

Análise de Algoritmos de Agrupamento e Classificação na Modelagem de Comportamentos de Tarefas Paralelas

Lesandro Ponciano do Santos lesandrop@yahoo.com.br

15 de outubro de 2008

Apresentação

- PUC Minas em Guanhães
- Curso Bacharelado em Sistemas de Informação
 - Aluno: Lesandro Ponciano dos Santos
 - Orientador: Prof. João Paulo D. Silva
 - Co-orientador: Prof. Luís Fabrício W. Góes
- Projeto voluntário, sem financiamento

- Introdução
 - Contexto
 - Problema
 - Proposta
 - Objetivos
- Trabalhos Relacionados
- Algoritmos de Classificação e Agrupamento
- Planejamento dos Experimentos
- Resultados
- Conclusão

Contexto

- Aplicações que exigem alto poder de processamento
- Reconfigurable Gang Scheduling Algorithm (RGSA) (Góes e Martins, 2005)
 - Tempo de submissão, tempo de execução e número de processos
- Caracterização de Cargas de Trabalho
- Algoritmo baixo (L *low*) e alto (H *high*), 4 grupos possíveis (HH, HL, LL, LH)

ContextoAlgoritmo – Classificação Low e high_

```
se job.n_processos ≤ mediana_n_processos
    se job.tempo_exe ≤ mediana_tempo_exe
    então job.classe = LL;
    senão job.classe = LH;

senão se job.tempo_exe ≤ mediana_tempo_exe
    então job.classe = HL;
    senão job.classe = HH;
```


Problema

 O algoritmo de Classificação Low e high é muito sensível à variações da mediana e se preocupa em minimizar o desvio entre as tarefas de um grupo

Proposta

 Utilização de algoritmos clássicos de classificação e agrupamento por similaridade

Objetivos

 Analisar a aplicação dos algoritmos, de agrupamento, k-means e, de classificação, j48

Trabalhos Relacionados

Góes e Martins, 2005

 Proposta e desenvolvimento do escalonador RGSA em ambiente ideal

Santos e Góes, 2007

 Técnica de Caracterização de log para extrair informações confiáveis para o escalonador RGSA. (Utilizando classificação low e high)

Feitelson, 2007

 Constatação que existem padrões na localidade e demanda de serviços em requisições a máquinas paralelas

Algoritmos de Classificação e Agrupamento

Agrupamento low e high

Algoritmos de Classificação e Agrupamento

Agrupamento K-means e Classificação J48

- Dado um rastro, com dados de tarefas paralelas, executa-se o algoritmo k-means com k=4 e identificamse quatro grupos (G0, G1, G2 e G3), gerados pela similaridade entre as tarefas
- Executa-se o algoritmo j48 para identificar as regras que definem os agrupamentos
- As regras obtidas são utilizadas na classificação e predição do comportamento de tarefas futuras

Algoritmos de Classificação e Agrupamento

Exemplo de Regras de classificação (LANCM5 outubro/1995)

```
se job.n_processos <= 64
   então job.classe = G1;
senão
   se job.n_processos <= 256
   então job.classe = G0;
   senão
        se job.tempo_exe <= 8357
        então job.classe = G2;
        senão job.classe = G3;</pre>
```


Algoritmos de Classificação e Agrupamento

Exemplo de árvore de decisão (LANCM5 outubro/1995)

Planejamento dos Experimentos

- São utilizadas tarefas submetidas, ao longo de sete meses, em quatro supercomputadores reais (HPC2N, SDSC, SHARCNET, LANCM5)
- Para predição de comportamentos, caracteriza-se um mês e testa-se a capacidade de predição para o mês subseqüente

Análise do número de tarefas caracterizadas

	Número de Tarefas						
	Abr.	Mai.	Jun.	Jul.	Ago.	Set.	Out.
HPC2N	29970	17817	20545	24121	7241	5159	11444
SDSC	5259	8395	8358	5339	7204	8782	9147
SHARC.	87505	76813	52551	95118	90225	63162	158681
LANCM5	5790	6831	6216	6969	6126	6303	5271

Teste de Predição SDSC 2005 (algoritmo low e high)

	Dias da Semana						
Meses	D	S	Т	Q	Q	S	S
mai.	73	56	43	65	63	58	65
jun.	77	62	71	71	71	66	71
jul.	46	57	53	56	69	49	55
ago.	55	51	58	57	52	49	58
set.	65	61	63	57	56	66	60
out.	50	63	76	74	67	61	64

Teste de Predição SDSC 2005 (algoritmo k-means e j48)

	Dias da Semana						
Meses	D	S	T	Q	Q	S	S
mai.	76	84	70	82	76	82	82
jun.	76	86	90	92	94	94	90
jul.	66	76	76	80	80	82	74
ago.	76	84	82	66	70	70	70
set.	90	86	86	68	70	76	74
out.	78	90	82	92	90	88	86

Ganho médio do algoritmo *k-means* e *j48* em relação ao algoritmo *low* e *high*, nos testes de precisão

- Os algoritmos k-means e j48 geram, na média, maior percentual de acerto na predição
- A implementação e a estrutura de informações do algoritmo low e high é mais simples que a do algoritmos k-means e j48
- Os algoritmos k-means e j48 extraem mais informação (regras), das bases de dados, em relação ao algoritmo low e high (Mediana)

Contribuições

 Proposta, implementação e análise de um método de modelagem de carga de trabalho de máquinas paralelas por atributos de similaridade entre tarefas

Publicações de resultados preliminares

- Artigo de iniciação científica publicado e premiado como um dos três melhores trabalhos apresentados ao WSCAD-CTIC. Gramado/RS, outubro de 2007
- Artigo aceito para publicação no WSCAD-CTIC.
 Campo Grande/MS, outubro, novembro de 2008
- Dois artigos em processo de avaliação em revistas e congressos

Principais Referências

- Feitelson, D. Locality of Sampling and Diversity in Parallel System Workloads. ACM SIGMETRICS 2007 pp. 53-63..
- GÓES, L. F. W. e MARTINS, C. A. P. S., Reconfigurable Gang Scheduling Algorithm, 10th Workshop on Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Science, New York. 2005.
- SANTOS, L. P. e GÓES, L. F. W. Técnica de Caracterização de Cargas de Trabalho para Extração de Informações Utilizadas pelo Escalonador Reconfigurável de Tarefas. Workshop de Sistemas Computacionais de Alto Desempenho (WSCAD), 2007.
- SANTOS, L. P. e GÓES, L. F. W. Descoberta e Predição de Comportamento de Tarefas Paralelas através da Caracterização de Padrões em Cargas de Trabalho. Workshop de Sistemas Computacionais de Alto Desempenho, Concurso de Trabalhos de Iniciação Científica WSCAD-CTIC 2008. Anais Digitais, Campo Grande/MS, 2008. (Artigo aceito, publicação prevista para outubro 2008).
- Download Workloads http://www.cs.huji.ac.il/labs/parallel/workload/logs.html último acesso em: 14 out. 2008.
- Lee, C.B., et al. "Are user runtime estimates inherently inaccurate?", 10th Workshop on Job Scheduling Strategies for Parallel Processing, 2004.

Perguntas...