Московский авиационный институт (национальный исследовательский университет) Институт №3.

«Системы управления, информатика и электроэнергетика»

Кафедра №304

«Автоматизированные системы обработки информации и управления»
Отчет по тестам
по учебной дисциплине
«Численные методы»

Группа М30-207Б Выполнил: Гордеев Н.М.

> Принял: Яганов В.М.

ТЕСТЫ по курсу "Численные методы"

1. Определить корень уравнения методом половинного деления с точностью $\varepsilon = 0{,}001$

```
double Fx20(double x) { return 3 * x + 4 * x * x * x - 12 * x * x - 5; }
cout << "\t\t\t\" 1 " << endl;</pre>
       cout << "Ответ: x = " << ПоловинноеДеление(0, 3, Fx20, 0.001) << endl;
double ПоловинноеДеление(double a1, double b1, double (*F)(double), double Eps) {
       const int n = 5;
       int i = 0;
       double N[n];
       char** s;
       s = new char* [n];
       for (int i = 0; i < n; i++)</pre>
              s[i] = new char[15];
       char s0[15] = { "}
       char s1[15] = { "
                                          };
                               а
                                       " ;
       char s2[15] = { "
                               b
       char s3[15] = { "}
                               Х
                                          };
       char s4[15] = { "
                             f(x)
       s[0] = \bar{s0};
       s[1] = s1;
       s[2] = s2;
       s[3] = s3;
       s[4] = s4;
       N_tabl(n, s);
       N[0] = i;
       N[1] = a1;
       N[2] = b1;
       N[3] = a1;
       N[4] = F(a1);
       double a = a1;
       double b = b1;
       double x = a;
       if (F(a) < F(b)) \{ a = b; b = x; x = a; \}
       while (abs(F(x)) > Eps)
       {
              C_tabl(n, N);
              i++;
              if (F(x) < 0)
                     b = x;
              else
                     a = x;
              x = (a + b) / 2;
              N[0] = i;
              N[1] = a;
              N[2] = b;
              N[3] = x;
              N[4] = F(x);
```

```
}
K_tabl(n, N);
return x;
}
```

Консоль отладки Microsoft Visual Studio

	№ 1			
i	а	b	х	f(x)
0	0	3	0	-5
1	3	0	1.5	-14
2	3	1.5	2.25	-13.4375
3	3	2.25	2.625	-7.46094
4	3	2.625	2.8125	-2.49512
5	3	2.8125	2.90625	0.551392
6	2.90625	2.8125	2.85938	-1.02089
7	2.90625	2.85938	2.88281	-0.24716
8	2.90625	2.88281	2.89453	0.148994
9	2.89453	2.88281	2.88867	-0.0498612
10	2.89453	2.88867	2.8916	0.0493714
11	2.8916	2.88867	2.89014	-0.000293568

Ответ: х = 2.89014

2. Решить уравнение методом Ньютона и хорд с точностью $\varepsilon = 0.001$.

```
double Fx21(double x) { return x * x * x - 3 * x * x + 9 * x - 15; }
double Fx31(double x) { return 3*x*x - 6*x + 9; }
       cout << "\n\t\t\t№ 2.1 " << endl;</pre>
       cout << "Ответ: x = " << Ньютон(0, Fx21, Fx31, 0.001) << endl;
       cout << "\n\t\t\" 2.2 " << endl;
       cout << "Ответ: x = " << МетодХорд(2, 3, Fx21, 0.001) << endl;
double Ньютон(double x1, double (*F)(double), double (*F1)(double), double Eps) {
       const int n = 5;
       int i = 0;
       double N[n];
       char** s;
       s = new char* [n];
       for (int i = 0; i < n; i++)</pre>
              s[i] = new char[15];
       char s0[15] = { "
                                        " };
                              i
      char s1[15] = { "}
                              xn
                                          };
      char s2[15] = { "
char s3[15] = { "
char s4[15] = { "
                                        " j;
                              f(x)
                                        " ĵ;
                             f1(x)
                              xn+1
       s[0] = s0;
       s[1] = s1;
       s[2] = s2;
       s[3] = s3;
       s[4] = s4;
       N tabl(n, s);
       N[0] = i;
       N[1] = x1;
       N[2] = F(x1);
       N[3] = F1(x1);
       N[4] = x1 - F(x1) / F1(x1);
       double x = x1;
       while (abs(F(x)) > Eps)
       {
              C_tabl(n, N);
              i++;
              x = x - F(x) / F1(x);
              N[0] = i;
              N[1] = x;
              N[2] = F(x);
              N[3] = F1(x);
              N[4] = x - F(x) / F1(x);
       K_tabl(n, N);
       return x;
}
double MeтoдXopд(double a1, double b1, double (*F)(double), double Eps) {
       const int n = 5;
```

```
int i = 0;
        double N[n];
        char** s;
        s = new char* [n];
        for (int i = 0; i < n; i++)</pre>
                s[i] = new char[15];
                                             " };
        char s0[15] = { "
       char su[15] = { "
char s1[15] = { "
char s2[15] = { "
char s3[15] = { "
char s4[15] = { "
s[0] = s0;
                                                };
                                    b
                                                };
                                                };
                                    Х
                                 f(x)
                                                };
        s[1] = s1;
s[2] = s2;
        s[3] = s3;
        s[4] = s4;
        N_tabl(n, s);
        N[0] = i;
        N[1] = a1;
        N[2] = b1;
        N[3] = a1;
        N[4] = F(a1);
        double a = a1;
        double b = b1;
        double x = b;
        bool t = 0;
        if (a < b) { b = a; a = x; x = b; }
        if (F(a) > 0) t = 1;
        while (abs(F(x)) > Eps)
        {
                C_tabl(n, N);
                i++;
                if(t)
                        x = x - F(x) / (F(x) - F(a)) * (x - a);
                else
                        x = x - F(x) / (F(b) - F(x)) * (b - x);
                N[0] = i;
                N[1] = a;
                N[2] = b;
                N[3] = x;
                N[4] = F(x);
        K_tabl(n, N);
        return x;
}
```

	№ 2.1				
i	xn	f(x)	f1(x)	xn+1	
0	0	-15	9	1.66667	
1	1.66667	-3.7037	7.33333	2.17172	
2	2.17172	0.638978	10.1188	2.10857	
3	2.10857	0.0137654	9.68678	2.10715	
4	2.10715	6.71301e-06	9.67733	2.10715	

Ответ: x = 2.10715

№ 2.2

i	а	b	х	f(x)
0	2	3	2	-1
1	3	2	2.07692	-0.289486
2	3	2	2.09867	-0.0818341
3	3	2	2.10477	-0.0229734
4	3	2	2.10648	-0.00643668
5	3	2	2.10696	-0.00180243
6	3	2	2.1071	-0.000504647

Ответ: x = 2.1071

3. Решить систему x = Cx + d методом простой итерации и Зейделя с точностью $\epsilon = 0.001$

			С								
1	2	0	0,13	-0,4	0,2	$\left(-1\right)$					
		0,25	0	-0,14	0,2	-4					
		0,3	-0,1	0	0,3	2					
		0,3	-0,4	-0,2	0	$\left(0,1\right)$					

```
const int m = 4;
double c[m][m] = \{ 0,
                              0.13, -0.4, 0.2,
                                     0.25, 0, -0.14, 0.2,
0.3, -0.1, 0, 0.3,
0.3, -0.4, -0.2, 0 };
double d[m] = \{ -1, -4, 2, 0.1 \};
       cout << "\n№ 3.1 " << endl;
       double or[m];
       ПростойИтерацииСист(с, d, от, 0.001);
       cout << "OTBET: x = ( ";
       for (int i = 0; i < m; i++)
              cout << or[i] << " ";
       cout <<" )\n";</pre>
       cout << "\n\t\t\t№ 3.2 " << endl;</pre>
       Зойдель(c, d, от, 0.001);
       cout << "OTBET: x = ( ";
       for (int i = 0; i < m; i++)</pre>
               cout << or[i] << " ";
       cout << " )\n";
void ПростойИтерацииСист(double c[m][m], double d[m], double *от, double Eps) {
       double del= Eps*2;
       double f[m] = { 0 };
       bool k = 0;
       double x[m];
       double x2[m];
       for (int i = 0; i < m; i++)</pre>
       {
               x[i] = d[i];
               x2[i] = d[i];
       }
       for (int i = 0; i < m; i++)</pre>
               for (int j = 0; j < m; j++)
                      f[i] += abs(c[i][j]);
       for (int i = 0; i < m; i++)</pre>
               if (f[i] > 1)
                      k = 1;
       if (!k)
               for (int i = 0; i < m; i++)</pre>
                      cout << f[i]<<"\t";</pre>
       for (int i = 0; i < m; i++)</pre>
               f[i] = 0;
       if (k)
```

```
for (int i = 0; i < m; i++)</pre>
                      for (int j = 0; j < m; j++)
                              f[i] += abs(c[j][i]);
       for (int i = 0; i < m; i++)</pre>
               if (f[i] < 1)</pre>
                      k = 0;
       if (k)
               cout << "ошибка\n";
       cout << "\n";</pre>
       cout << "del\n";
for (int i = 0; i < m; i++)</pre>
              printf("%.4f\t", x[i]);
       cout << "\n";</pre>
       while (del > Eps)
       {
              for (int i = 0; i < m; i++)
                      for (int j = 0; j < m; j++)
                             x[i] += c[i][j] * x2[j];
                      x[i] += d[i];
               }
              del = 0;
              for (int i = 0; i < m; i++)</pre>
                      del += abs(x[i] - x2[i]);
                      printf("%.4f\t", x[i]);
                      x2[i] = x[i];
                      x[i] = 0;
              cout << del << "\n";</pre>
       for (int i = 0; i < m; i++)</pre>
              oT[i] = x2[i];
}
void Зойдель(double c[m][m], double d[m], double *oт, double Eps) {
       double del = Eps * 2;
       double f[m] = { 0 };
       bool k = 0;
       double t=0;
       double x[m];
       double x2[m];
       for (int i = 0; i < m; i++)</pre>
              x[i] = d[i];
              x2[i] = d[i];
       for (int i = 0; i < m; i++)</pre>
               for (int j = 0; j < m; j++)</pre>
                     f[i] += abs(c[i][j]);
       for (int i = 0; i < m; i++)</pre>
              if (f[i] > 1)
                      k = 1;
       if (!k)
               for (int i = 0; i < m; i++)</pre>
                      cout << f[i] << "\t";</pre>
       for (int i = 0; i < m; i++)</pre>
              f[i] = 0;
       if (k)
              for (int i = 0; i < m; i++)</pre>
```

```
for (int j = 0; j < m; j++)
                          f[i] += abs(c[j][i]);
      for (int i = 0; i < m; i++)</pre>
             if (f[i] < 1)</pre>
                   k = 0;
      if (k)
             cout << "ошибка\n";
      cout << "\n";</pre>
      cout << "del\n";</pre>
      cout << "\n";
      while (del > Eps)
      {
             for (int i = 0; i < m; i++)
                    for (int j = 0; j < m; j++)</pre>
                          t += c[i][j] * x[j];
                    x[i] = t + d[i];
                    t = 0;
             }
             del = 0;
             for (int i = 0; i < m; i++)</pre>
                    del += abs(x[i] - x2[i]);
                    printf("%.4f\t", x[i]);
                    x2[i] = x[i];
             cout << del << "\n";</pre>
      for (int i = 0; i < m; i++)
             or[i] = x[i];
}
```

```
№ 3.1
0.73
        0.59
x[0]
        x[1]
                 x[2]
                          x[3]
                                   del
-1,0000 -4,0000 2,0000
                          0,1000
-3,3000 -8,5100 4,1300
                          1,1000
-3,5383 -5,1832 2,1910
                          1,6880
                                  6.0921
-2,2126 -4,8537 1,9632
                         0,6736
                                  2.89735
-2,2816 -4,6933 2,0237
                         0,9851 0.601267
-2,2226 -4,6567 2,0804
                         0,8881
                                  0.249226
-2,2599 -4,6693 2,0653 0,8798 0.0732388
-2,2572 -4,6782 2,0529
                         0,8767
                                  0.0271804
-2,2540 -4,6764 2,0537 0,8835 0.0125898
-2,2527 -4,6743 2,0565 0,8836 0.0062798
                         0,8836 0.00627987
-2,2535 -4,6744 2,0567 0,8826 0.00211288
-2,2538 -4,6748 2,0562 0,8823 0.00155651
-2,2537 -4,6749 2,0560 0,8825 0.000482863
OTBET: X = ( -2.25372 -4.67485 2.05603 0.88254 )
                          № 3.2
0.73
        0.59
                 0.7
                          0.9
x[0]
        x[1]
                x[2]
                          x[3]
                                   del
-1,0000 -4,0000 2,0000
                          0,1000
-2,3000 -4,8350 1,8235
-2,1621 -4,6000 2,1052
                          0,9793
                                  3.1908
                          0,8703
                                  0.763593
-2,2660 -4,6872 2,0500
                         0,8851 0.260989
-2,2523 -4,6731 2,0571 0,8821 0.0378243
-2,2539 -4,6751 2,0560 0,8827 0.00531176
-2,2536 -4,6747 2,0562 0,8826 0.000987062
OTBET: X = ( -2.25361 -4.67471 2.05618 0.882563 )
```

4. Решить систему методом простой итерации и Ньютона с точностью $\varepsilon = 0,001$.

$$\begin{cases} \cos(y-1) + x = 0.5 \\ y - \cos(x) = 3 \end{cases}$$

```
double Fx22(double x, double y) { return 0.5-cos(y-1); }
double Fx32(double x, double y) { return cos(x)+3; }
double Fx23(double x, double y) { return 0.5 - cos(y - 1) - x; }
double Fx33(double x, double y) { return cos(x) + 3 - y; }
double Fx231(double x, double y) { return 1 + sin(x) * sin(y - 1); }
double Fx232(double x, double y) { return cos(y - 1) + x - 0.5 + sin(y - 1) * (y - cos(x))
- 3); }
double Fx233(double x, double y) { return y - cos(x) - 3 - sin(x) * (cos(y - 1) + x -
0.5); }
double x = 1;
      double y = 3;
      cout << "\n\t\t\t№ 4.1 " << endl;</pre>
      ПростойИтерацииСистНелин(x, y, Fx22, Fx32, 0.001);
      cout << "OTBET: (x;y) = (" << x << ";" << y << ") \tf1(x;y) = " << Fx23(x, y) <<
"\tf2(x;y) = " << Fx33(x, y) << endl;
      x = 1; y = 3;
      cout << "\n\t\t\" 4.2 " << endl;</pre>
      Ньютон(x, y, Fx231, Fx232, Fx233, 0.001);
      cout << "OTBET: (x;y) = (" << x << ";" << y << ") \tf1(x;y) = " << Fx23(x, y) <<
"\tf2(x;y) = " << Fx33(x, y) << endl;
void ПростойИтерацииСистНелин(double &x, double &y, double (*F)(double, double), double
(*F2)(double, double), double Eps) {
       const int n = 4;
      int i = 0;
      double N[n];
      char** s;
      s = new char* [n];
      for (int i = 0; i < n; i++)
             s[i] = new char[15];
      char s0[15] = { "
                              i
                                        };
      char s1[15] = { "
                                      " };
                              Χ
                                      " };
      char s2[15] = { "}
                              У
      char s3[15] = { "
                             del
      s[0] = s0;
      s[1] = s1;
      s[2] = s2;
      s[3] = s3;
      N_tabl(n, s);
      N[0] = i;
      N[1] = x;
      N[2] = y;
      double x = x;
      double y = y;
      double t1 = x-1;
      double t2 = y-1;
      N[3] = abs(t1 - x) + abs(t2 - y);
      while (abs(t1-x) + abs(t2 - y) > Eps)
```

```
{
             C_tabl(n, N);
             t1 = x;
             t2 = y;
             i++;
             x = F(x, y);
             y = F2(x,y);
             N[0] = i;
             N[1] = x;
             N[2] = y;
             N[3] = abs(t1 - x) + abs(t2 - y);
      K_tabl(n, N);
      x = x; y = y;
}
void Ньютон(double& x, double& y, double (*F1)(double, double), double (*F2)(double,
double), double (*F3)(double, double), double Eps) {
      const int n = 7;
       int i = 0;
      double N[n];
      char** s;
       s = new char* [n];
      for (int i = 0; i < n; i++)</pre>
             s[i] = new char[15];
                                       " };
      char s0[15] = { "}
                              i
                                      " j;
      char s1[15] = { "}
                              Χ
                                      " ĵ;
      char s2[15] = { "}
                              У
                                      " ĵ;
      char s3[15] = { "
                              D
                                      " ĵ;
      char s4[15] = { "
                              Dx
                                      " };
      char s5[15] = { "
                              Dy
                                      " ĵ;
      char s6[15] = { "
                             del
      s[0] = s0;
      s[1] = s1;
      s[2] = s2;
      s[3] = s3;
      s[4] = s4;
      s[5] = s5;
      s[6] = s6;
      N_tabl(n, s);
      N[0] = i;
      N[1] = x;
      N[2] = y;
      N[3] = F1(x,y);
      N[4] = F2(x, y);
      N[5] = F3(x, y);
      double x = x;
      double y = y;
      double t1 = x - 1;
      double t2 = y - 1;
      N[6] = abs(t1 - x) + abs(t2 - y);
      while (abs(t1 - x) + abs(t2 - y) > Eps)
             C_tabl(n, N);
             t1 = x;
             t2 = y;
             i++;
             x = t1 - F2(x, y) / F1(x, y);
             y = t2 - F3(t1, y) / F1(t1, y);
             N[0] = i;
```

```
N[1] = x;
N[2] = y;
N[3] = F1(x, y);
N[4] = F2(x, y);
N[5] = F3(x, y);
N[6] = abs(t1 - x) + abs(t2 - y);

}
K_tabl(n, N);
x = x; y = y;
}
```

	№ 4.1		
i	х	у	del
0	1	3	2
1	0.916147	3.60888	0.692734
2	1.36143	3.20784	0.846331
3	1.09482	3.45821	0.516984
4	1.27544	3.29108	0.347746
5	1.1596	3.39971	0.224467
6	1.2372	3.32745	0.149857
7	1.18649	3.37492	0.0981753
8	1.22022	3.34344	0.065208
9	1.19803	3.36419	0.0429451
10	1.21274	3.35045	0.0284492
11	1.20304	3.35953	0.0187756
12	1.20946	3.35353	0.0124228
13	1.20522	3.35749	0.00820586
14	1.20802	3.35487	0.00542636
15	1.20617	3.3566	0.00358574
16	1.20739	3.35546	0.0023706
17	1.20658	3.35621	0.00156675
18	1.20712	3.35571	0.00103569
19	1.20677	3.35604	0.000684548
ет: (х;у) =	(1.20677;3.35604	4) f1(x;)	/) = 0.000233908
	NS V O		

№ 4.2 i D х у Dx Dy del 0 1 1.76515 -0.407442 -0.610862 2 1 1.23083 3.34607 1.67335 0.0399219 0.576895 -0.0165363 2 1.20697 3.35595 1.66098 0.000102916 6.49824e-05 0.0337396 3 1.20691 3.35591 1.66099 1.02419e-09 1.7754e-10 0.000101084 Ответ: (х;у) = (1.20691;3.35591) f1(x;y) = -5.4101e-10f2(x;y) = -6.83125e-10

5. Найти собственные значения матрицы: $A = \begin{bmatrix} 1 & 2 & \alpha \\ 2 & 3 & 4 \\ \alpha & 4 & 5 \end{bmatrix}$

$$\alpha = 2;$$

```
const int m1 = 3;
double c1[m1][m1] = \{ 1, 2, 2, \}
                      2, 3, 4,
                      2, 4, 5, };
double d1[m1] = { 1,1,1 };
cout << "\n\t\t\Nº 5 (Метод вращения) " << endl;
      СобствЧислаВращение(c1, d1, 0.001);
       cout << "OTBET: (a1;a2;a3) = (" << d1[0] << ";" << d1[1] << ";" << d1[2] << ")" <<
endl;
void СобствЧислаВращение(double c[m1][m1], double* d, double Eps) {
       double c2[m1][m1];
       double H[m1][m1];
       double t[m1][m1];
       double t2[m1][m1];
       double fi;
      double max = 1.1*Eps;
       int u = 0;
       int xu = 1;
       int in = 0;
      for (int i = 0; i < m1; i++)
              for (int j = 0; j < m1; j++)
                     c2[i][j] = c[i][j];
      for (int i = 0; i < m1 - 1; i++)</pre>
              for (int j = 0; j < m1; j++)
              {
                     while (i >= j)
                                          j++;
                     if (c2[i][j] > max)
                            max = c2[i][j];
                            и = i;
                            жи = j;
                     }
              }
      while (max > Eps)
              in++;
              for (int i = 0; i < m1; i++)</pre>
                     for (int j = 0; j < m1; j++)
                            H[i][j] = 0;
                            t[i][j] = 0;
                            t2[i][j] = 0;
              for (int i = 0; i < m1; i++) H[i][i] = 1;</pre>
              fi = 0.5 * atan(2 * c2[u][xu] / (c2[u][u] - c2[xu][xu]));
```

```
cout << "\nfi = " << fi << endl;</pre>
      H[u][u] = cos(fi);
      H[xu][xu] = cos(fi);
      H[u][xu] = -\sin(fi);
      H[жи][и] = sin(fi);
       cout << "max = " << max << endl;</pre>
       cout <<"H["<<in<<"]"<< endl;
       for (int i = 0; i < m1; i++)</pre>
              for (int j = 0; j < m1; j++)
                     cout << H[i][j] <<" ";</pre>
              cout << endl;</pre>
      for (int i = 0; i < m1; i++)
              t[i][j] += H[k][i] * c2[k][j];
      for (int i = 0; i < m1; i++)
              for (int j = 0; j < m1; j++)</pre>
                     for (int k = 0; k < m1; k++)
                            t2[i][j] += t[i][k] * H[k][j];
      for (int i = 0; i < m1; i++)
              for (int j = 0; j < m1; j++)
                     c2[i][j] = t2[i][j];
       cout << "A[" << in << "]" << endl;</pre>
      for (int i = 0; i < m1; i++)</pre>
              for (int j = 0; j < m1; j++)</pre>
                     cout << c2[i][j] << " ";</pre>
              cout << endl;</pre>
      }
      max = -100;
      for (int i = 0; i < m1 - 1; i++)
              for (int j = 0; j < m1; j++)
                     while (i >= j)
                     if (c2[i][j] > max)
                     {
                            max = c2[i][j];
                            и = i;
                            жи = j;
                     }
              }
for (int i = 0; i < m1; i++)
      d[i] = c2[i][i];
```

}

Консоль отладки Microsoft Visual Studio № 5 (Метод вращения) 0.0705399 0.0885491 9.09644 fi = -0.662909max = 4fi = -0.00933987H[1] max = 0.0885491100 H[4] 0 0.788205 0.615412 100 0 -0.615412 0.788205 0 0.999956 0.00933973 0 -0.00933973 0.999956 A[1] A[4] 1 0.345586 2.80724 0.286772 -0.000658824 0.0705368 0.345586 -0.123106 -7.63278e-16 -0.000658824 -0.384042 7.80626e-18 2.80724 -4.44089e-16 8.12311 0.0705368 3.46945e-16 9.09727 fi = -0.333754fi = -0.00800531max = 2.80724max = 0.0705368H[2] H[5] 0.944819 0 0.327592 0.999968 0 0.00800523 0 1 0 0 1 0 -0.00800523 0 0.999968 -0.327592 0 0.944819 A[5] A[2] 0.286208 -0.000658803 -4.33681e-19 0.0266627 0.326517 1.59595e-16 -0.000658803 -0.384042 -5.27403e-06 0.326517 -0.123106 0.113211 5.55112e-17 -5.27403e-06 9.09783 0 0.113211 9.09644 OTBET: (a1;a2;a3) = (0.286208;-0.384042;9.09783)fi = 0.672676max = 0.326517H[3] 0.782157 -0.623081 0 0.623081 0.782157 0 0 0 1 A[3] 0.286772 -1.38778e-16 0.0705399 2.77556e-17 -0.383215 0.0885491 0.0705399 0.0885491 9.09644

6. По заданным значениям x и y найти прямую $y = a_0 + a_1 x$ и параболу

 $y = a_0 + a_1 x + a_2 x^2$ методом наименьших квадратов. Найти погрешность. Построить прямую и кривую в той же системе координат, где нанесены данные точки.

							Nº 2							
N	1	2	3	4	5	6	7	8	9	10	11	12	13	14
X	0,85	1,60	1,72	1,93	2,61	3,57	4,41	4,79	5,18	5,67	5,84	6,40	7,35	7,42
Y	1,78	1,41	1,44	1,52	1,99	2,77	2,40	2,80	2,83	3,11	3,58	3,75	4,13	3,87

```
double x[14] = \{ 0.85, 1.6, 1.72, 1.93, 2.61, 3.57, 4.41, 4.79, 5.18, 5.67, 5.84, 6.4, 7.35, 7.42 \};
double y[14] = { 1.78,1.41,1.44,1.52,1.99,2.77,2.4, 2.8, 2.83,3.11,3.58,3.75,4.13,3.87 };
double ab[3];
       cout << "\n\t\t\t№ 6.1 " << endl;</pre>
      НаимKвЛин(x, y, ab, 14);
       cout << "OTBET: (a;b) = (" << ab[1] << ";" << ab[0] << ")" << endl;
      cout << "\n\t\t\t№ 6.2 " << endl;</pre>
      НаимКвЛин(x, y, ab, 14,0);
       cout << "OTBET: (a;b;c) = (" << ab[2] << ";" << ab[1] << ";" << ab[0] << ")" <<
endl;
void НаимКвЛин(double* x, double* y, double* a, int k, bool t) {
       double t1 = 0;
       double x = 0;
       double x2 = 0;
       double x3 = 0;
       double x4 = 0;
      double y = 0;
      double xy = 0;
      double x2y = 0;
      for (size t i = 0; i < k; i++)
       {
             x += x[i];
             x2 += x[i] * x[i];
             x3 += x[i] * x[i] * x[i];
             x4 += x[i] * x[i] * x[i] * x[i];
             y += y[i];
             xy += y[i] * x[i];
             x2y += y[i] * x[i] * x[i];
       if (t) {
              a[1] = (k * xy - x * y) / (k * x2 - x * x);
              a[0] = (y - a[1] * x) / k;
             for (size_t i = 0; i < k; i++)</pre>
                    t1 += pow(x[i] * a[1] + a[0] - y[i],2);
                    cout << x[i] << " " << y[i] << " " << x[i] * a[1] + a[0] << " " <<
pow(x[i] * a[1] + a[0] - y[i], 2) << "\n";
       }
       else {
             a[0] = (y * x2 * x4 + x * x3 * x2y + xy * x3 * x2 - x2 * x2 * x2y - x * xy
* x4 - x3 * x3 * y) / (k * x2 * x4 + x * x3 * x2 + x * x3 * x2 - x2 * x2 * x2 - x * x *
x4 - x3 * x3 * k);
             a[1] = (k * xy * x4 + y * x3 * x2 + x * x2y * x2 - x2 * xy * x2 - y * x *
x4 - x3 * x2y * k) / (k * x2 * x4 + x * x3 * x2 + x * x3 * x2 - x2 * x2 * x2 - x * x * x4
- x3 * x3 * k);
```

```
№ 6.1
0.85 1.78 1.27819 0.251813
1.6 1.41 1.58624 0.0310616
1.72 1.44 1.63553 0.0382325
1.93 1.52 1.72179 0.0407176
2.61 1.99 2.00109 0.000122913
3.57 2.77 2.39539 0.14033
4.41 2.4 2.74041 0.11588
4.79 2.8 2.89649 0.00931065
5.18 2.83 3.05668 0.0513833
5.67 3.11 3.25794 0.0218861
5.84 3.58 3.32776 0.0636226
6.4 3.75 3.55778 0.0369496
7.35 4.13 3.94798 0.0331325
7.42 3.87 3.97673 0.0113909
Погрешность = 0.245798
Ответ: (a;b) = (0.410736;0.929065)
                        № 6.2
0.85 1.78 1.41061 0.136447
1.6 1.41 1.62789 0.0474762
1.72 1.44 1.66481 0.0505376
1.93 1.52 1.73084 0.0444517
2.61 1.99 1.95712 0.00108134
3.57 2.77 2.30901 0.212512
4.41 2.4 2.64807 0.0615384
4.79 2.8 2.81101 0.000121116
5.18 2.83 2.98442 0.0238444
5.67 3.11 3.21118 0.0102366
5.84 3.58 3.29216 0.082852
6.4 3.75 3.56735 0.0333604
7.35 4.13 4.06375 0.00438885
7.42 3.87 4.1018 0.053731
Погрешность = 0.233388
Ответ: (a;b;c) = (0.0206038;0.239224;1.19239)
```

Прямая и кривая, построенные в той же системе координат, где нанесены данные точки.

1) Заданы значения функции f(x) в узлах x_i , получающиеся делением отрезка $\begin{bmatrix} 1,2 \end{bmatrix}$ на 5 частей. Найти значения функции f(x) при $x_1=1,1$ и $x_2=2,1$ с помощью интерполяционных формул Ньютона.

Xi	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0,1	1,0	1,1	0,9	0,9	0,8	1,1	1,0	1,2	1,2	1,1	0,8	0,8	0,8	1,1
1,2	2,1	2,2	2,0	1,9	2,0	2,2	2,1	1,8	2,0	1,9	2,0	2,2	1,8	2,2
1,4	2,9	3,2	3,0	3,2	2,9	3,2	3,1	3,2	3,0	3,2	2,8	2,9	2,9	3,0
1,6	3,8	4,2	3,8	3,8	4,2	4,2	3,8	4,1	3,8	3,8	4,0	4,0	4,0	4,1
1,8	5,2	5,2	5,1	5,1	5,2	5,1	5,2	5,2	5,0	4,9	5,2	5,2	4,9	4,9
2,0	5,9	6,0	5,8	6,1	5,8	5,9	6,2	6,1	6,1	5,8	6,0	5,8	6,1	5,9

2) Заданы значения y_i функции f(x) в точках x_i . Найти значение функции f(x) при $x=x^*$. Задачу решить с помощью интерполяционного многочлена Лагранжа.

	1	- :	2		3		4		5	(6	,	7
X	у	X	У	X	у	X	У	X	У	х	у	X	У
0	11	0	11	0	11	0	11	0	11	0	11	0	11
2	13	1	12	2	12	2	12	1	12	2	12	2	10
3	13	3	13	4	12	3	14	3	13	4	11	3	10
5	14	5	14	5	13	5	15	5	14	5	10	5	12
							=1						

```
const int m2 = 4;
double x1[m2] = { 0, 1, 3, 5 };
double y1[m2] = { 11,12,13,14 };
const int m3 = 6;
double x2[m3] = { 1, 1.2, 1.4, 1.6, 1.8, 2 };
double y2[m3] = \{ 1.1, 2.2, 3.2, 4.2, 5.2, 6 \};
double ab2[m3];
      cout << "\n\t\t\t\" 7.1.1 " << endl;</pre>
      cout << "Ответ: y(1.1) = " << ИнтерполяцияНьютон(x2, y2, ab2, m3, 1.1) << endl;
      cout << "\n\t\t\tNº 7.1.2 " << endl;</pre>
      cout << "Ответ: y(2) = " << ИнтерполяцияНьютон(x2, y2, ab2, m3, 2) << endl;
      double ab3[m2];
      cout << "\n\t\t\t№ 7.2 " << endl;</pre>
      cout << "Ответ: y(2.1) = " << ИнтерполяцияЛогранж(x1, y1, ab3, m2, 2.1) << endl;
double Px(double* x, double* a, int k, double t)
      double S = 0;
      double P = 1;
      for (size_t i = 0; i < k; i++)</pre>
             S = S + a[i]*P;
             P = 1;
      }
      return S;
double ИнтерполяцияНьютон(double* x, double* y, double* a, int k, double t) {
      const int n = 5;
      double N[n];
```

```
char** s;
       s = new char* [n];
       for (int i = 0; i < n; i++)</pre>
              s[i] = new char[15];
                                        " };
       char s0[15] = { "}
       char s1[15] = { "
                               Х
                                          };
                                        " };
       char s2[15] = { "}
                               У
      char s3[15] = { "}
                                          };
                             P(xi)
      char s4[15] = { "
s[0] = s0;
                               a
                                          };
       s[1] = s1;
       s[2] = s2;
       s[3] = s3;
       s[4] = s4;
       N_tabl(n, s);
       N[0] = 0;
       N[1] = x[0];
       N[2] = y[0];
       N[3] = Px(x, a, 0, x[0]);
       N[4] = y[0];
       double S = 0;
       double P = 1;
       for (size_t i = 0; i < k; i++)</pre>
              a[i] = 0;
       for (size_t i = 0; i < k; i++)</pre>
              C_tabl(n, N);
              for (size_t j = 0; j < i; j++)</pre>
                     P = P * (x[i] - x[j]);
              a[i] = (y[i] - Px(x, a, i, x[i])) / P;
              P = 1;
              N[0] = i;
              N[1] = x[i];
              N[2] = y[i];
              N[3] = Px(x, a, i, x[i]);
              N[4] = a[i];
       K_tabl(n, N);
       return Px(x, a, k, t);
}
double ИнтерполяцияЛогранж(double* x, double* y, double* a, int k, double t) {
       double S = 0;
       double P = 1;
       for (size t i = 0; i < k; i++)
       {
              for (size_t j = 0; j < k; j++)</pre>
                     if (i != j)
                             P *= (t - x[j]) / (x[i] - x[j]);
              cout << "L" << i << "(" << t << ") = " << P << " ";
              S += y[i] * P;
              P = 1;
       }
       cout << "\n";</pre>
       return S;
}
```

	№ 7.1.1									
i	х	у	P(xi)	а						
0	1	1.1	0	1.1						
0	1	1.1	0	1.1						
1	1.2	2.2	1.1	5.5						
2	1.4	3.2	3.3	-1.25						
3	1.6	4.2	4.1	2.08333						
4	1.8	5.2	5.3	-2.60417						
5	2	6	6.1	-2.60417						

Ответ: у(1.1) = 1.66992

№ 7.1.2

i	х	у	P(xi)	а
0	1	1.1	0	1.1
0	1	1.1	0	1.1
1	1.2	2.2	1.1	5.5
2	1.4	3.2	3.3	-1.25
3	1.6	4.2	4.1	2.08333
4	1.8	5.2	5.3	-2.60417
5	2	6	6.1	-2.60417

Ответ: y(2) = 6

№ 7.2

L0(2.1) = -0.1914 L1(2.1) = 0.685125 L2(2.1) = 0.55825 L3(2.1) = -0.051975 OTBET: y(2.1) = 12.6457

8. Вычислить определённый интеграл с точностью $\varepsilon = 0.01$ методом Симпсона.


```
double Fx24(double x) { return (sin(2 * x) + pow(2.7182818284, -x)) / x; }
cout << "\n\t\t\" 8 " << endl;
       cout << "Ответ: " << ИнтегралСимпсон(1, 3, Fx24, 0.01) << endl;
double ИнтегралСимпсон(double a, double b, double (*F)(double), double Eps) {
       const int n = 3;
       int i = 0;
       double N[n];
       char** s;
       s = new char* [n];
       for (int i = 0; i < n; i++)</pre>
              s[i] = new char[15];
                                        " };
" };
" };
       char s0[15] = { "
                               i
       char s1[15] = { "
char s2[15] = { "
                               Χ
                             f(x)
       s[0] = s0;
       s[1] = s1;
       s[2] = s2;
       N[0] = i;
       N[1] = a;
       N[2] = F(a);
       double del;
       double l=100;
       double 12=0;
       while (abs(1-12)/15 > Eps)
       {
              12 = 1;
              1 = 0;
              i++;
              del = (b - a) / double(2 * i);
              cout << "Шаг = " << del << " Число интервалов = " << i * 2 << endl;
              N_tabl(n, s);
              for (int j = 0; j <= 2*i; j++)</pre>
              {
                     if(j>0)
                     C_tabl(n, N);
                     if (j == 0 || j == 2 * i)
                            1 += F(a + j * del);
                     else if (j % 2 == 1)
                            1 += 4 * F(a + j * del);
                     else
                            1 += 2 * F(a + j * del);
                     N[0] = j;
                     N[1] = a + j * del;
                     N[2] = F(a + j * del);
              K_tabl(n, N);
              1 = del / 3 * 1;
```

				№ 8
Шаг	=	1	Число	интервалов = 2

i	х	f(x)
0	1	1.27718
1	2	-0.310734
2	3	-0.0765428

Интеграл равен -0.0141001 Погрешность 6.66761

Шаг = 0.5 Число интервалов = 4

i	х	f(x)
0	1	1.27718
1	1.5	0.242833
2	2	-0.310734
3	2.5	-0.350736
4	3	-0.0765428

Интеграл равен 0.024593 Погрешность 0.00257954

Ответ: 0.024593

Решить задачу Коши методом Эйлера и Рунге – Кутта.

No	Дифференциальное уравнение	Начальное условие	$[t_0,T]$	N
1	$y'(t) = \sin ty^2$	y(0) = 1	[0,2]	10
2	$y'(t) = \cos t + y^2$	y(0) = 2	[0,2]	10

```
double Fx25(double x, double y) { return cos(x) + y * y; }
cout << "\n\t\tNº 9 " << endl;</pre>
      КошиЭйлер(0, 2, 10, 0, Fx25);
void КошиЭйлер(double a, double b, int N, double y0, double (*F)(double,double)) {
      const int n = 6;
      double NN[n];
      char** s;
      s = new char* [n];
      for (int i = 0; i < n; i++)</pre>
             s[i] = new char[15];
                                      " };
      char s0[15] = { "}
                              i
                                       " };
      char s1[15] = { "
                              X
      char s2[15] = { "}
                                      " };
" };
                            f(x)
      char s3[15] = { "}
                         у_Эйдер
                                      " };
      char s4[15] = { "y_PyH-KyT_2}
      char s5[15] = \{ "y_PyH-KyT_4 \}
      s[0] = s0;
      s[1] = s1;
      s[2] = s2;
      s[3] = s3;
      s[4] = s4;
      s[5] = s5;
      NN[0] = 0;
      NN[1] = a;
      NN[2] = F(a, y0);
      NN[3] = y0;
      NN[4] = y0;
      NN[5] = y0;
      double del;
      double y = y0;
      double t = y0;
      double y2 = y0;
      double y3 = y0;
      double k1 = 0;
      double k2 = 0;
      double k3 = 0;
      double k4 = 0;
      del = (b - a) / double(N);
      cout << "a = " << a << " b = " << b << " War = " << del << " N = " << N << endl;
      N tabl(n, s);
      for (int j = 1; j <= N; j++)
       {
             C_tabl(n, NN);
             t = y;
             y = t + del * F(a + (j - 1) * del, t);
             y2 = t + del * (F(a + (j - 1) * del, t) + F(a + (j - 1) * del, y))/2;
             k1 = del * F(a + (j - 1) * del, y3);
```

```
k2 = del * F(a + (j - 1) * del + del / 2, y3 + k1 / 2);
k3 = del * F(a + (j - 1) * del + del / 2, y3 + k2 / 2);
k4 = del * F(a + (j - 1) * del + del, y3 + k3);
y3 = y3 + (k1 + 2 * k2 + 2 * k3 + k4)/6;

NN[0] = j;
NN[1] = a + j * del;
NN[2] = F(a + j * del, y);
NN[3] = y;
NN[4] = y2;
NN[5] = y3;
}
K_tabl(n, NN);
}
```

i	x	f(x)	у_Эйдер	у_Рун-Кут_2	у_Рун-Кут_4
0	0	1	0	0	
1	0.2	1.02007	0.2	0.204	0.2013
2	0.4	1.08429	0.404013	0.416336	0.41147
3	0.6	1.21082	0.620871	0.643096	0.6420
4	0.8	1.44153	0.863034	0.898969	0.91661
5	1	1.86589	1.15134	1.20942	1.2794
6	1.2	2.68652	1.52452	1.62438	1.84
7	1.4	4.42108	2.06182	2.25452	3.0256
8	1.6	8.64993	2.94604	3.38884	7.5586
9	1.8	21.638	4.67602	5.99463	662.03
10	2	80.6491	9.00362	14.9236	2.04624e+3