Geometry and Linear Algebra

Sayan Das (dassayan0013@gmail.com)

December 22, 2023

Geometry

Poles and polars. Diameters and conjugate diameters. Systems of conics. Polar equation of a conic referred to a focus as pole. Equations of tangent, normal, chord of contact. Sphere: General Equation. Great circle, Sphere through the intersection of two spheres. Radical Plane, Tangent, Normal. Cone: Right circular cone. General homogeneous second degree equation. Section of cone by a plane as a conic and as a pair of lines. Condition for three perpendicular generators. Reciprocal cone. Cylinder: Generators parallel to either of the axes, general form of equation. Right-circular cylinder. Ellipsoid, Hyperboloid, Paraboloid: Canonical equations only. Tangent planes, Normal, Enveloping cone. Generating lines of hyperboloid of one sheet and hyperbolic paraboloid.

Vector Spaces

Vectors in \mathbb{R}^n , notions of linear independence and dependence, linear span of a set of vectors, vector subspaces of \mathbb{R}^n , basis of a vector subspace. Systems of linear equations, matrices and Gauss elimination, row space, null space, column space, rank of a matrix. Vector spaces (over \mathbb{R} or \mathbb{C}), subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension.

Linear Transformations

Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, Different notion of matrices, Eigen values, Eigen vectors and characteristic equation of a matrix. Cayley-Hamilton theorem. Algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.

Contents

0	Preliminaries				
1	Geometry 1.1 Direction ratios and cosines				
	1.1 Direction ratios and cosines				
	1.2 Lines				
	1.3 Plane				
2	Vector Spaces				
	2.1 Vector Spaces and Subspaces				
	2.2 Linear Combinations and Systems of Linear Equations				
	2.3 Linear Dependence and Linear Independence				
	2.4 Bases and Dimension				
	2.5 Maximal Linearly Independent Subsets				

3	Line	ear Transformations	9
	3.1	Linear Transformations, Null Spaces and Ranges	(
	3.2	Matrix Representations of Linear Transformations	Ç
	3.3	Composition of Linear Transformations and Matrix Multiplication	Ç
	3.4	Invertibility and Isomorphisms	Ç
	3.5	Dual Spaces	(
4	Cay	ley-Hamilton Theorem	9
	4.1	Motivation	,
	4.2	Eigenvalues and eigenvectors	1:
		Cayley-Hamilton Theorem	

§0 Preliminaries

Definition 0.1 (Kronecker delta)

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

We have

$$\begin{pmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3.$$

So the Kronecker delta represents an identity matrix.

Definition 0.2

The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^T obtained by interchanging the rows and columns of A:

$$(A^T)_{ij} = A_{ji}.$$

The **conjugate transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^{\dagger} defined as:

$$A^{\dagger} = \overline{A^T}.$$

Definition 0.3

 $A \in M_{m \times n}(\mathbb{F})$ is:

- 1. upper triangular iff $i > j \implies A_{ij} = 0$.
- 2. lower triangular iff $i < j \implies A_{ij} = 0$.
- 3. **orthogonal** iff m = n (square) and $AA^T = A^TA = I_n$.
- 4. diagonal iff $i \neq j \implies A_{ij} = 0$.
- 5. **symmetric** iff m = n (square) and $A = A^T$.
- 6. skew-symmetric or anti-symmetric iff m = n (square) and $A = -A^T$.

7. **self-adjoint** or **Hermitian** iff m = n (square), $\mathbb{F} = \mathbb{C}$ and $A = A^{\dagger}$ (equal to its complex conjugate transpose); in particular, a 2×2 matrix over \mathbb{C} is Hermitian iff it has the form

$$\begin{pmatrix} z & x+iy \\ x-iy & w \end{pmatrix}$$

s.t. $w, x, y, z \in \mathbb{R}$.

- 8. skew-Hermitian or anti-Hermitian iff m=n (square), $\mathbb{F}=\mathbb{C}$ and $A=-A^{\dagger}$.
- 9. **positive semi-definite (positive-definite)** iff A is Hermitian and the real number $z^{\dagger}Az$ is nonnegative (positive) $\forall \mathbf{0} \neq \mathbf{z} \in M_{1 \times n}(\mathbb{C})$.
- 10. **normal** iff m = n (square), $\mathbb{F} = \mathbb{C}$ and $AA^{\dagger} = A^{\dagger}A$.
- 11. **unitary** iff m = n (square), $\mathbb{F} = \mathbb{C}$ and $AA^{\dagger} = A^{\dagger}A = I_n$.
- 12. **similar** to $B \in M_{m \times n(\mathbb{F})}$ iff m = n (square) and $B = P^{-1}AP$ for some invertible matrix $P \in M_{n \times n}(\mathbb{F})$.
- 13. **congruent** to $B \in M_{m \times n(\mathbb{F})}$ iff m = n (square) and $B = P^T A P$ for some invertible matrix $P \in M_{n \times n}(\mathbb{F})$.

Remark. All symmetric matrices are Hermitian. All orthogonal matrices are unitary. All unitary matrices are normal.

Definition 0.4

The **trace** of $A \in M_{n \times n}(\mathbb{F})$ is defined as the sum of its diagonal entries:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}.$$

Fact 0.5

If A is Hermitian or skew-Hermitian then $tr(A) \in \mathbb{R}$ always.

§1 Geometry

§1.1 Direction ratios and cosines

Let $\{\mathbf{e_k}\}_{k=1}^n$ denote the *standard basis* in Euclidean *n*-space. Exempli gratia, in 3-space we have $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\} = \{(1,0,0), (0,1,0), (0,0,1)\}.$

If $\mathbf{u} = \{u_1, \dots, u_n\}$ be a unit vector in *n*-space, its components are its **direction cosines**. For, if θ_k be the small angle betwixt \mathbf{u} and $\mathbf{e_k}$, then

$$\mathbf{u}_{\mathbf{k}} = \mathbf{u} \cdot \mathbf{e}_{\mathbf{k}} = \cos \theta_k$$

and a vector **x** is proportional to **u** iff $\mathbf{x} = \lambda \mathbf{u}$ for some real scalar λ . So,

$$\mathbf{x_k} = \lambda \mathbf{u_k} \ \forall k.$$

These components of \mathbf{x} are called **direction ratios**. Equivalently, direction ratios are homogeneous coordinates in projective (n-1)-space.

§1.2 Lines

Any line through a and parallel to t can be written as

$$\mathbf{x} = \mathbf{a} + \lambda \mathbf{t}$$
.

By crossing both sides of the equation with t, we have

Theorem 1.1

The equation of a straight line through \mathbf{a} and parallel to \mathbf{t} is

$$(\mathbf{x} - \mathbf{a}) \times \mathbf{t} = \mathbf{0} \text{ or } \mathbf{x} \times \mathbf{t} = \mathbf{a} \times \mathbf{t}.$$

§1.3 Plane

To define a plane Π , we need a normal \mathbf{n} to the plane and a fixed point \mathbf{b} . For any $\mathbf{x} \in \Pi$, the vector $\mathbf{x} - \mathbf{b}$ is contained in the plane and is thus normal to \mathbf{n} , i.e. $(\mathbf{x} - \mathbf{b}) \cdot \mathbf{n} = 0$.

Theorem 1.2

The equation of a plane through \mathbf{b} with normal \mathbf{n} is given by

$$\mathbf{x} \cdot \mathbf{n} = \mathbf{b} \cdot \mathbf{n}$$
.

If $\mathbf{n} = \hat{\mathbf{n}}$ is a unit normal, then $d = \mathbf{x} \cdot \hat{\mathbf{n}} = \mathbf{b} \cdot \hat{\mathbf{n}}$ is the perpendicular distance from the origin to Π .

Alternatively, if **a**, **b**, **c** lie in the plane, then the equation of the plane is

$$(\mathbf{x} - \mathbf{a}) \cdot [(\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})] = 0.$$

Example 1.3 1. Consider the intersection betwixt a line $\mathbf{x} \times \mathbf{t} = \mathbf{a} \times \mathbf{t}$ with the plane $\mathbf{x} \cdot \mathbf{n} = \mathbf{b} \cdot \mathbf{n}$.

Cross \mathbf{n} on the right with the line equation to obtain

$$(\mathbf{x} \cdot \mathbf{n})\mathbf{t} - (\mathbf{t} \cdot \mathbf{n})\mathbf{x} = (\mathbf{a} \times \mathbf{t}) \times \mathbf{n}$$

Eliminate $\mathbf{x} \cdot \mathbf{n}$ using $\mathbf{x} \cdot \mathbf{n} = \mathbf{b} \cdot \mathbf{n}$

$$(\mathbf{t} \cdot \mathbf{n})\mathbf{x} = (\mathbf{b} \cdot \mathbf{n})\mathbf{t} - (\mathbf{a} \times \mathbf{t}) \times \mathbf{n}$$

Provided $\mathbf{t} \cdot \mathbf{n}$ is non-zero, the point of intersection is

$$\mathbf{x} = \frac{(\mathbf{b} \cdot \mathbf{n})\mathbf{t} - (\mathbf{a} \times \mathbf{t}) \times \mathbf{n}}{\mathbf{t} \cdot \mathbf{n}}.$$

Exercise: what if $\mathbf{t} \cdot \mathbf{n} = 0$?

2. Shortest distance betwixt two lines. Let L_1 be $(\mathbf{x} - \mathbf{a}_1) \times \mathbf{t}_1 = \mathbf{0}$ and L_2 be $(\mathbf{x} - \mathbf{a}_2) \times \mathbf{t}_2 = \mathbf{0}$.

The distance of closest approach s is along a line perpendicular to both L_1 and L_2 , i.e. the line of closest approach is perpendicular to both lines and thus parallel to $\mathbf{t}_1 \times \mathbf{t}_2$. The distance s can then be found by projecting $\mathbf{a}_1 - \mathbf{a}_2$ onto $\mathbf{t}_1 \times \mathbf{t}_2$. Thus $s = \left| (\mathbf{a}_1 - \mathbf{a}_2) \cdot \frac{\mathbf{t}_1 \times \mathbf{t}_2}{|\mathbf{t}_1 \times \mathbf{t}_2|} \right|$.

§2 Vector Spaces

§2.1 Vector Spaces and Subspaces

Definition 2.1 (Vector Space)

An \mathbb{F} -vector space, linear space or vector space over \mathbb{F} is an abelian group of vectors (V,+) with a binary operation (scalar multiplication) defined from an underlying field of scalars \mathbb{F} to V as $\mathbb{F} \times V \to V : (\lambda, \mathbf{v}) \mapsto \lambda \mathbf{v}$ s.t. the foll. axioms hold:

- 1. Vector addition: $\mathbf{u}, \mathbf{v} \in V \implies \mathbf{u} + \mathbf{v} \in V$.
 - a) Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \ \forall u, v \in V$.
 - b) Associativity: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} \ \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
 - c) Zero vector: $\exists \mathbf{0} \in V$ (called the origin) s.t. $\mathbf{v} = \mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} \ \forall \mathbf{v} \in V$.
 - d) Additive Inverse: $\forall \mathbf{v} \in V \ \exists (-\mathbf{v}) \in V : \mathbf{v} + (-\mathbf{v}) = (-\mathbf{v}) + \mathbf{v} = \mathbf{0}.$
- 2. Scalar multiplication: $\lambda \in \mathbb{F}$, $\mathbf{v} \in V \implies \lambda \mathbf{v} \in V$.
 - a) Multiplicative Identity: $\mathbf{v} = \mathbf{v} \cdot 1 = 1 \cdot \mathbf{v} \ \forall \mathbf{v} \in V$.
 - b) Associativity: $(\lambda \mu)\mathbf{v} = \lambda(\mu \mathbf{v}) \ \forall \mathbf{v} \in V$.
- 3. Distributivity:
 - a) Distributivity in V: $\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v} \ \forall \lambda \in \mathbb{F}, \ \mathbf{u}, \mathbf{v} \in V$.
 - b) Distributivity in \mathbb{F} : $(\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v} \ \forall \lambda, \mu \in \mathbb{F}, \ \mathbf{v} \in V$.

Example 2.2

The set of $n \times n$ complex Hermitian matrices is

- 1. an \mathbb{R} -vector space.
- 2. not a \mathbb{C} -vector space as the identity matrix I_n is Hermitian but iI_n is not.

Theorem 2.3 (Cancellation Law)

Let V be an \mathbb{F} -vector space and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ s.t. $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z}$, then $\mathbf{x} = \mathbf{y}$.

Proof. From the vector space axioms, $\exists (-z) \in V$ s.t. z + (-z) = 0. (additive inverse)

Thus,

$$\mathbf{x}, \mathbf{y}, \mathbf{z} \in V : \mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z} \implies (\mathbf{x} + \mathbf{z}) + (-\mathbf{z}) = (\mathbf{y} + \mathbf{z}) + (-\mathbf{z})$$

 $\implies \mathbf{x} + (\mathbf{z} + \textcolor{red}{(-\mathbf{z})}) = \mathbf{y} + (\mathbf{z} + \textcolor{red}{(-\mathbf{z})}) \implies \mathbf{x} + \textcolor{red}{\mathbf{0}} = \mathbf{y} + \textcolor{red}{\mathbf{0}} \implies \mathbf{x} = \mathbf{y}.$

Definition 2.4 (Subspace)

Let V be an \mathbb{F} -vector space. A subset $U \subseteq V$ is an \mathbb{F} -subspace, or subspace, of V iff U is also an \mathbb{F} -vector space.

Notation (Subspace). We use $W \leq V$ to denote that W is a subspace of V (over \mathbb{F} unless stated otherwise).

Theorem 2.5

Let V be an \mathbb{F} -vector space and $W \subseteq V$. Then W is an \mathbb{F} -subspace of V iff the foll. hold (for the operations defined in V):

- 1. $0 \in W$.
- $2. \mathbf{x}, \mathbf{y} \in W \implies \mathbf{x} + \mathbf{y} \in W.$
- 3. $\lambda \in \mathbb{F}, \mathbf{x} \in W \implies \lambda \mathbf{x} \in W$.

Proof. If $W \leq V$ then W is an \mathbb{F} -vector space with the operations defined in V so the conditions 2. and 3. hold trivially. Moreover, there must be some $\mathbf{0}' \in W$ s.t. $\mathbf{x} = \mathbf{x} + \mathbf{0}' = \mathbf{0}' + \mathbf{x} \ \forall x \in W$; but we also have that $\mathbf{x} \in W \subseteq V$ so $\mathbf{x} = \mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x}$. Thus,

$$\begin{aligned} \mathbf{x} &= \mathbf{x} \iff \mathbf{0}' + \mathbf{x} = \mathbf{0} + \mathbf{x} \\ \iff \mathbf{0}' + \mathbf{x} + (-\mathbf{x}) &= \mathbf{0} + \mathbf{x} + (-\mathbf{x}) \\ \iff \mathbf{0}' + \mathbf{0} &= \mathbf{0} + \mathbf{0} \iff \mathbf{0}' = \mathbf{0}. \end{aligned}$$

So 1. holds.

Now assume that 1., 2., 3. hold. As the vector space axioms 1.(a), (b), 2., 3. hold for all vectors in V over \mathbb{F} , they automatically hold for any subset $W \subseteq V$. Also condition 1. satisfies axiom 1.(c), so we only need to show that axiom 1.(d) holds (existence of additive inverses). Sps $\mathbf{x} \in W$, then $(-1)\mathbf{x} = -\mathbf{x} \in W$ by condition 3.; therefore $W \leq V$.

Example 2.6 1. For a vector space $V, V \leq V$ itself and $\{0\} \leq V$ (the **zero** subspace of V).

- 2. The space of polynomial functions over the field \mathbb{F} is a subspace of the space of all functions from \mathbb{F} to \mathbb{F} : $P_n(\mathbb{F}) \leq \mathcal{F}(\mathbb{F}, \mathbb{F})$.
- 3. The set of $n \times n$ symmetric matrices over \mathbb{F} form a subspace of $M_{n \times n}(\mathbb{F})$.
- 4. The set of $n \times n$ Hermitian matrices do not form a subspace of $M_{n \times n}(\mathbb{C})$. For, if A is Hermitian then $\operatorname{tr}(A) \in \mathbb{R}$ always but in general $\operatorname{tr}(iA)$ need not be real.

Theorem 2.7

Any intersection of subspaces of an \mathbb{F} -vector space V is a subspace of V.

Proof. Let \mathcal{C} be an arbitrary collection of subspaces of V, and let $W = \bigcap \mathcal{C}$.

From Thm. 2.8 every subspace in the collection \mathcal{C} contains $\mathbf{0}$, so $\mathbf{0} \in \bigcap \mathcal{C} = W$.

Thus, $W \neq \emptyset$; thus let $\mathbf{x}, \mathbf{y} \in W$ and let $\lambda \in \mathbb{F}$.

By Thm. 2.8 if \mathbf{x}, \mathbf{y} are in every subspace in \mathcal{C} then $\lambda \mathbf{x}$ and $\mathbf{x} + \mathbf{y}$ as well, thus $\lambda \mathbf{x}, \mathbf{x} + \mathbf{y} \in W$. Thus $W \leq V$.

§2.2 Linear Combinations and Systems of Linear Equations

Definition 2.8

Let V be an \mathbb{F} -vector space and $\emptyset \neq S \subseteq V$. A vector $\mathbf{v} \in V$ is called a **linear** combination of vectors of S if there exist a finite number of vectors $\mathbf{u_1}, \ldots, \mathbf{u_n} \in \mathbf{S}$ and scalars $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ s.t.

$$\mathbf{v} = \sum_{k=1}^{n} \lambda_k \mathbf{u_k}$$

and we say that \mathbf{v} is a linear combination of $\mathbf{u_1}, \dots, \mathbf{u_n}$ with coefficients $\lambda_1, \dots, \lambda_n$.

Remark. The origin **0** in any vector space V is trivially a linear combination of any $\emptyset \neq S \subseteq V$.

§2.3 Linear Dependence and Linear Independence

§2.4 Bases and Dimension

Definition 2.9 (Basis)

Let V be an \mathbb{F} -vector space. A subset $S \subseteq V$ is called a **basis of**, or **basis for**, V iff

- 1. S is linearly independent.
- 2. span (S) = V.

Example 2.10 1. Since span $(\emptyset) = \{0\}$ and \emptyset is linearly independent, \emptyset is a basis for the zero vector space $\{0\}$.

- 2. In \mathbb{F}^n let $\mathbf{e_1} = (1, 0, \dots, 0), \mathbf{e_2} = (0, 1, \dots, 0), \dots, \mathbf{e_n} = (0, 0, \dots, 1)$ and define $S = \{\mathbf{e_1}, \dots, \mathbf{e_n}\}$. Then span $(S) = \mathbb{F}^n$ and S is linearly independent, so S is a basis of \mathbb{F}^n (in fact the **standard basis**).
- 3. In $M_{m\times n}(\mathbb{F})$ let $E^{ij} = \mathbf{e_i}^T \mathbf{e_j}$, i.e. the mxn matrix whose only nonzero entry is $E_{ij} = 1$. Then $\{E^{ij} : 1 \le i \le m, 1 \le j \le n\}$ is a basis for $M_{m\times n}(\mathbb{F})$.
- 4. In $P_n(\mathbb{F})$ the set $\{1, x, x^2, \dots, x^n\}$ is a basis. We call this the *standard basis* for $P_n(\mathbb{F})$.
- 5. In $P(\mathbb{F})$ the set $\{1, x, x^2, \dots\}$ is a basis. Observe that a basis need not be finite.

Theorem 2.11 (Steinitz Exchange Lemma or Replacement Theorem)

Let V be an \mathbb{F} -vector space generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset $H \subseteq G$ containing exactly n-m vectors s.t. $L \cup H$ generates V.

Proof. We proceed by induction on m.

§2.5 Maximal Linearly Independent Subsets

§3 Linear Transformations

- §3.1 Linear Transformations, Null Spaces and Ranges
- §3.2 Matrix Representations of Linear Transformations
- §3.3 Composition of Linear Transformations and Matrix Multiplication
- §3.4 Invertibility and Isomorphisms
- §3.5 Dual Spaces

§4 Cayley-Hamilton Theorem

§4.1 Motivation

Problem. Sps we have the hyperbola:

$$Q: 2x^2 + 4xy - y^2 = 6.$$

We want to transform it into the standard form $\frac{y^2}{b^2} - \frac{x^2}{a^2} = c$, or $b^2y^2 - a^2x^2 = c$.

Answer. Every real symmetric matrix is orthogonally diagonalisable by the spectral theorem (we'll prove this in the next subsection), so take a 2×2 real symmetric matrix

$$A = \begin{pmatrix} a & h \\ h & b \end{pmatrix}$$

and let

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$
.

Then

$$\mathbf{x}^T A \mathbf{x} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & h \\ h & b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + hy & hx + by \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= ax^{2} + 2hxy + by^{2} = 2x^{2} + 4xy - y^{2} : Q$$

$$\implies a = 2, h = 2, b = -1.$$

So, the matrix representation for the hyperbola Q is

$$A = \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}.$$

To diagonalise A we want a non-singular matrix P (i.e. $\det P \neq 0$) s.t.

$$P^{-1}AP = D, P^{-1} = P^{T} \ (\because PP^{T} = P^{T}P = I \text{ as } A \text{ is orthogonally diagonalisable})$$

where D is our required diagonal matrix. Now, we define the *characteristic polynomial* of A as:

$$\det (A - \lambda I)$$

and equate it to 0 to obtain the *characteristic equation* of A:

$$\det (A - \lambda I) = 0$$

$$\implies \det \begin{pmatrix} 2 - \lambda & 2 \\ 2 & -1 - \lambda \end{pmatrix} = 0$$

$$(2 - \lambda)(-1)(1 + \lambda) - 4 = 0 \implies \boxed{\lambda^2 - \lambda - 6 = 0}$$

and the roots of this characteristic equation of A are called the *eigenvalues* of A:

$$\lambda^2 - \lambda - 6 = (\lambda + 2)(\lambda - 3) = 0 \implies \boxed{\lambda = -2, 3}$$

Now, if λ is an eigenvalue of A, then a non-null vector $\mathbf{v} \in V (= \mathbb{R}^2 \text{ here})$ is called an eigenvector iff

$$A\mathbf{v} = \lambda \mathbf{v}$$

and as a matrix can be seen as a representation of a linear transformation, we can write in equivalent linear transformation form:

$$T(\mathbf{v} = \lambda \mathbf{v}).$$

Now, $\lambda = \lambda_1, \lambda_2 = -2, 3$. So,

$$A\mathbf{x} = \lambda_1 \mathbf{x} = -2\mathbf{x} \iff$$

$$\begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -2 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\iff \begin{cases} 2x + 2y = -2x \\ 2x - y = -2y \end{cases}$$

$$\iff 2x = -y \iff \frac{x}{-1} = \frac{y}{2} = \alpha$$

$$\iff (x, y) = (-\alpha, 2\alpha) = \alpha(-1, 2).$$

Let

$$S_{-2} = \{(x, y) \in \mathbb{R}^2 : -2x = y\} = \{\alpha(-1, 2) : \alpha \in \mathbb{R}\} \subseteq \mathbb{R}^2.$$

Clearly, $\mathbf{0} \in S_{-2}$. If $\mathbf{v_1}, \mathbf{v_2} \in S_{-2} = S_{\lambda_1}$, and $\mu \in \mathbb{F} (= \mathbb{R} \text{ here})$, then

$$\begin{cases} A\mathbf{v_1} = \lambda_1 \mathbf{v_1} \implies \mu A\mathbf{v_1} = \mu \lambda_1 \mathbf{v_1} \\ A\mathbf{v_2} = \lambda_1 \mathbf{v_2} \end{cases}$$

$$\implies \begin{cases} A(\mathbf{v_1} + \mathbf{v_2}) = \lambda_1(\mathbf{v_1} + \mathbf{v_2}) \\ A(\mu \mathbf{v_1}) = \lambda_1(\mu \mathbf{v_1}) \end{cases}$$

Thus, S_{λ_1} is a subspace of V, called the *eigenspace* of A i.e. the space of all eigenvectors corresponding to the eigenvalue λ_1 . Similarly, let $S_{\lambda_2} = S_3$ be the eigenspace of A corresponding to $\lambda_2 = 3$.

$$A\mathbf{x} = \lambda_2 \mathbf{x} = 3\mathbf{x} \iff$$

$$\begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\iff \begin{cases} 2x + 2y = 3x \\ 2x - y = 3y \end{cases}$$

$$\iff x = 2y \iff \frac{x}{2} = \frac{y}{1} = \alpha$$

$$\iff (x, y) = (2\alpha, \alpha) = \alpha(2, 1).$$

Then

$$S_3 = \{\alpha(2,1) : \alpha \in \mathbb{R}\}.$$

 S_{-2} is nothing but the vector space of the line y=-2x and S_3 is nothing but the vector space of the line 2y=x, which are the minor and major axes of Q respectively. If $\hat{v_1}, \hat{v_2}$ are unit vectors in S_{λ_1} and S_{λ_2} respectively, then setting $\alpha=1$:

$$\begin{cases} \mathbf{v_1} = (-1,2) \in S_{-2} \\ \mathbf{v_2} = (2,1) \in S_3 \end{cases}$$

$$\implies \begin{cases} \mathbf{v_1} = (-1,2) \implies \hat{v_1} = \frac{\mathbf{v_1}}{\|\mathbf{v_1}\|} = \frac{1}{\sqrt{5}}(-1,2) \\ \mathbf{v_2} = (2,1) \implies \hat{v_2} = \frac{\mathbf{v_2}}{\|\mathbf{v_2}\|} = \frac{1}{\sqrt{5}}(2,1). \end{cases}$$

Then our required matrix P for diagonalising A is

$$P = \begin{pmatrix} \hat{v_1}^T & \hat{v_2}^T \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2\\ 2 & 1 \end{pmatrix}$$

and we can verify that P is indeed orthogonal:

$$PP^{T} = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2\\ 2 & 1 \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2\\ 2 & 1 \end{pmatrix}$$
$$= \frac{1}{5} \begin{pmatrix} 5 & 0\\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = I_{2}.$$

Now $P^{-1}AP = P^TAP =$

$$\frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2\\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2\\ 2 & -1 \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2\\ 2 & 1 \end{pmatrix}$$
$$= \frac{1}{5} \begin{pmatrix} 2 & -4\\ 6 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2\\ 2 & 1 \end{pmatrix}$$
$$= \frac{1}{5} \begin{pmatrix} -10 & 0\\ 0 & 15 \end{pmatrix} = \begin{pmatrix} -2 & 0\\ 0 & 3 \end{pmatrix} = D.$$

Thus,

$$\mathbf{x}^T D \mathbf{x} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= 3y^2 - 2x^2 = 6.$$

What we did here is the same as a change of basis:

from the basis $\{\hat{v_1}, \hat{v_2}\} = \left\{\frac{1}{\sqrt{5}}(-1, 2), \frac{1}{\sqrt{5}}(2, 1)\right\}$ to the standard basis of \mathbb{R}^2 .

§4.2 Eigenvalues and eigenvectors

Definition 4.1 (Diagonalisable)

A linear operator T on a finite-dimensional \mathbb{F} -vector space V is said to be **diagonalisable** iff there is an order basis β for V s.t. $[T]_{\beta}$ is a diagonalisable matrix. A square matrix A is **diagonalisable** iff L_A is diagonalisable.

Definition 4.2 (Eigenvector, eigenvalue)

Let T be a linear operator T on a finite-dimensional \mathbb{F} -vector space V. A nonzero vector $\mathbf{v} \in V$ is called an **eigenvector** of T iff there is a scalar $\lambda \in \mathbb{F}$ s.t.

$$T(\mathbf{v}) = \lambda \mathbf{v}.$$

The scalar λ is called the *eigenvalue* corresponding to the eigenvector \mathbf{v} . Equivalently, let $A \in M_{n \times n}(\mathbb{F})$. A nonzero vector $\mathbf{v} \in \mathbb{F}^n$ is called an **eigenvector** of A iff

$$A\mathbf{v} = \lambda \mathbf{v}$$

for some scalar (eigenvalue) $\lambda \in \mathbb{F}$.

Theorem 4.3 (Characteristic equation)

Let $A \in M_{n \times n}(\mathbb{F})$. Then a scalar $\lambda \in \mathbb{F}$ is an eigenvalue of A iff it satisfies the

characteristic equation

$$det(A - \lambda I_n) = 0$$

.

Definition 4.4 (Characteristic polynomial)

The **characteristic polynomial** $f(\lambda)$ of a matrix $A \in M_{n \times n}(\mathbb{F})$ is defined as:

$$f(\lambda) = det(A - \lambda I_n).$$

Lemma 4.5

Eigenvalues of symmetric matrices are always real.

Proof. We extend the usual inner product to a \mathbb{C} -vector space V by:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{j} \overline{u}_{j} v_{j}$$

which has the foll. properties:

- 1. $\langle A^{\dagger} \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{v}, A \mathbf{u} \rangle$.
- 2. $\langle \lambda \mathbf{v}, \mathbf{u} \rangle = \overline{\lambda} \langle \mathbf{v}, \mathbf{u} \rangle$.
- 3. $\langle \mathbf{v}, \lambda \mathbf{u} \rangle = \lambda \langle \mathbf{v}, \mathbf{u} \rangle$.

Now, for nonzero vectors $\mathbf{v} \in V$:

$$\langle \mathbf{v}, \mathbf{v} \rangle = \sum_{j} \overline{v}_{j} v_{j} = \sum_{j} |v_{j}|^{2} > 0.$$

Thus,

$$\overline{\lambda}\langle \mathbf{v}, \mathbf{v} \rangle = \langle \lambda \mathbf{v}, \mathbf{v} \rangle = \langle A \mathbf{v}, \mathbf{v} \rangle = \langle A^{\dagger} \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{v}, A \mathbf{v} \rangle = \langle \mathbf{v}, \lambda \mathbf{v} \rangle = \lambda \langle \mathbf{v}, \mathbf{v} \rangle$$

$$\Longrightarrow \overline{\lambda} = \lambda \iff \lambda \in \mathbb{R}.$$

Lemma 4.6 1. Eigenvectors corresponding to distinct eigenvalues are distinct.

2. If A is symmetric then eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Let $A\mathbf{x} = \lambda \mathbf{x}$ and $A\mathbf{x} = \mu \mathbf{x}$ s.t. $\lambda \neq \mu$. Thus,

$$\lambda \mathbf{x} = \mu \mathbf{x} \iff \mathbf{x} = \mathbf{0}.$$

This proves the first part of the lemma. For the second part, sps $A\mathbf{u} = \lambda \mathbf{u}$ and

 $A\mathbf{v} = \mu \mathbf{v}$

$$\lambda \langle \mathbf{u}, \mathbf{v} \rangle = \langle \lambda \mathbf{u}, \mathbf{v} \rangle = \langle A \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, A^T \mathbf{v} \rangle = \langle \mathbf{u}, A \mathbf{v} \rangle = \langle \mathbf{u}, \mu \mathbf{v} \rangle = \mu \langle \mathbf{u}, \mathbf{v} \rangle$$

$$\implies \langle \mathbf{u}, \mathbf{v} \rangle = 0.$$

Theorem 4.7 (Spectral Theorem)

Every real symmetric matrix is orthogonally diagonalisable.

Proof. Let A be a real $n \times n$ symmetric matrix. By Lemma 4.4, all eigenvalues of A are real and by Lemma 4.5 the eigenvectors corresponding to distinct eigenvalues of A are are orthogonal. If n = 1, the theorem holds trivially (set P = (1) and D = A). If $n \geq 2$ assume the theorem holds $\forall A \in M_{(n-1)\times(n-1)}(\mathbb{R})$, A being symmetric.

Sps λ is an eigenvalue and \mathbf{v} an eigenvector corresponding to λ . Set

$$\mathbf{q_1} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

and extend $\{q_1\}$ to an orthonormal (i.e. orthogonal and of norm 1) basis

$$\{q_1,q_2,\ldots,q_n\}$$

of \mathbb{R}^n . Let

$$Q = \begin{pmatrix} \mathbf{q_1} & \mathbf{q_2} & \dots & \mathbf{q_n} \end{pmatrix}.$$

Then

$$AQ = \begin{pmatrix} \lambda \mathbf{q_1} & A\mathbf{q_2} & \dots & A\mathbf{q_n} \end{pmatrix} = Q \begin{pmatrix} \lambda & \mathbf{d} \\ 0 & A' \end{pmatrix}$$

for some $\mathbf{d} \in M_{1 \times (n-1)}(\mathbb{R}), \ A' \in M_{(n-1) \times (n-1)}(\mathbb{R}).$ Q being orthonormal by construction implies that

$$Q^T A Q = \begin{pmatrix} \lambda & \mathbf{d} \\ 0 & A' \end{pmatrix}$$

$$\implies Q^T A^T Q = \begin{pmatrix} \lambda & \mathbf{d} \\ 0 & A' \end{pmatrix}^T = \begin{pmatrix} \lambda & 0 \\ \mathbf{d}^T & {A'}^T \end{pmatrix}$$

but $A = A^T$ so

$$\begin{pmatrix} \lambda & \mathbf{d} \\ 0 & A' \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ \mathbf{d}^T & {A'}^T \end{pmatrix}$$

so d=0 and $A'={A'}^T$, which being an $(n-1)\times (n-1)$ real symmetric matrix has (by our induction hypothesis) some $Q', D'\in M_{(n-1)\times (n-1)}(\mathbb{R})$ s.t. Q' is orthogonal, D' is diagonal and $A'=Q'D'Q'^T$.

Hence,

$$Q^TAQ = \begin{pmatrix} \lambda & 0 \\ 0 & Q'D'Q'^T \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & D' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q'^T \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & D' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix}^T.$$

It follows that

$$A = Q \begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & D' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix}^T Q^T.$$

Setting $P = Q \begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix}$ and $D = \begin{pmatrix} \lambda & 0 \\ 0 & D' \end{pmatrix}$, we obtain $A = PDP^T$. It remains to show that $P^TP = I$. Indeed,

$$P^{T}P = \begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix}^{T} Q^{T}Q \begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix}^{T} \begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & Q'^{T} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & Q'^{T}Q' \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & I_{n-1} \end{pmatrix}$$

$$= I_{n}$$

which completes the proof.

Lemma 4.8

A square matrix A of order n is diagonalisable iff \mathbb{R}^n is the direct sum of its eigenspaces:

$$\mathbb{R}^n = \bigoplus_{j=1}^k S_{\lambda_j}$$

where $\{\lambda_j\}_{j=1}^k$ is the set of distinct eigenvalues of \mathbb{R}^n .

§4.3 Cayley-Hamilton Theorem

Theorem 4.9 (Cayley-Hamilton Theorem)

Let T be a linear operator on a finite-dimensional \mathbb{F} -vector space V and let $f(\lambda)$ be its characteristic polynomial. Then $f(T) = T_0$, the zero transformation; i.e., T satisfies its own characteristic equation.

Corollary 4.10 (Cayley-Hamilton Theorem for matrices)

Let $A \in M_{n \times n}(\mathbb{F})$ and let $f(\lambda)$ be the characteristic polynomial of A. Then $f(\lambda) = O$, the $n \times n$ zero matrix; i.e., every square matrix satisfies its own characteristic equation.