IPv6 Discussion

Wm. Luke Jenkins

Network Analyst
Weber State University

Why bother with IPv6?

The pool of unassigned IPv4 addresses is running out

THE IPV4 DEPLETION SITE

Today's IANA depletion date estimate: 2011-04-27

IPv4 & IPv6 Statistics

> v4 Addresses 181,242,243

v4 /8s Left 5% (14/256)

v6 Networks 7.3% (2,631/35,802)

v6 Ready TLDs 82% (243/294)

v6 Glue

v6 Domains

234

Days remaining

HURRICANE ELECTRIC

But I've got tons of IPv4 addresses!

- New technologies will be (native) IPv6 only
- Developing areas
- IPv6 only eyeballs
- Eventually we will all run out of addresses

But I've got tons of IPv4 addresses!

- If you don't provide IPv6, someone else will
- Carrier Grade NAT for IPv6 only clients
- "Helpful" Users
- IPv6 is enabled by default on most OSes

What is different?

- Plenty of protocol level differences
- Biggest change is address length
- DHCP is to IPv4 as SLAAC is to IPv6

So what can I do now to prepare?

- Get an allocation and start learning IPv6
- Get it in the hands of all of your IT staff
- Determine what gear isn't IPv6 compatible

SLAAC

- StateLess Auto Address Configuration
- Provides address, default gateway, and MTU
- Addresses are assigned out of a 64bit pool
- e.g. 2001:1948:212:FACE:(EUI-64 here)/64

RA-Guard

- Would you run an IPv4 network without DHCP snooping?
- Most vendors are just now adding RA-Guard
- Try to use ACLs to block rogue RA servers

IPv6 Discussion

Wm. Luke Jenkins

Network Analyst
Weber State University


```
⊕ Frame 2: 118 bytes on wire (944 bits), 118 bytes captured (944 bits)

⊕ Ethernet II, Src: Cisco_cc:ce:d4 (00:24:c4:cc:ce:d4), Dst: IPv6mcast_00:00:00:01 (33:33:00:00:00:01)

⊞ Internet Protocol Version 6, Src: fe80::224:c4ff:fecc:ced4 (fe80::224:c4ff:fecc:ced4), Dst: ff02::1 (ff02::1)
□ Internet Control Message Protocol v6
   Type: 134 (Router advertisement)
   Code: 0
   Checksum: 0xa9e4 [correct]
   Cur hop limit: 64
 □ Flags: 0x00
     O... = Not managed
     .0.. .... = Not other
     ..O. .... = Not Home Agent
     ...0 0... = Router preference: Medium
     \dots .0.. = Not Proxied
   Router lifetime: 1800
   Reachable time: 0
   Retrans timer: 1000

        ∃ ICMPv6 Option (MTU)
```



```
    ⊕ Frame 2: 118 bytes on wire (944 bits), 118 bytes captured (944 bits)

■ Ethernet II, Src: Cisco_cc:ce:d4 (00:24:c4:cc:ce:d4), Dst: IPv6mcast_00:00:00:01 (33:33:00:00:00:01)

⊞ Internet Protocol Version 6. Src: fe80::224:c4ff:fecc:ced4 (fe80::224:c4ff:fecc:ced4). Dst: ff02::1 (ff02::1)
□ Internet Control Message Protocol v6
   Type: 134 (Router advertisement)
   Code: 0
   Checksum: 0xa9e4 [correct]
   Cur hop limit: 64
 □ Flags: 0x00
     O... = Not managed
     .0.. .... = Not other
     ..O. .... = Not Home Agent
     ...0 O... = Router preference: Medium
     .... .0.. = Not Proxied
   Router lifetime: 1800
   Reachable time: 0
   Retrans timer: 1000

        ∃ ICMPv6 Option (MTU)
```


IPv6 Discussion

Wm. Luke Jenkins

Network Analyst
Weber State University

