浙江大学 2006 - 2007 学年冬季学期

《高级数据结构与算法分析》课程期末考试试卷

考试时间: _2007_年_1_月_16_日, 所需时间: _120_分钟 考生姓名:	课学院:_	软件学院、	、计算机学院、설	<u> </u>	,考试形式:	: 闭卷 ,允许	F帯_ <u>无</u> ノ	、场	
题序 - 三 四 总分 得分	试时间:_	_ <u>2007</u> _年_ <u>1</u>	<u>1</u> _月_ <u>16</u> _日, 所	「需时间: <u></u>	20_分钟				
得分	生姓名:_		学号:	专业:			教师:		
	题序		二	Ξ	-	四	总 分		
评卷人	得分								
	评卷人								
NOTE: Please write your answers on the answer sheet. 注意:请将答案填写在答题纸上。 I. Please fill in the blanks (There could be multiple answers for one blank). points) Note: Zero point for a blank selection since there is at least one answer for e problem.	意:请将 Please(points)	将答案填写 fill in the) <i>Note:</i> <u>Zer</u>	写在答题纸上。 blanks(There	could be	multiple a	nswers for	-	-	
 (1) The time complexity for finding an element in a splay tree with N no is (2 points) a. O(1) b. O(log N) c. O(N) d. O(N log N) (2) The depth of an AVL tree with 32 nodes is at least (2 points) and most (2 points) a. 5 b. 6 c. 7 d. 8 	is _ a. O(1) 2) The c most	. (1) b. depth of a	(2 points) . O(log N) an AVL tree wit	c. O(N) th 32 nodes	d. 0(N log N)			
 (3) When solving the bin packing problem with the best-fit method, arrang the remaining capacities of the bins in (2 points) can reduce time complexity. a. a linear sequential storage b. an AVL tree c. a min-heap d. an ordered linear storage 	the time	remaining e complexi linear sequ	g capacities of ity.	f the bins ge b.	inan AVL to	(2 points)	can reduce t		
 (4) A binomial queue of size 53 can be represented by the following binom queues (2 points) a. B₀ B₁ B₂ B₃ B₄ B₅ b. B₀ B₁ B₃ B₅ c. B₁ B₃ B₅ B₆ d. B₀ B₂ B₄ B₅ 	queu a . B_0 B	ues B ₁ B ₂ B ₃ B ₄	. (2 po	b. B ₀ B ₁	B ₃ B ₅	by the fol	lowing binom:	ial	
(5) A leftist tree with r nodes on the right path must have nodes points) a. at least $2^{r}-1$ b. at most $2^{r}-1$ c. at least 2^{r-1} d. at most	poin	nts)							

(6)]	For a binomial	queue,	take(s) a constant	time	on average.	(2 points)
	a.	merging	b. find-min	C.	delete-min	d.	insertion	
	а. с.	.(2 g Euler circui Single-source	collowing problem points) t problem ke unweighted sho	o. Ham ortest	ilton cycle :	probl m		omial time:
	u.	bingic boure.	e anwergneed for	19000	pacii probicii			
			time bound is _					
			e time bound					
	C.	<= best-case	time bound	d.	<= worst-cas	se tim	me bound	
	a. b.	the conquer sub-solutions points) is the divide into divide into divide into	oblem with input step takes O(N), then among the se best one while sub-problems of sub-problem	extra e foll e of equ of equ	a work to for owing four doming four doming (2 points all complexitions) and complexitions and complexitions.	orm tividi) is y N/3 y N/4 y N/4	he solutioning methods, the worst of	n from the
	1	the	lgorithm for congressive algorithm. (2)	point	s)			
(1)	plea The	ase fill in the b	on descriptions on descriptions of the lank lines. (15 put to merge two equals (15 put	ooints)	zed binomial	-		
	if	(T1->Elemen	t > T2->Element)				
		return Combi	neTrees(T2, T1);				
	Т2-	->NextSibling	= ①		;			
	② _				_;			
1	ret	urn T1;						
}								

(2) The function is to find the shortest path between all pairs of vertices v_i and v_j . A[] contains the adjacency matrix with A[i][i] = 0, D[] contains the values of the shortest path, Path[] keeps the record of the shortest path, and N is the number of vertices. (9 points)

III. Please write or draw your answers for the following problems on the answer sheet. (46 points)

(1) Please draw the results of rotations when inserting {8, 7, 1, 2, 6, 3, 5,
4} into an initially empty AVL tree. Please specify the type of each rotation
(LL, LR, RL, or RR) (8 points)

(2) Please draw the result of deleting 7 from the given splay tree. (5 points)

(3) Insert the keys: 6, 7, 1, 2, 8, 3, 5, 4 into an initially empty 2-3 tree. Please draw the resulting tree after each splitting (6 points) and the tree after deleting 8 (2 points).

(4) Please draw the result of merging the two given leftist heaps. (5 points)

(5) Given a text containing 7 characters in the following frequencies:

character	A	В	С	D	E	F	G
frequency	8	5	3	2	9	11	2

- a) If the text should be encoded in binary (0 or 1), what is the minimum length of the encoded text? Please draw the corresponding Huffman tree. (6 points)
- b) If the text should be encoded in ternary (三进制, 0 、1、2), what is the minimum length of the encoded text? Please draw the corresponding Huffman tree. (6 points)

(6) The turnpike reconstruction problem is to reconstruct a point set from distances between every pair of points. Given a set of distances {2, 2, 3, 3, 4, 5, 6, 7, 8, 10}, there are 5 corresponding points. Assume that X1 is at 0 and X5 is at 10, please mark the visited nodes black in the given search tree with backtracking method, and give all the solution sets (notice that the solution is not unique). (8 points)

IV. The genes for building particular proteins evolve with time, but the functional regions must remain consistent in order to work correctly. By finding the longest common subsequence of the same gene in different species, we learn what has been conserved over time. Given two strings of genes with lengths M and N, please write an algorithm to find the longest common subsequence with time complexity no more than O(M*N). (15 points)