Experimento #7

Diodo Schottky

Objetivo: Introdução ao comportamento do diodo Schottky, obtido com uma junção metálica em um cristal natural de pirita. Obtenção de sua curva característica I x V, e a extração dos seus parâmetros principais.

Material:

- Osciloscópio Digital Modelo:______.

- Gerador de Funções Modelo:______.

- Diodo Schottky: Junção Metal-Pirita.

- Resistor de 100Ω a $10k\Omega$.

- 1) Monte o circuito da figura, para obtenção das curvas $I \times V$ do diodo Schottky, com o osciloscópio no Modo X-Y. Isole o terminal de terra do Gerador de Funções. Use uma forma de onda senoidal, com amplitude de alguns volts e frequência em torno de 30 Hz. Use um resistor de 100Ω a $10k\Omega$.
- 2) A partir gráfico, obtido no osciloscópio no Modo X-Y, extraia o valor aproximado da tensão do diodo (V_D) no primeiro quadrante $(I>0\ e\ V>0)$ e o valor aproximado da tensão de ruptura (V_R) no terceiro quadrante $(I<0\ e\ V<0)$.

$$\mathbf{V}_{\mathbf{D}} = \underline{\hspace{1cm}} [V] \hspace{1cm} \mathbf{V}_{\mathbf{R}} = \underline{\hspace{1cm}} [V]$$

- 3) Observe o efeito do aumento da frequência (até \sim 1MHz) sobre a curva \mathbf{I} x \mathbf{V} . Explique suas observações.
- **4**) (Opcional) Monte o circuito do <u>Detector de Envelope</u>. Escolha valores adequados para o resistor R e o capacitor C. Apresente a curva de tensão (V) vs. tempo (s) obtida na saída, para uma entrada de tensão senoidal modulada em amplitude.

- 5) Responda:
- a) **Pesquisa:** Como o aumento da temperatura afeta o comportamento da curva I vs. V do diodo Schottky?
- b) Pesquisa: Compare as características dos diodos Schottky com as dos diodos de Junção PN.

Grupo: