Chapter 8

Hypothesis Testing

8.1 Introduction

<u>Definition 8.1.1</u>: A *Hypothesis* is a statement about a population parameter.

<u>Definition 8.1.2</u>: The two complementary hypotheses in a hypothesis testing problem are called the *Null Hypothesis* and the *Alternative Hypothesis*. They are denoted by H_0 and H_1 , respectively. The general format of the null and alternative hypotheses is

$$H_0: \theta \in \Theta_0$$
 versus $H_1: \theta \in \Theta_0^c$

where $\Theta_0 \subset \Theta$ and $\Theta_0^c = \Theta \setminus \Theta_0$.

<u>Definition 8.1.3</u>: A hypothesis testing procedure or <u>Hypothesis Test</u> is a rule that specifies:

- 1. For which sample values the decision is made to accept H_0 as true.
- 2. For which sample values H_0 is rejected and H_1 is accepted as true.

Remark:

- 1. The distinction between "rejecting H_0 " and "accepting H_1 " or between "accepting H_0 " and "not rejecting H_0 " on a philosophical level will not be concerned.
- 2. A hypothesis testing problem can be viewed as a problem to make the assertion of H_0 or H_1 .

<u>Definition</u>: The subset of the sample space for which H_0 will be rejected is called the <u>Rejection Region</u> or <u>critical region</u>. The complement of the rejection region is called the <u>Acceptance Region</u>.

<u>Definition</u>: A <u>Test Statistic</u> $W(X_1, ..., X_n) = W(\mathbf{X})$ is a function of the sample, in terms of which a hypothesis test is typically specified.

8.2 Methods of Finding Tests

8.2.1 Likelihood Ratio Tests

<u>Definition 8.2.1</u>: The likelihood ratio test statistic for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$ is

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Theta_0} L(\theta|\mathbf{x})}{\sup_{\theta \in \Theta} L(\theta|\mathbf{x})}.$$

A <u>Likelihood Ratio Test</u> (LRT) is any test that has a rejection region of the form $\{\mathbf{x} : \lambda(\mathbf{x}) \leq c\}$, where c is any number satisfying $0 \leq c \leq 1$.

LRT and MLE: Let $\hat{\theta}$ be the MLE of θ under the unrestricted parameter space Θ and $\hat{\theta}_0$ be the MLE of θ under the restricted parameter space Θ_0 . Then

$$\lambda(\mathbf{x}) = \frac{L(\hat{\theta}_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})}$$

Example 8.2.2: (Normal LRT)

Let X_1, \ldots, X_n be iid $n(\theta, 1)$. We want to test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, where θ_0 is a fixed number set by the experimenter. Show that

$$\lambda(\mathbf{x}) = \exp\left[-\frac{n(\bar{x} - \theta_0)^2}{2}\right]$$

so that the LRT rejects H_0 for small values of $\lambda(\mathbf{x})$. Therefore the rejection region is

$$\{\mathbf{x}: \lambda(\mathbf{x}) \le c\}$$

which is equivalent to

$$\left\{\mathbf{x}: |\bar{x} - \theta_0| \ge \sqrt{-2(\log c)/n}\right\}.$$

Example 8.2.3: (Exponential LRT)

Let X_1, \ldots, X_n be a random sample from an exponential population with pdf

$$f(x|\theta) = e^{-(x-\theta)}I_{[\theta,\infty)}(x)$$

where $-\infty < \theta < \infty$.

Considering testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$, where θ_0 is a fixed number set by the experimenter. Show that

$$\lambda(\mathbf{x}) = \begin{cases} 1 & x_{(1)} \le \theta_0 \\ e^{-n(x_{(1)} - \theta_0)} & x_{(1)} > \theta_0 \end{cases}.$$

Since the LRT rejects H_0 for small values of $\lambda(\mathbf{x})$, the rejection region is

$$\{\mathbf{x}: \lambda(\mathbf{x}) \le c\} \iff \left\{\mathbf{x}: x_{(1)} \ge \theta_0 - \frac{\log(c)}{n}\right\}$$

Remark: In both of the above examples, the rejection region only depends on the sufficient statistic for θ .

<u>Theorem 8.2.4</u>: If $T(\mathbf{X})$ is a sufficient statistic for θ and $\lambda^*(t)$ and $\lambda(\mathbf{x})$ are the LRT statistics based on T and \mathbf{X} , respectively, then $\lambda^*(T(\mathbf{x})) = \lambda(\mathbf{x})$ for every \mathbf{x} in the sample space.

Example 8.2.5: (LRT and Sufficiency)

- In Example 8.2.2, we could have used the likelihood associated with the sufficient statistic \bar{X} using the fact that $\bar{X} \sim n(\theta, 1/n)$, which rejects for large values of $|\bar{X} \theta_0|$.
- Similarly, in Example 8.2.3, we can use the likelihood associated with the sufficient statistic $X_{(1)}$, $L(\theta|x_{(1)}) = n \exp\left[-n(x_{(1)} \theta)\right] I_{[\theta,\infty)}(x_{(1)})$, which rejects for large values of $X_{(1)}$.

Example 8.2.6: (Normal LRT with unknown variance)

Let X_1, \ldots, X_n be iid $n(\mu, \sigma^2)$ and an experimenter is interested only in inferences about μ , such as testing $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$. Then the parameter σ is a nuisance parameter. The LRT statistic is

$$\lambda(\mathbf{x}) = \frac{\max\limits_{\{\mu,\sigma^2:\mu\leq\mu_0,\sigma^2\geq0\}} L(\mu,\sigma^2|\mathbf{x})}{\max\limits_{\{\mu,\sigma^2:-\infty<\mu<\infty,\sigma^2\geq0\}} L(\mu,\sigma^2|\mathbf{x})}$$

$$= \frac{\max\limits_{\{\mu,\sigma^2:\mu\leq\mu_0,\sigma^2\geq0\}} L(\mu,\sigma^2|\mathbf{x})}{L(\hat{\mu},\hat{\sigma}^2|\mathbf{x})}$$

$$= \begin{cases} 1 & \text{if } \hat{\mu}\leq\mu_0 \\ \frac{L(\mu_0,\hat{\sigma}_0^2|\mathbf{x})}{L(\hat{\mu},\hat{\sigma}^2|\mathbf{x})} & \text{if } \hat{\mu}>\mu_0 \end{cases}$$

where $\hat{\mu}$ and $\hat{\sigma}^2$ are the MLEs of μ and σ^2 , and $\hat{\sigma}_0^2 = \sum (x_i - \mu_0)^2 / n$.

8.2.2 Bayesian Tests

Bayesian Formulation of Hypothesis Testing

Classical Approach

- The parameter θ is fixed.
- If $\theta \in \Theta_0$ is known, then $P(\theta \in \Theta_0 | \mathbf{x}) = 1$ and $P(\theta \in \Theta_0^c | \mathbf{x}) = 0$ for all \mathbf{x} .
- If $\theta \in \Theta_0^c$ is known, then $P(\theta \in \Theta_0 | \mathbf{x}) = 0$ and $P(\theta \in \Theta_0^c | \mathbf{x}) = 1$.
- In practice, $P(\theta \in \Theta_0|\mathbf{x})$ and $P(\theta \in \Theta_0^c|\mathbf{x})$ are unknown and do not depend on \mathbf{x} . Hence these probabilities are not used.

Bayesian Approach

- The parameter θ is random and is assigned a prior distribution.
- The $P(\theta \in \Theta_0 | \mathbf{x}) = P(H_0 \text{ is true} | \mathbf{x})$ and $P(\theta \in \Theta_0^c | \mathbf{x}) = P(H_1 \text{ is true} | \mathbf{x})$ can be computed and make sense.
- A way to use posterior distribution to make decisions about H_0 and H_1 is to decide to accept H_0 as true if $P(\theta \in \Theta_0 | \mathbf{X}) > P(\theta \in \Theta_0^c | \mathbf{X})$ and to reject H_0 otherwise. The test statistic, a function of the sample, is $P(\theta \in \Theta_0^c | \mathbf{X})$ and the rejection region is $\{\mathbf{x} : P(\theta \in \Theta_0^c | \mathbf{x}) > 1/2\}$.
- One may also define a rejection region as $\{\mathbf{x} : P(\theta \in \Theta_0^c | \mathbf{x}) > c_p\}$, where $0 < c_p < 1$, say $c_p = 0.99$, which is set by the researcher.

Example 8.2.7: (Normal Bayesian Test)

Let X_1, \ldots, X_n be iid $n(\theta, \sigma^2)$ and let the prior distribution on θ be $n(\mu, \tau^2)$, where σ^2, τ^2, μ are known. Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. If we decide to accept H_0 if and only if $P(\theta \in \Theta_0 | \mathbf{X}) \geq P(\theta \in \Theta_0^c | \mathbf{X})$, then we will accept H_0 if and only if

$$P(\theta \le \theta_0 | \mathbf{X}) = P(\theta \in \Theta_0 | \mathbf{X}) \ge 1/2$$

Recall that the posterior distribution $\pi(\theta|\bar{x})$ is normal with mean $\frac{n\tau^2\bar{x}+\sigma^2\mu}{n\tau^2+\sigma^2}$ and variance $\frac{\sigma^2\tau^2}{n\tau^2+\sigma^2}$. Therefore, H_0 will be accepted as true if

$$\bar{X} \le \theta_0 + \frac{\sigma^2(\theta_0 - \mu)}{n\tau^2}.$$

8.2.3 Union-Intersection and Intersection-Union Tests

Union-Intersection Method

Let Γ be an arbitrary index set that may be finite or infinite. Define

$$H_0: \theta \in \bigcap_{\gamma \in \Gamma} \Theta_{\gamma}.$$

Suppose that for each γ , a test is available for

$$H_{0\gamma}: \theta \in \Theta_{\gamma} \text{ versus } H_{1\gamma}: \theta \in \Theta_{\gamma}^{c},$$

which rejects $H_{0\gamma}$ when $\mathbf{x}: T_{\gamma}(\mathbf{x}) \in R_{\gamma}$. Then the rejection region for the union-intersection test is:

$$\bigcup_{\gamma \in \Gamma} \{ \mathbf{x} : T_{\gamma}(\mathbf{x}) \in R_{\gamma} \}$$

If any one of the $H_{0\gamma}$ is rejected, then H_0 is rejected. Equivalently, H_0 is true only if $H_{0\gamma}$ is true for every γ . In particular, if each test has a rejection region $\{\mathbf{x}: T_{\gamma}(\mathbf{x}) > c\}$, where c does no depend on γ , then the rejection region for the union-intersection test can be expressed as

$$\bigcup_{\gamma \in \Gamma} \{ \mathbf{x} : T_{\gamma}(\mathbf{x}) > c \} = \left\{ \mathbf{x} : \sup_{\gamma \in \Gamma} T_{\gamma}(\mathbf{x}) > c \right\}$$

Thus the union-intersection test statistic is $T(\mathbf{X}) = \sum_{\gamma \in \Gamma} T_{\gamma}(\mathbf{X})$.

Example 8.2.8: (Normal Union-Intersection Test)

Let X_1, \ldots, X_n be iid $n(\mu, \sigma^2)$. Consider testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$. H_0 is equivalent to the intersection of the two sets:

$$H_0: \{\mu: \mu \leq \mu_0\} \cap \{\mu: \mu \geq \mu_0\}.$$

Test 1: $H_{01}: \mu \leq \mu_0$ versus $H_{11}: \mu > \mu_0$

LRT rejects
$$H_{01}$$
 if $\frac{X - \mu_0}{S/\sqrt{n}} \ge t_{\rm L}$.

Test 2: $H_{02}: \mu \ge \mu_0$ versus $H_{12}: \mu < \mu_0$

LRT rejects
$$H_{02}$$
 if $\frac{\bar{X} - \mu_0}{S/\sqrt{n}} \leq t_{\rm U}$.

Thus the union-intersection test of $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ formed from these two LRTs is

reject
$$H_0$$
 if $\frac{\bar{X} - \mu_0}{S/\sqrt{n}} \ge t_{\rm L}$ or $\frac{\bar{X} - \mu_0}{S/\sqrt{n}} \le t_{\rm U}$

If $t_{\rm L} = -t_{\rm U} \ge 0$, the union-intersection test can be simply expressed as

reject
$$H_0$$
 if $\frac{|\bar{X} - \mu_0|}{S/\sqrt{n}} \ge t_{\rm L}$.

Intersection-Union Method

Let Γ be an arbitrary index set that may be finite or infinite. Define

$$H_0: \theta \in \bigcup_{\gamma \in \Gamma} \Theta_{\gamma}$$

Suppose that for each γ , a test is available for

$$H_{0\gamma}: \theta \in \Theta_{\gamma} \text{ versus } H_{1\gamma}: \theta \in \Theta_{\gamma}^{c},$$

which rejects $H_{0\gamma}$ when $\{\mathbf{x}: T_{\gamma}(\mathbf{x}) \in R_{\gamma}\}$. Then the rejection region for the intersection-union test is

$$\bigcap_{\gamma \in \Gamma} \left\{ \mathbf{x} : T_{\gamma}(\mathbf{x}) \in R_{\gamma} \right\}.$$

i.e., reject H_0 if and only if $H_{0\gamma}$ is rejected for all γ . In particular, if each test has a rejection region $\{\mathbf{x}: T_{\gamma}(x) \geq c\}$, where c is independent of γ , then the rejection region for H_0

$$\bigcap_{\gamma \in \Gamma} \{ \mathbf{x} : T_{\gamma}(\mathbf{x}) \ge c \} = \left\{ \mathbf{x} : \inf_{\gamma \in \Gamma} T_{\gamma}(\mathbf{x}) \ge c \right\}$$

Thus the intersection-union test statistic is $T(\mathbf{X}) = \inf_{\gamma \in \Gamma} T_{\gamma}(\mathbf{X})$.

Example 8.2.9: Suppose X_1, \ldots, X_n are measurements of breaking strength assumed to be iid $n(\theta_1, \sigma^2)$ and Y_1, \ldots, Y_m are the results of m flammability tests modeled as iid Bernoulli(θ_2), where $Y_i = 1$ if the unit passes the test and $Y_i = 0$ otherwise. Standards to be met: $\theta_1 > 50$ and $\theta_2 > 0.95$, modeled with the hypothesis test

$$H_0: \{\theta_1 \le 50 \text{ or } \theta_2 \le 0.95\} \text{ versus } H_1: \{\theta_1 > 50 \text{ and } \theta_2 > 0.95\}$$

Test 1: $H_{01}: \theta_1 \leq 50$ versus $H_{11}: \theta_1 > 50$

LRT rejects
$$H_{01}$$
 if $\frac{\bar{X} - 50}{S/\sqrt{n}} > t$.

Test 2: $H_{02}: \theta_2 \le 0.95$ versus $H_{12}: \theta_2 > 0.95$

LRT rejects
$$H_{02}$$
 if $\sum_{i=1}^{m} Y_i > b$.

Thus the rejection region for the intersection-union test is given by

$$\left\{ (x,y) : \frac{\bar{x} - 50}{s/\sqrt{n}} > t \text{ and } \sum_{i=1}^{m} y_i > b \right\}.$$

8.3 Methods of Evaluating Tests

8.3.1 Error Probabilities and Power Function

Two Types of Error:

- Type I Error: $\theta \in \Theta_0$ but the hypothesis test incorrectly decides to reject H_0 .
- Type II Error: $\theta \in \Theta_0^c$ but the test decides to accept H_0 .

Let R denote the rejection region for a test. Then

$$P_{\theta}(\mathbf{X} \in R) = \begin{cases} P(\text{Type I Error}) & \text{if } \theta \in \Theta_0 \\ 1 - P(\text{Type II Error}) & \text{if } \theta \in \Theta_0^c \end{cases}.$$

<u>Definition 8.3.1</u>: The <u>Power Function</u> of a hypothesis test with rejection region R is the function of θ defined by $\beta(\theta) = P_{\theta}(\mathbf{X} \in R)$.

Example 8.3.2: (Binomial Power Function)

Let $X \sim \text{binomial}(5, \theta)$. Consider:

$$H_0: \theta \le 1/2 \text{ versus } H_1: \theta > 1/2.$$

Test 1: $R = \{All \text{ "successes" are observed}\}.$

Test 2:
$$R = \{X = 3, 4, \text{ or } 5\}.$$

Example 8.3.3: (Normal Power Function)

Let X_1, \ldots, X_n be iid $n(\theta, \sigma^2)$ where σ^2 is known. An LRT of $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ is a test that rejects H_0 if $(\bar{X} - \theta_0)/(\sigma/\sqrt{n}) > c$. The power function of this test is

$$\beta(\theta) = P_{\theta} \left(\frac{\bar{X} - \theta_0}{\sigma / \sqrt{n}} > c \right)$$
$$= P_{\theta} \left(Z > c + \frac{\theta_0 - \theta}{\sigma / \sqrt{n}} \right),$$

where Z is a standard normal random variable.

Example 8.3.4: (Continuation of Example 8.3.3)

Suppose the experimenter wishes to have a maximum Type I Error probability of 0.1 and a maximum Type II Error probability of 0.2 if $\theta \ge \theta_0 + \sigma$. How do we choose c and n?

<u>Definition 8.3.5</u>: For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a size α test if $\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha$.

<u>Definition 8.3.6</u>: For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a level α test if $\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$.

Remark:

- 1. Some authors use the terms level and size α interchangeably.
- 2. The set of level α tests contains the set of size α tests.
- 3. The distinction becomes important in complicated testing situations (e.g., intersection-union and union-intersection tests), where it is often computationally impossible to construct a size α test and an experimenter have to settle for a level α test.
- 4. The commonly used α values in practice are 0.1, 0.05 and 0.01.
- 5. Fixing the level of a test is controlling the Type I error but not Type II error.
- 6. H_0 and H_1 should be set up properly so that the more important error to control is the Type I error.
- 7. H_1 is typically the hypothesis that we expect the data to support, and hope to prove. (The alternative hypothesis is hence sometimes called the **Research Hypothesis** in this context.)

Example 8.3.7: (Size of LRT)

A size α LRT is constructed by choosing the appropriate c such that

$$\sup_{\theta \in \Theta_0} P_{\theta} (\lambda(X) \le c) = \alpha.$$

In Example 8.2.2, the test of $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ with following rejection region, is the size α LRT.

$$R = \left\{ \mathbf{x} : |\bar{x} - \theta_0| \ge \frac{z_{\alpha/2}}{\sqrt{n}} \right\}$$

In Example 8.2.3, finding a size α is more complicated because $H_0: \theta \leq \theta_0$ consists of more than one point. Since θ is a location parameter for $X_{(1)}$,

$$P_{\theta}(X_{(1)} \ge c) \le P_{\theta_0}(X_{(1)} \ge c), \quad \text{ for any } \theta \le \theta_0.$$

Thus

$$\sup_{\theta \in \Theta_0} \beta(\theta) = \sup_{\theta \le \theta_0} P_{\theta}(X_{(1)} \ge c) = P_{\theta_0}(X_{(1)} \ge c) = e^{-n(c-\theta_0)} = \alpha$$

which implies that $c = -\frac{\log(\alpha)}{n} + \theta_0$ yields the size α LRT.

Example 8.3.8: (Size of Union-Intersection Test)

The problem of finding size α union-intersection test in Example 8.2.8 involves finding $t_{\rm L}$ and $t_{\rm U}$ such that

$$\sup_{\theta \in \Theta_0} P_{\theta} \left(\frac{\bar{X} - \mu_0}{S / \sqrt{n}} \ge t_{\mathrm{L}} \text{ or } \frac{\bar{X} - \mu_0}{S / \sqrt{n}} \le t_{\mathrm{U}} \right) = \alpha.$$

For any $(\mu, \sigma^2) \in \Theta$, $\mu = \mu_0$ and thus $\frac{\bar{X} - \mu_0}{S/\sqrt{n}}$ has a Student's t distribution with n-1 degrees of freedom. So any choice of $t_{\rm U} = t_{n-1,1-\alpha_1}$ and $t_{\rm L} = t_{n-1,\alpha_2}$, with $\alpha_1 + \alpha_2 = \alpha$, will yield a test with Type I Error probability of exactly α for all $\theta \in \Theta_0$. The usual choice is $t_{\rm L} = -t_{\rm U} = t_{n-1,\alpha/2}$.

<u>Definition 8.3.9</u>: A test with power function $\beta(\theta)$ is unbiased if $\beta(\theta') \ge \beta(\theta'')$ for every $\theta' \in \Theta_0^c$ and $\theta'' \in \Theta_0$.

Example 8.3.10: (Conclusion of Example 8.3.3)

Let X_1, \ldots, X_n be iid $n(\theta, \sigma^2)$ where σ^2 is known. An LRT of $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ has power function

$$\beta(\theta) = P\left(Z > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)$$

where $Z \sim \mathrm{n}(0,1)$. Since $\beta(\theta)$ is an increasing function of θ , it follows that

$$\beta(\theta) > \beta(\theta_0) = \max_{t \le \theta_0} \beta(t)$$
, for all $\theta > \theta_0$.

Thus the test is unbiased.

8.3.2 Most Powerful Tests

Definition 8.3.11: Let \mathcal{C} be a class of tests for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$. A test in class \mathcal{C} , with power function $\beta(\theta)$, is a **Uniformly Most Powerful** (**UMP**) class \mathcal{C} test if $\beta(\theta) \geq \beta'(\theta)$ for every $\theta \in \Theta_0^c$ and every $\beta'(\theta)$ that is a power function of a test in class \mathcal{C} .

<u>Theorem 8.3.12</u>: (Neyman-Pearson Lemma)

Considering testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, where the pdf or pmf corresponding to θ_i if $f(\mathbf{x}|\theta_i)$, i = 0, 1, using a test with rejection R that satisfies for some $k \geq 0$,

$$\mathbf{x} \in R \text{ if } f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)$$

 $\mathbf{x} \in R^c \text{ if } f(\mathbf{x}|\theta_1) < kf(\mathbf{x}|\theta_0)$

$$(8.3.1)$$

and

$$\alpha = P_{\theta_0}(\mathbf{X} \in R). \tag{8.3.2}$$

Then

- a. (Sufficiency) Any test that satisfies (8.3.1) and (8.3.2) is a UMP level α test.
- b. (Necessity) If there exists a test satisfying (8.3.1) and (8.3.2) with k > 0, then every UMP level α test is a size α test (satisfies (8.3.2)) and every UMP level α test satisfies (8.3.1) except perhaps on a set A satisfying $P_{\theta_0}(\mathbf{X} \in A) = P_{\theta_1}(\mathbf{X} \in A) = 0$.

Corollary 8.3.13: Consider the hypothesis problem posed in Theorem 8.3.12. Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T corresponding to θ_i , i = 0, 1. Then any test based on T with rejection region S (a subset of the sample space of T) is a UMP level α test if it satisfies for some $k \geq 0$,

$$t \in S$$
 if $g(t|\theta_1) > kg(t|\theta_0)$
 $t \in S^c$ if $g(t|\theta_1) < kg(t|\theta_0)$

and

$$\alpha = P_{\theta_0}(T \in S).$$

Example 8.3.14: (UMP Binomial Test)

Let $X \sim \text{binomial}(2, \theta)$. We want to test $H_0: \theta = 1/2 \text{ versus } H_1: \theta = 3/4$.

$$\frac{f(0|\theta=3/4)}{f(0|\theta=1/2)} = \frac{1}{4}, \quad \frac{f(1|\theta=3/4)}{f(1|\theta=1/2)} = \frac{3}{4}, \quad \frac{f(2|\theta=3/4)}{f(2|\theta=1/2)} = \frac{9}{4}.$$

• **Test 1**: If we choose $\frac{3}{4} < k < \frac{9}{4}$, then by Neyman-Pearson Lemma, the UMP test rejects H_0 when X = 2. The corresponding size of this test is

$$\alpha = P(X = 2|\theta = \frac{1}{2}) = \frac{1}{4}.$$

• **Test 2**: If we choose $\frac{1}{4} < k < \frac{3}{4}$, then by Neyman-Pearson Lemma, the UMP test rejects H_0 when X = 1 or 2. The corresponding size of this test is

$$\alpha = P(X = 1 \text{ or } 2|\theta = \frac{1}{2}) = \frac{3}{4}.$$

- **Test 3**: If we choose $k < \frac{1}{4}$ or $k > \frac{9}{4}$, the corresponding UMP tests have size $\alpha = 1$ and $\alpha = 0$, respectively.
- Test 4: If we choose $k = \frac{3}{4}$, then the UMP test must reject H_0 for x = 2 and accept H_0 for x = 0, but leaves the actions for x = 1 undetermined. We can put X = 1 in either the rejection or acceptance region. The resulting size of the test will depend on this choice because this is a discrete setting.

Example 8.3.15: (UMP Normal Test)

Let X_1, \ldots, X_n be iid $n(\theta, \sigma^2)$, where σ^2 is known. We want to obtain the UMP test for $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, where $\theta_0 > \theta_1$. Recall that \bar{X} is a sufficient statistic for θ and $\bar{X} \sim n(\theta, \sigma^2/n)$, which implies that

$$\frac{g(\bar{x}|\theta_1)}{g(\bar{x}|\theta_0)} = \exp\left[\frac{n}{2\sigma^2} \left(2\bar{x}(\theta_1 - \theta_0) - (\theta_1^2 - \theta_0^2)\right)\right].$$

Thus, by Corollary 8.3.13, the UMP test rejects H_0 when $g(\bar{x}|\theta_1) > kg(\bar{x}|\theta_0)$, which is equivalent to

$$\bar{x} < \frac{(2\sigma^2 \log k)/n - \theta_0^2 + \theta_1^2}{2(\theta_1 - \theta_0)}.$$

The test with rejection region $\bar{x} < c$ is the UMP level α test, where

$$\alpha = P_{\theta_0}(\bar{X} < c) = P\left(Z < \frac{c - \theta_0}{\sigma/\sqrt{n}}\right) \Longrightarrow c = \frac{-z_\alpha \sigma}{\sqrt{n}} + \theta_0.$$

Types of Hypotheses:

- 1. **Simple Hypothesis**: that specify only one possible distribution for the sample, $H: \theta = \theta_0$.
- 2. *Composite Hypothesis*: that specify more than one possible distribution for the sample
 - a. One-sided Hypothesis, $H: \theta \leq \theta_0$
 - b. Two-sided Hypothesis, $H: \theta \neq \theta_0$

Question: How to find the UMP level α test for composite hypotheses?

Definition 8.3.16: A family of pdfs or pmfs $\{g(t|\theta) : \theta \in \Theta\}$ for a univariate random variable T with real-valued parameter θ has a **Monotone Likelihood Ratio** (MLR) if, for every $\theta_2 > \theta_1$, $g(t|\theta_2)/g(t|\theta_1)$ is a monotone (nonincreasing or nondecreasing) function of t on $\{t : g(t|\theta_1) > 0 \text{ or } g(t|\theta_2) > 0\}$. Note that c/0 is defined as ∞ if c > 0.

<u>Note</u>: Any regular exponential family with $g(t|\theta) = h(t)c(\theta)e^{w(\theta)t}$ has an MLR if $w(\theta)$ is a nondecreasing or nonincreasing function.

Theorem 8.3.17: (Karlin-Rubin)

Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. Suppose that T is a sufficient statistic for θ and the family of pdfs or pmfs $\{g(t|\theta): \theta \in \Theta\}$ of T has an MLR, i.e., $g(t|\theta_2)/g(t|\theta_1)$ is a monotone nondecreasing function of t for every $\theta_2 > \theta_1$. Then for any t_0 , the test that rejects H_0 if and only if $T > t_0$ is a UMP level α test, where $\alpha = P_{\theta_0}(T > t_0)$.

Note: There are four possible cases:

- 1. $H_0: \theta \leq \theta_0$ v.s. $H_1: \theta > \theta_0$ and nondecreasing \Rightarrow UMP: $T > t_0$
- 2. $H_0: \theta \leq \theta_0$ v.s. $H_1: \theta > \theta_0$ and nonincreasing \Rightarrow UMP: $T < t_0$
- 3. $H_0: \theta \geq \theta_0$ v.s. $H_1: \theta < \theta_0$ and nondecreasing \Rightarrow UMP: $T < t_0$
- 4. $H_0: \theta \geq \theta_0$ v.s. $H_1: \theta < \theta_0$ and nonincreasing \Rightarrow UMP: $T > t_0$

Example 8.3.18: (Continuation of Example 8.3.15)

Consider testing $H_0': \theta \ge \theta_0$ versus $H_1': \theta < \theta_0$ using the test that rejects H_0 if

$$\bar{X} < \frac{-z_{\alpha}\sigma}{\sqrt{n}} + \theta_0.$$

Note that $T = \bar{X} \sim n(\theta, \sigma^2/n)$ has an MLR. To show this, assume $\theta_2 > \theta_1$, we have

$$\frac{g(t|\theta_2)}{g(t|\theta_1)} = \exp\left\{-\frac{n}{2\sigma^2} \left[(t - \theta_2)^2 - (t - \theta_1)^2 \right] \right\}$$
$$= \exp\left\{\frac{n(\theta_1^2 - \theta_2^2)}{2\sigma^2} \right\} \exp\left\{\frac{nt(\theta_2 - \theta_1)}{\sigma^2} \right\}.$$

Since $\theta_2 - \theta_1 > 0$, this ratio is an increasing function of t. By Karlin-Rubin Theorem, the test above is a UMP level α test.

As the power function of this test,

$$\beta(\theta) = P_{\theta} \left(\bar{X} < -\frac{\sigma z_{\alpha}}{\sqrt{n}} + \theta_{0} \right) = P \left(Z < -z_{\alpha} + \frac{\theta_{0} - \theta}{\sigma / \sqrt{n}} \right),$$

is a decreasing function of θ , the value of α is give by

$$\sup_{\theta \ge \theta_0} \beta(\theta) = \beta(\theta_0) = \alpha.$$

Example 8.3.19: (Nonexistence of UMP Test)

Let X_1, \ldots, X_n be iid $n(\theta, \sigma^2)$ where σ^2 is known. Consider testing H_0 : $\theta = \theta_0$ versus $H_1 : \theta \neq \theta_0$. A level α test for this problem is any test that satisfies

$$P_{\theta_0}(\text{reject } H_0) \leq \alpha$$

Test 1: Consider $\theta_1 < \theta_0$. Using the same argument as in Example 8.3.18, the test that rejects H_0 if $\bar{X} < -\sigma z_\alpha/\sqrt{n} + \theta_0$ has the highest power at θ_1 . Furthermore, by part (b) of the Neyman-Pearson Lemma, any other level α test that has as high a power as Test 1 at θ_1 must have the same rejection region as Test 1 except for a set A satisfying $\int_A f(\mathbf{x}|\theta_i)d\mathbf{x} = 0$. Test 2: Consider the test that rejects H_0 if $\bar{X} > \sigma z_\alpha/\sqrt{n} + \theta_0$. Let $\beta_1(\theta)$

Test 2: Consider the test that rejects H_0 if $\bar{X} > \sigma z_{\alpha}/\sqrt{n} + \theta_0$. Let $\beta_1(\theta)$ and $\beta_2(\theta)$ be the power function Test 1 and 2, respectively. Then for any $\theta_2 > \theta_0$, we have

$$\beta_{2}(\theta_{2}) = P_{\theta_{2}} \left(\bar{X} > \frac{\sigma z_{\alpha}}{\sqrt{n}} + \theta_{0} \right)$$

$$= P_{\theta_{2}} \left(\frac{\bar{X} - \theta_{2}}{\sigma / \sqrt{n}} > z_{\alpha} + \frac{\theta_{0} - \theta_{2}}{\sigma / \sqrt{n}} \right)$$

$$> P(Z > z_{\alpha})$$

$$= P(Z < -z_{\alpha})$$

$$> P_{\theta_{2}} \left(\frac{\bar{X} - \theta_{2}}{\sigma / \sqrt{n}} < -z_{\alpha} + \frac{\theta_{0} - \theta_{2}}{\sigma / \sqrt{n}} \right)$$

$$= P_{\theta_{2}} \left(\bar{X} < -\frac{\sigma z_{\alpha}}{\sqrt{n}} + \theta_{0} \right)$$

$$= \beta_{1}(\theta_{2}).$$

From Neyman-Person Lemma, the UMP level α test would have to be Test 1, but Test 2 has a higher power than Test 1 at θ_2 , which implies that there exists no UMP level α test in this problem.

Example 8.3.20: (Unbiased Test)

When no UMP level α test exists within the class of all tests, the next best thing is to find a UMP level α test the class of unbiased tests. Test 1 and Test 2 are not unbiased tests.

Test 3: Rejects $H_0: \theta = \theta_0$ in favor of $H_1: \theta \neq \theta_0$ if and only if

$$\bar{X} > \sigma z_{\alpha/2} / \sqrt{n} + \theta_0 \text{ or } \bar{X} < -\sigma z_{\alpha/2} / \sqrt{n} + \theta_0.$$

Although Test 1 and Test 2 have slightly higher power than Test 3 for some values of θ , it turns out that Test 3 is a UMP unbiased level α test, that is, it is the UMP in the class of unbiased tests.

8.3.4 p-Values

<u>Definition 8.3.26</u>: A *p-value* $p(\mathbf{X})$ is a est statistic satisfying $0 \le p(\mathbf{x}) \le 1$ for every sample point \mathbf{x} . Small values of $p(\mathbf{X})$ give evidence that H_1 is true. A p-value is *valid* if, for every $\theta \in \Theta_0$ and every $0 \le \alpha \le 1$,

$$P_{\theta}(p(\mathbf{X}) \le \alpha) \le \alpha.$$

Remark:

- 1. Given a valid p-value $p(\mathbf{X})$, a level α test rejects H_0 if and only if $p(\mathbf{X}) \leq \alpha$.
- 2. A p-value reports the results of a test in a more continuous scale, rather than the dichotomous decision "accept H_0 " or "Reject H_0 ", through which each read can choose the α he or she considers appropriate.
- 3. The smaller p-value is, the stronger the evidence for rejecting H_0 .

<u>Theorem 8.3.27</u>: Let $W(\mathbf{X})$ be a test statistic such that large values of W give evidence that H_1 is true. For each sample point \mathbf{x} , define

$$p(\mathbf{x}) = \sup_{\theta \in \Theta_0} P_{\theta}(W(\mathbf{X}) \ge W(\mathbf{x})).$$

Then, $p(\mathbf{X})$ is a valid p-value.

Example 8.3.28: (Two-Sided Normal p-Value)

Let X_1, \ldots, X_n be iid $\mathrm{n}(\mu, \sigma^2)$. The LRT for testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$

rejects
$$H_0$$
 if $W(\mathbf{X}) = \frac{|\bar{X} - \mu_0|}{S/\sqrt{n}}$ is large.

Under $H_0: \mu = \mu_0$, regardless of the value of σ^2 , $\frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$. Thus, the p-value for this two-sided t test is

$$p(\mathbf{x}) = 2P\left(T_{n-1} > \frac{|\bar{x} - \mu_0|}{s/\sqrt{n}}\right)$$

where T_{n-1} has Student's t distribution with n-1 degrees of freedom.

Example 8.3.29: (One-Sided Normal p-Value)

Let X_1, \ldots, X_n be iid $\mathrm{n}(\mu, \sigma^2)$. The LRT for testing $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$

rejects
$$H_0$$
 if $\frac{\bar{X} - \mu_0}{S/\sqrt{n}}$ is large.

Note that for all $\mu \leq \mu_0$,

$$P_{\mu,\sigma^{2}}(W(\mathbf{X}) \geq W(\mathbf{x})) = P_{\mu,\sigma^{2}}\left(\frac{\bar{X} - \mu_{0}}{S/\sqrt{n}} \geq W(\mathbf{x})\right)$$

$$= P_{\mu,\sigma^{2}}\left(\frac{\bar{X} - \mu}{S/\sqrt{n}} \geq W(\mathbf{x}) + \frac{\mu_{0} - \mu}{S/\sqrt{n}}\right)$$

$$= P_{\mu,\sigma^{2}}\left(T_{n-1} \geq W(\mathbf{x}) + \frac{\mu_{0} - \mu}{S/\sqrt{n}}\right)$$

$$\leq P(T_{n-1} \geq W(\mathbf{x})),$$

which achieves the supremum at (μ_0, σ^2) . Thus, the p-value for this one-sided t test is

$$p(\mathbf{x}) = P(T_{n-1} \ge W(\mathbf{x})) = P\left(T_{n-1} \ge \frac{\bar{x} - \mu_0}{s/\sqrt{n}}\right).$$

Alternative Method for Finding p-Values

Let $X(\mathbf{X})$ be a sufficient statistic only for the model $\{f(\mathbf{x}|\theta): \theta \in \Theta_0\}$. Then for each sample point \mathbf{x} define

$$p(\mathbf{x}) = P(W(\mathbf{X}) \ge W(\mathbf{x})|S = S(\mathbf{x})).$$

Note that this is a valid p-value because

$$P_{\theta}(p(\mathbf{x}) \le \alpha) = \sum_{s} P(p(\mathbf{x}) \le \alpha | S = s) P_{\theta}(S = s) \le \sum_{s} \alpha P_{\theta}(S = s) \le \alpha.$$

Sums can be replaced by integrals for continuous S, but this alternative method is usually for discrete S.

Example 8.3.30: (Fisher's Exact Test)

Let S_1 and S_2 be independent observations with $S_1 \sim \text{binomial}(n_1, p_1)$ and $S_2 \sim \text{binomial}(n_2, p_2)$. Consider testing $H_0: p_1 = p_2$ versus $H_1: p_1 > p_2$. How to construct a valid p-value using the alternative method above? Hint: $S = S_1 + S_2$ is a sufficient statistic under H_0 .