CLAIMS

5

1. A compound having the formula I

wherein:

Z is N;

Y is CONR⁵, NR⁵CO, SO₂NR⁵, NR⁵SO₂, CH₂NR⁵, NR⁵CONR⁵, CH₂CO, CO or CH₂O;

10 X is CH or N;

P is phenyl or a 5 or 6 membered heteroaromatic ring containing one or more heteroatoms selected from N, O or S and said phenyl ring or 5 or 6 membered heteroaromatic ring may optionally be fused with a 5 or 6 membered saturated, partially saturated or unsaturated ring containing atoms independently selected from C, N, O or S;

- 15 Q is C₁-6alkyl, C₂-6alkenyl or C₂-6alkynyl;
 - R is CHO, fluoromethoxy, difluoromethoxy, trifluoromethoxy, C_{0-6} alkyl(SO_2)NR 1 R 2 , OC $_{0-6}$ alkyl(SO_2)NR 1 R 2 , OC $_{1-6}$ alkyl(SO)NR 1 R 2 , C $_{1-6}$ alkyl(SO)NR 1 R 2 , C $_{0-6}$ alkylNR 1 (SO)R 2 , OC $_{1-6}$ alkylNR 1 (SO_2)R 2 , OC $_{1-6}$ alkylNR 1 (SO_2)R 2 , CC $_{0-6}$ alkylNR 1 R 2 , OC $_{0-6}$ alkyl(SO_2)C $_{1-6}$ alkylNR 1 R 2 , OC $_{0-6}$ alkyl(SO_2)C $_{1-6}$ alkylNR 1 R 2 , OC $_{0-6}$ alkyl(SO_2)CC $_{1-6}$ alkylNR 1 R 2 ,
- $\begin{array}{lll} & C_{0-6}alkyl(SO)C_{1-6}alkylNR^{1}R^{2},\ OC_{1-6}alkyl(SO)C_{1-6}alkylNR^{1}R^{2},\ C_{0-6}alkylSC_{1-6}alkylNR^{1}R^{2},\ OC_{1-6}alkylSC_{1-6}alkylNR^{1}R^{2},\ OC_{1-6}alkylSC_{1-6}alkylNR^{1}R^{2},\ OC_{1-6}alkylOC_{1-6}alkylNR^{1}R^{2},\ OC_{1-6}alkylNR^{1}R^{2},\ C_{0-6}alkylCONR^{10}R^{11},\ OC_{0-6}alkylCONR^{1}R^{2},\ OC_{1-6}alkylNR^{1}R^{2},\ C_{0-6}alkylNR^{10}(CO)R^{11},\ OC_{1-6}alkylNR^{1}(CO)R^{2},\ C_{0-6}alkylNR^{11}(CO)R^{10},\ C_{0-6}alkylCOR^{11},\ OC_{1-6}alkylNR^{10}R^{11},\ C_{0-6}alkylO(CO)R^{11},\ OC_{1-6}alkylO(CO)R^{11},\ OC_{1-6}alkylNR^{10}R^{11},\ C_{0-6}alkylO(CO)R^{11},\ OC_{1-6}alkylO(CO)R^{11},\ OC_{1-6}alkylO(CO)$
- OC₁₋₆alkylO(CO)R¹, C₀₋₆alkylC(NR¹⁰)NR¹⁰R¹¹, C₀₋₆alkylC(NR¹¹)N(R¹⁰)₂, OC₀₋₆alkylC(NR¹)NR¹R², C₀₋₆alkylNR¹⁰(CO)OR¹¹, OC₁₋₆alkylNR¹(CO)OR².

- $$\begin{split} &C_{0\text{-}6}alkylNR^{11}(CO)OR^{10}, OC_{1\text{-}6}alkylCN, NR^{1}OR^{2}, C_{0\text{-}6}alkyl(CO)OR^{8}, OC_{1\text{-}6}alkyl(CO)OR^{1},\\ &NR^{1}(CO)NR^{1}R^{2}, NR^{1}(CO)(CO)R^{2}, NR^{1}(CO)(CO)NR^{1}R^{2}, OR^{12} \text{ or } SO_{3}R^{1};\\ &R^{1} \text{ and } R^{2} \text{ are independently selected from hydrogen, } C_{1\text{-}6}alkyl, C_{2\text{-}6}alkenyl, C_{2\text{-}6}alkynyl,\\ &C_{0\text{-}6}alkylC_{3\text{-}6}cycloalkyl, C_{0\text{-}6}alkylheterocycloalkyl, C_{1\text{-}6}alkylNR^{6}R^{7}, \end{split}$$
- C₀-6alkylaryl and C₀-6alkylheteroaryl, wherein any C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl, C₀-6alkylC₃-6cycloalkyl, C₀-6alkylheterocycloalkyl, C₀-6alkylaryl, C₀-6alkylheteroaryl may be substituted by one or more A;
 - R¹ and R² may together form a substituted 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O or S, which heterocyclic ring may be optionally substituted by A;
- may be optionally substituted by A;

 R³ is independently selected from halogen, nitro, CHO, C₀₋₆alkylCN, OC₁₋₆alkylCN,

 C₀₋₆alkylOR⁶, OC₁₋₆alkylOR⁶, fluoromethyl, difluoromethyl, trifluoromethyl,

 fluoromethoxy, difluoromethoxy, trifluoromethoxy, C₀₋₆alkylNR⁶R⁷, OC₁₋₆alkylNR⁶R⁷,

 OC₁₋₆alkylOC₁₋₆alkylNR⁶R⁷, NR⁶OR⁷, C₀₋₆alkylCO₂R⁶, OC₁₋₆alkylCO₂R⁶,
- $C_{0-6}alkylCONR^6R^7, OC_{1-6}alkylCONR^6R^7, OC_{1-6}alkylNR^6(CO)R^7, C_{0-6}alkylNR^6(CO)R^7, O(CO)NR^6R^7, NR^6(CO)OR^7, NR^6(CO)NR^6R^7, O(CO)OR^6, O(CO)R^6, C_{0-6}alkylCOR^6, OC_{1-6}alkylCOR^6, NR^6(CO)(CO)R^6, NR^6(CO)(CO)NR^6R^7, SR^6, C_{0-6}alkyl(SO_2)NR^6R^7, OC_{1-6}alkylNR^6(SO_2)R^7, OC_{0-6}alkyl(SO_2)NR^6R^7, C_{0-6}alkyl(SO)NR^6R^7, OC_{1-6}alkyl(SO)NR^6R^7, SO_3R^6, C_{0-6}alkylNR^6(SO_2)NR^6R^7, C_{0-6}alkylNR^6(SO)R^7, OC_{0-6}alkylNR^6, C_{0-6}alkylNR^6, C_{0-6}alkylN$
- OC₁₋₆alkylNR⁶(SO)R⁷, OC₀₋₆alkylSO₂R⁶, C₀₋₆alkylSO₂R⁶, C₀₋₆alkylSOR⁶, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₀₋₆alkylC₃₋₆cycloalkyl, C₀₋₆alkylaryl and C₀₋₆alkylheteroaryl, wherein any C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₀₋₆alkylC₃₋₆cycloalkyl, C₀₋₆alkylaryl and C₀₋₆alkylheteroaryl may be optionally substituted by one or more A; R⁴ is independently selected from halogen, nitro, CHO, CN, OC₁₋₆alkylCN, OR⁶,
- OC₁₋₆alkylOR⁶, fluoromethyl, difluoromethyl, trifluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, NR⁶R⁷, OC₁₋₆alkylNR⁶R⁷, NR⁶OR⁷, CO₂R⁶, OC₁₋₆alkylCO₂R⁶, CONR⁶R⁷, OC₁₋₆alkylCONR⁶R⁷, OC₁₋₆alkylNR⁶(CO)R⁷, NR⁶(CO)R⁷, O(CO)NR⁶R⁷, NR⁶(CO)OR⁷, NR⁶(CO)NR⁶R⁷, O(CO)OR⁶, O(CO)R⁶, COR⁶, OC₁₋₆alkylCOR⁶, NR⁶(CO)(CO)R⁶, NR⁶(CO)(CO)NR⁶R⁷, SR⁶, (SO₂)NR⁶R⁷,
- OC₁₋₆alkylNR⁶(SO₂)R⁷, OC₀₋₆alkyl(SO₂)NR⁶R⁷, (SO)NR⁶R⁷, OC₁₋₆alkyl(SO)NR⁶R⁷, SO₃R⁶, NR⁶(SO₂)NR⁶R⁷, NR⁶(SO)R⁷, OC₁₋₆alkylNR⁶(SO)R⁷, OC₀₋₆alkylSO₂R⁶, SO₂R⁶, SOR⁶, C₃₋₆cycloalkyl, phenyl, a 5 or 6 membered heteroaromatic ring containing one or

more heteroatoms independently selected from N, O, or S, or a 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O, or S which heterocyclic group may be saturated or unsaturated, and said phenyl ring or 5 or 6 membered heterocyclic ring may optionally be

fused with a 5 or 6 membered saturated, partially saturated or unsaturated ring containing atoms independently selected from C, N, O or S wherein any C₃₋₆cycloalkyl, phenyl, 5 or 6 membered heteroaromatic ring with one or two heteroatoms selected independently from N, O, or S or a 5 or 6 membered heterocyclic containing one or two heteroatoms selected independently from N, O, or S; may be optionally be substituted by one or more A;

m is 0, 1, 2, 3 or 4;

n is 0, 1, 2, 3 or 4;

R⁵ is hydrogen or C₁₋₆alkyl

 R^6 and R^7 are independently selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkynyl, $C_{0\text{-}6}$ alkyl $C_{3\text{-}6}$ cycloalkyl, $C_{0\text{-}6}$ alkylaryl, $C_{0\text{-}6}$ alkylheteroaryl and $C_{1\text{-}6}$ alkyl NR^8R^9 ;

15 R⁶ and R⁷ may together form a substituted 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O or S, which heterocyclic ring may be optionally substituted by A and wherein a CH₂ group may optionally be replaced by a CO group;

 R^8 and R^9 are independently selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkynyl, $C_{0\text{-}6}$ alkyl $C_{3\text{-}6}$ cycloalkyl, $C_{0\text{-}6}$ alkylaryl and $C_{0\text{-}6}$ alkylheteroaryl:

R⁸ and R⁹ may together form a 5 or 6 membered heterocyclic ring containing one or more heteroatoms selected from N, O or S, which heterocyclic ring may be optionally substituted by A;

 R^{10} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{0\text{-}6}$ alkyl $C_{3\text{-}6}$ cycloalkyl,

²⁵ C₀-6alkylaryl, C₀-6alkylheteroaryl or C₁-6alkylNR⁸R⁹;

R¹¹ is C₁-6alkylNR⁸R⁹;

20

R¹⁰ and R¹¹ may together form a 5 or 6 membered heterocyclic ring containing one or more heteroatoms selected from N, O or S, which heterocyclic ring may be optionally substituted by A;

R¹² is a 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O or S, which heterocyclic ring may be optionally substituted by A; wherein any C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl, C₀-6alkylC₃-6cycloalkyl,

 C_{0-6} alkylheterocycloalkyl, C_{0-6} alkylaryl, C_{0-6} alkylheteroaryl defined under R^5 to R^{12} may be substituted by one or more A;

A is halo, oxo (=O), nitro, CHO, CN, OR⁶, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₀₋₆alkylC₃₋₆cycloalkyl, fluoromethyl, difluoromethyl, trifluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, C₀₋₆alkylNR⁶R⁷, OC₁₋₆alkylNR⁶R⁷, CO₂R⁸, CONR⁶R⁷, NR⁶(CO)R⁶, O(CO)R⁶, COR⁶, SR⁶, (SO₂)NR⁶R⁷, (SO)NR⁶R⁷, SO₃R⁶, SO₂R⁶ or SOR⁶; as a free base or a pharmaceutically acceptable salt, solvate or solvate of a salt thereof.

- 2. A compound according to claim 1, wherein Z and X is N; P is phenyl; R is C_{0-6} alkyl(SO₂)NR¹R²; and m is 0.
- 3. A compound according to claim 2, wherein R^1 and R^2 in $C_{0.6}$ alkyl(SO_2)NR 1 R 2 together form a substituted 5 or 6 membered heterocyclic ring containing one or more heteroatoms selected from N, O or S.
- 4. A compound according to claim 3, wherein said heterocyclic ring comprises one or more N heteroatoms and said heterocyclic ring is optionally substituted by A, preferably a C_{1-6} alkyl.
- 5. A compound according to any one of claims 1 to 4, wherein Y is CONR⁵; R⁵ is hydrogen; Q is C₁₋₆alkyl; R⁴ is selected from: phenyl, 5 or 6 membered heteroaromatic ring containing one or more heteroatoms independently selected from N, O, or S or a 5 or 6 membered heterocyclic ring containing one or two heteroatoms selected independently from N, O, or S which heterocyclic group may be saturated or unsaturated, CN, OR⁶,
 SO₂R⁶, NR⁶(CO)R⁷, (SO₂)NR⁶R⁷, and CONR⁶R⁷; and n is 1; said phenyl or 5 or 6 membered heterocyclic ring optionally substituted by A.
 - 6. A compound according to claim 5, wherein A is selected from OR^6 , C_{1-6} alkyl, oxo (=0) and nitro; and R^6 and/or R^7 is selected from C_{1-6} alkyl and hydrogen.

5

10

7. A compound which is

- 3-Amino-N-(2-cyanoethyl)-6-[4-(pyrrolidin-1-ylsulfonyl)phenyl]pyrazine-2-carboxamide;
- 3-Amino-N-(3-amino-3-oxopropyl)-6-[4-(pyrrolidin-1-ylsulfonyl)phenyl]pyrazine-2-
- carboxamide;

10

- 3-Amino-N-(2-nitrobenzyl)-6-[4-(pyrrolidin-1-ylsulfonyl)phenyl]pyrazine-2-carboxamide
- 3-Amino-N-(2-methoxybenzyl)-6-[4-(pyrrolidin-1-ylsulfonyl)phenyl]pyrazine-2-carboxamide;
- 3-Amino-N-(3-morpholin-4-ylpropyl)-6-[4-(pyrrolidin-1-ylsulfonyl)phenyl]pyrazine-2-carboxamide;
- 3-Amino-*N*-[3-(4-methylpiperazin-1-yl)propyl]-6-[4-(pyrrolidin-1-ylsulfonyl)phenyl]pyrazine-2-carboxamide;
- as a free base or a pharmaceutically acceptable salt, solvate or solvate of a salt thereof;
- 3-Amino-*N*-(2-morpholin-4-ylethyl)-6-[4-(pyrrolidin-1-ylsulfonyl)phenyl]pyrazine-2-carboxamide hydrochloride;
 - 3-Amino-N-[2-(1H-imidazol-4-yl)ethyl]-6-[4-(pyrrolidin-1-ylsulfonyl)phenyl] pyrazine-2-carboxamide hydrochloride;
 - 3-Amino-*N*-[3-(1*H*-imidazol-1-yl)propyl]-6-[4-(pyrrolidin-1-ylsulfonyl)phenyl]pyrazine-2-carboxamide hydrochloride;
 - 3-Amino-6-{4-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}-N-(2-thien-2-ylethyl)pyrazine-2-carboxamide hydrochloride;
 - 3-Amino-6-{4-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}-N-(thien-2-ylmethyl)pyrazine-2-carboxamide hydrochloride;
- 25 3-Amino-N-(2-methoxyethyl)-6-{4-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}pyrazine-2-carboxamide hydrochloride;
 - 3-Amino-*N*-(3-methoxypropyl)-6-{4-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}pyrazine-2-carboxamide hydrochloride;
 - 3-Amino-6-{4-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}-N-[3-(2-oxopyrrolidin-1-
- 30 yl)propyl]pyrazine-2-carboxamide hydrochloride;
 - 3-Amino-N-(cyanomethyl)-6-{4-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}pyrazine-2-carboxamide dihydrochloride;

15

20

25

- 3-Amino-6-[4-[(4-methyl-1-piperazinyl)sulfonyl]phenyl]-*N*-[2-(1*H*-pyrrol-1-yl)ethyl]-2-pyrazinecarboxamide hydrochloride;
- 3-Amino-6-[4-[(4-methyl-1-piperazinyl)sulfonyl]phenyl]-*N*-[2-(methylsulfonyl)ethyl]-2-pyrazinecarboxamide hydrochloride;
- N-[2-(Acetylamino)ethyl]-3-amino-6-[4-[(4-methyl-1-piperazinyl)sulfonyl]phenyl]-2-pyrazinecarboxamide hydrochloride;
 - 3-Amino-6-[4-[(4-methyl-1-piperazinyl)sulfonyl]phenyl]-N-[2-(2-oxo-1-imidazolidinyl)ethyl]-2-pyrazinecarboxamide hydrochloride;
 - 3-Amino-N-[2-(aminosulfonyl)ethyl]-6-[4-[(4-methyl-1-piperazinyl)sulfonyl]phenyl]-2-pyrazinecarboxamide hydrochloride;
 - or as a free base or an alternative pharmaceutically acceptable salt, solvate or solvate of a salt thereof;
 - 8. A pharmaceutical formulation comprising as active ingredient a therapeutically effective amount of the compound according to any one of claims 1 to 7 in association with pharmaceutically acceptable carriers or diluents.
 - 9. The pharmaceutical formulation according to claim8 for use in the prevention and/or treatment of conditions associated with glycogen synthase kinase-3.
 - 10. A compound as defined in any one of claims 1 to 7 for use in therapy.
 - 11. Use of a compound according to any one of claims 1 to 7 in the manufacture of a medicament for prevention and/or treatment of conditions associated with glycogen synthase kinase-3.
 - 12. Use of a compound according to any one of claims 1 to 7 in the manufacture of a medicament for prevention and/or treatment of dementia, Alzheimer's Disease, Parkinson's Disease, Frontotemporal dementia Parkinson's Type, Parkinson dementia complex of Guam, HIV dementia, diseases with associated neurofibrillar tangle pathologies and dementia pugilistica.

25

- 13. The use according to claim 12 wherein the prevention and/or treatment is for Alzheimer's Disease.
- 14. Use of a compound according to any one of claims 1 to 7 in the manufacture of a medicament for prevention and/or treatment of amyotrophic lateral sclerosis, corticobasal 5 degeneration, Down syndrome, Huntington's Disease, postencephelatic parkinsonism, progressive supranuclear palsy, Pick's Disease, Niemann-Pick's Disease, stroke, head trauma and other chronic neurodegenerative diseases, Bipolar Disease, affective disorders, depression, schizophrenia, cognitive disorders, hair loss and contraceptive medication, Type I and Type II diabetes, diabetic neuropathy and diabetes related disorders.
 - 15. Use of a compound according to claim 14, wherein the prevention and/or treatment is Type I and Type II diabetes, diabetic neuropathy and diabetes related disorders.
- 16. Use of a compound according to any one of claims 1 to 7 in the manufacture of a 15 medicament for prevention and/or treatment of predemented states, Mild Cognitive Impairment, Age-Associated Memory Impairment, Age-Related Cognitive Decline, Cognitive Impairement No Dementia, mild cognitive decline, mild neurocognitive decline, Late-Life Forgetfulness, memory impairment and cognitive impairment, vascular dementia, dementia with Lewy bodies, Frontotemporal dementia and androgenetic 20 alopecia.
 - 17. A method of prevention and/or treatment of conditions associated with glycogen synthase kinase-3, comprising administrering to a mammal, including man in need of such prevention and/or treatment, a therapeutically effective amount of a compound of formula I as defined in any one of claims 1 to 7.
 - 18. A method of prevention and/or treatment of dementia, Alzheimer's Disease, Parkinson's Disease, Frontotemporal dementia Parkinson's Type, Parkinson dementia complex of Guam, HIV dementia, diseases with associated neurofibrillar tangle pathologies and dementia pugilistica, comprising administrering to a mammal, including

10

. 15

man in need of such prevention and/or treatment, a therapeutically effective amount of a compound of formula I as defined in any one of claims 1 to 7.

- 19. The method according to claim 18, wherein the prevention and/or treatment is for Alzheimer's Disease.
 - 20. A method of prevention and/or treatment of amyotrophic lateral sclerosis, corticobasal degeneration, Down syndrome, Huntington's Disease, postencephelatic parkinsonism, progressive supranuclear palsy, Pick's Disease, Niemann-Pick's Disease, stroke, head trauma and other chronic neurodegenerative diseases, Bipolar Disease, affective disorders, depression, schizophrenia, cognitive disorders, hair loss and contraceptive medication, Type I and Type II diabetes, diabetic neuropathy and diabetes related disorders, comprising administrering to a mammal, including man in need of such prevention and/or treatment, a therapeutically effective amount of a compound of formula I as defined in any one of claims 1 to 7.
 - 21. The method according to claim 18, wherein the prevention and/or treatment is Type I and Type II diabetes, diabetic neuropathy and diabetes related disorders.
- 22. A method of prevention and/or treatment of predemented states, Mild Cognitive Impairment, Age-Associated Memory Impairment, Age-Related Cognitive Decline, Cognitive Impairment No Dementia, mild cognitive decline, mild neurocognitive decline, Late-Life Forgetfulness, memory impairment and cognitive impairment, vascular dementia, dementia with Lewy bodies, Frontotemporal dementia and androgenetic
 25 alopecia, comprising administrering to a mammal, including man in need of such prevention and/or treatment, a therapeutically effective amount of a compound of formula I as defined in any one of claims 1 to 7.
- 23. A process for the preparation of a compound of formula I according to claim 1,
 wherein Y, X, Z, P, Q, R, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², A, m and n are defined as in formula I, comprising of de-halogen coupling of a compound of formula IV with an appropriate aryl species;

5 to give a compound of formula I.

24. A process for the preparation of a compound of formula I according to claim 1, wherein Y, X, Z, P, Q, R, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², A, m and n are defined as in formula I, comprising reacting of a compound of formula XXII:

10

15

20

wherein the reaction is being performed by activation of a compound of formula XXII by treatment with a coupling agent or with an acyl halide reagent followed by treatment with the appropriate amine, followed by cleavage of the solid phase moiety by treatment with an suitable acid in a suitable solvent, and where the reaction temperature is between 0 °C and reflux, to give a compound of formula I.

25. A compound of formula XIXa

$$\begin{array}{c|c}
(R^3)_m & O & R^1 \\
\hline
 P & S - N & R^2 \\
\hline
 (XIXa)
\end{array}$$

5 wherein

P is phenyl

 R^1 and R^2 are independently selected from hydrogen, $C_{1\mbox{-}6}$ alkyl, $C_{2\mbox{-}6}$ alkynyl, $C_{0\mbox{-}6}$ alkyl $C_{3\mbox{-}6}$ cycloalkyl, $C_{0\mbox{-}6}$ alkylheterocycloalkyl , $C_{1\mbox{-}6}$ alkylNR 6 R 7 ,

C₀-6alkylaryl and C₀-6alkylheteroaryl, wherein any C₁-6alkyl, C₂-6alkynyl,

C₀-6alkylC₃-6cycloalkyl, C₀-6alkylheterocycloalkyl, C₀-6alkylaryl, C₀-6alkylheteroaryl may be substituted by one or more A;

R¹ and R² may together form a substituted 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O or S, which heterocyclic ring may be optionally substituted by A;

R³ is independently selected from halogen, nitro, CHO, C₀₋₆alkylCN, OC₁₋₆alkylCN, C₀₋₆alkylOR⁶, OC₁₋₆alkylOR⁶, fluoromethyl, difluoromethyl, trifluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, C₀₋₆alkylNR⁶R⁷, OC₁₋₆alkylNR⁶R⁷, OC₁₋₆alkylNR⁶R⁷, NR⁶OR⁷, C₀₋₆alkylCO₂R⁶, OC₁₋₆alkylCO₂R⁶, C₀₋₆alkylCONR⁶R⁷, OC₁₋₆alkylCONR⁶R⁷, OC₁₋₆alkylNR⁶(CO)R⁷, C₀₋₆alkylNR⁶(CO)R⁷, C₀₋₆alkyl

O(CO)NR⁶R⁷, NR⁶(CO)OR⁷, NR⁶(CO)NR⁶R⁷, O(CO)OR⁶, O(CO)R⁶, C₀₋₆alkylCOR⁶, OC₁₋₆alkylCOR⁶, NR⁶(CO)(CO)R⁶, NR⁶(CO)(CO)NR⁶R⁷, SR⁶, C₀₋₆alkyl(SO₂)NR⁶R⁷, OC₁₋₆alkylNR⁶(SO₂)R⁷, OC₀₋₆alkyl(SO₂)NR⁶R⁷, C₀₋₆alkyl(SO)NR⁶R⁷, OC₁₋₆alkyl(SO)NR⁶R⁷, SO₃R⁶, C₀₋₆alkylNR⁶(SO₂)NR⁶R⁷, C₀₋₆alkylNR⁶(SO)R⁷,

OC₁₋₆alkylNR⁶(SO)R⁷, OC₀₋₆alkylSO₂R⁶, C₀₋₆alkylSO₂R⁶, C₀₋₆alkylSO₈, C₁₋₆alkylSO₈, C₁₋₆alkyl

C₂₋₆alkenyl, C₂₋₆alkynyl, C₀₋₆alkylC₃₋₆cycloalkyl, C₀₋₆alkylaryl and C₀₋₆alkylheteroaryl, wherein any C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₀₋₆alkylC₃₋₆cycloalkyl, C₀₋₆alkylaryl and C₀₋₆alkylheteroaryl may be optionally substituted by one or more A;
R⁶ and R⁷ are independently selected from hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl,

C₀-6alkylC₃-6cycloalkyl, C₀-6alkylaryl, C₀-6alkylheteroaryl and C₁-6alkylNR⁸R⁹;

R⁶ and R⁷ may together form a substituted 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O or S, which heterocyclic ring may be optionally substituted by A and wherein a CH₂ group may optionally be replaced by a CO group;

- R⁸ and R⁹ are independently selected from hydrogen, C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl, C₀-6alkylC₃-6cycloalkyl, C₀-6alkylaryl and C₀-6alkylheteroaryl;
 R⁸ and R⁹ may together form a 5 or 6 membered heterocyclic ring containing one or more heteroatoms selected from N, O or S, which heterocyclic ring may be optionally substituted by A;
- m is 0, 1, 2, 3 or 4;
 R¹⁵ is a group outlined in Scheme I, wherein R¹⁶ and R¹⁷ are hydroxy and B is boron;

A is halogen, oxo (=O), nitro, CHO, CN, OR⁶, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl,

C₀₋₆alkylC₃₋₆cycloalkyl, fluoromethyl, difluoromethyl, trifluoromethyl, fluoromethoxy,
difluoromethoxy, trifluoromethoxy, C₀₋₆alkylNR⁶R⁷, OC₁₋₆alkylNR⁶R⁷, CO₂R⁸, CONR⁶R⁷,
NR⁶(CO)R⁶, O(CO)R⁶, COR⁶, SR⁶, (SO₂)NR⁶R⁷, (SO)NR⁶R⁷, SO₃R⁶, SO₂R⁶ or SOR⁶;
as a free base or a salt, solvate or solvate of a salt thereof.

- 26. A compound according to claim 25, wherein
 R¹ and R² together forms a substituted 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O or S, which heterocyclic ring may be optionally substituted by A;
 m is 0;
- A is C₁₋₆alkyl; as a free base or a salt, solvate or solvate of a salt thereof.

- 27. A compound which is
- 4-(Pyrrolidin-1-ylsulfonyl)phenylboronic acid;
- 4-[(4-Methylpiperazin-1-yl)sulfonyl]phenylboronic acid;
- as a free base or a salt, solvate or solvate of a salt thereof.

28. A compound of formula IV

Hal
$$X$$
 Y Q $(R^4)_n$

wherein

10

Y is CONR⁵, NR⁵CO, SO₂NR⁵, NR⁵SO₂, CH₂NR⁵ NR⁵CONR⁵, CH₂CO, CO or CH₂O; X is CH or N;

Z is N;

Q is C₁₋₆alkyl, C₂₋₆alkenyl or C₂₋₆alkynyl; R⁴ is independently selected from halogen, nitro, CHO, CN, OC_{1.6}alkylCN, OR⁶. OC₁₋₆alkylOR⁶, fluoromethyl, difluoromethyl, trifluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, NR⁶R⁷, OC_{1.6}alkylNR⁶R⁷, NR⁶OR⁷, CO₂R⁶ OC₁₋₆alkylCO₂R⁶, CONR⁶R⁷, OC₁₋₆alkylCONR⁶R⁷, OC₁₋₆alkylNR⁶(CO)R⁷, NR⁶(CO)R⁷, O(CO)NR⁶R⁷, NR⁶(CO)OR⁷, NR⁶(CO)NR⁶R⁷, O(CO)OR⁶, O(CO)R⁶, COR⁶, 20 OC₁₋₆alkylCOR⁶, NR⁶(CO)(CO)R⁶, NR⁶(CO)(CO)NR⁶R⁷, SR⁶, (SO₂)NR⁶R⁷. OC_{1-6} alkyl $NR^6(SO_2)R^7$, OC_{0-6} alkyl $(SO_2)NR^6R^7$, $(SO)NR^6R^7$, OC_{1-6} alkyl $(SO)NR^6R^7$. SO_3R^6 , $NR^6(SO_2)NR^6R^7$, $NR^6(SO)R^7$, OC_{1-6} alkyl $NR^6(SO)R^7$, OC_{0-6} alkyl SO_2R^6 , SO_2R^6 , SOR^6 , C_{3-6} cycloalkyl, phenyl, a 5 or 6 membered heteroaromatic ring containing one or 25 more heteroatoms independently selected from N, O, or S, or a 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O, or S which heterocyclic group may be saturated or unsaturated, and said phenyl ring or 5 or 6 membered heteroaromatic ring or 5 or 6 membered heterocyclic ring may optionally be fused with a 5 or 6 membered saturated, partially saturated or unsaturated ring containing

atoms independently selected from C, N, O or S wherein any C₃₋₆cycloalkyl, phenyl, 5 or 6 membered heteroaromatic ring with one or two heteroatoms selected independently from N, O, or S or a 5 or 6 membered heterocyclic ring containing one or two heteroatoms selected independently from N, O, or S; may be optionally be substituted by one or more

5 A;

10

R⁵ is hydrogen or C₁₋₆alkyl

 R^6 and R^7 are independently selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkyl, $C_{0\text{-}6}$ alkyl $C_{3\text{-}6}$ cycloalkyl, $C_{0\text{-}6}$ alkylaryl, $C_{0\text{-}6}$ alkylheteroaryl and $C_{1\text{-}6}$ alkyl NR^8R^9 ;

R⁶ and R⁷ may together form a substituted 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O or S, which heterocyclic ring may be optionally substituted by A and wherein a CH₂ group may optionally be replaced by a CO group;

 R^8 and R^9 are independently selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkyl, $C_{0\text{-}6}$ alkylaryl and $C_{0\text{-}6}$ alkylheteroaryl;

R⁸ and R⁹ may together form a 5 or 6 membered heterocyclic ring containing one or more heteroatoms selected from N, O or S, which heterocyclic ring may be optionally substituted by A;

Hal is halogen;

n is 0, 1, 2, 3 or 4;

A is halogen, oxo (=O), nitro, CHO, CN, OR⁶, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₀₋₆alkylC₃₋₆cycloalkyl, fluoromethyl, difluoromethyl, trifluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, C₀₋₆alkylNR⁶R⁷, OC₁₋₆alkylNR⁶R⁷, CO₂R⁸, CONR⁶R⁷, NR⁶(CO)R⁶, O(CO)R⁶, COR⁶, SR⁶, (SO₂)NR⁶R⁷, (SO)NR⁶R⁷, SO₃R⁶, SO₂R⁶ or SOR⁶; as a free base or a salt, solvate or solvate of a salt thereof.

25

29. A compound according to claim 28, wherein

Y is CONR⁵:

X is N;

Q is C₁-6alkyl;

R⁴ is independently selected from CN, OR⁶, a 5 or 6 membered heteroaromatic ring containing one or more heteroatoms independently selected from N, O, or S, or a 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected

from N, O, or S which heterocyclic group may be saturated or unsaturated, wherein any 5 or 6 membered heterocyclic ring containing one or two heteroatoms selected independently from N, O, or S; may be optionally be substituted by A;

R⁵ is hydrogen;

 R^6 is, C_{1-6} alkyl;

n is 1;

A is oxo (=0);

as a free base or a salt, solvate or solvate of a salt thereof.

10 30. A compound which is

- 3-Amino-6-bromo-N-(2-morpholin-4-ylethyl)pyrazine-2-carboxamide;
- 3-Amino-6-bromo-N-[2-(1H-imidazol-4-yl)ethyl]pyrazine-2-carboxamide;
- 3-Amino-6-bromo-N-[3-(1H-imidazol-1-yl)propyl]pyrazine-2-carboxamide;
- 3-Amino-6-bromo-N-(2-thien-2-ylethyl)pyrazine-2-carboxamide;
- 3-Amino-6-bromo-N-(thien-2-ylmethyl)pyrazine-2-carboxamide;
 - 3-Amino-6-bromo-N-(2-methoxyethyl)pyrazine-2-carboxamide;
 - 3-Amino-6-bromo-N-(3-methoxypropyl)pyrazine-2-carboxamide;
 - 3-Amino-6-bromo-N-[3-(2-oxopyrrolidin-1-yl)propyl]pyrazine-2-carboxamide;
 - 3-Amino-6-bromo-N-(cyanomethyl)pyrazine-2-carboxamide;
- as a free base or a salt, solvate or solvate of a salt thereof.

31. A compound of formula XXII

25 (XXII)

wherein:

Z is N;

25

X is CH or N;

P is phenyl or a 5 or 6 membered heteroaromatic ring containing one or more heteroatoms selected from N, O or S and said phenyl ring or 5 or 6 membered heteroaromatic ring may optionally be fused with a 5 or 6 membered saturated, partially saturated or unsaturated ring containing atoms independently selected from C, N, O or S;

R is CHO, fluoromethoxy, difluoromethoxy, trifluoromethoxy, C₀₋₆alkyl(SO₂)NR¹R², OC₀₋₆alkyl(SO₂)NR¹R², OC₁₋₆alkyl(SO)NR¹R², C₁₋₆alkyl(SO)NR¹R², C₀₋₆alkylNR¹(SO)R², OC₁₋₆alkylNR¹(SO₂)R², C₀₋₆alkylNR¹(SO₂)C₁₋₆alkylNR¹R², OC₀₋₆alkylNR¹R², C₀₋₆alkylNR¹R², C₀₋₆alkylNR¹R², OC₁₋₆alkylNR¹R², C₀₋₆alkylNR¹R², OC₁₋₆alkylNR¹R², OC₁₋₆alkylNR¹R², C₀₋₆alkylNR¹R², OC₁₋₆alkylNR¹R², OC₁₋₆alkylNR¹R²

- OC₁₋₆alkylNR¹R², C₀₋₆alkylNR¹⁰(CO)R¹¹, OC₁₋₆alkylNR¹(CO)R², C₀₋₆alkylNR¹¹(CO)R¹⁰, C₀₋₆alkylCOR¹¹, OC₁₋₆alkylCOR¹, C₀₋₆alkylNR¹⁰R¹¹, C₀₋₆alkylO(CO)R¹¹, OC₁₋₆alkylO(CO)R¹, C₀₋₆alkylC(NR¹⁰)NR¹⁰R¹¹, C₀₋₆alkylC(NR¹¹)N(R¹⁰)₂, OC₀₋₆alkylC(NR¹)NR¹R², C₀₋₆alkylNR¹⁰(CO)OR¹¹, OC₁₋₆alkylNR¹(CO)OR², C₀₋₆alkylNR¹¹(CO)OR¹⁰, OC₁₋₆alkylCN, NR¹OR², C₀₋₆alkyl(CO)OR⁸, OC₁₋₆alkyl(CO)OR¹, NR¹(CO)NR¹R², NR¹(CO)(CO)R², NR¹(CO)(CO)NR¹R², OR¹² or SO₃R¹;
 - R^1 and R^2 are independently selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{0\text{-}6}$ alkyl $C_{3\text{-}6}$ cycloalkyl, $C_{0\text{-}6}$ alkylheterocycloalkyl, $C_{1\text{-}6}$ alkyl NR^6R^7 , $C_{0\text{-}6}$ alkylaryl and $C_{0\text{-}6}$ alkylheteroaryl, wherein any $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{0\text{-}6}$ alkyl $C_{3\text{-}6}$ cycloalkyl, $C_{0\text{-}6}$ alkylheterocycloalkyl, $C_{0\text{-}6}$ alkylaryl, $C_{0\text{-}6}$ alkylheteroaryl may be substituted by one or more A;
 - R¹ and R² may together form a substituted 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O or S, which heterocyclic ring may be optionally substituted by A;
 - R³ is independently selected from halogen, nitro, CHO, C₀₋₆alkylCN, OC₁₋₆alkylCN,
- C₀₋₆alkylOR⁶, OC₁₋₆alkylOR⁶, fluoromethyl, difluoromethyl, trifluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, C₀₋₆alkylNR⁶R⁷, OC₁₋₆alkylNR⁶R⁷, OC₁₋₆alkylNR⁶R⁷, NR⁶OR⁷, C₀₋₆alkylCO₂R⁶, OC₁₋₆alkylCO₂R⁶,

 $C_{0\text{-}6}alkylCONR^6R^7, OC_{1\text{-}6}alkylCONR^6R^7, OC_{1\text{-}6}alkylNR^6(CO)R^7, C_{0\text{-}6}alkylNR^6(CO)R^7, O(CO)NR^6R^7, NR^6(CO)OR^7, NR^6(CO)NR^6R^7, O(CO)OR^6, O(CO)R^6, C_{0\text{-}6}alkylCOR^6, OC_{1\text{-}6}alkylCOR^6, NR^6(CO)(CO)R^6, NR^6(CO)(CO)NR^6R^7, SR^6, C_{0\text{-}6}alkyl(SO_2)NR^6R^7, OC_{1\text{-}6}alkylNR^6(SO_2)R^7, OC_{0\text{-}6}alkyl(SO_2)NR^6R^7, C_{0\text{-}6}alkyl(SO)NR^6R^7, OC_{0\text{-}6}alkyl(SO_2)NR^6R^7, OC_{0\text{-}6}Alkyl$

- OC₁₋₆alkyl(SO)NR⁶R⁷, SO₃R⁶, C₀₋₆alkylNR⁶(SO₂)NR⁶R⁷, C₀₋₆alkylNR⁶(SO)R⁷, OC₁₋₆alkylNR⁶(SO)R⁷, OC₀₋₆alkylSO₂R⁶, C₀₋₆alkylSO₂R⁶, C₀₋₆alkylSOR⁶, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₀₋₆alkylC₃₋₆cycloalkyl, C₀₋₆alkylaryl and C₀₋₆alkylheteroaryl, wherein any C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₀₋₆alkylC₃₋₆cycloalkyl, C₀₋₆alkylaryl and C₀₋₆alkylheteroaryl may be optionally substituted by one or more A;
- R⁶ and R⁷ are independently selected from hydrogen, C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl, C₀-6alkylC₃-6cycloalkyl, C₀-6alkylaryl, C₀-6alkylheteroaryl and C₁-6alkylNR⁸R⁹; R⁶ and R⁷ may together form a substituted 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O or S, which heterocyclic ring may be optionally substituted by A and wherein a CH₂ group may optionally be replaced by a CO group;
 - R^8 and R^9 are independently selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{0\text{-}6}$ alkyl $C_{3\text{-}6}$ cycloalkyl, $C_{0\text{-}6}$ alkylaryl and $C_{0\text{-}6}$ alkylheteroaryl;
 - R⁸ and R⁹ may together form a 5 or 6 membered heterocyclic ring containing one or more heteroatoms selected from N, O or S, which heterocyclic ring may be optionally substituted by A:
 - R^{10} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{0\text{-}6}$ alkyl $C_{3\text{-}6}$ cycloalkyl, $C_{0\text{-}6}$ alkylaryl, $C_{0\text{-}6}$ alkylheteroaryl or $C_{1\text{-}6}$ alkyl NR^8R^9 ; R^{11} is $C_{1\text{-}6}$ alkyl NR^8R^9 :
- R¹⁰ and R¹¹ may together form a 5 or 6 membered heterocyclic ring containing one or more heteroatoms selected from N, O or S, which heterocyclic ring may be optionally substituted by A;
 - A is halogen, oxo (=O), nitro, CHO, CN, OR^6 , $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{0\text{-}6}$ alkyl $C_{3\text{-}6}$ cycloalkyl, fluoromethyl, difluoromethyl, trifluoromethyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, $C_{0\text{-}6}$ alkyl NR^6R^7 , $OC_{1\text{-}6}$ alkyl NR^6R^7 , CO_2R^8 , $CONR^6R^7$,
- ³⁰ $NR^6(CO)R^6$, $O(CO)R^6$, COR^6 , SR^6 , $(SO_2)NR^6R^7$, $(SO)NR^6R^7$, SO_3R^6 , SO_2R^6 or SOR^6 ; m is 0, 1, 2, 3 or 4;
 - as a free base or a salt, solvate or solvate of a salt thereof.

WO 2004/055009 PCT/SE2003/001957

68

32. A compound according to claim 31, wherein:

X is N;

P is phenyl;

5 R is C_{0-6} alkyl(SO_2)NR 1 R 2 ;

R¹ and R² may together form a substituted 5 or 6 membered heterocyclic ring containing one or more heteroatoms independently selected from N, O or S; m is 0;

as a free base or a salt, solvate or solvate of a salt thereof.

10

33. A compound which is

Methyl 3-{[2,6-dimethoxy-4-(2-phenylethoxy)benzyl]amino}-6-[4-(pyrrolidin-1-ylsulfonyl)phenyl]pyrazine-2-carboxylate polystyrene;

3-{[2,6-Dimethoxy-4-(2-phenylethoxy)benzyl]amino}-6-[4-(pyrrolidin-1-

ylsulfonyl)phenyl]pyrazine-2-carboxylic acid polystyrene; as a free base or a salt, solvate or solvate of a salt thereof.

34. The use of the intermediates according to any one of claims to 25 to 33 for the preparation of a compound of formula I as defined in any one of claims 1 to 7.