Table 2
Model builders' view of the elementary particle spectrum

- Spin 2: One graviton, considered in supergravity, but usually ignored in models that unify just color and flavor.
- Spin 3/2: An intriguing "hole" in the spectrum; ignored in unified models, but supergravity Lagrangians suggest it should be filled.
- Spin 1: Vector bosons mediating Nature's interactions, including the photon of QED, the charged and neutral weak bosons, and the eight gluons of the strong interactions. Unified models suggest additional vector bosons; for example, in some models there are bosons that mediate proton decay.
- Spin 1/2: Quarks and leptons (only the left-handed states are listed)

$$\begin{pmatrix} u \\ d' \end{pmatrix}_L \qquad \begin{pmatrix} c \\ s' \end{pmatrix}_L \qquad \begin{pmatrix} t(?) \\ b' \end{pmatrix}_L \qquad \text{Weak doublets}$$

$$\ddot{u}_L \quad \ddot{d}_L \quad \ddot{s}_L \quad \ddot{b}_L \quad \ddot{t}_L(?) \qquad \text{Weak singlets}$$

$$\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L \qquad \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L \qquad \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L \qquad \text{doublets}$$

$$e_L^{\dagger} \quad \mu_L^{\dagger} \quad \tau_L^{\dagger} \qquad \qquad \text{singlets}$$

Are there additional quarks and leptons, or other fermions with higher colors?

Spin 0: None are known for certain. The weak breaking follows a $|\Delta I^w| = \frac{1}{2}$ rule and the superstrong breaking, $|\Delta I^w| = 0$, but it is not known whether either of these are associated with explicit scalar particles. One possibility is that the superstrong breaking is due to explicit scalars in the Lagrangian, but the weak breaking is due to composites. The origin of the symmetry breaking is a major puzzle in today's particle theory.

Table 3
Embeddings of SU \S in Simple Groups G, subject to the constraint that at least one irrep of G has no more than 1^c , 3^c and $\overline{3}^c$. G^R (fi for flavor) is the largest subgroup defined by $G \supset G^R \times SU\S$. The irreps of G satisfying the restriction to the set 1^c , 3^c , are listed, along with their dimensionality. See ref. [6]

Case	G	$G^{\mathbf{n}}$	f	Dimensionality	
1.	SU,	$SU_{n_1} \times SU_{n_3} \times U_1$	n	$n=n_1+3n_3$	
2.	SU,	$SU_{n-3} \times U_1$	$(\mathbf{n}^k)_a$	$\binom{n}{k}$	
3.	SU _n	$SU_{n_1} \times SU_{n_3} \times SU_{n_4} \times U_1 \times U_1$	n	$n = n_1 + 3n_3 + 3n_5$	
4.	SO,	$SO_{n_1} \times SU_{n_3} \times U_1$	n	$n=n_1+6n_3$	
5.	SOn	$SO_{n-6} \times U_1$	n σ , σ' or $\tilde{\sigma}$	$n = n_1 + 6$ $2^{[(n-1)/2]}$	
6.	Sp _{2n}	$Sp_{2n_1} \times SU_{n_3} \times U_1$	2n	$2n = 2n_1 + 6n_3$	
7.	F ₄	SU ₃	26	26	
8.	E ₆	$SU_3 \times SU_3$	27	27	
9.	E ₇	SU ₆	56	56	

Table 5
Dynkin diagrams for simple Lie algebras. (Black dots represent shorter

Table 4

Table 6
Cartan matrices of simple Lie algebras

$$A(A_n) = \begin{pmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 & 0 \\ -1 & 2 & -1 & \cdots & \cdots & 0 & 0 \\ 0 & -1 & 2 & -1 & \cdots & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & -1 & 2 & -1 \\ 0 & 0 & 0 & \cdots & \cdots & 0 & -1 & 2 \end{pmatrix} A(G_2) = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$$

$$A(F_4) = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -2 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$

$$A(\mathbf{B}_n) = \begin{pmatrix} 2 & -1 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\ -1 & 2 & -1 & \cdot & \cdot & \cdot & 0 & 0 \\ 0 & -1 & 2 & \cdot & \cdot & \cdot & 0 & 0 \\ \cdot & \cdot \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & 2 & -2 \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & -1 & 2 \end{pmatrix} A(\mathbf{E}_6) = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & -1 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 0 & 2 \end{pmatrix}$$

 $A(C_n)$ is the transpose of $A(B_n)$, since the short and long roots are interchanged.

$$A(\mathbf{D}_n) = \begin{pmatrix} 2 & -1 & 0 & \cdot & \cdot & \cdot & 0 & 0 & 0 \\ -1 & 2 & -1 & \cdot & \cdot & \cdot & 0 & 0 & 0 \\ 0 & -1 & 2 & \cdot & \cdot & \cdot & 0 & 0 & 0 \\ \cdot & \cdot \\ 0 & 0 & 0 & & 2 & -1 & -1 \\ 0 & 0 & 0 & & & -1 & 2 & 0 \\ 0 & 0 & 0 & & & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

$$A(\mathbf{E_8}) = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

Table 7
Metric tensors G for weight space

$$G(\mathbf{E}_n) = \frac{1}{n+1} \begin{pmatrix} 1 \cdot n & 1 \cdot (n-1) & 1 \cdot (n-2) & \cdots & 1 \cdot 2 & 1 \cdot 1 \\ 1 \cdot (n-1) & 2 \cdot (n-1) & 2 \cdot (n-2) & \cdots & 2 \cdot 2 & 2 \cdot 1 \\ 1 \cdot (n-2) & 2 \cdot (n-2) & 3 \cdot (n-2) & \cdots & 3 \cdot 2 & 3 \cdot 1 \\ \vdots & \vdots \\ 1 \cdot 1 & 2 \cdot 1 & 3 \cdot 1 & \cdots & (n-1) \cdot 2 & (n-1) \cdot 1 \\ \vdots & 2 \cdot 2 & 3 \cdot 2 & \cdots & (n-1) \cdot 2 & (n-1) \cdot 1 \\ \vdots & 2 \cdot 4 \cdot 4 & \cdots & 4 & 2 \\ 2 \cdot 4 \cdot 4 \cdot 6 & \cdots & 6 & 3 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 2 \cdot 4 \cdot 6 & \cdots & 6 & 3 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 2 \cdot 2 \cdot 3 \cdots & n-1 & n-1 \\ 1 \cdot 2 \cdot 3 \cdots & n-1 & n/2 \end{pmatrix}$$

$$G(\mathbf{C}_n) = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 2 \cdot 2 & \cdots & 2 & 2 \\ 1 & 2 \cdot 3 & \cdots & n-1 & n/2 \\ \vdots & 2 \cdot 3 & \cdots & n-1 & n \end{pmatrix}$$

$$G(\mathbf{E}_n) = \frac{1}{2} \begin{pmatrix} 2 & 2 & 2 & \cdots & 2 & 1 & 1 \\ 1 & 2 & 3 & \cdots & n-1 & n \end{pmatrix}$$

$$G(\mathbf{E}_n) = \frac{1}{2} \begin{pmatrix} 4 & 5 & 6 & 4 & 2 & 3 \\ 5 & 10 & 12 & 8 & 4 & 6 \\ 2 & 4 & 6 & \cdots & 6 & 3 & 3 \\ \vdots & 10 & 12 & 8 & 4 & 6 \\ 6 & 12 & 18 & 12 & 6 & 9 \\ 4 & 8 & 12 & 10 & 5 & 6 \\ 2 & 4 & 6 & 5 & 4 & 3 & 3 \\ 3 & 6 & 9 & 6 & 3 & 6 \end{pmatrix}$$

$$G(\mathbf{E}_n) = \frac{1}{2} \begin{pmatrix} 4 & 6 & 8 & 6 & 4 & 2 & 4 \\ 6 & 12 & 16 & 12 & 8 & 4 & 8 \\ 8 & 16 & 24 & 18 & 12 & 6 & 12 \\ 6 & 12 & 18 & 15 & 10 & 5 & 9 \\ 4 & 8 & 12 & 10 & 8 & 4 & 6 \\ 2 & 4 & 6 & 5 & 4 & 3 & 3 \\ 4 & 8 & 12 & 9 & 6 & 3 & 7 \end{pmatrix}$$

$$G(\mathbf{E}_n) = \begin{pmatrix} 4 & 7 & 10 & 8 & 6 & 4 & 2 & 5 \\ 7 & 14 & 20 & 16 & 12 & 8 & 4 & 10 \\ 10 & 20 & 30 & 24 & 18 & 12 & 6 & 15 \\ 8 & 16 & 24 & 20 & 15 & 10 & 5 & 12 \\ 6 & 12 & 18 & 15 & 10 & 5 & 12 \\ 6 & 12 & 18 & 15 & 12 & 8 & 4 & 9 \\ 4 & 8 & 12 & 10 & 8 & 6 & 3 & 6 \\ 2 & 4 & 6 & 5 & 4 & 3 & 2 & 3 \\ 5 & 10 & 15 & 12 & 9 & 6 & 3 & 8 \end{pmatrix}$$

$$G(\mathbf{G}_3) = \frac{1}{3} \begin{pmatrix} 6 & 3 & 2 \\ 2 & 4 & 6 & 5 & 4 & 3 & 2 \\ 3 & 6 & 4 & 2 \\ 2 & 4 & 6 & 5 & 4 & 3 & 2 & 3 \\ 5 & 10 & 15 & 12 & 9 & 6 & 3 & 8 \end{pmatrix}$$

Table 8
Root diagrams in the Dynkin basis. "Level of simple roots" is the number of simple roots that must be subtracted from the highest root in order to obtain the simple roots; the next level has the n zero roots corresponding to the Cartan subalgebra

Algebra	Highest root	Level of simple roots	Dimension	
A _n	(1 0 0 0 0 1)	n – 1	n(n+2)	
B _n	(0 1 0 0 0 0)	2n - 2	n(2n+1)	
C,	$(2\ 0\ 0\ \dots\ 0\ 0\ 0)$	2n - 2	n(2n+1)	
D_n	(0 1 0 0 0 0)	2n - 4	n(2n-1)	
G_2	(1 0)	4	14	
F ₄	(1 0 0 0)	10	52	
E ₆	$(0\ 0\ 0\ 0\ 0\ 1)$	10	78	
E_7	$(1\ 0\ 0\ 0\ 0\ 0\ 0)$	16	133	
E ₈	$(0\ 0\ 0\ 0\ 0\ 0\ 1\ 0)$	28	248	

 $Table \ 9$ Positive roots in the Dynkin basis of rank 2 and 3 simple algebras, of SU₅ (rank 4) and of SO₁₀ (rank 5)

```
SU_3
                                                                                  G_2
    (1 1)
                                                       (2 0)
                                                                                 (1 \ 0)
(2-1)(-1\ 2)
                                                                                (-1\ 3)
                                                       (0\ 1)
                                                   (2-1)(-2\ 2)
                                                                                 (0\ 1)
                                                                                (1 - 1)
                                                                             (2-3)(-1\ 2)
             SU<sub>4</sub>
           (1 \ 0 \ 1)
      (1 \ 1 \ -1)(-1 \ 1 \ 1)
                                                              SO<sub>7</sub>
(2 -1 0)(-1 2 -1)(0 -1 2)
                                                            (0 1 0)
                                                           (1 - 1 2)
                                                       (1 \ 0 \ 0)(-1 \ 0 \ 2)
                                                       (1 \ 1 \ -2)(-1 \ 1 \ 0)
                                                 (2 -1 0)(-1 2 -2)(0 -1 2)
             Sp_6
           (2 \ 0 \ 0)
           (0 1 0)
     (1 -1 1)(-2 2 0)
                                                             SU_5
     (1 \ 1 \ -1)(-1 \ 0 \ 1)
                                                          (1 \ 0 \ 0 \ 1)
(2-1)(-1)(-2)
                                                    (1 \ 0 \ 1 \ -1)(-1 \ 1 \ 0 \ 1)
                                            (1 1 -1 0)(-1 1 1 -1)(0 -1 1 1)
                                      (2 -1 \ 0 \ 0)(-1 \ 2 \ -1 \ 0)(0 \ -1 \ 2 \ -1)(0 \ 0 \ -1 \ 2)
                                           SO_{10}
                                       (0 1 0 0 0)
                                      (1 -1 1 0 0)
                               (-1\ 0\ 1\ 0\ 0)(1\ 0\ -1\ 1\ 1)
                      (-1 \ 1 \ -1 \ 1 \ 1)(1 \ 0 \ 0 \ -1 \ 1)(1 \ 0 \ 0 \ 1 \ -1)
             (0 -1 0 1 1)(-1 1 0 -1 1)(-1 1 0 1 -1)(1 0 1 -1 -1)
            (0 -1 1 -1 1)(0 -1 1 1 -1)(-1 1 1 -1 -1)(1 1 -1 0 0)
      (0\ 0\ -1\ 0\ 2)(0\ 0\ -1\ 2\ 0)(0\ -1\ 2\ -1\ -1)(-1\ 2\ -1\ 0\ 0)(2\ -1\ 0\ 0\ 0)
```

 $\label{eq:table 10} \text{Level vectors of simple groups. The ordering follows the conventions of table 5}$

SU _{n+1}	$\bar{R} = [n, 2(n-1), 3(n-2), \dots, (n-1)2, n]$
SU ₅	$\bar{R} = [4, 6, 6, 4]$
SU ₆	$\bar{R} = [5, 8, 9, 8, 5]$
SO_{2n+1}	$\bar{R} = [2n, 2(2n-1), 3(2n-2), 4(2n-3), \dots, (n-1)(n+2), n(n+1)/2]$
SO ₉	$\bar{R} = [8, 14, 18, 10]$
Sp_{2n}	$\vec{R} = [(2n-1), 2(2n-2), 3(2n-3), \dots, (n-1)(n+1), n^2]$
SO_{2n}	$\bar{R} = [(2n-2), 2(2n-3), 3(2n-4), \dots, (n-2)(n+1), n(n-1)/2, n(n-1)/2]$
SO_8	$\vec{R} = [6, 10, 6, 6]$
SO_{10}	$\vec{R} = [8, 14, 18, 10, 10]$
G_2	$\bar{R} = [10, 6]$
F_4	$\bar{R} = [22, 42, 30, 16]$
E_6	$\mathbf{\tilde{R}} = [16, 30, 42, 30, 16, 22]$
\mathbf{E}_{7}	$\bar{R} = [34, 66, 96, 75, 52, 27, 49]$
\mathbf{E}_8	\bar{R} = [92, 182, 270, 220, 168, 114, 58, 136]

Table 11a Weight diagram for the 16 of SO_{10}

Real if $\sum_{i \text{ odd}} a_i$ even

Real if a_l even PR if a_l odd

PR if $\sum_{i \text{ odd}} a_i$ odd

Real if $a_{l-1} + a_l$ even

PR if $a_{l-1} + a_l$ odd

Real if $a_4 + a_6 + a_7$ even PR if $a_4 + a_6 + a_7$ odd

Table 11b Weight

Real/Pseudoreal (PR)

Table 12

Real if $a_{(l+1)/2}$ even PR if $a_{(l+1)/2}$ odd

Weight diagram for the 27 of E_6		Self-con	Self-conjugate representations of simple groups	ple groups
	Level	Group	Restriction	Real/Pseud
(100000)	o	SU _{I+1} I = 2, 3, 4; 6, 7, 8;	$(a_1,\ldots,a_l)=(a_l,\ldots,a_l)$	Real only
(-110000) a ₂	1			:
(0-11000)	2	SU_{l+1} $l = 1, 5, 9, 13, \dots$	$(a_1,\ldots,a_l)=$ (a_l,\ldots,a_1)	Keal if $a_{(l)}$ PR if $a_{(l+1)}$
ε _α *	ı			
(00-1101)	ന	SO _{7/4} 1	none	Real only
/		$I = 3, 4; 7, 8; 11, 12; \dots$		wear our
$(000-111)$ α_{ϵ} α_{ϵ} α_{ϵ}	7	SO_{2l+1}	none	Real if a _l e
1 (1)	٠,	$l = 1, 2; 5, 6; 9, 10; \dots$	(a, is the short root)	PR if a _l od
°5,	.	Sp ₂₁	none	Real if S
1)/ /(01	9	1	(α_l) is the long root	18
70				PR if \sum_{i}^{n}
-10)	7			ppo r
(a4 a2)		SO_{2l}	$a_{l-1}=a_l$	Real only
(1-101-10)	80	ppo /		
402 04 01 05		Ş	auou	Deal only
0[-)	6	l even, $\frac{1}{2}l$ even		Medi Olliy
ν α α α α α α α α α α α α α α α α α α α				
(10-1001) (-101-100)	10	SO_{2d}	none	Real if at-
$\frac{\alpha_6}{\alpha_6}$ α_1 α_3		l even, ½l odd	$(\alpha_{l-1} \text{ and } \alpha_l \text{ are})$:
7'\ 1'	11		the spinor roots)	PR if a _{l-1} -
8/		G ₂	none	Real only
(0-10)	12	L		
a2 4		Γ_4	none	Keal only
0-1	13	ਜੁੰ	$(a_1,a_2,\ldots,a_5,a_6)=$	Real only
En			$(a_5, a_4, \ldots, a_1, a_6)$	
(00,1100) γαγ	14	Ē,	none	Real if a4+
(000-110)	15		[Note, $36 = (0.00001,0)$]	PR if a ₄ +
5,7				
(0000-10)	16	ញ្ច	none	Real only

Table 13
Simple irreps of simple Lie algebras

Algebra	Dynkin designation	Dimensionality
A _n	(100)	n+1
	or (0 01)*	$\overline{n+1}$
B _n	(10 0)*	2n + 1
	(000 01)	2 ⁿ
C _n	(100)	2 <i>n</i>
D_n	(10 0)*	2n
	(00 01)	2^{n-1}
	or (00 010)*	2^{n-1}
G_2	(01)	7
F ₄	(0001)	26
E ₆	(100000)	27
	or (000010)*	$\frac{27}{27}$
\mathbf{E}_{7}	(0000010)	56
E ₈	(0000010)	248

^{*} This irrep can be constructed from products of the unstarred irrep.

Table 14

Maximal subalgebras of classical simple Lie algebras with rank 8 or less

Rank 1	
$SU_2 \supset U_1$	(R)
(SU ₂ , SO ₃ , Sp ₂ , all isomorphic)	
Rank 2	
$SU_3 \supset SU_2 \times U_1$	(R)
⊃SU₂	(S)
$Sp_4 \supset SU_2 \times SU_2$; $SU_2 \times U_1$	(R)
⊃ SU ₂	(S)
(SO ₅ isomorphic to Sp ₄ , SO ₄ \sim SU ₂ \times SU ₂)	
Rank 3	
$SU_4 \supset SU_3 \times U_1$; $SU_2 \times SU_2 \times U_1$	(R)
$\supset Sp_4$; $SU_2 \times SU_2$	(S)
$SO_7 \supset SU_4$; $SU_2 \times SU_2 \times SU_2$; $Sp_4 \times U_1$	(R)
⊃G₂	(S)
$Sp_6 \supset SU_3 \times U_1$; $SU_2 \times Sp_4$	(R)
$\supset SU_2$; $SU_2 \times SU_2$	(S)
(SO ₆ is isomorphic to SU ₄)	
Rank 4	
$SU_5 \supset SU_4 \times U_1$; $SU_2 \times SU_3 \times U_1$	(R)
⊃ Sp ₄	(S)
$SO_9 \supset SO_8$; $SU_2 \times SU_2 \times Sp_4$; $SU_2 \times SU_4$; $SO_7 \times U_1$	(R)
$\supset SU_2$; $SU_2 \times SU_2$	(S)
$Sp_8 \supset SU_4 \times U_1$; $SU_2 \times Sp_6$; $Sp_4 \times Sp_4$	(R)
$\supset SU_2$; $SU_2 \times SU_2 \times SU_2$	(S)
$SO_8 \supset SU_2 \times SU_2 \times SU_2 \times SU_2$; $SU_4 \times U_1$	(R)
$\supset SU_3$; SO_7 ; $SU_2 \times Sp_4$	(S)

Table 14 (continued)

Rank 5	
$SU_6 \supset SU_5 \times U_1$; $SU_2 \times SU_4 \times U_1$; $SU_3 \times SU_3 \times U_1$	(R)
$\supset SU_3$; SU_4 ; Sp_6 ; $SU_2 \times SU_3$	(S)
$SO_{11} \supset SO_{10}$; $SU_2 \times SO_8$; $Sp_4 \times SU_4$; $SU_2 \times SU_2 \times SO_7$; $SO_9 \times U_1$	(R)
$\supset SU_2$	(S)
$Sp_{10} \supset SU_5 \times U_1; SU_2 \times Sp_8; Sp_4 \times Sp_6$	(R)
$\supset SU_2$; $SU_2 \times Sp_4$	(S)
$SO_{10} \supset SU_5 \times U_1$; $SU_2 \times SU_2 \times SU_4$; $SO_8 \times U_1$	(R)
$\supset Sp_4; SO_9; SU_2 \times SO_7; Sp_4 \times Sp_4$	(S)
Rank 6	
$SU_7 \supset SU_6 \times U_1$; $SU_2 \times SU_5 \times U_1$; $SU_3 \times SU_4 \times U_1$	(R)
$\supset SO_7$	(S)
$SO_{13} \supset SO_{12}$; $SU_2 \times SO_{10}$; $Sp_4 \times SO_8$; $SU_4 \times SO_7$; $SU_2 \times SU_2 \times SO_9$; $SO_{11} \times U_1$	(R)
$\supset SU_2$	(S)
$Sp_{12} \supset SU_6 \times U_1$; $SU_2 \times Sp_{10}$; $Sp_4 \times Sp_8$; $Sp_6 \times Sp_6$	(R)
$\supset SU_2$; $SU_2 \times SU_4$; $SU_2 \times Sp_4$	(S)
$SO_{12} \supset SU_6 \times U_1$; $SU_2 \times SU_2 \times SO_8$; $SU_4 \times SU_4$; $SO_{10} \times U_1$	(R)
$\supset SU_2 \times Sp_6; SU_2 \times SU_2 \times SU_2; SO_{11}; SU_2 \times SO_9; Sp_4 \times SO_7$	(S)
Rank 7	
$SU_8 \supset SU_7 \times U_1$; $SU_2 \times SU_6 \times U_1$; $SU_3 \times SU_5 \times U_1$; $SU_4 \times SU_4 \times U_1$	(R)
$\supset SO_8$; Sp_8 ; $SU_2 \times SU_4$	(S)
$SO_{15} \supset SO_{14}$; $SU_2 \times SO_{12}$; $Sp_4 \times SO_{10}$; $SO_7 \times SO_8$; $SU_4 \times SO_9$; $SU_2 \times SU_2 \times SO_{11}$; $SO_{13} \times U_1$	(R)
$\supset SU_2$; SU_4 ; $SU_2 \times Sp_4$	(S)
$Sp_{14} \supset SU_7 \times U_1$; $SU_2 \times Sp_{12}$; $Sp_4 \times Sp_{10}$; $Sp_6 \times Sp_8$	(R)
$\supset SU_2$; $SU_2 \times SO_7$	(S)
$SO_{14} \supset SU_7 \times U_1$; $SU_2 \times SU_2 \times SO_{10}$; $SU_4 \times SO_8$; $SO_{12} \times U_1$	(R)
$\supset Sp_4; Sp_6; G_2; SO_{13}; SU_2 \times SO_{11}; Sp_4 \times SO_9; SO_7 \times SO_7$	(S)
Rank 8	
$SU_9 \supset SU_8 \times U_1$; $SU_2 \times SU_7 \times U_1$; $SU_3 \times SU_6 \times U_1$; $SU_4 \times SU_5 \times U_1$	(R)
$\supset SO_9$; $SU_3 \times SU_3$	(S)
$SO_{17} \supset SO_{16}$; $SU_2 \times SO_{14}$; $Sp_4 \times SO_{12}$; $SO_7 \times SO_{10}$; $SO_8 \times SO_9$; $SU_4 \times SO_{11}$;	
$SU_2 \times SU_2 \times SO_{13}$; $SO_{15} \times U_1$	(R)
$\supset SU_2$	(S)
$Sp_{16} \supset SU_8 \times U_1$; $SU_2 \times Sp_{14}$; $Sp_4 \times Sp_{12}$; $Sp_6 \times Sp_{10}$; $Sp_8 \times Sp_8$	(R)
$\supset SU_2$; Sp_4 ; $SU_2 \times SO_8$	(S)
$SO_{16} \supset SU_8 \times U_1$; $SU_2 \times SU_2 \times SO_{12}$; $SU_4 \times SO_{10}$; $SO_8 \times SO_8$; $SO_{14} \times U_1$	(R)
\supset SO ₉ ; SU ₂ × Sp ₈ ; Sp ₄ × Sp ₄ ; SO ₁₅ ; SU ₂ × SO ₁₃ ; Sp ₄ × SO ₁₁ ; SO ₇ × SO ₉	(S)

Table 15

Maximal subalgebras of exceptional algebras; branching rules for the fundamental representation

	tation	
$G_2 \supset SU_3$	7 = 1 + 3 + 3	(R)
$\supset SU_2 \times SU_2$	7 = (2, 2) + (1, 3)	(R)
$\supset SU_2$	7 = 7	(S)
F₄⊃SO ₉	26 = 1 + 9 + 16	(R)
$\supset SU_3 \times SU_3$	$26 = (8, 1) + (3, 3) + (\overline{3}, \overline{3})$	(R)
$\supset SU_2 \times Sp_6$	26 = (2, 6) + (1, 14)	(R)
$\supset SU_2$	26 = 9 + 17	(S)
$\supset SU_2 \times G_2$	26 = (5, 1) + (3, 7)	(S)
$E_6 \supset SO_{10} \times U_1$	27 = 1 + 10 + 16	(R)
$\supset SU_2 \times SU_6$	$27 = (2, \overline{6}) + (1, 15)$	(R)
$\supset SU_3 \times SU_3 \times SU_3$	$27 = (\overline{3}, 3, 1^{c}) + (3, 1, 3) + (1, \overline{3}, \overline{3})$	(R)
⊃ SU ₃	27 = 27	(S)
$\supset G_2$	27 = 27	(S)
$\supset Sp_8$	27 = 27	(S)
⊃ F₄	27 = 1 + 26	(S)
$\supset SU_3 \times G_2$	$27 = (\overline{6}, 1) + (3, 7)$	(S)
$E_7 \supset E_6 \times U_1$	$56 = 1 + 1 + 27 + \overline{27}$	(R)
$\supset SU_8$	$56 = 28 + \overline{28}$	(R)
$\supset SU_2 \times SO_{12}$	56 = (2, 12) + (1, 32)	(R)
$\supset SU_3 \times SU_6$	$56 = (3,6) + (\bar{3},\bar{6}) + (1,20)$	(R)
⊃SU₂	56 = 10 + 18 + 28	(S)
$\supset SU_2$	56 = 6 + 12 + 16 + 22	(S)
⊃ SU₃	$56 = 28 + \overline{28}$	(S)
$\supset SU_2 \times SU_2$	56 = (5, 2) + (3, 6) + (7, 4)	(S)
$\supset SU_2 \times G_2$	56 = (4, 7) + (2, 14)	(S)
$\supset SU_2 \times F_4$	56 = (4, 1) + (2, 26)	(S)
$\supset G_2 \times Sp_6$	56 = (1, 14') + (7, 6)	(S)
$E_8 \supset SO_{16}$	248 = 120 + 128	(R)
$\supset SU_5 \times SU_5$	$248 = (24, 1) + (1, 24) + (10, 5) + (\overline{10}, \overline{5}) + (5, \overline{10}) + (\overline{5}, 10)$	(R)
$\supset SU_3 \times E_6$	$248 = (8, 1) + (1, 78) + (3, 27) + (\overline{3}, \overline{27})$	(R)
$\supset SU_2 \times E_7$	248 = (3, 1) + (1, 133) + (2, 56)	(R)
⊃ SU ₉	248 = 80 + 84 + 84	(R)
⊃ SU ₂	248 = 3 + 15 + 23 + 27 + 35 + 39 + 47 + 59	(S)
$\supset SU_2$	248 = 3 + 11 + 15 + 19 + 23 + 27 + 29 + 35 + 39 + 47	(S)
⊃ SU ₂	248 = 3 + 7 + 11 + 15 + 17 + 19 + 23 + 23 + 27 + 29 + 35 + 39	(S)
$\supset G_2 \times F_4$	248 = (14, 1) + (1, 52) + (7, 26)	(S)
$\supset SU_2 \times SU_3$	$248 = (3, 1) + (1, 8) + (7, 8) + (5, 10) + (5, \overline{10}) + (3, 27)$	(S)
⊃ Sp ₄	248 = 10 + 84 + 154	(S)

Table 16
Extended Dynkin diagrams for simple Lie algebras. (The extended root is marked by x; black dots represent shorter roots.)

Table 17 Symmetric subgroups of simple groups

G	G_S	$\operatorname{rank}(A)$	Action of C on irrep R
SUn	SO _n	n - 1	Ŕ
SU_{p+q}	$SU_p \times SU_q \times U_1$	$\min(p,q)^a$	R
SU_{2n}	Sp _{2n}	n - 1	Ŕ
SO_{p+q}	$SO_p \times SO_q$	$\min(p,q)^2$	R (p or q even) \tilde{R} or R' (p and q odd) ^b
SO _{2n}	$SU_n \times U_1$	[n/2]	R
Sp _{2n}	$SU_n \times U_1$	n	R
Sp _{2p+2q}	$Sp_{2p} \times Sp_{2q}$	$\min(p,q)^a$	R
G ₂	$SU_2 \times SU_2$	2	R
F ₄	$SU_2 \times Sp_6$	4	R
	SO ₉	1	R
E_6	Sp ₈	6	Ŕ
	$SU_2 \times SU_6$	4	R
	$SO_{10} \times U_1$	2	R
	F ₄	2	Ŕ
E ₇	SU ₈	7	R
	$SU_2 \times SO_{12}$	4	R
	$E_6 \times U_1$	3	R
E ₈	SO ₁₆	8	R
-	$SU_2 \times E_7$	4	R

Table 18 E_6 and its subgroups with $U_1^{em}\times SU_3^c$

Group	No. max. subgroups	Satisfactory maximal subgroups	Unsatisfactory maximal subgroups			
E ₆	8	F_4 , $SO_{10} \times U_1$, $SU_2 \times SU_6$,	G_2 , SU_3 , $SU_3 \times G_2$,			
		$SU_3 \times SU_3 \times SU_3$	[Sp ₈]			
F ₄	5	SO_9 , $SU_3 \times SU_3$	SU_2 , $SU_2 \times G_2$,			
			$[SU_2 \times Sp_6]$			
SO ₉	5	SO_8 , $SU_2 \times SU_4$	SU_2 , $SU_2 \times SU_2$,			
			$SU_2 \times SU_2 \times Sp_4$, $SO_7 \times U_1^*$			
SO ₈	4	SO_7 , $SU_4 \times U_1$	SU_3 , $SU_2 \times Sp_4$,			
			$SU_2 \times SU_2 \times SU_2 \times SU_2$			
SO ₇	3	SU₄	G_2 , $SU_2 \times SU_2 \times SU_2$, $Sp_4 \times U_1$			
SU ₄	3	$SU_3 \times U_1$	Sp_4 , $SU_2 \times SU_2$			
SO ₁₀	6	$SU_5 \times U_1$, $SU_2 \times SU_2 \times SU_4$,	Sp_4 , $Sp_4 \times Sp_4$			
		SO_9 , $SU_2 \times SO_7$, $SO_8 \times U_1$	• • • • •			
SU ₆	7	$SU_5 \times U_1$, $SU_2 \times U_1 \times SU_4$,	SU_3 , $SU_2 \times SU_3$,			
		$SU_3 \times SU_3 \times U_1$	[SU ₄], [Sp ₆]			
SU ₅	3	$SU_4 \times U_1$, $SU_2 \times U_1 \times SU_3$	Sp ₄			

^{*} See discussion for table 40.

The case p or q equal unity defines a symmetric subgroup with SU_1 or SO_1 empty; the Lie algebra of Sp_2 is isomorphic to that of SU_2 .

But $SU_1 = SU_2$ is isomorphic to that of SU_2 .

But $SU_1 = SU_2$ is isomorphic to that of SU_2 .

But $SU_1 = SU_2$ is isomorphic to that of SU_2 . nonequivalent spinor of the same dimension.

 $Table \ 19 \\$ Physical roots and axes in E₆ weight space

Table 20 Nonzero E₆ roots

Root	Level	Color	$Q^{\rm em}$	I_3^w	Q^{t}	SU ₅ (SO ₁₀)	$ar{B}\cdot lpha$	$ar{L} \cdot lpha$
Color SU ₃ roots								
(0 0 0 0 0 1)	0	(1 1)	0	0	0	24(45)	0	0
(0 1 0 0 -1 0)	4	(2-1)	0	0	0	24(45)	0	0
$(0 -1 \ 0 \ 0 \ 1 \ 1)$	7	$(-1\ 2)$	0	0	0	24(45)	0	0
Left-handed SU ₃ roots								
$(1 \ 0 \ 0 \ 0 \ 1 \ -1)$	6	(0 0)	1	1	0	24(45)	0	±1
$(-1\ 1\ 0\ 0\ 1\ -1)$	7	(0 0)	0	1/2	-3	5(16)	3 <i>c</i>	$3d \pm 2$
(-2 1 0 0 0 0)	12	(0 0)	- 1	- 1/2	-3	5(16)	3 <i>c</i>	$3d \pm 1$
Right-handed SU ₃ roots								
(0 -1 1 1 -1 -1)	9	(0 0)	0	0	3	1(16)	a+b-2c	$-d+2e\mp 2$
$(0\ 0\ -1\ 2\ -1\ 0)$	10	(0 0)	- 1	0	3	10 (16)	-a+2b-c	$-2d+e\mp 1$
(0 -1 2 -1 0 -1)	10	(0 0)	1	0	0	10(45)	2a-b-c	$d+3\mp 1$
SU ₅ antilepto-diquarks								
(1 -1 1 -1 1 0)	4	(0 1)	4/3	1/2	0	24(45)	a-b-c	0
$(1\ 0\ 1\ -1\ 0\ -1)$	8	(1 - 1)	4/3	1/2	0	24(45)	a-b-c	0
(1 -1 1 -1 1 -1)	15	(-1 0)	4/3	1/2	0	24(45)	a-b-c	0
(0 -1 1 -1 0 1)	9	(0 1)	1/3	- 1/2	0	24(45)	a-b-c	∓1
(0 0 1 -1 -1 0)	13	(1 - 1)	1/3	- 1/2	0	24(45)	a-b-c	∓ 1
(0 -1 1 -1 0 0)	20	(-1 0)	1/3	- 1/2	0	24(45)	a-b-c	∓ 1
SO ₁₀ /SU ₅ leptoquarks		` ,				` ,		
(0 0 1 0 0 -1)	1	(1 0)	2/3	1/2	0	10(45)	a	d + e
(0 -1 1 0 1 -1)	8	(-1 1)	2/3	1/2	0	10(45)	a	d + e
(0 0 1 0 0 -2)	12	(0 - 1)	2/3	1/2	0	10(45)	a	d+e
(-1 0 1 0 -1 0)	6	(1 0)	- 1/3	- 1/2	0	10(45)	a	$d+e\mp 1$
(-1 -1 1 0 0 0)	13	(-1 1)	- 1/3	- 1/2	0	10(45)	a	$d+e\mp 1$
(-1 0 1 0 -1 -1)	17	(0-1)	- 1/3	- 1/2	Q	10(45)	a	$d+e\mp 1$
(-1 0 0 1 0 0)	4	(0 1)	- 2/3	0	Ó	10(45)	b+c	d+e
(-1 1 0 1 -1 -1)	8	(1 - 1)	- 2/3	Õ	Ō	10(45)	b + c	d + e
(-1 0 0 1 0 -1)	15	(-1 0)	- 2/3	0	Ö	10(45)	b+c	d+e
E ₆ /SO ₁₀ leptoquarks	20	(1 0)	2/3	Ü	·	10(45)	0.0	
(0 1 0 -1 1 0)	3	(1 0)	2/3	1/2	- 3	10(16)	-b + 2c	$2d - e \pm 2$
(0 0 0 -1 2 0)	10	(-1 1)	2/3	1/2	-3	10(16)	-b+2c	$2d - e \pm 2$
(0 1 0 -1 1 -1)	14	(0-1)	2/3	1/2	- 3	10(16)	-b+2c	$2d - e \pm 2$
(-1 1 0 -1 0 1)	8	(1 0)	- 1/3	- 1/2	- 3	10(16)	-b+2c	$2d - e \pm 1$
(-1 0 0 -1 1 1)	15	(-1 1)	- 1/3	- 1/2	-3	10(16)	-b+2c	$2d - e \pm 1$
(-1 1 0 -1 0 0)	19	(0-1)	- 1/3	- 1/2	-3	10(16)	-b+2c	$2d - e \pm 1$
(-1 0 1 -1 1 0)	5	(0 1)	1/3	0	-3	5(16)	a-b+2c	$3d \pm 1$
(-1 1 1 -1 0 -1)	9	(1 - 1)	1/3	0	-3	5(16)	a-b+2c	$3d \pm 1$
(-1 0 1 -1 1 -1)	16	(-1 0)	1/3	Õ	-3	5(16)	a-b+2c	$3d \pm 1$
(-1 1 -1 0 1 1)	6	(0 1)	- 2/3	0	-3	10(16)	-a+3c	$2d-e\pm 2$
$(-1\ 2\ -1\ 0\ 0\ 0)$	10	$(0 \ 1)$	- 2/3 - 2/3	0	-3	10(16)	-a+3c -a+3c	$2d - e \pm 2$ $2d - e \pm 2$
(-1 1 -1 0 1 0)	17	$(-1\ 0)$	- 2/3 - 2/3	0	- 3 - 3	10(16)	-a+3c -a+3c	$2d - e \pm 2$ $2d - e \pm 2$
	17	(-10)	- 43	U	_ 3	10(10)	u i st	24 - E ± 2

2,8,12,14,18,20,24,30

2,6,8,10,12,14,18

Weights and content of the 27 of E₆

Level Color Q^{**} I_{3}^{*} G^{*} $SU_{3}(SO_{10})$ SO_{10} weight I_{1}^{*} G^{*} G^{*			Weights	Table 21 Weights and content of the 27 of E_6	e 21 nt of the :	77 of E ₆			Table 22 Ordering of simple roots of Dynkin diagrams; orders of independent Casimir invasionals for tables 23 to 53 (Shorter roots are denoted by black dots.)	: 22 grams; orders of independent Casimir r roots are denoted by black dots.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Weight	Level	Color	80	Iğ.	ō	SU ₅ (SO ₁₀)	SO ₁₀ weight		Orders of Independent
9 (0 0) -1 -1/2 1 $\S(6)$ (1 0 0 0 -1) 9 (0 0) -1 -1/2 1 $\S(6)$ (1 0 0 0 -1) 10 (0 0) 0 1 10/2 -2 $\S(10)$ (0 -1 1 0 0) 11 (0 0) 0 -1/2 -2 $\S(10)$ (0 0 1 -1 1) 12 (0 0) -1/2 -2 $\S(10)$ (0 0 1 -1 1) 13 (0 0) -1/2 -2 $\S(10)$ (0 0 1 -1 1) 14 (0 0) -1/2 -2 $\S(10)$ (0 0 0 0 1) 15 (0 0) -1 -1/2 -2 $\S(10)$ (0 0 0 0 1) 16 (0 0) 0 -1/2 -2 $\S(10)$ (0 0 0 0 1) 17 (-1 1) 2/3 1/2 1 10(16) (0 1 0 0 1) 18 (0 0) 0 -1/3 -1/2 1 10(16) (0 1 0 1 0) 19 (1 0) -1/3 -1/2 1 10(16) (0 1 0 1 0) 10 (1 0) -1/3 -1/2 1 10(16) (0 1 0 1 0) 11 (1 0) -1/3 0 -2 $\S(10)$ (1 0 0 0 0) 12 (-1 1) -1/3 0 -2 $\S(10)$ (1 1 0 0 0) 13 (-1 1) 1/3 0 -2 $\S(10)$ (1 1 1 0 0) 14 (0 1) 1/3 0 -2 $\S(10)$ (1 1 1 0 0) 15 (-1 0) 1/3 0 -2 $\S(10)$ (1 1 1 0 0) 16 (1 -1 1 1) 17 (-1 1) 1/3 0 -2 $\S(10)$ (1 1 1 0 0) 18 (1 -1 1 1/3 0 -2 $\S(10)$ (1 1 1 1 0) 19 (1 -1 1 1/3 0 -2 $\S(10)$ (1 1 1 1 0) 10 (1 -1 1 1 0) 11 (1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4		0	172	-	\$(16)	(1 -1 0 1 0)		Casimir Invariants
9 (0 0) 1 0 1 10(16) (-110-10) 803 $\frac{1}{3} - \frac{1}{2}$ 6 (0 0) 0 - 1/2 - 2 \$(10) (0 0 1 - 1) 1 10 10 10 11 11 2 1 2 11 10 10 10 10 10 10 10 11 1 2 1 2	(-1 0 0 1 -1 0)	6		-1	- 1/2		<u>\$(</u> 16)	$(1\ 0\ 0\ 0\ -1)$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1-11-100)	6			0	-	10(16)	$(-1\ 0\ 1\ -1\ 0)$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(10 - 1001)	01		0	0	1	1(16)		5	0.33
10 (0 0) 0 $-1/2$ -2 \$(10) (0 0 1 - 1 - 1) 804 0 0 0 0 0 0 0 0 0 0	$(0\ 0\ 1\ -1\ 1\ -1)$	2		1	1/2	-2	5(10)	$(0 - 1 \ 1 \ 0 \ 0)$	ļ -	C + 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-101-100)	10		0	- 1/2	-2	5(10)	T	1	
11 (0 0) -1 $-1/2$ -2 $\overline{5}(10)$ (0 $1-10$ 0) $\overline{50}$ $\overline{5}$	$(0\ 1\ -1\ 0\ 1\ 0)$	9		0	1/2	-2	\$(10)	$(0\ 0\ -1\ 1\ 1)$	0	2,3,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(-1\ 1\ -1\ 0\ 0\ 1)$	11		-	- 1/2	-2	$\bar{5}(10)$	$(0\ 1\ -1\ 0\ 0)$	1 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(1 - 1 \ 0 \ 1 - 1 \ 0)$	∞		0	0	4	(E)	$(0\ 0\ 0\ 0\ 0)$	0-0-0	2,3,4,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	;	•	•	,	3	9	1 2 3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	0	(1 O)	2/3	1/2		10(16)	(0 0 0 0 1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	7	(-1 1)	2/3	1/2	-	10(16)	(-10010)	0-0-0-0	2,3,4,5,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0	==	(0 -1)	2/3	12	-	10(16)	$(0 - 1 \ 0 \ 0 \ 1)$	1 2 3 4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ţ	2	(1 0)	-1/3	- 1/2	-	10(16)	$(0\ 1\ 0\ -1\ 0)$		9 7 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	12	(-1 1)	- 1/3	- 1/2	-	10(16)	$(-1\ 1\ 0\ 0\ -1)$	27 2) (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ţ	16	(0 -1)	- 1/3	- 1/2	1	10(16)	$(0\ 0\ 0\ -1\ 0)$)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	(1 0)	- 1/3	0	-2	5(10)	(1 0 0 0 0)	\	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=	∞	(-1 1)	- 1/3	0	-2	5(10)	$(0\ 0\ 0\ 1\ -1)$		2,4,4,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	12	(0 - 1)	- 1/3	0	-2	5(10)	(1 -1 0 0 0)	1.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$;		,	•	; ;	4		2,4,6,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 -1 1	4	(0 1)	1/3	0	- 2	5(10)	$(-1\ 1\ 0\ 0\ 0)$	7 1 2 3 4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 -1 0	∞	(1 - 1)	1/3	0	-2	5(10)	(0 0 0 -1 1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 - 1.1	15	(-1 0)	1/3	0	-2	<u>\$</u> (10)	$(-1\ 0\ 0\ 0\ 0)$	`	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-110	7	(0 1)	1/3	0		$\bar{5}(16)$	$(0\ 0\ 1\ 0\ -1)$		6,4,3,6,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	010-	9	(1 - 1)	1/3	0	1	$\bar{5}(16)$		CO C 3 1	
0 - 1101) 3 (01) $-2/3$ 0 1 $10/(6)$ $(01 - 110)$ 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1 1 0	13	(-1 0)	1/3	0	-	<u>\$</u> (16)	$(0 - 1 \ 1 \ 0 \ -1)$	F, 0	2,6,8,12
$\begin{pmatrix} 1 - 11 - 1 & 0 \end{pmatrix}$ 7 $\begin{pmatrix} (1 - 1) & -2/3 & 0 & 1 & 10(16) & (10 - 10 & 1) \\ 0 - 11 & 0 & 0 \end{pmatrix}$ 8 $\begin{pmatrix} (1 - 1) & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$ 8 $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 9 $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	0 -1 1	6	(0 1)	- 2/3	0		10(16)		4 1 2 3 4	
0 - 1100) 14 (-10) $-2/3$ 0 1 10(16) (00 - 110) F. 0 0 0 0	1 -1 1	7	(1 - 1)	-2/3	0	1	10(16)	7	ì	
	0 - 11	14	(-1 0)	- 2/3	0	-	10(16)	$(0\ 0\ -1\ 1\ 0)$	90	2.5.6.8.9.12

Table 23 SU₃ irreps of dimension less than 65

Dynkin label	Dimension (name)	l (index)	Triality	SU ₂ singlets	SO ₃ singlets
(10)	3	1	1	1	0
(20)	6	5	2*	1	1
(11)	8	6	0	1**	0
(30)	10	15	0	1	0
(21)	15	20	1	1	0
(40)	15'	35	1	1	1
(05)	21	70	1	1	0
(13)	24	50	1	1	0
(22)	27	54	0	1**	1
(60)	28	126	0	1	1
(41)	35	105	0	1	0
(70)	36	210	1	1	0
(32)	42	119 ·	1	1	0
(08)	45	330	1	1	1
(51)	48	196	1	1	0
(90)	55	495	0	1	0
(24)	60	230	1	1	1
(16)	63	336	1	1	0
(33)	64	240	0	1**	0

^{*}Note standard convention that 6 = (20).

Table 24 SU₃ tensor products; triality 0 and 1 combinations shown

```
\overline{3} \times \overline{3} = 3_a + \overline{6}_s
    3 \times \overline{3} = 1 + 8
    6\times3=8+10
    6 \times \overline{3} = 3 + 15
    6 \times 6 = \overline{6}_s + 15_a + 15_s'
    6 \times \overline{6} = 1 + 8 + 27
    8 \times 3 = 3 + \overline{6} + 15
    8 \times \overline{6} = 3 + \overline{6} + 15 + 24
    8 \times 8 = 1_s + 8_s + 8_a + 10_a + \overline{10}_a + 27_s
  10 \times 3 = 15 + 15'
  \overline{10} \times 3 = \overline{6} + 24
  10 \times \tilde{6} = 3 + 15 + 42
  \overline{10} \times \overline{6} = 15 + 21 + 24
  10 \times 8 = 8 + 10 + 27 + 35
10 \times 10 = 10_a + 27_s + 28_s + 35_a
\overline{10} \times 10 = 1 + 8 + 27 + 64
  \overline{15} \times \overline{3} = \overline{6} + 15 + 24
  15 \times \overline{3} = 8 + 10 + 27
  \overline{15} \times 6 = 3 + \overline{6} + 15 + 24 + 42
  15 \times 6 = 8 + 10 + \overline{10} + 27 + 35
 15 \times 8 = 3 + \overline{6} + 15_1 + 15_2 + 15' + 24 + 42
15 \times 10 = \overline{6} + 15 + 15' + 24 + 42 + 48
15 \times \overline{10} = 3 + \overline{6} + 15' + 24 + 42 + 60
\overline{15} \times \overline{15} = 3_a + \overline{6}_s + 15_s + 15_a + 15_s' + 21_a + 24_s + 24_a + 42_a + 60_s
15 \times \overline{15} = 1 + 8_1 + 8_2 + 10 + \overline{10} + 27_1 + 27_2 + 35 + \overline{35} + 64
```

^{**} $SU_2 \times U_1$ singlet.

Table 25 SU₄ irreps of dimension less than 180

Table 26 SU₄ tensor products; quadrality 0, 1 and 2 shown

Dynkin label	Dimension (name)	l (index)	Quadrality	SU ₃ singlets	$4 \times 4 = 6_a + 10_s$ $4 \times \overline{4} = 1 + 15$ $6 \times \overline{4} = 4 + 20$
(100)	4	1	1	1	$6 \times 4 = 4 + 20$ $6 \times 6 = 1_s + 15_a + 20'_s$
(010)	6	2	2	0	$\overline{10} \times \overline{4} = 20 + 20''$
(200)	10	6	2	1	$10 \times \overline{4} = 4 + 36$
(101)	15	8	0	1*	$10 \times 6 = 15 + 45$
(011)	20	13	1	0	$10 \times 10 = 20'_s + 35_s + 45_a$
(020)	20'	16	0	0	$10 \times \overline{10} = 1 + 15 + 84$
(003)	20"	21	1	1	$15 \times 4 = 4 + 20 + 36$
(400)	35	56	0	1	$15 \times 6 = 6 + 10 + \overline{10} + 64$
(201)	36	33	1	i	$15 \times 10 = 6 + 10 + 64 + 70$
(210)	45	48	0	0	$15 \times 15 = 1_s + 15_s + 15_a + 20'_s + 45_a + \overline{45}_a + 84_s$
(030)	50	70	2	0	$\overline{20} \times 4 = 15 + 20' + 45$
(500)	56	126	1	1	$20 \times 4 = 6 + \overline{10} + 64$
(120)	60	71	i	0	$\overline{20} \times 6 = 4 + 20 + 36 + 60$
(111)	64	64	2	o 0	$\overline{20} \times 10 = 20 + 36 + 60 + 84'$
(301)	70	98	2	1	$\overline{20} \times \overline{10} = 4 + 20 + 36 + 140$
(202)	84	112	0	î*	$20 \times 15 = 4 + 20_1 + 20_2 + 20'' + 36 + 60 + 140$
(310)	84'	133	1	0	$20 \times 20 = 6_a + 10_s + \overline{10}_s + 50_a + 64_s + 64_a + 70_a + \overline{126}_a$
(600)	84"	252	2	1	$20 \times \overline{20} = 1 + 15_1 + 15_2 + 20' + 45 + \overline{45} + 84 + 175$
(040)	105	224	0	0	$20' \times 4 = 20 + 60$
(104)	120	238	1	1	$20' \times 6 = 6 + 50 + 64$
(007)	120'	462	1	1	$20' \times 10 = 10 + 64 + 126$
(220)	126	210	2	0	$20' \times 15 = 15 + 20' + 45 + \overline{45} + 175$
(112)	140	203	1	0	$20' \times 20 = 4 + 20 + 36 + 60 + 140 + 140'$
(031)	140′	203 259	1	0	$20' \times 20' = 1_s + 15_a + 20'_s + 84_s + 105_s + 175_a$
(031) (410)	140"	239 308	2	0	
(302)	160	308 296	1	1	
(800)	165	296 792	0	1	
` '			0	1 0	
(121)	175	280	U	U	

^{*}SU₃×U₁ singlet.

 $\label{eq:table 27} \mbox{Branching rules for $SU_4 \supset SU_3 \times U_1$}$

```
 \begin{array}{l} (100) = 4 = 1(1) + 3(-1/3) \text{ (establishes normalization of } U_1 \text{ generator)} \\ (010) = 6 = 3(2/3) + \overline{3}(-2/3) \\ (200) = 10 = 1(2) + 3(2/3) + 6(-2/3) \\ (101) = 15 = 1(0) + 3(-4/3) + \overline{3}(4/3) + 8(0) \\ (011) = 20 = 3(-1/3) + \overline{3}(-5/3) + \overline{6}(-1/3) + 8(1) \\ (020) = 20' = \overline{6}(-4/3) + 6(4/3) + 8(0) \\ (003) = 20'' = 1(-3) + \overline{3}(-5/3) + \overline{6}(-1/3) + \overline{10}(1) \\ (400) = 35 = 1(4) + 3(8/3) + 6(4/3) + 10(0) + 15'(-4/3) \\ (201) = 36 = 1(1) + 3(-1/3) + \overline{3}(7/3) + 6(-5/3) + 8(1) + 15(-1/3) \\ (210) = 45 = 3(8/3) + \overline{3}(4/3) + 6(4/3) + 6(4/3) + 8(0) + 10(0) + 15(-4/3) \\ (030) = 50 = 10(2) + \overline{10}(-2) + 15(2/3) + \overline{15}(-2/3) \\ (500) = 56 = 1(5) + 3(11/3) + 6(7/3) + 10(1) + 15'(-1/3) + \overline{21}(-5/3) \\ (120) = 60 = \overline{6}(-1/3) + 6(7/3) + 8(1) + 10(1) + 15(-1/3) + \overline{15}(-5/3) \\ (111) = 64 = 3(2/3) + \overline{3}(-2/3) + \overline{6}(2/3) + 6(-2/3) + 8(2) + 8(-2) + 15(2/3) + \overline{15}(-2/3) \\ \end{array}
```

Table 28 SU₅ irreps of dimension less than 800

Dynkin label	Dimension (name)	l (index)	Quintality	SU ₄ singlets	SU ₂ ×SU ₃ singlets
(1000)	5	1	1	1	0
(0100)	10	3	2	0	1
(2000)	15	7	2	1	0
(1001)	24	10	0	1*	1*
(0003)	35	28	2	1	0
(0011)	40	22	2	0	0
(0101)	45	24	1	0	0
(0020)	50	35	1	0	1
(2001)	70	49	1	1	0
(0004)	70'	84	1	1	0
(0110)	75	50	0	0	1*
(0012)	105	91	1	0	0
(2010)	126	105	0	0	0
(5000)	126'	210	0	1	0
(3001)	160	168	2	1	0
(1101)	175	140	2	0	1
(1200)	175′	175	0	0	0
(0300)	175"	210	1	0	1
(2002)	200	200	0	1*	¹ 1*
(1020)	210	203	2	0	0
(6000)	210'	462	1	1	0
(3100)	224	280	0	0	0
(1110)	280	266	1	0	0
(3010)	280'	336	1	0	0
(0210)	315	357	2	0	1
(1004)	315'	462	2 .	1	0
(7000)	330	924	2	1	0
(2200)	420	574	1	0	0
(4100)	420'	714	1	0	0
(1012)	450	510	2	0	0
(3002)	450'	615	1	1	0
(1102)	480	536	1	0	0
(0040)	490	882	2	0	1
(0008)	495	1716	2	1	0
(4010)	540	882	2	0	0
(0202)	560	728	2	0	0
(1300)	560'	868	2	0	0
(1005)	560"	1092	1	1	0
(2110)	700	910	2	0	0
(1030)	700′	1050	0	0	0
(0009)	715	3003	1	1	0
(1021)	720	924	1	0	1
(5100)	720'	1596	2	0	0
(0130)	980	1666	1	0	1
(1111)	1024	1280	0	0	1*
(0121)	1050	1540	2	0	0
(0211)	1120	1624	1	0	0
(0220)	1176	1960	0	0	1*

Table 29 SU₅ tensor products

```
5 \times 5 = 10_2 + 15_3
    5 \times \overline{5} = 1 + 24
  \overline{10} \times \overline{5} = 10 + 40
 10 \times \overline{5} = 5 + 45
 \overline{10} \times \overline{10} = 5, +45, +50,
 \overline{10} \times 10 = 1 + 24 + 75
 \overline{15} \times \overline{5} = 35 + 40
 15 \times \overline{5} = 5 + 70
\overline{15} \times \overline{10} = 45 + 105
 15 \times \overline{10} = 24 + 126
\overline{15} \times \overline{15} = 50_s + 70_s' + 105_a
\overline{15} \times 15 = 1 + 24 + 200
 24 \times 5 = 5 + 45 + 70
24 \times 10 = 10 + 15 + 40 + 175
24 \times 15 = 10 + 15 + 160 + 175
24 \times 24 = 1_s + 24_s + 24_s + 75_s + 126_s + 126_s + 200_s
  \overline{40} \times \overline{5} = 10 + 15 + 175
 40 \times \overline{5} = 45 + 50 + 105
\overline{40} \times 10 = 24 + 75 + 126 + 175'
\overline{40} \times \overline{10} = 5 + 45 + 70 + 280
\overline{40} \times 15 = 75 + 126 + 175' + 224
\overline{40} \times \overline{15} = 5 + 45 + 70 + 480
40 \times 24 = 10 + 35 + 40_1 + 40_2 + 175 + 210 + 450
\overline{40} \times \overline{40} = 45_a + 50_s + 70_s + 175_a'' + 280_a + 280_s + 280_a' + 420_s
40 \times \overline{40} = 1 + 24_1 + 24_2 + 75 + 126 + \overline{126} + 200 + 1024
 45 \times 5 = 10 + 40 + 175
 \overline{45} \times 5 = 24 + 75 + 126
\overline{45} \times 10 = 5 + 45 + 50 + 70 + 280
\overline{45} \times \overline{10} = 10 + 15 + 40 + 175 + 210
\overline{45} \times 15 = 45 + 70 + 280 + 280'
\overline{45} \times \overline{15} = 10 + 40 + 175 + 450
45 \times 24 = 5 + 45_1 + 45_2 + 50 + 70 + 105 + 280 + 480
\overline{45} \times \overline{40} = 10 + 15 + 40 + 160 + 175_1 + 175_2 + 210 + 315 + 700
\overline{45} \times 40 = 45 + 50_1 + 50_2 + 70 + 105 + 280 + 480 + 720
45 \times 45 = 10_a + 15_s + 35_s + 40_s + 40_a + 175_s + 175_a + 210_s + 315_a + 450_a + 560_s
\overline{45} \times 45 = 1 + 24_1 + 24_2 + 75_1 + 75_2 + 126 + \overline{126} + 175' + \overline{175'} + 200 + 1024
 50 \times 5 = 40 + 210
 50 \times 5 = 75 + 175'
\overline{50} \times \overline{10} = 10 + 175 + 315
\overline{50} \times 10 = 45 + 175'' + 280
\overline{50} \times \overline{15} = 15 + 175 + 560
\overline{50} \times 15 = 50 + 280 + 420
50 \times 24 = 45 + 50 + 105 + 280 + 720
\overline{50} \times \overline{40} = 40 + 175 + 210 + 315 + 560' + 700
\overline{50} \times 40 = 5 + 45 + 70 + 280 + 480 + 1120
50 \times 45 = 10 + 40 + 175 + 210 + 315 + 450 + 1050
50 \times \overline{45} = 24 + 75 + 126 + \overline{126} + \overline{175}' + 700' + 1024
50 \times 50 = 15_s + 175_a + 210_s + 490_s + 560_s + 1050_a
\overline{50} \times 50 = 1 + 24 + 75 + 200 + 1024 + 1176
 75 \times 5 = 45 + 50 + 280
75 \times 10 = 10 + 40 + 175 + 210 + 315
75 \times 15 = 40 + 175 + 210 + 700
75 \times 24 = 24 + 75_1 + 75_2 + 126 + \overline{126} + 175' + \overline{175}' + 1024
75 \times 40 = 10 + 15 + 40 + 175_1 + 175_2 + 210 + 315 + 450 + 560 + 1050
75 \times 45 = 5 + 45_1 + 45_2 + 50 + 70 + 105 + 175'' + 280_1 + 280_2 + 480 + 720 + 1120
75 \times 50 = 5 + 45 + 50 + 70 + 280 + 480 + 720 + 980 + 1120
75 \times 75 = 1. + 24. + 24. + 75. + 75. + 126. + 126. + 126. + 175. + 175. + 175. + 200. + 700. + 700. + 1024. + 1024. + 1176.
```

Table 30 Branching rules for SU₅

```
SU_5 \supset SU_4 \times U_1
 (1000) = 5 = 1(4) + 4(-1)
 (0100) = 10 = 4(3) + 6(-2)
 (2000) = 15 = 1(8) + 4(3) + 10(-2)
 (1001) = 24 = 1(0) + 4(-5) + \overline{4}(5) + 15(0)
 (0003) = 35 = 1(-12) + \overline{4}(-7) + \overline{10}(-2) + 20''(3)
 (0011) = 40 = \overline{4}(-7) + 6(-2) + \overline{10}(-2) + 20(3)
 (0101) = 45 = 4(-1) + 6(-6) + 15(4) + 20(-1)
 (0020) = 50 = \overline{10}(-6) + 20(-1) + 20'(4)
 (2001) = 70 = 1(4) + 4(-1) + \overline{4}(9) + 10(-6) + 15(4) + 36(-1)
 (0004) = 70' = 1(-16) + \overline{4}(-11) + \overline{10}(-6) + 20''(-1) + \overline{35}(4)
 (0110) = 75 = 15(0) + 20(-5) + \overline{20}(5) + 20'(0)
 SU_5 \supset SU_2 \times SU_3 \times U_1
  5 = (2, 1)(3) + (1, 3)(-2)
 10 = (1, 1)(6) + (1, \overline{3})(-4) + (2, 3)(1)
 15 = (3, 1)(6) + (2, 3)(1) + (1, 6)(-4)
 24 = (1, 1)(0) + (3, 1)(0) + (2, 3)(-5) + (2, \overline{3})(5) + (1, 8)(0)
35 = (4, 1)(-9) + (3, \overline{3})(-4) + (2, \overline{6})(1) + (1, \overline{10})(6)
40 = (2, 1)(-9) + (2, 3)(1) + (1, \overline{3})(-4) + (3, \overline{3})(-4) + (1, 8)(6) + (2, \overline{6})(1)
 45 = (2, 1)(3) + (1, 3)(-2) + (3, 3)(-2) + (1, \overline{3})(8) + (2, \overline{3})(-7) + (1, \overline{6})(-2) + (2, 8)(3)
50 = (1, 1)(-12) + (1, 3)(-2) + (2, \overline{3})(-7) + (3, \overline{6})(-2) + (1, 6)(8) + (2, 8)(3)
70 = (2, 1)(3) + (4, 1)(3) + (1, 3)(-2) + (3, 3)(-2) + (3, \overline{3})(8) + (2, 6)(-7) + (2, 8)(3) + (1, 15)(-2)
70' = (5, 1)(-12) + (4, \overline{3})(-7) + (3, \overline{6})(-2) + (2, \overline{10})(3) + (1, \overline{15}')(8)
75 = (1, 1)(0) + (1, 3)(10) + (2, 3)(-5) + (1, \overline{3})(-10) + (2, \overline{3})(5) + (2, \overline{6})(-5) + (2, 6)(5) + (1, 8)(0) + (3, 8)(0)
```

Dynkin Iabel	Dimension	l (index)	Sextality	SU ₅ singlets	SU ₂ ×SU ₄ singlets	SU ₃ ×SU ₃ singlets
(10000)	6	1	1	1	0	0
(01000)	15	4	2	0	1	0
(00100)	20	6	3	0	0	2
(20000)	21	8	2	1	0	0
(10001)	35	12	0	1*	1*	1*
(30000)	56	36	3	1	0	0
(11000)	70	33	3	0	0	0
(01001)	84	38	1	0	0	0
(00101)	105	52	2	0	0	0
(00020)	105'	64	2	0	1	0
(20001)	120	68	1	1	0	0
(00004)	126	120	2	1	0	0
(00200)	175	120	0	0	0	2+1*
(01010)	189	108	0	0	1*	1*
(00110)	210	131	1	0	0	0
00012)	210'	152	2	0	0	0
(00005)	252	330	1	1	0	0
20010)	280	192	0	0	0	0
(30001)	315	264	2	1	0	0
(00102)	336	248	1	0	0	0
(11001)	384	256	2	0	1	0
(20002)	405	324	0	1*	1*	1*

Table 31 (continued)

		· · · · · · · · · · · · · · · · · · ·				
Dynkin label	Dimension	l (index)	Sextality	SU ₅ singlets	SU ₂ ×SU ₄ singlets	SU ₃ ×SU ₃ singlets
(00021)	420	358	1	0	0	0
(00006)	462	792	0	1	0	0
(00030)	490	504	0	0	1	0
(00013)	504	516	1	0	0	0
(10101)	540	378	3	0	0	2
(02001)	560	456	3	0	0	0
(40001)	700	810	3	1	0	0
(30010)	720	696	1	0	0	0
(70000)	792	1716	1	1	0	0
(11010)	840	668	1	0	0	0
(10200)	840′	764	1	0	0	0
(30100)	840"	864	0	0	0	0
(11100)	896	768	0	0	0	0
(00300)	980	1134	3	0	0	4
(00300)	900	1154	3	U	U	4
(10110)	1050	880	2	0	0	0
(21001)	1134	1053	3	0	0	0
(22000)	1134'	1296	0	0	0	0
(02010)	1176	1120	2	0	1	0
(02100)	1176′	1204	1	0	0	0
(11002)	1260	1146	1	0	0	0
(01200)	1470	1568	2	0	0	0
(10102)	1701	1620	2	Õ	0	0
(13000)	1764	2310	1	0	0	0
(04000)	1764'	2688	2	V	v	v
(02002)	1800	1920	2	0	0	0
(01110)	1960	1932	3	0	0	2
(10021)	2205	2352	2	0	1	0
(21010)	2430	2592	2	0	0	0
(21100)	2520 2520	2868	1	0	0	0
		2976	2	0	0	0
(20200)	2520′		1	0	0	
(10030)	2520"	3156	3			0
(01102)	3240	3564		0	0	0
(11011)	3675	3780	0	0	1*	1*
(10201)	3969	4536	0	0	0	2+1*
(00400)	4116	7056	0	0	0	4+1*
(10111)	4410	4767	1	0	0	0
(12100)	4410′	5712	2	0	0	0
(00301)	4410"	6216	2	0	0	0
(01021)	4536	5508	3	0	0	0
(00130)	4704	7056	3	0	0	0
(02011)	5040	6024	1			
(01030)	5040′	7104	2			
(02101)	5670	7128	0			
(00211)	5880	7812	3			
(02020)	6720	9216	0			
(01201)	6804	8910	1			
(00220)	7056	10752	2			
(00310)	7056′	11256	1			
(01111)	8064	9984	2			
(01120)	10080	14352	1			
(01210)	11340	16848	0			

Table 32 SU₆ tensor products

```
6\times 6=15_{\rm a}+21_{\rm s}
 6 \times \overline{6} = 1 + 35
15 \times \underline{6} = 20 + 70

15 \times \overline{6} = 6 + 84
\overline{15} \times 15 = 1 + 35 + 189
\overline{15} \times \overline{15} = 15_s + 105_a + 105_s'
 20 \times \overline{6} = 15 + 105
20 \times \overline{15} = 6 + 84 + 210
20 \times 20 = 1_a + 35_s + 175_s + 189_a
 21 \times 6 = 56 + 70
 21 \times \overline{6} = 6 + 120
\overline{21} \times \overline{15} = 105 + 210'
21 \times \overline{15} = 35 + 280
\overline{21} \times 20 = 84 + 336
\overline{21} \times 21 = 1 + 35 + 405
\overline{21} \times \overline{21} = 105'_s + 126_s + 210'_a
 35 \times 6 = 6 + 84 + 120
35 \times 15 = 15 + 21 + 105 + 384
35 \times 20 = 20 + 70 + \overline{70} + 540
35 \times 21 = 15 + 21 + 315 + 384
35 \times 35 = 1_s + 35_s + 35_a + 189_s + 280_a + \overline{280}_a + 405_s
 70 \times \overline{6} = 15 + 21 + 384
 \overline{70} \times \overline{6} = 105 + 105' + 210'
70 \times \overline{15} = 6 + 84 + 120 + 840
\overline{70} \times \overline{15} = 84 + 210 + 336 + 420
70 \times 20 = 35 + 189 + 280 + 896
70 \times \overline{21} = 6 + 84 + 120 + 1260
\overline{70} \times \overline{21} = 210 + 336 + 420 + 504
70 \times 35 = 20 + 56 + 70_1 + 70_2 + 540 + 560 + 1134
70 \times 70 = 175_{s} + 189_{a} + 280_{s} + 490_{a} + 840_{a}'' + 896_{s} + 896_{a} + 1134_{s}'
\overline{70} \times 70 = 1 + 35_1 + 35_2 + 189 + 280 + \overline{280} + 405 + 3675
 84 \times 6 = 15 + 105 + 384
 84 \times 6 = 35 + 189 + 280
84 \times 15 = 20 + 70 + \overline{70} + 540 + 560
84 \times 15 = 6 + 84 + 120 + 210 + 840
\overline{84} \times 20 = 15 + 21 + 105 + 105' + 384 + 1050
84 \times 21 = 20 + 70 + 540 + 1134
\overline{84} \times 21 = 84 + 120 + 840 + 720
84 \times 35 = 6 + 84_1 + 84_2 + 120 + 210 + 336 + 840 + 1260
\overline{84} \times 70 = 15 + 21 + 105 + 315 + 384_1 + 384_2 + 1050 + 1176 + 2430
\overline{84} \times \overline{70} = 15 \times 105_1 + 105_2 + 105' + 210' + 384 + 1050 + 1701 + 2205
84 \times 84 = 15_a + 21_s + 105_s + 105_a + 105_a + 105_a + 210_s + 384_s + 384_a + 1050_s + 1176_a + 1701_a + 1800_s
\overline{84} \times 84 = 1 + 35_1 + 35_2 + 175 + 189_1 + 189_2 + 280 + \overline{280} + 405 + 896 + \overline{896} + 3675
```

Table 33	30/10
	ţ

SO, irreps of dimension le	SO, irreps of dimension less than 650 and branching rules (SO, \supset SU ₄)
Dynkin Dimension 4/2 label (name) (index)	1/2 Branching into (index) SU ₄ irreps
(100)	1 1+6
(001) 8 1	1 4+4
(010) 21 5	5 6+15
	9 1+6+20'
(101) 48 14	$14 + 4 + \overline{4} + 20 + \overline{20}$
(300) 77 44	
(110) 105 45	45 6+15+20'+64
(011) 112 46	$46 20 + \overline{20} + 36 + \overline{36}$
(003) 112' 54	
(020) 168 96	96 20' + 64 + 84
168′	85 $4+\overline{4}+20+\overline{20}+60+\overline{60}$
(400) 182 156	156 1+6+20'+50+105
(102) 189 90	
(004) 294 210	$210 35 + \overline{35} + 70 + \overline{70} + 84$
(210) 330 220	220 6+15+20'+50+64+175
70 = (2, 1)(6) + (1, 4)(3) + (3, 4)(3) + (2, 6)(0) + (2, 10)(0) + (1, 20)(-3) (012) 378 234	234 45+45+64+70+70+84
4(-1) + (2, 6)(-4) + (1, 20)(-1) + (2, 15)(2) (500) 378 450	450 1 + 6 + 20' + 50 + 105 + 196
(301), (301) , (301) , (301) , (301)	344 + 4 + 20 + 20 + 60 + 60 + 140' + 140'
$(3,\overline{10})(-2) + (1,20)(4) + (2,20)(1)$ 512 320	$320 20 + \overline{20} + 36 + \overline{36} + 60 + \overline{60} + 140 + \overline{140}$
(202) 616 440	$440 10 + 10 + 15 + 45 + \overline{45} + 64 + 126 + \overline{126} + 175$
(-3) + (3, 8)(1) + (8, 3)(-1)	
$(0) + (3, \overline{6})(0) + (8, \overline{3})(-2) + (\overline{3}, 8)(2)$	
$21 = (8, 1)(2) + (1, 0)(-2) + (3, 3)(2) + (\overline{3}, 3)(-2)$ $35 = (1, 1)(0) + (8, 1)(0) + (1, 8)(0) + (3, \overline{3})(2) + (\overline{3}, 3)(-2)$ $56 = (10, 1)(3) + (1, 10)(-3) + (3, \overline{6})(-1) + (6, 3)(1)$ $70 = (8, 1)(3) + (1, 8)(-3) + (3, \overline{3})(-1) + (7, 3)(1) + (1, \overline{6})(-1) + (6, 3)(1)$ $84 = (3, 1)(1) + (1, 3)(-1) + (6, 1)(1) + (1, \overline{6})(-1) + (\overline{3}, \overline{3})(-3) + (\overline{3}, \overline{3})(-3) + (\overline{3}, \overline{3})(-3) + (\overline{3}, \overline{3})(-3)$ $05 = (3, 1)(2) + (3, 1)(-4) + (1, \overline{3})(-2) + (1, \overline{3})(-3)(-4) + (3, \overline{3})(-3)(-3)(-3)(-3)(-3)$	

Table 35 SO₇ tensor products

```
7 \times 7 = 1_s + 21_a + 27_s
  8 \times 7 = 8 + 48
  8 \times 8 = 1_s + 7_a + 21_a + 35_s
 21 \times 7 = 7 + 35 + 105
21 \times 8 = 8 + 48 + 112
21 \times 21 = 1_s + 21_a + 27_s + 35_s + 168_s + 189_a
27 \times 7 = 7 + 77 + 105
27 \times 8 = 48 + 168'
27 \times 21 = 21 + 27 + 189 + 330
27 \times 27 = 1_s + 21_a + 27_s + 168_s + 182_s + 330_a
 35 \times 7 = 21 + 35 + 189
 35 \times 8 = 8 + 48 + 112 + 112'
35 \times 21 = 7 + 21 + 35 + 105 + 189 + 378
35 \times 27 = 35 + 105 + 189 + 616
35 \times 35 = 1_s + 7_a + 21_a + 27_s + 35_s + 105_s + 168_s + 189_a + 294_s + 378_a
 48 \times 7 = 8 + 48 + 112 + 168'
 48 \times 8 = 7 + 21 + 27 + 35 + 105 + 189
48 \times 21 = 8 + 48_1 + 48_2 + 112 + 112' + 168' + 512
48 \times 27 = 8 + 48 + 112 + 168' + 448 + 512
48 \times 35 = 8 + 48_1 + 48_2 + 112_1 + 112_2 + 112' + 168' + 512 + 560
48 \times 48 = 1_s + 7_a + 21_{a1} + 21_{a2} + 27_s + 35_{s1} + 35_{s2} + 77_a + 105_s + 105_a + 168_s + 189_s + 189_a + 330_a + 378_a + 616_s
```

Table 36 SO₈ irreps of dimension less than 1300

Dynkin label	Dimension (name)	Congruency class	l/8 (index)	Branching into SO ₇ irreps
(1000)	8 _v	(01)	1	8
(0001)	8 _s	(10)	1	1 + 7
(0010)	8 _c	(11)	1	8
(0100)	28	(00)	6	7 + 21
(2000)	35 _v	(00)	10	35
(0002)	35 _s	(00)	10	1 + 7 + 27
(0020)	35 _c	(00)	10	35
(0011)	56 _v	(01)	15	8 + 48
(1010)	56 _s	(10)	15	21 + 35
(1001)	56 _c	(11)	15	8 + 48
(3000)	112 _v	(01)	54	112'
(0003)	112 _s	(10)	54	1 + 7 + 27 + 77
(0030)	112 _c	(11)	54	112'
(1100)	160_{v}	(01)	60	48 + 112
(0101)	160 _s	(10)	60	7 + 21 + 27 + 105
(0110)	160 _c	(11)	60	48 + 112
(1002)	224 _{sv}	(01)	100	8 + 48 + 168'
(1020)	224 _{cv}	(01)	100	112 + 112'
(2001)	224 _{vs}	(10)	100	35 + 189
(2010)	224_{vc}	(11)	100	112 + 112'
(0012)	224_{sc}	(11)	100	8 + 48 + 168'
(0021)	224 _{cs}	(10)	100	35 + 189

Table 36 (continued)

Dynkin label	Dimension (name)	Congruency class	l/8 (index)	Branching into SO ₇ irreps
(4000)	294 _v	(00)	210	294
(0004)	294 _s	(00)	210	1+7+27+77+182
(0040)	294 _c	(00)	210	294
(0200)	300	(00)	150	27 + 105 + 168
(1011)	350	(00)	150	21 + 35 + 105 + 189
(2100)	567 _v	(00)	324	189 + 378
(0102)	567 _s	(00)	324	7 + 21 + 27 + 77 + 105 + 330
(0120)	567 _c	(00)	324	189 + 378
(3001)	672_{vs}	(11)	444	112' + 560
(3010)	672_{vc}	(10)	444	294 + 378
(1003)	672 _{sv}	(11)	444	8 + 48 + 168' + 448
(1030)	672 _{ev}	(10)	444	294 + 378
(0013)	672 _{sc}	(01)	444	8+48+168'+448
(0031)	672 _{cs}	(01)	444	112' + 560
(5000)	672 ′,	(01)	660	672
(0005)	672's	(10)	660	1 + 7 + 27 + 77 + 182 + 378'
(0050)	672' _c	(11)	660	672
(0111)	840 _v	(01)	465	48 + 112 + 168' + 512
(1110)	840 _s	(10)	465	105 + 168 + 189 + 378
(1101)	840 _c	(11)	465	48 + 112 + 168′ + 512
(0022)	840'	(00)	540	35 + 189 + 616
(2020)	840's	(00)	540	168 + 294 + 378
(2002)	840'c	(00)	540	35 + 189 + 616
(2011)	1296 _v	(01)	810	112 + 112' + 512 + 560
(1012)	1296 _s	(10)	810	21 + 35 + 105 + 189 + 330 + 616
(1021)	1296 _c	(11)	810	112 + 112' + 512 + 560

Table 37 SO₈ tensor products

```
8_i \times 8_i = 1_s + 28_a + (35_i)_s (i = v, s, or c)
  8_i \times 8_j = 8_k + 56_k \ (i, j, k \ \text{cyclic})
  28 \times 8_i = 8_i + 56_i + 160_i
 28 \times 28 = 1_s + 28_a + (35_v)_s + (35_s)_s + (35_c)_s + 300_s + 350_a
 35_i \times 8_i = 8_i + 112_i + 160_i
 35_i \times 8_j = 56_j + 224_{ij} \ (i \neq j)
 35_i \times 28 = 28 + 35_i + 350 + 567_i
35_i \times 35_i = 1_s + 28_a + (35_i)_s + (294_i)_s + 300_s + (567_i)_a
35_i \times 35_j = 35_k + 350 + 840'_k (i, j, k \text{ cyclic})
 56_i \times 8_i = 28 + 35_j + 35_k + 350 \ (i \neq j \neq k \neq i)
 56_i \times 8_j = 8_k + 56_k + 160_k + 224_{jk}
 56_i \times 28 = 8_i + 56_{i1} + 56_{i2} + 160_i + 224_{ii} + 224_{ki} + 840_i
56_i \times 35_i = 56_i + 160_i + 224_{ji} + 224_{ki} + 1296_i \ (i \neq j \neq k \neq i)
56_i \times 35_j = 8_i + 56_i + 160_i + 224_{ji} + 672_{jk} + 840_i \ (i \neq j \neq k \neq i)
56_i \times 56_i = 1_s + 28_{a1} + 28_{a2} + (35_v)_s + (35_s)_s + (35_c)_s + 300_s + 350_s + 350_a + (567_i)_a + (567_k)_a + (840_i)_s \ (i \neq j \neq k \neq i)
56_i \times 56_j = 8_k + 56_{k1} + 56_{k2} + 112_k + 160_{k1} + 160_{k2} + 224_{ik} + 224_{jk} + 840_k + 1296_k  (i, j, k cyclic)
    (28^3)_s = 28_1 + 28_2 + 28_3 + 350 + 567_v + 567_s + 567_c + 1925
```

Table 38 SO₉ irreps of dimension less than 5100

Dynkin label	Dimension (name)	l/2 (index)	SO ₈ singlets	SU ₂ ×SU ₄ singlets
(1000)	9	1	1	0
(0001)	16	2	0	0
(0100)	36	7	0	0
(2000)	44	11	1	1
(0010)	84	21	0	1
(0002)	126	35	0	0
(1001)	128	32	0	0
(3000)	156	65	1	0
(1100)	231	77	0	0
(0101)	432	150	0	0
(4000)	450	275	1	1
(0200)	495	220	0	1
(2001)	576	232	0	0
(1010)	594	231	0	0
(0003)	672	308	0	0
(0011)	768	320	0	0
(2100)	910	455	0	0
(1002)	924	385	0	0
(5000)	1122	935	1	0
(0110)	1650	825	0	0
(3001)	1920	1120	0	0
(0020)	1980	1155	0	1
(2010)	2457	1365	0	1
(6000)	2508	2717	1	1
(1101)	2560	1280	0	0
(1200)	2574	1573	0	0
(0102)	2772	1463	0	0
(0004)	2772'	1848	0	0
(3100)	2772"	1925	0	0
(2002)	3900	2275	0	0
(0300)	4004	3003	0	0
(0012)	4158	2541	0	0
(1003)	4608	2816	0	0
(0201)	4928	3080	0	0
(1011)	5040	2870	0	0

Table 39 SO₉ tensor products

Table 40 Branchings of SO₉ representations

$9 \times 9 = 1_s + 36_s + 44_s$	
16 × 0 = 16 + 128	807.
	9 = 1 + 8,
$16 \times 16 = 1_s + 9_s + 36_u + 84_u + 126_s$	2 + 8 = 91
$36 \times 9 = 9 + 84 + 231$	36 = 8 + 28
$36 \times 16 = 16 + 128 + 432$	44 = 1 + 8 + 3¢
$36 \times 36 = 1. + 36. + 44. + 126. + 495. + 594.$	1 - 04 - 324
44 x 0 = 9 + 156 + 231	75 + 27 + 30 · · · · · · · · · · · · · · · · · ·
775 - 201 - 77 - 77 - 77 - 77 - 77 - 77 - 77 -	$1.26 = 32_c + 33_s + 36_s$
0/0+071-01-01-01-01-01-01-01-01-01-01-01-01-01	128 = 8c + 8s + 56c + 56c
$44 \times 36 = 36 + 44 + 594 + 910$	156 = 1 + 8x + 35x + 112x
$44 \times 44 = 1_s + 36_s + 44_t + 450_t + 495_t + 910_s$	231 = 8, +28 + 35, +160
$84 \times 9 = 36 + 126 + 594$	432 = 56 + 56 + 160 + 160
$84 \times 16 = 16 + 128 + 432 + 768$	450 = 1 + 8 + 35 + 112 + 304
$84 \times 36 = 9 + 84 + 126 + 231 + 924 + 1650$	405 = 35 + 160 + 200
$84 \times 44 = 84 + 231 + 924 + 2457$	7.5 = 8.48 + 5.6 + 5.4 + 7.04 + 7.04
$84 \times 84 = 1_s + 36_s + 44_s + 84_s + 126_s + 495_s + 594_s + 924_s + 1980_s + 2772_s$	504 = 28 + 56 + 160 + 350
$126 \times 9 = 84 + 126 + 924$	
$126 \times 16 = 16 + 128 + 432 + 672 + 768$	SO-7812 SI
$126 \times 36 = 36 + 84 + 126 + 594 + 924 + 2772$	0 - (3 1) + (1 6)
$126 \times 44 = 126 + 594 + 924 + 3900$	(0, 1) + (1, 0)
$126 \times 84 = 9 + 36 + 84 + 126 + 231 + 594 + 924 + 1650 + 2772 + 4158$	36 - (2, 4) + (2, 4) $36 - (3, 1) + (1, 15) + (3, 6)$
$126 \times 126 = 1_4 + 9_4 + 36_3 + 44_4 + 84_3 + 126_4 + 231_3 + 495_4 + 594_3 + 924_4 + 1650_6$	(0, 0) + (0, 1) + (0, 0) + (
+ 1980 ₃ + 2772 ₄ + 2772 ₇ + 4158 ₈	$A = (1, 1)^{2} + (2, 1)^{2} + (2, 0)^{2} + (1, 20)^{2}$
$128 \times 9 = 16 + 128 + 432 + 576$	Ot = (1, 1) + (1, 10) + (1, 10) + (2, 0) + (3, 12) $Ot = (1, 1) + (1, 10) + (2, 10) + (3, 10)$
$128 \times 16 = 9 + 36 + 44 + 84 + 126 + 231 + 594 + 924$	120 = (1, 0) + (1, 12) + (2, 10) + (3, 10) + (3, 12) $120 = (2, 0) + (3, 0) + (4, 0) + (4, 0) + (3, 0)$
$128 \times 36 = 16 + 128_1 + 128_2 + 432 + 576 + 768 + 2560$	$120 = (-4, 7) \cdot (-4, 7) \cdot (-4, 7) \cdot (-4, 7) \cdot (-4, 20) \cdot (-4, 20$
$128 \times 44 = 16 + 128 + 432 + 576 + 1920 + 2560$	231 = (3,1) + (1,3) + (3,0) + (1,3) + (3,2) $231 = (3,1) + (5,1) + (1,6) + (3,4) + (3,6) +$
$128 \times 84 = 16 + 128_1 + 128_2 + 432_1 + 432_2 + 576 + 672 + 768 + 2560 + 5040$	231 = (3, 1) + (3, 1) + (4, 0) + (3, 0) + (3, 1) + (3, 20) + (4, 04) $432 = (3, 4) + (3, 4) + (4, 4) + (4, 4) + (3, 20) + (4, 20) + (4, 20) + (3, 20) + ($
$128 \times 126 = 16 + 128_1 + 128_2 + 432_1 + 432_2 + 576 + 672 + 768_1 + 768_2 + 2560 + 4608 + 5040$	456 = (4, 4) + (4, 20) + (4, 4) + (4, 4) + (4, 20) + (
$128 \times 128 = 1_5 + 9_5 + 36_{a_1} + 36_{a_2} + 44_5 + 84_{a_1} + 84_{a_2} + 126_{x_1} + 126_{x_2} + 156_{x_1} + 231_{x_2} + 231_{x_3} + 495_{x_2}$	495 = (1, 1) + (5, 1) + (3, 6) + (1, 20) + (1, 20) + (3, 20) + (3, 20) + (4, 100)
$+594_s + 594_a + 910_a + 924_s + 924_a + 1650_s + 2457_a + 2772_a + 3900_s$	$576 = (2,4) + (2,\overline{4}) + (4,4) + (4,\overline{4}) + (6,4) + (6,\overline{4}) + (2,20) + (2,\overline{20}) + (4,20) + (4,\overline{20})$
	$+(2,60)+(2,\overline{60})$
	$594 = (3, 1) + (1, 6) + (3, 6) + (5, 6) + (1, 15) + (3, 15) + (5, 15) + (3, 10) + (3, \overline{10}) + (3, 20)$
	+(1,45)+(1,45)+(3,64)

Table 41 SO₁₀ irreps of dimension less tan 12000

Dynkin label	Dimension (name)	Congruency class	l/2 (index)	SU ₅ singlets	$SU_2 \times SU_2 \times SU_4$ singlets	SO ₉ singlets	$SU_2 \times SO_7$ singlets	
(10000)	10	2	1	0	0	1	0	
(00001)	16	1	2	1	0	0	0	
(01000)	45	0	8	1*	0	0	0	
(20000)	54	0	12	0	1	1	1	
(00100)	120	2	28	0	0	0	1	
(00002)	126	2	35	1	0	0	0	
(10010)	144	1	34	0	0	0	0	
(00011)	210	0	56	1	1	0	0	
(30000)	210'	2	77	0	0	1	0	
(11000)	320	2	96	0	0	0	0	
(01001)	560	1	182	1	0	0	0	
(40000)	660	0	352	0	1	1	1	
(00030)	672	1	308	1	0	0	0	
(20001)	720	1	266	0	0	0	0	
(02000)	770	ō	308	1*	1	0	1	
(10100)	945	0	336	0	0	0	0	
(10002)	1050	0	420	0	0	0	0	
(00110)	1200	1	470	0	0	0	0	
(21000)	1386	0	616	0	0	0	0	
(00012)	1440	1	628	1	0	Ö	0	
(10011)	1728	2	672	0	0	0	0	
(50000)	1782	2	1287	0	0	1	0	
(30010)	2640	1	1386	0	0	0	0	
(00004)	2772	Ô	1848	1	0	0	0	
(01100)	2970	2	1353	0	0	0	0	
(01002)	3696	2	1848	1	0	0	0	
(11010)	3696'	1	1694	0	0	0	0	
(00200)	4125	0	2200	0	1	0	1	
(60000)	4290	ő	4004	0	1	1	1	
(20100)	4312	2	2156	0	0	0	1	
(12000)	4410	2	2401	0	0	0	0	
(31000)	4608	2	2816	0	0	0	0	
(20002)	4950	2	2695	0	0	0	0	
(20002) (10003)	5280	1	3124	v	J	v	V	
(01011)	5940	0	2904					
(00102)	6930	0	4004					
(00102)	6930'	2	4389					
(03000)	7644	0	5096					
	7920	1	5566					
(40001)	7920 8064	1	4592					
(0 200 1) (20011)	8085	0	4392					
	8800	1	4312 4620					
(10101)		0	4620 5544					
(00022)	8910	2						
(70000)	9438		11011					
(00005)	9504	1	8580					
(00111) (10021)	10560 11088	2 1	5984 6314					

Table 42 SO₁₀ tensor products

```
10 \times 10 = 1_s + 45_a + 54_s
   \overline{16} \times 10 = 16 + 144
    16 \times 16 = 10_s + 120_a + 126_s
   \overline{16} \times 16 = 1 + 45 + 210
   45 \times 10 = 10 + 120 + 320
   45 \times 16 = 16 + 144 + 560
   45 \times 45 = 1_s + 45_a + 54_s + 210_s + 770_s + 945_a
    54 \times 10 = 10 + 210' + 320
   54 \times 16 = 144 + 720
   54 \times 45 = 45 + 54 + 945 + 1386
    54 \times 54 = 1_s + 45_a + 54_s + 660_s + 770_s + 1386_a
  120 \times 10 = 45 + 210 + 945
  120 \times \overline{16} = 16 + 144 + 560 + 1200
  120 \times 45 = 10 + 120 + 126 + \overline{126} + 320 + 1728 + 2970
  120 \times 54 = 120 + 320 + 1728 + 4312
120 \times 120 = 1_s + 45_a + 54_s + 210_s + 210_a + 770_s + 945_a + 1050_s + \overline{1050}_s + 4125_s + 5940_a
  126 \times 10 = 210 + 1050
  \overline{126} \times \overline{16} = 144 + 672 + 1200
  126 \times \overline{16} = 16 + 560 + 1440
  126 \times 45 = 120 + 126 + 1728 + 3696
  126 \times 54 = \overline{126} + 1728 + 4950
126 \times 120 = 45 + 210 + 945 + 1050 + 5940 + 6930
126 \times 126 = 54_s + 945_a + 1050_s + 2772_s + 4125_s + 6930_a
\overline{126} \times 126 = 1 + 45 + 210 + 770 + 5940 + 8910
  \overline{144} \times 10 = 16 + 144 + 560 + 720
  \overline{144} \times 16 = 45 + 54 + 210 + 945 + 1050
  \overline{144} \times \overline{16} = 10 + 120 + 126 + 320 + 1728
  144 \times 45 = 16 + 144_1 + 144_2 + 560 + 720 + 1200 + 3696'
  144 \times 54 = 16 + 144 + 560 + 720 + 2640 + 3696'
\overline{144} \times 120 = 16 + 144_1 + 144_2 + 560_1 + 560_2 + 720 + 1200 + 1440 + 3696' + 8800
\overline{144} \times 126 = 144 + 560 + 720 + 1200 + 1440 + 5280 + 8800
\overline{144} \times \overline{126} = 16 + 144 + 560 + 1200 + 1440 + 3696' + 11088
 144 \times 144 = 10_s + 120_{a1} + 120_{a2} + 126_s + \overline{126}_s + 210_s' + 320_s + 320_a + 1728_s + 1728_a + 2970_s + 3696_a + 4312_a + 4950_s
\overline{144} \times 144 = 1 + 45_1 + 45_2 + 54 + 210_1 + 210_2 + 770 + 945_1 + 945_2 + 1050 + \overline{1050} + 1386 + 5940 + 8085
  210 \times 10 = 120 + 126 + \overline{126} + 1728
   210 \times 16 = 16 + 144 + 560 + 1200 + 1440
   210 \times 45 = 45 + 210_1 + 210_2 + 945 + 1050 + \overline{1050} + 5940
  210 \times 54 = 210 + 945 + \overline{1050} + 1050 + 8085
 210 \times 120 = 10 + 120_1 + 120_2 + 126 + \overline{126} + 320 + 1728_1 + 1728_2 + 2970 + 3696 + \overline{3696} + 10560
 210 \times 126 = 10 + 120 + 126 + 320 + 1728 + 2970 + 3696 + 6930' + 10560
 210 \times 144 = 16 + 144_1 + 144_2 + 560_1 + 560_2 + 672 + 720 + 1200_1 + 1200_2 + 1440 + 3696' + 8800 + 11088
 210 \times 210 = 1_s + 45_s + 45_a + 54_s + 210_s + 210_a + 770_s + 945_{a1} + 945_{a2} + \overline{1050}_s + 1050_s + 4125_s + 5940_s + 5940_a + 6930_a + \overline{6930}_a + 8910_s + 1050_a +
```

Table 43 Branching rules for SO₁₀

```
SO_{10} \supset SU_5 \times U_1
   (10000) = 10 = 5(2) + \overline{5}(-2)
   (00001) = 16 = 1(-5) + \overline{5}(3) + 10(-1)
   (01000) = 45 = 1(0) + 10(4) + \overline{10}(-4) + 24(0)
   (20000) = 54 = 15(4) + \overline{15}(-4) + 24(0)
   (00100) = 120 = 5(2) + \overline{5}(-2) + 10(-6) + \overline{10}(6) + 45(2) + \overline{45}(-2)
   (00002) = 126 = 1(-10) + \overline{5}(-2) + 10(-6) + \overline{15}(6) + 45(2) + \overline{50}(-2)
  (10010) = 144 = \overline{5}(3) + 5(7) + 10(-1) + 15(-1) + 24(-5) + 40(-1) + \overline{45}(3)
  (00011) = 210 = 1(0) + 5(-8) + \overline{5}(8) + 10(4) + \overline{10}(-4) + 24(0) + 40(-4) + \overline{40}(4) + 75(0)
  (30000) = 210' = 35(-6) + \overline{35}(6) + 70(2) + \overline{70}(-2)
  (11000) = 320 = 5(2) + \overline{5}(-2) + 40(-6) + \overline{40}(6) + 45(2) + \overline{45}(-2) + 70(2) + \overline{70}(-2)
  (01001) = 560 = 1(-5) + \overline{5}(3) + \overline{10}(-9) + 10(-1)_1 + 10(-1)_2 + 24(-5) + 40(-1) + 45(7) + \overline{45}(3) + \overline{50}(3) + \overline{70}(3) + 75(-5) + 175(-1)
  SO_{10} \supset SU_2 \times SU_2 \times SU_4
       10 = (2, 2, 1) + (1, 1, 6)
       16 = (2, 1, 4) + (1, 2, \overline{4})
       45 = (3, 1, 1) + (1, 3, 1) + (1, 1, 15) + (2, 2, 6)
      54 = (1, 1, 1) + (3, 3, 1) + (1, 1, 20') + (2, 2, 6)
    120 = (2, 2, 1) + (1, 1, 10) + (1, 1, \overline{10}) + (3, 1, 6) + (1, 3, 6) + (2, 2, 15)
    126 = (1, 1, 6) + (3, 1, \overline{10}) + (1, 3, 10) + (2, 2, 15)
    144 = (2, 1, 4) + (1, 2, \overline{4}) + (3, 2, \overline{4}) + (2, 3, 4) + (2, 1, 20) + (1, 2, \overline{20})
   210 = (1, 1, 1) + (1, 1, 15) + (2, 2, 6) + (3, 1, 15) + (1, 3, 15) + (2, 2, 10) + (2, 2, \overline{10})
 210' = (2, 2, 1) + (1, 1, 6) + (4, 4, 1) + (3, 3, 6) + (2, 2, 20') + (1, 1, 50)
   320 = (2, 2, 1) + (1, 1, 6) + (4, 2, 1) + (2, 4, 1) + (3, 1, 6) + (1, 3, 6) + (2, 2, 15) + (3, 3, 6) + (1, 1, 64) + (2, 2, 20)
   560 = (2, 1, 4) + (1, 2, \overline{4}) + (4, 1, 4) + (1, 4, \overline{4}) + (2, 3, 4) + (3, 2, \overline{4}) + (2, 1, 20) + (1, 2, \overline{20}) + (2, 1, 36) + (1, 2, \overline{36}) + (2, 3, 20) + (3, 2, \overline{20}) 
 SO_{10} \supset SO_9
      10 = 1 + 9
      16 = 16
      45 = 9 + 36
      54 = 1 + 9 + 44
   120 = 36 + 84
   126 = 126
   144 = 16 + 128
  210 = 84 + 126
 210' = 1 + 9 + 44 + 156
  320 = 9 + 36 + 44 + 231
  560 = 128 + 432
SO_{10} \supset SU_2 \times SO_7
    10 = (3, 1) + (1, 7)
     16 = (2, 8)
    45 = (3, 1) + (1, 21) + (3, 7)
    54 = (1, 1) + (5, 1) + (3, 7) + (1, 27)
  120 = (1, 1) + (3, 7) + (1, 35) + (3, 21)
  126 = (1, 21) + (3, 35)
  144 = (2, 8) + (4, 8) + (2, 48)
 210 = (1, 7) + (1, 35) + (3, 21) + (3, 35)
210' = (3, 1) + (7, 1) + (1, 7) + (5, 7) + (3, 27) + (1, 77)
 320 = (3, 1) + (5, 1) + (1, 7) + (3, 7) + (5, 7) + (3, 21) + (3, 27) + (1, 105)
 560 = (2, 8) + (4, 8) + (2, 48) + (4, 48) + (2, 112)
```

Table 44
F₄ irreps of dimension less than 100000

Dynkin label	Dimension (name)	l/6 (index)	SO ₉ singlets	SU ₃ ×SU ₃ singlets
(0001)	26	1	1	0
(1000)	52	3	0	0
(0010)	273	21	0	1
(0002)	324	27	1	1
(1001)	1053	108	0	0
(2000)	1053'	135	0	1
(0100)	1274	147	0	1
(0003)	2652	357	1	1
(0011)	4096	512	0	0
(1010)	8424	1242	0	1
(1002)	10829	1666	0	1
(3000)	12376	2618		
(0004)	16302	3135	1	1
(2001)	17901	3213		
(0101)	19278	3213	0	1
(0020)	19448	3366	0	2
(1100)	29172	5610		
(0012)	34749	6237	0	1
(1003)	76076	16093		
(0005)	81081	20790		

Table 45 F₄ tensor products

```
26 \times 26 = 1_s + 26_s + 52_a + 273_a + 324_s
52 \times 26 = 26 + 273 + 1053
52 \times 52 = 1_s + 52_a + 324_s + 1053_s' + 1274_a
273 \times 26 = 26 + 52 + 273 + 324 + 1053 + 1274 + 4096
273 \times 52 = 26 + 273 + 324 + 1053 + 4096 + 8424
273 \times 273 = 1_s + 26_s + 52_a + 273_{a1} + 273_{a2} + 324_{s1} + 324_{s2} + 1053_s + 1053_s' + 1274_a + 2652_s' + 4096_s' + 4096_a + 8424_s' + 10829_a' + 19278_a' + 19448_s'
324 \times 26 = 26 + 273 + 324 + 1053 + 2652 + 4096
324 \times 52 = 52 + 273 + 324 + 1053 + 2652 + 4096
324 \times 273 = 26 + 52 + 273_1 + 273_2 + 324 + 1053_1 + 1053_2 + 1274 + 2652 + 4096_1 + 4096_2 + 8424 + 10829 + 19278 + 34749
324 \times 324 = 1_s + 26_s + 52_a + 273_a + 324_{s1} + 324_{s2} + 1053_a + 1053_s' + 1274_a + 2652_s + 4096_s + 4096_a + 8424_s + 10829_a + 16302_s + 19448_s + 34749_a
```

Table 46
Branchings of F₄ representations

 $F_4 \supset SO_9$

```
 (0001) = 26 = 1 + 9 + 16 
 (1000) = 52 = 16 + 36 
 (0010) = 273 = 9 + 16 + 36 + 84 + 128 
 (0002) = 324 = 1 + 9 + 16 + 44 + 126 + 128 
 (1001) = 1053 = 16 + 36 + 84 + 126 + 128 + 231 + 432 
 (2000) = 1053' = 126 + 432 + 495 
 (0100) = 1274 = 36 + 84 + 128 + 432 + 594 
 F_4 \supset SU_3 \times SU_3 
 26 = (8, 1) + (3, 3) + (\overline{3}, \overline{3}) 
 52 = (8, 1) + (1, 8) + (6, \overline{3}) + (\overline{6}, \overline{3}) 
 273 = (1, 1) + (8, 1) + (3, 3) + (\overline{3}, \overline{3}) + (10, 1) + (\overline{10}, 1) + (6, \overline{3}) + (\overline{6}, 3) + (3, \overline{6}) + (\overline{15}, \overline{3}) + (8, 8) 
 324 = (1, 1) + (8, 1) + (1, 8) + (3, 3) + (\overline{3}, \overline{3}) + (6, \overline{3}) + (\overline{6}, 3) + (27, 1) + (6, 6) + (\overline{6}, \overline{6}) + (15, 3) + (\overline{15}, \overline{3}) + (8, 8)
```

Table 47
E₆ irreps of dimension less than 100000

Dynkin label	Dimension (name)	l/6 (index)	Triality	F ₄ singlets	SO ₁₀ singlets	SU ₂ ×SU ₆ singlets	SU ₃ ×SU ₃ ×SU ₃ singlets
(100000)	27	1	1	1	1	0	0
(000001)	78	4	0	0	1*	0	0
(000100)	351	25	1	0	0	0	0
(000020)	351'	28	1	1	1	0	0
(100010)	650	50	0	1	1*	1	2
(100001)	1728	160	1	0	1	0	0
(000002)	2430	270	0	0	1*	1	1
(001000)	2925	300	0	0	0	0	1
(300000)	3003	385	0	1	1	0	1
(000110)	5824	672	0	0	0	0	0
(010010)	7371	840	1	0	0	0	0
(200010)	7722	946	1	1	1	0	0
(000101)	17550	2300	1	0	0	0	0
(000021)	19305	2695	1	0	1	0	0
(400000)	19305'	3520	1	1	1	0	0
(020000)	34398	5390	1	0	0	0	0
(100011)	34749	4752	0	0	1*	0	
(000003)	43758	7854	0				
(100002)	46332	7260	1				
(101000)	51975	7700	1	0	0	0	0
(210000)	54054	8932	1	0	0	0	0
(100030)	61425	10675	1				
(010100)	70070	10780	0	0	0	1	
(010020)	78975	12825	0	0	0	0	0
(200020)	85293	14580	0	1	1*	1	2
(100110)	112320	18080	1				

^{*}SO₁₀ × U₁ singlet.

Table 48 E₆ tensor products

```
\frac{1728 \times 1728}{1728 \times 1728} = 27 + 351' + 351' + 351' + 1728 + 7371_1 + 7371_2 + 7722 + 17550_1 + 17550_2 + 19305 + 34398 + 46332 + 61425 + 112320 + 314496 + 386100 + 459459
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  650 \times 650 = 1_5 + 78_5 + 78_5 + 78_5 + 650_{51} + 650_{52} + 650_5 + 2430_5 + 2925_{51} + 2925_{52} + 3003_5 + 3003_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 + 5824_5 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \frac{1728 \times 78}{1728 \times 351} = 27 + 351 + 1728 + 1728 + 1728 + 1727 + 1722 + 17550 + 46332 + 51975
\frac{1728 \times 78}{1728 \times 351} = 27 + 351' + 351_1 + 351_2 + 1728_1 + 1728_1 + 1728_2 + 7722 + 17550_1 + 17550_2 + 19305 + 46332 + 51975 + 112320 + 314496
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \frac{1728 \times 1728_a}{1728} = 351_1 + 351_2 + 1728 + 7371_1 + 7371_2 + 17550 + 19305_1 + 19305_2 + 51975_1 + 51975_2 + 112320 + 314496 + 393822 + 494208
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         650 \times 351 = 27 + 351_1 + 351_2 + 351' + 1728_1 + 1728_2 + 7371_1 + 7371_2 + 7722 + 17550 + 19305 + 51975 + 112320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \frac{351 \times 351}{351 \times 351} = 27_s + 351_a + 351_s' + 1728_s + 1728_a + 7371_a + 7722_s + 17550_s + 34398_s + 51975_a
351 \times 351 = 1 + 78 + 650_1 + 650_2 + 2430 + 2925 + 5824 + 5824 + 34749 + 70070
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   650 \times 351' = 27 + 351 + 351' + 1728 + 7371 + 7722 + 17550 + 19305 + 61425 + 112320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       351' \times 351' = 351'_s + 7371_a + 7722_s + 19305'_s + 34398_s + 54054_a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     650 \times 27 = 27 + 351 + 351' + 1728 + 7371 + 7722

650 \times 78 = 78 + 650_1 + 650_2 + 2925 + 5824 + \overline{5824} + 34749
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \frac{351}{351} + \frac{27}{27} = 650 + 3003 + \frac{5824}{352}
\frac{351}{351} \times 78 = 27 + 1728 + 722
\frac{351}{351} \times 351 = 351 + 351 + 19305
\frac{351}{351} \times 351 = 351 + 1728 + 7371 + 19305
\frac{351}{351} \times 351 = 78 + 650 + 2925 + 5824 + 34749 + 78975
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \overline{1728} \times \overline{27} = 351 + 351' + 1728 + 7371 + 17550 + 19305
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1728 \times 27 = 78 + 650 + 2430 + 2925 + 5824 + 34749
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    351 \times 78 = 27 + 351 + 351' + 1728 + 7371 + 17550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 351' \times \overline{351'} = 1 + 78 + 650 + 2430 + 34749 + 85293
                                                                                                                                                                                                                                                                                                                                                                                                                                                            78 \times 78 = 1_s + 78_a + 650_s + 2430_s + 2925_a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 + 78975<sub>a</sub> + 78975<sub>a</sub> + 85293<sub>s</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      351 \times \overline{27} = 78 + 650 + 2925 + 5824\overline{351} \times \overline{27} = 27 + 351 + 1728 + 7371
\overline{27} \times \overline{27} = 27_s + 351_a + 351_s'
\overline{27} \times 27 = 1 + 78 + 650
                                                                                                                                                                                                                                                                                              78 \times 27 = 27 + 351 + 1728
```

Table 49
Branchings of E_n representations

```
1728 = \overline{(3,3,1)} + \overline{(3,3,1)} + \overline{(3,6,1)} + \overline{(6,3,1)} + \overline{(6,3,1)} + \overline{(3,1)} + \overline{(15,3,1)} + \overline{(15,3,1)} + \overline{(3,1,3)} + \overline{(6,1,3)} + \overline{(6,3,3)} + \overline{(3,8,3)} + \overline{(3,8,3)} + \overline{(3,1,3)} + \overline{(6,1,3)} + \overline{(6,1,3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  351 = (3,3,1) + (3,6,1) + (6,3,1) + (6,3,1) + (6,1,3) + (6,1,3) + (1,3,3) + (1,6,3) + (1,6,3) + (8,3,3) + (3,1,6) + (1,3,6) + (3,3,8)
351' = (3,3,1) + (6,6,1) + (6,1,3) + (3,8,3) + (1,1,3,3) + (8,3,3) + (6,1,6) + (1,6,6) + (3,3,8)
550 = (1,1) + (1,1) + (1,1,1) + (8,1,1) + (1,8) + (3,3,3) + (3,3,3) + (3,3,3) + (3,3,3) + (3,3,3) + (6,3,3) + (6,3,3) + (6,3,3) + (6,3,3) + (3,6,3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1728 = 1(4) + 10(-2) + 16_1(1) + 16_2(1) + 16_2(1) + 45(4) + 120(-2) + 126(-2) + 144(1) + 144(-5) + 210(4) + 320(-2) + 560(1)
2430 = 1(9) + 16(-3) + 16(3) + 45(0) + 126(-6) + 126(6) + 210(0) + 560(-3) + 560(3) + 770(0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2825 = 16(-3) + \overline{16(3)} + 45_1(0) + 45_2(0) + 120_1(6) + 120_2(-6) + 144(-3) + \overline{144(3)} + 210(0) + 560(-3) + \overline{560(3)} + 945(0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  656 = (1, 1) + (1, 35) + (2, 20) + (3, 35) + (2, 70) + (2, 70) + (1, 189)
1728 = (2, \overline{6}) + (1, 15) + (4, \overline{6}) + (3, 15) + (1, 105) + (2, \overline{84}) + (2, 1\overline{20}) + (3, 105) + (1, 384) + (2, \overline{210})
2430 = (1, 1) + (5, 1) + (2, 20) + (4, 20) + (3, 35) + (1, 189) + (1, 405) + (3, 175) + (2, 540)
2925 = (3, 1) + (1, 35) + (2, 20) + (3, 35) + (4, 20) + (2, 70) + (2, 70) + (1, 175) + (1, 280) + (1, 280) + (3, 189) + (2, 540)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      351' = 1(-8) + 10(-2) + \overline{16}(-5) + 54(4) + \overline{126}(-2) + 144(1)

650 = 1(0) + 10(6) + 10(-6) + 16(-3) + \overline{16}(3) + 45(0) + 54(0) + 144(-3) + \overline{144}(3) + 210(0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      351 = 10(-2) + \overline{16(-5)} + 16(1) + 45(4) + 120(-2) + 144(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        +(\overline{3},\overline{3},\overline{6})+(3,3,6)+(8,8,1)+(8,1,8)+(1,8,8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            E<sub>6</sub>⊃ SO<sub>10</sub> × U<sub>1</sub> (Value of U<sub>1</sub> generator in parenthesis)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            78 = (\underline{8}, 1, 1) + (\underline{1}, \underline{8}, 1) + (1, 1, 8) + (3, 3, \overline{3}) + (\overline{3}, \overline{3}, 3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (001000) = 2925 = 52 + 273_1 + 273_2 + 1053 + 1274
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            351 = (2, \overline{6}) + (1, 21) + (3, 15) + (1, 105) + (2, 84)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (100001) = 1728 = 26 + 52 + 273 + 324 + 1053
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (100010) = 650' = 1 + 26_1 + 26_2 + 273 + 324
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             351' = (1, 15) + (3, 21) + (2, 84) + (1, 105')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      +(6,3,8)+(3,1,15)+(1,\bar{3},\bar{15})
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (000002) = 2430 = 324 + 1053 + 1053
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        78 = 1(0) + 45(0) + 16(-3) + \overline{16}(3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           27 = (\bar{3}, 3, 1) + (3, 1, 3) + (1, \bar{3}, \bar{3})
                                                                                                                                                                                                                                                                                                                                                                                                                                        (000100) = 351 = 26 + 52 + 273
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      78 = (3, 1) + (1, 35) + (2, 20)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (000020) = 351' = 1 + 26 + 324
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        27 = 1(4) + 10(-2) + 16(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           E, > SU; × SU; × SU;
                                                                                                                                                                                                                                                                                                  (000001) = 78 = 26 + 52
                                                                                                                                                 (100000) = 27 = 1 + 26
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     27 = (2, \overline{6}) + (1, 15)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E, > SU2 × SU,
E,∪F,
```

Table 50 Guide to projection matrices for $E_6 \supset \cdots \supset U_1^{pm} \times SU\S$. The U_1 factors may be found in table 18. The factor X in $P(X \supset Y)$ is chosen to be simple; it is underlined when

Table 51

Table 52
Irreps, products and branching rules for E₇

```
Dynkin
                    Dimension
                                            l/12
                                                         Branching into E6 irreps
                                                        U<sub>1</sub> factors suppressed
label
                    (name)
                                            index
(0000010)
                                               1
                                                        1 + 1 + 27 + \overline{27}
                         56
(1000000)
                       133
                                                        1 + 27 + \overline{27} + 78
(0000001)
                       912
                                              30
                                                        27 + \overline{27} + 78 + 78 + 351 + \overline{351}
                                                        1 + 1 + 1 + 27 + 27 + \overline{27} + \overline{27} + 351' + \overline{351}' + 650
                                              55
(0000020)
                      1463
(0000100)
                                              54
                                                        1 + 27 + 27 + \overline{27} + \overline{27} + 78 + 351 + \overline{351} + 650
                     1539
(1000010)
                     6480
                                             270
                                                        Branching rules to other
                     7371
                                             351
(2000000)
                                                        regular subgroups below.
(0100000)
                     8645
                                            390
(0000030)
                   24320
                                           1440
                   27664
                                           1430
(0001000)
                   40755
                                           2145
(0000011)
                   51072
(0000110)
                                           2832
(1000001)
                   86184
                                           4995
      56 \times 56 = 1_a + 133_s + 1463_s + 1539_a
     133 \times 56 = 56 + 912 + 6480
   133 \times 133 = 1_s + 133_a + 1539_s + 7371_s + 8645_a
    912 \times 56 = 133 + 1539 + 8645 + 40755
  912 \times 133 = 56 + 912 + 6480 + 27664 + 86184
  912 \times 912 = 1_a + 133_s + 1463_s + 1539_a + 7371_a + 8645_s + 40755_a + 152152_s + 253935_s + 365750_a
   1463 \times 56 = 56 + 6480 + 24320 + 51072
  1463 \times 133 = 1463 + 1539 + 40755 + 150822
 1463 \times 912 = 912 + 6480 + 27664 + 51072 + 362880 + 885248
1463 \times 1463 = 1_s + 133_a + 1463_a + 1539_s + 7371_s + 150822_s + 152152_a + 293930_s + 617253_s + 915705_a
   1539 \times 56 = 56 + 912 + 6480 + 27664 + 51072
  1539 \times 133 = 133 + 1463 + 1539 + 8645 + 40755 + 152152
  1539 \times 912 = 56 + 912 + 6480_1 + 6480_2 + 27664 + 51072 + 86184 + 362880 + 861840
E_7 \supset SU_8
(0000010) = 56 = 28 + \overline{28}
(1000000) = 133 = 63 + 70
(0000001) = 912 = 36 + \overline{36} + 420 + \overline{420}
(0000020) = 1463 = 1 + 70 + 336 + \overline{336} + 720
(0000100) = 1539 = 63 + 378 + \overline{378} + 720
E_7 \supset SU_2 \times SO_{12}
   56 = (2, 12) + (1, 32)
  133 = (3, 1) + (2, 32') + (1, 66)
 912 = (2, 12) + (3, 32) + (1, 352) + (2, 220)
1463 = (1, 66) + (3, 77) + (1, 462) + (2, 352')
1539 = (1, 1) + (2, 32') + (1, 77) + (3, 66) + (1, 495) + (2, 352')
E_7 \supset SU_3 \times SU_6
   56 = (3, 6) + (\overline{3}, \overline{6}) + (1, 20)
  133 = (8, 1) + (1, 35) + (3, \overline{15}) + (\overline{3}, 15)
912 = (3,6) + (\overline{3},\overline{6}) + (6,\overline{6}) + (\overline{6},\underline{6}) + (\overline{1},70) + (\overline{1},\overline{70}) + (\overline{8},20) + (\overline{3},84) + (\overline{3},\overline{84}) \\ 1463 = (1,1) + (1,35) + (\overline{3},\overline{15}) + (\overline{3},\underline{15}) + (\overline{6},21) + (\overline{6},\overline{21}) + (\overline{1},175) + (\overline{8},35) + (\overline{3},\overline{105}) + (\overline{3},105)
1539 = (1,1) + (8,1) + (1,35) + (3,\overline{15}) + (\overline{3},15) + (\overline{3},15) + (\overline{3},21) + (\overline{3},21) + (\overline{6},\overline{15}) + (\overline{6},\overline{15}) + (1,189) + (\overline{3},\overline{105}) + (\overline{3},105) + (\overline{8},35)
```

Table 53
Irreps, products and branching rules for E₈

Dynkin label	Dimension (name)	1/60 (index)	
(00000010)	248	1	
(10000000)	3875	25	
(00000020)	27000	225	
(00000100)	30380	245	
(00000001)	147250	1425	
(10000010)	779247	8379	
(00000030)	1763125	22750	
(00100000)	2450240	29640	
(00000110)	4096000	51200	
(20000000)	4881384	65610	
(01000000)	6696000	88200	
(00000011)	26411008	372736	

```
248 \times 248 = 1_s + 248_a + 3875_s + 27000_s + 30380_a \\ 3875 \times 248 = 248 + 3875 + 30380 + 147250 + 779247 \\ 3875 \times 3875 = 1_s + 248_a + 3875_s + 27000_s + 30380_a + 147250_s + 779247_a + 2450240_s + 4881384_s + 6696000_a \\ 3875 \times 3875 = 1_s + 248_a + 3875_s + 27000_s + 30380_a + 147250_s + 779247_a + 2450240_s + 4881384_s + 6696000_a \\ 3875 \times 3875 = 1_s + 248_a + 3875_s + 27000_s + 30380_a + 147250_s + 779247_a + 2450240_s + 4881384_s + 6696000_a \\ 3875 \times 3875 = 1_s + 248_a + 3875_s + 27000_s + 30380_a + 147250_s + 779247_a + 2450240_s + 4881384_s + 6696000_a + 147250_s + 147
```

Branching rules to regular maximal subgroups; SO16 and SU9 Dynkin labels given.

```
\begin{split} E_8 \supset SO_{16} \\ 248 &= (01000000)120 + (00000001)128 \\ 3875 &= (20000000)135 + (00010000)1820 + (10000010)1920 \\ E_8 \supset SU_9 \\ 248 &= (10000001)80 + (00100000)84 + (0000010)\overline{84} \\ 3875 &= (10000001)80 + (11000000)240 + (00000011)\overline{240} + (00010001)1050 + (10001000)\overline{1050} + (01000010)1215 \\ E_8 \supset SU_2 \times E_7 \\ 248 &= (3,1) + (1,133) + (2,56) \\ 3875 &= (1,1) + (2,56) + (3,133) + (1,1539) + (2,912) \\ E_8 \supset SU_3 \times E_6 \\ 248 &= (8,1) + (1,78) + (3,27) + (\overline{3},\overline{27}) \\ 3875 &= (1,1) + (8,1) + (3,27) + (\overline{3},\overline{27}) + (\overline{6},27) + (\overline{6},\overline{27}) + (\overline{8},78) + (1,650) + (3,351) + (\overline{3},\overline{351}) \\ E_8 \supset SU_5 \times SU_5 \\ 248 &= (1,24) + (24,1) + (5,\overline{10}) + (\overline{5},10) + (10,5) + (\overline{10},\overline{5}) \\ 248 &= (1,24) + (24,1) + (5,\overline{10}) + (\overline{5},10) + (10,5) + (\overline{10},\overline{5}) \\ + (10,45) + (10,45) + (10,45) + (45,\overline{10}) + (4\overline{5},10) + (24,24) \\ + (24,5) + (10,45) + (10,45) + (45,\overline{10}) + (4\overline{5},10) + (24,24) \\ \end{array}
```

Table 54
Irreps, products and branching rules for SU₈

Dynkin (name)	Dimension (name)	Octality	l (index)	Branching into SO ₈ irreps
(1000000)	8	1	1	
(0100000)	28	2	6	28
(2000000)	36	2	10	$1 + 35_{v}$
(0010000)	56	3	15	56 _v
(1000001)	63	0	16	$28 + 35_{v}$
(0001000)	70	4	20	$35_s + 35_c$
(3000000)	120	3	55	$8_{v} + 112_{v}$
(1100000)	168	3	61	$8_{v} + 160_{v}$
(0100001)	216	1	75	$56_v + 160_v$
(2000001)	280	1	115	$8_v + 112_v + 160_v$
(4000000)	330	4	220	$1 + 35_v + 294_v$
(0200000)	336	4	160	$1 + 35_v + 300$
(1010000)	378	4	156	28 + 350
(0010001)	420	2	170	$35_s + 35_c + 350$
(0001001)	504	3	215	$56_v + 224_{sv} + 224_{cv}$
(2100000)	630	4	340	$28 + 35_v + 567_v$
(0100010)	720	0	320	$35_s + 35_c + 300 + 350$
(0000005)	792	3	715	$8_v + 112_v + 672_v'$
(3000001)	924	2	550	$28 + 35_v + 294_v + 567_v$
(2000010)	945	0	480	28 + 350 + 567
(0000110)	1008	3	526	$8_{\rm v} + 160_{\rm v} + 840_{\rm v}$
(0000200)	1176	2	700	$1 + 35_{\nu} + 300 + 840_{\nu}'$

(Note that the projection of 8 to 8_v is a convention and may be changed to 8 to 8_s or 8 to 8_c .)

```
8 \times 8 = 28_a + 36_s
    \bar{8} \times 8 = 1 + 63
  28 \times 8 = 56 + 168
  28 \times \overline{8} = 8 + 216
 28 \times 28 = 70_{\rm s} + 336_{\rm s} + 378_{\rm a}
 \overline{28} \times 28 = 1 + 63 + 720
  36 \times 8 = 120 + 168
  36 \times \overline{8} = 8 + 280
 36 \times 28 = 378 + 630
36 \times \overline{28} = 63 + 945
36 \times 36 = 330_{\rm s} + 336_{\rm s} + 630_{\rm a}
 \overline{36} \times 36 = 1 + 63 + 1232
  56 \times 8 = 70 + 278
  56 \times \overline{8} = 28 + 420
\overline{56} \times \overline{28} = 56 + 504 + 1008
56 \times \overline{28} = 8 + 216 + 1344
\overline{56} \times \overline{36} = 504 + 1512'
\underline{56} \times \underline{36} = 216 + 1800
\overline{56} \times \overline{56} = 28_a + 420_s + 1176_s + 1512_a
\overline{56} \times 56 = 1 + 63 + 720 + 2352
  63 \times 8 = 8 + 216 + 280
63 \times 28 = 28 + 36 + 420 + 1280
63 \times 36 = 28 + 36 + 924 + 1280
63 \times 56 = 56 + 168 + 504 + 2800
63 \times 63 = 1_s + 63_s + 63_a + 720_s + 945_a + \overline{945}_a + 1232_s
```

Branching rules to $SU_3 \times SU_5 \times U_1$ irreps; U_1 generator in parentheses: (1000000) = 8 = (3, 1)(-5) + (1, 5)(3) $(0100000) = 28 = (\overline{3}, 1)(-10) + (1, 10)(6) + (3, 5)(-2)$

```
 (2000000) = 36 = (6,1)(-10) + (1,15)(6) + (3,5)(-2) \\ (0010000) = 56 = (1,1)(-15) + (1,10)(9) + (3,5)(-7) + (3,10)(1) \\ (1000001) = 63 = (1,1)(0) + (8,1)(0) + (3,5)(-8) + (3,5)(8) + (1,24)(0) \\ (0001000) = 70 = (1,5)(-12) + (1,5)(12) + (3,10)(4) + (3,10)(-4) \\ (3000000) = 120 = (10,1)(-15) + (6,5)(-7) + (3,15)(1) + (1,35)(9) \\ (1100000) = 168 = (8,1)(-15) + (3,5)(-7) + (6,5)(-7) + (3,10)(1) + (1,40)(9) + (3,15)(1) \\ (0100001) = 216 = (3,1)(-5) + (1,5)(3) + (6,1)(-5) + (3,5)(-13) + (3,10)(11) + (8,5)(3) + (1,45)(3) + (3,24)(-5) \\ (2000001) = 280 = (3,1)(-5) + (1,5)(3) + (15,1)(-5) + (6,5)(-13) + (8,5)(3) + (3,24)(-5) + (3,15)(11) + (1,70)(3) \\ (4000000) = 330 = (15',1)(-20) + (10,5)(-12) + (1,70')(12) + (6,15)(-4) + (3,35)(4) \\ (0200000) = 378 = (3,1)(-20) + (1,5)(-12) + (3,10)(4) + (3,10)(-4) + (8,5)(-12) + (1,45)(12) + (3,15)(-4) + (6,10)(-4) + (3,40)(4) \\ (0110000) = 378 = (3,1)(-10) + (1,5)(-12) + (3,10)(4) + (3,10)(-4) + (8,5)(-12) + (1,45)(12) + (3,15)(-4) + (6,10)(-4) + (3,40)(4) \\ (0010001) = 420 = (3,1)(-10) + (1,5)(-18) + (1,10)(6) + (3,5)(-2) + (6,5)(-2) + (3,10)(1) + (6,10)(1) + (8,10)(9) + (3,40)(1) + (3,45)(-2) \\ (0001001) = 504 = (1,10)(9) + (3,5)(-7) + (3,5)(17) + (1,15)(9) + (1,15)(-15) + (3,10)(1) + (6,10)(1) + (8,10)(9) + (3,40)(1) + (3,45)(-7) \\ \end{cases}
```

Table 55 Irreps, products and branching rules for SO₁₄

```
Irreps and SO_{14} \supset SU_2 \times SU_2 \times SO_{10} branching rules: (1000000) = 14 = (2,2,1) + (1,1,10) \\ (0100000) = 91 = (3,1,1) + (1,3,1) + (1,1,45) + (2,2,10) \\ (0010000) = 364 = (2,2,1) + (3,1,10) + (1,3,10) + (1,1,120) + (2,2,45) \\ (0001000) = 1001 = (1,1,1) + (2,2,10) + (3,1,45) + (1,3,45) + (1,1,210) + (2,2,120) \\ (0000100) = 2002 = (1,1,10) + (1,1,126) + (1,1,126) + (2,2,45) + (3,1,120) + (1,3,120) + (2,2,210) \\ (0000011) = 3003 = (1,1,45) + (1,1,120) + (2,2,120) + (3,1,210) + (1,3,210) + (2,2,126) + (2,2,126) \\ (0000002) = 1716 = (1,1,120) + (3,1,126) + (1,3,126) + (2,2,210) \\ (0000001) = 64 = (2,1,16) + (1,2,16)
```

Products of spinors: $64 \times 64 = 14_a + 364_s + 1716_s + 2002_a$ $64 \times 64 = 1 + 91 + 1001 + 3003$

Table 56 Irreps, products and branching rules for SO₁₈

```
Irreps and SO_{18} \supset SO_8 \times SO_{10} branching rules: (100000000) = 18 = (8_v, 1) + (1, 10) \\ (010000000) = 153 = (28, 1) + (1, 45) + (8_v, 10) \\ (010000000) = 816 = (56_v, 1) + (1, 120) + (28, 10) + (8_v, 45) \\ (000100000) = 3060 = (35_s, 1) + (35_c, 1) + (1, 210) + (56_v, 10) + (28, 45) + (8_v, 120) \\ (000010000) = 8568 = (56_v, 1) + (1, 126) + (1, 126) + (35_s, 10) + (35_c, 10) + (56_v, 45) + (28, 120) + (8_v, 210) \\ (00001000) = 18564 = (28, 1) + (1, 210) + (56_v, 10) + (8_v, 126) + (8_v, 126) + (35_s, 45) + (35_c, 45) + (28, 210) + (56_v, 120) \\ (00000100) = 31824 = (8_v, 1) + (1, 120) + (28, 10) + (8_v, 210) + (28, 126) + (28, 126) + (28, 126) + (56_v, 45) + (56_v, 210) + (35_s, 120) + (35_s, 120)
```

```
Products of spinors:

256 \times 256 = 18_a + 816_a + 8568_s + 31824_a + 24310_s

256 \times \overline{256} = 1 + 153 + 3060 + 18564 + 43758
```

Table 57 Irreps, products and branching rules for SO22

```
Irreps and SO<sub>22</sub> ⊃ SO<sub>12</sub> × SO<sub>10</sub> branching rules:
(10000000000) = 22 = (1, 10) + (12, 1)
(01000000000) = 231 = (1, 45) + (66, 1) + (12, 10)
(00100000000) = 1540 = (1, 210) + (220, 1) + (66, 10) + (12, 45)
(00010000000) = 7315 = (1, 210) + (495, 1) + (12, 120) + (220, 10) + (66, 45)
(00001000000) = 26334 = (1, 126) + (1, \overline{126}) + (792, 1) + (12, 210) + (495, 10) + (66, 120) + (220, 45)
(00000100000) = 74613 = (1,210) + (462,1) + (462',1) + (12,126) + (12,126) + (12,126) + (792,10) + (66,210) + (495,45) + (220,120)
(00000010000) = 170544 = (1, 120) + (792, 1) + (12, 210) + (462, 10) + (462', 10) + (66, 126) + (66, 126) + (792, 45) + (220, 210) + (495, 120)
(0000001000) = 319770 = (1, 45) + (495, 1) + (12, 120) + (792, 10) + (66, 210) + (462, 45) + (462', 45) + (220, 126) + (220, 126) + (220, 126) + (792, 120) + (495, 210)
(0000000100) = 497420 = (1, 10) + (220, 1) + (12, 45) + (495, 10) + (66, 120) + (792, 45) + (220, 210) + (462, 120) + (462', 120) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (495, 126) + (
                                                                                                        + (792, 210)
(00000000011) = 646646 = (1, 1) + (12, 10) + (66, 1) + (66, 45) + (220, 10) + (220, 120) + (495, 45) + (495, 210) + (792, 120) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792, 126) + (792
                                                                                                      + (462, 210) + (462', 210)
(00000000002) = 352716 = (12, 1) + (66, 10) + (220, 45) + (495, 120) + (792, 210) + (462, 126) + (462', \overline{126})
(00000000001) = 1024 = (32, 16) + (32', \overline{16})
Products of spinors:
1024 \times 1024 = 22_a + 1540_s + 26334_a + 170544_s + 352716_s + 497420_a
1024 \times \overline{1024} = 1 + 231 + 7315 + 74613 + 319770 + 646646
```

Table 58 Branching rules to all maximal subgroups

This table is designed to facilitate analyses such as the search for maximal little groups, and also it represents a summary of the group theory aspects of the review. The branching rules of a few low-lying irreps to the irreps of every maximal subgroup are listed for simple groups up to rank 6. Many results repeat those in tables 14, 15, and the branching rule tables, but here there is no restriction to subgroups that can contain flavor and color. When this table or the preceding ones are insufficient, the reader should refer to the much longer tables of ref. [57], although in many practical cases a quick calculation based on the results of this table will fill in the missing information. The format is to give both the Dynkin designation and the dimensionality (name) as (Dynkin)r, except when the subgroup is SU₂, SU₂×SU₂, or more products of SU₂'s, in which case only the dimensionality is listed. The eigenvalues of the U₁ generator, when relevant, are given in parentheses after the irrep names, and are normalized to be integers.

```
Rank 2: SU_3 \supset SU_2 \times U_1 (R)
        (10)3 = 1(-2) + 2(1)
        (20)6 = 1(-4) + 2(-1) + 3(2)
       (11)8 = 1(0) + 2(3) + 2(-3) + 3(0)
SU_3 \supset SU_2 (S)
        (10)3 = 3
        (20)6 = 1 + 5
       (11)8 = 3 + 5
Sp_4 \supset SU_2 \times SU_2 (R)
       (10)4 = (2, 1) + (1, 2)
       (01)5 = (1, 1) + (2, 2)
      (20)10 = (3, 1) + (1, 3) + (2, 2)
Sp_4 \supset SU_2 \times U_1 (R)
        (10)4 = 2(1) + 2(-1)
       (01)5 = 1(2) + 1(-2) + 3(0)
      (20)10 = 1(0) + 3(0) + 3(2) + 3(-2)
```

```
Sp_4 \supset SU_2 (S)
        (10)4 = 4
        (01)5 = 5
       (20)10 = 3 + 7
G_2 \supset SU_3 (R)
        (01)7 = (00)1 + (10)3 + (01)\overline{3}
      (10)14 = (10)3 + (01)\overline{3} + (11)8
G_2 \supset SU_2 \times SU_2 (R)
        (01)7 = (1, 3) + (2, 2)
       (10)14 = (1, 3) + (3, 1) + (2, 4)
G_2 \supset SU_2 (S)
        (01)7 = 7
      (10)14 = 3 + 11
Rank 3: SU_4 \supset SU_3 \times U_1 (R)
      (100)4 = (00)1(3) + (10)3(-1)
      (010)6 = (10)3(2) + (01)\overline{3}(-2)
     (101)15 = (00)1(0) + (10)3(-4) + (01)\overline{3}(4) + (11)8(0)
SU_4 \supset SU_2 \times SU_2 \times U_1 (R)
      (100)4 = (2, 1)(1) + (1, 2)(-1)
      (010)6 = (1, 1)(2) + (1, 1)(-2) + (2, 2)(0)
     (101)15 = (1, 1)(0) + (3, 1)(0) + (1, 3)(0) + (2, 2)(2) + (2, 2)(-2)
SU_4 \supset Sp_4 (S)
      (100)4 = (10)4
      (010)6 = (00)1 + (01)5
     (101)15 = (01)5 + (20)10
SU_4 \supset SU_2 \times SU_2 (S)
      (100)4 = (2, 2)
       (010)6 = (1, 3) + (3, 1)
     (101)15 = (1,3) + (3,1) + (3,3)
SO<sub>7</sub> ⊃ SU<sub>4</sub> (R)
       (100)7 = (000)1 + (010)6
       (001)8 = (100)4 + (001)\overline{4}
     (010)21 = (010)6 + (101)15
SO_7 \supset SU_2 \times SU_2 \times SU_2 (R)
       (100)7 = (1, 1, 3) + (2, 2, 1)
       (001)8 = (1, 2, 2) + (2, 1, 2)
      (010)21 = (1, 1, 3) + (1, 3, 1) + (3, 1, 1) + (2, 2, 3)
SO_7 \supset Sp_4 \times U_1 (R)
      (100)7 = (00)1(2) + (00)1(-2) + (01)5(0)
       (001)8 = (10)4(1) + (10)4(-1)
      (010)21 = (00)1(0) + (01)5(2) + (01)5(-2) + (20)10(0)
SO_7 \supset G_2 (S)
       (100)7 = (01)7
       (001)8 = (00)1 + (01)7
      (010)21 = (01)7 + (10)14
```

```
Sp_6 \supset SU_3 \times U_1 (R)
       (100)6 = (10)3(1) + (01)\overline{3}(-1)
     (010)14 = (10)3(-2) + (01)\overline{3}(2) + (11)8(0)
     (001)14' = (00)1(3) + (00)1(-3) + (20)6(-1) + (02)\overline{6}(1)
     (200)21 = (00)1(0) + (20)6(2) + (02)\overline{6}(-2) + (11)8(0)
Sp_6 \supset SU_2 \times Sp_4(R)
       (100)6 = (1)(00)(2, 1) + (0)(10)(1, 4)
     (010)14 = (0)(00)(1, 1) + (0)(01)(1, 5) + (1)(10)(2, 4)
     (001)14' = (0)(10)(1, 4) + (1)(01)(2, 5)
     (200)21 = (2)(0)(3, 1) + (0)(20)(1, 10) + (1)(10)(2, 4)
Sp_6 \supset SU_2 (S)
       (100)6 = 6
     (010)14 = 5 + 9
     (001)14' = 4 + 10
     (200)21 = 3 + 7 + 11
Sp_6 \supset SU_2 \times SU_2 (S)
       (100)6 = (2, 3)
      (010)14 = (1, 5) + (3, 3)
     (001)14' = (4, 1) + (2, 5)
     (200)21 = (1,3) + (3,1) + (3,5)
Rank 4: SU_5 \supset SU_4 \times U_1 (R)
     (1000)5 = (000)1(4) + (100)4(-1)
    (0100)10 = (100)4(3) + (010)6(-2)
    (1001)24 = (000)1(0) + (100)4(-5) + (001)\tilde{4}(5) + (101)15(0)
SU_5 \supset SU_2 \times SU_3 \times U_1 (R)
     (1000)5 = (1)(00)(2, 1)(3) + (0)(10)(1, 3)(-2)
   (0100)10 = (0)(00)(1, 1)(6) + (0)(01)(1, \overline{3})(-4) + (1)(10)(2, 3)(1)
   (1001)24 = (0)(00)(1, 1)(0) + (2)(00)(3, 1)(0) + (1)(10)(2, 3)(-5) + (1)(01)(2, \overline{3})(5) + (0)(11)(1, 8)(0)
SU_5 \supset Sp_4(S)
     (1000)5 = (01)5
    (0100)10 = (20)10
    (1001)24 = (20)10 + (02)14
SO_9 \supset SO_8(R)
     (1000)9 = (0000)1 + (1000)8_v
    (0001)16 = (0010)8_c + (0001)8_s
    (0100)36 = (1000)8_v + (0100)28
SO_9 \supset SU_2 \times SU_2 \times Sp_4 (R)
     (1000)9 = (1)(1)(00)(2, 2, 1) + (0)(0)(01)(1, 1, 5)
    (0001)16 = (0)(1)(10)(1, 2, 4) + (1)(0)(10)(2, 1, 4)
    (0100)36 = (2)(0)(00)(3, 1, 1) + (0)(2)(00)(1, 3, 1) + (0)(0)(20)(1, 1, 10) + (1)(1)(01)(2, 2, 5)
SO_9 \supset SU_2 \times SU_4 (R)
     (1000)9 = (2)(000)(3, 1) + (0)(010)(1, 6)
   (0001)16 = (1)(100)(2, 4) + (1)(001)(2, \overline{4})
   (0100)36 = (2)(000)(3, 1) + (0)(101)(1, 15) + (2)(010)(3, 6)
```

```
SO_9 \supset SO_7 \times U_1 (R)
     (1000)9 = (000)1(2) + (000)1(-2) + (100)7(0)
    (0001)16 = (001)8(1) + (001)8(-1)
    (0100)36 = (000)1(0) + (100)7(2) + (100)7(-2) + (010)21(0)
SO_9 \supset SU_2 (S)
     (1000)9 = 9
    (0001)16 = 5 + 11
    (0100)36 = 3 + 7 + 11 + 15
SO_9 \supset SU_2 \times SU_2 (S)
     (1000)9 = (3, 3)
    (0001)16 = (2, 4) + (4, 2)
    (0100)36 = (1, 3) + (3, 1) + (3, 5) + (5, 3)
Sp_8 \supset SU_4 \times U_1 (R)
     (1000)8 = (100)4(1) + (001)\overline{4}(-1)
    (2000)36 = (000)1(0) + (200)10(2) + (002)\overline{10}(-2) + (101)15(0)
    (0001)42 = (000)1(4) + (000)1(-4) + (200)10(-2) + (002)\overline{10}(2) + (020)20'(0)
Sp_8 \supset SU_2 \times Sp_6 (R)
     (1000)8 = (1)(000)(2, 1) + (0)(100)(1, 6)
    (2000)36 = (2)(000)(3, 1) + (0)(200)(1, 21) + (1)(100)(2, 6)
    (0001)42 = (0)(010)(1, 14) + (1)(001)(2, 14')
Sp_8 \supset Sp_4 \times Sp_4 (R)
     (1000)8 = (00)(10)(1, 4) + (10)(00)(4, 1)
    (2000)36 = (00)(20)(1, 10) + (20)(00)(10, 1) + (10)(10)(4, 4)
    (0001)42 = (00)(00)(1, 1) + (10)(10)(4, 4) + (01)(01)(5, 5)
Sp_8 \supset SU_2 (S)
     (1000)8 = 8
    (2000)36 = 3 + 7 + 11 + 15
    (0001)42 = 5 + 9 + 11 + 17
Sp_8 \supset SU_2 \times SU_2 \times SU_2 (S)
     (1000)8 = (2, 2, 2)
    (2000)36 = (1, 1, 3) + (1, 3, 1) + (3, 1, 1) + (3, 3, 3)
    (0001)42 = (1, 1, 5) + (1, 5, 1) + (5, 1, 1) + (3, 3, 3)
SO_8 \supset SU_2 \times SU_2 \times SU_2 \times SU_2 (R)
    (1000)8_v = (2, 2, 1, 1) + (1, 1, 2, 2)
    (0001)8_s = (1, 2, 1, 2) + (2, 1, 2, 1)
    (0010)8_c = (1, 2, 2, 1) + (2, 1, 1, 2)
    (0100)28 = (1, 1, 1, 3) + (1, 1, 3, 1) + (1, 3, 1, 1) + (3, 1, 1, 1) + (2, 2, 2, 2)
SO_8 \supset SU_4 \times U_1 (R)
    (1000)8_v = (100)4(1) + (001)\overline{4}(-1)
    (0001)8_s = (000)1(2) + (000)1(-2) + (010)6(0)
    (0010)8_c = (100)4(-1) + (001)\overline{4}(1)
    (0100)28 = (000)1(0) + (010)6(2) + (010)6(-2) + (101)15(0)
SO<sub>8</sub> ⊃ SU<sub>3</sub> (S)
    (1000)8_v = (11)8
    (0001)8_s = (11)8
    (0010)8_c = (11)8
    (0100)28 = (11)8 + (30)10 + (03)\overline{10}
```

```
SO_8 \supset SO_7 (S)
    (1000)8_v = (001)8
     (0001)8_s = (000)1 + (100)7
     (0010)8_c = (001)8
    (0100)28 = (100)7 + (010)21
SO_8 \supset SU_2 \times Sp_4 (S)
    (1000)8_v = (1)(10)(2, 4)
     (0010)8_c = (1)(10)(2, 4)
     (0001)8_s = (0)(01)(1, 5) + (2)(00)(3, 1)
    (0100)28 = (2)(00)(3, 1) + (0)(20)(1, 10) + (2)(01)(3, 5)
F_4 \supset SO_9(R)
    (0001)26 = (0000)1 + (1000)9 + (0001)16
    (1000)52 = (0001)16 + (0100)36
F_4 \supset SU_3 \times SU_3 (R)
    (0001)26 = (11)(00)(8, 1) + (10)(10)(3, 3) + (01)(01)(\overline{3}, \overline{3})
    (1000)52 = (11)(00)(8, 1) + (00)(11)(1, 8) + (20)(01)(6, \overline{3}) + (02)(10)(\overline{6}, 3)
F_4 \supset SU_2 \times Sp_6 (R)
    (0001)26 = (1)(100)(2, 6) + (0)(010)(2, 14)
    (1000)52 = (2)(000)(3, 1) + (0)(200)(1, 21) + (1)(001)(2, 14)
F_4 \supset SU_2(S)
    (0001)26 = 9 + 17
    (1000)52 = 3 + 11 + 15 + 23
F_4 \supset SU_2 \times G_2 (S)
    (0001)26 = (4)(00)(5, 1) + (2)(01)(3, 7)
    (1000)52 = (2)(00)(3, 1) + (0)(10)(1, 14) + (4)(01)(5, 7)
Rank 5: SU_6 \supset SU_5 \times U_1 (R)
    (10000)6 = (0000)1(-5) + (1000)5(1)
   (00100)20 = (0100)10(-3) + (0010)\overline{10}(3)
  (10001)35 = (0000)1(0) + (1000)5(6) + (0001)\overline{5}(-6) + (1001)24(0)
SU_6 \supset SU_2 \times SU_4 \times U_1 (R)
    (10000)6 = (1)(000)(2, 1)(2) + (0)(100)(1, 4)(-1)
   (00100)20 = (0)(100)(1, 4)(3) + (0)(001)(1, 4)(-3) + (1)(010)(2, 6)(0)
   (10001)35 = (0)(000)(1,1)(0) + (2)(000)(3,1)(0) + (0)(101)(1,15)(0) + (1)(100)(2,4)(-3) + (1)(001)(2,\overline{4})(3)
SU_6 \supset SU_3 \times SU_3 \times U_1 (R)
    (10000)6 = (00)(10)(1, 3)(-1) + (10)(00)(3, 1)(1)
   (00100)20 = (00)(00)(1,1)(3) + (00)(00)(1,1)(-3) + (10)(01)(3,\overline{3})(-1) + (01)(10)(\overline{3},3)(1)
   (10001)35 = (00)(00)(1,1)(0) + (00)(11)(1,8)(0) + (11)(00)(8,1)(0) + (10)(01)(3,\overline{3})(2) + (01)(10)(\overline{3})(-2)
SU<sub>6</sub>⊃SU<sub>3</sub> (S)
    (10000)6 = (20)6
   (00100)20 = (30)10 + (03)\overline{10}
   (10001)35 = (11)8 + (22)27
SU<sub>6</sub>⊃SU<sub>4</sub> (S)
    (10000)6 = (010)6
   (00100)20 = (200)10 + (002)\overline{10}
   (10001)35 = (101)15 + (020)20'
```

```
SU_6 \supset Sp_6(S)
     (10000)6 = (100)6
    (00100)20 = (100)6 + (001)14'
    (10001)35 = (010)14 + (200)21
 SU_6 \supset SU_2 \times SU_3 (S)
    (10000)6 = (1)(10)(2, 3)
    (00100)20 = (3)(00)(4, 1) + (1)(11)(2, 8)
    (10001)35 = (2)(00)(3, 1) + (0)(11)(1, 8) + (2)(11)(3, 8)
 SO_{11} \supset SO_{10} (R)
   (10000)11 = (00000)1 + (10000)10
    (00001)32 = (00001)16 + (00010)\overline{16}
    (01000)55 = (10000)10 + (01000)45
 SO_{11} \supset SU_2 \times SO_8 (R)
    (10000)11 = (2)(0000)(3, 1) + (0)(1000)(1, 8_v)
    (00001)32 = (1)(0001)(2, 8_s) + (1)(0010)(2, 8_c)
    (01000)55 = (2)(0000)(3, 1) + (0)(0100)(1, 28) + (2)(1000)(3, 8)
SO_{11} \supset Sp_4 \times SU_4 (R)
   (10000)11 = (01)(000)(5, 1) + (00)(010)(1, 6)
   (00001)32 = (10)(100)(4, 4) + (10)(001)(4, \overline{4})
   (01000)55 = (20)(000)(10, 1) + (00)(101)(1, 15) + (01)(010)(5, 6)
SO_{11} \supset SU_2 \times SU_2 \times SO_7 (R)
   (10000)11 = (1)(1)(000)(2, 2, 1) + (0)(0)(100)(1, 1, 7)
   (00001)32 = (0)(1)(001)(1, 2, 8) + (1)(0)(001)(2, 1, 8)
   (01000)55 = (2)(0)(000)(3, 1, 1) + (0)(2)(000)(1, 3, 1) + (0)(0)(010)(1, 1, 21) + (1)(1)(100)(2, 2, 7)
SO_{11} \supset SO_9 \times U_1 (R)
   (10000)11 = (0000)1(2) + (0000)1(-2) + (1000)9(0)
   (00001)32 = (0001)16(1) + (0001)16(-1)
   (01000)55 = (0000)1(0) + (1000)9(2) + (1000)9(-2) + (0100)36(0)
SO_{11} \supset SU_2 (S)
   (10000)11 = 11
   (00001)32 = 6 + 10 + 16
   (01000)55 = 3 + 7 + 11 + 15 + 19
Sp_{10} \supset SU_5 \times U_1 (R)
   (10000)10 = (1000)5(1) + (0001)\overline{5}(-1)
   (20000)55 = (0000)1(0) + (2000)15(2) + (0002)\overline{15}(-2) + (1001)24(0)
Sp_{10} \supset SU_2 \times Sp_8 (R)
  (10000)10 = (1)(0000)(2, 1) + (0)(1000)(1, 8)
  (20000)55 = (2)(0000)(3, 1) + (0)(2000)(1, 36) + (1)(1000)(2, 8)
Sp_{10} \supset Sp_4 \times Sp_6 (R)
  (10000)10 = (10)(000)(4, 1) + (00)(100)(1, 6)
  (20000)55 = (20)(000)(10, 1) + (00)(200)(1, 21) + (10)(100)(4, 6)
Sp_{10} \supset SU_2 (S)
  (10000)10 = 10
  (20000)55 = 3 + 7 + 11 + 15 + 19
```

```
Sp_{10} \supset SU_2 \times Sp_4 (S)
       (10000)10 = (1)(01)(2, 5)
        (20000)55 = (2)(00)(3, 1) + (0)(20)(1, 10) + (2)(02)(3, 14)
  SO_{10} \supset SU_5 \times U_1 (R)
        (10000)10 = (1000)5(2) + (0001)\overline{5}(-2)
        (00001)16 = (0000)1(-5) + (0001)\overline{5}(3) + (0100)10(-1)
        (01000)45 = (0000)1(0) + (0100)10(4) + (0010)\overline{10}(-4) + (1001)24(0)
  SO_{10} \supset SU_2 \times SU_2 \times SU_4 (R)
        (10000)10 = (1)(1)(000)(2, 2, 1) + (0)(0)(010)(1, 1, 6)
       (00001)16 = (1)(0)(100)(2, 1, 4) + (0)(1)(001)(1, 2, \overline{4})
       (01000)45 = (2)(0)(000)(3, 1, 1) + (0)(2)(000)(1, 3, 1) + (0)(0)(101)(1, 1, 15) + (1)(1)(010)(2, 2, 6)
  SO_{10} \supset SO_8 \times U_1 (R)
       (10000)10 = (0000)1(2) + (0000)1(-2) + (1000)8, (0)
       (00001)16 = (0010)8_c(1) + (0001)8_s(-1)
       (01000)45 = (0000)1(0) + (1000)8_{v}(2) + (1000)8_{v}(-2) + (0100)28(0)
SO_{10} \supset Sp_4 (S)
      (10000)10 = (20)10
       (00001)16 = (11)16
      (01000)45 = (20)10 + (21)35
SO_{10} \supset SO_9(S)
      (10000)10 = (0000)1 + (1000)9
      (00001)16 = (0001)16
      (01000)45 = (1000)9 + (0100)36
SO_{10} \supset SU_2 \times SO_7 (S)
      (10000)10 = (2)(000)(3, 1) + (0)(100)(1, 7)
      (00001)16 = (1)(001)(2, 8)
      (01000)45 = (2)(000)(3, 1) + (0)(010)(1, 21) + (2)(100)(3, 7)
SO_{10} \supset Sp_4 \times Sp_4 (S)
      (10000)10 = (00)(01)(1, 5) + (01)(00)(5, 1)
      (00001)16 = (10)(10)(4, 4)
      (01000)45 = (00)(20)(1, 10) + (20)(00)(10, 1) + (01)(01)(5, 5)
Rank 6: SU_7 \supset SU_6 \times U_1 (R)
      (100000)7 = (00000)1(6) + (10000)6(-1)
   (100001)48 = (00000)1(0) + (10001)35(0) + (10000)6(-7) + (00001)\overline{6}(7)
SU_7 \supset SU_2 \times SU_5 \times U_1 (R)
    (100000)7 = (1)(0000)(2, 1)(5) + (0)(1000)(1, 5)(-2)
  (100001)48 = (0)(0000)1(0) + (2)(0000)(3,1)(0) + (0)(1001)(1,24)(0) + (1)(1000)(2,5)(-7) + (1)(0001)(2,\overline{5})(7) 
SU_7 \supset SU_3 \times SU_4 \times U_1 (R)
    (100000)7 = (10)(000)(3, 1)(4) + (00)(100)(1, 4)(-3)
  (100001)48 = (00)(000)(1, 1)(0) + (11)(000)(8, 1)(0) + (00)(101)(1, 15)(0) + (10)(001)(3, \overline{4})(7) + (01)(100)(\overline{3}, 4)(-7)
SU_7 \supset SO_7 (S)
     (100000)7 = (100)7
  (100001)48 = (010)21 + (200)27
```

```
SO<sub>13</sub> ⊃ SO<sub>12</sub> (R)
 (100000)13 = (000000)1 + (100000)12
 (000001)64 = (000001)32 + (000010)32
 (010000)78 = (100000)12 + (010000)66
SO_{13} \supset SU_2 \times SO_{10} (R)
 (100000)13 = (2)(00000)(3, 1) + (0)(10000)(1, 10)
 (000001)64 = (1)(00001)(2, 16) + (1)(00010)(2, \overline{16})
 (010000)78 = (2)(00000)(3, 1) + (0)(01000)(1, 45) + (2)(10000)(3, 10)
SO_{13} \supset Sp_4 \times SO_8 (R)
 (100000)13 = (01)(0000)(5, 1) + (00)(1000)(8_v, 1)
 (000001)64 = (10)(0001)(4, 8_s) + (10)(0010)(4, 8_c)
 (010000)78 = (20)(0000)(10, 1) + (00)(0100)(1, 28) + (01)(1000)(5, 8)
SO_{13} \supset SU_4 \times SO_7 (R)
 (100000)13 = (010)(000)(6, 1) + (000)(100)(1, 7)
 (000001)64 = (100)(001)(4, 8) + (001)(001)(\overline{4}, 8)
 (010000)78 = (000)(010)(1, 21) + (101)(000)(15, 1) + (010)(100)(6, 7)
SO_{13} \supset SU_2 \times SU_2 \times SO_9 (R)
 (100000)13 = (1)(1)(0000)(2, 2, 1) + (0)(0)(1000)(1, 1, 9)
 (000001)64 = (0)(1)(0001)(1, 2, 16) + (1)(0)(0001)(2, 1, 16)
 (010000)78 = (2)(0)(0000)(3, 1, 1) + (0)(2)(0000)(1, 3, 1) + (0)(0)(0100)(1, 1, 36) + (1)(1)(1000)(2, 2, 9)
SO_{13} \supset SO_{11} \times U_1 (R)
 (100000)13 = (00000)1(2) + (00000)1(-2) + (10000)11(0)
 (000001)64 = (00001)32(1) + (00001)32(-1)
 (010000)78 = (00000)1(0) + (10000)11(2) + (10000)11(-2) + (01000)55(0)
SO_{13} \supset SU_2 (S)
 (100000)13 = 13
 (000001)64 = 4 + 10 + 12 + 16 + 22
 (010000)78 = 3 + 7 + 11 + 15 + 19 + 23
Sp_{12}\supset SU_6\times U_1 (R)
 (100000)12 = (10000)6(1) + (00001)\overline{6}(-1)
 (200000)78 = (00000)1(0) + (10001)35(0) + (20000)21(2) + (00002)\overline{21}(-2)
Sp_{12}\supset SU_2\times Sp_{10} (R)
 (100000)12 = (1)(00000)(2, 1) + (0)(10000)(1, 10)
 (200000)78 = (2)(00000)(3, 1) + (0)(20000)(1, 55) + (1)(10000)(2, 10)
Sp_{12} \supset Sp_4 \times Sp_8 (R)
 (100000)12 = (10)(0000)(4, 1) + (00)(1000)(1, 8)
 (200000)78 = (20)(0000)(10, 1) + (00)(2000)(1, 36) + (10)(1000)(4, 8)
Sp_{12}\supset Sp_6\times Sp_6 (R)
 (100000)12 = (100)(000)(6, 1) + (000)(100)(1, 6)
 (200000)78 = (200)(000)(21, 1) + (000)(200)(1, 21) + (100)(100)(6, 6)
Sp_{12} \supset SU_2 (S)
(100000)12 = 12
(200000)78 = 3 + 7 + 11 + 15 + 19 + 23
```

```
Sp_{12} \supset SU_2 \times SU_4 (S)
(100000)12 = (1)(010)(2, 6)
 (200000)78 = (2)(000)(3, 1) + (0)(101)(1, 15) + (2)(020)(3, 20')
Sp_{12}\supset SU_2\times Sp_4 (S)
(100000)12 = (2)(10)(3, 4)
 (200000)78 = (2)(00)(3, 1) + (0)(20)(1, 10) + (2)(01)(3, 5) + (4)(20)(5, 10)
SO_{12} \supset SU_6 \times U_1 (R)
(100000)12 = (10000)6(1) + (00001)\overline{6}(-1)
 (000001)32 = (10000)6(-2) + (00001)\overline{6}(2) + (00100)20(0)
(000010)32' = (00000)1(3) + (00000)1(-3) + (01000)15(-1) + (00010)\overline{15}(1)
 (010000)66 = (00000)1(0) + (01000)15(2) + (00010)\overline{15}(-2) + (10001)35(0)
SO_{12} \supset SU_2 \times SU_2 \times SO_8 (R)
(100000)12 = (1)(1)(0000)(2, 2, 1) + (0)(0)(1000)(1, 1, 8_v)
(000001)32 = (0)(1)(0001)(1, 2, 8_s) + (1)(0)(0010)(2, 1, 8_c)
(000010)32' = (0)(1)(0010)(1, 2, 8_c) + (1)(0)(0001)(2, 1, 8_s)
 (010000)66 = (2)(0)(0000)(3,1,1) + (0)(2)(0000)(1,3,1) + (0)(0)(0100)(1,1,28) + (1)(1)(1000)(2,2,8_v)
SO_{12} \supset SU_4 \times SU_4 (R)
(100000)12 = (010)(000)(6, 1) + (000)(010)(1, 6)
(000001)32 = (100)(100)(4, 4) + (001)(001)(\overline{4}, \overline{4})
(000010)32' = (100)(001)(4, \overline{4}) + (001)(100)(\overline{4}, 4)
 (010000)66 = (101)(000)(15, 1) + (000)(101)(1, 15) + (010)(010)(6, 6)
SO_{12}\supset SO_{10}\times U_1 (R)
 (100000)12 = (00000)1(2) + (00000)1(-2) + (10000)10(0)
(000001)32 = (00001)16(1) + (00010)\overline{16}(-1)
(000010)32' = (00001)16(-1) + (00010)\overline{16}(1)
(010000)66 = (00000)1(0) + (10000)10(2) + (10000)10(-2) + (01000)45(0)
SO_{12} \supset SU_2 \times Sp_6 (S)
(100000)12 = (1)(100)(2, 6)
(000001)32 = (3)(000)(4, 1) + (1)(010)(2, 14)
(000010)32' = (2)(100)(3,6) + (0)(001)(1,14')
(010000)66 = (2)(000)(3, 1) + (0)(200)(1, 21) + (2)(010)(3, 14)
SO_{12} \supset SU_2 \times SU_2 \times SU_2 (S)
(100000)12 = (3, 2, 2)
(000001)32 = (1, 4, 1) + (3, 2, 3) + (5, 2, 1)
(000010)32' = (1, 1, 4) + (3, 3, 2) + (5, 1, 2)
(010000)66 = (3, 1, 1) + (1, 3, 1) + (1, 1, 3) + (3, 3, 3) + (5, 3, 1) + (5, 1, 3)
SO<sub>12</sub>⊃ SO<sub>11</sub> (S)
(100000)12 = (00000)1 + (10000)11
 (000001)32 = (00001)32
(000010)32' = (00001)32
(010000)66 = (100000)11 + (01000)55
SO_{12} \supset SU_2 \times SO_9 (S)
(100000)12 = (2)(0000)(3, 1) + (0)(1000)(1, 9)
 (000001)32 = (1)(0001)(2, 16)
(000010)32' = (1)(0001)(2, 16)
(010000)66 = (2)(0000)(3, 1) + (0)(0100)(1, 36) + (2)(1000)(3, 9)
```

```
SO_{12} \supset Sp_4 \times SO_7 (S)
  (100000)12 = (01)(000)(5, 1) + (00)(100)(1, 7)
  (000001)32 = (10)(001)(4, 8)
 (000010)32' = (10)(001)(4, 8)
  (010000)66 = (20)(000)(10, 1) + (00)(010)(1, 21) + (01)(100)(5, 7)
E_6 \supset SO_{10} \times U_1 (R)
  (100000)27 = (00000)1(4) + (10000)10(-2) + (00001)16(1)
  (000001)78 = (00000)1(0) + (00001)16(-3) + (00010)\overline{16}(3) + (01000)45(0)
E_6 \supset SU_2 \times SU_6 (R)
 (100000)27 = (1)(00001)(2, \overline{6}) + (0)(01000)(1, 15)
  (000001)78 = (2)(00000)(3, 1) + (0)(10001)(1, 35) + (1)(00100)(2, 20)
E_6 \supset SU_3 \times SU_3 \times SU_3 (R)
 (100000)27 = (01)(10)(00)(\overline{3}, 3, 1) + (10)(00)(10)(3, 1, 3) + (00)(01)(01)(1, \overline{3}, \overline{3})
 (000001)78 = (11)(00)(00)(8, 1, 1) + (00)(11)(00)(1, 8, 1) + (00)(00)(11)(1, 1, 8) + (10)(10)(01)(3, 3, \overline{3}) + (01)(01)(10)(\overline{3}, \overline{3}, 3)
E_6 \supset SU_3(S)
 (100000)27 = (22)27
 (000001)78 = (11)8 + (41)35 + (14)\overline{35}
E_6 \supset G_2 (S)
 (100000)27 = (02)27
 (000001)78 = (10)14 + (11)64
E_6 \supset Sp_8(S)
 (100000)27 = (0100)27
 (000001)78 = (2000)36 + (0001)42
E_6 \supset F_4 (S)
 (100000)27 = (0000)1 + (0001)26
 (000001)78 = (0001)26 + (1000)52
E_6 \supset SU_3 \times G_2 (S)
 (100000)27 = (02)(00)(\overline{6}, 1) + (10)(01)(3, 7)
 (000001)78 = (11)(00)(8, 1) + (00)(10)(1, 14) + (11)(01)(8, 7)
```

References

- [1] C.N. Yang and R.L. Mills, Phys. Rev. 96 (1954) 191;
 - R. Shaw, The Problem of Particle Types and Other Contributions to the Theory of Elementary Particles, Cambridge Ph.D. Thesis (1955), unpublished;
 - Other early references include R. Utiyama, Phys. Rev. 101 (1956) 1597;
 - T.W.B. Kibble, J. Math. Phys. 2 (1961) 212.
- [2] S.L. Glashow and M. Gell-Mann, Ann. Phys. (N.Y.) 15 (1961) 437.
- [3] H. Fritzsch and M. Gell-Mann, Proc. XVI Intern. Conf. on High Energy Physics, Vol. 2 (National Accelerator Laboratory) p. 135;
 - H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. 74B (1973) 365;
 - S. Weinberg, Phys. Rev. 28 (1973) 4482.
- [4] S. Glashow, Nucl. Phys. 22 (1961) 579;
 - J.C. Ward and A. Salam, Phys. Lett. 13 (1964) 168;
 - S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264;
 - A. Salam, Elementary Particle Theory, ed. N. Svartholm (Almquist and Wiksell, Stockholm, 1968) p. 367;

- also see S. Weinberg, Rev. Mod. Phys. 52 (1980) 515;
- A. Salam, Rev. Mod. Phys. 52 (1980) 525;
- and S.L. Glashow, Rev. Mod. Phys. 52 (1980) 539.
- [5] H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32 (1974) 438.
- [6] M. Gell-Mann, P. Ramond and R. Slansky, Rev. Mod. Phys. 50 (1978) 721.
- [7] H. Fritzsch and P. Minkowski, Ann. of Phys. (N.Y.) 93 (1975) 193;
 - H. Georgi, Particles and Fields (1974) (APS/DPF Williamsburg), ed. C.E. Carlson (AIP, New York, 1975).
- [8] F. Gürsey, P. Ramond and P. Sikivie, Phys. Lett. 60B (1975) 177;
 - for a recent review, see B. Stech, Unification of the Fundamental Particle Interactions, eds. S. Ferrara, J. Ellis and P. van Nieuwenhuizen (Plenum, New York, 1980) p. 23.
- [9] E.B. Dynkin, Amer. Math. Soc. Trans. Ser. 2, 6 (1975) 111 and 245, and references to earlier work there.
- [10] W. McKay, J. Patera and D. Sankoff, Computers in Non Associative Rings and Algebras, eds. R. Beck and B. Kolman (Academic Press, New York, 1977) p. 235.
- [11] B. Wybourne, Classical Groups for Physicists (Wiley-Interscience, New York, 1974).
- [12] R. Gilmore, Lie groups, Lie algebras and Some of their Applications (Wiley, New York, 1974);
 - N. Jacobson, Lie Algebras (Wiley-Interscience, New York, 1962);
 - J.E. Humphreys, Introduction to Lie Algebras and Representation Theory (Springer, New York, 1972);
 - H. Samelson, Notes on Lie Algebras (Van Nostrand-Reinhardt, New York, 1969);
 - M. Hamermesh, Group Theory (Addison-Wesley, Reading, 1962).
- [13] M. Gell-Mann and R. Slansky, to be published;
 - also see R. Slansky, First Workshop on Grand Unification, eds. P. Frampton, S. Glashow and A. Yildiz (Math. Sci., Brookline, 1980) p. 57.
- [14] M. Gell-Mann, P. Ramond and R. Slansky, Supergravity, eds. P. van Nieuwenhuizen and D.Z. Freedman (North-Holland, Amsterdam, 1979) p. 315:
 - H. Georgi, Nucl. Phys. B156 (1979) 126;
 - P. Frampton and S. Nandi, Phys. Rev. Lett 43 (1979) 1460:
 - F. Wilczek and A. Zee, Princeton University preprint.
- [15] L. Michel, CERN-TH-2716 (1979), contribution to the A. Visconti seminar.
- [16] M. Gell-Mann and R. Slansky, in preparation.
- [17] G.L. Shaw and R. Slansky, Phys. Rev. D22 (1980) 1760;
 - R. Slansky, Recent Developments in High-Energy Physics, eds. B. Kursunoglu, A. Perlmutter and L. Scott (Plenum, New York, 1980) p. 141.
- [18] H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Lett. 33 (1974) 451.
- [19] T. Goldman and D. Ross, Phys. Lett. 84B (1979) 208; Nucl. Phys. B171 (1980) 273.
- [20] W.J. Marciano, Phys. Rev. D20 (1979) 274.
- [21] For more complete reviews, see, for example, E. Abers and B. Lee, Phys. Reports 9 (1973) 1;
 - J. Bernstein, Rev. Mod. Phys. 46 (1974) 7;
 - L. O'Raifertaigh, Rep. Prog. Phys. 42 (1979) 159;
 - M. Beg and A. Sirlin, Ann. Rev. Nucl. Sci. 24 (1974) 329.
- [22] L. Michel, Group Theoretical Concepts and Methods in Elementary Particle Physics, ed. F. Gürsey (Gordon and Breach, New York, 1962) 135.
- [23] H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346; Phys. Reports 14 (1974) 129;
 - D. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343.
- [24] M. Gell-Mann, Phys. Lett. 8 (1964) 214;
 - G. Zweig, CERN report 8182, unpublished.
- [25] See, for example, Proc. VI Intern. Symp. of Electron and Photon Interactions at High Energies Bonn, 1973, eds. H. Rollnik and W. Pfeil (North-Holland, Amsterdam, 1974); Proc. 1975 Intern. Symp. on Lepton and Photon Interactions at High Energies, Stanford, 1975, ed. W.T. Kirk (SLAC, Stanford, 1975);
 - B.C. Barish, Phys. Reports 39 (1978) 279;
 - W.R. Francis and T.B.W. Kirk, Phys. Reports 54 (1979) 307.
- [26] G. Feldman and M. Perl, Phys. Reports 33 (1977) 285; MARK J. Collaboration, Phys. Reports 63 (1980) 337.
- [27] P. Ramond, Nucl. Phys. B110 (1976) 214; B126 (1977) 509.
- [28] P.A. Carruthers, Spin and Isospin in Particle Physics (Gordon and Breach, New York, 1971) pp. 102-139.
- [29] I. Shür, Am. J. Math. 67 (1945) 472.
- [30] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.
- [31] I thank P. Ramond for pointing out Shur's work to me (he learned of it from O. Taussky) and L.-F. Li for showing me his heuristic proof of the theorem.
- [32] S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285.
- [33] S.W. Herb et al., Phys. Rev. Lett. 39 (1977) 252.
- [34] J. Schwinger, Phys. Rev. 125 (1962) 397;
 - P.W. Anderson, Phys. Rev. 130 (1963) 439.

- [35] F.J. Hasert et al., Phys. Lett. 46B (1973) 138;
 - A. Benvenuti et al., Phys. Rev. Lett. 32 (1974) 800;
 - C. Prescott et al., Phys. Lett. 77B (1978) 347.
- [36] H. Georgi and S.L. Glashow, Phys. Rev. D6 (1973) 429;
 - J. Patera and R.T. Sharp (1980 Montréal preprint) point out that the anomaly is proportional to the sum over weights of the U_1 values cubed of each weight in f_L , where the U_1 is a factor in a nonsemisimple regular maximal subalgebra. From this explicit calculation it is easy to show that only SU_n (n > 2) theories can have triangle anomalies and that $\overline{5} + 10$ of SU_5 is anomaly free. See section 6 for an explanation of this terminology.
- [37] D. Andrews et al., Phys. Rev. Lett. 44 (1980) 219;
 - K. Berkelman, talk at Madison conference, 1980.
- [38] M. Perl et al., Phys. Rev. Lett. 35 (1975) 1489.
- [39] D. Bowman et al., Phys. Rev. Lett. 42 (1979) 556.
- [40] S. Weinberg, in [4].
- [41] F. Englert and R. Brout, Phys. Rev. Lett. 12 (1964) 321;
 - G. Guralnik, C. Hagen and T. Kibble, Phys. Rev. Lett. 13 (1964) 585;
 - P. Higgs, Phys. Lett. 12 (1964) 132; Phys. Rev. 145 (1966) 1156.
- [42] J.C. Pati and A. Salam, Phys. Rev. Lett. 31 (1973) 661; Phys. Rev. D8 (1973) 1240.
- [43] M. Han and Y. Nambu, Phys. Rev. B139 (1965) 1006.
- [44] For an elementary review, see M. Goldhaber, P. Langacker and R. Slansky, Science 210 (1980) 851; At a more advanced level, see P. Langacker, Phys. Reports 72 (1981) 185.
- [45] S.M. Bilenky and B. Pontecorvo, Phys. Reports 41 (1978) 225;
 - V. Barger et al., Phys. Lett. 93B (1980) 194.
- [46] E. Gildener, Phys. Rev. D14 (1976) 1667;
 - S. Weinberg, Phys. Lett. 82B (1979) 387.
- [47] For a review, see P. Fayet and S. Ferrara, Phys. Reports 32 (1977) 249;
 - P. van Nieuwenhuizen, Phys. Reports 68 (1981) 189;
 - Supergravity, eds. P. van Nieuwenhuizen and D.Z. Freedman (North-Holland, Amsterdam, 1979).
- [48] J. Ellis, M. Gaillard, L. Maiani and B. Zumino, preprint LAPP-TH-15; CERN-TH-2841 (1980);
 - J. Ellis, M. Gaillard and B. Zumino, preprint LAPP-TH-16, CERN-TH-2842 (1980);
 - B. Zumino, preprint CERN-TH-2954 (1980).
- [49] F. Gürsey, Talk presented at Kyoto Conf. on Mathematical Problems in Theoretical Physics (1975);
 - F. Gürsey, Talk presented at Conf. on Non Associative Algebras at the Univ. of Virginia (1977);
 - M. Günaydin and F. Gürsey, J. Math. Phys. 14 (1973) 1651.
- [50] I. Bars and M. Günaydin, Phys. Rev. Lett. 45 (1980) 859.
- [51] F. Lemire and J. Patera, J. Math. Phys. 21 (1980) 2026; ref. [9] p. 137.
- [52] J. Patera, R. Sharp and R. Slansky, J. Math. Phys. 21 (1980) 2335.
- [53] For other discussions, see G. Racah, Group Theoretical Concepts and Methods in Elementary Particle Physics, ed. F. Gürsey (Gordon and Breach, New York, 1962) p. 1;
 - R.E. Behrends, J. Dreitlein, C. Fronsdal and B.W. Lee, Rev. Mod. Phys. 34 (1962) 1.
- [54] M. Gell-Mann, Phys. Rev. 125 (1962) 1067.
- [55] I thank R. Roskies for showing me this.
- [56] A. Bose and J. Patera, J. Math. Phys. 11 (1970) 2231.
- [57] J. Patera and D. Sankoff, Tables of Branching Rules for Representations of Simple Lie Algebras (L'Université de Montréal, Montréal, 1973);
 W. McKay and J. Patera, Tables of Dimensions, Indices and Branching Rules for Representations of Simple Algebras (Dekker, New York, 1981).
- [58] G. Racah, Lincei Rend. Sc. Fis. Mat. Nat. 8 (1950) 108.
- [59] J. Patera, R.T. Sharp and P. Winternitz, J. Math. Phys. 17 (1976) 1972 define l(Λ) = Σ(λ, λ). Our index tables differ from [57] by a factor of rank (G).
- [60] M. Golubitsky and B. Rothschild, Bull. Am. Math. Soc. 77 (1971) 983.
- [61] The remainder of section 6 closely resembles a draft of [13].
- [62] J. Patera, D. Preston and R. Slansky, in preparation.
- [63] Some of these products were derived in a collaboration with J. Rosner and M. Gell-Mann. I am also grateful to B. Wybourne, who supplied me with a more complete list of SO₁₀ tensor products.
- [64] G. Racah, Phys. Rev. 76 (1949) 1352.
- [65] I thank Prof. Michael Vaughn for calling my attention to this phase convention.
- [66] For SU₃ VC coefficients, see J.J. de Swart, Rev. Mod. Phys. 35 (1963) 916; P. McNamee and F. Chilton, Rev. Mod. Phys. 36 (1964) 1005.
- [67] For SU₄ VC coefficients, see E. Haake, J. Moffat and P. Savaria, Rev. Mod. Phys. 17 (1976) 2041.
- [68] M.S. Chanowitz, M.A. Furman and I. Hinchliffe, Phys. Lett. 78B (1978) 285.

- [69] P. Ramond, Nucl. Phys. B110 (1976) 214;
 - F. Gürsey and P. Sikivie, Phys. Rev. Lett. 36 (1976) 775; Phys. Rev. D16 (1977) 816.
- [70] F. Gliozzi, J. Scherk and D. Olive, Nucl. Phys. B122 (1977) 253.
- [71] E. Cremmer and B. Julia, Nucl. Phys. B159 (1979) 141.
- [72] E. Witten, Nucl. Phys. B149 (1979) 285;
 - A. d'Adda, P. DiVecchia and M. Lüscher, Nucl. Phys. B146 (1978) 63; 152 (1979) 125.
- [73] S. Dimopoulos and L. Susskind, Nucl. Phys. B155 (1979) 237;
 E. Farhi and L. Susskind, Phys. Rev. D20 (1979) 3404.
- [74] P. Frampton, Phys. Rev. Lett. 43 (1979) 1912.
- [75] L.-F. Li, Phys. Rev. D9 (1974) 1723.
- [76] F. Buccella, H. Ruegg and C.A. Savoy, First Workshop on Grand Unification, eds. P. Frampton, S. Glashow and A. Yildez (Math. Sci., Brookline, 1980) p. 23 and references there;
 - H. Ruegg, Phys. Rev. D22 (1980) 2040.
- [77] S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1888.
- [78] J. Harvey, Nucl. Phys. B163 (1980) 254.
- L. Michel, Rev. Mod. Phys. 52 (1980) 617;
 L.O'Raifeartaigh, S.Y. Park and K.C. Wali, talk delivered at U.S. I. Einstein Commemoration Symp., March 1979.
- [80] L. Michel and L. Radicati, Ann. Phys. (NY) 66 (1971) 758.
- [81] This example is due to I. Bars.
- [82] M. Gell-Mann, private communication.
- [83] I thank H.-S. Tsao for an illuminating discussion on this problem.
- [84] P. Ramond, private communication.