# Simulation Conditions for CMA

Matt Wheeler

2/02/2021

### Basic simulation conditions

We are interested in basic simulation conditions meant to mimic a typical Rat bioassayl, and the chosen endpoints are weight loss and liver weight gain. All background weights were taken from Piao et al (2013) Table 1 and the average Male/Female weight was used as well as the average of the standard deviation.

Dose-response experimental designs were based upon recommendations in FDA's Redbook 2000, which are generally standard across agencies. Here 4 and 5 dose group + control studies were designed with both even and geometrically spaced dose designs. That is dose groups were [0, 20, 40, 60, 80, 100] and [0, 6.25, 12.5, 25, 50, 100], for the 5 dose group studies and they were [0, 25, 50, 75, 100] and [0, 12.5, 25, 50, 100] for the four group studies.

#### **Distributional Conditions**

For the simulation, three different distributions were considered, the normal and the inverse-Gaussian distributions. **Normal:** 

$$g(y|dose) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(y - \mu[dose])^2}{2\sigma^2})$$
 (1)

For the body-weight conditions  $\sigma = 37.5$ , and for the liver weight conditions,  $\sigma = 1.145$ .

## Log-Normal:

$$g(y|dose) = \frac{1}{y\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\log[y] - \mu[dose])^2}{2\sigma^2}\right)$$
 (2)

For the body weight conditions  $\sigma = 0.0777$ , and for the liver weight conditions  $\sigma = 0.107302$ . These values were chosen so that the control group standard deviation matched with the other simulation conditions, which was the average SD from males and female rats in table 1 at 72 weeks from Piao et al(2013).

#### Inverse-Gaussian:

$$g(y|dose) = \sqrt{\frac{\lambda}{2\pi y^2}} \exp\left[\frac{\lambda(y - \mu\{dose\})^2}{2\mu(dose)^2 y}\right]$$
(3)

For the body-weight conditions  $\lambda = 78643.17$ , and for the liver weight conditions,  $\lambda = 902.3632$ . These values were chosen so that the control group standard deviation matched with the other simulation conditions, which was the average SD from males and female rats in table 1 at 72 weeks from Piao et al(2013).

### **Dose-Response Conditions**

Here we define the basic dose-respone function  $\mu(dose)$  for each of the data distributions specified above. ### Hill DR: The Hill mean models were used for the simulation:

$$f(dose) = a + \frac{b \times dose^d}{c^d + dose^d} \tag{4}$$

|                   | a      | b       | c  | d   |
|-------------------|--------|---------|----|-----|
| Hill Simulation 1 | 481.00 | -144.30 | 70 | 3.3 |
| Hill Simulation 2 | 481.00 | -144.30 | 40 | 1.3 |
| Hill Simulation 3 | 481.00 | -144.20 | 15 | 1.1 |
| Hill Simulation 4 | 481.00 | -144.30 | 50 | 4.0 |
| Hill Simulation 5 | 10.58  | 5.29    | 70 | 3.5 |
| Hill Simulation 6 | 10.58  | 5.29    | 25 | 3.0 |
| hill Simulation 7 | 10.58  | 5.29    | 15 | 2.0 |
| Hill Simulation 8 | 10.58  | 5.29    | 50 | 4.0 |

Here are two generated datasets from Hill condition 2 and 8:





# Exponential-5 DR:

Similar to the Hill condition we looked at 8 unique datasets generated from the exponential dose-response function. The exponential-5 dose-response function that we use in the simulation is

$$\mu(dose) = a \left[ c - (c - 1) \exp(-\{b \times dose\}^d) \right]$$
(5)

|       |              | a      | b    | c        | d   |
|-------|--------------|--------|------|----------|-----|
| Exp-5 | Simulation 1 | 481.00 | 0.05 | 0.699937 | 2.0 |
| Exp-5 | Simulation 2 | 481.00 | 0.02 | 0.699937 | 2.0 |
| Exp-5 | Simulation 3 | 481.00 | 0.01 | 0.699937 | 2.0 |
| Exp-5 | Simulation 4 | 481.00 | 0.10 | 0.699937 | 2.0 |
| Exp-5 | Simulation 5 | 10.58  | 0.05 | 1.500000 | 1.5 |
| Exp-5 | Simulation 6 | 10.58  | 0.02 | 1.500000 | 1.5 |
| Exp-5 | Simulation 7 | 10.58  | 0.01 | 1.500000 | 1.5 |
| Exp-5 | Simulation 8 | 10.58  | 0.10 | 1.500000 | 1.5 |

Here are two of the simulated datasets from condition 1 and 7 and fit using model averaging.

