科目名	量子力学	対象		学部研究科		学 科 専攻科		学新番号	F	評	点
2023年 8月 3日(木) 2時限				担当		学年	氏名		L		F . 5
試験 時間	60 ,	注意事項	1.年記用。 2.下記の。 【 限		导 込可				,)	

以下の各問いに答えなさい。 <u>導出過程を必ず記すこと</u>。必要に応じ、次の数値、公式、関係式を用いよ。 $h=6.63\times10^{-34}$ Js, $h=1.06\times10^{-34}$ Js, $h=1.06\times10^{$

 $10^{-23} \text{ J/K}, \ N_A = 6.02 \times 10^{23} \text{ /mol}, \ E_n = (n+1/2)\hbar\omega, \ 1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}, \ E_l = l(l+1)\hbar^2/2l, \ \hat{p}_x = -i\hbar\frac{d}{dx^2}$

 γ ボーア半径: $a_0 = \frac{4\pi\epsilon_0\hbar^2}{me^2}$

- |1|| 室温における № 分子の二乗平均速度を求めよう。以下の問いに答えよ。ただし、N の原子量を 14 とする。
 - (1) N₂分子の質量(kg)はいくらか。
 - (2) 室温(300 K)における N2分子の運動エネルギー(J)の平均値はいくらか。
 - (3) 室温(300 K)における N₂分子の二乗平均速度(m/s)はいくらか。
- 2 電子レンジ内で 2.45 GHz(= 2.45×10° Hz)の電磁波が出力 1000 W で放射されている。このとき、以下の問いに答えよ。
 - (1) 放射されるフォトンのエネルギーは何 eV か。
 - (2) 1秒間に放射されるフォトンの数はいくらか。
- $oxed{3}$ 長さ Lのリング上の粒子の基本解は $\Psi(x)=Ce^{ikx}$ (C:複素数)の形で与えられる。以下の問いに答えよ。
 - (1) kの取り得る値を求めよ。nなどの文字を使用する場合はその取り得る値を示すこと。
 - (2) エネルギー固有値を求めよ。ただし、運動エネルギー演算子は $-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}$ で与えられる。
 - (3) 規格化因子Cを求めよ。
- 4 H_2O 分子の振動を考える。ただし、O 原子は重く、動かないものとする。また、O-H 結合の力の定数を 500 N/m、H 原子の質量を 1.67×10^{-27} kg とする。以下の各問いに答えなさい。
 - (1) 振動エネルギーの間隔 (eV) はいくらか。
 - (2) 室温(300K)における N_1/N_0 を求めよ。なお、 N_n は第n励起状態にある分子数を表す。
 - (3) H₂O 分子が吸収する光の波長を求めよ。
- 5 N₂分子の回転を考える。N の原子量を 14、結合距離を 110 pm (=110×10·12 m)として以下の問いに答えよ。
 - (1) 換算質量を kg 単位で求めよ。
 - (2) 慣性モーメント (kg·m²) を求めよ。
 - (3) 温度 Tにおける N_{l}/N_{0} を E_{l} 、lを用いて表せ。なお、 E_{l} 、 N_{l} は第l励起状態のエネルギーと分子数を表す。
 - (4) 室温(300K)におけるN₅/N₀を求めよ。
- 6 水素原子中の一電子固有状態は $|nlm\rangle$ で表される。この状態について以下の問いに答えよ。また、ハミルトニアンは $\hat{H}=-rac{\hbar^2}{2m}
 abla^2-rac{Ze^2}{4\pi\epsilon\sigma r}$ 、エネルギー固有値は $E_n=-rac{me^4Z^2}{32\pi^2\epsilon\delta\hbar^2}rac{1}{n^2}$ で与えられる。
 - (1) 量子数mの取り得る値とその個数を答えよ。
 - (2) |nlm)が満たす量子数mに関する固有値方程式を書け。演算子を定義して用いること。
 - (3) |nlm)が満たす量子数1に関する固有値方程式を書け。演算子を定義して用いること。
 - (4) ヘルマン-ファインマンの定理 $\frac{dE(\lambda)}{d\lambda} = \left\langle \Psi_{\lambda} \middle| \frac{dH(\lambda)}{d\lambda} \middle| \Psi_{\lambda} \right\rangle$ を用いて、 $\frac{1}{r}$ の期待値 $\langle nlm | \frac{1}{r} | nlm \rangle$ を求めよ。 解をボーア半径 a_0 を用いて表せ。

tu - h