

O2-DQ tutorial: pp filter & the Zorro tool

O2 Analysis Tutorial 4.0 – DQ framework

Wednesday October 16th 2024

Victor FFUILLARD

16/10/2024 Software trigger: filterpp

Introduction

• The task is O2Physics/PWGDQ/Tasks/filterPPwithAssociation.cxx

Filter Subtasks

AOD.root

DQEventSelectionTask: preselect the events to be examined

Example: eventStandardNoINT7

DQBarrelTrackSelection: preselect the electron tracks to be examined

DQMuonsSelection: preselect the muon tracks to be examined

Example: muonLowPt, muonLowPt

DQFilterPPTask:

- Checks if event is selected
- Looks at the list of provided cuts (electron + muon)
- Looks if a pair selection is added to the condition
 - Single track selection : trackSelection::
 - Pair selection : trackSelection:pairSelection:
- IMPORTANT: the list of cuts must be the same in the **DQBarrelTrackSelection** & **DQMuonsSelection** and in the **DQFilterPPTask** AND IN THE SAME ORDER
- Runs over the events to see if there are tracks matching the given criteri
- Example: "jpsiO2MCdebugCuts2 Corr::1, jpsiO2MCdebugCuts4 Corr:pairNoCut:1, muonLowPt::1, muonLowPt:pairNoCut:1"

Bitmap of selection attached to the event (+ eventual QA histograms)
With this example: [Single electron; Electron pair; Single muon; Muon pair]


```
• Line 2-7: Event Selection subtask:
```

 The list of availables cuts can be found in : https://github.com/AliceO2Group/O2Physics/blob/master/PWGDQ/Core/CutsLibrary.cxx

Line 8-17: barrel track selection subtask:

 The list of availables cuts can be found in : https://github.com/AliceO2Group/O2Physics/blob/master/PWGDQ/Core/CutsLibrary.cxx

Line 18-23: forward track selection subtask:

 The list of availables cuts can be found in : https://github.com/AliceO2Group/O2Physics/blob/master/PWGDQ/Core/CutsLibrary.cxx

The list of availables pair cuts can be found in:
 https://github.com/AliceO2Group/O2Physics/blob/master/PWGDQ/Core/CutsLibrary.cxx

Exercise: dq-filter-pp

Run the filter-pp with the configurationFilterPP.json file:

```
o2-analysis-dq-filter-pp-with-association -b --configuration json://configurationFilterPP.json
| o2-analysis-timestamp -b --configuration json://configurationFilterPP.json
| o2-analysis-track-propagation -b --configuration json://configurationFilterPP.json
| o2-analysis-trackselection -b --configuration json://configurationFilterPP.json
| o2-analysis-pid-tof-full -b --configuration json://configurationFilterPP.json
| o2-analysis-multiplicity-table -b --configuration json://configurationFilterPP.json
| o2-analysis-fwdtrackextension -b --configuration json://configurationFilterPP.json
| o2-analysis-event-selection -b --configuration json://configurationFilterPP.json
| o2-analysis-fwdtrack-to-collision-associator -b --configuration json://configurationFilterPP.json
| o2-analysis-pid-tpc -b --configuration json://configurationFilterPP.json
| o2-analysis-pid-tof-base -b --configuration json://configurationFilterPP.json
```

o2-analysis-ft0-corrected-table -b --configuration ison://configurationFilterPP.ison

--aod-file AO2D.root

- Open the **AnalysisResults.root** file. Check the «*d-q-filter-p-p-task*» folder. Look at the «*Statistics*» histogram to see the number of selected events
- Change the list of triggers in the configuration and run the task again. Compare the results

The Zorro tool

- Central skimming produces trigger masks that are saved into ccdb
- Temporary repository: Users/m/mpuccio/EventFiltering/OTS/
- Zorro (Zorro.h, Zorro.cxx) is the tool to manage the trigger masks stored into ccdb

Configurables added to the table-maker

Configurable<bool> fConfigRunZorro{"cfgRunZorro", false, "Enable event selection with zorro [WARNING: under debug, do not enable!]"};
Configurable<string> fConfigZorroTrigMask{"cfgZorroTriggerMask", "fDiMuon", "DQ Trigger masks: fSingleE,fLMeeIMR,fDiElectron,fSingleMuLow,fSingleMuHigh,fDiMuon"};
Configurable<string> fConfigCcdbPathZorro{"ccdb-path-zorro", "Users/r/rlietava/EventFiltering/OTS/", "base path to the ccdb object for zorro"};

- 4 Warning:
 - > The usage of zorro excludes the usage of the filter-pp task, you cannot use both the tools together
 - User can combine more triggers (e.g. fDiMuon,fSingleMuLow)
 - > Be sure that the dataset you are using contains the « skimmed » keyword, otherwise it will break (no ccdb)

Credits : Luca Micheletti

Information in the CCDB

For each analysed run you get:

16/10/2024

- ➤ The number of analysed triggers in your hyperloop train (both trigger of interest and other triggers)
- > The TOTVX triggers inspected originally by the skimming
- ➤ The originally selected number of events per triggers (the Selections histogram)
- To know the equivalent TOTVX triggers sampled you need to do:
 - > Sum all the originally inspected TOTVX triggers
 - > Sum all the originally selected events for your trigger of interest
 - > Sum the number of analysed triggers of interest

$$N_{TVX} = (Inspected\ TVX) \frac{Analyzed\ Triggers\ Of\ Interest}{Number\ if\ Triggers\ Of\ Interest\ in\ the\ Skimming}$$

• It is done to avoid double counting in the normalisation as more than one collision can be compatible with the triggered BC

Software trigger: filterpp 10

List of DQ Triggers

• The DQ triggers are: fSingleElectron, fDiElectron, fSingleMuonLow, fSingleMuonHigh, fDimuon

The DQ triggers are . Isingle Electron, Toll Electron, Ising		
Electron Trigger		
	2022	2023 & 2024
Single e p _⊤	> 1.0 GeV/c	> 1.0 GeV/c
Single e η	[-0.9 ; 0.9]	[-0.9 ; 0.9]
Is SPD Any	yes	yes
TPC χ^2	< 4.0	< 4.0
TPC N Clusters	[70;160]	[70;160]
n- σ e	[-4.0; 4.0]	[-4.0; 4.0]
n- $oldsymbol{\sigma}\pi$	> 2.5	> 2.5
n- σ p	> 2.5	> 2.5
PID post-calibration	Yes	No
Track-collision association	No	Yes
m _{ee}	> 0 GeV/c ²	> 1.8 GeV/c ²

Muon Trigger		
	2022	2023 & 2024
Single μ p _T	> 0.7 (4.0) GeV/c	> 0.7 (20.0) GeV/c
Single μη	[-4.0 ; -2.5]	[-4.0 ; -2.5]
R_{abs}	[17.6; 89.5]	[17.6; 89.5]
p x DCA	~6 σ _{p x DCA}	~6 σ _{p x DCA}
Matching MCH- MID	No	Yes
Track-collision association	No	Yes
$m_{\mu\mu}$	> 1.8 GeV/c ²	> 1.8 GeV/c ²

Exercise: Zorro tool

Run the table-maler with the configurationZorro.json file:

o2-analysis-dq-table-maker -b --configuration json://configurationZorro.json

```
o2-analysis-timestamp -b --configuration json://configurationZorro.json
o2-analysis-track-propagation -b --configuration json://configurationZorro.json
o2-analysis-trackselection -b --configuration json://configurationZorro.json
o2-analysis-pid-tof-full -b --configuration json://configurationZorro.json
o2-analysis-pid-tof-beta -b --configuration json://configurationZorro.json
o2-analysis-multiplicity-table -b --configuration json://configurationZorro.json
o2-analysis-event-selection -b --configuration json://configurationZorro.json
o2-analysis-fwdtrackextension -b --configuration json://configurationZorro.json
o2-analysis-fwdtrack-to-collision-associator -b --configuration json://configurationZorro.json
o2-analysis-pid-tpc -b --configuration json://configurationZorro.json
o2-analysis-pid-tof-base -b --configuration json://configurationZorro.json
o2-analysis-pid-tpc-base -b --configuration json://configurationZorro.json
o2-analysis-pid-tpc-base -b --configuration json://configurationZorro.json
o2-analysis-pid-tpc-base -b --configuration json://configurationZorro.json
```

- Open the **AnalysisResults.root** file. Check the «*table-maker*» folder. Look at the histograms in the «*Zorro*» subFolder to see the triggered of events
- Change the Zorro triggers in the configuration and run the task again. Compare the results