

Mean Filter Method in Finding and Identifying Peaks for PIGE and PIXE and Elements Signal Sensitivity Analysis under 2.4-5.1 MeV Proton

Jingxu Xie

2019 NSF/REU Program

Physics Department, University of Notre Dame

Advisor: Prof. Graham Peaslee

Abstract

In this article, we analyze the PIGE and PIXE data under different proton beam energy: 2.4MeV, 3.4MeV, 4.2MeV, 5.1MeV of elements with Z=9, 11-17, 19-23, 25-30, 35, 37, 40-42, 44-45, 47, 49-50, 53, 55-56. We introduce the mean filter method to smooth raw data, determine background, find peaks, integral and normalize the peak areas. Then we obtain tables of γ -ray and X-ray signal sensitivity of different isotopes under four different proton beam energy. And we made lists of elements for γ -ray and X-ray peaks.

1 Introduction

Particle induced prompt γ -ray emission (PIGE) is a good way to analyze the elements in samples according to the special γ -ray of elements and isotopes. However, sometimes it is hard to identify peaks from spectrum because there might be a lot of background noises and peaks and to find and identify every peak manually is a time-consuming and boring work. Moreover, for some elements, they might need enough proton energy to induce to emit γ -ray. And the signal sensitivity is quite different under different proton energy. Knowing the sensitivity of elements can help us better select material when running sample test and analyzing peaks. Thus, we need to find a good method to erase background and use computer to find and identify peaks automatically, and make a table of elements and isotopes with their special peaks and signal sensitivity.

In 1980s, Kiss^[1] (1984) and Räisänen^[2,3] (1982, 1987) have tested some elements γ -ray peaks under low energy (2.4 MeV) and high energy (7 MeV) and made tables of target γ -ray yield. But there is no data

in medium energy. So we run our samples at 2.4-5.1 MeV proton beams. Sometimes PIGE can't give the right peaks either we want to reconfirm our identification, so we can use X-ray data (PIXE) to support it. And there is no data about X-ray emission on these elements with their signal sensitivity. Therefore in our experiment, we also collect the X-ray data under the four energy and analyze their peaks and sensitivity.

2 Experimental Arrangement

In our experiment, we use the alpha toss and 9SDH 5MeV St.Andre accelerator at University of Notre Dame (see Fig.1) to generate high energy proton beams of 2.4 MeV, 3.4 MeV, 4.2 MeV and 5.1 MeV by adjusting the power supply. The whole accelerator system runs in high vacuum about 10⁻⁷ psi, to reduce the energy loss of proton beam when colliding with particles in air. And we also use magnetic quadrupole to focus the proton beam.

We grind the samples into powder and put them into small bags, which is around 5mm× 5mm in length and width, and about 2mm thick. Then we use tapes to

Figure 1: Alpha toss and 9SDH St.Andre accelerator in Notre Dame. The box in the left is the alpha toss generated from H or He. And the big blue tank holds a 6MeV accelerator.

stick the bags to our iron frame and fix them to target wheel (see Fig.2), which has a hole in center to let the beam go through target sample. We run samples in air and three minutes for each. In our experiment, we use samples Ag₂S, BaOH, CaCO₃, Co₃P₂, CsCl, CuCl₂, Dy, NaF, FeCl₃, In, KBr, KI, MgCO₃, MgSO₄, Mn(OAc)₂, Mo, N₂NiO₄, NaHCO₃, Nd₂O₃, Pt, RbCl, Rh, RuO₂, SiO₂, Sm₂O₃, Ti, ZnS.

Figure 2: Target wheel and γ -ray detector. One wheel can be mounted sixty samples. The γ -ray detector is at the right of the target wheel and the X-ray detector is behind the wheel at top right in this figure.

3 Measurement and Data Analysis

We plot the counts received from the detector under different γ -ray energy. The raw data of Ag₂S sample

at 3.4 MeV proton beam is shown in Fig.3. The γ ray energy ranges from around 50keV through 2500 keV. From the figure we can see that there are several dominant peaks and it seems easy to determine the energy of the peaks and then identify them by looking up online γ - ray chart of nuclides.

Figure 3: γ -ray raw spectrum of Ag2S with 3.4MeV proton. There are clear dominant peaks as well as a lot of background noise in this figure.

However, there are a lot of peaks are generated from background reactions, for example, 511 keV is from positronium annihilation. And if we zoom in the spectrum, as shown in Fig.4, we can see that there are a lot of background noises and even for the peaks, there are a lot of fluctuations. And also, the background noise counts are different under different energy, for instance, the background noise is higher in low energy (less than 500kV) than in high energy (more than 1000 keV). That is because our γ -ray detector sensitivity is different under different energy. It is much more sensitive in low energy than in high energy. So what we need to do first is to smooth the spectrum and find the background then subtract it from real peaks.

Figure 4: γ -ray raw spectrum of Ag₂S at 3.4MeV proton beam, zoom in around 511 keV (positronium annihilation).

3.1 Smooth Spectrum

We use Mean Filter Method to smooth the spectrum. For some data point, we calculate the average of three front and three back points and take this average value as the value of the selected point. We do this for all points except for a few points at the beginning and the end of the data set because there is no front either back points for them to take average. After doing this, we obtain a new set of data. And we repeat the procedure for the new data for 10 times. Then we get a satisfied smooth curve of raw data. As shown in Fig.5, the blue thin line is raw data and the red thick curve is the smooth curve after using Mean Filter Method. The smooth curve lower the peak height to some extent, but this does't affect too much on our calculation, and it will be discussed later at the end of the article. In general, the smooth curve well represents the peaks shape and position, and it reduce the fluctuations of raw data. It also shows us a clear line of background, which can help us to find the background.

Figure 5: Mean filter smooth curve (in thick red line) and the raw data (in thin blue line), zoom in around 54-68keV

3.2 Determine Background

From Fig.5, we can see that most of the background noises fluctuations have been reduced. But there are still some fluctuations in the smooth curve. So we utilize these fluctuations to determine the background value under different energy.

To determine the background, we first find all the minimal points of the smooth curve. However, if two peaks overlap, there would be a minimal point between two peaks but it is much higher than background. So we design a filter to eliminate those minimal points on the peaks. To do so, we compare the point with its adjacent points. Specifically, for any point, we calculate the average of two front and two back points separately. Then we compare the point value with the front average and the back average. If it is larger than both of the half of the front average and the back average, then the point is regarded as invalid and eliminated. After determining all the valid minimal points, we still use Mean Filter Method to

smooth these minimal points and then use the smooth curve as the background.

Figure 6: Smooth spectrum (thin blue line) and background (thick red line) of Ag₂S at 3.4 MeV proton beam.

In Fig.6, the thick red line shows the background we determined, and the thin blue line is the smooth spectrum. It clearly shows us the strong background at low energy and weak background at high energy.

3.3 Find Peaks and Integral Areas

Once we have determined the background, we can subtract it and then find real peaks. After subtracting the background, although there is still some noises fluctuations, they are all around zeros and the positive and negative number are roughly equal, which verifies that we determine the right background.

To find the peaks, we first find all the maximal points, and then set thresholds to eliminate fake peaks, including peaks that overlap too much, and small peaks. We find that the residual background noises fluctuations are related to the value of the background, i.e., higher background usually has higher noises fluctuations. So we set different thresholds according to

different background values. Generally, we set the threshold as twice of the local background noises fluc-

Figure 7: Subtract-background spectrum and peaks with normalized area. The blue line is the smooth curve of raw spectrum in which the background has been subtracted. The red asterisks show the position of peaks we find in Ag_2S sample at 3.4 MeV proton beam. And the numbers near asterisks show the normalized area of every peak.

tuations amplitudes. If the maximal point is lower than the threshold, then it is regarded as a small or fake peak and eliminated. As for overlapped peaks, we set a overlapped rate as 0.75. For every adjacent peaks, we first find the lowest points between the two peaks. And then compare the minimal value with the lowest peak height. If the minimal value is higher than the overlapped rate multiplies the lowest peak height, the two peaks are viewed as undistinguishable and we eliminate the lower one and reserve the higher one. Then compare the reserved peak with next peak.

After locating the real peaks, we continue to locate the peak bases of every peak. For each peak, we first find two locations (left and right around the peak) of the points with half height of the maximal peak height. Then calculating the distance between the half-height points and the summit of the peak. Then we multiply the distances with a factor of 1.7 to locate the peak base. That is because the Full Width at Half Maximum (FWHM) is about 2.4σ and the peak width is about 4.2σ . So the peak width is about 1.7 times FWHM. Then we use trapezoid method to integral the peak area from one peak base to another. And we also normalize the areas by the amount of charge of proton beam, i.e., divide the area by the currents and time when running the sample. The subtract-background spectrum and the peaks we found with normalized areas are shown in Fig.7.

3.4 X-ray Data Processing

X-ray data is easier to analyze because it doesn't have too much background noises. So we don't need to determine and subtract background. Other procedures are the same as dealing with γ -ray data. The X-ray spectrum of Ag₂S at 3.4 MeV proton beam is shown in Fig.8.

4 Results

We run the program for all of our samples and we can obtain the table of γ -ray and X-ray lines for different elements and isotopes. And we also calculate the signal sensitivity of different elements based there amount in sample and the natural abundance of iso-

Figure 8: X-ray data processing result. The thick yellow line shows the smoothed curve of raw spectrum. The coloured areas is the peak areas we determined and the number near the peaks are normalized peak areas. The dominant two peaks are 22.1 keV and 24.9 keV, which are the K_{α} and K_{β} decay of silver.

topes. This is helpful because if you get a peak, then you can look up our tables to determine the what the element is. And you can confirm your identification by using PIGE and PIXE data simultaneously. And you can select appropriate element if you want to do sample test according to our signal sensitivity table.

Table 1: Isotopes for γ -ray peaks

Energy(keV)	Isotope	Energy(keV)	Isotope		
110	19 F	808	^{51}V		
121.5	¹⁵² Sm	843	²⁷ Al		
122	⁵⁷ Fe	847	⁵⁶ Fe		
126	⁵⁵ Mn	858.5	⁵⁵ Mn		
127	¹⁰¹ Ru	889	⁴⁵ Sc		
130	¹⁵⁰ Nd	889	⁴⁶ Ti		

159	⁴⁷ Ti	926.5	⁴⁵ Sc	431.5	⁴⁵ Sc	1327	⁶³ Cu
170	²⁷ Al	928.5	^{51}V	440	²³ Na	1333	⁶⁰ Ni
172	$^{127}\mathrm{I}$	931	⁵⁵ Mn	454	¹⁴⁶ Nd	1368	²⁷ Al
182.5	⁷⁹ Br	962	⁴⁵ Sc	475	102 Ru	1369	24 Mg
190	81 Br	962	⁶³ Cu	484.5	87Rb	1380	25 Mg
197	¹⁹ F	974.5	⁴⁵ Sc	520.5	⁴⁸ Ca	1408	⁵⁵ Mn
203	$^{127}\mathrm{I}$	975	²⁵ Mg	523	⁷⁹ Br	1410	³⁷ Cl
217	⁷⁹ Br	980.5	41 K	530.5	⁴⁵ Sc	1438	⁴⁸ Ti
231.5	⁸⁵ Rb	983.5	⁴⁸ Ti	539.5	¹⁰⁰ Ru	1454	⁵⁸ Ni
255	¹¹³ In	1014	²⁷ Al	543	⁴⁵ Sc	1480	⁵¹ V
276	81 Br	1024	¹¹³ In	550	¹⁴⁸ Sm	1525	⁴² Ca
302	¹³³ Cs	1049	⁴⁵ Sc	585	25 Mg	1609	^{51}V
302	¹⁴⁸ Nd	1093	⁴⁷ Ti	617	⁷⁹ Br	1611	³⁷ Cl
306	⁷⁹ Br	1120.5	⁴⁵ Sc	628.5	^{127}I	1634	²³ Na
311	¹⁰⁹ Ag	1131	¹¹³ In	632	¹³³ Cs	1643	³⁷ Cl
320	^{51}V	1149	^{51}V	638	¹¹³ In	1663	⁴⁵ Sc
324	¹⁰⁷ Ag	1157	⁴⁴ Ca	670	⁶³ Cu	1728	³⁷ Cl
334	¹⁵⁰ Sm	1165	^{51}V	691	⁴⁵ Sc	1763	³⁵ Cl
338	⁵⁹ Co	1220	³⁵ Cl	696.5	¹⁴⁴ Nd	1779	²⁸ Si
358	104 Ru	1228	⁸⁷ Rb	700	¹¹⁹ Sn	1809	26 Mg
364	⁴⁵ Sc	1235	¹⁹ F	720.5	⁴⁵ Sc	1813	⁵¹ V
370.5	⁴⁸ Ca	1237	⁴⁵ Sc	749	^{51}V	1943	⁴¹ K
383	¹³³ Cs	1263.5	⁵⁹ Co	780	⁴⁸ Ca	2028	^{29,30} Si
390	25 Mg	1274	²⁹ Si	804	⁵⁵ Mn	2128	³⁷ Cl
411	⁵⁵ Mn	1294	^{41}K	T. 1.1	A T .	C	,
415	¹⁰⁹ Ag	1300	¹¹⁴ Sn	Table	2: Isotopo	es for γ -ra	y peaks
423	¹⁰⁷ Ag	1312	⁴⁸ Ti			~	
					11 1		/ N /I ~ 1 7`

Element Signal Sensitivity (MeV) $E_p = 2.4 \quad 3.4 \quad 4.2 \quad 5.1$

¹⁰⁷ Ag	0	0	0	223
¹⁰⁹ Ag	0	0	14	274
²⁷ Al	0	193	9494	47600
79 Br	0	65	858	5663
81 Br	0	41	599	4754
⁴² Ca	0	0	0	5748
⁴⁴ Ca	0	0	1339	7699
⁴⁸ Ca	0	1688	25650	112388
³⁵ Cl	0	0	293	2298
³⁷ Cl	0	0	0	2686
¹³³ Cs	0	4	21	58
⁶³ Cu	0	0	61	941
¹⁹ F	135	37626	265322	684468
⁵⁶ Fe	0	0	291	3210
⁵⁷ Fe	0	0	0	4958
^{127}I	0	0	0	69
¹¹³ In	0	0	0	3316
^{41}K	0	0	695	10043
24 Mg	0	140	2223	13178
25 Mg	0	3388	20827	60306
26 Mg	0	0	5042	14064
⁵⁵ Mn	0	794	9852	60556
⁵⁸ Ni	0	0	0	249
⁶⁰ Ni	0	0	0	237
²³ Na	0	184	3012	50070
¹⁴⁴ Nd	0	0	0	48
¹⁴⁶ Nd	0	7	79	225

¹⁴⁸ Nd	0	88	473	1118
¹⁵⁰ Nd	0	284	1063	2051
⁸⁵ Rb	0	0	115	746
⁸⁷ Rb	0	0	87	357
¹⁰⁰ Ru	0	0	0	282
¹⁰¹ Ru	0	0	0	294
¹⁰² Ru	0	8	103	484
¹⁰⁴ Ru	0	33	323	1250
⁴⁵ Sc	0	238	2606	12396
²⁸ Si	0	0	2066	7914
²⁹ Si	0	49	4735	19182
³⁰ Si	0	0	0	4467
¹⁴⁸ Sm	0	0	0	176
¹⁵⁰ Sm	0	30	279	1035
¹⁵² Sm	0	205	838	2386
¹⁵⁴ Sm	0	45	144	515
¹¹⁴ Sn	0	0	11286	0
¹¹⁹ Sn	0	0	0	137
⁴⁶ Ti	0	8	1637	8813
⁴⁷ Ti	0	724	13589	47351
⁴⁸ Ti	0	7	1339	7964
^{51}V	0	13	1322	9326

 Table 3: X-ray peaks and signal sensitivity

Element	Energy	Signal Sensitivity(MeV)						
	(keV)	2.4	3.4	4.2	5.1			
Ag	22.1	0	2	53	258			
	24.9	0	0	8	41			

							32.3	0	0	1	8
Ba	4.5	0	2	4	6						
	4.8	0	5	11	18	Mn	5.9	14	1099	3754	0
	32.2	0	1	4	12		6.5	6	392	1374	47
	36.3	0	0	1	2						
						Mo	17.5	33	678	1882	3810
Br	11.9	7	728	2764	5966		19.6	5	124	356	721
	13.3	1	155	609	1353						
						Ni	7.5	0	344	1723	3310
Co	6.9	1	116	655	1319		8.3	0	88	448	875
	7.6	0	26	159	344						
						Nd	5.2	1	10	24	29
Cs	4.3	0	0	1	1		5.7	1	24	59	75
	4.6	0	1	3	5						
	30.9	0	5	30	68	Pt	7.4	269	2599	1184	2266
	34.9	0	1	5	10		8.2	64	639	321	617
Cu	8	2	450	2304	3840	Rb	13.4	0	64	237	1516
	8.9	1	110	597	1024		15	0	11	42	285
							13.4	2	349	1219	2171
Dy				53			15	0	68	249	461
	7.2	0	3	46	297						
						Rh	20.2	18	292		
Fe			240	863	1603		22.7	3	46	184	334
			77		569						
			0			Ru	19.2		57	382	0
Ι	28.5	0	0	10	56		21.7	0	10	69	0

Table 3: (continued)

V)
1
<u>.</u>
r
0
5
)
1
9
<u>)</u>
4
7
4
2
1

5 Discussion

In our data analysis, we use the mean smooth curve to integral the areas. It is mentioned earlier that our curve will lower the peak summit, which may cause some uncertainty. We can do uncertainty analysis by using FWHM. And we plan to combine Föurier Transformation Filter Method to smooth the spectrum to overcome the shortcoming of Mean Filter Method.

6 Acknowledgement

During this summer, I have received much useful guidance and advice and I thank all those students and professor who took the time to help me. I greatly thank professor Graham Peaslee for giving me the project and for his patient guidance. I am grateful to John Wilkinson and Sean McGuinness who taught me a lot of nuclear physics. And I thank Emily McGill, Matt Roddy, Alec Gonzales and Nick Caterisano for their warm help.

References

- [1] Á. Z. Kiss, et al. Measurements of Relative Thick Target Yields for PIGE Analysis on Light Elements in the Proton Energy Interval 2.4-4.2 MeV, Journal of Radioanalytical and Nuclear Chemistry, Physical Methods Section, 1984.
- [2] J.Räisänen et al. Heavy Element (Z>30) Thick-Target Gamma-Ray Yields Induced By 1.7 and 2.4 MeV Protons, Nuclear Instruments and Methods, 1982.
- [3] J. Räisänen et al. Abosulte Thick-Target γ Ray Yields for Elemental Analysis by 7 and 9MeV Protons, Nuclear Instruments and Methods in Physics Research, 1987.