Linearity:
$$f(x)$$
, obsorbion,

1) Super position: $f(x,+x_2) = f(x,) + f(x_2)$

2) homoseniety: $f(\alpha x) = \alpha f(\alpha)$:

$$f(\alpha,x_1+\alpha,x_2) = \alpha, f(\alpha,) + \alpha, f(\alpha)$$

$$f(\frac{\pi}{1+\alpha}\alpha_1x_2) = \frac{\pi}{2} \alpha_1 f(\alpha)$$

Vector (Golumn notation)

$$V = \begin{bmatrix} \alpha, \\ b, \\ C, \end{bmatrix} \qquad W = \begin{bmatrix} \alpha_2 \\ b_2 \\ C_1 \end{bmatrix} \qquad A = \begin{bmatrix} \alpha, \alpha_2 \\ b, b_2 \\ C_1 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$AX = \begin{bmatrix} \alpha, \alpha_2 \\ b, b_2 \\ C_1 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \end{bmatrix}$$

Linear Gonkinnten: of Golum vectors $\Rightarrow AX$

$$AX = \begin{bmatrix} \alpha, \alpha_2 \\ b, b_2 \\ C_1 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \end{bmatrix}$$

Linear Gonkinnten: of Golum vectors $\Rightarrow AX$

$$AX = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

$$AX = \begin{bmatrix} \alpha, \alpha_2 \\ b, b_2 \\ C_1 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad X$$

(1) fow form
$$\Rightarrow$$
 parallel
 \Rightarrow obsorbep
(2) Golum form \Rightarrow $x \left[\right] + y \left[\right] \Rightarrow \left[\right]$

> infinite sol

1.3 Gauss Elimination.

: all pivots are Non-200

=) G. E has Unique Solution.

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 4 & -6 & 0 & 1 & -2 \\ -2 & 7 & 2 & 9 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & 1 & -12 \\ 0 & 8 & 3 & 14 \end{bmatrix} \begin{bmatrix} 2 & -1 & + & 5 \\ 0 & -8 & -2 & 1 & -12 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

- · Black Down. => When a zero appears in a pivot position.
 - =) G. E has to be storred.
 - =) The order of eggs has to be changed → Pivoting.

Ex1)
$$u + v + w = a$$
 $u + v + w = a$
 $2a + 2v + 5w = b$ \Rightarrow $3w = b - 2a$ $a = 0 x = 2v + 4w = c - 4a$ $a = 0 x = 0 x = 2v + 4w = c - 4a$ $a = 0 x =$

$$3w = b - 2\alpha$$

$$EX 2) U+V+W= \alpha GE U+V+W= \alpha$$

$$2U+2V+EW= b \Rightarrow 3w=b-2\alpha$$

$$4U+4V+8W= C$$

$$4w= C-4\alpha$$

$$W = \frac{b-2\alpha}{3} = \frac{C-4\alpha}{4} : \text{ the } 2E$$

1.4 Mattix Multiplication.

A mxn B nxe
$$AB = C$$
 $(AB)_{ij} = \sum_{k=1}^{L} a_{ik} b_{kj}$

$$AB \neq BA \qquad AB = A \left[b, b_2 \dots b_L \right] = \left[A_{61} A_{62} \dots A_{6L} \right]$$