Particle spectrograph

Wave operator and propagator

_							
${\mathfrak l}_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2 k^2}{(1+2 k^2)^2 t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}_{+\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$J_1^{\#1} + \alpha \beta$	$J_1^{\#2} + \alpha \beta$	$\tau_1^{\#_1} + \alpha \beta$	$\sigma_{1}^{\#1} \dagger^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

Quadratic (free) Lagrangian density	$-t_1 \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\frac{2}{3}r_{1}\partial^{\beta}\omega^{\theta\alpha}_{\alpha}\partial_{\alpha\beta}^{\kappa} - \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\theta\alpha\beta} +$	$r_1 \partial_{lpha} \omega_{\lambda}^{\ \ lpha} \partial_{\kappa} \omega^{eta \kappa \lambda} - r_1 \partial_{ heta} \omega_{\lambda}^{\ \ lpha} \partial_{\kappa} \omega^{eta \kappa \lambda} + r_1 \partial_{lpha} \omega_{\lambda}^{\ \ lpha} \partial_{\kappa} \omega^{\kappa \lambda heta} - 2 r_1 \partial_{ heta} \omega_{\lambda}^{\ \ lpha} \partial_{\kappa} \omega^{\kappa \lambda heta} - 2 r_2 \partial_{\kappa} \omega_{\lambda}^{\ \ lpha} \partial_{\kappa} \omega^{\kappa \lambda heta} - 2 \sigma_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} + 2 \sigma_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} + 2 \sigma_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} + 2 \sigma_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} + 2 \sigma_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} + 2 \sigma_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} + 2 \sigma_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} + 2 \sigma_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda heta} + 2 \sigma_{\kappa} \omega^{\kappa \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda \lambda \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda \lambda \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda \lambda \lambda \lambda heta} \partial_{\kappa} \omega^{\kappa \lambda \lambda$	$rac{1}{2}t_1\partial^{lpha}\!f_{eta\kappa}\partial^{\kappa}\!f_{lpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$t_1\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^\kappa f'_{\;\;\prime} + 2t_1\partial^\alpha f_{\;\kappa\alpha}\;\partial^\kappa f'_{\;\;\prime} - t_1\partial_\kappa f^\lambda_{\;\;\lambda}\;\partial^\kappa f'_{\;\;\prime} + 2t_1\;\omega_{\iota\kappa\theta}\;\partial^\kappa f'^\theta -$	$t_1\;\omega_{_{I}\alpha}^{ \alpha}\;\partial^k f'_{_{K}} - t_1\;\omega_{_{I}\lambda}^{ \lambda}\;\partial^k f'_{_{K}} + \frac{1}{2}t_1\partial^\alpha f^\lambda_{_{K}}\;\partial^k f_{\lambda\alpha} + \frac{1}{2}t_1\partial_\kappa f_{}\beta}^{ \lambda}\partial^\kappa f_{}\beta}^{ \beta} +$	$\frac{1}{2}t_1\partial_{\kappa}f^{\lambda}_{\theta}\partial^{\kappa}f_{\theta}^{\theta}-t_1\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa}+\frac{2}{3}r_1\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta}-\frac{2}{3}r_1\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta}+$	$\frac{2}{3} r_1 \partial^\beta \omega_{\alpha \lambda}^{\ \alpha \lambda} \partial_\lambda \omega_{\alpha \beta}^{\ \prime} - \frac{8}{3} r_1 \partial^\beta \omega_{\lambda \alpha}^{\ \lambda \alpha} \partial_\lambda \omega_{\alpha \beta}^{\ \prime} - r_1 \partial_\alpha \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} + r_1 \partial_\theta \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa}$
-------------------------------------	--	---	--	--	--	---	---	---

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	_						
$f_{1^-\alpha}^{\#2}$	0	0	0	$\overline{i} k t_1$	0	0	0
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}{}_{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^-}^{\#1}{}_{\alpha}$		0	0	$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
$f_{1}^{\#1}$	Hier	0	0	0	0	0	0
$\omega_{1}^{\#2}$	Hai	0	0	0	0	0	0
$\omega_{1}^{\#1}_{\alpha\beta}$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\alpha\beta$	-αβ	$-\alpha\beta$	$+_{\alpha}$	$+^{\alpha}$	$+^{\alpha}$	$+^{\alpha}$
)#1 1+1)#2 1+1	#1 1++	$\omega_{1}^{\#1}$	$\omega_{1}^{\#2}$.	$f_{1}^{\#1}$	$f_{1}^{#2}$
	- 3	3	4	_	_		

	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\sharp 1}$ †	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$-t_1$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

0

0

 $-\frac{ikt_1}{\sqrt{2}}$

 $\omega_2^{\sharp 1} \dagger^{\alpha\beta\chi}$

SO(3) irreps	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0+}^{\#1} - 2 ik\sigma_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{\imath}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total constraints:	16

Source constraints/gauge generators

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$