Carnegie Mellon

Learning Concept Taxonomies from Multi-modal Data

Hao Zhang

Zhiting Hu, Yuntian Deng, Mrinmaya Sachan, Zhicheng Yan and Eric P. Xing

Carnegie Mellon University

Outline

- Problem
- Taxonomy Induction Model
- Features
- Evaluation and Analysis

Taxonomy induction

A set of lexical terms = {consumer goods, fashion, uniform, neckpiece, handwear, finery, disguise, ...}

- Human knowledge
- Interpretability

- Question answering
- Information extraction
- Computer vision

Existing Taxonomies

- Knowledge/time intensive to build
- Limited coverage
- Unavailable

Related Works (NLP)

Automatically induction of taxonomies

Widdows [2003]

Snow et al [2006]

Poon and Domnigos [2010]

Yang and Callan [2009]

Kozareva and Hovy [2010]

Navigli et al [2011]

Fu et al [2014]

Bansal et al [2014]

- What evidence helps taxonomy induction?
 - Surface features
 - Ends with
 - Contains
 - Suffix match

• . . .

- What evidence helps taxonomy induction?
 - Semantics from text descriptions
 - Parent-child relation
 - Sibling relation [Bansal 2014]

```
"rays are a group of seafishes..."

"Either shark or ray..."

"Both shark and ray..."
```


- What evidence helps taxonomy induction?
 - Semantics from text descriptions
 - Parent-child relation
 - Sibling relation [Bansal 2014]

"seafish, such as shark..."

"rays are a group of seafishes..."

"Either shark or ray..."

"Both shark and ray..."

extracted as

- Wikipedia abstract
 - Presence and distance
 - Patterns
- Web-ngrams

• . . .

- What evidence helps taxonomy induction?
 - wordvec

$$d(v(king), v(queen)) \approx d(v(man), v(woman))$$

$$v(seafish) - v(shark) \qquad ? \qquad v(human) - v(woman)$$

Projections between parent and child [Fu 2014]

$$\Phi^* = \underset{\Phi}{\operatorname{arg\,min}} \frac{1}{N} \sum_{(x,y)} \| \Phi x - y \|^2$$

$$d(\Phi_k x, y) = \| \Phi_k x - y \|^2 < \delta \Phi_k$$

Motivation

How about images?

Motivation

Our motivation

- Images may include perceptual semantics
- Jointly leverage text and visual information (from the web)

Problems to be addressed:

- How to design visual features to capture the perceptual semantics?
- How to design models to integrate visual and text information?

Related Works (CV)

Building visual hierarchies

Griffin and Perona [2008]

Chen et al [2013]

Task Definition

- Assume a set of N cateogries $x = \{x_1, x_2, ..., x_N\}$
 - Each category has a name and a set of images
- Goal: induce a taxonomy tree over x
 - Using both text & visual features

x = {Animal, Fish, Shark,Cat, Tiger, Terrestrialanimal, Seafish, Feline}

 Setting: Supervised learning of category hierarchies from data

Model

Let $z_n (1 \le z_n \le N)$ be the index of the parent of category x_n

- The set $\mathbf{z} = \{z_1, z_2, ..., z_n\}$ encodes the whole tree structure
- Our goal → infer the conditional distribution
 p(z|x)

x = {Animal, Fish, Shark,Cat, Tiger, Terrestrialanimal, Seafish, Feline}

Model Overview

- Intuition: Categories tend to be closely related to parents and siblings
 - (text) hypernym-hyponym relation: shark -> cat shark
 - visual similarity: images of shark ⇔ images of ray
- Method: Induce features from distributed representations of images and text
 - image: deep convnet
 - text: word embedding

Taxonomy Induction Model

Notations:

- $-c_n$: child nodes of x_n
- $-x_n' \in c_n$
- $-g_w$: consistency term depending on features
- w: model weights to be learned

parent indexes popularity (#child) of categories of categories $p_w(\pmb{z},\pmb{\pi}|\pmb{x},\pmb{\alpha}) \propto$

prior of popularity

consistency of $\underline{x'_n}$ with parent $\underline{x_n}$ and siblings $\underline{c_n} \setminus \underline{x_n}$

Taxonomy Induction Model

• Looking into g_w :

 $-g(x_n,x_n',c_n\backslash x_n')$ evaluates how consistent a parent-child group is.

The whole model is a factorization of consistency terms of all

local parent-child groups.

consistency of x'_n with parent x_n and siblings $c_n \setminus x_n$

Model: Develop g_w

Notations:

- $-c_n$: child nodes of x_n
- $-x_n' \in c_n$
- $-g_w$: consistency term depending on features
- − w: model weights to be learned

weight vector (to be learned)

$$\exp\left\{oldsymbol{w}^{ op}oldsymbol{f}_{n,n',oldsymbol{c}_n\setminus x_{n'}}
ight\}$$

feature vector: feature vector of $\underline{x'_n}$ with parent $\underline{x_n}$ and siblings $\underline{c_n} \backslash \underline{x'_n}$

- Visual features:
 - Sibling similarity
 - Parent-child similarity
 - Parent prediction
- Text features
 - Parent prediction [Fu et al.]
 - Sibling Similarity
 - Surface features [Bansal et al.]

- Visual features: Sibling similarity (S-V1*)
 - Step 1: fit a Gaussian to the images of each category
 - Step 2: Derive the **pairwise** similarity $vissim(x_n, x_m)$

$$vissim(x_n, x_m) = [\mathcal{N}(\overline{\boldsymbol{v}}_{i_m}; \overline{\boldsymbol{v}}_{i_n}, \Sigma_n) + \mathcal{N}(\overline{\boldsymbol{v}}_{i_n}; \overline{\boldsymbol{v}}_{i_m}, \Sigma_m)]/2$$

Step 3: Derive the groupwise similarity by averaging

$$vissim(x_{n'}, \boldsymbol{c}_n \backslash x_{n'}) = \frac{\sum_{x_m \in \boldsymbol{c}_n \backslash x_{n'}} vissim(x_{n'}, x_m)}{|\boldsymbol{c}_n| - 1}.$$

S-V1 evaluates the visual similarity between siblings

- Visual features: Parent-child Similarity (PC-V1*)
 - Step 1 : Fit a Gaussian for child categories
 - Step 2: Fit a Gaussian for only the top-K images of parent categories
 - Step 3 4: same with S-V1

^{*} PC: Parent-child, V: Visual

- Visual features: Parent Prediction (PC-V2*)
 - Step 1 : Learn a projection matrix to map the mean image of child category to the word embedding of its parent category

$$\mathbf{\Phi}^* = \underset{\mathbf{\Phi}}{\operatorname{argmin}} \frac{1}{N} \sum_{n} \|\mathbf{\Phi} \overline{\mathbf{v}}_{i_{n'}} - \mathbf{v}_{t_n}\|_{2}^{2} + \lambda \|\mathbf{\Phi}\|_{1}$$

– Step 2: Calculate the distance

$$\|oldsymbol{\Phi} \overline{oldsymbol{v}}_{oldsymbol{i}_{n'}} - oldsymbol{v}_{t_n}\|_{oldsymbol{v}}$$

- Step 3: bin the distance as a feature vector

* PC: Parent-child, V: Visual

- Text features
 - Parent prediction [Fu et al.]
 - Parent prediction: projection from child to parent
 - Sibling Similarity
 - Distance between word vectors
 - Surface features [Bansal et al.]
 - Ends with (e.g. catshark is a sub-category of shark), LCS,
 Capitalization, etc.

Parameter Estimation

- Inference
 - Gibbs sampling

$$p(z_n = m | \boldsymbol{z} \backslash z_n, \cdot)$$

$$\propto (q_m^{-n} + \alpha_m) \frac{\prod_{x_{n'} \in \boldsymbol{c}_m \cup \{x_n\}} g_w(x_m, x_{n'}, \boldsymbol{c}_m \cup \{x_n\})}{\prod_{x_{n'} \in \boldsymbol{c}_m \backslash x_n} g_w(x_m, x_{n'}, \boldsymbol{c}_m \backslash x_n)}$$

Learning

- Supervised learning from gold taxonomies of training data
- Gradient descent-based maximum likelihood estimation
- Output taxonomies
 - Chao-Liu-Edmonds algorithm

Experiment Setup

Implementation

– Wordvec: Google word2vec

- Convnet: VGG-16

• Evaluation metric: Ancestor-F1 =
$$\frac{2PR}{P+R}$$

$$P = \frac{|\text{is-a}_{\text{predicted}}| \cap |\text{is-a}_{\text{gold}}|}{|\text{is-a}_{\text{predicted}}|}, R = \frac{|\text{is-a}_{\text{predicted}}| \cap |\text{is-a}_{\text{gold}}|}{|\text{is-a}_{\text{gold}}|}$$

Data

Training set: ImageNet taxonomies

Trees	Tree A	Tree B	Tree C
Synset ID	12638	19919	23733
Name	consumer goods	animal	food, nutrient
h=4	187	207	572
h=5	362	415	890
h=6	493	800	1166
h = 7	524	1386	1326

Results: Comparison to baseline methods

- Embedding-based feature (LV) is comparable to state-of-the-art
- Full feature set (LVB) achieve the best

Method	h=4	h=5	h=6	h=7				
Hierarchy Completion								
Fu2014	0.66	0.42	0.26	0.21				
Ours (L)	0.70	0.49	0.45	0.37				
Ours (LV)	0.73	0.51	0.50	0.42				
Hierarchy Construction								
Fu2014	0.53	0.33	0.28	0.18				
Bansal2014	0.67	0.53	0.43	0.37				
Ours (L)	0.58	0.41	0.36	0.30				
Ours (LB)	0.68	0.55	0.45	0.40				
Ours (LV)	0.66	0.52	0.42	0.34				
Ours (LVB - E)	0.68	0.55	0.44	0.39				
Ours (LVB)	0.70	0.57	0.49	0.43				

- L: Language features
 - surface features
 - embedding features
- V: Visual features
- B: Bansal2014 features
 - web ngrams etc.
- E: Embedding features

Results: How much visual features help?

S-V1	PC-V1	PC-V2	h = 4	h = 5	h = 6	h = 7
			0.58	0.41	0.36	0.30
√			0.63	0.48	0.40	0.32
	√		0.61	0.44	0.38	0.31
		√	0.60	0.42	0.37	0.31
√	✓		0.65	0.52	0.41	0.33
√	✓	✓	0.66	0.52	0.42	0.34

Messages:

- Visual similarity (S-V1, PC-V1) help a lot
- The complexity of visual representations does not affect much

Results: Investigating PC-V1

 Images of parent category are not all necessarily visually similar to images of child category

Results: When/Where visual features help?

- Messages:
 - Shallow layers ↔abstract categories ↔ text features more effective

Take-home Message

- Visual similarity helps taxonomy induction a lot
 - Sibling similarity
 - Parent-child similarity
- Which features are more important?
 - Visual features are more indicative in nearleaf layers
 - Text features more evident in near-root layers
- Embedding features augments word count features

Thank You! Q & A

Results: Visualization

