Instructor: T. Hauner

This exam is closed book. No graphing calculators or cell phones are allowed. No bathroom

1 Multiple Choice (2 points each)

breaks are permitted while taking the exam. Good luck!

(1)	Simplify the following	expression w	ith only i	positive	exponents:	$\frac{15m^{-9}n^7}{2}$
(+)	Simplify the following	expression w	Ton Only	PODITIO	сиропения.	$3m^{-3}n^{-3}$

- (A) Cannot be simplified further
- (B) $\frac{15}{3}m^{-6}n^{10}$

(C)
$$5\frac{n^{10}}{m^6}$$
 (D) $5\frac{m^6}{n^4}$

(2) Rationalize the numerator and simplify:
$$\frac{\sqrt{2(a+h)}-\sqrt{2a}}{h}$$

 $\begin{array}{l} \text{(A)} \ \frac{2}{\sqrt{2(a+h)}+\sqrt{2a}} \\ \text{(B)} \ \frac{2a+2h}{\sqrt{2(a+h)}-\sqrt{2a}} \end{array}$

(C) $\frac{2(a+h)-2\sqrt{2(a+h)}\sqrt{2a}+2a}{h(\sqrt{2(a+h)}\sqrt{2a})}$

(D) Cannot rationalize

(3) Is
$$4x^2 - 10x + 4 = 0$$
 factorable?

- (A) Yes
- (B) No

(A) Cannot factor

(C) $x = -2, -\frac{1}{2}$ (D) $x = 2, \frac{1}{2}$

(B) x = 8, 2

(A) 2,124

(C) 2,200

(B) 2,352

(D) 2,220

(6) Find the sum of the following infinite geometric series:
$$1, -\frac{3}{2}, \frac{9}{4}, -\frac{27}{8}, \dots$$
 (Recall that $S_{\infty} = \frac{a_1}{1-r}$)

(A) Cannot sum

(B) $\frac{6}{10}$

(C) $\frac{4}{10}$ (D) $-\frac{13}{8}$

(7) Multiply and express using positive exponents only:
$$(3u^{\frac{1}{2}} - v^{\frac{1}{2}})(u^{\frac{1}{2}} - 4v^{\frac{1}{2}})$$

(A) $3u - 11u^{\frac{1}{2}}v^{\frac{1}{2}} + 4v$

(C) $u - 12u^{\frac{1}{2}}v^{\frac{1}{2}} - 4v$ (D) $3u^{\frac{1}{2}} - 13uv + 2v^{\frac{1}{2}}$

(B) $3u - 13u^{\frac{1}{2}}v^{\frac{1}{2}} + 4v$

(8) Find the sum of the finite arithmetic series,
$$S_{23}$$
, if $a_1 = 8, d = -10$. (Recall that $S_n = \frac{n}{2}(a_1 + a_n)$)

(A) -2,461

(C) -4,692

(B) -2,346

(D) 2,346

- Fill in the blank: the formula $\bar{a} = \frac{1}{n} \sum_{k=1}^{n} a_k$ represents the _____ in summation (9)notation.
 - (A) geometric mean

(C) sequence

(B) arithmetic sum

(D) arithmetic mean

- (10)In response to the Global Financial Crisis, congress passed the Economic Stimulus Act of 2008. Among its many provisions, approximately \$300 was distributed to each qualifying taxpayer. If each taxpayer spent \$285 of this rebate, what was the total economic impact of the initial spending, per taxpayer? (Hint: this is a fiscal multiplier question.)
 - (A) \$6,000

(C) \$5,400

(B) \$5,700

(D) \$5,000

$\mathbf{2}$ Short Answer (3 points each)

- Multiply $(m+2n)^3$, or expand completely so that no parentheses remain. (11)
- Recall the quadratic formula, $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$. Describe the number of real (12)solutions to $ax^2 + bx + c = 0$ when the discriminant is positive, zero, and negative, respectively.
- (13)If P dollars are invested at r percent (a decimal) compounded annually, at the end of 2 years it will grow to $A = P(1+r)^2$. At what interest rate r will \$1,000 grow to \$1,210 in 2 years?
- (14)An importer sells tablet computers in Chinatown. Her weekly supply and demand equations are

$$p = \frac{x}{6} + 9$$
 Supply

$$p = \frac{x}{6} + 9$$
 Supply
$$p = \frac{24,840}{x}$$
 Demand

where x is the number of units bought/sold. What is the equilibrium number of tablets bought/sold? At what price will supply equal demand?