WAKISSHA JOINT MOCK EXAMINATIONS KIROLERO ASH

MARKING GUIDE

Uganda Advanced Certificate of Education

UACE August 2024

MATHEMATICS P425/2

		2	PCAIN	(B)	+	P()	Angl)
1i)	$P(A \cup B) - P(A \cap B) = 1$	18		-/			M. fo	

	= P(A'NB) + P	(Angi) ·
1i)	$P(A \cup B) - P(A \cap B) = \frac{1}{3}$ $P(A) + P(B) - 2P(A \cap B) = \frac{1}{3}$	M ₁ for defining A or B but not both
	$P(A)+P(B)-2P(A\cap B) = \frac{1}{3}$ $\frac{1}{2}+\frac{1}{4}-2P(A\cap B) = \frac{1}{3}$ $2P(A\cap B) = \frac{3}{4}-\frac{1}{3}$ $P(A\cap B) = \frac{5}{24} \text{for } 0.2083. \text{ Catual Figure 4dps}$	M _I substitution in the formula
	$P(A \cap B) = \frac{5}{24}$ or 0.2083. Catuart 4dps	A ₁ out put
(ii)	$P\left(\overline{B}/A\right) = \frac{P\left(\overline{B} \cap A\right)}{P(A)}$	
	$= \frac{\frac{1}{2} - \frac{5}{24}}{\frac{1}{2}}$ $= \frac{\frac{7}{12}}{12} \text{and} 0.5833 \text{ (at work 44/3)}$	M ₁ Substitution
2:>	,	A ₁ output correct.
2i)	Old 35 40 x New 50 65 80	B ₁ (mobile for location
	$\frac{80-50}{x-35} = \frac{65-50}{40-35}$	M ₁ equating gradients
	$\frac{30}{x-35} = \frac{15}{5}$	
ii)	x=45/ (with units)	At correct output with units
	Old 35 37 40 New 50 y 65	
4	$\frac{65-50}{40-35} = \frac{y-50}{37-35}$	M ₁ equating gradients
	$\frac{15}{5} = \frac{y - 50}{2}$	
,	y = 56%	At correct output. total units

	Mean = $\frac{\sum}{\sum}$	$\frac{J^x}{f}$			
	14485				M ₁ correct substitution
(ii)	= 96.56 = ≈ 97 min	utes			A₁ correct output (≥2 dp)
(11)	Medium =	$l + \left[\frac{\frac{N}{2} - Cf_b}{f_m}\right]$	xi		
		M ₁ correct substitution A ₁ correct output (≥ 2 dp) With or without units			
)(ii)					
	Number of times = $148 - 28$ = $120 \text{ times } \pm 2$				B ₁ any value read correctly from graph M ₁ Subtraction
)(i) (a)	On graph pa	per at the back	A ₁ Correct out put		
, ,	Let o be the	weight per un	it area.	es i la	B ₁ correct column of
	Portion	Area (m2)	Weight mus	C.O.G from	area
	Square	4,002	400° 8	AB M	B ₁ correct column of
	Semi – circle	$\pi/2$ m^2	$\pi/2m\delta$		weight
	Remainder		$(4M-\frac{\pi}{2}m^2)\delta$	$\frac{4M}{3\pi}$	B ₁ Correct column of C.O. from AB
	AB 4m ² m - 2	$\frac{\pi}{2} m^2 4m/3\pi = 0$	$\left(4m^{2-\pi}/2m^{2}\right)\bar{X}$	X	e.eMuom AB
	$4m - \frac{2}{3}m = 6$	$(-\pi/2)\bar{X}$	72 /1.		M ₁ Correct moments . M ₁ equating moments
	$\frac{12m-2m}{3} = \left(\frac{8}{3}\right)^{2}$	$\left(\frac{-\pi}{2}\right)\bar{X}$			M. Simplification
	$\bar{X} = \frac{10m^2X2}{3(8-\pi)}$				M ₁ Simplification
1.	$=\frac{20M}{3(8-\pi)}$				
1 1	2/0 -1				B ₁ Correct expression

bi)	M. correct into
	M ₁ correct integration
Exact value = $\frac{1}{14} \ln \left[7x^2 - 3 \right]_1^2$	M ₁ correct substation of limits
$= \frac{1}{14}[125 - 14]$	A ₁ correct output (4sf)
= 0.1309 (4sfgs)	
Percentage error = $\left \frac{0.1309 - 0.1328}{0.1309} \right X100$	M ₁ Absolute error
	M ₁ percentage error
= 1.45%	A ₁ Correct output with or without the % sign
iii) By increasing the number of ordinates	D. C.
or diffialtos	B ₁ Correct comment if all the 11 marks above are earned
	reduced secure broken for the contraction
12i) $P(x) = 2P(y)$ But $P(x) + P(y) = 1$ $2P(y) + P(y) = 1$ $P(y) = \frac{1}{3}$	12 Marks
Hence $P(x) = \frac{2}{3}$	
Tree diagram	B ₁ Probilities of x and y
216 - X DROP	1
X (2)= 1/2 3 Q P(G)=3/6 X nen G	
P(A)=26 4P P(G)=3/2 AP P(G)=3/2 X G G P	4 2 2
P(1)= 1/3 86 P(0)= 511 HR MOSTY TO TORNE	
50 SR parto to and	
mais in an Grant	
(2/ v4/ v3/) · (2/ 2/ 2)	
a) $\binom{2/3}{3} \frac{X}{7} \frac{4}{7} \frac{X}{6} + \binom{2/3}{3} \frac{X}{7} \frac{3}{7} \frac{X}{2} \frac{2}{6} + \binom{1/3}{3} \frac{X}{11} \frac{5}{11} \frac{X}{10} + \binom{1/3}{3} \frac{X}{11} \frac{5}{10} \frac{5}{10}$	M ₁ any two arms correct
= 0.4372 (≥ 4 drops)	M ₁ adding the arms
	A_1 Correct output \geq dps

© WAKISSHA Joint Mock Examinations 2024

	$P(x=0) = \left(\frac{2}{3}X\frac{3}{7}X\frac{2}{6}\right) + \left(\frac{1}{3}X\frac{6}{11}X\frac{5}{10}\right)$ $P(x=0) = \frac{43}{231}$	M _I both arms correct and added
	$P(x=1) = 2\left(\frac{43}{3}X\frac{4}{7}X\frac{3}{6}\right) + \left(\frac{2}{3}X\frac{3}{7}X\frac{4}{6}\right) + \left(\frac{1}{3}X\frac{5}{11}X\frac{6}{10}\right) + \left(\frac{1}{3}X\frac{5}{11}X\frac{5}{10}\right)$	M ₁ both arms correct and added
	$P(x=1) = \frac{130}{231}$ $P(x=2) = \left(\frac{2}{3}X^{4}/_{7}X^{3}/_{6}\right) + \left(\frac{1}{3}X^{5}/_{11}X^{4}/_{10}\right)$	M ₁ both arms correct and added
	$= \frac{174}{693} = \frac{58}{231}$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B ₁ for all $P(X = x)$ values correct (≥ 4 dp)
(c)	Mean = $\left(0X\frac{43}{231}\right) + \left(1X\frac{130}{231}\right) + \left(2X\frac{174}{693}\right)$	M ₁ products M ₁ addition
r.	$Mean = \frac{738}{693} = \frac{82}{77}$	A₁ correct output ≥ 2dp
2		12 Marks
	$a = 4e^{-3t}i + 12S \text{ int } j - 7Costk$ $a_{t=0} = 4e^{-3(0)} + 12Sinoj - 7Cosok$ $= 4i + 7 $ $ a_{t=0} = \sqrt{16 + 49}$ $= \sqrt{65ms^{-2}or8.062ms^{-2}}$ $V = \int adt$ $= \int (4e^{-3t}i + 12S \text{ int } j - 7Costk) dt$	M ₁ magnitude A ₁ Correct out put with units or without
	$= \frac{-4}{3}e^{-3t}i - 12Costj - 7Cosk + C$ at $t = 0$, $V = 11i - 8j + 3k$	M ₁ Correct integration with the constant C seen
	$11i - 8j + 3k = -\frac{4}{3}i - 12j + C$	M ₁ attempt to solve for C
	© WAKISSHA Joint Mock Examinations 2024	Page 9 of

© WAKISSHA Joint Mock Examinations 2024

(b) $F(x) = e^x + x - 4$ $f^1(x) = e^x + 1$	M ₁ correct dergavative
1 (4)	IVI CONTECT desperative
$ f(X_{\bullet})$	
$X_{n+1} = X_n \frac{f(X_n)}{f(X_n)}$	**
, (
	M ₁ correct
$e^{xn}+x-4$	substitution
$=X_n-\frac{e^{xn}+x_n-4}{e^{xn}+1}$	Substitution
$(e^{xn}+1)e^{xn}-x_n+4$	A ₁ correct expression
$= X_n - \frac{(e^{xn} + 1) \cdot e^{xn} - x_n + 4}{e^{xn} + 1}$,
$= \frac{e^{xn}(x_n-1)+4}{e^{xn}+1}$	
$e^{xn}+1$	
$x_0 = 1.1$	
$x_1 = \frac{e^{1.1}(1.1-1)+4}{e^{1.1}+1}$	
	B_1 correct $x_1 \ge 4s.f$
$= 1.074 \frac{\text{(3dp)}}{\text{(3dp)}}$	
1074 (1.074 1) : 4	
$x_2 = \frac{e^{1.074} (1.074 - 1) + 4}{e^{1.074} + 1}$	B ₁ correct x ₂ ≥4 s.f
	D , O
$=1.074 \frac{(3dp)}{}$	A ₁ correct output
The root is 1.07 (3 s.f)	3(s.f)
是用。在1995年,1996年,1996年,1996年,1996年,1996年,1996年,1996年,1996年,1996年,1996年,1996年,1996年	12 Marks
Let x be a random variable for number of goats covered	
by the people	
P(X < 60) = 15%	
P(X > 90) = 5%	
$P(X < 60) = P(Z < \frac{60 - \mu}{\delta}) = 0.15$	1
$P(X < 00) = I(Z < \delta)$	
9.35	
017	
- mail	
<u>_</u>	B ₁ correct Z ₁
$Z_1 = -1.036$	
$\frac{60-10}{100} = -1.036$	B ₁ correct substitution
8'	and equating
$\frac{60 - M}{\delta} = -1.036$ $60 - M = -1.036 \delta (1)$	
90 - N	
$P(X > 90) = P(Z > \frac{90 - M}{\delta}) = 0.05$	47
	4.45
p.45'	The second of
0.05	A STATE OF THE STA
- Inut	419
Marie	
0 7	THE PARTY OF
7	ALL CARES

© WAKISSHA Joint Mock Examinations 2024

		h-x+15 65
	$Z_2 = 1.645$ 90 - M = 1.65 (ii)	B ₁ correct Z ₂ B ₁ correct substation and equating
	Eqn (i) and eqn (ii) $60 - N = -1.036 \delta$ $90 - N = 1.645 \delta$ $\frac{-30.0}{-2.681} = \frac{-2.681 \delta}{-2.681}$	M ₁ attempt to solve
	$\delta = 11.1899$	equations $A_1 \text{ correct output } \ge$
	№= 90 – 1.645 X 11.1899	3dp M1 Attempt to solve
:	= 71.592	equations
b) 1	P(X > 80) = P(7 > 80 - 71.592	A₁ correct output ≥3 dp
I	$P(X > 80) = P(Z > \frac{80 - 71.592}{11.1899})$ P(Z > 0.751)	M ₁ correct substitution
	0 1 7.51	
	$=0.5-4.(0.751) p(0 \le 2 \le 0.1)$ $=0.5-0.2737$)
N	$= 0.2263$ $\text{Number of resultant} = 300 \times 0.2263$	A₁ correct probability ≥ 4dps M₁ correct
9570 846	= 67.89 = 68	multiplication A₁ correct output ≥)dps
1316 1775		12 Marks
	= (-2i + 3i) + (-i + 2j) + (4i - 2i) + (-i - 3j) $(-2 - 1 + 4 - 1)i + (3 + 2 - 2 - 3)j$	M _I addition of forces
	=0i $+0$ j	B ₁ correct output
	e system either forms a couple or is in equilibrium	
Tal	king moments; $\begin{vmatrix} x_1 & x \\ y_1 & y \end{vmatrix}$ moment of constituent forces $\begin{vmatrix} -2 & -2 \\ 3 & 3 \end{vmatrix} + \begin{vmatrix} 3 & -1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} -1 & 4 \\ -3 & -2 \end{vmatrix} + \begin{vmatrix} 3 & -1 \\ 1 & -3 \end{vmatrix}$	M ₁ for all correct moments
= (-	$3 \cdot 1 \cdot 1 \cdot 2 \cdot 1 \cdot 3 \cdot 1 \cdot 3 \cdot 6 + 6 \cdot + (6 + 1) + (2 + 12) + (-9 + 1) \cdot 3NM$	B ₁ correct values of G with units

b) Resultant force

$$\mathbb{R} = (-2\mathbf{i} + 3\mathbf{j}) + (-\mathbf{i} + 2\mathbf{j}) + (4\mathbf{i} - 2\mathbf{j}) + (2\mathbf{i} + \mathbf{j})$$

=
$$(-2-1+4+2)i+(3+2-2+i)j$$

 $R = (3i+4j)N$

Let (x i + y j be the general point of the equation of the line of action of the resultant force.

Moment of resultant force = sum of moments of constituent forces.

$$\begin{vmatrix} x & 3 \\ y & 4 \end{vmatrix} = (-6+6)+(6+1)+(2+12)+\begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix}$$

$$4x - 3y = 21 + (3 - 2)$$

 $4x - 3y = 22$

Therefore 4x - 3y - 22 = 0 (line of action)

When the line crosses the X - axis, y = 0, 4x - 22 = 0

M₁ addition of forces.

B₁ correct resultant

M₁ obtaining moments
M₁ equating moments.
B₁ correct equation of the line of action

 M_1 substitution of y = 0

A₁ correct output

Therefore x = 5.5 units from origin

(5.5,0)

