

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Medieninformatik / Human-Computer Interaction

Grundlagen der Multimediatechnik

Videokompression

10.12.2021, Prof. Dr. Enkelejda Kasneci

Termine und Themen

22.10.2021	Einführung					
29.10.2021	Menschliche Wahrnehmung – visuell, akustisch, haptisch,					
05.11.2021	Informationstheorie, Textcodierung und -komprimierung					
12.11.2021	1.2021 Bildverbesserung					
19.11.2021	1.2021 Bildanalyse					
26.11.2021	.2021 Grundlagen der Signalverarbeitung					
03.12.2021	03.12.2021 Bildkomprimierung					
10.12.2021	Bildkomprimierung					
17.12.2022	7.12.2022 Videokomprimierung Teil I					
14.01.2022	Videokomprimierung Teil 2					
21.01.2022	Videoanalyse					
28.01.2022	Dynamic Time Warping					
04.02.2022	Gestenanalyse					
11.02.2022	FAQ mit den Tutoren					
17.02.2022	Klausur, 14-16 Uhr, N10+N11					

Ansatzpunkte zur Video-Kompression

- Videodaten haben vier Dimensionen:
 - 2 Bilddimensionen
 - Eigenschaften der Pixel (Helligkeit, Farbe)
 - Zeitachse
- Kompressionsansätze:
 - "räumliche" Intra-Bild-Codierung: "Redundanz" aus einem Bild entfernen
 - DCT, Vektorquantisierung, Konturbasierte Kodierung
 - "zeitliche" Inter-Bild-Codierung: "Redundanz" zwischen Bildern entfernen
 - Differenzcodierung, Bewegungskompensation

Konzept: Vektorquantisierung

Idee:

- Bild aufteilen in Blöcke, z.B. 4 x 4 Pixel
- Suche nach Ähnlichkeiten zwischen den Blöcken
- Ähnliche Blöcke durch einen "Durchschnittsblock" ersetzen
- Palette für Bildblöcke, d.h. Kodierung durch Index
- Verwendung in Codecs (Codierern/Decodierern):
 - Indeo, Cinepak
 - Langsame Codierung (Spezial-Hardware)
 - Schnelle Decodierung
 - In Kompression und Bildqualität nicht besser als DCT und DWT

Konzept: Konturbasierte Kodierung

Idee:

- Bild trennen in Konturen und Texturen
- Konturen z.B. durch Beziér-Kurven beschreiben
- Texturen z.B. DCT kodieren
- Verwendung:
 - Ansatzweise in MPEG-4
 - Vermeidet Darstellungsprobleme an Kanten
 - Problem: Finden der Konturen in gegebenem Bild
 - Forschungsthema

Konzept: Differenzkodierung (frame differencing)

- Aufeinander folgende Bilder unterscheiden sich oft nur wenig
- Idee:
 - Startbild (und weitere Key-Frames) intracodiert übertragen
 - Differenz zum nächsten Bild als Bild auffassen und komprimieren
 - Z.B. mit DCT und anschließender Entropiecodierung
 - Viele niedrige Werte, also hoher Kompressionsfaktor möglich

Bildsequenz

Differenzbilder

Bewegungsanalyse: Was hat sich verändert?

a

Bewegungsanalyse: Differenzbild

Differenzbild von a und b

Differenzbild von c und d

Konzept: Bewegungskompensation (motion compensation)

- Idee:
 - Bewegungen von Objekten zwischen Bildern identifizieren
 - Für **Teilbilder** übertragen:
 - Differenzbild plus
 - Verschiebungsvektor
 - Verwendung u.a.:
 - MPEG-1, -2 und -4, H.261-H.264
- Problem: Algorithmen zur Bewegungsschätzung (motion estimation)
 - Block-Matching
 - Gradient-Matching
 - Phase-Correlation

Aufbau eines Video-Codierers

Vorgehensweise eines Video-Codierers

- Aktuelles Bild wird blockweise DCT-transformiert und quantisiert (Q)
- Kodierung der quantisierten Transformationskoeffizienten (C)
- Bitratensteuerung überwacht Datenaufkommen und beeinflusst durch Verändern der Quantisierungsstärke die Datenrate
- Ähnlichkeitsdetektion aufeinanderfolgender Bilder (Inter-Frames)
 - Quantisierte Koeffizienten werden rekonstruiert (R) und rücktransformiert (IDCT)
 - Rücktransformiertes Bild wird als Referenz für einen oder mehrere Zeitschritte (T) gespeichert aufgehoben und steht als Referenz für später zu codierende Bilder zur Verfügung.
 - Bewegungsschätzung vergleicht neues Bild mit Referenzbild → Menge von Bewegungsvektoren
 - Bewegungskompensation erzeugt mittels Bewegungsvektoren aus dem Referenzbild blockweise ein Prädiktionsbild
 - Differenz zwischen neuem Bild und vorausgesagten Bild ergibt einen Prädiktionsfehler
 - Intra/Inter-Modul entscheidet, ob ein Block als Intra-Block ohne Prädiktion oder als Inter-Block mit Prädiktionsfehler codiert wird

Makroblöcke

- DCT arbeitet nur mit Graustufen
 - alle drei Farbkanäle werden getrennt DCT-codiert
- Chrominanzblöcke erscheinen im Ausgabebild wegen Subsampling in 16x16 Pixel Größe
- Zusammenfassung von 4 Y, 1 Cb und 1 Cr-Block zu einem
- Grundeinheit des Bilddatenstroms sind die Makroblöcke
- Aufbau Makroblock:

Frametypen: I-Frames

- Videodarstellung durch einfaches Aneinanderreihen von Einzelbildern (Intra-coded Frames, oder Keyframes)
 - Motion-JPEG (MJPEG), DV
- Intra-Frames

Vorteile:

- ermöglicht direkten Zugriff auf jedes Einzelbild (ideal zum Editieren)
- kann ein Frame nicht decodiert werden, wird er einfach ausgelassen

Nachteil:

 niedrige Kodiereffizienz, da Abhängigkeiten zwischen Bildern nicht berücksichtigt werden

Frametypen: P-Frames

- Es wird zunächst ein I-Frame codiert
- danach folgen Frames, welche durch Bewegungsschätzung und Differenzbildung aus dem letzten Frame erzeugt werden
- Prädiktiv-kodierte Frames (P-Frames)

Vorteil:

- höhere Kodiereffizienz
- Nachteil:
 - soll ein bestimmter Frame dekodiert werden, so müssen zunächst alle vorherigen Frames dekodiert werden

Frametypen: P-Frames

- Weiterer Nachteil:
 - kann ein P-Frame nicht dekodiert werden, so
 kann auch der Rest des Videos nicht dekodiert werden

- (Teil-)Lösung für die Probleme:
 - periodisches Einstreuen von I-Frames
 - bei großen Perioden trotzdem nicht hilfreich
- Vorteil überwiegt Nachteile bei weitem!

Frametypen: B-Frames

- Zusätzlich zu I- und P-Frames existiert noch ein dritter Frame-Typ:
 Bidirektionale Prädiktiv-kodierte Frames (B-Frames)
- B-Frames kodieren den Unterschied zum vorigen und nächsten
 I- oder P-Frame
 - B-Frames werden jedoch ihrerseits als Grundlage für andere Frames verwendet
 - typischerweise 2-3 B-Frames zwischen zwei P-Frames

Frametypen: B-Frames

Vorteile:

- höhere Kodiereffizienz
- schnellerer Zugriff auf beliebige Bilder
- B-Frames können bei Problemen ohne Folgen ausgelassen

Nachteile:

- Kodierreihenfolge entspricht nicht mehr der Anzeigereihenfolge
- B-Frames leisten keinen Beitrag zu anderen Bildern ("verschwendete Bits")
- höhere algorithmische Komplexität, Speicherplatz und
- Bandbreitenanforderungen in Encoder und Decoder

Frametypen (Zusammenfassung)

Intra-coded Frames

(I-Frames)

- Entspricht JPEG-Bild, in Echtzeit dekodierbar
- Predictive-coded Frames

(P-Frames)

- Verweis auf vorheriger I- oder P-Frames
- Bewegungsvektor nicht festgelegt
- Differenz ähnlicher Makroblöcke DCT-kodiert
- DC- und AC-Koeeffizienten RLE-kodiert
- Bidirectional predictive-coded Frames

(B-Frames)

- Verweis auf vorherige und folgende I- und P-Frames
- Interpolation zwischen Makroblöcken
- DC-coded Frames

(D-Frames)

- Nur DC-Komponenten DCT-kodiert
- schnelles Vorwärts- und Rückwärtsspulen

Struktur des MPEG-2 Videodatenstroms

- MPEG-Sequenz besteht aus GOPs (Group of Picture, Bildgruppen)
 - eine GOP ist eine Sequenz von typischerweise ca. 0,5 bis 1
 Sekunde Länge
 - jede GOP hat ein I-Frame und eine Anzahl von P/B-Frames
 - typische GOP-Struktur: IBBP...
 - Encoder kann (z.B. bei Szenenwechseln) GOP auch kürzen
 - Schnitt von MPEG-Video ist nur an GOP-Grenzen möglich!
- Frames sind in Slices unterteilt
 - Z.B. durch **Zusammenfassung benachbarter Blöcke** mit **gleichen/ähnlichen Grauwerten**
 - erhöhen die Robustheit gegen Fehler
 - Resynchronisierung nach Dekodierfehlern

Struktur des MPEG-2 Videodatenstroms

Group of Pictures (GOP): Bildgruppe

- Bildgruppe muss mind.1 I-Frame enthalten
- Bildgruppe wird oft zur Übertragung umsortiert
 - Vermeidung von Vorwärtsverweisen
 - KleinereZwischenspeicher

Übertragungsreihenfolge

Bewegungskompensation: Block-Matching

- Referenzframe und Zielframe (aktueller Frame)
 - Referenzframe = vorheriges Bild
 - Einteilung des Bildes in Blöcke (z.B. 16x16)
 - Für jeden Block des Zielframes:
 - Suche nach "best match" im Referenzframe
 - z.B. mittlere quadratische Abweichung oder mittlere Differenz
 - Speichern des Verschiebungsvektors in Differenzcodierung
 - Beschleunigung des Algorithmus
 - Hierarchische Suche zunächst auf vergröbertem Bild

Bidirektionale Prädiktion von Blöcken mit Block-Matching (B-Frames)

Bildquelle: Tilo Strutz: Bilddatenkompression; Vieweg+Teubner, 2009.

Suchstrategien

- Suche nach passenden Referenzblock ist sehr rechenintensiv
- Maximal zu erwartende Bewegungsdistanz (Zeitaufwand + Flächenaufwand)
- Keine systematische Untersuchung aller Verschiebungsvarianten
- Effizienter: Mehrschritt-Suche
 - Untersuche 9 Positionen in 8er-Nachbarschaft
 - Verringere Schrittweite
 - Fahre mit bestem Vektor fort und bilde neue Nachbarschaft bis minimale Schrittweite erreicht

Suchstrategien: Subpixelschätzung

- Liegt eine Grauwertkante durch eine Verschiebung nicht mehr genau auf dem Bildpunktraster, so erscheint die Kante nicht mehr vollständig scharf und ist nicht mehr im Referenzbild zu finden
- · Idee:
 - Verschiebungen um halbe oder Viertelpixel
 - Subpixelschätzung interpoliert zwischen den vorhandenen Bildpunkten wenn Verschiebung nicht mehr genau auf dem Bildpunktraster liegt

Videokompression: MPEG4

- Fokus sowohl auf Systeme mit geringen Ressourcen als auch auf Studioanwendungen
 - mobile Kommunikation
 - Bildtelefon und MMS
- Datenraten und Dimensionen
 - ca. 4,8-64 kBit/s
 - 176*144 Pixel, 10 Frames/s
 - Studioanwendungen: Auflösungen bis zu 4096x4096 Pixel
- Verbesserung von Bildanalyse und -manipulation
 - Inhaltsorientierung
 - Kodierung und Kapselung von Einzelobjekten
 - Nicht "rechteckige" Video- und Bildobjekte
 - → Audiovisuelle Objekte (AVO) basierend auf Konturinformationen und Hintergrundobjekte (z.B. Fußballspieler auf Fußballfeld)
 - Audio getrennt von Video
 - Komposition von Objekten
 - Erzeugung zusammengestellter Objekte
 - Resynthese der Szene
 - Multiplexing und Synchronisation von AVOs
 - Interaktion mit auf Empfängerseite generierten Szene

Videokompression: MPEG4 – Objektkodierung

- Konturabhängige Videoobjekte mittels Alphamasken (Konturinfo.)
- Sprite Coding / Arbitrary Shape Coding

MPEG-4: Komposition von Szenen

- Beschreibung hierarchischer Beziehungen zwischen AVOs durch Baum
- Position der Objekte in Raum und Zeit
 - Konvertierung von lokalen in globale Koordinatensysteme
- Attributwerte wie Tonhöhe, Farbe, Textur, Animationsparameter
- Beschreibung auf Basis von VRML-Konzepten
 - Virtual Reality Modeling Language
- Interaktion mit Szenen, z.B.
 - Perspektivenwechsel
 - Start/Stopp von Videoströmen
 - Sprachwahl

MPEG-4: Komposition von Szenen

Objektkodierung und Szenensynthese

MPEG-4: Szenengraph

- Binary Format for Scenes (BIFS)
 - abgeleitet aus Virtual Reality Modeling Language (VRML)
 - Spezifikation von r\u00e4umlicher Positionierung und Interaktion von Objekten

- Spezifikation von Alternativen

ESD 3

MPEG-4: Synthetische Objekte

- Visuelle Objekte
 - Virtuelle Teile der Szene, z.B. Hintergrund
 - Animation, z.B. Gesichter

Akustische Objekte

- Text-to-Speech, d.h. Spracherzeugung ausgehend von gegebenem
- Text und prosodischen Parametern
- Score-driven Synthesis, d.h. Musikerzeugung aus Partitur (allgemeiner als MIDI)
- Spezialeffekte

MPEG-4: Vollständige Szenensynthese

H.264 ist ähnlich zu MPEG-1/2 mit den folgenden Erweiterungen:

- Makroblöcke können bei Bedarf bis zu 4x4-Blöcken weiter unterteilt werden → DCT auf 4x4-Blöcken
- Bewegungsvektoren mit einer Genauigkeit von Viertel-Bildpunkten
- Bewegungsvektoren dürfen über Bildgrenzen hinausragen
- Mehrfache Referenzbilder (I-Frames)
- Loslösen der Referenzierung von der Reihenfolge der Bilder
- **Gewichtete Mittelung** von Referenzblöcken bei bidirektionaler Prädiktion (B-Frames)
- Örtliche Prädiktion von Blöcken
- Einsatz einer Integer-Transformation mit 16-Bit-Arithmetik
- Kaskadierung der Transformation ähnlich dem Multiauflösungskonzept der Wavelet-Transformation
- Logarithmische Abstufung der globalen Quantisierung
- Deblocking-Filter in der zeitlichen Prädiktionsschleife
- Verbesserte Entropiecodierung
 - → CABAC (Context-Adaptive Binary Arithmetic Coding)

H.264: Örtliche Prädiktion

- Prädiktion unter Zuhilfenahme benachbarter Blöcke
- Wesentliche Eigenschaft: Richtungsabhängigkeit
 - Modus 0: beschreibt eine vertikale Prädiktion.
 - Modus 1: verwendet eine horizontale Voraussage
 - Modus 2: DC-Prädiktion (Mittelwert der direkten Nachbarpunkte)
 - Modus 3: (diagonal von rechts-oben nach links-unten)
 - Modus 4: (diagonal von links-oben nach rechts-unten)
 - Modus 5: (schräg vertikal nach rechts)
 - Modus 6: (schräg horizontal nach unten)
 - Modus 7: (schräg vertikal nach links)
 - Modus 8: (schräg horizontal nach oben)

-	Q	Α	В	С	D	E	F	G	Н
	Ι	а	b	С	d				
	J	е	f	g	h				
	K	i	j	k	Ι				
	Г	m	n	0	р				
\neg									

Bewegungskompensation

- Verallgemeinerung der zeitlichen Prädiktion
 - B-Frames dürfen nun als Referenz verwendet werden
 - Voraussage von B-Frames aus zwei zeitlich vorangegangenen Referenzbildern (I-Frames)
 - Prädiktion basierend auf einer gewichteten linearen Kombination zweier Referenzblöcke
- Prädiktion der Bewegungsvektoren
 - Benachbarte Blöcke führen in der R. ähnliche Bewegung durch
 - Vorhersage der Bewegungsvektoren anhand von drei Nachbarvektoren
 - Übertragung des Differenzvektors, Rekonstruktion durch Differenz und Prädiktionsvektor
- Filter zur Unterdrückung von Blockartefakten (Deblockingfilter)
 - Künstliche Blockkante vorhanden, wenn Differenz der Bildpunkte im Bereich der Blockgrenze beobachtet wird → Anwendung des Deblockingfilters
 - Kleine Differenz oder sehr große Differenz, die nicht durch Quantisierungseffekte erklärt werden kann
 - → Bildpunkte bleiben unverändert

Blockgrenze

Zusammenfassung

- Standards zur Bild- und Videokomprimierung
 - Vielzahl unterschiedlicher Standards zur Bild- und Videokomprimierung
 - Neuentwicklungen zielen auf eine Verdopplung der Kompressionseffizienz im Vergleich zum letzten Standard ab
 - Bsp.: MPEG-2 → H.264 / MPEG AVC → H.265