Taller de Modelos Predictivos

Valentina Castaño Pineda Edwin John Fredy Reyes Aguirre María Paula García Cabrales Hernán Wcheverry Freddy De La Rosa

```
# Importar librerias
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

# Lecura
ruta = '../semana_5/turistas_cartagena_data.csv'
data = pd.read_csv(ruta)

print(data.shape)
data.head()
```

(500, 10)

	Fecha	Número de Visitantes	Temperatura Media (°C)	Precipitación (mm)	Eventos Especiales	С
0	1982-12	126958.0	27.6	195.4	0.0	25
1	1983-01	136932.0	27.6	248.9	0.0	26
2	1983-02	108694.0	30.7	61.9	1.0	11
3	1983-03	124879.0	31.6	3.3	0.0	27
4	1983-04	115268.0	31.9	41.1	0.0	34

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499

Data	columns (total 10 columns):		
#	Column	Non-Null Count	Dtype
0	Fecha	495 non-null	object
1	Número de Visitantes	485 non-null	float64
2	Temperatura Media (°C)	495 non-null	float64
3	Precipitación (mm)	495 non-null	float64
4	Eventos Especiales	495 non-null	float64
5	Costo Promedio de Alojamiento (COP)	495 non-null	float64
6	Tasa de Cambio (USD/COP)	495 non-null	float64
7	Promociones de Turismo	495 non-null	float64
8	Cantidad de Vuelos y Cruceros Disponibles	495 non-null	float64
9	Ocupación Hotelera (%)	495 non-null	float64
dtype	es: float64(9), object(1)		

memory usage: 39.2+ KB

Limpieza de datos

Datos Faltantes

```
# Imprimir registros con valores nulos a lo ancho
print(data[data.isnull().any(axis=1)])
```

	Fecha	Número de	Visitantes	Temperatura	Media (°C)	\
6	NaN		NaN	_	NaN	
7	NaN		NaN		NaN	
8	NaN		NaN		NaN	
9	NaN		NaN		NaN	
10	NaN		NaN		NaN	
12	1983-12		NaN		25.8	
52	1987-03		NaN		28.2	
57	1987-08		NaN		31.9	
71	1988-10		NaN		31.1	
114	1992-04		NaN		25.9	
125	1993-03		NaN		28.1	
140	1994-06		NaN		28.4	
327	2009-10		NaN		30.7	
377	2013-11		NaN		27.3	
379	2014-01		NaN		25.0	

Precipitación (mm) Eventos Especiales \

6 7 8 9 10 12 52 57 71 114 125 140 327 377 379	NaN NaN NaN NaN NaN NaN NaN NaN 125.6 0.0 108.3 0.0 133.8 1.0 11.8 0.0 230.2 0.0 33.1 0.0 125.3 0.0 87.5 0.0 18.1 0.0 47.9 0.0	
6 7 8 9 10 12 52 57 71 114 125 140 327 377 379	Costo Promedio de Alojamiento (COP) Tasa de Cambio (USD/COP) \ NaN	
6 7 8 9 10 12 52 57 71	Promociones de Turismo Cantidad de Vuelos y Cruceros Disponibles NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	\

```
1.0
                                                                     278.0
114
125
                         0.0
                                                                     183.0
140
                         0.0
                                                                     263.0
327
                         0.0
                                                                     188.0
                         1.0
377
                                                                     192.0
379
                         0.0
                                                                     253.0
     Ocupación Hotelera (%)
6
7
                         NaN
8
                         NaN
9
                         NaN
10
                         NaN
                        53.1
12
52
                        74.6
57
                        70.3
71
                        68.6
114
                        95.4
125
                        91.4
140
                        58.0
327
                        83.1
377
                        92.2
379
                        75.7
# Ver valores nulos
print(data.isnull().sum())
Fecha
                                                5
Número de Visitantes
                                                15
Temperatura Media (°C)
                                                 5
Precipitación (mm)
                                                 5
Eventos Especiales
                                                 5
Costo Promedio de Alojamiento (COP)
                                                 5
                                                 5
Tasa de Cambio (USD/COP)
Promociones de Turismo
                                                 5
```

Eliminar las filas completamente vacías print(f'El tamaño del dataset antes de eliminar las filas vacías {data.shape}')

5 5

Cantidad de Vuelos y Cruceros Disponibles

Ocupación Hotelera (%)

dtype: int64

```
data.dropna(how='all', inplace=True)
print(f'El tamaño del dataset despues de eliminar las filas vacías {data.shape}')
El tamaño del dataset antes de eliminar las filas vacías (500, 10)
El tamaño del dataset despues de eliminar las filas vacías (495, 10)
# Rellenar 'Número de Visitantes' con la media
data['Número de Visitantes'] = data['Número de Visitantes'].fillna(data['Número de Visitantes
data.info()
<class 'pandas.core.frame.DataFrame'>
Index: 495 entries, 0 to 499
Data columns (total 10 columns):
 #
     Column
                                               Non-Null Count Dtype
     ____
                                               _____
 0
    Fecha
                                               495 non-null
                                                               object
 1
    Número de Visitantes
                                               495 non-null
                                                               float64
 2
    Temperatura Media (°C)
                                               495 non-null
                                                             float64
 3
    Precipitación (mm)
                                               495 non-null float64
 4
    Eventos Especiales
                                               495 non-null float64
     Costo Promedio de Alojamiento (COP)
 5
                                               495 non-null float64
 6
    Tasa de Cambio (USD/COP)
                                               495 non-null
                                                              float64
 7
    Promociones de Turismo
                                               495 non-null
                                                              float64
     Cantidad de Vuelos y Cruceros Disponibles
                                               495 non-null
                                                               float64
 9
     Ocupación Hotelera (%)
                                               495 non-null
                                                               float64
dtypes: float64(9), object(1)
memory usage: 42.5+ KB
```

Eliminar duplicados

```
# Identificar filas duplicadas
data[data.duplicated()]
```

Fecha Número de Visitantes Temperatura Media (°C) Precipitación (mm) Eventos Especiales Costo

```
# Eliminar duplicados
data.drop_duplicates(inplace=True)
```

Verificar Columnas númericas

```
data.describe()
```

	Número de Visitantes	Temperatura Media (°C)	Precipitación (mm)	Eventos Especiales	Costo P
count	495.000000	495.000000	495.000000	495.000000	495.0000
mean	79213.288660	28.427475	152.168485	0.187879	291329.4
std	42462.184309	2.038817	89.958267	0.391011	111495.5
min	5769.000000	25.000000	-50.000000	0.000000	100781.0
25%	42284.500000	26.600000	70.000000	0.000000	196031.5
50%	81213.000000	28.400000	154.700000	0.000000	286987.0
75%	116688.000000	30.200000	230.800000	0.000000	383196.5
max	149572.000000	32.000000	299.400000	1.000000	499845.0

Outliers en variables numéricas

Usamos gráficos de boxplots para identificar datos atípicos:

```
# Seleccionamos solo las columnas numericas
cols_num = data.select_dtypes(exclude='object').columns

fig, ax = plt.subplots(nrows=3, ncols=3, figsize=(15,12))
fig.subplots_adjust(hspace=0.5, wspace=0.1)

# Aplanar la matriz de ejes para un acceso más fácil
ax = ax.flatten()

# Graficamos un boxplot por cada una de las columnas
for i, col in enumerate(cols_num):
    sns.boxplot(x=col, data=data, ax=ax[i])
    ax[i].set_title(col)

plt.show()
```


Observaciones: - Precipitación mm tiene valores por debajo de 0 mm

Una precipitación negativa no tiene sentido, así que hay que corregir estos valores:

```
# Reemplzar los valores de precipitación menores de 0 por la media
# Calcular el promedio solo con valores no negativos
mean_value = data.loc[data['Precipitación (mm)'] >= 0, 'Precipitación (mm)'].mean()
# Reemplazar los valores menores a 0 por el promedio corregido
data.loc[data['Precipitación (mm)'] < 0, 'Precipitación (mm)'] = mean_value</pre>
```

Guardamos el dataset limpio en un nuevo archivo .csv:

```
ruta = '../semana_5/turistas_cartagena_data_clean.csv'
data.to_csv(ruta)
```

Modelo de regresión (predecir visitantes)

```
data.describe().loc[['max', 'min']]
```

	Número de Visitantes	Temperatura Media (°C)	Precipitación (mm)	Eventos Especiales	Costo Pro
max	149572.0	32.0	299.4	1.0	499845.0
min	5769.0	25.0	1.5	0.0	100781.0

Dividir el conjunto de datos en entrenamiento y prueba

(396, 5) (396,) (99, 5) (99,)

Escalamiento de datos (MinMaxScaler)

Hagamos primero el escalamiento del set de entrenamiento y vemos algunas características de esta operación.

```
from sklearn.preprocessing import MinMaxScaler
x_scaler = MinMaxScaler()
# fit_transform: Calcular máximos/mínimos y escalar el set de entrenamiento
X_train_scaled = x_scaler.fit_transform(X_train)
# Algunas características del escalador
print('Características del escalador ajustado:')
print(x_scaler.data_min_)
print(x_scaler.data_max_)
# Resultado
print('\nResultado del escalamiento sobre "X_train":')
print(f'Minimos: {X_train_scaled.min(axis=0)}')
print(f'Máximos: {X_train_scaled.max(axis=0)}')
Características del escalador ajustado:
[2.50000e+01 1.50000e+00 1.00781e+05 2.50020e+03 5.00000e+01]
[3.20000e+01 2.99400e+02 4.95755e+05 3.99673e+03 2.99000e+02]
Resultado del escalamiento sobre "X_train":
Minimos: [0. 0. 0. 0. 0.]
Máximos: [1. 1. 1. 1. 1.]
Ahora escalemos el set X_test usando el método transform():
X_test_scaled = x_scaler.transform(X_test)
print('Set de prueba: ')
print(f'Máximos: {X test scaled.max(axis=0)}')
print(f'Minimos: {X_test_scaled.min(axis=0)}')
Set de prueba:
Máximos: [1.
                     0.97784491 1.01035511 0.99019064 1.
Minimos: [0.01428571 0.01309164 0.01094756 0.00122283 0.00401606]
```

Entrenar el modelo

```
# Ahora si construir el modelo
from sklearn.linear_model import LinearRegression

# Crer el modelo de regresión lineal (instancia)
lr = LinearRegression()

# Entrenar el modelo
lr.fit(X_train_scaled, y_train) # No es necesario escalar y_train
```

LinearRegression()

Generar predicciones

Hacemos predicciones con el set de pruebas escalado y exploramos las predicciones mirando el valor máximo y mínimo de los resultados

```
# Predicción con el set de prueba
y_test_pred = lr.predict(X_test_scaled) #
print(f'Máximo: {y_test_pred.max()}')
print(f'Mínimo: {y_test_pred.min()}')
```

Máximo: 86737.970451038 Mínimo: 73154.98684923605

Errores

```
from sklearn.metrics import mean_absolute_error, mean_squared_error

mae = mean_absolute_error(y_test, y_test_pred)
mse = mean_squared_error(y_test, y_test_pred)
rmse = np.sqrt(mse)

print(f'Error Absoluto Medio (MAE): {mae:.2f}')
print(f'Error Cuadrático Medio (MSE): {mse:.2f}')
print(f'Raíz Cuadrada del Error Cuadrático Medio (RMSE): {rmse:.2f}')
```

```
Raíz Cuadrada del Error Cuadrático Medio (RMSE): 42146.73

# Calcular el promedio de los valores reales
promedio_reales = y_test.mean()

# Comparar el MAE con ese promedio
porcentaje_error_mae = (mae / promedio_reales) * 100
```

print(f"MAE representa un error del {porcentaje_error_mae:.2f}% respecto al promedio real de
Comparar el RMSE con ese promedio
porcentaje_error_mae = (rmse / promedio_reales) * 100
print(f"RMSE representa un error del {porcentaje_error_mae:.2f}% respecto al promedio real de

MAE representa un error del 48.10% respecto al promedio real de turistas. RMSE representa un error del 54.38% respecto al promedio real de turistas.

Bloque para probar el modelo con nuevos datos ingresados por el usuario

Error Absoluto Medio (MAE): 37278.66

Error Cuadrático Medio (MSE): 1776346862.51

```
# 1. Solicitar al usuario que ingrese valores de las características:

# Diccionario que va a almacenar los nuevos datos
nuevos_datos = {
    'Temperatura Media (°C)': [30],
    'Precipitación (mm)': [5],
    'Costo Promedio de Alojamiento (COP)': [200000],
    'Tasa de Cambio (USD/COP)': [4000],
    'Cantidad de Vuelos y Cruceros Disponibles': [50]
}

# 2. Crear un DataFrame con los datos ingresados
nueva_data = pd.DataFrame(nuevos_datos)

# 3. Escalar los datos ingresados usando el mismo x_scaler de entrenamiento
nueva_data_escalada = x_scaler.transform(nueva_data)

# 4. Realizar la predicción con el modelo entrenado
```

```
nueva_prediccion = lr.predict(nueva_data_escalada)
# 5. Mostrar la predicción
print('\nPredicción del número de Visitantes:')
print(f'{nueva_prediccion[0]:.0f} turistas')
```

Predicción del número de Visitantes: 85844 turistas

Modelo de Clasificación (Alta/Baja Ocupación Hotelera)

Crear variable categórica

```
data['Temporada'] = data['Ocupación Hotelera (%)'].apply(lambda x: 'Alta' if x >= 70 else 'Bata[['Ocupación Hotelera (%)', 'Temporada']].head()
```

	Ocupación Hotelera (%)	Temporada
0	88.0	Alta
1	98.4	Alta
2	72.0	Alta
3	63.9	Baja
4	89.9	Alta

Exploramos la distribución de los datos:

```
sns.countplot(x='Temporada', data=data)
plt.ylabel('Conteo')
plt.title('Cantidad de datos en temporada Alta vs Baja')
plt.show()
data['Temporada'].value_counts()
```

Cantidad de datos en temporada Alta vs Baja

250 - 200 - 150 - 100 - 50 - Alta Baja

Temporada

Temporada Alta 284 Baja 211

Name: count, dtype: int64

data['Temporada'] = data['Temporada'].map({'Alta': 1, 'Baja': 0})
data.head()

	Fecha	Número de Visitantes	Temperatura Media (°C)	Precipitación (mm)	Eventos Especiales	C_0
0	1982-12	126958.0	27.6	195.4	0.0	25
1	1983-01	136932.0	27.6	248.9	0.0	26
2	1983-02	108694.0	30.7	61.9	1.0	11
3	1983-03	124879.0	31.6	3.3	0.0	27
4	1983-04	115268.0	31.9	41.1	0.0	34

Random Forest Classifier

Dividir el conjunto de datos en entrenamiento y prueba

```
columnas_entrenamiento = [
    'Temperatura Media (°C)', 'Precipitación (mm)',
    'Costo Promedio de Alojamiento (COP)', 'Tasa de Cambio (USD/COP)',
    'Cantidad de Vuelos y Cruceros Disponibles'
]
X_class = data[columnas_entrenamiento]
y_class = data['Temporada']
# Partición
Xc_train, Xc_test, yc_train, yc_test = train_test_split(X_class, y_class,
                                                    test_size=0.2,
                                                    random_state=42)
# Imprimir tamaños resultantes
print(f'Tamaño del set de entrenamiento: {Xc_train.shape} {yc_train.shape}')
print(f'Tamaño del set de prueba: {Xc_test.shape} {yc_test.shape}')
Tamaño del set de entrenamiento: (396, 5) (396,)
Tamaño del set de prueba: (99, 5) (99,)
```

Entrenar el modelo de Bosque Aleatorio

El entrenamiento sigue la misma lógica usada epara otros modelos de Scikit-Learn:

- 1. Crear instancia del modelo
- 2. Enrenar usando 'fit()' y el set de entrenamiento

Crearemos un modelo con los hiper-parámetros por defecto:

RandomForestClassifier(oob_score=True, random_state=42)

Generar Predicciones

```
# Predicción con el set de prueba
yc_test_pred = model_class.predict(Xc_test)
```

Métricas para clasificación

```
from sklearn.metrics import accuracy_score, classification_report

# Accuracy: porcentaje de predicciones correctas.

# Precision: cuántos positivos predichos realmente lo son.

# Recall: cuántos positivos reales se detectaron.

# F1-score: balance entre precision y recall.

print("Accuracy:", accuracy_score(yc_test, yc_test_pred))
print("\nReporte de Clasificación:")
print(classification_report(yc_test, yc_test_pred))
```

Accuracy: 0.5858585858585859

Reporte de Clasificación:

support	f1-score	recall	precision	
44	0.42	0.34	0.56	0
55	0.68	0.78	0.60	1
99	0.59			accuracy
99	0.55	0.56	0.58	macro avg
99	0.56	0.59	0.58	weighted avg

```
nuevos_datos_class = {
    'Temperatura Media (°C)': [30],
    'Precipitación (mm)': [10],
    'Costo Promedio de Alojamiento (COP)': [180000],
    'Tasa de Cambio (USD/COP)': [4100],
    'Cantidad de Vuelos y Cruceros Disponibles': [60]
}

# 2. Crear un DataFrame con los datos ingresados
nueva_data_class = pd.DataFrame(nuevos_datos_class)
```

```
# # 3. Escalar los datos ingresados usando el mismo x_scaler de entrenamiento
# nueva_data_escalada = x_scaler.transform(nueva_data)

# 4. Realizar la predicción con el modelo entrenado
nueva_prediccion_class = model_class.predict(nueva_data_class)

# Cambiamos nuevamente el 1 por Alta y el 0 por Baja para mayor comprensión del resultado
nueva_prediccion_class_texto = pd.Series(nueva_prediccion_class).map({1: 'Alta', 0: 'Baja'})

# 5. Mostrar la predicción
print('\nPredicción de la Temporada:')
print(f'{nueva_prediccion_class_texto[0]}')
```

Predicción de la Temporada: Baja

data.head()

	Fecha	Número de Visitantes	Temperatura Media (°C)	Precipitación (mm)	Eventos Especiales	С
0	1982-12	126958.0	27.6	195.4	0.0	25
1	1983-01	136932.0	27.6	248.9	0.0	26
2	1983-02	108694.0	30.7	61.9	1.0	11
3	1983-03	124879.0	31.6	3.3	0.0	27
4	1983-04	115268.0	31.9	41.1	0.0	34