдения или измерения характеристик излучения объектов в области пространства, размеры которой превышают размеры поля зрения.

1.2.7. Monitoring – Мониторинг

Term

Monitoring

Definition

Systematic evaluation over time of some quantity giving information about outer and near-Earth space, oceans and land.

Термин

Мониторинг

Определение

Систематическое, в течение продолжительного времени, оценивание какой-либо величины, дающей информацию о космическом или околоземном пространстве, океанах или суше.

1.2.8. Sensor – Датчик

Term

Sensor

Definition

An optoelectronic device sensitive to optical radiation and providing at its output the information about this radiation.

Synonyms

Comments

1. The given definition is applicable in the context of this document. When referred to other instrumentation areas, the sensor can measure acoustic signals, thermal effects, ionizing radiations, etc.
2. The term is used when there is no need to elaborate the principle of operation or any specific features of the device or its characteristics.

Термин

Датчик

Определение

Оптико-электронное устройство, чувствительное к оптическому излучению и выдающее на выходе информацию об этом излучении.

Синонимы

Сенсор

Примечания

1. Приведенное определение применимо в рамках контекста данного документа. Для других областей техники в этом случае может указываться чувствительность к акустическому воздействию, тепловому воздействию, радиации и т. д.
2. Термин применяется в тех случаях, когда не требуется раскрывать принцип действия или какие-то особенности работы устройства или его характеристики.

1.2.9. Sensor optical system – Оптическая система датчика

Term

Sensor optical system

Definition

A collection of optical elements designed to enable the sensor to determine the characteristics of the scene, object, or radiation source.

Comments

The optical system may include an objective lens, protective windows, mirrors, blends, radiation filters, scanning system's or photodetector's optical elements and serve to determine the angular, spatial, spectral, and temporal characteristics.

Термин

Оптическая система датчика

Определение

Совокупность оптических элементов обеспечивающая определение сенсором характеристик сцены, объекта, или источника излучения.

Примечания

Оптическая система может включать в себя объектив, защитные окна, зеркала, бленды, фильтры излучения, оптические элементы системы сканирования и фотоприемного устройства и служить для определения угловых, пространственных, спектральных и временных характеристик.

1.2.10. Image – Изображение

Term

Image

Definition

The spatial distribution of irradiance in the output of the optical system that is formed by a mapping of the radiances from the distribution of objects (sources) in the field of view of the optical system.

Synonyms

Picture

Comments

1. The incoming radiation may be undergoing spectral, temporal, spatial, or other filtration.
2. The irradiance spatial distribution can be recorded on photographic film or other media, or converted into digital form (array

Термин

Изображение

Определение

Пространственное распределение энергетической освещенности на выходе оптической системы, сформированное при помощи отображения энергетических яркостей от распределения объектов и источников в поле зрения оптической системы.

Синонимы

Картина

Примечания

1. Падающее излучение может быть подвергнуто спектральной, временной, пространственной или иной фильтрации.
2. Пространственное распределение энергетической освещенности может

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

of pixels) by means of optoelectronic devices.

быть записано на фотографическую, пленку или другой носитель, или преобразовано в цифровую форму (массив пикселов) при помощи оптоэлектронных устройств.

1.2.11. Imaging – Обработка изображений

Term

Imaging

Definition

Producing, recording, storing, transforming, transmitting and displaying images.

Термин

Обработка изображений

Определение

Получение, запись, хранение, преобразование, передача и воспроизведение изображений.

1.2.12. Imaging sensor – Датчик изображений

Term

Imaging sensor

Definition

Optical or optoelectronic device for obtaining images.

Термин

Датчик изображений

Определение

Оптико-электронное устройство, служащее для получения изображений.

1.2.13. Stereoscopic imaging – Получение стереоизображений

Term

Stereoscopic imaging

Definition

Formation of images using two or more optical systems that are separated in space to simulate human binocular vision and then provide 3-dimensional information about the imaged scene, source or object.

Synonyms

Stereo imaging

Термин

Получение стереоизображений

Определение

Формирование изображений двумя или более оптическими системами, разнесенными в пространстве, чтобы имитировать бинокулярное зрение человека.

Синонимы

Получение стереоскопических изображений

1.2.14. Staring – Смотрение

Term

Staring

Definition

An observation mode under which the sensor's field-of-view is stationary with respect to the fixed-in-the-sensor coordinate system.

Термин

Смотрение

Определение

Способ наблюдения, при котором поле зрения датчика неподвижно относительно системы координат, связанной с датчиком.

1.2.15. Tracking – Слежение

Term

Tracking

Definition

An observation mode under which the field-of-view of the imaging sensor is continuously oriented in such a way that one and the same object or scene is observed during a given time interval.

Термин

Слежение

Определение

Способ наблюдения, при котором поле зрения датчика изображений непрерывно ориентируется таким образом, чтобы одна и та же сцена или объект наблюдались в течение заданного интервала времени.

1.2.16. Step-staring – Пошаговое смотрение

Term

Step-staring

Definition

An observation mode under which the direction of the sensor's field-of-view axis is changed sequentially (stepwise) by a given angular value with stops to stare in each given direction during a given time interval.

Comments

The field-of-view is moved by turning the sensor or some device built into the sensor

Термин

Пошаговое смотрение

Определение

Способ наблюдения, при котором последовательно (шаг за шагом) изменяется направление оси поля зрения датчика на заданную угловую величину с остановками для смотрения в каждом данном направлении в течение заданного интервала времени.

Примечания

Изменение ориентации поля зрения осуществляется вращением самого

or by both.

датчика, или того или иного устройства, встроенного в датчик, или обоими способами.

1.2.17. Step-tracking – Пошаговое слежение

Term

Step-tracking

Definition

An observation mode in remote sounding in which the direction of the sensor's field-of-view axis is changed sequentially (stepwise) by a given angular value with "stops" for tracking each new scene during a given time interval.

Термин

Пошаговое слежение

Определение

Способ наблюдения в дистанционном зондировании, при котором последовательно (шаг за шагом) изменяется направление оси поля зрения датчика на заданную угловую величину - с "остановками" для отслеживания каждой новой сцены в течение заданного интервала времени.

1.2.18. Scanning – Сканирование

Term

Scanning

Definition

Surveying a specified region of space by changing the spatial position of the sensor's field-of-view according to a specified procedure.

Comments

The spatial position of the field-of-view can be changed by a mirror or prism system built into the sensor, or by changing the angular position of the sensor, or by moving the carrier on which the sensor is located.

Термин

Сканирование

Определение

Обследование заданной области пространства посредством изменения пространственного положения поля зрения датчика по заданному закону.

Примечания

Изменение пространственного положения поля зрения может осуществляться встроенной в датчик зеркальной или призменной системой, либо за счет изменения углового положения самого датчика, либо за счет перемещения носителя, на котором расположен датчик.

1.2.19. Target – Цель

Term

Target

Definition

The object of observation.

Термин

Цель

Определение

Объект наблюдения.

1.2.20. Signature – Сигнатура

Term

Signature

Definition

The totality of spatial-temporal and spectral characteristics of an object, representing the object's individual "portrait", which makes it possible to distinguish this object from other objects.

Термин

Сигнатура

Определение

Совокупность пространственно-временных и спектральных характеристик объекта, составляющих его "портрет", по которому его можно отличать от других объектов

1.2.21. Platform – Платформа

Term

Platform

Definition

An aerospace vehicle carrying a radiometric device or system.

Термин

Платформа

Определение

Летательный аппарат, несущий радиометрическое устройство или систему.

1.2.22. Zenith angle – Зенитный угол

Term

Zenith angle

Definition

The angle between the direction to the zenith point and the direction to the object being observed.

Comments

Varies from 0° to 180°.

Термин

Зенитный угол

Определение

Угол между направлением на точку зенита и направлением на наблюдаемый объект.

Примечания

Меняется в пределах от 0° до 180°

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART I. CALIBRATION TECHNIQUES

1.2.23. Nadir angle – Надирный угол

Term

Nadir angle

Definition

The angle between the direction to the nadir point and the direction to the object being observed.

Comments

Varies from 0° to 180°.

Термин

Надирный угол

Определение

Угол между направлением на точку надира и направлением на наблюдаемый объект.

Примечания

Изменяется в пределах от 0° до 180°

1.2.24. Geostationary orbit – Геостационарная орбита

Term

Geostationary orbit

Definition

An orbit of a satellite that stays in a fixed position relative to the surface of the Earth.

Synonyms

Geosynchronous orbit

Термин

Геостационарная орбита

Определение

Орбита спутника, остающегося в неизменном положении относительно поверхности Земли.

Синонимы

Геосинхронная орбита

1.3. Radiometric calibrations for remote sensing – Радиометрические калибровки для дистанционного зондирования

1.3.1. Radiometric calibration – Радиометрическая калибровка

Term

Radiometric calibration

Definition

A determination of radiometric instrument performance in the spatial, spectral, and temporal domains in a series of measurements, in which its output is related to the true value of the measured

Термин

Радиометрическая калибровка

Определение

Определение характеристик радиометрического средства измерений в пространственной, спектральной и временной областях в серии измерений, в которых выходной сигнал средства

radiometric quantity.

Comments

Radiometric calibration is performed with the use of standard sources or standard detectors.

измерений ставится в соответствие с истинным значением измеряемой радиометрической величины.

Примечания

Радиометрическая калибровка проводится с использованием эталонных источников или приемников излучения.

1.3.2. Radiometric measurement system – Радиометрическая измерительная система

Term

Radiometric measurement system

Definition

A collection of mechanical, optical, and electronic devices enabling the measurement of radiometric quantities.

Термин

Радиометрическая измерительная система

Определение

Совокупность оптико-механических и электронных устройств, обеспечивающих измерение радиометрических величин.

1.3.3. Measurement equation – Уравнение измерения

Term

Measurement equation

Definition

A relationship that connects the output signal of an optoelectronic sensor system to the radiometric quantities being measured.

Термин

Уравнение измерения

Определение

Уравнение, связывающее выходной сигнал измерительной системы с оптико-электронным датчиком и измеряемую радиометрическую величину.

Synonyms

Comments

1. The relationship may depend, in part, upon responsivity and/or spectral, spatial, angular and other characteristics of the sensor system.
2. A measurement equation can be written

Синонимы

Измерительное уравнение

Примечания

1. Уравнение может зависеть от чувствительности и/или спектральных, пространственных, временных, угловых и других характеристик измерительной систему

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

in explicit or implicit form, in vector or tensor form, where it could be decomposed on the system of equations.

2. Уравнение измерения может быть записано в явном или неявном виде, в векторной или тензорной форме, т.е. распадаться на систему уравнений.

1.3.4. Calibration coefficients – Калибровочные коэффициенты

Term

Calibration coefficients

Definition

The collection of values determined during the radiometric calibration, which, upon being substituted into the measurement equation, allows one to calculate the value of the input quantity from the measured values of the output quantity.

Термин

Калибровочные коэффициенты

Определение

Совокупность величин, определяемых при радиометрической калибровке, которые при подстановке в измерительное уравнение, позволяют по измеренным значениям выходной величины определить значение входной величины.

1.3.5. Calibration equation – Уравнение калибровки

Term

Calibration equation

Definition

The measurement equation written for radiometric calibration and serving for determination of calibration coefficients.

Synonyms

Термин

Уравнение калибровки

Определение

Уравнение измерения, записанное для радиометрической калибровки и служащее для определения калибровочных коэффициентов.

Синонимы

Калибровочное уравнение

1.3.6. Radiometric calibration system – Радиометрическая калибровочная система

Term

Radiometric calibration system

Definition

Термин

Радиометрическая калибровочная система

Определение

Radiometric measurement system enabling the performance of radiometric calibrations.

Synonym

Radiometric calibration facility

Радиометрическая измерительная система, обеспечивающих выполнение радиометрических калибровок.

Синонимы

Радиометрическая калибровочная установка

1.3.7. Radiometric standard – Радиометрический эталон

Term

Radiometric standard

Definition

A source or a detector of radiation intended to define, realize, conserve or reproduce a radiometric quantity to serve as a reference.

Comments

Blackbody, absolute radiometer, stars, Sun, and Moon can be used as radiometric standards.

Термин

Радиометрический эталон

Определение

Источник или приемник излучения, предназначенный для установления, реализации, хранения или воспроизведения какой-либо радиометрической величины.

Примечания

Черное тело, абсолютный радиометр, звезды, Солнце, Луна могут быть использованы в качестве радиометрических эталонов.

1.3.8. Primary radiometric standard – Первичный радиометрический эталон

Term

Primary radiometric standard

Definition

Radiometric standard that is designed or widely acknowledged as having the highest metrological qualities without having to compare with other standards.

Термин

Первичный радиометрический эталон

Определение

Радиометрический эталон, который установлен или широко признан как обладающий наивысшими метрологическими свойствами без сравнения с другими эталонами.

1.3.9. Secondary radiometric standard – Вторичный радиометрический эталон

Term

Secondary radiometric standard

Definition

Radiometric standard that reproduces a radiometric quantity by comparison with a primary radiometric standard.

Термин

Вторичный радиометрический эталон

Определение

Радиометрический эталон, который воспроизводит радиометрическую величину путем сравнения с первичным радиометрическим эталоном.

1.3.10. Background radiation – Фоновое излучение

Term

Background radiation

Definition

Thermal radiation of structural elements of a radiometric system, environment, and objects within the sensor's field-of-view registered together with the radiation of the target and hampering the measurement of its radiation characteristics.

Synonyms

Background

Термин

Фоновое излучение

Определение

Тепловое излучение элементов конструкции радиометрической системы, окружающей среды и объектов в поле зрения датчика, регистрируемое наряду с излучением цели и затрудняющее измерения характеристик ее излучения.

Синонимы

Фон

1.3.11. Low background conditions – Низкоуровневый фон

Term

Low background condition

Definition

Radiometric measurement conditions, under which the sensor observes a background radiation that corresponds to the blackbody radiation at a temperature below 77 K (the liquid nitrogen temperature).

Термин

Низкоуровневый фон

Определение

Условия радиометрических измерений, при которых датчик визирует фон, излучение которого соответствует излучению черного тела при температуре ниже 77 K (температура жидкого азота).

1.3.12. Medium background conditions – Среднеуровневый фон

Term

Medium background condition

Definition

Radiometric measurement conditions, under which the sensor observes a background radiation that corresponds to the blackbody radiation at a temperature in the range between ambient and 77 K (liquid nitrogen temperature).

Термин

Среднеуровневый фон

Определение

Условия радиометрических измерений, при которых датчик визирует фон, излучение которого соответствует излучению черного тела при температуре от комнатной до 77 К (температура жидкого азота).

1.3.13. Ground calibration – Наземная калибровка

Term

Ground calibration

Definition

A calibration of a radiometric instrument performed before its launching into orbit aboard a platform.

Synonyms

Pre-flight calibration

Pre-launch calibration

Термин

Наземная калибровка

Определение

Калибровка радиометрического устройства, проводимая на Земле перед выводом платформы с устройством на рабочую орбиту.

Синонимы

Достартовая калибровка

Предполетная калибровка

1.3.14. Onboard calibration – Бортовая калибровка

Term

Onboard calibration

Definition

A calibration of a radiometric instrument performed on an airborne or spaceborne platform.

Synonyms

In-flight calibration

Post-launch calibration

Comments

Термин

Бортовая калибровка

Определение

Калибровка радиометрического прибора, проводимая на борту платформы.

Синонимы

Полетная калибровка

Послестартовая калибровка

Примечания

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

It is carried out using onboard standards such as blackbodies, solar diffuse reflecting panels, celestial or artificial bodies, Earth's test sites, outer space, etc.

Проводится с использованием бортовых эталонов, таких как черные тела, солнечные диффузно отражающие панели, естественных или искусственных небесных тела, тестовые зоны Земли, космическое пространство и т. д.

1.3.15. Test site – Тестовая зона

Term

Test site

Definition

A region on the surface of the Earth of known and stable radiometric characteristics used for a post-launch calibration of radiometric devices.

Термин

Тестовая зона

Определение

Область земной поверхности с известными и стабильными характеристиками, используемая для послестартовой калибровки радиометрических устройств.

1.3.16. Test target – Тестовый объект

Term

Test target

Definition

A natural or artificial object with known characteristics, which is used in a calibration or verification of characteristics of a radiometric device.

Термин

Тестовый объект

Определение

Естественный или искусственный объект с известными характеристиками, используемый для калибровки или проверки характеристик радиометрического устройства.

1.3.17. Calibration attitude maneuver – Ориентационный маневр для калибровки

Term

Calibration attitude maneuver

Definition

A maneuver of a space platform that allows

Термин

Ориентационный маневр для калибровки

Определение

Маневр космической платформы,

the instruments to view a test site, an object, and/or outer space.

позволяющий наводить датчик на тестовую зону, объект и/или космическое пространство.

1.3.18. Vicarious calibration – Замещающая калибровка

Term

Vicarious calibration

Definition

A post-launch radiometric calibration performed with the use of Earth test sites or objects on the Earth surface.

Термин

Замещающая калибровка

Определение

Послестартовая радиометрическая калибровка, проводимая с использованием тестовых зон или объектов на земной поверхности.

1.3.19. Validation – Проверка

Term

Validation

Definition

Process of assessing, by independent means, the degree of correspondence between the value of the radiometric quantity derived from the output signal of a calibrated radiometric device and the actual value of this quantity.

Термин

Проверка

Определение

Процесс оценивания независимыми средствами степени соответствия между значением радиометрической величины, полученной из выходного сигнала откалиброванного радиометрического устройства и истинным значением этой величины.

1.3.20. Verification – Проверка

Term

Verification

Definition

Establishment by a metrological authority of a measuring instrument's uncertainties to ascertain the instrument's usability.

Comments

In some cases, the verification does not aim

Термин

Проверка

Определение

Определение метрологическим органом погрешностей средства измерений для установления его пригодности к применению.

Примечания

В отдельных случаях при поверке

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

at finding actual values of uncertainties, but only checks if those values fall within admissible limits.

вместо определения значения погрешностей проверяют, находятся ли они в допускаемых пределах.

1.3.21. Uniformity of measurements - Единство измерений

Term

Uniformity of measurements

Definition

A status of measurements when their results are expressed in legally-accepted units, on condition that the values of the results of measurements are reproduced from the national or international standards, and measurement uncertainties are clearly stated.

Термин

Единство измерений

Определение

Состояние измерений, при котором их результаты выражены в узаконенных единицах, при условии, что результаты измерений привязаны к национальным или международным эталонам, а погрешности измерений четко установлены.

1.3.22. Traceability of measurements – Привязка к эталонам

Term

Traceability of measurements

Definition

Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties.

Термин

Привязка к эталонам

Определение

Свойство результата измерений или значения эталона, заключающееся в возможности установления его связи с соответствующими эталонами, обычно международными или национальными, посредством непрерывной цепи сличений, имеющих установленные погрешности.

Synonyms

Comments

1. The concept is often expressed by the adjective traceable.
2. The unbroken chain of comparisons is called a traceability chain.

Синонимы

Прослеживаемость измерений

Примечания

1. Данное понятие часто выражается с применением прилагательного “прослеживаемый”.
2. Непрерывная цепь сличений называется, цепью привязки к эталонам (цепью передачи размера единицы от эталона).

2. Quantities, Symbols, and Units – Величины, символы и единицы измерения

2.1. Geometrical quantities – Геометрические величины

2.1.1. Solid angle – Телесный угол

Quantity
Solid angle

Symbol

Ω

Definition

The part of space limited by the surface formed by a set of straight lines connecting one common point (vertex) and all points of a closed curve not passing through the vertex.

Unit

sr

Comments

1. The solid angle measure is an area cut by the conical surface generatrices on the sphere of unit radius with the center at the vertex.
2. It follows from Comment 2 that for a non-unitary sphere the solid angle subtended by the closed curve C is numerically equal to the ratio of the area cut by the angle generatrices on the sphere of radius R with the center at the vertex, to the squared radius of the sphere.
3. The solid angle is a dimensionless quantity, but from the practical considerations it is ascribed a unit of measurement called steradian (sr), which

Величина
Телесный угол

Обозначение

Ω

Определение

Часть пространства, ограниченная поверхностью, образуемой множеством прямых линий, проходящих через одну общую точку (вершина телесного угла) и все точки замкнутой кривой, не проходящей через вершину телесного угла.

Единица

ср

Примечания

1. Мерой телесного угла является площадь, вырезаемая образующими конической поверхности на сфере единичного радиуса с центром в вершине.
2. Из Примечания 2 следует, что для неединичной сферы телесный угол, опирающийся на замкнутую кривую C , численно равен отношению площади, вырезаемой образующими угла на сфере радиуса R , описанной вокруг вершины, к квадрату радиуса сферы.
3. Телесный угол является безразмерной величиной, но из практических соображений ему приписывают единицу измерения – стерadian (ср), численно

is numerically equal to the solid angle with the vertex at the sphere center and with generatrices cutting on the sphere the area equal to that of a square whose side is equal to sphere radius.

равную телесному углу с вершиной в центре сферы, образующие которого вырезают на поверхности сферы площадь равную площади квадрата со стороной, равной радиусу сферы.

$$\Omega = S/R^2$$

4. In the spherical system of coordinates, an element of solid angle around the direction (θ, ϕ) is equal to the area element of the unit sphere:

$$d\Omega = \sin \theta d\theta d\phi,$$

where θ is the polar angle and ϕ is the azimuth.

Integrating, we get 4π for the solid angle of a sphere and 2π for a hemisphere, while the solid angle with the vertex angle Θ_0 is equal to $2\pi(1-\cos(\Theta_0/2))$.

4. В сферической системе координат элемент телесного угла вокруг направления (θ, ϕ) равен элементу площади сферы единичного радиуса:

$$d\Omega = \sin \theta d\theta d\phi,$$

где θ – полярный угол, ϕ – азимутальный угол.

Интегрируя, получим, телесный угол сферы – 4π , полусферы – 2π , телесный угол с углом при вершине Θ_0 , вырезающий на сфере круг – $2\pi(1-\cos(\Theta_0/2))$.

2.1.2. Projected area – Площадь проекции

Quantity
Projected area

Symbol

$$A_p$$

Величина
Площадь проекции

Обозначение

$$A_p$$

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Definition

Area of the rectilinear parallel projection of a closed surface area on the plane perpendicular to the projection direction:

$$A_p = \int_A \cos \theta dA,$$

where θ is the angle between the projection direction and the normal \mathbf{n} to the surface A .

Определение

Площадь прямоугольной параллельной проекции замкнутого участка поверхности на плоскость, перпендикулярную направлению проецирования:

$$A_p = \int_A \cos \theta dA,$$

где θ – угол между направлением проецирования и нормальным вектором \mathbf{n} к поверхности A .

Unit
 m^2

Comments

Rectilinear parallel projection allows construction of a two-dimensional outline of a three-dimensional body, which is required, for example, for estimation of shading areas. Thus, the outline of a globe is a circle whose radius equals the globe's radius.

Единица
 м^2

Примечания

Прямоугольное параллельное проектирование позволяет построить двумерный силуэт трехмерного тела, что требуется, например, при оценке площадей затенения. Так, силуэт шара – это круг с радиусом, равным радиусу шара.

2.1.3. Projected solid angle – Проекция телесного угла

Quantity

Projected solid angle

Symbol

$$\Omega_p$$

Definition

The rectilinear projection of the spherical area cut by the generatrices of a solid angle

Величина

Проекция телесного угла

Обозначение

$$\Omega_p$$

Определение

Прямоугольная проекция участка сферы с центром в вершине телесного угла,

(with the vertex at the sphere center) onto the base of the hemisphere of radius R perpendicular to the projection direction:

$$\Omega_p = \int_{\Omega_p} d\Omega_p = \int_{\Omega} \cos \Theta d\Omega = S_p / R^2$$

where Θ is the angle between the normal to the projection plane and the direction to the solid angle element $d\Omega$.

вырезаемого образующими телесного угла, на основание полусфера радиуса R , перпендикулярной направлению проецирования:

$$\Omega_p = \int_{\Omega_p} d\Omega_p = \int_{\Omega} \cos \Theta d\Omega = S_p / R^2$$

где Θ – угол между нормалью к плоскости проектирования и направлением на элементарный телесный угол $d\Omega$.

Unit
sr

Единица
ср

2.1.4. Geometric extent – Геометрический фактор

Quantity
Geometric extent (of a beam of rays)

Symbol

G

Definition

Integral taken over the whole beam of the elementary quantity dG defined by the equivalent formulae

Величина
Геометрический фактор (пучка лучей)

Обозначение

G

Определение

Интеграл, взятый по всему пучку лучей излучения от малой величины dG , которая определяется следующей формулой:

$$dG = \frac{dA \cdot \cos \theta \cdot dA' \cdot \cos \theta'}{l^2} = dA \cdot \cos \theta \cdot d\Omega,$$

where dA and dA' are the area of two sections of an element of the beam separated by the distance l ; θ and θ' are the angles between the direction of that elementary beam and the normals to dA and dA' ; $d\Omega = \frac{dA' \cdot \cos \theta'}{l^2}$ is the solid angle subtended by dA' from a point on dA [3].

Unit
 $\text{m}^2 \text{sr}$

Synonyms

Throughput

Etendue

Acceptance

Geometrical conductance

$$dG = \frac{dA \cdot \cos \theta \cdot dA' \cdot \cos \theta'}{l^2} = dA \cdot \cos \theta \cdot d\Omega,$$

где dA и dA' - площади двух сечений элементарного пучка лучей, отстоящих друг от друга на расстоянии l ; θ и θ' - это углы между направлением элементарного пучка и нормалями к dA и dA' , $d\Omega = \frac{dA' \cdot \cos \theta'}{l^2}$ есть телесный угол, опирающийся на площадь dA' , с вершиной в какой-либо точке на площади dA [3].

Единица
 $\text{м}^2 \text{ср}$

Синонимы

Светопроводность

2.1.5. Optical extent – Оптический фактор

Quantity

Optical extent (of a beam of rays)

Symbol

G_o

Definition

The product of geometrical extent G of a beam propagating through nonscattering medium and the squared refractive index n of that medium:

$$G_o = G n^2.$$

Unit
 $\text{m}^2 \text{sr}$

Synonyms

Optical conductance

Величина

Оптический фактор (пучка лучей)

Обозначение

G_o

Определение

Произведение геометрического фактора G пучка лучей, распространяющегося в нерассеивающей среде, на квадрат показателя преломления n этой среды:

$$G_o = G n^2.$$

Единица
 $\text{м}^2 \text{ср}$

Синонимы

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

Comments

The optical extent is constant for a beam propagating through non-scattering media with a constant refractive index.

Примечания

Оптический фактор постоянен для пучка лучей, распространяющихся в нерассеивающих средах с постоянным показателем преломления.

2.2. Radiometric quantities – Радиометрические величины

2.2.1. Radiant flux – Поток излучения

Quantity

Radiant flux

Symbol

Φ_e, Φ, P

Definition

Power emitted, transmitted or received in the form of radiation [3].

Unit

W

Synonyms

Radiant power

Величина

Поток излучения

Обозначение

Φ_e, Φ, P

Определение

Мощность, излучаемая, передаваемая или принимаемая в виде излучения [3].

Единица

Вт

Синонимы

Мощность излучения

Лучистый поток

2.2.2. Photon flux – Поток фотонов

Quantity

Photon flux

Symbol

Φ_p, Φ

Definition

Quotient of the number of photons dN_p emitted, transmitted, or received in an element of time dt , by that element [3]:

$$\Phi_p = \frac{dN_p}{dt}.$$

Величина

Поток фотонов

Обозначение

Φ_p, Φ

Определение

Отношение числа фотонов dN_p излученных, переданных или принятых за малый интервал времени dt , к этому интервалу [3]:

$$\Phi_p = \frac{dN_p}{dt}.$$

Unit

Единица

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

s^{-1}

Comments

For a beam of radiation whose spectral distribution is $\frac{d\Phi_e(\lambda)}{d\lambda}$ or $\frac{d\Phi_e(\nu)}{d\nu}$, the photon flux Φ_p is

$$\Phi_p = \int_0^{\infty} \frac{d\Phi_e(\lambda)}{d\lambda} \cdot \frac{\lambda}{hc_0} d\lambda =$$

$$\int_0^{\infty} \frac{d\Phi_e(\nu)}{d\nu} \cdot \frac{1}{h\nu} d\nu$$

$h = (6.6260755 \pm 0.0000040) \times 10^{-34}$ J·s is Planck's constant; $c_0 = 299792458 \text{ m}\cdot\text{s}^{-1}$ is speed of light in vacuum [3].

c^{-1}

Примечания

Для пучка излучения, у которого спектральное распределение равно $\frac{d\Phi_e(\lambda)}{d\lambda}$ или $\frac{d\Phi_e(\nu)}{d\nu}$ Φ_p определяется по формуле

$$\Phi_p = \int_0^{\infty} \frac{d\Phi_e(\lambda)}{d\lambda} \cdot \frac{\lambda}{hc_0} d\lambda =$$

$$\int_0^{\infty} \frac{d\Phi_e(\nu)}{d\nu} \cdot \frac{1}{h\nu} d\nu$$

где $h = (6.6260755 \pm 0.0000040) \times 10^{-34}$ Дж · с, а c_0 – скорость света в вакууме равная $299792458 \text{ м}\cdot\text{с}^{-1}$ [3].

2.2.3. Radiant energy – Энергия излучения

Quantity

Radiant energy

Symbol

Q_e, Q

Definition

Time integral of the radiant flux Φ_e over a given duration Δt [3]:

$$Q_e = \int_{\Delta t} \Phi_e dt.$$

Unit

J

Величина

Энергия излучения

Обозначение

Q_e, Q

Определение

Интеграл по времени от потока излучения Φ_e за данный отрезок времени Δt [3]:

$$Q_e = \int_{\Delta t} \Phi_e dt.$$

Единица

Дж

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

2.2.4. Number of photons – Число фотонов

Quantity

Number of photons

Symbol

N_p, Q_p, Q

Definition

Time integral of the photon flux Φ_p over a given duration Δt [3]:

Величина

Число фотонов

Обозначение

N_p, Q_p, Q

Определение

Интеграл по времени от потока фотонов Φ_p за данный отрезок времени Δt [3]:

$$N_p = \int_{\Delta t} \Phi_p dt$$

$$N_p = \int_{\Delta t} \Phi_p dt$$

Unit

Единица

-

-

2.2.5. Radiant exposure – Энергетическая экспозиция

Quantity

Radiant exposure

Symbol

H_e, H

Definition

Quotient of dQ_e , radiant energy incident on an element of the surface containing the point over the given duration, by the area dA of that element [3]:

Величина

Энергетическая экспозиция

Обозначение

H_e, H

Определение

Отношение dQ_e энергии излучения, падающей на элемент поверхности, содержащий данную точку, в течение данной длительности к площади dA этого элемента [3]:

$$H_e = \frac{dQ_e}{dA}.$$

$$H_e = \frac{dQ_e}{dA}$$

Unit

$\text{J m}^{-2}, \text{W s m}^{-2}$

Единица

$\text{Дж м}^{-2}, \text{Вт с м}^{-2}$

Comments

Equivalent definition: Time integral of E_e , irradiance at the given point, over the given

Примечания

Эквивалентное определение: Интеграл по времени от E_e , облученности в

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

duration Δt [3]:

$$H_e = \int_{\Delta t} E_e(t) dt .$$

данной точке за данную длительность Δt [3]:

$$H_e = \int_{\Delta t} E_e(t) dt .$$

2.2.6. Photon exposure – Фотонная экспозиция

Quantity

Photon exposure

Symbol

$$H_p, H$$

Definition

Quotient of dQ_p , number of photons incident on an element of the surface containing the point over the given duration, by the area dA of that element [3]:

$$H_p = \frac{dQ_p}{dA} .$$

Unit
 m^{-2}

Equivalent definition: Time integral of E_p , photon irradiance at the given point, over the given duration Δt [3]:

$$H_p = \int_{\Delta t} E_p(t) dt .$$

Величина

Фотонная экспозиция

Обозначение

$$H_p, H$$

Определение

Отношение dQ_p числа фотонов, падающих на элемент поверхности, содержащий данную точку, в течение данной длительности к площади dA этого элемента [3]:

$$H_p = \frac{dQ_p}{dA} .$$

Единица
 m^{-2}

Эквивалентное определение: Интеграл по времени от E_p , фотонной облученности в данной точке за данную длительность Δt [3]:

$$H_p = \int_{\Delta t} E_p(t) dt .$$

2.2.7. Radiant intensity – Сила излучения

Quantity

Radiant intensity

Symbol

$$I_e, I$$

Definition

Quotient of the radiant flux $d\Phi_e$ leaving the

Величина

Сила излучения

Обозначение

$$I_e, I$$

Определение

Отношение потока излучения $d\Phi_e$

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

source and propagated in the element of solid angle $d\Omega$ containing the given direction, by the element of solid angle [3]:

$$I_e = \frac{d\Phi_e}{d\Omega}.$$

Unit
W sr⁻¹

исходящего от источника и распространяющегося внутри малого телесного угла $d\Omega$, содержащего рассматриваемое направление, к этому телесному углу [3]:

$$I_e = \frac{d\Phi_e}{d\Omega}.$$

Единица
Вт ср⁻¹

2.2.8. Photon intensity – Фотонная сила излучения

Quantity
Photon intensity

Symbol

$$I_p, I$$

Definition

Quotient of the photon flux $d\Phi_p$ leaving the source and propagated in the element of solid angle $d\Omega$ containing the given direction, by the element of solid angle [3]:

$$I_p = \frac{d\Phi_p}{d\Omega}$$

Unit
s⁻¹sr⁻¹

Величина
Фотонная сила излучения

Обозначение

$$I_p, I$$

Определение

Отношение потока фотонов $d\Phi_p$, исходящего от источника и распространяющегося внутри малого телесного угла $d\Omega$, содержащего рассматриваемое направление, к этому телесному углу [3]:

$$I_p = \frac{d\Phi_p}{d\Omega}$$

Единица
с⁻¹ср⁻¹

2.2.9. Radiance – Энергетическая яркость

Quantity
Radiance

Symbol

$$L_e, L$$

Величина
Энергетическая яркость

Обозначение

$$L_e, L$$

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Definition

Quantity defined by the formula

$$L_e = \frac{d\Phi_e}{dA \cdot \cos \theta \cdot d\Omega},$$

where $d\Phi_e$ is the radiant flux transmitted by an elementary beam passing through the given point and propagating in the solid angle $d\Omega$ containing the given direction; dA is the area of a section of that beam containing the given point; θ is the angle between the normal to that section and the direction of the beam [3].

Unit
 $\text{W m}^{-2} \text{sr}^{-1}$

Comments

1. For an area dA of the surface of a source, since the intensity dI of dA in the given direction is $dI_e = d\Phi_e / d\Omega$, then an equivalent formula is

$$L_e = \frac{dI_e}{dA \cdot \cos \theta}$$

- a form mostly used in illuminating engineering.

2. For an area dA of a surface receiving the beam, since the irradiance dE_e produced by the beam on dA is $dE_e = d\Phi / dA$, then an equivalent formula is

Определение

Величина, определяемая по следующей формуле

$$L_e = \frac{d\Phi_e}{dA \cdot \cos \theta \cdot d\Omega},$$

где $d\Phi_e$ – поток излучения, переносимый в элементарном пучке лучей, проходящем через данную точку и распространяющемся в телесном угле $d\Omega$, содержащем данное направление; dA – площадь сечения данного пучка, проходящего через данную точку; θ – угол между нормалью к данному сечению и направлением пучка лучей [3].

Единица
 $\text{Вт м}^{-2} \text{ср}^{-1}$

Примечания

1. При отсчете площади dA на поверхности источника, ввиду того, что сила излучения dI элементарной площади dA у источника в данном направлении есть $dI_e = d\Phi_e / d\Omega$, тогда эквивалентная формула для энергетической яркости будет иметь следующий вид –

$$L_e = \frac{dI_e}{dA \cdot \cos \theta}$$

Эта форма записи чаще всего используется в светотехнике.

2. При отсчете площади dA на поверхности приемника излучения, ввиду того, что облученность dE_e , создаваемая данным пучком лучей на площади dA определяется по формуле $dE_e = d\Phi / dA$, эквивалентной формулой для энергетической яркости будет

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

$$L_e = \frac{dE_e}{d\Omega \cdot \cos \theta}$$

- a form useful when the source has no surface (e. g., the sky, the plasma of a discharge).

3. Making use of the geometric extent dG of the elementary beam, since

$dG = dA \cos \theta d\Omega$, then an equivalent formula is

$$L_e = \frac{dE_e}{dG \cdot \cos \theta}$$

Эта форма записи формулы для энергетической яркости удобна в том случае, когда источник излучения не имеет поверхности (например, небесный свод, плазма разряда).

3. Используя формулу для геометрического фактора dG элементарного пучка лучей - $dG = dA \cos \theta d\Omega$, можно записать следующую эквивалентную формулу для энергетической яркости:

$$L_e = d\Phi_e / dG .$$

4. Since the optical extent $G \cdot n^2$ (see Comments to 2.1.5) is invariant, then the quantity $L \cdot n^2$ is also invariant along the path of the beam if the losses by absorption, reflection and diffusion are taken as zero. That quantity is called the basic radiance.

5. The relation between $d\Phi_e$ and L_e given in the formulae above is sometimes called basic law of radiometry [3]:

$$d\Phi_e = L_e \frac{dA \cdot \cos \theta \cdot dA' \cdot \cos \theta'}{l^2} = \\ L_e \cdot dA \cdot \cos \theta \cdot d\Omega = \\ L_e \cdot dA' \cdot \cos \theta' \cdot d\Omega'$$

6. Comments 1 - 5 can be adapted to definitions of photon radiance (2.2.10), spectral radiance (2.3.9), and spectral photon radiance (2.3.10).

4. Так как оптический фактор $G \cdot n^2$ (см. Примечания к 2.1.5) инвариантен, величина $L \cdot n^2$ также инвариантна на всем пути пучка, если потери на поглощение, отражение и рассеяние принимаются равными нулю. Данная величина называется приведенной энергетической яркостью.

5. Соотношения между величинами $d\Phi_e$ и L_e , приведенные в выше написанных формулах иногда называют основным законом радиометрии и фотометрии [3]:

$$d\Phi_e = L_e \frac{dA \cdot \cos \theta \cdot dA' \cdot \cos \theta'}{l^2} = \\ L_e \cdot dA \cdot \cos \theta \cdot d\Omega = \\ L_e \cdot dA' \cdot \cos \theta' \cdot d\Omega'$$

6. Примечания 1 - 5 могут быть применены к определениям фотонной яркости (2.2.10), спектральной плотности энергетической яркости (2.3.9) и спектральной плотности фотонной яркости (2.3.10).

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

2.2.10. Photon radiance – Фотонная яркость

Quantity
Photon radiance

Symbol

L_p, L

Definition

Quantity defined by the formula

$$L_p = \frac{d\Phi_p}{dA \cdot \cos \theta \cdot d\Omega},$$

where $d\Phi_p$ is the photon flux transmitted by an elementary beam passing through the given point and propagating in the solid angle $d\Omega$ containing the given direction; dA is the area of a section of that beam containing the given point; θ is the angle between the normal to that section and the direction of the beam [3].

Unit
 $\text{s}^{-1} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$

Comments

See Comments for 2.3.9.

Величина
Фотонная яркость

Обозначение

L_p, L

Определение

Величина, определяемая по следующей формуле

$$L_p = \frac{d\Phi_p}{dA \cdot \cos \theta \cdot d\Omega},$$

где $d\Phi_p$ – поток фотонов, переносимый в элементарном пучке лучей, проходящем через данную точку и распространяющемся в телесном углу $d\Omega$, содержащем данное направление; dA – площадь сечения данного пучка, проходящего через данную точку; θ - угол между нормалью к данному сечению и направлением пучка лучей [3].

Единица
 $\text{с}^{-1} \text{м}^{-2} \text{ср}^{-1}$

Примечания

См. Примечания к 2.3.9.

2.2.11. Irradiance – Облученность

Quantity
Irradiance

Symbol

E_e, E

Definition

Quotient of the radiant flux $d\Phi_e$ incident on an element of the surface containing the point, by the area dA of that element [3]:

Величина
Облученность

Обозначение

E_e, E

Определение

Отношение потока излучения $d\Phi_e$, падающего на элемент поверхности, содержащий рассматриваемую точку, к площади dA этого элемента [3]:

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

$$E_e = \frac{d\Phi_e}{dA}.$$

Unit
 $\text{W} \cdot \text{m}^{-2}$

Synonyms

Comments

Equivalent definition: Integral, taken over the hemisphere visible from the given point, of the expression $L_e \cos \theta d\Omega$, where L_e is the radiance at the given point in the various directions of the incident elementary beams of solid angle $d\Omega$, and θ is the angle between any of these beams and the normal to the surface at the given point [3]:

$$E_e = \frac{d\Phi_e}{dA}.$$

Единица
 $\text{Вт} \cdot \text{м}^{-2}$

Синонимы

Энергетическая освещенность

Примечания

Эквивалентное определение: Интеграл, взятый по полусфере, видимой из данной точки, от выражения $L_e \cos \theta d\Omega$, где L_e – энергетическая яркость падающих в данную точку по различным направлениям элементарных пучков лучей, распространяющихся в телесных углах $d\Omega$, и θ – угол между направлениями данных пучков и нормалью к поверхности в данной точке [3]:

$$E_e = \frac{d\Phi_e}{dA} = \int_{2\pi \text{ sr}} L_e \cdot \cos \theta \cdot d\Omega.$$

$$E_e = \frac{d\Phi_e}{dA} = \int_{2\pi \text{ sr}} L_e \cdot \cos \theta \cdot d\Omega.$$

2.2.12. Photon irradiance – Фотонная облученность

Quantity

Photon irradiance

Symbol

$$E_p, E$$

Definition

Quotient of the photon flux $d\Phi_p$ incident on an element of the surface containing the point, by the area dA of that element [3]:

$$E_p = \frac{d\Phi_p}{dA}.$$

Unit
 $\text{s}^{-1} \cdot \text{m}^{-2}$

Comments

Equivalent definition: Integral, taken over

Величина

Фотонная облученность

Обозначение

$$E_p, E$$

Определение

Отношение потока фотонов $d\Phi_p$, падающего на элемент поверхности, содержащий рассматриваемую точку, к площади dA этого элемента [3]:

$$E_p = \frac{d\Phi_p}{dA}.$$

Единица
 $\text{s}^{-1} \cdot \text{м}^{-2}$

Примечания

Эквивалентное определение: Интеграл,

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

the hemisphere visible from the given point, of the expression $L_p \cos \theta d\Omega$, where L_p is the photon radiance at the given point in the various directions of the incident elementary beams of solid angle $d\Omega$, and θ is the angle between any of these beams and the normal to the surface at the given point:

$$E_p = \frac{d\Phi_p}{dA} = \int_{2\pi sr} L_p \cdot \cos \theta \cdot d\Omega.$$

взятый по полусфере, видимой из данной точки, от выражения $L_p \cos \theta d\Omega$, где L_p – фотонная яркость падающих в данную точку по различным направлениям элементарных пучков лучей, распространяющихся в телесных углах $d\Omega$, и θ - угол между направлениями данных пучков и нормалью к поверхности в данной точке

$$E_p = \frac{d\Phi_p}{dA} = \int_{2\pi sr} L_p \cdot \cos \theta \cdot d\Omega.$$

2.2.13. Radiant exitance – Энергетическая светимость

Quantity
Radiant exitance

Symbol
 M_e, M

Definition

Quotient of the radiant flux $d\Phi_e$ leaving an element of the surface containing the point, by the area dA of that element [3]:

$$M_e = \frac{d\Phi_e}{dA}.$$

Unit
 $\text{W} \cdot \text{m}^{-2}$

Comments

Equivalent definition: Integral, taken over the hemisphere visible from the given point, of the expression $L_e \cos \theta d\Omega$, where L_e is the radiance at the given point in the various directions of the emitted elementary beams of solid angle $d\Omega$, and θ is the angle between any of these beams and the normal to the surface at the given point [3]:

Quantity
Энергетическая светимость

Symbol
 M_e, M

Definition

Отношение потока излучения $d\Phi_e$, исходящего от элемента поверхности, который содержит данную точку, к площади этого элемента dA [3]:

$$M_e = \frac{d\Phi_e}{dA}.$$

Unit
 $\text{Вт} \cdot \text{м}^{-2}$

Comments

Эквивалентное определение: Интеграл, взятый в пределах полупространства, видимого из данной точки от выражения $L_e \cos \theta d\Omega$, где L_e – энергетическая яркость в данной точке элементарных пучков лучей, которые распространяются в телесных углах $d\Omega$ для различных направлений, и θ - угол между направлениями данных пучков лучей и нормалью к поверхности в

данной точке [3]:

$$M_e = \frac{d\Phi_e}{dA} = \int_{2\pi sr} L_e \cdot \cos\theta \cdot d\Omega .$$

$$M_e = \frac{d\Phi_e}{dA} = \int_{2\pi sr} L_e \cdot \cos\theta \cdot d\Omega .$$

2.2.14. Photon exitance – Фотонная светимость

Quantity

Photon exitance

Symbol

M_p, M

Definition

Quotient of the photon flux $d\Phi_p$ leaving an element of the surface containing the point, by the area dA of that element [3]:

$$M_p = \frac{d\Phi_p}{dA} .$$

Unit

$s^{-1} \cdot m^{-2}$

Comments

Equivalent definition: Integral, taken over the hemisphere visible from the given point, of the expression $L_p \cos\theta d\Omega$, where L_p is the photon radiance at the given point in the various directions of the emitted elementary beams of solid angle $d\Omega$, and θ is the angle between any of these beams and the normal to the surface at the given point [3]:

$$M_p = \frac{d\Phi_p}{dA} = \int_{2\pi sr} L_p \cdot \cos\theta \cdot d\Omega .$$

Величина

Фотонная светимость

Обозначение

M_p, M

Определение

Отношение потока фотонов $d\Phi_p$ исходящего от элемента поверхности, который содержит данную точку, к площади этого элемента dA [3]:

$$M_p = \frac{d\Phi_p}{dA} .$$

Единица

$s^{-1} \cdot m^{-2}$

Примечания

Эквивалентное определение: Интеграл, взятый в пределах полупространства, видимого из данной точки от выражения $L_p \cos\theta d\Omega$, где L_p – фотонная яркость в данной точке элементарных пучков лучей, которые распространяются в телесных углах $d\Omega$ для различных направлений, и θ – угол между направлениями данных пучков лучей и нормалью к поверхности в данной точке [3]:

$$M_p = \frac{d\Phi_p}{dA} = \int_{2\pi sr} L_p \cdot \cos\theta \cdot d\Omega .$$

2.3. Spectral radiometric quantities – Спектральные радиометрические величины

2.3.1. Spectral radiant flux – Спектральная плотность потока излучения

Quantity

Spectral radiant flux

Symbol

$$\Phi_{e\lambda}, \Phi_\lambda, P_\lambda$$

Definition

The ratio of the radiant flux $d\Phi_e(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$\Phi_{e\lambda} = \frac{d\Phi_e(\lambda)}{d\lambda}.$$

Unit
 W m^{-1}

Synonyms

Spectral concentration of radiant flux
Spectral density of radiant flux
Spectral density of radiant power
Spectral concentration of radiant power

Quantity

Спектральная плотность потока излучения

Symbol

$$\Phi_{e\lambda}, \Phi_\lambda, P_\lambda$$

Definition

Отношение потока излучения $d\Phi_e(\lambda)$, взятой в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$\Phi_{e\lambda} = \frac{d\Phi_e(\lambda)}{d\lambda}.$$

Unit
 Вт м^{-1}

Synonyms

Спектральный поток излучения
Спектральная плотность мощности излучения
Спектральная мощность излучения

2.3.2. Spectral photon flux – Спектральная плотность фотонного потока

Quantity

Spectral photon flux

Symbol

$$\Phi_{p\lambda}, \Phi_\lambda$$

Quantity

Спектральная плотность фотонного потока

Symbol

$$\Phi_{p\lambda}, \Phi_\lambda$$

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Definition

The ratio of the photon flux $d\Phi_p(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$\Phi_{p\lambda} = \frac{d\Phi_p(\lambda)}{d\lambda}.$$

Unit
 $\text{s}^{-1} \text{m}^{-1}$

Synonyms

Spectral concentration of photon flux
Spectral density of photon flux

Определение

Отношение фотонного потока $d\Phi_p(\lambda)$, взятого в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$\Phi_{p\lambda} = \frac{d\Phi_p(\lambda)}{d\lambda}.$$

Единица
 $\text{s}^{-1} \text{m}^{-1}$

Синонимы

Спектральный фотонный поток

2.3.3. Spectral radiant energy – Спектральная плотность энергии излучения

Quantity

Spectral radiant energy

Symbol

$Q_{e\lambda}, Q_\lambda$

Definition

The ratio of the radiant energy $dQ_e(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$Q_{e\lambda} = \frac{dQ_e(\lambda)}{d\lambda}.$$

Unit
 J m^{-1}

Synonyms

Spectral concentration of radiant energy
Spectral density of radiant energy

Величина

Спектральная плотность энергии излучения

Обозначение

$Q_{e\lambda}, Q_\lambda$

Определение

Отношение энергии излучения $dQ_e(\lambda)$, взятой в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$Q_{e\lambda} = \frac{dQ_e(\lambda)}{d\lambda}.$$

Единица
 Дж м^{-1}

Синонимы

Спектральная энергия излучения

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

2.3.4. Spectral number of photons – Спектральная плотность числа фотонов

Quantity

Spectral number of photons

Symbol

$$N_{p\lambda}, Q_{p\lambda}, Q_\lambda$$

Definition

The ratio of the photon number $dN_p(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$N_{p\lambda} = \frac{dN_p(\lambda)}{d\lambda}.$$

Unit

$$\text{m}^{-1}$$

Synonyms

Spectral concentration of number of photons

Spectral density of number of photons

Величина

Спектральная плотность числа фотонов

Обозначение

$$N_{p\lambda}, Q_{p\lambda}, Q_\lambda$$

Определение

Отношение числа фотонов $dN_p(\lambda)$, взятого в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$N_{p\lambda} = \frac{dN_p(\lambda)}{d\lambda}.$$

Единица

$$\text{M}^{-1}$$

Синонимы

Спектральное число фотонов

2.3.5. Spectral radiant exposure – Спектральная плотность энергетической экспозиции

Quantity

Spectral radiant exposure

Symbol

$$H_{e\lambda}, H_\lambda$$

Definition

The ratio of the radiant exposure $dH_e(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

Величина

Спектральная плотность энергетической экспозиции

Обозначение

$$H_{e\lambda}, H_\lambda$$

Определение

Отношение энергетической экспозиции $dH_e(\lambda)$, взятой в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

$$H_{e\lambda} = \frac{dH_e(\lambda)}{d\lambda}.$$

Unit
 J m^{-3} , Ws m^{-3}

Synonyms

Spectral concentration of radiant exposure
Spectral density of radiant exposure

$$H_{e\lambda} = \frac{dH_e(\lambda)}{d\lambda}.$$

Единица
 Дж м^{-3} , Вт с м^{-3}

Синонимы

Спектральная энергетическая экспозиция

2.3.6. Spectral photon exposure – Спектральная плотность фотонной экспозиции

Quantity

Spectral photon exposure

Symbol

$$H_{p\lambda}, H_\lambda$$

Definition

The ratio of the photon exposure $dH_p(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$H_{p\lambda} = \frac{dH_p(\lambda)}{d\lambda}.$$

Unit
 m^{-3}

Synonyms

Spectral concentration of photon exposure
Spectral density of photon exposure

Величина

Спектральная плотность фотонной экспозиции

Обозначение

$$H_{p\lambda}, H_\lambda$$

Определение

Отношение фотонной экспозиции $dH_p(\lambda)$, взятой в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$H_{p\lambda} = \frac{dH_p(\lambda)}{d\lambda}.$$

Единица
 м^{-3}

Синонимы

Спектральная фотонная экспозиция

2.3.7. Spectral radiant intensity – Спектральная плотность силы излучения

Quantity

Spectral radiant intensity

Величина

Спектральная плотность силы излучения

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

Symbol

$I_{e\lambda}, I_\lambda$

Definition

The ratio of the radiant intensity $dI_e(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$I_{e\lambda} = \frac{dI_e(\lambda)}{d\lambda}.$$

Unit

$\text{W m}^{-1}\text{sr}^{-1}$

Synonyms

Spectral concentration of radiant intensity

Spectral density of radiant intensity

Обозначение

$I_{e\lambda}, I_\lambda$

Определение

Отношение силы излучения $dI_e(\lambda)$, взятой в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$I_{e\lambda} = \frac{dI_e(\lambda)}{d\lambda}.$$

Единица

$\text{Вт м}^{-1}\text{ср}^{-1}$

Синонимы

Спектральная сила излучения

2.3.8. Spectral photon intensity – Спектральная плотность фотонной силы излучения

Quantity

Spectral photon intensity

Symbol

$I_{p\lambda}, I_\lambda$

Definition

The ratio of the photon intensity $dI_p(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$I_{p\lambda} = \frac{dI_p(\lambda)}{d\lambda}.$$

Unit

$\text{s}^{-1}\text{sr}^{-1}\text{m}^{-1}$

Synonyms

Spectral concentration of photon intensity

Spectral density of photon intensity

Величина

Спектральная плотность фотонной силы излучения

Обозначение

$I_{p\lambda}, I_\lambda$

Определение

Отношение фотонной силы излучения $dI_p(\lambda)$, взятого в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$I_{p\lambda} = \frac{dI_p(\lambda)}{d\lambda}.$$

Единица

$\text{с}^{-1}\text{ср}^{-1}\text{м}^{-1}$

Синонимы

Спектральная фотонная сила излучения

2.3.9. Spectral radiance – Спектральная плотность энергетической яркости

Quantity

Spectral radiance

Symbol

$L_{e\lambda}, L_\lambda$

Definition

The ratio of the radiance $dL_e(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$L_{e\lambda} = \frac{dL_e(\lambda)}{d\lambda}.$$

Unit

$\text{W m}^{-3} \text{sr}^{-1}$

Synonyms

Spectral concentration of radiance
Spectral density of radiance

Comments

See Comments for 2.2.9.

Величина

**Спектральная плотность
энергетической яркости**

Обозначение

$L_{e\lambda}, L_\lambda$

Определение

Отношение энергетической яркости $dL_e(\lambda)$, взятой в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$L_{e\lambda} = \frac{dL_e(\lambda)}{d\lambda}.$$

Единица

$\text{Вт м}^{-3} \text{ср}^{-1}$

Синонимы

Спектральная яркость

Примечания

См. Примечания к 2.2.9.

2.3.10. Spectral photon radiance – Спектральная плотность фотонной яркости

Quantity

Spectral photon radiance

Symbol

$L_{p\lambda}, L_\lambda$

Definition

The ratio of the photon radiance $dL_p(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

Величина

**Спектральная плотность фотонной
яркости**

Обозначение

$L_{p\lambda}, L_\lambda$

Определение

Отношение фотонной яркости $dL_p(\lambda)$, взятой в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

$$L_{p\lambda} = \frac{dL_p(\lambda)}{d\lambda}$$

Unit
 $\text{s}^{-1}\text{m}^{-3}\text{sr}^{-1}$

Synonyms

Spectral concentration of photon radiance
Spectral density of photon radiance

Comments

See Comments for 2.2.9.

$$L_{p\lambda} = \frac{dL_p(\lambda)}{d\lambda}$$

Единица
 $\text{с}^{-1}\text{м}^{-3}\text{ср}^{-1}$

Синонимы

Спектральная фотонная яркость

Примечания

См. Примечания к 2.2.9.

2.3.11. Spectral irradiance – Спектральная плотность облученности

Quantity

Spectral irradiance

Symbol

$E_{e\lambda}, E_\lambda$

Definition

The ratio of the irradiance $dE_e(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$E_{e\lambda} = \frac{dE_e(\lambda)}{d\lambda}.$$

Unit
 W m^{-3}

Synonyms

Spectral concentration of irradiance
Spectral density of irradiance

Величина

Спектральная плотность облученности

Обозначение

$E_{e\lambda}, E_\lambda$

Определение

Отношение облученности $dE_e(\lambda)$, взятой в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$E_{e\lambda} = \frac{dE_e(\lambda)}{d\lambda}.$$

Единица
 Вт м^{-3}

Синонимы

Спектральная облученность
Спектральная плотность энергетической освещенности

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

2.3.12. Spectral photon irradiance – Спектральная плотность фотонной облученности

Quantity

Spectral photon irradiance

Symbol

$E_{p\lambda}$, E_λ

Definition

The ratio of the photon irradiance $dE_p(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$E_{p\lambda} = \frac{dE_p(\lambda)}{d\lambda}.$$

Unit
 $\text{s}^{-1} \text{m}^{-3}$

Synonyms

Spectral concentration of photon irradiance
Spectral density of photon irradiance

Величина

Спектральная плотность фотонной облученности

Обозначение

$E_{p\lambda}$, E_λ

Определение

Отношение фотонной облученности $dE_p(\lambda)$, взятой в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$E_{p\lambda} = \frac{dE_p(\lambda)}{d\lambda}.$$

Единица
 $\text{с}^{-1} \text{м}^{-3}$

Синонимы

Спектральная фотонная облученность

2.3.13. Spectral radiant exitance – Спектральная плотность энергетической светимости

Quantity

Spectral radiant exitance

Symbol

$M_{e\lambda}$, M_λ

Definition

The ratio of the radiant exitance $dM_e(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$M_{e\lambda} = \frac{dM_e(\lambda)}{d\lambda}.$$

Unit
 W m^{-3}

Величина

Спектральная плотность энергетической светимости

Обозначение

$M_{e\lambda}$, M_λ

Определение

Отношение энергетической светимости $dM_e(\lambda)$, взятой в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$M_{e\lambda} = \frac{dM_e(\lambda)}{d\lambda}.$$

Единица
 Вт м^{-3}

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART I. CALIBRATION TECHNIQUES

Synonyms

Spectral concentration of radiant exitance
Spectral density of radiant exitance

Синонимы

Спектральная энергетическая светимость

2.3.14. Spectral photon exitance – Спектральная плотность фотонной светимости

Quantity

Spectral photon exitance

Symbol

$M_{p\lambda}, M_\lambda$

Definition

The ratio of the photon exitance $dM_p(\lambda)$ taken over an elementary wavelength interval $d\lambda$ containing the wavelength λ , to that interval:

$$M_{p\lambda} = \frac{dM_p(\lambda)}{d\lambda}.$$

Unit
 $s^{-1} m^{-3}$

Synonyms

Spectral concentration of photon exitance
Spectral density of photon exitance

Величина

Спектральная плотность фотонной светимости

Обозначение

$M_{p\lambda}, M_\lambda$

Определение

Отношение фотонной светимости $dM_p(\lambda)$, взятой в малом спектральном интервале $d\lambda$, содержащем данную длину волны λ , к этому интервалу:

$$M_{p\lambda} = \frac{dM_p(\lambda)}{d\lambda}.$$

Единица
 $s^{-1} m^{-3}$

Синонимы

Спектральная фотонная светимость

3. Optical phenomena – Оптические явления

3.1. Coherent radiation – Когерентное излучение

Term

Coherent radiation

Definition

Monochromatic radiation whose electromagnetic oscillations maintain constant phase differences from one point to another [3].

Термин

Когерентное излучение

Определение

Монохроматическое излучение, у которого сохраняется разность фаз электромагнитных колебаний между разными точками [3].

3.2. Interference – Интерференция

Term

Interference

Definition

Superposition of coherent waves capable of producing locally a diminution or a reinforcement of the amplitudes of the vibrations of a radiation [3].

Термин

Интерференция

Определение

Наложение когерентных волн, которое позволяет получить локальное ослабление или усиление амплитуды колебаний излучения [3].

3.3. Diffraction – Дифракция

Term

Diffraction

Definition

Deviation of the direction of propagation of a radiation, determined by the wave nature of radiation, and occurring when the radiation passes the edge of an obstacle [3].

Термин

Дифракция

Определение

Отклонение от прямолинейного распространения излучения, которое определяется волновой природой излучения и происходит, когда излучение проходит край препятствия [3].

3.4. *Emission* – Эмиссия

<i>Term</i>	<i>Термин</i>
Emission	Эмиссия
<i>Definition</i>	<i>Определение</i>
Release of radiant energy [3].	Испускание электромагнитного излучения [3].
<i>Synonyms</i>	<i>Синонимы</i>
	Испускание излучения

3.4.1. *Thermal radiation* – Тепловое излучение

<i>Term</i>	<i>Термин</i>
Thermal radiation	Тепловое излучение
<i>Definition</i>	<i>Определение</i>
1. Process of emission in which the radiant energy originates in the thermal agitation of the particles of matter such as atoms, molecules, ions. 2. The radiation emitted by that process. [3]	1. Процесс эмиссии, возникающий в результате теплового возбуждения частиц вещества (атомов, молекул, ионов). 2. Излучение, возникающее в результате этого процесса. [3]
<i>Synonyms</i>	<i>Синонимы</i>
Heat radiation	Температурное излучение
Temperature radiation	

3.4.2. *Thermal radiator* – Тепловой излучатель

<i>Term</i>	<i>Термин</i>
Thermal radiator	Тепловой излучатель
<i>Definition</i>	<i>Определение</i>
Source emitting thermal radiation [3].	Источник теплового излучения [3].

3.4.3. Perfect blackbody – Абсолютно черное тело

Term

Perfect blackbody

Definition

Ideal thermal radiator that absorbs completely all incident radiation, whatever the wavelength, the direction of incidence or the polarization. This radiator has, for any wavelength and any direction, the maximum spectral radiance for a thermal radiator in thermal equilibrium at a given temperature [3].

Synonyms

Blackbody

Black body (GB)

Planckian radiator

Full radiator

Comments

A perfect blackbody is a source of thermal radiation, the total and spectral exitance of which are determined only by its temperature. At the given temperature, the spectral radiant exitance at the given wavelength and radiant exitance of every real body are less than that of a perfect blackbody at the same temperature. The spectral radiant exitance of a perfect black body is determined by Planck's law, the radiant exitance by Stefan-Boltzmann law, and the angular distribution of radiant intensity by Lambert's law.

Termin

Абсолютно черное тело

Определение

Идеальный тепловой излучатель, который полностью поглощает все падающее на него излучение независимо от длины волны, направления падения и состояния поляризации излучения. Данный тепловой излучатель имеет при заданной температуре для всех длин волн максимальную спектральную плотность энергетической яркости, в условиях установившегося теплового режима излучателя [3].

Синонимы

Черное тело

Планковский излучатель

Полный излучатель

Примечания

Абсолютно черное тело является источником теплового излучения, энергетическая светимость и спектральный состав которого определяются только его температурой. При данной температуре спектральная плотность энергетической светимости на данной длине волны и энергетическая светимость любого реального тела меньше, чем у абсолютно черного тела при той же температуре. Спектральная плотность энергетической светимости абсолютно черного тела определяется законом Планка, энергетическая светимость – законом Стефана-Больцмана, а угловое распределение силы излучения – законом Ламберта.

3.4.4. Planck's law – Закон Планка

Term

Planck's law

Definition

Law expressing the spectral radiance of a perfect blackbody as a function of wavelength and temperature:

$$L_{e\lambda}^{bb}(\lambda, T) = \frac{\partial L_e(\lambda, T)}{\partial \lambda} = \frac{c_1}{\pi} \lambda^{-5} \left(e^{\frac{c_2}{\lambda T}} - 1 \right)^{-1},$$

where $L_{e\lambda}^{bb}$ is spectral radiance of a perfect blackbody; λ is wavelength in vacuum; T is thermodynamic temperature;

$C_1 = (3.74177107 \pm 0.00000029) \cdot 10^{-16} W \cdot m^2$ is the first radiation constant;

$C_2 = (1.4387752 \pm 0.0000025) \cdot 10^{-2} m \cdot K$ is the second radiation constant.

Comments

1. The formula is sometimes written with $\frac{c_1}{\pi \Omega_0}$ instead of $\frac{c_1}{\pi}$, where Ω_0 is the solid angle of magnitude 1 steradian.

2. For a detector in a medium of refractive index n , the measured spectral radiance is $n^2 L_{e\lambda}^{bb}(\lambda, T)$.

3. Planck's law can be also expressed to give the spectral exitance $M_{e\lambda}^{bb}(\lambda, T)$; the first factor in the formula (1), is then C_1 instead of C_1/π .

4. Planck's law is applied to the unpolarized emitted radiation.

Termin

Закон Планка

Определение

Закон, выражающий спектральную плотность энергетической яркости абсолютно черного тела как функцию длины волны и температуры:

$$L_{e\lambda}^{bb}(\lambda, T) = \frac{\partial L_e(\lambda, T)}{\partial \lambda} = \frac{c_1}{\pi} \lambda^{-5} \left(e^{\frac{c_2}{\lambda T}} - 1 \right)^{-1},$$

где $L_{e\lambda}^{bb}$ - спектральная плотность энергетической яркости абсолютно черного тела; λ - длина волны в вакууме; T – термодинамическая температура;

$C_1 = (3,74177107 \pm 0,00000029) \cdot 10^{-16} Bm \cdot m^2$ - первая радиационная постоянная;

$C_2 = (1,4387752 \pm 0,0000025) \cdot 10^{-2} m \cdot K$ - вторая радиационная постоянная.

Примечания

1. Формула иногда записывается с $\frac{c_1}{\pi \Omega_0}$ вместо $\frac{c_1}{\pi}$, где Ω_0 - телесный угол величиной в 1 ср.

2. Для приемника излучения в среде с показателем преломления n , измеряемая спектральная плотность энергетической яркости равна $n^2 L_{e\lambda}^{bb}(\lambda, T)$.

3. Закон Планка может быть выражен через спектральную плотность энергетической светимости $M_{e\lambda}^{bb}(\lambda, T)$; в этом случае коэффициент C_1/π в формуле заменяется на C_1 .

4. Закон Планка применим для неполяризованного излучения.

3.4.5. Stefan-Boltzmann law – Закон Стефана-Больцмана

Term

Stefan-Boltzmann law

Definition

The relationship between the radiant exitance of a perfect blackbody and its temperature:

$$M_e = \sigma T^4,$$

where

$\sigma = (5,670400 \pm 0,000040) \times 10^{-8} W \cdot m^{-2} K^{-4}$ is the Stefan-Boltzmann constant.

Термин

Закон Стефана-Больцмана

Определение

Соотношение между энергетической светимостью абсолютно черного тела и его температурой:

$$M_e = \sigma T^4,$$

где

$\sigma = (5,670400 \pm 0,000040) \times 10^{-8} Bm \cdot m^{-2} K^{-4}$ - постоянная Стефана-Больцмана.

3.4.6. Lambert's law – Закон Ламберта

Term

Lambert's law

Definition

For a surface element whose radiance is the same in all directions of the hemisphere above the surface:

$$I(\theta) = I_n \cos \theta,$$

where $I(\theta)$ and I_n are the radiant intensities of the surface element in a direction at an angle θ from the normal to the surface and in the direction of that normal, respectively [3].

Synonyms

Cosine law

Термин

Закон Ламберта

Определение

Для элемента поверхности, с яркостью или энергетической яркостью одинаковой для всех направлений в полусфере над этой поверхностью справедлива формула:

$$I(\theta) = I_n \cos \theta,$$

где $I(\theta)$ и I_n – силы излучений или силы света элемента поверхности в направлении, которое определяется углом θ от нормали к этой поверхности и в направлении этой нормали, соответственно [3].

Синонимы

Закон косинуса

Закон косинусов

3.4.7. Lambertian surface – Ламбертовская поверхность

Term

Lambertian surface

Definition

Ideal surface for which the radiation coming from that surface is distributed angularly according to Lambert's cosine law [3].

Synonyms

Perfect diffuser

Comments

For a Lambertian surface, $M_e = \pi L_e$ where M_e is the radiant exitance, and L_e the radiance.

Термин

Ламбертовская поверхность

Определение

Идеальная поверхность, у которой испускаемое излучение имеет угловое распределение, соответствующее закону косинусов Ламберта [3].

Синонимы

Поверхность Ламберта

Идеально диффузная поверхность

Идеальный диффузный рассеиватель (излучатель)

Примечания

Для ламбертовской поверхности справедлива формула $M_e = \pi L_e$, где M_e - энергетическая светимость и L_e - энергетическая яркость.

3.4.8. Luminescence – Люминесценция

Term

Luminescence

Definition

Emission, by atoms, molecules or ions in a material, of optical radiation which for certain wavelengths or regions of the spectrum is in excess of the radiation due to thermal emission from that material at the same temperature, as a result of these particles being excited by energy other than thermal agitation [3].

Synonyms

Термин

Люминесценция

Определение

Явление испускания атомами, молекулами или ионами вещества оптического излучения, интенсивность которого для некоторых длин волн или для ограниченных спектральных участков участков больше интенсивности теплового излучения этого вещества при той же температуре, в результате возбуждения данных атомов или молекул различными видами энергии, за исключением тепловой энергии [3].

Синонимы

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Comments

A distinction is made between electroluminescence (luminescence resulting from electrical excitation), chemical luminescence (luminescence resulting from a chemical reaction), and photoluminescence (luminescence produced by the absorption of radiant flux, different from ordinary reflection by a time delay and, usually, a shift toward longer wavelengths).

Примечания

Различают электролюминесценцию (люминесценция, возникающая вследствие электрического возбуждения), химическую люминесценцию (люминесценция, возникающая вследствие химической реакции) и фотолюминесценцию (люминесценция, вызываемая поглощением лучистого потока, отличающаяся от обычного отражения временной задержкой и, обычно, сдвигом в сторону длинных волн).

3.4.9. Stimulated emission – Вынужденное излучение

Term

Stimulated emission

Definition

Process of emission by quantum transition from an excited energy level to a lower level, triggered by incident radiation having the frequency of that transition [3].

Термин

Вынужденное излучение

Определение

Процесс эмиссии вследствие квантового перехода с возбужденного энергетического уровня на более низкий энергетический уровень, вызванный падающим излучением с частотой данного перехода [3].

3.4.10. Synchrotron radiation – Синхротронное излучение

Term

Synchrotron radiation

Definition

Emission from highly accelerated electrically charged free particles, e.g. in circular orbits [3].

Synonyms

Comments

The radiation is caused by acceleration of particles due to the trajectory curvature.

Термин

Синхротронное излучение

Определение

Эмиссия сильно ускоренных заряженных частиц, например, на круговых орbitах [3].

Синонимы

Магнитотормозное излучение

Примечания

Излучение обусловлено ускорением частиц, связанным с кривизной траектории.

3.5. Reflection – Отражение

Term

Reflection

Definition

Process by which radiation is returned by a surface or a medium, without change of frequency of its monochromatic components [3].

Comments

1. Part of the radiation falling on a medium is reflected at the surface of the medium (*surface reflection*); another part may be scattered back from the interior of the medium (*volume reflection*)
2. The frequency is unchanged only if there is no Doppler effect due to the motion of the materials from which the radiation is returned [3].

Термин

Отражение

Определение

Возвращение излучения какой-либо поверхностью или средой без изменения частот его монохроматических составляющих [3].

Примечания

1. Часть излучения, падающего на границу какой-либо среды, отражается на ее поверхности (*поверхностное отражение*), другая часть излучения может быть рассеяна в противоположном направлении внутри данной среды (*объемное отражение*).
2. Частота излучения не меняется после отражения только в том случае, если нет эффекта Допплера, который возникает из-за движения тела, от которого отражается излучение [3].

3.5.1. Specular reflection – Зеркальное отражение

Term

Specular reflection

Definition

Reflection in accordance with the laws of geometrical optics, without diffusion [3].

Synonyms

Regular reflection

Термин

Зеркальное отражение

Определение

Отражение без рассеяния в соответствии с законами геометрической оптики [3].

Синонимы

3.5.2. Diffuse reflection – Диффузное отражение

Term

Diffuse reflection

Definition

Diffusion by reflection in which, on the

Термин

Диффузное отражение

Определение

Отражение, при котором направленное

macroscopic scale, there is no regular reflection [3].

пропускание заметно не проявляется и пропущенный свет рассеивается [3].

3.5.3. Mixed reflection – Смешанное отражение

Term

Mixed reflection

Definition

Partly specular and partly diffuse reflection [3].

Термин

Смешанное отражение

Определение

Частично зеркальное, частично диффузное отражение. [3]

3.5.4. Retroreflection – Возвратное отражение

Term

Retroreflection

Definition

Reflection in which radiation is returned in direction close to the opposite of the direction from which it came, this property being maintained over wide variations of the direction of the incident rays [3].

Synonyms

Термин

Возвратное отражение

Определение

Отражение, при котором отраженные лучи возвращаются по направлениям, близким к направлению, противоположному их падению. Это свойство сохраняется при значительных изменениях направления падающих лучей [3].

Синонимы

Световозвращающее отражение

3.5.5. Perfectly diffuse reflection – Идеально диффузное отражение

Term

Perfectly diffuse reflection

Definition

Diffuse reflection in which the angular distribution of the reflected radiation obeys Lambert's law.

Термин

Идеально диффузное отражение

Определение

Диффузное отражение, при котором угловое распределение отраженного излучения подчиняется закону Ламберта.

Synonyms

Lambertian reflection
Isotropic diffuse reflection

Синонимы

Ламбертовское отражение

3.5.6. Total internal reflection – Полное внутреннее отражение

Term

Total internal reflection

Definition

Reflection of the entire incident flux propagated within a medium having higher optical density at the boundary with a medium having lower optical density.

Термин

Полное внутреннее отражение

Определение

Отражение всего потока падающего излучения, распространяющегося в оптически более плотной среде, от границы с оптически менее плотной средой.

3.5.7. Interreflection – Многократные отражения

Term

Interreflection

Definition

General effect of the reflections of radiation between several reflecting surfaces [3].

Synonyms

Interflection

Термин

Переотражения

Определение

Совокупность отражений излучения между несколькими отражающими поверхностями [3].

Синонимы

Переотражения

3.6. Transmission – Пропускание

Term

Transmission

Definition

Passage of radiation through a medium without change of frequency of its monochromatic components [3].

Термин

Пропускание

Определение

Прохождение излучения сквозь среду без изменения частоты его монохроматических составляющих [3].

3.6.1. Regular transmission – Направленное пропускание

Term

Regular transmission

Definition

Transmission in accordance with the laws of geometrical optics, without diffusion [3].

Термин

Направленное пропускание

Определение

Пропускание без рассеяния в соответствии с законами геометрической оптики [3].

3.6.2. Diffuse transmission – Диффузное пропускание

Term

Diffuse transmission

Definition

Diffusion by transmission in which, on the macroscopic scale, there is no regular reflection [3].

Термин

Диффузное пропускание

Определение

Пропускание, при котором направленное пропускание заметно не проявляется и пропущенный свет рассеивается [3].

3.6.3. Mixed transmission – Смешанное пропускание

Term

Mixed transmission

Definition

Partly regular and partly diffuse transmission [3].

Термин

Смешанное пропускание

Определение

Частично направленное, частично диффузное пропускание [3].

3.6.4. Perfectly diffuse transmission – Идеально диффузное пропускание

Term

Perfectly diffuse transmission

Definition

Diffuse transmission in which the angular distribution of the transmitted radiation

Термин

Идеально диффузное пропускание

Определение

Диффузное пропускание, при котором угловое распределение пропущенного

obeys Lambert's law.

Synonyms

Lambertian transmission

Isotropic diffuse transmission

излучения подчиняется закону
Ламберта.

Синонимы

Ламбертовское пропускание

3.7. *Absorption – Поглощение*

Term

Absorption

Definition

Process by which radiant energy is converted to a different form of energy by interaction with matter [3].

Термин

Поглощение

Определение

Превращение энергии излучения в другую форму энергии в результате взаимодействия с веществом [3].

3.7.1. *Transparent medium – Прозрачная среда*

Term

Transparent medium

Definition

Medium in which the transmission is mainly regular and which usually has a high regular transmittance in the spectral range of interest [3].

Термин

Прозрачная среда

Определение

Среда, обладающая в основном направленным и довольно высоким пропусканием в определенном спектральном диапазоне [3].

3.7.2. *Translucent medium – Просвечивающая среда*

Term

Translucent medium

Definition

Medium, which transmits visible radiation largely by diffuse transmission, so that objects are not seen distinctly through it [3].

Synonyms

Термин

Просвечивающая среда

Определение

Среда, которая полностью или практически полностью диффузно пропускает видимое излучение, таким образом, что объекты видны неотчетливо через эту среду [3].

Синонимы

Рассеивающая среда

3.7.3. Opaque medium – Непрозрачная среда

Term

Opaque medium

Definition

Medium which transmits no radiation in the spectral range of interest [3].

Термин

Непрозрачная среда

Определение

Среда, не пропускающая свет в определенном спектральном диапазоне [3].

3.8. Scattering – Рассеяние

Term

Scattering

Definition

Process by which the spatial distribution of a beam of radiation is changed when it is deviated in many directions by a surface or by a medium, without change of frequency of its monochromatic components [3].

Synonyms

Diffusion

Comments

A distinction is made between *selective diffusion* and *non-selective diffusion* according to whether or not the diffusing properties vary with the wavelength of the incident radiation [3].

Термин

Рассеяние

Определение

Изменение пространственного распределения пучка лучей, отклоняемых во множестве направлений поверхностью или средой без изменения частот составляющих его монохроматических излучений [3].

Синонимы

Примечания

Различают, селективное рассеяние и неселективное рассеяние, соответственно, в зависимости от того, изменяются или нет свойства рассеяния с длиной волны падающего излучения [3].

3.9. Refraction – Преломление

Term

Refraction

Definition

Process by which the direction of a radiation is changed as a result of changes in its velocity of propagation in passing

Термин

Преломление

Определение

Изменение направления распространения излучения, вследствие изменения скорости его

through an optically non-homogeneous medium, or in crossing a surface separating different media [3].

распространения в оптически неоднородной среде или при переходе границы, разделяющей разные среды [3].

3.10. *Polarization* – Поляризация

Term

Polarization

Definition

A regularity in orientation of electric and magnetic field intensity vectors within the plane perpendicular to radiation propagation direction.

Comments

There are three kinds of polarization: linear, circular, and elliptical (circular is a special case of elliptical).

Термин

Поляризация

Определение

Упорядоченность в ориентации векторов напряженности электрического и магнитного полей электромагнитной волны в плоскости, перпендикулярной распространению излучения.

Примечания

Различают линейную, круговую и эллиптическую поляризацию (круговая – частный случай эллиптической).

3.10.1. *Polarized radiation* – Поляризованное излучение

Term

Polarized radiation

Definition

Radiation whose electromagnetic field, which is transversal, is oriented in defined directions [3].

Термин

Поляризованное излучение

Определение

Излучение, у которого поперечные напряженности электромагнитного поля ориентированы в определенных направлениях [3].

3.10.2. *Linearly polarized radiation* – Линейно поляризованное излучение

Term

Linearly polarized radiation

Definition

An electromagnetic radiation whose vector of electric field strength oscillates within a

Термин

Линейно поляризованное излучение

Определение

Электромагнитное излучение, вектор напряженности электрического поля

fixed plane containing the direction of propagation of the radiation.

Synonyms

Rectilinear polarized radiation
Plane-polarized radiation

которого колеблется в фиксированной плоскости, содержащей направление распространения излучения.

Синонимы

Плоскополяризованное излучение

3.10.3. Circularly polarized radiation – Излучение, поляризованное по кругу

Term

Circularly polarized radiation

Definition

An electromagnetic radiation whose vector of electric field strength has constant amplitude and rotates about the propagation direction at a frequency equal to the radiation frequency.

Synonyms

Термин

Излучение, поляризованное по кругу

Определение

Электромагнитное излучение, электрический вектор которого имеет постоянную амплитуду и вращается вокруг направления распространения с частотой, равной частоте излучения.

Синонимы

Излучение с круговой поляризацией

3.10.4. Elliptically polarized radiation – Эллиптически поляризованное излучение

Term

Elliptically polarized radiation

Definition

An electromagnetic radiation whose vector of electric field strength rotates about the propagation direction with radiation frequency while the vector magnitude varies so that its terminal point describes an ellipse.

Термин

Эллиптически поляризованное излучение

Определение

Электромагнитное излучение, электрический вектор которого вращается вокруг направления распространения с частотой излучения, изменяя амплитуду таким образом, что его концевая точка описывает эллипс.

3.10.5. Unpolarized radiation – Неполяризованное излучение

Term

Unpolarized radiation

Definition

An electromagnetic radiation with directions of the vectors of the electric and magnetic fields strength that change randomly over time.

Термин

Неполяризованное излучение

Определение

Электромагнитное излучение со случайным образом меняющимися во времени направлениями электрических и магнитных векторов.

3.10.6. Partially polarized radiation – Частично поляризованное излучение

Term

Partially polarized radiation

Definition

An electromagnetic radiation composed of polarized and unpolarized components.

Термин

Частично поляризованное излучение

Определение

Электромагнитное излучение, состоящее из поляризованной и неполяризованной компонент.

3.10.7. Degree of polarization – Степень поляризации

Quantity

Degree of polarization

Symbol

Definition

A characteristic of partially polarized radiation, numerically equal to

$$P = \frac{A_p^2}{A_p^2 + A_n^2},$$

where A_p and A_n are the amplitudes of vector of electric field strength for polarized and unpolarized component, respectively.

Unit

Величина

Степень поляризации

Обозначение

P

Определение

Характеристика частично поляризованного излучения, численно равная

$$P = \frac{A_p^2}{A_p^2 + A_n^2},$$

где A_p и A_n - амплитуды вектора напряженности электрического поля для поляризованной и неполяризованной компоненты, соответственно.

Единица

3.11. Dispersion – Дисперсия

Term

Dispersion

Definition

1. Phenomenon of change in the velocity of propagation of monochromatic radiations in a medium as a function of the frequency of these radiations.
2. Property of a medium giving rise to this phenomenon.
3. Property of an optical system resulting in the separation of the monochromatic components of a radiation, obtained for example by means of prisms or gratings.
[3]

Термин

Дисперсия

Определение

1. Явление изменения скорости распространения монохроматического излучения в среде в зависимости от его частоты.
2. Свойство среды, порождающее это явление.
3. Свойство оптической системы, которое позволяет получить разложение излучения на составляющие его монохроматические излучения, например, с помощью призм или решеток [3].

3.12. Photoeffect – Фотоэффект

Term

Photoeffect

Definition

Physical, chemical or biological change produced by the interaction of optical radiation with matter. [3]

Comments

Such changes include photoelectric, photo-optical, photochemical and photobiological effects, but radiant heating is normally not considered a photoeffect [3].

Термин

Фотоэффект

Определение

Физическое, химическое или биологическое изменение, вызванное взаимодействием оптического излучения с веществом. [3]

Примечания

К данным изменениям относят фотоэлектрический, фотооптический и фотобиологический или фотохимический эффекты, при этом нагрев излучением обычно не рассматривается как фотоэффект [3].

4. Optical characteristics of surfaces and media – Оптические характеристики поверхностей и сред

4.1. Geometry of radiation transfer – Геометрия переноса излучения

4.1.1. Incidence angle – Угол падения

Quantity
Incidence angle

Symbol

 θ_i

Definition

Angle between the incident ray and the normal to the surface.

Unit

rad, °

Величина
Угол падения

Обозначение

 θ_i

Определение

Угол между падающим лучом и нормалью к поверхности.

Единица

рад, °

4.1.2. Reflection angle – Угол отражения

Quantity
Reflection angle

Symbol

 θ_r

Definition

Angle between the reflected ray and the normal to the surface.

Unit

rad, °

Величина
Угол отражения

Обозначение

 θ_r

Определение

Угол между отраженным лучом и нормалью к поверхности.

Единица

рад, °

4.1.3. Refraction angle – Угол преломления

Quantity

Refraction angle

Symbol

θ_r

Definition

Angle between the refracted ray and the normal to the surface.

Unit

rad, °

Величина

Угол преломления

Обозначение

θ_r

Определение

Угол между преломленным лучом и нормалью к поверхности.

Единица

рад, °

4.1.4. Angle factor – Угловой коэффициент

Quantity

Angle factor

Symbol

$F_{A_i-A_j}$

Definition

The angle factor $F_{A_i-A_j}$ between the two Lambertian surfaces A_i and A_j is the ratio of radiant flux leaving A_i and intercepted by A_j to the total radiant flux emitted by A_i .

Unit

Synonyms

View factor

Form factor

Shape factor

Configuration factor

Величина

Угловой коэффициент

Обозначение

$F_{A_i-A_j}$

Определение

Угловой коэффициент $F_{A_i-A_j}$ между двумя ламбертовскими поверхностями A_i и A_j есть отношение потока излучения, испускаемого A_i и попадающего на A_j ко всему потоку излучения, испускаемого A_i .

Единица

Синонимы

Форм-фактор

Коэффициент формы

Конфигурационный фактор

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Comments

For two Lambertian surfaces (of infinitesimal or finite area):

$$dF_{dA_i-dA_j} = \frac{\cos \theta_1 \cos \theta_2}{\pi d^2} dA_2,$$

$$dF_{A_1-dA_2} = \frac{dA_1}{A_2} \int_{A_2} \frac{\cos \theta_1 \cos \theta_2}{\pi d^2} dA_2,$$

$$F_{dA_1-A_2} = \int_{A_2} \frac{\cos \theta_1 \cos \theta_2}{\pi d^2} dA_2,$$

$$F_{A_1-A_2} = \frac{1}{A_1} \int_{A_1} \int_{A_2} \frac{\cos \theta_1 \cos \theta_2}{\pi d^2} dA_1 dA_2,$$

where dA_1 and dA_2 are the elements of areas A_1 and A_2 , respectively; d is the distance between them; θ_1 and θ_2 are the angles between the line connecting dA_1 and dA_2 and normals to these surfaces (see Figure below).

Примечания

Для двух ламбертовских поверхностей (бесконечно малой или конечной площади):

$$dF_{dA_i-dA_j} = \frac{\cos \theta_1 \cos \theta_2}{\pi d^2} dA_2,$$

$$dF_{A_1-dA_2} = \frac{dA_1}{A_2} \int_{A_2} \frac{\cos \theta_1 \cos \theta_2}{\pi d^2} dA_2,$$

$$F_{dA_1-A_2} = \int_{A_2} \frac{\cos \theta_1 \cos \theta_2}{\pi d^2} dA_2,$$

$$F_{A_1-A_2} = \frac{1}{A_1} \int_{A_1} \int_{A_2} \frac{\cos \theta_1 \cos \theta_2}{\pi d^2} dA_1 dA_2,$$

где dA_1 и dA_2 – элементы поверхностей A_1 и A_2 , соответственно; d – расстояние между ними; θ_1 и θ_2 – углы между линией, соединяющей dA_1 и dA_2 , и нормалями к этим поверхностям (см. рисунок внизу).

4.2. Characteristics of thermal emission – Характеристики теплового излучения

4.2.1. Spectral directional emissivity – Спектральная направленная излучательная способность

<i>Quantity</i>	<i>Величина</i>
Spectral directional emissivity	Спектральная направленная излучательная способность
<i>Symbol</i>	<i>Обозначение</i>
$\varepsilon_{\lambda d}$	$\varepsilon_{\lambda d}$
<i>Definition</i>	<i>Определение</i>
Ratio of the spectral radiance of the thermal radiator at a given wavelength and temperature and in a given direction to the spectral radiance of a perfect blackbody at the same wavelength and temperature:	Отношение спектральной плотности энергетической яркости теплового излучателя для данной длины волны, данной температуры, в данном направлении к спектральной плотности энергетической яркости абсолютно черного тела для тех же длины волны и температуры:
$\varepsilon_{\lambda d}(\lambda, T, \theta, \phi) = \frac{L_{e\lambda}(\lambda, T, \theta, \phi)}{L_{e\lambda}^{bb}(\lambda, T)}.$	$\varepsilon_{\lambda d}(\lambda, T, \theta, \phi) = \frac{L_{e\lambda}(\lambda, T, \theta, \phi)}{L_{e\lambda}^{bb}(\lambda, T)}.$
<i>Unit</i>	<i>Единица</i>
<i>Synonyms</i>	<i>Синонимы</i>
Spectral directional emittance	Спектральный коэффициент направленного излучения Спектральный направленный коэффициент теплового излучения Спектральная направленная степень черноты Спектральный направленный коэффициент черноты
<i>Comments</i>	<i>Примечания</i>
The symbols θ and ϕ are chosen here as an example of the angular coordinates defining a given direction in the spherical coordinate system.	Символы θ и ϕ выбраны как пример угловых координат, определяющих данное направление в сферической системе координат.

4.2.2. Total directional emissivity – Интегральная направленная излучательная способность

Quantity

Total directional emissivity

Symbol

ε_d

Definition

Ratio of the radiance of a thermal radiator at a given temperature and in a given direction, to that of a perfect blackbody at the same temperature:

$$\varepsilon_d(T, \theta, \phi) = \frac{L_e(T, \theta, \phi)}{L_e^{bb}(T)} = \frac{\pi L_e(T, \theta, \phi)}{\sigma T^4}.$$

Unit

Synonyms

Total directional emittance

Comments

See Comments to 4.2.1.

Величина

Интегральная направленная излучательная способность

Обозначение

ε_d

Определение

Отношение энергетической яркости теплового излучателя при данной температуре в данном направлении к энергетической яркости абсолютно черного тела при той же температуре:

$$\varepsilon_d(T, \theta, \phi) = \frac{L_e(T, \theta, \phi)}{L_e^{bb}(T)} = \frac{\pi L_e(T, \theta, \phi)}{\sigma T^4}.$$

Единица

Синонимы

Интегральный коэффициент направленного излучения
Интегральный направленный коэффициент теплового излучения
Интегральная направленная степень черноты
Интегральный направленный коэффициент черноты

Примечания

См. примечание к п. 4.2.1.

4.2.3. Spectral normal emissivity – Спектральная нормальная излучательная способность

Quantity

Spectral normal emissivity

Величина

Спектральная нормальная излучательная способность

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Symbol

$\mathcal{E}_{\lambda n}$

Definition

Spectral directional emissivity in the direction perpendicular to the emitting surface.

Unit

Synonyms

Spectral normal emittance

Обозначение

$\mathcal{E}_{\lambda n}$

Определение

Спектральная излучательная способность в направлении, перпендикулярном излучающей поверхности.

Единица

Синонимы

Спектральный нормальный коэффициент излучения
Спектральный нормальный коэффициент теплового излучения
Спектральная нормальная степень черноты
Спектральный нормальный коэффициент черноты

4.2.4. Total normal emissivity – Интегральная нормальная излучательная способность

Quantity

Total normal emissivity

Symbol

\mathcal{E}_n

Definition

Total directional emissivity in the direction perpendicular to the emitting surface.

Unit

Synonyms

Total normal emittance

Величина

Интегральная нормальная излучательная способность

Обозначение

\mathcal{E}_n

Определение

Интегральная излучательная способность в направлении, перпендикулярном излучающей поверхности.

Единица

Синонимы

Интегральный нормальный коэффициент излучения
Интегральный нормальный коэффициент теплового излучения
Интегральная нормальная степень черноты

Интегральный нормальный
коэффициент черноты

4.2.5. Spectral conical emissivity – Спектральная коническая излучательная способность

Quantity

Spectral conical emissivity

Symbol

$\varepsilon_{\lambda c}$

Definition

Ratio of the spectral radiance of the thermal radiator for a given wavelength and temperature, averaged over a conical solid angle, to the spectral radiance of a perfect blackbody at the same wavelength and temperature:

$$\varepsilon_{\lambda c}(\lambda, T, \Omega) = \frac{\frac{1}{\Omega} \int_{\Omega} L_{e\lambda}(\lambda, T, \Omega) d\Omega}{L_{e\lambda}^{bb}(\lambda, T)},$$

where Ω is the conical solid angle in which the emitted radiation is registered.

Unit

Synonyms

Spectral conical emittance

Величина

Спектральная коническая излучательная способность

Обозначение

$\varepsilon_{\lambda c}$

Определение

Отношение усредненной в коническом телесном угле спектральной плотности энергетической яркости теплового излучателя для данных длины волны и температуры к спектральной плотности энергетической яркости абсолютно черного тела для тех же длины волны и температуры:

$$\varepsilon_{\lambda c}(\lambda, T, \Omega) = \frac{\frac{1}{\Omega} \int_{\Omega} L_{e\lambda}(\lambda, T, \Omega) d\Omega}{L_{e\lambda}^{bb}(\lambda, T)},$$

где Ω – конический телесный угол, в котором испущенное излучение регистрируется.

Единица

Синонимы

Спектральный конический коэффициент излучения

Спектральный конический коэффициент теплового излучения

Спектральная коническая степень черноты

Спектральный конический коэффициент черноты

4.2.6. Total conical emissivity – Интегральная коническая излучательная способность

Quantity

Total conical emissivity

Symbol

ε_c

Definition

Ratio of the radiance of the thermal radiator averaged over conical solid angle for a given temperature to the radiance of a perfect blackbody at the same temperature:

$$\varepsilon_c(T, \Omega) = \frac{\frac{1}{\Omega} \int_{\Omega} L_e(T, \Omega) d\Omega}{L_e^{bb}(T)},$$

where Ω is the conical solid angle in which the emitted radiation is registered.

Unit

Synonyms

Total conical emittance

Величина

Интегральная коническая излучательная способность

Обозначение

ε_c

Определение

Отношение усредненной в коническом телесном угле энергетической яркости теплового излучателя для данной температуры к энергетической яркости абсолютно черного тела для той же температуры:

$$\varepsilon_c(T, \Omega) = \frac{\frac{1}{\Omega} \int_{\Omega} L_e(T, \Omega) d\Omega}{L_e^{bb}(T)},$$

где Ω – конический телесный угол, в котором испущенное излучение регистрируется.

Единица

Синонимы

Интегральный конический коэффициент излучения

Интегральный конический коэффициент теплового излучения

Интегральная коническая степень черноты

Интегральный конический коэффициент черноты

4.2.7. Spectral hemispherical emissivity – Спектральная полусферическая излучательная способность

Quantity

Spectral hemispherical emissivity

Symbol

$\varepsilon_{\lambda h}$

Definition

Ratio of the spectral exitance of the thermal radiator for a given wavelength and temperature to that of a perfect blackbody at the same wavelength and temperature:

$$\varepsilon_{\lambda h}(\lambda, T) = \frac{M_{e\lambda}(\lambda, T)}{M_{e\lambda}^{bb}(\lambda, T)} = \frac{M_{e\lambda}(\lambda, T)}{\pi L_{e\lambda}^{bb}(\lambda, T)}.$$

Unit

Synonyms

Spectral hemispherical emittance

Comments

Spectral hemispherical emissivity can be expressed in terms of spectral radiance $L_{e\lambda}$ of thermal radiator and spectral radiance $L_{e\lambda}^{bb}$ of perfect blackbody:

$$\varepsilon_{\lambda h}(\lambda, T) = \frac{\frac{1}{2\pi} \int_{2\pi} L_{e\lambda}(\lambda, T) d\Omega}{\pi L_{e\lambda}^{bb}(\lambda, T)}.$$

Величина

Спектральная полусферическая излучательная способность

Обозначение

$\varepsilon_{\lambda h}$

Определение

Отношение спектральной плотности энергетической светимости теплового излучателя для данных длины волны и температуры к спектральной плотности энергетической светимости абсолютно черного тела для тех же длины волны и температуры:

$$\varepsilon_{\lambda h}(\lambda, T) = \frac{M_{e\lambda}(\lambda, T)}{M_{e\lambda}^{bb}(\lambda, T)} = \frac{M_{e\lambda}(\lambda, T)}{\pi L_{e\lambda}^{bb}(\lambda, T)}.$$

Единица

Синонимы

Спектральный полусферический коэффициент излучения

Спектральный полусферический коэффициент теплового излучения

Спектральная полусферическая степень черноты

Спектральный полусферический коэффициент черноты

Примечания

Спектральная полусферическая излучательная способность может быть выражена через спектральную плотность энергетической яркости $L_{e\lambda}$ теплового излучателя и спектральную плотность энергетической яркости $L_{e\lambda}^{bb}$ абсолютно черного тела:

$$\varepsilon_{\lambda h}(\lambda, T) = \frac{\frac{1}{2\pi} \int_{2\pi} L_{e\lambda}(\lambda, T) d\Omega}{\pi L_{e\lambda}^{bb}(\lambda, T)}.$$

4.2.8. Total hemispherical emissivity – Интегральная полусферическая излучательная способность

Quantity

Total hemispherical emissivity

Symbol

ε_h

Definition

Ratio of the exitance of the thermal radiator for a given temperature to the exitance of a perfect blackbody at the same temperature:

$$\varepsilon_h(T) = \frac{M_e(T)}{M_e^{bb}(T)}.$$

Unit

Synonyms

Total hemispherical emittance

Comments

Total hemispherical emissivity can be expressed in terms of the radiance L_e of a thermal radiator and the radiance L_e^{bb} of a perfect blackbody:

$$\varepsilon_h(T) = \frac{\frac{1}{2\pi} \int_{2\pi} L_e(T) d\Omega}{\pi L_e^{bb}(T)}.$$

Величина

Интегральная полусферическая излучательная способность

Обозначение

ε_h

Определение

Отношение энергетической светимости теплового излучателя для данной температуры к энергетической светимости абсолютно черного тела для той же температуры:

$$\varepsilon_h(T) = \frac{M_e(T)}{M_e^{bb}(T)}.$$

Единица

Синонимы

Интегральный полусферический коэффициент излучения
Интегральный полусферический коэффициент теплового излучения
Интегральная полусферическая степень черноты
Интегральный полусферический коэффициент черноты

Примечания

Спектральная полусферическая излучательная способность может быть выражена через спектральную плотность энергетической яркости L_e теплового излучателя и спектральную плотность энергетической яркости L_e^{bb} абсолютно черного тела:

$$\varepsilon_h(T) = \frac{\frac{1}{2\pi} \int_{2\pi} L_e(T) d\Omega}{\pi L_e^{bb}(T)}.$$

4.2.9. Selective radiator – Селективный излучатель

Term

Selective radiator

Definition

Thermal radiator whose spectral emissivity varies with wavelength over the spectral range considered [3].

Термин

Селективный излучатель

Определение

Тепловой излучатель, спектральная излучательная способность которого в рассматриваемой области спектра зависит от длины волны [3].

4.2.10. Non-selective radiator – Неселективный излучатель

Term

Non-selective radiator

Definition

Thermal radiator whose spectral emissivity is constant with respect to wavelength over the spectral range considered [3].

Термин

Неселективный излучатель

Определение

Тепловой излучатель, спектральная излучательная способность которого в рассматриваемой области спектра не зависит от длины волны [3].

Synonyms

Graybody

Grey body (GB)

Синонимы

Серое тело

4.2.11. Radiance temperature – Яркостная температура

Quantity

Radiance temperature

Symbol

T_R

Definition

Perfect blackbody temperature, for which the spectral radiance at the specified wavelength has the same value as for the thermal radiator considered.

Величина

Яркостная температура

Обозначение

T_R

Определение

Температура абсолютно черного тела, для которой спектральная плотность энергетической яркости при данной длине волны имеет то же значение, что и для рассматриваемого теплового излучателя.

Unit

K

Synonyms

Единица

K

Синонимы

Monochromatic radiance temperature
Brightness temperature (unadvisable)

**Монохроматическая яркостная
температура**

4.2.12. Total radiance temperature – Радиационная температура

Quantity

Total radiance temperature

Symbol

T_t

Definition

Temperature of the perfect blackbody for which the total radiance has the same value as for the thermal radiator considered.

Unit

K

Synonyms

Radiation temperature (unadvisable)

Величина

Радиационная температура

Обозначение

T_t

Определение

Температура абсолютно черного тела, для которой энергетическая яркость имеет то же значение, что и для рассматриваемого теплового излучателя.

Единица

K

Синонимы

Температура полного излучения

4.2.13. Distribution temperature – Температура распределения

Quantity

Distribution temperature

Symbol

T_D

Definition

Temperature of the perfect blackbody whose relative spectral distribution $S(\lambda)$ is the same or nearly the same as that of the radiation considered in the spectral range of interest [3].

Unit

K

Величина

Температура распределения

Обозначение

T_D

Определение

Температура черного тела, при которой относительное спектральное распределение излучения $S(\lambda)$ то же самое, что и у рассматриваемого излучения в определенном диапазоне спектра [3].

Единица

K

4.3. Characteristics of reflection – Характеристики отражения

4.3.1. Reflectance – Коэффициент отражения

Term	Термин
Symbol	Обозначение
Definition	Определение
Reflectance	Коэффициент отражения
<i>ρ</i>	<i>ρ</i>
<i>Unit</i>	<i>Единица</i>
<i>Synonyms</i>	<i>Синонимы</i>
<i>Comments</i>	<i>Примечания</i>
<p>1. The reflectance, being obviously dependent on properties of the reflecting surface, is also a function of:</p> <ul style="list-style-type: none"> a) geometrical conditions of incidence and collection of fluxes; b) spectral distribution of the incident flux; c) instrument function for the collected flux; d) states of polarization of the incident and collected fluxes. <p>2. In each case of conical incident or conical collected flux, the solid angle is not restricted to the right cone, but may be of an arbitrary cross section.</p> <p>3. For all kinds of reflectance, the radiance is assumed to be homogeneous within the specified solid angle of incidence.</p>	<p>1. Коэффициент отражения, помимо очевидной зависимости от свойств отражающей поверхности, является функцией:</p> <ul style="list-style-type: none"> а) геометрии падающих и регистрируемого потоков излучения; б) спектрального распределения падающего потока; в) аппаратной функции регистратора отраженного потока; г) состояний поляризации падающего и регистрируемого потоков. <p>2. Телесные углы конического падающего или конического регистрируемого потоков излучения не обязательно ограничены прямым конусом, их сечение может иметь произвольный вид.</p>

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

4. The reflectance is referred to as *spectral* when the incident radiation flux is monochromatic, or when spectral dependence of reflectance is considered; in these cases, the variable λ must appear within parentheses as an argument. For non-monochromatic incident radiation, the reflectance is called *total*. The total reflectance is a function of spectral distribution of incident radiation.

5. These comments apply to all characteristics of reflection, absorption, and transmission.

3. Для всех частных случаев коэффициента отражения предполагается, что энергетическая яркость однородна в пределах телесного угла падения.

4. Коэффициент отражения получает наименование “спектральный” в случае монохроматичности падающего потока или если речь идет о спектральной зависимости отражательной способности; при этом переменная λ является аргументом. Для немонохроматического падающего излучения коэффициент отражения получает наименование “интегральный”. Интегральный коэффициент отражения является функцией спектрального распределения падающего излучения.

5. Эти примечания относятся ко всем характеристикам отражения, поглощения и пропускания.

4.3.2. Specular reflectance – Коэффициент зеркального отражения

<i>Quantity</i>	<i>Величина</i>
Specular reflectance	Коэффициент зеркального отражения
<i>Symbol</i>	<i>Обозначение</i>
ρ_s	ρ_s
<i>Definition</i>	<i>Определение</i>
Ratio of the specularly reflected part of the whole reflected flux, to the incident flux [3].	Отношение зеркально отраженной части всего отраженного потока к падающему потоку [3].
<i>Unit</i>	<i>Единица</i>
-	-
<i>Synonyms</i>	<i>Синонимы</i>
Regular reflectance	Зеркальная отражательная способность Коэффициент направленного отражения

4.3.3. Diffuse reflectance – Коэффициент диффузного отражения

Quantity

Diffuse reflectance

Symbol

ρ_d

Definition

Ratio of the diffusely reflected part of the whole reflected flux to the incident flux [3].

Unit

Synonyms

Величина

Коэффициент диффузного отражения

Обозначение

ρ_d

Определение

Отношение диффузно отраженной части всего отраженного потока к падающему потоку [3].

Единица

Синонимы

Диффузная отражательная способность

4.3.4. Bidirectional reflectance distribution function – Функция распределения двунаправленного коэффициента отражения

Quantity

Bidirectional reflectance distribution function

Symbol

f_r

Definition

The ratio of the differential radiance dL_r of the radiation reflected by the surface in the given direction $\bar{\omega}_r$, to the differential irradiance dE_i resulting from the radiation incident on the surface in the direction $\bar{\omega}_i$:

$$f_r(\bar{\omega}_i, \bar{\omega}_r) = \frac{dL_r(\bar{\omega}_r)}{dE_i(\bar{\omega}_i)}.$$

Величина

Функция распределения двунаправленного коэффициента отражения

Обозначение

f_r

Определение

Отношение элемента dL_r энергетической яркости излучения, отраженного поверхностью в данном направлении $\bar{\omega}_r$, к элементу dE_i облученности излучением, падающим на поверхность по направлению падения $\bar{\omega}_i$:

$$f_r(\bar{\omega}_i, \bar{\omega}_r) = \frac{dL_r(\bar{\omega}_r)}{dE_i(\bar{\omega}_i)}.$$

Единица

Unit

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

sr^{-1}

Synonyms

BRDF (acronym)

Comments

In the spherical coordinate system (see the figure below):

cp^{-1}

Синонимы

БРДФ

Примечания

В сферической системе координат (см. рис. внизу):

$$f_r(\theta_i, \phi_i, \theta_r, \phi_r) = \frac{dL_r(\theta_r, \phi_r)}{dE_i(\theta_i, \phi_i)}.$$

$$f_r(\theta_i, \phi_i, \theta_r, \phi_r) = \frac{dL_r(\theta_r, \phi_r)}{dE_i(\theta_i, \phi_i)}.$$

4.3.5. Bidirectional reflectance – Двунаправленный коэффициент отражения

Quantity

Bidirectional reflectance

Symbol

$$d\rho(\theta_i, \phi_i; \theta_r, \phi_r)$$

Definition

The ratio of the reflected radiant flux collected within a solid angle element surrounding a given direction to the collimated radiant flux incident from another direction:

Величина

Двунаправленный коэффициент отражения

Обозначение

$$d\rho(\theta_i, \phi_i; \theta_r, \phi_r)$$

Определение

Отношение отраженного потока излучения, регистрируемого в элементе телесного угла, окружающего данное направление, к потоку коллимированного излучения, падающего из другого направления:

$$d\rho(\theta_i, \phi_i, \theta_r, \phi_r) = f_r(\theta_i, \phi_i, \theta_r, \phi_r) \cos \theta_r d\Omega_r, \quad d\rho(\theta_i, \phi_i, \theta_r, \phi_r) = f_r(\theta_i, \phi_i, \theta_r, \phi_r) \cos \theta_r d\Omega_r,$$

where $d\Omega_r$ is an element of solid angle in which the reflected radiation is registered.

Unit

Synonyms

Comments

1. The bidirectional reflectance is an infinitesimal value. In practice, $d\Omega_r$ is substituted by finite value $\Delta\Omega_r$.
2. The directions of incidence and collection, and the size of “element” $\Delta\Omega_r$ of the collection solid angle must be specified.

где $d\Omega_r$ – элемент телесного угла, в котором регистрируется отраженное излучение.

Единица

Синонимы

Двунаправленная отражательная способность

Примечания

1. Двунаправленный коэффициент отражения – бесконечно малая величина. На практике $d\Omega_r$ заменяется на конечную величину $\Delta\Omega_r$.
2. Направления падения и регистрации и размер “элемента” $\Delta\Omega_r$ телесного угла, в котором регистрируется отраженное излучение, должны быть указаны.

4.3.6. Directional-conical reflectance – Направленно-конический коэффициент отражения

Quantity

Directional-conical reflectance

Symbol

$$\rho(\theta_i, \phi_i; \Omega_r)$$

Definition

The ratio of the reflected radiant flux collected within a conical solid angle Ω_r to the collimated incident radiant flux.

Unit

Synonyms

Comments

Величина

Направленно-конический коэффициент отражения

Обозначение

$$\rho(\theta_i, \phi_i; \Omega_r)$$

Определение

Отношение отраженного потока излучения, регистрируемого в коническом телесном угле Ω_r , к потоку падающего коллимированного излучения.

Единица

Синонимы

Направленно-коническая отражательная способность

Примечания

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

The direction of incident radiation, as well as the direction of the cone axis and the opening angle of the cone must be specified.

Направление падения, направление оси конуса и его раствор должны быть указаны.

4.3.7. Biconical reflectance – Двуконический коэффициент отражения

Quantity

Biconical reflectance

Symbol

$$\rho(\Omega_i; \Omega_r)$$

Definition

The ratio of the reflected radiant flux collected within a conical solid angle Ω_r to the incident radiant flux limited to the conical solid angle Ω_i .

Unit

Synonyms

Comments

The directions and openings of the cones must be specified.

Величина

Двуконический коэффициент отражения

Обозначение

$$\rho(\Omega_i; \Omega_r)$$

Определение

Отношение отраженного потока излучения, регистрируемого в коническом телесном угле Ω_r , к потоку падающего излучения, ограниченного коническим телесным углом Ω_i .

Единица

Синонимы

Двуконическая отражательная способность

Примечания

Направления и растворы конусов должны быть указаны.

4.3.8. Conical-directional reflectance – Коническо-направленный коэффициент отражения

Quantity

Conical-directional reflectance

Symbol

$$d\rho(\Omega_i; \theta_r, \phi_r)$$

Definition

The ratio of the reflected radiant flux collected within an element of the solid angle $d\Omega_r$ surrounding a given direction, to the incident radiant flux limited to a conical solid angle Ω_i :

$$d\rho(\Omega_i, \theta_r, \phi_r) = \frac{\cos \theta_r d\Omega_r}{\Omega_i} \int f_r(\theta_i, \phi_i, \theta_r, \phi_r) \cos \theta_i d\Omega_i$$

Unit

Synonyms

Comments

1. The conical-directional reflectance is an infinitesimal value. In practice, $d\Omega_r$ is substituted by finite value $\Delta\Omega_r$.
2. The direction of incident radiation and opening of the cone must be specified as well as the direction and size of the solid angle element.

Величина

Коническо-направленный коэффициент отражения

Обозначение

$$d\rho(\Omega_i; \theta_r, \phi_r)$$

Определение

Отношение отраженного потока излучения, регистрируемого в элементе $d\Omega_r$ телесного угла, окружающего заданное направление, к потоку падающего излучения, ограниченного коническим телесным углом Ω_i :

$$d\rho(\Omega_i, \theta_r, \phi_r) = \frac{\cos \theta_r d\Omega_r}{\Omega_i} \int f_r(\theta_i, \phi_i, \theta_r, \phi_r) \cos \theta_i d\Omega_i$$

Единица

Синонимы

Коническо-направленная отражательная способность

Примечания

1. Коническо-направленный коэффициент отражения – бесконечно малая величина. На практике $d\Omega_r$ заменяется на конечную величину $\Delta\Omega_r$.
2. Направление падения и раствор конуса, а также направление и размер “элемента” телесного угла должны быть указаны.

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

4.3.9. Directional-hemispherical reflectance – Направленно-полусферический коэффициент отражения

Quantity

Directional-hemispherical reflectance

Symbol

$$\rho(\theta_i, \phi_i; 2\pi)$$

Definition

The ratio of the reflected radiant flux collected within the hemispherical solid angle to the collimated flux of incident radiation.

Unit

Synonyms

Comments

The direction of incident radiation must be specified.

Величина

Направленно-полусферический коэффициент отражения

Обозначение

$$\rho(\theta_i, \phi_i; 2\pi)$$

Определение

Отношение потока отраженного излучения, регистрируемого в полусферическом телесном угле, к потоку коллимированного падающего излучения.

Единица

Синонимы

Направленно-полусферическая отражательная способность

Примечания

Направление падения должно быть указано.

4.3.10. Hemispherical-directional reflectance – Полусферическо-направленный коэффициент отражения

Quantity

Hemispherical-directional reflectance

Symbol

$$d\rho(2\pi; \theta_r, \phi_r)$$

Definition

The ratio of the reflected radiant flux collected within an element of the solid angle $d\Omega_r$ surrounding a given direction, to the incident radiant flux from the hemispherical solid angle.

Величина

Полусферическо-направленный коэффициент отражения

Обозначение

$$d\rho(2\pi; \theta_r, \phi_r)$$

Определение

Отношение отраженного потока излучения, регистрируемого в элементе телесного угла $d\Omega_r$, окружающего данное направление, к потоку излучения, падающему из полусферического телесного угла.

$d\rho(2\pi, \theta_r, \phi_r) = \frac{\cos \theta_r d\Omega_r}{\pi} \int_{2\pi} f_r(\theta_i, \phi_i, \theta_r, \phi_r) \cos \theta_i d\Omega_i$	$d\rho(2\pi, \theta_r, \phi_r) = \frac{\cos \theta_r d\Omega_r}{\pi} \int_{2\pi} f_r(\theta_i, \phi_i, \theta_r, \phi_r) \cos \theta_i d\Omega_i$
<i>Unit</i>	<i>Единица</i>
<i>Synonyms</i>	<i>Синонимы</i>
<i>Comments</i>	<i>Примечания</i>
1. The hemispherical-directional reflectance is an infinitesimal value. In practice, $d\Omega_r$ is substituted by finite value $\Delta\Omega_r$. 2. The direction of collection and the size of the solid angle element must be specified.	1. Полусферическо-направленный коэффициент отражения – бесконечно малая величина. На практике $d\Omega_r$ заменяется на конечную величину $\Delta\Omega_r$. 2. Направление регистрации и размер “элемента” телесного угла должны быть указаны.

4.3.11. Conical–hemispherical reflectance – Коническо–полусферический коэффициент отражения

<i>Quantity</i>	<i>Величина</i>
Conical–hemispherical reflectance	Коническо-полусферический коэффициент отражения
<i>Symbol</i>	<i>Обозначение</i>
$\rho(\Omega_i; 2\pi)$	$\rho(\Omega_i; 2\pi)$
<i>Definition</i>	<i>Определение</i>
The ratio of the reflected radiant flux collected within the hemispherical solid angle to the incident radiant flux limited to a conical solid angle.	Отношение потока отраженного излучения, регистрируемого в полусферическом телесном угле, к потоку падающего излучения, ограниченного коническим телесным углом.
<i>Unit</i>	<i>Единица</i>
<i>Synonyms</i>	<i>Синонимы</i>
<i>Comments</i>	<i>Примечания</i>
The direction of the cone axis and the opening angle of the cone must be	Направление оси и раствор конуса должны быть указаны.

specified.

4.3.12. Hemispherical-conical reflectance – Полусферическо-конический коэффициент отражения

<i>Quantity</i>	<i>Величина</i>	
Hemispherical-conical reflectance	Полусферическо-конический коэффициент отражения	
<i>Symbol</i>	<i>Обозначение</i>	
$\rho(2\pi; \Omega_r)$	$\rho(2\pi; \Omega_r)$	
<i>Definition</i>	<i>Определение</i>	
The ratio of the reflected radiant flux collected within a conical solid angle to the radiant flux falling from the hemispherical solid angle.	Отношение потока отраженного излучения, регистрируемого в коническом телесном угле, к потоку излучения, падающему из полусферического телесного угла.	
<i>Unit</i>	<i>Единица</i>	
-	-	
<i>Synonyms</i>	<i>Синонимы</i>	
	Полусферически-коническая отражательная способность	
<i>Comments</i>	<i>Примечания</i>	
The direction of the cone axis and the opening angle of the cone must be specified.	Направление оси и раствор конуса должны быть указаны.	

4.3.13. Bihemispherical reflectance – Двуполусферический коэффициент отражения

<i>Quantity</i>	<i>Величина</i>	
Bihemispherical reflectance	Двуполусферический коэффициент отражения	
<i>Symbol</i>	<i>Обозначение</i>	
$\rho(2\pi; 2\pi)$	$\rho(2\pi; 2\pi)$	
<i>Definition</i>	<i>Определение</i>	
The ratio of the reflected radiant flux collected within the hemispherical solid	Отношение потока отраженного излучения, регистрируемого в	

angle to the radiant flux incident from the hemispherical solid angle.

Unit

Synonyms

полусферическом телесном угле, к потоку излучения, падающему из полусферического телесного угла.

Единица

Синонимы

Двуполусферическая отражательная способность

4.3.14. Reflectance factor – Фактор отражения

Quantity

Reflectance factor

Symbol

R

Definition

The ratio of the radiant flux reflected by a surface to the flux that would be reflected by the totally reflecting Lambertian surface under identical conditions of radiation and collection.

Unit

Comments

1. By analogy with reflectance, one can define nine forms of reflectance factor:

$$R(\theta_i, \phi_i; \theta_r, \phi_r), R(\theta_i, \phi_i; \Omega_r), R(\theta_i, \phi_i; 2\pi), \\ R(\Omega_i; \theta_r, \phi_r), R(2\pi; \theta_r, \phi_r), R(\Omega_i; \Omega_r), \\ R(\Omega_i; 2\pi), R(2\pi; \Omega_r), R(2\pi; 2\pi).$$

2. For specularly reflecting surfaces illuminated or irradiated by beams having narrow solid angles, the reflectance factor in the direction of specular reflectance can substantially exceed unity.

3. If the solid angle of a beam cone approaches $2\pi \text{ sr}$, the reflectance factor approaches the reflectance for the same

Величина

Фактор отражения

Обозначение

R

Определение

Отношение потока излучения, отраженного поверхностью, к потоку, который был бы отражен полностью отражающей ламбертовской поверхностью, при тех же условиях облучения и регистрации.

Единица

Примечания

1. По аналогии с коэффициентом отражения, можно определить девять форм фактора коэффициента отражения:

$$R(\theta_i, \phi_i; \theta_r, \phi_r), R(\theta_i, \phi_i; \Omega_r), R(\theta_i, \phi_i; 2\pi), \\ R(\Omega_i; \theta_r, \phi_r), R(2\pi; \theta_r, \phi_r), R(\Omega_i; \Omega_r), \\ R(\Omega_i; 2\pi), R(2\pi; \Omega_r), R(2\pi; 2\pi).$$

2. Для зеркально отражающих поверхностей, облученных или освещенных пучками лучей малых телесных углов, значение фактора отражения в направлении зеркального отражения может быть гораздо больше единицы.

3. Если телесный угол пучка лучей

conditions of irradiation.

4. If the solid angle of a beam cone approaches zero, the reflectance factor approaches the radiance factor for the same conditions of irradiation.

приближается к 2π ср, фактор отражения приближается к значению коэффициента отражения при тех же условиях облучения.

4. Если телесный угол пучка лучей приближается к нулю, то фактор отражения приближается к значению коэффициента энергетической яркости при тех же самых условиях облучения.

4.3.15. Radiance factor – Коэффициент энергетической яркости

Quantity

Radiance factor (at a surface element of a non-self-radiating medium, in a given direction, under specified conditions of irradiation)

Symbol

β_e, β

Definition

Ratio of the radiance of the surface element in the given direction to that of a perfect reflecting or transmitting diffuser identically irradiated [3].

Unit

Comments

1. For photoluminescent media, the radiance factor is the sum of two portions, the reflected radiance factor β_S and the luminescent radiance factor β_L [3]:

$$\beta_e = \beta_S + \beta_L.$$

Величина

Коэффициент энергетической яркости (элемента поверхности несамосветящегося тела, в некотором направлении для заданных условий освещения)

Обозначение

β_e, β

Определение

Отношение энергетической яркости тела в некотором определенном направлении к энергетической яркости совершенного отражающего или пропускающего рассеивателя, находящегося в тех же условиях облучения [3].

Единица

Примечания

1. В случае фотолюминесцирующей среды коэффициент энергетической яркости есть сумма двух слагаемых - коэффициента энергетической яркости по отражению β_S и люминисцентного коэффициента энергетической яркости β_L [3]:

$$\beta_e = \beta_S + \beta_L.$$

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

2. By analogy with reflectance, one can define nine forms of radiance factor:

$$\begin{aligned} &\beta(\theta_i, \phi_i; \theta_r, \phi_r), \beta(\theta_i, \phi_i; \Omega_r), \beta(\theta_i, \phi_i; 2\pi), \\ &\beta(\Omega_i; \theta_r, \phi_r), \beta(2\pi; \theta_r, \phi_r), \beta(\Omega_i; \Omega_r), \\ &\beta(\Omega_i; 2\pi), \beta(2\pi; \Omega_r), \beta(2\pi; 2\pi). \end{aligned}$$

2. По аналогии с коэффициентом отражения, можно определить девять форм коэффициента яркости:

$$\begin{aligned} &\beta(\theta_i, \phi_i; \theta_r, \phi_r), \beta(\theta_i, \phi_i; \Omega_r), \beta(\theta_i, \phi_i; 2\pi), \\ &\beta(\Omega_i; \theta_r, \phi_r), \beta(2\pi; \theta_r, \phi_r), \beta(\Omega_i; \Omega_r), \\ &\beta(\Omega_i; 2\pi), \beta(2\pi; \Omega_r), \beta(2\pi; 2\pi). \end{aligned}$$

4.3.16 Albedo – Альбедо

Quantity
Albedo

Symbol

A

Definition

The ratio of the radiation flux reflected by the surface into hemispherical solid angle to the radiant flux that is incident onto that surface within a given wavelength range.

Unit

Comments

Usually, is applicable for celestial body surfaces, when the Sun serves as the radiation source.

Величина
Альбедо

Обозначение

A

Определение

Отношение потока излучения, отраженного поверхностью в полусферический телесный угол к потоку излучения, падающего на эту поверхность в определенном диапазоне длин волн.

Единица

Примечания

Применяется обычно для поверхностей небесных тел, когда источником излучения служит Солнце.

4.4. Characteristics of transmission – Характеристики пропускания

4.4.1. Transmittance – Коэффициент пропускания

<i>Quantity</i>	<i>Величина</i>
Transmittance	Коэффициент пропускания
<i>Symbol</i>	<i>Обозначение</i>
τ	τ
<i>Definition</i>	<i>Определение</i>
Ratio of the transmitted radiant flux to the incident radiant flux in the given conditions (spectral composition, polarization and geometrical distribution) [3, with alterations].	Отношение пропущенного потока излучения к падающему потоку при данных условиях (для падающего излучения данного спектрального состава, поляризации и геометрического распределения) [3, с изменениями].
<i>Unit</i>	<i>Единица</i>
-	-
<i>Comments</i>	<i>Примечания</i>
See Comments to 4.3.1.	См. Примечание к 4.3.1.

4.4.2. Regular transmittance – Коэффициент направленного пропускания

<i>Quantity</i>	<i>Величина</i>
Regular transmittance	Коэффициент направленного пропускания
<i>Symbol</i>	<i>Обозначение</i>
τ_r	τ_r
<i>Definition</i>	<i>Определение</i>
Ratio of the regularly transmitted part of the (whole) transmitted flux, to the incident flux [3].	Отношение направленно пропущенной части всего пропущенного потока к падающему потоку [3].
<i>Unit</i>	<i>Единица</i>
-	-
<i>Comments</i>	<i>Примечания</i>
See Comments to 4.3.1.	См. Примечания к 4.3.1.

4.4.3. Diffuse transmittance – Коэффициент диффузного пропускания

<i>Quantity</i>	<i>Величина</i>
Diffuse transmittance	Коэффициент диффузного пропускания
<i>Symbol</i>	<i>Обозначение</i>
τ_d	τ_d
<i>Definition</i>	<i>Определение</i>
Ratio of the diffusely scattered part of the (whole) transmitted flux, to the incident flux [3].	Отношение диффузно рассеянной части всего пропущенного потока к падающему потоку [3].
<i>Unit</i>	<i>Единица</i>
–	–

4.4.4. Bidirectional transmittance distribution function – Функция распределения двунаправленного коэффициента пропускания

<i>Quantity</i>	<i>Величина</i>
Bidirectional transmittance distribution function	Функция распределения двунаправленного коэффициента пропускания
<i>Symbol</i>	<i>Обозначение</i>
f_t	f_t
<i>Definition</i>	<i>Определение</i>
The ratio of the differential radiance dL_r of the radiation transmitted by a medium in a given direction $\vec{\omega}_r$, to the differential irradiance dE_i by the radiation incident on the medium from a given incidence direction $\vec{\omega}_i$:	Отношение элемента энергетической яркости dL_r излучения, пропущенного средой в данном направлении $\vec{\omega}_r$, к элементу облученности dE_i излучением, падающим на среду по направлению падения $\vec{\omega}_i$:
$f_t(\vec{\omega}_i, \vec{\omega}_r) = \frac{dL_r(\vec{\omega}_r)}{dE_i(\vec{\omega}_i)}.$	$f_t(\vec{\omega}_i, \vec{\omega}_r) = \frac{dL_r(\vec{\omega}_r)}{dE_i(\vec{\omega}_i)}.$
<i>Unit</i>	<i>Единица</i>

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

sr^{-1}

Synonym

BTDF (acronym)

Comments

In the spherical coordinate system (see figure below):

cp^{-1}

Синонимы

Примечания

В сферической системе координат (см. рисунок ниже):

$$f_t(\theta_i, \phi_i, \theta_t, \phi_t) = \frac{dL_t(\theta_t, \phi_t)}{dE_i(\theta_i, \phi_i)}.$$

$$f_t(\theta_i, \phi_i, \theta_t, \phi_t) = \frac{dL_t(\theta_t, \phi_t)}{dE_i(\theta_i, \phi_i)}.$$

4.4.5. Bidirectional transmittance – Двунаправленный коэффициент пропускания

Quantity

Bidirectional transmittance

Symbol

$$d\tau(\theta_i, \phi_i; \theta_t, \phi_t)$$

Definition

The ratio of the transmitted radiant flux collected within an element of the solid angle surrounding a given direction, to the collimated incident radiant flux:

Величина

Двунаправленный коэффициент пропускания

Обозначение

$$d\tau(\theta_i, \phi_i; \theta_t, \phi_t)$$

Определение

Отношение пропущенного потока излучения, регистрируемого в элементе телесного угла, окружающего данное направление, к потоку коллимированного падающего излучения:

$$d\tau(\theta_i, \phi_i, \theta_t, \phi_t) = f_i(\theta_i, \phi_i, \theta_t, \phi_t) \cos \theta_t d\Omega_t,$$

where $d\Omega_t$ is an element of solid angle in which the reflected radiation is registered.

Unit

Synonyms

Comments

1. The bidirectional transmittance is an infinitesimal value. In practice, $d\Omega_t$ is substituted by finite value $\Delta\Omega_t$.
2. The directions of incidence and collection, and the size of “element” $\Delta\Omega_t$ of the collection solid angle must be specified.

$$d\tau(\theta_i, \phi_i, \theta_t, \phi_t) = f_i(\theta_i, \phi_i, \theta_t, \phi_t) \cos \theta_t d\Omega_t,$$

где $d\Omega_t$ – элемент телесного угла, в котором регистрируется отраженное излучение.

Единица

Синонимы

Двунаправленная пропускательная способность

Примечания

1. Двунаправленный коэффициент пропускания – бесконечно малая величина. На практике $d\Omega_t$ заменяется на конечную величину $\Delta\Omega_t$.
2. Направления падения и регистрации и размер “элемента” $\Delta\Omega_t$ телесного угла, в котором регистрируется пропущенное излучение, должны быть указаны.

4.4.6. Directional-conical transmittance – Направленно-конический коэффициент пропускания

Quantity

Directional-conical transmittance

Symbol

$$\tau(\theta_i, \phi_i; \Omega_t)$$

Definition

The ratio of the transmitted radiant flux collected within a conical solid angle to the collimated incident radiant flux.

Unit

Synonyms

Величина

Направленно-конический коэффициент пропускания

Обозначение

$$\tau(\theta_i, \phi_i; \Omega_t)$$

Определение

Отношение пропущенного потока излучения, регистрируемого в коническом телесном угле, к потоку падающего коллимированного излучения.

Единица

Синонимы

Направленно-коническая пропускательная способность

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

Comments

The direction of incident radiation, the direction of the cone axis and the opening angle of the cone must be specified.

Примечания

Направление падения, направление оси конуса и его раствор должны быть указаны.

4.4.7. Biconical transmittance – Двуконический коэффициент пропускания

Quantity

Biconical transmittance

Symbol

$$\tau(\Omega_i; \Omega_t)$$

Definition

The ratio of the transmitted radiant flux collected within a conical solid angle, to the incident radiant flux limited to a conical solid angle.

Unit

-

Synonyms

Comments

The directions of cone axes and the opening angles of the cones must be specified.

Величина

Коэффициент двуконического пропускания

Обозначение

$$\tau(\Omega_i; \Omega_t)$$

Определение

Отношение пропущенного потока излучения, регистрируемого в коническом телесном угле, к потоку падающего излучения, ограниченного коническим телесным углом.

Единица

-

Синонимы

Двуконическая пропускательная способность

Примечания

Направления и растворы конусов должны быть указаны.

4.4.8. Conical-directional transmittance – Конечно-направленный коэффициент пропускания

Quantity

Conical-directional transmittance

Symbol

$$d\tau(\Omega_i; \theta_t, \phi_t)$$

Величина

Конечно-направленный коэффициент пропускания

Обозначение

$$d\tau(\Omega_i; \theta_t, \phi_t)$$

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

Definition

The ratio of the transmitted radiant flux collected within an element of the solid angle $d\Omega_t$ surrounding a given direction, to the incident radiant flux limited to a conical solid angle Ω_i :

$$d\tau(\Omega_i, \theta_i, \phi_i) = \frac{\cos \theta_i d\Omega_t}{\Omega_i} \int_{\Omega_i} f_t(\theta_i, \phi_i, \theta_t, \phi_t) \cos \theta_t d\Omega_t$$

Unit

Synonyms

Comments

1. The conical-directional transmittance is an infinitesimal value. In practice, $d\Omega_t$ is substituted by finite value $\Delta\Omega_t$.
2. The directions of incidence and collection, and the size of “element” $\Delta\Omega_t$ of the collection solid angle must be specified.

Определение

Отношение пропущенного потока излучения, регистрируемого в элементе телесного угла $d\Omega_t$, окружающего заданное направление, к потоку падающего излучения, ограниченного коническим телесным углом Ω_i :

$$d\tau(\Omega_i, \theta_i, \phi_i) = \frac{\cos \theta_i d\Omega_t}{\Omega_i} \int_{\Omega_i} f_t(\theta_i, \phi_i, \theta_t, \phi_t) \cos \theta_t d\Omega_t$$

Единица

Синонимы

Конечно-направленная пропускательная способность

Примечания

1. Конечно-направленный коэффициент отражения – бесконечно малая величина. На практике $d\Omega_t$ заменяется на конечную величину $\Delta\Omega_t$.
2. Направления падения и регистрации и размер “элемента” $\Delta\Omega_t$ телесного угла, в котором регистрируется пропущенное излучение, должны быть указаны.

4.4.9. Directional-hemispherical transmittance – Направленно-полусферический коэффициент пропускания

Quantity

Directional-hemispherical transmittance

Symbol

$$\tau(\theta_i, \phi_i; 2\pi)$$

Definition

The ratio of the transmitted radiant flux collected within the hemispherical solid angle to the collimated incident radiant flux.

Величина

Направленно-полусферический коэффициент пропускания

Обозначение

$$\tau(\theta_i, \phi_i; 2\pi)$$

Определение

Отношение потока пропущенного излучения, регистрируемого в полусферическом телесном угле, к потоку коллимированного падающего излучения.

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Unit

Единица

Synonyms

Синонимы

Направленно-полусферическая пропускательная способность

Comments

The direction of incident radiation must be specified.

Примечания

Направление падения должно быть указано.

4.4.10. Hemispherical-directional transmittance – Полусферическо-направленный коэффициент пропускания

Quantity

Hemispherical-directional transmittance

Величина

Полусферическо-направленный коэффициент пропускания

Symbol

$$d\tau(2\pi; \theta_i, \phi_i)$$

Обозначение

$$d\tau(2\pi; \theta_i, \phi_i)$$

Definition

The ratio of transmitted radiant flux collected over an element of the solid angle $d\Omega_t$ surrounding a given direction, to the incident radiant flux from the hemispherical solid angle:

Определение

Отношение пропущенного потока излучения, регистрируемого в элементе телесного угла $d\Omega_t$, окружающего данное направление, к потоку излучения, падающему из полусферического телесного угла:

$$d\tau(2\pi, \theta_i, \phi_i) = \frac{\cos \theta_i d\Omega_t}{\pi} \int_{2\pi} f_t(\theta_i, \phi_i, \theta_i, \phi_i) \cos \theta_i d\Omega_i$$

$$d\tau(2\pi, \theta_i, \phi_i) = \frac{\cos \theta_i d\Omega_t}{\pi} \int_{2\pi} f_t(\theta_i, \phi_i, \theta_i, \phi_i) \cos \theta_i d\Omega_i$$

Unit

Единица

Synonyms

Синонимы

Полусферическо-направленная пропускательная способность

Comments

1. The hemispherical-directional reflectance is an infinitesimal value. In practice, $d\Omega_t$ is substituted by finite value $\Delta\Omega_t$.
2. The directions of incidence and

Примечания
1. Полусферическо-направленный коэффициент отражения – бесконечно малая величина. На практике $d\Omega_t$ заменяется на конечную величину $\Delta\Omega_t$.

collection, and the size of “element” $\Delta\Omega_t$ of the collection solid angle must be specified.

2. Направления падения и регистрации и размер “элемента” $\Delta\Omega_t$ телесного угла, в котором регистрируется пропущенное излучение, должны быть указаны.

4.4.11. Conical-hemispherical transmittance – Коническо-полусферический коэффициент пропускания

Quantity

Conical-hemispherical transmittance

Symbol

$$\tau(\Omega_i; 2\pi)$$

Definition

The ratio of the transmitted radiant flux collected over the hemispherical solid angle to the incident radiant flux limited to a conical solid angle.

Величина

Коническо-полусферический коэффициент пропускания

Обозначение

$$\tau(\Omega_i; 2\pi)$$

Определение

Отношение потока пропущенного излучения, регистрируемого в полусферическом телесном угле, к потоку падающего излучения, ограниченного коническим телесным углом.

Unit

Единица

Synonyms

Синонимы

Коническо-полусферическая пропускательная способность

Comments

The direction of the cone axis and the opening angle of the cone must be specified.

Примечания

Направление и раствор конуса должны быть указаны.

4.4.12. Hemispherical-conical transmittance – Полусферическо-конический коэффициент пропускания

Quantity

Hemispherical-conical transmittance

Symbol

$$\tau(2\pi; \Omega_i)$$

Величина

Полусферическо-конический коэффициент пропускания

Обозначение

$$\tau(2\pi; \Omega_i)$$

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Definition

The ratio of the transmitted radiant flux collected over a conical solid angle to the incident radiant flux from the hemispherical solid angle.

Unit

Synonyms

Comments

The direction of the cone axis and the opening angle of the cone must be specified.

Определение

Отношение потока пропущенного излучения, регистрируемого в коническом телесном угле, к потоку излучения, падающему из полусферического телесного угла.

Единица

Синонимы

Полусферическо-коническая пропускательная способность

Примечания

Направление и раствор конуса должны быть указаны.

4.4.13. Bihemispherical transmittance – Двуполусферический коэффициент пропускания

Quantity

Bihemispherical transmittance

Symbol

$$\tau(2\pi;2\pi)$$

Definition

The ratio of the transmitted radiant flux collected over the hemispherical solid angle, to the radiant flux incident from the hemispherical solid angle.

Unit

Synonyms

Величина

Двуполусферический коэффициент пропускания

Обозначение

$$\tau(2\pi;2\pi)$$

Определение

Отношение потока пропущенного излучения, регистрируемого в полусферическом телесном угле, к потоку излучения, падающему из полусферического телесного угла.

Единица

Синонимы

Двуполусферическая пропускательная способность

4.5. Characteristics of absorption – Характеристики поглощения

4.5.1. Absorptance – Коэффициент поглощения

<i>Quantity</i>	<i>Величина</i>
Absorptance	Коэффициент поглощения
<i>Symbol</i>	<i>Обозначение</i>
α	α
<i>Definition</i>	<i>Определение</i>
Ratio of the absorbed radiant flux to the incident flux under specified conditions [3].	Отношение поглощенного потока излучения или светового потока к потоку падающему при определенных условиях [3].
<i>Unit</i>	<i>Единица</i>
–	–
<i>Synonyms</i>	<i>Синонимы</i>
See comments to 4.3.1.	Поглощательная способность
<i>Comments</i>	<i>Примечания</i>
See comments to 4.3.1.	См. примечания к 4.3.1.

4.5.2. Directional absorptance – Направленный коэффициент поглощения

<i>Quantity</i>	<i>Величина</i>
Directional absorptance	Направленный коэффициент поглощения
<i>Symbol</i>	<i>Обозначение</i>
$\alpha(\theta_i, \phi_i)$	$\alpha(\theta_i, \phi_i)$
<i>Definition</i>	<i>Определение</i>
The ratio of the absorbed radiant flux to the collimated radiant incident flux.	Отношение потока поглощенного излучения к потоку коллимированного падающего излучения.
<i>Unit</i>	<i>Единица</i>
–	–
<i>Synonyms</i>	<i>Синонимы</i>
–	Направленная поглощательная способность

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Comments

The direction of incident radiation must be specified.

Примечания

Направление падения должно быть указано.

4.5.3. Conical absorptance – Конический коэффициент поглощения

Quantity

Conical absorptance

Symbol

$$\alpha(\Omega_i)$$

Definition

The ratio of the absorbed radiant flux to the incident radiant flux limited to a conical solid angle.

Unit

Synonyms

Comments

The axis direction and the opening angle of the cone must be specified.

Величина

Конический коэффициент поглощения

Обозначение

$$\alpha(\Omega_i)$$

Определение

Отношение потока поглощенного излучения к потоку падающего излучения, ограниченного коническим телесным углом.

Единица

Синонимы

Коническая поглощательная способность

Примечания

Направление оси и раствор конуса должны быть указаны.

4.5.4. Hemispherical absorptance – Полусферический коэффициент поглощения

Quantity

Hemispherical absorptance

Symbol

$$\alpha(2\pi)$$

Definition

The ratio of the absorbed radiant flux to the radiant flux incident from the hemispherical solid angle.

Величина

Полусферический коэффициент поглощения

Обозначение

$$\alpha(2\pi)$$

Определение

Отношение потока поглощенного излучения к потоку излучения, падающему из полусферического телесного угла.

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Unit

Единица

Synonyms

Синонимы

Полусферическая поглощательная способность

4.5.5. Spectral linear scattering coefficient – Спектральный натуральный показатель рассеяния

Quantity

Spectral linear scattering coefficient

Величина

Спектральный натуральный показатель рассеяния

Symbol

$s(\lambda)$

Обозначение

$s(\lambda)$

Definition

Quotient of the relative decrease caused by diffusion of the spectral concentration of the radiant flux $\Phi_{e,\lambda}$ of a collimated beam during its propagation along an elementary length dl at the point considered, by the length dl [3]:

Определение

Отношение относительного уменьшения спектральной плотности потока излучения $\Phi_{e,\lambda}$ практически параллельного пучка во время его прохождения через бесконечно тонкий слой среды dl в рассматриваемой точке, как из-за поглощения, так из-за рассеяния, к толщине этого слоя dl [3]:

$$s(\lambda) = \frac{1}{\Phi_{e,\lambda}} \cdot \frac{d\Phi_{e,\lambda}}{dl}.$$

$$s(\lambda) = \frac{1}{\Phi_{e,\lambda}} \cdot \frac{d\Phi_{e,\lambda}}{dl}.$$

Unit
 m^{-1}

Единица
 м^{-1}

Comments

Spectral linear scattering coefficient is defined at a point in a diffusing medium, for a collimated beam of radiation.

Примечания

Спектральный натуральный показатель рассеяния определяется в точке рассеивающей среды для параллельного пучка лучей излучения.

4.5.6. Spectral linear absorption coefficient – Спектральный натуальный показатель поглощения

Quantity

Spectral linear absorption coefficient

Symbol

$a(\lambda)$

Definition

Quotient of the relative decrease caused by absorption of the spectral concentration of the radiant flux $\Phi_{e,\lambda}$ of a collimated beam during its propagation along an elementary length dl at the point considered, by the length dl [3]:

$$a(\lambda) = \frac{1}{\Phi_{e,\lambda}} \cdot \frac{d\Phi_{e,\lambda}}{dl}.$$

Unit
 m^{-1}

Comments

Spectral linear absorption coefficient is defined at a point in an absorbing medium, for a collimated beam of radiation.

Величина

Спектральный натуальный показатель поглощения

Обозначение

$a(\lambda)$

Определение

Отношение относительного уменьшения спектральной плотности потока излучения $\Phi_{e,\lambda}$ практически параллельного пучка во время его прохождения через бесконечно тонкий слой среды dl в рассматриваемой точке, как из-за поглощения, так и из-за рассеяния, к толщине этого слоя dl [3]:

$$a(\lambda) = \frac{1}{\Phi_{e,\lambda}} \cdot \frac{d\Phi_{e,\lambda}}{dl}.$$

Единица
 m^{-1}

Примечания

Спектральный натуальный показатель поглощения определяется в точке поглощающей среды для параллельного пучка лучей излучения.

4.5.7. Spectral linear attenuation coefficient – Спектральный натуральный показатель ослабления

<i>Quantity</i>	<i>Величина</i>
Spectral linear attenuation coefficient	Спектральный натуральный показатель ослабления
<i>Symbol</i>	<i>Обозначение</i>
$\mu(\lambda)$	$\mu(\lambda)$
<i>Definition</i>	<i>Определение</i>
Quotient of the relative decrease caused by both absorption and diffusion of the spectral concentration of the radiant flux $\Phi_{e,\lambda}$ of a collimated beam during its propagation along an elementary length dl at the point considered, by the length dl [3]:	Отношение относительного уменьшения спектральной плотности потока излучения $\Phi_{e,\lambda}$ практически параллельного пучка во время его прохождения через бесконечно тонкий слой среды dl в рассматриваемой точке, как из-за поглощения, так и из-за рассеяния, к толщине этого слоя dl [3]:
$\mu(\lambda) = \frac{1}{\Phi_{e,\lambda}} \cdot \frac{d\Phi_{e,\lambda}}{dl}.$	$\mu(\lambda) = \frac{1}{\Phi_{e,\lambda}} \cdot \frac{d\Phi_{e,\lambda}}{dl}.$
<i>Unit</i>	<i>Единица</i>
m^{-1}	M^{-1}
<i>Comments</i>	<i>Примечания</i>
Spectral linear attenuation coefficient is defined at a point in an absorbing and diffusing medium, for a collimated beam of radiation.	Спектральный натуральный показатель ослабления определяется в точке поглощающей или рассеивающей среды для параллельного пучка лучей излучения.

4.5.8. Spectral mass attenuation coefficient – Спектральный показатель ослабления на единицу массы

Quantity

Spectral mass attenuation coefficient

Symbol

$$\mu'(\lambda)$$

Definition

Quotient of the spectral linear attenuation coefficient $\mu(\lambda)$ by the (mass) density ρ of the medium [3]:

$$\mu'(\lambda) = \frac{\mu(\lambda)}{\rho}.$$

Unit
 $\text{m}^2 \cdot \text{kg}^{-1}$

Величина

Спектральный показатель ослабления на единицу массы

Обозначение

$$\mu'(\lambda)$$

Определение

Отношение спектрального натурального показателя ослабления $\mu(\lambda)$ к плотности ρ данной среды [3]:

$$\mu'(\lambda) = \frac{\mu(\lambda)}{\rho}.$$

Единица
 $\text{м}^2 \cdot \text{кг}^{-1}$

4.5.9. Spectral optical thickness – Спектральная оптическая толщина

Quantity

Spectral optical thickness

Symbol

$$\delta(\lambda)$$

Definition

Quantity used in atmospheric physics and physical oceanography : for a monochromatic component of wavelength λ of the radiation of a collimated beam propagating along the given length from the point x_1 to the point x_2 on its path through a homogeneous or non-homogeneous diffusing medium, the spectral optical thickness $\delta(\lambda)$ of the medium between x_1 and x_2 is defined by the

Величина

Спектральная оптическая толщина

Обозначение

$$\delta(\lambda)$$

Определение

Величина, которая используется в физике атмосферы и физической океанографии для монохроматической составляющей с длиной λ практически параллельного пучка лучей, распространяющихся вдоль данного отрезка от точки x_1 и x_2 определяется по формуле:

formula:

$$\delta(\lambda) = \int_{x_1}^{x_2} \mu(x, \lambda) dx,$$

where $\mu(x, \lambda)$ is the spectral linear attenuation coefficient at the location of dx [3].

Unit

$$\delta(\lambda) = \int_{x_1}^{x_2} \mu(x, \lambda) dx,$$

где $\mu(x, \lambda)$ - спектральный натуральный показатель ослабления на протяжении отрезка dx [3].

Единица

Synonyms

Spectral optical depth

Comments

1. The spectral radiant flux $\Phi_{e,\lambda}(x_1, \lambda)$ of the beam at the point x_1 is reduced to the value of $\Phi_{e,\lambda}(x_2, \lambda)$ at the point x_2 according to the formula [3]:

$$\Phi_{e,\lambda}(x_2, \lambda) = \Phi_{e,\lambda}(x_1, \lambda) \cdot e^{-\delta(\lambda)},$$

so that

$$\delta(\lambda) = -\ln \frac{\Phi_{e,\lambda}(x_2, \lambda)}{\Phi_{e,\lambda}(x_1, \lambda)}.$$

Синонимы

Спектральная оптическая глубина

Примечания

1. Спектральный поток излучения $\Phi_{e,\lambda}(x_1, \lambda)$ пучка лучей в точке x_1 уменьшается до значения $\Phi_{e,\lambda}(x_2, \lambda)$ в точке x_2 в соответствии с формулой [3]:

$$\Phi_{e,\lambda}(x_2, \lambda) = \Phi_{e,\lambda}(x_1, \lambda) \cdot e^{-\delta(\lambda)},$$

при этом

$$\delta(\lambda) = -\ln \frac{\Phi_{e,\lambda}(x_2, \lambda)}{\Phi_{e,\lambda}(x_1, \lambda)}.$$

4.6. Characteristics of refraction – Характеристики преломления

4.6.1 Refractive index – Показатель преломления

<i>Quantity</i>	<i>Величина</i>
Refractive index	Показатель преломления
<i>Symbol</i>	<i>Обозначение</i>
$n(\lambda)$	$n(\lambda)$
<i>Definition</i>	<i>Определение</i>
Ratio of the velocity of the electromagnetic waves in vacuum to the phase velocity of the waves of the monochromatic radiation in the medium [3].	Отношение скорости электромагнитных волн в вакууме к фазовой скорости волн монохроматического излучения в среде [3].
<i>Unit</i>	<i>Единица</i>
<i>Synonyms</i>	<i>Синонимы</i>
Index of refraction	Коэффициент преломления
<i>Comments</i>	<i>Примечания</i>
1. Refractive index of a medium is determined for a monochromatic radiation of wavelength λ in vacuum. 2. For isotropic media, this index is equal to the ratio of the sines of the angles of incidence θ_1 and refraction θ_2 of a ray passing through the surface separating vacuum and the medium: $n(\lambda) = \sin \theta_1 / \sin \theta_2.$	1. Показатель преломления среды определяется для монохроматического излучения с длиной волны λ в вакууме. 2. Для однородной среды данный показатель равен отношению синусов угла падения θ_1 и угла преломления θ_2 при прохождении луча через поверхность, разделяющую вакуум от среды: $n(\lambda) = \sin \theta_1 / \sin \theta_2.$

4.6.2 Spectral absorption index – Спектральный главный показатель поглощения

<i>Quantity</i>	<i>Величина</i>
Spectral absorption index (of a heavily absorbing material)	Спектральный главный показатель поглощения (сильно поглощающего вещества)

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

<i>Symbol</i>		<i>Обозначение</i>	
	$\kappa(\lambda)$		$\kappa(\lambda)$
<i>Definition</i>	Quantity, defined by the formula	<i>Определение</i>	Величина, определяемая по формуле

$$\kappa(\lambda) = \frac{\lambda}{4\pi} a(\lambda),$$

$$\kappa(\lambda) = \frac{\lambda}{4\pi} a(\lambda),$$

where $a(\lambda)$ is the spectral linear absorption coefficient. [3]

где $a(\lambda)$ - спектральный натуральный показатель поглощения [3].

Unit

Единица

4.6.3 Complex refractive index – Комплексный показатель преломления

<i>Quantity</i>		<i>Величина</i>	
Complex refractive index		Комплексный показатель преломления	
<i>Symbol</i>		<i>Обозначение</i>	
	$\hat{n}(\lambda)$		$\hat{n}(\lambda)$

Definition

Quantity defined by the formula

$$\hat{n}(\lambda) = n(\lambda) - i\kappa(\lambda),$$

$$\hat{n}(\lambda) = n(\lambda) - i\kappa(\lambda),$$

where $n(\lambda)$ is the spectral refractive index, $\kappa(\lambda)$ is the spectral absorption index and $i = \sqrt{-1}$ [3].

где $n(\lambda)$ - спектральный показатель преломления, $\kappa(\lambda)$ - спектральный главный показатель поглощения и $i = \sqrt{-1}$ [3].

Unit

Единица

4.6.4. Brewster angle – Угол Брюстера

<i>Quantity</i>		<i>Величина</i>	
Brewster angle		Угол Брюстера	
<i>Symbol</i>		<i>Обозначение</i>	
	θ_B		θ_B

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Definition

The angle of incidence of electromagnetic radiation at the interface between a dielectric and an absorbing medium for which there is no reflected component vibrating parallel to the plane of incidence.

Unit

rad, °

Synonyms

Polarizing angle

Comments

For the Brewster angle, the sum of the angles of incidence and refraction is equal to 90°, while the ratio of the refractive indices of the exit and entrance media is equal to $\tan \theta_B$ and the reflected radiation is totally polarized.

Определение

Угол падения электромагнитного излучения на границу между диэлектриком и поглощающей средой, для которого отсутствует отраженный компонент, колеблющийся параллельно плоскости падения.

Единица

рад, °

Синонимы

Примечания

При угле Брюстера сумма углов падения и преломления равна 90°, в то время как отношение показателей преломления выходной и входной сред равно $\tan \theta_B$ и отраженное излучение полностью поляризовано.

4.7. Characteristics of scattering – Характеристики рассеяния

4.7.1 Scattering indicatrix – Индикатриса рассеяния

Term

Scattering indicatrix

Definition

Representation in space, in the form of a surface expressed in polar coordinates, of the angular distribution of (relative) radiant intensity or of (relative) radiance of an element of surface of a medium that diffuses by reflection or transmission [3].

Synonyms

Indicatrix of diffusion

Comments

1. For a narrow incident beam of radiation, it is convenient to represent the indicatrix of diffusion in Cartesian coordinates. If the angular distribution has rotational

Термин

Индикатриса рассеяния

Определение

Представленное в форме поверхности, выраженное в полярных координатах, угловое распределение (относительной) силы излучения или энергетической яркости элемента поверхности тела, рассеивающего путем отражения или пропускания [3].

Синонимы

Примечания

В случае узкого пучка лучей индикатрису удобно изображать в прямоугольных координатах. Если угловое распределение обладает

symmetry, a meridian section of the surface is sufficient.

2. The term indicatrix is often used to denote, instead of surface, the curve obtained in a similar manner in a plane normal to the element concerned [3].

круговой симметрией, достаточно какого-либо меридионального сечения плоскостью.

2. Термин “индикатриса” часто применяют не для поверхности, а для кривой, полученной таким же путем в плоскости, перпендикулярной рассматриваемому элементу [3].

4.7.2 Bidirectional scattering distribution function – Функция распределения двунаправленного рассеяния

Quantity

Bidirectional scattering distribution function

Symbol

f_s

Definition

The ratio of the differential radiance dL_s of radiation scattered by a surface or medium in a given direction $\bar{\omega}_s$, to the differential irradiance dE_i of radiation incident on the surface from the incidence direction $\bar{\omega}_i$:

$$f_s(\bar{\omega}_i, \bar{\omega}_s) = \frac{dL_s(\bar{\omega}_s)}{dE_i(\bar{\omega}_i)}.$$

Unit
 sr^{-1}

Synonyms

BSDF (acronym)

Comments

In the spherical coordinate system:

$$f_s(\theta_i, \phi_i, \theta_s, \phi_s) = \frac{dL_s(\theta_s, \phi_s)}{dE_i(\theta_i, \phi_i)}.$$

Величина

Функция распределения двунаправленного рассеяния

Обозначение

f_s

Определение

Отношение элемента энергетической яркости dL_s излучения, рассеянного поверхностью или средой в данном направлении $\bar{\omega}_s$, к элементу облученности dE_i излучением, падающим на поверхность по направлению падения $\bar{\omega}_i$:

$$f_s(\bar{\omega}_i, \bar{\omega}_s) = \frac{dL_s(\bar{\omega}_s)}{dE_i(\bar{\omega}_i)}.$$

Единица
 ср^{-1}

Синонимы

Примечания

В сферической системе координат:

$$f_s(\theta_i, \phi_i, \theta_s, \phi_s) = \frac{dL_s(\theta_s, \phi_s)}{dE_i(\theta_i, \phi_i)}.$$

5. Components of Radiometric Systems – Компоненты радиометрических систем

5.1. Radiation Sources – Источники излучения

5.1.1. Blackbody – Черное тело

Term

Blackbody

Definition

A radiation source whose characteristics are close to those of the perfect blackbody and which is used as a standard radiation source.

Synonyms

Artificial blackbody
Black body (GB)

Термин

Черное тело

Определение

Источник излучения, по характеристикам приближающийся к абсолютно черному телу и используемый как эталонный источник излучения.

Синонимы

Модель абсолютно черного тела

5.1.2. Globar – Глобар

Term

Globar

Definition

Thermal source of infrared radiation made of silicon carbide or carborundum.

Comments

1. Globar® is a trade name. The generic name is Silicon Carbide radiation source.
2. Used as a source of IR radiation in the wavelength band from 1 μm to 15 μm .

Термин

Глобар

Определение

Тепловой источник инфракрасного излучения, изготовленный из карбида кремния или карборунда.

Примечания

1. Globar® - торговое название. Родовое название – источник излучения на основе карбида кремния.
2. Используется как источник ИК излучения в диапазоне длин волн 1...15 мкм.

5.1.3. Nernst's glower – Штифт Нернста

Term

Nernst's glower

Definition

A thermal source of infrared radiation made of rare-earth oxides.

Термин

Штифт Нернста

Определение

Тепловой источник инфракрасного излучения, изготовленный из окислов редкоземельных элементов.

5.1.4. Laser – Лазер

Term

Laser

Definition

A device that generates coherent electromagnetic waves via stimulated emission or stimulated scattering of radiation by the active medium located in the optical resonator.

Термин

Лазер

Определение

Устройство, генерирующее когерентные электромагнитные волны за счет вынужденного испускания или вынужденного рассеяния излучения активной средой, находящейся в оптическом резонаторе.

Синонимы

Оптический квантовый генератор

5.1.5. Light emitting diode – Светоизлучающий диод

Term

Light emitting diode

Definition

A semiconductor device with electron-hole transition, heterojunction, or metal-semiconductor contact, in which the flowing electric current generates an optical radiation due to injection electroluminescence.

Термин

Светоизлучающий диод

Определение

Полупроводниковый прибор с электронно-дырочным переходом, гетеропереходом или с контактом металл–полупроводник, генерирующий оптическое излучение при прохождении через него электрического тока на основе явления инжекционной электролюминесценции.

Синонимы

Synonyms

LED (acronym)

Светодиод
Электролюминесцентный диод
СИД (сокращение)
СД (сокращение)

5.1.6. Overfilling beam – Широкий пучок

Term

Overfilling beam

Definition

A beam of radiation with its cross-section bigger than the aperture of the sensor being calibrated.

Термин

Широкий пучок

Определение

Пучок излучения, сечение которого больше апертуры калибруемого датчика.

5.1.7. Underfilling beam – Узкий пучок

Term

Underfilling beam

Definition

A beam of radiation with its cross-section smaller than the aperture of the sensor being calibrated.

Термин

Узкий пучок

Определение

Пучок излучения, сечение которого меньше апертуры калибруемого датчика.

5.1.8. Extended-area source – Протяженный источник

Term

Extended-area source

Definition

A radiation source whose linear dimensions exceed the size of the calibrated sensor's input aperture by a value sufficient for covering the sensor's entire field-of-view (or at least a considerable fraction of it) with uniform radiation.

Термин

Протяженный источник

Определение

Источник излучения, линейные размеры которого превышают размеры входной апертуры калибруемого датчика на величину, достаточную для заполнения равномерным излучением всего или, по крайней мере, значительной части поля зрения датчика.

Synonyms

Extended source

Comments

Синонимы

Примечания

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

An equivalent definition: radiation source whose image size exceeds the size of the radiation detector's sensing element by at least several times.

Эквивалентное определение: источник излучения, размеры изображения которого, по крайней мере, в несколько раз превышают размеры чувствительного элемента приемника излучения.

5.2. Spectral Instruments – Спектральные приборы

5.2.1. Filter – Фильтр

Term

Filter

Definition

A device for modifying the spectral distribution of incident radiation.

Synonyms

Термин

Фильтр

Определение

Устройство, служащее для изменения спектрального распределения падающего излучения.

Синонимы

Светофильтр

5.2.2. Interference filter – Интерференционный фильтр

Term

Interference filter

Definition

A filter, for which the spectral composition of incident radiation is determined by the interference in thin films of metals and dielectrics.

Термин

Интерференционный фильтр

Определение

Фильтр, в котором воздействие на спектральный состав падающего излучения определяется интерференцией в тонких пленках металла и диэлектрика.

5.2.3. Longpass filter – Длинноволновый пропускающий фильтр

Term

Longpass filter

Definition

A filter that transmits long-wavelength radiation and blocks short-wavelength radiation.

Synonyms

Термин

Длинноволновый пропускающий фильтр

Определение

Фильтр, который пропускает длинноволновое и блокирует коротковолновое излучение.

Синонимы

Длинноволновый фильтр

5.2.4. Shortpass filter – Коротковолновый пропускающий фильтр

Term

Shortpass filter

Definition

A filter that transmits short-wavelength radiation and blocks long-wavelength radiation.

Synonyms

Термин

Коротковолновый пропускающий фильтр

Определение

Фильтр, который пропускает коротковолновое и блокирует длинноволновое излучение.

Синонимы

Коротковолновый фильтр

5.2.5. Bandpass filter – Полосовой пропускающий фильтр

Term

Bandpass filter

Definition

A filter that passes radiation in a specific spectral band and rejects radiation whose wavelengths lie outside this band.

Synonyms

Comments

A bandpass filter can be realized by combining shortpass and longpass filters.

Термин

Полосовой пропускающий фильтр

Определение

Фильтр, пропускающий излучение в определенном спектральном интервале и блокирующий излучение с длинами волн за пределами этого интервала.

Синонимы

Полосовой фильтр

Примечания

Полосовой пропускающий фильтр может быть получен комбинированием

коротковолнового и длинноволнового фильтров.

5.2.6. Band reject filter – Полосовой вырезающий фильтр

Term

Band reject filter

Definition

A filter that blocks radiation within a specific wavelength band and transmits the radiation outside it.

Термин

Полосовой вырезающий фильтр

Определение

Фильтр, блокирующий излучение в определенной полосе длин волн и пропускающий излучение вне ее.

5.2.7. Blocking filter – Блокирующий фильтр

Term

Blocking filter

Definition

A filter designed to reject the sideband transmission of a primary filter.

Comments

This type of filter may be a part of a composite bandpass filter.

Термин

Блокирующий фильтр

Определение

Фильтр для отсечения боковых полос пропускания первичного фильтра.

Примечания

Этот тип фильтра может быть частью составного полосового пропускающего фильтра.

5.2.8. Neutral density filter – Нейтральный фильтр

Term

Neutral density filter

Definition

Filter that decreases the intensity of transmitted (or reflected) radiation without altering its relative spectral distribution.

Термин

Нейтральный фильтр

Определение

Фильтр, уменьшающий интенсивность излучения без изменения относительного спектрального распределения проходящего через него (отраженного им) излучения.

5.2.9. Circular variable filter – Круговой переменный фильтр

Term

Circular variable filter

Definition

A filter that changes its transmission characteristics when rotated.

Synonyms

CVF (acronym)

Термин

Круговой переменный фильтр

Определение

Фильтр, изменяющий характеристики пропускания при вращении.

Синонимы

5.2.10. Monochromator – Монохроматор

Term

Monochromator

Definition

An optical instrument used to single out narrow portions of an optical radiation spectrum.

Термин

Монохроматор

Определение

Оптический прибор для выделения узких участков спектра оптического излучения.

5.2.11. Filter monochromator – Фильтровый монохроматор

Term

Filter monochromator

Definition

A monochromator that makes use of filters to single out narrow bands of the spectrum.

Термин

Фильтровый монохроматор

Определение

Монохроматор, использующий фильтры для выделения узких участков спектра.

5.2.12. Prism monochromator – Призменный монохроматор

Term

Prism monochromator

Definition

A monochromator with a prism acting as a dispersive element.

Термин

Призменный монохроматор

Определение

Монохроматор с призмой в качестве диспергирующего элемента.

5.2.13. Diffraction monochromator – Дифракционный монохроматор

Term

Diffraction monochromator

Definition

A monochromator with a diffraction grating acting as a dispersive element.

Synonyms

Grating monochromator

Термин

Дифракционный монохроматор

Определение

Монохроматор с дифракционной решеткой в качестве диспергирующего элемента.

Синонимы

5.2.14. Michelson's interferometer – Интерферометр Майкельсона

Term

Michelson's interferometer

Definition

An instrument consisting of moving and fixed mirrors and a beamsplitter that splits the input radiation beam into two coherent beams, which interfere when an optical path difference varies with the displacement of the moving mirror.

Comments

Michelson's interferometer is used in spectral instruments of high resolution, and for precision measurements of length, microscopic surface irregularities, and deviations from flatness.

Термин

Интерферометр Майкельсона

Определение

Инструмент, состоящий из, подвижного и неподвижного зеркал и светоделителя, расщепляющего исходный пучок излучения на два когерентных пучка, которые интерферируют после придания им оптической разности хода меняющейся при перемещении подвижного зеркала.

Примечания

Интерферометр Майкельсона используется в спектральных приборах высокого разрешения, а также для точного измерения длин, отступления от плоскости и измерения микронеровностей.

5.2.15. Fourier transform spectrometer – Фурье-спектрометр

Term

Fourier transform spectrometer

Definition

Термин

Фурье-спектрометр

Определение

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Spectral instrument consisting of usually a Michelson's interferometer and a detector making it possible to record the input radiation interferogram while the optical path difference varies due to the moving mirror. The input radiation spectrum is restored by Fourier transforming the interferogram.

Synonyms

Fourier spectrometer

Спектральный прибор, обычно состоящий из интерферометра Майкельсона и детектора, позволяющий зарегистрировать интерферограмму входного излучения при изменении разности хода подвижным зеркалом. Спектр излучения на входе интерферометра получается фурье-преобразованием интерферограммы.

Синонимы

5.3. Optical Components – Оптические компоненты

5.3.1. Window – Окно

Term

Window

Definition

A plate made of transparent material and used for admitting radiation into the optical system or to radiation detector, while isolating them from environmental effects (atmosphere, water vapor, dust, other polluting or corrosive agents, etc.).

Термин

Окно

Определение

Пластина из прозрачного материала, используемая для пропускания излучения в оптическую систему или к приемнику излучения и изолирующая их от воздействия внешней среды (атмосферы, водяных паров, пыли, загрязняющих или агрессивных агентов и т.п.).

5.3.2. Mirror – Зеркало

Term

Mirror

Definition

A smooth flat, convex or concave surface reflecting the incident optical radiation.

Comments

To improve reflection characteristics,

Термин

Зеркало

Определение

Гладкая плоская, выпуклая или вогнутая поверхность, отражающая падающее оптическое излучение.

Примечания

В современных зеркалах для улучшения

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

modern mirrors are coated with thin layers of metals (aluminum, silver, gold and others) and with thin protective dielectric layers.

отражательных характеристик на поверхность дополнительно наносятся тонкие слои металлов (алюминий, серебро, золото и др.) и тонкие защитные диэлектрические слои.

5.3.3. Lens – Линза

Term

Lens

Definition

An optical component manufactured of a transparent (within a certain wavelength range) material such as glass or crystal, so that at least one of its surfaces is shaped as a revolution surface (sphere, ellipsoid, paraboloid, hyperboloid, etc.) serving to differently deviate incident rays depending on the incidence point position on the surface.

Термин

Линза

Определение

Изготовленный из прозрачного в некоторой области длин волн материала (стекло, кристаллы) оптический компонент, у которого по крайней мере одна поверхность имеет вид поверхности вращения (сфера, эллипсоид, параболоид, гиперболоид и т. д.), служащий для изменения направлений падающих на нее лучей определенным для каждой точки ее поверхности образом.

5.3.4. Objective – Объектив

Term

Objective

Definition

A collection of optical components – lenses and/or mirrors – that makes it possible to obtain (with a designated quality) a magnified or diminished image of objects or scenes within a certain range of their angular positions relative to the system axis and in the certain radiation wavelength range.

Термин

Объектив

Определение

Совокупность определенным образом изготовленных и расположенных оптических компонентов – линз, зеркал, либо тех и других, позволяющая получить увеличенное или уменьшенное изображение предметов и сцен в определенном диапазоне их углового положения относительно оси системы и в определенном диапазоне длин волн излучения с заданным качеством.

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Comments

The simplest objective allowing one to get a qualitative image in a very small range of incidence angles may be realized by a spherical mirror, and in a small range of incidence angles and small wavelength range by a lens.

Примечания

Простейшими объективами, позволяющими построить качественное изображение в очень малом диапазоне углов падения лучей, могут служить одно сферическое зеркало и, также в малом диапазоне углов и малом диапазоне длин волн, — одна линза.

5.3.5. Collimator – Коллиматор

Term

Collimator

Definition

Optical system that transforms a diverging or converging wave front into a plane front.

Comments

Collimator transforms the incoming radiation into parallel beam. Usually, collimator builds the image of a point radiation source in infinity. Some types absorb the incoming radiation to ensure the rays input from small solid angle.

Термин

Коллиматор

Определение

Оптическая система, преобразующая расходящийся или сходящийся волновой фронт в плоский.

Примечания

Коллиматор превращает падающее излучение в параллельный пучок. Обычно, коллиматор строит изображение точечного источника излучения на бесконечности. Некоторые типы поглощают падающее излучение, чтобы обеспечить поступление лучей только из малого телесного угла.

5.3.6. Beamsplitter – Делитель пучка

Term

Beamsplitter

Definition

An optical device that reflects a certain fraction of a radiation beam in a specified direction and transmits the remaining fraction in the direction of the incident radiation without modifying the geometry of rays of the incident beam and its spectral characteristics.

Термин

Делитель пучка

Определение

Оптическое устройство, позволяющее отразить определенную часть пучка излучения в заданном направлении и пропустить оставшуюся часть в том же направлении, что и падающее излучение, без изменения геометрии лучей в пучке падающего излучения и

Synonyms

Light splitter
Beam splitter (GB)

Comments

Light splitters are semitransparent mirrors with specified characteristics of transmission (reflection) evaporated on plane surfaces of plates and prisms.

его спектральных характеристик.

Синонимы

Светоделитель

Примечания

Светоделители представляют собой полупрозрачные зеркала с заданными характеристиками пропускания (отражения), напыляемые на плоские поверхности пластин или призм.

5.3.7. Dichroic – Цветоделитель

Term

Dichroic

Definition

A beamsplitter that transmits radiation in one spectral band and reflects it in the other spectral band.

Synonyms

Термин

Цветоделитель

Определение

Светоделитель, отражающий излучение в одной области спектра и пропускающий – в другой.

Синонимы

Дихроичный фильтр

5.3.8. Polarizer – Поляризатор

Term

Polarizer

Definition

An optical device capable of transforming nonpolarized radiation into polarized radiation; usually a filter that transmits only the radiation of a single polarization state.

Термин

Поляризатор

Определение

Оптическое устройство, превращающее неполяризованное излучение в поляризованное; обычно – фильтр, пропускающий излучение только одного состояния поляризации.

5.4. Detectors of Optical Radiation – Приемники оптического излучения

Term

Detector

Definition

A device for converting the energy of electromagnetic radiation into detectable signal that can be measured.

Synonyms

Photodetector

Comments

1. There are single-element and multiple-element (linear and matrix) detectors, and detectors with continuous (TV type) field of responsivity.
2. Radiation detector includes a photosensitive element (or elements) and an electronic interface that supports the functioning of the detector as a photoconverter and an electric circuit element.

Термин

Приемник оптического излучения

Определение

Устройство для преобразования энергии электромагнитного излучения в сигнал который может быть обнаружен и измерен.

Синонимы

Детектор

Примечания

1. Существуют одноэлементные и многоэлементные (линейчатые и матричные) приемники излучения и приемники излучения с непрерывным (телевизионного типа) полем чувствительности.
2. Приемник излучения включает в себя фоточувствительный элемент или элементы, а также электронный интерфейс, обеспечивающий функционирование приемника как фотопреобразователя и как элемента электрической цепи

5.4.2. Standard detector – Эталонный приемник излучения

Term

Standard detector

Definition

A detector with a known spectral and/or integral absolute responsivity used as a standard.

Термин

Эталонный приемник излучения

Определение

Приемник излучения с известной спектральной и/или интегральной абсолютной чувствительностью,

используемый в качестве эталона.

Synonyms

Reference detector

Синонимы

Опорный детектор

5.4.3. Selective detector – Селективный приемник излучения

Term

Selective detector

Definition

Detector of optical radiation whose spectral responsivity varies with wavelength over the spectral bandwidth considered.

Термин

Селективный приемник излучения

Определение

Приемник оптического излучения, у которого спектральная характеристика чувствительности изменяется с длиной волны в рассматриваемом интервале длин волн.

5.4.4. Non-selective detector – Неселективный приемник излучения

Term

Non-selective detector

Definition

Detector of optical radiation whose spectral responsivity is independent of wavelength over the spectral bandwidth considered.

Термин

Неселективный приемник излучения

Определение

Приемник оптического излучения, у которого спектральная чувствительность не зависит от длины волны в рассматриваемом диапазоне длин волн.

5.4.5. Photoelectric detector – Фотоэлектронный приемник излучения

Term

Photoelectric detector

Термин

Фотоэлектронный приемник излучения

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Definition

Detector of optical radiation which utilizes the interaction between radiation and matter resulting in the absorption of photons and the consequence liberation of electrons from their equilibrium states, thereby generating an electric potential or current, or causing a change in electrical resistance, excluding electrical phenomena caused by temperature changes [3].

Synonyms

Определение

Приемник оптического излучения, в котором используется взаимодействие между излучением и веществом, приводящее к поглощению фотонов и последующему высвобождению электронов из атомов, что создает электрический потенциал или ток, или изменение электрического сопротивления, исключая электрические явления, приводящие к изменению температуры [3].

Синонимы

Фотодетектор

5.4.6. Photoemissive cell – Фотоэлемент

Term

Photoemissive cell

Definition

Photoelectric detector that utilizes emission of electrons caused by optical radiation [3].

Synonyms

Phototube

Термин

Фотоэлемент

Определение

Фотоэлектронный приемник, использующий эмиссию электронов, которая вызывается оптическим излучением [3].

Синонимы

5.4.7. Photoresistor – Фоторезистор

Term

Photoresistor

Definition

Photoelectric device that utilizes the change of electrical conductivity produced by the absorption of optical radiation [3].

Термин

Фоторезистор

Определение

Фотоэлектронное устройство, использующее изменение электропроводимости, которое происходит вследствие поглощения

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

оптического излучения [3].

Synonyms

Photoconductive detector
Photoconductive cell

Синонимы

Фотопроводящий детектор

5.4.8. Photocathode – Фотокатод

Term

Photocathode

Definition

Metallic or semiconducting layer designed for efficient photoemission of electrons and used in a photoelectric detector [3].

Термин

Фотокатод

Определение

Металлический или полупроводниковый слой, предназначенный для эффективной фотоэмиссии электронов и применяемый в фотоэлектронном приемнике [3].

5.4.9. Photomultiplier – Фотоэлектронный умножитель

Term

Photomultiplier

Definition

Photoelectric detector comprising a photocathode, an anode and an electron multiplication device that uses the secondary emission of dynodes or channels between photocathode and anode [3].

Термин

Фотоэлектронный умножитель

Определение

Фотоэлектронный приемник, содержащий фотокатод, анод и электроумножающее устройство, использующее диноды вторичной эмиссии электронов или каналы между фотокатодом и анодом [3].

Synonyms

Синонимы

Фотоумножитель

ФЭУ (сокращение)

5.4.10. Photovoltaic cell – Вентильный фотоэлемент

Term

Photovoltaic cell

Definition

Photoelectric detector that utilizes the electromotive force produced by the absorption of optical radiation [3].

Synonyms

Photoelement

Термин

Вентильный фотоэлемент

Определение

Фотоэлементный приемник, использующий электродвижущую силу, которая вырабатывается при поглощении оптического излучения [3].

Синонимы

Фотоэлемент с запирающим слоем

5.4.11. Photodiode – Фотодиод

Term

Photodiode

Definition

Photoelectric detector in which a photocurrent is generated by absorption of optical radiation in the neighborhood of a p-n junction between two semiconductors or a junction between a semiconductor and a metal [3].

Термин

Фотодиод

Определение

Фотоэлектронный приемник, в котором фототок генерируется за счет поглощения излучения областью между двумя полупроводниками, близкой к p-n переходу или на границе между полупроводником и металлом [3].

5.4.12. Avalanche photodiode – Лавинный фотодиод

Term

Avalanche photodiode

Definition

Photodiode operating with a bias electromotive force such that the primary photocurrent undergoes amplification through avalanche breakdown at the junction [3].

Термин

Лавинный фотодиод

Определение

Фотодиод, работающий с таким сдвигом электродвижущей силы, что первичный фототок претерпевает усиление в пределах приемника [3].

5.4.13. Phototransistor – Фототранзистор

Term

Phototransistor

Definition

Photoelectric detector that uses semiconductors in which the photoelectric effect is produced in the neighborhood of a double p-n junction (p-n-p or n-p-n), which possesses amplification properties [3].

Термин

Фототранзистор

Определение

Фотоэлектронный приемник, использующий полупроводники, в которых фотоэлектрический эффект происходит в окрестностях двойного p-n (p-n-p или n-p-n), обладающего свойствами усиления [3].

5.4.14. Quantum detector – Квантовый приемник излучения

Term

Quantum detector

Definition

Detector of optical radiation whose quantum efficiency is independent of wavelength over the spectral range considered [3].

Synonyms

Non-selective quantum detector

Comments

A photoluminescent material having a photoluminescence yield independent of the wavelength of the exciting radiation over a wide spectral range is sometimes called a quantum counter [3].

Термин

Квантовый приемник излучения

Определение

Приемник оптического излучения, у которого квантовый к.п.д. не зависит от длины волны на рассматриваемом спектральном диапазоне [3].

Синонимы

Неселективный квантовый приемник излучения

Примечания

Фотолюминесцирующий материал, имеющий выход фотолюминесценции, не зависящий от длины возбуждающего излучения в широком спектральном диапазоне, иногда, называют квантовым счетчиком [3].

5.4.15. Photon counter – Счетчик фотонов

Term

Photon counter

Definition

Instrument comprising a photoelectric detector and auxiliary electronics with which the electrons emitted by the photocathode can be counted [3].

Термин

Счетчик фотонов

Определение

Прибор, имеющий фотоэлектронный приемник и позволяющий подсчитывать число электронов, эмитированных фотокатодом приемника [3].

5.4.16. Charge-coupled device – Прибор с зарядовой связью

Term

Charge-coupled device

Definition

A self-scanning imaging device formed by an ensemble of MOS (metal-oxide-semiconductor) condensers, in which the charges are successively transferred from one condenser to another by means of control voltages.

Synonyms

CCD (acronym)

Comments

Термин

Прибор с зарядовой связью

Определение

Самосканирующее изображающее устройство, образованное массивом МОП (металл-окисел-полупроводник) конденсаторов, в котором с помощью управляющих напряжений осуществляется последовательный перенос зарядов из одного конденсатора в другой.

Синонимы

ПЗС (сокращение)

Примечания

5.4.17. Thermal detector of radiation – Тепловой приемник излучения

Term

Thermal detector of radiation

Definition

Detector of optical radiation in which a measurable physical effect is produced by the heating of the part that absorbs radiation. [3]

Термин

Тепловой приемник излучения

Определение

Приемник оптического излучения, физический принцип измерения которого основан на нагревании той его части, которая поглощает энергию

излучения. [3]

Synonyms

Thermal (radiation) detector

Синонимы

Термодетектор излучения

5.4.18. Absolute thermal detector – Абсолютный тепловой приемник излучения

Term

Absolute thermal detector

Термин

Абсолютный тепловой приемник излучения

Definition

Thermal detector of optical radiation which can compare radiant flux directly with electrical power [3].

Определение

Тепловой приемник оптического излучения, который может непосредственно сравнивать поток излучения с электрической мощностью [3].

Synonyms

Self-calibrating thermal detector

Синонимы

Самокалибрующийся тепловой приемник излучения

5.4.19. Radiation thermocouple – Радиационный термоэлемент

Term

Radiation thermocouple

Термин

Радиационный термоэлемент

Definition

Thermal detector of optical radiation in which the electromotive force produced in a single thermoelectric junction is used to measure the heating effect produced by the absorbed radiation [3].

Определение

Тепловой приемник оптического излучения, в котором за счет поглощаемого излучения в спае разнородных материалов возникает электродвигущая сила, которая используется для измерения разницы температур [3].

Synonyms

Синонимы

Радиационная термопара

5.4.20. Radiation thermopile – Радиационная термобатарея

Term

Radiation thermopile

Definition

Thermal detector of optical radiation in which the electromotive force produced in several thermoelectric junctions is used to measure the heating effect produced by the absorbed radiation [3].

Comments

Russian definitions of terms 845-05-47 and 845-05-48 in [3] must be transposed.

Термин

Радиационная термобатарея

Определение

Тепловой приемник оптического излучения, в котором за счет поглощаемого излучения в некоторых спаях разнородных материалов возникает электродвигущая сила, которая используется для измерения разницы температур [3].

Примечания

Русские определения терминов 845-05-47 и 845-05-48 в [3] необходимо поменять местами.

5.4.21. Bolometer – Болометр

Term

Bolometer

Definition

Definition

Thermal detector of optical radiation in which the heating of the part that absorbs the radiation causes a change in its electrical resistance [3].

Comments

Russian definitions of terms 845-05-47 and 845-05-48 in [3] must be transposed.

Термин

Болометр

Определение

Определение

Тепловой приемник оптического излучения, в котором нагревание той части, которая поглощает излучение, вызывает изменение его электрического сопротивления [3].

Примечания

Русские определения терминов 845-05-47 и 845-05-48 в [3] необходимо поменять местами.

5.4.22. Pyroelectric detector – Пироэлектрический приемник

Term

Pyroelectric detector

Definition

Thermal detector of optical radiation that

Термин

Пироэлектрический приемник

Определение

Тепловой приемник оптического

utilizes the time rate of change of the spontaneous electric polarization, or of induced long-lived polarization, of certain dielectric materials, caused by the temperature change [3].

излучения, который использует зависимость скорости изменения температуры спонтанной электрической поляризации или наведенной продолжительной поляризации некоторых диэлектриков [3].

5.4.23. Matrix detector – Матричный приемник

Term

Matrix detector

Definition

Radiation detector with sensitive area consisting of discrete elements arranged in rows and columns to read out the information simultaneously or sequentially.

Synonyms

Detector matrix

Matrix array

Comments

1. Usually employed in imaging sensors or thermal imagers.
2. If a matrix has only one row or one column, it is referred to as a linear array.

Termin

Матричный приемник

Определение

Приемник излучения с чувствительной областью, состоящей из дискретных элементов, размещенных в строки и столбцы для одновременного или последовательного считывания информации.

Синонимы

Матричный детектор

Примечания

1. Обычно используется в датчиках изображений или тепловизорах.
2. Если матрица состоит из одного столбца или одной строки приемных элементов, говорят о «ленте приемников»

5.5. Radiometric Instrumentation for Remote Sensing – Радиометрическая аппаратура для дистанционного зондирования

5.5.1. Radiometer – Радиометр

<i>Term</i>	<i>Термин</i>
Radiometer	Радиометр
<i>Definition</i>	<i>Определение</i>
Instrument for measuring radiometric quantities [3].	Прибор, предназначенный для измерения энергетических величин [3].

5.5.2. Spectroradiometer – Спектрорадиометр

<i>Term</i>	<i>Термин</i>
Spectroradiometer	Спектрорадиометр
<i>Definition</i>	<i>Определение</i>
Instrument for measuring radiometric quantities in narrow wavelength intervals over a given spectral region [3].	Прибор для измерения энергетических величин в узких интервалах длин волн данного спектрального диапазона [3].

5.5.3. Filter radiometer – Фильтровый радиометр

<i>Term</i>	<i>Термин</i>
Filter radiometer	Фильтровый радиометр
<i>Definition</i>	<i>Определение</i>
An instrument for measuring integrated values of radiometric quantities in one or several spectral bandwidth selected by the optical filters.	Прибор для измерения интегральных значений радиометрических величин в одном или нескольких спектральных интервалах, выделяемых оптическими фильтрами.

5.5.4. Spectrophotometer – Спектрофотометр

Term

Spectrophotometer

Definition

Instrument for measuring the ratio of two values of a radiometric quantity at the same wavelength [3].

Термин

Спектрофотометр

Определение

Прибор для измерения отношения двух значений радиометрической величины для одной и той же длины волны [3].

5.5.5. Gonioradiometer – Гониорадиометр

Term

Gonioradiometer

Definition

Radiometer for measuring the directional radiation distribution characteristics of sources, media or surfaces [3].

Термин

Гониорадиометр

Определение

Радиометр для измерения углового распределения радиометрических характеристик источников, сред и поверхностей [3].

5.5.6. Reflectometer – Рефлектометр

Term

Reflectometer

Definition

Instrument for measuring quantities pertaining to reflection. [3]

Термин

Рефлектометр

Определение

Прибор для измерения величин, характеризующих отражение. [3]

5.5.7. Optical scatterometer – Оптический скаттерометр

Term

Optical scatterometer

Definition

Active system used for measurement of

Термин

Оптический скаттерометр

Определение

Активная система, используемая для

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART I. CALIBRATION TECHNIQUES

scattered radiation from irradiated surfaces or media.

измерения излучения, рассеянного облучаемой поверхностью или средой.

5.5.8. Polarimeter – Поляриметр

Term

Polarimeter

Definition

An instrument for measurements of polarization of radiation emitted by a source or transmitted by or reflected from, a medium.

Термин

Поляриметр

Определение

Прибор для измерения поляризации излучения источника или излучения, проходящего через среду или отраженного средой.

5.5.9. Imaging radiometer – Изображающий радиометр

Term

Imaging radiometer

Definition

A radiometer with an imaging optical system.

Термин

Изображающий радиометр

Определение

Радиометр с изображающей оптической системой.

5.5.10. Focal plane array – Фокальная матрица

Term

Focal plane array

Definition

A matrix detector of radiation placed in the focal plane of an imaging or scanning radiometer.

Термин

Фокальная матрица

Определение

Матричный приемник излучения, размещенный в фокальной плоскости изображающего или сканирующего радиометра.

Synonyms

FPA (acronym)

Синонимы

5.5.11. Multispectral imaging radiometer – Мультиспектральный изображающий радиометр

Term

Multispectral imaging radiometer

Definition

An imaging radiometer with a set of filters.

Термин

Мультиспектральный изображающий радиометр

Определение

Изображающий радиометр с набором фильтров.

5.5.12. Hyperspectral radiometer – Гиперспектральный радиометр

Term

Hyperspectral radiometer

Definition

A radiometer that combines a dispersive monochromator (with a prism or diffraction grating) or a Michelson interferometer with an array detector.

Термин

Гиперспектральный радиометр

Определение

Радиометр, объединяющий дисперсионный монохроматор (с призмой или дифракционной решеткой) или интерферометр Майкельсона с многоэлементным приемником излучения.

5.5.13. Thermal imager – Тепловизор

Term

Thermal imager

Definition

An imaging sensor with an output monitor to create an image of a scene, whose brightness distribution is determined by different thermal radiation fluxes from individual parts of the scene.

Термин

Тепловизор

Определение

Изображающий датчик, создающий на выходном мониторе видимое изображение сцены, распределение яркости в котором зависит от различия потоков теплового излучения отдельных частей сцены.

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

5.5.14. Sounder – Зондирующий прибор

Term

Sounder

Definition

An instrument to measure the vertical distribution of physical or chemical characteristics of an extended atmospheric region.

Термин

Зондирующий прибор

Определение

Прибор для измерения вертикального распределения физических или химических характеристик протяженной области атмосферы.

5.5.15. Tracking sensor – Следящий датчик

Term

Tracking sensor

Definition

A sensor which follows a source of radiation during the given time interval, in order to acquire data concerning the source.

Термин

Следящий датчик

Определение

Датчик, направленный на источник излучения в течение заданного отрезка времени для сбора информации об этом источнике.

5.5.16. Step-tracking sensor – Пошагово-следящий датчик

Term

Step-tracking sensor

Definition

A tracking sensor operating under the step-tracking mode.

Термин

Пошагово-следящий датчик

Определение

Следящий датчик, работающий в режиме пошагового слежения

5.5.17. Staring sensor – Сматрящий датчик

Term

Staring sensor

Definition

A sensor used to stare at a given scene or object.

Термин

Сматрящий датчик

Определение

Датчик, обеспечивающий постоянное смотрение на заданную сцену или

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

объект .

Синонимы

Synonyms

Starer

5.5.18. Step-stare sensor – Пошагово–сматрящий датчик

Term

Step-stare sensor

Definition

A staring sensor operating under a step-stare mode.

Термин

Пошагово–сматрящий датчик

Определение

Сматрящий датчик, работающий в режиме пошагового смотрения.

5.5.19. Scanning sensor – Сканирующий датчик

Term

Scanning sensor

Definition

A sensor whose field of regard is formed through moving the field-of-view by optical means or platform motion, or both.

Термин

Сканирующий датчик

Определение

Датчик, у которого поле обзора формируется за счет перемещения поля зрения оптическими средствами и/или перемещением платформы.

Synonyms

Scanner

Синонимы

Сканер

5.5.20. Across-track scanning sensor – Поперечно–сканирующий датчик

Term

Across-track scanning sensor

Definition

A scanning sensor in which the scanning is performed in the direction perpendicular to the motion of the platform.

Термин

Поперечно–сканирующий датчик

Определение

Сканирующий датчик, в котором сканирование осуществляется в направлении, перпендикулярном направлению движения платформы.

Synonyms

Синонимы

Whiskbroom scanner

Comments

The image along the second coordinate is realized owing to the platform displacement.

Сканер–метла

Примечания

По второй координате изображение получается за счет перемещения платформы.

5.5.21. Along-track scanning sensor – Продольно–сканирующий датчик

Term

Along-track scanning sensor

Definition

Scanning sensor, in which the displacement of the field-of-view is performed only due to the platform motion.

Synonyms

Pushbroom scanner

Along-track scanner

Comments

The image along the orthogonal direction is obtained by using the sensor array mounted perpendicular to the direction of platform motion.

Термин

Продольно–сканирующий датчик

Определение

Сканирующий датчик, в котором перенос поля зрения осуществляется только за счет движения платформы.

Синонимы

Сканер–щетка

Примечания

По второй координате изображение получается за счет применения в датчике многоэлементного приемника излучения линейчатого типа, устанавливаемого таким образом, чтобы линейка чувствительных элементов была ортогональна направлению движения платформы.

5.6. Radiometric Accessories – Радиометрические принадлежности

5.6.1. Chopper – Прерыватель

Term

Chopper

Definition

A mechanical or electro-optical device for repeated interruption of a the radiation beam from a single source or to alternate it between two sources.

Термин

Прерыватель

Определение

Механическое или электронно-оптическое устройство для повторного прерывания пучка излучения одного источника или переключания пучков двух источников.

5.6.2. Shutter – Затвор

Term

Shutter

Definition

A mechanical or electronic device used to control the time interval during which optical radiation can pass into an optical system.

Термин

Затвор

Определение

Механическое или электронное устройство, используемое для управления временным интервалом, в течение которого оптическое излучение поступает в оптическую систему.

Synonyms

Синонимы

Заслонка

5.6.3. Modulator – Модулятор

Term

Modulator

Definition

A mechanical or electro-optical device for changing the radiation beam amplitude

Термин

Модулятор

Определение

Механическое или электронно-оптическое устройство, изменяющее по

and/or phase according to a given timeline.

заданному временному закону амплитуду и(или) фазу пучка излучения.

5.6.4. Diffuser – Рассеиватель

Term

Diffuser

Definition

An optical component used to alter the spatial distribution of incident radiation by its diffuse reflection or diffuse transmission.

Synonyms

Comments

If all the radiation reflected or transmitted by the diffuser is diffused with no regular reflection or transmission, the diffuser is said to be completely diffusing, independently of whether or not the reflection or transmission is isotropic [3].

Термин

Рассеиватель

Определение

Оптический компонент применяемый для изменения пространственного распределения падающего излучения за счет диффузного отражения или диффузного пропускания.

Синонимы

Диффузный рассеиватель

Диффузер

Примечания

Если излучение, отраженное и пропущенное рассеивателем, полностью рассеяно без каких-либо элементов зеркального отражения или направленного пропускания, рассеиватель называется полностью диффузным, независимо от того, является ли равномерным данное отражение или рассеяние [3].

5.6.5. Reference panel – Эталонная отражательная панель

Term

Reference panel

Definition

A plane or profiled screen with known and controlled reflection which can be used as a reference sample in measurements of diffuse reflectance or radiance factor, or as a standard of radiance.

Термин

Эталонная отражательная панель

Определение

Плоский или профилированный экран с известным и контролируемым отражением, который может быть использован в качестве образца сравнения коэффициента диффузного отражения или коэффициента энергетической яркости или эталона

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART I. CALIBRATION TECHNIQUES

энергетической яркости.

Synonyms

Diffuse screen

Diffuse panel

Синонимы

Диффузный рассеиватель

Диффузный экран

Диффузная панель

5.6.6. Integrating sphere – Интегрирующая сфера

Term

Integrating sphere

Definition

A hollow sphere whose internal surface is covered with a highly reflecting diffuse coating, and which has one or several holes for incoming and outgoing radiation with diameters constituting a small fraction of the sphere's diameter.

Synonyms

Comments

It may be used to (i) measure reflectance and transmittance of samples, (ii) compare radiation fluxes from different sources, and (iii) develop extended sources with uniform radiance.

Термин

Интегрирующая сфера

Определение

Полая сфера с высокоотражающим диффузным покрытием внутри, имеющая одно или несколько отверстий для ввода и вывода излучения с диаметрами, составляющими малую долю диаметра сферы.

Синонимы

Фотометрический шар

Примечания

Используется для (1) измерения коэффициентов отражения и пропускания образцов; (2) сравнения потоков излучения различных источников; (3) реализации протяженных источников с равномерной яркостью.

5.6.7. Attenuator – Ослабитель

Term

Attenuator

Definition

A device designed to decrease irradiation from a radiation source.

Synonyms

Optical attenuator

Термин

Ослабитель

Определение

Устройство, предназначенное для уменьшения облученности, создаваемой источником излучения.

Синонимы

Аттенюатор

5.6.8. Diaphragm – Диафрагма

Term

Diaphragm

Definition

An opaque screen with a hole used for confining transverse dimensions of radiation beams.

Термин

Диафрагма

Определение

Непрозрачный экран с отверстием, применяемый для ограничения поперечных размеров пучков излучения.

5.6.9. Aperture stop – Апертурная диафрагма

Term

Aperture stop

Definition

A diaphragm that limits the beam of rays leaving an object's points, located along the optical axis and passing through the optical system.

Synonyms

Comments

A mounting of one of the objective lenses can serve as an aperture stop.

Термин

Апертурная диафрагма

Определение

Диафрагма, ограничивающая пучок лучей, выходящих из точек предмета, расположенных на оптической оси и проходящих через оптическую систему.

Синонимы

Действующая диафрагма

Примечания

В качестве апертурной диафрагмы может выступать оправа одной из линз объектива

5.6.10. Field stop – Полевая диафрагма

Term

Field stop

Definition

A diaphragm in the objective that sets the angular dimensions of an optical system's field of view.

Comments

The mounting of one of the objective lenses can serve as a field stop.

Термин

Полевая диафрагма

Определение

Диафрагма в объективе, определяющая угловые размеры поля зрения оптической системы.

Примечания

В качестве полевой диафрагмы может выступать оправа одной из линз объектива.

5.6.11. Blend – Бленда

Term

Blend

Definition

A device consisting of one or several concentric diaphragms located inside an opaque cylindrical or conical tube and serving to confine the solid angle of rays coming from the hemisphere to a specified size area.

Synonyms

Lens hood

Shade

Baffle

Comments

1. The blend that are constructively matched with the optical system's field-of-view are used to suppress the level of scattered radiation so that radiation from sources located outside the field-of-view cannot reach the input elements of the optical system.
2. Attenuating properties of the blend are characterized by the suppression coefficient dependence upon the angle; the suppression coefficient is defined as the ratio of the irradiance at the blend's output opening center to the irradiance of the input opening irradiated by a distant point source.

Termin

Бленда

Определение

Устройство, состоящее из одной или нескольких концентрических диафрагм, размещенных внутри непрозрачного цилиндрического или конического тубуса, и служащее для ограничения телесного угла лучей, приходящих из полусфера к поверхности заданных размеров.

Синонимы

Примечания

1. Бленды, конструктивно согласованные с полем зрения оптической системы, применяются для снижения уровня рассеянного в системе излучения, обеспечивая непадание на входные элементы оптической системы излучения источников, расположенных вне поля зрения.
2. Ослабляющие свойства бленды характеризуются угловой зависимостью коэффициента подавления, определяемого как отношение энергетической освещенности в центре выходного отверстия бленды к энергетической освещенности входного отверстия при облучении его удаленным точечным источником.

6. Characteristics of radiometric system components – Характеристики компонентов радиометрических систем

6.1. Characteristics of optical systems – Характеристики оптических систем

6.1.1. Point spread function – Функция рассеяния точки

Quantity

Point spread function

Symbol

$h_r(x,y)$

Definition

The irradiance distribution from a distant point source formed by an optical system in the image plane.

Unit

Synonyms

PSF (acronym)

Величина

Функция рассеяния точки

Обозначение

$h_r(x,y)$

Определение

Распределение облученности от удаленного точечного источника формируемое оптической системой в плоскости изображения.

Единица

Синонимы

ФРТ (сокращение)

6.1.2. Impulse function of optical system – Импульсная функция оптической системы

Quantity

Impulse function of optical system

Symbol

$h(x,y)$

Definition

The ratio of irradiance distribution in the distant point source image produced by the

Величина

Импульсная функция оптической системы

Обозначение

$h(x,y)$

Определение

Отношение распределения энергетической освещенности в

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

optical system to the total radiant flux in this image.

Unit
 m^{-2}

Comments

1. Calculated as the point spread function divided by the integral of this function over the spatial coordinates.
2. The introduction of the impulse function concept allows one to describe the distribution of irradiance inside an image built by an actual optical system (with account for diffraction and aberration blurring and scattering) as a convolution integral.

построенном оптической системой изображении удаленного точечного источника излучения к полному потоку излучения в этом изображении.

Единица
 M^{-2}

Примечания

1. Вычисляется как функция рассеяния точки, отнесенная к интегралу от этой функции, взятому по пространственным координатам.
2. Введение понятия импульсной функции позволяет описать распределение энергетической освещенности в изображении, построенном реальной оптической системой (с учетом дифракционного и aberrационного размытия и рассеяния), в виде интеграла свертки.

6.1.3. Spread circle – Кружок рассеяния

Quantity

Spread circle

Symbol

r_s

Definition

Area of the point spread function domain confined by the least diameter circle, for which the integral of the point spread function over this area is equal to a given part of the integral over the whole function domain.

Величина

Кружок рассеяния

Обозначение

r_s

Определение

Ограниченнная окружностью наименьшего диаметра часть области определения функции рассеяния точки, для которой интеграл от функции рассеяния точки по этой области равен заданной части интеграла по всей области определения функции рассеяния точки

Единица

M

Unit
 m

6.1.4. Encircled energy – Коэффициент концентрации энергии в круге

<i>Quantity</i>		<i>Величина</i>
Encircled energy		Коэффициент концентрации энергии в круге
<i>Symbol</i>		<i>Обозначение</i>
	e_c	e_c
<i>Definition</i>		<i>Определение</i>
Ratio of the energy in a point source image within the circle of a given diameter to the whole energy in a point spread function.		Отношение энергии в изображении точечного объекта, собирающейся в круге заданного диаметра, ко всей энергии в функции рассеяния точки.
<i>Unit</i>		<i>Единица</i>
	-	-

6.1.5. Ensquared energy – Коэффициент концентрации энергии в квадратной площадке

<i>Quantity</i>		<i>Величина</i>
Ensquared energy		Коэффициент концентрации энергии в квадратной площадке
<i>Symbol</i>		<i>Обозначение</i>
	e_s	e_s
<i>Definition</i>		<i>Определение</i>
Ratio of the energy in a point source image within a square area of a given size to the entire energy in a point spread function.		Отношение энергии в изображении точечного объекта, собирающейся в квадратной площадке заданных размеров, ко всей энергии в функции рассеяния точки.
<i>Unit</i>		<i>Единица</i>
	-	-

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

6.1.6. Line spread function – Функция рассеяния линии

<i>Quantity</i>	<i>Величина</i>
Line spread function	Функция рассеяния линии
<i>Symbol</i>	<i>Обозначение</i>
$h_l(x, y)$	$h_l(x, y)$
<i>Definition</i>	<i>Определение</i>
The irradiance distribution from a distant thin line source formed by an optical system in the image plane.	Распределение облученности от удаленного источника в виде тонкой линии, формируемое оптической системой в плоскости изображения.
<i>Unit</i>	<i>Единица</i>

6.1.7. Optical transfer function – Оптическая передаточная функция

<i>Quantity</i>	<i>Величина</i>
Optical transfer function	Оптическая передаточная функция
<i>Symbol</i>	<i>Обозначение</i>
$H(\omega_x, \omega_y)$	$H(\omega_x, \omega_y)$
<i>Definition</i>	<i>Определение</i>
A complex function defined as a two-dimensional Fourier transform of the optical systems' impulse function $h(x, y)$:	Комплексная функция, определяемая как двумерное преобразование Фурье импульсной функции $h(x, y)$ оптической системы:

$$H(\omega_x, \omega_y) = \int_{-\infty}^{\infty} h(x, y) e^{-i(x\omega_x + y\omega_y)} dx dy.$$

$$H(\omega_x, \omega_y) = \int_{-\infty}^{\infty} h(x, y) e^{-i(x\omega_x + y\omega_y)} dx dy.$$

<i>Unit</i>	<i>Единица</i>
<i>Synonym</i>	<i>Синонимы</i>
OTF	ОПФ (сокращение)
<i>Comments</i>	<i>Примечания</i>
The optical transfer function allows to present the two-dimensional spatial frequency spectrum $I(\omega_x, \omega_y)$ of irradiance distribution in the image $E(x, y)$ built by a	Передаточная функция позволяет представить двумерный пространственно-частотный спектр $I(\omega_x, \omega_y)$ распределения энергетической

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

real optical system (with account for the diffraction and diffusion blurring and scattering) as a product of the optical transfer function $H(\omega_x, \omega_y)$ and the two-dimensional spatial frequency spectrum $O(\omega_x, \omega_y)$ of irradiation distribution $E^*(x, y)$ in the image that would be built by an ideal system:

$$I(\omega_x, \omega_y) = H(\omega_x, \omega_y)O(\omega_x, \omega_y),$$

where

$$I(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E(x, y) e^{-i(x\omega_x + y\omega_y)} dx dy,$$

$$O(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E^*(x, y) e^{-i(x\omega_x + y\omega_y)} dx dy.$$

освещенности $E(x, y)$ в изображении, построенном реальной оптической системой (с учетом дифракционного и аберрационного размытия и рассеяния), в виде произведения оптической передаточной функции $H(\omega_x, \omega_y)$ и двумерного пространственно-частотного спектра $O(\omega_x, \omega_y)$ распределения энергетической освещенности $E^*(x, y)$ в изображении, которое построила бы идеальная оптическая система:

$$I(\omega_x, \omega_y) = H(\omega_x, \omega_y)O(\omega_x, \omega_y),$$

где

$$I(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E(x, y) e^{-i(x\omega_x + y\omega_y)} dx dy,$$

$$O(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E^*(x, y) e^{-i(x\omega_x + y\omega_y)} dx dy.$$

6.1.8. Modulation transfer function – Модуляционная передаточная функция

<i>Quantity</i>	<i>Величина</i>
Modulation transfer function	Модуляционная передаточная функция
<i>Symbol</i>	<i>Обозначение</i>
<i>MTF</i>	<i>MTF</i>
<i>Definition</i>	<i>Определение</i>
A quantitative measure of image quality numerically equal to absolute value of the optical transfer function.	Количественная мера качества изображения, численно равная модулю оптической передаточной функции.
<i>Unit</i>	<i>Единица</i>
–	–
<i>Synonyms</i>	<i>Синонимы</i>
MTF (acronym)	МПФ (сокращение) Функция передачи модуляции

ФПМ (сокращение)
Частотно–контрастная функция
ЧКХ (сокращение)

6.1.9. Field-of-view – Поле зрения

<i>Quantity</i>	<i>Величина</i>
Field-of-view	Поле зрения
<i>Symbol</i>	<i>Обозначение</i>
FOV, Ω	FOV, Ω
<i>Definition</i>	<i>Определение</i>
The solid angle from which the detector receives radiation.	Телесный угол, из которого излучение попадает на детектор.
<i>Unit</i>	<i>Единица</i>
sr	ср
deg^2	град ²
<i>Synonyms</i>	<i>Синонимы</i>
FOV (acronym)	

6.1.10. Field-of-regard – Поле обзора

<i>Quantity</i>	<i>Величина</i>
Field-of-regard	Поле обзора
<i>Symbol</i>	<i>Обозначение</i>
FOR, Ω'	FOR, Ω'
<i>Definition</i>	<i>Определение</i>
An area of the object space scanned by the field-of-view of a scanning sensor.	Область в пространстве предметов, ометаемая полем зрения сканирующего датчика.
<i>Unit</i>	<i>Единица</i>
sr	ср
deg^2	град ²
<i>Synonyms</i>	<i>Синонимы</i>
FOR (acronym)	

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

6.1.11. Instantaneous field-of-view – Элементарное поле зрения

<i>Quantity</i>		<i>Величина</i>
Instantaneous field-of-view		Элементарное поле зрения
<i>Symbol</i>		<i>Обозначение</i>
ω_o		ω_o
<i>Definition</i>		<i>Определение</i>
The field-of-view of a single photosensitive element of a multi-element radiation detector.		Поле зрения одного фоточувствительного элемента многоэлементного приемника излучения.
<i>Unit</i>		<i>Единица</i>
sr deg^2		ср град ²

6.1.12. Footprint – Зона наблюдения

<i>Term</i>		<i>Термин</i>
Footprint		Зона наблюдения
<i>Definition</i>		<i>Определение</i>
The area of a target encircled by the field-of-view of a detector of radiation, or irradiated by an active system.		Область цели, охватываемая полем зрения приемника излучения или облучаемая активной системой.
<i>Comments</i>		<i>Примечания</i>
The microwave beam sent out by the antenna irradiates an area on the ground that known as the antenna's "footprint".		СВЧ-пучок, посыпаемый антенной, облучает область земной поверхности, называемую "следом" антенны.

6.1.13. Focal length – Фокусное расстояние

<i>Quantity</i>		<i>Величина</i>
Focal length		Фокусное расстояние
<i>Symbol</i>		<i>Обозначение</i>
f		f
<i>Definition</i>		<i>Определение</i>
The distance from the rear node of an objective to the plane on which the image of a distant point radiation source is formed.		Расстояние от задней узловой точки объектива до плоскости изображения удаленного точечного источника излучения.
<i>Unit</i>		<i>Единица</i>
m		м

6.1.14. Relative aperture – Относительное отверстие

Quantity

Relative aperture

Symbol

$F\#, f\#$

Definition

The ratio of the diameter D of the optical system's entrance pupil to its focal length f :

$$F\# = \frac{D}{f}.$$

Unit

-

Величина

Относительное отверстие

Обозначение

$F\#, f\#$

Определение

Отношение диаметра входного зрачка оптической системы D к ее фокусному расстоянию f :

$$F\# = \frac{D}{f}.$$

Единица

-

Synonyms

f-number

Comments

A reciprocal referred to as a diaphragm number is also used as a ratio whose numerator is the letter "f" and denominator is the ratio of the focal length to the diameter. Thus, $f/2$ indicates that the diameter of the entrance pupil is half of the focal length.

Синонимы

Примечания

Применяется также обратная величина, называемая диафрагменным числом, в числителе которого стоит буква "f", а знаменателе – отношение фокусного расстояния к диаметру. Так, $f/2$ означает, что диаметр входного зрачка вдвое меньше фокусного расстояния.

6.1.15. Entrance pupil – Входной зрачок

Term

Entrance pupil

Definition

The image of the aperture diaphragm in the space of objects that is constructed by the optical elements of the objective, located in front of the diaphragm.

Термин

Входной зрачок

Определение

Изображение апертурной диафрагмы в пространстве предметов, строящееся предстоящими диафрагмой оптическими элементами объектива.

6.1.16. Exit pupil – Выходной зрачок

Term

Exit pupil

Definition

The image of the aperture diaphragm in the space of images that is constructed by the optical elements of the objective, located behind the diaphragm.

Термин

Выходной зрачок

Определение

Изображение апертурной диафрагмы в пространстве изображений, строящееся следующими за диафрагмой оптическими элементами объектива.

6.2. Characteristics of spectral instruments – Характеристики спектральных приборов

6.2.1. Spectral bandwidth – Спектральный интервал

Term

Spectral bandwidth

Definition

Wavelength interval limited from both short-wave and long-wave sides according to a specified criterion.

Synonyms

Comments

1. When referred to sensors, filters, detectors, etc., it is the spectral bandwidth, within which a given device fulfills its function with a required quality.
2. One should always specify at what fraction of the maximum ordinate within the given spectral bandpass the long-wave and short-wave boundaries are defined.

Термин

Спектральный интервал

Определение

Интервал длин волн (волновых чисел, частот), ограниченный с коротковолновой и длинноволновой сторон определенными по заданному критерию границами.

Синонимы

Диапазон длин волн

Спектральная полоса

Примечания

1. Применительно к датчикам, фильтрам, приемникам излучения и т. п. – область длин волн, в которой должно обеспечиваться выполнение функциональной задачи данного устройства с требуемым качеством.
2. Всегда требуется оговаривать, на каком уровне от максимального значения ординаты в данном спектральном интервале определены

длинноволновая и коротковолновая
границы диапазона

6.2.2. Instrument function – Аппаратная функция

Quantity

Instrument function

Symbol

$$A(\lambda)$$

Definition

A characteristic of a linear spectral instrument equal to the ratio of the irradiance distribution in the image of the spectrum of monochromatic radiation source, to the total radiation flux in this image.

Unit
 m^{-1}

Comments

1. It is calculated as the ratio of a line spread function divided by the integral of this function over the spatial coordinate scaled in accordance with the wavelength.
2. Instrument function allows to describe the irradiance distribution in the spectrum of every source in the form of convolution integral:

$$X(\lambda_0, \lambda) = \int_{-\infty}^{\infty} A(\lambda_0, \lambda - \lambda') X(\lambda_0, \lambda') d\lambda',$$

where $X(\lambda_0, \lambda')$ is the distribution of irradiance, which would be obtained by an ideal spectral instrument showing monochromatic radiation as an infinitely thin line.

Величина

Аппаратная функция

Обозначение

$$A(\lambda)$$

Определение

Характеристика линейного спектрального прибора, равная отношению распределения энергетической освещенности в изображении спектра источника монохроматического излучения ко всему потоку излучения в этом изображении.

Единица
 M^{-1}

Примечания

1. Вычисляется, как отношение функции рассеяния линии к интегралу от этой функции по пространственной координате, масштабно связанной с длиной волны.
2. Аппаратная функция позволяет описать распределение энергетической освещенности в спектре любого источника в виде интеграла свертки:

$$X(\lambda_0, \lambda) = \int_{-\infty}^{\infty} A(\lambda_0, \lambda - \lambda') X(\lambda_0, \lambda') d\lambda',$$

где $X(\lambda_0, \lambda')$ – распределение энергетической освещенности, которое построил бы идеальный спектральный прибор, отображающий монохроматическое излучение в виде

3. For spectral devices whose dispersion varies over the spectrum, the instrument function is different for different wavelengths, which is accounted for by introduction of the parameter λ_0 in the above expression.

бесконечно тонкой линии.
3. Для спектральных приборов с переменной дисперсией по спектру аппаратная функция различна для разных длин волн, что отмечено введением параметра λ_0 в приведенном выражении.

6.2.3. Bandpass – Полоса пропускания

Term

Bandpass

Definition

The wavelength range of optical radiation, in which the optical system transmits the incident radiation.

Synonyms

Passband

Термин

Полоса пропускания

Определение

Интервал длин волн оптического излучения, в котором оптическая система пропускания.

Синонимы

6.2.4. Slope of transmission – Крутизна пропускания

Quantity

Slope of transmission

Symbol

S

Definition

A parameter characterizing the rate, at which the transmission grows or diminishes with wavelength at the short-wave and long-wave shoulders of the transmission characteristic.

Величина

Крутизна пропускания

Обозначение

S

Определение

Параметр, характеризующий скорость нарастания или спада пропускания фильтра с длиной волны на коротковолновом и длинноволновом склонах характеристики пропускания.

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Unit

Единица

Synonyms

Синонимы

Наклон

Comments

A possible form of such a parameter is

Примечания

Одна из возможных форм такого параметра:

$$S = \frac{\lambda_{0.05} - \lambda_{0.8}}{\lambda_{0.5}}$$

$$S = \frac{\lambda_{0.05} - \lambda_{0.8}}{\lambda_{0.5}}$$

(the designations are shown in the above picture).

(обозначения показаны на рисунке вверху).

6.2.5. Out-of-band leakage – Внеполосовое пропускание

Quantity

Out-of-band leakage

Symbol

β

Величина

Внеполосовое пропускание

Обозначение

β

Definition

A measure of unwanted transmission of a filter outside the bandpass:

Определение

Мера нежелательного пропускания фильтра за пределами полосы пропускания:

$$\beta = \frac{\int_0^{\lambda_1} \tau(\lambda) d\lambda + \int_{\lambda_2}^{\infty} \tau(\lambda) d\lambda}{\int_0^{\infty} \tau(\lambda) d\lambda},$$

where $\tau(\lambda)$ is the spectral coefficient of filter transmission, λ is the wavelength, and $[\lambda_1, \lambda_2]$ is the filter bandpath.

Unit

$$\beta = \frac{\int_0^{\lambda_1} \tau(\lambda) d\lambda + \int_{\lambda_2}^{\infty} \tau(\lambda) d\lambda}{\int_0^{\infty} \tau(\lambda) d\lambda},$$

где $\tau(\lambda)$ – спектральный коэффициент пропускания фильтра, λ – длина волны, $[\lambda_1, \lambda_2]$ – полоса пропускания фильтра.

Единица

6.3. Parameters and characteristics of radiometric devices – Параметры и характеристики радиометрических устройств

6.3.1. Input – Входная величина

Term

Input

Definition

Radiometric quantity that a detector of optical radiation is being used to measure or detect [3].

Synonyms

Термин

Входная величина

Определение

Радиометрическая величина, для измерения или приема которой используется приемник оптического излучения [3].

Синонимы

Входной сигнал

Входное воздействие

6.3.2. Output – Выходная величина

Term

Output

Definition

Physical quantity yielded by a detector in response to an optical input [3].

Термин

Выходная величина

Определение

Физическая величина, вырабатываемая приемником в ответ на оптическую

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Synonyms

Response

Comments

This quantity, usually electrical, may for example be current, voltage or a change in resistance; the output may also be chemical, as in a photographic film or an actinometer, or mechanical as in a Golay detector [3].

величину на его входе [3].

Синонимы

Отклик

Выходной сигнал

Примечания

Эта величина, обычно электрическая, может, например, быть электрическим током, напряжением или выражаться в изменении сопротивления. Выходная величина может также быть величиной химической, как в случае фотографических пленок или актинометров, или величиной механической, как в приемнике Голея [3].

6.3.3. Response matrix – Матрица откликов

Term

Response matrix

Definition

A matrix composed of responses from individual elements of multiple-element radiation detector.

Термин

Матрица откликов

Определение

Матрица, составленная из выходных величин отдельных элементов многоэлементного приемника излучения.

Synonyms

Синонимы

Матрица выходных сигналов

6.3.4. Electronic gain – Коэффициент усиления

Quantity

Electronic gain

Symbol

G

Definition

The ratio of the signal amplitude at the output of an electron amplifier to that at its input.

Unit

Величина

Коэффициент усиления

Обозначение

G

Определение

Отношение сигнала на выходе электронного усилителя к сигналу на его входе.

Единица

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

Synonyms

Amplification

Синонимы

6.3.5. Photocurrent – Фототок

Quantity

Photocurrent

Symbol

I_{ph}

Definition

That part of the output current of a photoelectric detector, which is caused by incident radiation [3].

Unit

A

Comments

In photomultipliers a distinction must be made between the cathode photocurrent and the anode photocurrent [3].

Величина

Фототок

Обозначение

I_{ph}

Определение

Составляющая электрического тока, возникающая на выходе фотоэлектрического приемника вследствие падающего излучения. [3]

Единица

A

Примечания

В случае фотоумножителей необходимо различать катодный фототок и анодный фототок [3].

6.3.6. Dark current – Темновой ток

Quantity

Dark current

Symbol

I_0

Definition

Output current of a photoelectric detector or of its cathode in the absence of incident radiation [3].

Unit

A

Synonyms

Offset

Величина

Темновой ток

Обозначение

I_0

Определение

Электрический ток на выходе фотоэлектрического приемника или его катода при отсутствии входной величины, то есть излучения на входе приемника [3].

Единица

A

Синонимы

6.3.7. Background signal – Фоновый сигнал

Term

Background signal

Definition

A signal at the output of a sensor pointed to a background.

Термин

Фоновый сигнал

Определение

Сигнал на выходе датчика, наведенного на фон.

6.3.8. Responsivity – Чувствительность

Quantity

Responsivity

Symbol

s

Definition

Quotient of the detector output Y by the detector input X [3]:

Величина

Чувствительность

Обозначение

s

Определение

Отношение величины Y на выходе приемника к величине X на его входе [3]:

$$s = Y/X .$$

$$s = Y/X .$$

Unit

[Y]/[X]

Synonyms

Sensitivity

Comments

If the detector output is Y_0 in the absence of input, and is Y_t when there is a detector input X , the responsivity is [3]:

Единица

[Y]/[X]

Синонимы

Примечания

Если при отсутствии какого-либо сигнала на входе, на выходе приемника получаем величину Y_0 , и величину Y_t при входной X , тогда, соответственно, чувствительность приемника определяется по формуле [3]:

$$s = (Y_t - Y_0)/X .$$

$$s = (Y_t - Y_0)/X .$$

6.3.9. Relative responsivity – Относительная чувствительность

Quantity

Relative responsivity

Symbol

s_r

Definition

Ratio of the responsivity $s(Z)$ when the detector is irradiated with radiation Z to the responsivity $s(N)$ when it is irradiated with a reference radiation N [3]:

$$s_r = s(Z)/s(N).$$

Unit

-

Synonyms

Relative sensitivity

Величина

Относительная чувствительность

Обозначение

s_r

Определение

Отношение чувствительности $s(Z)$ при облучении приемника излучением Z к значению чувствительности приемника $s(N)$ при его облучении стандартным излучением N [3]:

$$s_r = s(Z)/s(N).$$

Единица

-

Синонимы

6.3.10. Spectral responsivity – Спектральная чувствительность

Quantity

Spectral responsivity

Symbol

$s(\lambda)$

Definition

Quotient of the detector output $dY(\lambda)$ by the monochromatic detector input $dX_e(\lambda) = X_{e,\lambda}(\lambda) \cdot d\lambda$ in the wavelength interval $d\lambda$ as a function of the wavelength λ [3]:

$$s(\lambda) = \frac{dY(\lambda)}{dX_e(\lambda)}.$$

Unit

$[Y][X]^{-1}m^{-1}$

Величина

Спектральная чувствительность

Обозначение

$s(\lambda)$

Определение

Отношение величины на выходе приемника $dY(\lambda)$ к величине на входе приемника монохроматического излучения $dX_e(\lambda) = X_{e,\lambda}(\lambda) \cdot d\lambda$ в интервале длин волн $d\lambda$, как функция от длины волны λ [3]:

$$s(\lambda) = \frac{dY(\lambda)}{dX_e(\lambda)}.$$

Единица

$[Y][X]^{-1}m^{-1}$

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Synonyms

Spectral sensitivity

Синонимы

6.3.11. Relative spectral responsivity – Относительная спектральная чувствительность

Quantity

Relative spectral responsivity

Величина

Относительная спектральная чувствительность

Symbol

$$s_r(\lambda)$$

Обозначение

$$s_r(\lambda)$$

Definition

Ratio of the spectral responsivity $s(\lambda)$ of the detector at wavelength λ to a given reference value s_m [3]:

Определение

Отношение спектральной чувствительности $s(\lambda)$ приемника на длине волны λ к некоторому опорному значению s_m [3]:

$$s_r(\lambda) = s(\lambda)/s_m.$$

$$s_r(\lambda) = s(\lambda)/s_m.$$

Unit

Единица

Synonyms

Relative spectral sensitivity

Синонимы

Comments

The given reference value s_m can be an average value, a maximum value or an arbitrarily chosen value of $s(\lambda)$ [3].

Примечания

Это опорное значение может быть средним значением, максимальным значением, либо произвольно выбранным значением спектральной чувствительности $s(\lambda)$ [3].

6.3.12. Peak spectral responsivity – Максимальная спектральная чувствительность

Quantity

Peak spectral responsivity

Величина

Максимальная спектральная чувствительность

Symbol

$$\max S_\lambda(\lambda)$$

Обозначение

$$\max S_\lambda(\lambda)$$

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Definition

The maximum value of the absolute spectral responsivity over a given spectral bandwidth.

Unit

V/(W·m), A/(W·m), Ω/(W·m), etc.

Определение

Максимальное значение абсолютной спектральной чувствительности в заданном спектральном интервале.

Единица

B/(Bt·m), A/(Bt·m), Ω/(Bt·m) и т. д.

6.3.13. Effective value of radiant quantity – Эффективное значение энергетической величины

Quantity

Effective value of radiant quantity

Symbol

X_s

Definition

A value characterizing an optical radiation in terms of its action on the given selective sensor or detector and equal to the integral of the product of the spectral distribution of a radiant quantity acting at the input of the detector and the relative spectral distribution of its responsivity:

Величина

**Эффективное значение
энергетической величины**

Обозначение

X_s

Определение

Величина, характеризующая оптическое излучение по его воздействию на данный селективный датчик или приемник и равная интегралу от произведения спектрального распределения энергетической величины, действующей на входе датчика или приемника излучения, на относительное спектральное распределение чувствительности датчика или приемника:

$$X_s = \int_0^{\infty} X_{e\lambda}(\lambda) s_r(\lambda) d\lambda.$$

$$X_s = \int_0^{\infty} X_{e\lambda}(\lambda) s_r(\lambda) d\lambda.$$

Unit

The same as for $X_{e\lambda}$

Synonyms

Единица

Та же, что и для $X_{e\lambda}$

Синонимы

Редуцированная энергетическая величина
Активичная энергетическая величина

6.3.14. Response time – Время реакции

<i>Quantity</i>	<i>Величина</i>
Response time	Время реакции
<i>Symbol</i>	<i>Обозначение</i>
t_r	t_r
<i>Definition</i>	<i>Определение</i>
Time required for the change of detector output to reach, after a step variation of a steady detector input, a given percentage of its final value [3].	Время, которое требуется на то, чтобы значение величины на выходе приемника достигло данного процентного отношения от его конечного значения, при ступенчатом изменении величины, поступающей на вход приемника [3].
<i>Unit</i>	<i>Единица</i>
S	с
<i>Synonyms</i>	<i>Синонимы</i>
	Длительность реакции
	Время отклика
	Длительность отклика

6.3.15. Time constant – Постоянная времени

<i>Quantity</i>	<i>Величина</i>
Time constant	Постоянная времени
<i>Symbol</i>	<i>Обозначение</i>
τ	τ
<i>Definition</i>	<i>Определение</i>
Time required for the detector output to vary, after a step variation from a steady input to another steady input, from its initial value by the fraction $(1 - 1/e)$ of its final change [3].	Время необходимое для того, чтобы величина на выходе приемника изменилась от ее первичного значения на величину $(1 - 1/e)$ от конечного значения при скачкообразном изменении величины на входе приемника от одного устойчивого значения к другому [3].
<i>Unit</i>	<i>Единица</i>
S	с

6.3.16. Rise time – Время нарастания

Quantity

Rise time

Symbol

$$t_{x\%}^+, t_{10\%}^+, t_{90\%}^+$$

Definition

Time required for a detector output to rise from a stated low percentage to a stated higher percentage of the maximum value when a steady input is instantaneously applied [3].

Unit

s

Comments

It is usual to consider a low percentage of 10% and a high percentage of 90% [3].

Величина

Время нарастания

Обозначение

$$t_{x\%}^+, t_{10\%}^+, t_{90\%}^+$$

Определение

Время, которое требуется для того, чтобы величина на выходе приемника увеличилась от установленного малого значения к установленному большому значению, выраженному в процентах от максимального сигнала, когда на вход приемника мгновенно подается постоянная величина [3].

Единица

s

Примечания

Обычно рассматривают малое значение 10% и большое значение 90% [3].

6.3.17. Fall time – Время спада

Quantity

Fall time

Symbol

$$t_{x\%}^-, t_{10\%}^-, t_{90\%}^-$$

Definition

Time required for a detector output to fall from a stated high percentage to a stated lower percentage of the maximum value when a steady input is instantaneously removed [3].

Unit

s

Comments

Величина

Время спада

Обозначение

$$t_{x\%}^-, t_{10\%}^-, t_{90\%}^-$$

Определение

Время, которое требуется для того, чтобы величина на выходе приемника уменьшилась от установленного большого значения к установленному малому значению, выраженному в процентах от максимального сигнала, когда на выходе приемника мгновенно снимается постоянная величина [3].

Единица

s

Примечания

It is usual to consider a high percentage of 90% and a low percentage of 10% [3].

Обычно рассматривают большое значение 90% и малое значение 10% [3].

6.3.18. Noise – Шум

Term

Noise

Definition

1. The random, unpredictable and undesirable signals, or changes in signals, that hinder radiation detection or measurement.
2. Fluctuations of the sensor or radiation detector output value, caused by the discrete nature of the energy carriers – photons and electrons.

Comments

Noise is characterized by the probability distribution laws, variance and r.m.s. value, power spectra, etc.

Термин

Шум

Определение

1. Случайные, непредсказуемые и нежелательные сигналы или изменения сигнала, затрудняющие обнаружение или измерение излучения.
2. Флуктуации выходной величины датчика или приемника излучения, обусловленные дискретной природой носителей энергии – фотонов и электронов.

Примечания

Шумы характеризуются законами распределения вероятностей, дисперсией и среднеквадратичным значением, энергетическими спектрами и т. д.

6.3.19. Signal-to-noise ratio – Отношение сигнал/шум

Quantity

Signal-to-noise ratio

Symbol

SNR

Definition

The ratio of the power of a desired signal to the noise power in the absence of the signal.

Unit

Величина

Отношение сигнал/шум

Обозначение

SNR

Определение

Отношение мощности полезного сигнала к мощности шума в отсутствие сигнала.

Единица

Synonyms

SNR (acronym)

Синонимы

ОСШ (сокращение)

С/Ш (сокращение)

Comments

1. For pulse signals, the SNR is the ratio of the squared maximum value of the signal to the noise variance.
2. Just as frequently, the SNR is defined as a square root of the above value, i.e., the ratio of the signal maximum value to the r.m.s. noise value.

Примечания

1. Для импульсных сигналов ОСШ есть отношение квадрата пикового значения сигнала к дисперсии шума.
2. Широко также используется под тем же названием величина, представляющая собой квадратный корень из указанной величины, т. е. отношение пикового значения сигнала к среднеквадратичному значению шума.

6.3.20. Noise equivalent input – Эквивалентный входной сигнал шума

Quantity

Noise equivalent input

Symbol

Definition

Value of the detector input that produces an output equal to the root mean square (r.m.s.) noise output, for a stated frequency and bandwidth of the measuring instrument. [3]

Unit

Comments

It is usual to consider a 1Hz bandwidth and this value is implied unless stated otherwise [3].

Величина

Эквивалентный входной сигнал шума

Обозначение

Определение

Значение сигнала на входе приемника, которое вызывает сигнал на выходе равный среднеквадратичному значению величины шума на выходе для определенной частоты и ширины полосы частот прибора, измеряющего величину на выходе приемника. [3]

Единица

Примечания

Обычно рассматривается ширина полосы частот 1Гц, и, если специально не оговорено, то это значение применяется на практике [3].

6.3.21. Noise equivalent power – Эквивалентная мощность шума

Quantity

Noise equivalent power

Symbol

Φ_m, NEP

Величина

Эквивалентная мощность шума

Обозначение

Φ_m, NEP

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Definition

Name given to the noise equivalent input when the quantity that the detector is being used to measure or detect is radiant flux [3].

Unit

W

Synonyms

NEP (acronym)

Определение

Термин, который присваивается эквивалентному входному сигналу шума, когда величиной, которую измеряет или обнаруживает приемник, является поток излучения [3].

Единица

Вт

Синонимы

ЭМШ (сокращение)

Мощность, эквивалентная шуму

6.3.22. Noise equivalent irradiance – Эквивалентная облученность по шуму

Quantity

Noise equivalent irradiance

Величина

Эквивалентная облученность по шуму

Symbol

E_m, NEI

Обозначение

E_m, NEI

Definition

Name given to the noise equivalent input when the quantity that the detector is being used to measure or detect is a uniform irradiance [3].

Определение

Термин, который присваивается эквивалентному входному сигналу шума, когда величиной, которую измеряет или обнаруживает приемник, является равномерная облученность [3].

Unit

$\text{W}\cdot\text{m}^{-2}$

Единица

$\text{Вт}\cdot\text{м}^{-2}$

Synonyms

NEI (acronym)

Синонимы

Облученность, эквивалентная шуму

6.3.23. Noise equivalent radiance – Эквивалентная энергетическая яркость по шуму

Quantity

Noise equivalent radiance

Величина

Эквивалентная энергетическая яркость по шуму

Symbol

L_m, NER

Обозначение

L_m, NER

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

Definition

A value of radiance of the radiation incident on a sensor or detector, which generates an output signal equal to the output noise r.m.s. value.

Unit

$\text{Wm}^{-2}\text{sr}^{-1}$

Synonyms

NER (acronym)

Определение

Значение яркости излучения, падающего на датчик или приемник излучения, которое вызывает сигнал на выходе, равный среднеквадратичному значению шума на выходе.

Единица

$\text{Вт м}^{-2}\text{ср}^{-1}$

Синонимы

**Энергетическая яркость,
эквивалентная шуму**

6.3.24. Noise equivalent difference of temperatures – Эквивалентная разность температур по шуму

Quantity

Noise equivalent difference of temperatures

Symbol

NEDT, NEΔT

Definition

The difference in temperatures of a radiation source and background, for which the signal-to-noise ratio at the output of a thermal imaging system is unity.

Unit

K

Synonyms

NEDT

Величина

Эквивалентная разность температур по шуму

Обозначение

NEDT, NEΔT

Определение

Разность температур источника излучения и окружающего его фона, при которой отношение сигнал/шум на выходе тепловизионной системы равно единице.

Единица

K

Синонимы

Разность температур, эквивалентная шуму

6.3.25. Detectivity – Обнаружительная способность

Quantity

Detectivity

Symbol

D

Величина

Обнаружительная способность

Обозначение

D

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART I. CALIBRATION TECHNIQUES**

Definition

Reciprocal of the noise equivalent power [3]:

$$D = 1/\Phi_m .$$

Unit
 W^{-1}

Определение

Величина, обратная эквивалентной мощности шума [3]:

$$D = 1/\Phi_m .$$

Единица
 Вт^{-1}

6.3.26. Normalized detectivity – Удельная обнаружительная способность

Quantity

Normalized detectivity

Symbol

$$D^*$$

Definition

Detectivity normalized to take into account two important parameters of the detection system, the sensitive area A of the detector and the measurement bandwidth Δf [3]:

$$D^* = D(A \cdot \Delta f)^{1/2} = \Phi_m^{-1}(A \cdot \Delta f)^{1/2} .$$

Unit
 $\text{m} \cdot \text{Hz}^{1/2} \text{W}^{-1}$

Comments

This concept is realistic only if the responsivity and noise output of the detector are frequency independent throughout the frequency range under consideration and if the noise equivalent input varies as the square root of the detector area; this is not always the case [3].

Величина

Удельная обнаружительная способность

Обозначение

$$D^*$$

Определение

Чувствительность обнаружения, нормализованная с тем, чтобы учесть два важных параметра системы приема: площадь чувствительного элемента приемника A и ширину полосы частот измерения Δf [3]:

$$D^* = D(A \cdot \Delta f)^{1/2} = \Phi_m^{-1}(A \cdot \Delta f)^{1/2} .$$

Единица
 $\text{м} \cdot \text{Гц}^{1/2} \text{Вт}^{-1}$

Примечания

Данная формула верна только в случае, когда чувствительность и величина шума на выходе приемника не зависят от частоты на рассматриваемом частотном диапазоне и эквивалентный входной сигнал по шуму изменяется как корень квадратный от площади чувствительного элемента приемника, что не всегда выполняется [3].

6.3.27. Spectral distribution of normalized detectivity – Спектральное распределение удельной обнаружительной способности

Quantity

Spectral distribution of normalized detectivity

Symbol

$$D^*(\lambda)$$

Definition

A function characterizing the dependence of normalized detectivity upon the monochromatic radiation wavelength.

Unit
 $\text{m} \cdot \text{Hz}^{1/2} \text{W}^{-1}$

Величина

Спектральное распределение удельной обнаружительной способности

Обозначение

$$D^*(\lambda)$$

Определение

Функция, характеризующая зависимость удельной обнаружительной способности от длины волны монохроматического излучения.

Единица
 $\text{м} \cdot \text{Гц}^{1/2} \text{ Вт}^{-1}$

6.3.28. Quantum efficiency – Квантовая эффективность

Quantity

Quantum efficiency

Symbol

$$\eta$$

Definition

Ratio of the number of elementary events (such as release of an electron) contributing to the detector output, to the number of incident photons [3].

Synonyms

Internal quantum efficiency

Unit

Величина

Квантовая эффективность

Обозначение

$$\eta$$

Определение

Отношение числа случаев освобождения из связанного состояния в атомах электронов, которые образуют электрический сигнал на выходе приемника излучения к числу падающих фотонов [3].

Синонимы

Единица

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

6.3.29. Generalized quantum efficiency – Обобщенная квантовая эффективность

<i>Quantity</i>	<i>Величина</i>
Generalized quantum efficiency	Обобщенная квантовая эффективность
<i>Symbol</i>	<i>Обозначение</i>
η'	η'
<i>Definition</i>	<i>Определение</i>
Ratio of the number of electrons released by the photoelectric effect to the number of incident photons.	Отношение числа фотоэлектронов, образовавшихся при фотоэффекте, к числу фотонов падающего излучения.
<i>Synonyms</i>	<i>Синонимы</i>
External quantum efficiency	
<i>Unit</i>	<i>Единица</i>
-	-
<i>Comments</i>	<i>Примечания</i>
As distinct from the quantum efficiency, it accounts for the losses due to the reflection of some photons from the surface of a semiconductor.	В отличие от квантовой эффективности, учитывает потери на отражение части фотонов от поверхности фотополупроводника.

6.3.30. Resolving power – Разрешающая способность

<i>Term</i>	<i>Термин</i>
Resolving power	Разрешающая способность
<i>Definition</i>	<i>Определение</i>
Measure of the ability of a radiometric system to distinguish between signals that are close to each other in the time, space or wavelength domain.	Мера способности радиометрической системы различать сигналы, близкие друг к другу во времени, в пространстве или по длинам волн.
<i>Synonyms</i>	<i>Синонимы</i>
Resolution	

6.3.31. Spatial resolution – Пространственное разрешение

<i>Quantity</i>	<i>Величина</i>
Spatial resolution	Пространственное разрешение
-	-

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

<i>Symbol</i>	$\Delta\theta, \Delta x$	<i>Обозначение</i>	$\Delta\theta, \Delta x$
<i>Definition</i>	The least angular or linear distance between two identical point sources of radiation that can be distinguished according to a given criterion.	<i>Определение</i>	Наименьшее угловое или линейное расстояние между двумя точечными объектами с одинаковой силой излучения, различаемых по заданному критерию.
<i>Unit</i>	rad, m	<i>Единица</i>	рад, м

6.3.32. Spectral resolution – Спектральное разрешение

<i>Quantity</i>	Spectral resolution	<i>Величина</i>	Спектральное разрешение
<i>Symbol</i>	$\Delta\lambda$	<i>Обозначение</i>	$\Delta\lambda$
<i>Definition</i>	The least difference in the radiation wavelengths of two monochromatic radiators of equal intensity that can be distinguished according to a given criterion.	<i>Определение</i>	Наименьшая разность длин волн излучения двух монохроматических излучателей одинаковой интенсивности, различаемых по заданному критерию.
<i>Unit</i>	m	<i>Единица</i>	м

6.3.33. Temporal resolution – Временное разрешение

<i>Quantity</i>	Temporal resolution	<i>Величина</i>	Временное разрешение
<i>Symbol</i>	Δt	<i>Обозначение</i>	Δt
<i>Definition</i>	The minimum time interval between two radiation pulses of equal intensity that can be distinguished.	<i>Определение</i>	Наименьший временной интервал между двумя импульсами излучения одинаковой интенсивности.
<i>Unit</i>	s	<i>Единица</i>	с

6.3.34. Optical crosstalk – Оптическая перекрестная помеха

Term

Optical crosstalk

Definition

Presence of a response in non-irradiated detector array elements adjoining the irradiated ones.

Synonyms

Термин

Оптическая перекрестная помеха

Определение

Наличие отклика в необлучаемых элементах многоэлементного приемника излучения, соседних с облучаемым.

Синонимы

Оптическая наводка

6.3.35. Non-linearity of responsivity – Нелинейность чувствительности

Term

Non-linearity of responsivity

Definition

Dependence of responsivity upon the input level.

Термин

Нелинейность чувствительности

Определение

Зависимость чувствительности от уровня входного воздействия.

6.3.36. Relative spatial responsivity – Зонная характеристика чувствительности

Quantity

Relative spatial responsivity

Symbol

$$s(x, y)$$

Величина

Зонная характеристика чувствительности

Обозначение

$$s(x, y)$$

Definition

The responsivity as a function of the spatial coordinate on the radiation detector normalized to some chosen value of responsivity, usually its maximum value.

Определение

Чувствительность как функция пространственной координаты на поверхности чувствительного элемента приемника излучения, отнесенная к некоторому выбранному значению чувствительности, обычно, его максимальному значению.

Unit

Единица

Synonyms

Comments

Conditions of responsivity measurements (i.e., a narrow beam falling at the right angle to the surface, a converging beam, radiation coherency and spectrum, etc.) should be specified.

Синонимы

Относительное распределение чувствительности по площадке

Примечания

Условия измерения чувствительности (узкий луч, направленный по нормали к поверхности, или сходящийся пучок лучей, когерентность падающего излучения, спектральный состав излучения) должны оговариваться.

6.3.37. Relative angular responsivity – Относительная угловая чувствительность

Quantity

Relative angular responsivity

Symbol

$$s(\theta, \phi)$$

Definition

The responsivity as a function of the direction (angles θ and ϕ in spherical coordinate system) of radiation coming to the radiation detector surface normalized to some chosen value of responsivity, usually its maximum value.

Величина

Относительная угловая чувствительность

Обозначение

$$s(\theta, \phi)$$

Определение

Чувствительности как функция направления (углы θ и ϕ в сферической системе координат) излучения, падающего на поверхность чувствительного элемента приемника, отнесенная к некоторому выбранному значению чувствительности, обычно, его максимальному значению.

Unit

Comments

Conditions of responsivity measurement (i.e., a narrow beam falling at the right angle to the surface, a converging beam, radiation coherency and spectrum, etc.) should be specified.

Единица

Примечания

Условия измерения чувствительности (узкий луч с данного направления, или сходящийся пучок лучей, когерентность падающего излучения, спектральный состав излучения) должны оговариваться.

REFERENCES IN ENGLISH

1. Clair L. Wyatt, Victor Privalsky, and Raju Datla. Recommended Practice; Symbols, Terms, Units and Uncertainty Analysis for Radiometric Sensor Calibration. NIST Handbook 152, NIST, 1998
2. Clair L. Wyatt, Victor Privalsky. Recommended Practice: Symbols, Terms, and Units for Space-based Infrared Sensor System Calibration and Uncertainty Analysis. Space Dynamics Laboratories/Utah State University. Logan, UT, 1996
3. International Lighting Vocabulary. 4th Edition. CIE Publication No. 17.4 (1987) /International Electrotechnical Vocabulary. Chapter 845: Lighting – International Electrotechnical Commission. Publication 50(845), 1987, Geneva, Switzerland
4. International Vocabulary of Basic and General Terms in Metrology. 2nd Edition. ISO, Switzerland, 1993
5. Polarization: Definitions and Nomenclature, Instrument Polarization – CIE Publication No. 59, 1984, Paris, France
6. Radiometric and Photometric Characteristics of Materials and Their Measurement – CIE Publication No. 38(TC-2.3), 1977, Paris, France
7. Determination of the Spectral Responsivity of Optical Radiation Detectors – CIE Publication No. 64, 1984, Paris, France
8. Electrically Calibrated Thermal Detectors of Optical Radiation (Absolute Radiometers) CIE Publication No. 65, 1985 – Paris, France
9. Methods of Characterizing the Performance of Radiometers and Photometers – CIE Publication No. 53–1982, Vienna, Austria, 1996
10. Nomenclature and Definitions for Illuminating Engineering. American National Standard – Transactions of the Illuminating Engineering Society of North America. ANSI/IES RP-16–1986 (ANSI Standard Z7.1–1967)
11. The Infrared Handbook – Revised Edition. Eds. William L. Wolfe, George J. Zissis. Office of Naval Research, Department of the Navy, Washington, DC, 1989
12. William L. Wolfe. Introduction to Radiometry. Tutorial Texts in Optical Engineering, Volume TT29 – SPIE, 1998
13. Handbook of Applied Photometry. Ed. by Casimer DeCusatis. OSA & Springer-Verlag, New York – Berlin – Heidelberg, 1998
14. Gerald C. Holst. Testing and Evaluation of Infrared Imaging Systems. 2nd Ed. – SPIE, 1998
15. John L. Miller and Dr. Edward Friedman. Photonics Rules of Thumb: Optics, Electro-Optics, Fiber Optics, and Lasers – McGraw-Hill, 1996
16. Ronald G. Driggers, Paul Cox, Timothy Edwards. Introduction to Infrared and Electro-optical Systems – Artech House Inc., 1999
17. H. S. Chen. Remote Sensing Calibration Systems. An Introduction. – A Deepak Publishing, Hampton, VA, USA, 1997

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART I. CALIBRATION TECHNIQUES

18. G. Rees. The Remote Sensing Data Book. Cambridge, University Press, 1999
19. Self-study Manual on Optical Radiation Measurements. Part 1 – Concepts. Chapters 1 to 3. (Chapter 1. Introduction, F. E. Nicodemus, H. J. Kostkowski, and A. T. Hattenburg. Chapter 2. Distribution of Optical Radiation with Respect to Position and Direction – Radiance, F. E. Nicodemus, and H. J. Kostkowski. Chapter 3. Spectral Distribution of Optical Radiation, F. E. Nicodemus, and H. J. Kostkowski) Fred E. Nicodemus, Ed. – NBS Technical Note 910–1, 1976
20. Self-study Manual on Optical Radiation Measurements. Part 1 – Concepts. Chapters 4 and 5. (Chapter 4. More on Distribution of Optical Radiation with Respect to Position and Direction, Fred E. Nicodemus. Chapter 5. An Introduction to the Measurement Equation, Henry J. Kostkowski and Fred E. Nicodemus) Fred E. Nicodemus, Ed. – NBS Technical Note 910–2, 1978
21. Self-study Manual on Optical Radiation Measurements. Part 1 – Concepts. Chapter 6. Distribution of Optical Radiation with Respect to Polarization, John B. Shumaker. Fred E. Nicodemus, Ed. – NBS Technical Note 910–3, 1977
22. Self-study Manual on Optical Radiation Measurements. Part 1 – Concepts. Chapters 7, 8, and 9. (Chapter 7. The Relative Spectral Responsivity and Slit-Scattering Function of a Spectroradiometer, Henry J. Kostkowski. Chapter 8. Deconvolution, John B. Shumaker. Chapter 9. Physically Defining Measurement-Beam Geometry by Using Opaque Barriers, Fred E. Nicodemus) Fred E. Nicodemus, Ed. – NBS Technical Note 910–4, 1979
23. Self-study Manual on Optical Radiation Measurements. Part 1 – Concepts. Chapter 10. Introduction to Coherence in Radiometry, by John B. Shumaker. Fred E. Nicodemus, Ed. – NBS Technical Note 910–6, 1978
24. Self-study Manual on Optical Radiation Measurements. Part 1 – Concepts. Chapters 11. Linearity Considerations and Calibrations, by John B. Shumaker. Fred E. Nicodemus, Ed. – NBS Technical Note 910–7, 1984
25. Self-study Manual on Optical Radiation Measurements. Part 1 – Concepts. Chapter 12. Blackbodies, Blackbody Radiation, and Temperature Scales, by Joseph C. Richmond and Fred E. Nicodemus. Fred E. Nicodemus, Ed. – NBS Technical Note 910–8, 1985
26. F. E. Nicodemus, J. C. Richmond, J. J. Hsia. Geometrical Considerations and Nomenclature for Reflectance. NBS Monograph 160 – NBS, 1977
27. Dean B. Judd. Terms, Definitions, and Symbols in Reflectometry – J. Opt. Soc. Am., Vol. 57, No. 4, pp. 445–452 (1967)
28. Techniques of Metal Research. Volume VI, Part 1. Measurement of Physical Properties. Part 1. Some Special Properties. E. Passaglia, Ed. Interscience Publishers, 1972 – Chapter 1. Theory and Measurement of the Thermal Radiation Properties of Metals. D. P. Dewitt, J. C. Richmond, pp. 1–90
29. Michael F. Modest. Radiative Heat Transfer. Academic Press – Elsevier Science, Amsterdam – New York 2003 – 826 pp.
30. Robert Siegel, John R. Howell. Thermal Radiation Heat Transfer. Fourth Edition – Taylor & Francis, New York – London, 2002 – 868 pp.

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

31. François X. Sillion, Claude Puech. Radiosity and Global Illumination – Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1994 – 251 pp.
32. Clair L. Wyatt. Radiometric Calibration: Theory and Methods – Academic Press, Inc., Orlando, FL, 1978 – 200 pp.
33. Clair L. Wyatt. Electro-optical System Design For Information Processing – McGraw-Hil, 1991 – 345 pp.
34. Steel, W. H. “Luminosity, Throughput or Etandue?” Further Comments – Applied Optics, **14**, 252, 1975
35. Palmer, J. M. Getting Intense on Intensity – Metrologia, **30**, 371–372, 1993
36. Smith, W. J. Modern Optical Engineering. Second Edition, McGraw-Hill, 1990
37. Jones, R. C. Terminology in Photometry and Radiometry – Journal of the Optical Society of America, **53**, 1314, 1963
38. Geist, J. and E. Zalewski. Chinese restaurant nomenclature for radiometry – Applied Optics, **12**, 435, 1973
39. Richmond, J. C. Rationale for emittance and reflectivity – Applied Optics, **21**, 1, 1982
40. W. L. Wolfe. Proclivity for Emissivity – Applied Optics, **21**, 1, 1982
41. Joseph C. Richmond and Jon C. Geist. Infrared Reflectance Measurements. Final Report to the NASA – National Bureau of Standards Report 10 071, U.S. Department of Commerce, NBS, 1969
42. Standard Terminology of Appearance – ASTM Standard E284–99a. The American Society for Testing and Materials, 1999
43. Standard Practice for Describing Retroreflection – ASTM Standard E808–99a. The American Society for Testing and Materials, 1999
44. Angle Resolved Optical Scatter Measurements and Specular or Diffuse Samples – ASTM Standard E1392–90
45. Surface Texture; Surface Roughness; Waviness, and Lay – ANSI/ASME Standard B46.1
46. A. J. Lohwater’s Russian–English Dictionary of the Mathematical Sciences, 2nd Ed. – American Mathematical Society, Providence, Rhode Island, 1990 – 342 pp.
47. Bartell F.O. Projected solid angle and blackbody simulators – Applied Optics, 1989, v. 28, No 6, pp. 1055 – 1057
48. EOS Reference Handbook – EOS Data Quality: Calibration/Validation, pp. 51–52
49. Brent Y. Bartschi, David E. Morse, and Tom L. Woolston. The Spatial Infrared Imaging Telescope III – Johns Hopkins APL Technical Digest, Volume 17, Number 2 (1996), pp. 215–225
50. Shawn V. Burdick, John Chalupa, Colleen L. Hamilton, Thomas L. Murdock, and Ray Russell. MSX Reference Objects – Johns Hopkins APL Technical Digest, Volume 17, Number 2 (1996), pp. 246–252
51. David C. Harrison and Joseph C. Chow. The Space-Based Visible Sensor – Johns Hopkins APL Technical Digest, Volume 17, Number 2 (1996), pp. 226–236

REFERENCES IN RUSSIAN

- R1. ГОСТ 8.417–81. Государственная система обеспечения единства измерений. Единицы физических величин
- R2. ГОСТ 16263–70. Государственная система обеспечения единства измерений. Метрология. Термины и определения
- R3. ГОСТ 14686–69. Средства измерений световых величин
- R4. ГОСТ 7601–78. Физическая оптика. Термины, буквенные обозначения и определения основных величин
- R5. ГОСТ 26148–84. Фотометрия. Термины и определения
- R6. ГОСТ 24286–88. Фотометрия импульсная. Термины и определения
- R7. ГОСТ 25462–82. Волоконная оптика. Термины и определения
- R8. ГОСТ 7427–76. Геометрическая оптика. Термины, определения и буквенные обозначения
- R9. ГОСТ 21934–83. Приемники излучения полупроводниковые фотоэлектрические и устройства фотоприемные. Термины и определения
- R10. ГОСТ 4.431–86. Система показателей качества продукции. Приемники излучения фотоэлектрические. Номенклатура показателей
- R11. ГОСТ 17704–72. Приборы полупроводниковые. Приемники лучистой энергии фотоэлектрические. Классификация и система обозначений
- R12. ГОСТ 17772–88. Приемники излучения полупроводниковые фотоэлектрические и фотоприемные устройства. Методы измерения фотоэлектрических параметров и определения характеристик
- R13. ГОСТ 23778–79. Измерения оптические поляризационные. Термины и определения
- R14. ГОСТ 24453–80. Измерения параметров и характеристик лазерного излучения. Термины, определения и буквенные обозначения величин
- R15. ГОСТ 27176–86. Приборы спектральные оптические. Термины и определения
- R16. ГОСТ 13088–67. Колориметрия. Термины, буквенные обозначения.
- R17. ГОСТ 26302–93. Стекло. Методы определения коэффициентов направленного пропускания и отражения света
- R18. ГОСТ 8.197–86. Государственная система обеспечения единства измерений. Государственный специальный эталон и государственная поверочная схема для средств измерений спектральной плотности энергетической яркости оптического излучения в диапазоне длин волн от 0,04 до 0,25 мкм
- R19. ГОСТ 8.106–80. Государственная система обеспечения единства измерений. Государственный специальный эталон и общесоюзная поверочная схема для средств измерений энергетической яркости и силы излучения тепловых источников с температурой от 220 до 900 К

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

- R20. ГОСТ 8.195–89. Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений спектральной плотности энергетической яркости, спектральной плотности силы излучения и спектральной плотности энергетической освещенности в диапазоне длин волн от 0,25 до 25,00 мкм; силы излучения и энергетической освещенности в диапазоне длин волн от 0,2 до 25,0 мкм
- R21. ГОСТ 19834.2–74. Излучатели полупроводниковые. Методы измерения силы излучения и энергетической яркости
- R22. ГОСТ 8.558–93. Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений температуры
- R23. Русско-англо-французско-немецко-испанский словарь основных и общих терминов в метрологии, под ред. Л.К.Исаева, М.: ИПК «Издательство Стандартов», 1998
- R24. Англо-русский словарь по метрологии и технике точных измерений, под редакцией В.И.Кипаренко и Л.К.Исаева, М.: Русский язык, 1981
- R25. Англо-русский физический, под ред. В. Д. Новикова, М.: РУССО, 2001
- R26. Международный светотехнический словарь. М., 1974

English Index

		Pages	
5.4.18	Absolute thermal detector	Абсолютный тепловой приемник излучения	150
4.5.1	Absorptance	Коэффициент поглощения	121
3.7	Absorption	Поглощение	80
5.5.20	Across-track scanning sensor	Поперечно-сканирующий датчик	159
1.2.1	Active system	Активная система	26
4.3.16	Albedo	Альбедо	111
5.5.21	Along-track scanning sensor	Продольно-сканирующий датчик	159
1.1.1	Amplitude	Амплитуда	19
4.1.4	Angle factor	Угловой коэффициент	88
5.6.9	Aperture stop	Апертурная диафрагма	163
5.6.7	Attenuator	Ослабитель	162
5.4.12	Avalanche photodiode	Лавинный фотодиод	148
1.3.10	Background radiation	Фоновое излучение	38
6.3.7	Background signal	Фоновый сигнал	179
5.2.6	Band reject filter	Полосовой вырезающий фильтр	136
6.2.3	Bandpass	Полоса пропускания	175
5.2.5	Bandpass filter	Полосовой пропускающий фильтр	136
5.3.6	Beamsplitter	Делитель пучка	142
4.3.7	Biconical reflectance	Двуконический коэффициент отражения	104
4.4.7	Biconical transmittance	Двуконический коэффициент пропускания	116
4.3.5	Bidirectional reflectance	Двунаправленный коэффициент отражения	102
4.3.4	Bidirectional reflectance distribution function	Функция распределения двунаправленного коэффициента отражения	101
4.7.2	Bidirectional scattering distribution function	Функция распределения двунаправленного рассеяния	130
4.4.5	Bidirectional transmittance	Двунаправленный коэффициент пропускания	114
4.4.4	Bidirectional transmittance distribution function	Функция распределения двунаправленного коэффициента пропускания	113
4.3.13	Bihemispherical reflectance	Двуполусферический коэффициент отражения	108
4.4.13	Bihemispherical transmittance	Двуполусферический	120

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

5.1.1	Blackbody	коэффициент пропускания	
5.6.11	Blend	Черное тело	131
5.2.7	Blocking filter	Бленда	164
5.4.21	Bolometer	Блокирующий фильтр	136
4.6.4	Brewster angle	Болометр	151
1.3.17	Calibration attitude maneuver	Угол Брюстера	128
		Ориентационный маневр для	40
		калибровки	
1.3.4	Calibration coefficients	Калибровочные коэффициенты	36
1.3.5	Calibration equation	Уравнение калибровки	36
4.7	Characteristics of scattering	Характеристики рассеяния	129
5.4.16	Charge-coupled device	Прибор с зарядовой связью	149
5.6.1	Chopper	Прерыватель	160
5.2.9	Circular variable filter	Круговой переменный фильтр	137
3.10.3	Circularly polarized radiation	Излучение, поляризованное по	83
		кругу	
3.1	Coherent radiation	Когерентное излучение	69
5.3.5	Collimator	Коллиматор	141
4.6.3	Complex refractive index	Комплексный показатель	128
		преломления	
4.5.3	Conical absorptance	Конический коэффициент	122
		поглощения	
4.3.8	Conical-directional reflectance	Коническо-направленный	105
		коэффициент отражения	
4.4.8	Conical-directional	Коническо-направленный	116
	transmittance	коэффициент пропускания	
4.3.11	Conical-hemispherical	Коническо-полусферический	107
	reflectance	коэффициент отражения	
4.4.11	Conical-hemispherical	Коническо-полусферический	119
	transmittance	коэффициент пропускания	
6.3.6	Dark current	Темновой ток	179
3.10.7	Degree of polarization	Степень поляризации	84
6.3.25	Detectivity	Обнаружительная способность	189
5.4.1	Detector	Приемник оптического излучения	143
5.6.8	Diaphragm	Диафрагма	163
5.3.7	Dichroic	Цветоделитель	142
3.3	Diffraction	Дифракция	69
5.2.13	Diffraction monochromator	Дифракционный монохроматор	138
4.3.3	Diffuse reflectance	Коэффициент диффузного	101
		отражения	
3.5.2	Diffuse reflection	Диффузное отражение	77
3.6.2	Diffuse transmission	Диффузное пропускание	79
4.4.3	Diffuse transmittance	Коэффициент диффузного	112
		пропускания	

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

5.6.4	Diffuser	Рассеиватель	161
4.5.2	Directional absorptance	Направленный коэффициент поглощения	121
4.3.6	Directional-conical reflectance	Направленно-конический коэффициент отражения	103
4.4.6	Directional-conical transmittance	Направленно-конический коэффициент пропускания	115
4.3.9	Directional-hemispherical reflectance	Направленно-полусферический коэффициент отражения	106
4.4.9	Directional-hemispherical transmittance	Направленно-полусферический коэффициент пропускания	117
3.11	Dispersion	Дисперсия	85
4.2.13	Distribution temperature	Температура распределения	98
6.3.13	Effective value of radiant quantity	Эффективное значение энергетической величины	182
1.1	Electromagnetic radiation	Электромагнитное излучение	19
6.3.4	Electronic gain	Коэффициент усиления	178
3.10.4	Elliptically polarized radiation	Эллиптически поляризованное излучение	83
3.4	Emission	Эмиссия	70
6.1.4	Encircled energy	Коэффициент концентрации энергии в круге	167
6.1.5	Ensquared energy	Коэффициент концентрации энергии в квадратной площадке	167
6.1.15	Entrance pupil	Входной зрачок	172
6.1.16	Exit pupil	Выходной зрачок	172
5.1.8	Extended-area source	Протяженный источник	134
6.3.17	Fall time	Время спада	185
5.6.10	Field stop	Полевая диафрагма	163
6.1.10	Field-of-regard	Поле обзора	170
6.1.9	Field-of-view	Поле зрения	170
5.2.1	Filter	Фильтр	134
5.2.11	Filter monochromator	Фильтровый монохроматор	138
5.5.3	Filter radiometer	Фильтровый радиометр	153
6.1.13	Focal length	Фокусное расстояние	171
5.5.10	Focal plane array	Фокальная матрица	155
6.1.12	Footprint	Зона наблюдения	171
5.2.15	Fourier transform spectrometer	Фурье-спектрометр	139
1.1.2	Frequency	Частота	19
6.3.29	Generalized quantum efficiency	Обобщенная квантовая эффективность	191
2.1.4	Geometric extent	Геометрический фактор	47
1.2.24	Geostationary orbit	Геостационарная орбита	34
5.1.2	Globar	Глобар	132

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

5.5.5	Gonioradiometer	Гониорадиометр	154
1.3.13	Ground calibration	Наземная калибровка	39
4.5.4	Hemispherical absorptance	Полусферический коэффициент поглощения	122
4.3.12	Hemispherical-conical reflectance	Полусферическо-конический коэффициент отражения	108
4.4.12	Hemispherical-conical transmittance	Полусферическо-конический коэффициент пропускания	119
4.3.10	Hemispherical-directional reflectance	Полусферическо-направленный коэффициент отражения	106
4.4.10	Hemispherical-directional transmittance	Полусферическо-направленный коэффициент пропускания	118
5.5.12	Hyperspectral radiometer	Гиперспектральный радиометр	156
1.2.10	Image	Изображение	29
1.2.11	Imaging	Обработка изображений	29
5.5.9	Imaging radiometer	Изображающий радиометр	155
1.2.12	Imaging sensor	Датчик изображений	30
6.1.2	Impulse function of optical system	Импульсная функция оптической системы	165
4.1.1	Incidence angle	Угол падения	87
1.1.8	Infrared radiation	Инфракрасное излучение	22
6.3.1	Input	Входная величина	177
6.1.11	Instantaneous field-of-view	Элементарное поле зрения	170
6.2.2	Instrument function	Аппаратная функция	173
5.6.6	Integrating sphere	Интегрирующая сфера	162
3.2	Interference	Интерференция	69
5.2.2	Interference filter	Интерференционный фильтр	135
3.5.7	Interreflection	Многократные отражения	78
2.2.11	Irradiance	Облученность	56
1.1.14	Isotropic point source	Изотропный точечный источник	25
3.4.6	Lambert's law	Закон Ламберта	73
3.4.7	Lambertian surface	Ламбертовская поверхность	74
5.1.4	Laser	Лазер	132
5.3.3	Lens	Линза	140
5.1.5	Light emitting diode	Светоизлучающий диод	133
6.1.6	Line spread function	Функция рассеяния линии	168
3.10.2	Linearly polarized radiation	Линейно поляризованное излучение	83
5.2.3	Longpass filter –	Длинноволновый пропускающий фильтр	135
1.3.11	Low background	Низкоуровневый фон	38
3.4.8	Luminescence	Люминесценция	74
5.4.23	Matrix detector	Матричный приемник	152
1.3.3	Measurement equation	Уравнение измерения	35

SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES

1.3.12	Medium background	Среднеуровневый фон	38
5.2.14	Michelson's interferometer	Интерферометр Майкельсона	138
5.3.2	Mirror	Зеркало	140
3.5.3	Mixed reflection	Смешанное отражение	77
3.6.3	Mixed transmission	Смешанное пропускание	79
6.1.8	Modulation transfer function	Модуляционная передаточная функция	169
5.6.3	Modulator	Модулятор	160
1.2.7	Monitoring	Мониторинг	27
1.1.10	Monochromatic radiation	Монохроматическое излучение	23
5.2.10	Monochromator	Монохроматор	137
5.5.11	Multispectral imaging radiometer	Мультиспектральный изображающий радиометр	156
1.2.23	Nadir angle	Надирный угол	33
5.1.3	Nernst's glower	Штифт Нернста	132
5.2.8	Neutral density filter	Нейтральный фильтр	137
6.3.18	Noise	Шум	185
6.3.24	Noise equivalent difference of temperatures	Эквивалентная разность температур по шуму	189
6.3.20	Noise equivalent input	Эквивалентный входной сигнал шума	187
6.3.22	Noise equivalent irradiance	Эквивалентная облученность по шуму	188
6.3.21	Noise equivalent power	Эквивалентная мощность шума	187
6.3.23	Noise equivalent radiance	Эквивалентная энергетическая яркость по шуму	188
6.3.35	Non-linearity of responsivity	Нелинейность чувствительности	194
5.4.4	Non-selective detector	Неселективный приемник излучения	144
4.2.10	Non-selective radiator	Неселективный излучатель	97
6.3.26	Normalized detectivity	Удельная обнаружительная способность	190
2.2.4	Number of photons	Число фотонов	50
5.3.4	Objective	Объектив	141
1.2.5	Oblique sensing	Наклонное зондирование	27
1.3.14	Onboard calibration	Бортовая калибровка	39
3.7.3	Opaque medium	Непрозрачная среда	81
6.3.34	Optical crosstalk	Оптическая перекрестная помеха	193
2.1.5	Optical extent	Оптический фактор	48
1.1.5	Optical radiation	Оптическое излучение	21
5.5.7	Optical scatterometer	Оптический скаттерометр	155
6.1.7	Optical transfer function	Оптическая передаточная функция	168
6.2.5	Out-of-band leakage	Внеполосовое пропускание	176
6.3.2	Output	Выходная величина	177

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

5.1.6	Overfilling beam	Широкий пучок	133
3.10.6	Partially polarized radiation	Частично поляризованное излучение	84
1.2.2	Passive system	Пассивная система	26
6.3.12	Peak spectral responsivity	Максимальная спектральная чувствительность	182
3.4.3	Perfect blackbody	Абсолютно черное тело	71
3.5.5	Perfectly diffuse reflection	Идеально диффузное отражение	78
3.6.4	Perfectly diffuse transmission	Идеально диффузное пропускание	80
5.4.8	Photocathode	Фотокатод	146
6.3.5	Photocurrent	Фототок	178
5.4.11	Photodiode	Фотодиод	147
5.4.5	Photoelectric detector	Фотоэлектронный приемник излучения	145
3.12	Photoeffect	Фотоэффект	85
5.4.6	Photoemissive cell	Фотоэлемент	145
5.4.9	Photomultiplier	Фотоэлектронный умножитель	146
5.4.15	Photon counter	Счетчик фотонов	149
2.2.14	Photon exitance	Фотонная светимость	58
2.2.6	Photon exposure	Фотонная экспозиция	51
2.2.2	Photon flux	Поток фотонов	49
2.2.8	Photon intensity	Фотонная сила излучения	52
2.2.12	Photon irradiance	Фотонная облученность	57
2.2.10	Photon radiance	Фотонная яркость	55
5.4.7	Photoresistor	Фоторезистор	146
5.4.13	Phototransistor	Фототранзистор	148
5.4.10	Photovoltaic cell	Вентильный фотоэлемент	147
3.4.4	Planck's law	Закон Планка	72
1.2.21	Platform	Платформа	33
1.1.13	Point source	Точечный источник	25
6.1.1	Point spread function	Функция рассеяния точки	165
1.2.3	Pointing	Наведение	26
5.5.8	Polarimeter	Поляриметр	155
3.10	Polarization	Поляризация	82
3.10.1	Polarized radiation	Поляризованное излучение	82
5.3.8	Polarizer	Поляризатор	143
1.3.8	Primary radiometric standard	Первичный радиометрический эталон	37
5.2.12	Prism monochromator	Призменный монохроматор	138
2.1.2	Projected area	Площадь проекции	45
2.1.3	Projected solid angle	Проекция телесного угла	46
5.4.22	Pyroelectric detector	Пироэлектрический приемник	152
5.4.14	Quantum detector	Квантовый приемник излучения	148
6.3.28	Quantum efficiency	Квантовая эффективность	191

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

2.2.9	Radiance	Энергетическая яркость	53
4.3.15	Radiance factor	Коэффициент энергетической яркости	110
4.2.11	Radiance temperature	Яркостная температура	97
2.2.3	Radiant energy	Энергия излучения	50
2.2.13	Radiant exitance	Энергетическая светимость	57
2.2.5	Radiant exposure	Энергетическая экспозиция	51
2.2.1	Radiant flux	Поток излучения	48
2.2.7	Radiant intensity	Сила излучения	52
5.4.19	Radiation thermocouple	Радиационный термоэлемент	150
5.4.20	Radiation thermopile	Радиационная термобатарея	151
5.5.1	Radiometer	Радиометр	153
1.3.1	Radiometric calibration	Радиометрическая калибровка	34
1.3.6	Radiometric calibration system	Радиометрическая калибровочная система	36
1.3.2	Radiometric measurement system	Радиометрическая измерительная система	35
1.3.7	Radiometric standard	Радиометрический эталон	37
1.1.6	Radiometry	Радиометрия	21
5.6.5	Reference panel	Эталонная отражательная панель	161
4.3.1	Reflectance	Коэффициент отражения	99
4.3.14	Reflectance factor	Фактор отражения	109
3.5	Reflection	Отражение	76
4.1.2	Reflection angle	Угол отражения	87
5.5.6	Reflectometer	Рефлектометр	154
3.9	Refraction	Преломление	82
4.1.3	Refraction angle	Угол преломления	88
4.6.1	Refractive index	Показатель преломления	127
3.6.1	Regular transmission	Направленное пропускание	79
4.4.2	Regular transmittance	Коэффициент направленного пропускания	112
6.3.37	Relative angular responsivity	Относительная угловая чувствительность	195
6.1.14	Relative aperture	Относительное отверстие	171
6.3.9	Relative responsivity	Относительная чувствительность	180
6.3.36	Relative spatial responsivity	Зонная характеристика чувствительности	194
6.3.11	Relative spectral responsivity	Относительная спектральная чувствительность	181
6.3.30	Resolving power	Разрешающая способность	192
6.3.3	Response matrix	Матрица откликов	178
6.3.14	Response time	Время реакции	183
6.3.8	Responsivity	Чувствительность	180
3.5.4	Retroreflection	Возвратное отражение	77

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

6.3.16	Rise time	Время нарастания	184
1.2.18	Scanning	Сканирование	32
5.5.19	Scanning sensor	Сканирующий датчик	158
3.8	Scattering	Рассеяние	81
4.7.1	Scattering indicatrix	Индикатриса рассеяния	129
1.3.9	Secondary radiometric standard	Вторичный радиометрический эталон	37
5.4.3	Selective detector	Селективный приемник излучения	144
4.2.9	Selective radiator	Селективный излучатель	97
1.2.8	Sensor	Датчик	28
1.2.9	Sensor optical system	Оптическая система датчика	28
5.2.4	Shortpass filter	Коротковолновый пропускающий фильтр	135
5.6.2	Shutter	Затвор	160
6.3.19	Signal-to-noise ratio	Отношение сигнал/шум	186
1.2.20	Signature	Сигнатура	33
6.2.4	Slope of transmission	Крутизна пропускания	174
2.1.1	Solid angle	Телесный угол	43
5.5.14	Sounder	Зондирующий прибор	157
1.2.4	Sounding	Зондирование	26
6.3.31	Spatial resolution	Пространственное разрешение	192
4.6.2	Spectral absorption index	Спектральный главный показатель поглощения	128
6.2.1	Spectral bandwidth	Спектральный интервал	173
4.2.5	Spectral conical emissivity	Спектральная коническая излучательная способность	93
4.2.1	Spectral directional emissivity	Спектральная направленная излучательная способность	90
6.3.27	Spectral distribution of normalized detectivity	Спектральное распределение удельной обнаружительной способности	190
4.2.7	Spectral hemispherical emissivity	Спектральная полусферическая излучательная способность	95
2.3.11	Spectral irradiance	Спектральная плотность облученности	66
1.1.12	Spectral line	Спектральная линия	24
4.5.6	Spectral linear absorption coefficient	Спектральный натуральный показатель поглощения	124
4.5.7	Spectral linear attenuation coefficient	Спектральный натуральный показатель ослабления	124
4.5.5	Spectral linear scattering coefficient	Спектральный натуральный показатель рассеяния	123
4.5.8	Spectral mass attenuation coefficient	Спектральный показатель ослабления на единицу массы	125

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

4.2.3	Spectral normal emissivity	Спектральная нормальная излучательная способность	91
2.3.4	Spectral number of photons	Спектральная плотность числа фотонов	61
4.5.9	Spectral optical thickness	Спектральная оптическая толщина	126
2.3.14	Spectral photon exitance	Спектральная плотность фотонной светимости	68
2.3.6	Spectral photon exposure	Спектральная плотность фотонной экспозиции	62
2.3.2	Spectral photon flux	Спектральная плотность фотонного потока	60
2.3.8	Spectral photon intensity	Спектральная плотность фотонной силы излучения	64
2.3.12	Spectral photon irradiance	Спектральная плотность фотонной облученности	66
2.3.10	Spectral photon radiance	Спектральная плотность фотонной яркости	65
2.3.9	Spectral radiance	Спектральная плотность энергетической яркости	64
2.3.3	Spectral radiant energy	Спектральная плотность энергии излучения	60
2.3.13	Spectral radiant exitance	Спектральная плотность энергетической светимости	67
2.3.5	Spectral radiant exposure	Спектральная плотность энергетической экспозиции	62
2.3.1	Spectral radiant flux	Спектральная плотность потока излучения	59
2.3.7	Spectral radiant intensity	Спектральная плотность силы излучения	63
6.3.32	Spectral resolution	Спектральное разрешение	193
6.3.10	Spectral responsivity	Спектральная чувствительность	181
5.5.4	Spectrophotometer	Спектрофотометр	154
5.5.2	Spectroradiometer	Спектрорадиометр	153
1.1.11	Spectrum	Спектр	24
4.3.2	Specular reflectance	Коэффициент зеркального отражения	100
3.5.1	Specular reflection	Зеркальное отражение	76
6.1.3	Spread circle	Кружок рассеяния	166
5.4.2	Standard detector	Эталонный приемник излучения	144
1.2.14	Staring	Смотрение	30
5.5.17	Staring sensor	Смотрящий датчик	158
3.4.5	Stefan-Boltzmann law	Закон Стефана-Больцмана	73
5.5.18	Step-stare sensor	Пошагово-смотрящий датчик	158
1.2.16	Step-staring	Пошаговое смотрение	31

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

1.2.17	Step-tracking	Пошаговое слежение	31
5.5.16	Step-tracking sensor	Пошагово-следящий датчик	157
1.2.13	Stereo imaging	Получение стереоизображений	30
3.4.9	Stimulated emission	Вынужденное излучение	75
1.2.6	Surveying	Обзор	27
3.4.10	Synchrotron radiation	Синхротронное излучение	75
1.2.19	Target	Цель	32
6.3.33	Temporal resolution	Временное разрешение	193
1.3.15	Test site	Тестовая зона	40
1.3.16	Test target	Тестовый объект	40
5.4.17	Thermal detector of radiation	Тепловой приемник излучения	150
5.5.13	Thermal imager— Тепловизор	156	
3.4.1	Thermal radiation	Тепловое излучение	70
3.4.2	Thermal radiator	Тепловой излучатель	70
6.3.15	Time constant	Постоянная времени	184
4.2.6	Total conical emissivity	Интегральная коническая излучательная способность	94
4.2.2	Total directional emissivity	Интегральная направленная излучательная способность	91
4.2.8	Total hemispherical emissivity	Интегральная полусферическая излучательная способность	96
3.5.6	Total internal reflection	Полное внутреннее отражение	78
4.2.4	Total normal emissivity	Интегральная нормальная излучательная способность	92
4.2.12	Total radiance temperature	Радиационная температура	98
1.3.22	Traceability of measurements	Привязка к эталонам	42
1.2.15	Tracking	Слежение	30
5.5.15	Tracking sensor	Следящий датчик	157
3.7.2	Translucent medium	Просвечивающая среда	80
3.6	Transmission	Пропускание	79
4.4.1	Transmittance	Коэффициент пропускания	111
3.7.1	Transparent medium	Прозрачная среда	80
1.1.9	Ultraviolet radiation	Ультрафиолетовое излучение	23
5.1.7	Underfilling beam	Узкий пучок	132
1.3.21	Uniformity of measurements	Единство измерений	42
3.10.5	Unpolarized radiation	Неполяризованное излучение	84
1.3.19	Validation	Проверка	41
1.3.20	Verification	Проверка	41
1.3.18	Vicarious calibration	Замещающая калибровка	41
1.1.7	Visible radiation	Видимое излучение	21
1.1.3	Wavelength	Длина волны	20
1.1.4	Wavenumber	Волновое число	20
5.3.1	Window	Окно	139
1.2.22	Zenith angle	Зенитный угол	33

Russian Index

		Стр.
3.4.3	Абсолютно черное тело	71
5.4.18	Абсолютный тепловой приемник излучения	150
1.2.1	Активная система	26
4.3.16	Альбедо	111
1.1.1	Амплитуда	19
5.6.9	Апертурная диафрагма	163
6.2.2	Аппаратная функция	173
5.6.11	Бленда	164
5.2.7	Блокирующий фильтр	136
5.4.21	Болометр	151
1.3.14	Бортовая калибровка	39
5.4.10	Вентильный фотоэлемент	147
1.1.7	Видимое излучение	21
6.2.5	Внеполосовое пропускание	176
3.5.4	Возвратное отражение	77
1.1.4	Волновое число	20
6.3.33	Временное разрешение	193
6.3.16	Время нарастания	184
6.3.14	Время реакции	183
6.3.17	Время спада	185
1.3.9	Вторичный радиометрический эталон	37
6.3.1	Входная величина	177
6.1.15	Входной зрачок	172
3.4.9	Вынужденное излучение	75
6.3.2	Выходная величина	177
6.1.16	Выходной зрачок	172
2.1.4	Геометрический фактор	47
1.2.24	Геостационарная орбита	34
5.5.12	Гиперспектральный радиометр	156
5.1.2	Глобар	132
5.5.5	Гониорадиометр	154
1.2.8	Датчик	28
1.2.12	Датчик изображений	30
4.3.7	Двуконический коэффициент отражения	104
4.4.7	Двуконический коэффициент	116

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART I. CALIBRATION TECHNIQUES**

пропускания		
4.3.5 Двунаправленный коэффициент отражения	Bidirectional reflectance	102
4.4.5 Двунаправленный коэффициент пропускания	Bidirectional transmittance	114
4.3.13 Двуполусферический коэффициент отражения	Bihemispherical reflectance	108
4.4.13 Двуполусферический коэффициент пропускания	Bihemispherical transmittance	120
5.3.6 Делитель пучка	Beamsplitter	142
5.6.8 Диафрагма	Diaphragm	163
3.11 Дисперсия	Dispersion	85
5.2.13 Дифракционный монохроматор	Diffraction monochromator	138
3.3 Дифракция	Diffraction	69
3.5.2 Диффузное отражение	Diffuse reflection	77
3.6.2 Диффузное пропускание	Diffuse transmission	79
1.1.3 Длина волны	Wavelength	20
5.2.3 Длинноволновый пропускающий фильтр	Longpass filter –	135
1.3.21 Единство измерений	Uniformity of measurements	42
3.4.6 Закон Ламберта	Lambert's law	73
3.4.4 Закон Планка	Planck's law	72
3.4.5 Закон Стефана-Больцмана	Stefan-Boltzmann law	73
1.3.18 Замещающая калибровка	Vicarious calibration	41
5.6.2 Затвор	Shutter	160
1.2.22 Зенитный угол	Zenith angle	33
5.3.2 Зеркало	Mirror	140
3.5.1 Зеркальное отражение	Specular reflection	76
6.1.12 Зона наблюдения	Footprint	171
1.2.4 Зондирование	Sounding	26
5.5.14 Зондирующий прибор	Sounder	157
6.3.36 Зонная характеристика чувствительности	Relative spatial responsivity	194
3.5.5 Идеально диффузное отражение	Perfectly diffuse reflection	78
3.6.4 Идеально диффузное пропускание	Perfectly diffuse transmission	80
3.10.3 Излучение, поляризованное по кругу	Circularly polarized radiation	83
5.5.9 Изображающий радиометр	Imaging radiometer	155
1.2.10 Изображение	Image	29
1.1.14 Изотропный точечный источник	Isotropic point source	25
6.1.2 Импульсная функция	Impulse function of optical	165

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

4.7.1	оптической системы	system	
4.2.6	Индикатриса рассеяния	Scattering indicatrix	129
4.2.6	Интегральная коническая излучательная способность	Total conical emissivity	94
4.2.2	Интегральная направленная излучательная способность	Total directional emissivity	91
4.2.4	Интегральная нормальная излучательная способность	Total normal emissivity	92
4.2.8	Интегральная полусферическая излучательная способность	Total hemispherical emissivity	96
5.6.6	Интегрирующая сфера	Integrating sphere	162
5.2.2	Интерференционный фильтр	Interference filter	135
3.2	Интерференция	Interference	69
5.2.14	Интерферометр Майкельсона	Michelson's interferometer	138
1.1.8	Инфракрасное излучение	Infrared radiation	22
1.3.4	Калибровочные коэффициенты	Calibration coefficients	36
6.3.28	Квантовая эффективность	Quantum efficiency	191
5.4.14	Квантовый приемник излучения	Quantum detector	148
3.1	Когерентное излучение	Coherent radiation	69
5.3.5	Коллиматор	Collimator	141
4.6.3	Комплексный показатель преломления	Complex refractive index	128
4.5.3	Конический коэффициент поглощения	Conical absorptance	122
4.3.8	Конечно-направленный коэффициент отражения	Conical-directional reflectance	105
4.4.8	Конечно-направленный коэффициент пропускания	Conical-directional transmittance	116
4.3.11	Конечно-полусферический коэффициент отражения	Conical-hemispherical reflectance	107
4.4.11	Конечно-полусферический коэффициент пропускания	Conical-hemispherical transmittance	119
5.2.4	Коротковолновый пропускающий фильтр	Shortpass filter	135
4.3.3	Коэффициент диффузного отражения	Diffuse reflectance	101
4.4.3	Коэффициент диффузного пропускания	Diffuse transmittance	112
4.3.2	Коэффициент зеркального отражения	Specular reflectance	100
6.1.5	Коэффициент концентрации энергии в квадратной площадке	Ensquared energy	167
6.1.4	Коэффициент концентрации	Encircled energy	167

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

4.4.2	энергии в круге		
4.4.2	Коэффициент направленного пропускания	Regular transmittance	112
4.3.1	Коэффициент отражения	Reflectance	99
4.5.1	Коэффициент поглощения	Absorptance	121
4.4.1	Коэффициент пропускания	Transmittance	111
6.3.4	Коэффициент усиления	Electronic gain	178
4.3.15	Коэффициент энергетической яркости	Radiance factor	110
5.2.9	Круговой переменный фильтр	Circular variable filter	137
6.1.3	Кружок рассеяния	Spread circle	166
6.2.4	Крутизна пропускания	Slope of transmission	174
5.4.12	Лавинный фотодиод	Avalanche photodiode	148
5.1.4	Лазер	Laser	132
3.4.7	Ламбертовская поверхность	Lambertian surface	74
3.10.2	Линейно поляризованное излучение	Linearly polarized radiation	83
5.3.3	Линза	Lens	140
3.4.8	Люминесценция	Luminescence	74
6.3.12	Максимальная спектральная чувствительность	Peak spectral responsivity	182
6.3.3	Матрица откликов	Response matrix	178
5.4.23	Матричный приемник	Matrix detector	152
3.5.7	Многократные отражения	Interreflection	78
5.6.3	Модулятор	Modulator	160
6.1.8	Модуляционная передаточная функция	Modulation transfer function	169
1.2.7	Мониторинг	Monitoring	27
1.1.10	Монохроматическое излучение	Monochromatic radiation	23
5.2.10	Монохроматор	Monochromator	137
5.5.11	Мультиспектральный изображающий радиометр	Multispectral imaging radiometer	156
1.2.3	Наведение	Pointing	26
1.2.23	Надирный угол	Nadir angle	33
1.3.13	Наземная калибровка	Ground calibration	39
1.2.5	Наклонное зондирование	Oblique sensing	27
3.6.1	Направленное пропускание	Regular transmission	79
4.3.6	Направленно-конический коэффициент отражения	Directional-conical reflectance	103
4.4.6	Направленно-конический коэффициент пропускания	Directional-conical transmittance	115
4.3.9	Направленно-полусферический коэффициент отражения	Directional-hemispherical reflectance	106
4.4.9	Направленно-полусферический	Directional-hemispherical	117

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

4.5.2	коэффициент пропускания Направленный коэффициент поглощения	transmittance Directional absorptance	121
5.2.8	Нейтральный фильтр	Neutral density filter	137
6.3.35	Нелинейность чувствительности	Non-linearity of responsivity	194
3.10.5	Неполяризованное излучение	Unpolarized radiation	84
3.7.3	Непрозрачная среда	Opaque medium	81
4.2.10	Неселективный излучатель	Non-selective radiator	97
5.4.4	Неселективный приемник излучения	Non-selective detector	144
1.3.11	Низкоуровневый фон	Low background conditions	38
1.2.6	Обзор	Surveying	27
2.2.11	Облученность	Irradiance	56
6.3.25	Обнаружительная способность	Detectivity	189
6.3.29	Обобщенная квантовая эффективность	Generalized quantum efficiency	191
1.2.11	Обработка изображений	Imaging	29
5.3.4	Объектив	Objective	141
5.3.1	Окно	Window	139
6.1.7	Оптическая передаточная функция	Optical transfer function	168
6.3.34	Оптическая перекрестная помеха	Optical crosstalk	193
1.2.9	Оптическая система датчика	Sensor optical system	28
5.5.7	Оптический скаттерометр	Optical scatterometer	155
2.1.5	Оптический фактор	Optical extent	48
1.1.5	Оптическое излучение	Optical radiation	21
1.3.17	Ориентационный маневр для калибровки	Calibration attitude maneuver	40
5.6.7	Ослабитель	Attenuator	162
6.3.11	Относительная спектральная чувствительность	Relative spectral responsivity	181
6.3.37	Относительная угловая чувствительность	Relative angular responsivity	195
6.3.9	Относительная чувствительность	Relative responsivity	180
6.1.14	Относительное отверстие	Relative aperture	171
6.3.19	Отношение сигнал/шум	Signal-to-noise ratio	186
3.5	Отражение	Reflection	76
1.2.2	Пассивная система	Passive system	26
1.3.8	Первичный радиометрический эталон	Primary radiometric standard	37
5.4.22	Пироэлектрический приемник	Pyroelectric detector	152

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

1.2.21	Платформа	Platform	33
2.1.2	Площадь проекции	Projected area	45
1.3.20	Проверка	Verification	41
3.7	Поглощение	Absorption	80
4.6.1	Показатель преломления	Refractive index	127
6.1.9	Поле зрения	Field-of-view	170
6.1.10	Поле обзора	Field-of-regard	170
5.6.10	Полевая диафрагма	Field stop	163
3.5.6	Полное внутреннее отражение	Total internal reflection	78
6.2.3	Полоса пропускания	Bandpass	175
5.2.6	Полосовой вырезающий фильтр	Band reject filter	136
5.2.5	Полосовой пропускающий фильтр	Bandpass filter	136
4.3.12	Полусферическо-конический коэффициент отражения	Hemispherical-conical reflectance	108
4.5.4	Полусферический коэффициент поглощения	Hemispherical absorptance	122
4.4.12	Полусферическо-конический коэффициент пропускания	Hemispherical-conical transmittance	119
4.3.10	Полусферическо-направленный коэффициент отражения	Hemispherical-directional reflectance	106
4.4.10	Полусферическо-направленный коэффициент пропускания	Hemispherical-directional transmittance	118
1.2.13	Получение стереоизображений	Stereo imaging	30
5.3.8	Поляризатор	Polarizer	143
3.10	Поляризация	Polarization	82
3.10.1	Поляризованное излучение	Polarized radiation	82
5.5.8	Поляриметр	Polarimeter	155
5.5.20	Поперечно-сканирующий датчик	Across-track scanning sensor	159
6.3.15	Постоянная времени	Time constant	184
2.2.1	Поток излучения	Radiant flux	48
2.2.2	Поток фотонов	Photon flux	49
1.2.16	Пошаговое смотрение	Step-staring	31
1.2.17	Пошаговое слежение	Step-tracking	31
5.5.16	Пошагово-следящий датчик	Step-tracking sensor	157
5.5.18	Пошагово-сматрящий датчик	Step-stare sensor	158
3.9	Преломление	Refraction	82
5.6.1	Прерыватель	Chopper	160
5.4.16	Прибор с зарядовой связью	Charge-coupled device	149
1.3.22	Привязка к эталонам	Traceability of measurements	42
5.4.1	Приемник оптического излучения	Detector	143
5.2.12	Призменный монохроматор	Prism monochromator	138

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

1.3.19	Проверка	Validation	41
5.5.21	Продольно-сканирующий датчик	Along-track scanning sensor	159
2.1.3	Проекция телесного угла	Projected solid angle	46
3.7.1	Прозрачная среда	Transparent medium	80
3.6	Пропускание	Transmission	79
3.7.2	Просвечивающая среда	Translucent medium	80
6.3.31	Пространственное разрешение	Spatial resolution	192
5.1.8	Протяженный источник	Extended-area source	134
4.2.12	Радиационная температура	Total radiance temperature	98
5.4.20	Радиационная термобатарея	Radiation thermopile	151
5.4.19	Радиационный термоэлемент	Radiation thermocouple	150
5.5.1	Радиометр	Radiometer	153
1.3.2	Радиометрическая измерительная система	Radiometric measurement system	35
1.3.1	Радиометрическая калибровка	Radiometric calibration	34
1.3.6	Радиометрическая калибровочная система	Radiometric calibration system	36
1.3.7	Радиометрический эталон	Radiometric standard	37
1.1.6	Радиометрия	Radiometry	21
6.3.30	Разрешающая способность	Resolving power	192
5.6.4	Рассеиватель	Diffuser	161
3.8	Рассеяние	Scattering	81
5.5.6	Рефлектометр	Reflectometer	154
5.1.5	Светоизлучающий диод	Light emitting diode	133
4.2.9	Селективный излучатель	Selective radiator	97
5.4.3	Селективный приемник излучения	Selective detector	144
1.2.20	Сигнатура	Signature	33
2.2.7	Сила излучения	Radiant intensity	52
3.4.10	Синхротронное излучение	Synchrotron radiation	75
1.2.18	Сканирование	Scanning	32
5.5.19	Сканирующий датчик	Scanning sensor	158
5.5.15	Следящий датчик	Tracking sensor	157
1.2.15	Слежение	Tracking	30
3.5.3	Смешанное отражение	Mixed reflection	77
3.6.3	Смешанное пропускание	Mixed transmission	79
1.2.14	Смотрение	Staring	30
5.5.17	Смотрящий датчик	Staring sensor	158
1.1.11	Спектр	Spectrum	24
4.2.5	Спектральная коническая излучательная способность	Spectral conical emissivity	93
1.1.12	Спектральная линия	Spectral line	24
4.2.1	Спектральная направленная	Spectral directional emissivity	90

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

4.2.3	излучательная способность Спектральная нормальная излучательная способность	Spectral normal emissivity	91
4.5.9	Спектральная оптическая толщина	Spectral optical thickness	126
2.3.11	Спектральная плотность облученности	Spectral irradiance	66
2.3.1	Спектральная плотность потока излучения	Spectral radiant flux	59
2.3.7	Спектральная плотность силы излучения	Spectral radiant intensity	63
2.3.2	Спектральная плотность фотонного потока	Spectral photon flux	60
2.3.12	Спектральная плотность фотонной облученности	Spectral photon irradiance	66
2.3.14	Спектральная плотность фотонной светимости	Spectral photon exitance	68
2.3.8	Спектральная плотность фотонной силы излучения	Spectral photon intensity	64
2.3.6	Спектральная плотность фотонной экспозиции	Spectral photon exposure	62
2.3.10	Спектральная плотность фотонной яркости	Spectral photon radiance	65
2.3.4	Спектральная плотность числа фотонов	Spectral number of photons	61
2.3.13	Спектральная плотность энергетической светимости	Spectral radiant exitance	67
2.3.5	Спектральная плотность энергетической экспозиции	Spectral radiant exposure	62
2.3.9	Спектральная плотность энергетической яркости	Spectral radiance	64
2.3.3	Спектральная плотность энергии излучения	Spectral radiant energy	60
4.2.7	Спектральная полусферическая излучательная способность	Spectral hemispherical emissivity	95
6.3.10	Спектральная чувствительность	Spectral responsivity	181
6.3.32	Спектральное разрешение	Spectral resolution	193
6.3.27	Спектральное распределение удельной обнаружительной способности	Spectral distribution of normalized detectivity	190
4.6.2	Спектральный главный поглощения показатель	Spectral absorption index	128
6.2.1	Спектральный интервал	Spectral bandwidth	173
4.5.7	Спектральный натуральный	Spectral linear attenuation	124

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

показатель ослабления	coefficient	
4.5.6 Спектральный натуральный	Spectral linear absorption	124
показатель поглощения	coefficient	
4.5.5 Спектральный натуральный	Spectral linear scattering	123
показатель рассеяния	coefficient	
4.5.8 Спектральный показатель	Spectral mass attenuation	125
ослабления на единицу массы	coefficient	
5.5.2 Спектрорадиометр	Spectroradiometer	153
5.5.4 Спектрофотометр	Spectrophotometer	154
1.3.12 Среднеуровневый фон	Medium background conditions	39
3.10.7 Степень поляризации	Degree of polarization	84
5.4.15 Счетчик фотонов	Photon counter	149
2.1.1 Телесный угол	Solid angle	43
6.3.6 Темновой ток	Dark current	179
4.2.13 Температура распределения	Distribution temperature	98
5.5.13 Тепловизор	Thermal imager	156
3.4.1 Тепловое излучение	Thermal radiation	70
3.4.2 Тепловой излучатель	Thermal radiator	70
5.4.17 Тепловой приемник излучения	Thermal detector of radiation	150
1.3.15 Тестовая зона	Test site	40
1.3.16 Тестовый объект	Test target	40
1.1.13 Точечный источник	Point source	25
4.1.4 Угловой коэффициент	Angle factor	88
4.6.4 Угол Брюстера	Brewster angle	128
4.1.2 Угол отражения	Reflection angle	87
4.1.1 Угол падения	Incidence angle	87
4.1.3 Угол преломления	Refraction angle	88
6.3.26 Удельная обнаружительная	Normalized detectivity	190
способность		
5.1.7 Узкий пучок	Underfilling beam	132
1.1.9 Ультрафиолетовое излучение	Ultraviolet radiation	23
1.3.3 Уравнение измерения	Measurement equation	35
1.3.5 Уравнение калибровки	Calibration equation	36
4.3.14 Фактор отражения	Reflectance factor	109
5.2.1 Фильтр	Filter	134
5.2.11 Фильтровый монохроматор	Filter monochromator	138
5.5.3 Фильтровый радиометр	Filter radiometer	153
5.5.10 Фокальная матрица	Focal plane array	155
6.1.13 Фокусное расстояние	Focal length	171
1.3.10 Фоновое излучение	Background radiation	38
6.3.7 Фоновый сигнал	Background signal	179
5.4.11 Фотодиод	Photodiode	147
5.4.8 Фотокатод	Photocathode	146
2.2.12 Фотонная облученность	Photon irradiance	57

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

2.2.14	Фотонная светимость	Photon exitance	58
2.2.8	Фотонная сила излучения	Photon intensity	52
2.2.6	Фотонная экспозиция	Photon exposure	51
2.2.10	Фотонная яркость	Photon radiance	55
5.4.7	Фоторезистор	Photoresistor	146
6.3.5	Фототок	Photocurrent	178
5.4.13	Фототранзистор	Phototransistor	148
5.4.5	Фотоэлектронный приемник излучения	Photoelectric detector	145
5.4.9	Фотоэлектронный умножитель	Photomultiplier	146
5.4.6	Фотоэлемент	Photoemissive cell	145
3.12	Фотоэффект	Photoeffect	85
4.3.4	Функция распределения двунаправленного коэффициента отражения	Bidirectional reflectance distribution function	101
4.4.4	Функция распределения двунаправленного коэффициента пропускания	Bidirectional transmittance distribution function	113
4.7.2	Функция распределения двунаправленного рассеяния	Bidirectional scattering distribution function	130
6.1.6	Функция рассеяния линии	Line spread function	168
6.1.1	Функция рассеяния точки	Point spread function	165
5.2.15	Фурье-спектрометр	Fourier transform spectrometer	139
4.7	Характеристики рассеяния	Characteristics of scattering	129
5.3.7	Цветоделитель	Dichroic	142
1.2.19	Цель	Target	32
3.10.6	Частично поляризованное излучение	Partially polarized radiation	84
1.1.2	Частота	Frequency	19
5.1.1	Черное тело	Blackbody	131
2.2.4	Число фотонов	Number of photons	50
6.3.8	Чувствительность	Responsivity	180
5.1.6	Широкий пучок	Overfilling beam	132
5.1.3	Штифт Нернста	Nernst's glower	132
6.3.18	Шум	Noise	185
6.3.21	Эквивалентная мощность шума	Noise equivalent power	187
6.3.22	Эквивалентная облученность по шуму	Noise equivalent irradiance	188
6.3.24	Эквивалентная разность температур по шуму	Noise equivalent difference of temperatures	189
6.3.23	Эквивалентная энергетическая яркость по шуму	Noise equivalent radiance	188
6.3.20	Эквивалентный входной сигнал шума	Noise equivalent input	187

**SPACEBORNE OPTOELECTRONIC SENSORS
AND THEIR RADIOMETRIC CALIBRATION
TERMS AND DEFINITIONS. PART 1. CALIBRATION TECHNIQUES**

1.1	Электромагнитное излучение	Electromagnetic radiation	19
6.1.11	Элементарное поле зрения	Instantaneous field-of-view	170
3.10.4	Эллиптически поляризованное излучение	Elliptically polarized radiation	83
3.4	Эмиссия	Emission	70
2.2.13	Энергетическая светимость	Radiant exitance	57
2.2.5	Энергетическая экспозиция	Radiant exposure	51
2.2.9	Энергетическая яркость	Radiance	53
2.2.3	Энергия излучения	Radiant energy	50
5.6.5	Эталонная отражательная панель	Reference panel	161
5.4.2	Эталонный приемник излучения	Standard detector	144
6.3.13	Эффективное значение энергетической величины	Effective value of radiant quantity	182
4.2.11	Яркостная температура	Radiance temperature	97

