Question	Scheme	Marks
6	$A = \frac{r^2}{2} \times \frac{\pi}{6} = \left(\frac{\pi r^2}{12}\right)$	B1
	$\frac{\mathrm{d}A}{\mathrm{d}r} = \frac{2 \times \pi r}{12} = \left(\frac{\pi r}{6}\right)$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$	M1
	Length of arc $AB = \frac{5\pi}{2} = r\frac{\pi}{6} \Rightarrow r = 15$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\pi \times 15}{6} \times 0.2 = \frac{\pi}{2} \left(\mathrm{cm}^2 / \mathrm{s} \right)$	M1A1 [6]
Total 6 marks		

Question	Notes	Marks
6	For using the correct formula for the area of the sector	
	$A = \frac{r^2}{2} \times \frac{\pi}{6} = \left(\frac{\pi r^2}{12}\right)$	B1
	For an attempt to differentiate their expression for the area	
	provided it is in the form $A = kr^2$ where $k \neq 1$ (see general	
	guidance)	M1
	$\frac{\mathrm{d}A}{\mathrm{d}r} = \frac{2 \times \pi r}{12} = \left(\frac{\pi r}{6}\right)$	
	For a correct statement of chain rule to achieve $\frac{dA}{dt}$	
	$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$ may be seen stated or implied by substitution.	M1
	For using the length of arc when the length of arc is $\frac{5\pi}{2}$	M1
	$\frac{5\pi}{2} = r\frac{\pi}{6} \Longrightarrow (r = 15)$	
	For attempting to find the rate of change of area using a	
	correct chain rule, their $\frac{dA}{dr}$, the given $\frac{dr}{dt}$ and their value for r	
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{'\pi'}{6} \times '15' \times 0.2 = \dots$	M1
	For the correct value of $\frac{dA}{dt} = \frac{\pi}{2} \left(\text{cm}^2 / \text{s} \right)$	A1
		[6]
Total 6 marks		