Regular Expressions

Regular Expressions

- A regular expression is a special text string defining a search pattern for matching text.
- Regular expressions are used in many Unix utilities.
 - like grep, sed, vi, emacs, awk, ...
- ◆ The form of a regular expression:
 - It can be plain text …
 - > grep unix file (matches all the appearances of unix in file)
 - It can also be special text ...
 - > grep '[uU]nix' file (matches unix and Unix)

Regular Expressions and Filename Expansion

- Regular expressions are different from file name expansion.
 - Regular expressions are interpreted and matched by special utilities (such as grep).
 - File name expansions are interpreted and matched by shells.
 - They have different wildcarding systems.
 - Filename expansion takes place first!

```
compute[1] > grep '[uU]nix' file compute[2] > grep [uU]nix file (try yourself)
```

Regular Expression Wildcards

- A dot matches any single character
 a.b matches axb, a\$b, abb, a.b
 but does not match ab, axxb, a\$bccb
- * matches zero or more occurrences of the previous single character pattern a*b matches b, ab, aab, aaab, aaaab, ... but doesn't match axb
- What does the following match?

Regular Expression Wildcards

- + matches one or more occurrences of the previous single character pattern
 a\+b matches ab, aab, aaab, aaaab, ...
- ♦ ? matches zero or one occurrence of the previous single character pattern
 a\?b matches b and ab
- + and ? have to be escaped with \ to have the special meaning
- ◆ Use \(r\) with *, \+, and \? if r is not just a single character

Character Sets and Ranges

- Matching a set or range of characters is done with [...]
 - -[wxyz] match any of w, x, y, z[u-z] match a character in range u z
- ◆ Combine this with * to match repeated sets
 - Example: [aeiou]* match any number of yowels
- ◆ Wildcards lose their specialness inside [...]
 - If the first character inside the [...] is], it loses its specialness as well
 - Example: '[])}]' matches any of those closing brackets

Match Parts of a Line

Match beginning of line with ^ (caret)

^TITLE

- matches any line containing TITLE at the beginning
- ^ is only special if it is at the beginning of a regular expression
- Match the end of a line with a \$ (dollar sign)
 FINI\$
 - matches any line ending in the phrase FINI
 - \$ is only special at the end of a regular expression
 - Don't use \$ and double quotes (problems with shell)
- ♦ What does the following match? ^WHOLE\$

Matching Parts of Words

- Regular expressions have a concept of a "word" which is a little different than an English word.
 - A word is a pattern containing only letters, digits, and underscores (_)
- Match beginning of a word with
 - \< Fo matches Fo if it appears at the beginning of a word</p>
- Match the end of a word with
 - ox\> matches ox if it appears at the end of a word
- ♦ Whole words can be matched too: √<Fox

More Regular Expressions

- Matching the complement of a set by using the ^

 - [^aeiou] matches any non-vowel ^[^a-z]*\$ matches any line containing no lower case letters
- Regular expression escapes
 - Use the \ (backslash) to "escape" the special meaning of wildcards
 - CA*Net
 - This is a full sentence\.
 - *array\[3]
 - *C:\\DOS => C:\DOS.
 - eg. [awsd-].

Regular Expressions Recall

- A way to refer to the most recent match
- To remember portions of regular expressions
 - Surround them with \(...\)
 - Recall the remembered portion with \n where n is 1-9
 - **★Example:** '\(\(\frac{1}{a-z}\)\(\frac{1}{a}\)\(\frac{1}{a}\)
 - matches lines beginning with a pair of duplicate (identical) letters
 - **★Example:** '\(\(\begin{align*}(a-z)[a-z]*\\).*\1.*\1.
 - matches lines containing at least three copies of something which consists of lower case letters

Matching Specific Numbers of Repeats

- X\{m,n\} matches m -- n repeats of the one character regular expression X
 - E.g. [a-z]\{2,10\} matches all sequences of 2 to 10 lower case letters
- ♦ X\{m\} matches exactly m repeats of the one character regular expression X
 - E.g. #\{23\} matches 23 #s
- X\{m,\} matches at least m repeats of the one character regular expression X
 - E.g. ^[aeiou]\{2,\} matches at least 2 vowels in a row at the beginning of a line
- ♦ []\{1,\} matches more than 0 characters

Regular Expression Examples (1)

- How many words in /usr/share/dict/words end in ing?
 - grep -c 'ing\$' /usr/share/dict/words

The -c option says to count the number of matches

- ◆ How many words in /usr/share/dict/words start with un and end with g? 全新り
 - grep -c '^un .* g\$' /usr/share/dict/words
- How many words in /usr/share/dict/words begin with a vowel?
 - grep -ic '^[aeiou]' /usr/share/dict/words

The -i option says to ignore case distinction

Regular Expression Examples (2)

- How many words in /usr/share/dict/words have triple letters in them?
- ♦ How many words in /usr/share/dict/words start and end with the same 3 letters?
- How many words in /usr/share/dict/words contain runs of 4 consonants?

Regular Expression Examples (3)

- What are the 5 letter palindromes present in /usr/share/dict/words?
 - grep -ic '^\(.\)\(.\)\2\1\$' /usr/share/dict/words
- How many words in /usr/share/dict/words have y as their only vowel
 - grep '^[^aAeEiloOuU]*\$' /usr/share/dict/words | grep -ci 'y'
 - How many words in /usr/share/dict/words do not start and end with the same 3 letters?
 - grep -iMc '^\(...\).*\1\$' /usr/share/dict/words

The -v option says to select non-matching lines

Extended Regular Expressions (1)

- ◆ Used by some utilities like egrep or grep -E support an extended set of matching mechanisms.
 - Called extended or full regular expressions.
 - Less use of escape character \, but no recall
- + matches one or more occurrences of the previous single character pattern.
 - a+b matches ab, aab, ... but not b (unlike *)
- ? matches zero or one occurrence(s) of the previous single character pattern.
 - a?b matches b, ab
- + and ? do not need \ to have the special meaning in extended regular expression.

Extended Regular Expressions (2)

- ◆ r1|r2 matches regular expression r1 or r2
 (| acts like a logical "ô" operator).
 - red|blue will match either red or blue
 - Unix UNIX will match either Unix or UNIX

- ♦ (r) allows the *, +, or ? matches to apply to the entire regular expression r, and not just a single character.
 - (ab)+ requires at least one repetition of ab

Extended Regular Expressions (3)

- ♦ '\(r1\).*\1' or '(r1).*\1' (recall) is not working for extended regular expression.
 - '[^aeiou]\{4\}' is replaced by '[^aeiou]{4}'
 - '(r1){4}' can be used
- character classes are predefined.
 - -[:lower:] for a-z
 - [:upper:] for A-Z
 - [:alpha:] for A-Za-z
 - -[:digit:] for 0-9
 - [:alnum:] for A-Za-z0-9