53K-0013 Bait Resignment 3 2-50, 2 1.8 h, avg = 2.1h e - 50 min = 1/3 p confidence level = 10%. , & = 0.1 1/3 = 1.645 (for 90%) confidence level = 1/2 x = = 1.6 ± 1.645 × 1/3 = 1.8 ± 0.0775 12779 1.7225 < p < 1.6775 hours Therefore, the workers are distracted for lesses hours then the study claimed. (03) TE = 217.7 20 = \[\sum \(\pi \) = 13.486 for 95% CI > n+1=9, 1 x/2 = 0.05 =0025, 9

Date:
= 2 = t a/3 x 6
Vo
≥ 217.7± 12.62 × 17.486 → 217.7± 12.52
VIO
205.18 < µ < 230.20
$\langle 03 \rangle_{n=30}$
H. : W < 43000
H.: p \$ 42000 (night tailed)
$2 = \overline{X} - \mu_0$
5/Vn
2=1260 => 1.32
$2 = 1260 \Rightarrow 1.32$ 994.99
critical z-value for right tailed test at x=0.05
critical z-value for right tailed test at $z=0.05$ in $Z_{0.05} = 1.645$ as $P(Z)Z_{x} = 0.05$
$0.05 = 1 - P(Z - Z_{\alpha})$
$0.05 = 1 - P(Z - Z_{\alpha})$ $0.05 = 1 - 0.95$ $P(Z(Z_{\alpha}) = 0.95$ $Z_{\alpha} = 1.6449$ $Z(Z_{\alpha}) + fail + for a oject + Homeometry paper product$
P(2(2x) = 6000 0.95
$\frac{2}{2} = \frac{1}{2} = \frac{1}{2}$
MIGHTY PAPER PRODUCT

Date:	
(04) n=50, $\sigma = 26.7$, $\alpha = 0.05$	
$\bar{x} = 31.5$ $H_0 = \mu \leq 2u$	
z = 31.5-24 => 1.848 H. = 1 >2u	
29.7/50 night to	ile
P=1-P(Z<1.848)	
P = 1 - 0.9677 => 0.323 =: H. neject	
(05) n = 20, Ho = M = 5.8, H, = M = 5.8 (two tailed	
test)	L
72 = 3.85	
$S^{2} = \sum (x_{1} - \overline{x})^{2} = 120.55$	
N-1 19	-
S= (6.34717 -> 2.5189	
2.25 7 2 3 3 1 1 2	
$\frac{1}{5/\sqrt{5}} = \frac{3.85 - 5.8}{(2.5/49)/\sqrt{20}} \Rightarrow -3.462$	
)	
t x/2, df = ± 2.093	

MICHTY PAPER PRODUCT

Date:

|
$$t = |-3.462|$$
 | $t = |-3.462|$ | t

$$= (15-1)(4)_5 + (10-1)(2)_5$$

MICHTY PAPER PRODUCT

Date:

t= 1.043

tonos, 20 => t x/2 = 1.725

9t= 12+12-5 => 50

fail to reject Ho. Hence 0.05 level, there is not enough evidence to prove that wear of material I exceeds