

Opponent Modelling

Im Rahmen des Seminars:

Knowledge Engineering und Lernen in Spielen SS 2006

Peter Jaremenko 18.07.2006

Thema & Herausforderung

- "Opponent Modelling" beinhaltet das Lernen wie ein Gegner handelt, um darauf aufbauend eine Gegenstrategie aufzudecken, welche diese Informationen ausnutzt.
- Was ist eine "optimale" Strategie?
- Optimale Strategie spielt immer gleich gut, egal wie gut oder schlecht der Gegner ist
- Mit Opponent Modelling: Spieler besiegt schwächere Gegner öfter als die optimale Strategie

Inhalte zu Opponent Modelling

- Einführung Spieltheorie
- Einordnung Spiele, Poker und KI
- Strategiesuchverfahren
- Beispiele anhand Poker
- Fazit & Ausblick

Spieltheorie

 Nash-Gleichgewicht: "Zustand eines strategischen Gleichgewichts, von dem ausgehend kein einzelner Spieler

für sich einen Vorteil erzielen kann, indem er

Min. der Verluste statt Max. des Gewinns

allein seine Strategie verändert. "

Perfekter Gegner ?

Beispiele Spieltheorie

"Gefangenendilemma"

Gestehen (G) oder

Nicht Gestehen (N)

	G	Z
G	-2	-5
	-2	-1
Z	-1	0
	-5	0

Optimum (N,N) aber Nash-Gleichgewicht (G,G) Stein-Papier-Schere (RoShamBo)

	Stein	Papier	Schere
Stein	0	-1	1
Papier	1	0	-1
Schere	-1	1	0

Nullsummenspiel, optimal ist gleichverteilte Auswahl (gemischte Strategie), kein Nash-Gg vorhanden

Klassifizierung von Spielen

- Spiele bieten guten Rahmen zur Forschung an Künstlicher Intelligenz "Computer Games are the biggest AI success story to date" [Schaeffer]
- Klassifizierung nach Zufallseinfluss und Informationsgrad des Spielstandes entscheidend

	· ·	
	Kein Zufall	Zufall
Perfekte Information	Schach	Backgammon
Unvoll- ständige Information	Schiffe versenken	Poker

Poker

- Deterministische Welt unrealistisch Realität beinhaltet häufig Stochastik und unvollständige Information
- Kartenspiel in Stufen verdeckte und öffentliche Karten – setzen von Geld, um mit Blatt / vorgetäuschtem Blatt Profit zu maximieren – bis Showdown jeweils alle Gebote der Mitspieler ausgeglichen
- Zahlreiche Entscheidungen während den Spielrunden beeinflussen Erfolgsrate

KI Aspekte im Poker

- Entscheidungstheorie (Zufall und Unsicherheit)
- Risikobewertung (stufenweise Karten und Einsätze)
- Gegner Modellierung

(Strategien und Wiederholungen durchschauen)

Verbindung zu anderen Kl Bereichen

- Benutzermodellierung (Verhaltensmuster und Vorlieben erfassen und berücksichtigen)
- Politiken festlegen und Verhandlungen führen (Ansätze von Spieltheorie in Gesetz, Politik, Wirtschaft und Militär)
- Online Auktionen

Heuristischer Ansatz

- Regelbasiertes Expertensystem
- Grundlagen für Anfänger (Hand spielbar, passenmitgehen-erhöhen, eigene Karten verbergen und interpretieren der Gegnerkarten)
- Im Poker zu viele Möglichkeiten durch Unsicherheit, zu viele Entscheidungsszenarien
- Zudem durchschaubar
- Immerhin mittlere Spielstärke bei "full-ring" (bsp.10 Spieler) Runden

Simulationsbasierter Ansatz

- Unvollständige Information erschwert Entscheidungsfindung
- Raten des Gegnerblattes und Vorhersehen wie Erfolg erzielbar
- Simulation von Handlungsentscheidungen und Berechnung von Erwartungswerten (Bewertungen notwendig)
- Vorteile gg. Heuristiken: automatische Entdeckung dynamischer Setzstrategien bei verschiedenen Spielbedingungen, einheitliches Rahmenwerk, nicht basierend auf Expertenwissen
- Aber! Unwissendheit und Nichtberücksichtigung vom Gegner
- Zudem zu viele nicht zu simulierende Nebeneffekte vorhanden

Spieltheoretischer Ansatz

- Beschränkt auf 2 Spieler Variante
- Optimale Strategie führt zu Nash-Gleichgewicht und hat zwei Beweggründe:
 - Führt zu besten Ergebnissen, vorausgesetzt Gegner spielt best-response-Strategie
 - Gegner kann trotz Kenntnis über Strategie keinen Vorteil daraus ziehen
- Komplexitätsproblem führt zu Approximationen, welche jedoch obige Eigenschaften nicht mehr garantieren können

Heuristischer suchbasierter Ansatz

- Vorgehensweise der Rückwärtsinduktion des Spielbaums um Entscheidung zu ermitteln
 - Rekursive Betrachtung aller möglichen Aktionen bis Spielende (Blätter) bildet Spielbaum
 - Ausgang des Spiels (Gewinn, Verlust..) ist bekannt
 - Aktion, die zu diesem Spielstand führt, wird mit dessen Wert bewertet
 - Vermutung welche Aktion Spieler auswählt und Wiederholung für vorherige Entscheidungspunkte

Heuristischer suchbasierter Ansatz (2)

Minimax-Search

- Spieler Max wählt jeweils bestverfügbare Aktion
- Spieler Min ebenso aufgrund 2 Spieler-Nullsummenspiel gleichzeitig schlechteste Aktion aus Sicht von Max
- Spieltheoretisch optimale Strategie
- Eignung bei perfekter Information
- Vollständige Betrachtung oft nicht möglich
- Approximation durch Bewertungsfunktionen, Pruning (nicht optimal, aber erfolgreich)
- Ansätze für Poker: Fokussierung der Entscheidungsmöglichkeiten auf Kartenhand, Zufallberücksichtigung möglich, jedoch Problem der unvollständigen Information

Heuristischer suchbasierter Ansatz (3)

- Expectimax-Search
 - Gegner entscheidet individuell, nicht deterministisch optimal
 - Kein hypothetisch optimaler Gegner mehr sondern spezifischer Gegner
 - Spieler wählt weiterhin bestverfügbare Aktion
 - Für Gegneraktion werden Erwartungswerte basierend auf vorherbestimmten Strategien und deren Wahrscheinlichkeiten berechnet

Heuristischer suchbasierter Ansatz (4)

Opponent Modelling (perfekte Information):

- Reibman and Ballard's-Min Search
 - Entsprechend der vorhergesagten Stärke des Gegners ergeben sich Entscheidungswahrscheinlichkeiten mit zugehörigen Erwartungswerten
- Jansen's Probi-max-Search
 - Betrachtet eine bekannte Verliererposition im Schach gegen einen fehleranfälligen Gegner (Heuristken für Fallen)
- Sen and Aurora's Maximum Expected Utility Player
 - Benutzt Trainingsphase um Gegner zu beobachten und ein opponent model aufzustellen
- Probabilisic opponent-model Search
 - Kenntnis verschiedener Bewertungsfunktionen des Gegners (Gegnertypen) und dementsprechende Schätzungen
 - Experimentelle Analysen im Spiel "Lines of Action"

Beispiel RoShamBo

Erfolgsrezepte Opponent Modelling

- Erfolg basiert auf Gegner "durchschauen"
- Gegnermodell erstellen und ausnutzen
- Besonderes Interesse an Schwachstellen (bei unvollständiger Information erst aufdecken!)
- Aktion nur bevorzugt einsetzen, wenn Kenntnis besteht, dass Gegner auch eine Aktion bevorzugt
- Viel gewinnen Variation beibehalten (defensives Verhalten zum Selbstschutz)

Expectimax Search in Poker

- Miximix und Miximax Anpassung an unvollständige Information
- Entscheidungsknoten, Zufallsknoten und Blattknoten (Spiel vorüber, keine Aktionen mehr)
- Versteckte Informationen führen zu nicht unterscheidbaren Handlungsknoten (Spielzustand unbekannt)- werden als "information set" zusammengefasst (bei pefekter Information is= ein Knoten)
- Anzahl der Blätter im Spielbaum von 2 Spieler Texas Hold'em zu Beginn ca. 697 Billionen – bei einem Spieler der immer mitgeht ca. 4,55 Billionen

Expectimax Search in Poker (2)

Beispiel:Kuhn Poker

- 2 Spieler mit jeweils 2 GE einzusetzendem Kapital
- 3-er Kartendeck: Bube (B), Dame (D), König (K)
- Spielverlauf
 - Grundeinsatz je 1GE
 - Beide Spieler erhalten 1 Karte
 - In der Setzrunde können beide passen, die verbleibende GE setzen oder aussteigen

Expectimax Search in Poker (3)

(D,B): Spieler hat die Dame, Gegner den Buben

Expectimax Search in Poker (4)

information set

Expectimax Search in Poker (5)

Auswertung der Blattknoten: $E(L) = (P_{win} \times L_{pot}) - L_{cost}$

Expectimax Search in Poker (6)

Entscheidungsknoten:

Miximax: $E(V) = max(E(V_{setzen}), E(V_{passen}))$

Miximix: $E(V) = P(V_{setzen}) \times E(V_{setzen}) + P(V_{passen}) \times E(V_{passen})$

Expectimax Search in Poker (7)

Opponent Modelling

Expectimax Search in Poker (8)

Opponent Modelling

Expectimax Search in Poker (9)

Opponent Modelling

Bube

König

Expectimax Search in Poker (10)

Opponent Modelling

Max (0,7;0,8) = 0,8

Opponent Modelling im Poker

- 2 Klassen der Modellierung
- Strategiemodelle versuchen direkt die Strategie des Gegners zu erlernen – daher nicht anwendbar bei unvollständigen Information
- Beobachtungsmodelle basieren nur auf Beobachtungen aus der Perspektive des Entscheidenden
- Ermöglichen Prognostizieren von Handlungs-, Zufallshäufigkeiten und Aufzudeckenden Karten beim "Showdown"
- Beobachtungsmodelle geeigneter f
 ür Poker
 - Beim passen im Gegensatz zu Strategiemodellen kein Informationsverlust
 - Sind einfacher aufzustellen
 - Informationen geeigneter als Input für Expectimax

Opponent Modelling im Poker (2)

- Beobachtungsmodelle für Poker sollen
 Wahrscheinlichkeitsverteilung über Gegnerhandlungen und Zufall sowie Wahrscheinlichkeiten eines Showdown-Sieges liefern
- Generalisierung des Spielerverlaufs erforderlich
- Hinsichtlich der Gegnerhandlungen werden nur Setzkonstellationen ausgewertet
- Für den Showdown wird eine Gewinnrate aller möglichen Kartenkombinationen des Gegners ermittelt
- Diese wird als Histogramm abgespeichert und mit ähnlich hinterlegten Klassen (10 Vergleichsstufen) abgeglichen

Opponent Modelling im Poker (3)

Test mit Leduc Holde'm Pokervariante ohne Generalisierung:

- Gegenspieler der immer mitgeht (CallPlayer)
 - Aufgrund falscher default Einstellung zunächst schlecht, verbessert aber seine Strategie und ist nach 200.000 Runden auf Best-Response-Level
- Gegenspieler der immer erhöht (RaisePlayer)
 - Ähnlich wie CallPlayer, benötigt aber 1,8 Millionen Runden wegen größerem Entscheidungsraum
- Gegen NashPlayer nach 4 Millionen Runden ausgeglichen

Opponent Modelling im Poker (4)

Test mit Texas Hold'em Variante mit Generalisierung als Approximation:

- Poki basiert auf heuristischem Ansatz
 - bei "full ring" mittlere Spielstärke
 - schwach bei "heads-up"
 - Chancenlos nachdem (ca. 500 Runden) Schwachstelle aufgedeckt wurde
- PsOpti4 basiert auf spieltheoretischem Ansatz
 - Zunächst (ca. 5.000 Runden) ist PsOpti4 überlegen, ab ca. 150.000 Runden jedoch unterlegen
 - Nachgebessert nachdem Bug entdeckt wurde
- Keine signifikanten Tests gegen Menschen bisher

Fazit & Ausblick

- Techniken und Ansätze des Opponent Modelling vorgestellt
- Forschungsbedarf für Erweiterungen und Verbesserungen notwendig (Intuition, Interpretation)
- Beeindruckend gegen Poki, weltklasse
 Computerpokerspieler noch weit entfernt
 - Schnelleres Opponent Modelling
 - Exploration/ exploitation tradeoff finden
 - Wechselnde Strategien
 - Unabhängig von Spieleranzahl

Quellen

- T. Schauenberg: "Opponent Modelling and Search in Poker".
 M.Sc.thesis, University of Alberta, 2006
- D. Koller, A. Pfeffer: "Representations and Solutions for Game-Theoretic Problems". In Artificial Intelligence 94(1), 1997
- M. Bowling, M. Veloso: "Rational and Convergent Learning in Stochastic Games". Int'l Joint Conference on Artificial Intelligence, Seattle, 2001.
- D. Billings, M. Bowling et al.: "Game Tree Search with Adaptation in Stochastic Imperfect Information Games". In Computers and Games, 2004

Vortragsende

- Vielen Dank für die Aufmerksamkeit!
- Fragen ???