FACULTAD DE CIENCIAS

# APUNTES DE CLASES DE CALCULO



La única enseñanza que un profesor puede dar, en mi opinión, es la de pensar delante de sus estudiantes. Henri Lebesgue

Temas:

Antiderivadas

La integral

Técnicas de integración

Las funciones logartimo y exponencial

Áreas y volúmenes

Coordenadas polares

Integrales impropias

Fórmula de Taylor

MSc.

Johnny

Valverde

UNIVERSIDAD NACIONAL DE INGENIERÍA

### Apuntes de clase de Cálculo integral CM-132

Profesor: MSc. Johnny Valverde Oficina R1-344 Delegada: Undg. Erika Cabrejos mexxpre\_15@hotmail.com 986784892

1 de septiembre del 2017

## Índice general

|      | vítulo 1                                 |
|------|------------------------------------------|
| 1.1. | Antiderivada                             |
| 1.2. | Integral indefinida                      |
| 1.3. | Métodos de integración                   |
|      | 1.3.1. Métodos por sustitución           |
|      | 1.3.2. Método de integración por partes  |
|      | 1.3.3. Fórmulas recurrentes              |
| 1.4. | Sumatoria                                |
|      | 1.4.1. Principio de Inducción Matemática |
| 1.5. | Integral definida                        |

### **Consejos**

- 1. Nota mínima en cada práctica calificada: 13.
- 2. En cada examen y práctica calificada el alumno debe identificarse con su Documento Nacional de Identidad (DNI), apagar su celular y guardar en su mochila respectiva.
- 3. Estudiar todos los cursos.
- 4. Para los químicos hay trabajo, para los matemáticos hay mucho más oportunidades para desarrollarse.
- 5. No colocar +C, C: constante puede costar un punto de alguna pregunta de la práctica calificada.
- 6. Para aprender hay demostrar leer [3].
- 7. 48 horas.
- 8. Es importante para el profesor que el alumno logre contextualizar e interpretar los ejercicios.
- 9. Mis metas:
  - \* Resolver las prácticas dirigidas: Despejar mis dudas.
  - \*\* Asistir a talleres de Cálculo integral, en caso de haberlo.
    - Gestión del tiempo.
  - Siempre es bueno la coordinación. Reclamo: ¬ 3 puntos más.

### Capítulo 1

### Capítulo 1

### 1.1. Antiderivada

### Definición 1.1: Antiderivada

Se dice que una función  $F \colon \mathbb{R} \to \mathbb{R}$  es *antiderivada* (también se le conoce como "primitiva") de la función f en un intervalo  $\mathcal{I} \subset \mathbb{R}$  si  $F'(x) = f(x), \forall x \in \mathcal{I}$ .

### Ejemplo 1.1

Sean las funciones f, F dadas por

$$f(x) = 3x^2 + 1$$
,  $F(x) = x^3 + x$ 

se tiene que  $F'(x)=3x^2+1=f(x), \forall x\in\mathcal{I}\subset\mathbb{R}$  luego F es antiderivada de f.

 $\mathcal{I}$  es un intervalo.

### Ejemplo 1.2

Se tienen las funciones f y F dadas por

$$f(x) = \cos x, \quad F(x) = \sin x$$

 $\mbox{donde } F'(x) = \cos x = f(x), \forall x \in \mathcal{I} \subset \mathbb{R} \\ \longrightarrow F \mbox{ es antiderivada de } f.$ 

#### Teorema 1.1

Las funciones  $F_1$  y  $F_2$  son antiderivadas de la función f sii  $F_1(x) = F_2(x) + C$ , C: constante  $\forall x \in \mathcal{I}$ . Demostración:

 $(\Longrightarrow) F_1 y F_2$  son antiderivadas de f

$$F_1'(x) = f(x), \quad \forall x \in \mathcal{I}.$$
  
 $F_2'(x) = f(x), \quad \forall x \in \mathcal{I}.$ 

se cumple  $F_1'(x) = f(x) = F_2'(x), \forall x \in \mathcal{I}.$ 

$$\implies F_1'(x) = (F_2(x) + C)' \quad \forall x \in \mathcal{I}$$

$$\implies F_1'(x) = F_2'(x) \quad \forall x \in \mathcal{I}$$

$$F_1'(x) - F_2'(x) = 0$$

$$[F_1(x) - F_2(x) = 0], \ \forall x \in \mathcal{I}$$

Por el teorema del cálculo diferencial, se tiene que

$$F_1(x) - F_2(x) = C$$
, C: constante,  $\forall x \in \mathcal{I}$ 

En consecuencia

$$F_1(x) = F_2(x) + C$$
, C: constante  $\forall x \in \mathcal{I}$ 

( $\iff$ ) Como  $F_1(x) = F_2(x) + C$ ,  $\forall x \in \mathcal{I}$  y para concluir que son antiderivadas de cierta función en el intervalo  $\mathcal{I}$ , entonces  $F_1$  y  $F_2$  deben ser diferenciables en  $\mathcal{I}$ , luego

$$F_1(x) - F_2(x) = C, \ \forall x \in \mathcal{I}.$$

Derivando ambos miembros respecto a x se obtiene:

$$F_1'(x) - F_2'(x) = 0, \ \forall x \in \mathcal{I}$$

de esto

$$F_1'(x) = F_2'(x), \ \forall x \in \mathcal{I}$$

definiendo una función f en el intervalo  $\mathcal{I}$ .

Como  $f(x) = F'_1(x), \ \forall x \in \mathcal{I}.$ 

De esto  $F_1$  es antiderivada de f, del mismo modo  $F_2$  es antiderivada de f.

Diferenciabilidad  $\Rightarrow$  derivabilidad en  $\mathbb{R}^n$ , pero sí en  $\mathbb{R}$ . Sea  $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}^m$  y  $x_0\in\mathbb{R}^n$ , donde  $\Omega$  es un conjunto abierto de  $\mathbb{R}^n$ , será diferenciable si existe una transformación lineal T tal que  $f(x_0+h)=f(x_0)+T(h)+\theta(h)$  y  $\theta(h)$  cumple que  $\lim_{h\to 0}\frac{\|\theta(h)\|}{\|h\|}=0.$ 

A partir de esto, se observa que basta hallar una antiderivada de F y a partir de esta se obtiene una familia de antiderivadas.

Así, se obtiene la "Antiderivada General" de una función f: f(x) = F(x) + C, C: constante donde F es una antiderivada cualquiera de f.

### Ejemplo 1.3

 $f(x) = e^x$  luego  $F(x) = e^x$  es antiderivada de f. Entonces , la antiderivada general es

$$H(x) = e^x + C$$
, C: constante

si y solo si

 $F_1 \wedge F_2$  en un intervalo común.

#### 1.2. Integral indefinida

La integral indefinida de una función f, denotada por  $\int f(x) dx$  es la representación de la familia de antiderivadas de f ("antiderivadas generales de f"), esto es

$$\int f(x) dx = F(x) + C, \text{ C: constante}$$

donde F es una antiderivada de f.

### Ejemplo 2.1

① 
$$\int \cos x \, dx = \sin x + C$$
, C: constante

$$2 \int \sin x \, dx = -\cos x + C, \text{ C: constante}$$

$$\Im \int \sec \tan x \, dx = \sec x + C$$
, C: constante

A partir de esto se puede construir una "tabla de integrales indefinidas"

$$\int e^x \, \mathrm{d}x = e^x + C, \text{ C: constante}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \text{ C: constante }, n \neq 1$$

$$\int \frac{\mathrm{d}x}{x} = \ln|x| + C, \text{ C: constante}$$

$$\int \sec^2 x \, \mathrm{d}x = \tan x + C, \text{ C: constante}$$

$$\int \csc x \cot x \, dx = -\csc x + C, \text{ C: constante}$$

$$\int \frac{\mathrm{d}x}{1+x^2} \, \mathrm{d}x = \arctan x + C, \ \mathbf{C}: \ \mathbf{constante}$$

$$\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin x + C, \text{ C: constante}$$

### Observación 2.1

Como se cumple que

$$\int f(x) dx = F(x) + C \sin F'(x) = f(x), \ \forall x \in \mathcal{I}$$

de esto, se obtiene las propiedades:

a) 
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[ \int f(x) \, \mathrm{d}x \right] = f(x).$$

<sup>0</sup> f es el integrando, es decir la función y x es la variable o indeterminada. 0 f El teorema de la derivada de la función inversa nos dice que dado f(g(x)) = x la regla de la cadena nos da  $f'(g(x)) \cdot g'(x) = 1$ . Escribiendo g = g(x) y g(x) = f(y), la regla se ve mejor:  $\frac{\mathrm{d}x}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = 1$  o  $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\mathrm{d}y/\mathrm{d}x}$ . La pendiente de  $g(x) = \frac{1}{\mathrm{d}y}$ 0 veces la pendiente de y = g(x) es igual a uno.

b) 
$$\int F'(x) dx = F(x) + C$$
, C: constante.

### Ejemplo 2.2

Propiedad: Dadas las funciones  $f,g\colon \mathcal{I}\subset \mathbb{R} \to \mathbb{R}$  se cumple:

① 
$$(f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

② 
$$\int K \cdot f(x) dx = K \int f(x) dx$$
, K: constante

### Ejemplo 2.3

$$\int (e^x + \sin x) dx = \int e^x dx + \int \sin x dx$$
$$= e^x + C_1 - \cos x + C_2; C_1, C_2 : \text{ constante}$$
$$= e^x - \cos x + C, \text{ C: constante}$$

$$C = C_1 + C_2$$

### 1.3. Métodos de integración

### 1.3.1. Métodos por sustitución

### Ejemplo 3.1

Integrar por ejemplo

$$\int \operatorname{sen}^2 x \, \mathrm{d}x$$

Recordando:

$$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x \implies \sin^2 x = \frac{1}{2} - \frac{\cos 2x}{2}$$

Luego:

$$\int \operatorname{sen}^{2} x \, \mathrm{d}x = \int \left(\frac{1}{2} - \frac{\cos 2x}{2}\right) \, \mathrm{d}x$$

$$= \int \frac{1}{2} \, \mathrm{d}x - \frac{1}{2} \int \cos 2x \, \mathrm{d}x$$

$$= \int \frac{1}{2} \, \mathrm{d}x - \frac{1}{4} \int \mathrm{d}(\operatorname{sen} 2x)$$

$$= \frac{x}{2} - \frac{1}{4} \operatorname{sen} 2x + C, \text{ C: constante}$$

### Observación 3.1

Haciendo el cambio 
$$u = 2x$$
  $\longrightarrow du = 2 dx \longrightarrow dx = \frac{1}{2}du$ 

Así 
$$\int \cos 2x \, dx = \frac{1}{2} \int \cos u \, du = \frac{1}{2} \sin u + C$$

Así 
$$\int \cos 2x \, dx = \frac{1}{2} \int \cos u \, du = \frac{1}{2} \sin u + C$$
 esto se conoce como el método de sustitución. Así: 
$$\int \sin^2 x \, dx = \int \frac{1}{2} \, dx - \frac{1}{2} \int \cos 2x \, dx$$
$$= \frac{x}{2} - \frac{1}{2} \left( \frac{1}{2} \sin u + C \right)$$
$$= \frac{x}{2} - \frac{1}{4} \sin 2x + C, \text{ C: constante}$$

Observación:

### Teorema 3.1: Regla de la cadena para antiderivadas

Sea F una antiderivada de f en el intervalo  $I_x$ ,  $\varphi$  es una función con derivada continua sobre el intervalo  $I_t$ , con  $\varphi(I_t) \subset I_x$ , entonces una primitiva de  $f(\varphi(t) \cdot \varphi'(t))$  es  $F(\varphi(t))$  en  $I_t$ .

Demostrar: Basta probar que

$$[F(\varphi(t))]' = f(\varphi(t)) \cdot \varphi'(t), \forall t \in I_t$$

Por la regla de la cadena

$$[F(\varphi(t))]' = F'(\varphi(t)) \cdot \varphi'(t), t \in I_t.$$

Como F es una antiderivada o primitiva de f en el intervalo  $I_x$ , entonces

$$F'(x) = f(x), \forall x \in I_x$$

Si  $x = \varphi(t)$ , entonces  $F'(\varphi(t)) = f(\varphi(t))$ .

$$[F(\varphi(t))]' = f(\varphi(t)) \cdot \varphi'(t) \quad \Box$$

### Observación 3.2

① Se impone que  $\varphi'$  sea continua en  $I_t$  para asegurar la existencia de

$$\int f(\varphi(t)) \cdot \varphi'(t) \, dt$$

$$I = \int f(\varphi(x)) \cdot \varphi^x \, \mathrm{d}x$$

se hace el cambio  $u=\varphi(x)\longrightarrow du=\varphi'(x)\,\mathrm{d} x$ 

$$I = \int f(u) \, du$$

### Ejemplo 3.0: Integrar

$$I = \int \cos 4x \, \mathrm{d}x$$

8

Hacer 
$$u = 4x \longrightarrow du = 4 dx \implies dx = \frac{1}{4} du$$

$$\longrightarrow \int \cos 4x \, dx = \frac{1}{4} \int \cos u \, du$$
$$= \frac{1}{4} \sin u + C, \text{ C: constante}$$
$$= \frac{1}{4} \sin 4x + C, \text{ C: constante}$$

Es necesario expresar la respuesta con la variable incial.

### Ejemplo 3.3

$$I = \int \frac{x^2 \, \mathrm{d}x}{\sqrt{x^2 + 1}}$$

Hacer  $u = x^3 + 1$ , entonces  $du = 3x^2 dx$ 

Reemplazando

$$I=\frac{1}{3}\int\frac{du}{u^{\frac{1}{2}}}=\frac{1}{3}\int u^{-1/2}\,du=\frac{1}{3}\cdot\frac{u^{-1/2+1}}{-\frac{1}{2}+1}+C, \text{ C: constante}$$

$$I = \frac{1}{3} \cdot \frac{u^{1/2}}{\frac{1}{2}} + C = \frac{2}{3}\sqrt{x^3 + 1} + C$$
, C: constante

### Ejemplo 3.4

$$J = \int x^2 e^{4x^3 + 1} \, \mathrm{d}x$$

hacemos  $u = 4x^3 + 1 \implies du = 12x^2 dx$ 

Luego:

$$J=\frac{1}{12}\int e^u\,du=\frac{1}{12}e^u+C, \text{ C: constante}$$
 
$$=\frac{e^{4x^3+1}}{12}+C, \text{ C: constante}$$

Nota: Si  $a \neq 0$ ,  $\int f(u) du = F(u) + C$ 

haciendo el cambio

$$u = ax + b$$

entonces:

$$\int f(ax+b) dx = \frac{1}{a}F(ax+b) + C, \text{ C: constante}$$

### Ejemplo 3.5

1) 
$$\int \sec^2(4x+5) dx = \frac{1}{4}\tan(4x+5) + C$$
, C: constante Observación  $a = 4$ 

2) 
$$\int \frac{\mathrm{d}x}{16+x^2} = \frac{1}{16} \int \frac{\mathrm{d}x}{1+\left(\frac{x}{4}\right)^2} = \frac{1}{4}\arctan(\frac{x}{4}) + C$$
, C: constante

Haciendo 
$$u = \frac{x}{4}$$

### Observación 3.3

Si hace el cambio u = f(x) en la integral

$$\int [f(x)]^a \cdot f'(x) \, \mathrm{d}x, a \neq 1$$

igual a 
$$\int u^a du = \frac{[f(x)]^{a+1}}{a+1} + C$$
, C: constante

### Ejemplo 3.6

$$I = \int \sin^3 x \cos x \, \mathrm{d}x$$

Pero, 
$$\frac{\mathrm{d}}{\mathrm{d}x} \sin x = \cos x$$

$$I = \int \sin^3 x \cdot d(\sin x)$$
$$= \int u^3 du = \frac{u^4}{4}$$
$$= \frac{\sin^4 x}{4} + C, \text{ C: constante}$$

#### Método de integración por partes 1.3.2.

Como 
$$d(uv) = v du + udv$$
  
 $\longrightarrow udv = d(uv) - vdu$ 

Integrando:

$$\int u \, dv = \int d(uv) - \int v \, du$$

Luego:

$$\int u \, dv = uv - \int v \, du$$

### Ejemplo 3.7

$$1) I = \int \ln x \, \mathrm{d}x$$

1) 
$$I = \int \ln x \, dx$$
  
Empleamos la técnica de "integración por partes":  $I = x \ln x - \int x \cdot \frac{dx}{x}$   
 $= x \ln x - \int dx$ 

$$= x \ln x - x + C$$
, C: constante

$$I = \int x \cos x \, dx$$

$$= x \sin x - \int \sin x \, dx$$

$$= x \sin x - (-\cos x) + C, \text{ C: constante}$$

$$J = \int x \arctan x \, dx$$

$$= \frac{x^2}{2} \cdot \arctan x - \frac{1}{2} \int \frac{x^2}{1+x^2} \, dx$$

$$= \frac{x^2}{2} \cdot \arctan x - \frac{1}{2} \int dx + \frac{1}{2} \int \frac{dx}{1+x^2}$$

$$= \frac{x^2}{2} \cdot \arctan x - \frac{x}{2} + \frac{1}{2} \arctan x + C, \text{ C: constante}$$

### 1.3.3. Fórmulas recurrentes

### Ejemplo 3.8

$$I_n = \int x^n e^x \, \mathrm{d}x$$

Integrando por partes

$$u = x^n$$
  $du = (n-1)x^{n-1} dx$   
 $dv = e^x dx$   $v = e^x$ 

Luego:

$$I_n = x^n e^x - (n-1) \int x^{n-1} e^x dx$$
  
$$\therefore I_n = x^n e^x - (n-1)I_{n-1}$$

Aplicación: n=2

$$\int x^2 e^x dx = x^2 e^x - (2 - 1) \int x e^x dx$$
$$= x^2 e^x$$

### Ejercicio reto

Veamos la siguiente integral solicitada por nuestro compañero de la Facultad de Ingeniería Mecánica de la Universidad Nacional de Ingeniería. Más información sobre su historia en [4].

$$\int \sec^3 x \, \mathrm{d}x$$

Usemos la técnica de "integración por partes"

$$u = \sec x \qquad dv = \sec^2 x \, dx$$
$$du = \sec x \tan x \, dx \qquad v = \tan x$$

Luego la expresión anterior resulta:

$$\int \sec^3 dx = uv - \int v \, du$$

$$= \sec x \cdot \tan x - \int \tan x \cdot \sec x \tan x \, dx$$

$$= \sec x \cdot \tan x - \int \sec x \cdot \tan^2 x \, dx$$

Pero

$$1 + \tan^2 x = \sec^2 x$$

Reemplazando en la integral:

$$\int \sec^3 dx = \sec x \cdot \tan x - \int \sec x \cdot (\sec^2 x - 1) dx$$
$$= \sec x \cdot \tan x - \int \sec x^3 x + \int \sec x dx$$

Finalmente debemos hallar la

$$\int \sec x \, \mathrm{d}x \tag{1.1}$$

Pero antes conozcamos la historia de esta integral tan importante. Ahora, si a la integral incial

$$\int \sec \theta \, d\theta = \int \frac{d\theta}{\cos \theta}$$

multiplicamos por el factor unitario  $\frac{\cos \theta}{\cos \theta} = 1$ , obtendremos

$$\int \frac{\cos \theta}{\cos^2 \theta} \, d\theta,$$

pero por la propiedad pitagórica mencionada anteriormente tenemos que

$$\int \frac{\cos \theta}{\cos^2 \theta} \, d\theta = \int \frac{\cos \theta}{1 - \sin^2 \theta} \, d\theta \qquad \qquad \text{ya que } \sin^2 x + \cos^2 x = 1 \, \forall x \in \mathbb{R}$$

$$= \int \frac{\cos \theta}{(1 - \sin \theta) \, (1 + \sin \theta)} \qquad \qquad \text{por factorización en diferencia de cuadrados}$$

$$= \frac{1}{2} \int \frac{\cos \theta}{1 - \sin \theta} + \frac{\cos \theta}{1 + \sin \theta} \, d\theta \qquad \qquad \text{por el método de "fracciones parciales"}$$

$$= \frac{1}{2} \int \frac{\cos \theta}{1 - \sin \theta} \, d\theta + \frac{1}{2} \int \frac{\cos \theta}{1 + \sin \theta} \, d\theta \qquad \qquad \text{por la propiedad de linealidad de la integral}$$

Si realizamos las siguientes sustituciones para cada integral respectivamente

$$\begin{vmatrix} u_1 = 1 - \sin \theta & du_1 = -\cos \theta \, d\theta \\ u_2 = 1 + \sin \theta & du_2 = \cos \theta \, d\theta \end{vmatrix}$$

<sup>&</sup>lt;sup>0</sup>Nótese que las representaciones  $\int f(z) dz$  o  $\int f(\Omega) d\Omega$  son equivalentes.

Finalmente obtenemos

$$\int \sec d\theta = -\frac{1}{2} \int \frac{du_1}{u_1} + \frac{1}{2} \int \frac{du_2}{u_2}$$
 reemplazando  $u_1$  y  $u_2$  por  $\theta$ 

$$= -\frac{1}{2} \ln |u_1| + \frac{1}{2} \ln |u_2| + C, \text{ C: constante}$$

$$= -\frac{1}{2} \ln |1 - \sin \theta| + \frac{1}{2} \ln |1 + \sin \theta| + C, \text{ C: constante}$$
 por propiedad de logaritmo
$$= \frac{1}{2} \ln \left| \frac{1 + \sin \theta}{1 - \sin \theta} + C, \text{ C: constante} \right| + C, \text{ C: constante}$$

$$= \frac{1}{2} \ln \left| \frac{1 + \sin \theta}{1 - \sin \theta} \cdot \frac{1 + \sin \theta}{1 + \sin \theta} \right| + C, \text{ C: constante}$$
 multiplicamos por el factor unidad
$$= \frac{1}{2} \ln \left| \frac{(1 + \sin \theta)^2}{\cos^2 \theta} \right| + C, \text{ C: constante}$$

$$= \frac{1}{2} 2 \ln \left| \frac{1 + \sin \theta}{\cos^2 \theta} \right| + C, \text{ C: constante}$$
 por propiedad de logaritmo y simplificamos
$$\therefore \int \sec \theta \, d\theta = \ln |\sec \theta + \tan \theta| + C, \text{ C: constante}$$

Pero nuestro problema inicial fue calcular

$$\int \sec^3 x \, dx = \sec x \cdot \tan x - \int \sec x^3 x + \int \sec x \, dx$$
$$= \sec x \cdot \tan x - \int \sec x^3 x + \ln|\sec x + \tan x| + C, \text{ C: constante}$$

Despejando  $\int \sec^3 x$  obtenemos:

$$\therefore \int \sec^3 x \, \mathrm{d}x = \frac{1}{2} \sec x \cdot \tan x + \frac{1}{2} \ln|\sec x + \tan x| + \frac{C}{2}, \text{ C: constante}$$

#### 1.4. Sumatoria

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \ldots + a_n$$

Observación:

$$\sum_{i=m}^{n} = a_m + a_{m+1} + a_{m+2} + \ldots + a_n$$

### Ejemplo 4.1

① 
$$\sum_{i=1}^{4} (2i+1) = (2(1)+1) + (2(2)+1) + (2(3)+1) + (2(4)+1)$$

Propiedad:

$$1 \sum_{k=m}^{n} c \cdot a_k = c \sum_{k=m}^{n} a_k$$
; k: constante.

$$2\sum_{k=m}^{n} (\alpha a_k + \beta b_k) = \alpha \sum_{k=m}^{n} a_k + \beta \sum_{k=m}^{n} b_k.$$

$$3 \sum_{k=m}^{n} (a_k - a_{k-1}) = a_n - a_{m-1}.$$

$$4 \sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}.$$

### Ejemplo 4.2

Determine la suma

$$S = 1 \times 2 + 2 \times 3 + 3 \times 4 + \ldots + n \times (n+1).$$

Solución:

$$S = \sum_{k=1}^{n} k(k+1)$$

$$S = \sum_{k=1}^{n} (k^2 + k)$$

$$S = \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k$$

$$S = \frac{n(n+1)(2n+1)}{2 \cdot 3} + \frac{n(n+1)}{2}$$

$$S = \frac{n(n+1)}{2} \left(\frac{2n+1}{3} + 1\right) \qquad \text{factorizamos } \frac{n(n+1)}{2}.$$

$$S = \frac{n(n+1)}{2} \cdot \left(\frac{2 \cdot (n+2)}{3}\right) \qquad \text{operamos el factor de la derecha.}$$

$$\therefore S = \frac{n(n+1)(n+2)}{3}. \quad \Box$$

### 1.4.1. Principio de Inducción Matemática

Sea  $A \subset \mathbb{N}$  se cumple que

i  $1 \in A$ .

ii  $(k+1) \in A$  siempre que  $k \in A$ .

Entonces  $A = \mathbb{N}$  Ejemplo: Demostrar que:

$$1+2+\ldots+n=\frac{n(n+1)}{2}, \forall n \in \mathbb{N}.$$

Solución: Veamos que se cumple

$$i 1 = \frac{1 \cdot (1+1)}{2}$$

ii Supongamos que  $1+2+3+\ldots+k=\frac{k(k+1)}{2},$  es cierto para  $k\in\mathbb{N}.$ 

<sup>&</sup>lt;sup>0</sup>Conocida como propiedad telescópica

Veamos que se cumple para (k + 1):

$$\begin{aligned} 1+2+\ldots+k+(k+1) &= (1+2+3+\ldots+k)+(k+1) & \text{Asociatividad} \\ &= \frac{k(k+1)}{2}+(k+1) & \text{por hipótesis inductiva} \\ &= (k+1)\left(\frac{k}{2}+1\right) & \\ &= \frac{(k+1)\left((k+1)+1\right)}{2} & \end{aligned}$$

Esto significa que se cumple para k+1, por el *Principio de inducción matemática* de i y iise tiene  $1+2+3+\ldots+n=\frac{n(n+1)}{2}, \forall n\in\mathbb{N}.$   $\square$  Observación: El Principio de Inducción Matemática se emplea para probar la validez de una proposición  $P(n), \forall n\in\mathbb{N}$  de la siguiente manera

- i P(1) es cierto (¡verificado!).
- ii Si P(k) es cierto, entonces P(k+1) es cierto.

Entonces P(n) es cierto,  $\forall n \in \mathbb{N}$ .

### 1.5. Integral definida

En esta parte del curso intentaremos definir el área de algunas regiones especiales según figura.

Se quiere determinar el área de una región de la forma

y se puede lograr con la integral.

Para ello pasaremos a definir algunos conceptos importantes.

### Definición 5.1: Partición de un intervalo

Un conjunto P de puntos  $\{x_0, x_1, x_2, \dots, x_n\}$  se dice que es una partición del intervalo [a, b], si se cumple que:

$$a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$$

es decir  $P = \{x_k; k = 0, 1, 2, \dots, n\}.$ 

### Definición 5.2: Norma de una partición

La norma de una partición  $P = \{x_i\}_{i=0}^n$  de [a,b] denotado por  $\|P\|$ , se define como sigue:

$$||P|| = \max\{|x_k - x_{k-1}| \mid k = 1, \dots, n\}$$

La norma de una partición nos mide la "finura" de la partición.

### Observación 5.1

 $\Delta x_k = x_k - x_{k-1}$  (longitud de  $I_k$ ).

### Ejemplo 5.1

 $P = \{1; 2; 4; 4, 5; 4, 8; 5\}$  es una partición de [1, 5]

$$\begin{split} \|P\| &= \max\{(2-1); (4-2); (4,5-4); (4,8-4,5); (5-4,8)\} \\ \|P\| &= \max\{1; 2; 0,5; 0; 3; 0, 2\} \end{split}$$

$$||P|| = 2.$$

### Observación 5.2

En [a, b] se forman subintervalos  $I_k = [x_{k-1}, x_k], k = 1, 2, \dots, n$ .

### Observación 5.3

$$\Delta x_k = x_k - x_{k-1}.$$

### Observación 5.4

Cuando  $\Delta x_k$  tiene la misma longitud para cada  $I_k$ , diremos que que la partición  $P = \{x_i\}_{i=0}^n$  de [a,b] es "regular", y en tal caso

$$x_k = a + k \left(\frac{b-a}{n}\right), \Delta x_k = \frac{b-a}{n}, \forall k = 0, \dots, n.$$

### Ejemplo 5.2

Por ejemplo si seleccionamos  $P = \{0, \frac{a}{n}; \frac{2a}{n}; \frac{3a}{n}, \dots, \frac{(n-1)a}{n}, a\}$  es una partición regular de [0, a]

$$||P|| = \frac{a}{n}$$

y en estos casos se tiene que:

$$x_k = x_0 + k\Delta x_k$$
, donde  $\Delta x_k = \frac{b-a}{n}$ 

### Definición 5.3

Se dice que una función  $f: [a,b] \longrightarrow \mathbb{R}$  es acotada en [a,b], si existen m y M reales tales que

$$m \le f(x) \le M$$
 ;  $\forall x \in [a, b]$ .

Ahora tomamos una partición  $P = \{x_0, x_1, \dots x_n\}$  de [a, b].

Para cada k = 1, ..., n definimamos

$$m_k = \inf_{[x_{k-1}, x_k]} f$$
 y  $M_k = \sup_{[x_{k-1}, x_k]} f$ 

Por tanto es claro que  $\forall k=1,2\ldots,n; m_k\leq f(x)\leq M_k, \forall x\in [x_{k-1},x_k]$ . Propiedad: Se cumple que:

$$m \le m_k \le f(x) \le M_k \le M, \forall x \in [x_{k-1}, x_k] \, \forall k = 1, 2, \dots, n$$

Prueba: Sea  $k=1,2,\ldots,n$  cualquiera. Como  $[x_{k-1},x_k]\subset [a,b]$ 

$$\implies m \le \inf_{[a,b]} f \le m_k \le f(x) \le \sup_{[x_{k-1},x_k]} f \le M_k \le \sup_{[a,b]} f \le M$$

Por consiguiente

$$m \le m_k \le f(x) \le M_k \le M$$
;  $\forall x \in [x_{k-1}, x_k]$ ;  $\forall k = 1, 2, \dots, n \quad \square$ .

### Definición 5.4: Conjunto de particiones

Siendo  $\mathcal{P}[a,b] = \{\text{conjunto de particiones de } [a,b]\}$ . Si  $P = \{x_0, x_1, \dots, x_k\} \in \mathcal{P}[a,b]$ , entonces

a) La suma superior de f con respecto a la partición P se denota por U(f,P) y se define como:

$$U(f,P) = \sum_{k=1}^{n} M_k (x_k - x_{k-1}).$$

b) La suma inferior de f con respecto a la partición P se denota por L(f, P) y se define como:

$$L(f, P) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}).$$

Propiedad:  $\forall P \in \mathcal{P} [a, b] : L(f, P) \leq U(f, P)$ .

Prueba: Para cada  $k=1,2,\ldots,n$  se tiene:  $m_k \leq M_k$ . Por tanto, para cada  $k=1,2,\ldots,n$ :

$$m_k(x_k - x_{k-1}) \le M_k(x_k - x_{k-1})$$

Sumando miembro a miembro

$$\implies \sum_{k=1}^{n} m_k (x_k - x_{k-1}) \le \sum_{k=1}^{n} M_k (x_k - x_{k-1})$$
$$L(f, P) \le U(f, P)$$

Por consiguiente

$$L(f,P) \leq U(f,P)$$

### Ejemplo 5.3

Sea la función  $f \colon [1,3] \longrightarrow \mathbb{R}$  dada por  $f(x) = x^2$ , entonces f es acotada en [1,3] porque  $1 \le f(x) \le 9, \forall x \in [1,3]$ .

### Definición 5.5

Se tiene una función  $f \colon [a,b] \longrightarrow \mathbb{R}$  acotada, una partición  $P = \{x_0, x_1, \dots, x_n\}$  de [a,b]. Se definen los números

$$m_k = \inf\{f(x) \mid x \in I_k = [x_{k-1}, x_k]\}$$

$$M_k = \sup\{f(x) \mid x \in I_k = [x_{k-1}, x_k]\}$$

### Observación 5.5

Observación: En el caso de que f es creciente en [a,b] con f>0. Se definen

$$L(f;P) = \sum_{k=1}^{n} m_k \Delta x_k$$
 "suma inferior"

$$U(f;P) = \sum_{k=1}^{n} M_k \Delta x_k$$
 "suma superior"

Propiedad: Se cumple que

$$m \leq m_k \leq M_k \leq M, \forall k = 1, 2, \dots, n.$$

Sea P[a, b] el conjunto de todas las particiones de [a, b].

Propiedad: Se cumple que

$$\forall p \in P [a, b]$$
 se tiene que  $m(b - a) \le L(f; P) \le U(f; P) \le M(b - a)$ .

Prueba: Sea  $P = \{x_0, x_1, \dots, x_n\} \in \mathcal{P}[a, b]$  cualquiera. De la propiedad 3.3 se tiene que:

$$m \leq m_k \leq M_k \leq M, \forall k = 1, 2, \dots, n$$

multiplicando por  $\Delta x_k$  se obtiene

$$m\Delta x_k \le m_k \Delta x_k \le M_k \Delta x_k \le M\Delta x_k, \forall k = 1, 2, \dots, n$$

Sumando cada una de estas n desigualdades

$$\sum_{k=1}^{n} m\Delta x_k \le \sum_{k=1}^{n} m_k \Delta x_k \le \sum_{k=1}^{n} M_k \Delta x_k \le \sum_{k=1}^{n} M\Delta x_k, \forall k = 1, 2, \dots, n$$

Comentario: La suma superior a disminuir con respecto a la otra suma.

Cuando tienes un refinamiento la suma interior tiende a crecer.

Proposición: Sea  $P, Q \in \mathcal{P}[a, b]$ . Si  $P \subset Q$ , entonces

- a)  $L(f, P) \leq L(f, Q)$
- b)  $U(f,Q) \leq U(f,P)$

Demostración: Sea  $P = \{x_0, x_1, \dots, x_n\}$  una partición de [a, b]. Sea  $\{c_1, c_2, \dots, c_n\}$  en [a, b] tal que  $x_0 < c_1 < x_1 < c_2 < x_2 \cdots < x_{n-1} < c_n < x_n$  de este modo  $Q = P \cup \{c_i\}_{i=1}^n$  es una partición de [a, b] y  $P \subset Q$ ; esto es Q es un refinamiento de P. Nota: Se cumple:

$$\text{a) }\inf\left(f\big|_{[x_{k-1},x_k]}\right)\cdot(x_k-x_{k-1})\leq\inf\left(f\big|_{[x_{k-1},c_k]}\right)\cdot(c_k-x_{k-1})+\inf\left(f\big|_{[x_{k-1},c_k]}\right)\cdot(c_k-x_{k-1})$$

b) 
$$\sup \left( f \big|_{[x_{k-1}, c_k]} \right) \cdot (c_k - x_{k-1}) + \sup \left( f \big|_{[c_k, x_k]} \right) \cdot (x_k - c_k) \le \sup \left( f \big|_{[x_{k-1}, x_k]} \right) \cdot (x_k - x_{k-1})$$

### Observación 5.6

$$\inf \left( f \big|_{[c,d]} \right) = \inf \{ f(x) \mid x \in [c,d] \}$$

Aplicando a, en cada  $I_k = [x_{k-1}, x_k], k = 1, 2, ..., n$ .

Sumando las n desigualdades:

$$\sum_{k=1}^{n} \inf \left( f \big|_{[x_{k-1}, x_k]} \right) \cdot (x_k - x_{k-1}) \le \sum_{k=1}^{n} \left[ \inf \left( f \big|_{[x_{k-1}, c_k]} \right) (c_k - x_{k-1}) + \inf \left( f \big|_{[c_k, x_k]} \right) (x_k - c_k) \right]$$

Entonces,

$$L(f, P) \le L(f, Q)$$

De manera similar aplicando b (de la nota) se prueba la segunda.

### Observación 5.7

De a se nota que cuando se refinan una partición, la suma inferior crece. En cambio, de b se tiene que cuando se refina la suma superior decrece.

Así, se obtiene  $\{L(f; P) \mid p \in \mathcal{P}[a, b]\}$  el cual es acotado superiormente porque  $L(f; P) \leq M(b-a); \forall P \in \mathcal{P}[a, b]$  y no vacío. (¿Por qué?).

Entonces el conjunto  $\{L(f, P) \mid P \in \mathcal{P} [a, b]\}$  posee supremo. De esto se define la "integral inferior" de la

función acotada f en [a, b], denotado por

$$\int_{a}^{b} f = \sup\{L(f, P) \mid P \in \mathcal{P}[a, b]\}$$

De manera similar se obtiene el conjunto  $\{U(f,P) \mid P \in \mathcal{P}[a,b]\}$ , el cual es no vacío y acotado inferiormente porque  $m(b-a) \leq U(f,P), \forall P \in \mathcal{P}[a,b]$ . En consecuencia posee ínfimo.

De esta manera se define "Integral superior de la función acotada f en [a,b]", denotado por  $\int_a^b f$ , como

$$\overline{\int_{a}^{b}} f = \inf\{U(f, P) \mid P \in \mathcal{P} [a, b]\}$$

### Definición 5.6

Sea la función acotada  $f\colon [a,b]\to \mathbb{R}$  se dice que f es integrable según Riemann si  $\underline{\int_a^b} f=\overline{\int_a^b} f$ . En este caso, se define la integral definida de la función f en [a,b], denotada por  $\int_a^b f$  como

$$\int_{a}^{b} f = \int_{\underline{a}}^{\underline{b}} f = \overline{\int_{a}^{\underline{b}}} f.$$

Como se cumple:

$$m(b-a) \leq L(f;P) \leq U(f;P) \leq M(b-a)$$

$$m(b-a) \leq L(f,P) \leq L(f,Q) \leq U(f;Q) \leq U(f,P) \leq M(b-a) \; \forall P,Q \in \mathcal{P}\left[a,b\right] \; \text{con} \; P \subset Q.$$

Fijando la partición P, se tiene que

$$\{L(f,Q) \mid Q \in \mathcal{P}\left[a,b\right]\}$$

está acotada superiormente por U(f,P), esto es, U(f,P) es una cota superior de  $\{L(f,Q) \mid Q \in \mathcal{P} [a,b]\}$  entonces

$$\int_{a}^{b} f \le U(f, P)$$

porque  $\underline{\int_a^b f}$  es supremo o mínima cota superior. De esto último  $\underline{\int_a^b f}$  es una cota inferior de  $\{U(f,P)\mid P\in\mathcal{P}\left[a,b\right]\}$  pero el ínfimo de este conjunto es  $\underline{\int_a^b f}$ , entonces  $\underline{\int_a^b f}$ .

19

Así, se tiene el siguiente

### Teorema 5.1: Definición de Darboux de $\int_0^b f$

Una función definida y acotada en [a,b] es **integrable** en [a,b] si  $\int_a^b f = \int_a^b f$ . En este caso el valor común de  $\int_a^b f$  y  $\int_a^b f$  es llamado la (definida) **integral de Riemann** de f sobre [a,b], y es simplemente denotada

### Observación 5.8: Observación en la notación

En algunos libros de Análisis no es usada la notación común  $\int_{0}^{x} dx$ , familiar del cálculo elemental porque en la definición de integral definida los símbolos x y dx no juegan un rol. La notación correcta indica que todo lo que necesitamos son la función y el intervalo. Sin embargo, en ejemplos concretos frecuentemente encontraremos más útil usar la notación familiar  $\int dx$ .

### Ejemplo 5.4

Una **función constante** f(x) = c es integrable sobre [a, b], y  $\int_{a}^{b} f = c(b - a)$ . Prueba: Para cualquier partición  $\mathcal{P}$  de [a, b], y para cualquier  $k = 1, 2, \dots, n$ ,

$$m_k = c = M_i$$
, entonces

$$L(f, \mathcal{P}) = \sum_{k=1}^{n} m_i \Delta_i = \sum_{k=1}^{n} c \Delta_k = c \sum_{k=1}^{n} \Delta_k = c(b-a),$$

y además,  $\int_a^b f = c(b-a)$ . Similarmente, para cualquier partición  $\mathcal{P}$  de [a,b],

$$U(f, \mathcal{P}) = \sum_{k=1}^{n} M_k \Delta_k = \sum_{k=1}^{n} c \Delta_k = c \sum_{k=1}^{n} \Delta_k = c(b-a),$$

y además  $\overline{\int_a^b} f = c(b-a)$ . Por lo tanto,  $\int_a^b f = \overline{\int_a^b} f = c(b-a)$ , de lo cual se sigue la conclusión deseada.

De manera similar

$$\sup (f, I_k) = 5$$

**Entonces:** 

$$U(f, P) = \sum_{k=1}^{n} \sup (f, I_k) \cdot \Delta I_k$$
  
= 5(3 - 1) = 10,  $\forall P \in \mathcal{P} [1, 3]$ .

De esto 
$$\overline{\int_1^3} f = 10$$
.  
Como  $\int_1^3 f = \overline{\int_1^3} f = 10$ .

Entonces f es integrable según Riemann

$$\therefore \int_{1}^{3} f = 10.$$

### Ejemplo 5.6: Una función no integrable

La función de Dirichlet dada por  $f(x) = \begin{cases} 1 & \text{si } x \text{ es racional,} \\ 0 & \text{si } x \text{ es irracional} \end{cases}$  es no integrable en cualquier intervalo

cerrado [a, b], donde a < b.

Prueba: Supongamos que a < b. Para cualquier partición  $\mathcal{P}[a,b]$ , y para cualquier  $k=1,2,\cdots,n$ , tenemos  $m_k=0$ , y  $M_k=1$ , entonces

$$L(f,P)=\sum_{k=1}^n m_k \Delta_k = \sum_{k=1}^n 0 \Delta_k = 0, \text{ y por lo tanto, } \underline{\int_a^b} f = 0. \text{ Similarmente,}$$

$$U(f,P)=\sum_{k=1}^n M_k \Delta_k = \sum_{k=1}^n 1\Delta_k = (b-a), \text{ y por lo tanto, } \overline{\int_a^b} f = (b-a).$$

Por lo tanto,  $\underbrace{\int_a^b f} \neq \overline{\int_a^b} f$ , de lo cual se sigue que f no es integrable en [a,b].  $\Box$   $f \colon [0,1] \longrightarrow \overline{\mathbb{R}}$  para una partición P de [0,2] se tiene que

 $f(I_k) = \{0; 1\}$  para cualquier partición P de [0, 2] .

$$\sup\left(f\big|_{I_k}\right) = 1$$

entonces

$$L(f, P) = 0$$
  
 $S(f, P) = \sum 1 \cdot \Delta I_k = 1 \cdot \sum \Delta I_k = 2.$ 

$$\underbrace{\int_0^2 f = 0}_{\text{Compo}}; \overline{\int_0^2 f} = 2.$$

$$\int_0^2 f \neq \overline{\int_0^2} f$$

entonces f no es integrable según Riemann.

### Ejemplo 5.6: Función característica de un intervalo cerrado

Consideremos la función característica de un intervalo cerrado, sea  $f=\chi_{[1,3]}$ , dada por  $f(x)=\begin{cases} 1 & \text{ si } 1\leq x\leq 3, \\ 0 & \text{ en caso contrario} \end{cases}$ .

Pruebe que f es integrable en [0, 5] y encuentre  $\int_{-\infty}^{\infty} f$ .

Nuestra comprensión intuitiva de la integral como área nos lleva a esperar que  $\int_{\hat{a}}^{2} f = 2$ , entonces empecemos con esa expectativa.

a) Sea  $\mathcal{P} = \{0, 1, 3, 5\}$ . Luego  $\mathcal{P}$  es una partición de [0, 5], y

$$L(f, P) = m_1 \Delta_1 + m_2 \Delta_2 + m_3 \Delta_3$$
  
= 0 \cdot 1 + 1 \cdot 2 + 0 \cdot 2  
= 2.

Por lo tanto, dado que  $\int_0^5 f$  es el supremo de todas las sumas inferiores,  $\int_0^5 f \ge L(f, P) = 2$ .

b) Sea  $0<\varepsilon<1$ , y sea  $\mathcal{Q}=\{0,1-\frac{\varepsilon}{2},3+\frac{\varepsilon}{2},5\}$ . Entonces  $\mathcal{Q}$  es una partición de [0,5], y

$$U(f, P) = M_1 \Delta_1 + M_2 \Delta_2 + M_3 \Delta_3$$
  
=  $0(1 - \frac{\varepsilon}{2}) + 1(2 + \varepsilon) + 0(2 - \frac{\varepsilon}{2})$   
=  $2 + \varepsilon$ .

Por lo tanto, dado que  $\int_0^5 f$  es el ínfimo de todas las sumas superiores,  $\int_0^5 f \le U(f, \mathcal{Q}) = 2 + \varepsilon$ . Además,  $\forall \varepsilon > 0, \overline{\int_0^5} f \le 2 + \varepsilon$ . Por lo tanto, por el principio de fuerza,  $\int_0^5 f \le 2$ .

c) Tomando (a) y (b) juntos con el teorema,

$$2 \le \underline{\int_0^5} f \le \overline{\int_0^5} f \le 2.$$

Esto es,  $\int_0^5 f = \overline{\int_0^5} f = 2$ . Por lo tanto, f es integrable en [0, 5], y  $\int_0^5 f = 2$ .  $\square$ 

Recordando: Sea  $A\subset \mathbb{R}, A\neq \emptyset$ . Si A es

a) 
$$c = \sup(A) \iff x \le c, \forall x \in A$$
  
 $\forall \varepsilon > 0, \exists x_0 \in A \mid c < x_0 + \varepsilon$ 

b) 
$$d = \inf(A) \iff d \le x, \forall x \in A$$
  $\forall \varepsilon > 0, \exists x_0 \in A \mid x_0 - \varepsilon < d$ 

Para una función acotada  $f: [a, b] \longrightarrow \mathbb{R}$  se definió:

$$\underline{\int_{a}^{b}} f = \sup\{L(f, P) \mid P \in \mathcal{P}[a, b]\}$$

$$\overline{\int_a^b} f = \inf\{U(f, P) \mid P \in \mathcal{P}[a, b]\}$$

Propiedad: Sea la función  $f\colon [a,b] \longrightarrow \mathbb{R}$ . Si f es integrable sobre [a,b], entonces para  $\varepsilon>0$ , existen  $P_1,P_2\in \mathbb{R}$  $\mathcal{P}[a,b]$  tal que se cumple:

$$\int_{a}^{b} f - \varepsilon < L(f, P_1) \le \int_{a}^{b} f \le U(f; P_2) < \int_{a}^{b} f + \varepsilon$$

Demostración

Aplicar definición de supremo e ínfimo.

Propiedad: Sea la función  $f: [a,b] \longrightarrow \mathbb{R}$  integrable. Para  $\varepsilon > 0$ , existe  $P \in \mathcal{P}[a,b]$  tal que

$$\int_a^b f - \varepsilon < L(f, P) \le \int_a^b f \le U(f, P) < \int_a^b f + \varepsilon$$

Demostración: De la anterior proposición tomar  $P = P_1 \cup P_2$  (P es refinamiento de  $P_1$  y  $P_2$ ). De esto último

$$U(f,P) - L(f,P) \le \int_{a}^{b} +\varepsilon - \left(\int_{a}^{b} f - \varepsilon\right)$$

$$\le 2\varepsilon$$

Así se obtiene:

Proposición: Sea  $f\colon [a,b] \longrightarrow \mathbb{R}$  una función integrable, entonces para cada  $\varepsilon>0$ , existe  $P\in\mathcal{P}\left[a,b\right]$  tal que

$$U(f, P) - L(f, P)\varepsilon$$

Proposición:Sea  $f\colon [a,b] \longrightarrow \mathbb{R}$  acotada, si para cada  $\varepsilon>0$ , existe  $P\in \mathcal{P}\left[a,b\right]$  de modo que  $U(f,P)-L(f,P)<\varepsilon$ , entonces f es integrable según Riemann en [a,b].

Proposición: Para una función  $f: [a, b] \longrightarrow \mathbb{R}$  acotada las dos proposiciones son equivalentes.

### Bibliografía

- [1] Charles G Denlinger. *Elements of real analysis*. Jones & Bartlett Publishers, 2011.
- [2] A. D. Fitt and G. T. Q. Hoare. The closed-form integration of arbitrary functions. *The Mathematical Gazette*, 77(479):227–236, 1993.
- [3] Norman B Hasser, J La Salle, and J Sullivan. Análisis matemático vol. 1. Editorial Trillas, 2009.
- [4] V. Frederick Rickey and Philip M. Tuchinsky. An application of geography to mathematics: History of the integral of the secant. *Mathematics Magazine*, 53, 05 1980.