Taxas relacionadas

$$y = f(u)$$
 $y = f(u)$
 $y = f(u)$
 $y'(t) = f'(u)y'u'(t)$

Ideia: loal cular a faxa de variação de uma certa grandeza em fermos da taxa de variação do outra grandeza relacionada (a qual pode ser medida mais facilmente).

Exemplos

1) Supouha que bombeamos av para un balás es févico, de modo que seu volume aumenta a uma faxa de 100 cm³/s.

Quão vápido o vaxo do balão está aumentando quando o diámetro for 50 cm?

Informagoes:

Informagoes:

Taxa de crescimento de av: 600 cm 3/3

$$V = V(v) = \frac{4}{3} \cdot \pi \cdot r^3$$

$$\int = \Lambda(f) = \lambda \qquad \frac{qf}{q\Lambda}(f) = 100 \text{ cm}^3/3$$

$$\frac{dr}{dt}(t) = 3$$

$$V(v) = V(v(t)) = \frac{4}{3} \cdot \pi \cdot [v(t)]^{3}$$

$$\frac{dV}{dt}(t) = \frac{dV(r(t))}{dt} = \frac{dV(r(t)).dv(t)}{dt}$$

$$=4.\pi(r(t))^{2}\cdot\frac{dr}{dt}(t)$$

$$\frac{dv}{dt}(t) = \frac{1}{4\pi(25)^2}$$
. Loo

$$=\frac{1}{25\pi} \stackrel{\sim}{=} 0_10127 \text{ cm/s}$$

2) Uma escada com 5 m de comprimento está aporada em uma parede vertual. Se a base da escada desliza, afastando-se da farede a uma faxa de 1 m/1, quão rápido o topo da escada estará escriegando Para baixo na parede, no momento em que a base da escada se encontra a 3 m da parede?

$$a = a(k)$$
 $\Rightarrow a(k) = 1 m/s$

$$a^2 + b^2 = 25$$
 : $b = b(a) = 7$

$$a^2 + b^2 = 25$$
 : $b = b(a) = 7$

Derwando com respeito a t:

2.
$$a(t) \cdot a'(t) + 2.b(t) \cdot b'(t) = 0$$

$$|A = 3 m = 5 b = 4 m$$

 $|A'(1) = 1 m/s$

Encontre a taxa na qual o nível da água está aumentando, quando a água estiver a 3 m de Profundidade.

$$V = \frac{1}{3} . \pi r^2 . h$$

$$\frac{1}{3} \cdot \sqrt{\frac{1}{3}} \cdot \sqrt{\frac{1}{3}} \cdot \sqrt{\frac{1}{3}} \cdot \sqrt{\frac{1}{3}} \cdot \sqrt{\frac{1}{3}} \cdot \sqrt{\frac{1}{3}} \cdot \sqrt{\frac{1}{3}}$$

$$=\frac{\pi}{12} \mathcal{L}^{3}$$

$$\frac{dV}{dt}(t) = 2 m^3 / m m$$

$$\frac{dV(h(t))}{dt} = \frac{dV(h(t))}{dt} \cdot \frac{dh(t)}{dt}$$

$$= \frac{1}{18} \cdot 3.(h(t))^2 \cdot \frac{dh}{dt}(t)$$