

Amendments to the Claims

The listing of claims below will replace all prior versions and listings of claims in the present application.

Claim Listing

1 1-19. (Cancelled)

1 20. (Currently Amended) A circuit for checking the integrity of one or more
2 input vectors to a digital hardware block, comprising:
3 a memory array containing a weight matrix having elements which are based on a
4 set of known bad input vectors for the digital hardware block; and
5 means for selectively classifying future input vectors to the digital hardware block
6 as either good or not good, using the weight matrix, wherein the
7 classifying means classifies a given input vector as good or not good in
8 less than 60 ns;
9 an SRAM array;
10 a content-addressable memory for storing the known bad input vectors; and
11 address management means for using said SRAM to update both the content-
12 addressable memory and the weight matrix.

1 21. (Original) The circuit of Claim 20 further comprising means for creating the
2 weight matrix using a feedforward linear associative memory neural network.

1 22. (Original) The circuit of Claim 20 wherein said classifying means classifies
2 as not good both future input vectors which are definitely faulty and future inputs vectors
3 which are potentially faulty.

1 23. (Original) The circuit of Claim 20 wherein the weight matrix W is created
2 using a discrete Hopfield network algorithm according to the equation

3 $w_{ij} = \sum_{m=1}^M (2a_i^{(m)} - 1)(2b_j^{(m)} - 1)$

6 where $a^{(m)}$ is the set of known bad vectors, $a_i = b_j$, M is the number of bad input
 7 vectors in the set of known bad input vectors, i is a row locator representing a particular
 8 bad vector, and j is a column locator representing a bit location.

1 24. (Original) The circuit of Claim 23 wherein said classifying means includes
 2 means for calculating an output vector $a^{(m)}$ by multiplying the weight matrix W by the
 3 new input vector $b^{(m)}$, that is, $a^{(m)} = Wb^{(m)}$.

1 25. (Original) The circuit of Claim 24 wherein said classifying means further
 2 includes means for adjusting elements of the output vector $a^{(m)}$ by its respective
 3 thresholds θ_i according to the equation

$$\theta_i = -\frac{1}{2} \sum_{j=1}^K w_{ij}$$

8 where K is the total number of bits in a vector.

1 26. (Original) The circuit of Claim 25 wherein said classifying means includes a
 2 plurality of non-linear units which respectively processes the adjusted elements such that,
 3 when a given adjusted element is positive, an output of the corresponding non-linear unit
 4 is 1 and, when a given adjusted element is not positive, the output of the corresponding
 5 non-linear unit is 0.

1 27. (Cancelled)

1 28. (Currently Amended) The circuit of Claim 20 further comprising ~~mean~~ means
 2 for blocking an output of the digital hardware block corresponding to a new input vector,
 3 and accepting an output of a software work-around corresponding to the new input
 4 vector, in response to said classifying means classifying the new input vector as not good.

1 29. (Original) The circuit of Claim 20 further comprising means for updating the
 2 weight matrix online using one or more additional bad input vectors.

1 30-32. (Cancelled)

1 33. (Original) A programmable logic unit comprising:
2 a plurality of interconnected hardware blocks, at least one of said hardware blocks
3 being a faulty hardware block;
4 a feedforward linear associative memory (LAM) neural network checking circuit
5 which classifies input vectors to said faulty hardware block as either good
6 or not good;
7 a software work-around input; and
8 a selection circuit connected to said feedforward LAM neural network checking
9 circuit, for (i) blocking an output vector of the faulty hardware block
10 corresponding to a new input vector, (ii) enabling a software work-around
11 for the new input vector, and (iii) accepting an output vector from said
12 software work-around input corresponding to the new input vector, as an
13 output vector of the programmable logic circuit.

1 34. (Original) The programmable logic unit of Claim 33 wherein said selection
2 circuit includes:
3 a software work-around enable signal output of said feedforward LAM neural
4 network checking circuit; and
5 a multiplexer having two inputs respectively receiving the output vector from said
6 faulty hardware block and the output vector from said software work-
7 around, and a select line which is connected to said software work-around
8 enable signal output of said feedforward LAM neural network checking
9 circuit.

1 35. (Original) The programmable logic unit of Claim 33 wherein said
2 feedforward LAM neural network checking circuit has a weight matrix whose elements
3 are based on a set of known bad input vectors for said faulty hardware block.

1 36. (Original) The programmable logic unit of Claim 35 wherein said

2 feedforward LAM neural network checking circuit updates the weight matrix online
3 using one or more additional bad input vectors.

1 37. (Original) The programmable logic unit of Claim 36 wherein said
2 feedforward LAM neural network checking circuit includes:
3 an SRAM array;
4 a content-addressable memory for storing the known bad input vectors; and
5 address management means for using said SRAM to update both said content-
6 addressable memory and said weight matrix.

1 38. (Original) The programmable logic unit of Claim 35 wherein the weight
2 matrix W in said feedforward LAM neural network checking circuit is calculated
3 according to the equation

4

$$5 \quad w_{ij} = \sum_{m=1}^M (2a_i^{(m)} - 1)(2b_j^{(m)} - 1)$$

6

7 where $a^{(m)}$ is the set of known bad vectors, $a_i = b_j$, M is the number of bad input
8 vectors in the set of known bad input vectors, i is a row locator representing a particular
9 bad vector, and j is a column locator representing a bit location.

1 39. (Original) The programmable logic unit of Claim 38 wherein said
2 feedforward LAM neural network checking circuit includes:
3 means for calculating an output vector $a^{(m)}$ by multiplying the weight matrix W by
4 the new input vector $b^{(m)}$, that is, $a^{(m)} = Wb^{(m)}$;
5 means for adjusting elements of the output vector $a^{(m)}$ by its respective thresholds
6 θ_i according to the equation

7

$$8 \quad \theta_i = -\frac{1}{2} \sum_{j=1}^K w_{ij}$$

9

10

11 where K is the total number of bits in a vector; and

12 a plurality of non-linear units which process respective elements of the weight
13 matrix to provide an output of 1 when a given adjusted element is positive,
14 and provide an output of 0 when a given adjusted element is not positive.

1 40. (Original) The programmable logic unit of Claim 39 wherein said
2 feedforward LAM neural network checking circuit matches a vector constructed of the
3 outputs of said non-linear units with an entry in a content-addressable memory storing the
4 set of known bad vectors.

1 41. (Original) The programmable logic unit of Claim 33 wherein said
2 feedforward LAM neural network checking circuit classifies input vectors to said faulty
3 hardware block as either good or not good prior to said faulty hardware generating its
4 output vector corresponding to the new input vector.

1 42. (Original) The programmable logic unit of Claim 33 wherein said
2 feedforward LAM neural network checking circuit is physically located in a re-
3 configurable hardware redundancy block.