ARJUNA (NEET)

Newton's Law of Motion

DPP-02

- 1. When an object is at rest
 - (A) Force is required to keep it in rest state
 - (B) No force is acting on it
 - (C) A large number of forces may be acting on it which balance each other
 - (D) It is in vacuum
- 2. A body of mass 2 kg is sliding with a constant velocity of 4 m/s on a frictionless horizontal table. The force required to keep the body moving with the same velocity is
 - (A) 8 N
- (B) 0 N
- (C) $2 \times 10^4 \text{ N}$
- (D) 12 N
- 3. A mass of 10 kg is suspended by a rope of length 2.8m from a ceiling. A force of 98 N is applied at the midpoint of the rope as shown in figure. The angle which the rope makes with the vertical in equilibrium is

- (A) 30°
- (B) 60°
- (C) 45°
- (D) 90°
- 4. Two masses M_1 to M_2 connected by means of a string which is made to pass over light, smooth pulley are in equilibrium on a fixed smooth wedge as shown in figure. If $\theta = 60^{\circ}$ and $\alpha = 30^{\circ}$, then the ratio of M_1 to M_2 is
 - (A) 1:2
 - (B) $2:\sqrt{3}$
 - (C) $1:\sqrt{3}$
 - (D) $\sqrt{3}:1$

5. A body of mass 5kg is suspended by a spring balance on an inclined plane as shown in figure. The spring balance measure

- (C) 500 N
- (D) 10 N
- **6.** The tension in the spring is

- (A) Zero
- (B) 2.5 N
- (C) 5 N
- (D) 10 N
- 7. A mass is suspended by a rope from a rigid support at A as shown in figure. Another rope is tied at the end B, and it is pulled horizontally with a force F. If the rope AB makes an angle θ with the vertical in equilibrium, then the tension in the string AB is:

- (A) $F \sin \theta$
- (B) $F/\sin \theta$
- (C) $F \cos \theta$
- (D) $F/\cos\theta$
- **8.** Find the tension T_2 for the system shown in figure.
 - (A) 1g N
 - (B) 2g N
 - (C) 5g N
 - (D) 6g N

- **9.** A block of mass 4 kg is suspended through two light spring balances A and B in series. Then A and B will read respectively.
 - (A) 4 kg and zero kg
 - (B) zero kg and 4 kg
 - (C) 4 kg and 4 kg
 - (D) 2 kg and 2 kg
- 10. When an object is in equilibrium state, then
 - (A) It must be at rest
 - (B) No force is acting on it
 - (C) Its net acceleration must be zero
 - (D) All of these

11. In which of the following graphs, the total change in momentum is zero?

- 12. A weight Mg is suspended from the middle of a rope whose ends are at the same level. The rope is no longer horizontal. The minimum tension required to completely straighten the rope is
 - (A) $\frac{Mg}{2}$
- (B) $Mg\cos\theta$
- (C) $2Mg\cos\theta$
- (D) Infinitely large

ANSWER KEY

- **1.** (C)
- **2.** (B)
- **3.** (C)
- **4.** (C)
- **5.** (B)
- **6.** (C)
- **7.** (B)
- **8.** (C)
- **9.** (C)
- **10.** (~)
- 11. (~)
- 12. (~)

Please share your feedback on PW Teachershttps://forms.gle/jEBFswBuki4Ut2Lk6

For PW APP: https://physicswala.page.link/?type=contact-us&data=open

For PW Website: https://www.physicswallah.live/contact-us