NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER 1 EXAMINATION 2017-2018

EE6203 - COMPUTER CONTROL SYSTEMS

November/December 2017

Time Allowed: 3 hours

INSTRUCTIONS

- 1. This paper contains FIVE (5) questions and comprises EIGHT (8) pages.
- 2. Answer all FIVE (5) questions.
- 3. This is a closed-book examination.
- 4. All questions carry equal marks.
- 5. The Transform Table is included in Appendix A on pages 7 to 8.
- 1. (a) The Laplace Transform X(s) of a signal x(t) is given as

$$X(s) = \frac{1}{s^2 + 5s + 4}.$$

Assume that x(kT) is the sampled sequence of x(t) with a sampling period T of 0.5 second. Determine the Z-transform of x(kT).

(5 Marks)

(b) Solve the following difference equation:

$$x(k+2)+(\alpha+0.5)x(k+1)+0.5\alpha x(k)=\delta(k)$$
, and $x(k)=0$ for $k<0$,

where α is real number and $\delta(k)$ is a unit impulse function.

(11 Marks)

(c) Discuss the convergence of x(k) when $k \rightarrow \infty$ for different values of α in part 1(b).

(4 Marks)

2. Consider the control system shown in Figure 1.

- (a) Determine whether the pulse transfer function of the system exists. (6 Marks)
- (b) Suppose that $G_I(s) = \frac{1 e^{-Ts}}{s}$, $G_2(s) = \frac{\beta}{s(s+1)}$, H(s) = 1, the sampling period T is 0.1 second and the input is a unit-impulse function. Determine the Z-transform of the output signal.

(9 Marks)

(c) Find the range of β in part 2(b) to ensure the stability of the system. Also, determine the output c(kT) as $k \to \infty$ for $\beta = 1$ and 1000, respectively.

(5 Marks)

3. (a) An oscillatory system can be described by the following equation

$$\begin{bmatrix} \frac{dx_1(t)}{dt} \\ \frac{dx_2(t)}{dt} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Determine the response $\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$ when the initial state is $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

(6 Marks)

(b) A continuous-time system has a state-space representation given by

$$\begin{bmatrix} \frac{dx_1(t)}{dt} \\ \frac{dx_2(t)}{dt} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

where $x_1(t)$ and $x_2(t)$ are the states, u(t) and y(t) are the input and output variables, respectively. Suppose that the system is sampled with a zero-order hold at a sampling period T = 1 second, obtain a discretised state-space model for the system.

Is the discretised system stable?

(7 Marks)

Note: Question No. 3 continues on page 4

(c) Consider a system which is described by a state-space representation

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}u(k)$$

The performance index for the system is given by

$$J = \frac{1}{2} \sum_{k=0}^{\infty} \left(\mathbf{x}^{T}(k) \mathbf{Q} \mathbf{x}(k) + u^{2}(k) \right)$$

and the control law that minimises J is of the following form

$$u^*(k) = -\mathbf{K}\mathbf{x}(k)$$

where the optimal control law is given by

$$\mathbf{K} = \left(\mathbf{B}^T \mathbf{S} \mathbf{B} + 1\right)^{-1} \mathbf{B}^T \mathbf{S} \mathbf{A}$$

and S > 0 solves the following

$$\mathbf{S} = \mathbf{A}^T \mathbf{S} \mathbf{A} + \mathbf{Q} - \mathbf{A}^T \mathbf{S} \mathbf{B} (1 + \mathbf{B}^T \mathbf{S} \mathbf{B})^{-1} \mathbf{B}^T \mathbf{S} \mathbf{A}$$

Determine the optimal control law for the following system and given performance index:

$$x(k+1) = 2x(k) + 3u(k)$$

$$J = \frac{1}{2} \sum_{k=0}^{\infty} (x^{2}(k) + u^{2}(k))$$

(7 Marks)

4. A discrete-time system has a state-space representation given by

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \mathbf{A} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \mathbf{B} u(k)$$
$$y(k) = \mathbf{C} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

where

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

 $\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$, u(k) and y(k) are the states, input and output variables, respectively.

(a) Determine the following control law

$$u(k) = -\mathbf{K}\mathbf{x}(k)$$

such that the closed-loop poles are at $z_{1,2} = 0.25 \pm j0.6614$.

(7 Marks)

(b) Design a full-order prediction estimator of the following form

$$\overline{\mathbf{x}}(k+1) = \mathbf{A}\overline{\mathbf{x}}(k) + \mathbf{B}u(k) + \mathbf{L}_{a}(y(k) - \mathbf{C}\overline{\mathbf{x}}(k))$$

such that the desired estimator poles are at $z_{1,2} = 0.1 \pm j0.1$.

(7 Marks)

(c) The true state $\mathbf{x}(k)$ in the control law in part 4(a) is replaced with the estimated state $\overline{\mathbf{x}}(k)$ from the estimator in part 4(b). Obtain the combined controller-estimator transfer function $\frac{U(z)}{Y(z)}$ in terms of $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{L}_o$ and \mathbf{K} , where applicable.

(6 Marks)

5. (a) A digital controller is designed for a particular industrial process based on certain specifications. Its pulse transfer function is given as follows:

$$G_c(z) = \frac{U(z)}{E(z)} = \frac{(z+0.7)(z+0.8)}{(z-1)(z^2-\sqrt{3}z+1)}$$

Draw a block diagram representation if it is desired to implement the controller using the standard programming approach.

(10 Marks)

(b) Implement the controller $G_c(z)$ in part 5(a) with the series programming approach and show the relevant block diagrams.

(8 Marks)

(c) Comment on the two implementation approaches in parts 5(a) and 5(b).

(2 Marks)

Appendix A

Transform Table

Discrete function	z Transform	
x(k+4)	$z^4X(z)-z^4x(0)-z^3x(1)-z^2x(2)-zx(3)$	
x(k+3)	$z^3X(z)-z^3x(0)-z^2x(1)-zx(2)$	
x(k+2)	$z^2X(z)-z^2x(0)-zx(1)$	
x(k+1)	zX(z)-zx(0)	
x(k)	X(z)	
x(k-1)	$z^{-1}X(z)$	
x(k-2)	$z^{-2}X(z)$	
x(k-3)	$z^{-3}X(z)$	
x(k-4)	$z^{-4}X(z)$	

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
1.	_	_	Kronecker delta $\delta_0(k)$ 1, $k = 0$ 0, $k \neq 0$	1
2.	_		$\delta_0(n-k)$ 1, $n=k$ 0, $n \neq k$	z^{-k}
3.	$\frac{1}{s}$	1(<i>t</i>)	1(k)	$ \frac{1}{1-z^{-1}} $ $ \frac{1}{1-z^{-1}} $
4.	$\frac{1}{s+a}$	e^{-at}	e^{-akT}	1-e z
5.	$\frac{1}{s^2}$	t	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
6.	$\frac{2}{s^3}$	t^2	$(kT)^2$	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$
7.	$\frac{6}{s^4}$	t^3	$(kT)^3$	$\frac{T^3z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$
8.	$\frac{a}{s(s+a)}$	$1-e^{-at}$	$1-e^{-akT}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT}-e^{-bkT}$	$\frac{(e^{-aT} - e^{-bT})z^{-1}}{(1 - e^{-aT}z^{-1})(1 - e^{-bT}z^{-1})}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe^{-akT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1-akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$

Note: Transform Table continues on page 8

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
12.	$\frac{2}{(s+a)^3}$	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{T^2 e^{-aT} (1 + e^{-aT} z^{-1}) z^{-1}}{(1 - e^{-aT} z^{-1})^3}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT-1+e^{-akT}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$
14.	$\frac{\omega}{s^2+\omega^2}$	sin ωt	$\sin \omega kT$	$\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
15.	$\frac{s}{s^2+\omega^2}$	cos ωt	cos ωkT	$\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	$e^{-at}\sin\omega t$	$e^{-akT}\sin\omega kT$	$\frac{e^{-aT}z^{-1}\sin\omega T}{1-2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
17.	$\frac{s+a}{(s+a)^2+\omega^2}$	$e^{-at}\cos\omega t$	$e^{-akT}\cos\omega kT$	$\frac{1 - e^{-aT} z^{-1} \cos \omega T}{1 - 2e^{-aT} z^{-1} \cos \omega T + e^{-2aT} z^{-2}}$
18.			a^k	$\frac{1}{1-az^{-1}}$ $\frac{z^{-1}}{z^{-1}}$
19.			a^{k-1} $k = 1, 2, 3, \dots$	$\frac{z^{-1}}{1 - az^{-1}}$ z^{-1}
20.			ka^{k-1}	$\frac{z^{-1}}{(1-az^{-1})^2}$
21.			k^2a^{k-1}	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.			k^3a^{k-1}	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.			k^4a^{k-1}	$\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^5}$
24.			$a^k \cos k\pi$	$\frac{1}{1+az^{-1}}$
25.			$\frac{k(k-1)}{2!}$	$\frac{z^{-2}}{(1-z^{-1})^3}$
26.		$\frac{k(k-1)\cdots(k-m+2)}{(m-1)!}$		$\frac{z^{-m+1}}{(1-z^{-1})^m}$
27.			$\frac{k(k-1)}{2!}a^{k-2}$	$\frac{z^{-2}}{(1-az^{-1})^3}$
28.	8. $\frac{k(k-1)\cdots(k-m+2)}{(m-1)!}a^{k-m+1}$			$\frac{z^{-m+1}}{(1-az^{-1})^m}$

x(t) = 0, for t < 0.

x(kT) = x(k) = 0, for k < 0.

Unless otherwise noted, $k = 0,1,2,3,\cdots$

END OF PAPER

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

EE6203 COMPUTER CONTROL SYSTEMS

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.