Reguläre Grammatik, reguläre Ausdrücke und DEA

Gegeben sind die folgenden Sprachen über dem Alphabet $\Sigma = \{a, b\}$:

- $L_0 = \{ w \mid w \text{ enthält mindestens ein } bb \}$
- $L_1 = \{ w \mid w \text{ endet auf h\"ochstens ein } b \}$
- $L_2 = \{ w \mid w \text{ fängt mit } aa \text{ an oder hört mit } bb \text{ auf } \}$
- (a) Geben Sie zu allen Sprachen eine reguläre Grammatik an.

$$G_0=(V,\Sigma,P,S)$$
 mit $V=\{S,A,B\},\Sigma=\{a,b\},S=S$ und mit $P=\{S,A,B\},\Sigma=\{a,b\},S=S$ und mit $A\cap A$ as $A\cap A$ as

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Gjp92ri0w

$$G_1 = (V, \Sigma, P, S)$$
 mit $V = \{S, A, B\}, \Sigma = \{a, b\}, S = S$ und mit Das Wort "b" ist nicht in der Grammatik? $P = \{$

$$S \to aS \mid bS \mid aA$$
$$A \to b$$

 $\label{lem:complex} Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Gfdn0xhwg$

$$G_2 = (V, \Sigma, P, S)$$
 mit $V = \{S, A, B, C, D, E\}$, $\Sigma = \{a, b\}$, $S = S$ und mit

Stimmt nicht. Wörter können auch mit b beginnen.

$$P = \{$$

$$S \rightarrow aA \mid bC$$

$$A \rightarrow aB \mid a \mid bC$$

$$B \rightarrow aB \mid a \mid bB \mid b$$

$$C \rightarrow aD \mid bE \mid b$$

$$D \rightarrow bC \mid aD$$

$$E \rightarrow bE \mid b \mid aD$$

}

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Gib1z1cwi

- (b) Geben Sie zu den folgenden Wörtern eine Ableitung bzw. einen Syntaxbaum anhand der erstellten Grammatiken aus der Teilaufgabe a) an:
 - zum Wort *abba* aus der Sprache L_0 .
 - zum Wort baab aus der Sprache L_1 .
 - zum Wort *aabb* aus der Sprache L_2 .

$$\mathbf{Ab}_0 = S \vdash aS \vdash abA \vdash abbB \vdash aabb$$

$$\mathbf{Ab}_1 = S \vdash bA \vdash baS \vdash baaS \vdash baab$$

$$\mathbf{Ab}_2 = S \vdash aA \vdash aaB \vdash aabB \vdash aabb$$

(c) Geben Sie zu allen Sprachen einen regulären Ausdruck an.

$$\mathbf{Reg}_0 = (a|b)*bb(a|b)*$$

$$\mathbf{Reg}_1 = (b*a+)*b$$

$$\mathbf{Reg}_2 \, = (\mathtt{aa}(\mathtt{a}|\mathtt{b})*) \, | \, ((\mathtt{a}|\mathtt{b})*\mathtt{bb})$$

(d) Geben Sie zu allen Sprachen einen Automaten an, der die Sprache akzeptiert.

Automat zu L_0 :

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Af75ihbc7

Automat zu L_1 :

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Aiq4rcc1c