IBD / TP3 Oracle

Table des matières

- 1. Introduction3
- 2. Création de la BD Initiale3
 - 2.1. Script createbase.sql3
 - 2.2. Contenu du dictionnaire de données4
 - 2.3. Contenu des tables4
- 3. Conclusion5

1. Introduction

Dans ce TP, nous allons voir comment utiliser le logiciel Oracle SQL Developer pour créer et manipuler des bases de données. Nous commençons par la connexion au serveur Oracle.

2. Création de la BD Initiale

2.1. Script createbase.sql

Nous allons créer différentes tables avec la commande CREATE TABLE.

```
CREATE TABLE Continent
   nom VARCHAR (50)
   superficie NUMBER,
   CONSTRAINT pk_continent_nom PRIMARY KEY(nom)
CREATE TABLE Fleuve
   nf NUMBER,
   nom VARCHAR (50),
   longueur NUMBER,
   embouchure VARCHAR (50),
   CONSTRAINT pk_fleuve_nf PRIMARY KEY(nf)
);
CREATE TABLE Montagne
   nm NUMBER,
   nom VARCHAR (50),
   altitude NUMBER,
   chaine VARCHAR (50).
   CONSTRAINT pk_montagne_nm PRIMARY KEY(nm)
) :
CREATE TABLE Pays
   nom VARCHAR (50),
   capitale VARCHAR(30),
   superficie NUMBER,
   population NUMBER,
```

Début du fichier SQL avec la création des premières tables et de leurs contraintes.

Les tables ont été correctement créées.

Nous avons donc pu voir comment créer des tables en SQL.

2.2. Contenu du dictionnaire de données

Nous allons voir comment interroger la base de donnée avec la commande suivante :

SELECT * FROM user_tables ORDER BY table_name ASC;

Le résultat de cette commande est :

TABL	E_NAME	TABLESPACE_NAME	CLUSTER_NAME	IOT_NAME	STATUS	PCT_FREE	PCT_USED	INI_TRANS	MAX_TRANS	INITIAL_EXTENT	NEXT_EXTENT	MII
CONT	INENT	TABLES_ORACLE1073			VALID	10		1	255			
FLEU	VE.	TABLES_ORACLE1073			VALID	10		1	255			
FRON	TIERE	TABLES_ORACLE1073			VALID	10		1	255			
JOUE	JR	TABLES_ORACLE1073			VALID	10		1	255	65536	1048576	
LOCA	LISER	TABLES_ORACLE1073			VALID	10		1	255			
MONT	AGNE	TABLES_ORACLE1073			VALID	10		1	255			
PAYS		TABLES_ORACLE1073			VALID	10		1	255			
TRAV	ERSER	TABLES ORACLE1073			VALID	10		1	255			

Nous pouvons donc voir que toutes les tables ont été correctement créées dans la base de données.

2.3. Contenu des tables

Nous allons à présent ajouter le contenu de nos tables avec le fichier SQL fournis.

NOM	CAPITALE	SUPERFICIE PO	
Émirats arabes unis	Abou Dabi	82880	9992083 ARI
Nigeria	Abuja	923768 2	14028302 NG
Ghana	Accra	238540	29340248 GH
Turkménistan	Achgabat	488100	5411012 TK
Éthiopie	Addis-Abeba	1127127 1	08386391 ET
Algérie	Alger	2381741	43900000 DZ
Niue	Alofi	260	1612 NI
Jordanie	Amman	89342	10820644 JO
Datro_Ra o	Amotondom	A1530	17282163 NT
NOM	CAPITALE	SUPERFICIE	POPULATION
Sahara occidental		266000	603253
Singapour	Singapour	724	6209660
Turquie	Ankara	783562	83154997
Belgique	Bruxelles	30688	11476279
Danemark	Copenhague	2210579	5822763
Hongrie	Budapest	93028	9771827
Luxembourg	Luxembourg	2586	62610
Norvège	Oslo	385207	5367580
Russie	Moscou	17125191	146780700
Slovénie	Ljubljana	20273	2070050
Fidji	Suva	18270	935974
NOM	CAPITALE	SUPERFICIE	POPULATION
Papouasie-Nouvelle-Guinée	Port Moresby	462840	8300000
†1 C1-	7	240	21022

Nous pouvons donc voir que toutes les valeurs ont correctement été insérées dans les tables.

Voici ce que donne la base de donnée en diagramme de classe UML.

3. Conclusion

Dans ce TP, nous avons pu voir les bases du SQL. La création de table avec la commande CREATE TABLE avec les différents attributs et contraintes, la vérification de l'existence de ces tables et leur contenir avec SELECT ... FROM ...