МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ Національний авіаційний університет

О.Г. Водчиць, В.М. Павільч, І.А. Силаков

БОРТОВІ КОМПЛЕКСИ АВІАЦІЙНОГО ОЗБРОЄННЯ

Навчальний посібник

Частина II

УДК 623.746 (075.8) ББК Ц531.0я7 В627

Рецензенти: Д. М. Красношапка, доктор техн. наук, професор, головний наук. співроб. ДНДІ авіації;

О. Г. Коврижкін, доктор. техн. наук, професор кафедри прикладної інформатики

Затверджено вченою радою факультету військової підготовки НАУ (протокол №2 від 2 листопада 2005 року).

Водчиць О. Г., Павільч В. М., Силаков І. А.

В627 Бортові комплекси авіаційного озброєння: Навч. посіб. Ч.ІІ / За ред. О.Г. Водчиця. – К.: НАУ, 2006. – 114 с.

За матеріалами відкритої вітчизняної та зарубіжної літератури наведено дані з основ прицілювання по повітряних та наземних цілях і на цій базі розглянуто будову й застосування прицільно-навігаційних систем та комплексів. Заключну частину посібника присвячено теорії практики розгляду основ i оцінювання ефективності бойового комплексів застосування авіаційного озброєння.

Для студентів факультету військової підготовки. Може бути корисною для інженерно-технічного складу установ і стройових частин Повітряних Сил Збройних Сил України.

УДК 623.746 (075.8) ББК Ц531.0я7 © О. Г. Водчиць, В. М. Павільч, І. А. Силаков, 2006

ВСТУП

Сучасні бойові літаки як складову бойового авіаційного комплексу мають комплекс авіаційного озброєння з широкою номенклатурою засобів ураження, великою кількістю калібрів і типів. Тому для ефективного бойового застосування засобів ураження на борту літака потрібно мати прицільні системи стрільби і бомбометання, які за своїми тактико-технічними характеристиками дозволяють застосовувати зброю у будь-яких бойових умовах.

Сучасні прицільні системи досить розвинуті для розв'язання бойових задач, які стоять перед авіацією. Існують як окремі автономні системи для розв'язання задач прицілювання і застосування зброї (наприклад, прицільні системи літака Су-25, бойового вертольота Мі-24), так і системи, що входять до складу пілотажно-навігаційних систем (прицільно-навігаційних комплексів) на літаках Су-24, Су-27, МіГ-29. У цих системах задачі навігації, пілотування, прицілювання і бойового застосування розв'язують комплексно за єдиними алгоритмами.

Тобто спеціаліст з експлуатації озброєння літаків повинен знати сутність розв'язання задач прицілювання, фактори, що впливають на точність прицілювання, балістичні характеристики засобів ураження, їх вплив на траєкторію снарядів, ракет і бомб.

Кінцева мета будь-якого бойового завдання із застосуванням засобів ураження — максимальна ефективність їх використання. Тому спеціалісти з авіаційного озброєння повинні знати характеристики уражуваності засобів ураження для об'єктів різних типів (одиноких, групових, площинних), а також критерії, за якими оцінюється уражуваність об'єктів.

Навчальний посібник "Бортові комплекси авіаційного озброєння", ч. ІІ "Прицільно-навігаційні системи і комплекси" складається з п'яти розділів. У першому та другому розділах йдеться про балістичне забезпечення прицільних систем і основи будови прицільних систем стрільби і бомбометання. У третьому розділі розглянуто основи прицільно-навігаційним системам. У п'ятому розділі розглянуто питання щодо ефективності бойового застосування засобів ураження.

ПЕРЕЛІК СКОРОЧЕНЬ

АЗУ - автоматизований засіб ураження

АКР - авіаційні керовані ракети

БЦОМ - бортова цифрова обчислювальна машина

BC - візирна система ВТ - винесена точка

ДВІ - датчик вихідної інформації ЗДД - зона дозволених дальностей ЗДП - зона дозволених пусків

ЗУ - засіб ураження

КОЛС - квантова оптико-локаційна станція

ЛА - літальний апарат

ЛГС - лазерні головки самонаведення ЛТПС - лазерна телевізійна прицільна станція

НАР - некеровані авіаційні ракети

НПП - навігаційний пілотажний пристрій

НРГС - напівактивні радіолокаційні головки самонаведення

ОПКЦ - обчислювачі потрібних координат цілі ОФКЦ - обчислювачі фактичних координат цілі

ПК - перетворювач координат

ПНК - прицільно-навігаційні комплекси ПНС - прицільно-навігаційні системи ППВ - прицільно-пілотажний візир РЛС - радіолокаційна станція

РЛС - радіолокаційна станція РП - розподільник поправок

САК - система автоматичного керування

СЄІ - система єдиної індикації

СЗК - система зчислення координат СКЗ - система керування зброєю ТГС - теплові головки самонаведення

ФКП - фотоконтрольні прилади

1. БАЛІСТИЧНІ ОСНОВИ ПРИЦІЛЬНИХ СИСТЕМ

1.1. Балістичні характеристики некерованих засобів ураження

Рух снаряда і будь-якого некерованого автоматизованого засобу ураження (АЗУ) складається з руху центра маси АЗУ та руху цього АЗУ відносно центра маси. Для виконання прицілювання важливо знати основний рух АЗУ – рух його центра маси. Цей рух відбувається за балістичною траєкторією. Як характеристики руху центра маси АЗУ в прицільних системах використовують елементи балістичної траєкторії або балістичні елементи.

Балістичні елементи обчислюють розв'язанням за певних припущень рівняння руху центра маси. Припускають відсутність руху АЗУ відносно центра маси і вітру. Атмосфера, у якій рухається АЗУ, відповідає стандартній. Обертання Землі не враховують, а дія сили тяжіння припускається перпендикулярною до її поверхні і незалежною від географічного місця точки скидання АЗУ.

Рівняння руху АЗУ відповідно до другого закону Ньютона (у векторній формі) має такий вигляд:

$$m\,\bar{j}\,-\,\overline{F}\,=0,\tag{1.1}$$

де m — маса АЗУ; \bar{j} — прискорення АЗУ; \bar{F} — рівнодіюча сил, прикладених до АЗУ.

Рівнодіючу сил (рис. 1.1), що діють на АЗУ, визначають за виразом

$$\overline{F} = m \, \overline{g} + \overline{X}$$
,

де $m\,\overline{g}$ — сила ваги; $\overline{X}=-X\,\overline{\nu}_0$ — сила опору повітря; $\overline{\nu}_0$ — одиничний вектор швидкості руху АЗУ відносно повітря.

Модуль сили опору повітря визначають за відомою в аеродинаміці формулою

$$X = C_x(M)S\rho v^2/2, \tag{1.2}$$

де $S = \pi d^2/4$ — площа поперечного перерізу АЗУ; $\rho v^2/2$ — швидкісний напір; ρ — щільність повітря; $C_x(M)$ — коефіцієнт опору АЗУ; M = v/a — число Маха; a — швидкість звуку.

Рис. 1.1. Сили, що діють на снаряд

Величини a і ρ — функції поточної висоти польоту АЗУ над рівнем моря. Коефіцієнт опору $C_x(M)$ залежить від форми АЗУ. В авіації застосовують АЗУ різної форми, тому для спрощення обчислень з визначення балістичних елементів коефіцієнт опору виражають через еталонний коефіцієнт опору (закон опору) $C_{xe}(M)$ та коефіцієнт форми АЗУ i:

$$C_{x}(\mathbf{M}) = iC_{xe}(\mathbf{M}). \tag{1.3}$$

Коефіцієнт форми АЗУ показує, у скільки разів коефіцієнт опору цього АЗУ більший від коефіцієнта опору еталонного АЗУ.

Підставивши формулу (1.3) у (1.2), вираз для сили опору можна записати у вигляді

$$X = mk_1 C \rho v^2 C_{xe}(M), \qquad (1.4)$$

де $k_1 = \pi / 8.10^3 -$ постійна величина.

Величина

$$C = 10^3 id^2/m$$
,

що входить у формулу (1.4), називається балістичним коефіцієнтом. Він характеризує вплив форми, розмірів і маси A3У на силу опору. Множник 10^3 уводять для того, щоб під час вимірювання калібру A3У

d у метрах і маси m у кілограмах значення балістичного коефіцієнта було числом, зручним для практичного використання.

Балістичні властивості авіаційної бомби характеризуються не балістичним коефіцієнтом C, а характеристичним часом θ . Між цими величинами існує наближене співвідношення

$$\theta = a_1 + kC$$
,

де $a_1 = 20,193$ – коефіцієнт, що відповідає часу польоту бомби, кинутої в горизонтальному польоті з висоти 2000 м за швидкості польоту ЛА 40 м/с у порожнечі.

Рівняння (1.1) є нелінійним диференціальним рівнянням. На підставі його розв'язання визначають балістичні елементи АЗУ, використовувані в алгоритмах прицілювання як характеристики траєкторії АЗУ. Для визначення балістичних елементів рівняння (1.1) виражають у проекціях на обрану систему координат. Отриману систему рівнянь можна проінтегрувати числовими методами за допомогою ЕОМ.

Фізичний зміст балістичних елементів залежить від виду АЗУ та обраної системи координат, у якій розв'язують рівняння (1.1). При цьому прагнуть до того, щоб обчислювач прицільної системи, який забезпечує визначення балістичних елементів, був якомога простішим.

У прицільних системах балістичні елементи визначають інтегруванням рівняння (1.1) за допомогою бортового обчислювача, а також обчисленням за математичними залежностями, що апроксимують балістичні таблиці. В обох випадках значення балістичних елементів ϵ функціями величин C або θ і початкових умов скидання АЗУ: висоти H_0 , швидкості v_0 і кута скидання λ_0 .

1.2. Визначення балістичних елементів під час бомбометання

Для бомбометання рівняння (1.1) розв'язують у проекціях на осі стартової системи координат OX_cY_c (рис. 1.2). Вісь OX_c лежить у площині скидання, яка, якщо не застосовувати примусове відділення бомб, збігається з площиною курсу літального апарата (ЛА), вісь OY_c , за початкових умов $v_0 = V$, $H_0 = H$, $\lambda_0 = \lambda$ спрямована вертикально вгору. Розв'язавши рівняння, знаходять штильне віднесення A, лінійне відставання Δ і час падіння T.

Рис. 1.2. Балістичні елементи бомби

Фізичне значення величин A, Δ і T для випадку бомбометання, коли вектор швидкості вітру $\overline{U}=0$ (штильні умови), полягає в такому. Бомба, скинута в точці $O_{\rm ck}$, упаде в точці C. У момент падіння бомби ЛА, що летить з постійною повітряною швидкістю $\overline{\upsilon}_0=\overline{V}$, опиниться в точці K'.

Положення точки падіння бомби C відносно точки скидання $O_{\rm ck}$ характеризується вектором $\overline{D}_{\rm c}$

Проекцію вектора \overline{D}_{c} на горизонтальну площину (у цьому випадку на вісь OX_{c}) називають штильним віднесенням і позначають через A. Штильне віднесення розташоване в площині скидання.

Якщо з точки K' місця розміщення ЛА у момент падіння бомби опустити перпендикуляр на горизонтальну площину, то відстань CK буде характеризувати лінійне відставання бомби Δ :

$$\Delta = VT\cos\lambda - A. \tag{1.5}$$

У разі бомбометання з горизонтального польоту без застосування примусового відділення бомб це співвідношення має вигляд

$$\Delta = VT - A. \tag{1.6}$$

Слід зазначити, що відставання бомби ε наслідком опору атмосфери. Під час бомбометання в порожнечі величина $\Delta=0$. Чим більший характеристичний час бомби, тим більше відставання.

Під час бомбометання в умовах стандартної атмосфери балістичні елементи A, Δ і T ϵ функціями умов скидання і балістичних характеристик бомби, тобто

$$A = A(H, V, \lambda, \theta);$$

$$\Delta = \Delta(H, V, \lambda, \theta);$$

$$T = T(H, V, \lambda, \theta).$$

Значення балістичних елементів, отримані за різних значень H, V, λ , θ , наведено в балістичних таблицях, фрагмент однієї з яких подано в табл. 1.1.

Віднесення A, м, для $\theta = 21,25$, якщо $\lambda = 20^{\circ}$

Таблиия 1.1

	V, км/год				
Н, м	700	750	800	850	900
2000	2410	2520	2623	2721	2813
2400	2679	2804	2922	3035	3141

Значення величин A, Δ і T, які містяться в балістичних таблицях, відповідають умовам скидання, коли точка падіння бомби знаходиться на рівні моря. У дійсності внаслідок топографічного рельєфу точка падіння бомби не збігається з рівнем моря. При цьому щільність повітряного середовища, у якому рухається бомба, не відповідатиме щільності, узятій під час складання балістичних таблиць. У подібних випадках наведені в балістичних таблицях значення елементів A, Δ і T відрізнятимуться від їхніх дійсних значень, а їх неврахування призведе до помилки у бомбометанні.

Урахування перевищення цілі над рівнем моря під час визначення балістичних елементів бомби грунтується на використанні умовного характеристичного часу θ ', що ε скоригованою балістичною характеристикою бомби. Користуючись цією характеристикою, за балістичними таблицями можна визначити величини A, Δ і T для умов бомбометання з перевищенням цілі над рівнем моря.

СПИСОК ЛІТЕРАТУРИ

- 1. Γ ладков Д. И., Балуев В. М., Григорьев В. Г. Авиационное вооружение. М.: Воениздат, 1987. 279 с.
- 2. *Теория вероятностей* и боевой эффективности / Под ред. П. И. Андреенко. М.: Воениздат, 1979. 176 с.
- 3. *Прицельно-навигационные* системы и комплексы: Учебник / Под ред. А. К. Ганулича. М.: Воениздат, 1990. 576 с.
- 4. *Руководство* по боевому применению авиационных средств поражения наземных объектов. М.: Воениздат, 1984. 192 с.

3MICT

ПЕРЕЛІК СКОРОЧЕНЬ4
1. БАЛІСТИЧНІ ОСНОВИ ПРИЦІЛЬНИХ СИСТЕМ5
1.1. Балістичні характеристики некерованих засобів ураження5
1.2. Визначення балістичних елементів під час бомбометання7
1.3. Визначення балістичних елементів під час стрільбиОшибка!
Закладка не определена.
2. ПРИЦІЛЮВАННЯ ПІД ЧАС СТРІЛЬБИ ТА ПУСКІВОшибка!
Закладка не определена.
КЕРОВАНИХ РАКЕТ Ошибка! Закладка не определена.
2.1. Зміст задачі прицілювання під час повітряної стрільби і методи
її розв'язання Ошибка! Закладка не определена.
2.2. Задача екстраполяції руху ціліОшибка! Закладка не
определена.
2.3. Прицільна схема під час стрільби по наземних ціляхОшибка!
Закладка не определена.
2.4. Особливості прицілювання у разі застосування авіаційних
керованих ракет Ошибка! Закладка не определена.
3. ПРИЦІЛЮВАННЯ ПІД ЧАС БОМБОМЕТАННЯОшибка!
Закладка не определена.
3.1. Зміст задачі прицілювання під час бомбометання і методи її
розв'язанняОшибка! Закладка не определена.
3.2. Визначення фактичних координат ціліОшибка! Закладка не
определена.
3.3. Визначення потрібних координат ціліОшибка! Закладка не
определена.
3.4. Способи виконання бомбометанняОшибка! Закладка не
определена.
ПИТАННЯ ДО МОДУЛЬНОГО КОНТРОЛЮОшибка! Закладка
не определена.
4. ПРИЦІЛЬНО-НАВІГАЦІЙНІ СИСТЕМИ І КОМПЛЕКСИ
Ошибка! Закладка не определена.
4.1. Загальна характеристика сучасних прицільно-навігаційних
систем і комплексів Ошибка! Закладка не определена.
4.2. Сукупність задач, що розв'язуються прицільно-навігаційними
Ownfred Davidance was appared and
системами і комплексами Ошибка! Закладка не определена.

4.3. Функціонально-апаратурна структура прицільно-навігаційної		
системи Ошибка! Закладка не определена.		
4.4. Візирні системи прицільно-навігаційних системОшибка!		
Закладка не определена.		
4.4.1. Класифікація засобів інформації про координати і параметри		
руху ціліОшибка! Закладка не определена.		
4.4.2. Оптичні візирні системи. Ошибка! Закладка не определена.		
4.4.3. Візирні системи в радіодіапазоніОшибка! Закладка не		
определена.		
4.5. Прицільно-навігаційна система літака фронтової		
бомбардувальної авіації Ошибка! Закладка не определена.		
4.5.1. Призначення і задачі, що розв'язуються прицільно		
навігаційною системою Ошибка! Закладка не определена.		
4.5.2. Принцип розв'язання задач прицілювання та стрільби		
Ошибка! Закладка не определена.		
4.5.3. Принцип розв'язання задачі навігаціїОшибка! Закладка не		
определена.		
4.6. Прицільно-навігаційна система літаків винищувальної авіації		
Ошибка! Закладка не определена.		
4.6.1. Призначення прицільно-навігаційної системиОшибка!		
Закладка не определена.		
4.6.2. Склад оптико-електронного прицільно-навігаційного		
комплексу ОЕ ПрНК-29 Ошибка! Закладка не определена.		
4.6.3. Принцип розв`язання задач прицілювання та навігації		
Ошибка! Закладка не определена.		
4.7. Засоби об'єктивного контролю прицільно-навігаційних систем		
і комплексів Ошибка! Закладка не определена.		
ПИТАННЯ ДО МОДУЛЬНОГО КОНТРОЛЮОшибка! Закладка		
не определена.		
5. ЕФЕКТИВНІСТЬ КОМПЛЕКСІВ АВІАЦІЙНОГО ОЗБРОЄННЯ		
Ошибка! Закладка не определена.		
5.1. Загальна характеристика авіаційних засобів ураження і типів		
цілей Ошибка! Закладка не определена.		
5.2. Основні показники ефективності бойового застосування		
авіаційних засобів ураження Ошибка! Закладка не определена.		
5.3. Оцінювання точності стрільби і бомбометанняОшибка!		
Закладка не определена.		

5.4. Методи оцінювання стрільби й бомбометанняОшибка!
Закладка не определена.
5.4.1. Методика оцінювання ефективності повітряної стрільби
Ошибка! Закладка не определена.
5.4.2. Методика оцінювання ефективності бомбометанняОшибка!
Закладка не определена.
5.4.3. Методика визначення наряду сил і засобів ураження,
потрібних для виконання бойового завдання Ошибка! Закладка не
определена.
ПИТАННЯ ДО МОДУЛЬНОГО КОНТРОЛЮОшибка! Закладка
не определена.
СПИĈОК ЛІТЕРАТУРИ9

Навчальне видання

ВОДЧИЦЬ Олександр Григорович ПАВІЛЬЧ Валентин Миколайович СИЛАКОВ Ігор Андрійович

БОРТОВІ КОМПЛЕКСИ АВІАЦІЙНОГО ОЗБРОЄННЯ

Навчальний посібник

Частина II

За редакцією кандидата технічних наук, доцента ВОДЧИЦЯ Олександра Григоровича

Редактор Технічний редактор

Підп. до друку 00.00.05. Формат 60х84/16. Папір офс. Офс. друк. Ум. фарбовідб. 29. Ум. друк. арк. 0,00. Обл.-вид. арк. 0,0 Тираж 100 пр. Замовлення № 000. Вид. № 60/111.

Видавництво НАУ 03680. Київ-680, проспект Космонавта Комарова, 1

Свідоцтво про внесення до Державного реєстру ДК №977 від 05.07.2002