Exercises 1

- 1. Find equations of the lines passing through (3,5) and having the following characteristics.
 - (a) Slope of $\frac{7}{16}$ (b) Parallel to the line 5x 3y = 3
 - (c) Perpendicular to the line 3x + 4y = 8 (d) Parallel to the y-axis.
- 2. Find the exact value of the given expression.
 - (a) $\tan^{-1} 1$

- (b) $\sec^{-1} 2$ (c) $\cos^{-1} (\frac{-\sqrt{3}}{2})$ (d) $\sin^{-1} (\sin \frac{5\pi}{6})$
- 3. In (1)-(4), match the function with its graph. [The graphs are labeled (a), (b), (c), and (d).]

- (1) $f(x) = e^x$ (2) $f(x) = e^{-x}$ (3) $f(x) = \ln(x+1) + 1$ (4) $f(x) = -\ln(x+1) + 1$.
- 4. Let $f(x) = \frac{x^2 4}{|x 2|}$. Find each limit (if it exists).

 (a) $\lim_{x \to 2^-} f(x)$ (b) $\lim_{x \to 2^+} f(x)$ (c) $\lim_{x \to 2} f(x)$

- 5. Evaluate the following limit:
 (a) $\lim_{x\to 0} \frac{1-\cos x}{\sin x}$ (b) $\lim_{x\to 0} x \sin \frac{1}{x}$ (c) $\lim_{x\to 1} \frac{\sin(\pi x)}{x-1}$ (d) $\lim_{x\to 0} x^2 \sin \frac{1}{x}$

- 6. Suppose f(x) > 0 and f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$. Prove that if f is continuous at x = 0, then f(0) = 1 and f is continuous on $\mathbb{R} = (-\infty, \infty)$.
- 7. Let $f(x) = \begin{cases} -1, & \text{if } x \leq 0 \\ ax + b, & \text{if } 0 < x < 1 \text{ If } f \text{ is continuous on } \mathbb{R}, \text{ then find the values of } a \text{ and } b. \\ 1 & \text{if } x > 1 \end{cases}$
- 8. Prove that, if $f:[a,b]\to\mathbb{R}$ is continuous and has no zeros on [a,b], then either f(x)>0 for all $x \in [a, b]$ or f(x) < 0 for all $x \in [a, b]$.
- 9. Prove that if f is continuous on [0,1] and $0 \le f(x) \le 1$ for $x \in [0,1]$, then there is $c \in [0,1]$ such that f(c) = c.
- 10. Prove that $x^5 4x^3 3x + 1 = 0$ has a root between 2 and 3.
- 11. Prove that the trigonometric polynomial

$$a_0 + a_1 \cos x + \dots + a_n \cos nx,$$

where the coefficients are all real numbers and $|a_0| + |a_1| + \cdots + |a_{n-1}| < a_n$, has at least 2nzeros in the interval $[0, 2\pi)$.

20