F4	Napěťový zdroj: vnitřní	3D2
6. 11. 2017	odpor, zatěžovací char.	Meinlschmidt

ZADÁNÍ:

- 1. Pomocí *Kirchhoffových zákonů* odvoď te vztah pro výpočet vnitřního odporu R_i napěť ového zdroje $R_i = f(U_0, U_Z, R_Z)$
- 2. U předložených baterií (viz Tabulka 1) změřte:
 - napětí na prázdno U₀
 - napětí U_Z při zatížení odporem R_Z pro pět různých hodnot odporu R_Z
 (R_Z vždy volte větší než 50 Ω)
- 3. Z naměřených hodnot vypočtěte:
 - proud *I* procházející obvodem při jednotlivých měřeních
 - vnitřní odpor baterií R_i pro jednotlivá měření
 - vnitřní odpor baterií R_i (průměrná hodnota vnitřních odporů z jednotlivých měření)
 - zkratový proud baterie I_K
- 4. Změřte zatěžovací charakteristiku předloženého síťového adaptéru (viz Tabulka 2)
- 5. Z naměřených hodnot vypočtěte:
 - výkon Pz odebíraný zátěží ze zdroje
 - vnitřní odpor baterií R_i pro jednotlivá měření
 - vnitřní odpor baterií R_i (průměrná hodnota vnitřních odporů z jednotlivých měření)
 - zkratový proud baterie I_K
- 6. Sestrojte zatěžovací charakteristiky všech naměřených zdrojů $R_i = f(U, I)$
- 7. Uveďte, jaké parametry či vlastnosti zdroje (baterie) mají vliv na velikost vnitřního odporu
- 8. Vysvětlete rozdíl mezi "tvrdým" a "měkkým" zdrojem elektrického napětí

TEORIE:

Zdroje napětí se využívají ve všech elektrických a elektronických zařízeních, protože jim dodávají energii nutnou na jejich provoz. Kromě zdrojů napětí napájených ze sítě používáme zdrojů přenosných, většinou pracujících na elektrochemickém principu – baterií.

Každý zdroj je charakterizován tzv. elektromotorickým napětím U_e a vnitřním odporem R_i. Z jistého pohledu se může zdát, že baterie jako zdroj elektrické energie přeci odpor procházejícímu proudu klást nemůže, opak je ale pravdou a vnitřní stavba baterie klade

elektrickému proudu určitý odpor. Tento odpor ovlivňuje chování zdroje v obvodech a způsobí, že při zapojení do obvodu není napětí na svorkách zdroje rovno elektromotorickému napětí U_e, ale je podle *Ohmova zákona* nižší o U_i.

Elektromotorické napětí U_e se užívá právě u zdrojů elektrického napětí, u kterých vzniká elektrická energie jinou formou (v případě baterií chemickou reakcí). Jinak řečeno vzniká z práce neelektrických sil při přemisťování náboje. Z toho důvodu u baterií mluvíme přesněji o elektromotorickém napětí. Elektromotorické napětí U_e je v současné době správný název elektromotorické síly.

V zásadě rozlišujeme zdroje ideální a skutečné a dále zdroje napěťové (v ideální podobě dodávají konstantní napětí bez ohledu na zátěž) a proudové (v ideální podobě dodávají konstantní proud bez ohledu na zátěž). Ty skutečné ale na rozdíl od ideálních nejsou schopné konstantě dodávat požadovanou veličinu, a tak s rostoucí zátěží většinou začne proud nebo napětí zdroje klesat. Průběh poklesu pak rozlišuje zdroje na "tvrdé" (úbytek napětí nebo proudu na zdroji je zpravidla méně výrazný) a "měkké" (úbytek napětí nebo proudu na zdroji je zpravidla více výrazný). Zmíněný pokles ovlivňuje stavba baterie (viz odpovědi na otázky) a její vnitřní odpor.

Tzv. zkratový proud I_K je proud protékající obvodem, pokud bez zátěže spojíme svorky baterie. Tento proud je omezen vnitřním odporem R_i . Vysoké zkratové proudy mohou vést k vážným škodám na zařízení.

Napěťový zdroj na prázdno

Napěťový zdroj při zatížení

ODPOVĚDI NA OTÁZKY:

a) Pomocí Kirchhoffových zákonů odvoďte vztah pro výpočet vnitřního odporu R_i napěťového zdroje $R_i=f(U_0,\ U_Z,\ R_Z)$

Jelikož se v zapojení baterie nenachází žádné uzly a považujeme obvod za uzavřený, využijeme prvního *Kirchhoffova zákona*, který pojednává o tzv. smyčkových proudech (zjednodušeno – součet napětí ve smyčce je roven nule).

$$\sum U_i=0$$

Dále víme, že napětí naměřené na svorkách baterie je po odečtení úbytku napětí na jejím vnitřním odporu R_i rovno elektromotorické napětí baterie U_e . Pokud by teoreticky svorkami neprocházel žádný proud I ($I=0\,A$), nedošlo by k zmíněnému úbytku napětí, a byli bychom tak schopni na svorkách baterie naměřit čistě elektromotorické napětí baterie U_e .

Průchodu proudu I jsme schopni zabránit užitím nekonečně velké zátěže R_Z ($R_Z = \infty \Omega$). V praxi víme, že nekonečně velký odpor nelze vytvořit, a tak užijeme měřící přístroj s dostatečně velkým elektrickým odporem. Proud I sice v praxi procházet bude, ale jeho velikost je zanedbatelná. Tomuto měření říkáme "měření na prázdno" a jeho výsledek můžeme značit U_0 . Toto napětí je také zpravidla nejvyšší naměřené napětí na baterii.

Z prvního vzorce, vycházejícího z prvního $Kirchhoffova\ zákona$, víme, že součet dílčích napětí ve smyčce bude roven nule. Upravením vzorce snadno získáme vztah pro výpočet úbytku napětí na vnitřním odporu baterie U_i .

$$-U_0 + U_i + U_Z = 0$$
$$U_i = U_0 - U_Z$$

Velikost proudu ve smyčce je stejná a tak dále pomocí *Ohmova zákona* lze velmi jednoduše spočítat velikost vnitřního odporu baterie.

$$U_i = I \cdot R_i$$
$$R_i = \frac{U_i}{I}$$

Vzorec pro funkci za zadání tak bude následující.

$$R_i = \frac{U_0 - U_Z}{\frac{U_Z}{R_Z}}$$

b) Uveďte, jaké parametry či vlastnosti zdroje (baterie) mají vliv na velikost vnitřního odporu

Na velikost vnitřního odporu baterie má vliv její vnitřní stavba, tj. především typ a způsob na jakém baterie funguje. Dále hraje velkou roli samotné zatížení a teplota baterie.

c) Vysvětlete rozdíl mezi "tvrdým" a "měkkým" zdrojem elektrického napětí

Podle vnitřního odporu lze rozdělit elektrické zdroje na tvrdé zdroje, to jsou takové zdroje, jejichž vnitřní odpor je menší než 1 Ω a tedy mají menší úbytek napětí na zdroji při zatížení. Měkké zdroje, jsou zdroje s vnitřním odporem větším než 1 Ω a úbytek napětí je tak díky velké odporu větší. Toto rozdělení je spíše orientační a většinou se jedná pouze o subjektivní rozdělení.

SCHÉMA ZAPOJENÍ:

POUŽITÉ PŘÍSTROJE A POMŮCKY:

Název	Typové označení	Inventární číslo
Odporová dekáda	Metra XL-6	4491/01
Voltmetr	UNI-T UT33A	947/2
Ampérmetr	UNI-T UT65B	947/12
Reostat		

POPIS PRÁCE:

Před samotným měřením jsem si připravil potřebné pomůcky a součástky – například voltmetr, ampérmetr, odporovou dekádu, měřené baterie a přiložený síťový adaptér. Jejich typové značky, evidenční čísla a jiné nutné údaje jsem řádně zapsal do protokolu o měření.

Měření započalo první částí, a to měření 5 tužkových baterií, většina z přiložených baterií byla alkalická nebo na zinkochloridovém principu. U alkalických tedy můžeme předpokládat tvrdší průběh zatížení nežli u zinkochloridových. Při každé baterii jsme voltmetrem přímo změřili napětí "na prázdno" U₀. Dle zadání učitele se zatížení baterie mělo pohybovat přibližně od 2 do 20 % svorkového napěti na baterii, proto jsme vypočetli tyto meze a dále další 3 body U_z mezi těmito mezemi. Pro každý požadovaný U_z jsme přibližně zvolili elektrický odpor zátěže a ten zapsali do protokolu. Následně jsme pro každé měření vytvořili voltmetrem bočník k zátěži a naměřené napětí U_z zapsali. Dle zadání již zbývala pouze nepřímá měření výpočtem a to – protékající proud I, vnitřní odpor zdroje pro jednotlivá měření R_{iN}, průměrný vnitřní odpor R_i a zkratový proud zdroje I_K. Postup výpočtu je přiložen dále v protokolu.

Následovala druhá část měření, ve které byl místo baterií užit jako zdroj síťový adaptér. Průběh měření byl shodný s předchozí částí, avšak měření proudu probíhalo přímo ampérmetrem a byl vypočítán i výkon na zátěži.

GRAFY:

Voltampérová charakteristika síťového adaptéru

Voltampérová charakteristika baterie Panasonic AAA RO3; 1,5V; Size S

Voltampérová charakteristika baterie Panasonic UM3; 1,5V; -

Voltampérová charakteristika baterie Greencell 146 R14; 1,5V; Size C

- Panasonic UM3; 1,5V; -
- Panasonic AAA RO3; 1,5V; Size S
- ---- Lineární (Supercell 146 BS R20; 1,5V; Size D) -
- · Lineární (Greencell 146 R14; 1,5V; Size C)
- ······ Lineární (Panasonic UM3; 1,5V; -)
- Lineární (Panasonic AAA RO3; 1,5V; Size S)

TABULKY:

Zátěž R_Z byla zvolena tak, aby se úbytek napětí na U_Z pohyboval v rozmezí od 2 % do 20 % svorkového napětí U_0 .

Tabulka 1

Baterie	U ₀ [V]	$\mathbf{R}_{\mathbf{Z}}\left[\Omega\right]$	U _Z [V]	I [A]	$\mathbf{R_{iN}}\left[\Omega\right]$	$\mathbf{R_i}\left[\Omega\right]$	$I_K[A]$
Panasonic AAA R03 1,5V	1,321	$0.800 \cdot 10^3$	1,296	$1,620 \cdot 10^{-3}$	15,432		
		$0,500 \cdot 10^3$	1,271	$2,542 \cdot 10^{-3}$	19,670	11,247	0,117
		$0,250 \cdot 10^3$	1,266	$5,064 \cdot 10^{-3}$	10,861		
Size S		$0.050 \cdot 10^3$	1,189	$23,780 \cdot 10^{-3}$	5,551		
Size S		$0.019 \cdot 10^3$	1,058	$55,684 \cdot 10^{-3}$	4,723		
Damasania	1,482	$0.300 \cdot 10^3$	1,453	$4,843 \cdot 10^{-3}$	5,988		0,252
Panasonic UM3		$0,200 \cdot 10^3$	1,409	$7,045 \cdot 10^{-3}$	10,362	5,882	
		$0,100 \cdot 10^3$	1,395	$13,950 \cdot 10^{-3}$	6,237		
1,5V		$0.020 \cdot 10^3$	1,269	$63,450 \cdot 10^{-3}$	3,357		
-		$0.014 \cdot 10^3$	1,188	$84,857 \cdot 10^{-3}$	3,465		
Cwaanaall	1,560	$0.080 \cdot 10^3$	1,529	$19,113 \cdot 10^{-3}$	1,622		1,346
Greencell 146 R14 1,5V Size C		$0.030 \cdot 10^3$	1,468	$48,933 \cdot 10^{-3}$	1,880	1,159	
		$0.010 \cdot 10^3$	1,433	$143,300 \cdot 10^{-3}$	0,886	1,139	
		$0,005 \cdot 10^3$	1,379	$275,700 \cdot 10^{-3}$	0,658		
		$0,003 \cdot 10^3$	1,248	$416,000 \cdot 10^{-3}$	0,750		
Cumanaall	1,476	$0.300 \cdot 10^3$	1,445	$4,817 \cdot 10^{-3}$	6,436		
Supercell BS R20 1,5V Size D		$0,150 \cdot 10^3$	1,398	$9,320 \cdot 10^{-3}$	8,369		
		$0.050 \cdot 10^3$	1,351	$27,020 \cdot 10^{-3}$	4,626	5,352	0,276
		$0.025 \cdot 10^3$	1,291	$51,640 \cdot 10^{-3}$	3,582		
		$0.015 \cdot 10^3$	1,181	$78,733 \cdot 10^{-3}$	3,747		

Tabulka 2

U ₀ [V]	I [A]	U _z [V]	P _Z [W]	$\mathbf{R_{iN}}\left[\Omega\right]$	$\mathbf{R_i}\left[\Omega\right]$	$I_K[A]$
6,550	$11,930 \cdot 10^{-3}$	6,391	$76,245 \cdot 10^{-3}$	13,328		0,609
	$18,870 \cdot 10^{-3}$	6,344	$119,711 \cdot 10^{-3}$	10,917	10,747	
	$44,810 \cdot 10^{-3}$	6,083	$272,579 \cdot 10^{-3}$	10,422		
	$76,920 \cdot 10^{-3}$	5,784	$444,905 \cdot 10^{-3}$	9,958		
	$141,410 \cdot 10^{-3}$	5,262	$744,099 \cdot 10^{-3}$	9,108		

VÝPOČTY:

Baterie:

Proud protékající obvodem I [A]:

$$I = \frac{U_Z}{R_Z}$$

$$I = \frac{1,296}{0,800 \cdot 10^3}$$

$$I = 1,620 \cdot 10^{-3} \text{ A}$$

Vnitřní odpor zdroje pro jednotlivá měření R_{iN} [Ω]:

$$-U_0 + U_{iN} + U_Z = 0$$

$$-1,321 + U_{i1} + 1,296 = 0$$

$$U_{i1} = 1,321 - 1,296$$

$$U_{i1} = 0,025 V$$

$$R_{i1} = \frac{U_{i1}}{I}$$

$$R_{i1} = \frac{0,025}{1,620 \cdot 10^{-3}}$$

$$R_{i1} = 15,432 \Omega$$

Průměrný vnitřní odpor zdroje R_i [Ω]:

$$R_i = \frac{1}{n} \cdot \sum_{N=1}^{n} R_{iN}$$

$$R_i = 11,247 \Omega$$

Zkratový proud zdroje I_K:

$$I_{K} = \frac{U_{0}}{R_{i}}$$

$$I_{K} = \frac{1,321}{11,247}$$

$$I_{K} = 117,450 \cdot 10^{-3} \text{ A}$$

Síťový adaptér:

Výkon zátěže P_Z [W]:

$$P_Z = U_Z \cdot I$$

 $P_Z = 6,391 \cdot 11,930 \cdot 10^{-3}$
 $P_Z = 76,245 \cdot 10^{-3} W$

SPOLUPRACOVALI:

Mokrejš Filip

ZÁVĚR:

Všechny úkoly se zadání byly splněny. Nad míru učiva jsem se seznámil s elektromotorickým napětím a o dost lépe chápu práci s chemickými zdroji elektrické energie. Ze všech měřených zdrojů byla překvapivě nejtvrdší 4. měřená baterie (Greencell 146 R14 1,5V Size C) až za ní následoval síťový adaptér a zbylé baterie. Překvapující byly také velmi rozdílné hodnoty vnitřních odporů při jednotlivých měřeních s různou zátěži. Tyto rozdíly jsou pravděpodobně způsobeny chemickými reakcemi v závislosti na teplotě a zatížení baterie.