Contents

1	Def	inition and The First Principle	1	
	1.1	Definition	1	
	1.2	The derivative at a Point a	1	
	1.3	Geometric Meaning	1	
	1.4	Symbols for the Derivative	1	
2	Rules and Derivatives of Elementary Functions 2			
	2.1	Derivative Rules	2	
	2.2	Trigonometric Functions	2	
	2.3	Inverse Trigonometric Functions	2	
	2.4	Exponential and Logarithhmic Functions	2	
	2.5	Derivative of Inverse Function	2	
	2.6	Chain Rule	3	
3	Advanced Differentiation 3			
	3.1	Implicit Differentiation	3	
	3.2	Higher-Order Derivatives	3	
	3.3	Parametric Derivatives	4	
4	Theorems 4			
	4.1	Rolle's Theorem	4	
	4.2	Mean Value Theorem	4	
	4.3	Cauchy's Mean Value Theorem	5	
	4.4	Extreme Value Theorem	5	
5	Behavior of Functions			
	5.1	Critical Points and Extrema	5	
	5.2	Concavity and Inflection Points	5	
6	Applications 6			
	6.1		6	
	6.2		6	
	6.3	Linear Approximation (First-Order Taylor Expantion)	6	

1 Definition and The First Principle

1.1 Definition

Let f be a function defined on an open interval containing a. The **derivative** of f at the point a, denoted by f'(a), is defined as

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

1.2 The derivative at a Point a

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

provided the limit exists.

1.3 Geometric Meaning

To find the slope of the tangent line to the curve y = f(x) at a point x = a, we consider the slope of the secant line between two points:

$$\frac{f(a+h) - f(a)}{h}$$

As $h \to 0$, this secant slope approaches the derivative f'(a), which is the slope of the tangent line at x = a.

1.4 Symbols for the Derivative

$$D_x f, \frac{d}{dx} f(x), y', \dot{y}$$

2 Rules and Derivatives of Elementary Functions

2.1 Derivative Rules

- 1. Constant Rule: $\frac{d}{dx}c = 0$
- 2. Power Rule: $\frac{d}{dx}x^n = nx^{n-1}$
- 3. Sum/Difference Rule: $\frac{d}{dx}[f \pm g] = \frac{d}{dx}f \pm \frac{d}{dx}g$
- 4. Product Rule: $\frac{d}{dx}[f \cdot g] = \frac{d}{dx}f \cdot g + f \cdot \frac{d}{dx}g$
- 5. Quotient Rule: $\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{\frac{d}{dx}f \cdot g f \cdot \frac{d}{dx}g}{g^2}$

2.2 Trigonometric Functions

$$\frac{d}{dx}(\sin x) = \cos x \qquad \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

2.3 Inverse Trigonometric Functions

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$$
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}} \qquad \frac{d}{dx}(\csc^{-1}x) = \frac{-1}{|x|\sqrt{x^2-1}}$$

2.4 Exponential and Logarithhmic Functions

$$\frac{d}{dx}(e^x) = e^x, \frac{d}{dx}(\ln x) = \frac{1}{x}, x > 0$$

$$\frac{d}{dx}(a^x) = a^x \ln a, a > 0 \& \neq 1 \frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}, a > 0 \& \neq 1$$

2.5 Derivative of Inverse Function

Let f be a one-to-one differentiable function with inverse f^{-1} , and suppose $f'(f^{-1}(x)) \neq 0$. Then,

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

2

Example:

Let $f(x) = e^x$, so $f^{-1}(x) = \ln x$. Then,

$$\frac{d}{dx}(\ln x) = \frac{1}{\frac{d}{dx}(e^x)|_{x=\ln x}} = \frac{1}{e^{\ln x}} = \frac{1}{x}$$

2.6 Chain Rule

If h(x) = f(g(x)) where both f and g are differentiable, then

$$h'(x) = \frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x).$$

3 Advanced Differentiation

3.1 Implicit Differentiation

If a function y is given implicitly by an equation involving both x and y, such as

$$F(x,y) = 0.$$

To find the derivative $\frac{dy}{dx}$, we differentiate both sides of the equation with respect to x, treating y as a function of x.

Example:

If

$$x^2 + y^2 = 25,$$

then differentiating both sides gives

$$2x + 2y\frac{dy}{dx} = 0.$$

Solving for $\frac{dy}{dx}$ gives

$$\frac{dy}{dx} = -\frac{x}{y}.$$

3.2 Higher-Order Derivatives

The second derivative, third derivative, and beyond are called higher-order derivatives. These describe how the rate of change itself changes

$$\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^ny}{dx^n}$$

$$f'(x), f''(x), f'''(x), f^{(n)}(x)$$

$$\dot{y}, \ddot{y}, \ddot{y}$$

3.3 Parametric Derivatives

Given a parametric curve:

$$x = x(t)$$
 $y = y(t)$

the derivative of y w.r.t x is given by

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} \quad \text{(provided } \frac{dx}{dt} \neq 0\text{)}$$

4 Theorems

4.1 Rolle's Theorem

Let f be continuous on [a, b], differentiable on (a, b), and f(a) = f(b). Then there exists $c \in (a, b)$ such that

$$f'(c) = 0.$$

4.2 Mean Value Theorem

If f is continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

4.3 Cauchy's Mean Value Theorem

Let f and g be functions continuous on the closed interval [a,b], and differentiable on the open interval (a,b), with $g'(x) \neq 0$ for all $x \in (a,b)$. Then there exists at least one point $c \in (a,b)$ such that:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

For g(x) = x, Cauchy's Mean Value Theorem reduces to Mean Value Theorem.

4.4 Extreme Value Theorem

If f is continuous on [a, b], then there exist points $c, d \in [a, b]$ such that

$$f(c) \le f(x) \le f(d), \quad \forall x \in [a, b].$$

5 Behavior of Functions

5.1 Critical Points and Extrema

- Critical Point: A point c in the domain of f where f'(c) = 0 or f'(c) does not exist.
- Local Maximum: f(c) is a local maximum if $f(c) \ge f(x)$ for all x near c.
- Local Minimum: f(c) is a local minimum if $f(c) \leq f(x)$ for all x near c.

5.2 Concavity and Inflection Points

- Concave Up: f''(x) > 0 on an interval \implies graph lies above tangent lines.
- Concave Down: f''(x) < 0 on an interval \implies graph lies below tangent lines.

• Inflection Point: A point where f''(x) changes sign.

6 Applications

6.1 Related Rates

6.2 Optimization Problems

6.3 Linear Approximation (First-Order Taylor Expantion)

If f is differentiable at x = a, then near a, the function f(x) is approximated by

$$f(x) \approx f(a) + f'(a)(x - a)$$

Example:

for x near 0, $\sin x$ can be approximated by $\sin x \approx \sin(0) + \cos(0) \cdot x = x$

