ppx Reference Manual

1 Data Structure

- 1.1 ppx::Matrix
 - 1.1.1 definition
 - 1.1.2 Template parameters
 - 1.1.3 Specializations
 - 1.1.4 Member functions
 - 1.1.5 Non-member functions
- 1.2 ppx::details::MatrixBase
 - 1.2.1 definition
 - 1.2.2 Template parameters
 - 1.2.3 Specializations
 - 1.2.4 Member functions

2 Algorithm

- 2.1 ppx::cofactor
 - 2.1.1 definition
- 2.2 ppx::ludcmp
 - 2.2.1 definition
 - 2.2.2 interface
 - 2.2.3 implement
- 2.3 ppx::qrdcmp
 - 2.3.1 definition
 - 2.3.2 interface
 - 2.3.3 implement
- 2.4 ppx::svdcmp
 - 2.4.1 definition
 - 2.4.2 interface
 - 2.4.3 implement
- 2.5 ppx::solve
 - 2.5.1 definition
 - 2.5.2 interface
 - 2.5.3 implement

3 Benchmark

- 3.1 enviroment
- 3.2 result
- 4 Reference

1 Data Structure

1.1 ppx::Matrix

1.1.1 definition

```
#include "matrix.hpp"
template <std::size_t M, std::size_t N>
class Matrix : public details::MatrixBase<M, N>
```

- 1. ppx::Matrix 是储存了一组浮点数的连续容器。
- 2. ppx::Matrix根据储存元素数量,在栈或堆上分配内存。该界限由常量 gl_sm_limit 决定。

Matrix继承自details::MatrixBase类,在MatrixBase的模板参数中,第一与第二参数决定存储元素数量,而第三参数由第一第二参数决定。MatrixBase会根据第三参数选择特定的偏特化模板:在不同的偏特化模板中,MatrixBase使用的存储容器并不相同。

Matrix的存储功能由基类实现。它使储存元素连续分布于内存中,这样就能被迭代器或裸指针加上偏移访问。当存储元素数量小于 gl_sm_limit 时,这些元素在栈上:它们有平凡构造、赋值、移动构造、移动赋值能力;当储存元素数量大于 gl_sm_limit 时,这些元素在堆上:它们有默认非平凡构造、赋值、移动构造、移动赋值能力。

更多关于Matrix储存方面说明请参考details::MatrixBase说明。

Matrix中常见操作的复杂度如下:

- 随机访问 O(1)
- 末尾安插或移除元素 O(1)
- 安插或移除元素 O(n)

1.1.2 Template parameters

参数	约束	说明	
M	size_t	非类型模板参数,	矩阵行数
N	size_t	非类型模板参数,	矩阵列数

1.1.3 Specializations

无特化类型

1.1.4 Member functions

 构造方法	
constructor	默认构造/移动构造
destructor	默认析构
operator=	默认赋值/移动赋值
元素访问	
operator()	访问处于 i,j 处元素,如果输入范围 $\{i_1,i_2\},\{j_1,j_2\}$ 返回矩阵处于 i_1,i_2 行与 j_1,j_2 列之间的视图Subpart
operator[]	按数组访问处于 idx 处元素
data	返回存储容器裸指针
迭代器	
begin/cbegin	返回开始的迭代器/常量迭代器
end/cend	返回结束的迭代器/常量迭代器
容量	
size	返回储存元素数量
row_counts	返回矩阵行数
col_counts	返回矩阵列数
元素修改	
fill	将容器元素全部改写为 val
算术操作	
operator+	二元加法:接受相容矩阵/标量/求值模板
operator-	二元减法:接受相容矩阵/标量/求值模板
operator*	二元乘法:接受相容矩阵/标量
operator/	二元除法: 接受标量
operator+=	复合赋值:接受相容矩阵/标量
operator-=	复合赋值:接受相容矩阵/标量
operator*=	复合赋值:接受标量
operator/=	复合赋值:接受标量
operator==	比较运算符,容器中每个元素差值小于 gl_rep_eps 相等
Т	转置
Ι	逆(方阵)/伪逆(非方阵)
det	行列式 (方阵)
trace	迹 (方阵)
静态方法	
eye	构造单位矩阵
zero	构造零矩阵
diag	按输入构造对角矩阵

1.1.5 Non-member functions

矩阵相关非成员函数存在于头文件"algorithm.hpp"中:

矩阵操作			
zeros	将矩阵元素全置为零		
ones	将矩阵元素全置为1		
catcol	按列拼接矩阵, 生成维度取两者最大		
catrow	按行拼接矩阵,生成维度取两者最大		
cofactor	矩阵余子式		
adjugate	伴随矩阵		
determinant	矩阵行列式		
inverse	矩阵逆		
slice	返回矩阵处于 i_1, i_2 行与 j_1, j_2 列之间的视图切片		
transpose	矩阵转置		
norm2	向量范数 (向量)		
trace	矩阵迹		
三角分解			
ludcmp	PLU分解, LAPACK式接口		
qrdcmp	QR分解,LAPACK式接口		
svdcmp	SVD分解		
线性求解器			
ludbksb	适用于LU分解的反向提交		
qrsolv	适用于QR分解的反向提交		
svbksb	适用于SVD分解的反向提交		
solve	解线性方程组(方阵)/解最小二乘方程组(列满秩)		
pinv	(最小二乘) 伪逆		

1.2 ppx::details::MatrixBase

1.2.1 definition

```
#include "matrix.hpp"
namespace details

template <size_t M, size_t N, std::size_t A = gl_sm(M, N)>
class MatrixBase;
}
```

- 1. details::MatrixBase 是储存容器包装。
- 2. details::MatrixBase根据第三模板参数A决定自身特化类型:相应区别在于内部数据成员类型将是std::array或std::vector类型。

details::MatrixBase是对储存容器简单包装。它有默认的移动语义,但它的移动语义会根据内部容器类型发生区别: 当内部是std::array类型时,它具有平凡的移动语义;而内部是std::vector它有通常意义上的移动语义。

details::MatrixBase中常见操作的复杂度如下:

• 随机访问 O(1)

- 末尾安插或移除元素 O(1)
- 安插或移除元素 O(n)

1.2.2 Template parameters

参数	约束	说明
M	size_t	非类型模板参数,矩阵行数
N	size_t	非类型模板参数,矩阵列数
Α	size_t	默认参数,由M*N确定

1.2.3 Specializations

```
1 template <std::size_t M, std::size_t N>
2 class MatrixBase<M, N, 1>
```

内部容器为std::vector的偏特化类型。

```
1 template <std::size_t M, std::size_t N>
2 class MatrixBase<M, N, 0>
```

内部容器为std::vector的偏特化类型。

1.2.4 Member functions

构造方法	
constructor	默认构造/移动构造(不可访问)
destructor	默认析构 (不可访问)
operator=	默认赋值/移动赋值(不可访问)

2 Algorithm

2.1 ppx::cofactor

2.1.1 definition

```
#include "algotithm.hpp"
template <size_t M, size_t N>
Matrix<M - 1u, N - 1u> cofactor(const Matrix<M, N> &mat, size_t p, size_t q)
```

 $ppx::cofactor 求解(p,q)元素的余子式,余子式定义可参考Wiki百科 <math>^1$,ppx使用定义求解余子式。

2.2 ppx::ludcmp

2.2.1 definition

```
1 template <size_t N>
2 Matrix<N, N> ludcmp(Matrix<N, N> A, std::array<int, N> &indx, bool &even,
bool &sing)
```

ppx::lucmp实现了Lapack²式选主元LU分解,即PLU分解,详细知识可参考Numerical analysis³内容。

2.2.2 interface

参数	说明		
A	M*N输入矩阵		
indx	置换数组,记录被交换的行		
even	置换次数是否为偶数次		
sing	分解是否奇异		
Return M	I*N矩阵:上三角部分储存L,下三角部分储存U		

2.2.3 implement

对于满秩方阵A,A可被写作 A = LU: 其中 L 是上三角矩阵 U 是下三角矩阵。为避免数值奇异,程序中更多使用选 主元LU分解,即PLU分解: A = PLU,其中 P 是置换矩阵, LU 的定义保持不变。

LU 分解本质上是<u>高斯消元法</u>的另一种表示。将A通过初等行变换变成一个上三角矩阵,其变换矩阵就是一个单位下 三角矩阵。这也是杜尔里特算法(Doolittle algorithm):从下至上地对矩阵A做初等行变换,将对角线左下方的元素 变成零,然后再证明这些行变换的效果等同于左乘一系列单位下三角矩阵,这一系列单位下三角矩阵的乘积的逆就 是L矩阵,它也是一个单位下三角矩阵。LU算法的复杂度是2n3左右。

选主元过程:通过std::swap进行列交换,使用数组indx记录置换矩阵。

消去过程:

$$eta_{ij} = a_{ij} - \sum_{k=1}^{i-1} lpha_{ik} eta_{kj} \ lpha_{ij} = rac{1}{eta_{jj}} (lpha_{ij} - \sum_{k=1}^{j-1} lpha_{ik} eta_{kj})$$

代码实现细节参考文献 4。

ppx::qrdcmp 2.3

2.3.1 definition

- 1 template <size t M, size t N>
- Matrix<M, N> qrdcmp(Matrix<M, N> a, Matrix<N, 1> &c, Matrix<N, 1> &d, bool &sing)

ppx实现了Lapack式基于householder变换的QR分解,

2.3.2 interface

参数	说明		
a	M*N输入矩阵		
c	N维向量, householder变换系数		
d	N维向量, R对角线元素		
sing	分解是否奇异		
Poturo M*N/45/4	上二角郊公健方D 剩今每到为bayashaldar亦换用了		

Return M*N矩阵,上三角部分储存R,剩余每列为householder变换因子

2.3.3 implement

对于列满秩矩阵A,可以写作 A = QR: 这里Q是正交矩阵 ($Q^TQ = I$) 而R是上三角矩阵。如果A非奇异,且限定R的 对角线元素为正,则该因数分解唯一。

QR分解中对列向量消去过程可以使用Givens变换、householder变换,以及Gram-Schmidt正交化等方法³。对于稠密小矩阵,householder变换或说镜射变换时最有效。

$$egin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n & \mathbf{q}_{n+1} & \cdots & \mathbf{q}_m \end{bmatrix} egin{bmatrix} r_{11} & \cdots & r_{1n} \ & \ddots & dots \ & & r_{nn} \ 0 & \cdots & 0 \ dots & & dots \ 0 & \cdots & 0 \end{bmatrix} = A(M imes N)$$

QR分解核心在于对每列使用变换将其转换为上Hessenberg矩阵R,变换矩阵乘积为Q,即:

$$Q_1A = \begin{bmatrix} \alpha_1 & \star & \dots & \star \\ 0 & & \\ \vdots & & A' \\ 0 & & \end{bmatrix}$$

$$R = Q_n \dots Q_1A$$

$$Q = Q_1^T \dots Q_n^T$$

理论算法参考文献 5:

 $\begin{array}{lll} 1: & \text{Householder QR}(A) \\ 2: & m, n \leftarrow \text{shape}(A) \\ 3: & R \leftarrow \text{copy}(A) \\ 4: & Q \leftarrow I_m \\ 5: & \text{for } k = 0 \dots n - 1 \text{ do} \\ 6: & \mathbf{u} \leftarrow \text{copy}\left(R_{k:,k}\right) \\ 7: & u_0 \leftarrow u_0 + \text{sign}\left(u_0\right) \|\mathbf{u}\| \\ 8: & \mathbf{u} \leftarrow \mathbf{u}/\|\mathbf{u}\| \\ 9: & R_{k:,k:} \leftarrow R_{k:,k:} - 2\mathbf{u}\left(\mathbf{u}^{\top}R_{k:,k:}\right) \\ 10: & Q_{k:,:} \leftarrow Q_{k:,:} - 2\mathbf{u}\left(\mathbf{u}^{\top}Q_{k:,:}\right) \\ 11: & \text{return } Q^{\top}, R \end{array}$

这种朴素的实现方式的优点是简单易懂,缺点是生成大量中间变量。事实上,在Lapack中,QR分解将返回:

$$\begin{bmatrix} u_{11} & r_{11} & r_{21} & \dots \\ u_{12} & u_{21} & r_{22} & \dots \\ u_{13} & u_{22} & u_{31} & \dots \\ u_{14} & u_{23} & u_{32} & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

即上三角矩阵 R 存储于返回矩阵的上三角部分,镜射变换因子 u_i 储存于下三角中,而 R 的对角线单独返回。对于需要 Q 的情形,使用变换因子生成:

$$Q_i = I - c_i u_i u_i^T$$

如不显式需要Q,则QR分解中每次镜射变换因子生成变换矩阵作用在A上过程变为:

$$Q_i x = (I - c_i u_i u_i^T) x = x - c_i u_i u_i^T x = x - c_i u_i (u_i^T x)$$

这种方法也称为隐式QR。

2.4 ppx::svdcmp

2.4.1 definition

```
1 template <size t M, size t N>
```

2 Matrix<M, N> svdcmp(Matrix<M, N> u, Matrix<N, 1> &w, Matrix<N, N> &v)

ppx实现了基于QR迭代的SVD分解。

2.4.2 interface

参数	说明	
u	M*N输入矩阵	
W	N维向量,奇异值	
v	N*N右奇异矩阵	
Return	M*N矩阵,左奇异矩阵	

2.4.3 implement

假设A是一个矩阵,存在一个分解使得: $A = U\Sigma V^T$,其中 $U = M \times N$ 阶列正交矩阵; $\Sigma = M \times M$ 阶对角矩阵; 而 $V = N \times N$ 阶酉矩阵。这样的分解就称作A的奇异值分解。 $\Sigma \times M$ 有线上的元素 $\Sigma_{i,i}$ 即为A的奇异值。常见做法是将奇异值由大而小排列,如此 Σ 便能由A唯一确定(但ppx并没有重排)。

SVD分解有多种实现方式,如双边Jacobi,分治法等。ppx实现了经典的Golub – Reinsch方法 ⁶ ,该方法先将矩阵A通过householder变换转化双对角矩阵,然后在每个对角块中求解奇异值。

双对角householder变换:

对于矩阵A, 有如下变换:

$$A = UBV^T, U \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{m \times m}$$

其中:

$$B = \begin{bmatrix} \widehat{B} \\ 0 \end{bmatrix} \in \mathbb{R}^{n \times m},$$

$$\widehat{B} = \begin{bmatrix} \psi_1 & \phi_1 & 0 & \cdots & 0 \\ 0 & \psi_2 & \phi_2 & & \\ \vdots & & \ddots & \ddots & \\ & & & \psi_{m-1} & \phi_{m-1} \\ 0 & & & \psi_m \end{bmatrix} \in \mathbb{R}^{m \times m},$$

则B也写作:

$$B = U_m \cdots U_1 A V_1 \cdots V_{m-2}$$

其中 U_i, V_i都是householder变换。

Golub - Reinsch方法:

反复使用双对角householder变换:

$$\begin{bmatrix} B \\ 0 \end{bmatrix} \leftarrow \left(U_1 \dots U_n \right)^T A \left(V_1 \dots V_{n-2} \right)$$

将矩阵变换为下列形状:

$$B = \begin{bmatrix} B_{11} & 0 & 0 \\ 0 & B_{22} & 0 \\ 0 & 0 & B_{33} \end{bmatrix}$$

然后令 $T = \hat{B}^T \hat{B}$,选择其右下角 2×2方阵求解特征值:

$$(\lambda_1, \lambda_2) = eigenvalue(T_i)$$

取 $\mu = min(\lambda_1, \lambda_2)$, 作为QR迭代求取特征值偏移, 最后遍历所有特征值:

$$\begin{split} &1: T = \hat{B}^T \hat{B} \\ &2: \text{ for } k = 0, 1, \dots \text{ do} \\ &3: \text{ Determine shift } \mu \\ &4: \quad UR = T - \mu I \text{ (QR)} \\ &5: \quad T = RU + \mu I \\ &6: \text{ end for} \end{split}$$

具体细节参考文献 7。

2.5 ppx::solve

2.5.1 definition

1 template <factorization type, size_t M, size_t N>
2 Matrix<N, 1> solve(const Matrix<M, N> &A, Matrix<M, 1> b)

ppx实现了基于矩阵分解的线性方程组求解器,它适用于超定与一般方程组。

2.5.2 interface

参数	说明		
A	M*N输入矩阵		
b	M维输入向量		
type	枚举,求解方法(LU/QR/SVD)		
Return	n N维矩阵,解		

2.5.3 implement

线性方程求解器面临的主要问题是如何处理超定方程组,ppx中使用最小二乘法来解决过约束问题。

对于一个矩阵 A:

- 方阵且满秩,有三角分解 A = LU
- 列满秩,有QR分解 A = QR
- 普通矩阵,有SVD分解 $A = U\Sigma V^T$

因此,基于三种分解模式可以处理绝大部分线性方程组求解。

完全约束方程组

LU分解情形: $Ux = L^{-1}b$, 即连续求解两个三角方程组。

QR分解情形: $Rx = Q^T b$, 将householder变换因子作用到b上,求解三角方程组。

SVD分解情形: $x = V diag(\frac{1}{\sigma_i})U^T b$,相应矩阵相乘得解。

过约束方程组

过约束方程组没有解,因此转换为求解最小二乘问题 ||Ax - b||:

对A进行QR分解,由于:

$$A=QR=\left(Q_{1},Q_{2}
ight)egin{bmatrix}R_{1}\0\end{bmatrix}=Q_{1}R_{1}$$

$$Ax = Q_1R_1x = b \Rightarrow R_1x = Q_1^Tb$$

记housholder中每次变换因子 H_s (该因子将每一列相应位置变零), 有如下过程:

$$H_sH_{s-1}\ldots H_1A=R=egin{bmatrix} R_1\ 0 \end{bmatrix}$$

$$H_sH_{s-1}\dots H_1b=Q^Tb=egin{bmatrix} Q_1^Tb\ Q_2^Tb\end{bmatrix}=egin{bmatrix} c_1\ c_2\end{bmatrix}$$

由于 Q^T 正交,有以下问题同解:

$$||Ax-b||_2^2 = ||Q^T(Ax-b)||_2^2 = ||\begin{bmatrix} R_1x-c_1\\c_2\end{bmatrix}||_2^2 = ||R_1x-c_1||_2^2 + ||c_2||_2^2$$

即原方程 Ax = b 的最小二乘问题等价于 $R_1x = c_1$,即对于列满秩的超定方程组,使用规约QR得到解就是相应问题的最小二乘解。

3 Benchmark

对ppx线性代数库进行性能测试。参考标准为Eigen ⁸ 矩阵库。

3.1 enviroment

项目	说明	
测试工具	google benchmark 9 v1.4.1	
编译器	Microsoft Visual Studio Community 2022 v17.3.4	
处理器	Intel(R) Core(TM) i7-10710U CPU @ 1.10GHz	
操作系统 Microsoft Windows 11 家庭中文版 10.0.22621 版本 22621		

3.2 result

测试项目包括矩阵乘法、矩阵逆、矩阵对数/指数映射、QR分解、SVD分解、表达式求值等。每次样本数量均在 100000次以上。

ррх	eigen
3984 ns	1402 ns
2150 ns	3087 ns
816 ns	650 ns
160 ns	672 ns
258 ns	475 ns
184 ns	780 ns
2282 ns	575 ns
	3984 ns 2150 ns 816 ns 160 ns 258 ns 184 ns

4 Reference

- 1. Minor (linear algebra) Wikipedia ↔
- 2. https://netlib.org/lapack ←
- 3. $\underline{\text{https://dl.acm.org/doi/abs/10.5555/2161609}} \quad \text{"Sauer, T. (2011). Numerical analysis. Addison-Wesley Publishing Company."} \\ \underline{\leftarrow} \ \underline{\leftarrow} \ \underline{\leftarrow}$
- 4. "Darst, R. B. (1990). Introduction To Linear Programming, Applications and Extensions, Mercel Dekker. Inc., New York." 👱
- 5. http://ecet.ecs.uni-ruse.bg/cst04/Docs/sIIIA/37.pdf "Stoilov, T., Stoilova, K. (2004, June). Algorithm and software implementation of QR decomposition of rectangular matrices. In CompSysTech (pp. 1-6)." \(\to \)
- 6. https://link.springer.com/chapter/10.1007/978-3-662-39778-7 10 "Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least squares solutions. In Linear algebra (pp. 134-151). Springer, Berlin, Heidelberg." https://example.com/chapter/10.1007/978-3-662-39778-7 10 "Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least squares solutions. In Linear algebra (pp. 134-151). Springer, Berlin, Heidelberg." https://example.com/chapter/10.1007/978-3-662-39778-7 10 "Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least squares solutions. In Linear algebra (pp. 134-151). Springer, Berlin, Heidelberg." https://example.com/chapter/10.1007/978-3-662-39778-7 10 "Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least squares solutions. In Linear algebra (pp. 134-151). Springer, Berlin, Heidelberg." https://example.com/chapter/10.1007/978-3-662-39778-7 10 "Golub, G. H., & Reinsch, C. (1971). Springer, Berlin, Heidelberg." https://example.com/chapter/10.1007/978-3-662-39778-7 10 "Golub, G. H., & Reinsch, C. (1971). Springer, Berlin, Heidelberg." https://example.com/chapter/10.1007/978-3-662-39778-7 10 "Golub, G. H., & Reinsch, C. (1971). Springer, Berlin, Heidelberg." https://example.com/chapter/10.1007/978-7 10 "Golub, G. H., & Reinsch, C. (1971). Springer, Berlin, Heidelberg.
- 7. https://www.mdpi.com/2079-9292/10/1/34 "Alessandrini, M., Biagetti, G., Crippa, P., Falaschetti, L., Manoni, L., & Turchetti,
- C. (2020). Singular value decomposition in embedded systems based on arm cortex-m architecture. Electronics, 10(1), 34." 👱
- 8. <u>https://eigen.tuxfamily.org</u> ←
- 9. google/benchmark: A microbenchmark support library (github.com) ←