The Design and Analysis of Algorithms

Lecture 5 Graphs II

Zhenbo Wang

Department of Mathematical Sciences, Tsinghua University

Content

Connectivity in Directed Graphs

DAGs and Topological Ordering

Coin Changing

Directed Graphs

• Directed graph. G = (V, E).

Edge (u, v) goes from node u to node v.

- Web graph hyperlink points from one web page to another.
- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

Road Network

Figure 1: Vertex = intersection; edge = one-way street.

Ecological Food Web

Figure 2: Vertex = species; edge = from prey to predator.

Some Directed Graph Applications

graph	node	edge
transportation	street intersection	one-way street
web	web page	hyperlink
food web	species	predator-prey relationship
scheduling	task	precedence constraint
financial	bank	transaction
cell phone	person	call
citation	journal article	citation
• • •	•••	

Graph Search

- Directed reachability. Given a node s, find all nodes reachable from s.
- Directed s t shortest path problem. Given two node s and t, what is the length of the shortest path from s and t?
- Graph search. BFS extends naturally to directed graphs.
- Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

Strong Connectivity

- Def. Nodes *u* and *v* are mutually reachable if there is a both path from *u* to *v* and also a path from *v* to *u*.
- Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma 1

Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Strong Connectivity: Algorithm

Theorem 2

Can determine if G is strongly connected in O(m + n) time.

Pf. Pick any node s.

Run BFS from s in G.

Run BFS from s in G^{rev} (reverse every edge in G).

Return true iff all nodes reached in both BFS executions.

Correctness follows immediately from previous lemma.

not strongly connected

Strong Components

Def. A strong component is a maximal subset of mutually reachable nodes.

Theorem 3 (Tarjan 1972)

Can find all strong components in O(m + n) time.

Directed Acyclic Graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as v_1, v_2, \dots, v_n so that for every edge (v_i, v_j) we have i < j.

Precedence Constraints

- Precedence constraints. Edge (v_i, v_j) means task v_i must occur before v_i .
- Applications.

Course prerequisite graph: course v_i must be taken before v_j .

Compilation: module v_i must be compiled before v_j .

Computing jobs: output of job v_i needed to determine input of job v_j .

Topological Ordering

Lemma 4

If G has a topological order, then G is a DAG.

Pf. [by contradiction]

Suppose that G has a topological order v_1, v_2, \dots, v_n and that G also has a directed cycle C.

Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i .

Thus (v_j, v_i) is an edge, and j < i.

By our choice of i, we have i < j, a contradiction. \square

Topological Ordering

Lemma 5

If G is a DAG, then G has a node with no entering edges.

Lemma 6

If G is a DAG, then G has a topological order.

Pf. [by induction on *n*]

Base case: true if n = 1.

Given DAG on n > 1 nodes, find a node v with no incoming edges.

 $G - \{v\}$ is a DAG.

By inductive hypothesis, $G - \{v\}$ has a topological ordering.

Place v first in topological ordering; then append nodes of $G - \{v\}$ in topological order.

This is valid since v has no incoming edges. \square

Compute a Topological Ordering of G:

- 1: Find a node *v* with no incoming edges and order it first.
- 2: Delete v from G.
- 3: Recursively computer a topological ordering of $G \{v\}$ and append this order after v.

Theorem 7

The algorithm finds a topological order in O(m + n) time.

Pf. count(w) = remaining number of incoming edges of node w; S = set of remaining nodes with no incoming edges.

Initialization: O(m+n) via single scan through graph.

```
Update: to delete v,
    remove v from S;

decrement count(w) for all edges from v to w;
and add w to S if count(w) hits 0.
this is O(1) per edge. □
```


Coin Changing

Goal. Given currency denominations: 1 (penny), 5 (nickel), 10 (dime), 25 (quarter), 100 (dollar), devise a method to pay amount to customer using fewest number of coins. Ex. 34c.

 Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.
 Ex. \$2.89.

Cashier's algorithm

CASHIERS – ALGORITHM (x, c_1, \dots, c_n)

```
1: SORT n coin denominations so that c_1 < c_2 < \cdots < c_n.
2: S ← Ø
 3: while x > 0 do
    k \leftarrow \text{largest coin denomination } c_k \text{ such that } c_k \leq x.
5: if no such k then
         return "no solution".
7: else
8: x \leftarrow x - c_k, S \leftarrow S \cup \{k\}.
     end if
10: end while
11: return S.
```

Q. Is cashier's algorithm optimal?

Properties of Optimal Solution

- Property. Number of pennies ≤ 4.
- Pf. Replace 5 pennies with 1 nickel.
 - Property. Number of nickels ≤ 1.
 - Property. Number of quarters ≤ 3.
 - *Property*. Number of nickels + number of dimes ≤ 2 .

Pf.

Recall: at most 1 nickel.

Replace 3 dimes and 0 nickels with 1 quarter and 1 nickel;

Analysis of Cashier's Algorithm

Theorem 8

Cashier's algorithm is optimal for U.S. coins: 1, 5, 10, 25, 100.

Pf. [by induction on x]

Let k be the largest coin denomination c_k such that $c_k \le x$: greedy takes coin k.

Claim: Any optimal solution must also take coin k.

If not, it needs enough coins of type c_1, \dots, c_{k-1} to add up to x.

Proof-Con't

k	Ck	property	max value
1	1	<i>P</i> ≤ 4	-
2	5	<i>N</i> ≤ 1	4
3	10	<i>N</i> + <i>D</i> ≤ 2	4 + 5 = 9
4	25	Q ≤ 3	20 + 4 = 24
5	100	no limit	75 + 24 = 99

Table 1: property and max value of c_1, \dots, c_{k-1} in any optimum

No optimal solution can do this.

Coin-changing $x-c_k$ cents, by induction, is optimally solved by cashier's algorithm. \Box

Cashier's Algorithm for Other Denominations

- Q. Is cashier's algorithm for any set of denominations?
- A. No. Consider U.S. postage: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Cashier's algorithm: 140c = 100 + 34 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

Optimal: 140c = 70 + 70.

A. No. It may not even lead to a feasible solution if $c_1 > 1$: 7, 8, 9.

Homework

- Read Chapter 3 of the textbook.
- Exercises 2 & 8 in Chapter 3.

