Chapter 5

Spin Transfer Torque

韩伟 量子材料科学中心 2017年11月10日

Review of last class

1. Semiconductor Spin Valves

When spintronics meets semiconductor

GaAs

Silicon and Germanium

Complex oxides

Spin FET

Review of last class

2. Spin valves based on Quantum materials

石墨烯

▶ 弱自旋-轨道耦合→ 长自旋寿命

Outline |

1. Spin transfer torque

2. Spin orbit torque and spin Hall effect

3. Spin orbit torque and Rashba-Edelstein effect

This Class

1. Spin transfer torque

Outline |

- 1. Theory and observation of spin transfer torque
- 2. Spin transfer torque and spin pumping
- 3. Spin transfer torque in MTJ
- 4. Spin transfer torque in domain wall motion
- 5. Thermal spin transfer torque
- 6. Pure spin current transfer torque

Outline |

1. Theory and observation of spin transfer torque

Spin angular momentum

The Einstein-de Haas effect

Publications Meetings & Events Programs Membership Policy & Advocacy Careers In Physics Newsroom About APS

Programs	Home Programs Prizes, Awards and Fellowships Prizes Oliver E. Buckley
Education	Condensed Matter Physics Prize
International Affairs	2013 Oliver E. Buckley Condensed Matter Physics Prize
Physics Outreach	Recipient

Citation:

"For predicting spin-transfer torque and opening the field of current-induced control over magnetic nanostructures."

John Slonczewski

Luc Berger

Citation:

[&]quot;For predicting spin-transfer torque and opening the field of current-induced control over magnetic nanostructures."

PHYSICAL REVIEW B VOLUME 54, NUMBER 13

1 OCTOBER 1996-I

Emission of spin waves by a magnetic multilayer traversed by a current

L. Berger

Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213-3890 (Received 31 January 1996)

The interaction between spin waves and itinerant electrons is considerably enhanced in the vicinity of an interface between normal and ferromagnetic layers in metallic thin films. This leads to a local increase of the Gilbert damping parameter which characterizes spin dynamics. When a dc current crosses this interface, stimulated emission of spin waves is predicted to take place. Beyond a certain critical current density, the spin damping becomes negative; a spontaneous precession of the magnetization is predicted to arise. This is the magnetic analog of the injection laser. An extra dc voltage appears across the interface, given by an expression similar to that for the Josephson voltage across a superconducting junction. [S0163-1829(96)00237-8]

Journal of Magnetism and Magnetic Materials 159 (1996) L1-L7

Letter to the Editor

Current-driven excitation of magnetic multilayers

J.C. Slonczewski *

IBM Research Division, Thomas J. Watson Research Center, Box 216, Yorktown Heights, NY 10596, USA

Received 27 October 1995; revised 19 December 1995

Abstract

A new mechanism is proposed for exciting the magnetic state of a ferromagnet. Assuming ballistic conditions and using WKB wave functions, we predict that a transfer of vectorial spin accompanies an electric current flowing perpendicular to two parallel magnetic films connected by a normal metallic spacer. This spin transfer drives motions of the two magnetization vectors within their instantaneously common plane. Consequent new mesoscopic precession and switching phenomena with potential applications are predicted.

Spin transfer torque switching

Moment in an applied field along z with no anisotropy

Outline |

2. Spin transfer torque and spin pumping

Ferromagnetic resonance

Ferromagnetic resonance

Landau-Lifshitz-Gilbert equation

$$\frac{d\widehat{m}}{dt} = -\gamma \widehat{m} \times \vec{H}_{eff} + \alpha \widehat{m} \times \frac{d\widehat{m}}{dt}$$

$$\gamma = \frac{g e}{2 m_e c}$$
 is gyromagnetic ratio

 α is the Gilbert damping

 $H_x e^{i\omega t}$ (rf): small perturbation

Spin angular momentum

FM NM

$$\vec{J}_S = \frac{\hbar g_r^{\uparrow\downarrow}}{4\pi M^2} \left(\vec{M} \times \frac{\partial \vec{M}}{\partial t} \right)$$

Precessing magnetization in
FM layer pump spin current
into NM layer
(Angular momentum
conservatoin)

$$\tau = -\mathbf{m} \times \mathbf{I}_s \times \mathbf{m}$$
.

$$\mathbf{I}_{s,R}^{\text{pump}} = \frac{\hbar}{4\pi} \left(\mathcal{A}_r^{\uparrow\downarrow} \mathbf{m} \times \frac{d\mathbf{m}}{dt} + \mathcal{A}_i^{\uparrow\downarrow} \frac{d\mathbf{m}}{dt} \right),$$

Enhanced Gilbert damping

Enhanced Gilbert damping

FIG. 3. (a) The FMR field, $H_{\rm FMR}$, and (b) FMR linewidth, ΔH , for the 16 ML Fe film as a function of the azimuthal angle φ at f=36 GHz. The solid lines correspond to the GaAs/16 Fe/20 Au structure, and the squares (\blacksquare) correspond to the GaAs/16 Fe/40 Au/40 Fe/20 Au structure. The integers represent the number of MLs.

Enhanced Gilbert damping

FIG. 4. (a) The dependence of the additional FMR linewidth, $\Delta H_{\rm add}$, along the Fe cubic axis on 1/d at f=36 GHz, where d is the thickness of the thin Fe films. (b) The FMR linewidth, ΔH , as a function of the microwave frequency f. The triangles (\triangle) correspond to the 16 ML Fe film in the single layer structure. The dots (\bullet) show the additional FMR linewidth, $\Delta H_{\rm add}$, for the 16 ML Fe film. The solid lines are linear fits to the data.

Enhanced Gilbert damping and torque

Enhanced Gilbert damping and torque

Urban et al, PRL (2003)

Enhanced Gilbert damping and torque

APPLIED PHYSICS LETTERS 88, 182509 (2006)

Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect

E. Saitoh, a) M. Ueda, and H. Miyajima

Department of Physics, Keio University, Yokohama 223-8522, Japan

G. Tatara

PRESTO, Japan Science and Technology Agency (JST), Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan

Mosendz, et al, PRL (2010)

TABLE I. Spin Hall angle γ determined using λ_{sd} and σ_N from data measured at 11 GHz.

Normal metal	λ_{sd} (nm)	$\sigma_{ m N}$ 1/(Ω m)	γ
Pt	10±2	$(2.4 \pm 0.2) \times 10^6$	0.013 ± 0.002
Pd	15 ± 4	$(4.0 \pm 0.2) \times 10^6$	0.0064 ± 0.001
Au	35 ± 3	$(2.52 \pm 0.13) \times 10^7$	0.0035 ± 0.0003
Mo	35 ± 3	$(4.66 \pm 0.23) \times 10^6$	-0.0005 ± 0.0001

休息10分钟

Outline

3. Spin transfer torque in MTJ

Magnetic tunnel junction (MTJ)

SST in MTJ for MRAM

Yuan, et al, APL (2004)

SST in MTJ for MRAM

Huai, et al, APL (2004)

SST in MTJ for MRAM

Fuchs, et al, APL (2004)

Measurement of STT in MTJ

KUBOTA, et al, Nature Physics (2008)

Measurement of STT in MTJ

Sankey, et al, Nature Physics (2008)

Outline |

4. Spin transfer torque in domain wall motion

Why domain wall

Racetrack Memory

Parkin, et al, Science (2008)

Why domain wall

Domain wall MTJ Low resistance C unneling barris Domain wall

Fukami et al., 52nd Conference on MMM (2007)

FM Metal

Yamaguchi, et al, PRL (2004)

FM Metal

A notch

Critical Current and velocity increase

Critical Current

Beach, et al, PRL (2006)

FM Semiconductor: GaMnAs

Yamaguchi, et al, Nature (2004)

FM Semiconductor: GaMnAs

FM Semiconductor: GaMnAs

Ryu, et al, Nature Nanotech (2013)

Emori, et al, Nature Materials (2013)

Yang, et al, Nature Nanotech (2015)

Yang, et al, Nature Nanotech (2015)

Parkin & Yang, et al, Nature Nanotech (2015)

Outline

5. Thermal spin transfer torque

Thermal Spin Injection

$$\tau \propto P\Delta V + P'S\Delta T$$

Outline |

6. Pure spin current transfer torque

Pure spin current

Spin polarized current

Pure spin current

Pure spin current

Spin Injector Spin Detector

Pure spin current

Pure spin current torque

Yang, et al, Nature Physics (2008)

Pure spin current torque

Pure spin current torque

Spin orbit torque

$$\tau_{ST} = \frac{\hbar}{2} \widehat{m} \times (\widehat{\sigma} \times \widehat{m})$$

Other ways for pure spin current

Spin Hall effect

D'yakonov, M. I. & Perel', J. Exp. Theor. Phys. Lett. 13, 467-469, (1971). Hirsch, J. E. Phys. Rev. Lett. 83, 1834-1837, (1999). Zhang, S. Phys. Rev. Lett. 85, 393-396, (2000).

Spin Hall torque

Liu, et al, Science (2012)

Other ways for pure spin current

- V. M. Edelstein, Solid State Commun. 73, 233 (1990)
- A. Manchon, et al, Nat. Mater. 14, 871 (2015)
- J. C. R. Sánchez, et al, Phys. Rev. Lett. 116, 096602 (2016)

Rashba field torque

Summary

- 1. Theory and observation of spin transfer torque
- 2. Spin transfer torque and spin pumping
- 3. Spin transfer torque in MTJ
- 4. Spin transfer torque in domain wall motion
- 5. Thermal spin transfer torque
- 6. Pure Spin current transfer torque

Summary

John Slonczewski

Luc Berger

下一节课: Nov. 17th

Chapter 5: Spin Orbit

Torque, spin Hall effect,

Rashba-Edelstein effect

课件下载:

http://www.phy.pku.edu.cn/~LabSpin/teaching.html

谢谢!