ECE532: Digital Systems Design

## Turretmaster 5000

ROBERTO BORTOLUSSI MICHAEL HALAMICEK EMILY NG PATRICK PAYNE

# Background and Motivation

## Inspiration

- Automated turrets are common in games
  - Portal
  - Team Fortress 2
- Automatically detect enemies, fire at them



## Practical Applications

- Shotgun microphone aiming
- Security cameras
- •Military applications

## Initial Goals

- oldentify and differentiate between different targets on a video feed
- •Be able to react to target motions
- •Be able to "fire upon" target when a lock-on is achieved
  - play a sound



# Our Final Design

## Peripherals and Physical Components

#### Laser turret

- Pan/tilt bracket
- 2 servo motors
- Laser diode
- Control circuitry

Camera

Monitor

**Speakers** 

SD card

Nexys Video Board





Video Microblaze Custom IP

Memory Audio

Debug

Interconnect



## Image Processing Stages



Input Image



Sobel



**Connected Components** 

## Basic Flow of Logic

- 1. Read camera input into frame buffer
- 2. Feed frame buffer into image processing IP
- 3. Read output of image processing IP
- 4. Use target and laser location to determine next action:
  - If laser is within threshold of target, fire (play noise)
  - If laser is not within threshold, move laser closer to target
- 5. Return to step 1

# Our Design Process

### Division of Labour

#### **Embedded Systems**

#### Roberto

- Audio and video IP integration
- Block design
- Integrated software (UART, (V)DMAs, etc)
- Driver software for custom IP

#### **Patrick**

- SD card subsystem (low-level SPI, FAT32)
- Sound Board, loading sound files
- Software Integration (Version Control, UART)
- Motor control (manual/automatic modes)

#### Hardware Design

#### **Emily**

- Research into computer vision
- Software prototype
- Testbench
- Hardware implementation

#### Michael

- Physical turret system and circuitry
- Servo PWM and laser driver IP
- Image processing IP shell
- Laser tracking

## Testbench Setup



## Hardware Testing



## Source Control and Collaboration

#### •Version controlled:

- Block diagram (as tcl)
- IP Verilog sources
- Software
- Bitstream

#### •Work flow:

Scripts for creating and compiling project

#### •Benefits:

- Easy to work independently
- Easy to revert changes

# Obstacles and Challenges

## Video Processing IP

- •Noise rejection
- Thresholds
- Environmental dependence
  - lighting
- •Tradeoff:
  - laser detection vs. object detection



### Embedded

- Proper configuration of VDMA IP to communicate with image processing
  - Proper timing / control signals
  - Handling bus contention with other (V)DMAs
- Could not use native SD interface
  - used slower, obscure SPI protocol
  - Support for SPI interface very poor
- Difficult to debug SD card internals
  - Simulation of SD card impossible
  - SD card is a "black box"

## What We Learned

- Design should account for the variability of real environments
  - e.g. lighting, colour
- •Better anticipate "bottlenecks" in the project schedule
  - HDMI
  - Held up frequently by missing hardware features
- •Test out performance of peripherals early in the project
  - e.g. issues with webcam

## Reference Materials

- Open-source libraries for high-level FAT32 operations
- •Digilent sample projects for:
  - Video input/output
  - Audio

## Thank You