Bound & Bottleneck

Possiamo ragionare sia su sistemi chiusi sia su sistemi aperti. Il bottleneck è il *centro che limita le prestazioni*.

La domanda è $D_i=V_i\cdot S_i$, dove S_i è il tempo di servizio del dispositivo i, V_i sono le visite al dispositivo i ,mentre D_i è il tempo totale speso in quel dispositivo. La domanda è tuttavia calcolabile in un modo più semplice, poichè scritta in questo modo dipende da V_i , cioè rapporto tra completamenti. Possiamo usare la **legge del flusso forzato**, cioè riscriviamo $V_i=\frac{X_i}{X_0}$. Nel sistema aperto è ciò che entra e ciò che esce, nel sistema chiuso, poichè non esce nulla, si calcola rispetto ad un punto di riferimento.

Altra formula è $X_i=rac{C_i}{T}$, questo ci permette di scrivere $V_i=rac{C_i}{T}\cdotrac{T}{C_0}=rac{B_i}{C_0}$ Visivamente:

Questa versione è più semplice perchè sia busy time sia completamenti sono più facili da calcolare. Dalla **legge dell'utilizzazione** $U_i = X_i \cdot S_i = X_0 \cdot V_i \cdot S_i$ grazie alla **legge del flusso forzato**. Il tutto è riscrivibile come $U_i = X_0 \cdot D_i$, ottenendo quindi una visione sul sistema intero. $U_i \to 1$ se $X_0 \to \lambda_{saturazione}$, allora $D_i \to D_b$ cioè domanda di livello bottleneck. Ciò ci permette di dire: $1 = \lambda_{sat} \cdot D_b$ e quindi $\lambda_{sat} = \frac{1}{D_b}$, non vado oltre!

L'analisi del bottleneck cerca il centro di domanda massima, ovvero: $max\{V_1S_1,V_2S_2,...,V_kS_k\}=D_b=V_bS_b$

In ottica di tempo di risposta? Innanzitutto il minimo tempo di risposta possibile è quello che il job chiede. Se Il mio task richiede 5s, non posso metterci meno di questo tempo.

In un sistema chiuso: Il job va un numero di volte V_i nel centro i e chiede un tempo di servizio S_i . Il caso semplice prevede solo un job, che non aspetta nessuno e fa quello che vuole senza aspettare. La domanda totale è $D=\sum_{i=1}^k D_i$, cioè quanto chiede in ogni centro. Se considero anche il *think time Z*, quindi in un contesto *interattivo* e *sistema aperto* (infatti se Z=0 il sistema è chiuso in quanto non c'è interazione con utenti), allora il throughput è $\frac{1}{D+Z}$, cioè l'inverso di quanto chiede + think time. Un singolo job avente interferenza massima ha throughput $\frac{1}{ND+Z}$. Se ci sono N job:

• Qual è il caso pessimo? Lo si ha se tutti gli N job vanno nello stesso centro ogni volta, quindi l'ultimo job della "fila" deve sempre aspettare tutti gli altri, cioè $\frac{N}{ND+Z}$

• Qual è il caso ottimo? Lo si ha se ogni job si muove in modo tale che quando visita un centro ci sia solo lui, allora qui il throughput è $\frac{N}{D+Z}$ (ovvero i vari job non interferiscono tra di loro).

Graficamente avremmo:

Quindi il nostro *throughput* cade tra la linea arancione e quella celeste. N^* è il punto di saturazione del sistema. Il suo valore è dato da $\frac{1}{D_{max}}=\frac{N^*}{D+Z}$, ovvero $N^*=\frac{D+Z}{D_{max}}$

Facciamo altre osservazioni:

• Il boind pessimistico è: $rac{N}{ND+Z} \leq X(N) \leq min(rac{1}{D_{max}},rac{N}{D+Z})$

La parte di destra dipende la nostra posizione rispetto $N^st.$

- $\circ~$ prima di N^* l'andamento è dato da $rac{N}{D+Z}$,
- $\circ~$ dopo N^* non posso andare oltre $rac{1}{D_{max}}$
- Se Z=0 allora il sistema è *chiuso* con \emph{k} centri connessi e con \emph{N} job.
- La legge del tempo *interattivo* (tempo di risposta interattivo) è: $R=\frac{N}{X_0}-Z$, ovvero tale tempo è *inversamente proporizionale al throughput*, cioè ho R minimo se massimizzo X_0 , ovvero se $X_0=\frac{1}{D_{max}}$
- ullet Per R troviamo i seguenti bond: $ND \geq R \geq max\{D, rac{N}{rac{1}{D_{max}}} Z\} = max\{D, ND_{max} Z\}$

Ovvero: ND è un upper bound (non posso fare peggio del caso in cui un job aspetta tutti gli N precedenti), l'altro è un lower bound, se prendo D ad esempio, un job non può

metterci di meno del tempo che chiede lui stesso! Inoltre, se non ci fossero job, allora R=0, quindi il tempo di risposta è minimo, allora il throughput (l'inverso) è il massimo, ma quanto è questo massimo? $ND_{max}-Z$, allora anche questo è un bound! Ho due lower bound e un upper bound.

Esaminiamo questi tempi in funzione dei job presenti:

- \circ Se ci sono 0 job, allora il tempo minimo di risposta è 0 (nessuno chiede nulla), ma allora $R=0=ND_{max}-Z$ da cui $N_b=rac{Z}{D_{max}}$, ovvero moltiplico il tempo Z per il flusso entrante $1/D_{max}$
- \circ Se ci fosse 1 job, il tempo di risposta è D.
- $\circ~$ Possiamo dire che $N^*=rac{D+Z}{D_{max}}=rac{Z}{D_{max}}+rac{D}{D_{max}}=N_b+rac{D}{D_{max}}$

ovvero ho suddiviso in chi sta nel think time e chi sta nel centro.

 \circ In corrispondenza del punto di saturazione N^* , il valore della popolazione nel centro "terminali", cioè il numero di terminali che stanno "pensando" quando il sistema è saturo è N_b , mentre il sottosistema centrale ho $\frac{D}{D_{max}}$

Esercizi di esempio

Esercizio 1

Abbiamo: T = 5 min, $U_{cpu}=0.3$, $D_{disk}=0.4s$ =domanda al disco $V_{disk}=10$, numero di operazione IO/singola transazione $U_{disk}=0.4$, utilizzazione disco R=15s, tempo risposta. N=50,numero di utenti. Quale è il think time medio per 50 utenti? Sappiamo che il tempo di risposta interattivo è $R=\frac{N}{X_0}-Z$, e noi stiamo cercando $Z=\frac{N}{X_0}-R$, necessitiamo di X_0 .

Sfruttando il legame tra l'uso di una risorsa rispetto al sistema totale, abbiamo $X_0=rac{U_{disk}}{D_{disk}}=0.4/0.4=1$ transazione/secondo. Allora ho tutto per trovare ${\sf Z}=35s$

Esercizio 2

Prendiamo un sistema avente due risorse, di cui sappiamo che: $R_1=10s$, cioè il tempo di risposta della risorsa 1 $R_2=1s$, cioè il tempo di risposta della risorsa 2 $X_1=4\ trans/s$, cioè il throughput della risorsa 1 $X_2=8\ trans/s$, cioè il throughput della risorsa 2 $X_0=4\ trans/s$, cioè il throughput del sistema. Quale è il tempo di risposta del sistema? Per definizione, $R=\sum_{i=1}^N v_i R_i$ A noi servono le visite, cioè usando il flusso forzato $\frac{X_1}{X_0}=V_1=1$ e $\frac{X_2}{X_0}=2$, allora R=12s.

Esercizio 3

Siano dati $D_{cpu}=4s$ = domanda cpu, $U_{cpu}=0.5$ = uso CPU, R=15s = tempo di risposta, Z=25s. Quale è il numero di utenti? Sappiamo che $N=(R+Z)X_0=(R+Z)\cdot (\frac{U_{cpu}}{D_{cpu}})=5s$

Esercizio 4

Siano dati T=1, cioè il tempo di osservazione, M=80 utenti, R=5s tempo di risposta, $C=60/\,\mathrm{Ora}$ il numero di transazioni completate, $U_{cpu}=0.8$, $U_{disk1}=0.5$, $U_{disk2}=0.5$, Quanto vale Z? Sappiamo che le risorse che non pensano sono date da $N_{notThinking}=R\cdot X=R\cdot \frac{C}{T}=5$, allora $N_{thinking}=M-N_{notThinking}=80-5=75$ Questi sono il numero di utenti che pensano, non mi dice QUANTO PENSANO, cioè Z. In questi esercizi, se si parla di think time, si fa riferimento a questo tipo di sistema:

da LITTLE vale sempre che:

n° utenti : tasso uscita (throughput) * tempo, qui nel nostro caso sarà:

n° utenti pensanti: Xo * Z

cioè quanti ne 'escono' per quanto tempo pensano,

allora: 1 * 75 = 75 utenti

Esercizio 5

Rete aperta, se sono noti i tempi di risposte R_0,R_1,R_2 , e volessimo sapere il tempo di risposta totale? Esso corrisponde a $R=2R_0+R_1+R_2$. Anche se il tempo è un pò vago, le visite risolvono ogni dubbio, e ci permette di applicare la la legge del tempo di risposta. Un'idea della risposta è questa: visito il centro 0, e vado poi nel centro 1. Poi ritorno al centro 0, ma stavolta visito al centro 2. Quanto ci ho messo? il tempo espresso sopra!

Esercizio 6

sistema B; con un unico S che va al doppio di quelli di prima!

Nel primo sistema viene specificato che la coda è di *Jackson*. Questa informazione è fondamentale, perchè essendo di Jackson, quindi centri *M/M/1* esponenziali, vale il teorema di *Burke*, ovvero ciò che esce dal primo centro entra tutto nel secondo centro. Senza questi ipotesi, non posso dirlo con tale facilità. I dati sono: S=0.5~s, $\lambda=0.4~trans/s$. *Quale* è il valore del rapporto $\frac{R_A}{R_B}$? Nel contesto appena descritto, il tempo per ogni singolo λ è $R=\frac{1}{\mu-\lambda}=\frac{1}{\frac{1}{s}-\lambda}=\frac{1}{2-0.4}=5/8~s$ per ognuno dei due centri. Allora $R_A=2R=5/4~s$ Per il secondo sistema si ha $R_B=\frac{1}{1-0.4}=5/3$ Mettendo a rapporto si ha $\frac{R_A}{R_B}=\frac{3}{4}$ Quindi $R_A=0.75\cdot R_B$, cioè il sistema A ha un R minore, perchè c'è meno congestione. *Due sistemi in serie usati a metà regime smaltiscono meglio di uno singolo che lavora a pieno regime*.

Esercizio 7

Sia data una coda M/M/1/2, ovvero di capacità 2, ovvero composta da un servente e un posto in coda. I dati sono: $\lambda=0.5\ req/s$, $s=0.5\ s$ Quale è il numero medio di richiesto nel centro? E la varianza? Trattandosi di capacità finita, si ha stazionarietà. Se non ci avessi fatto caso, in

questo specifico esempio. non avrei avuto comunque problemi, perchè $\mu=1/0.5=2$, quindi smaltisco tutto il carico. Quando la coda é **FINITA**, il mio pensiero deve andare **SEMPRE ALLA CATENA DI MARKOV**. In questo caso ci sono tre stati, come a seguire:

Sistema a capacità 2

Dobbiamo risolvere il sistema:
$$\pi_0\lambda=\pi_1\mu o\pi_1=rac{\pi_0\cdot\lambda}{\mu}=\pi_0\cdot0.25$$

Analogamente, seguendo gli stessi step:

$$\pi_2 = \pi_1 rac{\lambda}{\mu} = \pi_0 rac{\lambda^2}{\mu^2} = \pi_0 \cdot 0.625$$

 π_0 la ottengo applicando la *Normalizzazione*, altrimenti non potrei trovarlo! $\pi_0+\pi_1+\pi_2=1 o \pi_0=rac{1}{1+0.25+0.625}=0.7619$

Allora
$$\pi_1=0.1905$$
 e $\pi_2=0.0476$

numero medio di richieste: $0 \cdot \prod_{o} + 1 \cdot \prod_{1} + 2 \prod_{2} = 0 \cdot 2857 \Rightarrow E[N_{Reg}]$

varianza
$$E[Nreq^2] - (E[Nreq])^2 = (1^2 T_1 + 2^2 T_2) - (0.2857)^2 = 0.29988$$