Case study: modeling reproductive success via path analysis

Today we're going to use composite covariates

*Do not use 'blavaan' in JAGS to develop code for composite covariates (bug alert!) See blavaan_issue.R

Simulated data (*based on a true story)

Simulated data (*based on a true story)

8.5k rings, 3k recaps, 40k resights

1. Flow rate of our study stream (f)

- 1. Flow rate of our study stream (f)
- 2. Invertebrate abundance (i)

- 1. Flow rate of our study stream (f)
- 2. Invertebrate abundance (i)
- 3. A census (y) of breeding pairs

- 1. Flow rate of our study stream (f)
- 2. Invertebrate abundance (i)
- 3. A census (y) of breeding pairs
- 4. The number of Hatched nests (h)

- 1. Flow rate of our study stream (f)
- 2. Invertebrate abundance (i)
- 3. A census (y) of breeding pairs
- 4. The number of Hatched nests (h)
- 5. The number of potential Recruits (r)

We could build an IPM + SEM with these data!

This ain't that wild conceptually

1. Flow rate of our study stream (f)

$$f \sim \text{lognormal}(\mu_f = 4, \sigma_f^2 = 0.0625)$$

Extreme flooding

Severe drought

2. Invertebrate abundance (i)

$$i \sim \text{lognormal}(\alpha_1 + \beta_1 f + \beta_2 f^2, \sigma_i^2)$$

3. The number of breeding adults (y)

4. The number of hatched nests (h)

 $h\sim$ binomial (y, ψ)

$$logit(\boldsymbol{\psi}) = \alpha_2 + \beta_3 \boldsymbol{f} + \beta_4 \boldsymbol{f}^2$$

5. The number of surviving potential Recruits (r)

$$r\sim Poisson(h \times \zeta \times \gamma)$$

$$\zeta = 4$$

$$logit(\boldsymbol{\gamma}) = \alpha_3 + \beta_5 \boldsymbol{i}$$

 ζ is clutch size; γ is probability of becoming an independent 'juvenile'

5. The number of surviving potential Recruits (r)

$$r\sim Poisson(h \times \zeta \times \gamma)$$

$$\zeta = 4$$

$$logit(\boldsymbol{\gamma}) = \alpha_3 + \beta_5 \boldsymbol{i}$$

Extreme flooding

 ζ is clutch size; γ is probability of becoming an independent 'juvenile'

Ok, so what is a composite covariate?!

$$i \sim \text{lognormal}(\beta_0 + \beta_1 f + \beta_2 f^2, \sigma_i^2)$$

Ok, so what is a composite covariate?!

$$\mathbf{c} = \delta_1 \mathbf{f} + \delta_2 \mathbf{f}^2$$

 $\mathbf{i} \sim \text{lognormal}(\beta_0 + \beta_1 \mathbf{c}, \sigma_i^2)$

1. What's the difference? 2. Why would we do that?

$$i \sim \text{lognormal}(\beta_0 + \beta_1 f + \beta_2 f^2, \sigma_i^2)$$

$$\mathbf{c} = \delta_1 \mathbf{f} + \delta_2 \mathbf{f}^2$$

 $\mathbf{i} \sim \text{lognormal}(\beta_0 + \beta_1 \mathbf{c}, \sigma_i^2)$

1. What's the difference? 2. Why would we do that?

$$i \sim \text{lognormal}(\beta_0 + \beta_1 f + \beta_2 f^2, \sigma_i^2)$$

$$\mathbf{c} = \delta_1 \mathbf{f} + \delta_2 \mathbf{f}^2$$

 $\mathbf{i} \sim \text{lognormal}(\beta_0 + \beta_1 \mathbf{c}, \sigma_i^2)$

Go to the 'in_class_question.R' script

Data simulation

 $\mathbf{x_1} \sim \text{normal}(0,1)$

 $x_2 = x_1 + normal(0,1)$

 $x_3 = x_1 + normal(0,1)$

 $\beta = [1, 0.5, 2]$

 $y \sim \text{normal}(\beta X, \sigma^2)$

Linear model

 $\beta \sim \text{normal}(0,1)$

 $y \sim \text{normal}(\beta X, \sigma^2)$

Composite covariate

 $\beta \sim \text{normal}(0,1)$

 $c = \beta X$

 $\mathbf{y} \sim \text{normal}(\mathbf{c}, \sigma^2)$

1. What's the difference? 2. Why would we do that?

1. What's the difference?

These models are equivalent?!

2. Why would we do that?

These models don't have to be

2. Why would we do that?

These models are equivalent

Let's simulate this population

This looks complicated!

Let's simulate this population

These two things don't have any inputs...

We'll start with some number of breeding pairs ($N_1 = 100$)...

 N_{t}

flow

And a flow rate ($f_1 = 63.2 \text{ m}^3/\text{s}$; about half the size of the Clark Fork in spring)

From there we can z-standardize flow (f), and square it (f²)

 N_{t}

Now, we can simulate invertebrates as a function of flow

We can do the same thing with nest survival to simulate hatched nests (h)

Then we simulate chick survival as a function of invertebrates to get recruits

And allow adults and potential recruits to survive into the next year

This is an IPM with a SEM describing the underlying system!

Think about how useful this is!

Imagine that the mean of flow declines...

Now imagine that the variance of flow increases (flood or dry)...

What do you think will happen to abundance (N)?