ATIVIDADE 10- Difração de elétrons

- > Demonstra que elétrons têm comportamento ondulatório
- ➤ Podemos calcular o comprimento de ondas dos elétrons a partir do seu momento linear
- ➤ Da teoria de **de Broglie**: "Se a luz tem comportamento de partícula, então as partículas devem ter comportamento de onda" $\lambda = h/p$
- ➤ Para um elétron submetido a uma diferenca de potencial **V** :

E= eV =
$$m_o v^2/2$$
 onde v é a velocidade $v = (2eV/m_o)^{1/2}$

onde \mathbf{m}_{o} e a massa em repouso do elétron, valida para valores de $\mathbf{v} << \mathbf{c}$

$$\lambda = h/p = h/(m_o v) = h/(2m_o eV)^{1/2}$$

 \gt Valores elevados de V aumentam a velocidade v do elétron e pode ficar próxima da velocidade da luz, $\lambda = h/(2meV)^{1/2}$, quando $v \rightarrow c \implies m = m_o/(1 - v^2/c^2)^{1/2}$

$$\lambda = h / \{ 2m_0 eV / [1 - v^2/c] \}^{1/2}$$

Valores de comprimento de onda considerando a eq. relativística Em nossos experimentos usaremos valores de V de até 5 kV.

U/kV	Non rel. λ/pm	Rel. λ / pm	m / m _o	v / 10 ⁸ m/s
100	3.86	3.70	1.20	1.64
200	2.73	2.51	1.39	2.09
300	2.23	1.97	1.59	2.33
400	1.93	1.64	1.78	2.48

O valor de λ do elétron é inversamente proporcional à tensão de aceleração.

m é a massa relativística e está associada à energia da partícula pm = picômetro = 10^{-12} m c = $3x10^8$ m/s •Calcular a velocidade de um elétron acelerado por uma tensão de U_A = 2KV:

$$E_k = 2000 \times 1.6 \times 10^{-19} = 3.2 \times 10^{-16} \text{ J}$$
 $E_k = \frac{1}{2} m v^2 = \frac{p^2}{2m} = e \cdot U_A$
 $1/2 \text{ mv}^2 = 3.2 \times 10^{-16}$ $V^2 = 2 \times 3.2 \times 10^{-16}/(9.1 \times 10^{-31}) = 7.0 \times 10^{14}$ $V = 2.7 \times 10^7 \text{ m.s}^{-1}$

Calcular comprimento de onda do elétron

$$\lambda = h/mv = 6.63x10^{-34} / (9.1 \times 10^{-31} \times 2.7 \times 10^{7}) = 2.75 \times 10^{-11} \, \text{m} \quad (\lambda = 0.0275 \, \text{nm})$$

- •O valor de λ do elétron é inversamente proporcional à tensão de aceleração.
- •Para demonstrar as propriedades ondulatórias desses elétrons precisamos de uma fenda de pelo menos 10^{-10} m = 1 Å = 0,1 nm
- •Materiais cristalinos tem parâmetros de rede (a) de: 0.1 nm < a < 1 nm,
- •Radiação de Cu (λ =0,154 nm) é usada em difração de raios x para estudar materiais cristalinos. Geralmente, os materiais estão na forma de policristais (conjunto de pequenos cristais orientados aleatoriamente)

Tela fluorescente

Lei de Bragg

- -Feixe de elétrons interagindo com dois cristalitos com planos atômicos com distância interplanar "d1". Os cristalitos formam um ângulo θ com o feixe.
- -As linhas finas representam os planos atômicos.
- -Ocorre a formação de um ponto (interferência construtiva) quando : $\lambda = 2*d1*sen(\theta)$

Vamos determinar a relação de α e θ com os parâmetros experimentais

Da figura ao lado:

$$sen 2\alpha = \frac{r}{R} \quad(1)$$

$$R = 65 \text{ mm}$$

$$sen 2\alpha = 2 sen \alpha cos \alpha$$

para ângulc
$$~\alpha~$$
 pequeno (cos $\alpha \! \simeq \! \text{1}~$) :

$$sen 2\alpha \simeq 2 sen\alpha$$
 (2)

para ângulos
$$\theta$$
 pequeno (cos θ \simeq 1):

$$\alpha = 2\theta$$
; $sen \alpha = sen 2\theta \simeq 2sen \theta$ (3)

(3) em (2)
$$sen 2\alpha = 4 sen \theta$$

da equação de Bragg: sen
$$2\alpha = 4 \frac{n \lambda}{2d}$$
 (4)

(4) em (1)
$$\frac{2n\lambda}{d} = \frac{r}{R}$$

$$r = (2n\lambda R)\frac{1}{d}$$
 para n=1:

$$2\lambda R = d * r$$

Lei de Bragg $n\lambda = 2d \sin \theta$

OBS:

-r e λ são proporcionais e dependem da tensão aplicada

 -d é a distância interplanar atômica e depende apenas do grafite

V(ŘŘ)	λ	ŗ,	ŗ ₂	2λR
3,0				
3,5				
4,0				
4,5				
5,0				
5,5				
6,0				

Usar a equação (5) e determinar a distância interplanar "d" do grafite da seguinte maneira:

Na planilha , gráficar ($2\lambda R$) versus r_1 e r_2 , usar uma curva de tendência linear

$$Y=A*X$$

Onde: Y= $(2\lambda R)$, X= r_1 ou r_2 e determinar o coeficiente angular: A =d, onde d é a distância interplanar atômica .

<u>OBS</u>: Com este estudo serão obtidos apenas dois valores de **d**

distância interplanar do grafite

 $d_1 = 213 \text{ pm}$ $d_2 = 123 \text{ pm}$ $d_3 = 80.5 \text{ pm}$ $d_4 = 59.1 \text{ pm}$ $d_5 = 46.5 \text{ pm}$.

Parte experimental

- Ajuste as tensões de G1 e G4 e a alta tensão G3 para obter anéis de difração estreitos e bem definidos.
- Registre a tensão do anodo no mostrador da fonte de alta tensão
- No grafite policristalino a ligação entre as camadas individuais são rompidas de forma que sua orientação é aleatória. O feixe de elétrons é portanto espalhado na forma de um cone.
 Produzindo anéis de interferência na tela fluorescente
- Para determinar os diâmetros dos anéis de difração, meça os limites internos e externos dos anéis e calcule o valor médio.
- O ângulo de Bragg θ pode ser calculado a partir do anel de interferência, más deve-se perceber que o ângulo de desvio α é o dobro, α = 2* θ

Electron-Microscopes-TEM/200-kV/JEM-2100Plus

Difração de raios-x de nanoparticulas de Ni e NiO

Estruturas Cristalinas dos Materiais

As 14 Redes de Bravais

Cúbica de face centrada Parâmetro de rede = 0,564 nm

Densidade = $2,164 \text{ g/cm}^3$

Obs: 1 cm³ tem 5,6 x10²¹ células unitárias

Questões

1- Anotar na tabela os parâmetros indicados. Diâmetros (D1 e D2), raios dos anéis, etc.

V(<u>kV</u>)	λ(x10 ⁻⁹ m)	D1(m)	<u>r,</u> (m)	D2(m)	<u>r</u> _Z (m)	2λR (m²)

2- Mostrar o gráfico de $(2\lambda R)$ versus r_1 e r_2 . Usar uma curva de tendência linear e calcular as distâncias interplanares atômicas d_1 e d_2

3- Para a distância interplanar atômica do grafite d_1 =213 pm, qual deveria ser o valor da tensão V para que o anel de difração tenha um raio máximo.

4- Para a distância interplanar atômica do grafite d_3 = 80,5 pm, qual deveria ser o valor da tensão V para que o anel de difração tenha um raio de r_3 = 25 mm

5- Considere o nosso setup experimental e demonstrar a equação : $2\lambda R = d * r$

6- Na esfera do equipamento de difração de elétrons, a tela fluorescente tem diâmetro de 95 mm. Quanto deve ser a tensão para energizar os elétrons para obter um anel de difração com raio de 45 mm e relacionado à distância interplanar atômica do grafite d_5 =46,5 pm. Isto explica por que não observamos os anéis de difração das distâncias d_3 , d_4 e d_5 ?