SUITES DE PUISSANCES

VERTUEUX

RÉSUMÉ. Cet article est une énonciation et démonstration de propriétés sur des suites ayant pour forme $u_{n+1}=u_n^r$ avec $u_0=k,\,k\in\mathbb{R},\,r\in\mathbb{R}^*.$

Définition 0.1. On appelle une suite de puissances une suite $u_n : \mathbb{N} \to \mathbb{R}$, $\forall n \in \mathbb{N}$, $n \mapsto u(n)$ avec $k \in \mathbb{R}$, $r \in \mathbb{R}^*$, ayant pour forme :

$$\begin{cases} u_{n+1} = u_n^r \\ u_0 = k \end{cases}$$

Définition 0.2. Toute suite u_n étant une suite de puissances, r est appelé raison de la suite.

Théorème 0.3. Toute suite u_n , une suite de puissances de formule de récurrence $u_{n+1} = u_n^r$ avec $u_0 = k$ peut s'écrire de la forme $u_n = k^{r^n}$, avec $k \in \mathbb{R}$, $r \in \mathbb{R}^*$.

Démonstration. À l'initialisation de la suite u_n , nous avons $u_0 = k$, et $u_1 = k^r$. Par récurrence, nous savons que $u_2 = (k^r)^r$ et que $\forall n \in \mathbb{N}$:

$$u_n = k^{\prod_{i=1}^n r} \iff u_n = k^{r^n}$$

Dans le cas où r=0, on remarque que :

$$\begin{cases} u_{n+1} = 1 \\ u_0 = k \end{cases}$$

Et d'après la formule précédente, $u_n = k^{0^n} \implies u_0$ est indéfini.

Or, $u_0 = k$, $k \in \mathbb{N}$ d'après la formule de récurrence. Par conséquent, la suite ne peut pas être écrite avec une formule explicite lorsque r = 0.

Théorème 0.4. Toute suite u_n , une suite de puissances de formule de récurrence $u_{n+1} = u_n^r$ avec $u_0 = k$, et un rang u_p , $p \in \mathbb{N}$, peut s'exprimer par : $u_n = u_p^{r^{n-p}}$.

Démonstration. Considérons trois cas : p < n, p > n, p = n.

Lorsque p < n, on remarque qu'afin d'atteindre p, il suffit de multiplier par la raison r selon la distance séparant p et n, soit n-p:

$$u_n = u_p^{\prod_{i=1}^{n-p} r} \iff u_n = u_p^{r^{n-p}}$$

Lorsque $p > n \iff n < p$, de manière analogue à p < n, on sait que :

$$u_p = u_n^{\prod_{i=1}^{p-n} r} \iff u_p = u_n^{r^{p-n}} \iff u_n = u_p^{r^{n-p}}$$

2 VERTUEUX

Lorsque p=n, les termes sont de même rang $\implies u_n=u_p.$ En considérant le Théorème énoncé aussitôt :

$$u_n = u_p^{r^{n-p}} \iff u_n = u_p^{r^0} \iff u_n = u_p, \forall r \neq 0$$

Nous retombons bien sur l'égalité avec $u_n = u_p$.

À noter de même que dans le cas où p=0, on a bien : $u_n=u_0^{r^n}=k^{r^n}$.

Connaissant u_p et u_n , on peut donc retrouver la raison r:

$$u_n = u_p^{r^{n-p}} \iff r = \sqrt[n-p]{\frac{\log_{u_p}(u_n)}{\log_{u_p}(u_p)}} \iff r = \sqrt[n-p]{\log_{u_p}(u_n)}$$
 Cela fonctionne donc $\forall u_p \in \mathbb{R}_+^* \backslash \{1\}$ et $\forall u_n \in \mathbb{R}_+^*$.

LES VARIATIONS DES SUITES DE PUISSANCES

Soit une suite u_n , une suite de puissances de formule de récurrence $u_{n+1} = u_n^r$ avec $u_0 = k$. En considérant la méthode générale pour étudier les variations de suites, on trouve que :

$$u_{n+1} - u_n \iff k^{r^{n+1}} - k^{r^n} \iff k^{r^n}(k^r - 1)$$

Et l'étude des variations s'en suit. Voici un tableau résumant les variations possibles en fonction de k^{r^n} et $k^{r^n}-1$.

r	k	Variations de u_n
r > 1	k > 1	u_n est une suite strictement croissante.
r > 1	k < 0	u_n est une suite strictement croissante pour k étant
		pair et strictement décroissante pour k étant impair.
r > 1	k = 0	u_n est une suite constante $(u_n = 0)$.
r > 1	$k \in]0,1[$	u_n est une suite décroissante ($\lim_{n\to+\infty} u_n = 0$).
r > 1	k = 1	u_n est une suite constante $(u_n = 1)$.
r < 0	k > 1	u_n n'est pas une suite monotone.
r < 0	k < 0	u_n n'est pas une suite monotone $(u_n \in \mathbb{C} \text{ si } r \in]$
		$1,0[\implies u_n \text{ n'est pas continue sur } \mathbb{R}).$
r < 0	k = 0	u_n n'est pas une suite monotone ni continue sur $\mathbb R$
		$(u_n \in \mathbb{C}, u_n = 0 \text{ pour } n \text{ étant pair}).$
r < 0	$k \in]0,1[$	u_n n'est pas une suite monotone.
r < 0	k = 1	u_n est une suite constante $(u_n = 1)$.
$r \in]0,1[$	k > 1	u_n est une suite décroissante ($\lim_{n\to+\infty} u_n = 1$).
$r \in]0,1[$	k < 0	u_n n'est pas une suite monotone ni continue sur $\mathbb R$
		$(u_n \in \mathbb{C}).$
$r \in]0,1[$	k = 0	u_n est une suite constante $(u_n = 0)$.
$r \in]0,1[$	$k \in]0,1[$	u_n est une suite croissante ($\lim_{n\to+\infty} u_n = 1$).
$r \in]0,1[$	k = 1	u_n est une suite constante $(u_n = 1)$.
r = 1	k > 1	u_n est une suite constante $(u_n = k)$.
r = 1	k < 0	u_n est une suite constante $(u_n = k)$.
r = 1	k = 0	u_n est une suite constante $(u_n = 0)$.
r = 1	$k \in]0,1[$	u_n est une suite constante $(u_n = k)$.
r = 1	k = 1	u_n est une suite constante $(u_n = 1)$.