Valeurs propres, vecteurs propres. Calculs exacts ou approchés d'éléments propres. Applications.

I - Spectre d'un endomorphisme

Soit E un espace vectoriel sur un corps \mathbb{K} de dimension finie n. Soit $u \in \mathcal{L}(E)$ un endomorphisme de E.

1. Valeurs propres, vecteurs propres

Définition 1. Soit $\lambda \in \mathbb{K}$.

[**GOU21**] p. 171

- On dit que λ est **valeur propre** de u si $u \lambda$ id $_E$ est non injective.
- Un vecteur $x \neq 0$ tel que $u(x) = \lambda x$ est un **vecteur propre** de u associé à la valeur propre λ .
- $E_{\lambda} = \operatorname{Ker}(u \lambda \operatorname{id}_{E})$ est le **sous-espace propre** associé à la valeur propre λ .
- L'ensemble des valeurs propres de u est appelé **spectre** de u. On le note Sp(u).

Remarque 2. — 0 est valeur propre de u si et seulement si $Ker(f) \neq \{0\}$.

- On peut définir de la même manière les mêmes notions pour une matrice de $\mathcal{M}_n(\mathbb{K})$ (une valeur est propre pour une matrice si et seulement si elle l'est pour l'endomorphisme associé). On reprendra les mêmes notations.
- Les sous-espaces E_{λ} sont stables par u pour toute valeur propre λ .

Exemple 3.
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 est vecteur propre de $\begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$ associé à la valeur propre 1.

Théorème 4. Soient $\lambda_1, \dots, \lambda_k$ des valeurs propres de u, distinctes deux à deux. Alors les sous-espaces propres $E_{\lambda_1}, \dots, E_{\lambda_k}$ sont en somme directe.

Théorème 5. Soit $P \in \mathbb{K}[X]$. Pour tout valeur propre λ de u, $P(\lambda)$ est une valeur propre de P(u). Si le corps \mathbb{K} est algébriquement clos, on a alors

$$\operatorname{Sp}(P(u)) = \{P(\lambda) \mid \lambda \in \operatorname{Sp}(u)\}\$$

Contre-exemple 6. Pour $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ et $P = X^2$, on a $A^2 = -I_2$ et $Sp(A) = \emptyset$.

2. Polynôme caractéristique

Proposition 7. En notant $\chi_u = \det(X \operatorname{id}_E - u)$,

$$\operatorname{Sp}(u) = \{ \lambda \in \mathbb{K} \mid \chi_u(\lambda) = 0 \}$$

Définition 8. Le polynôme χ_u précédent est appelé **polynôme caractéristique** de u.

Remarque 9. On peut définir la même notion pour une matrice $A \in \mathcal{M}_n(\mathbb{K})$, ces deux notions coïncidant bien si A est la matrice de u dans une base quelconque de E.

Exemple 10. Pour $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$, on a $\chi_A = X^2 - \operatorname{trace}(A)X + \det(A)$.

Proposition 11. Soit λ une valeur propre de u de multiplicité α en tant que racine de χ_u . Alors,

$$\dim(E_{\lambda}) \in [1, \alpha]$$

Proposition 12. (i) Le polynôme caractéristique est un invariant de similitude.

(ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note $\chi_A = \sum_{k=0}^n a_k X^k$. Alors, $a_0 = \det(A)$ et $a_{n-1} = \operatorname{trace}(A)$ (à un signe près).

Lemme 13 (Déterminant circulant). Soient $n \in \mathbb{N}^*$ et $a_1, \dots, a_n \in \mathbb{C}$. On pose $\omega = e^{\frac{2i\pi}{n}}$. Alors

$$\begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_0 \end{vmatrix} = \prod_{j=0}^{n-1} P(\omega^j)$$

où
$$P = \sum_{k=0}^{n-1} a_k X^k$$
.

[DEV]

Application 14 (Suite de polygones). Soit P_0 un polygone dont les sommets sont $\{z_{0,1},\dots,z_{0,n}\}.$ On définit la suite de polygones (P_k) par récurrence en disant que, pour tout $k \in \mathbb{N}^*$, les sommets de P_{k+1} sont les milieux des arêtes de P_k .

[I-P] p. 389

[GOU21]

p. 172

p. 153

Alors la suite (P_k) converge vers l'isobarycentre de P_0 .

3. Polynôme minimal

Lemme 15. (i) Ann $(u) = \{P \in \mathbb{K}[X] \mid P(u) = 0\}$ est un sous-ensemble de $\mathbb{K}[u]$ non réduit au polynôme nul.

[ROM21] p. 604

- (ii) Ann(u) est le noyau de $P \rightarrow P(u)$: c'est un idéal de $\mathbb{K}[u]$.
- (iii) Il existe un unique polynôme unitaire engendrant cet idéal.

Définition 16. On appelle **idéal annulateur** de u l'idéal Ann(u). Le polynôme unitaire générateur est noté π_u et est appelé **polynôme minimal** de u.

Remarque 17. — π_u est le polynôme unitaire de plus petit degré annulant u.

— Si $A \in \mathcal{M}_n(\mathbb{K})$ est la matrice de u dans une base de E, on a Ann(u) = Ann(A) et $\pi_u = \pi_A$.

Exemple 18. Un endomorphisme est nilpotent d'indice q si et seulement si son polynôme minimal est X^q .

Proposition 19. Soit F un sous-espace vectoriel de E stable par u. Alors, le polynôme minimal de l'endomorphisme $u_{|F}: F \to F$ divise π_u .

Proposition 20. (i) Les valeurs propres de u sont racines de tout polynôme annulateur.

(ii) Les valeurs propres de u sont exactement les racines de π_u .

Remarque 21. π_u et χ_u partagent dont les mêmes racines.

[**GOU21**] p. 186

Théorème 22 (Cayley-Hamilton).

 $\pi_u \mid \chi_u$

[**ROM21**] p. 607

Corollaire 23.

 $\dim(\mathbb{K}[u]) \leq n$

II - Localisation

Soit $A = (a_{i,j})_{i,j \in [1,n]} \in \mathcal{M}_n(\mathbb{C})$.

1. Disques de Gerschgörin

Notation 24. On note:

- $\text{ Pour tout } i \in [1, n], L_i = \sum_{\substack{j=1 \ j \neq i}}^n |a_{i,j}| \text{ et } L = \max_{i \in [1, n]} \{L_i + |a_{i,i}|\}.$ $\text{ Pour tout } j \in [1, n], C_j = \sum_{\substack{i=1 \ i \neq j}}^n |a_{i,j}| \text{ et } C = \max_{j \in [1, n]} \{C_j + |a_{j,j}|\}.$

Théorème 25 (Gerschgörin-Hadamard). Soit $\lambda \in \mathbb{C}$ une valeur propre de A. Alors, il existe $i \in [1, n]$ tel que $|\lambda - a_{i,i}| \le L_i$.

Remarque 26. Ainsi,

$$\operatorname{Sp}(A) \subseteq \bigcup_{i=1}^{n} \{ z \in \mathbb{C} \mid |z - a_{i,i}| \le L_i \}$$

Les disques de cette réunion sont appelés disques de Gerschgörin.

Exemple 27. Soient $a, b \in \mathbb{R}^2$. On pose

$$A(a,b) = \begin{pmatrix} a & b & 0 & \dots & 0 \\ b & a & b & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & b & a & b \\ 0 & \dots & 0 & b & a \end{pmatrix}$$

Alors,

$$\operatorname{Sp}(A(a,b)) = \left\{ a + 2b \cos\left(\frac{k\pi}{n+1}\right) \mid k \in [1,n] \right\}$$

Exemple 28. Soit

$$A = \begin{pmatrix} 1 & 0 & \dots & 0 & -1 \\ -1 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & -1 & 1 & 0 \\ 0 & \dots & 0 & -1 & 1 \end{pmatrix}$$

Alors,

$$\operatorname{Sp}({}^{t}AA) = \left\{ 4 \sin\left(\frac{k\pi}{n}\right)^{2} \mid k \in [0, n-1] \right\}$$

p. 650

[FGN2] p. 189

[ROM21]

p. 672

p. 651

Corollaire 29. Pour toute valeur propre $\lambda \in \mathbb{C}$ de A, on a

$$\lambda \leq \min(L, C)$$

Corollaire 30. On suppose *A* à diagonale strictement dominante (ie. $\forall i \in [1, n], |a_{i,i}| > \sum_{\substack{j=1 \ i \neq i}}^{n} |a_{i,j}|$). Alors, *A* est inversible.

Théorème 31 (Ostrowski). Pour tout $\alpha \in [0,1]$ et toute valeur propre $\lambda \in \mathbb{C}$ de A, il existe $i \in [1,n]$ tel que

$$|\lambda - a_{i,i}| \le L_i^\alpha C_i^{1-\alpha}$$

Remarque 32. C'est une généralisation du Théorème 25 : pour $\alpha = 1$, on retrouve l'énoncé correspondant.

Corollaire 33. Pour toute valeur propre $\lambda \in \mathbb{C}$ de A, il existe $i \in [1, n]$ tel que

$$|\lambda|^2 \le (L_i + |a_{i,i}|)(C_i + |a_{i,i}|)$$

2. Utilisation du rayon spectral

Notation 34. À toute norme $\|.\|$ sur \mathbb{C}^n , on associe la norme matricielle

$$|||.||: M \mapsto \sup_{x \in \mathbb{C}^n \setminus \{0\}} \frac{||Mx||}{||x||}$$

Définition 35. Le **rayon spectral** de A, noté $\rho(A)$ est défini par

$$\rho(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$$

Théorème 36. On a

$$|||A|||_2 = \sqrt{|||A^*A|||_2} = \sqrt{\rho(A^*A)}$$

où $\| . \|_2$ est la norme matricielle associée à la norme euclidienne sur \mathbb{C}^n et A^* est la transconjuguée de A.

Théorème 37. (i) On a $\rho(A) \leq |||A|||$ pour toute norme matricielle |||.||| induite par une norme vectorielle.

(ii) $\rho(A) = \inf_{\|.\| \in \mathcal{N}} \|A\|$ où \mathcal{N} désigne l'ensemble de toutes les normes matricielles induites par une norme vectorielle.

[DEV]

Théorème 38 (Décomposition de Dunford). Soit $f \in \mathcal{E}$ un endomorphisme tel que son polynôme minimal π_f soit scindé sur \mathbb{K} . Alors il existe un unique couple d'endomorphismes (d,n) tel que :

- f = d + n.
- d est diagonalisable et n est nilpotent.
- $-d \circ n = n \circ d.$

Corollaire 39 (Théorème de Gelfand). Soit $\|.\|$ une norme sur $\mathcal{M}_n(\mathbb{C})$. Alors,

[ROM21] p. 660

[GOU21]

p. 203

$$\rho(A) = \lim_{k \to +\infty} ||A^k||^{\frac{1}{k}}$$

Proposition 40. Les conditions suivantes sont équivalentes.

- (i) $\lim_{k\to+\infty} A^k = 0$.
- (ii) Pour toute valeur initiale $x_0 \in \mathbb{C}^n$, la suite définie par récurrence pour tout $k \in \mathbb{N}$ par $x_{k+1} = Ax_k$, converge vers le vecteur nul.
- (iii) $\rho(A) < 1$.
- (iv) Il existe au moins une norme matricielle $\|.\|$ induite par une norme vectorielle telle que $\|A\| < 1$.

III - Approximation

Soit $A = (a_{i,j})_{i,j \in [\![1,n]\!]} \in \mathcal{M}_n(\mathbb{R}).$

Théorème 41. On suppose que la valeur propre de A de module maximum est unique. On la note λ_1 . Elle est alors réelle est simple, l'espace propre associé est une droite vectorielle et on a

[ROM19-2] p. 210

$$\mathbb{R}^n = \operatorname{Ker}(A - \lambda_1 I_n) \oplus \operatorname{Im}(A - \lambda_1 I_n)$$

On suppose pour la suite que la valeur propre de A de module maximum est unique. On la note λ_1 .

Notation 42. On note et on définit :

$$- E_1 = \operatorname{Ker}(A - \lambda_1 I_n) \text{ et } F_1 = \operatorname{Im}(A - \lambda_1 I_n).$$

- $-x_0 = e_1 + f_1 \text{ avec } e_1 \in E_1 \setminus \{0\} \text{ et } f_1 \in F_1.$
- $$\begin{split} & \quad \forall \, k \in \mathbb{N}, \, x_{k+1} = \frac{1}{\|Ax_k\|} a_k \text{ avec } \|.\| \text{ norme quelconque sur } \mathbb{R}^n. \\ & \quad \text{Pour tout } j \in [\![1,n]\!], \, \text{on note } e_{1,j} \text{ la } j\text{-ième composante du vecteur } e_1, \, x_{k,j} \text{ celle de } x_k \text{ et } \end{split}$$
 $(Ax_k)_i$ celle de Ax_k .

Théorème 43 (Méthode la puissance itérée). On a :

- (i) $\lim_{k \to +\infty} ||Ax_k|| = |\lambda_1| = \rho(A)$.
- (ii) $\lim_{k\to +\infty} x_{2k} = v_1$ où v_1 est un vecteur propre non nul associé à la valeur propre λ_1 .
- (iii) $\lim_{k\to+\infty} x_{2k+1} = \operatorname{signe}(\lambda_1) v_1$.
- (iv) Pour tout $j \in [1, n]$, tel que $e_{1,j} \neq 0$,

$$\lim_{k\to +\infty}\frac{(Ax_k)_j}{x_{k,j}}=\lambda_1$$

— Si A est inversible, la méthode précédente appliquée à A^{-1} permet de Remarque 44. calculer la valeur propre de plus petit module de A (quand cette dernière est unique).

— En notant e_1 un vecteur propre de A associé à la valeur propre λ_1 de norme euclidienne égale à 1, les valeurs propres de la matrice $B = A - \lambda_1 e_1^t e_1$ sont $0, \lambda_2, \dots, \lambda_n$. On pourra alors appliquer la méthode à B.

Annexes

FIGURE 1 – La suite de polygones.

[**I-P**] p. 389

Bibliographie

Oraux X-ENS Mathématiques

[FGN2]

Serge Francinou, Hervé Gianella et Serge Nicolas. *Oraux X-ENS Mathématiques. Volume 2.* 2e éd. Cassini, 16 mars 2021.

https://store.cassini.fr/fr/enseignement-des-mathematiques/111-oraux-x-ens-mathematiques-nouvelle-serie-vol-2.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Analyse matricielle [ROM19-2]

Jean-Étienne Rombaldi. *Analyse matricielle. Cours et exercices résolus.* 2^e éd. EDP Sciences, 7 nov. 2019.

https://laboutique.edpsciences.fr/produit/1101/9782759824199/analyse-matricielle-cours-et-exercices-resolus.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$