Regression models: Project-Cars dataset analysis $_{\it RP}$

7 June 2017

Executive summary

In this project, we analyse mtcars dataset to find if 1."Automatic or manual transmission is better for mpg" 2."Quantify MPG difference between automatic and manual transmissions". First of all, We load dataset and do exploratory analysis. Then we use hypothesis testing and linear regression to analyse the data. We do both single and multivariate linear regression modelling but find multivariable regression analysis to fit the model better.

Exploratory Data analysis

```
data(mtcars)
dim(mtcars) ##dimensions of dataset
```

[1] 32 11

Structure, head and Summary of dataset is available in Table 1,2 & 3 respectively.

Data Processing

1.Is an automatic or manual transmission better for mpg

We plot mpg vs transmission for the dataset as shown in Plot 2 in Appendix. It is clear from the plot that for transmission type "manual" mpg is more than auto type. We find means for auto and manual transmission type groups (Table 3-Appendix) and see mean for manual transmission type (24.4) is more than auto type (17.1) We conduct t-test for above two groups (Table 4 & 5-Appendix) and see that there is a significant difference in two groups as p-value is .06.

Checking correlations of different variables in mtcars dataset

```
p <- cor(mtcars)</pre>
p [1,]
##
           mpg
                       cyl
                                  disp
                                                 hp
                                                           drat
##
    1.0000000 - 0.8521620 - 0.8475514 - 0.7761684
                                                     0.6811719 -0.8676594
                                               gear
##
          qsec
                        vs
                                     am
                                                           carb
    0.4186840
               0.6640389
                            0.5998324
                                        0.4802848 -0.5509251
fit0<-lm(mpg~.,data=mtcars)</pre>
#print(paste(("VIF values"), sqrt(vif(fit))))
fit1<-lm(mpg~am,data=mtcars)</pre>
```

In the above linear regression model (Table 5-Appendix), manual transmission cars get 7.245 mpg more than automatic transmission cars.R-squared value shows 36% of predicted variables are explained using "am" variable. So, we will explore multivariable regression also. In addition to am variable (default), we see that variables wt, cyl, disp, hp are highly corelated with mpg. We look at corelation among variables (as shown in appendix-Table 6), we see cyl and disp are highly correlated with each other, so we leave disp and we include wt and hp and cyl variables in our model also.

Multivariable linear regression analysis

```
fit2<-lm(mpg~am+wt+hp,data=mtcars)##multivariable regression
fit3<-lm(mpg~am+wt+hp+cyl,data=mtcars)
anova(fit1,fit2,fit3)</pre>
```

```
## Analysis of Variance Table
##
## Model 1: mpg ~ am
## Model 2: mpg \sim am + wt + hp
## Model 3: mpg ~ am + wt + hp + cyl
     Res.Df
              RSS Df Sum of Sq
                                           Pr(>F)
                                      F
## 1
        30 720.90
         28 180.29
                   2
                         540.61 42.9310 4.112e-09 ***
## 2
## 3
         27 170.00
                   1
                          10.29 1.6348
                                           0.2119
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Results with p-value of 4.1e-09 show the model is significantly different than linear fit1 model. Also, it r-squared value (as shown in Table 7 in appendix) is 0.84, which explains 84% of variance. We will cross check with residuals for any signs of non-normality and examine residuals vs fitted values plot to check hetroskedasicity.

On checking the plots(Plot 4-Appendix), we find plots are normally distributed and not hetroskedastic. We report estimates of this model.

Conclusion

summary(fit2)

```
##
## Call:
## lm(formula = mpg ~ am + wt + hp, data = mtcars)
##
## Residuals:
##
       Min
                1Q Median
                                 30
                                        Max
  -3.4221 -1.7924 -0.3788
                            1.2249
                                     5.5317
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.002875
                            2.642659
                                     12.867 2.82e-13 ***
                2.083710
                            1.376420
                                       1.514 0.141268
## am
               -2.878575
                            0.904971 -3.181 0.003574 **
## wt
```

The above model explains 84% of variance .Thus difference between automatic and manual transmissions is $2.08 \mathrm{mpg}$

Appendix

Table 1-Dataset structure

```
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

Table 2 -Dataset glimpse

```
head(mtcars) ## a glimpse of the mtcars dataset
```

```
##
                    mpg cyl disp hp drat
                                            wt qsec vs am gear carb
## Mazda RX4
                         6 160 110 3.90 2.620 16.46
                   21.0
## Mazda RX4 Wag
                   21.0 6 160 110 3.90 2.875 17.02
                                                                  4
## Datsun 710
                   22.8 4 108 93 3.85 2.320 18.61 1 1
                                                                  1
## Hornet 4 Drive
                   21.4 6 258 110 3.08 3.215 19.44 1 0
## Hornet Sportabout 18.7
                          8 360 175 3.15 3.440 17.02 0 0
                                                             3
                                                                  2
## Valiant
                          6 225 105 2.76 3.460 20.22 1 0
                   18.1
```

##Histogram of miles per gallon of dataset

Table 3 -Dataset summary

```
summary(mtcars) ##summary of dataset
```

```
##
                                             disp
                           cyl
                                                               hp
         mpg
                                               : 71.1
            :10.40
                              :4.000
                                       {\tt Min.}
                                                                 : 52.0
##
    Min.
                     Min.
                                                         Min.
                                       1st Qu.:120.8
##
    1st Qu.:15.43
                     1st Qu.:4.000
                                                         1st Qu.: 96.5
                                       Median :196.3
    Median :19.20
                     Median :6.000
                                                         Median :123.0
##
##
    Mean
            :20.09
                     Mean
                             :6.188
                                       Mean
                                               :230.7
                                                         Mean
                                                                 :146.7
    3rd Qu.:22.80
                     3rd Qu.:8.000
                                       3rd Qu.:326.0
                                                         3rd Qu.:180.0
##
            :33.90
                              :8.000
                                                                 :335.0
##
    Max.
                     Max.
                                       Max.
                                               :472.0
                                                         Max.
##
         drat
                            wt
                                             qsec
                                                               vs
            :2.760
##
    Min.
                     Min.
                              :1.513
                                       Min.
                                               :14.50
                                                         Min.
                                                                 :0.0000
##
    1st Qu.:3.080
                      1st Qu.:2.581
                                       1st Qu.:16.89
                                                         1st Qu.:0.0000
    Median :3.695
                     Median :3.325
                                       Median :17.71
                                                         Median :0.0000
                                               :17.85
            :3.597
                             :3.217
                                                                 :0.4375
##
    Mean
                     Mean
                                       Mean
                                                         Mean
##
    3rd Qu.:3.920
                     3rd Qu.:3.610
                                       3rd Qu.:18.90
                                                         3rd Qu.:1.0000
                              :5.424
##
    Max.
            :4.930
                     Max.
                                       Max.
                                               :22.90
                                                         Max.
                                                                 :1.0000
##
           am
                            gear
                                              carb
##
    Min.
            :0.0000
                       Min.
                              :3.000
                                        Min.
                                                :1.000
                                        1st Qu.:2.000
##
    1st Qu.:0.0000
                       1st Qu.:3.000
    Median :0.0000
                       Median :4.000
                                        Median :2.000
            :0.4062
                                                :2.812
##
    Mean
                       Mean
                              :3.688
                                        Mean
    3rd Qu.:1.0000
                       3rd Qu.:4.000
                                        3rd Qu.:4.000
##
    Max.
            :1.0000
                       Max.
                              :5.000
                                        Max.
                                                :8.000
```

Plot 1 -histogram -mpg

hist(mtcars\$mpg,breaks=10,xlab="Miles per gallon",main="Histogram showing miles per gallon of cars")

Histogram showing miles per gallon of cars

tion seems to be normal.

Plot 2 -Plotting mpg Vs transmission type (am)

Distribu-

Plot showing mpg Vs transmission type (am)

appears transmission type "1" (Manual) gives better mpg

Table 3 -Mean of manual vs auto

```
aggregate(mpg~am,data=mtcars,mean)
```

It

```
## am mpg
## 1 0 17.14737
## 2 1 24.39231
```

Table 4-t-test for manual vs auto

```
#modelling with single variable (am)
data_auto<-mtcars[mtcars$am==0,]
data_manual<-mtcars[mtcars$am==1,]
t.test(data_auto,data_manual)</pre>
```

```
##
## Welch Two Sample t-test
##
## data: data_auto and data_manual
## t = 1.8772, df = 348.4, p-value = 0.06132
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7538182 32.3497623
```

```
## sample estimates:
## mean of x mean of y
## 46.02645 30.22848
Table 5- T-test coefficients summary
f1<-lm(mpg~as.factor(am),data=mtcars)</pre>
##summary of t-test coefficients
print("Table 5")
## [1] "Table 5"
summary(f1) ## a look at the coefficients
##
## Call:
## lm(formula = mpg ~ as.factor(am), data = mtcars)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    17.147
                                1.125 15.247 1.13e-15 ***
                    7.245
                                        4.106 0.000285 ***
## as.factor(am)1
                                1.764
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
Table 6-Correlation among variables
print("Corelation of variables with each other")
## [1] "Corelation of variables with each other"
p[2,]
         mpg
                     cyl
                               disp
                                            hp
                                                     drat
## -0.8521620 1.0000000 0.9020329 0.8324475 -0.6999381 0.7824958
                                          gear
                      ٧s
                                 am
```

-0.5912421 -0.8108118 -0.5226070 -0.4926866 0.5269883

p[4,]

```
## mpg cyl disp hp drat wt
## -0.7761684 0.8324475 0.7909486 1.0000000 -0.4487591 0.6587479
## qsec vs am gear carb
## -0.7082234 -0.7230967 -0.2432043 -0.1257043 0.7498125
```

p[6,]

```
##
                     cyl
                                disp
                                                       drat
                                                                    wt
                                             hp
          mpg
                          0.8879799
                                     0.6587479 -0.7124406
## -0.8676594
               0.7824958
                                                            1.0000000
##
         qsec
                      vs
                                           gear
                                                       carb
                                  am
## -0.1747159 -0.5549157 -0.6924953 -0.5832870
```

Plot 3 -Residual plot

```
par(mfrow=c(2,2))
plot(fit1)
```


Table 7-Multivariable regression summary

```
summary(fit2)
```

```
##
## Call:
## lm(formula = mpg ~ am + wt + hp, data = mtcars)
##
## Residuals:
```

```
1Q Median
      Min
                           3Q
## -3.4221 -1.7924 -0.3788 1.2249 5.5317
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 34.002875 2.642659 12.867 2.82e-13 ***
             2.083710 1.376420 1.514 0.141268
             -2.878575 0.904971 -3.181 0.003574 **
## wt
## hp
             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
\mbox{\tt \#\#} Residual standard error: 2.538 on 28 degrees of freedom
## Multiple R-squared: 0.8399, Adjusted R-squared: 0.8227
## F-statistic: 48.96 on 3 and 28 DF, p-value: 2.908e-11
```