

Winning Space Race with Data Science

<Shaowen Feng>
<June 2025>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

Summary of Results

- Best model chosen: Decision Tree model
- Model performance: Accuracy score: 87.7%

Introduction

Project background and context

• SpaceX advertised Falcon 9 rocket launches with a much less cost than other providers because it can reuse the first stage. In order to determine the cost of each launch, we need to determine if the first stage will land successfully.

Problems I want to find answers

- What factors affect the successful landing rate?
- How do I gather the necessary information?
- What method should I choose to analyze the data?
- How do I present the findings to my audience?
- What model should I choose to predict the outcome of landing?

Methodology

Executive Summary

- Data collection methodology:
 - Making a get request to the SpaceX API
 - Performing web scraping to collect Falcon 9 historical launch data from a Wikipedia page
- Perform data wrangling
 - Creating a Class variable to convert outcome into training label with 1 as success and 0 as failure
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Create a cross-validation object finding the best hyperparameters for the following classfication models: SVM, classification trees, Logistic Regression and KNN

Data Collection

 Method 1: Collecting SpaceX Falcon 9 Launch data by SpaceX API request with the following URL: "https://api.spacexdata.com/v4/launches/past"

 Method 2: Collecting SpaceX Falcon 9 Launch data by web scraping process from Wikipedia page with the title "List of Falcon 9 and Falcon Heavy launches" https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches

Data Collection – SpaceX API

Key data collection phrases

- Request the SpaceX launch data using the GET request and convert it to a data frame
- Take a subset of the original data frame keeping only the necessary features
- Use a series of of helper functions to parse information using ID numbers in the launch data
- Filter the data frame to only include the Falcon 9 launches data

Here is the GitHub URL of the completed SpaceX API calls notebook: https://github.com/Mimicorn/Space-Repo/blob/main/notebooks/jupyter-labs-spacex-data-collection-api.ipynb

Data Collection - SpaceX API

FlowChart of SpaceX API calls

Request rocket launch data from SpaceX API

Convert launch data to a data frame called data

Take a subset of data data[['rocket', 'payloads', 'launchpad', 'cores', 'flight_number', 'date_utc']]

Convert the date_utc to the datetime data type and extract the date only

Define Four helper functions: getBoosterVersion(), getLaunchSite(), getPayloadData(), getCoreData()

Data Collection - Scraping

Key data collection phrases by web scraping

- Web scrape Falcon 9 launches data with BeautifulSoup
 - Extract a Falcon9 launch records HTML table from Wikipedia
 - Parse the table and convert it to a Pandas data frame
- Here is GitHub URL of the completed web scraping notebook: https://github.com/Mimicorn/Space-

Repo/blob/main/notebooks/jupyter-labs-webscraping.ipynb

Data Wrangling

Key phrases of data wrangling process

- Replace missing value with the mean
- Convert outcomes into training class labels

Here is the GitHub URL of my completed data wrangling related notebooks:

https://github.com/Mimicorn/Space-
https://github.com/Mimicorn/Space-
Repo/blob/main/notebooks/labs-jupyter-spacex-Data%20wrangling.ipynb">https://github.com/Mimicorn/Space-

Flow chart of converting outcomes into training class

EDA with Data Visualization

- Scatter plot of the FlightNumber vs. PayloadMass to indicate how they affect the launch outcome
- Scatter chart of the FlightNumber vs. Launch Site to visualize how they affect the launch outcome
- Scatter chart of the Payload Mass vs. Launch Site to indicate how they affect the launch outcome
- Bar chart for the success rate of each orbit site
- Scatter plot of the FlightNumber vs. Orbit to visualize how they affect the launch outcome
- Scatter chart of the Payload Mass vs. Orbit to indicate how they affect the launch outcome
- Line chart of the success rate over years trend

This is the GitHub URL of my completed EDA with data visualization notebook: https://github.com/Mimicorn/Space-Repo/blob/main/notebooks/edadataviz.ipynb

EDA with SQL

- Display the names of the unique launch sites in the space mission
- Display five records where launch sites begin with the string "CCA"
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was acheived
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List all the booster_versions that have carried the maximum payload mass
- List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015
- Rank the count of landing outcomes between the date 2010-06-04 and 2017-03-20, in descending order

Here is the GitHub URL of my completed EDA with SQL notebook: https://github.com/Mimicorn/Space-Repo/blob/main/notebooks/jupyter-labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- Create an orange circle using folium. Circle to highlight NASA Johnson Space Center and add a marker object as a popup label showing its name
- Generate circles to highlight each SpaceX launch site and add markers as popup labels for them
- Create a marker cluster object to simplify a map containing many markers at the same coordinate
- Create marker object for each launch to indicate if the launch was successful or failed
- Add a mouse position object to get coordinate for a mouse over a point on the map
- Create a polyline object to draw a line between a launch site and a selected point
- Add a distance marker to indicate the distance between a launch site and a selected point

Here is the GitHub URL of my completed interactive map with Folium map: https://github.com/Mimicorn/Space-
Repo/blob/main/notebooks/lab_jupyter_launch_site_location.ipynb

Build a Dashboard with Plotly Dash

- Create an interactive pie chart to visualize the successful launch rates both among all the launch sites and for a specific launch site
- Create an interactive scatter chart to indicate the correlation between Payload Mass and success for all launch sites or the choosing launch site

Here is the GitHub URL of my completed Plotly Dash lab: https://github.com/Mimicorn/Space-
Repo/blob/main/python/spacex_dash_app.py

Predictive Analysis (Classification)

Key phrases of model development

- Create a column for the class y
- Standardize the data X
- Split the data into training set and testing set
- Create a cross-validation GridSearchCV object for different machine learning models
- Fit the GridSearchCV object with the training data and find the best hyperparameters and the accuracy score for each model
- Compare the accuracy score among the four classification models and find the best one

Find the best score among the models

Here is the GitHub URL of my completed predictive analysis lab:

https://github.com/Mimicorn/Space-

Repo/blob/main/notebooks/SpaceX Machine%20Learning%20Prediction Part 5.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

 Scatter plot of Flight Number vs. Launch Site with Class value 1 as a successful landing and 0 as a failed landing

Payload vs. Launch Site

Scatter plot
 of Payload vs. Launch
 Site with Class value 1
 indicating a successful
 landing and 0
 indicating a failed
 landing

Success Rate vs. Orbit Type

Bar chart
 visualizing the
 relationship
 between success
 rate of each orbit
 type

Flight Number vs. Orbit Type

 Scatter chart to visualize the relationship between Flight number and Orbit type

Payload vs. Orbit Type

 Scatter point chart indicating the relationship between Payload Mass and Orbit type

Launch Success Yearly Trend

 Line chart of yearly average success rate trend

All Launch Site Names

• Find the names of the unique launch sites using DISTINCT keyword

```
In [18]: %sql SELECT DISTINCT "Launch_Site" FROM SPACEXTABLE
         * sqlite:///my_data1.db
        Done.
Out[18]:
           Launch_Site
           CCAFS LC-40
           VAFB SLC-4E
            KSC LC-39A
          CCAFS SLC-40
```

Launch Site Names Begin with 'CCA'

Five records where launch sites begin with `CCA`

```
In [19]: %sql Select * from SPACEXTABLE Where "Launch_site" like "CCA%" Limit 5
```

ıt[19]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

The total payload carried by boosters from NASA using SUM() function

Average Payload Mass by F9 v1.1

 Calculate the average payload mass carried by booster version F9 v1.1 using AVG() function

First Successful Ground Landing Date

• Find the dates of the first successful landing outcome on ground pad by MIN() function

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

```
In [32]:
          %%sql Select Booster_Version from SPACEXTABLE Where Landing_Outcome = 'Success (drone ship)'
               and PAYLOAD_MASS__KG_ between 4000 and 6000
         * sqlite:///my data1.db
        Done.
Out[32]: Booster_Version
              F9 FT B1022
              F9 FT B1026
             F9 FT B1021.2
             F9 FT B1031.2
```

Total Number of Successful and Failure Mission Outcomes

Calculate the total number of successful and failure mission outcome

Boosters Carried Maximum Payload

• List the names of the booster which have carried the maximum payload mass

```
Out[38]: Booster_Version
              F9 B5 B1048.4
              F9 B5 B1049.4
              F9 B5 B1051.3
              F9 B5 B1056.4
              F9 B5 B1048.5
              F9 B5 B1051.4
              F9 B5 B1049.5
              F9 B5 B1060.2
              F9 B5 B1058.3
              F9 B5 B1051.6
              F9 B5 B1060.3
              F9 B5 B1049.7
```

2015 Launch Records

 List the failed landing_outcomes in drone ship, their booster versions, and launch site names for year 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

• SQL query:

Select Landing_Outcome, **count**(*) **as** Count_Of_Landing_Outcome **from** SPACEXTABLE **Where** Date **between** '2010-06-04' **and** '2017-03-20' **Group by** Landing_Outcome **Order by** Count_Of_Landing_Outcome **Desc**

• Output result:

Landing_Outcome	Count_Of_Landing_Outcome		
No attempt	10		
Success (drone ship)	5		
Failure (drone ship)	5		
Success (ground pad)	3		
Controlled (ocean)	3		
Uncontrolled (ocean)	2		
Failure (parachute)	2		
Precluded (drone ship)	1		

All Launch Sites Folium Map

• The screenshot shows totally four launch sites are marked on a Folium map with three sites located close to each other in Florida

The Successful/Failed Launches for CCAFS SLC-40 on the Map

 The following screenshot shows 3 successful launches (green) and 4 failed launches (red) for the site of CCAFS SLC-40 by marker cluster

The Launch Site CCAFS SLC-40 to its Proximities on the Map

 The screenshot shows the launch site CCAFS SLC-40 to its proximities such as railway, highway, coastline, with distance calculated and displayed by Folium.Polyline and Folium.Marker

Pie Chart of Total Successful Rates for All Launch Sites

• The screenshot indicates the launch success rates for all four sites in a pie chart. The launch site can be chosen from the dropdown object.

Pie Chart of the Launch Site with the Highest Launch Success Ratio

• The screenshot indicates KSC LC-39A with the highest launch success ratio. The launch site can be chosen from the dropdown object.

Scatter Plot of Payload vs. Launch Outcome for All Sites

 The screenshot indicates the correlation between the Payload and launch Outcome for all sites with color points to distinguish different booster versions. The range slider is used to choose the range of the payload mass. The booster version FT has the highest success rate for the payload range from Okg to 100000kg.

Classification Accuracy

• The screenshot is a bar chart to visualize the built model accuracy for all built classification models

From the bar chart, we can tell the Decision Tree model has the highest accuracy score.

Confusion Matrix

• Confusion matrix of the best performing model: Decision Tree model

True Positive: 12

False Positive: 3

True Negative: 0

False Negative: 3

Conclusions

- The best performing model is decision tree model
- The accuracy score of the decision tree model is 0.8768
- Precision for successful landing outcome is 0.8 (12/(12+3)=0.8)
- Recall for successful landing outcome is 0.8 (12/(12+3)=0.8)

Appendix

Dataset csv Files:

- https://github.com/Mimicorn/Space-Repo/blob/main/data/Spacex.csv
- https://github.com/Mimicorn/Space-Repo/blob/main/data/dataset_part_1.csv
- https://github.com/Mimicorn/Space-Repo/blob/main/data/dataset_part_2.csv
- https://github.com/Mimicorn/Space-Repo/blob/main/data/dataset_part_3.csv
- https://github.com/Mimicorn/Space-Repo/blob/main/data/spacex_launch_dash.csv
- https://github.com/Mimicorn/Space-Repo/blob/main/data/spacex_web_scraped.csv

Jupyter Notebooks:

- https://github.com/Mimicorn/Space-Repo/tree/main/notebooks
- Python Files:
 - https://github.com/Mimicorn/Space-Repo/blob/main/python/spacex_dash_app.py

