Math 214 Homework 11

Keshav Balwant Deoskar

April 25, 2024

Q11-14. Consider the following two covector fields on \mathbb{R}^3 :

$$\begin{split} \omega &= -\frac{4zdx}{(x^2+1)^2} + \frac{2ydy}{y^2+1} + \frac{2xdz}{x^2+1} \\ \eta &= -\frac{4xzdx}{(x^2+1)^2} + \frac{2ydy}{y^2+1} + \frac{2dz}{x^2+1} \end{split}$$

- (a) Set up and evaluate the line integral of each covector field along the straight line segment from (0,0,0) to (1,1,1).
- (b) Determine whether either of these covector fields is exact.
- (c) For each one that is exact, find a potential function and use it to recompute the line integral.

Proof:

(a) Let $\gamma: \mathbb{R} \to \mathbb{R}^3$ be the following parametrization of the straight line from (0,0,0) to (1,1,1):

$$\gamma(t) = (t, t, t), \quad t \in [0, 1]$$

So,

$$\begin{split} \int_{\gamma} \omega &= \int_{0}^{1} -\frac{4tdt}{(t^{2}+1)^{2}} + \frac{2tdt}{t^{2}+1} + \frac{2tdt}{t^{2}+1} \\ &= -\int_{0}^{1} \frac{4tdt}{(t^{2}+1)^{2}} + \int_{0}^{1} \frac{2tdt}{t^{2}+1} + \int_{0}^{1} \frac{2tdt}{t^{2}+1} \end{split}$$

We can solve each of these as in ordinary calculus to get

$$\int_{\gamma} \omega = -\int_{1}^{2} \frac{2du}{u^{2}} + 2 \times \int_{1}^{2} \frac{du}{u}$$

$$= -2 \left[\frac{-1}{u} \right]_{1}^{2} + 2 \left[\ln(u) \right]_{1}^{2}$$

$$= 2 \left[\frac{1}{2} - \frac{1}{1} \right] + 2 \left[\ln(2) - \ln(1) \right]$$

$$\implies \int_{\gamma} \omega = 2 \ln(2) - 1$$

We can similarly calculate the integral of η :

$$\int_{\gamma} \eta = \int_{0}^{1} \frac{-4t^{2}dt}{(t^{2}+1)^{2}} + \frac{2tdt}{t^{2}+1} + \frac{2dt}{t^{2}+1}$$

$$= \int_{0}^{1} \left(\frac{-4t^{2}}{(t^{2}+1)^{2}} + \frac{2t}{t^{2}+1} + \frac{2}{t^{2}+1} \right) dt$$

$$= \int_{0}^{1} \frac{2(t^{3}-t^{2}+t+1)}{(t^{2}+1)^{2}} dt$$

$$= \ln(2) + 1$$

(b) We can check that ω is closed by verifying all of the mixed second derivatives are equal:

$$\begin{split} \frac{\partial^2 \omega}{\partial y \partial x} &= \frac{\partial \left(\frac{4z}{(x^2+1)^2}\right)}{\partial y} = 0 = \frac{\partial \left(\frac{2y}{y^2+1}\right)}{\partial x} = \frac{\partial^2 \omega}{\partial x \partial y} \\ \frac{\partial^2 \omega}{\partial z \partial x} &= \frac{\partial \left(\frac{4z}{(x^2+1)^2}\right)}{\partial z} = -\frac{4}{(x^2+1)^2} = \frac{\partial \left(\frac{2x}{x^2+1}\right)}{\partial x} = \frac{\partial^2 \omega}{\partial x \partial z} \\ \frac{\partial^2 \omega}{\partial z \partial y} &= \frac{\partial \left(\frac{2y}{y^2+1}\right)}{\partial z} = 0 = \frac{\partial \left(\frac{2x}{x^2+1}\right)}{\partial y} = \frac{\partial^2 \omega}{\partial y \partial z} \end{split}$$

Then, since the line segment from (0,0,0) to (1,1,1) is a star-shaped subset of \mathbb{R}^3 , the Poincare Lemma (Theorem 11.49) tells us that ω is closed $\implies \omega$ is exact.

On the other hand, for η we see that

$$\frac{\partial^2 \eta}{\partial z \partial x} = \frac{\partial \left(\frac{4xz}{(x^2+1)^2}\right)}{\partial z} = \frac{4x}{(x^2+1)^2}$$
$$\frac{\partial^2 \eta}{\partial x \partial z} = \frac{\partial \left(\frac{2}{x^2+1}\right)}{\partial x} = -\frac{4}{(x^2+1)^2}$$
$$\implies \frac{\partial^2 \eta}{\partial z \partial x} \neq \frac{\partial^2 \eta}{\partial x \partial z}$$

Thus η is not closed, but every exact form must be closed so η is not exact.

(c)

Q11-17. Let $\mathbb{T}^n = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1 \subseteq \mathbb{C}^n$ denote the *n*-torus. For each $j = 1, \dots, n$, let $\gamma_j : [0, 1] \to \mathbb{T}^n$ be the curve segment

$$\gamma_i(t) = (1, \dots, e^{2\pi i t}, \dots, 1)$$
 (with $e^{2\pi i t}$ in the j^{th} place)

Show that a closed covector field ω on \mathbb{T}^n is exact if and only if $\int_{\gamma_j} \omega = 0$ for $j = 1, \dots, n$

Proof:

 $\underline{\underline{}}$ $\underline{\underline{}}$: Suppose closed covector field $\omega \in \mathfrak{X}^*$ (\mathbb{T}^2) is exact. Then, there exists a potential function

 $f: M \to \mathbb{R}$ such that

$$\int_{\gamma_j} \omega = \int_{\gamma_j} df$$

$$= f(\gamma_j(1)) - f(\gamma_j(1)) \text{ (By the fundamental theorem of line integrals)}$$

$$= f(1, \dots, e^{2\pi i \cdot 1}, \dots, 1) - f(1, \dots, e^{2\pi i \cdot 0}, \dots, 1)$$

$$= f(1, \dots, 1, \dots, 1) - f(1, \dots, 1, \dots, 1)$$

$$= 0$$

 $\underline{\underline{\text{"}}} \overset{\underline{\text{"}}}{\longleftarrow} \underline{\text{"}}:$ For the reverse direction, suppose that for each $j=1,2,\cdots,n$ we have

$$\int_{\gamma_i} \omega = 0$$

i.e. the integral of ω along each circle in the decomposition $\mathbb{T}^n = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1$ is zero. If we can somehow show that $\int_{\gamma} \omega$ for any piece-wise smooth closed curve, then ω will be conservative and thus

We have the smooth covering map $\varepsilon^n: \mathbb{R}^n \to \mathbb{T}^n$ defined by

$$(x^1, \cdots, x^n) \mapsto \left(e^{2\pi i x^1}, \cdots, e^{2\pi i x^n}\right)$$

Consider any piece-wise smooth closed curve segment $\gamma:[0,1]\to\mathbb{T}^n$ and let $\tilde{\gamma}:[0,1]\to\mathbb{R}^n$ be a lift of γ such that

$$\gamma = \varepsilon^n \circ \tilde{\gamma}$$

Since ε^n is smooth, surjective and γ is also smooth, exercise 4.10 tells us that $\tilde{\gamma}$ must be smooth as well. WLOG, we can assume that $\tilde{\gamma}(0) = 0$ and $\tilde{\gamma}(1) = (m^1, \dots, m^n)$ for integers m^1, \dots, m^n (if these are not integers, then $\gamma = \varepsilon^n \circ \tilde{\gamma}$ will not be closed).

Going forward, the idea will be to decompose the integral over γ into integrals over paths along the γ_j 's. Define $\alpha_i:[0,1]\to\mathbb{T}^n$ as the line segment from $(m^1,\cdots,m^{i-1},0,\cdots,0)$ to $(m^1,\cdots,m^i,0,\cdots,0)$ and let $\alpha:[0,1]\to\mathbb{T}^n$ be the concatenation of the α_i 's such that $\alpha(0)=0$ and $\alpha(1)=(m^1,\cdots,m^n)$. Then,

$$\int_{\gamma} \omega = \int_{\varepsilon^{n} \circ \tilde{\gamma}} \omega$$

$$= \int_{\tilde{\gamma}} (\varepsilon^{n})^{*} \omega$$

$$= \int_{\alpha} (\varepsilon^{n})^{*} \omega \text{ (Prop 11.42; Since } \tilde{\gamma}, \alpha \text{ start and end at the same points)}$$

$$= \int_{\alpha_{1}} (\varepsilon^{n})^{*} \omega + \dots + \int_{\alpha_{n}} (\varepsilon^{n})^{*} \omega$$

$$= \int_{\varepsilon^{n} \circ \alpha_{1}} \omega + \dots + \int_{\varepsilon^{n} \circ \alpha_{n}} \omega$$

$$= \int_{\varepsilon^{n} \circ \gamma_{1}} \omega + \dots + \int_{\varepsilon^{n} \circ \gamma_{n}} \omega \text{ (Again due to Prop 11.42)}$$

$$= 0$$

This shows that ω is a conservative covector field on a smooth manifold with or without boundary. Thus, by Proposition 11.42 it must be exact.

Q12-6.

(a) Let α be a covariant k-tensor on a finite dimensional real vector space V. Show that $\operatorname{Sym}\alpha$ is the unique symmetric k-tensor satisfying

$$(\operatorname{Sym}\alpha)(v,\dots,v) = \alpha(v,\dots,v)$$

for all $v \in V$.

(b) Show that the symmetric product is associative: for all symmetric tensors α, β, γ ,

$$(\alpha\beta)\,\gamma = \alpha\,(\gamma\beta)$$

(c) Let $\omega^1, \dots, \omega^k$ be covectors on a finite-dimensional vector space. Show that their symmetric product satisfies

$$\omega^1, \cdots, \omega^k = \frac{1}{k!} \sum_{\sigma \in S_i} \omega^{\sigma(1)} \otimes \cdots \otimes \omega^{\sigma(k)}$$

Proof:

(a) Suppose there exists some other covariant k-tensor $(\operatorname{Sym})' \in \Sigma_k(V^*)$ such that

$$(\operatorname{Sym} \alpha)'(v, \dots, v) = (v, \dots, v)$$

Define $\beta \equiv (\operatorname{Sym}) - (\operatorname{Sym})' \in \Sigma_k(V^*)$. Now, fix $v, w_1 \in V$ and for $\epsilon > 0$ let $\gamma_v : (-\epsilon, \epsilon) \to V$ be the map

$$t \mapsto v + tw$$

Then, for all $t_0 \in (-\epsilon, \epsilon)$ we have $\beta(\gamma_v(t_0), \cdots, \gamma_v(t_0)) = 0$ so

$$\frac{d}{dt}\bigg|_{t_0}\beta(\gamma_v(t_0),\cdots,\gamma_v(t_0))=0$$

So, in particular, at t = 0,

$$\frac{d}{dt}\Big|_{t=0}\beta(\gamma_v(t_0),\cdots,\gamma_v(t_0))=\beta(w_1,v,\cdots,v)+\beta(v,w_1,\cdots,v)+\cdots+\beta(v,\cdots,v,w_1)=0$$

But since β is symmetric, this means

$$k \cdot \beta(w_1, v, \dots, v) = 0$$

$$\Longrightarrow \beta(w_1, v, \dots, v) = 0$$

$$\Longrightarrow (\operatorname{Sym}\alpha)(w_1, v, \dots, v) = (\operatorname{Sym}'\alpha)(w_1, v, \dots, v)$$

We can basically the same argument for the remaining k-1 entries so we finally obtain

$$(\operatorname{Sym}\alpha)(w_1, w_2, \cdots, w_k) = (\operatorname{Sym}'\alpha)(w_1, w_2, \cdots, w_k)$$

Thus, Sym α is unique.

(b) Suppose we have symmetric covariant tensors α, β, γ of rank k, l, m on a vector space V. Now, $\beta \gamma = \operatorname{Sym}(\beta \otimes \gamma)$ is an (l+m)-rank covector on V, so $\alpha(\beta \gamma) = \operatorname{Sym}(\alpha \otimes \operatorname{Sym}(\beta \otimes \gamma))$ is a rank (k+l+m) covariant tensor on V. For any $v \in V$,

$$(\alpha\beta)\gamma = (\operatorname{Sym}(\operatorname{Sym}(\alpha\otimes\beta)\otimes\gamma))(v,\cdots,v)$$

$$= (\operatorname{Sym}(\alpha\otimes\beta))(v,\cdots,v)\gamma(v,\cdots,v)$$

$$= \alpha(v,\cdots,v)\beta(v,\cdots,v)\gamma(v,\cdots,v)$$

$$= \alpha(v,\cdots,v)(\operatorname{Sym}(\beta\otimes\gamma))(v,\cdots,v)$$

$$= (\operatorname{Sym}\alpha\otimes(\operatorname{Sym}(\beta\otimes\gamma)))(v,\cdots,v)$$

$$= \alpha(\beta\gamma)$$

Therefore, the symmeteric product is associative.

$$\alpha (\beta \gamma) = (\alpha \beta) \gamma = \alpha \beta \gamma$$

(c) Now let $\omega^1, \dots, \omega^k$ be covectors on a finte-dimensional vector space.

We know from proposition 12.15(b) that

$$\omega^1 \omega^2 = \frac{1}{2} \left(\omega^1 \otimes \omega^2 + \omega^2 \otimes \omega^1 \right) = \frac{1}{2!} \sum_{\sigma \in S_2} \omega^{\sigma(1)} \otimes \cdots \omega^{\sigma(k)}$$

So the base case k = 2 is satisfied.

Now, let's assume that the inductive hypothesis holds for k-1 i.e.

$$\omega^1 \cdots \omega^{k-1} = \frac{1}{(k-1)!} \sum_{\sigma \in S_{k-1}} \omega^1 \otimes \cdots \otimes \omega^{k-1}$$

Then,

$$(\omega^1 \cdots \omega^{k-1}) \, \omega^k = \frac{1}{2} \left[(\omega^1 \cdots \omega^{k-1}) \otimes \omega^k + \omega^k \otimes (\omega^1 \cdots \omega^{k-1}) \right]$$

$$= \frac{1}{2} \left[\frac{1}{(k-1)!} \sum_{\sigma \in S_{k-1}} \omega^1 \otimes \cdots \otimes \omega^{k-1} \otimes \omega^k + \omega^k \otimes \frac{1}{(k-1)!} \sum_{\sigma \in S_{k-1}} \omega^1 \otimes \cdots \otimes \omega^{k-1} \right]$$

Now, by the associativity of the symmetric product shown in (b), we have

$$(\omega^1,\cdots,\omega^{k-1})\omega^k=\omega^1(\omega^2\cdots,\omega^{k-1}\omega^k)=\left(\omega^1,\cdots,\omega^{i-1}\right)\omega^i\left(\omega^{i+1},\cdots,\omega^k\right)$$

There are k ways to choose i, and all of these terms are equal. So, dividing by k, we find that the ω^{i} 's can be permuted in k! ways. Thus,

$$\omega^{1}, \dots, \omega^{k} = \frac{1}{k} \sum_{i=1}^{k} (\omega^{1}, \dots, \omega^{i-1}) \omega^{i} (\omega^{i+1}, \dots, \omega^{k})$$
$$= \frac{1}{k!} \sum_{\sigma \in S_{k}} \omega^{\sigma(1)} \otimes \omega^{\sigma(k)}$$

Q12-11. Suppose M is a smooth manifold, A is a smooth covariant tensor field on M, and $V, W \in \mathfrak{X}(M)$. Show that

$$\mathcal{L}_{V}\mathcal{L}_{W}A - \mathcal{L}_{W}\mathcal{L}_{V}A = \mathcal{L}P_{[V|W]}A$$

Proof:

Q13-2. Suppose F is a smooth vector bundle over a smooth manifold M with or without boundary, and $V \subseteq E$ is an open subset with the property that for each $p \in M$, the intersection of v with the fiber E_p is convex and non-empty. By a "section of V", we mean a (local or global section of E whose image lies in V.)

- (a) Show that there exists a smooth global section of V.
- (b) Suppose $\sigma: A \to V$ is a smooth section of V defined on a closed subset $A \subseteq M$. Show that there exists a smooth global section $\tilde{\sigma}$ of V whose restriction to A is equal to σ . Show that if V contains the image of the zero section of E, then $\tilde{\sigma}$ can be chosen to be supported in any predetermined neighborhood of A.

Proof:

Q13-13. Let (M, g) be a Riemannian manifold. A smooth vector field V on M is called a **Killing** vector field for g if the flow of V acts by isometries of g.

- (a) Show that the set of all Killing vector fields on M constitutes a Lie subalgebra of $\mathfrak{X}(M)$.
- (b) Show that a smooth vector field V on M is a Killing vector field if and only if it satisfies the following equation in each smooth local coordinate chart:

$$V^{k} \frac{\partial g_{ij}}{\partial x^{k}} + g_{jk} \frac{\partial V^{k}}{\partial x^{i}} + g_{ik} \frac{\partial V^{k}}{\partial x^{j}} = 0$$

Proof: