

類別型特徵-基礎處理

知識地圖 特徵工程 類別型特徵 - 基礎處理

機器學習概論 Introduction of Machine Learning

監督式學習 Supervised Learning

新處理 Processing 上數據分析 Exploratory Data Analysis

特徵 分析 ratory sta lysis

特徵 工程 Feature Engineering

模型 選擇 ure ering Model selection

非監督式學習 Unsupervised Learning

> 分群 Clustering

降維 Dimension Reduction

本日知識點目標

- > 類別型特徵有哪兩種基礎編碼方式?
- 兩種基礎編碼方式中,哪一種比較常用?為什麼?
- 一在什麼情況下,比較適合獨熱編碼?

類別型特徵的處理

前面提過:特徵工程是事實到對應分數的轉換

請先回憶一下,已學過哪些類別型特徵的轉換方式,您是否可以想到其他的轉換方法?

基礎編碼 1:標籤編碼 (Label Encoding)

- ◎ 類似於流水號,依序將新出現的類別依序編上新代碼,已出現的類別編上已使用的代碼
- 確實能轉成分數,但缺點是分數的大小順序沒有意義

基礎編碼 2:獨熱編碼 (One Hot Encoding)

- 為了改良數字大小沒有意義的問題,將不同的類別分別獨立為一欄
- 缺點是需要較大的記憶空間與計算時間,且類別數量越多時越嚴重

標籤編碼/獨熱編碼的比較

	大小有無意義	儲存空間/計算時間	適用模型
標籤編碼 Label Encoding	無意義	/\	樹狀模型
獨熱編碼 One Hot Encoding	有意義	較大	非樹狀模型

綜合建議

- 類別型特徵建議預設採用標籤編碼
- 除非該特徵重要性高,且可能值較少(獨熱編碼時負擔較低)時,才應考慮 使用獨熱編碼

重要知識點複習

- 類別型特徵有標籤編碼 (Label Encoding) 與獨熱編碼(One Hot Encoding) 兩種基礎編碼方式
- 兩種編碼中標籤編碼比較常用
- 當特徵重要性高,且可能值較少時,才應該考慮獨熱編碼

請跳出PDF至官網Sample Code&作業 開始解題

