

Spectra Processing, Compound Annotation, Functional Insight and Causal Analysis using MetaboAnalyst 6.0

Jianguo (Jeff) Xia, Associate Professor

Canada Research Chair in Bioinformatics & Big Data Analytics

jeff.xia@mcgill.ca | www.xialab.ca

McGill University, Canada

Schedule

Part I: 2:15 p.m. – 4:15 p.m

- 2:15 3:00: Background
 - ✓ General introduction
 - ✓ LC-MS & MS/MS spectral processing
 - ✓ From peaks to functions
- 3:00 3:20: Live demo
- 3:20 4:15: Hands on practice

Part II: 4:30 p.m. – 6:30 p.m.

- 4:30 5:10: Background
 - ✓ Data processing
 - √ Statistical analysis
 - √ Causal analysis
- 5:10 5:40: Live demo
- **5:40 6:15**: Hands on practice
- **6:15 6:30**: Summary & discussion

Github Repository

https://github.com/xia-lab/Metabolomics_2024

- Slides (in PDF format);
- Example data;
- Reference literatures;
- Contact information.

Common Tasks for Metabolomics

Data Processing

MetaboAnalyst 6.0 Modules

Input Data Type	Available Modules (click on a module to proceed, or scroll down to explore a total of 18 modules including <u>utilities</u>)								
LC-MS Spectra (mzML, mzXML or mzData)			Spectra Processing [LC-MS w/wo MS2]						
MS Peaks (peak list or intensity table)		Peak Annotation [MS2-DDA/DIA]	Functional Analysis [LC-MS]	Functional Meta-analysis [LC-MS]					
Generic Format (.csv or .txt table files)	Statistical Analysis [one factor]	Statistical Analysis [metadata table]	Biomarker Analysis	Statistical Meta-analysis	Dose Response Analysis				
Annotated Features (metabolite list or table)		Enrichment Analysis	Pathway Analysis	Network Analysis					
Link to Genomics & Phenotypes (metabolite list)			Causal Analysis [Mendelian randomization]						

Targeted metabolomics data

Sample	Label	Acetate	Acetone	Alanine	Betaine	Carnitine	Choline	Citrate	Creatine
Control_01	0	189.07	24.24	266.27	298.95	304.62	305.61	3969.16	366.7
Control_02	0	386.52	26.29	612.02	313.5	122.06	78.46	2075.6	435.99
Control_03	0	506.28	27.84	347.32	101.49	88.82	35.88	745.5	83.39
Control_04	0	51	177.56	468.42	172.65	133.28	0	10797.57	77.69
Control_05	0			.1 (-		21	187.98	1016.97	83.39
Disease_01	1		Targete	d meta	polom	ICS)4	122.4	1486.6	152.5
Disease_02	1		(sam	ples in	rows)	36	44.93	3327.06	263.41
Disease_03	1	231.08	12.91	220.00	•	0	35.26	758.18	50.36
Disease_04	1	285.55	0	217.43	0	77.79	0	609.23	0
Disease_05	1	353.51	15.87	699.81	98.7	458.81	112.21	3415.49	229.79

Sample	Contr_1	Contr_2	Contr_3	Contr_4	Contr_5	Disease_1	Disease_2	Disease_3	Disease_4	Disease_5
Label	0	0	0	0	0	1		1	1	1
Acetate	189.07	386.52	506.28	51	733.45	315.12	325.39	231.59	285.55	353.51
Acetoacetate	0	0	145.96	232.69	0	148.37		56.19	0	0
Acetone	24.24	26.29	Ta	argete	d meta	bolomi	CS 29	12.91	0	15.87
Alanine	266.27	612.02					53	226.63	217.43	699.81
Betaine	298.95	313.5	(sampi	es in c	columns	5.1	0	0	98.7
Carnitine	304.62	122.06	88.82	133.28	89.21	32.04	89.36	0	77.79	458.81
Choline	305.61	78.46	35.88	0	187.98	122.4	44.93	35.26	0	112.21
Citrate	3969.16	2075.6	745.5	10797.57	1016.97	1486.6	3327.06	758.18	609.23	3415.49
Creatine	366.7	435.99	83.39	77.69	83.39	152.5	263.41	50.36	0	229.79

Untargeted metabolomics data

Sample	men_Pt004_RPLCpos	men_Pt007_RPLCpos	men_Pt008_RPLCpos	men_Pt010_RPLCpos	men_Pt013_F	RPLCpos	men_Pt020_RPL0	pos									
Label	Covid	Covid	Covid	Covid	Covid	Covid											
68.9948646.68	1158657.48719	1151894.23428	1189086.78073	1285945.06468	119600	1196004.21814		7851									
69.995_641.77	107433.72307	126812.99598	124835.38621	160081.36667	13273	132737.27627		0701									
70.0663 32.7	10385.57069	13137.07876	15305.24912	5714.296	183	1831.73589		5873									
81.5222 642.31	209861.50958	194875.48234	210983.40708	211579.43879		288.2791	208780.2										
84.0461 30.06	53988.89851	44693.63728	54104.51066	34887.7869		36.84666	46781.9										
84.9606 643.25	186784.7	181153.3814	285718.9142	291334.92371		987.5361	134815.70	0457									
84.9607 664.62						2.48874	124820.09	9035									
84.9607716.7	4	Jntarget	ed meta	holomic		6.55494	749034.6										
85.0302_30.53		Jiilai gel	eu illeta		· 3	7.91671	2616.3										
86.0976 89.04		10	C-MS pea	aks		7.66029	129637.63										
			•			-			D: 0.00	Di- 0.04	D: 0.00	Di- 0.00	D: 0.00	D:- 0.70	D: 0 74	D:- 0.70	Di- 0.00
87.5108_642.38	29017.3417	48430.91348	29443.40354	50376.17085		49.23108	Sample P002	Class	Bin.9.98 2.00E-05		Bin.9.90 2.00E-05		4.00E-05	2.00E-05	1.00E-05		Bin.9.66 2.00E-05
88.5106646.42	467439.8206	452376.17516	486908.8982	488320.52256	5068	518.4509	P012	patient	-3.00E-05		-3.00E-05		-1.00E-05	0	3.00E-05		
89.5084646.45	8408192.9225	8132241.81496	8477437.65518	8543761.98101	867930	06.12814	P014	patient	0.00024	0.00017	0.00016	0.00018	0.00014	0.00015	0.00016		
89.6056646.48	101573.6793	89544.45735	97535.64361	116017.93274	1277	75.03719	P027	patient	9.00E-05	0.00013	9.00E-05		0.00014	1.00E-04	0.00014	0.00016	
89.9406643.85	169537.75028	169867.84414	201913.54163	156549.447	15256	68.62769	P034	patient	0.00012		2.00E-05		7.00E-05	7.00E-05	3.00E-05		
90.0093 646.69	839967.52451	823526.37057	859947.96708	900633.07574	8770	01.83348	P037	patient	1.00E-05		2.00E-05		-6.00E-05	6.00E-05	4.00E-05	6.00E-05	
90.5085 641.82	1539089.51759	1263856.98911	1444405.93286	1983990.84075		45.60964	P038 P041	patient	1.00E-05 -9.00E-05		1.00E-05 -7.00E-05		-1.00E-05 -0.00012	-5.00E-05 -6.00E-05	2.00E-05 -1.00E-05	5.00E-05 -1.00E-05	
							P041	patient	0.00015		0.00017		3.00E-05	-0.00011	2.00E-05		
90.5086482.02	14153278.42237	14091173.41408	14308006.37643	14770096.07378	1498740	02.61328	P049	patient		0.002.00		5,652.55	0.002 00			E-05	
							P056	patient		Intai	targeted metab			olom	Momice		0
							P058	patient	\	Jiitai	gen	su III	Glab	OlOll	1163	E-05	-3.00E-05
							P060	patient			N.	IMAD I	hina			E-05	2.00E-05
							P064	patient	NMR bins						E-05	7.00E-05	
							P065	patient			0.00 <u>2</u> 00	J.JJL 33		J.JJL JJ		-05	5.00E-05
							P070	patient	-1.00E-05	-1.00E-05	-1.00E-05	-3.00E-05	-1.00E-05	0	0	-2.00E-05	3.00E-05
							P080	patient	0	1.00E-05	0	0	1.00E-05	0	2.00E-05	2.00E-05	3.00E-05
							P085	patient	1.00E-05	7.00E-05	5.00E-05	5.00E-05	6.00E-05	3.00E-05	2.00E-05	1.00E-04	6.00E-05
							P086	patient	-1.00E-05	1.00E-05	1.00E-05	-1.00E-05	-1.00E-05	3.00E-05	-2.00E-05	7.00E-05	-2.00E-05
							P089	patient	1.00E-05	0	1.00E-05	2.00E-05	3.00E-05	3.00E-05	4.00E-05	5.00E-05	6.00E-05
							P092	patient	-3.00E-05	-3.00E-05	-3.00E-05	-1.00E-05	0	0	3.00E-05	-1.00E-05	3.00E-05
							P099	patient	0	0	2.00E-05	-1.00E-05	-4.00E-05	3.00E-05	5.00E-05	1.00E-05	4.00E-05
							P113	patient	-2.00E-05	1.00E-05	-4.00E-05	-2.00E-05	-7.00E-05	-4.00E-05	-1.00E-05	1.00E-05	-4.00E-05
							P013b	patient	-2.00E-05	-2.00E-05	-1.00E-05	-1.00E-05	-2.00E-05	0	0	1.00E-05	0

Metadata table

- Common in observational field studies
 - Clinical
 - Exposomics
 - Epidemiology
- ➤ Study design & context
 - Primary experimental factors
 - Covariates

Sample	Diagnosis	Gender	Treatment	Age
S1	COVID	Male	non_Treated	62
S2	COVID	Male	non_Treated	44
S3	COVID	Male	Treated	54
S4	COVID	Male	non_Treated	62
S5	COVID	Male	Treated	82
S6	COVID	Male	Treated	65
S7	COVID	Female	Treated	49
S8	COVID	Female	Treated	42
S9	COVID	Female	Treated	56
S10	COVID	Female	Treated	56
S11	COVID	Female	Treated	69
S12	HC	Male	non_Treated	24
S13	HC	Female	non_Treated	38
S14	HC	Female	non_Treated	42
S15	HC	Female	non_Treated	40
S16	HC	Female	non_Treated	56
S17	HC	Male	non_Treated	57
S18	HC	Male	non_Treated	57
S19	HC	Male	non_Treated	60
S20	HC	Male	non_Treated	62
S21	HC	Male	non_Treated	55

Understanding & formatting metadata

- Essential for downstream analysis
- Categorize as "Categorical" or "Continuous"
 - For categorical, must have at least 2 groups with at least 3 replicates each
- No missing values
- First meta-data column will be considered primary variable by default

View and edit metadata

Feature filtering (I)

- ❖ Not all features are informative
- There are redundancies in omics data for most features
- ❖ Filtering non-informative features before statistical analysis can often <u>significantly</u> improve the power

Feature filtering (II)

Three types of filters

❖ Low reliability filter

- Too many missing values
- Hard to measure metabolites: low repeatability based on QC samples

❖ Low abundance filter

 Variables of very small values (close to baseline or detection limit).

❖ Low variance filter

 Variables that are near-constant values throughout the experiment conditions (housekeeping or homeostasis)

DO NOT filter features based on their p-values or fold changes at this stage

Normalization (I)

Three types of normalization

- Sample-wise normalization aims to make each sample (row) comparable to each other (i.e. tissue volume, urine samples with different dilution effects)
- Data transformation (such as log, cubic root) transform individual values independently
 - Most metabolomics data are log-normal
- Data scaling (auto, pareto) takes into consideration of the distribution (range, SD) of individual features
 - Unique to the current data

Sample-level normalization

Adjusting technical or biological bias or inconsistencies

Median norm + Log

Feature-level normalization

Making features more "normal" and comparable

Log transformation

Auto-scaling

Statistical Analysis

-- identify significant features & patterns

Univariate Analysis

Test each feature individually (ignore their correlations)

- 1.T-tests & Fold Change Analysis
- Compare the means between 2 conditions
- 2.ANOVA & post-hoc analysis
- One factor with more than 2 levels (One-way ANOVA)
- Two factors (Two-way ANOVA)
- 3.Linear modeling (i.e., limma): more flexible analysis
- Multiple factors (metadata table)
 - Time series
 - Covariates analysis

Dealing with covariates

- Experimental design:
 - Control group that 'matches' your group of interest
- Data analysis (limited by sample size):
 - 1. Reduce the number of factors
 - use PCA + other tools to choose only factors with most influence on the data
 - Stratification for factors with few classes, split up the data and analyze separately
 - Analyze male / female separately
 - 3. Taking into account
 - Covariates

T-test vs. linear regression

- You can do t-test with linear regression:
- $y = B_0 + B_1 * x$
 - y: level of metabolite A
 - x: variable of interest
 - Categorical variables expressed using 'dummy variables'
 - Null hypothesis: $B_1 = 0$
 - Alternative hypothesis: $B_1 > 0$

Linear regression is flexible

- Linear regression is more flexible than the classical t-test:
 - Predictor variables (x) can be continuous or categorical
 - You can have multiple predictor variables
- Multiple linear regression:
 - $y = B_0 + B_1 * x_{diagnosis} + B_2 * x_{age}$
 - Coefficient estimates: relationship between x_i and y with all other variables held constant
 - We can generate a t-stat for any coefficient using the same formula from before: t_i = (B_i coefficient estimate) / (standard error of B_i coefficient estimate)
- Coefficients are unstable when the predictors are highly correlated

Method overview

Overview to understand structure of data & metadata

Simple yet effective univariate statistical analysis

Advanced multivariate statistics & machine learning

Data and Metadata Overview

Metadata Visualization

Users can explore the metadata patterns and correlations through intuitive graphics. It is very useful for users to identify highly dependent metadata and quickly assess the overall patterns of the metadata.

Interactive PCA Visualization

Users can visualize data using different colors or shapes based on selected metadata in an 2D and 3D (interactive) PCA plots. It is very useful to detect overall patterns of data with regard to different metadata.

Hierarchical Clustering and Heatmap Visualization

This method displays data and metadata in the form of colored cells. It provides direct visualization of feature abundances across different samples and metadata.

Univariate Analysis

Linear Models with Covariate Adjustment

This approach uses linear models (limma or lm) to perform significance testing with covariate adjustments. Users can choose different metadata to be included in the analysis.

Correlation and Partial Correlation Analysis

This approach allows users to explore the correlations or partial correlations (with covariate adjustments) between metabolomics features and different metadata of interest.

Two-way ANOVA (ANOVA2)

This approach provides classical two-way ANOVA based on the two factors selected by users. For time-series data, users should choose within-subjects ANOVA.

Multivariate Analysis

ANOVA Simultaneous Component Analysis (ASCA)

This approach is designed to identify major patterns with regard to the two given factors and their interaction. The implementation was based on the algorithm described by <u>AK Smildle, et al.</u> with additional improvements on feature selection and model validation.

Multivariate Empirical Bayes Analysis of Variance (MEBA) for Time Series

This approach is designed to compare temporal profiles across different biological conditions. It is based on the timecourse method described by <u>YC Tai. et al.</u>

Supervised Classification

Random Forest

This machine learning approach is designed to perform classification and feature selection analysis. Users can also test contribution of meta-data to class prediction.

Reducing metadata factors in analysis

- Factors maybe redundant (colinear)
 - → Keep only one
- Overlay factors on omics data using PCA
 - → Keep those with effects

Linear models for complex design

Fixed vs. random effects

- Fixed effects = covariates
 - Simply variables included in the regression model
 - Age, sex, tissue, etc
- Random effects = blocking factor
 - Accounted for with multi-level modeling
 - Batch, subjects
- In general, we recommend using fixed effects for simplicity & computational efficiency in most cases. Treating the blocks as a fixed effect has the huge advantage of being able to quantify block-by-factor interactions which is perhaps the best method to quantify the robustness of your design structure.

Interpretation of coefficient results

Multiple linear regression example:

•
$$y = B_0 + B_1 * x_{diagnosis} + B_2 * x_{age}$$

- By including B₂*x_{age} in the model, we account for effects of age
- Extract B₁ from the model:
 - B₁ value = magnitude & direction of relationship between metabolite 'y' and X_{diagnosis}
 - B₁ p-value = statistical significance of relationship

-log10(p-value): no covariate adjustment

Linear model with covariate adjustment

Multivariate Analysis

Principal Component Analysis (PCA)

- Project high-dimensional omics data into low dimensions (two or three PCs)
- Works best when there are a large number of variables are correlated
 - ➤ This is particularly relevant for untargeted metabolomics where single metabolites can generate several peaks
- PCA is very useful for:
 - Data overview
 - ➤ Outlier detection
 - ➤ Look at relationships between variables

Principal Component Analysis (PCA)

- Project high-dimensional data into lower dimensions that capture the most variance of the data
- Assumption:

Main directions of variance

≈ major data characteristics

PCs capture the main variance in omics data

Scores plot

PCA – under the hood

- Orthogonal linear transformation
- PCA transforms data to a new coordinate system so that the greatest variance of the data comes to lie on the first coordinate (1st PC), the second greatest variance on the 2nd PC etc.

Scores = Loadings x Data

$$t_1 = p_1 x_1 + p_2 x_2 + p_3 x_3 + \dots + p_n x_n$$

Scores & loadings plots

➤ Sample patterns (scores) are directly related to feature patterns (loadings)

Scores = Loadings x data

$$t_1 = p_1 x_1 + p_2 x_2 + p_3 x_3 + \dots + p_n x_n$$

.

Partial least squaresdiscriminant analysis (PLS-DA)

- When the experimental effects are subtle or moderate, PCA will not show good separation patterns
- > PLS-DA is a supervised method that uses multiple linear regression technique to find the direction of maximum covariance between a data set (X) and the class membership (Y)

33

Variance vs co-variance

Max covariance may not explain max variance

- Variance explained by top components from PLS-DA
- ➤ In some cases, the 2nd component may explain more data variance (not covariance!) than the 1st one

Explained variance by top 5 PLS-DA components

Working with supervised approaches - overfitting

Caution! PLS-DA always produces certain separation patterns with regard the conditions even there is no real difference between them!

- Fitted model performs well for the current data
- ➤ Fitted model is not good for prediction of new data prediction error is underestimated
- ➤ Model is too elaborate, models "noise" that will not be the same for new data

Performance evaluation for PLS-DA

Cross validation – whether the model can predict on new events

- Prediction accuracy
- Sum of squares captured by the model (R²)
- Cross-validated R² (also known as Q²)

Permutation tests – whether the model captures real signals compared to the null models (those with group labels randomly assigned)

Evaluation of PLS-DA Model

- PLS-DA model can be evaluated by cross validation, R² and Q²
- Using too many components can over-fit
- 3 component model seems to be a good compromise here
- Good R^2/Q^2 (>0.7)

Can Q2 be negative?!

Permutation Tests

To test whether the model is significantly different from the null models

- 1. Randomly shuffle the class labels (y) and build the (null) model between new y and x;
- 2. Test whether there is still the similar performance (i.e. distances in separation patterns);
- 3. We can compute empirical p values
 - If the result is similar as the permuted results (i.e. null model), then we can not say y and x is significantly correlated

Original

Permuted

Model validation by permutations

Permutation is computationally intensive. It is not performed by default. Users need to set the permutation number and press the submit button

PLS-DA for multi-group: order matters

Different group names can potentially change separation patterns!

Different group names will not matter