

## **Derivadas**

| Derivadas bás     | sicas                                       |                |                                       |  |
|-------------------|---------------------------------------------|----------------|---------------------------------------|--|
| Funciones simples |                                             | Funcion        | Funciones compuestas                  |  |
| у                 | y'                                          | у              | y'                                    |  |
| k                 | 0                                           |                |                                       |  |
| Х                 | 1                                           |                |                                       |  |
| x <sup>n</sup>    | $nx^{n-1}$                                  | u <sup>n</sup> | $nu^{n-1}u'$                          |  |
| $\sqrt{x}$        | $\frac{1}{2\sqrt{x}}$                       | $\sqrt{u}$     | $\frac{u'}{2\sqrt{u}}$                |  |
| $\sqrt[n]{x}$     | $\frac{1}{n\sqrt[n]{x^{n-1}}}$              | √u             | $\frac{u'}{n\sqrt[n]{u^{n-1}}}$       |  |
| $\frac{1}{x}$     | $\frac{-1}{x^2}$                            | $\frac{1}{u}$  | $\frac{-u'}{u^2}$                     |  |
| $e^{x}$           | $e^{x}$                                     | $e^u$          | e <sup>u</sup> u′                     |  |
| a <sup>x</sup>    | $a^{x} \ln(a)$                              | a <sup>u</sup> | $a^u \ln(a)u'$                        |  |
| x <sup>x</sup>    | $xx^{x-1} + x^x \ln(x)$                     | $u^{v}$        | $vu^{v-1}u' + u^v \ln(u)v'$           |  |
| ln(x)             | $\frac{1}{x}$                               | ln(u)          | $\frac{u'}{u}$                        |  |
| $\log_a(x)$       | $\frac{1}{x}\log_a(e)$                      | $\log_a(u)$    | $\frac{u'}{u}\log_a(e)$               |  |
| sen(x)            | cos(x)                                      | sen(u)         | $\cos(u)u'$                           |  |
| $\cos(x)$         | - sen( <i>x</i> )                           | $\cos(u)$      | $-\operatorname{sen}(u)u'$            |  |
| tg(x)             | $\frac{1}{\cos(x)^2}$                       | tg(u)          | $\frac{u'}{\cos(u)^2}$                |  |
| $\cot(x)$         | $\frac{-1}{\operatorname{sen}(x)^2}$        | cot(u)         | $\frac{-u'}{\operatorname{sen}(u)^2}$ |  |
| sec(x)            | $\frac{\mathrm{sen}(x)}{\mathrm{cos}(x)^2}$ | sec(u)         | $\frac{sen(u)}{cos(u)^2}u'$           |  |
| $\csc(x)$         | $\frac{-\cos(x)}{\sin(x)^2}$                | CSC(u)         | $\frac{-\cos(x)}{\sin(x)^2}$          |  |
| arcsen(x)         | $\frac{1}{\sqrt{1-x^2}}$                    | arcsen(u)      | $\frac{u'}{\sqrt{1-u^2}}$             |  |
| arccos(x)         | $\frac{-1}{\sqrt{1-x^2}}$                   | arccos(u)      | $\frac{-u'}{\sqrt{1-u^2}}$            |  |
| arctg(x)          | $\frac{1}{1+x^2}$                           | arctg(u)       | $\frac{u'}{1+u^2}$                    |  |
| arccot(x)         | $\frac{-1}{1+x^2}$                          | arccot(u)      | $\frac{-u'}{1+u^2}$                   |  |
| arcsec(x)         | $\frac{1}{x\sqrt{x^2-1}}$                   | arcsec(u)      | $\frac{u'}{u\sqrt{u^2-1}}$            |  |
| arccsc(x)         | $\frac{-1}{x\sqrt{x^2-1}}$                  | arccsc(u)      | $\frac{-u'}{u\sqrt{u^2-1}}$           |  |



## Reglas de derivación

Suma

$$(f(x) + g(x))' = f'(x) + g'(x)$$

Diferencia

$$(f-g)'(x) = f'(x) - g'(x)$$

**Producto** 

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

Cociente

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

Regla de la cadena

$$(f(g))'(x) = f'(g(x))g'(x)$$

Inversa

$$(f^{-1})'(x) = \frac{1}{f'(x)}$$