(iv) It T accepts, rejens, AT accepts, accepts.

1. A: f<R|Ris a regular expression describing a language containing at least one string in that has 111 as a substray?

first define a language B= fire E" | In contain 111 as substray?, B is a regular language with regular expression E"1112"

thus we can construct a DFAz that recognise B.

if LCR) B # 60, then <R> EA, therefore we construct a DFA D that recognise LCR) B show LCR) B is a regular language.

So, we give the following TM M to decide A.

T= Dr report <R>, where R is a regular expression

(i) construct DFAz that accept \(\Sigma^2 1111 \Sigma^2\)

(ii) construct DFAz D such there it reargainse LCR) B

(iii) Run TM T on report <R>, where T denible EpgA by Theorem

2. B is the set of all infinite Sequence over 50.17	
ne get every devent in B is infinite seq. (b1, b2, b3,) when bifferig
Assum B is contable	
there is no home a correspondence of between R as N	when N= {1,23,}
let fen=(bn, bns, bns) for n & N, at we can	ect al few
then define an infinite see SICS. C.C.	1 Children bis and
let fens=(bn1, bns, bns) for NEN. at we conthen define an infinite sea S=(S1, S6, S5,) SEB and S6: 611 for ien	Char, bas, bas,)
with all those been set for any n, s differs each bir here s course occur in the enumeration	
Therefore, by Contradition, the set B is uncomfable.	

3. T= fci,j,kslij,ken}		

4. Eliga is undecidable	
idea: way reduction of Allers to Evers	
All con - 1 < 9> G & a CFG od L(G)= 2 = }	
Assume Earra B decidable, and me have a decider T for Earra	
The desire Miller TA T	
construct a TM M to devide Address very TM T.	
defre a CFG G,=(V,Z,R,s) where L(G,)=z*	
TM M follows, M= on inque < G>, where G is a CFG.	
(i) Kun (M) on Mpd < G.G.>	
vis it accept, accept, also right.	
Since M decides Allera, and by Theorem Allera is undecidable,	
vis if T accept, also reject. Since M decides Allera, and by Theorem Allera is undecidable, Therefore, by contradiction, Earna is undecidable	

5. if A sm B and B is a regular layunge.
S. if A sm B and B is a regular lagrage. A is not a regular lagrage. for example, let A = fa^b^ n>0\fo\fo\fo\fo\fo\fo\fo\fo\fo\fo\fo\fo\fo\
A is not a region (enjury).
for example, let A= fabr nzof B=fbf 2=fa,b} and
dofae furtin f. I -> I" as the stand
fw = f = std A
we can see that A is decidable by theorem, but it's also a content free larguage. It is computable.
also, we A IFF fourth or less say IFF fourth
Therefors if Asm B and B is regular. A is not a regular layuage.