Report: Energy Consumption Prediction Using Machine Learning

Objective

The aim of this project is to predict equipment_energy_consumption using regression techniques based on sensor and operational features from the dataset.

Data Analysis

Dataset Overview

- The dataset contains **16,857 rows** and **28 features**, along with a target variable equipment_energy_consumption.
- The data included both numerical and categorical variables, with some stored as strings (e.g., timestamps).
- Exploratory Data Analysis (EDA) included:
 - Distribution plots
 - Correlation heatmaps
 - Handling of string-formatted features

Preprocessing

- Dropped Columns: Features like timestamp, random_variable1, and random_variable2 were excluded from modelling as they were deemed noninformative or irrelevant.
- Encoding & Scaling:
 - Categorical data (if any) was encoded.
 - StandardScaler was used to normalize the features before model training.

Model Training and Selection

Train-Test Split

The dataset was split into 80% training and 20% testing using train_test_split.

Model Used

- A **RandomForestRegressor** was the primary model for prediction.
- **GridSearchCV** was applied for **hyperparameter tuning** with parameters like:

o n_estimators: [50, 100, 200]

max_depth: [None, 10, 20, 30]

o min_samples_split, min_samples_leaf, and max_features

Evaluation Metrics

- R² Score was used to evaluate the model's performance.
- The best model after tuning yielded a strong R² score on the test set.
- Mean Squared Error (MSE) and Mean Absolute Error (MAE) were also computed during evaluation.

Final Results

- Model Selected: RandomForestRegressor with hyperparameter tuning.
- Best Parameters: As found by GridSearchCV.
- R² Score: Achieved a high score indicating good predictive performance.

Conclusion

- The Random Forest model proved effective in predicting energy consumption.
- Feature selection and hyperparameter tuning significantly improved model accuracy.
- Future improvements could include:
 - Testing other regressors (e.g., XGBoost, GradientBoosting)
 - Incorporating feature engineering
 - o Time series modeling if timestamp info is useful.