

Seguimiento de rutas 3D por un drone con autolocalización visual con balizas

Manuel Zafra Villar

19 de julio de 2017

Contenidos

- Introducción
- Objetivos
- Infraestructura
- Componente de autolocalización
- Componente de control de posición
- Integración del sistema
- Experimentos
- Conclusiones

Introducción

Objetivos

Diseño de un sistema de navegación de para drones en espacios interiores mediante el seguimiento fino de una ruta en 3D. El drone debe conocer su posición en el entorno, para lo que se usará una técnica de visión artificial basada en marcadores.

Subobjetivos

- Refactorización e integración del componente *Cam_autoloc*
- Desarrollo de un componente de control de posición
- Validación experimental en entorno simulado

Infraestructura (I)

- JdeRobot
 - Pose3D
 - Uav_viewer
 - Ardrone_server
 - CameraCalibrator
 - Recorder/Replayer
- Gazebo
- ICE
- Parrot ArDrone2

Infraestructura (II)

- AprilTags
- Python
 - NumPy
 - PyQt
 - PyOpenGL
 - PyQtGraph
- OpenCV

Diseño global del sistema

Componente de autolocalización

Componente de control de posición

Integración del sistema

Entorno de simulación

Control de posición con posición verdadera

Control de posición con posición verdadera

Componente de autolocalización

Componente de autolocalización

Sistema completo

Sistema completo

Componente autolocalización en entorno real

Sistema completo en entorno real

Sistema completo en entorno real

Sistema completo en entorno real

Conclusiones (II)

- Desarrollo de componente de navegación
- Refactorización e integración de componente de autolocalización
- Validación esperimental en simulación
- Extra: Experimentos en entorno real

Conclusiones (II)

Trabajos Futuros

- Nuevos tipos de movimiento
- Funcionalidades adicionales
- Sistema propio de estabilización
- Técnicas complementarias de visión artificial