SiN and Polymer PICs for Sensing

Prof. Dr. Martin Schell

Fraunhofer Heinrich Hertz Institute

Fraunhofer HHI: Photonics for Communication and Sensing

50 Mio € Budget, 400+ people, 80% self-financed

Photonic & Quantum Networks

LiFi for high speed data in EMI environments

Quantum Key Distribution

100 GSample/sec data processing

InP, TFLN and RF PICs

One of ww. two InP MPW foundries

Thin film Lithium Niobate for 450 ... 4000 nm

Up to 145 GHz

Hybrid PICs and Terahertz

Polymer low cost / high functionality waveguide platform

Hybrid InP/GaAs SiN PICs

Terahertz Sensing

Polymer Hybrid Photonic Integrated Circuits

Tunable lasers from communications to sensing

- Single photons via weak coherent pulses
- Integrated pump for non-linear optics
- Laser concept can be transferred into VIS → gain chip material

Integrated 1550 nm Photon Pair Source

Enabled by micro-optical bench and hybrid integration

Miniaturized Quantum Modules for High-Precision Imaging

Sources for quantum OCT and microscopy with entangled photons

SiN Microrings for Sensing

Biosensors for Point-of-Care diagnostics and analytics proteins, small molecules, vitamins, viruses, bacteria, nucleic acids, ... antibodies/ aptamers cross section MRR resonator CHARITÉ micro resis Intensity ficontec ESCHWEILER Laser-Photo-BIO SÝNEX Technologies Fraunhofer diode diode SCIENTON >> DI Z C DEUTSCHES HERZZENTRUM Shift Coupler PolyChrome Berlin Wavelength Photonics for Sensing

Multiparameter Diagnostics

Scalability by Photonic Integration

Demonstration of Passive Single-Mode Coupling

Watch it live at booth A2:117!

SiN Integration Platform: Coupling to Actives

Mode-locked lasers for sensing

- InP-based MLLs w/ tailorable repetition rates demonstrated
- Narrow-linewidth tunable lasers (< 1 kHz) in development
- Concept can be transferred towards VIS \rightarrow other actives ...

MLL preliminary results -50 -55 GHz -65 -70 -80 1568.50 Wavelength [nm]

From Complex Setups to Integrated Quantum Sensors

Magnetometry with NV centers in hybrid PICs

Prof. Tim Schröder

Julian M. Bopp et al.: Diamond-on-chip magnetic field camera for mobile imaging, Phys. Rev. Applied 23, 034024 (2025)

PICs for Sensing

Upcoming developments

- Si₃N₄-MPW runs with PDKs (0.2 dB/cm) for C band
- Prototyping in PolyBoard for 780 nm to 1600 nm
- Si₃N₄ and PolyBoard waveguides for VIS laser integration

Wafer-level microfluidics for biosensors

Correlation RPS for fiber sensing

Si₃N₄-MPWs for 1550 nm

405 nm

532 nm

785 nm

1064 nm

1550 nm

PICs for Sensing

Offers and opportunities for cooperation

What we offer

- Photonic integrated circuits (PICs) for sensing based on mature telecom technologies
- Miniaturized photon pair and entangled photon sources for quantum imaging
- Multiparameter diagnostics with robust SiN disposables
- Multi-pixel magnetometers enabled by on-chip micro-optical bench

What we are looking for

- Partners interested to have their actives (GaAs, GaN, ...) integrated with PICs
- Partners interested in leveraging our SiN and PolyBoard technologies to solve their challenges
- Application partners in medical device engineering

