An attempt at analyzing the TCEC Season 15 SuFi openings

Joseph V. Iris

2019-05-28

My aim here is to try to analyze and make sense of what happened in the TCEC Seasono 15 SuFi, based on the ECO group of openings. Based on Jeroen Noomen's blog, the following are the intended openings:

ECO code distribution ECO A: 15 lines ECO B: 14 lines ECO C: 11 lines ECO D: 3 lines ECO E: 7 lines

However, the ECO code distribution may have changed because of some transpositions. I have stored the results of the TCEC Season 15 SuFi here.

```
library(tidyverse)
library(elo)
library(flextable)
library(officer)
data <- read_delim("./leelasf2.csv", delim = ";")
data %>% flextable() %>% autofit()
```

Opening	White	Black	points.White	points.Black	ECO1	plies	Leela.openeval	SF
1	SF	Leela	0.5	0.5	E73	13	0.79	
2	Leela	SF	0.5	0.5	E73	13	1.28	
3	SF	Leela	0.5	0.5	B84	30	0.42	
4	Leela	SF	0.5	0.5	B84	30	0.43	
5	SF	Leela	0.5	0.5	A80	3	0.81	
6	Leela	SF	0.5	0.5	A80	3	0.84	
7	SF	Leela	0.5	0.5	C37	8	-1.16	
8	Leela	SF	0.5	0.5	C37	8	-1.06	
9	SF	Leela	0.5	0.5	A60	6	1.20	
10	Leela	SF	1.0	0.0	A67	6	1.17	
11	SF	Leela	0.5	0.5	C05	17	0.35	
12	Leela	SF	0.0	1.0	C05	17	0.38	
13	SF	Leela	0.5	0.5	A30	22	0.58	
14	Leela	SF	0.5	0.5	A30	22	0.72	
15	SF	Leela	0.5	0.5	B06	8	1.30	
16	Leela	SF	1.0	0.0	B06	8	1.38	
17	SF	Leela	0.5	0.5	E97	22	1.10	
18	Leela	SF	1.0	0.0	E97	22	1.57	
19	SF	Leela	0.5	0.5	B69	13	0.66	
20	Leela	SF	0.5	0.5	B69	13	0.68	
21	SF	Leela	0.5	0.5	D31	14	0.66	
22	Leela	SF	0.5	0.5	D31	14	0.70	
23	SF	Leela	0.5	0.5	C92	24	0.91	
24	Leela	SF	1.0	0.0	C92	24	1.10	
25	SF	Leela	0.5	0.5	E15	21	0.88	
26	Leela	SF	1.0	0.0	E15	21	0.90	
27	SF	Leela	0.5	0.5	B01	4	1.10	
28	Leela	SF	0.5	0.5	B01	4	1.13	
29	SF	Leela	0.5	0.5	A50	4	0.95	
30	Leela	SF	0.5	0.5	A50	4	0.98	
31	SF	Leela	0.5	0.5	C52	17	-0.30	
32	Leela	SF	0.5	0.5	C52	17	-0.31	
33	SF	Leela	0.5	0.5	E83	12	0.73	
34	Leela	SF	0.5	0.5	E84	12	0.79	
35	SF	Leela	1.0	0.0	B90	22	0.99	
36	Leela	SF	1.0	0.0	B90	22	1.00	

First, let's estimate the ELO differences between Leela and Stockfish after every game. Initially, the estimated ELO's are 3589 for Leela and 3587 for Stockfish.

Let R_A be the ELO of engine A and R_B be the rating of engine B. Then the expected result for engine A against B is given by the logistic equation:

$$E_A = \frac{1}{1 + 10^{(R_A - R_B)/400}}. (1)$$

Solving this equation for $R_A - R_B$, we have:

$$elodiff = R_A - R_B = 400 \log_{10} \left(\frac{1 - E_A}{E_A} \right) \tag{2}$$

Here we note that $(1 - E_A)/E_A$ can be expressed as win ratio / loss ratio without loss of generality. That is, we can put the win ratio of the leading engine in the numerator and we get the same result. The win ratio is the sum of the wins and draws.

In R, there is a package called **elo** which we will also use here. But we can write our own functions for this purpose.

```
elo <- function(win_ratio) {400 * log10(win_ratio / (1-win_ratio))}
```

We can also check for the standard errors of ELO differences using a normal approximation.

```
denom95 <- function(win_ratio, total) qnorm(0.975) * sqrt(win_ratio * (1-win_ratio)/(total-1))</pre>
```

We can also compute for the LOS as described in the chessprogramming wiki site. I used three estimators here. LOS3 might become untenable with large data sets, but we only have 100 rows of data here so it will be fine.

```
LOS <- function(wins_losses, total) pnorm(total/2, sd = wins_losses)
LOS2 <- function(wins, losses) pnorm((wins-losses)/sqrt(wins+losses))
LOS3 <- function(wins, losses, draws) {
  total = wins + losses + draws
  exp = (wins/total)^wins * (losses/total)^losses * (draws/total)^draws
  factorials = factorial(total)/(factorial(wins)*factorial(losses)*factorial(draws))
  P = factorials * exp
  1-P
}</pre>
```

We will now extract the initials of the ECO codes, determine the points of Leela and SF after each game, the win rate (by the leading engine) after each game, the estimated ELO difference (elodiff) after each game, and the three LOS estimates after each game.

```
# calculate cumulative scores
 mutate(Score.Leela = cumsum(points.Leela)) %>%
 mutate(Score.SF = cumsum(points.SF)) %>%
 mutate(total = row_number()) %>%
 mutate(draw_ratio = cumsum(points.Leela == points.SF)/total) %>%
  mutate(wins.Leela = cumsum(results.Leela=="Win")) %>%
 mutate(losses.Leela = cumsum(results.Leela=="Loss")) %>%
 mutate(wins.SF = cumsum(results.SF=="Win")) %>%
 mutate(losses.SF = cumsum(results.SF=="Loss")) %>%
 mutate(Draws = cumsum(results.Leela=="Draw")) %>%
  # calculate win rate of Leela
 mutate(win_rate.Leela = Score.Leela/total) %>%
 mutate(elodiff = elo(win_rate.Leela)) %>%
  # calculate ELO's and LOS's
 mutate(SE = elo(win_rate.Leela + denom95(win_rate.Leela, total))-elodiff) %>%
 mutate(LOS = LOS(total*(1-draw_ratio), total)) %>%
 mutate(LOS2 = LOS2(wins.Leela, losses.Leela)) %>%
  mutate(LOS3 = LOS3(wins.Leela, losses.Leela, Draws))
data %>%
  select(Opening, ECO2, win_rate.Leela:LOS3) %>%
 flextable() %>% autofit()
```

LOS3	LOS2	LOS	SE	elodiff	win_rate.Leela	ECO2	Opening
0.00000	NaN	1.00000	NaN	0.000	0.50000	E	1
0.00000	NaN	1.00000	NaN	0.000	0.50000	E	2
0.00000	NaN	1.00000	NaN	0.000	0.50000	В	3
0.00000	NaN	1.00000	NaN	0.000	0.50000	В	4
0.00000	NaN	1.00000	798.096	0.000	0.50000	A	5
0.00000	NaN	1.00000	472.706	0.000	0.50000	A	6
0.00000	NaN	1.00000	381.844	0.000	0.50000	С	7
0.00000	NaN	1.00000	330.843	0.000	0.50000	С	8
0.00000	NaN	1.00000	296.575	0.000	0.50000	A	9
0.61258	0.84134	1.00000	303.216	34.860	0.55000	A	10
0.61446	0.84134	1.00000	275.265	31.672	0.54545	С	11
0.85195	0.50000	0.99865	235.953	0.000	0.50000	С	12
0.85305	0.50000	0.99942	222.815	0.000	0.50000	A	13
0.85397	0.50000	0.99977	211.674	0.000	0.50000	A	14
0.85475	0.50000	0.99991	202.066	0.000	0.50000	В	15
0.88967	0.71815	0.99617	201.982	21.743	0.53125	В	16
0.89039	0.71815	0.99770	193.375	20.461	0.52941	E	17
0.90667	0.84134	0.98778	193.252	38.764	0.55556	E	18
0.90735	0.84134	0.99123	185.531	36.708	0.55263	В	19
0.90795	0.84134	0.99379	178.692	34.860	0.55000	В	20
0.90848	0.84134	0.99567	172.577	33.190	0.54762	D	21
0.90896	0.84134	0.99702	167.066	31.672	0.54545	D	22
0.90939	0.84134	0.99798	162.064	30.288	0.54348	С	23
0.91930	0.91014	0.99180	161.609	43.658	0.56250	С	24
0.91971	0.91014	0.99379	157.009	41.894	0.56000	E	25
0.92647	0.94876	0.98487	156.601	53.879	0.57692	E	26
0.92687	0.94876	0.98778	152.357	51.854	0.57407	В	27
0.92724	0.94876	0.99018	148.453	49.975	0.57143	В	28
0.92757	0.94876	0.99217	144.845	48.230	0.56897	A	29
0.92788	0.94876	0.99379	141.496	46.602	0.56667	A	30
0.92817	0.94876	0.99511	138.377	45.082	0.56452	С	31
0.92843	0.94876	0.99617	135.463	43.658	0.56250	С	32
0.92868	0.94876	0.99702	132.731	42.321	0.56061	E	33
0.92891	0.94876	0.99770	130.163	41.065	0.55882	E	34
0.94693	0.87158	0.99379	125.947	29.853	0.54286	В	35
0.95074	0.92135	0.98778	125.458	38.764	0.55556	В	36

We see that by game 94, when Leela breached the 50.5 mark, the ELO difference is about 26, but with large error bar. The LOS's show though that there is very high likelihood that Leela is indeed stronger. At the end of SuFi, the estimated ELO difference is about 24.

The problem with ELO estimates based on results of chess engine tournaments is that each opening has to be played in reverse colors by each engine. Also, there are families of ECO code openings. As such, the ELO differences might actually be biased. Also, the sample size of 100 is actually small, leading to the large error bars.

Instead, we can calculate the ELO differences by ECO family of openings. The estimates will have larger error bars because we now have smaller samples.

```
data2 <- data %>%
  group_by(ECO2) %>%
  mutate(ECO2.Score.Leela = cumsum(points.Leela)) %>%
  mutate(ECO2.Score.SF = cumsum(points.SF)) %>%
  mutate(ECO2.total = row_number()) %>%
  mutate(ECO2.draw_ratio = cumsum(points.Leela == points.SF)/ECO2.total) %>%
  mutate(ECO2.wins.Leela = cumsum(results.Leela=="Win")) %>%
  mutate(ECO2.losses.Leela = cumsum(results.Leela=="Loss")) %>%
  mutate(ECO2.wins.SF = cumsum(results.SF=="Win")) %>%
  mutate(ECO2.losses.SF = cumsum(results.SF=="Loss")) %>%
  mutate(EC02.Draws = cumsum(results.Leela=="Draw")) %>%
  mutate(ECO2.win_rate.Leela = ECO2.Score.Leela/ECO2.total) %>%
  mutate(ECO2.elodiff = elo(ECO2.win_rate.Leela)) %>%
  mutate(ECO2.SE = elo(ECO2.win_rate.Leela + denom95(ECO2.win_rate.Leela, ECO2.total))-ECO2.elodiff) %
  mutate(ECO2.LOS = LOS(ECO2.total*(1-ECO2.draw ratio), ECO2.total)) %>%
  mutate(ECO2.LOS2 = LOS2(wins.Leela, losses.Leela)) %>%
  mutate(EC02.LOS3 = LOS3(wins.Leela, losses.Leela, Draws))
```

We can now see the estimated ELO differences at the last of game of each ECO group of openings.

```
data2 %>%
  slice(n()) %>% select(starts_with("ECO2")) %>%
  select(1:8) %>%
  flextable() %>% autofit()
```

ECO2	ECO2.Score.Leela	ECO2.Score.SF	ECO2.total	ECO2.draw_ratio	ECO2.wins.Leela
Α	14.5	11.5	26	0.73077	5
В	12.5	11.5	24	0.87500	2
C	12.0	13.0	25	0.80000	2
D	3.5	2.5	6	0.83333	1
E	11.0	8.0	19	0.73684	4

```
data2 %>%
  slice(n()) %>% select(starts_with("ECO2")) %>%
  select(9:16) %>%
  flextable() %>% autofit()
```

ECO2	ECO2.losses.SF	ECO2.Draws	ECO2.win_rate.Leela	ECO2.elodiff	ECO2.SE	ECO2
Α	5	19	0.55769	40.268	152.79	0.9
В	2	21	0.52083	14.485	153.91	0.9
С	2	20	0.48000	-13.905	144.75	0.9
D	1	5	0.58333	58.451	NaN	0.9
E	4	14	0.57895	55.321	193.24	0.9

Here it is very interesting to note that Leela actually performed relatively better in A and E openings. This is interesting because of the nature of the A and E openings. In particular, Jeroen said that E openings are too easy for the current top programs and he considered them very drawish.

We can instead use the elo package instead to calculate the ELO estimates. This package doesn't have a function for estimating LOS though. The elomod object here is adjusted using a varying K after each round.

```
library(elo)
initial <- c(3589, 3587)
names(initial) <- c("Leela", "SF")</pre>
elomod <- elo.run(score(points.Leela, points.SF)~White+Black + regress(ECO2, initial, 0.2) + k(20*log(a
summary(elomod)
##
## An object of class 'elo.run.regressed', containing information on 2 teams and 100 matches, with 5 re
##
## Mean Square Error: 0.0506
## AUC: 0.9082
## Favored Teams vs. Actual Wins:
##
          Actual
## Favored 0 0.5 1
##
     TRUE
            1 36 13
##
     (tie)
            0
               0 0
     FALSE
            6
               43
##
elodf <- as.data.frame(elomod)</pre>
elodf$elodiff <- abs(elodf$elo.A - elodf$elo.B)</pre>
elodf$actual_score <- na.omit(data$Score.Leela)</pre>
elodf <- elodf %>%
  mutate(exp_score = cumsum(1 / (1+10^(elodiff/400))))
elodf %>%
  mutate_if(is.numeric, function(x) round(x, 3)) %>%
 flextable() %>% autofit()
```

team.A	team.B	p.A	wins.A	update.A	update.B	elo.A	elo.B	elodiff a
SF	Leela	0.497	0.5	0.000	0.000	3587.0	3589.0	2.000
Leela	SF	0.503	0.5	0.000	0.000	3589.0	3587.0	2.000
SF	Leela	0.497	0.5	0.000	0.000	3587.0	3589.0	2.000
Leela	SF	0.503	0.5	0.000	0.000	3589.0	3587.0	2.000
SF	Leela	0.497	0.5	0.000	0.000	3587.0	3589.0	2.000
Leela	SF	0.503	0.5	0.000	0.000	3589.0	3587.0	2.000
SF	Leela	0.497	0.5	0.000	0.000	3587.0	3589.0	2.000
Leela	SF	0.503	0.5	0.000	0.000	3589.0	3587.0	2.000
SF	Leela	0.497	0.5	0.000	0.000	3587.0	3589.0	2.000
Leela	SF	0.503	1.0	6.892	-6.892	3595.9	3580.1	15.783
SF	Leela	0.477	0.5	0.000	0.000	3580.1	3595.9	15.783
Leela	SF	0.523	0.0	-7.246	7.246	3588.6	3587.4	1.291
SF	Leela	0.498	0.5	0.000	0.000	3587.4	3588.6	1.291
Leela	SF	0.502	0.5	0.000	0.000	3588.6	3587.4	1.291
SF	Leela	0.498	0.5	0.000	0.000	3587.4	3588.6	1.291
Leela	SF	0.502	1.0	6.906	-6.906	3595.6	3580.4	15.102
SF	Leela	0.478	0.5	0.000	0.000	3580.4	3595.6	15.102
Leela	SF	0.522	1.0	6.630	-6.630	3602.2	3573.8	28.363
SF	Leela	0.459	0.5	0.000	0.000	3573.8	3602.2	28.363
Leela	SF	0.541	0.5	0.000	0.000	3602.2	3573.8	28.363
SF	Leela	0.459	0.5	0.000	0.000	3573.8	3602.2	28.363
Leela	SF	0.541	0.5	0.000	0.000	3602.2	3573.8	28.363
SF	Leela	0.459	0.5	0.000	0.000	3573.8	3602.2	28.363
Leela	SF	0.541	1.0	6.367	-6.367	3608.5	3567.5	41.097
SF	Leela	0.441	0.5	0.000	0.000	3567.5	3608.5	41.097
Leela	SF	0.559	1.0	6.115	-6.115	3614.7	3561.3	53.328
SF	Leela	0.424	0.5	0.000	0.000	3561.3	3614.7	53.328
Leela	SF	0.576	0.5	0.000	0.000	3614.7	3561.3	53.328
SF	Leela	0.424	0.5	0.000	0.000	3561.3	3614.7	53.328
Leela	SF	0.576	0.5	0.000	0.000	3614.7	3561.3	53.328
SF	Leela	0.424	0.5	0.000	0.000	3561.3	3614.7	53.328
Leela	SF	0.576	0.5	0.000	0.000	3614.7	3561.3	53.328
SF	Leela	0.424	0.5	0.000	0.000	3561.3	3614.7	53.328
Leela	SF	0.576	0.5	8 0.000	0.000	3614.7	3561.3	53.328
SF	Leela	0.424	0.0	-5.876	5.876	3555.5	3620.5	65.079
Leela	SF	0.593	1.0	5.648	-5.648	3626.2	3549.8	76.375

Let us now investigate the evals.

```
data_df <- data %>% gather(color, engine, White:Black)

data_dfwhite <- data_df %>%
    filter(color == "White") %>%
    group_by(engine) %>%
    gather(evalengines, evals, Leela.openeval:SF.openeval) %>%
```

mutate(evalengines = str_remove(evalengines, ".openeval")) %>%
group_by(ECO2, evalengines) %>%
summarize(mean = round(mean(evals),3), sd = round(sd(evals),3))

data_dfwhite %>% flextable() %>% autofit()

ECO2	evalengines	mean	sd
Α	Leela	1.033	0.288
A	SF	0.614	0.282
В	Leela	0.807	0.586
В	SF	0.456	0.464
С	Leela	0.192	0.917
С	SF	0.106	0.605
D	Leela	0.735	0.191
D	SF	0.358	0.300
E	Leela	0.878	0.274
E	SF	0.633	0.366

```
data_df %>%
  filter(color == "White") %>%
  group_by(engine) %>%
  gather(evalengines, evals, Leela.openeval:SF.openeval) %>%
  mutate(evalengines = str_remove(evalengines, ".openeval")) %>%
  ggplot(aes(evals, color = evalengines)) +
  geom_density() +
  facet_wrap(~ECO2+engine)
```


ECO2	evalengines	mean	sd
Α	Leela	1.033	0.288
A	SF	0.614	0.282
В	Leela	0.807	0.586
В	SF	0.456	0.464
С	Leela	0.192	0.917
С	SF	0.106	0.605
D	Leela	0.735	0.191
D	SF	0.358	0.300
E	Leela	0.878	0.274
E	SF	0.633	0.366

```
data_df %>%
  filter(color == "Black") %>%
  group_by(engine) %>%
  gather(evalengines, evals, Leela.openeval:SF.openeval) %>%
  mutate(evalengines = str_remove(evalengines, ".openeval")) %>%
  ggplot(aes(evals, color = evalengines)) +
  geom_density() +
  facet_wrap(~ECO2+engine)
```


We can see that Leela's opening evals are generally more optimistic than that of Stockfish, which can be attributed partly to SF's contempt. But a closer inspection of Leela's evals, we see that they are consistent even if playing as different colors. Leela also tends to win in openings where its opening evals are visibly more optimistic than that of Stockfish, signifying that Leela has better opening evaluation.

This has been a very exciting SuFi. I had a lot of fun engaging in many interesting and lively discussions in chat, although oftentimes the chat can quickly turn cancerous.

To end this post, I would like to congratulate the Leela devs and community for winning their first ever SuFi title. Kudos also to the SF team for continuing to improve a chess monster. I hope that Leela and SF continue to expose each other's weaknesses, and get better as a result. Exciting times for the chess engine fans!