✓ ☐ Introduction
 ☐ Motivation
 ☐ Objective
 ✓ ☐ Computer Arithmetic
 ☐ Floating point numbers
 ☐ Error Analysis
 ☐ Floating Point Operations
 ✓ ☐ Algorithms and Convergence
 ☐ Algorithms
 ☐ Convergence

lecture2

The Root-Finding Problem

Newton's Method

Error Analysis for Iterative Methods

 ∇ector Norms
 Fixed Points for Functions of Several Variables
 Newton's Method for Nonlinear Systems
 Gradient Descent Techniques

lecture4

Linear Systems of Equations

Matrix Factorization

lecture5

Norms

Eigenvalues and Eigenvectors

Convergent Matrix

Iterative Methods

Linear Algebra and Eigenvalues

The Power Method

☐ The Inverse Power Method

lecture7

Interpolation

Taylor Polynomials

Lagrange Interpolating Polynomials

Neville's Method

lecture8

Newton's Divided

Difference Interpolating

Polynomial

Piecewise-Polynomial Approximation

Construction of a Cubic Spline

Discrete Least Squares
Approximation

Orthogonal Polynomials and Least Squares Approximation

Rational Function
Approximation

lecture10

Numerical Differentiation

General Derivative
Approximation Formulas

Three-point Derivative
Approximation Formulas

Numerical Approximations to Higher Derivatives

Round-Off Error Instability

Richardson's Extrapolation

Numerical Integration

Trapezoidal Rule

Simpson's Rule

Measuring Precision

Composite Numerical Integration

Romberg Integration

lecture12

Initial-Value Problems for ODEs

Euler's Method

Higher-Order Taylor
Methods

Runge-Kutta Methods

Systems of Differential Equations
Higher-Order Differential Equations
Boundary-Value Problems for ODEs
The Linear Shooting Method
Finite-Difference Methods
Numerical Solutions to PDEs

2021秋

填空题

自由样条内插、 simpson积分求解、 雅克比迭代矩阵、 谱半径计算;

大题

给定一个方程式以及其初值,利用不动点迭代有几种不同的形式,判断收敛性。(这道题和PPT上一个例子很像,甚至可能是同一个?不过PPT上作为例子是讲有些形式不能收敛,有些形式收敛几十次才能达到预期结果,可以着重注意一下)

证明X^(k+1)= (1, 2+1/k, 1/k^2, exp(-k)sin(k)) (转置)在L2范数条件下一定收敛到(1, 2, 0, 0)。 (我记得PPT也是一道例题,可惜我不记得怎么证明了,主要PPT实在太多了公式也有很多不太容易记忆)请写出牛顿迭代法求非线性方程组的过程步骤,给出一个非线性方程组求两次迭代结果。 欧拉方法解常微分,给定方程、初值与h

证明simpson积分方法公式误差为三次代数精度。(题目就是这样的,我不会做是我菜ww)理查德外推公式。(作业上有这道题目的,可参考)

2021-2022秋

填空

每题两空, 一空三分

- 给了一个二元的线性方程组,写它的高斯赛德尔迭代形式,以及写出迭代矩阵的谱半径
- 对分迭代, 判断第一次和第二次迭代以后的搜索区间即可
- 三个点,分别用二次多项式分段插值和线性最小二乘
- 给了一个f(x),用simpson积一下,用三点公式求导一下
- 三个点, cubic spline 插值(三次多项式)

大题

一题十分

- f(x),构造了五个x=g(x),分别判断一下能否用1.5作为初值进行不动点迭代,实现收敛
- 于工Jacobi迭代两次 > 大题第二题是非线性系统的牛顿迭代法,其中要用到雅可比矩阵和它的逆(感谢2L 指出)
- 证明一个向量(各个分量是关于x的函数)在L2范数上是收敛到某常向量
- 证明一个迭代形式的线性系统必定收敛,并且写出这个线性方程组原本的样子
- 欧拉迭代解ODE
- 证明simpson公式是三次精确的(记得PPT有,想不起来了(一),用拉格朗日插值推导了一下,是二次 的,应该用Taylor)
- Richardson's Extrapolation (消消乐,没化简,也不知道对不对)

补充填空题第二题,给了三个点,f(0)=1,f(1)=1.2,f(2)=1.3,用辛普森公式求[0,2]上积分,用三点公式求f(0)'想起来了填空题第四题,一个二分法解寻根问题,问你第一次迭代的区间和第二次迭代后的区间,比较简单。方程好像是x^3+x-1,然后给定区间是[0,1] 大题第二题是非线性系统的牛顿迭代法,其中要用到雅可比矩阵和它的逆

我想起来了,第二题是我说的,第四题是一个二分法解寻根问题,问你第一次迭代的区间和第二次迭代后的区间,比较简单。 方程好像是x^3+x-1,然后给定区间是[0,1]

2020冬

牛顿法解方程 做三次迭代 给出结果

x0为某值能否作为初值条件 为什么

2阶拉格朗日近似 求a b c 给3个点

4个未知数的方程组 (1) 高斯赛德尔方法 迭代矩阵 (2) 雅可比法 迭代矩阵 (3) 两种方法能否收敛? 如果都收敛,哪种更快?

runge-kutta法解方程 证明截断误差为O(h^3) 我不会

设计一个算法求矩阵最小的特征值和与之对应的特征根 应该是求逆矩阵然后用幂法?

最小二乘法W=a t^s 给出W t求a s 我没做错的话应该是取对数变成线性 所以就是线性最小二乘法

证明f(-1,1)|x|f(x)dx = 1/4 (f(-1) + 2f(0) + f(1))对于不高于3阶的多项式f(x)绝对正确

欧拉法解常微分方程 给出h 近似一个点

(15')(1)推导五点中值差分 O(h^4)的式子 (2)用此式子求cos(1)的导数 (3)舍入误差为510^(-8)时 h=0.05是否是误差最小的? 如果不是 应该取多少?

2020秋

填空

收敛矩阵 矩阵范数 牛顿法迭代求根 数值修约规则

大题

拉格朗日内插多项式 证明严格对角主导矩阵一定可逆 线性最小二乘法及其误差 欧拉方法求解微分方程 分别用Jacobi和Gauss-seidel求矩阵谱半径,再用Gauss-seidel求解方程组 用Trapezoidal和Simpson's Rule求积分 用N(h)、N(h/3)和N(h/9)表示M的O(h^6)的近似值(Richardson's Extrapolation) Cubic Spline Interpolant 而且证明题是老师在课堂上点名要考的,还有理查森外推那题是Hw_5上的