In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

14.IRIS

In [3]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\14_Iris.csv")
a
```

Out[3]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [4]:

```
b=a.head(100)
b
```

Out[4]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
95	96	5.7	3.0	4.2	1.2	Iris-versicolor
96	97	5.7	2.9	4.2	1.3	Iris-versicolor
97	98	6.2	2.9	4.3	1.3	Iris-versicolor
98	99	5.1	2.5	3.0	1.1	Iris-versicolor
99	100	5.7	2.8	4.1	1.3	Iris-versicolor

100 rows × 6 columns

In [5]:

b.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 6 columns):

		/ -	
#	Column	Non-Null Count	Dtype
0	Id	100 non-null	int64
1	SepalLengthCm	100 non-null	float64
2	SepalWidthCm	100 non-null	float64
3	PetalLengthCm	100 non-null	float64
4	PetalWidthCm	100 non-null	float64
5	Species	100 non-null	object
dtyp	es: float64(4),	int64(1), object	t(1)

memory usage: 4.8+ KB

In [6]:

b.describe()

Out[6]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	100.000000	100.000000	100.000000	100.000000	100.000000
mean	50.500000	5.471000	3.094000	2.862000	0.785000
std	29.011492	0.641698	0.476057	1.448565	0.566288
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	25.750000	5.000000	2.800000	1.500000	0.200000
50%	50.500000	5.400000	3.050000	2.450000	0.800000
75%	75.250000	5.900000	3.400000	4.325000	1.300000
max	100.000000	7.000000	4.400000	5.100000	1.800000

In [7]:

b.columns

Out[7]:

In [8]:

sns.pairplot(b)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x1b03cca61f0>

In [10]:

```
sns.distplot(b['PetalWidthCm'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]:

<AxesSubplot:xlabel='PetalWidthCm', ylabel='Density'>

In [11]:

In [12]:

```
sns.heatmap(f.corr())
```

Out[12]:

<AxesSubplot:>

In [17]:

```
x=f[['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm']]
y=f['PetalWidthCm']
```

In [18]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [19]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[19]:

LinearRegression()

In [20]:

```
print(lr.intercept_)
```

-0.45844839820297834

In [21]:

```
r=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
r
```

Out[21]:

	Co-efficient
ld	0.000047
SepalLengthCm	-0.054424
SepalWidthCm	0.107123
PetalLengthCm	0.420683

In [22]:

```
u=lr.predict(x_test)
plt.scatter(y_test,u)
```

Out[22]:

<matplotlib.collections.PathCollection at 0x1b043cc8610>

In [23]:

```
print(lr.score(x_test,y_test))
```

0.9604252477594315

In [24]:

```
lr.score(x_train,y_train)
```

Out[24]:

0.9577784111815976

RIDGE REGRESSION

```
In [25]:
from sklearn.linear_model import Ridge,Lasso

In [26]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)

Out[26]:
Ridge(alpha=10)

In [27]:
rr.score(x_test,y_test)

Out[27]:
0.9509851959606976
```

LASSO REGRESSION

```
In [28]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[28]:
Lasso(alpha=10)
In [29]:
la.score(x_test,y_test)
```

Out[29]:

0.22658608754030318

15. Horse Racing Results

In [35]:

a=pd.read_csv(r"C:\Users\user\Downloads\15_Horse Racing Results.csv - 15_Horse Racing Res
a

Out[35]:

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	С
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	;
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	C Y Ho	52	;
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	C Y Ho	52	;
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	;
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	C Y Ho	52	į
27003	14.06.2020	Sha Tin	11	1200	Gress	1450000	6	A Hamelin	59	Α
27004	21.06.2020	Sha Tin	2	1200	Gress	967000	7	K C Leung	57	Α
27005	21.06.2020	Sha Tin	4	1200	Gress	967000	6	Blake Shinn	57	Α
27006	21.06.2020	Sha Tin	5	1200	Gress	967000	14	Joao Moreira	57	Ž
27007	21.06.2020	Sha Tin	11	1200	Gress	1450000	7	C Schofield	55	Ž
27008	27008 rows × 21 columns									
4										•

In [36]:

b=a.head(100)

Out[36]:

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Coı
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sv
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	C Y Ho	52	Sv
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	C Y Ho	52	Sv
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sv
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	C Y Ho	52	Sv
95	10.12.2017	Sha Tin	5	1200	Gress	18500000	13	Francois- Xavier Bertras	57	(B
96	10.12.2017	Sha Tin	7	1600	Gress	23000000	11	Ryan Moore	57	
97	01.10.2017	Sha Tin	7	1000	Gress	3000000	10	Brett Prebble	59	Zea
98	22.10.2017	Sha Tin	7	1200	Gress	4000000	9	Brett Prebble	59	Zea
99	19.11.2017	Sha Tin	7	1200	Gress	4000000	3	Brett Prebble	56	Zea
100	rows × 21 c	columns	5							
4										•

In [37]:

b.describe()

Out[37]:

	Race Number	Distance	Prize money	Starting position	Jockey weight	Horse age	Path
count	100.000000	100.000000	1.000000e+02	100.000000	100.000000	100.00000	100.000000
mean	6.910000	1446.000000	3.562200e+06	6.170000	55.870000	6.58000	1.510000
std	2.099038	334.820923	4.486259e+06	3.440857	2.942736	1.35721	1.573101
min	1.000000	1000.000000	9.200000e+05	1.000000	49.000000	3.00000	0.000000
25%	6.000000	1200.000000	1.380000e+06	3.000000	54.000000	6.00000	0.000000
50%	7.000000	1400.000000	1.950000e+06	6.000000	56.000000	7.00000	1.000000
75%	8.000000	1650.000000	3.000000e+06	9.000000	58.000000	8.00000	3.000000
max	10.000000	2400.000000	2.300000e+07	14.000000	60.000000	9.00000	6.000000
4							+

In [38]:

b.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 21 columns):

#	Column	•	Dtype
# 	Column	Non-Null Count	Dtype
	D-+-	100 11	
0	Dato	100 non-null	object
1	Track	100 non-null	object
2	Race Number	100 non-null	int64
3	Distance	100 non-null	int64
4	Surface	100 non-null	object
5	Prize money	100 non-null	int64
6	Starting position	100 non-null	int64
7	Jockey	100 non-null	object
8	Jockey weight	100 non-null	int64
9	Country	100 non-null	object
10	Horse age	100 non-null	int64
11	TrainerName	100 non-null	object
12	Race time	100 non-null	object
13	Path	100 non-null	int64
14	Final place	100 non-null	int64
15	FGrating	100 non-null	int64
16	Odds	100 non-null	object
17	RaceType	100 non-null	object
18	HorseId	100 non-null	int64
19	JockeyId	100 non-null	int64
20	TrainerID	100 non-null	int64

dtypes: int64(12), object(9)

memory usage: 16.5+ KB

In [39]:

```
c=b.dropna(axis=1)
c
```

Out[39]:

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Coι
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sv
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	C Y Ho	52	Sv
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	C Y Ho	52	Sv
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sv
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	C Y Ho	52	Sv
95	10.12.2017	Sha Tin	5	1200	Gress	18500000	13	Francois- Xavier Bertras	57	(B
96	10.12.2017	Sha Tin	7	1600	Gress	23000000	11	Ryan Moore	57	
97	01.10.2017	Sha Tin	7	1000	Gress	3000000	10	Brett Prebble	59	Zea
98	22.10.2017	Sha Tin	7	1200	Gress	4000000	9	Brett Prebble	59	Zea
99	19.11.2017	Sha Tin	7	1200	Gress	4000000	3	Brett Prebble	56	Zea
100	100 rows × 21 columns									
4										•

In [40]:

c.columns

Out[40]:

In [41]:

sns.pairplot(c)

Out[41]:

<seaborn.axisgrid.PairGrid at 0x1b043cf2e80>

In [42]:

```
sns.distplot(c['Prize money'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[42]:

<AxesSubplot:xlabel='Prize money', ylabel='Density'>

In [43]:

In [44]:

```
sns.heatmap(f.corr())
```

Out[44]:

<AxesSubplot:>

In [56]:

```
x=f[[ 'Distance', 'Starting position', 'Jockey weight', 'Horse age', 'FGrating', 'TrainerID']]
y=f['Prize money']
```

In [57]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [58]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[58]:

LinearRegression()

In [59]:

```
print(lr.intercept_)
```

8175909.272110213

In [60]:

```
r=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
r
```

Out[60]:

Co-efficient

Distance -3147.219403

Starting position -94581.551137

Jockey weight 104698.157277

Horse age -63694.881410

FGrating 18062.682362

TrainerID -1141.421418

In [61]:

```
u=lr.predict(x_test)
plt.scatter(y_test,u)
```

Out[61]:

<matplotlib.collections.PathCollection at 0x1b04bd9afd0>

In [62]:

```
print(lr.score(x_test,y_test))
```

-0.07782092347579272

In [63]:

```
lr.score(x_train,y_train)
```

Out[63]:

0.17919787489759276

```
In [64]:
from sklearn.linear_model import Ridge,Lasso
In [65]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[65]:
Ridge(alpha=10)
In [66]:
rr.score(x_test,y_test)
Out[66]:
-0.07825815658097168
In [67]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[67]:
Lasso(alpha=10)
In [68]:
la.score(x_test,y_test)
Out[68]:
```

16_Sleep_health_and_lifestyle_dataset

```
In [69]:
```

-0.07782193863393116

a=pd.read_csv(r"C:\Users\user\Downloads\16_Sleep_health_and_lifestyle_dataset.csv")

In [70]:

```
b=a.head(100)
b
```

Out[70]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	 Pre
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	1
1	2	Male	28	Doctor	6.2	6	60	8	Normal	1
2	3	Male	28	Doctor	6.2	6	60	8	Normal	1
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	1
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	1
95	96	Female	36	Accountant	7.1	8	60	4	Normal	1
96	97	Female	36	Accountant	7.2	8	60	4	Normal	1
97	98	Female	36	Accountant	7.1	8	60	4	Normal	1
98	99	Female	36	Teacher	7.1	8	60	4	Normal	1
99	100	Female	36	Teacher	7.1	8	60	4	Normal	1
100	rows × 1	3 colum	ns							

100 rows >

In [71]:

b.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 100 entries, 0 to 99 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Person ID	100 non-null	int64
1	Gender	100 non-null	object
2	Age	100 non-null	int64
3	Occupation	100 non-null	object
4	Sleep Duration	100 non-null	float64
5	Quality of Sleep	100 non-null	int64
6	Physical Activity Level	100 non-null	int64
7	Stress Level	100 non-null	int64
8	BMI Category	100 non-null	object
9	Blood Pressure	100 non-null	object
10	Heart Rate	100 non-null	int64
11	Daily Steps	100 non-null	int64
12	Sleep Disorder	100 non-null	object
d+,,,,	ac. fior+64(1) in+64(7)	object(E)	-

dtypes: float64(1), int64(7), object(5)

memory usage: 10.3+ KB

In [72]:

b.describe()

Out[72]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	
count	100.000000	100.00000	100.000000	100.000000	100.000000	100.000000	100.000000	
mean	50.500000	31.69000	6.871000	6.590000	51.910000	6.420000	71.610000	(
std	29.011492	2.26388	0.766903	1.005992	19.429279	1.485145	4.240009	
min	1.000000	27.00000	5.800000	4.000000	30.000000	3.000000	65.000000	;
25%	25.750000	30.00000	6.100000	6.000000	30.000000	6.000000	70.000000	ţ
50%	50.500000	31.50000	7.100000	7.000000	60.000000	6.000000	70.000000	-
75%	75.250000	33.00000	7.700000	7.000000	75.000000	8.000000	72.000000	{
max	100.000000	36.00000	7.900000	8.000000	75.000000	8.000000	85.000000	1(
4								•

In [75]:

b.columns

Out[75]:

In [76]:

sns.pairplot(b)

Out[76]:

<seaborn.axisgrid.PairGrid at 0x1b051ec8850>

In [78]:

```
sns.distplot(b['Heart Rate'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[78]:

<AxesSubplot:xlabel='Heart Rate', ylabel='Density'>

In [80]:

In [81]:

```
sns.heatmap(f.corr())
```

Out[81]:

<AxesSubplot:>

In [85]:

In [86]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [87]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[87]:

LinearRegression()

In [88]:

```
print(lr.intercept_)
```

-1.4210854715202004e-14

In [89]:

```
r=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
r
```

Out[89]:

	Co-efficient
Person ID	-1.305733e-16
Age	2.810685e-15
Sleep Duration	1.190819e-15
Quality of Sleep	3.071646e-15
Physical Activity Level	1.255396e-16
Stress Level	1.093181e-15
Heart Rate	1.000000e+00
Daily Steps	-2.086921e-17

In [90]:

```
u=lr.predict(x_test)
plt.scatter(y_test,u)
```

Out[90]:

<matplotlib.collections.PathCollection at 0x1b056b3f6a0>

In [91]:

```
print(lr.score(x_test,y_test))
```

1.0

In [92]:

```
lr.score(x_train,y_train)
```

Out[92]:

1.0

```
In [93]:
from sklearn.linear_model import Ridge,Lasso
In [94]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[94]:
Ridge(alpha=10)
In [95]:
rr.score(x_test,y_test)
Out[95]:
0.9990653428865417
In [96]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[96]:
Lasso(alpha=10)
In [97]:
la.score(x_test,y_test)
Out[97]:
```

17_student_marks

0.5042451648341428

```
In [99]:
```

a=pd.read_csv(r"C:\Users\user\Downloads\17_student_marks.csv")
a

Out[99]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_
0	22000	78	87	91	91	88	98	94	100	100	1(
1	22001	79	71	81	72	73	68	59	69	59	(
2	22002	66	65	70	74	78	86	87	96	88	ł
3	22003	60	58	54	61	54	57	64	62	72	(
4	22004	99	95	96	93	97	89	92	98	91	!
5	22005	41	36	35	28	35	36	27	26	19	
6	22006	47	50	47	57	62	64	71	75	85	1
7	22007	84	74	70	68	58	59	56	56	64	
8	22008	74	64	58	57	53	51	47	45	42	4
9	22009	87	81	73	74	71	63	53	45	39	4
10	22010	40	34	37	33	31	35	39	38	40	4
11	22011	91	84	78	74	76	80	80	73	75	
12	22012	81	83	93	88	89	90	99	99	95	1
13	22013	52	50	42	38	33	30	28	22	12	:
14	22014	63	67	65	74	80	86	95	96	92	1
15	22015	76	82	88	94	85	76	70	60	50	!
16	22016	83	78	71	71	77	72	66	75	66	(
17	22017	55	45	43	38	43	35	44	37	45	;
18	22018	71	67	76	74	64	61	57	64	61	!
19	22019	62	61	53	49	54	59	68	74	65	‡
20	22020	44	38	36	34	26	34	39	44	36	4
21	22021	50	56	53	46	41	38	47	39	44	;
22	22022	57	48	40	45	43	36	26	19	9	
23	22023	59	56	52	44	50	40	45	46	54	!
24	22024	84	92	89	80	90	80	84	74	68	
25	22025	74	80	86	87	90	100	95	87	85	
26	22026	92	84	74	83	93	83	75	82	81	•
27	22027	63	70	74	65	64	55	61	58	48	4
28	22028	78	77	69	76	78	74	67	69	78	(
29	22029	55	58	59	67	71	62	53	61	67	•
30	22030	54	54	48	38	35	45	46	47	41	•
31	22031	84	93	97	89	86	95	100	100	100	!
32	22032	95	100	94	100	98	99	100	90	80	1
33	22033	64	61	63	73	63	68	64	58	50	!
34	22034	76	79	73	77	83	86	95	89	90	!
35	22035	78	71	61	55	54	48	41	32	41	
36	22036	95	89	91	84	89	94	85	91	100	10

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_
37	22037	99	89	79	87	87	81	82	74	64	;
38	22038	82	83	85	86	89	80	88	95	87	!
39	22039	65	56	64	62	58	51	61	68	70	
40	22040	100	93	92	86	84	76	82	74	79	
41	22041	78	72	73	79	81	73	71	77	83	!
42	22042	98	100	100	93	94	92	100	100	98	!
43	22043	58	62	67	77	71	63	64	73	83	
44	22044	96	92	94	100	99	95	98	92	84	1
45	22045	86	87	85	84	85	91	86	82	85	1
46	22046	48	55	46	40	34	29	37	34	39	
47	22047	56	52	54	47	40	35	43	44	40	;
48	22048	42	44	46	53	62	59	57	53	43	;
49	22049	64	54	49	59	54	55	57	59	63	
50	22050	50	44	37	29	37	46	53	57	55	(
51	22051	70	60	70	62	67	67	68	67	72	(
52	22052	63	73	70	63	60	67	61	59	52	!
53	22053	92	100	100	100	100	100	92	87	94	10
54	22054	64	55	54	61	63	57	47	37	44	
55	22055	60	66	68	58	49	47	39	29	39	4

In [100]:

b=a.head(100) b

Out[100]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_
0	22000	78	87	91	91	88	98	94	100	100	10
1	22001	79	71	81	72	73	68	59	69	59	(
2	22002	66	65	70	74	78	86	87	96	88	1
3	22003	60	58	54	61	54	57	64	62	72	(
4	22004	99	95	96	93	97	89	92	98	91	!
5	22005	41	36	35	28	35	36	27	26	19	:
6	22006	47	50	47	57	62	64	71	75	85	1
7	22007	84	74	70	68	58	59	56	56	64	
8	22008	74	64	58	57	53	51	47	45	42	4
9	22009	87	81	73	74	71	63	53	45	39	4
10	22010	40	34	37	33	31	35	39	38	40	4
11	22011	91	84	78	74	76	80	80	73	75	÷
12	22012	81	83	93	88	89	90	99	99	95	1
13	22013	52	50	42	38	33	30	28	22	12	:
14	22014	63	67	65	74	80	86	95	96	92	+
15	22015	76	82	88	94	85	76	70	60	50	!
16	22016	83	78	71	71	77	72	66	75	66	(
17	22017	55	45	43	38	43	35	44	37	45	•
18	22018	71	67	76	74	64	61	57	64	61	!
19	22019	62	61	53	49	54	59	68	74	65	;
20	22020	44	38	36	34	26	34	39	44	36	
21	22021	50	56	53	46	41	38	47	39	44	;
22	22022	57	48	40	45	43	36	26	19	9	
23	22023	59	56	52	44	50	40	45	46	54	;
24	22024	84	92	89	80	90	80	84	74	68	
25	22025	74	80	86	87	90	100	95	87	85	
26	22026	92	84	74	83	93	83	75	82	81	•
27	22027	63	70	74	65	64	55	61	58	48	4
28	22028	78	77	69	76	78	74	67	69	78	(
29	22029	55	58	59	67	71	62	53	61	67	•
30	22030	54	54	48	38	35	45	46	47	41	;
31	22031	84	93	97	89	86	95	100	100	100	!
32	22032	95	100	94	100	98	99	100	90	80	1
33	22033	64	61	63	73	63	68	64	58	50	;
34	22034	76	79	73	77	83	86	95	89	90	!
35	22035	78	71	61	55	54	48	41	32	41	
36	22036	95	89	91	84	89	94	85	91	100	10

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_
37	22037	99	89	79	87	87	81	82	74	64	!
38	22038	82	83	85	86	89	80	88	95	87	!
39	22039	65	56	64	62	58	51	61	68	70	
40	22040	100	93	92	86	84	76	82	74	79	
41	22041	78	72	73	79	81	73	71	77	83	!
42	22042	98	100	100	93	94	92	100	100	98	!
43	22043	58	62	67	77	71	63	64	73	83	
44	22044	96	92	94	100	99	95	98	92	84	1
45	22045	86	87	85	84	85	91	86	82	85	1
46	22046	48	55	46	40	34	29	37	34	39	4
47	22047	56	52	54	47	40	35	43	44	40	;
48	22048	42	44	46	53	62	59	57	53	43	;
49	22049	64	54	49	59	54	55	57	59	63	
50	22050	50	44	37	29	37	46	53	57	55	(
51	22051	70	60	70	62	67	67	68	67	72	(
52	22052	63	73	70	63	60	67	61	59	52	!
53	22053	92	100	100	100	100	100	92	87	94	10
54	22054	64	55	54	61	63	57	47	37	44	4
55	22055	60	66	68	58	49	47	39	29	39	4

In [101]:

b.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 56 entries, 0 to 55
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Student_ID	56 non-null	int64
1	Test_1	56 non-null	int64
2	Test_2	56 non-null	int64
3	Test_3	56 non-null	int64
4	Test_4	56 non-null	int64
5	Test_5	56 non-null	int64
6	Test_6	56 non-null	int64
7	Test_7	56 non-null	int64
8	Test_8	56 non-null	int64
9	Test_9	56 non-null	int64
10	Test_10	56 non-null	int64
11	Test_11	56 non-null	int64
12	Test_12	56 non-null	int64

dtypes: int64(13)
memory usage: 5.8 KB

In [102]:

b.describe()

Out[102]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
count	56.000000	56.000000	56.000000	56.000000	56.000000	56.000000	56.000000
mean	22027.500000	70.750000	69.196429	68.089286	67.446429	67.303571	66.000000
std	16.309506	17.009356	17.712266	18.838333	19.807179	20.746890	21.054043
min	22000.000000	40.000000	34.000000	35.000000	28.000000	26.000000	29.000000
25%	22013.750000	57.750000	55.750000	53.000000	54.500000	53.750000	50.250000
50%	22027.500000	70.500000	68.500000	70.000000	71.500000	69.000000	65.500000
75%	22041.250000	84.000000	83.250000	85.000000	84.000000	85.250000	83.750000
max	22055.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
4							>

In [105]:

b.columns

Out[105]:

In [106]:

sns.pairplot(b)

Out[106]:

<seaborn.axisgrid.PairGrid at 0x1b055e674c0>

In [107]:

```
sns.distplot(b['Test_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[107]:

<AxesSubplot:xlabel='Test_2', ylabel='Density'>

In [109]:

In [110]:

```
sns.heatmap(f.corr())
```

Out[110]:

<AxesSubplot:>

In [113]:

In [114]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [115]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[115]:

LinearRegression()

In [116]:

```
print(lr.intercept_)
```

-2316.9257767737035

In [117]:

```
r=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
r
```

Out[117]:

	Co-efficient
Student_ID	0.105557
Test_1	0.356388
Test_3	0.345866
Test_4	0.215177
Test_5	-0.062541
Test_6	-0.009563
Test_7	0.307048
Test_8	-0.016111
Test_9	0.013176
Test_10	-0.128335
Test_11	0.380516
Test_12	-0.502826

In [118]:

```
u=lr.predict(x_test)
plt.scatter(y_test,u)
```

Out[118]:

<matplotlib.collections.PathCollection at 0x1b0670b9a90>

In [119]:

```
print(lr.score(x_test,y_test))
```

0.9078735107887352

```
In [120]:
lr.score(x_train,y_train)
Out[120]:
0.9877283043412819
In [121]:
from sklearn.linear_model import Ridge,Lasso
In [122]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[122]:
Ridge(alpha=10)
In [123]:
rr.score(x_test,y_test)
Out[123]:
0.9102198169701476
In [124]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[124]:
Lasso(alpha=10)
In [125]:
la.score(x_test,y_test)
Out[125]:
```

18_world-data-2023

0.9437882829722327

In [126]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\18_world-data-2023.csv")
a
```

Out[126]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Call Co
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	ć
1	Albania	105	AL	43.10%	28,748	9,000	11.78	35
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	21
3	Andorra	164	AD	40.00%	468	NaN	7.20	37
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	24
190	Venezuela	32	VE	24.50%	912,050	343,000	17.88	5
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	8
192	Yemen	56	YE	44.60%	527,968	40,000	30.45	96
193	Zambia	25	ZM	32.10%	752,618	16,000	36.19	26
194	Zimbabwe	38	ZW	41.90%	390,757	51,000	30.68	26
195 r	ows × 35 co	lumns						
4								•

In [127]:

b=a.head(100) b

Out[127]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Call C
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	ξ
1	Albania	105	AL	43.10%	28,748	9,000	11.78	35
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	21
3	Andorra	164	AD	40.00%	468	NaN	7.20	37
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	24
95	Lesotho	71	LS	77.60%	30,355	2,000	26.81	26
96	Liberia	53	LR	28.00%	111,369	2,000	33.04	23
97	Libya	4	LY	8.70%	1,759,540	0	18.83	21
98	Liechtenstein	238	LI	32.20%	160	NaN	9.90	42
99	Lithuania	43	LT	47.20%	65,300	34,000	10.00	37
100	rows × 35 co	lumns						
4								•

In [128]:

b.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 100 entries, 0 to 99 Data columns (total 35 columns): Column Non-Null Count Dtype ---------Country 100 non-null 0 object 1 Density (P/Km2)100 non-null object 2 Abbreviation 96 non-null object 3 Agricultural Land(%) 98 non-null object 4 Land Area(Km2) 100 non-null object 5 Armed Forces size 92 non-null object 6 Birth Rate 98 non-null float64 7 Calling Code 100 non-null float64 object 8 Capital/Major City 99 non-null 9 Co2-Emissions 98 non-null object 10 CPI object 93 non-null 11 CPI Change (%) 94 non-null object 12 Currency-Code 91 non-null object Fertility Rate 13 98 non-null float64 Forested Area (%) 98 non-null object 15 Gasoline Price 93 non-null object 16 GDP 99 non-null object Gross primary education enrollment (%) 97 non-null object 17 Gross tertiary education enrollment (%) 95 non-null object 19 Infant mortality 97 non-null float64 Largest city 97 non-null object Life expectancy float64 21 97 non-null 22 Maternal mortality ratio 95 non-null float64 Minimum wage object 23 80 non-null Official language 100 non-null object Out of pocket health expenditure 97 non-null object Physicians per thousand float64 26 97 non-null Population 100 non-null object 27 Population: Labor force participation (%) 92 non-null object 28 Tax revenue (%) 87 non-null object Total tax rate 30 96 non-null object Unemployment rate 92 non-null object Urban_population 32 98 non-null object 33 Latitude 100 non-null float64 34 Longitude 100 non-null float64 dtypes: float64(9), object(26)

memory usage: 27.5+ KB

In [129]:

b.describe()

Out[129]:

		Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	
C	ount	98.000000	100.00000	98.000000	97.000000	97.000000	95.000000	97.000000	100
n	nean	20.045000	354.15000	2.651633	21.782474	72.358763	164.305263	1.916186	20
	std	9.737986	330.66234	1.239758	20.437751	7.712838	226.488977	1.809687	2:
	min	7.200000	1.00000	1.270000	1.400000	52.800000	2.000000	0.040000	-38
	25%	11.420000	84.75000	1.695000	5.000000	66.600000	12.000000	0.280000	-
	50%	18.125000	253.50000	2.180000	12.800000	74.100000	58.000000	1.580000	18
	75%	27.027500	501.25000	3.322500	32.900000	78.100000	244.500000	3.190000	4
	max	42.170000	1876.00000	5.920000	84.500000	84.200000	1140.000000	8.420000	64
4									•

In [131]:

c=b.dropna(axis=1)
c

100 rows × 8 columns

Out[131]:

	Country	Density\n(P/Km2)	Land Area(Km2)	Calling Code	Official language	Population	Latitude	L¢
0	Afghanistan	60	652,230	93.0	Pashto	38,041,754	33.939110	67
1	Albania	105	28,748	355.0	Albanian	2,854,191	41.153332	2(
2	Algeria	18	2,381,741	213.0	Arabic	43,053,054	28.033886	
3	Andorra	164	468	376.0	Catalan	77,142	42.506285	
4	Angola	26	1,246,700	244.0	Portuguese	31,825,295	-11.202692	17
95	Lesotho	71	30,355	266.0	English	2,125,268	-29.609988	28
96	Liberia	53	111,369	231.0	English	4,937,374	6.428055	-(
97	Libya	4	1,759,540	218.0	Arabic	6,777,452	26.335100	17
98	Liechtenstein	238	160	423.0	German	38,019	47.141039	(
99	Lithuania	43	65,300	370.0	Lithuanian	2,786,844	55.169438	20

In [132]:

```
c.columns
```

Out[132]:

In [133]:

```
sns.pairplot(c)
```

Out[133]:

<seaborn.axisgrid.PairGrid at 0x1b0670e4970>

In [134]:

```
sns.distplot(c['Calling Code'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[134]:

<AxesSubplot:xlabel='Calling Code', ylabel='Density'>

In [135]:

In [136]:

```
sns.heatmap(f.corr())
```

Out[136]:

<AxesSubplot:>


```
In [152]:
```

```
x=f[['Latitude', 'Longitude']]
y=f['Calling Code']
```

In [153]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [154]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[154]:

LinearRegression()

In [155]:

```
print(lr.intercept_)
```

291.87882781037837

In [156]:

```
r=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
r
```

Out[156]:

Co-efficient

Latitude 0.027631 **Longitude** 0.457854

```
In [157]:
```

```
u=lr.predict(x_test)
plt.scatter(y_test,u)
```

Out[157]:

<matplotlib.collections.PathCollection at 0x1b067871f70>

In [158]:

```
print(lr.score(x_test,y_test))
```

-0.10747669766799284

In [159]:

```
lr.score(x_train,y_train)
```

Out[159]:

0.006830883607632288

In [160]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [161]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[161]:

Ridge(alpha=10)

In [162]:

```
rr.score(x_test,y_test)
```

Out[162]:

-0.10747791426514186

```
In [163]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[163]:
Lasso(alpha=10)
In [164]:
la.score(x_test,y_test)
Out[164]:
-0.1079837486648465
In [ ]:
```