УДК 532.23, 553.048

М. И. Райковский

Московский физико-технический институт (национальный исследовательский университет)

Численный метод расчета фазового равновесия углеводородов с учетом капиллярных свойств для заданных пористых сред

Настоящая работа посвящена анализу численного метода расчета двухфазного равновесия углеводородной смеси с капиллярным скачком давления с привязкой к конкретной пористой среде. Данный метод представляет собой совместный анализ термодинамической капиллярной кривой, полученной путем расчета фазавого равновесия с капиллярным скачком углеводородной смеси, которая описывается уравнением состояния Пенга — Робинсона, и экспериментальной капиллярной кривой, описывающей пористую среду.

Полученные результаты демонстрируют возможности использования данного метода при расчетах с учетом эффекта капиллярного скачка давления. Описанная расчетнотеоретическая методика применима к системам с произвольным числом компонент и легко обобщается на другие уравнения состояния, например, такое, как уравнение Редлиха — Квонга.

Ключевые слова: капиллярный скачок давления, насыщенность фазы, фазовое равновесие, газоконденсатная смесь, свободная энергия

M. I. Raikovskyi

Moscow Institute of Physics and Technology

Numerical method for calculating the phase equilibrium of hydrocarbons taking into account capillary properties for given porous media

This work is devoted to the analysis of a numerical method for calculating the two-phase equilibrium of a hydrocarbon mixture with a capillary pressure jump with reference to a specific porous medium. This method is a joint analysis of the thermodynamic capillary curve obtained by calculating the phase equilibrium with a capillary jump of a hydrocarbon mixture, which is described by the Peng – Robinson equation of state, and the experimental capillary curve describing a porous medium.

The results obtained demonstrate the possibilities of using this method in calculations taking into account the capillary pressure jump effect. The described calculation-theoretical technique is applicable to systems with an arbitrary number of components and can be easily generalized to other equations of state, such as the Redlich – Kwong equation.

Key words: capillary pressure jump, phase saturation, phase equilibrium, gascondensate mixture, free energy

С) Райковский М.И., 2023

[©] Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)», 2023

1. Введение

В практике проектирования разработки газоконденсатных и нефтегазовых месторождений [1] необходимой составляющей является расчет фазовых переходов газ-жидкость. В настоящее время общепринятым методом анализа фазового поведения углеводородных смесей является подход на основе уравнений состояния (УС), например, уравнение Пенга – Робинсона [2, 3]. Метод УС встроен в пластовые симуляторы и используется в композиционных гидродинамических моделях в соответствии с существующими требованиями [4].

Однако при моделировании фазового равновесия в современных популярных пластовых симуляторах капиллярные эффекты не учитываются. Влияние капиллярных сил на равновесие между газовой и жидкой фазами является недостаточно изученным. Поэтому представляет интерес систематический анализ численных методов расчета фазового равновесия с учетом свойств пористой среды, а также влияния капиллярных сил на составы фаз углеводородных смесей. В публикациях [5,6] отмечалась важность учета капиллярных эффектов, которые учитывались одновременно при расчете фазового равновесия газоконденсатной смеси и при моделировании течения в пористой среде, в частности, в окрестности добывающей скважины.

В настоящей работе представлен анализ методики совмещения результатов термодинамических расчетов зависимости давления капиллярного скачка от насыщенности, представленных в работе [7], с любыми участками коллектора, характеризующимися разными кривыми капиллярного давления. Таким образом, задача сводится к отысканию общих точек термодинамической капиллярной кривой и экспериментальной капиллярной кривой.

2. Теоретическая постановка

Опишем теоретическую постановку задачи. Пусть для некоторой горной породы имеется характеризующая ее капиллярная кривая (КК):

$$P_c = P_c(S), \tag{1}$$

полученная из эксперимента, например, путем нагнетания ртути в образец [8]. Здесь S – насыщенность, а P_c – давление капиллярного скачка, которая определяется выражением

$$P_{liq} - P_{qas} = P_c. (2)$$

Пусть также имеется термодинамическая зависимость насыщенности конденсата от давления в фазах, которая описывается уравнением (3):

$$P_c = P_c(S, P_{lia}, P_{gas}), \tag{3}$$

полученная путем термодинамических расчетов фазового равновесия углеводородной смеси с единым начальным составом без учета пористой среды, представленных в [7].

Совместный численный анализ уравнений (1) и (3) позволяет получить значения насыщенности конденсата (S_{liq}) и давления жидкой фазы (P_{liq}) при заданной температуре (T) и давлении газовой фазы (P_{gas}) , характеризующие фазовый состав смеси.

В зависимости от свойств пористой среды предполагается три различные ситуации взаимного расположения кривых (1) и (3): смачиваемой пористой среды, несмачиваемой пористой среды, случай смешанной смачиваемости.

KK для смачиваемой пористой среды описывается следующими уравнениями: пусть r – размер пор, а $\varphi(r)$ – их распределение, тогда

$$P_{liq} - P_{gas} = P_c = \frac{\beta_w}{r},\tag{4}$$

$$V(r) = \alpha_w r^3, (5)$$

$$\int \varphi(r)dr = 1,\tag{6}$$

$$\int V(r)\varphi(r)dr = \Phi,\tag{7}$$

$$\frac{1}{\Phi} \int_0^R V(r)\varphi(r)dr = S_w, \tag{8}$$

$$P_{liq} - P_{gas} = P_c = \frac{\beta_w}{R},\tag{9}$$

где V(r) – объем пор, а α_w и β_w – некоторые коэффициенты для смачиваемой пористой среды, при этом величина α_w безразмерная, а β_w имеет размерность [H/м]. В данном случае КК (1) и (3) имеют как минимум одну точку пересечения в области положительных значений капиллярного скачка (см. рис. 1а). В данном случае давление в жидкой фазе выше давления в газовой ($P_{liq} > P_{gas}$).

Случай несмачиваемой пористой среды имеет следующее аналитическое описание:

$$P_c = \frac{\beta_u}{r},\tag{10}$$

$$V(r) = \alpha_u r^3,\tag{11}$$

$$\frac{1}{\Phi} \int_0^R V(r)\varphi(r)dr = S_u,\tag{12}$$

$$P_{liq} - P_{gas} = P_c = \frac{\beta_u}{R},\tag{13}$$

где α_u и β_u – некоторые коэффициенты для смачиваемой пористой среды, при этом аналогично случаю смачиваемой пористой среды величина α_u безразмерная, а β_u имеет размерность [H/м], а значение Φ определяется выражением (7). В рассматриваемом случае несмачиваемой пористой среды КК (1) и (3) имеют так же, как и в случае смачиваемой пористой среды, минимум одну точку пересечения в области отрицательных значений, что соответствует случаю, когда давление в газовой фазе выше давления в жидкой ($P_{liq} < P_{gas}$) (см. рис. 16).

В случае если пористая среда имеет смешанную смачиваемость, выполняются оба варианта и КК имеют как минимум две точки пересечения, что можно увидеть на рис. 1в. Данный случай описывается следующим набором уравнений: пусть $\varphi_w(r)$ и $\varphi_u(r)$ – распределение пор для случаев смачиваемой и несмачиваемой пористых сред соответственно, тогда

$$\int_{0}^{+\infty} (\varphi_w(r) + \varphi_u(r))dr = 1, \tag{14}$$

$$\int_{0}^{+\infty} (V_w(r)\varphi_w(r) + V_u(r)\varphi_u(r))dr = \Phi, \tag{15}$$

$$\frac{1}{\Phi} \left(\int_0^{+\infty} V_w(r) \varphi_w(r) dr + \int_R^{+\infty} V_u(r) \varphi_u(r) dr \right) = S_{uw}, \tag{16}$$

где значения $V_w(r)$ и $V_u(r)$ определяются выражениями (5) и (11) соответственно, а значение переменной R получается из уравнения (13).

Определив координаты точки пересечения KK (1) и (3), а также давление в газовой фазе, возможно получить составы фаз рассматриваемой углеводородной смеси, используя метод расчета фазового равновесия с капиллярным скачком, который описан в [7].

Рис. 1. Возможные случаи пересечения капиллярных кривых: а) смачиваемая пористая среда; б) несмачиваемая пористая среда; в) смешанная смачиваемость

В настоящей работе рассматриваются две углеводородные смеси. Первая летучая смесь из 15 компонент, а вторая газоконденсатная смесь состоит из 10 компонент. Сами компоненты и их мольные концентрации для первой и второй углеводородной смеси представлены в табл. 1 и 2 соответственно, а также способ определения КК с использованием модели Брукса — Кори (МБК).

Таблица 1 Состав и мольные концентрации 1-й углеводородной смеси

		H_2S												
0,81	2,9	13,32	43,24	$8,\!53$	4,78	1,06	2,4	1,2	$1,\!25$	1,94	2,33	2,64	2,22	1,13

Таблица 2 Состав и мольные концентрации 2-й углеводородной смеси

N_2	CO_2	C1	C2	C3	C4	C5	C6+	C11+	C27+
0,689	1,089	78,64	8,095	3,857	2,195	0,879	2,854	1,564	0,135

В МБК КК аппроксимируется уравнением

$$S = S_0 + (1 - S_0) \left(\frac{P_{c0}}{Pc}\right)^{\frac{1}{n}},\tag{17}$$

где значения S_0, P_{c0}, n определяются из экспериментальных данных.

Дальнейшие расчеты кривой, описываемой уравнением (1), будут описаны с учетом данной модели.

3. Результаты расчета

Параметры S_0 , P_{c0} , n принимают значения, показанные в табл. 3.

Таблица 3

Значение параметров МБК

S_0	$P_{c0}(\text{fap})$	n
0,24	0,896	1,18

График для выражения (17), построенный с учетом параметров из табл. 3, изображен на рис. 2. Из данного рисунка видно, что для любого значения насыщенности (S) давления

капиллярного скачка (P_c) остаются положительными, что, исходя из вышепроведенного анализа возможных капиллярных кривых, соответствует случаю смачиваемой пористой среды, и, как отмечалось ранее, для значений давлений в фазах будет верно соотношение $P_{gas} \leq P_{liq}$.

Рис. 2. Аппроксимация капиллярной кривой по МБК

Пористая среда, которая описывается МБК с параметрами из табл. 3, не соответствует пористой среде ни одной из смесей, следовательно, необходимы преобразования КК. Стоит также заметить, что из этого следует возможность несуществования точек пересечения для кривых (1) и (3) для рассматриваемых смесей.

КК, аппроксимируемая уравнением (17), также, ввиду смачиваемости пористой среды, описывается уравнением (4). В уравнении (4) величина β_w представима в виде $\beta_w = \sigma \cos \theta$, где σ – коэффициент поверхностного натяжения, θ – угол смачивания. Тогда уравнение (4) принимает вид

$$P_c = \frac{\sigma \cos \theta}{r},\tag{18}$$

где r является функцией пористости (ψ) и проницаемости (k) и, в свою очередь, описывается выражением

$$r = \left(\frac{k}{\psi}\right)^{\frac{1}{2}}.\tag{19}$$

Если мы предполагаем, что рассматриваемые нами смеси находятся в пористой среде, которая описывается уравнением (17), то такие параметры, как пористость, проницаемость и угол смачивания остаются постоянными ($k={\rm Const},\ \psi={\rm Const},\ \theta={\rm Const})$, тогда для КК Брукса – Кори ($P_{c(BC)}$) и КК рассматриваемой углеводородной смеси ($P_{c(mix)}$) верно, опираясь на выражения (18) и (19), следующее соотношение:

$$\frac{P_{c(BC)}}{P_{c(mix)}} = \frac{\sigma_{BC}}{\sigma_{mix}}.$$

Отсюда несложно получить поправку для рассматриваемой углеводородной смеси относительно MБK:

$$P_{c(mix)} = \frac{\sigma_{mix}}{\sigma_{BC}} P_{c(BC)}.$$
 (20)

Расчет значения величины поверхностного натяжения для смеси проводился по следующей формуле:

$$\sigma_{mix} = \frac{\sum_{k=1} \sigma_k}{K} = \frac{\sum_{k=1} \left(\sum_{n=1} \Pi_n \left(\frac{x_n}{V_l} - \frac{y_n}{V_g} \right) \right)^4}{K}, \tag{21}$$

где Π_n – парахор, x_n и y_n – мольные концентрации жидкой и газовой фаз соответственно, V_l и V_g – мольный объем жидкой и газовой фаз соответственно. Расчет значений x_n и y_n проводился для K точек фазовой диаграммы в окрестности точки росы с учетом капиллярного скачка в координатах (P_{gas}, P_{liq}) при температуре $T=380~{\rm K}$.

Значения величины поверхностных натяжений для обеих смесей, а также для МБК представлены в табл. 4.

Таблица 4 Значения величины поверхностного натяжения для обеих рассматриваемых углеводородных смесей, а также МБК

$\sigma_{mix1} \; ({ m H/m})$	$\sigma_{mix2} \; ({ m H/m})$	$\sigma_{BC} \; ({ m H/m})$
$0,\!0001452$	0,00003482	0,03

По выражению (20) получаем, что значения капиллярного скачка для 1-й смеси в примерно 200 раз меньше, чем для МБК и лежит в диапазоне $P_c \in [0,005;\ 0,04]$ бар, а значение капиллярного скачка для 2-й смеси в примерно 860 раз меньше и лежит в диапазоне $P_c \in [0,001;\ 0,01]$ бар. КК для обеих смесей, которые были получены по формулам (20) и (21), продемонстрированы на рис. 3.

Рис. 3. Преобразованные капиллярные кривые: а) капиллярная кривая для 1-й смеси с коэффициентом поверхностного натяжения $\sigma_{mix1}=1.452\times 10^{-4},$ б) капиллярная кривая для 2-й смеси с коэффициентом поверхностного натяжения $\sigma_{mix2}=3.482\cdot 10^{-5}$

Для исключения возможности несуществования точек пересечения был произведен графический анализ преобразованных КК и кривой (3) на наличие общих точек. Для 1-й летучей смеси при температуре смеси T=380 К для любого значения $P_{gas} \in [100;\ 273]$ бар существует одна точка перерсечения, а для 2-газоконденсатной смеси при температуре T=380 К для любого значения $P_{gas} \in [100;\ 388]$ бар не существует точек пересечения. На рис. 4а продемонстрированы КК для летучей смеси, а также КК для трех различных давлений в газовой фазе, а на рис. 4б показаны КК для газоконденсатной смеси, а также КК для трех различных давлений в газе. Опираясь на результаты графического анализа, дальнейшие расчеты проводились только для 1-й летучей углеводородной смеси.

Нахождение точек пересечения КК проводилось путем решения нелинейного уравнения

$$u(S, P_{gas}) = p_c(S) - P_c(S, P_{gas}),$$
 (22)

где $p_c(S)$ – KK для 1-й углеводородной смеси соответственно.

Рис. 4. Графический анализ КК: а) графический анализ для 1-й летучей углеводородной смеси; б) графический анализ для 2-й газоконденсатной углеводородной смеси

Для представленных на рис. 4а КК получены с помощью уравнения (22) координаты точек пересечения, а также составы фаз. Расчеты фазового равновесия для первой летучей углеводородной смеси для давлений в газовой фазе $P_{gas}=175,304$ бар, $P_{gas}=217,14$ бар, $P_{gas}=258,98$ бар пр температуре $T=380~{\rm K}$ с учетом капиллярного скачка и без него продемонстрировали, что разница мольных концентраций составляет порядка 0,1%. При этом влияние капиллярного скачка на состав жидкой фазы тем больше, чем ближе P_{gas} к значению давления в точке росы.

В результате решения уравнения (22) при температуре $T=380~{\rm K}$ множество точек пересечения отложены пунктирной линией на фазовой диаграмме ($\Phi \Xi$) (рис. 5).

Рис. 5. Множество точек пересечения на фазовой диаграмме

В рассматриваемых масштабах значений велтчин P_{gas} и P_{liq} на $\Phi Д$ множество точек пересечения визуально слабо отличимо от биссектрисы (множество точек, для которых $P_{gas} = P_{liq}$), что следует из диапазона значений $P_c \in [0,005 \text{ бар};\ 0,04 \text{ бар}]$ в то время как величина капиллярного скачка на диаграмме может привышать $P_c = 100 \text{ бар}$.

4. Заключение

Представленные результаты демонстрируют возможности разработанной методики расчета капиллярного скачка при заданном значении в газовой фазе (P_{gas}) учитывать влияние капиллярных сил при фазовых переходах типа газ-жидкость, которые имеют место при разработке газоконденсатных и газонефтяных залежей.

Принимая во внимание духфазные области, полученные в [7], и возможное взаимное расположение КК (1) и (3), продемонстрированного на рис. 1, можно заметить, что при зависимости между давлениями фаз, определяемой выражением $P_{liq} = P_{gas} + P_c$, все точки пересечения кривых (1) и (3) находятся в области выше биссектрисы, а следовательно, существование всех точек области двухфазных состояний углеводородной газоконденсатной смеси, находящейся выше точки росы и полученной в рамках исключительно термодинамических расчетов, невозможно для случая смачиваемой пористой среды. Совершенно противоположный результат при сохранении такой же зависимости между давлениями получается для случаев смешанной смачиваемости и несмачиваемой пористой среды.

Список литературы

- **1.** Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. Ижевск: Институт компьютерных исследования, 2005. 544 с.
- **2.** *Брусиловский А.И.* Фазовые превращения при разработке месторождений нефти и газа. Москва: Грааль, 2002. 575 с.
- 3. Firozabadi A. Thermodynamics of Hydrocarbon Reservoirs. New York: McGraw-Hill, 1998.
- **4.** Закревский К.Е., Максимова К.Е. РД 153-39.0-047-00. Регламент по созданию постоянно-действующих геолого-технологических моделей нефтяных и газонефтяных месторождений. Москва: Грааль, 2002. 143 с.
- **5.** Bedrikovetsky P. Mathematical Theory of Oil and Gas Recovery. New York: Springer Science+Business Media, 1993.
- 6. Динариев О.Ю., Евсеев Н.В. О роли капиллярных сил при фильтрации газоконденсатной смеси вблизи скважины // Инженерно-физический журнал. 2004. Т. 77, № 11. С. 17–23.
- 7. *Райковский М.И.*, Демьянов А.Ю., Динариев О.Ю. Об учете капиллярных сил при моделировании газоконденсатных смесей // Известия высших учебных заведений. Нефть и газ. 2022. № 2. С. 37–52.
- 8. *Тиаб Дж., Доналдсон Эрл Ч.* Петрофизика: теория и практика изучения коллекторских свойств горных пород и движения пластовых флюидов / пер. с английского. Москва: ООО «Премиум Инжиниринг», 2009. 868 с.

References

- 1. Basiev K.S., Dmitriev N.M, Rozenberg G.D. Neftegazovaia gidromehanika: Uchebnoe posobie dla vuzov. Izhevsk: Institute of Computer Research, 2005. 544 p. (in Russian).
- **2.** Brusilovskiy A.I. Fazovye prevrashcheniya pri pazrabotke mestorozhdeniy nefti i gaza. Moscow: Graal Publ., 2002. 575 p.(in Russian).
- **3.** Firoozabadi A. Thermodynamics of Hydrocarbon Reservoirs. New York: McGraw-Hill, 1998
- **4.** Zakrevskiy K.E., Maksimov M.M. RD 153-39.0-047-00. Reglament po sozdaniyu postoyanno-deystvuyushchih modeley neftaynyh i gazokondensatnyh mestorozhdeniy. Moscow: Graal Publ., 2000. 143 p. (in Russian).

- **5.** Bedrikovetsky P. Mathematical Theory of Oil and Gas Recovery. New York: Springer Science+Business Media, 1993.
- **6.** Dinariev O. Yu., Evseev N. V. O roli kapillarnyh sil pri filtracii gazokondensatnoy smesi vblizi skvazhiny. Inzhenerno-fizicheskiy zhurnal. 2004. V. 77, N 11. P. 17–23. (in Russian).
- 7. Raikovskyi M.I., Demianov A.Yu., Dinariev O.Yu. On the accounting of capillary forces in the modeling of gas-condensate mixtures. Oil and Gas Studies. 2022. N 2. P. 37–52. (in Russian).
- 8. Tiab Dj., Donaldson Erle C. Petrophizika: teoria i praktika kollektornih svoistv gornih porod i dvigeniyi plastovih phluidov. Translation from English. Moscow: OOO «Premium Enginiring», 2009. 868 p.

Поступила в редакцию 21.06.2023