МАШИННО-ЗАВИСИМЫЕ ЯЗЫКИ ПРОГРАММИРОВАНИЯ

ИУ7, 4-й семестр, 2020 г.

Организация курса

- видео-, аудиозапись и фотосъёмка запрещены
- 2 модуля + экзамен
- 8 лекций, N лабораторных работ
- 38 часов самостоятельной подготовки к лабораторным работам

Литература

■ Зубков C. B. "Assembler. Для DOS, Windows и Unix"

Цели и программа курса

- Изучение низкоуровневого устройства ЭВМ
- Понимание исполнения программ на аппаратном уровне. Работа процессора
- Умение составлять и читать программы, включая:
 - составление программы на низком уровне "с нуля"
 - взаимодействие программного кода с внешними устройствами
 - доп. возможности и расширения современных процессоров
 - отладку и реверс-инжиниринг исполняемых файлов

История создания ЭВМ. Появление вычислителей общего назначения. Архитектура фон Неймана

От решения частных вычислительных задач - к универсальным системам

Принципы фон Неймана:

- 1. Использование двоичной системы счисления в вычислительных машинах.
- 2. Программное управление ЭВМ.
- 3. Память компьютера используется не только для хранения данных, но и программ.
- 4. Ячейки памяти ЭВМ имеют адреса, которые последовательно пронумерованы.
- 5. Возможность условного перехода в процессе выполнения программы.

Процессор

Управляющее устройство (УУ)

Ввод

Арифметикологическое устройство (АЛУ) Вывод

Структурная схема ЭВМ

Память. Единица адресации. Представление символов

Байт - минимальная адресуемая единица памяти

- 8 бит
- диапазон значений 0..255
- $8 = 2^3 = 10_{16}^2$

Машинное слово — машиннозависимая величина, измеряемая в битах, равная разрядности регистров/шины данных

Параграф - 16 байт

ASCII (аски́) - American standard code for information interchange, США, 1963.

	ASCII Code Chart															
	0	1	2	3	4	5	6	7	8	9	ιA	В	С	D	E	_ F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	H	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2			=	#	\$	%	۵.	-	J)	*	+	,	·	٠	/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	0	Α	В	С	D	Ε	F	G	Н	I	J	K	L	М	N	0
5	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z]	\]	^	
6	,	а	b	C	d	е	f	g	h	i	j	k	l	m	n	0
7	р	q	r	s	t	u	V	W	Х	у	z	{	Ī	}	~	DEL

- 7-битная кодировка
- первые 32 символа служебные
- старшие 128 символов 8-битной кодировки - национальные языки

Системы счисления

Двоичная (binary)

- **o**, 1, 10, 11, 100, 101...
- $2^8 = 256$
- $= 2^{10} = 1024$
- 2¹⁶=65536

Шестнадцатеричная (hexadecimal)

- 0, 1, ..., 8, 9, A, B, C, D, E, F, 10, 11, 12, ..., 19, 1A, 1B...
- **2**4=10
- **■** 2⁸=100
- 2¹⁶=100000

10110110111111000₂ = B6F8₁₆

Представление отрицательных чисел. Дополнительный код

-00101101 => инверсия и прибавление единицы:

- **11010010**
- **11010011**

$$-1+1=0$$

Виды современных архитектур ЭВМ

- x86
- x86-64
- IA64
- ARM
- MIPS (в т. ч. Байкал)
- Эльбрус

Семейство процессоров х86

- Микропроцессор 8086: 16-разрядный, 1978 г., 5-10 МГц, 3000 нм
- Предшественники: 4004 4-битный, 1971 г.; 8008 8-битный, 1972 г.; 8080 1974 г.
- Требует микросхем поддержки
- 80186 1982 г., некоторое развитие, интегрированы микросхемы поддержки
- 80286 1982 г., 16-разрядный, добавлен защищённый режим
- 80386, 80486, Pentium, Celeron, AMD ... 32-разрядные, повышение быстродействия и расширение аппаратного функционала (системы команд)
- х86-64 (х64) семейства с 64-разрядной архитектурой
- Советский аналог K1810BM86, 1985 г.

Устройство 8086

Архитектура 8086 с точки зрения программиста

Язык ассемблера

Язык ассемблера - машинно-зависимый язык программирования низкого уровня, команды которого прямо соответствуют машинным командам.

Исполняемые файлы. Компиляция. Линковка

- **Исполняемый файл** файл, содержащий программу в виде, в котором она может быть исполнена компьютером.
- Получение исполняемых файлов: компиляция + линковка.
- Компилятор программа для преобразования исходного текста другой программы на определённом языке в объектный модуль.
- Компоновщик (линковщик, линкер) программа для связывания нескольких объектных файлов в исполняемый.

Исполняемые файлы. Запуск программы. Отладчик

- .EXE, .COM. Запуск новой программы операционной системой:
- 1. Определение формата файла.
- 2. Чтение и разбор заголовка.
- 3. Считывание разделов исполняемого модуля (файла) в ОЗУ по необходимым адресам.
- 4. Подготовка к запуску, если требуется.
- 5. Передача управления на точку входа.
- Отладчик программа для автоматизации процесса отладки. Может выполнять трассировку, отслеживать, устанавливать или изменять значения переменных в процессе выполнения кода, устанавливать и удалять контрольные точки или условия остановки.

"Простейший" формат исполняемого файла

.COM (command) - простейший формат исполняемых файлов DOS и ранних версий Windows.

■ C< 64 Kб

Запуск СОМ-программы:

- Система выделяет свободный сегмент памяти и заносит его адрес во все сегментные регистры (CS, DS, ES и SS).
- В первые 256 байт этого сегмента записывается PSP.
- Непосредственно за ним загружается содержимое СОМ-файла без изменений.
- Указатель стека (регистр SP) устанавливается на конец сегмента.
- В стек записывается 0000h (адрес возврата для команды ret).
- Управление передаётся по адресу CS:0100h, где находится первый байт исполняемого файла.

Классификация команд 8086

- Команды пересылки данных
- Арифметические и логические команды
- Команды переходов
- Команды работы с подпрограммами
- Команды управления процессором

Команда пересылки данных MOV

MOV <приёмник>, <источник>

Источники: непосредственный операнд, РОН, сегментный регистр, переменная (ячейка памяти).

Приёмник: РОН, сегментный регистр, переменная (ячейка памяти).

- MOV AX, 5
- MOV BX, DX
- MOV [1234h], CH
- MOV DS, AX

- MOV [0123h], [2345h]
- MOV D3, 1000h

Целочисленная арифметика, базовые команды

- ADD <приёмник>, <источник> выполняет арифметическое сложение приёмника и источника. Сумма помещается в приёмник, источник не изменяется.
- SUB <приёмник>, <источник> вычитание. Аналогично ADD.
- MUL <источник> умножение (без знака). Умножаются источник и AL/AX, в зависимости от размера источника. Результат помещается в АХ либо DX:AX.
- DIV <источник> деление (без знака). Деление AL/AX на источник. Результат помещается в AL/AX, остаток в AH/DX.

Побитовая арифметика

- AND <приёмник, источник> побитовое "И". AND al, 00001111b
- OR <приёмник, источник> побитовое "ИЛИ". OR al, 000011111b
- XOR <приёмник, источник> побитовое исключающее "ИЛИ". XOR AX, AX
- NOT <приёмник> инверсия
- SHL <приёмник>, <счётчик> сдвиг влево
- SHR <приёмник>, <счётчик> сдвиг вправо

Команда безусловной передачи управления JMP

JMP < операнд>

- Передаёт управление в другую точку программы, не сохраняя какой-либо информации для возврата.
- Операнд непосредственный адрес, регистр или переменная.

Пример

```
XOR AX, AX
MOV BX, 5
label1:
INC AX
ADD BX, AX
JMP label1
```


CX 00	900 924	SI DI BP SP	0000 0000 0000 FFFE	DS ES	19F5 19F5 19F5 19F5	HS	0100 19F5 19F5
0100	3300			XOR		AX,AX	
0105 0106 0108 010A	03D8 EBFB BA146 CD21			MOV INC ADD JMP MOV INT MOV		BX,00 AX BX,AX 0105 DX,01 21 AH,4C	14

Взаимодействие программы с внешним миром (ОС, пользователь)

Прерывания:

- аппаратные
- программные

int - генерация программного прерывания.

21h - прерывание DOS, предоставляет примерно 70 функций.

Номер функции передаётся через ah, параметры каждой функции и возвращаемый результат описаны в документации.

Память в реальном режиме работы процессора (для 8086)

1 Мб памяти = 2^{20}

Номер параграфа начала сегмента (сегментная часть адреса, сегмент)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Смещение

CS:IP, DS:BX, SS:SP...

[SEG]:[OFFSET] => физический адрес: SEG*16 + OFFSET

5678h:7890h =>

56780 7890 5E010

Логическая структура памяти. Сегменты

- Сегмент кода (CS)
- Сегменты данных (**DS**, ES, FS, GS)
- Сегмент стека (SS)