S5E1: Medius Analyse für nicht-konforme FEM

1 Das Stokes Problem

Notation

- $\Omega \subseteq \mathbb{R}^2$ beschränktes polygonales Lipschitz-Gebiet, $f \in L^2(\Omega; \mathbb{R}^2)$
- $V \coloneqq H^1_0(\Omega; \mathbb{R}^2)$ mit Norm $\|\cdot\|_V \coloneqq \|\cdot\|_{H^1(\Omega; \mathbb{R}^2)}$ $Q \coloneqq L^2_0(\Omega) \coloneqq \left\{ q \in L^2(\Omega) : \int_{\Omega} q \, dx = 0 \right\} \text{ mit Norm } \|\cdot\| \coloneqq \|\cdot\|_{L^2(\Omega)}$
- $a: V \times V \to \mathbb{R}$ Bilinear form definiert durch $(u, v) \mapsto \int_{\Omega} \nabla u : \nabla v \, dx$ (mit $A: B = \sum_{i,j=1}^{2} A_{ij} B_{ij}$ für $A, B \in \mathbb{R}^{2 \times 2}$)
- $b \colon V \times Q \to \mathbb{R}$ Bilinearform definiert durch $(v,q) \mapsto \int_{\Omega} q \operatorname{div} v \, dx$

Problem 1 (Schwache Formulierung). Finde $(u, p) \in V \times Q$, sodass

$$\begin{cases} a(u,v) - b(v,p) = \langle f, v \rangle_{L^2} & \text{für alle } v \in V, \\ b(u,q) = 0 & \text{für alle } q \in Q. \end{cases}$$
 (1)

Satz (Brezzis Splitting-Theorem). Ein Problem der Form (1) hat genau dann eine eindeutige Lösung $(u, p) \in V \times Q$, falls folgende Bedingungen erfüllt sind:

- (i) Die Bilinearform $a(\cdot, \cdot)$ ist elliptisch auf $Z := \{v \in V : \forall q \in Q : b(v, q) = 0\}.$
- (ii) Die Bilinearform $b(\cdot,\cdot)$ erfüllt die inf-sup-Bedingung:

$$\exists\,\beta>0:\inf_{q\in Q}\sup_{v\in V}\frac{b\left(v,q\right)}{\left\|v\right\|_{V}\left\|q\right\|}\geq\beta.$$

2 CRFEM für das Stokes Problem

Notation

- \mathcal{T}_h quasi-uniforme Triangulierung von Ω , $h := \max \{ \operatorname{diam}(T) : T \in \mathcal{T}_h \}$
- $\mathcal{E}_h, (\mathcal{E}_h^i/\mathcal{E}_h^b)$ Menge aller (inneren/äußeren) Kanten von \mathcal{T}_h analog $\mathcal{N}_h, (\mathcal{N}_h^i/\mathcal{N}_h^b)$ für die Knoten von \mathcal{T}_h
- mid(E) Mittelpunkt von $E \in \mathcal{E}_h$, $mid(\mathcal{E}_h)$ Menge aller Kantenmittelpunkte
- ∇_h stückweiser Gradient: $(\nabla_h v)|_T = \nabla(v|_T)$ für $T \in \mathcal{T}_h$ und geeignetes $v \colon \Omega \to \mathbb{R}^2$, analog div_h

Crouzeix-Raviart Diskretisierung

Definiere die Räume

- $P_k(\mathcal{T}_h) := \{v_h \in L^2(\Omega) : \forall T \in \mathcal{T}_h : v_h|_T \in P_k(T)\},\ CR_0^1(\mathcal{T}_h) := \{v_h \in P_1(\mathcal{T}_h) : v_h \text{ stetig in } \operatorname{mid}(\mathcal{E}_h^i), v_h(\operatorname{mid}(\mathcal{E}_h^b)) = \{0\}\},\$
- $V_h := (CR_0^1(\mathcal{T}_h))^2$ mit Norm $||v||_h := ||\nabla_h v||$ für $v \in V + V_h$, $Q_h := P_0(\mathcal{T}_h) \cap L_0^2(\Omega)$ mit Norm $||\cdot||$,

und die Bilinarformen $a_h \colon V_h \times V_h \to \mathbb{R}$ und $b_h \colon V_h \times Q_h \to \mathbb{R}$ durch

$$a_h(u_h, v_h) \coloneqq \int_{\Omega} \nabla_h u_h : \nabla_h v_h \, dx \quad \text{ und } \quad b_h(v_h, q_h) \coloneqq \int_{\Omega} q_h \operatorname{div}_h v_h \, dx.$$

Problem 2 (Diskretes Problem). Finde $(u_h, p_h) \in V_h \times Q_h$, sodass

$$\begin{cases}
a_h(u_h, v_h) - b_h(v_h, p_h) = \langle f, v_h \rangle_{L^2} & \text{für alle } v_h \in V_h, \\
b_h(u_h, q_h) = 0 & \text{für alle } q_h \in Q_h.
\end{cases}$$
(2)

Stabilität der CRFEM

Definition 1 (Nicht-konformer Interpolationsoperator und L^2 -Projektion). Wir definieren

(i) den nicht-konformen Interpolationsoperator $I_{NC}: V \to V_h$, durch

$$(I_{NC}v)(\operatorname{mid}(E)) := \int_E v \, ds \quad \text{für } E \in \mathcal{E}_h$$

(ii) die L^2 -Projektion durch $\Pi_0: L^2(\Omega) \to P_0(\mathcal{T}_h)$,

$$(\Pi_0 f)|_T \coloneqq \oint_T f \, dx \quad \text{für } T \in \mathcal{T}_h.$$

Lemma 1 (Eigenschaften von I_{NC} und Π_0). (i) Für alle $v \in V$ und $T \in \mathcal{T}_h$ gilt $f_T \nabla v dx = f_T \nabla_h (I_{NC}v) dx$ und

$$||v - I_{NC}v||_h \le \inf_{w_h \in V_h} ||v - w_h||_h.$$

(ii) Für alle $f \in L^2(\Omega)$ und $T \in \mathcal{T}_h$ gilt $f_T f dx = f_T \prod_0 f dx$ und

$$||f - \Pi_0 f|| \le \inf_{g \in P_0(\mathcal{T}_h)} ||f - g||.$$

Satz 1 (Stabilität von CR-NCFEM). Die Crouzeix-Raviart Diskretisierung des Stokes Problems $V_h \times Q_h$ aus Problem 2 ist stabil, d.h. es gibt $\beta > 0$ unabhängig von h, so dass die diskrete inf-sup-Bedingung erfüllt ist:

$$\inf_{q_h \in Q_h} \sup_{v_h \in V_h} \frac{b_h(v_h, q_h)}{\|v_h\|_h \|q_h\|} \ge \beta.$$

3 Fehlerabschätzung der CRFEM

Definition 2 (Konforme Begleitabbildung J_k). Wir definieren die konformen Begleitabbildungen J_k : $CR_0^1(\mathcal{T}_h) \to P_k(\mathcal{T}_h) \cap C_0(\Omega)$ für k = 1, 2, 3 wie folgt für $v_h \in CR_0^1(\mathcal{T}_h)$:

(i)
$$J_1 v_h := \sum_{z \in \mathcal{N}_h^i} \left(|\mathcal{T}(z)|^{-1} \sum_{T \in \mathcal{T}(z)} v_h|_T(z) \varphi_z \right)$$

(ii)
$$J_2 v_h := J_1 v_h + \sum_{E \in \mathcal{E}_h^i} \left(\oint_E (v_h - J_1 v_h) \, ds \right) b_E$$

(iii)
$$J_3v_h := J_2v_h + \sum_{T \in \mathcal{T}_h} \left(f_T(v_h - J_2v_h) dx \right) b_T.$$

Dabei bezeichnet φ_z die konforme nodale Basisfunktion bzgl. $z \in \mathcal{N}_h$, $b_E \coloneqq 6\varphi_a\varphi_b$ die Bubble-Funktion bzgl. der Kante $E \coloneqq \text{conv}\{a,b\} \in \mathcal{E}_h$ und $b_T \coloneqq 60\varphi_a\varphi_b\varphi_c$ die Bubble-Funktion für das Element $T \coloneqq \text{conv}\{a,b,c\} \in \mathcal{T}_h$.

Lemma 2 (Eigenschaften von J_3). Die konforme Begleitabbildung J_3 : $CR_0^1(\mathcal{T}_h) \to P_3(\mathcal{T}_h) \cap C_0(\Omega)$ hat folgende Eigenschaften:

(i)
$$\int_T \nabla_h(v_h - J_3v_h) dx = 0$$
 und $\int_T v_h - J_3v_h dx = 0$ für $v_h \in CR_0^1(\mathcal{T}_h)$ und $T \in \mathcal{T}_h$,

(ii)
$$\|\nabla_h(v_h - J_3v_h)\| \lesssim \|h^{-1}(v_h - J_3v_h)\| \lesssim \|\nabla_h v_h\|$$
 für alle $v_h \in CR_0^1(\mathcal{T}_h)$.

Satz 2 (Best-Approximation der CRFEM). Sei $(u,p) \in V \times Q$ die Lösung von (1) und $(u_h, p_h) \in V_h \times Q_h$ die Lösung von (2). Dann gilt:

$$||u - u_h||_h + ||p - p_h|| \lesssim \inf_{v_h \in V_h} ||u - v_h||_h + \inf_{q_h \in Q_h} ||p - q_h|| + \operatorname{osc}(f, h),$$
 (3)

wobei die Oszillation von f durch $osc(f,h) := ||h(f - \Pi_0 f)||$ definiert ist.