Inferência Estatística I

Amostra aleatória

Prof. Paulo Cerqueira Jr Faculdade de Estatística - FAEST Instituto de Ciências Exatas e Naturais - ICEN

https://github.com/paulocerqueirajr (7)

Introdução

Introdução

- Os avanços científicos são, na maioria das vezes, atribuídos aos experimentos realizados.
- Um pesquisador realiza o experimento e obtém dados.
- Baseado nos dados, algumas conclusões podem ser retiradas.
- Estas conclusões vão, geralmente, além dos que foi observado nos dados.
- Dessa forma, o pesquisador generaliza, partindo de um experimentos para os demais que são similares.
- Esta generalização é denominada de Inferência.

Uma função da Estatística:

Fornecer um conjunto de metodologias para realizar a inferência e medir o grau de incerteza dessa inferência, através da teoria das probabilidades.

Introdução

Exemplo 1

- Suponha um recepiente com 10 milhões de sementes de flores.
- Cada semente pode produzir flores brancas ou vermelhas.
- Pergunta-se: Qual a porcentagem de flores brancas que serão geradas?
- Para saber o resultado real, teríamos que plantar todas as sementes.
- Seria uma tarefa muito trabalhosa!
- Solução: Plantar algumas sementes, e baseando-se nos resultados podemos obter alguma informação para a porcentagem de flores brancas.

Definição 1 (População) É um conjunto que contém todos os elementos do problema a ser discutido, com pelo menos uma característica em comum. Desejamos obter informação sobre esta população.

Exemplo 2

- Preços da carne em um mês na região metropolitana de Belém.
- Preços do pão em certo dia em Belém.
- Produção de leite por animal em uma fazenda.
- Queremos estudar a proporção de votos para um determinado candidato ao governo do Estado do Pará.
- Queremos estudar o grau de satisfação dos usuários de uma determinada operadora de telefonia celular.

Definição 2 (Amostra aleatória - a.a) Sejam X_1, X_2, \ldots, X_n uma sequência de variáveis aleatórias com distribuição conjunta $f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)$ que fatora como na seguinte igualdade:

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n) = f_{X_1}(x_1) imes f_{X_2}(x_2) imes \dots imes f_{X_n}(x_n) = \prod_{i=1} f_{X_i}(x_i),$$

em que $f(\cdot)$ é a função de probabilidade (f.p) ou função de densidade de probabilidade (f.d) para cada X_i . Então, X_1, X_2, \ldots, X_n é uma amostra aleatória de tamanho n retirada de uma população com p.d/f.d.

Exemplo 3 Imagine 10 milhões de sementes em um recepiente e a produção de flores brancas e vermelhas.

- População: Sementes dentro do recipiente.
- Unidade experimental: Uma semente.
- Característica: Flor branca ou vermelha.
- Não temos um valor numérico associado a cada elemento, mas podemos definir o seguinte tipo de resposta:

Flor branca = 1 e Flor vermelha = 0.

Variável aleatória: $X_i=1$ ou $X_i=0$, para $i=1,2,\ldots,n$.

- A variável aleatória X_i é uma representação do valor numérico que a i-ésima unidade amostral irá assumir.
- Depois que a amostra X_1, X_2, \ldots, X_n observada os valores serão conhecidos e denotados por x_1, x_2, \ldots, x_n .
- Logo:

Suponha que X pode assumir apenas os valores 0 ou 1 com probabilidades $1-\theta$ e θ , respectivamente. Então, sejam X_1,X_2,\ldots,X_n uma a.a de $X\sim Ber(\theta)$, sua distribuição conjunta $P(X_1=x_1;X_2=x_2;\ldots;X_n=x_n)$ é dada por

$$egin{aligned} &= heta^{x_1} (1- heta)^{1-x_1} imes heta^{x_2} (1- heta)^{1-x_2} imes \cdots imes heta^{x_n} (1- heta)^{1-x_n} \ &= heta^{x_1+x_2+\cdots+x_n} (1- heta)^{(1-x_1)+(1-x_2)+\cdots+(1-x_n)} \ &= heta^{\sum_{i=1}^n x_i} (1- heta)^{\sum_{i=1}^n (1-x_i)} \ &= heta^{\sum_{i=1}^n x_i} (1- heta)^{(n-\sum_{i=1}^n x_i)} \end{aligned}$$

Estatísticas e Parâmetros

Estatísticas e Parâmetros - Introdução

- Um dos problemas principais da Estatística envolve o seguinte:
- Estudar uma população com f.p/f.d $f(\cdot \mid \theta)$, onde a forma da f.p/f.d é conhecida com parêmetro desconhecido θ .
- Se θ fosse conhecido f.p/f.d estaria completamente especificada.
- Procedimento de inferência envolverá:
- A obtenção de uma amostra aleatória X_1, X_2, \ldots, X_n desta f.p/f.d.
- O uso de uma função $T(x_1, x_2, \ldots, x_n)$ como estimativa para o parâmetro θ (desconhecido).

Estatísticas

- O problema aqui consiste em determinar qual será a melhor função para estimar θ .
- Iremos avaliar certas funções (funções amostrais) de uma amostra aleatória.

Definição 3 (Estatísticas) É uma função da amostra, $T(x)=f(X_1,X_2,\ldots,X_n)$, representando uma característica da amostra.

(1) Importante:

A formulação de uma estatística não pode envolver quantidades desconhecidas.

Estatísticas

Os exemplos mais comuns:

- Média amostral: $\overline{X} = rac{1}{n} \sum_{i=1}^n X_i$.
- Variância amostral: $\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X})^2$.
- Mediana amostral: $ilde{X} = \operatorname{med}(X_1, X_2, \dots, X_n)$.
- Mínimo amostral: $X_{(1)} = \min(X_1, X_2, \ldots, X_n)$.
- Máximo amostral: $X_{(n)} = \max(X_1, X_2, \ldots, X_n)$.
- ullet Ponto médio amostral: $rac{1}{2}(X_{(1)}+X_{(n)}).$

Parâmetros

Definição 4 (Parâmetro) Uma parâmetro é uma medida (desconhecida) usada para descrever uma característica da população.

• As relação das estatísticas com seus respectivos parâmetros:

Medida	Estatística	Parâmetro
Média	\overline{X}	μ
Variância	$\hat{\sigma^2}$	σ^2
N de elementos	n	N
Proporção	$\hat{ heta}$	$\overline{ heta}$

Estatísticas e Parâmetros

Exemplo 4 Considere uma variável aleatória observável com f.d:

- $f(x) = N\left[x \mid \mu, \sigma^2\right]$, com μ e σ desconhecidos.
- Logo,

$$X - \mu$$
 e X/σ são Estatísticas??

- Não são, pois contém elementos desconhecidos.
- X, X+3 e $X^2+\log X^2$ são estatísticas.

Estatísticas e Parâmetros

Exemplo 5 Seja X_1, X_2, \ldots, X_n uma amostra aleatória com f.p/f.d $f(\cdot; heta)$ então:

$$\overline{X}_n = rac{1}{n}\sum_{i=1}^n X_i \quad \mathrm{e} \quad rac{1}{2}\{\min(X_1,\ldots,X_n) + \max(X_1,\ldots,X_n)\}$$

são exemplos de estatísticas.

Exemplo 6 Se $f(x; \theta) = N\left[x \mid \theta, 1\right]$, com θ desconhecido.

$$\overline{X}_n - \theta$$
 é uma Estatística?

• Não é uma estatística, pois depende de θ .

Seja X_1,\ldots,X_n uma a.a com f.p/f.d $f(\cdot)$. O r-ésimo momento amostral em relação à 0 é definido por

$$M_r^{'} = rac{1}{n} \sum_{i=1}^n \left(X_i - 0
ight)^r = rac{1}{n} \sum_{i=1}^n \left(X_i
ight)^r.$$

ullet Em particular, quando r=1, temos a média amostral \overline{X} ou \overline{X}_n , em que

$$\overline{X}_n = rac{1}{n} \sum_{i=1}^n (X_i)$$
 .

O r-ésimo momento em relação à \overline{X}_n é dado por

$$M_r = rac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X}_n
ight)^r$$

Momentos amostrais são exemplos de estatísticas!

Teorema 1 (Momentos Amostrais) Seja X_1, \ldots, X_n uma a.a com f.p/f.d $f(\cdot)$. O valor esperado do r-ésimo momento amostral (em relação à 0) é igual ao r-ésimo momento populacional, isto é,

$$E(M_r^{'})=\mu_r^{'}, ext{ se }\mu_r^{'} ext{ existir.}$$

- Temos que $\mu_r^{'}=E(X^r)$ é o r-ésimo momento populacional de uma população com f.p/f.d $f(x)=f_X(x).$
- Além disso:

$$egin{align} Var(M_r^{'}) &= rac{1}{n}igl[E(X^{2r}) - E^2(X^r) igr] \ &= rac{1}{n}igl[\mu_{2r}^{'} - (\mu_r^{'})^2 igr] \ . \end{split}$$

Demonstração: (cont.)

A média:

$$egin{align} E(M_r^{'}) &= E\left[rac{1}{n}\sum_{i=1}^n{(X_i)^r}
ight] = rac{1}{n}E\left[\sum_{i=1}^n{(X_i)^r}
ight] = \ &= rac{1}{n}\sum_{i=1}^n{E\left[(X_i)^r
ight]} = rac{1}{n}\sum_{i=1}^n{\mu_r^{'}} = \mu_r^{'}. \end{split}$$

A variância:

$$Var(M_r^{'}) = Var\left[rac{1}{n}\sum_{i=1}^n \left(X_i
ight)^r
ight] = rac{1}{n^2}Var\left[\sum_{i=1}^n \left(X_i
ight)^r
ight]$$

Demonstração:(cont.)

Supondo independência, temos

$$egin{align} Var(M_r^{'}) &= rac{1}{n^2} \sum_{i=1}^n Var\left[(X_i)^r
ight] = rac{1}{n^2} \sum_{i=1}^n \left[E(X_i)^{2r} - E^2\left(X_i^r
ight)
ight] \ &= rac{1}{n^2} \sum_{i=1}^n \left[\mu_{2r}^{'} - (\mu_r^{'})^2
ight] = rac{1}{n} \left[\mu_{2r}^{'} - (\mu_r^{'})^2
ight]. \end{split}$$

Quando r=1, temos o seguinte corolário.

Corolário 1 Seja X_1,\dots,X_n uma a.a com f.p/f.d $f(\cdot)$ e se $\overline{X}_n=rac{1}{n}\sum_{i=1}^n (X_i)$ é a média amostral, então,

$$E(\overline{X}_n) = \mu, \; \mathrm{e} \; Var(\overline{X}_n) = rac{\sigma^2}{n}.$$

em que μ e σ^2 são a média e a variância de $f(\cdot)$.

- O Teorema 1 fornece a média e a variância, em termos de momentos populacionais, do résimo momento amostral em relação a 0.
- Um resultado similar, porém mais complicado, pode ser derivado para a média e variância do r-ésimo momento amostral em relação a média amostral.
- ullet Considere r=2, tal que $M_2=rac{1}{n}\sum_i (X_i-\overline{X})^2$.
- M_2 as vezes é chamado de variância amostral.
- Entretanto, definiremos a variância amostral de outra forma.

Definição 5 Seja X_1,\ldots,X_n uma a.a com f.p/f.d $f(\cdot)$,

$$S_n^2 = S^2 = rac{1}{n-1} \sum_i (X_i - \overline{X})^2, \; ext{para} \; n > 1,$$

é definida como variância amostral.

A razão para considerarmos S^2 ao invés de M_2 como variância é devido

$$E(S^2) = \sigma^2 \; \mathrm{e} \; E(M_2)
eq \sigma^2$$

ullet Revisando: $\mu_r^{'}=E(X^r)$ é o r-ésimo momento de X (em relação a 0).

Definição 6 (Momento central) O r-ésimo momento central de uma variável aleatória X com relação ao ponto ${\bf a}$ é definido por

$$\mu_r = E\left[(X-\mathbf{a})^r\right]$$

ullet Se ${f a}=E(X)=\mu$, temos $\mu_r=E\left[(X-{f a})^r
ight]$, então

$$\mu_1=E\left[(X-\mu)^1
ight]=0 \quad \mathrm{e} \quad \mu_2=E\left[(X-\mu)^2
ight]=Var(X)=\sigma^2.$$

Teorema 2 Seja X_1,\ldots,X_n uma a.a com f.p/f.d $f(\cdot)$ e seja

$$S^2=rac{1}{n-1}\sum_i(X_i-\overline{X})^2,$$

Então,

$$E(S^2) = \sigma^2 \quad \mathrm{e} \quad Var(S^2) = rac{1}{n} \left[\mu_4 - rac{n-3}{n-1} \sigma^2
ight].$$

Prova: Para $E(S^2)=\sigma^2$, temos que $\sigma^2=E\left[(X-\mu)^2\right]$ e $\mu_r=E\left[(X-\mu)^r\right]$. Note que,

$$\sum_{i} (X_{i} - \mu)^{2} = \sum_{i} \left(X_{i} + \overline{X} - \overline{X} - \mu \right)^{2}$$

$$= \sum_{i} \left[\left(X_{i} - \overline{X} \right)^{2} - 2 \left(X_{i} - \overline{X} \right) \left(\overline{X} - \mu \right) + \left(\overline{X} - \mu \right)^{2} \right]$$

$$= \sum_{i} \left(X_{i} - \overline{X} \right)^{2} - 2 \left(\overline{X} - \mu \right) \sum_{i} \left(X_{i} - \overline{X} \right) + n \left(\overline{X} - \mu \right)^{2}$$

$$= \sum_{i} \left(X_{i} - \overline{X} \right)^{2} - 2 \left(\overline{X} - \mu \right) \underbrace{\left(n \overline{X} - n \overline{X} \right)}_{0} + n \left(\overline{X} - \mu \right)^{2}$$

$$= \sum_{i} \left(X_{i} - \overline{X} \right)^{2} + n \left(\overline{X} - \mu \right)^{2}$$

Prova (cont.):

Assim,

$$E(S^{2}) = E\left[\frac{1}{n-1}\sum_{i}(X_{i}-\overline{X})^{2}\right]$$

$$= E\left[\frac{1}{n-1}\sum_{i}(X_{i}-\mu)^{2}-n(\overline{X}-\mu)^{2}\right]$$

$$= \frac{1}{n-1}E\left[\sum_{i}(X_{i}-\mu)^{2}-n(\overline{X}-\mu)^{2}\right]$$

$$= \frac{1}{n-1}E\left[\sum_{i}(X_{i}-\mu)^{2}\right]-\frac{n}{n-1}E\left[(\overline{X}-\mu)^{2}\right]$$

$$= \frac{n}{n-1}\sigma^{2}-\frac{n}{n-1}Var(\overline{X})$$

$$= \frac{n}{n-1}\sigma^{2}-\frac{n}{n-1}\frac{\sigma^{2}}{n}$$

$$= \sigma^{2}$$

• De forma similar,

$$egin{array}{lll} E(M_2) &=& E\left[rac{1}{n}\sum_i(X_i-\overline{X})^2
ight] \ &=& rac{1}{n}\sigma^2-rac{n}{n}Var(\overline{X}) \ &=& \sigma^2\left(rac{n-1}{n}
ight) \end{array}$$

- Momentos amostrais são exemplos de **exemplos de estatísticas** que podem ser usados para estimar quantidades populacionais.
- Por exemplo:
 - $lacksquare M_r^{'}$ para estimar $\mu_r^{'}$;
 - \overline{X} para estimar μ ;
 - S^2 para estimar σ^2 .

Definição 7 (Função de verossimilhança) A f.p/p.d.f conjunta é denominada função de verossimilhança de θ , correspondente a amostra observada $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ e será denotada por

$$L(heta \mid \mathbf{x}) = \prod_{i=1}^n f(x_i \mid heta) = f(x_1 \mid heta) imes f(x_2 \mid heta) imes \cdots imes f(x_n \mid heta).$$

Dada a amostra $\mathbf{x}=(x_1,x_2,\ldots,x_n)$, podemos encontrar o ponto mais verossímil para θ .

Exemplo 7 (Caso discreto) Sejam X_1, X_2, \ldots, X_n uma a.a de $X \sim Pois(\theta)$. Temos que a função de verossimilhança é dada por

$$egin{array}{lcl} L(heta \mid \mathbf{x}) &=& \prod_{i=1}^n rac{\exp\{-\lambda\}\lambda^{x_i}}{x_i!} \ &=& rac{\exp\{-\lambda\}\lambda^{x_1}}{x_1!} imes rac{\exp\{-\lambda\}\lambda^{x_2}}{x_2!} imes \cdots imes rac{\exp\{-\lambda\}\lambda^{x_n}}{x_n!} \ &=& rac{\exp\{-n\lambda\}\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!}. \end{array}$$

Exemplo 8 (Caso contínuo) Sejam X_1, X_2, \ldots, X_n uma a.a de $X \sim N(\mu, \sigma^2)$. Temos que a função de verossimilhança é dada por

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{\frac{1}{2\sigma^{2}} (x_{i} - \mu)^{2}\right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{\frac{1}{2\sigma^{2}} (x_{1} - \mu)^{2}\right\} \times \dots \times \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{\frac{1}{2\sigma^{2}} (x_{n} - \mu)^{2}\right\}$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right)^{n} \exp\left\{\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right\}$$

$$= \left(\frac{1}{2\pi\sigma^{2}}\right)^{n/2} \exp\left\{\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right\}$$

$$= \left(2\pi\sigma^{2}\right)^{-n/2} \exp\left\{\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right\}$$

Distribuição amostral

Introdução

Para este caso temos:

- *X* : Variável de interesse;
- θ : parâmetro de interesse;
- $T=f(X_1,X_2,\ldots,X_n)$ Função da amostra que vai fornecer informação sobre $\theta.$

T é uma variável aleatória.

Pergunta: Qual a distribuição de T quando X_1, X_2, \ldots, X_n assume valores observados?

Exemplo 9 Suponha que selecionamos todas as amostras de tamanho 2, com reposição, da população $\{1,3,5,5,7\}$

$$X$$
 1 3 5 7 $P(X=x)$ 1/5 1/5 2/5 1/5

- Encontrar a distribuição conjunta da v.a. (X_1, X_2) , sendo X_1 sendo o número selecionado na primeira extração e X_2 o número da segunda.
- ullet Encontre a distribuição de $\overline{X}=rac{X_1+X_2}{2}$.

Combinação	Prob.	X_1	X_2	\overline{X}
(1,1)	1/25	1	1	1
(1,3)	1/25	1	3	2
(1,5)	2/25	1	5	3
(1,7)	1/25	1	7	4
(3,1)	1/25	3	1	2
(3,3)	1/25	3	3	3
(3,5)	2/25	3	5	4
(3,7)	1/25	3	7	5
(5,1)	2/25	5	1	3
(5,3)	4/25	5	3	4
(5,5)	2/25	5	5	5
(5,7)	1/25	5	7	6
(7,1)	1/25	5	7	4
(7,3)	1/25	5	7	5
(7,5)	1/25	5	7	6
(7,7)	1/25	5	7	7

Distribuição conjunta:

X_1/X_2	1	3	5	7	Total
1	1/25	1/25	2/25	1/25	1/5
3	1/25	1/25	2/25	1/25	1/5
5	2/25	2/25	4/25	2/25	2/5
7	1/25	1/25	2/25	1/25	1/5
Total	1/5	1/5	2/5	1/5	Total

Distribuição amostral da média X:

```
1 require(ggplot2)
2 mx <- c(1, 2, 3, 4, 5, 6, 7)
3 pmx <-c(1/25, 2/25, 5/25, 6/25, 6/25, 4/25, 1/25)
4 dados <- data.frame(mx, pmx)
5 ggplot(data=dados, aes(x = factor(mx), ymin=0, ymax=pmx))+geom_linerange()+
6 scale_x_discrete(breaks=1:7)+ylab("P(X=x)")+
7 xlab("Média amostral") + theme_bw()</pre>
```


• O primeiro momento amostral é a média definida como:

$$\overline{X} = \overline{X}_n = rac{1}{n} \sum_{i=1}^n (X_i)$$
 .

onde X_1, X_2, \ldots, X_n é uma amostra aleatória com f.p/f.d $f(\cdot)$.

- \overline{X} é função das v.a X_1, X_2, \ldots, X_n e, portanto a distribuição pode ser encontrada teoricamente.
- Pode ser útil pensar na média amostral \overline{X} como uma estimativa da média μ da f.p/f.d $f(\cdot)$ a partir de qual amostra foi selecionada.

Um dos objetivos da amostragem é estimar μ a partir de X.

Teorema 3 Seja X_1, X_2, \ldots, X_n uma a.a com f.p/f.d $f(\cdot)$, média μ e variância σ^2 . Considere:

$$\overline{X} = rac{1}{n} \sum_{i=1}^n (X_i)$$
 .

Então,
$$E(\overline{X})=\mu_{\overline{X}}=\mu$$
 e $Var(\overline{X})=\sigma_{\overline{X}}^2=rac{\sigma^2}{n}$.

 $E(\overline{X})=\mu$: diz que em média \overline{X} é igual ao parâmetro μ sendo estimado ou que a distribuição de \overline{X} está centrada em μ .

 $Var(\overline{X})=rac{\sigma^2}{n}$: diz que a dispersão dos valoers de \overline{X} em torno de μ é pequena para amostras grandes em comparação com tamanhos menores.

Teoremas de convergência

Teoremas de convergência

- Para amostras grandes, os valores de X (que são usados para estimar μ) tendem a estar mais concentrados de μ do que em amostras pequenas.
- Esta noção será definida pela Lei dos Grandes Números
- Seja $E(X) = \mu$ para a f.p/f.d $f(\cdot)$. Desejamos estimar μ .
- ullet De maneira não rigorosa, E(X) é a média de um número infinito de valores da variável aleatória X.
- ullet Em qualquer problema real podemos observar apenas um número finito de valores da variável aleatória X.
- Questão: Usando apenas um número finito de valores de X (uma amostra aleatória de tamanho n) pode ser feita qualquer inferência confiável sobre E(X)? A resposta é sim.
- Usaremos isso através da Lei Fraca dos Grandes Números.

Teoremas de convergência

Teorema 4 (Lei fraca dos Grandes Números) Seja X_1, X_2, \ldots, X_n uma a.a de tamanho n de uma população com variável X, com média $E(X) = \mu$ e $Var(X) = \sigma^2 < \infty$. Sejam,

$$\epsilon>0$$
 e $0<\delta<1$. Se, $n>rac{\sigma^2\epsilon^2}{\delta}$, então,

$$P(\mid \overline{X}_n - \mu \mid < \epsilon) \geq 1 - \delta,$$

ou seja, \overline{X}_n converge em probabilidade para μ .

Teorema de convergência

Seja X_1, X_2, \ldots, X_n uma a.a. de $X \sim Ber(0.5)$. Observe que,

$$X_i = \left\{egin{array}{ll} 0, & ext{fracasso} \ 1, & ext{sucesso} \end{array}
ight., i = 1, 2, \ldots, n.$$

A proporção amostral é determinada por

$$\hat{p}_n = \overline{X}_n = rac{\sum_{i=1}^n X_i}{n} = rac{X_1 + X_2 + \cdots + X_n}{n}$$

Para
$$n=1$$
 \Rightarrow $\hat{p}_1=rac{X_1}{1}.$

Para
$$n=2$$
 \Rightarrow $\hat{p}_2=rac{X_1+X_2}{2}.$

•

Para
$$n=n$$
 \Rightarrow $\hat{p}_n=rac{X_1+X_2+\cdots+X_n}{n}.$

Teorema de convergência

Teorema central do limite

O Teorema Central do Limite é um dos mais importantes resultados em toda área de Probabilidade e Estatística. Ele nos diz aproximadamente como a **média amostral** é distribuída.

Teorema 5 (Teorema Central do Limite - TCL) Seja X_1, X_2, \ldots, X_n uma sequência de v.a.'s independentes com $E(X_i) = \mu_i$ e $Var(X_i) = \sigma^2) < \infty, i = 1, 2, \ldots, n$. Tome $S_n = X_1 + X_2 + \cdots + X_n$, então, sob determinadas condições gerais,

$$Z_n = rac{S_n - E(S_n)}{\sqrt{Var(S_n)}} = rac{S_n - \sum_{i=1}^n \mu_i}{\sqrt{\sum_{i=1}^n \sigma_i^2}}
ightarrow N(0,1).$$

A distribuição de Z_n se aproxima da N(0,1) quando $n o \infty$.

O Teorema 5 nos diz que a ditribuição limite de Z_n (S_n padronizado) será a distribuição N(0,1).

Corolário 2 Seja (X_1,X_2,\ldots,X_n) uma a.a. de X com $E(X)=\mu$ e $Var(X)=\sigma^2<\infty$. Então, para $n\to\infty$,

$$Z_n = rac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} o N(0,1).$$

- ullet Em outras palavras \overline{X}_n é assintoticamente distribuído como uma Normal com média μ e variância σ^2/n .
- Um aspecto importante sobre o Teorema 5 é o fato de que nada é dito sobre a forma da f.p ou f.d original. Qualquer que seja a distribuição, dado que possui variância finita, a média amostral terá aproximadamente distribuição Normal para amostras grandes.

Representação do TCL graficamente

Algumas distribuições exatas

• Se $X \sim Ber(\theta)$, então:

$$P(ar{X} = ar{x}_n) = ackslash ext{mathchoice}igg(ig(ig(ig(ig(ar{n}_{ar{x}_n}ackslash ext{mathchoice}ig)ig)ig)ig) heta^{nar{x}_n}(1- heta)^{n-nar{x}_n}, ar{x}_n = 0, 1/n$$

• Se $X \sim Pois(\theta)$, então:

$$P(ar{X}=ar{x}_n)=rac{e^{-n heta} heta^{nar{x}_n}}{nar{x}_n!},ar{x}_n=0,1/n,2/n,\ldots$$

• Se $X \sim Normal(\mu, \sigma^2)$, então:

$$ar{X}_n \sim N(\mu, \sigma^2).$$

• Se $X \sim Exp(heta)$, então:

$$X_n \sim Gama(n, n\theta).$$

Distribuição amostral da proporção

- Seja X_1, X_2, \ldots, X_n uma a.a. de $X \sim Ber(\theta)$.
- Em que θ representa a proporção de elementos com uma determinada característica na população.
- Temos que

$$E(X_i) = \theta$$
 e $Var(X_i) = \theta(1-\theta)$.

• Seja $S_n = X_1 + X_2 + \cdots + X_n$, então a proporção amostral é definida por

$$\hat{p}=rac{S_n}{n}=rac{X_1+X_2+\cdots+X_n}{n}=ar{X}.$$

Distribuição amostral da proporção

Distribuição exata:

ullet Temos que $S_n=X_1+X_2+\cdots+X_n\sim Bin(n, heta)$, então

$$P\left(\hat{p}=rac{k}{n}
ight)=inom{n}{k} heta^k(1- heta)^{n-k}, k=0,1,2,\ldots,n.$$

Distribuição aproximada pelo TCL:

$$ullet$$
 Temos que $\hat{p}=rac{S_n}{n}=rac{X_1+X_2+\cdots+X_n}{n}=ar{X}_n.$, então

$$\hat{p} \sim N\left(heta, rac{ heta(1- heta)}{n}
ight).$$

Distribução amostral de estatísticas de ordem

- Seja X_1, X_2, \ldots, X_n sendo uma sequência de variáveis aleatórias i.i.d. com função de distribuição $F(\cdot)$.
- Podemos reordenar (de forma crescente) essa sequência da seguinte forma

$$X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$$
.

ullet No caso em que F seja contínua, temos que

$$X_{(1)} < X_{(2)} < \cdots < X_{(n)}$$
.

ullet Uma vez que $P(X_i=X_j)=0$ para todo i
eq j , para variáveis aleatórias contínuas.

- Para uma sequência de v.a's X_1, X_2, \ldots, X_n i.i.d., $X_{(k)}$ é denominada de k-ésima estatística de ordem.
- O mínimo é denotado por $X_{(1)}$:

$$X_{(1)} = \min(X_1, X_2, \dots, X_n).$$

ullet De maneira similar, o máximo é denotado por $X_{(n)}$:

$$X_{(n)}=\max(X_1,X_2,\ldots,X_n).$$

Seja g(x) e G(X) as funções de densidade (probabilidade) e distribuição de X, respectivamente.

- Para o $X_{(1)}$:
 - A função de distribuição é dada por

$$F_{X_{(1)}}(x)=1-(1-G(x))^n.$$

• A função de densidade é dada por

$$f_{X_{(1)}}(x)=rac{d}{dx}F_{X_{(1)}}(x)=ng(x)(1-G(x))^{(n-1)}.$$

Seja g(x) e G(X) as funções de densidade (probabilidade) e distribuição de X, respectivamente.

- Para o $X_{(n)}$:
 - A função de distribuição é dada por

$$F_{X_{(n)}}(x)=G(x)^n.$$

• A função de densidade é dada por

$$f_{X_{(n)}}(x)=rac{d}{dx}F_{X_{(n)}}(x)=ng(x)G(x)^{(n-1)}.$$

Amostrando da Normal - Média amostral

Média amostral

- Esta seção lida com propriedades das quantidades amostrais provenientes de uma população Normal.
- A distribuição Normal tem papel importante nos estudos estatísticos.
- Muitas populações seguem a distribuição Normal com um bom grau de aproximação.
- Modelos estatísticos utilizando a distribuição Normal são amplamente considerados na literatura científica.
- Amostrar de uma população Normal leva a muitas propriedades úteis e também a muitas distribuições amostrais conhecidas.

Média amostral e a população Normal:

- A média amostral é uma das mais simples funções de uma amostra aleatória.
- Para uma amostra aleatória da distribuição Normal, a distribuição exata da média amostral também é Normal (para qualquer tamanho amostral n, ou seja, não precisamos do TCL para dar suporte a esta afirmação).

Média amostral

Teorema 6 Seja $\overline{X}_n = rac{1}{n} \sum_{i=1}^n (X_i)$ a média amostral de uma amostra aleatória X_1, \ldots, X_n

obtida da distribuição Normal com média μ e variância σ^2 . Então, $\overline{X}_n \sim N\left(\mu, \sigma^2/n\right)$.

Prova: Usaremos a função geradora de momentos (f.g.m),

$$egin{array}{lll} m_{\overline{X}_n}(t) &=& E\left(e^{t\overline{X}_n}
ight) &=& E\left[\exp\left\{rac{t}{n}\sum_{i=1}^n X_i
ight\}
ight] \ &=& E\left[\prod_{i=1}^n \exp\left\{rac{t}{n}X_i
ight\}
ight] &=& \prod_{i=1}^n E\left[\exp\left\{rac{t}{n}X_i
ight\}
ight] \ &=& \prod_{i=1}^n m_{X_i}(t/n) &=& \prod_{i=1}^n \exp\left\{\murac{t}{n}+rac{\sigma^2}{2}rac{t^2}{n^2}
ight\} \ &=& \exp\left\{\mu t+rac{\sigma^2/n}{2}t^2
ight\}. &\Rightarrow& ext{f.g.m da } N\left(\mu,\sigma^2/n
ight) \end{array}$$

Média amostral

• Dado que temos a distribuição exata de \overline{X}_n quando estimamos μ com \overline{X}_n , seremos capazes de calcular, por exemplo, a probabilidade exata de que nosso estimador \overline{X}_n esteja dentro de uma distância fixada do parâmetro desconhecido μ .

Amostrando da Normal - Variância amostral

- A distribuição Normal possui dois parâmetros desconhecidos μ e σ^2 .
- ullet Vimos anteriormente a distribuição amostral de X_n que estima μ .
- Procuremos agora pela distribuição de

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2,$$

que estima o parâmetro σ^2 .

• A distribuição Qui-Quadrado desempenha um papel fundamental na determinação da distribuição de S^2 .

Definição 8 (Distribuição Qui-Quadrado) Seja X uma v.a. com f.d

$$f(x) = rac{1}{\Gamma(k/2)} igg(rac{1}{2}igg)^{k/2} x^{k/2-1} \expigg\{-rac{1}{2}xigg\} imes I_{(0,\infty)}(x),$$

então dizemos que X tem distribuição Qui-Quadrado com k graus de liberdade (k é um número inteiro positivo).

Notação: $\chi_k^2 =$ Qui-Quadrado com k graus de liberdade.

- A densidade da Qui-Quadrado é um caso particular da densidade $Gama(r,\lambda)$, onde r=k/2 e $\lambda=1/2$.
- ullet Se $X\sim Ga(r,\lambda)$ temos $f(x)=rac{\lambda^r}{\Gamma(r)}x^{r-1}e^{\lambda x}, I_{(0,\infty)}(x).$
- Fazendo r=k/2 e $\lambda=1/2$, tem-se na densidade definida anteriormente.

Temos também que:

$$E(X)=rac{r}{\lambda}=rac{k/2}{1/2}=k \quad \mathrm{e} \quad Var(X)=rac{r}{\lambda^2}=rac{k/2}{1/2^2}=2k.$$

A f.g.m é dada por

$$m_X(t) = \left(1-rac{t}{\lambda}
ight)^{-r} = \left(1-rac{t}{1/2}
ight)^{-k/2} = \left(rac{1}{1-2t}
ight)^{k/2}, \quad ext{para todo} \quad t < \lambda = 1/2$$

Teorema 7 Se X_1,\ldots,X_n são v.a. Normais independentes com médias μ_i e variâncias σ_i^2 (Note que não prescisar ser i.i.d). Então,

$$U = \sum_{i=1}^k \left(rac{X_i - \mu_i}{\sigma_i}
ight)^2 \sim \chi_k^2.$$

Prova: Seja
$$Z_i = rac{X_i - \mu_i}{\sigma_i}$$
, em que $Z_i \sim N(0,1)$. Assim,

$$egin{array}{lll} m_U(t) &=& E\left[e^{tU}
ight] &=& E\left[e^{t\sum_{i=1}^k Z_i^2}
ight] \ &=& E\left[\prod_{i=1}^k e^{tZ_i^2}
ight] & \displaystyle\operatornamewithlimits{=}_{Z_i'sind.} & \prod_{i=1}^k E\left[e^{tZ_i^2}
ight]. \end{array}$$

Mas,

$$egin{aligned} E\left[e^{tZ_{i}^{2}}
ight] &= \int\limits_{-\infty}^{\infty}e^{tZ^{2}}(2\pi)^{-rac{1}{2}}e^{-rac{1}{2}Z^{2}}dZ = \int\limits_{-\infty}^{\infty}(2\pi)^{-rac{1}{2}}e^{-rac{1}{2}(Z^{2}-2tZ^{2})}dZ \ &= \int\limits_{-\infty}^{\infty}(2\pi)^{-rac{1}{2}}e^{-rac{1}{2}(1-2t)Z^{2}}dZ \ &= rac{1}{\sqrt{1-2t}}\int\limits_{-\infty}^{\infty}\sqrt{1-2t}(2\pi)^{-rac{1}{2}}\expiggl\{-rac{1}{2\left(rac{1}{(1-2t)}
ight)}Z^{2}iggr\}dZ \ &= rac{1}{\sqrt{1-2t}}\int\limits_{-\infty}^{\infty}\left[2\pi\left(rac{1}{(1-2t)}
ight)
ight]^{-rac{1}{2}}\expiggl\{-rac{1}{2\left(rac{1}{(1-2t)}
ight)}Z^{2}iggr\}dZ \end{aligned}$$

- A expressão de dentro da integral é a densidade da N(0,V), onde $V=rac{1}{(1-2t)}$.
- ullet O resultado da integral é, portanto, igual a 1.
- Conclusão:

$$E\left[e^{tZ_i^2}
ight]=m_{Z_i^2}(t)=\left(rac{1}{1-2t}
ight)^{rac{1}{2}}, ext{ para } t<1/2.$$

Nota : O resultado acima determina que $Z_i^2\sim\chi_1^2$, ou seja, se $Z_i\sim N(0,1)$ temos $Z_i^2\sim\chi_1^2$.

$$m_U(t) = \prod_{i=1}^k E\left[e^{tZ_i^2}
ight] = \prod_{i=1}^k \left(rac{1}{1-2t}
ight)^{rac{1}{2}} = \left(rac{1}{1-2t}
ight)^{rac{k}{2}}$$

Portanto, $U \sim \chi_2^k$ finalizando a prova.

Corolário 3 Se X_1,\ldots,X_n são v.a. Normais independentes com médias μ e variâncias σ^2

$$U = \sum_{i=1}^k rac{(X_i - \mu)^2}{\sigma^2} \sim \chi_k^2.$$

Em palavras, o Teorema 7 diz que a soma de quadrados de variáveis aleatórias N(0,1) independentes possui distribuição Qui-Quadrado com grau de liberdade igual ao número de termos na soma.

Teorema 8 Se $Z_1, Z_2 \ldots, Z_n$ é uma amostra aleatória da distribuição N(0,1), então:

- i. $\overline{Z} \sim N(0,1/n)$;
- ii. \overline{Z} e $\sum_{i=1}^n (Z_i \overline{Z})^2$ são independentes;

iii.
$$\sum\limits_{i=1}^n (Z_i-\overline{Z})^2 \sim \chi_{n-1}^2.$$

Prova: (i) é um caso especial do Teorema 7. A prova da parte (ii) será incompleta (somente o caso n=2). Se n=2 temos $\overline{Z}=(Z_1+Z_2)/2$ e

$$egin{array}{lll} \sum\limits_{i=1}^2 (Z_i - \overline{Z})^2 &=& (Z_1 - (Z_1 + Z_2)/2)^2 + (Z_2 - (Z_1 + Z_2)/2)^2 \ &=& rac{(Z_1 - Z_2)^2}{4} + rac{(Z_2 - Z_1)^2}{4} = rac{(Z_2 - Z_1)^2}{2} \end{array}$$

- ullet Então, \overline{Z} é função de Z_1+Z_2 e $\sum_{i=1}^2(Z_i-\overline{Z})^2$ é função de Z_2-Z_1 .
- Para mostrar que \overline{Z} e $\sum_{i=1}^2 (Z_i-\overline{Z})^2$ são independentes basta mostrar que Z_1+Z_2 e Z_2-Z_1 são independentes.

Veja que

$$egin{array}{lll} m_{Z_1+Z_2}(t_1) & = & E\left[e^{t_1(Z_1+Z_2)}
ight] & = & E\left[e^{t_1Z_1}e^{t_1Z_2}
ight] \ & = & \exp\left\{rac{1}{2}t_1^2
ight\}\exp\left\{rac{1}{2}t_1^2
ight\} \ & = & \exp\left\{t_1^2
ight\}. \end{array}$$

Similarmente, $m_{Z_2-Z_1}(t_2)=\exp\{t_2^2\}$. Se $Z_1\sim N(0,1)$, então $-Z_1\sim N(0,1)$.

Além disso, temos que a $m_{Z_1+Z_2,Z_2-Z_1}(t_1,t_2)$

$$= E\left[e^{t_1(Z_1+Z_2)+t_2(Z_2-Z_1)}\right] = E\left[e^{(t_1-t_2)Z_1}e^{(t_1+t_2)Z_2}\right]$$

$$= E\left[e^{(t_1-t_2)Z_1}\right] E\left[e^{(t_1+t_2)Z_2}\right] = \exp\left\{\frac{1}{2}(t_1-t_2)^2\right\} \exp\left\{\frac{1}{2}(t_1+t_2)^2\right\}$$

$$= \exp\left\{\frac{1}{2}(t_1-t_2)^2\right\} \exp\left\{\frac{1}{2}(t_1+t_2)^2\right\}$$

$$= \exp\left\{\frac{1}{2}[t_1^2-2t_1t_2+t_2^2+t_1^2+2t_1t_2+t_2^2]\right\} = \exp\left\{t_1^2\right\} \exp\left\{t_2^2\right\}$$

$$= m_{Z_1+Z_2}(t_1)m_{Z_2-Z_1}(t_2).$$

Visto que a f.g.m. conjunta pode ser fatorada no produto das f.g.m.'s Z_1+Z_2 e Z_2-Z_1 são independentes.

iii. Para provar essa parte, iremos supor que \overline{Z} e $\sum\limits_{i=1}^n (Z_i - \overline{Z})^2$ para um n arbitrário.

Note que:

$$egin{array}{lll} \sum\limits_{i=1}^n Z_i^2 &=& \sum\limits_{i=1}^n (Z_i - \overline{Z} + \overline{Z})^2 \ &=& \sum\limits_{i=1}^n (Z_i - \overline{Z})^2 + 2 \overline{X} \sum\limits_{i=1}^n (Z_i - \overline{Z}) + n \overline{X}^2 \ &=& \sum\limits_{i=1}^n (Z_i - \overline{Z})^2 + n \overline{Z}^2 \end{array}$$

Usando o resultado da parte (ii) temos que que \overline{Z} e $\sum\limits_{i=1}^n (Z_i - \overline{Z})^2$ são independentes.

Então:

$$m_{\sum_{i=1}^n Z_i^2}(t) \;\;\; = \;\; m_{\sum_{i=1}^n (Z_i - \overline{Z})^2 + n \overline{Z}^2}(t) \;\;\; \underbrace{=}_{ind.} \;\; m_{\sum_{i=1}^n (Z_i - \overline{Z})^2}(t) m_{n \overline{Z}^2}(t)$$

e

$$m_{\sum_{i=1}^n (Z_i - \overline{Z})^2}(t) = rac{m_{\sum_{i=1}^n Z_i^2}(t)}{m_{n\overline{Z}^2}(t)} = rac{\left(rac{1}{1-2t}
ight)^{rac{n}{2}}}{\left(rac{1}{1-2t}
ight)^{rac{1}{2}}} = \left(rac{1}{1-2t}
ight)^{rac{n-1}{2}}.$$

O resultado da f.g.m. da distribuição χ^2_{n-1} .

- O Teorema 8 foi definido para uma amostra aleatória da distribuição N(0,1), entretanto se desejamos fazer inferência sobre μ e σ^2 devemos considerar uma amostra da $N(\mu,\sigma^2)$.
- Se X_1, X_2, \ldots, X_n uma a.a. da $N(\mu, \sigma^2)$. Neste caso definimos $Z_i(X_i \mu)/\sigma$. (ver Teorema 8)
- Parte (i) do Teorema 8 se torna:

1.
$$\overline{Z}=rac{1}{n}\sum_{i=1}^n (X_i-\mu)/\sigma=rac{\overline{X}-\mu}{\sigma}\sim N(0,1/n)$$

• Parte (ii) do Teorema 8 se torna:

$$2.\overline{X} = \frac{X - \mu}{\sigma} e$$

$$\sum_{i=1}^{n} (Z_i - \overline{Z})^2 = \sum_{i=1}^{n} \left[\frac{X_i - \mu}{\sigma} - \frac{\overline{X} - \mu}{\sigma} \right]^2 = \sum_{i=1}^{n} \frac{(X_i - \overline{X})^2}{\sigma^2}$$

são independentes, implicando que \overline{X} e $\sum_{i=1}^n (X_i - \overline{X})^2$ também são.

• Parte (iii) do Teorema 8 se torna 3. $\sum_{i=1}^n (Z_i-\overline{Z})^2=\sum_{i=1}^n rac{(X_i-X)^2}{\sigma^2}\sim \chi_{n-1}^2$

conforme mostrado em ii.

Corolário 4 Considere X_1, X_2, \ldots, X_n uma a.a. da $N(\mu, \sigma^2)$. Seja

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 a variâcia amostral. Então,

$$U=rac{(n-1)}{\sigma^2}S^2\sim \chi^2_{n-1}.$$

Prova: Considere a parte (iii) da extensão do Teorema 8.

Observação:Como S^2 é uma função linear de U no corolário acima, a densidade de S^2 pode ser obtida a partir da densidade de U.

 $U \sim \chi^2_{n-1}$ e S^2 é dada por uma função monótona de U.

$$S^2=rac{\sigma^2}{n-1}U, U=rac{(n-1)}{\sigma^2}S^2$$
 e $rac{dU}{dS^2}=rac{n-1}{\sigma^2}$

A função de densidade de S^2 é dada por

$$egin{aligned} f_{S^2}(s^2) &=& f_U\left[rac{(n-1)}{\sigma^2}s^2
ight] imes \left|rac{n-1}{\sigma^2}
ight|, \quad ext{para} \quad s^2 > 0 \ &=& rac{1}{\Gamma\left(rac{n-1}{2}
ight)} \left(rac{1}{2}
ight)^{rac{n-1}{2}} \left[rac{(n-1)}{\sigma^2}s^2
ight]^{rac{n-1}{2}-1} \expigg\{-rac{1}{2}rac{(n-1)}{\sigma^2}s^2igg\}rac{(n-1)}{\sigma^2}I_{(0,\infty)} \ &=& rac{1}{\Gamma\left(rac{n-1}{2}
ight)} \left(rac{1}{2}
ight)^{rac{n-1}{2}} \left[rac{(n-1)}{\sigma^2}
ight]^{rac{n-1}{2}} \left[rac{(n-1)}{\sigma^2}
ight]^{-1} (s^2)^{rac{n-1}{2}-1} imes \ & imes rac{(n-1)}{\sigma^2} \expigg\{-rac{(n-1)}{2\sigma^2}s^2igg\} imes I_{(0,\infty)}(s^2) \ &=& rac{1}{\Gamma\left(rac{n-1}{2}
ight)} \left[rac{(n-1)}{2\sigma^2}
ight]^{rac{n-1}{2}} (s^2)^{rac{n-3}{2}} \expigg\{-rac{(n-1)}{2\sigma^2}s^2igg\} imes I_{(0,\infty)}(s^2) \end{aligned}$$

- Todos os resultados desta subseção são desenvolvidos para o caso de populações Normais.
- Pode ser provado que para nenhuma outra distribuição:
- 1. A média e a variância amostral são independentemente distribuídas.
- 2. A média amostral possui exatamente a distribuição Normal