WEST NILE VIRUS

Project 4
Jiansheng | Le-Anne | Shaun

Intro/Background

West Nile Virus (WNV) is the leading cause of mosquito-borne disease in the United States (Centers for Disease and Control Prevention, 2019). It is most commonly spread to people by the bite of an infected mosquito.

1 out of 5 Fever/other symptoms

1 out of 150 Serious/fatal illness

Risk of WNV can be reduced by controlling the mosquito population to prevent the spread of WNV.

Problem Statement

Which part of Chicago do we want to deploy pesticides?

Methodology:

- 1. Predict the presence of the West Nile Virus.
- 2. Evaluate the effectiveness of spray
- 3. Recommend a deployment plan for the pesticides throughout the city of Chicago.

Workflow

Dataset

Cleaning & Considerations

EDA

Feature Engineering

Model Evaluation & Selection

Cost-benefit Analysis

Dataset

Weather

Station
Date (2007-14)
T.max
T.min
T.avg
Depart
Dewpoint
Wetbulb

Heat

Cool

Sunrise Sunset Codesum

Depth
Water1
Snowfall
PreciTotal
StnPressure

Spray

Sealevel

Resultdir

Avgspeed

Resultspeed

Date (2011,13)
Time
Latitude
Longitude

<u>Test</u> <u>Train</u>

Id

(2008,10,12,14) Date

Date (2007, 09, 11, 13)

Species

Block Block

Street

Trap Trap

AddressNumberAndStree

Latitude

Longitude

Address Accuracy

Latitude

Address

Species

Street

Longitude

Address Accuracy

AddressNumberAndStree

NumMosquitos

WnvPresent

Cleaning & Considerations

Weather

- Changing date format
- Check and remove for 'M' (missing) values
- Dropping Tmin, Tmax, Depart, Heat, Cool, Sunrise, Sunset, Codesum, Depth, Water1, Snowfall, StnPressure, Avgspeed

Spray

- Changing date format
- Removing 541 duplicate entries

Train

- Removing 813 duplicate entries
- Changing date format
- Merging the insignificant species that contribute to the WNV into 'others'
- Dropping block, address, street, addressnumberandstreet & address accuracy
- Check and removing null values
- Convert all satellite trap to same trap name as parent trap

Test

- Changing date format
- Merging the species to match Train dataset
- Dropping block, address, street, addressnumberandstreet & address accuracy
- Convert all satellite trap to same trap name as parent trap

Feature Engineering

Train

- Tot_mos_species: Sum of the species that have WvnPresent within each trap.
- Converting Months (in Date) into Cos/Sin function

Weather

- Using Dewpoint & Wetbulb, calculate Saturated
 Vapour Pressure (SVP) & Vapour Pressure (VP)
- Using SVP & VP to calculate Relative Humidity
- Adding Longitude & Latitude for all entries:

Station 1: (41.995, -87.933) Station 2: (41.786, -87.752)

Filtered Predictors

WeatherTrainStationDate (2007, 09, 11, 13)Date (2007-14)SpeciesT.avgTrapPreciTotalLatitudeSealevelLongitudeResultspeedNumMosquitos

Resultdir {WnvPresent}
Relative Humidity Tot_mos_species

Spray

Longitude Latitude

Date (2011,13)
Time

Latitude Longitude Test Id Date (2008,10,12,14)

Species
Trap
Latitude
Longitude

EDA – Species of Mos. Trapped

EDA – Species of Mos. w. WNV Present

EDA – Trend of WNV across year

EDA – Trend of Mos Trapped

EDA - Species with WNV Across Species

EDA - Species Trapped across year

EDA - WNV vs Mos.

Findings so far:

- 2 Dominant species that contribute to the WNV transmission
- July Sept seems to be the VNR 'season'
- Peaks on August
- Generally, WNR & Mos. Trapped seems to have the same trend, but, there is a drastic change in 2013 August.
- Pipiens seems to be more of a species among all, that contribute to WNR transmission
- Pipiens/Restuans seem to have a opposite relationship during 2011
- Not all Mosquitos are transmitter of WNV

EDA - Trend of Tavg

EDA - Trend of R.H.

Spray cluster representation:

Model Selection & Evaluation

0 8077 1 457

10,

Name: wnvpresent

1 0.5

0 0.5

Name: wnvpresent

	ROC-AUC Score	Model
	0.869	Decision Tree
	0.947	Random Forest Classifier
\supset	0.949	Ada Boost
	0.905	Gradient Boost
	0.626	Support Vector Machine

Cost Benefit Analysis

Cost

- Cost of spray/vector control
- Indirect Costs (hospitalisations, lost productivity)

Benefit

Economic Impact (on health, productivity)

Case Study

 Table 2

 Estimated inpatient and outpatient economic costs of WNND cases, Sacramento County, California, 2005*

Item	Cost per case†	No. cases to which cost applies‡	% Cases to which cost applies§	Total cost for all cases	Total cost if treatment/service were used in all cases
Inpatient treatment costs	\$33,143	46	100	\$1,524,570	\$1,524,570
Outpatient costs	Cost per				
	case¶				
Outpatient hospital treatment	\$333	17	36	\$5,668	\$15,337
Physician visits	\$450	46	100	\$20,708	\$20,708
Outpatient physical therapy	\$909	46	100	\$41,810	\$41,810
Occupational therapy	\$4,037	3	7	\$12,111	\$185,699
Speech therapy	\$588	1	1	\$588	\$27,032
Total				\$80,885	\$290,586
Nursing home costs	Cost#				
Nursing home stay**	\$190	2	4	\$36,195	\$36,195
Transportation	\$65	46	100	\$2,977	\$2,977
Home health aides, babysitters, etc.	\$1,569	7	14	\$10,983	\$505,211
Total				\$50,154	\$544,383
Total for WNND				\$2,140,409	\$2,844,339

In 2005, an outbreak of West Nile virus (WNV) disease occurred in Sacramento County, California.

163 Human Cases Reported

Economic Impact of the Outbreak

Vector Control Costs \$701,790 (~477m²)

Medical Treatment & Productivity Lost \$2.28 Mil

Cost Benefit Analysis

Total economic impact: \$2.98 million. Only 15 prevented cases of West Nile neuroinvasive disease to make the emergency spray cost-effective.

Source: National Center Biotechnology Information

Conclusion & Recommendation

- Jul and Aug as the target month for vector control
- To monitor the predicted 9 clusters in 2014 as areas with a higher risk of WNV outbreak.
- The cost of vector control should also factor other trade-offs such impact on health, medical bills and loss in productivity in order to have a better sense of the overall economic cost
- Future work would include the use of medical data and the costs to have a more complete analysis.