Test over rotation:
THURS, 3/13

Newton's Law of Universal Gravitation

EXAMPLE 1: What is the force of attraction due to gravity between an 18 kg mass and a 30 kg mass separated by 40 centimeters?

$$F_{\text{gravity}} = \frac{G m_1 m_2}{\Gamma^2}$$

$$= (6.67 \times 10^{-11})(18)(30)$$

$$= 2.25 \times 10^{-7} \text{ N}$$

EXAMPLE 1: What is the force of attraction due to gravity between an 18 kg mass and a 30 kg mass separated by 40 centimeters?

$$F = G \frac{M_1 M_2}{r^2} = 6.67 \times 10^{11} \frac{(18)(30)}{(.4)^2}$$

$$= 2.25 \times 10^{-7} \text{ N} \quad \text{ATTRACTION}$$

$$PRETTY SMALL!$$

EXAMPLE 2: What is the acceleration of Earth's gravity on top of Mt. Everest? Mt. Everest has an elevation of 8848 meters above sea level. Assume the Earth's radius is 6.38x106 meters, and Earth's mass is 5.98x10²⁴ kg.

$$F_{gravity} = \frac{Gm_{i}m_{2}}{F^{2}} = m_{2}g$$

$$M_{i}Q = \frac{Gm_{i}m_{2}}{F^{2}} = m_{2}g$$

$$G = \frac{(6.67 \times 10^{-11})(5.98 \times 10^{24})}{(6.38 \times 10^{6} + 9848)^{8}}$$

$$G = 9.77 m/_{3}$$

EXAMPLE 2: What is the acceleration of Earth's gravity on top of Mt. Everest? Mt. Everest has an elevation of 8848 meters above sea level. Assume the Earth's radius is 6.38x10⁶ meters, and Earth's mass is 5.98x10²⁴ meters.

$$r = r_{\text{EMPTH}} + 8848m$$

$$a = \frac{(6.67 \times 10^{-4})(5.98 \times 10^{24})}{(6.38 \times 10^{6} + 8848)^{2}} = \boxed{9.767 \% 2}$$

AT THE EARTH'S SEA LEVEL ELEVATION (FOR COMPARISON):

$$a = \frac{GM_{E}}{r_{e^{2}}^{2}} = \frac{(6.67 \times 10^{11})(5.98 \times 10^{24})}{(6.38 \times 10^{6})^{2}} = 9.794 \%^{2}$$

EXAMPLE 3: What is the acceleration of gravity at the surface of the sun? The mass of the sun is 2.0x10³⁰ kg. The radius of the sun is 7.0x10⁸ meters.

EXAMPLE 3: What is the acceleration of gravity at the surface of the sun? The mass of the sun is 2.0x10³⁰ kg. The radius of the sun is 7.0x10⁸ meters.

EXAMPLE 4: Determine the net force upon a 70-kg person located from two planets as shown below.

EXAMPLE 4: Determine the net force upon a 70-kg person located

from two planets as shown below.

SATELLITE MOTION

M = MASS OF OBJECT BRING ORBITED

M = MASS OF SATELLITE

r = RADIUS OF ORBIT

GRAVITY PROVIDES THE CENTRIPETAL FORCE NECESSARY FOR CIRCULAR MOTION

ΣF=ma

$$F_{GRAUTTY} = m\left(\frac{r^2}{r}\right)$$

ALL RELATIONSHIPS STEM FROM THESE TWO.

T = THE PERIOD (THE TIME FOR ONE REVOLUTION) EXAMPLE 1: What is the <u>orbital speed</u> of the Hubble Space Telescope? The altitude of the HST is 596 km above the Earth. The radius of the Earth is 6.38x10⁶ meters, and the Earth's mass is 5.98x10²⁴ kg.

EXAMPLE 1: What is the orbital speed of the Hubble Space Telescope? The altitude of the HST is 596 km above the Earth. The radius of the Earth is 6.38x10⁶ meters, and the Earth's mass is 5.98x10²⁴ kg.

$$\sum F = ma$$

$$\sum F = m(\frac{r^2}{r})$$

$$\int \frac{Mm}{r^2} = \frac{mr^2}{r}$$

$$\sqrt{-\int \frac{GM}{r}} = \sqrt{\frac{(6.67 \times 10^{-11})(5.98 \times 10^{24})}{(6.38 \times 10^6 + 516000)}} = 7560 \frac{m}{5}$$

EXAMPLE 2: What is the period (in hours) of the Hubble Space Telescope?

$$(6.38 \times 10^{6} + 596000)$$

$$V = \frac{211}{7}$$

$$T = 211 (6.38 \times 10^{6} + 596000)$$

$$7560$$

EXAMPLE 2: What is the period (in hours) of the Hubble Space Telescope?

$$V = 7560 \%$$

$$V = \frac{2\pi r}{T}$$

$$T = \frac{2\pi r}{r} = \frac{2\pi (6.38 \times 10^6 + 596000)}{7560} = 5798 \text{ sec}$$

$$5798 \sec(\frac{1}{3600} \frac{hr}{sec}) = 1.61 \text{ HR}$$

EXAMPLE 3: At what height above the Earth do geo-synchronous satellites orbit? The Earth's mass is 5.98x10²⁴ kg and the Earth's radius is 6.38x10⁶ meters.

EXAMPLE 3: At what height above the Earth do geo-synchronous satellites orbit? The Earth's mass is 5.98x10²⁴ kg and the Earth's radius is 6.38x10⁶ meters.

$$V = \frac{2\pi r}{T} = \frac{2\pi R}{1 \text{ Day}} \left(\frac{1 \text{ DAY}}{24 \text{ HR}} \right) \left(\frac{1 \text{ HR}}{3600 \text{ sec}} \right) = (7.272 \times 10^{-5}) R$$

Solve FOR R - THE DISTANCE FROM THE CENTER OF THE EARTH, AND THEN FIND THE HEIGHT.

$$\Sigma F = ma$$

 $\Sigma F = m(\underline{Y}^2)$

$$Q \frac{K_s}{WW} = W \frac{K_s}{\kappa_s}$$

$$\frac{GM}{R} = (7.772 \times 10^{-5})^2 R^2$$

$$\frac{GM}{(7.272 \times 10^{-9})^2} = R^3$$

$$\frac{3\sqrt{(6.67\times10^{-11})(5.98\times10^{24})}}{\sqrt{(7.272\times10^{-5})^2}} = 4.224\times10^7 \,\mathrm{m}$$

$$h = R - r_{earth}$$

= $4.224 \times 10^7 - 6.38 \times 10^6 = 3.586 \times 10^7 \text{ m}$
or 3586 km

Ahunna Lab: #1: Either measure/calculate $\Sigma \tau_{\infty}$ $\Sigma \tau = T \infty$ predict TOr use $|D^3 \text{ kg m}^3 \text{ for } T$ $\{T_1 = ?\}$ $\{T_2 = ?\}$ Spring scales / h = {known radii $\theta = \pm rotations \times 2\pi$ The asurements $t = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} =$

Test to see if you
really get a =

-> hang the masses

-> Measure C, t -> < -> a, g