I. Définition d'un miroir plan -symbole :

- Un **miroir** en optique est une surface réfléchissante.
- Un miroir plan est une surface réfléchissante plane qui réfléchit de façon spéculaire (régulière) la lumière.
- Un miroir plan forme une **image virtuelle**. Les rayons réfléchis par le miroir semblent provenir de l'endroit où se trouve l'image virtuelle. On représente le miroir plan par un trait montrant le plan du miroir dont on hachure le coté non réfléchissant.(doc 1)

Doc(1)

II. Expérience de deux bougies :

1) Mode opératoire :

L'expérience consiste à utiliser deux bougies identiques, dont l'une est allumée.

On place celle qui est allumée d'un côté la « vitre-miroir » et on observe alors son image dans la vitre. On place alors la bougie éteinte de l'autre côté de la vitre, de façon qu'elle coïncide avec l'image : la deuxième bougie semble allumée.(Doc2).

On constate alors que la position de la deuxième bougie est le symétrique orthogonal de la première par rapport au plan du miroir.(Doc 3)

Tout objet placé en amont d'un système optique, dans le sens de propagation de la lumière, est un objet réel.

2) Interprétation à l'aide des lois de Snell-Descartes :

Un point lumineux de la flamme émet de la lumière dans toutes les directions.

Chaque rayon issu de la flamme est réfléchi suivant la loi de Snell-Descartes : il est dans le même plan et l'angle de réflexion est égale à l'angle d'incidence.

en prolongeant « en arrière » les rayons réfléchis, que ceux-ci semblent provenir d'un point unique, symétrique du point source S par rapport au miroir. Ce point S' est appelé '' image virtuelle'' (Doc3)

l'expérience met en évidence le fait que l'objet B et son image B' sont symétriques par rapport à la vitre (miroir) , la lumière de la flamme semble provenir de la bougie éteinte placée de façon symétrique car la bougie éteinte coïncide avec l'image de la bougie allumée.

L'observateur qui place son œil dans le faisceau réfléchi, reçoit donc de la lumière qui lui semble provenir de ce point.

3) Conclusion:

- O Tout les rayons issus de B semblent provenir de B' après réflexion sur le miroir.
- L'image et l'objet sont symétriques par rapport au plan du miroir : Ils sont de même taille.

III. Construction pratique de l'image :

Soit un objet situé en A .On construit son image A' Qui lui est symétrique par rapport au plan du miroir.

Plaçons au point O_1 , l'œil voit A' car la droit (A' O_1) Coupe le miroir .(Doc4)

Le rayon lumineux issu de A et arrivant en O_1 suit le trajet AIO₁.

Au point O_2 l'œil ne voit pas A' car la droit A' O_2 ne Coupe pas le miroir .(Doc4).

A retenir: Le point A' est le symétrique du point objet A par apport au plan du miroir. la relation du conjugaison du miroir plan s'écrit: $\overline{HA} + \overline{HA'} = 0$

Doc (4)

IV. Champ de vision d'un miroir plan :

1) Définition:

Le champ de vision d'un miroir est la portion de l'espace observable dans ce miroir. (c'est à dire l'espace que l'observateur peut percevoir en se regardant dans ce miroir).

2) Mise en évidence :

Application:

- a) Construire l'image d'un objet AB transverse(parallèle au miroir) (doc a).
- b) Construire l'image d'un objet AB axial (orthogonal au miroir) (doc b).
- c) Hachurer la zone où doit se trouver l'œil d'observateur pour qu'il puisse voir l'objet tout entier.

Correction:

a)

V. le retour inverse de la lumière :

• 1ér cas :

pour A' image de A on a : $\overline{OA} + \overline{OA'} = 0$ Les rayon issus de A semblent provenir de A' après réflexion sur le miroir .(Doc5)

Doc(5)

• 2éme cas:

pour A image de A' on a : $\overline{OA'} + \overline{OA} = 0$

Les rayons qui se dirigent vers A' convergent en A' après réflexion sur le miroir. (Doc6).

Doc(6)

Pour les deux cas envisagés, la lumières suit le même trajet mais en sens inverse Ce résultat à un principe général : le retour inverse de la lumière.

Exercice 1: Miroir plan

Deux miroirs M₁ et M₂ sont disposés perpendiculairement l'un à l'autre,

et un objet ponctuel A est situé de façon à être vu simultanément dans ces 2 miroirs.

- 1) Construire l'image A_1 de A dans le miroir M_1 et tracer un faisceau de rayons issu de A puis réfléchis par M₁. A₁ peut il jouer le rôle d'objet par rapport au miroir M₂ ? Si oui, construire son image A₁₂ dans M₂ et les rayons correspondants. Le processus peut-il se poursuivre par une nouvelle réflexion sur M_1 ?
- 2) de la même manière, construire l'image A₂ de A dans M₂ puis l'image A₂₁ de A₂ dans M₁. Finalement, combien d'images de A l'observateur peut il voir ?

Correction:

L'image de A donné par un miroir plan est le symétrique de A par rapport au plan du miroir.

Construction de A1 image de A par le miroir M1 :

A1 est le symétrique de A par rapport au plan du miroir M1.

A1 est en avant du miroir M2, il peut donc jouer le rôle d'objet réel par rapport au miroir M2. Construction de A12 image de A1 par le miroir M2 :

A12 est le symétrique de A1 par rapport au plan du miroir M2.

Le processus ne peut pas se poursuivre par une nouvelle réflexion sur M1 car A12 se trouve en arrière de M1 et ne peut donc jouer le rôle d'objet réel pour M1.

Construction de A2 image de A par le miroir M2 :

A2 est le symétrique de A par rapport au plan du miroir M2.

A2 est en avant du miroir M1, il peut donc jouer le rôle d'objet réel par rapport au miroir M2. Construction de A21 image de A2 par le miroir M1 :

A21 est le symétrique de A2 par rapport au plan du miroir M1.

Le processus ne peut pas se poursuivre par une nouvelle réflexion sur M2 car A21 se trouve en arrière de M2 et ne peut donc jouer le rôle d'objet réel pour M2.

Finalement, l'observateur peut voir 3 images : A_1 , A_2 , $A_{21}=A_{12}$.

Email: mzrhassan65@gmail.com