Manipulation of noise in generative modeling

Supervisor: Luca Eyring, Akata Lab

Student: Artem Serebriakov

Introduction

Common issues of Text-to-Image models:

- Incorrect text rendering;
- Poor attribute binding;
- Image inaccuracies.

Approaches to address these issues:

- Employ enhanced language encoders and larger diffusion models;
- Fine-tune T2I models.

Human preference reward models

Figure 1. The steps in our fine-tuning method. (1) Multiple images sampled from the text-to-image model using the same text prompt, followed by collection of (binary) human feedback. (2) A reward function is learned from human assessments to predict image-text alignment. We also utilize an auxiliary objective called prompt classification, which identifies the original text prompt within a set of perturbed text prompts. (3) We update the text-to-image model via reward-weighted likelihood maximization.

Motivation for ReNO

- Can we improve T2I models at inference time without any fine-tuning?
- Does the initial noise have a huge effect on generations?
- How can we modify the initial noise to get desirable outputs?

ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization

Background: One-Step Diffusion Models

$$\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\varepsilon},\tag{1}$$

where $G_{\theta}(\varepsilon, \mathbf{p}) = \mathbf{x}_0$, Text-to-Image generative model $G_{\theta}(\varepsilon, \mathbf{p})$, noise vector $\varepsilon \sim \mathcal{N}(0, \mathbf{I})$, prompt \mathbf{p} , parameters θ , α_t is a decreasing and σ_t is an increasing function of t.

Forward SDE: $d\mathbf{x}_t = \mathbf{u}(\mathbf{x}_t, t) dt + g(t) d\mathbf{w}_t$

where $\mathbf{u}_t(x_t,t)$ — drift, \mathbf{w}_t — Wiener process, g(t) — diffusion schedule.

Reverse-time SDE:
$$d\mathbf{x}_t = [\mathbf{u}(\mathbf{x}_t, t) - g(t)^2 \mathbf{s}(\mathbf{x}_t, t)] dt + g(t) d\bar{\mathbf{w}}_t,$$
 (2) where $\mathbf{x}_T = \varepsilon \sim \mathcal{N}(0, \mathbf{I}), \mathbf{x}_0 \sim p_0(\mathbf{x}), \ \mathbf{s}(\mathbf{x}, t) = \nabla \log p_t(\mathbf{x})$ is the score function.

Denoising loss:
$$\mathcal{L}_{\mathbf{s}}(\theta) = \mathbb{E}_{\mathbf{x}_0 \sim p(\mathbf{x}_0), \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \mathbf{I}), t \sim \mathcal{U}(0, T)}[\|\sigma_t \mathbf{s}_{\theta}(\mathbf{x}_t, t) + \boldsymbol{\varepsilon}\|^2].$$
 (3)

where parameterized score $\mathbf{s}_{\theta}(\mathbf{x}_{t},t)$.

Distillation

- Adversarial Diffusion Distillation (ADD) combines score distillation with an adversarial loss and is employed to train SD-Turbo based on SD 2.1 as a teacher and SDXL-Turbo based on SDXL;
- Diffusion Matching Distillation (DMD) additionally leverages a distributional loss based on an approximated KL divergence and is applied for PixArt-α DMD;
- Trajectory Segmented Consistency Distillation (TSCD)
 introduces a progressive segment-wise consistency
 distillation loss to train HyperSDXL [65] with reward finetuning.

Figure 2. Adversarial Diffusion Distillation. The ADD-student is trained as a denoiser that receives diffused input images x_s and outputs samples $\hat{x}_{\theta}(x_s, s)$ and optimizes two objectives: a) adversarial loss: the model aims to fool a discriminator which is trained to distinguish the generated samples \hat{x}_{θ} from real images x_0 . b) distillation loss: the model is trained to match the denoised targets \hat{x}_{ψ} of a frozen DM teacher.

Initial Noise Optimization and Regularization

Optimization problem: $\boldsymbol{\varepsilon}^* = \arg \max_{\boldsymbol{\varepsilon}} \mathcal{C}(G_{\theta}(\boldsymbol{\varepsilon}, \mathbf{p})).$ (4)

where $\mathcal{C}: \mathbb{R}^{H \times W \times c} \to \mathbb{R}$ — criterion function, prompt p , noise ε .

Regularized criterion function: $C(\mathbf{x}_0, \boldsymbol{\varepsilon}) = \tilde{C}(\mathbf{x}_0) + K(\boldsymbol{\varepsilon})$, where $K(\boldsymbol{\varepsilon})$ — regularization term.

$$\tilde{\mathcal{C}}(\mathbf{x}_0) = \sum_{i,j} \mathbf{x}_0^{i,j,c} - \mathbf{x}_0^{i,j,\bar{c}_1} - \mathbf{x}_0^{i,j,\bar{c}_2}, (5)$$

where $\mathbf{x}_0^{i,j,c}$ — channel c of the pixel at (i, j).

Figure 3: Initial noise optimization for one-step G_{θ} HyperSDXL with two color channel criterions (5).

ReNO Reward Criterion

Reward-based criterion function for Noise Optimization (ReNO):

$$\tilde{\mathcal{C}}(\mathbf{x}_0, \mathbf{p}) = \sum_{i}^{n} \lambda_i \mathcal{R}_{\psi}^{i}(\mathbf{x}_0, \mathbf{p}), \tag{6}$$

Reward Models

where pre-trained reward models $\mathcal{R}_{\psi}^{0}, \ldots \mathcal{R}_{\psi}^{n}$, λ_{i} denotes the weighting for reward model \mathcal{R}_{ψ}^{i} .

 $\text{Gradient ascent: } \boldsymbol{\varepsilon}^{t+1} = \boldsymbol{\varepsilon}^t + \eta \nabla_{\boldsymbol{\varepsilon}^t} [K(\boldsymbol{\varepsilon}^t) + \sum\nolimits_i^n \lambda_i \mathcal{R}_{\psi}^i (G_{\theta}(\boldsymbol{\varepsilon}^t, \mathbf{p}), \mathbf{p})],$ **(**7) where η is the learning rate.

Algorithm 1 ReNO

```
Input: p (prompt), G_{\theta} (One-Step T2I Model), \mathcal{R}_{\psi}^{0,1...n} (Reward Functions), \lambda_{0,1...n} (Reward
Weights), m (# Optimization Steps), \eta (Learning Rate), \lambda_{reg} (Regularization Strength)
Initialize v_{-1} = 0.0, \varepsilon^0 = \mathcal{N}(0, \mathbf{I}), R^* = -\inf.
for t = 0 to m do
    Generate image \mathbf{x}_0^t = G_{\theta}(\varepsilon^t, p)
    Compute reward-based criterion R^t = \sum_{i=1}^{n} \lambda_i \mathcal{R}_{\psi}^i(\mathbf{x}_0^t, \mathbf{p})
    \operatorname{grad}_t = \nabla_{\boldsymbol{\varepsilon}^t} [\lambda_{\operatorname{reg}} K(\boldsymbol{\varepsilon}^t) + R^t]
    grad_t = GradNormClip(grad_t, 0.1)
    v_t = 0.9 \cdot v_{t-1} + \eta \cdot \operatorname{grad}_t
    \varepsilon^{t+1} = \varepsilon^t + v_t
    if R^t > R^* then
        \mathbf{x}_0^{\star} = \mathbf{x}_0^t, R^{\star} = R^t
    end if
end for
return x<sub>0</sub>*
```

Experimental Setup

One-Step T2I Models						
SD-Turbo	SDXL-Turbo	PixArt-α DMD	HyperSDXL			

Benchmarks						
T2I-CompBench	GenEval	Parti-Prompts				

Reward Models						
PickScore	HPSv2	ImageReward	CLIPScore			

Effect of Reward Models

Table 1: SD-Turbo evaluated on the attribute binding categories of T2I-CompBench and the LAION aesthetic score predictor [74] for different reward models.

Reward	At	Aesthetic ↑		
	Color ↑ Shape ↑ Texture ↑		Texture ↑	
SD-Turbo	0.5513	0.4448	0.5690	5.647
+ CLIPScore	0.6625	0.5501	0.6621	5.475
+ HPSv2	0.6443	0.5451	0.6859	5.752
+ ImageReward	0.7720	0.6104	0.7334	5.611
+ PickScore	0.6341	0.5069	0.6242	5.711
+ All	0.7830	0.6244	0.7466	5.704

Table 2: **Quantitative Results on T2I-CompBench**. ReNO combined with (1) PixArt- α DMD [11, 12, 91], (2) SD-Turbo [72], (3) SDXL-Turbo [72], HyperSD [65] demonstrates superior compositional generation ability in both attribute binding, object relationships, and complex compositions. The best value is bolded, and the second-best value is underlined. Multi-step results taken from [12, 20].

Model	Attribute Binding			Object Relationship		Complex↑
New	Color ↑	Shape ↑	Texture↑	Spatial [↑]	Non-Spatial↑	Complex
SD v1.4	0.38	0.36	0.42	0.12	0.31	0.31
SD v2.1	0.51	0.42	0.49	0.13	0.31	0.34
SDXL	0.64	0.54	0.56	0.20	0.31	0.41
PixArt- α	0.69	0.56	0.70	0.21	0.32	0.41
DALL-E 2	0.57	0.55	0.64	0.13	0.30	0.37
DALL-E 3	0.81	0.68	0.81	-	-	-
(1) PixArt-α DMD	0.38	0.34	0.47	0.19	0.30	0.36
(1) + ReNO (Ours)	0.64	0.57	0.72	0.25	0.31	0.46
(2) SD-Turbo	0.55	0.44	0.57	0.17	0.31	0.41
(2) + ReNO (Ours)	0.78	0.62	0.75	0.22	0.32	0.48
(3) SDXL-Turbo	0.61	0.44	0.60	0.24	0.31	0.43
(3) + ReNO (Ours)	0.78	0.60	0.74	0.26	0.31	0.47
(4) HyperSDXL	0.65	0.50	0.65	0.25	0.31	0.46
(4) + ReNO (Ours)	0.79	0.63	0.77	0.26	0.31	0.48

Quantitative Results

Table 3: **Quantitative Results on GenEval**. ReNO combined with (1) PixArt-α DMD [11, 12, 91], (2) SD-Turbo [72], (3) SDXL-Turbo [72], HyperSDXL [65] improves results across all categories. The best value is bolded, and the second-best value is underlined. Multi-step results taken from [20].

Model	Mean ↑	Single↑	Two↑	$Counting \uparrow$	Colors ↑	$\textbf{Position} \uparrow$	Color Attribution ↑
SD v2.1	0.50	0.98	0.51	0.44	0.85	0.07	0.17
SDXL	0.55	0.98	0.74	0.39	0.85	0.15	0.23
IF-XL	0.61	0.97	0.74	0.66	0.81	0.13	0.35
PixArt- α	0.48	0.98	0.50	0.44	0.80	0.08	0.07
DALL-E 2	0.52	0.94	0.66	0.49	0.77	0.10	0.19
DALL-E 3	0.67	0.96	0.87	0.47	0.83	0.43	0.45
SD3 (8B)	0.68	0.98	0.84	0.66	0.74	0.40	0.43
(1) PixArt-α DMD	0.45	0.95	0.38	0.46	0.76	0.05	0.09
(1) + ReNO (Ours)	0.59	0.98	0.72	0.58	0.85	0.15	0.27
(2) SD-Turbo	0.49	0.99	0.51	0.38	0.85	0.07	0.14
(2) + ReNO (Ours)	0.62	1.00	0.82	0.60	0.88	0.12	0.33
(3) SDXL-Turbo	0.54	1.00	0.66	0.45	0.84	0.09	0.20
(3) + ReNO (Ours)	0.65	1.00	0.84	0.68	0.90	0.13	0.35
(4) HyperSDXL	0.56	1.00	0.76	0.43	0.87	0.10	0.21
(4) + ReNO (Ours)	0.65	1.00	0.90	0.56	0.91	0.17	0.33

User Study Results and Computational Cost of ReNO

Figure 4: User Study Results for ReNO

Figure 5: Attribute binding results on T2I-CompBench with varying number of iterations.

Limitations

- Despite using different image generation models of varying architectures and sizes, they converge to similar performance on both T2I-Compbench and GenEval;
- The amount of needed GPU VRAM is significantly higher when using ReNO;
- ReNO is designed for distilled diffusion models.

Further analysis

- Goal: understand how the optimization process changes the initial noise;
- Metrics: L2 distance, coherence function;
- Parti-Prompts dataset (a set of diverse 1.6k prompts).

Analysis of the distances between noises and images

- Mean L2 distance between initial and optimized noises: 27.0122;
- Mean L2 distance between two random noises: 180.7667;
- Mean L2 distance between initial noise and generated image: 123.3377;
- Mean L2 distance between optimized noise and generated image: 142.3693;
- Mean L2 distance between random noise and random image: 159.0550.

Conclusion:

- Mean L2 distance between the initial and optimized noises is much less than distance between random noises;
- Mean L2 distance between the initial noise and image is smaller than the distance between the optimized ones.

Coherence analysis of the initial and optimized noises

- Coherence function measures the frequency-dependent correlation between two noises;
- Coherence values range from 0 (no correlation) to 1 (perfect correlation) and are computed across different frequencies;
- Low frequencies represent the "smooth" or slowly varying parts of the signal;
- High frequencies correspond to the fast-changing or detailed parts of the signal;

Conclusion: ReNO primarily modifies the slower-varying components while preserving the rapid fluctuations.

Visualization of the difference between the initial and optimized noises

Prompt: "A red dog and a green cat"

Prompt: "Oil painting of a giant robot made of sushi, holding chopsticks."

Conclusion: No visual difference between the initial and optimized noises.

Findings

- Mean L2 distance between the initial and optimized noises is much less than distance between random noises;
- Mean L2 distance between the initial noise and image is smaller than the distance between the optimized ones;
- Coherence function is lower at low frequencies and it is increasing at higher frequencies;
- No visual difference between the initial and optimized noises.

Thank you for your attention!