

STATISTICAL ANALYSIS

PURPOSE

In this exercise, usage of lists in Python is explored. Statistical analysis is performed on a mock dataset, and printed to the user.

OBJECTIVES

After completing this exercise, you should be able to:

- Create and populate lists in Python
- Modify and iterate over lists in Python

PROCEDURE

PREPARE SUBMISSION FILE

 Create a copy of the submission template called COMP6060INITLab6.docx where INIT is replaced with your own initials. So if your name is John Smith, the document will be called COMP6060JSLab6.docx

PREPARE PYTHON FILE

- 1. Create a Python file called COMP6060**INIT**Lab6.py where **INIT** is replaced with your own initials. So if your name is John Smith, the document will be called COMP6060**JS**Lab6.py
- 2. Print out the following to the console, replacing NAME with your name: Welcome to NAME's statistical analysis tool!

CREATE AND POPULATE DATASET

- 1. Create a Python list called dataset and assign it the following values: 56, 74, -10, 58, 4, 17, 26, 0, 13, 37
- 2. Create a variable called dataset size, and assign it the value of the list size
- 3. Print the dataset size using the following format:
 - The dataset has size elements

ADJUST LIST

1. Using a for loop, iterate through the dataset, and assign a value of 0 to any <u>negative</u> values. Refer to the following syntax:

```
for i in range(dataset_size):
```

SORT LIST

Python lists provide a useful member function called **sort**, which sorts the list in ascending numerical order.

 Sort the dataset. Refer to the following syntax: dataset.sort()

CALCULATE MEAN

The mean is calculated by summing up all the values in a dataset, then dividing by the number of values in the dataset.

$$ar{x}=rac{1}{n}\left(\sum_{i=1}^n x_i
ight)=rac{x_1+x_2+\cdots+x_n}{n}$$

- 1. Create a variable called dataset sum, and assign it the value 0
- 2. Create a for loop, with a body that does the following:
 - a. Assign the value at the index to a variable called val
 - b. Add val to dataset sum
- Outside the for loop, create a variable called mean and assign it the value of int(dataset sum / dataset size)

The reason we need to use the int() cast is because the result of division in Python results in a float value. Float values are not allowed to be used as list indices.

4. Print the variable mean to the user in the following format:

The mean of the dataset = \underline{mean}

COMP-6060 Systems Programming

CALCULATE MEDIAN

The median is the middle value of a sorted dataset. If the dataset has an even number of values, the median is the mean of the two middle values in the dataset.

- Create a variable called median
- 2. Using an if statement, check if the size of the dataset is odd or even
 - a. If the dataset size is odd:
 - i. Set the value of median to the dataset element at index (dataset_size / 2) + 1
 - b. Otherwise, if the dataset size is even:
 - i. Create a variable called mid_val_1 and assign it the value of the dataset element at index int(dataset size / 2)
 - ii. Create a variable called mid_val_2 and assign it the value of the dataset element at index (dataset_size / 2) + 1
 - iii. Set the value of median to int((mid_val_1 + mid_val_2) / 2)
- ${\bf 3.} \quad {\bf Outside \ the \ if \ statement, \ print \ the \ value \ of \ median \ using \ the \ following \ format:}$

The median of the dataset = median

Welcome to Lynn's statistical analysis tooll

EXPECTED OUTPUT

The dataset has 14 elements The mean of the dataset = 40.571 The median of the dataset = 43.5	42857142857	
Show results to Instructor.		
Student Name:	Instructor:	
Date:		