Задача 12. (от поправителен изпит 2015г.)

Нека R е релация над двойка естествени числа $M=\mathbb{N}^2$ и $(a,b)R(c,d)\Leftrightarrow \exists k\in N(a=kc\ \&\ d=kb)$. Да се провери дали R е частична наредба и релация на еквивалентност.

Решение:

За да решим задачата, трябва да проверим за рефлексивност, симетричност, антисиметричнот и транзитивност:

- а) Рефлексивност: $(a,b) \in N^2$ $(a,b)R(a,b) \Leftrightarrow \exists k \in \mathbb{N} (a=ka \ \& \ b=kb)$, такова k съществува: $k=1 \Rightarrow R$ е рефлексивна.
- **б)** Симетричност: $(a,b), (c,d) \in \mathbb{N}^2$. Нека $(a,b)R(c,d) \Rightarrow \exists k \in \mathbb{N} (a=kc) \ \& \ d=kb)$. Трябва да проверим дали от това следва, че (c,d)R(a,b), тоест $\exists p \in N(c=pa \ \& \ b=pd)$. Ще покажем, че това не е така с контрапример. За да е изпълнено е необходимо a=kc и $c=pa \Leftrightarrow a=kpa \Leftrightarrow a(1-kp)=0 \Leftrightarrow a=0$ или $p=k=1(p,k\in\mathbb{N})$. Тоест, ако вземем пример, който не отговаря на тези условия, то той ще е контрапример. Да видим: Нека a=2,d=4,k=2,(a,b)R(c,d),(2,b)R(c,4) $2=2.c\Rightarrow c=1$ и $4=2.b\Rightarrow b=2$. Трябва да намерим $p\in\mathbb{N}$, за което $1=2p,2=4p\Rightarrow p=\frac{1}{2}\notin\mathbb{N}$, което прави (2,2) и (1,4) валиден контрапример.

Следователно R не е симетрична.

в) Антисиметричност: $(a,b),(c,d)\in\mathbb{N}^2$. Нека (a,b)R(c,d) и $(c,d)R(a,b)\Rightarrow\exists k\in\mathbb{N}:(a=kc\ \&\ d=kb)$ и $\exists p\in\mathbb{N}(c=pa\ \&\ b=pd)$. Трябва да проверим дали от това следва, че (a,b)=(c,d). $a=kpa\Rightarrow a(1-kp)=0\Rightarrow a=0$ или $p=k=1(p,k\in\mathbb{N})$. От това произлизат два случая:

1.)
$$p = k = 1 \Rightarrow a = c, b = d \Rightarrow (a, b) = (c, d)$$

2.)
$$a = 0 \Rightarrow c = 0.p \Rightarrow c = 0$$
.

Да видим за b и d : d=d . p . $k\Rightarrow d(1-pk)=0\Rightarrow d=0$ или $p=k=1(p,k\in\mathbb{N})$

Образуваме два подслучая:

2.1.)
$$p = k = 1 \Rightarrow a = c, b = d \Rightarrow (a, b) = (c, d);$$

2.2.)
$$d = 0 \Rightarrow b = 0.p \Rightarrow b = 0$$
.

И получаваме $a=c=0, b=d=0 \Rightarrow (a,b)=(c,d)$. И така получихме равенство на наредените двойки от естествени числа във всеки един от тези случаи. Следователно релацията R е антисиметрична.

г) Транзитивност: $(a,b), (c,d), (e,f) \in \mathbb{N}^2$. Нека (a,b)R(c,d) и $(c,d)R(e,f) \Rightarrow (\exists k \in \mathbb{N})[a = kc \& d = kb]$ и $(\exists p \in \mathbb{N})[c = pe \& f = pd]$.

Трябва да проверим дали от това следва, че (a,b)R(e,f), тоест дали $(\exists q \in \mathbb{N})[a=qe \ \& \ f=qb].$

$$a=kc=kpe$$

 $f=dp=bkp=kpb$
 $\Rightarrow q=kp\in N\Rightarrow R$ е транзитивна.

От полученото може да заключим, че релацията е частична наредба и не е релация на еквивалентност.