R 교육 세미나 ToBig's 7기 박현진

Principal Component Analysis

; **PCA** 주성분 분석

011 nts

Unit 01 | 들어가기 전에

Unit 02 | 차윈 축소

Unit 03 | 주성분 분석

Unit 04 | 요약

Unit 01 | 들어가기 전에

Mean , Variance, Covariance, Correaltion

	V_1	V_2	 V_M
1	X(1,1)	X(1,2)	X(1,M)
2	X(2,1)	X(2,2)	X(2,M)
· ·			
N	X(N,1)	X(N,2)	X(N,M)

$$\begin{aligned} \textit{Mean}\left(\,V_{1}\right) &= \frac{\left(X_{1,1} + X_{2,1} + \ldots + X_{N,1}\right)}{N} \\ \\ \textit{Var}\left(\,V_{1}\right) &= \frac{\sum \left(\,V_{1} - \overline{\,V_{1}}\,\right)^{2}}{N - 1} \end{aligned}$$

$$Var(V_1) = \frac{\sum (V_1 - \overline{V_1})^2}{N-1}$$

$$C\!ov\left(\,V_{1},V_{2}\right) = E(\,V_{1}\,V_{2}) - E(\,V_{1})E(\,V_{2})$$

$$Corr(\,V_{1},V_{2}) = \frac{Cov(\,V_{1},V_{2})}{\sqrt{\sum{(\,V_{1} - \overline{V_{1}})^{2}}}\,\sqrt{\sum{(\,V_{2} - \overline{V_{2}})^{2}}}}$$

Unit 01 | 들어가기 전에

Covariance matrix, Correaltion matrix

	1	2	 M
	1000		
1	Var(V1)		
2	Cov(V1,V2)	Var(V2)	
:	:	:	
М	Cov(V1,VM)	Cov(V2,VM)	Var(VM)

	1	2	 М
	17		
1	1		
2	Corr(V1,V2)	1	
:	:	:	
M	Corr(V1,VM)	Corr(V2,VM)	1

Unit 02 | 차원축소

Problem

변수(설명변수)의 수 多

- 변수 간의 correlation
- 관심있는 대상(종속변수)에 무관한 변수 포함
- 계산량, data 저장공간, 비용
- overfitting

Unit 02 | 차원축소

방법 1

Correlation analysis 를 통한 차원 축소

방법 2

categorical variables 에서의 차원 축소

	1	2	 M
1	1		
2	Corr(V1,V2)	1	
÷	:	÷	
M	Corr(V1,VM)	Corr(V2,VM)	 1

- 상관관계가 높은 변수 둘 중 하나 제거
- 다른 DB에서 data 를 구했을 경우 변수 의 중복을 막을 수 있음

Unit 02 | 차원축소

방법 1

Correlation analysis 를 통한 차원 축소

방법 2

categorical variables 에서의 차원 축소

Problem

변수 제거

- → 정보 손실 多
- ➡ 변수간 correlation을 완전히 제거하지 못함
- → 분석자의 주관적 판단

solution

Principal Component analysis ;PCA

idea

변수들 간의 information이 중첩 되어 있는 부분을 없애자

Goal

가장 많은 information을 포함하고 있는 적은 변수 생성

PCA

- 기존 Data 의 선형 결합인 새로운 변수 생성
- 새로운 변수는 uncorrelated (information 중첩 없음)
- 새로 생성된 변수 : principal component

Information loss

Information?

해당 feature(축)으로 data를 투영 시켰을 때(차원 축소) data의 흩어짐이 유지되는 정도

Information loss

Information?

해당 feature(축)으로 data를 투영 시켰을 때(차원 축소) data의 흩어짐이 유지되는 정도

Information loss

Information?

해당 feature(축)으로 data를 투영 시켰을 때(차원 축소) data의 흩어짐이 유지되는 정도

Information loss

Information?

해당 feature(축)으로 data를 투영 시켰을 때(차원 축소) data의 흩어짐이 유지되는 정도

information

예제

Name	칼로리	지방	단백질	•••	비타민
콘푸라이트	70	5	4		
첵스	120	7	3		
아몬드 푸레이크	80	2	4		
:	:	:	:		
:	:	:	:		

Description of Variables

Name: name of cereal

mfr: manufacturer

type: cold or hot

calories: calories per serving

protein: grams

fat: grams

sodium: mg.

fiber: grams

carbo: grams complex carbohydrates

sugars: grams

potass: mg.

vitamins: % FDA rec

shelf: display shelf

weight: oz. 1 serving

cups: in one serving

예제

Name	칼로리	지방
콘푸라이트	70	5
첵스	120	7
아몬드 푸레이크	80	2
:	:	•
:	:	:

VAR(칼로리)=400 VAR(지방)=200 Cov(칼로리,지방)=180 Corr(칼로리,지방)=0.7

- 강한 양의 상관관계
- 70%의 변동성(information)이 두 변수에서 중첩 된다

총분산= VAR(칼로리)+VAR(지방)=600

칼로리(변수1)의 정보:

- = VAR(칼로리) / {VAR(칼로리)+VAR(지방)}
- = 400/600 = 0.66

지방(변수2)의 정보:

- = VAR(지방) / -{VAR(칼로리)+VAR(지방)}
- = 200/600 = (0.34)

First & Second Principal Components

총분산= VAR(칼로리)+VAR(지방)=600

칼로리(변수1)의 정보: VAR(칼로리) / {VAR(칼로리)+VAR(지방)} = 400/600 ≠ 0.66

지방(변수2)의 정보: VAR(지방) / {VAR(칼로리)+VAR(지방)} = 200/600 = 0.34 정보 손실

First & Second Principal Components

총분산= VAR(칼로리)+VAR(지방)=600

칼로리(변수1)의 정보: VAR(칼로리) / {VAR(칼로리)+VAR(지방)} = 400/600 = 0.66

지방(변수2)의 정보: VAR(지방) / {VAR(칼로리)+VAR(지방)} = 200/600 🛫 0.34

정보 손실

First & Second Principal Components

새로운 변수(축) **Z1**, **Z2**를 만들자

- 1. 새로운 변수 Z 중 하나를 제거하는 것은 최소한의 정보(variance)를 잃는 것
- 2. Z1과 Z2는 uncorrelated

First & Second Principal Components

새로운 변수(축) **Z1**, **Z2**를 만들자

- 1. VAR(Z1) 을 max로 만드는 Z1
- 2. Corr(Z1, Z2) = 0

information

First & Second Principal Components

$$Var(Z1) = 500$$

$$Var(Z2) = 100$$

First & Second Principal Components

총분산= VAR(Z1)+VAR(Z2)=600

Z1의 정보: VAR(Z1) / {VAR(Z1)+VAR(Z2)} = 500/600 = 0.83

Z2의 정보: VAR(Z2) / {VAR(Z1)+VAR(Z2)} = 100/600 € 0.17 정보 손실

결과 비교

	Variance(%)	correlation
원래 변수(X1,X2)	66% : 34%	0.7
주성분 분석을 통해 새로 생성한 변수(Z1,Z2)	83% : 17%	0

→ 정보 손실: 34% → 17%

Correlation: 70% → 0%

$$A x = \lambda x$$

$$[\lambda I - A] * x = 0$$

$$det(\lambda I - A) = 0$$
 ← 특성방정식

$$\overrightarrow{z_1} = \alpha_{11}\overrightarrow{x_1} + \alpha_{12}\overrightarrow{x_2} + \dots + \alpha_{1p}\overrightarrow{x_p} = \overrightarrow{\alpha_1}^T X$$

$$\overrightarrow{z_2} = \alpha_{21}\overrightarrow{x_1} + \alpha_{22}\overrightarrow{x_2} + \dots + \alpha_{2p}\overrightarrow{x_p} = \overrightarrow{\alpha_2}^T X$$

$$\dots$$

$$\overrightarrow{z_p} = \alpha_{p1}\overrightarrow{x_1} + \alpha_{p2}\overrightarrow{x_2} + \dots + \alpha_{pp}\overrightarrow{x_p} = \overrightarrow{\alpha_p}^T X$$

$$Z = egin{bmatrix} \overrightarrow{z_1} \ \overrightarrow{z_2} \ \overrightarrow{z_2} \ \overrightarrow{z_p} \end{bmatrix} = egin{bmatrix} \overrightarrow{lpha_1}^T X \ \overrightarrow{lpha_2}^T X \ \overrightarrow{lpha_2}^T X \end{bmatrix} = egin{bmatrix} \overrightarrow{lpha_1} \ \overrightarrow{lpha_2}^T X \ \overrightarrow{lpha_2}^T X \end{bmatrix} = egin{bmatrix} \overrightarrow{lpha_1} \ \overrightarrow{lpha_2}^T X \ \overrightarrow{lpha_2}^T \end{bmatrix}$$

$$\begin{aligned} \max_{\alpha} \left\{ Var(Z) \right\} &= \max_{\alpha} \left\{ Var(\overrightarrow{\alpha}^T X) \right\} \\ &= \max_{\alpha} \left\{ \overrightarrow{\alpha}^T Var(X) \overrightarrow{\alpha} \right\} \\ &= \max_{\alpha} \left\{ \overrightarrow{\alpha}^T \Sigma \overrightarrow{\alpha} \right\} \end{aligned}$$

$$\|\alpha\| = \overrightarrow{\alpha}^T \overrightarrow{\alpha} = 1$$

$$\overrightarrow{z_1} = lpha_{11}\overrightarrow{x_1} + lpha_{12}\overrightarrow{x_2} + \ldots + lpha_{1p}\overrightarrow{x_p} = \overrightarrow{lpha_1}^T X$$
 $\overrightarrow{z_2} = lpha_{21}\overrightarrow{x_1} + lpha_{22}\overrightarrow{x_2} + \ldots + lpha_{2p}\overrightarrow{x_p} = \overrightarrow{lpha_2}^T X$
 \ldots
 $\overrightarrow{z_p} = lpha_{p1}\overrightarrow{x_1} + lpha_{p2}\overrightarrow{x_2} + \ldots + lpha_{pp}\overrightarrow{x_p} = \overrightarrow{lpha_p}^T X$

$$L = \overrightarrow{lpha}^T \Sigma \overrightarrow{lpha} - \lambda (\overrightarrow{lpha}^T \overrightarrow{lpha} - 1)$$

$$\frac{\partial L}{\partial \overrightarrow{\alpha}} = \Sigma \overrightarrow{\alpha} - \lambda \overrightarrow{\alpha} = 0$$
$$(\Sigma - \lambda) \overrightarrow{\alpha} = 0$$

$$\sum \overrightarrow{\alpha} = \lambda \overrightarrow{\alpha}$$

$$\rightarrow$$

$$\stackrel{\rightarrow}{\alpha} = eigenvector(Cov(X))$$

$$\overrightarrow{z_1} = \alpha_{11}\overrightarrow{x_1} + \alpha_{12}\overrightarrow{x_2} + \dots + \alpha_{1p}\overrightarrow{x_p} = \overrightarrow{\alpha_1}^T X$$
 $\overrightarrow{z_2} = \alpha_{21}\overrightarrow{x_1} + \alpha_{22}\overrightarrow{x_2} + \dots + \alpha_{2p}\overrightarrow{x_p} = \overrightarrow{\alpha_2}^T X$
 \dots
 $\overrightarrow{z_p} = \alpha_{p1}\overrightarrow{x_1} + \alpha_{p2}\overrightarrow{x_2} + \dots + \alpha_{pp}\overrightarrow{x_p} = \overrightarrow{\alpha_p}^T X$

주성분 찾기

$$\overrightarrow{z_1} = \alpha_{11}\overrightarrow{x_1} + \alpha_{12}\overrightarrow{x_2} + \dots + \alpha_{1p}\overrightarrow{x_p} = \overrightarrow{\alpha_1}^T X$$

$$\overrightarrow{z_2} = \alpha_{21}\overrightarrow{x_1} + \alpha_{22}\overrightarrow{x_2} + \dots + \alpha_{2p}\overrightarrow{x_p} = \overrightarrow{\alpha_2}^T X$$

$$\overrightarrow{z_p} = \alpha_{p1}\overrightarrow{x_1} + \alpha_{p2}\overrightarrow{x_2} + \dots + \alpha_{pp}\overrightarrow{x_p} = \overrightarrow{\alpha_p}^T X$$

$$\overrightarrow{z_p} = \alpha_{p1}\overrightarrow{x_1} + \alpha_{p2}\overrightarrow{x_2} + \dots + \alpha_{pp}\overrightarrow{x_p} = \overrightarrow{\alpha_p}^T X$$

$$Z = egin{bmatrix} \overrightarrow{z_1} \ \overrightarrow{z_2} \ \cdots \ \overrightarrow{z_p} \end{bmatrix} = egin{bmatrix} \overrightarrow{lpha_1}^T X \ \overrightarrow{lpha_2}^T X \ \cdots \ \overrightarrow{lpha_p}^T X \end{bmatrix} = egin{bmatrix} \overrightarrow{lpha_1} \ \overrightarrow{lpha_2}^T X \ \cdots \ \overrightarrow{lpha_p}^T X \end{bmatrix} X = \underline{A}^T X$$

A = eigenvector(Cov(X))의 나열

변수의 수 줄이기

$$\overrightarrow{z_1} = lpha_{11}\overrightarrow{x_1} + lpha_{12}\overrightarrow{x_2} + \dots + lpha_{1p}\overrightarrow{x_p} = \overrightarrow{lpha_1}^T X$$
 $\overrightarrow{z_2} = lpha_{21}\overrightarrow{x_1} + lpha_{22}\overrightarrow{x_2} + \dots + lpha_{2p}\overrightarrow{x_p} = \overrightarrow{lpha_2}^T X$
 \dots
 $\overrightarrow{z_p} = lpha_{p1}\overrightarrow{x_1} + lpha_{p2}\overrightarrow{x_2} + \dots + lpha_{pp}\overrightarrow{x_p} = \overrightarrow{lpha_p}^T X$

Unit 04 | 요약

PCA 요약

- 1. 기존 data matrix (nxm)의 centered data matrix 생성
- 2. 위의 centered data matrix 의 covariance matrix 생성
- 3. 위의 covariance matrix에서 m개(변수의 수)의 eigen value 와 eigen vector 계산, 나열
- 4. 정렬된 고유 벡터 가운데 일부 선택(elbow point)
- 5. 해당 고유 벡터와 기존 data matrix 내적

Q&A

들어주셔서 감사합니다.