本节内容

操作系统的体系结构

知识总览 大内核(又名:宏内核/单内核) 微内核 操作系统体系结构 分层结构

Tips:一定是<mark>考简单的选择题</mark>,了解各种体系结构的<mark>特性</mark>,了解各自的<mark>优缺点</mark>

模块化

外核

对新知识充满期待

操作系统结构

	特性、思想	优点	缺点
分层结构	内核分多层,每层可单向调用更低一层提供的接 口	☑ 1. 便于调试和验证,自底向上逐层调试验证	1. 仅可调用相邻低层,难以合理定义各层的边界
		2. 易扩充和易维护,各层之间调用接口清晰固定	☆ 2. 效率低,不可跨层调用,系统调用执行时间-
	将内核划分为多个模块,各模块之间相互协作。 内核 = 主模块+可加载内核模块	1. 模块间逻辑清晰易于维护,确定模块间接口后 即可多模块同时开发	1. 模块间的接口定义未必合理、实用
模块化		2. 支持动态加载新的内核模块(如:安装设备驱	
			2. 模块间相互依赖,更难调试和验证
	可加载内核模块:可以动态加载新模块到内核, 而无需重新编译整个内核	3. 任何模块都可以直接调用其他模块,无需采用 消息传递进行通信,效率高	
宏内核(大内核)	所有的系统功能都放在内核里(大内核结构的OS 通常也采用了"模块化"的设计思想)	○ 1. 性能高,内核内部各种功能都可以直接相互调 用	€ 1. 内核庞大功能复杂,难以维护
			○ 2. 大内核中某个功能模块出错,就可能导致整系统崩溃
微内核 内核。进程管理	只把中断、原语、进程通信等最核心的功能放入	1. 内核小功能少、易于维护,内核可靠性高	1. 性能低,需要频繁的切换 用户态/核心态。
	内核。进程管理、文件管理、设备管理等功能以 用户进程的形式运行在用户态	② 2. 内核外的某个功能模块出错不会导致整个系统 崩溃	2. 用户态下的各功能模块不可以直接相互调用 只能通过内核的"消息传递"来间接通信
外核(exokernel)	内核负责进程调度、进程通信等功能,外核负责	1. 外核可直接给用户进程分配"不虚拟、不抽象"◇ 的硬件资源,使用户进程可以更灵活的使用硬件资源	1. 降低了系统的一致性
		○ 2. 减少了虚拟硬件资源的"映射层",提升效率	2. 使系统变得更复杂

操作系统结构——分层结构

最底层是硬件,最高层是用户接口 每层可调用更低一层

操作系统结构——模块化

(2) 模块化

模块化是将操作系统按功能划分为若干个具有一定独立性的模块。每个模块具有某方面的管理功能,并规定好各模块间的接口,使各模块之间能通过接口进行通信。还可以进一步将各模块细分为若干个具有一定功能的子模块,同样也规定好各子模块之间的接口。把这种设计方法称为模块-接口法,图 1.3 所示为由模块、子模块等组成的模块化操作系统结构。

操作系统结构——宏内核、微内核

王道24考研交流群: 769832062

操作系统结构——外核(exokernel)

公 公众号: 王道在线

b站: 王道计算机教育

计 抖音: 王道计算机考研