Sistemas de Comunicación

- Comunicaciones Digitales -
 - Modulación -

Ph.D. Cristian Guarnizo Lemus

cristianguarnizo@itm.edu.co

Contenido – Comunicaciones Digitales

- 1. ASK Desplazamiento de Amplitud
- 2. FSK Desplazamiento de Frecuencia CPFSK, MSK, GMSK
- 1. PSK Desplazamiento de Fase

Innovación Tecnológica con Sentido Humano

Modulación Digital

Sentido Humano 1. ASK — Amplitude-Shift Keying

La técnica de modulación más sencilla es la modulación digital de amplitud., que corresponde a AM-DSB.

$$v_{\text{ask}}(t) = \left[1 + v_m(t)\right] \left[\frac{A}{2}\cos(\omega_c t)\right]$$

 $v_{ask}(t)$ = voltaje de la onda de amplitud modulada

 $\frac{A}{2}$ = amplitud de la portadora no modulada (volts)

 $v_m(t)$ = señal binaria moduladora (volts)

 $\omega_c t$ = frecuencia de la portadora en radianes (rad ϕ or segundo)

Sentido Humano 5. ASK — On-Off Keying

 $v_m(t)$ es un código de línea NRZ. Entonces

Cuando $v_m(t) = 1$

$$v_{\text{ask}}(t) = [1+1] \left[\frac{A}{2} \cos(\omega_c t) \right] = A \cos(\omega_c t)$$

Cuando $v_m(t) = -1$

$$v_{\text{ask}}(t) = [1-1] \left[\frac{A}{2} \cos(\omega_c t) \right] = 0$$

Sentido Humano 5. ASK

Aplicaciones:

ASK se usa en fibra óptica, RFID, NFC.

OOK por su consumo menor, se emplea en controles remotos, y también en fibra óptica.

Innovación Tecnológica con Sentido Humano 5. ASK — Baudios y Ancho de Banda

Ejemplo:

Determine el ancho de banda mínimo y los baudios para transmitir una señal binaria 10 kbps utilizando ASK

Para ASK, N=1 (numero de bits), tenemos

$$B = \frac{10.000}{1} = 10,000$$

baud =
$$\frac{10.000}{1}$$
 = 10,000

Sentido Humano 2. FSK – Frequency-Shift Keying

Similar a su homologo análogo, se define la modulación digital en frecuencia, FSK como

$$v_{fsk}(t) = V_c \cos(2\pi (f_c + v_m(t)\Delta f)t)$$

 $v_{\rm fsk}(t)$ = voltaje de la onda modulada en frecuencia Δf = desviación máxima de frecuencia (hertz) $v_m(t)$ = señal binaria moduladora (volts)

Sentido Humano 2. FSK - Desarrollo

 $v_m(t)$ es un código de línea NRZ. Entonces

Cuando
$$v_m(t) = 1$$

$$v_{\rm fsk}(t) = V_c \cos(2\pi (f_c + \Delta f)t)$$

Cuando
$$v_m(t) = -1$$

$$v_{\rm fsk}(t) = V_c \cos(2\pi (f_c - \Delta f)t)$$

Sentido Humano 2. FSK - VCO

La desviación de frecuencia se expresa como

$$\Delta f = \nu_m(t) K_1$$

 Δf = desviación máxima de frecuencia (hertz) $v_m(t)$ = señal binaria moduladora (volts) K_1 = sensibilidad a la desviación (Hertz por volt)

Sentido Humano 2. FSK — Basado en VCO

Innovación Tecnológica con

Sentido Humano 2. FSK – Espectro de Frecuencia

Sentido Humano 2. FSK - Ancho de Banda

En FSK, el índice de modulación es

$$\Delta f = \frac{|f_m - f_s|}{2}$$

 Δf = desviación máxima de frecuencia (hertz)

 f_m = frecuencia de marca (hertz)

 f_s = frecuencia de espacio (hertz)

Sentido Humano 2. FSK – Espectro de Frecuencia

Recordemos como es el espectro en frecuencia de un pulso

Sentido Humano 2. FSK — Espectro de Frecuencia

Sentido Humano 2. FSK - Ancho de Banda

Teniendo en cuenta lo anterior, el ancho de banda para FSK se puede aproximar como

$$B = |(f_m + f_b) - (f_s - f_b)| = 2|\Delta f| + 2f_b$$

B = Ancho de banda mínimo (hertz)

 Δf = desviación máxima de frecuencia (hertz)

 f_m = frecuencia de marca (hertz)

 f_s = frecuencia de espacio (hertz)

Sentido Humano 2. FSK - Ancho de Banda

Ejemplo: (Tomasi 12-1)

Calcula a) la desviación máxima de frecuencia, b) el ancho de banda y c) los baudios para una señal FSK con frecuencia de marca de 49kHz, frecuencia de espacio de 51kHz y rapidez de bits de entrada de 2kbps. (R/ 1kHz, B=6kHz, 2000).

La frecuencia máxima se encuentra cuando hay un cambio del valor lógico de los bits.

Sentido Humano 2. FSK - Besse

A partir de lo anterior, la frecuencia máxima de la señal moduladora es

$$f_a = \frac{f_b}{2}$$

 f_a = máxima frecuencia fundamental de la señal moduladora binaria (hertz)

 f_b = rata de bits de la entrada (bps)

Sentido Humano 2. FSK - Besse

La ecuación del índice de modulación en FM también es valida en FSK, entonces

$$h = \frac{\Delta f}{f_a}$$

$$h = \frac{|f_m - f_S|}{f_b}$$

h= índice de modulación en FSK, conocido como h-factor.

Sentido Humano 2. FSK - Ancho de Banda

Ejemplo: (Tomasi 12-2)

Con la tabla de Bessel, determinar el ancho mínimo de banda para la señal FSK con frecuencia de marca de 49kHz, frecuencia de espacio de 51kHz y rapidez de bits de entrada de 2kbps.

$$h = \frac{|f_m - f_s|}{f_b} = \frac{|51k\text{Hz} - 49k\text{Hz}|}{2k\text{bps}} = 1$$

$$B = 2(N_{\text{Bessel}} \times f_{\text{Mod}}) = 2(3 \times 1000)$$

Sentido Humano 2. FSK — Receptor no-coherente

Innovación Tecnológica con

Sentido Humano 2. FSK — Receptor coherente

Sentido Humano 2. CPFSK — Fase Continua

Consiste en sincronizar las frecuencias de marca y espacio con la rapidez de bits de la entrada binaria.

Sentido Humano 2. CPFSK — Fase Continua

La frecuencias de marca y espacio se seleccionan de tal manera que están separadas de la frecuencia central por un múltiplo exacto de la mitad del bit rate $[f_m \ y \ f_s = n(f_b/2),$ donde n es cualquier numero impar].

Innovación Tecnológica con

Sentido Humano 2. CPFSK — Fase Continua

 $f_m = 5 f_b/2 = 5 (1000/2) = 2500 Hz$

 $f_s = 3 f_b/2 = 3 (1000/2) = 1500 Hz$

Sentido Humano 2. CPFSK — Minimum-Shift Keying

Si la diferencia entre las frecuencias de marca y de espacio es la mitad de la rapidez de bits $(f_m - f_s = 0.5f_b)$, el índice de modulación h = 0.5.

Para este caso hay una diferencia mínima entre las frecuencias de marca y espacio.

Innovación Tecnológica con

Sentido Humano 2. Audio FSK — Modem Telefónico

Sentido Humano 2. Audio FSK — Modem Telefónico

Sentido Humano 2. FSK — GMSK

GMSK

Center 70 MHz

Sentido Humano 3. PSK — Phase-Shift Keying

Manipulación por desplazamiento de fase, similar a la modulación de fase convencional, pero en este caso la entrada es binaria (BPSK):

$$1 \leftrightarrow s_1(t) = A\cos(2\pi f_c t)$$

$$0 \leftrightarrow s_2(t) = A\cos(2\pi f_c t + \pi)$$

Innovación Tecnológica con

Sentido Humano 3. PSK — Modulador Balanceado

Sentido Humano 3. PSK — Mod. Balanceado

Sentido Humano 2. PSK – Representación Sentido Humano 2. PSK – Representación

Representación Espacio-Señal

$$\mathbf{s}_1 = \left[\sqrt{E_s}, 0 \right]$$

$$\mathbf{s}_2 = \left[-\sqrt{E_s}, 0 \right]$$

Señal modulada en pasabanda

Bibliografía

- -FRENZEL, Louis. (2016) Principles of Electronic Communication Systems. 4th Edition.
- –WAYNE, Tomasí. (2003) Sistemas de
 Comunicaciones Electrónicas. 4ª ed. Prentice Hall.

