Bayesian exposure-response modeling for binary data

Outline

- ▶ Brief introduction to Bayesian analysis
- Fitting models
- ▶ Model checking

Approach to Bayesian modeling in this course

- ► For this series of classes we are going to use Stan to do Bayesian modeling
 - ► Stan is a probabilistic programming language for fitting Bayesian models.
 - ▶ By default it uses Hamiltonian Monte Carlo (HMC), specifically a variation called the no U-turn sampler (NUTS).
 - We will go into more details about HMC/NUTS later in the course
- Start with using brms as our gateway to Stan
 - brms is a package that enables simple fitting of many types models that you can fit using glm, survreg, lme, nlme, etc.
 - Allows quick access to Bayesian inference
- ► Later we will program our own Stan models and run them with rstan
 - Learn more about the Stan language
 - Fit models that are not supported in brms

A brief review of Bayesian inference

Bayes Rule is the basis for inference about model parameters θ given data y and prior knowledge about model parameters $p(\theta)$:

$$p(\theta | y) = \frac{p(\theta)p(y | \theta)}{p(y)} = \frac{p(\theta)p(y | \theta)}{\int p(\theta)p(y | \theta)d\theta}$$
$$\propto p(\theta) p(y | \theta)$$

Goals:

- ▶ Inference about θ or a function of θ
- Predictions of future observations
- The posterior summarizes what we know about θ , but typically we can't express $p(\theta | y)$ in closed-form.
 - We'll use Markov Chain Monte Carlo to obtain samples from $p(\theta | y)$.

Bayesian modeling/inference process using MCMC

- 1. Construct a model for the data, conditional on parameters θ , $p\left(y\mid\theta\right)$
- 2. Construct a prior distribution for θ , $p(\theta)$
 - Ideally based on all available evidence/knowledge (or belief)
 - Or deliberately select a non-informative (or weakly informative) prior
- 3. Sample from the posterior distribution for θ , $p(\theta | y)$.
 - Look at convergence and sampler diagnostics
 - Use for inferences regarding parameter values
- 4. Sample from the posterior predictive distribution for y_{new} : $p(y_{\text{new}} | y) = \int p(y_{\text{new}} | \theta) p(\theta | y) d\theta$.
 - ▶ Use for inferences regarding future observations
 - ▶ Sample from $p(y | \theta)$ for values of θ from step 3.

Bayesian ingredients for MCMC sampling from a posterior

- Data
- ► Model for the outcome(s) the likelihood
- ▶ Models for the parameters the prior distribution
- ► MCMC tool Stan (via brms or 'rstan")

Ingredients for HMC/NUTS

- A starting point in the parameter space (initial value, one per chain)
- Number of MCMC samples used to tune the HMC/NUTS algorithm (warmup)
 - ► This is not exactly the same as the burn-in in other MCMC algorithms
 - ▶ NUTS uses these samples to adaptively tune the sampler
- ► Total number of samples to take, including the warm-up (iter)
- ▶ Parameters which inform how the sampler should adapt
 - ▶ Defaults are usually good for 'simple' models
 - ▶ Often need to modify for more complex, hierarchical models
 - Return to these later in the course

Let's re-fit our AE model using brms

What about the prior distributions?

- By default, brms uses flat, non-informative prior distributions for regression coefficients
- We can specify priors directly through the prior argument.
 - ► More to come in a few slides

Model summary

summary(mod01_stan)

. Family: bernoulli

```
Links: mu = logit
. Formula: AEO1 ~ CAVGSS + BWT + PTTYPE + SEXTXT
    Data: aedat (Number of observations: 180)
   Draws: 4 chains, each with iter = 1000; warmup = 500;
          total post-warmup draws = 2000
```

-	_
Population-Level	Effects:

. ropulation Level Effects.							
	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bul	
Intercept	-7.32	4.47	-16.50	1.00	1.00		
GATTGGG	0 00	0 40	0 50	4 00	4 00		

•	Estimate	Est.Error	1-95% (CI u-95%	CI	Rhat	Bu]
. Intercept	-7.32	4.47	-16.5	50 1	.00	1.00	
. CAVGSS	0.86	0.19	0.5	52 1	. 26	1.00	

-					
. CAVGSS	0.86	0.19	0.52	1.26 1.00	
. BWT	0.04	0.06	-0.08	0.16 1.01	
PTTVPFPT1	1 52	0.75	0 17	3 05 1 00	

	0.01	0.00	0.00	0.10 1.01	
. PTTYPEPT1	1.52	0.75	0.17	3.05 1.00	
. PTTYPEPT2	0.88	0.97	-1.05	2.74 1.00	

. SEXTXTMALE 0.07 0.89 -1.70 1.84 1.01

MCMC convergence diagnostics

- Traceplots
 - Plot of sampled values vs iteration
 - Look for stationarity and good mixing: fuzzy caterpillar
- ► Â
 - ightharpoonup Heuristically: $\frac{\text{total variance of } θ \text{ (between and within-chain)}}{\text{average within-chain variance of } θ}$
 - ▶ Target: $\hat{R} < 1.01$ (sometimes, you'll see a rule of $\hat{R} < 1.05$)
 - Output: Summary and plot (mcmc_plot(mod01_stan, type='rhat'))
- Effective sample sizes
 - bulk ESS for assessing posterior means, medians, etc
 - tail ESS for assessing tail percentiles (5th, 95th)
 - Target: Depends on your goals
 - Output: Summary

Traceplots

bayesplot::mcmc_trace(mod01_stan)

Let's see the default priors in our model

prior_summary(mod01_stan)

(vectorized)
(vectorized)
 default

```
prior
                           class
                                        coef group resp dpa
               (flat)
                                b
               (flat)
                                b
                                         BWT
               (flat)
                                b
                                      CAVGSS
               (flat)
                                   PTTYPEPT1
                                b
               (flat)
                                b
                                   PTTYPEPT2
               (flat)
                                b SEXTXTMALE
student t(3, 0, 2.5) Intercept
      source
     default
(vectorized)
(vectorized)
(vectorized)
```

BRMS centers all predictors in the model

Mathematically, the RHS of the model $y \sim x1 + x2$ is

$$b_Intercept + b_x1 \cdot x1 + b_x2 \cdot x2$$

Or, equivalently,

$$Intercept + b_x1 \cdot (x1 - \overline{x1}) + b_x2 \cdot (x2 - \overline{x2})$$

where

$$b_Intercept = Intercept - b_x 1 \cdot \overline{x1} - b_x 2 \cdot \overline{x2}$$

This is the parameterization that brms uses. (Why do you think that is?)

We need to specify priors for Intercept, b_x1 and b_x2

To change them use the set_priors function

A Normal(mean=0, sd=5) prior on all covariate effects:

```
priors_mod01 <- set_prior('normal(0,5)', class='b')</pre>
```

A Normal(0,5) prior on CAVGSS and a DoubleExponential prior on the other effects:

```
priors_mod01_de <- set_prior('normal(0,5)', class='b', coe:
    set_prior('double_exponential(0,1)', class='b')</pre>
```

See Stan functions reference for list of all available distributions.

Workbook Bayes01

- ► Model fitting in brms
- ► Convergence diagnostics

Model diagnostics

- We can use similar diagnostics as with likelihood based methods, but now using posterior predictive distributions
 - Quantile residual plots
 - Posterior predictive checks

Quantile residuals

- 1. Simulate from posterior predictive distribution
 - brms has a posterior_predict function to generate samples in a matrix
- Use createDHARMa function in the DHARMa package to format output
 - Input is a matrix of posterior samples and the observed outcome data
- 3. Make plots as before
 - Residuals vs predicted
 - Residuals vs predictors

DHARMa examples

Fxpected

Model predictions (rank transformed)

Posterior predictive checks

- 1. Simulate from posterior predictive distribution
 - tidy_bayes has an add_predicted_draws function to append the samples to a data frame
- Compute some summary statistic on each posterior draw and on the observed data
 - Summary statistic depends on what you want to diagnose
 - ► For binary models, it is almost always the expected value (mean)
- 3. Plot distribution of summary statistics and overlay observed values
 - Type of plot depends on grouping factor and summary statistic

Simulate from posterior predictive distribution

. 3 UID-180 PT1 0 Q2

. 4 UID-180 PT1 0 Q2

```
aedat pp = add predicted draws(newdata = aedat, mod01 stan)
aedat pp %>% ungroup() %>%
 select(USUBJID, PTTYPE, AEO1, Quartile:.prediction) %>%
 slice tail(n=4)
. # A tibble: 4 x 9
   USUBJID PTTYPE
                 AE01 Quartile .row .chain .iteration
. <fct> <fct> <int> <chr> <int> <int> <int>
                                                 <int> ·
. 1 UID-180 PT1
                   0 Q2
                                 180
                                         NΑ
                                                   NA
. 2 UID-180 PT1 0 Q2
                                 180 NA
                                                   NA
```

180 NA

180 NA

NA

NΑ

Plot the VPC

```
# Observed data summary
obs summary <- aedat %>%
  group_by(Quartile) %>%
  summarise(phat_obs = mean(AF
#Simulated data summary
sim_summary <- aedat_pp %>%
 group_by(.draw,Quartile) %>%
  summarise(phat_sim = mean(.r
# VPC
sim summary %>%
  ggplot(aes(x=Quartile, y=pha
  geom violin() +
  geom point(data=obs summary,
  labs(x='', y='Proportion wit
  coord_flip()
```


VPC for continuous variable: define summary statistic

- Fit generalized additive model (smoother) to each simulated dataset
- Predict at a fixed grid of values (0 to 95th percentile)

Compute summary statistics for observed data

```
obs_summary <- summary_function(aedat, .x_name = 'CAVGSS',
   mutate(type='Observed')
head(obs_summary)</pre>
```

- . xvar prediction type
- . 1 0.00000000 0.03526032 Observed
- . 2 0.03718346 0.03644987 Observed
- . 3 0.07436693 0.03767799 Observed
- . 4 0.11155039 0.03894582 Observed
- . 5 0.14873385 0.04025454 Observed
- . 6 0.18591731 0.04160537 Observed

Compute summary on each simulated study

```
sim_summary <- aedat_pp %>%
  # Nest everying except the simulation name
 nest(cols=-.draw) %>%
  # Use 200 sims for demonstration
  sample n(size=200) %>%
  # Compute summary stats for each simulated dataset
 mutate(predictions = map(cols, ~summary_function(.x,
                                                    .x name
                                                    .y name
  select(.draw,predictions) %>%
 unnest(cols=predictions) %>%
  # Summarise across simulated data sets
  group_by(xvar) %>%
  summarise(qlo = quantile(prediction, probs = 0.05),
            qhi = quantile(prediction, probs = 0.95),
            prediction=median(prediction)
            ) %>%
 mutate(type = 'Simulated')
```

Plot VPC

```
sim_summary %>% bind_rows(obs_summary) %>%
ggplot(aes(x=xvar, y=prediction)) +
geom_line(aes(col=type, group=type)) +
geom_ribbon(aes(ymin=qlo, ymax=qhi, fill=type), alpha=0.5
labs(x='Steady-state Cavg', y='Probability of severe AE')
```


Model Comparison

- Goal: maximize expected log predictive density (ELPD) for future data
 - This is a measure of out-of-sample prediction quality
- Leave-one-out cross-validation (LOO-CV) to approximate ELPD
 - Involves fitting N models
 - Can be approximated using pareto smoothed importance sampling of the posterior samples
 - ▶ loo package
- WAIC also approximates -2 ELPD
 - ▶ Proven to be asymptotocally equivalent to LOO-CV (modulo the −2)
 - Lower is better
 - ► LOO-CV generally preferable due to its ability to tell when the estimates are not trustworthy

References