

CANOPOR

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

CONTROL MODES

- Profile Position-Velocity-Torque, Interpolated Position, Homing
- Indexer, Point-to-Point, PVT
- · Camming, Gearing

COMMAND INTERFACE

- CANopen
- ASCII and discrete I/O
- Stepper commands
- ±10V position/velocity/torque command
- · PWM velocity/torque commandf
- Master encoder (Gearing/Camming)

COMMUNICATIONS

- CANopen
- RS-232
- RS-422

FEEDBACK

- Dual Absolute Enocder Ports
- Absolute

SSI

EnDat 2.1 & 2.2

Absolute A

Tamagawa

Panasonic

Sanyo Denki

BiSS (B&C)

Incremental

Digital quad A/B encoder

Analog sin/cos encoder

Aux. encoder / encoder out

Other

Digital Halls

Resolver (-R model)

I/O DIGITAL

- 6 High-speed inputs
- 4 Opto-isolated inputs
- 1 Motor over-temp input
- 4 High-speed outputs
- 4 Opto-isolated outputs
- 1 Opto-isolated motor brake output

I/O ANALOG

• 1 Reference input, 12-bit

SAFE TORQUE OFF (STO)

• SIL 3, Category 3, PL d

DIMENSIONS: IN [MM]

• 3.10 x 2.40 x 0.92 [78.7 x 60.1 x 23.4]

Model	Ic	Ip	Vdc
GPM-055-60	30	60	9~55
GPM-055-60-R	30	60	9~55
GPM-090-60	30	60	14~90
GPM-090-60-R	30	60	14~90

DESCRIPTION

GPM sets new levels of performance, connectivity, and flexibility. The GPM operates as an CAN node using the CANopen protocol of DSP-402 for motion control devices. Supported modes include: Profile Position-Velocity-Torque, Interpolated Position Mode (PVT), and Homing. A wide range of absolute encoders are supported.

Both isolated and high-speed non-isolated I/O are provided. For safety critical applications, redundant power stage enable inputs can be employed.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-01598 Rev 05 Page 1 of 38

GENERAL SPECIFICATIONS

Test conditions: Wye connec			M-055-60(-R)	•	и-090-60(-R)		
OUTPUT CURRENT							
Peak Current			60 (42.4)	6	0 (42.4)		Adc (Arms)
Peak time Continuous current			1 30 (21.2)	3	1 0 (21.2)		Sec Adc (Arms)
Peak Output Power			5.4	J	5.4		kW
Continuous Output Power			2.7		2.7		kW
NPUT POWER							
HVmin to HVmax			+9 to $+55$	+	14 to +90		Vdc
Ipeak			60		60		Adc
Icont Aux HV +9 to +55 Vdo		2.5 W max	30	Ontional	30 keen-alive nowe	er innut wh	Adc nen +HV is removed
WM OUTPUTS	•	2.5 W IIIux		Орсіонаі	keep unve powe	or impac wi	ien i i i i s i enioved
Type		MOSFET 3-p	hase inverter.	l 6 kHz cente	r-weighted PWN	1 carrier, si	pace-vector modulation
PWM ripple frequency		32 kHz	,				
IGITAL CONTROL							
Digital Control Loops			city, position.				
Sampling rate (time)		Current loop 16 kHz	: 16 kHz (62.5	μs), Velocity	& position loop	s: 4 kHz (250 μs)
PWM frequency Bus voltage compensation			ous or mains vo	oltage do not	affect bandwid	th	
Minimum load inductance		250 µH line-			a.icci bailawia		
Resolution			re of U & V pha	se currents			
COMMAND INPUTS							<u> </u>
CANopen		Galvanically	isolated from o	Irive circuits			
Chand alone							
Stand-alone mode Analog torque, velocity, position refer	onco	±10 V/dc 12	bit resolution		Dodicated diffe	arontial an	alog input
Digital position reference	ence		on, CW/CCW		Dedicated diffe		Hz maximum rate)
Digital position reference		Quad A/B En					ec (after quadrature)
Digital torque & velocity reference		PWM , Polari	ty		PWM = 0% - 1	100%, Pola	arity = 1/0
		PWM 50%					polarity signal required
		PWM frequer	ncy range ım pulse width		1 kHz minimur 220 ns	m, 100 kHz	z maxımum
Indexing					om inputs or AS	CII comma	ands.
Camming			M tables can be			CII COIIIIIC	
ASCII		RS-232, 960	0~115,200 Ba	ud, 3-wire, F	U-11 connéctor		
DIGITAL INPUTS							
Number	11			0.4 50.0		4	01 11 1 5 5 7 1
[IN1,2,3,4,5,6]					iter, 12 Vac com Vh = 0.7~1.5 \		Ok pull-up to +5 Vdc
[IN7,8,9,10]							common return
[1117/0/5/10]							$t \pm 3.6 \text{ mA } @ \pm 24 \text{ Vdc, typic}$
		um working volt					
[IN11]							grammable to other function
					e Motemp functi		2.2 Vdc, VH = 0.7~1.5 Vdc
Functions	All inni	its are program	mahle [IN1] d	efaults to the	Enable function	n and is n	rogrammable for
· andione		unctions.		0.00.00	2 2.102.0 .0.100.0	аа р.	. 0 9. 4
NALOG INPUT							
[AIN±]		ntial, ±10 Vdc,					
	Bandwi	dth (-3 dB) of a	nalog signal p	ath: 14 kHz,	common-mode	range -10	to +15 Vdc
DIGITAL OUTPUTS	_						
Number	9 Isolator	1 tuo tamasia !	CCD:th 4 c	orios ===!=!	m and 20 1/ 7-	on di- d - f	والمساورة والمساورة والمساورة والمساورة
[OUT1~4]		d, two-terminal 5 ms max, @ 30				er aloae to	r driving inductive loads
	Maximi	ım workina volt	age with resne	ct to around	· 32 Vdc rated	impulse vo	oltage ≥ 800 Vdc
[OUT5~8]	High sp	eed, SLI port M	OSI, SCLK, & I	EN1 signals,	74AHCT125 line	drivers;	+5 Vdc tolerant
-	Output	current: ±25 m	nA max @ ±5 \	/dc			
[OUT9 BRAKE]							n-OFF delay 250 µs max
					akes requiring h		
Functions					e to other functi		oltage ≥ 800 Vdc
S-232 PORT	Dordall	. arrectority are 3	αδονο, ρ	. ogrammable	2 to other fullett	0.10	
Signals	RxD. Tx	D, Gnd in 6-no	sition, 4-contac	ct RJ-11 style	e modular conne	ector, non-	isolated
Mode							00 to 115,200 baud
Protocol		and ASCII form					
S-422 PORT							
Signals		B/X(-), Gnd from			tically isolated		
Mode		plex, RS-422 sl		230.4 kbps			
Protocol	Binary	and ASCII form	alS				
CAN PORT	CANL	CANLL CAN'	CNID antiII :		aulda D		
Signals	CAN_H	, CAN_L, CAN_C en Device Profile	סאנכally i	solated, max	working voltag	e with resp	pect to signal ground: 32 Vo
Protocol	(/\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						

NOTES:
1. Brake output [BRAKE] is programmable as motor brake, or as general purpose digital output.
2. When STO feature is used, the 24V power supply must be a SELV or PELV type with the maximum output voltage limited to 60 Vdc or lower.

GENERAL SPECIFICATIONS

DC OUTPUTS	
Number	1
Ratings	+5 Vdc @ 500 mA thermal and overload protected
SAFE TORQUE OFF (STO)	
Function Standard Safety Integrity Level Inputs Type Input current (typical) Response time Muting	PWM outputs are inactive and current to the motor will not be possible when the STO function is activated Designed to IEC-61508-1, IEC-61508-2, IEC-61800-5-2, ISO-13849-1 SIL 3, Category 3, Performance level d 2 two-terminal: STO-IN1+,STO-IN1-, STO-IN2+, STO-IN2- Opto-isolators, 24V compatible, Vin-LO \leq 6.0 Vdc or open, Vin-HI \geq 15.0 Vdc, STO-IN1:11.2 mA, STO-IN2: 11.2 mA 2 ms from Vin \leq 6.0 Vdc to interruption of energy supplied to motor An internal current source wired to STO inputs will mute (bypass) the STO function
PROTECTIONS HV Overvoltage -055 models HV Undervoltage -055 models HV Overvoltage -090 models HV Undervoltage -090 models Drive over temperature Short circuits I²T Current limiting Motor over temperature Feedback Loss	+HV >= 55 Vdc Drive outputs turn off until +HV < 55 Vdc +HV <= 9 Vdc Drive outputs turn off until +HV > 8 Vdc +HV > 90 Vdc Drive outputs turn off until +HV \leq 90 Vdc +HV < 14 Vdc Drive outputs turn off until +HV \geq 14 Vdc Heat plate > 70°C. Drive outputs turn off Output to output, output to ground, internal PWM bridge faults Programmable: continuous current, peak current, peak time Digital inputs programmable to detect motor temperature switch Inadequate analog encoder amplitude or missing incremental encoder signals
MECHANICAL & ENVIRONMENTAL Size mm [in] Weight Ambient temperature Humidity Vibration Shock Contaminants Environment Cooling Altitude	3.10 x 2.40 x 0.92 [78.7 x 60.1 x 23.4] 4.2 oz (120 g) without heatsink 0 to +45°C operating, -40 to +85°C storage 0 to 95%, non-condensing 2 g peak, $10\sim500$ Hz (sine), IEC60068-2-6 10 g, 10 ms, half-sine pulse, IEC60068-2-7 Pollution degree 2 IEC 60068-2 Heat sink and/or forced air cooling required for continuous power output \leq 2000 m (6560 ft) per IEC 60068-2-13

AGENCY STANDARDS CONFORMANCE

Standards and Directives
Functional Safety (PENDING)
IEC 61508-1, IEC 61508-2
Directive 2006/42/EC (Machinery)
ISO 13849-1 (Cat 3, PL d)
IEC 61800-5-2 (SIL3)

Electrical Safety
Directive 2014/35/EU (Low Voltage)
UL 61800-5-1, IEC 61800-5-1

EMC

Directive 2014/30/EU IEC 61800-3 IEC 61800-5-2

Restriction of the Use of Certain Hazardous Substances (RoHS)

Directive 2011/65/EU (RoHS II)

Approvals

UL and cUL recognized component to: UL 61800-5-1, IEC 61800-5-1 UL Functional Safety Certification to: (PENDING) IEC 61508-1, ISO 13849-1, IEC 61508-5-2 (SIL 3) IEC 61800-5-2, UL 61800-5-2 (Cat 3, PL d)

DANGER

Refer to the 16-01600 Argus GEM & GPM STO Manual

The information provided in the 16-01600 Argus GEM & GPM STO Manual must be considered for any application using the GPM drive STO feature.

Failure to heed this warning can cause equipment damage, injury, or death.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-01598 Rev 05 Page 3 of 38

GENERAL SPECIFICATIONS

FEEDBACK

Incremental encoders:

Heidenhain EnDat 2.2, SSI

Digital Incremental Encoder Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required)

MAX3097 differential line receivers for A, B and X, 5 MHz maximum line frequency (20 M counts/sec) Fault detection for open/shorted inputs, or low signal amplitude, selectable for A||B||X or A||B|

External terminators required for fault detection, 121Ω for A & B channels, 130Ω for X

Sin/Cos, differential, internal 121Ω terminators between \pm inputs, 1.0 Vp-p typical, 1.45 Vp-p maximum, Common-mode voltage 0.25 to 3.75 Vdc, , ± 0.25 V, centered about 2.5 Vdc Analog Incremental Encoder

Signals: Sin(+), Sin(-), Cos(+), Cos(-),

Frequency: 230 kHz maximum line (cycle) frequency, interpolation 12 bits/cycle (4096 counts/cycle)

Absolute encoders: MAX3362 differential line transceivers for S, /S, 5 MHz maximum line frequency (20 M counts/sec) Serial Clock (X, /X), Data (S, /S) signals, differential 4-wire,

External 121Ω terminator required for Clock, 221Ω for Data

Heidenhain EnDat 2.1 Clock (X, /X), Data (S, /S), Sin/Cos (Sin+, Sin-, Cos+, Cos-) signals

Internal 121Ω terminators between Sin/Cos inputs,

External 121Ω terminator required for Clock, 221Ω for Data

Absolute A, Tamagawa Absolute A, Panasonic Absolute A Format

SD+, SD- (S, /S) signals, 2.5 or 4 MHz, 2-wire half-duplex, external 221Ω terminator required

Position feedback: 13-bit resolution per rev, 16 bit revolution counter (29 bit absolute position data)

Status data for encoder operating conditions and errors

MA+, MA- (X, /X), SL+, SL- (S, /S) signals, 4-wire, clock output from drive,

data returned from encoder

External 121 Ω terminator required for MA, 221 Ω for SL

Resolver:

BiSS (B&C)

Brushless, single-speed, 1:1 to 2:1 programmable transformation ratio Type

Resolution 14 bits (equivalent to a 4096 line quadrature encoder)

Reference frequency

Reference voltage 2.8 Vrms, auto-adjustable by the drive to maximize feedback Reference maximum current 100 mA

Maximum RPM 10,000+

HALLS

Digital: U, V, W: Single-ended, 120° electrical phase difference between U-V-W signals,

Schmitt trigger, 1.5 μ s RC filter, 24 Vdc compatible, 15 $k\Omega$ pull-up to +5 Vdc

 $Vt+ = 2.5 \sim 3.5 \text{ Vdc}, VT- = 1.3 \sim 2.2 \text{ Vdc}, VH = 0.7 \sim 1.5 \text{ Vdc}$

Analog:

U & V: Sin/Cos format (Sin+, Sin-, Cos+, Cos-), differential, 1 Vpeak-peak ±20%, ServoTube motor compatible,

BW > 300 kHz, 121 Ω terminating resistors between Sin+ & Sin-, Cos+ & Cos- inputs

12-bit resolution, BW > 300 kHz, with zero-crossing detection

MULTI-MODE ENCODER PORT

See Digital Incremental Encoder above for electrical data on A, B, & X channels, or As Input:

Absolute encoders using X or S channels. External terminators required as shown above

As Emulated Output: Quadrature A/B encoder emulation with programmable resolution to 4096 lines (65,536 counts)

per rev from analog Sin/Cos encoders or resolvers.

A, /A, B, /B, outputs from MAX3032 differential line driver, X, /X, S, /S from MAX 3362 line drivers As Buffered Output:

Digital A/B/X encoder signals from primary digital encoder are buffered as shown above, 5 MHz max

Tel: 781-828-8090

5V OUTPUT Number Ratings

+5 Vdc @ 500 mA thermal and overload protected

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01598 Rev 05

Fax: 781-828-6547 Page 4 of 38

CANOPEN COMMUNICATIONS

Based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination of data-rate and low cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.

CANOPEN COMMUNICATION

Argus uses the CAN physical layer signals CANH, CANL, and GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN Node-ID (address). A maximum of 127 CAN nodes are allowed on a single CAN bus. Up to seven digital inputs can be used to produce CAN Node-IDs from 1~127, or the Node-ID can be saved to flash memory in the module. Node-ID 0 is reserved for the CANopen master on the network. For more information on CANopen communications, download the CANopen Programmer's Manual from the Copley Controls web-site: http://www.copleycontrols.com/Motion/pdf/CANopenProgrammersManual.pdf

DIGITAL COMMAND INPUTS

The graphic below shows connections between the GPM and a Dsub 9M connector on a CAN card. If the GPM is the last node on a CAN bus, the internal terminator resistor can be used by adding a connection on the PC board as shown. The node Node-ID of the GPM may be set by using digital inputs, or programmed into flash memory in the drive.

CME2 -> Basic Setup -> Operating Mode Options

RS-232 COMMUNICATIONS

GPM is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the *GPM* RS-232 port are through P4 The graphic below shows the connections between an *GPM* and a computer COM port which is a DTE device.

CME2 -> Tools -> Communications Wizard

RS-422 COMMUNICATIONS

RS-422 is a two-wire differential half-duplex port that operates from 9600 to 230.4 kbps. Connections to the GPM RS-232 port are through P4 The graphic below shows the connections between a GPM and a computer RS-422 port.

SAFE TORQUE OFF (STO)

DESCRIPTION

The GPM provides the Safe Torque Off (STO) function as defined in IEC 61800-5-2. Three opto-couplers are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core. This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are activated (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs.

INSTALLATION

Refer to the 16-01600 Argus GEM & GPM STO Manual

The information provided in the 16-01600 Argus GEM & GPM STO Manual must be considered for any application using the GPM drive STO feature.

Failure to heed this warning can cause equipment damage, injury, or death.

STO BYPASS (MUTING)

In order for the PWM outputs of the drive to be activated, current must be flowing through all of the opto-couplers that are connected to the STO-1 and STO-2 terminals of J3, and the drive must be in an ENABLED state. When the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor. This diagram shows connections that will energize all of the opto-couplers from an internal current-source. When this is done the STO feature is overridden and control of the output PWM stage is under control of the digital control core.

If not using the STO feature, these connections must be made in order for the drive to be enabled.

STO BYPASS CONNECTIONS

Current must flow through all of the opto-couplers before the drive can be enabled

J3 SIGNALS

SIGNAL	PIN	PIN	SIGNAL
STO-IN2(-)	1	2	STO-GND
STO-IN2(+)	3	4	STO-BYPASS
STO-IN1(-)	5	6	STO-IN1(-)
STO-IN1(+)	7	8	STO-IN1(+)

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01598 Rev 05

Fax: 781-828-6547 Page 6 of 38

DIGITAL COMMAND INPUTS: POSITION

PULSE & DIRECTION

CME2 -> Basic Setup -> Operating Mode Options

CME2 -> Basic Setup -> Operating Mode Options

DIGITAL COMMAND INPUTS: VELOCITY, TORQUE

CME2 -> Basic Setup -> Operating Mode Options

CME2 -> Main Page-> PWM Command

CONNECTIONS

Input	J4 Pins
IN4	19
IN5	22
Sgnd	3,4,15,16,23,50

MULTI-MODE ENCODER PORT AS AN INPUT

POSITION COMMAND INPUTS: DIFFERENTIAL

- · Pulse & Direction
- CW & CCW (Clockwise & Counter-Clockwise)
- Encoder Quad A & B
- Camming Encoder A & B input

CURRENT or VELOCITY COMMAND INPUTS: DIFFERENTIAL

- Current/Velocity Magnitude & Direction
- Current/Velocity 50%

SECONDARY FEEDBACK: INCREMENTAL

• Quad A/B/X incremental encoder

SECONDARY FEEDBACK: ABSOLUTE

- S channel: Absolute A encoders (2-wire)
 The S channel first sends a Clock signal and then
 receives Data from the encoder in half-duplex mode.
- S & X channels: SSI, BiSS, EnDat encoders (4-wire)
 The X channel sends the Clock signal to the encoder,
 which initiates data transmission from the encoder
 on the S-channel in full-duplex mode

Tel: 781-828-8090

SIGNALS & PINS

Signal	J4 Pins
Pulse, CW, Encoder A, Vel-Curr-Mag, Vel-Curr-50%	8
/Pulse, /CW, Encoder /A, /Vel-Curr-Mag, /Vel-Curr-50%	7
Direction, CCW, Encoder B, Vel-Curr-Pol	10
/Direction, /CCW, Encoder /B, /Vel-Curr-Pol	9
Quad Enc X, Absolute Clock	14
Quad Enc /X, /Absolute Clock	13
Enc S, Absolute (Clock) Data	12
Enc /S, / Absolute (Clock) Data	11
Signal Ground	3,4,15,16, 23,50

MULTI-MODE PORT AS AN OUTPUT

OUTPUT TYPES

BUFFERED FEEDBACK OUTPUTS: DIFFERENTIAL

- Encoder Quad A, B, X channels
- Direct hardware connection between quad A/B/X encoder feedback and differential line drivers for A/B/X outputs

EMULATED FEEDBACK OUTPUTS: DIFFERENTIAL

Firmware produces emulated quad A/B signals from feedback data from the following devices:

- Absolute encoders
- Analog Sin/Cos incremental encoders

SIGNALS & PINS

Signal	J4 Pins
Encoder A	8
Encoder /A	7
Encoder B	10
Encoder /B	9
Encoder X	14
Encoder /X	13
Signal Ground	3,4,15,16,23,50

BUFFERED QUAD A/B/X OUTPUTS

Secondary Encoder Input MAX3097 Input/Output Select Buffered Quad A/B signals from MAX3032 Buffered Quad X signal from MAX30362

EMULATED QUAD A/B OUTPUTS

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01598 Rev 05

Fax: 781-828-6547 Page 9 of 38

CME2 DEFAULTS

These tables show the CME2 default settings. They are user-programmable and the settings can be saved to non-volatile flash memory.

Name	Configuration	PU/PD
IN1	Enable-LO, Clear Faults	+5V PU
IN2		
IN3		
IN4	Not Configured	+5V/Gnd
IN5		
IN6		
IN7		
IN8	Opto	
IN9	Not Configured	
IN10		
IN11	Motemp	+5V PU

Name	Notes	
OUT1	Isolated Fault Active Off	
OUT2		
OUT3	Isolated Not Configured	
OUT4		
OUT5	HS Not Configured	
OUT 6	HS SPI_MOSI	
OUT 7	HS SPI_CLK	
OUT 8	HS SPI_EN1	
OUT 9	Brake Active-HI	

Name	Notes
Analog: Reference Filter	Disabled
Vloop: Input Filter	Disabled
Vloop: Output Filter 1	Low Pass, Butterworth, 2-pole, 200 Hz
Vloop: Output Filter 2	Disabled
Vloop: Output Filter 3	Disabled
Iloop: Input Filter 1	Disabled
Iloop: Input Filter 2	Disabled
Input Shaping	Disabled

Option	Notes
Method	Set Current Position as Home

Active	Notes
\checkmark	Short Circuit
\checkmark	Amp Over Temperature
\checkmark	Motor Over Temp
	Over Voltage
	Under Voltage
\checkmark	Feedback Error
	Motor Phasing Error
\checkmark	Following Error
	Command Input Fault
	Motor Wiring Disconnected
	STO Active

OPTIONAL FAULTS Over Current (Latched)

HIGH SPEED INPUTS: IN1, IN2, IN3, IN4, IN5, IN6

- Digital, non-isolated, high-speed
- 12V Compatible
- · Programmable functions

SPECIFICATIONS

Input	Data	Notes	
	HI	VT+ ≥ 2.5~3.5Vdc	
	LO	VT- ≤ 1.3~2.2 Vdc	
Input Voltages	Hys	VH 0.7~1.5 Vdc	
	Max	+30 Vdc	
	Min	0 Vdc	
Pull-up	R1	10 kΩ	
Low pass filter	R2	1 kΩ	
	C1	100 pF	
	RC ¹	0.1 μs	

Notes:

 The R2*C1 time constant applies when input is driven by active HI/LO devices

CONNECTIONS

Input	J4 Pins	
IN1	18	
IN2	17	
IN3	20	
IN4	19	
IN5	22	
IN6	21	
Sgnd	3,4,15,16, 23,50	

MOTOR OVERTEMP INPUT: IN11

- · Digital, non-isolated
- Motor overtemp input
- 24V Compatible
- Programmable functions

MOTOR OVER TEMP INPUT

The 4.99k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987, or switches that open/close indicating a motor over-temperature condition. The active level is programmable.

SPECIFICATIONS

Input	Data	Notes	
	HI	VT+ ≥ 2.5~3.5Vdc	
	LO	VT- ≤ 1.3~2.2 Vdc	
Input Voltages	Hys	VH 0.7~1.5 Vdc	
	Max	+30 Vdc	
	Min	0 Vdc	
Pull-up R1		4.99 kΩ	
Low pass filter	R2	10 kΩ	
	C1	33 nF	
	RC¹	330 µs	

* RC time constant applies when input is driven by active high/low device

CONNECTIONS

Input	J2 Pins	
IN11	17	
Sgnd	8,18,21,22	

BS 4999:Part 111:1987

Property	ohms
Resistance in the temperature range 20°C to +70°C	60~750
Resistance at 85°C	≤1650
Resistance at 95°C	≥3990
Resistance at 105°C	≥12000

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-01598 Rev 05 Page 11 of 38

OPTO-ISOLATED INPUTS: IN7, IN8, IN9, IN10

- Digital, opto-isolated
- A group of four, with a common terminal
- Works with current sourcing or sinking drivers
- 24V Compatible
- Programmable functions

SPECIFICATIONS			
Input	Data Notes		
	HI	Vin ≥ ±10.0 Vdc *	
Input Voltages	LO	Vin ≤ ±6.0 Vdc *	
	Max	±30 Vdc *	
Innuit Cumant	±24V	±3.6 mAdc	
Input Current	0V	0 mAdc	

^{*} Vdc Referenced to ICOM terminals.

CONNECTIONS		
Signal J4 Pins		
IN7	27	
IN8	25	
IN9	26	
IN10	24	
ICOM	28	

ANALOG INPUT: AIN1

- ±10 Vdc, differential
- 12-bit resolution
- Programmable functions

As a reference input it takes position/velocity/torque commands from a controller. If not used as a command input, it can be used as general-purpose analog input.

SPECIFICATIONS

Spec	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5 kΩ

CONNECTIONS

Signal	J4 Pins
AIN(+)	2
AIN(-)	1
Sgnd	3,4,15,16,23,50

OPTO-ISOLATED OUTPUTS: OUT1, OUT2, OUT3, OUT4

- · Digital, opto-isolated
- MOSFET output SSR, 2-terminal
- · Flyback diode for inductive loads
- 24V Compatible
- Programmable functions

SPECIFICATIONS

Output	Data	Notes
ON Voltage OUT(+) - OUT(-)	Vdc	0.5V @ 300 mAdc
Output Current	Iout	300 mAdc max

CONNECTIONS: J4 PINS

Signal	(+)	(-)
OUT1	30	29
OUT2	32	31
OUT3	34	33
OUT4	36	35

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition	
OUT1~4	HI	HI Output SSR is ON, current flows	
		Output SSR is OFF, no current flows	

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-01598 Rev 05 Page 13 of 38

20k

10

HIGH-SPEED OUTPUT: OUT5, OUT6, OUT7, OUT8

- CMOS buffer
- 74AHCT1G125
- Programmable functions

SPECIFICATIONS

Output HI	Data	Notes
Vout HI	Voh	4.4 Vdc
Iout HI	Ioh	-8.0 mAdc
Vout LO	Vol	0.40 Vdc
Iout LO	Iol	8.0 mAdc

CONNECTIONS

Signal	J4 Pins
OUT 5	38
OUT 6	37
OUT 7	40
OUT 8	39
Sgnd	3,4,15,16,23,50

OPTO-ISOLATED MOTOR BRAKE OUTPUT: OUT9

- Brake output [OUT9]
- Opto-isolated
- 24V Compatible
- Programmable functions
- Gate output to drive external MOSFET

SPECIFICATIONS

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
BRAKE	HI	Output transistor is OFF Brake is un-powered and locks motor Motor cannot move Brake state is Active
[OUT9]	LO	Output transistor is ON Brake is powered, releasing motor Motor is free to move Brake state is NOT-Active

The brake circuits are optically isolated from all drive circuits and frame ground.

]4

Brake-24V

Brake-Gate

Brake-Out

Brake-Gnd

Brk

24V

0

CME2 Default Setting for Brake Output [OUT9] is "Brake - Active HI''Active = Brake is holding motor shaft (i.e. the *Brake is Active*)

Motor cannot move

No current flows in coil of brake

CME2 I/O Line States shows [OUT9] as HI BRK Output voltage is HI (24V), MOSFET is OFF

Servo drive output current is zero

Servo drive is disabled, PWM outputs are off

Inactive = Brake is not holding motor shaft (i.e. the *Brake is Inactive*)

Motor can move

Current flows in coil of brake

CME2 I/O Line States shows [OUT9] as LO BRK output voltage is LO (~0V), MOSFET is ON Servo drive is enabled, PWM outputs are on

Servo drive output current is flowing

J4 CONNECTIONS

İ	Dim	Cianal
	Pin	Signal
	45	Brake-24V
	48	Brake-Gate
	47	Brake-Out
	46	Brake Gnd

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-01598 Rev 05 Page 14 of 38

FEEDBACK CONNECTIONS

QUAD A/B ENCODER WITH FAULT PROTECTION

Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark. The MAX3097 receiver has differential inputs with fault protections for the following conditions:

Short-circuits line-line: This produces a near-zero voltage between A & /A which is below the

differential fault threshold.

Terminator resistors installed on user pc boards will pull the inputs together if either side Open-circuit condition:

(or both) is open. This will produce the same fault condition as a short-circuit across the inputs.

Low differential voltage detection: This is possible with very long cable runs and a fault will occur if the

differential input voltage is < 200mV.

±15kV ESD protection: The 3097E has protection against high-voltage discharges using the Human Body Model.

A fault occurs if the input common-mode voltage is outside of the range of -10V to +13.2VExtended common-mode range:

QUAD ENCODER WITH INDEX

A/B/X SIGNALS

Signal	J2 Pins
Enc A	10
Enc /A	9
Enc B	12
Enc /B	11
Enc X	16
Enc /X	15
+5V	19,20
Sgnd	8,18,21,22

Sgnd = Signal Ground

RESOLVER

Tel: 781-828-8090

Connections to the resolver should be made with shielded cable that uses three twisted-pairs. Once connected, resolver set up, motor phasing, and other commissioning adjustments are made with CME 2 software. There are no hardware adjustments.

RESOLVER SIGNALS

Signal	J2 Pins
Sin(+)	2
Sin(-)	1
Cos(+)	4
Cos(-)	3
Ref(+)	24
Ref(-)	23
Sgnd	8,18,21,22

ANALOG SIN/COS INCREMENTAL ENCODER

The Sin/Cos inputs are analog differential with 121 Ω terminating resistors and accept 1 Vp-p signals in the format used by incremental encoders with analog outputs, or with ServoTube motors. The index input is digital, differential.

SIN/COS SIGNALS

Signal	J2 Pins
Sin(+)	2
Sin(-)	1
Cos(+)	4
Cos(-)	3
Х	16
/X	15
+5V	19,20
Sgnd	8,18,21,22

Sgnd = Signal Ground F.G. = Frame Gnd

FEEDBACK CONNECTIONS

SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The GEM drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The number of encoder data bits and counts per motor revolution are programmable.

The hardware bus consists of two signals: SCLK and SDATA. The SCLK signal is only active during transfers. Data is clocked in on the falling edge of the clock signal.

Encoder FG CIk Enc X A B CIk Enc S A B CIk FSV Out @ 500 mA OV Signal Ground No

BISS ABSOLUTE ENCODER

BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

Serial Synchronous Data Communication Cyclic at high speed

2 unidirectional lines Clock and Data

Line delay compensation for high speed data transfer

Request for data generation at slaves Safety capable: CRC, Errors, Warnings

Bus capability incl. actuators

Bidirectional

BiSS B-protocol: Mode choice at each cycle start

BiSS C-protocol: Continuous mode

Note: Single (outer) shields should be connected at the controller end. Inner shields should only be connected to Signal Ground on the drive.

ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals, but which also supports analog Sin/Cos channels from the same encoder. The number of position data bits is programmable as is the use of Sin/Cos channels. Use of Sin/Cos incremental signals is optional in the EnDat specification.

ENDAT SIGNALS

Signal	J2 Pins
Clk	16
/Clk	15
Data	14
/Data	13
Sin(+)	2
Sin(-)	1
Cos(+)	4
Cos(-)	3
+5V	19,20
Sgnd	8,18,21,22

Sgnd = Signal Ground

ABSOLUTE-A ENCODER

The Absolute A interface is a serial, half-duplex type that is electrically the same as RS-485. Note the battery which must be connected. Without it, the encoder will produce a fault condition.

- Absolute A
- Tamagawa Absolute A

- Panasonic Absolute A Format
- Sanyo Denki Absolute A

ABSOLUTE-A SIGNALS

Signal	J2 Pins
Data	14
/Data	13
+5V	19,20
Sgnd	8,18,21,22

Sgnd = Signal Ground

MOTOR CONNECTIONS

MOTOR PHASE CONNECTIONS

The drive output is a three-phase PWM inverter that converts the DC buss voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame ground for best results.

MOTOR SIGNALS

Signal	J1 Pin
Mot U	41~46
Mot V	31~36
Mot W	21~26

DIGITAL HALL SIGNALS

Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation-initialization after startup, and for checking the motor phasing after the amplifier has switched to sinusoidal commutation.

HALL SIGNALS

Signal	J2 Pins
Hall U	5
Hall V	6
Hall W	7
+5V	19,20
Sgnd	8,18,21,22

CONNECTORS & SIGNALS

CONNECTIONS FOR ABSOLUTE ENCODER WITH DUPLEX CLOCK/DATA

CONNECTORS & SIGNALS

CONNECTIONS FOR INCREMENTAL DIGITAL OR ANALOG ENCODERS

CONNECTORS & SIGNALS

CONNECTIONS FOR RESOLVERS (-R OPTION)

CONNECTORS & SIGNALS

J1 POWER & MOTOR

Signal	P	in	Signal
	2	1	
+HV	4	3	+HV
	6	5	
N/C	8	7	HV Aux
IN/C	10	9	N/C
	12	11	
HV Gnd	14	13	HV Gnd
	<mark>16</mark>	15	
N/C	18	17	N/C
IN/C	20	19	1 11/C
	22	21	
Mot W	24	23	Mot W
	<mark>26</mark>	25	
N/C	28	27	N/C
IV/C	30	29	IN/C
	32	31	
Mot V	34	33	Mot V
	36	35	
N/C	38	37	N/C
IN/C	40	39	IV/C
	42	41	
Mot U	44	43	Mot U
	46	45	1

TOP VIEW

Viewed from above looking down on the connectors or PC board footprint to which the module is mounted

- J1: HV & Motor Dual row, 2 mm- centers 46 position female header SAMTEC SSQ-123-01-L-D
- J2: Feedback Dual row, 2 mm- centers 24 position female header SAMTEC SQT-112-01-L-D
- J3: Safety
 Dual row, 2 mm- centers
 8 position female header
 SAMTEC SQT-104-01-L-D
- J4: Control Dual row, 2 mm- centers 66 position female header SAMTEC SQT-133-01-L-D

J4 CONTROL

J4 CONTROL				
Signal	Pin		Signal	
CAN_GND	65	66	CAN_GND	
CAN_GND	63	64	CAN_GND	
CAN_H	61	62	CAN_GND	
CAN_L	59	60	N.C.	
CAN_GND	57	58	CAN_GND	
CAN_GND	55	56	CAN_GND	
CAN_GND	53	54	CAN_GND	
CAN_GND	51	52	CAN_GND	
RS422-GND	49	50	Sgnd	
Brake-Out	47	48	Brk-Gate	
Brake-24V	45	46	Brake-Gnd	
RS232 RxD	43	44	RS232 TxD	
RS422(-)	41	42	RS422(+)	
HS [OUT8] SPI-EN1	39	40	[OUT7] HS SPI-CLK	
HS [OUT6] SPI-MOSI	37	38	[OUT5] HS	
[OUT4-] ISO	35	36	ISO [OUT4+]	
[OUT3-] ISO	33	34	ISO [OUT3+]	
[OUT2-] ISO	31	32	ISO [OUT2+]	
[OUT1-] ISO	29	30	ISO [OUT1+]	
[IN7] ISO	27	28	ISO [INCOM]	
[IN8] ISO	25	26	ISO [IN9]	
Sgnd	23	24	ISO [IN10]	
[IN6] HS SPI-MISO	21	22	HS [IN5]	
[IN4] HS	19	20	HS [IN3]	
[IN2] HS	17	18	HS [IN1]	
Sgnd	15	16	Sgnd	
Enc /X	13	14	Enc X	
Enc /S	11	12	Enc S	
Enc /B	9	10	Enc B	
Enc /A	7	8	Enc A	
+5V ENC	5	6	+5V ENC	
Sgnd	3	4	Sgnd	
[AREF-]	1	2	[AREF+]	

J3 SAFETY

Tel: 781-828-8090

SIGNAL	PIN	PIN	SIGNAL
STO-IN2(-)	1	2	STO-GND
STO-IN2(+)	3	4	STO-BYPASS
STO-IN1(-)	5	6	STO-IN1(-)
STO-IN1(+)	7	8	STO-IN1(+)

J2 FEEDBACK

Signal	Р	in	Signal
RES-REF-	RES-REF- 23 24		RES-REF+
Sgnd	21	22	Sgnd
+5V ENC	19	20	+5V ENC
[IN11]	17	18	Sgnd
ENC /X	15	16	ENC X
ENC /S	13	14	ENC S
ENC /B	11	12	ENC B
ENC /A	9	10	ENC A
HALL W	7	8	Sgnd
HALL U	5	6	HALL V
COS-	3	4	COS+
SIN-	1	2	SIN+

PRINTED CIRCUIT BOARD FOOTPRINT

TOP VIEW

Viewed from above looking down on the connectors or PC board footprint to which the module is mounted

Additional Hardware (not shown above)

2 Screw, #4-40 x 1.25" Phillips Pan Head External Tooth Lockwasher SEMS, Stainless, or steel with nickel plating, Torque to 3~5 lb-in (0.34~0.57 N·m)

Notes

- 1. J1 signals of the same name must be connected for current-sharing (see graphic above).
- To determine copper width and thickness for J1 signals refer to specification IPC-2221. (Association Connecting Electronic Industries, http://www.ipc.org)
- 3. Standoffs or mounting screws should connect to etch on pc board that connect to frame ground for maximum noise suppression and immunity.

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01598 Rev 05

Fax: 781-828-6547 Page 22 of 38

PRINTED CIRCUIT DRILLING DIMENSIONS

Notes:

 ${\bf 1.} \ {\bf This} \ {\bf shows} \ {\bf the} \ {\bf drilling} \ {\bf dimensions} \ {\bf looking} \ {\bf down} \ {\bf on} \ {\bf the} \ {\bf mounting} \ {\bf surface} \ {\bf of} \ {\bf the} \ {\bf PC} \ {\bf board}.$

Dimensions are in inches

DIMENSIONS

Dimensions are in inches[mm]

MOUNTING

MOUNTING WITH CONNECTORS ON PC BOARD

See page 22 for part numbers of connectors.

MOUNTING SOLDERED TO PC BOARD

HEATSINK MOUNTING

HEATSINK INSTALLATION USING THE GPM-HK HEATSINK KIT

An AOS Micro Faze thermal pad is used in place of thermal grease. This material comes in sheet form and changes from solid to liquid form as the drive warms up. This forms an excellent thermal path from drive heatplate to heatsink for optimum heat transfer.

STEPS TO INSTALL

- 1. Insert the drive into the sockets and press smoothly until the heatplate is resting on the standoffs.
- 2. Remove one of the clear plastic carriers from the thermal pad.
- 3. Place the side of the thermal pad without the carrier onto the *Argus* aluminum heatplate taking care to center the thermal pad holes over the holes in the drive heatplate.
- 4. Remove the second clear plastic carrier from the thermal pad.
- 5. Place the heatsink onto the thermal pad. Take care to ensure that the holes in the heatsink, thermal pad, and drive all line up.
- 6. Insert the four #4-40 screws through the heatsink and torque them to 3~5 lb-in (0.34~0.57 N·m). Apply a smaller torque to each screw in rotation until the final torque is reached. This will ensure an even contact between the drive and heatplate for best thermal transfer.

POWER DISSIPATION

The charts on this page show the internal power dissipation for different models under differing power supply and output current conditions. The values on the chart represent the continuous current that the drive would provide during operation. The +HV values are for the average DC voltage of the drive power supply. To see if a heatsink is required or not, the next step is to determine the temperature rise the drive will experience when it's installed. For example, if the ambient temperature in the drive enclosure is 40 °C, and the heatplate temperature is to be limited to 70° C or less to avoid shutdown, the maximum rise would be 70C - 40C. or 30° C. Dividing this dissipation by the thermal resistance of 9° C/W with no heatsink gives a dissipation of 3.33W. This line is shown in the charts. For power dissipation below this line, no heatsink is required. The vertical dashed line shows the continuous current rating for the drive model.

GPM-055-60

GPM-090-60

Dissipation vs. Output Current & +HV

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01598 Rev 05

Fax: 781-828-6547 Page 27 of 38

DEVELOPMENT KIT

DESCRIPTION

The Development Kit provides mounting and connectivity for one GPM drive. Solderless jumpers ease configuration of inputs and outputs to support their programmable functions. Switches can be jumpered to connect to digital inputs 1~10 so that these can be toggled to simulate equipment operation. Dual CANopen connectors make daisychain connections possible so that other CANopen devices such as Copley's Argus Plus or Xenus Plus CANopen drives can easily be connected.

RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or for configuration before it is installed into an CANopen network. CME 2^{TM} software communicates with the drive over this link and is then used for complete drive setup. The CANopen Device ID that is set by the rotary switch can be monitored, and a Device ID offset programmed as well.

The RS-232 connector, P7, is a modular RJ-11 type that uses a 6-position plug, four wires of which are used for RS-232. A connector kit is available (SER-CK) that includes the modular cable, and an adaptor to interface this cable with a 9-pin RS-232 port on a computer.

SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector P7 on the Development Kit. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the GPM.

`The connections are shown in the diagram below.

Tel: 781-828-8090

Don't forget to order a Serial Cable Kit SER-CK when placing your order for an GPM Development Kit!

RS-422 COMMUNICATIONS

RS-422 is a two-wire differential half-duplex port that operates from 9600 to 230.4 kbps. Connections to the RS-422 port are through P9. The graphic below shows the connections between a GPM and a computer RS-422 port.

CANOPEN

CANOPEN CONNECTORS

Dual RJ-45 connectors that accept standard Ethernet cables are provided for CAN bus connectivity. Pins are wired-through so that drives can be daisy-chained and controlled with a single connection to the user's CAN interface. A CAN terminator should be placed in the last drive in the chain. The GPM-CV connector kit provides a D-Sub adapter that plugs into a CAN controller and has an RJ-45 socket that accepts the Ethernet cable.

GPM-CV CAN CONNECTOR KIT

The kit contains the GPM-CV adapter that converts the CAN interface D-Sub 9M connector to an RJ-45 Ethernet cable socket, plus a 10 ft (3 m) cable and terminator. Both connector pin-outs conform to the CiA DR-303-1 specification.

INDICATORS (LEDS)

The AMP LED on P7 shows the operational state of the GPM. The STAT LED on P7 shows the state of the CANopen NMT (Network Management) state-machine in the drive. The ACT (Activity) LEDs on P8 show activity on the network. Details on the NMT state-machine can be found in the CANopen Programmers Manual,

§3.1: http://www.copleycontrols.com/Motion/pdf/CANopenProgrammersManual.pdf

AMP LED

A single bi-color LED gives the state of the GPM by changing color, and either blinking or remaining solid. The possible color and blink combinations are:

• Green/Solid: Drive OK and enabled. Will run in response to reference inputs or CANopen commands.

• Green/Slow-Blinking: Drive OK but NOT-enabled. Will change to Green/Solid when enabled.

• Green/Fast-Blinking: Positive or Negative limit switch active. Drive will only move in direction not inhibited by limit switch.

• Red/Solid: Transient fault condition. Drive will resume operation when fault is removed.

• Red/Blinking: Latching fault. Operation will not resume until drive is Reset.

Drive Fault conditions. Faults are programmable to be either transient or latching:

· Over or under-voltage

Motor over-temperature

• Encoder +5 Vdc fault

· Short-circuits from output to ground

- Drive over-temperature
- · Internal short circuits

Short-circuits from output to output

P7 RS-32 SERIAL

P8 CAN CONNECTIONS

STAT LED

A single bi-color LED gives the state of the NMT state-machine by changing color, and either blinking or remaining solid. The possible color and blink combinations are:

GREEN (RUN)

Off Init Note: Red & green led on-times do not overlap.
 Blinking Pre-operational LED color may be red, green, off, or flashing of either color.

Single-flash
 On
 RED (ERROR)
 Stopped
 Operational
 Green-Green-Red is actually a combination of single-flash Red (Warning Limit reached) and Blinking Green (Pre-Operational) When the green-red combination is seen, it appears as a single red!

• Off No error

• Blinking Invalid configuration, general configuration error

• Single Flash Warning limit reached

Double Flash
 Triple Flash
 On
 Error Control Event (guard or heartbeat event) has occurred
 Sync message not received within the configured period
 Bus Off, the CAN master is bus off

ACTIVITY LEDS

- Flashing RED indicates a network error, the GPM is trying to send data via the CAN port and getting no reply
- Flashing GREEN indicates the GPM is sending/receiving data via the CAN port

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-01598 Rev 05 Page 29 of 38

CAN CONNECTORS

CANOPEN CONNECTORS

Dual RJ-45 connectors that accept standard Ethernet cables are provided for CAN bus connectivity. Pins are wired-through so that drives can be daisy-chained and controlled with a single connection to the user's CAN interface. A CAN terminator should be placed in the last drive in the chain. The GPM-CV connector kit provides a D-Sub adapter that plugs into a CAN controller and has an RJ-45 socket that accepts the Ethernet

	Р8		
	PIN	SIGNAL	
	1	CAN_H	
	2	CAN_L	
	3	CAN_GND	
CAN Bus	4	*	
Connector	5	*	
Signals	6	*	
	7	CAN_GND	
	8	*	

JP5A Connects termination resistor for last node on CAN bus

Important! Install JP5A ONLY if development kit is the LAST node on a CAN bus

SAFE TORQUE OFF (STO)

DESCRIPTION

If the STO feature will not be used, the STO function can be disabled by adding jumpers to a connector for P5 as shown below.

^{*} These pins connect both sockets in the CAN connector.

CANOPEN DEVICE ID SWITCHES

CANOPEN DEVICE ID SWITCH CONNECTIONS

The graphic below shows the connections to the CANopen Device ID switches. These are read after the drive is reset, or powered-on. When changing the settings of the switches, be sure to either reset the drive, or to power it off-on. Outputs [OUT6,7,8] and input [IN6] operate as an SLI (Switch & LED Interface) port which reads the settings on the CANopen Device ID switches, and controls the LEDs on the serial and CAN port connectors. In addition to the SLI function, the port can operate as an SPI interface.

The jumpers marked with red "X" should be removed so that SW13, or external connections to the signals do not interfere with the operation of the SLI port. The "X" on [OUT6] shows that no connections should be made to this by the user when the SLI port is active.

CME2 -> Input/Output -> Digital Outputs

☑se Switch and LED Interface (SLI)

5V POWER SOURCES

Power for circuits on the Development Kit (+5V) can be supplied either from the servo drive (INT), or from an external +5V power supply (EXT). Jumper JP14 selects the source of the +5V from either the drive or from the external source.

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01598 Rev 05

Fax: 781-828-6547 Page 31 of 38

CONNECTORS & SIGNALS

LOGIC INPUTS & SWITCHES

The Development Kit has jumpers that can connect the GPM digital inputs to switches on the kit, or to the Signal connector 6.

As delivered, all of these jumpers are installed as shown. If connecting to external devices that actively control the level of an input, it is desirable to disconnect the switch which could short the input to ground.

For example, if [IN1] is connected to an external device for the Enable function, then jumper JP7A should be removed to take the switch SW1 out of the circuit. The figure below shows these connections.

LOGIC OUTPUTS

There are logic outputs that can drive controller logic inputs or relays. If relays are driven, then flyback diodes must be connected across their terminals to clamp overvoltages that occur when the inductance of the relay coil is suddenly turned off. Outputs 5,6,7 & 8 are CMOS types that pull up to 5V or down to ground. When these outputs go high it turns on the green LED. When they are low, the red LED is turned on. Outputs 1,2,3,& 4 are two-terminal opto-isiolated types. With the jumpers in place as shown, when the outputs are ON they will drive current through the LEDs DS3 \sim 6.

Fax: 781-828-6547

Page 33 of 38

FEEDBACK CONNECTOR & SIGNALS

MOTOR FEEDBACK CONNECTOR P4

For motors with differential encoders: install jumpers JP1B, JP1C, JP1A to connect terminators across A, B, and X inputs.

For motors with single-ended encoders: remove jumpers JP1B, JP1C, JP1A to disconnect the terminators.

Then use the A, B, and X inputs for the encoder. The /A, /B, and /X inputs are then biased by dividers to work with the single-ended encoder signals.

A motor temperature sensor that connects to [IN11] must have jumper JP8D removed to prevent switch SW14 from grounding the Motemp[IN11] signal.

Absolute encoders such as the Nikon A type that use 2-wire bidirectional signals require biasing the lines when they are in a quiescent state. Jumpers JP11A, JP11B, and JP1D must be in place to provide line termination and biasing.

LED's are provided to show the status of the encoder and Hall signals.

BRAKE CONNECTOR & SIGNALS

The brake circuit in the GPM is optically isolated from the other drive circuits. And the brake circuit in the Development Kit is isolated from other circuits in the kit. Jumpers are provided that connect the kit brake circuits to the +24V (HVAUX) power and SGND (Signal Ground).

With the jumpers in place, supplying +24V to P2-4 and ground to P2-3 will power the brake circuit. When this is done a low-current brake can be connected to P1-3 and P1-4, or a higher-current brake can be connected between P1-4 and P1-2. The +24V power supply must be able to supply the required current to energize the brake.

DEVELOPMENT KIT CONNECTIONS

DEVELOPMENT KIT CONNECTORS

P4 FEEDBACK

PIN	SIGNAL	PIN	SIGNAL	$\ $	PIN	SIGNAL
26	Signal Gnd	18	Sin(-)		9	Enc X
25	Signal Gnd	17	+5V Enc		8	Enc /X
24	N.C.	16	Signal Gnd		7	[IN11] Motemp*
23	Rslvr Ref(+)	15	Enc S		6	+5V ENC
22	Rslvr Ref(-)	14	Enc /S		5	Signal Gnd
21	Cos(+)	13	Enc A		4	Hall W
20	Cos(-)	12	Enc /A		3	Hall V
19	Sin(+)	11	Enc B		2	Hall U
		10	Enc /B	1 [1	Frame Gnd

^{*} Signal connections on the PC board are affected by jumper placement

Tel: 781-828-8090

INPUT SWITCHES

DEVELOPMENT KIT CONNECTORS

P8 CANOPEN

Pin	Signal
1	CAN_H
2	CAN_L
3	CAN_GND
4	Pass-thru
5	Pass-thru
6	Pass-thru
7	CAN_GND
8	Pass-thru

P7 RS-232

Pin	Signal	
1	n.c.	
2	RxD	
3	Sgnd	
4	Sgnd	
5	Txd	
6	n.c.	

P6 CONTROL

12

13

14

15

PIN	SIGNAL		
1	Frame Gnd		
2	[AIN-]		
3	[AIN+]		
4	[OUT8] SPI-EN1		
5	[OUT7] SPI-CLK		
6	Signal Gnd		
7	[IN1] HS		
8	[IN2] HS		
9	[IN3] HS		
10	[IN4] HS		
11	[IN5] HS		

[IN6] HS

[IN7] ISO

[IN8] ISO

[IN9] ISO

Tel: 781-828-8090

PIN	SIGNAL		
16	Signal Gnd	PIN	SIGNAL
17	+5V ENC	31	Signal Gnd
18	/S Multi-Port	32	+5V ENC
19	/X Multi-Port	33	S Multi-Port
20	/B Multi-Port	34	X Multi-Port
21	/A Multi-Port	35	B Multi-Port
22	Signal Gnd	36	A Multi-Port
23	[OUT5]	37	Signal Gnd
24	[OUT4-] ISO	38	[OUT6] SPI-MOS
25	[OUT3-] ISO	39	[OUT4+] ISO
26	[OUT2-] ISO	40	[OUT3+] ISO
27	[OUT1-] ISO	41	[OUT2+] ISO
28	[INCOM] ISO	42	[OUT1+] ISO
29	N.C.	43	N.C.
30	[IN10] ISO	44	Signal Gnd

F 5 K3-422				
Pin	Signal			
1	N.C.			
2	N.C.			
3	RS422(-)			
4	RS422(+)			
5	RS422-GND			

 $(\bigcirc$

P5 SAFFTY

13 SAILII				
PIN	SIGNAL	PIN	SIGNAL	
1	Frame Gnd	6	STO-IN1(+)	
2	STO-IN1(+)	7	STO-IN1(-)	
3	STO-IN1(-)	8	STO-BYPASS	
4	STO-IN2(+)	9	STO-GND	
5	STO-IN2(-)			

ORDERING INFORMATION

ORDERING GUIDE

GPM-055-60 GPM Servo Drive, 30/60 Adc, with encoder feedback GPM-055-60-R GPM Servo Drive, 30/60 Adc, with resolver feedback

Example: Order one Argus Plus GPM drive, 30/60 Adc with resolver feedback, Development Kit, connector kit, and serial cable kit:
Qty Item Remarks
GPM-055-60-R Argus Plus GPM servo drive with resolver feedback
GPK-090-01 Development Kit

GPK-CK Connector Kit SER-CK Serial Cable Kit

ACCESSORIES

	Qty	Ref	Name	Description	Manufacturer P/N
GPK-090-01 1			Development Kit for all GPM models		
GPK-CK Connector Kit for Development Kit	1	P3	HV & Motor	Plug, 5 position, 7.62 mm, female	Phoenix Contact: PC 5/5-STCL-7,62
	1		Brake	Plug, 4 position, 3.5 mm, female	Wago: 734-104/107-000
	1	P1		Strain relief, snap-on, 3.5 mm, 4 position, grey	Wago: 734-604
	1		Tool	Tool, wire insertion & extraction, 734 series	Wago: 734-231
	1	P2	Aux HV	Plug, 4 position, 5.08 mm, female	Wago: 231-304/107-000
	1	P5	Safety	Connector, DB-9M, 9-position, standard, male	TE/AMP: 205204-4
	9			AMPLIMITE HD-20 Crimp-Snap contacts, 24-20AWG, AU flash	TE/AMP: 66506-9
	1			Metal Backshell, DB-9, RoHS	3M: 3357-9209
	4			Jumper, with pins crimped on both ends	Copley: 10-75177-01
	1	P4	Feedback	Connector, high-density DB-26M, 26 position, male, solder cup	Norcomp: 180-026-103L001
	1			Metal Backshell, DB-15, RoHS	3M: 3357-9215
	1	P6	Control	Connector, high-density DB-44M, 44 position, male, solder cup	Norcomp: 180-044-103L001
	1			Metal Backshell, DB-25, RoHS	3M: 3357-9225
	1	P9	RS-422	Connector, terminal block, female, 0.20 in, 5-position	TE: 796634-5
SER-CK	1	P7	RS-232	Serial Cable Kit	
GPK-NC-10				CANopen network cable, 10 ft (3 m)	
GPK-NC-01		P8	Network	CANopen network cable, 1 ft (0.3 m)	
GPK-NT				CANopen Network Terminator	
GPM-HK				Heatsink Kit	

16-01598 Document Revision History

Revision	Date	Remarks
00	March 27, 2017	Preliminary version
01	April 4, 2017	Initial released version
02	December 6, 2017	Added 90V models, change 90V model min voltage to 14 Vdc, corrected DevKit model number, added thermal data, remove large heatsink, add HS kit to accessories.
03	June 13, 2018	Corrections to STO graphic and signal namings
04	February 15, 2019	Updated photo on first page and edited the Feedback section
05	March 13, 2019	Corrected SSI encoder description

Note: Specifications subject to change without notice

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-01598 Rev 05 Page 38 of 38