Chapitre 3: Triangulation et applications

Arnault Ioualalen, Arnaud Mary, Hélène Amodéos, Benoit Lopez

1 Problème de la triangulation

 $\mathbf{But}: \ \mathrm{Partitionner}$ en triangles un polygone ou l'enveloppe convexe d'un ensemble de points.

Motivations:

- Imagerie 3D
- Décomposition d'un polygone : calcul d'aire, calcul de plus court chemin...
- $-\,$ Reconstruction 3D : construire un maillage réaliste à partir d'un ensemble de points.

Objectif: Faire de « belles » triangulations.

Fig. 1 – Exemple d'une mauvaise triangulation

Fig. 2 – Exemple d'une bonne triangulation

Un problème connexe à la triangulation : Déterminer un régionnement du plan (diagramme de « Voronoï »).

Exemple 1.1 La triangulation permet notament de :

- Trouver le site le plus proche d'un point du plan (bureau de poste).
- Trouver un chemin qui évite au mieux tous les sites (mines).

Fig. 3 – Exemple du bureau de poste

Définition 1.1 Soit P un ensemble de points. Une triangulation de P est un ensemble de triangles $\tau = (T_1, T_2, ..., T_t)$ tels que :

- 1. les sommets des triangles sont des points de P,
- 2. $\forall p \in P, \forall i \in [1..t] \Rightarrow p$ est un sommet de T_i ou $p \notin T_i$,
- 3. $(T_1, T_2, ..., T_t)$ est une partition de EC(P).

Pour un polygone simple (i.e. sans trou) $Q = (p_0, p_1, ..., p_r, p_0)$, une triangulation de Q est un ensemble de triangles $\tau = (T_1, T_2, ..., T_t)$ tel que :

- 1. les sommets des triangles sont des points de P,
- 2. $\forall p \in P, \forall i \in [1..t] \Rightarrow p$ est un sommet de T_i ou $p \notin T_i$,
- 3. $(T_1, T_2, ..., T_t)$ est une partition de l'intérieur du polygone.

Remarque : Seule la dernière condition change, les deux premières sont identiques.

Exemple 1.2

Fig. 4 – 2 triangulations possibles pour un même ensemble de points

Dans les 2 cas, il existe plusieurs triangulations possibles, mais on a toujours les invariants suivants (voir chapitre sur les graphes planaires):

- Soit P un ensemble de n points, si on note :
 - $-n_e = \text{le nombre de sommets de } EC(P).$
 - -m =le nombre de segments créés (à partir de EC(P)).
 - -t =le nombre de triangles créés.

alors on a les egalités suivantes :

- $-m = 3(n-1) n_e.$
- $-t=2(n-1)-n_e.$
- Soit Q un polygone à n sommets, si on note m_i le nombre de segments créés à l'intérieur de Q, on a les égalités suivantes :
 - $-m_i = n 3.$
 - -t = n 2.

Définition 1.2 Le dual d'une triangulation $\tau = (T_1, T_2, ..., T_t)$ est le graphe dont les sommets sont 1, ..., t et dont les arêtes sont les paires $\{i, j\}$ pour lesquelles T_i et T_j ont une frontière commune.

Fig. 5 – Duals de triangulations d'un ensemble de points et d'un polygone

2 Triangulation d'un ensemble de points : algorithme incrémental

On considère $P = (p_1, p_2, ..., p_r)$ un ensemble de points du plan.

Principe de l'algorithme : On trie les points de P par ordre lexicographique croissant, i.e. $(x, y) <_{lex} (x', y') \Rightarrow (x < x')$ ou $(x = x' \ et \ y < y')$. Puis on les insère dans la triangulation.

On note $p_1, p_2, ..., p_n$ les points triés par ordre croissant et on note EC_i l'enveloppe convexe $EC(p_1, p_2, ..., p_i)$. On dit qu'un point p_j de EC_i est visible par p_{i+1} si le segment $[p_{i+1}p_j]$ ne coupe pas EC_i . Pour trianguler à l'étape i+1 on cherche tous les points visibles par le point qu'on cherche à ajouter.

Fig. 6 – Illustration du principe de l'algorithme

Du fait que les points de P sont triés par ordre lexicographique on a le lemme suivant :

Lemme 2.1 $\forall i \in \{1, ..., n\}$ on a :

- p_i est un point de EC_i .
- les points visibles de EC_i forment un intervale.
- p_i est visible par p_{i+1} .

De ce fait lors du calcul de l'étape i+1 les points visibles de EC_i sont à rechercher autour de p_i

Fig. 7 – Points visibles par p_{i+1}

On a l'algorithme suivant :

Algorithme 1 TRIANGULATION INCREMENTALE

```
Données : P = (p_1, ..., p_n) des points du plan
- Sortie : \tau une triangulation de P
  \tau \leftarrow \{p_1, p_2, p_3\}
  EC \leftarrow (p_1, p_2, p_3) ou (p_1, p_3, p_2) (dans le sens direct)
  pour i=3 à n-1 faire
     \# ajout de p_{i+1}
     On note EC = (q_1, ..., q_l) avec q_k = p_i
     tant que (det(p_{i+1}q_k, p_{i+1}q_{k+1}) < 0) faire
        \tau \leftarrow \tau \cup \{p_{i+1}q_kq_{k+1}\}
        k \leftarrow k+1
     fin tant que
     k_{haut} \leftarrow k
     Retrouver k tel que q_k = p_i
     tant que (det(p_{i+1}q_k, p_{i+1}q_{k-1}) > 0) faire
        \tau \leftarrow \tau \cup \{p_{i+1}q_kq_{k-1}\}
        k \leftarrow k-1
     fin tant que
     k_{bas} \leftarrow k
     Mise à jour de EC : on remplace (q_{k_{bas}+1}q_{k_{bas}+2}...q_{k_{haut}-1}) par p_{i+1}
  fin pour
  Retourner: \tau
```

Preuve : On admet la validité de l'algorithme.

Complexité:

- le tri des points peut se calculer en $O(n \log(n))$
- la mise à jour de l'enveloppe convexe peut s'implementer en O(1) avec une liste doublement chaînée.
- la boucle principale créera au plus 2n triangles.

Total : $O(n \log(n))$

3 Triangulation de Delaunay

 $\bf Motivation: Améliorer$ l'algorithme précédent qui parfois rend des triangulations « moches »

Exemple 3.1 Problème de la cartographie 3D

Fig. 8 – La première triangulation donne des pyramides alors que la réalité serait plutôt une chaîne de montagne (deuxième triangulation)

Remarque : Soit P un ensemble de n points du plan. Toute triangulation de P contient t = 2(n-1) - |EC(P)| triangles. On a donc toujours le même nombre d'angles : 3t.

Pour une triangulation τ on note $A(\tau)$ la suite des angles de tous les triangles de τ , triée par ordre croissant. On dit que τ est meilleur que τ' si $A(\tau) >_{lex} A(\tau')$ (i.e. le premier terme qui diffère entre $A(\tau)$ et $A(\tau')$ est plus grand dans $A(\tau)$).

Exemple 3.2

Fig. 9 – τ est meilleure que τ'

Définition 3.1 Une triangulation de Delaunay de P est une triangulation τ de P avec $A(\tau)$ maximum parmis toutes les triangulations.

Remarque : Si l'ensemble P ne contient aucun quadruplet de points cocycliques alors la triangulation de Delaunay est **unique**.

Problématique : Comment savoir si une nouvelle triangulation améliore le résultat ?

Lemme 3.1 Soit D un point du plan, si D est inclus strictement dans le cercle circonscrit du triangle ABC, alors la triangulation $\tau = \{ACD, ABD\}$ est meilleure que $\tau' = \{ACB, DCB\}$ (car $A(\tau) >_{lex} A(\tau')$)

Fig. 10 – Exemple de flip

Caractérisation : Soit $\tau = (T_1, T_2, ..., T_t)$ une triangulation d'un ensemble de points P, alors τ est un triangulation de Delaunay de $P \Leftrightarrow \forall i \in [1..t]$ le cercle circonscrit à T_i ne contient strictement aucun sommet de P.(i.e il n'y a plus aucun « flip »possible)

Remarques:

- l'implication \Rightarrow est immédiate : en effet si on a un flip qui est possible encore alors on peut faire croître strictement $A(\tau)$
- l'implication ← est beaucoup moins évidente(notion de triangulation localement de Delaunay).

Fig. 11 – A gauche une triangulation de Delaunay, à droite une triangulation qui n'est pas de Delaunay

L'algorithme suivant permet d'obtenir une triangulation de Delaunay :

Algorithme 2 DELAUNAY-PAR-FLIP

- **Données :** $P = (p_1, ..., p_n)$ des points du plan
- Sortie: $\tau = (T_1, ..., T_t)$ une triangulation de Delaunay de P

Construire une triangulation τ de P

tant que un flip est possible dans τ faire

Faire le flip dans τ .

fin tant que Retourner : τ

Remarques:

- L'algorithme se termine car la suite $A(\tau)$ croît strictement, mais quand?
- On peut construire un algorithme polynomial : Bower-Watson.

Algorithme 3 BOWER-WATSON

- **Données :** $P = (p_1, ..., p_n)$ des points du plan
- Sortie : $\tau = (T_1, ..., T_t)$ une triangulation de Delaunay de P

Trouver un triangle ABC contenant tous les sommets de P

 $\tau = \{ABC\}$

Noter $(p_1,...,p_n)$ les points de P à ajouter

pour i=1 à n faire

Trouver tous les triangles de τ qui contiennent p_i dans leur cercle circonscrit Noter $q_1, ..., q_l$ les sommets de ces triangles triés par ordre polaire croissant depuis p_i

Supprimer ces triangles de τ

 $\tau \leftarrow \tau \cup \{q_1q_2p_i, q_2q_3p_i, ..., q_{l-1}q_lp_i, q_lq_1p_i\}$

fin pour

Supprimer tous les triangles contenant A, B ou C

Retourner : τ

Preuve : On admet la validité de l'algo.

Complexité:

- le tri de $q_1, q_2, ..., q_l$ peut s'implémenter en $O(n \log(n))$
- trouver les triangles contenant p_i se fait au pire en O(n) car il y a un nombre linéaire de triangles en tout.
- La boucle principale s'éxecute exactement \boldsymbol{n} fois.

Total : l'algorithme de BOWER-WATSON s'éxecute en $O(n^2 \log(n))$

Remarques:

- On peut améliorer la complexité car si on peut connaître les triangles voisins d'un triangle donné en O(1), du coup on peut déterminer le tri de $(q_1, q_2, ..., q_l)$ en O(n) (car les triangles à enlever forment un ensemble connexe étoilé)
- Si on améliore encore les structures de données utilisées on peut arriver à faire du $O(n \log(n))$ avec une même approche incrémentale.

4 Diagramme de Voronoï

Définition 4.1 On note :

 $H_{ab} = \{p \in \mathbb{R}^2 : d(a,p) < d(d,b)\}$: le demi-plan défini par la médiatrice de [ab] contenant a.

La cellule de Voronoï de a est : $V(a) = \bigcap_{b \in P, a \neq b} H_{ab}$.

Soit P un ensemble de n points du plan, on appele diagramme de Voronoï l'ensemble des cellules de Voronoï V(a) avec $a \in P$.

Exemple 4.1

Fig. 12 – Exemple d'une cellule de Voronoï

Objectifs : Trouver une méthode pour calculer ces cellules, i.e trouver les mediatrices qui interviennent dans le diagramme.

Propriété 4.1 Soit P un ensemble de points du plan. Alors on a :

- Chaque cellule est convexe
- Les segments du diagramme de Voronoï sont portés par des médiatrices de paires de points de P.
- si P ne possede pas 4 points cocycliques alors les sommets du diagramme de Voronoï (au sens graphe) sont tous de degré 3.

Remarque : Un point v du diagramme de Voronoï est l'intersection des médiatrices des centres $(2 \ a)$ des cellules contenant v. On a donc que v est le centre du cercle circonscrit au centre des cellules contenant v.

Théoreme 4.1 Si $v \in V(p_1) \cap V(p_2) \cap V(p_3)$ alors il n'existe pas de sommets de P strictement à l'interieur du cercle circonscrit à p_1, p_2, p_3 (et de centre v).

Preuve : Si un tel sommet p existait alors on aurait $d(v,p) < d(v,p_i)$ pour i=1,2,3. Et donc on aurait $v \notin V(p_i)$ pour i=1,2,3.

Exemple 4.2

Fig. 13 – Exemple de diagramme de Voronoï

Corollaire : Si P ne contient pas 4 sommets cocycliques, la triangulation de Delaunay est le dual du diagramme de Voronoï.

Preuve : Comme il n'y a pas 4 sommets cocycliques les sommets du diagramme de Voronoï sont tous de degré 3 donc les faces (cf. chapitre sur les graphes planaires) du dual sont des triangles (sauf la face externe). Par le théoreme précédent on a que pour chaque triangle, le cercle circoncrit ne contient pas de sommet de P; on a donc la triangulation de Delaunay.

Remarque: Si il y a 4 points cocycliques dans P, le dual ne contient pas forcément que des triangles et n'est donc pas une triangulation.

 ${f Conclusion}$: On a donc un algorithme pour calculer le diagramme de Voronoï en 2 étapes :

- Calculer la triangulation de Delaunay \rightarrow en $O(n \log(n))$
- Calculer le dual en O(n)

Toutefois il existe des algorithmes permettant de calculer directement en $O(n \log(n))$ le diagramme de Voronoï (ex : algorithme de Fortune).

5 Triangulation de polygone

Problématique : Comment découper un polygone en triangles, est-ce toujours possible? (oui).

Définition 5.1 Une diagonale d'un polygone $P = (P_1, P_2, ..., P_n)$ est un segment reliant 2 points de P non consécutif et inclus dans l'intérieur de P.

Lemme 5.1 Tout polygone qui n'est pas un triangle admet une diagonale.

Preuve : On trouve A le sommet le plus à gauche de P et note B et C ses voisins. Si [BC] est à l'intérieur de P, on a trouvé une diagonale, sinon on balaye ABC par un faisceau partant de A parallèle à (BC). On note Z le premier sommet de P rencontré. A cet instant on note I et J les intersections du faisceau avec [AB] et [AC]. Le triangle AIJ est inclus dans l'intérieur de P donc AZ est une diagonale de P.

Fig. 14 – Illustration de la preuve

Corollaire : Tout polygone est triangulable et on a un algorithme en $O(n^2)$ **Preuve :** Une diagonale se trouve en O(n), et elle sépare le polygone en 2 polygones à au plus n-1 sommets. On continue par récurrence...

Corollaire : Le dual d'une triangulation d'un polygone est un arbre. **Preuve :** Une diagonale separe P en P_1 et P_2 . Par récurence les duals de P_1 et P_2 sont des arbres. On les relie par une seule arête (frontière formée par la diagonale), on obtient donc un arbre.

Exemple 5.1

Fig. 15 – Construction du dual d'un polygone