Branch: main 2025-06-04 21:24:31+02:00

Local stability in structures with a standard sort

L. S. Polymath

ABSTRACT.

1. Structures with a standard sort

Let S be some Hausdorff compact topological space. We associate to S a first order structure in a language \mathcal{L}_S that has a symbol for each compact subset $C \subseteq S^n$ and a function symbol for each continuous functions $f: S^n \to S$. According to the context, C and f denote either the symbols of \mathcal{L}_S or their interpretation in the structure S.

1 Definition Let \mathcal{L} be a two sorted language. The two sorts are denoted by H and S. The language \mathcal{L} expands \mathcal{L}_H and \mathcal{L}_S with symbols sort $H^n \times S^m \to S$. An \mathcal{L} -structure is a structure of signature \mathcal{L} that interprets these symbols in equicontinuous functions (i.e. uniformly continuous w.r.t. the variables in H).

A standard structure is a two-sorted \mathcal{L} -structure of the form $\langle M, S \rangle$, where M is any structure of signature \mathcal{L}_H and S is fixed. Standard structures are denoted by the domain of their home sort.

We denote by \mathcal{F} the set of \mathcal{L} -formulas constructed inductively from atomic formulas of the form (i) and (ii) below using Boolean connectives \wedge , \vee ; the quantifiers \forall^{H} , \exists^{H} of sort H ; and the quantifiers \forall^{S} , \exists^{S} of sort S .

We write $x \in C$ for the predicate associated to a compact set C, and denote by |-| the length of a tuple.

- **2 Definition** We call atomic formulas those of the form
 - i. atomic or negated atomic formulas of \mathcal{L}_{H} ;
 - ii. $\tau \in C$, where τ is a tuple of terms of sort $H^n \times S^m \to S$, and $C \subseteq S^{|\tau|}$ is a compact set.
- **3 Remark** A smaller fragment of \mathcal{F} may be of interest in some specific contexts. This is obtained by excluding equalities and inequalities from (i) and requiring that C in (ii) is a regular compact set. The discussion below applies to this smaller fragment as well.

Let $M \subseteq N$ be standard structures. We say that M is an \mathcal{F} -elementary substructure of N if the latter models all sentences in $\mathcal{F}(M)$ true in M.

Dipartimento di Matematica, Università di Torino, via Carlo Alberto 10, 10123 Torino.

1

A standard structure M is \mathcal{F} -saturated if it realizes every type $p(x;\xi) \subseteq \mathcal{F}(A)$, for any $A \subseteq M$ of cardinality smaller than |M|, that is finitely consistent in M. The following is proved in [AAVV] for signatures containing only symbols sort $\mathsf{H}^n \times \mathsf{S}^m \to \mathsf{S}$ with $n \cdot m = 0$. In [Z] it is observed that, under the assumption of equicontinuity, the proof extends to the case $n \cdot m \ge 0$.

4 Theorem (Compactness) Every standard structure has a \mathcal{F} -saturated \mathcal{F} -elementary extension.

We introduce variables of some new sorts X_n with the sole scope of conveniently describing classes of \mathcal{F} -formulas that only differ by the sets/predicates $C \subseteq S^n$ that occur. To avoid cluttering the notation we write X to mean a suitable tuple of sorts X_{n_1}, \ldots, X_{n_k} . Let \mathcal{F}_X be defined as \mathcal{F} but replacing (ii) with

iii. $\tau(x;\xi) \in X$, where *X* is a variable of sort X.

Formulas in \mathcal{F}_X are denoted by $\varphi(x;\xi;X)$, where $X=X_1,\ldots,X_k$ be a tuple of sort X. If $C=C_1,\ldots,C_k$ is a tuple of compact subsets of a suitable arity then $\varphi(x;\xi;C)$, is a formula in \mathcal{F} . This we call an instance of $\varphi(x;\xi;X)$. All formulas in \mathcal{F} are instances of formulas in \mathcal{F}_X .

5 Definition Let $\varphi \in \mathcal{F}_X$ be formula – possibly with some (hidden) free variables. The pseudonegation of $\varphi \in \mathcal{F}_X$ is the formula obtained by replacing in φ the atomic formulas in \mathcal{L}_H by their negation and every connective \land , \lor , \forall , \exists by their respective duals \lor , \land , \exists , \forall .

The pseudonegation of φ is denoted by $\sim \varphi$. Clearly, when X does not occur in φ , we have $\sim \varphi \leftrightarrow \neg \varphi$.

The following fact is immediate and will be used without further mention.

6 Fact The following hold for every $C \subseteq C'$ and $\tilde{C} \cap C = \emptyset$, every standard structure M, and every formula $\varphi(X) \in \mathcal{F}_{\mathsf{X}}(M)$

$$M \models \varphi(C) \rightarrow \varphi(C')$$

$$M \models \neg \varphi(C) \rightarrow \neg \varphi(\tilde{C}).$$

7 Fact For every $C \subseteq C'$ there is a $\tilde{C} \subseteq C'$ disjoint from C such that

$$M \models \varphi(C) \rightarrow \neg \sim \varphi(\tilde{C}) \rightarrow \varphi(C')$$

for every M, and every $\varphi(X) \in \mathcal{F}_X(M)$. Conversely, for every $\tilde{C} \cap C = \emptyset$ there is a $C' \supseteq C$ such that

$$M \models \varphi(C) \rightarrow \varphi(C') \rightarrow \neg \sim \varphi(\tilde{C}).$$

for every M, and every $\varphi(X) \in \mathcal{F}_{\mathsf{X}}(M)$.

Proof. When $\varphi(X)$ is the atomic formula $\tau \in X$, the first claim holds with $\tilde{C} = C' \setminus O$ where O is any open set $C \subseteq O \subseteq C'$. The second claim holds with as C' any neighborhood of C disjoint from \tilde{C} . Induction on the syntax of $\varphi(X)$ proves the general case. \square

The above fact has the following useful consequence.

8 Fact Let $\varphi(X) \in \mathcal{F}_X(M)$, where M is a standard structure. Then the following are equivalent for every tuple C

$$\begin{array}{ll} M & \models & \varphi(C) \to \bigwedge \Big\{ \varphi(C') \, : \, C' \text{ neighborhood of } C \Big\} \\ M & \models & \neg \varphi(C) \leftarrow \bigvee \Big\{ \neg \varphi(\tilde{C}) \, : \, \tilde{C} \cap C = \varnothing \Big\}. \end{array}$$

(The converse of these implications are trivial, therefore not displayed.)

Note that the fact also holds if we restrict the above C' and \tilde{C} to range over the subsets of some C'' that is a neighboorhood of C.

9 Fact The equivalent conditions in Fact 8 hold in all \mathcal{F} -saturated structures.

Proof. By induction on the syntax of $\varphi(X)$.

We say that M is \mathcal{F} -maximal if it models all $\mathcal{F}(M)$ -sentences that hold in some of its \mathcal{F} -elementary extensions. By the following fact \mathcal{F} -saturated structures are \mathcal{F} -maximal.

10 Fact Let $\varphi(X) \in \mathcal{F}_X(M)$. Then the following are equivalent

- 1. M is \mathcal{F} -maximal
- 2. the equivalent conditions in Fact 8 hold for every $\varphi(C)$.

Proof. $1\Rightarrow 2$. If (2) in Fact 8 fails, $\neg \varphi(C) \land \neg \neg \varphi(\tilde{C})$ holds in M for every $\tilde{C} \cap C = \emptyset$. Let \mathcal{U} be an \mathcal{F} -saturated \mathcal{F} -elementary extension of M. As M is \mathcal{F} -maximal, $\neg \varphi(C) \land \neg \neg \varphi(\tilde{C})$ holds also in \mathcal{U} . Then (2) in Fact 8 fails in \mathcal{U} , contradicting Fact 9.

2⇒1. Let N be any \mathcal{F} -elementary extension of M. Suppose $N \models \varphi(C)$. By (2), it suffices to prove that $M \models \varphi(C')$ for every C' neighborhood of C. Suppose not. Then, by (2) in Fact 8, $M \models \neg \varphi(\tilde{C})$ for some $\tilde{C} \cap C' = \emptyset$. Then $N \models \neg \varphi(\tilde{C})$ by \mathcal{F} -elementarity. As $\tilde{C} \cap C = \emptyset$, this contradicts Fact 9.

In what follows we fix a large saturated standard structure which we denote by \mathcal{U} . Unless otherwise specified, we work inside \mathcal{U} . Let $\varphi(X) \in \mathcal{F}_X(\mathcal{U})$ be given. Define

$$C_{\varphi} = \{ \alpha : \varphi(C) \text{ holds for every } C \text{ neighborhood of } \alpha \}$$

Then C_{φ} is a closed set. Note that either C_{φ} or $C_{\sim \varphi}$ is empty by Fact 6.

2. Stable formulas

Let $\varphi(x;z;X)$ be an infinite conjunction of formulas in \mathcal{F}_X . The variables of sort H are partitioned in two tuples x;z which may be infinite. We say that $\varphi(x;z;X)$ is unstable if there are some $C \cap \tilde{C} = \emptyset$ and a sequence $\langle a_i;b_i:i<\omega\rangle$ such that for every $i< j<\omega$

$$\varphi(a_i;b_i;C) \wedge \sim \varphi(a_i;b_i;\tilde{C})$$

We say that $\varphi(x;z;X)$ is stable if it is not unstable.

The following fact is a characterization of stability in a context of particular interest. Let $\tau: \mathcal{U}^{x;z} \to S$ be a function definable by an infinite conjunction of formulas in \mathcal{F} . We say that $\tau(x;z)$ is stable if so is $\tau(x;z) \in X$.

- 11 Fact Let $\tau(x; z)$ be as above. Then the following are equivalent
 - 1. the formula $\tau(x; z) \in X$ is unstable
 - 2. for some sequence $\langle a_i; b_i : i < \omega \rangle$

$$\lim_{i \to \infty} \lim_{j \to \infty} \tau(a_i; b_j) \ \neq \ \lim_{j \to \infty} \lim_{i \to \infty} \tau(a_i; b_j)$$

Proof. $1\Rightarrow 2$. Let $C\cap \tilde{C}=\varnothing$ and $\langle a_i;b_i:i<\omega\rangle$ be as given by (1). That is, $\tau(a_i;b_j)\in C$ and $\tau(a_j;b_i)\in \tilde{C}$ hold for every $i< j<\omega$. We can restrict to a subsequence such that the two limits exist; C contains the limit on the left; and \tilde{C} contains the limit on the right – which therefore are distinct.

2⇒1. Let *C* and \tilde{C} be disjoint neighborhoods of the two limits in (2). Then (1) is witnessed by a tail of the sequence $\langle a_i; b_i : i < \omega \rangle$.

Assume *S* is a metric space. Let $\varepsilon > 0$ We say that $f: \mathcal{U}^{x;z} \to S$ is ε -approximable by $\tau(x;z)$ if for every finite $B \subseteq \mathcal{U}^z$ and there is an $a \in \mathcal{U}^x$ such that

$$d(f(b), \tau(a; b)) \leq \varepsilon$$
 for every $b \in B$.

In general (when *S* is not a metric space) then ε is a closed neighborhood of the diagonal of S^2 and the condition above becomes $\langle f(b), \tau(a;b) \rangle \in \varepsilon$.

3. A case study

In this section we assume S = [0,1]. It is easy to see that when $\tau(x;z)$ has values in [0,1] stability holds if there is no sequence $\langle a_i; b_i : i < \omega \rangle$ such that for every $i < j < \omega$

$$|\tau(a_i;b_j)-\tau(a_j;b_i)| \geq \varepsilon.$$

The following theorem and its proof are well-known though not literally in this form.

12 Theorem Let S = [0,1]. Let $\tau(x;z)$ be a stable definable function. Let $f: \mathcal{U}^{x;z} \to S$ be ε -approximable by $\tau(x;z)$. Then there are some $\langle a_{i,j} : i < n, j < \omega \rangle$ such that

$$\left|f(b) - \max_{i=0,\dots,n-1} \inf_{j<\omega} \tau(a_{i,j};b)\right| \leq \varepsilon \qquad \text{for every } b \in \mathcal{U}^z.$$

Proof. The theorem is an immediate consequence of the following three lemmas.

We say that $f: \mathcal{U}^{x;z} \to [0,1]$ is ε -approximable from below if the parameter $a \in \mathcal{U}^x$ that witnesses approximability satisfies $\tau(a;b) \le f(b) + \varepsilon$ for every $b \in \mathcal{U}^z$.

13 Lemma Assume that the f in the theorem is ε -approximable from below. Then there are some $\langle a_i \mid i < n \rangle$ such that

$$\left| f(b) - \max_{i=0,\dots,n-1} \tau(a_i;b) \right| \le \varepsilon$$
 for every $b \in \mathcal{U}^z$.

Proof. Negate the lemma. We construct inductively a sequence $\langle a_i; b_i : i < \omega \rangle$ that contradicts the stability of $\tau(x; z)$. Then, let b_n be such that (if n = 0 pick b_n arbitrarily)

1.
$$\left| f(b_n) - \max_{i=0,\dots,n-1} \tau(a_i;b_n) \right| > \varepsilon$$

By approximability from below, for some a_n we have

2.
$$\tau(a_n; b_i) - f(b_i) \le \varepsilon$$
 for every $i \le n$

3.
$$\tau(a_n; b) \leq f(b) + \varepsilon$$
 for every $b \in \mathcal{U}^z$.

We prove instability by showing that for every i < n

4.
$$\tau(a_n;b_i) - \tau(a_i;b_n) > \varepsilon$$

Note that by virtue of (3)

$$\max_{i=0,\dots,n-1} \tau(a_i;b_n) - f(b_n) \le \varepsilon$$

Then (1) ensures that

1'.
$$f(b_n) - \max_{i=0,\dots,n-1} \tau(a_i;b_n) > \varepsilon$$

Using (1') we obtain

$$\tau(a_n; b_i) - \tau(a_i; b_n) > \tau(a_n; b_i) - f(b_n) + \varepsilon$$

then by (2) we have

$$> f(b_i) - f(b_n) + 2\varepsilon$$

By refining the sequence we can assume that $|f(b_i) - f(b_n)| < \varepsilon$ for every $i, n \in \omega$. This yields (4).

14 Lemma Under the assumptions of the theorem. Let $\bar{x} = \langle x_i : i < \omega \rangle$ where the x_i are copies of x. Then the function

$$\sigma(\bar{x};z) = \inf_{i < \omega} \tau(x_i;z)$$

 3ε -approximates f from below.

Proof. Negate the claim and let B witness that $\sigma(\bar{x};z)$ does not ε -approximate f from below. We construct inductively a sequence $\langle a_i;b_i:i<\omega\rangle$ that contradicts the stability of $\tau(x;z)$. Then, let a_n be such that

1.
$$|\tau(a_n;b) - f(b)| \le \varepsilon$$
 for every $b \in B \cup \{b_0,...,b_n\}$

then let b_n be such that

$$\min_{i=0,\dots,n} \tau(a_i; b_n) > f(b_n) + 3\varepsilon.$$

We show that the sequence we constructed contradicts stability. In fact, by (2)

$$\tau(a_i; b_n) - \tau(a_n; b_i) > f(b_n) + 3\varepsilon - \tau(a_n; b_i).$$

Then, by (1)

$$\tau(a_i; b_n) - \tau(a_n; b_i) > f(b_n) + 3\varepsilon - f(b_i) - \varepsilon$$

As in the previous lemma, after refining the sequence we we obtain a contradiction. \Box

15 Lemma Under the assumptions of the theorem. The function $\sigma(\bar{x};z)$ in the previous lemma is stable.

Proof. It suffices to show that

$$\sigma(x_1, x_2; z) = \min_{i=1,2} \tau(x_i; z)$$

is stable. Suppose not. Pick $\langle a_{1,i}, a_{2,i}; b_i : i < \omega \rangle$ and $\varepsilon > 0$ such that for every $i < j < \omega$

$$\left|\sigma(a_{1,i},a_{2,i};b_i) - \sigma(a_{1,i},a_{2,i};b_i)\right| \geq \varepsilon$$

By Ramsey's theorem, we can refine the sequence so that one of the following holds for every i < j

$$\sigma(a_{1,i},a_{2,i};b_j) - \sigma(a_{1,j},a_{2,j};b_i) \geq \varepsilon$$

$$-\sigma(a_{1,i}, a_{2,i}; b_i) + \sigma(a_{1,i}, a_{2,i}; b_i) \geq \varepsilon$$

Assume the first – the second case is symmetric. Again by Ramsey's theorem, we can refine the sequence so that for every i < j either $\tau(a_{1,i};b_j) \le \tau(a_{2,i};b_j)$ or conversely $\tau(a_{1,i};b_j) \ge \tau(a_{2,i};b_j)$. In the first case we obtain

$$\tau(a_{1,i};b_i) - \tau(a_{2,i};b_i) \geq \varepsilon$$

in the second case we obtain

$$\tau(a_{2,i};b_i) - \tau(a_{1,i};b_i) \geq \varepsilon.$$

In both cases we contradict the stability of $\tau(x; z)$.

4. Externally definable sets

global $\varphi(x;z;X)$ -type is a maximally consistent set of formulas that are instances of $\varphi(x;b;X)$ and/or $\sim \varphi(x;b;X)$ for some $b \in \mathcal{U}^{|z|}$.

Let p(x) be a global $\varphi(x;z;X)$ -type. We define

$$\mathcal{D}_{p,\varphi,C} = \{b \in \mathcal{U}^z : \varphi(x;b;C) \in p\}$$

16 Fact

$$\neg \mathcal{D}_{p,\varphi,C} \ = \ \bigcup \left\{ \mathcal{D}_{p,\sim \varphi,\tilde{C}} \ : \ \tilde{C} \cap C = \varnothing \right\}$$

Proof. (\subseteq). Let $b \notin \mathcal{D}_{p,\varphi,C}$. Let $A \subseteq \mathcal{U}$ be such that every instance of $\varphi(x;b;X)$ and $\sim \varphi(x;b;X)$ that is consistent with $p(x) \upharpoonright A$ is finitely consistent with p(x). Finally pick $a \models p(x) \upharpoonright A$. As $\neg \varphi(a,b,C)$, from Fact 10 we obtain that $\sim \varphi(a;b;\tilde{C})$ holds for some $\tilde{C} \cap C = \emptyset$. Then $\sim \varphi(x;b;\tilde{C})$ is consistent with $p(x) \upharpoonright A$. By maximality of p(x), we have $\sim \varphi(x;b;\tilde{C}) \in p$. Then $b \in \mathcal{D}_{p,\sim \varphi,\tilde{C}}$.

 (\supseteq) . Similar.

- **17 Fact** Let $\varphi(x;z;X)$ and C be given. Then for every $\mathcal{D}\subseteq\mathcal{U}^z$ the following are equivalent
 - 1. $\mathcal{D} = \mathcal{D}_{p,\varphi,C}$ for some global $\varphi(x;z;X)$ -type p(x)
 - 2. for every finite set $B \subseteq \mathcal{U}^z$ there is an $a \in \mathcal{U}^x$ such that

$$B \cap \mathcal{D} = B \cap \varphi(a; \mathcal{U}^x; C).$$

Proof. Let $B_0 = B \setminus \mathcal{D}$ and $B_1 = B \cap \mathcal{D}$.

1⇒2. By the above fact, there is a $\tilde{C} \cap C = \emptyset$ such that $b \in \mathcal{D}_{p,\sim \phi,\tilde{C}}$ form every $b \in B_0$. Let a realize the type containing $\varphi(x;b;C)$ for every $b \in B_1$ and $\sim \varphi(x;b;\tilde{C})$ for every $b \in B_0$.

2⇒1. There is a set $\tilde{C} \cap C = \emptyset$ such that $\sim \varphi(x;b;\tilde{C})$ for every $b \in B_0$. Let p(x) be any global $\varphi(x;z;X)$ -type containing $\varphi(x;b;C)$ for every $b \in B_1$ and $\sim \varphi(x;b;\tilde{C})$ for every $b \in B_0$. Such type exists as (2) guarantees consistency.

Let $\mathcal{D} \subseteq \mathcal{U}^z \times S^{|X|}$. For $\alpha \in S^{|X|}$, we write \mathcal{D}_α for the set of all $b \in \mathcal{U}^z$ such that $\langle b, \alpha \rangle \in \mathcal{D}$. We say that \mathcal{D} is externally definable by $\varphi(x;z;X)$ if there is a global $\varphi(x;z;X)$ -type p(x) such that for every α

$$\mathcal{D}_{\alpha} = \bigcap \{ \mathcal{D}_{p, \varphi, C} : \alpha \in C^{\circ} \}$$

We say that \mathcal{D} is approximable by $\varphi(x;z;X)$ if for every $\alpha \in S^{|X|}$ and every finite $B \subseteq \mathcal{U}^z$ there is an $a \in \mathcal{U}^{|x|}$ such that

$$B \cap \mathcal{D}_{\alpha} = B \cap \bigcap \{ \varphi(a; \mathcal{U}^z; C) : \alpha \in C^{\circ} \}$$

- **18 Fact** Let $\varphi(x;z;X)$ be given. Then, for every $\mathcal{D} \subseteq \mathcal{U}^z \times S^{|X|}$ the following are equivalent
 - 1. \mathcal{D} is externally definable by $\varphi(x;z;X)$
 - 2. \mathcal{D} is approximated by $\varphi(x;z;X)$.

We say that \mathcal{D} is approximable from below if for every $B \subseteq \mathcal{D}$ there is an $a \in \mathcal{U}^{|x|}$ such that

$$B \subseteq \varphi(a; \mathcal{U}^z; C) \subseteq \mathcal{D}.$$

Garbage after this line

We define $\mathcal{D}_p \subseteq \mathcal{U}^{|z|} \times S^{|X|}$ as follows

$$\mathcal{D}_p \ = \ \Big\{ \langle b,\alpha \rangle : \varphi(x;b;C) \in p \text{ for every } C \text{ neighborhood of } \alpha \Big\}.$$

19 Fact

$$\neg \mathcal{D}_p \ = \ \Big\{ \langle b, \alpha \rangle \ : \ \sim \varphi(x; b; \tilde{C}) \in p \ \text{ for every } \tilde{C} \not\ni \alpha \, \Big\}.$$

Proof. Let $a \models p(x) \upharpoonright b$. Let C be the intersection of all neighborhoods of α such that $\varphi(a;b;C')$. Assume $\langle b,\alpha\rangle \notin \mathcal{D}_p$, in other words $\varphi(a;b;C)$, then C is a neighborhood of α . By Fact 10 we have $\varphi(a;b;C)$. Let $\tilde{C} \subseteq C \setminus \{\alpha\}$ be such that C is a neighborhood of \tilde{C} . Then $\neg \varphi(a;b;\tilde{C})$. Therefor by the definition of \mathcal{D}_p .

Then we can find \tilde{C} such that $\alpha \notin \tilde{C}$ and C is a neighborhood of \tilde{C} . contains two dijoint compacts Then $\sim \varphi(x;b;\tilde{C}') \in p$ by the definition of \mathfrak{D}_p .

Then $\sim \varphi(x;b;\tilde{C}') \in p$ for every neighborhood \tilde{C}' of α disjoint from C'. Then for every neighborhood C of α , we have $\varphi(x;b;C) \in p$.

We say that \mathcal{D} is externally defined by p(x) and $\varphi(x;z;X)$ if $\mathcal{D}_p \subseteq \mathcal{D}$ and $\tilde{\mathcal{D}}_p \subseteq \neg \mathcal{D}$.

We say that $\mathcal{D} \subseteq \mathcal{U}^{|z|} \times S^{|X|}$ is approximated by $\varphi(x;z;X)$ if for every finite $B \subseteq \mathcal{U}^{|z|} \times S^{|X|}$ there is an $a \in \mathcal{U}^{|x|}$ such that

 $\langle b, \alpha \rangle \in B \cap \mathcal{D} \implies \varphi(a; b; C)$ for every neighborhood C of α $\langle b, \alpha \rangle \in B \setminus \mathcal{D} \implies \neg \varphi(a; b; C)$ for every C such that $\alpha \notin C$

20 Fact For every $\mathcal{D} \subseteq \mathcal{U}^{|z|} \times S^{|X|}$, the following are equivalent

- 1. \mathcal{D} is externally definable by some global φ -type
- 2. \mathcal{D} is approximated by $\varphi(x;z;X)$.

Proof. (1) \Rightarrow (2). Let $B \subseteq \mathcal{U}^{|z|} \times S^{|x|}$ be finite. For $\langle b, \alpha \rangle \in B \cap \mathcal{D}$ let $C_{\langle b, \alpha \rangle}$ be some neightborhood of α . Let C be the union of all these neighborhoods. For $\langle b, \alpha \rangle \in B \setminus \mathcal{D}$ let $\tilde{C}_{\langle b, \alpha \rangle}$ be some neighborhood of α . Let \tilde{C} be the union of all these neighborhoods. By the finiteness of B, we can require that C and \tilde{C} are disjoint. Then (2) follows from the concistency of p(x).

(2) \Rightarrow (1). Note that the condition of approximability asserts the finite concistency of the type p(x) that is union of the following two sets of formulas

$$\begin{split} &\left\{ \varphi(x;b;C) \,:\, \langle b,\alpha\rangle \in \mathcal{D} \text{ and } C \text{ neighborhood of } \alpha \right\} \\ &\left\{ \sim & \varphi(x;b;C) \,:\, \langle b,\alpha\rangle \notin \mathcal{D} \text{ and } \alpha \notin C \right\} \end{split}$$

The inclusion $\mathcal{D} \subseteq \mathcal{D}_p$ is immediate. For the converse inclusion, let $\langle b, \alpha \rangle \notin \mathcal{D}$ and let \tilde{C} be a neighborhood of α such that $\sim \varphi(x;b;\tilde{C})$.

5.

References

- [AAVV] Claudio Agostini, Stefano Baratella, Silvia Barbina, Luca Motto Ros, and Domenico Zambella, *Continuous logic in a classical setting* (2025). t.a. in Bull. Iranian Math. Soc.
 - [A] Josef Auslander, *Topological Dynamics*, Scholarpedia (2008), doi:10.4249/scholarpedia.3449.
 - [BY] Itaï Ben Yaacov, Model theoretic stability and definability of types, after A. Grothendieck, Bull. Symb. Log. **20** (2014), no. 4, 491–496.
- [BBHU] Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, *Model theory for metric structures*, Model theory with applications to algebra and analysis. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 350, Cambridge Univ. Press, Cambridge, 2008, pp. 315–427.
 - [HI] C. Ward Henson and José Iovino, *Ultraproducts in analysis*, Analysis and logic (Mons, 1997), London Math. Soc. Lecture Note Ser., vol. 262, Cambridge Univ. Press, Cambridge, 2002, pp. 1–110.
 - [K] H. Jerome Keisler, *Model Theory for Real-valued Structures*, in Beyond First Order Model Theory (José Iovino, ed.), Vol. II, Chapman and Hall/CRC, 2023.
 - [Z] Domenico Zambella, Standed analysis (2023), arXiv:2311.15711