Complex number equations

Let's talk about another application of powers of complex numbers. We can use what we've learned in this section to solve equations like $z^4 = 16$. In an equation like this one, z represents a complex number, which means we're looking for the complex numbers that would satisfy the equation. We'll do this using a system of equations.

First, we want to focus on the left side of $z^4 = 16$. Using De Moivre's theorem, we know we can rewrite z^4 as

$$z^n = r^n \left[\cos(n\theta) + i \sin(n\theta) \right]$$

$$z^4 = r^4 \left[\cos(4\theta) + i \sin(4\theta) \right]$$

Then looking just at the right side of $z^4 = 16$. We know we can rewrite 16 as the complex number 16 + 0i in rectangular form. If we find the modulus and angle of this complex number, we get

$$r = \sqrt{16^2 + 0^2}$$

$$r = \sqrt{16^2}$$

$$r = 16$$

and

$$\theta = \arctan \frac{b}{a} = \arctan \frac{0}{16} = \arctan 0 = 0$$

Keep in mind though, that this arctan equation is true at an angle of 0, but it's also true at coterminal angles to 0, including 2π , 4π , 6π , 8π , etc. So if we put this into polar form, we get

$$z = 16 \left[\cos(0, 2\pi, 4\pi, 8\pi, \dots) + i \sin(0, 2\pi, 4\pi, 8\pi, \dots) \right]$$
$$z = 16 \left[\cos(2\pi k) + i \sin(2\pi k) \right]$$

We could also write this in degrees instead of radians as

$$z = 16 \left[\cos(360^{\circ}k) + i\sin(360^{\circ}k) \right]$$

Starting again with $z^4 = 16$, we can start making substitutions.

$$z^{4} = 16$$

$$r^{4} \left[\cos(4\theta) + i \sin(4\theta) \right] = 16$$

$$r^4 \left[\cos(4\theta) + i\sin(4\theta)\right] = 16 \left[\cos(360^\circ k) + i\sin(360^\circ k)\right]$$

Because we've got the same polar form on both sides of the equation, we can equate associated values and get this system of equations:

$$r^4 = 16$$

$$4\theta = 360^{\circ}k$$

From these equations, we get

$$r^4 = 16$$
, so $r = 2$

$$4\theta = 360^{\circ}k$$
, so $\theta = 90^{\circ}k$

To $\theta = 90^{\circ}k$, if we plug in k = 0, 1, 2, 3, ..., we get

For
$$k = 0$$
, $\theta = 90^{\circ}(0) = 0^{\circ}$

For
$$k = 1$$
, $\theta = 90^{\circ}(1) = 90^{\circ}$

For
$$k = 2$$
, $\theta = 90^{\circ}(2) = 180^{\circ}$

For
$$k = 3$$
, $\theta = 90^{\circ}(3) = 270^{\circ}$

• • •

We could keep going for k = 4, 5, 6, 7, ..., but k = 4 gives 360° , which is coterminal with the 0° value we already found for k = 0, so we realize that we'll just be starting to repeat the same solutions. So the only solutions we need to consider are $\theta = 0^\circ$, 90° , 180° , 270° .

Plugging these four angles and r=2 into the formula for polar form of a complex number, we'll get the solutions to $z^4=16$.

$$z_1 = 2 \left[\cos(0^\circ) + i \sin(0^\circ) \right] = 2 \left[1 + i(0) \right] = 2$$

$$z_2 = 2 \left[\cos(90^\circ) + i \sin(90^\circ) \right] = 2 \left[0 + i(1) \right] = 2i$$

$$z_3 = 2 \left[\cos(180^\circ) + i \sin(180^\circ) \right] = 2 \left[-1 + i(0) \right] = -2$$

$$z_4 = 2 \left[\cos(270^\circ) + i \sin(270^\circ) \right] = 2 \left[0 + i(-1) \right] = -2i$$

We can double-check that these are all roots of 16, by substituting these complex number solutions into $z^4 = 16$ for z.

For
$$z_1 = 2$$
, we get

$$2^4 = 16$$

$$16 = 16$$

For $z_2 = 2i$, we get

$$(2i)^4 = 16$$

$$16i^4 = 16$$

$$16i^2i^2 = 16$$

$$16(-1)(-1) = 16$$

$$16 = 16$$

For $z_3 = -2$, we get

$$(-2)^4 = 16$$

$$16 = 16$$

For $z_4 = -2i$, we get

$$(-2i)^4 = 16$$

$$16i^4 = 16$$

$$16i^2i^2 = 16$$

$$16(-1)(-1) = 16$$

$$16 = 16$$

And if we graph these complex numbers, we see the four solutions to $z^4=16$ in the complex plane.

