Московский государственный университет им. М. В. Ломоносова Физический факультет Кафедра английского языка

Реферат по дисциплине «Английский язык» на тему «Экспериментальная физика высоких энергий»

Выполнил аспирант Гусейнов Абдул-Керим Демирович

Научный руководитель: д.ф.-м.н. Бережной Александр Викторович

Преподаватель: к. филол. н. Плотникова Анна Вячеславовна

Содержание

Введение		3	
1	Измерения очарованных барионов на CDF	5	
2	${f A}$ дронная спектроскопия на B -фабриках	7	
3	Многочастичные процессы e^+e^- аннигиляции	12	
3	Заключение		
Γ_{i}	Глоссарий		
\mathbf{C}	иисок литературы	19	

Введение

Современное представление о вселенной основывается на Стандартной модели физики частиц. Она содержит три поколения фермионов, но из шести кварков и шести лептонов лишь два кварка и два лептона составляют подавляющее большинство материи во вселенной. Вклад остальных поколений, возможно, заключается в создании асимметрии между материей и антиматерией, без которой вещество превратилось бы обратно в излучение еще в ранней вселенной. Для ответа на вопрос о предназначении второго и третьего поколений фермионов нужны измерения CP-симметрии, но не только они.

Квантовая хромодинамика входит в Стандартную модель и описывает взаимодействия кварков и глюонов. Теоретические вычисления в рамках КХД существенно осложнены ввиду большой величины константы сильного взаимодействия α_s . Вычисления с помощью теории возмущений оказываются попросту невозможны в области малых квадратов переданных импульсов. Именно такой сценарий реализуется при объединении кварков в адроны. Сложности теории возмущений заставляют физиков искать другие подходы к теории, включая феноменологические модели, вычисления на решетке и прочее. Проверка таких теорий позволяет получать и улучшать знания о взаимодействии кварков, а следовательно, и о вселенной.

Адроны, содержащие хотя бы один тяжелый c или b кварк называются тяжелыми адронами. Они предоставляют уникальные возможности для изучения и проверки квантовой хромодинамики. Благодаря большой константе связи α_s при малых передачах импульса, теория возмущений в КХД непригодна для теоретических исследований каких-либо адронов, включая тяжелые. В то же время, присутствие тяжелого кварка дает хоть какую-то начальную точку и позволяет проводить нечеткие аналогии с хорошо известными и хорошо изученными электромагнитными системами. А аналогии можно затем модифицировать и усилить. Именно поэтому множество различных подходов было разработано для описания тяжелых адронов, включая, например, эффективную теорию тяжелых кварков, релятивистские потенциальные модели, КХД на решетке и правила сумм КХД.

Современная физика высоких энергий проводится на ускорителях частиц, включая как электронные, так и адронные. Достигаемые на них энергии центра масс поднимаются вплоть до 14 ТэВ на Большом адронном коллайдере. Однако отдельный интерес представляют В-фабрики, где энергия подобрана специально для попадания в резонанс

 $\Upsilon(4S)$, распадающийся в пару $B\bar{B}$. Детекторы в современной физике высоких энергий крайне сложны, а для анализа данных применяются многоступенчатые методы, требующие тщательного и внимательного подхода на каждом шаге. Данный реферат посвящен некоторым актуальным анализам коллабораций CDF, CLEO, Belle и BaBar и проведенным ими измерениям в физике тяжелых адронов и физике высоких энергий в целом.

1 Измерения очарованных барионов на CDF

Базовую структуру тяжелого адрона можно, в определенном смысле, представить как атом водорода в КХД. Мезоны составлены из тяжелого кварка и легкого кварка и слегка больше похожи на атомное ядро с вращающимся вокруг него электроном по сравнению с барионами, которые состоят из тяжелого кварка и легкого дикварка. Однако это сходство настолько мало само по себе, что разница между мезонами и барионами в конечном итоге пренебрежима. В результате было сделано множество теоретических предсказаний насчет многочисленных тяжелых барионов и их резонансных состояний. Изученный же анализ имеет дело с шестью резонансными состояниями очарованных барионов Λ_c и Σ_c .

На время проведения анализа [1] всемирные средние значения масс и естественных ширин изучаемых резонансов уже были измерены несколькими коллаборациями. Однако наборы экспериментальных данных еще не были настолько большими и точными как те, которые использовались для анализа. Это в особенности касается Λ_c резонансов.

Экспериментальные данные были собраны детектором CDF II на Тэватроне, который располагался в Фермилабе в США, в период с 2002 по 2009 год. Объем данных соответствует 5.2 фб⁻¹ интегральной светимости. Из ключевых элементов детектора CDF можно назвать его трековую систему, позволяющую измерять импульсы заряженных частиц, калориметры, измеряющие кинетические энергии, а также сенсор времени пролета. При обработке информации с детектора совместное использование этих систем позволяет идентифицировать частицы.

Отбор событий для анализа проводился в несколько этапов с использованием нейронных сетей на каждом из них. Сначала производится отбор кандидатов Λ_c (основного состояния) в спектре $pK^-\pi^+$. Затем – отбор кандидатов $\Sigma_c(2455)$ в спектре инвариантных масс $\Lambda_c^+\pi^\pm$. А затем – отбор кандидатов $\Lambda_c(2625)^+$ в спектре $\Lambda_c^+\pi^+\pi^-$.

Отбор кандидатов Λ_c сам по себе производится в две стадии. Сначала применяются некоторые свободные критерии отбора предназначенные для подавления самых очевидных компонент фона. Затем, нейронная сеть обучается выявлять характеристики сигнальных событий и отличать их от комбинаторного фона. Вся тренировка проводится исключительно на экспериментальных данных. Поэтому, для предотвращения перетренировки и искажений, полный набор данных случайным образом разделяется на две половины, а две независимые нейронные сети обучаются на одной половине, а затем применяются к другой.

Подобная двухстадийная процедура с двумя под-наборами данных затем повторяется для спектра $\Lambda_c \pi$ для улучшения качества сигнала. Только наиболее выдающийся пик (соответствующий $\Sigma_c(2455)$) используется для отбора, но результат все равно применяется для измерения обоих резонансов.

И аналогичная же процедура применяется к спектру $\Lambda_c\pi\pi$. Как и раньше, только наиболее выдающийся пик (в этом случае соответствующий $\Lambda_c(2625)$) используется для тренировки нейросети.

Для аппроксимации спектров $\Lambda_c\pi$ используется модель с тремя фоновыми и двумя сигнальными компонентами. Фоны описывают полностью случайные комбинации треков, комбинации реальных Λ_c со случайными пионами, а также распады резонанса $\Lambda_c(2625)$. Фоны моделируются полиномами, а сигналы — функциями Брейта-Вигнера. Пограничная область исключена из фита для упрощения модели.

Для спектра $\Lambda_c\pi\pi$ используется аналогичная модель, содержащая 3 фона и 2 сигнала. Третья фоновая компонента здесь обусловлена комбинациями реальных Σ_c частиц со случайными пионами. Таким образом, присутствует перекрестный вклад между спектрами $\Lambda_c\pi\pi$ и $\Lambda_c\pi$. Большой особенностью является то, что резонанс $\Lambda_c(2595)$ невозможно описать простой симметричной функцией Брейта-Вигнера. Благодаря чрезвычайной близости его массы к порогу образования пары $\Sigma_c\pi$ необходима довольно сложная модель, в которой естественная ширина зависима от массы.

Таким образом, параметры резонансов измеряются описанными тремя фитами. Следующим шагом было измерение систематических погрешностей. CDF рассматривает следующие их источники: модель разрешения, масштабирование момента, индивидуально определенное для детектора, а также модель аппроксимации. В конечном итоге CDF предоставляет следующие измерения масс и ширин изученных резонансов:

```
\Sigma_c(2455)^{++}: \Delta M = 167.44 \pm 0.04 \pm 0.12 \text{ M} \Rightarrow \text{B}, \Gamma = 2.34 \pm 0.13 \pm 0.45 \text{ M} \Rightarrow \text{B}, \Sigma_c(2455)^0: \Delta M = 167.28 \pm 0.03 \pm 0.12 \text{ M} \Rightarrow \text{B}, \Gamma = 1.65 \pm 0.11 \pm 0.49 \text{ M} \Rightarrow \text{B}, \Sigma_c(2520)^{++}: \Delta M = 230.73 \pm 0.56 \pm 0.16 \text{ M} \Rightarrow \text{B}, \Gamma = 15.0 \pm 2.1 \pm 1.4 \text{ M} \Rightarrow \text{B}, \Sigma_c(2520)^0: \Delta M = 232.88 \pm 0.43 \pm 0.16 \text{ M} \Rightarrow \text{B}, \Gamma = 12.5 \pm 1.8 \pm 1.4 \text{ M} \Rightarrow \text{B}, \Lambda_c(2595)^+: \Delta M = 305.79 \pm 0.14 \pm 0.20 \text{ M} \Rightarrow \text{B}, \Gamma = 2.59 \pm 0.30 \pm 0.47 \text{ M} \Rightarrow \text{B}, \Lambda_c(2625)^+: \Delta M = 314.65 \pm 0.04 \pm 0.12.
```

2 Адронная спектроскопия на В-фабриках

Изучение распадов очарованных и прелестных мезонов представляют большой интерес и большую ценность для физики элементарных частиц. Во-первых, они хорошо дополняют измерения тяжелых барионов, которые были затронуты в предыдущем разделе. Во-вторых, наличие антибарионов в конечном состоянии позволяет проверить гипотезу, что более вероятны распады, при которых барион и антибарион находятся ближе друг к другу в фазовом пространстве. В-третьих, тяжелые мезоны могут быть скалярными, что существенно упрощает измерения спинов конечных частиц. В работе коллаборации ВаВаг [2] измеряются вероятности распадов $\mathcal{B}\left(\bar{B}^0 \to \Lambda_c^+ \bar{p}\right)$ и $\mathcal{B}\left(B^- \to \Lambda_c^+ \bar{p}\pi^-\right)$, а также резонансы в спектре $\Lambda_c^+\pi^-$.

Экспериментальные данные, использованные для анализа, были собраны детектором ВаВаг, расположенном на e^+e^- коллайдере с асимметричной энергией РЕР-II в SLAC, США. В точке соударения электроны с энергией 9 ГэВ сталкиваются с позитронами с энергией 3.1 ГэВ вблизи резонанса $\Upsilon(4S)$ при энергии центра масс 10.58 ГэВ. Собранные данные содержат 383×10^6 реакций $ee \to \Upsilon(4S) \to B\bar{B}$. Среди основных частей детектора ВаВаг можно назвать вершинный детектор, дрифтовую камеру, а также детекторы Черенковского излучения.

Восстановление Λ_c^+ производится одновременно в 5 каналах: $\Lambda_c^+ \to p K^- \pi^+$, $p K_S^0$, $p K_S^0 \pi^+ \pi^-$, $\Lambda \pi^+$, $\Lambda \pi^+ \pi^- \pi^+$ (последний используется только при изучении распада B^-). Фоновые события в анализе обусловлены как сторонними распадами прелестных мезонов, так и событиями континуума $ee \to qq$. Для внесения поправок, учитывающих способ подсчета событий, используется Монте-Карло моделирование. Эффективности регистрации распадов с разными каналами регистрации Λ_c рассчитываются независимо, а для канала $B^- \to \Lambda_c^+ \bar{p} \pi^-$ фазовое пространство конечных частиц делится на ячейки согласно кинематическим характеристикам. Максимальные вариации между ячейками достигают 50%, но крайне редки.

Величины сигналов извлекаются при помощи одновременной аппроксимации спектров переменных $m_m = \sqrt{\left(q_{e^+e^-} - q_{\Lambda_c^+\bar{p}(\pi^-)}\right)^2}$ и $m_r = \sqrt{\left(q_{\Lambda_c^+\bar{p}(\pi^-)}\right)^2} - m_B$, где q_X – четырехимпульс комбинаций частиц. Переменная m_m содержит разницу между энергиямимпульсами начальной системы (электрон-позитрон) и одного из продуктов аннигиляции (одного из B-мезонов) и связана с энергией отдачи другого B-мезона, рожденного в электро-позитронном столкновении. Переменная m_r выражает отклонение массы B-мезона, восстановленной в событии, с известным табличным значением его массы.

Спектры m_m и m_r событий с разными каналами реконструкции бариона Λ_c аппроксимируются одновременно. При этом распады \bar{B}^0 и B^- не связаны между собой, поэтому для каждого из них отдельно производится описанная одновременная аппроксимация. Модели спектров строятся в виде суммы сигнала и фона. Фон моделируется пороговой функцией, умноженной на полином, а сигнал – различными модификациями функции Гаусса. Числа сигнальных событий в изучаемых спектрах, особенно для распада \bar{B}^0 , малы, поэтому необходимо убедиться в их достоверности. Дополнительная проверка с использованием статистических экспериментов подтвердила отсутствие искажений.

Для распада \bar{B}^0 полученные числа событий в четырех спектрах затем корректируются для учета эффективности регистрации и восстановления каждого канала и используются для вычисления удельной вероятности распада. Для B^- корректировка усложняется за счет необходимости учитывать распределение по фазовому пространству. Результат вышеупомянутой аппроксимации используется для определения чисел событий в каждой ячейке фазового пространства, к которым затем корректировка применяется индивидуально. Полученные величины вероятностей распадов, вычисленные с использованием разных каналов регистрации Λ_c , объединяются в конечный результат при помощи линейной комбинации, коэффициенты в которой подобраны так, чтобы погрешность результата была минимальна. Полученные величины равны $\mathcal{B}(\bar{B}^- \to \Lambda_c^+ \bar{p}) = (1.89 \pm 0.21 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.12 \pm 0.06 \pm 0.49) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.04 \pm 0.04 \pm 0.04) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.04 \pm 0.04) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.04 \pm 0.04) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) = (3.38 \pm 0.04 \pm 0.04) \times 10^{-5}, \, \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-)$ $0.12 \pm 0.88) \times 10^{-4}$, где первая погрешность статистическая, вторая – систематическая, а третья обусловлена погрешностью $\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)$. Отношение вероятностей распадов дает $\frac{\mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-)}{\mathcal{B}(\bar{B}^0 \to \Lambda_c^+ \bar{p})} = 15.4 \pm 1.8 \pm 0.3$. То есть добавление лишь одного пиона в распад увеличивает его вероятность в 15 раз. Данный результат поддерживает гипотезу, что распады, в которых барион и антибарион находятся ближе друг к другу в фазовом пространстве, значительно более вероятны.

Приведенные выше систематические погрешности измеряются отдельно. Среди источников систематической погрешности можно выделить неточности при подсчете зарегистрированных $B\bar{B}$ событий, неточности в относительных вероятностях каналов распада Λ_c^+ , ограниченный размер выборки моделирования, погрешности алгоритма вычисления треков частиц, вершин столкновения и идентификации частиц. Также присутствует вклад от систематики модели аппроксимации спектра инвариантных масс. Наибольшими оказываются вклады вероятностей каналов Λ_c^+ , трековой системы и модели аппроксимации. Систематические погрешности считаются независимыми для разных каналов восстановления Λ_c^+ и складываются квадратично.

Для распада с большим числом событий, $B^- \to \Lambda_c^+ \bar{p} \pi^-$, есть смысл исследовать резонансную структуру. Для этого с помощью методики sPlot строится спектр инвариантных масс $m(\Lambda_c^+\pi^-)$ частиц распада B^- . В спектре отчетливо видны пики, соответствующие резонансам $\Sigma_c(2455)^0$ и $\Sigma_c(2800)^0$, но не резонансу $\Sigma_c(2520)^0$. Их спектров удается извлечь величины естественных ширин и масс резонансов: $\Gamma(\Sigma_c(2455)^0) =$ $2.6 \pm 0.5 \pm 0.3 \text{ M} \Rightarrow \text{B}, \ m(\Sigma_c(2800)^0) = 2846 \pm 8 \pm 10 \text{ M} \Rightarrow \text{B}, \ \Gamma(\Sigma_c(2455)^0) = 86 \pm_{-22}^{+33} \pm 12 \text{ M} \Rightarrow \text{B}.$ Очарованный изотриплет $\Sigma_c(2800)$ был впервые обнаружен коллаборацией Belle в анализе инклюзивных спектров $\Lambda_c^+\pi$ [3]. Поскольку пики сравнительно небольшие, требуется дополнительная проверка. Было проведено несколько проверок. Во-первых, наблюдаемые резонансы не обусловлены отражением Δ бариона, поскольку пики сохраняются при ограничении массы $m(p\pi^{-})$. Во-вторых, пики действительно соответствуют реальной частице, распадающейся в $\Lambda_c^+\pi^-$, поскольку они наблюдаются во всех каналах регистрации Λ_c^+ , то есть вне зависимости от конкретного распада Λ_c^+ . Наибольшие вклады в систематическую погрешность чисел событий и параметров очарованных барионов вносили способ разбиения спектра масс на ячейки, а также модели резонансной и нерезонансной компонент.

Найденные числа событий, соответствующие распадам с образованием возбужденных очарованных барионов, далее используются для вычисления относительных вероятностей протекания распада $B^- \to \Lambda_c^+ \bar p \pi^-$ по данным каналам. Они оказались равны

$$\frac{\mathcal{B}(B^- \to \Sigma_c(2455)^0 \bar{p})}{\mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-)} = (12.3 \pm 1.2 \pm 0.8) \times 10^{-2},$$

$$\frac{\mathcal{B}(B^- \to \Sigma_c(2800)^0 \bar{p})}{\mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-)} = (11.7 \pm 2.3 \pm 2.4) \times 10^{-2}.$$

То есть четверть всех распадов происходит через резонансы. Для $\Sigma_c(2520)^0$, пик которого не наблюдается, оценена верхняя граница

$$\frac{\mathcal{B}(B^- \to \Sigma_c(2520)^0 \bar{p})}{\mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-)} < 0.9 \times 10^{-2} \text{ (90\% C.L.)}.$$

Пик $\Sigma_c(2455)^0$ в спектре достаточно велик, и есть смысл изучить угловое распределение конечных частиц, что позволит определить квантовые числа J^P резонанса. Это измерение осложняется тем фактом, что эффективности регистрации и восстановления событий существенно зависят от геометрии распада, что искажает угловые распределения. Проверка гипотез с разными спинами осуществляется следующим образом. Идеальные теоретические распределения используются для генерации 500 выборок, эквивалентных экспериментальной по числу событий. Для каждой выборки вычисляется

разность логарифмов функций правдоподобия, соответствующих двум конкурирующим гипотезам: $J=\frac{1}{2}$ и $J=\frac{3}{2}$. Распределение разностей логарифмов затем сравнивается с разностью, вычисленной для реальных экспериментальных данных. Положение экспериментальной точки согласуется с гипотезой $J=\frac{1}{2}^+$.

Таким образом, было проведено измерение относительных вероятностей распадов $\bar{B}^0 \to \Lambda_c^+ \bar{p}$ и $B^- \to \Lambda_c^+ \bar{p} \pi^-$, а также измерено их отношение, которые, как оказалось, поддерживает теорию, что распады прелестных мезонов с барионом и антибарионом в конечном состоянии предпочтительнее, если барион и антибарион находятся ближе друг к другу в фазовом пространстве. Также были измерены удельные вероятности распада B^- через резонансы $\Sigma_c(2455)^0$ и $\Sigma_c(2800)^0$. Для самих резонансов были вычислены массы и ширины. Кроме того, было обнаружено, что спин $\Sigma_c(2455)^0$ равен $\frac{1}{2}^+$.

Помимо очарованных барионных резонансов Σ_c интерес представляют барионы Λ_c , имеющие нулевой изоспин. ВаВаг проводила их измерения на основе инклюзивных спектров D^0p , в которых D^0 восстанавливается в каналах $D^0 \to K^-\pi^+$ и $D^0 \to K^-\pi^+\pi^-\pi^+$ [4]. Спектр D^0p , будучи инклюзивным, включает все события без разбора, а значит имеет очень большой фон. На каждом этапе анализа необходимо проводить проверки, что наблюдаемые пики соответствуют именно предполагаемым процессам. Для этого сигнальные события вблизи массы D^0 сравниваются с контрольными, расположенными дальше от нее в спектре $K\pi$ (или $K3\pi$). Кроме того, проверяются спектры с \bar{D}^0 , то есть с неправильными знаками частиц. В спектрах D^0p действительно наблюдаются подобные уникальные пики, которые, как считается, соответствуют резонансам $\Lambda_c(2880)^+$ и $\Lambda_c(2940)^+$. Используя модель, состоящую из пороговой функции, фазового объема и функций Брейта-Вигнера, из спектра извлекаются параметры этих резонансов: их массы и ширины. Они оказываются равны

```
\Lambda_c(2880)^+: m = 2881.9 \pm 0.1 \pm 0.5 \text{ M} \cdot \text{B}, \Gamma = 5.8 \pm 1.5 \pm 1.1 \text{ M} \cdot \text{B}, \Lambda_c(2940)^+: m = 2939.8 \pm 1.3 \pm 1.0 \text{ M} \cdot \text{B}, \Gamma = 17.5 \pm 5.2 \pm 5.9 \text{ M} \cdot \text{B}.
```

Систематические погрешности обусловлены как моделью спектра, так и ограниченным знанием массы D^0 . Полученные величины для $\Lambda_c(2880)^+$ хорошо согласуются с измерениями CLEO [5].

К данным результатам добавляются измерения, проведенные коллаборацией Belle. Помимо массы и ширины этого бариона они измеряют его спин-четность [6]. Измерения спин-четности основаны на угловых распределениях и проверяют три альтернативные гипотезы: спин $\frac{1}{2}$, $\frac{3}{2}$ и $\frac{5}{2}$. Количество событий, извлекаемых из экспериментального спектра масс, хоть и мало, но позволяет отвергнуть первые две гипотезы со значимостью

5.5 и 4.5 стандартных отклонений, соответственно. Предпочтительной остается гипотеза спина $\frac{5}{2}$. Приведенные коллаборацией Belle измерения относительных вероятностей распада этого бариона тоже подтверждают данный спин, но еще и позволяют сделать заключение о четности. Отрицательная четность дала бы отношение парциальных ширин распада $\Lambda_c(2880)^+$ через $\Sigma_c(2520)\pi$ и $\Sigma_c(2455)\pi$ в шесть раз больше, чем наблюдается в эксперименте. Положительная четность, в свою очередь, хорошо согласуется с результатом.

Среди более недавних работ Belle можно найти наиболее точное измерение резонанса $\Lambda_c(2625)^+$ [7]. Его естественная ширина настолько мала, что на ее величину существует лишь верхний предел. Даже в последней работе, использовавшей полную статистику, собранную детектором Belle, не удается измерить его ширину с достаточной точностью. Большим препятствием является, очевидно, разрешение детектора. Единственной возможностью его учесть служит моделирование эксперимента методом Монте-Карло, но оно не может быть идеальным. Отличия в ширине гауссова разрешения между моделированием и экспериментом служат наибольшим источником систематической погрешности. Именно она и не позволяет достичь желаемой точности.

Тем не менее, статистика Belle крайне высока и позволяет измерить другие характеристики $\Lambda_c(2625)^+$. Коллаборация использует двухмерные распределения по квадратам масс конечных частиц – диаграмму Далица. Аппроксимируя экспериментальные данные двухмерной функцией, состоящей из нескольких компонент, удается извлечь числа событий определенных каналов распада $\Lambda_c(2625)^+$. Основным конечным результатом является полноценное подтверждение наличия резонансных распадов бариона $\Lambda_c(2625)^+$, содержащих $\Sigma_c(2455)$. Их вероятности были измерены впервые и оказались равны

$$\frac{\mathcal{B}\left(\Lambda_c(2625)^+ \to \Sigma_c(2455)^0\pi^+\right)}{\mathcal{B}\left(\Lambda_c(2625)^+ \to \Lambda_c^+\pi^+\pi^-\right)} = (5.19 \pm 0.23 \pm 0.40)\%,$$

$$\frac{\mathcal{B}\left(\Lambda_c(2625)^+ \to \Sigma_c(2455)^{++}\pi^-\right)}{\mathcal{B}\left(\Lambda_c(2625)^+ \to \Lambda_c^+\pi^+\pi^-\right)} = (5.13 \pm 0.26 \pm 0.32)\%.$$

3 Многочастичные процессы e^+e^- аннигиляции

Электрон-позитронные ускорители, работающие в области энергии центра масс вблизи 10.5 ГэВ, предоставляют возможность изучения крайне редких распадов благодаря высокой светимости и хорошей точности теоретических вычислений в рамках Стандартной модели. В то же время, свойства процессов электрон-позитронной аннигиляции при меньших энергиях тоже представляют большой интерес, особенно для процессов с легкими мезонами. При этом жертвовать энергией столкновения или тратить финансы на новую конфигурацию детектора оказывается не обязательно. Одним из возможных решений являются процессы с излучением в начальном состоянии. Излучение в начальном состоянии включает события типа $ee \to ee \gamma \to X\gamma$, где γ несет очень большой импульс и был рожден уже в начальном ee состоянии, предшествовавшем реакции $ee \to X$. Излучение в начальном состоянии позволяет исследовать широкий диапазон эффективных энергий центра масс ниже полной энергии центра масс ее. Это дает возможность изучать сечения реакций при низкой энергии, пользуясь высокой светимостью B-фабрик. Дополнительный интерес обусловлен исследованиями g-2 мюона, для теоретических вычислений которых в рамках Стандартной модели необходимы сечения при низких энергиях. Кроме того, излучение в начальном состоянии способствует адронной резонансной спектроскопии. В работе [8] изучаются процессы $e^+e^- \to \pi^+\pi^-\pi^0\pi^0\pi^0$ и $e^+e^- \to \pi^+\pi^-\pi^0\pi^0\eta$ при энергиях центра масс от порога до 4.35 ГэВ, используя явление излучения в начальном состоянии.

Набор данных, используемый для анализа, были собраны детектором BaBar, расположенном на e^+e^- коллайдере с асимметричной энергией на SLAC в США. Использовались эффективные энергии центра масс вплоть до 4.35 ГэВ, выше которой появляется фон от $\Upsilon(4S)$ резонанса. Набор данных соответствует интегральной светимости $468.6 \ \phi 6^{-1}$. Среди основных элементов детектора можно назвать вершинный детектор, дрифтовую камеру, а также детекторы Черенковского излучения.

При моделировании изучаемых распадов $e^+e^- \to \pi^+\pi^-\pi^0\pi^0\pi^0$ и $\pi^+\pi^-\pi^0\pi^0\eta$ рассматривались различные цепи, в том числе включающие промежуточные мезоны $\omega(782)$, $f_0(980)$, $\rho(770)$, а также распады, равномерно распределенные по фазовому объему. Помимо сигнальных событий, наборы данных моделирования включают фоновые процессы как с испусканием фотона в начальном состоянии, так и без.

Для изучаемых конечных состояний отбор событий существенно осложнен ввиду наличия нескольких нейтральных пионов. Базовым критерием отбора было наличие двух

треков пионов и как минимум семи фотонов. Фотон с наибольшей энергией считался испущенным электрон-позитронной парой в начальном состоянии. Остальные 6 фотонов группируются в 2 пары с массой вблизи m_π и два независимых фотона, которые могут соответствовать как π^0 , так и η . Каждое событие аппроксимируется сигнальной гипотезой $ee \to \pi^+\pi^-3\pi^0\gamma$ и фоновой гипотезой $ee \to \pi^+\pi^-2\pi^0\gamma$, которая имеет гораздо большее сечение. χ^2 данного фита используется дальше для вычета фона. Двухмерное распределение событий по инвариантной массе третьей пары фотонов и упомянутому χ^2 показывает, что в спектре масс $m_{\gamma\gamma}$ более явно видны пики π^0 и η в области, где χ^2 мало, то есть вероятность события быть фоновым меньше. В связи с этим, сигнальной считается область χ^2 от 0 до 60, а фоновой – от 60 до 120. Двухмерные распределения по инвариантным массам $m_{\gamma\gamma}$ и $m_{\pi^+\pi^-2\pi^0\gamma\gamma}$ поддерживают выбранные ограничения, поскольку в сигнальных событиях наблюдаются отчетливые пики π^0 и η вне зависимости от $m_{\pi^+\pi^-2\pi^0\gamma\gamma}$, а среди фоновых событий мезонных пиков нет. Модельные спектры этих же величин близки к экспериментальным для всех рассматриваемых каналов процесса $ee \to \pi^+\pi^-3\pi^0$.

Далее необходимо вычислить эффективности регистрации и восстановления событий в зависимости от энергии центра масс. Рассматриваются Монте-Карло спектры $m(\gamma\gamma)$ и $m(3\pi)$ для событий $ee\to\pi^+\pi^-\eta$ и $ee\to\omega\pi^0\pi^0$. Из событий сигнальной области $\chi^2<60$ вычитаются события контрольной (фоновой) области больших χ^2 так же, как и для экспериментальных данных. Полученные распределения аппроксимируются для извлечения чисел событий в пиках резонансов. Данная процедура повторяется для множества ячеек в спектре $m(\pi^+\pi^-3\pi^0)$, а полученная зависимость соответствует эффективности восстановления событий в зависимости от этой массы.

Вычисление сечения реакции $ee \to \pi^+\pi^-3\pi^0$ в эксперименте абсолютно аналогично: для ячеек в спектре $m(\pi^+\pi^-3\pi^0)$ определяются числа событий под пиком, соответствующим π^0 в экспериментальном распределении $m(\gamma\gamma)$. То же самое делается для контрольных событий, χ^2 которых велико. Таким образом находится спектр масс 5π изучаемого процесса, который затем еще пригодится для нахождения промежуточных состояний, через которые проходит система ee до 5π . Однако перед этим следует изучить резонансную структуру в комбинациях трех пионов, где ожидаются мезоны η и ω . Инвариантная масса $3\pi^0$ имеет четкий пик вблизи массы η , который виден даже в двухмерных спектрах как против $m(\pi^+\pi^-)$, так и против $m(5\pi)$. Более внимательное изучение позволяет увидеть даже одновременный резонанс в спектрах $m(3\pi^0)$ и $m(\pi^+\pi^-)$, соответствующий процессу $ee \to \eta \rho$. Вычисление чисел событий в пиках ме-

зона η в ячейках по $m(5\pi)$ позволяет найти сечение данного процесса. Аналогичным образом исследуется спектр масс $\pi^+\pi^-\pi^0$, содержащий явный пик ω . Сечение этого процесса оказывается примерно вдвое меньше предыдущего, что соответствует базовым представлениям об изоспиновой симметрии. В конце концов, можно рассмотреть спектр $\pi^\pm\pi^0$, в котором ожидаются пики ρ^\pm . Числа событий в индивидуальных пиках спектров $\pi^+\pi^0$ и $\pi^-\pi^0$ достаточно велики и позволяют извлечь сечение в зависимости от энергии центра масс. Однако отчетливо видны события, соответствующие коррелированному рождению двух ρ мезонов, то есть процессу $ee \to \rho^+\rho^-\pi^0$. Статистика для этого двойного резонанса уже слишком мала.

Точно такие же действия затем производятся для изучения процесса $ee \to \pi^+\pi^-2\pi^0\eta$ с единственной разницей, что в спектре $m(\gamma\gamma)$ аппроксимируется не пик π^0 , а пик η . Модели фита выглядят подобно уже описанным, а методы совершенно одинаковы. Существенно более низкая статистика, однако, не позволяет настолько же детально изучить резонансную структуру. Тем не менее, пики $\omega \to \pi^+\pi^-\pi^0$ и $\rho \to \pi\pi^0$ все же наблюдаются.

Измеренные сечения процессов $ee \to 5\pi$ и $ee \to 4\pi\eta$ в зависимости от энергии в системе центра масс представляют особый интерес, поскольку содержат информацию о ee аннигиляции не только в континууме, но и в областях чармониев J/ψ и $\psi(2S)$. Данные спектры позволяют впервые измерить вероятности распадов указанных чармониев на некоторые промежуточные состояния мезонов, включающие π , ω , ρ .

Заключение

Ускорители частиц и коллайдеры позволяют исследовать поведение элементарных частиц в экстремальных ситуациях, которые, возможно, не так часто реализуются в природе на Земле, но играют важнейшую роль в космических процессах. Само создание вселенной обусловлено тонкостями взаимодействия между элементарными частицами. А исследованием этих тонкостей занимается современная физика высоких энергий.

Десятилетия прогресса физики ускорителей и технологий детекторов предоставляют возможности детального изучения крайне редких процессов, включая различные резонансные каналы распадов прелестных адронов. Объемы данных, собираемые детекторами физики высоких энергий, крайне велики, но и методы анализа экспериментальных данных не стоят на месте. Использованные в изученных работах подходы к построению спектров, извлечению чисел событий и измерению параметров резонансов отражают современные методики проведения физических анализов.

Несомненно, особую важность имеют результаты самих анализов. Рассмотренные работы представляют первые наблюдения нескольких резонансных и многочастичных процессов, а также первые измерения свойств адронных резонансов, включая массы, естественные ширины и спин-четности. Полученные величины находятся в хорошем согласии с теоретическими предсказаниями Стандартной модели и позволяют уточнить актуальные на данный момент феноменологические модели адронов.

В частности, нашла подтверждение гипотеза, что распады прелестных мезонов с образованием бариона и антибариона в конечном состоянии более вероятны, если барион и антибарион находятся ближе друг к другу в фазовом пространстве. Это проявляется, например, в отношении вероятностей распадов \bar{B}^0 и B^- [2]:

$$\frac{\mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-)}{\mathcal{B}(\bar{B}^0 \to \Lambda_c^+ \bar{p})} = 15.4 \pm 1.8.$$

Внесение лишь одного пиона в распад *В*-мезона увеличивает его вероятность более чем на порядок. Для сравнения, распады прелестных барионов при добавлении легких мезонов типично, если возрастают, то на величину от 1.5 до 4 раз [9].

Глоссарий

absorption	[əbˈzərp∫ən]	поглощение
approximation	[əˌpraksəˈmeɪʃən]	приближение
baryon	[ˈberiˌan]	барион
bias	['baɪəs]	искажение
bottom (hadron)	[badəm]	прелестный
center of mass	[ˈsendər əf mæs]	центр масс
charge conjugate	[t∫ardʒ ˈkɑndʒəgət]	зарядово сопряженный
charmed (hadron)	$['t\int\!\!\mathrm{armd}]$	очарованный
coherence	[koʊˈhɪrəns]	когерентность
collaboration	[kəˌlæbəˈreɪʃən]	коллаборация
collision	[kəlıʒən]	столкновение
confidence level	[ˈkanfədəns ˈlevəl]	уровень доверия
consistent with	[kənˈsıstənt wið]	согласуется с
constraint	$[\mathrm{kən'stremt}]$	ограничение
contribution	[kəntrıˈbju∫ən]	вклад
coupling constant	[ˈkʌpliŋ ˈkɑːnstənt]	константа взаимодействия
cross-feed	[kras fixd]	перекрестный вклад
cross-section	[kras sek∫ən]	сечение
Dalitz plot	['dalits pla:t]	диаграмма Далица
decay	[dɪˈkeɪ]	распад
degree of freedom	[dɪˈgri əf ˈfriːdəm]	степень свободы
denominator	[dı'naməneidər]	знаменатель
density	$[\mathrm{densadi}]$	ПЛОТНОСТЬ
efficiency	[ıˈfɪ∫ənsi]	эффективность
estimate	['estəmert]	оценивать
event selection	[ı'vent sə'lek∫ən]	отбор событий
excitation	$[\ _{\shortmid }\mathrm{eksai'tei}\mathfrak{f}\mathrm{en}]$	возбуждение
fluctuation	[ˌflʌkt∫uˈeɪʃən]	колебания
frame of reference	[frem əf ˈrefərəns]	система отсчета
framework (of a theory)	[ˈfreɪmwɜrk]	рамки
ground state	['graund steit]	основное состояние
hadron	[ˈhædraːn]	адрон

half life	[hæf laɪf]	период полураспада
heavy quark	['hevi kwark]	тяжелый кварк
hypothesis	$[har'pa\theta sis]$	гипотеза
intermediate	['mtərmidiət]	промежуточный
invariant mass	[m'verient mæs]	инвариантная масса
lattice QCD	[ˈlædəs kju si di]	КХД на решетке
leading order	[ˈliːdiŋ ˈɔrdər]	в первом приближении
likelihood	[ˈlaɪklihʊd]	правдоподобие
linear	['lmiər]	линейный
longitudinal	[ˌlandʒəˈtudməl]	продольный
luminosity	[ˌluməˈnɑsədi]	светимость
mainly	[memli]	преимущественно
mass spectrum	$[{\rm mæs\ 'spektrəm}]$	спектр масс
mass splitting	[mæs splidiŋ]	расщепление масс
matter	$[\mathrm{'m}\mathrm{\&der}]$	вещество
measurement	$[\text{'me}_{\overline{2}}\text{orm}_{\overline{2}}\text{nt}]$	измерение
meson	[ˈmizan]	мезон
momentum	[məˈmentəm]	импульс
natural width	$[\texttt{næt} \texttt{ferel wid} \theta]$	естественная ширина
negligible	[ˈneglədʒəbəl]	пренебрежимый
neural network	[ˈnʊrəl ˈnɛtwɜrk]	нейронная сеть
normalization	[nɔrmələˈzeɪʃən]	нормировка
numerator	['numəreidər]	числитель
observation	[ˌabzərˈveɪ∫ən]	наблюдение
parity	[ˈperədi]	Четность
partial width	$[\text{parfel 'wid}\theta]$	парциальная ширина
particle	[ˈpardəkəl]	частица
perturbative QCD	[pərˈtərbədiv kju si di]	теория возмущений КХД
phase space	[feiz speis]	фазовое пространство
physics	[ˈfɪzɪks]	физика
plane	[plem]	плоскость
pole models	[poʊl ˈmɑdəls]	полюсные модели
polynomial	[ˌpaliˈnoʊmiəl]	ПОЛИНОМ

probability	[prabəˈbɪlədi]	вероятность
production	[prəˈdʌk∫ən]	рождение
projection	[praˈdʒek∫ən]	проекция
propagation	[ˌprɑpəˈgeɪʃən]	распространение
proper decay time	['propər dı'keı taım]	собственное время распада
proximity	[prakˈsımədi]	близость
quadratic	[kwadˈrædɪk]	квадратичный
quantum chromodynamics	[ˈkwantəm [ˈkroʊmədaɪˌnæmɪks]	квантовая хромодинамика
quark mixing	[kwark 'mıksıŋ]	смешивание кварков
radiation	[ˌreɪdiˈeɪ∫ən]	излучение
random variable	[ˈrændəm ˈvɛriəbəl]	случайная переменная
range	[remd3]	диапазон
recoil energy	[rɪˈkɔɪl ˈenərdʒi]	энергия отдачи
reconstruction (of a track)	[ˌrikənˈstrʌkʃən]	восстановление
resolution	[rezəˈlu∫ən]	разрешение
resonance	[ˈresənəns]	резонанс
rest frame	[rest frem]	система покоя
rough estimate	[rnf estemet]	грубая оценка
saturation	$[\ _{\shortmid }\mathbf{s}\mathbf{x}\mathbf{t}\mathbf{f}\mathbf{a}^{\shortmid }\mathbf{r}\mathbf{e}\mathbf{i}\mathbf{f}\mathbf{a}\mathbf{n}]$	насыщение
scaling factor	[ˈskeɪliŋ ˈfæktər]	параметр масштабирования
scattering	[ˈskædərɪŋ]	рассеяние
simulation	[ˌsɪmjəˈleɪʃən]	моделирование
special relativity	[ˈspeʃəl ˌreləˈtivədi]	специальная теория относительности
threshold	[ˈθre∫hoʊld]	порог
transpose	[trænˈspoʊz]	транспонировать
transverse	[træns'v3rs]	перпендикулярный
uncertainty	[nn'sartnti]	погрешность
uniform (distribution)	[ˈjunəfərm]	равномерный
universe	[ˈjunəvɜrs]	вселенная
vertex	[ˈvɜrdeks]	вершина
violation	[ˌvaɪəˈleɪ∫ən]	нарушение
yield	$[\mathrm{ji} \mathrm{i} \mathrm{ld}]$	число событий

Список литературы

- [1] T. Aaltonen *et al.* (CDF Collaboration), "Measurements of the properties of $\Lambda_c(2595)$, $\Lambda_c(2625)$, $\Sigma_c(2455)$, and $\Sigma_c(2520)$ baryons," Phys. Rev. D **84**, 012003 (2011).
- [2] B. Aubert *et al.* (BaBar Collaboration), "Measurements of $\mathcal{B}(\bar{B}^0 \to \Lambda_c^+ \bar{p})$ and $\mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-)$ and Studies of $\Lambda_c^+ \pi^-$ Resonances," Phys. Rev. D **78**, 112003 (2008).
- [3] R. Mizuk *et al.* (Belle Collaboration), "Observation of an isotriplet of excited charmed baryons decaying to $\Lambda_c^+\pi$," Phys. Rev. Lett. **94**, 122002 (2005).
- [4] B. Aubert *et al.* (BaBar Collaboration), "Observation of a charmed baryon decaying to D^0p at a mass near 2.94-GeV/ c^2 ," Phys. Rev. Lett. **98**, 012001 (2007).
- [5] M. Artuso *et al.* (CLEO Collaboration), "Observation of new states decaying into $\Lambda_c^+\pi^-\pi^+$," Phys. Rev. Lett. **86**, 4479-4482 (2001).
- [6] K. Abe *et al.* (Belle Collaboration), "Experimental constraints on the possible J**P quantum numbers of the $\Lambda_c(2880)^+$," Phys. Rev. Lett. **98**, 262001 (2007).
- [7] D. Wang et al. (Belle Collaboration), "Measurement of the mass and width of the $\Lambda_c(2625)^+$ charmed baryon and the branching ratios of $\Lambda_c(2625)^+ \to \Sigma_c^0 \pi^+$ and $\Lambda_c(2625)^+ \to \Sigma_c^{++} \pi^-$," Phys. Rev. D **107**, 032008 (2023).
- [8] J. P. Lees *et al.* (BaBar Collaboration), "Study of the reactions $e^+e^- \to \pi^+\pi^-\pi^0\pi^0\pi^0$ and $\pi^+\pi^-\pi^0\pi^0\eta$ at center-of-mass energies from threshold to 4.35 GeV using initial-state radiation," Phys. Rev. D **98**, 112015 (2018).
- [9] P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).