# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-250069

(43) Date of publication of application: 07.11.1991

(51)Int.CI.

CO9D 11/00 CO9D 11/02

(21)Application number: 02-045686

(71)Applicant: MITA IND CO LTD

(22)Date of filing:

28.02.1990

(72)Inventor: TSUJIHIRO MASAKI

FUSHIDA AKIRA TOKUNO TOSHIRO

# (54) INK FOR INK JET RECORDING

# (57)Abstract:

PURPOSE: To prepare the title ink having an excellent dispersion stability of a colorant in the ink and forming a recording image with high density, contrast, and resolution without blurring by incorporating emulsified or dispersed polymer particles dyed with a dye as the colorant into the ink.

CONSTITUTION: In step A, an emulsion wherein spherical polymer particles 4A are dispersed in an aq. medium 3 is prepd. by emulsion or dispersion polymn. In step B, a suitable dye 6, e.g. a disperse dye, is added to the emulsion to dye the particles. Thus, as shown in step C, substantially the whole of the dye is exhausted to give dyed particles 4. The resulting emulsion, as such or after being subjected to treatments necessary to produce an ink, is used as an ink. The ink has an improved dispersion stability, is prevented from blurring of ink dots, and forms a recording image high in the density, contrast, and resolution and excellent in the water resistance and fixability.



# **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]



① 特許出願公開

#### ⑫ 公 開 特 許 公 報 (A) 平3-250069

®Int. CI. 5

識別記号

庁内整理番号

③公開 平成3年(1991)11月7日

C 09 D 11/00 11/02

6917-4 J 6917-4 I

審査請求 未請求 請求項の数 2 (全7頁)

60発明の名称 インクジェット記録用インク

> 頤 平2-45686 201特

> > 晃

i

22出 願 平2(1990)2月28日

@発 明 者 廣 昌 己

大阪府大阪市中央区玉造1丁目2番28号 三田工業株式会

社内

@発 明 者 子 田 大阪府大阪市中央区玉造1丁目2番28号 三田工業株式会

社内

@発 明 者 能 敏郎 大阪府大阪市中央区玉造1丁目2番28号 大阪府大阪市中央区玉造1丁目2番28号

勿出 願 人 三田工業株式会社

四代 理 人 弁理士 鈴木 郁男

日月

1. 発明の名称

インクジェット記録用インク

- 2. 特許請求の範囲
- (i) 染料により染色された乳化重合体乃至分散重 合体粒子を分散質として含有する水性分散体が **ら成ることを特徴とするインクジェット記録用** インク.
- (2) 前記重合体粒子がサブミクロン粒子である特 許請求の範囲第1項記載のインクジェット記録 用インク。
- 3. 発明の詳細な説明

(産業上の利用分野)

本発明は、インクジェット記録用インクに関す るもので、より詳細には記録紙に施したときのニ ジミが防止されたインクジェット記録用インクに 関する。

(従来の技術)

インクジェット記録は、現像・定着等のプロセ スが不要で記録媒体として普通紙が使用可能であ

り、動作に際して音が静かであり、任意の文字、 図形等が記録でき、カラー化も容易であるという 特徴を有している。

インクジェット記録用のインクとしては、従来 染料溶液が使用されているが、記録紙にインクを 旅したとき、記録ドットにニジミが発生して、画 像に拡がりを生じたり、コントラストが低下する 傾向がどうしてもあり、また記録された趣像が耐 水性に欠けるという欠点がある。

このため、染料を使用したインクジェット記録 用インクにおいては、ニジミの防止に多大の努力 が払われており、例えば①水、有機溶媒及び水溶 性染料の組合せを使用し、染料の溶媒に対する 溶解度を5重量%以下とし、溶媒の含有量を3~ 30%の範囲とすること (特開昭 82-124166 号公 報)、②インク中に特定のジェーテル化合物を 含有させること (特開昭 6 2 - 3 2 1 5 9 号公 報)、③インク中にヘキソースまたはその糖アル コールのアルキレンオキサイド付加物等;ペン トースまたはその額アルコールのアルキレンオ

キサイド付加物等或いはグルコースのアルキレンオキサイド付加物等を含有させること(特開昭 62-15272, 62-15273, 62-15274号公報)、②界面括性物質を吸着樹脂により除去した水溶性直接染料、酸性染料を使用すること(特開昭 60-49070号公報)等が提案されている。

### (発明が解決しようとする問題点)

これらの提案は、記録紙上でのインクのニジミの程度を低減させるのには有効であるとしても、紙組織の毛細管現象によりインクがドットの周辺に拡がる傾向を完全に防止することは原理上到底できない。

従って、本発明の主な目的は、従来のインクジェット記録における上記欠点を解消し、記録紙が有する毛細管現象による水性媒体の協選にもかかわらず、記録紙上に最初に形成されるインクドットの拡がりを全く生じずに、高濃度、高コントラスト及び高解像度の画像を形成することができ、しかも形成される画像が耐水性にも優れているインクジェット記録用インクを提供することに

も小さい粒子の意味であり、粒径が1ミクロンよりも小さいことで水性媒体中への分散安定性に優れていると共に、インクとしての流動性にも優れている。

本発明では、上記乳化重合体に代えて分散重合体をも使用することができる。分散重合体とは、分散重合法、即ち、単量体は溶解するがその生成重合体は溶解しない溶媒中で単量体を重合する方法により得られた重合体粒子であって、乳化重合体よりやや大きめの粒度を有するものであって、その特性は乳化重合体のそれに著しく近似している。

本発明では、上記乳化重合体粒子乃至分散重合体粒子を染料で染色し、この染色重合体粒子をインクの着色剤とする。この染色重合体粒子は、乳化重合体粒子乃至分散重合体粒子の本質、即ち球状の粒子形状、粒度の依細さ及び均一性、及び水性媒体への分散安定性を一切扱うことなしに、着色剤となっていることが特徴である。

かくして、本発明のインクは、経時的な分散

ある.

(問題点を解決するための手段)

本発明においては、インクジェット記録用インクとして、染料により染色された乳化重合体乃至分散重合体粒子を分散質として含有する水性分散体を使用する。

#### (作用)

本発明のインクは、着色削として水溶性染料の代りに染料により染色された乳化重合体粒子を含有することが顕著な特徴である。乳化重合体とは、乳化重合法或いは重合体の後乳化(転相法)で形成される重合体の意味であり、この重合体粒子は粒径が微細且つ均斉で、単分散或いは単分散に近い粒度分布のものとして得られると共に、その水性分散体はエマルジョン乃至ラテックスの名で知られるように、水性分散媒中への分散性に優れているという利点を有する。

本発明において得られる重合体粒子はサブミクロン粒子であることが好ましい。

サプミクロン粒子とは、粒径が1ミクロンより

安定性に優れており、沈降したり或いはインクジェットのノズルを開塞する傾向が殆んどなく、 低粘度で流動性に優れているのみならず、記録紙 に施したとき、単位画像ドットのニジミを殆んど 或いは全く生じないという利点が得られる。

かくして、本発明によれば、水性媒体が紙に途 透し鉱がっても画像のニジミの発生が防止され、 しかも形成される画像は紙表面に堆積される着色 粒子であって顔料効果を有することから、濃度が高くコントラストが高く、解像力にも優れている という利点がある。また、形成される画像は、水 と接触しても再溶解することがなく耐水性を有す ると共に、着色樹脂粒子が有する造膜性により画 像の定着性にも優れているという利点を与える。 (発明の好過態様)

ド、ポリエステル、ポリビニルアセタール樹脂、 エポキシ樹脂、フェノール樹脂等が挙げられる。

後乳化(転相法)で、乳化重合体を製造するには、重合体の溶融物乃至は溶液と、乳化剤とを含有する水性媒体とを、必要により高温高圧下で混練して、重合体を連続相から分散粒子相に転相させる方法を用いることができ、この方法はラジカル重合タイプ以外の重合体から乳化重合体を製造するのに適したものである。

本発明では、微細で且つ粒径の均斉な乳化重合体乃至分散重合体を製造する上で、乳化重合法或いは分散重合法を用いるのが特に好ましく、これに用いる単量体は油溶性のもの、特にビニル芳香族炭化水素や(メタ)アクリル酸エステル類が好適である。

ピニル芳香族単量体としては、式

式中、R」は水素原子、低級アルキル基又

て使用する。

乳化重合体乃至分散重合体の粒子は、粒径を前述した範囲に調節する点を除けば、それ自体公知の任意の方法で製造できる。乳化重合法では、界面活性剥等の乳化剥を用いて、単量体を水性媒体中にサブミクロンの粒径に乳化分散させ、ラジカル重合開始剥の存在下に乳化重合させる。分散重合法では、単量体を溶解させ、ラジカル重合関始剤の存在下に単量体を重合させる。この分散重合法では生成重合体粒子の分散性を向上させるために、分散剤或いは更に分散助剤との組合せを用いるのがよい。

重合体としては、ポリエチレン、ポリプロピレン、エチレンープロピレン共重合体、エチレンー 酢酸ピニル共重合体、アイオノマー等のオレフィン 樹脂やオレフィン共重合体、ポリスチレンやス チレン共重合体の如きピニル芳香族炭化水素系重 合体、(メタ)アクリル酸エステル重合体の如き アクリル系重合体:塩化ピニル系重合体ポリアミ

はハロゲン原子であり、R。は水素原子、低級アルキル基、ハロゲン原子、アルコキシ基、二トロ基、或いはビニル基である、のビニル芳香族炭化水素、例えばスチレン、αーメチルスチレン、ビニルトルエン、αークロロスチレン、ロー・mー・p-クロロスチレン、p-エチルスチレン、シビニルベンゼンの単独又は2

また、(メタ)アクリル酸エステル単量体としては、

種以上の組合せを挙げることができる。

式中、R』は水素原子又は低級アルキル 茜、R4は水素原子、炭素数12迄の炭化 水素基、ヒドロキシアルキル基、或いはビ ニルエステル基である、

のアクリル系単量体、例えばアクリル酸メチル、 アクリル酸エチル、アクリル酸ブチル、アクリル 酸-2-エチルヘキシル、アクリル酸シクロヘキ シル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸ヘキシル、メタクリル酸ー2ーエチルヘキシル、βーヒドロキシアクリル酸エチル、アーヒドロキシアクリル酸ブロビル、δーヒドロキシメタクリル酸エチル、エチレングリコールジメタクリル酸エステル、テトラエチレングリコールジメタクリル酸エステル等が挙げられる。

これらの油溶性単量体は、単独又は2種以上の 組合せで使用し得る他、その重合体粒子の改質、 例えば染色性の向上や水分散安定性の向上の目的 で、水溶性単量体の少量、例えば全体当り1万至 30重量%、特に2万至20重量%を共重合させ ることもできる。

この水溶性単量体としては、スルホン酸、リン酸、カルボン酸型のアニオン性基を有するものであり、これらの酸基は、ナトリウム塩等のアルカリ金属塩、アンモニウム塩、アミン塩等の塩の形でも遊離酸の形でもよく、その適当な例は、スチレンスルホン酸、スチレンスルホン酸ナトリウ

99乃至50:50の重量比で用いるのがよい。

分散重合に使用される重合開始割としては、アグピスイソブチロニトリル等のアゾ化合物やロペルオキシド、セーブチルとドロベルオキシド、ジーセーブチルペルカキシド、過酸化ベンジイル、過酸酸化ベンチルペルオキシド、過酸化ベンダイル、過酸で用される。乳化重合に使用されるのが使用される。乳化重などが使用される。アイソブチロアミド硝酸塩などが使用される。この他やサイフをである。この他やサイフをである。

アゾ化合物、過酸化物等の重合開始剤の配合量は、所謂触媒透量でよく、一般に仕込単量体当たりの1.1 万至10 重量%の量で用いるのがよい。重合温度及び時間は、公知のそれでよく、一般に40万至100℃の温度で1万至50時間の重合で十分である。尚、反応系の攪拌は、全体として均質な反応が生ずるような隠和な攪拌でよく、ま

ム、2-アクリルアミド2-メチルプロパンスルホン酸、2-アシッドホスホオキシブロピルメタクリレート、2-アシッドホスホオキシエチルメタクリレート、3-クロロ2-アシッドホスホオキシブロピルメタクリレート、アクリル酸、メタクリル酸、フマル酸、クロトン酸、テトラヒドロテレフタル酸、イタコン酸、マレイン酸等である。

乳化剤としては、それ自体公知の任意のアニオン系或いはノニオン系の界面活性剤を使用することができ、この乳化剤は系中に 0 乃至 1 0 重量%、特に 0 乃至 5 重量%の濃度で存在するようにする。

この場合、系中の乳化剤が過剰に存在すると、インクジェットノズルの目詰まりの原因になることから、乳化剤濃度は重合体粒子の分散安定性が保たれる最少限であることが好ましい。重合体粒子表面に予め界面活性物質が強固に吸着している場合には乳化剤を添加する必要はない。

尚、単量体と水性媒体との量比は、一般に1:

た酸素による重合抑制を防止するために、反応系 を窒素等の不活性ガスで置換して重合を行っても よい。

分散重合法の場合、用いる有根溶媒としては、メタノール、エタノール、イソプロバノール等の低級アルコール類:アセトン、メチルエチルケトン、メチルブチルケトン等のケトン類:テトラヒドロフラン、ジオキサン等のエーテル類:酢酸エチル等のエステル類:ジメチルホルムアミド等のアミド類が、使用する単量体の種類に応じて適宜選択使用される。これらの有機溶媒は、重合体や野ができる。

また、 重合体粒子の分散安定性を高める目的で、前述した界面活性の他に、高分子系の分散安定剤、例えば、 ポリアクリル酸、 ポリアクリル酸塩、 ポリメタクリル酸塩、 (メタ) アクリル酸ー (メタ) アクリル酸エステル共重合体、 アクリル酸ービニルエーテル共重合体、 メタアクリル酸ースチレン共重合体、 カルボ

キシメチルセルロース、ポリエチレンオキシド、 ポリアクリルアミド、メチルセルロース、エチル セルロース、ヒドロキシエチルセルロース、ポリ ビニルアルコール等を用いることもできる。

重合体粒子の粒径はサブミクロンであることが、分散安定性及びノズル詰りの防止の点で必須不可欠であるが、そのコールターカウンター法によるメジアン径は、0.01万至5μm、特に0.05万至1μmの範囲にあるのがよい。

重合体粒子の染色に使用する染料は、重合体粒子に選択的に染着するという見地から水不溶性染料であることが好ましい。この水不溶性染料としては、分散染料、水不溶性含金染料、バット染料、油浴性染料等が挙げられる。この中でも、良好な染着性という点で分散染料が特に望ましいものである。勿論、水性媒体中に認め得る量の溶解染料が存在しないと条件下で、水溶性染料、例えば酸性染料、カチオン染料乃至塩基性染料、水溶性含金染料、反応性染料等も使用し得る。

使用する染料の量は、一般に重合体粒子基準で

界面括性剤や高分子分散安定剤を含み得る。また、着色重合体粒子の退荷性や再湿荷性を高める目的でエチレングリコール、グリセリン、各種多価アルコール等を含有し得る。更に、インク中に混入する金属イオンを封銀する目的で各種キレート化剤等の金属対銀剤を配合し、インクや動像の保存性を向上させるために、各種殺菌剤、防カビの、番料、紫外線吸収剤、酸化防止剤等を配合し得る。

以下に代表的な処方例(重量基準)を示す。

| 着色重合体粒子 | 10 ~30 重量部  |
|---------|-------------|
| 界面活性剤   | 0.05~ 1 "   |
| 高分子系分散剂 | 0.01~20 "   |
| 多価アルコール | 10 ~ 20 "   |
| キレート化剤  | 0.5 ~ 1 "   |
| 防カビ剤    | 0.1 ~ 0.5 " |
| (発明の効果) |             |

本発明によれば、染料で染色された乳化重合体 乃至分散重合体粒子をインクジェット記録用イン クの着色剤としたことにより、インク中での分散 0.1 乃至 2 0 重量 %、特に 1 乃至 1 0 重量 %の範囲にあるのが好ましい。

重合体粒子の染色に際しては、重合体粒子の水性分散液に、上記染料を投入し、重合体粒子の染色が生じるが、個々の重合体粒子の合 が生じない温度で処理を行えばよい。この処理温度は、重合体の種類や染料の種類によっても相違するが、一般には重合体粒子の軟化点以上であるのがよく、重合体粒子の軟化点+40℃よりも低い温度であるのがよい。

本発明のインクジェット記録用インクは、水性 媒体中に分散された着色重合体粒子を、一般に全 体当り1乃至50重量%、特に5乃至25重量% の濃度で含有する。

勿論、このインク組成物は、上記着色重合体粒子の他に、分散液の調製のために由来する乳化剤、分散剤、分散安定助剤等の分散のために望ましい成分や、インクに望ましい配合成分を含有し得る。

例えば、分散安定性や沈降防止の目的で、各種

安定性を著しく向上せしめながら、インクドットのニジミを防止しつつ、高濃度、高コントラスト、高解像度の記録顕像を形成することができ、しかも形成される頭像は耐水性や定着性にも優れているという利点が得られる。

# (実施例)

以下に本発明の実施例を示す。尚、本発明は実施例の範囲に限るものではない。

### 実施例

1 2 のセバラブルフラスコに水 5 0 0 g、スチレン2 0 0 g、スチレンスルホン酸ナトリウム1 0 gを仕込み、提

持速度1 2 0 rpm、7 0 でで1 8 時間反応して約
0.5 μmの粒子が分散した乳化重合エマルジョンを得た。次に、このフラスコにアゾ系黒色分散染料(三井東圧株式会社製 SPR Black \$200)1 0 gを分散し、8 0 でまで昇温して同じ提拌速度で5時間染色操作を行った。このエマルジョンを樹脂粒子だけが沈降する回転速度で達心分超機にかけた結果、沈降した樹脂粒子は完全に黒色に染っ

ており、またその上型みは殆んど無色透明であった。さらに、このエマルジョンを富温にまで冷却したのちにトリエチレングリコール70g、EDTA2gおよびジオキシン1gを添加した。このインクをEPSON HG-4800型インクジェットブリンターに搭載して再生紙(本州製紙餅社製「やまゆり」古紙含有量、70%)を使って印字テストを行った。その結果、ニジミは全く観察されなかった。

### 実施例 2

1 & のセバラブルフラスコにメタノール 4 0 0 g、 水 1 0 0 g、 スチレン 1 5 0 g、 スチレンスルホン酸ナトリウム 1 0 g、 ポリメタクリル酸ーアクリル酸メチル共重合体 2 g および 2 . 2 ーアゾビスイソブチニトリル 5 g を仕込み、攪拌速度 1 0 0 rpm 、 7 0 ℃で 1 8 時間反応して約 1 μ m の粒子が分散したエマルジョンを得た。次に、このフラスコにアントラキノン系 黒色分散 染料 (BASF社製 black FD-BS) 7.5 g を分散し、8 0 ℃まで昇温して同じ攪拌速度で 5 時間染

インクジェットブリンターに搭載して一般に市販されているインクジェット用ペーパーを使って印字テストを行った。その結果、ニジミは全く観察されなかった。

また、定着性も良好であった。

# 4. 図面の簡単な説明

第1 図は、本発明にインクの機能を説明するための図、

第2図は、本発明のインクの製造工程を説明するための図である。

特許出願人 三田工業株式会社

代理人 弁理士鈴木 枢



色操作を行った。このエマルジョンを樹脂粒子だけが沈降する条件で違心分離機にかけて樹脂粒子を分離した。この黒色の樹脂粒子100gを水500g、トリエチレングリコール70g、EDTA1gの混合液に投入し、水酸化ナトリウム水溶液にてpHを9に割整して完全に分散した。このインクをEPSON HG-4800型インクジェットブリンターに搭載して選紙に印字することを試みた。その結果、ニジミは全く観察されなかった。

### 実施例3

1 2 のセバラブルフラスコに水500g.スチレン200g、スチレンスルホン酸ナトリウム20gを仕込み、提择速度120rpm、70でで18時間反応して約0.1 μmの粒子が分散した乳化重合エマルジョンを得た。これを実施例1と同じ条件で染色した後、室温にまで冷却してトリエチレングリコール70g、EDTA2gおよびジオキシン1gを添加した。このインクをEPSON HG-4800型



第 2 図



