

PHYS 303 - Classical Mechanics of Particles and Waves II

Problem Set 2

Due: Thursday, September 12 at 5:00pm

Term: Fall 2024

Instructor: Andrew W. Jackura

Readings

Read sections 8.6–8.8 and 14.1–14.4 of Taylor.

Problems

Problem 1. [15 pts.] - Relative Coordinates

Two particles with masses m_1 and m_2 are located at \mathbf{r}_1 and \mathbf{r}_2 , respectively, with respect to some inertial frame \mathcal{O} . Define the relative position $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$ and the center-of-mass (CM) position $\mathbf{R} = (m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2)/M$, where and M is the total mass $M = m_1 + m_2$.

- (a) [5 pts.] Verify that the positions of two particles can be written in terms of the CM and relative positions as $\mathbf{r}_1 = \mathbf{R} + m_2 \mathbf{r}/M$ and $\mathbf{r}_2 = \mathbf{R} m_1 \mathbf{r}/M$. Hence, confirm that the total kinetic energy of the two particles can be expressed as $T = \frac{1}{2}M\dot{\mathbf{R}}^2 + \frac{1}{2}\mu\dot{\mathbf{r}}^2$, where μ denotes the reduced mass $\mu = m_1 m_2/M$.
- (b) [5 pts.] The momentum **p** conjugate to the relative position **r** is defined with components $p_i = \partial \mathcal{L}/\partial \dot{r}_i$ for i = 1, 2, 3 or x, y, z. Prove that $\mathbf{p} = \mu \dot{\mathbf{r}}$. Prove also that in the CM frame, **p** is the same as \mathbf{p}_1 the momentum of particle 1 (and also $-\mathbf{p}_2$).
- (c) [5 pts.] Show that in the CM frame, the angular momentum ℓ_1 of particle 1 is related to the total angular momentum \mathbf{L} by $\ell_1 = (m_2/M)\mathbf{L}$ and likewise $\ell_2 = (m_1/M)\mathbf{L}$. Since \mathbf{L} is conserved, this shows that the same is true of ℓ_1 and ℓ_2 separately in the CM frame.

Problem 2. [20 pts.] – Stability of Circular Orbits

Recall from lecture that the effective potential energy for a two-body system interacting via gravity is

$$U_{\rm eff}(r) = -\frac{GM\mu}{r} + \frac{\ell^2}{2\mu r^2} \,,$$

where M is the total mass and μ the relative mass. Let's work with a sun-planet system, so that M is approximately the mass of the sun and μ is approximately the mass of the planet.

- (a) [10 pts.] By examining the the effective potential energy, find the radius at which a planet with angular momentum ℓ can orbit the sun in a circular orbit with fixed radius. *Hint*: Look at dU_{eff}/dr .
- (b) [10 pts.] Show that this circular orbit is stable, in the sense that a small radial nudge will cause only small radial oscillations. Show that the period of oscillations is equal to the planet's orbital period. *Hint:* Look at d^2U_{eff}/dr^2 .

William & Mary Page 1 of 2 Department of Physics

Problem 3. [15 pts.] - Effective Potential Energy of a Spring Force

Two particles whose reduced mass is μ interact via a potential energy $U = \frac{1}{2}kr^2$, where r is the distance between them and k > 0 is the force constant.

- 1. [5 pts.] Make a sketch showing U(r), the centrifugal potential energy $U_{\rm eff}(r)$, and the effective potential energy $U_{\rm eff}(r)$. Treat the angular momentum ℓ as a known, non-zero constant.
- 2. [5 pts.] Find the equilibrium separation r_0 , that is the distance at which the two particles can circle each other with constant separation.
- 3. [5 pts.] Make a Taylor expansion of $U_{\text{eff}}(r)$ about the equilibrium point r_0 and neglect all terms $\mathcal{O}(\epsilon^3)$ where $\epsilon = r r_0$ is the deviation from equilibrium. Find the frequency for small oscillations about the circular orbit if the particles are disturbed a little from separation r_0 .

Problem 4. [25 pts.] – Two-Body Systems in a Uniform Gravity Field

Consider two masses m_1 and m_2 moving in a uniform gravitational field \mathbf{g} and interacting via a potential energy U(r).

- (a) [5 pts.] Show that the Lagrangian can be decomposed into a center-of-mass (CM) Lagrangian and a relative Lagrangian as $\mathcal{L} = \mathcal{L}_{\text{CM}} + \mathcal{L}_{\text{rel}}$.
- (b) [5 pts.] Write down the Euler-Lagrange equations for the three CM coordinates $\mathbf{R} = (X, Y, Z)$ and describe its motion. Take Z to be the vertical component.
- (c) [5 pts.] Write down the Euler-Lagrange equations for the relative coordinates \mathbf{r} and show clearly that the motion is the same as that of a single particle of mass equal to the reduced mass μ with position \mathbf{r} and potential energy U(r).
- (d) [10 pts.] Let the potential energy U(r) describe the force of a massless spring of natural length L and force constant k. Initially, m_2 is resting on a table and I am holding m_1 vertically above m_2 at a height L. At time $t = t_0 = 0$, I project m_1 vertically upward with initial velocity v_0 . Find the positions of the two masses at any subsequent time t (before either mass returns to the table) and describe the motion.

Problem 5. [25 pts.] – Logarithmic Spiral

The relative motion of a two-body system with reduced mass μ is that of a logarithmic spiral given by $r = ke^{\alpha\phi}$, where k and α are constants.

(a) [5 pts.] Find the central force law responsible for this relative motion in terms of k, α , μ , and the angular momentum ℓ . Hint: Recall that in cylindrical polar coordinates (r, φ) the equations of motion are

$$\mu r^2 \dot{\phi} = \ell$$
, $\mu \ddot{r} = \mu r \dot{\varphi}^2 - \frac{\partial U(r)}{\partial r}$,

where U(r) is the potential energy of the central force.

- (b) [10 pts.] Unlike inverse-square force laws, we can solve for the time dependence of both r and ϕ . If given that $\phi = 0$ at t = 0, determine $\phi(t)$ and r(t).
- (c) [10 pts.] Determine the total energy E of the orbit, assuming we define $U(r \to \infty) = 0$.