15

alkoxycarbonyl, alkylsulfonamide, unsubstituted or substituted alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonylalkoxy, benzyloxy, aryloxy, or heteroaiyloxy;

SUBSTITUTED BENZENE COMPOUNDS, PROCESS FOR THEIR PREPARATION, AND HERBICIDAL AND DEFOLIANT COMPOSITIONS CONTAINING THEM

RELATION TO OTHER APPLICATIONS

This application is the U.S. national stage entry of PCT application No. PCT/US98/17197, filed Aug. 21, 1998, and is a continuation-in-part application of U.S. Ser. No. 08/958, 313, filed Oct. 27, 1997.

The present invention relates to substituted benzene compounds, process for their preparation, and herbicidal and defoliant compositions containing them.

BACKGROUND OF THE INVENTION

Use of uracils as herbicides has previously been reported. For example, U.S. Pat. Nos. 4,859,229 and 4,746,352 describe 3-phenyl uracil derivatives as herbicides. However the phenyl ring in the described compounds carry only four substituents. U.S. Pat. No. 4,927,451 describes herbicidal 20 compounds carrying five substituents on the phenyl ring with a dihydrouracil ring. EP Patent 0705829 describes uracil herbicides caring pentasubstituted phenyl ring with a carbon linked substituent at position 2 of the phenyl ring. U.S. Pat. Nos. 5,346,881, 5,441,925, 5,169,431, 5,476,834, 25 5,602,077, and WO Patents 97/08170, 08171, 12886 and 42188 describe uracil herbicides carrying a fused pentasubstituted phenyl ring where the 2 position of the phenyl ring is substituted either with a carbon, oxygen or nitrogen. U.S Pat. No. 5,116,404 and JP Patent 05025144 describe uracil 30 compounds with a 3-phenyl group which may be pentasubstituted but none of these Patents appears to make obvious the compounds of the present invention which carry a nitrogen linked substituent at position 2 of the phenyl ring alongwith substituents at positions 3, 4, and 6 and there appears to be no indication as to the criticality of the substitution pattern of the phenyl moiety in order to introduce the high herbicidal activity in combination with selectivity towards crops. Similarly use of pyrazole, tetrahydrophthalimide, triazolinone, tetrazolinone, and triazolidine derivatives as herbicides has been described before 40 such as U.S. Pat. Nos. 5,281,571, 4,881,967, 5,084,085, WO Patent 85/01939, and Japanese Pat. No. 1-121290 respectively. Pyridazinones, pyridyls, bicyclic hydantoins, phthalimides, pyrimidinones, pyrazinones, and pyridinones have also been described as herbicides such as WO Patent 45 97107104, 95102580, 95123509, EP Patent 0786453, WO Patent 97/06150, 97/11060, and 97/28127. However, despite the broad coverage of these Patents, the general structure of the present invention has not been described.

SUMMARY OF THE INVENTION

This invention delineates a method for the control of undesired vegetation in a plantation crop by the application to the locus of the crop an effective amount of a compound described herein. The herbicidal and defoliant compounds of the present invention are described by the following general formula I or its salts:

wherein X is hydrogen, halogen, nitro, amino, NMR, N(R)₂, amide, thioamide, cyano, alkylcarbonyl,

Y is hydrogen, halogen, or nitro;

W is hydrogen, OR, SR, NH, N(R)2, CH2R, CH(R)2, or C(R)3, halogen, nitro, or cyano, where multiple R groups represent any possible combination of substituents described by R; R is hydrogen, alkyl, alkenyl, alkynyi, cycloalkyi, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy, heteroaryloxy, alkylsulfonyl, benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcaibonyl, heteroarylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl; alkyl, haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, haloalkoxy, haloalkoxycarbonyl, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl;

Q is a heterocycle, examples of which are as follows:

Q9

Q8

-continued -continued 5
$$R_9$$
 Q_{10} Q_{11} Q_{10} Q_{10} Q_{11} Q_{10} Q_{10} Q_{11} Q_{10} Q_{10}

wherein R_1 is hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, amino, alkoxyalkyl, acetyl, alkoxycarbonylamino, alkylcarbonylamino, or alkoxycarbonyl;

R₂ is alkyl or haloalkyl;

Q14

 R_1 and R_2 could combine to form a five- or six-membered 35 heterocyclic ring;

Q15

R₃ is hydrogen, halogen, nitro, amino, alkylamino, haloalkylamino, cyano, or amide;

R₈ and R₉ are independently oxygen, sulfur, or imino group;

Q6, Q7, and Q10 may optionally be unsaturated containing one or two double bonds in the 6-membered ring;

Z is amino, hydroxyl, thiol, formyl, carboxyl, cyano, alkylcarbonyl, arylcarbonyl, azido, or one of the following:

wherein R₄ is alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, 55 alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkylithiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthiocarbonyl, aryloxycarbonyl, arylthiocarbonyl, aryloxycarbonyl, arylaminocarbonyl, 60 alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, arylaminocarbonyl or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl,

alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl, alkylaminocarbonyl, arylaminocarbonyl alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; and R_5 is hydrogen or any one of the groups represented by R_4 ; or R_4 and R_5 could combine to form a 4–8 membered heterocyclic ring;

$$-N$$
 R_7

wherein R_6 represents alkyl, haloalkyl, dialkylamino, unsubstituted or substituted aryl and heteroaryl; and R_7 represents hydrogen, halogen or any of the groups represented by R_6 ;

--OR₄,

—SR₄,

 $-CH_2R_{10}$,

 $--CH(R_{10})_2$,

 $-C(R_{10})_3$, or

-CH=CHR₁₀

wherein R₁₀ is carboxyl, alkyl, alkenyl, anyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alknykarbonyl, cycloalkylcarbonyl, atylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkyliiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocaibonyl, heteroarylaminocarbonyl, alkoxycarbonylcarbonyl or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; provided that (1) Z is not alkyl, alkoxy, haloalkyl, haloalkoxy, alkylthio, haloalkylthio, alklenyl, haloalkenyl, amino, monoalkylamino, dialkylamino, alkoxyalkoxy or cyano, when Q is Q1 and R2 is haloalkyl,

(2) Z is not amino when Q is Q3, and

J

(3) Z is not hydroxyl, alkoxy, alkenyloxy, alkynyloxy, haloalkoxy, haloalkenyloxy, or —NR₄R₅, wherein R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, alkylsulfonyl, alkylcarbonyl, salkoxycatbonyl, or cycloalkylalkyl, and R₅ is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, alkylcarbonyl, alkoxycarbonyl, or cycloalkylalkyl, when Q is Q14 or Q15.

DETAILED DESCRIPTION OF THE INVENTION

In the above definitions, the term alkyl used either alone or in compound words such as haloalkyl indicates either straight chain or branched alkyls containing 1-8 carbon 15 atoms. Alkenyl and alkynyl include straight chain or branched alkenes and alkynes respectively containing 2-8 carbon atoms. The term halogen either alone or in the compound words such as haloalkyl indicates fluorine, chlorine, bromine, or iodine. Further a haloalkyl is represented by an alkyl partially or fully substituted with halogen atoms which may be same or different. A cycloalkyl group implies a saturated or unsaturated carbocycle containing 3-8 carbon atoms. A heterocycloalkyl group is a cycloalkyl group carrying 1-4 heteroatoms which are represented by oxygen, nitrogen, or sulfur atoms. An aryl group signifies an 25 aromatic carbocycle containing 4-10 carbon atoms, and may be phenyl or naphthyl. A heteroaryl group is an aromatic ring containing 1-4 heteroatoms which are represented by oxygen, nitrogen, or sulfur atoms, and may for example be furanyl, pyridyl, thienyl, pyrimidinyl, benzofuranyl, 30 quinolyl, benzothienyl or quinoxalyl.

The compound of the formula I may form a salt with an acidic substance or a basic substance. The salt with an acidic substance may be an inorganic acid salt such as a hydrochloride, a hydrobromide, a phosphate, a sulfate or a nitrate. The salt with a basic substance may be a salt of an inorganic or organic base such as a sodium salt, a potassium salt, a calcium salt, a quaternary ammonium salt such as ammonium salt or a dimethylamine salt.

1-methyl-6-trifluoromethyl-2,4(1H,3H)-jornidine of trifluoromethyl-2,4(1H,3H)-jornidine of trifluoromethyl-2,4(1H,3H)-jor

The compound of the formula I may exist as geometrical 40 or optical isomers and the present invention includes all of these isomeric forms.

Preferred compounds for the reasons of ease of synthesis or greater herbicidal efficacy are represented by the formula I wherein

(1) Z is $-NR_4$, or $-CH_2R_{10}$,

(2) X is halogen or cyano; Y is halogen; W is —OR; and R is alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, or carboxyl, or

(3) Q is Q1 or Q6; R₁ is alkyl, amino or haloalkyl; R₂ is haloalkyl; R₃ is hydrogen; and R₈ and R₉ are independently oxygen, sulfur, or imino group,

Still more preferred compounds for the reasons of greater herbicidal efficacy are represented by formula I wherein X is halogen; Y is fluorine; W is OR; R is alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with halogen or cyano; Q is Q1 or Q6; R_1 is alkyl, amino, or haloalkyl; R_2 is haloalkyl; R_3 is hydrogen; and R_8 and R_9 are independently oxygen, sulfur, or imino group; Z is —NR₄R₅; R_4 is alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, arylcarbonyl, cycloalkyloxycarbonyl, arylthio-carbonyl, cycloalkyloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl,

heteroarylaminocarbonyl, alkoxycarbonylcarbonyl, arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, arylthio, heteroaryl, aryloxycarbonyl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; and R₅ is hydrogen; or Z is —CH₂R₁₀; R₁₀ is carboxyl alkyl, alkenyl or alkynyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, caroxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl.

Certain intermediates of the present invention are novel. These are 3-(2-amino-4-chloro-6fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-amino-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione and represented by the following formulae (III-V):

45 wherein X, Y, W and Q are the same as defined above; and M is nitro.

$$X'$$
 NO_2
 NO_2
 NO_2
 NO_2

wherein X' and Y' are halogens; and R is the same as defined above.

The compounds described by the formula I can be prepared by the procedures as described herein. In general, the compounds described in this invention can be prepared by one of the two routes depending on whether the heterocyclic ring (e.g. uracil ring) is formed prior to or after the nitration at the 2 position of the phenyl ring in the final product.

As depicted in Scheme 1, the starting materials for these preparations are the compounds represented by the formula 5 VIc. These compounds can be prepared starting from the nitro compound VIa via the amine VIb by the procedures described in literature, for example U.S. Pat. No. 4,859,229 (1989). Nitration of VIc is typically carried out by its slow addition to a mixture of sulfuric acid and nitric acid in a ratio of 9:1. Typically 34 ml of the nitration mixture is used for 2-3 mmol of VI and the addition is carried out between 0 to -30° C. followed by stirring at ambient temperature for 0.5-2 hr. Product (VII) is separated by addition of the solution to ice water and filtration of the precipitate. The product can also be extracted from aqueous layer into 15 organic solvents such as ether or ethyl acetate and purified by crystallization or column chromatography. Alkylation of VII to VIII can be accomplished by treatment of VII with alkyl halide, haloalkyl halide, especially the respective chloride, bromide, or sulfate in the presence of a base such 20 as potassium carbonate or sodium hydride in an inert solvent such as acetone, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, methyl ethyl ketone, or acetonitrile at a temperature range of 0 to 130° C. VIII can be reduced to the amine (IX) under typical reduction conditions such as treatment with iron in acetic acid or ethanolic hydrochloric acid; or by hydrogenation using palladium on carbon or platinum oxide as catalyst. The product IX is purified by typical purification procedures of recrystallization or column chromatography.

The amine (IX) can be derivatized to yield a variety of products generally represented by the formula X. For example amides can be prepared by treatment of IX with alkyl or aryl acid halides, typically chlorides, or anhydrides in the presence of base in an inert solvent. Typically organic bases such as triethylamine, diisopropylethylamine, or pyridine can be used in inert solvents such as tetrahydrofuran, acetonitrile, or dioxane at a temperature range of ambient to reflux temperature for 2–24 hr. Pyrdine can be used alone as solvent and base. Acylation catalysts such as dimethylaminopyridine (DMAP) can be added to facilitate the reaction.

Typical work-up procedure includes removal of solvent followed by partitioning of the product between aqueous and organic solvents such as ether, ethyl acetate or methylene chloride. Depending upon the reactivity of the acid halide, the product typically consists of a monoamide, diamide, or a mixture of the two. These can be purified/resolved typically by column chromatography. Mono or dialkyl (amino) derivatives of IX can be prepared by its treatment with alkyl or haloalkyl halides in the presence of base such as potassium or sodium carbonate, or sodium hydride in an inert solvent such as tetrahydrofuran or dimethylformamide at a temperature of ambient to 120° C. for 2-24 hr. Mono or dicarbamoyl derivatives of IX can be prepared by its treatment with alkylhaloformates such as methyl or ethylchloroformate in the presence of base such as potassium or sodium carbonate in an inert solvent such as tetrahydrofuran or dimethylformamide at a temperature of ambient to 120° C. for 2-24 hr. Mono or di urea derivatives of IX can be prepared by its treatment with an alkyl or aryl isocyanate, for example methyl or ethyl isocayante, in the presence of a base such as triethylamine in an inert solvent such as toluene or tetrahydrofuran. Alternatively, IX is first converted into its isocyanate derivative by treatment with phosgene or triphosgene in toluene or tetrahydrofuran at reflux temperature for 2-6 hr. This isocyanate can, in turn, be treated with an alkyl or aryl amine such as methyl or ethyl amine in the presence of a base such as triethylamine in an inert solvent such as toluene or tetrahydrofuran at a temperature range of ambient to 130° C. for 2-12 hr to finish the corresponding urea. IX can be treated with an alkyl dihalide such as 1,4-diiodobutane in an inert solvent such as toluene or acetonitrile at reflux temperature in the presence of a base such as potassium or sodium carbonate to furnish the corresponding cyclized product such as a pyrrolidine derivative. IX can be treated with an aromatic or aliphatic aldehyde or ketone or its diethyl or dimethyl acetal derivative in an inert solvent such as toluene or methylene chloride to furnish the corresponding imino derivative. Alternatively, a monoacetyl derivative of IX can be treated with a dehydrochlorinating agent such as phosphorus pentachloride to furnish the corresponding iminochloride.

SCHEME 1

х

35

40

A

(a) catalytic reduction; (b) 1) triphosgene, 2) NaH, ethyl 3-amino-4,4,4-trifluorocrotonate;
(c) H₂SO₄-HNO₃; (d) dimethyl sulfate, base (R₁=CH₃); (e) Fe-AcOH; (f) (CF₃CO)₂O, (e.g. Z=NHCOCF₃)

ſΧ

The starting uracil derivative represented by formula XI 15 in Scheme 2 can be prepared according to the procedure as described before. The compound XI is nitrated with concentrated nitric acid at 0° C. to ambient temperature for 15-30 minutes. Product (XII) is obtained by addition of the product mixture to ice-water followed by filtration.

SCHEME 2

$$\begin{array}{c|c} X & Y & O \\ H & & & \\ \hline \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$\begin{array}{c|c} & & & 45 \\ \hline X & & & & \\ H & & & & \\ \hline NO_2 & & & & \\ \hline NO_2 & & & & \\ \hline XIII & & & \\ \end{array}$$

The starting uracil derivative represented by formula XIII in Scheme 3 can be prepared according to the procedure as previously described. Compound XIII can be nitrated with 65 nitric acid at 0° C. for 15-30 minutes. Product (XIV) is obtained by addition of ice followed by filtration.

SCHEME 3

$$H$$
 O
 NO_2
 NO_2

The desired starting tetrazole derivatives represented by formula XV in Scheme 4 can be prepared according to the literature procedure of WO 85/01939. These compounds can be nitrated with nitric acid at ambient temperature or at 0° C. for 15-30 minutes. Product (XVI) is isolated by addition of ice followed by extraction into an organic solvent such as ether or ethyl acetate and purified. XVII can be prepared by the reduction of XVI typically by catalytic hydrogenation in presence of catalysts such as palladium on carbon or by treatment with iron in acetic acid or in ethanolic hydrochloric acid. XXII can be prepared by reacting XVII with a halide in presence of a base at 50 to 120° C. for 1-5 hours. Further modification of XVIII to XIX is carried out according to the general procedures described for the preparation of X from IX (Scheme I).

SCHEME 4

35

The starting triazolinone derivative represented by formula XX in Scheme 5 can be prepared according to the literature procedure of U.S. Pat. No. 4,980,480 (1990). The compound XX is nitrated with concentrated nitric acid at -15 to 0° C. for 0.5-2 hr. Product (XXI) is obtained by addition of the product mixture to ice-water followed by ³⁰ filtration.

SCHEME 5

-continued

X

Y

NO2

N R2

XXI

The desired starting pyrazole derivatives represented by formula XXII in Scheme 6 can be prepared according to the literature procedure of U.S. Pat. No. 5,281,571 (1994). These compounds can be nitrated in sulfuric acid-nitric acid mixture (9:1) with a ratio of 34 ml of the nitrating solution to 34 mmol of XXII. The addition is carried out between -15 to -30° C. followed by stirring at ambient temperature for 1-2 hr. Product X is isolated by addition of water followed by extraction into an organic solvent such as ether or ethyl acetate and purified. XXIV can be prepared by the reduction of XXII typically by catalytic hydrogenation in presence of catalysts such as palladium on carbon or by treatment with iron in acetic acid or in ethanolic hydrochloric acid. Further modification of XXIV to XXV is carried out according to the general procedures described for the preparation of X from IX (Scheme I).

SCHEME 6

-continued

(a) H2SO4-HNO3; (b) catalytic reduction; (c) (CF3CO)2O, (e.g. Z = NHCOCF3)

The desired starting tetrahydrophthalimide derivative represented by formula XXVI in Scheme 7 can be prepared 15 according to the literature procedure of U.S. Pat. No. 4,484, 941 (1984). The compound can be nitrated with nitric acid at 0° C. to ambient temperature for half hour. The product (XXVII) is isolated by addition of ice followed by extraction into an organic solvent such as ether, ethyl acetate, or methylene chloride and purified. XXVIII can be prepared by

the reduction of XXVII typically by catalytic hydrogenation in presence of catalysts such as palladium on carbon or by treatment with iron in acetic acid or in ethanolic hydrochloric acid. XXIX can be prepared by reacting XXVIII with (substituted)alkyl halide in the presence of a base such as potassium carbonate. Further modification of XXIX to XXX is carried out according to the general procedures described for the preparation of X from IX (Scheme I).

SCHEME 7

(a) HNO3; (b) Fe-ACOH; (c) R-X, K2CO3; (d) (CF3CO)2O, (e.g. Z=NHCOCF3)

Scheme 8 describes the preparation of intermediates represented by the formulae XXXIII and IV. The starting 55 materials (amino phenols and alkyl derivatives represented by the formula VIb) are prepared according to the procedure as described in literature such as U.S. Pat. No. 4,670,046 (1987) which upon treatment with phthalic anhydride in acetic acid can afford phthalimide derivative (XXI). Nitration of XXXI can be carried out by its addition to a mixture of sulfuric acid and nitric acid (9:1) at -15 to -30° C. followed by addition of water and extraction of the product (XXII) in organic solvents such as ethyl acetate or ether. XXXII can be reduced to the corresponding amine (XXXIII) by conventional methods such as treatment with iron in 65 acetic acid or ethanolic hydrochloric acid or by catalytic hydrogenation in the presence of palladium on carbon. Amino group of XXXIII can be derivatized as described

before in Scheme 1 to furnish XXXIV which in turn can be deprotected to finish XXXV. Removal of the protecting phthalimido group can be accomplished by several methods such as treatment with hydrazine in a polar solvent such as dimethylsulfoxide or by treatment with on organic amine 5 such as methyl amine in ethanol. XXV can then be derivatized to the desired compound (X) according to the known

15

procedures as described before in Scheme 1. Alternatively, XXXII can first be subjected to deprotection to afford the amine IV which can be modified to introduce the heterocyclic ring such as the uracil ring (U in XXXVI) according to the known procedures. Nitro group in XXXVI can then be reduced to afford the amine which can then be derivatized as described previously to afford X.

16

SCHEME 8

X
XXXVI

(a) AcOH, phthalic anhydride; (b) H₂SO₄-HNO₃; (c) Fe-AcOH; (d) dimethyl sulfate, base, [e.g. Z=N(CH₃)₂]; (e) DMSO-bydrazine; (f) 1) triphosgene, 2) NaH, ethyl 3-amino-4,4,4-trifluorocrotonate, 3) CH₃I (R₁=CH₃, R₂=CF₃); (g) 1) triphosgene, 2) NaH, ethyl 3-amino-4,4,4-

Scheme 9 delineates a process for the preparation of the intermediates represented by the formula V. Starting materials represented by the formula XXXIX are prepared by the 60 nitration of XXXVII which gives XXXVIII which can be reduced to XXXIX according to the literature procedure of Japanese Pat. No. 01186849 (1989). The amino group in XXXIX is protected by forming amide or carbamate XL and the latter is nitrated to give XLI. Deprotection of XLI leads to the ortho-nitro aniline V. V can be converted into the desired compounds represented by XLV according to the procedures as shown in the scheme.

(a) H₂SO₄-HNO₅; (b) Fe-AcOH; (c) pyridine-CICOOEt (e.g. J=NHCOOEt); (d) H₂SO₄-HNO₅; (e) HBR-AcOH; (f) 1) triphosgene, 2) NaH, ethyl 3-amino-4,4,4-trifluorocrotonate, 3) CH₂I (Q=uracil ring as in X₁ R₁=CH₅, R₂=CF₅); (g) ROH, base (e.g T=O, R=CH₃); (b) Fe-AcOH; (i) (CF₃CO)₂O, (e.g. Z=NHCOCF₃).

Scheme 10 describes the preparation of intermediate represented by the formulae XLVIII. The starting material (XLVI) can be prepared according to the method described in patents, such as U.S. Pat. No. 5,154,755 (1992). XLVI reacts with ethyl chloroformate at basic condition to give the

carbamate XLVII. The latter is nitrated with a mixture of nitric acid and sulfuric acid to give the intermediate XLVII which can be N-alkylated with an alkylhalide in the presence of base to furnish XLIX.

SCHEME 10

Scheme 11 describes an alternative procedure for the preparation of compounds represented by the formula LVII with varying R groups. Reduction of L to LI is carried out using conventional procedures such as catalytic reduction or iron-acetic acid mixture. The aniline LI is reacted with 5 phenyl chloroformate to afford a carbamte represented by the formula LII which is nitrated with an inorganic salt such as ammonium or potassium nitrate in an acid anhydride such as acetic anhydride according to published procedure such as described in WO 97/42188. Resultant nitro derivative LIII

is cyclized to furnish the uracil derivative LIV upon reaction with an appropriately substituted amino crotonate in the presence of an inorganic or organic base exemplified by 1,8-diazabicylo[5.4.0]undec-7-ene (DBU). LIV is N-derivatized to afford LV followed by reduction to aniline LVI according to conventional procedures as described before. LVII is then derivatized to afford the final compounds represented by the formula LVII according to the procedures as described before.

(a) catalytic reduction; CICO $_2$ CeH5; (c) Ac $_2$ O-NH4NO3; (d) ethyl 3-amino-4,4,4-trifluorocrotonate, DBU, DMF; (c) CH3I; (f) Fe-AcOH (g) (CF3CO) $_2$ O, (e.g. Z=NHCOCF3)

Scheme 12 describes a process for the preparation of compounds represented by the formula LXII which are trisubstituted phenyl derivatives. Ortho-nitroaniline derivatives represented by the formula LVIII are the starting materials which are converted to a ortho-nitro uracil derivatives (LX) according to previously described procedures, e.g. via the NH uracil derivative (LIX). Nitro groups is then converted to an amino group (LXI) via conventional reduction procedures such as cataytic or iron-acetic acid reduction followed by derivatization to furnish LXII.

SCHEME 12

(a) NaH, ethyl 3-amino-4,4,4-trifluorocrotonate; (b) CH3I; (c) Fe—AcOH; (d) (CF3CO)2O, (e.g. Z = NHCOCF3

Scheme 13 describes a procedure for the preparation of trisubstituted phenyl derivatives represented by the formula LXVI. Direct nitration of LXIII, where X and Q (a heterocylce) are as previously defined, using nitration reagents such as nitric acid or a mixture of sulfuric acid-nitric acid leads to ortho-nitro compounds represented by the formula LXIV which are reduced to the corresponding aniline derivatives (LXV) by reduction procedures such as catallytic reduction or iron-acetic acid. Aniline (LXV) is then derivatized to furnish LXVI.

SCHEME 13

-continued

X

C

NH2

LXVI

LXV

(a) AcOH—NH4NO3; (b) Fe—AcOH; (c) (CF3CO)2O, (e.g. Z = NHCOCF3)

Scheme 14 delineates a procedure for the preparation of tetrasubstituted phenyl derivatives represented by the formula LXXIV. The process is akin to one described in scheme 11 for the preparation of pentasubstituted phenyl derivatives (LVII). The nitro intermediates (LXVII) are reduced to the anilines (LXVIII) via conventional procedures followed by derivatization to the phenyl carbamate (LXIX) by reaction with a phenylhaloformate. Nitration to LXX (inorganic nitrate acid anhydirde) is followed by the uracil ring formation (appropriately substituted crotonate-DBU) (LXXI) and N-derivatization to furnish LXXII. Reduciton to the aniline (LXXIII) is carried out by procedures such as catalytic reduction or iron-acetic acid followed by derivatization to furnish LXXIV.

SCHEME 14

$$\begin{array}{c} X \\ X \\ X \\ A \\ A \\ M = NO_2 LXVII \\ M = NH_2 LXVIII \\ X \\ X \\ M = NH_2 LXVIII \\ A \\ M = NH_2 LXVIII \\ A \\ M = NH_2 LXVIII \\ A \\ M = NH_2 LXXII \\ A \\ M = NH_2 LXXIII \\ A$$

(a) catalytic reduction; (b) CICO₂C₆H₅; (c) Ac₂O—NH₄NO₅; (d) ethyt 3-amino-4,4,4-trifluorocrotonate, DBU, DMF; (e) CH₃I; (f) Fe—AcOH (g) (CF₃CO)₂O, (e.g. Z = NHCOCF₃)

Scheme 15 describes various procedures for the derivatization of the amino group in LXXV via diazonium salts 50 represented by LXXVI. The diazonium salts are prepared by treatment of the aniline with an inorganic nitrite solution such as sodium or potassium nitrite in an acid such as sulfuric or hydrochloric acid or by treatment of the aniline with an organic nitrite such as t-butyl nitrite in an organic solvent such as acetonitrile. Reaction is carried out between 10-15° C. which results in a stable solution of the diazonium salt which is reduced to the corresponding hydrazine derivative represented by the formula LXXVII by reducing agents exemplified by stannic chloride. Hydrazine derivatives are then derivatized to a variety of compounds represented by the formula (LXXXVI) via conventional reactions such as acylation, alkylation, Schiff base formation, etc. The diazonium group in LXXVI is replaced by a hydroxyl to furnish the corresponding phenol (LXXVIII) by its treatment with an aqueous solution of cuprous oxide in presence of cupric nitrate or cupric sulfate at ambient temperature. LXXVIII is then derivatized to furnish LXXXVI via con-

ventional reactions such as acylation, alkylation, etc. Treatment of the diazonium salts (LXXVI) with disulfides (RSSR) leads to the formation of corresponding thioethers represented by the formula LXXIX which can be further modified according to conventional procedures leading to sulfur analogs represented by the formula LXXVI. LXXVI can be treated with inorganic cyanides leading to the formation of cyano derivatives (LXXXI) which can be oxidized via conventional routes to furnish carboxylic acids (LXXXV) which can then be derivatized leading to LXXXVI. The diazonium group can also be replaced with an azido group furnishing LXXX. LXXVI can be treated with inorganic iodides to afford the iodo compounds (LXXXII) which can be converted to the corresponding aldehydes (LXXXIII) (which are also directly obtainable from LXXVI via conventional procedures). LXXXIII can be reduced to furnish corresponding benzyl alcohols (LXXXIV) which can be derivatized to LXXXVI.

(a) H_2SO_4 —NaNO₂, A = anion; (b) $SnCl_2$; (c) $(CF_2CO)_2O$, (e.g. Z = NHCOCF₃); (d) Cu_2O ; (e) $C_6H_5CH_2C$! (e.g. Z = $OCH_2C_6H_5$); (f) ethyl acrylate- $CuCl_2$ (e.g. Z = $CH_2CHC1COOC_2H_5$); (g) RSSR; (h) MCPBA (e.g. Z = SO_2R); (i) NaCN; (j) H_2SO_4 ; (k) RNH_2 (e.g. Z = CONHR); (l) Oxime, $CuSO_4$ — Na_2SO_3 ; (m) $KMnO_4$; (n) KI; (o) CO, Pd(II) acctate.triphenytphosphine; (p) $NaBH_4$: (q) e.g. RNCO (Z = $CH_2CCONHR$); (r) NaN_3

Scheme 16 describes an alternatived procedure for the formation of amides (XC). Reaction of the ortho-amino 60 phenol LXXXVII with an aliphatic or aromatic acyl halide in an organic solvent such as 1,4-dioxane or tetrahydrofuran in the absence or presence of an inorganic or organic base such as potassium carbonate, sodium carbonate, or triethylamine, regioselectively leads to the formation of 65 corresponding amide represented by the formula LXXIX. LXXXIX can also be produced by the hydrolysis of a

corresponding alkyl ether such as methyl ether (LXXXVIII) by treatment with strong Lewis acids such as boron tribromide or boron tribromide-dimethyl sulfide complex. Phenol group in LXXIX is then derivatized by treatment with a halide in the presence of base such as sodium carbonate or potassium carbonate in an organic solvent such as as acetone, methyt-ethyl ketone, dimethylsulfoxide, or tetrahydrofuran at ambient to reflux temperatures.

SCHEME 16

(a) Acyl halide; (b) BBr₃.Me₂S; (c) R_1X , base, (e.g. R=2-naphthyl, $R_1=CHF_2$)

Scheme 17 describes a procedure for the preparation of pyridazinone derivatives represented by the formula XCVII 30 and XCVIII. Desired starting pyridazinone derivatives represented by formula XCI and XCIV can be prepared according to the literature procedure of WO 97/07104. These compounds can be nitrated with nitric acid or a mixture of nitric acid and sulfuric acid at ambient temperature or at 0° 35 C. for 15-30 minutes. The products XCII and XCV are isolated by addition of ice followed by filtration. XCII and XCVI can be prepared by the reduction with iron in acetic

acid or in ethanolic hydrochloric acid. Methylation of XCIII can be carried out by reacting XCIII with methyl iodide in presence of a base at 50 to 120° C. for 1~5 hours. Further modification of XCVI to XCVIII is carried out by treatment of the aniline with an organic nitrite (such as t-butyl nitrite) in an organic solvent (such as acetonitrile) and alkyl acrylate in the presence of copper(II) chloride. Modification of XCVI to XCVII is carried out by treatment of the aniline with an alkyl or aryl acid halide at 50 to 120° C. for 1~5 hours.

SCHEME 17

45

60

(a) HNO3; (b) Fe-AcOH; (c) CH3L, base; (d) H2SO4-HNO3; (e) R2X, base; (f) t-BuONO-ethyl acrylate-CuCl2

EXAMPLE 1

Preparation of 3-(4-chloro-6-fluoro-3-methoxy-2nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)pyrimidinedione (Compound no. 1-1)

3-(4-Chloro-6-fluoro-3-methoxyphenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (10.0 g, 29.5 mmol) was slowly added to a stirred mixture of con. sulfuric acid (36 ml) and con. nitric acid (4 ml) with stirring at -15°C. The solution was then slowly warmed to room temperature and allowed to stir for 2 hr. Addition of the solution to ice-water resulted in a light yellow precipitate which was separated by filtration to afford the title compound (9.1 g). NMR data for the compound are listed in Table XVIII.

EXAMPLE 2

Preparation of 3-(4-chloro-6-fluoro-3-methoxy-2nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-5)

3-(4Chloro-6-fluoro-3-methoxy-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (9 g, 23.5 mmol) was dissolved in dimethylformamide (90 ml) and to this were added potassium carbonate (3.9 g, 28.2 mmol) and dimethylsulfate (10.2 g, 47 mmol) with stirring. The solution was stirred at ambient temperature for 12 hr and water was added. Product was extracted in ethyl acetate and the organic layer was washed with water and dried over anhydrous sodium sulfate. Removal of the solvent afforded a crude product which was purified by column chromatography on silica gel. Elution of the column with methylene chloride afforded the title compound (7.8 g).

EXAMPLE 3

Preparation of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-4)

3-(4-Chloro-6-fluoro-3-methoxy-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (7.5 g, 18.9 mmol) was dissolved in acetic acid (75 ml) and 4.2 g (75.6 mmol) of iron powder was added. The solution was stirred at ambient temperature under nitrogen atmosphere for 6 hr and water was added. Extraction was carried out with ethyl acetate. Organic layer was washed with water, brine, and dried with anhydrous sodium sulfate followed by evaporation to afford the title compound (6.8 g).

EXAMPLE 4

Preparation of 3-[4-chloro-2-(2,4difluorobenzoyl) amino-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H 3H)-pyrimidinedione (Compound no. 2-42)

3-(2-Amino-4-chloro-6fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)pyrimidinedione (2.0

g, 5.4 mmol) and triethylamine (0.66 g, 6.5 mmol) were dissolved in anhydrous tetrahydrofiuran (30 ml) and stirred under ice cooling. To this solution was slowly added 2,4-difluorobenzoyl chloride (0.96 g, 5.4 mmol) and solution refluxed for 2 hr. Another batch of 2,4-difluorobenzoyl chloride (0.19 g, 1.1 mmol) was added and solution refluxed for 2 hr. Solvent was removed in vacuo and the product purified by column chromatography on silica gel using hexane-ethyl acetate (3:1) as the eluent to afford the title compound (2.2 g).

EXAMPLE 5

Preparation of 3-(4-chloro-2-diacetylamino-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-2)

A mixture of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6 trifluoromethyl-2,4(1H, 3H)-pyrmidinedione (0.5 g, 1.4 mmol), triethylamine (0.53 g, 5.6 mmol), acetic anhydride (0.57 g, 5.6 mmol), and anhydrous toluene (10 ml) was refluxed for 12 hr. Solvent was removed in vacuo and the product purified by chromatography on silica gel. Column was eluted with hexane-ethyl acetate (7:3) to furnish the title compound (0.34 g).

EXAMPLE 6

Preparation of 3-(4-chloro-2-dimentylainino-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-11)

To a solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)pyrimidinedione (0.6 g, 1.6 mmol) in toluene (10 ml) was added potassium carbonate (0.27 g, 1.92 mmol) followed by dimethylsulfate (0.69 g, 3.2 mmol). The solution was refluxed for 2 hr and solvent was removed in vacuo. Residue was chromatographed on silica gel and product eluted with methylene chloride to afford the title compound (0.12 g).

EXAMPLE 7

Preparation of 3-(4chloro-6-fluoro-3-methoxy-2methoxycarbonylaminophenyl)-1-methyl-6trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 4-1)

A solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.25 g) and triethylamine (1 ml) in ethyl

35

60

acetate (20 ml) was added to a solution of triphosgene (1.0 g) in ethyl acetate (15 ml) stirred under nitrogen The mixture was heated at reflux for 2 hr, cooled, filtered and the filtrate evaporated under reduced pressure to give a buff colored solid (1.4 g). ¹ H NMR (CDCl₃, 300 MHz) 3.58 (3H, s), 4.00 5 (3H, s), 6.38 (1H, s), 7.12 (1H, d, J=8.8 Hz) ppm.

The above isocyanate (0.5 g) dissolved in N,N-dimethylformamide (10 ml) was treated with dry methanol (2 ml) and stirred at room temperature for two days. Water and ethyl acetate were added and the solution separated. The organic phase was dried over sodium sulfate, evaporated, and chromatographed on silica gel eluting with ethyl acetate-hexane (1:3) to give the title compound as a white solid (0.17 g).

EXAMPLE 8

Preparation of 3-[2-bis(methylaminocarbonyl) amino-4-chloro-6-fluoro-3-methoxyphenyl]-1methyl-6-trifluoromethyl-2,4(1H, 3H)pyrimidinedione (Compound no.3-1)

To a solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.5 g, 1.4 mmol) and triethylamine (0.17 g, 1.7 mmol) in anhydrous toluene (10 ml) was added methyl isocyanate (0.1 g, 1.7 mmol) with stirring. The solution was refluxed for 2 hr and solvent removed. Residue was chromatographed on silica gel in methylene chloride-methanol (99:1) to furnish the title compound (0.56 g).

EXAMPLE 9

Preparation of 3-[4-chloro-2-(dimethylaminomethynyl)imino-6-fluoro-3methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-31)

A mixture of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.5 g, 1.4 mmol) and dimethylformamide dimethylacetal (0.8 g, 7 mmol) was refluxed for 4 hr under a blanket of nitrogen. Excess reagent was removed in vacuo and product extracted with ether. Solvent was removed to afford a residue which was chromatographed on silica gel. Elution of the column with hexane-ethyl acetate (6:4) afforded the title compound (0.22 g).

EXAMPLE 10

Preparation of 3-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-16).

3-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.1 g, 2.7 mmol) was dissolved in 50 ml of anhydrous 1,2-dichloroethane and 3.4 g (10.8 mmol) of borontribromide imethylsulfide complex was added to the solution. The solution was refluxed for 16 hr and methylene chloride (100 ml) was added. Washing with water followed by drying (anhydrous sodium sulfate) and removal of the solvent afforded a residue which was triturated with ether to afford the title compound (0.6 g).

EXAMPLE 11

Preparation of 3-(4-chloro-6-fluoro-3-hydroxy-2nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)pyrimidinedione (Compound no. 1-2)

3-(4-chloro-2-fluoro-5-hydroxyphenyl)6-trifluoromethyl-2,4(1H,3H)-pyrmidinedione (2.5 g) was added to an ice

cooled con. nitric acid (50 ml). After stirring for 1 hr, the reaction mixture was poured into ice-cold water. The yellow crystals were collected by filtration to afford the title compound (0.9 g). The filtrate was extracted by ethyl acetate (200 ml) and washed with brine. The organic phase was dried over anhydrous sodium sulfate. After removal of the solvent, 0.6 g of title compound was obtained as yellow crystal.

EXAMPLE 12

Preparation of 3-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrinmidinedione (Compound no. 1-17)

3-(4-Chloro-2-fluoro-5-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.06 g) was added to ice-cold con. nitric acid (10 ml). After stirring for 30 min, crushed ice was added. The yellow crystals were collected by filtration to afford the title compound (1.2 g).

EXAMPLE 13

Preparation of 1-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-4-(3-fluoropropyl)-1,4-dihydro-5-oxo-5H-tetrazole (Compound no. 5-4)

1-(4-Chloro-2-fluoro-5-hydroxyphenyl)-4-(3-fluoropropyl)-tetrazolinone (2.91 g) was gradually added into an ice-cooled nitric acid (20 ml) and stirred for 30 minutes. Crushed ice was added followed by extraction with ethyl acetate. The ethyl acetate extract was washed with water, dried over sodium sulfate, concentrated, and filtered through a silica gel SPE column (2 g) to give the title compound as a yellow solid (3.4 g).

EXAMPLE 14

Preparation of 1-(2-amino-4-chloro-6-fluoro-3hydroxyphenyl)-4-(3-fluoroproyl)-1,4-dihydro-5oxo-5H-tetrazole (Compound no. 5-5)

Iron powder (2.3 g) was added to a solution of 1-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-4-(3-fluoropropyl)-1,4dihydro-5-oxo-5H-tetrazole (3.4 g) in acetic acid (50 ml) and stirred at room temperature over night. The reaction mixture was filtered through a celite bed. The filtrate was concentrated under reduced pressure and purified by a silica gel column, eluted with hexane-ethyl acetate (2:1) to give yellow crystals (2.75 g).

EXAMPLE 15

Preparation of 1-(2-amino-4-chloro-6-fluoro-3-propargyloxyphenyl)-4-(3-fluoroproyl)-1,4-dihydro-5-oxo-5H-tetrazole (Compound no. 5-17)

The mixture of 1-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)(3-fluoropropyl)-tetrazolinone (0.28 g), propargyl bromide (0.13 g), and potassium carbonate (0.14 g) in acetonitrile (5 ml) was heated under reflux for 0.5 hour. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the desired product (0.33 g).

EXAMPLE 16

Preparation of 1-(2-amino-4-chloro-6-fluoro-3-isopropyloxyphenyl)-4-(3fluoropropyl)-1,4-dihydro-5-oxo-5H-tetrazole (Compound no. 5-18)

The mixture of 1-(2-amino-4-chloro-6-fluoro-3hydroxyphenyl)-4-(3-fluoropropyl)-1,4-dihydro-5-oxo-5H- tetrazole (0.30 g), isopropyl iodide (1.2 ml), and potassium carbonate (0.14 g) in acetonitrile (5 ml) was heated under reflux for 2 hours. The reaction mixture was evaporated and purified by a silica gel column, eluted with hexane-ethyl acetate (2:1) to give the desired product (0.29 g).

EXAMPLE 17

Preparation of 1-(4-chloro-6-fluoro-3-hydroxy-2nitrophenyl)-4-difluoromethyl-3-methyl-1,2,4triazolinone (Compound no. 6-1)

1-(4-Chloro-2-fluoro-5-hydroxyphenyl)-4-difluoromethyl-3-methyl-1,2,4-triazolinone (0.21 g) was added to con. nitric acid (1.5 ml) at ambient temperature. The solution was vigorously stirred at ambient temperature for 15 min. Reaction mixture was poured into ice-cold water and yellow precipitate was collected by filtration to afford the title compound (0.17 g) as a 1:1 mixture with oxidative compound.

EXAMPLE 18

Preparation of 1-(2-amino-4-chloro-6-fluoro-3hydroxyphenyl)-4-difluoromethyl-3-methyl-1,2,4triazolinone (Compound no. 6-2)

To a stirred solution of 1-(4-chloro6-fluoro-3-hydroxy-2-nitrophenol)-4-difluoromethyl-3-methyl-1,2,4-triazolinone (0.15 g) in a mixed solvent of con. hydrochloric acid (5 ml) and methanol (5 ml) was added 0.3 g of iron powder at ambient temperature. The resulting mixture was refluxed for 1 hr and the solution was concentrated under reduced pressure. The residue was extracted with ethyl acetate (200 ml) and the organic phase was washed with brine and dried over anhydrous sodium sulfate. Solvent was removed under reduced pressure to give title compound as a brown oil.

EXAMPLE 19

Preparation of 4-chloro-3-(4-chloro-6-fluoro-3-methoxy-2-nitrophenyl)-1-methyl-5-trifluoromethyl-1H-pyrazole (Compound no. 7-1)

4-Chloro-3-(4-chloro-2-fluoro-5-methoxyphenyl)-1-methyl-5-trifluoromethyl-1H-pyrazole (1.2 g, 3.5 mmol) was slurried with 4 ml of con. sulfuric acid and was slowly added to a stirred 4 ml mixture of con. sulfuric acid-con. 45 nitric acid (9:1) at -15° C. Solution was allowed to stir at ambient temperature for 2 hr and then added to ice water. Extraction with ethyl acetate and removal of the solvent afforded a crude product which was chromatographed on silica gel. Elution of the column with hexane-methylene 50 chloride (4:6) furnished the title compound (0.72 g).

EXAMPLE 20

Preparation of 4-chloro-3-(2-amino-4-chloro-6-fluoro3-metoxyphenyl)-1-methyl-5-trifluoromethyl-1H-pyrazole (Compound no. 7-2)

4-Chloro-3-(4-chloro-6-fluoro-3-methoxy-2-nitrophenyl)-1-methyl-5-tifluoromethyl-1H-pyrazole (0.48 g, 1.24 mmol) was dissolved in toluene (8 ml) and 0.05 g of 60 10% palladium on carbon was added. The solution was vigorously stirred under hydrogen atmosphere for 4 hr at ambient temperature and the catalyst was removed by filtration. Removal of the solvent afforded a residue which was chromatographed on silica gel. Elution of the column with 65 hexanemethylene chloride (3:7) furnished the title compound (0.38 g).

34

EXAMPLE 21

Preparation of 6-chloro-4-fluoro-2-nitro-3-(tetrahydrophthalimido)phenol (Compound no. 8-1)

2-Chloro-4-fluoro-5-(tetrahydrophthalimido)phenol (5.0 g) was added into nitric acid (50 ml) at 0° C., warmed up to room temperature in 30 minutes. Crushed ice was added and the solution extracted with methylene chloride. The organic phase was washed with water, dried over anhydrous sodium sulfate, and purified by a silica gel column, eluted with methylene chloride-ethyl acetate (19:1) to give 3.67 g of the desired product.

EXAMPLE 22

Preparation of 2-amino-6-chloro-4-fluoro-3-tetrahydrophthalimido)phenol (Compound no. 8-2)

Iron powder (2.48 g) was added into a solution of 6-chloro-4fluoro-2-nitro-3-(tetrahydrophthalimido)phenol (3.67 g) in acetic acid (60 ml) and stirred at room temperature for two hours. The reaction mixture was diluted with ethyl acetate, washed with water, dried over anhydrous sodium sulfate, evaporated to give 3.6 g of the title compound.

EXAMPLE 23

Preparation of N-(2-amino-4-chloro-6-fluoro-3propargyloxyphenyl)tetrahydrophthalimide (Compound no. 8-3).

A mixture of 2-amino-6-chloro-4-fluoro-3-(tetahydrophthalimido)phenol (0.31 g), propargyl bromide (0.2 ml), potassium carbonate (0.14 g), and acetonitrile (5 ml) was heated under reflux for 0.5 hr. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the title product (0.2 g).

EXAMPLE 24

Preparation of N-(2-amino-4-chloro-6-fluoro-3isopropyloxyphenyl)tetrahydrophthalimide (Compound no. 8-4)

A mixture of 2-amino-6-chloro-4-fluoro-3-(tetrahydrophthalimido)phenol (0.31 g), isopropyl iodide (1.2 ml), potassium carbonate (0.14 g), and acetonitrile (5 ml) was heated under reflux for 2 hr. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the title product (0.21 g).

EXAMPLE 25

Preparation of N-(2-amino-4-chloro-3cyclopentyloxy-6-fluorophenyl) tetrahydrophthalimide (Compound no. 8-5)

A mixture of 2-amino-6-chloro-4-fluoro-3tetrahydrophthalimido)phenol (0.31 g), cyclopentyl bromide (1.3 ml), potassium carbonate (0.14 g), and acetonitrile (5 ml) was heated under reflux for 2 hr. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the title product (0.17 g).

EXAMPLE 26

Preparation of 2-chloro-4-fluoro-5-(phthalimido) methoxybenzene

4-Chloro-2-fluoro-5-methoxyaniline (10.0 g, 57 mmol) and phthalic anhydride (8.5 g, 57 mmol mmol) were dis-

solved in glacial acetic acid (200 ml) and the solution refluxed for 2 hr. Water was added and the resultant precipitate was separated by filtration. The residue was washed with water and dried to afford the title compound (16.7 g); ¹H NMR (CDCl₃, 300 MHz) 3.89 (3H, s), 6.9 (1H, d, J=6.3 5 Hz), 7.33 (1H, d, J=9.0 Hz), 7.82 (2H, m), 7.97 (2H, m) ppm.

EXAMPLE 27

Preparation of 6-chloro-4-fluoro-2-nitro-3-(phthalimido)methoxybenzene

2-Chloro-4-fluoro-5-(phthalimido)methoxybenzene (5.0 g, 16.4 mmol) was slowly added to a stirred mixture of consulfuric acid-con nitric acid (10:1, 20 ml) at -20° C. Solution was then warmed to ambient temperature and allowed to stir for 1 hr. Addition to ice-water resulted in a light yellow precipitate which was separated by filtration. Column chromatography on silica gel in hexane-methylene chloride (3:7) furnished the title compound (3.2 g); ¹H NMR (CDCl₃, 300 MHz) 4.06 (3H, s), 7.54 (1H, d, J=8.5 Hz), 7.84 (20 title compound (0.13 g).

EXAMPLE 28

Preparation of 3-chloro-5-fluoro-2-methoxy-6-(phthalimido)aniline

6-Chloro-4-fluoro-2-nitro-3-(phthalimido) methoxybenzene (0.5 g, 1.4 mmol) was dissolved in glacial acetic acid (5 ml) and reduced iron (0.32 g, 5.6 mmol) was added. The solution was stirred at ambient temperature under a stream of nitrogen for 12 hr. Water was added and the product extracted with ethyl acetate followed by washings with water, brine, and drying (anhydrous sodium sulfate). Removal of the solvent afforded the title compound (0.4 g); ¹H NMR (CDCl₃, 300 MHz) 3.87 (3H,s), 4.21 (2H, br s), 6.65 (1H, d, J=9.4 Hz), 7.81 (2H, m), 7.95 (2H, m) ppm.

EXAMPLE 29

Preparation of 4-chloro-6-fluoro-3-methoxy-2nitroaline

3-Chloro-5-fluoro-2-methoxy-6-(phthalimido)aniline (0.6 g, 1.7 mmol) was dissolved in dimethylsulfoxide (3 ml) and anhydrous hydrazine (0.22 g, 6.8 mmol) was added. The solution was stirred at ambient temperature for 12 hr under a stream of nitrogen. Water was added and the product extracted with ether. The organic layer was washed with water, dried (anhydrous sodium sulfate), and evaporated to furnish the title compound (0.22 g). ¹H NMR (CDCl₃, 300 MHz) 3.98 (3H, s), 5.09 (2H, br s), 7.2 (1H, d, J=10.5 Hz) ppm.

EXAMPLE 30

Preparation of 4-chloro-6-fluoro-3-methoxy-2nitrophenyl isocyanate

4-Chloro-4-fluoro-3-methoxy-2-nitroaniline (0.5 g, 2.27 mmol) was dissolved in anhydrous toluene (30 ml) and 60 triethylamine (0.46 g, 4.54 mmol) was added. This solution was slowly added to a stirred solution of triphosgene (0.67 g, 2.27 mmol) in toluene (30 ml) and the solution refluxed for 2 hr. The solution was cooled and filtered. Clear filtrate was evaporated in vacuao to afford the title compound. ¹H 65 NMR (CDCl₃, 300 MHz) 3.96 (3H, s), 7.38 (1H, d, J=8.8 Hz) ppm.

EXAMPLE 31

Preparation of 3-[4-chloro-6-fluoro-3-methoxy-2-nitrophenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-5) from 4-chloro-6-fluoro-3-methoxy-2-nitrophenyl isocyanate

Sodium hydride (0.06 g, 2.27 mmol) was suspended in 10 ml anhydrous dimethylformamide and to this was slowly added a solution of ethyl-3-amino-4,4,4-trifluorocrotonate (0.42 g, 2.27 mmol) in anhydrous toluene (10 ml). The solution was stirred for 15 min. until the evolution of hydrogen gas ceased. The solution was cooled to -30° C. and a solution of 4-chloro-6-fluoro-3-methoxy-2-nitrophenyl isocyanate (2.27 mmol) in anhydrous toluene (10 ml) was slowly added with stirring. The solution was then allowed to warm to room temperature and methyl iodide (1.31 g, 9.1 mmol) was added. After stirring for 4 hr at ambient temperature, water was added and product extracted with ethyl acetate. Column chromatography on silica gel in hexane:methylene chloride (4:6) afforded the title compound (0.13 g).

EXAMPLE 32

Preparation of 2-chloro-4-fluoro-5-(phthalimido) phenol

5-Amino-2-chloro-4-fluorophenol (3.0 g, 18.6 mmol) and phthalic anhydride (3.3 g, 22.3 mmol) were dissolved in glacial acetic acid (60 ml) and the solution refluxed for 2 hr. Water was added and the resultant precipitate was separated by filtration. The residue was washed with water and dried to afford the title compound (5.04 g); ¹H NMR (CDCl₃+CD₃OD, 300 MHz) 3.68 (1H, s), 6.93 (1H, d, J=6.6 Hz), 7.27 (1H, d, J=9.1 Hz), 7.84 (2H, dd, J=3.0, 5.5 Hz), dd, J=3.0, 5.5 Hz) ppm.

EXAMPLE 33

Preparation of 6-chloro-4-fluoro-2-nitro-3 (phthalimido)phenol

2-Chloro-4-fluoro-5-(phthalimido)phenol (5.0 g, 17.1 mmol) was slowly added with stirring to con. nitric acid (50 ml) at -10° C. Solution was then warned to ambient temperature. and allowed to stir for 0.5 hr. Addition to ice-water resulted in a light yellow precipitate which was separated by filtration to afford the title compound (5.5 g); ¹H NMR (CDCl₃+CD₃OD, 300 MHz) 4.36 (H, br s), 7.61 (1H, d, J=8.6 Hz), 7.88 (2H, dd, J=3.0, 5.5 Hz), 7.99 (2H, dd, J=3.0, 5.5 Hz) ppm.

EXAMPLE 34

Preparation of 4-chloro-2,5-difluoronitrobenzene (XXXVII)

1-Chloro-2,5-difluorobenzene (31.7 g, 0.21 mol) was dissolved in sulfuric acid (110 ml) at -40° C., then a solution of sulfuric acid (20 ml) and nitric acid (30 ml) was added dropwise. The mixture was stirred for 1 hr while temperature slowly raised to 20° C. The product was forced to crystallize by mixing the reaction mixture with ice-water (500 ml), the yellow crystals were filtered, washed with cold water and dried in fume hood overnight. (38.0 g). ¹H NMR (CDCl₃, 300 MHz) 7.46 (1H, dd, J=9.8, 9.9 Hz), 7.96 (1H, dd, J=7.9, 7.9 Hz) ppm.

EXAMPLE 35

Preparation of 4-chloro-2,5-difluoroaniline (XXXIX)

1-Chloro-2,5-difluoro-4-nitrobenzene (XXXVIII) (17.5 g) was dissolved in acetic acid (150 ml) in a 1L3-neck round

bottom flask equipped with cooling condenser. To it iron powder (35.0 g) was added slowly while the solution was stirred by an overhead stirrer. The reaction was exothermic which occurred in less than 30 min and generated much heat that was absorbed by a cooling bath. After that, ethyl acetate (300 ml) was added and the mixture filtered. The solution was washed with water and dried over sodium sulfate. The product was purified by column chromatography (silica gel, hexane:ethyl acetate, 4:1) (14.3 g). ¹H NMR (CDCl₃, 300 MHz) 3.89 (2H, br), 6.56 (1H, m), 7.02 (1H, m) ppm.

EXAMPLE 36

Preparation of ethyl 4-chloro-2,5-difluorophenylcarbamate (XL)

4-Chloro-2,5-difluoroaniline (XXXIX) (2.1 g, 12.8 mmol) was mixed with pyridine (20 ml) at 0° C., to it was dropwise added ethyl chloroformate (1.5 g, 13.8 mmol). After stirring for 2.5 hr while temperature slowly raised to room temperature, pyridine was evaporated and the residue crystallized in ice-water (100 ml). The crystals were filtered, washed with water and dried in fume hood overnight (2.7 g). ¹H NMR (CDCl₃, 300 MHz) 1.33 (3H, t, J=7.1 Hz), 4.23 (2H, q, J=7.1 Hz), 6.89 (1H, br), 7.12 (1H, dd, J=6.5, 6.5 Hz), 8.05 (1H, dd, J=7.8, 9.6 Hz) ppm.

EXAMPLE 37

Preparation of ethyl 4-chloro-3,6-difluoro-2nitrophenylcarbamate (XLI)

Ethyl 4-chloro-2,5-difluorophenylcarbnaate (XL) (2.4 g, 10.2 mmol) was added to a mixture of sulfuric acid (12.5 ml) and nitric acid (0.8 ml) at -30° C. After stirring for 1.5 hr (-30° C. to r.t.), it was poured into ice water (50 ml) and yellow crystals formed immediately which were filtered, washed with water and dried in fume hood overnight (2.8 g). ¹H NMR (CDCl₃, 300 MHz) 1.30 (3H, t, J=7.1 Hz), 4.22 (2H, q, J=7.1 Hz), 6.97 (1H, br), 7.45 (1H, dd, J=6.3, 6.3 Hz) ppm.

EXAMPLE 38

Preparation of 4-chloro-3,6difluoro-2-nitroaniline (V)

Ethyl 4-chloro-3,6-difluoro-2-nitrophenylcarbamate (XLI) (0.9 g, 3.2 mmol) was mixed with acetic acid (30 ml) and hydrobromic acid (48%, 25 ml), the mixture was stirred at 150° C. for 4 hr and then the volume reduced to half by evaporation Ethyl acetate (50 ml) was added and the solution was washed with water (15 ml×3) and dried over sodium sulfate. The product was purified by column chromatography (silica gel, hexane) (0.56 g). ¹H NMR (CDCl₃, 300 MHz) 5.73 (2H, br), 7.24 (1H, dd, J=6.1, 6.1 Hz) ppm.

EXAMPLE 39

Preparation of 3-(4-chloro-5-ethoxycaibonylamino-2-fluorophenyl)-6-trifluoromethyl-2,4(1H, 3H)pyrimidinedione (XLVII)

Ethyl chloroformate (2.58 g) was dropwise added into a solution of 3-(5-amino-4-chloro-2-fluorophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (XLVI) in pyridine (25 ml) at 0° C., and stirred at room temperature for one hr. The reaction mixture was diluted with ethyl acetate, 65 washed with 1N hydrochloric acid followed by water, and dried over sodium sulfate. After concentration, the crystals

(5.46 g) were collected by filtration. ¹H NMR (CDCl₃, 300 MHz) 1.31 (3H, t, J=7.1 Hz), 4.22 (2H, q, J=7.1 Hz), 6.20 (1H, s), 7.14 (1H, br), 7.29 (1H, d, J=8.8 Hz), 7.36 (1H, d, J=6.0 Hz), 8.26 (1H, d, J=6.4 Hz) ppm.

EXAMPLE 40

Preparation of 3-(4-chloro-3-ethoxycarbonylamino-6-fluoro-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-33)

3-(4Chloro-5-ethoxycarbonylamino-2-fluorophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (XLVII) (1.0 g) was stirred with sulfuric acid (2 ml) at 0° C., then a mixture of nitric acid (1 ml) and sulfuric acid (1 ml) was dropwise added. After stirring at room temperature for 3 hr, it was poured into ice water (50 ml) and yellow crystals formed immediately which was filtered, washed with water and dried in fume hood overnight (0.5 g).

EXAMPLE 41

Preparation of 3-(4-chloro-3-ethoxycarbonylamino-6-fluoro-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-34)

3-(4-chloro-3-ethoxycarbonylamino6-fluoro-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.96 g) was stirred with dimethyl sulfate (0.72 ml) and potassium carbonate (0.33 g) in N,N-dimethylformamide (10 ml) at room temperature overnight. The reaction mixture was diluted with ethyl acetate, washed with water, dried over sodium sulfate, evaporated to give the title compound (1.1 g, oil).

EXAMPLE 42

Preparation of 3-[4-chloro-6-fluoro3-methyl-2-(2-naphthoyl)aminophenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-122)

40 Preparation of 4-chloro-2-fluoro-5-methyl-N-phenoxycarbonylaniline

4-Chloro-2-fluoro-5-methylaniline (5 g, 31.4 mmol) was dissolved in tetrahydrofuran (100 ml) and potassium carbonate (6.0 g, 37.7 mmol) and phenyl chloroformate (5.9 g, 37.7 mmol) were added. Solution was refluxed for 3 hr and the solvent was removed under reduced pressure. Product was purified by column chromatography on silica gel (eluent, methylene chloride:hexane, 6:4; 7.15 g).

Preparation of 4-chloro-2-fluoro-5-methyl-6-nitro-N-phenoxycarbonylaniline

4-Chloro-2-fluoro-5-methyl-N-phenoxycarbonylaniline (7.1 g, 25.4 mmol) was dissolved in chloroform (68 ml) and trifluoroaceticanhydride (13.5 ml) and ammonium nitrate (2.4 g, 30.5 mmol) were slowly added with stirring at ambient temperature. The stirring was continued for 18 hr when a second batch of ammonium nitrate (0.4 g, 5 mmol) was added and stirring continued for 8 hr. Water was added and solution was neutralized by slow addition of sodium bicarbonate solution followed by extraction with chloroform. Organic layer was dried and evaporated under reduced pressure to afford an oily product (8.5 g) which was used for the next step without purification.

Preparation of 3-(4-chloro-6-fluoro-3-methyl-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

Ethyl 3-amino-4,4,4-trifluorocrotonate (6.1 g, 33.1 mmol) was dissolved in dimethylformamide (47 ml) and stirred at

-10 ° C. To this solution was slowly added 1,8-diazabicyclo [5.4.0]undec-7-ene (6.3 g, 41.4 mmol) and solution stirred for 0.5 hr. To this solution was slowly added a solution of 4-chloro-2-fluoro-5-methyl-6-nitro-N-

phenoxycarbonylaniline (8.5 g) in dimethylformamide (25 ml) followed by stirring at ambient temperature for 14 hr. Solution was then heated to 80 °C. and stirred at this temperature for 4 hr. Water was added and pH adjusted to 4 by addition of dilute hydrochloric acid. Product was extracted with ethyl acetate followed by evaporation of the solvent to afford the crude product (10.1 g) which was subjected to N-methylation as follows.

Preparation of 3-(4-chloro-6-fluoro-3-methyl-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-

pyrimidinedione

3-(4-Chloro-6-fluoro-3-methyl-2-nitrophenyl)-6- 15 trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (10.1 g) was dissolved in dimethylformamide (100 ml) and potassium carbonate (5.7 g, 41.3 mmol) and dimethylsulfate (11.9 g, 55.1 mmol) were added. Solution was stirred at ambient temperature for 14 hr, water was added and product 20 extracted with ethyl acetate. The title compound was separated by column chromatography on silica gel (eluent, hexane-ethyl acetate, 9:1; 8.5 g).

Preparation of 3-(2-amino-4-chloro-6-fluoro-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-25

pyrimidinedione

3-(4-Chloro-6-fluoro-3-methyl-2-nitrophenyl)-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (2.0 g, 5.2 mmol) was dissolved in acetic acid (20 ml) and iron powder (1.2 g, 21.5 mmol) was added. Solution was stirred at ambient temperature for 14 hr. Water was added and product extracted with ethyl acetate followed by evaporation under reduced pressure. Title compound was separated by column chromatography on silica gel (eluent, hexane-ethyl acetate, 7:3; 1.5 g).

Preparation of 3-[4-chloro-6-fluoro-3-methyl-2-(2- 35 naphthoyl)aminophenyl]-1-methyl-6-trifluoromethyl-2,4

(1H, 3H)-pyrimidinedione

3-(2-Amino-4-chloro-6-fluoro-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.5 g, 1.4 mmol) was dissolved in 1,4-dioxane (20 ml) and 40 triethyl amine (0.29 g, 2.9 mmol) and 2-naphthoyl chloride (0.41 g, 2.2 mmol) were added. Solution was heated under reflux for 4 hr and solvent removed under reduced pressure. Product was subjected to column chromatography on silica gel and the title compound was eluted with hexane-ethyl acetate (8:2; 0.3 g).

EXAMPLE 43

Preparation of N-[4-chloro-6-fluoro-3-methoxy-2-(2-naphthoyl)aminophenyl]phthalimide (Compound no. 13-3)

3-Chloro-5-fluoro-2-methoxy-6-(phthalimido)aniline (0.32 g, 1 mmol), 2-naphthoyl chloride (0.23 g, 1.2 mmol), and triethyl amine (0.12 g, 1.2 mmol) were dissolved in tetrahydrofuran (20 ml) and solution refluxed for 3 hr. Solvent was then removed under reduced pressure and the residue subjected to column chromatography on silica gel. Title compound was eluted with hexane-ethyl acetate (7:3; 0.12 g).

EXAMPLE 44

Preparation of 3-(2-amino-4-chloro-3-difluoromethoxy-6-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-38)

3-(2-Amino-4-chloro-6-fluoro-3-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

(1.41 g, 4.0 mmol) and potassium carbonate (0.69 g, 5.0 mmol) were suspended in dimethylformamide (50 ml) and stirred at 90° C. Chlorodifluoromethane was bubbled through the solution for 4 hr and water was added. Product was extracted with ethyl acetate and subjected to column chromatography (silica gel; eluent, methylene chloridemethanol, 99.5:0.5) to furnish the title compound (0.78 g).

EXAMPLE 45

Preparation of 3-[4-chloro-6-fluoro-3-methyl-2-(phenoxycarbonylamino)phenyl]-1-methyl-6trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 4-52)

3-(4-Chloro-6-fluoro-2-isocyanato-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

3-(2-Amino-4-chloro-6-fluoro-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.0 g, 2.9 mmol) and triethylamine (0.58 g, 5.7 mmol) were dissolved in ethyl acetate (15 ml) and the solution was slowly added to a solution of triphosgene (0.85 g, 2.9 mmol) in ethyl acetate (15 ml). Solution was heated under reflux for 2 hr and filtered. Solvent was evaporated to afford the title compound as a residue which was used for the next step. 3-(4-Chloro-6-fluoro-3-methyl-2-phenoxycarbonylamino-phenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

3-(4-Chloro-6-fluoro-2-isocyanato-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.4 mmol) and triethylamine (0.14 g, 1.4 mmol) were dissolved in toluene (15 ml) and the solution was treated with phenol (0.13 g, 1.4 mmol). Solution was stirred for 0.3 hr at ambient temperature and water was added. Product was extracted with ethyl acetate. Removal of the solvent followed by column chromatography on silica gel (eluent, methylene chloride) afforded the title compound (0.3 g).

EXAMPLE 46

Preparation of 3-[4-chloro-6-fluoro-3-hydroxy-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-114)

3-(2-Amino-4-chloro-6-fluoro-3-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.50 g, 1.4 mmol) and 2-naphthoyl chloride (0.27 g, 1.4 mmol) were dissolved in 1,4-dioxane (10 ml) and the solution heated under reflux for 4 hr. Solvent was evaporated under reduced pressure and the product purified by column chromatography on silica gel (eluent, hexan-ethyl acetate, 8:2) to furnish the title compound (0.60 g).

EXAMPLE 47

Preparation of 3-[4-chloro-3-difluoromethoxy-6-fluoro-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-115)

3-[4-Chloro-6-fluoro-3-hydroxy-2-(2-naphthoylamino) phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.51 g, 1.0 mmol) dissolved in dimethylformamide (5 ml) was slowly added to a stirred suspension of sodium hydride (0.03 g, 1.3 mmol) in dimethylformamide (5 ml) at -10° C. Chlorodifluoromethane was bubbled through the solution for 0.5 hr with stirring at -10° C. followed by addition of water. Product was extracted with

ethyl acetate and solvent evaporated under reduced pressure. Residue was subjected of column chromatography on silica gel (eluent, hexane-ether, 25:75) to furnish the title compound (0.03 g).

EXAMPLE 48

Preparation of 3-[4-chloro-2-(2-naphthoylamino)phenyl]-1methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-131)

To a solution of triphosgene in anhydrous ethyl acetate (150 ml) was added dropwise a solution of 4-chloro-2- 10 nitroaniline (10 g) and triethylamine (12 g) in anhydrous ethyl acetate (50 ml) at 0° C. under nitrogen atmosphere. After addition, the resulting mixture was heated at reflux temperature for 1 hr, then allowed to cool to ambient temperature. The precipitate was removed by filtration 15 through Celite and the filtrate was concentrated to give title compound as an brown solid.

To a suspension of sodium hydride (60% dispersion in oil, 2.5 g) in anhydrous N,N-dimethylformamide (100 ml) was added dropwise a solution of ethyl-3-amino-4,4,4- 20 trifluorocrotonate in toluene (50 ml) at 0° C. under nitrogen atmosphere. After addition, the mixture was stirred for 20 min at same temperature, then cooled to -30° C. A solution of (4-chloro-2-nitrophenyl)isocyanate in toluene (50 ml) was added dropwise. After stirring for 20 min, the cold bath 25 was removed and the resulting mixture was stirred overnight at ambient temperature. The reaction mixture was partitioned between ethyl acetate and 1N-hydrochloric acid. The organic phase was washed with brine (x2) and dried over anhydrous sodium sulfate. The solvent was removed in 30 vacuo and the residue was purified by column chromatography on silica gel eluted with ethyl acetate and hexane (1:1) to afford 3-(4-chloro-2-nitrophenyl)-6-trifluoromethyl-2,4 (1H, 3H)-pyrimidinedione (10.2 g) as a yellow solid. Preparation of 3-(4-chloro-2-nitrophenyl)-1-methyl-6- 35 trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

A mixture of 3-(4-chloro-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (3 g), dimethyl sulfate (1.7 g) and potassium carbonate (1.85 g) in N,N-dimethylformamide (100 ml) was stirred at 55° C. 40 overnight. The resulting mixture was allowed to cool to ambient temperature and filtered through Celite to remove unsoluble precipitate. The filtrate was diluted with a mixed solvent of ethyl acetate and hexane (1:1, 200 ml), washed with brine (x2) and dried over anhydrous sodium sulfate. 45 After removal of the solvent, the residue was solidified. The yellow solid was recrystallized from ethyl acetate and hexane to give desired compound (2.3 g).

Preparation of 3-(2-amino-4-chlorophenyl)-1-methyl-6trifluoromethyl-2,4(1H, 3H)-pyrimidinedione To a stirred suspension of 3-(4-choro-2-nitrophenyl)-1-

methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1 g) in methanol (20 ml) and conc. hydrochloric acid (10 ml) was added iron (powdered, 0.48 g) unded vigorous stirring. for 1 hr. The oil bath was removed and the solution was allowed to cool to ambient temperature. Ethyl acetate (200 ml) was added, washed with brine (x2) and dried over anhydrous sodium sulfate. After removal of the solvent, the residue was purified by column chromatography on silica 60 gel using ethyl acetate-hexane (1:3) as the eluent to give the title compound.

Preparation of 3-[4-chloro-2-(2-naphthoylamino)phenyl]-1methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-131)

A solution of 3-(2-amino-4-chlorophenyl)-1-methyl-6trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.4 g), 2-naphthoyl chloride (0.29 g) and triethyl amine (0.19 g) in anhydrous tetrahydro furan (30 ml) was heated at reflux temperature overnight under nitrogen atmosphere.

The reaction mixture was diluted with ethyl acetate (200 ml), washed with brine (x2) and dried over anhydrous sodium sulfate. The solvent was removed unded reduced pressure and the residue was purified by column chromatography on silica gel using ethyl acetate and hexane (1:3) as the eluent give a pale yellow solid. The solid was recrystallized from ethyl acetate-hexane to give the title compound as a white crystal (0.42 g).

EXAMPLE 49

Preparation of 3-[4-chloro-6-fluoro-2-(2naphthoylamino)phenyl]-1-methyl-6trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-145)

A mixture of (2-amino-4-chloro-6-fluorophenyl)-1methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.25 g), triethylamine (0.15 g) and 2-naphthoyl chloride (0.21 g) in anhydrous tetrahydrofuran (30 ml) was heated at refluxtemperature overnight under nitrogen atmosphere. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous sodium acetate. The solvent was removed in vecuo and the residue was purified by column chromatography on silica gel using ethyl acetate-hexane (1:4) as the eluent to give the title compound as an white solid (0.26 g).

EXAMPLE 50

Preparation of N-[4-chloro-2-(2-naphthoylamino) phenyl]phthalimide (Compound no. 13-5)

A reaction solution of N-(2-amino-4-chlorophenyl) phthalimide (0.5 g), triethylamine (0.28 g) and 2-naphthoyl chloride (0.35 g) in anhydrous tetrahydrofuran (50 ml) was heated at reflux temperature for 6 hr under nitrogen atmosphere. The resulting mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine (x2) and dried over anhydrous sodium sulfate. The solvent was removed and the residue was purified by column chromatography on silica gel using ethyl acetatehexane (1:5) to give the title compound (0.35 g) as a yellow solid.

EXAMPLE 51

Preparation of 3-(2-benzylthioacetylamino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-165)

A solution of benzylmercaptan (51.0 mg) in tetrahydro-After addition, the mixture was heated at reflux temperature 55 furan (1.0 ml) was slowly added to a suspension of sodium hydride (16.4 mg) in tetrahydrofuran stirred under nitrogen at 0° C. The solution warmed to room temperature over 20 minutes and tetrabutylammonium bromide (11 mg) was added. The suspension was cooled to -78° C. and a solution of 3-(2-chloroacetylamino-4-chloro-6-fluoro-3methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)pyrimidinedione (150 mg) added. After stirring for a further 30 minutes the mixture was allowed to warm to room temperature overnight. Water and ethyl acetate were added and the solution separated and the organic phase was washed with water, brine and dried over sodium sulfate. The solution was concentrated and chromatographed on silica gel eluting

35

with methylene chloride: ethyl acetate, 10:1, to give a white solid (137 mg).

EXAMPLE 52

Preparation of 3-(2-aminocarbonylamino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 3-26)

A solution of the isocyanate (1 mM) in dioxane (20 ml), stirred at 0° C., was treated with a solution of 0.5 M ammonia in dioxane (3 mM) and 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU) (3 drops). The solution was allowed to warm to room temperature and stirred overnight. Chromatography on silica gel eluting with ethyl acetate gave the product as a yellow solid (271 mg).

EXAMPLE 53

Preparation of 3-(4-chloro-6-fluoro-3-methoxy-2thiomethylphenyl)l-methyl-6-trifluoromethyl-2,4 (1H, 3H)-pyrimidinedione (Compound no. 17-1)

A solution of t-butylnitrile (73 mg) in methylene chloride 20 (1 ml) was added to a stirred, ice cold solution of 3-(2amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (200 mg) and methyl disulfide (102 mg) in dry methylene chloride (4 ml). It was stirred at 0° C. for 1.5 h and allowed to warm to room 25 temperature overnight. 1 N Hydrochloric acid was added and the mixture extracted with ethyl acetate, washed with water, brine and dried over sodium sulfate. The solution was concentrated under reduced pressure and the residue chromatographed on silica gel eluting with ethyl acetate: hexane, 30 5:1 gave the product as a yellow powder (189 mg).

Preparation of 2-(4-chloro-6-fluoro-3-hydroxy-2nitrophenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-2)

Nitric acid (70%, 12 ml) was added to the ice-cooled 2-(4-chloro-2-fluoro-5-hydroxyphenyl)-5trifluoromethylpyridazin-3-one (1.25 g) and stirred at room temperature for 30 minutes. Crushed ice was added. The precipitate was collected by filtration and washed with water to give 1.20 g of the desired product, m.p. 146-8° C.

EXAMPLE 55

Preparation of 2-(2-amino-4-chloro-6-fluoro-3hydroxyphenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-3)

To a stirred solution of 2-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-5-trifluoromethylpyridazin-3-one (0.601 g) in acetic acid (6 ml) was added 0.38 g of iron powder at 50 ambient temperature and stirred for 4 hours. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, 55 eluted with hexane-ethyl acetate (2:1) to give 0.515 g of the title compound.

EXAMPLE 56

Preparation of 2-(2-amino-4-chloro-6-fluoro-3methoxyphenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-4) (BY715) and 2-(4-chloro-6fluoro-3-methoxy-2-methylamninophenyl)-5trifluoromethylpyridazin-3-one (Compound no. 11-5)

2-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl-5trifluoromethylpyridazin-3-one (0.515 g), methyl iodide

(0.248 g), and potassium carbonate (0.219 g) were mixed in acetonitrile (10 ml) and heated at reflux for 2 hours. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane-ethyl acetate (4:1) to give 0.40 g of 2-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-4), m.p. 156-7° C. and 2-(4-chloro-6fluoro-3-methoxy-2-methylaminophenyl)-5trifluoromethylpyrdazin-3-one (Compound no. 11-5)(7 mg).

EXAMPLE 57

Preparation of 2-(4-chloro-6-fluoro-3-methoxy-2naphthoylamidophenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-6)

2-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-5trifluoromethylpyridazin-3-one (0.153 g) and 2-naphthoyl chloride (0.097 g) were mixed in dioxane (10 ml) and heated at reflux for 5 hours. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane-ethyl acetate (4:1) to give 0.198 g of the title compound, m.p. 190-2° C.

EXAMPLE 58

Preparation of 2-(2,4-dichloro-6-fluoro-3methoxyphenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-7) and 2-[4-chloro-2-(2-chloro-2-ethoxycarbonylethyl)-6-fluoro-3-methoxyphenyl]-5-trifluoromethylpyridazin-3-one (Compound no. 11-8)

Copper(II) chloride (0.119 g), t-butyl nitrite (0.115 g), and ethyl acrylate (3 ml) were placed in a flask, and cooled with a dry ice-acetone bath at -65° C. To this mixture 2-(2amino-4-chloro-6-fluoro-3-methoxyphenyl)-5trifluoromethylpyridazin-3-one (0.25 g) in acetonitrile (4 ml) was added and stirred. The reaction mixture was gradu-45 ally warmed up to room temperature over night. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane-ethyl acetate (9:1) to give 0.077 g of 2-(2,4-dichloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one and 0.033 g of 2-[4chloro-2-(2-chloro-2-ethoxycarbonylethyl)-6-fluoro-3methoxyphenyl]-5-trifluoromethylpyridazin-3-one.

EXAMPLE 59

Preparation of 2-(2,4-chloro-6-fluoro-3-hydroxy-2naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-194)

Boron tribromide-emthyl sulfide complex (5.15 g) was added to a solution of 2-(4-chloro-6-fluoro-3-methoxy-2naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4 65 (1H, 3H)-pyrimidinedione in 1,2-dichloroethane (150 ml) and heated at reflux for 1 hour. The reaction mixture was partitioned between methylene chloride and water. The

45

organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane-ethyl acetate (4:1 and 2:1) to give the title compound (4.127 g), m.p. 150-2° C.

EXAMPLE 60

Preparation of 2-(4-chloro-3-ethoxy-6-fluoro-2-naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-196)

2-(4-Chloro-6-fluoro-3-hydroxy-2-naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4 (1H, 3H)-pyrimidinedione (0.203 g), ethyl iodide (75 mg) and potassium carbonate (55 mg) were stirred in methylethyl ketone (9 ml) and dimethyl sulfoxide (1 ml) at room temperature over night. The reaction mixture was filtered and evaporated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with 20 hexane-ethyl acetate (4:1) to give the title compound (0.16 g).

EXAMPLE 61

Preparation of 3-[4-chloro-2-diazanyl-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 15-1)

3-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.9 g, 2.4 mmol) was dissolved in conc. hydrochloric acid (5 ml) and the mixture cooled to -15° C., a solution of NaNO₂ (0.2 g in 2 ml of H₂O) was added slowly. After stirred for 20 min, a solution of SnCl₂.2H₂O (1.5 g in 4 ml of conc. hydrochloric acid) was added and the reaction continued at -15° C. for 30 min, then at room temperature for 30 min. The aqueous mixture was extracted with ethyl acetate (5 ml×3) and the organic phase washed with brine and dried over Na₂SO₄. Column chromatography was used to purify the product (silica gel, hexane/ethyl acetate=6/4). Yield: 0.5 g, 40 1.3 mmol.

EXAMPLE 62

Preparation of 3-[4-chloro-2-(2-cycopropanecarbonyldiazanyl)-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 15-2)

3-[4-chloro-2-diazanyl-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione 50 (0.15 g, 0.4 mmol) was dissolved in dioxane (10 ml) and added with cyclopropanecarbonyl chloride (0.04 g, 0.4 mmol) and tiethylamine (0.04 g, 0.4 mmol). After stirred for 1 hr, the mixture was poured into water (15 ml) and extracted with ethyl acetate (10 ml×3). Organic phase was 55 washed with brine and dried over Na2SO4. Final purification involved column chromatography (silica gel, ether). Yield: 0.15 g, 0.34 mmol.

EXAMPLE 63

Preparation of 3-{4-chloro-2-[2,2-cyclopropylmethylene)diazanyl]-6-fluoro-3-methoxyphenyl}-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 15-11)

3-[4-chloro-2-diazanyl-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

(0.12 g, 0.31 mmol) was added to a methanol (10 ml) solution of cyclopropanecarboxaldehyde (0.024 g, 0.34 mmol) and the mixture was stirred for 3 hr. After evaporation of solvent, the residue was purified by column chromatography (silica gel, hexane/ether=3/2). Yield: 0.13 g, 0.31 mmol.

EXAMPLE 64

Preparation of 3-(4-chloro-6-fluoro-2-hydroxy-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 16-6)

An acetonitrile (10 ml) solution of copper (II) sulfate (0.52 g, 3.26 mmol), copper (I) oxide (0.47 g, 3.26 mmol) and copper (II) nitrate hemipentahydrate (0.76 g, 3.26 mmol) was stirred at -30° C., and added with tert-butyl nitrite (0.41 g, 3.97 mmol) and then an acetonitrile (3 ml) solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.94 g, 2.56 mmol). After stirred for 16 hr (-30° C. to room temperature), the mixture was poured into cold 5% hydrochloric acid (30 ml) and then extracted with ethyl acetate (20 ml×3). The organic phase was washed with brine and dried over Na₂SO₄. Preparative TLC was used for purification (silica gel plates, 2000 microns, ether). Yield: 0.16 g, 0.44 mmol.

EXAMPLE 65

Preparation of 3-[4-chloro-6fluoro-3-methoxy-2-(2-naphthoyloxy)phenyl]-1-methyl-6-trifluoromethyl-2, 4(1H, 3H)-pyrimidinedione (Compound no. 16-7)

3-(4-chloro-6-fluoro-2-hydroxy-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.10 g, 0.27 mmol) was dissolved in dioxane (10 ml) and the solution added with 2-naphthoyl chloride (0.062 g, 0.33 mmol), triethylamine (0.033 g, 0.33 mmol). After stirred for 2 hr, solvent was evaporated and the residue purified by column chromatography (silica gel, hexane/ether=4/1). Yield: 0.12 g, 0.23 mmol.

EXAMPLE 66

Preparation of 3-{4-chloro-2-[2-chloro-2-(ethoxycarbonyl)ethyl]-6-fluoro-3-methoxyphenyl}-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compounds no. 14-4 and 14-5)

A solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)pyrimidinedione (0.94 g, 2.56 mmol) in acetonitrile (3 ml) was slowly added to an acetonitrile (9 ml) solution of ethyl acrylate (6 ml), tert-butyl nitrite (0.41 g, 3.97 mmol), and copper (II) chloride (0.42 g, 3.12 mmol) at -20° C. After stirred for 16 hr (-20° C. to room temperature), the mixture was poured into cold 5% hydrochloric acid (30 ml) and extracted with ethyl acetate (20 ml ×3), the organic phase was washed with cold 5% NaHCO₃ and brine, dried over Na₂SO₄. Column chromatography was used for purification (silica gel, hexane/ether=9/1) which also isolated two isomers. Yield: isomer-1 (eluted earlier), 0.23 g, 0.47 mmol; isomer-2 (eluted later), 0.14 g, 0.29 mmol.

Using the procedures as described in Schemes 1-17 and 65 Examples 1-66, the compounds of this invention can be readily prepared. Tables I-XVII list structures for few representative compounds of this invention.

TABLE I

1-60

1-61

Cl

CI

F

F

OCH(CH₃)

COOCH2CH,

OCH₂CH₃

н

Н

СН,

CF₃

Н

н

Н 0 О

н o 0

TABLE I-continued

No.	x	Y	w	R ₁	R_2	R ₃	R_4	R ₅	R ₈	Ro
1-62	Cl	F	OCH ₂ CH ₃	CH ₃	CF ₃	н	CH ₂ CH ₃	Н	0	<u> </u>
1-63	Cl	F	OCH(CH ₃) ₂	CH ₃	CF ₃	H	H	H	0	0
1-64	Cl	F	OCH(CH ₃) ₂	CH ₃	CF ₃	H	$CH(CH_3)_2$	H	0	0
1-65	CI	H	H	H	CF ₃	NO ₂	0	0	0	0
1-66	Cl	H	OH	CH ₃	CF ₃	H	0	0	0	0
1-67	CI	NO ₂	ОН	CH ₃	CF ₃	н	0	0	0	0
1-68	OCF ₃	H	H	CH ₃	CF ₃	H	0	0	0	0
1-69	a	NO ₂	OCH ₃	H	CF ₃	H	0	0	О	0
1-70	Cl	F	F	H	CF ₃	H	0	0	0	0
1-71	Cl	н	ОН	CH ₃	CF ₃	H	H	H	0	0
1-72	a	н	OCH ₃	CH ₃	CF ₃	н	H	H	О	0
1-73	OCF ₃	H	н	CH ₃	CF ₃	Н	H	H	О	0

TABLE II

$$R_4$$
 R_5 R_9 R_8 R_2 R_3

No.	x	Y	w	R ₁	R ₂	R ₃	R ₄	R _s	$R_{\rm g}$	R9
2-1	Cl	F	OCH ₃	CH,	CF ₃	н	COCH ₃	Н	0	0
2-2	Cl	F	OCH,	CH ₃	CF,	н	COCH	COCH	0	0
2-3	Cl	F	OCH,	CH ₃	CF ₃	Н	CO-t-C ₄ H _o	н	О	0
2-4	Cl	F	OCH ₃	CH ₃	CF ₃	H	acryloyl	acryloyl	0	0
2-5	Cl	F	OCH ₃	CH ₃	CF,	н	methacryloyl	н	0	0
2-6	Cl	F	OCH ₃	CH ₃	CF ₃	H	methacryloyl	methacryloyl	0	0
2-7	a	F	OCH ₃	CH ₃	CF ₃	H	3,3-dimethylacryloyl	Н	О	0
2-8	Cl	F	OCH ₃	CH ₃	CF ₃	H	3,3-dimethylacryloyl	3,3-	0	0
								dimethylacryloyl		
2-9	Cl	F	OCH ₃	H	CF ₃	H	COCF ₃	H	0	0
2-10	a	F	OCH ₃	CH,	CF,	H	COCF ₃	Н	0	0
2-11	Cl	F	OCH ₂ CN	CH ₃	CF,	H	COCF ₃	H	0	0
2-12	Cl	F	OCH ₃	CH ₃	CF ₃	NHCO	COCF₃	H	0	0
						CF ₃				
2-13	Cl	F	OCH ₃	CH ₃	CF ₃	Н	COCH ₂ Cl	H	0	О
2-14	Cl	F	OCH ₃	CH ₃	CF ₃	H	COCH ₂ CN	H	0	0
2-15	Cl	F	OCH ₃	CH ₃	CF ₃	Н	COCOOCH,	Н	0	0
2-16	CI	F	OCOCH ₂ CO OCH ₂ CH ₃	CH ₃	CF ₃	H	COCH ₂ COOCH ₂ CH ₃	Н	0	0
2-17	Cl	F	OCH,	CH ₃	CF,	H	c-C ₃ H ₅ -carbonyl	H	0	0
2-18	Cl	F	OCH ₃	CH ₃	CF ₃	н	c-C ₃ H ₅ -carbonyl	c-C₃H₅— carbonyl	0	0
2-19	Cl	F	OCH,	CH,	CF,	H	cyclohexanovl	н	0	0
2-20	CI	F	OCH,	CH ₃	CF,	H	cyclohexanoyl	cyclohexanovi	Ō	ō
2-21	Cl	F	OCH ₃	CH,	CF,	Н	SO₂CH	SO ₂ CH ₃	0	0
	Cl	F	OCH,	CH ₃	CF ₃	н	SO ₂ CH ₃	H	0	О
2-22	CI	F	OCH ₃	CH,	CF ₃	H	benzoyl	H	0	О
2-23	Cl	F	OCH ₃	CH,	CF ₃	H	3-CH ₃ -benzoyl	H	0	0
2-24	Cl	F	OCH ₃	CH,	CF,	H	4-CH ₃ -benzoyl	H	0	0
2-25	CI	F	OCH,	CH,	CF ₃	H	4-CH ₃ -benzoyl	4-CH ₃ -benzoyl	0	0
2-26	Cl	F	OCH ₃	CH ₃	CF ₃	Н	4-CH ₃ -	H	0	0
			•	•	•		benzene sulfonyl			

$$R_4$$
 R_5 R_6 R_7 R_8 R_9 R_9 R_9

							143			
No.	х	Y	w ·	R ₁	R ₂	R ₃	R ₄	R ₅	R _e	R _o
2-27	Cl	F	OCH ₃	CH ₃	CF ₃	н	4-C ₂ H ₅ -benzoyl	н	0	0
2-28	Cl.	F	OCH ₂ CN	CH ₃	CF ₃	Н	4-C ₂ H ₅ -benzoyl	Н	0	0
2-29	Cl	F	OCH ₃	CH ₃	CF,	Н	4-n-C ₃ H ₇ -benzoyl	4-n-C ₃ H ₇ -	0	0
2-30	Cl	F	OCH ₃	СН3	CF ₃	н	4-t-C ₄ H _o -benzoyl	benzoyl H	0	0
2-31	CI	F	OCH ₃	CH ₃	CF ₃	H	4-vinylbenzoyl	H	ŏ	ŏ
2-32	a	F	OCH,	CH ₃	CF ₃	H	3,4-(CH ₃) ₂ -benzoyl	H	0	0
2-33	Cl	F	OCH ₃	CH ₃	CF ₃	H	4-CF ₃ -benzoyl	Н	0	0
2-34	a	F	OCH,	CH ₃	CF ₃	H	4-CF ₃ -benzoyl	4-CF ₃ -benzoyl	0	0
2-35	Cl	F	OCH ₃	CH ₃	CF ₃	H	3,5-(CF ₃) ₂ -benzoyl	3,5-(CF ₃) ₂ —	0	0
2-36	Cl	F	OCH ₃	CH ₃	CF ₃	н	4-CH ₂ Cl-benzoyl	benzoyl H	0	o
2-37	Cl	F	OCH ₃	CH ₃	CF ₃	H	4-C ₆ H ₅ -benzoyl	Н	ō	ō
2-38	Cl	F	OCH ₃	CH ₃	CF ₃	H	4-C ₆ H ₅ -benzoyl	4-C ₆ H ₅ -benzoyl	0	0
2-39	Cl	F	OCH ₃	CH ₃	CF ₃	H	2-F-benzoyl	Н	0	0
2-40 2-41	Cl Cl	F F	OCH ³	CH ₃	CF ₃	H	4-F-benzoyl	H	0	0
2-41	Cl	F	OCH ₃	CH ₃	CF ₃	H H	2,3-F ₂ -benzoyl 2,4-F ₂ -benzoyl	H H	0	0
2-43	Cl	F	OCH ₃	CH ₃	CF ₃	H	2,4-F ₂ -benzoyl	2,4-F ₂ -benzoyl	ŏ	ŏ
2-44	Cl	F	OCH ₃	NH ₂	CF ₃	Н	2,4-F2-benzoyl	H	ō	ō
2-45	CI	F	OCH ₂ CN	CH ₃	CF ₃	H	2,4-F ₂ -benzoyl	2,4-F ₂ -benzoyl	О	О
2-46	a	F	OCH ₃	CH ₃	CF ₃	H	2,4-F ₂ -thiobenzoyl	H	0	S
2-47 2-48	CI CI	F F	OCH ₃ OCH ₃	CH ₃	CF ₃	H H	2,6-F ₂ -benzoyl 3,4-F ₂ -benzoyl	H H	0	0
2-49	Cl	F	OCH ₃	CH ₃	CF ₃	H	3,4-F ₂ -benzoyl	3,4-F ₂ -benzoyl	ő	ŏ
2-50	CI	F	OCH,	CH ₃	CF ₃	H	3,5-F ₂ -benzoyl	H	ŏ	ŏ
2-51	Cl	F	OCH ₃	CH ₃	CF,	H	3,5-F ₂ -benzoyl	3,5-F ₂ -benzoyl	0	0
2-52	CI	F	OCH ₃	CH ₃	CF ₃	H	2,3,4,5,6-F ₅ -benzoyl	Н	0	0
2-53 2-54	а а	F	OCH ₃	CH ₃	CF ₃	Н	2-Cl-benzoyl	H	0	0
2-54 2-55	a	F F	OCH ₃	CH ₃	CF ₃	H H	3-Cl-benzoyl 3-Cl-benzoyl	H 3-Cl-benzoyl	0	0
2-56	Ci Ci	F	OCH ₃	CH ₃	CF ₃	H	4-Cl-benzoyl	H	ö	ö
2-57	CI	F	OCH ₃	CH ₃	CF ₃	H	4-Cl-benzoyl	4-Cl-benzoyl	ŏ	ŏ
2-58	Cl	F	OCH ₃	CH ₃	CF ₃	H	2,4-Cl ₂ -benzoyl	H	0	0
2-59	Cl	F	OCH ₃	CH ₃	CF ₃	H	3,4-Cl ₂ -benzoyl	H	0	0
2-60 2-61	С1 С1	F F	OCH ³	CH ₃	CF,	H H	3-Br-benzoyl	3-Br-benzoyl	0	0
2-62	a	F	OCH ₃	CH ₃	CF ₃	H	4-Br-benzoyl 4-Br-benzoyl	H 4-Br-benzoyl	0	0
2-63	a	F	OCH ₃	CH ₃	CF ₃	н	4-OCH ₃ -benzoyl	H	ŏ	ŏ
2-64	Cl	F	OCH ₃	CH ₃	CF ₃	H	4 (OC ₂ H ₅)-benzoyl	H	0	0
2-65	Cl	F	OCH ₃	CH ₃	CF ₃	H	4-(OC ₂ H ₅)-benzoyl	4-(OC ₂ H ₅)-	0	0
2-66	cı	F	OCH,	СН3	CF ₃	н	4.5.5	benzoyl	_	_
2-67	a	F	OCH ₃	CH ₃	CF,	H	4-I-benzoyl 4-CN-benzoyl	H H	0	0
2-68	ã	F	OCH,	CH ₃	CF,	H	4-N(CH ₃) ₂ -benzoyl	H	ŏ	ŏ
2-69	Cl	F	OCH ₃	CH ₃	CF ₃	H	4-NO ₂ -benzoyl	4-NO ₂ -benzoyl	O	Ó
2-70	a	F	OCH ₃	CH ₃	CF ₃	H	3,5-(NO ₂) ₂ -benzoyl	Н	0	0
2-71	Cl	F	OCH ₃	CH ₃	CF ₃	H	4-OCF ₃ -benzoyl	4-OCF ₃ -	0	0
2-72	Cl	F	OCH ₃	CH ₃	CF ₃	н	4-OCF ₃ -benzoyl	benzoyl H	0	0
2-73	Ci.	F	OCH ₃	CH ₃	CF ₃	H	piperonyloyl	H	ŏ	ŏ
2-74	Cl	F	OCH ₃	CH ₃	CF ₃	H	1-naphthoyl	H	0	0
2-75	CI	F	OCH,	CH ₃	CF ₃	H	2-naphthoyl	H	0	0
2-76 2-77	Cl Cl	F F	OCH,	H NH ₂	CF₃	H H	2-naphthoyl	H H	0	0
2-77	a	F	OCH ₃	CH ₃	CF ₃	H	2-naphthoyl cinnamoyl	H H	ö	0
2-79	Ci	F	OCH,	CH ₃	CF,	H	2,4-F ₂ -cinnamoyl	H	ő	ŏ
2-80	a ·	F	OCH ₃	CH ₃	CF ₃	н	2-methylcinnamoyl	H	o	0
2-81	CI	F	OCH ₃	CH ₃	CF ₃	H	α-methylcinnamoyl	Н	0	0
2-82	a	F	OCH ₃	CH ₃	CF,	Н	2-chlorocinnamoyl	н	0	0
2-83	Cl	F	OCH ₃	CH ₃	CF ₃	H	2-chlorocinnamoyl	2-	0	0
2-84	CI	F	осн,	СН	CF ₃	н	4-chlorocinnamoyl	chlorocinnamoyl H	0	0
2-85	a	F	OCH ₃	CH ₃	CF ₃	н	4-methoxycinna-moyl	H	Ö	ö
	~-	-		~3	∼. 3			**		_

$$X$$
 W
 R_4
 R_5
 R_5
 R_9
 R_2

							-			
No.	x	Y	w	R ₁	R ₂	R ₃	R ₄	R ₅	R _e	R9
2-86	Cl	F	OCH ₃	CH ₃	CF ₃	н	3-phenylpropionyl	Н	0	0
2-87	Cl	F	OCH ₂ CN	CH ₃	CF ₃	н	3-phenylpropionyl	H	0	0
2-88	Cl	F	OCH ₃	CH ₃	CF ₃	H	4-phenylbutyryl	H	0	0
2-89	Cl	F	OCH ₃	CH ₃	CF ₃	Н	COCH ₂ OCH ₂ C ₆ H ₅	H	0	0
2-90	Cl Cl	F	OCH ₃	CH ₃	CF,	H	2-furoyl	н	0	0
2-91 2-92	CI CI	F F	OCH ₃	CH,	CF ₃	H H	3-CH ₃ -2-furoyl	H H	0	0
2-92	Cl	F	OCH ₃	CH ₃	CF ₃	н	furylacryloyl COCH ₂ -	H H	0	0
2 70	O.	•	00113	C113	Cr 3	**	(2-thiophene)	11	•	•
2-94	Cl	F	OH	CH ₃	CF,	н	3-CH ₃ -2-thiophenoyl	Н	0	0
2-95	Cl	F	OCH ₃	CH,	CF ₃	H	5-CH ₃ -2-thiophenoyl	Н	Ō	Ō
2-96	Cl	F	OCH ₃	CH ₃	CF ₃	Н	5-CH ₃ -2-thiophenoyl	5-CH ₃ -2-	0	О
								thiophenoyl		
2-97	Cl	F	OCH ₃	CH ₃	CF ₃	H	thiophene-2-carbonyl	thiophene-2	0	0
2-98	CI	F	0011	011	00	••		carbonyl	_	_
2-98 2-99	a	F	OCH ₃	CH ₃	CF ₃	H	3-pyridoyl 4-pyridoyl	H H	0	0
2-100	Ci	F	OCH,	CH ₃	CF ₃	н	2-Cl-5-pyridoyl	2-C1-5-	ö	ö
. 100	٠.	-	00113	City	C1 3	••	2-Ci-5-pyridoyi	pyridoyl	•	•
2-101	Cl	F	OH	CH ₃	CF ₃	н	3-NO ₂ -2-pyridoyl	н Н	0	О
2-102	C1	F	OH	CH ₃	CF ₃	H	2-pyrimidoyl	H	0	О
2-103	C1	F	OCH ₃	CH ₃	CF ₃	H	benzothiophene-2-	H	0	0
							carbonyl			
2-104	Cl	F	OCH ₃	CH ₃	CF ₃	H	2-quinoyl	H	0	0
2-105 2-106	Cl Br	F F	OCH ₃	CH ₃	CF ₃	H	2-quinoxaloyl	H	0	0
2-100	Cl	r F	OCH ₃	CH ₃	CF ₃ CHF ₂	H H	2,4-F ₂ -benzoyl	H H	0	0
2-107	Ci	F	OCH ₃	CH ₃	CF ₃	Ċì	2,4-F ₂ -benzoyl 2,4-F ₂ -benzoyl	H	ö	ö
2-109	Ci	F	OCH,	CH ₃	CF ₃	H	2,4-F ₂ -benzoyl	H	s	ŏ
2-110	Cl	F	OCH,	CH,	CF ₃	Н	2,4-F ₂ -benzoyl	H	ŏ	Š
2-111	CN	F	OCH ₃	CH ₃	CF ₃	H	2,4-F ₂ -benzoyl	H	0	0
2-112	Cl	H	OCH ₃	CH ₃	CF ₃	H	2,4-F ₂ -benzoyl	H	0	0
2-113	Cl	F	OCH ₃	CH ₃	CF,	H	3-(2-thienyl)acryloyl	H	O	0
2-114	Cl	F F	OH	CH ₃	CF,	Н	2-naphthoyl	H	0	0
2-115 2-116	Ci Ci	F	OCHF ₂ OCH ₃	CH ₃	CF ₃	H H	2-naphthoyl	H	0	0
2-117	CI	F	OCH ₃	CH ₃	CF ₃	H	COCH ₂ OCOCH ₃	COCH₂OCOCH₃ H	ö	ö
2-118	Ci.	F	OCH ₃	CH ₃	CF ₃	H	COCOOCH ₂ CH ₃	H	ŏ	ŏ
2-119	Cl	F	OCH ₃	CH ₃	CF ₃	H	COCH ₂ OC ₆ H ₅	H	ō	ŏ
2-120	Cl	F	OCH ₃	CH ₃	CF ₃	H	COCH ₂ OC ₆ H ₅	COCH2OC6H5	Ō	Ō
2-121	Cl	F	OCH ₃	CH ₃	CF ₃	H	COCOC ₆ H ₅	H	0	0
2-122	Cl	F	CH ₃	CH ₃	CF ₃	H	2-naphthoyl	H	0	0
2-123	Cl Cl	F F	CH ₃	CH,	CF ₃	H	cinnamoyl	H	0	0
2-124	Cı	г	OCH ₃	CH ₃	CF ₃	H	CO-2,6-	Н	0	0
2-125	Cl	F	OCH,	CH ₃	CF ₃	н	dimethylphenyl 2-F-cinnamoyl	н	0	0
2-126	Ci	F	OCH ₃	CH,	CF ₃	H	2-nitro-cinnamoyl	H	ŏ	ŏ
2-127	Cl	F	OCH ₃	CH,	CF ₃	н	2-methoxy-cinnamoyl	H	ō	ō
2-128	CI	F	OCH ₃	CH ₃	CF ₃	H	2-dichloro-cinnamoyl	H	0	0
2-129	Cl	F	OCH ₃	CH ₃	CF ₃	H	COCH ₂ CH ₂ -2-	Н	0	0
	-	_					methylphenyl		_	_
2-130	Cl	F	OCH ₃	CH ₃	CF ₃	H	COCH ₂ CH ₂ -2,5-	Н	0	0
2-131	Cl	н	н	CH ₃	CF,	н	dimethylphenyl 2-naphthoyl	н	o	0
2-131	CI	F	OCH ₃	CH ₃	CF ₃	н	COCH ₂ CH ₂ -2,5	H	ő	ŏ
	٠.	•	~~3	~113	~. 3	41	dimethylphenyl	**	~	•
2-133	CI	F	OCH ₃	CH ₃	CF ₃	H	COCH ₂ O-4-F-phenyl	н	O	0
2-134	CI	F	OCH ₃	CH ₃	CF ₃	н	3-chlorocinnamoyl	Н	O	O
2-135	Cl	F	OCH ₃	CH ₃	CF ₃	H	COCH ₂ O-4-Cl phenyl	Н	О	О
2-136	Cl	F	OCH ₃	CH ₃	CF ₃	Н	a-cyano-cinnamoyl	Н	О	0
2-137	Cl	H	Н	CH ₃	CF ₃	H	cinnamoyl	Н	0	0
2-138	CN	Н	н	CH ₃	CF ₃	H	0	0	0	0
2-139	H	H	н	CH ₃	CF ₃	н	2-naphthoyl	2-naphthoyl	0	0
2-140	CN	H	H	CH ₃	CF ₃	Н	2-naphthoyl	Н	0	0

$$R_4$$
 R_5 R_6 R_7 R_8 R_8 R_9 R_9

No.	x	Y	w	R ₁	R ₂	R ₃	R ₄	R ₅	R _e	R _o
2-141	CN	н	Н	CH ₃	CF ₃	н	cinnamoyl	Н	0	0
2-142	H	H	н	CH ₃	CF ₃	H	2-naphthoyl	H	0	О
2-143	OCH ₃	Н	H	CH ₃	CF ₃	Н	2-naphthoyl	H	0	0
2-144	CI	CI	OCH ₃	CH ₃	CF ₃	H	2-naphthoyl	H	0	0
2-145	CI	F	H	CH ₃	CF ₃	H	2-naphthoyl	H	0	0
2-146	OCH(CH ₃)	H	Н	CH ₃	CF ₃	H	2-naphthoyl	Н	0	0
	COOCH ₂ C									
2-147	H ₃ Cl	F	H	CH ₃	CF ₃	н	cycloopropyl	н	0	0
2-148	OCHF ₂	F	Ĥ	CH ₃	CF ₃	H	2-naphthoyl	Ĥ	ŏ	ŏ
2-149	CF ₃	H	H	CH ₃	CF ₃	H	2-naphthoyl	H	0	0
2-150	Cl	F	ОН	CH ₃	CF ₃	H	phenylacetyl	H	0	0
2-151	Cl	F	OCH ₃	CH_3	CF ₃	H	phenylacetyl	H	0	0
2-152	Cl	F	OCH ₃	CH ₃	CF ₃	H	3-methoxy-	H	0	0
0.153	~	-	0011	OT T	00		2-naphthoyl	**	_	_
2-153	Cl	F	OCH ₃	CH ₃	CF ₃	H	1-methoxy-	Н	О	0
2-154	CI	F	OCH ₃	CH ₃	CF ₃	Н	2-naphthoyl 2,4-chloro-	Н	0	0
2 25 1	.	-	00113	C113	O. 3	••	phenoxyacetyl	••	•	•
2-155	Cl	F	OCH ₃	CH ₃	CF ₃	н	3-methyl-2-naphthoyl	н	0	0
2-156	Cl	F	OCH ₃	CH ₃	CF ₃	Н	6-methyl-2-naphthoyl	Н	O	0
2-157	Cl	F	OCH ₃	CH ₃	CF ₃	H	3-methyl-2-naphthoyl	H	0	0
2-158	Cl	F	OCH ₃	CH_3	CF ₃	H	5-bromo-2-naphthoyl	H	0	0
2-159	CI	F	OCH ₃	CH ₃	CF ₃	Н	4-bromo-2-naphthoyl	H	0	0
2-160	Cl	F	OCH ₃	CH_3	CF ₃	H	4-bromo-2-naphthoyl	4-bromo-2-	0	О
0 161	Cl	F	OCIT	CII	OF.	н	e duran a markshaul	naphthoyl	0	0
2-161 2-162	Cl	F	OCH ₃	CH ₃	CF ₃	H	8-fluoro-2-naphthoyl 5-chloro-2-naphthoyl	H .	0	ö
2-162	CI	F	OCH ₃	CH ₃	CF ₃	н	5-cyano-2-naphtaoyl	H	ŏ	ŏ
2-164	Ci	F	OCH ₃	CH ₃	CF,	H	chloroacetyl	Ĥ	ŏ	ŏ
2-165	CI	F	OCH ₃	CH ₃	CF ₃	Н	benzylthioacetyl	н	0	О
2-166	Cl	F	OCH ₃	CH ₃	CF ₃	H	bromoacetyl	H	0	0
2-167	CI	F	OCH ₃	CH ₃	CF ₃	H	phenylthioacetyl	H	0	0
2-168	CI	F	OCH ₃	CH ₃	CF ₃	H	methylthio-acetyl	H	0	0
2-169	Cl	F	OCH,	CH ₃	CF,	H H	2-naphthylthioacetyl	H	0	0
2-170	Cl	F	OCH ₃	CH ₃	CF ₃	н	ethoxycarbonyl methylthioacetyl	Н	0	U
2-171	CI	F	OCH ₃	CH ₃	CF ₃	н	ethoxycarbonyl-ethyl-2	н	0	0
		-	3	3	3		thioacetyl		_	_
2-172	a	F	OCH ₃	CH_3	CF ₃	Н	ethylthioacetyl	Н	0	0
2-173	a	F	OCH ₃	CH_3	CF ₃	H	i-propylthioacetyl	Н	0	0
2-174	a	F	OCH ₃	CH ₃	CF ₃	Н	propylthioacetyl	H	0	0
2-175	Br	F	OCH ₃	CH ₃	CF ₃	H	2-cinnamoyl	H	0	0
2-176	Br	F	OCH ₃	CH ₃	CF ₃	H	2-cinnamoyl	2-cinnamoyl	0	0
2-177	Br	F	OCH ₃	CH ₃	CF,	H	2-cinnamoyl	H	0	0
2-178 2-179	Br CN	F F	OCH ₃	CH ₃	CF ₃	H H	2-cinnamoyl	2-cinnamoyl	0	0
	CN	F	OCH,	CH₃ CH₃	CF ₃	H	2-cinnamoyl	H H	Ö	Ö
2-180 2-181	CN	F	OCH ₃	CH,	CF ₃	н	2-naphthoyl 2-naphthoyl	H	ő	ŏ
2-181	Br	F	OCH ₃	CH ₃	CF ₃	н	4-vinylbenzoyl	H	ŏ	ŏ
2-183	Br	F	OCH ₃	CH ₃	CF ₃	н	4-vinylbenzoyl	4-vinylbenzoyl	ŏ	ŏ
2-184	Cl	F	OCH,	NH ₂	CF ₃	H	2-naphthoyl	H	ŏ	ŏ
2-185	a	F	OCH,	NH ₂	CF ₃	н	2-cinnamoyl	Н	Ō	ō
2-186	CI	F	OCH ₃	NH ₂	CF ₃	H	2-cinnamoyl	2-cinnamoyl	Ō	o
2-187	CI	F	осн,	NH ₂	CF ₃	н	benzyloxyacetyl	Н	0	0
2-188	CI	F	OCH₂ČN	NH ₂	CF ₃	Н	2-naphthoyl	Ħ	0	0
2-189	CI	F	OCH₂COOC	CH ₃	CF ₃	Н	2-naphthoyl	H	0	0
			H ₂ CH ₃	_	-					
2-190	Cl	F	OCH ₂ COOC	CH ₃	CF,	н	2-cinnamoyl	н	О	0
		_	H ₂ CH ₃						_	_
2-191	Cl	F	OCH(CH3)C	CH ₃	CF ₃	H	2-naphthoyl	Н	0	0
2-192	Cl	F	OOCH ₂ CH ₃ OH	NIEI	CF,	н	2-naphthoyl	н	0	0
2-192	CI	r	OH	NH ₂	Cr ₃	п	z-napamoyi	n	J	J

$$X$$
 W
 R_1
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5

No.	x	Y	w	R ₁	R ₂	R ₃	R ₄	R ₅	$R_{\mathbf{e}}$	R ₉
2-193	4-CF ₃ - pyridyloxy	Н	Н	CH ₃	CF ₃	Н	2-naphthoyl	Н	0	0
2-194	ä	F	OH	CH_3	CF ₃	H	2-naphthoyl	H	0	0
2-195	a	F	OCH ₂ C≡CH	CH ₃	CF ₃	н	2-naphthoyl	H	0	0
2-196	Cl	F	OCH ₂ CH ₃	CH ₃	CF ₃	н	2-naphthoyl	H	0	0
2-197	Cl	F	OCH(CH ₃) ₂	CH ₃	CF,	H	2-naphthoyl	H	0	0
2-198	Cl	F	OCH,	CH ₃	CF ₃	H	Hexanoyl	H	0	0
2-199	CI	F	3-NO ₂	CH ₃	CF,	H	2-naphthoyl	H	0	0
			pyridyloxy	-	-		. ,			
2-200	Cl	F	OCH ₂ CN	CH_3	CF ₃	H	2-naphthoyl	H	0	0
2-201	CH₃	Н	H	CH ₃	CF ₃	H	2-naphthoyl	H	0	0
2-202	CI	Н	OCH ₃	CH ₃	CF ₃	н	2-naphthoyl	н	0	О
2-203	OCF ₃	Н	Н	CH ₃	CF ₃	H	2-naphthoyl	H	0	0
2-204	Cl	H	H	CH ₃	CF ₃	H	c-C ₃ H ₅ -carbonyl	H	0	0
2-205	H ₂ NC(S)	Н	H	CH ₃	CF ₃	H	2-naphthoyl	н	0	О
2-206	Cl	F	OCH ₃	CH ₃	CF ₃	H	c-C ₃ H ₅ -carbonyl	H	О	О
2-207	COOCH ₃	Н	н	CH ₃	CF ₃	H	2-naphthoyl	н	0	0

TABLE III

$$\begin{array}{c|c} X & Y & R_8 \\ \hline R_4 & R_5 & R_9 & R_3 \end{array}$$

No	x	Y	R	R ₁	R ₂	R ₃	R ₄	R ₅	R _s	R _p
3-1	CI	F	СН3	CH,	CF ₃	Н	CONHCH ₄	CONHCH ₃	o	0
3-2	CI	F	CH ₃	CH ₃	CF ₃	н	CONHCH,CH,CH,	н	0	O
3-3	CI	F	CH ₃	CH ₃	CF,	H	CON[CH(CH ₃) ₂] ₂	н	0	0
3-4	Cl	F	CH ₃	CH ₃	CF ₃	н	CONHC ₆ H ₅	н	0	О
3-5	a	F	CH ₃	CH ₃	CF ₃	Н	CON(CH ₃)C ₆ H ₅	Н	0	0
3-6	Cl	F	CH ₃	CH ₃	CF ₃	н	CONHCH2C6H5	H	0	0
3-7	Cl	F	CH ₃	CH ₃	CF ₃	H	CONHCH(CH ₃)—C ₆ H ₅	H	0	0
3-8	Cl	F	CH ₃	CH ₃	CF ₃	Н	CON(CH ₃)CH ₂ C ₆ H ₅	H	0	0
3-9	CI	F	CH ₃	CH ₃	CF ₃	Н	CONHCH ₂ -(4-CH ₃)phenyl	H	О	0
3-10	Cl	F	CH ₃	CH ₃	CF ₃	Н	CONH CH ₂ -2,4-F ₂ -phenyl	Н	О	0
3-11	CI	F	CH ₃	CH ₃	CF ₃	Н	CONHCH2CH2C6H5	Н	0	0
3-12	CI	F	CH ₃	CH ₃	CF ₃	Н	CONHCH2CH2CH2C6H5	Н	0	0
3-13	Cl	F	CH ₃	CH_3	CF ₃	Н	CONH-2-naphthoyl	H	О	0
3-14	Cl	F	CH ₂ CN	CH ₃	CF ₃	H	CONHCH ₂ C ₆ H ₅	Н	0	0
3-15	Cl	F	сн,	Н	CF ₃	H	CONHCH ₂ C ₆ H ₅	H	0	0
3-16	Cl	F	CH ₃	NH_2	CF ₃	Н	CONHCH ₂ C ₆ H ₅	H	0	О
3-17	Cl	F	CH,	CH ₃	CHF ₂	Н	CONHCH ₂ C ₆ H ₅	Н	0	0
3-18	CI	F	CH ₃	CH ₃	CF ₃	Cl	CONHCH ₂ C ₆ H ₅	Н	О	О
3-19	CI	F	CH ₃	CH ₃	CF ₃	Н	CONHCH ₂ C ₆ H ₅	н	S	О
3-20	CI	F	CH ₃	CH ₃	CF ₃	Н	CONHCH ₂ C ₆ H ₅	H	О	S
3-21	CN	F	CH ₃	CH ₃	CF ₃	Н	CONHCH ₂ C ₆ H ₅	H	0	0
3-22	Cl	Н	CH ₃	CH ₃	CF ₃	H	CONHCH ₂ C ₆ H ₅	Н	0	0
3-23	Cl	F	CH ₃	CH ₃	CF ₃	Н	CON(C ₆ H ₅)CH ₂ C ₆ H ₅	H	0	0
3-24	CI	F	CH ₃	CH ₃	CF ₃	Н	CONHCH(C6H5)C6H5	H	0	О
3-26	Cl	F	СН,	CH,	CF ₃	H	CONH ₂	H	0	0

TABLE IV

$$X$$
 Y
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{2}

							•			
No.	х	Y	w	R ₁	R ₂	R ₃	R ₄	R ₅	Re	R,
4-1	Cl	F	OCH ₃	CH ₃	CF ₃	Н	COOCH ₃	H	0	О
4-2	CI	F	OCH₃	CH ₃	CF ₃	Н	COOCH ₃	COOCH3	О	О
4-3	CI	F	OCH,	CH ₃	CF ₃	Н	COO-phenyl	H	0	0
4-4	CI	F	OCH ₃	CH ₃	CF ₃	Н	COO-[2,4-(CH ₃) ₂]-phenyl	н	0	0
4-5	a	F	OCH ₃	CH ₃	CF ₃	H	COOCH ₂ -phenyl	H	0	0
4-6 4-7	CI CI	F	OCH ₃	CH ₃	CF,	H	COOCH ₂ -(2-F)-phenyl	H	0	0
4-7	CI	F	OCH ₃	CH ₃	CF,	H	COOCH (2 CF) phenyl	H H	ö	0
4-9	Cl	F	OCH ₃	CH ₃	CF ₃	н	COOCH ₂ -(2-CF ₃)-phenyl COOCH ₂ -(4-CF ₃)-phenyl	H	ŏ	ŏ
4-10	Ci	F	OCH,	CH ₃	CF ₃	н	COO-2-naphthyl	H	ŏ	ŏ
4-11	ä	F	OCH ₃	CH ₃	CF,	н	COO-cyclohexyl	H	ŏ	ŏ
4-12	CI	F	OCH ₃	CH ₃	CF ₃	Н	COOCH ₂ -cyclohexyl	н	ō	ō
4-13	Cl	F	OCH ₃	CH ₃	CF ₃	Н	C(O)-S-phenyl	н	ō	ō
4-14	Cl	F	OCH ₂ CN	CH ₃	CF ₃	H	COO-phenyl	н	0	0
4-15	Cl	F	OCH ₃	H	CF ₃	Н	COO-phenyl	H	0	О
4-16	Cl	F	OCH ₃	NH_2	CF ₃	Н	COO-phenyl	H	0	0
4-17	Cl	F	OCH ₃	CH_3	CHF ₂	H	COO-phenyl	Н	0	0
4-18	CI	F	OCH ₃	CH ₃	CF ₃	Cl	COO-phenyl	Н	0	0
4-19	Cl	F	OCH ₃	CH_3	CF ₃	Н	COO-phenyl	H	S	O
4-20	CI	F	OCH ₃	CH ₃	CF ₃	Н	COO-phenyl	н	0	S
4-21	CN	F	OCH ₃	CH ₃	CF ₃	Н	COO-phenyl	н	О	0
4-22	Cl	H	OCH ₃	CH ₃	CF ₃	H	COO-phenyl	Н	0	0
4-23	Cl	F	OCH ₂ CN	CH ₃	CF ₃	H	COOCH ₂ -phenyl	H	0	0
4-24	Cl	F	OCH ₃	CH ₃	CF ₃	H	COOCH ₂ -(2,6-di-Cl)-	н	О	0
4 26	CI	г	0011	CII	OF.		phenyl	**	_	_
4-25	Cl	F	OCH ₃	CH ₃	CF ₃	H	COO-[2,4,6-(CH ₃) ₃]-phenyl	H	0	0
4-26	Cl	F	OCH ₃	CH ₃	CF ₃	Н	COOCH ₂ -[3,4-(CH ₃) ₂ -	Н	0	0
4-27	CI	F	OCH ₃	CH	CE	н	phenyl	H	o	О
4-28	CI	F	OCH ₃	CH₃ CH₃	CF ₃	H	COOCH 2 pentitud	H	ö	ö
4-29	CI	F	OCH ₃	CH ₃	CF,	Н	COOCH (2.6 di F) phanul	н	ŏ	ö
4-30	Ci	F	OCH ₃	CH ₃	CF ₃	Н	COOCH ₂ -(2,6-di-F)-phenyl COOCH ₂ (3,4-di-F)-phenyl	H	ŏ	ő
4-31	Ci	F	OCH ₃	CH ₃	CF ₃	Н	COOCH ₂ -(4-ethyl)-phenyl	H	ŏ	ŏ
4-32	Ci	F	OCH ₃	CH ₃	CF ₃	Н	COOCH ₂ -(3,4-di-Cl)-	H	ŏ	ŏ
	٠.	•	00113	C113	O1 3	•••	phenyl	••	~	•
4-33	CI	F	OCH,	СН3	CF ₃	н	COOCH ₂ -(2-CF ₃)-phenyl	н	0	0
4-34	ä	F	OCH ₃	CH ₃	CF ₃	Н	COOCH ₂ -(2-NO ₂)-phenyl	H	ŏ	ŏ
4-35	a	F	OCH ₃	CH ₃	CF,	Н	COOCH, (2-OCH,)-phenyl	н	ō	ō
4-36	CI	F	OCH ₃	CH ₃	CF ₃	н	COOCH ₂ -2-pyridyl	Н	O	O
4-37	Cl	F	OCH ₃	CH ₃	CF ₃	н	COOCH ₂ -[3,5-(CH ₃) ₂]-	н	0	0
			-	-			phenyl			
4-38	CI	F	OCH ₃	CH ₃	CF ₃	Н	COOCH ₂ -[2,5-(CH ₃) ₂]-	H	0	0
							phenyl			
4-39	Cl	F	OCH ₃	CH ₃	CF ₃	Н	COOCH ₂ -(2,5-di-F)-phenyl	H	0	0
4-40	Cl	F	осн,	CH,	CF,	Н	COOCH ₂ -(4-OCH ₃)-phenyl	н	0	0
4-41	CI	F	OCH ₃	CH,	CF ₃	Н	$COOCH_2$ -(3,4-OCH ₂ O)	н	0	0
	٠.	_					phenyl		_	_
4-42	CI	F	OCH,	сн,	CF ₃	Н	COOCH ₂ -(4-i-C ₃ H ₇)-	н	0	0
4.42	CI.		OCIT	O11	OF.		phenyl	**	_	_
4-43 4-44	a	F	OCH ₃	CH ₃	CF ₃	Н	COOCH ₂ -(4-CF ₃)-phenyl	H	0	0
4-45	CI	F	OCH ₃	CH ₃	CF ₃	H	COOCH (4 OCE) phenyl	H H	0	ö
4-46	ci	F	OCH,	CH,	CF ₃	Н	COOCH (c.C.H.) phenyl	H	ŏ	ŏ
4-47	CI	F	OCH,	CH,	CF ₃	н	COOCH-(c-C ₃ H ₅)-phenyl COOCH(CH ₃)-phenyl	н	ŏ	ŏ
4-48	Ci.	F	OCH ₃	CH ₃	CF ₃	н	COOCH ₂ -(2,3,4,5,6-penta-	н	ŏ	ŏ
7.70	٠.	•	00113	C113	Ci 3	•••	F)-phenyl		Ŭ	Ŭ
4-49	CI	Н	н	СН,	CF ₃	н	COOCH ₂ -(2-F)-phenyl	н	0	О
4-50	CI	н	н	CH ₃	CF ₃	н	COO-phenyl	H	ŏ	ŏ
4-51	ä	F	CH ₃	CH ₃	CF ₃	н	COOCH ₂ -(2-F)-phenyl	H	ŏ	ŏ
4-52	CI	F	CH ₃	CH ₃	CF ₃	Н	COO-phenyl	н	Ō	Ō
4-53	CI	F	CH,	CH ₃	CF ₃	Н	COO-3,4-dimethylphenyl	H	0	0
4-54	CI	F	CH ₃	CH ₃	CF ₃	Н	COOCH ₂ -2-Cl-phenyl	Н	Ō	O
4-55	CI	F	CH,	CH ₃	CF,	Н	COO-2,6-dimethylpheny	н	Ō	Ō
4-56	Cl	F	CH,	CH ₃	CF,	н	COOCH ₂ -2-methylphenyl	Ħ	ō	ō
				3	3				_	

No.	X	Y	W	R ₁	R ₂	R ₃	R ₄	R ₅	R_{8}	Ro
4-57	CI	F	CH ₃	CH ₃	CF ₃	Н	COOCH ₂ CH ₂ -phenyl	н	O	<u> </u>
4-58	CI	F	CH ₃	CH ₃	CF ₃	н	COOCH ₂ -2-methoxyphenyl	H	О	0
4-59	Cl	F	CH ₃	CH_3	CF ₃	Н	COO-2,6-dimethoxyphenyl	H	О	0
4-60	CI	F	CH ₃	CH ₃	CF ₃	Н	COOCH ₂ 4-methylphenyl	H	0	0
4-61	Cl	F	CH ₃	CH ₃	CF,	Н	COOCH ₂ 4-Cl-phenyl	H	О	0
4-62	a	F	CH ₃	CH ₃	CF ₃	Н	COOCH ₂ -2,4- dichlorophenyl	H	0	0
4-63	Cl	F	CH ₃	CH ₃	CF ₃	Н	COOCH ₂ -3,4- dimethoxyphenyl	Н	0	0
4-64	a	F	CH ₃	CH ₃	CF ₃	Н	COOCH ₂ 4-nitrophenyl	Н	0	О
4-65	Cl	F	CH,	CH,	CF,	H	COOCH ₂ -3-methoxyphenyl	H	0	О
4-66	a	F	CH ₃	CH ₃	CF ₃	Н	COSCH ₂ -phenyl	H	0	О
4-67	а	F	CH ₃	CH ₃	CF ₃	Н	COOCH ₂ -3-nitrophenyl	H	0	0
4-68	Cl	F	CH ₃	CH ₃	CF ₃	Н	COOCH ₂ -3-methylphenyl	H	0	0
4-69	Cl	F	CH ₃	CH ₃	CF ₃	H	COOCH ₂ -2,4,6- trimethylphenyl	H	0	0
4-70	Cl	F	СН,	CH ₃	CF ₃	H	COOCH ₂ -2-furanyl	н	0	0

30

				TABLE	v						TA	BLE '	VI		
No.	x	F Y	X R	R ₅	N R ₁		35				X W R ₄	Y R ₅		-R ₁	
5-1	CI	F	СН3	R ₁	R ₄	R ₅		No.	x	Y	·w	R,	R ₂	R ₄	R ₅
5-2	a	F	H	H	0	0									
5-3 5-4	a	F	CH ₃ H	(CH ₂) ₃ F (CH ₂) ₃ F	H O	н		6-1	a	F	OH	CHF ₂	CH ₃	0	0
5-5	ä	F	н	(CH ₂) ₃ F	н	O H	45	6-2 6-3	CI CI	F	OCH,	CHF ₂	CH ₃	H	Н
5-6	a	â	CH,	H	Ö	Ö		6-4	ci	F	OCH ₃	CHF ₂	CH ₃	н СОСН,	H
5-7	a	ä	CH ₃	(CH ₂) ₃ F	ŏ	ŏ		6-5	a	F	OCH ₃	CHF ₂	CH ₃		H H
5-8	CI	CI	Н	(CH ₂) ₃ F	ŏ	ŏ		6-6	a	á	OCH ₃	CHF ₂	CH ₃	benzoyl CH ₃	CH,
5-9	CI	CI	H	(CH ₂) ₃ F	H	н		6-7	Ci.	CI	OCH ₃	CHF ₂	CH ₃	COOCH,	Н
5-10	Cl	F	CH ₃	(CH ₂) ₃ F	COCH	H		6-8	ã	F.	OCH,	CH ₃	CH ₃	benzovi	н
5-11	Cl	F	CH ₃	(CH ₂) ₃ F	benzoyl	H	50	6-9	a	F	OCH ₃	CHF ₂	CH ₂ CH ₃	benzoyl	н
5-12	Cl	F	CH ₃	(CH ₂) ₃ F	CH ₃	CH,		6-10	CI	Ċ	OCH,	CHF,	CH,	CONHCH,	H
5-13	Cl	F	CH ₃	(CH ₂) ₃ F	COOCH ₃	н		6-11	CN	F	OCH,	CHF,	CH,	benzoyl	H
5-14	Cl	F	CH ₃	(CH ₂) ₃ F	CONHCH ₃	H		6-12	Cl	н	OCH,	CHF,	CH ₃	benzoyl	H
5-15	Cl	Ci	CH ₂ C≡CH	(CH ₂) ₃ F	H	H		6-13	Cl	Ci	н	CHF ₂	CH ₃	2,4-difluoro-	н
5-16	CI	CI	$CH(CH_3)_2$	(CH ₂) ₃ F	H	H						_	=	benzoyl	
5-17	Cl	F	CH ₂ C≡CH	(CH ₂) ₃ F	H	H	55	6-14	Cl	F	OCH ₃	CHF ₂	CH ₃	2,4-difluoro-	Н
5-18	Cl	F	CH(CH ₃) ₂	(CH ₂) ₃ F	. н	н								benzoyl	
5-19	CN	F	СН,	(CH ₂) ₃ F	benzoyl	н		6-15	Cl	F	OCH ₃	CHF ₂	CH ₃	2-naphthoyl	H
5-20 5-21	a	H F	CH ₃	(CH ₂) ₃ F	benzoyl	H		6-16	Cl	CI	H	CHF ₂	CH ₃	2-naphthoyl	Н
5-21	CI	F	CH ₃	(CH ₂) ₃ F	2,4-F ₂ -benzoyl	н		6-17	CI	CI	OCH ₃	CHF ₂	CH ₃	2-naphthoyl	H
5-23	a	F	CH ₃	(CH ₂) ₃ F (CH ₂) ₃ F	4-C ₂ H ₅ -benzoyl 3-phenyl-	н	60	6-18 6-19	CI	CI	HNC(O)C ₂ H ₅	CHF ₂	CH ₃	0	0
3-23	CI	r	CH3	(Cn ₂) ₃ r		n	00	6-20	a	CI CI	HNC(O)C ₂ H ₅	CHF ₂	CH ₃	H	H
5-24	CI	F	CH ₂ CN	(CH ₂) ₃ F	propionyl 2,4-F ₂ -benzoyl	н		6-20	a	F	NH ₂	CHF ₂	CH ₃	H	H
5-25	CI	F	CH ₂ CN	(CH ₂) ₃ F	2-naphthoyl	H		6-22	CI	F	H	CHF ₂	CH ₃	0	0
5-26	CI	F	CH ₃	(CH ₂) ₃ F	2-naphthoyl	H		6-22	CI	F	н	CHF ₂	CH,	H	H
5-27	a	F	CH ₃	(CH ₂) ₃ F	2-naphthoyl	2-naphthoyl		0-23	CI	r.	Н	CHF ₂	CH ₃	2,4-F ₂ -	H
5-28	a	F	CH ₃	(CH ₂) ₃ F	benzyloxyacetyl	2-naphthoyi H	65	6-24	CI		**	CUE	CU	benzoyl	
J-26	<u> </u>	•		(C112/3F	Ochizyioxyacetyi	n	03	0-24	u	F	н	CHF ₂	CH ₃	2-naphthoyl	Н

TABLE VII

E VII TABLE VIII-continued

TABLE IX

TABLE VIII

	No	Х	Y	w	K ₄	R ₅	К _в	K _p
	9-1	CI	F	ОН	O	0	0	0
	9-2	CI	F	OH	H	H	О	0
	9-3	Cl	F	OCH ₃	0	0	0	0
	9-4	Cl	F	OCH ₃	H	0	0	0
	9-5	Cl	F	OCH ₃	COCH ₃	H	0	0
	9-6	Cì	F	OCH ₃	benzoyl	H	0	0
	9-7	Cl	F	OCH ₃	CH ₃	CH,	0	0
	9-8	Cl	F	OCH ₃	COOCH ₃	H	0	0
	9-9	Cl	F	OCH ₃	CONHCH ₃	H	0	0
	9-10	CN	F	OCH ₃	benzoyl	H	0	0
'	9-11	Cl	H	OCH ₃	benzoyl	H	О	О
	9-12	Cl	H	Н	О	0	0	S
	9-13	Cl	H	Н	H	H	0	S
	9-14	Cl	н	H	2-naphthoyl	H	0	S
	9-15	CI	F	OCH ₃	2-naphthoyl	H	0	0
	9-16	CI	F	OCH ₃	2,4-F ₂ -benzoyl	H	0	0
	9-17	a	H	H	0	0	0	О
	9-18	Cl	H	H	H	H	0	0
	9-19	Cl	H	Н	2-naphthoyl	н	0	0

No.	x	Y	w	R ₄	R ₅
8-1	Cl	F	ОН	0	
8-2	Cl	F	OH	H	H
8-3	Cl	F	OCH ₂ C≡CH	H	H
8-4	a	F	OCH(CH ₃) ₂	H	н
8-5	CI	F	O-c-pentyl	H	н
8-6	a	F	OCH,	Ο	0
8-7	Cl	F	OCH ₃	H	н
8-8	Cl	F	OCH ₃	2,4-F ₂ -benzoyl	H
8-9	Cl	F	OCH ₃	2-naphthoyl	н
8-10	Cl	F	OCH₃	4-C ₂ H ₅ -benzoyl	H
8-11	Cl	F	OCH ₃	3-phenyl-propionyl	H
8-12	CN	F	OCH,	2,4-F ₂ -benzoyl	H
8-13	Cl	F	OCH ₂ C≡CH	2,4-F ₂ -benzoyl	H
8-14	CI	F	OCH ₂ C≡CH	2-naphthoyl	H
8-15	Cl	F	OCH ₂ C≡CH	4-C ₂ H ₅ -benzoyl	H
8-16	Cl	F	OCH ₂ C≡CH	3-phenyl-propionyl	H
8-17	CN	F	OCH ₂ C≡CH	2,4-F ₂ -benzoyl	H
8-18	Cl	F	OCH(CH ₃) ₂	2,4-F ₂ -benzoyl	H
8-19	CI	F	OCH(CH ₃) ₂	2-naphthoyl	H
8-20	Cl	F	OCH(CH ₃) ₂	4-C ₂ H ₅ -benzoyl	H
8-21	Cl	F	OCH(CH ₃) ₂	3-phenyl-propionyl	Н
8-22	CN	F	CCH(CH ₃) ₂	2,4-F ₂ -benzoyl	H
8-23	Cl	F	OCH ₃	COCH ₃	H
8-24	CI	F	OCH ₃	benzoyl	H
8-25	a	F	OCH ₃	CH ₃	CH ₃
8-26	Cl	F	OCH ₃	COOCH,	Н
8-27	Cl	F	OCH ₃	CONHCH ₃	H
8-28	CN	F	0CH₃	benzoyl	н
8-29	Cl	H	OCH ₃	benzoyl	Н
8-30	CI	F	OCH ₃	4-vinyl-benzoyl	Н
8-31	a	F	OCH3	cinnamoyl	H
8-32	Cl	NO ₂	н	0	0

			TABLE X		
	R C	R ₄	N Rs s		
No.	x	Y	R	R ₅	R4
10-1 10-2 10-3	CI CI	F F F	н н	О Н О	О Н О

25

TABLE X-continued

X Y	
R ₄ N R ₅ N	

	No.	x	Y	R	R ₅	R_4
Ī	10-4	CI	F	СН3	Н	н
	10-5	Ci	F	CH ₃	COCH ₃	Н
	10-6	Cl	F	CH ₃	benzoyl	Н
	10-7	Cl	F	CH ₃	CH ₃	CH ₃
	10-8	Cl	F	CH ₃	COOCH ₃	H
	10-9	Cl	F	CH ₃	CONHCH ₃	H
	10-10	CN	F	CH ₃	benzoyl	н
	10-11	Cl	H	CH ₃	benzoyl	H

TABLE XI

No.	x	Y	w	R ₁	R ₂	. z
11-1	а	F	OCH ₃	Н	CF ₃	NO ₂
11-2	а	F	ОН	H	CF ₃	NO ₂
11-3	a	F	OH	H	CF ₃	NH ₂
11-4	a	F	OCH ₃	H	CF ₃	NH ₂
11-5	CI	F	OCH ₃	H	CF ₃	NHCH ₃
11-6	CI	F	OCH,	H	CF ₃	NH-2-naphthoyl
11-7	CI	F	OCH,	н	CF ₃	CI
11-8	Cl	F	OCH ₃	H	CF ₃	CH2CHClCOOCH2CH3
11-9	CI	F	ОН	CH_3	CF ₃	NO ₂
11-10	CI	F	ОН	CH ₃	CF ₃	NH ₂
11-11	Cl	F	OCH ₃	CH ₃	CF ₃	NH ₃
11-12	Cl	F	OCH ₃	CH ₃	CF ₃	NHCH ₃
11-13	Cl	F	OCH ₃	CH ₃	CF ₃	NH-2-naphthoyl
11-14	CI	F	OCH ₃	CH ₃	CF ₃	NO ₂
11-15	а	F	OCH ₃	CH ₃	CF ₃	NHCOCH ₃
11-16	CI	F	OCH ₃	CH ₃	CF ₃	NH-benzoyl
11-17	CI	F	OCH ₃	CH_3	CF ₃	$N-(CH_3)_2$
11-18	CI	F	OCH ₃	CH ₃	CF ₃	NHCOO-phenyl
11-19	Cl	F	OCH ₃	CH,	CF ₃	NHCONHCH ₃
11-20	CN	F	OCH ₃	CH ₃	CF ₃	2-naphthoyl-NH
11-21	CI	F	OCH ₃	CH ₃	CH ₃	2-naphthoyl-NH
11-22	CI	Н	OCH ₃	CH,	CF ₃	2-naphthoyl-NH

TABLE XI-continued

TABLE XII

	No.	х	Y	W	R ₄	R ₅	R ₈	R9
30	12-1	Cl	F	ОН	0	0	s	0
	12-2	Cl	F	OH	H	Н	S	0
	12-3	CI	F	OH	H	H	S	0
	12-4	CI	F	OCH ₃	H	H	S	0
	12-5	CI	F	OCH ₃	2-naphthoyl	H	S	0
	12-6	Cl	Н	H	O	0	0	Ο.
35	12-7	Cl	Н	H	H	H	0	0
33	12-8	Cl	H	H	2-naphthoyl	H	0	О
	12-9	Cl	F	OCH ₃	COCH ₃	H	S	0
	12-10	CI	F	OCH ₃	benzoyl	H	S	0
	12-11	Cl	F	OCH ₃	CH ₃	CH ₃	S	0
	12-12	Cl	F	OCH ₃	COO-phenyl	H	S	0
	12-13	Cl	F	OCH ₃	CONHCH,	H	S	0
40	12-14	CN	F	OCH ₃	2-naphthoyl	H	S	0
	12-15	Cl	H	OCH ₃	2-naphthoyl	H	S	0

TABLE XIII

TABLE XIV

						Z				
No.	х	Y	w	Q	R ₁	R ₂	R ₃	Z	R _B	R9
14-1	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	Н	CH2CH2CO2CH2CH3	O	0
14-2	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	Н	CHC=CHO2CH2CH3	О	0
14-3	Cl	F	OCH ₃	Q1	CH_3	CF ₃	Н	CH ₂ CHClCO ₂ CH ₃	0	0
14-4	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	Н	CH ₂ CHClCO ₂ C ₂ H ₅ (isomer-1)	0	0
14-5	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	H	CH ₂ CHClCO ₂ C ₂ H ₅ (isomer-2)	О	0
14-6	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	H	CH ₂ CHClCO ₂ -n-C ₃ H ₇	О	o
14-7	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	Н	(isomer-1) CH ₂ CHClCO ₂ -n-C ₃ H ₇	O	O
14-8	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	н	(isomer-2) CH ₂ CHClCO ₂ -n-C ₄ H ₉ (isomer-l)	O	О
14-9	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	н	CH ₂ CHClCO ₂ -n-C ₄ H ₉	0	0
14-10	Ci	F	OCH ₃	Q1	CH ₃	CF3	н	(isomer-2) CH ₂ CHCICO ₂ -n-C ₅ H ₁₁	o	o
14-11	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	н	(isomer-1) CH ₂ CHClCO ₂ -n-C ₅ H ₁₁	o	О
14-12	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	н	(isomer-2) CH ₂ CHClCO ₂ -n-C ₆ H ₁₃	О	О
14-13	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	н	(isomer-1) CH ₂ CHClCO-n-C ₆ H ₁₃	О	o
14-14	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	Н	(isomer-2) CH ₂ CHClCO ₂ -i-C ₄ H ₉	0	o
14-15	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	н	(isomer-1) CH ₂ CHClCO ₂ -i-C ₄ H ₉	0	o
14-16	Cl	F	осн,	Q1	CH ₃	CF ₃	н	(isomer-2) CH ₂ CHClCO ₂ -i-C ₅ H ₁₁	О	o
14-17	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	н	(isomer-1) CH ₂ CHClCO ₂ -i-C ₃ H ₁₁	О	О
14-18	Cl	F	OCH	Q1	CH ₃	CF ₃	н	(isomer-2) CH ₂ CHClCO ₂ -t-C ₄ H ₉	0	0
14-19	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	Н	$CH_2CHClCO_2$ — CH_2C = CH	ŏ	ŏ
14-20	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	н	(isomer-1) CH ₂ CHClCO ₂ —CH ₂ C≡CH	0	o
14.01	Cl	F	0011	Q1	CH ₃	CF ₃	н	(isomer-2)	o	o
14-21 14-22	CI	F	OCH ₃	Q1	CH ₃	CF ₃	Н	CH ₂ CHClCO ₂ CH ₂ CF ₃ CH ₂ CHClCO ₂ —CH ₂ CF ₂ CHF ₂	ŏ	ŏ
14-23	CI	F	OCH ₃	Q1	CH ₃	CF ₃	H	CH ₂ CHClCO ₂ CH ₂ CF ₂ CF ₂ CF ₃	ŏ	ŏ
14-25	CI		OCH	Q1	CII3	C13	•••	(isomer-1)	•	•
14-24	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	H	CH ₂ CHClCO ₂ CH ₂ CF ₂ CF ₂ CF ₃ (isomer-2)	0	0
14-25	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	н	CH ₂ CHClCO ₂ CH ₂ CH ₂ OCH ₃	O	0
14-26	Cl	F	OCH,	Q1	CH ₃	CF ₃	H	CH2CHClCO2CH2CH2OC2H3	ō	ō
14-27	CI	F	OCH ₃	Q1	CH ₃	CF,	Н	CH2CHClCO2CH2CH2OPh	ŏ	ō
14-28	Cl	F	OCH,	Q1	CH ₃	CF ₃	н	(isomer-1) CH ₂ CHClCO ₂ CH ₂ CH ₂ OPh	0	0
14-29	CI	F	OCH ₃		-	_	н	(isomer-2)	0	0
14-30	Cl	F	OCH ₃	Q1 Q1	CH ₃	CF ₃	н	CH ₂ CHClCO ₂ —CH ₂ CH ₃ CN CH ₂ CHClCO ₂ CH ₂ CH ₂ BrCH ₂ B	ő	ő
					_	_		r (isomer-1)		
14-31	Cl	F	OCH,	Q1	CH ₃	CF ₃	H	CH ₂ CHClCO ₂ CH ₂ CH ₂ BrCH ₂ B r (isomer-2)	0	0
14-32	Cl	F	OCH3	Q1	CH ₃	CF ₃	H	CH ₂ CHBrCO ₂ C ₂ H ₅ (isomer 1)	0	0
14-33	CI	F	OCH,	Q1	CH ₃	CF ₃	H	CH ₂ CHBrCO ₂ C ₂ H ₅ (isomer 2)	0	0
14-34	Cl	F	CCH,	Q1	CH ₃	CF,	H	CH ₂ C(CH ₃)ClCO ₂ C ₂ H ₅	0	0
14-35	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	Н	CH ₂ C(CH ₃)ClCO ₂ -n-C ₃ H ₇	0	0
14-36	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	H	CH ₂ C(CH ₃)ClCO ₂ -n-C ₄ H ₉	0	0
14-37	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	Н	CH ₂ C(CH ₃)ClCO ₂ -n-C ₅ H ₁₁	0	0
14-38	Cl	F	OCH ₃	Q1	CH ₃	CF,	H	$CH_2C(CH_3)ClCO_2-n-C_6H_{13}$	0	0
14-39	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	H	CH ₂ C(CH ₃)ClCO ₂ -i-C ₃ H ₇	0	0
14-40	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	H	CH ₂ C(CH ₃)ClCO ₂ -i-C ₄ H ₉	О	0
14-41	CI	F	OCH3	Q1	CH ₃	CF ₃	Н	CH ₂ C(CH ₃)ClCO ₂ -CH ₂ Ph	О	О
14-42	Cl	F	OCH,	Q1		CF ₃	H	CH ₂ C(CH ₃)ClCO ₂ —CH=CH ₂	0	0
14-43	CI	F	OCH ₃	Q1	CH ₃	CF ₃	Н	CH ₂ C(CH ₃)ClCO ₂ —	О	0
		-	3		3			CH ₂ CH=CH ₂	_	-
14-44	Cl	F	OCH ₃	Q1	CH ₃	CF ₃	Н	CH ₂ C(CH ₃)ĈICO ₂ —CĤ ₂ C≡CH	О	О

TABLE XV

CF₃ CI

CF₃

NH-2-naphthoyl

CH2CHCICOOCH2CH3

Q9 H

Q9 H

F

F

OCH₃

OCH₃

Cl

Cl

14-76

14-77

$$X \longrightarrow Y \\ W \longrightarrow R_4 \longrightarrow R_5 \\ R_5 \longrightarrow R_2 \longrightarrow R_2$$

No.	x	Y	w	R ₁	R ₂	R ₄	R _s	Re	Ro
15-1	CI	F	осн,	СН,	CF ₃	NH ₂	н	0	0
15-2	Cl	F	OCH,	CH ₃	CF,	c-C3H5-carbonyl-NH-	H	0	0
15-3	Cl	F	OCH ₃	CH ₃	CF,	benzoyl-NH-	H	0	0
15-4	Cl	F	OCH,	CH ₃	CF ₃	2,4-F ₂ -benzoyl-NH-	Н	О	0
15-5	CI	F	OCH ₃	CH ₃	CF ₃	2-naphthoyl-NH	Н	О	0
15-6	CI	F	OCH ₃	CH ₃	CF ₃	ethoxycarbonyl-NH-	Н	0	0
15-7	Cl	F	OCH ₃	CH ₃	CF ₃	phenoxycarbonyl-NH-	н	О	0
15-8	Cl	F	OCH ₃	CH ₃	CF ₃	2,4-F ₂ —PhNHC(O)—NH—	H	0	0
15-9	CI	F	OCH ₃	CH ₃	CF ₃	H ₅ C ₂ OC(O)N(CH ₃)C(O)—NH—	Н	0	0
15-10	Cl	F	OCH,	CH,	CF ₃	H ₂ C=CHCH=N-	Н	0	0
15-11	Cl	F	OCH,	CH ₃	CF ₃	c-C ₃ H ₅ —CH=N—	Н	0	o
15-12	C1	F	OCH,	CH ₃	CF ₃	$H_3CC(CH_3)=N$	Н	0	Ó
15-13	a	F	OCH ₃	CH ₃	CF,	H ₃ COCH ₂ C(CH ₃)=N	H	O	Ö

40

45

50

55

TABLE XV-continued

TABLE XVI

X Y R_8 R_1 R_2 R_3 R_4 R_5 R_6

No.	x	Y	w	R,	R ₂	R ₄	R _B	R ₉
16-1	cı	Cl	н	СН3	CF ₃	Н	0	0
16-2	a	C1	H	CH ₃	CF ₃	CH ₃	0	0
16-3	CI	Cl	H	CH ₃	CF ₃	2,4-F2-benzyl	0	o ·
16-4	Cl	Cl	H	CH ₃	CF ₃	2,4-F ₂ -benzoyl	O	0
16-5	Cl	Cl	H	CH ₃	CF ₃	2-naphthoyl	O	0
16-6	CI	F	OCH ₃	CH ₃	CF ₃	н	O	0
16-7	Cl	F	OCH ₃	CH ₃	CF ₃	2-naphthoyl	О	0
16-8	Cl	F	OCH ₃	СН,	CF ₃	CH ₂ -2-naphthyl	0	0
16-9	CI	F	OCH ₃	CH ₃	CF ₃	2-naphthoyl	o	S
16-10	CI	F	ОСН3	CH ₃	CF ₃	2-naphthoyl	S	0
16-11	CN	F	OCH ₃	CH ₃	CF ₃	2-naphthoyl	0	0
16-12	CI	Н	OCH ₃	CH ₃	CF ₃	2-naphthoyl	0	0
16-13	Cl	F	0CH ₃	CH ₃	CF ₃	CONH-phenyi	0	0
16-14	Cl	F	осн,	СН,	CF ₃	CONHCH ₃	0	0

TABLE XVII

$$X$$
 W
 R_1
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5

140	_^_	1	•	. Т	Λ2	κ4	ΛB	و۸
17-1	a	F	OCH ₃	CH ₃	CF ₃	methyl	0	0
17-2	CI	F	OCH ₃	CH ₃	CF ₃	isopropyl	0	0
17-3	Cl	F	OCH ₃	CH ₃	CF ₃	benzyl	0	0
17-4	CI	F	OCH ₃	CH ₃	CF ₃	2-naphthyl	0	0
17-5	Cl	F	OCH ₃	CH ₃	CF ₃	2-hydroxyethyl	0	0
17-6	CI	F	OCH ₃	CH ₃	CF ₃	benzyl	0	S
17-7	CI	F	OCH ₃	CH ₃	CF,	benzyl	S	0
17-8	CN	F	OCH ₃	CH ₃	CF,	benzyl	О	0
17-9	Cl	H	OCH ₃	CH,	CF ₃	benzyl	О	0
17-10	CI	F	OCH ₂ CH ₃	CH ₃	CF ₃	benzyl	0	0

TABLE XVIII

¹H N	IMR	data	
------	-----	------	--

	No.	NMR(CDCl ₃ , 300MHz) ppm
60	1-1	(CDCl ₃ +CD ₃ OD)4.04(3H, s), 6.19(1H, s), 7.57(1H, d, J=8.6Hz)
	1-2	(DMSO-d ₆), 3.30(2H, br s), 6.54(1H, s), 8.12(1H, d, J=9.2Hz)
	1-3	(CDCl ₃ +CD ₃ OD)3.85(3H, s), 6.2(1H, s), 6.58(1H, d, J=9.4Hz)
	1-4	3.57(3H, br q, J=1.2Hz), 3.86(3H, s), 4.04(2H, br s), 6.37(1H, s), 6.66(1H, d, J=9.4Hz)
65	1-5	3.55(3H, br q, J=1.1Hz), 4.04(3H, s), 6.33(1H, s), 7.51(1H, d, J=8.6Hz)

	¹ H NMR data			¹H NMR data
lo.	NMR(CDCl ₃ , 300MHz) ppm	5	No.	NMR(CDCl ₃ , 300MHz) ppm
-6	3.57(3H, q, J=1.1Hz), 6.38(1H, s), 7.85(1H, d, J=8.0Hz),		1-52	3.57(3H, d, J=1.2Hz), 6.40(1H, s), 7.57(1H, d, J=8.2Hz), 8.04(1H, s)
7	10.57(1H, br) 3.52(3H, q, 1=0.7Hz), 3.82(3H, s), 4.13(2H, br), 6.32(1H, s),		1-53	dd, J=8.2, 1.6Hz), 8.53(1H, m) 1.27(1.5H, t, J=7.1Hz), 1.28(1.5H, t, J=7.1Hz), 1.44(1.5H, d,
8	6.79(1H, d, J=9.1Hz) 3.48(3H, s), 4.90(3H, br), 6.30(1H, s), 6.69(1H, d, J=9.0Hz)	10		J=6.9Hz), 1.45(1.5H, d, J=6.9Hz), 3.58(3H, s), 4.08(1H, m), 4.20(2H, q, J=7.1Hz), 4.39(0.5H, d, J=7.2Hz), 4.43(0.5H, d,
9	(Acetone-d ₆)3.68(3H, br q, J=1.4Hz), 4.05(3H, s), 8.03(1H, d, J=9.1Hz)		1-54	J=7.2Hz), 6.26(1H, m), 6.39(2H, m), 6.50(1H, t, J=73.3Hz) 1.27(1.5H, t, J=7.1Hz), 1.28(1.5H, t, J=7.1Hz), 1.44(1.5H, d,
10	3.52(3H, br s), 3.86(3H, s), 4.05(2H, br s), 4.63(2H, br s), 6.66(1H, d, J=9.7Hz)			J=6.9Hz), 1.46(1.5H, d, J=6.9Hz), 3.57(3H, m), 4.11(1H, m), 4.22(2H, m), 4.35(0.5H, d, J=7.4Hz), 4.43(0.5H, d, J=7.1Hz),
11				6.36(0.5H, s), 6.38(0.5H, s), 6.49(1H, m), 6.62(1H, dd, J=9.1, 2.0Hz)
12	4.05(3H, s), 4.61(2H, s), 6.24(1H, s), 7.52(1H, d, J=8.6Hz)	15	1-55	1.22(1.5H, t, J=7.1Hz), 1.23(1.5H, t, J=7.1Hz), 1.36(1.5H, d,
13	d, J=9.5Hz)			J=6.9Hz), 1.38(1.5H, d, J=6.9Hz), 3.55(3H, m), 3.82(1.5H, s), 3.86(1.5H, s), 4.0-4.4(4H, m), 6.36(1H, s), 6.76(0.5H, d,
14 15	1.43(3H, m), 4.06(3H, s), 4.31(2H, m), 6.32(1H, s), 7.56(1H, m) 1.15(3H, m), 3.85(3H, s), 3.35(2H, m), 6.48(1H, s), 6.55(1H, m)		1-56	J=9.1Hz), 6.79(0.5H, d, J=9.1Hz) 4.73(2H, br s), 5.50(3H, br), 6.16(1H, s), 6.53(1H, d, J=9.3Hz)
16	(CDCl ₃ +CD ₃ OD)3.55(3H, br q, J=1.1Hz), 6.36(1H, s), 6.61(1H, d, J=92)	20	1-57	4.42(2H, br s), 4.70(2H, br s), 4.72(2H, s), 6.16(1H, s), 6.60(1H d, J=9.1Hz)
17			1-58	3.77(3H, s), 4.64(2H, br s), 4.87(2H, s), 5.28(2H,
18	3.51(3H, br q, J=0.9Hz), 4.94(2H, s), 5.66(2H, br s),		1-59	
19				J=7.1Hz), 4.64(2H, s), 4.82(2H, br s), 6.35(1H, s), 6.60(1H, d, J=9.2Hz)
20	4.7(2H, d, J=2.4Hz), 6.35(1H, s), 6.65(1H, d, J=9.3Hz) 3.57(3H, d, J=0.8Hz), 3.78(3H, s), 4.02(2H, br s), 4.65(2H, dd,	25	1-60	1.27(3H, t, J=7.1Hz), 1.659(1.5H, d, J=7.0Hz), 1.666(1.5H, d, J=7.0Hz), 3.55(3H, s), 4.20(2H, q, J=7.1Hz), 4.73(1H, m),
	J=4.4, 1.9Hz), 6.28(1H, dt, J=15.7, 1.9Hz), 6.65(1H, d, J=9.3Hz), 7.01(1H, dt, J=15.7, 4.4Hz)		1-61	6.346(0.5H, s), 6.355(0.5H, s), 6.61(1H, d, J=9.3Hz)
21	1.63-1.94(8H, m), 3.55(3H, s), 3.97(2H, s), 4.8(1H, m),			J=7.0Hz), 4.10(2H, br s), 6.32(1H, s), 6.62(1H, d, J=9.5Hz)
22	· · · · · · · · · · · · · · · · · · ·	30	1-02	1.16(3H, t, J=7.1Hz), 1.42(3H, t, J=7.1Hz), 2.99(2H, q, J=7.1Hz), 3.57(3H, q, J=1.1Hz), 4.03(2H, q, J=7.1Hz), 4.14(1H, br s),
23	, , , , , , , , , , , , , , , , , , , ,		1-63	6.35(1H, s), 6.63(1H, d, J=9.4Hz) 1.35(6H, d, J=6.2Hz), 3.55(3H, q, J=1.2Hz), 3.95(2H, br s),
30	J=9.2Hz), 7.22(1H, m), 8.36(2H, m) 3.52(3H, br q, J=1.1Hz), 3.75(3H, s), 6.31(1H, s), 7.22(1H, d,		1-64	4.50(1H, q, J=6.2Hz), 6.34(1H, s), 6.66(1H, d, J=9.4Hz) 1.06(3H, t, J=6.3Hz), 1.37(6H, d, J=6.2Hz), 3.57(3H, q, J=1.2H
31	J=8.8Hz) 2.87(3H, s), 2.96(3H, s), 3.53(3H, s), 3.64(3H, s), 6.30(1H, s),	25		3.83(2H, br s), 4.52(1H, q, J=6.2Hz), 6.35(1H, s), 6.70(1H, d, J=9.3Hz)
32	6.86(1H, d, J=8.9Hz), 7.68(1H, s)	35	1-65	
33	s), 6.86(1H, d, J=8.9Hz)		1-66	3.56(3H, s), 6.37(1H, s), 6.86(1H, d, J=8.4Hz), 7.77(1H, d,
	d, J=8.8Hz)		1-67	J=8.4Hz), 10.75(1H, broad) 3.56(3H, s), 6.37(1H, s), 8.55(1H, s)
34	1.26(3H, t, J=7.1Hz), 4.16(2H, q, J=7.1Hz), 3.53(3H, s), 6.35(1H, s), 7.70(1H, d, J=8.5Hz)	40	1-68	J=1.7Hz, 8.7Hz), 8.13(1H, d, J=1.7Hz)
36	2.40(3H, d, J=1.1Hz), 3.54(3H, d, J=1.3Hz), 6.33(1H, s), 7.51(1H, d, J=8.5Hz)		1-69 1-70	4.15(3H, s), 6.14(1H, s), 8.51(1H, s), 12.8(1H, broad) 6.26(1H, s), 7.62(1H, 2d, J=6.1Hz, 8.3Hz, 8.3(1H, broad)
37	2.23(3H, d, J=0.9Hz), 3.57(3H, d, J=1.1Hz), 6.38(1H, s), 6.74(1H, d, J=9.4Hz)		1-71	3.56(3H, s), 4.8(3H, broad), 6.38(1H, s), 6.59(1H, d, J=8.7Hz), 6.85(1H, d, J=8.7Hz)
38		45	1-72	3.56(3H, s), 3.89(3H, s), 6.37(1H, s), 6.75(1H, d, J=8.7Hz),
40	3.56(3H, d, J=1.1Hz), 3.96(3H, s), 6.36(1H, s), 7.07(1H, d,		1-73	· · · · · · · · · · · · · · · · · · ·
41,	J=8.7Hz) 3.54(3H, d, J=1.1Hz), 6.38(1H, s), 6.89(2H, m), 7.00(1H, dd,		2-1	J=2.4Hz, 6.9Hz) 2.04(3H, s), 3.57(3H, br q, J=1.1Hz), 3.86(3H, s), 6.30(1H, s),
42	J=7.9, 1.5Hz), 7.26(1H, td, J=7.7, 1.5Hz), 7.85(2H, br s) 3.55(3H, d, J=1.2Hz), 6.38(1H, s), 7.38(1H, dd, J=7.9, 1.4Hz),		2-2	7.22(1H, d, J=9.6Hz) 2.29(3H, s), 2.33(3H, s), 3.53(3H, br s), 3.78(3H, s), 6.3(1H, s)
	7.66(1H, td, J=7.9, 1.4Hz), 7.79(1H, td, J=7.9, 1.4Hz), 8.27(1H, dd, J=7.9, 1.4Hz)	50	2-3	7.42(1H, d, J=8.8Hz) 1.14(9H, s), 3.56(3H, s), 3.82(3H, s), 6.29(1H, s), 7.19(1H, d,
43			2-4	J=9.0Hz), 7.61(1H, br s) 3.49(3H, br q, J=1.0Hz), 3.75(3H, s), 5.70-5.79(2H, m), 6.26(1
44	3.57(3H, d, J=1.1Hz), 6.39(1H, s), 7.13(3H, m)			s), 6.40-6.55(4H, m), 7.42(1H, d, J=8.7Hz)
45 46	· · · · · · · · · · · · · · · · · · ·	55	2-5	1.95(3H, s), 3.55(3H, br s), 3.84(3H, s), 5.45(1H, s), 5.70(1H, s), 6.27(1H, s), 7.20(1H, d, I=9.0Hz), 7.62(1H, br s)
47	7.77(1H, dd, J=2.1, 1.0Hz) 3.50(3H, d, J=0.9Hz), 3.81(3H, s), 3.96(2H, s), 6.31(1H, s),		2-6	1.90(3H, s), 1.91(3H, s), 3.49(3H, br s), 3.79(3H, s), 5.46(2H, s), 5.64(1H, s), 5.66(1H, s), 6.27(1H, s), 7.30(1H, d, J=8.8Hz)
48	6.88(1H, s)		2-7	1.86(3H, s), 2.05(3H, s), 3.56(3H, br s), 3.82(3H, s), 5.66(1H, br s), 6.27(1H, s), 7.17(1H, d, J=9.0Hz), 7.23(1H, br s)
70	3.64(2H, br s), 4.22(2H, m), 4.70(1H, q, J=6.8Hz), 6.36(1H, s),		2-8	1.85(6H, m), 2.12(6H, m), 3.47(3H, br q, J=1.0Hz), 3.77(3H, s) 5.91(1H, m), 5.98(1H, m), 6.25(1H, s), 7.34(1H, d, J=8.7Hz)
49	6.38(2H, m), 6.88(1H, d, J=9.2Hz) 1.29(3H, t, J=7.1Hz), 1.68(3H, d, J=6.8Hz), 3.54(3H, d, J=1.0Hz),	60	2-9	(CDCl ₃ +CD ₃ OD)3.86(3H, s), 6.16(1H, s), 7.37(1H, d, J=8.9Hz)
	4.26(2H, m), 4.82(1H, q, J=6.8Hz), 6.36(1H, s), 7.25(2H, m), 7.74(1H, m)		2-10 2-11	3.54(3H, br s), 3.86(3H, s), 6.31(1H, s), 7.32(1H, d, J=9.0Hz) (CDCl ₃ +CD ₃ OD)3.55(3H, br s), 4.87(2H, s), 6.35(1H, s), 7.44(
50	3.57(3H, q, J=1.2Hz), 6.38(1H, s), 6.65(1H, t, J=71.1Hz),		2-12	
51		65	2-13	J=8.8Hz) 3.56(3H, br q, J=1.1Hz), 3.89(3H, s), 4.08(2H, s), 6.3(1H, s),
	7.8(2H, br s)			7.25(1H, d, J=9Hz)

	¹H NMR data			¹H NMR data
		5		
No.	NMR(CDCl ₃ , 300MHz) ppm	3	No.	NMR(CDCl ₃ , 300MHz) ppm
2-14	3.52(3H, br q, J=1.1Hz), 3.74(2H, m), 3.85(3H, s), 6.39(1H, s),		2-46	3.52(3H, s), 3.91(3H, s), 6.75-7.05(2H, m), 6.95(1H, s), 7.39(1H,
2-15	7.53(1H, d, J=9.3Hz), 9.03(1H, m) 3.56(3H, s), 3.91(3H, s), 3.95(3H, s), 6.29(1H, s), 7.24(1H, d,		2-47	d, J=8.9Hz), 8.03(1H, m), 8.56(1H, m) 3.55(3H, br s), 3.91(3H, s), 6.32(1H, s), 6.93(2H, m), 7.25(1H, d,
2.16	J=9.0Hz), 9.00(1H, s)		2 40	J=8.9Hz), 7.39(1H, m), 8.03(1H, br s)
2-16	1.27(3H, t, J=7.1Hz), 1.28(3H, t, J=7.1Hz), 3.42(2H, s), 3.57(3H, br s), 4.04(2H, s), 4.10–4.30(4H, m), 6.40(1H, s), 7.33(1H, d,	10	2-48	3.55(3H, br q, J=1.0Hz), 3.83(3H, s), 6.26(1H, s), 7.24(1H, d, J=9.1Hz), 7.25(1H, m), 7.54(1H, m), 7.65(1H, m), 8.05(1H, br s)
2 17	J=9.8Hz), 8.07(1H, s)		2-49	3.39(3H, br s), 3.77(3H, s), 6.1(1H, s), 7.10-7.40(2H, m),
2-17	0.95(2H, m), 1.10(2H, m), 1.50(1H, m), 3.55(3H, s), 6.37(1H, s), 7.22(1H, d, J=9.0Hz), 7.92(1H, br s), 8.41(1H, br, s)		2-50	7.34(1H, d, J=8.8Hz), 7.60-8.00(4H, m) 3.54(3H, br s), 3.81(3H, s), 6.26(1H, s), 7.01(1H, m), 7.25(1H, d,
2-18	0.70-1.20(8H, m), 1.96(1H, m), 2.15(1H, m), 3.54(3H, br s),		0.51	J=9.3Hz), 7.31(2H, m), 8.28(1H, s)
2-19	3.75(3H, s), 6.35(1H, s), 7.38(1H, d, J=8.6Hz) 1.40(5H, m), 1.70(5H, m), 2.25(1H, m), 3.32(3H, s), 3.82(3H, s),	15	2-51 2-53	3.43(3H, br s), 3.79(3H, s), 6.15(1H, s), 6.95–7.75(7H, m) 3.56(3H, d, J=1.2Hz), 3.91(3H, s), 6.32(1H, s), 7.26(1H, d,
2 20	6.34(1H, s), 7.17(1H, d, J=9.0Hz), 7.68(3H, s)			J=9.0Hz), 7.35(1H, ddd, J=8.6, 6.1, 2.5Hz), 7.42(2H, m),
2-20	1.20(10H, m), 1.70(10H, m), 2.50(2H, m), 3.50(3H, s), 3.68(3H, s), 6.31(1H, s), 7.36(1H, m)		2-54	7.52(1H, dd, J=7.4, 1.2Hz), 7.83(1H, br s) 3.53(3H, s), 3.82(3H, s), 6.26(1H, s), 7.22(1H, d, J=9.0Hz), 7.39
2-21	3.37(3H, s), 3.44(3H, s), 3.55(3H, br s), 4.18(3H, s), 6.33(1H, s),			(1H, dd, J=7.8, 7.9Hz), 7.53(1H, m), 7.62(1H, m), 7.77(1H, m),
	7.43(1H, d, J=8.8Hz) 3.2(3H, s), 3.55(3H, s), 3.96(3H, s), 6.35(1H, s), 6.48(1H, br s),	20	2-55	8.06(1H, br s) 3.36(3H, s), 3.81(3H, s), 6.11(1H, s), 7.30(3H, m), 7.43(2H, m),
	7.29(1H, d, J=8.8Hz)			7.76(4H, m)
2-22	3.52(3H, br s), 3.64(3H, s), 6.29(1H, s), 6.85(1H, d, J=9.1Hz), 7.4(5H, m), 7.68(1H, s)		2-56	3.53(3H, s), 3.83(3H, s), 6.23(1H, s), 7.23(1H, d, J=9.0Hz), 7.44(2H, d, J=8.7Hz), 7.72(2H, d, J=8.7Hz), 7.92(1H, s)
2-23	2.39(3H, s), 3.52(3H, s), 3.82(3H, s), 6.23(1H, s), 7.20(1H, d,		2-57	3.32(3H, s), 3.78(3H, s), 6.06(1H, s), 7.34(5H, m), 7.80(4H, m)
2-24	J=9.0Hz), 7.32(2H, m), 7.53(2H, m), 8.02(1H, s) 2.42(3H, s), 3.53(3H, s), 3.82(3H, s), 6.22(1H, s), 7.20(1H, d,	25	2-58	3.56(3H, d, J=1.0Hz), 3.89(3H, s), 6.32(1H, s), 7.27(1H, d, J=9.0Hz), 7.31(1H, dd, J=8.1, 1.9Hz), 7.47(2H, m),
	J=9.0Hz), 7.26(2H, d, J=7.8Hz), 7.67(2H, d, J=7.8Hz),		2.50	7.92(1H, br s)
2-25	7.91(1H, s) 2.32(3Hx2, s), 3.28(3H, s), 3.82(3H, s), 6.02(1H, s), 7.10(4H, d,		2-59	3.55(3H, d, J=1.1Hz), 3.84(3H, s), 6.25(1H, s), 7.25(1H, d, J=9.1Hz), 7.54(1H, d, J=8.3Hz), 7.60(1H, dd, J=8.3, 2.0Hz),
0.04	J=7.9Hz), 7.26(1H, d, J=9.0Hz), 7.73(4H, m)			7.88(1H, br s), 7.89(1H, d, J=2.0Hz)
2-26	2.40(3H, s), 3.44(3H, s), 3.54(3H, d, J=1.1Hz), 6.29(1H, s), 6.55(1H, br s), 7.18(1H, d J=8.9Hz), 7.25(2H, d, J=8.3Hz),	30	2-60	3.54(3H, br s), 3.83(3H, s), 6.26(1H, s), 7.24(1H, d, J=9.0Hz), 7.34(2H, m), 7.65-7.75(2H, m), 7.92-8.25(4H, m)
	7.68(2H, d, J=8.3Hz)		2-61	3.53(3H, s), 3.82(3H, s), 6.23(1H, s), 7.22(1H, d, J=9.0Hz),
2-27	1.26(3H, t, J=7.7Hz), 2.71(2H, q, J=7.7Hz), 3.54(3H, s), 3.83(3H, s), 6.23(1H, s), 7.21(1H, d, J=9.0Hz), 7.29(2H, d,		2-62	7.61(4H, m), 7.95(1H, s) 3.33(3H, s), 3.80(3H, s), 6.06(1H, s), 7.31(1H, d, J=9.0Hz),
	J=8.2Hz), 7.70(2H, d, J=8.2Hz), 7.86(1H, br s)			7.51(4H, m), 7.73(4H, m)
2-28	1.26(3H, t, J=7.6Hz), 2.71(2H, q, J=7.6Hz), 3.51(3H, br s), 4.78 (2H, s), 6.25(1H, s), 7.28(3H, m), 7.73(2H, m), 7.84(1H, br s)	25	2-63	3.54(3H, d, J=1.1Hz), 3.83(3H, s), 3.87(3H, s), 6.22(1H, s), 6.95(2H, d, J=8.8Hz), 7.21(1H, d, J=9.1Hz), 7.75(2H, d, J=8.8Hz),
2-29	0.95(6H, t, J=7.2Hz), 1.66(4H, m), 2.64(4H, m), 3.53(3H, br s),	35		7.78(1H, br. s)
	3.83(3H, s), 6.23(1H, s), 7.21(1H, d, J=9.3Hz), 7.27(4H, m), 7.70(2H, m), 8.00(2H, m)		2-64	1.44(3H, t, J=7.0Hz), 3.52(3H, s), 3.82(3H, s), 4.06(2H, q, J=7.0Hz), 6.22(1H, s), 6.90(2H, d, J=9.0Hz), 7.20(1H, d,
2-30	1.35(9H, s), 3.55(3H, s), 3.83(3H, s), 6.23(1H, s), 7.20(1H, m),			J=9.0Hz), 7.73(2H, d, J=9.0Hz), 7.91(1H, s)
2-31	7.49(2H, d, J=8.6Hz), 7.73(2H, d, J=8.6Hz), 7.88(1H, br s) 3.54(3H, s), 3.83(3H, s), 5.40(1H, d, J=10.9Hz), 5.87(1H, d,	40	2-66	3.55(3H, d, J=1.0Hz), 3.84(3H, s), 6.25(1H, s), 7.25(1H, d, J=9.1Hz), 7.51(2H, d, J=8.6Hz), 7.85(2H, d, J=8.6Hz),
	J=17.6Hz), 6.78(1H, dd, J=17.6, 10.9Hz), 7.22(1H, d,	40		7.88(1H, br s)
	J=9.0Hz), 7.49(2H, d, J=8.2Hz), 7.75(1H, d, J=82Hz), 8.01(1H, br s)		2-67	3.85(3H, s), 6.22(1H, s), 7.25(1H, d, J=9.9Hz), 7.76(2H, d, J=8.4Hz), 7.85(2H, d, J=8.4Hz), 7.96(1H, br s)
2-32			2-69	3.40(3H, br s), 3.79(3H, s), 6.12(1H, s), 7.36(1H, d, J=8.7Hz),
	(1H, s), 7.19(1H, d, J=9.1Hz), 7.22(1H, d, J=7.8Hz), 7.50(1H, dd, J=7.8, 1.7Hz), 7.56(1H, br s), 7.86(1H, br s)		2-70	8.06(4H, m), 8.25(4H, m) 3.50(3H, br s), 3.87(3H, s), 6.32(1H, s), 7.51(1H, d, J=8.8Hz),
2-33		45		9.07(2H, m), 9.12(1H, m), 9.91(1H, br s)
2-34	(2H, d, J=8.3Hz), 7.89(2H, d, J=8.3Hz), 7.92(1H, br s) 3.54(3H, br s), 3.84(3H, s), 6.26(1H, s), 7.30(1H, d, J=9.3Hz),		2-71	3.33(3H, s), 3.77(3H, s), 7.20(4H, m), 7.31(1H, d, J=8.8Hz), 7.92(4H, m)
2-36	7.72(4H, m), 7.94(2H, m), 8.17(2H, m) 3.56(3H, d, J=1.1Hz), 3.85(3H, s), 4.64(2H, s), 6.25(1H, s),		2-72	3.54(3H, s), 3.83(3H, s), 6.24(1H, s), 7.25(3H, m), 7.82(2H, m), 8.02(1H, s)
2-50	7.24(1H, d, J=9.0Hz), 7.52(2H, d, J=8.3Hz), 7.79(2H, d,		2-73	3.54(3H, br s), 3.83(3H, s), 6.05(2H, s), 6.23(1H, s), 6.85(1H, d,
2-37	J=8.3Hz), 7.91(1H, br s) 3.53(3H, s), 3.83(3H, s), 6.25(1H, s), 7.20(1H, d, J=9.0Hz),	50		J=7.8Hz), 7.21(1H, d, J=8.8Hz), 7.25-7.34(2H, m),
2-51	7.45(3H, m), 7.63(4H, m), 7.84(2H, d, J=8.2Hz), 8.13(1H, s)		2-74	7.80(1H, br s) 3.52(3H, s), 3.84(3H, s), 6.25(1H, s), 7.24(1H, d, J=9.0Hz),
2-38	3.32(3H, s), 3.86(3H, s), 6.08(1H, s), 7.52(15H, m), 7.95(4H, m)		2 75	7.50(4H, m), 7.90(3H, m), 8.20(1H, br s)
2-39	3.56(3H, br s), 3.89(3H, s), 6.27(1H, s), 7.15-7.3(2H, m), 7.24(1H, d, J=9.1Hz), 7.54(1H, m), 7.92(1H, m), 8.43(1H,		2-75	3.64(3H, s), 3.85(3H, s), 6.24(1H, s), 7.24(1H, d, J=9.0Hz), 7.80(7H, m), 8.32(1H, s)
	br d, J=13.8Hz)	55	2-76	3.87(3H, s), 6.1(1H, s), 7.31(1H, d, J=9.0Hz), 7.60(2H, m),
2-40	3.53(3H, br s), 3.83(3H, s), 6.23(1H, s), 7.12(2H, m), 7.22(1H, d, J=9.1Hz), 7.79(2H, m), 7.97(1H, br s)		2-77	7.80–8.05(5H, m), 8.38(1H, s) 3.83(3H, s), 4.69(2H, s), 6.21(1H, s), 7.35(1H, d, J=8.9Hz),
2-41	3.57(3H, br q, J=1.1Hz), 3.9(3H, s), 6.29(1H, s), 7.2(1H, m),		2 70	7.50–7.60(3H, m), 7.80–7.85(4H, m), 8.07(1H, s)
	7.26(1H, d, J=9.1Hz), 7.36(1H, m), 7.63(1H, m), 8.29(1H, d, J=11.1Hz)		2-78	3.56(3H, s), 3.86(3H, s), 6.28(1H, s), 6.49(1H, d, J=15.6Hz), 7.21(1H, d, J=9.0Hz), 7.39(4H, m), 7.50(2H, m), 7.63(1H, d,
2-42		60	2-79	J=15.6Hz)
	d, J=9Hz), 7.97(1H, m), 8.37(1H, br d, J=13.3Hz)		2-19	3.57(3H, s), 3.86(3H, s), 6.28(1H, s), 6.54(1H, d, J=15.7Hz), 6.84–6.94(3H, m), 7.22(1H, d, J=9.0Hz), 7.36(1H, br s),
2-43	3.44(3H, br s), 3.96(3H, s), 6.24(1H, s), 6.64(2H, m), 6.86(2H, m), 7.35(1H, d, J=8.8Hz), 7.78(2H, m)		2-80	7.48(1H, q, J=7.7Hz), 7.67(1H, d, J=15.7Hz) 2.41(3H, s), 3.57(3H, s), 3.86(3H, s), 6.29(1H, s), 6.40(1H, d,
2-44	3.88(3H, s), 6.26(1H, s), 6.98(2H, m), 7.23(1H, d, J=9Hz),		2-0U	J=15.4Hz), 7.19–7.32(4H, m), 7.33(1H, br s), 7.53(1H, d,
2-45	7.96(1H, m), 8.46(1H, m) 3.43(3H, br q, J=1.3Hz), 5.1(2H, s), 6.36(1H, s), 6.9-7.15(4H, m),	65	2-81	J=7.2Hz), 7.93(1H, d, J=15.4Hz) 2.12(3H, d, J=1.3Hz), 3.57(3H, d, J=0.9Hz), 3.88(3H, s), 6.29(1H,
,	7.77(1H, d, J=9.1Hz), 7.7–7.9(2H, m)		2-01	s), 7.20(1H, d, J=9.1Hz), 7.36(5H, m), 7.66(1H, br s)

	IABLE XVIII-continued			IABLE XVIII-continued
	¹ H NMR data			¹ H NMR data
No.	NMR(CDCl ₃ , 300MHz) ppm	5	No.	NMR(CDCl ₃ , 300MHz) ppm
2-82	3.57(3H, br s), 3.85(3H, s), 6.29(1H, s), 6.48(1H, d, J=15.6Hz),		2-117	2.18(3H, s), 3.56(3H, d, J=1.1Hz), 3.86(3H, s), 4.58(2H, s),
	7.16(1H, d, J=9.0Hz), 7.28(2H, m), 7.40(1H, dd, J=7.9, 1.6Hz),			6.30(1H, s), 7.24(1H, d, J=9.0Hz)
	7.53(1H, dd, J=7.4, 1.6Hz), 7.67(1H, br s), 7.98(1H, d, J=15.6Hz)		2-118	1.40(3H, t, J=7.1Hz), 3.56(3H, d, J=1.0Hz), 3.91(3H, s), 4.39(2H, q, J=7.1Hz), 6.29(1H, s), 7.25(1H, d, J=9.1Hz),
2-83	3.46(3H, br s), 3.83(3H, s), 6.24(1H, s), 6.80(1H, d, J=15.5Hz),	10		9.01(1H, br s)
	6.91(1H, d, J=15.5Hz), 7.30(4H, m), 7.39(2H, m), 7.45(1H, d,		2-119	3.54(3H, s), 3.72(3H, s), 4.56(2H, s), 6.24(1H, s), 6.85-7.40(6H,
	J=8.8Hz), 7.56(1H, dd, J=7.6, 1.8Hz), 7.59(1H, dd, J=7.6,		2 120	m), 8.50(1H, br s)
2-84	1.8Hz), 8.18(1H, d, J=15.5Hz), 8.20(1H, d, J=15.5Hz) 3.56(3H, br s), 3.84(3H, s), 6.29(1H, s), 6.45(1H, d, J=15.6Hz),		2-120	3.45(3H, s), 3.85(3H, s), 4.8-5.15(4H, m), 6.27(1H, s), 6.8-7.0(6H, m), 7.20-730(4H, m), 7.48(1H, d, J=8.7Hz)
	7.18(1H, d, J=9.0Hz), 7.54(2H, d, J=8.6Hz), 7.40(2H, d,		2-121	3.59(3H, s), 3.93(3H, s), 6.35(1H, s), 7.26(1H, d, J=9.0Hz),
205	J=8.6Hz), 7.55(1H, d, J=15.6Hz), 7.59(1H, br s)	15	2 100	7.40–7.70(3H, m), 8.20(2H, m), 8.97(1H, br s)
2-83	3.56(3H, br s), 3.84(3H, s), 3.85(3H, s), 6.28(1H, s), 6.35(1H, d, J=15.5Hz), 6.89(2H, d, J=8.7Hz), 7.19(1H, d, J=9.0Hz),		2-122	2.33(3H, s), 3.49(3H, d, J=0.9Hz), 6.24(1H, s), 7.34(1H, d, J=9.1Hz), 7.50-7.62(2H, m), 7.75-7.95(5H, m), 8.31(1H, br s)
	7.35(1H, br s), 7.45(2H, d, J=8.7Hz), 7.58(1H, d, J=15.5Hz)		2-123	2.28(3H, s), 3.54(3H, s), 6.29(1H, s), 6.59(1H, d, J=15.5Hz),
2-86	2.60(2H, q, J=7.7Hz), 2.91(2H, t, J=7.7Hz), 3.56(3H, s), 3.69(3H,			7.20–7.50(6H, m), 7.63(1H, d, J=15.5Hz)
2-87	s), 6.26(1H, s), 7.1-7.3(6H, m) 2.66(2H, m), 2.92(2H, m), 3.55(3H, s), 4.52(2H, s), 6.28(1H, s),		2-124	2.29(6H, s), 3.56(3H, s), 3.93(3H, s), 6.32(1H, s), 7.05(2H, m), 7.20(2H, m), 7.47(1H, br s)
	7.1–7.4(6H, m)	20	2-125	3.57(3H, s), 3.87(3H, s), 6.29(1H, s), 6.62(1H, d, J=15.7Hz),
2-88				7.1-7.5(5H, m), 7.72(1H, d, J=15.7Hz)
	J=7.5Hz), 3.52(3H, d, J=0.7Hz), 3.84(3H, s), 6.28(1H, s), 7.13-7.32(7H, m)		2-126	3.52(3H, s), 3.80(3H, s), 6.24(1H, s), 6.32(1H, d, J=15.6Hz), 7.11(1H, br d, J=8.8Hz), 7.4-7.6(4H, m), 7.95(2H, m)
2-89	3.54(3H, s), 3.82(3H, s), 4.02(2H, s), 4.55(2H, s), 6.15(1H, s),		2-127	3.56(3H, s), 3.86(3H, s), 3.89(3H, s), 6.28(1H, s), 6.64(1H, d,
	7.16(1H, d, J=9.0Hz), 7.4(5H, m), 8.55(1H, s)	25		J=15.7Hz), 6.95(2H, m), 7.19(1H, d, J=9.0Hz), 7.35(2H, m),
2-90	3.56(3H, d, J=1.1Hz), 3.87(3H, s), 6.26(1H, s), 6.55(1H, dd, J=3.6, 1.8Hz), 7.17(1H, dd J=3.6, 0.5Hz), 7.22(1H, d,	25	2 120	7.46(1H, dd, J=7.6, 1.4Hz), 7.88(1H, d, J=15.7Hz)
	J=9.1Hz), 7.54(1H, dd, J=1.8, 0.5Hz), 8.18(1H, br s)		2-126	3.59(3H, s), 3.88(3H, s), 6.31(1H, s), 6.65(1H, d, J=15.9Hz), 7.20(2H, m), 7.35(2H, d, J=8.1Hz), 7.37(1H, br s), 7.72(1H, d,
2-91	2.25(3H, s), 3.46(3H, s), 3.81(3H, s), 6.25(1H, s), 6.39(1H, s),			J=15.9Hz)
2-92	7.18(1H, d, J=9.0Hz), 7.39(1H, s), 8.30(1H, s) 3.56(3H, d, J=0.8Hz), 3.85(3H, s), 6.28(1H, s), 6.39(1H, d,		2-129	2.28(3H, s), 2.53(2H, t, J=7.3Hz), 2.88(2H, t, J=7.3Hz),
2-72	J=15.2Hz), 6.48(1H, dd J=3.4, 1.8Hz), 6.60(1H, d, J=3.4Hz),	30	2 120	3.56(3H, s), 3.73(3H, s), 6.26(1H, s), 7.11(5H, m), 7.35(1H, br s)
	7.19(1H, d, J=9.0Hz), 7.34(1H, br s), 7.40(1H, d, J=15.2Hz),		2-130	2.33(3H, s), 2.36(3H, s), 3.57(3H, s), 3.86(3H, s), 6.29(1H, s), 6.40(1H, d, J=15.4Hz), 7.09(2H, br s), 7.20(1H, d, J=9.0Hz),
2-93	7.48(1H, d, J=1.8Hz) 3.45(3H, s), 3.66(3H, s), 3.80(2H, s), 6.16(1H, s), 7.00(4H, m),			7.33(1H, br s), 7.35(1H, s), 7.90(1H, d, J=15.4Hz)
2-73	7.55(1H, br s)		2-131	3.54(3H, d, J=1.0Hz), 6.37(1H, s), 7.21(1H, d, J=8.6Hz), 7.33(1H
2-94	2.46(3H, s), 3.56(3H, s), 3.88(3H, s), 6.26(1H, s), 6.94(1H, m),			dd, J=8.6, 2.1Hz), 7.60(2H, m), 7.77(1H, dd, J=8.6, 1.8Hz),
2.05	7.20(1H, d, J=9.0Hz),7.36(1H, m), 7.65(1H, s)	35		7.88(3H, m), 7.98(1H, br s), 8.01(1H, d, J=2.1Hz), 8.26(1H, d, J=1.3Hz)
2-93	2.45(3H, s), 3.47(3H, s), 3.78(3H, s), 6.17(1H, s), 6.70(1H, m), 7.13(1H, d, J=9.0Hz), 7.32(1H, m), 7.63(1H, s)		2-132	2.21(3H, s), 2.27(3H, s), 2.48(2H, t, J=7.8Hz), 2.81(2H, t,
2-96	2.41(6H, s), 3.26(3H, s), 3.78(3H, s), 5.97(1H, s), 6.59(2H, m),			J=7.8Hz), 3.57(3H, s), 3.73(3H, s), 6.27(1H, s), 6.92(2H, m),
2-97	7.24(1H, d, J=9.0Hz), 7.39(2H, m) 3.31(3H, s), 3.84(3H, s), 6.03(1H, s), 7.05(2H, m), 7.40(2H, m),		2 122	7.02(1H, d, J=7.6Hz), 7.12(1H, br d, J=8.6Hz), 7.51(1H, br s)
2-91	7.70(3H, m)		2-133	3.55(3H, d, J=1.0Hz), 3.76(3H, s), 4.52(2H, s), 6.26(1H, s), 6.88(2H, dd, J=9.1, 2.4Hz), 7.02(2H, dd, J=9.1, 8.1Hz),
2-98	3.54(3H, s), 3.84(3H, s), 6.25(1H, s), 7.25(1H, d, J=9.7Hz),	40		7.20(1H, d, J=9.0Hz), 8.48(1H, br s)
	7.41(1H, dd, J=7.7, 4.8Hz), 8.01(1H, d, J=7.7Hz), 8.32(1H, br s), 8.78(1H, br s), 9.01(1H, br s)		2-134	3.57(3H, s), 3.86(3H, s), 6.28(1H, s), 6.50(1H, d, J=15.5Hz),
2-100	3.42(3H, q, J=1.0Hz), 3.79(3H, s), 6.12(1H, s), 7.35(1H, d,			7.23(1H, d, J=9.0Hz), 7.35(4H, m), 7.50(1H, br s), 7.58(1H, d, J=15.5Hz)
	J=8.6Hz), 7.56(1H, d, J=8.0Hz), 7.39(1H, d, J=8.0Hz),		2-135	3.55(3H, d, J=1.0Hz), 3.76(3H, s), 4.52(2H, s), 6.26(1H, s),
	8.15(1H, dd, J=8.0, 2.2Hz), 8.16(1H, dd, J=8.0, 2.2Hz),	45		6.87(2H, d, J=9.0Hz), 7.20(1H, d, J=9.0Hz), 7.29(2H, d,
2-101	8.77(1H, d, J=2.2Hz), 8.91(1H, d, J=2.2Hz) 3.59(3H, br q, J=1.2Hz), 6.36(1H, s), 6.99(1H, dd, J=4.9, 8.3Hz),			J=9.0Hz), 8.45(1H, br s)
	7.27(1H, d, J=8.7Hz), 8.44(1H, dd, J=1.7, 4.8Hz), 8.6(1H, dd,		2-136	3.58 (3H, d, J=1.0Hz), 3.93(3H, s), 6.33(1H, s), 7.26(1H, d,
2 102	J=1.7, 8.3Hz), 9.79(1H, br s)			J=9.1Hz), 7.54(3H, m), 7.95(2H, d, J=8.3Hz), 8.14(1H, s), 8.28(1H, s)
2-102	(CDCl ₃ +CD ₃ OD)3.54(3H, br s), 6.33(1H, s), 6.82(1H, t, J=5.0Hz), 7.2(1H, d, J=8.8Hz), 8.38(2H, d, J=5.0Hz)		2-137	3.55(3H, s), 6.37(1H, s), 6.40(1H, d, J=15.5Hz), 7.16(1H, d,
2-103	3.55(3H, q, J=1.0Hz), 3.89(3H, s), 6.26(1H, s), 7.22(1H, d,	50		J=8.6Hz), 7.19(1H, br s), 7.29(1H, dd, J=8.5, 1.9Hz), 7.38(3H, m)
2 104	J=9.1Hz), 7.45(3H, m), 7.83(3H, m), 7.99(1H, br s)		2 120	7.48(2H, m), 7.70(1H, d, J=15.5Hz), 7.99(1H, br s)
2-104	3.58(3H, s), 3.92(3H, s), 6.26(1H, s), 7.20(1H, d, J=9.0Hz), 7.65(1H, m), 7.85(2H, m), 8.17(2H, m), 8.33(1H, m), 10.05(1H, s)		2-139	3.19(3H, s), 5.98(1H, s), 7.17(1H, dd, J=8.0, 1.2Hz), 7.2- 7.6(7H, m), 7.7-7.9(6H, m), 7.93(2H, dd, J=8.6, 1.7Hz),
2-105	3.60(3H, br s), 3.92(3H, s), 6.27(1H, s), 7.27(1H, d, J=9.0Hz),			8.53(2H, br s)
	7.93(2H, m), 8.20(2H, m), 9.60(1H, s), 10.12(1H, s)			3.56(3H, d, J=1.0Hz), 6.40(1H, s), 7.42(1H, d, J=8.3Hz),
2-106	3.56(3H, q, J=0.7Hz), 3.86(3H, s), 6.27(1H, s), 6.95(2H, m),	55		7.60(3H, m), 7.78(1H, dd, J=8.6, 1.8Hz), 7.92(3H, m), 8.01(1H, br s), 8.29(1H, br s), 8.38(1H, d, J=1.6Hz)
2-113	7.41(1H, d, J=8.7Hz), 7.95(1H, m) 3.56(3H, q, J=1.0Hz), 3.86(3H, s), 6.26(1H, d, J=15.2Hz),		2-141	3.59(3H, s), 6.41(1H, s), 6.42(1H, d, J=15.5Hz), 7.16(1H, br s),
	6.28(1H, s), 7.05(1H, dd, J=5.0, 3.6Hz), 7.20(1H, d, J=9.0Hz),			7.38(4H, m), 7.52(2H, m), 7.59(1H, dd, J=8.2, 1.7Hz), 7.75(1H,
	7.25(1H, d, J=3.6Hz), 7.27(1H, br s), 7.38(1H, d, J=5.0Hz),			d, J=15.5Hz), 8.40(1H, br s)
2,114	7.75(1H, d, J=15.2Hz) 3.56(3H, d, J=0.9Hz), 6.40(1H, s), 7.28(1H, d, J=9.21Hz),	60		3.47(3H, s), 6.29(1H, s), 7.1–7.9(11H, m), 8.21(1H, s) 3.55(3H, d, J=1.0Hz), 3.87(3H, s), 6.38(1H, s), 6.89(1H, dd,
2-114	7.50–7.65(2H, m), 7.70–7.80(1H, m), 7.80–8.0(3H, m),	30	2-143	J=8.9, 2.9Hz), 7.18(1H, d, J=8.9Hz), 7.58(3H, m), 7.79(1H, dd,
	8.35(1H, m), 8.63(1H, br s)			J=8.6, 1.7Hz), 7.90(4H, m), 8.29(1H, br s)
2-115	3.54(3H, d, J=0.9Hz), 6.24(1H, s), 6.51(1H, t, J=73.1Hz),		2-144	3.54(3H, d, J=1.0Hz), 3.87(3H, s), 6.25(1H, s), 7.60(3H, m),
	7.32(1H, d, J=8.8Hz), 7.50-7.65(2H, m), 7.70-7.82(1H, m), 7.85-7.95(3H, m), 8.07(1H, br s), 8.29(1H, br s)		2-145	7.8–8.0(5H, m), 8.30(1H, br s) 3.57(3H, d, J=1.0Hz), 6.38(1H, s), 7.12(1H, dd, J=9.3, 2.2Hz),
			Z+143	J.J. ((JE1, U, J=1.UFIZ), U.JO(1F1, B), 7.12(1F1, UU, J=7.J, 2.2F1Z),
2-116	5 2.09(3H, s), 2.14(3H, s), 3.50(3H, d, J=1.0Hz), 3.79(3H, s), 4.8–	65		7.59(2H, m), 7.78(1H, dd, J=8.6, 1.8Hz), 7.8-8.0(5H, m),

	¹ H NMR data			¹ H NMR data
No.	NMR(CDCl ₃ , 300MHz) ppm	5	No.	NMR(CDCl ₃ , 300MHz) ppm
2-146	1.27(1.5H, t, J=7.1Hz), 1.27(1.5H, t, J=7.1Hz), 1.62(3H, d, J=6.7Hz), 3.53(3H, s), 4.23(2H, m), 4.79(1H, m), 6.35(1H, s), 6.85(1H, m), 7.15(1H, d, J=9.0Hz), 7.5–7.6(3H, m), 7.77(1H, dd,			3.50(3H, s), 3.79(3H, s), 6.23(1H, s), 7.30(1H, d, J=8.7Hz), 7.56(2H, m), 7.85(4H, m), 8.31(1H, s), 8.40(1H, s) 3.21(3H, s), 3.88(3H, s), 6.04(1H, s), 7.59(5H, m), 7.87(8H, m),
2-147	J=8.6, 1.6Hz), 7.89(4H, m), 8.26(1H, s) 0.84(2H, m), 1.03(2H, m), 1.50(1H, m), 3.58(3H, d, J=1.0Hz), 6.36(1H, s), 7.05(1H, d, J=7.8Hz), 7.35(1H, br s), 7.88(1H, br s)	10	2-179	8.50(1H, s), 8.57(1H, s) 3.57(3H, s), 4.03(3H, s), 6.29(1H, s), 6.52(1H, d, J=15.6Hz), 7.28(1H, d, J=8.4Hz), 7.38(3H, m), 7.47(2H, m), 7.62(1H, d, J=15.6Hz), 7.80(1H, s)
2-148	3.57(3H, d, J=1.0Hz, 6.39(1H, s), 6.61(1H, t, J=72.7Hz), 6.88(1H, dd, J=10.2, 2.6Hz), 7.59(2H, m), 7.76(2H, m), 7.90(3H,			3.50(3H, s), 4.00(3H, s), 6.22(1H, s), 7.27(1H, d, J=8.5Hz), 7.59(2H, m), 7.87(4H, m), 8.32(1H, s), 8.38(1H, s)
2-149	m), 8.05(1h, br s), 8.27(1H, s) 3.56(3H, d, J=1.0Hz), 6.38(1H, s), 7.43(1H, d, J=8.4Hz), 7.6(3H, m), 7.78(1H, dd, J=8.6, 1.8Hz), 7.90(3H, m), 8.09(1H,	15		3.52(3H, s), 3.80(3H, s), 6.23(1H, s), 7.17(1H, d, J=9.1Hz), 7.58(2H, m), 7.87(4H, m), 8.26(1H, d, J=55.6Hz), 8.31(1H, s) 3.53(3H, q, J=0.8Hz), 3.80(3H, s), 5.41(1H, d, J=10.9Hz),
2-150	br s), 8.28(2H, s) 3.41(3H, d, J=1.1Hz), 3.71(1H, s), 3.80(2H, s), 6.11(1H, s), 7.1-7.4(6H, m), 8.88(1H, s)			5.87(1H, d, J=17.6Hz), 6.23(1H, s), 6.75(1H, dd, J=17.6, 10.9Hz), 7.37(1H, d, J=8.8Hz), 7.47(2H, d, J=8.3Hz), 7.73(2H, d, J=8.3Hz), 8.00(1H, s)
	3.50(3H, d, J=1.0Hz), 3.58(3H, s), 3.62(2H, s), 6.15(1H, s) 7.14(1H, d, J=9.1Hz), 7.2-7.4(6H, m) 3.58(3H, s), 3.90(3H, s), 4.14(3H, s), 6.25(1H, s), 7.21(1H, d,	20	2-183	3.28(3H, s), 3.80(3H, s), 5.34(1H, d, J=11.0Hz), 5.35(1H, d, J=11.0Hz), 5.80(1H, d, J=17.6Hz), 5.81(1H, d, J=17.6Hz), 6.03(1H, s), 6.67(1H, dd, J=17.6, 11.0Hz), 7.35(2H, d,
	J=9.0Hz), 7.26(1H, s), 7.44(1H, m), 7.55(1H, m), 7.76(1H, m), 7.85(1H, m), 8.58(1H, s), 10.10(1H, s) 3.57(3H, s), 3.91(3H, s), 4.10(3H, s), 6.22(1H, s), 7.22(1H, d,		2-184	J=8.0), 7.53(4H, d, J=8.4Hz), 8.11(4H, d, J=8.4Hz) 3.82(3H, s), 4.75(2H, s), 6.07(1H, s), 7.16(1H, d, J=9.1Hz),
	J=9.0Hz), 7.23(1H, s), 7.64(2H, m), 7.91(1H, m), 7.99(1H, d, J=8.7Hz), 8.22(1H, m), 10.20(1H, s)	25		7.57(2H, m), 7.76(1H, m), 7.87(3H, s), 8.25(1H, m), 8.27(1H, s) 3.39(2H, s), 3.78(3H, s), 6.26(1H, s), 7.3–7.6(7H, m), 9.89(1H, s) 3.80(3H, s), 4.58(2H, s), 6.14(1H, s), 6.81(1H, d, J=15.5Hz),
	3.56(3H, s), 3.87(3H, s), 4.55(2H, s), 6.27(1H, s), 6.82(1H, d, J=8.8Hz), 7.21(2H, m), 7.44(1H, s), 8.72(1H, s) 2.52(3H, s), 3.56(3H, s), 3.90(3H, s), 6.31(1H, s), 7.20(1H, d,	25	2-187	6.93(1H, d, J=15.5Hz), 7.3-7.6(10H, m), 7.77(1H, d, J=15.5Hz), 7.82(1H, d, J=15.5Hz) 3.78(3H, s), 3.78(2H, s), 4.58(2H, s), 4.70(2H, s), 6.07(1H, s),
2-156	J=9.0Hz), 7.55(2H, m), 7.81(4H, m), 10.15(1H, s) 2.55(3H, s), 3.52(3H, s), 3.83(3H, s), 6.22(1H, s), 7.20(1H, d, J=9.0Hz), 7.41(1H, m), 7.66(1H, s), 7.79(3H, m), 8.15(1H, s),		2-188	7.14(1H, d, J=9.1Hz), 7.35(5H, m), 8.58(1H, s) 4.67(2H, s), 4.76(2H, d J=5.3Hz), 6.10(1H, s), 7.26(1H, d, J=8.8Hz), 7.57(2H, m), 7.77(1H, m), 7.87(3H, s), 8.19(1H, m),
2-157	8.26(1H, s) 3.58(3H, s), 3.94(3H, s), 6.35(1H, s), 7.25(1H, d, J=9.0Hz), 7.61(2H, m), 7.78(2H, s), 7.92(2H, m), 8.04(1H, s)	30	2-189	8.30(1H, s) 1.28(3H, t, J=7.1Hz), 3.55(3H, s), 4.26(2H, q, J=7.1Hz), 4.82(2H, s), 6.22(1H, s), 7.21(1H, d, J=8.8Hz), 7.57(2H, m),
	3.55(3H, s), 3.84(3H, s), 6.24(1H, s), 7.22(1H, d, J=9.0Hz), 7.42(1H, m), 7.90(3H, m), 8.14(1H, s), 8.32(2H, m)		2-190	7.94(4H, m), 8.52(1H, s), 10.46(1H, s) 1.30(3H, t, J=7.1Hz), 3.58(3H, s), 4.31(2H, q, J=7.1Hz),
	3.56(3H, s), 3.96(3H, s), 6.35(1H, s), 7.13(1H, d, J=9.0Hz), 7.70(6H, m), 8.15(1H, s) 3.55(3H, s), 3.86(3H, s), 6.24(1H, s), 7.22(1H, d, J=9.0Hz),	35	2-191	4.78(2H, s), 6.27(1H, s), 6.67(1H, d, J=15.7Hz), 7.15(1H, d, J=8.9Hz), 7.38(3H, m), 7.95(2H, m), 7.62(1H, d J=15.7Hz) 1.27(3H, t, J=7.1Hz), 1.29(3H, t, J=7.1Hz), 1.69(3H, d,
2-161	7.74(4H, m), 7.92(4H, m), 8.10(4H, m) 3.55(3H, s), 3.86(3H, s), 6.25(1H, s), 7.23(2H, m), 7.57(1H, m), 7.72(1H, m), 7.91(2H, m), 8.18(1H, s)			J=7.0Hz), 1.70(3H, d, J=7.0Hz), 3.56(3H, s), 3.63(3H, s), 4.25(4H, m), 4.95(2H, m), 6.12(1H, s), 6.41(1H, s), 7.19(2H, d, J=8.9Hz), 7.56(4H, m), 7.95(8H, m), 8.54(1H, s), 8.69(1H, s),
2-162	3.55(3H, s), 3.85(3H, s), 6.24(1H, s), 7.23(1H, d, J=9.0Hz), 7.49(1H, m), 7.69(1H, m), 7.90(3H, m), 8.13(1H, sm), 8.34(2H, m)	40	2-192	10.41(1H, s), 10.65(1H, s) 4.95(2H, s), 6.23(1H, s), 7.25(1H, d, J=10.0Hz), 7.59(2H, m), 7.87(4H, s), 8.27(1H, m), 9.28(1H, s)
2-163	3.56(3H, s), 3.86(3H, s), 6.25(1H, s), 7.25(1H, d, J=9.0Hz), 7.66(1H, m), 8.05(3H, m), 8.19(1H, m), 8.32(1H, d, J=8.7Hz), 8.39(1H, s)		2-193	3.56(3H, q, J=0.5Hz), 6.40(1H, s), 7.16(1H, dd, J=8.7, 2.6Hz), 7.34(1H, d, J=8.7Hz), 7.5-7.7(3H, m), 7.7-8.0(6H, m), 8.10(1H, dd, J=8.6, 1.6Hz), 8.18(1H, br d), 8.27(1H, br s)
	3.35(3H, s), 3.89(3H, s), 4.10(2H, s), 6.37(1H, s), 7.25(1H, d, J=9.0Hz), 8.33(1H, s)	45		3.53(3H, q, J=0.8Hz), 6.36(1H, s), 7.25(1H, d, J=9.1Hz), 7.60(2H, m), 7.76(1H, dd, J=8.7, 1.8Hz), 7.90(3H, m), 8.21(1H, s),
	3.10(2H, s), 3.57(3H, s), 3.90(2H, s), 4.11(3H, s), 6.30(1H, s), 7.20(1H, d, I=9.0Hz), 7.27(5H, s), 8.65(1H, s) 3.57(3H, s), 3.90(5H, s), 4.10(2H, s), 6.37(1H, s), 7.25(1H, d,			8.33(1H, d, J=1.5Hz) 2.45(1H, d, J=2.4Hz), 3.55(3H, q, J=0.8Hz), 4.77(2H, dd, J=6.1, 2.4Hz), 6.23(1H, s), 7.23(1H, d, J=9.0Hz), 7.59(2H, m),
2-167	J=9.0Hz), 8.15(1H, s) 3.50(3H, s), 3.55(3H, s), 3.69(2H, s), 6.16(1H, s), 7.18(1H, d, J=9.0Hz), 7.28(5H, m), 8.33(1H, s)		2-196	7.90(4H, m), 8.32(1H, d, J=0.7Hz), 8.36(1H, s) 1.28(3H, t, J=7.1Hz), 3.51(3H, q, J=0.5Hz), 4.05(2H, q, J=7.1Hz), 6.25(1H, s), 7.57(2H, m), 7.88(4H, m), 8.31(1H, s),
	2.14(3H, s), 3.20(2H, s), 3.56(3H, s), 3.88(3H, s), 6.29(1H, s), 7.20(1H, d, J=9.0Hz), 8.67(1H, s) 3.36(3H, s), 3.52(3H, s), 3.79(2H, m), 5.96(1H, s), 7.17(1H, d,	50		8.38(1H, s) 1.20(3H, t, J=6.2Hz), 1.29(3H, t, J=6.2Hz), 3.54(3H, q, J=0.6Hz), 4.43(1H, q, J=6.2Hz), 6.23(1H, s), 7.59(2H, m),
	J=9.0Hz), 7.49(3H, m), 7.75(3H, m), 8.75(1H, m) 1.28(3H, t, J=7.1Hz), 3.32(2H, s), 3.36(2H, s), 3.55(3H, s), 3.88(3H, s), 4.18(2H, q, J=7.1Hz), 6.30(1H, s), 7.21(1H, d,		2-198	7.80(1H, m), 7.90(3H, s), 8.20(1H, s), 8.30(1H, s) 0.89(3H, t), 1.25(4H, m), 1.53(2H, m), 2.23(2H, m), 3.56(3H, q,
2-171	1-9.0Hz), 8.33(1H, s) 1.26(3H, t, J=7.1Hz), 2.62(2H, m), 2.85(2H, m), 3.26(2H, s), 3.56 (3H, s), 3.88(3H, s), 4.15(2H, q, J=7.1Hz), 6.35(1H, s), 7.21(1H,	55	2-199	J=0,9Hz), 3.83(3H, s), 6.30(1H, s), 7.20(1H, d, J=9.0Hz), 7.58(1H, br s) 3.54(3H, q, J=0.7Hz), 6.29(1H, s), 6.73(1H, dd, J=8.3, 4.5Hz), 7.43(1H, d, J=9.9Hz), 7.57(2H, m), 7.86(5H, m), 8.21(1H, dd,
2-172	d, J=9.0Hz), 8.66(1H, s) 1.27(3H, t, J=7.4Hz), 2.60(2H, m), 3.27(2H, s), 3.56(3H, s), 3.88 (3H, s), 6.28(1H, s), 7.20(1H, d, J=9.0Hz), 8.73(1H, s)		2-200	J=8.3, 1.7Hz), 8.37(1H, dd, J=4.5, 1.7Hz), 8.45(1H, br s) 3.52(3H, q, J=1.0Hz), 4.82(2H, d, J=1.5Hz), 6.26(1H, s), 7.31(1H, d, J=8.8Hz), 7.59(2H, m), 7.93(5H, m), 8.35(1H, d,
	1.28(6H, m), 2.97(1H, m), 3.29(2H, s), 3.57(3H, s), 3.87(3H, s), 6.28(1H, s), 7.20(1H, d, J=9.0Hz), 8.79(1H, s)	60	2-201	J=1.1Hz) 2.43(3H, s), 3.54(3H, q, J=0.9Hz), 6.36(1H, s), 7.18(2H, m),
	0.99(3H, m), 1.60(2H, m), 2.53(2H, m), 3.25(2H, s), 3.57(3H, s), 3.90(3H, s), 6.28(1H, s), 7.20(1H, d, J=9.0Hz), 8.80(1H, s) 3.53(3H, q, J=3.9Hz), 3.79(3H, s), 6.30(1H, s), 6.90(1H, d, L=15.7Hz), 7.26(2H, m), 7.26		2-202	7.59(2H, m), 7.8(6H, m), 8.28(1H, s) 3.51(3H, s), 3.87(3H, s), 6.24(1H, s), 7.12(1H, d, J=8.8Hz), 7.42(1H, d, J=8.8Hz), 7.59(2H, m), 7.81(1H, m), 7.91(3H, m),
2-176	J-15.7Hz), 7.36(3H, m), 7.53(4H, m), 9.84(1H, s) 3.41(3H, s), 3.79(3H, s), 6.23(1H, s), 7.58(1H, d, J=8.5Hz), 6.84(1H, d, J-15.6Hz), 6.90(1H, d, J-15.6Hz), 7.35(6H, m), 7.50(4H, m), 7.79(1H, d, J-5.6Hz), 7.82(1H, d, J-15.6Hz)	65	2-203	8.06(1H, s), 8.31(1H, s) 3.53(3H, s), 6.34(1H, s), 7.17(1H, m), 7.26(1H, m), 7.57(2H, m), 7.73(1H, 2d, J=1.6Hz, 8.6Hz), 7.88(4H, m), 8.18(1H, s), 8.23(1H, s)

		•		
	¹H NMR data			¹ H NMR data
No.	NMR(CDCl ₃ , 300MHz) ppm	5	No.	NMR(CDCl ₃ , 300MHz) ppm
2-204	0.78(2H, m), 0.97(2H, m), 1.4(1H, m), 3.55(3H, s), 6.34(1H, s),	•	4-27	1.30(9H, s), 3.50(3H, s), 3.96(3H, s), 6.32(1H, s), 6.84(1H, m),
2-205	7.12(1H, m), 7.24(1H, m), 7.43(1H, m), 7.85(1H, broad) 3.36(3H, s), 6.22(1H, s), 7.24(1H, d, J=8.4Hz), 7.41(2H, m),		4-28	7.10-7.40(5H, m) 3.43(3H, s), 3.82(3H, s), 5.25(2H, m), 6.12(1H, s), 6.73(1H, br s),
2 200	7.65(4H, m), 7.86(1H, 2d, J=2.0Hz, 8.4Hz), 8.0–8.2(4H, m), 8.55(1H, s)	10	4-29	7.16(1H, d, J=9.0Hz), 7.30-7.55(3H, m), 7.70-7.85(4H, m) 3.57(3H, s), 3.85(3H, s), 5.17(1H, d, J=11.9Hz), 5.27(1H, d,
	0.76-0.93(4H, m), 1.50(1H, m), 3.55(3H, s), 3.85(3H, s), 6.31(1H, s), 7.19(1H, d, J=8.9Hz), 7.6(1H, broad)			J=11.9Hz), 6.28(1H, s), 6.64(1H, br s), 6.92(2H, m), 7.17(1H, d, J=9.0Hz), 7.34(1H, m)
2-207	3.44(3H, s), 3.82(3H, s), 6.24(1H, s), 7.32(1H, d, J=8.3Hz), 7.48(2H, m), 7.6-7.8(5H, m), 8.10.(1H, s), 8.23(1H, s),		4-30	3.49(3H, s), 3.84(3H, s), 4.99(1H, d, J=12.6Hz), 5.06(1H, d, J=12.6Hz), 6.23(1H, s), 6.64(1H, br s), 7.00-7.25(4H, m)
3-1	8.78(1H, s) 2.74(3H, d, J=4.7Hz), 2.76(3H, d, J=4.7Hz), 3.53(3H, br q,	15	4-31	1.23(3H, t, J=7.6Hz), 2.64(2H, q, J=7.6Hz), 3.50(3H, d, J=0.9Hz), 3.83(3H, s), 5.02(1H, d, J=12.1Hz), 5.08(1H, d,
	J-1.3Hz), 3.83(3H, s), 6.3(1H, s), 6.66(1H, m), 7.35(1H, m), 7.39(1H, d, J-8.8Hz)		4-32	
3-2	0.76(3H, t, J=7.4Hz), 1.28(2H, m), 2.96(2H, m), 3.57(3H, s), 3.84(3H, s), 5.22(1H, m), 6.33(1H, s), 6.70(1H, s), 7.14(1H, d,		4-33	7.10-7.21(2H, m), 7.38-7.44(2H, m) 3.52(3H, d, J=0.8Hz), 3.86(3H, s), 5.22(1H, d, J=13.2Hz),
3-3	J=9.0Hz) 1.22(12H, m), 3.54(3H, br s), 3.83(3H, s), 3.86(2H, m), 6.25(1H,	20		5.31(1H, d, J=13.2Hz), 6.22(1H, s), 6.71(1H, br s), 7.18(1H, d, J=9.0Hz), 7.40-7.60(3H, m), 7.68(1H, m)
3-4	s), 6.45(1H, s), 7.04(1H, d, J=9.1Hz) 3.52(3H, s), 3.76(3H, s), 6.30(1H, s), 6.90-7.25(6H, m),	20	4-34	3.54(3H, s), 3.88(3H, s), 5.49(2H, s), 6.28(1H, s), 7.24(1H, d, J=9.0Hz), 7.45-7.70(3H, m), 8.09(1H, m)
3-6	7.37(1H, s), 7.61(1, s) 3.46(3H, s), 3.77(3H, m), 4.19(2H, m), 5.75(1H, m), 6.19(1H, s),		4-35	3.53(3H, s), 3.83(3H, s), 3.84(3H, s), 5.12(1H, d, J=12.5Hz), 5.18(1H, d, J=12.5Hz), 6.24(1H, s), 6.72(1H, br s),
3-7	6.90-7.30(7H, m) (rotameric mixture)1.16(3H, d, J=6.8Hz), 1.23(3H, d, J=6.8Hz),		4-36	6.80-6.95(2H, m), 7.15(1H, d, J=9.0Hz), 7.20-7.40(2H, m) 3.51(3H, d, J=1.0Hz), 3.87(3H, s), 5.17(1H, d, J=13.5Hz),
	3.47(3H, s), 3.53(3H, s), 3.77(6H, s), 4.72(2H, m), 5.72(2H, m), 6.11(1H, s), 6.33(1H, s), 6.95–7.35(14H, m)	25		5.24(1H, d, J=13.5Hz), 6.24(1H, s), 6.89(1H, br s), 7.18(1H, d, J=9.0Hz), 7.20-7.29(2H, m), 7.68(1H, m), 8.58(1H, m)
3-8	2.99(3H, s), 3.55(3H, s), 3.63(3H, s), 4.38(1H, d, J=16.2Hz), 4.58(1H, d, J=16.2Hz), 6.27(1H, s), 6.58(1H, s), 7.12(1H, d,		4-37	2.31(6H, s), 3.52(3H, s), 3.84(3H, s), 5.01(2H, m), 6.23(1H, s), 6.65(1H, br s), 6.92(2H, br s), 6.96(1H, br s), 7.16(1H, d,
3-9	J=9.1Hz), 7.19(2H, m), 7.33(3H, m) 2.31(3H, s), 3.47(3H, s), 3.79(3H, s), 4.17(2H, m), 5.58(1H, m),		4-38	J=9.0Hz) 2.25(3H, s), 2.31(3H, s), 3.53(3H, d, J=0.9Hz), 3.84(3H, s),
3-10	6.18(1H, s), 6.74(1H, s), 6.90–7.15(5H, m) (CDCl ₃ +CD ₃ OD)3.52(3H, br s), 3.82(3H, s), 4.29(2H, m),	30		5.04(1H, d, J=12.2Hz), 5.09(1H, d, J=12.2Hz), 6.25(1H, s), 6.65(1H, br s), 7.08(3H, m), 7.16(1H, d, J=9.0Hz)
	6.23(1H, s), 6.50(1H, m), 6.70-6.85(2H, m), 7.14(1H, d, J=9.0Hz), 7.22(1H, m)		4-39	3.53(3H, br s), 3.86(3H, s), 5.14(2H, m), 6.27(1H, s), 6.70(1H, br s), 6.90-7.10(3H, m), 7.19(1H, d, J=9.0Hz)
3-11	2.57(2H, m), 3.21(2H, m), 3.54(3H, s), 3.74(3H, s), 5.51(1H, m), 6.27(1H, s), 7.00-7.30(7H, m)		4-40	3.51(3H, d, J=0.9Hz), 3.81(3H, s), 3.82(3H, s), 4.98(1H, d, J=12.0Hz), 5.05(1H, d, J=12.0Hz), 6.22(1H, s), 6.63(1H, br s),
3-12	(CDCl ₃ +CD ₃ OD)1.72(2H, m), 2.58(2H, m), 3.11(2H, m), 3.53(3H, s), 3.85(3H, s), 5.78(1H, m), 6.28(1H, s), 7.05-	35	4-41	6.87(2H, m), 7.16(1H, d, J=9.0Hz), 7.25 (2H, m) 3.53(3H, d, J=0.9Hz), 3.83(3H, s), 4.95(1H, d, J=12.1Hz),
3-13	7.35(7H, m) 3.55(3H, s), 3.81(3H, s), 6.35(1H, s), 7.08(1H, m), 7.1(1H, d,			5.01(1H, d, J=12.1Hz), 5.96(2H, s), 6.25(1H, s), 6.63(1H, br s), 6.78(3H, m), 7.17(1H, d, J=9.0Hz)
3-23	J=9.0Hz), 7.25-7.45(3H, m), 7.55-7.80(5H, m) 3.59(3H, s), 3.64(3H, s), 4.62(1H, d, J=14.8Hz), 4.98(1H, d,		4-42	1.24(6H, d, J=6.9Hz), 2.91(1H, m), 3.50(3H, d, J=0.9Hz), 3.82(3H, s), 5.02(1H, d, J=12.1Hz), 5.08(1H, d, J=12.1Hz),
3-24	J=14.8Hz), 6.33(1H, s), 6.47(1H, s), 6.95-7.50(11H, m) 3.40(3H, s), 3.78(3H, s), 5.88(1H, m), 5.98(1H, m), 6.12(1H, s),	40	4-43	6.23(1H, s), 6.70(1H, br s), 7.15(1H, d, J=9.0Hz), 7.22(4H, m) 3.48(3H, d, J=1.0Hz), 3.85(3H, s), 5.10(1H, d, J=13.0Hz),
3-26	7.00-7.30(12H, m) 3.56(3H, s), 3.89(3H, s), 4.86(2H, s), 6.50(1H, s), 6.33(1H, s),			5.18(1H, d, J=13.0Hz), 6.18(1H, s), 6.72(1H, br s), 7.18(1H, d, J=9.0Hz), 7.41(2H, m), 7.60(2H, m)
4-1	7.25(1H, d, J=9.0Hz) 3.54(3H, s), 3.64(3H, s), 3.84(3H, s), 6.24(1H, s), 7.25(1H, s)		4-44	
4-2	2.87(3H, s), 2.96(3H, s), 3.53(3H, s), 3.63(3H, s), 6.3(1H, s), 6.85(1H, d, J=8.9Hz)	45	4-45	7.10(3H, m), 7.18(1H, d, J=9.0Hz), 7.30(1H, m) 3.49(3H, d, J=0.9Hz), 3.82(3H, s), 5.05(1H, d, J=12.6Hz),
4-3	3.51(3H, d, J=1.0Hz), 3.95(3H, s), 6.35(1H, s), 6.81(1H, br s), 7.03(2H, m), 7.22(1H, d, J=9.0Hz), 7.23(1H, m), 7.34(2H, m)			5.11(1H, d, J=12.6Hz), 6.21(1H, s), 6.79(1H, br s), 7.10–7.20(3H, m), 7.31–7.36(2H, m)
4-4	2.22(6H, s), 3.50(3H, d, J=0.5Hz), 3.94(3H, s), 6.35(1H, s), 6.72(1H, dd, J=8.2, 2.5Hz), 6.77(1H, d, J=2.5Hz), 6.84(1H, br s),		4-46	0.89(4H, br s), 3.54(3H, d, J=1.0Hz), 3.75(3H, s), 4.15(2H, m),
4-5	7.07(1H, d, J=8.2Hz), 7.20(1H, d, J=9.0Hz) 3.49(3H, d, J=1.0Hz), 3.83(3H, s), 5.05(1H, d, J=12.3Hz),	50	4-47	6.28(1H, s), 6.56(1H, br s), 7.15(1H, d, J=9.0Hz), 7.26(5H, m) 1.50(3H, d, J=6.6Hz), 3.48(3H, s), 3.84(3H, s), 5.69(1H, q,
4.7	5.12(1H, d, J=12.3Hz), 6.20(1H, s), 6.68(br s), 7.15(1H, d, J=9.0Hz), 7.26-7.37(5H, m)		4	J=6.6Hz), 5.97(1H, s), 6.73(1H, br s), 7.14(1H, d, J=9.0Hz), 7.20-7.40(5H, m)
4-7	3.50(3H, br s), 3.82(3H, s), 5.01(1H, d, J=12.2Hz), 5.07(1H, d, J=12.2Hz), 6.20(1H, s), 6.69(1H, br s), 7.02(2H, m), 7.17(1H, d, L-0.0Hz), 7.29(2H, m)		4-48	5.25(1H, d, J=12.3Hz), 6.31(1H, s), 6.61(1H, br s), 7.20(1H, d,
4-10	J-9.0Hz), 7.28(2H, m) 3.48(3H, br s), 3.99(3H, s), 6.37(1H, s), 6.98(1H, br s), 7.14(1H, dd, J-8.9, 2.3Hz), 7.24(1H, d, J-9.0Hz), 7.43-7.51(3H,	55	4-49	J=9.0Hz) 3.52(3H, d, J=0.9Hz), 5.22(2H, s), 6.33(1H, s), 6.53(1H, br s),
4-11	m), 7.37(7.84(3H, m) 1.20–1.85(10H, m), 3.56(3H, br s), 3.86(3H, s), 4.57(1H, m),		4-50	
4-13	6.32(1H, s), 6.53(1H, s), 7.17(1H, d, J=9.0Hz)		4-51	2.20(3H, s), 3.45(3H, d, J=0.8Hz), 5.10(2H, m), 6.22(1H, s), 6.90-7.10(2H, m), 7.15-7.27(3H, m)
4-23	7.17(1H, d, J=9.0Hz), 7.43-7.52(5H, m) 3.50(3H, s), 4.75(2H, m), 5.13(2H, m), 6.24(1H, s), 6.54(1H, s),	60	4-52 4-53	2.21(6H, s), 3.50(3H, br d J=0.5Hz), 3.94(3H, s), 6.35(1H, s),
4-24	7.25(1H, d, J=8.7Hz), 7.35(5H, m)			6.73(2H, m), 6.84(1H, br s), 7.07(1H, d, J=8.1Hz), 7.20(1H, d, J=9.0Hz)
4-25	7.16(1H, d, J=9.0Hz), 7.20-7.40(3H, m)		4-54	5.25(1H, d, J=12.9Hz), 6.24(1H, s), 6.71(1H, br s), 7.18(1H, d,
4-26	6.83(2H, s), 7.09(1H, br s), 7.20(1H, d, J=9.0Hz)	65	4-55	J=9.0Hz), 7.2-7.4(4H, m) 2.11(6H, s), 3.52(3H, s), 3.95(3H, s), 6.33(1H, s), 7.03(3H, br s),
	6.65(1H, br s), 7.00-7.20(4H, m)			7.08(1H, br s), 7.22(1H, d, J=9.0Hz)

	¹ H NMR data			¹ H NMR data
No.	NMR(CDCl ₃ , 300MHz) ppm	5	No.	NMR(CDCl ₃ , 300MHz) ppm
4-56	3.51(3H, br d, J=1.1Hz), 3.83(3H, s), 5.07(1H, d, J=12.3Hz), 5.14(1H, d, J=12.3Hz), 6.23(1H, s), 6.68(1H, br s), 7.1–7.3(4H, m)		5-27	1.67(2H, dt, J=26.5, 5.8Hz), 3.86(3H, s), 3.89(2H, s), 3.97(2H, dt, J=42.4, 5.6Hz), 7.27(1H, d, J=8.7Hz), 7.52(4H, m), 7.78(4H, m), 7.88(4H, m), 8.54(2H, s)
4-57 4-58	2.88(2H, t, J=6.5Hz), 3.55(3H, s), 3.77(3H, s), 4.25(2H, t, J=6.5Hz), 6.29(1H, s), 6.52(1H, br s), 7.1-7.4(6H, m) 3.52(3H, br d, J=1.0Hz), 3.83(3H, s), 3.84(3H, s), 5.12(1H, d,	10	5-28	J=6.8Hz), 4.52(2H, dt, J=26.2, 5.8Hz), 3.81(3H, s), 4.01(2H, s), 4.13(2H, d, J=6.8Hz), 4.52(2H, dt, J=46.9, 5.6Hz), 4.64(2H, s), 7.23(1H, d, J=9.1Hz), 7.36(5H, m), 8.67(1H, br s)
	J=12.5Hz), 5.17(1H, d, J=12.5Hz), 6.24(1H, s), 6.71(1H, br s), 6.90(2H, m), 7.15(1H, d, J=9.0Hz), 7.2-7.3(2H, m)		6-1	9.88(1H, s)
4-59	3.50(3H, s), 3.74(6H, s), 6.32(1H, s), 6.56(2H, d, J=8.5Hz), 7.11(1H, t, J=8.5Hz), 7.14(1H, br s), 7.18(1H, d, J=9.0Hz)		6-2	2.48(3H, s), 4.25(2H, br s), 5.70(1H, br s), 6.59(1H, d, J=9.4Hz), 7.07(1H, t, J=58.0Hz)
4-60	2.34(3H, s), 3.50(3H, br d, J=1.1Hz), 3.83(3H, s), 5.00(1H, d, J=12.1Hz), 5.07(1H, d, J=12.1Hz), 6.20(1H, s), 6.64(1H, br s), 7.1-7.2(5H, m)	15	6-13	2.53(3H, s), 6.89.(1H, ddd, J=12.5, 8.3, 2.4Hz), 7.05(1H, m), 7.10(1H, t, J=58.0Hz), 7.33(1H, d, J=2.2Hz), 8.21(1H, ddd, J=9.1, 9.1, 6.5Hz), 8.57(1H, d, J=2.2Hz), 8.72(1H, br d,
4-61	3.50(3H, br d, J=1.0Hz), 3.83(3H, s), 5.01(1H, d, J=12.5Hz), 5.07(1H, d, J=2.5Hz), 6.20(1H, s), 6.66(1H, br s), 7.17(1H, d, J=9.0Hz), 7.2-7.3(4H, m)		6-14	J=16.5Hz) 2.37(3H, s), 3.88(3H, s), 6.94(1H, ddd, J=10.9, 8.3, 2.3Hz), 6.99(1H, m), 7.05(1H, t, J=58.0Hz), 7.26(1H, d, J=9.1Hz),
4-62	3.53(3H, br d, J=1.0Hz), 3.85(3H, s), 5.12(1H, d, J=13.0Hz), 5.20(1H, d, J=13.0Hz), 6.25(1H, s), 6.67(1H, br s), 7.19(1H, d,	20	6-15	8.04(1H, ddd, J=8.8, 8.8, 6.5Hz), 8.48(1H, br d, J=13.4Hz) 2.31(3H, s), 3.88(3H, s), 7.03(1H, t, J=58.0Hz), 7.25(1H, d,
4-63	J=9.0Hz), 7.2-7.3(2H, m), 7.41(1H, d, J=1.9Hz) 3.51(3H, br d, J=1.0Hz), 3.83(3H, s), 3.88(3H, s), 3.89(3H, s), 4.99(1H, d, J=12.0Hz), 5.04(1H, d, J=12.0Hz), 6.20(1H, s),		6-16	J=9.4Hz), 7.60(2H, m), 7.8-8.0(4H, m), 8.25(1H, s), 8.40(1H, s) 2.54(3H, s), 7.12(1H, d, J=58.0Hz), 7.35(1H, d, J=2.3Hz), 7.61(2H, m), 7.83(1H, dd, J=8.5, 1.8Hz), 7.90(3H, m), 8.29(1H,
4-64	6.59(1H, br s), 6.8–6.9(3H, m), 7.16(1H, d, J=9.0Hz) 3.51(3H, br d, J=0.9Hz), 3.86(3H, s), 5.15(1H, d, J=13.5Hz), 5.21(1H, d, J=13.5Hz), 6.21(1H, s), 6.68(1H, br s), 7.21(1H, d,	25	6-17	s), 8.48(1H, d, J=2.3Hz), 8.64(1H, br s) 2.29(3H, s), 3.89(3H, s), 7.03(1H, t, J=58.0Hz), 7.53(1H, s), 7.60(2H, m), 7.92(4H, m), 8.07(1H, br s), 8.37(1H, br s)
4-65	J=9.0Hz), 7.46(2H, d, J=8.7Hz), 8.21(2H, d, J=8.7Hz) 3.50(3H, br d, J=1.0Hz), 3.81(3H, s), 3.85(3H, s), 5.02(1H, d, J=12.5Hz), 5.10(1H, 12.5Hz), 6.21(1H, s), 6.67(1H, br s),		6-18 6-19	1.29(3H, t, J=7.1Hz), 2.45(3H, s), 4.3(2H, q, J=7.1Hz), 6.7(1H, broad), 7.03(1H, t, J=58.0Hz), 7.83(1H, s)
4-66	6.8-6.9(3H, m), 7.17(1H, d, J=9.0Hz), 7.25(1H, t, J=7.7Hz) 3.53(3H, br d, J=0.9Hz), 3.82(3H, s), 4.11(2H, s), 6.29(1H, s),		6-20	1.27(3H, t, J=7.0Hz), 2.48(3H, s), 4.18(2H, q, J=7.0Hz), 4.51(2H, s), 6.67(1H, s), 6.91(1H, s), 7.08(1H, t, J=58.0Hz) 2.38(3H, s), 4.77(4H, s), 7.16(1H, t, J=57.7Hz), 7.17(1H, s)
4-67	7.04(1H, br s), 7.20(1H, d, J=9.0Hz), 7.25(5H, m) 3.52(3H, br d, J=1.0Hz), 3.86(3H, s), 5.17(1H, d, J=13.2Hz), 5.21(1H, d, J=13.2Hz), 6.24(1H, s), 6.65(1H, br s), 7.20(1H, d,	30	6-21 6-22	2.47(3H, s), 7.04(1H, t, J=7.2Hz), 7.59(1H, 2d, J=2.3Hz, 8.6Hz), 7.91(1H, t, J=2.1Hz) 2.47(3H, s), 3.65(2H, s), 6.75(1H, 2d, J=2.2Hz, 9.4Hz), 7.07(1H,
	J=9.0Hz), 7.53(1H, t, J=8.0Hz), 7.63(1H, d, J=8.0Hz), 8.18(2H, m)		6-23	t, J=57.9Hz), 7.20(1H, t J=1.8Hz) 2.52(3H, s), 6.9–7.1(3H, m), 7.10(1H, t, J=57.9Hz), 7.14(1H,
4-68	2.35(3H, s), 3.50(3H, br d, J=1.0Hz), 3.83(3H, s), 5.02(1H, d, J=12.2Hz), 5.10(1H, d, J=12.2Hz), 6.22(1H, s), 6.65(1H, br s), 7.1-7.3(5H, m)	35	6-24	2d), 8.06(1H, m), 9.76(1H, s) 2.51(3H, s), 6.93(1H, 2d, J=2.2Hz, 8.9Hz), 7.12(1H, t, J=58.0Hz), 7.12(1H, s), 7.61(2H, m), 7.9–8.0(3H, m), 8.07(1H, 2d, J=1.7Hz),
4-69	2.27(3H, s), 2.30(6H, s), 3.54(3H, br d, J=1.1Hz), 3.83(3H, s), 5.10(1H, d, J=11.8Hz), 5.16(1H, d, J=11.8Hz), 6.25(1H, s), 6.63(1H, br s), 6.87(2H, s), 7.13(1H, d J=9.0Hz)		7-1 7-2	8.68(1H, s), 9.74(1H, s) 4.01(3H, s), 4.03(3H, br q, J=1.0Hz), 7.43(1H, d, J=8.4Hz) 3.84(3H, s), 4.06(3H, s), 4.57(2H, s), 6.57(1H, d, J=9.3Hz)
4-70	3.55(3H, br d, J=1.1Hz), 3.83(3H, s), 4.99(1H, d, J=13.1Hz), 5.08(1H, d, J=13.1Hz), 6.27(1H, s), 6.35(2H, m), 6.63(1H, br s),	40	7-3 7-14	4.07(3H, br d, J=0.9Hz), 6.61(1H, d, J=9.2Hz) 3.87(3H, s), 3.91(3H, s), 7.23(1H, d, J=8.9Hz), 7.60(2H, m),
5-1	7.17(1H, d, J=9.0Hz), 7.41(1H, m) 2.05(1H, br s), 4.05(3H, s), 7.66(1H, d, J=8.8Hz)		7-15	7.80-7.96(4H, m), 8.13(1H, br s), 8.32(1H, br s) 3.86(3H, s), 3.97(3H, s), 6.45(1H, d, J=15.6Hz), 7.20(1H, d,
5-2 5-3	4.36(2H, br s), 7.61(1H, d, J=8.7Hz) 2.30(2H, dt, J=27.2, 5.6Hz), 3.85(3H, s), 4.22(2H, t, J=6.8Hz),		8-1	J=8.9Hz), 7.30-7.52(6H, m), 7.60(1H, d, J=15.6Hz) 1.84(4H, m), 2.44(4H, m), 7.62(1H, d, J=8.5Hz), 9.88(1H, br)
5-4	4.42(2H, br s, 4.60(2H, dt J=46.9, 5.6Hz), 6.65(1H, d, J=9.5Hz) 2.24(2H, dt, J=26.7, 5.7Hz), 4.19(2H, t, J=6.9Hz), 4.61(2H, dt,	45	8-2 8-3	1.79(4H, m), 2.41(4H, m), 5.53(3H, br), 6.53(1H, d, J=9.1Hz) 1.81(4H, m), 2.43(4H, m), 2.58(1H, t, J=2.4Hz), 4.24(2H, br s),
5-5	J=47.0, 5.7Hz), 7.86(1H, d, J=9.0Hz) 2.30(2H, dt, J=26.4, 5.7Hz), 4.17(2H, t, J=6.8Hz), 4.55(2H, dt,		8-4	4.69(2H, t, J=2.4Hz), 6.60(1H, d, J=9.2Hz) 1.35(6H, d, J=6.2Hz), 1.82(4H, m), 2.43(4H, m), 4.11(2H, br s), 4.48(1H, q, J=6.2Hz), 6.60(1H, d, J=9.4Hz)
5-6 5-7	J=47.0, 5.7Hz), 4.88(2H, br s), 6.55(1H, d, J=9.6Hz), 8.07(1H, br) 4.06(3H, s), 7.87(1H, s) 2.13(2H, m), 3.06(3H, s), 3.93(2H, t, J=4.8Hz), 4.60(2H, br d,		8-5	1.77(4H, m), 1.82(4H, m), 2.43(4H, m), 2.34(4H, m), 4.04(2H, br s), 4.79(1H, m), 6.61(1H, d, J=9.4Hz)
5-8	J=47.0Hz), 7.53(1H, s) 2.30(2H, dt, J=26.4, 5.6Hz), 4.24(2H, t, J=6.7Hz), 4.58(2H, dt,	50	8-6 8-7	1.82(4H, m), 2.42(4H, m), 4.03(3H, s), 7.48(1H, d, J=8.6Hz) 1.80(4H, m), 2.08(2H, br s), 2.41(4H, m), 3.83(3H, s), 6.60(1H, d, J=9.4Hz)
5-9	J=46.8, 5.6Hz), 7.87(1H, s), 9.62(1H, s) 2.06(1H, s), 2.30(2H, dtt, J=27.7, 6.8, 5.4Hz), 4.24(2H, t,		8-8	1.78(4H, m), 2.38(4H, m), 3.86(3H, s), 6.96(2H, m), 7.25(1H, d, J=9.0Hz), 8.01(1H, m), 8.19(1H, d, J=12.6Hz)
5-15	J=6.8Hz), 4.60(2H, dt, J=46.9, 5.4Hz), 5.90(2H, s), 6.77(1H, s) 2.30(2H, dtt, J=26.0, 6.1, 5.5Hz), 2.62(1H, d, J=2.4Hz), 4.21(2H, t, J=6.8Hz), 4.48(2H, s), 4.60(2H, dt, J=46.9, 5.5Hz),	55	8-9 8-13	1.68(4H, m), 2.32(4H, m), 3.82(3H, s), 7.22(1H, d, J=9.1Hz), 7.59(2H, m), 7.91(5H, m), 8.34(1H, s) 1.76(4H, m), 2.34(4H, m), 2.37(1H, t, J=2.4Hz), 4.77(2H, t,
5-16	4.73(2H, d, J=2.4Hz), 6.92(1H, s) 1.35(6H, d, J=6.2Hz), 2.29(2H, du, J=27.7, 5.9, 5.5Hz), 4.21(2H,		0 10	J=2.4Hz), 6.95(2H, m), 7.27(1H, d, J=8.9Hz), 8.04(1H, m), 8.38(1H, br d, J=12.5Hz)
5-17	t, J=6.8Hz), 4.29(2H, br s), 4.53(1H, q, J=6.2Hz), 4.59(2H, dt, J=46.9, 5.5Hz), 6.92(1H, s) 2.30(2H, dt, J=26.4, 5.7Hz), 2.75(1H, t, J=2.5Hz), 4.19(2H, t,		8-18	1.28(6H, d, J=6.2Hz), 1.76(4H, m), 2.32(4H, m), 4.45(1H, q, J=6.2Hz), 6.95(2H, m), 7.24(1H, d, J=9.0Hz), 8.00(1H, m), 8.31(1H, br d, J=12.7Hz)
5-18	J=6.8Hz), 4.61(2H, dt, J=47.0, 5.7Hz), 4.72(2H, d, J=2.5Hz), 5.02(2H, br s), 6.61(1H, d, J=9.4Hz)	60	8-30	1.71(4H, m), 2.33(4H, m), 3.80(3H, s), 5.39(1H, d, J=10.9Hz), 5.86(1H, d, J=17.6Hz), 6.75(1H, dd, J=17.6, 10.9Hz), 7.21(1H, d, J=0.0Hz), 7.21(1H, d, J=0.0
2-10	1.35(6H, d, J=6.0Hz), 2.30(2H, dtt, J=26.9, 6.8, 5.4Hz), 4.21(2H, t, J=6.8Hz), 4.37(2H, br s), 4.52(1H, penta, J=6.0Hz), 4.59(2H, dt, J=46.5, 5.4Hz), 6.65(1H, d, J=9.6Hz)		8-31	d, J=9.0Hz), 7.47(2H, d, J=8.2Hz), 7.77(2H, d, J=8.2Hz), 7.85(1H, s) 1.76(4H, m), 2.38(4H, m), 3.82(3H, s), 6.52(1H, d, J=15.6Hz),
5-26	2.08(2H, m), 3.84(3H, s), 4.09(2H, t, J=6.7Hz), 4.31(2H, dt, J=46.9, 5.6Hz), 7.26(1H, d, J=9.1Hz), 7.55(2H, m), 7.89(4H, m),	65		7.19(1H, d, J=9.0Hz), 7.37(3H, m), 7.47(3H, m), 7.65(1H, d, J=15.6Hz)
	8.40(1H, s), 8.53(1H, br s)		8-32	1.85(4H, m), 2.45(4H, m), 8.31(2H, s)

	Irran en :			ly an en
	¹ H NMR data	_		1H NMR data
No.	NMR(CDCl ₃ , 300MHz) ppm	5	No.	NMR(CDCl ₃ , 300MHz) ppm
8-33	1.81(4H, m), 2.43(4H, m), 7.37(1H, d, J=8.5Hz), 7.69(1H, 2d,		12-7	1.50(3H, m), 1.78(1H, m), 2.05(1H, m), 2.28(1H, m), 2.89(1H,
8-34	J=2.3Hz, 8.5Hz), 8.10(1H, d, J=2.3Hz) 1.86(4H, m), 2.46(4H, m), 7.72(1H, d, J=8.8Hz), 8.56(1H, 2d,			m), 3.90(1H, m), 3.95(2H, s), 4.15(1H, m), 6.81(2H, m), 6.99(1H, d, J=7.9Hz)
0 25	J=2.6Hz, 8.8Hz), 8.92(1H, d J=2.6Hz)	10	12-8	1.41(3H, m), 1.68(1H, m), 1.93(1H, m), 2.24(1H, m), 2.83(1H, m), 2.83(1H, m), 2.33(2H, m), 2.54(2H, m), 2.54(
8-35	1.80(4H, m), 2.40(4H, m), 3.83(2H, s), 6.79(2H, m), 6.91(1H, d, J=8.3Hz)	10		m), 3.88(1H, m), 4.11(1H, m), 7.23(2H, m), 7.54(2H, m), 7.87(4H, m), 7.97(1H, s), 8.38(1H, s), 9.11(1H, s)
8-36	1.78(4H, m), 2.40(4H, m), 7.15–7.30(2H, m), 7.6(2H, m), 7.9(4H,		13-1 13-2	4.36(1H, br s), 7.61(1H, d, J=8.6Hz), 7.88(2H, m), 7.99(2H, m)
9-1	m), 8.14(1H, d, J=2.2Hz), 8.34(1H, s), 8.59(1H, s) 1.91(4H, m), 3.67(4H, m), 7.65(1H, d, J=8.3Hz)		13-2	5.42(1H, br s), 6.58(1H, d, J=9.4Hz), 7.95(4H, m) 3.86(3H, s), 7.28(1H, d, J=9.0Hz), 7.50-7.95(10H, m), 8.03(1H,
9-3 9-4	1.87(4H, m), 3.62(4H, m), 4.03(3H, s), 7.53(1H, d, J=8.5Hz) 1.88(4H, m), 3.65(4H, m), 3.85(3H, s), 4.28(2H, s), 6.64(1H, d,	15	13-4	br s), 8.28(1H, br s) 3.89(3H, s), 6.89.(2H, m), 7.30(1H, d, J=9.0Hz), 7.70-7.95(5H,
	J=9.5Hz)	15		m), 8.34(1H, m)
9-12	2.01(4H, m), 3.73(2H, m), 3.92(1H, m), 4.15(1H, m), 7.53(1H, d, J=8.5Hz), 7.76(1H, J=8.5, 2.4Hz), 8.21(1H, d, J=2.4Hz)		13-5	7.33(2H, m), 7.56(2H, m), 7.7-8.0(8H, m), 8.19(1H, d, J=1.4Hz), 8.32(1H, s), 8.56(1H, br s)
9-13	1.90(4H, m), 3.69(2H, m), 3.95(2H, m), 4.85(2H, br s), 6.79(2H, m), 7.00(1H, d, J=8.3Hz)		14-1	1.23(3H, t, J=7.1Hz), 2.51(2H, m), 2.75(2H, m), 3.55(3H, s), 3.90(3H, s), 4.10(2H, q, J=7.1Hz), 6.36(1H, s), 7.20(1H, d,
9-14	1.94(4H, m), 3.69(2H, m), 4.03(2H, m), 7.27(2H, m), 7.59(2H,	20	14-2	J=8.9Hz) 1.30(3H, t, J=7.1Hz), 3.56(3H, s), 3.82(3H, s), 4.23(2H, q,
9-15	m), 7.94(4H, m), 8.19(1H, d, J=2.0Hz), 8.47(1H, s), 9.11(1H, br s) 1.70(4H, m), 3.50(4H, m), 3.83(3H, s), 7.23(1H, d, J=9.0Hz),		14-2	J=7.1Hz), 6.36(1H, s), 6.60(1H, d, J=16.2Hz), 7.31(1H, d,
9-16	7.59(2H, m), 7.92(4H, m), 8.34(1H, s), 8.43(1H, s) 1.82(4H, m), 3.58(4H, m), 3.87(3H, s), 6.9-7.1(2H, m), 7.27(1H,		14-3	J=8.6Hz), 7.36(1H, d, J=16.2Hz) 3.01(1H, m), 3.25(1H, m), 3.57(3H, s), 3.70, 3.73(3H, 2s), 3.93,
	d, J=9.0Hz), 8.07(1H, m), 8.49(1H, d, J=13.1Hz)			3.94(3H, 2s), 4.55(1H, m), 6.36, 6.37(1H, 2s), 7.26(1H, d,
9-17	1.89(4H, m), 3.65(4H, m), 7.53(1H, d, J=8.6Hz), 7.72(1H, 2d, J=2.3Hz, 8.5Hz), 8.13(1H, d, J=2.3Hz)	25	14-4	J=8.8Hz) 1.23(3H, t, J=7.1Hz), 3.03(1H, m), 3.22(1H, m), 3.55(3H, s),
9-18	1.85(4H, m), 3.63(4H, m), 4.03(2H, s), 6.82(2H, m), 7.09(1H, 2d, J=0.6Hz, 8.0Hz)			3.94(3H, s), 4.14(2H, m), 4.51(1H, m), 6.37(1H, s), 7.26(1H, d, J=8.8Hz)
9-19	1.80(4H, m), 3.60(4H, m), 7.22(1H, 2d, J=2.3Hz, 8.7Hz),		14-5	1.24(3H, t, J=7.1Hz), 2.95(1H, m), 3.31(1H, m), 3.56(3H, s),
	7.35(1H, d, J=8.7Hz), 7.56(2H, m), 7.89(4H, m), 8.08(1H, d, J=2.3Hz), 8.43(1H, s), 9.41(1H, s)			3.93(3H, s), 4.16(2H, m), 4.54(1H, m), 6.35(1H, s), 7.26(1H, d, J=8.8Hz)
11-1	4.05(3H, s), 7.30(1H, m), 7.53(1H, d, J=8.7Hz), 8.01(1H, d, J=2.1Hz)	30	14-6	0.89(3H, t, J=7.4Hz), 1.61(2H, m), 3.02(1H, m), 3.23(1H, m), 3.56(3H, s), 3.94(3H, s), 4.07(2H, m), 4.53(1H, m), 6.37(1H, s),
11-2	7.33(1H, m), 7.70(1H, d, J=8.4Hz), 8.06(1H, d, J=2.1Hz),			7.25(1H, d, J=8.8Hz)
11-3	10.29(1H, s) 6.53(1H, d, J=9.5Hz), 6.53(3H, br), 7.40(1H, s), 8.17(1H, s)		14-7	0.90(3H, t, J=7.4Hz), 1.62(2H, m), 2.96(1H, m), 3.31(1H, m), 3.56(1H, s), 3.94(3H, s), 4.08(2H, m), 4.56(1H, m), 6.36(1H, s),
11-4	3.86(3H, s), 4.33(2H, br s), 6.65(1H, d, J=9.5Hz), 7.34(1H, dq,		44.0	7.25(1H, d, J=8.9Hz)
11-5	J=2.2, 1.0Hz), 8.10(1H, d, J=2.2Hz) 3.31(3H, s), 3.79(3H, s), 4.33(2H, br s), 7.21(1H, d, J=1.1Hz),	35	14-8	0.90(3H, t, J=7.3Hz), 1.33(2H, m), 1.58(2H, m), 3.03(1H, m), 3.22(1H, m), 3.55(3H, s), 3.94(3H, s), 4.08(2H, m), 4.52(1H, m),
11-6	7.49(1H, d, J=8.8Hz), 7.95(1H, d, J=2.2Hz) 3.86(3H, s), 7.26(1H, d, J=9.2Hz), 7.27(1H, dq, J=2.2, 1.1Hz),		14-9	6.37(1H, s), 7.26(1H, d, J=8.8Hz) 0.91(3H, t, J=7.3Hz), 1.33(2H, m), 1.59(2H, m), 2.98(1H, m),
	7.56(2H, m), 7.88(4H, m), 7.97(1H, d, J=2.2Hz), 8.38(1H, s),			3.32(1H, m), 3.56(3H, s), 3.93(3H, s), 4.11(2H, m), 4.56(1H, m),
11-7	8.79(1H, s) 3.93(3H, s), 7.30(1H, d, J=8.7Hz), 7.35(1H, dq, J=2.2, 1.1Hz),	40	14-10	6.35(1H, s), 7.25(1H, d, J=8.8Hz) 0.88(3H, t, J=6.7Hz), 1.27(4H, m), 1.60(2H, m), 3.02(1H, m),
11 0	8.08(1H, d, J=2.2Hz)	70		3.22(1H, m), 3.56(3H, s), 3.94(3H, s), 4.09(2H, m), 4.52(1H, m), 6.37(1H, s), 7.25(1H, d, J=8.9Hz)
11-8	1.20, 1.23(3H, t, J=7.1Hz), 3.20(2H, m), 3.94(3H, s), 4.16(2H, q, J=7.1Hz), 4.52(1H, m), 7.32(2H, m), 8.08(1H, m)		14-11	0.89(3H, t, J=6.7Hz), 1.31(4H, m), 1.61(2H, m), 2.96(1H, m),
11-9	2.43(3H, q, J=2.1Hz), 7.67(1H, d, J=8.5Hz), 8.01(1H, s),			3.30(1H, m), 3.56(3H, s), 3.93(3H, s), 4.10(2H, m), 4.56(1H, m), 6.35(1H, s), 7.26(1H, d, J=8.9Hz)
11-10	10.2(1H, br) 2.46(3H, q, J=1.8Hz), 2.63(3H, br), 6.60(1H, d, J=9.4Hz),	45	14-12	0.87(3H, t, J=6.4Hz), 1.27(6H, m), 1.59(2H, m), 3.03(1H, m), 3.22(1H, m), 3.56(3H, s), 3.94(1H, s), 4.08(2H, m), 4.52(1H, m),
11.11	8.08(1H, s) 2.45(3H, q, J=1.9Hz), 3.87(3H, s), 6.66(1H, d, J=9.6Hz),			6.37(1H, s), 7.25(1H, d, J=8.8Hz)
11-11	8.06(1H, s)		14-13	0.88(3H, t, J=6.9Hz), 1.28(6H, m), 1.59(2H, m), 2.96(1H, m), 3.32(1H, t), 3.56(3H, s), 3.94(3H, s), 4.10(2H, m), 4.56(1H, m),
11-12	2.44(3H, q, J=1.9Hz), 2.58(3H, s), 3.84(3H, s), 6.60(1H, d, J=9.4Hz), 8.03(1H, s)		14 14	6.35(1H, s), 7.26(1H, d, J=8.8Hz)
11-13	2.38(3H, q, J=1.8Hz), 3.88(3H, s), 7.26(1H, d, J=9.3Hz),	50		0.88(6H, m), 1.90(1H, m), 3.02(1H, m), 3.23(1H, m), 3.56(3H, s), 3.87(2H, m), 3.94(3H, s), 4.54(1H, m), 6.37(1H, s), 7.25(1H, d,
12-1	7.59(2H, m), 7.80(1H, m), 7.91(4H, m), 8.11(1H, s), 8.30(1H, s) 1.64(3H, m), 1.91(1H, m), 2.10(1H, m), 2.35(1H, m), 3.16(1H,		14-15	J=8.9Hz) 0.89(6H, m), 1.91(1H, m), 2.96(1H, m), 3.32(1H, m), 3.56(3H, s),
	m), 4.17(1H, m), 4.82(1H, m), 7.66(1H, d, J=8.2Hz), 10.4(1H,			3.89(2H, m), 3.94(3H, s), 4.58(1H, m), 6.35(1H, s), 7.26(1H, d,
12-2	broad) 1.61(3H, m), 1.91(1H, m), 2.10(1H, m), 2.38(1H, m), 3.13(1H,		14-16	J=8.9Hz) 0.89(6H, m), 1.50(2H, m), 1.60(1H, m), 3.02(1H, m), 3.21(1H,
	m), 4.11(1H, m), 4.14(2H, s), 4.87(1H, m), 5.49(1H, s), 6.64(1H,	55		m), 3.56(3H, s), 3.94(3H, s), 4.13(2H, m), 4.52(1H, m), 6.37(1H,
12-3	d, J=9.0Hz) 1.61(3H, m), 1.90(1H, m), 2.08(1H, m), 2.35(1H, m), 3.10(1H,		14-17	s), 7.25(1H, d, J=8.9Hz) 0.88(6H, m), 1.49(2H, m), 1.62(1H, m), 2.96(1H, m), 3.30(1H,
	m), 4.07(1H, m), 4.2(2H, broad), 4.88(1H, m), 5.5(1H, broad),			m), 3.56(3H, s), 3.93(3H, s), 4.14(2H, m), 4.56(1H, m), 6.35(1H,
12-4	6.63(1H, d, J=9.0Hz) 1.60(3H, m), 1.89(1H, m), 2.09(1H, m), 2.34(1H, m), 3.09(1H,		14-18	s), 7.25(1H, d, J=8.9Hz) 1.44, 1.46(9H, 2s), 2.90(1H, m), 3.31(1H, m), 3.56(3H, s),
	m), 3.85(3H, s), 4.11(1H, m), 4.3(2H, broad), 4.87(1H, m),	60		3.92, 3.93(3H, 2s), 4.42(1H, m), 6.34, 6.37(1H, 2s), 7.26(1H, d,
12-5	6.63(1H, d, J=9.3Hz) 1.4-1.7(3H, m), 1.7-2.4(3H, m), 2.95(1H, m), 3.85(3H,		14-19	J=9.0Hz). 2.51(1H, m), 3.05(1H, m), 3.20(1H, m), 3.56(3H, s), 3.94(3H, s),
	s), 3.97(1H, m), 4.71(1H, m), 7.26(1H, m), 7.60(2H, m), 7.93(4H,			4.59(1H, m), 4.68(2H, m), 6.37(1H, s), 7.26(1H, d, J=8.9Hz)
12-6	m), 8.15(1H, s), 8.44(1H, s) 1.54(3H, m), 1.78(1H, m), 2.07(1H, m), 2.27(1H, m), 2.95(1H,		14-20	2.51(1H, m), 2.99(1H, m), 3.29(1H, m), 3.56(3H, s), 3.94(3H, s), 4.61(1H, m), 4.70(2H, m), 6.36(1H, s), 7.26(1H, d, J=8.9Hz)
	m), 4.01(1H, m), 4.22(1H, m), 7.44(1H, d, J=8.5Hz), 7.69(1H, 2d, J=2.3Hz, 8.5Hz), 8.11(1H, d, J=2.3Hz)	65	14-21	3.0-3.3(2H, m), 3.56(3H, s), 3.93, 3.94(3H, 2s), 4.3-4.6(2H, m), 4.69(1H, m), 6.35, 6.37(1H, 2s), 7.28(1H, d, J=8.8Hz)
				المارودي الماري مارس والماري والماري المارودي من المارودي المارودي المارودي المارودي المارودي المارودي المارودي

5

TABLE XVIII-continued

¹H NMR data

NMR(CDCl₃, 300MHz) ppm

No.

14-22 3.06(1H, m), 3.24(1H, m), 3.56(3H, s), 3.93, 3.94(3H, 2s) 4.4-4.6(2H, m), 5.86(1H, m), 6.36, 6.37(1H, 2s), 7.28(1H, d, J=8.8Hz)

- J=8.8Hz)
 14-23 3.04-3.21(2H, m), 3.56(3H, s), 4.47, 4.65(2H, 2m), 4.69(1H, m), 6.37(1H, s), 7.28(1H, d, J=8.7Hz)
 14-24 3.02(1H, m), 3.24(1H, m), 3.56(3H, s), 3.93(3H, s), 4.61(2H, m), 4.70(1H, m), 6.35(1H, s), 7.28(1H, d, J=8.7Hz)
 14-25 2.98(1H, m), 3.30(1H, m), 3.34(3H, s), 3.53(2H, m), 3.56(3H, s), 3.94(3H, s), 4.25(2H, m), 4.62(1H, m), 6.35(1H, s), 7.26(1H, d, I=8.0Hz) J=8.9Hz)
- 14-26 1.18(3H, m), 3.05(1H, m), 3.27(1H, m), 3.4-3.6(4H, m), 3.56(3H, s), 3.93, 3.94(3H, 2s), 4.29(2H, m), 4.61(1H, m), 6.35, 6.37(1H, 2s), 7.26(1H, d, J=8.8Hz)
- 14-27 3.04(1H, m), 3.21(1H, m), 3.54(3H, s), 3.91(3H, s), 4.10(2H, m),
- 14-28 2.99(1H, m), 3.30(1H, m), 6.35(1H, s), 6.92(3H, m), 7.27(3H, m) 4.45(2H, m), 4.61(1H, m), 6.35(1H, s), 6.92(3H, m), 7.27(3H, m) 14-28 2.99(1H, m), 3.30(1H, m), 3.55(3H, s), 3.90(3H, s), 4.12(2H, m), 4.46(2H, m), 4.64(1H, m), 6.34(1H, s), 6.93(3H, m), 7.26(3H, m) 14-29 2.66(2H, m), 3.07(1H, m), 3.21(1H, m), 3.56(3H, s), 3.95(3H, s),
- 4.30(2H, m), 4.63(1H, m), 6.35, 6.38(1H, 2s), 7.28(1H, d, J=8.9Hz)
- 14-30 3.08(1H, m), 3.22(1H, m), 3.56(3H, s), 3.70(2H, m), 3.95(3H, s), 4.30(1H, m), 4.51(2H, m), 4.65(1H, m), 6.38(1H, s), 7.27(1H, d, J=8.7Hz).
- 14-31 3.02(1H, m), 3.42(1H, m), 3.57(3H, s), 3.72(2H, m), 3.95(3H, s), 4.29(1H, m), 4.52(2H, m), 4.66(1H, m), 6.36(1H, s), 7.27(1H, d, J=8.8Hz)
- 14-32 1.22(3H, t, J=7.1HZ), 3.13(1H, m), 3.31(1H, m), 3.55(3H, a 3.95(3H, s), 4.13(2H, m), 4.46(1H, m), 6.38(1H, s), 7.25(1H, d, J=8.9Hz).
- 14-33 1.23(3H, t, J=7.1Hz), 3.08(1H, m), 3.41(1H, m), 3.57(3H, s), 3.93(3H, s), 4.12(2H, m), 4.49(1H, m), 6.36(1H, s), 7.25(1H, d, J=8.9HZ)
- 14-34 1.27(3H, m), 1.61, 1.64(3H, 2s), 3.20(1H, m), 3.54(3H, s), 3.61(1H, m), 3.84(3H, s), 4.18(2H, m), 6.32, 6.37(1H, 2s), .27(1H, 2d)
- 14-35 0.94(3H, m), 1.62, 1.65(3H, 2s), 1.67(2H, m), 3.21(1H, m), 3.54(3H, s), 3.62(1H, m), 3.84(3H, s), 4.09(2H, m), 6.33, 6.37(1H, 2s), 7.27(1H, 2d, J=8.8Hz, 8.8Hz)
- 14-36 0.94(3H, m), 1.41(2H, m), 1.61, 1.65(3H, 2s), 1.63(2H, m), 3.21(1H, m), 3.54(3H, s), 3.60(1H, m), 3.84(3H, s), 4.12(2H, m), 6.32, 6.37(1H, 2s), 7.27(1H, 2d, J=8.8Hz, 8.9Hz)
- 6.32, 6.37(1H, 2s), 7.27(1H, 2d, J=8.8Hz, 8.9Hz)
 14-37 0.90(3H, m), 1.33(4H, m), 1.61, 1.64(3H, 2s), 1.65(2H, m),
 3.20(1H, m), 3.54(3H, s), 3.59(1H, m), 3.84(3H, s), 4.12(2H, m),
 6.32, 6.37(1H, 2s), 7.27(1H, 2d, J=8.9Hz, 8.7Hz)
 14-38 0.89(3H, m), 1.30(6H, m), 1.61, 1.64(3H, 2s), 1.65(2H, m),
 3.20(1H, m), 3.54(3H, s), 3.59(1H, m), 3.84(3H, s), 4.11(2H, m),
 6.32, 6.36(1H, 2s), 7.27(1H, 2d, J=8.8Hz, 8.8Hz)
 14-39 1.26(6H, m), 1.59, 1.62(3H, 2s), 3.20(1H, m), 3.54(3H, s), 3.63
 (1H, m), 3.85(3H, s), 4.98(1H, m), 6.32, 6.37(1H, 2s), 7.27(1H,
 2d, J=8.8Hz, 8.8Hz)
- 2d, J=8.8Hz, 8.8Hz)
- 2d, J=8.8Hz, 8.8Hz)
 14-40 0.94(6H, m), 1.62, 1.65(3H, 2s), 1.96(1H, m), 3.21(1H, m), 3.54(3H, s), 3.62(1H, m), 3.84(3H, s), 3.92(2H, m), 6.32, 6.37(1H, 2s), 7.27(1H, 2d, J=8.8Hz, 8.8Hz)
 14-41 1.63, 1.66(3H, 2s), 3.22(1H, m), 3.53(3H, s), 3.63(1H, m), 3.79(3H, s), 5.16(2H, m), 6.29, 6.36(1H, 2s), 7.25(1H, 2d, J=8.8Hz, 8.8Hz), 7.35(5H, m)
 14-42 1.64, 1.67(3H, 2s), 3.23(1H, m), 3.52, 3.55(3H, 2s), 3.66(1H, m), 3.52(3H, 2s), 3.64(2H, m), 3.54(3H, 2s), 3.64(2H, m), 3.54(2H, 2s), 3.64(2H, 2s), 3
- 3.84(3H, s), 4.71(1H, m), 5.00(1H, m), 6.33, 6.37(1H, 2s), 7.18(1H, m), 7.27(1H, 2d, J=8.8Hz, 8.8Hz)
- 14-43 1.63, 1.66(3H, 2s), 3.21(1H, m), 3.54(3H, s), 3.62(1H, m),
- 3.84(3H, s), 4.63(2H, m), 5.31(2H, m), 5.89(1H, m), 6.33, 6.37(1H, 2s), 7.27(1H, 2d, J=8.9Hz, 8.7Hz)

 14-44 1.63(3H, m), 2.52(1H, m), 3.18(1H, m), 3.56(3H, s), 3.60(1H, m), 3.84(3H, s), 4.74(2H, m), 6.34, 6.37(1H, 2s), 7.26, 7.27(1H, 2d, J=8.7Hz, 8.8Hz)
- 14-45 1.65, 1.68(3H, 2s), 3.19(1H, m), 3.51(1H, m), 3.55(3H, s), 3.83(3H, s), 4.49(2H, m), 5.86(1H, m), 6.34, 6.37(1H, 2s), 7.28(1H, 2d, J=8.8Hz, 8.8Hz)
- 14-46 1.67, 1.68(3H, 2s), 3.18(1H, m), 3.53, 3.55(3H, 2s), 3.66(1H, m), 3.82, 3.83(3H, 2s), 5.73(1H, m), 6.35, 6.37(1H, 2s),
- 7.31(1H, 2d, J=8.9Hz, 8.8Hz)
 14-47 1.63, 1.65(3H, 2s), 3.20.(1H, m), 3.36, 3.37(3H, 2s), 3.55(3H, s), 3.63(3H, m), 3.84(3H, s), 4.29(2H, m), 6.33, 6.36(1H, 2s), 7.27(1H, 2d, J=8.8Hz, 8.8Hz).

TABLE XVIII-continued

¹H NMR data

- No. NMR(CDCl₃, 300MHz) ppm
- 1.62, 1.64(3H, 2s), 2.16(3H, t, J=2.4Hz), 2.73(2H, m), 1.62, 1.64(3H, 2s), 2.16(3H, t, J=2.4Hz), 2.73(2H, m), 3.20(1H, m), 3.55(3H, s), 3.59(1H, m), 3.84(3H, s), 4.30(2H, m), 6.33, 6.36(1H, 2s), 7.27(1H, 2d, J=8.8Hz, 8.8Hz)
 1.63, 1.65(3H, 2s), 1.8-2.1(4H, m), 3.20(1H, m), 3.54(3H, s), 3.61(1H, m), 3.81(2H, m), 3.84(3H, s), 4.13(3H, m), 6.33, 6.36(1H, s), 7.27(1H, 2d, J=8.7Hz, 8.9Hz)
 3.05(2H, m), 3.29(1H, m), 3.52, 3.57(3H, 2s), 3.59(1H, m), 3.68(3H, s), 3.76(3H, s), 3.79, 3.80(3H, 2s), 6.32, 6.35(1H, 2s), 7.29(1H, 2d, J=8.9Hz, 8.8Hz)
 1.31, 1.35(3H, 2), 1.87, 2Hz, 7.1Hz), 3.50(1H, m), 3.55
- 10
 - 14-50
- 7.29(1H, 2d, J=8.5Hz, 6.8Hz)
 14-51 1.31, 1.35(3H, 2t, J=7.2Hz, 7.1Hz), 3.50(1H, m), 3.55, 3.57(3H, 2s), 3.68(1H, m), 3.92, 3.94(3H, 2s), 4.31(2H, m), 6.35, 6.38(1H, 2s), 7.34(1H, 2d, J=8.9Hz, 8.9Hz)
 14-52 1.26(3H, t, J=7.1Hz), 2.48(3H, s), 3.07(1H, m), 3.38(1H, m), 4.21(2H, q, J=7.1Hz), 4.51(1H, m), 7.07(1H, t, 15
- m), 4.21(AB, q, J=7.1Hz), 4.31(1H, m), 7.07(1H, t, J=58.0Hz), 7.23(2H, m)

 14-53 1.24(3H, t, J=7.1Hz), 1.90(4H, m), 3.15(1H, m), 3.43(1H, m), 3.65(4H, m), 3.92(3H, s), 4.18(2H, m), 4.48(1H, m), 7.26(1H, d, J=10.5Hz) 20
 - 14-54 1.16(3H, t, J=7.2Hz), 2.36(3H, s), 3.04(1H, m), 3.26(1H, m), 3.48(3H, s), 4.00-4.25(3H, m), 6.30(1H, s), 7.20(1H, d. J=8.8Hz)
- 14-55 1.18(3H, t, J=7.2Hz), 2.37(3H, s), 3.03(1H, m), 3.31(1H, m), 3.50(3H, s), 4.00-4.25(3H, m), 6.28(1H, s), 7.20(1H, d, 25 J=8.7Hz)
 - 14-56 1.21(3H, t, J=7.2Hz), 3.10-3.45(2H, m), 3.90(3H, s), 4.07(3H, br d, J=0.9Hz), 4.16(2H, q, J=7.2Hz), 4.54(1H, br t, J=7.3Hz), 7.20(1H, d, J=8.6Hz)
- br t, J=7.3Hz), 7.20(1H, d, J=8.6Hz)

 14-57 3.45(3H, d, J=1.1Hz), 6.21(1H, s), 7.30(1H, d, J=8.4Hz),
 7.46(2H, t, J=7.5Hz), 7.5-7.8(5H, m)

 14-58 3.31(3H, d, J=0.9Hz), 6.29(1H, s), 6.32(1H, d, J=12.1Hz),
 6.80(1H, d, J=12.1Hz), 7.15(1H, d, J=8.5Hz), 7.28(2H, m),
 7.35(1H, dd, J=8.5, 2.3Hz), 7.42(2H, m), 7.6-7.8(4H, m)

 14-59 3.48(3H, s), 6.34(1H, s), 6.72(1H, d, J=16.0Hz), 7.02(1H, d,
 J=8.4Hz), 7.18(1H, d, J=16.0Hz), 7.30(1H, dd, J=10.7, 2.3Hz),
 7.39(2H, m), 7.48(1H, dd, J=8.7, 1.2Hz), 7.73(5H, m)

 14-60 1.25(1.5H, t, J=7.1Hz), 1.26(1, 5H, t, J=7.1Hz), 2.92(1H, m),
 3.26(1H, m), 3.57(3H, m), 4.22(2H, m), 4.36(1H, m), 6.37(0.5H, s), 6.38(0.5H, s), 7.2-7.3(2H, m)

 14-61 1.21(3H, m), 2.49(3H, s), 3.33(2H, m), 3.90(3H, s), 4.18(2H, m),
- 35 14-60
 - 5, 0.50(0.51), 7, 1.2-(2.11), 11, 2.1(3H, m), 2.49(3H, s), 3.30(2H, m), 3.90(3H, s), 4.18(2H, m), 4.52(1H, t, J=7.2Hz), 7.05(1H, t, J=58.0Hz), 7.25(1H, d, J=8.9Hz)
- 40 14-62 1.46(3H, t, J=7.0), 3.58(3H, s), 4.12(2H, q, J=7.0Hz), 6.37(1H, s), 7.26(1H, d, J=8.7Hz)
 - 14-63 1.22(3H, t, J=7.2Hz), 1.47(3H, t, J=7.0), 3.00(1H, dd, 14.2, 5.2Hz), 3.23(1H, dd, J=14.2, 8.4Hz), 3.55(3H, q, J=0.8Hz), 4.12(2H, q, J=7.0), 4.12(2H, m), 4.57(1H, dd, J=8.4, 5.2Hz), 6.37(1H, s), 7.26(1H, d, J=8.7Hz)
- 45 14-64 1.23(3H, t, J=7.1Hz), 1.46(3H, t, J=7.0Hz), 2.94(1H, dd, 14.4, 6.4Hz), 3.32(1H, dd, J=14.4, 7.0Hz), 3.55(3H, q, J=0.8Hz), 4.10(2H, q, J=7.0Hz), 4.17(2H, q, J=7.1Hz), 4.61(1H, dd, J=7.0,
- 4.10(2H, q, J=7.0Hz), 4.17(2H, q, J=7.1Hz), 4.61(1H, dd, J=7.0, 6.4Hz), 6.34(1H, s), 7.25(1H, d, J=8.9Hz)

 14-65 0.89(3H, t, J=7.3Hz), 1.46(3H, t, J=7.0Hz), 1.62(2H, qt, J=7.3, 6.9Hz), 3.03(1H, dd, J=14.2, 5.4Hz), 3.21(1H, dd, J=14.2, 8.3Hz), 3.55(3H, q, J=1.0Hz), 4.04(2H, q, J=7.0Hz), 4.10(2H, m), 4.59(1H, dd, J=8.3, 5.4Hz), 6.37(1H, s), 7.25(1H, d, J=8.8Hz) 50
 - 0.90(3H, t, J=7.3Hz), 1.46(3H, t, J=7.0Hz), 1.63(2H, qt, J=7.3, 6.9Hz), 2.94(1H, dd, J=14.4, 6.8Hz), 3.32(1H, dd, J=14.4, 6.9Hz), 3.55(3H, q, J=1.0Hz), 4.07(2H, q, J=7.0Hz), 4.10(2H, m),
- 4.64(1H, dd, J=6.9, 6.8Hz), 6.35(1H, s), 7.25(1H, d, J=8.9Hz) 1.38(6H, t, J=6.2), 3.57(3H, q, J=1.2Hz), 4.58(1H, q, J=6.2Hz), 6.37(1H, s), 7.27(1H, d, J=8.7Hz) 55 14-67
- 6.3 (1H, s), 7.2 (1H, d, J=8.7Hz)

 14-68 1.22(3H, t, J=7.1Hz), 1.34, 1.39(6H, t, J=6.2Hz), 3.03(1H, dd, J=14.2, 5.3Hz), 3.26(1H, dd, J=14.2, 8.3Hz), 3.55(3H, s),

 4.14(3H, q, J=7.1Hz), 4.58(1H, dd, J=8.3, 5.3Hz), 4.68(1H, q, J=6.2Hz), 6.36(1H, s), 7.25(1H, d, J=8.9Hz)

 60 14-69 1.22(3H, t, J=7.1Hz), 1.35, 1.37(6H, t, J=6.2Hz), 2.94(1H, dd,
- J=14.4, 6.5Hz), 3.35(1H, dd, J=14.4, 7.1Hz), 3.56(3H, s), 4.16(3H, q, J=7.1Hz), 4.64(1H, q, J=6.2Hz), 4.66(1H, dd,
- 1-7.1, 6.5Hz), 6.34(1H, s), 7.25(1H, d, J=8.9Hz) 1.25(3H, t, J=7.1Hz), 2.39(3H, s), 2.89(1H, dd, J=14.8, 7.8Hz), 3.23(1H, dd, J=14.8, 6.1Hz), 3.56(3H, q, J=1.0Hz), 4.17(2H, q, J=7.1Hz), 4.39(1H, dd, J=7.8, 6.1Hz), 6.37, 6.38(1H, s), 7.00(1H, d, J=8.0Hz), 7.22(1H, d, J=8.0Hz), 7.27(1H, s)

0.89(3H, m), 1.63(2H, m), 3.00(1H, m), 3.30(1H, m), 3.54, 3.55(3H, s), 3.93(3H, s), 4.09(1H, m), 6.36, 6.38(1H, s), 7.23(1H, d, J=8.2Hz), 8.07(1H, dd, J=8.2, 1.9Hz), 8.16(1H, d,

14-72 0.86, 0.88(3H, t, J=6.8Hz), 1.57, 1.62(2H, m), 2.43(3H, s),

NMR(CDCl₃, 300MHz) ppm

J=1.9Hz)

No.

¹H NMR data

14-72	0.86, 0.88(3H, t, J=6.8Hz), 1.57, 1.62(2H, m), 2.43(3H, s),
	2.96(1H, dd, J=14.2, 6.9Hz), 3.39(1H, dd, J=14.2, 7.2Hz),
	3.93(3H, s), 4.05(2H, m), 4.54(1H, dd, J=7.2, 6.9Hz), 7.28,
	7.29(1H, d, J=8.8Hz), 8.02, 8.04(1H, s)
14-73	3.14(2H, m), 3.54(3H, 2s), 3.94(3H, 2s), 4.63(1H, m), 6.38(1H,
	2s), 7.25(1H, d, J=8.9Hz), 9.5(1H, broad)
14-74	4.06(3H, s), 7.47(1H, d, J=8.4Hz), 8.10(1H, m), 8.80(1H, m)
14-75	3.87(3H, s), 6.61(1H, d, J=9.4Hz), 8.12(1H, m), 8.88(1H, m)
15-1	3.53(3H, s), 3.7(2H, broad), 6.4(1H, broad), 6.29(1H, s), 6.68(1H,
	d, J=9.1Hz)
15-2	
13-2	0.7-0.9(4H, m), 1.23(1H, m), 3.51(3H, s), 3.87(3H, s), 6.24(1H,
	s), 6.47(1H, s), 6.83(1H, d, J=9.0Hz), 8.02(1H, s)
15-3	3.02(3H, s), 3.92(3H, s), 5.99(1H, s), 6.74(1H, s), 6.79(1H, d,
	J=9.0Hz), 7.38(2H, 2d), 7.53(1H, 2d), 7.72(2H, d, J=7.2Hz),
	8.85(1H, s)
15-4	3.31(3H, s), 4.05(3H, s), 6.20(1H, s), 6.86(2H, m), 6.89(1H, d,
	J=9.1Hz), 7.03(1H, m), 8.12(1H, m), 8.23(1H, m)
15-5	2.91(3H, s), 3.91(3H, s), 5.99(1H, s), 6.76(1H, d, J=9.0Hz),
	6.81(1H, s), 7.59(2H, m), 7.82(4H, m), 8.32(1H, s), 8.98(1H, s)
15-6	1.21(3H, t, J=7.1Hz), 3.55(3H, s), 3.95(3H, s), 4.07(2H, q,
	J=7.1Hz), 6.28(1H, bs), 6.31(1H, s), 6.43(1H, bs), 6.87(1H, d,
	J=9.1Hz)
15-7	3.46(3H, s), 3.93(3H, s), 6.29(1H, s), 6.52(1H, bs), 6.90(1H, d,
13-7	
15 0	J=9.0Hz), 7.10(3H, m), 7.21(1H, m), 7.34(2H, m)
15-8	3.28(3H, s), 3.90(3H, s), 6.11(1H, s), 6.66(1H, s), 6.84(3H, m),
450	6.93(1H, d, J=8.9Hz), 7.87(1H, s), 8.07(1H, m)
15-9	1.33(3H, t, J=7.1Hz), 3.16(3H, s), 3.50(3H, s), 4.05(3H, s),
	4.18(2H, m), 6.29(1H, s), 6.68(1H, s), 6.85(1H, d, J=9.1Hz),
	9.73(1H, s)
15-10	3.54(3H, s), 3.85(3H, s), 5.40(2H, m), 5.96(1H, m), 6.32(1H, s),
	6.72(1H, d, J=9.2Hz), 7.32(1H, d), 8.13(1H, s)
15-11	0.51(2H, m), 0.82(2H, m), 1.27(1H, m), 3.56(3H, s), 3.83(3H, s),
	6.34(1H, s), 6.67(2H, m), 7.82(1H, s)
15-12	1.76(3H, s), 1.80(3H, s), 3.54(3H, s), 3.87(3H, s), 6.31(1H, s),
	6.69(1H, d, J=9.1Hz), 7.63(1H, s)
15-13	1.69(3H, s), 3.39(3H, s), 3.54(3H, s), 3.83(3H, s), 4.13(2H, s),
	6.30(1H, s), 6.66(1H, d, J=9.3Hz), 9.79(1H, s)
15-14	
	6.33(1H, s), 6.72(1H, d, J=9.2Hz), 7.06(1H, t, J=5.2Hz),
	7.92(1H, s)
15-15	
	6.72(1H, d, J=9.1Hz), 7.07(2H, d, J=7.5Hz), 7.28(4H, m),
	7.95(1H, s)
15-16	1.25(3H, t, J=7.1Hz), 1.91(3H, s), 2.98(2H, 2d), 3.54(3H, s),
13-10	
	3.89(3H, s), 4.11(2H, q, J=7.1Hz), 6.30(1H, s), 6.74(1H, d,
	J=9.1Hz), 7.76(1H, s)
15-1/	1.24(3H, m), 3.46(1H, m), 3.50, 3.55(3H, 2s), 3.84(3H, s), 6.33,
	6.37(1H, 2s), 6.71(1H, d, J=9.2Hz), 7.10(3H, m), 7.28(3H, m),
	7.91(1H, s)
15-18	2.32(2H, m), 2.81(2H, m), 3.55(3H, s), 3.57(2H, m), 3.94(3H, s),
	6.32(1H, s), 6.74(1H, d, J=9.1Hz), 7.18(4H, m), 7.75(1H, s)
15-19	
	6.36(1H, s), 6.69(1H, d, J=9.1Hz), 7.19(4H, m), 7.64(1H, s)
15-20	3.51(3H, s), 3.90(3H, s), 6.35(1H, s), 6.77(3H, m), 7.25(1H, m),
	7.83(1H, s), 8.36(1H, s)
15-21	
	J=9.3Hz)
15-22	
	7.39(1H, m), 7.48(2H, m), 7.66(2H, m), 7.80(3H, m), 8.34(1H, s)
16-1	3.55(3H, s), 6.36(1H, s), 6.61(1H, d, J=2.1Hz), 7.04(1H, d,
	J=2.1Hz), 7.97(1H, s)
16-2	3.56(3H, s), 3.81(3H, s), 6.35(1H, s), 6.94(1H, d, J=2.0Hz),
	7.16(1H, d, J=2.0Hz)
16-3	3.54(3H, s), 5.11(2H, s), 6.34(1H, s), 6.8–6.9(2H, m), 6.96(1H,
10-3	2.5-1(511, 0), 5.11(211, 0), 6.5-1(111, 8), 6.6-0.5(211, III), 6.50(111,

d, J=2.0Hz), 7.19(1H, d, J=2.1Hz), 7.25(1H, m)

7.93(4H, m), 8.58(1H, m)

16-4

16-6

3.53(3H, s), 6.35(1H, s), 6.86(1H, m), 7.00(1H, m), 7.49(1H, d, J=2.2Hz), 7.71(1H, d, J=2.2Hz), 8.02(1H, m)

3.42(3H, s), 6.31(1H, s), 7.49(1H, d, J=2.2Hz), 7.61(3H, m),

3.54(3H, s), 3.86(3H, s), 6.35(1H, s), 6.82(1H, d, J=9.2Hz),

TABLE XVIII-continued

¹H NMR data

-	No.	NMR(CDCl ₃ , 300MHz) ppm
	16-7	3.44(3H, s), 3.88(3H, s), 6.26(1H, s), 7.29(1H, d, J=8.9Hz),
		7.63(2H, m), 7.95(3H, m), 8.09(1H, 2d, J=1.7Hz, 8.6Hz),
		8.71(1H, s)
	17-1	2.39(3H, s), 3.56(3H, s), 3.97(3H, s), 6.37(1H, s), 7.28(1H, d,
10		J=9.0Hz)
	17-2	1.15(6H, m), 3.56(3H, s), 3.73(2H, m), 3.95(3H, s), 6.36(1H, s),
		7.28(1H, d, J=9.0Hz)
	17-3	3.51(3H, s), 4.01(3H, s), 4.10(2H, m), 6.32(1H, s), 7.24(5H, m),
	17.4	7.30(1H, d, J=8.6Hz)
	17-4	3.14(3H, s), 3.83(3H, s), 6.19(1H, s), 7.46(8H, m)
15	17-5	3.14(2H, m), 3.57(5H, m), 3.96(3H, s), 6.40(1H, s), 7.28(1H, d,
		J=9.0Hz)

The compounds of the present invention exhibit excellent herbicidal effects when used as an active ingredient of a 20 herbicide. The herbicide can be used for a wide range of applications, for example on crop lands such as paddy fields, upland farms, orchards and mulberry fields, and non-crop lands such as forests, farm roads, playgrounds, and factory sites. The application method may be suitably selected for soil treatment application and foliar application.

25 soil treatment application and foliar application. The compounds of the present invention are capable of controlling noxious weeds including grass (gramineae) such as barnyardgrass (Echinochloa crus-galli), large crabgrass (Digitaria sanguinalis), green foxtail (Setaria viridis), goosegrass (Eleusine indica L.), wild oat (Avena fatua L.), Johnsongrass (Sorghum halepense), quackgrass (Agropyron repens), alexandergrass (Brachiaria plantaginea), paragrass (Panicum purpurascen), sprangletop (Leptochloa chinensis) and red sprangletop (Leptochloa panicea); sedges (or Cyperaceae) such as rice flatsedge (Cyperus iria L.), purple nutsedge (Cyperus rotundus L.), Japanese bulrush (Scirpus Juncoides), flatsedge (Cyperus serotinus), small-flower umbrellaplant (Cyperus difformis), slender spikerush (Eleocharis acicularis), and water chestnut (Eleocharis kuroguwai); alismataceae such as Japanese ribbon wapato 40 (Sagittaria pygmaea), arrow-head (Sagittaria trifolia) and narrowleaf waterplantain (Alisma canaliculatum); pontederiaceae such as monochoria (Monochoria vaginalis) and monochoria species (Monochoria korsakowii); scrophulanaceae such as false pimpernel (Lindernia pyxidaria) and 45 abunome (Dopatrium Junceum); lythraceae such as toothcup (Rotala indica) and red stem (Ammannia multiflora); and broadleaves such as redroot pigweed (Amaranthus retroflexus), velvetleaf (Abutilon theophrasti), morningglory (Ipomoea hederacea), lambsquarters (Chenopodium 50 album), prickly sida (Sida spinosa L.), common purslane (Portulaca oleracea L.), slender amaranth (Amaranthus viridis L.), sicklepod (Cassia obtusifolia), black nightshade (Solanum nigrum L.), pale smartweed (Polygonum lapathifolium L.), common chickweed (Stellaria media L.), 55 conunon cocklebur (Xanthium strumarium L.), flexuous bittercress (Cardamine flexuosa WITH.), henbit (Lamium amplexicaule L.) and threeseeded copperleaf(Acalypha australis L.). Accordingly, it is useful for controlling noxious weeds non-selectively or selectively in the cultivation of a

Merr.), cotton (Gossypium spp.), wheat (Triticum spp.), rice (Oryza sativa L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), sorgo (Sorghum bicolor Moench), rape (Brassica napus L.), sunflower (Helianthus annuus L.), sugar beet (Beta vulgaris L.), sugar cane (Saccharum offcinarum L.), Japanese lawngrass (Zoysia Japonica stend), peanut (Arachis hypogaea L.) or flax (Linum usitatissimum L.).

60 crop plant such as corn (Zea mays L.), soybean (Glycine max

91

For use as herbicides, the active ingredients of this invention are formulated into herbicidal compositions by mixing herbicidally active amounts with inert ingredients known to the art to facilitate either the suspension, dissolution or emulsification of the active ingredient for the desired suse. The type of formulation prepared recognizes the facts that formulation, crop and use pattern all can influence the activity and utility of the active ingredient in a particular use. Thus for agricultural use the present herbicidal compounds may be formulated as water dispersible granules, granules for direct application to soils, water soluble concentrates, wettable powders, dusts, solutions, emulsifiable concentrates (EC), microemulsion, suspoemulsion, invert emulsion or other types of formulations, depending on the desired weed targets, crops and application methods.

These herbicidal formulations may be applied to the target area (where suppression of unwanted vegetation is the objective) as dusts, granules or water or solvent diluted sprays. These formulation may contain as little as 0.1% to as much as 97% active ingredient by weight.

Dusts are admixtures of the active ingredient with finely ground materials such as clays (some examples include kaolin and montmorillonite clays), talc, granite dust or other organic or inorganic solids which act as dispersants and carriers for the active ingredient; these finely ground materials have an average particle size of less than 50 microns. A typical dust formulation will contain 1% active ingredient and 99% carrier.

Wettable powders are composed of finely ground particles which disperse rapidly in water or other spray carriers. Typical carriers include kaolin clays, Fullers earth, silicas and other absorbent, wettable inorganic materials. Wettable powders can be prepared to contain from 1 to 90% active ingredient, depending on the desired use pattern and the absorbability of the carrier. Wettable powders typically contain wetting or dispersing agents to assist dispersion in water or other carriers.

Water dispersible granules are granulated solids that freely disperse when mixed in water. This formulation 40 typically consists of the active ingredient (0.1% to 95% active ingredient), a wetting agent (1-15% by weight), a dispersing agent (1 to 15% by weight) and an inert carrier (1-95% by weight). Water dispersible granules can be formed by mixing the ingredients intimately then adding a 45 small amount of water on a rotating disc (said mechanism is commercially available) and collecting the agglomerated granules. Alternatively, the mixture of ingredients may be mixed with an optimal amount of liquid (water or other liquid) and passed through an extruder (said mechanism is 50 commercially available) equipped with passages which allow for the formation of small extruded granules. Alternatively, the mixture of ingredients can be granulated using a high speed mixer (said mechanism is commercially available) by adding a small amount of liquid and mixing at 55 high speeds to affect agglomeration. Alternatively, the mixture of ingredients can be dispersed in water and dried by spraying the dispersion through a heated nozzle in a process known as spray drying (spray drying equipment is commercially available). After granulation the moisture content of 60 granules is adjusted to an optimal level (generally less than 5%) and the product is sized to the desired mesh size

Granules are granulated solids that do not disperse readily in water, but instead maintain their physical structure when applied to the soil using a dry granule applicator. These 65 granulated solids may be made of clay, vegetable material such as corn cob grits, agglomerated silicas or other agglom92

erated organic or inorganic materials or compounds such as calcium sulfate. The formulation typically consists of the active ingredient (1 to 20%) dispersed on or absorbed into the granule. The granule may be produced by intimately mixing the active ingredient with the granules with or without a sticking agent to facilitate adhesion of the active ingredient to the granule surface, or by dissolving the active ingredient in a solvent, spraying the dissolved active ingredient and solvent onto the granule then drying to remove the solvent. Granular formulations are useful where in-furrow or banded application is desired

Emulsifiable concentrates (EC) are homogeneous liquids composed of a solvent or mixture of solvents such as xylenes, heavy aromatic naphthas, isophorone or other proprietary commercial compositions derived from petroleum distillates, the active ingredient and an emulsifying agent or agents. For herbicidal use, the EC is added to water (or other spray carrier) and applied as a spray to the target area. The composition of an EC formulation can contain 0.1% to 95% active ingredient, 5 to 95% solvent or solvent mixture and 1 to 20% emulsifying agent or mixture of emulsifying agents.

Suspension concentrate (also known as flowable) formulations are liquid formulations consisting of a finely ground suspension of the active ingredient in a carrier, typically water or a non-aqueous carrier such as an oil. Suspension concentrates typically contain the active ingredient (5 to 50% by weight), carrier, wetting agent, dispersing agent, anti-freeze, viscosity modifiers and pH modifiers. For application, suspension concentrates are typically diluted with water and sprayed on the target area

Solution concentrates are solutions of the active ingredient (1 to 70%) in solvents which have sufficient solvency to dissolve the desired amount of active ingredient. Because they are simple solutions without other inert ingredients such as wetting agents, additional additives are usually added to the spray tank mix before spraying to facilitate proper application.

Microemulsions are solutions consisting of the active ingredient (1 to 30%) dissolved in a surfactant or emulsifier, without any additional solvents. There are no additional solvents added to this formulation. Microemulsions are particularly useful when a low odor formulation is required such as in residential turfgrass applications.

Suspoemulsions are combinations of two active ingredients. One active ingredient, is made as a suspension concentrate (1-50% active ingredient) and the second active is made as a emulsifiable concentrate (0.1 to 20%). A reason for making this kind of formulation is the inability to make an EC formulation of the first ingredient due to poor solubility in organic solvents. The suspoemulsion formulation allows for the combination of the two active ingredients to be packaged in one container, thereby minimizing packaging waste and giving greater convenience to the product

The herbicidal compounds of this invention may be formulated or applied with a insecticides, fungicides, acaricides, nematicides, fertilizers, plant growth regulators or other agricultural chemicals. Certain tank mix additives, such as spreader stickers, penetration aids, wetting agents, surfactants, emulsifiers, humectants and UW protectants may be added in amounts of 0.01% to 5% to enhance the biological activity, stability, wetting, spreading on foliage or uptake of the active ingredients on the target area or to improve the suspensibility, dispersion, redispersion, emulsifiability, UW stability or other physical or physicochemical property of the active ingredient in the spray tank, spray system or target area

The compositions of the present invention may be used in admixture with or in combination with other agricultural chemicals, fertilizers, adjuvants, surfactants, emulsifiers, oils, polymers or phytotoxicity-reducing agents such as herbicide safeners. In such a case, they may exhibit even 5 better effects or activities. As other agricultural chemicals, herbicides, fungicides, antibiotics, plant hormones, plant growth regulators, insecticides, or acaricides may, for example, be mentioned. Especially with herbicidal compositions having the compounds of the present invention used 10 in admixture with or in combination with one or more active ingredients of other herbicides, it is possible to improve the herbicidal activities, the range of application time(s) and the range of applicable weed types. Further, the compounds of the present invention and an active ingredient of another 15 6. Those which exhibit herbicidal effects specifically to herbicide may be separately formulated so they may be mixed for use at the time of application, or both may be formulated together. The present invention covers such herbicidal compositions.

The blend ratio of the compounds of the present invention 20 with the active ingredient of other herbicides can not generally be defined, since it varies depending on the time and method of application, weather conditions, soil type and type of formulation. However one active ingredient of other herbicide may be incorporated usually in an amount of 0.01 25 7. Those which are believed to exhibit herbicidal effects by to 100 parts by weight, per one part by weight of the compounds of the present invention. Further, the total dose of all of the active ingredients is usually from 1 to 10000 g/ha, preferably from 5 to 500 g/ha. The present invention covers such herbicidal compositions.

As the active ingredients of other herbicides, the following (common name) may be mentioned. Herbicidal compositions having the compounds of the present invention used in combination with other herbicides, may occasionally exhibit a synergistic effect.

- 1. Those that are believed to exhibit herbicidal effects by disturbing auxin activities of plants, including a phenoxy acetic acid type such as 2,4-D, 2,4-DB, 2,4DP, MCPA, MCPP, MCPB or naproanilide (including the free acids, esters or salts thereof), an aromatic carboxylic type such 40 as 2,3,6 TBA, dicamba, dichlobenil, a pyridine type such as picloram (including free acids and salts thereof), triclopyr or clopyralid and others such as naptalam, benazolin, quinclorac, quinmerac or diflufenzopyr (BAS
- 2. Those that are believed to exhibit herbicidal effects by inhibiting photosynthesis of plants including a urea type such as diuron, linuron, isoproturon, chlorotoluron, metobenzuron, tebuthiuron or fluometuron, a triazine type such as simazine, atrazine, cyanazine, terbuthylazine, 50 atraton, hexazinone, metribuzin, simetyn, ametryn, prometryn, dimethametryn or triaziflam, a uracil type such as bromacil, terbacil or lenacil, an anilide type such as propanil or cypromid, a carbamate type such as desmedipham or phenmedipham, a hydroxybenzonitrile type 55 such as bromoxynil or ioxynil, and others such as pyridate, bentazon and methazole.
- 3. A quaternary ammonium salt type such as paraquat, diquat or difenzoquat, which is believed to be converted to free radicals by itself to form active oxygen in the plant and 60 thus to exhibit quick herbicidal effects.
- 4. Those which are believed to exhibit herbicidal effects by inhibiting chlorophyll biosynthesis in plants and abnormally accumulating a photsensitizing peroxide substance in the. plant body, including a diphenyl ether type such as 65 nitrofen, lactofen, acifluorfen-sodium, oxyfluorfen, fomesafen, bifenox, or chlomethoxyfen, a cyclic imide

- type such as chlorphthaliim, flumioxazin, cinidon-ethyl, or flumiclorac-pentyl, and others such as oxadiazon, sulfentrazone, thidiazimin, azafenidin, carfentrazone, isopropazole, fluthiacet-methyl, pentoxazone, pyraflufenethyl and oxadiargyl.
- 5. Those which are believed to exhibit herbicidal effects characterized by whitening activities by inhibiting chromogenesis of plants such as carotenoids including a pyridazinone type such as norflurazon, chloridazon or metflurazon, a pyrazol type such as pyrazolate, pyrazoxyfen or benzofenap, and others such as fluridone, fluramone, diflufencam, methoxyphenone, clomazone, amitrole, sulcotrione, mesotrione, isoxaflutole and isoxachlortole.
- gramineous plants including an aryloxyphenoxypropionic acid type (either as a mixture of isomers or as a resolved isomer) such as diclofop-methyl, pyrofenop-sodium, fluazifop butyl or fluazifop-p-butyl, hailoxyfop-methyl, quizalofop p-ethyl, quizalafop p-tefiryl, fenoxaprop ethyl or fenoxaprop-p-ethyl, flamprop-M-methyl or flampropm-isopropyl or cyhalofop-butyl and a cyclohexanedione type such as alloxydim-sodium, sethoxydim, clethodim, tepraloxydim or tralkoxydim.
 - inhibiting amino acid biosynthesis of plants, including a sulfonylurea type such as chlorimuron-ethyl, nicosulfuron, metsulfuron-methyl, triasulfuron, primisulfuron, tribenuron-methyl, chlorosulfuron, bensulfuron-methyl, sulfometuron-methyl, prosulfuron, halosulfuron or halosulfuron-methyl, thifensulfuronmethyl, rimsulfuron, azimsulfuron, flazasulfuron, imazosulfuron, cyclosulfamuron, flupyrsulfuron, iodosulfuron, ethoxysulfuron, flucarbazone, sulfosulfuron, oxasufluron a triazolopyrimidinesulfonamide type such as flumetsulam, metosulam, chloransulam or chloransulam-methyl, an imidazolinone type such as imazapyr, imazethapyr, imazaquin, imazamox, imazameth, imazamethabenz methyl, a pyrimidinesalicylic acid type such as pyrthiobac-sodium, bispyribacsodium, pyriminobac-methyl or pyribenzoxim (LGC40863), and others such as glyphosate, glyphosateammonium, glyphosate-isopropylamine or sulfosate.
- 8. Those which are believed to exhibit herbicidal effects by interfering with the normal metabolism of inorganic nitrogen assimilation such as glufosinate, glufosinateammonium, phosphinothricin or bialophos.
- 9. Those which are believed to exhibit herbicidal effects by inhibiting cell division of plant cells, including a dinitroaniline type such as trifluralin, oryzalin, nitralin, pendamethalin, ethafluralin, benefin and prodiamine, an amide type such as bensulide, napronamide, and pronamide, a carbamate type such as propham, chlorpropham, barban, and asulam, an organophosphorous type such as amiprofos-methyl or butamifos and others such as DCPA and dithiopyr.
- 10. Those which are believed to exhibit herbicidal effects by inhibiting protein synthesis of plant cells, including a chloroacetanilide type such as alachlor, metolachor (including combinations with safeners such as benoxacor, or resolved isomeric mixtures of metolachlor including safeners such as benoxacor) propachlor, acetochlor (including combinations with herbicide safeners such as dichlonnid or MON 4660 or resolved isomeric mixtures of acetochlor containing safeners such as dichlormid or MON 4660), propisochlor or dimethenamid or an oxyacetamide type such as flufenacet.

10

11. Those in which the mode of action causing the herbicidal effects are not well understood including the dithiocarbaamates such as thiobencarb, EPTC, diallate, triallate, molinate, pebulate, cycloate, butylate, vernolate or prosulfocarb and miscellaneous herbicides such as MSMA, 5DSMA, endothall, ethofumesate, sodium chlorate, pelargonic acid and fosamine. A few formulation examples of the present invention are given as follows.

Formulation Example 1. Emulsifiable Concentrate

Ingredient Trade Name	Chemical Name	Supplier	Function	% wt./wt.
Compound 2-			Active Ingredient	5.0
Toximul H-A	Calcium sulfonate and nonionic surfactant blend	Stepan Co.	Emulsifier	2.5
Toximul D-A	Calcium sulfonate and nonionic surfactant blend	Stepan Co.	Emulsifier	7.5
Aromatic 200	Aromatic hydrocarbon	Exxon Chemical Co.	Solvent	QS to 100%

Formulation Example 2. Suspension Concentrate

Ingredient Trade Name	Chemical Name	Supplier	Function	% wt./wt.
Compound 2-			Active Ingredient	10.00
Proylene gylcol			Anti-freeze	5.00
Antifoam 1530	Silicone defoamer	Dow Corning	Anti-foam	0.50
Rhodopol 23	Xanthan gum	Rhone-Poulenc	Suspending Aid	0.25
Morwet D425	Napthalene formaldehyde condensate	Witco Corp.	Dispersant	3.00
Igepal CA-720	Octylphenol ethoxylate	Rhone-Poulenc	Wetting agent	3.00
Proxel GXL	1,2 benziso-	ICI Americas	Preservative	0.25
Water	thiazolin-3-one		Diluent	68.00

Formulation Example 3. Wettable Powder

Ingredient Trade Name	Chemical Name	Supplier	Function	% wi./wi.
Compound 2-75			Active Ingredient	50.00
Geropon T-77	Sodium-N-methyl methyl-N-olcoyl taurate	Rhone-Poulenc	Wetting agent	3.00
Lomar PW	Napthalene Sulfonate	Henkel Corp.	Dispersant	5.00
Kaolin clay	Kaolin clay	J. M. Huber	Filler	42.00

Formulation Example 4. Water Dispersible Granule

Ingredient Trade Name	Chemical Name	Supplier	Function	% wt./wt.
Compound 2- 75 Morwet EFW	Witco Corp.	Wetting	Active Ingredient 2.00	50.00

-continued

Ingredient Trade Name	Chemical Name	Supplier	Function	% wi./wi.
Morwet D-425	Napthalene formaldehyde	Witco Corp.	Dispersant	10.00
ASP 400	condensate Kaolin Clay	Engelhard Corp.	Filler	38.00

Test Example

A standard greenhouse herbicide activity screening system was used to evaluate the herbicidal efficacy and crop safety of these test compounds. Seven broadleaf weed species including redroot pigweed (Amaranthus retroflexus, AMARE, velvetleaf (Abutilon theophrasti, ABUTH), sicklepod (Cassia obtusifolia, CASOB), ivyleaf morningglory (Ipomoea hederacea, IPOHE), lambsquarters (Chenopodium album, CHEAL), common ragweed (Ambrosia artemisizfolia L., AMBEL), and cocklebur (Xanthium strumarium, XANST) were used as test species. Four grass weed species including green foxtail (Setaria viridis, SETVI), barnyardgrass (Echinochloa crus-galli, ECHCG), johnsongrass (Sorghum halepense, SORHA), and large crabgrass (Digitaria sanguinalis, DIGSA) were also 25 used. In addition, three crop species, field corn (Zea mays L., var. Dekalb 535, CORN), soybean (Glycine max L., var. Pella 86, SOY), and is upland rice (Oryza sp., var. Tebonnet, RICE) were included.

Pre-emerge Test

All plants were grown in 10 cm square plastic pots which were filled with a sandy loam soil mix. For pre-emerge tests, seeds were planted one day prior to application of the test compounds. For post-emerge tests, seeds were planted 8-21 days prior to the test to allow emergence and good foliage development prior to application of the test substances. At the time of the post-emerge application, plants of all species were usually at the 2-3 leaf stage of development.

All test compounds Were dissolved in acetone and applied to the test units in a volume of 187 l/ha. Test materials were applied at rates ranging from 15 g ai/ha to 1000 g ai/ha using a track sprayer equipped with a TJ8001E even flow flat fan spray nozzle. Plants were arranged on a shelf so that the top of the canopy (post-emerge) or top of the soil surface (pre-emerge) was 40-45 cm below the nozzle. Pressurized air was used to force the test solution through the nozzle as it was mechanically advanced (via electrically driven chain drive) over the top of all test plants/pots. This application simulates a typical commercial field herbicide application.

Post-emerge Test

In the post-emerge test, a commercial non-ionic surfactant was also included (0.25% v/v) to enhance wetting of the leaf surfaces of target plants. Immediately after application, test units of the pre-emerge applications were watered at the soil surface to incorporate the test materials. Subsequently, these test units were bottom-watered. Post-emerge test units were always bottom-watered.

At 14 days after application of the test materials, phytotoxicity ratings were recorded. A rating scale of 0-100 was used as previously described in Research Methods in Weed Science, 2nd edition, B. Truelove, Ed., Southern Weed Science Society, Auburn University, Auburn, Ala. 1977. Briefly, "0" corresponds to no damage and "100" corresponds to complete death of all plants in the test unit. This scale was used both to determine efficacy against weed species and damage to crop species. Herbicide activity data for various compounds of this invention, which are shown by compound No. in Tables 1-8, are shown in Tables 11 and

12. The data demonstrate significant differences between compounds for both efficacy against weeds and selectivity for crop species. For selected compounds, excellent activity against a majority of the weed species was observed with minimal damage to at least one of the crop species.

Following table XIX shows comparative data for the pre-emerge herbicidal activity of compound 1.4 of present invention and the compound 2 reported in the Japanese Pat. No. Toku Kai Hei 5-25144 (1993). The data clearly shows the high level of activity observed with compound 1.4.

TABLE XIX

Comparative herbicidal activity of compounds 1.4 and 2

Cmpd. no.	Rate (g ai/ha)	AMARE	АВИТН	CASOB	ІРОНЕ	CHEAL	XANST	SETVI	ECHCG	SORHA	DIGSA	MAIZE	SOY	RICE
1.4	3.9	30	95	0	0	30	0	0	0	0	0	0	0	0
	7.8	100	100	30	0	60	0	60	0	0	30	0	0	0
	15.6	90	100	100	0	100	20	80	0	0	30	0	0	10
	31.3	100	100	0	50	100	10	80	10	30	30	0	15	20
	62.5	100	100	80	90	100	50	100	30	40	95	0	40	50
	125	100	100	95	100	100	50	100	95	95	100	40	90	60
	250	100	100	100	100	100	90	100	100	100	100	95	100	65
2	3.9	0	0	0	0	0	0	0	0	0	0	0	0	0
	7.8	0	0	0	0	0	0	0	0	0	0	0	0	0
	15.6	0	0	0	0	0	0	0	0	0	0	0	0	0
	31.3	0	0	0	0	0	0	0	0	0	0	0	0	0
	62.5	0	0	0	0	0	0	0	0	0	0	0	0	0
	125	0	0	30	0	30	0	0	0	0	0	0	0	0
	250	0	50	50	0	50	60	0	0	0	0	0	0	15

TABLE XX

					<u>P</u>	re-emerge	Herbicidal A	Activity						
Cmpd.	Rate g ai/ha	AMARE	АВИТН	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
1-2	63	0	50	90	0	0		20	0	0	0	0	0	0
	250	0	10	100	0	0	_	0	0	0	30	0	0	10
1-4	63	100	100	90	100	100	100	100	100	85	100	90	70	60
	250	100	100	100	100	100	100	100	100	100	100	100	100	80
1-5	63	20	30	0	0	60	0	0	0	0	0	0	0	0
	250	95	100	0	10	100	20	90	0	20	70	10	0	10
1-9	63	100	100	100	100	100	100	100	100	100	100	100	90	95
1-10	63	70	100	20	0	30	0 -	0	0	0	0	0	0	0
	250	100	100	50	60	100	60	100	0	0	30	50	0	0
1-11	63	100	100	20	20	100	50	80	0	90	90	10	0	20
	250	100	100	60	90	100	100	100	95	98	100	70	60	70
1-13	63	100	100	80	100	100	100	100	90	95	100	95	60	95
	250	100	100	100	100	100	100	100	100	100	100	100	95	100
1-15	63	0	20	0	0	40	_	70	0	0	0	0	0	10
	250	20	90	0	0	50		80	0	20	90	0	0	30
1-16	63	0	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	70	0	0	0	0	0	0	0	0
1-18	63	100	100	70	100	100	_	95	0	70	70	100	40	30
	250	100	100	100	100	100	_	99	80	100	90	95	90	70
1-19	63	95	100	90	60	100	_	100	90	90	95	60	50	80
	250	100	100	100	100	100	_	100	100	100	100	70	80	95
1-20	63	100	100	100	40	100	_	80	50	30	50	0	15	60
	250	100	100	100	100	100		100	100	70	90	70	65	70
1-21	63	98	70	0	0	100	0	95	0	0	70	0	0	0
	250	100	100	0	40	100	100	100	95	90	100	0	0	10
1-22	63	95	100	0	0	95		90	0	0	0	0	0	0
	250	100	100	0	20	100	_	100	60	60	60	20	10	50
1-30	63	0	50	0	0	85	_	10	0	0	0	0	0	10
	250	60	100	70	70	100	_	100	0	10	90	20	10	30
1-31	63	80	100	70	0	95	_	50	0	0	0	0	0	0
	250	100	100	95	80	100	_	100	40	90	90	90	50	10

TABLE XX-continued

							Herbicidal A							
Cmpd.	Rate g ai/ha	AMARE	АВИТН	CASOB	ІРОНЕ	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
1-32	63	0	90	40	0	90	0	0	0	0	0	0	0	20
1-37	250 63	100 100	100 100	40 80	50 100	100 100	50	100 100	95 90	30 90	100 100	20 90	0 15	40 60
1-37	250	100	100	100	100	100	=	100	100	100	100	100	90	90
1-38	63	100	100	100	100	100	_	100	95	90	100	80	70	90
1-51	250 63	100 90	100 90	100 0	100 50	100 90	30	100 30	100 0	100 10	100 20	90 10	90 0	100 10
101	250	100	100	30	80	100	80	90	50	60	90	60	70	70
1-53	63	100	100	0	50	100	50	50	0	50	40	50	95	50
1-54	250 63	100 100	100 100	50 30	95 100	100 100	90 100	95 90	80 45	90 80	90 80	90 100	100 95	90 60
	250	100	100	80	100	100	100	100	100	100	100	100	99	95
1-55	63 250	70 70	90 90	0 0	0 0	95 95	_	0 0	10 10	20 20	50 50	0 0	10 10	0
1-59	63	100	100	30	100	100		30	0	30	30	70	30	30
	250	100	100	80	100	100	_	90	70	85	90	90	90	70
1-60	63 250	100 100	100 100	70 100	90 100	100 100	_	95 100	50 95	80 100	95 100	90 100	50 95	40 95
1-61	63	95	100	30	60	100	60	95	75	70	40	30	60	50
1-63	250 63	100 100	100 100	80 20	90 20	100 100	100	100 95	99 40	99 50	99 80	90 0	95 10	95 80
1-03	250	100	100	90	20 95	100	_	100	100	99	100	30	90	95
2-1	63	60	100	80	95	90	50	80	10	30	20	50	30	80
2-2	250 63	100 100	100 100	100 60	100 90	100 100	100 40	95 90	70 30	70 60	100 90	100 50	80 10	90 10
	250	100	100	90	100	100	100	100	90	90	95	90	70	50
2-3	63 250	100 100	100 100	60 100	60 100	100 100	_	90 100	0 40	10 30	30 60	40 80	0 30	20 50
2-4	63	80	30	0	20	50	_	0	0	0	0	0	0	0
	250	95	100	0	70	100	_	80	0	0	50	20	20	10
2-5	63 250	90 100	100 100	40 100	90 100	100 100	_	100 100	10 90	60 90	50 95	_	10	70 80
2-6	63	0	0	0	0	0	_	0	0	0	0	0	0	0
2-7	250 63	50 90	0 100	0 60	0 70	0 100	_	80 95	0 40	20 90	10 95	0 70	0 10	0 60
2-1	250	100	100	100	100	100	_	100	100	95	100	95	70	90
2-8	63	40	0	0	0	60	_	90	0	40	80	60	15	50
2-10	250 63	100 50	100 100	0 50	100 60	100 100	100	90 40	0	40 0	80 90	60 45	15 0	50 0
	250	100	100	90	100	100	100	100	95	80	95	100	40	30
2-11	63 250	30 100	90 100	0 60	70 100	100 100	_	0 100	0 40	0 50	0 60	0 20	0 10	10 50
2-12	63	30	50	30	40	0	0	0	0	0	0	0	0	0
	250	100	70	40	70	30	0	0	0	0	0	0	0	0
2-14	63 250	50 100	90 100	0 60	0 100	50 100	_	60 100	0 0	0 30	0 20	0 60	0	0 30
2-15	63	0	20	0	20	60	0	0	0	0	0	0	0	10
2-16	250 63	80 50	90 80	0 0	30 0	40 95	0	, 0	0	0 0	0	0	0	0
2-10	250	100	100	100	90	100	_	100	40	80	100	ő	20	15
2-18	63	40	0	0	0	10	_	0	0	0	0	0	0	0
2-19	250 63	100 80	100 90	. 40	40 10	90 95	_	80 20	0 0	0 0	0 40	30 30	0 5	20 10
	250	100	100	10	100	100		100	50	60	100	90	40	60
2-23	63 250	100 100	100 100	70 100	100 100	100 100	100 100	100 100	80 100	60 90	70 100	25 90	60 100	80 95
2-24	63	100	100	90	100	100	100	100	95	95	100	90	95	90
2-26	250 63	100 0	100 0	100 0	100 0	100 0	100 0	100 0	100 0	100 0	100 0	100 0	98 0	99 0
2-20	250	80	0	0	ő	90	0	0	0	0	0	ő	0	Ö
2-27	63	100	100	60	80	100	100	100	50	30	95	30	20	70
2-28	250 63	100 100	100 100	100 5	100 80	100 100	100	100 50	100 0	80 10	100 50	70 10	90 0	90 60
	250	100	100	100	100	100	_	100	20	50	90	70	10	70
2-29	63 250	100 100	100 100	60 100	30 100	100 100	0 60	100 100	0 50	0 80	60 90	0 45	0 15	40 65
2-30	63	0	0	100 0	100	0	0	0	0	0	0	0	0	0
	250	0	20	0	0	70	0	20	0	0	0	0	0	0
2-31	63 250	100 100	100 100	100 100	100 100	100 100	_	100 100	40 100	60 85	90 100	70 100	20 40	40 90
2-32	63	100	100	95	100	100	-	100	99	90	100	90	40	80
2-33	250 63	100 100	100 100	100 100	100 100	100 100		100 100	100 30	100 60	100 100	100 10	95 70	99 70
2-33	250	100	100	100	100	100	_	100	95	90	100	90	90	80

TABLE XX-continued

					<u>P</u>	re-emerge	Herbicidal A	Activity	_ 		•			
Cmpd. no.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
2-34	63 250	100 100	100 100	100 100	100	100	100	95	70 99	20	70	15	25	40
2-36	63	100	100	10	100	100 90	100 0	100 25	0	85 0	100 0	90 0	90 0	90 0
2-37	250 63	100 0	100 0	70 0	60 0	100 0	30 0	90 0	10 0	20 0	30 0	10 0	0 0	40 0
2-39	250 63	30 100	30 100	0 100	0 95	50 100	0 100	0 100	0 90	0 60	0 99	0 70	0 70	0 90
2-40	250 63	100 100	100 100	100 80	100 90	100 100	100 100	100 100	100 85	100 60	100 90	90 95	95 50	99 95
	250	100	100	100	100	100	100	100	100	100	100	100	95	100
2-41	63 250	100 100	100 100	80 100	90 100	100 100	100 100	95 100	50 100	· 30 100	70 100	80 100	35 95	50 90
2-42	63 250	100 100	100 100	80 100	100 100	100 100	100 100	100 100	100 100	95 100	100 100	100 100	85 98	90 99
2-44	63 250	100 100	100 100	60 100	90 100	100 100	100 100	90 100	30 99	50 95	60 100	80 100	10 70	20 80
2-45	63	70	0	0	0	60	_	0	00	0	0	0	0	0
2-46	250 63	100 100	70 50	0 30	0 0	90 100	_	30 90	0 0	0 30	0 30	0 30	0 0	0 20
2-47	250 63	100 100	100 100	100 90	60 100	100 100	50	100 100	50 0	90 60	70 100	100 90	90 40	70 70
2-48	250 63	100 100	100 100	100 100	100 100	100 100	100 100	100 100	99 85	90 95	100 95	100 100	99 90	95 90
	250	100	100	100	100	100	100	100	100	95	100	100	99	99
2-49	63 250	100 100	100 100	0 100	0 90	100 100	100 100	80 95	0 10	0 0	20 100	0 40	0 15	20 60
2-50	63 250	100 100	100 100	60 100	70 100	100 100	60 100	90 100	10 100	30 80	70 100	90 100	5 70	25 90
2-52 2-53	63 63	100 100	10 100	0 95	0 100	50 100	0 80	40 100	0 40	0 40	0 90	0 95	0 25	0 80
	250	100	100	100	100	100	100	100	99	100	100	100	90	90
2-54	63 250	100 100	100 100	100 100	85 100	100 100	100 100	100 100	90 100	90 1 0 0	100 100	90 100	90 98	70 90
2-56	63 250	100 100	100 100	100 100	100 100	100 100	100 100	100 100	90 100	99 100	100 100	40 90	80 95	30 95
2-58	63 250	100 100	100 100	30 99	20 100	100 100	50 100	100 100	50 100	70 100	90 100	15 100	40 95	80 95
2-59	63	100	100	30	20	100	50	100	40	40	70	10	10	25
2-61	250 63	100 100	100 100	100 40	100 90	100 100	90 80	100 10	9 85	90 80	100 90	100 30	70 10	75 75
2-63	250 63	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 95	100 90	100 100	80 95	95 60	95 95
2-64	250 63	100 90	100 100	100 0	100 0	100 90	100	100 100	100	100 10	100 40	100	100	100 10
	250	100	100	100	40	100	60	100	60	50	70	20	35	60
2-66	63 250	100 100	100 100	35 90	40 80	100 100	0 60	95 100	0 60	20 95	60 99	10 20	0 15	10 60
2-67	63 250	100 100	100 100	100 100	100 100	100 100	100 100	100 100	50 95	80 100	100 100	100 100	90 99	90 90
2-69	63 250	90 100	100 100	0 80	0 40	100 100	50 60	70 95	0 10	0 30	20 90	0	0 10	20 30
2-70	63	70	100	0	0	80	0	0	0	0	0	0	0	0
2-72	250 63	100 100	90 100	40 30	60 20	100 100	30 0	60 60	0 0	0 0	20 30	10 0	0 0	10 10
2-73	250 63	100 100	100 100	90 100	20 90	100 100	50	100 100	50 90	50 75	100 100	50 40	5 50	40 80
2-74	250	100 100	100 100	100 40	100 0	100	_	100	100	100	100	100	95	100
	63 250	100	100	70	50	100 100	_	70 100	0 100	0 100	20 100	0 40	0 15	30 60
2-75	63 250	100 100	100 100	100 100	20 60	100 100	_	100 100	20 100	20 60	70 100	0 20	0	30 80
2-77	63	70	30	0	0	90	_	0	0	0	0	0	0	0
2-78	250 63	100 100	100 100	30 100	30 20	100 100	_	60 90	0 10	0 10	30 30	20 10	0 0	20 40
2-81	250 63	100 100	100 100	100 90	100 60	100 100	_	100 100	100 70	80 90	100 100	100 70	10 0	95 70
	250	100	100	100	100	100	_	100	100	90	100	80	90	90
2-82	63 250	100 100	100 100	80 100	0	100 100	_	80 100	0	0 20	30 ·· 80	0	0	10 10
2-83	63 250	60 100	10 100	0 0	0 0	30 90	_	0 40	0 0	0 20	0 30	0	0	0 0
2-84	63	80	0	0	0	40	_	0	0	0	00	0	0	0
	250	100	80	0	0	100	_	50	0	0	0	0	0	

TABLE XX-continued

		. •	-		<u>P</u>	re-emerge	Herbicidal A	Activity	-				• •	
Cmpd.	Rate gai∕ha	AMARE	ABUTH	CASOB	ІРОНЕ	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
2-86	63	100	100	100	90	100	_	100	95	99	100	20	95	90
2-87	250	100	100 100	95	100	100	_	100	100	100	100	100	99	99
2-01	63 250	100 100	100	100 100	90 100	100 100	_	90 100	60 90	50 85	80 100	15 100	5 75	40 90
2-89	63	100	100	95	95	100	_	100	50	60	99	20	10	40
0.00	250	100	100	100	100	100	_	100	90	90	100	40	30	90
2-92	63 250	50 100	100 100	40 100	30 1 0 0	100 100	_	30 90	0 20	0 40	0 20	0 90	0 20	0 10
2-98	63	100	100	100	100	100	100	80	30	30	40	50	70	60
	250	100	100	100	100	100	100	100	100	95	95	90	90	90
2-100	63 250	100 100	100 100	30 100	100 100	100 100	90	100 100	70 90	85 100	90	100	45	75 90
2-102	63	30	0	0	0	0	100	0	90	0	100 0	90 0	95 0	90
	250	0	0	0	0	0	_	0	0	0	0	0	0	0
2-105	63 250	100 100	100 100	30 60	20 95	100	_	100	20	40	90	0	10	50
2-115	63	100	100	20	93	100 100	_	100 90	100 80	95 20	100 90	0	10 0	70 40
	125	100	100	80	90	100		99	95	30	100	ő	ō	40
2-117	63	90	100	80	100	100		30	10	10	30	10	10	30
2-118	250 63	100 40	100 90	100 90	100 10	100 90	_	100 0	70 0	60 0	90 0	95 0	35 0	90 0
	250	100	100	40	80	100	_	50	0	0	20	25	10	30
2-119	63	100	100	60	70	100	=	100	70	75	70	30	20	70
2-120	250 63	100 90	100 100	90 40	100 50	100 100	_	100 70	95 60	100 50	100 80	40 0	90 0	100 80
2	250	100	100	70	80	100	_	100	90	95	100	60	90	95
2-121	63	100	100	0	0	80	_	0	0	0	0	0	0	0
2-122	250 63	100 100	100 100	50 30	90 30	100 100	30	60 80	0 20	0 30	30 100	10 0	10 0	0 20
2 122	250	100	100	50	90	100	90	100	80	60	100	50	10	45
2-123	63	100	100	60	100	100	95	80	40	30	60	0	0	30
2-124	250 63	100 40	100 0	90 0	100 0	100 20	100	100 0	80 0	70 0	100 0	90 0	15 0	80 0
2 124	250	100	80	20	20	80	_	10	0	0	ő	10	ŏ	10
2-125	63	100	100	30	0	100		50	10	20	30	0	0	0
2-126	250 63	100 100	100 100	70 10	100 10	100	_	90	50	50	90	50	10	45
2-120	250	100	100	70	90	100 100	=	40 100	10 40	_	30 90	0 30	0 5	10 60
2-127	63	90	100	0	0	100	_	20	0		30	0	0	0
2-128	250 63	100 100	100 30	40 0	50 0	100 100	=	80 30	40 0	_	100 20	0 0	0	10 0
2-126	250	100	90	Ö	40	100	_	100	30	_	70	10	5	0
2-129	63	90	100	60	50	100	_	90	30	_	60	40	50	40
2-130	250 63	100 40	100 100	90 0	70 0	100 60	_	100 50	80 0	_	100	90 0	90 0	80
2-130	250	100	100	40	30	100	_	100	30	_	20 90	25	5	0 15
2-131	63	90	85	60	30	90	_	40	10	_	40	10	0	15
2-132	250 63	95 100	100 100	95 50	85 20	100 100	_	90 90	60 30	20	80	20	0	50
2-132	250	100	100	100	40	100	_	100	40	30 50	60 100	0 10	5 15	15 45
2-133	63	100	100	55	80	100	=	95	65	75	95	5	20	70
2-134	250 63	100 100	100 60	100 10	100 20	100 100	_	100 35	95 0	100 0	100	70	80 0	93
2-1J4	250	100	80	30	30	100	_	33 80	30	30	20 90	0 0	0	10 20
2-135	63	95	90	10	20	100	_	80	10	_	60	0	0	0
2-136	250 63	100 40	100 80	60 0	100 0	100 90		100 10	30 0	_	95 0	5 0	0 0	35 0
4-130	250	90	100	40	100	100	=	40	0	_	10	10	0	10
2-137	63	100	80	50	30	100	_	30	10	0	50	0	0	20
2-140	250 63	100 100	100 100	50 40	30 10	100 100	_	60 50	50 40	70 10	100	70 0	10 0	50 30
2-140	250	100	100	100	100	100	=	80	80	60	40 95	60	15	30 85
2-141	63	100	100	30	40	100	_	30	30	_	35	10	0	30
2-142	250 63	100 0	100 0	90	100 0	100 40	- - - - - - - -	70	95	<u>_</u>	70	50	45	70
2-142	250	40	0	0 0	0	70	_	0	0 0	0	0 0	0	0	0 0
2-143	63	100	100	0	0	100	_	30	30	30	30	0	0	20
2 144	250	100	100	90	35	100	_	70	85	80	100	5	5	65
2-144	63 250	99 100	70 100	0 20	0 30	100 100	_	40 90	20 75	10 70	20 70	0	0	20 45
2-145	63	100	90	40	10	100	_	60	35	30	90	10	0	10
2 146	250	100	100	90	100	100		100	60	50	100	10	0	60
2-146	63 250	30 80	70 10	20 0	40 20	90 100	=	0	0 0	0	0 0	0	0	0
	2.00	00	10	U	20	100	_	J	U	U	U	v	v	v

TABLE XX-continued

					<u>P</u>	re-emerge	Herbicidal /	Activity		_		-		
Cmpd.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
2-147	63	100	100	40	80	100	80	100	90	90	90	90	100	99
0.140	250	100	100	100	100	100	100	100	100	100	100	100	100	100
2-148	63 250	100 100	100 100	50 95	50 99	100 100	0 100	80 95	90 100	0 30	95 100	0 0	0 0	0 60
2-149	63	100	99	õ	30	100	0	50	50	30	90	20	0	ő
	250	100	100	50	70	100	100	90	100	50	100	50	20	50
2-151	63 250	0 0	30 100	0 70	0 40	0	_	0	0 0	0	0	0	0	0
2-152	63	100	60	0	40 0	80 95	_	0 30	10	40 0	40 50	0 0	30 0	30 0
	250	100	90	50	ŏ	100	_	70	70	30	80	ő	Ö	30
2-153	63	100	20	0	0	70	_	30	0	10	0	0	0	0
2-154	250 63	100 100	50 100	0 60	0 80	90 100	_	90 70	0 50	0 80	40 85	0 80	0 10	20 35
2-134	250	100	100	95	100	100	_	100	95	95	95	90	90	<i>7</i> 0
2-155	63	100	100	0	0	100		60	50	30	85	0	0	30
0.453	125	100	100	30	40	100	_	95	70	70	100	10	15	60
2-157	63 250	100 100	100 100	30 90	40 100	100 100	_	30 70	30 95	_	35 70	10 50	0 45	30 70
2-158	63	100	80	ő	0	100	_	ő	50	0	80	0	0	ő
	250	100	95	0	0	100	_	95	80	20	95	10	Ō	10
2-161	63	100	100	0	20	100	_	100	90	0	95	0	0	0.
2-163	250 63	100 100	100 95	50 10	90 40	100 100	65	100 60	99 0	30 0	100 35	10 0	0 0	40 0
2 100	250	100	100	60	95	100	95	95	75	30	100	ő	0	30
2-168	63	90	60	30	40	100		10	0	0	0	0	0	20
2-169	250	100 70	100 0	80	90	100	_	95	20	90	80	50	_	60
2-109	63 250	80	90	20 30	10 20	65 100	_	0 30	0 0	0 20	0 80	0 20	0. 0	10 40
2-170	63	70	90	30	40	100		60	ŏ	20	30	30	10	10
	250	100	100	60	70	100	_	90	50	80	90	10	15	0
2-171	63 250	50 100	90 100	10 30	10 60	70 100	_	30 90	0 10	10	20 80	10	0	0
2-172	63	70	90	20	60	30	=	20	0	30 0	20	10 30	0	10 10
	250	100	100	80	95	100		65	60	40	100	100	10	50
2-173	63	30	95	30	0	90	_	40	0	0	30	0	0	0
2-174	250 63	100 90	100 100	70 40	40 30	100 80	10	80 20	20 0	10 10	80 20	95 0	20 0	50 10
2-1.4	250	100	100	80	100	100	90	90	60	90	70	90	60	50
2-175	63	100	100	30	70	100	_	0	0	0	Ō	0	0	20
0.176	250	100	100	30	50	100	_	60	40	30	60	50	0	40
2-176	63 250	50 90	0 70	0 0	0 40	90 100	_	0 20	0 0	0 0	0 20	0 0	0 0	0
2-177	63	100	70	ő	40	100	_	40	ő	ő	30	10	Ö	10
	250	100	100	40	90	100	_	70	40	30	70	50	10	20
2-178	63 250	0 0	0 0	0 0	0	20	=	0	0	0	0	0	0	0
2-179	63	100	100	30	0 60	0 100	_	0 50	0 20	0 30	0 20	0	0	0 20
	250	100	100	100	70	100		90	85	95	95	5	10	60
2-180	63	100	100	40	60	100	_	30	10	_	20	60	0	40
2-181	250 63	100 100	100 100	50 10	100 30	100 100	_	90 70	80 40	_	90 60	100 80	5 0	70 15
2 101	250	100	100	90	80	100	_	95	80	_	90	70	5	80
2-182	63	90	100	10	0	100	_	30	10	_	30	30	0	15
2-183	250 63	100 0	100 0	60 0	100	100	-	90	60	_	90	60	10	70
4-103	250	30	10	0	0	0 40	_	0	0	_	0	0	0	0
2-184	63	100	100	50	50	100	_	50	30	– .	60	35	ő	30
	250	100	100	75	100	100	_	100	80		100	70	30	60
2-185	63 250	100 100	90 100	0 60	60 60	100 100	_	30 50	10 10	20	20 40	20	0 5	20
2-187	63	100	100	60	75	100	_	50 50	20	20	40 90	50 35	0	40 40
	250	100	100	100	100	100	_	100	60	_	100	90	90	90
2-188	63	100	90	0	10	100	_	30	30	10	10	0	0	10
2-189	250 40.5	80 95	100 70	0 0	90 0	100 100	_	50 0	60 0	30 0	60 0	20 0	0	10
2-103	162	90	100	10	20	100	_	0	0	0	0	0	0	0
2-190	63	95	100	30	0	100	_	0	0	0	0	0	0	10
2.101	250	100	100	70	90	100	-	30	0	0	30	20	0	20
2-191	63 250	100 100	80 100	10 30	10 40	100 100	=	40 80	0 10	0 50	0 70	0 10	0	10 20
2-192	63	_	_	-	_	-	_	-	-	-	_		_	_
0.401	250	90	85	0	30	80	_	0	0	0	0	0	0	0
2-194	63 250	75 100	90 100	0 10	0 20	40 85	0	0 20	0	0 0	0 10	0 10	0	0 10
	230	100	100	10	20	65	U	20	v	U	10	10	U	10

TABLE XX-continued

	-						Herbicidal							
Cmpd. no.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
2-196	63	100	100	0	20	100	30	90	40	10	90	10	0	20
	250	100	100	60	70	100	90	100	85	20	100	0	0	50
2-197	63 250	100 100	90 100	0 50	30 50	100 100	100 100	50 100	0 50	0 20	80 100	0 50	0 0	30 80
2-198	63	100	100	50	100	100	100	90	50	50	100	50 50	50	30
	250	100	100	100	100	100	100	100	100	99	100	100	90	80
2-199	63	100	100	100	100	100	_	100	99	100	100	100	95	99
2-200	250 63	100 100	100 100	100 80	100 100	100 100	100	100 100	100 99	100 100	100 100	100 100	100 75	100 80
2 200	250	100	100	100	100	100	100	100	100	100	100	100	100	100
2-201	63	95	98	0	55	98	30	0	15	0	45	0	0	0
2-202	250 63	95 100	100 100	0 30	80 100	100 100	80	75 40	75 90	30	95 30	35 0	0 0	30 40
2-202	250	100	100	80	100	100	_	100	100	_	100	60	50	90
2-203	63	70	75	30	10	100	_	20	0	0	60	0	0	10
2-204	250 63	100 100	100 99	90 60	70 50	100 70	 50	70 95	80 20	40 40	90 35	30 20	0 50	20 0
2-204	250	100	100	75	100	100	85	99	70	80	100	95	70	30
2-205	63	100	100	0	0	100	80	70	80	40	70	0	0	20
2-206	250 63	100 0	100 70	40	95 50	100	90	100	99	85	99 0	15	50	70
2-200	250	80	100	20 60	90	50 100	_	0 70	0 90	0 40	80	10 100	50 100	60 80
3-1	63	0	0	0	0	20	0	0	0	0	0	0	0	0
3-4	250 63	30 0	20 0	0	0	80 0	0	0 20	0 0	0 0	0 0	0 0	0	0
3-4	250	100	100	60	50	100	_	60	0	10	10	10	Ö	15
3-6	63	90	100	100	100	100	-	100	40	30	30	10	ō	30
3-23	250	100	100	100	95	100	_	100	80	80	100	100	90	80
3-23	63 250	0 0	0 40	0 0	0 0	0 70	_	0	0 0	0	0 0	0 0	0 0	0
3-26	63	80	75	40	50	80	10	ō	0	ō	ō	ō	ō	0
	250	100	100	90	100	90	90	85	30	50	80	20	30	40
4-1	63 250	100 100	100 100	95 100	100 100	100 100	_	100 100	10 100	60 100	60 100	70 100	10 80	50 95
4-2	63	100	100	0	0	100	30	70	0	0	40	20	0	10
4.7	250	100	100	80	100	100	100	100	80	70	90	70	5	20
4-7	63 250	100 100	100 100	70 100	80 100	100 100	_	100 100	70 90	80 95	100 100	10 40	60 95	70 100
4-23	63	100	100	80	100	100		80	80	70	80	70	35	60
	250	100	100	100	80	100		100	95	90	100	40	90	90
4-24	63 250	100 100	50 100	0 80	20 30	100 100	_	90 100	10 50	10 40	30 70	0 0	0 5	10 50
4-25	63	30	0	ő	0	60	_	0	0	0	Ö	ő	ő	0
	250	100	60	20	0	100	_	50	0	0	10	10	0	0
4-26	63 250	70 100	80 100	0 0	0 10	100 100		75 95	0 30	0 20	10 90	0	0	0 45
4-27	63	70	80	ŏ	20	80	_	30	0	0	ő	10	ŏ	10
	250	100	100	30	50	100		50	0	0	0	40	0	50
4-28	63 250	40 70	20 60	0	0	70 100	_	20 60	0 0	0 0	0	0	0	0 15
4-29	63	100	100	40	70	100	_	100	70	70	100	25	80	50
4.00	250	100	100	80	90	100	_	100	90	90	100	50	95	85
4-30	63 250	100 100	100 100	90 95	60 100	100 100	_	100 100	60 90	30 80	90 100	20 45	30 70	90 90
4-31	63	100	30	0	0	90	_	90	10	10	50	0	0	10
4.00	250	100	100	10	40	100	_	100	30	20	100	10	10	30
4-32	63 250	50 100	0 70	0 30	0 40	80 100	_	30 95	0 50	0 30	20 80	0 5	0 10	0 30
4-33	63	100	50	0	0	100	_	100	20	30	45	10	10	20
	250	100	100	50	70	100	_	100	80	80	90	30	50	40
4-34	63 250	100 100	100 100	40 95	30 80	100 100	_	80 100	50 90	40 80	90 95	25 80	10 90	50 95
4-36	63	90	100	80	100	100	=	60	30		30	70	90	60
	250	100	100	100	100	100	_	100	90		100	95	100	95
4-37	63 250	100 100	100 90	30 40	30 50	100 100	=	90 100	10 60	_	60 90	0 15	0	10 30
4-38	63	100	80	30	60	100	=	100	30	=	90 95	10	10	35
	250	100	100	60	50	100	_	100	60		100	10	20	60
4-39	63 250	100 100	100 100	30 90	80 100	100 100	_	100 100	60 80	_	100 100	30 30	70 90	80 80
4-40	63	100	100	60	30	100	_	100	60	_	100	30 10	90	30
	250	100	100	90	90	100	_	100	85		100	80	75	70
4-41	63 250	100 100	100 100	100 100	100 100	100 100	_	100 100	80 90	_	100 100	40 80	15 65	40 80
	230	100	100	100	100	100	_	100	90	_	100	80	03	80

TABLE XX-continued

					<u>P</u> :	re-emerge	Herbicidal A	Activity						
Cmpd. no.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
4-42	63	30	60	0	0	40	_	30	0		10	10	0	0
4-43	250 63	90 10	100 20	100 0	40 0	100 30	_	100 0	40 0	_	60 0	0 0	0	0 0
7-75	250	60	50	40	10	. 80	_	70	10	_	60	10	0	10
4-44	63	100	100	100	100	100	_	100	80	_	100	60	70	70
4-45	250 63	100 30	100 <i>5</i> 0	100 0	100 10	100 50	_	100 0	95 0	_	100 0	50 0	95 0	65 0
7 75	250	100	90	40	40	95	_	50	40	_	70	15	20	10
4-46	63	80	50	30	10	100	_	40	20	20	70	0	0	10
4-47	250 63	100 70	100 100	40 0	85 30	100		100 80	60 60	60	95 70	15	5	50
4-4/	250	100	100	70	100	100 100	=	100	98	_	100	0 15	30 90	20 70
4-48	63	100	100	40	80	100	_	100	50	60	100	40	30	20
4-49	250	100	100	100	100	100	-	100	70	90	100	35	50	70
4-43	63 250	100 100	95 100	30 60	40 100	100 100	80 60	70 100	10 75	50 90	70 100	10 10	0 15	30 25
4-50	63	20	20	0	0	40	0	0	o	ō	0	ő	ő	õ
4.52	250	100	100	0	30	100	0	10	, 0	0	30	20	0	10
4-53	63 250	100 100	100 100	20 60	30 80	100 100	_	80 100	10 85	30 85	40 100	20 90	0 25	10 50
4-54	63	100	100	30	30	90	_	90	50	30	60	0	0	10
	250	100	90	80	70	100	_	100	85	80	100	10	5	60
4-55	63 250	30 90	80 100	0 30	20 70	90 100	_	40 90	0 30	0 60	0 70	0 7 0	0 30	0 60
4-56	63	100	100	10	40	100	_	90	50	50	50	0	35	50
	250	100	100	100	100	100	_	95	80	90	95	50	80	90
4-57	63 250	95 100	100	10	50	100	_	80	20	10	60	20	0	20
4-58	63	100	100 100	100 70	30	100 100	_	100 80	75 30	70 20	95 30	50 10	45 0	70 30
	250	100	100	100	100	100	_	100	70	60	100	50	25	70
4-59	63	100	100	20	95	100	_	30	10	40	40	50	5	0
4-60	250 63	100 100	100 100	90 90	100 50	100 100	_	90 90	90 40	95 30	100 100	90 10	80 0	70 60
	250	100	100	100	100	100	_	100	70	50	100	60	30	70
4-61	63	100	60	40	30	100		80	30	20	50	0	0	0
4-62	250 63	100 100	70 100	30 50	60 60	100 100	_	75 80	50 10	50 10	90 50	0 10	0 0	50 10
- 02	250	100	100	100	30	100	_	100	60	50	90	10	10	70
4-63	63	100	100	40	40	100	_	70	30	30	70	10	0	40
4-64	250 63	100 100	100 100	100 20	100 40	100 100	=	100 100	70 30	50 40	95 100	75 30	35 0	90 30
4-04	250	100	100	90	70	100	=	100	70	80	100	80	45	80
4-65	63	100	100	80	90	100		100	80	_	100	10	55	65
4-66	250 63	100 100	100	90 30	100	100	_	100	90	-	100	70	75	90
4-00	250	100	100 100	70	60 90	100 100	_	70 100	30 90	_	80 100	30 95	0 50	20 65
4-67	63	100	100	40	80	100		90	40		100	10	5	60
4.60	250	100	100	60	90	100	_	100	80	-	100	10	15	40
4-68	63 250	100 100	100 100	40 100	40 100	100 100	_	100 100	60 98	_	100 100	35 80	45 80	50 90
4-69	63	30	80	0	0	70		95	30	_	100	0	ő	10
4.70	250	80	90	50	40	90	_	100	70		100	10	0	30
4-70	63 250	100 100	100 100	50 80	100 100	100 100	=	60 100	40 95	_	60 100	80 95	90 95	40 70
5-3	63	60	100	0	0	100	_	70	ő	0	30	ő	0	20
F 15	250	100	100	30	10	100	_	100	20	95	100	10	0	20
5-15	63 250	0 0	0 0	0 0	0 0	0 0	_	0 0	0 0	0 0	0 0	0 0	0	0 0
5-16	63	ő	Ö	ŏ	ő	ŏ	_	ŏ	ŏ	ŏ	ő	ő	ő	ő
	250	0	0	0	0	20	_	0	0	0	0	0	0	0
5-17	63 250	30 100	40 100	0 30	0 0	70 100	_	95 100	0	40	30	0	0	20
5-18	63	30	40	0	0	100 70	_	95	40 0	70 40	50 30	0	0	20 20
	250	0	70	10	0	95		90	0	30	20	0	0	10
5-26	63	100	70	10	0	100	_	60	20	0	30	0	0	15
5-28	250 63	100 100	100 100	80 100	40 60	100 100	_	90 50	30 30	30 20	80 30	10 15	0 10	40 30
	250	100	100	100	100	100	_	85	60	30	90	20	20	60
6-13	63	60	10	0	0	40	_	80	10	_	80	0	0	0
6-14	250 63	100 90	40 1 00	0 40	0 60	100 100	_	100 100	40 100	_	90 100	0 70	0 90	10 90
	250	100	100	60	100	100	_	100	100	=	100	90	100	100
6-15	63	100	100	70	70	100	_	95	50	50	80	40	0	20
	250	100	100	80	40	100		100	80	100	100	30	5	60

TABLE XX-continued

					<u> </u>	re-emerge	Herbicidal A	Activity						
Cmpd. no.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
6-16	63	30	10	0	0	100	_	60	10	_	30	0	0	0
6-17	250 63	50 90	20 30	0	0	100 100	=	90 70	30 10	_	90 30	0	0 0	20 0
6-19	250 63	100 30	95 20	20 0	30 0	100 70	_	99 0	90 0	<u> </u>	99 0	0	0 0	40 0
6-20	250 63	7 0 10	50 0	0 0	0 0	90 50	_	10 0	0 0	0 0	0 0	0	0	0 0
6-22	250 63	0 30	0 20	0 0	0 0	30 40	=	0 10	0	0	0	0	0	0
	250	100	100	60	0	100	_	50	0	10	20	0	0	10
6-23	63 250	50 100	0 50	0 10	0 20	30 100	_	0 60	0 0	_	0 10	0 0	0 0	0 0
6-24	63 250	20 100	0 70	0 0	0 0	30 90	_	0 40	0 0	_	0 20	0 10	0 0	0 10
7-2	63 250	100 100	95 100	30 30	60 80	100 100	80 100	95 100	70 100	95 100	100 100	50 10	20 40	20 30
7-14	63 250	40	40	10	30	70	_	0	0		60	15	0	5
7-15	63	80 80	60 40	50 0	20 0	100 100	=	70 0	40 0	0	70 0	10 0	0 0	20 0
8-2	250 63	100 90	90 80	10 0	50 0	100 80	=	60 20	10 0	20 0	60 0	0 0	0 0	10 20
8-3	250 63	100 99	100 98	90 30	0 30	100 99	_	100 95	40 0	20 20	70 30	10 0	20 10	30 0
8-4	250 63	100 60	100	50	10	100	_	98	10	30	60	0	0	0
	250	100	0 90	0 0	0	80 99	_	30 70	· 0	0 20	20 20	0 0	0 0	0 20
8-5	63 250	40 95	0 70	0 40	0 0	· 0 80	_	70 90	0 0	0 20	0 0	0	0 0	0
8-7	63 250	99 100	100 100	0	0	95 100		95 99	0 70	10 70	50 80	0	0 10	0
8-13	63 125	50 70	90 100	0 0	0	100 70		20	0	0	0	0	0	10
8-18	63	60	90	0	0	70	_	40 50	30 10	30 0	40 10	0 0	0 0	10 10
8-30	250 63	100 100	100 70	60 20	30 20	100 100	=	100 20	90 0	50 0	80 30	0 0	10 0	30 5
8-31	250 63	100 90	90 60	20 0	10 0	100 100	_	70 10	20 0	30 0	50 0	0	5 0	10 0
8-36	250 63	100 100	95 80	20 10	30 10	100 100	_	10	0	10 0	10 0	0	10 0	30 20
9-4	250 63	100	30	30	20	100	_	30	0	0	40	0	0	40
	250	60 100	90 100	30 60	10 50	30 80	_	0 7 0	0 10	0 30	0 60	0 50	0 0	0 10
9-14	63 250	40 65	20 85	0 0	0 10	80 100	_	0 30	0 40	0 10	0 30	0	0	0 10
9-5	63 250	100 100	100 100	10 80	70 100	100 100	_	20 60	0 30	0 20	10 40	0 10	0 10	25 60
9-16	63 250	70 100	100 100	20 60	70	100	_	39	0	10	10	40	0	80
9-19	63	100	100	0	70 30	100 100	=	70 0	40 0	40 0	40 0	95 0	90 0	90 30
11-6	250 63	100 100	100 95	20 20	0 0	100 100	_	60 100	0 90	20 0	80 100	20 20	0 0	50 0
11-13	250 63	100 100	100 95	99 0	80 65	100 100	30	100 70	100 30	40 0	100 60	20 0	20 0	50 0
12-2	250 63	10 100	100 100	85 99	80 95	100 100	60	100 95	80 40	40 90	100 95	0 90	0 40	15
	250	100	100	100	100	100	_	100	99	100	100	100	99	50 99
12-3	63 250	95 100	100 100	30 70	0 90	100 100	_	0 30	0 0	0 0	0 30	0 20	0 0	10 20
12-5	63 250	30 100	70 90	0 80	0 20	90 100	_	0 0	0 40	=	0 10	0 0	0 0	0 10
12-8	63 250	100 100	0 100	0 20	0 40	100 100	=	60 100	0	10 40	50 100	0	0	30 40
13-3	63	100	0	0	0	90	=	10	0	0	0	0	0	0
13-4	250 63	100 60	20 90	30 0	0 10	100 100	=	40 30	10 0	10 10	30 0	0	0 0	0
13-5	250 63	100 30	100 0	50 0	90 0	100 20	<u> </u>	90 30	30 0	40 0	90 0	35 0	15 0	30 0
14-1	250 63	95 100	0 75	0 0	0 30	50 98	0	50 15	0 15	30 0	10 40	0 20	0	0 15
14-2	250 63	100 100	100	0	75	100	0	55	30	90	85	60	10	45
	250	100	35 100	0 10	50 85	100 100	0 50	20 30	0	10 60	0 65	0 10	0 30	0 10
14-3	63 250	100 100	100 100	20 80	0 50	100 100	0 65	40 80	0 40	0 60	30 90	20 90	0 90	0 50

TABLE XX-continued

							Herbicidal A							
Cmpd.	Rate				-									
no.	g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
14-4	63 250	90 100	50 80	20 20	0 70	60 100	_	10 40	0	_	20 95	0 95	0 20	0 15
14-5	63 250	70 100	100 100	0 10	20 30	70 100	_	10 60	0 40	_	20 95	25 20	0 70	0 20
14-6	63	100	30	30	10	20	=	10	0 70	0	90 100	30 50	0	15 50
14-7	250 63	100 90	100 100	30 20	20 0	100 40	0	100 10	0	30 0	90	0	10	0
14-8	250 63	100 100	100 0	0 0	0 0	85 70	50 0	90 0	75 0	70 0	100 40	50 0	90 0	40 0
14-9	250 63	99 80	40 0	0 0	0	95 60	40 0	0	20 0	0 0	100 90	0 0	0 0	0
14-10	250 63	100 100	90 0	0	0	90 0	0 50	20 0	70 0	30 0	100	0	75 0	5 20
	250	100	90	0	70	100	100	0	0	30	90	50	40	30
14-11	63 250	100 100	50 100	0. 0	30 50	70 100	0 100	0 5 0	0 0	0 0	50 100	0 0	0 0	0 0
14-12	63 250	60 100	0 20	0	0 0	50 60	0 0	0	0 0	0 0	0 100	0 20	0 0	0 0
14-13	63 250	80 100	10 80	0	0	0 70	0 30	0 10	0	0	30 100	0 10	0	0
14-14	63	100	0	0	0	60	_	0	0	0	50	20	0	0
14-15	250 63	100 100	20 50	0 0	20 0	100 20	_	50 0	10 0	0 0	90 70	30 0	0 0	20 0
14-16	250 63	100 100	100 0	40 0	20 0	95 100	_	30 0	80 0	0 0	100 50	20 0	0 0	0 0
14-17	250 63	100 100	90 50	0 0	0 0	100 90	_	0 0	0 0	0 0	100 90	0	0	0
14-18	250 63	100 100	100 40	0	30 0	100 100	_	80 0	50 0	30 0	100 0	0	40 0	0
	250	100	70	20	20	100	70	20	20	10	90	0	0	10
14-19	63 250	0 90	0 50	0 0	0 0	0 80	_	0 0	0 0	0 0	0 80	0 5 0	0	0
14-20	63 250	50 100	0 90	0 0	0 0	0 80	_	0 30	0 40	0 20	0 90	0 20	0 50	0 0
14-21	63 250	60 95	40 100	0 10	0	20 75	0 40	0	0 20	0 35	0 70	0 70	0 70	0 20
14-22	63 250	100 100	0 70	0	0	20 90	_	0	0	0	0 50	0 30	0	0 10
14-23	63	95	0	0	0	0	=	0	10	0	30	0	o o	0
14-24	250 63	100 50	80 0	0 0	30 0	90 0	_	40 0	30 0	80 0	90 20	0	0	0
14-25	250 63	100 100	80 100	30 50	0 70	50 100	=	0 90	0 8 0	0 80	80 70	10 80	0 95	20 90
14-26	250 63	100 100	100 80	100 0	` 100 0	100 70	_	100 0	100 0	100 0	100 50	100 0	110 0	. 100 0
14-27	250 63	100 50	100 0	20 0	0 0	100 0		99 0	95 0	70 0	95 0	30 0	50 0	80 0
	250	100	30	0	0	90	_	0	0	0	90	0	0	0
14-28	63 250	90 100	0 80	0	0	0 95	_	0	0 20	0 40	0 100	0 40	20	0
14-29	63 25 0	20 95	0 80	0 0	0 0	0 50	_	0 0	0 0	0 0	0 50	0 20	0 10	0 20
14-30	63 250	70 100	0 50	0	0	0 80	_	0	0 0	0 0	0 90	0	0	0
14-31	63 250	70 100	0 70	0	0 50	40 50	_	0 0	0 0	0 0	0 90	0 20	0 30	0
14-32	63 250	100 100	10 50	0 30	0	80 100	_	0 40	0 30	0 20	20 100	0 20	0	0 10
14-33	63	100	20	0	0	0	=	0	0	0	0	0	10	0
14-34	250 63	100 100	90 100	0 20	0 10	90 95	=	50 30	0 20	30 0	99 90	20 30	20 0	10 20
14-35	250 63	100 100	100 100	10 0	10 0	100 50	_	100 80	90 0	30 0	100 50	100 0	25 0	90 0
14-36	250 63	100 75	100 100	0	0	100 75	10	100 10	99 0	50 0	95 30	20 0	25 0	10 10
14-37	250	100 100	100	0	0	100	80	95 0	90 0	30 0	95 0	40 0	10 0	70 0
	63 250	100	90 100	0	0	100 100	_	95	99	0	100	0	0	80
14-38	63 250	99 100	40 100	0 0	0 0	90 100	=	0 80	0 70	0 0	0 90	0 0	0	0 30
14-39	63 250	100 100	100 100	0 20	0	100 100	_	70 100	10 95	0 60	95 100	0	0 0	0 80
14-40	63 250	100 100	100 100	0	0	95 100	30 90	50 100	10 80	0 40	60 100	0 20	0	20 60
	230	100	100	U	U	100	70	100	60	40	100	20	J	•

TABLE XX-continued

					<u>P</u>	re-emerge	Herbicidal A	Activity						
Cmpd. no.	Rate g ai/ha	AMARE	ABUTH	CASOB	ІРОНЕ	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
14-41	63 250	100 100	90 100	0	0 40	100 100		30 100	0 80	0	50 100	0 50	0	0 50
14-42	63 250	95 100	80 95	0 0	0 30	90 100	0 100	30 80	0 20	0 0	0 50	0 95	0 20	10 30
14-43	63 250	100	90 100	0	0	100 100	0 100	30 95	0 80	20 30	80 100	0 70	0 20	10 40
14-44	63 250 63	70 100 100	80 100 100	0 0 0	0 0 0	70 100 95	_	0 70 0	0 50 0	0 0 0	0 90 30	0 100 0	0 0 0	0 50 10
14-45 14-46	250 63	100 100 60	100 100 80	0	0	100 0	50	95 0	80 0	50 0	99 0	80 0	10 0	80 0
14-47	250 63	95 100	100 100	0	0	90 100	100	0 0	0 0	0	0 30	30 0	0 0	30 0
14-48	250 63	100 90	100 90	0	0	100 50	0	99 0	95 0	20 0	100 0	100	0	70 30
14-49	250 63 250	100 100 100	100 100 100	0 0 70	0 50 90	100 100 100	80 —	50 50 100	50 0 100	0 20 90	70 50 100	95 0 100	40 10 95	70 40 95
14-50	63 250	100 100	0 50	0 30	10 70	100 100 100	=	0 50	0 30	50 95	0 40	0	10 90	0
14-51	63 250	100 100	10 100	0	0 50	90 100	_	0 0	0	0 0	0 0	0	0	0 0
14-52	63 250	40 90	70 100	0	0 30	80 100	_	0	0	0	0	0	0	. 0
14-54 14-55	63 250 63	20 85 0	0 70 10	0 10 0	0 40 0	10 100 0	0 0 0	20 80 0	0 0 0	0 30 0	0 30 0	0 0 0	0 0 0	0 15 0
14-56	250 63	100	30	- 0	- 0	80		20	-0	-0	30	- 0	-0	10
14-57	250 63	100 0	60 0	10 0	0 0	100 0	_	70 0	0 0	30 0	40 0	0 0	0 0	10 0
14-59	250 63	0 0 0	0 0 0	0 0 0	0 0 0	0 40 0	_	0 0 0	0 0 0	0	20 0 0	0 0 0	0 0 0	0
14-60	250 63 250	100 100	100 100	0	90 100	100 100	=	10 60	0 20	0 0 10	0 30	0 10	0	0 0 20
14-61	63 250	30 95	0 40	0	0 20	0 80	0 0	0 60	0	0 20	0 40	0	0	0 0
14-62	63 250	40 100	15 95	0	0	20 80	0 30	0 60	0 20	0 60	0 50	0	0 5	0 15
14-63 14-64	63 250 63	99 100 100	70 100 90	0 50 0	0 0 0	80 99 60	0 60 20	30 99 0	0 50 0	0 20 0	70 100 50	0 0 0	0 0 0	0 0 0
14-65	250 63	100 100	100	0 40	0 40	100 60	60 100	100 20	95 0	20 20	100 90	0 20	0	10 0
14-66	250 63	100 100	100 90	80 0	70 0	100 90	70 0	90 20	80 50	20 0	100 90	40 0	0 0	0 0
15-1	250 63	100 100	100 100	0 100	60 100	100 100	<u> </u>	100 100	100 91	30	100 100	95	95 100	20 90
15-2	250 63 250	100 100 100	100 100 100	100 100 . 100	100 10 100	100 100 100	=	100 100 100	100 100 100	100 100	100 100 100	100 90 100	100 80 100	100 99 100
15-3	63 250	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	90 100	95 100
15-4	63 250	100 100	100 100	100 100	100 100	100 100	_	100 100	80 100	=	100 100	90 100	90 100	80 100
15-5 15-6	63 250 63	100 100 100	100 100 100	100 100 90	100 100 100	100 100 100	=	100 100 99	70 99 99	100	100 100 100	90 99 95	80 99 95	70 99 98
15-7	250 63	100 100	100 100	100 100	100 95	100 100	_	100 100	100 80	100 95	100 90	95 95	100 85	100 90
15-8	250 63	100 60	100 40	100 20	100 0	100 60	· <u> </u>	100 20	100 0	100 — —	100 30	100 10	100 0	100 15
15-9	250 63	100 100	100 100	80 90	70 99	100 100	=	0 100 100	40 99	100	100 90 100	80 100 100	90 85 98	90 95 100
15-10	250 63 250	100 100 100	100 100 100	100 80 100	100 100 100	100 100 100	100 100	100 100 100	100 99 100	100 100 100	100 100 100	100 100 100	98 75 100	80 100
15-11	63 250	100 100	100 100	100 100	100 100	100 100	=	100 100	100 100	100 100	100 100	99 100	100 100	100 100
15-12	63 250	100 100	100 100	100 100	100 100	100 100	=	100 100	100 100	100 100	100 100	99 100	100 100	99 100
15-13	46 185	100 100	100 100	100 100	100 100	100 100	_	100 100	99 100	99 100	100 100	60 100	35 100	90 100

TABLE XX-continued

					<u>P</u> 1	re-emerge	Herbicidal A	Activity						
Cmpd.	Rate g ai/ha	AMARE	АВИТН	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
15-14	63	100	100	90	100	100	_	100	100	100	100	99	40	99
	250	100	100	100	100	100	_	100	100	100	100	100	99	100
15-15	63	100	100	100	100	100	_	100	100	100	100	100	95	95
	250	100	100	100	100	100	_	100	100	100	100	100	100	100
15-16	63	100	100	90	90	100	-	100	80	100	100	90	65	90
	250	100	100	100	100	100		100	100	100	100	100	100	100
15-17	63	100	100	100	100	100	_	100	100	100	100	100	80	100
	250	100	100	100	100	100	_	100	100	100	100	100	95	100
15-18	63	100	100	100	90	100	_	95	75	75	100	75	80	90
	250	100	100	100	100	100		100	100	100	100	100	95	99
15-19	63	100	100	100	100	100	_	100	100	100	100	95	80	90
	250	100	100	100	100	100	_	100	100	100	100	100	100	100
15-20	63	100	100	60	80	100		100	50	_	100	80	65	70
	250	100	100	100	80	100	_	100	100	_	100	95	95	100
15-21	63	100	100	100	100	100		100	99	100	100	100	95	99
	250	100	100	100	100	100		100	100	100	100	100	100	100
15-22	63	100	100	100	50	100		90	60	_	100	40	25	30
	250	100	100	100	100	100	_	100	100		100	90	95	99
16-2	63	40	75	0	10	80	_	10	0	0	0	0	0	0
	250	100	100	60	50	100	_	60	10	30	50	15	0	0
16-6	63	70	90	50	50	90		0	0	0	0	20	10	0
	250	100	100	70	90	100	_	40	50	50	70	60	90	70
16-7	63	0	0	0	0	0		0	0	0	0	0	0	0
	250	50	0	0	0	0	_	0	0	0	0	0	0	0
17-1	63	30	95	0	10	90	_	50	0	0	20	10	0	10
	250	90	100	80	70	100	_	80	70	60	80	10	10	30
17-2	63	30	0	0	0	60	_	0	0	0	0	0	0	0
-· -	250	60	20	ő	ő	90		ő	0	Ô	o o	ő	0	ő
17-4	63	30	0	0	0	20	_	0	0	0	0	0	0	0
11-4	250	100	60	10	10	70	_	20	0	0	10	0	0	10
17-5	63	80	60	0	30	90	_	0	0	0	0	0	0	0
11-3	250	100	100	30	35	100	_	50	0	20	60	0	0	10

TABLE XXI

					Pc	st-emerge	Herbicidal .	Activity	-					
Cmpd. no.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
1-4	63	30	100	60	100	60	50		0	0	0	80	0	0
	250	95	100	100	100	95	90	_	40	70	50	100	20	35
1-5	63	0	10	0	0	0	0	0	0	0	0	10	0	0
	250	40	60	30	70	50	30	0	0	0	0	50	5	0
1-9	63	100	100	90	100	100	90	90	70	90	90	100	30	40
1-10	63	10	30	0	20	10	0	0	0	0	0	0	0	0
	250	30	90	10	70	50	30	0	0	0	0	40	0	0
1-11	63	40	70	0	40	50	10	0	0	0	0	10	0	0
	250	60	100	0	70	95	10	50	0	0	0	30	0	0
1-13	63	100	100	30	100	100	70	30	30	10	0	80	20	30
	250	100	100	70	100	100	85	90	70	90	75	100	80	80
1-15	63	0	30	0	0	0	0	Ó	0	0	0	0	0	0
	250	30	50	0	40	20	0	0	0	0	0	15	0	0
1-16	63	30	30	0	20	30	0	0	0	0	0	0	0	0
	250	70	50	0	50	60	0	0	0	0	0	10	0	0
1-18	63	70	100	30	80	70	_	70	0	50	50	50	0	0
	250	100	100	95	100	100	_	70	0	50	50	100	0	0
1-19	63	30	100	10	30	30		20	0	0	0	40	5	25
	250	70	100	30	95	90	_	95	80	70	10	95	45	80
1-20	63	90	100	0	100	90	_	0	30	10	10	100	10	20
	250	100	100	50	100	100	_	60	80	70	20	100	40	50
1-21	63	95	85	10	70	75	10	10	0	0	0	40	5	10
	250	100	100	30	90	95	30	30	0	0	0	40	5	10
1-22	63	60	100	0	40	40		0	0	0	0	30	5	10
	250	80	100	0	90	80	_	80	0	10	0	60	15	40
1-30	63	10	30	0	20	0	0	0	0	0	0	0	0	0
	250	30	100	30	100	60	70	0	0	0	0	20	10	20
1-31	63	10	20	0	10	0	0	0	Ó	0	o	0	0	0
	250	30	50	Ó	50	40	0	Ó	Ō	Ō	Ō	20	0	10
1-32	63	10	30	0	0	0	0	0	Ō	Ō	Ō	0	0	0
	250	30		0	70	60	30	0	0	Ó	0	10	0	0

TABLE XXI-continued

							Herbicidal .							
Cmpd.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
1-37	63	90	100	65	100	95		20	30	10	10	60	10	25
1-38	250 63	100 80	100 100	90 50	100 80	100	_	80 10	90 0	70 0	70 10	100 80	60 25	60 35
	250	100	100	90	100	_		80	80	80	80	100	70	70
1-51	63 250	70 70	60 80	40 60	40 95	30 95	70 90	0 30	0 10	_	10 20	10 50	10 20	10 30
1-53	63	80	100	60	95	50	_	0	0	0	0	95	0	10
1-54	250 63	100 100	100 100	95 90	100 100	100 100	100	80 40	50 20	40 —	50 40	100 99	30 50	60 40
1-55	250 63	100 10	100 80	100 10	100 30	100 0	100 70	60 0	75 0	-	70 0	100 0	70 0	45 0
	250	10	90	20	95	20	50	40	ő	ő	30	20	10	ő
1-59	63 250	95 100	100 100	40 100	100 100	100 100	_	10 70	30 80	10 50	0 40	90 100	45 80	30 60
1-60	63	90	100	50	90	99	_	0	0	0	0	90	0	10
1-61	250 63	100 50	100 70	90 60	100 100	100 30	70	10 10	20 0	20 	50 10	100 20	50 10	40 10
	250	70	100	70	100	70	85	30	10	_	30	80	30	35
1-63	63 250	10 10	70 100	0 0	95 90	20 50	0 50	0 20	0 30	0 0	0 0	0 80	0	10 40
2-1	63	50	100	50	100	95	30	0	0	0	0	90	10	30
2-2	250 63	100 90	100 95	100	100 95	100 60	85 0	30 0	10 0	0 0	0 0	100 50	15 0	70 20
2-3	250 63	100 10	100 80	<u> </u>	100 60	100 30	70	30 0	40 0	50 0	30 0	95 70	0 0	60 0
	250	40	100	0	100	30	-	0	0	0	0	90	10	40
2-4	63 250	0 70	0 50	0 0	0 20	50 50		0 0	0 0	10 10	0 0	30 30	0	0 0
2-5	63	20	90	10	50	40	_	0	0	0	0	60	5	30
2-6	250 63	40 0	100 0	50 0	90 0	70 0	_	0	0	30 0	0 0	60 0	10 0	40 0
2-7	250	10 10	70 70	0 0	30	30	_	0	0	0	0	5	5	0
2-1	63 250	50	95	30	50 90	40 50	=	0 30	0 0	0 0	0 0	70 90	0 10	40 40
2-8	63 250	0 20	0 40	0 0	0 50	0 60	_	0 0	0 0	0 0	0 0	10 10	0 0	0 0
2-10	63	0	95	0	60	50	0	0	0	0	0	20	5	0
2-11	250 63	30 0	100 80	10	100 50	90 40	50	70 0	60 0	20 0	40 0	65 5	0 5	5 0
	250	30	100	_	60	65	_	20	0	0	0	15	5	0
2-12	63 250	0 10	20 65	0 0	0 50	0 40	0 10	0 0	0 0	0 0	0 0	0 0	0 0	0 0
2-14	63 250	40 70	90 95	10 10	40 80	30 40	=	0 0	0 0	0 0	0	15 20	0 10	10 30
2-15	63	0	70	10	40	40	10	0	0	0	0	10	0	0
2-16	250 63	20 50	90 100	10 10	90 99	60 80	40 	0 50	0 90	0 40	0 20	30 70	0 70	0 40
	250	100	100	80	100	100	100	100	100	95	60	100	90	45
2-18	63 250	0 95	0 40	0 10	0 30	0 50	_	0 0	0 0	0 0	0	0 20	0 0	0 0
2-19	63 250	40 75	90 100	0 10	70 100	50 50	30	0 30	0	0 0	0 0	80	0 0	0 20
2-23	63	70	100	95	100	70	90	-	ő	50	Ö	100 100	40	50
2-24	250 63	100 100	100 100	100 100	100 100	90 99	100 100	20	30 70	90 60	70 10	100 100	90 70	95 70
	250	100	100	100	100	100	100	70	95	90	50	100	95	90
2-26	63 250	0 20	0 40	0 0	0 30	0 20	0 0	0 0	0 0	0 0	0 0	0	0 0	0
2-27	63	100	100	50	90	90	60	_	0	20	10	100	50	60
2-28	250 63	100 100	100 100	90 30	100 60	100 60	90 —	30	80 0	85 0	7 0 0	100 60	95 15	95 90
2-29	250 63	100 90	100 100	20 20	50 75	60 80	 50	30 20	0 0	0 0	0 0	90 60	25 10	90 40
	250	100	100	40	100	90	60	50 50	20	10	20	90	25	60
2-30	63 250	0 20	30 70	0	0 20	0 50	0 10	_	0 0	0 0	0 0	0 10	0	0 0
2-31	63	100	100	_	90	80	_	10	10	10	0	90	40	50
2-32	250 63	90 100	100 100	80	100 100	95 95	_	20 0	40 0	30 50	20 0	95 100	60 30	70 30
	250	100	100	100	100	100	_	90	90	95	70	100	95	80
2-33	63 250	90 95	100 100	70 80	100 100	80 95	70 95	50 40	10 60	0 20	0 40	60 90	10 40	20 60
2-34	63 25 0	95 95	100 100	100 100	75 95	85 90	70 85	_	0 30	40 80	10 30	90 95	60 90	65 85
	230	73	100	100	73	30	63	_	30	ου	30	93	90	33

TABLE XXI-continued

							Herbicidal						_	
Cmpd.	Rate	434.5=		0100=				-	=					
no.	g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
2-36	63 250	100 100	100 100	60 60	100 100	95 100	80 95	50 60	10 0	10 10	20 20	75 100	10 20	25 40
2-37	63	0	0	0	0	0	0	_	0	0	, O	0	0	0
2-39	250 63	10 70	30 100	0 60	0 99	20 90	0 50	 20	0 0	0 10	0 0	10 95	0 20	0 30
2-39	250	95	100	90	100	95	95	80	60	60	50	99	70	70
2-40	63	90	100	50	100	80	80	10	0	30	10	100	40	50
2-41	250 63	100 95	100 100	90 60	100 100	95 95	100 50	90 20	100 0	100 0	90 0	100 90	90 15	95 10
	250	100	100	95	100	100	95	30	30	70	20	100	80	70
2-42	63 250	95 100	100 100	65 100	100 100	90 100	70 95	50 80	30 80	10 95	0 30	100 100	10 60	60 90
2-44	63	50	100	20	50	60	60	0	0	0	0	90	0	0
2-45	250 63	90 10	100 30	70 0	100 20	90 30	90	50 0	10 0	30 0	10 0	100 10	20 0	10 0
2-45	250	20	40	20	30	30	_	40	ő	ŏ	Ö	20	5	10
2-46	63 250	30 70	50 100	0 0	0 20	10		0	0	0	0	10	0	10
2-47	63	90	100	70	70	80	50	30 20	10 0	0 0	0 0	80 100	20 10	30 20
0.40	250	100	100	100	100	100	90	30	10	0	0	100	15	45
2-48	63 250	95 100	100 100	50 100	100 100	95 100	85 100	20 70	80 80	· 30 60	0 20	100 100	50 70	80 86
2-49	63	20	90	30	70	60	50	-	0	0	0	70	0	0
2-50	250 63	40 90	100 100	50 80	70 100	60 70	40 40	40	0 0	0 0	0 10	60 90	10 10	10 60
	250	100	100	90	100	90	65	60	30	40	30	90	70	65
2-52 2-53	63 63	30 90	30 100	0 7 0	10 90	10 95	20 70	0 20	0 0	0 0	0 0	0 100	0 10	0 30
2-33	250	100	100	100	100	100	90	40	70	50	20	100	70	<i>7</i> 0
2-54	63	100	100	90	100	100	90	10	20	50	10	100	80	90
2-56	250 63	100 100	100 100	100 100	100 100	100 100	100 70	50 80	90 0	8 0 0	20 0	100 100	80 30	95 45
	250	100	100	100	100	100	100	60	50	60	30	100	80	90
2-58	63 250	100 100	100 100	100 100	95 100	100 100	100 100	50 60	20 90	20 90	10 40	100 100	40 90	50 85
2-59	63	100	100	90	100	100	70	20	0	30	0	75	70	70
2-61	250 63	100 100	100 100	100 100	100 100	100 100	100 100	20 60	30 40	65 20	30 20	90 100	80 35	80 60
2-01	250	100	100	100	100	100	95	90	70	70	50	100	90	90
2-63	63 250	100 100	100 100	100	100	99	80	50	10	20	0	100	50	70
2-14	63	85	100	100 40	100 70	100 80	100 60	95 20	100 30	100 20	70 10	100 50	95 50	95 60
2.66	250	100	100	70	90	100	90	50	40	20	20	60	60	90
2-66	63 250	100 100	100 100	100 70	100 90	100 100	100 75	90 80	70 50	·10 50	10 20	95 90	15 70	50 90
2-67	63	100	100	100	99	100	100	20	0	0	0	100	20	70
2-69	250 63	100 40	100 100	100 10	100 50	100 50	100 40	30 0	40 0	80 0	40 0	100 20	95 0	80 0
	250	50	100	30	40	60	30	ŏ	ŏ	ŏ	ő	30	ő	ŏ
2-70	63 250	70 70	100 100	10 20	60 60	50 70	30 30	20 0	0	. 0	0 0	10 20	0	0 0
2-72	63	70	100	70	50	70	70	_	0	ŏ	ő	15	ő	ŏ
2-73	250 63	90 100	100 100	95	60 100	80	60	_	0	0	0 30	30	10	20 20
2-13	250	100	100	60 100	100	70 95	100 100	50 90	30 60	10 50	30	95 100	25 50	70
2-74	63	95	100	30	60	70	70	0	0	0	0	60	0	25
2-75	250 63	100 100	100 100	70 100	60 100	70 100	95 	20 30	0 10	0 20	0 0	100 100	15 10	50 70
	250	100	100	100	100	100	_	80	50	40	20	100	15	80
2-77	63 250	10 100	100 100	40 100	60 95	100	_	0	0	0 0	0	40 90	0	20
2-78	63	100	100	70	80	80 100	_	30	0 10	0	0 0	90 80	10 25	40 50
	250	100	100	100	100	100	_	30	10	10	0	100	30	65
2-81	63 250	100 100	100 100	70 100	100 100	90 100	_	40 60	50 90	20 80	20 80	90 100	30 90	60 90
2-82	63	100	100	100	60	90	_	40	20	0	0	60	10	50
	250	100	100	100	90	90	_	50	30	30	30	50	25	40
2-83	63 250	40 90	50 70	0 0	10 20	20 50	=	0 0	0 0	0	0 0	10 10	0	100 0
2-84	63	80	30	20	30	30	_	30	0	0	o	10	10	0
	250	100	100	100	70	80	_	0	0	0	0	70	10	20
2-86	63 250	100 100	100 100	100 100	100 100	100 100	_	90 100	90 100	70 100	30 95	100 100	90 100	80 100
		100	100	100	100	100	_	100	100	100	,,,	100	100	200

TABLE XXI-continued

					_		XXI-cont		_					
					<u>Pc</u>	st-emerge	Herbicidal .	Activity	-					
Cmpd. no.	Rate g ai/ha	AMARE	АВИТН	CASOB	ІРОНЕ	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
2-87	63 250	100 100	100 100	40 100	100 100	80 90	_	30 40	10 50	10 50	10 50	95 100	30 80	40 75
2-89	63	70	100	50	90	60	_	20	0	0	0	80	0	60
2-92	250 63	100 20	100 100	60 0	100 20	90 20	_	20 0	10 0	10 0	0 0	99 10	0 0	70 10
2-98	250 63	50 75	100 100	30 100	100 100	80 70	80	0	0 0	0 0	0 0	50 100	30 20	60 40
2-100	250	100	100	100	100	90	100	_	20	90	50	100	90	90
	63 250	80 100	100 100	70 60	100 100	80 80	70 90	60 70	0 30	0 60	0 20	100 100	15 80	45 70
2-102	63 250	0 40	0 30	0	0 0	0 0	_	0 0	0 0	0 0	0 0	0 40	0	0 0
2-105	63 250	100 100	100 100	80 80	100 100	80 90	100 100	70 100	10 30	0 30	0 10	100 100	0 10	0 30
2-115	63	100	100	90	90	100	-	0	10	0	20	50	5	20
2-117	250 63	100 10	100 80	95 40	95 90	100	_	0 0	20 0	0 0	50 0	50 30	5 5	50 10
2-118	250 63	70 30	100 60	95 0	100 50	_	_	0	0 0	0 0	0 0	90 40	20 10	40 10
	250	30	80	30	90	=	=	0	0	0	0	90	20	10
2-119	63 250	90 100	100 100	30 60	100 100	80 100	_	40 90	40 90	60 90	30 80	100 95	70 90	60 90
2-120	63 250	90 100	100 100	40 30	100 100	80 80	_	20 60	40 30	40 50	10 60	70 90	50 70	50 90
2-121	63	90	70	10	100	60	_	0	0	0	0	25	10	15
2-122	250 63	100 100	100 100	60 100	100 100	80 100	_	20 90	0 30	10 30	10 40	60 90	20 40	25 35
2-123	250 63	100 100	100 100	100 100	80 100	100 100	_	95 20	50 10	60 10	60 10	100 70	40 35	60 60
	250	100	100	100	100	100	-	30	20	30	30	95	40	70
2-124	63 250	30 90	40 95	0 20	20 30	30 50		0 0	0 0	0 0	0 0	15 15	0 5	0 0
2-125	63 250	100 100	100 · 100	90 100	100 100	100 100	_	40 60	20 40	30 40	20 40	90 100	10 20	40 70
2-126	63 250	. 80	90	60	80	80	_	30	0	0	20	30	10	0
2-127	63	100 100	100 100	60 100	100 100	95 70	=	40 30	10 30	10 20	30 20	60 35	10 10	50 30
2-128	250 63	100 100	100 100	60 60	95 100	100 100	_	40 50	20 10	20 —	30 10	70 60	15 5	35 10
2-129	250 63	100 100	100 100	80 80	100 100	100 100		60 80	20 30	_	35 30	60 100	15 70	35
	250	100	100	100	100	100	=	90	50	_	7 0	100	100	75
2-130	63 250	100 100	100 100	80 70	100 100	100 100	=	60 70	50 60	=	30 50	80 90	10 30	20 25
2-131	63 250	100 100	100 100	80 100	100 100	100 100	_	70 90	30 60	_	30 70	90 100	15 70	10 75
2-132	63	100	100	100	100	100		40	20	_	10	80	60	50
2-133	250 63	100 100	100 100	99 80	100 90	100 100	_	60 70	40 50	_	25 30	100 100	75 70	80 80
2-134	250 63	100 100	100 100	100 90	100 100	100 100	_	75 20	85 10	<u> </u>	70 0	95 70	95 10	95 50
2-135	250 63	100 100	100 100	100	100 100	100		60	30	30	30	90	20	80
	250	100	100	70 100	95	100 100	=	15 40	0 2 0	_	0 10	50 90	10 25	20 40
2-136	63 250	100 100	100 100	60 100	80 100	95 100	_	20 30	0 10	=	0 20	70 90	15 10	5 10
2-137	63 250	100 100	100 100	100 90	100 90	100 100		10 30	0 30	_	0 10	70 90	10 60	10 70
2-140	63	100	100	100	100	100	_	40	30	_	20	100	10	50
2-141	250 63	100 95	100 100	100 50	100 100	100 95	_	60 20	85 10	_	65 10 ,	100 70	70 5	80 15
2-142	250 63	95 0	100 0	95 0	95 0	100 20		40 0	30 0		30 0	70 15	10 10	65 10
	250	40	40	10	50	60	=	0	0	=	0	30	15	0
2-143	63 250	100 100	100 100	70 100	60 100	=	_	0 40	0 30	=	0 40	100 95	10 35	40 70
2-144	63 250	75 90	85 100	60 85	60 70		_	0 30	0 10	- ,	0	40 40	40 20	15 35
2-145	63	95	100	100	100	_	=	0	0	0	0	80	10	35
2-146	250 63	· 30	100 70	100 20	100 40	30	_	40 0	20 0	10 0	10 0	95 10	20 10	60 10
2-147	250 63	30 100	75 100	50 80	50 100	40 100	95	0 20	0 10	0	0 20	10 90	5 15	10 50
2-17/	250	100	100	95	100	100	100	40	50	_	50	100	90	75

`

TABLE XXI-continued

					Po	ost-emerge	Herbicidal	Activity	-	<u>-</u>	-			
Cmpd. no.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
2-148	63	100	100	95	80	100	_	50	50	0	40	80	25	0
2-149	250 63	90 80	100 100	100 95	90 70	100 90	=	40 10	20 20	10 0	40 0	90 80	30 0	10 0
2-151	250 63	80 10	100 0	95 10	95 30	95 10	20	20 0	50 0	0	20 0	90 0	15 0	10 0
2-152	250 63	20 100	50 100	50 100	100 100	10 98	30 —	0 30	0 30	0 20	0 20	0 60	0 15	10 40
2-153	250 63	100 60	100 95	100 0	100 100	100 80	_	50 20	50 10	40 0	30 0	70 70	30 5	65 0
2-154	250 63	90 100	100 100	30 50	95 100	95 100	_	30 40	20 80	20	10 10	50 90	5 10	10 65
2-155	250 63	100 100	100 100	100 100	100 100	100 100	_	95 50	95 30		85 40	100 80	85 70	90 25
	125	100	100	100	100	100	50	70	60 0	50	50	99	90	80
2-158	63 250	100 100	95 100	90 100	20 80	90 95	100	10 70	50	0	0 30	40 50	. 0	20 60
2-161	63 250	100 100	100 100	100 100	100 100	100 100	30 100	0 20	20 60	0 30	0 50	80 80	0 20	20 70
2-163	63 250	100 100	99 100	90 90	98 95	100 100	_	50 60	55 70	0 10	30 45	80 85	35 40	20 55
2-168	63 250	20 50	60 100	0 80	60 100	30 50	_	0 10	0 0	0 0	0 0	30 80	5 10	10 30
2-169	63 250	10 0	70 80	10 10	50 40	30 40	_	0	0	0	0	70 50	10 10	10 10
2-170	63 250	20 30	35 90	10 60	50 95	60 50	=	10 20	0 20	0 10	0 30	30 90	5	5 10
2-171	63	30	60	30	60	40	=	0	0	0	0	20	15 0	0
2-172	250 63	50 60	100 60	40 50	100 90	90 35	30	10 0	0	10 0	10 0	80 20	10 ⁻ 5	10 0
2-173	250 63	60 50	100 60	90 50	100 100	60 40	80 30	10 0	0 0	0 0	0 0	80 20	10 0	10 0
2-174	250 63	50 60	100 60	70 60	80 70	65 55	50	0 10	0 0	0 0	0 0	40 30	25 10	10 20
2-175	250 63	60 100	80 100	75 100	80 100	85 100	_	10 0	0 0	0	10 0	80 80	25 10	20 50
2-176	250 63	100 100	100 50	100 10	100 70	100 80	_	20 0	20 0	10 0	10 0	90 15	10 0	80 10
2-177	250 63	100 100	90 100	30 100	95 100	90 100	_	0 45	0 20	0 30	0 30	35 95	5 15	30 50
	250	100	100	100	100	100	=	60	40	40	50	100	20	60
2-178	63 250	50 70	40 50	0	30 20	30 40	=	0	0	0	0	10 15	0	0
2-179	63 250	100 100	100 100	80 100	80 100	80 100	_	30 55	70 50	10	0 50	90 100	15 15	30 60
2-180	63 250	100 100	100 100	100 100	100 100	100 100	=	60 7 0	40 60	_	40 40	100 100	5 20	20 65
2-181	63 250	100 100	100 100	100 100	100 100	100 100	=	70 80	40 60	_	30 70	90 95	10 20	15 60
2-182	63 250	90 95	100 100	60 95	100 100	95 100	_	10 80	0 30	_	0 20	70 100	5 70	0
2-183	63 250	0 10	0 50	0	0 40	0 80	=	0	0	_	0	10 30	0	0
2-184	63 250	100 100	100 100	100 100	100 100	100 100	_	60 80	40 50		20 90	95 100	10 75	40 65
2-185	63	80	100	40	60	70	_	0	0	_	0	50	0	20
2-187	250 . 63	100 99	100 100	60 70	80 100	100 100	_	20 40	0 20	_	10 10	75 100	5 15	35 50
2-188	250 63	100 85	100 100	100 55	100 100	100 80	_	60 10	40 30	_	40 0	100 70	75 25	90 20
2-189	250 40.5	90 100	100 85	90 40	100 60	100 100	_	20 0	40 0	_ 0	10 0	95 15	45 0	40 0
2-190	162 63	100 95	100 90	60 20	100 50	100 90	_	0	10 0	0	0	60 20	5	5
2-191	250 63	99 40	90 70	80 30	90 80	100	_	o o	10 0	50 0	0	95 20	10 10	5 10
2-191	250 63	90 70	90 85	80 40	100 50	60	Ξ	10 0	0	0	0	35 40	20 5	20 0
	250	70	85	60	70	50		0	0	0	0	70	15	20
2-194	63 250	99 99	95 100	50 70	95 99	90 100	95 90	20 20	0 10	0 10	0 20	50 95	5 5	30 40
2-196	63 250	100 100	100 100	100 100	90 100	100 100	100 90	30 20	10 10	10 10	10 20	100	10 15	30
2-197	63 250	100 100	100 100	80 80	100 90	100 100	=	10 20	0 20	0 50	10 10	70 100	10 10	20 30

TABLE XXI-continued

					Po	st-emerge	Herbicidal	Activity	_					
Cmpd. no.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
2-198	63	80	80	50	80	80		10	5	0	10	90	10	10
2 100	250	95 05	100	30 100	100	90	_	10	5	50	10	95	40	30
2-199	63 250	95 100	100 100	100 100	100 100	100 100	_	50 90	60 100	40 95	30 95	90 100	30 90	80 90
2-200	63	100	100	100	100	100	_	30	0	0	0	80	10	10
	250	100	100	100	100	100	_	50	0	0	0	95	20	20
2-201	63 250	99 100	95 99	60 85	95 95	95 98	_	20 30	50 60	0 0	35 45	75 85	30 35	60 65
2-202	63	100	100	100	100	100	_	30	10	_	0	90	15	20
	250	100	100	100	100	100	_	40	40	_	30	100	30	60
2-203	63	100	100	100	60	100	_	20	10	10	10	30	10	25
2-204	250 63	100 50	100 40	100 10	95 30	100 20	10	30 0	30 0	20 0	30 0	60 30	10 5	30 0
	250	70	80	500	60	95	70	20	ő	ŏ	10	80	10	30
2-205	63	90	100	90	100	70	70	10	0	0	10	40	10	30
2-206	250 63	40 20	100 50	100 50	70 70	70 50	100	10 0	0 0	0 0	10 30	30 30	20 0	30 0
2-200	250	50	90	80	90	70	_	Ö	30	0	20	70	0	70
3-1	63	0	0	0	0	0	0	0	0	0	0	0	0	0
3-4	250 63	60	0 40	0	30	60	0	0	0	0	0	0	10	0
3-4	250	0 0	40 50	0	0	0 0	_	0	0 0	0 0	0 0	10 20	0	0 10
3-6	63	100	100	40	90	50		0	0	0	0	95	20	30
2.01	250	100	100	90	100	90		40	20	20	10	100	70	70
3-26	63 250	50 65	60 60	20 60	60 90	50 60	_	0 0	0 0	0 0	0 0	15 30	3 10	10 30
4-1	63	50	100	30	100	60	40	ő	Ö	ő	ŏ	50	10	20
	250	95	100	50	100	98	90	10	0	20	0	100	20	50
4-2	63 250	50 85	70 100	0 40	70 100	40 95	0 30	0 20	0 0	0	0 0	40	0	0
4-7	63	100	100	100	100	100		70	50	0 90	40	75 100	10 90	30 65
	250	100	100	100	100	100	_	100	100	90	90	100	100	90
4-23	63	100	100	80	100	80	_	40	20	10	10	95	35	60
4-24	250 63	100 100	100 100	100 70	100 100	100 100		70 50	60	50 40	40 40	100 80	80 35	80 20
	250	100	100	100	100	100	_	80	_	60	50	95	70	45
4-25	63	70	70	20	40	75	_	20	_	0	0	30	5	0
4-26	250 63	100 100	95 100	30 30	60 100	85 90	_	30 20	10	10 10	0 20	80 40	15 5	20 15
7-20	250	100	100	60	100	100	_	60	50	50	50	80	20	45
4-27	63	60	70	20	70	60	_	0	0	0	0	30	5	0
4-28	250 63	80 80	100 100	40 50	80 60	100 70	_	10	0 0	0	0	50	10	10
1-20	250	100	100	50	80	90	_	10 30	20	0 10	0 20	40 50	0 5	10 15
4-29	63	100	100	90	100	90		80	70	60	50	100	80	60
4.00	250	100	100	100	100	100	_	99	90	100	90	100	100	85
4-30	63 250	100 100	100 100	100 100	100 100	100 100	_	80 100	50 90	50 100	50 85	100 100	90 99	80 85
4-31	63	100	100	10	100	100		20	10	0	ő	40	10	20
4.22	250	100	100	30	100	100	_	40	10	10	10	80	25	40
4-32	63 250	100 100	90 100	80 80	100 100	100 100	_	30 50	0 20	10 30	10 20	50 80	20 30	20 40
4-33	63	100	100	30	100	90	_	30	10	0	10	70	15	30
	250	100	100	70	100	100	_	40	20	30	30	80	25	40
4-34	63 250	100 100	100 100	90 100	100 90	100 100	_	50 75	20 50	30 30	35 60	90	25 50	40 80
4-36	63	100	100	100	100	100	_	90	20	30 10	30	95 100	50 50	60
	250	100	100	100	100	100	_	90	60	90	70	100	100	100
4-37	63 250	100	100	90	100	100	_	90	20	40	50 70	80	20	10
4-38	250 63	100 100	100 100	100 90	100 100	100 100	_	90 60	60 50	60 —	70 40	100 80	60 40	60 35
	250	100	100	100	100	100	_	80	50	_	40	100	85	50
4-39	63	100	100	100	100	100	_	80	60	_	50	100	70	60
4-40	250 63	100 100	100 100	100 100	100 100	100 100	_ _ _	90 80	90 50		80 40	100 90	100 30	60 40
-	250	100	100	100	100	100	_	90	90	_	90	100	<i>3</i> 0 70	40 60
4-41	63	100	100	100	100	100	_	95	80	_	90	100	75	50
4.42	250	100	100	100	100	100	_	95	90	_	100	100	90	85
4-42	63 250	75 100	100 100	0 0	40 30	80 90	_	0 0	0 10	_	0 0	20 40	0 0	0 0
4-43	63	70	60	50	40	80	<u>-</u>	Ö	0	_	ő	30	o	Ö
	250	100	100	60	40	90	_	40	10	_	0	40	10	0
4-44	63 250	100 100	100 100	100 100	100 100	100 100	_	95 90	70 90	_	70 95	100 100	90 100	70 80
	230	100	100	100	100	100	_	30	90		93	100	100	80

TABLE XXI-continued

Cmpd. Rate AMARE ABUTH CASOB IPOHE CHEAL AMBEL SETVI ECHCG SORHA DIGSA	SOY COR 30 10 80 20 50 100 80 90 30 95 65 95 95 100 90 40 20 90 80 15 00 20 10	0 10 0 20 0 10 0 70 0 30 5 60 0 80 0 80 0 10 0 70
No. S S S S S S S S S	30 10 80 20 50 10 100 80 90 30 95 95 95 90 100 90 40 20 90 15 0 15 0	0 10 0 20 0 10 0 70 0 30 5 60 0 80 0 80 0 10 0 70
$ \begin{array}{c} 250 \\ +4.46 \\ -63 \\ -100 \\ -50 \\ -100 \\ -250 \\ -10$	80 20 50 100 90 300 95 65 95 95 96 90 100 90 40 20 90 80 15 0 20 10	20 20 10 10 70 70 30 55 60 80 80 0 10 70 70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50 100 800 100 800 90 30 95 95 90 100 90 40 20 90 15 00 10 20 10 20 10 20 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	10 70 70 30 5 60 80 0 80 0 10 0 70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	90 30 95 65 95 90 100 90 40 20 90 80 15 0	30 5 60 0 80 0 80 0 10 0 70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	95 90 100 90 40 20 90 80 15 0 20 10	0 80 0 80 0 10 0 70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40 20 90 80 15 0 20 10	0 10 0 70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 0 20 10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 0
250 100 100 100 100 100 00	60 5 90 70	0 65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70 40 100 75	
4-56 63 100 100 100 100 100 - 90 50 40 20 250 100 100 100 100 100 - 100 90 90 70 4-57 63 100 100 100 100 100 - 50 30 30 10 4-58 63 100 100 100 100 100 - 90 40 50 60 4-59 63 90 100 100 100 100 - 90 40 50 60 4-59 63 90 100 30 100 100 - 90 40 50 60 4-59 63 90 100 30 100 100 - 90 40 50 60 4-59 63 90 100 100 100 - 0 0 0	30 10 60 5	
4-57 63 100 100 60 100 95 — 50 30 30 10 250 100 100 100 100 100 100 — 90 40 50 60 4-58 63 100 100 100 100 100 — 50 30 30 20 250 100 100 100 100 100 — 90 40 50 60 4-59 63 90 100 30 100 100 — 0 0 0 0 250 100 100 60 100 100 — 65 60 50 40 4-60 63 100 100 100 100 100 — 70 40 50 50 4-61 63 100 100 100 100 100 — 70 40 50	100 80	0 65
4-58 63 100 100 90 100 100 — 50 30 30 20 250 100 100 100 100 100 — 90 40 50 60 4-59 63 90 100 30 100 100 — 0 0 0 0 0 250 100 100 60 100 100 — 30 20 30 20 4-60 63 100 100 60 100 100 — 65 60 50 40 250 100 100 100 100 100 — 90 50 50 60 4-61 63 100 100 100 100 100 — 70 40 50 50 4-62 63 100 100 100 100 100 — 80 60 70	100 100 95 40	0 50
250 100 100 100 100 100 — 90 40 50 60 4-59 63 90 100 30 100 100 — 0	100 90 100 30	
250 100 100 60 100 100 — 30 20 30 20 4-60 63 100 100 100 60 100 100 — 65 60 50 40 250 100 100 100 100 100 100 — 90 50 50 60 4-61 63 100 100 100 100 100 100 — 70 40 50 50 250 100 100 100 100 100 100 — 80 60 70 70 4-62 63 100 100 100 100 100 100 — 80 60 70 70 4-63 63 100 100 100 100 100 100 — 80 40 30 50 250 100 100 100 100 100 100 — 80 40 30 50 4-64 63 100 100 100 100 100 100 — 80 40 30 50 4-65 63 100 100 100 100 100 100 — 80 30 20 10 10 4-65 63 100 100 100 100 100 100 — 80 30 30 30 4-65 63 100 100 100 100 100 100 — 80 30 30 30 4-66 63 80 100 100 100 100 100 — 80 30 30 30 4-66 63 80 100 20 100 100 100 100 — 100 60 70 60 250 100 100 100 100 100 100 70 80 80 4-66 63 80 100 20 100 80 — 100 60 70 60 4-67 63 100 100 90 100 100 100 — 100 70 80 80 4-68 63 100 100 100 100 100 100 — 90 40 — 70 250 100 100 100 100 100 100 — 90 40 — 70 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 70 — 80 4-68 63 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 90 40 — 75 250 100 100 100 100 100 100 — 80 40 — 50	100 70	
250 100 100 100 100 100 — 90 50 50 60 4-61 63 100 100 100 100 100 — 70 40 50 50 250 100 100 100 100 100 — 80 60 70 70 4-62 63 100 100 90 100 100 — 60 20 30 10 250 100 100 100 100 100 — 80 40 30 50 4-63 63 100 100 60 100 80 — 0	90 25	5 60
250 100 100 100 100	90 25 100 55	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 50 95 70	
4-63 63 100 100 60 100 80 — 0 0 0 0 250 100 100 100 100 100 — 30 20 10 10 4-64 63 100 100 60 100 100 — 50 20 10 10 250 100 100 100 100 100 — 80 30 30 30 4-65 63 100 100 100 100 — 100 60 70 60 250 100 100 100 100 — 100 70 80 80 4-66 63 80 100 20 100 80 — 100 70 80 80 4-67 63 100 100 90 100 100 — 90 40 — 70 250	100 30	0 30
4-64 63 100 100 60 100 100 — 50 20 10 10 250 100 100 100 100 100 — 80 30 30 30 4-65 63 100 100 100 100 — 100 60 70 60 250 100 100 100 100 — 100 70 80 80 4-66 63 80 100 20 100 80 — 10 0 0 10 250 100 100 90 100 100 — 60 40 50 50 4-67 63 100 100 100 100 — 90 40 — 70 250 100 100 100 100 100 — 90 70 — 80 4-68 63 100	90 45 90 10	0 10
250 100 100 100 100 100 — 80 30 30 30 4-65 63 100 100 100 100 100 — 100 60 70 60 250 100 100 20 100 80 — 10 0 0 10 250 100 100 90 100 100 — 60 40 50 50 4-67 63 100 100 100 100 — 90 40 — 70 250 100 100 100 100 — 90 70 — 80 4-68 63 100 100 100 100 — 90 70 — 80 4-69 63 100 100 100 100 — 100 90 — 75 250 100 100 40	100 30 100 30	
250 100 100 100 100 100 — 100 70 80 80 4-66 63 80 100 20 100 80 — 10 0 0 10 250 100 100 90 100 100 — 60 40 50 50 4-67 63 100 100 100 100 — 90 40 — 70 250 100 100 100 100 — 90 70 — 80 4-68 63 100 100 100 100 — 90 70 — 80 4-69 63 100 100 40 70 90 — 100 90 — 75 250 100 100 40 70 90 — 40 20 — 20 250 100 100 70	90 40 100 80	0 50
250 100 100 90 100 100 — 60 40 50 50 40 40 40 40 40 40 40 40 40 40 40 40 40	100 90	0 80
250 100 100 100 100 100 - 90 70 - 80 4-68 63 100 100 100 100 100 - 100 90 - 75 250 100 100 100 100 100 - 100 98 - 90 4-69 63 100 100 40 70 90 - 40 20 - 20 250 100 100 70 100 100 - 80 40 - 50	40 15 80 60	
4-68 63 100 100 100 100 — 100 90 — 75 250 100 100 100 100 — 100 98 — 90 4-69 63 100 100 40 70 90 — 40 20 — 20 250 100 100 70 100 100 — 80 40 — 50	100 5 100 70	
4-69 63 100 100 40 70 90 — 40 20 — 20 250 100 100 70 100 100 — 80 40 — 50	100 95	5 60
		5 0
4-70 63 90 100 60 100 90 — 60 40 — 30	80 3: 100 4	
250 100 100 90 100 100 — 95 80 — 70 5-17 63 0 90 0 30 20 — 0 0 0	100 90 15 0	0 70 0 10
250 30 100 30 40 60 — 80 20 10 0	70 10	.0 50
5-18 63 0 70 0 0 10 — 0 0 0 0 0 0 0 250 10 70 0 0 10 — 0 0 0 0		0 20
5-26 63 100 100 90 90 100 — 40 20 — 20 250 90 100 100 70 100 — 70 60 — 30		0 50 5 60
5-28 63 100 100 90 100 100 — 10 0 — 10	60 2	25 60
250 100 100 100 100 100 — 30 50 — 30 6-13 63 70 100 0 50 85 — 50 0 0 20	30 1	70 70 15 10
250 90 90 30 60 90 — 90 30 10 30 6-14 63 80 100 60 100 100 — 90 20 30 60		20 30 50 60
250 100 100 90 100 100 — 100 90 90 90	100 10	
250 100 100 100 100 100 — 85 70 — 60	90 2	25 90
6-16 63 100 100 80 100 100 — 30 20 — 20 250 90 100 60 75 100 — 60 40 — 30	70 3	20 20 35 70
6-17 63 60 90 50 50 90 — 0 0 — 0 250 70 100 70 70 90 — 30 30 — 20	20	5 (15 10
6-19 63 0 0 0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 (
250 30 50 0 30 60 — 0 0 0 0 6-20 63 0 0 0 0 0 — 0 0 0 0	0	0 0
250 60 50 0 40 60 — 0 0 0 0 6-22 63 70 60 0 20 50 — 0 0 0		0 (
6-15 63 100 100 100 100 100 — 50 40 — 30 250 100 100 100 100 100 — 85 70 — 60 6-16 63 100 100 80 100 100 — 85 70 — 60 60 250 90 100 60 75 100 — 60 40 — 30 20 — 20 6-17 63 60 90 50 50 50 90 — 0 0 0 — 0 20 6-19 63 0 0 0 0 0 0 0 — 30 30 — 20 6-19 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 30
250 85 55 10 30 70 — 30 0 0 10		15 15

TABLE XXI-continued

					Po	st-emerge	Herbicidal .	Activity	_		_			
Cmpd. no.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
6-24	63 250	0 80	20 95	0 10	0 60	30 90	=	0 40	0	0	0	10 20	0	0
7-2	63 250	100 100	100 100	_	80 100	95 100	0 10	20 50	30 90	20 40	20 70	40 80	10 10	30 20
7-14	63 250	 70	— 95	-	100	90	=	20	10	=	10		25	15
7-15	63 250	100 100	100 99	40 80	70 70	100 100	=	10 10	0 10	0 0	0 0	30 30	10 10	0 30
8-2	63 250	95 100	100 100	50 30	50 90	40 80	30 90	40 60	20 30	10 0	30 30	40 10	10 20	20 15
8-3	63 250	90 100	90 100	0 50	40 60	70 90	=	0 70	0 0	0 20	0 0	20 30	0	20 80
8-4	63 250	70 90	60 80	0 10	0 20	70 90	_	0 30	0 0	0 0	0 0	30 50	0 0	50 50
8-5	63 250	40 100	70 90	0 10	0 40	70 70	_	0 20	0	0 0	0	20 50	0	40 50
8-7	63 250	95 100	95 100	0 90	10 70	95 99	_	0 90	0 20	0	0 10	50 90	10 10	0 90
8-13	63 125	100 100	100 100	30 50	50 60	90 90	_	30 30	20 40	10 20	20 10	30 60	10 40	30 70
8-18	63 250	100 100	100 100	30 40	50 60	70 80	_	30 30	10 30	10 30	10 20	30 70	5 30	50 60
8-30	63 250	100 100	100 100	80 100	100 100	100 100	_	40 7 0	30 70	30 50	20 40	90 95	10 15	40 35
8-31	63 250	100 100	100 100	60 80	100 100	100 100	_	20 20	_	10 30	10 30	80 90	10 10	45 30
8-36	63 250	95 90	100 100	70 95	100 85	95 100	_	10 10	0 20	0 10	10 5	30 40	10 15	10 20
9 4	63 250	50 80	50 100	20 60	45 100	70 85	_	20 30	_	0 10	0	40 90	5 10	10 40
9-14	63 250	85 100	100 100	40 40	80 90	95 100	_	10 20	0 10	_	0 10	60 90	15 50	0 40
9-15	63 250	100 100	100 100	100 100	100 100	100 100	_	10 35	0 10	0 10	0 20	100 100	5 10	40 70
9-16	63 250	30 75	100 100	50 85	90 100	65 80	=	0 20	0 10	0 0	10 0	90 100	5 65	30 70
9-19	63 250	80 98	100 100	80 95	75 90	100 100	=	10 20	0 10	0 0	0 10	60 80	10 10	15 25
11-6	63 250	100 100	100 100	100 100	70 100	80 100	100 100	10 50	50 80	0 0	0 0	10 40	0 20	20 60
11-13	63 250	100 100	95 100	85 85	98 98	100 100	_	55 40	65 55	0 15	40 60	65 85	45 45	45 65
12-2	63 250	30 100	100 100	50 95	90 100	100 100	_	0 50	30 80	10 90	0 7 0	60 100	10 100	20 80
12-3	63 250	95 99	90 90	20 80	50 90	90 100	_	0	0 10	0 50	0	20 95	5 10	0 5
12-5	63 250	70 85	100 100	40 60	100 99	100 99	_	20 10	10 10	_	0 10	40 30	25 20	20 15
12-8	63 250	80 90	100 100	50 70	90 80	95 99	=	20 25	10 10	0 10	10 0	40 80	5 10	20 15
13-3	63 250	90 90	100 90	90 100	75 70	100 100	_	10 30	0 20	_	0 10	30 40	10 10	25 20
13-4 13-5	63 250	100 95 70	100 100	95 100	85 85	95 100	=	20 40	10 30	_	0 10	70 90	5 5 7	30 50
	63 250	75	70 70	40 30	50 60	95 90	=	0 10	0 0	0 0	0 20	10 25	15	10 20
14-1 14-2	63 250 63	100 100 100	85 98 80	55 70 50	85 100 75	80 98 95	=	40 70 30	85 95 0	25 75 0	80 95 20	100 100 35	85 100	40 80
14-3	250 63	100 100 95	100 100	60 10	100 50	95	-	20 30	45	30	40	40	35 45 100	25 30 5
14-4	250 63	100 100	100 100 80	75 50	100 50	90 100 100	=	70 30	99 100 85	80 70	99 100 75	100 100 100	100 100 70	80 15
14-5	250 63	100 100 100	100 100	100 10	60 30	100 100	=	65 60	99 40	=	95 95	100 100 20	80 70	40 20
14-6	250 63	100 100 95	100 100 90	50 50	100 70	100 100 80	40	95 30	100 99	50	100 50	95 100	100 50	30 0
14-7	250 63	100 95	100 50	100 0	100 20	100 90	80 50	80 60	100 100	65 70	75 80	100 100 85	60 95	35 10
14-8	250 63	100	100 / 60	20 30	60 30	99 70	90 10	85 10	100 100 95	90 —	100 40	99 95	100 40	25 5
14-9	250 63	100 90	100 70	80 0	95 0	99 60	50 10	40 30	99 98	=	85 75	100 80	80 70	30 5
	250	99	100	0	80	99	70	60	100	_	75	90	99	20

TABLE XXI-continued

					Po		Herbicidal							
Cmpd.	Rate								-					
no.	g ai/ha	AMARE	ABUTH			CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
14-10	63 250	90 100	80 1 0 0	80 90	70 80	90 100	_	50 90	95 100	20 50	10 100	100 100	20 60	0 20
14-11	63 250	95 100	80 100	50 70	90 100	50 100	_	80 100	100 100	50 99	99 100	60 100	100 100	10 20
14-12	63 250	85 90	10 85	20 80	40 70	90 99	80 80	30 40	98 99	_	50 60	95 100	30 85	0
14-13	63	90	30	0	40	60	30	20	100	_	65	75	55	0
14-14	250 63	100 50	80 50	20 0	60 30	100 50	40 70	40 50	99 100	0	90 90	98 100	100 10	15 0
14-15	250 63	100 100	100 60	60 0	50 50	90 50	70 20	70 70	100 100	20 50	100 95	100 40	50 20	30 0
14-16	250 63	100 60	90 60	50 20	90 40	100 95	100	80 0	100 95	40 0	100 90	100 100	60 0	0 0
14-17	250 63	100 100	100 100	40 20	50 20	100 90	_	30 20	100	30	100	100	70	10
	250	100	. 100	30	70	100	=	70	100 100	50 90	100 100	80 100	70 9 5	0
14-18	63 250	100 100	30 60	20 60	30 60	99 100	0 10	10 20	99 100	10 30	20 60	10 40	20 50	10 25
14-19	63 250	90 100	60 100	40 7 0	30 90	90 100	_	0 30	100 100	0 0	100 100	100 100	0 40	0 20
14-20	63 250	95 100	99 100	0 50	50 70	80 100		0 50	100 100	10 90	100 100	70 100	0 80	0 10
14-21	63	90	100	30	40	70	50	10	99	10	70	95	50	10
14-22	250 63	100 50	95 3 0	60 0	50 10	95 50	95 100	40 30	100 100	70 40	98 80	100 95	100 10	45 0
14-23	250 63	100 50	100 50	50 20	80 80	90 50	100 50	60 60	100 100	60 40	95 50	100 100	50 0	10 0
14-24	250 63	100 40	90 70	70 0	95 20	80 80	40 50	7 0 0	100 100	50 0	95 95	100 30	40 10	20 10
14-25	250 63	90 95	100 100	0 5 0	40 70	90 80	50 100	50 50	100 100	50 40	100 95	100 100	20 100	50 10
14-26	250	100 90	100	80	100	100	100	80	100	95	100	100	100	50
	63 250	100	70 100	50 90	20 100	60 100	100 100	0 0	100 100	30 70	100 100	100 100	40 100	10 10
14-27	63 250	50 90	70 80	50 30	70 50	90 100	_	0 20	99 100	0 10	70 95	95 100	5 10	0 0
14-28	63 250	90 100	100 100	30 30	50 70	95 100	_	0 30	100 100	0 50	20 50	80 100	10 70	0 40
14-29	63 250	90 100	50 100	0 40	80 80	30 60	100 100	20 70	100 100	50 70	70 95	100 100	15 50	0
14-30	63 250	70 100	60	20	0	50	_	0	100	0	60	100	10	0
14-31	63	90	100 90	60 50	50 10	100 70	_	30 0	100 100	50 0	100 95	100 50	20 10	0 0
14-32	250 63	100 95	100 90	50 20	70 0	90 0	40	50 40	100 100	20 0	100 70	100 70	50 0	0
14-33	250 63	100 100	95 90	40 0	20 20	80 20	40 0	70 40	100 100	10 10	90 70	100 10	0 10	0
14-34	250 63	100 100	100 99	0 40	20 60	70 100	100 40	90 100	100 100	95 60	100 70	70 99	95 80	0 25
14-35	250 63	100 100	100 95	100	90 70	100 100	100 100	100 50	100	80	99	100	100	70
	250	100	100	90	100	100	100	95	100 100	30 70	50 95	100 100	100 100	80 100
14-36	63 250	100 100	95 100	20 40	30 70	99 100	100 95	85 99	99 100	20 40	40 65	95 100	95 95	35 60
14-37	63 250	100 100	100 100	20 50	30 100	100 _. 100	100 100	90 100	100 100	0 30	80 100	90 100	20 95	70 1 00
14-38	63 250	100 100	100 100	, O	70 70	100 100	_	90 100	100 100	0 30	95 100	0 20	50 100	0 40
14-39	63 250	100 100	99 100	60 100	20 50	100 100	50 50	95	100 100	30	60	90	30	90
14-40	63	100	90	20	30	100	90	100 85	100	40 20	100 20	100 50	50 35	100 15
14-41	250 63	100 100	100 100	60 0	60 30	100 100	100	99 90	100 100	20 40	40 100	95 100	70 100	75 20
14-42	250 63	100 100	100 100	0 60	50 100	100 100	_	100 100	100 100	70 60	100 95	100 100	100 100	95 95
14-43	250 63	100 100	100 100	90 40	100 95	100 100	_	100 90	100 100	95 80	100 80	100 100	100 95	100 95
14-44	250 63	100 100	100	90 0	100	100	_	100	100	95	100	100	100	100
	250	100	100 100	0	50 90	100 100	_	100 100	100 100	30 80	100 100	100 100	100 100	90 100
14-45	63 250	100 100	100 100	30 30	100 100	100 100	100 100	70 95	100 100	70 90	90 100	90 100	70 100	70 100
14-46	63 250	95 100	100 100	60 90	100 100	100 100	_	90 100	100 100	80 90	80 100	100 100	95 100	60 100
								200	-00		100	100	,100	200

TABLE XXI-continued

							Herbicidal		-					
Cmpd.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
14-47	63 250	100 100	100 100	0 70	80 100	100 100	100 100	90 100	100 100	70 80	95 100	100 100	40 100	100 100
14-48	63 250	100 100	100 100	0 100	0 100	100 100	80	50 100	50 100	0 90	70 90	95 100	40 100	70 100
14-49	63 250	100 100	100 100	70 95	100 100	100 100	100 100	50 100	100 100	70 95	70 95	95 100	80 100	50 95
14-50	63 250	100 100	30 50	90 100	0	50 100	_	0 0	0 0	0 0	0 50	0 20	10 30	30 50
14-51	63 250	0 0	0 50	0 0	0 30	0 10	0 2 0	0 0	10 20	0	0 0	0 30	0 0	0 0
14-52	63 250	20 50	90 100	0 70	100 100	_	_	0	0 10	0	0	0 100	0 10	0
14-54	63 250	40 50	60 80	0 30	30 80	20 60	=	10 10	30 30	0	0 10	30 35	5 15	10 10
14-55	63 250	30	70 —	10	70	30	_	0	10	0	0	10	5	20
14-56	63 250	100 100	70 100	30 40	100 100	99 100	90 80	30 70	20 80	30 70	10 50	40 50	10. 30	0 25
14-59 14-60	63 250 63	20 20 70	50 30 100	0 10 40	30 30 100	10 10 99	=	0 0 20	0 0 50	0 0 20	0 0 10	0 10 100	0 0 0	0 0 10
14-61	250 63	100 20	100 100 30	70 0	100 100 20	100 40	Ξ	30 0	75 0	50 0	60 0	100	60 0	20 0
14-62	250 63	60 30	60 40	30 0	50 30	75 10	40	20 0	60 0	20	70 0	40 15	70 5	30 0
14-63	250 63	50 95	60 90	30 95	50 70	20 80	30 20	0 50	0 100	_	0 40	15 95	5 35	5
14-44	250 63	100 100	100 100	100 10	70 30	100 70	50 30	70 30	99 100	_	90 40	100 90	80 99	15 5
14-65	250 63	100 100	100 100	20 90	80 50	99 90	40	70 100	100 100	30	99 99	90 100	100 0	0 0
14-66	250 63	100 95	100 100	100 80	70 70	100 80	_	100 95	100 100	60 60	100 100	100 80	50 90	10 0
15-1	250 63 250	100 100 100	100 100	90 100	90 100	99 100		100 80	100 80	80 —	100 90	99 100	100 80	10 75
15-2	63 250	20 95	100 80 100	100 10 75	100 90 100	100	_	100 0 80	99 0 90	 0 70	100 0 80	100 40 100	95 15 80	95 50 75
15-3	63 250	95 100	100 100	70 100	95 100	95 100	_	30 80	10 90	0 90	20 80	90 100	25 80	50 90
15-4	63 250	70 100	100 100	50 80	100 100	100 100	_	50 80	40 90	$\frac{2}{2}$	30 70	90 100	50 90	70 95
15-5	63 250	70 100	100 100	40 80	90 100	100 100	_	40 80	40 90	_	30 70	100 100	70 90	60 90
15-6	63 250	50 85	100 100	30 70	50 100	_	=	30 75	20 95	_	0 90	60 100	25 80	60 95
15-7	63 250	100 100	100 100	60 100	100 100	100 100	=	30 90	40 95	_	20 75	90 100	60 80	50 90
15-8	63 250	20 60	70 100	0 40	50 90	95 90	_	0 30	0 20	_	0	60 90	0 55	10 60
15-9 15-10	63 250	10 95	80 100	10 60	100 85	100	=	0 80	90		0 80	40 95 95	30 70	50 90
15-10	63 250 63	100 100 95	100 100 100	100 100 90	100 100 100	100 100 100	Ξ	30 75 40	10 80 50	30 70 50	60 90 50	95 95	45 65 45	50 80 65
15-12	250 63	100 95	100 100	100 90	100 100	100 100	_	80 70	99 70	99 80	95 95	100 100	85 80	99 80
15-13	250 63	100 80	100 100	100 60	100 100	100 95	_	100 20	100 20	99 10	100 10	100 95	95 15	99 60
15-14	250 63	95 100	100 100	100 80	100 100	100 100	_	60 20	85 20	70 20	70 20	100 100	50 20	90 40
15-15	250 63	100 100	100 100	100 80	100 90	100 100	=	55 40	90 30	70 30	60 40	100 95	65 45	50 70
15-16	250 63	100 80	100 100	100 80	100 100	100 100	_	95 30	100 10	99 10	100 20	100 95	90 15	95 40
15-17	250 63	100 90	100 100	100 80	100 100	100	=	60 40	90 50	70 20	80 40	100 90	45 35	80 75
15-18	250 63 250	100 100	100 100 100	100 40 100	100 90 100	100 100	=	90 20 80	99 10 95	95 0	99 10	100 90	80 20 80	90 30 85
15-19	63 250	100 100 100	100 100 100	75 100	100 100 100	100 100 100	=	40 100	95 50 100	99 40 100	100 50 100	100 90 100	35 85	65 90
15-20	63 250	100 100 100	100 100 100	80 100	100 100 100	100 100 100	=	80 100	50 100	100	30 90	95 100	40 85	35 80

TABLE XXI-continued

	Post-emerge Herbicidal Activity													
Cmpd. no.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
15-21	63	95	100	100	100	100		50	60	40	30	90	30	80
	250	100	100	100	100	100	—,	90	100	95	95	100	90	90
15-22	63	100	100	70	100	100	_	40	40	_	30	90	30	50
	250	100	100	100	100	100	_	95	100	_	90	100	90	90
16-2	63	60	40	0	0	30	_	0	0	0	0	10	0	0
	250	60	70	10	0	70		0	0	0	0	40	10	20
16-4	63	0	0	0	0	0	_	0	0	0	0	0	0	0
	250	0	0	0	0	0	_	0	0	0	0	0	0	0
16-1	63	70	. 70	0	30	0	_	0	0	20	20	0	0	0
	250	70	100	0	70	70		0	0	40	80	0	0	10
16-7	63	0	0	0	0	0		0	0	0	0	0	0	0
	250	0	0	30	30	0	_	0	0	0	0	0	0	0
17-1	63	10	70	20	80	30	_	0	0	0	0	10	0	0
	250	30	70	10	. 80	60		0	0	0	0	30	5	0
17-2	63	0	0	0	0	0	_	0	0	0	0	0	0	0
	250	30	50	10	20	40		0	0	0	0	10	0	0
17-4	63	20	35	10	20	20	_	0	0	0	0	10	0	0
	250	70	70	20	80	40	_	0	0	0	0	15	0	0
17-5	63	10	50	10	30	40	_	0	0	0	0	20	0	0
	250	40	80	20	70	80	_	0	0	0	0	35	10	0

25

30

35

40

What is claimed is:

1. A compound represented by the formula I or its salts

wherein X is hydrogen, halogen, nitro, amino, NHR, N(R)₂, amide, thioatnide, cyano, alkylcarbonyl, alkoxycarbonyl, alkylsulfonamnde, unsubstituted or substituted alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonylalkoxy, 45 benzyloxy, amyloxy, or heteroaryloxy;

Y is hydrogen, halogen, or nitro;

W is hydrogen, OR, SR, NHR, N(R)₂, CH₂R, CH(R)₂, C(R)₃, halogen, nitro, or cyano, where multiple R groups represent any possible combination of substituents described by R; R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy, heteroaryloxy, alkylsulfonyl, 55 benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, haloalkoxy, ₆₅ alkoxybarbonyl, alkoxy, haloalkoxycarbonyl, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl;

Q is a heterocycle:

$$R_{9}$$
 R_{1}
 R_{2}
 R_{3}

$$\begin{array}{c} Q12 \\ \hline \\ R_1 \\ \hline \\ R_2 \\ \end{array}$$

wherein R_1 is hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, amino, alkoxyalkyl, acetyl, alkoxycarbonylamino, alkylcarbonylamino, or alkoxycarbonyl;

R₂ is alkyl or haloalkyl;

R₁ and R₂ could combine to form a five- or six-membered heterocyclic ring;

R₃ is hydrogen, halogen, nitro, amino, alkylamino, haloalkylamino, cyano, or amide;