COMPILER CONSTRUCTION

Principles and Practice

Kenneth C. Louden

4. Top-Down Parsing

PART TWO

Contents

PART ONE

- 4.1 Top-Down Parsing by Recursive-Descent
- 4.2 LL(1) Parsing More

PART TWO

- 4.3 First and Follow Sets [More]
- 4.4 A Recursive-Descent Parser for the TINY Language More
- 4.5 Error Recovery in Top-Down Parsers

4.1 Top-Down Parsing by Recursive-Descent

4.2 LL(1) Parsing

4.2.1 The Basic Method of LL(1) Parsing

Main idea

- LL(1) Parsing uses an explicit stack rather than recursive calls to perform a parse
- An example:
 - a simple grammar for the strings of balanced parentheses:

$$S \rightarrow (S) S | \epsilon$$

• The following table shows the actions of a topdown parser given this grammar and the string ()

Table of Actions

Steps	Parsing Stack	Input	Action
1	\$S	()\$	$S \rightarrow (S) S$
2	\$S)S(()\$	match
3	\$S)S)\$	$S \rightarrow \epsilon$
4	\$S))\$	match
5	\$S	\$	$S \rightarrow \epsilon$
6	\$	\$	accept

General Schematic

- A top-down parser begins by pushing the start symbol onto the stack
- It accepts an input string if, after a series of actions, the stack and the input become empty
- A general schematic for a successful top-down parse:

```
$ StartSymbol Inputstring$
... //one of the two actions
... //one of the two actions
$ accept
```

Two Actions

The two actions

- Generate: Replace a non-terminal A at the top of the stack by a string α (in reverse) using a grammar rule A $\rightarrow \alpha$, and
- Match: Match a token on top of the stack with the next input token.
- The list of generating actions in the above table:

$$S \Rightarrow (S)S \quad [S \rightarrow (S) S]$$
$$\Rightarrow ()S \quad [S \rightarrow \varepsilon]$$
$$\Rightarrow () \quad [S \rightarrow \varepsilon]$$

- Which corresponds precisely to the steps in a leftmost derivation of string ().
- This is the characteristic of top-down parsing.

4.2.2 The LL(1) Parsing Table and Algorithm

Purpose and Example of LL(1) Table

- Purpose of the LL(1) Parsing Table:
 - To express the possible rule choices for a non-terminal A when the A is at the top of parsing stack based on the current input token (the look-ahead).
- The LL(1) Parsing table for the following simple grammar:

$$S \rightarrow (S) S|\epsilon$$

M[N,T]	()	\$
S	$S \rightarrow (S) S$	$S \rightarrow \epsilon$	$S \rightarrow \epsilon$

The General Definition of Table

- The table is a two-dimensional array indexed by non-terminals and terminals
- Containing production choices to use at the appropriate parsing step called M[N,T]
 - N is the set of non-terminals of the grammar
 - T is the set of terminals or tokens (including \$)
- Any entrances remaining empty
 - Representing potential errors

Table-Constructing Rule

- The table-constructing rule
 - If A→α is a production choice, and there is a derivation $\alpha=>*$ aβ, where a is a token, then add A→α to the table entry M[A,a];
 - If A→α is a production choice, and there are derivations $\alpha=>^* \varepsilon$ and S=>^* βAaγ$, where S is the start symbol and a is a token (or \$), then add A→α to the table entry M[A,a];

A Table-Constructing Case

- The constructing-process of the following table
 - For the production : $S \rightarrow (S)S$, $\alpha = (S)S$, where a = (, this choice will be added to the entry M[S, (].
 - Since: S=>(S)S, rule 2 applied with A = S, a = I, so add the choice $S \rightarrow \varepsilon$ to M[S, I]
 - Since S=>* S\$, $S \rightarrow \epsilon$ is also added to M[S, \$].

M[N,T]	()	\$
S	$S \rightarrow (S) S$	$S \rightarrow \epsilon$	$S \rightarrow \epsilon$

Properties of LL(1) Grammar

- Definition of LL(1) Grammar
 - A grammar is an LL(1) grammar if the associated LL(1) parsing table has at most on production in each table entry
- An LL(1) grammar cannot be ambiguous

A Parsing Algorithm Using the LL(1) Parsing Table

(* assumes \$ marks the bottom of the stack and the end of the input *) push the start symbol onto the top the parsing stack;

while the top of the parsing stack ≠ \$ and the next input token ≠ \$ do

if the top of the parsing stack is terminal a and the next input token = a

then (* match *)
pop the parsing stack;
advance the input;

A Parsing Algorithm Using the LL(1) Parsing Table

```
else if the top of the parsing stack is non-terminal A and the next input token is terminal a and parsing table entry M[A,a] contains production A \rightarrow
```

```
then (* generate *)

pop the parsing stack;

for i:=n downto 1 do

push Xi onto the parsing stack;

else error;

if the top of the parsing stack = $

and the next input token = $

then accept
else error.
```

Example: If-Statements

• The LL(1) parsing table for simplified grammar of if-statements:

```
Statement \rightarrow if-stmt | other

If-stmt \rightarrow if (exp) statement else-part

Else-part \rightarrow else statement | \epsilon

Exp \rightarrow 0 | 1
```

M[N,T]	If	Other	Else	0	1	\$
Statement	Statement → if- stmt	Statement → other				
If-stmt	If-stmt → if (exp) stateme nt else- part					
Else-part			Else-part → else state ment			Else- $\begin{array}{c} \textbf{part} \\ \rightarrow \textbf{\epsilon} \end{array}$
			Else-part $\rightarrow \epsilon$			
Exp				$\operatorname{Exp} \longrightarrow 0$	$\begin{array}{c} \operatorname{Exp} \to \\ 1 \end{array}$	

Notice for Example: If-Statement

- The entry M[else-part, else] contains two entries, i.e. the dangling else ambiguity.
- Disambiguating rule: always prefer the rule that generates the current look-ahead token over any other, and thus the production

Else-part \rightarrow else statement ove Else-part $\rightarrow \epsilon$

- With this modification, the above table will become unambiguous
 - The grammar can be parsed as if it were an LL(1) grammar

The parsing based LL(1) Table

• The parsing actions for the string:

If (0) if (1) other else other

• (for conciseness, statement= S, if-stmt=I, else-part=L, exp=E, if=I, else=e, other=o)

Steps	Parsing Stack	Input	Action
1	\$S	i(0)i(1)oeo\$	S→I
2	\$I	i(0)i(1)oeo\$	I→i(E)SL
3	\$LS)E(i	i(0)i(1)oeo\$	Match
4	\$ LS)E((0)i(1)oeo \$	Match
5	\$ LS)E	0)i(1)oeo \$	E→o
			Match
			Match
			S→I
			I→i(E)SL
			Match
			Match
			E→1
			Match
			match
			S-0
			match
			L→eS
			Match
			S→o
			match
			$L{ ightarrow}$ ϵ
22	\$	\$	accept

4.2.3 Left Recursion Removal and Left Factoring

Repetition and Choice Problem

- Repetition and choice in LL(1) parsing suffer from similar problems to be those that occur in recursive-descent parsing
 - and for that reason we have not yet been able to give an LL(1) parsing table for the simple arithmetic expression grammar of previous sections.
- Solve these problems for recursive-descent by using EBNF notation
 - We cannot apply the same ideas to LL(1) parsing;
 - instead, we must rewrite the grammar within the BNF notation into a form that the LL(1) parsing algorithm can accept.

Two standard techniques for Repetition and Choice

Left Recursion removal

```
\exp \rightarrow \exp addop term | term
(in recursive-descent parsing, EBNF: \exp \rightarrow term
{addop term})
```

Left Factoring

```
If-stmt \rightarrow if (exp) statement
| if (exp) statement else statement
(in recursive-descent parsing, EBNF:
if-stmt\rightarrow if (exp) statement [else statement])
```

Left Recursion Removal

 Left recursion is commonly used to make operations left associative, as in the simple expression grammar, where

 $\exp \rightarrow \exp addop term \mid term$

Immediate left recursion:

The left recursion occurs only within the production of a single non-terminal.

 $\exp \rightarrow \exp + \operatorname{term} \mid \exp - \operatorname{term} \mid \operatorname{term}$

• Indirect left recursion:

Never occur in actual programming language grammars, but be included for completeness.

 $A \rightarrow Bb \mid ...$

 $B \rightarrow Aa | \dots$

CASE 1: Simple Immediate Left Recursion

- $A \rightarrow A\alpha \beta$
 - Where, α and β are strings of terminals and non-terminals; β does not begin with A.
- The grammar will generate the strings of the form. $\beta\alpha^n$
- We rewrite this grammar rule into two rules:

$$A \rightarrow \beta A$$

To generate β first;

$$A' \rightarrow \alpha A' | \epsilon$$

To generate the repetitions of α , using right recursion.

Example

- $\exp \rightarrow \exp$ addop term | term
- To rewrite this grammar to remove left recursion, we obtain

```
exp \rightarrow term exp'
exp' \rightarrow addop term exp' | \epsilon
```

CASE2: General Immediate Left Recursion

 $A \rightarrow A\alpha 1 | A\alpha 2 | \dots | A\alpha n | \beta 1 | \beta 2 | \dots | \beta m$ Where none of $\beta 1, \dots, \beta m$ begin with A.

The solution is similar to the simple case:

 $A \rightarrow \beta 1A' |\beta 2A'| \dots |\beta mA'$

 $A' \rightarrow \alpha 1 A' | \alpha 2 A' | \dots | \alpha n A' | \epsilon$

Example

• $\exp \rightarrow \exp + \operatorname{term} | \exp - \operatorname{term} | \operatorname{term}$

Remove the left recursion as follows:

 $\exp \rightarrow \text{term exp'}$

 $\exp' \rightarrow + \text{term exp'} \mid - \text{term exp'} \mid \epsilon$

CASE3: General Left Recursion

- Grammars with noe-productions and no cycles
 - (1) A cycle is a derivation of at least one step that begins and ends with same non-terminal:

$$A => \alpha => A$$

(2) Programming language grammars do have ε productions, but usually in very restricted forms.

Algorithm for General Left Recursion Removal

```
For i:=1 to m do

For j:=1 to i-1 do

Replace each grammar rule choice of the form

Ai \rightarrow Aj\beta by the rule

Ai \rightarrow \alpha 1\beta |\alpha 2\beta| \dots |\alpha k\beta,

where Aj \rightarrow \alpha 1|\alpha 2| \dots |\alpha k is the current rule for Aj.
```

Explanation:

- (1) Picking an arbitrary order for all non-terminals, say, A1,...,Am;
- (2) Eliminates all rules of the form $Ai \rightarrow Aj\gamma$ with $j \le i$;
- (3) Every step in such a loop would only increase the index, and thus the original index cannot be reached again.

Example

Consider the following grammar:

A→Ba| Aa| c

B→Bb| Ab| d

Where, A1=A, A2=B and m=2

(1) When i=1, the inner loop does not execute, So only to remove the immediate left recursion of A

A→BaA'l c A'

 $A' \rightarrow aA' \mid \epsilon$

 $B \rightarrow Bb|Ab|d$

Example

(2) when i=2, the inner loop execute once, with j=1;To eliminate the rule B→Ab by replacing A with it choices

A→BaA'l c A'

 $A' \rightarrow aA' \mid \varepsilon$

B→Bb| BaA'b|cAb| d

(3) We remove the immediate left recursion of B to obtain

A→BaA'l c A'

 $A' \rightarrow aA' \mid \varepsilon$

 $B \rightarrow |cA'bB'| dB'$

B→bB' |aA'bB'|ε

Now, the grammar has no left recursion.

Notice

- Left recursion removal not changes the language, but
 - Change the grammar and the parse tree
- This change causes a complication for the parser

Example

Simple arithmetic expression After removal of the left grammar

 $expr \rightarrow expr \ addop \ term|term$ addop \rightarrow +|term → term mulop factor | factor mulop →* factor \rightarrow (expr) | number

recursion

```
\exp \rightarrow \text{term exp'}
exp'→ addop term exp'|ε
addop \rightarrow + -
term → factor term'
term' \rightarrow mulop factor term'|\epsilon
mulop →*
factor \rightarrow (expr) | number
```

Parsing Tree

- The parse tree for the expression 3-4-5
 - Not express the left associativity of subtraction.

Syntax Tree

• Nevertheless, a parse should still construct the appropriate left associative syntax tree

• From the given parse tree, we can see how the value of 3-4-5 is computed.

Left-Recursion Removed Grammar and its Procedures

• The grammar with its left recursion removed, exp and exp' as follows:

```
\exp \rightarrow \text{term exp'}
    exp'→ addop term exp'|E
                                      Procedure exp'
                                          Begin
                                            Case token of
                                            +: match(+);
Procedure exp
                                             term;
   Begin
                                             exp';
     Term;
                                            -: match(-);
     Exp';
                                             term;
   End exp;
                                             exp';
                                            end case;
                                          end exp'
```

Left-Recursion Removed Grammar and its Procedures

• To compute the value of the expression, exp' needs a parameter from the exp procedure

```
exp → term exp'
exp'→ addop term exp'|ε
```

```
function exp:integer;
var temp:integer;
Begin
Temp:=Term;
Return Exp'(temp);
End exp;
```

```
function exp'(valsofar:integer):integer;
  Begin
  If token=+ or token=- then
  Case token of
  +: match(+);
  valsofar:=valsofar+term;
  -: match(-);
  valsofar:=valsofar-term;
  end case;
  return exp'(valsofar);
```

The LL(1) parsing table for the new expression

M[N,T]	(number)	+	-	*	\$
Exp	exp	exp →					
	→	term					
	term	exp'					
	exp'						
Exp'			exp' →	exp' →	exp' →		exp' →
			ε	addop	addop		ε
				term	term		
				exp'	exp'		
Addop				addop	addop		
				→ +	→ -		
Term	term	term →					
	→	factor					
	factor	term'					
	term'						
Term'			term'	term'	term'	term'	term'
			→ ε	→ ε	→ ε	\rightarrow	→ ε
						mulop	
						factor	
						term'	
Mulop						mulop	
						→ *	
factor	factor	factor					
	→	→					
	(expr)	number					

Left Factoring

• Left factoring is required when two or more grammar rule choices share a common prefix string, as in the rule

$$A \rightarrow \alpha \beta | \alpha \gamma$$

• Example:

stmt-sequence→stmt; stmt-sequence | stmt stmt→s

- An LL(1) parser cannot distinguish between the production choices in such a situation
- The solution in this simple case is to "factor" the α out on the left and rewrite the rule as two rules:

$$A \rightarrow \alpha A'$$

 $A' \rightarrow \beta | \gamma$

Algorithm for Left Factoring a Grammar

While there are changes to the grammar do
For each non-terminal A do
Let α be a prefix of maximal length that is shared
By two or more production choices for A

If α≠εthen

Let $A \to \alpha 1 |\alpha 2| \dots |\alpha n$ be all the production choices for A And suppose that $\alpha 1, \alpha 2, \dots, \alpha k$ share $\alpha, s n$ that $A \to \alpha \beta 1 |\alpha \beta 2| \dots |\alpha \beta k |\alpha K+1| \dots |\alpha n$, the βj 's share No common prefix, and $\alpha K+1, \dots, \alpha n$ do not share α Replace the rule $A \to \alpha 1 |\alpha 2| \dots |\alpha n$ by the rules $A \to \alpha A' |\alpha K+1| \dots |\alpha n$

A ' $\rightarrow \beta 1 |\beta 2| ... |\beta k$

• Consider the grammar for statement sequences, written in right recursive form:

Stmt-sequence→stmt; stmt-sequence | stmt
Stmt→s

Left Factored as follows:

Stmt-sequence→stmt stmt-seq'
Stmt-seq'→; stmt-sequence | ε

- Notices:
 - if we had written the stmt-sequence rule left recursively,
 - Stmt-sequence → stmt-sequence ; stmt | stmt
- Then removing the immediate left recursion would result in the same rules:

Stmt-sequence→stmt stmt-seq'
Stmt-seq'→; stmt-sequence | ε

• Consider the following grammar for ifstatements:

```
If-stmt → if (exp) statement
| if (exp) statement else statement
```

• The left factored form of this grammar is:

If-stmt \rightarrow if (exp) statement else-part Else-part \rightarrow else statement | ϵ

• An arithmetic expression grammar with right associativity operation:

$$\exp \rightarrow \text{term+exp | term}$$

 This grammar needs to be left factored, and we obtain the rules

$$\exp \rightarrow \text{term exp'}$$

 $\exp' \rightarrow + \exp|\epsilon|$

• Suppose we substitute term exp' for exp, we then obtain:

$$\exp \rightarrow \text{term exp'}$$

 $\exp' \rightarrow + \text{term exp'} | \epsilon$

• An typical case where a grammar fails to be LL(1)

Statement → assign-stmt| call-stmt| other

Assign-stmt→identifier:=exp

Call-stmt→indentifier(exp-list)

- Where, identifier is shared as first token of both assign-stmt and call-stmt and,
- thus, could be the lookahead token for either.
- But not in the form can be left factored.

• First replace assign-stmt and call-stmt by the right-hand sides of their definition productions:

```
Statement → identifier:=exp | indentifier(exp-list) | other
```

• Then, we left factor to obtain

```
Statement → identifier statement' | other
Statement' →:=exp |(exp-list)
```

- Note:
 - this obscures the semantics of call and assignment by separating the identifier from the actual call or assign action.

4.2.4 Syntax Tree Construction in LL(1) Parsing

Difficulty in Construction

- It is more difficult for LL(1) to adapt to syntax tree construction than recursive descent parsing
- The structure of the syntax tree can be obscured by left factoring and left recursion removal
- The parsing stack represents only predicated structure, not structure that have been actually seen

Solution

- The solution
 - Delay the construction of syntax tree nodes to the point when structures are removed from the parsing stack.
- An extra stack is used to keep track of syntax tree nodes, and
- The "action" markers are placed in the parsing stack to indicate when and what actions on the tree stack should occur

Example

• A barebones expression grammar with only an addition operation.

$$E \rightarrow E + n \mid n$$

/* be applied left association*/

• The corresponding LL(1) grammar with left recursion removal is.

$$E \rightarrow n E'$$

 $E' \rightarrow +nE' | \epsilon$

To compute the arithmetic value of the expression

- Use a separate stack to store the intermediate values of the computation, called the value stack;
 - Schedule two operations on that stack:
 - A push of a number;
 - The addition of two numbers.
 - PUSH can be performed by the match procedure, and
 - ADDITION should be scheduled on the stack, by pushing a special symbol (such as #) on the parsing stack.
 - This symbol must also be added to the grammar rule that match a +, namely, the rule for E':
 - E' \rightarrow +n#E'lɛ
- Notes: The addition is scheduled just after the next number, but before any more E' non-terminals are processed. This guaranteed left associativity.

The actions of the parser to compute the value of the expression 3+4+5

Parsing Stack	Input	Action	Value Stack
\$E	3+4+5\$	E→n E'	\$
\$E'n	3+4+5\$	Match/push	\$
\$E'	+4+5\$	E' →+n#E'	3\$
\$E'#n+	+4+5\$	Match	3\$
\$E'#n	4+5\$	Match/push	3\$
\$E'#	+5\$	Addstack	43\$
\$E'	+5\$	E' →+n#E'	7\$
\$E'#n+	+5\$	Match	7\$
\$E'#n	5\$	Match/push	7\$
\$E'#	\$	Addstack	57\$
\$E'	\$	E' → ε	12\$
\$	\$	Accept	12\$

4.3 First and Follow Sets

The LL(1) parsing algorithm is based on the LL(1) parsing table

The LL(1) parsing table construction involves the First and Follow sets

4.3.1 First Sets

Definition

- Let X be a grammar symbol(a terminal or non-terminal) or ε . Then First(X) is a set of terminals or ε , which is defined as follows:
 - 1. If X is a terminal or ε , then First(X) = {X};
 - 2. If X is a non-terminal, then for each production choice $X\rightarrow X1X2...Xn$,

First(X) contains First(X1)- $\{\epsilon\}$.

If also for some i<n, all the set First(X1)..First(Xi) contain ε , the first(X) contains First(Xi+1)-{ ε }.

IF all the set First(X1)..First(Xn) contain ϵ , the First(X) contains ϵ .

Definition

- Let α be a string of terminals and nonterminals, X1X2...Xn. First(α) is defined as follows:
 - 1.First(α) contains First(X1)-{ ϵ };
 - 2.For each i=2,...,n, if for all k=1,..,i-1, First(Xk) contains ε , then First(α)
 - contains $First(Xk)-\{\epsilon\}$.
 - 3. IF all the set First(X1)..First(Xn) contain ε , the $First(\alpha)$ contains ε .

Algorithm Computing First (A)

• Algorithm for computing First(A) for all non-terminal A:

```
For all non-terminal A do First(A):={ };

While there are changes to any First(A) do

For each production choice A→X1X2...Xn do

K:=1; Continue:=true;

While Continue= true and k<=n do

Add First(Xk)-{ε} to First(A);

If ε is not in First(Xk) then Continue:= false;

k:=k+1;

If Continue = true then addεto First(A);
```

Algorithm Computing First (A)

• Simplified algorithm in the absence of \varepsilon-production.

For all non-terminal A do First(A):={ };
While there are changes to any First(A) do
For each production choice A→X1X2...Xn do
Add First(X1) to First(A);

About Nullable Non-Terminal

- Definition: A non-terminal A is nullable if there exists a derivation A=>ε.
- Theorem: A non-terminal A is nullable if and only if First(A) contains ϵ .
- Proof: 1. If A is nullable, then First(A) contains ε.
 - As $A => *\varepsilon$, we use induction on the length of a derivation.
 - (1) A=> ϵ , then there must be a production A \rightarrow ϵ ,by definition,
 - First(A) contain First(ε)={ ε }.
 - (2) Assume the truth of the statement for derivation of length < n,
 - and let $A=>X1...XK=>*\varepsilon$ be a derivation of length n;
 - All the Xi must be non-terminals;
- Implying that each $Xi => *\varepsilon$, and in fewer than n steps.
- Thus, by the induction assumption, for each i First(Xi)={ ε}
- Finally, by definition, First(A) must contains.

Example

• Simple integer expression Write out each choice grammar

```
\exp \rightarrow \exp r addop term
     term
addop \rightarrow +|-
term → term mulop factor
   | factor
```

factor \rightarrow (expr) | number

mulop →*

separately in order:

- (1) $\exp \rightarrow \exp$ addop term
- $(2) \exp \rightarrow \text{term}$
- (3) addop $\rightarrow +$
- (4) addop \rightarrow -
- (5) term \rightarrow term mulop factor
- (6) term \rightarrow factor
- (7) mulop \rightarrow *
- (8) factor \rightarrow (exp)
- (9) factor \rightarrow number

First Set for Above Example

- We can use the simplified algorithm as there exists noe-production
- The First sets are as follows:

```
First(exp)={(,number}
First(term)={(,number}
First(factor)={(,number}
First(addop)={+,-}
First(mulop)={*}
```

The computation process for above First Set

Grammar Rule	Pass 1	Pass 2	Pass 3
expr → expr addop term			
expr → term			First(exp)={(,number}
addop → +	First(addop)={+}		
addop → -	First(addop)={+,-}		
term → term mulop factor			
term → factor		First(term)={(,number}	
mulop →*	First(mulop)={*}		
factor →(expr)	First(factor)={()		
factor →number	First(factor)={(,number)		

Example

Left factored grammar of if-statement

Statement \rightarrow if-stmt | other

If-stmt \rightarrow if (exp) statement else-part

Else-part \rightarrow else statement | ϵ

 $Exp \rightarrow 0 \mid 1$

- We write out the grammar rule choice separately and number them:
 - (1) Statement \rightarrow if-stmt
 - (2) Statement \rightarrow other
 - (3) If-stmt \rightarrow if (exp) statement else-part
 - (4) Else-part \rightarrow else statement
 - (5) Else-part $\rightarrow \epsilon$
 - (6) $Exp \rightarrow 0$
 - (7) $Exp \rightarrow 1$

The First Set for Above Example

- Note:
 - This grammar does have an ε-production, but the only nullable non-terminal *else-part* will not in the beginning of left side of any rule choice and will not complicate the computation process.
- The First Sets:

```
First(statement)={if,other}
First(if-stmt)={if}
First(else-part)={else,ε}
First(exp)={0,1}
```

The computation process for above First Set

Grammar Rule	Pass 1	Pass 2
Statement → if-stmt		First(statement)={if,other}
Statement → other	First(statement)={other}	
If-stmt \rightarrow if (exp) statement else-part	First(if-stmt)={if}	
Else-part → else statement	First(else-part)={else}	
Else-part $\rightarrow \varepsilon$	First(else-part)={else, ε }	
$Exp \rightarrow 0$	First(exp)={1}	
$Exp \rightarrow 1$	$First(exp)=\{0,1\}$	

Example

```
Grammar for statement sequences:
       Stmt-sequence →stmt stmt-seq'
       Stmt-seq' →; stmt-sequencelɛ
       stmt \rightarrow s
 We list the production choices individually:
       Stmt-sequence →stmt stmt-seq'
       Stmt-seq' →; stmt-sequence
       Stmt-seq' \rightarrow \epsilon
       stmt \rightarrow s
The First sets are as follows:
       First(stmt-sequence)={s}
       First(stmt-seq')=\{;, \epsilon\}
       First(stmt) = \{s\}
```

4.3.2 Follow Sets

Definition

- Given a non-terminal A, the set Follow(A) is defined as follows.
 - (1) if A is the start symbol, the \$ is in the Follow(A).
 - (2) if there is a production $B \rightarrow \alpha A \gamma$ then First(γ)-{ ϵ } is in Follow(A).
 - (3) if there is a production $B \rightarrow \alpha A \gamma$ such that ϵ in First(γ), then Follow(A) contains Follow(B).

Definition

- Note: The symbol \$ is used to mark the end of the input.
 - The empty "pseudotoken" ε is never an element of a follow set.
 - Follow sets are defined only for non-terminal.
 - Follow sets work "on the right" in production while First sets work "on the left" in the production.
- Given a grammar rule $A \rightarrow \alpha B$, Follow(B) will contain Follow(A),
 - the opposite of the situation for first sets, if $A \rightarrow B\alpha$, First(A) contains First(B), except for ϵ .

Algorithm for the computation of follow sets

- Follow(start-symbol):={\$};
- For all non-terminals A≠start-symbol do follow(A):={ };
- While there changes to any follow sets do
 For each production A→X1X2...Xn do
 For each Xi that is a non-terminal do
 Add First(Xi+1Xi+2...Xn) − {ε} to Follow(Xi)
 fɛis in First(Xi+1Xi+2...Xn) then
 Add Follow(A) to Follow(Xi)

- The simple expression grammar.
 - (1) $\exp \rightarrow \exp$ addop term
 - $(2) \exp \rightarrow \text{term}$
 - (3) addop $\rightarrow +$
 - (4) addop \rightarrow -
 - (5) term \rightarrow term mulop factor
 - (6) term \rightarrow factor
 - (7) mulop \rightarrow *
 - (8) factor \rightarrow (exp)
 - (9) factor \rightarrow number

```
• The first sets:
```

```
First(exp)={(,number}
First(term)={(,number}
First(factor)={(,number}
First(addop)={+,-}
First(mulop)={*}
```

• The Follow sets:

```
Follow(exp)={$,+,-,}}
Follow(addop)={(,number)}
Follow(term)={$,+,-,*,}}
Follow(mulop)={(,number)}
Follow(factor)={$,+,-,*,}}
```

The progress of above computation

Grammar rule	Pass 1	Pass 2
exp → exp addop term	Follow(exp)={\$,+,-}	Follow(term)={ \$,+,-, *, } }
	Follow(addop)={(,number)	
	Follow(term)={ \$,+,-}	
Exp → term		
term → term mulop factor	Follow(term)={ \$,+,-, *}	Follow(factor)={ \$,+,-, *, } }
	Follow(mulop)={(,number)	
	Follow(factor)={ \$,+,-, *}	
term →factor		
factor →(exp)	Follow(exp)={\$,+,-,) }	

- The simplified grammar of if-statements:
 - (1) Statement \rightarrow if-stmt
 - (2) Statement \rightarrow other
 - (3) If-stmt \rightarrow if (exp) statement else-part
 - (4) Else-part \rightarrow else statement
 - (5) Else-part $\rightarrow \varepsilon$
 - (6) $Exp \rightarrow 0$
 - $(7) \operatorname{Exp} \rightarrow 1$

• The First sets:

```
First(statement)={if,other}
First(if-stmt)={if}
First(else-part)={else,ε}
First(exp)={0,1}
```

• Computing the following Follow sets:

```
Follow(statement)={$,else}
Follow(if-statement)={$,else}
Follow(else-part)={$,else}
Follow(exp)={)}
```

- The simplified statement sequence grammar.
 - (1) Stmt-sequence →Stmt Stmt-seq'
 - (2) Stmt-seq' →; Stmt-sequence
 - (3) Stmt-seq' $\rightarrow \varepsilon$
 - (4) Stmt \rightarrow s

• The First sets are as follows:

```
First(Stmt-sequence)={s}
First(Stmt)={s}
First(Stmt-seq')={;,ε}
```

• And, the Follow sets:

```
Follow(Stmt-sequence)={$}
Follow(Stmt)={;, $}
Follow(Stmt-seq')={$}
```

4.3.3 Constructing LL(1) Parsing Tables

The table-constructing rules

- (1) If $A \rightarrow \alpha$ is a production choice, and there is a derivation $\alpha = >^* \alpha \beta$, where α is a token, then add $A \rightarrow \alpha$ to the table entry $M[A,\alpha]$
- (2) If $A \rightarrow \alpha$ is a production choice, and there are derivations $\alpha = >^* \varepsilon$ and $S = >^* \beta A \alpha \gamma$, where S is the start symbol and a is a token (or \$), then add $A \rightarrow \alpha$ to the table entry M[A,a]
- Clearly, the token a in the rule (1) is in $First(\alpha)$, and the token a of the rule (2) is in Follow(A).
- Thus we can obtain the following algorithmic construction of the LL(1) parsing table:

Algorithm and Theorem

- Repeat the following two steps for each non-terminal A and production choice $A\rightarrow\alpha$.
 - For each token a in First(α), add $A \rightarrow \alpha$ to the entry M[A,a].
 - If ε is in First(α), for each element a of Follow(A) (a token or \$), add A $\rightarrow \alpha$ to M[A,a].
- Theorem: A grammar in BNF is LL(1) if the following conditions are satisfied.
 - For every production A→ α 1| α 2|...| α n, First(α i) ∩ First(α j) is empty for all i and j, 1≤i,j≤n, i≠j.
 - For every non-terminal A such that First(A) contains ε, First(A) \cap Follow(A) is empty.

• The simple expression grammar.

```
\exp \rightarrow \operatorname{term} \exp'
\exp' \rightarrow \operatorname{addop} \operatorname{term} \exp' | \epsilon
\operatorname{addop} \rightarrow + -
\operatorname{term} \rightarrow \operatorname{factor} \operatorname{term'}
\operatorname{term'} \rightarrow \operatorname{mulop} \operatorname{factor} \operatorname{term'} | \epsilon
\operatorname{mulop} \rightarrow^*
\operatorname{factor} \rightarrow (\exp r) | \operatorname{number}
```

The first and follow set

First Sets	Follow Sets
$First(exp) = \{(,number)\}$	Follow(exp)= $\{\$,\}$
$First(exp') = \{+,-, \varepsilon \}$	Follow(exp')= $\{\$, \}$
First(term)={(,number)	Follow(addop)={(,number)
First(term')= $\{*, \epsilon\}$	Follow(term)={ \$,+,-,) }
First(factor)={(,number}	Follow(term')={\$,+,-,) }
$First(addop) = \{+,-\}$	Follow(mulop)={(,number}
First(mulop)={*}	Follow(factor)={ \$,+,-, *, } }

the LL(1) parsing table

M[N,T]	(number)	+	-	*	\$
Exp	exp →	exp →					
	term	term exp'					
	exp'						
Exp'			exp'→ ε	exp' →	exp' →		exp'→ ε
				addop	addop		
				term exp'	term exp'		
Addop				addop →	addop →		
				+	-		
Term	term →	term →					
	factor	factor					
	term'	term'					
Term'			term' →	term' →	term' →	term' →	term' →
			ε	ε	ε	mulop	ε
						factor	
						term'	
Mulop						mulop →	_
						*	
factor	factor	factor →					
	→(expr)	number					

• The simplified grammar of if-statements

Statement → if-stmt | other

If-stmt \rightarrow if (exp) statement else-part

Else-part \rightarrow else statement | ϵ

 $Exp \rightarrow 0 \mid 1$

The first and follow set

First Sets	Follow Sets
First(statement)={if,other}	Follow(statement)={\$,else}
First(if-stmt)={if}	Follow(if-statement)={\$,else}
First(else-part)={else, ε }	Follow(else-part)={\$,else}
$First(exp) = \{0,1\}$	Follow(exp)={) }

the LL(1) parsing table

M[N,T]	If	Other	Else	0	1	\$
Statement	Statement →	Statement				
	if-stmt	→ other				
If-stmt	If-stmt → if					
	(exp)					
	statement					
	else-part					
Else-part			Else-part			Else-par
			→ else			t → ε
			statement			
			Else-part			
			→ ε			
exp				$Exp \rightarrow 0$	Exp →	
					1	

- Consider the following grammar with left factoring applied.
 - (1) Stmt-sequence →Stmt Stmt-seq'
 - (2) Stmt-seq' \rightarrow ; Stmt-sequence | ϵ
 - (3) Stmt \rightarrow s

The first and follow set

First Sets	Follow Sets
$First(Stmt-sequence)=\{s\}$	Follow(Stmt-sequence)={\$}
$First(Stmt) = \{s\}$	Follow(Stmt)={;, \$}
First(Stmt-seq')= $\{;, \epsilon\}$	Follow(Stmt-seq')={\$}

the LL(1) parsing table

M[N,T]	S	·	\$
Stmt-sequence	Stmt-sequence →		
	Stmt Stmt-seq'		
Stmt	Stmt→s		
Stmt-seq'		Stmt-seq' → ;	Stmt-seq' → ε
		Stmt-sequencel	

4.3.4 Extending the lookahead: LL(k) Parsers

Definition of LL(k)

- The LL(1) parsing method can be extend to k symbols of look-ahead.
- Definitions:
 - Firstk(α)={ $wk \mid \alpha = >^* w$ }, where, wk is the first k tokens of the string w if the length of w > k, otherwise it is the same as w.
 - Followk(A)={ $wk \mid S$=>*\alpha A w$ }, where, wk is the first k tokens of the string w if the length of w > k, otherwise it is the same as w.
- LL(k) parsing table:
 - The construction can be performed as that of LL(1).

Complications in LL(k)

- The complications in LL(k) parsing:
 - The parsing table become larger; since the number of columns increases exponentially with k.
 - The parsing table itself does not express the complete power of LL(k) because the follow strings do not occur in all contexts.
 - Thus parsing using the table as we have constructed it is distinguished from LL(k) parsing by calling it Strong LL(k) parsing, or SLL(k) parsing.

Complications in LL(k)

- The LL(k) and SLL(k) parsers are uncommon.
 - Partially because of the added complex;
 - Primarily because of the fact that a grammar fails to be LL(1) is in practice likely not to be LL(k) for any k.

4.4 A Recursive-Descent Parser For The Tiny Language

The Grammar of the TINY language in BNF

- $program \rightarrow stmt$ -sequence
- stmt-sequence→ stmt-sequence; statement | statement
- statement → if-stmt | repeat-stmt | assign-stmt | read-stmt | write-stmt
- if-stmt \rightarrow if exp then stmt-sequence end
- /if exp then stmt-sequence else stmt-sequence end
- repeat-stmt→repeat stmt-sequence until exp
- $assign-stmt \rightarrow identifier := exp$
- read- $stmt \rightarrow read$ identifier
- write-stmt \rightarrow write exp

The Grammar of the TINY language in BNF

- exp → simple-exp comparison-op simple-exp / simple-exp
- $comparison-op \rightarrow < 1 =$
- simple-exp → simple-exp addop term / term
- $addop \rightarrow + |$ -
- term → term mulop factor factor / factor
- mulop →*//
- $factor \rightarrow (exp)$ | number | lidentifier

TINY PARSER CODES

- The TINY parser consists of two code files:
 - parse.h and parse.c
 - The parse.h: (see appendix B, lines 850-865)
 - TreeNode * parse(void)
 - The main routine parse will return a pointer to the syntax tree constructed by the parser.
 - The parse.c(see appendix B, lines 900-1114)
- 11 mutually recursive procedure that correspond directly to the EBNF grammar.
- The operators non-terminals are recognized as part of their associated expressions.

TINY PARSER CODES

- The static variable **token** is used to keep the look-ahead token
- The contents of each recursive procedures should be relatively selfexplanatory except stmt-sequence
- The **utility procedures** used by the recursive parsing procedures in util.c:(Appendix B, lines 350-526).
- **NewStmtNode**(line 405-421): take the type of statement as parameter;
- Allocate a new statement node of this kind;
- Return a pointer to the newly allocated node.
- **NewExpNode**(line 423-440): take the type of exp ad parameter;

TINY PARSER CODES

- Allocate a new exp node of this kind;
- Return a pointer to the new allocated node.
- **Copystring**(line 442-455): take a string as parameter;
- Allocate a sufficient space for a copy, and copy the string;
- Return a pointer to the newly allocated copy.
- A procedure PrintTree in util.c (linge 473-506) writes a linear version of the syntax tree to the listing, so that we may view the result of a parse.

End of Part Two

THANKS