삼성전자 로지텍 물류경진대회

중앙대학교 국제물류학과

강다훈 김태현 이건호

전제

5년 기준 시점 분할

5년을 기준으로 단기, 중/장기 PLAN 도출

- 대규모 투자비용을 회수하기 위해서는 오랜 시간이 소요됨
- 따라서 5년을 분기점으로 하여 중장기적 관점에서의 분석을 진행하고자 함

품목별 파레트 적재 방식

적재 수량은 단순 치수 계산과 실제 적재 방식에 따라 차이가 발생 특히 품목 회전 여부는 팔레타이징 구성 방식에 큰 영향을 끼침

품목별 파레트 적재에 대한 A/B안의 적재 수량 비교

★ A안

• 팔레트 치수/품목 치수

★ B안

- 엑셀 SOLVER + VBA 매크로를 이용한 적재 최적화 시뮬레이션
- 이후 파이썬 RECTPACK 라이브러리로 교차 검증
 - RECTPACK: 2D 직사각형 패킹 문제(BIN PACKING PROBLEM)를 해결하는 휴리스틱 알고리즘

전제

품목별 파레트 적재 방식

스마트폰의 경우 A안의 경우하나의 팔레트에 28개 적재, 하지만 B안의 경우 30개 적재 가능 → B안 채택

A안 결과 예시

팔레트 적재 개수					
	2	8			
스마트폰	(mm)	팔레트	(mm)		
가로	440	가로	1960		
세로	270	세로	1960		
높이	260	높이	1800		

Q1.

팔레트 AS/RS와 셔틀 시스템 중 A사의 유리한 대형 제품 보관용 설비 선정 및 투자 규모 산출

Q1 STEP

STEP 1. 품목별 수치 산정

품목별 수치 결과

품목	팔레트 적재 개수	총 재고량	필요 팔레트 수
TV	10	68430	6843
냉장고	4	13384	3346
세탁기	4	18074	4519
에어컨	72	363240	5045
식기세척기	18	104720	5818

- 총 재고량 = 재고일수 * 일평균 출하량
- 필요 팔레트 수 = 총 재고량 / 팔레트 적재 개수

품목별 수치를 토대로 보관용 설비 규모 설정 이때 다음과 같은 조건 반영

- 크레인, 리프트 수를 최소화 하기 위해 복도는 **150M(제약 조건)**에 가깝게 설정
- 팔레트 취급을 위한 여유공간 상면, 측면 각 200MM 반영

보관용설비총규모

품목 [‡] 품 [‡]	별 수치 결과 발레트 적제	가로 내개수 총 자	세로 고량 필요 팔레트 수	높이	총 셀 수	크레인/리프터,셔틀 수	
TV 냉장. 세탁.	10 과 팔레트 AS/RS4 기 4	68 21셀 적재 (80.56m)	430 6843 384 3346 ₀₇₄ 69 셀 적재 ₅₁₉	18단 적재 (2.15 * 18 = 38.7)	21*69*18=26082	자동화 설비 제원 설 과 같은	정
식기세	전 72 팔레트 셔틀 ^{렇기} 시스탬 ¹⁸	^{36:} 42셀 적재 (107.24m) ^{10:}	$(2.16 * 69 + 0.2)$ $= 149.24)^{045}$ $= 720$ $= 5818$	9단적재 (2.15 * 9 = 19.35)	크레인, 리프트 수를 최근42*69*9=260821 여유	└화 하기 위해 복도는 150M(제약 조건)에 └공간 상면, 측면 각7대)MM 반영	가깝거

STEP 2. 설비별 비용 분석

투자비를 계산하는 방식은 문제에 정의되어 있지 않으나, 합리적으로 다음과 같이 가정.

총 비용 = 셀 수 기반 설비 투자비 + 설비 투자비 + 면적 기반 임차료 + 인건비

이 때, (셀 수 기반 설비 투자비+설비 투자비)는 고정 투자비로, (면적 기반 임차료 + 인건비)는 운영비로서 경제적 분석을 실행

투자비

AS	/RS	셔틀
----	-----	----

셀수 기반 설비 투자비	<u>2,008</u>	2,191
설비비	506	<u>53</u>
합계	2,514	<u>2,243</u>

(단위:천만원)

- 셀 수 기반 투자비 = 셀당 단가 * 총 셀 수
- 설비비 = 설비 수 (통로 수) * 단가

운영비

	AS/KS	<u> </u>
임차료	<u>14</u>	X
인건비	6	6
합계	<u>20</u>	25

AC/DC

셔트

(단위:천만원)

- 임차료 = 총 사용 면적(평) * 1.3 * 평당 단가
- 인건비 = 설비별필요인력 * 월급

STEP 3. 경제성 분석

앞서 제시한 총 투자비 구성 요소를 기반으로, 각 설비안(AS/RS, 셔틀)의 고정 투자비와 월별 운영비를 합산하여 연도별 누적 비용을 산정함 이에 1년 차부터 10년 차까지의 **인플레이션율을 고려**한 누적 비용 변화를 비교하여, 장기 운영 관점에서 어떤 설비가 경제적으로 유리한지 분석한 결과를 제시하고자 함.

• 인플레이션율은 최근 5개년간 평균인 2.88% 로 산정, 투자비에만 적용

결론

단기적으로는 셔틀이 초기 비용 우위로 유리하나, 54개월 이후 AS/RS가 운영비 절감 효과로 비용을 역전한다.

장기 운영(10년 기준)에서는 AS/RS가 더 낮은 총비용을 보여, 장기적인 경제성 확보를 위해 AS/RS를 선택하는 것이 타당함

자세한 내용은 Appendix 참조

Q2.

A사의 운영환경을 고려하여 품목별/프로세스별 자동화 설비 제시 및 센터 레이아웃 설계

Q2 STEP

2번 문제 창고레이아웃

본 설계는 대형 품목 대응을 위해 구축된 AS/RS 설비에 중소형 품목까지 통합 수용하는 구조로 추가 투자 없이 전통적 방식 대비 인건비 부담을 크게 줄일 수 있다는 특징이 있음

품목별 자동화 설비 설정

- ★ 추가 투자 비용 없이 기존 설비 만으로 중소형 품목 보관 가능
- → 모든 품목에 대해 AS/RS 적용

2번문제 입고프로세스

가정

- 입고도크, 출고도크와의 동선 최적화를 위해 AS/RS 설비의 입고 위치와 출고 위치를 분리
- 대형 제품의 경우 벌크로 입고 되기에 1시간당 60CBM 처리 가능
- 중형 제품은 팔레트 형식으로 입고 후 지게차를 활용 하여 AS/RS 설비로 이동

결론

일 평균 입고량 약 7600CBM을 처리하기 위해선 하루 7.5시간 근무하는 17 명의 작업자 필요

2번 문제 보관방법론

목적

보관의 원칙(형상 특성의 원칙, 회전 대응의 원칙, 동일 유사성 원칙)을 고려하여 장비의 이동거리가 최소화 되는 SKU별 보관 장소 선정

물품 크기 분류

K-MEANS CLUSTERING 을 사용하여 물품 크기를 소, 중, 대로 분류

물품 ABC 분류

출하빈도 기준 물품 ABC 분류(8:1.5:0.5)

자세한 분류 내용은 Appendix 참조

2번 문제 보관방법론

Greedy Algorithm

어떤 문제를 해결할 때 지금 당장 가장 최적인 선택을 반복적으로 하면서 전체 최적 해에 도달하려고 시도하는 방식의 알고리즘

목표

물품 분류, ABC 등급과 크기 분류에 따라 각 품목을 가장 적합한 창고 셀에 비용(=거리)이 최소가 되도록 하나씩 순차적으로 배정

ABC 등급: A>B>C 순으로 랙 중앙(가운데 열)에 위치

• 거리 계산 방식은 피타고라스 방식을 사용하므로 가운데 열에 가까울수록 거리가 감소함

크기 분류: 크기가 클 수록 랙 하단에 위치

알고리즘 적용시

2번 문제 보관방법론

품목별 열 분포

A등급(식기 세척기, 에어컨 등) 품목이 열 중앙에 위치한 것을 확인

크기 분류: 크기가 클 수록 랙 하단에 위치

품목별 행 분포

무거운 제품이 아래 층에 가벼운 제품이 위층에 위치한 것을 확인

2번문제 출고프로세스

8H 주문시작

입고 마감 17H 18H 입고 마감

가정

- 주문 발생에 대한 조건 부재로 영업시간(08~24시) 중 시간 별 동일한 주문 건수 발생
- 즉 8시 인입 주문의 경우 일 평균 주문건수의 약 37.5% 18시 인입 주문의 경우 일 평균 주문건수의 약 **62.5** %
- 당일 배송 서비스 충족을 위해 18시 인입된 주문이 24시 전까지 모두 처리 될 수 있는지에 주목

결론

- 일평균 1823개 팔레트 출고하므로 62.5%인 1140개의 팔레트를 18~24시 사이에 처리해야함
- 이는 7명의 지게차 작업자 6시간 근무 기간동안 시간당 27개의 팔레트를 트럭에 적재 하여야 함

전날 18시 ~ 당일 08시 사이 발생 주문: 8시에 주문 인입 당일 08시 ~ 당일 18시 사이 발생 주문 : 18 시 주문 인입

출고과정에서 팔레트의 효율적 이동을 위해 컨베이어 벨트를 활용.

사진 자료 출처: WAPSHANGHAI 제품 상세정보

2번 문제 타당성검토

Q3.

물류센터 자동화를 통한 가전 유통 측면에서 기대효과 및 예상되는 리스크 및 리스크 헷징 전략 제안

3번 문제 자동화기대효과=비용절감+서비스품질+확장성확보

자동화 도입에 따른 운영비 절감 효과 분석 : 물류창고 자동화를 통해 연간 35.2억원의 운영비를 절감할 수 있음

비용/월 기준	현안	AS/RS 설비 도입 시	절감율	디
임차료	₩ 304,447,806	₩ 175,781,959	42%	컨베이어 벨트 등 창고 레이아웃 설비공감 포함
인건비	₩ 400,000,000	₩ 235,000,000	41%	입고 17名 + 보관 12名 + 출고18名

이외에도 다음과 같은 공급망적 이점이 존재

- 마진이 제한적인 가전 유통의 관점에서 물류 고정비를 절감함으로써 단가 인하 여지를 확보 가능
- 출고 리드타임 단축 → 유통 속도 개선 → 서비스 수준 개선 → 고객경험 강화
- 에어컨 등 계절성 수요가 큰 품목에 대해서도 대응력 강화

3번 문제 리스크 및 리스크 헷징 전략

리스크 상황 가정

- 현안 및 AS/RS 도입 후 창고 운영에 있어 90~99.7%의 매우 높은 창고 **활용율**이 예상됨
 - (활용율 = 예상 사용 셀 수 / 창고 총 셀 수)
- 이 수치는 평균 수치이므로 성수기 혹은 수요 피크 발생시 일시적으로 창 고 내 병목 현상이 발생할 수 있음

리스크 헷징 전략

- 기존 18단의 설계에서 19단으로 확장 가능
 - (19층의 높이 조건을 제한하며 층고 확장)
- 크레인 추가 없이 2,760 셀 확장이 가능하며 확장 시 21.25억 추가 투자비 발생
- 이를 통해 **84.3%까지 안정적인 창고활용율 확보** 가능

AS/RS 19단 확장시 레이아웃

-품목별 파레트 적재 방식

APPENDIX

APPEND

연도별 누적 총비용 (AS/RS VS 셔틀)

	1년	2년	3년	4년	5년	6년	7년	8년	9년	10년
AS/RS	2,757	3,000	3,243	3,487	3,730	3,973	4,216	4,459	4,702	4,945
셔틀	2,544	2,844	3,144	3,444	3,744	4,044	4,344	4,645	4,945	5,245

품목 분류

품목	크기 분류	ABC 분류
TV	대형	Α
식기세척기	대형	А
에어컨	소형	А
세탁기	중형	В
냉장고	중형	С
태블릿	소형	С
스마트폰	소형	С
PC	소형	С