(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年8 月15 日 (15.08.2002)

PCT

(10) 国際公開番号 WO 02/062829 A1

(51) 国際特許分類⁷: C07K 5/062, 5/065, 5/078, 14/745, G01N 33/15, 33/68, G06F 17/50

(21) 国際出願番号: PCT/JP02/00883

(22) 国際出願日: 2002年2月4日(04.02.2002)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2001-27474 2001年2月2日(02.02.2001) JP

(71) 出願人 (米国を除く全ての指定国について): 中 外製薬株式会社 (CHUGAI SEIYAKU KABUSHIKI KAISHA) [JP/JP]; 〒115-8543 東京都 北区 浮間 5 丁 目 5 番 1 号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 白石 拓也 (SHIRAISHI,Takuya) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門 1 丁目 1 3 5 番地 中外製薬株式会社内 Shizuoka (JP). 門野 正次郎 (KADONO,Shojiro) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門 1 丁目 1 3 5 番地 中外製薬株式会社内 Shizuoka (JP). 原村昌幸 (HARAMURA,Masayuki) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門 1 丁目 1 3 5 番地 中外製薬株式会社内 Shizuoka (JP). 佐藤 晴彦 (SATO,Haruhiko) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門 1 丁目 1 3 5 番地 中外製薬株式会社内 Shizuoka (JP). 小園敏郎 (KOZONO,Toshiro) [JP/JP]; 〒412-8513 静岡県御殿場市 駒門 1 丁目 1 3 5 番地 中外製薬株式会社

内 Shizuoka (JP). 古賀 隆樹 (KOGA,Takaki) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門 1 丁目 1 3 5 番地 中外製薬株式会社内 Shizuoka (JP). 坂本 昭久(SAKAMOTO,Akihisa) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門 1 丁目 1 3 5 番地 中外製薬株式会社内 Shizuoka (JP).

- (74) 代理人: 社本 一夫 , 外(SHAMOTO,Ichio et al.); 〒 100-0004 東京都 千代田区 大手町二丁目 2 番 1 号 新大手町ビル 2 O 6 区 ユアサハラ法律特許事務所 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

─ 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: PEPTIDE DERIVATIVES

(54) 発明の名称: ペプチド誘導体

(57) Abstract: Compounds represented by the following general formula (1): (1) wherein R_1 represents amidinophenyl, etc.; R_2 represents hydrogen, etc.; R_3 represents carbamoylalkyl, etc.; R_4 represents hydrogen, etc.; R_5 represents benzyl, etc.; R_6 represents hydrogen, etc.; and R_7 represents alkylsulfonyl, etc. Crystals of a complex of VIIa

factor/human soluble tissue factor with a low-molecular weight reversible VIIa factor inhibitor. A medium carrying the whole or a part of the coordinate data of the stereostructure of the complex of human VIIa factor/human soluble tissue factor with a low-molecular weight reversible VIIa factor inhibitor obtained by X-ray crystal structure analysis of the above crystals recorded thereon. A method of designing a low-molecular weight reversible VIIa factor inhibitor by using the above data.

(57) 要約:

一般式(1)

(式中、 R_1 は、Tミジノフェニル基など、 R_2 は、水素原子など、 R_3 は、カルバモイルアルキル基など、 R_4 は、水素原子など、 R_5 は、ベンジル基など、 R_6 は、水素原子など、 R_7 は、Tルキルスルホニル基など、を表す。)で示される化合物。VIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の結晶。当該結晶をX線結晶構造解析することにより得られるヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の立体構造の座標データの全部又は一部を記録した媒体。前記データを利用してコンピュータ上で低分子可逆的VIIa因子阻害剤をデザインする方法。

明 細 書 ペプチド誘導体

技術分野

5 本発明は、血液凝固 V I I a 因子に対して阻害活性を有するペプチド誘導体に 関する。

背景技術

10

15

20

25

血液凝固反応は、血管損傷や異物刺激に応答して惹起される生体防御反応である。血液凝固反応には、血漿中の12種のタンパク質性の凝固因子、それにカルシウムイオン、組織因子、リン脂質(血小板由来)を加えて15種の因子が関与している。この反応は、損傷部位で凝集する血小板や損傷内皮細胞の膜上で、プロテアーゼの活性化の連鎖反応が次々に起こるカスケード機構からなる。

血液凝固カスケードは、内因系と外因系に分けられる。血液凝固が起こる際に、 組織中の組織因子の関与がある場合を外因系血液凝固とよび、関与のない場合を 内因系の血液凝固とよぶ。

内因系の血液凝固は、血漿中の血液凝固XII因子が陰性荷電を有する固相などの表面に接触することによって始まる。XII因子は表面に吸着されると限定分解され活性型プロテアーゼである活性化XII因子(XIIa)になる。XIIaはXI因子を限定分解して、活性型プロテアーゼである活性化XI因子(XIa)にする。このようなプロテアーゼの活性化が次々に起こって、最終的に生成したトロンビンが、フィブリノーゲンを限定分解してフィブリンにして血液凝固が終了する。XI因子の活性化以降の反応では、複数の凝固因子が複合体を形成することにより、止血局所への凝固因子の濃縮と、効率の高い活性化反応が進行する。即ち、リン脂質、VIIIa因子、IXa因子、X因子、Ca²+からなるテンナーゼ複合体、さらにリン脂質、Va因子、Xa因子、プロトロンビン、Ca²+からなるプロトロンビナーゼ複合体が形成され、プロトロンビンの活性化反応を著しく促進する。

外因系の血液凝固は、VIIa因子が組織因子と複合体を形成することにより

開始する。このVIIaと組織因子の複合体は、X因子、およびIX因子を活性化する段階で内因系と合流する。

病態時の凝固亢進や生理的凝固においては、一般に、外因系の血液凝固が重要であるといわれている。

5 抗凝固薬としては、ヘパリンなどのトロンビン阻害剤や、ワーファリンなどが知られている。しかし、トロンビン阻害剤は、血液凝固カスケードの下流に作用するため、過剰の凝固抑制が起こるとトロンビン生成に至る凝固因子の消費を抑制しないので、臨床では出血傾向があることが問題となっている。また、ワーファリンは、多くの血液凝固因子の産生を阻害するため、臨床においては、トロンビン阻害剤と同様、出血傾向があることが問題となっている。

VIIa因子は、前述のように外因系経路の上流に位置するため、VIIa因子に対する阻害剤は、内因系凝固の経路の機能を残すことができる、即ち、出血に対する抵抗性を残すことができると考えられる。このことから、VIIa因子阻害剤は、既存の抗凝固薬の副作用である出血傾向を軽減することが期待される。したがって、VIIa因子阻害剤は、外因系の凝固反応が関与する病態の予防または治療、例えば、慢性の血栓症(さらに具体的には、術後深部静脈血栓症、PTCA後の再狭窄、DIC(播種性血管内凝固症候群:disseminated intravascular coagulation)、心由来血栓塞栓、心筋梗塞、脳梗塞)などの予防または治療に有用であることが期待される。

15

20

25

これまで、VIIa因子阻害剤として、いくつかの化合物が報告されている (WO00/41531号公報、 WO00/35886号公報、 WO99/4 1231号公報、 EP921116A号公開公報、WO00/15658号公報、WO00/30646号公報、WO00/58346号公報など)。

しかし、これらは、いずれもVIIa因子に対する阻害活性、または、外因系 血液凝固に対する選択的な阻害活性において十分とはいえず、さらに優れた前記 阻害活性または選択的な阻害活性を有する薬剤の創製が望まれる。

最近の酵素阻害薬研究においては、X線結晶構造解析等に基づく酵素の三次元 モデルをコンピュータを用いて画面上に表示し、阻害作用を有すると考えられる 化合物を考案したり、あるいはコンピュータ上で仮想スクリーニングをするなど

の手法が活用されている。VIIa因子(以下、「FVIIa」とも称す。)についても、単独の形や可溶型組織因子との複合体(以下、VIIa因子と可溶型組織因子との複合体を「VIIa因子/可溶型組織因子」、または「FVIIa /sTF」とも称す。)、および蛋白質阻害剤との複合体の形で立体構造がX線構造解析により決定されている(Nature 380巻、41-46、1996年; J. Mol. Biol 285巻、2089-2104、1999年; Proc Natl Acad Sci U S A. 96巻、8925-8930; J Struct Biol. 127巻、213-223、1999年; Nature 404巻、465-470、2000年)。

5

10

15

20

25

しかしながら、現状のコンピュータによる仮想的なドッキングの予測は完全で はなく(Guidebook on Molecular Modeling Drug Design、129-133、1996年、 ACADEMIC PRESS)、また、阻害剤の結合により誘導適合と呼ばれる酵素側の 構造変化もしばしば見られることから(Guidebook on Molecular Modeling Drug Design、133-134、1996年、ACADEMIC PRESS)、コンピュータを使って阻害 剤をデザインするにあたっては、個々の阻害剤もしくはこれらと構造的に類似し た阻害剤について酵素との複合体の形でX線構造解析を行い、その結合様式の詳 細を原子レベルで解明することが最も望ましい。しかし、これまで報告されたV II a 因子を含む結晶ではいずれも阻害剤の結合サイトとなりうる活性部位に不 可逆的阻害剤や蛋白質阻害剤が占めており、低分子、例えば分子量1000以下の 可逆的阻害剤との複合体のX線結晶構造解析には使用できない。一般に蛋白質の 結晶化にあたっては高い純度が必要だが、このような高純度の蛋白を精製するに あたっては混在するプロテアーゼによる分解が問題となることが多い (Crystallization of Nucleic Acids and Proteins A practical Approach, 34, 1992年、IRL PRESS)。特にVIIa因子のようなプロテアーゼの精製および結 晶化にあたっては自分自身による自己分解が問題となる。このため精製および結 晶化の際に不可逆的阻害剤が使われるケースが見られる。不可逆的阻害剤は一度 結合すると離れることがなく、精製や結晶化中の自己分解を完全に避けることが できるためである。しかしながら、低分子の可逆的阻害剤との複合体の結晶化の 場合には、自己分解が完全に抑えられる保証は無く、技術的困難を伴う。実際、 VIIa因子と低分子可逆的VIIa因子阻害剤との複合体の結晶ならびにその 立体構造についてこれまでに報告された例はない。

発明の開示

本発明の目的は、血液凝固VIIa因子に対する阻害活性を有し、または、外因系血液凝固に対する選択的阻害作用に優れた、医薬として有用なペプチド誘導体を提供することである。

5 さらに、本発明の目的は、VIIa因子/可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の立体構造解明のため、X線結晶解析に用いることができる結晶を提供すること、およびその結晶を作製する方法を提供することである。また、該複合体結晶の立体構造情報を用いてVIIa因子に対して優れた特異的または選択的阻害活性を有する新たな低分子可逆的VIIa因子阻害剤をデザインする方法、及びその方法によりデザインされた低分子可逆的VIIa因子阻害剤を提供することも目的とする。

本発明者らは、鋭意研究を重ねた結果、一般式(1)によって示されるペプチド誘導体が、VIIa因子に対する阻害活性を有し、または、外因系血液凝固に 選択的な阻害作用を示し得ることを見出し、本発明を完成するに至った。

15 すなわち、本発明は、一般式(1)

(式中、

20 R₁は、下記式:

から選択される基

(上記式中、R₈は、アミノ基、アミノメチル基、または、

5

、を表す。

R₉は、水素原子、アミノ基、水酸基、アシル基、アルキル部分が置換基を有 10 していてもよい炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキルであるアルコキ キシカルボニル基を表す。 R₁₀は、アミノ基を表す。 X、Yは、いずれか一方 が=CH-を表し、他方が=N-を表す。)を表す。

 R_2 は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基を表す。

15 R₃は、

、または

・-(CH_2) $_m$ - R_{11} 、を表す。 ここで、mは、 $1\sim6$ の整数を表す。 R_{11} は、

 $5 - CONH_2$

(ここで、 R_{12} は、水素原子または炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のア 10 ルキル基を表す。)、または、

、を表す。

15 R_4 は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基を表す。

R₅は、炭素数1~6の直鎖もしくは分枝鎖状のアルキル基、または、

 $-CH_2-R_{13}$ (ここで、 R_{13} は、置換基を有していてもよいアリール基、または、置換基を有していてもよい複素環基を表す。)

20 を表す。

 R_6 は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基を表す。

 R_7 は、置換基を有していてもよい炭素数 $1 \sim 6$ の直鎖もしくは分枝鎖状のアルキル基、または、 $-SO_2 - R_{14}$ (ここで、 R_{14} は、置換基を有していてもよい炭素数 $1 \sim 8$ の直鎖もしくは分枝鎖状のアルキル基を表す。)を表す。)で示される化合物、その互変異性体、光学異性体、またはこれらの水和物もしくは薬学的に許容し得る塩を提供するものである。

また、本発明は、一般式(1)で示される化合物を含有する医薬組成物を提供する。さらに、本発明は、上記化合物を含有する抗血栓剤を提供する。また、本発明は、上記化合物を含有する血液凝固VIIa因子阻害剤を提供する。

また、本発明は、ヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VI Ia因子阻害剤との複合体の結晶を提供する。また、低分子可逆的VIIa因子 阻害剤が一般式(1)(式中の置換基の定義は、前記におけると同じ意味を表 す。)で示される化合物である前記複合体の結晶も提供する。

5

10

25

さらに、本発明は、以下の工程(i)~(iii)を含む、ヒトVIIa因子 /ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の結晶を製 造する方法を提供する:

- (i)低分子可逆的VIIa因子阻害剤との結晶化が可能なヒトVIIa因子/ヒト可溶型組織因子を調製する工程、
- (ii) 低分子可逆的VIIa因子阻害剤を加え、結晶化用濃縮試料を調製する工程、
- 15 (iii)低分子不可逆的VIIa因子阻害剤又は低分子可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶を種として添加し、(ii)で得られた結晶化用濃縮試料からヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の結晶を得る工程。さらに、低分子可逆的VIIa因子阻害剤が一般式(1)(式中の置換基の定義は、前記におけると同じ意味を表す。)で示される化合物である、前記複合体製造方法も提供する。

また、本発明は、前記のヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の結晶をX線結晶構造解析することにより得られるヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の立体構造の座標データの全部又は一部を記録した媒体を提供する。

さらに前記座標データを利用してコンピュータ上で低分子可逆的VIIa因子 阻害剤をデザインする方法を提供する。また、デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のAsp60側鎖、Tyr94側鎖及びThr98 主鎖の少なくとも一つと相互作用する置換基を有する低分子可逆的VIIa因子

阻害剤である、前記デザイン方法を提供する。また、デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のLys192側鎖と相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、前記デザイン方法も提供する。デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のVal170E、Gly170F、Asp170G、Ser170H、Pro170IおよびGln217の少なくとも一つと相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、前記デザイン方法も提供する。また、デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のS4サイトからS4サブサイトに通じる孔を通してS4サブサイトと相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、前記デザイン方法も提供する。

さらに、上記デザイン方法によりデザインされた低分子可逆的VIIa因子阻害剤を提供する。また、ヒトVIIa因子のS2サイトと相互作用する部分構造として下記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有する、前記低分子可逆的VIIa因子阻害剤も提供する。

15 [A-1]群:

5

10

$$H_2N$$
 H_2N
 X_1
 X_2
 X_3
 X_4
 X_2
 X_3

(ここで、 X_1 は、OまたはNHを示し、 X_2 は、水素原子またはメチル基を示す。)

20 [A-2]群:

$$\frac{2}{2}$$
 -----R₂₃ --- NH₂

(ここで、 R_{23} は、ヘテロ原子を有する芳香族6員環、5員環を示す。)

さらに、ヒトVIIa因子のS1サブサイトと相互作用する部分構造として下 記群 [B-1] 、 [B-2] 、 [B-3] または [B-4] 中に示される部分構造のいずれ 25 かを含有する、前記低分子可逆的VIIa因子阻害剤も提供する。

[B-1]群:

[B-2]群:

[B-3]群:

5

$$\xi - R_{25} - R_{24}$$
 $\xi - R_{25}$

(ここで、 R_{24} は、 [B-2] 群と同一である。 R_{25} は、ヘテロ原子を有する芳香族6 10 員環、5員環を示す。)

[B-4]群:

(ここで、 R_{27} は、炭素数 $1\sim3$ のアルキレン基を示す。 R_{24} は、 [B-2] 群と同 一である。 R_{26} は、 [B-3] 群と同一である。)

また、ヒトVIIa因子のS4サイトと相互作用する部分構造として下記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有する、前記低分

子可逆的VIIa因子阻害剤も提供する。

[C-1]群:

(ここで、 X_3 は、O、NH、または CH_2 であり、 R_{28} は、ヘテロ原子を有する芳香 族6員環もしくは5員環を示す。)

[C-2]群:

$$X_{10}$$
 X_{10} X_{10} X_{10} X_{10} X_{10}

(ここで、 X_4 は、NH、S、またはOを示す。 X_5 、 X_6 、 X_7 、 X_8 、 X_9 、 X_{10} は、独立して、NまたはCHを示す。)

10 さらに、ヒトVIIa因子のS2サイトと相互作用する部分構造として上記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有し、かつ、S1サブサイトと相互作用する部分構造として上記群 [B-1]、 [B-2]、 [B-3] または [B-4] 中に示される部分構造のいずれかを含有し、かつ、S4サイトと相互作用する部分構造として上記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有する、低分子可逆的VIIa因子阻害剤である。

図面の簡単な説明

図1は、ヒトVIIa因子と化合物(1)との結合部分の立体構造を示す図である。

20図2は、ヒトVIIa因子と化合物(1)との結合部分の模式図である。図3は、D-Phe-Phe-Arg-cmk結合時のヒトVIIa因子のS

4サイト部分の様子(左)および化合物(1)結合時のヒトVIIa因子のS4 サイト部分の様子(右)を示す図である。

発明を実施するための最良の形態

5 一般式(1)で示される化合物の定義において、

R₁における、基

としては、

10 が好ましい。

ここで、R₈としては、

が好ましい。

上記R。における、基

15

20

の R_9 の定義中のアシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、カプロイル基、フェニルアセチル基などのアルキルカルボニル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基などのアルケニルカルボニル基、ベンゾイル基などのアリールカルボニル基などが挙げられ、アルキル部分が炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキルカルボニル基が好ましく、なかでも、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、イソバレリル基が好ましい。

上記R。における、基

5

10

15

20

のR₉の定義中の、アルキル部分が置換基を有していてもよい炭素数1~6直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基としては、アルキル部分が置換基を有していてもよい炭素数1~4直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基が好ましく(ここで、置換基としては、フェニル基などが挙げられる。)、なかでも、メトキシカルボニル基、エトキシカルボニル基、 t - ブトキシカルボニル基、ベンジルオキシカルボニル基が好ましい。

なお、本発明において、「置換基を有していてもよい」という場合、あるいは、 複数個の置換が可能な場合は、全て1個もしくは2個以上の置換基で置換されて いてもよいことを意味する。

上記R₈における、基

のR₉としては、水素原子、アミノ基、水酸基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、イソバレリル基、メトキシカルボニル基、エトキシカルボニル基、 t ーブトキシカルボニル基、ベンジルオキシカルボニル基が好ましい。

R₁における、基

$$R_{10}$$

としては、

が好ましい。

R₁における、基

としては、

が好ましい。

R₁における、基

としては、

5

10

15

が好ましい。

R1における、基

としては、

が好ましい。

R₁における、基

$$\frac{1}{\mathbb{I}} \bigvee^{\mathsf{NH}_2}$$

としては、

が好ましい。

R1における、基

としては、

が好ましい。

5

 R_2 における炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基としては、炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル基が好ましく、なかでも、メチル基が好ましい。

10 R₃における基

としては、

が好ましい。

15 R₃における基

 $-(CH_2)_m-R_{11}$ のmとしては、 $1\sim3$ の整数が好ましく、特に2であることが好ましい。

R₃における基

- (CH_2) $_m$ - R_{11} の R_{11} としては、 $-CONH_2$ 、

が好ましい。ここで、 R_{12} としては、水素原子または炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基であり、特にメチル基が好ましい。

 R_4 における、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基としては、 炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル基が好ましく、メチル基が特に 好ましい。

 R_5 における、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基としては、 炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基が好ましい。

 R_5 における、基 $-CH_2-R_{13}$ の R_{13} における、

置換基を有していてもよいアリール基としては、

5

10

15

20

(ここで、R₁₅としては、水素原子、置換基を有していてもよいアリール基(ここで、アリール基としてはフェニル基、ナフチル基などが挙げられ、フェニル基が好ましい。また、置換基としては、炭素数1~3の直鎖もしくは分枝鎖状のアルコキシ基、ハロゲン原子で置換されていてもよい炭素数1~3の直鎖もしくは分枝鎖状のアルキル基、ニトロ基、アミノ基などが挙げられる)、ハロゲン原子で置換されていてもよい炭素数1~3の直鎖もしくは分枝鎖状のアルコキシ基、ハロゲン原子、アリールカルボニル基(ここでアリール基としてはフェニル基、ナフチル基などが挙げられ、フェニル基が好ましい。)、アルキル部分が炭素数1~3の直鎖もしくは分枝鎖状のアルキル基であるアルキルカルボニル基、ニトロ基、または、アミノ基、が好ましく、なかでも、水素原子、tーブチル基、メトキシ基、臭素原子、塩素原子、ベンゾイル基、または、メトキシ基もしくはトリフルオロメチル基もしくはニトロ基もしくはアミノ基で置換されていてもよいフェニル基が好ましい)、および、

25 (ここで、 R_{16} としては、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基が好ましく、特に好ましくは水素原子である。)、が好ましい。

 R_5 における、基 $-CH_2-R_{13}$ の R_{13} における、置換基を有していてもよい複素環基の複素環には、環構成原子として少なくとも1つの窒素原子、酸素原子、および/または硫黄原子を含む $5\sim1$ 0員の単環もしくは縮合環が含まれ、例えば、フラン、チオフェン、ピラン、ピロール、ピリジン、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾピラン、ベンゾチオピランなどが挙げられる。置換基を有していてもよい複素環基の置換基としては、例えば、下記の R_{17} 、 R_{10} に例示される基などが挙げられる。

 R_5 における、基 $-CH_2-R_{13}$ の R_{13} における、置換基を有していてもよい複素環基としては、

5

10

15

20

25

が好ましい。ここで、

 R_{17} としては、水素原子;水酸基;炭素数 $1 \sim 6$ の直鎖もしくは分枝鎖状のアルキル基;炭素数 $1 \sim 6$ の直鎖もしくは分枝鎖状のアルコキシ基; $-O-(CH_2)_n-OH(CCTC,n$ は $1 \sim 5$ の整数を表す。); $-O-(CH_2)_n-COOH(CCTC,p$ は $1 \sim 5$ の整数を表す。); $-O-(CH_2)_n-NH_2$ (ここで、pは $1 \sim 5$ の整数を表す。);

$$-OCH_2$$

(ここで、 R_{19} は、水素原子、水酸基、カルボキシル基、炭素数 $1\sim6$ の直鎖 もしくは分枝鎖状のアルキル基、ハロゲン、または炭素数 $1\sim6$ の直鎖もしくは 分枝鎖状のアルコキシ基、または、アルキル部分が炭素数 $1\sim3$ の直鎖もしくは 分枝鎖状のアルキルであるアルコキシカルボニル基を表す。);または、 $-OSO_2-R_{20}$ (ここで、 R_{20} は炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、またはベンジル基を表す)が好ましい。

 R_{17} としては、なかでも、水素原子、水酸基、メチル基、炭素数 $1 \sim 3$ の直鎖もしくは分枝状のアルコキシ基、 $-O-(CH_2)_n-OH(CCT)_n$ の整数を表す。)、 $-O-(CH_2)_n-COOH(CCT)_n$ ので、pは $1 \sim 3$ の

整数を表す。)、 $-O-(CH_2)_q-NH_2$ (ここで、pは $1\sim3$ の整数を表す。)、 $-OSO_2-R_{20}$ (ここで、 R_{20} としては、特に、エチル基、n-プロピル基、i-プロピル基またはベンジル基が好ましい。)、ベンジルオキシ基、3-もしくは4-ヒドロキシベンジルオキシ基、または、3-もしくは4-カルボキシベンジルオキシ基、が好ましい。

R₁₈としては、水素原子、炭素数 1~6の直鎖もしくは分枝鎖状のアルキル基、炭素数 1~6の直鎖もしくは分枝鎖状のアルキルスルホニル基、置換基を有していてもよいアリールスルホニル基(ここで、アリール基としてはフェニル基が好ましい。また、置換基としては、炭素数 1~3の直鎖もしくは分枝鎖状のアルコキシ基、ハロゲン原子で置換されていてもよい炭素数 1~3の直鎖もしくは分枝鎖状のアルキル基、ニトロ基、アミノ基などが挙げられる。)が好ましく、なかでも、水素原子、メチル基、メタンスルホニル基、ベンゼンスルホニル基が特に好ましい。

 R_6 における、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基としては、 炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル基が好ましい。

 R_7 における、置換基を有していてもよい炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基の置換基としては、カルボキシル基、アミノ基、アルキル部分が炭素数 $1\sim 6$ のアルキルであるモノーもしくはジー置換アルキルアミノ基、アルキル部分が炭素数 $1\sim 6$ のアルキルであるアルキルカルボニルアミノ基などが挙げられる。

 R_7 における、置換基を有していてもよい炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基のアルキル部分としては、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基が好ましい。

 R_7 における、置換基を有していてもよい炭素数 $1\sim 6$ の直鎖もしくは分枝鎖 25 状のアルキル基としては、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基、

5

15

20

(ここで、kは、 $0\sim3$ の整数である。 R_{21} は、水素原子、 $-NHR_{22}$ である。

 R_{22} は、炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基、または、アルキル部分が炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキルであるアルキルカルボニル基である。)、が好ましい。

特に、基

5

10

15

20

においては、特に、kは $0\sim2$ の整数であることが好ましい。また、 R_{21} は、水素原子、 $-NHR_{22}$ (ここで、 R_{22} は、メチル基、アセチル基である)が好ましい。

 R_7 の定義における、 $-SO_2-R_{14}$ の R_{14} の置換基を有していてもよい炭素数 $1\sim8$ の直鎖もしくは分枝鎖状のアルキル基の置換基としては、(a)カルボキシル基、(b)アルキル部分が炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基、(c)カルボキシル基などで置換されていてもよいフェニル基などが挙げられる。

 R_{14} の定義における置換基を有していてもよい炭素数 $1 \sim 8$ の直鎖もしくは分枝鎖状のアルキル基のアルキル部分としては、炭素数 $1 \sim 6$ の直鎖もしくは分枝鎖状のアルキル基が好ましい。

 R_{14} の定義における置換基を有していてもよい炭素数 $1 \sim 8$ の直鎖もしくは分枝鎖状のアルキル基としては、(a)置換基を有していてもよい炭素数 $1 \sim 6$ の直鎖もしくは分枝鎖状のアルキル基(アルキル基の置換基としては、カルボキシル基、アルキル部分が炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基であるアルコキシカルボニル基である。)、および、(b) $-CH_2-R_{23}$ (ここで、 R_{23} は、置換基を有していてもよいフェニル基である。ここで、置換基としては、カルボキシル基などである。)が好ましい。

R₁₄としては、ベンジル基、2-、3-もしくは4-カルボキシベンジル基、 25 または、置換基を有していてもよい炭素数1~4の直鎖もしくは分枝鎖状のアル キル基(ここで、アルキル基の置換基としては、カルボキシル基、または、アル キル部分が炭素数1~3の直鎖もしくは分枝鎖状のアルキルであるアルコキシカ ルボニル基である)が特に好ましい。

R₁としては、下記式:

から選択される基(上記式中、R。は、

5 である(ここで、 R_9 は、水素原子、アミノ基、水酸基、アシル基、または、アルキル部分が置換基を有していてもよい炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基である。))が好ましい。

なかでも、R,としては、特に、下記式:

10 から選択される基(上記式中、R。は、

15

、である。ここで、R。は、水素原子、アミノ基、水酸基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、イソバレリル基、メトキシカルボニル基、エトキシカルボニル基、 t ーブトキシカルボニル基、またはベンジルオキシカルボニル基である。)であることが好ましい。

 R_2 としては、水素原子、または炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基が好ましく、特に、水素原子またはメチル基が好ましい。

R。としては、

 $-(CH_2)_m-R_{11}$ (ここで、mは $1\sim3$ の整数であり、 R_{11} は、 $-CONH_2$ 、

$$R_{12}$$
 —N—CONH₂(ここで、 R_{12} は水素原子またはメチル基である。)、または、

5 、である。)、が好ましい。

また、 R_3 が、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基、または、 $-(CH_2)_m-R_{11}$ (ここで、mおよび R_{11} は、前記と同じ意味を表す。)、である化合物が好ましい。

また、R₃が、

であり、かつ、 R_7 が、 $-SO_2-R_{14}$ (ここで、 R_{14} は前記と同じ意味を表す。)である化合物が好ましい。

R₃としては、特に、

$$\bigcirc$$
 OH, $(CH_2)_2CONH_2$, \bigcirc CH₃

、または、

15

$$\overset{\mathsf{NH}}{-\!\!\!-\!\!\!-\!\!\!-} (\mathsf{CH}_2)_2 \overset{\mathsf{NH}}{-\!\!\!-\!\!\!-} \mathsf{NH}_2$$

- 、が好ましい。
- R_4 としては、水素原子、または炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基が好ましく、なかでも水素原子、メチル基が好ましい。

 R_5 としては、炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、または、

-CH₂-R₁₃(ここで、R₁₃は、下記式

から選択される基である。上記式中、

5

15

20

25

 R_{15} は、水素原子;置換基を有していてもよいアリール基; ハロゲン原子で置換されていてもよい炭素数 $1 \sim 3$ のアルキル基;炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルコキシ基;ハロゲン原子;アリールカルボニル基;アルキル部分が炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基であるアルキルカルボニル基;ニトロ基;または、アミノ基、を表す。

 R_{16} は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル 10 基を表す。

 R_{17} は、水素原子;水酸基、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基;炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルコキシ基、 $-O-(CH_2)_n$ $-OH(CCTC、nは <math>1\sim 5$ の整数を表す。); $-O-(CH_2)_q-COOH(CCTCC)$ の整数を表す。); $-O-(CH_2)_q-NH_2$ (ここで、q は $1\sim 5$ の整数を表す。);

(ここで、 R_{19} は、水素原子、水酸基、カルボキシル基、炭素数 $1\sim6$ の直鎖 もしくは分枝鎖状のアルキル基、ハロゲン、または炭素数 $1\sim6$ の直鎖もしくは 分枝鎖状のアルコキシ基、または、アルキル部分が炭素数 $1\sim3$ の直鎖もしくは 分枝鎖状のアルキルであるアルコキシカルボニル基を表す。);または、 $-OSO_2-R_{20}$ (ここで、 R_{20} は炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、またはベンジル基を表す)を表す。

 R_{18} は、水素原子、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキルスルホニル基、または、置換基を有していてもよいアリールスルホニル基を表す。)が好ましい。

 R_5 としては、特に、炭素数 $1\sim4$ の直鎖もしくは分枝鎖状のアルキル基、ま

たは、-CH2-R13が好ましい(ここで、R13は、下記式

から選択される基である。上記式中、

R₁₅は、水素原子; t ーブチル基;メトキシ基;臭素原子;塩素原子;ベン ゾイル基;または、メトキシ基もしくはトリフルオロメチル基もしくはニトロ基 もしくはアミノ基で置換されていてもよいフェニル基である。

 R_{17} は、水素原子、水酸基、メチル基、炭素数 $1 \sim 3$ の直鎖もしくは分枝状のアルコキシ基、 $-O-(CH_2)_n-OH(CCTC,n$ は $1 \sim 3$ の整数を表す。)、 $-O-(CH_2)_n-COOH(CCTC,p$ は $1 \sim 3$ の整数を表す。)、

10 $-O-(CH_2)_q-NH_2$ (ここで、qは $1\sim3$ の整数を表す。)、 $-OSO_2-R_{20}$ (ここで、 R_{20} はエチル基、n-プロピル基、i-プロピル基またはベンジル基である。)、ベンジルオキシ基、3-もしくは4-ヒドロキシベンジルオキシ基、または、3-もしくは4-カルボキシベンジルオキシ基、である。

 R_{18} は、水素原子、メチル基、メタンスルホニル基、または、ベンゼンスル 15 ホニル基である。)。

 R_6 としては、水素原子、または炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基が好ましく、特に、水素原子、メチル基が好ましい。

 R_7 としては、炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、

20 (ここで、kは、 $0\sim3$ の整数である。 R_{21} は、水素原子、 $-NHR_{22}$ である。 R_{22} は、炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、または、アルキル部分が炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基であるアルキルカルボニル基である。)、または

$$\cdot$$
 -SO₂-R₁₄

25 (ここで、R₁₄は、

①置換基を有していてもよい炭素数1~6の直鎖もしくは分枝鎖状のアルキル

基(アルキル基の置換基としては、カルボキシル基、アルキル部分が炭素数1~3の直鎖もしくは分枝鎖状のアルキル基であるアルコキシカルボニル基である。)、または、

② $-CH_2-R_{23}$ である。 R_{23} は、置換基を有していてもよいフェニル基で 5 ある。)、

が好ましい。

なかでも、R₇としては、特に、

・ 炭素数 1~4の直鎖もしくは分枝鎖状のアルキル基、

10 (ここで、k は、 $0\sim2$ の整数である。 R_{21} は、水素原子、 $-NHR_{22}$ である。 R_{22} は、メチル基、または、アセチル基である。)、または

・ $-SO_2-R_{14}$ (ここで、 R_{14} は、ベンジル基、2-、3-もしくは4-カルボキシベンジル基、または、置換基を有していてもよい炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基(ここで、アルキル基の置換基としては、カルボキシル基、または、アルキル部分が炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル

であるアルコキシカルボニル基である。)である。)、

が好ましい。

15

一般式(1)の定義の各置換基は以上のような定義を有するが、一般式(1)で表される化合物としては、

20 R₁が、下記式:

$$R_8$$
 N_{NH_2} N_{NH_2}

から選択される基であり(上記式中、R₈は、

、である。ここで、R₉は、水素原子、アミノ基、水酸基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、イソバレリル基、メトキシカルボニル基、エトキシカルボニル基、t-ブトキシカルボニル基、またはベンジルオキシカルボニル基である。);

5 R_2 が、水素原子またはメチル基であり; R_3 が、

R₄が、水素原子またはメチル基であり;

R₅が、炭素数1~4の直鎖もしくは分枝鎖状のアルキル基、または、

-CH2-R13であり(ここで、R13は、下記式

15 から選択される基である。上記式中、

R₁₅は、水素原子; t ーブチル基;メトキシ基;臭素原子;塩素原子;ベンゾイル基;または、メトキシ基もしくはトリフルオロメチル基もしくはニトロ基もしくはアミノ基で置換されていてもよいフェニル基である。

 R_{17} は、水素原子、水酸基、メチル基、炭素数 $1 \sim 3$ の直鎖もしくは分枝状 20 のアルコキシ基、 $-O-(CH_2)_n-OH(CZCT, nは <math>1 \sim 3$ の整数を表す。)、 $-O-(CH_2)_p-COOH(CZCT, pは <math>1 \sim 3$ の整数を表す。)、 $-O-(CH_2)_q-NH_2$ (CZCT、qは $1 \sim 3$ の整数を表す。)、 $-OSO_2-R_{20}$ (CZCT、 R_{20} はエチル基、n-プロピル基、i-プロピル基またはベンジル基である。)、ベンジルオキシ基、3-もしくは 4- ヒドロキシベンジルオ

キシ基、または、3-もしくは4-カルボキシベンジルオキシ基、である。

 R_{18} は、水素原子、メチル基、メタンスルホニル基、または、ベンゼンスルホニル基である。);

R₆が、水素原子またはメチル基であり;

- 5 R₇が、
 - ・炭素数1~4の直鎖もしくは分枝鎖状のアルキル基、

(ここで、kは、 $0\sim2$ の整数である。 R_{21} は、水素原子、 $-NHR_{22}$ である。 R_{22} は、メチル基、または、アセチル基である。)、または

- 10 ・ $-SO_2-R_{14}$ (ここで、 R_{14} は、ベンジル基、2-、3-もしくは4-カルボキシベンジル基、または、置換基を有していてもよい炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基(ここで、アルキル基の置換基としては、カルボキシル基、または、アルキル部分が炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基である。)である。)、
- 15 である化合物が好ましい。

なかでも、下記化合物群

から選択される化合物が好ましい。

一般式(1)で示される化合物には、光学異性体が存在するが、それぞれの光 学異性体、およびそれらの混合物は全て本発明に含まれる。なかでも、一般式 (1)において、 R_3 の結合する炭素原子についてS配置、 R_5 の結合する炭素原についてR配置である化合物が好ましい。

本発明の化合物は水和物として得ることもできる。

塩を形成する酸としては、たとえば、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、 燐酸などの無機酸、および酢酸、シュウ酸、マレイン酸、フマル酸、クエン酸、 酒石酸、メタンスルホン酸、トロフルオロ酢酸などの有機酸が挙げられる。

一般式(1)で示される化合物は、1種もしくはそれ以上の薬学的に許容し得る希釈剤、湿潤剤、乳化剤、分散剤、補助剤、防腐剤、緩衝剤、結合剤、安定剤等を含む薬学的組成物として、目的とする投与経路に応じ、適当な任意の形態にして投与することができる。投与経路は非経口的経路であっても経口的経路であってもよい。

本発明化合物の投与量は、患者の体型、年齢、体調、疾患の度合い、発症後の 10 経過時間等により、適宜選択することができるが、例えば、経口投与の場合には、 一般に1~1000mg/day/personの用量で使用され、非経口投与(静注、 筋注、皮下注)の場合には、一般に0.1~100mg/day/personの用量で 使用される。

一般式(1)で示される化合物は、下記反応スキーム1~6に図示されている 方法によって製造することができる。

反応スキーム1

5

15

28 差 替 え 用 紙 (規則26)

反応スキーム2

5

反応スキーム2

反応スキーム3

5

$$R_2$$
 R_3 or R_3 ' R_4 R_5 or R_5 ' R_5 or R_5 or R_5 ' R_5 or R_5 ' R_5 or R_5 ' R_5 or R_5 ' R_5

反応スキーム4

反応スキーム5

5

$$R_2$$
 R_3 or R_3 ' R_4 試薬 3.5 R_7 or R_7 or R_7 R_6 R_7 or R_7 R_6 R_7 or R_7 R_8 R

反応スキーム5

反応スキーム6

5

10

$$R_2$$
 R_3 or R_3 ' R_{17} or R_{18} alkylation or sulfonation R_1 or R_2 R_3 or R_3 or

反応スキーム $1\sim 6$ において、置換基 R_1 、 R_2 、・・、 R_n は、それぞれ、前述の定義どおりであり、 R_1 '、 R_2 '・・、 R_n 'は、それぞれ対応する R_1 、 R_2 、・・、 R_n の保護体を表し、保護基としては、例えば、ペプチド合成の基礎と実験(1985年、丸善発行)などのほか PROTECTING GROUP IN ORGANIC SYNTHESIS SECOND EDITION (JOHN WILEY & SONS, INC 1991)などに記載されている保護基(例えば、 t- ブトキシカルボニル基(B o c 基)、ベンジルオキシカルボニル基(C b z 基)、 9- フルオレニルメトキシカルボニル基(E mo E など)である。

また、Pはそれぞれ通常使われる保護基を示し、たとえば、ペプチド合成の基礎と実験(1985年、丸善発行)などの他、PROTECTING GROUP IN ORGANIC SYNTHESIS SECOND EDITION (JOHN WILEY & SONS, INC 1991)などに記載されている保護基である。

また、Xはクロライド、ブロマイドまたはヨージドなどのハロゲン原子を表わす。

各反応工程式中の出発原料は、それ自体公知であるか、または公知の方法により製造することができる。

5 各反応工程中の反応はすべて公知の方法により行なうことができる。

また、本発明における他の出発物質および各試薬は、それ自体公知であるかまたは公知の方法により製造することができる。

以下に本発明化合物の製造方法を上記反応スキームに沿ってより具体的に説明する。

10 反応スキーム1

中間体(3)は、出発原料(1)及び試薬2(表A-1~表A-34に例示される。本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成可能である。)の縮合反応を行うことにより得られる。

ここで用いられる縮合反応としては、例えば通常用いられる活性エステル法、

酸無水物法、アジド法、酸クロライド法、各種縮合剤等、ペプチド合成の基礎と 15 実験(1985年、丸善発行)に示された方法が挙げられる。用いられる縮合剤 としては、N, N'ージシクロヘキシルカルボジイミド(DCC)、水溶性カル ボジイミド(WSCI)、カルボニルジイミダゾール(CDI)、ジフェニルホ スホリルアジド(DPPA), Bop試薬、Pybop試薬、2-(1H-ベンゾト リアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロフォスフ 20 エート(HBTU). 2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロ ニウム テトラフルオロボーレート(TBTU)、2-(7-アザベンゾトリアゾール-1-イ ル)-1.1.3.3-テトラメチルウロニウム ヘキサフルオロフォスフェート(HATU)等、 ペプチドシンセシスハンドブック(1998年、ノババイオケム発行)等に記載 される通常用いられる試薬があげられる。反応は常法に従い、適当な溶媒、たと 25えばジメチルホルムアミド、ジクロロメタンなどを用い、冷却下あるいは室温な いし加温して行われる。

中間体(4)は、中間体(3)に適当なアミノ脱保護反応を行うことにより得られる。例えば、ペプチド合成の基礎と実験(1985年、丸善発行)に示され

た方法が挙げられる。反応は常法に従い、無溶媒あるいは、適当な溶媒、たとえばジクロロメタン、ジメチルホルムアミドなどを用い、冷却下あるいは室温ない し加温して行われる。

中間体(6)は、中間体(4)及び試薬5(表A-1~表A-34に例示される。本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成可能である。)の、上記に示したような縮合反応を行うことにより得られる。中間体(7)は、中間体(6)に上記に示したようなアミノ脱保護反応を行なうことにより得られる。反応は常法に従い、無溶媒あるいは、適当な溶媒、たとえばジクロロメタン、ジメチルホルムアミドなどを用い、冷却下あるいは室温ないし加温して行われる。

5

10

15

20

中間体(9)は、中間体(7)に試薬8(表A-1~表A-34に例示される。 本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成 可能である。)を用い、通常用いられうるアルキル化反応、アシル化反応、スル ホニル化反応を行うことにより得られる。反応は常法に従い、適当な溶媒、たと えばジメチルホルムアミド、ジクロロメタンなどを用い、冷却下あるいは室温な いし加温して行われる。

化合物 (10) および中間体 (11) は、中間体 (9) を、たとえば、日本特許公表公報平9-509937、ザケミストリーオブアミジンズアンドイミデーツ (1991年、ジョン ワイリーアンド サンズ発行)等に記載されている一般に知られている方法により導くことができる。

たとえば、化合物(10)は、中間体(9)を強酸に付した後、アンモニウム 塩類またはアンモニアを反応させることによって得られる。反応は常法に従い、 適当な溶媒、たとえばメタノール、エタノールなどを用い、冷却下あるいは室温 ないし加温して行われる。

25 化合物(10)は、中間体(11)に適当な脱保護反応を行なうことにより得られる。例えば、ペプチド合成の基礎と実験(1985年、丸善発行)に示された方法が挙げられる。反応は常法に従い、無溶媒あるいは、適当な溶媒、たとえばジクロロメタン、ジメチルホルムアミド、水、エタノールなどを用い、冷却下あるいは室温ないし加温して行われる。

反応スキーム2

5

10

中間体(14)は、出発原料(12)に試薬13(本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成可能な、アルキルハライド、アシルクロライド、スルホニルクロライドである。)を用い、通常用いられうるアルキル化反応、アシル化反応、スルホニル化反応を行うことにより得られる。反応は常法に従い、適当な溶媒、たとえばジメチルホルムアミド、ジクロロメタンなどを用い、冷却下あるいは室温ないし加温して行われる。

中間体(16)は、中間体(14)、及び試薬15(本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成可能な、天然アミノ酸または非天然アミノ酸である。)の、上記に示したような縮合反応を行うことにより得られる。

中間体(17)は、中間体(16)に適当な脱保護反応を行うことにより得られる。反応は常法に従い、適当な溶媒、たとえば水、メタノール、エタノールなどを用い、冷却下あるいは室温ないし加温して行われる。

15 中間体(19)は、中間体(17)に試薬18(表A-27に例示される。本 試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成可 能である。)を用い、および化合物(20)は、中間体(17)に試薬18を用 い、上記に示したような縮合反応を行なうことにより得られる。

化合物(20)は、中間体(19)に適当な脱保護反応を行なうことにより得 20 られる。

反応スキーム3

化合物(21)は、中間体(9)に適当な脱保護反応を行なうことにより得られる。

化合物(23)は、中間体(21)に試薬22(表A-28~29に例示され 25 る。本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に 合成可能である。)を反応させることにより得られる。反応は常法に従い、適当 な溶媒、たとえば、ジクロロメタン、ジメチルホルムアミド、水、テトラヒドロ フランなどを用い、冷却下あるいは室温ないし加温して行われる。

中間体(24)および化合物(25)は上記に示したようなアミジノ化を行な

うことにより得られる。

中間体(25)は、中間体(24)に適当な脱保護反応を行なうことにより得られる。

反応スキーム4

10

15

20

5 中間体(26)は中間体(9)を用いて公知の方法、たとえばLeeらの方法 (Bioorg. Med. Chem. Lett. 869-876, 6, 1998)に従い得られる。

中間体(28)は中間体(26)と試薬27(本試薬は、一般式 NH_2-R_9 (R_9 は前述の定義のとおり)で示される化合物であり、商業的に入手可能であるか、公知の合成法により容易に合成可能である。)より公知の方法、たとえば Leeらの方法(Bioorg, Med. Chem. Lett. 869-876, 6, 1998)に従い得られる。

中間体(30)は中間体(9)と試薬29(本試薬は、一般式 NH_2-R_9 (R_9 は前述の定義のとおり)で示される化合物であり、商業的に入手可能であるか、公知の合成法により容易に合成可能である。)より公知の方法、たとえば Truckerらの方法(Bioorg, Med. Chem. 601-616, 8, 2000)に従い得られる。

中間体(32)は中間体(11)と試薬31(本試薬は、Boc基、Cbz基などのアミン保護基を表す。)よりペプチド合成の基礎と実験(1985年、丸善発行)などのほかPROTECTING GROUP IN ORGANIC SYNTHESIS SECOND EDITION (JOHN WILEY & SONS, INC 1991)などに記載されている方法に従い得られる。ここで試薬(31)とは、例えばターシャリーブチルオキシカルボニル基、ベンジルオキシカルボニル基、アセチル基、9ーフルオレニルメチルオキシカルボニル基などが挙げられる。反応は常法に従い、適当な溶媒、たとえば、ジクロロメタン、ジメチルホルムアミドなどを用い、冷却下あるいは室温ないし加温して行われる。

化合物 (33) は中間体 (28)、中間体 (30)、中間体 (32) に適当な 25 脱保護反応を行なうことにより得られる。

反応スキーム5

中間体(34)は上記の中間体(9)と同様にして得られる。

中間体(36)は中間体(34)と試薬35(表A-30~31に例示される。 本試薬は、商業的に入手可能であるか、または、公知の合成法により容易に合成

可能である。)より、例えばEllmanらの方法(J. Am. Chem. Soc. 11171-11172, 161, 1994)に従い、パラジウムを触媒とする、Suzuki反応により得ることが出来る。本反応に用いられる溶媒としては通常のSuzuki反応に用いられる溶媒、例えばエーテル系の溶媒や芳香族炭化水素系の溶媒、アセトニトリル、ジメチルホムアミドまたはこれらの溶媒と水との混合溶媒が用いられ、好ましくはテトラヒドロフランさらに好ましくはテトラヒドロフランと水との混合溶媒があげられる。用いられる試薬としてはパラジウム試薬としてテトラキス(トリフェニルホスフィン)パラジウム、酢酸パラジウム、ジクロロビス(ベンゾニトリル)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウムなどがあげられ、好ましくはテトラキス(トリフェニルホスフィン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウムがあげられる。

化合物(37)は中間体(36)に上記で示したアミジノ化反応を行なうことにより得られる。

反応スキーム6

5

10

20

25

15 中間体(38)は、上述の反応スキーム1により得られる。

中間体(40)は中間体(38)に試薬39(表A-32~34に例示される。)を用い、通常用いられうるアルキル化反応を行うことにより得られる。反応は常法に従い、適当な塩基、たとえば水素化ナトリウム、炭酸セシウム、炭酸カリウム、水酸化ナトリウムなどを用い、適当な溶媒、たとえばジメチルホルムアミド、テトラヒドロフランなどを用い、冷却下あるいは室温ないし加温して行われる。

中間体(41)は中間体(40)に上記に示したような脱保護反応を行なうことにより得られる。

中間体(42)は中間体(41)に試薬(8)を用い、上記に示したようなアルキル化反応、アシル化反応、スルホニル化反応を行うことにより得られる。

中間体(43)は中間体(42)に上記に示したようなアミジノ化を行なうことにより得られる。

化合物(44)は、中間体(43)に適当な脱保護反応を行なうことにより得られる。

本発明において、低分子VIIa因子阻害剤とは、VIIa因子に対して阻害活性を有する薬剤をいい、かかる性質を有するあらゆる化合物が含まれるが、特に、分子量1000以下の合成または天然の低分子化合物やペプチド誘導体などが挙げられる。VIIa因子に対する阻害活性は、例えば、本願明細書の試験例に記載の方法により測定することができる。

5

10

15

20

25

不可逆的VIIa因子阻害剤とは、VIIa因子と反応する基を有し、VII a因子と共有結合することにより結合するVIIa因子阻害剤のうち、一度形成 された共有結合が解離しないものをいう。VIIa因子のようなセリンプロテア ーゼの場合、これと反応する基としてクロロメチルケトンなどの基が使われ、酵 素中の活性中心となるSer残基と共有結合を形成することで不可逆的に阻害をす る。可逆的VIIa因子阻害剤とは、VIIa因子との結合が不可逆的でないV IIa因子阻害剤をいう。低分子可逆的VIIa因子阻害剤とは、VIIa因子 との結合が不可逆的でない低分子VIIa因子阻害剤をいう。

本発明者らは、課題解決のため低分子可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶を作成する方法を確立した。得られた結晶を用いてX線結晶構造解析を行うことにより低分子可逆的VIIa因子阻害剤とヒトVIIa因子の結合状態についての正確な立体構造情報を得ることができる。この立体構造情報から、コンピュータを用いて低分子可逆的阻害剤とVIIa因子との結合の様子を視覚的、数値的に表現することが可能となる。これはVIIa因子との結合に重要な相互作用の評価を行うにあたり有用である。

さらにX線構造解析により得られた低分子可逆的VIIa阻害剤とVIIa因子との複合体の構造を出発とし、仮想的に阻害剤分子に修飾を施すことでVII a因子に対する特異性に優れた低分子可逆的阻害剤を設計することが可能となる。コンピュータを使った仮想的な評価は、現実の化合物合成に較べはるかに短時間で済むため、低分子可逆的阻害剤の分子設計の効率化に有用である。

また、低分子可逆的VIIa阻害剤とVIIa因子との結合様式とVIIa因子阻害活性、選択性との関係を分析することでVIIa因子への特異性を向上させるのに重要な相互作用が得られるサイトを正確に特定できる。このようにして確かめられたVIIa因子との特異性に重要な相互作用の情報を基にすることで、

X線結晶構造解析やコンピュータモデリングによりVIIa因子または構造的に類似したthrombin、trypsin、Xa因子等のセリンプロテアーゼとの結合様式が解明または推測された低分子可逆的阻害剤分子に対し、VIIa因子との特異性に重要な相互作用を持たせるようコンピュータ上で分子を修飾することが可能となる。阻害剤と酵素の相互作用は非常に複雑な過程であり、現在利用可能なコンピュータでの仮想的な評価単独ではその精度に限界があるが、このように実験的に有効性が確認された相互作用を使うことで、さらに効率の良い分子設計が可能となる。

10 [ヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の結晶]

これは、ヒトVIIa因子/ヒト可溶型組織因子および低分子可逆的VIIa因子阻害剤から構成される結晶で、斜方晶系に属し、空間群 $P2_12_12_1$ 、格子定数 a=71.4Å $\pm5\%$ 、b=82.5Å $\pm5\%$ 、c=123.3Å $\pm5\%$, $\alpha=\beta=\gamma=90$ ° で非対称単位 にヒトVIIa因子/ヒト可溶型組織因子および可逆的VIIa因子阻害剤1個 を含むものをさす。

このような複合体結晶としては、低分子可逆的VIIa因子阻害剤が一般式(1)(式中の置換基の定義は、前記におけると同じ意味を表す。)で示される化合物である複合体結晶が好ましい。

20

25

15

5

[ヒトVIIa因子/ヒト可溶型組織因子と可逆的VIIa因子阻害剤との複合体を結晶化する方法]

結晶化のためのヒトVIIa因子については、ヒトVII因子をコードするベクターを組み込んだ細胞を使ってヒトVII因子として発現させ、カラムクロマトグラフィー法による精製後、活性体のVIIa因子に変換し、再度カラムクロマトグラフィー法により精製したものを用いることができる。この代わりにヒトFVIIa製剤(NovoSeven、Novo Nordisk Pharma Ltd.)をカラムクロマトグラフィー法により精製したものも使用できる。

結晶化のためのヒト可溶型組織因子については、ヒト組織因子の細胞外ドメイ

ンをコードするベクターを組み込んだ適当な細胞、菌体、特に大腸菌をつかって 発現後、カラムクロマトグラフィー法により精製したものが使用できる。

調製したヒトVIIa因子とヒト可溶型組織因子をヒト可溶型組織因子が過剰になるようベンズアミジン存在下で混ぜ合わせた後、ベンズアミジン無しの緩衝液を使いゲル濾過カラムクロマトグラフィー法により精製することでヒトVIIa因子/ヒト可溶型組織因子複合体を得ることができる。これに構造解析を目的とする低分子可逆的VIIa因子阻害剤を0.5mM程度になるよう、溶解性が低い場合は飽和濃度になるよう加え、限外濾過法により濃縮、結晶化用濃縮試料とする。

5

25

結晶は、結晶化用濃縮試料に対し、温度25度、100mM カコジル酸ナトリウ 10 ム緩衝液 pH5.0、6-7.5% PEG4000、5mM CaCl。、5% グリセロール溶液 を使った蒸気拡散法(Crystallization of Nucleic Acids and Proteins practical Approach、82-90、1992年、IRL PRESS)を適用することで得られる。 その際、低分子不可逆的VIIa因子阻害剤または低分子可逆的VIIa因子阻 害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶を100mM カ 15 コジル酸ナトリウム緩衝液 pH5.0、9% PEG4000、5mM CaCl。中でホモジ ナイザーにより砕き希釈した種溶液を添加する必要がある。約1か月ほどで最大 で長さ1.0mm×太さ0.05mm程度の柱状の低分子可逆的VIIa因子阻害剤とヒ トVIIa因子/ヒト可溶型組織因子との複合体の結晶を得る。なお、結晶化方 法や溶液条件については上の条件に限定されるわけではない。例えば、結晶化方 20 法としては、蒸気拡散法以外にも、静置バッチ法、自由界面拡散法、透析法など の方法なども用いることができる。

また、このような複合体結晶化方法としては、低分子可逆的VIIa因子阻害 剤が一般式(1)(式中の置換基の定義は、前記におけると同じ意味を表す。) で示される化合物である方法が好ましい。

[ヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の立体構造の座標全体およびその一部を保存した媒体]

低分子可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子と

の複合体の座標は、この複合体の結晶の立体構造を、立体構造決定方法の一つであるX線結晶構造解析を用いて解析することにより得られる。結晶に単色化されたX線に当てることにより得られる回折斑点の強度データを測定し、そのデータを使って結晶単位中での電子密度を計算することで各原子の位置を特定する。作成した構造から計算される回折強度データFcと観測した回折強度データFoの差が小さくなるよう各原子の3次元上の位置ならびに温度因子とよばれる原子の熱振動を表す変数を修正し、最終的な座標データが得られる。上記手法を本明細書中に開示されている低分子可逆的VIIa因子阻害剤の例である以下の化合物について適用することにより、これら化合物とVIIa因子/ヒト可溶型組織因子との複合体の結晶を得、X線結晶構造解析により化合物とVIIa因子との結合様式を明らかにした例を示す。

化合物(1)とヒトVIIa因子/ヒト可溶型組織因子との複合体の座標を本分野で一般に用いられる蛋白質の3次元の構造座標の表記方法であるPDBフォーマットに従って示したものを表36に示す。表36中、最初の行は結晶の格子形状や対称性を示したものである。第2行目以降は構造座標データを示し、左から順に、原子番号、原子名、アミノ酸残基名、chainID、アミノ酸残基番号、X、Y、Z、占有率、温度因子、segmentID(ここではchainIDと同じ)、原子の種類を示す。座標の単位はÅ。なお、アミノ酸残基番号については、Nature 380巻、41-46項、1996年の記載に従って対応するキモトリプシンのアミノ酸残基番号を基準にしている。また、VIIa因子は2つのポリペプチド鎖からなり、ここでは、

長い方をH鎖、短い方をL鎖と呼ぶ。表36中、chain IDは、H; VIIa因子H鎖、L; VIIa因子L鎖、T; 可溶型組織因子、C; カルシウムイオン、W; 水分子、I: 低分子可逆的VIIa因子阻害剤を示す。

本発明において、座標データの一部とは、X線結晶構造解析より得られた構造 座標の一部、特に低分子可逆的VIIa因子阻害剤およびその周囲の残基、を3次元表記で表現したものである。表37は、化合物(2)とヒトVIIa因子/ヒト 可溶型組織因子との複合体のX線結晶構造解析により得られた座標のうち、化合物(2)から特に10Å以内の残基についてPDBフォーマットに従って示したものである。

5

15

20

10 座標データの全部又は一部を含む媒体とは、PDBフォーマットに従って示された座標データの全部又は一部或いはこれらと同等な内容を含む情報を保存したコンピュータのメモリーや各種ディスク装置をいう。

[解析された座標データを利用してコンピュータ上で新たな低分子可逆的VII a 因子阻害剤をデザインする方法]

蛋白質等の分子の3次元構造を表示するコンピュータプログラムは多数存在しており、これらのソフトとX線結晶構造解析により得られた構造座標を用いることで、低分子可逆的VIIa阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体構造、特に低分子可逆的VIIa因子阻害剤の周囲の構造をコンピュータ上で視覚的に表現することができる。これにより低分子可逆的VIIa因子阻害剤とヒトF.VIIaとの間でどのような相互作用が働いているか視覚的に認識できる。図1はヒトVIIa因子の活性部位ポケットに化合物(1)が結合した様子を立体的に表現したものである。残基化合物(1)を含む本件発明のペプチド化合物はヒトVIIa因子と4つのサイトで結合しており、ここではそれぞれ、

25 S1サイト、S2サイト、S4サイト、S1サブサイトと名付ける。なお、活性部位ポケットはいずれもヒトVIIa因子H鎖のアミノ酸残基で構成されている。以後、活性部位を構成するアミノ酸残基の特定にあたっては、H鎖であることは特に示さない。図2はその結合様式を模式的に表し、各サイトを構成する主なヒトVIIa 因子のアミノ酸残基を示したものである。化合物(1)を含む本件発明のペプチド

化合物は、これら残基と水素結合、イオン結合、ならびにファンデルワールス相互作用を形成することにより結合している。ここで水素結合とはX-H基(Xは電気陰性基)と非共有電子対を有する他の電気陰性基Yとの間で水素を間にはさむ形X-H....Yで生じる電気双極子-電気双極子間相互作用である。また、生理学的pHで一方が正または負電荷をもつようなイオン-双極子相互作用も含む。典型的にはX、YがN、Oのときに生じる。イオン結合とはカルボン酸のように生理学的pHで負電荷を有する基とアミジノ基やアミン基のように正電荷を有する基との間で生じる静電相互作用のことをいう。ファンデルワールス相互作用とは任意の原子の間に生じる相互作用で適当な距離では弱い引力として働くが、ある距離を越えて近づくと逆に強い斥力として働く。各原子種ごとにファンデルワールス半径と呼ばれる値があり、2つの原子間の距離がファンデルワールス半径の和であるときにもっとも強い引力が働く。

5

10

15

20

25

また、これらのソフトにおいては、阻害剤分子の構造を仮想的に修正することが可能であり、また、分子力場エネルギーと呼ばれる値を計算することで阻害剤分子に修正を加えた際の結合に対する影響をエネルギーの形で粗く見積もることもできる。X線結晶構造解析により決定された構造座標を出発とし、このようなプログラムを使って阻害剤に仮想的に修正を加えていくことで、ヒトVIIa因子との結合が強くなるように新たな阻害剤を設計できる。この方法は、現実に化合物を合成するのに較べ、はるかに短時間で評価できるので、VIIa因子に特異的な低分子可逆的阻害剤を設計するうえで有用である。これらのコンピュータプログラムとしては、QUANTA、InsightII、CHARMM、Disover、Ludi(以上Accelrys Inc)、Sybyl(Tripos Inc)等が目的にあったプログラムの例であるが、これらのプログラムに限定されるわけではない。

上述の方法により、立体構造を使用して阻害剤を仮想的に修正し評価することが可能であるが、阻害剤と酵素の結合は複雑な過程であり、現在おこなわれている仮想的な評価ではその精度に限界がある。そこで複数の低分子可逆的VIIa因子阻害剤についてX線結晶構造解析で決定された結合様式とヒトVIIa因子阻害活性や特異性との相関を探ることでヒトVIIa因子との結合や特異性に重要なサイトならびに相互作用を特定することができる。また、コンピュータ上で

それらのサイトおよび相互作用を利用したヒトVIIa因子に特異的な低分子可逆的阻害剤の設計をすることもできる。このように実験的に確かめられた結合様式に関する情報を利用することでコンピュータ上での仮想的な結合活性評価における精度の問題を解決できる。

5 表41は、化合物(1)とヒトVIIa因子S2サイト部分との水素結合を示したものである。化合物(1)は、S2サイトと結合する位置にアミド基を持ち、そのアミノ基はAsp60側鎖カルボン酸、Tyr94側鎖水酸基、Thr98主鎖カルボニル酸素と水素結合を形成している。さらに表38のデータから、S2サイトにおいてこれらのアミノ酸残基と水素結合を形成しうる低分子可逆的VIIa因子阻害剤は、10 水素結合を形成しえないVIIa因子阻害剤にくらべthrombinとの選択性に優れていることがわかる。以上により、かかる水素結合の獲得はヒトVIIa因子に対する特異性を獲得するのに有用であることがわかる。また、Asp60は生理的条件で負電荷を持つことからイオン結合の獲得もVIIa因子に対する特異性を獲得するのに有用である。

以上からAsp60側鎖カルボン酸、Tvr94側鎖水酸基、Thr98主鎖カルボニル酸 15 素の全て若しくはその一部、特にAsp60側鎖と水素結合またはイオン結合を形成 しうる位置にアミド基、アミジノ基、グアニジノ基、アニリン、アミン等の水素 を有する窒素原子、水酸基等の水素を有する酸素原子が来るように阻害剤構造を 修正することでヒトVIIa因子への特異性が高い阻害剤を効率よくデザインす ることが可能となる。分子設計にあたっては、導入する置換基の水素結合可能な 20 原子がAsp60側鎖の酸素原子、Tyr94側鎖の酸素原子、Thr98主鎖酸素原子の少 なくとも一つから2.5-3.5Åの位置に来るようにするとよい。イオン結合の導入に あたっては導入する置換基の正電荷を持つ原子とAsp60側鎖酸素原子との距離が 2.5-4.5Åの位置にくるようにするとよい。また、修正したい分子と、VIIa因 25 子もしくはこれに構造的に類似したthrombin、trypsin、Xa因子等のセリンプロ テアーゼとの結合モデルの座標ならびにX線結晶構造座標に対し、化合物(1)また は(2)とヒトVIIa因子/ヒト可溶型組織因子との複合体の構造座標をVII a 因子部分が最も良く重なるよう動かした後、化合物(1)または(2)のアミド基と 水素結合可能な原子が重なるよう修正したい分子に置換基を導入してもよい。

表42および43は、それぞれ、化合物(1)および(2)とヒトVIIa因子S1サブサイト部分との水素結合、イオン結合の様子を示したものである。これらの阻害剤はS1サブサイトと結合する位置にスルフォンアミド基やカルボン酸を持ち、いずれもLys192側鎖アミン基と水素結合もしくはイオン結合を形成している。

さらに表39のデータから、S1サブサイトにおいてこれらアミノ酸残基と水素 結合またはイオン結合を形成しうるVIIa因子阻害剤、特にカルボン酸を有す るVIIa因子阻害剤はthrombinとの選択性に優れていることがわかる。以上 より、かかる水素結合またはイオン結合の獲得はヒトVIIa因子に対する特異 性を獲得するのに有用であることがわかる。

5

10

15

20

25

以上からLys192側鎖アミノ基と水素結合またはイオン結合を形成しうる位置 にカルボン酸または、スルフォン酸、スルフォンアミド、スルフォンウレア、テ トラゾール等のカルボン酸の生物学的等価体が来るように阻害剤構造を修正する ことでヒトVIIa因子への特異性が高い阻害剤を効率よくデザインすることが 可能となる。分子設計にあたっては、導入する置換基の水素結合可能な原子と Lvs192側鎖の窒素原子との距離が2.5-3.5Åの位置に来るようにするとよい。イ オン結合の導入にあたっては導入する置換基の負電荷を持つ原子とLvs192側鎖 窒素原子との距離が2.5-4.5Åの位置にくるようにするとよい。また、修正したい 分子と、VII a 因子もしくはこれに構造的に類似したthrombin、trypsin、Xa 因子等のセリンプロテアーゼとの結合モデルの座標ならびにX線結晶構造座標に 対し、化合物(1)または(2)とヒトVIIa因子/ヒト可溶型組織因子との複合体 の構造座標をVIIa因子部分が最も良く重なるように動かした後、化合物(2) のスルフォンアミド基や化合物(1)のカルボン酸部分と水素結合またはイオン結 合可能な原子が重なるよう修正したい分子に置換基を導入してもよい。また、 Lvs192の位置は結合する化合物の構造により変化することから、化合物(1)また は(2)の構造を重ね合わせたときのLys192の位置に対し、水素結合やイオン結合 を形成するように分子を修正してもよい。さらにLys192の可動性を考慮し、そ の側鎖位置を分子力場エネルギーで見て無理の無い位置に動かした構造について 上の方法を利用してもよい。

表44および45は、それぞれ、化合物(1)および(2)とヒトVIIa因子S4サ

イト部分とのファンデルワールス相互作用を示したものである。これらの化合物はS4サイトのうち、Trp215側鎖、Gly216主鎖、Gln217側鎖、Val170E側鎖、Gly170F主鎖、Asp170G主鎖、Ser170H主鎖及び側鎖、Pro170I側鎖とファンデルワールス相互作用および疎水相互作用を形成している。さらに表40データから、化合物(1)および(2)は、上記アミノ酸残基と相互作用する部分を小さくした化合物と比較してthrombinとの選択性に優れていることがわかる。以上から、かかるアミノ酸残基、特にVal170E、Gly170F、Asp170G、Ser170H、Pro170I、Gln217とのファンデルワールス相互作用および疎水相互作用の獲得はヒトVIIa因子に対する特異性の獲得に有用であることがわかる。ここで、疎水相互作用とは、水中においてアルキル基、ベンゼン環などの非極性基が会合する現象を指す。非極性基の周りの水分子はエントロピーの低い状態に置かれるため、エネルギー的に不安定となる。このため非極性基同士が会合し、水との接触表面積が小さくなるよう相互作用が働く。

5

10

15

20

25

以上から、これらのアミノ酸残基とファンデルワールス相互作用および疎水相互作用を形成しうる位置にBi-Phe基、Napthyl基、インドール基等の疎水性の高い基が来るように阻害剤構造を修正することでヒトVIIa因子に対する特異性が高い阻害剤を効率よくデザインすることが可能となる。分子設計にあたっては、導入する置換基の原子と上述のアミノ酸残基中の原子との距離が3.5-4.2Åの位置に来るようにするとよい。また、修正したい分子と、VIIa因子もしくはこれに構造的に類似したthrombin、trypsin、Xa因子等のセリンプロテアーゼとの結合モデルの座標ならびにX線結晶構造座標に対し、化合物(1)または(2)とヒトVIIa因子/ヒト可溶型組織因子との複合体の構造座標をVIIa因子部分が最も良く重なるように動かした後、化合物(1)のインドール部分や、化合物(2)のビフェニル部分と疎水性原子が重なるよう修正したい分子に置換基を導入してもよい。

図 3 は、D-Phe-Phe-Argクロロメチルケトンが結合した際のVIIa因子のS 4サイト部分の分子表面の様子(Nature 380巻、41-46、1996、PDB=1DAN)、および化合物(1)が結合した際のVIIa因子のS 4サイト部分の分子表面の様子を示したものである。化合物(1)の結合の際には、D-Phe-Phe-Argクロロメチル

ケトンの結合時には無いS4サイト下の空間まで到達可能な孔が生じることがわ かる。かかる孔が生じること、およびかかる孔を生じさせる化合物は、これまで 報告された例はない。この動きは、化合物(1)のインドール環部分がS4サイトの 特定の位置に結合し、その際、Gln217の側鎖が位置を変えることにより起こる。 この孔の下には、Cvs168側鎖、Ser170B側鎖、Ile176側鎖、Cys182側鎖、Trp 5 215側鎖、Gly 216主鎖、Gln 217主鎖、側鎖、His 224主鎖、側鎖、Phe225主鎖、 側鎖、Gly 226主鎖、Val227側鎖からなる空間が存在しており、以下S4サブサイ トという。この孔を使い、S4サイトとの結合部分から置換基を出すことで、こ れらS4サブサイトの残基と水素結合、ファンデルワールス相互作用および疎水 相互作用を獲得できる。既知のthrombinを含む血液凝固に関連したセリンプロ 10 テアーゼの立体構造と比較するとS4サブサイトに相当する空隙をもつものは無 く、S4サブサイトとの相互作用の獲得はヒトVIIa因子に対する特異性の獲 得に有用である。例えば、化合物(1)を分子設計の初期モデルとするのであれば、 インドール部分の5位から置換基を出すことで、この孔を通してS4サブサイト の方向に置換基を出すことができる。 15

以上から、化合物(1)のインドール環に相当する位置にベンゼン環等の疎水性 基が来るように化合物の構造を修正し、S4サブサイトへ通じる孔を開かせるこ とが可能である。さらにこの孔を通るように置換基を導入することで、S4サブ サイトと水素結合、ファンデルワールス相互作用および疎水相互作用を形成でき る。これによりヒトVIIa因子への特異性が高い阻害剤をデザインすることが 可能となる。

20

25

以上より、ヒトVIIa因子のS2サイト、S1サブサイト、S4サイト、および S4サブサイトのいずれか 1 つ以上のサイトと相互作用する低分子可逆的VII a 因子阻害剤が好ましいが、具体的には、下記群 [A-1] 、 [A-2] 、 [B-1] 、 [B-2] 、 [B-3] 、 [B-4] 、 [C-1] または [C-2] 中に示される部分構造の少なくとも一つ以上を有する低分子可逆的VIIa因子阻害剤が好ましい。

(A) S2サイトと相互作用する部分構造としては下記 [A-1] または [A-2] 群に示される部分構造が好ましい。

[A-1]群:

$$H_2N$$
 H_2N
 X_1
 X_2
 X_3
 X_4
 X_4
 X_4
 X_4
 X_5

(ここで、 X_1 は、OまたはNHを示し、 X_2 は、水素原子またはメチル基を示 5 す。)

[A-2]群:

$$\frac{2}{2}$$
 -----R₂₃---NH₂

(ここで、 R_{23} は、ヘテロ原子を有する芳香族6員環、5員環を示す。)

- 10 [A-2群] においては、特に、 R_{23} がベンゼン環、ピリジン環、イミダゾール環である場合が好ましい。
 - (B) S1サブサイトと相互作用する部分構造としては下記 [B-1]、 [B-2]、 [B-3] または [B-4] 群に示される部分構造が好ましい。

15 [B-1]群:

[B-2]群:

[B-3]群:

$$\xi - R_{25} - R_{24}$$
 $\xi - R_{25}$

5 (ここで、 R_{24} は、 [B-2] 群と同一である。 R_{25} は、ヘテロ原子を有する芳香族6 員環、5員環を示す。)

R25としては、ベンゼン環が好ましい。

[B-4]群:

10

(ここで、 R_{27} は、炭素数 $1\sim 3$ のアルキレン基を示す。 R_{24} は、 [B-2] 群と同一である。 R_{26} は、 [B-3] 群と同一である。)

(C) S4サイトと相互作用する部分構造としては下記 [C-1] または [C-2] 群に 15 示される部分構造が好ましい。

[C-1]群:

$$R_{28}$$
 R_{28}
 R_{28}

(ここで、 X_3 は、O、NH、または CH_2 であり、 R_{28} は、ヘテロ原子を有する芳香族6員環もしくは5員環を示す。)

[C-1] 群としては、 R_{28} がベンゼン環である部分構造が好ましい。

5 [C-2]群:

10

15

20

25

$$X_{7}$$
 X_{8}
 X_{10}
 X_{10}
 X_{10}

(ここで、 X_4 は、NH、S、またはOを示す。 X_5 、 X_6 、 X_7 、 X_8 、 X_9 、 X_{10} は、独立して、NまたはCHを示す。)

具体的には、(1)S2サイトと相互作用する部分構造として上記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有し、かつ、S1サブサイトと相互作用する部分構造として上記群 [B-1]、 [B-2]、 [B-3] または [B-4] 中に示される部分構造のいずれかを含有する低分子可逆的VIIa因子阻害剤、(2)S2サイトと相互作用する部分構造として上記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有し、かつ、S4サイトと相互作用する部分構造として上記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有する、低分子可逆的VIIa因子阻害剤、(3)S1サブサイトと相互作用する部分構造として上記群 [B-1]、 [B-2]、 [B-3] または [B-4] 中に示される部分構造のいずれかを含有し、かつ、S4サイトと相互作用する部分構造として上記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有する、低分子可逆的VIIa因子阻害剤が好適である。

また、特に好適には、S 2 サイトと相互作用する部分構造として上記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有し、かつ、S 1 サブサイトと相互作用する部分構造として上記群 [B-1]、 [B-2]、 [B-3] または [B-4] 中に示される部分構造のいずれかを含有し、かつ、S 4 サイトと相互作用する部分構造として上記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有する、低分子可逆的V I I a 因子阻害剤である。

実施例

5

10

15

以下、本発明を実施例を挙げてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。また、本発明化合物の有用性を説明するために、本発明化合物の代表的化合物のFVIIa阻害作用等に関する試験結果を試験例に示す。

なお、以下の実施例においては次に示すような慣用略号を用いる:

DMF=N, N-ジメチルホルムアミド、HOBt=1-ヒドロキシベンゾトリアゾール、EDC HCl=1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド 塩酸塩、

Boc=第3ブトキシカルボニル、Ac=アセチル、Fmoc=9-フルオレニルメトキシカルボニル、

HPLC=高速液体クロマトグラフィー。

また、物性値におけるNMRは核磁気共鳴スペクトルを意味し、数字は通常化学シフトを表示するのに用いられる δ (デルタ)値であり単位はppmである。内部標準物質は未使用または、TMS(テトラメチルシラン)を用いた。なお、 δ 値の次に表示したカッコ内の数字は水素原子の数であり、それに続く表示はsが単一線、dが二重線、tが三重線、qが四重線、mが多重線、brが巾広い吸収ピークを意味する。また、Jはカップリング定数を表わす。

MSは質量分析を表わし、FAB、ESIはそれぞれ、イオン化法を表わし、FAB は高速原子衝突イオン化法、ESIはエレクトロスプレーイオン化法を表わす。

20

25

実施例1

 N^1 -4-シアノベンジル- N^2 -t-ブトキシカルボニル-L-グルタマミド

4-シアノベンジルアミン1.6 g (12.2 mmol)のDMF(20 ml)溶液に、t-ブトキシカルボニル-L-グルタミン2.0 g (8.1 mmol)、HOBt 1.4 g (8.9 mmol)、EDC HCl 1.7 g (8.9 mmol)を加え、窒素気流下、 室温にて攪拌する。12時間後、反応液に水を加え酢酸エチルにて抽出する。酢酸エチル層を10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥する。硫酸マグネシウムを濾去し、濾液を減圧下に濃縮して N^1 -4-シアノベンジル- N^2 -t-ブトキシカルボニル-L-グルタマミド2.9 g (8.1 mmol: 収率100%)

を得た。

H-NMR (CDCl₈) δ : 1.42 (9H, s), 1.87-2.55 (4H, m), 4.14-4.27 (1H, m), 4.49 (2H, d, J=6 Hz), 5.47-6.02 (2H, m), 7.38 (2H, d, J=8 Hz), 7.60 (2H, d, J=8 Hz)

5 実施例2

N¹-4-シアノベンジル-L-グルタマミド

 N^1 -4-シアノベンジル- N^2 -t-ブトキシカルボニル-L-グルタマミド2.9 g (8.1 mmol)に、4N塩酸-酢酸エチル溶液(20 ml)を加え、窒素気流下、室温にて攪拌する。1時間後、減圧下で溶媒を留去し、残留物をカラムクロマトグラフィー(富士10 シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=1:1)に付し、 N^1 -4-シアノベンジル-L-グルタマミド2.1 g (8.1 mmol:収率100%)を得た。H-NMR (CD_3OD) δ : 1.77-2.12 (2H, m), 2.32 (3H, t, J=7 Hz), 3.29-3.45 (4H, m), 4.49 (2H, s), 7.50 (2H, d, J=8 Hz), 7.71 (2H, d, J=8 Hz)

15 実施例3

<u>1-(たプトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマ</u> ミド

N¹-4-シアノベンジル-L-グルタマミド300 mg (1.2 mmol)、N-(9-フルオレニルメトキシカルボニル)-1-(たブトキシカルボニル)-D-トリプトファン606 mg (1.2 mmol)のDMF (5 ml)溶液にHOBt 176 mg (1.2 mmol)、EDC HCl 221 mg (1.2 mmol)を加え、窒素気流下、 室温にて攪拌する。12時間後、反応液に水を加え析出するN-(9-フルオレニルメトキシカルボニル)-1-(たブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミドを濾取し、水洗乾燥する。得られたN-(9-フルオレニルメトキシカルボニル)-1-(たブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミドをジクロロメタン(40 ml)に溶解し、ピペリジン(10 ml)を加え、窒素気流下、室温にて攪拌した。5分後、減圧下で溶媒を留去し、残留物をカラムクロマトグラフィー(富士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=1:0,10:1)に付し、1-(たブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド

650 mg (1.2 mmol: 収率100%)を得た。

H-NMR (CDCl₃) δ : 1.67 (9H, s), 1.80-2.49 (4H, m), 3.13-3.33 (2H, m), 3.70-3.79 (1H, dd, $\mathcal{J}=4$, 9 Hz), 4.40 (2H, d, $\mathcal{J}=6$ Hz), 4.39-4.55 (1H, m), 5.62 (1H, brs), 6.14 (1H, brs), 7.20-7.67 (9H, m), 8.07-8.17 (2H, m)

5

実施例4

 $N-(エチルスルホニル)-1-(t-ブトキシカルボニル)-D-トリプトフィル-<math>N^1-(4-シア)$ ベンジル)-L-グルタマミド

1-(たブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタ マミド300 mg (0.55 mmol)のDMF(10 ml)溶液に、トリエチルアミン162 mg (1.6 mmol)、エタンスルホニルクロライド206 mg (1.6 mmol)を加え、窒素気流下、室温にて攪拌した。12時間後、減圧下で溶媒を留去し、残留物をフラッシュカラムクロマトグラフィー(Merck Silicagel 60:移動相;ジクロロメタン:メタノール=10:1)に付し、N-(エチルスルホニル)-1-(たブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド135 mg (0.21 mmol:収率38%)を得た。

H-NMR (CD₃OD) δ : 1.08 (3H, t, J=7 Hz), 1.70 (9H, s), 1.60-2.12 (4H, m), 2.75-3.34 (4H, m), 4.13-4.55 (4H, m), 7.24-7.78 (9H, m)

20 実施例5

 $N-(エチルスルホニル)-D-トリプトフィル-<math>N^1-(4-アミジノベンジル)-L-グルタマミ$ ド

25

N-(エチルスルホニル)-1-(t-ブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド135 mg (0.21 mmol)を飽和塩化水素ーエタノール溶液10 mlに溶解し、室温にて20時間放置する。減圧下で溶媒を除去し、得られたN-(エチルスルホニル)-D-トリプトフィル-N¹-(4-エトキシイミノカルボニルベンジル)-L-グルタマミドをエタノール(8 ml)に溶解し酢酸アンモニウム500 mg (6.4 mmol)、飽和アンモニアーエタノール溶液1.3 mlに溶解し加熱還流した。 1 時間後減圧下で溶媒を留去し、残留物をカラムクロマトグラフィー(富士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=1:1)に付し、4-アミジノ-[(S)-N-[(R)-N'-エチルスルホニルトリプトフィル]グルタミニル]アミノメチルベンゼン94 mg (0.17 mmol: 収率81%)を得た。

 $ESI + 556 (M^+ + 1)$

H-NMR (DMSO-d6) δ : 0.85 (3H, t, \mathcal{F} 7 Hz), 1.65-2.03 (2H, m), 2.48-3.54 (6H, m), 4.12-4.43 (4H, m), 6.70-7.75 (9H, m), 7.95 (1H, brs), 8.43 (2H, brs)

15 実施例6

5

10

20

25

 $N-\{[3-(メトキシカルボニル)ベンジル]スルホニル}-1-(t-ブトキシカルボニル)-D-ト$ リプトフィル- N^1 -(4-シアノベンジル)-L-グルタマミド

1-(t-ブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド350 mg (0.64 mmol)のDMF(10 ml)溶液に、トリエチルアミン194 mg (1.9 mmol)、[3-(メトキシカルボニル)ベンジル]スルホニルクロライド477 mg (1.9 mmol)を加え、窒素気流下、室温にて攪拌した。12時間後、減圧下で溶媒を留去し、残留物をフラッシュカラムクロマトグラフィー(Merck Silicagel 60:移動相;ジクロロメタン:メタノール=10:1)に付し、N-{[3-(メトキシカルボニル)ベンジル]スルホニル}-1-(t-ブトキシカルボニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド407 mg (0.21 mmol:収率84%)を得た。

H-NMR (CD₃OD) δ : 1.70 (9H, s), 1.75-2.15 (4H, m), 2.65-3.42 (2H, m), 3.92 (3H, s), 3.88-4.54 (6H,m), 7.23-8.21 (13H, m)

実施例7

N-[(3-(カルボキシベンジル)スルホニル]-D-トリプトフィル- N^1 -(4-アミジノベンジル)-L-グルタマミド

5

N-{[3-(メトキシカルボニル)ベンジル|スルホニル}-1-(t-ブトキシカルボニル)-D-10 トリプトフィル- N^1 -(4-シアノベンジル)-L-グルタマミド407 mg (0.21 mmol)を飽 和塩化水素ーエタノール溶液15 mlに溶解し、室温にて20時間放置した。減圧下 で溶媒を除去し、得られた粗生成物をエタノール(16 ml)に溶解し酢酸アンモニ ウム1 g (12.8 mmol)、飽和アンモニアーエタノール溶液2.4 mlに溶解し加熱還流 した。1時間後減圧下で溶媒を留去し、残留物をカラムクロマトグラフィー(富 15 士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=4:1,1:1) に付し、N-{[3-(メトキシカルボニル)ベンジル]スルホニル}-D-トリプトフィル- N^{1} -(4-アミジノベンジル)-L-グルタマミド及び、N-{[3-(エトキシカルボニル)ベン ジルIスルホニル}-D-トリプトフィル-N¹-(4-アミジノベンジル)-L-グルタマミドを 混合物として得た。上記混合物をエタノール(2 ml)に溶解し、2N水酸化ナトリウ 20 ム水溶液(2 ml)を加え、室温にて攪拌する。1時間後、反応液を1N塩化水素水溶 液でpH=6とした後、沈殿物を濾取した。得られた粗生成物を分取用 HPLC(YMC-pack ODS: gradient of 95% A/B to 45% A/B over 25 min, A=0.1% TFA-H₂O, B=0.1% TFA-CH₂CN)に付し、N-[(3-(カルボキシベンジル)スルホニ J ν J-D-トリプトフィル- N^1 -(4-アミジノベンジル)-L-グルタマミド トリフルオロ酢 25 酸塩68 mg (0.088 mmol: 収率16%)を得た。

 $ESI+662 (M^{+}+1)$

H-NMR (DMSO-d6) δ : 1.64-2.02 (4H, m), 2.90-3.21 (2H, m), 3.89-4.41 (6H,m),6.75-7.95 (13H, m)

実施例8

5

10

20

N-(ベンジルスルホニル)-D-イソロイシン

D-イソロイシン3 g (22.9 mmol)のジオキサン(184 ml)溶液に、1N水酸化ナトリウム水溶液(23 ml)を加え、ついで、ベンジルスルホニルクロライド6 g (34.4 mmol)を加え、室温にて攪拌した。3時間後、反応液を2N塩化水素水溶液でpH=2とした後、酢酸エチルにて抽出した。酢酸エチル層を無水硫酸マグネシウムにて乾燥する。硫酸マグネシウムを濾去し、濾液を減圧下に濃縮して残渣をフラッシュカラムクロマトグラフィー(Merck Silicagel 60:移動相;ジクロロメタン:メタノール=10:1,4:1)に付し、N-(ベンジルスルホニル)-D-イソロイシン6.3 g (22.2 mmol:収率97%)を得た。

H-NMR (CDCl₃) δ : 0.78-1.02 (6H, m), 1.05-1.60 (2H, m), 1.68-1.92 (1H, m), 3.85 (1H, dd, \mathcal{F} 4, 7 Hz), 4.22-4.38 (2H, m), 5.17 (1H, d, \mathcal{F} 9 Hz), 5.97 (1H, brs), 7.26-7.48 (5H, m)

15 実施例 9

N-(ベンジルスルホニル)-D-イソロイシル-L-メチオニン メチルエステル

N-(ベンジルスルホニル)-D-イソロイシン6.3 g (22.2 mmol)、L-メチオニン メチルエステル塩酸塩6.7 g (33.3 mmol)のジクロロメタン(100 ml)溶液にHOBt 4.1 g (26.6 mmol)、EDC HCl 5.1 g (1.2 mmol)、N-メチルモルホリン3.4 g (33.3 mmol)を加え、窒素気流下、 室温にて攪拌した。12時間後、反応液に水を加え酢酸エチルにて抽出した。酢酸エチル層を10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥する。硫酸マグネシウムを濾去し、濾液を減圧下に濃縮して残渣をフラッシュカラムクロマトグラフィー(Merck Silicagel 60:移動相;ジクロロメタン)に付し、

25 N-(ベンジルスルホニル)-D-イソロイシル-L-メチオニン メチルエステル6.4~g (14.9 mmol:収率67%)を得た。

H-NMR (CD₃OD) δ : 0.92-1.02 (6H, m), 1.18-1.36 (1H, m), 1.62-1.88 (2H, m), 2.00-2.28 (2H, m), 2.12 (3H, s), 2.51-2.77 (2H, m), 3.71 (3H, s), 3.83 (1H, d, \mathcal{L} =8 Hz), 4.32 (2H, q, \mathcal{L} =13 Hz), 4.68 (1H, dd, \mathcal{L} =5, 9 Hz), 7.32-7.51 (5H, m)

実施例10

 $N-(^{\prime}(^{\prime})^{\prime})^{\prime}$ N-($^{\prime}(^{\prime})^{\prime}$) N-(

5

20

10 N-(ベンジルスルホニル)-D-イソロイシル-L-メチオニン メチルエステル6.4 g (14.9 mmol)のエタノール(30 ml)溶液に、2N水酸化ナトリウム水溶液(30 ml)を加え、室温にて攪拌した。1時間後、反応液を2N塩化水素水溶液にてpH=2とした後、酢酸エチルにて抽出した。酢酸エチル層を飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥した。硫酸マグネシウムを濾去し、濾液を減圧下に濃縮してN-(ベンジルスルホニル)-D-イソロイシル-L-メチオニン6.2 g (14.9 mmol:収率100%)を得た。

N-(ベンジルスルホニル)-D-イソロイシル-L-メチオニン100 mg (0.24 mmol)、 4-アミノベンジルアミン59 mg (0.48 mmol)のジクロロメタン(5 ml)溶液にHOBt 44 mg (0.29 mmol)、EDC HCl 56 mg (0.29 mmol)を加え、窒素気流下、 室温 にて攪拌した。12時間後、反応液を減圧下に濃縮し、残渣に水を加え沈殿物を濾取し、水洗乾燥した。得られた粗生成物をカラムクロマトグラフィー(富士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=10:1)に付し、 N-(ベンジルスルホニル)-D-トリプトフィル-N1-(4-アミノベンジル)-L-メチオニナミド108 mg (0.21 mmol: 収率86%)を得た。

25 ESI+ 521 (M⁺+1)

H-NMR (CD₃OD) δ : 0.87-1.00 (6H, m), 1.09-1.28 (1H, m), 1.57-1.83 (2H, m), 1.86-2.26 (2H, m), 2.09 (3H, s), 2.43-2.69 (2H, m), 3.71 (3H, s), 4.13-4.32 (4H, m), 4.50-4.68 (2H, m), 6.64 (2H, d, \mathcal{J} =8 Hz), 7.01 (2H, d, \mathcal{J} =8 Hz), 7.32-7.49 (5H, m)

実施例11

5

10

 $N-(J^2 + U^2 +$

N-(プロピルスルホニル)-D-イソロイシル-3-[(t-ブトキシカルボニル)(メチル)アミノ]-N¹-(t-シアノベンジル)-L-アラニナミド1.6g (3 mmol)に、トリフルオロ酢酸(10 ml)を加え、窒素気流下、室温にて攪拌した。1時間後、反応液を減圧下に濃縮し残渣をカラムクロマトグラフィー(富士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=1:0、4:1)に付し、N-(プロピルスルホニル)-D-イソロイシル-3-(メチルアミノ)-N¹-(t-シアノベンジル)-L-アラニナミド1.3g (2.9 mmol:収率96%)を得た。

 $ESI+ 452 (M^++1)$

H-NMR (CDCl₃) δ : 0.79-1.23 (10H, m), 1.46-1.95 (4H, m), 2.41 (3H, s), 2.52-3.81 (4H,m), 4.33-4.52 (4H, m), 7.36 (2H, d, \mathcal{J} =8 Hz), 7.59 (2H, d, \mathcal{J} =8 Hz)

15 実施例12

 $N-(J^2 + U^2 +$

N-(プロピルスルホニル)-D-イソロイシル-3-(メチルアミノ)-N¹-(4-シアノベンジル)-L-アラニナミド500 mg (1.0 mmol)の水(1.3 ml)-テトラヒドロフラン(3 ml)溶液に、50℃攪拌下にて、シアン酸カリウム243 mg (3 mmol)を加えそのまま攪拌した。3時間攪拌後、反応液に水を加え、酢酸エチルにて抽出した。酢酸エチル層を無水硫酸マグネシウムにて乾燥した。硫酸マグネシウムを濾去し、濾液を減圧下に濃縮してN-(プロピルスルホニル)-D-イソロイシル-3-[(アミノカルボニ

ル)(メチル)アミノ]-N¹-(4-シアノベンジル)-L-アラニナミド430 mg (0.87 mmol:収率87%)を得た。

得られた生成物を飽和塩化水素ーエタノール溶液10 mlに溶解し、室温にて20時間放置した。減圧下で溶媒を除去し、得られた粗生成物を飽和アンモニア-エタノール(10 ml)に溶解し室温にて20時間放置した。減圧下で溶媒を留去し、残留物を分取用HPLC(YMC-pack ODS: gradient of 95% A/B to 25% A/B over 10 min, A=0.1% TFA- H_2 O, B=0.1% TFA- CH_3 CN)に付し、N-(プロピルスルホニル)-D-イソロイシル-3-[(アミノカルボニル)(メチル)アミノ]-N1-(4-アミジノベンジル)-L-アラニナミド トリフルオロ酢酸塩27 mg (0.004 mmol: 収率5%)を得た。

10 ESI+ 512 (M⁺+1)

5

H-NMR (CD3OD) δ : 0.87-1.10 (9H, m), 1.12-1.88(5H, m), 2.92 (3H, s), 2.87-3.12 (2H,m), 3.52 (1H, dd, \mathcal{J} =4, 15 Hz), 3.65 (1H, d, \mathcal{J} =8 Hz), 3.82 (1H, dd, \mathcal{J} =9, 14 Hz), 4.43-4.67 (3H, m), 7.54 (2H, d, \mathcal{J} =8 Hz), 7.76 (2H, d, \mathcal{J} =8 Hz)

15 実施例13

20

25

 $N-(ベンジルスルホニル)-D-イソロイシル- <math>N^1-\{4-[1]\}$ (メチルチオ) メチル] ベンジル}-L-メチオニナミド

N-(ベンジルスルホニル)-D-イソロイシル- N^1 -(4-シアノベンジル)-L-メチオニナミド100mg(0.19mmol)をピリジン5 ml、トリエチルアミン0.5mlに溶解し、5 分間硫化水素ガスを通気下後、2 4時間攪拌した。反応混合物に酢酸エチルを加え、0.5N塩酸、飽和炭酸水素水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、残留物をアセトニトリルに溶解しヨウ化メチル0.14ml(0.94mmol)を加え2時間、窒素雰囲気下で加熱還流した。減圧下で溶媒を留去し、残留物をシリカゲルカラム(ジクロロメタン:メタノール=10:1)で精製し、N-(ベンジルスルホニル)-D-イソロイシル- N^1 - $\{4$ - $\{1\}$ - $\{1$

H-NMR (CD₈OD) δ : 0.85-0.90 (6H, m), 2.03 (3H, s), 2.40 (3H, s), 3.69 (1H, t, \mathcal{J} =6 Hz), 4.50-4.60 (1H, m), 7.21-7.39 (8H, m), 7.60-7.64 (1H, m)

実施例14

5

N-(ベンジルスルホニル)-D-イソロイシル- N^1 -{4-[イミノ(メチルチオ)メチル]ベンジル}-L-メチオニナミド49mg(0.084mmol)をジクロロメタン2mlおよびメタノール2mlに溶解しヒドラジン0.020ml(0.624mmol)を加え18時間攪拌した。

10 減圧下で溶媒を留去し、残留物を分取用HPLCで精製し、N-(ベンジルスルホニル)-D-イソロイシル- N^1 -{4-[ヒドラジノ(イミノ)メチル]ベンジル}-L-メチオニナミド29mg (0.051 mmol: 収率61%)を得た。

ESI+ 563 (M⁺+1)

H-NMR (CD₈OD) δ : 0.85-0.90 (6H, m), 1.58-1.78 (2H, m), 2.42-2.58 (2H, m), 3.63 (1H, d, \mathcal{J} =7 Hz), 4.21 (2H, s), 4.53 (1H, brs), 7.25-7.57 (9H, m)

実施例15

 $N-(^{(1)})^{(1)}$ $N^{(1)}$ $N^{($

20

25

 $N-(ベンジルスルホニル)-D-イソロイシル-<math>N^1-(4-シアノベンジル)-L-$ メチオニナミド100mg(0.19mmol)をエタノール6 mlおよびピリジン0.6 mlに溶解しハイドロキシアミン塩酸塩1 2 0 mgを加え1 6 時間攪拌した。減圧下で溶媒を留去し、残留物をエタノールに溶解しろ過後、分取用HPLCで精製し、 $N-(ベンジルスルホニル)-D-イソロイシル-<math>N^1-[4-(E)-アミノ(ハイドロキシイミノ)$ メチル]ベンジル]-L-メチオニナミド1.6 mg (0.00003 mmol: 収率<math>1.5%)を得た。

 $ESI+ 564 (M^++1)$

H-NMR (CD₃OD) δ : 0.85-0.90 (6H, m), 1.50-1.70 (2H, m), 2.05 (3H, s), 2.43-2.60 (2H, m), 3.60 (1H, d, J=8 Hz), 4.20 (1H, s), 7.25-7.45 (9H, m)

10

5

実施例16

 $N-(^{\prime})$ N^{-1} N^{-1}

15

20

25

 $N-(ベンジルスルホニル)-D-イソロイシル- <math>N^1$ -{4- [アミノ(イミノ)メチル] ベンジル}-L-メチオニナミド20mg(0.032mmol)をジメチルホルムアミド0.5mlに溶解しトリエチルアミン0.018ml(0.13mmol)およびジ-ターシャリーブチルカルボナート14mg(0.065mmol)を加え 1 6 時間攪拌した。反応混合物に酢酸エチルを加え水で洗浄後、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、残留物をプレパラティブTLC(ジクロロメタン:メタノール=1 0 : 1)で精製しN-(ベンジルスルホニル)-D-イソロイシル- N^1 -[4-((E)-アミノ [[(t-ブチルオキシ)カルボニル]イミノ] メチル)ベンジル]-L-メチオニナミド 1 6 mg (0.024 mmol : 収率

76%)を得た。

ESI+ 648 (M⁺+1)

H-NMR (CD₃OD) δ : 0.85-0.90 (6H, m), 1.50 (9H, s), 2.03 (3H, s), 3.68 (1H, d, \mathcal{J} =8 Hz), 4.20 (2H, s), 7.20-7.38 (7H, m), 7.64-7.70 (2H, m)

5

実施例 17

 $N-(TFNZN+TN)-3,5-ビZ(FUZN+TD)-D-フェニルアラニル-N^1-(4-シアノベンジル)-L-グルタマミド$

4-ブロモ-N-(エチルスルホニル)-D-フェニルアラニル-N¹-(4-シアノベンジル)-10 L-グルタマミド30 mg (0.052 mmol)をテトラヒドロフラン4 mlおよび水0.4 mlに溶解し、次いで3,5-ビストリフルオロメチルフェニルボロン酸40.2 mg (0.156 mmol)、炭酸ナトリウム50 mg、テトラキス(トリフェニルホスフィン)パラジウム30 mg (0.026 mmol)を加え、窒素雰囲気下、2 時間加熱還流した。反応混合物に酢酸エチルを加え、水で洗浄した後、有機層を硫酸ナトリウムで乾燥した。

15 減圧下で溶媒を留去し、残留物をプレパラティブTLC(ジクロロメタン:メタノール=10:1)で精製した後、分取用HPLCで精製しN-(エチルスルホニル)-3,5-ビス(トリフルオロメチル)-D-フェニルアラニル-N1-(4-シアノベンジル)-L-グルタマミド 24 mg (0.034 mmol: 収率65%)を得た。

ESI+ 712 (M⁺+1)

20 H-NMR (CD₃OD) δ : 1.10 (3H, t, \mathcal{J} =7 Hz), 1.75-1.87 (2H, m), 1.88-2.07 (2H, m), 2.82-3.10 (4H, m), 4.10-4.30 (2H, m), 4.40-4.50 (2H, m), 7.10-7.62 (9H, m), 8.10(1H, s)

実施例18

25 N-(エチルスルホニル)-3,5-ビス(トリフルオロメチル)-D-フェニルアラニル- N^1 -{4-アミジノベンジル}-L-グルタマミド

5

20

25

出発物質としてN-(エチルスルホニル)-3,5-ビス(トリフルオロメチル)-D-フェニルアラニル-N'-(4-シアノベンジル)-L-グルタマミドを用いて実施例5と同様にして目的化合物を得た。

ESI+ 729 (M⁺+1)

10 H-NMR (CD₃OD) δ : 1.05 (3H, t, \mathcal{F} =7 Hz), 1.75-1.85 (2H, m), 1.97-2.05 (2H, m), 2.82-3.10 (4H, m), 4.15-4.22 (2H, m), 4.45 (1H, s), 7.40-7.51 (4H, m), 7.62-7.70 (3H, m), 7.90 (1H, s), 8.13 (2H, s)

実施例19

15 N-(t-ブトキシカルボニル)- 5 -{[3 -(メトキシカルボニル)ベンジル]オキシ}-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド

N-(t-ブトキシカルボニル)- 5 -ヒドロキシ-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド 327 mg (0.58 mmol)のアセトン (4 ml)溶液に 3-(メトキシカルボニル)ベンジルブロマイド 267 mg (1.2 mmol)、炭酸セシウム 378 mg (1.2 mmol)を加え、窒素気流下、 加熱還流にて攪拌する。4時間後、反応液をろ過し濾液を減圧下に濃縮した。残留物をフラッシュカラムクロマトグラフィー (Merck Silicagel 60:移動相;ジクロロメタン:メタノール=10:1)に付し、N-(t-ブトキシカルボニル)-5-{[3-(メトキシカルボニル)ベンジル]オキシ}-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド347 mg (0.5 mmol:収率 84%)を得た。

ESI+ 711 (M⁺+1)

H-NMR (CD₃OD) δ : 1.30 (9H, s), 1.50-2.08 (4H, m), 3.02-3.22 (2H, m), 3.93 (3H, s), 4.02-4.27 (2H, m), 4.39-4.55 (1H, m), 5.20 (2H, s), 6.88 (1H, dd, J=2, 9 Hz), 7.12 (1H, s), 7.19 (1H, d, J=2 Hz), 7.26 (1H, d, J=9 Hz), 7.42 (2H, d, J=8

Hz), 7.51 (1H, t, *J*=7 Hz), 7.66 (2H, d, *J*=8 Hz), 7.75 (1H, d, *J*=6 Hz), 7.97 (1H, d, *J*=6 Hz), 8.17 (1H, s)

<u>実施例20</u>

5 <u>5-{[3-(メトキシカルボニル)ベンジル]オキシ}-N-(エチルスルホニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド</u>

N-(t·ブトキシカルボニル)- 5 -{[3-(メトキシカルボニル)ベンジル]オキシ}-D-トリプトフィル- N^1 -(4-シアノベンジル)-L-グルタマミド347 mg (0.5 mmol)のジクロロメタン (10 ml)溶液に、トリフルオロ酢酸 (10 ml)を加え、窒素気流下、室10 温にて攪拌した。1時間後、減圧下で溶媒を留去した。残留物をカラムクロマトグラフィー(富士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=1:1)に付し、5 -{[3-(メトキシカルボニル)ベンジル]オキシ}-D-トリプトフィル- N^1 -(4-シアノベンジル)-L-グルタマミド277 mg (0.45 mmol: 収率93%)を得た。

5-{[3-(メトキシカルボニル)ベンジル]オキシ}-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド (0.45 mmol) のDMF(10 ml)溶液に、トリエチルアミン137 mg (1.4 mmol)、エタンスルホニルクロライド174 mg (1.4 mmol)を加え、窒素気流下、室温にて攪拌した。2時間後、減圧下で溶媒を留去し、残留物をフラッシュカラムクロマトグラフィー(Merck Silicagel 60:移動相;ジクロロメタン:メタノール=8:1)に付し、5-{[3-(メトキシカルボニル)ベンジル]オキシ}-N-(エチルスルホニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド158 mg (0.22 mmol: 収率50%)を得た。

 $ESI + 703 (M^{+}+1)$

25

H-NMR (CD₃OD) δ : 0.94 (3H, t, J=7 Hz), 1.60-2.08 (4H, m), 2.58-3.30 (4H, m), 3.91 (3H, s), 4.02-4.27 (2H, m), 4.35-4.48 (2H, m), 5.20 (2H, s), 6.89 (1H, dd, J=2, 9 Hz), 7.12 (1H, s), 7.19 (1H, d, J=2 Hz), 7.27 (1H, d, J=9 Hz), 7.42-7.53 (3H, m), 7.65 (2H, d, J=8 Hz), 7.73 (1H, d, J=6 Hz), 7.98 (1H, d, J=6 Hz), 8.16 (1H, s)

実施例21

<u>5-{[3-(メトキシカルボニル)ベンジル]オキシ}-N-(エチルスルホニル)-D-トリプ</u>トフィル-N¹-{4-[アミノ(イミノ)メチル]ベンジル}-L-グルタマミド

5-{[3-(メトキシカルボニル)ベンジル]オキシ}-N-(エチルスルホニル)-D-トリプトフィル-N¹-(4-シアノベンジル)-L-グルタマミド 158 mg (0.22 mmol)のピリジン(10 ml)、トリエチルアミン(2 ml)溶液に硫化水素ガスを吹き込んだ。30分後ガスの吹込みをやめ、そのまま放置した。12時間後反応液に水-酢酸エチルを加え、水層を2N塩化水素水溶液にてPH=4とした後、抽出した。有機層を飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥した。硫酸マグネシウムを10 濾去し、濾液を減圧下に濃縮した。

残留物をアセトン(10 ml)に溶解し、ヨウ化メチル312 mg (2.2 mmol)を加え 5 0 ℃にて、窒素気流下撹拌した。 1 時間後反応液を減圧下に濃縮した。

残留物のメタノール(10 ml)溶液に酢酸アンモニウム170 mg (2.2 mmol)を加え 窒素気流下に加熱還流した。 4 時間後減圧下で溶媒を留去し、残留物をカラムクロマトグラフィー(富士シリシアNH-DM-1020:移動相;ジクロロメタン:メタノール=4:1、2:1)に付し、5-{[3-(メトキシカルボニル)ベンジル]オキシ}-N-(エチルスルホニル)-D-トリプトフィル-N¹-{4-[アミノ(イミノ)メチル]ベンジル}-L-グルタマミド124 mg (0.17 mmol:収率78%)を得た。

 $ESI+720 (M^{+}+1)$

15

20 H-NMR (CD₃OD) δ : 0.94 (3H, t, \mathcal{J} =7 Hz), 1.64-2.10 (4H, m), 2.55-3.30 (4H, m), 3.89 (3H, s), 4.08-4.42 (4H, m), 5.18 (2H, s), 6.87 (1H, dd, \mathcal{J} =2, 9 Hz), 7.15 (1H, s), 7.20-7.76 (8H, m), 7.95 (1H, d, \mathcal{J} =6 Hz), 8.14 (1H, s)

実施例22

25 $\underline{5}$ - $\underline{[(3-)n\pi+)\pi+)\pi+}\underline{[-N-(x+)n\pi+)\mu-}\underline{[(3-)n\pi+)\pi+}\underline{[(3-)n\pi+)\pi$

5-{[3-(メトキシカルボニル)ベンジル]オキシ}-N-(エチルスルホニル)-D-トリプトフィル- N^1 -{4-[Pミノ(イミノ)メチル]ベンジル}-L-グルタマミド124 mg (0.17 mmol)のエタノール(3 ml)溶液に1N水酸化ナトリウム水溶液(3 ml)を加え、室温にて撹拌した。2 時間後、反応液に1N塩化水素水溶液を加えて、PH=6とした後、減圧下に濃縮した。残留物を分取用HPLC(YMC-pack ODS:gradient of 95% A/B to 25% A/B over 10 min, A=0.1% TFA- H_2O , B=0.1% TFA- CH_3CN)に付し、5-[(3-カルボキシベンジル)オキシ]-N-(エチルスルホニル)-D-トリプトフィル- N^1 -{4-[Pミノ(イミノ)メチル]ベンジル}-L-グルタマミド85 mg (0.1 mmol:収率61%)を得た。

ESI+ 706 (M+1)

5

10

15

H-NMR (CD₃OD) δ : 0.97 (3H, t, J=7 Hz), 1.59-2.07 (4H, m), 2.55-3.28 (4H, m), 3.89 (3H, s), 4.10-4.54 (4H, m), 5.19 (2H, s), 6.90 (1H, dd, J=2, 9 Hz), 7.16 (1H, s), 7.23 (1H, d, J=2 Hz), 7.27 (1H, d, J=9 Hz), 7.50-8.00 (7H, m), 8.16 (1H, s)

実施例23~実施例182

上記実施例1~22に記載の製法、および前記反応スキームに記載の製法にし 20 たがい、実施例化合物23~182を得た。これら化合物の構造式および機器データを表1~34に示した。表中、試薬2、試薬5、中間体9、などは、前記反応スキームに示した試薬、中間体に相当する。

表1

実施例	試薬 2	試薬 5	試薬8	Structure MS
23	HO ₂ C [™] NHBoc	HO ₂ C NHBoc		HN NH ₂ ESI+ 394 (M ⁺ +1)
24	CO ₂ Et	HO ₂ C NHBoc	CI-S	FAB+ 560 (M ⁺ +1)
25	OAc HO ₂ C ^W NHBoc	HO ₂ C NHBoc	CI-S	OH NH NH₂ NH₂ NH₂ FAB+ 532 (M ⁺ +1)
26	OAc HO ₂ C' NHBoc	HO ₂ C NHBoc	CI-S	OH NH NH O HN NH2 ESI+ 504 (M*+1)
27	OAc HO ₂ C ^N NHBoc	HO ₂ C NHBoc	CI-S	FAB+ 518 (M ⁺ +1)

表2

実施例	試薬 2	試薬 5	試薬8	Structure MS
28	HO ₂ O" NHBoc	HO ₂ C NHFmoc		HN NH ₂ HN NH ₂ FAB+ 364 (M ⁺ +1)
29	OH HO ₂ C"—NHBoc	HO ₂ C NHBoc		OH N NH2 HN NH2 ESI+ 398 (M ⁺)
30	HO ₂ C" NHBoc	HO ₂ C NHFmoc	CI O	H NH OH O NH O S=0 HN NH ₂ ESI+ 554 (M ⁺ +1)
31	HO ₂ C [™] NHBoc	HO ₂ C NHFmoc	CI O Br	H NH OH NH OH NH OSTO HN NH₂ Br ESI+ 583 (M ⁺ +1)
32	HO ₂ C [™] NHBoc	HO ₂ C NHFmoc	CI-S	H NH OH

表3

実施例	試薬2	試薬5	試薬8	Structure MS
33	HO ₂ C ^N NHBoc	HO ₂ C NHFmoc	O-50	HN NH ₂ OH ONH OS=O HN NH ₂ ESI+ 518 (M ⁺ +1)
34	HO ₂ C' NHBoc	HO ₂ C NHFmoc	CI O	H NH OH OH O'S-O HN NH2 (M ⁺ +1)
35	HO₂C ^{v. N} HBoc	HO ₂ C NHFmoc	O N H	H NH OH O NH O S=0 HN NH ₂ HN O ESI+ 561 (M ⁺ +1)
36	HO₂C' ^N HBoc	HO₂C NHFmoc	CIÇS	H NH OH OH O S-O NH O S-O HN NH ₂ ESI+ 470 (M ⁺ +1)
37	HO₂C" NHBoc	HO ₂ C NHFmoc	O Clos	H NH OH

実施例	試薬2	試薬5	試薬8	Structure MS
38	HO ₂ C [™] NHBoc	HO ₂ C NHFmoc	CI (O	H NH OH O NH O \$=0 HN NH ₂ ESI+ 442 (M ⁺ +1)
39	S HO ₂ C [™] NHBoc	HO ₂ C NHBoc	O.S.	H NH NH O \$-0 HN NH2 FAB+ 500 (M ⁺ +1)
40	HO ₂ C NHBoc	HO ₂ C NHBoc	Cl\s	H NH NH O S O NH O S
41	S HO ₂ C [™] NHBoc	НО₂Стинвос		H N NH ₂ HN NH ₂ FAB+ 394 (M ⁺ +1)
42	O_NH ₂ HO ₂ C'' NHBoc	HO ₂ C NHBoc		O NH ₂ H NH NH O NH ₂ HN NH ₂ FAB+ 391 (M ⁺ +1)

実施例	試薬2	試薬 5	試薬 8	Structure MS
43	CONH ₂ HO ₂ C ^N NHBoc	HO ₂ C NHBoc	O - S - \	CONH ₂ H NH O O HN NH ₂ FAB+ 483 (M ⁺ +1)
44	CONH ₂ HO ₂ C ^N NHBoc	НО₂С №НВос	CI O	H NH ₂ O HN S O HN NH ₂ O (M ⁺ +1)
45	HO ₂ C ⁽⁾ NHBoc	HO₂C NHBoc		CONH ₂ H NH NH NH ₂ HN NH ₂ ESI+ 377 (M ⁺ +1)
46	OH HO₂C" NHBoc	HO₂C NHBoc		OH H N NH O NH NH FAB+ 412 (M ⁺ +1)
47	CONH ₂ HO ₂ C ^N NHBoc	HO₂C NHBoc	Cl cs	CONH ₂ H N NH O HN NH ₂ FAB+ 497 (M ⁺ +1)

実施例	試薬2	試薬 5	試薬8	Structure MS
48	CONH₂ HO₂C [™] NHBoc	HO ₂ C NHBoc	CI O	CONH ₂ H NH O O HN NH ₂ FAB+ 526 (M ⁺ +1)
49	OH HO ₂ C'' NHBoc	HO ₂ C NHBoc	Cl. S.	OH H
50	OH HO ₂ C' NHBoc	HO ₂ C NHBoc	Cl	OH OH NH2 ESI+ 518 (M ⁺ +1)
51	HO ₂ C ^{VIII} NHBoc	HO ₂ C NHBoc	CI-S OS CO₂H	HN NH SO CO ₂ H ESI+ 578 (M*+1)
52	HO ₂ C ^W NHBoc	HO ₂ C NHBoc		H NH ₂ NH ₂ HN NH ₂ FAB+ 428 (M ⁺ +1)

実施例	試薬2	試薬 5	試薬8	Structure MS
53	HO ₂ C ⁽⁾ NHBoc	HO ₂ C NHBoc	CI O	CONH ₂ H NH O O HN NH ₂ FAB+ 497 (M ⁺ +1)
54	HO ₂ C'. NHBoc	HO ₂ C NHBoc	Cl. S	H NH NH O HN NH2
				FAB+ 582 (M ⁺ +1)
55	HO ₂ C [*] NHBoc	HO ₂ C NHBoc	CI-S	H NH NH SO HN NH2 FAB+ 534 (M*+1)
56	HO ₂ C ⁽⁾ NHBoc	HO ₂ C NHBoc	Cl. S O.S CO₂H	HN NH ₂ CO ₂ Et ESI+ 640 (M ⁺ +1)
57	HO ₂ C ¹ NHBoc	HO ₂ C NHBoc	CI-S O-S CO ₂ H	HN NH ₂ CO ₂ H ESI+ 612 (M ⁺ +1)

実施例	試薬2	試薬 5	試薬8	Structure MS
58	HO ₂ C ^{·····} NHBoc	HO₂C NHFmoc	CI-S O CO₂H	HN NH ₂ OH CO ₂ Et ESI+ 594 (M ⁺ +1)
59	HO ₂ C [™] NHBoc	HO₂C NHFmoc	CI-S O'S CO₂H	S N NH O O HN NH ₂ CO ₂ H ESI+ 566 (M*+1)
60	S HO ₂ C [™] NHBoc	HO ₂ C NHFmoc	CI OS	HN NH ₂ OH ESI+ 536 (M ⁺ +1)
61	HO ₂ C ^N NHBoc	HO ₂ C NHFmoc	CI OS	H NH OH OH O HN SO HN NH ₂ ESI+ 488 (M ⁺ +1)
62	O_NMe ₂ HO ₂ C ⁽⁽⁾ NHBoc	HO ₂ C NHFmoc	CI S	O NMe ₂ H NH OH O HN SO HN NH ₂ FAB+ 513 (M ⁺ +1)

実施例	試薬2	試薬 5	試薬8	Structure MS
63	O_NMe ₂ HO ₂ C'' NHBoc	HO ₂ C NHFmoc	Clos Clos	NH OH OH OH NH ₂ O HN NH ₂ O FAB+ 561 (M ⁺ +1)
64	HN O HO ₂ C ¹ NHBoc	HO₂C NHFmoc	O-S CI-O	HN OH OH OH NH ₂ OH NH ₂ ESI+ 512 (M ⁺ +1)
65	CONH ₂ HO ₂ C ⁽⁾ NHBoc	HO ₂ C NHBoc	CI O	CONH ₂ H NH O HN NH ₂ ESI+ 593 (M ⁺ +1)
66	CONH ₂ HO ₂ C ⁽⁾ NHBoc	HO ₂ C NHBoc		CONH ₂ H N NH NH NH NH NH SIH 501 (M ⁺ +1)
67	S- HO ₂ C'' NHBoc	HO ₂ C NHBoc	CI O	HN NH ₂ ESI+ 596 (M ⁺ +1)

表10

HO ₂ C° NHBoc	HO ₂ C NHBoc	O.S.	ESI+ 610 (M ⁺ +1)
S− HO ₂ C [™] NHBoc	HO ₂ C NBoc		H
HO₂C [™] NHBoc	HO ₂ C NBoc		1 1
	i		HN NH ₂
			ESI+ 438 (M ⁺ +1)
CONH ₂ HO ₂ C ^{**} NHBoc	HO ₂ C NHBoc	O CI S	CONH ₂ H NH O O HN NH O O HN NH O O
			ESI+ 579 (M ⁺ +1)
CONH ₂	HO ₂ C NHBoc	CI O	CONH ₂ H N NH O H N S O H N NH ₂
			ESI+ 567 (M ⁺ +1)
CONH ₂ HO ₂ C" NHBoc	HO ₂ C NHBoc	CI O	CONH ₂ H NH O HN O
	HO ₂ C. NHBoc CONH ₂ HO ₂ C. NHBoc	HO ₂ C NHBoc HO ₂ C NHBoc HO ₂ C NHBoc	HO ₂ C NHBoc HO ₂ C NHBoc Closs CONH ₂ HO ₂ C NHBoc Closs CONH ₂ Closs CONH ₂ Closs Cl

表11

実施例	試薬2	試薬 5	試薬8	Structure MS
73	CONH ₂ HO ₂ C'' NHBoc	HO₂C NHBoc	C O	CONH ₂ H NH O O HN NH O O HN NH O O HN NH C NH C NH NH C NH C NH NH
74	CONH ₂ HO ₂ C ⁽⁽⁾ NHBoc	HO ₂ C NHBoc	C O	CONH ₂ H N N N N N N N N N N N N N N N N N N
75	CONH ₂ HO ₂ C'' NBoc	HO₂C NHFmoc	CI	ESI+ 561 (M ⁺ +1) CONH ₂ H N O HN SO HN NH ₂
76	ÇONH ₂ HO ₂ C''' NHBoc	HO ₂ C NHBoc	C O	ESI+ 599 (M ⁺ +1) CONH ₂ H N NH NH NH NH NH SO HN NH HN NH HN HN HN HN HN HN HN HN HN
77	CONH ₂ HO ₂ C ^N NHBoc	HO₂C NHBoc	CI CO	ESI+ 595 (M*+1) CONH ₂ H NH O HN NH ₂ ESI+ 483 (M*+1)

表12

実施例	試薬2	試薬5	試薬8	Structure MS
78	CONH ₂ HO ₂ C'' NHBoc	HO ₂ C NHBoc	O.S. C.O	CONH ₂ H N NH O O HN-SO O O HN NH ₂ ESI+ 573 (M ⁺ +1)
79	CONH ₂ HO ₂ C'' NHBoc	HO ₂ C NHBoc	CI S	CONH ₂ H NH O O HN NH ₂ ESI+ 531 (M ⁺ +1)
80	CONH ₂ HO ₂ C" NHBoc	N- HO ₂ C NHBoc	CI ÇS	CONH ₂ H N NH NH NH NH SO HN NH ₂ ESI+ 570 (M ⁺ +1)
81	CONH ₂ HO ₂ C'' NHBoc	HO ₂ C NHBoc	CI S	CONH ₂ H NH O O HN S O O HN S O HN NH ₂ ESI+ 621 (M ⁺ +1)
82	CONH ₂ HO ₂ C" NHBoc	NH HO ₂ C NHBoc	CI, Š	CONH ₂ H NH NH O HN NH ₂ ESI+ 570 (M ⁺ +1)

実施例	試薬 2	試薬 5	試薬8	Structure MS
83	CONH ₂ HO ₂ C'' NHBoc	NH HO ₂ C NHBoc	CI O	CONH ₂ H NH NH O HN-S O HN NH ₂ ESI+ 614 (M ⁺ +1)
84	CONH ₂ HO ₂ O ^{v. N} HBoc	N-S-O O O NHBoc	CI O	CONH ₂ H NH NH O O HN NH ₂ ESI+ 696 (M*+1)
85	CO ₂ Et HO ₂ C ^{vv} NHBoc	HO ₂ C NHBoc	CI-S	CO ₂ H H NH O HN-SO HN NH ₂ FAB+ 532 (M*+1)
86	HO ₂ C [™] NHBoc	HO ₂ C NHFmoc	Cl-S O CO₂H	HN NH ₂ OH OH OH NH ₂ CO ₂ H
87	HO ₂ C" NHBoc	HO ₂ C NHFmoc	CI-S O CO₂H	H NH OH OH O CO ₂ H HN NH ₂ CO ₂ H

表14

実施例	試薬2	試薬 5	試薬8	Structure MS
88	NBoc HO₂C [™] NHFmoc	HO₂C NHFmoc	C O O	HN NH ₂ ESI+ 469 (M ⁺ +1)
89	BocN HO ₂ C ^N NHFmoc	HO ₂ C NHFmoc	CI-S	HN NH OH O HN SO O HN NH ₂ ESI+ 471 (M ⁺ +1)
90	HO ₂ C [™] NHBoc	HO ₂ C NHFmoc	CI-S	H NH OH OH O HN S O O HN S O (M++1)
91	HO ₂ C ¹ NHBoc	HO ₂ C NHFmoc	CI-O-S	HN NH ₂ OH ESI+ 550 (M ⁺ +1)
92	S HO ₂ C ^{v, −} NHBoc	HO ₂ C NHFmoc	O.S. Cl. O	H NH OH OH O HN S O HN NH ₂ O HN S O

表15

実施例	試薬2	試薬 5	試薬8	Structure MS
93	S HO ₂ C [™] NHBoc	O HO ₂ C NHFmoc	CI S O CO₂Me	HN NH ₂ O HN SO CO ₂ Et ESI+ 608 (M ⁺ +1)
94	S HO₂C ^{···} NHBoc	HO ₂ C NHFmoc	Ci o O ci o CO₂Me	H NH OH O O HN SO CO ₂ Me ESI+ 594 (M ⁺ +1)
95	HO ₂ C ¹ NHBoc	HO ₂ C NHFmoc	Cl→S O CO₂Me	HN NH ₂ OH OH OH NH ₂ O CO ₂ H ESI+ 580 (M*+1)
96	HO ₂ C. NHBoc	HO ₂ C NHFmoc	CI O	HN NH ₂ OH ESI+ 502 (M ⁺ +1)
97	HO ₂ C" NHBoc	HO ₂ C NHFmoc	CI S O CO ₂ Me	HN NH ₂ O O HN SO CO ₂ H ESI+ 592 (M ⁺ +1)

表16

実施例	試薬 2	試薬 5	試薬8	Structure MS
98	CONH ₂ HO ₂ O ^{,, NHBoc}	HO ₂ C NHFmoc	Cl S O CO₂Me	CONH ₂ H NH OH OHN SO HN NH ₂ CO ₂ H ESI+ 577 (M ⁺ +1)
99	CONH ₂ HO ₂ C ⁽⁾ NHBoc	HO ₂ C NHBoc	Cl S CO ₂ Me	CONH ₂ H NH O O HN SO CO ₂ H ESI+ 699 (M ⁺ +1)
100	CONH ₂ HO ₂ C ¹ NHBoc	HO ₂ C NHBoc	CI-S CO ₂ Me	CONH ₂ H N NH O O HN S CO ₂ H ESI+ 673 (M ⁺ +1)
101	CONH ₂ HO ₂ C ^W NHBoc	HO ₂ C NHBoc	CI O CO ₂ Me	CONH ₂ H N NH O O HN NH ₂ CO ₂ H ESI+ 673 (M ⁺ +1)
102	CONH ₂ HO ₂ C ^N NHBoc	HO ₂ C NHBoc	Cl O CO ₂ Et	CONH ₂ H NH O HN NH ₂ CO ₂ H ESI+ 589 (M*+1)

実施例	試薬2	試薬 5	試薬8	Structure MS
103	CONH ₂ HO ₂ C ^N NHBoc	HO ₂ C NHFmoc	CI O	CONH ₂ H NH OH OH OHN SO OHN NH ₂
				ESI+ 471 (M ⁺ +1)
104	CONH₂ HO₂C [™] NHBoc	HO ₂ C NHBoc	CI-S CO ₂ Et	CONH ₂ H NH O HN NH ₂ O HO ₂ C ESI+ 589 (M ⁺ +1)
105	S HO ₂ C [™] NHBoc	HO ₂ C NHBoc	Cl-S O CO₂Me	HN NH ₂ O HN SO CO ₂ H ESI+ 702 (M ⁺ +1)
106	OS HO₂C'' NHBoc	HO ₂ C NHFmoc	Cl S O CO₂Me	OS NH OH OH OH NH ₂ O CO ₂ H ESI+ 596 (M ⁺ +1)
107	O ₂ S HO ₂ C'' NHBoc	HO ₂ C NHFmoc	Cl. O O S CO₂Me	O ₂ S H NH O O HN NH ₂ CO ₂ H ESI+ 612 (M ⁺ +1)

実施例	試薬 2	試薬 5	試薬8	Structure MS
108	HO ₂ C [™] NHBoc	HO₂C NHBoc	Cl⊃S O CO₂Me	H NH NH SO O HN SO CO ₂ H ESI+ 574 (M ⁺ +1)
109	CONH ₂ HO ₂ C ^W NHBoc	HO ₂ C NHBoc	Cl O.S CO₂Me	CONH ₂ H N NH O HN NH ₂ CO ₂ H ESI+ 589 (M ⁺ +1)
110	CONH ₂ HO ₂ C ^W NHBoc	HO ₂ C NHBoc	CI-S	CONH ₂ H N NH O HN NH NH
111	CONH ₂ HO ₂ C ^W NHBoc	HO ₂ C NHBoc	CI S	CONH ₂ H NH NH O HN NH ₂ ESI+ 517 (M ⁺ +1)
112	CONH ₂ HO ₂ C'' NHBoc	HO₂C NHBoc	CI\S	NH ₂ OC H NH O HN O HN O HN NH ₂ ESI+ 593 (M ⁺ +1)

表19

実施例	試薬2	試薬 5	試薬8	Structure MS
113	S HO ₂ O [™] NHBoc	HO ₂ C NHBoc	CIO	HN NH ₂ O HN-5 O HN NH ₂ O (M ⁺ +1)
114	S HO ₂ C'' NHBoc	HO ₂ C NHBoc	CI TO	HN NH ₂ O HN SO HN NH ₂ O ESI+ 548 (M ⁺ +1)
115	S HO ₂ O ^{v. N} HBoc	HO ₂ C NHBoc	CIÓ	HN NH ₂ O HN SO HN NH ₂ O ESI+ 658 (M*+1)
116	HO ₂ C" NHBoc	HO ₂ C NHBoc	CI S	H NH NH O HN SO HN NH ₂ ESI+ 472 (M ⁺ +1)
117	S HO₂C [™] NHBoc	HO₂C NHBoc	CI O	HN NH ₂ ESI+ 486 (M ⁺ +1)

表20

実施例	試薬 2	試薬 5	試薬8	Structure MS
118	S HO ₂ C [™] NHBoc	HO₂C NHBoc	O-S CI/S	HN NH ₂ ESI+ 500 (M ⁺ +1)
119	HO ₂ C'' NHBoc	HO ₂ C NHBoc	CI-CO	H NH NH O O HN SO O O O O O O O O O O O O O O O O O O
120	HO ₂ C" NHBoc	HO ₂ C NHBoc	CI S	H N NH O HN NH ₂ ESI+ 458(M ⁺ +1)
121	S HO ₂ C [™] NHBoc	HO₂C NHBoc	CI O	H NH NH SO HN SO HN NH2 ESI+ 472(M+1)
122	S HO ₂ C [™] NHBoc	HO ₂ C NHFmoc	CI\S O	H NH OH OH OH NH ₂ O O O O O O O O O O O O O O O O O O O

表21

実施例	試薬2	試薬 5	試薬8	Structure MS
123	S HO₂C" NHBoc	HO ₂ C NHBoc	CI S	HN NH ₂ ESI+ 486 (M ⁺ +1)
124	HO₂C" NHBoc	HO ₂ C NHBoc	CI S	HN NH ₂
125	HO ₂ C°. NHBoc	HO ₂ C NHBoc	CI S	ESI+ 506 (M ⁺ +1)
126	S HO ₂ C [™] NHBoc	HO ₂ C NHBoc	CI S	ESI+ 520 (M ⁺ +1) H N NH O HN NH ₂ ESI+ 596 (M ⁺ +1)
127	CONH ₂ HO ₂ C'' NHBoc	HO ₂ C NHBoc	CI OS	CONH ₂ H NH O HN NH O O HN SO O HN NH ₂ O ESI+ 503 (M ⁺ +1)

表22

実施例	試薬2	試薬 5	試薬8	Structure MS
128	CONH ₂ HO ₂ C ^{**} NHBoc	HO ₂ C NHBoc	Cl o	CONH ₂ H NH O HN NH ₂ ESI+ 517 (M ⁺ +1)
129	CONH ₂ HO ₂ C ^N NHBoc	HO₂C NHBoc	C O	CONH ₂ H NH O HN S O HN NH ₂
				ESI+ 531 (M ⁺ +1)
130	CONH ₂ HO ₂ C'' NHBoc	HO ₂ C NHFmoc	CIÓ	CONH ₂ H NH OH OHN SO HN NH ₂
				ESI+ 533 (M ⁺ +1)
131	CONH ₂ HO ₂ C'' NHBoc	HO ₂ C NHBoc	C O	CONH ₂ H N NH O HN NH ₂ O HN NH O
				ESI+ 545 (M ⁺ +1)
132	CONH ₂ HO ₂ C'' NHBoc	HO ₂ C NHBoc	0-50 0-50	CONH ₂ H NH O HN NH ₂ O O HN NH O NH NH
				ESI+ 565 (M ⁺ +1)

表23

実施例	試薬 2	試薬 5	試薬8	Structure MS
133	CONH ₂ HO ₂ C'' NHBoc	HO ₂ C NHBoc	CI / O	CONH ₂ H N NH O HN NH ₂ O O
				ESI+ 579 (M ⁺ +1)
134	CONH ₂ HO ₂ C ^N NHBoc	HO ₂ C NHBoc	CI O	CONH ₂ H NH O HN S O HN NH ₂
				ESI+ 655 (M ⁺ +1)
135	CONH₂ HO₂C [™] NHBoc	HO ₂ C NHBoc	CIÓS	NH ₂ OC H N NH O O HN SO HN NH ₂
				ESI+ 655 (M++1)
136	CONH ₂ HO ₂ C'' NHBoc	HO ₂ C NHBoc	CI CO	CONH ₂ H N NH O HN NH ₂ O HN S O
				ESI+ 455 (M ⁺ +1)
137	CONH ₂ HO ₂ C ^W NHBoc	HO ₂ C NHBoc	O.S.	CONH ₂ H N NH O HN SO O HN SO O HN SO O HN SO O HN NH ₂

表24

実施例	試薬 2	試薬5	試薬8	Structure MS
138	CONH₂ HO₂C ^N NHBoc	HO ₂ C NHFmoc	CI\S	CONH ₂ H NH OH OHN SO OHN OHN OHN OHN
				ESI+ 485 (M ⁺ +1)
139	CONH₂ HO₂C ^V NHBoc	HO ₂ C NHBoc	C O	CONH ₂ H N NH O O HN S O HN NH ₂
				ESI+ 497 (M ⁺ +1)
140	CONH ₂ HO ₂ C [√] NHBoc	HO ₂ C NHBoc	O-5 O-5	CONH ₂ H NH O HN SO HN NH ₂
				ESI+ 531 (M ⁺ +1)
141	CONH₂ HO₂C [™] NHBoc	HO ₂ C NHBoc	O.S.	HN NH ₂
				ESI+ 607 (M ⁺ +1)
142	CONH ₂ HO ₂ C [™] NHBoc	HO ₂ C NHBoc	O-S CIS	NH ₂ OC H N NH NH O HN NH ₂ O
				ESI+ 607 (M ⁺ +1)

表25

実施例	試薬2	試薬5	試薬8	Structure MS
143	CONH₂ HO₂C'' NHBoc	HO ₂ C NHBoc	CI-S	CONH ₂ H N NH O O HN S O O O HN NH ₂ ESI+ 455 (M ⁺ +1)
144	CONH₂ HO₂C ^{II} NHBoc	HO ₂ C NHBoc	CI-O	CONH ₂ H NH NH O HN NH ₂ ESI+ 469 (M ⁺ +1)
145	CONH₂ HO₂C ^{((NHB} oc	NH HO ₂ C NHBoc	O CI∖S O S CO₂Me	CONH ₂ H NH NH NH O HN NH ₂ Et0 ₂ C ESI+ 614 (M ⁺ +1)
146	CONH₂ HO₂C ^N NHBoc	NH HO ₂ C NHBoc	CI-S O'S CO₂Me	CONH ₂ H NH NH NH NH NH SO HN NH ₂ HN NH ₂ ESI+ 586 (M ⁺ +1)
147	CN HO ₂ C ^{n, N} HBoc	HO ₂ C NHBoc	Cl S O CO₂Me	H ₂ N NH H N NH O HN S O HN NH ₂ CO ₂ H ESI+ 588 (M ⁺ +1)

実施例	試薬2	試薬 5	試薬8	Structure MS
148	CONH ₂ HO ₂ C ⁽⁾ NHBoc	NH HO ₂ C NHBoc	CI O	CONH ₂ H N NH NH NH NH S HN NH ₂ ESI+ 586 (M ⁺ +1)
149	CONH ₂ HO ₂ C ^N NHBoc	NH HO ₂ C**NHBoc	CI/S	CONH ₂ H NH NH NH NH NH NH SO O HN NH ₂ ESI+ 570 (M ⁺ +1)
150	CONH ₂ HO ₂ C" NHBoc	NH HO ₂ C NHBoc	Br— CO₂Et	CONH ₂ H NH NH CO ₂ Et HN NH ₂ ESI+ 550 (M ⁺ +1)
151	CONH ₂ HO ₂ C ^N NHBoc	NH HO ₂ C NHBoc	BrCO₂Et	CONH ₂ H NH NH CO ₂ H HN NH ₂ ESI+ 522 (M ⁺ +1)
152	CONH ₂ HO ₂ C'' NHBoc	NH HO ₂ C NHBoc	CI OʻS CO₂Me	CONH ₂ H NH NH O HN NH ₂ MeÖ ₂ C ESI+ 600 (M ⁺ +1)

表27

実施例	中間体17	試薬18	Structure MS
153	HO NH O	NH ₂ BocHN	S- NH NH O HN S O O HN S O ESI+ 535 (M ⁺ +1)
154	HO NH SO	NH ₂ N NH ₂	H N N NH ₂ O NH ₂ O NH ₂ O NH ₂ O NH ₂ O

表28

実施例	中間体 9	試薬22	Structure MS
155	H NHBoc NH NH NH O O HN S O	KNCO	H NH
			ESI+ 498 (M ⁺ +1)
156	H NBoc NH O O O O	KNCO	O NH ₂ H NH NH SO O H ₂ N NH
			ESI+ 608 (M ⁺ +1)
157	H NBoc NH O O HN S	CH3COCI	H ₂ N NH
			ESI+ 511 (M ⁺ +1)
158	H NBoc NH O HN-50	кисо	H NH OH O HN SO
			ESI+ 500 (M ⁺ +1)
159	H NBoc O O O HN O O O	KNCO	O NH ₂ H N NH OH O HN S O H ₂ N NH FAB+ 548 (M ⁺ +1)

表29

実施例	中間体 9	試薬22	Structure MS
160	Bock NH O O O O O O O O	KNCO	NH ₂ NH OH O HN SO O H ₂ N NH ESI+ 514 (M ⁺ +1)
161	H NBoc NH NO O O O O	KNCO	O NH ₂ H N NH O HN S O O H ₂ N NH ESI+ 498 (M ⁺ +1)
162	H NBoc. NH NBOC. NH NBOC.	KNCO	O NH ₂ H NH NH O HN S O HN S O H2N ESI+ 540 (M*+1)
163	H NBoc. NH O HN SO	кисо	O NH ₂ H NH NH O HN S

実施例	中間体34	試薬35	Structure MS
164	CONH ₂ H N NH NH Br O HN S O CN	(HO) ₂ B Q	CONH ₂ H N NH O H ₂ N NH ESI+ 623 (M ⁺ +1)
165	CONH ₂ H N NH O HN S O CN O HN S O CN	(HO)₂B	CONH ₂ H N NH O O HN S O O O NH ESI+ 623 (M*+1)
166	CONH ₂ H N NH O HN S O CN	(HO)₂B Q	CONH ₂ H N NH O HN-SO O H ₂ N NH ESI+ 623 (M [†] +1)
167	CONH ₂ H N NH O HN O HN O CN O O O O O O O O O O O O O O O O O	(HO)₂B	CONH ₂ H NH NH NH ESI+ 593 (M ⁺ +1)
168	CONH ₂ H N NH O HN S O CN	(HO) ₂ B NH ₂	CONH ₂ H N NH O O H ₂ NH ₂ NH ESI+ 608 (M ⁺ +1)

表31

実施例	中間体34	試薬35	Structure MS
169	CONH ₂ H N NH NH Br O HN S O C N	(HO) ₂ B NO ₂	CONH ₂ H N NH NO ₂ O H ₂ N NH ESI+ 638 (M ⁺ +1)

表32

実施例	中間体38	試薬39	試薬8	Structure MS
170	CONH ₂ H NH NH NHBoc OH	Br	CI OS	CONH ₂ H NH NH O HN NH ₂ ESI+ 662 (M ⁺ +1)
171	CONH ₂ NH N NH NH NHBoc OH		CI S	CONH ₂ H NH NH NH NH S HN NH ₂ ESI+ 572 (M ⁺ +1)
172	CONH ₂ H N NH NH NH NH O NHBoc OH	Br	Cl S	CONH ₂ H NH NH NH NH NH SO HN NH ₂ ESI+ 676 (M ⁺ +1)
173	CONH₂ NH		CI S	CONH ₂ H NH NH NH NH NH SO OH NH NH ₂ ESI+ 586 (M ⁺ +1)
174	CONH ₂ H NH NH O NHBoc OH CN	Br OAc	CI\S	CONH ₂ H NH NH O HN NH ₂ OH ESI+ 629 (M ⁺ +1)

表33

実施例	中間体38	試薬39	試薬8	Structure MS
175	CONH ₂ H N NH N	Br CO₂Et	CI OS	CONH ₂ H NH NH NH O HN NH ₂ CO ₂ H ESI+ 657 (M ⁺ +1)
176	CONH ₂ H N N N N N N N N N N N N N N N N N N	Br AcO	CI-S	CONH ₂ H N NH NH NH NH NH S O HN NH ₂ ESI+ 643 (M ⁺ H)
177	CONH ₂ H NH NH NH O NHBoc OH CN	AcO Br	CI\S O	CONH ₂ H N NH NH NH NH NH NH HO ESI+ 615 (M ⁺ +1)
178	CONH ₂ NH NH NH NHBoc OH CN	Br CO₂Et	CI-S	CONH ₂ H NH NH NH O HN NH ₂ CO ₂ H ESI+ 630 (M ⁺ +1)
179	CONH ₂ H NH NH NH O NHBoc OH CN	Br CO₂Et	CI-S	CONH ₂ H NH NH O HN NH O CO ₂ Et ESI+ 658 (M ⁺ +1)

表34

実施例	中間体38	試薬39	試薬8	Structure MS
180	CONH ₂ H NH NH NH NHBoc OH	Br EtO ₂ C	CI\S O	CONH ₂ H NH NH O HN NH ₂ HO ₂ C ESI+ 671 (M ⁺ +1)
181	CONH ₂ H NH NH NH NHBoc OH	Br OAc	CI S	CONH ₂ H NH NH NH NH NH O HN NH O HN NH O HO ESI+ 678 (M ⁺ +1)
182	CONH ₂ H NH NH NHBoc OH CN	Br OAc	Cl S	CONH ₂ H NH NH O HN NH ₂ OH ESI+ 658 (M ⁺ +1)

実施例183

10

15

20

25

[ヒトVIIa因子の発現と精製]

ヒトVII因子のcDNAについてはヒト肝臓cDNAライブラリー(CLONTECH)より PCRにより得た。使用したプライマー配列は、以下の通り。

5 GTCTGGATCCACCATGGTCTCCCAGGCCCTCAG TGTTGAATTCTACTAGGGAAATGGGGCTCGCA

ヒトVII因子遺伝子をDouble One発現ベクター(IDEC社)に組み込み、サブクローニング後、制限酵素SspIで消化し、直鎖状にしたものをCHO細胞株DG44 細胞にエレクトロポレーションにより導入、ヒトVII因子発現細胞株を作成した。 さらに5nM Methotrexate(Sigma)中で培養をおこなうことで遺伝子増幅をおこない、得られたMethotrexate耐性ヒトVII因子発現細胞株を5nmol/L Methotrexate、 0.5μ g/ml vitamine K(Sigma)を含むCHO-S-SFMII培地(GIBCO BRL)で培養しヒトVII因子を発現させた。

ヒトVII因子発現CHO細胞株の培養上清を中空糸型人工腎臓(PAN-130F、旭メ ディカル(株))により濃縮し、終濃度5 mMベンズアミジンを添加し凍結保存した。 ヒトVIIa因子の精製にあたってはこの凍結保存した培養上清を適宜用いた。精製 にあたってはMethods Enzymol. 80巻、228-237項、1981年およびBiochemistry 27巻、7785-7793項、1988年を参考にした。培養上清の濃縮液を5 mM ベンズ アミジン及び5 mM EDTAを含む 20 mM トリス-塩酸緩衝液, pH 8.0で10倍希釈 し、同緩衝液で平衡化したQ Sepharose Fast Flowカラムに添加し、同緩衝液中 NaCl濃度を段階的(0.1、0.2、0.3 M)に上げてカラムに吸着した蛋白を溶出した。 ヒトVII因子を含む0.3 M NaCl画分を限外濾過により濃縮し、これを5 mM ベン ズアミジン及び5 mM EDTAを含む20 mM トリス-塩酸緩衝液, pH 8.0で10倍希 釈し、同緩衝液で平衡化したQ Sepharose Fast Flowカラムに添加した。同緩衝 液でカラムを洗浄後、CaCl。濃度を50 mMまで直線的に上げてヒトVII因子をカ ラムから溶出した。得られた画分をSDS/PAGEで分析し、ヒトVII因子を含む画 分を集め、室温で2日間放置することにより自己消化によるヒトVIIa因子への活 性化を行った。反応液を20 mM トリス-塩酸緩衝液, pH 7.0で10倍希釈し、同緩 衝液で平衡化したQ Sepharose Fast Flowカラムに添加した。同緩衝液中NaCl濃

度を150 mMから350 mMまで直線的に上げてヒトVIIa因子を溶出し、得られた画分をSDS/PAGEで分析し、ヒトVIIa因子を含む画分を集め、ヒトVIIa精製画分を得た。

5 実施例184

10

15

20

[ヒト可溶型組織因子の発現と精製]

ヒト可溶型組織因子(1-218アミノ酸)をコードする遺伝子断片をtacプロモーターとM13シグナルペプチドシークエンスの下流に挿入した分泌発現型ベクターを大腸菌JM109にトランスフォームした。得られたトランスフォーマントを培養し、ヒト可溶型組織因子の培養上清への発現をおこなった。

精製にあたってはBiochemistry 31巻、3998-4003項、1992年を参考に改良を加えた方法でおこなった。培養上清を限外濾過で濃縮後、65%飽和濃度硫酸アンモニウムにより目的蛋白を沈殿させた。遠心操作(18000g, 10分)により得た沈殿物をPBSで溶解し、25 mM 酢酸緩衝液, pH 5.2を外液に用いて透析した。透析した溶液を遠心操作(8000g, 20分)により不溶物を除去した後、その上清を25 mM 酢酸緩衝液, pH 5.2で平衡化したSP Sepharose Fast Flowカラムに添加し、同緩衝液中NaCl濃度を500 mMまで直線的に上げてヒト可溶型組織因子をカラムから溶出した。得られた画分をSDS/PAGEで分析し、ヒト可溶型組織因子を含む画分を集め、25 mM トリス-塩酸緩衝液, pH 7.5を外液に用いて透析した。透析した画分を25 mM トリス-塩酸緩衝液, pH 7.5で平衡化したQ Sepharose Fast Flowカラムに添加し、同緩衝液中NaCl濃度を500 mMまで直線的に上げてヒト可溶型組織因子をカラムから溶出し、ヒト可溶型組織因子の精製画分を得た。

実施例185

25 [ヒトVIIa因子/ヒト可溶型組織因子の種結晶の作製]

Proteins 22巻、419-425項、1995年の方法を参考にD-Phe-Phe-Argクロロメチルケトンにより不可逆的に阻害したヒトVIIa因子とヒト可溶型組織因子複合体の結晶化を行った。本結晶は可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子複合体の結晶を得る際の種結晶として必要である。精製したヒトVIIa因

子に10倍のモル比のD-Phe-Phe-Argクロロメチルケトン(BACHEM社)を加え、4度にて3時間静置した。これに過剰量の精製したヒト可溶型組織因子を加え、37度にて30分間静置後、限外濾過により濃縮した。濃縮した画分を5 mM $CaCl_2$ 及び100 mM NaClを含む50 mM トリス-塩酸緩衝液,pH 7.5で平衡化したゲル濾過カラム(Superdex 75)に添加し、同緩衝液によりD-Phe-Phe-Argクロロメチルケトンにより不可逆的に阻害したヒトVIIa因子/ヒト可溶型組織因子複合体の精製画分をカラムから溶出した。結晶化のために限外濾過により濃縮し、蛋白濃度10 mg/ml、50 mM トリス-塩酸緩衝液,pH 7.5,100 mM NaCl,5 mM $CaCl_2$ のサンプルを作製し、これをハンギングドロップ蒸気拡散法を使ってリザーバー条件 100mM カコジル酸ナトリウム緩衝液,pH 5.0、24% PEG4000、5 mM $CaCl_2$ とし、温度20度に静置したところ、針状結晶多数が得られた。

実施例186

5

10

[ヒトVIIa因子/ヒト可溶型組織因子結晶化サンプルの作製]

15 精製したヒトVIIa因子に1/10容量の1 M ベンズアミジンを添加後、精製したヒト可溶型組織因子をモル比で過剰になるよう加えた。これを限外濾過により濃縮し、5 mM CaCl₂及び100 mM NaClを含む50 mM トリス-塩酸緩衝液, pH 7.5で平衡化したゲル濾過カラム(Superdex 75)に添加した。同緩衝液によりヒトVIIa因子/ヒト可溶型組織因子複合体をカラムから溶出し、ヒトVIIa因子/ヒト可溶型組織因子複合体の精製画分を得た。

実施例187

[低分子可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶化]

25 精製したヒトVIIa因子/ヒト可溶型組織因子に化合物(1)または(2)を加え、結晶作成のために限外濾過により濃縮、蛋白濃度12-13mg/ml、50 mM トリス-塩酸緩衝液, pH 7.5, 100 mM NaCl, 5mM CaCl $_2$ のサンプルを作製した。この際、化合物(1)~(2)の添加濃度は表 35 の通りであった。

表35

5

10

15

	(1)	(2)
添加濃度	0.5 mM	0.5mM未満

低分子可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体については自発的には結晶を形成しないので結晶化を行う際に種結晶を加える必要がある。種結晶は以下の方法で用意した。100 mM カコジル酸ナトリウム緩衝液,pH5.0、9% PEG4000、5 mM CaCl2の溶液を使い、D-Phe-Phe-Argクロスチルケトンにより不可逆的に阻害したヒトVIIa因子/ヒト可溶型組織因子の複合体結晶をマイクロホモジナイザーで砕き、これを希釈、 $\times 10 \sim \times 10^6$ 和深溶液($\times 10$ 刻み)を作製した。なお、低分子可逆的VIIa因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶も種結晶として使用できた。

結晶化はハンギングドロップ蒸気拡散法によりおこなった。温度は25℃、リザーバー条件は、100 mM カコジル酸ナトリウム緩衝液,pH5.0、6% - 7.5% PEG4000、5 mM CaCl₂、5% グリセロールを使用した。低分子可逆的VIIa 因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体サンプル:リザーバー:種母液希釈溶液= $1.5\,\mu\text{l}:1.5\,\mu\text{l}:0.5\,\mu\text{l}$ で混ぜ合わせ結晶化ドロップとした。約1ヶ月ほどで最大で長さ $1.0 \text{mm} \times$ 太さ0.05 mm程度の柱状の低分子可逆阻害剤とヒトVIIa因子/ヒト可溶型組織因子の複合体の結晶を得ることができた。

20

25

実施例188

[X線回折データの測定]

(A) 化合物(1)とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶結晶を100 mM カコジル酸ナトリウム緩衝液,pH5.0、9% PEG4000、5 mM CaCl₂、10% グリセロール溶液に漬し、グリセロール濃度を順次5%ずつ上げ、最終的に30%までグリセロール濃度を上げた溶液に漬けた。この結晶をナイロン性のループ(cryo-loop, Hampton research社)で外液ごとすくいとり、-170 の窒素気流中で凍結させた。なお、測定中は常に-170 の窒素気流中に置いた。X線

回折データの測定はR-axis IVイメージングプレートディテクター(リガク)により 収集した。X線は出力44kV×100mA、ファインフォーカスフィラメントを使用 した回転対陰極型X線発生装置(Ultrax18、リガク)により発生させたCuK α 線を OSMIC X線集光ミラー(リガク)で集光し、使用した。格子定数、結晶方位の決定、ならびに回折斑点の指数付け、および回折データの処理には、プログラム DENZO/SCALEPACK(マックサイエンス社)を使用し、2.2 Åまでの回折強度データを得た。本結晶は、プロテインデータバンクのD-Phe-Phe-Argクロロメチルケトンにより不可逆的に阻害したヒトVII a 因子/ヒト可溶型組織因子複合体 (PDB code:1DAN)と同型で、空間群P2₁2₁2₁、格子定数a=71.40 Å、b=82.22 Å、c=123.47 Å、 α =90.0°、 β =90.0° であった。

(B) 化合物(2)とヒトVII a 因子/ヒト可溶型組織因子との複合体の結晶 結晶を100mM カコジル酸ナトリウム緩衝液, pH5.0、9% PEG4000、5mM CaCl。、10% グリセロール溶液に漬し、グリセロール濃度を順次5%ずつ上げ、 最終的に30%までグリセロール濃度を上げた溶液に漬けた。この結晶をナイロン 性のループ(crvo-loop, Hampton research社)で外液ごとすくいとり、-170℃の窒 素気流中で凍結させた。なお、測定中は常に-170℃の窒素気流中に置いた。X線 回折データの測定はR-axisIVイメージングプレートディテクター(リガク)により 収集した。X線は出力40kV×100mA、ファインフォーカスフィラメントを使用 した回転対陰極型X線発生装置(Ultrax18、リガク)により発生させた $CuK\alpha$ 線を エールミラー(リガク)で集光し、使用した。格子定数、結晶方位の決定、ならび に回折斑点の指数付け、および回折データの処理には、プログラム DENZO/SCALEPACK(マックサイエンス社)を使用し、2.2Åまでの回折強度デ ータを得た。本結晶は、プロテインデータバンクのD-Phe-Phe-Argクロロメチル ケトンにより不可逆的に阻害したヒトVIIa因子/ヒト可溶型組織因子複合体 (PDB code:1DAN)と同型で、空間群P2,2,2,、格子定数a=71.28Å、b=82.32Å、 c=123.38Å、 α =90.0°、 β =90.0°、 γ =90.0° であった。

実施例189

[構造解析]

5

10

15

20

25

(A) 化合物(1)とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶 プロテインデータバンクのD-Phe-Phe-Argクロロメチルケトンにより不可逆的 に阻害したVIIa因子/組織因子複合体(PDB code:1DAN)から水分子、D-Phe-Phe-Argクロロメチルケトン除いたモデルを初期モデルとし、プログラム CNX2000.1 (Accerlys Inc)を用いて構造の精密化をおこなった。まず剛体精密化 およびエネルギー最小化による精密化を実施、実験的に決定された構造因子Fo と構造から計算された構造因子Fcに対し2Fo-Fc、Fo-Fcを係数とするフーリエマ ップを計算、QUANTA上で表示したところVIIa因子の触媒活性付近に連続 的な電子密度ピークを与えた。この電子密度ピークに化合物(1)の原子モデルを 適合させ、シミュレイティッドアニーリングおよびエネルギー最小化による精密 化を数度おこなった。その後、2Fo-Fc、Fo-Fcを係数とするフーリエマップをも とにした水分子の位置決定とシミュレイティッドアニーリングおよびエネルギー 最小化による精密化を繰り返し、最終的な構造座標を得た。精密化したパラメー 夕は各原子のxvz座標ならびに等方的温度因子で各原子の占有率はすべて1.0とし た。最終的に分解能30.0-2.2Åの反射、34775個を用い、5142原子(内蛋白4688 原子、イオン9原子、水分子404原子、阻害剤41原子)に対し、結晶学的信頼度因 子R値は22.59%に低下した。また、このときFree R値は26.72% (2627個の反射 データを使用)となった。

5

10

15

20

25

(B) 化合物(2)とヒトVIIa因子/ヒト可溶型組織因子との複合体の結晶 プロテインデータバンクのD-Phe-Phe-Argクロロメチルケトンにより不可逆的 に阻害したVIIa因子/組織因子複合体(PDB code:1DAN)から水分子、D-Phe-Phe-Argクロロメチルケトン除いたモデルを初期モデルとし、プログラム CNX2000.1 を用いて構造の精密化をおこなった。まず剛体精密化およびエネルギー最小化による精密化を実施、実験的に決定された構造因子Foと構造から計算された構造因子Fcに対し2Fo-Fc、Fo-Fcを係数とするフーリエマップを計算、QUANTA上で表示したところVIIa因子の触媒活性付近に連続的な電子密度ピークを与えた。この電子密度ピークに化合物(2)の原子モデルを適合させ、シミュレイティッドアニーリングおよびエネルギー最小化による精密化を数度おこなった。その後、2Fo-Fc、Fo-Fcを係数とするフーリエマップをもとにした水分

子の位置決定とシミュレイティッドアニーリングおよびエネルギー最小化による精密化を繰り返し、最終的な構造座標を得た。精密化したパラメータは各原子のxyz座標ならびに等方的温度因子で各原子の占有率はすべて1.0とした。最終的に分解能30.0-2.2Åの反射、33708個を用い、5193原子(内蛋白4688原子、イオン9原子、水分子454原子、阻害剤42原子)に対し、結晶学的信頼度因子R値は21.13%に低下した。また、このときFree R値は25.08% (2530個の反射データを使用)となった。

実施例190

10 [構造座標]

5

(A) 化合物(1)とヒトVII a 因子/ヒト可溶型組織因子との複合体の結晶 構造座標

全原子の座標をPDBフォーマットで表36 (明細書末尾に掲載)に示した。

(B) 化合物(2)とヒトVII a 因子/ヒト可溶型組織因子との複合体の結晶 15 構造座標

化合物(2)および化合物(2)から 10 Å以内のアミノ酸残基の座標をPDBフォーマットで表 37 (明細書末尾に掲載) に示した。

表38 S2サイト結合部分とヒトVIIa因子特異性の関係

20

化合物	実施例	IC50 FactorVIIa (nM)	IC50 thrombin (nM)	thrombin 選択性
(2)	65	93	9415	101
(3)	67	341	2275	7

表39 S1サブサイト結合部分とヒトVIIa因子特異性の関係

//. A 44-		IC50 FactorVIIa	IC50 thrombin	1
化合物	実施例	(nM)	(nM)	thrombin 選択性
(2)	65	93	9415	101
(4)	66	2945	59051	20
(5)	5	62	5880	95
(6)	7	37	17870	483
(1)	146	153	80175	524

5 表40 S4サイト結合部分とヒトVIIa因子特異性の関係

]	IC50 FactorVIIa	IC50 thrombin	
化合物	実施例	(nM)	(nM)	thrombin 選択性
(2)	65	93	9415	101
(5)	5	62	5880	95
(7)	73	81	397	5

表41 化合物(1)とヒト VIIa 因子 S2 サイトとの水素結合

5 水素結合

阻害剤	VIIa因子	距離
N6	Asp60_OD2	3.0Å
N6	Tyr94_OH	3.0Å
N6	Thr98_O	2.8Å
O5	${ m Asp60_OD2}$	3.2Å

表42 化合物(1)とヒトVIIa因子S1サブサイトとの水素結合、イオン結合

10

水素結合

阻害剤	VIIa因子	距離
N5	Gly216_O	2.9Å
O4	Gly219_N	2.8Å

イオン結合

阻害剤	VIIa因子	距離
07	Lys192_NZ	4.2Å

表43 化合物(2)とヒトF.VIIa因子S1サブサイトとの水素結合

5

水素結合

阻害剤	VIIa因子	距離
N5	Gly216_O	2.8Å
O3	Gly219_N	2.8Å
O4	Lys192_NZ	$3.2 { m \AA}$

10

表 44 化合物(1)とヒトF.VIIa因子S4サイトとのファンデルワールス相互作用

リガンド原子	VIIa	最短距離	VIIa	最短距離	VIIa	最短距離
	因子		因子	 	因子	
C16	Pro170I	$3.9 { m \AA}$				
C17	Pro170I	$3.7 { m \AA}$				
C18	Pro170I	$3.4 { m \AA}$				
C19	Pro170I	$3.5 ext{\AA}$				
C20	Gln217	3.8Å	Val170E	4.2Å	Ser170H	4.1Å
C20	Pro170I	4.0Å				
C21	Val_170E	4.0Å	Asp170G	4.2Å	Ser170H	3.8Å
C22	Asp170G	3.5Å	Ser170H	4.1Å		
C23	Asp170G	$3.8 { m \AA}$	Pro170I	3.8Å		
C24	Pro170I	4.1Å				
N7	Asp170G	4.0Å				

^{*}ヒトVIIa因子のアミノ酸残基との最小距離が4.2Å以内のものを提示

5 表 45 化合物(2)とヒトF.VIIa因子S4サイトとのファンデルワールス相互作用

リガンド原子	VIIa	最短距離	VIIa	最短距離	VIIa	最短距離
	因子		因子		因子	
C16	Trp215	3.9Å	Gly216	4.2Å	Pro170I	4.0Å
C17	Pro170I	3.6Å				
C18	Pro170I	$3.6 { m \AA}$	Trp215	4.2Å	Gln217	$4.2 ilde{ ext{\AA}}$
C19	Ser170H	3.8Å	Pro170I	3.6Å	Gln217	3.9Å
C20	Ser170H	3.9Å	Pro170I	3.7Å		
C21	Pro170I	$3.7 { m \AA}$				
C22	Pro170I	$3.7 { m \AA}$				
C23	Ser170H	3.7Å				
C24	Ser170H	4.2Å	Gln217	3. 9 Å		
C25	Gln217	$4.2 ext{\AA}$				
C26	Gly170F	4.2Å				
C27	Asp170G	$3.9 { m \AA}$	Ser170H	3.9Å		
C28	Asp170G	3.8Å	Ser170H	3.6Å		

^{*}ヒトVIIa因子のアミノ酸残基との最小距離が4.2Å以内のものを提示

5

15

20

試験例:生物活性試験

方法

1. FVIIa阻害活性測定

反応には96穴のマイクロプレート (Falcon、No. 3072) を使用し、すべて室温 10 で行った。

本発明化合物の10vol% DMS0溶液20μLに、40μL Thromborel®S (50 mg/mL、Dade Behring, GTS-200A)、20μL Spectrozyme®f V I I a (5 mmol/L、American Diagnostica Inc., #217L)、20μLトリス緩衝液(500 mmol/L Tris/HCl, pH 7.5, 1500 mmol/L NaCl, 50 mmol/L CaCl₂)、80μL蒸留水を加え、攪拌した。20μL F V I I a (20 nmol/L、Enzyme Research Laboratories, HF V I I a)を加え反応を開始し、マイクロプレートリーダー(Biorad, Model 3550)を用いて405 nmの吸光度を経時的に測定し反応初速度を求めた。本発明化合物の代わりに10vol% DMS0のみを加えたときの反応初速度を100%として、本発明化合物によるF V I I a 阻害作用の濃度反応曲線を作成し、反応初速度を50%抑制する検体濃度を算出してIC50値とした。

2. Thrombin阻害活性測定

反応には96穴のマイクロプレート(Falcon、No.3072)を使用し、すべて室温で行った。

本発明化合物の10vol% DMS0溶液20 μ Lに、 40μ Lトリス緩衝液(200 mmol/L Tris/HCl, pH 8.0)、 20μ L NaCl溶液(1 mol/L)、 20μ L FVR-pNa(2 mmol/L、SIGMA, B 7632)、 80μ L蒸留水を加え、攪拌した。 20μ Lヒトthrombin(5 U/mL、SIGMA, T 1063)を加え反応を開始し、マイクロプレートリーダー(Biorad, Model 3550)を用いて405 nmの吸光度を経時的に測定し反応初速度を求めた。本発明化合物のIC50値の算出はFVI I a 阻害活性測定の場合と同様にして行った。

10 <u>結果</u>

5

結果を表46に示す。

表46

実施例番号	IC50 Factor VII a	IC50 Thrombin (nM)
	(nM)	
5	62	5880
7	37	17870
65	93	9415
81	177	5691
82	131	12544
170	37	9422
22	39	17544
146	153	80175
148	65	8325
83	55	14374

15

20

産業上の利用の可能性

本発明の化合物は、優れたFVIIa阻害活性、または、外因系血液凝固に対する選択的な阻害活性を示し得る。このことから、出血傾向などの副作用の少ない、安全性に優れた抗血栓剤などの医薬として有用性が期待される。特に、外因系の凝固反応が関与する病態の予防または治療に有用性が期待される。具体的には例えば、術後深部静脈血栓症、PTCA術後再狭窄、慢性DICなどの慢性の

血栓症、心由来血栓塞栓、心筋梗塞、脳梗塞などの治療剤または予防剤として有用であることが期待される。

また、ヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の立体構造解析のため、X線結晶構造解析に用いることができる結晶を提供することが可能になるとともに、X線結晶構造解析によって得られるデータを利用してコンピュータ上で低分子可逆的VIIa因子阻害剤をデザインすることが可能となった。したがって、かかるデザインの手法によって低分子可逆的VIIa因子阻害剤を提供することが可能となった。

5

表36 化合物(1)とヒトVIIa因子/可溶型組織因子との複合体の座標(全体)

5	CRYST1	71.	400	82	. 220	123.4	70	90.00	90.00	90.00	P21212	21		
	ATOM	1	N	ALA	L	1	43.	006	30.236	87.010	1.00	26.90	L	N
	ATOM	2	CA	ALA	L	1	44.	063	31.220	87.381	1.00	27.37	L	С
	ATOM	3	С	ALA	L	1	44.	489	30.945	88.817	1.00	28.56	L	С
	ATOM	4	0	ALA	L	1	43.	801	30.238	89.541	1.00	27.63	L	0
10	ATOM	5	CB	ALA	L	1	43.	527	32.638	87.252		27.26	L	С
	ATOM	6	N	ASN	L	2	45.	618	31.505	89.233	1.00	29.16	L	N
	ATOM	7	CA	ASN	L	2	46.	105	31.273	90.585	1.00	29.83	L	C
	ATOM	8	C	ASN	L	2	46.	263	32.541	91.402	1.00	30.42	L	С
	ATOM	9	0	ASN	L	2	46.	985	33.456	91.018	1.00	32.56	L	0
15	ATOM	10	CB	ASN		2	47.	444	30.533	90.546		27.10	L	C
	ATOM	11	CG	ASN	L	2	47.	320	29.133	89.989	1.00	27.19	L	С
	ATOM	12	0D1	ASN	L	2	46.	579	28.312	90.519	1.00	26.29	L	0
	ATOM	13	ND2	ASN	L	2	48.	049	28.851	88.917		27.22	L	N
0.0	ATOM	14	N	ALA		3		565	32.592	92.528		31.86	L	N
20	ATOM	15	CA	ALA		3		652	33.724	93.438		31.70	L	С
	ATOM	16	С	ALA		3		428	33.192	94.641		32.24	L	C
	ATOM	17	0	ALA		3		627	31.980	94.764		31.48	L	0
	ATOM	18	CB	ALA		3		266	34.179	93.853		31.84	L	С
0.5	ATOM	19	N	PHE		4		864	34.085	95.524		32.19	L	N
25	ATOM	20	CA	PHE		4		636	33.676	96.697		31.55	L	С
	ATOM	21	С	PHE		4		917	32.656	97.574		29.19	L	С
	ATOM	22	0	PHE		4		798	32.893	98.025		30.82	L	0
	ATOM	23	СВ	PHE		4		003	34.897	97.548		33.52	L	С
0.0	ATOM	24	CG	PHE		4		900	34.574	98.715		35.99	L	С
30	ATOM	25		PHE		4		180	34.067	98.506		36.15	L	С
	ATOM	26		PHE		4		464		100.021		36.15	L	С
	ATOM	27		PHE		4		012	33.759	99.580		38.17	L	С
	ATOM	28		PHE		4		289		101.103		38.45	L	C
25	ATOM	29	CZ	PHE		4				100.881		37.74	L	C
35	ATOM	30	N	LEU		5			31.519	97.796		27.82	L	N
	ATOM	31	C A C	LEU		5			30.442	98.640		26.01	L	C
	ATOM ATOM	32 33	0	LEU		5			29.624 28.619	98.122		26.56 27.40	L	C
	ATOM	$\frac{33}{34}$	CB	LEU LEU		5				98.730 100.027		24.14	L L	0 C
40	ATOM	35	СG	LEU		5 5				100.027		24.14	L	C
40	ATOM	36		LEU		5				100.891		22.64	L	C
	ATOM	37		LEU		5		886		102.231		21.31	L	C
	ATOM	38	N	CGU		6		252	30.479	97.016		26.55	L	N
	ATOM	39	CA	CGU		6			29.256	96.516		26.75	L	C
4 5	ATOM	40	CB	CGU		6			29.921	95.289		26.18	L	C
T U	ATOM	41	CG	CGU		6			29.117	94.819		25.49	L	С
	ATOM	42		CGU		6			28.386	93.520		23.72	L	C
	ATOM	43		CGU		6			30.027	94.667		26.90	L	C
	ATOM	44		CGU		6			28.939	92.739		19.08	L	0
50	ATOM	45		CGU		6			27.273	93.323		22.25	L	0
50	ATOM	46		CGU		6			30.434	95.688		27.43	L	0
	ATOM	47		CGU		6			30.308	93.557		26.50	L	0
	_	•			-	-	~ 0 .						_	~

	ATOM	48	С	CGU	L	6	44.499	27.819	96.178	1.00	25.52	L	С
	ATOM	49	0	CGU	L	6	43.666	26.915	96.256	1.00	24.58	L	0
	ATOM	50	N	CGU		7	45.760	27.607	95.813	1.00 2		L	N
	ATOM	51	CA	CGU		7	46.245	26.273	95.478	1.00	24.21	L	С
5	ATOM	52	СВ	CGU		7	47.622	26.392	94.817	1.00		L	C
Ū	ATOM	53	CG	CGU		7	47.330	27.007	93.446	1.00		L	Č
	ATOM	54		CGU		7	46.490	26.029	92.643	1.00		L	C
	ATOM	55	CD2			7	48.590	27.400	92.679	1.00		L	C
10	ATOM	56		CGU		7	45.505	26.442	92.115	1.00		L	0
10	ATOM	57		CGU		7	46.845	24.866	92.591	1.00 2		L	0
	ATOM	58		CGU		7	49.041	28.527	92.846	1.00		L	0
	ATOM	59		CGU		7	49.090	26.585	91.922	1.00		L	0
	ATOM	60	C	CGU		7	46.249	25.303	96.672	1.00		L	С
	ATOM	61	0	CGÜ		7	46.558	24.120	96.529	1.00		L	0
15	ATOM	62	N	LEU		8	45.896	25.811	97.848	1.00 2		L	N
	ATOM	63	C A	LEU		8	45.789	24.983	99.049			L	С
	ATOM	64	С	LEU	L	8	44.458	24.235	98.963	1.00	25.54	L	C
	ATOM	65	0	LEU	L	8	44.285	23.180	99.565	1.00	26.65	L	0
	ATOM	66	CB	LEU	L	8	45.790	25.851	100.311	1.00	23.41	L	C
20	ATOM	67	CG	LEU	L	8	47.117	26.250	100.968	1.00	24.22	L	C
	ATOM	68	CD1	LEU	L	8	48.042	26.938	99.969	1.00	19.80	L	С
	ATOM	69	CD2	LEU	L	8	46.817	27.166	102.148	1.00	23.24	L	С
	ATOM	70	N	ARG	L	9	43.520	24.798	98.203	1.00	27.13	L	N
	ATOM	71	CA	ARG	L	9	42.198	24.213	98.027	1.00 2	27.75	L	С
25	ATOM	72	С	ARG	L	9	42.226	23.132	96.949	1.00		L	С
	ATOM	73	0	ARG		9	42.930	23.255	95.948	1.00		L	0
	ATOM	74	СВ	ARG		9	41.192	25.300	97.625	1.00		L	C
	ATOM	75	CG	ARG		9	41.292	26.593	98.427	1.00		Ĺ	C
	ATOM	76	CD	ARG		9	40.264	27.619	97.964	1.00		L	Č
30	ATOM	77	NE	ARG		9	38.914	27.246	98.370	1.00		L	N
00	MOTA	78	CZ	ARG		9	38.254	27.781	99.395	1.00		L	C
	ATOM	79	NH1	ARG		9	38.806		100.136	1.00		L	N
	ATOM	80		ARG		9	37.037	27.349	99.689	1.00		L L	N
		81	N n Z	PRO								L L	
35	ATOM		C A			10	41.465	22.050	97.144	1.00 2			N
55	ATOM	82	CA	PRO		10	41.446	20.985	96.137			L	C
	ATOM	83		PRO		10	41.008	21.551	94.780	1.00 2		L	C
	ATOM	84	0	PRO		10	40.388	22.615	94.713	1.00 2		L	0
	ATOM	85	СВ	PRO		10	40.433	19.999	96.708	1.00 2		L	С
40	ATOM	86	CG	PRO		10	40.613	20.160	98.191	1.00 2		L	C
40	ATOM	87	CD	PRO		10	40.686	21.665	98.333	1.00 2		L	С
	ATOM	88	N	GLY		11	41.334	20.848	93.702	1.00 2		L	N
	ATOM	89	C A	GLY		11	40.950	21.321	92.383	1.00 2		L	С
	ATOM	90	C	GLY		11	39.445	21.370	92.164	1.00 2		L	С
	ATOM	91	0	GLY		11.	38.709	20.499	92.628	1.00		L	0
45	ATOM	92	N	SER		12	38.985	22.398	91.459	1.00 2	29.23	L	N
	ATOM	93	CA	SER		12	37.567	22.560	91.159	1.00 2	29.12	L	C
	ATOM	94	С	SER	L	12	37.393	23.085	89.740	1.00 2	29.51	L	С
	ATOM	95	0	SER	L	12	37.797	24.206	89.425	1.00 2	28.38	L	0
	ATOM	96	СВ	SER	L	12	36.916	23.531	92.143	1.00 3	30.52	L	С
50	ATOM	97	0 G	SER	L	12	35.555	23.749	91.803	1.00 3	31.56	L	0
	ATOM	98	N	LEU		13	36.788	22.271	88.884	1.00 2		L	N
	ATOM	99	C A	LEU		13	36.575	22.660	87.497	1.00 3		L	С
	ATOM	100	С	LEU		13	35.779	23.953	87.383	1.00 3		L	C
	ATOM	101	0	LEU		13	36.128	24.844	86.611	1.00 3		L	0
55	ATOM	102	СВ	LEU		13	35.842	21.549	86.745	1.00 3		L	C
~ ~				-	_			·		`			-

	ATOM	103	CG	LEU	τ.	13	35.630	21.832	85.260	1.00	31.24	L	С
	ATOM	104		LEU		13	36.982	21.877	84.558		29.56	L	C
	ATOM	105		LEU		13	34.743	20.756	84.654		30.75	L	C
	ATOM	106	N N	CGU		14	34.743	24.051	88.153		29.30	L	N
5		107	C A	CGU		14	33.851	25.230	88.130		29.52	L L	C
J	ATOM					14			89.072		31.22	L L	С
	ATOM	108	CB	CGU			32.668	25.027					C
	ATOM	109	CG	CGU		14	31.651	26.161	89.091		35.34	L	
	ATOM	110		CGU		14	30.495	25.800	90.019		36.63	L	С
10	ATOM	111		CGU		14	31.135	26.407	87.679		36.12	L	С
10	ATOM	112		CGU		14	29.836	26.703	90.495		37.62	L -	0
	ATOM	113		CGU		14	30.285	24.609	90.254		40.38	L	0
	ATOM	114		CGU		14	31.048	27.567	87.288		37.34	L	0
	ATOM	115		CGU		14	30.838	25.432	86.992		37.27	L	0
	ATOM	116	С	CGU		14	34.585	26.515	88.502		28.40	L	С
15	ATOM	117	0	CGV		14	34.616	27.463	87.725		28.45	L	0
	ATOM	118	N	ARG		15	35.177	26.540	89.691		27.46	L	N
	ATOM	119	C A	ARG		15	35.894	27.718	90.175		27.51	L	С
	ATOM	120	С	ARG		15	37.132	28.064	89.356		27.23	L	С
	ATOM	121	0	ARG		15	37.465	29.237	89.182		25.95	L	0
20	ATOM	122	СВ	ARG		15	36.313	27.508	91.637		27.70	L	С
	ATOM	123	CG	ARG		15	37.003	28.707	92.288		28.99	L	С
	ATOM	124	CD	ARG		15	37.615	28.338	93.650		27.72	L	С
	ATOM	125	NE	ARG		15	38.708	27.374	93.512		23.84	L	N
	ATOM	126	C Z	ARG		15	38.726	26.161	94.058		24.64	L	С
25	ATOM	127		ARG		15	37.710	25.737	94.798		25.00	L	N
	ATOM	128	NH2	ARG		15	39.759	25.358	93.848		23.56	L	N
	ATOM	129	N	CGU		16	37.792	27.036	88.835		27.33	L	N
	ATOM	130	CA	CGU		16	39.032	27.205	88.085		27.34	L	С
	ATOM	131	CB	CGU		16	39.967	26.045	88.431		27.36	L	С
30	ATOM	132	CG	CGU		16	40.198	25.989	89.937		23.86	L	С
	ATOM	133		CGU		16	40.616	27.379	90.373		24.51	L	С
	ATOM	134		CGU		16	41.304	24.995	90.253		23.35	L	C
	ATOM	135		CGU		16	41.440	27.927	89.699		27.27	L	0
~ =	ATOM	136		CGU		16	40.095	27.883	91.340		24.69	L	0
35	ATOM	137		CGU		16	42.407	25.416	90.385		20.19	L	0
	ATOM	138		CGU		16	41.023	23.818	90.349		22.98	L	0
	ATOM	139	С	CGU		16	38.982	27.363	86.574		29.25	L	C
	ATOM	140	0	CGU		16	39.739	28.159	86.011		29.12	L	0
4.0	ATOM	141	N	CYS		17	38.113	26.607	85.913		29.27	L	N
40	ATOM	142	CA	CYS		17	38.020	26.672	84.460		30.58	L	C
	ATOM	143	С	CYS		17	36.760	27.339	83.910		30.90	L	С
	ATOM	144	0	CYS		17	36.767	27.841	82.789		31.41	L	0
	ATOM	145	CB	CYS		17	38.143	25.268	83.870		29.03	L	C
4 ~	ATOM	146	SG	CYS		17	39.683	24.375	84.273		29.62	L	S
45	ATOM	147	N	LYS		18	35.682	27.337	84.686		33.15	L	N
	ATOM	148	CA	LYS		18	34.428	27.953	84.254		33.15	L ·	C
	MOTA	149	C	LYS		18	34.376	29.423	84.649		33.16	L	С
	ATOM	150	0	LYS		18	34.202	30.299	83.804		33.01	L	0
F.C.	ATOM	151	CB	LYS		18	33.229	27.210	84.855		33.20	L	C
50	ATOM	152	CG	LYS		18	32.773	25.998	84.049		35.52	L	C
	ATOM	153	CD	LYS		18	33.805	24.888	84.034		38.86	L	C
	ATOM	154	CE	LYS		18	34.139	24.448	82.610		39.72	L	C
	ATOM	155	ΝZ	LYS		18	32.971	23.879	81.874		40.07	L	N N
	ATOM	156	N	CGU		19	34.525	29.686	85.942		33.87	L	N
55	ATOM	157	CA	CGU	ь	19	34.510	31.048	86.459	1.00	33.17	L	С

	ATOM	158	CB	CGU	L	19	34.259	31.030	87.963	1.00 34.83	L	С
	ATOM	159	CG	CGU	L	19	32.874	30.589	88.419	1.00 37.03	L	С
	ATOM	160	CD1	CGU	L	19	31.834	31.593	87.934	1.00 37.84	L	С
	ATOM	161	CD2	CGU	L	19	32.836	30.518	89.941	1.00 39.06	L	С
5	ATOM	162	0E1	CGU	L	19	30.658	31.307	88.057	1.00 36.43	L	0
	ATOM	163	0E2	CGU	L	19	32.229	32.655	87.435	1.00 39.63	L	0
	ATOM	164	0E3	CGU	L	19	32.692	29.414	90.470	1.00 38.92	L	0
	ATOM	165	0E4			19	32.955	31.571	90.570	1.00 41.50	L	0
	ATOM	166	С	CGU		19	35.826	31.771	86.182	1.00 32.60	L	С
10	ATOM	167	0	CGU		19	35.934	32.978	86.388	1.00 33.89	Ĺ	0
	ATOM	168	N	CGU		20	36.824	31.030	85.714	1.00 31.95	L	N
	ATOM	169	CA	CGU		20	38.128	31.607	85.422	1.00 30.77	L	С
	ATOM	170	СВ	CGU		20	39.045	31.487	86.634	1.00 28.99	L	С
	ATOM	171	CG	CGU		20	38.620	31.952	88.020	1.00 30.59	L	С
15	ATOM	172		CGU		20	38.770	33.462	88.131	1.00 31.48	L	С
	ATOM	173		CGU		20	39.521	31.281	89.047	1.00 30.25	L	С
	MOTA	174	0E1			20	38.025	34.061	88.882	1.00 33.25	L	0
	ATOM	175	0E2	CGU	L	20	39.634	34.004	87.461	1.00 33.62	L	0
	ATOM	176		CGU		20	39.282	31.444	90.226	1.00 29.48	L	0
20	ATOM	177	0E4	CGU	L	20	40.453	30.598	88.629	1.00 30.41	L	0
	ATOM	178	С	CGU	L	20	38.791	30.857	84.283	1.00 29.55	L	С
	ATOM	179	0	CGU		20	38.328	29.796	83.875	1.00 29.94	L	0
	ATOM	180	N	GLN	L	21	39.891	31.419	83.795	1.00 30.03	L	N
	ATOM	181	CA	GLN	L	21	40.680	30.808	82.739	1.00 30.36	L	С
25	ATOM	182	С	GLN		21	41.690	29.913	83.454	1.00 29.74	L	С
	ATOM	183	0	GLN	L	21	42.484	30.388	84.276	1.00 27.73	L	0
	ATOM	184	СВ	GLN	L	21	41.425	31.879	81.944	1.00 33.78	L	С
	ATOM	185	CG	GLN	L	21	40.535	32.812	81.134	1.00 40.75	L	С
	ATOM	186	CD	GLN	L	21	39.865	32.115	79.966	1.00 44.61	L	С
30	ATOM	187	0E1	GLN	L	21	39.029	31.228	80.150	1.00 48.21	L	0
	ATOM	188	NE2	GLN	L	21	40.235	32.510	78.752	1.00 45.88	L	N
	ATOM	189	N	CYS	L	22	41.659	28.621	83.159	1.00 27.02	L	N
	MOTA	190	CA	CYS	L	22	42.584	27.704	83.798	1.00 26.53	L	С
	ATOM	191	C	CYS	L	22	43.607	27.197	82.795	1.00 28.06	L	С
35	ATOM	192	0	CYS	L	22	43.285	26.959	81.630	1.00 29.00	L	0
	ATOM	193	CB	CYS	L	22	41.824	26.529	84.417	1.00 26.03	L	С
	ATOM	194	SG	CYS	L	22	41.127	25.347	83.224	1.00 24.58	L	S
	ATOM	195	N	SER	L	23	44.846	27.044	83.251	1.00 28.01	L	N
	ATOM	196	CA	SER	L	23	45.919	26.564	82.395	1.00 29.36	L	C
40	ATOM	197	C	SER	L	23	45.856	25.046	82.316	1.00 29.53	L	С
	ATOM	198	0	SER	L	23	45.041	24.409	82.991	1.00 28.50	L	0
	ATOM	199	CB	SER	L	23	47.278	26.991	82.954	1.00 30.24	L	C
	ATOM	200	0 G	SER	L	23	47.547	26.328	84.176	1.00 32.90	L	0
	ATOM	201	N	PHE	L	24	46.729	24.471	81.496	1.00 28.75	L	N
45	ATOM	202	CA	PHE	L	24	46.774	23.030	81.325	1.00 28.22	L	С
	ATOM	203	C	PHE	L	24	47.044	22.340	82.659	1.00 28.31	L	C
	ATOM	204	0	PHE	L	24	46.373	21.370	83.019	1.00 26.88	L	0
	ATOM	205	ÇВ	PHE		24	47.871	22.644	80.328	1.00 27.99	L	C
	ATOM	206	CG	PHE		24	47.906	21.179	80.019	1.00 27.32	L	С
50	ATOM	207		PHE		24	47.014	20.626	79.106	1.00 27.03	L	C
	ATOM	208		PHE		24	48.791	20.338	80.684	1.00 27.00	L	С
	ATOM	209		PHE		24	47.000	19.256	78.864	1.00 25.26	L	C
	ATOM	210		PHE		24	48.784	18.964	80.449	1.00 25.45	L	С
	ATOM	211	CZ	PHE		24	47.887	18.423	79.540	1.00 25.69	L	C
55	ATOM	212	N	CGU	L	25	48.031	22.850	83.388	1.00 27.44	L	N

	ATOM	213	CA	CGU	L	25	48.405	22.282	84.673	1.00 28.71	L	С
	ATOM	214	CB	CGU	L	25	49.570	23.068	85.262	1.00 33.43	L	С
	ATOM	215	CG	CGU	L	25	50.357	22.364	86.358	1.00 38.45	L	C
	ATOM	216	CD1	CGU	L	25	51.791	22.882	86.348	1.00 40.65	L	C
5	ATOM	217	CD2	CGU	L	25	50.357	20.859	86.100	1.00 40.80	L	С
	ATOM	218	0 E 1	CGU	L	25	52.101	23.772	87.138	1.00 41.24	L	0
	ATOM	219	0E2	CGU	L	25	52.571	22.386	85.537	1.00 43.46	L	0
	ATOM	220	0E3	CGU	L	25	50.854	20.453	85.053	1.00 41.65	L	0
	ATOM	221	0E4	CGU	L	25	49.853	20.120	86.950	1.00 42.95	L	0
10	ATOM	222	C	CGU	L	25	47.233	22.264	85.644	1.00 26.61	L	С
	ATOM	223	0	CGU	L	25	46.958	21.246	86.271	1.00 25.98	L	0
	ATOM	224	N	CGU	L	26	46.541	23.391	85.765	1.00 25.93	L	N
	ATOM	225	C A	CGU	L	26	45.389	23.474	86.652	1.00 26.06	L	С
	ATOM	226	CB	CGU	L	26	44.770	24.870	86.576	1.00 24.81	L	С
15	ATOM	227	CG	CGU	L	26	45.740	25.994	86.948	1.00 26.07	L	C
	ATOM	228	CD1	CGU	L	26	46.302	25.752	88.351	1.00 26.84	L	С
	ATOM	229	CD2	CGU	L	26	45.038	27.349	86.880	1.00 26.66	L	С
	ATOM	230	0E1	CGU	L	26	45.548	25.374	89.218	1.00 24.86	L	0
	ATOM	231	0E2	CGU	L	26	47.480	25.942	88.538	1.00 26.84	L	0
20	ATOM	232	0E3	CGU	L	26	44.976	27.925	85.801	1.00 28.65	L	0
	ATOM	233	0E4	CGU	L	26	44.567	27.805	87.890	1.00 26.86	L	0
	ATOM	234	C	CGU	L	26	44.360	22.416	86.254	1.00 26.09	L	С
	ATOM	235	0	CGU	L	26	43.830	21.696	87.099	1.00 26.77	L	0
	ATOM	236	N	${\tt ALA}$	L	27	44.090	22.319	84.957	1.00 26.92	L	N
25	ATOM	237	CA	ALA	L	27	43.139	21.341	84.449	1.00 26.84	L	C
	ATOM	238	C	ALA	L	27	43.590	19.927	84.797	1.00 26.93	L	C
	ATOM	239	0	ALA	L	27	42.775	19.085	85.171	1.00 27.45	L	0
	ATOM	240	CB	ALA	L	27	42.999	21.486	82.938	1.00 24.94	L	C
	ATOM	241	N	ARG	L	28	44.891	19.669	84.678	1.00 27.54	L	N
30	ATOM	242	CA	ARG	L	28	45.434	18.347	84.977	1.00 29.15	L	С
	ATOM	243	C	ARG	L	28	45.275	17.976	86.451	1.00 29.86	L	С
	ATOM	244	0	ARG	L	28	45.145	16.804	86.785	1.00 31.18	L	0
	ATOM	245	CB	ARG	L	28	46.911	18.278	84.600	1.00 30.06	L	C
	ATOM	246	CG	ARG	L	28	47.457	16.859	84.531	1.00 32.65	L	С
35	ATOM	247	CD	ARG	L	28	48.977	16.856	84.601	1.00 36.00	L	С
	ATOM	248	NE	ARG	L	28	49.441	17.365	85.890	1.00 37.93	L	N
	ATOM	249	CZ	ARG	L	28	49.284	16.735	87.053	1.00 38.70	L	C
	ATOM	250		ARG		28	48.682	15.552	87.109	1.00 38.86	L	N
	ATOM	251	NH2	ARG		28		17.308		1.00 39.29	L	N
40	ATOM	252	N	CGU		29	45.302	18.969	87.333	1.00 29.50	L	N
	ATOM	253	CA	CGU		29	45.131	18.714	88.761	1.00 29.34	L	C
	ATOM	254	СВ	CGU		29	45.529	19.947	89.559	1.00 28.96	L	C
*	ATOM	255	CG	CGU		29	47.033	20.154	89.530	1.00 30.94	L	С
	ATOM	256		CGU		29	47.709	19.275	90.575	1.00 33.97	L	C
45	ATOM	257		CGU		29	47.360	21.610	89.778	1.00 29.62	L	С
	ATOM	258		CGU		29	48.900	19.048	90.442	1.00 37.46	L	0
	ATOM	259		CGU		29	47.028	18.834	91.503	1.00 36.82	L	0
	ATOM	260		CGU		29	48.486	21.975	89.603	1.00 27.06	L	0
- 6	ATOM	261		CGU		29	46.476	22.332	90.128	1.00 28.53	L	0
50	ATOM	262	С	CGU		29	43.688	18.343	89.077	1.00 28.66	L	C
	ATOM	263	0	CGU		29	43.401	17.742	90.113	1.00 29.88	L	0
	ATOM	264	N	ILE		30	42.783	18.717	88.181	1.00 27.56	L	N
	ATOM	265	CA	ILE		30	41.371	18.408	88.340	1.00 27.41	L	С
	ATOM	266	С	ILE		30	41.103	17.006	87.791	1.00 28.29	L	C
55	ATOM	267	0	ILE	L	30	40.605	16.138	88.503	1.00 28.57	L	0

	1001	0.00	C D				40.400	10 400	05.550	1 00 00 00		
	ATOM	268	CB	ILE		30	40.492	19.428	87.570	1.00 26.20	L	C
	ATOM	269	CG1	ILE		30	40.685	20.830	88.156	1.00 25.87	L	C
	ATOM	270	CG2	ILE		30	39.035	19.014	87.626	1.00 23.37	L	С
E	ATOM	271	CD1	ILE		30	39.890	21.910	87.444	1.00 25.78	L	С
5	ATOM	272	N	PHE		31	41.454	16.794	86.525	1.00 28.80	L	N
	ATOM	273	CA	PHE		31	41.237	15.512	85.855	1.00 32.23	L	С
	ATOM	274	С	PHE		31	42.260	14.420	86.195	1.00 34.25	L	С
	ATOM	275	0	PHE		31	41.958	13.230	86.097	1.00 34.78	L	0
4 0	ATOM	276	СВ	PHE		31	41.188	15.739	84.341	1.00 30.23	L	С
10	ATOM	277	C G	PHE		31	40.039	16.608	83.900	1.00 28.90	L	C
	ATOM	278		PHE		31	38.737	16.111	83.893	1.00 29.15	L	C
	ATOM	279		PHE		31	40.254	17.926	83.512	1.00 25.49	L	С
	ATOM	280	CE1	PHE	L	31	37.664	16.918	83.503	1.00 27.09	L	C
	ATOM	281	CE2	PHE	L	31	39.194	18.740	83.123	1.00 25.64	L	С
15	ATOM	282	CZ	PHE	L	31	37.896	18.237	83.118	1.00 26.07	L	C
	ATOM	283	N	LYS	L	32	43.463	14.832	86.586	1.00 36.51	L	N
	ATOM	284	CA	LYS	L	32	44.544	13.919	86.967	1.00 39.51	L	C
	MOTA	285	С	LYS	L	32	45.132	13.120	85.800	1.00 40.53	L	С
	ATOM	286	0	LYS	L	32	46.265	13.362	85.386	1.00 41.25	L	0
20	ATOM	287	СВ	LYS	L	32	44.064	12.958	88.064	1.00 40.66	L	С
	ATOM	288	CG	LYS	L	32	43.132	13.599	89.088	1.00 43.75	L	C
	ATOM	289	CD	LYS	L	32	43.294	13.002	90.473	1.00 45.44	L	C
	ATOM	290	CE	LYS	L	32	44.566	13.514	91.136	1.00 48.55	L	С
	ATOM	291	NZ	LYS	L	32	44.556	15.002	91.284	1.00 49.03	L	N
25	ATOM	292	N	ASP	L	33	44.366	12.167	85.278	1.00 41.87	L	N
	ATOM	293	CA	ASP	L	33	44.811	11.343	84.161	1.00 43.56	L	C
	ATOM	294	C	ASP	L	33	45.103	12.193	82.922	1.00 44.09	L	С
	ATOM	295	0	ASP	L	33	44.322	13.073	82.562	1.00 44.53	L	0
	ATOM	296	CB	ASP	L	33	43.747	10.290	83.849	1.00 45.31	L	С
30	ATOM	297	CG	ASP	L	33	44.088	9.458	82.635	1.00 47.36	L	C
	ATOM	298	0D1	ASP	L	33	43.843	9.923	81.525	1.00 45.97	L	0
	ATOM	299	0D2	ASP	L	33	44.606	8.347	82.809	1.00 49.11	L	0
	ATOM	300	N	ALA	L	34	46.235	11.920	82.279	1.00 44.21	L	N
	ATOM	301	CA	ALA	L	34	46.666	12.657	81.092	1.00 44.90	L	С
35	MOTA	302	C	ALA	L	34	45.679	12.572	79.932	1.00 45.63	L	C
	ATOM	303	0	ALA	L	34	45.350	13.583	79.309	1.00 46.43	L	0
	ATOM	304	CB	ALA	L	34	48.034	12.155	80.643	1.00 45.30	L	C
	ATOM	305	N	CGU	L	35	45.225	11.360	79.637	1.00 45.00	L	N
	ATOM	306	C A	CGU	L	35	44.274	11.132	78.559	1.00 44.45	L	C
40	ATOM	307	CB	CGU	L	35	43.892	9.646	78.502	1.00 47.50	L	C
	ATOM	308	CG	CGU	L	35	45.001	8.586	78.399	1.00 52.62	L	С
	ATOM	309	CD1	CGU	L	35	46.080	9.012	77.405	1.00 54.39	L	С
	ATOM	310	CD2	CGU	L	35	45.632	8.287	79.763	1.00 53.62	L	C
	ATOM	311	0E1	CGU	L	35	47.263	8.886	77.743	1.00 55.86	L	0
45	ATOM	312	0E2	CGU	L	35	45.722	9.460	76.313	1.00 56.24	L	0
	ATOM	313	0E3	CGU	L	35	46.606	8.955	80.122	1.00 53.37	L	0
	ATOM	314	0E4	CGU	L	35	45.140	7.379	80.445	1.00 54.53	L	0
	ATOM	315	C	ÇGU	L	35	43.019	11.992	78.756	1.00 42.91	L	С
	ATOM	316	0	CGU		35	42.540	12.632	77.819	1.00 42.37	L	0
50	ATOM	317	N	ARG		36	42.494	12.009	79.978	1.00 40.60	L	N
•	ATOM	318	CA	ARG		36	41.304	12.795	80.294	1.00 38.99	L	C
	ATOM	319	С	ARG		36	41.572	14.296	80.212	1.00 36.95	L	C
	ATOM	320	0	ARG		36	40.728	15.061	79.747	1.00 36.47	L	0
	ATOM	321	СВ	ARG		36	40.797	12.447	81.696	1.00 41.08	L	C
55	ATOM	322	CG	ARG		36	40.298	11.017	81.844	1.00 43.46	L	C
-												

	ATOM	323	CD	ARG	L	36	39.891	10.718	83.278	1.00 45.24	L	С
	ATOM	324	NE	ARG	L	36	39.441	9.337	83.441	1.00 47.54	L	N
	ATOM	325	CZ	ARG	L	36	39.133	8.776	84.607	1.00 48.41	L	С
	ATOM	326	NH1	ARG	L	36	39.225	9.471	85.734	1.00 46.77	L	N
5	ATOM	327	NH2	ARG	L	36	38.728	7.512	84.647	1.00 50.53	L	N
	ATOM	328	N	THR	L	37	42.747	14.716	80.669	1.00 34.62	L	N
	ATOM	329	CA	THR	L	37	43.109	16.126	80.640	1.00 32.74	L	С
	ATOM	330	С	THR	L	37	43.201	16.637	79.204	1.00 31.75	L	С
	ATOM	331	0	THR	L	37	42.694	17.714	78.891	1.00 30.68	L	0
10	ATOM	332	СВ	THR	L	37	44.455	16.369	81.351	1.00 32.46	L	С
	ATOM	333	0G1	THR	L	37	44.393	15.839	82.681	1.00 32.01	L	0
	ATOM	334	CG2	THR	L	37	44.759	17.861	81.427	1.00 31.14	L	С
	ATOM	335	N	LYS	L	38	43.844	15.860	78.336	1.00 31.24	L	N
	ATOM	336	CA	LYS		38	43.989	16.239	76.934	1.00 32.20	L	С
15	ATOM	337	С	LYS		38	42.630	16.318	76.233	1.00 30.65	L	С
	ATOM	338	0	LYS		38	42.390	17.231	75.446	1.00 31.32	L	0
	ATOM	339	СВ	LYS		38	44.891	15.241	76.197	1.00 34.59	L	С
	ATOM	340	CG	LYS		38	46.332	15.182	76.711	1.00 37.74	L	C
	ATOM	341	CD	LYS		38	47.030	16.539	76.640	1.00 39.00	L	C
20	ATOM	342	CE	LYS		38	47.216	17.009	75.204	1.00 41.05	L	C
	ATOM	343	ΝZ	LYS		38	47.824	18.365	75.130	1.00 38.92	L	N
	ATOM	344	N	LEU		39	41.749	15.362	76.519	1.00 28.80	L	N
	ATOM	345	CA	LEU		39	40.417	15.345	75.919	1.00 28.45	L	C
	ATOM	346	C	LEU		39	39.665	16.624	76.275	1.00 27.55	L	C
25	ATOM	347	0	LEU		39	38.927	17.170	75.458	1.00 27.44	L	0
	ATOM	348	СВ	LEU		39	39.619	14.134	76.410	1.00 28.33	L	C
	ATOM	349	CG	LEU		39	38.190	14.034	75.866	1.00 30.67	L	C
	ATOM	350		LEU		39	38.228	13.988	74.342	1.00 30.91	L	C
	ATOM	351		LEU		39	37.504	12.791	76.422	1.00 30.31	L	C
30	ATOM	352	N N	PHE		40	39.850	17.091	77.505	1.00 26.66	L	N
5 0,	ATOM	353	CA	PHE		40	39.213	18.315	77.968	1.00 26.79	L	C
	ATOM	354	C	PHE		40	39.869	19.531	77.319	1.00 26.64	L	C
	ATOM	355	0	PHE		40	39.188	20.429	76.821	1.00 20.04	L	0
	ATOM	356	CB	PHE		40	39.346			1.00 27.33		
35			CG	PHE				18.438	79.491		L	C
33	MOTA	357				40	39.028	19.810	80.020	1.00 25.21	L	C
	ATOM	358		PHE PHE		40 40	37.707	20.208	80.225	1.00 24.16	L	C
	ATOM	359					40.052	20.718	80.291	1.00 24.18	L	C C
	ATOM ATOM	360		PHE PHE		40 40	37.411 39.767	21.488	80.692	1.00 25.10	L	
40		361					38.444	22.003	80.758	1.00 24.75	L	C
40	ATOM	362	C Z N	PHE		40		22.389	80.959	1.00 25.22 1.00 25.96	L	C
	ATOM	363		TRP		41	41.199	19.539	77.324		L	N
	ATOM	364	CA	TRP		41	41.990	20.648	76.795	1.00 26.28	L	C
	ATOM	365	C	TRP		41	41.866	20.970	75.301	1.00 27.29	L	C
45	ATOM	366	0 CD	TRP		41	41.988	22.131	74.906	1.00 26.04	L	0
45	ATOM	367	CB	TRP		41	43.464	20.425	77.144	1.00 24.26	L	C
	ATOM	368	CG	TRP		41	44.306	21.652	77.027	1.00 25.36	L	C
	ATOM	369		TRP		41	45.257	21.906	76.086	1.00 25.02	L	C
	ATOM	370		TRP		41	44.270	22.802	77.883	1.00 25.54	L	С
F 0	ATOM	371		TRP		41	45.819	23.143	76.299	1.00 27.28	L	N
50	ATOM	372		TRP		41	45.232	23.715	77.395	1.00 26.01	L	C
	ATOM	373		TRP		41	43.517	23.149	79.014	1.00 26.85	L	C
	ATOM	374		TRP		41	45.464	24.954	78.000	1.00 24.01	L	C
	ATOM	375		TRP		41	43.747	24.383	79.616	1.00 25.86	L	C
~ ~	ATOM	376		TRP		41	44.715	25.270	79.105	1.00 26.46	L	С
55	ATOM	377	N	ILE	L	42	41.629	19.968	74.463	1.00 28.66	L	N

	ATOM	378	CA	ILE	L	42	41.523	20.237	73.033	1.00 30.71	L	С
	ATOM	379	С	ILE	L	42	40.370	21.171	72.666	1.00 29.53	L	С
	ATOM	380	0	ILE		42	40.469	21.936	71.705	1.00 30.98	L	0
	ATOM	381	СВ	ILE		42	41.429	18.925	72.209	1.00 32.87	L	C
5	ATOM	382		ILE		42	40.350	18.004	72.771	1.00 33.91	L	C
_	ATOM	383	CG2	ILE		42	42.769	18.217	72.217	1.00 36.59	L	Ċ
	ATOM	384		ILE		42	38.982	18.321	72.269	1.00 36.99	L	C
	ATOM	385	N	SER		43	39.289	21.127	73.437	1.00 28.62	L	N
	ATOM	386	C A	SER		43	38.136	21.127	73.437	1.00 28.02		C
10						43 43				1.00 27.84	L	C
10	ATOM	387	C	SER			38.213	23.262	74.009		L	
	ATOM	388	0	SER		43	37.980	24.356	73.499	1.00 27.48	L	0
	ATOM	389	CB	SER		43	36.839	21.247	73.517	1.00 26.23	L	С
	ATOM	390	0 G	SER		43	36.679	20.123	72.671	1.00 27.51	L	0
	ATOM	391	N	TYR		44	38.541	23.115	75.289	1.00 27.54	L	N
15	ATOM	392	CA	TYR		44	38.640	24.257	76.188	1.00 27.08	L	C
	ATOM	393	С	TYR		44	39.581	25.329	75.650	1.00 27.23	L	С
	ATOM	394	0	ΤYR		44	39.241	26.510	75.650	1.00 27.59	L	0
	ATOM	395	CB	TYR		44	39.136	23.805	77.567	1.00 26.19	L	С
	ATOM	396	CG	TYR	L	44	39.140	24.898	78.614	1.00 24.94	L	C
20	ATOM	397	CD1	TYR	L	44	37.949	25.366	79.164	1.00 23.63	L	C
	ATOM	398	CD2	TYR	L	44	40.337	25.457	79.064	1.00 26.53	L	C
	ATOM	399	CE1	TYR	L	44	37.949	26.362	80.142	1.00 26.54	L	С
	ATOM	400	CE2	TYR	L	44	40.348	26.455	80.043	1.00 26.05	L	C
	ATOM	401	CZ	TYR	L	44	39.151	26.899	80.577	1.00 26.97	L	C
25	ATOM	402	0 H	TYR	L	44	39.150	27.865	81.560	1.00 28.80	L	0
	ATOM	403	N	SER	L	45	40.757	24.911	75.192	1.00 27.72	L	N
	ATOM	404	CA	SER	L	45	41.768	25.839	74.686	1.00 30.15	L	С
	ATOM	405	C	SER	L	45	41.744	26.104	73.182	1.00 30.62	L	С
	ATOM	406	0	SER	L	45	42.604	26.820	72.671	1.00 30.63	L	0
30	ATOM	407	СВ	SER	L	45	43.165	25.340	75.061	1.00 30.16	L	С
	ATOM	408	0 G	SER		45	43.497	24.166	74.339	1.00 29.88	L	0
	ATOM	409	N	ASP	L	46	40.771	25.543	72.472	1.00 31.14	L	N
	ATOM	410	CA	ASP		46	40.703	25.745	71.027	1.00 31.20	L	C
	ATOM	411	С	ASP		46	40.411	27.189	70.627	1.00 30.32	L	C
35	ATOM	412	0	ASP		46	40.884	27.650	69.594	1.00 32.57	L	0
	ATOM	413	СВ	ASP		46	39.646	24.833	70.405	1.00 31.05	L	C
	ATOM	414	CG	ASP		46	39.742	24.784	68.892	1.00 32.56	L	Č
	ATOM	415		ASP		46	40.634	24.106	68.375	1.00 33.28	L L	0
	ATOM	416		ASP		46	38.941	25.428	68.242	1.00 29.30	L	0
40	ATOM	417	N	GLY		47	39.636	27.899	71.442	1.00 29.23	L	N
10	ATOM	418	CA	GLY		47	39.299	29.276	71.131	1.00 28.60	L	C
	ATOM	419	C	GLY		47	38.100	29.318	70.202	1.00 31.30	L	C
	ATOM	420	0	GLY		47	37.926	28.417	69.392	1.00 30.95	L	0
	ATOM	421	N	ASP		48	37.273	30.355	70.308	1.00 30.53	L	
45		422	C A			48		30.472		1.00 31.34		N C
40	ATOM	423	C	ASP			36.090		69.462 68.165		L	C
	ATOM			ASP		48	36.378	31.223		1.00 33.54	L	C
	ATOM	424	0	ASP		48	36.498	32.452	68.159	1.00 32.67	L	0
	ATOM	425	CB	ASP		48	34.970	31.168	70.240	1.00 34.96	L	C
E 0	ATOM	426	C G	ASP		48	33.809	31.573	69.358	1.00 36.81	L	C
50	ATOM	427		ASP		48	33.501	30.848	68.425	1.00 36.52	L	0
	ATOM	428		ASP		48	33.208	32.615	69.623	1.00 39.87	L	0
	ATOM	429	N	GLN		49	36.485	30.481	67.064	1.00 33.17	L	N
	ATOM	430	CA	GLN		49	36.767	31.089	65.762	1.00 33.44	L	C
	MOTA	431	C	GLN		49	35.666	32.022	65.259	1.00 33.32	L	С
55	ATOM	432	0	GLN	L	49	35.871	32.774	64.305	1.00 34.51	L	0

	ATOM	433	СВ	GLN L	49	37.046	30.009	64.713	1.00 32.45	L	С
	ATOM	434	CG	GLN L	49	38.448	29.410	64.780	1.00 31.73	L	С
	ATOM	435	CD	GLN L	49	38.707	28.668	66.078	1.00 33.97	L	C
	ATOM	436	0E1	GLN L	49	37.915	27.822	66.477	1.00 32.13	L	0
5	ATOM	437	NE2	GLN L	49	39.821	28.978	66.737	1.00 32.44	L	N
	ATOM	438	N	CYS L	50	34.500	31.973	65.895	1.00 32.75	L	N
	ATOM	439	CA	CYS L	50	33.391	32.840	65.519	1.00 32.95	L	C
	ATOM	440	С	CYS L	50	33.533	34.239	66.113	1.00 34.35	L	C
	ATOM	441	0	CYS L	50	32.803	35.154	65.733	1.00 33.23	L	0
10	ATOM	442	СВ	CYS L	50	32.062	32.249	65.988	1.00 31.79	L	С
	ATOM	443	SG	CYS L	50	31.419	30.890	64.967	1.00 30.41	L	S
	ATOM	444	N	ALA L	51	34.466	34.398	67.049	1.00 36.39	L	N
	ATOM	445	CA	ALA L	51	34.698	35.681	67.712	1.00 38.60	L	С
	ATOM	446	C	ALA L	51	34.967	36.818	66.727	1.00 39.03	L	С
15	ATOM	447	0	ALA L	51	34.554	37.955	66.952	1.00 39.61	L	0
	ATOM	448	СВ	ALA L	51	35.861	35.554	68.695	1.00 37.84	L	С
	ATOM	449	N	GSERL	52	35.657	36.507	65.636	1.00 39.50	L	N
	ATOM	450	CA	GSERL	52	35.974	37.503	64.619	1.00 39.27	L	C
	ATOM	451	CB	GSERL	52	37.114	36.982	63.737	1.00 40.23	L	C
20	ATOM	452	0 G	GSERL	52	36.756	36.974	62.365	1.00 45.10	L	0
	ATOM	453	С	GSERL	52	34.756	37.859	63.760	1.00 38.60	L	С
	ATOM	454	0	GSERL	52	34.854	38.667	62.835	1.00 38.29	L	0
	ATOM	455	C1	GSERL	52	37.197	35.776	61.707	1.00 45.99	L	C
	ATOM	456	C2	GSERL	52	38.111	36.101	60.515	1.00 46.11	L	С
25	ATOM	457	СЗ	GSERL	52	38.477	34.801	59.788	1.00 46.60	L	С
	ATOM	458	C4	GSERL	52	39.100	33.808	60.777	1.00 46.16	L	С
	ATOM	459	C5	GSERL	52	38.180	33.615	62.004	1.00 46.88	L	С
	ATOM	460	С6	GSERL	52	38.849	32.688	63.024	1.00 48.42	L	С
	ATOM	461	02	GSERL	52	37.438	36.988	59.614	1.00 47.32	L	0
30	ATOM	462	03	GSERL	52	39.406	35.079	58.734	1.00 46.42	L	0
	ATOM	463	04	GSERL	52	39.302	32.549	60.123	1.00 46.46	L	0
	ATOM	464	05	GSERL	52	37.851	34.874	62.616	1.00 47.23	L	0
	ATOM	465	06	GSERL	52	39.251	31.462	62.431	1.00 51.52	L	0
	ATOM	466	N	SER L	53	33.610	37.263	64.085	1.00 36.60	L	N
35	ATOM	467	C A	SER L	53	32.367	37.488	63.354	1.00 35.81	L	C
	ATOM	468	C	SER L	53	32.602	37.463	61.845	1.00 33.73	L	С
	ATOM	469	0	SER L	53	32.395	38.460	61.162	1.00 33.37	L	0
	ATOM	470	СВ	SER L	53	31.765	38.831	63.764	1.00 37.62	L	C
	ATOM	471	0 G	SER L	53	32.684	39.879	63.524		L	0
40	ATOM	472	N	PRO L	54	33.026	36.310	61.303	1.00 32.42	L	N
	ATOM	473	CA	PRO L	54	33.285	36.192	59.865	1.00 31.65	L	C
	ATOM	474	С	PRO L	54	32.069	36.078	58.940	1.00 30.67	L	С
	ATOM	475	0	PRO L	54	32.156	36.424	57.761	1.00 30.19	L	0
	ATOM	476	CB	PRO L	54	34.172	34.956	59.788	1.00 31.82	L	С
45	ATOM	477	CG	PRO L	54	33.578	34.084	60.841	1.00 30.71	L	С
	ATOM	478	CD	PRO L	54	33.366	35.051	61.994	1.00 30.98	L	C
	ATOM	479	N	CYS L	55	30.946	35.594	59.461	1.00 29.86	L	N
	ATOM	480	CA	CYS L	55	29.752	35.422	58.635	1.00 30.36	L	C
	ATOM	481	С	CYS L	55	29.033	36.733	58.343	1.00 31.54	L	C
50	ATOM	482	0	CYS L	55	28.455	37.358	59.230	1.00 32.38	L	0
	ATOM	483	CB	CYS L	55	28.794	34.430	59.290	1.00 28.02	L	C
	ATOM	484	SG	CYS L	55	29.586	32.875	59.818	1.00 28.74	L	S
	ATOM	485	N	GLN L	56	29.060	37.122	57.074	1.00 31.32	L	N
<u>-</u> -	ATOM	486	CA	GLN L	56	28.456	38.365	56.607	1.00 30.45	L	C
55	ATOM	487	С	GLN L	56	26.983	38.271	56.217	1.00 29.58	L	С

	ATOM	488	0	GLN L	56	26.387	37.195	56.205	1.00 30.14	L	0
	ATOM	489	ĊВ	GLN L	56	29.239	38.873	55.398	1.00 29.51	L	С
	ATOM	490	CG	GLN L	56	30.731	38.996	55.615	1.00 27.82	L	C
	ATOM	491	CD	GLN L	56	31.463	39.252	54.321	1.00 28.65	L	С
5	ATOM	492	0E1	GLN L	56	31.054	40.098	53.526	1.00 31.65	L	0
	ATOM	493	NE2	GLN L	56	32.551	38.526	54.098	1.00 29.31	L	N
	ATOM	494	N	ASN L	57	26.415	39.429	55.897	1.00 30.03	L	N
	ATOM	495	CA	ASN L	57	25.030	39.559	55.453	1.00 29.58	L	С
	ATOM	496	C	ASN L	57	23.952	38.887	56.296	1.00 29.62	L	С
10	ATOM	497	0	ASN L	57	23.024	38.276	55.764	1.00 29.77	L	0
	ATOM	498	СВ	ASN L	57	24.921	39.085	53.999	1.00 29.04	L	C
	ATOM	499	CG	ASN L	57	25.762	39.924	53.054	1.00 29.56	L	C
	ATOM	500		ASN L	57	25.568	41.134	52.945	1.00 32.62	L	0
	ATOM	501		ASN L	57	26.702	39.287	52.367	1.00 29.28	Ĺ	N
15	ATOM	502	N	GLY L	58	24.059	39.019	57.610	1.00 30.01	L	N
	ATOM	503	C A	GLY L	58	23.061	38.432	58.485	1.00 30.78	L	C
	ATOM	504	C	GLY L	58	23.145	36.931	58.670	1.00 30.82	L	C
	ATOM	505	0	GLY L	58	22.166	36.299	59.066	1.00 31.08	L	0
	ATOM	506	N	GLY L	59	24.305	36.351	58.388	1.00 31.24	L	N
20	ATOM	507	CA	GLY L	59	24.453	34.919	58.557	1.00 31.81	L	C
20	ATOM	508	C	GLY L	59	24.692	34.578	60.015	1.00 31.05	L	C
	ATOM	509	0	GLY L	59	24.845	35.466	60.853	1.00 31.54	L	0
	ATOM	510	N	FSERL	60	24.723	33.289	60.326	1.00 30.80	L	N
	ATOM	511	C A	FSERL	60	24.959	32.852	61.690	1.00 30.86	L	C
25	ATOM	512	CB	FSERL	60	23.724	32.128	62.227	1.00 31.58	L	C
40	ATOM	513	0 G	FSERL	60	22.643	33.041	62.308	1.00 32.58	L	0
	ATOM	514	C	FSERL	60	26.184	31.953	61.743	1.00 32.30	L	C
	ATOM	515	0	FSERL	60	26.194	30.990	60.984	1.00 29.56	L	0
	ATOM	516	C1	FSERL	60	21.375	32.378	62.268	1.00 25.30	L	C
30	ATOM	517	C2	FSERL	60	20.246	33.387	62.560	1.00 35.22	L	C
30	ATOM	518	C3	FSERL	60	20.246	34.428	61.430	1.00 37.43	L	C
	ATOM	519	C4	FSERL	60	20.174	33.715	60.084	1.00 37.43	L	С
	ATOM	520	C5	FSERL	60	21.164	32.683	59.913	1.00 35.10	L	C
	ATOM	521	C6	FSERL	60	21.104	31.969	58.566	1.00 35.30	L	C
35	ATOM	522	02	FSERL	60	20.509	34.051	63.802	1.00 33.30	L	0
55	ATOM	523	02	FSERL	60	19.049	35.291	61.638	1.00 39.35	L	0
	ATOM	524	0.3	FSERL	60	18.764	33.231	60.034	1.00 38.01	L	0
	ATOM	52 4 525	05	FSERL	60	21.172	31.739	60.996	1.00 35.01	L	0
	ATOM	526		CYS L		27.103			1.00 29.76	L	N
40	ATOM	527	C A	CYS L	61	28.340	31.532	62.803	1.00 30.26	L	C
40	ATOM	528	C	CYS L	61	28.205	30.412	63.825	1.00 30.72	L	C
	ATOM	529	0	CYS L	61	27.616	30.591	64.895	1.00 30.72	L	0
	ATOM	530	CB	CYS L	61	29.468	32.474	63.227	1.00 29.48	L	C
	ATOM	531	SG	CYS L	61	31.145	31.764	63.150	1.00 30.89	L	S
4 5		532			62	28.754	29.254		1.00 30.33	L	N
40	ATOM ATOM	533	N C A	LYS L LYS L	62	28.734	28.090	63.477 64.347	1.00 30.27	L L	C
	ATOM	534	C	LYS L	62	30.183	27.688	64.543	1.00 29.04	L L	C
								63.595	1.00 28.28		
	ATOM ATOM	535 536	0 C B	LYS L LYS L	62 62	30.870 27.943	27.312		1.00 28.28	L	0 C
50	ATOM	536	CG		62	27.943	26.952 25.826	63.696 64.642	1.00 30.78	L L	C
υU		537 538		LYS L	62				1.00 35.70		C
	ATOM ATOM	539	C D C E	LYS L	62	28.780 28.392	25.112 23.957	65.204	1.00 33.08	L L	C C
	ATOM	540		LYS L	62	27.581		66.122	1.00 34.05		
			N Z	LYS L	63	30.645	24.389	67.286	1.00 32.19	L	N N
55	ATOM ATOM	541 542	N C A	ASP L			27.781	65.782		L	N C
55	ATOM	542	CA	ASP L	63	32.018	27.455	66.120	1.00 28.45	L	С

	ATOM	543	C	ASP	L	63	32.317	25.970	65.961	1.00	27.88		L	С
	ATOM	544	0	ASP	L	63	31.489	25.120	66.286	1.00	26.64		L	0
	ATOM	545	СВ	ASP	L	63	32.310	27.909	67.546	1.00	28.61		L	C
	ATOM	546	CG	ASP	L	63	33.762	27.778	67.899	1.00	31.76		L	С
5	ATOM	547	0D1	ASP	L	63	34.595	28.171	67.072	1.00	29.78		Ն	0
	ATOM	548	0D2	ASP	L	63	34.057	27.289	68.989	1.00	31.88		L	0
	ATOM	549	N	GLN		64	33.511	25.670	65.463	1.00	27.71		L	N
	ATOM	550	CA	GLN		64	33.934	24.296	65.222		29.46		Ĺ	С
	ATOM	551	С	GLN		64	35.354	24.115	65.751		29.86		L	C
10	ATOM	552	0	GLN		64	35.988	25.076	66.145		29.22		Ĺ	0
	ATOM	553	СВ	GLN		64	33.894	24.014	63.715		30.77		_ L	C
	ATOM	554	CG	GLN		64	33.597	22.576	63.346		33.56		L L	C
	ATOM	555	CD	GLN		64	32.157	22.156	63.621		33.54		_ [.	C
	ATOM	556		GLN		64	31.840	20.973	63.568		36.28		L	0
15	ATOM	557				64	31.284	23.119	63.904		31.18		Ĺ	N
	ATOM	558	N	LEU		65	35.862	22.891	65.740		32.40		L	N
	ATOM	559	CA	LEU		65	37.206	22.633	66.242		33.87		Ĺ	C
	ATOM	560	C	LEU		65	38.292	23.203	65.332		35.15		Ĺ	C
	ATOM	561	0	LEU		65	38.688	22.574	64.349		36.47		Ĺ	0
20	ATOM	562	СВ	LEU		65	37.410	21.125	66.422		35.23		L	Č
	ATOM	563	CG	LEU		65	38.554	20.679	67.337		36.14		L	C
	ATOM	564		LEU		65	38.435	21.372	68.687		36.95		L	C
	ATOM	565		LEU		65	38.503	19.172	67.517		35.86		ا ا	C
	ATOM	566	N N	GLN		66	38.767	24.401	65.666		35.72			N
25	ATOM	567	CA	GLN		66	39.820	25.072	64.903		35.89			C
20	ATOM	568	C	GLN		66	39.293	25.586	63.561		35.00			C ·
	ATOM	569	0	GLN		66	39.998	25.562	62.547		33.68			0
	ATOM	570	C B	GLN		66	40.986	24.101	64.674		37.22			C
	ATOM	571	CG	GLN		66	42.288	24.748	64.232		40.93			C
30	ATOM	572	CD	GLN		66	43.040	25.456	65.356		40.68			C
30	ATOM	572 573	OE1	GLN		66	44.109	26.017	65.128		41.86			0
			NE2	GLN										
	ATOM ATOM	574 575				66 67	42.488	25.431	66.566		40.50 31.83			N
		576	N C A	SER		67	38.051	26.059	63.568 62.365					N
35	ATOM ATOM	577	C	SER		67	37.412	26.568	62.667		31.03 31.16			C C
55		578	0	SER SER			35.991	27.036						
	ATOM					67	35.613	27.197	63.829		31.27			0
	A T O M A T O M	579 580	CB OG	SER SER		67 67	37.389	25.477 24.239	61.288		30.23		_	C 0
	ATOM	581	N N			68	36.946 35.210		61.817					
40	ATOM	582		TYR				27.265			29.96	•	-	N
40			CA	TYR		68	33.835	27.707	61.785		28.95	I		C
	ATOM	583	C	TYR		68	32.987	27.358	60.573		28.08			C
	ATOM	584	0 CB	TYR		68	33.500	26.977	59.516		27.87			0
	ATOM	585	CB	TYR		68	33.769	29.221	62.024		30.00	I		C
1 =	ATOM	586	CG	TYR		68	34.288	30.061	60.876		29.99		,	C
45	ATOM	587		TYR		68	35.650	30.332	60.743		30.22	I		C
	ATOM	588		TYR		68	33.417	30.574	59.912		30.26	I		C
	ATOM	589		TYR		68	36.135	31.090	59.682		29.23	I		C
	ATOM	590		TYR		68	33.892	31.331	58.844		29.58	I		С
F 0	ATOM	591	CZ	TYR		68	35.251	31.585	58.737		29.30	I		C
50	ATOM	592	0 H	TYR		68	35.733	32.320	57.683		28.26	I		0
	ATOM	593	N	ILE		69	31.680	27.499	60.743		25.46	I		N
	ATOM	594	CA	ILE		69	30.720	27.220	59.691		24.21	Ι		C
	ATOM	595	С	ILE		69	29.732	28.374	59.657		23.58	I		C
,	ATOM	596	0	ILE		69	29.233	28.800	60.698		21.31	I		0
55	ATOM	597	CB	ILE	L	69	29.947	25.908	59.974	1.00	24.42	I	,	С

	ATOM	598	CG1	ILE	L	69	30.904	24.717	59.914	1.00 24.57	L	С
	ATOM	599	CG2	ILE	L	69	28.818	25.739	58.976	1.00 23.61	L	C
	ATOM	600	CD1	ILE	L	69	30.243	23.389	60.201	1.00 23.77	L	C
	ATOM	601	N	CYS	L	70	29.466	28.893	58.464	1.00 23.37	L	N
5	ATOM	602	CA	CYS	L	70	28.517	29.985	58.323	1.00 23.29	L	C
	ATOM	603	C	CYS	L	70	27.195	29.499	57.730	1.00 24.32	L	С
	ATOM	604	0	CYS	L	70	27.174	28.777	56.735	1.00 22.69	L	0
	ATOM	605	CB	CYS	L	70	29.084	31.091	57.427	1.00 24.87	L	С
	ATOM	606	SG	CYS	L	70	30.424	32.100	58.136	1.00 24.79	L	S
10	ATOM	607	N	PHE	L	71	26.096	29.880	58.373	1.00 23.47	L	N
	ATOM	608	CA	PHE	L	71	24.765	29.550	57.896	1.00 24.42	L	С
	ATOM	609	С	PHE	L	71	24.305	30.861	57.285	1.00 25.98	L	С
	ATOM	610	0	PHE	L	71	24.271	31.884	57.961	1.00 26.06	L	0
	ATOM	611	СВ	PHE	L	71	23.840	29.148	59.051	1.00 23.72	L	С
15	ATOM	612	CG	PHE	L	71	24.079	27.753	59.563	1.00 23.26	L	C
	ATOM	613	CD1	PHE	L	71	25.220	27.448	60.300	1.00 20.48	L	C
	ATOM	614	CD2	PHE	L	71	23.170	26.737	59.286	1.00 21.74	L	С
	ATOM	615	CE1	PHE	L	71	25.453	26.157	60.751	1.00 19.84	L	С
	ATOM	616	CE2	PHE	L	71	23.395	25.440	59.733	1.00 22.58	L	C
20	ATOM	617	CZ	PHE	L	71	24.537	25.149	60.467	1.00 21.41	L	С
	ATOM	618	N	CYS	L	72	23.964	30.838	56.004	1.00 27.38	L	N
	ATOM	619	CA	CYS	L	72	23.561	32.060	55.322	1.00 28.04	L	С
	ATOM	620	С	CYS	L	72	22.067	32.210	55.147	1.00 29.09	L	С
	ATOM	621	0	CYS	L	72	21.315	31.236	55.240	1.00 30.40	L	0
25	ATOM	622	СВ	CYS	L	72	24.216	32.125	53.941	1.00 27.64	L	С
	ATOM	623	SG	CYS	L	72	25.997	31.758	53.929	1.00 27.84	L	S
	ATOM	624	N	LEU	L	73	21.645	33.446	54.896	1.00 29.28	L	N
	ATOM	625	CA	LEU	L	73	20.243	33.736	54.640	1.00 29.11	L	С
	ATOM	626	C	LEU	L	73	20.018	33.294	53.201	1.00 29.05	L	C
30	ATOM	627	0	LEU	L	73	20.964	33.228	52.419	1.00 29.21	L	0
	ATOM	628	CB	LEU	L	73	19.963	35.233	54.786	1.00 29.61	L	С
	ATOM	629	CG	LEU	L	73	19.999	35.764	56.221	1.00 31.06	L	С
	ATOM	630	CD1	LEU	L	73	19.802	37.274	56.220	1.00 32.08	L	С
	ATOM	631	CD2	LEU	L	73	18.913	35.075	57.043	1.00 30.65	L	С
35	ATOM	632	N	PRO	L	74	18.766	32.991	52.833	1.00 29.36	L	N
	ATOM	633	CA	PRO	L	74	18.384	32.543	51.492	1.00 29.38	L	С
	ATOM	634	C	PRO	L	74	19.120	33.149	50.298	1.00 29.43	L	С
	ATOM	635	0	PRO	L	74	19.630	32.420	49.449	1.00 29.02	L	0
	ATOM	636	CB	PRO	L	74	16.888	32.828	51.461	1.00 30.46	L	C
40	ATOM	637	CG	PRO	L	74	16.486	32.477	52.854	1.00 29.08	L	C
	ATOM	638	CD	PRO	L	74	17.570	33.151	53.682	1.00 29.95	L	C
	ATOM	639	N	ALA	L	75	19.190	34.473	50.229	1.00 28.84	L	N
	ATOM	640	CA	ALA	L	75	19.849	35.124	49.100	1.00 28.32	L	C
	MOTA	641	С	ALA	L	75	21.368	35.226	49.194	1.00 27.93	L	C
45	ATOM	642	0	ALA	L	75	21.978	36.020	48.481	1.00 29.61	L	0
	MOTA	643	CB	ALA	L	75	19.257	36.508	48.893	1.00 27.56	L	С
	ATOM	644	N	PHE	L	76	21.987	34.418	50.047	1.00 26.68	L	N
	ATOM	645	CA	PHE	L	76	23.433	34.480	50.205	1.00 25.92	L	C
	ATOM	646	С	PHE	L	76	24.105	33.108	50.253	1.00 25.21	L	С
50	ATOM	647	0	PHE	L	76	23.484	32.103	50.606	1.00 24.64	L	0
	ATOM	648	CB	PHE	L	76	23.770	35.269	51.479	1.00 26.98	L	C
	ATOM	649	CG	PHE	L	76	23.308	36.705	51.447	1.00 26.03	L	С
	ATOM	650		PHE		76	24.009	37.660	50.717	1.00 26.24	L	С
	ATOM	651		PHE		76	22.161	37.094	52.128	1.00 25.56	L	C
55	ATOM	652	CE1	PHE	L	76	23.570	38.986	50.665	1.00 27.46	L	С

	ATOM	653	CE2	PHE	L	76	21.713	38.416	52.083	1.00 28.29	L	С
	ATOM	654	CZ	PHE		76	22.420	39.363	51.350	1.00 27.25	L	C
	ATOM	655	N	GLU		77	25.381	33.082	49.881	1.00 23.35	L	N
_	MOTA	656	C A	GLU	L	77	26.171	31.861	49.896	1.00 25.22	L	С
5	ATOM	657	С	GLU	L	77	27.636	32.260	50.022	1.00 25.48	L	С
	ATOM	658	0	GLU	L	77	27.947	33.446	50.102	1.00 24.93	L	0
	ATOM	659	CB	GLU	L	77	25.931	31.027	48.624	1.00 24.76	L	С
	ATOM	660	CG	GLU	L	77	26.369	31.665	47.317	1.00 26.43	L	С
	ATOM	661	CD	GLU	L	77	25.929	30.854	46.102	1.00 29.36	L	C
10	ATOM	662	0E1	GLU	L	77	26.332	29.708	45.975	1.00 26.59	L	0
	ATOM	663	0E2	GLU	L	77	25.177	31.379	45.287	1.00 31.26	L	0
	ATOM	664	N	GLY	L	78	28.525	31.273	50.045	1.00 24.82	L	N
	ATOM	665	CA	GLY	L	78	29.944	31.545	50.191	1.00 24.72	L	C
	ATOM	666	С	GLY	L	78	30.414	31.145	51.585	1.00 26.41	L	C
15	MOTA	667	0	GLY	L	78	29.613	31.056	52.513	1.00 25.52	L	0
	ATOM	668	N	ARG	L	79	31.711	30.894	51.731	1.00 26.17	L	N
	ATOM	669	CA	ARG	L	79	32.299	30.507	53.014	1.00 26.44	L	C
	ATOM	670	C	ARG	L	79	31.847	31.428	54.146	1.00 27.39	L	C
	ATOM	671	0	ARG	L	79	31.503	30.972	55.236	1.00 27.00	L	0
20	ATOM	672	СВ	ARG	L	79	33.827	30.532	52.894	1.00 25.97	L	C
	ATOM	673	CG	ARG	L	79	34.596	30.145	54.138	1.00 25.27	L	C
	ATOM	674	CD	ARG	L	79	36.018	29.745	53.756	1.00 27.07	L	C
	ATOM	675	NE	ARG	L	79	36.352	28.422	54.279	1.00 29.92	L	N
	ATOM	676	CZ	ARG	L	79	37.168	27.553	53.689	1.00 31.71	L	С
25	ATOM	677	NH1	ARG	L	79	37.754	27.849	52.536	1.00 34.10	L	N
	ATOM	678	NH2	ARG	L	79	37.394	26.375	54.254	1.00 34.56	L	N
	ATOM	679	N	ASN	L	80	31.845	32.728	53.875	1.00 28.14	L	N
	ATOM	680	CA	ASN	L	80	31.440	33.727	54.858	1.00 27.10	L	C
	ATOM	681	С	ASN	L	80	30.171	34.446	54.415	1.00 27.35	L	С
30	ATOM	682	0	ASN	L	80	29.950	35.598	54.785	1.00 27.84	L	0
	ATOM	683	СВ	ASN	L	80	32.561	34.750	55.038	1.00 27.74	L	Ć
	ATOM	684	CG	ASN	L	80	33.868	34.110	55.442	1.00 29.02	L	C
	ATOM	685	0D1	ASN	L	80	33.952	33.449	56.473	1.00 31.37	L	0
	ATOM	686	ND2	ASN	L	80	34.897	34.301	54.629	1.00 31.80	L	N
35	ATOM	687	N	CYS	L	81	29.348	33.771	53.616	1.00 26.38	L	N
	ATOM	688	CA	CYS	L	81	28.103	34.353	53.113	1.00 26.94	L	С
	ATOM	689	С	CYS	L	81	28.341	35.691	52.395	1.00 27.16	L	C
	ATOM	690	0	CYS	L	81	27.474	36.566	52.392	1.00 26.50	L	0
	ATOM	691	CB	CYS	L	81	27.115	34.563	54.263	1.00 26.45	L	С
40	ATOM	692	SG	CYS	L	81	26.764	33.080	55.267	1.00 28.68	L	S
	ATOM	693	N	${\tt GLU}$	L	82	29.510	35.834	51.777	1.00 26.64	L	N
	ATOM	694	CA	GLU	L	82	29.875	37.058	51.077	1.00 27.18	L	С
	ATOM	695	С	GLU	L	82	29.314	37.153	49.654	1.00 27.98	L	C
	ATOM	696	0	${\tt GLU}$	L	82	29.364	38.216	49.031	1.00 28.25	L	0
45	ATOM	697	CB	GLU	L	82	31.408	37.199	51.028	1.00 27.27	L	C
	ATOM	698	CG	$\operatorname{GL}\operatorname{U}$	L	82	32.116	36.245	50.057	1.00 25.93	L	C
	ATOM	699	CD	GLU	L	82	32.435	34.881	50.658	1.00 27.71	L	С
	ATOM	700	0E1	GLU	L	82	31.618	34.339	51.391	1.00 26.78	L	0
	ATOM	701	0E2	GLU	L	82	33.503	34.356	50.371	1.00 29.60	L	0
50	ATOM	702	N	THR	L	83	28.776	36.052	49.140	1.00 28.28	L	N
	ATOM	703	CA	THR	L	83	28.238	36.042	47.784	1.00 28.62	L	С
	ATOM	704	C	THR	L	83	26.762	36.405	47.698	1.00 29.44	L	С
	ATOM	705	0	THR	L	83	25.910	35.738	48.284	1.00 28.89	L	0
	ATOM	706	CB	THR		83	28.442	34.668	47.117	1.00 26.44	L	С
55	ATOM	707	0G1	THR	L	83	29.836	34.341	47.124	1.00 25.96	L	0

	ATOM	708	CG2	THR	L	83	27.941	34.692	45.675	1.00 26.81	L	C
	ATOM	709	N	HIS	L	84	26.475	37.472	46.958	1.00 31.51	L	N
	ATOM	710	C A	HIS	L	84	25.109	37.939	46.759	1.00 34.54	L	C
	ATOM	711	С	HIS	L	84	24.514	37.169	45.588	1.00 35.95	L	С
5	ATOM	712	0	HIS	L	84	24.914	37.372	44.442	1.00 36.09	L	0
	ATOM	713	СВ	HIS	L	84	25.085	39.434	46.424	1.00 36.24	L	С
	ATOM	714	CG	HIS	L	84	25.439	40.328	47.572	1.00 38.81	L	С
	ATOM	715	ND1	HIS	L	84	26.701	40.373	48.126	1.00 39.64	L	N
	ATOM	716	CD2	HIS	L	84	24.697	41.231	48.256	1.00 39.06	L	С
10	ATOM	717	CE1	HIS	L	84	26.721	41.264	49.100	1.00 39.38	L	С
	ATOM	718	NE2	HIS	L	84	25.518	41.799	49.200	1.00 41.56	L	N
	ATOM	719	N	LYS		85	23.561	36.290	45.871	1.00 37.90	L	N
	ATOM	720	CA	LYS	L	85	22.931	35.504	44.817	1.00 39.99	L	С
	ATOM	721	С	LYS	L	85	22.179	36.379	43.808	1.00 41.95	L	C
15	ATOM	722	0	LYS	L	85	21.997	35.988	42.659	1.00 42.20	L	0
	ATOM	723	СВ	LYS	L	85	21.983	34.471	45.432	1.00 40.09	L	С
	ATOM	724	CG	LYS	L	85	22.673	33.492	46.380	1.00 41.01	L	С
	ATOM	725	CD	LYS	L	85	21.699	32.493	46.987	1.00 40.74	L	С
	ATOM	726	CE	LYS	L	85	21.202	31.494	45.958	1.00 42.61	L	C
20	ATOM	727	NZ	LYS	L	85	22.296	30.609	45.462	1.00 43.27	L	N
	ATOM	728	N	ASP	L	86	21.758	37.567	44.235	1.00 44.88	L	N
	ATOM	729	CA	ASP	L	86	21.030	38.487	43.361	1.00 47.56	L	С
	ATOM	730	C	ASP	L	86	21.941	39.324	42.455	1.00 47.92	L	C
	ATOM	731	0	ASP	L	86	21.456	40.131	41.663	1.00 48.41	L	0
25	ATOM	732	СВ	ASP	L	86	20.159	39.433	44.196	1.00 49.53	L	C
	ATOM	733	CG	ASP	L	86	19.237	38.694	45.147	1.00 52.38	L	C
	ATOM	734	0D1	ASP	L	86	18.537	37.783	44.701	1.00 53.34	L	0
	ATOM	735	0D2	ASP	L	86	19.217	39.037	46.334	1.00 53.54	L	0
	ATOM	736	N	ASP	L	87	23.252	39.132	42.568	1.00 48.29	L	N
30	ATOM	737	CA	ASP	L	87	24.213	39.883	41.762	1.00 48.43	L	C
	ATOM	738	С	ASP	L	87	24.938	39.017	40.736	1.00 48.75	L	С
	ATOM	739	0	ASP	Ĺ	87	26.108	39.250	40.431	1.00 48.28	L	0
	ATOM	740	CB	ASP	L	87	25.244	40.550	42.673	1.00 49.27	L	C
	ATOM	741	CG	ASP	L	87	24.639	41.629	43.545	1.00 49.65	L	C
35	ATOM	742	0D1	ASP	L	87	25.271	41.998	44.528	1.00 50.02	L	0
	ATOM	743	0D2	ASP	L	87	23.541	42.101	43.231	1.00 50.10	L	0
	ATOM	744	N	GLN	L	88	24.239	38.024	40.199	1.00 48.76	L	N
	ATOM	745	CA	GLN		88	24.834	37.130	39.216	1.00 48.54	L	C
	ATOM	746		GLN		88	24.028	37.101		1.00 47.25	L	С
40	ATOM	747	0	GLN		88	23.989	36.081	37.238	1.00 47.52	L	0
	ATOM	748	CB	GLN		88	24.925	35.716	39.796	1.00 50.51	L	С
	ATOM	749	CG	GLN		88	25.663	35.632	41.129	1.00 53.34	L	С
	ATOM	750	CD	GLN		88	27.134	35.973	41.006	1.00 54.62	L	С
	ATOM	751		GLN		88	27.499	37.016	40.461	1.00 55.79	L	0
45	ATOM	752		GLN		88	27.990	35.094	41.518	1.00 55.48	L	N
	ATOM	753	N	LEU		89	23.399	38.221	37.575	1.00 45.19	L	N
	ATOM	754	C A	LEU		89	22.587	38.294	36.363	1.00 42.20	L	С
	ATOM	755	C	LEU		89	23.431	38.485	35.105	1.00 39.92	L	С
	ATOM	756	0	LEU		89	23.313	39.493	34.407	1.00 39.00	L	0
50	ATOM	757	CB	LEU		89	21.564	39.429	36.487	1.00 42.79	L	С
	ATOM	758	CG	LEU		89	20.458	39.493	35.430	1.00 43.04	L	C
	ATOM	759		LEU		89	19.678	38.187	35.421	1.00 43.31	L	C
	ATOM	760		LEU		89	19.532	40.662	35.729	1.00 43.24	L	C
~ ~	ATOM	761	N	ILE		90	24.284	37.504	34.825	1.00 37.21	L	N
55	ATOM	762	CA	ILE	Ĺ	90	25.151	37.532	33.654	1.00 34.54	L	C

	ATOM	763	С	ILE	L	90	24.832	36.325	32.778	1.00 33.42	L	С
	ATOM	764	0	ILE	L	90	24.290	35.327	33.253	1.00 34.00	L	0
	ATOM	765	CB	ILE	L	90	26.643	37.503	34.057	1.00 34.63	L	С
	ATOM	766	CG1	ILE	L	90	26.934	36.263	34.905	1.00 33.21	L	С
5	ATOM	767	CG2	ILE	L	90	26.997	38.778	34.819	1.00 32.30	L	С
	ATOM	768	CD1	ILE	L	90	28.372	36.154	35.356	1.00 36.32	L	С
	ATOM	769	N	CYS	L	91	25.181	36.415	31.501	1.00 31.20	L	N
	ATOM	770	CA	CYS	L	91	24.885	35.350	30.556	1.00 30.45	L	С
	ATOM	771	С	CYS	L	91	25.471	33.971	30.833	1.00 30.35	L	С
10	ATOM	772	0	CYS	L	91	24.778	32.967	30.671	1.00 29.92	L	0
	ATOM	773	СВ	CYS	L	91	25.261	35.790	29.143	1.00 26.98	L	С
	ATOM	774	SG	CYS		91	24.204	37.118	28.480	1.00 26.22	L	S
	ATOM	775	N	VAL		92	26.732	33.902	31.245	1.00 29.06	L	N
	ATOM	776	CA	VAL		92	27.333	32.602	31.514	1.00 28.75	L	C
15	ATOM	777	С	VAL		92	26.693	31.897	32.707	1.00 27.72	L	C
	ATOM	778	0	VAL		92	26.940	30.712	32.937	1.00 28.52	L	0
	ATOM	779	СВ	VAL		92	28.866	32.709	31.718	1.00 31.07	L	C
	ATOM	780	CG1			92	29.529	33.115	30.403	1.00 29.69	L	C
	ATOM	781	CG2	VAL	L	92	29.190	33.717	32.813	1.00 31.06	L	С
20	ATOM	782	N	ASN		93	25.865	32.622	33.457	1.00 25.61	L	N
	ATOM	783	CA	ASN		93	25.174	32.050	34.605	1.00 24.28	L	C
	ATOM	784	С	ASN		93	23.753	31.651	34.213	1.00 23.30	L	C
	ATOM	785	0	ASN		93	22.850	32.487	34.183	1.00 22.74	L	0
	ATOM	786	СВ	ASN		93	25.123	33.047	35.767	1.00 23.78	L	C
25	ATOM	787	CG	ASN		93	24.294	32.533	36.930	1.00 25.91	L	C
	ATOM	788		ASN		93	24.175	31.326	37.128	1.00 28.42	L	0
	ATOM	789		ASN		93	23.725	33.442	37.710	1.00 24.92	L	N
	ATOM	790	N	GLU		94	23.564	30.370	33.907	1.00 22.36	L	N
	ATOM	791	CA	GLU		94	22.257	29.862	33.511	1.00 22.33	L	С
30	ATOM	792	С	GLU		94	21.654	30.701	32.383	1.00 20.87	L	C
	ATOM	793	0	GLU		94	20.472	31.047	32.412	1.00 18.77	L	0
	ATOM	794	СВ	GLU	L	94	21.302	29.856	34.711	1.00 24.83	L	С
	ATOM	795	CG	GLU	L	94	21.714	28.934	35.863	1.00 27.12	L	С
	ATOM	796	CD	GLU		94	21.684	27.462	35.488	1.00 30.61	L	С
35	ATOM	797	0E1	GLU	L	94	22.593	26.997	34.794	1.00 29.23	L	0
	ATOM	798	0E2	GLU	L	94	20.741	26.783	35.891	1.00 35.59	L	0
	ATOM	799	N	ASN	L	95	22.482	31.035	31.400	1.00 20.59	L	N
	ATOM	800	CA	ASN	L	95	22.054	31.810	30.240	1.00 21.27	L	С
	ATOM	801	C	ASN	L	95	21.375	33.134	30.603	1.00 22.32	L	C
40	ATOM	802	0	ASN	L	95	20.567	33.656	29.829	1.00 22.62	L	0
	ATOM	803	СВ	ASN	L	95	21.108	30.963	29.381	1.00 19.04	L	С
	ATOM	804	CG	ASN	L	95	21.028	31.451	27.956	1.00 17.99	L	C
	ATOM	805	0D1	ASN	L	95	22.040	31.546	27.270	1.00 20.44	L	0
	ATOM	806	ND2	ASN	L	95	19.827	31.757	27.499	1.00 18.44	L	N
45	ATOM	807	N	GLY	L	96	21.716	33.674	31.773	1.00 23.58	L	N
	ATOM	808	CA	GLY	L	96	21.140	34.928	32.227	1.00 22.26	L	C
	ATOM	809	С	GLY	L	96	19.645	34.875	32.494	1.00 22.45	L	С
	ATOM	810	0	GLY		96	19.002	35.911	32.650	1.00 24.38	L	0
	ATOM	811	N	GLY	L	97	19.084	33.674	32.566	1.00 21.95	L	N
50	ATOM	812	CA	GLY	L	97	17.654	33.558	32.789	1.00 20.54	L	С
	ATOM	813	C	GLY	L	97	16.871	33.760	31.501	1.00 20.22	L	С
	ATOM	814	0	GLY	L	97	15.645	33.740	31.510	1.00 22.61	L	0
	ATOM	815	N	CYS	L	98	17.580	33.959	30.393	1.00 19.38	L	N
	ATOM	816	CA	CYS	L	98	16.956	34.161	29.086	1.00 20.02	L	С
55	ATOM	817	С	CYS	L	98	16.477	32.833	28.508	1.00 20.61	L	С

	ATOM	818	0	CYS	L	98	17.1	65	31.818	28.623	1.00	20.27	I	. 0
	ATOM	819	CB	CYS	L	98	17.9	55	34.764	28.105	1.00	19.41	I	C
	ATOM	820	SG	CYS	L	98	18.6	01	36.419	28.485	1.00	22.10	I	. S
	ATOM	821	N	GLU	L	99	15.3	14	32.839	27.867	1.00	20.33	I	N
5	ATOM	822	CA	$\operatorname{GL} \operatorname{U}$	L	99	14.7	94	31.611	27.277	1.00	20.72	I	C
	ATOM	823	C	GLU	L	99	15.6	25	31.164	26.076	1.00	19.15	I	. C
	ATOM	824	0	GLU	L	99	15.8	27	29.974	25.877	1.00	17.11	1	. 0
	ATOM	825	СВ	GLU	L	99	13.3	36	31.779	26.850	1.00	22.59	I	. C
	ATOM	826	CG	GLU	L	99	12.6	82	30.457	26.467	1.00	29.91	I	. C
10	ATOM	827	CD	GLU	L	99	11.1	78	30.564	26.302	1.00	32.54	I	. C
	ATOM	828	0E1	GLU	L	99	10.7	38	31.204	25.370	1.00	33.67	I	. 0
	ATOM	829	0E2	GLU	L	99	10.4	58	29.999	27.122	1.00	37.34	I	. 0
	ATOM	830	N	GLN	L	100	16.1	01	32.114	25.274	1.00	18.04	I	N
	ATOM	831	CA	GLN	L	100	16.9	11	31.763	24.112	1.00	18.31	I	C
15	ATOM	832	С	GLN	L	100	18.2	81	32.459	24.118	1.00	19.20	I	. C
	ATOM	833	0	GLN	L	100	19.2	23	31.951	24.724	1.00	19.26	I	. 0
·	ATOM	834	CB	GLN	L	100	16.1	45	32.056	22.805	1.00	16.04	I	. C
	ATOM	835	CG	GLN	L	100	14.7	89	31.342	22.716	1.00	15.13	I	. C
	ATOM	836	CD	GLN	L	100	14.1	.82	31.366	21.321	1.00	16.10	I	. C
20	ATOM	837	0E1	GLN	L	100	14.4	78	32.245	20.520	1.00	16.54	I	. 0
	ATOM	838	NE2	GLN	L	100	13.3	14	30.403	21.034	1.00	17.14	I	N
	ATOM	839	N	TYR	L	101	18.4	.08	33.610	23.465	1.00	19.40	I	N
	ATOM	840	CA	TYR	L	101	19.7	05	34.282	23.429	1.00	20.26	I	. C
	ATOM	841	С	TYR	L	101	19.8	95	35.307	24.540	1.00	22.37	I	. C
25	ATOM	842	0	TYR	L	101	18.9	56	36.002	24.935	1.00	22.47	I	. 0
	ATOM	843	CB	TYR	L	101	19.9	34	34.955	22.071	1.00	18.52	I	. C
	ATOM	844	CG	TYR	L	101	19.8	38	34.017	20.880	1.00	20.18	I	C
	ATOM	845	CD1	TYR	L	101	20.2	15	32.673	20.982	1.00	17.62	I	C
	ATOM	846	CD2	TYR	L	101	19.3	87	34.481	19.643	1.00	19.56	I	, с
30	ATOM	847	CE1	TYR	L	101	20.1	40	31.822	19.884	1.00	19.81	1	, C
	ATOM	848	CE2	TYR	L	101	19.3	15	33.640	18.541	1.00	19.48	I	. C
	ATOM	849	CZ	TYR	L	101	19.6	93	32.313	18.666	1.00	18.80	I	C
	MOTA	850	$0 \mathrm{H}$	TYR	L	101	19.6	41	31.489	17.564	1.00	19.13	I	. 0
	ATOM	851	N	CYS	L	102	21.1	27	35.387	25.032	1.00	22.05	I	N
35	ATOM	852	C A	CYS	L	102	21.5	00	36.300	26.102	1.00	23.17	I	C
	ATOM	853	С	CYS	L	102	22.6	80	37.168	25.657	1.00	24.83	I	C
	ATOM	854	0	CYS	L	102	23.6	17	36.686	25.020	1.00	25.16	I	, 0
	ATOM	855	CB	CYS	L	102	21.8	97	35.494	27.343	1.00	22.80	I	C
	ATOM	856	SG	CYS	L	102	22.3	808	36.468	28.827	1.00	24.11	I	. S
40	ATOM	857	N	SER	L	103	22.6	28	38.451	25.995	1.00	26.62	I	N
	ATOM	858	C A	SER	L	103	23.6	95	39.382	25.650	1.00	28.86	I	. C
	ATOM	859	С	SER	L	103	24.1	15	40.156	26.889	1.00	29.38	I	C
	ATOM	860	0	SER	L	103	23.2	77	40.759	27.558	1.00	31.61	I	. 0
	ATOM	861	CB	SER	L	103	23.2	25	40.377	24.584	1.00	27.37	I	C
45	ATOM	862	0 G	SER	L	103	22.9	75	39.733	23.350	1.00	29.37	I	. 0
	ATOM	863	N	ASP	L	104	25.4	05	40.125	27.205	1.00	30.25	I	N
	ATOM	864	CA	ASP			25.9	15	40.865	28.352	1.00	31.60	I	C
	ATOM	865	С	ASP	L	104	26.1	12	42.304	27.899	1.00	33.46	L	C
	ATOM	866	0	ASP	L	104	26.3	23	42.562	26.714	1.00	32.44	I	. 0
50	ATOM	867	CB	ASP	L	104	27.2	58	40.303	28.820	1.00	30.24	Ι	C
	ATOM	868	CG	ASP			27.1	24	38.978	29.537	1.00	31.11	L	, C
	ATOM	869	0D1	ASP	L	104	26.3	69	38.909	30.503		30.36	1	, 0
	ATOM	870	0D2	ASP			27.7		38.022	29.129		31.46	I	, 0
	ATOM	871	N			105	26.0		43.241	28.835		37.03	I	, N
55	ATOM	872	CA	HIS	L	105	26.2	26	44.642	28.486	1.00	40.26	I	, C

	ATOM	873	С	HIS	L	105	27.048	45.418	29.505	1.00	43.18		L	С
	ATOM	874	0	HIS	L	105	26.942	45.197	30.714	1.00	42.14		L	0
	ATOM	875	СВ	HIS	L	105	24.866	45.317	28.288	1.00	38.90		L	С
	ATOM	876	C G	HIS	L	105	24.151	44.878	27.048	1.00	38.94		Ľ	С
5	ATOM	877	ND1	HIS	L	105	24.678	45.051	25.786	1.00	38.12		Ĺ	N
	ATOM	878	CD2	HIS	L	105	22.955	44.267	26.875	1.00	37.83		L	С
	ATOM	879		HIS			23.838	44.565	24.890	1.00	38.48		L	С
	ATOM	880	NE2				22.785	44.083	25.524		37.45		Ĺ	N
	ATOM	881	N	THR			27.875	46.325	28.993		46.90		L	N
10	ATOM	882	CA	THR			28.731	47.171	29.816		49.56		L	С
	ATOM	883	С	THR			27.995	48.481	30.076		49.91		L	С
	ATOM	884	0	THR			27.876	49.319	29.182		51.77		_ L	0
	ATOM	885	СВ	THR			30.061	47.482	29.093		50.44		Ĺ	C
	ATOM	886	0G1	THR			30.719	46.256	28.752		52.50		- L	0
15	ATOM	887	CG2	THR			30.977	48.310	29.983		51.29		L	C
	ATOM	888	N	GLY			27.499	48.650	31.297		50.05		- L	N
	ATOM	889	CA	GLY			26.772	49.862	31.637		50.24		L	C
	ATOM	890	С	GLY			25.265	49.664	31.683		50.91		L	C
	ATOM	891	0	GLY			24.524	50.566	32.076		51.47		L L	0
20	ATOM	892	N	THR			24.812	48.480	31.276		50.46		L	N
	ATOM	893	CA	THR			23.394	48.138	31.269		48.90		L L	C
	ATOM	894	С	THR			23.244	46.633	31.482		47.11		L L	C
	ATOM	895	0	THR			24.024	45.847	30.948		47.64		- Ն	0
	ATOM	896	СВ	THR			22.733	48.524	29.929		50.40		L	C
25	ATOM	897	0G1	THR			23.506	47.998	28.842		51.52		L	0
_	ATOM	898	CG2	THR			22.639	50.038	29.793		51.68		Ĺ	С
	ATOM	899	N	LYS			22.244	46.238	32.266		44.24		լ L	N
	ATOM	900	CA	LYS			22.005	44.825	32.558		41.00		_ L	C
	ATOM	901	С	LYS			21.909	43.997	31.280		37.67		Ĺ	C
30	ATOM	902	0	LYS			21.642	44.531	30.201		37.06		Ĺ	0
	ATOM	903	СВ	LYS			20.716	44.663	33.367		42.02		Ĺ	С
	ATOM	904	CG	LYS			19.450	44.860	32.555		44.84		Ĺ	С
	ATOM	905	CD	LYS	L	109	18.219	44.906	33.444	1.00	47.58		L	С
	ATOM	906	CE	LYS			18.148	46.209	34.230	1.00	49.04		Ĺ	С
35	ATOM	907	ΝZ	LYS			18.009	47.398	33.338	1.00	48.86		Ĺ	N
	ATOM	908	N	ARG			22.125	42.691	31.409		33.89		Ĺ	N
	ATOM	909	CA	ARG	L	110	22.063	41.786	30.264	1.00	31.44		Ĺ	С
	ATOM	910	С	ARG	L	110	20.696	41.861	29.596		28.77		Ĺ	С
	ATOM	911	0	ARG	L	110	19.690	42.107	30.253	1.00	28.40		Ĺ	0
40	ATOM	912	CB	ARG	L	110	22.334	40.346	30.709	1.00	29.16		Ĺ	С
	ATOM	913	CG	ARG	L	110	21.206	39.704	31.515	1.00	26.40		L	C
	ATOM	914	CD	ARG	L	110	20.133	39.072	30.617	1.00	23.55]	Ĺ	С
	ATOM	915	NE	ARG			19.049	38.500	31.409	1.00	23.99		Ĺ	N
	ATOM	916	CZ	ARG			18.083	39.206	31.993		26.90	1	Ĺ	С
45	ATOM	917	NH1	ARG	L	110	18.045	40.529	31.871	1.00	25.76		Ĺ	N
	ATOM	918	NH2	ARG	L	110	17.163	38.592	32.726	1.00	23.93]	Ĺ	N
	ATOM	919	N	SER	L	111	20.666	41.652	28.287		27.46]	L,	N
	ATOM	920	CA	SER			19.416	41.683	27.545		26.40]		С
	ATOM	921	C	SER	L	111	19.173	40.310	26.925	1.00	25.75]		С
50	ATOM	922	0	SER			20.116	39.578	26.624		25.72]		0
	ATOM	923	CB	SER			19.484	42.732	26.442	1.00	23.78	i		С
	ATOM	924	0 G	SER	L	111	20.407	42.337	25.447		28.02]		0
	MOTA	925	N	CYS	L	112	17.906	39.962	26.745	1.00	24.32]		N
	ATOM	926	CA	CYS	L	112	17.553	38.682	26.152	1.00	24.98	j		С
55	ATOM	927	С	CYS	L	112	17.024	38.891	24.742	1.00	24.93]		С

	ATOM	928	0	CYS	L	112	16.341	39.879	24.470	1.00 26.5	L L	0
	ATOM	929	СВ	CYS	L	112	16.480	37.985	26.980	1.00 23.15	5 L	С
	ATOM	930	SG	CYS	L	112	16.932	37.554	28.686	1.00 25.67	7 L	S
	ATOM	931	N	ARG	L	113	17.341	37.961	23.846	1.00 24.52		
5	ATOM	932	CA			113	16.884	38.042	22.463	1.00 23.03		
	ATOM	933	С			113	16.292	36.709	22.021	1.00 22.44		
	ATOM	934	0			113	16.260	35.749	22.791	1.00 20.23		
	ATOM	935	CB			113	18.038	38.457	21.543	1.00 23.4		
	ATOM	936	CG			113	18.470	39.912	21.739	1.00 25.76		
10	ATOM	937	CD			113	19.706	40.286	20.926	1.00 25.39		
10	ATOM	938	N E			113	20.882	39.525	21.349	1.00 25.35		
	ATOM	939	CZ			113	21.361	38.459	20.712			
	ATOM	940				113				1.00 22.82		
		941	NH2				20.775	38.019	19.607	1.00 19.33		
15	ATOM					113	22.421	37.823	21.190	1.00 19.90		
10	ATOM	942	N			114	15.810	36.656	20.783	1.00 21.91		
	ATOM	943	C A			114	15.208	35.439	20.268	1.00 21.36		
	ATOM	944	C			114	15.653	35.122	18.847	1.00 20.52		
	ATOM	945	0			114	16.153	35.979	18.120	1.00 19.97		
90	ATOM	946	СВ			114	13.677	35.542	20.296	1.00 20.90		
20	ATOM	947	SG			114	12.941	36.040	21.885	1.00 22.52		
	ATOM	948	N			115	15.453	33.868	18.469	1.00 20.76		
	ATOM	949	CA			115	15.786	33.367	17.147	1.00 20.81		
	ATOM	950	С			115	14.684	33.850	16.199	1.00 21.18		
0.5	ATOM	951	0			115	13.556	34.098	16.627	1.00 21.61		
25	ATOM	952	СВ			115	15.827	31.832	17.207	1.00 20.46		C
	MOTA	953	CG			115	16.269	31.172	15.938	1.00 19.99		
	ATOM	954	ND1			115	15.455	31.057	14.832	1.00 19.51		N
	ATOM	955		HIS			17.442	30.586	15.602	1.00 18.82	e L	С
0.0	ATOM	956		HIS			16.107	30.432	13.870	1.00 17.84		C
30	ATOM	957	NE2			115	17.315	30.134	14.311	1.00 19.44	L L	N
	ATOM	958	N			116	15.020	34.012	14.925	1.00 21.79		N
	ATOM	959	CA			116	14.050	34.429	13.924	1.00 21.88		С
	ATOM	960	C			116	12.845	33.503	14.053	1.00 20.86		С
~ =	ATOM	961	0			116	13.002	32.306	14.288	1.00 20.19		0
35	ATOM	962	СВ			116	14.655	34.300	12.522	1.00 25.33		С
	ATOM	963	CG			116	13.663	34.559	11.391	1.00 32.50		С
	ATOM	964	CD			116	14.201	34.154	10.027	1.00 36.87	L	С
	ATOM	965	0E1			116	13.412	34.107	9.075	1.00 39.33		0
4.0	ATOM	966	0E2			116	15.405		9.916	1.00 38.85		0
4 0	ATOM	967	N			117	11.646	34.051	13.900	1.00 20.27	L	N
	ATOM	968	CA			117	10.451	33.236	14.020	1.00 18.99	L	С
	ATOM	969	С			117	9.860	33.299	15.417	1.00 19.27		С
	ATOM	970	0			117	8.820	32.694	15.688	1.00 19.43	L	0
	ATOM	971	N			118	10.543	34.018	16.305	1.00 19.01	L	N
45	ATOM	972	CA			118	10.116	34.206	17.689	1.00 19.23	L	. С
	ATOM	973	C			118	10.278	35.692	18.018	1.00 20.14	L	C
	ATOM	974	0	TYR	L	118	11.012	36.409	17.344	1.00 19.66	L	0
	ATOM	975	CB			118	10.999	33.417	18.671	1.00 18.12	L	C
	ATOM	976	CG			118	10.916	31.905	18.602	1.00 15.33	L	С
50	ATOM	977	CD1	TYR	L	118	11.650	31.187	17.658	1.00 15.05	L	C
	ATOM	978		TYR			10.116	31.192	19.499	1.00 13.29	L	C
	ATOM	979	CE1	TYR	L	118	11.590	29.791	17.607	1.00 14.73	L	C
	ATOM	980		TYR			10.049	29.803	19.457	1.00 14.27		С
	ATOM	981	CZ	TYR			10.790	29.109	18.507	1.00 15.35		C
55	ATOM	982	0 H	TYR	L	118	10.736	27.735	18.466	1.00 15.58	L	0

	ATOM	983	N	SER	L	119	9.595	36.150	19.058	1.00	21.39	L	N
	ATOM	984	CA	SER	L	119	9.710	37.538	19.481	1.00	23.14	L	С
	ATOM	985	C	SER	L	119	9.746	37.524	21.002	1.00	21.88	L	C
	ATOM	986	0	SER	L	119	9.189	36.629	21.632	1.00	23.34	L	0
5	ATOM	987	СВ	SER	L	119	8.522	38.364	18.979	1.00	23.84	L	С
	ATOM	988	0 G	SER	L	119	7.312	37.905	19.556	1.00	31.34	L	0
	ATOM	989	N	LEU	L	120	10.413	38.510	21.585	1.00	23.21	L	N
	ATOM	990	CA	LEU	L	120	10.544	38.606	23.036	1.00	24.38	L	С
	ATOM	991	C	LEU	L	120	9.253	39.096	23.683	1.00	26.18	L	С
10	ATOM	992	0	LEU	L	120	8.667	40.081	23.236	1.00	27.69	L	0
	ATOM	993	СВ	LEU	L	120	11.683	39.565	23.389	1.00	23.36	L	C
	ATOM	994	CG	LEU	L	120	12.119	39.619	24.855	1.00	25.06	L	С
	ATOM	995	CD1	LEU	L	120	12.801	38.311	25.230	1.00	24.68	L	С
	ATOM	996	CD2	LEU	L	120	13.080	40.789	25.063	1.00	24.21	L	C
15	ATOM	997	N	LEU	L	121	8.817	38.410	24.736	1.00	26.79	L	N
	ATOM	998	C A	LEU	L	121	7.600	38.790	25.450	1.00	28.18	L	С
	ATOM	999	С	LEU	L	121	7.885	39.949	26.402	1.00	29.35	L	С
	ATOM	1000	0	LEU	L	121	9.039	40.320	26.614	1.00	28.95	L	0
	ATOM	1001	CB	LEU	L	121	7.042	37.595	26.235	1.00	26.70	L	С
20	ATOM	1002	CG	LEU	L	121	6.491	36.417	25.418	1.00	27.20	L	С
	ATOM	1003	CD1	LEU	L	121	6.025	35.310	26.348	1.00	27.89	L	С
	ATOM	1004	CD2	LEU	L	121	5.335	36.891	24.554	1.00	28.46	L	С
	ATOM	1005	N	ALA	L	122	6.825	40.512	26.979	1.00	30.71	L	N
	ATOM	1006	CA	ALA	L	122	6.948	41.638	27.903	1.00	30.91	L	С
25	ATOM	1007	С	ALA	L	122	7.865	41.379	29.097	1.00	30.79	L	С
	ATOM	1008	0	ALA	L	122	8.492	42.307	29.607	1.00	32.36	L	0
	ATOM	1009	CB	ALA	L	122	5.566	42.058	28.397	1.00	33.12	L	С
	ATOM	1010	N	ASP	L	123	7.953	40.131	29.550	1.00	28.66	L	N
	ATOM	1011	CA	ASP	L	123	8.811	39.826	30.687	1.00	27.44	L	С
30	ATOM	1012	C	ASP	L	123	10.301	40.040	30.405	1.00	27.39	L	С
	ATOM	1013	0	ASP	L	123	11.123	39.955	31.314	1.00	28.38	L	0
	ATOM	1014	CB	ASP	L	123	8.571	38.392	31.189	1.00	27.26	L	С
	ATOM	1015	CG	ASP	L	123	8.951	37.324	30.168	1.00	26.53	L	C
	ATOM	1016	0D1	ASP	L	123	9.602	37.634	29.173	1.00	25.66	L	0
35	ATOM	1017	0D2	ASP	L	123	8.595	36.173	30.389	1.00	25.85	L	0
	ATOM	1018	N	GLY	L	124	10.645	40.318	29.150	1.00	27.75	L	N
	ATOM	1019	CA	GLY	L	124	12.033	40.551	28.789	1.00	27.23	L	С
	ATOM	1020	C	GLY	L	124	12.937	39.329	28.721	1.00	28.17	L	С
	ATOM	1021	0	GLY	L	124	14.135		28.460	1.00	27.43	L	0
4 0	ATOM	1022	N	VAL			12.389	38.137	28.943	1.00	28.24	L	N
	ATOM	1023	C A	VAL			13.205	36.920	28.899	1.00	27.90	L	С
	ATOM	1024	C	VAL	L	125	12.626	35.779	28.057	1.00	26.61	L	С
	ATOM	1025	0	VAL	L	125	13.373	34.954	27.533		25.92	L	0
	ATOM	1026	CB			125	13.476	36.367	30.326		28.91	L	C
45	ATOM	1027		VAL			14.182	37.421	31.173		29.31	L	С
	ATOM	1028	C G 2	VAL			12.173	35.930	30.980		27.68	L	С
	ATOM	1029	N			126	11.304	35.734	27.927		25.52	L	N
	ATOM	1030	C A	SER			10.639	34.677	27.175		23.57	L	С
~ ^	ATOM	1031	С			126	10.475	34.989	25.696		23.79	L	С
50	ATOM	1032	0	SER			10.427	36.157	25.294		21.55	L	0
	ATOM	1033	CB			126	9.266	34.393	27.788		23.48	L	c
	ATOM	1034	0 G			126	9.396	34.047	29.157		24.08	L	0
	ATOM	1035	N			127	10.391	33.932	24.890		21.77	L	N
~ ~	ATOM	1036	CA	CYS			10.219	34.070			22.08	L	С
55	ATOM	1037	C	CYS	L	127	8.966	33.324	23.020	1.00	22.86	L	С

	ATOM	1038	0	CYS	ī	197	8.698	32.214	23.482	1.00 23.36	L	0
	ATOM	1039	CB			127	11.431	33.516	23.482	1.00 23.30		
	ATOM	1040	SG			127	13.006	34.368	23.044	1.00 21.97		
	ATOM	1040				128						
5			N C A				8.197	33.947	22.136	1.00 21.95		
U	ATOM	1042				128	6.967	33.353	21.645	1.00 21.10		
	ATOM	1043	C			128	7.041	33.249	20.126	1.00 20.42		
	ATOM	1044	0			128	7.593	34.126	19.458	1.00 18.28		
	ATOM	1045	CB			128	5.735	34.210	22.063	1.00 21.74		
10	ATOM	1046	0 G 1				4.530	33.513	21.732	1.00 22.91		
10	ATOM	1047		THR			5.743	35.554	21.353	1.00 18.95		
	ATOM	1048	N	PRO			6.497	32.162	19.559	1.00 21.27		
	ATOM	1049	CA	PRO			6.514	31.960	18.107	1.00 22.20	L	C
	ATOM	1050	C	PR0			5.713	33.026	17.363	1.00 23.45	L	C
	ATOM	1051	0	PRO	L	129	4.621	33.394	17.786	1.00 25.63	L	0
15	ATOM	1052	CB	PRO	L	129	5.891	30.572	17.943	1.00 22.20	L	С
	ATOM	1053	CG	PRO	L	129	6.213	29.888	19.247	1.00 21.77	L	C
	ATOM	1054	CD	PRO	L	129	5.938	30.984	20.243	1.00 20.67	L	С
	ATOM	1055	N	THR	L	130	6.260	33.528	16.262	1.00 23.88	L	N
	ATOM	1056	CA	THR	L	130	5.556	34.525	15.465	1.00 25.00	L	С
20	ATOM	1057	C	THR	L	130	5.164	33.923	14.122	1.00 26.32	L	С
	ATOM	1058	0	THR	L	130	4.762	34.639	13.206	1.00 27.47	L	0
	ATOM	1059	CB	THR	L	130	6.411	35.774	15.205	1.00 25.51	L	С
	ATOM	1060	0G1	THR	L	130	7.591	35.404	14.486	1.00 27.07		0
	ATOM	1061		THR			6.789	36.443	16.513	1.00 27.60	L	С
25	ATOM	1062	N	VAL	L	131	5.299	32.601	14.014	1.00 24.93		
	ATOM	1063	CA	VAL			4.942	31.870	12.807	1.00 23.51		
	ATOM	1064	C	VAL			4.271	30.565	13.218	1.00 24.02		•
	ATOM	1065	0	VAL			4.369	30.139	14.372	1.00 22.94		
	ATOM	1066	СВ	VAL			6.178	31.541	11.930	1.00 25.15		
30	ATOM	1067		VAL			6.844	32.831	11.469	1.00 24.40		
00	ATOM	1068		VAL			7.163	30.673	12.705	1.00 23.42		
	ATOM	1069	N	GLU			3.589	29.937	12.268	1.00 22.59		
	ATOM	1070	CA	GLU			2.888	28.690	12.518	1.00 22.16	L	
	ATOM	1071	C	GLU			3.840	27.537	12.828	1.00 20.71	L	
35	ATOM	1072	0	GLU			3.567	26.720	13.711	1.00 20.40		
00	ATOM	1072	СВ	GLU			2.004	28.340	11.308	1.00 20.40	L	
	ATOM	1074	CG	GLU			1.352	26.972	11.390	1.00 22.29		
	ATOM	1075	CD	GLU			0.327	26.730	10.286	1.00 27.79	L	
	ATOM	1076		GLU			0.498			1.00 29.81		
40	ATOM	1077		GLU			-0.636		10.526	1.00 30.33		-
40	ATOM	1077	N			133	4.955		12.109	1.00 19.60		
	ATOM	1079	C A				5.930	26.404	12.317	1.00 17.97		
	ATOM	1080	C	TYR			7.320	26.404	12.654	1.00 17.37		
	ATOM	1081	0								L	
45	ATOM	1082		TYR TYR			8.236 5.998	26.860	11.834	1.00 16.11	L L	
40	ATOM	1082		TYR			4.737	25.511	11.077	1.00 17.19		
								24.717	10.874	1.00 19.02		
	ATOM	1084		TYR			4.412	23.673	11.735	1.00 16.92		
	ATOM	1085		TYR			3.833	25.049	9.862	1.00 19.13		
50	ATOM	1086		TYR			3.220		11.602	1.00 18.85		
50	ATOM	1087		TYR			2.632	24.358	9.719	1.00 18.71		
	ATOM	1088	CZ	TYR			2.335	23.327	10.594	1.00 19.77		
	ATOM	1089	0 H	TYR			1.159		10.467	1.00 20.62		
	ATOM	1090	N	PRO			7.499	27.440	13.878	1.00 15.85	L	
~ ~	ATOM	1091		PRO			8.804	27.963	14.291	1.00 15.14	L	
55	MOTA	1092	С	PRO	L	134	9.807	26.814	14.412	1.00 15.88	L	С

	A m O M	1000		DD0 1	104	0 410	05 055	1 4 255	4 00 15 50		•
	ATOM	1093	0	PRO L		9.419	25.677	14.677	1.00 17.59	L	0
	ATOM	1094	CB	PRO L		8.497	28.623	15.630	1.00 13.01	L	С
	ATOM	1095	CG	PRO L		7.444	27.730	16.198	1.00 13.89	L	С
, _	ATOM	1096	CD	PRO L		6.543	27.455	15.002	1.00 15.08	L	С
5	ATOM	1097	N	CA2 r		11.086	27.108	14.206	1.00 15.52	L	N
	ATOM	1098	CA	CYS L	135	12.125	26.084	14.291	1.00 14.64	L	С
	MOTA	1099	С	CYS L	135	12.228	25.562	15.714	1.00 14.59	L	C
	ATOM	1100	0	CYS L	135	11.874	26.263	16.663	1.00 12.74	L	0
	MOTA	1101	CB	CYS L	135	13.486	26.660	13.875	1.00 13.94	L	С
10	ATOM	1102	SG	CYS L	135	14.133	27.949	14.997	1.00 16.77	L	S
	ATOM	1103	N	GLY L	136	12.709	24.328	15.852	1.00 14.02	L	N
	ATOM	1104	CA	GLY L	136	12.902	23.737	17.167	1.00 14.41	L	С
	ATOM	1105	C	GLY L		11.682	23.301	17.957	1.00 15.69	L	C
	ATOM	1106	0	GLY L		11.810	22.917	19.119	1.00 16.17	L	0
15	ATOM	1107	N	LYS L		10.501	23.358	17.352	1.00 15.50	L	N
	ATOM	1108	C A	LYS L		9.284	22.935	18.036	1.00 17.12	L	C
	ATOM	1109	C	LYS L		8.701	21.730	17.309	1.00 17.12	L	C
	ATOM	1110	0	LYS L		8.709	21.750	16.077	1.00 17.03	L L	0
	ATOM	1111	CB	LYS L		8.248					
20		1112	CG				24.063 24.783	18.058 19.382	1.00 16.09	L	C
20	ATOM			LYSL		8.085			1.00 20.53	L	C
	ATOM	1113	CD	LYSL		9.354	25.441	19.855	1.00 23.98	L	C
	ATOM	1114	CE	LYS L		9.056	26.486	20.935	1.00 26.98	L	C
	ATOM	1115	ΝZ	LYS L		8.408	25.912	22.147	1.00 27.12	L	N
0.5	ATOM	1116	N	ILE L		8.191	20.780	18.082	1.00 16.47	L	N
25	ATOM	1117	CA	ILE L		7.598	19.568	17.536	1.00 16.51	L	С
	ATOM	1118	С	ILE L		6.072	19.699	17.623	1.00 17.05	L	С
	ATOM	1119	0	ILE L		5.479	19.442	18.665	1.00 17.09	L	0
	ATOM	1120	CB	ILE L		8.091	18.340	18.332	1.00 16.51	L	С
	ATOM	1121	CG1	ILE L	138	9.630	18.329	18.335	1.00 14.34	L	C
30	ATOM	1122	CG2	ILE L	138	7.534	17.048	17.713	1.00 15.08	L	C
	ATOM	1123	CD1	ILE L	138	10.268	17.188	19.119	1.00 12.57	L	С
	ATOM	1124	N	PRO L	139	5.421	20.096	16.514	1.00 18.81	L	N
	ATOM	1125	CA	PRO L	139	3.963	20.284	16.436	1.00 19.59	L	C
	ATOM	1126	C	PRO L	139	3.016	19.231	17.016	1.00 19.28	L	С
35	ATOM	1127	0	PRO L	139	2.065	19.588	17.708	1.00 20.94	L	0
	ATOM	1128	CB	PRO L		3.718	20.548	14.943	1.00 19.14	L	С
	ATOM	1129	CG	PRO L		4.902	19.948	14.273	1.00 22.59	L	С
	ATOM	1130	CD	PRO L		6.034	20.304	15.195	1.00 18.46	L	C
	ATOM	1131	N	ILE L		3.249	17.948		1.00 18.16	L	N
40	ATOM	1132	CA	ILE L		2.334	16.952	17.317	1.00 19.99	L	C
~ 0	ATOM	1133	C	ILE L		2.398	16.843	18.844	1.00 21.32	L	C
	ATOM	1134	0	ILE L		1.550	16.194	19.454	1.00 21.50	L	0
	ATOM	1135	СВ	ILE L		2.549	15.544	16.711	1.00 20.09	L	
	ATOM	1136						17.030	1.00 20.09		C
45	ATOM			ILE L		3.953	15.034			L	C
40		1137		ILE L		2.294	15.586	15.197	1.00 21.80	L	C
	ATOM	1138		ILE L		4.178	13.596	16.611	1.00 20.33	L	C
	ATOM	1139	N	LEU L		3.397	17.475	19.458	1.00 21.36	L	N
	ATOM	1140		LEU L		3.531	17.458	20.912	1.00 23.29	L	C
	ATOM	1141	C	LEU L		3.115	18.806	21.505	1.00 25.19	L	С
50	ATOM	1142	0	LEU L		2.965	18.942	22.716	1.00 25.84	L	0
	ATOM	1143	CB	LEU L		4.975	17.144	21.315	1.00 21.25	L	С
	ATOM	1144	CG	LEU L		5.601	15.886	20.705	1.00 21.10	L	С
	ATOM	1145		LEU L		6.998	15.706	21.268	1.00 19.02	L	С
	ATOM	1146	CD2	LEU L	141	4.732	14.665	20.998	1.00 19.82	L	С
55	ATOM	1147	N	GLU L	142	2.936	19.804	20.648	1.00 29.07	L	N

	ATOM	1148	CA	GLU	L	142	2.534	21.131	21.093	1.00	32.74	L	С	
	ATOM	1149	С	GLU	L	142	1.011	21.223	21.174	1.00	35.09	Ĺ	С	
	ATOM	1150	0	GLU	L	142	0.514	21.605	22.226	1.00	37.74	L	0	
	ATOM	1151	СВ	GLU	L	142	3.067	22.194	20.130	1.00	32.55	L	С	
5	ATOM	1152	CG	$\operatorname{GL} \operatorname{U}$	L	142	4.577	22.381	20.166	1.00	35.63	L	С	
	ATOM	1153	CD	GLU	L	142	5.062	23.007	21.462	1.00	37.38	L	С	
	ATOM	1154	0E1	GLU	L	142	4.494	24.028	21.871	1.00	39.09	L	0	
	ATOM	1155	0E2	GLU	L	142	6.008	22.486	22.053	1.00	36.36	L	0	
	ATOM	1156	0 T			142	0.349	20.913	20.180		36.04	L	0	
10	ATOM	1157	N	ILE		16	21.992	3.783	14.153	1.00	14.10	H	N	
	ATOM	1158	CA	ILE	Н	16	21.860	4.032	15.614	1.00	13.89	H	С	
	ATOM	1159	С	ILE		16	21.875	2.706	16.373	1.00	14.85	H	С	
	ATOM	1160	0	ILE		16	21.043	1.834	16.132		14.89	H	0	
	ATOM	1161	СВ	ILE		16	20.534	4.767	15.944		13.63	H	С	
15	ATOM	1162		ILE		16	20.451	6.095	15.183		12.69	H	c	
	ATOM	1163		ILE		16	20.436	4.989	17.450		11.22	Н	С	
	ATOM	1164	CD1	ILE	Н	16	21.567	7.092	15.493	1.00	10.60	H	С	
	ATOM	1165	N	VAL		17	22.830	2.564	17.285		16.19	H	N	
	ATOM	1166	CA	VAL		17	22.967	1.358	18.092		16.46	H	С	
20	ATOM	1167	С	VAL		17	22.445	1.593	19.504	1.00	15.78	H	С	
	ATOM	1168	0	VAL		17	22.861	2.536	20.178		14.50	H	0	
	ATOM	1169	СВ	VAL		17	24.451	0.918	18.195		17.79	H	С	
	ATOM	1170	CG1			17	24.581	-0.259	19.145		19.06	Н	С	
	ATOM	1171		VAL		17	24.977	0.529	16.826		19.20	Н	C	
25	ATOM	1172	N	GLY		18	21.532	0.735	19.950		15.38	Н	N	
	ATOM	1173	CA.	GLY		18	20.990	0.876	21.292		13.01	Н	С	
	ATOM	1174	С	GLY		18	19.982	1.998	21.472		12.80	Н	С	
	ATOM	1175	0	GLY		18	19.768	2.468	22.583		11.44	Н	0	
	ATOM	1176	N	GLY		19	19.365	2.436	20.384		11.70	H	N	
30	ATOM	1177	CA	GLY		19	18.368	3.487	20.483		13.29	H	C	
	ATOM	1178	C	GLY		19	16.964	2.926	20.333		13.92	H	C	
	ATOM	1179	0	GLY		19	16.731	1.736	20.540		13.45	Н	0	
	ATOM	1180	N	LYS		20	16.016	3.783	19.977		15.81	H	N	
	ATOM	1181	CA	LYS		20	14.644	3.341	19.788		17.79	H	С	
35	ATOM	1182	С	LYS		20	14.064	4.033	18.567		16.64	Н	С	
	ATOM	1183	0	LYS		20	14.683	4.935	18.009		13.94	H	0	
	ATOM	1184	СВ	LYS		20	13.794	3.668	21.024		19.44	Н	С	
	ATOM	1185	CG	LYS		20	14.312	3.043	22.317		26.17	H	С	
	ATOM	1186	CD			20	13.307	3.186	23.450	1.00	29.52	H	С	
40	ATOM	1187	CE	LYS		20	13.918	2.824	24.806		32.88	H	С	
	ATOM	1188	ΝZ	LYS		20	14.426	1.423	24.867	1.00	33.23	H	N	
	ATOM	1189	N	VAL		21	12.881	3.601	18.148		13.39	H	N	
	ATOM	1190	CA	VAL		21	12.228	4.213	17.007	1.00	14.10	H	С	
	ATOM	1191	С	VAL		21	11.729	5.610	17.393		15.28	H	С	
45	ATOM	1192	0	VAL		21	11.136	5.796	18.459		15.43	H	0	
	ATOM	1193	CB	VAL		21	11.022	3.356	16.530		14.85	Н	С	
	ATOM	1194	CG1	VAL		21	10.233	4.104	15.446		15.73	H	С.	
	ATOM	1195		VAL		21	11.517	2.018	15.982		13.11	H	C	
	ATOM	1196	N	CYS		22	11.992	6.595	16.542		14.61	H	N	
50	ATOM	1197	CA	CYS		22	11.518	7.944	16.805		15.34	H	С	
	ATOM	1198	С	CYS		22	10.063	7.948	16.362		15.49	H	C	
	ATOM	1199	0	CYS		22	9.779	7.785	15.176		16.18	H	0	
	ATOM	1200	СВ	CYS		22	12.279	8.984	15.976		13.94	H	C	
	ATOM	1201	SG	CYS		22	11.768	10.666	16.438		14.65	H	S	
55	ATOM	1202	N	PRO		23	9.120	8.127	17.301		16.39	H	N	

	ATOM	1203	CA	PRO	Н	23	7.710	8.134	16.898	1.00 16.45	H	С
	ATOM	1204	С	PRO	H	23	7.491	9.096	15.733	1.00 16.91	H	С
	ATOM	1205	0	PRO	H	23	7.995	10.220	15.746	1.00 17.56	H	0
	ATOM	1206	СВ	PRO	H	23	6.993	8.577	18.171	1.00 16.38	H	С
5	ATOM	1207	CG	PRO	H	23	7.863	7.993	19.250	1.00 16.66	H	С
	ATOM	1208	CD	PRO	H	23	9.251	8.348	18.753	1.00 15.94	H	С
	ATOM	1209	N	LYS	H	24	6.746	8.647	14.730	1.00 16.37	Н	N
	ATOM	1210	CA	LYS	H	24	6.464	9.456	13.549	1.00 16.46	H	С
	ATOM	1211	С	LYS		24	6.117	10.895	13.915	1.00 15.64	Н	С
10	ATOM	1212	0	LYS		24	5.211	11.145	14.707	1.00 17.81	H	0
	ATOM	1213	СВ	LYS		24	5.314	8.836	12.757	1.00 17.93	Н	С
	ATOM	1214	CG	LYS	H	24	5.122	9.431	11.369	1.00 19.08	H	С
	ATOM	1215	CD	LYS	H	24	3.979	8.750	10.648	1.00 19.14	H	С
	ATOM	1216	CE	LYS	H	24	4.144	8.839	9.143	1.00 23.91	H	С
15	ATOM	1217	ΝZ	LYS	H	24	4.196	10.230	8.631	1.00 20.21	H	N
	ATOM	1218	N	GLY	H	25	6.845	11.842	13.340	1.00 14.95	H	N
	ATOM	1219	CA	GLY	H	25	6.586	13.239	13.638	1.00 14.04	Н	C
	ATOM	1220	С	GLY	H	25	7.403	13.847	14.769	1.00 13.80	H	С
	ATOM	1221	0	GLY	H	25	7.427	15.068	14.909	1.00 13.20	H	0
20	ATOM	1222	N	GLU	H	26	8.076	13.026	15.573	1.00 13.01	H	N
	ATOM	1223	CA	GLU	H	26	8.874	13.560	16.683	1.00 15.70	H	С
	ATOM	1224	С	GLU	H	26	10.331	13.897	16.348	1.00 15.14	H	С
	ATOM	1225	0	GLU	Н	26	11.078	14.380	17.196	1.00 15.40	H	0
	ATOM	1226	CB	GLU	Н	26	8.789	12.625	17.898	1.00 15.76	H	C
25	ATOM	1227	CG	GLU	H	26	7.483	12.816	18.668	1.00 19.10	H	С
	ATOM	1228	CD	GLU	H	26	7.346	11.908	19.874	1.00 21.34	H	C
	ATOM	1229	0E1	GLU	H	26	8.322	11.730	20.591	1.00 22.66	H	0
	ATOM	1230	0E2	GLU	H	26	6.249	11.395	20.097	1.00 22.32	H	0
	ATOM	1231	N	CYS	H	27	10.716	13.641	15.103	1.00 15.31	H	N
30	ATOM	1232	CA	CYS	H	27	12.048	13.958	14.582	1.00 14.35	H	C
	ATOM	1233	C	CYS	H	27	11.749	14.611	13.217	1.00 14.44	H	C
	ATOM	1234	0	CYS	H	27	12.256	14.170	12.188	1.00 15.00	H	0
	ATOM	1235	CB	CYS	H	27	12.873	12.663	14.404	1.00 16.45	H	С
	ATOM	1236	SG	CYS	H	27	13.342	11.868	15.982	1.00 16.62	H	S
35	ATOM	1237	N	PRO	Н	28	10.935	15.693	13.204	1.00 12.78	H	N
	ATOM	1238	CA	PR0	H	28	10.550	16.393	11.972	1.00 12.72	H	С
	ATOM	1239	C	PRO	H	28	11.596	17.135	11.142	1.00 13.51	H	C
	ATOM	1240	0	PRO	H	28	11.334	17.470	9.989	1.00 14.79	H	0
	ATOM	1241	CB	PRO	H	28	9.414	17.300	12.443	1.00 10.56	H	C
40	ATOM	1242	CG	PRO	H	28	9.872	17.708	13.785	1.00 12.39	H	С
	ATOM	1243	CD	PRO	H	28	10.409	16.411	14.382	1.00 13.71	H	С
	ATOM	1244	N	TRP	H	29	12.763	17.403	11.715	1.00 13.66	H	N
	ATOM	1245	CA	TRP	H	29	13.837	18.072	10.981	1.00 12.45	H	С
	ATOM	1246	С	TRP	H	29	14.801	17.058	10.344	1.00 13.04	H	С
45	ATOM	1247	0	TRP	H	29	15.741	17.447	9.651	1.00 12.14	Н	0
	ATOM	1248	CB	TRP	H	29	14.622	19.019	11.905	1.00 10.27	H	С
	ATOM	1249	CG	TRP	H	29	14.719	18.544	13.333	1.00 10.51	H	C
	ATOM	1250		TRP		29	15.510	17.540	13.818	1.00 9.50	Н	С
	ATOM	1251		TRP		29	13.935	19.009	14.441	1.00 9.92	Н	С
50	ATOM	1252		TRP		29	15.261	17.347	15.159	1.00 9.49	H	N
	ATOM	1253		TRP		29	14.299	18.235	15.566	1.00 9.72	H	С
	ATOM	1254		TRP		29	12.961	20.004	14.590	1.00 8.87	H	£
	MOTA	1255		TRP		29	13.717	18.424	16.824	1.00 9.39	H	С
	ATOM	1256		TRP		29	12.381	20.193	15.842	1.00 9.88	H	С
55	ATOM	1257	CH2	TRP	H	29	12.763	19.404	16.944	1.00 9.90	Н	С

	ATOM	1258	N	GLN	H	30	14.566	15.765	10.573	1.00 12.37		N
	ATOM	1259	CA	GLN	H	30	15.427	14.723	10.011	1.00 11.48		
	ATOM	1260	С	GLN	H	30	15.253	14.653	8.496	1.00 11.76		
	ATOM	1261	0	GLN	H	30	14.128	14.696	7.987	1.00 10.36	H	0
5	ATOM	1262	CB	GLN	H	30	15.090	13.363	10.622	1.00 12.28	H	С
	ATOM	1263	CG	GLN	H	30	15.832	12.180	9.982	1.00 13.59	Н	С
	ATOM	1264	CD	GLN	H	30	17.291	12.090	10.401	1.00 11.47		С
	ATOM	1265	0E1	GLN	H	30	18.171	11.810	9.587	1.00 15.48	H	0
	ATOM	1266	NE2	GLN	H	30	17.548	12.306	11.675	1.00 9.74	H H	N
10	ATOM	1267	N	VAL	H	31	16.372	14.542	7.785	1.00 10.70	H	N
	ATOM	1268	CA	VAL	H	31	16.369	14.468	6.327	1.00 7.92	H	С
	ATOM	1269	C	VAL	H	31	16.999	13.155	5.865	1.00 9.83	H	С
	ATOM	1270	0	VAL	H	31	17.922	12.641	6.501	1.00 12.57	H	0
	ATOM	1271	CB	VAL	H	31	17.194	15.635	5.698	1.00 11.09	H	С
15	ATOM	1272	CG1	VAL	H	31	17.177	15.534	4.167	1.00 9.42	H	С
	ATOM	1273	CG2	VAL	H	31	16.641	16.996	6.142	1.00 7.29	H	С
	ATOM	1274	N	LEU	H	32	16.481	12.600	4.773	1.00 10.90	H	N
	ATOM	1275	CA	LEU	H	32	17.034	11.384	4.193	1.00 10.82	H	C
	ATOM	1276	C	LEU	H	32	17.618	11.785	2.847	1.00 12.58	H	С
20	ATOM	1277	0	LEU	H	32	16.902	12.294	1.984	1.00 13.53	H	0
	ATOM	1278	СВ	LEU	H	32	15.951	10.330	3.967	1.00 10.99	Н	C
	ATOM	1279	CG	LEU	H	32	16.394	9.157	3.082	1.00 12.15	H	C
	ATOM	1280	CD1	LEU	H	32	17.496	8.366	3.774	1.00 10.81	. Н	С
	ATOM	1281	CD2	LEU	H	32	15.200	8.251	2.796	1.00 12.95	H H	С
25	ATOM	1282	N	LEU	H	33	18.916	11.575	2.669	1.00 11.95	H	N
	ATOM	1283	CA	LEU	H	33	19.566	11.921	1.411	1.00 13.59	Н	С
	ATOM	1284	С	LEU	H	33	19.777	10.668	0.585	1.00 14.19	H	С
	ATOM	1285	0	LEU	H	33	20.252	9.649	1.090	1.00 13.59	H	0
	ATOM	1286	СВ	LEU		33	20.915	12.611	1.663	1.00 13.43		С
30	ATOM	1287	CG	LEU		33	20.843	13.953	2.401	1.00 13.16	Н	С
	ATOM	1288	CD1	LEU	H	33	22.246	14.429	2.718	1.00 11.72	Н	С
	ATOM	1289		LEU		33	20.103	14.981	1.546	1.00 14.08		С
	ATOM	1290	N	LEU		34	19.423	10.757	-0.691	1.00 16.19	Н	N
	ATOM	1291	CA	LEU		34	19.553	9.636	-1.611	1.00 17.59		
35	ATOM	1292	С	LEU		34	20.384	10.026	-2.826	1.00 18.00	Н	С
	ATOM	1293	0	LEU		34	20.372	11.177	-3.261	1.00 18.90		0
	ATOM	1294	CB	LEU		34	18.165	9.184	-2.086	1.00 19.63		С
	ATOM	1295	CG	LEU		34	17.092	8.859	-1.033	1.00 21.00		
	ATOM	1296	CD1	LEU		34	15.741	8.708	-1.712	1.00 22.40	H	С
40	ATOM	1297		LEU		34	17.457	7.595	-0.288	1.00 21.37		
	ATOM	1298	N	VAL		35	21.126	9.066	-3.357	1.00 19.10	Н	
	ATOM	1299	CA	VAL		35	21.915	9.294	-4.553	1.00 20.91		
	ATOM	1300	С	VAL		35	21.484	8.174	-5.494	1.00 21.66		
	ATOM	1301	0	VAL		35	21.512	7.004	-5.124	1.00 22.02		
45	ATOM	1302	СВ	VAL		35	23.438	9.229	-4.275	1.00 21.22		
	ATOM	1303		VAL		35	23.846	7.837	-3.828	1.00 23.40		
	ATOM	1304		VAL		35	24.201	9.641	-5.516	1.00 23.57		
	ATOM	1305	N	ASN		37	21.049	8.539	-6.694	1.00 22.76		N
	ATOM	1306	CA	ASN		37	20.575	7.557	-7.668	1.00 24.27		
50	ATOM	1307	С	ASN		37	19.473	6.695	-7.049	1.00 24.89		
	ATOM	1308	0	ASN		37	19.385	5.502	-7.333	1.00 25.83		
	ATOM	1309	СВ	ASN		37	21.721	6.650	-8.130	1.00 25.18		Č
	MOTA	1310	CG	ASN		37	22.904	7.428	-8.674	1.00 27.92		Č
	ATOM	1311		ASN		37	22.757	8.269	-9.563	1.00 26.24		0
55	MOTA	1312		ASN		37	24.090	7.144	-8.142	1.00 29.79		N
55	11 1 0 14	1010	,, <i>D L</i> I		**	J 1	47.000	1 . 7	0.4.2	20.70	11	11

	ATOM	1313	N	GLY	H	38	18.645	7.300	-6.198	1.00 25.00	H	N
	ATOM	1314	CA	GLY	H	38	17.568	6.575	-5.545	1.00 23.40	H	С
	ATOM	1315	C	GLY	H	38	17.977	5.678	-4.386	1.00 23.72	H	C
	ATOM	1316	0	GLY	H	38	17.126	5.033	-3.777	1.00 25.41	H	0
5	ATOM	1317	N	ALA	H	39	19.268	5.630	-4.070	1.00 22.78	H	N
	ATOM	1318	CA	ALA	H	39	19.757	4.791	-2.981	1.00 22.39	H	С
	ATOM	1319	C	ALA	Н	39	20.050	5.607	-1.724	1.00 22.79	H	С
	ATOM	1320	0	ALA	H	39	20.450	6.767	-1.807	1.00 23.53	H	0
	ATOM	1321	CB	ALA	H	39	21.014	4.056	-3.419	1.00 20.94	H	C
10	ATOM	1322	N	GLN	H	40	19.848	4.993	-0.562	1.00 22.25	H	N
	ATOM	1323	CA	GLN	H	40	20.098	5.658	0.714	1.00 22.90	, H	С
	ATOM	1324	C	GLN	H	40	21.574	6.042	0.824	1.00 22.41	H	C
-	ATOM	1325	0	GLN	H	40	22.456	5.192	0.716	1.00 22.51	H	0
	ATOM	1326	СВ	GLN	H	40	19.720	4.730	1.871	1.00 22.59	H	С
15	ATOM	1327	CG	GLN	H	40	19.763	5.385	3.247	1.00 25.18	H	C
	ATOM	1328	CD	GLN	Н	40	19.409	4.415	4.363	1.00 26.21	H	С
	ATOM	1329	0E1	GLN	H	40	18.430	3.676	4.270	1.00 26.38	H	0
	ATOM	1330	NE2	GLN	H	40	20.198	4.421	5.430	1.00 26.47	H	N
	ATOM	1331	N	LEU	H	41	21.837	7.324	1.052	1.00 21.11	H	N
20	ATOM	1332	CA	LEU	H	41	23.206	7.816	1.164	1.00 19.35	H	C
	ATOM	1333	C	LEU	H	41	23.585	8.285	2.570	1.00 18.35	H	С
	ATOM	1334	0	LEU	H	41	24.552	7.800	3.152	1.00 18.12	H	0
	ATOM	1335	CB	LEU	H	41	23.419	8.978	0.184	1.00 19.30	H	С
	ATOM	1336	CG	LEU	H	41	24.745	9.744	0.271	1.00 17.33	Н	С
25	ATOM	1337	CD1	LEU	H	41	25.890	8.880	-0.246	1.00 14.99	H	С
	ATOM	1338		LEU		41	24.641	11.016	-0.540	1.00 16.13	H	С
	ATOM	1339	N	CYS	H	42	22.816	9.226	3.110	1.00 16.56	Н	N
	ATOM	1340	CA	CYS	Н	42	23.108	9.796	4.421	1.00 15.14	Н	С
	ATOM	1341	C	CYS		42	21.907	10.492	5.033	1.00 13.30	Н	С
30	ATOM	1342	0	CYS	Н	42	20.851	10.595	4.418	1.00 12.64	H	0
	ATOM	1343	СВ	CYS		42	24.226	10.844	4.291	1.00 15.11	H	С
	ATOM	1344	SG	CYS		42	25.929	10.216	4.342	1.00 18.96	H	S
	ATOM	1345	N	GLY		43	22.101	10.988	6.251	1.00 11.79	H	N
	ATOM	1346	C A	GLY		43	21.064	11.728	6.932	1.00 9.99	H	С
35	ATOM	1347	С	GLY		43	21.362	13.209	6.753	1.00 10.90	Н	C
	ATOM	1348	0	GLY		43	22.362	13.580	6.138	1.00 12.00	Н	0
	ATOM	1349	N	GLY		44	20.491	14.058	7.281	1.00 11.43	H	N
	ATOM	1350	CA	GLY		44	20.690	15.493	7.183	1.00 9.27	H	С
	ATOM	1351	С	GLY	Н		19.747	16.195	8.143		H	С
40	ATOM	1352	0	GLY		44	18.884	15.553	8.741	1.00 8.35	Н	0
	ATOM	1353	N	THR		45	19.908	17.507	8.293	1.00 10.40	Н	N
	ATOM	1354	CA	THR		45	19.062	18.286	9.186	1.00 10.32	Н	С
	ATOM	1355	С	THR		45	18.500	19.512	8.470	1.00 12.51	Н	C
	ATOM	1356	0	THR		45	19.247	20.315	7.914	1.00 12.61	Н	0
45	ATOM	1357	СВ	THR		45	19.856	18.781	10.420	1.00 11.05	H	C
	ATOM	1358		THR		45	20.468	17.667	11.084	1.00 11.48	Н	0
	ATOM	1359		THR		45	18.934	19.491	11.399	1.00 9.59	H	C
	ATOM	1360	N	LEU		46	17.185	19.662	8.475	1.00 12.48	Н	N
	ATOM	1361	CA	LEU		46	16.572	20.824	7.840	1.00 12.10	Н	C
50	ATOM	1362	C	LEU		46	16.689	21.980	8.829	1.00 12.78	Н	C
	ATOM	1363	0	LEU		46	16.377	21.818	10.006	1.00 12.78	Н	0
	ATOM	1364	СB	LEU		46	15.090	20.553	7.558	1.00 12.68	Н	C
	ATOM	1365	CG	LEU		46	14.273	21.611	6.805	1.00 13.62	Н	C
	ATOM	1366		LEU		46	14.639	21.570	5.321	1.00 13.02	Н	C
55	ATOM	1367		LEU		46	12.783	21.326	6.973	1.00 12.45	Н	C
55	11 . 0 11	2001	000	טעע	11	-10	22.100		0.010	1.00 14.40	11	3

	ATOM	1368	N	ILE		47	17.163	23.135	8.377	1.00 12.0		N
	ATOM	1369	CA	ILE		47	17.252	24.288	9.275	1.00 13.2		С
	ATOM	1370	С	ILE		47	16.475	25.470	8.686	1.00 15.6	7 H	С
_	ATOM	1371	0	ILE	H	47	16.356	26.523	9.312	1.00 17.6	5 H	0
5	ATOM	1372	CB	ILE	H	47	18.727	24.714	9.552	1.00 11.9	4 H	C
	ATOM	1373	CG1	ILE	H	47	19.427	25.098	8.249	1.00 12.9	1. H	C
	ATOM	1374	CG2	ILE	H	47	19.476	23.575	10.248	1.00 10.1	L H	С
	ATOM	1375	CD1	ILE	H	47	20.815	25.683	8.455	1.00 13.2	2 H	С
	ATOM	1376	N	ASN	H	48	15.944	25.264	7.481	1.00 17.7	2 H	N
10	ATOM	1377	CA	ASN		48	15.158	26.245	6.738	1.00 21.0	7 H	С
	ATOM	1378	С	ASN		48	14.312	25.485	5.728	1.00 20.1		C
	ATOM	1379	0	ASN		48	14.506	24.288	5.536	1.00 20.6		0
	ATOM	1380	СB	ASN		48	16.071	27.199	5.965	1.00 27.1		
	ATOM	1381	CG	ASN		48	16.437	28.416	6.759	1.00 32.69		
1 5	ATOM	1382		ASN		48	15.566	29.193	7.156	1.00 37.9		
10	ATOM	1383		ASN		48	17.729	28.600	6.998	1.00 37.59		
	ATOM	1384	N D Z	THR		49						
		1385					13.387	26.176	5.069	1.00 18.8		
	ATOM		CA	THR		49	12.562	25.521	4.055	1.00 19.09		
20	ATOM	1386	C	THR		49	13.421	25.187	2.838	1.00 18.19		С
20	ATOM	1387	0	THR		49	13.065	24.315	2.044	1.00 19.04		0
	ATOM	1388	CB	THR		49	11.400	26.419	3.570	1.00 16.9		С
	ATOM	1389	0 G 1			49	11.932	27.615	2.989	1.00 18.22		0
	ATOM	1390		THR		49	10.485	26.780	4.716	1.00 17.0		С
0 =	ATOM	1391	N	ILE		50	14.559	25.871	2.707	1.00 18.59		N
25	ATOM	1392	CA	ILE		50	15.469	25.674	1.576	1.00 18.42	2 H	С
	ATOM	1393	С	ILE	H	50	16.841	25.067	1.907	1.00 18.14	1 H	C
	ATOM	1394	0	ILE	Η	50	17.499	24.507	1.025	1.00 17.04	4 H	0
	ATOM	1395	CB	ILE	Н	50	15.694	27.030	0.841	1.00 22.10) H	С
	ATOM	1396	CG1	ILE	H	50	14.481	27.357	-0.030	1.00 21.65	5 H	С
30	ATOM	1397	CG2	ILE	H	50	16.953	26.987	-0.022	1.00 23.17	7 H	С
	ATOM	1398	CD1	ILE	H	50	14.338	26.454	-1.235	1.00 23.27	7 H	С
	ATOM	1399	N	TRP	H	51	17.274	25.160	3.161	1.00 16.09	5 Н	N
	ATOM	1400	CA	TRP	H	51	18.592	24.655	3.528	1.00 15.56	3 Н	С
	ATOM	1401	С	TRP	H	51	18.659	23.436	4.438	1.00 15.82	Э Н	С
35	ATOM	1402	0	TRP	Н	51	17.932	23.321	5.424	1.00 16.64	1 H	0
	ATOM	1403	СВ	TRP	H	51	19.423	25.775	4.149	1.00 16.33		С
	ATOM	1404	CG	TRP		51	19.593	26.967	3.254	1.00 15.89		C
	ATOM	1405		TRP		51	18.847	28.111	3.261	1.00 15.94		C
	ATOM	1406		TRP		51	20.576	27.134		1.00 15.03		
40	ATOM	1407		TRP		51	19.306	28.982	2.302	1.00 16.22		N
10	ATOM	1408		TRP		51	20.367	28.409	1.651	1.00 16.38		C
	ATOM	1409		TRP		51	21.615	26.330	1.730	1.00 16.52		C
	ATOM	1410		TRP		51	21.163	28.904	0.606	1.00 16.04		C
	ATOM	1411		TRP		51	22.405	26.822	0.690	1.00 16.73		
4 5	ATOM	1412		TRP		51				1.00 16.73		C
40		1413	N	VAL			22.173	28.100	0.142			C
	ATOM	1414	C A			52 52	19.571	22.536	4.091	1.00 14.41		N
	ATOM			VAL		52	19.794	21.306	4.831	1.00 12.34		C
	ATOM	1415	C	VAL		52	21.270	21.211	5.218	1.00 11.65		C
F 0	ATOM	1416	0	VAL		52	22.136	21.461	4.391	1.00 9.66		0
50	ATOM	1417	CB	VAL		52	19.440	20.073	3.957	1.00 11.76		C
	ATOM	1418		VAL		52	19.909	18.800	4.632	1.00 8.59		C
	ATOM	1419		VAL		52	17.935	20.022	3.700	1.00 12.24		С
	ATOM	1420	N	VAL		53	21.549	20.869	6.474	1.00 11.58		N
	ATOM	1421	CA	VAL		53	22.925	20.706	6.944	1.00 11.42		С
55	ATOM	1422	С	VAL	H	53	23.198	19.206	7.023	1.00 11.69	H	С

ATOM															
ATOM		ATOM	1423	0	VAL	H	53	22.431	18.470	7.629	1.00	12.13	ŀ	0 E	
5 ATOM 1426 C62 VAL 53 22.037 22.880 8.284 1.00 9.62 II N ATOM 1428 CA SER H 54 24.280 18.757 6.397 1.00 11.72 H N ATOM 1429 C SER H 54 26.150 17.233 6.651 1.00 11.71 H C ATOM 1430 OS SER H 54 26.770 18.184 1.00 10.01.65 H C ATOM 1431 CB SER H 24.256 16.687 5.154 1.00 11.425 H C ATOM 1433 CA ALA 55 28.740 16.085 6.321 1.00 12.455 II N ATOM 1435 C ALA H 55 28.422 16.377 4.169 1.00 12.34 II 0 <th< td=""><td></td><td>ATOM</td><td>1424</td><td>СВ</td><td>VAL</td><td>H</td><td>53</td><td>23.141</td><td>21.326</td><td>8.357</td><td>1.00</td><td>11.61</td><td>I</td><td>I C</td><td></td></th<>		ATOM	1424	СВ	VAL	H	53	23.141	21.326	8.357	1.00	11.61	I	I C	
50		ATOM	1425	CG1	VAL	H	53	24.522	20.923	8.910	1.00	6.99	F	I C	
ATOM		ATOM	1426	CG2	VAL	H	53	23.037	22.850	8.284	1.00	9.62	ŀ	I C	
ATOW 1428 CA SER H 54	5	ATOM	1427	N	SER	H	54	24.280	18.757	6.397	1.00	11.72	I	I N	
ATOM			1428	CA	SER	H	54	24.642	17.343		1.00	10.64	I	ı c	
A70M			1429	С			54	26.150		6.651	1.00	11.91	F	ı c	
ATOM				0									I		
10															
ATOM	10														
ATOM															
ATOM															
ATOM															
15															
ATOM	15														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10														
ATOM															
20															
20															
ATOM	20														
ATOM	20														
ATOM															
25															
ATOM															
ATOM 1448 CG HIS H 57	25														
ATOM 1449 ND1 HIS H 57	20														
ATOM 1450 CD2 HIS H 57															
ATOM															
30 ATOM 1452 NE2 HIS H 57 30.443 9.945 6.630 1.00 9.58 H N ATOM 1453 N CYS H 58 29.869 12.581 3.175 1.00 16.13 H N ATOM 1455 C CYS H 58 28.789 11.887 2.485 1.00 16.63 H C ATOM 1455 C CYS H 58 28.888 12.061 0.967 1.00 14.79 H 0 ATOM 1456 O CYS H 58 28.248 11.329 0.208 1.00 14.79 H 0 ATOM 1457 CB CYS H 58 27.443 12.426 2.979 1.00 14.79 H 0 ATOM 1459 N PHE H 59 29.675 13.030 0.532 1.00 15.81 H N ATOM 1460 CA <td></td>															
## ATOM	20														
ATOM	30														
ATOM 1455 C CYS H 58 28.880 12.061 0.967 1.00 15.55 H C C ATOM 1456 0 CYS H 58 28.248 11.329 0.208 1.00 14.79 H 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
ATOM 1456 0 CYS H 58 28.248 11.329 0.208 1.00 14.79 H 0 ATOM 1457 CB CYS H 58 27.443 12.426 2.979 1.00 17.08 H C ATOM 1458 SG CYS H 58 27.023 11.898 4.670 1.00 18.19 H S ATOM 1459 N PHE H 59 29.826 13.030 0.532 1.00 14.61 H N ATOM 1460 CA PHE H 59 29.826 13.327 -0.883 1.00 14.61 H C ATOM 1461 C PHE H 59 31.191 12.959 -1.475 1.00 14.54 H C 40 ATOM 1463 CB PHE H 59 29.517 14.816 -1.094 1.00 14.40 H C 40 ATOM 1464 CG PHE H 59 28.188 15.231															
35 ATOM 1457 CB CYS H 58 27.443 12.426 2.979 1.00 17.08 H C ATOM 1458 SG CYS H 58 27.023 11.898 4.670 1.00 18.19 H S ATOM 1459 N PHE H 59 29.826 13.327 -0.883 1.00 14.61 H N ATOM 1461 C PHE H 59 29.826 13.327 -0.883 1.00 14.61 H C 4O ATOM 1462 O PHE H 59 31.504 13.349 -2.602 1.00 14.54 H C ATOM 1463 CB PHE H 59 29.517 14.816 -1.094 1.00 14.40 H C ATOM 1466 CD1 PHE H 59 28.188 15.231 -0.517 1.0															
ATOM 1458 SG CYS H 58 27.023 11.898 4.670 1.00 18.19 H S ATOM 1459 N PHE H 59 29.675 13.030 0.532 1.00 15.81 H N ATOM 1460 CA PHE H 59 29.826 13.327 -0.883 1.00 14.61 H C ATOM 1461 C PHE H 59 31.191 12.959 -1.475 1.00 14.54 H C ATOM 1462 0 PHE H 59 31.504 13.349 -2.602 1.00 13.82 H 0 ATOM 1463 CB PHE H 59 29.517 14.816 -1.094 1.00 14.40 H C ATOM 1464 CG PHE H 59 28.188 15.231 -0.517 1.00 15.03 H C ATOM 1465 CD1 PHE H 59 27.008 14.984 -1.210 1.00 14.65 H C ATOM 1466 CD2 PHE H 59 28.109 15.765 0.770 1.00 14.65 H C ATOM 1466 CD2 PHE H 59 28.109 15.765 0.770 1.00 14.34 H C ATOM 1468 CE2 PHE H 59 25.768 15.252 -0.629 1.00 15.30 H C ATOM 1468 CE2 PHE H 59 26.875 16.033 1.358 1.00 14.77 H C ATOM 1460 CZ PHE H 59 25.703 15.774 0.657 1.00 16.63 H C ATOM 1470 N ASP H 60 31.986 12.195 -0.727 1.00 14.66 H N ATOM 1471 CA ASP H 60 33.313 11.761 -1.179 1.00 16.60 H C ATOM 1473 0 ASP H 60 33.313 11.761 -1.179 1.00 16.60 H C ATOM 1474 CB ASP H 60 33.310 10.997 -2.509 1.00 15.71 H C ATOM 1474 CB ASP H 60 33.310 10.997 -2.509 1.00 15.71 H C ATOM 1474 CB ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1475 CG ASP H 60 33.979 10.872 -0.117 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C	25														
ATOM 1459 N PHE H 59 29.675 13.030 0.532 1.00 15.81 H N ATOM 1460 CA PHE H 59 29.826 13.327 -0.883 1.00 14.61 H C ATOM 1461 C PHE H 59 31.191 12.959 -1.475 1.00 14.54 H C ATOM 1462 O PHE H 59 31.504 13.349 -2.602 1.00 13.82 H O ATOM 1463 CB PHE H 59 29.517 14.816 -1.094 1.00 14.40 H C ATOM 1464 CG PHE H 59 28.188 15.231 -0.517 1.00 15.03 H C ATOM 1465 CD1 PHE H 59 28.188 15.231 -0.517 1.00 15.03 H C ATOM 1466 CD2 PHE H 59 27.008 14.984 -1.210 1.00 14.65 H C ATOM 1466 CD2 PHE H 59 28.109 15.765 0.770 1.00 14.34 H C ATOM 1468 CE2 PHE H 59 25.768 15.252 -0.629 1.00 15.30 H C ATOM 1468 CE2 PHE H 59 26.875 16.033 1.358 1.00 14.77 H C ATOM 1469 CZ PHE H 59 25.703 15.774 0.657 1.00 16.63 H C ATOM 1470 N ASP H 60 31.986 12.195 -0.727 1.00 14.66 H N ATOM 1471 CA ASP H 60 33.313 11.761 -1.179 1.00 16.60 H C ATOM 1473 O ASP H 60 33.313 11.761 -1.179 1.00 16.60 H C ATOM 1473 O ASP H 60 33.310 10.997 -2.509 1.00 15.71 H C ATOM 1474 CB ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1475 CG ASP H 60 33.979 10.872 -0.117 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C	30														
ATOM 1460 CA PHE H 59 29.826 13.327 -0.883 1.00 14.61 H C ATOM 1461 C PHE H 59 31.191 12.959 -1.475 1.00 14.54 H C ATOM 1462 0 PHE H 59 31.504 13.349 -2.602 1.00 13.82 H 0 ATOM 1463 CB PHE H 59 29.517 14.816 -1.094 1.00 14.40 H C ATOM 1465 CD1 PHE H 59 28.188 15.231 -0.517 1.00 15.03 H C ATOM 1465 CD1 PHE H 59 27.008 14.984 -1.210 1.00 14.65 H C ATOM 1466 CD2 PHE H 59 28.109 15.765 0.770 1.00 14.34 H C ATOM 1468 CE2 PHE H 59 25.768 15.252 -0.629 1.00 15.30 H C ATOM 1468 CE2 PHE H 59 26.875 16.033 1.358 1.00 14.77 H C ATOM 1469 CZ PHE H 59 25.703 15.774 0.657 1.00 16.63 H C ATOM 1470 N ASP H 60 31.986 12.195 -0.727 1.00 14.66 H N ATOM 1471 CA ASP H 60 33.313 11.761 -1.179 1.00 16.60 H C ATOM 1473 0 ASP H 60 33.310 10.997 -2.509 1.00 18.45 H C ATOM 1473 0 ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1474 CB ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.520 12.897 1.005 1.00 13.68 H 0															
ATOM 1461 C PHE H 59 31.191 12.959 -1.475 1.00 14.54 H C ATOM 1462 O PHE H 59 29.517 14.816 -1.094 1.00 14.40 H C ATOM 1463 CB PHE H 59 29.517 14.816 -1.094 1.00 14.40 H C ATOM 1465 CD1 PHE H 59 27.008 14.984 -1.210 1.00 14.65 H C ATOM 1466 CD2 PHE H 59 28.188 15.231 -0.517 1.00 15.03 H C ATOM 1466 CD2 PHE H 59 28.109 15.765 0.770 1.00 14.34 H C ATOM 1467 CE1 PHE H 59 25.768 15.252 -0.629 1.00 15.30 H C ATOM 1468 CE2 PHE H 59 26.875 16.033 1.358 1.00 14.77 H C ATOM 1469 CZ PHE H 59 25.703 15.774 0.657 1.00 16.63 H C ATOM 1470 N ASP H 60 31.986 12.195 -0.727 1.00 14.66 H N ATOM 1471 CA ASP H 60 33.313 11.761 -1.179 1.00 16.60 H C ATOM 1473 O ASP H 60 33.310 10.997 -2.509 1.00 18.45 H C ATOM 1473 O ASP H 60 33.310 10.997 -2.509 1.00 18.45 H C ATOM 1474 CB ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1476 OD1 ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1476 OD1 ASP H 60 34.520 12.897 1.005 1.00 13.68 H															
40 ATOM 1462 0 PHE H 59 31.504 13.349 -2.602 1.00 13.82 H 0 ATOM 1463 CB PHE H 59 29.517 14.816 -1.094 1.00 14.40 H C ATOM 1464 CG PHE H 59 28.188 15.231 -0.517 1.00 15.03 H C ATOM 1465 CD1 PHE H 59 27.008 14.984 -1.210 1.00 14.65 H C ATOM 1466 CD2 PHE H 59 28.109 15.765 0.770 1.00 14.34 H C 45 ATOM 1467 CE1 PHE H 59 25.768 15.252 -0.629 1.00 15.30 H C ATOM 1468 CE2 PHE H 59 26.875 16.033 1.358 1.00 14.77 H C ATOM 1469 CZ PHE H 59 25.703 15.774 0.657 1.00 16.63 H C ATOM 1470 N ASP H 60 31.986 12.195 -0.727 1.00 14.66 H N ATOM 1473 <td></td>															
ATOM 1463 CB PHE H 59 29.517 14.816 -1.094 1.00 14.40 H C ATOM 1464 CG PHE H 59 28.188 15.231 -0.517 1.00 15.03 H C ATOM 1465 CD1 PHE H 59 27.008 14.984 -1.210 1.00 14.65 H C ATOM 1466 CD2 PHE H 59 28.109 15.765 0.770 1.00 14.34 H C ATOM 1467 CE1 PHE H 59 25.768 15.252 -0.629 1.00 15.30 H C ATOM 1468 CE2 PHE H 59 26.875 16.033 1.358 1.00 14.77 H C ATOM 1469 CZ PHE H 59 25.703 15.774 0.657 1.00 16.63 H C ATOM 1470 N ASP H 60 31.986 12.195 -0.727 1.00 14.66 H N ATOM 1471 CA ASP H 60 33.313 11.761 -1.179 1.00 16.60 H C ATOM 1473 0 ASP H 60 33.310 10.997 -2.509 1.00 18.45 H C ATOM 1473 0 ASP H 60 34.172 11.216 -3.358 1.00 17.09 H 0 ATOM 1474 CB ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1476 0D1 ASP H 60 34.520 12.897 1.005 1.00 13.68 H 0	40														
ATOM 1464 CG PHE H 59 28.188 15.231 -0.517 1.00 15.03 H C ATOM 1465 CD1 PHE H 59 27.008 14.984 -1.210 1.00 14.65 H C ATOM 1466 CD2 PHE H 59 28.109 15.765 0.770 1.00 14.34 H C ATOM 1467 CE1 PHE H 59 25.768 15.252 -0.629 1.00 15.30 H C ATOM 1468 CE2 PHE H 59 26.875 16.033 1.358 1.00 14.77 H C ATOM 1469 CZ PHE H 59 25.703 15.774 0.657 1.00 16.63 H C ATOM 1470 N ASP H 60 31.986 12.195 -0.727 1.00 14.66 H N ATOM 1471 CA ASP H 60 33.313 11.761 -1.179 1.00 16.60 H C ATOM 1473 0 ASP H 60 33.310 10.997 -2.509 1.00 18.45 H C ATOM 1473 0 ASP H 60 34.172 11.216 -3.358 1.00 17.09 H 0 ATOM 1474 CB ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.520 12.897 1.005 1.00 13.68 H 0	40														
ATOM 1465 CD1 PHE H 59 27.008 14.984 -1.210 1.00 14.65 H C ATOM 1466 CD2 PHE H 59 28.109 15.765 0.770 1.00 14.34 H C ATOM 1467 CE1 PHE H 59 25.768 15.252 -0.629 1.00 15.30 H C ATOM 1468 CE2 PHE H 59 26.875 16.033 1.358 1.00 14.77 H C ATOM 1469 CZ PHE H 59 25.703 15.774 0.657 1.00 16.63 H C ATOM 1470 N ASP H 60 31.986 12.195 -0.727 1.00 14.66 H N ATOM 1471 CA ASP H 60 33.313 11.761 -1.179 1.00 16.60 H C ATOM 1473 O ASP H 60 34.172 11.216 -3.358 1.00 17.09 H 0 ATOM 1474 CB ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1475 CG ASP H 60 34.520 12.897 1.005 1.00 13.68 H 0							*								
## ATOM															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
ATOM 1468 CE2 PHE H 59 26.875 16.033 1.358 1.00 14.77 H C ATOM 1469 CZ PHE H 59 25.703 15.774 0.657 1.00 16.63 H C ATOM 1470 N ASP H 60 31.986 12.195 -0.727 1.00 14.66 H N ATOM 1471 CA ASP H 60 33.313 11.761 -1.179 1.00 16.60 H C ATOM 1472 C ASP H 60 33.310 10.997 -2.509 1.00 18.45 H C ATOM 1473 0 ASP H 60 34.172 11.216 -3.358 1.00 17.09 H 0 ATOM 1474 CB ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1476 0D1 ASP H 60 34.520 12.897 1.005 1.00 13.68 H 0															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
ATOM 1471 CA ASP H 60 33.313 11.761 -1.179 1.00 16.60 H C ATOM 1472 C ASP H 60 33.310 10.997 -2.509 1.00 18.45 H C ATOM 1473 O ASP H 60 34.172 11.216 -3.358 1.00 17.09 H O ATOM 1474 CB ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1476 OD1 ASP H 60 34.520 12.897 1.005 1.00 13.68 H 0				C Z											
50 ATOM 1472 C ASP H 60 33.310 10.997 -2.509 1.00 18.45 H C ATOM 1473 0 ASP H 60 34.172 11.216 -3.358 1.00 17.09 H 0 ATOM 1474 CB ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1476 OD1 ASP H 60 34.520 12.897 1.005 1.00 13.68 H 0															
ATOM 1473 0 ASP H 60 34.172 11.216 -3.358 1.00 17.09 H 0 ATOM 1474 CB ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1476 OD1 ASP H 60 34.520 12.897 1.005 1.00 13.68 H 0															
ATOM 1474 CB ASP H 60 33.979 10.872 -0.117 1.00 15.71 H C ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1476 OD1 ASP H 60 34.520 12.897 1.005 1.00 13.68 H 0	50			С	ASP	H	60	33.310	10.997	-2.509	1.00	18.45	F	I C	
ATOM 1475 CG ASP H 60 34.633 11.668 0.998 1.00 15.52 H C ATOM 1476 OD1 ASP H 60 34.520 12.897 1.005 1.00 13.68 H 0				0			60	34.172		-3.358			H	0 1	
ATOM 1476 OD1 ASP H 60 34.520 12.897 1.005 1.00 13.68 H 0					ASP	H	60	33.979	10.872	-0.117			H	I C	
		ATOM	1475				60	34.633	11.668	0.998	1.00	15.52	F	I C	
55 ATOM 1477 OD2 ASP H 60 35.262 11.049 1.855 1.00 15.21 H 0		ATOM	1476	0D1	ASP	H	60	34.520	12.897	1.005	1.00	13.68	H	0 1	
	55	ATOM	1477	0D2	ASP	H	60	35.262	11.049	1.855	1.00	15.21	H	0	

	ATOM	1478	N	LYS	H	60A	32.357	10.089	-2.687	1.00 21.04	H	N
	ATOM	1479	CA	LYS	H	60A	32.303	9.306	-3.918	1.00 23.97	H	С
	ATOM	1480	С	LYS	Н	60A	31.110	9.568	-4.830	1.00 24.27	Н	С
	ATOM	1481	0	LYS		60A	30.675	8.678	-5.558	1.00 24.87	H	0
5	ATOM	1482	СВ	LYS		60A	32.372	7.813	-3.599	1.00 26.20	H	C
J	ATOM	1483	CG	LYS		60A	33.775	7.323	-3.279	1.00 32.13	Н	C
	ATOM	1484	CD	LYS		60A	34.039	7.276	-1.794	1.00 35.71	Н	C
	ATOM	1485	CE	LYS		60A	33.231	6.169	-1.128	1.00 38.10	Н	C
						60A			0.323	1.00 42.45		
10	ATOM	1486	N Z	LYS			33.565	6.052			H	N
10	ATOM	1487	N	ILE		60B	30.583	10.785	-4.796	1.00 25.56	H	N
	ATOM	1488	CA	ILE		60B	29.454	11.132	-5.642	1.00 25.53	H 	C
	ATOM	1489	C	ILE		60B	29.979	11.394	-7.049	1.00 28.48	H	C
	ATOM	1490	0	ILE		60B	30.919	12.168	-7.232	1.00 28.70	H	0
	ATOM	1491	СВ	ILE		60B	28.736	12.409	-5.143	1.00 24.23	H	С
15	ATOM	1492		ILE		60B	28.147	12.180	-3.746	1.00 22.79	H	С
	ATOM	1493	CG2			60B	27.647	12.807	-6.132	1.00 24.21	H	С
	ATOM	1494	CD1	ILE		60B	27.036	11.148	-3.688	1.00 19.86	H	С
	ATOM	1495	N	LYS	H	60C	29.378	10.734	-8.034	1.00 29.76	H	N
	ATOM	1496	CA	LYS	Н	60C	29.764	10.902	-9.430	1.00 31.95	H	C
20	ATOM	1497	С	LYS	H	60C	28.665	11.665	-10.169	1.00 31.45	H	C
	ATOM	1498	0	LYS	H	60C	28.942	12.513	-11.015	1.00 32.26	H	0
	ATOM	1499	CB	LYS	H	60C	29.974	9.536	-10.091	1.00 35.12	H	C
	ATOM	1500	CG	LYS	H	60C	31.059	8.679	-9.440	1.00 38.59	H	С
	ATOM	1501	CD	LYS	H	60C	32.462	9.191	-9.753	1.00 41.77	H	С
25	ATOM	1502	CE	LYS	H	60C	33.034	8.561	-11.024	1.00 43.81	H	С
	ATOM	1503	ΝZ	LYS	H	60C	32.241	8.847	-12.257	1.00 46.15	H	N
	ATOM	1504	N	ASN	H	60D	27.415	11.360	-9.834	1.00 30.75	H	N
	ATOM	1505	CA	ASN	H	60D	26.272	12.005	-10.464	1.00 29.53	H	С
	ATOM	1506	С	ASN		60D	25.675	13.073	-9.549	1.00 28.25	H	С
30	ATOM	1507	0	ASN		60D	24.678	12.833	-8.858	1.00 26.07	H	0
	ATOM	1508	СВ	ASN		60D	25.203		-10.803	1.00 32.77	Н	C
	ATOM	1509	CG	ASN		60D	25.726		-11.700	1.00 35.73	Н	C
	ATOM	1510	0 D 1	ASN		60D	26.355		-12.727	1.00 37.75	H	0
	ATOM	1511		ASN		60D	25.454		-11.320	1.00 37.39	Н	N
35	ATOM	1512	N	TRP		61	26.279	14.256	-9.567	1.00 25.37	Н	N
00	ATOM	1513	CA	TRP		61	25.834	15.365	-8.734	1.00 25.31	Н	C
	ATOM	1514	C	TRP		61	24.422	15.863	-9.016	1.00 26.09	Н	C
	ATOM	1515	0	TRP		61	23.849	16.582	-8.203	1.00 25.00	Н	0
	ATOM	1516		TRP			26.822			1.00 24.50	Н	C
40	ATOM	1517	CG	TRP		61	28.179	16.178	-8.321	1.00 21.92	H	C
40	ATOM	1518		TRP		61	29.211	15.634	-9.027	1.00 21.92	H	C
	ATOM	1519		TRP		61	28.615	16.247	-6.961	1.00 20.82	Н	С
	ATOM	1520		TRP		61	30.262	15.355	-8.189	1.00 22.70	H	N
45	ATOM	1521		TRP		61	29.921	15.722	-6.912	1.00 20.71	H	C
45	ATOM	1522		TRP		61	28.025	16.703	-5.772	1.00 19.10	H	C
	ATOM	1523		TRP		61	30.651	15.634	-5.724	1.00 17.70	H	С
	ATOM	1524		TRP		61	28.749	16.616	-4.593	1.00 17.89	H	С
	ATOM	1525		TRP		61	30.050	16.084		1.00 17.22	H	C
~ ^	ATOM	1526	N	ARG		62	23.858		-10.160	1.00 26.23	H	N
50	ATOM	1527	CA	ARG		62	22.503		-10.494	1.00 28.01	H	C
	ATOM	1528	C	ARG		62	21.432		-10.009	1.00 26.66	H	C
	ATOM	1529	0	ARG		62	20.240		-10.125	1.00 25.99	H	0
	ATOM	1530	СВ	ARG		62	22.365		-12.007	1.00 31.33	H	С
_ =	ATOM	1531	CG	ARG		62	22.965		-12.509	1.00 36.27	H	С
55	ATOM	1532	C D	ARG	H	62	22.697	17.657	-13.997	1.00 40.57	H	С

	1004	1500	M.D.	100	**	0.0	00 500	10.004	11011	1 00 44 40	**	
	ATOM	1533	NE	ARG		62	23.530		-14.844	1.00 44.43	H 	N
	ATOM	1534	CZ	ARG		62	24.787		-15.190	1.00 46.30	H	C
	ATOM	1535		ARG		62	25.374		-14.770	1.00 46.47	H	N
~	ATOM	1536		ARG		62	25.462		-15.954	1.00 45.81	H	N
5	ATOM	1537	N	ASN		63	21.854	13.802	-9.459	1.00 25.42	H	N
	ATOM	1538	CA	ASN	H	63	20.917	12.797	-8.958	1.00 25.01	H	C
	ATOM	1539	С	ASN	H	63	20.829	12.745	-7.431	1.00 24.39	H	C
	ATOM	1540	0	ASN	H	63	20.573	11.682	-6.860	1.00 24.25	H	0
,	ATOM	1541	СВ	ASN	H	63	21.296	11.404	-9.468	1.00 27.47	Н	С
10	ATOM	1542	СG	ASN	H	63	21.396	11.341	-10.976	1.00 31.32	H	С
	ATOM	1543	0D1	ASN	Η	63	20.715	12.078	-11.686	1.00 31.92	Н	0
	ATOM	1544	ND2	ASN	H	63	22.238	10.442	-11.476	1.00 32.46	H	N
	ATOM	1545	N	LEU	H	64	21.047	13.875	-6.767	1.00 21.76	Н	N
	ATOM	1546	CA	LEU		64	20.966	13.910	-5.309	1.00 20.28	Н	С
15	ATOM	1547	С	LEU		64	19.568	14.341	-4.862	1.00 19.50	H	C
	ATOM	1548	0	LEU		64	19.071	15.395	-5.268	1.00 18.78	H	0
	ATOM	1549	СВ	LEU		64	22.018	14.865	-4.744	1.00 19.05	Н	C
	ATOM	1550	CG	LEU		64	23.464	14.363	-4.771	1.00 20.72	Н	C
	ATOM	1551		LEU		64	24.424	15.537	-4.548	1.00 20.72	Н	C
20	ATOM	1552		LEU		64	23.654	13.282	-3.702	1.00 20.72	H	C
20	ATOM	1553	N N	ILE		65						
	ATOM		CA	ILE			18.938	13.520	-4.027	1.00 17.67	H	N
		1554				65 65	17.589	13.810	-3.539	1.00 18.01	Н	C
	ATOM	1555	C	ILE		65 65	17.541	13.931	-2.015	1.00 16.76	Н	C
o r	ATOM	1556	0	ILE		65	18.200	13.172	-1.303	1.00 14.51	H	0
25	ATOM	1557	CB	ILE		65	16.592	12.692	-3.980	1.00 18.70	H	C
	ATOM	1558	CG1			65	16.468	12.671	-5.508	1.00 19.21	H	С
	ATOM	1559		ILE		65	15.215	12.918	-3.352	1.00 19.44	H	C
	ATOM	1560	CD1	ILE		65	15.788	13.897	-6.089	1.00 17.74	H	С
	MOTA	1561	N	ALA		66	16.774	14.903	-1.527	1.00 15.47	H	N
30	ATOM	1562	CA	ALA	H	66	16.603	15.111	-0.097	1.00 15.47	H	C
	ATOM	1563	С	ALA	H	66	15.125	14.876	0.196	1.00 16.47	H	С
	ATOM	1564	0	ALA	H	66	14.254	15.513	-0.405	1.00 16.85	H	0
	ATOM	1565	CB	ALA	H	66	16.995	16.531	0.290	1.00 12.74	H	С
	ATOM	1566	N	VAL	H	67	14.844	13.954	1.108	1.00 14.86	H	N
35	ATOM	1567	CA	VAL	H	67	13.469	13.643	1.459	1.00 16.12	H	С
	ATOM	1568	С	VAL	H	67	13.169	14.082	2.894	1.00 16.69	H	С
	ATOM	1569	0	VAL	H	67	13.895	13.732	3.832	1.00 14.62	H	0
	ATOM	1570	CB	VAL	Н	67	13.184	12.123	1.323	1.00 17.25	H	С
	ATOM	1571	CG1	VAL	Н	67	11.695	11.856	1.492	1.00 18.41	Н	С
40	ATOM	1572	CG2	VAL	H	67	13.652	11.616	-0.045	1.00 15.42	H	C
	ATOM	1573	N	LEU		68	12.111	14.875	3.042	1.00 14.71	Н	N
	ATOM	1574		LEU		68	11.662	15.368	4.341	1.00 14.94	H	C
	ATOM	1575	C	LEU		68	10.368	14.648	4.744	1.00 14.41	Н	C
	ATOM	1576	0	LEU		68	9.639	14.144	3.888	1.00 15.50	Н	0
45	ATOM	1577		LEU		68	11.409	16.881	4.282	1.00 11.00	Н	C
40	ATOM	1578		LEU		68	12.589	17.836	4.542		Н	
	ATOM	1579		LEU		68			5.901	1.00 14.28 1.00 14.52	п Н	C
							13.204	17.495				C
	ATOM	1580		LEU		68	13.645	17.729	3.445	1.00 12.56	Н	C
EO	ATOM	1581	N C A	GLY		69	10.098	14.593	6.047	1.00 13.97	H	N
50	ATOM	1582	CA	GLY		69	8.890	13.951	6.547	1.00 13.77	H	С
	ATOM	1583	С	GLY		69	8.913	12.438	6.465	1.00 17.11	H	С
	ATOM	1584	0	GLY		69	7.886	11.774	6.637	1.00 17.76	H	0
	ATOM	1585	N	GLU		70	10.096	11.889	6.211	1.00 16.90	H	N
	ATOM	1586	CA	GLU		70	10.275	10.454	6.101	1.00 16.57	H	С
55	ATOM	1587	С	GLU	H	70	10.245	9.800	7.491	1.00 16.50	Н	C

	ATOM	1588	0	GLU	H	70	10.567	10.437	8.494	1.00 15.98	H	0
	ATOM	1589	CB	GLU	H	70	11.602	10.174	5.387	1.00 19.03	H	C
	ATOM	1590	CG	GLU	H	70	11.865	8.726	5.080	1.00 22.67	H	C
	ATOM	1591	CD	$\operatorname{GL}\operatorname{U}$	H	70	10.684	8.066	4.398	1.00 25.35	H	C
5	ATOM	1592	0E1	$\operatorname{GL}\operatorname{U}$	H	70	10.563	8.141	3.189	1.00 24.42	H	0
	ATOM	1593	0E2	GLU	H	70	9.892	7.495	5.098	1.00 23.25	H	0
	ATOM	1594	N	HIS	H	71	9.813	8.544	7.546	1.00 12.74	Н	N
	ATOM	1595	CA	HIS		71	9.761	7.801	8.799	1.00 13.45	Н	С
	ATOM	1596	С	HIS		71	10.080	6.321	8.586	1.00 12.69	Н	С
10	ATOM	1597	0	HIS		71	11.080	5.815	9.091	1.00 11.97	Н	0
	ATOM	1598	СВ	HIS		71	8.380	7.919	9.455	1.00 12.65	Н	С
	ATOM	1599	CG	HIS		71	8.219	7.045	10.659	1.00 14.72	Н	С
	ATOM	1600		HIS	H	71	8.933	7.245	11.821	1.00 15.86	H	N
	ATOM	1601		HIS		71	7.488	5.922	10.857	1.00 15.60	H	С
1 5	ATOM	1602		HIS		71	8.652	6.281	12.680	1.00 15.50	Н	С
	ATOM	1603		HIS		71	7.778	5.465	12.119	1.00 16.25	Н	N
	ATOM	1604	N	ASP		72	9.214	5.642	7.836	1.00 12.78	Н	N
	ATOM	1605	CA	ASP		72	9.340	4.213	7.543	1.00 14.80	H	С
	ATOM	1606	С	ASP		72	9.726	4.058	6.078	1.00 14.88	H	С
20	ATOM	1607	0	ASP		72	8.931	4.350	5.200	1.00 14.21	H	0
	ATOM	1608	СВ	ASP		72	7.988	3.539	7.798	1.00 17.28	Н	С
	ATOM	1609	CG	ASP		72	8.012	2.046	7.555	1.00 20.88	H	С
	ATOM	1610		ASP		72	8.887	1.559	6.837	1.00 18.95	H	0
	ATOM	1611		ASP		72	7.134	1.377	8.082	1.00 22.75	H	0
25	ATOM	1612	N	LEU		73	10.936	3.587	5.805	1.00 16.56	H	N
	ATOM	1613	CA	LEU		73	11.385	3.443	4.423	1.00 16.35	Н	С
	ATOM	1614	С	LEU		73	10.650	2.377	3.596	1.00 18.34	Н	С
	ATOM	1615	0	LEU		73	10.858	2.282	2.385	1.00 19.52	Н	0
	ATOM	1616	СВ	LEU		73	12.895	3.171	4.397	1.00 16.77	Н	C
30	ATOM	1617	CG	LEU		73	13.769	4.110	5.247	1.00 17.81	Н	C
	ATOM	1618		LEU		73	15.230	3.720	5.100	1.00 15.70	H	С
	ATOM	1619		LEU		73	13.555	5.549	4.823	1.00 16.14	H	С
	ATOM	1620	N	SER		74	9.790	1.590	4.234	1.00 19.10	H	N
	MOTA	1621	CA	SER		74	9.043	0.548	3.531	1.00 21.62	Н	С
35	ATOM	1622	С	SER		74	7.575	0.880	3.242	1.00 23.33	H	С
	ATOM	1623	0	SER		74	6.867	0.078	2.625	1.00 22.33	H	0
	ATOM	1624	СВ	SER		74	9.114	-0.769	4.308	1.00 20.45	H	С
	ATOM	1625	0 G	SER		74	8.439	-0.675	5.547	1.00 22.87	H	0
	ATOM	1626		GLU	H	75	7.117	2.053	3.677	1.00 22.57	H	N
40	ATOM	1627	CA	GLU		75	5.732	2.466	3.449	1.00 24.78	H	С
	ATOM	1628	С	GLU		75	5.688	3.934	3.040	1.00 25.10	Н	С
	ATOM	1629	0	GLU		75	6.318	4.749	3.678	1.00 25.82	H	0
	ATOM	1630	СВ	GLU	H	75	4.911	2.301	4.730	1.00 26.53	Н	С
	ATOM	1631	CG	GLU		75	4.714	0.873	5.205	1.00 31.89	H	С
45	ATOM	1632	CD	GLU		75	3.839	0.065	4.270	1.00 33.67	H	С
	ATOM	1633	0E1	GLU		75	2.831	0.603	3.814	1.00 35.97	H	0
	ATOM	1634		GLU		75	4.162	-1.102	4.013	1.00 36.04	Н	0
	ATOM	1635	N	HIS		76	4.934	4.275	2.000	1.00 24.98	H	N
	ATOM	1636	CA	HIS		76	4.830	5.668	1.558	1.00 24.23	H	С
50	ATOM	1637	С	HIS		76	3.569	6.338	2.106	1.00 23.39	H	С
-	ATOM	1638	0	HIS		76	2.514	5.706	2.166	1.00 23.35	H	0
	ATOM	1639	СВ	HIS		76	4.760	5.749	0.026	1.00 25.80	H	С
	ATOM	1640	CG	HIS		76	6.056	5.469	-0.671	1.00 29.25	H	С
	ATOM	1641		HIS		76	7.159	6.288	-0.554	1.00 28.58	H	N
55	ATOM	1642		HIS		76	6.408	4.488	-1.538	1.00 28.86	H	С

	ATOM	1643	CE1	HIS	H	76	8.132	5.827	-1.321	1.00 29.52	H	С
	ATOM	1644	NE2	HIS	H	76	7.701	4.736	-1.929	1.00 28.15	H	N
	ATOM	1645	N	ASP	H	77	3.677	7.607	2.510	1.00 20.79	H	N
	ATOM	1646	CA	ASP	H	77	2.509	8.359	2.973	1.00 19.38	H	С
5	ATOM	1647	С	ASP	Н	77	2.621	9.817	2.533	1.00 18.66	H	С
	ATOM	1648	0	ASP	H	77	3.651	10.230	2.004	1.00 21.60	H	0
	ATOM	1649	СВ	ASP	H	77	2.299	8.257	4.499	1.00 18.12	H	С
	ATOM	1650	CG	ASP	Н	77	3.384	8.946	5.308	1.00 19.27	Н	С
	ATOM	1651	0D1		Н	77	3.954	9.946	4.848	1.00 19.03	Н	0
10	ATOM	1652	0D2		Н	77	3.635	8.490	6.418	1.00 17.06	H	0
	ATOM	1653	N	GLY		78	1.566	10.592	2.755	1.00 18.19	H	N
	ATOM	1654	C A	GLY		78	1.545	11.980	2.326	1.00 18.10	H	С
	ATOM	1655	С	GLY		78	2.371	13.025	3.054	1.00 18.55	H	С
	АТОМ	1656	0	GLY		78	2.352	14.197	2.675	1.00 16.08	H	0
15	ATOM	1657	N	ASP	Н	79	3.095	12.625	4.091	1.00 19.01	H	N
	ATOM	1658	C A		H	79	3.910	13.580	4.827	1.00 18.79	H	C
	ATOM	1659	С	ASP		79	5.297	13.730	4.227	1.00 18.30	Н	С
	ATOM	1660	0	ASP		79	6.014	14.676	4.543	1.00 18.65	Н	0
	ATOM	1661	CB	ASP		79	4.034	13.164	6.295	1.00 19.58	Н	С
20	ATOM	1662	CG	ASP	Н	79	2.696	13.111	6.996	1.00 21.14	Н	С
	ATOM	1663	0D1	ASP	H	79	1.909	14.047	6.832	1.00 22.87	Н	0
	ATOM	1664	0D2		Н	79	2.450	12.148	7.704	1.00 20.28	H	0
	ATOM	1665	N	GLU	H	80	5.685	12.799	3.364	1.00 19.12	H	N
	ATOM	1666	CA	GLU	Н	80	7.003	12.873	2.758	1.00 20.29	Н	C
25	ATOM	1667	C	GLU		80	7.062	13.811	1.563	1.00 19.63	H	С
	ATOM	1668	0	GLU		80	6.185	13.815	0.699	1.00 19.10	H	0
	ATOM	1669	СВ	GLU		80	7.491	11.472	2.380	1.00 22.03	Н	C
	ATOM	1670	CG	GLU		80	6.528	10.659	1.571	1.00 29.30	Н	C
	ATOM	1671	CD	GLU		80	6.895	9.188	1.567	1.00 29.90	Н	C
30	ATOM	1672	0E1			80	6.763	8.547	2.597	1.00 27.84	H	0
	ATOM	1673	0E2	GLU		80	7.315	8.707	0.544	1.00 32.19	H	0
	ATOM	1674	N	GLN		81	8.110	14.625	1.541	1.00 18.82	H	N
	ATOM	1675	CA	GLN		81	8.324	15.592	0.482	1.00 17.15	H	C
	ATOM	1676	C	GLN		81	9.723	15.373	-0.065	1.00 18.57	Н	C
35	ATOM	1677	0	GLN		81	10.689	15.277	0.691	1.00 18.79	Н	0
	ATOM	1678	СВ	GLN		81	8.202	17.004	1.037	1.00 16.07	H	Č
	ATOM	1679	CG	GLN		81	6.873	17.277	1.709	1.00 15.69	Н	C
	ATOM	1680	CD	GLN		81	6.792	18.684	2.237	1.00 13.45	H	C
	ATOM	1681		GLN		81		19.630		1.00 12.22	H	0
40	ATOM	1682		GLN		81	6.516	18.828	3.530	1.00 12.50	Н	N
	ATOM	1683	N	SER		82	9.829	15.313	-1.384	1.00 17.31	H	N
	ATOM	1684	CA	SER		82	11.105	15.072	-2.029	1.00 18.12	Н	C
	ATOM	1685	С	SER		82	11.576	16.299	-2.799	1.00 17.87	Н	C
	ATOM	1686	0	SER		82	10.778	16.996	-3.428	1.00 17.54	Н	0
45	ATOM	1687	СВ	SER		82	10.965	13.867	-2.960	1.00 16.29	Н	С
	ATOM	1688	0 G	SER		82	12.222	13.446	-3.436	1.00 28.10	H	0
	ATOM	1689	N	ARG		83	12.878	16.563	-2.750	1.00 18.40	H	N
	ATOM	1690	CA	ARG		83	13.447	17.717	-3.443	1.00 18.45	Н	C
	ATOM	1691	C	ARG		83	14.830	17.401	-3.998	1.00 20.13	H	C
50	ATOM	1692	0	ARG		83	15.629	16.715	-3.354	1.00 21.06	H	0
	ATOM	1693	СВ	ARG		83	13.572	18.906	-2.486	1.00 18.69	H	C
	ATOM	1694	CG	ARG		83	12.253	19.439	-1.927	1.00 19.20	H	C
	ATOM	1695	CD	ARG		83	11.544	20.319	-2.947	1.00 17.18	Н	C
	ATOM	1696	NE	ARG		83	10.393	21.010	-2.378	1.00 14.55	Н	N
55	ATOM	1697	CZ	ARG		83	9.214	20.444	-2.131	1.00 16.58	Н	C
-							*					

	ATOM	1698	NII 1	ARG	TT	0.0	0 004	10 150	0 401	1 00 10 00	**	.,
						83	9.004	19.159		1.00 13.28	Н	N
	ATOM	1699		ARG		83	8.241	21.170		1.00 16.69	H 	N
	ATOM	1700	N	ARG		84	15.116	17.902		1.00 19.27	H	N
=	ATOM	1701	CA	ARG		84	16.426	17.697		1.00 20.61	H	С
5	ATOM	1702	С	ARG		84	17.392	18.641	-5.075	1.00 18.87	H	С
	ATOM	1703	0	ARG		84	17.015	19.746	-4.689	1.00 16.00	H	0
	ATOM	1704	СВ	ARG	H	84	16.414	18.037	-7.283	1.00 23.54	H	C
	ATOM	1705	CG	ARG	H	84	15.483	17.186	-8.127	1.00 29.19	H	C
	ATOM	1706	CD	ARG	H	84	15.845	17.288	-9.604	1.00 34.52	H	С
10	ATOM	1707	NΕ	ARG	H	84	14.872	16.600	-10.451	1.00 40.99	H	N
	ATOM	1708	CZ	ARG	H	84	15.065	16.298	-11.733	1.00 44.71	H	С
	ATOM	1709	NH1	ARG	H	84	16.206	16.614	-12.337	1.00 46.58	H	N
	ATOM	1710	NH2	ARG	H	84	14.110	15.682	-12.417	1.00 46.99	H	N
	ATOM	1711	N	VAL		85	18.629	18.203		1.00 17.74	H	N
15	ATOM	1712	C A	VAL		85	19.622	19.049		1.00 16.85	H	C
	ATOM	1713	С	VAL		85	20.229	19.920		1.00 17.99	Н	C
	ATOM	1714	0	VAL		85	20.877	19.416	-6.259	1.00 17.19	H	0
	ATOM	1715	СВ	VAL		85	20.732	18.207	-3.557	1.00 17.19	H	
	ATOM	1716		VAL		85	21.763					C
20	ATOM	1717		VAL		85	20.117	19.123	-2.907	1.00 14.96	H	C
20	ATOM							17.289	-2.507	1.00 13.28	H	C
		1718	N C A	ALA		86	19.992	21.227	-5.251	1.00 18.63	H	N
	ATOM	1719	CA	ALA		86	20.504	22.181	-6.231	1.00 18.54	H 	С
	ATOM	1720	C	ALA		86	21.974	22.513	-6.000	1.00 19.52	H	C
0.5	ATOM	1721	0	ALA		86	22.692	22.847	-6.942	1.00 20.09	H	0
25	ATOM	1722	СВ	ALA		86	19.671	23.471	-6.193	1.00 16.39	H	С
	ATOM	1723	N	GLN		87	22.424	22.426	-4.752	1.00 18.48	H	N
	ATOM	1724	CA	GLN		87	23.812	22.739	-4.443	1.00 19.14	H	C
	ATOM	1725	С	GLN	H	87	24.330	22.107	-3.149	1.00 17.00	H	С
	ATOM	1726	0	GLN	H	87	23.620	22.030	-2.149	1.00 17.11	H	0
30	ATOM	1727	СВ	GLN	Η	87	23.986	24.259	-4.376	1.00 20.74	H	С
	ATOM	1728	CG	GLN	H	87	25.425	24.729	-4.330	1.00 23.25	H	С
	ATOM	1729	CD	GLN	H	87	25.587	26.134	-4.886	1.00 28.67	H	С
	ATOM	1730	0E1	GLN	H	87	25.068	27.099	-4.328	1.00 31.99	Н	0
	ATOM	1731	NE2	GLN	H	87	26.305	26.250	-5.999	1.00 30.93	H	N
35	ATOM	1732	N	VAL		88	25.574	21.645	-3.196	1.00 14.74	Н	N
	ATOM	1733	CA	VAL		88	26.239	21.047	-2.047	1.00 14.64	H	C
	ATOM	1734	С	VAL		88	27.465	21.920	-1.772	1.00 15.48	H	C
	ATOM	1735	0	VAL		88	28.404	21.946	-2.562	1.00 17.00	Н	0
	ATOM	1736	СВ	VAL		88		19.606		1.00 14.89	Н	C
40	ATOM	1737		VAL		88	27.474	19.046	-1.155	1.00 14.11	H	C
	ATOM	1738		VAL		88	25.506	18.726	-2.680	1.00 14.11	Н	C
	ATOM	1739	N	ILE		89	27.443	22.646	-0.662	1.00 15.46	Н	
	ATOM	1740		ILE		89	28.545	23.523	-0.300			N
	ATOM	1740	C	ILE		89				1.00 14.42	H	C
45	ATOM	1741	0	ILE			29.390	22.884	0.794	1.00 15.81	H	C
40						89	28.897	22.549	1.876	1.00 16.16	H	0
	ATOM	1743	CB	ILE		89	28.030	24.884	0.190	1.00 13.77	H 	С
	ATOM	1744		ILE		89	27.072	25.485	-0.847	1.00 14.85	H	C
	ATOM	1745		ILE		89	29.209	25.829	0.413	1.00 14.01	H	С
F 0	ATOM	1746		ILE		89	26.360	26.755	-0.384	1.00 13.34	H	C
50	ATOM	1747	N	ILE		90	30.674	22.724	0.500	1.00 15.61	H	N
	ATOM	1748	CA	ILE		90	31.619	22.110	1.421	1.00 15.21	H	C
	ATOM	1749	С	ILE		90	32.777	23.066	1.691	1.00 15.60	H	C
	ATOM	1750	0	ILE		90	33.197	23.804	0.802	1.00 16.74	H	0
	ATOM	1751		ILE		90	32.151	20.789	0.802	1.00 15.99	H	C
55	ATOM	1752	CG1	ILE	H	90	31.018	19.759	0.760	1.00 15.68	H	C

	1 m o 1 r		222										
	ATOM	1753		ILE		90	33.339	20.254	1.590		17.02	H	
	ATOM	1754		ILE		90	31.365	18.486	0.005		19.51	H	_
	ATOM	1755	N	PRO		91	33.297	23.081	2.931		16.87	Н	
-	ATOM	1756	CA	PR0		91	34.415	23.971	3.259		14.80	Н	
5	ATOM	1757	С	PRO		91	35.627	23.649	2.384	1.00	15.40	H	C
	ATOM	1758	0	PRO	H	91	35.917	22.480	2.120	1.00	12.85	Н	0
	ATOM	1759	CB	PR0	H	91	34.692	23.657	4.728	1.00	15.20	H	С
	ATOM	1760	CG	PRO	Н	91	33.360	23.185	5.241	1.00	16.50	Н	С
	ATOM	1761	CD	PRO	H	91	32.867	22.319	4.118	1.00	15.23	H	С
10	ATOM	1762	N	SER	H	92	36.336	24.681	1.939	1.00	14.94	Н	N
	ATOM	1763	CA	SER	H	92	37.521	24.471	1.114	1.00	15.06	H	С
	ATOM	1764	C	SER	H	92	38.598	23.704	1.888	1.00	14.20	Н	С
	ATOM	1765	0	SER	H	92	39.489	23.117	1.289	1.00	15.42	Н	0
	ATOM	1766	CB	SER	H	92	38.084	25.813	0.643	1.00	14.89	Н	С
15	ATOM	1767	0 G	SER	H	92	37.144	26.502	-0.166	1.00	15.02	Н	0
	ATOM	1768	N	THR	H	93	38.497	23.701	3.214	1.00	12.98	Н	N
	ATOM	1769	CA	THR	H	93	39.461	23.020	4.072		13.34	Н	
	ATOM	1770	С	THR	H	93	39.182	21.531	4.309	1.00	14.82	Н	
	ATOM	1771	0	THR	Н	93	39.994	20.840	4.916	1.00	15.40	Н	
20	ATOM	1772	СВ	THR		93	39.556	23.716	5.448	1.00	14.87	Н	
	ATOM	1773	0G1	THR	H	93	38.249	23.788	6.033		11.15	Н	
	ATOM	1774	CG2	THR	H	93	40.133	25.140	5.302		11.43	Н	
	ATOM	1775	N	TYR		94	38.040	21.033	3.847	1.00	14.91	H	
	ATOM	1776	CA	TYR		94	37.724	19.618	4.024		14.16	Н	
25	ATOM	1777	C	TYR		94	38.482	18.783	2.989		14.17	Н	
	ATOM	1778	0	TYR		94	38.558	19.151	1.822	1.00	14.26	Н	
	ATOM	1779	СВ	TYR	H	94	36.220	19.366	3.862		12.83	Н	
	ATOM	1780	CG	TYR		94	35.874	17.888	3.785		11.02	Н	
	ATOM	1781	CD1	TYR	Н	94	35.851	17.101	4.931	1.00	9.72	Н	
30	ATOM	1782	CD2	TYR	Н	94	35.656	17.264	2.552		11.67	Н	
	ATOM	1783		TYR		94	35.629	15.728	4.858	1.00	8.62	Н	
	ATOM	1784		TYR		94	35.433	15.888	2.467	1.00	8.29	Н	
	ATOM	1785	CZ	TYR	H	94	35.424	15.130	3.631	1.00	9.43	Н	
	ATOM	1786	0 H	TYR	H	94	35.222	13.773	3.574	1.00	11.83	Н	
35	ATOM	1787	N	VAL	Н	95	39.048	17.664	3.423		13.98	Н	
	ATOM	1788	CA	VAL		95	39.771	16.775	2.519		13.14	H	
	ATOM	1789	С	VAL		95	39.041	15.431	2.436		12.82	Н	
	ATOM	1790	0	VAL		95	38.845	14.761	3.444		13.46	Н	
	ATOM	1791	СВ	VAL	H	95	41.219	16.517	3.006	1.00	11.88	Н	C
40	ATOM	1792	C G 1	VAL	H	95	41.922	15.540	2.062	1.00	10.92	H	
	ATOM	1793	C G 2	VAL	H	95	41.992	17.826	3.065	1.00	11.07	H	
	ATOM	1794	N	PR0		96	38.624	15.025	1.229		12.92	Н	
	ATOM	1795	CA	PRO	H	96	37.922	13.749	1.062		11.72	Н	
	ATOM	1796	С	PRO		96	38.730	12.604	1.675		13.96	Н	
45	ATOM	1797	0	PRO	H	96	39.957	12.548	1.525		15.05	Н	
	ATOM	1798	CB	PRO		96	37.809	13.620	-0.453	1.00		Н	
	ATOM	1799	CG	PRO		96	37.671	15.048	-0.885	1.00	12.78	Н	C
	ATOM	1800	CD	PRO		96	38.742	15.730	-0.060		12.59	Н	C
	ATOM	1801	N	GLY		97	38.038	11.697	2.354		12.86	Н	N
50	ATOM	1802	CA	GLY	H	97	38.698	10.574	2.986		13.45	H	C
•	ATOM	1803	C	GLY		97	39.107	10.871	4.418		15.29	Н	Č
	ATOM	1804	0	GLY		97	39.539	9.967	5.131		15.13	Н	0
	ATOM	1805	N	THR		98	38.972	12.127	4.846		15.09	Н	N
	ATOM	1806	CA	THR		98	39.356	12.509	6.202		15.44	H	C
55	ATOM	1807	С	THR		98	38.173	12.924	7.082		15.39	H	Ċ
_													-

	ATOM	1808	0	THR	Н	98	37.014	12.798	6.679	1.00 15.40	Н	0
	ATOM	1809	СВ	THR		98	40.417	13.631	6.185	1.00 16.79	Н	C
	ATOM	1810		THR		98	39.864	14.813	5.605	1.00 16.68	Н	0
	ATOM	1811		THR		98	41.631	13.193	5.375	1.00 17.03	Н	C
5	ATOM	1812	N	THR		99	38.469	13.433	8.275	1.00 14.02	Н	N
_	ATOM	1813	C A	THR		99	37.429	13.783	9.236	1.00 14.07	Н	C
	ATOM	1814	C	THR		99	37.206	15.251	9.633	1.00 14.00	Н	C
	ATOM	1815	0	THR		99	36.111	15.605	10.086	1.00 11.58	H	0
	ATOM	1816	СВ	THR		99	37.643	12.963	10.532	1.00 16.74	Н	C
10	ATOM	1817		THR		99	38.973	13.187	11.022	1.00 10.74	H	0
-0	ATOM	1818		THR		99	37.468	11.465	10.265	1.00 17.73	Н	C
	ATOM	1819	N N			100	38.219	16.102	9.473	1.00 13.56	H	N
	ATOM	1820	CA			100	38.097	17.512	9.859	1.00 11.50	Н	C
	ATOM	1821	C			100	37.189	18.315	8.927	1.00 11.57	H	C
15	ATOM	1822	0			100	37.165	18.086	7.719	1.00 9.00	H	
10	ATOM	1823	CB			100	39.485		9.911			0
	ATOM	1824	CG			100	39.576	18.181		1.00 9.81	Н	C
	ATOM						40.498	19.288	10.966	1.00 12.61	H	C
	ATOM	1825 1826		ASN ASN				20.112	10.939	1.00 15.96	Н	0
20							38.633	19.300	11.908	1.00 7.34	Н	N
40	ATOM	1827	N C A			101	36.455	19.264	9.500	1.00 9.02	Н	N
	ATOM	1828	CA			101	35.552	20.124	8.738	1.00 10.03	H	С
	ATOM	1829	C			101	34.503	19.292	8.017	1.00 9.38	H	C
	ATOM	1830	0			101	34.188	19.544	6.857	1.00 8.47	H	0
25	ATOM	1831	CB			101	36.347	20.953	7.724	1.00 11.39	H	C
25	ATOM	1832	CG			101	37.353	21.868	8.352	1.00 16.40	H	С
	ATOM	1833		HIS			36.997	22.895	9.200	1.00 18.05	H 	N
	ATOM	1834		HIS			38.705	21.882	8.293	1.00 17.22	H	C
	ATOM	1835		HIS			38.086	23.501	9.639	1.00 18.13	H	C
20	ATOM	1836		HIS			39.137	22.906	9.103	1.00 17.47	Н	N
30	ATOM	1837	N			102	33.958	18.305	8.720	1.00 8.97	Н	N
	ATOM	1838	CA			102	32.967	17.407	8.148	1.00 10.95	H	С
	ATOM	1839	C			102	31.567	18.022	8.153	1.00 10.99	H	С
	ATOM	1840	0			102	30.699	17.621	8.935	1.00 10.41	H	0
0.5	ATOM	1841	CB	ASP			32.971	16.092	8.928	1.00 9.16	H	С
35	ATOM	1842	CG	ASP			32.360	14.959	8.147	1.00 12.94	H	C
	ATOM	1843		ASP			32.039	15.173	6.976	1.00 11.04	H	0
	ATOM	1844		ASP			32.216	13.870	8.703	1.00 12.25	H	0
	ATOM	1845	N	ILE			31.351	18.993	7.271	1.00 10.37	H	N
4.0	ATOM	1846		ILE			30.061		7.192	1.00 8.57	H	С
40	ATOM	1847	С	ILE			29.730	20.071	5.760	1.00 9.30	H	С
	ATOM	1848	0			103	30.621		4.962	1.00 8.92	H	0
	ATOM	1849	CB			103	30.058	20.941	8.084	1.00 10.09	H	С
	ATOM	1850		ILE			28.677	21.607	8.072	1.00 7.85	H	С
	ATOM	1851		ILE			31.120	21.923	7.591	1.00 9.32	H	С
45	ATOM	1852		ILE			28.502	22.665	9.152	1.00 11.15	H	С
	ATOM	1853	N	ALA			28.442	20.055	5.437	1.00 9.70	H	N
	ATOM	1854		ALA			27.970	20.445	4.114	1.00 10.78	H	C
	ATOM	1855	С	ALA			26.639	21.173	4.248	1.00 12.66	H	C
	ATOM	1856	0	ALA	H	104	25.789	20.804	5.063	1.00 11.86	H	0
50	ATOM	1857	CB	ALA	H	104	27.807	19.217	3.216	1.00 7.13	H	С
	ATOM	1858	N	LEU			26.482	22.226	3.454	1.00 14.56	H	N
	ATOM	1859	CA	LEU			25.258	23.016	3.426	1.00 12.91	H	С
	ATOM	1860	C	LEU			24.640	22.753	2.057	1.00 12.76	H	С
	ATOM	1861	0	LEU	Н	105	25.243	23.065	1.029	1.00 12.63	H	0
55	MOTA	1862	CB	LEU	H	105	25.580	24.504	3.576	1.00 12.35	H	C

	1 00 15	1000	0.0						0 101			
	ATOM	1863	CG			105	24.389	25.466	3.494	1.00 12.0		
	ATOM	1864		LEU			23.413	25.197	4.641	1.00 9.2		
	ATOM	1865		LEU			24.903	26.892	3.560	1.00 9.2		
~	ATOM	1866	N			106	23.445	22.172	2.046	1.00 12.3		
5	ATOM	1867	CA			106	22.758	21.837	0.803	1.00 11.4		
	ATOM	1868	С			106	21.564	22.748	0.515	1.00 12.9	8 H	C
	ATOM	1869	0	LEU	H	106	20.726	22.978	1.384	1.00 12.5	4 H	i 0
	ATOM	1870	CB	LEU	H	106	22.285	20.380	0.859	1.00 12.5	3 H	C C
	ATOM	1871	CG	LEU	H	106	23.263	19.202	0.659	1.00 14.0	1 H	i C
10	ATOM	1872	CD1	LEU	Н	106	24.503	19.322	1.539	1.00 12.2	6 H	. C
	ATOM	1873	CD2	LEU	H	106	22.519	17.906	0.983	1.00 12.8	2 H	i C
	ATOM	1874	N	ARG	H	107	21.492	23.278	-0.703	1.00 14.0	2 H	I N
	ATOM	1875	CA	ARG	H	107	20.370	24.128	-1.077	1.00 16.6	4 H	i C
	ATOM	1876	С			107	19.397	23.266	-1.873	1.00 16.7		
15	ATOM	1877	0			107	19.791	22.591	-2.819	1.00 18.5		
	ATOM	1878	СВ			107	20.822	25.313	-1.942	1.00 18.3		
	ATOM	1879	CG			107	19.754	26.410	-2.081	1.00 20.8		
	ATOM	1880	CD			107	19.992	27.301	-3.302	1.00 26.3		
	ATOM	1881	N E			107	21.234	28.069	-3.224	1.00 20.3		
20	ATOM	1882	CZ			107	21.321	29.337	-2.827	1.00 30.6		
20	ATOM	1883	NH1	ARG			20.233	30.007	-2.463	1.00 30.0		
				ARG								
	ATOM	1884		LEU			22.503	29.940	-2.798	1.00 29.6		
	ATOM	1885	N				18.131	23.280	-1.480	1.00 16.6		
95	ATOM	1886	CA			108	17.114	22.500	-2.170	1.00 17.2		
25	ATOM	1887	C	LEU			16.608	23.281	-3.385	1.00 18.8		
	ATOM	1888	0			108	16.532	24.510	-3.349	1.00 18.2		
	ATOM	1889	CB	LEU			15.962	22.188	-1.208	1.00 15.6		
	ATOM	1890	CG	LEU			16.352	21.391	0.050	1.00 14.1		
0.0	ATOM	1891		LEU			15.134	21.191	0.953	1.00 10.3		
30	ATOM	1892	CD2	LEU			16.942	20.041	-0.361	1.00 11.8		
	ATOM	1893	N			109	16.273	22.568	-4.457	1.00 20.6	4 H	N
	ATOM	1894	CA	HIS	H	109	15.790	23.205	-5.683	1.00 22.0	7 H	С
	ATOM	1895	С			109	14.546	24.054	-5.430	1.00 21.7	1 H	C
	ATOM	1896	0	HIS	H	109	14.399	25.139	-5.986	1.00 21.7	2 H	0
35	ATOM	1897	СВ	HIS	H	109	15.467	22.155	-6.746	1.00 24.9) H	С
	ATOM	1898	СG	HIS	H	109	15.022	22.742	-8.048	1.00 28.6	Э Н	С
	ATOM	1899	ND1	HIS	H	109	13.921	22.279	-8.738	1.00 31.8	H C	N
	ATOM	1900	CD2	HIS	H	109	15.525	23.762	-8.784	1.00 30.89	Э Н	C
	ATOM	1901	CE1	HIS	Н	109	13.766	22.989	-9.842	1.00 31.1	В Н	С
40	ATOM	1902	NE2	HIS	H	109	14.726	23.895	-9.894	1.00 30.6	3 Н	N
	ATOM	1903	N	GLN	H	110	13.647	23.541	-4.603	1.00 19.2		N
	ATOM	1904	CA			110	12.430	24.252	-4.258	1.00 21.3		
	ATOM	1905	С	GLN			12.219	24.059	-2.766	1.00 19.9		
	ATOM	1906	0	GLN			12.566	23.014	-2.210	1.00 19.1		
45	ATOM	1907	СВ	GLN			11.230	23.689	-5.030	1.00 24.70		
-0	ATOM	1908	CG	GLN			11.340	23.814	-6.551	1.00 33.1		
	ATOM	1909	CD	GLN			11.188	25.245	-7.075	1.00 37.5		
	ATOM	1910		GLN			11.434	25.505	-8.254	1.00 42.2		
	ATOM	1911		GLN			10.772	26.168	-6.212	1.00 42.2		
50	ATOM	1912	N E Z	PRO			11.643	25.062	-0.212 -2.096	1.00 40.3		
90												
	ATOM	1913	CA			111	11.406	24.959	-0.657	1.00 18.39		
	ATOM	1914	C	PRO			10.409	23.869	-0.306	1.00 18.13		
	ATOM	1915	0	PRO			9.472	23.615	-1.056	1.00 18.29		
ب بر	ATOM	1916	CB	PRO			10.882	26.348	-0.299	1.00 18.48		
55	ATOM	1917	CG	PR0	Н	T T T	10.127	26.733	-1.540	1.00 17.23	L H	С

	ATOM	1918	CD	PRO	H	111	11.091	26.319	-2.632	1.00 15.77	H	C
	ATOM	1919	N			112	10.624	23.215	0.831	1.00 17.13	H	N
	ATOM	1920	CA	VAL	H	112	9.700	22.189	1.286	1.00 17.69	Н	С
_	ATOM	1921	С			112	8.573	22.915	2.013	1.00 16.47	Н	С
5	ATOM	1922	0	VAL	H	112	8.708	24.088	2.364	1.00 15.80	H	0
	ATOM	1923	CB	VAL	H	112	10.371	21.195	2.261	1.00 17.46	H	С
	ATOM	1924	CG1	VAL	H	112	11.412	20.374	1.526	1.00 19.26	H	С
	ATOM	1925	C G 2	VAL	H	112	10.996	21.945	3.419	1.00 15.83	H	С
	ATOM	1926	N	VAL	H	113	7.463	22.222	2.228	1.00 15.47	H	N
10	ATOM	1927	CA	VAL	H	113	6.316	22.806	2.912	1.00 13.75	H	C
	ATOM	1928	С	VAL	H	113	6.395	22.459	4.394	1.00 14.36	H	С
	ATOM	1929	0	VAL	H	113	6.542	21.290	4.759	1.00 12.82	H	0
	ATOM	1930	СВ			113	4.983	22.247	2.353	1.00 13.88	H	С
	ATOM	1931	CG1	VAL	H	113	3.808	22.974	2.993	1.00 10.56	H	C
15	ATOM	1932	CG2	VAL	H	113	4.951	22.381	0.821	1.00 12.19	H	С
	ATOM	1933	N	LEU	Η	114	6.305	23.467	5.253	1.00 13.94	H	N
	ATOM	1934	C A	LEU	H	114	6.363	23.199	6.679	1.00 15.06	H	С
	ATOM	1935	С	LEU	H	114	5.017	22.632	7.122	1.00 15.96	H	С
	ATOM	1936	0	LEU	H	114	3.968	23.236	6.898	1.00 15.97	H	0
20	ATOM	1937	CB	LEU	H	114	6.710	24.475	7.454	1.00 13.15	H	С
	ATOM	1938	CG	LEU	H	114	8.090	25.081	7.135	1.00 15.88	H	С
	ATOM	1939	CD1	LEU	H	114	8.406	26.194	8.129	1.00 13.86	H	С
	ATOM	1940	CD2	LEU	H	114	9.173	23.999	7.194	1.00 11.78	H	C
	ATOM	1941	N	THR	Η	115	5.057	21.453	7.732	1.00 14.58	H	N
25	ATOM	1942	C A	THR	H	115	3.846	20.791	8.197	1.00 15.14	H	С
	ATOM	1943	С	THR	H	115	4.087	20.219	9.591	1.00 14.81	H	С
	ATOM	1944	0	THR	H	115	5.158	20.404	10.168	1.00 15.34	H	0
	ATOM	1945	СВ	THR	H	115	3.462	19.627	7.268	1.00 14.99	H	С
	ATOM	1946	0G1	THR	H	115	4.431	18.580	7.406	1.00 15.74	H	0
30	ATOM	1947	CG2	THR	Η	115	3.419	20.084	5.805	1.00 13.98	H	C
	ATOM	1948	N	ASP	H	116	3.094	19.523	10.130	1.00 15.45	H	N
	MOTA	1949	CA	ASP	H	116	3.244	18.904	11.437	1.00 16.55	H	C
	ATOM	1950	C	ASP	H	116	4.359	17.849	11.416	1.00 17.00	H	С
	ATOM	1951	0	ASP	H	116	4.913	17.519	12.460	1.00 16.90	H	0
35	ATOM	1952	СB	ASP	H	116	1.934	18.244	11.883	1.00 18.41	H	С
	ATOM	1953	CG	ASP	H	116	0.866	19.254	12.283	1.00 20.47	H	C
	ATOM	1954	0D1	ASP	H	116	1.166	20.431	12.388	1.00 20.75	H	0
	ATOM	1955	0D2	ASP	H	116	-0.270	18.844	12.496	1.00 23.70	H	0
	ATOM	1956	N	HIS	H	117	4.687	17.326	10.233	1.00 15.90	H	N
40	ATOM	1957	CA	HIS	H	117	5.733	16.307	10.105	1.00 16.55	H	C
	ATOM	1958	C	HIS	H	117	7.041	16.802	9.492	1.00 16.30	H	С
	ATOM	1959	0	HIS	H	117	8.001	16.040	9.372	1.00 15.70	H	0
	ATOM	1960	CB	HIS	H	117	5.217	15.115	9.297	1.00 16.16	H	С
	ATOM	1961	CG	HIS	H	117	4.102	14.384	9.970	1.00 19.31	H	C
45	ATOM	1962	ND1	HIS	H	117	2.808	14.857	9.986	1.00 18.50	H	N
	ATOM	1963	CD2	HIS	H	117	4.103	13.259	10.723	1.00 17.50	Н	C
	ATOM	1964	CE1	HIS	Н	117	2.059	14.056	10.723	1.00 21.07	Н	С
	ATOM	1965	NE2	HIS	Н	117	2.821	13.080	11.182	1.00 20.92	H	N
	MOTA	1966	N	VAL	H	118	7.078	18.072	9.103	1.00 15.64	H	N
50	ATOM	1967	CA			118	8.276	18.655	8.511	1.00 14.14	H	С
	ATOM	1968	C	VAL	H	118	8.493	20.041	9.095	1.00 14.78	H	С
	ATOM	1969	0	VAL	Н	118	7.784	20.984	8.762	1.00 14.27	Н	0
	ATOM	1970	CB	VAL	H	118	8.148	18.761	6.990	1.00 14.64	Н	С
	ATOM	1971	CG1	VAL	Н	118	9.381	19.463	6.413	1.00 12.73	H	С
55	ATOM	1972	CG2	VAL	H	118	7.983	17.367	6.393	1.00 12.56	H	С

	ATOM	1973	N	VAL	Н	119	9.486	20.147	9.970	1.00 15.25	H	N
	ATOM	1974	CA	VAL	Н	119	9.808	21.394	10.653	1.00 13.86	H	C
	ATOM	1975	С	VAL	H	119	11.329	21.501	10.766	1.00 14.17	H	C
	ATOM	1976	0	VAL	H	119	12.017	20.499	10.956	1.00 13.56	H	0
5	ATOM	1977	CB	VAL	H	119	9.177	21.390	12.081	1.00 15.77	H	С
	ATOM	1978	CG1	VAL	H	119	9.570	22.641	12.856	1.00 16.33	H	C
	ATOM	1979	CG2	VAL	Н	119	7.656	21.285	11.974	1.00 16.16	Н	С
	ATOM	1980	N	PRO	H	120	11.875	22.718	10.644	1.00 13.65	H	N
	ATOM	1981	CA	PRO	H	120	13.325	22.881	10.746	1.00 12.56	Н	С
10	ATOM	1982	С	PRO	H	120	13.817	22.966	12.189	1.00 13.87	Н	C
	ATOM	1983	0			120	13.085	23.398	13.086	1.00 11.70	H	0
	ATOM	1984	СВ	PRO	Н	120	13.573	24.172	9.981	1.00 12.13	H	С
	ATOM	1985	CG	PRO	H	120	12.355	24.978	10.315	1.00 15.18	Н	С
	ATOM	1986	CD			120	11.230	23.971	10.203	1.00 14.55	Н	С
15	ATOM	1987	N			121	15.054	22.521	12.403	1.00 12.25	Н	N
	ATOM	1988	CA			121	15.688	22.577	13.713	1.00 11.41	H	С
	ATOM	1989	С	LEU			16.359	23.944	13.719	1.00 12.91	Н	С
	ATOM	1990	0			121	16.826	24.394	12.676	1.00 12.87	Н	0
	ATOM	1991	СВ	LEU	Н	121	16.747	21.472	13.838	1.00 10.88	H	С
20	ATOM	1992	CG			121	17.592	21.380	15.124	1.00 9.26	H	С
	ATOM	1993	CD1	LEU	Н	121	16.692	21.104	16.320	1.00 7.01	H	С
	ATOM	1994	CD2	LEU	Н	121	18.640	20.259	14.978	1.00 7.10	H	С
	ATOM	1995	N			122	16.409	24.610	14.867	1.00 13.27	Н	N
	ATOM	1996	CA			122	17.034	25.932	14.925	1.00 15.06	H	С
25	ATOM	1997	С			122	18.556	25.919	14.874	1.00 15.31	H	С
	ATOM	1998	0	CYS	Н	122	19.202	25.139	15.571	1.00 16.54	H	0
	ATOM	1999	СВ			122	16.657	26.684	16.205	1.00 15.03	H	С
	ATOM	2000	SG			122	14.893	26.918	16.573	1.00 16.60	Н	S
	ATOM	2001	N			123	19.119	26.793	14.046	1.00 14.53	H	N
30	ATOM	2002	CA			123	20.560	26.955	13.970	1.00 12.48	H	C
	ATOM	2003	С			123	20.747	28.048	15.018	1.00 12.30	Н	C
	ATOM	2004	0			123	20.207	29.149	14.876	1.00 13.28	H	0
	ATOM	2005	СВ			123	20.991	27.466	12.590	1.00 11.93	H	С
	ATOM	2006	CG			123	22.513	27.606	12.445	1.00 12.58	H	С
35	ATOM	2007		LEU			23.142	26.211	12.479	1.00 9.53	Н	C
	ATOM	2008		LEU			22.865	28.312	11.147	1.00 10.47	H	C
	ATOM	2009	N			124	21.497	27.762	16.093	1.00 12.74	H	N
	ATOM	2010	CA	PRO	Н	124	21.708	28.760	17.149	1.00 12.16	H	С
	ATOM	2011	С	PR0	Н	124	22.827	29.747	16.881	1.00 13.37	H	С
40	ATOM	2012	0			124	23.639	29.535	15.984	1.00 13.97	H	0
	ATOM	2013	СВ			124	22.031	27.897	18.356	1.00 10.72	H	С
	ATOM	2014	CG			124	22.924	26.839	17.730	1.00 12.77	H	C
	ATOM	2015	CD			124	22.205	26.505	16.408	1.00 10.59	H	С
	ATOM	2016	N			125	22.860	30.831	17.657	1.00 13.81	H	N
45	ATOM	2017	CA			125	23.947	31.800	17.533	1.00 14.83	H	С
	ATOM	2018	С			125	25.145	31.082	18.149	1.00 14.18	H	С
	ATOM	2019	0			125	24.975	30.182	18.972	1.00 13.59	H	0
	ATOM	2020	СВ			125	23.656	33.085	18.319	1.00 15.94	H	С
	ATOM	2021	CG			125	22.528	33.918	17.745	1.00 20.23	H	С
50	ATOM	2022	CD			125	22.427	35.292	18.380	1.00 23.56	H	C
- •	ATOM	2023		GLU			22.850	35.449	19.526	1.00 21.49	H	0
	ATOM	2024		GLU			21.912	36.198	17.728	1.00 25.49	H	0
	ATOM	2025	N			126	26.350	31.477	17.759	1.00 15.26	H	N
	ATOM	2026	CA			126	27.557	30.836	18.258	1.00 16.72	H	C
55	ATOM	2027	С			126	27.793	30.894	19.772	1.00 16.72	H	С

	A TO M	0000	^	A D C	17	100	00 010	00 054	00 007	1 00	1 - 77	**	^
	ATOM	2028	0			126	28.012	29.854	20.397		15.77	H 	0
	ATOM	2029	CB			126	28.787	31.399	17.550		18.05	H	С
	ATOM	2030	CG	ARG	H	126	30.075	30.784	18.054	1.00	23.13	H	С
	ATOM	2031	CD	ARG	H	126	31.236	31.724	17.874	1.00	28.03	H	С
5	ATOM	2032	ΝE	ARG	Η	126	31.769	31.681	16.524	1.00	30.56	H	N
	ATOM	2033	CZ	ARG	H	126	32.772	30.897	16.141	1.00	33.42	H	С
	ATOM	2034	NH1	ARG	Н	126	33.356	30.081	17.011	1.00	33.03	H	N
	ATOM	2035	NH2	ARG	H	126	33.199	30.945	14.886	1.00	33.65	H	N
	ATOM	2036	N	THR	Н	127	27.764	32.086	20.365		15.89	Н	N
10	ATOM	2037	CA			127	28.020	32.191	21.803		16.74	H	С
	ATOM	2038	C			127	26.976	31.448	22.634		15.42	H	C
	ATOM	2039	0			127	27.320	30.816	23.630		15.65	H	0
	ATOM	2040	CB			127	28.124	33.669	22.277		19.12	H	C
	ATOM	2040	0G1			127	26.860	34.323	22.127		23.54	H	
15													0
10	ATOM	2042	CG2			127	29.175	34.413	21.461		18.93	H	C
	ATOM	2043	N			128	25.710	31.522	22.234		12.93	H	N
	MOTA	2044	CA			128	24.650	30.798	22.938		12.70	H	C
	ATOM	2045	С			128	25.006	29.307	22.929		11.77	H	С
00	ATOM	2046	0			128	24.971	28.643	23.963		11.84	H	0
20	ATOM	2047	CB	PHE			23.300	31.019	22.232	1.00	11.78	H	C
	ATOM	2048	CG			128	22.186	30.092	22.694		11.98	H	С
	ATOM	2049	CD1	PHE	Н	128	21.783	30.057	24.026	1.00	13.78	H	С
	ATOM	2050	CD2	PHE	H	128	21.498	29.306	21.773	1.00	9.96	H	С
	ATOM	2051	CE1	PHE	Н	128	20.704	29.256	24.437	1.00	12.05	H	С
25	ATOM	2052	CE2	PHE	H	128	20.423	28.504	22.163	1.00	10.60	H	С
	ATOM	2053	CZ	PHE	Н	128	20.021	28.480	23.503	1.00	12.84	H	С
	ATOM	2054	N	SER	H	129	25.364	28.792	21.757	1.00	11.50	H	N
	ATOM	2055	CA	SER	Н	129	25.712	27.383	21.622	1.00	12.61	Н	С
	ATOM	2056	С	SER			26.962	26.998	22.417		12.76	H	С
30	ATOM	2057	0	SER			27.008	25.929	23.023		12.80	H	0
	ATOM	2058	СВ	SER			25.908	27.029	20.145		12.21	H	C
	ATOM	2059	0 G	SER			26.052	25.624	19.977		17.13	H	0
	ATOM	2060	N			129A	27.969	27.868	22.420		13.31	H	N
	ATOM	2061	C A			129A	29.217	27.603	23.136		14.09	H	C
35		2061	С					27.730					
50	ATOM					129A	29.128		24.657		14.85	H	C
	ATOM	2063	0			129A	29.707	26.921	25.382		14.98	H	0
	ATOM	2064	CB			129A	30.328	28.542	22.639		14.74	H	C
	ATOM	2065	CG			129A	30.715	28.369	21.172		14.19	H	C
40	ATOM	2066	CD	_		129A	31.780	29.367	20.745		16.54	H 	С
40	ATOM	2067				129A	31.941	30.368	21.432		16.37	H	0
	ATOM	2068				129A	32.431	29.146	19.728		17.94	H	0
	ATOM	2069	N			129B	28.410	28.739	25.145		15.04	H	N
	ATOM	2070	CA			129B	28.310	28.957	26.589	1.00	16.21	H	C
•	ATOM	2071	C			129B	27.114	28.309	27.267	1.00	14.62	H	C
45	ATOM	2072	0	ARG	H	129B	27.124	28.110	28.479	1.00	14.82	H	0
	ATOM	2073	CB	ARG	H	129B	28.296	30.460	26.904	1.00	19.47	H	С
	ATOM	2074	CG	ARG	H	129B	27.031	31.161	26.451	1.00	28.02	H	С
	ATOM	2075	CD	ARG	H	129B	26.919	32.605	26.946	1.00	33.00	H	C
	ATOM	2076	NE			129B	27.978	33.478	26.447		36.47	H	N
50	ATOM	2077	CZ			129B	27.822	34.777	26.197		38.35	H	C
	ATOM	2078				129B	26.645	35.360	26.391		38.64	H	N
	ATOM	2079				129B	28.845	35.500	25.757		36.71	H	N
	ATOM	2080	N			129C	26.079	27.984	26.503		13.48	H	N
	ATOM	2081	CA			1290	24.897	27.378	27.094		12.08	H	C
55	ATOM	2082	C			129C	24.611	25.974	26.574		12.22	H	C
50	11 1 O M	2002	J	1 11 17	11	100	44.011	20.074	20.014	1.00	14.44		U

	ATOM	2083	0	THR	H	1290	24.631	25.021	27.344	1.00 12.56	I	1 0
	ATOM	2084	СВ	THR	Η	1290	23.643	28.263	26.872	1.00 13.41	I	H C
	ATOM	2085	0G1	THR	Н	129C	23.841	29.541	27.496	1.00 12.83	I	1 0
	ATOM	2086	C G 2	THR	Η	129C	22.411	27.604	27.472	1.00 13.85	I	· C
5	ATOM	2087	N	LEU	Н	129D	24.358	25.839	25.273	1.00 9.80	I	i N
	ATOM	2088	CA	LEU	Н	129D	24.043	24.533	24.706	1.00 9.83	I	
	ATOM	2089	С	LEU	H	129D	25.121	23.466	24.903	1.00 10.51	ŀ	
	ATOM	2090	0			129D	24.802	22.292	25.092	1.00 9.04	ŀ	
	ATOM	2091	СВ			129D	23.717	24.661	23.215	1.00 9.11	ŀ	
10	ATOM	2092	C G			129D	22.473	25.482	22.856	1.00 10.88	ŀ	
	ATOM	2093				129D	22.268	25.452	21.349	1.00 7.76	I	
	ATOM	2094				129D	21.249	24.927	23.580	1.00 7.70	F	
	ATOM	2095	N N			129E	26.388	23.871	24.874			
	ATOM	2096	CA			129E				1.00 9.50	H	
15							27.495	22.929	25.038	1.00 11.11	I .	
TO	ATOM	2097	C			129E	27.527	22.284	26.417	1.00 12.05	F	
	ATOM	2098	0			129E	28.209	21.277	26.614	1.00 14.06	F	
	ATOM	2099	СВ			129E	28.828	23.627	24.768	1.00 8.33	H	
	ATOM	2100	N			129F	26.794	22.848	27.372	1.00 11.37	H	
00	ATOM	2101	CA			129F	26.793	22.291	28.714	1.00 11.44	H	I C
20	ATOM	2102	C			129F	25.513	21.561	29.108	1.00 11.62	H	I C
	ATOM	2103	0	PHE	H	129F	25.328	21.163	30.260	1.00 10.42	H	0
	ATOM	2104	CB			129F	27.180	23.386	29.714	1.00 13.71	H	C C
	ATOM	2105	CG	PHE	H	129F	28.562	23.937	29.469	1.00 12.82	H	C C
	ATOM	2106	CD1	PHE	Η	129F	29.669	23.090	29.491	1.00 13.92	H	C
25	ATOM	2107	CD2	PHE	Н	129F	28.749	25.275	29.148	1.00 13.07	H	C
	ATOM	2108	CE1	PHE	H	129F	30.944	23.567	29.190	1.00 15.14	Н	
	ATOM	2109	CE2	PHE	H	129F	30.017	25.765	28.844	1.00 13.32	Н	
	ATOM	2110	CZ	PHE	Н	129F	31.118	24.911	28.863	1.00 14.84	H	
	ATOM	2111	N			129G	24.633	21.380	28.132	1.00 11.71	H	
30	ATOM	2112	C A			129G	23.418	20.617	28.339	1.00 10.87	Н	
	ATOM	2113	С			129G	23.969	19.201	28.125	1.00 12.85	Н	
	ATOM	2114	0			129G	24.514	18.886	27.062	1.00 12.09	H	
	ATOM	2115	СВ			129G	22.344	20.956	27.271	1.00 12.03	Н	
	ATOM	2116		VAL			21.203	19.946	27.329			
35	ATOM	2117		VAL			21.203	22.372	27.510		Н	
00	ATOM	2118	N N	ARG			23.847			1.00 9.81	Н	
	ATOM	2119	CA	ARG				18.367	29.147	1.00 12.84	Н	
		2120	C				24.368	17.008	29.114	1.00 14.10	H	
	ATOM			ARG			23.977	16.147	27.909	1.00 14.87	H	
40	ATOM	2121	0 CD	ARG			24.831	15.767		1.00 14.59	H	
40	ATOM	2122	CB	ARG			23.960	16.281	30.400	1.00 14.36	H	
	ATOM	2123	CG			134			30.485		H	
	ATOM	2124	CD	ARG			25.916		30.854	1.00 20.10	H	
	ATOM	2125	NE	ARG			26.154	15.328	32.182	1.00 21.14	H	N
	ATOM	2126	CZ	ARG			27.311	15.262	32.832	1.00 19.89	H	С
45	ATOM	2127		ARG			28.356	14.659	32.287	1.00 20.58	H	N
	ATOM	2128	NH2	ARG			27.419	15.795	34.035	1.00 20.22	H	N
	ATOM	2129	N	PHE			22.687	15.844	27.801	1.00 12.87	H	N
	ATOM	2130	CA	PHE	Н	135	22.164	14.986	26.745	1.00 12.91	H	С
	ATOM	2131	C	PHE	H	135	21.591	15.697	25.521	1.00 13.23	H	С
50	ATOM	2132	0	PHE	H	135	21.053	16.799	25.609	1.00 15.91	Н	
	ATOM	2133	CB	PHE	H	135	21.089	14.054	27.340	1.00 11.61	Н	
	ATOM	2134	CG	PHE			21.640	12.996	28.259	1.00 11.27	H	
	ATOM	2135	CD1	PHE			22.119		27.752	1.00 12.29	H	
	ATOM	2136		PHE			21.694		29.631	1.00 12.45	Н	
55	ATOM	2137		PHE			22.648		28.602	1.00 11.52	Н	
_										11111111	**	v

	ATOM	2138	CE2	PHE	Η	135	22.219	12.235	30.485	1.00	13.43	Н	С
	ATOM	2139	CZ	PHE	Н	135	22.699	11.035	29.966	1.00	10.85	H	С
	ATOM	2140	N	SER	Н	136	21.718	15.030	24.378	1.00	13.39	Н	N
	ATOM	2141	CA	SER	H	136	21.209	15.499	23.095	1.00	13.57	H	С
5	ATOM	2142	С	SER	H	136	20.797	14.259	22.305	1.00	13.47	H	С
	ATOM	2143	0	SER	H	136	21.293	13.160	22.559	1.00	11.08	Н	0
	ATOM	2144	СВ	SER	Η	136	22.285	16.249	22.307	1.00	13.40	Н	С
	ATOM	2145	0 G	SER	Н	136	22.576	17.513	22.881	1.00	14.55	Н	0
	ATOM	2146	N	LEU	Н	137	19.903	14.441	21.341	1.00	12.22	Н	N
10	ATOM	2147	CA			137	19.429	13.331	20.519	1.00	13.36	Н	С
	ATOM	2148	С			137	20.157	13.217	19.187	1.00	13.34	Н	С
	ATOM	2149	0			137	20.391	14.216	18.509		12.33	Н	0
	ATOM	2150	СВ			137	17.938	13.486	20.228	1.00	13.15	Н	С
	ATOM	2151	CG			137	16.941	13.480	21.385		15.66	Н	С
15	ATOM	2152	CD1	LEU			15.532	13.692	20.815		14.08	Н	
	ATOM	2153		LEU			17.026	12.158	22.157		14.11	H	C
	ATOM	2154	N			138	20.524	11.991	18.827		12.73	H	
	ATOM	2155	CA			138	21.170	11.715	17.550		12.09	Н	
	ATOM	2156	С			138	20.216	10.733	16.870		12.01	Н	С
20	ATOM	2157	0			138	19.675	9.836	17.513		12.12	Н	0
	ATOM	2158	СВ	VAL	H	138	22.585	11.077	17.720		13.28	Н	С
	ATOM	2159	CG1	VAL			23.551	12.094	18.330	1.00	8.61	Н	С
	ATOM	2160		VAL			22.506	9.842	18.600		11.66	Н	C
	ATOM	2161	N			139	20.002	10.897	15.573		12.22	Н	N
25	ATOM	2162	CA			139	19.061	10.041	14.869	1.00	11.00	Н	С
-	ATOM	2163	C			139	19.462	9.715	13.437		10.54	Н	С
	ATOM	2164	0			139	20.324	10.378	12.856		11.74	Н	0
	ATOM	2165	СВ			139	17.693	10.722	14.870		11.90	H	С
	ATOM	2166	0 G			139	17.823	12.060	14.405	1.00	9.32	H	0
30	ATOM	2167	N			140	18.818	8.690	12.881	1.00	9.70	Н	N
	ATOM	2168	CA			140	19.084	8.269	11.516	1.00	9.30	Н	C
	ATOM	2169	С			140	18.579	6.864	11.200	1.00	9.94	Н	C
	ATOM	2170	0			140	18.082	6.147	12.076	1.00	9.85	Н	0
	ATOM	2171	N			141	18.698	6.479	9.935	1.00	10.84	Н	N
35	ATOM	2172	C A	TRP	Н	141	18.299	5.149	9.471	1.00	13.57	H	С
	ATOM	2173	С			141	19.547	4.284	9.307		14.42	Н	C
	ATOM	2174	0	TRP	H	141	19.559	3.338	8.518	1.00	14.11	Н	0
	ATOM	2175	CB	TRP	Н	141	17.585	5.251	8.119	1.00	11.62	Н	С
	ATOM	2176	CG	TRP	H	141	16.213	5.852	8.198	1.00	9.53	H	С
40	ATOM	2177		TRP			15.042	5.194	8.451	1.00	7.95	H	С
	ATOM	2178	CD2	TRP	H	141	15.868	7.227	7.992	1.00	9.12	Н	С
	ATOM	2179	NE1	TRP	H	141	13.987	6.076	8.407	1.00	10.35	H	N
	ATOM	2180	CE2	TRP	H	141	14.465	7.330	8.131	1.00	9.30	H	С
	ATOM	2181		TRP			16.609	8.381	7.700	1.00	6.96	Н	
45	ATOM	2182	CZ2	TRP	H	141	13.784	8.547	7.992	1.00	9.43	H	С
	ATOM	2183		TRP			15.934	9.590	7.559	1.00	8.75	Н	С
	ATOM	2184	CH2	TRP	Н	141	14.531	9.662	7.707	1.00	9.90	H	С
	ATOM	2185	N			142	20.591	4.623	10.059	1.00	16.02	Н	N
	ATOM	2186	C A			142	21.848	3.898	9.988	1.00	15.99	Н	C
50	ATOM	2187	С			142	21.825	2.514	10.589	1.00	15.07	Н	С
	ATOM	2188	0	GLY	Н	142	20.767	2.010	10.972		15.13	Н	0
	ATOM	2189	N			143	23.006	1.904	10.672	1.00	16.63	Н	N
	ATOM	2190	CA	GLN	H	143	23.162	0.556	11.212	1.00	17.93	Н	С
	ATOM	2191	С	GLN	Н	143	22.665	0.409	12.640	1.00	20.58	H	С
55	ATOM	2192	0	GLN	H	143	22.882	1.278	13.489	1.00	18.31	H	0

	ATOM	2193	СВ	GLN	H	143	24.628	0.110	11.167	1.00	18.10	Н	С
	ATOM	2194	CG	GLN	H	143	25.228	-0.100	9.770	1.00	19.46	H	C
	ATOM	2195	CD	GLN	Н	143	25.525	1.199	9.043	1.00	21.99	H	C
	ATOM	2196	0E1	GLN	Η	143	25.714	2.242	9.669	1.00	20.13	H	0
5	ATOM	2197	NE2	GLN	H	143	25.588	1.137	7.712	1.00	20.26	H	N
	ATOM	2198	N	LEU	H	144	22.003	-0.714	12.898	1.00	21.01	H	N
	ATOM	2199	C A	LEU	H	144	21.481	-1.012	14.221	1.00	23.46	H	C
	ATOM	2200	C	LEU	Н	144	22.573	-1.658	15.069	1.00	25.89	H	С
	ATOM	2201	0	LEU	H	144	22.507	-1.642	16.298	1.00	25.66	H	0
10	ATOM	2202	CB	LEU	H	144	20.269	-1.944	14.101	1.00	21.41	H	C
	ATOM	2203	CG	LEU	Η	144	19.080	-1.313	13.367	1.00	19.40	H	С
	ATOM	2204		LEU			17.980	-2.352	13.121	1.00	21.44	H	С
	ATOM	2205	CD2	LEU	H	144	18.551	-0.157	14.199	1.00	14.43	H	C
	ATOM	2206	N	LEU	H	145	23.574	-2.226	14.400		27.35	H	N
15	ATOM	2207	CA			145	24.700	-2.875	15.067	1.00	32.19	H	С
	ATOM	2208	C	LEU	H	145	25.976	-2.620	14.267	1.00	32.79	H	C
	ATOM	2209	0	LEU	Η	145	25.916	-2.351	13.067	1.00	33.17	H	0
	ATOM	2210	CB			145	24.470	-4.391	15.186		33.26	H	С
	ATOM	2211	CG			145	23.588	-4.949	16.311		35.26	H	С
20	ATOM	2212		LEU			22.133		16.123		37.31	H	C
	ATOM	2213	CD2	LEU			23.704		16.313		36.17	H	С
	ATOM	2214	N			146	27.124		14.934		33.83	H	N
	ATOM	2215	CA			146	28.404		14.266		35.01	H	C
~~	ATOM	2216	С			146	28.493		13.091		36.95	H	С
25	ATOM	2217	0			146	28.380		13.268		36.80	H	0
	ATOM	2218	CB			146	29.562		15.232		35.30	H	C
	ATOM	2219	CG			146	30.922		14.612		35.18	H	С
	ATOM	2220		ASP			31.245		14.431		33.00	H	0
00	ATOM	2221		ASP			31.652		14.310		36.91	H	0
30	ATOM	2222	N			147	28.679		11.893		38.24	H	N
	ATOM	2223	CA			147	28.782		10.686		40.29	H	C
	ATOM	2224	C			147	27.507		10.434		39.24	H	C
	ATOM	2225	0			147	27.550		9.842		40.33	Н	0
ຄະ	ATOM	2226	CB			147	29.995		10.797		43.36	H	C
35	ATOM	2227	CG			147	30.348		9.516		48.53 54.02	H	C C
	ATOM	2228	CD			147	31.593		9.698 8.484			H H	
	ATOM ATOM	$\frac{2229}{2230}$	N E C Z			147 147	31.930 32.980		8.361		56.36 58.31	Н	N C
	ATOM	2231		ARG				-7.965			58.01	Н	
40	ATOM	2232		ARG			33.199		7.215		58.04	H	N N
40	ATOM	2232	N IIZ			149	26.372				36.85	H	
	ATOM	2234	CA			149	25.109		10.697		33.07	Н	C
	ATOM	2235	C			149	24.277		9.610		30.38	Н	
	ATOM	2236	0			149	24.782		8.826		29.52	Н	
45	ATOM	2237	N			150	22.997		9.562		28.41	Н	N
40	ATOM	2238	C A			150	22.091		8.561		26.03	Н	C
	ATOM	2239	C			150	21.468		9.048		23.50	Н	C
	ATOM	2240	0			150	21.415		10.249		21.67	Н	0
	ATOM	2241	СВ			150	21.005		8.248		27.18	Н	
50	ATOM	2242	N			151	20.986		8.112		22.99	Н	
	ATOM	2243	CA			151	20.374		8.458		22.82	Н	C
	ATOM	2244	С			151	18.923		8.925		22.79	H	Č
	ATOM	2245	0			151	18.302		8.783		21.21	Н	0
	ATOM	2246	СВ			151	20.450		7.278		23.93	Н	C
55	ATOM	2247	0G1	THR			19.822		6.122		22.56	Н	0

	ATOM	2248	CG2	THR	H	151	21.903	0.865	6.956	1.00 22.44	H	С
	ATOM	2249	N			152	18.389	0.484	9.493	1.00 20.52	H	N
	ATOM	2250	CA	ALA	H	152	17.025	0.474	10.005	1.00 18.60	H	С
_	ATOM	2251	С			152	15.979	0.962	9.011	1.00 16.25	H	С
5	ATOM	2252	0	ALA	H	152	16.218	1.883	8.237	1.00 16.12	H	0
	ATOM	2253	CB	ALA	Η	152	16.951	1.303	11.280	1.00 18.25	H	C
	ATOM	2254	N	LEU	H	153	14.811	0.332	9.045	1.00 15.23	H	N
	ATOM	2255	CA	LEU	H	153	13.713	0.707	8.169	1.00 15.57	H	C
	ATOM	2256	С	LEU	Η	153	12.954	1.881	8.754	1.00 14.76	H	C
10	ATOM	2257	0	LEU	H	153	12.443	2.720	8.021	1.00 17.16	H	0
	ATOM	2258	СВ	LEU	H	153	12.770	-0.479	7.962	1.00 15.57	H	С
	ATOM	2259	CG	LEU	Η	153	13.349	-1.531	7.015	1.00 16.60	H	С
	ATOM	2260	CD1	LEU	H	153	12.575	-2.847	7.125	1.00 16.63	H	С
	ATOM	2261	CD2	LEU			13.302	-0.978	5.602	1.00 15.24	H	С
15	ATOM	2262	N			154	12.871	1.933	10.079	1.00 15.00	H	N
	ATOM	2263	C A			154	12.182	3.025	10.755	1.00 15.61	H	С
	ATOM	2264	С			154	13.198	3.936	11.431	1.00 14.97	H	С
	ATOM	2265	0			154	14.143	3.465	12.070	1.00 15.21	H	0
	ATOM	2266	CB			154	11.201	2.482	11.789	1.00 14.17	H	С
20	ATOM	2267	CG			154	9.877	2.027	11.206	1.00 20.51	Н	С
	ATOM	2268	CD			154	8.914	1.551	12.274	1.00 23.96	H	С
	ATOM	2269	0 E 1			154	9.164	0.504	12.851	1.00 23.53	Н	0
	ATOM	2270	0E2	GLU			7.919	2.249	12.535	1.00 27.22	H	0
~ -	ATOM	2271	N			155	13.000	5.241	11.279	1.00 14.72	Н	N
25	ATOM	2272	CA			155	13.900	6.234	11.864	1.00 13.82	Н	С
	ATOM	2273	С			155	14.157	5.954	13.336	1.00 12.35	Н	С
	ATOM	2274	0			155	13.223	5.883	14.127	1.00 13.95	Н	0
	ATOM	2275	СВ			155	13.304	7.635	11.725	1.00 14.43	H	C
0.0	ATOM	2276	CG			155	14.144	8.775	12.315	1.00 13.63	H	C
30	ATOM	2277		LEU			15.464	8.868	11.565	1.00 13.84	H 	C
	ATOM	2278		LEU			13.380	10.088	12.210	1.00 13.06	Н	C
	ATOM	2279	N			156	15.424	5.805	13.701	1.00 12.83	H	N
	ATOM	2280	CA			156	15.798	5.542	15.087	1.00 12.93	H	С
0.5	ATOM	2281	C			156	16.366	6.812	15.739	1.00 12.73	H	С
35	ATOM	2282	0			156	16.871	7.700	15.054	1.00 13.04	H	0
	ATOM	2283	CB			156	16.841	4.421	15.150	1.00 12.00	H	C
	ATOM	2284	CG			156	16.461	3.125	14.429	1.00 12.49	H	C
	ATOM	2285	SD			156	15.054	2.200	15.133	1.00 13.73	H	S C
40	ATOM	2286	CE	MET			15.766	1.648		1.00 12.82	Н	
40	ATOM	2287	N C A			157	16.292	6.883	17.066	1.00 12.85 1.00 11.88	Н	N
	ATOM	2288	C A C			157 157	16.779	8.037	17.813 19.098	1.00 11.88	H H	C C
	ATOM	2289	0				17.463	7.558	19.642	1.00 13.44	H	0
	ATOM ATOM	2290	C B			157 157	17.127	6.499 9.020	18.126	1.00 12.20	H	C
4 5		$\frac{2291}{2292}$		VAL			15.606	8.382	19.074	1.00 9.51	H	C
40	ATOM ATOM	2292		VAL			14.621 16.142	10.337	18.685	1.00 9.32	H	C
	ATOM	$\frac{2293}{2294}$	N N			158	18.425	8.343	19.574	1.00 12.79	H	N
	ATOM	2295	CA			158	19.202	7.999	20.758	1.00 12.79	Н	C
		2296	C			158	19.660	9.223	21.545	1.00 13.56	H	C
50	ATOM ATOM	2297	0			158	20.119	10.215	20.963	1.00 10.13	H	0
00	ATOM	2298	C B			158	20.119	7.215	20.331	1.00 10.13	Н	C
	ATOM	2299	CG			158	21.465	6.879	21.414	1.00 12.38	H	C
	ATOM	2300		LEU			20.871	5.843	22.360	1.00 11.50	Н	C
	ATOM	2300		LEU			22.740	6.350	20.770	1.00 11.50	H	C
55	ATOM	2301	N N			159	19.547	9.138	22.869	1.00 11.34	H	N
00	11 1 0 14	4000	41	1.011	11	100	10.041	0.100			11	41

	ATOM	2303	CA	ASN	Н	159	19.973	10.216	23.749	1.00 13.66	Н	С
	ATOM	2304	C	ASN	Н	159	21.419	9.908	24.142	1.00 12.37	Н	C
	ATOM	2305	0	ASN	H	159	21.701	8.835	24.673	1.00 13.12	Н	0
	ATOM	2306	CB	ASN	H	159	19.092	10.254	25.004	1.00 15.32	Н	С
5	ATOM	2307	CG	ASN	Н	159	19.000	11.643	25.621	1.00 18.58	Н	С
	ATOM	2308	0D1	ASN	Н	159	18.609	11.791	26.783	1.00 19.52	H	0
	ATOM	2309	ND2	ASN	Н	159	19.341	12.668	24.843	1.00 17.35	Н	N
	ATOM	2310	N	VAL	Н	160	22.331	10.835	23.867	1.00 11.23	Н	N
	ATOM	2311	CA	VAL	Н	160	23.741	10.644	24.196	1.00 10.26	Н	С
10	ATOM	2312	С	VAL	H	160	24.309	11.844	24.952	1.00 11.62	H	C
	ATOM	2313	0			160	23.965	12.989	24.658	1.00 11.36	H	0
	ATOM	2314	СВ	VAL	Н	160	24.608	10.425	22.926	1.00 11.37	Н	С
	ATOM	2315	CG1	VAL	H	160	24.175	9.147	22.200	1.00 9.21	H	С
	ATOM	2316		VAL			24.506	11.650	21.989	1.00 7.47	H	С
15	ATOM	2317	N			161	25.183	11.590	25.947	1.00 10.82	Н	N
	ATOM	2318	CA	PRO	Н	161	25.804	12.652	26.746	1.00 11.11	Н	С
	ATOM	2319	С			161	27.055	13.199	26.058	1.00 10.16	H	С
	ATOM	2320	0	PR0	Н	161	27.822	12.458	25.445	1.00 9.67	H	0
	ATOM	2321	СВ			161	26.129	11.944	28.058	1.00 10.26	H	С
20	ATOM	2322	CG			161	26.562	10.594	27.575	1.00 10.20	H	C
	ATOM	2323	CD	PRO	Н	161	25.505	10.264	26.511	1.00 11.31	Н	С
	ATOM	2324	N	ARG	Н	162	27.268	14.499	26.185	1.00 10.55	Н	N
	ATOM	2325	CA	ARG	H	162	28.411	15.145	25.560	1.00 10.54	Н	C
	ATOM	2326	С	ARG	Н	162	29.639	15.171	26.474	1.00 11.25	H	С
25	ATOM	2327	0			162	29.515	15.158	27.701	1.00 13.29	Н	0
	ATOM	2328	СВ	ARG	Н	162	28.004	16.564	25.152	1.00 11.25	Н	С
	ATOM	2329	CG	ARG	H	162	29.082	17.391	24.464	1.00 12.83	H	С
	ATOM	2330	CD	ARG	H	162	28.483	18.669	23.889	1.00 9.42	H	С
	ATOM	2331	NE	ARG	Н	162	29.498	19.534	23.303	1.00 9.59	H	N
30	ATOM	2332	CZ			162	29.236	20.576	22.520	1.00 11.68	Н	С
	ATOM	2333	NH1	ARG	Н	162	27.979	20.886	22.217	1.00 11.81	Н	N
	ATOM	2334	NH2	ARG	Н	162	30.232	21.318	22.047	1.00 12.43	H	N
	ATOM	2335	N	LEU	H	163	30.825	15.178	25.872	1.00 9.08	Н	N
	ATOM	2336	CA	LEU	H	163	32.062	15.230	26.636	1.00 10.57	H	С
35	ATOM	2337	C	LEU	Н	163	32.991	16.323	26.127	1.00 11.95	H	C
	ATOM	2338	0	LEU	H	163	33.074	16.570	24.923	1.00 10.27	Н	0
	ATOM	2339	СВ	LEU	Н	163	32.835	13.907	26.548	1.00 12.13	H	C
	ATOM	2340	CG	LEU	H	163	32.369	12.650	27.278	1.00 12.88	H	C
	ATOM	2341	CD1	LEU	H	163	31.177	12.034	26.547	1.00 12.78	H	С
40	ATOM	2342	CD2	LEU	H	163	33.540	11.658	27.336	1.00 14.29	H	C
	ATOM	2343	N	MET	H	164	33.677	16.990	27.047	1.00 11.82	H	N
	ATOM	2344	C A	MET	H	164	34.654	17.980	26.633	1.00 12.80	H	С
	ATOM	2345	C	MET	H	164	35.782	17.109	26.081	1.00 12.63	H	C
	ATOM	2346	0	MET	H	164	35.980	15.977	26.532	1.00 10.67	H	0
45	ATOM	2347	CB	MET	H	164	35.107	18.825	27.822	1.00 14.08	H	C
	AT0M	2348	C G	MET	H	164	34.020	19.805	28.259	1.00 18.16	H	С
	ATOM	2349	SD	MET	H	164	34.564	21.069	29.400	1.00 22.97	H	S
	ATOM	2350	CE	MET	H	164	35.402	22.150	28.252	1.00 19.99	H	C
	ATOM	2351	N	THR	H	165	36.504	17.621	25.095	1.00 12.59	H	N
50	ATOM	2352	CA	THR	H	165	37.554	16.849	24.451	1.00 15.62	H	С
	ATOM	2353	C	THR	H	165	38.629	16.275	25.375	1.00 16.25	H	С
	ATOM	2354	0	THR	H	165	39.064	15.143	25.186	1.00 15.20	H	0
	ATOM	2355	CB	THR	H	165	38.172	17.679	23.320	1.00 17.38	H	С
	ATOM	2356	0G1	THR	H	165	37.112	18.103	22.452	1.00 17.32	H	0
55	ATOM	2357	CG2	THR	H	165	39.175	16.855	22.510	1.00 14.61	H	С

	ATOM	2358	N	GLN			39.048	17.036	26.378		16.53	Н	N
	ATOM	2359	CA	GLN			40.055	16.541	27.310		17.06	Н	С
	ATOM	2360	С	GLN			39.549	15.231	27.923		17.05	H	C
_	ATOM	2361	0	GLN			40.284	14.250	28.008		16.97	H	0
5	ATOM	2362	CB	GLN			40.316	17.585	28.400		16.34	Н	С
	ATOM	2363	CG	GLN			41.362	17.196	29.432		18.36	H	C
	ATOM	2364	CD	GLN			41.681	18.350	30.373		18.67	Н	С
	ATOM	2365		GLN			42.310	19.329	29.973		22.60	Н	0
	ATOM	2366	NE2	GLN			41.228	18.249	31.618		14.45	Н	N
10	ATOM	2367	N	ASP			38.290	15.217	28.347		17.30	Н	N
	ATOM	2368	CA	ASP			37.707	14.010	28.916		17.76	H	C
	ATOM	2369	C	ASP			37.628	12.893	27.876		17.98	Н	С
	ATOM	2370	0	ASP			37.922	11.739	28.182		18.09	H	0
	ATOM	2371	CB	ASP			36.302	14.282	29.456		18.74	H	С
15	ATOM	2372	CG	ASP			36.313	15.086	30.729		18.60	H	С
	ATOM	2373		ASP			37.056	14.726	31.625		19.37	H	0
	ATOM	2374	0D2	ASP			35.569	16.071	30.818		20.49	H	0
	ATOM	2375	N			168	37.226	13.227	26.651		17.56	H	N
	ATOM	2376	CA			168	37.114	12.210	25.608		18.06	Н	C
20	ATOM	2377	С			168	38.449	11.496	25.398		18.33	Н	С
	ATOM	2378	0			168	38.508	10.270	25.404		17.46	H	0
	ATOM	2379	СВ			168	36.658	12.829	24.281		17.54	H	C
	ATOM	2380	SG			168	36.253	11.592	23.003		18.27	H	S
~ -	ATOM	2381	N			169	39.511	12.271	25.202		18.38	Н	N
25	ATOM	2382	C A	LEU			40.843	11.711	24.990		22.32	H	C
	ATOM	2383	С			169	41.294	10.864	26.175		23.09	H	C
	ATOM	2384	0			169	41.797	9.757	25.995		23.96	H	0
	ATOM	2385	CB			169	41.861	12.830	24.748		22.08	H	C
0.0	ATOM	2386	CG			169	41.665	13.649	23.471		24.49	H	C
30	ATOM	2387		LEU			42.705	14.766	23.403		24.94	H	C
	ATOM	2388		LEU			41.779	12.733	22.260		23.41	H	C
	ATOM	2389	N			170	41.103	11.377	27.386		22.94	H	N
	ATOM	2390	CA			170	41.508	10.651	28.584		24.75	Н	C
٥-	ATOM	2391	C			170	40.732	9.350	28.756		26.16	H	C
35	ATOM	2392	0			170	41.298	8.337	29.161		26.39	H	0
	ATOM	2393	CB			170	41.333	11.532	29.837		21.09	H	C
	ATOM	2394	CG			170	42.137	12.840	29.793		20.61	H	C
	ATOM	2395	CD			170	42.114	13.623	31.103		19.91	H	C
40	ATOM	2396		GLN				13.560				Н	
40	ATOM	2397		GLN			43.174	14.382	31.348		16.44 26.53	Н	N
	ATOM	2398	N CA			170A	39.442	9.379	28.432		26.34	Н	N C
	ATOM	2399	CA			170A	38.576	8.210	28.572		26.09	H H	C
	ATOM	2400	C			170A	38.536	7.266	27.371		26.50	H	C 0
15	ATOM	2401	0 CB			170A	37.795	6.288	27.386			Н	
4 5	ATOM	2402	CB			170A	37.146	8.655	28.884		28.29 30.52	n H	C C
	ATOM	2403	CG			170A	36.957	9.298	30.236			п Н	C
	ATOM	2404	CD			170A	35.513	9.682	30.478		34.79 37.17	Н	0
	ATOM	2405				170A	34.602	8.867	30.290		34.78		
50	ATOM	2406				170A	35.290	10.921	30.904		26.18	Н	N N
50	ATOM	2407	N C A			170B	39.317	7.549	26.336			Н	N
	ATOM	2408	CA			170B	39.317	6.696	25.159		28.66 31.18	H H	C
	ATOM	2409	C			170B	40.585	5.848	25.055		29.81	н Н	C
	ATOM	2410	0 CB			170B	41.643	6.231	25.552 23.890		27.91	н Н	C 0
EE	ATOM	$\frac{2411}{2412}$	CB OG			170B	39.153	7.544	23.890		24.13	H	0
55	ATOM	2412	υG	SEK	п	170B	37.912	8.239	40.000	1.00	24.10	п	U

	ATOM	2413	N	ARG	H	170C	40.459	4.688	24.417	1.00 33.34	H	N
	ATOM	2414	CA	ARG	H	170C	41.579	3.777	24.211	1.00 36.91	H	С
	ATOM	2415	С	ARG	H	170C	42.471	4.323	23.102	1.00 38.48	H	С
	ATOM	2416	0	ARG	Н	170C	42.078	4.341	21.939	1.00 39.23	Н	0
5	ATOM	2417	СВ			170C	41.059	2.395	23.805	1.00 37.94	H	C
	ATOM	2418	CG			170C	40.558	1.530	24.947	1.00 38.36	Н	C
	ATOM	2419	CD			170¢	41.710	0.756	25.572	1.00 39.49	H	C
		2419				170C						
	ATOM		NE C7				42.369	-0.108	24.592	1.00 39.64	Н	N
10	ATOM	2421	CZ			1700	41.864	-1.246	24.122	1.00 40.03	H	C
10	ATOM	2422	NH1			170C	40.684	-1.686	24.540	1.00 41.69	H	N
	ATOM	2423				170C	42.540	-1.941	23.217	1.00 41.52	H	N
	ATOM	2424	N			170D	43.670	4.765	23.459	1.00 41.25	H	N
	ATOM	2425	CA			170D	44.605	5.306	22.472	1.00 43.27	Н	С
	ATOM	2426	C			170D	44.971	4.266	21.415	1.00 44.63	Н	С
15	ATOM	2427	0			170D	45.314	3.137	21.752	1.00 45.60	H	0
	ATOM	2428	CB			170D	45.876	5.790	23.170	1.00 44.06	H	С
	ATOM	2429	CG			170D	45.660	6.974	24.098	1.00 43.63	H	С
	ATOM	2430	CD			170D	45.336	8.243	23.320	1.00 43.73	H	С
	ATOM	2431	CE			170D	44.179	8.998	23.957	1.00 42.88	Н	C
20	ATOM	2432	ΝZ	LYS	H	170D	42.919	8.196	23.891	1.00 44.55	Н	N
	ATOM	2433	N	VAL	H	170E	44.897	4.647	20.141	1.00 45.92	H	N
	ATOM	2434	CA	VAL	H	170E	45.229	3.737	19.050	1.00 47.38	H	C
	ATOM	2435	C	VAL	H	170E	46.174	4.403	18.038	1.00 48.37	H	C
	ATOM	2436	0	VAL	H	170E	46.307	5.628	18.008	1.00 48.59	Н	0
25	ATOM	2437	CB	VAL	Н	170E	43.955	3.237	18.317	1.00 48.27	H	C
	ATOM	2438	CG1	VAL	H	170E	43.053	2.478	19.283	1.00 48.47	H	С
	ATOM	2439	CG2	VAL	H	170E	43.195	4.398	17.721	1.00 50.40	H	С
	ATOM	2440	N	GLY	H	170F	46.828	3.580	17.220	1.00 49.26	H	N
	ATOM	2441	CA	GLY	Н	170F	47.778	4.055	16.227	1.00 49.68	H	С
30	ATOM	2442	С	GLY	Н	170F	47.456	5.293	15.409	1.00 49.19	H	С
	ATOM	2443	0	GLY	H	170F	47.643	6.420	15.869	1.00 49.83	H	0
	ATOM	2444	N			170G	46.988	5.081	14.181	1.00 49.28	Н	N
	ATOM	2445	CA			170G	46.666	6.176	13.262	1.00 48.00	Н	С
	ATOM	2446	С			170G	45.293	6.803	13.484	1.00 44.35	H	C
35	ATOM	2447	0			170G	44.613	7.177	12.527	1.00 44.28	Н	0
	ATOM	2448	СВ			170G	46.771	5.684	11.815	1.00 52.87	Н	C
	ATOM	2449	CG			170G	48.206	5.571	11.341	1.00 56.19	H	C
	ATOM	2450				170G	48.987	4.862	11.981	1.00 59.14	Н	0
	ATOM	2451				170G	48.545	6.193	10.325	1.00 58.70	Н	0
40	ATOM	2452	N			170H	44.899	6.933	14.745	1.00 39.99	Н	N
10	ATOM	2453	CA			170H	43.613	7.524	15.084	1.00 36.53	H	C
	ATOM	2454	C			170H	43.583	9.003	14.727	1.00 32.15	Н	C
	ATOM	2455	0			170H	44.501	9.747	15.056	1.00 32.13	H	0
	ATOM	2456	C B			170H	43.337			1.00 37.95	H	
45	ATOM	2457	O G			170H		7.364	16.579 16.949			C
40							42.120	7.987		1.00 42.60	H	0
	ATOM	2458	N			170 I	42.529	9.442	14.026	1.00 28.54	Н	N
	ATOM	2459	CA			170 I	42.433	10.856	13.660	1.00 26.44	H	C
	ATOM	2460	С			170 I	42.405	11.701	14.931	1.00 25.04	H	C
~ ^	ATOM	2461	0			1701	41.964	11.239	15.981	1.00 24.79	H	0
50	ATOM	2462	CB			170 I	41.112	10.921	12.900	1.00 24.88	H	С
	ATOM	2463	CG			170 I	41.032	9.575	12.255	1.00 26.28	H	C
	ATOM	2464	CD			170 I	41.466	8.658	13.376	1.00 26.49	H	С
	ATOM	2465	N	ASN			42.890	12.930	14.842	1.00 24.55	H	N
	ATOM	2466	CA	ASN			42.884	13.820	15.994	1.00 24.55	H	С
55	ATOM	2467	С	ASN	H	175	41.484	14.376	16.174	1.00 21.18	H	С

	ATOM	2468	0	ASN	Н	175	40.733	3 14	.509	15.211	1.00	19.35		H	0
	MOTA	2469	CB	ASN	H	175	43.839	15	.004	15.788	1.00	26.79		H	С
	ATOM	2470	CG			175	45.269	14	.576	15.576	1.00	30.83		H	С
	ATOM	2471	0D1			175	45.829		.823	16.370		32.43		Н	0
5	ATOM	2472	ND2			175	45.876		.064	14.499		33.68		H	N
_	ATOM	2473	N			176	41.140		.695	17.414		18.30		H	N
	ATOM	2474	CA			176	39.852		.290	17.716		17.01		H	C
	ATOM	2475	C			176	40.183		.773	17.716		17.25		H	С
	ATOM	2475				176	40.180								0
10			0 CB						.232	18.740		18.43 16.65		H	
10	ATOM	2477	CB			176	39.306		.807	19.077				H	C
	ATOM	2478	CG1				39.186		.277	19.073		15.60		H	C
	ATOM	2479		ILE			37.935		.437	19.343		13.67		H	С
	ATOM	2480		ILE			38.827		.685	20.411		17.27		H 	C
- ~	ATOM	2481	N			177	39.784		.521	16.764		16.30		H	N
15	ATOM	2482	CA			177	40.094		.945	16.712		15.04		H	C
	ATOM	2483	С			177	39.060		.829	17.400		14.07		H	С
	ATOM	2484	0			177	38.107		.344	18.006	1.00	13.41		H	0
	ATOM	2485	CB			177	40.227	7 19	.419	15.258	1.00	16.10		H	С
	ATOM	2486	0G1	THR	Н	177	38.926	3 19	.445	14.655	1.00	16.94		H	0
20	ATOM	2487	CG2	THR	H	177	41.149	18	.479	14.460	1.00	12.71		H	С
	ATOM	2488	N	GLU	H	178	39.266	3 21	.138	17.305	1.00	13.19		H	N
	ATOM	2489	CA	GLU	H	178	38.35	L 22	.106	17.893	1.00	14.78		H	С
	ATOM	2490	С	GLU	Н	178	37.062	2 22	.188	17.074	1.00	13.86		H	С
	ATOM	2491	0	GLU	Н	178	36.104	1 22	.847	17.478	1.00	12.84		H	0
25	ATOM	2492	CB	GLU	H	178	39.009	23	.490	17.955	1.00	18.37		H	C
	ATOM	2493	CG	GLU	H	178	39.254	1 24	.129	16.596	1.00	20.75		H	С
	ATOM	2494	CD	GLU	Н	178	40.674	1 23	.943	16.096	1.00	27.62		H	С
	ATOM	2495	0E1			178	41.148		.778	16.008		27.54		Н	0
	ATOM	2496	0E2			178	41.317		.969	15.785		30.43		 H	0
30	ATOM	2497	N			179	37.044		.524	15.921		12.57		 H	N
00	ATOM	2498	C A			179	35.868		.517	15.056		11.69		H	C
	ATOM	2499	C			179	35.042		.248	15.265		11.04		H	С
	ATOM	2500	0			179	34.189		.910	14.444		11.12		H	0
	MOTA	2500	CB			179	36.317		.637	13.594		12.21		H	С
35	ATOM	2501	CG			179	37.076		.924	13.342		15.01		H H	C
33		2502	CD1			179				13.311				n H	C
	ATOM						36.406		.148			13.28			
	ATOM	2504	CD2			179	38.466		.927	13.211		13.16		H	C
	ATOM	2505		TYR			37.090		.344	13.163		15.33		H	C
40	ATOM	2506		TYR			39.169		.124	13.062				H	C
40	ATOM	2507	CZ			179	38.468		.329	13.043		17.14		H 	C
	ATOM	2508	0 H			179	39.134		.519	12.935		17.38		H 	0
	ATOM	2509	N			180	35.289		.567	16.383		11.28		H	N
	ATOM	2510	CA			180	34.607		.319	16.711		10.08		H	С
	ATOM	2511	С			180	34.345		.230	18.210		10.42		H	С
45	ATOM	2512	0			180	34.873	3 19	.014	18.992	1.00	11.63		H	0
	ATOM	2513	CB	MET	H	180	35.498		.122	16.359	1.00	10.13		H	C
	ATOM	2514	CG	MET	H	180	36.249	17	.191	15.046	1.00	11.90		H	С
	ATOM	2515	SD	MET	H	180	37.417	15	.806	14.948	1.00	13.02		H	S
	ATOM	2516	CE	MET	H	180	38.056	16	.055	13.327	1.00	10.31		H	C
50	ATOM	2517	N	PHE	H	181	33.544	17	.246	18.603	1.00	10.40	1	H	N
	ATOM	2518	CA	PHE	Н	181	33.276	16	.987	20.012	1.00	10.41		H	C
	ATOM	2519	С	PHE	H	181	32.745	5 15	.564	20.107	1.00	11.92	1	H	С
	ATOM	2520	0	PHE	Н	181	32.119	15	.070	19.167	1.00	11.21	1	H	0
	ATOM	2521	СВ			181	32.293	18	.010	20.600		10.04		H	С
55	ATOM	2522	CG			181	30.857		.822	20.179	1.00	11.23		H	С

	ATOM	2523		PHE			30.057	16.852	20.784	1.00	9.00	I	ł	С
	ATOM	2524	CD2	PHE	Η	181	30.292	18.650	19.210	1.00	10.30	I	I	С
	ATOM	2525	CE1	PHE	Η	181	28.712	16.711	20.434	1.00	10.61	I	ł	С
	ATOM	2526	CE2	PHE	Η	181	28.941	18.518	18.848	1.00	9.40	I	I	С
5	ATOM	2527	CZ	PHE	H	181	28.152	17.548	19.464	1.00	9.56	I	I	С
	ATOM	2528	N	CYS	H	182	33.030	14.892	21.217	1.00	11.17	Ī	ł	N
	ATOM	2529	CA	CYS	Н	182	32.576	13.525	21.408	1.00	13.43	I	I	С
	ATOM	2530	С	CYS	Н	182	31.306	13.494	22.220		12.56	F	ł	С
	ATOM	2531	0	CYS			31.047	14.379	23.040		13.75		ł	0
10	ATOM	2532	СВ	CYS			33.605	12.685	22.166		14.35		ī	C
	ATOM	2533	SG	CYS			35.315	12.691	21.563		16.95		- I	S
	ATOM	2534	N	ALA			30.530	12.445	22.005		10.97		ł	N
	ATOM	2535	CA	ALA			29.290	12.254	22.731		12.15		I	C
	ATOM	2536	C	ALA			28.980	10.769	22.670		11.48		I	С
1 5														
10	ATOM	2537	0 CD	ALA			29.325	10.102	21.696		13.04		Ī	0
	ATOM	2538	СВ	ALA			28.166	13.066	22.088		10.31		Į,	C
	ATOM	2539	N			184A	28.352	10.244	23.714		11.66	I		N
	ATOM	2540	C A			184A	28.016	8.835	23.712		12.38	ŀ		C
0.0	ATOM	2541	C			184A	28.474	8.038	24.916		13.73	H		С
20	ATOM	2542	0			184A	28.543	8.545	26.041		13.45		I	0
	ATOM	2543	N	TYR			28.793	6.773	24.667	1.00	14.78		I	N
	ATOM	2544	CA	TYR			29.217	5.864	25.720		14.94	I		C
	ATOM	2545	С	TYR			30.395	5.029	25.250	1.00	15.46	ŀ		С
~ =	ATOM	2546	0	TYR			30.509	4.702	24.070	1.00	16.06	ŀ	I	0
25	ATOM	2547	СВ	TYR	H	184	28.065	4.935	26.112	1.00	16.53	F	I	C
	ATOM	2548	CG	TYR	H	184	26.792	5.637	26.533	1.00	18.74	F	I	C
	ATOM	2549	CD1	TYR	Η	184	25.937	6.206	25.589	1.00	18.37	ŀ	I	C
	ATOM	2550	CD2	TYR	H	184	26.443	5.731	27.878	1.00	20.30	F	I	С
	ATOM	2551	CE1	TYR	H	184	24.772	6.847	25.973	1.00	19.02	F	Ŧ	С
30	ATOM	2552	CE2	TYR	H	184	25.277	6.371	28.273	1.00	19.18	F	I	C
	ATOM	2553	CZ	TYR	H	184	24.448	6.925	27.317	1.00	19.19	F	I	С
	ATOM	2554	OΗ	TYR	Η	184	23.285	7.542	27.699	1.00	21.68	F	I	0
	ATOM	2555	N	SER	H	185	31.267	4.681	26.185	1.00	15.70	F	I	N
	ATOM	2556	CA	SER	H	185	32.450	3.891	25.882	1.00	15.49	F	ĺ	С
35	ATOM	2557	C	SER	Н	185	32.314	2.426	26.309	1.00	16.42	H	I	С
	ATOM	2558	0	SER	Η	185	33.294	1.680	26.293	1.00	16.49	H	[0
	ATOM	2559	СВ	SER	Η	185	33.655	4.506	26.579	1.00	15.34	F	I	С
	ATOM	2560	0 G	SER	H	185	33.478	4.459	27.984	1.00	15.56	F	I	0
	ATOM	2561	N	ASP	Н	186	31.110	2.013	26.691	1.00	17.79	F	[N
40	ATOM	2562	CA	ASP	H	186	30.898	0.633	27.116	1.00	20.64	H	I	С
	ATOM	2563	С	ASP			30.358	-0.274	26.006		20.60	H		С
	ATOM	2564	0	ASP			29.934	-1.397	26.268		20.87	H		0
	ATOM	2565	СВ	ASP			29.962	0.589	28.330		20.43	H		C
	ATOM	2566	C G	ASP			28.576	1.098	28.019		21.02	H		C
45	ATOM	2567		ASP			28.330	1.483	26.884		21.60	H		0
10	ATOM	2568		ASP			27.750	1.103	28.921		21.42	H		0
	ATOM	2569	N	GLY			30.373	0.230	24.773		21.14	H		N
	ATOM	2570	CA	GLY			29.914	-0.531	23.625		20.04	Н		C
	ATOM	2571	C	GLY			28.424	-0.780	23.493		21.04	H		С
50	ATOM	2571	0	GLY			28.022	-1.702	23.493		22.73	n H		
50	ATOM	2572						0.046						0 M
			N CA			188A	27.597		24.126		20.16	H		N
	ATOM	2574	CA			1884	26.153	-0.151	24.068		18.78	H		C
	ATOM	2575	C			188A	25.337	0.830	23.225		17.55	H		C
==	ATOM	2576	0 CB			188A	24.298	0.457	22.686		18.92	H		0
55	ATOM	2577	СВ	2 G K	п	188A	25.582	-0.127	25.482	T.00	18.59	H		С

	ATOM	2578	0 G	SER	H	188A	25.675	1.186	26.011	1.00 20.17	H	0
	ATOM	2579	N	LYS	H	188	25.786	2.076	23.118	1.00 17.33	H	N
	ATOM	2580	CA	LYS	H	188	25.020	3.091	22.390	1.00 15.93	H	C
	ATOM	2581	С	LYS	H	188	25.889	4.084	21.610	1.00 15.78	H	С
5	ATOM	2582	0	LYS	Н	188	26.883	4.596	22.133	1.00 14.09	H	0
	ATOM	2583	CB	LYS	H	188	24.140	3.847	23.388	1.00 15.97	H	С
	ATOM	2584	CG	LYS	H	188	23.127	2.967	24.114	1.00 17.40	Н	С
	ATOM	2585	CD	LYS	H	188	22.386	3.732	25.199	1.00 18.22	H	C
	ATOM	2586	CE	LYS	H	188	23.253	3.944	26.424	1.00 19.93	H	C
10	ATOM	2587	ΝZ	LYS	H	188	23.548	2.666	27.142	1.00 23.44	H	N
	ATOM	2588	N	ASP	H	189	25.487	4.381	20.375	1.00 14.78	H	N
	ATOM	2589	CA	ASP	H	189	26.254	5.283	19.517	1.00 14.89	H	С
	ATOM	2590	C	ASP	H	189	25.516	5.427	18.179	1.00 15.27	H	С
	ATOM	2591	0	ASP	H	189	24.557	4.698	17.911	1.00 12.95	H	0
15	ATOM	2592	CB	ASP	H	189	27.639	4.640	19.305	1.00 15.17	H	С
	ATOM	2593	CG	ASP	H	189	28.650	5.548	18.606	1.00 14.51	H	C
	ATOM	2594	0D1	ASP	H	189	28.434	6.750	18.465	1.00 13.62	H	0
	ATOM	2595	0D2	ASP	H	189	29.685	5.019	18.219	1.00 13.36	H	0
	ATOM	2596	N	SER	H	190	25.930	6.393	17.363	1.00 12.60	H	N
20	ATOM	2597	CA	SER	H	190	25.358	6.542	16.036	1.00 12.63	H	С
	ATOM	2598	C			190	26.323	5.715	15.176	1.00 14.47	H	C
	ATOM	2599	0	SER			27.309	5.184	15.697	1.00 14.59	H	0
	ATOM	2600	CB			190	25.337	8.012	15.595	1.00 12.32	H	С
~ =	ATOM	2601	0 G	SER			26.590	8.641	15.775	1.00 16.00	H	0
25	ATOM	2602	N			191	26.063	5.592	13.879	1.00 16.70	H	N
	ATOM	2603	CA	CYS			26.932	4.786	13.023	1.00 18.01	H	C
	ATOM	2604	С	CYS			27.094	5.424	11.651	1.00 18.15	H	С
	ATOM	2605	0	CYS			26.502	6.469	11.374	1.00 18.84	H	0
	ATOM	2606	CB	CYS			26.336	3.376	12.898	1.00 21.90	H	С
30	ATOM	2607	SG	CYS			27.470	2.046	12.380	1.00 30.15	H	S
	MOTA	2608	N	LYS			27.898	4.791	10.800	1.00 16.09	H	N
	ATOM	2609	CA	LYS			28.172	5.271	9.446	1.00 17.53	H	C
	ATOM	2610	С	LYS			26.934	5.717	8.668	1.00 15.62	H	С
٥	ATOM	2611	0	LYS			26.914	6.803	8.097	1.00 13.65	H	0
35	ATOM	2612	CB	LYS			28.898	4.186	8.638	1.00 21.05	H	С
	ATOM	2613	CG	LYS			30.199	3.698	9.262	1.00 26.03	H	C
	ATOM	2614	CD	LYS			30.964	2.766	8.330	1.00 30.74	H	С
	ATOM	2615	CE	LYS			30.199	1.481	8.048	1.00 35.28	H	С
40	ATOM	2616		LYS			30.941	0.599		1.00 36.87	H	N
40	ATOM	2617	N	GLY			25.910	4.872	8.635	1.00 15.41	H	N
	ATOM	2618	CA	GLY			24.698	5.207	7.912	1.00 14.29	H	С
	ATOM	2619	C	GLY			23.928	6.392	8.471	1.00 14.66	H	C
	ATOM	2620	0	GLY			23.014	6.898	7.822	1.00 13.96	H	0
45	ATOM	2621	N	ASP			24.287	6.836	9.673	1.00 13.02	H	N
45	ATOM	2622	CA	ASP			23.627	7.976	10.304	1.00 11.92	Н	C
	ATOM	2623	C	ASP			24.319	9.299	9.972	1.00 11.87	H	C
	ATOM	2624	0 CB	ASP			23.795	10.379	10.273	1.00 10.97	H	0
	ATOM ATOM	2625 2626	C B C G	ASP			23.585	7.780	11.821	1.00 11.84	H	C
50	ATOM ATOM	2626 2627		ASP			22.824	6.530	12.223	1.00 12.55	H	C
50	ATOM	2627 2628		ASP			21.676	6.411	11.836	1.00 11.16	H	0
	ATOM	2628 2629	N N	ASP SER			23.389	5.684	12.923 9.348	1.00 10.92 1.00 10.97	Н	м 0
	ATOM	2630	C A	SER			25.492	9.201 10.359	9.346 8.945	1.00 10.97	H H	N C
	ATOM	2631	C	SER			26.290 25.454	11.500	8.379	1.00 11.04	н Н	C C
55	ATOM	2632	0	SER			24.571	11.285	7.545	1.00 11.57	н Н	0
σ	итом	2002	U	TIGO	11	T 2 O	24.3/I	11.200	7.040	1.00 10.40	п	U

	ATOM	2633	CB	SER	H	195	27.316	9.943	7.890	1.00 9.93	Н	С
	ATOM	2634	0 G	SER	H	195	28.260	9.039	8.425	1.00 14.11	Н	0
	ATOM	2635	N	GLY	H	196	25.753	12.717	8.824	1.00 12.35	Н	N
	ATOM	2636	CA	GLY	H	196	25.028	13.884	8.348	1.00 12.23	H	С
5	ATOM	2637	C	GLY	Н	196	23.805	14.182	9.189	1.00 13.45	Н	С
	ATOM	2638	0	GLY	H	196	23.259	15.286	9.146	1.00 13.77	H	0
	ATOM	2639	N	GLY	Н	197	23.383	13.187	9.962	1.00 13.04	Н	N
	ATOM	2640	CA	GLY	H	197	22.222	13.334	10.807	1.00 13.77	Н	С
	ATOM	2641	С			197	22.427	14.322	11.934	1.00 14.43	Н	С
10	ATOM	2642	0			197	23.558	14.645	12.302	1.00 15.21	H	0
	ATOM	2643	N	PR0	H	198	21.327	14.806	12.516	1.00 13.56	H	N
	ATOM	2644	C A	PR0			21.315	15.772	13.615	1.00 13.40	Н	С
	ATOM	2645	С	PR0			21.761	15.263	14.981	1.00 11.88	Н	С
	ATOM	2646	0			198	21.559	14.102	15.330	1.00 11.73	Н	0
15	ATOM	2647	СВ	PRO			19.847	16.220	13.688	1.00 12.32	Н	С
	ATOM	2648	CG			198	19.183	15.624	12.464	1.00 16.84	Н	C
	ATOM	2649	CD			198	19.960	14.396	12.164	1.00 14.30	Н	С
	ATOM	2650	N			199	22.378	16.166	15.730	1.00 10.39	Н	N
	ATOM	2651	CA			199	22.775	15.954	17.116	1.00 10.13	Н	С
20	ATOM	2652	С			199	22.028	17.189	17.599	1.00 10.86	Н	С
	ATOM	2653	0			199	22.509	18.312	17.426	1.00 10.19	Н	0
	ATOM	2654	СВ			199	24.284	16.121	17.322	1.00 11.26	Н	C
	ATOM	2655	CG			199	24.698	16.134	18.765	1.00 9.49	H	C
	ATOM	2656	ND1				24.605	17.258	19.556	1.00 7.80	H	N
25	ATOM	2657		HIS			25.174	15.151	19.567	1.00 9.62	Н	C
	ATOM	2658		HIS			25.006	16.970	20.782	1.00 9.46	Н	С
	ATOM	2659	NE2	HIS			25.356	15.698	20.816	1.00 10.16	H	N
	ATOM	2660	N			200	20.826	16.979	18.140	1.00 11.28	H	N
	ATOM	2661	CA			200	19.964	18.076	18.578	1.00 11.42	Н	C
30	ATOM	2662	C			200	19.879	18.243	20.085	1.00 10.13	Н	Ċ
	ATOM	2663	0			200	19.714	17.281	20.819	1.00 8.59	H	0
	ATOM	2664	СВ			200	18.567	17.893	17.991	1.00 8.70	H	C
	ATOM	2665	N			201	19.968	19.488	20.531	1.00 10.27	H	N
	ATOM	2666	CA			201	19.943	19.795	21.950	1.00 11.65	Н	C
35	ATOM	2667	С			201	18.690	20.573	22.350	1.00 12.35	Н	C
•	ATOM	2668	0			201	18.358	21.590	21.753	1.00 12.80	H	0
	ATOM	2669	СВ			201	21.189	20.616	22.322	1.00 10.77	Н	C
	ATOM	2670		THR			22.354	19.955	21.814	1.00 9.62	Н	0
	ATOM	2671		THR			21.307	20.769	23.823	1.00 5.98	Н	C
40	ATOM	2672	N			202	18.012	20.084	23.379	1.00 12.93	Н	N
	ATOM	2673	CA			202	16.799	20.709	23.889	1.00 14.16	Н	C
	ATOM	2674	С			202	17.182	21.718	24.972	1.00 13.17	Н	С
	ATOM	2675	0			202	17.953	21.406	25.877	1.00 11.26	Н	0
	ATOM	2676	СВ			202	15.883	19.630	24.487	1.00 15.77	Н	C
45	ATOM	2677	CG			202	14.461	20.062	24.661	1.00 19.01	Н	C
-0	ATOM	2678		HIS			13.551	19.330	25.399	1.00 20.89	Н	N
	ATOM	2679		HIS			13.778	21.124	24.172	1.00 17.67	Н	C
	ATOM	2680		HIS			12.374	19.925	25.356	1.00 18.13	Н	C
	ATOM	2681		HIS			12.484	21.016	24.617	1.00 20.03	Н	N
50	ATOM	2682	N			203	16.654	22.932	24.878	1.00 13.14	H	N
	ATOM	2683	CA			203	16.949	23.947	25.882	1.00 14.38	H	C
	ATOM	2684	С			203	15.762	24.872	26.070	1.00 15.63	Н	C
	ATOM	2685	0			203	15.399	25.617	25.160	1.00 17.55	Н	0
	ATOM	2686	СВ			203	18.170	24.788	25.495	1.00 11.34	Н	Ċ
55	ATOM	2687	CG			203	18.555	25.767	26.587	1.00 13.03	Н	Ċ

	ATOM	2688	CD1	TYR	H	203	19.202	25.328	27.741	1.00	11.89	I	I	С
	ATOM	2689	CD2	TYR	H	203	18.224	27.118	26.494	1.00	11.33	I	Ī	С
	ATOM	2690	CE1	TYR	Н	203	19.510	26.208	28.775	1.00	15.40	ŀ	Ī	С
	ATOM	2691	CE2	TYR	Н	203	18.520	28.006	27.523	1.00	13.47	I	I	С
5	ATOM	2692	CZ	TYR	H	203	19.163	27.544	28.660	1.00	15.28	I	ł	С
	ATOM	2693	0 H	TYR	H	203	19.449	28.406	29.689	1.00	17.54	I	I	0
	ATOM	2694	N			204	15.162	24.817	27.254	1.00	17.36	ŀ		N
	ATOM	2695	CA	ARG			14.019	25.654	27.590		16.44	ŀ		С
	ATOM	2696	С	ARG			12.928	25.702	26.523		18.12	I		С
10	ATOM	2697	0	ARG			12.544	26.774	26.054	1.00	19.33	I		0
	ATOM	2698	СВ	ARG			14.507	27.068	27.931		18.74	I		C
	ATOM	2699	CG	ARG			15.268	27.102	29.256		21.03	ŀ		C
	ATOM	2700	CD	ARG			15.852	28.461	29.633		23.39	I		C
	ATOM	2701	NE	ARG			16.460	28.378	30.965		29.04	ŀ		N
15	ATOM	2702	CZ			204	17.208	29.320	31.536		29.55	I		C
	ATOM	2703		ARG			17.473	30.455	30.906		29.68	I		N
	ATOM	2704	NH2	ARG			17.698	29.120	32.753		30.72	I		N
	ATOM	2705	N	GLY			12.437	24.528	26.135		18.15	ŀ		N
	ATOM	2706	CA	GLY			11.366	24.455	25.158		18.43	ŀ		C
20	ATOM	2707	С	GLY			11.688	24.465	23.672		17.94	ŀ		C
	ATOM	2708	0	GLY			10.773	24.325	22.859		20.84	ŀ		0
	ATOM	2709	N	THR			12.957	24.613	23.302		17.15	ŀ		N
	ATOM	2710	CA	THR			13.334	24.651	21.889		16.34	F		C
	ATOM	2711	С	THR			14.556	23.786	21.587		15.73	ŀ		C
25	ATOM	2712	0	THR			15.485	23.715	22.389		16.49	ŀ		0
	ATOM	2713	СВ	THR			13.608	26.111	21.451		16.85	F		C
	ATOM	2714	0G1	THR			12.396	26.859	21.558		20.04	I		0
	ATOM	2715	CG2	THR			14.112	26.181	20.008		15.79	F		C
	ATOM	2716	N	TRP			14.544	23.136	20.424		14.13	F		N
30	ATOM	2717	CA	TRP			15.639	22.270	19.995		11.78	F		C
-	ATOM	2718	С	TRP			16.582	23.008	19.051		11.84	ŀ		C
	ATOM	2719	0	TRP			16.138	23.745	18.174		10.36	F		0
	ATOM	2720	СВ	TRP			15.089	21.025	19.297		10.05	F		C
	ATOM	2721	CG	TRP			14.342	20.115	20.205		12.23	F		C
35	ATOM	2722	CD1	TRP			13.032	20.210	20.573		11.57	F		C
-	ATOM	2723	CD2	TRP			14.871	18.974	20.891		12.27	F		C
	ATOM	2724	NE1			207	12.711	19.197	21.446		10.79	- H		N
	ATOM	2725		TRP			13.821	18.425	21.659		11.69	F		C
	ATOM	2726		TRP			16.130		20.927	1.00		H		C
40	ATOM	2727		TRP			13.994	17.292	22.460		12.43	F		C
	ATOM	2728		TRP			16.303	17.233	21.722		13.70	H		C
	ATOM	2729		TRP			15.239	16.710	22.478		12.06	H		С
	ATOM	2730	N	TYR			17.881	22.785	19.226		11.22	H		N
	ATOM	2731	CA	TYR			18.909	23.446	18.421		12.37	H		C
45	ATOM	2732	С	TYR			19.912	22.457	17.832		12.09	H		С
	ATOM	2733	0	TYR			20.175	21.413	18.422		11.35	H		0
	ATOM	2734	СВ	TYR			19.679	24.457	19.281		10.64	H		С
	ATOM	2735	CG	TYR			18.818	25.521	19.927		11.14	H		C
	ATOM	2736		TYR			18.192	25.297	21.155		10.27	Н		C
50	ATOM	2737		TYR			18.622	26.756	19.302		9.96	Н		C
- •	ATOM	2738		TYR			17.391	26.279	21.746		9.89	H		C
	ATOM	2739		TYR			17.823	27.739	19.881		11.17	H		C
	ATOM	2740	CZ	TYR			17.211	27.496	21.102		11.59	H		C
	ATOM	2741	0 H	TYR			16.417		21.667		14.79	H		0
55	ATOM	2742	N	LEU			20.479		16.676		11.60	H		N

	ATOM	2743	CA	LEU	H	209	21	.473	21.95	6 1	6.019	1.0	10.61	H	С
	ATOM	2744	C	LEU	H	209	22	.838	22.21	7 1	6.655	1.0	11.52	H	С
	ATOM	2745	0	LEU	H	209	23	.372	23.32	8 1	6.572	1.0	9.17	H	0
	ATOM	2746	СВ	LEU	Н	209	21	. 538	22.27	5 1	4.519	1.0	11.62	H	С
5	ATOM	2747	CG	LEU	H	209	22	. 533	21.43	8 1	3.703	1.00	10.56	H	С
	ATOM	2748	CD1	LEU	Н	209	22	.154	19.96	4 1	3.799	1.0	9.75	H	C
	ATOM	2749	CD2	LEU	H	209	22	. 530	21.88	8 1	2.253	1.0	11.64	H	С
	ATOM	2750	N			210		.401			7.301		11.36	H	N
	ATOM	2751	CA			210		.703			7.945		12.32	H	С
10	ATOM	2752	С			210		.788			7.322		0 11.28	H	Č
	ATOM	2753	0			210		.970			7.411		11.33	H	0
	ATOM	2754	СВ			210		.631			9.464		0 11.07	Н	C
	ATOM	2755	0G1			210		.797			9.681		12.24	H	0
	ATOM	2756		THR				.069			0.227		0 11.51	H	C
15	ATOM	2757	N			211		.392			6.685		11.49	H	N
	ATOM	2758	CA			211		.385			6.085		12.62	Н	C
	ATOM	2759	С			211		.899			4.861		12.53	Н	C
	ATOM	2760	0			211		.709			4.540		0 10.55	H	0
	ATOM	2761	N			212		.842			4.174		12.70	H	N
20	ATOM	2762	CA			212		.545			2.976		0 11.37	H	C
_ ~	ATOM	2763	C			212		.240			3.116		12.64	Н	C
	ATOM	2764	0			212		.424			3.451		11.86	H	0
	ATOM	2765	СВ			212		.094			1.716		10.36	Н	C
	ATOM	2766	CG1			212		,527			1.619	1.00		H	C
25	ATOM	2767	CG2					.758			0.485	1.00		Н	C
	ATOM	2768		ILE				.194			0.538		0 10.68	H	C
	ATOM	2769	N			213		.503			2.890		11.61	Н	N
	ATOM	2770	CA			213		.086			2.969		0 10.63	H	C
	ATOM	2771	С			213		.248			1.976		0 10.32	H	C
30	ATOM	2772	0			213		.032			0.773		10.80	H	0
	ATOM	2773	СВ			213		.054			2.562	1.00		H	C
	ATOM	2774		VAL				.686			2.627	1.00		H	C
	ATOM	2775		VAL				.850			3.486	1.00		H	C
	ATOM	2776	N			214		. 476			2.473		10.48	H	N
35	ATOM	2777	CA			214		.654			1.601		10.02	H	C
-	ATOM	2778	C			214		.527			1.510		10.29	H	C
	ATOM	2779	0			214		.662			0.436		0 10.45	H	0
	ATOM	2780	СВ			214		. 525			2.015		10.33	H	C
	ATOM	2781				214			13.85				14.56	Н	0
40	ATOM	2782	N			215		.144			2.616		9.38	H	N
	ATOM	2783	CA			215		.996			2.571		9.84	H	С
	MOTA	2784	С			215		.186			3.919		11.40	H	С
	ATOM	2785	0			215		.595			4.925		10.83	H	0
	ATOM	2786	СВ			215		.372			1.979		11.73	H	C
45	ATOM	2787	CG			215		.189			2.802		11.28	H	C
	ATOM	2788		TRP				.054			2.851		12.73	H	c
	ATOM	2789		TRP				. 286			3.670		12.20	H	C
	ATOM	2790		TRP				.002			3.690		12.73	H	N
	ATOM	2791		TRP				.770			4.206		13.66	H	C
50	ATOM	2792		TRP				.907			4.044		11.80	Н	C
J J	ATOM	2793		TRP				.852			5.100		11.52	Н	C
	ATOM	2794		TRP				.986			4.936		11.59	H	C
	ATOM	2795		TRP				.445			5.451		12.21	H	C
	ATOM	2796	N			216		.029			3.928		12.15	Н	N
55	ATOM	2797	CA			216		.308			5.151		14.20	Н	C
55									250					••	-

	ATOM	2798	С	GLY	H	216	34.988	6.002	14.792	1.00 15.78	H	С
	ATOM	2799	0	GLY	H	216	35.124	5.684	13.611	1.00 17.05	H	0
	ATOM	2800	N	GLN	H	217	35.435	5.255	15.792	1.00 17.07	H	N
	ATOM	2801	CA	GLN	H	217	36.081	3.982	15.521	1.00 19.04	H	С
5	ATOM	2802	С	GLN	H	217	34.986	2.937	15.544	1.00 17.72	H	С
	ATOM	2803	0	GLN	H	217	34.486	2.579	16.606	1.00 19.73	H	0
	ATOM	2804	СВ	GLN	H	217	37.136	3.683	16.579	1.00 22.69	Н	С
	ATOM	2805	CG	GLN	Н	217	37.813	2.342	16.395	1.00 27.55	H	С
	ATOM	2806	CD			217	39.254	2.360	16.845	1.00 33.39	Н	С
10	ATOM	2807	0E1	GLN	Н	217	39.613	3.063	17.791	1.00 34.21	Н	0
	ATOM	2808	NE2	GLN	Н	217	40.092	1.576	16.173	1.00 37.35	Н	N
	ATOM	2809	N	GLY	Н	219	34.606	2.458	14.364	1.00 18.12	Н	N
	ATOM	2810	CA			219	33.539	1.482	14.279	1.00 17.60	Н	С
	ATOM	2811	С			219	32.283	2.125	14.835	1.00 20.54	H	С
15	ATOM	2812	0			219	32.135	3.347	14.788	1.00 20.64	Н	0
	ATOM	2813	N			220	31.381	1.311	15.372	1.00 21.24	Н	N
	ATOM	2814	C A			220	30.145	1.824	15.943	1.00 23.06	Н	С
	ATOM	2815	С			220	29.893	1.193	17.310	1.00 22.01	Н	С
	ATOM	2816	0			220	29.765	-0.028	17.432	1.00 22.87	H	0
20	ATOM	2817	СВ			220	28.981	1.549	14.983	1.00 23.60	H	С
	ATOM	2818	SG			220	29.194	2.422	13.398	1.00 28.32	H	S
	ATOM	2819	N			221A	29.830	2.039	18.333	1.00 21.07	H	N
	ATOM	2820	CA			221A	29.613	1.586	19.704	1.00 21.19	Н	С
	ATOM	2821	С	ALA	Η	221A	30.719	0.615	20.102	1.00 20.46	H	C
25	ATOM	2822	0	ALA	Н	221A	30.463	-0.454	20.660	1.00 21.19	H	0
	ATOM	2823	СВ			221A	28.245	0.916	19.833	1.00 20.81	Н	С
	ATOM	2824	N			221	31.953	0.992	19.797	1.00 20.10	H	N
	ATOM	2825	CA			221	33.109	0.173	20.121	1.00 19.79	Н	С
	ATOM	2826	С			221	33.530	0.484	21.551	1.00 18.64	Н	С
30	ATOM	2827	0			221	33.610	1.647	21.943	1.00 17.97	H	0
	ATOM	2828	СВ			221	34.273	0.467	19.151	1.00 20.35	Н	С
	ATOM	2829	0G1			221	33.854	0.169	17.815	1.00 22.66	Н	0
	ATOM	2830	CG2			221	35.492	-0.386	19.485	1.00 22.20	H	C
	ATOM	2831	N			222	33.776	-0.560	22.332	1.00 16.93	H	N
35	ATOM	2832	CA			222	34.186	-0.402	23.721	1.00 16.22	H	С
	ATOM	2833	С	VAL	Н	222	35.458	0.437	23.788	1.00 16.60	H	С
	ATOM	2834	0			222	36.424	0.173	23.077	1.00 16.78	H	0
	ATOM	2835	СВ			222	34.444	-1.783	24.388	1.00 15.57	H	С
	ATOM	2836	CG1	VAL	Н	222	34.994	-1.596	25.802	1.00 15.54	Н	С
40	ATOM	2837		VAL			33.147	-2.589	24.433	1.00 12.31	Н	С
	ATOM	2838	N			223	35.444	1.458	24.639	1.00 18.10	H	N
	ATOM	2839	CA	GLY	Н	223	36.603	2.322	24.785	1.00 17.10	H	С
	ATOM	2840	С			223	36.607	3.503	23.834	1.00 16.65	H	С
	ATOM	2841	0			223	37.602	4.221	23.749	1.00 16.09	H	0
45	ATOM	2842	N	HIS	Н	224	35.501	3.716	23.122	1.00 14.21	H	N
	ATOM	2843	CA			224	35.418	4.817	22.172	1.00 14.13	H	С
	ATOM	2844	С			224	34.054	5.490	22.169	1.00 13.03	Н	С
	ATOM	2845	0			224	33.043	4.883	22.523	1.00 12.79	H	0
	ATOM	2846	CB			224	35.772	4.324	20.768	1.00 14.15	H	С
50	ATOM	2847	CG			224	37.163	3.786	20.665	1.00 18.68	H	С
	ATOM	2848	ND1	HIS			38.273	4.602	20.632	1.00 22.89	H	N
	ATOM	2849		HIS			37.630	2.516	20.690	1.00 18.87	H	С
	ATOM	2850		HIS			39.365	3.859	20.645	1.00 20.95	H	C
	ATOM	2851		HIS			39.002	2.590	20.682	1.00 24.07	H	N
55	ATOM	2852	N			225	34.059	6.758	21.772	1.00 12.58	H	N

	ATOM	2853	C A	PHE	Н	225	32.870	7.597	21.709	1.00 13.20	H	C
	ATOM	2854	С	PHE	Н	225	32.638	8.059	20.270	1.00 14.27	H	C
	ATOM	2855	0	PHE	Н	225	33.567	8.102	19.459	1.00 13.13	Н	0
	ATOM	2856	СВ	PHE	Н	225	33.070	8.857	22.566	1.00 12.36	Н	C
5	ATOM	2857	CG	PHE	Н	225	33.176	8.599	24.041	1.00 13.26	H	C
	ATOM	2858		PHE	Н	225	32.034	8.486	24.826	1.00 10.55	Н	C
	ATOM	2859		PHE			34.422	8.496	24.655	1.00 12.18	Н	Č
	ATOM	2860		PHE			32.132	8.275	26.197	1.00 11.54	Н	C
	ATOM	2861		PHE			34.528	8.284	26.024	1.00 11.28	H	C
10	ATOM	2862	CZ			225	33.383	8.173	26.797	1.00 11.86	Н	C
	ATOM	2863	N			226	31.401	8.423	19.954	1.00 11.84	Н	N
	ATOM	2864	C A			226	31.141	8.930	18.622	1.00 11.14	Н	C
	ATOM	2865	C			226	31.706	10.345	18.564	1.00 11.37	Н	C
	ATOM	2866	0			226	31.783	11.018	19.593	1.00 9.76	Н	0
15	ATOM	2867	N			227	32.124	10.789	17.383	1.00 10.30	H	N
10	ATOM	2868	CA			227	32.664	12.137	17.217	1.00 11.99	Н	C
	ATOM	2869	C			227	31.711	12.893	16.279	1.00 12.30	Н	C
	ATOM	2870	0			227	31.308	12.376	15.236	1.00 11.88	Н	0
	ATOM	2871	СВ			227	34.096	12.119	16.597	1.00 13.42	Н	C
20	ATOM	2872	CG1			227	34.725	13.503	16.711	1.00 10.66	H	C
	ATOM	2873	CG2				34.977	11.081	17.304	1.00 11.39	H	C
	ATOM	2874	N			228	31.360	14.117	16.651	1.00 11.76	Н	N
	ATOM	2875	C A			228	30.424	14.913	15.868	1.00 11.60	Н	C
	ATOM	2876	C			228	31.040	16.251	15.458	1.00 11.78	H	C
25	ATOM	2877	0			228	31.870	16.798	16.176	1.00 12.87	Н	0
	ATOM	2878	СВ			228	29.147	15.158	16.692	1.00 12.02	Н	C
	ATOM	2879	CG			228	28.446	13.883	17.159	1.00 13.58	Н	C
	ATOM	2880	CD1	TYR			28.956	13.112	18.211	1.00 15.38	H	C
	ATOM	2881	CD2	TYR			27.302	13.425	16.515	1.00 12.87	Н	C
30	ATOM	2882		TYR			28.334	11.908	18.599	1.00 13.68	Н	C
	ATOM	2883	CE2	TYR			26.680	12.235	16.894	1.00 11.86	H	C
	ATOM	2884	CZ			228	27.198	11.484	17.931	1.00 13.33	H	C
	ATOM	2885	0 H			228	26.570	10.310	18.293	1.00 13.39	H	0
	ATOM	2886	N			229	30.649	16.767	14.296	1.00 10.21	H	N
35	ATOM	2887	CA			229	31.158	18.056	13.840	1.00 9.23	H	C
	ATOM	2888	С			229	30.612	19.105	14.817	1.00 9.22	H	C
	ATOM	2889	0	THR	Н	229	29.422	19.093	15.133	1.00 9.33	Н	0
	ATOM	2890	СВ			229	30.656	18.383	12.420	1.00 11.04	Н	C
	ATOM	2891	0G1	THR	H	229	31.037	17.334	11.519	1.00 10.26	H	0
40	ATOM	2892	CG2	THR	H	229	31.246	19.712	11.935	1.00 8.87	Н	С
	ATOM	2893	N			230	31.473	19.993	15.309	1.00 7.76	H	N
	ATOM	2894	CA			230	31.051	21.026	16.257	1.00 7.07	H	C
	ATOM	2895	C			230	30.444	22.197	15.487	1.00 7.98	H	C
	ATOM	2896	0			230	31.150	23.158	15.134	1.00 6.49	H	0
45	ATOM	2897	CB			230	32.251	21.505	17.093	1.00 8.54	H	С
	ATOM	2898	CG	ARG			31.885	22.461	18.238	1.00 11.66	H	С
	ATOM	2899	CD			230	33.104	22.903	19.054	1.00 14.39	H	C
	ATOM	2900	NE			230	33.846	21.777	19.631	1.00 14.90	H	N
	ATOM	2901	CZ			230	33.986	21.545	20.937	1.00 19.51	Н	C
50	ATOM	2902	NH1	ARG	H	230	33.434	22.355	21.835	1.00 18.42	H	N
	ATOM	2903	NH2			230	34.694	20.503	21.356	1.00 18.54	Н	N
	ATOM	2904	N			231	29.134	22.115	15.243	1.00 7.40	Н	N
	ATOM	2905	CA	VAL			28.396	23.132	14.485	1.00 8.02	Н	С
	ATOM	2906	С	VAL			28.582	24.590	14.906	1.00 8.03	Н	C
55	ATOM	2907	0	VAL	H	231	28.522	25.478	14.063	1.00 11.15	H	0

	ATOM	2908	СВ	VΔT	н	231	26.869	22.813	14.453	1.00	8.34	Н	С
	ATOM	2909		VAL			26.003	23.963	13.789	1.00	6.76	Н	
	ATOM	2910		VAL			26.631	21.536	13.663	1.00	6.77	Н	
	ATOM	2911	N			232	28.812	24.846	16.191	1.00	9.98	H	
5	ATOM	2912	CA			232	28.999	26.216					
J									16.665		10.61	Н	
	ATOM	2913	C			232	30.141	26.942	15.951		11.51	Н	
	ATOM	2914	0			232	30.116	28.162	15.815		13.83	H	
	ATOM	2915	CB			232	29.253	26.225	18.172	1.00	9.74	Н	
10	ATOM	2916	0 G			232	30.328	25.366	18.508	1.00	9.99	Н	
10	ATOM	2917	N			233	31.138	26.192	15.500		10.91	H	
	ATOM	2918	CA			233	32.282	26.758	14.790		12.68	H	
	ATOM	2919	С			233	31.957	27.212	13.365	1.00	12.56	Н	
	ATOM	2920	0	GLN	Η	233	32.715	27.973	12.755	1.00	10.39	H	0
	ATOM	2921	CB			233	33.410	25.725	14.738	1.00	14.26	Н	С
15	ATOM	2922	CG	GLN	H	233	33.859	25.290	16.109	1.00	17.78	H	С
	ATOM	2923	CD	GLN	Η	233	34.180	26.481	16.983	1.00	23.92	H	С
	ATOM	2924	0E1	GLN	H	233	35.120	27.221	16.702	1.00	22.25	H	0
	ATOM	2925	NE2	GLN	H	233	33.383	26.687	18.045	1.00	25.97	H	N
	ATOM	2926	N	TYR	Н	234	30.815	26.765	12.851	1.00	10.53	Н	N
20	ATOM	2927	CA	TYR	H	234	30.401	27.072	11.485	1.00	10.91	Н	С
	ATOM	2928	C	TYR	Н	234	29.164	27.970	11.338	1.00	11.10	Н	С
,	ATOM	2929	0	TYR	Н	234	28.663	28.137	10.232	1.00	12.26	Н	0
	ATOM	2930	СВ			234	30.145	25.748	10.752		11.97	Н	С
	ATOM	2931	CG			234	31.359	24.833	10.717	1.00	10.28	Н	
25	ATOM	2932	CD1	TYR			32.363	25.018	9.765	1.00	9.58	Н	
	ATOM	2933	CD2	TYR			31.526	23.826	11.661	1.00	8.26	Н	
	ATOM	2934	CE1	TYR			33.501	24.231	9.756		10.13	H	
	ATOM	2935		TYR			32.673	23.022	11.665		10.83	Н	
	ATOM	2936	CZ			234	33.653	23.236	10.707		10.93	Н	
30	ATOM	2937	ОH	TYR			34.782	22.464	10.691		11.60	H	
00	ATOM	2938	N			235	28.670	28.549	12.428		10.49	H	
	ATOM	2939	C A	ILE			27.473	29.389	12.341		12.21	H	
	ATOM	2940	C	ILE			27.624	30.539	11.343		13.01	H	
	ATOM	2941	0	ILE			26.790	30.710	10.455		13.67	H	
35	ATOM	2942	CB	ILE			27.076	29.971	13.725				
30		2942		ILE							12.39	Н	
	ATOM		CG2	ILE			26.910	28.842	14.746		13.92	H	
	ATOM ATOM	$2944 \\ 2945$		ILE			25.759	30.764	13.601 14.319		14.14 11.48	Н	
				GLU			25.923	27.750				H	
40	ATOM	2946					28.680		11.493		15.53	H	
40	ATOM	2947	CA	GLU			28.931		10.582		16.27	H	
	ATOM	2948	С			236	29.116		9.143		15.01	Н	
	ATOM	2949	0 CB	GLU			28.608	32.575	8.199		15.26	H	
	ATOM	2950		GLU			30.178	33.222	11.023		20.86	Н	
45	ATOM	2951	CG	GLU			30.002	34.066	12.278		28.52	H	
45	ATOM	2952	CD	GLU			29.769	33.243	13.535		35.96	Н	
	ATOM	2953		GLU			30.614	32.384	13.848		39.48	H	
	ATOM	2954		GLU			28.742	33.466	14.205		39.32	Н	
	ATOM	2955	N	TRP			29.848	30.873	8.979		13.41	H	
~^	ATOM	2956	CA	TRP			30.098	30.298	7.660		12.55	H	
50	ATOM	2957	С	TRP			28.759	29.950	7.000		13.34	H	
	ATOM	2958	0	TRP			28.524	30.268	5.828		12.48	H	
	ATOM	2959	CB	TRP			30.950		7.807			H	
	ATOM	2960	CG	TRP			31.424		6.509		10.83	H	
	ATOM	2961		TRP			32.421		5.690		11.49	Н	
55	ATOM	2962	CD2	TRP	H	237	30.927	27.196	5.897	1.00	11.56	H	С

	ATOM	2963	NE1	TRP	H	237	32.577	28.019	4.612	1.00	11.23	H	N
	ATOM	2964	CE2	TRP	H	237	31.675	26.993	4.711	1.00	10.61	H	С
	ATOM	2965	CE3	TRP	H	237	29.922	26.276	6.232	1.00	11.81	H	С
	ATOM	2966	CZ2	TRP	H	237	31.448	25.903	3.856	1.00	10.86	H	С
5	ATOM	2967	CZ3	TRP	H	237	29.695	25.186	5.379	1.00	13.69	H	С
	ATOM	2968	CH2	TRP	H	237	30.459	25.013	4.202	1.00	11.69	H	C
	ATOM	2969	N	LEU	H	238	27.890	29.289	7.762	1.00	11.93	H	N
	ATOM	2970	CA	LEU	Н	238	26.577	28.876	7.272	1.00	13.74	H	C
	ATOM	2971	С	LEU	Н	238	25.660	30.064	6.976	1.00	14.26	H	С
10	ATOM	2972	0	LEU	Н	238	25.006	30.106	5.937	1.00	15.47	H	0
	ATOM	2973	СВ	LEU	Н	238	25.906	27.948	8.296	1.00	11.48	H	C
	ATOM	2974	CG	LEU	Н	238	26.619	26.607	8.530	1.00	12.33	H	C
	ATOM	2975	CD1	LEU	H	238	26.127	25.955	9.816	1.00	9.88	Н	С
	ATOM	2976		LEU			26.393	25.696	7.330	1.00	11.54	H	C
15	ATOM	2977	N			239	25.614	31.029	7.887	1.00	16.12	H	N
	ATOM	2978	CA			239	24.761	32.202	7.696	1.00	18.31	Н	С
	ATOM	2979	С			239	25.149	33.011	6.463	1.00	17.63	Н	С
	ATOM	2980	0			239	24.289	33.448	5.705	1.00	17.31	Н	0
	ATOM	2981	СВ			239	24.809	33.099	8.930	1.00	16.56	H	С
20	ATOM	2982	CG			239	24.263	32.442	10.176		22.50	Н	С
	ATOM	2983	CD			239	24.217	33.393	11.348	1.00	24.81	Н	С
	ATOM	2984	0E1			239	25.143	34.179	11.563	1.00	28.05	Н	
	ATOM	2985	NE2			239	23.144	33.321	12.124		28.34	Н	N
	ATOM	2986	N			240	26.446	33.205	6.268		19.23	H	
25	ATOM	2987	CA			240	26.944	33.958	5.125		20.76	Н	
20	ATOM	2988	C			240	26.544	33.269	3.816		20.55	Н	
	ATOM	2989	0			240	26.068	33.915	2.884		20.97	Н	
	ATOM	2990	СВ			240	28.467	34.072	5.218		23.48	Н	
	ATOM	2991	CG			240	29.082	35.190	4.391		30.47	H	
30	ATOM	2992	CD			240	29.016	34.913	2.900		34.65	H	
00	ATOM	2993	CE			240	29.606	36.071	2.101		38.36	Н	
	ATOM	2994	NZ			240	31.028	36.326	2.469		39.99	H	
	ATOM	2995	N N			241	26.733	31.954	3.754		20.03	H	
	ATOM	2996	CA			241	26.398	31.187	2.560		19.49	H	
35	ATOM	2997	C			241	24.900	31.140	2.256		19.86	Н	
50	ATOM	2998	0			241	24.508	31.126	1.094		18.70	H	
	ATOM	2999	СВ			241	26.948		2.680		19.02	H	
	ATOM	3000	CG			241	28.473	29.630	2.647		19.62	H	
	ATOM	3001		LEU				28.191			18.89	H	
40	ATOM	3002				241	29.001		1.273		14.59	H	_
40	ATOM	3003	N N			242	24.058		3.287		21.92	H	
	ATOM	3004	CA			242	22.615		3.051		24.59	H	
	ATOM	3004	C			242	22.142		2.477		27.60	H	
	ATOM	3006	0			242	21.097		1.834		27.62	H	
45	ATOM	3007	СВ			242	21.854		4.341		21.21	H	
40	ATOM	3008	CG			242	22.003	29.283	4.768		20.37	H	
	ATOM	3009	SD			242	21.011	28.815	6.206		18.95	H	
	ATOM	3010	CE			242	21.948		7.540		14.65	H	
	ATOM	3011	N			243	22.924		2.703		30.45	H	
50	ATOM	3012	CA			243	22.595	34.795	2.187		34.75	H	
50	ATOM	3012	C			243	23.270		0.840		37.34	Н	
	ATOM	3013	0			243	23.277		0.351		39.24	Н	
	ATOM	3014	CB			243	23.048		3.170		35.66	Н	
	ATOM	3016	CG			243	22.216		4.429		37.59	Н	
55	ATOM	3010	CD			243	23.094		5.600		42.39	Н	
σ	11 1 0 14	0017	UD	11 11 U	11	2 . 0	20.∪94	00.001	5.555				-

	ATOM	3018	NE	ARG	Н	243	24.090	37.380	5.218	1.00 45.18	H	N
	ATOM	3019	CZ	ARG	Н	243	25.137	37.722	5.965	1.00 46.96	H	C
	ATOM	3020	NH1	ARG	Η	243	25.335	37.148	7.147	1.00 45.77	H	N
_	ATOM	3021	NH2	ARG	H	243	25.997	38.631	5.519	1.00 47.07	H	N
5	ATOM	3022	N	SER	H	244	23.836	34.002	0.245	1.00 39.09	H	N
	ATOM	3023	C A	SER	H	244	24.522	34.130	-1.034	1.00 40.99	H	C
	ATOM	3024	C	SER	H	244	23.684	33.644	-2.208	1.00 42.62	H	C
	ATOM	3025	0	SER	H	244	22.743	32.867	-2.042	1.00 41.83	H	0
	ATOM	3026	СВ	SER	H	244	25.845	33.363	-0.994	1.00 41.34	H	C
10	ATOM	3027	0 G	SER	H	244	26.705	33.895	-0.001	1.00 43.40	H	0
	ATOM	3028	N	GLU	H	245	24.038	34.113	-3.400	1.00 44.75	H	N
	ATOM	3029	CA	GLU	H	245	23.330	33.737	-4.615	1.00 46.58	H	C
	ATOM	3030	С	GLU	H	245	23.882	32.431	-5.165	1.00 46.31	H	C
	ATOM	3031	0	GLU	H	245	25.076	32.157	-5.057	1.00 46.57	Н	0
15	ATOM	3032	CB			245	23.470	34.833	-5.672	1.00 49.32	Н	С
	ATOM	3033	C G	GLU	H	245	22.851	36.164	-5.282	1.00 53.68	H	C
	ATOM	3034	CD	GLU	H	245	22.994	37.212	-6.369	1.00 56.49	H	C
	ATOM	3035	0E1			245	22.529	38.339	-6.166	1.00 58.31	H	0
	ATOM	3036	0E2			245	23.571	36.900	-7.417	1.00 57.52	H	0
20	ATOM	3037	N			246	23.013	31.605	-5 <i>.</i> 765	1.00 46.06	H	N
	ATOM	3038	CA			246	23.430	30.323	-6.334	1.00 46.49	H	C
	ATOM	3039	С			246	24.612	30.488	-7.287	1.00 46.82	H	С
	ATOM	3040	0			246	24.884	31.588	-7.770	1.00 47.98	H	0
~~	ATOM	3041	СВ			246	22.174	29.846	-7.055	1.00 46.60	H	С
25	ATOM	3042	CG			246	21.081	30.401	-6.206	1.00 46.59	H	C
	ATOM	3043	CD			246	21.563	31.803	-5.932	1.00 45.49	H	С
	ATOM	3044	N			247	25.316	29.393	-7.545	1.00 45.68	H	N
	ATOM	3045	CA			247	26.455	29.420		1.00 45.13	H	C
00	ATOM	3046	C			247	26.391	28.204	-9.360	1.00 43.90	H	С
30	ATOM	3047	0			247	26.012	27.114	-8.930	1.00 43.91	H	0
	ATOM	3048	CB			247	27.772	29.416	-7.665	1.00 46.78	H	C
	ATOM	3049	CG			247	27.999	30.655	-6.806	1.00 48.61	H	С
	ATOM	3050	CD			247	29.351	30.585	-6.107	1.00 50.94	H	C
0.5	ATOM	3051	NE			247	29.547	31.650	-5.121	1.00 52.94	H	N
35	ATOM	3052	CZ			247	28.897	31.748	-3.962	1.00 53.90	H	C
	MOTA	3053	NH1			247	27.988	30.846		1.00 53.30	H	N
	ATOM	3054	NH2			247	29.164	32.756	-3.142	1.00 54.90	Н	N
	ATOM	3055	N C A			248	26.754		-10.639	1.00 42.02	Н	N
40	ATOM	3056	CA			248	26.725		-11.595	1.00 40.10	Н	C
40	ATOM	3057	C			248 248	27.396		-10.999	1.00 36.76	H	C
	ATOM	3058 3059	0 CB			248	28.348		-10.238 -12.786	1.00 37.56	H	0
	ATOM	3060	CG				27.495		-12.766	1.00 40.68	H	C
	ATOM	3061	CD			248 248	27.146 27.282		-12.741 -11.269	1.00 43.23 1.00 41.68	H H	C
45	ATOM ATOM	3062	N N			249	26.897		-11.341	1.00 41.08	H	C
40	ATOM	3063	C A			249	27.483		-10.818	1.00 33.94	Н	N C
	ATOM	3064	C			249	27.483	23.304		1.00 30.93	H	C
	ATOM	3065	0			249	26.983	24.164		1.00 27.37	H	
	ATOM	3066	N			250	26.983	22.047		1.00 25.75	н Н	O N
50	ATOM	3067	CA			250	26.027	21.584	-7.916	1.00 23.90	н Н	C
50	ATOM	3068	C			250	27.154	21.751	-6.785	1.00 22.31	Н	C
	ATOM	3069	0			250	26.866	22.406	-5.783	1.00 20.73	Н	0
	ATOM	3070	СВ			250	25.708	20.091	-7.989	1.00 19.30	Н	C
	ATOM	3071		VAL			25.243	19.603	-6.616	1.00 22.40	H	C
55	ATOM	3072		VAL			24.588	19.924	-9.000	1.00 22.82	H	C
50	1 0 1-1				**	_00	2		3.300		**	•

	ATOM	3073	N	LEU	Н	251	28.337	21.165	-6.950	1.00 18.48	Н	N
	ATOM	3074	CA	LEU	H	251	29.380	21.230	-5.929	1.00 18.83	H	С
	ATOM	3075	C	LEU	H	251	30.070	22.588	-5.808	1.00 19.13	H	С
	ATOM	3076	0	LEU	H	251	30.520	23.164	-6.790	1.00 18.06	H	0
5	ATOM	3077	СВ	LEU	Н	251	30.431	20.146	-6.192	1.00 16.90	Н	С
	ATOM	3078	CG	LEU	Н	251	31.581	20.002	-5.186	1.00 17.64	Н	C
	ATOM	3079	CD1	LEU			31.029	19.732	-3.787	1.00 15.90	Н	С
	ATOM	3080	CD2				32.504	18.862	-5.628	1.00 16.46	Н	С
	ATOM	3081	N			252	30.151	23.096	-4.586	1.00 19.09	Н	N
10	ATOM	3082	C A			252	30.808	24.369	-4.342	1.00 18.91	Н	C
	ATOM	3083	С			252	31.699	24.284	-3.109	1.00 19.51	H	C
	ATOM	3084	0			252	31.261	23.835	-2.054	1.00 20.28	Н	0
	ATOM	3085	СВ			252	29.777	25.476	-4.129	1.00 19.71	H	C
	ATOM	3086	CG			252	30.362	26.831	-3.726	1.00 21.00	H	C
1 5	ATOM	3087		LEU			31.252	27.360	-4.845	1.00 21.46	Н	C
-0	ATOM	3088	CD2	LEU			29.237	27.808	-3.431	1.00 21.39	Н	C
	ATOM	3089	N			253	32.951	24.703	-3.247	1.00 17.62	Н	N
	ATOM	3090	C A			253	33.869	24.704	-2.119	1.00 17.97	Н	C
	ATOM	3091	C			253	34.015	26.150	-1.688	1.00 17.05	Н	C
20	ATOM	3092	0			253	34.559	26.970	-2.426	1.00 15.25	Н	0
20	ATOM	3093	СВ			253	35.230	24.123	-2.511	1.00 18.44	Н	C
	ATOM	3094	CG			253	35.358	22.635	-2.232	1.00 20.42	Н	C
	ATOM	3095	CD			253	34.282	21.846	-2.952	1.00 21.21	Н	C
	ATOM	3096	NE			253	34.476	21.856	-4.397	1.00 21.18	H	N
25	ATOM	3097	CZ			253	35.307	21.030	-5.047	1.00 21.18	H	C
20	ATOM	3098	NH1			253	36.028	20.152	-4.380	1.00 23.51	H	N
	ATOM	3099	NH2			253	35.414	21.126	-6.367	1.00 23.31	Н	N
	ATOM	3100	N N			254	33.499	26.458	-0.501	1.00 15.03	H	N
	ATOM	3101	C A			254	33.542	27.815	0.028	1.00 15.11	Н	C
30	ATOM	3101	C			254	34.658	27.919	1.047	1.00 15.47	Н	C
50	ATOM	3102	0			254	34.879	27.003	1.843	1.00 15.62	Н	0
	ATOM	3103	C B			254	32.205	28.179	0.664	1.00 13.62	Н	C
	ATOM	3104	N N			255	35.381	29.044	1.039	1:00 15.40	Н	N
	ATOM	3105	C A			255 255	36.475	29.191	1.039	1.00 13.40	H	C
35	ATOM	3107	C			255	36.048	29.162	3.445	1.00 14.78	H	С
55	ATOM	3107	0			255	34.935	29.102	3.443	1.00 13.71	н Н	0
	ATOM	3109	C B			255 255	37.116	30.526	1.594	1.00 15.71	H	C
	ATOM	3110	CG			255	35.987	31.294	0.995	1.00 15.88	H	C
	ATOM	3111	CD			255	35.233	30.249		1.00 15.39	Н	C
40	ATOM	3112	N N			256	36.943	28.663	4.281	1.00 13.80	Н	N
40	ATOM	3113	CA			256	36.701	28.616	5.706	1.00 15.80	Н	C
	ATOM	3114	C			256	38.005	28.945	6.408	1.00 10.87	Н	
	ATOM	3115	0			256	39.049	28.394	6.067	1.00 17.30	H	C 0
		3116	C B			256		27.240	6.174	1.00 14.38	H	
45	ATOM	3117	CG			256	36.243 35.955	27.240	7.641	1.00 14.33	Н	C C
40	ATOM			PHE					8.141	1.00 16.40	H	С
	ATOM	3118 3119		PHE			34.773 36.909	27.744	8.538	1.00 16.52	н Н	С
	ATOM ATOM			PHE				26.729	9.509			
		$3120 \\ 3121$		PHE			34.546 36.692	27.828	9.911	1.00 17.72 1.00 17.93	H H	C
50	ATOM		CZ					26.809				C
50	ATOM	3122				256	35.510	27.362	10.398	1.00 18.72	H	C
	ATOM	$3123 \\ 3124$	N C A			257	37.960	29.830	$7.413 \\ 7.921$	1.00 18.95	Н	N
	ATOM		СА			257	36.765	30.512		1.00 20.37	H	C
	ATOM	3125				257	36.095	31.426	6.893	1.00 22.86	H	C
55	ATOM	3126	0 CB			257	34.888	31.666	7.011	1.00 23.60	Н	0
55	ATOM	3127	СВ	Unı	ri	257	37.299	31.268	9.136	1.00 20.14	H	C

	ATOM	3128	CG	PRO	H	257	38.684	31.608	8.721	1.00 20.11	H	С
	ATOM	3129	CD	PR0	H	257	39.167	30.315	8.104	1.00 18.62	Н	С
	ATOM	3130	0 T	PR0	Η	257	36.786	31.886	6.001	1.00 26.65	Ħ	0
	ATOM	3131	N	THR	T	6	48.678	29.980	30.872	1.00 39.18	T	N
5	ATOM	3132	CA	THR	T	6	47.791	29.559	31.995	1.00 38.59	T	C
	ATOM	3133	C	THR	T	6	47.976	28.083	32.299	1.00 36.71	T	С
	ATOM	3134	0	THR	T	6	48.275	27.290	31.410	1.00 37.09	T	0
	ATOM	3135	CB	THR	T	6	46.308	29.771	31.656	1.00 40.14	T	С
	ATOM	3136	0G1	THR	T	6	45.930	28.877	30.600	1.00 41.93	T	0
10	ATOM	3137	CG2	THR	T	6	46.064	31.202	31.212	1.00 42.09	T	C
	ATOM	3138	N	VAL	T	7	47.790	27.721	33.562	1.00 35.02	T	N
	ATOM	3139	CA	VAL	T	7	47.919	26.335	33.987	1.00 33.21	T	C
	ATOM	3140	C	VAL	T	7	46.611	25.871	34.613	1.00 31.57	T	C
	ATOM	3141	0	VAL	T	7	45.876	26.663	35.211	1.00 31.61	T	0
15	ATOM	3142	CB	VAL	T	7	49.054	26.155	35.019	1.00 32.59	T	С
	ATOM	3143	CG1	VAL	T	7	50.380	26.620	34.422	1.00 31.03	T	С
	ATOM	3144	CG2	VAL	T	7	48.731	26.920	36.288	1.00 31.27	T	C
	ATOM	3145	N	ALA	T	8	46.320	24.587	34.468	1.00 29.98	T	N
	ATOM	3146	CA	ALA	T	8	45.101	24.023	35.023	1.00 29.21	T	C
20	ATOM	3147	C	ALA	T	8	45.239	23.892	36.531	1.00 28.58	T	С
	ATOM	3148	0	ALA	T	8	46.342	23.743	37.055	1.00 28.70	T	0
	MOTA	3149	CB	ALA	T	8	44.828	22.660	34.402	1.00 28.98	T	С
	ATOM	3150	N	ALA	T	9	44.115	23.964	37.230	1.00 25.62	T	N
	ATOM	3151	C A	ALA	T	9	44.121	23.828	38.673	1.00 25.80	T	C
25	ATOM	3152	С	ALA	T	9	44.490	22.387	39.016	1.00 26.18	T	С
	ATOM	3153	0	ALA	T	9	44.425	21.501	38.161	1.00 25.07	T	0
	ATOM	3154	СВ	ALA	T	9	42.744	24.162	39.233	1.00 22.93	T	С
	ATOM	3155	N	TYR	T	10	44.886	22.157	40.263	1.00 24.93	T	N
	ATOM	3156	CA	TYR	T	10	45.240	20.815	40.701	1.00 25.50	T	С
30	ATOM	3157	С	TYR	T	10	44.978	20.661	42.186	1.00 25.20	T	С
	ATOM	3158	0	TYR	T	10	44.754	21.641	42.896	1.00 23.18	T	0
	ATOM	3159	СВ	TYR	T	10	46.706	20.493	40.367	1.00 27.61	T	С
	ATOM	3160	CG	TYR	T	10	47.724	21.429	40.975	1.00 27.41	T	С
	ATOM	3161	CD1	TYR	Т	10	48.245	21.199	42.248	1.00 28.54	T	С
35	ATOM	3162	CD2	TYR	T	10	48.160	22.554	40.277	1.00 28.91	T	С
	ATOM	3163	CE1	TYR	T	10	49.183	22.072	42.810	1.00 28.45	T	С
	ATOM	3164	CE2	ΤΥR	T	10	49.090	23.429	40.827	1.00 29.62	T	С
	ATOM	3165	CZ	TYR	T	10	49.595	23.184	42.088	1.00 29.24	T	С
	ATOM	3166	0 H	TYR	T	10	50.506	24.061	42.626	1.00 33.96	T	0
40	ATOM	3167	N	ASN	T	11	44.992	19.418	42.647	1.00 25.50	T	N
	ATOM	3168	CA	ASN	T	11	44.729	19.119	44.045	1.00 25.22	T	C
	ATOM	3169	С	ASN	T	11	43.354	19.624	44.466	1.00 23.78	Т	С
	MOTA	3170	0	ASN	T	11	43.197	20.179			T	0
	ATOM	3171	СВ	ASN	T	11	45.812	19.735	44.944	1.00 29.09	T	С
45	ATOM	3172	CG	ASN	T	11	47.105	18.924	44.954	1.00 31.48	T	С
	ATOM	3173	0D1	ASN	T	11	48.090	19.321	45.578	1.00 34.70	T	0
	ATOM	3174	ND2	ASN	T	11	47.105	17.784	44.270	1.00 32.60	T	N
	ATOM	3175	N	LEU	T	12	42.356	19.441	43.602	1.00 23.43	T	N
	ATOM	3176	CA	LEU	T	12	41.003	19.868	43.939	1.00 22.96	T	С
50	ATOM	3177		LEU		12	40.594	19.011	45.126	1.00 22.88		, С
	ATOM	3178	0	LEU	T	12	40.726	17.792	45.084	1.00 24.43	T	0
	ATOM	3179	CB	LEU	T	12	40.043	19.652	42.763	1.00 21.46	T	С
	ATOM	3180	CG	LEU	T	12	40.003	20.731	41.671	1.00 20.61	T	C
	ATOM	3181	CDL	LEU	T	12	41.321			1.00 19.28		С
55	ATOM	3182	CD2	LEU	T	12	38.859	20.437	40.712	1.00 17.88	T	C

	ATOM	3183	N	THR	T	13	40.097	19.651	46.178	1.00 22.51	T	N
	ATOM	3184	CA	THR	T	13	39.719	18.946	47.394	1.00 22.60	T	С
	ATOM	3185	С	THR	T	13	38.387	19.434	47.936	1.00 21.35	T	С
	ATOM	3186	0	THR	T	13	38.106	20.622	47.904	1.00 22.14	T	0
5	ATOM	3187	СВ	THR	T	13	40.786	19.172	48.494	1.00 24.31	T	С
	ATOM	3188	0G1	THR	T	13	42.087	18.887	47.965	1.00 28.20	T	0
	ATOM	3189	CG2	THR	T	13	40.524	18.276	49.695	1.00 25.13	T	С
	ATOM	3190	N	TRP		14	37.570	18.517	48.442	1.00 20.93	T	N
	ATOM	3191	CA		T	14	36.290	18.896	49.022	1.00 21.26	T	С
10	ATOM	3192	C		Т	14	36.445	19.101	50.527	1.00 21.82	T	С
	ATOM	3193	0		T	14	37.003	18.250	51.221	1.00 22.88	T	0
	ATOM	3194	СВ		T	14	35.233	17.816	48.775	1.00 21.62	T	С
	ATOM	3195	CG	TRP	Т	14	34.895	17.603	47.331	1.00 20.57	T	С
	ATOM	3196			Т	14	35.525	16.769	46.450	1.00 19.07	T	C
15	ATOM	3197	CD2		Т	14	33.843	18.238	46.602	1.00 18.11	T	C
	ATOM	3198	NE1	TRP	Т	14	34.925	16.845	45.215	1.00 19.68	T	N
	ATOM	3199	CE2		T	14	33.889	17.741	45.281	1.00 20.45	Т	С
	ATOM	3200	CE3	TRP	Т	14	32.863	19.180	46.936	1.00 20.85	Т	C
	ATOM	3201			Т	14	32.989	18.155	44.292	1.00 20.30	Т	C
20	ATOM	3202	CZ3		Т	14	31.964	19.592	45.953	1.00 20.57	T	С
	ATOM	3203	CH2		Т	14	32.037	19.077	44.646	1.00 20.36	T	C
	ATOM	3204	N	LYS	Т	15	35.968	20.240	51.016	1.00 21.08	T	N
	ATOM	3205	CA	LYS		15	36.005	20.568	52.439	1.00 20.11	Т	С
	ATOM	3206	С	LYS		15	34.534	20.651	52.818	1.00 19.45	T	С
25	ATOM	3207	0	LYS		15	33.862	21.632	52.510	1.00 20.83	T	0
	ATOM	3208	СВ	LYS		15	36.700	21.918	52.663	1.00 21.44	T	C
	ATOM	3209	CG	LYS		15	38.162	21.933	52.228	1.00 23.27	Т	C
	ATOM	3210	CD	LYS		15	38.990	20.995	53.097	1.00 28.61	Т	С
	ATOM	3211	CE	LYS		15	40.296	20.589	52.427	1.00 31.74	T	C
30	ATOM	3212	ΝZ	LYS		15	41.190	21.741	52.152	1.00 36.85	T	N
	ATOM	3213	N	SER		16	34.035	19.613	53.478	1.00 17.55	Т	N
	ATOM	3214	CA	SER		16	32.628	19.556	53.832	1.00 17.18	Т	С
	ATOM	3215	С	SER		16	32.363	19.073	55.255	1.00 18.04	Т	C
	ATOM	3216	0	SER		16	32.859	18.021	55.671	1.00 16.19	T	0
35	ATOM	3217	СВ	SER		16	31.906	18.639	52.831	1.00 17.42	Т	С
	ATOM	3218	0 G	SER		16	30.500	18.633	53.032	1.00 16.16	T	0
	ATOM	3219	N	THR		17	31.572	19.851	55.988	1.00 17.33	Т	N
	ATOM	3220	CA	THR		17	31.199	19.523	57.360	1.00 17.85	Т	С
	ATOM	3221	С	THR	T	17	29.735	19.890	57.527	1.00 17.66	T	С
40	ATOM	3222	0	THR		17	29.345	21.033	57.293	1.00 17.63	T	0
	ATOM	3223	СВ	THR		17	32.031	20.322	58.385	1.00 16.36	T	С
	ATOM	3224	0G1	THR		17	33.414	19.996	58.231	1.00 18.91	T	0
	ATOM	3225		THR		17	31.596	19.990	59.799	1.00 17.35	Τ .	С
	ATOM	3226	N	ASN		18	28.922	18.922	57.935	1.00 18.02	T	N
45	ATOM	3227	C A	ASN		18	27.493	19.160	58.103	1.00 19.26	T	С
	ATOM	3228	С	ASN		18	26.901	19.764	56.837	1.00 18.10	T	С
	ATOM	3229	0	ASN		18	26.039	20.643	56.886	1.00 18.37	T	0
	ATOM	3230	СВ	ASN		18	27.238	20.073	59.301	1.00 20.54	T	С
	ATOM	3231	CG	ASN		18	27.792	19.494	60.579	1.00 23.12	T	С
50	ATOM	3232		ASN		18	27.706	18.288	60.804	1.00 22.01	T	0
	ATOM	3233		ASN		18	28.368	20.346	61.423	1.00 26.13	T	N
	ATOM	3234	N	PHE		19	27.394	19.269	55.706	1.00 18.27	T	N
	ATOM	3235	CA	PHE		19	26.959	19.672	54.383	1.00 19.15	T	С
	ATOM	3236	С	PHE		19	27.453	21.022	53.869	1.00 20.26	T	C
55	ATOM	3237	0	PHE		19	27.200	21.369	52.715	1.00 20.39	T	0

	ATOM	3238	СВ	PHE	T	19	25.441	19.539	54.305	1.00 20.26	T	С
	ATOM	3239	CG	PHE	T	19	24.965	18.124	54.530	1.00 21.59	T	С
	ATOM	3240	CD1	PHE	T	19	25.184	17.144	53.565	1.00 21.66	T	С
	ATOM	3241	CD2	PHE	T	19	24.371	17.755	55.731	1.00 22.37	T	С
5	ATOM	3242			T	19	24.823	15.819	53.790	1.00 21.75	T	С
_	ATOM	3243		PHE		19	24.003	16.425	55.970	1.00 24.36	T	C
	ATOM	3244	CZ	PHE		19	24.232	15.456	54.995	1.00 22.96	T	C
	ATOM	3245	N	LYS		20	28.162	21.779	54.706	1.00 19.77	T	N
	ATOM	3246	C A	LYS		20	28.737	23.044	54.252	1.00 18.78	T	C
10	ATOM	3247	C	LYS		20	29.855	22.526	53.362	1.00 18.12	T	C
10	ATOM	3248	0	LYS		20	30.848	21.993	53.853	1.00 18.12	T	0
		3249	CB		T	20	29.326	23.831	55.414	1.00 19.09	T	C
	ATOM		CG	LYS		20	28.777	25.232	55.535	1.00 20.11	T	c
•	ATOM	3250									T	C
15	ATOM	3251	CD		Ţ	20	29.115	26.090	54.338	1.00 21.31		
1 5	ATOM	3252	CE	LYS		20	28.434	27.437	54.474	1.00 21.39	T	C
	ATOM	3253	ΝZ	LYS		20	28.973	28.453	53.548	1.00 23.07	T	N
	ATOM	3254	N	THR		21	29.692	22.684	52.056	1.00 16.64	T	N
	ATOM	3255	CA	THR		21	30.643	22.143	51.100	1.00 16.45	T	C
00	ATOM	3256	C	THR		21	31.364	23.167	50.243	1.00 18.19	T	С
20	ATOM	3257	0	THR		21	30.749	23.879	49.453	1.00 17.44	T	0
	ATOM	3258	CB	THR		21	29.911	21.151	50.192	1.00 15.26	T	С
	ATOM	3259	0G1	THR		21	29.179	20.236	51.016	1.00 16.35	T	0
	ATOM	3260	CG2	THR		21	30.885	20.380	49.320	1.00 16.11	T	С
o=	ATOM	3261	N	ILE		22	32.682	23.215	50.394	1.00 19.00	T	N
25	ATOM	3262	CA	ILE		22	33.511	24.146	49.648	1.00 19.12	T	C
	ATOM	3263	С	ILE		22	34.603	23.396	48.896	1.00 18.47	T	С
	ATOM	3264	0	ILE		22	35.326	22.588	49.477	1.00 18.08	T	0
	ATOM	3265	CB	ILE		22	34.180	25.169	50.597	1.00 20.41	T	С
0.0	ATOM	3266	CG1	ILE			33.108	25.959	51.353	1.00 21.22	T	С
30	ATOM	3267		ILE		22	35.075	26.121	49.804	1.00 19.96	T	C
	ATOM	3268		ILE		22	33.673	26.948	52.352	1.00 21.24	T	С
	ATOM	3269	N	LEU		23	34.711	23.658	47.599	1.00 17.48	T	N
	ATOM	3270	CA	LEU		23	35.738	23.029	46.783	1.00 18.70	T	C
	ATOM	3271	.C	LEU		23	36.967	23.925	46.847	1.00 17.68	T	С
35	ATOM	3272	0	LEU		23	36.859	25.141	46.691	1.00 18.29	T	0
	ATOM	3273	CB	LEU		23	35.275	22.905	45.329	1.00 19.42	T	C
	ATOM	3274	СG	LEU		23	36.258	22.183	44.399	1.00 21.43	T	C
	ATOM	3275		LEU		23	36.325	20.714	44.790	1.00 19.69	T	С
	ATOM	3276	CD2			23	35.820			1.00 17.72	T	С
40	ATOM	3277	N	GLU		24	38.129	23.334	47.093	1.00 16.78	T	N
	ATOM	3278	CA	GLU		24	39.367	24.102	47.165	1.00 18.87	T	С
	ATOM	3279	С	GLU		24	40.354	23.566	46.146	1.00 20.20	T	С
	ATOM	3280	0	GLU		24	40.262	22.411	45.735	1.00 20.83	T	0
	ATOM	3281	CB	GLU		24	39.968	24.025	48.575	1.00 18.72	T	С
45	ATOM	3282	CG	GLU		24	39.349	25.019	49.553	1.00 21.38	T	С
	ATOM	3283	CD	GLU		24	39.777	24.789	50.988	1.00 23.65	T	С
	ATOM	3284		GLU		24	40.878	24.291	51.202	1.00 25.81	T	0
	ATOM	3285	0E2	GLU		24	39.008	25.125	51.887	1.00 26.26	T	0
	ATOM	3286	N	TRP		25	41.300	24.401	45.735	1.00 19.89	T	N
50	ATOM	3287	CA	TRP		25	42.280	23.965	44.759	1.00 20.95	T	С
	ATOM	3288	С	TRP		25	43.524	24.843	44.721	1.00 22.24	T	C
	ATOM	3289	0	TRP	T	25	43.635	25.829	45.451	1.00 23.01	T	0
	ATOM	3290	CB	TRP		25	41.629	23.912	43.366	1.00 18.38	T	C
	ATOM	3291	CG	TRP		25	41.213	25.252	42.815	1.00 16.29	T	С
55	ATOM	3292	CD1	TRP	T	25	41.994	26.133	42.115	1.00 16.76	T	С

	1 001	0000	220	m n n		0.5	00 045				-	_
	ATOM	3293		TRP		25	39.917	25.856	42.911	1.00 14.79	T	С
	ATOM	3294	NE1		T	25	41.260	27.246	41.765	1.00 13.11	T	N
	ATOM	3295	CE2		T	25	39.984	27.102	42.242	1.00 14.48	T	C
~	ATOM	3296		TRP		25	38.704	25.466	43.498	1.00 15.24	T	С
5	ATOM	3297		TRP		25	38.882	27.960	42.141	1.00 14.18	T	С
	ATOM	3298	CZ3			25	37.606	26.320	43.399	1.00 14.21	Т	С
	ATOM	3299	CH2	TRP	T	25	37.705	27.554	42.725	1.00 15.19	T	С
	ATOM	3300	N	GLU	T	26	44.455	24.449	43.862	1.00 24.44	T	N
	ATOM	3301	CA	GLU	T	26	45.713	25.148	43.644	1.00 27.06	T	С
10	ATOM	3302	C	GLU	T	26	45.713	25.499	42.159	1.00 28.34	T	С
	ATOM	3303	0	GLU	T	26	44.953	24.918	41.384	1.00 26.89	T	0
	ATOM	3304	СВ	GLU	T	26	46.889	24.214	43.939	1.00 28.64	T	С
	ATOM	3305	CG	GLU	T	26	46.993	23.741	45.376	1.00 34.94	T	С
	ATOM	3306	CD	GLU	T	26	47.761	24.705	46.253	1.00 39.39	Т	С
15	ATOM	3307	0E1	GLU	T	26	47.870	24.444	47.440	1.00 42.73	T	0
	ATOM	3308	0E2			26	48.255	25.713	45.739	1.00 42.24	T	0
	ATOM	3309	N	PRO		27	46.567	26.445	41.737	1.00 30.61	T	N
	ATOM	3310	CA	PRO		27	47.516	27.202	42.550	1.00 33.08	T	C
	ATOM	3311	С	PRO		27	47.039	28.646	42.694	1.00 36.39	T	C
20	ATOM	3312	0	PRO		27	45.969	29.008	42.204	1.00 37.38	Ť	0
_ ~	ATOM	3313	CB	PRO		27	48.781	27.116	41.722	1.00 31.05	Ť	C
	ATOM	3314	CG	PRO		27	48.232	27.369	40.350	1.00 29.94	T	C
	ATOM	3315	CD	PRO		27	46.943	26.535	40.312	1.00 29.62	T	C
	ATOM	3316	N	LYS		28	47.844	29.469	43.354	1.00 29.02	T	N
25	ATOM	3317	CA	LYS		28	47.509	30.874	43.534	1.00 44.79	T	C
20	ATOM	3318	С	LYS		28					T	
							47.525	31.555	42.169	1.00 46.88		C
	ATOM	3319	0 CB	LYS		28	48.585	31.737	41.566	1.00 47.96	T	0
	ATOM	3320	CB	LYS		28	48.518	31.537	44.472	1.00 45.11	T	C
30	ATOM	3321	CG	LYS		28	48.533	30.923	45.859	1.00 46.65	T	C
30	ATOM	3322	CD	LYS		28	47.146	30.969	46.483	1.00 47.76	T	C
	ATOM	3323	CE	LYS		28	47.120	30.295	47.843	1.00 49.21	T	C
	ATOM	3324	N Z	LYS		28	45.769	30.375	48.468	1.00 50.84	T	N
	ATOM	3325	N	PRO		29	46.342	31.942	41.667	1.00 47.94	T	N
25	ATOM	3326	CA	PRO		29	46.170	32.602	40.371	1.00 48.83	T	C
35	MOTA	3327	C	PRO		29	47.026	33.841	40.130	1.00 49.78	T	С
	ATOM	3328	0	PRO		29	46.997	34.802	40.899	1.00 49.58	T	0
	ATOM	3329	CB	PRO		29	44.677	32.914	40.339	1.00 48.24	T	C
	ATOM	3330	CG	PRO		29	44.346	33.102	41.778	1.00 47.36	T	С
4.0	ATOM	3331	CD	PRO		29	45.074	31.952		1.00 48.57	T	С
40	ATOM	3332	N	VAL		30	47.790	33.795	39.044	1.00 50.46	T	N
	ATOM	3333	CA	VAL		30	48.656	34.894	38.640	1.00 51.62	T	С
	ATOM	3334	C	VAL		30	48.245	35.208	37.210	1.00 51.40	T	С
	ATOM	3335	0	VAL		30	48.602	34.479	36.283	1.00 51.31	T	0
	ATOM	3336	CB			30	50.138	34.482	38.664	1.00 51.98	T	С
45	ATOM	3337		VAL		30	51.002	35.657	38.258	1.00 52.42	T	C
	ATOM	3338	CG2	VAL		30	50.523	33.993	40.055	1.00 51.87	T	С
	ATOM	3339	N	ASN	T	31	47.491	36.291	37.033	1.00 50.80	T	N
	ATOM	3340	CA	ASN	T	31	46.994	36.652	35.709	1.00 49.64	T	C
	ATOM	3341	C	ASN	T	31	46.213	35.437	35.222	1.00 46.82	T	С
50	ATOM	3342	0	ASN	T	31	46.349	35.007	34.077	1.00 46.96	T	0
	ATOM	3343	CB	\mathtt{ASN}	T	31	48.155	36.952	34.760	1.00 52.08	T	С
	ATOM	3344	CG	ASN	T	31	48.857	38.249	35.095	1.00 54.19	T	C
	ATOM	3345	0D1	ASN	T	31	48.257	39.322	35.032	1.00 56.94	T	0
	ATOM	3346	ND2	ASN	T	31	50.131	38.160	35.457	1.00 54.94	T	N
55	ATOM	3347	N	GLN	T	32	45.392	34.897	36.118	1.00 44.02	T	N

	ATOM	3348	CA	GLN	m	32	44 507	00 711	25 845	1 00 00 04	m	
	ATOM		C				44.597	33.711	35.845	1.00 39.84	T	C
		3349		GLN		32	43.356	33.696	36.732	1.00 36.22	T	C
	ATOM	3350	0	GLN		32	43.450	33.789	37.956	1.00 36.42	T	0
5	ATOM	3351	CB	GLN		32	45.457	32.474	36.107	1.00 40.02	T	С
9	ATOM	3352	CG	GLN		32	44.756	31.141	35.996	1.00 38.97	T	С
	ATOM	3353	CD	GLN		32	45.743	29.991	36.046	1.00 37.53	Т	С
	ATOM	3354	0E1			32	46.616	29.880	35.189	1.00 36.12	T	0
	ATOM	3355	NE2			32	45.614	29.136	37.053	1.00 35.32	T	N
4 0	ATOM	3356	N	VAL		33	42.192	33.578	36.104	1.00 31.20	T	N
10	ATOM	3357	CA	VAL		33	40.930	33.555	36.824	1.00 26.24	T	С
	ATOM	3358	C	VAL		33	40.280	32.178	36.683	1.00 24.67	T	C
	ATOM	3359	0	VAL	T	33	40.698	31.375	35.851	1.00 23.37	T	0
	ATOM	3360	СВ	VAL	T	33	39.986	34.658	36.296	1.00 25.12	T	С
	ATOM	3361	CG1	VAL	T	33	40.676	36.014	36.410	1.00 23.86	T	С
15	ATOM	3362	CG2	VAL	T	33	39.603	34.385	34.854	1.00 26.27	T	C
	ATOM	3363	N	TYR	T	34	39.260	31.911	37.493	1.00 21.25	T	N
	ATOM	3364	C A	TYR	T	34	38.589	30.615	37.473	1.00 19.35	T	C
	ATOM	3365	C	TYR	T	34	37.070	30.677	37.428	1.00 18.92	T	С
	ATOM	3366	0	TYR	T	34	36.454	31.670	37.801	1.00 18.57	T	0
20	ATOM	3367	CB	TYR	T	34	38.947	29.816	38.728	1.00 18.40	T	С
	ATOM	3368	CG	TYR	T	34	40.416	29.582	38.957	1.00 20.44	Т	С
	ATOM	3369	CD1	TYR	T	34	41.125	28.667	38.182	1.00 18.46	T	C
	ATOM	3370	CD2	TYR	T	34	41.096	30.259	39.971	1.00 19.10	T	С
	ATOM	3371	CE1	TYR	T	34	42.475	28.424	38.412	1.00 19.96	T	C
25	ATOM	3372	CE2	TYR	T	34	42.447	30.021	40.207	1.00 20.05	T	С
	ATOM	3373	CZ	TYR	T	34	43.126	29.102	39.426	1.00 20.10	T	С
	ATOM	3374	0 H	TYR	T	34	44.454	28.848	39.669	1.00 24.65	T	0
	ATOM	3375	N	THR	T	35	36.478	29.581	36.974	1.00 16.56	T	N
	ATOM	3376	CA	THR		35	35.034	29.429	36.956	1.00 16.37	T	C
30	ATOM	3377	С	THR		35	34.831	27.950	37.233	1.00 15.30	T	C
	ATOM	3378	0	THR		35	35.490	27.103	36.634	1.00 18.13	T	0
	ATOM	3379	СВ	THR		35	34.390	29.799	35.608	1.00 15.23	T	C
	ATOM	3380	0G1			35	34.409	31.222	35.438	1.00 15.18	T	0
	ATOM	3381		THR		35	32.941	29.336	35.581	1.00 16.79	T	C
35	ATOM	3382	N	VAL		36	33.940	27.647	38.163	1.00 15.22	T	N
	ATOM	3383	C A	VAL		36	33.669	26.271	38.543	1.00 14.65	T	C
	ATOM	3384	C	VAL		36	32.340	25.787	37.974	1.00 14.97	T	C
	ATOM	3385	0	VAL		36	31.405	26.568	37.816	1.00 15.99	T	0
	ATOM	3386	СВ			36	33.638	26.153		1.00 12.56	T	C
40	ATOM	3387		VAL		36	33.230	24.751	40.517	1.00 14.14	T	C
	ATOM	3388		VAL		36	35.019	26.496	40.652	1.00 13.80	T	C
	ATOM	3389	N	GLN		37	32.278	24.507	37.624	1.00 14.43	T	N
	ATOM	3390	CA	GLN		37	31.045	23.903	37.136	1.00 14.45	T	C
	ATOM	3391	C	GLN		37	30.796	22.668	37.130	1.00 14.47	T	C
45	ATOM	3392	0	GLN		37	31.733	21.976	38.381	1.00 14.12	T	0
1 0	ATOM	3393	CB	GLN		37	31.152	23.468	35.671	1.00 14.12	T	C
	ATOM	3394	CG	GLN		37	31.085	24.583	34.637	1.00 14.48	T	С
	ATOM	3395	CD	GLN		37	30.857	24.037		1.00 14.48	T	
	ATOM	3396		GLN		37	31.300		33.234			C
50	ATOM	3397					30.175	22.940	32.912	1.00 13.95	T	0 N
50	ATOM	3398	N E Z	GLN ILE		37 38	29.533	24.807	32.393	1.00 10.80	T T	N N
	ATOM	3399	C A	ILE		38	29.333	22.399 21.231	38.287	1.00 14.90 1.00 14.60	T T	N
	ATOM	3400	C	ILE		38	27.965		39.070		T	C
	ATOM	3400	0			38	27.965	20.576	38.417	1.00 16.38	T	С
55	ATOM	3401	CB	ILE ILE		38	28.829	21.252	37.788	1.00 17.10	T T	0
00	II I O PI	0402	OB	מטו	1	50	20.029	21.617	40.521	1.00 15.19	1	С

	ATOM	3403	CG1	ILE	T	38	28.607	20.351	41.358	1.00 14.88	Т	С
	ATOM	3404	C G 2	ILE	T	38	27.601	22.530	40.539	1.00 10.78	T	C
	ATOM	3405	CD1	ILE	T	38	28.402	20.620	42.845	1.00 14.77	T	С
	ATOM	3406	N	SER	T	39	27.857	19.260	38.557	1.00 16.00	T	N
5	ATOM	3407	CA	SER	T	39	26.737	18.529	37.989	1.00 15.27	T	С
	ATOM	3408	С	SER	T	39	26.642	17.157	38.622	1.00 15.45	Т	С
	ATOM	3409	0	SER	T	39	27.511	16.748	39.382	1.00 16.91	T	0
	ATOM	3410	СВ	SER	T	39	26.948	18.327	36.491	1.00 12.90	T	С
	ATOM	3411	0 G	SER	T	39	27.999	17.389	36.285	1.00 12.71	T	0
10	ATOM	3412	N	THR	T	40	25.569	16.453	38.295	1.00 17.91	T	N
	ATOM	3413	CA	THR	T	40	25.381	15.088	38.745	1.00 18.74	T	С
	ATOM	3414	С	THR	T	40	25.637	14.283	37.480	1.00 21.10	T	C
	ATOM	3415	0	THR		40	25.606	14.839	36.378	1.00 20.86	T	0
	ATOM	3416	СВ	THR		40	23.947	14.834	39.245	1.00 19.11	T	C
15	ATOM	3417	0G1			40	23.002	15.399	38.325	1.00 17.75	T	0
	ATOM	3418		THR		40	23.755	15.448	40.620	1.00 17.44	T	Č
	ATOM	3419	N	LYS		41	25.896	12.989	37.639	1.00 24.75	T	N
	ATOM	3420	CA	LYS		41	26.183	12.079	36.527	1.00 26.61	T	C
	ATOM	3421	С	LYS		41	25.427	12.345	35.224	1.00 26.89	T	Č
20	ATOM	3422	0	LYS		41	26.032	12.422	34.154	1.00 27.99	T	0
	ATOM	3423	СВ	LYS		41	25.922	10.637	36.970	1.00 31.82	T	C
	ATOM	3424	CG	LYS		41	26.089	9.598	35.873	1.00 37.07	T	C
	ATOM	3425	CD	LYS		41	25.717	8.204	36.371	1.00 39.57	T	C
	ATOM	3426	CE	LYS		41	25.812	7.175	35.253	1.00 40.27	T	C
25	ATOM	3427	ΝZ	LYS	Т	41	25.454	5.808	35.729	1.00 43.52	T	N
	ATOM	3428	N	SER		42	24.108	12.473	35.303	1.00 24.42	Т	N
	ATOM	3429	CA	SER		42	23.324	12.711	34.105	1.00 24.61	T	С
	ATOM	3430	С	SER		42	22.618	14.066	34.081	1.00 22.94	T	С
	ATOM	3431	0	SER	T	42	21.641	14.244	33.360	1.00 25.38	T	0
30	ATOM	3432	СВ	SER	T	42	22.299	11.588	33.926	1.00 26.04	T	С
	ATOM	3433	0 G	SER	T	42	21.442	11.505	35.048	1.00 31.07	T	0
	ATOM	3434	N	GLY	T	43	23.114	15.017	34.866	1.00 19.49	T	N
	ATOM	3435	CA	GLY	T	43	22.513	16.338	34.898	1.00 18.07	T	C,
	ATOM	3436	C	GLY	T	43	23.352	17.340	34.125	1.00 15.78	T	c
35	ATOM	3437	0	GLY	T	43	24.494	17.058	33.774	1.00 15.61	Т	0
	ATOM	3438	N	ASP	T	44	22.787	18.508	33.852	1.00 15.33	T	N
	ATOM	3439	CA	ASP	T	44	23.500	19.543	33.119	1.00 15.18	T	С
	ATOM	3440	C	ASP	T	44	24.586	20.168	33.991	1.00 15.75	T	С
	ATOM	3441	0	ASP	T	44	24.536	20.085	35.220	1.00 14.67	T	0
40	ATOM	3442	CB	ASP	T	44	22.532	20.645	32.664	1.00 14.49	T	С
	ATOM	3443	CG	ASP	T	44	21.512	20.163	31.635	1.00 15.31	T	С
	ATOM	3444	0 D 1	ASP	T	44	21.724	19.121	31.012	1.00 11.39	T	0
	ATOM	3445	0D2	ASP	T	44	20.500	20.857	31.448	1.00 16.14	T	0
	ATOM	3446	N	TRP	T	45	25.570	20.794	33.356	1.00 15.26	T	N
45	ATOM	3447	CA	TRP	T	45	26.632	21.449	34.104	1.00 16.12	T	С
	ATOM	3448	C	TRP	T	45	26.155	22.832	34.532	1.00 16.65	T	С
	ATOM	3449	0	TRP	T	45	25.592	23.575	33.738	1.00 17.64	T	0
	ATOM	3450	CB	TRP	T	45	27.895	21.576	33.259	1.00 14.65	T	C
	ATOM	3451	CG	TRP	T	45	28.542	20.254	32.967	1.00 16.11	T	С
50	ATOM	3452	CD1	TRP	T	45	28.359	19.476	31.859	1.00 14.82	T	С
	ATOM	3453		TRP		45	29.469	19.550	33.804	1.00 15.28	T	С
	ATOM	3454		TRP		45	29.119	18.332	31.951	1.00 14.03	T	N
	ATOM	3455		TRP		45	29.812	18.352	33.135	1.00 15.34	T	С
	ATOM	3456		TRP		45	30.044	19.814	35.056	1.00 17.68	T	С
55	ATOM	3457	CZ2	TRP	T	45	30.708	17.420	33.672	1.00 14.08	T	С

	ATOM	3458	C 7.3	TRP	т	45	30.938	18.884	35.595	1.00 15.15	Т	С
	ATOM	3459	CH2		T	45	31.260	17.703	34.899	1.00 15.49	T	C
	ATOM	3460	N	LYS		46	26.374	23.165	35.795	1.00 16.58	T	N
	ATOM	3461	C A	LYS		46	25.960	24.455	36.323	1.00 10.38	T	C
5			C			46	27.218		36.702			С
J	ATOM	3462		LYS				25.240		1.00 16.41	T	
	ATOM	3463	0	LYS		46	28.109	24.704	37.358	1.00 17.90	T	0
	ATOM	3464	CB	LYS		46	25.070	24.223	37.545	1.00 18.63	T	C
	ATOM	3465	CG	LYS		46	24.011	25.285	37.794	1.00 25.36	T	C
1 0	ATOM	3466	CD	LYS		46	24.421	26.245	38.886	1.00 27.44	T	C
10	ATOM	3467	CE	LYS		46	23.245	27.096	39.336	1.00 30.02	T	С
	ATOM	3468	ΝZ	LYS		46	22.215	26.308	40.063	1.00 30.73	T	N
	ATOM	3469	N	SER		47	27.299	26.499	36.276	1.00 16.11	T	N
	ATOM	3470	CA	SER		47	28.460	27.334	36.582	1.00 14.72	T	С
	ATOM	3471	С	SER	T	47	28.330	28.031	37.928	1.00 13.96	T	С
15	ATOM	3472	0	SER	T	47	27.244	28.454	38.319	1.00 13.03	T	0
	ATOM	3473	CB	SER	T	47	28.678	28.386	35.488	1.00 11.64	T	С
	ATOM	3474	0 G	SER	T	47	29.306	27.819	34.350	1.00 15.92	T	0
	ATOM	3475	N	LYS	T	48	29.456	28.163	38.619	1.00 13.74	T	N
	ATOM	3476	CA	LYS	T	48	29.503	28.794	39.935	1.00 15.63	T	С
20	ATOM	3477	С	LYS	T	48	30.801	29.581	40.095	1.00 15.18	T	C
	ATOM	3478	0	LYS	T	48	31.774	29.346	39.376	1.00 14.77	T	0
	ATOM	3479	СВ	LYS	T	48	29.447	27.724	41.033	1.00 13.97	T	С
	ATOM	3480	CG	LYS		48	28.293	26.747	40.906	1.00 15.98	T	С
	ATOM	3481	CD	LYS		48	27.363	26.832	42.093	1.00 19.94	T	С
25	ATOM	3482	CE	LYS		48	26.789	28.221	42.253	1.00 19.83	T	С
	ATOM	3483	ΝZ	LYS		48	25.892	28.306	43.425	1.00 18.63	T	N
	ATOM	3484	N	CYS		49	30.806	30.508	41.046	1.00 16.26	T	N
	ATOM	3485	CA	CYS		49	31.993	31.308	41.339	1.00 17.07	T	С
	ATOM	3486	С	CYS		49	32.635	31.844	40.058	1.00 17.80	T	С
30	ATOM	3487	0		T	49	33.815	31.627	39.784	1.00 17.68	Т	0
	ATOM	3488	СВ	CYS	T	49	32.975	30.448	42.144	1.00 15.94	T	С
	ATOM	3489	SG	CYS		49	32.249	29.824	43.705	1.00 18.32	T	S
	ATOM	3490	N		T	50	31.826	32.568	39.293	1.00 19.09	Т	N
	ATOM	3491	CA		T	50	32.208	33.145	38.006	1.00 19.69	Т	С
35	ATOM	3492	C		T	50	33.438	34.046	38.020	1.00 18.93	T	C
•	ATOM	3493	0	PHE		50	33.462	35.073	38.687	1.00 19.65	T	0
	ATOM	3494	СВ	PHE		50	31.018	33.925	37.437	1.00 21.03	T	C
	ATOM	3495	CG	PHE		50	29.705	33.212	37.598	1.00 22.82	T	Č
	ATOM	3496		PHE		50	29.410	32.090	36.834	1.00 23.21	T	C
40	ATOM	3497		PHE		50	28.791	33.626	38.562	1.00 24.00	T	C
	ATOM	3498		PHE		50	28.225	31.388	37.031	1.00 22.86	T	C
	ATOM	3499		PHE		50	27.604	32.929	38.768	1.00 24.77	T	C
	ATOM	3500	CZ	PHE		50	27.324	31.808	38.000	1.00 24.10	T	C
	ATOM	3501	N	TYR		51	34.454	33.646	37.264	1.00 19.61	T	N
4 5	ATOM	3502	CA	TYR		51	35.694	34.404	37.135	1.00 19.80	T	C
10	ATOM	3503	C	TYR		51	36.262	34.886	38.459	1.00 20.72	T	C
	ATOM	3504	0	TYR		51	36.662	36.043	38.590	1.00 20.88	T	0
	ATOM	3505	СВ	TYR		51	35.470	35.601	36.212	1.00 20.21	T	Č
	ATOM	3506	CG	TYR		51	34.778	35.245	34.915	1.00 20.21	T	C
50	ATOM	3507		TYR		51	35.358	34.354	34.011	1.00 20.94	T	C
50	ATOM	3508		TYR		51	33.536	35.795	34.596	1.00 20.94	T	C
	ATOM	3509		TYR		51	34.717	34.021	32.820	1.00 22.01	T	C
	ATOM	3510		TYR		51	32.888	35.471	33.409	1.00 23.36	T	C
	ATOM	3511	CZ	TYR		51	33.481	34.586	32.527	1.00 25.16	T	C
55	ATOM	3512	0 H	TYR		51	32.835	34.271	31.353	1.00 29.02	T	0
99	AIUM	0010	011	1 1 17	1	O.T.	J4.0JU	04.21I	01.000	1.00 <i>23.02</i>	1	U

	ATOM	3513	N	THR	T	52	36.300	33.989	39.436	1.00 20.20	T	N
	ATOM	3514	CA	THR	Т	52	36.828	34.301	40.754	1.00 19.96	T	С
	ATOM	3515	C	THR		52	38.348	34.188	40.741	1.00 20.71	T	С
	ATOM	3516	0	THR		52	38.916	33.409	39.970	1.00 19.97	T	0
5	ATOM	3517	СВ	THR		52	36.283	33.317	41.816	1.00 19.38	T	C
0	ATOM	3518	0 G 1			52	36.848	33.631	43.094	1.00 18.27	T	0
	ATOM	3519	CG2	THR		52	36.651	31.878	41.452	1.00 20.27	T	C
	ATOM	3520	N	THR		53	39.007	34.973	41.585	1.00 20.41	T	N
10	ATOM	3521	CA	THR		53	40.460	34.911	41.688	1.00 22.43	T	С
10	ATOM	3522	С	THR		53	40.862	34.112	42.934	1.00 23.31	T	C
	ATOM	3523	0	THR		53	42.042	33.872	43.178	1.00 24.50	T	0
	ATOM	3524	CB	THR		53	41.094	36.318	41.751	1.00 21.43	T	С
	ATOM	3525	0G1			53	40.475	37.077	42.793	1.00 23.60	T	0
	ATOM	3526	CG2	THR	T	53	40.919	37.039	40.423	1.00 20.43	T	C
15	ATOM	3527	N	ASP	T	54	39.878	33.701	43.727	1.00 24.66	T	N
	ATOM	3528	CA	ASP	T	54	40.170	32.907	44.910	1.00 24.86	T	C
	ATOM	3529	C	ASP	T	54	40.341	31.467	44.447	1.00 24.57	T	C
	ATOM	3530	0	ASP	T	54	39.991	31.124	43.311	1.00 23.26	T	0
	ATOM	3531	СВ	ASP	T	54	39.027	32.991	45.920	1.00 28.59	T	С
20	ATOM	3532	CG	ASP	T	54	38.695	34.418	46.307	1.00 31.77	T	С
	ATOM	3533	0D1	ASP	T	54	39.607	35.179	46.642	1.00 35.02	T	0
	ATOM	3534			T	54	37.529	34.759	46.279	1.00 36.17	T	0
	ATOM	3535	N	THR		55	40.888	30.625	45.316	1.00 20.61	T	N
	ATOM	3536	CA	THR		55	41.088	29.230	44.969	1.00 18.26	T	C
25	ATOM	3537	C	THR		55	40.114	28.339	45.741	1.00 18.54	T	C
20	ATOM	3538	0	THR		55	40.483	27.264	46.222	1.00 16.66	T	0
	ATOM	3539	C B	THR		55 55	42.526	28.806	45.266	1.00 17.06	T	C
	ATOM	3540	0 G 1	THR		55 55	42.852	29.159	46.612	1.00 17.00	T	0
20	ATOM	3541	CG2	THR		55	43.488	29.500	44.321	1.00 19.50	T	C
30	ATOM	3542	N	GLU		56	38.871	28.804	45.857	1.00 15.86	T	N
	ATOM	3543	CA	GLU		56	37.822	28.072	46.553	1.00 17.50	T	C
	ATOM	3544	C	GLU		56	36.462	28.477	45.999	1.00 16.59	T	C
	ATOM	3545	0	GLU		56	36.294	29.576	45.475	1.00 15.56	T	0
	ATOM	3546	СВ	GLU		56	37.837	28.387	48.053	1.00 17.92	T	С
35	ATOM	3547	C G	GLU		56	37.396	29.809	48.374	1.00 20.51	T	C
	ATOM	3548	CD	GLU		56	37.265	30.061	49.859	1.00 24.03	T	C
	ATOM	3549	0E1			56	38.221	29.802	50.582	1.00 26.81	T	0
	ATOM	3550	0E2	GLU		56	36.205	30.518	50.287	1.00 26.27	T	0
	MOTA	3551	N	CYS	T	57	35.490	27.586	46.129	1.00 16.04	T	N
40	ATOM	3552	CA	CYS		57	34.147	27.870	45.665	1.00 16.17	T	C
	ATOM	3553	C	CYS	T	57	33.140	27.164	46.552	1.00 15.98	T	С
	ATOM	3554	0	CYS	T	57	33.225	25.954	46.754	1.00 14.72	T	0
	ATOM	3555	CB	CYS	T	57	33.963	27.403	44.219	1.00 17.24	T	С
	ATOM	3556	SG	CYS	T	57	32.314	27.793	43.557	1.00 17.97	T	S
45	ATOM	3557	N	ASP	T	58	32.187	27.918	47.084	1.00 14.99	T .	N
	ATOM	3558	CA	ASP		58	31.172	27.326	47.934	1.00 15.94	T	С
	ATOM	3559	С	ASP		58	30.115	26.677	47.061	1.00 16.95	T	С
	ATOM	3560	0	ASP		58	29.477	27.340	46.244	1.00 17.86	T	0
	ATOM	3561	СВ	ASP		58	30.526	28.385	48.829	1.00 16.18	T	C
50	ATOM	3562	CG	ASP		58	29.436	27.806	49.715	1.00 17.55	T	C
	MOTA	3563		ASP		58	29.529	26.636	50.053	1.00 17.33	T	0
	ATOM	3564		ASP		58	28.502	28.531	50.073	1.00 13.23	T	0
	ATOM	3565	N N	LEU		56 59	29.939	25.373	47.227	1.00 16.41	T	
		3566	C A	LEU				25.373	46.449	1.00 16.87	T	N C
55	ATOM					59 50	28.951					C
55	ATOM	3567	С	LEU	1	59	27.832	24.092	47.331	1.00 17.59	T	С

	A TO M	250	0	1 17 11	m	5 0	97 077	00 010	46 016	1 00 10 55	m	
	ATOM	3568	0 CB	LEU		59 50	27.077	23.218	46.916	1.00 19.55	T	0
	ATOM	3569	CB	LEU		59	29.638	23.513	45.682	1.00 14.54	T	С
	ATOM	3570	CG	LEU		59	30.694	24.010	44.686	1.00 16.18	T	C
=	ATOM	3571		LEU		59	31.435	22.828	44.072	1.00 13.02	T	С
5	ATOM	3572		LEU		59	30.019	24.850	43.606	1.00 14.07	T	С
	ATOM	3573	N	THR		60	27.718	24.630	48.541	1.00 18.48	T	N
	ATOM	3574	C A	THR		60	26.701	24.199	49.495	1.00 20.05	T	C
	ATOM	3575	С	THR		60	25.274	24.228	48.952	1.00 20.61	T	C
	ATOM	3576	0	THR		60	24.558	23.230	49.030	1.00 20.04	T	0
10	ATOM	3577	CB	THR		60	26.748	25.062	50.779	1.00 20.92	T	С
	ATOM	3578	0G1	THR	T	60	28.024	24.909	51.415	1.00 21.02	T	0
	ATOM	3579	CG2	THR	T	60	25.654	24.647	51.747	1.00 19.78	T	C
	ATOM	3580	N	ASP	T	61	24.859	25.368	48.405	1.00 20.95	T	N
	ATOM	3581	CA	ASP	T	61	23.500	25.507	47.884	1.00 22.33	T	С
15	ATOM	3582	C	ASP		61	23.142	24.529	46.778	1.00 21.88	T	C
	ATOM	3583	0	ASP	T	61	21.967	24.220	46.574	1.00 23.89	T	0
	ATOM	3584	CB	ASP		61	23.252	26.934	47.391	1.00 23.16	T	С
	ATOM	3585	CG	ASP	T	61	23.321	27.947	48.507	1.00 26.60	T	С
	ATOM	3586	0D1	ASP		61	23.175	27.550	49.659	1.00 28.12	T	0
20	ATOM	3587		ASP		61	23.511	29.127	48.221	1.00 31.54	T	0
	ATOM	3588	N	GLU		62	24.146	24.042	46.060	1.00 20.11	T	N
	ATOM	3589	CA	GLU		62	23.890	23.102	44.986	1.00 21.57	T	C
	ATOM	3590	С	GLU		62	23.774	21.671	45.504	1.00 21.37	T	C
	ATOM	3591	0	GLU		62	22.848	20.950	45.130	1.00 22.03	T	0
25	ATOM	3592	СВ	GLU		62	24.996	23.179	43.925	1.00 20.82	T	C
	ATOM	3593	CG	GLU		62	25.211	24.565	43.313	1.00 22.54	T	C
	ATOM	3594	CD	GLU		62	23.923	25.198	42.794	1.00 26.23	T	C
	ATOM	3595	0E1			62	23.135	24.492	42.164	1.00 25.97	T	0
	ATOM	3596		GLU		62	23.717	26.403	43.012	1.00 24.60	T	0
30	ATOM	3597	N	ILE		63	24.693	21.257	46.375	1.00 19.96	T	N
	ATOM	3598	CA	ILE		63	24.656	19.887	46.878	1.00 20.43	T	C
	ATOM	3599	C	ILE		63	23.529	19.576	47.870	1.00 20.80	T	C
	ATOM	3600	0	ILE		63	23.082	18.434	47.951	1.00 19.50	T	0
	ATOM	3601	СВ		T	63	26.035	19.460	47.477	1.00 20.40	T	C
35	ATOM	3602		ILE		63	26.424	20.356	48.654	1.00 19.56	T	C
00	ATOM	3603	CG2	ILE		63	27.105	19.513	46.398	1.00 18.09	T	C
	ATOM	3604		ILE		63	25.877	19.894	49.986	1.00 19.86	T	C
	ATOM	3605	N	VAL		64	23.047	20.576	48.603	1.00 20.09	T	N
	ATOM	3606	CA	VAL		64	21.967	20.374	49.558	1.00 20.98	T	C
40	ATOM	3607	C	VAL		64	20.614	20.092	48.875	1.00 20.30	T	С
10	ATOM	3608	0	VAL		64	19.638	19.736	49.537	1.00 23.72	T	0
	ATOM	3609	CB	VAL		64	21.804	21.501	50.568	1.00 20.02	T	C
	ATOM	3610		VAL		64	23.093	21.690	51.358	1.00 20.02	T	
	ATOM	3611		VAL		64	21.405	22.775	49.842	1.00 20.40	T	C C
45	ATOM	3612	N N	LYS		65	20.553	20.294				
40	ATOM	3613		LYS		65	19.318		47.559	1.00 25.22	T T	N C
	ATOM	3614	C	LYS		65	18.978	20.065	46.809 46.822	1.00 28.22		
	ATOM	3615	0					18.574		1.00 27.08	T	C
	ATOM			LYS		65	17.812	18.194	46.764	1.00 28.54	T	0
50		3616	CB	LYS		65 65	19.466	20.565	45.366	1.00 30.57	T	0
50	ATOM	3617	CG	LYS		65 65	19.579	22.081	45.256	1.00 32.86	T	C
	ATOM	3618	CD	LYS		65	19.681	22.544	43.811	1.00 35.41	T	С
	ATOM	3619	CE	LYS		65	19.767	24.064	43.735	1.00 37.84	T	C
	ATOM	3620	ΝZ	LYS		65	19.813	24.564	42.334	1.00 39.60	T	N
==	ATOM	3621	N CA	ASP		66	20.014	17.742	46.879	1.00 26.86	T	N
55	ATOM	3622	CA	ASP	ī	66	19.877	16.291	46.956	1.00 24.78	T	С

	ATOM	3623	С	ASP	T	66	21.205	15.780	47.494	1.00 23.00	T	С
	ATOM	3624	0	ASP	T	66	22.125	15.490	46.734	1.00 21.38	T	0
	ATOM	3625	CB	ASP	T	66	19.609	15.669	45.586	1.00 26.36	T	С
	ATOM	3626	CG	ASP	T	66	19.251	14.188	45.680	1.00 29.40	T	С
5	ATOM	3627	0D1	ASP	T	66	19.538	13.568	46.722	1.00 28.55	T	0
	ATOM	3628	0D2		Т	66	18.695	13.648	44.717	1.00 31.14	Т	0
	ATOM	3629	N	VAL		67	21.300	15.672	48.814	1.00 22.91	T	N
	ATOM	3630	CA	VAL		67	22.530	15.221	49.452	1.00 22.94	T	C
	ATOM	3631	C	VAL		67	22.927	13.783	49.125	1.00 24.63	T	C
10	ATOM	3632	0	VAL		67	24.071	13.390	49.356	1.00 24.10	T	0
	ATOM	3633	СВ	VAL		67	22.449	15.384	50.992	1.00 22.47	T	C
	ATOM	3634		VAL		67	22.180	16.846	51.350	1.00 17.69	T	C
	ATOM	3635		VAL		67	21.364	14.488	51.563	1.00 19.93	T	C
	ATOM	3636	N N	LYS		68	21.998	13.003	48.578	1.00 26.06	T	N
15	ATOM	3637	CA	LYS		68	22.284	11.608	48.239	1.00 27.04	T	C
10	ATOM	3638	C	LYS		68	22.873	11.395	46.850	1.00 27.04	T	C
	ATOM	3639	0	LYS		68	23.342	10.304	46.531	1.00 24.28	T	0
	ATOM	3640	C B	LYS		68		10.304	48.401	1.00 24.28	T	
		3641				68	21.024					C
20	ATOM		CG	LYS			20.634 19.389	10.547	49.850	1.00 30.19	T	C
20	ATOM	3642	CD	LYS		68		9.699	49.975	1.00 32.33	T	C
	ATOM	3643	CE	LYS		68	19.115	9.356	51.425	1.00 34.80	T	C
	ATOM	3644	ΝZ	LYS		68	20.235	8.569	52.002	1.00 38.91	T	N
	ATOM	3645	N	GLN		69	22.848	12.436	46.025	1.00 26.68	T	N
ຄະ	ATOM	3646	CA	GLN		69	23.404	12.351	44.681	1.00 24.77	T	С
25	ATOM	3647	C	GLN		69	24.924	12.389	44.739	1.00 23.29	T	C
	ATOM	3648	0	GLN		69	25.501	12.750	45.762	1.00 22.51	T	0
	ATOM	3649	CB	GLN		69	22.901	13.519	43.829	1.00 27.54	T	C
	ATOM	3650	CG	GLN		69	21.556	13.274	43.173	1.00 32.96	T	С
0.0	ATOM	3651	CD	GLN		69	21.628	12.171	42.135	1.00 35.85	T	C
30	ATOM	3652	0E1			69	22.338	12.292	41.138	1.00 37.60	T	0
	ATOM	3653	NE2			69	20.901	11.084	42.369	1.00 39.16	T	N
	ATOM	3654	N	THR		70	25.562	11.995	43.640	1.00 21.11	T	N
	ATOM	3655	CA	THR		70	27.013	12.016	43.531	1.00 20.59	T	C
~ =	ATOM	3656	С	THR		70	27.345	13.152	42.570	1.00 20.22	T	С
35	ATOM	3657	0	THR		70	26.917	13.149	41.414	1.00 19.62	T	0
	ATOM	3658	CB	THR		70	27.570	10.687	42.978	1.00 19.99	T	С
	ATOM	3659	0G1			70	27.344	9.643	43.931	1.00 21.36	T	0
	ATOM	3660	CG2			70	29.067	10.802	42.728	1.00 18.95	T	С
	ATOM	3661	N	TYR	T	71	28.102	14.127	43.061	1.00 18.76	T	N
40	ATOM	3662	CA	TYR	T	71	28.462	15.292	42.271	1.00 17.58	T	С
	ATOM	3663	С	TYR	T	71	29.885	15.284	41.752	1.00 17.20	T	C
	ATOM	3664	0	TYR	T	71	30.786	14.721	42.366	1.00 17.10	T	0
	ATOM	3665	CB	TYR	T	71	28.263	16.572	43.095	1.00 15.82	T	C
	ATOM	3666	CG	TYR	T	71	26.852	16.779	43.587	1.00 15.19	T	C
45	ATOM	3667	CD1	TYR	T	71	26.381	16.119	44.729	1.00 15.57	T	C
	ATOM	3668	CD2	TYR	T	71	25.967	17.598	42.887	1.00 14.29	T	C
	ATOM	3669	CE1	TYR	T	71	25.065	16.268	45.155	1.00 14.24	T	С
	ATOM	3670	CE2	TYR	T	71	24.649	17.752	43.302	1.00 14.12	T	С
	ATOM	3671	CZ	TYR	T	71	24.205	17.083	44.435	1.00 15.17	T	С
50	ATOM	3672	0 H	TYR		71	22.901	17.226	44.844	1.00 13.94	T	0
	ATOM	3673	N	LEU		72	30.077	15.926	40.609	1.00 17.96	T	N
	ATOM	3674	CA	LEU		72	31.397	16.052	40.017	1.00 18.23	T	C
	ATOM	3675	С	LEU		72	31.517	17.536	39.729	1.00 17.51	T	C
	ATOM	3676	0	LEU		72	30.556	18.179	39.300	1.00 17.06	T	0
55	ATOM	3677	СВ	LEU		72	31.500	15.256	38.712	1.00 22.12	T	C

	MOTA	3678	CG	LEU	T	72	32.895	14.972	38.119	1.00 26.17	T	С
	ATOM	3679	CD1	LEU	T	72	33.519	16.243	37.563	1.00 28.99	T	С
	ATOM	3680	CD2	LEU	T	72	33.792	14.356	39.182	1.00 25.19	T	С
	ATOM	3681	N	ALA	T	73	32.686	18.089	40.003	1.00 17.91	T	N
5	ATOM	3682	CA	ALA	T	73	32.928	19.496	39.751	1.00 16.95	T	С
	ATOM	3683	С	ALA	T	73	34.197	19.592	38.922	1.00 16.12	T	С
	ATOM	3684	0	ALA		73	34.947	18.624	38.809	1.00 18.51	T	0
	ATOM	3685	СВ	ALA	T	73	33.092	20.240	41.065	1.00 15.74	T	С
	ATOM	3686	N	ARG	T	74	34.415	20.746	38.312	1.00 15.02	T	N
10	ATOM	3687	CA	ARG		74	35.613	20.966	37.524	1.00 14.43	T	С
	ATOM	3688	С	ARG		74	35.926	22.453	37.535	1.00 14.10	T	С
	ATOM	3689	0	ARG		74	35.024	23.293	37.512	1.00 13.27	T	0
	ATOM	3690	CB	ARG		74	35.444	20.438	36.090	1.00 13.57	T	С
	ATOM	3691	CG	ARG		74	34.246	20.969	35.312	1.00 15.95	T	С
15	ATOM	3692	CD	ARG		74	34.070	20.161	34.015	1.00 15.26	T	С
	ATOM	3693	NE	ARG		74	32.983	20.658	33.173	1.00 11.15	T	N
	ATOM	3694	CZ	ARG		74	32.545	20.051	32.071	1.00 13.10	Т	С
	ATOM	3695	NH1	ARG		74	33.093	18.910	31.661	1.00 9.53	T	N
	ATOM	3696		ARG		74	31.562	20.594	31.364	1.00 10.82	T	N
20	ATOM	3697	N	VAL		75	37.211	22.767	37.599	1.00 14.14	T	N
	ATOM	3698	CA	VAL		75	37.672	24.147	37.643	1.00 15.10	T	С
	ATOM	3699	С	VAL		75	38.307	24.589	36.333	1.00 16.01	T	C
	ATOM	3700	0	VAL		75	39.301	24.016	35.896	1.00 14.34	T	0
	ATOM	3701	СВ	VAL		75	38.708	24.336	38.773	1.00 15.28	T	C
25	ATOM	3702		VAL		75	39.280	25.747	38.731	1.00 13.98	T	C
	ATOM	3703		VAL		75	38.058	24.065	40.122	1.00 14.39	T	С
	ATOM	3704	N	PHE		76	37.722	25.604	35.708	1.00 18.72	T	N
	ATOM	3705	CA	PHE		76	38.247	26.140	34.460	1.00 21.14	T	C
	ATOM	3706	С	PHE		76	39.211	27.272	34.780	1.00 22.66	T	C
30	ATOM	3707	0	PHE		76	38.992	28.035	35.723	1.00 23.68	T	0
	ATOM	3708	СВ	PHE		76	37.112	26.668	33.583	1.00 23.60	T	C
	ATOM	3709	CG	PHE		76	36.199	25.596	33.062	1.00 28.84	T	С
	ATOM	3710	CD1	PHE	T	76	36.660	24.654	32.152	1.00 31.44	T	С
	ATOM	3711		PHE		76	34.880	25.521	33.486	1.00 31.69	T	С
35	ATOM	3712		PHE		76	35.818	23.652	31.671	1.00 33.34	T	С
	ATOM	3713		PHE		76	34.034	24.522	33.008	1.00 34.41	T	С
	ATOM	3714	CZ	PHE		76	34.505	23.589	32.101	1.00 30.45	T	С
	ATOM	3715	N	SER	T	77	40.282	27.369	34.000	1.00 24.37	T	N
	ATOM	3716	C A	SER	T	77	41.287	28.410	34.182	1.00 25.59	T	С
40	ATOM	3717	C	SER	T	77	41.337	29.303	32.953	1.00 27.03	T	С
	ATOM	3718	0	SER	T	77	41.322	28.817	31.823	1.00 25.41	T	0
	ATOM	3719	СВ	SER	T	77	42.668	27.793	34.401	1.00 26.08	T	С
	ATOM	3720	0 G	SER	T	77	42.714	27.056	35.604	1.00 28.24	T	0
	ATOM	3721	N	TYR	T	78	41.398	30.610	33.188	1.00 29.89	T	N
45	ATOM	3722	CA	TYR	T	78	41.465	31.601	32.119	1.00 31.65	T	С
	ATOM	3723	C	TYR	T	78	42.636	32.537	32.414	1.00 33.58	T	С
	ATOM	3724	0	TYR	T	78	43.009	32.726	33.572	1.00 34.76	T	0
	ATOM	3725	CB	TYR	T	78	40.173	32.413	32.073	1.00 31.59	T	C
	ATOM	3726	CG	TYR		78	38.919	31.579	31.943	1.00 31.52	T	C
50	ATOM	3727	CD1	TYR		78	38.505	31.093	30.706	1.00 29.66	T	C
	ATOM	3728		TYR		78	38.147	31.274	33.062	1.00 30.05	T	С
	ATOM	3729	CE1	TYR	T	78	37.352	30.331	30.587	1.00 30.62	T	C
	ATOM	3730		TYR		78	36.998	30.512	32.955	1.00 30.31	T	C
	ATOM	3731	CZ	TYR		78	36.604	30.044		1.00 30.37	T	C
55	ATOM	3732	0 H	TYR	T	78	35.458	29.296	31.607	1.00 31.28	T	0

	ATOM	3733	N	PRO	T	79	43.236	33.132	31.372	1.00 35.05	T	N
	ATOM	3734	CA	PRO	T	79	44.365	34.047	31.573	1.00 35.74	T	C
	ATOM	3735	С	PRO	T	79	43.914	35.395	32.139	1.00 36.81	T	C
	ATOM	3736	0	PR0	T	79	43.932	35.611	33.352	1.00 37.66	T	0
5	ATOM	3737	СВ	PR0	T	79	44.949	34.178	30.173	1.00 35.23	T	C
	ATOM	3738	CG	PR0	T	79	43.723	34.105	29.313	1.00 35.61	T	C
	ATOM	3739	CD	PRO	T	79	42.960	32.951	29.935	1.00 35.09	T	С
	ATOM	3740	N	GLU	T	91	38.161	24.891	23.662	1.00 26.53	T	N
	ATOM	3741	CA	GLU	T	91	37.694	24.757	25.073	1.00 26.00	T	C
10	ATOM	3742	С	GLU	T	91	38.810	25.160	26.043	1.00 26.45	T	C
	ATOM	3743	0	GLU	T	91	39.991	24.986	25.748	1.00 24.05	T	0
	ATOM	3744	СВ	GLU	T	91	37.238	23.315	25.331	1.00 24.69	T	C
	ATOM	3745	CG	GLU	T	91	36.117	22.857	24.384	1.00 22.94	T	С
	ATOM	3746	CD	GLU	T	91	35.711	21.405	24.588	1.00 20.53	Т	C
15	ATOM	3747	0E1	GLU	T	91	36.581	20.582	24.780	1.00 21.42	T	0
	ATOM	3748	0E2	GLU	T	91	34.525	21.111	24.538	1.00 21.55	T	0
	ATOM	3749	N	PRO	T	92	38.443	25.714	27.212	1.00 27.49	T	N
	ATOM	3750	CA	PR0	T	92	39.402	26.153	28.232	1.00 28.13	T	С
	ATOM	3751	С	PR0	T	92	40.087	25.028	28.998	1.00 27.90	T	С
20	ATOM	3752	0	PRO	T	92	39.618	23.893	29.012	1.00 28.67	T	0
	ATOM	3753	СВ	PR0	T	92	38.545	27.016	29.148	1.00 29.05	T	C
	ATOM	3754	CG	PR0	T	92	37.243	26.282	29.135	1.00 30.13	T	С
	ATOM	3755	CD	PR0	T	92	37.063	25.993	27.650	1.00 28.84	T	С
	ATOM	3756	N	LEU	T	93	41.199	25.361	29.642	1.00 28.40	T	N
25	ATOM	3757	CA	LEU	T	93	41.944	24.392	30.435	1.00 27.14	T	С
	ATOM	3758	С	LEU		93	41.152	24.159	31.710	1.00 24.86	T	С
	ATOM	3759	0	LEU	T	93	40.576	25.094	32.268	1.00 23.66	T	0
	ATOM	3760	СВ	LEU	T	93	43.327	24.936	30.797	1.00 29.29	Т	С
	ATOM	3761	CG	LEU	T	93	44.208	25.476	29.665	1.00 33.20	T	С
30	ATOM	3762	CD1	LEU	T	93	45.541	25.928	30.247	1.00 34.70	T	С
	ATOM	3763	CD2	LEU	T	93	44.426	24.412	28.604	1.00 34.85	T	С
	ATOM	3764	N	TYR	T	94	41.108	22.912	32.162	1.00 23.07	T	N
	ATOM	3765	CA	TYR	T	94	40.379	22.584	33.379	1.00 20.97	T	С
	ATOM	3766	С	TYR	T	94	40.878	21.296	34.007	1.00 19.78	T	С
35	ATOM	3767	0	TYR	T	94	41.676	20.562	33.422	1.00 18.62	T	0
	ATOM	3768	СВ	TYR	T	94	38.875	22.454	33.104	1.00 20.47	T	C
	ATOM	3769	CG	TYR	T	94	38.496	21.246	32.272	1.00 21.39	T	C
	ATOM	3770	CD1	TYR	T	94	38.595	21.268	30.877	1.00 20.22	T	C
	ATOM	3771	CD2	TYR	T	94	38.054	20.071	32.883	1.00 19.95	T	С
40	ATOM	3772	CE1	TYR	T	94	38.266	20.149	30.113	1.00 20.60	T	C
	ATOM	3773	CE2	TYR	T	94	37.719	18.947	32.128	1.00 20.65	T	С
	ATOM	3774	CZ	TYR	T	94	37.828	18.993	30.747	1.00 21.30	T	С
	ATOM	3775	0 H	TYR	T	94	37.508	17.881	30.004	1.00 21.41	T	0
	ATOM	3776	N	GLU	T	95	40.380	21.035	35.207	1.00 18.35	T	N
45	ATOM	3777	CA	GLU	T	95	40.733	19.857	35.976	1.00 19.30	T	C
	ATOM	3778	C	GLU	T	95	39.452	19.393	36.660	1.00 18.34	T	C
	ATOM	3779	0	GLU	T	95	38.667	20.216	37.133	1.00 17.95	T	0
	ATOM	3780	СВ	GLU	T	95	41.782	20.231	37.028	1.00 22.02	T	С
	ATOM	3781	CG	$\operatorname{GL} \operatorname{U}$	T	95	42.241	19.097	37.936	1.00 28.22	T	C
50	ATOM	3782	CD	GLU		95	43.004	18.024	37.189	1.00 30.84	T	С
,	ATOM	3783	0E1	GLU		95	43.404	18.269	36.044	1.00 34.07	T	0
	ATOM	3784	0E2	GLU	T	95	43.205	16.957	37.753	1.00 31.49	T	0
	ATOM	3785	N	ASN	T	96	39.233	18.084	36.697	1.00 15.73	T	N
	ATOM	3786	CA	ASN	T	96	38.052	17.537	37.348	1.00 16.84	T	C
55	ATOM	3787	С	ASN	T	96	38.375	17.281	38.815	1.00 16.63	T	C

	ATOM	3788	0	ASN	T	96	39.5	26	17.045	39.172	1.00	17.38		T	0
	ATOM	3789	CB	ASN	T	96	37.62	23	16.211	36.703	1.00	15.17		T	С
	ATOM	3790	CG	ASN	T	96	37.13	10	16.381	35.279	1.00	18.47		T	С
	ATOM	3791	0D1	ASN	T	96	36.49	58	17.371	34.957	1.00	16.54		T	0
5	ATOM	3792	ND2	ASN	T	96	37.38	84	15.394	34.425	1.00	16.63		T	N
	ATOM	3793	N	SER	T	97	37.39	55	17.335	39.660	1.00	15.24		Т	N
	ATOM	3794	CA	SER	T	97	37.52	23	17.068	41.082	1.00	17.45		T	С
	ATOM	3795	С	SER	T	97	37.12	25	15.613	41.313	1.00	18.06		Т	С
	ATOM	3796	0	SER	T	97	36.59		14.958	40.419		18.60		T	0
10	ATOM	3797	СВ	SER		97	36.57		17.935	41.893		16.21		Т	С
	ATOM	3798	0 G	SER		97	35.23		17.519	41.660	1.00	15.25		T	0
	ATOM	3799	N	PRO		98	37.40		15.076	42.508		19.40		T	N
	ATOM	3800	CA	PRO	Т	98	36.99		13.686	42.710		19.93		T	С
	ATOM	3801	С	PRO	Т	98	35.47		13.714	42.878		19.53		T	С
15	ATOM	3802	0	PR0	T	98	34.90		14.767	43.139		20.13		T	0
	ATOM	3803	СВ	PRO		98	37.73		13.289	43.997		22.25		T	C
	ATOM	3804	CG	PR0		98	37.88		14.595	44.720		22.51		T	С
	ATOM	3805	CD	PRO		98	38.26		15.537	43.606		21.78		T	C
	ATOM	3806	N	GLU		99	34.83		12.579	42.708		19.80		T	N
20	ATOM	3807	CA	GLU	T	99	33.37		12.555	42.872		20.54		Т	С
	ATOM	3808	С	GLU		99	33.07		12.827	44.334		20.49		T	C
	ATOM	3809	0	GLU		99	33.88		12.511	45.210		20.71		T	0
	ATOM	3810	СВ	GLU		99	32.83		11.198	42.464		23.90		T	C
	ATOM	3811	CG	GLU		99	33.06		10.850	41.009		30.24		T	C
25	ATOM	3812	CD	GLU		99	32.38		9.561	40.609		34.08		T	C
	ATOM	3813	0E1	GLU		99	32.62		8.547	41.256		39.49		T	0
	ATOM	3814	0E2	GLU		99	31.63		9.578			37.57		T	0
	ATOM	3815	N			100	31.92		13.422	44.603		19.39		T	N
	ATOM	3816	CA			100	31.58		13.723	45.974		20.04		T	C
30	ATOM	3817	С			100	30.09		13.404	46.279		19.86		T	C
	ATOM	3818	0			100	29.19		13.977	45.684		22.07		T	0
	ATOM	3819	СВ			100	31.81		15.202	46.285		18.94		T	С
	ATOM	3820	CG			100	31.55		15.570	47.721		17.26		T	С
	ATOM	3821				100	32.34		15.051	48.734		17.16		T	C
35	ATOM	3822		PHE			30.50		16.417	48.063		17.80		T	C
	ATOM	3823				100	32.10		15.369	50.072		18.82		T	C
	ATOM	3824		PHE			30.25		16.739	49.402		18.00		T	C
	ATOM	3825	CZ	PHE			31.05		16.212	50.405	1.00	14.11		T	С
	ATOM	3826	N			101	29.88		12.486	47.213	1.00	19.96		T	N
40	ATOM	3827	CA	THR			28.52		12.125	47.618		19.19		T	С
	ATOM	3828	С	THR	Т	101	28.35		12.669	49.032	1.00	19.73		T	С
	ATOM	3829	0			101	28.77		12.041	50.005		19.00		T	0
	ATOM	3830	СВ			101	28.33		10.602	47.616	1.00	19.88		T	С
	ATOM	3831	0G1	THR			28.76		10.075	46.353		19.78		T	0
45	ATOM	3832		THR			26.86		10.252	47.842	1.00	16.06		T	С
	ATOM	3833	N	PRO			27.74		13.851	49.159	,	20.90		T	N
	ATOM	3834	CA	PRO			27.51		14.514	50.450		20.65		T	С
	ATOM	3835	C	PRO			27.11		13.595	51.599		21.85		T	С
	ATOM	3836	0	PRO			27.82		13.483	52.594		22.55		T	0
50	ATOM	3837	СВ	PRO			26.42		15.539	50.126		20.56		T	C
	ATOM	3838	CG	PRO			26.71		15.892	48.691		19.84		T	С
	ATOM	3839	CD			102	27.00		14.540	48.079		20.33		T	С
	ATOM	3840	N	TYR	T	103	25.96		12.946	51.458	1.00	21.87		T	N
	ATOM	3841	CA			103	25.44	11	12.050	52.484	1.00	22.45		T	С
55	MOTA	3842	C	TYR	T	103	26.46	34	11.034	53.003	1.00	22.95	•	T	С

	A m 0 15	0040		m II D		100	00 504	10 == 1	= 4 000				-	•
	ATOM	3843	0	TYR			26.534	10.774	54.200		23.24		T	0
	ATOM	3844	CB			103	24.222	11.308	51.936		23.18		T	С
	ATOM	3845	CG	TYR			23.404	10.588	52.983		23.57		T	С
~	ATOM	3846		TYR			22.458	11.272	53.747		23.47		T	С
5	ATOM	3847	CD2				23.559	9.220	53.197	1.00	22.61		T	С
	ATOM	3848	CE1	TYR	T	103	21.684	10.612	54.693	1.00	23.51		Т	С
	ATOM	3849	CE2	TYR	T	103	22.785	8.548	54.145	1.00	23.64		T	С
	ATOM	3850	CZ	TYR	T	103	21.852	9.251	54.885	1.00	23.20		T	C
	ATOM	3851	0 H	TYR	T	103	21.089	8.602	55.824	1.00	24.87		T	0
10	ATOM	3852	N	LEU	T	104	27.256	10.465	52.101	1.00	23.67		T	N
	ATOM	3853	CA	LEU	T	104	28.250	9.468	52.474	1.00	22.89		Т	С
	ATOM	3854	С	LEU	T	104	29.579	10.006	53.000	1.00	23.88		Т	С
	ATOM	3855	0	LEU	T	104	30.272	9.307	53.743		23.44		Т	0
	ATOM	3856	СВ	LEU			28.546	8.550	51.285		22.13		T	C
15	ATOM	3857	CG	LEU			27.414	7.715	50.680		23.01		- T	C
	ATOM	3858		LEU			27.973	6.885	49.531		20.25		T	Ċ
	ATOM	3859		LEU			26.797	6.808	51.747		20.91		T	C
	ATOM	3860	N	GLU			29.957	11.225	52.627		23.91		T	N
	ATOM	3861	CA	GLU			31.243	11.733	53.092		25.61		T	C
20	ATOM	3862	C	GLU			31.364	13.110	53.752		24.53		T	C
20	ATOM	3863	0	GLU			32.473	13.529	54.080		24.54		T	0
	ATOM	3864	C B	GLU			32.473				26.37			
		3865	CG					11.599	51.967				T	C
	ATOM			GLU			31.867	12.121	50.611		28.41		T	C
25	ATOM	3866	CD	GLU			32.602	11.421	49.471		27.99		T	C
20	ATOM	3867	0E1	GLU			33.821	11.326	49.516		27.95		Γ	0
	ATOM	3868	0E2	GLU			31.950	10.979	48.543		27.09		r	0
	ATOM	3869	N	THR			30.258	13.813	53.973		23.46		T	N
	ATOM	3870	C A	THR			30.367	15.112	54.632		22.92		T	С
0.0	ATOM	3871	С	THR			30.738	14.856	56.091		24.04		Γ	С
30	ATOM	3872	0	THR			30.143	14.002	56.752		22.58	•	Γ	0
	ATOM	3873	CB	THR			29.052	15.919	54.586	1.00	21.63	,	Г	C
	ATOM	3874	0G1				29.308	17.265	55.010	1.00	21.19	,	Γ	0
	ATOM	3875		THR			28.009	15.312	55.506		21.52		Г	C
	ATOM	3876	Ń	ASN			31.728	15.587	56.588	1.00	22.90	,	Γ	N
35	ATOM	3877	CA	ASN	T	107	32.171	15.417	57.965	1.00	24.07	•	Γ	C
	ATOM	3878	С	ASN	T	107	31.108	15.795	58.978	1.00	24.33	•	r	С
	ATOM	3879	0	ASN	T	107	30.380	16.773	58.799	1.00	24.71	•	Γ	0
	ATOM	3880	CB	ASN	T	107	33.424	16.252	58.232	1.00	24.30	•	Г	C
	ATOM	3881	CG	ASN	T	107	34.633	15.725	57.507	1.00	25.25		Γ	С
40	ATOM	3882	0D1	ASN	T	107	35.037	14.582	57.707	1.00	29.41	,	r	0
	ATOM	3883	ND2	ASN	T	107	35.223	16.553	56.657	1.00	28.39		7	N
	ATOM	3884	N	LEU	T	108	31.017	15.006	60.041	1.00	24.30		r	N
	ATOM	3885	CA	LEU	T	108	30.068	15.279	61.110	1.00	24.22		Γ	С
	ATOM	3886	C	LEU	T	108	30.744	16.309	62.007	1.00	22.82	•	Γ	C
45	ATOM	3887	0	LEU	T	108	31.870	16.105	62.452		21.51		r	0
	ATOM	3888	СВ	LEU			29.772	13.998	61.890		25.35		r	С
	ATOM	3889	CG	LEU			29.094	12.904	61.062		27.74		ſ	С
	ATOM	3890	CD1	LEU			29.156	11.562	61.786		27.60		ſ	С
	ATOM	3891		LEU			27.659	13.318	60.786		28.49		ſ	C
50	ATOM	3892	N	GLY			30.066	17.425	62.252		23.68		[N
	ATOM	3893	CA	GLY			30.648	18.461	63.084		22.92	1		C
	ATOM	3894	C	GLY			30.829	18.004	64.520		23.12	7		C
	ATOM	3895	0	GLY			30.240	17.003	64.927		21.62	1		0
	ATOM	3896	N	GLN			31.656	18.718	65.281		21.54	1		N
55	ATOM	3897	CA	GLN			31.869	18.378	66.683		21.94	1		C
55	11 2 0 14	5501	On	ODK	•	~ * • •	31.000	-0.070	30.000	±.00	<i>□</i> 1. 0 ±			U

	ATOM	3898	С	GLN	T	110	30.527	18.570	67.381	1.00 21.65	T	C
	ATOM	3899	0	GLN	T	110	29.916	19.630	67.276	1.00 21.94	T	0
	ATOM	3900	CB	GLN	T	110	32.919	19.304	67.313	1.00 21.36	T	C
	ATOM	3901	CG	GLN	T	110	33.166	19.045	68.802	1.00 21.01	T	С
5	ATOM	3902	CD	GLN	T	110	34.203	19.979	69.398	1.00 21.94	T	C
	ATOM	3903	0E1	GLN	T	110	34.139	21.189	69.207	1.00 24.10	T	0
	ATOM	3904	NE2	GLN	T	110	35.162	19.419	70.132	1.00 21.56	T	N
	ATOM	3905	N	PRO	T	111	30.045	17.542	68.094	1.00 23.09	T	N
	ATOM	3906	CA	PRO	T	111	28.762	17.651	68.790	1.00 22.88	T	С
10	ATOM	3907	С	PRO	T	111	28.920	18.496	70.043	1.00 24.37	T	С
	ATOM	3908	0	PRO	T	111	30.032	18.876	70.408	1.00 24.44	T	0
	ATOM	3909	CB	PRO	T	111	28.418	16.198	69.141	1.00 23.56	T	С
	ATOM	3910	CG	PRO	Ţ	111	29.425	15.358	68.352	1.00 23.39	T	C
	ATOM	3911	CD	PRO	T	111	30.641	16.217	68.322	1.00 22.94	T	С
15	ATOM	3912	N	THR	T	112	27.797	18.769	70.697	1.00 25.07	T	N
	ATOM	3913	CA	THR	T	112	27.762	19.552	71.918	1.00 25.43	T	С
	ATOM	3914	С	THR	T	112	26.764	18.915	72.880	1.00 26.70	T	С
	ATOM	3915	0	THR	T	112	25.616	18.681	72.512	1.00 26.69	T	0
	ATOM	3916	CB	THR	T	112	27.295	21.001	71.645	1.00 27.11	T	С
20	ATOM	3917	0G1	THR	T	112	28.261	21.673	70.830	1.00 29.22	T	0
	ATOM	3918	CG2	THR	T	112	27.114	21.765	72.955	1.00 26.39	T	C
	ATOM	3919	N	ILE	T	113	27.202	18.626	74.102	1.00 26.55	T	N
	ATOM	3920	CA	ILE	T	113	26.314	18.057	75.111	1.00 27.02	T	С
	ATOM	3921	C	ILE	T	113	25.371	19.181	75.536	1.00 28.66	T	C
25	ATOM	3922	0	ILE	T	113	25.811	20.228	76.010	1.00 29.26	T	0
	ATOM	3923	CB	ILE	T	113	27.117	17.541	76.337	1.00 26.73	T	C
	ATOM	3924	C G 1	ILE	T	113	27.926	16.305	75.935	1.00 24.38	T	С
	ATOM	3925	CG2	ILE	T	113	26.179	17.208	77.490	1.00 25.10	T	C
	ATOM	3926	CD1	ILE	T	113	28.821	15.766	77.021	1.00 27.02	T	C
30	ATOM	3927	N	GLN	T	114	24.073	18.967	75.347	1.00 30.54	T	N
	ATOM	3928	C A	GLN	T	114	23.069	19.967	75.690	1.00 31.98	T	С
	ATOM	3929	C			114	22.772	20.033	77.185	1.00 33.02	T	C
	ATOM	3930	0			114	22.588	21.119	77.739	1.00 33.20	T	0
~ -	ATOM	3931	CB			114	21.773	19.688	74.926	1.00 32.72	T	С
35	ATOM	3932	CG			114	20.714	20.773	75.070	1.00 34.48	T	C
	ATOM	3933	CD			114	19.499	20.516	74.199	1.00 36.97	T	С
	ATOM	3934	0E1			114	18.648	19.686	74.523	1.00 39.79	T	0
	ATOM	3935		GLN			19.421	21.218	73.077	1.00 37.84	T	N
40	ATOM		N				22.721			1.00 34.02	T	N
40	ATOM	3937	CA			115	22.442	18.810	79.262	1.00 34.71	T	C
	ATOM	3938	C			115	22.528	17.392	79.811	1.00 36.31	T	C
	ATOM	3939	0			115	22.729	16.429	79.072	1.00 34.54	T	0
	ATOM	3940	CB			115	21.041	19.350	79.544	1.00 34.16	T	C
4 5	ATOM	3941	0 G			115	20.056	18.493	78.989	1.00 34.47	T	0
45	ATOM	3942	N			116	22.384	17.286	81.126	1.00 39.39	T	N
	ATOM	3943	CA			116	22.391	16.006	81.814	1.00 43.50	Ţ	C
	ATOM	3944	С			116	21.700	16.155	83.160	1.00 45.33	T	C
	ATOM	3945	0			116	22.130	16.930	84.013	1.00 46.10	T	0
~ ^	ATOM	3946	CB			116	23.816	15.449	81.990	1.00 43.81	T	C
50	ATOM	3947	CG			116	24.829	16.456	82.449	1.00 44.31	T	С
	ATOM	3948		PHE			25.669	17.079	81.532	1.00 46.06	T	C
	ATOM	3949		PHE			24.976	16.753	83.797	1.00 45.66	T	C
	ATOM	3950		PHE			26.643	17.977	81.949	1.00 45.84	T	С
==	ATOM	3951		PHE			25.946	17.651	84.227	1.00 46.21	T	C
55	ATOM	3952	CZ	PHE	T	116	26.783	18.264	83.299	1.00 47.39	T	С

	ATOM	3953	N	GLU			20.609	15.416	83.331	1.00 47.44	T	N
	ATOM	3954	C A	GLU			19.832	15.465	84.561	1.00 50.33	T	C
	ATOM	3955	С	GLU			19.909	14.160	85.340	1.00 51.09	T	С
	ATOM	3956	0			117	19.858	13.073	84.765	1.00 50.21	T	0
5	ATOM	3957	СВ	GLU			18.368	15.770	84.239	1.00 52.68	T	С
	ATOM	3958	CG	GLU			17.499	16.012	85.462	1.00 54.67	T	С
	ATOM	3959	CD	GLU			16.035	16.159	85.114	1.00 56.19	T	С
	ATOM	3960	0E1				15.263	16.548	85.987	1.00 58.48	T	0
4 0	ATOM	3961	0E2	GLU			15.671	15.878	83.971	1.00 57.72	T	0
10	ATOM	3962	N	GLN			20.026	14.278	86.657	1.00 52.53	T	N
	ATOM	3963	CA	GLN			20.091	13.113	87.524	1.00 53.52	T	С
	ATOM	3964	C	GLN			18.790	12.987	88.307	1.00 53.74	T	С
	ATOM	3965	0	GLN			18.292	13.967	88.863	1.00 52.43	T	0
	ATOM	3966	CB	GLN			21.268	13.237	88.495	1.00 55.69	T	С
15	ATOM	3967	CG	GLN			21.248	14.505	89.345	1.00 58.28	T	С
	ATOM	3968	CD	GLN			22.398	14.581	90.341	1.00 59.98	T	С
	ATOM	3969		GLN			22.559	15.585	91.038	1.00 60.49	T	0
	ATOM	3970	NE2	GLN			23.198	13.520	90.417	1.00 59.89	T	N
0.0	ATOM	3971	N	VAL			18.236	11.780	88.336	1.00 54.32	T	N
20	ATOM	3972	CA	VAL			16.999	11.527	89.064	1.00 55.20	T	С
	ATOM	3973	С	VAL			17.342	10.874	90.400	1.00 55.28	T	С
	ATOM	3974	0	VAL			17.050	11.421	91.465	1.00 55.61	T	0
	ATOM	3975	СВ	VAL			16.056	10.592	88.270	1.00 55.27	T	С
0 =	ATOM	3976		VAL			14.808	10.294	89.089	1.00 55.95	T	С
25	ATOM	3977		VAL			15.675	11.239	86.948	1.00 55.25	T	С
	ATOM	3978	N	GLY			17.968	9.705	90.330	1.00 54.96	T	N
	ATOM	3979	CA	GLY			18.357	8.992	91.531	1.00 55.01	T	C
	ATOM	3980	C			120	19.681	8.294	91.305	1.00 55.06	T	C
0.0	ATOM	3981	0	GLY			20.739	8.802	91.681	1.00 54.95	T	0
30	ATOM	3982	N	THR			19.622	7.124	90.680	1.00 54.66	T	N
	ATOM	3983	CA	THR			20.824	6.356	90.388	1.00 54.74	T -	C
	ATOM	3984	C	THR			21.039	6.232	88.876	1.00 53.59	T	C
	ATOM	3985	0	THR			21.706	5.311	88.406	1.00 53.56	T	0
25	ATOM	3986	CB	THR			20.743	4.945	91.010	1.00 55.32	T	C
35	ATOM	3987	0G1				21.985	4.259	90.805	1.00 56.26	T	0
	ATOM	3988		THR			19.607	4.145	90.379	1.00 55.25	T	C
	ATOM ATOM	3989 3990	N CA	LYS LYS			20.474 20.599	7.171	88.122	1.00 52.48	T T	N C
	ATOM		С				20.720	7.178 8.611	86.669	1.00 51.79 1.00 50.74	T	C
40	ATOM	3991	0	LYS			20.720	9.532		1.00 50.74		
40	ATOM	3993	C B	LYS			19.385	6.493	86.713 86.038	1.00 50.09	T T	C 0
	ATOM	3994	CG	LYS			19.303	5.042	86.475	1.00 52.21	T	C
	ATOM	3995	CD	LYS			17.813	$\frac{3.042}{4.797}$	87.036	1.00 55.85	T	C
	ATOM	3996	CE	LYS			17.508	5.721	88.216	1.00 57.36	T	C
45	ATOM	3997	ΝZ	LYS			16.108	5.599	88.713	1.00 57.30	T	N
TO	ATOM	3998	N Z	VAL			21.498	8.792	85.091	1.00 48.62	T	N
	ATOM	3999	C A	VAL			21.712	10.111	84.504	1.00 46.58	T	C
	ATOM	4000	C	VAL			21.280	10.170	83.040	1.00 44.65	T	C
	ATOM	4001	0	VAL			21.533	9.248	82.267	1.00 44.03	T	0
50	ATOM	4001	CB	VAL			23.207	10.519	84.597	1.00 45.12	T	C
00	ATOM	4002		VAL			23.439	11.859	83.907	1.00 46.11	T	C
	ATOM	4004		VAL			23.630	10.599	86.055	1.00 46.11	T	C
	ATOM	4005	N	ASN			20.622	11.261	82.670	1.00 42.65	T	N
	ATOM	4006	C A	ASN			20.022	11.456	81.301	1.00 42.03	T	C
55	ATOM	4007	C	ASN			21.069	12.470	80.604	1.00 38.83	T	C
55	,	-50,	Ū	11011	1	~ <i>_</i>			50,004	2.00 00.00	1	J

	ATOM	4008	0	ASN	T	124	21.026	13.655	80.915	1.00 38.66	T	0
	ATOM	4009	CB	ASN	T	124	18.725	11.957	81.282	1.00 42.92	T	С
	ATOM	4010	CG	ASN	T	124	18.287	12.420	79.904	1.00 45.20	T	С
	ATOM	4011	0D1	ASN	T	124	18.444	11.703	78.917	1.00 47.86	T	0
5	ATOM	4012	ND2	ASN	T	124	17.728	13.623	79.833	1.00 46.71	T	N
	ATOM	4013	N	VAL	T	125	21.892	11.999	79.674	1.00 35.58	T	N
	ATOM	4014	CA	VAL	T	125	22.779	12.890	78.934	1.00 34.22	T	C
	ATOM	4015	С	VAL	T	125	22.150	13.178	77.576	1.00 32.94	T	С
	ATOM	4016	0	VAL	T	125	21.938	12.273	76.776	1.00 32.50	T	0
10	ATOM	4017	CB	VAL	T	125	24.180	12.264	78.723	1.00 33.64	T	C
	ATOM	4018	CG1	VAL	T	125	25.051	13.205	77.897	1.00 33.24	T	C
	ATOM	4019	CG2	VAL	T	125	24.840	11.994	80.069	1.00 31.46	T	C
	ATOM	4020	N	THR	T	126	21.835	14.442	77.332	1.00 31.93	T	N
	ATOM	4021	CA	THR	T	126	21.225	14.847	76.078	1.00 31.44	T	С
15	ATOM	4022	С	THR	T	126	22.246	15.541	75.181	1.00 30.53	T	С
	ATOM	4023	0	THR	T	126	22.995	16.406	75.631	1.00 30.92	T	0
	ATOM	4024	CB	THR	T	126	20.035	15.801	76.333	1.00 32.80	T	С
	ATOM	4025	0G1	THR	T	126	19.046	15.126	77.123	1.00 34.45	T	0
	ATOM	4026	CG2	THR	T	126	19.404	16.248	75.018	1.00 33.11	T	С
20	ATOM	4027	N	VAL	T	127	22.273	15.144	73.915	1.00 28.54	T	N
	ATOM	4028	CA	VAL	T	127	23.181	15.720	72.931	1.00 28.68	T	С
	ATOM	4029	С	VAL	T	127	22.381	16.700	72.074	1.00 29.29	T	С
	ATOM	4030	0	VAL	T	127	21.293	16.376	71.596	1.00 28.57	T	0
	ATOM	4031	СВ	VAL	T	127	23.776	14.631	72.009	1.00 27.25	T	C
25	ATOM	4032	CGI	VAL	T	127	24.740	15.260	71.013	1.00 28.11	T	С
	ATOM	4033	CG2	VAL	T	127	24.478	13.567	72.837	1.00 26.10	T	С
	ATOM	4034	N	GLU	T	128	22.923	17.896	71.880	1.00 30.12	T	N
	ATOM	4035	CA	GLU	T	128	22.248	18.920	71.094	1.00 32.79	T	С
	ATOM	4036	C	${\tt GLU}$	T	128	22.060	18.489	69.642	1.00 33.25	T	С
30	ATOM	4037	0	${\tt GLU}$	T	128	23.005	18.051	68.987	1.00 32.52	T	0
	ATOM	4038	CB	$\operatorname{GL} \operatorname{U}$	T	128	23.049	20.222	71.146	1.00 35.07	T	C
	ATOM	4039	CG	$\operatorname{GL} \operatorname{U}$	T	128	22.327	21.419	70.558	1.00 39.25	T	C
	ATOM	4040	CD	GLU	T	128	23.162	22.681	70.624	1.00 42.60	T	С
	ATOM	4041	0 E 1	$\operatorname{GL} \operatorname{U}$	T	128	24.132	22.785	69.872	1.00 42.38	T	0
35	ATOM	4042	0E2	GLU	T	128	22.842	23.549	71.436	1.00 44.49	T	0
	ATOM	4043	N	ASP	T	129	20.834	18.602	69.146	1.00 34.87	T	N
	ATOM	4044	CA	ASP	T	129	20.543	18.234	67.765	1.00 38.67	T	С
	ATOM	4045	C			129	21.016		66.908	1.00 39.15	T	С
	ATOM	4046	0	ASP	T	129	20.271	20.355	66.684	1.00 40.95	T	0
40	ATOM	4047	CB	ASP	T	129	19.038	18.020	67.571	1.00 41.05	T	С
	ATOM	4048	CG	ASP	T	129	18.721	17.167	66.354	1.00 44.26	T	С
	ATOM	4049				129	19.421	17.291	65.355	1.00 45.06	T	0
	ATOM	4050	0D2	ASP	T	129	17.768	16.387	66.411	1.00 46.55	T	0
	ATOM	4051	N	GLU	T	130	22.259	19.328	66.442	1.00 39.21	T	N
45	ATOM	4052	CA			130	22.859	20.388	65.639	1.00 39.23	T	С
	ATOM	4053	C			130	22.242		64.257	1.00 37.36	T	C
	ATOM	4054	0			130	21.867	19.548	63.627	1.00 35.82	T	0
	ATOM	4055	CB			130	24.362		65.485	1.00 43.16	T	С
	ATOM	4056	CG			130	25.175		65.294	1.00 46.75	T	С
50	ATOM	4057	CD			130	26.607		64.891	1.00 48.44	T	C
	MOTA	4058		GLU			26.819		63.766	1.00 52.82	T	0
	ATOM	4059	0E2	GLU			27.496		65.701	1.00 49.66	T	0
	ATOM	4060	N			131	22.151		63.785	1.00 36.07	T	N
	ATOM	4061	C A			131	21.590			1.00 34.72	T	С
55	ATOM	4062	C	ARG	T	131	22.631	21.836	61.377	1.00 32.32	T	С

	ATOM	4063	0	ARG	131	23.838	21.925	61.612	1.00 30.97	T	0
	ATOM	4064	CB	ARG	Γ 131	21.000	23.436	62.402	1.00 37.34	T	С
	ATOM	4065	CG	ARG '	Γ 131	21.948	24.547	62.807	1.00 41.83	T	С
	ATOM	4066	CD	ARG '	ր 131	21.330	25.901	62.509	1.00 43.91	T	C
5	ATOM	4067	NE	ARG	Ր 131	22.022	26.999	63.178	1.00 45.56	T	N
	ATOM	4068	CZ	ARG	131	21.691	28.280	63.048	1.00 45.22	T	С
	ATOM	4069	NH1	ARG	r 131	20.679	28.634	62.265	1.00 44.75	T	N
	ATOM	4070	NH2	ARG '	131	22.362	29.208	63.715	1.00 46.22	T	N
	ATOM	4071	N	THR	Г 132	22.141	21.556	60.177	1.00 29.36	T	N
10	ATOM	4072	CA	THR	Г 132	22.989	21.343	59.013	1.00 25.98	T	С
	ATOM	4073	С	THR	Г 132	22.664	22.438	58.008	1.00 26.04	T	С
	ATOM	4074	0	THR	Г 132	21.750	23.236	58.220	1.00 25.67	T	0
	ATOM	4075	СВ		Г 132	22.689	19.986	58.351	1.00 24.12	T	С
	ATOM	4076	0G1	THR		21.425	20.061	57.680	1.00 19.80	T	0
15	ATOM	4077		THR		22.621	18.874	59.403	1.00 22.09	T	C
	ATOM	4078	N		ľ 133	23.410	22.471	56.912	1.00 26.23	T	N
	ATOM	4079	CA	LEU '		23.181	23.459	55.867	1.00 28.66	T	C
	ATOM	4080	С		133	22.060	23.029	54.922	1.00 31.07	T	C
	ATOM	4081	0		T 133	21.664	23.788	54.038	1.00 31.66	T	0
20	ATOM	4082	СВ		Г 133	24.466	23.700	55.069	1.00 25.94	T	C
	ATOM	4083	CG		r 133	25.457	24.719	55.645	1.00 24.82	T	C
	ATOM	4084		LEU		24.818	26.095	55.618	1.00 23.33	T	C
	ATOM	4085		LEU		25.873	24.336	57.068	1.00 23.50	T	C
	ATOM	4086	N		Γ 134	21.553	21.812	55.104	1.00 32.72	T	N
25	ATOM	4087	CA		Г 134	20.475	21.309	54.260	1.00 35.27	T	C
	ATOM	4088	С		T 134	19.203	22.086	54.557	1.00 37.69	T	C
	ATOM	4089	0		Г 134	18.691	22.045	55.671	1.00 37.30	T	0
	ATOM	4090	СВ		î 134	20.207	19.803	54.508	1.00 33.94	T	C
	ATOM	4091		VAL		19.038	19.335	53.652	1.00 31.92	Ť	Ċ
30	ATOM	4092		VAL		21.453	18.992	54.189	1.00 30.88	T	C
00	ATOM	4093	N		T 135	18.702	22.803	53.558	1.00 42.86	T	N
	ATOM	4094	CA		Γ 135	17.485	23.587	53.720	1.00 48.17	T	C
	ATOM	4095	C		135 135	16.268	22.895	53.123	1.00 51.28	Ť	C
	ATOM	4096	0		Г 135	16.332	22.333	52.031	1.00 52.30	T	0
35	ATOM	4097	СВ		135 T	17.636	24.960	53.063	1.00 48.77	T	C
00	ATOM	4098	CG		î 135	17.844	26.107	54.032	1.00 51.28	T	C
	ATOM	4099	CD		T 135	17.150	27.366	53.522	1.00 53.42	T	C
	ATOM	4100	NE	ARG		17.342	28.513	54.408	1.00 54.39	T	N
	ATOM	4101	•	ARG		18.442	29.260		1.00 54.74	T	C
40	ATOM	4102		ARG		19.473	28.995	53.659	1.00 53.86	T	N
-0	ATOM	4103		ARG		18.512	30.276	55.303	1.00 55.25	T	N
	ATOM	4104	N		Г 136	15.161	22.938	53.855	1.00 55.32	T	N
	ATOM	4105	CA		T 136	13.905	22.355	53.401	1.00 59.86	T	C
	ATOM	4106	C		Г 136	12.764	23.218	53.912	1.00 60.84	T	C
45	ATOM	4107	0		Г 136	12.685	23.514	55.105	1.00 60.73	T	0
	ATOM	4108	СВ		Г 136	13.740	20.917	53.903	1.00 62.06	T	Č
	ATOM	4109	CG		ſ 136	14.704	19.926	53.266	1.00 65.96	T	C
	ATOM	4110	CD	ARG		14.066	18.552	53.079	1.00 68.51	T	C
	ATOM	4111	NE	ARG '		13.514	18.011	54.320	1.00 71.12	T	N
50	ATOM	4112	CZ	ARG '		13.019	16.784	54.453	1.00 72.57	T	C
. .	ATOM	4113		ARG '		12.999	15.951	53.420	1.00 73.26	T	N
	ATOM	4114		ARG		12.542	16.387	55.625	1.00 73.03	T	N
	ATOM	4115	N		Γ 137	11.888	23.623	52.998	1.00 62.35	T	N
	ATOM	4116	C A	ASN '		10.751	24.473	53.330	1.00 63.21	T	C
55	ATOM	4117	С		Γ 137	11.254	25.891	53.602	1.00 62.33	T	C
			-	- ·						**	-

	ATOM	4118	0	ASN	T	137	11.409	26.685	52.674	1.00 63.22	T	0
	ATOM	4119	СВ	ASN	Т	137	10.001	23.924	54.552	1.00 65.32	T	С
	ATOM	4120	CG	ASN	Т	137	9.422	22.542	54.311	1.00 67.61	T	C
	ATOM	4121		ASN			10.147	21.596	54.002	1.00 69.63	T	0
5	ATOM	4122	ND2			137	8.108	22.419	54.456	1.00 69.48	T	N
•	ATOM	4123	N			138	11.518	26.205	54.867	1.00 60.71	T	N
	ATOM	4124	CA			138	12.003	27.531	55.234	1.00 58.80	T	C
	ATOM	4125	C				12.940				T	C
						138		27.486	56.445	1.00 56.17		
10	ATOM	4126	0			138	13.061	28.467	57.179	1.00 56.57	T	0
10	ATOM	4127	CB			138	10.823	28.464	55.542	1.00 60.66	T	C
	ATOM	4128	CG			138	9.842	28.582	54.381	1.00 62.38	T	С
	ATOM	4129		ASN			9.132	27.631	54.049	1.00 62.68	T	0
	ATOM	4130		ASN			9.801	29.756	53.760	1.00 63.11	T	N
	ATOM	4131	N			139	13.606	26.352	56.649	1.00 52.17	T	N
15	ATOM	4132				139	14.520	26.197	57.777	1.00 48.11	T	С
	ATOM	4133	С	THR	T	139	15.641	25.203	57.483	1.00 43.77	T	С
	ATOM	4134	0	THR	T	139	15.649	24.548	56.442	1.00 43.95	T	0
	ATOM	4135	CB	THR	T	139	13.772	25.709	59.040	1.00 49.28	T	С
	ATOM	4136	0G1	THR	T	139	13.085	24.486	58.745	1.00 48.22	T	0
20	ATOM	4137	CG2	THR	T	139	12.771	26.755	59.516	1.00 49.39	T	С
	ATOM	4138	N	PHE	T	140	16.586	25.102	58.412	1.00 39.50	T	N
	ATOM	4139	CA	PHE	T	140	17.713	24.184	58.284	1.00 34.81	T	С
	ATOM	4140	С	PHE		140	17.369	22.876	58.987	1.00 33.69	T	С
	ATOM	4141	0	PHE		140	16.857	22.884	60.107	1.00 33.95	T	0
25	ATOM	4142	СВ	PHE		140	18.968	24.782	58.924	1.00 31.68	T	C
	ATOM	4143	CG	PHE		140	19.538	25.956	58.177	1.00 29.78	T	C
	ATOM	4144		PHE			20.222	25.772	56.980	1.00 28.87	T	C
	ATOM	4145		PHE			19.404	27.247	58.679	1.00 29.29	T	C
	ATOM	4146		PHE			20.770	26.856	56.293	1.00 27.26	T	C
30	ATOM	4147				140	19.948	28.341	57.999	1.00 27.20	T	C
50		4148	CZ									
	ATOM					140	20.634	28.142	56.803	1.00 26.93	T	C
	ATOM	4149	N			141	17.648	21.758	58.325	1.00 31.02	T	N
	ATOM	4150	CA			141	17.374	20.446	58.890	1.00 29.31	T	C
25	ATOM	4151	C			141	18.484	20.056	59.849	1.00 28.67	T	С
35	ATOM	4152	0			141	19.654	20.369	59.623	1.00 27.90	T	0
	ATOM	4153	CB			141	17.285	19.389	57.788	1.00 28.83	T	C
	ATOM	4154	CG			141	16.220	19.545	56.706	1.00 29.79	T	С
	ATOM	4155		LEU			16.308	18.356	55.761	1.00 27.88	T	С
4.0	ATOM	4156		LEU	_			19.634		1.00 29.65	T	С
40	ATOM	4157	N			142	18.116	19.359	60.916	1.00 26.59	T	N
	ATOM	4158	CA			142	19.095	18.930	61.900	1.00 25.72	T	С
	ATOM	4159	С			142	19.815	17.689	61.389	1.00 25.43	T	C
	ATOM	4160	0			142	19.422	17.099	60.380	1.00 24.69	T	0
	ATOM	4161	CB			142	18.405	18.617	63.225	1.00 24.53	T	С
45	ATOM	4162	0 G	SER	T	142	17.693	17.393	63.142	1.00 27.31	T	0
	ATOM	4163	N	LEU	T	143	20.866	17.287	62.095	1.00 25.42	T	N
	ATOM	4164	CA	LEU	T	143	21.632	16.117	61.700	1.00 26.13	T	С
	ATOM	4165	С	LEU	T	143	20.765	14.862	61.714	1.00 27.25	T	С
	ATOM	4166	0			143	20.931	13.973	60.875	1.00 27.17	T	0
50	ATOM	4167	CB			143	22.830	15.936	62.630	1.00 28.10	Т	С
	ATOM	4168	CG			143	23.975	15.082	62.080	1.00 29.38	T	C
	ATOM	4169	CD1	LEU			24.572	15.759	60.854	1.00 30.74	T	C
	ATOM	4170		LEU			25.041	14.903	63.153	1.00 33.30	T	C
	ATOM	4171	N			144	19.837	14.778	62.662	1.00 28.42	T	N
55	ATOM			ARG			18.973	13.609	62.721	1.00 29.34	T	C
					-		,,,				-	-

	ATOM	4173	С	ARG	T	144	17.850	13.700	61.687	1.00	29.34	T	•	C
	ATOM	4174	0	ARG	T	144	17.338	12.676	61.244	1.00	30.63	T	•	0
	ATOM	4175	CB	ARG	T	144	18.403	13.411	64.127	1.00	28.19	1		C
	ATOM	4176	CG	ARG	T	144	17.727	12.059	64.285	1.00	29.87	1	•	C
5	ATOM	4177	CD	ARG	T	144	17.594	11.638	65.736	1.00	29.47	T	•	С
	ATOM	4178	NE	ARG	T	144	18.861	11.246	66.358	1.00	29.59	1	•	N
	ATOM	4179	CZ	ARG	T	144	19.587	10.183	66.017	1.00	28.70	r		C
	ATOM	4180	NHl	ARG	T	144	19.195	9.378	65.039	1.00	28.08	7	•	N
	ATOM	4181	NH2	ARG	T	144	20.699	9.904	66.682	1.00	27.54	1		N
10	ATOM	4182	N	ASP	T	145	17.469	14.918	61.301	1.00	29.51	T		N
	ATOM	4183	CA	ASP	T	145	16.438	15.093	60.275	1.00	30.78	1	•	C
	ATOM	4184	C	ASP	T	145	16.940	14.472	58.970	1.00	29.67	1	•	C
	ATOM	4185	0	ASP	T	145	16.195	13.793	58.263	1.00	30.38	T		0
	ATOM	4186	CB	ASP	T	145	16.147	16.578	60.007	1.00	31.56	T	•	C
15	ATOM	4187	CG	ASP	T	145	15.239	17.204	61.048	1.00	33.74	I	l	C
	ATOM	4188	0D1	ASP	T	145	14.327	16.520	61.530	1.00	37.12	T	•	0
	ATOM	4189	0D2	ASP	T	145	15.430	18.385	61.356	1.00	31.92	T	•	0
	ATOM	4190	N	VAL	T	146	18.215	14.719	58.670	1.00	27.99	1	•	N
	ATOM	4191	CA	VAL	T	146	18.871	14.231	57.459	1.00	25.95	T	•	C
20	ATOM	4192	С	VAL	Ţ	146	19.245	12.750	57.474	1.00	26.46	Γ	1	C
	ATOM	4193	0	VAL	T	146	18.922	12.024	56.541	1.00	27.73	Γ		0
	ATOM	4194	CB	VAL	T	146	20.168	15.048	57.164	1.00	24.95	1	ı	С
	ATOM	4195	CG1			146	20.901	14.461	55.960		20.92	1	•	С
	ATOM	4196	CG2	VAL	T	146	19.823	16.519	56.916	1.00	20.74	ī	l	С
25	ATOM	4197	N			147	19.929	12.305	58.524	1.00	26.36	Γ		N
	ATOM	4198	CA			147	20.369	10.912	58.619		25.98	1	<u>l</u>	С
	ATOM	4199	C			147	19.379	9.919	59.236		27.12	Ί		С
	ATOM	4200	0			147	19.536	8.708	59.084		25.23	ī		0
0.0	ATOM	4201	CB			147	21.689	10.844	59.389		24.48	1		С
30	ATOM	4202	CG			147	22.844	11.465	58.662		25.86	T		С
	ATOM	4203		PHE			23.388	10.848	57.546		25.81	1		С
	ATOM	4204		PHE			23.377	12.681	59.082		26.68	1		C
	ATOM	4205		PHE			24.450	11.429	56.852		27.09	1		C
0 =	ATOM	4206					24.435	13.267	58.398		26.05	T		C
35	ATOM	4207	CZ			147	24.972	12.639	57.280		25.43	Ţ		С
	ATOM	4208	N			148	18.368	10.421	59.930		27.07	1		N
	ATOM	4209	CA			148	17.406	9.526	60.542		30.74	I		C
	ATOM	4210	C			148	18.079	8.427	61.347		31.38	1		C
40	ATOM		0			148		8.710		1.00		1		0
40	MOTA	4212	N			149	17.757	7.174	61.033		31.90	T		N
	ATOM	4213	CA			149	18.319	6.024	61.745		30.48	I		C
	ATOM	4214	C			149	19.784	5.707	61.448		29.20	T		C
	ATOM	4215	0			149	20.391	4.894	62.143		28.53 32.10	I		0
15	ATOM	4216	CB			149	17.480	4.771	61.475			T		C
4 5	ATOM	4217	CG			149	17.526	4.284	60.036		34.68	T		C
	ATOM	4218	CD			149	16.654	3.045	59.849		38.94	T		C
	ATOM	4219	CE			149	16.596	2.617	58.390		39.85	T		C
	ATOM	4220	N Z			149	17.943	2.260	57.865 60.416		42.88 28.28	T		N N
50	ATOM	4221	N			150	20.356	6.318				T		N C
50	ATOM	4222	C A			150	21.763	6.060	60.103		27.67 26.20	T		C
	ATOM ATOM	4223	C			150	22.698	6.678	61.142		26.29	Т		C
	A T O M A T O M	4224 4225	0 CB			150	23.859	6.283	61.257 58.727		28.41	T		0
			CG			150	22.137	6.620			30.84	T	-	C
55	ATOM ATOM	4226 4227				150	21.631	5.765 4.547	57.592 57.765		30.37	T T		C
บบ	AIUM	4001	ODT	ASP	1	T 2 ()	21.557	4.547	31.703	1.00	50.57	1		0

	ATOM	4228	000	ASP	т	150	21 220	6 210	EG E20	1.00 31.25	Tr.	۸
	ATOM	4229	N N			151	21.330 22.186	6.319 7.645	56.530 61.897	1.00 31.25	T T	0
	ATOM	4230	CA			151	22.180	8.342	62.901	1.00 24.20		N
	ATOM	4231	C	LEU			22.800	7.847	64.333	1.00 24.32	T T	C
5	ATOM	4231	0			151			64.805		_	C
9						151	21.681	7.654		1.00 23.35	T	0
	ATOM	4233	CB				22.651	9.839	62.858	1.00 23.48	T	C
	ATOM	4234	CG			151	23.299	10.741	63.916	1.00 24.55	T	C
	ATOM	4235		LEU			24.791	10.863	63.649	1.00 21.55	T	C
10	ATOM	4236		LEU			22.638	12.117	63.885	1.00 24.04	T	С
10	ATOM	4237	N			152	23.917	7.639	65.020	1.00 23.69	T	N
	ATOM	4238	CA			152	23.882	7.235	66.419	1.00 23.13	T	C
	ATOM	4239	C			152	24.886	8.111	67.154	1.00 23.28	T	C
	ATOM	4240	0			152	25.736	8.752	66.537	1.00 24.54	T	0
15	ATOM	4241	CB			152	24.287	5.747	66.643	1.00 22.81	T	C
15	ATOM	4242	CG1				25.799	5.584	66.493	1.00 22.58	T	C
	ATOM	4243	CG2				23.534	4.839	65.672	1.00 23.41	T	C
	ATOM	4244		ILE			26.322	4.228	66.945	1.00 22.76	T	С
	ATOM	4245	N			153	24.779	8.150	68.472	1.00 23.49	T -	N
90	ATOM	4246	CA			153	25.711	8.920	69.271	1.00 24.51	T	C
20	ATOM	4247	C			153	26.359	7.984	70.274	1.00 24.18	T	C
	ATOM	4248	0			153	25.715	7.078	70.802	1.00 24.71	T	0
	ATOM	4249	CB			153	24.995	10.067	69.984	1.00 23.68	T	C
	ATOM	4250	CG			153	24.745	11.256	69.081	1.00 23.64	T	С
95	ATOM	4251		TYR			25.805	12.036	68.623	1.00 23.71	T	C
25	ATOM	4252	CD2	TYR			23.454	11.597	68.677	1.00 22.84	T	C
	ATOM	4253		TYR			25.590	13.130	67.786	1.00 21.55	T	С
	ATOM	4254		TYR			23.226	12.690	67.839	1.00 22.98	T	С
	ATOM	4255	CZ	TYR			24.301	13.450	67.399	1.00 22.00	T	С
20	ATOM	4256	0 H	TYR			24.092	14.527	66.575	1.00 21.50	T	0
30	ATOM	4257	N	THR			27.647	8.193	70.506	1.00 23.44	T	N
	ATOM	4258	CA	THR			28.403	7.381	71.438	1.00 23.84	T	C
	ATOM	4259	C	THR			28.830	8.250	72.615	1.00 25.48	T	C
	ATOM	4260	0 CD	THR			29.260	9.387	72.431	1.00 25.59	T	0
25	ATOM	4261	CB	THR			29.640	6.783	70.741	1.00 24.28	T	C
35	ATOM	4262		THR			29.212	5.846	69.742	1.00 24.66	T	0
	ATOM	4263		THR			30.540	6.081	71.740	1.00 27.90	T	C
	ATOM	4264	N	LEU			28.685	7.715	73.822	1.00 26.46	T	N
	ATOM	4265	CA	LEU			29.056	8.428	75.036	1.00 29.00	T	C
40	ATOM	4266		LEU			30.286	7.788		1.00 31.35	T	C
40	ATOM	4267	0	LEU			30.356	6.570	75.831	1.00 33.70	T	0
	ATOM	4268		LEU			27.894	8.416	76.039	1.00 26.23	T	C
	ATOM	4269	C G	LEU			28.112	9.127	77.381	1.00 26.86	T	C
	ATOM	4270		LEU			28.263	10.620	77.155	1.00 25.42	T	С
45	ATOM	4271		LEU			26.941	8.851	78.307	1.00 24.97	T	C
40	ATOM ATOM	$\frac{4272}{4273}$	N C A	TYR			31.254 32.494	8.625	76.014	1.00 33.72	T	N
		$\frac{4273}{4274}$	C	TYR				8.198	76.649	1.00 36.80	T	C
	ATOM			TYR			32.466	8.870	78.016	1.00 37.49	T	С
	ATOM ATOM	$\frac{4275}{4276}$	0 C B	TYR			32.747 33.690	10.061 8.703	78.125	1.00 37.28	T	0
50				TYR					75.835	1.00 39.78	T	C
50	ATOM ATOM	4277 4278	C G	TYR			35.056	8.392	76.413	1.00 44.27	T	C
	ATOM ATOM	$\frac{4278}{4279}$		TYR			35.633	7.130	76.262	1.00 45.90	T	С
				TYR			35.787	9.374	77.085	1.00 46.33	T	C
	ATOM ATOM	$\frac{4280}{4281}$		TYR			36.908	6.856	76.762	1.00 46.82	T	C
55	ATOM	4281		TYR			37.060	9.110	77.590	1.00 46.50	T	C
ออ	итом	T404	U L	TYR	1	100	37.614	7.851	77.424	1.00 47.92	T	С

	ATOM	4283	0 H	TYR	T	156	38.875	7.593	77.914	1.00	48.85	T	0
	ATOM	4284	N	TYR	T	157	32.098	8.113	79.047	1.00	38.10	T	N
	ATOM	4285	CA	TYR	T	157	32.017	8.650	80.404	1.00	39.51	T	C
	ATOM	4286	C	TYR	T	157	32.911	7.927	81.407	1.00	41.43	T	С
5	ATOM	4287	0	TYR	T	157	33.153	6.729	81.286	1.00	41.55	T	0
	ATOM	4288	СВ	TYR	T	157	30.566	8.627	80.905	1.00	37.07	T	С
	ATOM	4289	CG	TYR	T	157	29.924	7.255	81.019	1.00	36.59	T	С
	ATOM	4290	CD1	TYR			29.578	6.520	79.884	1.00	36.61	T	С
	ATOM	4291		TYR			29.622	6.712	82.269	1.00	36.44	T	С
10	ATOM	4292		TYR			28.942	5.282	79.990	1.00	36.96	Т	С
	ATOM	4293	CE2	TYR	Т	157	28.989	5.478	82.388	1.00	36.19	T	С
	ATOM	4294	CZ	TYR	Т	157	28.649	4.768	81.247	1.00	37.43	T	С
	ATOM	4295	0 H			157	28.011	3.554	81.362	1.00	35.29	T	0
	ATOM	4296	N			158	33.393	8.666	82.402	1.00	44.59	T	N
15	ATOM	4297	CA			158	34.266	8.101	83.423		48.36	T	С
	ATOM	4298	С			158	33.941	8.612	84.822	1.00	50.71	T	С
	ATOM	4299	0			158	33.389	9.700	84.989	1.00	50.01	T	0
	ATOM	4300	СВ	TRP	T	158	35.727	8.414	83.092		48.77	T	С
	ATOM	4301	CG	TRP		158	36.071	9.873	83.156	1.00	50.02	T	С
20	ATOM	4302	CD1	TRP	T	158	36.242	10.631	84.281		50.16	T	С
	ATOM	4303	CD2			158	36.291	10.752	82.045	1.00	50.25	T	С
	ATOM	4304	NE1			158	36.557	11.924	83.940	1.00	50.45	T	N.
	ATOM	4305	CE2	TRP	T	158	36.595	12.027	82.574	1.00	49.97	T	C
	ATOM	4306	CE3	TRP		158	36.262	10.585	80.653	1.00	50.09	T	С
25	ATOM	4307	CZ2	TRP	T	158	36.869	13.131	81.760	1.00	49.43	T	С
	ATOM	4308	CZ3	TRP			36.534	11.685	79.843	1.00	50.00	T	С
	MOTA	4309	CH2	TRP	T	158	36.834	12.941	80.402	1.00	50.53	T	С
	ATOM	4310	N	LYS	T	159	34.295	7.815	85.826	1.00	54.36	T	N
	ATOM	4311	CA	LYS	T	159	34.053	8.167	87.220	1.00	57.78	T	С
30	ATOM	4312	С	LYS	T	159	35.218	9.024	87.735	1.00	58.65	T	С
	ATOM	4313	0	LYS	T	159	35.371	10.173	87.325	1.00	60.01	T	0
	ATOM	4314	CB	LYS	T	159	33.911	6.887	88.053	1.00	59.26	T	С
	ATOM	4315	CG	LYS	T	159	33.266	7.081	89.416	1.00	61.42	T	С
	ATOM	4316	CD	LYS	T	159	33.503	5.877	90.322	1.00	63.98	T	С
35	ATOM	4317	CE	LYS	T	159	32.979	4.584	89.712	1.00	65.42	T	С
	ATOM	4318	ΝZ	LYS	T	159	31.501	4.599	89.542	1.00	67.11	T	N
	ATOM	4319	N	SER	T	160	36.035	8.460	88.622	1.00	60.77	T	N
	ATOM	4320	CA	SER	T	160	37.188	9.152	89.198	1.00	62.01	T	С
	ATOM	4321	С	SER	T	160	37.933	8.228	90.157	1.00	62.68	T	C
40	ATOM	4322	0	SER	T	160	37.520	8.043	91.303	1.00	63.75	T	0
	ATOM	4323	CB	SER	T	160	36.751	10.413	89.952	1.00	62.64	T	С
	ATOM	4324	0 G	SER	T	160	36.348	11.441	89.063	1.00	63.25	T	0
	ATOM	4325	N	GLY	T	164	39.552	4.169	84.389	1.00	46.65	T	N
	ATOM	4326	CA	GLY	T	164	38.188	3.681	84.302	1.00	46.62	T	C
45	ATOM	4327	С	GLY	T	164	37.414	4.314	83.161	1.00	45.68	T	С
	MOTA	4328	0	GLY	T	164	36.884	5.415	83.296	1.00	45.48	T	0
	ATOM	4329	N	LYS	T	165	37.347	3.611	82.036	1.00	45.62	T	N
	ATOM	4330	CA	LYS	T	165	36.635	4.100	80.859	1.00	44.77	T	С
	ATOM	4331	С	LYS	T	165	35.296	3.385	80.697	1.00	42.99	T	С
50	ATOM	4332	0	LYS	T	165	35.198	2.178	80.921	1.00	43.15	T	0
	ATOM	4333	CB	LYS	T	165	37.480	3.885	79.593	1.00	47.71	T	С
	ATOM	4334	CG	LYS	T	165	38.658	4.851	79.404	1.00	51.07	T	C
	ATOM	4335	CD	LYS	T	165	39.777	4.652	80.424	1.00	53.07	T	С
	ATOM	4336	CE			165	40.370	3.252	80.348	1.00	55.53	T	С
55	ATOM	4337	ΝZ	LYS	T	165	40.940	2.954	79.005	1.00	58.19	T	N

	ATOM	4338	N	LYS	T	166	34.269	4.135	80.309	1.00 40.32	T	N
	ATOM	4339	CA	LYS	T	166	32.937	3.573	80.103	1.00 38.29	T	С
	ATOM	4340	C	LYS	T	166	32.325	4.137	78.818	1.00 36.09	T	С
	ATOM	4341	0	LYS	T	166	32.609	5.268	78.427	1.00 32.41	T	0
5	ATOM	4342	СВ	LYS	T	166	32.032	3.892	81.297	1.00 40.50	T	С
	ATOM	4343	CG			166	32.510	3.306	82.617	1.00 43.96	Т	С
	ATOM	4344	CD			166	31.622	3.752	83.767	1.00 45.60	Т	C
	ATOM	4345	CE	LYS		166	32.151	3.265	85.107	1.00 47.87	Т	C
	ATOM	4346	ΝZ			166	31.334	3.791	86.239	1.00 49.02	T	N
10	ATOM	4347	N			167	31.475	3.347	78.172	1.00 33.24	T	N
	ATOM	4348	CA			167	30.851	3.771	76.926	1.00 32.13	Ť	C
	MOTA	4349	C			167	29.386	3.355	76.799	1.00 30.44	Ť	C
	ATOM	4350	0			167	28.969	2.318	77.316	1.00 29.24	T	0
	ATOM	4351	СВ			167	31.623	3.205	75.719	1.00 33.05	T	C
15	ATOM	4352	0G1			167	31.000	3.632	74.502	1.00 34.90	T	0
10	ATOM	4353	CG2			167	31.633	1.686	75.767	1.00 34.83	T	C
	ATOM	4354	N N			168	28.616	4.184	76.102	1.00 27.66	T	N
	ATOM	4355	CA			168	27.201	3.934	75.866	1.00 27.00	T	C
	ATOM	4356	C			168	26.887	4.359	74.434	1.00 27.24	T T	C
20	ATOM	4357	0			168				1.00 26.79	T	
20							27.614	5.159	73.853	1.00 25.79		0
	ATOM	4358	C B			168	26.356	4.738	76.847		T	C
	ATOM	4359	N C A			169	25.815	3.818	73.864	1.00 25.71	T	N
	ATOM	4360	CA			169	25.421	4.174	72.503	1.00 24.30	T	C
25	ATOM	4361	C			169	23.912	4.341	72.416	1.00 23.34	T	C
25	ATOM	4362	0			169	23.165	3.613	73.056	1.00 25.30	T	0
	ATOM	4363	CB	LYS		169	25.898	3.108	71.519	1.00 25.23	T	C
	ATOM	4364	CG			169	27.401	2.925	71.531	1.00 24.44	T	C
	ATOM	4365	CD			169	27.864	1.937	70.489	1.00 25.08	T	C
0.0	ATOM	4366	CE			169	29.368	1.780	70.552	1.00 22.30	T	С
30	ATOM	4367	ΝZ			169	29.879	1.009	69.398	1.00 25.32	T	N
	ATOM	4368	N			170	23.467	5.309	71.625	1.00 24.63	T	N
	ATOM	4369	CA			170	22.040	5.574	71.475	1.00 24.26	T	С
	ATOM	4370	С			170	21.680	5.871	70.023	1.00 26.19	T	С
٥-	ATOM	4371	0	THR		170	22.491	6.408	69.269	1.00 26.16	T	0
35	ATOM	4372	CB			170	21.607	6.783	72.335	1.00 22.44	T	С
	ATOM	4373	0G1				20.202	7.008	72.178	1.00 21.98	T	0
	ATOM	4374	CG2	THR			22.361	8.040	71.907	1.00 20.38	T	С
	ATOM	4375	N			171	20.463	5.518	69.631	1.00 27.31	T	N
	ATOM	4376	CA	ASN			20.018	5.777	68.272	1.00 29.89	T	С
40	ATOM	4377	С	ASN	T	171	19.207	7.071	68.202	1.00 28.86	T	C
	ATOM	4378	0	ASN	T	171	18.659	7.416	67.158	1.00 30.77	T	0
	ATOM	4379	CB	ASN	T	171	19.201	4.596	67.744	1.00 34.19	T	C
	ATOM	4380	C G	ASN	T	171	17.917	4.401	68.497	1.00 38.11	T	C
	ATOM	4381	0D1	ASN	T	171	17.919	4.219	69.714	1.00 43.07	T	0
45	ATOM	4382	ND2	\mathtt{ASN}	T	171	16.803	4.433	67.778	1.00 42.28	T	N
	ATOM	4383	N	THR	T	172	19.129	7.781	69.324	1.00 27.79	T	N
	ATOM	4384	CA	THR	T	172	18.432	9.063	69.385	1.00 27.05	T	С
	ATOM	4385	C	THR	T	172	19.487	10.072	69.863	1.00 26.35	T	C
	ATOM	4386	0	THR	T	172	20.678	9.898	69.593	1.00 24.98	T	0
50	ATOM	4387	CB	THR	T	172	17.242	9.030	70.381	1.00 26.35	T	С
	ATOM	4388	0G1	THR			17.732	8.790	71.704	1.00 29.03	Т	0
	ATOM	4389	CG2	THR	T	172	16.258	7.930	70.009	1.00 26.97	Т	С
	ATOM	4390	N	ASN	T	173	19.065	11.119	70.559	1.00 24.76	T	N
	MOTA	4391	CA	ASN			20.008	12.112	71.061	1.00 26.67	T	С
55	ATOM	4392	С	ASN			20.147	12.074	72.578	1.00 26.96	T	С

	ATOM	4393	0	ASN	T	173	20.741	12.974	73.167	1.00 26.63	T	0
	ATOM	4394	СВ	ASN	T	173	19.583	13.517	70.632	1.00 27.09	T	C
	ATOM	4395	CG	ASN	T	173	19.974	13.829	69.206	1.00 27.88	T	C
	ATOM	4396	0D1	ASN	T	173	19.682	13.064	68.291	1.00 28.96	T	0
5	ATOM	4397	ND2	ASN	T	173	20.642	14.960	69.009	1.00 29.78	T	N
	ATOM	4398	N	GLU	T	174	19.617	11.028	73.206	1.00 26.96	T	N
	ATOM	4399	CA	GLU	T	174	19.680	10.906	74.659	1.00 28.12	T	С
	ATOM	4400	C	GLU	T	174	20.340	9.619	75.143	1.00 26.22	T	С
	ATOM	4401	0			174	20.215	8.569	74.523	1.00 26.38	T	0
10	ATOM	4402	СВ	GLU	T	174	18.268	11.012	75.241	1.00 32.01	T	С
	ATOM	4403	CG			174	17.604	12.365	74.996	1.00 39.60	T	С
	ATOM	4404	CD			174	16.095	12.313	75.150	1.00 45.20	T	С
	ATOM	4405	0E1	GLU			15.439	11.627	74.350	1.00 47.98	T	0
	ATOM	4406		GLU			15.575	12.951	76.068	1.00 49.78	T	0
15	ATOM	4407	N	PHE		175	21.047	9.722	76.262	1.00 26.73	T	N
	ATOM	4408	CA	PHE		175	21.730	8.591	76.877	1.00 26.52	T	С
	ATOM	4409	С	PHE		175	21.161	8.402	78.280	1.00 29.29	T	С
	ATOM	4410	0			175	21.052	9.367	79.037	1.00 29.51	Т	0
	ATOM	4411	СВ			175	23.228	8.873	77.012	1.00 23.85	T	С
20	ATOM	4412	CG			175	23.968	8.919	75.710	1.00 23.33	T	С
	ATOM	4413	CD1			175	24.315	7.743	75.051	1.00 22.59	T	С
	ATOM	4414		PHE		175	24.345	10.139	75.154	1.00 21.95	T	С
	ATOM	4415				175	25.034	7.780	73.851	1.00 24.26	T	С
	ATOM	4416				175	25.063	10.189	73.956	1.00 23.03	T	C
25	ATOM	4417	CZ			175	25.408	9.006	73.304	1.00 22.27	T	С
	ATOM	4418	N			176	20.791	7.171	78.622	1.00 31.93	Т	N
	ATOM	4419	CA			176	20.276	6.873	79.959	1.00 34.35	T	С
	ATOM	4420	C			176	21.250	5.879	80.574	1.00 35.33	Т	C
	ATOM	4421	0			176	21.255	4.705	80.211	1.00 36.35	T	0
30	ATOM	4422	СВ			176	18.876	6.254	79.890	1.00 34.93	Т	С
_	ATOM	4423	CG			176	18.220	5.937	81.243	1.00 36.34	T	C
	ATOM	4424	CD1	LEU			18.026	7.218	82.039	1.00 36.74	T	С
	ATOM	4425		LEU			16.876	5.250	81.022	1.00 37.90	Т	C
	ATOM	4426	N			177	22.083	6.355	81.494	1.00 36.14	T	N
35	ATOM	4427	CA			177	23.080	5.500	82.125	1.00 38.18	T	С
	ATOM	4428	С			177	22.968	5.430	83.643	1.00 39.89	Т	С
	ATOM	4429	0			177	22.350	6.284	84.274	1.00 38.85	T	0
	ATOM	4430	CB			177	24.510	5.974	81.795	1.00 38.42	T	С
	ATOM	4431	CG1	ILE	Т	177	24.750	7.358	82.407	1.00 38.45	T	С
40	ATOM	4432		ILE			24.712	6.009	80.288	1.00 38.52	T	С
	ATOM	4433	CD1	ILE	T	177	26.208	7.791	82.420	1.00 39.58	T	С
	ATOM	4434	N			178	23.589	4.403	84.215	1.00 42.03	T	N
	ATOM	4435	CA			178	23.602	4.192	85.657	1.00 45.50	T	С
	ATOM	4436	C			178	24.802	4.914	86.259	1.00 47.95	T	С
45	ATOM	4437	0	ASP	T	178	25.866	4.984	85.645	1.00 48.69	T	0
	ATOM	4438	СВ			178	23.704	2.699	85.969	1.00 45.09	T	С
	ATOM	4439	CG			178	22.462	1.935	85.572	1.00 45.52	T	С
	ATOM	4440	0D1	ASP			22.561	0.737	85.367	1.00 46.53	T	0
	ATOM	4441		ASP			21.402	2.543	85.480	1.00 47.77	T	0
50	ATOM	4442	N			179	24.630	5.447	87.463	1.00 51.00	T	N
-	ATOM	4443	C A	VAL	T	179	25.709	6.158	88.138	1.00 54.37	T	С
	ATOM	4444	С			179	25.697	5.894	89.638	1.00 57.41	T	C
	ATOM	4445	0			179	24.634	5.808	90.257	1.00 58.33	T	0
	ATOM	4446	СВ			179	25.610	7.684	87.912	1.00 53.68	T	С
55	ATOM	4447	CG1	VAL			25.755	8.002	86.434	1.00 54.55	T	С

	ATOM	4448	CG2	VAL	Т	179	24.285	8.206	88.445	1.00 53.15	T	С
	ATOM	4449	N	ASP		180	26.884	5.760	90.218	1.00 60.20	T	N
	ATOM	4450	CA	ASP		180	27.008	5.526	91.649	1.00 63.22	T	С
	ATOM	4451	C	ASP		180	26.787	6.854	92.363	1.00 64.55	T	C
5	ATOM	4452	0	ASP		180	27.554	7.800	92.178	1.00 64.55	T	0
Ü	ATOM	4453	CB	ASP		180	28.398	4.974	91.981	1.00 65.14	T	C
	ATOM	4454	CG	ASP		180	28.659	3.620	91.339	1.00 67.56	T	C
	ATOM	4455		ASP		180	28.706	3.545	90.113	1.00 69.02	T	0
	ATOM	4456		ASP		180	28.812	2.641	92.072	1.00 69.35	T	0
10	ATOM	4457	N N	LYS		181	25.730	6.924	93.169	1.00 66.14	T	N
10	ATOM	4458	CA	LYS		181	25.400	8.145	93.900	1.00 66.70	T	C
	ATOM	4459	C	LYS			26.589	8.693	94.679	1.00 66.19	T	C
	ATOM	4460	0			181	27.464	7.941	95.110	1.00 66.44	T	0
	ATOM	4461	CB			181	24.230	7.895	94.858	1.00 68.20	T	C
15	ATOM	4462	CG			181	22.910	7.573	94.166	1.00 70.66	T	С
10	ATOM	4463	CD	LYS		181	21.747	7.534	95.154	1.00 70.00	T	C
		4464	CE	LYS		181	21.747	6.434	96.194	1.00 71.98	T	C
	ATOM	4465	N Z					5.071		1.00 73.03	T	N
	ATOM			LYS		181	21.906 26.613		95.589	1.00 74.30	T	N
20	ATOM	4466	N			182		10.011	94.851			C
20	ATOM	4467	CA			182	27.698	10.647	95.578	1.00 65.07	T	
	ATOM	4468	C			182	29.030	10.580	94.856	1.00 64.52	T	С
	ATOM	4469	0			182	30.085	10.552	95.488	1.00 64.76	T	0
	ATOM	4470	N	GLU		183	28.985	10.558	93.528	1.00 63.96	T	N
o E	ATOM	4471	CA			183	30.197	10.496	92.722	1.00 63.00	T	C
25	ATOM	4472	C			183	30.012	11.349	91.471	1.00 60.60	T	C
	ATOM	4473	0 CD			183	28.948	11.336	90.854	1.00 60.74	T	0
	ATOM	4474	CB			183	30.493	9.047	92.333	1.00 65.51	T	C
	ATOM	4475	CG	GLU		183	31.877	8.829	91.749	1.00 69.10	T	С
20	ATOM	4476	CD	GLU		183	32.986	9.080	92.755	1.00 70.99	T	C
30	ATOM	4477	0E1			183	33.103	10.209	93.234	1.00 72.19	T	0
	ATOM	4478		GLU		183	33.730	8.143	93.056	1.00 71.72	T	0
	ATOM	4479	N	ASN		184	31.052	12.089	91.100	1.00 57.69	T	N
	ATOM	4480	CA			184	30.987	12.959	89.933	1.00 54.65	T	С
25	ATOM	4481	C	ASN		184	31.475	12.282	88.654	1.00 51.10	T	С
35	ATOM	4482	0	ASN		184	32.494	11.589	88.647	1.00 49.50	T	0
	ATOM	4483	CB			184	31.797	14.236	90.185	1.00 57.28	T	С
	ATOM	4484	CG			184	31.324	14.996	91.415	1.00 59.82	T	C
	ATOM	4485		ASN			31.448	14.517	92.545	1.00 62.30	T	0
40	ATOM	4486		ASN			30.775	16.187	91.200	1.00 60.42	T	N
40	ATOM	4487	N			185	30.733	12.492	87.572	1.00 46.87	T	N
	ATOM	4488	CA			185	31.072	11.919	86.276	1.00 43.13	T	С
	MOTA	4489	C			185	31.282	13.009	85.232	1.00 40.25	T	C
	ATOM	4490	0			185	30.614	14.042	85.257	1.00 38.63	T	0
4 =	ATOM	4491	CB			185	29.955	10.999	85.772	1.00 42.93	T	С
45	ATOM	4492	CG			185	29.806	9.679	86.491	1.00 43.09	T	C
	ATOM	4493	CD1			185	29.313	9.618	87.794	1.00 43.56	T -	C
	ATOM	4494		TYR			30.126	8.483	85.852	1.00 42.77	T	С
	ATOM	4495		TYR			29.137	8.400	88.441	1.00 44.38	Т	С
. .	ATOM	4496		TYR			29.955	7.260	86.489	1.00 44.41	T	C
50	ATOM	4497	CZ			185	29.459	7.225	87.784	1.00 44.61	T	С
	ATOM	4498	0 Н			185	29.273	6.016	88.413	1.00 46.20	T	0
	ATOM	4499	N			186	32.215	12.773	84.318	1.00 37.22	Т	N
	ATOM	4500	CA			186	32.469	13.711	83.233	1.00 35.28	T	С
	ATOM	4501	C			186	32.033	12.986	81.964	1.00 33.69	T	С
55	ATOM	4502	0	CYS	T	186	32.113	11.757	81.884	1.00 33.01	T	0

Table														
ATOM		ATOM	4503	СВ	CYS	T	186	33.948	14.084	83.145	1.00	34.62	T	С
5 ATOM 4506 CA PHE T 187 31.085 18.164 79.787 1.00 28.26 T ATOM 4508 0 PHE T 187 32.121 14.918 78.465 1.00 28.26 T ATOM 4609 CB PHE T 187 29.559 18.280 79.711 1.00 23.70 T ATOM 4511 CG PHE T 187 29.559 18.280 79.711 1.00 32.92 T ATOM 4512 CD2 PHE T 187 28.893 11.381 81.167 1.00 32.38 T ATOM 4513 CEP PHE T 187 28.196 10.887 82.330 1.00 34.37 T ATOM 4516 N SER T 188 31.612 12.992 77.397 1.00 20.66 T ATOM 4516 N SER T 188 31.612 12.992 77.397 1.0		ATOM	4504	SG	CYS	T	186	34.609	15.088	84.517	1.00	35.26	T	S
5 ATOM 4506 CA PHE T 187 31.085 18.164 79.787 1.00 28.26 T ATOM 4508 0 PHE T 187 32.121 14.918 78.465 1.00 28.26 T ATOM 4609 CB PHE T 187 29.559 18.280 79.711 1.00 23.70 T ATOM 4511 CG PHE T 187 29.559 18.280 79.711 1.00 32.92 T ATOM 4512 CD2 PHE T 187 28.893 11.381 81.167 1.00 32.38 T ATOM 4513 CEP PHE T 187 28.196 10.887 82.330 1.00 34.37 T ATOM 4516 N SER T 188 31.612 12.992 77.397 1.00 20.66 T ATOM 4516 N SER T 188 31.612 12.992 77.397 1.0		ATOM	4505	N	PHE	T	187	31.579	13.745	80.974	1.00	31.82	T	N
ATON			4506	CA	PHE	T	187	31.085	13.164				T	С
ATON	5	ATOM	4507	С	PHE	Т	187	31.657	13.778	78.465	1.00	28.26	Т	С
ATOM	-													0
ATOM														C
10														С
10														C
ATOM	10													С
ATOM	10													С
ATOM														C
ATOM														
15														C
ATOM	15													N
ATOM	19													C
ATOM														С
ATOM														0
20														С
ATOM	00													0
ATOM	20													N
ATOM														С
25														C
25														0
ATOM 4528 CG2 VAL T 189	~~													С
ATOM 4529 N GLN T 190 30.160 11.677 70.794 1.00 26.03 T ATOM 4530 CA GLN T 190 30.670 11.627 69.438 1.00 25.75 T ATOM 4531 C GLN T 190 29.562 11.173 68.495 1.00 24.90 T ATOM 4533 CB GLN T 190 28.825 10.238 68.803 1.00 24.21 T ATOM 4533 CB GLN T 190 31.845 10.651 69.415 1.00 27.57 T ATOM 4534 CG GLN T 190 31.845 10.651 69.415 1.00 27.57 T ATOM 4535 CD GLN T 190 33.803 9.605 68.276 1.00 31.44 T ATOM 4536 CB GLN T 190 33.803 9.605 68.276 1.00 31.44 T ATOM 4536 CB GLN T 190 33.8738 8.525 68.864 1.00 29.40 T ATOM 4538 N ALA T 191 29.428 11.854 67.361 1.00 22.92 T ATOM 4538 N ALA T 191 29.428 11.496 66.374 1.00 22.47 T ATOM 4539 CA ALA T 191 29.428 11.496 66.374 1.00 22.47 T ATOM 4539 CA ALA T 191 29.016 10.401 65.504 1.00 22.47 T ATOM 4540 CB ALA T 191 28.415 11.496 66.374 1.00 22.19 T ATOM 4544 CB ALA T 191 28.051 12.702 65.529 1.00 20.37 T ATOM 4544 CB ALA T 192 28.051 12.702 65.529 1.00 20.37 T ATOM 4546 CB ALA T 192 28.651 12.702 65.529 1.00 22.78 T ATOM 4546 CB ALA T 192 28.684 8.332 64.286 1.00 22.78 T ATOM 4546 CB ALA T 192 28.684 8.332 64.286 1.00 22.19 T ATOM 4546 CB ALA T 192 28.684 8.332 64.286 1.00 22.19 T ATOM 4546 CB ALA T 192 28.684 8.332 64.286 1.00 22.19 T ATOM 4546 CB ALA T 192 28.684 8.332 64.286 1.00 22.37 T ATOM 4546 CB ALA T 192 28.684 8.332 64.286 1.00 22.37 T ATOM 4546 CB ALA T 192 28.684 8.332 64.286 1.00 22.481 T ATOM 4546 CB ALA T 192 28.684 8.332 64.286 1.00 22.481 T ATOM 4549 CC VAL T 192 29.080 7.124 65.182 1.00 24.31 T ATOM 4549 CC VAL T 192 29.080 7.124 65.182 1.00 24.31 T ATOM 4549 CC VAL T 192 29.080 7.124 65.182 1.00 23.45 T ATOM 4549 CC VAL T 192 29.080 7.124 65.182 1.00 23.45 T ATOM 4549 CC VAL T 192 29.080 7.124 65.182 1.00 23.45 T ATOM 4549 CC VAL T 192 29.080 7.124 65.182 1.00 23.45 T ATOM 4549 CC VAL T 192 29.080 7.124 65.182 1.00 23.45 T ATOM 4549 CC VAL T 192 29.080 7.124 65.182 1.00 23.45 T ATOM 4549 CC VAL T 192 29.080 7.124 65.182 1.00 23.45 T ATOM 4550 N ILE T 193 27.881 7.746 59.845 1.00 23.45 T ATOM 4550 CD VAL T 193 27.881 7.746 59.845 1.00 23.45 T ATOM 4550 CD VAL T	25							27.850						С
## ATOM									14.412	72.503				С
ATOM 4531 C GLN T 190 29.562 11.173 68.495 1.00 24.90 T ATOM 4532 0 GLN T 190 28.825 10.238 68.803 1.00 24.21 T ATOM 4533 CB GLN T 190 31.845 10.6651 69.415 1.00 27.57 T ATOM 4534 CG GLN T 190 32.563 10.466 68.103 1.00 29.40 T ATOM 4536 OBI GLN T 190 33.803 9.605 68.276 1.00 31.44 T ATOM 4536 OBI GLN T 190 33.738 8.525 68.864 1.00 32.92 T 35 ATOM 4538 N ALA T 191 29.428 11.854 67.361 1.00 22.76 T ATOM 4539 C														N
30 ATOM 4532 0 GLN T 190 28.825 10.238 68.803 1.00 24.21 T ATOM 4533 CB GLN T 190 31.845 10.651 69.415 1.00 27.57 T ATOM 4534 CG GLN T 190 32.563 10.466 68.103 1.00 29.40 T ATOM 4535 CD GLN T 190 33.803 9.605 68.276 1.00 31.44 T ATOM 4536 OEI GLN T 190 33.738 8.525 68.864 1.00 32.92 T 35 ATOM 4537 NE2 GLN T 190 34.937 10.079 67.770 1.00 29.76 T ATOM 4538 N ALA T 191 29.428 11.854 67.361 1.00 23.85 T ATOM 4534 C ALA T 191 29.016 10.401 65.504 1.00 22.47 T ATOM 4542 CB ALA T 191 29.016 10.401 65.529 1.00 20.37 T 40 ATOM 4544 CA VAL T 191 28.051								30.670		69.438	1.00	25.75	T	С
## ATOM	0.0			C						68.495	1.00	24.90		С
ATOM 4534 CG GLN T 190 32.563 10.466 68.103 1.00 29.40 T ATOM 4535 CD GLN T 190 33.803 9.605 68.276 1.00 31.44 T ATOM 4536 0E1 GLN T 190 33.738 8.525 68.864 1.00 32.92 T 35 ATOM 4537 NE2 GLN T 190 34.937 10.079 67.770 1.00 29.76 T ATOM 4538 N ALA T 191 29.428 11.854 67.361 1.00 23.85 T ATOM 4539 CA ALA T 191 29.428 11.854 67.361 1.00 22.47 T ATOM 4540 C ALA T 191 29.016 10.401 65.504 1.00 22.81 T ATOM 4541 0 ALA T 191 30.212 10.424 65.214 1.00 22.19 T ATOM 4542 CB ALA T 191 28.051 12.702 65.529 1.00 20.37 T ATOM 4543 N VAL T 192 28.684 8.332 64.286 1.00 23.06 T ATOM 4544 CA VAL T 192 28.684 8.332 64.286 1.00 23.06 T ATOM 4545 C VAL T 192 27.636 7.854 63.285 1.00 25.12 T ATOM 4546 0 VAL T 192 29.080 7.124 65.182 1.00 24.31 T ATOM 4549 CG2 VAL T 192 29.694 6.023 64.347 1.00 23.66 T ATOM 4549 CG2 VAL T 192 29.694 6.023 64.347 1.00 23.66 T ATOM 4549 CG2 VAL T 192 29.694 6.023 64.347 1.00 23.66 T ATOM 4550 N ILE T 193 28.102 7.409 62.125 1.00 23.45 T ATOM 4550 N ILE T 193 27.233 6.856 61.098 1.00 27.61 T ATOM 4551 CA ILE T 193 27.233 6.856 61.098 1.00 27.61 T ATOM 4553 O ILE T 193 27.233 6.856 61.098 1.00 27.61 T ATOM 4555 CG1 ILE T 193 27.188 7.746 59.845 1.00 27.35 T ATOM 4555 CG1 ILE T 193 27.188 7.746 59.845 1.00 27.35 T ATOM 4555 CG1 ILE T 193 27.188 7.746 59.845 1.00 27.35 T	30			0									T	0
ATOM 4535 CD GLN T 190 33.803 9.605 68.276 1.00 31.44 T ATOM 4536 0E1 GLN T 190 33.738 8.525 68.864 1.00 32.92 T ATOM 4537 NE2 GLN T 190 34.937 10.079 67.770 1.00 29.76 T ATOM 4538 N ALA T 191 29.428 11.854 67.361 1.00 23.85 T ATOM 4539 CA ALA T 191 29.016 10.401 65.504 1.00 22.47 T ATOM 4540 C ALA T 191 30.212 10.424 65.214 1.00 22.81 T ATOM 4541 0 ALA T 191 28.051 12.702 65.529 1.00 20.37 T ATOM 4542 CB ALA T 191 28.051 12.702 65.529 1.00 20.37 T ATOM 4543 N VAL T 192 28.195 9.438 65.099 1.00 22.78 T ATOM 4544 CA VAL T 192 28.684 8.332 64.286 1.00 23.06 T ATOM 4545 C VAL T 192 27.636 7.854 63.285 1.00 25.12 T ATOM 4546 0 VAL T 192 26.435 7.911 63.549 1.00 25.90 T 45 ATOM 4548 CG1 VAL T 192 29.080 7.124 65.182 1.00 23.66 T ATOM 4548 CG1 VAL T 192 29.694 6.023 64.347 1.00 23.66 T ATOM 4550 N ILE T 193 28.102 7.409 62.125 1.00 23.45 T ATOM 4551 CA ILE T 193 27.233 6.856 61.098 1.00 27.61 T ATOM 4553 O ILE T 193 27.233 6.856 61.098 1.00 27.61 T ATOM 4554 CB ILE T 193 27.281 5.519 60.772 1.00 29.11 T ATOM 4555 CG1 ILE T 193 28.734 5.429 59.887 1.00 27.35 T ATOM 4554 CB ILE T 193 27.188 7.746 59.845 1.00 27.35 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T		ATOM		CB				31.845	10.651	69.415			T	С
ATOM 4536 OBI GLN T 190 33.738 8.525 68.864 1.00 32.92 T ATOM 4537 NE2 GLN T 190 34.937 10.079 67.770 1.00 29.76 T ATOM 4538 N ALA T 191 29.428 11.854 67.361 1.00 23.85 T ATOM 4539 CA ALA T 191 29.428 11.854 67.361 1.00 23.85 T ATOM 4540 C ALA T 191 29.016 10.401 65.504 1.00 22.81 T ATOM 4541 0 ALA T 191 28.061 12.702 65.529 1.00 20.37 T 40 ATOM 4543 N VAL T 192 28.684 8.332 64.286 1.00 22.78 T ATOM 4545 C VAL T 192 27.636 7.854 63.285 1.00 25.12													T	C
35 ATOM 4537 NE2 GLN T 190 34.937 10.079 67.770 1.00 29.76 T ATOM 4538 N ALA T 191 29.428 11.854 67.361 1.00 23.85 T ATOM 4539 CA ALA T 191 29.428 11.854 67.361 1.00 23.85 T ATOM 4540 C ALA T 191 29.016 10.401 65.504 1.00 22.47 T 40 ATOM 4541 0 ALA T 191 29.016 10.401 65.504 1.00 22.19 T 40 ATOM 4542 CB ALA T 191 28.051 12.702 65.529 1.00 20.37 T ATOM 4543 N VAL T 192 28.051 12.702 65.529 1.00 22.78 T ATOM </th <th></th> <th></th> <th></th> <th>CD</th> <th></th> <th></th> <th></th> <th>33.803</th> <th></th> <th>68.276</th> <th></th> <th></th> <th>T</th> <th>С</th>				CD				33.803		68.276			T	С
ATOM 4538 N ALA T 191 29.428 11.854 67.361 1.00 23.85 T ATOM 4539 CA ALA T 191 28.415 11.496 66.374 1.00 22.47 T ATOM 4540 C ALA T 191 29.016 10.401 65.504 1.00 22.81 T ATOM 4541 0 ALA T 191 30.212 10.424 65.214 1.00 22.19 T ATOM 4542 CB ALA T 191 28.051 12.702 65.529 1.00 20.37 T ATOM 4543 N VAL T 192 28.195 9.438 65.099 1.00 22.78 T ATOM 4544 CA VAL T 192 28.684 8.332 64.286 1.00 23.06 T ATOM 4545 C VAL T 192 27.636 7.854 63.285 1.00 25.12 T ATOM 4546 0 VAL T 192 26.435 7.911 63.549 1.00 25.90 T ATOM 4548 CG1 VAL T 192 29.080 7.124 65.182 1.00 24.31 T ATOM 4548 CG1 VAL T 192 29.694 6.023 64.347 1.00 23.66 T ATOM 4549 CG2 VAL T 192 29.694 6.023 64.347 1.00 23.66 T ATOM 4550 N ILE T 193 28.102 7.409 62.125 1.00 23.45 T ATOM 4551 CA ILE T 193 27.233 6.856 61.098 1.00 27.61 T ATOM 4553 0 ILE T 193 27.233 6.856 61.098 1.00 27.61 T ATOM 4553 0 ILE T 193 27.881 5.519 60.772 1.00 29.11 T ATOM 4554 CB ILE T 193 27.881 5.519 60.772 1.00 29.11 T ATOM 4555 CG1 ILE T 193 27.188 7.746 59.845 1.00 27.35 T ATOM 4555 CG1 ILE T 193 27.188 7.746 59.845 1.00 27.35 T ATOM 4555 CG1 ILE T 193 27.188 7.746 59.845 1.00 27.35 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T		ATOM	4536					33.738	8.525		1.00	32.92	T	0
ATOM 4539 CA ALA T 191 28.415 11.496 66.374 1.00 22.47 T ATOM 4540 C ALA T 191 29.016 10.401 65.504 1.00 22.81 T ATOM 4541 0 ALA T 191 30.212 10.424 65.214 1.00 22.19 T ATOM 4542 CB ALA T 191 28.051 12.702 65.529 1.00 20.37 T ATOM 4543 N VAL T 192 28.195 9.438 65.099 1.00 22.78 T ATOM 4544 CA VAL T 192 28.684 8.332 64.286 1.00 23.06 T ATOM 4545 C VAL T 192 27.636 7.854 63.285 1.00 25.12 T ATOM 4546 0 VAL T 192 26.435 7.911 63.549 1.00 25.90 T ATOM 4548 CG1 VAL T 192 29.080 7.124 65.182 1.00 24.31 T ATOM 4548 CG1 VAL T 192 29.080 7.124 65.182 1.00 24.31 T ATOM 4549 CG2 VAL T 192 29.694 6.023 64.347 1.00 23.66 T ATOM 4550 N ILE T 193 28.102 7.409 62.125 1.00 25.32 T ATOM 4551 CA ILE T 193 27.233 6.856 61.098 1.00 27.61 T ATOM 4553 O ILE T 193 27.283 6.856 61.098 1.00 27.61 T ATOM 4553 O ILE T 193 27.283 6.856 61.098 1.00 27.35 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4556 CG2 ILE T 193 26.420 7.039 58.734 1.00 26.33 T	35		4537						10.079	67.770			T	N
### ATOM													T	N
40 ATOM 4541 0 ALA T 191 30.212 10.424 65.214 1.00 22.19 T ATOM 4542 CB ALA T 191 28.051 12.702 65.529 1.00 20.37 T ATOM 4543 N VAL T 192 28.195 9.438 65.099 1.00 22.78 T ATOM 4544 CA VAL T 192 28.684 8.332 64.286 1.00 23.06 T ATOM 4545 C VAL T 192 27.636 7.854 63.285 1.00 25.12 T ATOM 4546 0 VAL T 192 26.435 7.911 63.549 1.00 25.90 T ATOM 4548 CG1 VAL T 192 29.080 7.124 65.182 1.00 24.31 T ATOM 4549 CG2 VAL T 192 29.694 6.023 64.347 1.00 23.66 T ATOM 4549 CG2 VAL T 192 30.051 7.564 66.272 1.00 23.45 T ATOM 4550 N ILE T 193 28.102 7.409 62.125 1.00 25.32 T ATOM 4553 0 ILE T 193 27.233 6.856 61.098 1.00 27.61 T ATOM 4553 0 ILE T 193 27.881 5.519 60.772 1.00 29.11 T ATOM 4554 CB ILE T 193 27.188 7.746 59.845 1.00 28.18 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4556 CG2 ILE T 193 26.420 7.039 58.734 1.00 26.33										66.374			T	С
40 ATOM 4542 CB ALA T 191 28.051 12.702 65.529 1.00 20.37 T ATOM 4543 N VAL T 192 28.195 9.438 65.099 1.00 22.78 T ATOM 4544 CA VAL T 192 28.684 8.332 64.286 1.00 23.06 T ATOM 4545 C VAL T 192 27.636 7.854 63.285 1.00 25.12 T ATOM 4546 0 VAL T 192 26.435 7.911 63.549 1.00 25.90 T 45 ATOM 4547 CB VAL T 192 29.080 7.124 65.182 1.00 24.31 T ATOM 4548 CG1 VAL T 192 29.694 6.023 64.347 1.00 23.66 T ATOM 4549 CG2 VAL T 192 30.051 7.564 66.272 1.00				С									T	C
ATOM 4543 N VAL T 192 28.195 9.438 65.099 1.00 22.78 T ATOM 4544 CA VAL T 192 28.684 8.332 64.286 1.00 23.06 T ATOM 4545 C VAL T 192 27.636 7.854 63.285 1.00 25.12 T ATOM 4546 0 VAL T 192 26.435 7.911 63.549 1.00 25.90 T ATOM 4547 CB VAL T 192 29.080 7.124 65.182 1.00 24.31 T ATOM 4548 CG1 VAL T 192 29.694 6.023 64.347 1.00 23.66 T ATOM 4549 CG2 VAL T 192 30.051 7.564 66.272 1.00 23.45 T ATOM 4550 N ILE T 193 28.102 7.409 62.125 1.00 25.32 T ATOM 4551 CA ILE T 193 27.233 6.856 61.098 1.00 27.61 T ATOM 4553 0 ILE T 193 27.881 5.519 60.772 1.00 29.11 T ATOM 4554 CB ILE T 193 27.188 7.746 59.845 1.00 28.18 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4556 CG2 ILE T 193 26.420 7.039 58.734 1.00 26.33 T		ATOM	4541	0				30.212	10.424	65.214	1.00	22.19	T	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	ATOM	4542	CB	ALA	T	191	28.051		65.529	1.00	20.37	T	C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ATOM	4543	N	VAL	T	192	28.195	9.438	65.099	1.00	22.78	T	N
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		MOTA	4544	CA	VAL	T	192	28.684	8.332	64.286	1.00	23.06	T	С
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ATOM	4545	C				27.636	7.854	63.285	1.00	25.12	T	С
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ATOM	4546	0	VAL	T	192	26.435	7.911	63.549	1.00	25.90	T	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	ATOM	4547	CB	VAL	T	192	29.080	7.124	65.182	1.00	24.31	T	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		MOTA	4548	CG1	VAL	T	192	29.694	6.023	64.347	1.00	23.66	T	С
ATOM 4551 CA ILE T 193 27.233 6.856 61.098 1.00 27.61 T ATOM 4552 C ILE T 193 27.881 5.519 60.772 1.00 29.11 T ATOM 4553 O ILE T 193 28.734 5.429 59.887 1.00 31.58 T ATOM 4554 CB ILE T 193 27.188 7.746 59.845 1.00 28.18 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4556 CG2 ILE T 193 26.420 7.039 58.734 1.00 26.33 T		ATOM	4549	CG2	VAL	T	192	30.051	7.564	66.272	1.00	23.45	T	С
50 ATOM 4552 C ILE T 193 27.881 5.519 60.772 1.00 29.11 T ATOM 4553 0 ILE T 193 28.734 5.429 59.887 1.00 31.58 T ATOM 4554 CB ILE T 193 27.188 7.746 59.845 1.00 28.18 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4556 CG2 ILE T 193 26.420 7.039 58.734 1.00 26.33 T		ATOM	4550	N	ILE	T	193	28.102	7.409	62.125	1.00	25.32	T	N
ATOM 4553 0 ILE T 193 28.734 5.429 59.887 1.00 31.58 T ATOM 4554 CB ILE T 193 27.188 7.746 59.845 1.00 28.18 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4556 CG2 ILE T 193 26.420 7.039 58.734 1.00 26.33 T		MOTA	4551	CA	ILE	T	193	27.233	6.856	61.098	1.00	27.61	T	С
ATOM 4554 CB ILE T 193 27.188 7.746 59.845 1.00 28.18 T ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4556 CG2 ILE T 193 26.420 7.039 58.734 1.00 26.33 T	50	ATOM	4552	С	ILE	T	193	27.881	5.519	60.772	1.00	29.11	T	С
ATOM 4555 CG1 ILE T 193 26.516 9.078 60.190 1.00 27.35 T ATOM 4556 CG2 ILE T 193 26.420 7.039 58.734 1.00 26.33 T		ATOM	4553	0	ILE	T	193	28.734	5.429	59.887	1.00	31.58	T	0
ATOM 4556 CG2 ILE T 193 26.420 7.039 58.734 1.00 26.33 T		AT0M	4554	CB	ILE	T	193	27.188	7.746	59.845	1.00	28.18	T	C
		ATOM	4555	CG1	ILE	T	193	26.516	9.078	60.190	1.00	27.35	T	С
55 ATOM 4557 CD1 ILE T 193 26.511 10.072 59.058 1.00 31.00 T		ATOM	4556	CG2	ILE	T	193	26.420	7.039	58.734	1.00	26.33	T	С
	55	ATOM	4557	CDI	ILE	T	193	26.511	10.072	59.058	1.00	31.00	T	С

	ATOM	4558	N	PRO	T	194	27.496	4.462	61.506	1.00 29.13	T	N
	ATOM	4559	CA			194	28.006	3.091	61.360	1.00 30.19	T	C
	ATOM	4560	С			194	28.153	2.557	59.940	1.00 29.68	T	С
_	ATOM	4561	0	PRO	T	194	29.168	1.954	59.605	1.00 30.22	T	0
5	ATOM	4562	CB	PRO	T	194	27.020	2.268	62.187	1.00 29.86	T	C
	ATOM	4563	CG	PR0	T	194	26.631	3.224	63.273	1.00 30.63	T	C
	ATOM	4564	CD	PRO	T	194	26.402	4.501	62.493	1.00 28.23	T	С
	ATOM	4565	N			195	27.142	2.773	59.109	1.00 31.11	T	N
	ATOM	4566	CA	SER	T	195	27.172	2.294	57.732	1.00 33.61	T	С
10	ATOM	4567	С	SER	T	195	28.304	2.882	56.894	1.00 36.37	T	C
	ATOM	4568	0	SER	T	195	28.653	2.331	55.848	1.00 37.68	T	0
	ATOM	4569	СВ	SER	T	195	25.841	2.594	57.049	1.00 33.34	T	С
	ATOM	4570	0 G	SER	T	195	25.592	3.987	57.025	1.00 33.89	T	0
	ATOM	4571	N	ARG	T	196	28.876	3.994	57.350	1.00 37.43	T	N
15	ATOM	4572	CA	ARG	T	196	29.956	4.654	56.626	1.00 38.17	T	C
	ATOM	4573	С	ARG	T	196	31.279	3.915	56.617	1.00 40.14	T	С
	ATOM	4574	0	ARG	T	196	31.567	3.104	57.497	1.00 39.73	T	0
4	ATOM	4575	CB	ARG	T	196	30.201	6.055	57.181	1.00 36.13	T	С
	ATOM	4576	C G	ARG	T	196	29.241	7.107	56.686	1.00 34.25	T	C
20	ATOM	4577	CD	ARG	T	196	29.764	8.479	57.042	1.00 33.30	T	С
	ATOM	4578	NE	ARG	T	196	28.936	9.540	56.486	1.00 32.53	T	N
	ATOM	4579	CZ	ARG	T	196	29.210	10.835	56.592	1.00 33.06	T	С
	ATOM	4580	NH1	ARG	T	196	30.299	11.234	57.238	1.00 30.86	T	N
	ATOM	4581	NH2	ARG	T	196	28.397	11.730	56.048	1.00 29.51	T	N
25	ATOM	4582	N	THR	T	197	32.082	4.227	55.604	1.00 42.50	T	N
	ATOM	4583	CA	THR	T	197	33.405	3.645	55.435	1.00 43.94	T	С
	ATOM	4584	С	THR	T	197	34.437	4.714	55.802	1.00 43.45	T	С
	ATOM	4585	0	THR	T	197	35.368	4.458	56.567	1.00 43.73	Ŧ	0
	ATOM	4586	СВ	THR	T	197	33.623	3.181	53.976	1.00 45.61	T	С
30	ATOM	4587	0G1				33.452	4.291	53.086	1.00 48.03	T	0
	ATOM	4588	CG2	THR	T	197	32.618	2.094	53.608	1.00 46.03	T	С
	ATOM	4589	N	VAL			34.254	5.917	55.263	1.00 42.98	T	N
	ATOM	4590	C A	VAL	T	198	35.149	7.039	55.546	1.00 41.57	T	С
	ATOM	4591	С	VAL			34.383	8.062	56.371	1.00 38.54	T	C
35	ATOM	4592	0	VAL			33.159	8.109	56.308	1.00 38.93	T	0
	ATOM	4593	СВ	VAL			35.641	7.720	54.250	1.00 42.24	T	C
	ATOM	4594		VAL		198	36.388	6.713	53.390	1.00 43.81	T	C
	ATOM	4595		VAL			34.461	8.318	53.490	1.00 41.73	T	C
	ATOM	4596		ASN			35.104	8.882		1.00 36.53	T	N
40	ATOM	4597	CA	ASN			34.483	9.898	57.985	1.00 34.68	T	C
	ATOM	4598	С	ASN			33.289	9.315	58.741	1.00 32.52	T	C
	ATOM	4599	0	ASN			32.201	9.884	58.732	1.00 31.11	T	0
	ATOM	4600	СВ	ASN			34.016	11.092	57.147	1.00 36.34	T	C
	ATOM	4601	C G	ASN			35.137	11.723	56.352	1.00 38.20	T	C
45	ATOM	4602		ASN			36.227	11.962	56.872	1.00 39.82	T	0
10	ATOM	4603		ASN			34.871	12.012	55.083	1.00 38.88	T	N
	ATOM	4604	N	ARG			33.497	8.183	59.404	1.00 32.29	T	N
	ATOM	4605	C A	ARG			32.422	7.528	60.137	1.00 32.10	Ť	C
	ATOM	4606	C	ARG			32.098	8.205	61.459	1.00 32.10	T	C
50	ATOM	4607	0	ARG			30.988	8.077	61.968	1.00 29.78	T	0
00	ATOM	4608	СВ	ARG			32.769	6.053	60.390	1.00 29.20	T	C
	ATOM	4609	CG	ARG			33.974	5.832	61.294	1.00 34.20	T	C
	ATOM	4610	CD	ARG			34.403	4.361	61.385	1.00 44.11	T	C
	ATOM	4611	NE	ARG			33.484	3.524	62.159	1.00 44.11	T	N
55	ATOM	4612	CZ	ARG			32.419	2.896	61.665	1.00 46.39	T	C
55	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-010	J.		,	200	J		01.000	1.00 40.02	1	U

	ATOM	4613	NH1	ARG	T	200	32.113	2.992	60.378	1.00	46.68	1	' N
	ATOM	4614	NH2	ARG	T	200	31.656	2.161	62.465	1.00	47.08	Т	N
	ATOM	4615	N	LYS	T	201	33.053	8.942	62.008	1.00	28.96	Т	N
	ATOM	4616	CA	LYS	T	201	32.831	9.589	63.292	1.00	28.86	Т	. С
5	ATOM	4617	C	LYS	T	201	33.277	11.042	63.325	1.00	26.57	T	C
	ATOM	4618	0	LYS	T	201	34.194	11.441	62.611	1.00	26.41	Т	. 0
	ATOM	4619	CB	LYS	T	201	33.576	8.814	64.384	1.00	30.67	Т	C
	ATOM	4620	CG	LYS	T	201	33.328	7.319	64.358	1.00	33.65	Т	C
	ATOM	4621	CD	LYS		201	34.438	6.565	65.065		38.71	Т	
10	ATOM	4622	CE	LYS	T	201	34.446	6.850	66.550		42.37	Т	C
	ATOM	4623	ΝZ	LYS	Т	201	33.187	6.371	67.184	1.00	45.63	Т	N
	ATOM	4624	N	SER		202	32.614	11.830	64.161	1.00	25.68	T	
	ATOM	4625	CA			202	32.967	13.233	64.326		26.09	T	
	ATOM	4626	С			202	34.038	13.257	65.415		25.74	Т	
15	ATOM	4627	0			202	34.424	12.212	65.929		25.97	Т	
	ATOM	4628	СВ			202	31.754	14.033	64.803		25.44	T	
	ATOM	4629	0 G			202	31.439	13.699	66.145		24.76	Т	
	ATOM	4630	N			203	34.523	14.441	65.764		25.64	Т	
	ATOM	4631	CA			203	35.507	14.545	66.829	1.00	26.70	Т	
20	ATOM	4632	С			203	34.734	14.575	68.150		26.56	T	
	ATOM	4633	0			203	33.542	14.890	68.170		26.32	Т	
	ATOM	4634	СВ			203	36.333	15.839	66.709		27.27	Т	
	ATOM	4635	0G1			203	35.447	16.964	66.678		29.25	T	
	ATOM	4636	C G 2			203	37.178	15.821	65.441		26.74	Т	
25	ATOM	4637	N			204	35.407	14.244	69.247		26.24	T	
	ATOM	4638	CA	ASP		204	34.775	14.245	70.561		25.07	Т	
	ATOM	4639	С	ASP		204	34.287	15.648	70.904		23.20	Т	
	ATOM	4640	0			204	34.926	16.638	70.557		22.85	Т	
	ATOM	4641	СВ			204	35.774	13.781	71.629		26.47	T	
30	ATOM	4642	CG	ASP		204	36.322	12.384	71.360		28.96	T	
	ATOM	4643	0D1	ASP		204	35.559	11.414	71.438		28.17	T	
	ATOM	4644		ASP		204	37.515	12.269	71.071		31.64	T	
	ATOM	4645	N			205	33.147	15.728	71.580		22.21	T	
	ATOM	4646	CA			205	32.580	17.009	71.994		21.13	T	
35	ATOM	4647	С			205	33.383	17.532	73.179		20.53	T	
-	ATOM	4648	0			205	34.233	16.828	73.720		21.01	T	
	ATOM	4649	СВ			205	31.136	16.818	72.458		24.15	T	
	ATOM	4650	0 G			205	31.104	16.109	73.694		22.18	T	
	ATOM	4651	N			206		18.786	73.583	1.00		T	
40	ATOM	4652	CA	PRO	T	206	33.893	19.294	74.733		21.58	Т	С
	ATOM	4653	С			206	33.465	18.464	75.947		23.90	T	
	ATOM	4654	0			206	32.334	17.971	75.998		23.99	Т	
	ATOM	4655	СВ			206	33.426	20.740	74.840		19.27	T	
	ATOM	4656	CG	PRO			33.146	21.107	73.403		20.23	T	
45	ATOM	4657	CD	PRO			32.434	19.875	72.884		18.56	T	
	ATOM	4658	N			207	34.360	18.302	76.912		24.52	T	
	ATOM	4659	CA			207	34.052	17.528	78.109		26.63	T	
	ATOM	4660	С	VAL			33.169	18.319	79.072		28.46	T	
	ATOM	4661	0			207	33.402	19.499	79.320		29.61	Т	
50	ATOM	4662	CB			207	35.348	17.108	78.851		25.30	T	
	ATOM	4663		VAL			35.004	16.306	80.105		25.46	T	
	ATOM	4664		VAL			36.235	16.283	77.930		23.54	T	
	ATOM	4665	N			208	32.144	17.660	79.598		31.26	T	
	ATOM	4666	CA	GLU			31.231	18.269	80.556		32.65	T	C
55	ATOM	4667	С	GLU			31.174	17.371	81.785		34.52	T	
												-	-

	ATOM	4668	0	GLU	T	208	31.032	16.161	81.662	1.00 33.84	T	0
	ATOM	4669	CB	GLU	T	208	29.832	18.407	79.953	1.00 33.49	T	С
	ATOM	4670	CG	GLU	T	208	29.728	19.482	78.893	1.00 37.75	T	С
	ATOM	4671	CD	GLU	T	208	30.128	20.844	79.422	1.00 40.28	T	С
5	ATOM	4672	0E1	GLU	T	208	29.501	21.309	80.373	1.00 42.72	T	0
	ATOM	4673	0E2	GLU	T	208	31.067	21.435	78.887	1.00 42.16	T	0
	ATOM	4674	N	CYS	T	209	31.296	17.957	82.970	1.00 36.17	Т	N
	ATOM	4675	CA	CYS		209	31.252	17.170	84.196	1.00 38.20	Т	С
	ATOM	4676	С	CYS		209	30.084	17.610	85.068	1.00 39.82	T	C
10	ATOM	4677	0	CYS		209	29.734	18.790	85.110	1.00 39.53	T	0
	ATOM	4678	СВ	CYS		209	32.555	17.323	84.984	1.00 37.29	T	С
	ATOM	4679	SG	CYS		209	34.098	17.006	84.069	1.00 36.18	T	S
	ATOM	4680	N	MET		210	29.481	16.656	85.767	1.00 42.37	T	N
	ATOM	4681	CA	MET		210	28.354	16.964	86.635	1.00 44.92	T	C
15	ATOM	4682	С	MET		210	28.859	17.451	87.987	1.00 46.67	T	C
	ATOM	4683	0	MET		210	28.359	18.480	88.460	1.00 48.11	T	0
	АТОМ	4684	СВ	MET		210	27.463	15.730	86.805	1.00 46.14	T	C
	ATOM	4685	CG			210	28.119	14.558	87.511	1.00 48.38	T	C
	ATOM	4686	SD	MET		210	27.134	13.050	87.366	1.00 51.31	T	S
20	ATOM	4687	CE	MET		210	25.678	13.526	88.260	1.00 50.81	T	C
	ATOM	4688	TO	MET		210	29.743	16.798	88.541	1.00 47.67	T	0
	ATOM	4689	CA	CA	С	1	8.112	6.415	3.761	1.00 33.86	Ċ	C
	ATOM	4690	CA	CA	C	2	36.518	26.475	68.287	1.00 30.83	C	C
	ATOM	4691	CA	CA.	C	3	48.458	24.377	90.635	1.00 32.15	c	C
25	ATOM	4692	CA	CA	C	4	44.635	23.829	91.244	1.00 29.14	C	C
	ATOM	4693	CA	CA	C	5	43.916	27.507	90.375	1.00 26.38	C	C
	ATOM	4694	CA	CA	C	6	41.663	30.293	91.119	1.00 31.82	C	C
	ATOM	4695	CA	CA	C	7	29.812	29.126	89.307	1.00 52.40	C	C
	ATOM	4696	CA	CA	С	8	37.684	33.223	91.461	1.00 43.18	C	C
30	ATOM	4697	CA	CA	C	9	50.866	20.912	89.468	1.00 40.17	C	C
•	ATOM	4698			I	1	35.873	7.021	10.051	1.00 13.34	I	C
	ATOM	4699	02	267		1	35.030	7.274	10.906	1.00 12.12	I	0
	ATOM	4700	N4	267		1	35.755	7.412	8.778	1.00 14.34	I	N
	ATOM	4701		267		1	34.583	8.190	8.382	1.00 15.61	I	C
35	ATOM	4702		267		1	34.631	8.529	6.895	1.00 13.61	I	C
	ATOM	4703		267		1	35.845	9.376	6.522	1.00 13.67	I	Ċ
	ATOM	4704	C9	267		1	33.296	7.419	8.715	1.00 14.50	I	Č
	ATOM	4705	01	267		1	33.219	6.200	8.578	1.00 14.69	I	0
	ATOM	4706	NЗ	267			32.293	8.206		1.00 12.44	Ī	N
40	ATOM	4707	83	267		1	31.028	7.571	9.430	1.00 10.00	Ī	C
	ATOM	4708	C6	267		1	31.561	6.344	11.579	1.00 10.55	ī.	C
	ATOM	4709	C7	267		1	31.365	6.163	12.955	1.00 12.08	Ī	c
	ATOM	4710	C2	267		1	30.416	6.941	13.646	1.00 12.47	I	C
	ATOM	4711	СЗ	267		1	29.621	7.867	12.916	1.00 12.14	I	C
4 5	ATOM	4712	C4	267		1	29.820	8.053	11.556	1.00 10.96	I	C
	ATOM	4713	C5	267		1	30.798	7.306	10.882	1.00 12.08	I	C
	ATOM	4714	C1	267		1	30.241	6.805	15.109	1.00 12.72	Ī	C
	ATOM	4715	N1	267		1	30.857	5.861	15.820	1.00 11.13	Ī	N
	ATOM	4716		267		1	35.718	9.758	5.051	1.00 12.95	I	C
50	ATOM	4717	05	267		1	35.473	8.916	4.192	1.00 17.02	I	0
	ATOM	4718	N6	267		1	35.851	11.064	4.801	1.00 17.02	I	N
	ATOM	4719		267		1	38.333	7.104	10.843	1.00 14.85	I	C
	ATOM	4720	N5	267		1	36.894	5.189	11.391	1.00 13.27	I	N
	ATOM	4721		267		1	37.171	6.192	10.381	1.00 15.61	I	C
55	ATOM	4722	S1	267		1	36.148	3.708	10.947	1.00 18.24	I	S
				'	•	_	00.140	200	~ U . U T !		•	5

	ATOM	4723	04	267	I	1	36.273	2.919	12.112	1.00 17.08	I	0
	ATOM	4724	03	267	I	1	36.874	3.315	9.787	1.00 17.15	I	0
	ATOM	4725	C25	267		1	34.411	3.917	10.599	1.00 17.32	I	C
	ATOM	4726		267		1	33.721	2.520	10.336	1.00 16.35	I	С
5	ATOM	4727	N2	267		1	29.433	7.615	15.770	1.00 11.70	I	N
	ATOM	4728	06	267		1	32.719	2.228	10.988	0.00 16.69	I	0
	ATOM	4729	07	267		1	34.205	1.773	9.486	0.00 16.69	I	0
	ATOM	4730		267		1	41.910	4.359	13.982	0.00 15.00	I	C
	ATOM	4731		267		1	42.331	4.560	12.625	0.00 13.00	I	C
10				267						0.00 14.93		
10	ATOM	4732				1	41.530	5.218	11.673		I	C
	ATOM	4733		267		1	40.239	5.718	12.078	0.00 14.96	I	C
	ATOM	4734		267		1	39.817	5.521	13.406	0.00 14.96	I	C
	ATOM	4735		267		1	40.627	4.846	14.378	0.00 14.99	I	С
-1 P	ATOM	4736	N7	267		1	41.683	5.545	10.332	0.00 14.91	I	N
15	ATOM	4737		267		1	40.585	6.212	9.888	0.00 14.90	I	C
	MOTA	4738		267		1	39.655	6.359	10.924	0.00 15.02	I	C
	ATOM	4739		WAT		1	9.820	12.056	12.743	1.00 14.47	₩	0
	ATOM	4740	0H2	WAT	W	2	21.093	10.398	10.275	1.00 7.31	W	0
	ATOM	4741	0H2	WAT	W	3	32.300	19.309	24.267	1.00 9.92	W	0
20	ATOM	4742	0H2	WAT	W	4	24.662	17.645	24.602	1.00 12.63	W	0
	ATOM	4743	0H2	WAT	W	5	10.321	9.426	13.052	1.00 13.81	W	0
	ATOM	4744	0H2	WAT	W	6	12.733	19.635	-6.440	1.00 7.53	W	0
	ATOM	4745	0H2	WAT	W	7	33.048	14.954	0.011	1.00 12.00	₩	0
	ATOM	4746	0H2	WAT	W	8	27.807	23.167	18.401	1.00 6.67	W	0
25	ATOM	4747	0 H 2	WAT	W	9	29.296	10.590	15.340	1.00 10.47	W	0
	ATOM	4748	0 H 2	WAT	W	10	6.543	11.732	8.949	1.00 8.19	W	0
	ATOM	4749	0H2	WAT	W	11	34.705	16.831	33.297	1.00 18.07	W	0
	ATOM	4750	0H2		W	12	27.522	23.545	21.120	1.00 12.95	W	0
	ATOM	4751	0H2	WAT	W	13	41.017	11.884	9.347	1.00 16.81	W	0
30	ATOM	4752	0H2	WAT		14	29.276	13.613	29.743	1.00 19.27	W	0
	ATOM	4753	0H2	WAT		15	40.567	16.246	35.000	1.00 18.02	W	0
	ATOM	4754	0H2	WAT		16	25.516	15.164	23.686	1.00 10.81	₩	0
	ATOM	4755	0H2		W	17	41.029	15.604	9.020	1.00 16.62	₩	0
	ATOM	4756	0H2		W	18	8.271	20.932	21.125	1.00 20.96	W	0
35	ATOM	4757			w	19	34.181	16.292	63.608	1.00 25.92	 W	0
00	ATOM	4758	0H2		W	20	34.774	18.566	11.988	1.00 23.52	W	0
	ATOM	4759	0H2	WAT		21	14.232	27.939	10.813	1.00 20.22	w	0
	ATOM	4760		WAT		22	25.655	24.820	17.299	1.00 8.83	₩	0
	ATOM	4761		WAT		23	33.138		29.823	1.00 14.28	W	0
40	ATOM	4762		WAT		24	7.284	23.996	14.905	1.00 14.28	W	
40	ATOM	4763		WAT		25	22.950	17.820	10.222	1.00 13.88	W	0
	ATOM	4764		WAT		26	6.303	9.578				0
	ATOM	4765		WAT					6.184	1.00 13.56	W	0
						27	20.934	2.177 17.093	72.570	1.00 20.66	W	0
45	ATOM	4766		WAT		28			14.953	1.00 13.98	W	0
40	ATOM	4767		WAT		29	25.530	19.981	23.409	1.00 11.61	W	0
	ATOM	4768		WAT		30	36.724	8.439	21.083	1.00 16.21	W	0
	ATOM	4769		WAT		31	5.701	26.405	4.405	1.00 23.01	W	0
	ATOM	4770		WAT		32	6.195	19.147	-1.275	1.00 25.93	W	0
~ ^	ATOM	4771		WAT		33	27.238	18.873	27.707	1.00 12.95	W	0
50	ATOM	4772		WAT		34	10.019	19.300	22.404	1.00 20.89	W	0
	ATOM	4773		WAT		35	18.660	17.642	24.646	1.00 12.31	W	0
	ATOM	4774		WAT		36	27.000	8.766	-7.917	1.00 12.95	W	0
	ATOM	4775		WAT		37	20.499	17.083	29.622	1.00 11.97	W	0
	ATOM	4776		WAT		38	37.642	19.584	20.497	1.00 7.27	W	0
55	ATOM	4777	0H2	WAT	W	39	28.905	6.346	21.635	1.00 15.10	W	0

	ATOM	4778	0H2	WAT	W 40	19.368	3.656	12.781	1.00 8.09	W	0
	ATOM	4779	0H2	WAT	W 41	29.481	7.328	6.028	1.00 18.76	W	0
	ATOM	4780	0 H 2	WAT	W 42	31.853	30.028	11.019	1.00 11.55	W	0
	ATOM	4781	0H2	WAT	W 43	30.815	5.845	28.771	1.00 18.94	W	0
5	ATOM	4782	0H2	WAT	W 44	7.816	13.593	10.596	1.00 12.04	W	0
	ATOM	4783	0H2	WAT	W 45	20.264	8.396	8.487	1.00 14.53	W	0
	ATOM	4784	0H2	WAT	W 46	12.987	12.795	6.319	1.00 13.34	W	0
	ATOM	4785	0H2	WAT	W 47	23.619	18.649	37.291	1.00 20.21	W	0
	ATOM	4786	0H2	WAT	W 48	18.254	6.979	24.266	1.00 20.22	W	0
10	ATOM	4787	0H2	WAT	W 49	25.729	5.521	54.904	1.00 29.74	W	0
	ATOM	4788	0H2	WAT	W 50	33.846	31.445	49.694	1.00 24.01	W	0
	ATOM	4789	0H2	WAT	W 51	1.203	22.687	6.517	1.00 15.75	W	0
	ATOM	4790	0H2	WAT	W 52	18.931	1.545	17.773	1.00 11.88	W	0
	ATOM	4791	0H2	WAT	W 53	39.260	17.313	6.209	1.00 11.31	W	0
15	ATOM	4792	0H2	WAT	₩ 54	11.858	29.857	13.454	1.00 17.79	W	0
	ATOM	4793	0H2	WAT	W 55	39.076	22.410	-1.485	1.00 9.18	W	0
	ATOM	4794	0H2	WAT	W 56	26.485	33.714	15.886	1.00 19.67	W	0
	ATOM	4795	0H2	WAT	₩ 57	37.050	20.790	0.260	1.00 15.14	W	0
	ATOM	4796	0H2	WAT	W 58	27.797	26.672	32.268	1.00 28.03	W	0
20	ATOM	4797	0H2	WAT	W 59	18.324	13.670	16.592	1.00 14.91	₩	0
	ATOM	4798	0H2	WAT	W 60	17.408	28.124	11.960	1.00 22.12	W	0
	ATOM	4799		WAT	W 61	30.927	20.411	26.562	1.00 11.62	W	0
	ATOM	4800	0H2	WAT	W 62	9.546	29.554	23.251	1.00 25.92	W	0
	ATOM	4801	0H2	WAT	W 63	19.679	15.880	80.100	1.00 32.98	W	0
25	ATOM	4802		WAT		32.325	25.087	22.495	1.00 35.63	₩	0
	ATOM	4803	0H2	WAT	W 65	30.276	24.296	21.082	1.00 13.13	W	0
	ATOM	4804	0H2	WAT	₩ 66	13.503	-0.011	12.178	1.00 16.78	W	0
	ATOM	4805	0H2	WAT	₩ 67	32.301	3.759	18.886	1.00 15.31	W	0
	ATOM	4806	0H2	WAT	W 68	17.841	15.087	24.535	1.00 17.04	W	0
30	ATOM	4807	0H2	WAT	₩ 69	32.212	-1.864	17.231	1.00 33.57	₩	0
	ATOM	4808	0H2	WAT	W 70	31.942	25.422	24.949	1.00 14.32	W	0
	MOTA	4809	0H2	WAT	W 71	41.741	24.676	35.656	1.00 25.77	₩	0
	ATOM	4810	0H2	WAT	W 72	7.065	7.005	6.381	1.00 22.12	W	0
	ATOM	4811		WAT		30.082	19.209	75.060	1.00 21.78	W	0
35	ATOM	4812		WAT		4.031	12.254	-0.177	1.00 19.44	W	0
	ATOM	4813		WAT		35.845	17.333	53.696	1.00 21.03	W	0
	ATOM	4814		WAT		36.526	20.255	76.854	1.00 17.50	W	0
	ATOM	4815		WAT		31.251	2.379	23.047	1.00 17.45	W	0
4.0	ATOM	4816		WAT			15.514		1.00 35.20	W	0
40	ATOM	4817		WAT		25.623	18.283	68.925	1.00 23.69	W	0
	ATOM	4818		WAT		31.465	30.948	-2.078	1.00 41.37	W	0
	ATOM	4819		WAT		24.891	29.425	38.535	1.00 32.19	W	0
	ATOM	4820		WAT		26.966	27.373	47.300	1.00 31.18	W	0
4	ATOM	4821		WAT		29.620	34.079	-0.291	1.00 38.61	W	0
45	ATOM	4822		WAT		33.991	16.748	-1.768	1.00 21.41	W	0
	ATOM	4823		WAT		36.100	19.081	-1.640	1.00 18.06	W	0
	ATOM	4824		WAT		37.135	37.881	40.383	1.00 20.11	W	0
	ATOM	4825		WAT		11.337	15.166	8.469	1.00 15.10	₩	0
E 0	ATOM	4826		TAW		38.668	19.971	26.489	1.00 15.24	₩	0
50	ATOM	4827		WAT		34.405	15.814	12.156	1.00 10.82	₩	0
	ATOM	4828		WAT		27.246	34.729	18.461	1.00 22.71	₩	0
	ATOM	4829		WAT		27.552	8.778	20.143	1.00 13.91	₩	0
	ATOM	4830		WAT 1		18.593	17.220	27.671	1.00 20.14	W	0
	ATOM	4831		WAT		36.799	17.534	73.777	1.00 30.67	W	0
55	ATOM	4832	0H2	WAT	W 94	9.790	29.242	2.101	1.00 22.36	W	0

	ATOM	4833	0H2	WAT	W	95	24.239	29.551	51.184	1.00 26.73	W	0
	ATOM	4834	0H2	WAT	W	96	29.035	29.710	45.452	1.00 17.18	W	0
	ATOM	4835	0H2	WAT	W	97	34.661	16.311	23.110	1.00 15.24	W	0
	ATOM	4836	0H2	WAT	W	98	21.314	17.064	-7.614	1.00 27.82	W	0
5	ATOM	4837	0H2	WAT	W	99	30.880	19.181	28.970	1.00 18.73	W	0
	ATOM	4838	0H2	WAT	W	100	28.850	17.366	29.169	1.00 18.53	W	0
	ATOM	4839	0H2	WAT	W	101	42.030	21.777	13.248	1.00 26.15	W	0
	ATOM	4840	0H2	WAT	W	102	3.956	12.762	-2.958	1.00 27.96	W	0
	ATOM	4841	0H2	WAT	W	103	16.051	15.146	16.848	1.00 14.41	W	0
10	ATOM	4842	0H2	WAT	₩	104	27.365	17.435	64.773	1.00 38.96	W	0
	ATOM	4843	0H2	WAT	W	105	17.747	1.507	5.871	1.00 23.60	W	0
	ATOM	4844	0H2	WAT	W	106	37.627	37.114	42.976	1.00 24.96	W	0
	ATOM	4845	0H2	WAT	W	107	24.719	4.196	59.681	1.00 32.55	W	0
	ATOM	4846	0H2	WAT	₩	108	17.686	33.626	13.933	1.00 20.39	₩	0
15	ATOM	4847	0H2	WAT			-0.184	23.823	13.296	1.00 46.49	W	0
	ATOM	4848	0H2	WAT	W	110	15.373	35.019	25.333	1.00 21.46	W	0
	ATOM	4849	0H2	WAT	W	111	30.768	14.093	34.177	1.00 33.90	W	0
	ATOM	4850	0H2	WAT	W	112	25.218	27.843	34.700	1.00 33.99	W	0
	ATOM	4851	0H2	WAT	W	113	7.403	26.902	1.736	1.00 32.04	W	0
20	ATOM	4852	0H2	WAT	W	114	20.038	32.869	15.272	1.00 23.28	W	0
	ATOM	4853	0H2	WAT	W	115	15.360	28.092	24.066	1.00 16.94	W	0
	ATOM	4854	0H2	WAT	W	116	19.926	37.657	60.577	1.00 40.46	W	0
	ATOM	4855	0 H 2		W	117	32.502	22.719	25.889	1.00 19.53	W	0
	ATOM	4856	0H2			118	30.616	31.722	4.387	1.00 18.60	₩	0
25	ATOM	4857	0H2				26.479	8.176	55.645	1.00 36.63	W	0
	ATOM	4858	0H2				22.372	22.465	40.919	1.00 40.52	W	0
	ATOM	4859	0H2	WAT	W	121	39.623	15.685	32.220	1.00 28.34	W	0
	ATOM	4860	0H2			122	48.066	29.461	95.001	1.00 27.75	W	0
0.0	MOTA	4861	0H2			123	31.897	32.419	0.487	1.00 30.32	W	0
30	ATOM	4862	0H2			124	20.734	-1.804	18.413	1.00 26.72	W	0
	ATOM	4863	0H2			125	31.094	6.561	53.456	1.00 25.11	W	0
	ATOM	4864	0H2			126	45.312	37.218	40.612	1.00 33.55	W	0
	ATOM	4865	0H2			127	1.538	17.016	8.474	1.00 19.86	W	0
0.5	ATOM	4866	0H2			128	29.731	9.406	-1.174	1.00 20.25	W	0
35	ATOM	4867	0H2			129	27.305	38.491	25.414	1.00 28.22	₩	0
	ATOM	4868	0H2			130	28.077	29.238	30.743	1.00 23.73	W	0
	ATOM	4869	0H2	WAT			26.574	28.140	51.775	1.00 15.37	₩	0
	ATOM	4870		WAT			19.946	5.062	76.332	1.00 36.71	W	0
40	ATOM			WAT						1.00 22.21	W	0
40	ATOM	4872		WAT			11.190	-1.258	13.067	1.00 23.85	W	0
	ATOM	4873		WAT			3.651	9.620	16.508	1.00 29.13	W	0
	ATOM	4874		WAT			24.584	34.295	21.191	1.00 23.76	₩	0
	ATOM	4875		WAT			24.301	30.242	41.148	1.00 33.00	W	0
15	ATOM	4876		WAT			19.879	15.502	31.848	1.00 24.77	₩	0
45	ATOM	4877		WAT			31.486	28.385	56.405	1.00 20.53	W	0
	MOTA	4878		WAT			15.743	41.487	27.914	1.00 25.39	W	0
	ATOM	4879 4880		WAT			35.109	22.703	77.680	1.00 41.76	W	0
	ATOM ATOM	4881		WAT WAT			22.799 19.856	24.131 25.294	34.328 47.782	1.00 24.16 1.00 36.17	W	0
50	ATOM	4882		WAT			7.019					0
υU	ATOM	4883		WAT			35.707	28.800 19.657	5.810 90.022	1.00 26.61 1.00 34.12	W	0
	ATOM	4884		WAT			29.118	8.498	28.737	1.00 34.12	W	0 0
	ATOM	4885		WAT			25.461	2.178	29.528		₩	0
	ATOM	4886		WAT			29.591	2.178	66.923	1.00 31.87 1.00 38.76	W	
55	MOTA	4887		WAT			38.299	31.491	93.878	1.00 38.76	n W	0 0
JJ	nion	±001	0112	n A I	17	TAA	00.200	01.401	33.010	1.00 07.07	П	U

	ATOM	4888	OH2 WAT	W 1	50 16.338	23.326	29.568	1.00 28.12	W	0
	ATOM	4889	OH2 WAT	W 1	50.138	29.041	96.866	1.00 27.78	W	0
	ATOM	4890	OH2 WAT	W 1	52 22.910	21.458	38.404	1.00 25.84	W	0
	ATOM	4891	OH2 WAT	W 1	53 21.563	31.334	13.807	1.00 35.91	W	0
5	ATOM	4892	OH2 WAT	W 1	54 47.345	32.238	87.047	1.00 33.44	W	0
	ATOM	4893	OH2 WAT	W 1	55 33.641	15.072	-3.898	1.00 34.95	W	0
	ATOM	4894	OH2 WAT	W 1	56 21.869	28.002	43.965	1.00 32.96	W	0
	ATOM	4895	OH2 WAT	W 1	57 31.608	14.352	30.918	1.00 27.70	W	0
	ATOM	4896	OH2 WAT	W 1	58 22.471	6.040	5.325	1.00 25.62	W	0
10	ATOM	4897	OH2 WAT	W 1	59 8.576	2.761	0.289	1.00 33.92	W	0
	ATOM	4898	OH2 WAT	W 1	60 40.895	14.749	12.622	1.00 23.15	W	0
	ATOM	4899	OH2 WAT	W 1	61 29.005	28.427	68.038	1.00 30.48	W	0
	ATOM	4900	OH2 WAT	W 1	62 22.507	4.454	76.352	1.00 33.53	W	0
	ATOM	4901	OH2 WAT	W 1	63 44.106	37.763	35.688	1.00 48.32	W	0
15	ATOM	4902	OH2 WAT	W 1	64 26.450	3.355	5.768	1.00 28.13	W	0
	ATOM	4903	OH2 WAT	W 1	65 4.723	30.331	5.955	1.00 44.11	W	0
	ATOM	4904	OH2 WAT	W 1	66 35.185	27.903	-4.961	1.00 27.15	W	0
	ATOM	4905	OH2 WAT	W 1	67 18.473	10.311	-5.754	1.00 31.75	M	0
	ATOM	4906	OH2 WAT	W 1	68 31.008	4.482	21.032	1.00 44.53	W	0
20	ATOM	4907	OH2 WAT	W 1	69 38.894	15.944	48.372	1.00 38.35	W	0
	ATOM	4908	OH2 WAT	W 1	70 34.331	25.697	20.938	1.00 21.61	W	0
	ATOM	4909	OH2 WAT	W 1	71 49.199	26.268	86.643	1.00 30.58	W	0
	ATOM	4910	OH2 WAT	W 1	72 5.127	9.693	-0.969	1.00 34.66	W	0
	ATOM	4911	OH2 WAT	W 1	73 -0.373	13.989	8.086	1.00 34.97	W	0
25	ATOM	4912	OH2 WAT	W 1	74 16.470	-0.001	3.800	1.00 32.29	W	0
	ATOM	4913	OH2 WAT			31.513	1.418	1.00 34.23	W	0
	ATOM	4914	OH2 WAT	W 1	76 38.094	40.562	31.950	1.00 29.70	W	0
	ATOM	4915	OH2 WAT	W 1	77 40.881	31.784	48.268	1.00 38.43	W	0
	ATOM	4916	OH2 WAT	W 1	78 33.053	31.307	3.076	1.00 21.18	W	0
30	ATOM	4917	OH2 WAT			14.818	-1.815	1.00 30.86	W	0
	ATOM	4918	OH2 WAT			9.957	46.073	1.00 34.20	W	0
	ATOM	4919	OH2 WAT			28.333	8.565	1.00 16.99	W	0
	ATOM	4920	OH2 WAT			10.228	42.234	1.00 32.93	W	0
~ =	ATOM	4921	OH2 WAT			31.546	9.757	1.00 29.65	W	0
35	ATOM	4922	OH2 WAT			2.574	-0.484	1.00 32.80	W	0
	ATOM	4923	OH2 WAT			5.762	14.955	1.00 32.54	W	0
	ATOM	4924	OH2 WAT			14.210	25.757	1.00 34.67	W	0
	ATOM	4925	OH2 WAT			21.784	27.626	1.00 32.36	W	0
40	ATOM	4926	OH2 WAT					1.00 27.87	₩	0
40	ATOM	4927	OH2 WAT			39.203	19.516	1.00 32.86	W	0
	ATOM	4928	OH2 WAT			30.934	11.072	1.00 31.17	W	0
-	ATOM	4929	OH2 WAT			31.642	9.747	1.00 31.14	W	0
	ATOM	4930	OH2 WAT			6.918	26.506	1.00 33.93	W	0
4 ~	ATOM	4931	OH2 WAT			1.020	74.566	1.00 34.78	₩	0
45	ATOM	4932	OH2 WAT			14.002	57.999	1.00 52.48	W	0
	ATOM	4933	OH2 WAT			11.077	13.236	1.00 36.20	W	0
	ATOM	4934	OH2 WAT			-0.199	11.021	1.00 39.14	W	0
	ATOM	4935	OH2 WAT			19.200	6.700	1.00 29.69	W	0
50	ATOM	4936	OH2 WAT			28.516	23.498	1.00 25.52	₩	0
50	ATOM	4937	OH2 WAT			31.233	43.028	1.00 25.67	₩	0
	ATOM	4938	OH2 WAT			3.129	25.867	1.00 53.38	₩	0
	ATOM	4939	OH2 WAT			7.431	-2.611	1.00 30.58	₩	0
	MOTA	4940	OH2 WAT			26.217	56.692	1.00 26.48	W	0
55	ATOM	4941	OH2 WAT			15.450	-4.311 19.062	1.00 26.09	W	0
55	ATOM	4942	OHO WAI	n Zi	04 38.154	8.018	10.002	1.00 37.43	₩	0

	ATOM	4943	0H2	WAT	W	205	9.837	28.610	10.272	1.00 31.67	W	0
	ATOM	4944	0H2	WAT	W	206	14.373	16.403	26.718	1.00 36.07	W	0
	ATOM	4945	0H2	WAT	W	207	37.593	16.593	70.391	1.00 29.23	W	0
	ATOM	4946	0H2	WAT	W	208	0.132	11.716	9.251	1.00 33.00	W	0
5	ATOM	4947	0H2	WAT	W	209	25.144	28.339	31.889	1.00 49.28	W	0
	ATOM	4948	0H2	WAT	W	210	7.440	16.389	-2.874	1.00 20.15	W	0
	ATOM	4949	0H2	WAT	W	211	7.530	29.833	8.482	1.00 30.21	W	0
	ATOM	4950		WAT			21.589	17.888	38.999	1.00 33.78	W	0
	ATOM	4951		WAT			42.227	19.920	8.912	1.00 24.14	W	0
10	ATOM	4952		WAT			18.081	13.134	53.952	1.00 46.05	W	0
	ATOM	4953		WAT			28.604	36.515	31.266	1.00 35.94	W	0
	ATOM	4954		WAT			21.979	38.636	47.184	1.00 45.57	W	0
	ATOM	4955		WAT			37.628	28.720	13.544	1.00 35.13	W	0
	ATOM	4956	0H2				13.553	15.154	18.167	1.00 30.54	W	0
15	ATOM	4957		WAT			32.654	30.845	47.076	1.00 25.26	W	0
	ATOM	4958		WAT			-2.842	14.831	8.115	1.00 33.07	W	0
	ATOM	4959		WAT			18.483	15.571	-7.984	1.00 30.86	W	0
	ATOM.	4960		WAT			3.270	25.714	5.665	1.00 26.54	W	0
	ATOM	4961	0H2				50.144	24.757	82.596	1.00 34.50	W	0
20	ATOM	4962		WAT			26.242	11.203	31.526	1.00 30.44	W	0
_ ~	ATOM	4963		WAT			18.073	-1.159	18.149	1.00 34.58	 W	0
	ATOM	4964		WAT			47.321	29.376	85.710	1.00 34.51	W	0
	ATOM	4965		WAT			22.195	20.381	42.496	1.00 30.12	 W	0
	ATOM	4966					3.659	2.259	0.190	1.00 34.67	W	0
25	ATOM	4967		WAT			40.557	0.237	20.769	1.00 28.72	₩	0
20	ATOM	4968					21.900	26.386	53.079	1.00 26.13	w	0
	ATOM	4969		WAT			7.647	31.085	26.330	1.00 35.78	 W	0
	ATOM	4970		WAT			13.007	21.995	27.742	1.00 38.60	w	0
	ATOM	4971		WAT			45.245	0.872	24.555	1.00 46.33	 W	0
30	ATOM	4972		WAT			18.696	16.785	50.319	1.00 37.87	w	0
00	ATOM	4973		WAT			31.471	4.379	68.498	1.00 43.22	w	0
	ATOM	4974		WAT			44.018	19.076	33.450	1.00 32.66	w	0
	ATOM	4975		WAT			23.071	24.930	30.360	1.00 23.93	w	0
	ATOM	4976		WAT			35.628	33.217	93.628	1.00 33.30	 W	0
35	ATOM	4977		WAT			35.847	25.095	70.900	1.00 44.01	w	0
00	ATOM	4978		WAT			22.701	20.328	82.692	1.00 39.98	 W	0
	ATOM	4979					7.838	12.303	-1.787	1.00 34.86	W	0
	ATOM	4980		WAT			28.268	21.326	68.248	1.00 31.86	w	0
	ATOM	4981		WAT			-0.770			1.00 34.90	W	0
40	ATOM	4982		WAT			38.119		7.064		W	0
10	ATOM	4983		WAT			23.502			1.00 28.10	W	0
	ATOM	4984		WAT			34.476	12.129	8.573	1.00 22.78	W	0
	ATOM	4985		WAT			11.730	40.646	20.091	1.00 43.62	W	0
	ATOM	4986		WAT			20.358	23.090	67.179	1.00 43.07	₩	0
45	ATOM	4987		WAT			33.233	30.859	32.765	1.00 29.52	W	0
10	ATOM	4988		WAT			34.971	29.300	13.451	1.00 24.97	W	0
	ATOM	4989		WAT			21.456	30.121	50.897	1.00 51.79	W	0
	ATOM	4990		WAT			38.432	11.736	55.327	1.00 41.69	₩	0
	ATOM	4991		WAT			42.192	23.969	9.558	1.00 58.78	₩	0
50	ATOM	4992		WAT			45.254	27.469	47.916	1.00 33.75	₩	0
30	ATOM	4993		WAT			34.867	39.746	60.424	1.00 51.82	₩	0
	ATOM	4994		WAT			7.714	11.590	23.225	1.00 47.38	W	0
	ATOM	4995		WAT			11.234	37.040	13.444	1.00 45.19	w	0
	ATOM	4996		WAT			5.250	24.259	16.611	1.00 35.12	W	0
55	ATOM	4997		WAT				7.333		1.00 64.60	W	0
55					••				-5.000		••	•

	ATOM	4998	0H2	WAT	W	260	41.043	28.449	49.954	1.00	34.29	W	0
	ATOM	4999	0H2	WAT	W	261	27.833	42.178	56.031	1.00	38.43	W	0
	ATOM	5000	0H2	WAT	W	262	36.007	23.861	20.102	1.00 2	26.54	W	0
	ATOM	5001	0H2	WAT	W	263	47.752	24.361	74.233	1.00	52.97	W	0
5	ATOM	5002	0H2	WAT	W	264	20.405	19.480	-9.352	1.00	39.53	W	0
	ATOM	5003	0H2	WAT	W	265	27.553	31.025	88.317	1.00 9	52.14	W	0
	ATOM	5004	0H2	WAT		266	27.439	6.871	2.671	1.00		W	0
	ATOM	5005	0H2	WAT		267	28.522	39.164	45.564	1.00		W	0
	ATOM	5006	0H2			268	43.870	22.301	47.233	1.00		W	0
10	ATOM	5007	0H2	WAT		269	35.079	36.340	52.168	1.00		 W	0
	ATOM	5008	0H2	WAT		270	23.451	34.163	23.718	1.00 2		 W	0
	ATOM	5009	0H2	WAT		271	30.957	22.554	71.076	1.00		 W	0
	ATOM	5010	0H2	WAT		272	38.744	7.564	80.920	1.00	~	w	0
	ATOM	5011	0H2			273	13.936	30.988	30.446	1.00		W	0
1 5	ATOM	5011	0H2			274	23.419	17.708	86.267	1.00		w	0
10	ATOM	5012	0H2			275	21.017	0.277	3.695	1.00 5			
			0H2			276						W	0
	A T O M A T O M	5014 5015	0H2	WAT		277	21.549	22.757	36.427	1.00 4		₩	-
							37.355	12.567	39.061			W	0
20	ATOM	5016	0H2	WAT		278	2.783	23.907	15.169	1.00 4		W	0
20	ATOM	5017	0H2			279	32.292	35.378	41.347	1.00		W	0
	ATOM	5018	0H2			280 281	24.285	8.129	48.241	1.00		W	0
	ATOM	5019	0H2				9.135	10.036	-0.985	1.00 3		₩	0
	ATOM	5020	0H2	WAT		282	9.648	4.536	20.435	1.00 3		W	0
25	ATOM	5021	0H2	WAT		283	37.143	14.114	86.099	1.00		W	0
20	ATOM	5022	0H2	WAT		284	9.020	35.287	33.571	1.00 4		W	0
	ATOM	5023	0H2			285	-1.612	10.514	3.421	1.00 5		W	0
	ATOM	5024	0H2			286	42.982	17.337	41.377	1.00 3		W	0
	ATOM	5025	0H2			287	34.957	31.854	45.389	1.00 2		W	0
30	ATOM	5026	0H2			288	3.170	28.704	16.548	1.00 4		W	0
30	ATOM	5027	0H2	WAT		289	4.236	26.437	18.194	1.00		W	0
	ATOM	5028	0H2	WAT		290	11.780	0.909	19.173	1.00 3		₩	0
	ATOM	5029	0H2			291	35.076	18.990	60.316	1.00 3		₩	0
	ATOM	5030	0H2			292	-0.662	15.295	21.926	1.00 5		W	0
35	ATOM	5031	0H2			293	42.355	22.441	69.467	1.00 4		W	0
33	ATOM	5032	0H2			294	36.115	8.550	0.838	1.00 3		W	0
	ATOM	5033	0H2	WAT		295	5.539	38.578	29.277	1.00 4		W	0
	ATOM ATOM	5034	0H2			296	-0.774	16.342	12.374	1.00 4		W	0
		5035		WAT WAT			20.248	19.074	34.881	1.00 3		W	0
40	ATOM	5036 5037					22.485 42.707	11.810		1.00 4		W	0
40	ATOM			WAT WAT				16.687 15.634	11.459	1.00 4		W	0
	ATOM	5038					40.839		41.011	1.00 3		₩	0
	ATOM	5039		WAT			20.094	24.068	71.878	1.00 7		W	0
	ATOM	5040		WAT			31.865	-0.414	10.192	1.00 4		₩	0
45	ATOM	5041		WAT			20.743	26.537	50.189	1.00 4		₩	0
40	ATOM	5042		WAT			44.143	13.662	12.378	1.00 4		W	0
	ATOM	5043		WAT			40.498	25.176	54.332	1.00 4		W	0
	ATOM	5044		WAT			35.746	6.890	18.386	1.00 3		₩	0
	ATOM	5045 5046		WAT			14.855	41.757	31.970	1.00 4		W	0
50	ATOM	5046 5047		WAT			18.143	-0.909	20.903	1.00 4		W	0
50	ATOM	5047		WAT			27.593	7.517	-5.357	1.00 5		W	0
	ATOM	5048 5049		WAT			29.441	20.038 8.376	-9.566	1.00 4		W	0
	ATOM			WAT			33.031		2.930	1.00 3		W	0
	ATOM	5050 5051		WAT			28.826	12.995	39.392	1.00 2		W	0
55	ATOM	5051 5052		WAT			19.453	26.455	33.576	1.00 4		W	0
55	ATOM	5052	UΠZ	WAT	17	314	32.900	12.710	60.296	1.00 4	£3.U4	W	0

	ATOM	5053	0 H 2	WAT	W	315	35.171	34.093	47.106	1.00 46.97	W	0
	ATOM	5054	0 H 2	WAT	W	316	42.577	27.086	48.235	1.00 40.03	W	0
	ATOM	5055	0H2	WAT	W	317	8.900	30.335	4.530	1.00 36.15	W	0
	ATOM	5056	0 H2	WAT	W	318	30.817	33.985	69.076	1.00 46.39	W	0
5	ATOM	5057	0H2	WAT	W	319	19.929	3.244	55.862	1.00 64.48	W	0
	ATOM	5058	0H2	WAT	W	320	23.376	1.981	90.249	1.00 39.58	W	0
	ATOM	5059	0H2	WAT	W	321	40.437	5.728	17.654	1.00 39.03	W	0
	ATOM	5060	0H2	WAT	W	322	9.640	35.993	11.234	1.00 42.42	W	0
	ATOM	5061	0H2	WAT	W	323	16.153	42.346	23.466	1.00 34.97	W	0
10	ATOM	5062	0H2	WAT	W	324	35.436	19.673	64.215	1.00 57.86	W	0
	ATOM	5063	0H2	WAT	W	325	4.918	16.942	5.288	1.00 10.46	W	0
	ATOM	5064	0H2	WAT	W	326	18.390	21.278	-9.254	1.00 31.50	W	0
	ATOM	5065	0H2	WAT	W	327	1.490	16.464	5.809	1.00 20.84	W	0
	ATOM	5066	0H2	WAT	W	328	2.997	16.779	3.328	1.00 19.39	W	0
15	ATOM	5067	0H2	WAT	W	329	6.139	1.050	-0.292	1.00 48.96	W	0
	ATOM	5068	0H2			330	35.510	12.689	47.619	1.00 31.05	W	0
	ATOM	5069	0H2			331	27.536	5.618	-0.676	1.00 54.07	W	0
	ATOM	5070	0H2	WAT	W	332	43.643	19.826	17.185	1.00 59.51	W	0
	ATOM	5071	0H2	WAT	W	333	19.184	30.073	10.467	1.00 46.29	W	0
20	ATOM	5072	0H2	WAT	W	334	31.305	28.910	32.552	1.00 37.09	W	0
	ATOM	5073	0H2	WAT	W	335	9.970	0.903	-1.332	1.00 48.94	W	0
	ATOM	5074	0H2	WAT	W	336	42.603	21.451	5.443	1.00 46.05	W	0
	ATOM	5075	0H2	WAT	W	337	25.589	37.355	19.101	1.00 50.70	W	0
	MOTA	5076	0 H 2	WAT	₩	338	16.211	15.273	77.481	1.00 45.46	W	0
25	ATOM	5077	0H2	WAT	W	339	4.566	4.778	9.222	1.00 38.08	W	0
	ATOM	5078	0H2	WAT	W	340	24.583	13.388	-12.370	1.00 38.31	W	0
	ATOM	5079	0H2	WAT	W	341	41.377	15.443	47.138	1.00 42.95	W	0
	ATOM	5080	0H2	WAT	W	342	46.584	22.712	72.438	1.00 50.39	W	0
	ATOM	5081	0H2	WAT	W	343	37.742	-1.808	21.784	1.00 43.11	W	0
30	ATOM	5082	0H2	WAT	W	344	19.595	0.633	24.707	1.00 42.68	W	0
	ATOM	5083	0H2	WAT	W	345	20.648	23.506	31.934	1.00 41.44	₩	0
	ATOM	5084	0H2	WAT	W	346	5.215	28.843	9.509	1.00 27.51	W	0
	ATOM	5085	0H2	WAT	W	347	-1.391	17.437	9.148	1.00 44.39	W	0
	ATOM	5086	0H2	WAT	W	348	37.699	11.902	32.487	1.00 31.25	W	0
35	ATOM	5087	0H2	WAT	W	349	21.639	34.577	35.581	1.00 39.86	W	0
	ATOM	5088	0H2	WAT	W	350	19.819	24.919	38.691	1.00 51.89	W	0
	ATOM	5089	0H2	WAT	W	351	34.940	35.726	43.895	1.00 60.97	W	0
	ATOM	5090	0H2	WAT	₩	352	37.201	17.622	58.850	1.00 43.91	W	0
	ATOM	5091	0H2	WAT	W	353	29.384	35.815	62.018	1.00 33.90	W	0
40	ATOM	5092	0H2	WAT	W	354	34.042	37.937	56.652	1.00 31.53	₩	0
	ATOM	5093	0H2	WAT	W	355	18.864	-1.487	3.101	1.00 49.21	W	0
	ATOM	5094	0H2	WAT	W	356	45.897	16.661	41.685	1.00 45.52	W	0
	ATOM	5095	0H2	WAT	W	357	46.644	36.386	90.281	1.00 51.76	₩	0
	ATOM	5096	0H2	WAT	W	358	25.350	25.538	31.973	1.00 43.63	₩	0
45	ATOM	5097	0H2	WAT	W	359	34.925	5.802	29.713	1.00 38.77	W	0
	ATOM	5098	0H2	WAT	W	360	33.389	12.245	-5.833	1.00 38.52	W	0
	ATOM	5099	0H2	WAT	W	361	13.401	36.615	6.966	1.00 60.27	W	0
	ATOM	5100		WAT			29.038	14.217	36.874	1.00 43.15	W	0
	ATOM	5101	0H2	WAT	W	363	43.754	18.992	93.095	1.00 43.98	W	0
50	ATOM	5102		WAT			24.549	4.764	4.197	1.00 50.16	₩	0
	ATOM	5103	0H2	WAT	W	365	43.227	13.919	19.497	1.00 58.10	W	0
	ATOM	5104				366	10.214	33.407	9.945	1.00 50.53	₩	0
	ATOM	5105				367	17.413	19.604		1.00 31.46	₩	0
	ATOM	5106				368	28.562	31.651	91.027	1.00 58.48	W	0
55	ATOM	5107	0H2	WAT	W	369	39.915	9.085	8.229	1.00 51.34	W	0

	ATOM	5108	0H2	WAT	W	370	37.715	6.403	1.728	1.00	49.76	W	0
	ATOM	5109	0H2	WAT	W	371	45.177	11.389	17.053	1.00	38.62	W	0
	ATOM	5110	0H2	WAT	W	372	-1.495	16.407	5.919	1.00	24.58	W	0
	ATOM	5111	0H2	WAT	W	373	17.928	10.777	-8.990	1.00	48.78	W	0
5	ATOM	5112	0H2	WAT	W	374	49.671	41.399	35.418	1.00	39.49	W	0
	ATOM	5113	0 H 2	WAT	W	375	-2.896	22.960	9.444	1.00	64.43	W	0
	ATOM	5114	0H2	WAT	W	376	44.242	20.119	13.114	1.00	43.91	W	0
	ATOM	5115	0H2	WAT	W	377	45.998	27.498	65.911	1.00	52.62	W	0
	ATOM	5116	0H2	WAT	W	378	54.712	25.922	87.283	1.00	44.48	W	0
10	ATOM	5117	0H2	WAT	W	379	9.336	21.221	24.256	1.00	39.28	W	0
	ATOM	5118	0H2	WAT	W	380	5.711	10.622	25.188	1.00	45.01	W	0
	ATOM	5119	0H2	WAT	W	381	22.065	36.408	12.747	1.00	59.06	W	0
	ATOM	5120	0H2	WAT	W	382	16.957	10.821	43.808	1.00	40.75	W	0
	ATOM	5121	0H2	WAT	W	383	39.595	1.633	12.436	1.00	49.31	W	0
15	ATOM	5122	0H2	WAT	W	384	11.084	30.834	0.209	1.00	39.09	W	0
	ATOM	5123	0H2	WAT	W	385	16.720	27.264	-4.002	1.00	41.06	W	0
	ATOM	5124	0H2	WAT	W	386	31.056	0.281	79.010	1.00	38.99	W	0
	ATOM	5125	0H2	WAT	W	387	19.887	9.930	45.039	1.00	49.86	W	0
	ATOM	5126	0H2	WAT	W	388	36.655	37.162	45.509	1.00	47.87	W	0
20	ATOM	5127	0H2	WAT	W	389	27.630	7.903	30.948	1.00	41.08	W	0
	ATOM	5128	0H2	WAT		390	22.128	23.087	-9.666	1.00	41.60	W	0
	ATOM	5129	0H2	WAT	W	391	16.596	34.405	7.509	1.00	52.09	W	0
	ATOM	5130	0H2	WAT	W	392	18.187	37.051	16.426	1.00	58.25	W	0
	ATOM	5131	0H2	WAT		393	20.557	35.471	15.670	1.00	30.35	W	0
25	ATOM	5132	0H2	WAT		394	38.852	10.942	68.815	1.00	56.37	W	0
	ATOM	5133	0H2	WAT		395	14.789	20.103	63.603		69.08	W	0
	ATOM	5134	0H2			396	35.781	9.917	61.122		45.92	W	0
	ATOM	5135	0H2			397	32.425	7.986	44.362		50.04	W	0
	ATOM	5136	0H2			398	39.173	29.239	58.940	1.00	46.65	W	0
30	ATOM	5137	0H2			399	33.925	28.356	71.709	1.00	46.27	W	0
	ATOM	5138	0H2			400	26.195	11.085	39.837		37.48	W	0
	ATOM	5139	0H2	WAT	W	401	40.425	2.450	9.983	1.00	44.75	W	0
	ATOM	5140	0H2	₩AT		402	28.452	-1.394	7.667		56.86	W	0
~ =	ATOM	5141	0H2			403	22.460	2.393	0.537		46.38	W	0
35	ATOM	5142	0H2	WAT	₩	404	20.613	0.672	-0.814	1.00	61.12	W	0
	END												

表37 化合物(2)とヒトVIIa因子/可溶型組織因子との複合体の座標(阻害剤付近)

5	CRYST1	71.5	280	82.	320	123.	380	90.00	90.00	90.00	P21212	21		
	ATOM	1	N	ILE	H	16	22.	059	3.893	14.020	1.00	5.70	H	N
	ATOM	2	CA	ILE	H	16	21.	957	4.124	15.491	1.00	6.52	H	С
	ATOM	3	C	ILE	H	16	22.	005	2.782	16.220	1.00	7.66	H	С
	ATOM	4	0	ILE	H	16	21.	209	1.883	15.942	1.00	8.62	Н	0
10	ATOM	5	CB	ILE	H	16	20.	628	4.834	15.856	1.00	7.20	H	С
	ATOM	6	CG1	ILE	Η	16	20.	515	6.174	15.119	1.00	6.97	H	C
	ATOM	7	CG2	ILE	Н	16	20.	545	5.036	17.365	1.00	7.03	H	С
	ATOM	8	CD1	ILE	H	16	21.	554	7.217	15.521	1.00	6.54	H	С
	ATOM	9	N	VAL	H	17	22.	947	2.646	17.144	1.00	8.63	H	N
15	ATOM	10	CA	VAL	H	17	23.	087	1.417	17.916	1.00	9.50	H	С
	ATOM	11	C	VAL	H	17	22.	570	1.634	19.338	1.00	9.85	H	C
	ATOM	12	0	VAL	H	17	23.	002	2.553	20.026	1.00	10.72	Н	0
	ATOM	13	CB	VAL	H	17	24.	566	0.964	18.008	1.00	9.85	H	C
	ATOM	14	CG1	VAL	H	17	24.	659	-0.327	18.813	1.00	10.27	\mathbf{H}	С
20	ATOM	15	CG2	VAL	H	17	25.	148	0.754	16.613	1.00	9.47	H	C
	ATOM	16	N	LEU	H	41	22.	072	7.406	1.097	1.00	11.66	H	N
	ATOM	17	CA	LEU	H	41	23.	440	7.899	1.213	1.00	11.08	H	С
	ATOM	18	C	LEU	H	41	23.	808	8.366	2.624	1.00	10.34	H	С
	ATOM	19	0	LEU	H	41	24.	765	7.871	3.224	1.00	10.61	H	0
25	ATOM	20	CB	LEU	H	41	23.	657	9.058	0.226	1.00	10.87	H	C
	ATOM	21	CG	LEU	H	41	25.	000	9.801	0.273	1.00	11.44	Н	C
	ATOM	22	CD1	LEU	H	41	26.	115	8.893	-0.221	1.00	11.67	H	С
	ATOM	23	CD2	LEU	Η	41	24.	921	11.048	-0.582	1.00	11.04	H	С
	ATOM	24	N	CYS	H	42	23.	032	9.307	3.153	1.00	8.47	H	N
30	ATOM	25	CA	CYS		42	23.	314	9.885	4.457	1.00	6.60	H	C
	ATOM	26	C	CYS		42	22.	102	10.577	5.061	1.00	6.35	H	C
	ATOM	27	0	CYS		42	21.	038	10.660	4.448	1.00	8.58	H	0
	ATOM	28	CB	CYS		42	24.	421	10.935	4.309	1.00	6.00	H	С
	ATOM	29	SG	CYS	H	42	26.	138	10.338	4.348	1.00	7.26	H	S
35	ATOM	30	N	GLY		43			11.087	6.272	1.00	4.57	H	N
	ATOM	31	CA	GLY	H	43	21.	248	11.827	6.949	1.00	3.67	H	С
	ATOM	32	C	GLY		43	21.	549	13.308	6.764	1.00	3.89	H	С
	ATOM	33	0	GLY		43	22.	525	13.686	6.104	1.00	3.28	H	0
	ATOM	34	N	ALA		55			16.158	6.411	1.00	5.39	H	N
40	ATOM	35	CA	ALA		55			15.958	6.611	1.00	5.45	H	С
	ATOM	36	С	ALA		5 5			15.980	5.277	1.00	6.95	H	С
	ATOM	37	0	ALA		55			15.441	4.279	1.00	6.34	Н	0
	ATOM	38		ALA		55			14.624		1.00		H	C
	ATOM	39	N	ALA		56			16.606	5.265	1.00	6.14	H	N
45	ATOM	40	CA	ALA		56			16.694	4.053	1.00	7.74	H	С
	ATOM	41	С	ALA		56			15.332	3.488	1.00	6.96	H	С
	ATOM	42	0	ALA		56			15.118	2.276	1.00	8.41	H	0
	ATOM	43	CB	ALA		56			17.532	4.319	1.00	6.48	H	C
	MOTA	44	N	HIS		57			14.412	4.355	1.00	5.95	H	
50	ATOM	45	CA	HIS		57			13.103	3.889	1.00	6.77	H	С
	ATOM	46	C	HIS	H	57	31.	358	12.282	3.151	1.00	8.28	H	С

	ATOM	47	0	HIS		31.685	11.304	2.476	1.00	8.26	H	0
	ATOM	48	CB	HISI	I 57	33.021	12.288	5.046	1.00	5.22	H	C
	ATOM	49	CG	HIS	I 57	32.022	11.512	5.846	1.00	4.67	H	С
	ATOM	50	ND1	HISI	F 57	31.558	11.936	7.074	1.00	2.15	H	N
5	ATOM	51	CD2	HIS I	H 57	31.432	10.314	5.613	1.00	3.66	Н	C
	ATOM	52	CE1	HIS I	I 57	30.730	11.032	7.564	1.00	2.30	Н	C
	ATOM	53	NE 2	HIS 1		30.636	10.038	6.698	1.00	3.94	Н	N
	ATOM	54	N	CYS		30.096	12.686	3.267	1.00	7.28	H	N
	ATOM	55	CA	CYS		29.008	11.999	2.584	1.00	8.91	Н	C
10	ATOM	56	C	CYS		29.128	12.140	1.069	1.00	9.73	Н	č
3. 0	ATOM	57	0	CYS		28.496	11.407	0.317	1.00	7.76	Н	0
	ATOM	58	CB	CYS		27.660	12.578	3.035	1.00	7.86	H	C
	ATOM	5 9	SG	CYS I		27.176	12.043	4.706	1.00	6.38	H	S
			N N	PHE I							Н	
1 5	ATOM	60				29.962	13.074	0.628		10.76		N
15	ATOM	61	CA	PHE I		30.114	13.347	-0.790	1.00	9.91	H	C
	ATOM	62	C	PHE I		31.481	12.971	-1.364	1.00	9.71	H	C
	ATOM	63	0	PHE I		31.804	13.337	-2.496	1.00	8.14	H	0
	ATOM	64	CB	PHE 1		29.804	14.832	-1.020	1.00	9.77	H	С
~ ~	ATOM	65	CG	PHE I		28.484	15.267	-0.422		10.32	H	С
20	ATOM	66		PHE 1		27.287	15.011	-1.083	1.00	7.39	H	C
	ATOM	67		PHE I		28.436	15.845	0.846		11.05	H	С
	ATOM	68		PHE I		26.061	15.314	-0.493	1.00	9.49	H	С
	ATOM	69		PHE I		27.214	16.151	1.447	1.00	11.89	H	С
	ATOM	70	CZ	PHE I	I 59	26.023	15.884	0.776	1.00	10.25	H	C
25	ATOM	71	N	ASP 1	1 60	32.273	12.230	-0.591	1.00	8.71	H	N
	ATOM	72	CA	ASP I	1 60	33.596	11.796	-1.041	1.00	11.41	H	C
	ATOM	73	C	ASP 1	I 60	33.570	11.036	-2.370	1.00	13.85	H	C
	ATOM	74	0	ASP 1	I 60	34.394	11.286	-3.250	1.00	13.33	H	0
	ATOM	75	CB	ASP I		34.255	10.904	0.016	1.00	9.72	H	С
30	ATOM	76	CG	ASP I		34.855	11.694	1.157		10.46	Н	С
	ATOM	77		ASP I		34.672	12.930	1.191	1.00	8.35	Н	0
	ATOM	78		ASP 1		35.514	11.074	2.020	1.00	9.24	H	0
	ATOM	79	N		I 60A	32.634	10.105	-2.522		15.64	H	N
	ATOM	80	CA	LYS		32.579	9.330	-3.755		19.34	Н	C
35	ATOM	81	C	LYS		31.407	9.614	-4.690		19.44	Н	· c
00	ATOM	82	0		1 60A	30.971	8.728	-5.420		19.48	Н	0
	ATOM	83	СВ	LYS I		32.624	7.830	-3.441		21.25	H	C
	ATOM	84	CG	LYS I		34.024	7.315	-3.136	1.00		H	C
	ATOM	85		LYS 1		34.292		-1.650			Н	C
40	ATOM	86	CE		1 60A	33.594	6.006		1.00			
40								-1.041			Н	C
	ATOM	87	ΝZ		I 60A	33.915	5.848	0.412		35.53	Н	N
	ATOM	88	N C 4	ILE I		30.977	22.763	0.695	1.00	7.99	H	N
	ATOM	89	CA	ILE I		31.915	22.141	1.623	1.00	7.65	H	C
4 ==	ATOM	90	C	ILE I		33.092	23.074	1.866	1.00	7.29	H	C
45	ATOM	91	0	ILE I		33.544	23.761	0.953	1.00	9.45	H	0
	ATOM	92	СВ	ILE I		32.422	20.804	1.016	1.00	7.65	Н	C
	ATOM	93		ILE 1		31.298	19.767	1.061	1.00	8.19	H	C ·
	ATOM	94		ILE 1		33.667	20.313	1.732	1.00	8.25	H	С
	ATOM	95		ILE I		31.620	18.477	0.319	1.00	9.60	Н	C
50	ATOM	96	N	TYR I		38.317	21.049	3.982	1.00	8.73	H	N
	ATOM	97	CA	TYR I		37.972	19.637	4.148	1.00	7.55	H	C
	ATOM	98	C	TYR I	I 94	38.721	18.785	3.130	1.00	7.26	H	С
	ATOM	99	0	TYR I	I 94	38.805	19.138	1.959	1.00	6.40	Н	0
	MOTA	100	CB	TYR I	I 94	36.464	19.404	3.969	1.00	5.85	H	C
55	ATOM	101	CG	TYR I	I 94	36.110	17.927	3.920	1.00	4.59	H	С

ATOM 102CD1 TYR H 9436.088 17.157 5.082 1.00 4.45 Н C ATOM 103 CD2 TYR H 94 35.884 17.281 2.700 1.00 4.26 Η C ATOM 104 CE1 TYR H 94 35.859 15.780 5.035 1.00 2.80 Η C ATOM 105 CE2 TYR H 94 35.653 2.642 15.907 1.00 3.12 Н C 5 ATOM 106 TYR H CZ94 35.646 15.163 3.814 1.00 1.93 Η С TYR H ATOM 107 0H9435.462 13.796 3.767 1.00 5.06 Η 0 ATOM 108 N VAL H 95 39.254 17.656 3.584 1.00 8.23 H N VAL H ATOM 109 CA 95 39.989 16.748 2.713 1.00 H C 8.13 ATOM С VAL H 39.293 110 95 15.393 2.622 1.00 9.13 C H 10 ATOM 111 0 VAL H 95 39.141 14.692 3.625 1.00 8.17 Н 0 ATOM CBVAL H 41.428 16.523 3.225 112 95 1.00 8.63 Н C ATOM CG1 VAL H 42.160 15.530 2.315 113 95 1.00 7.79 H C ATOM 114 CG2 VAL H 42.173 17.848 95 3.271 1.00 9.62 Н C PRO H ATOM 115 N 96 38.863 15.005 1.410 1.00 10.15 Н N 15 ATOM 116 CA PRO H 96 38.187 13.716 1.237 1.00 10.07 Н C ATOM 117 С PRO H 96 38.988 12.623 1.928 1.00 9.71 H C ATOM 118 0 PRO H 96 40.221 12.655 1.917 1.00 10.21 H 0 ATOM 119 CB PRO H 96 38.171 13.536 -0.2791.00 9.81 Н C ATOM 120 CG PRO H 96 38.070 14.949 -0.7761.00 9.61 H C 20 ATOM CD PRO H 96 39.062 15.673 0.110 1.00 121 8.77 H C 38.280 ATOM 122 N GLY H 97 11.675 2.534 1.00 7.35 Η N ATOM 123 CAGLY H 97 38.928 10.571 3.222 1.00 7.72 H C 10.853 ATOM 124 C GLY H 39.292 97 4.670 1.00 8.31 Н C ATOM 125 0 GLY H 97 39,656 9.934 5.404 1.00 5.90 Ħ 0 25 ATOM 126 N THR H 98 39.187 12.112 5.091 1.00 Н 8.38 N THR H ATOM 127 CA98 39.543 12.474 6.456 1.00 8.75 Η C ATOM 128 С THR H 98 38.347 12.901 7.301 1.00 9.32 Н C ATOM 129 0 THR H 37.197 12.726 98 6.888 1.00 9.82 Η 0 ATOM 130 CB THR H 40.639 13.572 98 6.474 1.00 10.03 H C 30 ATOM 131 OG1 THR H 40.118 14.798 5.939 98 1.00 9.30 Н 0 ATOM 132 CG2 THR H 41.841 98 13.123 5.636 1.00 7.92 Н C THR H ATOM 133 N 9938.622 13.478 8.470 1.00 6.94 Н N ATOM 134 CA THR H 99 37.576 13.853 9.411 1.00 7.19 Н С ATOM 135 С THR H 37.371 15.330 9.811 7.60 H C 99 1.00 35 ATOM 0 THR H 36.267 15.704 10.221 136 99 1.00 4.56 Η 0 ATOM 137 CBTHR H 37.761 13.028 99 10.697 1.00 9.01 Н C ATOM OG1 THR H 39.126 138 99 13.133 11.128 0 1.00 8.28 Н ATOM 139 CG2 THR H 99 37.434 11.556 10.444 1.00 8.22 Н C ATOM 140 38.405 N ASN H 100 16.163 9.703 1.00 4.83 Η N 40 38.280 ATOM 141 CAASN H 100 17.573 10.093 1.00 6.56 Н С ATOM 142 С ASN H 100 37.359 18.369 9.157 1.00 6.18 H C ATOM 143 ASN H 100 37.299 0 18.109 7.957 1.00 6.48 Н 0 144 CBATOM ASN H 100 39.669 18.244 10.151 1.00 3.59 Η С 145 39.760 ATOM CGASN H 100 19.337 11.227 1.00 7.18 H C 45 ATOM 40.685 146 0D1 ASN H 100 20.162 11.222 Н 1.00 9.38 0 147 ATOM ND2 ASN H 100 38.809 19.340 12.156 1.00 1.98 Н N 36.638 ATOM 148 N HIS H 101 19.338 9.718 1,00 6.06 Н N ATOM 149 CAHIS H 101 35.725 20.178 8.940 1.00 6.01 Н C ATOM 150 С HIS H 101 34.705 19.325 8.198 C 1.00 6.65 Н 50 ATOM 151 0 HIS H 101 34.433 19.562 7.017 1.00 6.05 Н 0 ATOM 152 CB HIS H 101 36.510 21.018 7.927 1.00 6.18 Н C ATOM 153 CGHIS H 101 37.589 21.853 8.541 1.00 9.14 Η C ATOM 154 ND1 HIS H 101 37.331 22.852 9.456 1.00 10.10 Н N ATOM 155 CD2 HIS H 101 38.935 21.824 С 8.387 1.00 8.84 Н 55 ATOM 156 38.470 23.401 CE1 HIS H 101 9.839 C 1.00 9.36Η

	ATOM	157	NE 2	HIS	Η	101	39.458	22.795	9.206	1.00	5.86	H	N
	ATOM	158	N	ASP	H	102	34.136	18.341	8.891	1.00	4.35	H	
	ATOM	159	CA	ASP	Η	102	33.170	17.436	8.279	1.00	4.62	H	
	ATOM	160	C	ASP	H	102	31.773	18.055	8.310	1.00	5.36	H	С
5	ATOM	161	0	ASP	H	102	30.936	17.713	9.154	1.00	5.27	H	0
	ATOM	162	CB	ASP	H	102	33.188	16.095	9.016	1.00	1.00	H	С
	ATOM	163	CG	ASP	H	102	32.509	14.992	8.238	1.00	3.93	H	С
	ATOM	164	0D1	ASP			32.142	15.219	7.067	1.00	5.39	Н	0
	ATOM	165		ASP			32.352	13.889	8.794	1.00	2.41	H	
10	ATOM	166	N			103	31.529	18.972	7.381	1.00	5.02	H	
	ATOM	167	CA			103	30.248	19.659	7.309	1.00	3.77	Н	
	ATOM	168	C			103	29.945	20.059	5.874	1.00	4.55	H	
	ATOM	169	Õ			103	30.851	20.349	5.094	1.00	4.54	Н	
	ATOM	170	СВ			103	30.266	20.931	8.201	1.00	4.83	H	
15	ATOM	171	CG1			103	28.873	21.570	8.259	1.00	2.69	Н	
10	ATOM	172	CG2	ILE			31.288	21.931	7.664	1.00	2.18	H	
	ATOM	173		ILE			28.770	22.730	9.246	1.00	1.00	H	
			N N			138	20.653				5.55	Н	
	ATOM	174						12.090	18.785	1.00	6.30	Н	
20	ATOM	175	CA			138	21.298	11.812	17.509				
20	ATOM	176	C			138	20.336	10.842	16.823	1.00	6.56	H	
	ATOM	177	0 0 D			138	19.741	9.990	17.479	1.00	7.54	H	
	ATOM	178	CB			138	22.704	11.165	17.677	1.00	6.77	Н	
	ATOM	179		VAL				12.166	18.324	1.00	3.97	H	
0.5	ATOM	180	CG2					9.906	18.515	1.00	5.04	H	
25	ATOM	181	N			139	20.172	10.967	15.512	1.00	6.69	H	
	ATOM	182	CA			139	19.227	10.114	14.805	1.00	5.72	H	
	ATOM	183	C			139	19.611	9.790	13.370	1.00	6.17	H	
	ATOM	184	0			139	20.485	10.431	12.787	1.00	5.98	H	
	ATOM	185	CB			139	17.850	10.786	14.815	1.00	6.76	H	
30	ATOM	186	0G			139	17.944	12.120	14.327	1.00	4.59	H	
	ATOM	187	N			142	20.741	4.754	9.987	1.00	8.09	H	
	ATOM	188	CA			142	21.997	4.032	9.902	1.00	6.84	H	С
	ATOM	189	C	GLY	H	142	21.957	2.626	10.456	1.00	7.70	H	
	ATOM	190	0	GLY	Η	142	20.900	2.125	10.850	1.00	7.86	H	0
35	ATOM	191	N	GLN	Η	143	23.126	1.993	10.480	1.00	9.91	H	N
	ATOM	192	CA	GLN	H	143	23.278	0.628	10.976		11.50	H	
	ATOM	193	С			143	22.843	0.499	12.425	1.00	11.62	H	C
	ATOM	194	0			143	23.133	1.360	13.255	1.00	10.73	H	
	ATOM	195	CB	GLN	Η	143	24.737	0.158	10.868	1.00	10.78	H	C
40	ATOM	196	CG	GLN	H	143	25.309	0.056	9.452	1.00	13.60	H	C
	ATOM	197	CD	GLN	Η	143	25.651	1.411	8.850	1.00	16.26	H	C
	ATOM	198	0E1	GLN	Η	143	25.652	2.430	9.542	1.00	13.61	H	0
	ATOM	199	NE 2	GLN	H	143	25.952	1.425	7.555	1.00	15.87	H	N
	ATOM	200	N	LEU	Η	145	23.813	-2.024	14.132	1.00	17.85	H	N
45	ATOM	201	CA	LEU	H	145	24.999	-2.630	14.718	1.00	21.26	H	С
	ATOM	202	C	LEU	H	145	26.174	-2.317	13.805	1.00	22.23	H	C
	ATOM	203	0	LEU	Η	145	25.998	-2.080	12.610	1.00	20.28	H	. 0
	ATOM	204	CB	LEU	H	145	24.848	-4.149	14.816	1.00	21.41	H	С
	ATOM	205	CG	LEU			23.756	-4.748	15.699		24.05	Н	С
50	ATOM	206		LEU			23.709	-6.251	15.465		22.91	H	C
- 0	ATOM	207		LEU			24.029	-4.437	17.166		24.83	Н	Č
	ATOM	208	N	ASP			27.371	-2.314	14.374		24.68	H	N
	ATOM	209	CA	ASP			28.569	-2.054	13.600		28.79	Н	C
	ATOM	210	C	ASP			28.701	-3.221	12.634		30.65	Н	Č
55	ATOM	211	0	ASP			28.649	-4.379	13.046		29.72	Н	0
55			-				20.010					-11	J

	ATOM	212	CB	ASP	H 146	29.781	-1.974	14.534	1.00	30.17	H	С
	ATOM	213	CG	ASP	H 146	31.076	-1.707	13.795	1.00	31.88	H	С
	ATOM	214	0D1	ASP	H 146	31.050	-0.995	12.767	1.00	32.57	H	0
	ATOM	215	0D2	ASP	H 146	32.128	-2.199	14.257	1.00	35.02	H	0
5	ATOM	216	N	ARG	H 147	28.838	-2.918	11.348	1.00	34.10	Н	N
	ATOM	217	CA	ARG	H 147	28.968	-3.964	10.338	1.00	37.74	H	С
	ATOM	218	С		H 147	27.620	-4.672	10.137	1.00	36.36	Н	С
	ATOM	219	0	ARG	H 147	27.580	-5.856	9.805	1.00	38.70	H	0
	ATOM	220	CB	ARG	H 147	30.023	-4.977	10.794	1.00	41.63	Н	С
10	ATOM	221	CG	ARG	H 147	30.984	-5.462	9.731	1.00	48.94	H	С
	ATOM	222	CD	ARG	H 147	32.085	-6.279	10.395	1.00	55.34	Н	С
	ATOM	223	NE		H 147	33.126	-6.706	9.465	1.00	60.79	H	N
	ATOM	224	CZ	ARG	H 147	34.228	-7.360	9.826	1.00	63.32	Н	С
	ATOM	225	NH1	ARG	H 147	34.439	-7.667	11.100	1.00	64.90	H	N
1 5	ATOM	226	NH2	ARG	H 147	35.122	-7.708	8.912	1.00	64.23	H	N
	ATOM	227	N	LEU	H 158	18.599	8.382	19.520	1.00	8.74	Н	N
	ATOM	228	CA	LEU	H 158	19.340	8.024	20.727	1.00	7.23	H	С
	ATOM	229	С	LEU	H 158	19.751	9.261	21.527	1.00	8.93	H	С
	ATOM	230	0	LEU	H 158	20.116	10.290	20.953	1.00	8.07	H	0
20	ATOM	231	CB	LEU	H 158	20.603	7.253	20.336	1.00	6.49	H	С
	ATOM	232	CG	LEU	H 158	21.572	6.875	21.454	1.00	6.44	H	C
	ATOM	233	CD1	LEU	H 158	20.931	5.804	22.334	1.00	7.20	H	С
	ATOM	234	CD2	LEU	H 158	22.886	6.374	20.853	1.00	6.24	H	С
	ATOM	235	N	VAL	H 160	22.440	10.884	23.870	1.00	6.69	H	N ·
25	ATOM	236	CA	VAL	H 160	23.841	10.699	24.231	1.00	5.16	H	С
	ATOM	237	С	VAL	H 160	24.363	11.899	25.015	1.00	6.46	H	С
	ATOM	238	0	VAL	H 160	23.972	13.038	24.761	1.00	6.24	H	0
	ATOM	239	CB	VAL	H 160	24.748	10.493	22.977	1.00	4.79	H	C
	ATOM	240	CG1	VAL	H 160	24.364	9.202	22.248	1.00	2.87	H	C
30	ATOM	241	CG2	VAL	H 160	24.636	11.690	22.033	1.00	4.14	H	C
	ATOM	242	N	ARG	H170C	40.277	4.649	25.092	1.00	26.96	H	N
	ATOM	243	CA	ARG	H170C	41.408	3.742	25.040	1.00	30.88	H	C
	ATOM	244	С	ARG	H170C	42.455	4.322	24.096	1.00	33.02	H	C
	ATOM	245	0	ARG	H170C	42.180	4.560	22.920	1.00	32.09	H	0
35	ATOM	246	CB	ARG	H170C	40.952	2.368	24.546	1.00	32.33	H	C
	ATOM	247	CG	ARG	H170C	42.066	1.343	24.417	1.00	36.16	H	C
	ATOM	248	CD	ARG	H170C	41.510	-0.012	24.014	1.00	39.39	H	C
	ATOM	249	NE	ARG	H170C	42.563	-0.955	23.649	1.00	41.61	H	N
	ATOM	250	CZ	ARG	H170C	42.345	-2.177		1.00	44.13	H	C
40	ATOM	251			H170C	41.105	-2.617	22.992	1.00	45.02	H	N
	ATOM	252	NH2	ARG	H170C	43.370	-2.959	22.859		45.11	H	N
	ATOM	253	N		H170D	43.650	4.565	24.622	1.00	36.30	H	N
	ATOM	254	CA		H170D	44.737	5.114	23.820		39.96	H	С
	ATOM	255	С		H170D	45.045	4.165	22.667		39.79	H	С
45	ATOM	256	0		H170D	45.328	2.986	22.881		39.51	H	0
	ATOM	257	CB		H170D	45.986	5.302	24.685		43.00	H	С
	ATOM	258	CG		H170D	47.201	5.802	23.921		47.37	H	C
	ATOM	259	CD		H170D	48.433	5.842	24.812		51.67	H	C
	ATOM	260	CE		H170D	49.673	6.249	24.028		54.05	H	C
50	ATOM	261	ΝZ		H170D	49.975	5.293	22.924		55.60	H	N
	ATOM	262	N		H170E	44.983	4.679	21.445		39.89	Н	N
	ATOM	263	CA		H170E	45.250	3.860	20.269		40.30	H	С
	ATOM	264	С		H170E	46.447	4.372	19.472		41.06	Н	С
	ATOM	265	0		H170E	47.128	5.312	19.888		41.71	H	0
55	ATOM	266	CB	VAL	H170E	44.015	3.799	19.340	1.00	40.64	Н	С

	ATOM	267	CG1	VAL	H170E	42.876	3.065	20.034	1.00 40.47	H	С
	ATOM	268	CG2	VAL	H170E	43.582	5.199	18.958	1.00 40.92	H	С
	ATOM	269	N		H170F	46.700	3.741	18.330	1.00 40.52	H	N
	ATOM	270	CA		H170F	47.814	4.140	17.492	1.00 39.24	H	С
5	ATOM	271	С		H170F	47.649	5.534	16.920	1.00 38.47	Н	С
	ATOM	272	0		H170F	47.270	6.468	17.630	1.00 38.87	H	0
	ATOM	273	N		H170G	47.932	5.672	15.629	1.00 36.20	Н	N
	ATOM	274	CA		H170G	47.823	6.955	14.951	1.00 34.41	H	C
	ATOM	275	С		H170G	46.433	7.192	14.370	1.00 31.26	H	C
10	ATOM	276	0		H170G	46.265	7.306	13.155	1.00 30.19	Н	0
	ATOM	277	CB		H170G	48.869	7.049	13.839	1.00 38.35	Н	C
	ATOM	278	CG		H170G	50.282	7.112	14.377	1.00 42.44	H	Č
	ATOM	279			H170G	50.595	8.077	15.111	1.00 43.77	H	0
	ATOM	280			H170G	51.080	6.200	14.069	1.00 44.37	H	0
15	ATOM	281	N		H170H	45.438	7.265	15.245	1.00 27.38	H	N
	ATOM	282	CA		H170H	44.066	7.501	14.822	1.00 23.64	H	C
	ATOM	283	C		H170H	43.830	9.008	14.677	1.00 20.46	H	Č
	ATOM	284	0		H170H	44.628	9.817	15.149	1.00 19.96	H	0
	ATOM	285	CB		H170H	43.096	6.902	15.846	1.00 24.30	H	C
20	ATOM	286	0 G		H170H	43.323	7.430	17.142	1.00 24.12	H	0
	ATOM	287	N		H170I	42.733	9.403	14.013	1.00 17.84	H	N
	ATOM	288	CA		H170I	42.432	10.826	13.826	1.00 15.01	H	C
	ATOM	289	C		H170I	42.402	11.597	15.146	1.00 13.81	H	Č
	ATOM	290	0		H170I	41.933	11.090	16.162	1.00 11.82	H	0
25	ATOM	291	СB		H170I	41.066	10.798	13.142	1.00 14.13	H	Č
	ATOM	292	CG		H170I	41.112	9.519	12.359	1.00 15.60	H	C
	ATOM	293	CD		H170I	41.716	8.562	13.358	1.00 16.03	H	Č
	ATOM	294	N		H 175	42.918	12.819	15.137	1.00 13.26	H	N
	ATOM	295	CA		H 175	42.911	13.627	16.347	1.00 15.22	H	C
30	ATOM	296	C		H 175	41.540	14.261	16.497	1.00 12.70	H	C
00	ATOM	297	0		H 175	40.813	14.420	15.520	1.00 9.75	H	0
	ATOM	298	СВ		H 175	43.964	14.744	16.280	1.00 19.16	H	C
	ATOM	299	CG		H 175	45.367	14.217	16.081	1.00 22.90	H	C
	ATOM	300	0D1		H 175	45.726	13.159	16.597	1.00 28.38	H	0
35	ATOM	301			H 175	46.178	14.963	15.338	1.00 26.32	Н	N
,	ATOM	302	N		H 176	41.190	14.609	17.729	1.00 12.09	H	N
	ATOM	303	CA		H 176	39.922	15.270	18.015	1.00 10.80	Н	С
	ATOM	304	С		H 176	40.253	16.759	18.040	1.00 9.92	H	C
	ATOM	305			H 176		17.248		1.00 8.78	Н	0
40	ATOM	306	СВ		H 176	39.373	14.856	19.391	1.00 10.52	H	С
	ATOM	307			H 176	39.207	13.335	19.451	1.00 11.68	H	С
	ATOM	308			H 176	38.032	15.533	19.636	1.00 7.09	Н	C
	ATOM	309			H 176	38.867	12.816	20.830	1.00 15.04	H	C
	ATOM	310	N		H 180	35.459	19.555	16.502	1.00 3.00	Н	N
4 5	ATOM	311	CA		H 180	34.757	18.321	16.843	1.00 3.79	Н	С
	ATOM	312	С		H 180	34.487	18.263	18.344	1.00 4.77	H	С
	ATOM	313	0		H 180	35.007	19.075	19.114	1.00 6.30	H	0
	ATOM	314	СВ		H 180	35.625	17.105	16.499	1.00 3.93	H	Č
	ATOM	315	CG		H 180	36.365	17.162	15.169	1.00 5.58	H	Č
50	ATOM	316	SD		H 180	37.565	15.805	15.057	1.00 6.35	H	S
	ATOM	317	CE		H 180	38.175	16.035	13.399	1.00 4.33	H	Č
	ATOM	318	N		H 181	33.677	17.288	18.745	1.00 3.48	H	N
	ATOM	319	CA		H 181	33.379	17034	20.151	1.00 3.80	H	C
	ATOM	320	C		H 181	32.851	15.608	20.242	1.00 4.05	Ĥ	Č
55	ATOM	321	0		H 181	32.219	15.111	19.304	1.00 3.48	H	0

	ATOM	322	СВ	PHE H 181	32.371	18.051	20.719	1.00 4.6	3 Н	С
	ATOM	323	CG	PHE H 181	30.939	17.853	20.273	1.00 6.1		C
	ATOM	324		PHE H 181	30.134	16.881	20.863	1.00 3.6		Č
	ATOM	325		PHE H 181	30.370	18.706	19.323	1.00 4.5		
5	ATOM	326		PHE H 181	28.777		20.519			
3						16.767		1.00 4.7		
	ATOM	327		PHE H 181	29.018	18.601	18.973	1.00 2.4		C
	ATOM	328	CZ	PHE H 181	28.220	17.634	19.572	1.00 4.0		
	ATOM	329	N	CYS H 182	33.142	14.938	21.349	1.00 3.2		
	ATOM	330	CA	CYS H 182	32.684	13.571	21.539	1.00 4.4	2 H	C
10	ATOM	331	C	CYS H 182	31.373	13.550	22.298	1.00 3.9	3 H	С
	ATOM	332	0	CYS H 182	31.061	14.473	23.047	1.00 4.7	7 H	0
	ATOM	333	CB	CYS H 182	33.685	12.758	22.352	1.00 5.9	6 H	С
	ATOM	334	SG	CYS H 182	35.402	12.734	21.771	1.00 5.8		S
	ATOM	335	N	ALA H 183	30.619	12.476	22.112	1.00 3.9		N
15	ATOM	336	CA	ALA H 183	29.356	12.290	22.810	1.00 5.2		C
10	ATOM	337	C	ALA H 183	29.000	10.813	22.723	1.00 5.2		Ċ
	ATOM	338	0	ALA H 183	29.318	10.010	21.740	1.00 7.2		0
	ATOM	339	СВ	ALA H 183	28.254	13.152	22.178	1.00 1.2		C
	ATOM	340	N	GLY H184A	28.361	10.289	23.760			N N
90								1.00 7.3		
20	ATOM	341	CA	GLY H184A	27.986	8.890	23.741	1.00 6.6		C
	ATOM	342	C	GLY H184A	28.482	8.101	24.936	1.00 8.1		C
	ATOM	343	0	GLY H184A	28.615	8.634	26.042	1.00 6.8		0
	ATOM	344	N	TYR H 184	28.771	6.825	24.699	1.00 7.7		N
~~	ATOM	345	CA	TYR H 184	29.224	5.921	25.750	1.00 8.1		С
25	ATOM	346	C	TYR H 184	30.406	5.068	25.288	1.00 7.7		C
	ATOM	347	0	TYR H 184	30.506	4.712	24.114	1.00 6.4		0
	ATOM	348	CB	TYR H 184	28.074	5.004	26.176	1.00 8.9	5 H	С
	ATOM	349	CG	TYR H 184	26.813	5.725	26.615	1.00 10.4		С
	ATOM	350	CD1	TYR H 184	25.924	6.256	25.681	1.00 10.7	8 H	C
30	ATOM	351	CD2	TYR H 184	26.515	5.881	27.967	1.00 10.5	4 H	С
	ATOM	352	CE1	TYR H 184	24.771	6.923	26.080	1.00 12.3	2 H	C
	ATOM	353	CE2	TYR H 184	25.369	6.542	28.378	1.00 12.0	8 H	C
	ATOM	354	CZ	TYR H 184	24.500	7.061	27.429	1.00 13.7	4 H	С
	ATOM	355	0H	TYR H 184	23.357	7.705	27.829	1.00 15.6	6 H	0
35	ATOM	356	N	LYS H 188	25.832	2.110	23.136	1.00 8.0		N
	ATOM	357	CA	LYS H 188	25.079	3.077	22.349	1.00 7.4		C
	ATOM	358	C	LYS H 188	25.957	4.081	21.605	1.00 9.1		C
	ATOM	359	0	LYS H 188	26.946	4.585	22.147	1.00 7.0		0
	ATOM			LYS H 188	24.123	3.820		1.00 8.9		
40	ATOM	361	CG	LYS H 188	23.123	2.911	24.006	1.00 9.8		Č
10	ATOM	362	CD	LYS H 188	22.325	3.672	25.051	1.00 11.3		Č
	ATOM	363	CE	LYS H 188	23.157	3.965	26.292	1.00 11.0		c
	ATOM	364	NZ	LYS H 188	23.504	2.721	27.048	1.00 14.5		
										N N
15	ATOM	365	N C A	ASP H 189	25.570	4.397	20.373	1.00 6.8		N
45	ATOM	366	CA	ASP H 189	26.350	5.319	19.560	1.00 8.4		C
	ATOM	367	C	ASP H 189	25.650	5.465	18.209	1.00 8.5		C
	ATOM	368	0	ASP H 189	24.752	4.686	17.886	1.00 7.4		0
	ATOM	369	CB	ASP H 189	27.755	4.705	19.393	1.00 9.6		C
	ATOM	370	CG	ASP H 189	28.738	5.610	18.677	1.00 8.6		C
50	ATOM	371		ASP H 189	28.457	6.811	18.489	1.00 9.8		0
	ATOM	372		ASP H 189	29.819	5.098	18.313	1.00 6.3		0
	ATOM	373	N	SER H 190	26.013	6.486	17.441	1.00 6.2		N
	ATOM	374	CA	SER H 190	25.450	6.628	16.106	1.00 6.2		С
	ATOM	375	С	SER H 190	26.395	5.773	15.249	1.00 7.0		C
55	ATOM	376	0	SER H 190	27.367	5.221	15.775	1.00 5.9	1 H	0

	1000	~ ·-		a==						,		-
	ATOM	377	CB	SER H		25.450	8.101	15.658	1.00	4.21	H	С
	ATOM	378	0 G	SER I		26.703	8.733	15.861	1.00	4.59	Н	0
	ATOM	379	N	CYS I		26.128	5.641	13.953	1.00	8.36	H	N
_	ATOM	380	CA	CYS I		26.992	4.823	13.099	1.00	7.99	Н	C
5	ATOM	381	C	CYS I		27.131	5.428	11.698	1.00	8.96	Н	С
	ATOM	382	0	CYS I		26.507	6.442	11.388	1.00	8.95	H	0
	ATOM	383	CB	CYS F		26.446	3.384	13.036	1.00	8.01	H	C
	ATOM	384	SG	CYS		27.624	2.081	12.512		11.48	H	S
10	ATOM	385	N	LYS F		27.955	4.804	10.861	1.00	9.23	H	N
10	ATOM	386	CA	LYS F		28.232	5.291	9.508		10.49	H 	C
	ATOM	387	C	LYS		27.042	5.787	8.691	1.00	9.74	H 	C
	ATOM	388	0	LYS		27.089	6.885	8.131	1.00	9.42	H	0
	ATOM	389	CB	LYS F		28.996	4.221	8.720		12.99	H	C
	ATOM	390	OG CG	LYS		30.288	3.788	9.406		17.47	H	C
15	ATOM	391	CD	LYS F		31.180	2.948	8.509		21.20	H	C
	ATOM	392	CE	LYS		32.448	2.535	9.258		25.68	H	C
	ATOM	393	ΝZ	LYS		33.427	1.809	8.395	1.00		H	N
	ATOM	394	N	GLY H		25.983	4.989	8.623	1.00	9.29	H	N
90	ATOM	395	CA	GLY F		24.806	5.380	7.863	1.00	9.11	Н	C
20	ATOM	396	C	GLY F		24.059	6.573	8.433		10.62	H	C
	ATOM	397	0 N	GLY F		23.188	7.141	7.774		12.70	H	0 N
	ATOM	398	N C A	ASP H		24.386	6.959	9.662	1.00	8.84	Н	N
	ATOM	399	C A C	ASP F		23.744	8.108	10.289	1.00	7.33	H H	C C
25	ATOM ATOM	400 401	0	ASP H		24.475 23.989	9.412 10.492	9.972 10.312	1.00 1.00	7.03 7.04	п Н	0
20	ATOM	401	CB	ASP E		23.688	7.917	11.802	1.00	5.37	н Н	C
	ATOM	402	CG	ASP E		22.927	6.671	12.195	1.00	7.85	Н	C
	ATOM	404		ASP F		21.737	6.572	11.833	1.00	6.73	H	0
	ATOM	405		ASP F		23.519	5.794	12.857	1.00	4.09	Н	0
30	ATOM	406	N N	SER E		25.634	9.301	9.324	1.00	5.06	Н	N
00	ATOM	407	CA	SER F		26.449	10.454	8.960	1.00	5.57	Н	C
	ATOM	408	C	SER H		25.629	11.601	8.387	1.00	6.98	Н	C
	ATOM	409	0	SER H		24.730	11.391	7.573	1.00	4.66	Н	0
	ATOM	410	СВ	SER H		27.521	10.050	7.939	1.00	4.83	H	Č
35	ATOM	411	0 G	SER E		28.461	9.156	8.509	1.00	2.83	H	0
	ATOM	412	N	GLY H		25.958	12.817	8.816	1.00	7.56	Н	N
	ATOM	413	CA	GLY H		25.253	13.994	8.337	1.00	7.44	H	С
	ATOM	414	С	GLY E		24.032	14.324	9.174	1.00	7.23	H	С
	ATOM	415	0	GLY F	196	23.564	15.460	9.178	1.00	7.34	H	0
40	ATOM	416	N	GLY F		23.520	13.325	9.888	1.00	7.25	H	N
	ATOM	417	CA	GLY E	197	22.351	13.517	10.721	1.00	5.90	H	С
	ATOM	418	C	GLY F	197	22.572	14.494	11.858	1.00	6.34	H	С
	ATOM	419	0	GLY E	197	23.707	14.824	12.195	1.00	7.23	H	0
	ATOM	420	N	HIS E	199	22.592	16.228	15.752	1.00	4.66	H	N
45	ATOM	421	CA	HIS H	199	22.920	16.007	17.151	1.00	2.68	H	С
	ATOM	422	C	HIS E	199	22.168	17.243	17.628	1.00	3.98	H	С
	ATOM	423	0	HIS E		22.668	18.366	17.497	1.00	4.27	H	0
	ATOM	424	CB	HIS E		24.424	16.155	17.391	1.00	4.75	H	C
	ATOM	425	CG	HIS E		24.812	16.159	18.838	1.00	3.77	H	C
50	ATOM	426		HIS E		24.693	17.275	19.636	1.00	1.00	H	N
	ATOM	427		HIS E		25.308	15.179	19.633	1.00	4.02	Н	С
	ATOM	428		HIS H		25.103	16.987	20.858	1.00	2.26	H	С
	ATOM	429		HIS H		25.481	15.721	20.883	1.00	2.92	Н	N
~~	ATOM	430	N	ILE H		26.974	17.242	14.214	1.00	5.45	Н	N
55	ATOM	431	CA	ILE E	212	26.692	16.454	13.021	1.00	5.68	Н	С

	ATOM	432	С	ILE	ш	212	27.372	15.092	13.160	1.00	6.39	H	C
													С
	ATOM	433	0	ILE			28.561	15.029	13.458	1.00	7.22	H	0
	ATOM	434	CB	ILE			27.265	17.133	11.753	1.00	5.98	H	C
یر	ATOM	435	CG1	ILE			26.699	18.545	11.606	1.00	4.14	H	
5	ATOM	436		ILE			26.943	16.296	10.522	1.00	5.31	H	
	ATOM	437	CD1	ILE			27.426	19.368	10.561	1.00	3.83	H	С
	ATOM	438	N			213	26.620	14.010	12.962	1.00	6.29	H	N
	ATOM	439	CA			213	27.187	12.661	13.039	1.00	3.02	H	С
	ATOM	440	С			213	28.340	12.692	12.046	1.00	3.61	H	C
10	ATOM	441	0	VAL			28.130	12.905	10.846	1.00	3.84	H	0
	ATOM	442	CB	VAL			26.149	11.581	12.617	1.00	1.61	H	C
	ATOM	443	CG1	VAL	H	213	26.792	10.194	12.636	1.00	1.00	H	С
	ATOM	444	CG2	VAL	H	213	24.959	11.599	13.578	1.00	1.00	H	С
	ATOM	445	N	SER	H	214	29.557	12.491	12.540	1.00	4.04	H	N
15	ATOM	446	CA	SER	H	214	30.728	12.582	11.675	1.00	5.26	H	C
	ATOM	447	С	SER	H	214	31.619	11.349	11.577	1.00	3.67	H	С
	ATOM	448	0	SER	H	214	31.766	10.778	10.497	1.00	3.00	H	0
	ATOM	449	CB	SER	Н	214	31.561	13.794	12.101	1.00	4.06	H	С
	ATOM	450	0G			214	32.746	13.898	11.343	1.00	7.47	H	0
20	ATOM	451	N	TRP	Η	215	32.225	10.946	12.689	1.00	2.06	H	N
	ATOM	452	CA	TRP		215	33.094	9.779	12.667	1.00	4.11	H	С
	ATOM	453	С	TRP	Н	215	33.247	9.099	14.018	1.00	5.89	H	С
	ATOM	454	0			215	32.628	9.491	15.007	1.00	5.44	Н	0
	ATOM	455	CB	TRP			34.489	10.148	12.120	1.00	5.71	Н	C
25	ATOM	456	CG	TRP			35.298	11.099	12.983	1.00	6.60	H	C
	ATOM	457	CD1	TRP			35.174	12.459	13.046	1.00	8.26	H	
	ATOM	458	CD2	TRP		215	36.374	10.755	13.870	1.00	7.17	Н	Ċ
	ATOM	459	NE 1			215	36.106	12.985	13.910	1.00	6.83	H	N
	ATOM	460	CE 2			215	36.855	11.962	14.433	1.00	7.22	Н	
30	ATOM	461	CE3	TRP			36.979	9.546	14.244	1.00	6.60	H	С
	ATOM	462	CZ2	TRP			37.912	11.996	15.351	1.00	4.55	H	С
	ATOM	463	CZ3	TRP			38.035	9.578	15.161	1.00	7.36	H	С
	ATOM	464	CH2	TRP			38.488	10.799	15.703	1.00	6.87	Н	C
	ATOM	465	N	GLY			34.086	8.070	14.043	1.00	6.33	H	N
35	ATOM	466	CA	GLY			34.336	7.332	15.265	1.00	8.66	H	C
	ATOM	467	С	GLY			35.004	6.017	14.932	1.00	9.66	H	Ċ
	ATOM	468	0	GLY			34.914	5.543	13.795	1.00	9.71	H	0
	ATOM	469	N	GLN			35.684	5.422	15.906		10.43	H	N
	ATOM	470	CA	GLN			36.346			1.00		H	C
40	ATOM	471	C	GLN			35.284	3.065	15.765		10.61	Н	Č
10	ATOM	472	0	GLN			34.858	2.695	16.858		13.71	H	
	ATOM	473	СВ	GLN			37.449	3.919	16.701		12.43	H	Č
	ATOM	474	CG	GLN			38.205	2.612	16.498		14.99	Н	Č
	ATOM	475	CD	GLN			39.564	2.605	17.171		18.06	H	č
4 5	ATOM	476		GLN			40.134	1.540	17.427		19.54	H	ő
10	ATOM	477		GLN			40.103	3.794	17.443		13.50	H	N
	ATOM	478	N	GLY			34.854	2.563	14.612		10.68	Н	N
	ATOM	479	CA	GLY			33.803	1.563	14.596		11.37	Н	C
	ATOM	480	C	GLY			32.536	2.218	15.126		11.52	H	C
50	ATOM	481	0	GLY			32.436	3.446	15.163		11.41	H	0
υU	ATOM	482	N	CYS			31.569	1.410	15.103		11.97	H	N
	ATOM	483	CA	CYS			30.317	1.934	16.077		11.90	Н	C
	ATOM	484	C	CYS			30.052	1.266	17.420		11.82	Н	C
	ATOM	485	0	CYS			29.975	0.037	17.508		12.68	Н	0
55	ATOM	486	CB	CYS			29.170	1.658	15.099		11.56	Н	C
55	21	- 5 0		U1	**	- 40		2.000	10.000	1.00	. 1 . 0 0		J

	ATOM	487	SG	CYS	H 220	29.346	2.521	13.505	1.00	8.67	Н	S
	ATOM	488	N		H221A	29.916	2.084	18.462		10.74	Н	N
	ATOM	489	CA		H221A	29.691	1.588	19.817		10.47	Н	C
	ATOM	490	C		H221A	30.806	0.616	20.198		10.93	Н	C
5	ATOM	491	0		H221A	30.547	-0.493	20.677		11.08	· H	0
U	ATOM	492	CB		H221A	28.336	0.901	19.914		11.15	Н	C
	ATOM	493	N		H 221	32.046	1.045	19.968	1.00	9.44	Н	N
	ATOM	494	CA		H 221	33.237	0.249	20.274	1.00	8.66	H	C
	ATOM	495	C		H 221	33.708	0.543	21.695	1.00	8.04	Н	C
10	ATOM	496	0		H 221	33.859	1.706	22.075	1.00	7.03	H	0
10	ATOM	497	CB		H 221	34.391	0.578	19.289	1.00	8.20	Н	C
	ATOM	498	0G1		H 221	33.983	0.265	17.951		10.25	Н	0
	ATOM	499			H 221	35.634	-0.225	19.623		11.22	H	C
	ATOM	500	N N		H 222	33.926	-0.508	22.480	1.00	7.75	Н	N
1 5	ATOM	501	CA		H 222	34.386	-0.361	23.862	1.00	7.14	H	C
10	ATOM	502	C		H 222	35.637	0.508	23.904	1.00	7.56	H	C
	ATOM	503	0		H 222	36.567	0.304	23.132	1.00	7.65	H	0
	ATOM	504	CB		H 222	34.705	-1.745	24.507	1.00	6.51	Н	C
	ATOM	504			H 222	35.329	-1.745	25.893	1.00	6.03	н Н	C
20					H 222		-1.564	24.629	1.00	4.73	Н	C
20	ATOM	506	N N		H 224	33.426 35.632	$\frac{-2.304}{3.718}$	23.234	1.00	6.63	H	N
	ATOM	507	CA		H 224		4.808		1.00	7.22	n H	C
	ATOM	508	CA		H 224	35.512	5.500	22.269 22.271	1.00	7.59	Н	C
	ATOM	509 510	0		H 224	34.148 33.127	4.906	22.618	1.00	8.49	H	0
25	ATOM		CB			35.840	4.300	20.862	1.00	8.31	н Н	C
20	ATOM	$\begin{array}{c} 511 \\ 512 \end{array}$	CG		H 224 H 224		3.936	20.682		10.98	H	C
	ATOM					37.279					н Н	
	ATOM	513	ND1		H 224	38.276	4.881 2.731	20.572 20.668		10.97 12.41	n H	N C
	ATOM	514 515			H 224 H 224	37.899	4.277	20.501		11.73	Н	C
30	ATOM ATOM	516			H 224	39.448 39.247	2.973	20.557		14.76	Н	N
30	ATOM	517	NE Z		H 225	34.157	6.770	21.881	1.00	7.18	H	N
		518	CA		H 225		7.596	21.822	1.00	6.04	H	C
	ATOM	519	CA		H 225	32.960 32.725	8.038	20.381	1.00	7.09	H	C
	ATOM ATOM	520	0		H 225	33.657	8.075	19.573	1.00	9.02	Н	0
35	ATOM	521	CB		H 225	33.151	8.870	22.659	1.00	5.47	H	C
30	ATOM	522	CG		H 225	33. 293	8.634	24.136	1.00	6.44	Н	C
		523			H 225	32.171	8.572	24.130	1.00	2.41	Н	C
	ATOM ATOM	523			H 225	34.554	8.511	24.716	1.00	4.55	Н	C
	ATOM	525			H 225	32.303	8.397	26.333	1.00		H	С
40	ATOM	526			H 225	34.694	8.335	26.089	1.00	5.19	H	C
40	ATOM	527	CZ		H 225	33.565	8.280	26.900	1.00	3.44	H	C
	ATOM	528	N N		H 226	31.485	8.392	20.065	1.00	5.55	H	N
	ATOM	529	CA		H 226	31.197	8.893	18.734	1.00	5.48	Н	C
		530	C				10.313			5.81	H	C
15	ATOM	531	0		H 226 H 226	31.753	10.313	18.667	1.00			0
45	ATOM	532	N			31.837	10.760	19.695	1.00 1.00	$\frac{4.00}{2.76}$	H H	
	ATOM	533			H 227	32.151 32.693	12.107	17.479		3.76	н Н	N C
	ATOM	534	CA		H 227			17.312	1.00	5.52		C
	ATOM		C		H 227	31.800	12.883	16.347	1.00	5.53	H	C
EΛ	ATOM	535 536	0 CP		H 227	31.436	12.389	15.277	1.00	3.89	Н	0
50	ATOM	536 527	CB		H 227	34.142	12.088	16.764	1.00	5.30	Н	C
	ATOM	537			H 227	34.725	13.500	16.812	1.00	3.32	H	C
	ATOM	538 520			H 227	35.000	11.126	17.576	1.00	1.00	Н	C
	ATOM	539 540	N C A		H 228	31.467	14.108	16.734	1.00	5.76	Н	N
E .	ATOM	540 541	CA C		H 228	30.566	14.947	15.959 15.556	1.00	5.23	Н	C C
55 '	ATOM	541	Ü	111	H 228	31.190	16.277	10.000	1.00	4.97	Н	U

	ATOM	542	0	TYR H	228	32.007	16.833	16.282	1.00 4.90	H	0
	ATOM	543	CB	TYR H	228	29.291	15.203	16.781	1.00 6.48	H	С
	ATOM	544	CG	TYR H	228	28.564	13.935	17.216	1.00 7.32	H	C
	ATOM	545	CD1	TYR H	228	29.046	13.138	18.264	1.00 8.15	H	C
5	ATOM	546	CD2	TYR H	228	27.432	13.500	16.531	1.00 6.35	H	С
	ATOM	547	CE1	TYR H	228	28.408	11.929	18.603	1.00 9.05	H	С
	ATOM	548	CE2	TYR H	228	26.801	12.316	16.857	1.00 7.95	H	С
	ATOM	549	CZ	TYR H	228	27.287	11.532	17.885	1.00 8.70	H	C
	ATOM	550	0H	TYR H	228	26.647	10.347	18.158	1.00 8.64	H	0
10	ATOM	551	N	THR H	229	30.807	16.784	14.389	1.00 4.04	H	N
	ATOM	552	CA	THR H	229	31.329	18.067	13.929	1.00 4.70	H	C
	ATOM	553	С	THR H	229	30.782	19.121	14.900	1.00 3.38	H	С
	ATOM	554	0	THR H	229	29.590	19.133	15.181	1.00 3.30	H	0
	ATOM	555	CB	THR H	229	30.836	18.381	12.504	1.00 5.34	H	C
15	ATOM	556	0G1	THR H	229	31.188	17.301	11.627	1.00 6.83	H	0
	ATOM	557	CG2	THR H	229	31.461	19.668	11.998	1.00 2.01	H	C
	ATOM	558	C11	142 I	1	35.781	7.018	10.285	1.00 12.37	I	С
	ATOM	559	02	142 I	1	34.889	7.239	11.100	1.00 10.13	I	0
	ATOM	560	N4	142 I	1	35.803	7.455	9.001	1.00 10.92	I	N
20	ATOM	561	C10	142 I	1	34.710	8.250	8.481	1.00 9.56	I	C
	ATOM	562	C13	142 I	1	34.848	8.535	6.994	1.00 8.40	I	С
	ATOM	563	C14	142 I	1	36.165	9.222	6.602	1.00 6.40	I	C
	ATOM	564	C 9	142 I	1	33.397	7.494	8.773	1.00 10.00	Ĭ	C
	ATOM	565	01	142 I	1	33.289	6.279	8.607	1.00 8.42	I	0
25	ATOM	566	N3	142 I	1	32.427	8.295	9.230	1.00 8.14	I	N
	ATOM	567	C8	142 I	1	31.166	7.668	9.494	1.00 7.12	I	С
	ATOM	568	C 6	142 I	1	31.799	6.529	11.670	1.00 3.93	I	C
	ATOM	569	C 7	142 I	1	31.539	6.286	13.035	1.00 6.62	I	C
	ATOM	570	C 2	142 I	1	30.475	6.947	13.697	1.00 4.23	I	С
30	ATOM	571	C3	142 I	1	29.626	7.773	12.954	1.00 3.55	I	C
	ATOM	572	C4	142 I	1	29.868	7.994	11.603	1.00 5.96	I	C
	ATOM	573	C 5	142 I	1	30.952	7.384	10.951	1.00 6.87	I	C
	ATOM	574	C1	142 I	1	30.247	6.782	15.131	1.00 4.86	I	С
	ATOM	575	N 1	142 I	1	30.808	5.783	15.789	1.00 2.27	I	N
35	ATOM	576	C15	142 I	1	36.036	9.591	5.142	1.00 7.71	I	C
	ATOM	577	05	142 I	1	35.840	8.729	4.291	1.00 11.38	I	0
	ATOM	578	N 6	142 I	1	36.066	10.898	4.897	1.00 6.65	I	N
	ATOM	579	C16	142 I	1	37.992	7.122	11.404	1.00 12.61	I	С
	ATOM	580	N 5	142 I	1	36.563	5.104	11.541	1.00 16.04	I	N
40	ATOM	581	C 1 2	142 I	1	37.009	6.187	10.696	1.00 13.72	I	С
	ATOM	582	S 1	142 I	1	36.372	3.520	10.904	1.00 19.57	I	S
	ATOM	583	04	142 I	1	35.680	3.703	9.668	1.00 20.77	I	0
	ATOM	584	03	142 I	1	35.734	2.849	11.987	1.00 18.06	I	0
	ATOM	585	C 2 9	142 I	1	37.958	2.804	10.578	1.00 19.56	I	C
45	ATOM	586	C30	142 I	1	38.640	3.369	9.320	1.00 26.52	I	C
	ATOM	587	N 2	142 I	1	29.435	7.589	15.802	1.00 2.52	I	N
	ATOM	588	C 2 2	142 I	1	40.253	6.007	11.120	1.00 13.78	I	С
	ATOM	589	C17	142 I	1	39.172	6.378	11.945	1.00 12.60	I	С
	ATOM	590	C18	142 I	1	39.260	5.996	13.297	1.00 13.94	I	C
50	ATOM	591		142 I		40.362	5.257	13.785	1.00 14.86	I	С
	ATOM	592	C 2 0	142 I	1	41.430	4.868	12.954	1.00 14.31	I	С
	ATOM	593		142 I		41.350	5.273	11.615	1.00 12.85	I	С
	ATOM	594	C 27	142 I	1	45.001	3.681	13.710	1.00 18.09	I	C
	ATOM	595	C 28	142 I	1	43.904	4.357	13.114	1.00 16.71	I	С
55	ATOM	596	C 2 3	142 I	1	42.573	4.077	13.477	1.00 15.00	I	С

	ATOM	597	C24	142	T	1	42.385	3.038	14.411	1.00 17.61	I	С
	ATOM	598		142		1	43.473	2.352	15.002	1.00 18.20	I	C
	ATOM	599		142		1	44.803	2.684	14.686	1.00 18.20	I	C
	ATOM	600		WAT		2	21.173	10.598	10.229	1.00 18.30	W	0
5	ATOM	601		WAT		3	41.236	15.367	9.038	1.00 2.40	W	0
O	ATOM	602		WAT		11	39.351	17.218	6.324			-
	ATOM	603		WAT							W	0
						16	28.951	6.415	21.747	1.00 8.07	W	0
	ATOM	604		WAT		17	36.844	8.297	21.377	1.00 8.16	₩	0
10	ATOM	605	0H2			19	29.393	7.360	5.894	1.00 10.69	W	0
10	ATOM	606	0H2			22	40.618	0.517	20.963	1.00 12.88	W	0
	ATOM	607		WAT		41	20.474	8.594	8.383	1.00 2.92	W	0
	ATOM	608		WAT		43	33.354	15.140	0.160	1.00 4.35	₩	0
	ATOM	609		WAT		52	41.064	11.721	9.444	1.00 11.25	W	0
	ATOM	610		WAT		55	31.078	4.628	20.839	1.00 19.21	₩	0
15	ATOM	611		WAT		73	31.424	2.387	23.087	1.00 16.83	W	0
	ATOM	612		WAT		90	34.297	16.904	-1.657	1.00 8.85	₩	0
	ATOM	613	0H2	WAT	W	92	34.705	15.756	12.306	1.00 4.39	W	0
	ATOM	614	0H2	WAT	W	97	32.609	3.792	18.618	1.00 10.06	W	0
	ATOM	615	0H2	WAT	W	113	29.869	9.653	-1.073	1.00 13.89	W	0
20	ATOM	616	0H2	WAT	W	115	27.599	8.830	20.107	1.00 6.50	W	0
	ATOM	617	OH 2	WAT	W	119	35.741	6.643	18.640	1.00 13.65	W	0
	ATOM	618	0H2			132	38.202	7.871	19.316	1.00 21.67	W	0
	ATOM	619	0H2			133	39.823	6.712	17.466	1.00 16.74	W	0
	ATOM	620		WAT		167	45.149	0.561	24.578	1.00 31.52	w	0
25	ATOM	621		WAT		169	26.773	3.657	5.750	1.00 20.71	₩	0
	ATOM	622	0H2	WAT			33.910	15.111	-3.886	1.00 26.31	W	0
	ATOM	623	0H2	WAT			22.630	6.394	5.218	1.00 17.19	W	0
	ATOM	624		WAT		190	41.408	8.993	17.609	1.00 38.16	₩	0
	ATOM	625		WAT			28.879	7.652	-2.728	1.00 25.34	₩	0
30	ATOM	626		WAT		211	40.187	8.447	20.906	1.00 29.06		
50	ATOM	627		WAT			41.040				₩	0
	ATOM	628	0H2	WAT				14.573	12.781	1.00 21.90	₩	0
							28.609	-2.348	19.633	1.00 16.06	W	0
	ATOM	629	0H2	WAT		287	27.925	-2.786	17.100	1.00 28.20	W	0
25	ATOM	630	OH2			292	29.248	10.608	15.460	1.00 4.55	₩	0
35	ATOM	631	0H2	WAT		294	34.711	11.933	8.259	1.00 18.60	W	0
	ATOM	632	0H2	WAT		296	36.499	8.641	1.251	1.00 16.68	W	0
	ATOM	633	OH2	WAT		302	33.346	8.640	3.104	1.00 31.25	W	0
	ATOM	634		WAT			38.929	-1.342	19.839	1.00 27.36	₩	0
4.0	ATOM	635		WAT						1.00 39.67	W	0
40	ATOM	636		WAT			38.601	-1.114	16.775	1.00 24.51	₩	0
	ATOM	637		WAT			39.896	8.788	8.314	1.00 40.66	W	0
	ATOM	638		WAT			44.187	13.742	12.663	1.00 29.57	₩	0
	ATOM	639		WAT			27.275	6.739	2.616	1.00 23.30	W	0
	ATOM	640		WAT			34.463	4.647	6.797	1.00 34.65	W	0
45	ATOM	641		WAT			35.750	-0.120	8.819	1.00 35.63	W	0
	ATOM	642	0H2	WAT	W	370	38.235	6.328	7.390	1.00 28.92	W	0
	ATOM	643	0H2	WAT	W	388	42.864	7.185	8.805	1.00 39.53	W	0
	ATOM	644		WAT			31.573	8.191	0.869	1.00 38.78	W	0
	ATOM	645	0H2	WAT	W	401	41.353	4.533	8.074	1.00 36.07	W	0
50	ATOM	646		WAT			29.643	-0.022	10.304	1.00 38.02	W	0
	ATOM	647	0H2	WAT	W	433	44.330	8.280	11.373	1.00 43.93	W	0
	ATOM	648		WAT			29.301	-0.100	7.598	1.00 43.24	W	0
	ATOM	649		WAT				9.454	-0.831	1.00 41.14	W	0
	ATOM	650		WAT				11.302	1.981	1.00 29.17	W	0
55	ATOM	651		WAT				12.556	8.806	1.00 50.64	₩	0
											**	-

ATOM	652	0H2	WAT	W	452	41.748	10.947	19.697	1.00	41.61	W	0
ATOM	653	0H2	WAT	W	454	38.170	6.670	2.158	1.00	38.30	W	0
END												

請 求の範 囲

1. 一般式(1)

5

(式中、

R₁は、下記式:

10

から選択される基

(上記式中、R₈は、アミノ基、アミノメチル基、または、

15

R。は、水素原子、アミノ基、水酸基、アシル基、アルキル部分が置 換基を有していてもよい炭素数1~6の直鎖もしくは分枝鎖状のアルキ

ルであるアルコキシカルボニル基を表す。 R_{10} は、アミノ基を表す。 X、 Yは、いずれか一方が= C H - を表し、他方が= N - を表す。)を表す。

 R_2 は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のア 5 ルキル基を表す。

R_aは、

·- (CH₂)_m-R₁₁、を表す。

10 ここで、mは、 $1 \sim 6$ の整数を表す。

 R_{11} は、

 $-CONH_2$.

 R_{12} — N— $CONH_2$ (ここで、 R_{12} は、水素原子または炭素数 $1\sim 3$ の直鎖も

15 しくは分枝鎖状のアルギル基を表す。)、または、

 R_4 は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基を表す。

20 R_5 は、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基、または、 $-CH_2-R_{13}$ (ここで、 R_{13} は、置換基を有していてもよいアリール基、または、置換基を有していてもよい複素環基を表す。)を表す。

 R_6 は、水素原子、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のア 25 ルキル基を表す。

 R_7 は、置換基を有していてもよい炭素数 $1 \sim 6$ の直鎖もしくは分枝

鎖状のアルキル基、または、 $-SO_2-R_{14}$ (ここで、 R_{14} は、置換基を有していてもよい炭素数 $1\sim 8$ の直鎖もしくは分枝鎖状のアルキル基を表す。) を表す。)

で示される化合物、その互変異性体、光学異性体、またはこれらの水和 5 物もしくは薬学的に許容し得る塩。

2. 一般式(1)において、

R₅が、

- ・炭素数1~6の直鎖もしくは分枝鎖状のアルキル基、または、
- \cdot C H₂ R₁₃,
- 10 である請求項1記載の化合物 (ここで、R₁₃は、下記式

から選択される基である。上記式中、

15 R₁₅は、水素原子;置換基を有していてもよいアリール基; ハロゲン原子で置換されていてもよい炭素数 1~3のアルキル基;炭素数 1~3の直鎖もしくは分枝鎖状のアルコキシ基;ハロゲン原子;アリールカルボニル基;アルキル部分が炭素数 1~3の直鎖もしくは分枝鎖状のアルキル基であるアルキルカルボニル基;ニトロ基;または、アミノ基、

20 を表す。

 R_{16} は、水素原子、または炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基を表す。

 R_{17} は、水素原子;水酸基、炭素数 $1 \sim 6$ の直鎖もしくは分枝鎖状のアルキル基;炭素数 $1 \sim 6$ の直鎖もしくは分枝鎖状のアルコキシ基、-25 O-(CH₂)_n-OH(ここで、nは $1 \sim 5$ の整数を表す。); -O-(CH₂)_p-COOH(ここで、pは $1 \sim 5$ の整数を表す。); -O-(CH₂)_q-NH₂(ここで、qは $1 \sim 5$ の整数を表す。);

(ここで、 R_{19} は、水素原子、水酸基、カルボキシル基、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基、ハロゲン、または炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルコキシ基、または、アルキル部分が炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基を表す。);または、 $-OSO_2-R_{20}$ (ここで、 R_{20} は炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基、またはベンジル基を表す)を表す。

10 R_{18} は、水素原子、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキルスルホニル基、または、置換基を有していてもよいアリールスルホニル基を表す。)。

3. 一般式(1)において、

 R_7 M

5

15 ・炭素数 1 ~ 6 の直鎖もしくは分枝鎖状のアルキル基、

(ここで、kは、 $0\sim3$ の整数である。 R_{21} は、水素原子、 $-NHR_{2}$ 2である。 R_{22} は、炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、20 または、アルキル部分が炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基であるアルキルカルボニル基である。)、または

$$\cdot$$
 - S O $_2$ - R $_1$ $_4$

(ここで、R₁₄は、

①置換基を有していてもよい炭素数 1 ~ 6 の直鎖もしくは分枝鎖状の 25 アルキル基 (アルキル基の置換基としては、カルボキシル基、アルキル 部分が炭素数 1 ~ 3 の直鎖もしくは分枝鎖状のアルキル基であるアルコ キシカルボニル基である。)、または、

② $-CH_2-R_{23}$ である。 R_{23} は、置換基を有していてもよいフェニル基である。)、

である、請求項1または2に記載の化合物。

4. 一般式(1)において、

5 R₃が、

 \cdot - (CH₂) _m-R₁₁

(ここで、mは1~3の整数であり、 R_{11} は、 $-CONH_{2}$ 、

$$R_{12}$$
 —N—CONH₂ (ここで、 R_{12} は水素原子またはメチル基である。)、

10 または、

である。)

である、請求項1~3のいずれか1項に記載の化合物。

5. 一般式(1)において、

15 R₁が、下記式:

から選択される基である、請求項 $1\sim4$ のいずれか1項に記載の化合物 20 (上記式中、 R_8 は、

である(ここで、R₉は、水素原子、アミノ基、水酸基、アシル基、または、アルキル部分が置換基を有していてもよい炭素数1~6の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基である。))。

- 6. 一般式(1)において、 R_2 が、水素原子、または炭素数 $1\sim$ 3の直鎖もしくは分枝鎖状のアルキル基である、請求項 $1\sim5$ のいずれか 1 項に記載の化合物。
 - 7. 一般式(1)において、 R_4 が、水素原子、または炭素数 $1\sim$ 3の直鎖もしくは分枝鎖状のアルキル基である、請求項 $1\sim6$ のいずれか 1 項に記載の化合物。
 - 8. 一般式(1)において、 R_6 が、水素原子、または炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基である、請求項 $1 \sim 6$ のいずれか 1 項に記載の化合物。
 - 9. 一般式(1)において、
- 15 R_3 が、 $-(CH_2)_m R_{11}$ (ここで、mおよび R_{11} は、請求項1における定義と同じ意味を表す。)、である請求項1に記載の化合物。

10. 一般式(1)において、

R₃が、

20

10

であり、かつ、

 R_7 が、 $-SO_2-R_{14}$ (ここで、 R_{14} は請求項1における定義と同じ意味を表す。)である、請求項1記載の化合物。

11. 一般式(1)において、

25 R₁が、下記式:

から選択される基であり(上記式中、R。は、

5

である。ここで、R。は、水素原子、アミノ基、水酸基、アセチル基、 プロピオニル基、ブチリル基、イソブチリル基、イソバレリル基、メト キシカルボニル基、エトキシカルボニル基、tーブトキシカルボニル基、 またはベンジルオキシカルボニル基である。);

10 R_2 が、水素原子またはメチル基であり; R_3 が、

15

、または、

R₄が、水素原子またはメチル基であり;

20 R_5 が、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基、または、 $-CH_2-R_{13}$ であり(ここで、 R_{13} は、下記式

から選択される基である。上記式中、

R₁₅は、水素原子; t-ブチル基;メトキシ基;臭素原子;塩素原子;ベンゾイル基;または、メトキシ基もしくはトリフルオロメチル基もしくはニトロ基もしくはアミノ基で置換されていてもよいフェニル基である。

 R_{17} は、水素原子、水酸基、メチル基、炭素数 $1 \sim 3$ の直鎖もしくは分枝状のアルコキシ基、 $-O-(CH_2)_n-OH(CCT)$ れは $1 \sim 3$ の整数を表す。)、 $-O-(CH_2)_p-COOH(CCT)$ りは $1 \sim 3$ の整数を表す。)、 $-O-(CH_2)_q-NH_2$ (ここで、 $1 \sim 3$ の整数を表す。)、 $1 \sim 3$ の整数を表す。

15 R_{18} は、水素原子、メチル基、メタンスルホニル基、または、ベンゼンスルホニル基である。);

 R_6 が、水素原子またはメチル基であり; R_7 が、

・炭素数1~4の直鎖もしくは分枝鎖状のアルキル基、

20

5

(ここで、kは、 $0\sim2$ の整数である。 R_{21} は、水素原子、 $-NHR_{2}$ 2である。 R_{22} は、メチル基、または、アセチル基である。)、または $-SO_2-R_{14}$ (ここで、 R_{14} は、ベンジル基、2-、3-もしくは4-カルボキシベンジル基、または、置換基を有していてもよい炭素数 $1\sim4$ の直鎖もしくは分枝鎖状のアルキル基(ここで、アルキル基の置

換基としては、カルボキシル基、または、アルキル部分が炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキルであるアルコキシカルボニル基である。)である。)

である、請求項1記載の化合物。

5 12. 化合物が、

から選択される、請求項1記載の化合物。

- 13. 請求項1に記載の化合物を含有する医薬組成物。
- 14. 請求項1に記載の化合物を含有する抗血栓剤。
- 15. 請求項1に記載の化合物を含有する血液凝固VIIa因子阻 5 害剤。
 - 16. ヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の結晶。
 - 17. 低分子可逆的VIIa因子阻害剤が一般式(1)

(式中の置換基の定義は、請求項1におけると同じ意味を表す。)

- 10 で示される化合物である、請求項16に記載の結晶。
 - 18. 以下の工程(i)~(iii)を含む、ヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の結晶を製造する方法:
- (i)低分子可逆的VIIa因子阻害剤との結晶化が可能なヒトVII 15 a因子/ヒト可溶型組織因子を調製する工程、
 - (ii) 低分子可逆的VII a 因子阻害剤を加え、結晶化用濃縮試料を調製する工程、
- (iii)低分子不可逆的VIIa因子阻害剤又は低分子可逆的VII a因子阻害剤とヒトVIIa因子/ヒト可溶型組織因子との複合体の結 20 晶を種として添加し、(ii)で得られた結晶化用濃縮試料からヒトV IIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤と の複合体の結晶を得る工程。
 - 19. 低分子可逆的 VII a 因子阻害剤が一般式(1)

(式中の置換基の定義は、請求項1におけると同じ意味を表す。)

- 25 で示される化合物である、請求項18に記載の方法。
 - 20. 請求項16または17に記載の結晶をX線結晶構造解析することにより得られるヒトVIIa因子/ヒト可溶型組織因子と低分子可逆的VIIa因子阻害剤との複合体の立体構造の座標データの全部又は一部を記録した媒体。

21. 請求項20に記載のデータを利用してコンピュータ上で低分子可逆的VIIa因子阻害剤をデザインする方法。

- 22. デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のAsp60側鎖、Tyr94側鎖及びThr98主鎖の少なくとも一つと相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、請求項21に記載の方法。
- 23. デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のLys192側鎖と相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、請求項21に記載の方法。
- 10 24. デザインされる低分子可逆的VIIa因子阻害剤が、ヒトVIIa因子H鎖のVal170E、Gly170F、Asp170G、Ser170H、Pro170I およびGln217の少なくとも一つと相互作用する置換基を有する低分子可逆的VIIa因子阻害剤である、請求項21に記載の方法。
- 25. デザインされる低分子可逆的VIIa因子阻害剤が、ヒトV 15 IIa因子H鎖のS4サイトからS4サブサイトに通じる孔を通してS 4サブサイトと相互作用する置換基を有する低分子可逆的VIIa因子 阻害剤である、請求項21に記載の方法。
 - 26. 請求項 $21 \sim 25$ のいずれか 1 項に記載の方法によりデザインされた低分子可逆的 VII a 因子阻害剤。
- 20 27. ヒトVIIa因子のS2サイトと相互作用する部分構造として下記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有する、請求項26に記載の低分子可逆的VIIa因子阻害剤。

[A-1]群:

5

25 (ここで、 X_1 は、OまたはNHを示し、 X_2 は、水素原子またはメチル基を示す。)

[A-2]群:

$$\frac{2}{2}$$
 -----R₂₃ --- NH₂

(ここで、 R_{23} は、ヘテロ原子を有する芳香族6員環、5員環を示す。)

28. ヒトVIIa因子のS1サブサイトと相互作用する部分構造 として下記群 [B-1]、 [B-2]、 [B-3] または [B-4] 中に示される 部分構造のいずれかを含有する、請求項26に記載の低分子可逆的VIIa因子阻害剤。

[B-1]群:

10 [B-2]群:

[B-3]群:

$$\begin{cases} \frac{1}{2} - R_{25} - R_{24} & \begin{cases} \frac{1}{2} - R_{25} & \end{cases} \end{cases}$$

(ここで、 R_{24} は、[B-2] 群と同一である。 R_{25} は、ヘテロ原子を有す 15 る芳香族6員環、5員環を示す。)

[B-4]群:

(ここで、 R_{27} は、炭素数 $1 \sim 3$ のアルキレン基を示す。 R_{24} は、 [B-2] 群と同一である。 R_{26} は、 [B-3] 群と同一である。)

5 29. ヒトVIIa因子のS4サイトと相互作用する部分構造として下記群 [C-1] または [C-2] 中に示される部分構造のいずれかを含有する、低分子請求項26に記載の低分子可逆的VIIa因子阻害剤。 [C-1]群:

$$R_{28}$$
 R_{28}
 R_{28}

10 (ここで、 X_3 は、O、NH、または CH_2 であり、 R_{28} は、ヘテロ原子を有する芳香族6員環もしくは5員環を示す。) [C-2]群:

$$X_{7}$$
 X_{8}
 X_{10}
 X_{10}
 X_{10}

(ここで、 X_4 は、NH、S、またはOを示す。 X_5 、 X_6 、 X_7 、 X_8 、 X_9 、15 X_{10} は、独立して、NまたはCHを示す。)

30. ヒトVIIa因子のS2サイトと相互作用する部分構造として下記群 [A-1] または [A-2] 中に示される部分構造のいずれかを含有し、かつ、S1サブサイトと相互作用する部分構造として下記群

[B-1]、[B-2]、[B-3] または[B-4] 中に示される部分構造のいずれかを含有し、かつ、S 4 サイトと相互作用する部分構造として下記群[C-1] または[C-2] 中に示される部分構造のいずれかを含有する、低分子請求項 2 6 に記載の低分子可逆的 V I I a 因子阻害剤。

5 [A-1]群:

(ここで、 X_1 は、OまたはNHを示し、 X_2 は、水素原子またはメチル基を示す。)

[A-2]群:

(ここで、 R_{23} は、ヘテロ原子を有する芳香族6員環、5員環を示す。)

[B-1]群:

10

[B-2]群:

[B-3]群:

15

$$\xi - R_{25} - R_{24}$$
 $\xi - R_{25}$

(ここで、 R_{24} は、 [B-2] 群と同一である。 R_{25} は、ヘテロ原子を有する芳香族6員環、5員環を示す。)

[B-4]群:

5

(ここで、 R_{27} は、炭素数 $1\sim 3$ のアルキレン基を示す。 R_{24} は、 [B-2] 群と同一である。 R_{26} は、 [B-3] 群と同一である。) [C-1]群:

10 (ここで、 X_3 は、O、NH、または CH_2 であり、 R_{28} は、ヘテロ原子を有する芳香族6員環もしくは5員環を示す。) [C-2]群:

(ここで、 X_4 は、NH、S、またはOを示す。 X_5 、 X_6 、 X_7 、 X_8 、 X_9 、15 X_{10} は、独立して、NまたはCHを示す。)

図 1

図 2

図 3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/00883

Α.	CLASSIFICA	TION OF SUE	JECT M	ATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
REGISTRY (STN), CA (STN), MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 00/75172 A2 (Aventis Pharma Deut GmbH.), 14 December, 2000 (14.12.00), & EP 1059302 A1 & AU 200053976 A & CZ 200104357 A3 & NO 200106005 A & BR 200011461 A & EP 1189929 A2	1-30
A	WO 00/58346 A1 (Sanofi-Synthelabo), 05 October, 2000 (05.10.00), & FR 2791683 A1 & AU 200033017 A	1-30
A	WO 00/41531 A2 (Genentech), 20 July, 2000 (20.07.00), & EP 1144373 A2	1-30

X	Further documents are listed in the continuation of Box C.		See patent family annex.
*	Special categories of cited documents:	"T"	later document published after the international filing date or
"A"	document defining the general state of the art which is not considered to be of particular relevance		priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier document but published on or after the international filing	"X"	document of particular relevance; the claimed invention cannot be
((Y 2)	date		considered novel or cannot be considered to involve an inventive
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	"Y"	step when the document is taken alone document of particular relevance; the claimed invention cannot be
	special reason (as specified)		considered to involve an inventive step when the document is
"O"	document referring to an oral disclosure, use, exhibition or other		combined with one or more other such documents, such
"P"	means document published prior to the international filing date but later	"&"	combination being obvious to a person skilled in the art document member of the same patent family
	than the priority date claimed		parameter same of the same parameter same.
Date	of the actual completion of the international search	Date	of mailing of the international search report
	10 May, 2002 (10.05.02)		21 May, 2002 (21.05.02)
	_		
<u> </u>	CH 704	A	1 . 00°
	e and mailing address of the ISA/	Auin	orized officer
,	Japanese Patent Office		
Facsi	mile No.	Tele	phone No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/00883

		<u> </u>
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 00/15658 A1 (Aventis Pharma Deut GmbH.), 23 March, 2000 (23.03.00), & EP 987274 A1 & AU 9959723 A & NO 200101293 A & BR 9913742 A & CZ 200100914 A3 & EP 1114061 A1 & US 6287794 B1 & KR 2001075130 A & ZA 200101861 A	1-30
A	DENNIS, M. S. et al., Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature 2000, Vol.404, No.6777, pages 465 to 470	1-30
A	PIKE, A. C. et al., Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc. Natl. Acad. Sci. USA. 1999, Vol.96, No.16, pages 8925 to 8930	1-30

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1' C07K 5/062, C07K 5/065, C07K 5/078, C07K 14/745, G01N 33/15, G01N 33/68, G06F 17/50

B.__ 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C17 C07K 5/062, C07K 5/065, C07K 5/078, C07K 14/745, G01N 33/15, G01N 33/68, G06F 17/50

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

REGISTRY (STN), CA (STN), MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG)

C. 関連すると認められる文献

し.		
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
A	WO 00/75172 A2 (AVENTIS PHARMA DEUT GMBH) 2000.12.14 & EP 1059302 A1 & AU 200053976 A & CZ 200104357 A3 & NO 200106005 A & BR 200011461 A & EP 1189929 A2	1-30
A	WO 00/58346 A1 (SANOFI-SYNTHELABO) 2000.10.05 & FR 2791683 A1 & AU 200033017 A	1-30
A	WO 00/41531 A2 (GENENTECH) 2000.07.20 & EP 1144373 A2 & AU 200033451 A & NO 200103462 A & CZ 200102508 A3	1-30

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

10.05.02

国際調査報告の発送日 21.05.02

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 高堀 栄二

4B 9281

電話番号 03-3581-1101 内線 3448

国際調査報告

引用文献の カテゴリー*	関連すると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO 00/15658 A1 (AVENTIS PHARMA DEUT GMBH) 2000.03.23 & EP 987274 A1 & AU 9959723 A & NO 200101293 A & BR 9913742 A & CZ 200100914 A3 & EP 1114061 A1 & US 6287794 B1 & KR 2001075130 A & ZA 200101861 A	1-30
A	DENNIS, M. S. et al. Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature 2000, Vol. 404, No. 6777, p. 465-470	1-30
A	PIKE, A. C. et al. Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc. Natl. Acad. Sci. USA. 1999, Vol. 96, No. 16, p. 8925-8930	1-30