Введение в анализ данных

Лекция 7

Градиентный спуск и линейная классификация

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2021

Опроверочной

Способ проверки модели 1

- Обучающая выборка: подбираем параметры
- Валидационная выборка: подбираем гиперпараметры и сравниваем разные модели
- Тестовая выборка: проверяем итоговую модель

Способ проверки модели 2

- Кросс-валидация по обучающей выборке: подбираем параметры и гиперпараметры, сравниваем модели
- Тестовая выборка: проверяем итоговую модель

Обучение линейной регрессии

$$Q(w_1, ..., w_d) = \sum_{i=1}^{\ell} (w_1 x_1 + ... + w_d x_d - y_i)^2 \to \min_{w_1, ..., w_d}$$

И аналитическая формула, и градиентный спуск решают одну и ту же задачу!

Обучение линейной регрессии

Что может пойти не так:

- Градиентный спуск может не дойти до минимума
 - Слишком рано остановим
 - Слишком медленные шаги
- У задачи много решений (случается, если есть линейно зависимые признаки)
 - По аналитической формуле нельзя будет посчитать веса
 - Градиентный спуск придёт в один из локальных минимумов

Параметры и гиперпараметры

- Параметры нужны, чтобы подогнать модель под данные
 - Выбираем так, чтобы ошибка на обучающей выборке была как можно меньше
- Гиперпараметры нужны, чтобы контролировать сложность модели
 - С точки зрения обучающей выборки они только мешают
 - Чем сильнее регуляризация, тем хуже модель на обучении
 - Зато они позволяют бороться с переобучением
 - Подбираются на кросс-валидации или по отложенной выборке

Поиск гиперпараметров

- Хотим найти коэффициент регуляризации
- Выбираем сетку: [0.01, 0.1, 1, 10, 100]
- Для каждого значения обучаем модель и считаем ошибку на отложенной выборке (или про кросс-валидации)
- Выбираем вариант с наименьшей ошибкой

- Grid search
- Есть и другие подходы

Поиск гиперпараметров

Градиентный спуск

- Подбирает веса в линейной модели
- Если заменить движение по антиградиенту на движение в случайную сторону, то получится непонятно что

Градиентный спуск

1. Начальное приближение: w^0

2. Повторять:

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

3. Останавливаемся, если

$$||w^t - w^{t-1}|| < \varepsilon$$

Линейная регрессия

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x \rangle - y_i)^2$$

•
$$\frac{\partial Q}{\partial w_1} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{i1} (\langle w, x \rangle - y_i)$$

• ..

•
$$\frac{\partial Q}{\partial w_d} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{id} (\langle w, x \rangle - y_i)$$

•
$$\nabla Q(w) = \frac{2}{\ell} X^T (Xw - y)$$

Сложности градиентного спуска

- Для вычисления градиента, как правило, надо просуммировать что-то по всем объектам
- И это для одного маленького шага!

Оценка градиента

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a(x_i))$$

• Градиент:

$$\nabla Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} \nabla L(y_i, a(x_i))$$

• Может, оценить градиент одним слагаемым?

$$\nabla Q(w) \approx \nabla L(y_i, a(x_i))$$

- 1. Начальное приближение: w^0
- 2. Повторять, каждый раз выбирая случайный объект i_t :

$$w^{t} = w^{t-1} - \eta \nabla L \left(y_{i_t}, a(x_{i_t}) \right)$$

3. Останавливаемся, если

$$||w^t - w^{t-1}|| < \varepsilon$$

Градиентный спуск

1. Начальное приближение: w^0

2. Повторять, каждый раз выбирая случайный объект i_t :

$$w^{t} = w^{t-1} - \frac{\eta_{t}}{\eta_{t}} \nabla L \left(y_{i_{t}}, a(x_{i_{t}}) \right)$$

3. Останавливаемся, если ошибка на валидационной выборке перестала падать

$$\eta_t = \frac{0.1}{t^{0.3}}$$

Mini-batch

- 1. Начальное приближение: w^0
- 2. Повторять, каждый раз выбирая m случайных объектов i_1, \dots, i_m :

$$w^{t} = w^{t-1} - \eta_{t} \frac{1}{m} \sum_{j=1}^{m} \nabla L \left(y_{i_{j}}, a \left(x_{i_{j}} \right) \right)$$

3. Останавливаемся, если

$$||w^t - w^{t-1}|| < \varepsilon$$

Функции потерь в задачах регрессии

Среднеквадратичная ошибка

• Частый выбор — квадратичная функция потерь

$$L(y,a) = (a - y)^2$$

• Функционал ошибки — среднеквадратичная ошибка (mean squared error, MSE)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

Обучение на среднеквадратичную ошибку

a(x)	y	$(a(x)-y)^2$
2	1	1
1	2	1
2	3	1
5	4	1
6	5	1
7	100	8649
6	7	1

 $MSE \approx 1236$

a(x)	y	$(a(x)-y)^2$
4	1	9
5	2	9
6	3	9
7	4	9
8	5	9
10	100	8100
10	7	9

 $MSE \approx 1164$

Средняя абсолютная ошибка

$$L(y, a) = |a - y|$$

• Функционал ошибки — средняя абсолютная ошибка (mean absolute error, MAE)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

a(x)	y	a(x)-y
2	1	1
1	2	1
2	3	1
5	4	1
6	5	1
7	100	93
6	7	1

 $MAE \approx 14.14$

a(x)	y	a(x)-y
4	1	3
5	2	3
6	3	3
7	4	3
8	5	3
10	100	90
10	7	3

 $MAE \approx 15.43$

Функция потерь Хубера

$$L_H(y,a) = \begin{cases} \frac{1}{2}(y-a)^2, & |y-a| < \delta \\ \delta(|y-a| - \frac{1}{2}\delta), & |y-a| \ge \delta \end{cases}$$

• Функционал ошибки:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} L_H(y_i, a(x_i))$$

Функция потерь Хубера

$$L_H(y,a) = \begin{cases} \frac{1}{2}(y-a)^2, & |y-a| < \delta \\ \delta(|y-a| - \frac{1}{2}\delta), & |y-a| \ge \delta \end{cases}$$

MAPE

• Mean Absolute Percentage Error (средний модуль относительной ошибки)

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

$$Q(a,X) = \frac{100\%}{\ell} \sum_{i=1}^{\ell} \left| \frac{a(x_i) - y_i}{y_i} \right|$$

MAPE

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

- Особенности (при $a \ge 0$):
- Недопрогноз штрафуется максимум на единицу
- Перепрогноз может быть оштрафован любым числом
- Несимметричная функция потерь (отдаёт предпочтение недопрогнозу)

MAPE

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

SMAPE

• Symmetric Mean Absolute Percentage Error (симметричный средний модуль относительной ошибки)

$$L(y,a) = \frac{|y-a|}{(|y|+|a|)/2}$$

$$Q(a,X) = \frac{100\%}{\ell} \sum_{i=1}^{\ell} \frac{|y_i-a(x_i)|}{(|y_i|+|a(x_i)|)/2}$$

SMAPE

$$L(y,a) = \frac{|y-a|}{(|y|+|a|)/2}$$

Модель линейной классификации

Классификация

- $Y = \{-1, +1\}$
- -1 отрицательный класс
- +1 положительный класс
- a(x) должен возвращать одно из двух чисел

Линейная регрессия

$$a(x) = w_0 + \sum_{j=1}^d w_j x_j$$

Вещественное число!

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x_j\right)$$

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x_j\right)$$

Свободный коэффициент

Признаки

Beca

• Будем считать, что есть единичный признак

$$a(x) = \operatorname{sign} \sum_{j=1}^{a} w_j x_j = \operatorname{sign} \langle w, x \rangle$$

Уравнение гиперплоскости: $\langle w, x \rangle = 0$

- Линейный классификатор проводит гиперплоскость
- $\langle w, x \rangle < 0$ объект «слева» от неё
- $\langle w, x \rangle > 0$ объект «справа» от неё

• Расстояние от точки до гиперплоскости $\langle w, x \rangle = 0$:

$$\frac{|\langle w, x \rangle|}{\|w\|}$$

• Чем больше $\langle w, x \rangle$, тем дальше объект от разделяющей гиперплоскости

Отступ

- $M_i = y_i \langle w, x_i \rangle$
- $M_i > 0$ классификатор дает верный ответ
- $M_i < 0$ классификатор ошибается
- Чем дальше отступ от нуля, тем больше уверенности

Порог

$$a(x) = \operatorname{sign}(\langle w, x \rangle - t)$$

• t — порог классификатора

• Можно подбирать для оптимизации функции потерь, отличной от использованной при обучении

- Линейный классификатор разделяет два класса гиперплоскостью
- Чем больше отступ по модулю, тем дальше объект от гиперплоскости
- Знак отступа говорит о корректности предсказания