Parallel and Distributed Computing CS3006 (BDS-6A) Lecture 06

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science, FAST
14 February, 2023

Previous Lecture

- Network Topologies:
 - Linear array (with or without wraparound links)
 - K-d meshes
 - Hypercubes
 - Tree-based networks (fat-trees or otherwise, static or dynamic)
- Evaluating static interconnections
 - Cost, diameter, bisection width, arc connectivity

Evaluating Static Interconnections

Network	Diameter	Bisection Width	Arc Connectivity	Cost (No. of links)
Completely-connected	1	$p^2/4$	p-1	p(p-1)/2
Star	2	1	1	p-1
Complete binary tree	$2\log((p+1)/2)$	1	1	p-1
Linear array	p-1	1	1	p-1
2-D mesh, no wraparound	$2(\sqrt{p}-1)$	\sqrt{p}	2	$2(p-\sqrt{p})$
2-D wraparound mesh	$2\lfloor\sqrt{p}/2\rfloor$	$2\sqrt{p}$	4	2p
Hypercube	$\log p$	p/2	$\log p$	$(p\log p)/2$

Parallel Algorithm Design Life Cycle

Steps in Parallel Algorithm Design

- 1. Identification: Identifying portions of the work that can be performed concurrently.
 - Work-units are also known as tasks
 - E.g., Initializing two mega-arrays are two tasks and can be performed in parallel
- 2. Mapping: The process of mapping concurrent pieces of the work or tasks onto multiple processes running in parallel.
 - Multiple processes can be physically mapped on a single processor.

Steps in Parallel Algorithm Design

- 3. Data Partitioning: Distributing the input, output, and intermediate data associated with the program.
 - One way is to copy whole data at each processing node
 - Memory challenges for huge-size problems
 - Other way is to give fragments of data to each processing node
 - Communication overheads
- 4. Defining Access Protocol: Managing accesses to data shared by multiple processors (i.e., managing communication & synchronization).

Parallel computing Examples - Chess Player

- A parallel program to play chess might look at all the possible first moves it could make
- Each different first move could be explored by a different processor, to see how the game would continue from that point
- Results have to be combined to figure out which is the best first move
- The famous IBM Deep Blue machine that beat Kasparov
- Brute force computing power, massively parallel with 30 nodes, with each node containing a 120 MHz P2SC microprocessor

Load Balance

 Inefficient if many processors are idle while one processor has lots of work to do and this slows down the whole application

Best utilizations of parallel processors

- Require load balancing (parallel processors are typically symmetric)
- For example
 - Web Servers
 - Matrix Multiplication

Decomposition:

• The process of dividing a computation into smaller parts, some or all of which may potentially be executed in parallel.

Tasks

- **Programmer-defined units of computation** into which the main computation is subdivided by means of decomposition
- Tasks can be of arbitrary size, but once defined, they are regarded as indivisible units of computation.
- The tasks into which a problem is decomposed *may not all be* of the *same size*
- Simultaneous execution of multiple tasks is the key to reducing the time required to solve the entire problem.

Figure 3.1 Decomposition of dense matrix-vector multiplication into *n* tasks, where *n* is the number of rows in the matrix. The portions of the matrix and the input and output vectors accessed by Task 1 are highlighted.

- Problem can be decomposed into n tasks
- Computation of each element of vector y is independent of other elements
- No control dependencies so no task-dependency graph

Vector Multiplication (n x 1)

So the multiplication program like:

```
for (row = 0; row < n; row++)
y[row] = dot_product( get_row(A, row), get_col(b));</pre>
```

can be transformed to:

```
for (row = 0; row < n; row++)
  y[row] = create_thread( dot_product(get_row(A, row), get_col(b)));</pre>
```

• In this case, one may think of the thread as an instance of a function that returns before the function has finished executing

Vector Multiplication (n x n)

```
for (row = 0; row < n; row++)
  for (column = 0; column < n; column++)
      c[row][column] = dot_product( get_row(a, row), get_col(b, col));</pre>
```

Multithreaded:

```
for (row = 0; row < n; row++)
  for (column = 0; column < n; column++)
      c[row][column] = create_thread( dot_product(get_row(a, row), get_col(b, col)));</pre>
```

Task-Dependency Graph

- The tasks in the previous examples are independent and can be performed in any sequence.
- In most of the problems, some sort of dependency exists between the tasks.
- An abstraction used to express such dependencies among tasks and their relative order of execution is known as a task-dependency graph
- It is a directed acyclic graph in which nodes are tasks and the directed edges indicate the dependencies between them
- The task corresponding to a node can be executed when all tasks connected to this node by incoming edges have completed.

DB Query

ID#	Model	Year	Color	Dealer	Price
4523	Civic	2002	Blue	MN	\$18,000
3476	Corolla	1999	White	IL	\$15,000
7623	Camry	2001	Green	NY	\$21,000
9834	Prius	2001	Green	CA	\$18,000
6734	Civic	2001	White	OR	\$17,000
5342	Altima	2001	Green	FL	\$19,000
3845	Maxima	2001	Blue	NY	\$22,000
8354	Accord	2000	Green	VT	\$18,000
4395	Civic	2001	Red	CA	\$17,000
7352	Civic	2002	Red	WA	\$18,000

Table 3.1 A database storing information about used vehicles.

Execution of the query:

MODEL = "CIVIC" AND YEAR = 2001 AND (COLOR = "GREEN" OR COLOR = "WHITE")

Figure 3.2 The different tables and their dependencies in a query processing operation.

Figure 3.3 An alternate data-dependency graph for the query processing operation.

Granularity

- The number and sizes of tasks into which a problem is decomposed determines the granularity of the decomposition
 - A decomposition into a large number of small tasks is called fine-grained
 - A decomposition into a small number of large tasks is called coarse-grained
- For matrix-vector multiplication Figure 3.1 would usually be considered fine-grained
- Figure 3.4 shows a *coarse-grained* decomposition as each task computes n/4 of the entries of the output vector of length n

Figure 3.4 Decomposition of dense matrix-vector multiplication into four tasks. The portions of the matrix and the input and output vectors accessed by Task 1 are highlighted.

Maximum Degree of Concurrency

- The maximum number of tasks that can be executed simultaneously in a parallel program at any given time is known as its maximum degree of concurrency
- Usually, it is always less than total number of tasks due to dependencies.
- E.g., max-degree of concurrency in the task-graphs of Figures 3.2 and 3.3 is 4.
- Rule of thumb: For task-dependency graphs that are trees, the maximum degree of concurrency is always equal to the number of leaves in the tree

Maximum Degree of Concurrency

Determine the Maximum Degree of Concurrency?

Average Degree of Concurrency

- A relatively better measure for the performance of a parallel program
- The average number of tasks that can run concurrently over the entire duration of execution of the program
- The ratio of the *total amount of work* to the *critical-path length*
 - So, what is the critical path in the graph?

Critical Path

- *Critical Path*: The longest directed path between any pair of start and finish nodes is known as the *critical path*.
- Critical Path Length: The sum of the weights of nodes along this path
 - the weight of a node is the *size or the amount of work associated* with the corresponding task.
- A shorter critical path favors a *higher average-degree of concurrency*.
- Both, maximum and average degree of concurrency increases as tasks become smaller (finer)

Average Degree of Concurrency

Figure 3.5 Abstractions of the task graphs of Figures 3.2 and 3.3, respectively.

Critical path lengths: 27 and 34

Total amount of work: 63 and 64

Average degree of concurrency: 2.33 and 1.88

Principles of Parallel Algorithm Design Determine critical path length and average-concurrency?

Task Interaction Graph

- Depicts pattern of interaction between the tasks
- Dependency graphs only show how the output of the first task becomes the input to the next level task.
- The *task interaction graph* depicts how the tasks interact with each other to access *distributed data*
- The *nodes* in a *task-interaction graph represent tasks*
- The *edges* connect *tasks that interact with each other*

Task Interaction Graph

- The edges in a task interaction graph are usually undirected
 - But directed edges can be used to indicate the direction of flow of data, if it is unidirectional.
- The edge-set of a task-interaction graph is usually a superset of the edge-set of the task-dependency graph
- In the database query processing example, the *task-interaction graph* is the **same** as the *task-dependency graph*.

Task Interact Graph (Sparse-matrix multiplication)

Figure 3.6 A decomposition for sparse matrix-vector multiplication and the corresponding task-interaction graph. In the decomposition Task i computes $\sum_{0 \le j \le 11, A[i,j] \ne 0} A[i,j].b[j]$.

Sources

- Slides of Dr. Rana Asif Rahman & Dr. Haroon Mahmood, FAST
- (Chapter 2) Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction to parallel computing (Vol. 110). Redwood City, CA: Benjamin/Cummings.
- Quinn, M. J. Parallel Programming in C with MPI and OpenMP, (2003).