Ионы металлов в природных сорбционных системах

Алексей Иванов, Александр Малашкевич, Дмитрий Титов

На основе анализа литературных источников и опыта работы научной лаборатории при кафедре аналитической химии БГУ можно судить о значимости экспериментальных и теоретических исследований в области сорбционных процессов как для науки о природе в целом, так и для решения важных прикладных задач.

В качестве важнейших по нашим представлениям можно выделить следующие проблемы:

- 1. Сорбенты способны накапливать различные химические компоненты (ионы металлов, анионы, органические вещества и др.). Это позволяет концентрировать нужные для целей химического анализа вещества и тем самым повышать чувствительность анализа (если определенные компоненты содержатся в анализируемом объекте в очень малых концентрациях). Кроме того на основе сорбентов в последнее время созданы миниатюрные приборы, которые позволяют снижать затраты (время, реактивы, оборудование) на проведение анализа и также делать анализы «на месте».
- 2. Накопительные свойства сорбентов очень важны для природы. Во-первых, они способны выделять из грунта полезные вещества (например, микроэлементы), а затем снабжать ими растения. Во-вторых, сорбенты обеспечивают «буферность» природных объектов к загрязнителям, то есть они могут прочно связывать вредные для растений вещества и, следовательно, снижать их действие.
- 3. Сорбенты в последнее время все шире применяются в геохимических исследованиях: закономерность накопления ценных элементов, формирование и разрушение горных пород и др.
- 4. Все больше внимания привлекают сорбенты в медицине получение лекарств пролонгированного действия, удаление токсичных компонентов из организма и др.
- 5. В химической технологии сорбенты используются в целях очистки воды для улучшения ее качества (например, в теплоэнергетике), очистки производственных отходов, выделения ценных компонентов из природных сред и отходов производства. Все больше внимания уделяется сорбентам в технологии производства удобрений для сельского хозяйства (микроэлементосодержащие удобрения, ценные добавки к кормам и др.).

Нами за время занятий в лаборатории проведено 2 цикла исследований: 1) установление некоторых важных показателей, характеризующих состояние реки Свислочь, 2) оценка сорбционных свойств растительных материалов, которые по нашим оценкам могут быть использованы в решении научных, производственных и экологических проблем. Фитосорбенты во многих случаях могут не уступать, а иногда и превосходить синтетические сорбенты по эффективности применения. Однако стоимость фитосорбентов несравнимо ниже. При этом они легко возобновляются и после отработки более совместимы с природной средой в сравнение с искусственными.

Данные ионометрических измерений приведены в таблице 1. Как показывают полученные результаты, величины рН всех изученных образцов воды варьируют незначительно — в пределах 7,2-7,9 (средняя величина рН составляет 7,6). Из этого следует, что в городе Минске нет источников, которые в большой степени загрязняли бы воду веществами щелочной или кислотной природы (свободные щелочи и кислоты, или сильно гидролизующие соли).

Таблица 1. Концентрация растворенных солей											
No	Источник	рН	Общая солевая концентрация, ммоль-экв/л	Концентрация хлоридов, ммоль-экв\л	Процентное содержание хлоридов, %	Концентрация SiO ₃ ² -, ммоль- экв/л					
1	источник «Веснянка»	7,4	6,4	0,46	7,0	3,4					
2	заказник «Лебяжий»	7,9	4,6	1,94	42,0	-					
3	парк Горького	7,2	3,4	0,43	13,0	1,6					
4	о. Комсомольское	7,6	2,4	0,32	13,0	-					
5	Чижовское водохранилище	7,7	2,2	0,47	21,0	-					
6	а\в «Восточный»	7,7	2,0	0,23	12,0	-					
7	птицефабрика	7,5	1,6	0,25	16,0	-					

В таблице 2 представлены данные рК-спектроскопии исследования фитоматериалов.

Tobayyya 2 Hayyyya nV awayyya ayayyyy												
Таблица 2. Данные рК-спектроскопии												
	Область рН											
	2-3		2-7		7-12		10-12					
	NaCl	CuCl ₂	NaCl	CuCl ₂	NaCl	CuCl ₂	NaCl	CuCl ₂				
Корни красного клевера	3,86	-	5,05	-	1,62	-	0,97	-				
Ростки семян фасоли	5,76	-	7,88	-	4,8	-	4,2	-				
Корни гороха	1,51	-	2,43	-	1,07	-	0,63	-				
Корни пшеницы	1,35	-	1,79	-	0,85	-	0,65	-				
Корни белого клевера	1,00	-	2,03	-	3,10	-	2,35	-				
Корни ржи	0,71	-	1,21	-	0,63	-	0,23	-				
Корни зеленой ржи (10 дней)	1,73	-	1,94	-	0,94	-	0,74	-				
Корни картофеля	0,94		1,50	-	0,38	-	-	-				
Листья картофеля	2,21	3,00	3,69	4,54	0,94	0,79	0,35	0,46				
Листья горчицы	1,60	2,25	2,58	5,48	3,65	3,06	2,00	1,75				
Листья каштана	-	1,71	-	3,94	-	1,23	-	0,69				
Зеленые ростки ржи (10 дней)	0,99	-	1,13	-	0,51	-	0,42	-				
Семядоли гороха	1,23	-	2,00	-	0,92	-	0,23	-				
Семядоли фасоли	1,17	-	1,98	-	0,48	-	0,21	-				
Оболочка семян фасоли	0,85	-	1,78	-	0,69	-	0,49	-				

Из данных таблицы следует, что все изученные фитоматериалы содержат в большом количестве ионы H^+ , способные обмениваться на ионы металлов, т.е. проявляют функции катионообменников с высокой обменной емкостью. Особенно в этом плане выделяются корни красного клевера, ростки семян фасоли, молодые (10 дней) корни ржи, листья горчицы, картофеля, каштана, семян гороха.

Интересны в научном и прикладном отношении данные по влиянию ионов меди (II) на обменную емкость фитоматериалов. Так, в области рН 2-3 для листьев картофеля и горчицы характерно возрастание протолитической емкости на 36% и 40%. Суммарная емкость в интервале рН 2-7 на фоне CuCl₂ составляет 4,54, 5,48 и 3,94 ммоль-экв/г для листьев картофеля, горчицы и каштана соответственно. Эти величины, сопоставимые с обменной емкостью наиболее широко применяемых синтетических катионообменников. Сульфонатиониты, например, имеют емкость порядка 5,0 ммоль-экв/г, для карбоксильных катионитов эта величина составляет 8-10 ммоль-экв/г.

Важно отметить также тот факт, что изученные фитоматериалы полифункциональные. Они характеризуются особенностью участвовать в протолитических (ионообменных) процессах в разных диапазонах рН, т.е. содержат функциональные группы, имеющие константы кислотности от 2 до 12. Это указывает на возможность разнопланового применения данного вида природных материалов.