Mecanique

David Wiedemann

Table des matières

1	Physique		2
	1.1	Exemple de loi physique : l'addition des vitesse	2
	1.2	Lois de conservation	3
	1.3	Invariance par changement de referentiel	3
2	La mecanique classique		4
3	Obj	ectifs du cours de mecanique generale	4
4	Le modele du "point materiel"		4
5	Mouvement Rectiligne Uniforme		5
6	Mouvement rectiligne uniformement accelere		5
7	Lois	s de newton	5
8	Force de pesanteur et chute des corps		5
9	Oscillateurs Harmoniques		6
	9.1	Modelisation de la force d'un ressort $\ \ldots \ \ldots \ \ldots \ \ldots$	6
	9.2	Oscillateurs harmoniques a une dimension	7
	9.3	Oscillateur harmonique amorti	10
\mathbf{L}	ist	of Theorems	
	1	Definition (Point materiel)	4

Lecture 1: Cours de Physique Generale

Wed 16 Sep

1 Physique

- Science dont le but est d'etudier et de comprendre les composants de la matiere et leurs interactions mutuelles.
- Sur la base des proprietes observees de la matiere et des interactions, le physicien tente d'expliquer les phenomenes naturels observables.
- Les "explications" sont données sous forme de lois aussi fondamentales que possible : elles resument notre comprehension des phenomenes physiques.
- Les maths sont le language qu'on utilise pour decrire ces phenomenes.

Exemple

Une particule se deplace sur un axe droit.

Au temps t_1 position $x_1 = x(t_1)$. Au temps t_2 position $x_2 = x(t_2)$. $\Delta x = x_2 - x_1$ et $\Delta t = t_2 - t_1$

Donc la vitesse moyenne

$$v_{moyenne} = \frac{\Delta x}{\Delta t}$$

Mais on peut faire diminuer Δt , pour connaître la vitesse moyenne sur un temps infinitesimal :

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx(t)}{dt} = \dot{x}(t)$$

Donc la vitesse instantanee est la derivee de la fonction x(t) par rapport a t.

On peut faire la meme chose avec l'acceleration

Au temps t_1 , vitesse $v_1 = v(t_1)$.

Au temps t_2 , vitesse $v_2 = v(t_2)$.

Donc l'acceleration moyenne est

$$a_{moyenne} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

Et donc par le meme raisonnement, l'acceleration instantanee est

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv(t)}{dt} := \dot{v}(t) = \ddot{x}(t)$$

1.1 Exemple de loi physique : l'addition des vitesse

Si je marche a la vitesse v_{marche} sur un tapis , alors la vitesse par rapport au sol est

$$V = v_{marche} + v_{tapis}$$

C'est la loi d'addition des vitesses de galilee. Ici, c'est une addition <u>vectorielle</u> qu'il faut faire.

Cette loi est

- independante des vitesses
- independante des objets en presence
- independante du temps (hier, aujourd'hui, demain)
- etc...

1.2 Lois de conservation

Ce sont les lois les plus fondamentales.

- Conservation de l'energie
- Conservation de la quantite de mouvement
- Conservation du moment cinetique

Ces lois sont valables dans toutes les situations (classiques, relativistes ou quantiques) .

Ne peuvent pas etre formulees mathematiquement de facon unique.

Resultent des principes "d'invariance" (ou de symmetrie) tres generaux.

1.3 Invariance par changement de referentiel

- Changement de referentiel (ou d'observateur) : Referentiel O'x'y'z' en mouvement par rapport au referentiel Oxyz
- Les lois de la physque sont-elles invariantes par rapport a n'importe quel changement de referentiel?
 - Autrement dit, si les observateurs O et O' font la meme experience, obtiendront-ils le meme resultat?
- Principe de Galilee :

Les lois de la physique sont les memes (i.e. invariantes) pour deux observateurs en mouvement rectiligne uniforme l'un par rapport a l'autre.

2 La mecanique classique

1. Mecanique:

science du mouvement (ou du repos) de systemes materiels caracterises par des variables d'espace et de temps.

$2. \ \ Cinematique:$

Description du mouvement.

3. Dynamique:

Etude de la relation entre le mouvement et les causes de sa variation(forces, lois de Newton, th. du moment cinetique).

4. Statique:

Etude et description de l'equilibre.

3 Objectifs du cours de mecanique generale

- \bullet Apprendre a mettre sous forme mathematique un probleme, une situation physique :
 - Definir le probleme, le modeliser
 - Choisir une description mathematique
 - Poser les equations regissant la physique du probleme
 - Resoudre et/ou discuter la solution
- Developper un "savoir-faire" pratique, mais egalement un esprit scientifique :
 - Reperer le sens physique derrière les equations
 - Savoir formaliser mathematiquement la donnée d'un probleme physique.

4 Le modele du "point materiel"

Definition 1 (Point materiel)

un systeme est assimile a un point geometrique auquel on attribue toute la masse de ce systeme, et dont l'état est decrit en tout temps par une (seule) position et une (seule) vitesse.

• Notion introduite par Newton.

On approxime un systeme a quelque chose de plus simple, le point peut etre "gros" (exemple : la terre, le soleil).

Pas applicable dans toutes les situations; le modele a des limites..

5 Mouvement Rectiligne Uniforme

Mouvement d'un point materiel se deplacant en ligne droite a vitesse constante. On definit un axe x associe a la trajectoire rectiligne, avec une origine O.

$$v(t) := \frac{dx(t)}{dt} = \dot{x}(t) = v_0 = \text{constante}$$

La solution s'obtient en integrant le dessus : $x(t) = v_0 t + x_0$, ou $x_0 = \text{constante}$. On appelle le resultat de cette integration l'equation horaire.

6 Mouvement rectiligne uniformement accelere

Ici

$$a(t) := \frac{d^2x(t)}{dt^2} = \ddot{x}(t) = a_0 = constante$$

C'est une equadiff d'ordre 2 faisant intervenir la derivee seconde de x(t). Solution

$$x(t) = a_0 \frac{t^2}{2} + v_0 t + x_0$$

$$v(t) = \frac{dx}{dt} = a_0 t + v_0$$

ou x_0 et v_0 sont des constantes.

7 Lois de newton

- mouvement rectiligne uniforme $\Rightarrow \vec{F} = \vec{0}$
- $--\vec{F} = m\vec{a}$
- Action reaction $\vec{F} = -\vec{F}$

8 Force de pesanteur et chute des corps

 \bullet L'attraction terrestre donne lieu a une force verticale (le poids) proportionelle a la masse m :

$$F = mq$$

 $g \approx 9.8 \frac{m}{s^2}$

• Application de la 2eme loi de Newton :

Si le poids est la seule force appliquee a un point materiel

$$F = ma \Rightarrow a = g = constante$$

Dans le vide, les corps ont un mouvement uniformement accelere

Lecture 3: Oscillateurs Harmoniques

Wed 23 Sep

9 Oscillateurs Harmoniques

Considerer des systemes ayant des mouvements oscillatoires.

Exemples:

- masse pendue a un ressort.
- pendule simple, pendule de torsion.
- vibrations.
- Resonateurs quartz (montres)
- oscillations du champ
- etc...

Remarque 1

Un mouvement oscillatoire permet de mesurer un intervalle de temps.

9.1 Modelisation de la force d'un ressort

La force exercee par un ressort est proportionelle a son deplacement par rapport a sa position de repos.

Force de rappel :

$$\vec{F} = -k\vec{\Delta x}$$

k = constante elastique du ressort [N/m]

Figure 1 - ressort

Remarque 2

Ce modele n'est que valable pour des petits allongements

9.2 Oscillateurs harmoniques a une dimension

 ${\tt FIGURE} \ 2 - Ressort \ plan \ horizontal$

Loi de Hooke $F_x = -kx$ 2
eme loi de Newton F = ma On arrive a

$$m\ddot{x} = -kx$$

But : connaissant k, m et les conditions initiales, determiner x(t) pour tout temps t.

Exemple 3

Posons $m=1kg, k=1\frac{N}{m}=1\frac{kg}{s^2}$ Conditions initiales : $x(0)=1m, v(0)=0\frac{m}{s}$

$$\Rightarrow a(0) = \frac{F(0)}{m} = k \frac{x(0)}{m} = -1 \frac{m}{s^2}$$

Accroissement de v entre t et $t + \Delta t$: $\Delta v = a(t)\Delta t$ car a(t) = dv(t)/dt

$$\Rightarrow v(t + \Delta t) = v(t) + a(t)\Delta t$$

Accroissement de x entre t et $t + \Delta t$:

$$\Rightarrow x(t + \Delta t) = x(t) + v(t)\Delta t$$

Verification analytique:

On pose $x(t) = \cos(\omega_0 t) \Rightarrow x(0) = 1$

$$\begin{split} v(t) &= \frac{dx}{dt} = -\omega_0 \sin(\omega_0 t) \Rightarrow v(0) = 0. \\ a(t) &= \frac{dv}{dt} - \omega_0^2 \cos(\omega_0 t) = -\omega_0^2 x(t) \\ Comme \ a(t) &= -\frac{k}{m} x(t), \ on \ doit \ avoir : \end{split}$$

$$a(t) = \frac{dv}{dt} - \omega_0^2 \cos(\omega_0 t) = -\omega_0^2 x(t)$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

C'est la pulsation propre de l'oscillateur libre.

Solution generale et dependance par rapport aux conditions initiales

Periode:

$$T = \frac{2\pi}{\omega_0}$$

Frequence

$$\nu = \frac{1}{T} = \frac{\omega_0}{2\pi}$$

Solution generale de $\ddot{x} = \omega_0^2 x = 0$:

$$x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

ou

$$x(t) = C\sin(\omega_0 t + D)$$

Deux constantes d'integration a determiner en utilisant les conditions initiales

$$A = x_0$$

 et

$$B = \frac{v_0}{\omega_0}$$

ou bien $x_0^2=x_0^2+(\frac{v_0}{\omega_0})^2$ et $\tan(D)=\omega_0\frac{x_0}{v_0}$ Resolution de l'equation differentielle :

$$x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

$$x(0) = A \cdot 1 + B \cdot 0 = A = x_0$$

$$\dot{x}(0) = -A\omega_0 \sin(0) + B\omega_0 \cos(0)$$

$$= B\omega_0 = v_0 \Rightarrow B = \frac{v_0}{\omega_0}$$

$$x(t) = C\sin(\omega_0 t + D), x_0, v_0$$

$$x(0) = C\sin(D) = x_0$$

$$\dot{x}(0) = C\omega_0 \cos(D) = v_0$$

$$\frac{1}{\omega_0} \tan(D) = \frac{x_0}{v_0}$$

$$\Rightarrow \tan(D) = \omega_0 \frac{x_0}{v_0}$$

$$C^2(\sin^2(D) + \cos^2(D)) = x_0^2 + \frac{v_0^2}{\omega_0^2}$$

$$\Rightarrow C = \sqrt{x_0^2 + \frac{v_0^2}{\omega_0^2}}$$

9.3 Oscillateur harmonique amorti

Figure 3 – oscillateur amorti

Par b on definira la force de frottement.

Deuxieme loi de Newton : $F + F_{frot} = ma$, alors

$$m\ddot{x} = -kx - b\dot{x}$$

Resolution

$$m\ddot{x} = -kx - b\dot{x} \Rightarrow \ddot{x} + 2\gamma\dot{x} + \omega_0^2 = 0$$
 avec $\gamma = \frac{b}{2m}$ et $\omega_0 = \sqrt{\frac{k}{m}}$

Ammortissement sous-critique

FIGURE 4 – types d'ammortissement