

SEARCH FOR SUPERSYMMETRY IN THE JETS + MET + TAUS FINAL STATE USING THE CMS DETECTOR AT THE LHC

Roy Montalvo

Texas A&M University November 20, 2012

Outline

- Introduction
- Motivation
- Experimental Tools
- SM Backgrounds
- Trigger
- Event Selection
- Background Estimation
- Results
- Summary

Standard Model

- Conceptually Simple.
- 1. Matter is composed of fermions:-Spin ½ particlesLeptonsQuarks
- Forces are the exchange of gauge bosons:

 Integer spin particles
 γ electromagnetic interactions
 Z/W weak interactions
 - Gluon (g) strong interactions
- 3. All other particles are made up of these fundamental particles
- 4. Higgs boson: Needed to give mass to quarks and leptons as well as W and Z.

FERMIONS		matter co spin = 1/2			
Leptor	15 spin	= 1/2	Quar	ks spin	= 1/2
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
ν _e electron neutrino e electron	<1×10 ⁻⁸	0 -1	u up d down	0.003	2/3 -1/3
$ u_{\mu}^{ m muon}_{ m neutrino} $	<0.0002 0.106	0 -1	C charm S strange	1.3 0.1	2/3 -1/3
$ u_{ au}^{ ext{ tau}}_{ ext{ neutrino}} $	<0.02 1.7771	0 -1	t top b bottom	175 4.3	2/3 -1/3

Our "Beef" with the Standard Model

Supersymmetry (SUSY)

SUSY:

- Symmetrized Standard Model (SM):
 - SM fermions ⇔ SUSY bosons
 - SM bosons ⇔ SUSY fermions
- b) An elegant solution:
 - Hierarchy Problem
 - Connects SM with unification of gauge coupling constants
 - R-parity SUSY consistent with a Dark Matter candidate → Stable neutralino

SUSY not yet observed so it must be a broken symmetry

005011

SUSY Breaking

- SUSY has too many parameters (e.g. MSSM has 124 parameters)
- Making certain assumptions about SUSY breaking results in models with fewer parameters:
 - mSUGRA: SUSY breaking in hidden sector coupled to MSSM only through gravitational strength interactions.
 - LSP is the lightest neutralino.
 - 5 parameters:

 $m_{1/2}$ The gaugino mass m_0 The scalar masses A_0 Soft breaking trilinear coupling constant $tan(\beta)$ The ratio of the VEVs of the two Higgs $sign(\mu)$ The sign of the Higgsino mass parameter

Large Hadron Collider

- 17 miles circumference, up to 574 feet deep.
- Designed to accelerate protons to 14TeV in center of mass energy.
- In 2011 CMS collected 5 fb⁻¹ of data at 7TeV.

Compact Muon Solenoid

Inner Tracker System

Pixel detector starts at ~ 4cm

Outer silicon tracker ends at ~ 1m

Tracks the trajectory of charged particles

Solenoid Magnet

3.8 T strength for the precise measurement of particle momentum

Electromagnetic Calorimeter (Ecal)

Lead Tungstate crystals Designed to detect e's and γ 's

Hadron Calorimeter (Hcal)

Brass and steel material sampled in with scintillators
Designed to detect hadrons

Muon System

Gas detectors

8

SUSY Signature

Roy Joaquin Montalvo

Tau Characteristics and τ_h ID at CMS

- m ~ 1.8 GeV
- ct = 87 μ m
- Leptonic decays (~36%)
- Hadronic decays (τ_h ~64%)
 - Hadronic decays are collimated jet-like objects
 - Hadronic decays with 1 or 3 charged tracks (prongs)
 - \circ τ_h direction given by leading pion.

The constituents of jets are analyzed using information from the entire detector (Particle Flow Algorithm) to identify a specific τ_h decay mode.

- Tau candidates have a narrow jet cone in the calorimeter.
- Combine PF electromagnetic particles in "strips".
- Neutral objects combined with charged objects to reconstruct tau decay products (tau decay mode).
- After decay mode candidates are required to pass an isolation criteria ($\Delta R = 0.3$)

Tau ID at CMS Contd.

Decay Mode	Resonance	Mass (MeV/c^2)	Branching ratio(%)
$ au^- ightarrow h^- u_ au$			11.6 %
$ au^- ightarrow h^- \pi^0 v_ au$	ρ	770	26.0 %
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	a1	1200	10.8 %
$ au^- ightarrow h^- h^+ h^- u_ au$	a1	1200	9.8 %
$ au^- ightarrow h^- h^+ h^- \pi^0 u_ au$			4.8 %
Total			63.0%
Other hadronic modes			1.7%

Tau ID Validation

• Use VLooselsolation (no Charged candidates with $p_T > 1.5$ GeV and Gamma candidates $p_T > 2$ GeV, $\Delta R = 0.3$).

To validate τ identification we use a $Z \rightarrow \tau \tau$ sample in the $\mu \tau_h$ final state.

Consistency in shape

Consistent event rates

Sample	Events
Data	10725
QCD	
W + Jets	$595.7 \pm 29.4_{stat} \pm 29.6_{syst}$
$t\overline{t}$	$13.22 \pm 1.5_{stat} \pm 2.0_{syst}$
$Z \to \tau \tau$	$9682.0 \pm 172.4_{stat} \pm 526.9_{syst}$
$Z \rightarrow \mu\mu$	$474.4 \pm 37.6_{stat} \pm 25.8_{syst}$

PU Reweighing

MC samples have been reweighed according to:

$$\mathbf{W}_{pu}(\mathbf{n}) = \mathbf{P}_{data}(\mathbf{n}) / \mathbf{P}_{MC}(\mathbf{n})$$

• In order to validate the PU correction method, a $Z \rightarrow \mu\mu$ control region is obtained and consistency in MET is required between data and MC.

PU effect on MET dominates in $Z \rightarrow \mu\mu$

Roy Joaquin Montalvo SUSY Search at 7 TeV 13

Trigger

- Validated using a ttbar CR extracted directly from data
 Selections:
- At least 1 Global Muon or electron with $p_T > 20$ GeV and $|\eta| < 2.1$
- At least 1 PFTau with $p_T > 20$ GeV, $|\eta| < 2.1$
- At least 1 e/ μ τ_h with $\Delta R > 0.7$
- e/μ and τ are of opposite charg
- MET > 30 GeV
- At least 1 b-jet

$$\varepsilon = \frac{\text{Number of Events Passing Selections AND HLT_PFMHT150}}{\text{Number of Events Passing Selections}} = 98.9 \%$$

Roy Joaquin Montalvo SUSY Search at 7 TeV 14

Signal Selections

Baseline Selections: 2 Jets + MET

- ≥1 Jet with pT > 30 GeV/c
- Highest Jet pT > 100 GeV/c and |η| < 3
- 2nd highest Jet pT > 100 GeV/c and $|\eta| < 3$
- MHT > 250 GeV

Observe a good balance between signal acceptance and background rejection!

MHT ≡ Missing Transverse Momentum of Jets above threshold. (Jet pT > 30 GeV)

Signal Selections contd.

Tau Selections: ≥ $2\tau_h$

- pT > 15 GeV/c and $|\eta|$ < 2.1
- pass the μ veto
- pass the e veto
- pass the decay mode
- pass isolation

Topological Selections:

- Highest pT Jet separated from τ_h ($\Delta R(j_1, \tau_h) > 0.3$)
- 2nd Highest pT Jet separated from τ_h ($\Delta R(j_2, \tau) > 0.3$)
- At least one t_h , t_h pair with $\Delta R(\tau_{h,1}, \tau_{h,2}) > 0.3$
- $\Delta \phi(j_2, MHT) > 0.5$

SM Backgrounds: QCD

- QCD events could become a background if one of the jets is largely mismeasured and additional jets provide fake tau pairs.
 - Fake rate j $\rightarrow \tau_h$ is small (~ 0.2%).
- QCD background is small because of the large MET required in this analysis.

SM Backgrounds: Top Pair

The contribution comes from the decay of one of the W bosons:

- Will produce real taus
- Fake taus from jets.

SM Backgrounds: W + Jets

Along with Top-pairs this is one of the major backgrounds:

- W decay creates a very clean tau.
- Also quark and gluon jets could fake a tau.

SM Backgrounds: $Z(\rightarrow vv)$ +Jets

Expected to be negligible:

Has a large missing energy but low jets multiplicity.

SM Backgrounds: $Z(\rightarrow \tau\tau)$ +Jets

- Both taus could pass the tau requirements + two jets could pass the selection criteria.
- One of the tau passes selections and a jet fakes a tau + two other jets pass jet cuts.

Background Estimation

Strategy:

- Data-driven
 - Minor modifications to signal selections to create regions of high purity.
 - Extrapolate to region where signal is expected.

2 More SM Processes:

$$Z \rightarrow vv + Jets$$

$$Z \rightarrow \tau \tau + Jets$$

MHT150 Trigger

Data Driven Background Estimation

$$N_{Background}^{SR} = N_{Background}^{CR} [\alpha_{\tau\tau} \mathcal{P}(0) + \alpha_{\tau j} \mathcal{P}(1) + \alpha_{jj} \mathcal{P}(2)]$$
Correction factor of events with two real τ 's to signal region

Correction factor of events with one real τ and one fake τ to signal region

Correction factor of events with two fake τ 's to signal region

Probability of more than $(0,1,2)$ jets faking taus

 $\mathcal{P}(m) = \sum_{N=m}^{\infty} P(N) \sum_{n=m}^{N} C(N,n) f^n (1-f)^{N-n}$

Probability of N_{iets} "N choose n" Jet fake rate

Top Pair Control Region

To obtain a TTbar enhanced region we modify our standard selection criteria as follows:

- Remove τ isolation requirement.
- Require ≥ 2 jets tagged as b-jets.

Top Pair Background

$$N_{t\bar{t}}^{SR} = \frac{N_{t\bar{t}}^{CR}}{P(2 \ b \ jets)} [A_{\tau j} \varepsilon^{\tau \ iso} \mathcal{P}(1) + A_{jj} \mathcal{P}(2)]$$

Two types of events in TTbar control region:

- 1. 1 real τ_h + 1 jet faking a τ
- 2. 2 jets faking 2τ .

To calculate the final number we use the follwing variables:

- $A_{\tau+j}$ = fraction of t-tbar events with 1 real τ_h and 1 jet.
- A_{j+j} = fraction of t-tbar events with 2 jets.
- P(1) & P(2) are the probabilities to have 1 or 2 jets that can fake the τ in category (1) and (2).
- P(2b) = Probability of tagging 2-b-jets.
- $\varepsilon_{\tau}^{\text{iso}}$ =Tau isolation efficiency.

25

$$N_{t\bar{t}}^{SR} = 2.03 \pm 0.36$$

Z(→vv)+Jets Control Region

- Small contribution due to $Z \rightarrow vv + Jets$
- Don't have a method to obtain a clean sample:
 - To determine contribution we use $Z \rightarrow \mu\mu$ + Jets, then treat μ's as neutrinos.

To obtain a clean $Z \rightarrow \mu\mu$ + Jets control sample we modify our standard selection as follows:

- Remove MHT and use μ trigger.
- Remove τ isolation requirement.
- Require 2 clean μ

$Z(\rightarrow vv)$ +Jets Background

$$N_{Z \to \nu \bar{\nu} + jets}^{SR} = \frac{N_{Z \to \mu \bar{\mu} + jets}^{CR}}{A_{\mu}^{2} \varepsilon_{\mu}^{2}} \frac{B(Z \to \nu \bar{\nu})}{B(Z \to \mu \bar{\mu})} \frac{\varepsilon_{H_{T}}^{Trigger}}{\varepsilon_{u\tau}^{Trigger}} \varepsilon^{H_{T}} \mathcal{P}(2)$$

- $A_{\mu} = \mu$ acceptance efficiency.
- $\varepsilon_{\mu} = \mu$ ID efficiency.
- $B(Z \rightarrow vv) = branching ratio for Z \rightarrow vv$
- $B(Z \rightarrow \mu\mu) = \text{branching ratio for } Z \rightarrow \mu\mu$
- $\epsilon^{\text{Trigger}}_{\text{MHT}}$ = efficiency of HLT_PFMHT150 (plateau)
- $\epsilon^{\text{Trigger}}_{\mu\tau}$ = efficiency of $\mu\tau$ crosstrigger.
- ε^{MHT} = efficiency of MHT (>250)
- P(2) is the probability to have 2 jets that can fake the τ.

$$N_{Z \to \nu \bar{\nu} + jets}^{SR} = 0.03 \pm 0.02$$

W + Jets Control Region

To obtain an enhanced W+Jets control region we modify our selection criteria as follows:

- Remove τ isolation.
- Require 0 jets tagged as bjets
- Subtract off contamination sources .

W + Jets Background

$$N_{W+jets}^{SR} = \frac{N_{W+jets}^{After \ subtraction}}{P(0 \ b \ jets)} [A_{\tau j} \varepsilon^{\tau \ iso} \mathcal{P}(1) + A_{jj} \mathcal{P}(2)]$$

Two types of events:

- 1. 1 real τ_h + 1 jet faking a τ .
- 2 jets faking 2 taus.

Variables:

- A_{τ+j} = fraction of Wjet events with 1 real τ_h and 1 jet faking τ
- A_{j+j} = fraction of Wjet events with 2 jets faking τ 's
- P(N) & P(M) are the probabilities to have N (M) jets that can fake the τ in category (1) and (2).
- f = "fake rate"
- P(0b) = Probability of tagging zero jets as b-jets.
- $\varepsilon_{\tau}^{\text{iso}}$ =Tau isolation efficiency.
- C(N,n) = N choose n.

$$N_{W+jets}^{SR} = 5.20 \pm 0.63$$

QCD Control Region

QCD contribution comes from jets faking taus. Tau-id takes care of most QCD background. To obtain our QCD control region we modify our standard selection:

- Remove the τ isolation requirement.
- Require $|\Delta\phi(j_2,MHT)| < 0.10$.

QCD Background

To estimate the QCD contribution we obtain a data-MC scale factor (SF_{OCD}) .

$$SF_{QCD} = \frac{N_{Data}^{control}}{N_{Simulation}^{control}} = 0.74 \pm 0.02$$

$$N_{QCD}^{Signal} = SF_{QCD} \times N_{QCD}^{MC}$$

$$N_{QCD}^{Signal} = 0.02 \pm 0.02$$

Roy Joaquin Montalvo SUSY Search at 7 TeV 31

Z->ττ+Jets Control Region

- Don't have a method to obtain a clean sample:
 - To determine contribution we use $Z \rightarrow \mu\mu + Jets$, then treat μ's as τ's.

To obtain a clean $Z \rightarrow \mu\mu$ + Jets control sample we modify our standard selection as follows:

- Remove MHT and use μ trigger.
- Remove τ isolation requirement.
- Require 2 clean μ

$Z(\rightarrow \tau\tau)$ +Jets Background

$$N_{Z \to \tau\bar{\tau}}^{\mathrm{SR}} = N_{Z \to \mu\bar{\mu}}^{\mathrm{CR}} R \left[\frac{A_{\tau}^2 \varepsilon_{\tau}^2}{A_{\mu}^2 \varepsilon_{\mu}^2} + \frac{2A_{\tau}^2 \varepsilon_{\tau} (1 - \varepsilon_{\tau})}{A_{\mu}^2 \varepsilon_{\mu}^2} \mathcal{P}(1) + \frac{2A_{\tau} (1 - A_{\tau}) \varepsilon_{\tau}}{A_{\mu}^2 \varepsilon_{\mu}^2} \mathcal{P}(1) + \frac{(1 - A_{\tau})^2}{A_{\mu}^2 \varepsilon_{\mu}^2} \mathcal{P}(2) \right]$$

- R=[B(Z \rightarrow \tau\tau)B²(\tau\tau_h)/B(Z \rightarrow \mu\mu)] x [\varepsilon^{Trig}_{MHT} x \varepsilon^{MHT} / \varepsilon^{Trig}_{\mu\tau}].
- $A_{\mu} = \mu$ acceptance efficiency.
- $A_{\tau} = \tau$ acceptance efficiency.
- $\varepsilon_{\mu} = \mu$ ID efficiency.
- $B(Z \rightarrow vv) = branching ratio for Z \rightarrow vv$
- $B(Z \rightarrow \mu\mu) = branching ratio for Z \rightarrow \mu\mu$
- ϵ^{Trig}_{MHT} = efficiency of HLT_PFMHT150 (plateau)
- $\epsilon^{\text{Trig}}_{\mu\tau}$ = efficiency of $\mu\tau$ cross-trigger.
- ε^{MHT} = efficiency of MHT (>250)
- P(2) is the probability to have 2 jets that can fake the τ .

$$N_{\rm Z \to \tau \bar{\tau}}^{\rm SR} = 0.21 \pm 0.13$$

Summary of Background Estimation

Process	Signal Region
QCD events	0.02 ± 0.02
W + Jets events	5.20 ± 0.63
Top pair events	2.03 ± 0.36
$Z (\rightarrow \tau \tau) + Jets events$	0.21 ± 0.13
$Z \rightarrow vv) + Jets events$	0.03 ± 0.02
Estimated Total	7.49 ± 0.74

Roy Joaquin Montalvo SUSY Search at 7 TeV 34

Results

Number of observed data events and estimated background rates is consistent with SM processes.

Process	Signal Region
multijet events	$0.02 \pm 0.02_{stat} \pm 0.17_{syst}$
W+jets	$5.20 \pm 0.63_{stat} \pm 0.62_{syst}$
t t	$2.03 \pm 0.36_{stat} \pm 0.34_{syst}$
$Z \rightarrow \tau \bar{\tau} + \text{jets}$	$0.21 \pm 0.13_{stat} \pm 0.17_{syst}$
$Z \rightarrow \nu \bar{\nu} + \text{jets}$	$0.03 \pm 0.02_{stat} \pm 0.50_{syst}$
Estimated $\sum SM$	$7.49 \pm 0.74_{stat} \pm 0.90_{syst}$
Observed Data	9
$[m_0, m_{1/2}] = [280, 320]$	$7.1 \pm 1.2_{stat}$

Roy Joaquin Montalvo SUSY Search at 7 TeV 35

Results

H_T³⁰ distribution in the signal region

H_T³⁰+ MH_T distribution in the signal region

Interpretation: CMSSM

- Fixed $tan\beta = 40$, $A_o = 500$ GeV, $\mu > 0$, $M_{top} = 173.8$ GeV
- Limits set using cut and count method.
- Gaugino mass of < 510 GeV is excluded at 95% CL
- Gluino with mass < 1.15 TeV is excluded at 95% CL

...0 [001]

Interpretation: SMS (T3Tauh Model)

- Results interpreted in simplified model scenario.
- Gluino mass of < 775 GeV excluded at 95% CL for LSP masses up to 325 GeV.

Interpretation: Simplified GMSB

- A gluino mass < 900 is excluded at 95% CL.
- Figure shows
 exclusion limits as a
 function of gluino
 mass.

Summary

- A search for SUSY in the Jets + MET + τ 's Final state
- Estimations for SM backgrounds based on collision data.
- Results are consistent with SM processes
- Results interpreted in BSM scenarios
- ~20 fb⁻¹ of data at 8 TeV already collected in 2012! ... Gig'em!

Backup

Top pair Background

Sample	Events
Data	394
QCD	_
W + Jets	_
$t\overline{t}$	$357.5 \pm (55.4)_{syst} \pm (9.8)_{stat}$
$Z \rightarrow \nu\nu + \text{Jets}$	_

Cut	Data
$A_{\tau+j}$	$0.166 \pm 0.011(stat) \pm 0.005(syst)$
A_{j+j} ε^{τ} iso	$0.834 \pm 0.025(stat) \pm 0.005(syst)$
ε^{τ} iso	$0.55 \pm 0.006(stat) \pm 0.04(syst)$
f	$0.022 \pm 0.003(stat) \pm 0.002(syst)$
$\varepsilon^{b-Tagging}$ (TCHEM) [15]	$0.684 \pm 0.021(stat + syst)$
Probability to tag $\geq 2 b - jets$ (TCHEM)	$0.468 \pm 0.02(stat + syst)$
Expected Number of Events	2.03 ± 0.46

$Z(\rightarrow vv)$ +Jets Background

Sample	Events
Data	738
QCD	_
W + Jets	_
$t\overline{t}$	$6.81 \pm 1.20_{stat} \pm 1.06_{syst}$
$Z \rightarrow \mu\mu$ + Jets	$709.5 \pm 15.43_{stat} \pm 38.61_{syst}$

Cut	Data
$N_{Z \to \mu\mu+Jets}^{pure}$	738
$B(Z \to \nu \nu)$	0.20 ± 0.0006
$B(Z \to \mu\mu)$	0.03366 ± 0.00007
$\varepsilon_{\mu au}^{Trigger}$ Trigger	$0.87 \pm 0.04(stat + syst)$
$arepsilon_{H_{\mathrm{T}}}^{Trigger}$	$0.989 \pm 0.025(stat + syst)$
$\varepsilon^{H_{ m T}}$	$0.0081 \pm 0.0033(stat) \pm 0.004(syst)$
A_{μ}	$0.7007 \pm 0.004(stat) \pm 0.029(syst)$
ε_{μ}	$0.8678 \pm 0.0014(stat + syst)$
f	$0.0164 \pm 0.00193(stat) \pm 0.001(syst)$
Expected Number of Events	0.03 ± 0.03

$Z(\rightarrow \tau\tau)$ +Jets Background

Cut	Data
$N_{Z \to \mu\mu + Jets}^{pure}$	738
$B(Z \to \tau\tau)$	0.03367 ± 0.0008
$B(au o au_h)$	0.6479 ± 0.0008
$B(Z \to \mu \mu)$	0.03366 ± 0.00007
$\varepsilon_{\mu\tau}^{Trigger}$	$0.87 \pm 0.04(stat + syst)$
$arepsilon_{H_{\mathrm{T}}}^{Trigger}$ $arepsilon_{H_{\mathrm{T}}}^{H_{\mathrm{T}}}$	$0.989 \pm 0.025(stat + syst)$
$arepsilon_{ ilde{\mathcal{U}}_{ ext{T}}}$	$0.00271 \pm 0.00192(stat)$
A_{τ}	$0.503 \pm 0.001(stat) \pm 0.014(syst)$
$arepsilon_{ au}$	$0.649 \pm 0.007(stat) \pm 0.045(syst)$
A_{μ}	$0.7007 \pm 0.004(stat) \pm 0.029(syst)$
$arepsilon_{\mu}$	$0.8678 \pm 0.0014(stat + syst)$
f	$0.0164 \pm 0.00193(stat) \pm 0.001(syst)$
Expected Number of Events	0.21 ± 0.20

W + Jets Background

/	, -
Sample	Events
Data	2874
QCD	$194.3 \pm 32.1_{stat} \pm 30.1_{syst}$
W + Jets	$1734.3 \pm 87.8_{stat} \pm 86.3_{syst}$
$t\overline{t}$	$116.2 \pm 7.2_{stat} \pm 18.0_{syst}$
$Z \rightarrow \nu\nu + \text{Jets}$	$549.9 \pm 73.8_{stat} \pm 29.9_{syst}$

Cut	Data
$A_{\tau+j}$	$0.149 \pm 0.016(stat) \pm 0.004(syst)$
A_{j+j} ε^{τ} iso	$0.851 \pm 0.038(stat) \pm 0.004(syst)$
ε^{τ} iso	$0.649 \pm 0.007(stat) \pm 0.045(syst)$
f	$0.019 \pm 0.001(stat) \pm 0.001(syst)$
Probability to tag $0 b - jets$	$0.83 \pm 0.08(stat + syst)$
Expected Number of Events	5.20 ± 0.89

QCD Background

Sample	Events
Data	1678
QCD	$1847.5 \pm 37.6_{stat} \pm 286.22_{syst}$
$W \rightarrow l\nu + \text{Jets}$	$242.0 \pm 19.7_{stat} \pm 12.04_{syst}$
$t\overline{t}$	$66.2 \pm 3.6_{stat} \pm 10.26_{syst}$
$Z \rightarrow \nu\nu + \text{Jets}$	_

Summary of Systematic Uncertainties

Source of Systematic	Systematic Uncertainty
Luminosity	2.2%
⊬ _T Trigger	2.5%
Tau ID	6.8%
Parton Distribution Functions	11.0%
Initial State Radiation	Negligible
Final State Radiation	Negligible
Tau Energy Scale (3.0%)	2.3%
Jet Energy Corrections (2-5%)	4.6%
Pile-up	Negligible
Background Estimation	15.6%