

Contents

ן ל

Discriminative Classifiers

Rule Based Classifiers

Learning Rules from Data

Rattle examples

Descriptive vs. Discriminative

Two Types of Classifier Paradigms

Descriptive Classifiers

Bayesian Classifiers Nearest Neighbor Parzen Window

Discriminative Classifiers

Decision Trees
Neural Networks,
Support Vector Machines

Two Types of Classifier Paradigms

Descriptive Classifiers

Discriminative Classifiers

IRIS – Descriptive Classifier

Class Density Function: $P(\mathbf{x}|c)$

IRIS – Discriminative Classifier

Class Discriminators: $\mathbf{w}^T \mathbf{x} < Q$

What is Discriminative "Classification"?

PARTITIONING the (FEATURE)
SPACE into PURE REGIONS
assigned to each CLASS

Partitioning Into Pure Region

Decision Boundary for IRIS Data

Decision Boundaries for DIGITS Data

SIMPLE Decision Boundary?

MEDIUM Decision Boundary

COMPLEX Decision Boundary

Model SIGNAL not NOISE

Model is too complex → MEMORIZE

Model is just right → GENERALIZE

Generalize, Don't Memorize!

Questions for Classification

What is the **NATURE** of classifier's **DECISION BOUNDARY**?

Depends on the classifier type!

What is the **COMPLEXITY** of classifier's **DECISION BOUNDARY**?

Any classifier can be made more or less complex!

How do I **CONTROL** the **COMPLEXITY** of the classifier?

What knob to use to make classifier more/less complex?

Questions for Classification

How do I know when the classifier is **COMPLEX ENOUGH**?

Degree of Noise vs. Structure in the data

Too noisy → Less complexity

How to pick the right **CLASSIFIER** to use?

Nature of the data - structured/unstructured, numeric/categorical

Complexity of the decision surface needed!

Rule Based Classifiers

Domain Knowledge Based

Fever Rules

If TEMP <= 98.6 → NORMAL

If 98.6 <= **TEMP <= 100.0** → **MILD**-

FEVER

If 100 <= **TEMP < 102.0** → **MEDIUM**-

FEVER

If TEMP > 104.0 → HIGH-FEVER

These can also be called "expert" systems.

HbA _{1c}	Mean Blood Glucose		
Test Score	mg/dL	mmol/L	
14.0	380	21.1	
13.0	350	19.3	
12.0	315	17.4	
11.0	280	15.6	
10.0	250	13.7	
9.0	215	11.9	
8.0	180	10.0	
7.0	150	8.2	
6.0	115	6.3	
5.0	80	4.7	
4.0	50	2.6	

Obesity Classifier

Source: https://commons.wikimedia.org/wiki/File:BMI_en.svg

Elements Classifier

103

Es

Hydrogen 3 Li Litium 11 Na Sodium	Be Beryllium 12 Mog Magnesium			STABLE half life more than one trillion years half life in range of billion years half life in range of million years half life in range of thousands of years half life in range of years half life in range of days half life in range of hours half life in range of minutes half life in range of seconds half life in range of milliseconds half life undetermined								5 B Boron 13 Al Aluminium	6 Carbon	7 N Nitrogen 15 P	8 Oxygen 16 S	9 F Fluorine	Helium 10 Ne Neon 18 Ar Argon
19 K Potassium	Ca Calcium	SC Scandium	22 Ti	23 V	Cr Chromium	25 Mn Manganese	Fe Iron	CO Cobalt	28 Ni Nickel	Cu Copper	Zn zinc	Gallium	Germanium	33 AS Arsenic	Selenium	35 Br Bromine	36 Kr Krypton
Rb Rubidium	38 Sr Strontium	39 Y	Zr Zr	Nb Niobium	42 Mo Molybdenium	TC Technetium	Rutenium	Rh Rh	46 Pd Palladium	47 Ag silver	48 Cd	49 In	Sn _{Tin}	Sb Antimony	Te Te	53 	Xe Xenon
55 CS Caesium	Ba _{Barium}	57 La Lanthanum	72 Hf	73 Ta	74 W Tungsten	75 Re	76 OS Osmium	77 r	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 Tl	Pb Lead	83 Bi	PO Polonium	85 At Astatine	Radon 86
87 Fr Francium	Ra Radium	89 AC Actinium	104 Rf Rutherfordium	Db Dubnium	106 Sg Seaborgium	Bh Bohrium	108 HS Hassium	109 Mt Meitnerium	110 DS Darmstadtium	Roentgenium	112 UUb Ununbium	113 UUt Ununtrium	114 UUq _{Ununquadium}	115 UUp Ununpentium	116 UUh Ununhexium	117 UUS Ununseptium	118 UUO Ununoctium
			58 Ce	59 Pr	Nd	Promethium	Sm	63 Eu	64 Gd	65 Tb	66 Dy Dysprosium	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	

94

Decision Trees Learning Rules From Data I

"Toy" Dataset Data is in Decision_Tree_Ex.csv

Problem Description:

Ponting Flower uses five features A, B, C, D, and E to describe flowers. For example, feature A corresponds to fragrance. Each feature can take two values, for example, delicate fragrance is labeled A1 and intense fragrance as A2. The values for features B, C, D and E are {B1, B2}, {C1, C2} ..., {E1, E2}. If a particular combination is liked by at least 35% of the customers then it is labeled as green, otherwise it is labeled as red. The file contains data for 111 flowers.

A	В	С	D	Е	COLOR
A1	B1	C2	D1	E2	GREEN
A2	B2	C2	D1	E1	RED
A2	B2	C1	D1	E1	GREEN
A1	B2	C1	D1	E2	GREEN
A1	B1	C2	D2	E2	GREEN
A2	B2	C2	D1	E1	RED

Process of Building a Decision Tree From Data

Ι

Partitioning and recursive partitioning

Purity measures

Idea is to compute the purity gain from partitioning

Entropy of a region can be calculated as: \sum -p(c) * log₂ (p(c)) where the summation is taken over all classes and p(c): Probability of a class in that region

The definition of purity is 1 – entropy (if binary classification)

Step 1: Calculate the entropy for the overall dataset

Step 2: Calculate the entropy for splitting using each attribute.

Step 3: Calculate the Purity Gain for splitting using each attribute using the previous formula.

An Algorithm

Step 4: Select the attribute with the highest Purity Gain and split the data on the basis of this attribute.

Step 5: Repeat Step 1 to Step 4 until all the data is classified

Sample Steps

Step 1: Calculate the entropy for the overall dataset:

Total Number of Observation: n (Total) = 110

Number of Observations with Green class: n (Green) = 89

Probability for Green Class: p (Green) = 89/110 = 0.8091

-p(Green) * Binary Logarithm (p(Green)) = -0.8091*-0.306= 0.2473

Number of Observations with Red class: n (Red) = 21

Probability for Red Class: p(Red) = 21/110 = 0.1909

-p(Red) * Binary Logarithm (p(Red)) = -0.1909*-2.3890=0.4561

Entropy (Overall Data) = 0.2473+0.4561 = 0.7034 (i.e., Entropy (0))

Step 2

Calculate Entropy for splitting using each attribute. Take for example, attribute A

We have two categorical values A1 and A2. So to calculate Entropy for attribute A [entropy(A,COLOR)] have to calculate Entropy of A1 and A2 on the basis of Color and then multiply it by the fraction of samples that have feature A1 and A2, labeled as p(A1) and p(A2).

Entropy (A, COLOR) =

 $p(A1)^*$ Entropy (A1, COLOR) + $p(A2)^*$ Entropy (A2, COLOR)

Entropy (A, COLOR) = 0.4545*0 + 0.5455*0.934068 = 0.509492

Purity Gain for Attribute A = Entropy (COLOR) – Entropy (A, COLOR)

Purity Gain (A, COLOR) = 0.7034 - 0.509492= 0.193878

Step 3:

Repeat for all attributes

	Entropy	Purity Gain
Overall	0.703369	
A	0.509492	0.193878
В	0.453166	0.250203
C	0.695062	0.008307
D	0.695654	0.007715
E	0.693644	0.009725

Split on B

Final Tree

What are the rules?

Controlling COMPLEXITY

Example of Overfitting

Pruning

Numeric Attributes

Decision Tree vs Clustering (Kmeans/Hclust)

) [

Decision trees are also used for clustering; observations in the same leave make a cluster.

The difference between decision tree and clustering techniques is that decision trees can be applied on labelled data only.

Thus, whenever target values (labels) are available, we should prefer decision trees to clustering methods(unsupervised).

Type of Decision Tree

][

Classification Tree – when target value is a class Regression Tree – When target value is numeric

We will discuss examples of both in Rattle

Classification Tree – Toy Example

Objective – To classify flowers as liked by at least 35% vs not liked (Green vs. Red).

	- [Rattle (Decision_Iree	_EX.CSV)]						
Project Tools Execute N	Settings Help ew Open Save	Export	Stop	Quit		U	Rattle Version 5	.2.0 <u>togawa</u>
Data Explore T	est Transform Cluster	Associate	Model Ev	aluate Log				
Source: Fil	e O ARFF O ODBC	○ R Data	set O R	Data File	Library (Corpus (○ Script	
Filename (A) De	sision Tree Ev.		Decimal:	. 🗸 Hea	der			
Filename: 4 De	ecision_Tree_Ex 🛅 Se	eparator: ,	Decimal:	. M Hea	ider			
☑ Partition	70/15/15 Seed: 42	2	View	Edit				
Partition	70/15/15 Seed: 42		View	Targ	get Data Type	_) Numeric 🔘 S	urvival
	According to the second		View	Targ		_	Numeric O S	urvival
nput	Ignore Weight Calculat	or:		Targ	Auto O	Categoric C		urvival
Input No. Variable	Ignore Weight Calculat	or:	Risk	Targ	Auto ()	Categoric C	Comment	urvival
Input No. Variable 1 A	Ignore Weight Calculat Data Type Input Categoric	Target	Risk	Ident	lgnore	Weight	Comment Unique: 2	urvival
No. Variable 1 A 2 B	Ignore Weight Calculat Data Type Input Categoric Categoric	Target	Risk	Ident	Ignore	Weight	Comment Unique: 2 Unique: 2	urvival
No. Variable 1 A 2 B 3 C	Ignore Weight Calculat Data Type Input Categoric Categoric Categoric	Target	Risk O	Ident	Ignore	Weight	Comment Unique: 2 Unique: 2 Unique: 2	urvival

Running Decision Tree

Complexity Table

Root node error: 11/77 = 0.14286

$$n = 77$$

	СР	Nsplit	Rel error	Xerror	Xstd
1	0.27273	0	1.0000	1.0000	0.27915
2	0.22727	2	0.4545	0.90909	0.26816
3	0.00001	4	0.0000	0.18182	0.12688

Classification Rules – Post Model-fitting

Data Explore	Test Transfo	orm Cluster Associate	Model Evalu	iate Log		
Type: Tree	O Forest (Boost O SVM O	Linear (Ne	ural Net O Surviv	al O All	
Target: COLOR	Algorithm:	● Traditional ○ Co	nditional			Model Builder: rpart
Min Split:	5	Max Depth:	4	Priors:		☐ Include Missin
Min Bucket:	2	Complexity:	0.0000	Loss Matrix:		Rules Draw
Rattle times	stamp: 2020	-03-16 20:09:35 as	his			
Tree as rule	es:				====	
Rule number B=B2 A=A2 E=E2	r: 15 [COLO	R=RED cover=8 (10%) prob=1.00]			
Rule number B=B2 A=A2 E=E1 C=C2	r: 29 [COLO	R=RED cover=3 (4%)	prob=1.00]			
Rule number B=B2 A=A2 E=E1 C=C1	r: 28 [COLO	R=GREEN cover=5 (6	%) prob=0.00	1		
Rule number B=B2 A=A1	r: 6 [COLOR	=GREEN cover=17 (2	2%) prob=0.0	0]		
Rule number B=B1	r: 2 [COLOR	=GREEN cover=44 (5	7%) prob=0.0	0]		
[1] 9 8 5 6	3 1 7 4 2					
	_	-03-16 20:09:36 as				

Classification Tree – Tree

Tuning Parameters

Method

Minsplit – minimum observations that must exist at a node before it is split

Minbucketsize – minimum number of observations at a leaf node

Max_Depth – maximum depth of the tree

CP - controls the complexity of the tree

Classification Tree – Stop at Depth = 2

d	
	Data Explore Test Transform Cluster Associate Model Evaluate Log
).	Type: Risk Cost Curve Hand Lift ROC Precise
	Model: ✓ Tree ☐ Boost ☐ Forest ☐ SVM ☐ Linear ☐ Neural Net ☐ Survival ☐
	Data: O Training Validation O Testing O Full O Enter O CSV File
ì	Risk Variable: Report: ⊙
	Error matrix for the Decision Tree model on Decision_Tree_Ex.csv [validate] (co
	Predicted Actual GREEN RED Error GREEN 11 0 0 RED 0 5 0
	Error matrix for the Decision Tree model on Decision_Tree_Ex.csv [validate] (pr
7	Predicted Actual GREEN RED Error GREEN 68.8 0.0 0 RED 0.0 31.2 0
	Overall error: 0%, Averaged class error: 0%
	Rattle timestamp: 2020-04-11 11:19:31 sridhar

What If the Target Variable is Numeric Instead of a Class Category?

Whenever, the target variable is numeric, we use Regression Tree in place of Classification Tree.

We discuss an example of Regression Tree for predicting the price of used cars on the Toyota dataset.

Objective – Predict the price of used car based on the its characteristics

Variable	Description		
Price	Offer price in euros		
Age	Age in months as of August 2004		
Kilometers	Accumulated kilometers on odometer		
Fuel type	Fuel type (Petrol, Diesel, CNG)		
Horse Power	Horsepower		
Metallic	Metallic color? (Yes = 1 , No = 0)		
Automatic	Automatic (Yes = 1 , No = 0)		
CC	Cylinder volume in cubic centimeters		
Doors	Number of doors		
Weight	Weight in kilograms		

Top five rows

Price	Age	KM	FuelType	HP	MetColor	Automatic	CC	Doors	Weight
13500	23	46986	Diesel	90	1	0	2000	3	1165
13750	23	72937	Diesel	90			2000	3	1165
13950	24	41711	Diesel	90	1	0	2000	3	1165
14950	26	48000	Diesel	90	0	0	2000	3	1165
13750	30	38500	Diesel	90	0	0	2000	3	1170

Regression Tree to Predict the "Price" of Used Car

Source: Rattle GUI / Togaware;

Download data from https://www.biz.uiowa.edu/faculty/jledolter/datamining/datatext.html

Regression Tree – Rules (Post Model-Fitting)

(R)			R Data Mir	ner - [Rattle (Toyota.csv)]		
<u>P</u> roject <u>T</u> ools <u>S</u> e	ettings <u>H</u> elp						Rattle Versio
Execute New	Open Save						
Data Explore Test	Transform Cluster As	sociate Model Evaluate Log					
Type: Tree	Forest Boost SV	M O Linear O Neural Net O Survi	val 🔾 All				
Target: Price Algo	rithm: Traditional) Conditional					Model Build
Min Split:	20	Max Depth:	3	Priors:			☐ Include Missi
Min Bucket:	7	Complexity:	0.0100	Loss Matrix:			Rules
Rattle timesta	mp: 2020-04-11 11:	:35:23 sridhar					
Tree as rules:							
Rule number: Age>=32.5 Age>=56.5 Age< 68.5	9 [Price=9338.4013	36054422 cover=441 (31%)]					
Rule number: Age>=32.5 Age>=56.5 Age>=68.5	8 [Price=7925.5688	87755102 cover=392 (27%)]					
Rule number: Age>=32.5 Age< 56.5 Age>=44.5	10 [Price=10728.46	4 cover=225 (16%)]					
Rule number: Age>=32.5 Age< 56.5 Age< 44.5	11 [Price=12274.9]	739583333 cover=192 (13%)]					
Rule number: Age< 32.5 Weight< 127	12 [Price=16842.98	8 cover=100 (7%)]					
Weight< 112						Source: Ra	attle GUI / Toga

Regression Tree

Decision Tree Toyota.csv \$ Price

Rattle 2020-Apr-11 11:38:07 sridhar

Regression Tree – Evaluation (Post Model-fitting): Predicted Price

We kept 100% data for training

Predicted price

Predicted vs Observed

Rattle 2020-Apr-11 11:52:47 sridhar

From Trees to Forest

][

- Randomly select data
- Randomly select variables on which to split
- Grow many trees
- Use a "ensemble" approach to predict
- Robust and improves predictability

Random Forest Application Example

Very simple options:

Number of Trees

Variables to select at split

Compare With the Decision Tree

Predicted vs. Observed Random Forest Model Toyota.csv [**train**]

Price Rattle 2020-Apr-11 11:57:58 sridhar

```
variables: 3

    Impute

 Summary of the Random Forest Model
 _____
 Number of observations used to build the model:
Missing value imputation is active.
 Call:
  randomForest(formula = Price ~ .,
              data = crs$dataset[, c(crs$input,
              ntree = 500, mtry = 3, importance :
               Type of random forest: regression
                     Number of trees: 500
 No. of variables tried at each split: 3
           Mean of squared residuals: 1184371
                    % Var explained: 90.99
 Variable Importance
           %IncMSE IncNodePurity
             69.67
 Age
                     6031088243
 Weight
            29.87
                    1622266817
             26.00
                     2373253314
 ΗP
            21.08
                      689671295
            20.36
                      386400930
            14.06
 Doors
                      93706341
 FuelType
            7.26
                      110407155
             6.74
Automatic
                      18151149
 MetColor
             4.07
                       49019327
 Time taken: 1.44 secs
 Rattle timestamp: 2020-04-11 11:56:10 sridhar
```

Decision trees are intuitive

Overfitting and variable selection issues

Greedy method and does not question whether the improvement is statistically significant

Summary

Predictive power might be poor

Conditional tree

Random Forest

Further Readings

) [

Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, & C.J. (1984). *Classification and Regression Trees*. Taylor and Francis.

Buhlmann, P. (2010) <u>Remembrance of Leo Breiman</u>. The *Annals of Applied Statistics*, 4(4).

Exercise - Part 1

Source- DAAG package library R
Original source - http://archive.ics.uci.edu/ml/machine-learning-databases/spambase/

Use Classification Tree to make a Spam Filter

1) Make a spam filter on the data from **spam.csv** file. Here are variable descriptions

crl.tot total length of words in capitals
dollar number of occurrences of the \\$ symbol
bang number of occurrences of the ! symbol
money number of occurrences of the word 'money'
n000 number of occurrences of the string '000'
make number of occurrences of the word 'make'
yesno outcome variable, a factor with levels n not spam, y spam

Hint – Run a model with the default values in Rattle and note the training and validation error rates. Then change one of Min Split, Max Depth, Min Bucket, Complexity at a time, keeping other three constants and notice the changes in the training and validation error rates.

Source: Rattle GUI / Togaware Note: The data is available as spam7 in R. We have saved to a file so that it can be read in Rattle.

Exercise – Part 2

2) Briefly discuss how each of these four values (min split, max. depth, min bucket, and complexity) affect bias and variance. For example, what does increasing min split value do to the bias and variance of the

trained model?

@			R Data Miner - [Ra			
<u>P</u> roject <u>T</u> ools <u>S</u> etti	ngs <u>H</u> elp					
Execute New		Export Stop Quit				
Data Explore Test	Transform Cluster As	sociate Model Evaluate Log				
Type: Tree Fo	Type: Tree Forest Boost SVM Linear Neural Net Survival All					
Target: vesno Algori	thm: Traditional (Conditional				
Min Split:	20	Max Depth:	3			
Min Bucket:	7	Complexity:	0.0100			
Summary of the	Decision Tree m	odel for Classification (N	ouilt using 'rpart'):			

crl.tot total length of words in capitals

dollar number of occurrences of the \\$ symbol

bang number of occurrences of the ! symbol

money number of occurrences of the word 'money'

n000 number of occurrences of the string '000'

make number of occurrences of the word 'make'

yesno outcome variable, a factor with levels n not spam, y spam

Hint – Run a model with the default values in Rattle and note the training and validation error rates. Then change one of these four at a time, keeping other three constants and notice the changes in the training and validation error rates.

References

"BMI Graph" by Bibi Saint-Pol is licensed under CC BY 3.0

Ledolter, J. (n.d.) <u>Data Mining:</u>
<u>ToyotaCorolla.csv</u>. Retrieved May 22, 2019 from University of Iowa.

Rattle GUI / Togaware (https://rattle.togaware.com/)