

# Diseño e implementación del software de vuelo para un nano-satélite tipo cubesat

Carlos González Cortés

#### Miembros de la comisión

Dr. Marcos Díaz Quezada Dr. Claudio Estévez Montero Ing. Alex Díaz Becerra

Universidad de Chile

- 1 Introducción
- 2 Marco teórico
  - Sistemas embebidos
  - Sistemas operativos
  - Patrones de diseño
- 3 Diseño
  - Requerimientos operacionales
  - Arquitectura de software
  - Arquitectura aplicación
- 4 Implementación
  - Clientes
  - Comandos
  - Procesador y ejecutor de comandos
- 5 Trabajos futuros
- 6 Consultas

- 1 Introducción
- 2 Marco teórico
  - Sistemas embebidos
  - Sistemas operativos
  - Patrones de diseño
- 3 Diseño
  - Requerimientos operacionales
  - Arquitectura de software
  - Arquitectura aplicación
- 4 Implementación
  - Clientes
  - Comandos
  - Procesador y ejecutor de comandos
- 5 Trabajos futuros
- 6 Consultas

- 1 Introducción
- 2 Marco teórico
  - Sistemas embebidos
  - Sistemas operativos
  - Patrones de diseño
- 3 Diseño
  - Requerimientos operacionales
  - Arquitectura de software
  - Arquitectura aplicación
- 4 Implementación
  - Clientes
  - Comandos
  - Procesador y ejecutor de comandos
- 5 Trabajos futuros
- 6 Consultas

- 1 Introducción
- 2 Marco teórico
  - Sistemas embebidos
  - Sistemas operativos
  - Patrones de diseño
- 3 Diseño
  - Requerimientos operacionales
  - Arquitectura de software
  - Arquitectura aplicación
- 4 Implementación
  - Clientes
  - Comandos
  - Procesador y ejecutor de comandos
- 5 Trabajos futuros
- 6 Consultas

- 1 Introducción
- 2 Marco teórico
  - Sistemas embebidos
  - Sistemas operativos
  - Patrones de diseño
- 3 Diseño
  - Requerimientos operacionales
  - Arquitectura de software
  - Arquitectura aplicación
- 4 Implementación
  - Clientes
  - Comandos
  - Procesador y ejecutor de comandos
- 5 Trabajos futuros
- 6 Consultas

- 1 Introducción
- 2 Marco teórico
  - Sistemas embebidos
  - Sistemas operativos
  - Patrones de diseño
- 3 Diseño
  - Requerimientos operacionales
  - Arquitectura de software
  - Arquitectura aplicación
- 4 Implementación
  - Clientes
  - Comandos
  - Procesador y ejecutor de comandos
- 5 Trabajos futuros
- 6 Consultas

# Introducción

# Proyecto SUCHAI

Diseño, construcción, lanzamiento y operación de un nano-satélite, con fines educacionales y científicos.

Es el primer proyecto satelital desarrollado por estudiantes en el país.



(a) Estandar Cubesat



(b) Cubesat SUCHAI





(c) Subsistemas

(d) OBC

# Computador a bordo

Controla todas las operaciones del satélite e integra los diferentes subsistemas. Principales características:

- Microcontrolador PIC24F
- CPU @ 32 MHz
- Memoria RAM de 16 kB
- Memoria FLASH de 256 kB

## Objetivos generales

Diseñar e implementar el software que controla las operaciones del satélite una vez en órbita



### Marco teórico Sistemas embebidos

Sistemas computacionales diseñados para cumplir funciones específicas, en aplicaciones de tiempo real. Integran en un mismo chip un microcontrolador y una serie de periféricos.



Los sistemas operativos de tiempo real (RTOS) se caracterizan por:

- Ser una capa de abstracción entre la aplicación y el hardware
- Funcionar bajo requerimientos de timing estrictos.
- Ser deterministas en la ejecución de tareas.
- Funcionamiento basado en eventos y prioridades.



#### Patrones de diseño





#### Área de control central

- Inicialización.
- Estado del sistema.
- Plan de vuelo.
- Tolerancia a fallos.

## Área de comunicaciones

- Configuración del TRX.
- Despliegue de antenas.
- Generar y enviar beacon.
- Telecomandos y telemetría.

# Diseño II

Requerimientos operacionales

## Area de energía

- Estimar nivel de carga de baterías
- Operar según un presupuesto de energía.

# Area de payloads

- Integrar diferentes payloads
- Ejecutar acciones de *payloads*



# **Aplicación**



# **Sistema Operativo**



# Controladores MCU Periféricos Payloads



#### Clientes

Inicialización Reinicios

Puerto UART

Consola serial Comunicaciones Plan de vuelo Radio UHF

GPS/RTC

Ctrl. Interno Tiempo interno



- Implementan la inteligencia del sistema
- Tareas de FreeRTOS, concurrentes y de igual prioridad.
- Ejecución periódica, hard-realtime o soft-realtime



Requerimientos

# Origen ID Parámetro Estructura comando \*Función Parámetro Procesador de comandos Parámetro

```
int funcion_comando(void *param)
{
    printf("Ejecutar comando");
    return EXIT_OK;
}
```

# Implementación

Procesador y ejecutor de comandos



Carlos González Cortés Trabajo de título 15 /

# Trabajos futuros

- Mejoras en el área de tolerancia a fallos.
- Agregar múltiples ejecutores de comandos.
- Portar el software a diferentes plataformas.
- Integrar y probar un nuevo *transceiver*.

# Muchas gracias por su atención ¿Consultas?

