Appendix

Conditional Posterior distribution

The conditional posterior distributions for the common parameters are given as follows:

$$\pi(\theta_{k}) \propto \left[\prod_{K=1}^{N} \prod_{i=1}^{P} \mathbb{P}(Y_{k,i} = y_{k,i} | \mathbf{\Theta}) \right] \times \left[N_{\theta_{k}}(\mathbf{0}, \sigma^{2}) \right]$$

$$\pi(\beta_{i}) \propto \left[\prod_{k=1}^{N} \prod_{i=1}^{P} \mathbb{P}(Y_{k,i} = y_{k,i} | \mathbf{\Theta}) \right] \times \left[N_{\beta_{i}}(\mathbf{0}, \tau_{\beta}^{2}) \right]$$

$$\pi(\gamma) \propto \left[\prod_{k=1}^{N} \prod_{i=1}^{P} \mathbb{P}(Y_{k,i} = y_{k,i} | \mathbf{\Theta}) \right] \times \left[\text{Log-normal}_{\gamma}(\mu_{\gamma}, \tau_{\gamma}^{2}) \right]$$

$$\pi(\mathbf{z}_{k}) \propto \left[\prod_{k=1}^{N} \prod_{i=1}^{P} \mathbb{P}(Y_{k,i} = y_{k,i} | \mathbf{\Theta}) \right] \times \left[\text{MVN}_{D,\mathbf{z}_{k}}(\mathbf{0}, \mathbf{I}_{D}) \right]$$

$$\pi(\mathbf{w}_{i}) \propto \left[\prod_{k=1}^{N} \prod_{i=1}^{P} \mathbb{P}(Y_{k,i} = y_{k,i} | \mathbf{\Theta}) \right] \times \left[\text{MVN}_{D,\mathbf{w}_{i}}(\mathbf{0}, \mathbf{I}_{D}) \right]$$

$$\pi(\sigma^{2}) \propto \text{Inv-Gamma} \left(\left(\frac{N}{2} + a_{\sigma} \right), \frac{1}{2} \sum_{k=1}^{N} \theta_{k}^{2} + b_{\sigma} \right).$$
(1)

The conditional posterior distributions of α and σ_{ϵ}^2 for the 2PL LSIRM and the LSIRM-continuous, respectively, are given as follows:

$$\begin{split} \pi(\alpha_i) &\propto \left[\prod_{k=1}^N \prod_{i=1}^P \mathbb{P}(Y_{k,i} = y_{k,i} | \theta_k, \alpha_i, \beta_i, \gamma, \boldsymbol{z_k}, \boldsymbol{w_i}) \right] \times \left[\text{Log-normal}_{\alpha_i}(0, \tau_\alpha^2) \right] \\ \pi(\sigma_\epsilon^2) &\propto \text{Inv-Gamma} \left(\left(\frac{NP}{2} + a_{\sigma_\epsilon} \right), \frac{1}{2} \sum_{k=1}^N \sum_{i=1}^P \left(y_{k,i} - (\theta_k + \beta_i - \gamma || \boldsymbol{z_k} - \boldsymbol{w_i} ||) \right)^2 + b_{\sigma_\epsilon} \right), \end{split}$$

where $\Theta = \{\theta_k, \beta_i, \gamma, z_k, w_i\}$ for 1PL LSIRM, $\Theta = \{\theta_k, \alpha_i, \beta_i, \gamma, z_k, w_i\}$ for 2PL LSIRM, and $\Theta = \{\theta_k, \beta_i, \gamma, z_k, w_i, \sigma_{\epsilon}^2\}$ for 1PL LSIRM-continuous.

Default value for the prior specification and the jumping rules

Parameter	Models	Arguments	Default value
θ	lsirm1pl lsirm2pl	pr_mean_theta	0
β	lsirm1pl	pr_mean_beta	0
	lsirm2pl	pr_sd_beta	1
α	lsirm2pl	pr_mean_alpha pr_sd_alpha	0.5 1
$-\log \gamma$	lsirm1pl	pr_mean_gamma	0.5
	lsirm2pl	pr_sd_gamma	1
σ^2	lsirm1pl	pr_a_theta	0.001
	lsirm2pl	pr_b_theta	0.001
σ_{ϵ}^{2}	lsirm1pl	pr_a_eps	0.001
	lsirm2pl	pr_b_eps	0.001

Table 1: Model parameters, related models, corresponding arguments, and default values for priors. Note that for $\log \gamma$, the mode of its prior distribution is 0.61, with mean 2.72, and standard deviation 3.56.

Parmeter	Models	Arguments	Default value
θ	lsirm1pl lsirm2pl	jump_theta	1
β	lsirm1pl lsirm2pl	jump_beta	0.4
α	lsirm2pl	jump_alpha	1
$\log \gamma$	lsirm1pl lsirm2pl	jump_gamma	0.025
z	lsirm1pl lsirm2pl	jump_z	0.5
w	lsirm1pl lsirm2pl	jump_w	0.5

Table 2: Model parameters, related models, corresponding arguments, and default values for jumping rules.

List of package argument

	D 1.1
Arguments	Description
data	Item response matrix to be analyzed.
ndim	Dimension of latent space.
niter	Number of iterations to run MCMC sampling.
nburn	Number of initial, pre-thinning, MCMC iterations to discard.
nthin	Number of thinning, MCMC iterations to discard.
nprint	MCMC samples are displayed.
pr_mean_theta	Mean of the normal prior distribution for θ .
pr_mean_beta	Mean of the normal prior distribution for β .
pr_sd_beta	Standard deviation of the normal prior distribution for β .
pr_mean_alpha	Mean of the normal prior distribution for α .
pr_sd_alpha	Standard deviation of the normal prior distribution for α .
pr_mean_gamma	Mean of the log-normal prior distribution for γ .
pr_sd_gamma	Standard deviation of the log-normal prior distribution for γ .
pr_a_theta	Shape parameter of the inverse gamma prior for the variance of θ , σ .
pr_b_theta	Scale parameter of the inverse gamma prior for the variance of θ , σ .
pr_a_eps	Shape parameter of the inverse gamma prior for the variance of data likelihood, σ_{ϵ}^2 .
pr_b_eps	Scale parameter of the inverse gamma prior for the variance of data likelihood, σ_{ϵ}^2 .
jump_theta	Jumping rule of the proposal density for θ .
jump_beta	Jumping rule of the proposal density for β .
jump_alpha	Jumping rule of the proposal density for α .
jump_gamma	Jumping rule of the proposal density for γ .
jump_z	Jumping rule of the proposal density for z .
jump_w	Jumping rule of the proposal density for w .
missing	Replaced value for missing data.

 Table 3: Arguments for prior distributions, jumping rules, and others.

Arguments	Description
data	Item response matrix to be analyzed.
bic	Bayesian information criterion value.
mcmc_inf	Number of MCMC iteration, burn-in periods, and thinning intervals.
map_inf	Log maximum a posterior.
beta_estimate	Posterior estimates of β .
theta_estimate	Posterior estimates of θ .
sigma_theta_estimate	Posterior estimate of the standard deviation of θ , σ .
gamma_estimate	Posterior estimates of γ .
z_estimate	Posterior estimates of z.
w_estimate	Posterior estimates of w.
beta	Posterior samples of β .
theta	Posterior samples of θ .
theta_sd	Posterior samples of the standard deviation of θ , σ .
gamma	Posterior samples of γ .
sigma	Posterior samples of σ_{ϵ} .
Z	Posterior samples of z.
W	Posterior samples of w.
accept_beta	Accept ratios of β .
accept_theta	Accept ratios of θ .
accept_z	Accept ratios of z.
accept_w	Accept ratios of w .
accept_gamma	Accept ratio of γ .

 Table 4: Arguments for the result list returned by lsirm1pl.