A Fully Bayesian Model for RNA-seq Data

Will Landau

Department of Statistics Iowa State University

June 6, 2013

Landau i

Contents

1	The Model	1
2	Full Conditional Distributions	3
\mathbf{A}	Derivations of the Full Conditionals	4
	A.1 $p(c_n \mid \cdots)$: Metropolis	5
	A.2 $p\left(\frac{1}{\sigma_c^2} \mid \cdots\right)$ Truncated Gamma	6
	A.3 $p(\varepsilon_{g,n} \mid \cdots)$: Metropolis	6
	A.4 $p\left(\frac{1}{\sigma_a^2}\mid\cdots\right)$ Gamma	7
	A.5 $p(d \mid \cdots)$: Metropolis	8
	A.6 $p(\tau^2 \mid \cdots)$: Gamma	8
	A.7 $p(\phi_g \mid \cdots)$: Metropolis	9
	A.7 $p(\phi_g \mid \cdots)$: Metropolis	9
	A.9 $p\left(\frac{1}{\sigma_{\phi}^2} \mid \ldots\right)$: Truncated Gamma	10
	A.10 $p(\alpha_q^{(q)} \cdots)$: Metropolis	11
	A.11 $p(\theta_{\alpha} \mid \cdots)$: Normal	11
	A.12 $p(\frac{1}{\sigma} \mid \cdots)$: Truncated Gamma	11
	A.12 $p(\frac{1}{\sigma_{\alpha}} \mid \cdots)$: Truncated Gamma	12
	A.14 $p(\delta_g \mid \cdots)$: Metropolis	12
	A.15 $p(\theta_{\delta} \mid \cdots)$: Normal	13
	A.16 $p(\frac{1}{\sigma_s} \mid \cdots)$: Truncated Gamma	13
	A.17 $p(\pi_{\delta} \mid \cdots)$: Beta	14

1 The Model

Let $y_{g,n}$ be the expression level of gene g (g = 1, ..., G) in library n (n = 1, ..., N). Let $\mu(n, \phi_q, \alpha_q, \delta_q)$ be the function given by:

$$\mu(n,\phi_g,\alpha_g,\delta_g) = \begin{cases} \phi_g - \alpha_g & \text{ library } n \text{ is in treatment group 1} \\ \phi_g + \delta_g & \text{ library } n \text{ is in treatment group 2} \\ \phi_g + \alpha_g & \text{ library } n \text{ is in treatment group 3} \end{cases}$$

Then:

$$y_{g,n} \sim \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

$$c_n \sim \text{N}(0, \sigma_c^2)$$

$$\sigma_c \sim \text{U}(0, \sigma_{c0})$$

$$\varepsilon_{g,n} \sim \text{N}(0, \sigma_g^2)$$

$$\sigma_g^2 \sim \text{Inv-Gamma}\left(\text{shape} = \frac{d}{2}, \text{ rate} = \frac{d \cdot \tau^2}{2}\right)$$

$$d \sim \text{U}(0, d_0)$$

$$\tau^2 \sim \text{Gamma}(\tau^2 \mid \text{shape} = a_\tau, \text{rate} = b_\tau)$$

$$\phi_g \sim \text{N}(\theta_\phi, \sigma_\phi^2)$$

$$\theta_\phi \sim \text{N}(0, \gamma_\phi^2)$$

$$\sigma_\phi \sim \text{U}(0, \sigma_{\phi 0})$$

$$\alpha_g \sim \pi_\alpha^{1-I(\alpha_g)}[(1 - \pi_\alpha)\text{N}(\theta_\alpha, \sigma_\alpha^2)]^{I(\alpha_g)}$$

$$\theta_\alpha \sim \text{N}(0, \gamma_\alpha^2)$$

$$\sigma_\alpha \sim \text{U}(0, \sigma_{\alpha 0})$$

$$\pi_\alpha \sim \text{Beta}(a_\alpha, b_\alpha)$$

$$\delta_g \sim \pi_\delta^{1-I(\delta_g)}[(1 - \pi_\delta)\text{N}(\theta_\delta, \sigma_\delta^2)]^{I(\delta_g)}$$

$$\theta_\delta \sim \text{N}(0, \gamma_\delta^2)$$

$$\sigma_\delta \sim \text{U}(0, \sigma_{\delta 0})$$

$$\pi_\delta \sim \text{Beta}(a_\delta, b_\delta)$$

where:

- I(x) = 0 if x = 0 and 1 otherwise.
- Independence is implied unless otherwise specified.
- The parameters to the left of the " \sim " are implicitly conditioned on the parameters to the right.

2 Full Conditional Distributions

$$\begin{split} &p(c_n \mid \cdots) \propto \exp\left(\sum_{g=1}^G \left|y_{g,n} \log \lambda_{g,n} - \lambda_{g,n}\right| - \frac{c_n^2}{2\sigma_c^2}\right) \\ &p\left(\frac{1}{\sigma_c^2} \mid \cdots\right) = \operatorname{Gamma}\left(\frac{1}{\sigma_c^2} \mid \operatorname{shape} = \frac{N-1}{2}, \ \operatorname{rate} = \frac{1}{2} \sum_{n=1}^N c_n^2\right) I\left(\frac{1}{\sigma_c^2} > \frac{1}{\sigma_{c0}^2}\right) \\ &p(\varepsilon_{g,n} \mid \cdots) \propto \exp\left(y_{g,n} \log \lambda_{g,n} - \lambda_{g,n} - \frac{\varepsilon_{g,n}^2}{2\sigma_g^2}\right) \\ &p\left(\frac{1}{\sigma_g^2} \mid \cdots\right) = \operatorname{Gamma}\left(\frac{1}{\sigma_g^2} \mid \operatorname{shape} = \frac{N+d}{2}, \ \operatorname{rate} = \frac{1}{2} \left(d \cdot \tau^2 + \sum_{n=1}^N \varepsilon_{g,n}^2\right)\right) \\ &p(d \mid \cdots) \propto \Gamma\left(d/2\right)^{-G} \left(\frac{d \cdot \tau^2}{2}\right)^{Gd/2} \left(\prod_{g=1}^G \sigma_g^2\right)^{-(d/2+1)} \exp\left(-\frac{d \cdot \tau^2}{2} \sum_{g=1}^G \frac{1}{\sigma_g^2}\right) I(0 < d < d_0) \\ &p(\tau^2 \mid \cdots) = \operatorname{Gamma}\left(\tau^2 \mid \operatorname{shape} = a_\tau + \frac{Gd}{2}, \ \operatorname{rate} = b_\tau + \frac{d}{2} \sum_{g=1}^G \frac{1}{\sigma_g^2}\right) \\ &p(\phi_g \mid \cdots) \propto \exp\left(\sum_{n=1}^N \left|y_{g,n} \log \lambda_{g,n} - \lambda_{g,n}\right| - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2}\right) \\ &p(\theta_\phi \mid \cdots) = N\left(\frac{\gamma_\phi^2 \sum_{g=1}^G \phi_g}{G\gamma_\phi^2 + \sigma_\phi^2}, \frac{\gamma_\phi^2 \sigma_\phi^2}{G\gamma_\phi^2 + \sigma_\phi^2}\right) \\ &p\left(\frac{1}{\sigma_\phi^2} \mid \cdots\right) = \operatorname{Gamma}\left(\operatorname{shape} = \frac{G-1}{2}, \ \operatorname{rate} = \frac{1}{2} \sum_{g=1}^G (\phi_g - \theta_\phi)^2\right) \Gamma\left(\frac{1}{\sigma_\phi^2} > \frac{1}{\sigma_\phi^2}\right) \\ &p(\theta_\alpha \mid \cdots) \propto \exp\left(\sum_{k(n)\neq 2} \left|y_{g,n} \log \lambda_{g,n} - \lambda_{g,n}\right| - I(\alpha_g \neq 0) \frac{(\alpha_g - \theta_\alpha)^2}{2\sigma_\alpha^2}\right) \\ &p(\theta_\alpha \mid \cdots) = N\left(\frac{\gamma_\alpha^2 \sum_{\alpha_g \neq 0} \alpha_g}{G\alpha\gamma_\alpha^2 + \sigma_\alpha^2}, \frac{\gamma_\alpha^2 \sigma_\alpha^2}{G\alpha\gamma_\alpha^2 + \sigma_\alpha^2}\right) \\ &p(\theta_\alpha \mid \cdots) = \operatorname{Beta}(G - G_\alpha + \alpha_\tau, G_\alpha + b_\tau) \\ &p(\theta_\beta \mid \cdots) \simeq \exp\left(\sum_{k(n)=2} \left|y_{g,n} \log \lambda_{g,n} - \lambda_{g,n}\right| - I(\delta_g \neq 0) \frac{(\delta_g - \theta_\delta)^2}{2\sigma_\delta^2}\right) \\ &p(\theta_\delta \mid \cdots) = N\left(\frac{\gamma_\alpha^2 \sum_{\alpha_g \neq 0} \delta_g}{G\delta\gamma_\delta^2 + \sigma_\delta^2}, \frac{\gamma_\alpha^2 \sigma_\alpha^2}{G\delta\gamma_\delta^2 + \sigma_\delta^2}\right) \\ &p(\theta_\delta \mid \cdots) \simeq \exp\left(\sum_{k(n)=2} \left|y_{g,n} \log \lambda_{g,n} - \lambda_{g,n}\right| - I(\delta_g \neq 0) \frac{(\delta_g - \theta_\delta)^2}{2\sigma_\delta^2}\right) \\ &p(\theta_\delta \mid \cdots) \simeq \operatorname{Ret}(G - G_\alpha + \alpha_\tau, G_\alpha + b_\tau) \\ &p(\theta_\delta \mid \cdots) \simeq \operatorname{Beta}(G - G_\delta + \delta_\tau, G_\delta + b_\tau) \\ &p(\theta_\delta \mid \cdots) = \operatorname{Beta}(G - G_\delta + \delta_\tau, G_\delta + b_\tau) \\ &p(\theta_\delta \mid \cdots) = \operatorname{Beta}(G - G_\delta + \delta_\tau, G_\delta + b_\tau) \end{aligned}$$

A Derivations of the Full Conditionals

Let k(n) be the treatment group of library n. Then from the model in Section 1, we get:

$$\begin{split} p(c_n \mid \cdots) &= \left[\prod_{g=1}^G \operatorname{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \right] \cdot \operatorname{N}(c_n \mid 0,\sigma_c^2) \\ p\left(\sigma_c \mid \cdots\right) &= \left[\prod_{n=1}^N \operatorname{N}(c_n \mid 0,\sigma_c^2) \right] \cdot \operatorname{U}(\sigma_c \mid 0,\sigma_{c0}) \\ p\left(\varepsilon_{g,n} \mid \cdots\right) &= \operatorname{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \cdot \operatorname{N}(\varepsilon_{g,n} \mid 0,\sigma_g^2) \\ p\left(\sigma_g^2 \mid \cdots\right) &= \left[\prod_{n=1}^N \operatorname{N}(\varepsilon_{g,n} \mid 0,\sigma_g^2) \right] \cdot \operatorname{Inv-Gamma}\left(\sigma_g^2 \mid \operatorname{shape} = \frac{d}{2}, \operatorname{rate} = \frac{d \cdot \tau^2}{2} \right) \\ p(d \mid \cdots) &= \left[\prod_{g=1}^G \operatorname{Inv-Gamma}\left(\sigma_g^2 \mid \operatorname{shape} = \frac{d}{2}, \operatorname{rate} = \frac{d \cdot \tau^2}{2} \right) \right] \cdot \operatorname{U}(d \mid 0,d_0) \\ p\left(\tau^2 \mid \cdots\right) &= \left[\prod_{g=1}^G \operatorname{Inv-Gamma}\left(\sigma_g^2 \mid \operatorname{shape} = \frac{d}{2}, \operatorname{rate} = \frac{d \cdot \tau^2}{2} \right) \right] \cdot \operatorname{Gamma}(\tau^2 \mid \operatorname{shape} = a_\tau, \operatorname{rate} = b_\tau) \\ p\left(\phi_g \mid \cdots\right) &= \left[\prod_{n=1}^N \operatorname{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \right] \cdot \operatorname{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2) \\ p\left(\theta_\phi \mid \cdots\right) &= \left[\prod_{g=1}^G \operatorname{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2) \right] \cdot \operatorname{N}(\theta_\phi \mid 0, \gamma_\phi^2) \\ p\left(\sigma_\phi \mid \cdots\right) &= \left[\prod_{g=1}^G \operatorname{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2) \right] \cdot \operatorname{U}(\sigma_\phi \mid 0, \sigma_{\phi 0}) \end{split}$$

$$\begin{split} p(\alpha_g \mid \cdots) &= \left[\prod_{k(n) \neq 2} \operatorname{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \right] \pi_{\alpha}^{1-I(\alpha_g)} [(1-\pi_{\alpha}) \mathcal{N}(\alpha_g \mid \theta_{\alpha},\sigma_{\alpha}^2)]^{I(\alpha_g)} \\ p(\theta_{\alpha} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\alpha}^{1-I(\alpha_g)} [(1-\pi_{\alpha}) \mathcal{N}(\alpha_g \mid \theta_{\alpha},\sigma_{\alpha}^2)]^{I(\alpha_g)} \right] \cdot \mathcal{N}(\theta_{\alpha} \mid 0,\gamma_{\alpha}^2) \\ p(\sigma_{\alpha} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\alpha}^{1-I(\alpha_g)} [(1-\pi_{\alpha}) \mathcal{N}(\alpha_g \mid \theta_{\alpha},\sigma_{\alpha}^2)]^{I(\alpha_g)} \right] \cdot \mathcal{U}(\sigma_{\alpha} \mid 0,\sigma_{\alpha 0}) \\ p(\pi_{\alpha} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\alpha}^{1-I(\alpha_g)} [(1-\pi_{\alpha}) \mathcal{N}(\alpha_g \mid \theta_{\alpha},\sigma_{\alpha}^2)]^{I(\alpha_g)} \right] \cdot \operatorname{Beta}(\pi_{\alpha} \mid a_{\alpha},b_{\alpha}) \\ p(\delta_g \mid \cdots) &= \left[\prod_{g=1}^G \operatorname{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\delta_g,\delta_g))) \right] \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \\ p(\theta_{\delta} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \mathcal{N}(\theta_{\delta} \mid 0,\gamma_{\delta}^2) \\ p(\sigma_{\delta} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \mathcal{U}(\sigma_{\delta} \mid 0,\sigma_{\delta 0}) \\ p(\pi_{\delta} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \mathcal{U}(\sigma_{\delta} \mid 0,\sigma_{\delta 0}) \\ p(\pi_{\delta} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \mathcal{U}(\sigma_{\delta} \mid 0,\sigma_{\delta 0}) \\ p(\pi_{\delta} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \mathcal{U}(\sigma_{\delta} \mid 0,\sigma_{\delta 0}) \\ p(\pi_{\delta} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \mathcal{U}(\sigma_{\delta} \mid 0,\sigma_{\delta 0}) \\ p(\pi_{\delta} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \mathcal{U}(\sigma_{\delta} \mid 0,\sigma_{\delta 0}) \\ p(\pi_{\delta} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \mathcal{U}(\sigma_{\delta} \mid 0,\sigma_{\delta 0}) \\ p(\pi_{\delta} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \mathcal{U}(\sigma_{\delta} \mid 0,\sigma_{\delta 0}) \\ p(\pi_{\delta} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \mathcal{U}(\sigma_{\delta} \mid 0,\sigma_{\delta 0}) \\ p(\pi_{\delta} \mid \cdots) &= \left[\prod_{g=1}^G \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) \mathcal{N}(\delta_g \mid \theta_{\delta},\sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \mathcal{U}(\sigma_{\delta} \mid 0,\sigma$$

A.1 $p(c_n \mid \cdots)$: Metropolis

$$p(c_n \mid \cdots) = \left[\prod_{g=1}^G \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g))) \right] \cdot \mathcal{N}(c_n \mid 0, \sigma_c^2)$$

which is nothing immediately recognizable. I will sample from this distribution in a Metropolis step using the kernel of this distribution (taking $\lambda_{g,n} = \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))$):

$$\left[\prod_{g=1}^{G} \lambda_{g,n}^{y_{g,n}} \exp(-\lambda_{g,n})\right] \exp\left(-\frac{c_n^2}{2\sigma_c^2}\right)$$
$$= \exp\left(\sum_{g=1}^{G} \left[y_{g,n} \log \lambda_{g,n} - \lambda_{g,n}\right] - \frac{c_n^2}{2\sigma_c^2}\right)$$

where the sum inside the exponent can be parallelized on the GPU.

A.2 $p\left(\frac{1}{\sigma_c^2} \mid \cdots \right)$ Truncated Gamma

$$p(\sigma_c \mid \cdots) = \left[\prod_{n=1}^N N(c_n \mid 0, \sigma_c^2) \right] \cdot U(\sigma_c \mid 0, \sigma_{c0})$$

$$\propto \prod_{n=1}^N \frac{1}{\sqrt{\sigma_c^2}} \exp\left(-\frac{c_n^2}{2\sigma_c^2}\right) \cdot I(0 < \sigma_c < \sigma_{c0})$$

$$= (\sigma_c^2)^{-N/2} \exp\left(-\frac{1}{\sigma_c^2} \frac{1}{2} \sum_{n=1}^N c_n^2\right) \cdot I(0 < \sigma_c < \sigma_{c0})$$

which, for constants a and $b = \frac{1}{2} \sum_{n=1}^{N} c_n^2$, can be written as

$$p(\sigma_c \mid \cdots) = a \cdot (\sigma_c^2)^{-N/2} \exp\left(-\frac{1}{\sigma_c^2}b\right) I(0 < \sigma_c^2 < \sigma_{c0}^2)$$

Transformation: let $z = g(\sigma_c) = \sigma_c^2$ so that $g^{-1}(z) = \sqrt{z}$ and:

$$\begin{split} p\left(\sigma_{c}^{2} = z \mid \cdots\right) &= p(\sigma_{c} = g^{-1}(z) \mid \cdots) \left| \frac{dg^{-1}(z)}{dz} \right| \\ &= a \cdot z^{-N/2} \exp\left(-\frac{1}{(\sqrt{z})^{2}}b\right) I\left(0 < z < \sigma_{c0}^{2}\right) \left| -\frac{1}{2}z^{-1/2} \right| \\ &= \frac{a}{2}z^{-(N/2-1/2+1)} \exp\left(-\frac{1}{z}b\right) I\left(0 < z < \sigma_{c0}^{2}\right) \\ &= \text{Inv-Gamma}\left(z \mid \text{shape} = \frac{N-1}{2}, \text{ rate} = b\right) I\left(0 < z < \sigma_{c0}^{2}\right) \end{split}$$

Recalling that $b = \frac{1}{2} \sum_{n=1}^{N} c_n^2$

$$p\left(\frac{1}{\sigma_c^2}\mid\cdots\right) = \operatorname{Gamma}\left(\frac{1}{\sigma_c^2}\mid\operatorname{shape} = \frac{N-1}{2}, \ \operatorname{rate} = \frac{1}{2}\sum_{n=1}^N c_n^2\right)I\left(\frac{1}{\sigma_c^2} > \frac{1}{\sigma_{c0}^2}\right)$$

A.3
$$p(\varepsilon_{g,n} \mid \cdots)$$
: Metropolis

$$p(\varepsilon_{g,n} \mid \cdots) = \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \cdot \mathcal{N}(\varepsilon_{g,n} \mid 0,\sigma_g^2)$$

which is nothing immediately recognizable. I will sample from this distribution in a Metropolis step using the kernel:

$$\lambda_{g,n}^{y_{g,n}} \exp(-\lambda_{g,n}) \exp\left(-\frac{\varepsilon_{g,n}^2}{2\sigma_g^2}\right)$$
$$= \exp\left(y_{g,n} \log \lambda_{g,n} - \lambda_{g,n} - \frac{\varepsilon_{g,n}^2}{2\sigma_g^2}\right)$$

where $\lambda_{g,n} = \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))$. The $\varepsilon_{g,n}$'s will be sampled in parallel across genes on the GPU.

A.4
$$p\left(\frac{1}{\sigma_g^2} \mid \cdots\right)$$
 Gamma

$$\begin{split} p(\sigma_g^2 \mid \cdots) &= \left[\prod_{n=1}^N \mathrm{N}(\varepsilon_{g,n} \mid 0, \sigma_g^2) \right] \cdot \mathrm{Inv\text{-}Gamma} \left(\sigma_g^2 \mid \mathrm{shape} = \frac{d}{2}, \mathrm{rate} = \frac{d \cdot \tau^2}{2} \right) \\ &\propto \left[\prod_{n=1}^N (\sigma_g^2)^{-1/2} \exp\left(-\frac{1}{\sigma_g^2} \frac{\varepsilon_{g,n}^2}{2} \right) \right] \cdot \left(\sigma_g^2 \right)^{-(d/2+1)} \exp\left(-\frac{1}{\sigma_g^2} \frac{d \cdot \tau^2}{2} \right) \\ &= \left[(\sigma_g^2)^{-N/2} \exp\left(-\frac{1}{\sigma_g^2} \frac{1}{2} \sum_{n=1}^N \varepsilon_{g,n}^2 \right) \right] \cdot \left(\sigma_g^2 \right)^{-(d/2+1)} \exp\left(-\frac{1}{\sigma_g^2} \frac{d \cdot \tau^2}{2} \right) \\ &= (\sigma_g^2)^{-((N+d)/2+1)} \exp\left(-\frac{1}{\sigma_g^2} \frac{1}{2} \left(d \cdot \tau^2 + \sum_{n=1}^N \varepsilon_{g,n}^2 \right) \right) \end{split}$$

The last line is the kernel of an inverse gamma distribution with shape parameter $\frac{N+d}{2}$ and rate parameter $\frac{1}{2}\left(d\cdot\tau^2+\sum_{n=1}^N\varepsilon_{g,n}^2\right)$. Hence:

$$p\left(\frac{1}{\sigma_g^2} \mid \cdots\right) = \operatorname{Gamma}\left(\frac{1}{\sigma_g^2} \mid \operatorname{shape} = \frac{N+d}{2}, \text{ rate} = \frac{1}{2}\left(d \cdot \tau^2 + \sum_{n=1}^N \varepsilon_{g,n}^2\right)\right)$$

The $1/\sigma_q^2$'s will be sampled in parallel on the GPU.

A.5 $p(d \mid \cdots)$: Metropolis

$$p(d \mid \cdots) = \left[\prod_{g=1}^{G} \text{Inv-Gamma} \left(\sigma_g^2 \mid \text{shape} = \frac{d}{2}, \text{rate} = \frac{d \cdot \tau^2}{2} \right) \right] \cdot \text{U}(d \mid 0, d_0)$$

$$\propto \prod_{g=1}^{G} \Gamma \left(d/2 \right)^{-1} \left(\frac{d \cdot \tau^2}{2} \right)^{d/2} \left(\sigma_g^2 \right)^{-(d/2+1)} \exp \left(-\frac{1}{\sigma_g^2} \frac{d \cdot \tau^2}{2} \right) I(0 < d < d_0)$$

$$\propto \Gamma \left(d/2 \right)^{-G} \left(\frac{d \cdot \tau^2}{2} \right)^{Gd/2} \left(\prod_{g=1}^{G} \sigma_g^2 \right)^{-(d/2+1)} \exp \left(-\frac{d \cdot \tau^2}{2} \sum_{g=1}^{G} \frac{1}{\sigma_g^2} \right) I(0 < d < d_0)$$

I will sample d with a Metropolis step using the above kernel. Sums and products over g (g = 1, ..., G) will be done in parallel on the GPU.

A.6 $p(\tau^2 \mid \cdots)$: Gamma

$$\begin{split} p(\tau^2 \mid \cdots) &= \left[\prod_{g=1}^G \text{Inv-Gamma} \left(\sigma_g^2 \mid \text{shape} = \frac{d}{2}, \text{rate} = \frac{d \cdot \tau^2}{2} \right) \right] \cdot \text{Gamma}(\tau^2 \mid \text{shape} = a_\tau, \text{rate} = b_\tau) \\ &\propto \left[\Gamma \left(d/2 \right)^{-G} \left(\frac{d \cdot \tau^2}{2} \right)^{Gd/2} \left(\prod_{g=1}^G \sigma_g^2 \right)^{-(d/2+1)} \exp \left(-\frac{d \cdot \tau^2}{2} \sum_{g=1}^G \frac{1}{\sigma_g^2} \right) \right] \cdot (\tau^2)^{a_\tau - 1} \exp \left(-b_\tau \tau^2 \right) \\ &\propto \left[\left(\tau^2 \right)^{Gd/2} \exp \left(-\tau^2 \cdot \frac{d}{2} \sum_{g=1}^G \frac{1}{\sigma_g^2} \right) \right] \cdot (\tau^2)^{a_\tau - 1} \exp \left(-b_\tau \tau^2 \right) \\ &= (\tau^2)^{Gd/2 + a_\tau - 1} \exp \left(-\tau^2 \left(b_\tau + \frac{d}{2} \sum_{g=1}^G \frac{1}{\sigma_g^2} \right) \right) \end{split}$$

Hence:

$$p(\tau^2 \mid \cdots) = \text{Gamma}\left(\tau^2 \mid \text{shape} = a_\tau + \frac{Gd}{2}, \text{ rate} = b_\tau + \frac{d}{2} \sum_{g=1}^G \frac{1}{\sigma_g^2}\right)$$

A.7 $p(\phi_g \mid \cdots)$: Metropolis

$$p(\phi_g \mid \cdots) = \left[\prod_{n=1}^N \text{Poisson}(y_{g,n} \mid \lambda_{g,n}) \right] \cdot \mathcal{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2)$$

$$\propto \left[\prod_{n=1}^N \lambda_{g,n}^{y_{g,n}} \exp(-\lambda_{g,n}) \right] \cdot \exp\left(-\frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2} \right)$$

$$\exp\left(\sum_{n=1}^N \left[y_{g,n} \log \lambda_{g,n} - \lambda_{g,n} \right] - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2} \right)$$

where $\lambda_{g,n} = \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))$. I will sample the ϕ_g 's in parallel using Metropolis steps.

A.8 $p(\theta_{\phi} \mid \cdots)$: Normal

$$p(\theta_{\phi} \mid \cdots) = \left[\prod_{g=1}^{G} \mathcal{N}(\phi_{g} \mid \theta_{\phi}, \sigma_{\phi}^{2}) \right] \cdot \mathcal{N}(\theta_{\phi} \mid 0, \gamma_{\phi}^{2})$$

$$\propto \left[\prod_{g=1}^{G} \exp\left(-\frac{(\phi_{g} - \theta_{\phi})^{2}}{2\sigma_{\phi}^{2}}\right) \right] \exp\left(-\frac{\theta_{\phi}^{2}}{2\gamma_{\phi}^{2}}\right)$$

$$= \exp\left(-\sum_{g=1}^{G} \frac{(\phi_{g} - \theta_{\phi})^{2}}{2\sigma_{\phi}^{2}}\right) \exp\left(-\frac{\theta_{\phi}^{2}}{2\gamma_{\phi}^{2}}\right)$$

$$= \exp\left(-\frac{\sum_{g=1}^{G} \phi_{g}^{2} - 2\theta_{\phi} \sum_{g=1}^{G} \phi_{g} + G\theta_{\phi}^{2}}{2\sigma_{\phi}^{2}}\right) \exp\left(-\frac{\theta_{\phi}^{2}}{2\gamma_{\phi}^{2}}\right)$$

$$= \exp\left(-\frac{\sum_{g=1}^{G} \phi_{g}^{2} - 2\theta_{\phi} \sum_{g=1}^{G} \phi_{g} + G\theta_{\phi}^{2}}{2\sigma_{\phi}^{2}} - \frac{\theta_{\phi}^{2}}{2\gamma_{\phi}^{2}}\right)$$

$$= \exp\left(-\frac{\gamma_{\phi}^{2} \sum_{g=1}^{G} \phi_{g}^{2} - 2\gamma_{\phi}^{2} (\sum_{g=1}^{G} \phi_{g})\theta_{\phi} + G\gamma_{\phi}^{2}\theta_{\phi}^{2}}{2\sigma_{\phi}^{2}\gamma_{\phi}^{2}}\right)$$

$$= \exp\left(-\frac{\gamma_{\phi}^{2} \sum_{g=1}^{G} \phi_{g}^{2} - 2\gamma_{\phi}^{2} (\sum_{g=1}^{G} \phi_{g})\theta_{\phi} + (G\gamma_{\phi}^{2} + \sigma_{\phi}^{2})\theta_{\phi}^{2}}{2\sigma_{\phi}^{2}\gamma_{\phi}^{2}}\right)$$

$$\propto \exp\left(-\frac{(G\gamma_{\phi}^{2} + \sigma_{\phi}^{2}) \left(\theta_{\phi} - \frac{\gamma_{\phi}^{2} (\sum_{g=1}^{G} \phi_{g})}{G\gamma_{\phi}^{2} + \sigma_{\phi}^{2}}\right)^{2}}{2\sigma_{\phi}^{2}\gamma_{\phi}^{2}}\right)$$

Hence:

$$p(\theta_{\phi} \mid \cdots) = N\left(\frac{\gamma_{\phi}^2 \sum_{g=1}^G \phi_g}{G \gamma_{\phi}^2 + \sigma_{\phi}^2}, \frac{\gamma_{\phi}^2 \sigma_{\phi}^2}{G \gamma_{\phi}^2 + \sigma_{\phi}^2}\right)$$

A.9 $p\left(\frac{1}{\sigma_{\phi}^2} \mid \ldots\right)$: Truncated Gamma

$$\begin{split} p(\sigma_{\phi} \mid \cdots) &= \left[\prod_{g=1}^{G} \mathcal{N}(\phi_{g} \mid \theta_{\phi}, \sigma_{\phi}^{2}) \right] \cdot \mathcal{U}(\sigma_{\phi} \mid 0, \sigma_{\phi 0}) \\ &\propto \prod_{g=1}^{G} (\sigma_{\phi}^{2})^{-1/2} \exp \left(-\frac{(\phi_{g} - \theta_{\phi})^{2}}{2\sigma_{\phi}^{2}} \right) \mathcal{I}(0 < \sigma_{\phi}^{2} < \sigma_{\phi 0}^{2}) \\ &= (\sigma_{\phi}^{2})^{-G/2} \exp \left(-\sum_{g=1}^{G} \frac{(\phi_{g} - \theta_{\phi})^{2}}{2\sigma_{\phi}^{2}} \right) \mathcal{I}(0 < \sigma_{\phi}^{2} < \sigma_{\phi 0}^{2}) \\ &= (\sigma_{\phi}^{2})^{-G/2} \exp \left(-\frac{1}{\sigma_{\phi}^{2}} \frac{1}{2} \sum_{g=1}^{G} (\phi_{g} - \theta_{\phi})^{2} \right) \mathcal{I}(0 < \sigma_{\phi}^{2} < \sigma_{\phi 0}^{2}) \end{split}$$

Transformation: let $z=g(\sigma_\phi)=\sigma_\phi^2$ so that $g^{-1}(z)=\sqrt{z}$. Then for some proportionality constant, a:

$$p(\sigma_{\phi}^{2} = z \mid \cdots) = p(\sigma_{\phi} = g^{-1}(z) \mid \cdots) \left| \frac{g^{-1}(z)}{dz} \right|$$

$$= p(\sigma_{\phi} = \sqrt{z} \mid \cdots) \left| \frac{1}{2} z^{-1/2} \right|$$

$$= a \cdot (z)^{-G/2} \exp\left(-\frac{1}{z} \frac{1}{2} \sum_{g=1}^{G} (\phi_{g} - \theta_{\phi})^{2} \right) I(0 < z < \sigma_{\phi 0}^{2}) z^{-1/2}$$

$$= \frac{a}{2} \cdot z^{-(G/2 - 1/2 + 1)} \exp\left(-\frac{1}{z} \frac{1}{2} \sum_{g=1}^{G} (\phi_{g} - \theta_{\phi})^{2} \right) I(0 < z < \sigma_{\phi 0}^{2})$$

which is a truncated inverse gamma distribution with shape parameter $\frac{G-1}{2}$ and rate parameter $\frac{1}{2}\sum_{g=1}^{G}(\phi_g-\theta_\phi)^2$. Thus:

$$p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) = \operatorname{Gamma}\left(\operatorname{shape} = \frac{G-1}{2}, \text{ rate} = \frac{1}{2}\sum_{g=1}^{G}(\phi_g - \theta_{\phi})^2\right) \operatorname{I}\left(\frac{1}{\sigma_{\phi}^2} > \frac{1}{\sigma_{\phi 0}^2}\right)$$

I will sample $1/\sigma_{\phi}^2$ using the inverse cdf method.

A.10 $p(\alpha_g \mid \cdots)$: Metropolis

$$p(\alpha_g \mid \cdots) = \left[\prod_{k(n) \neq 2} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g))) \right] \pi_{\alpha}^{1 - I(\alpha_g)} [(1 - \pi_{\alpha}) N(\theta_{\alpha}, \sigma_{\alpha}^2)]^{I(\alpha_g)}$$

$$\propto \left[\prod_{k(n) \neq 2} \lambda_{g,n}^{y_{g,n}} \exp(-\lambda_{g,n}) \right] \exp\left(-I(\alpha_g) \frac{(\alpha_g - \theta_{\alpha})^2}{2\sigma_{\alpha}^2} \right)$$

$$= \exp\left(\sum_{k(n) \neq 2} [y_{g,n} \log \lambda_{g,n} - \lambda_{g,n}] - I(\alpha_g) \frac{(\alpha_g - \theta_{\alpha})^2}{2\sigma_{\alpha}^2} \right)$$

A.11 $p(\theta_{\alpha} \mid \cdots)$: Normal

$$p(\theta_{\alpha} \mid \cdots) = \left[\prod_{g=1}^{G} \pi_{\alpha}^{1-I(\alpha_{g})} [(1-\pi_{\alpha}) N(\alpha_{g} \mid \theta_{\alpha}, \sigma_{\alpha}^{2})]^{I(\alpha_{g})} \right] \cdot N(\theta_{\alpha} \mid 0, \gamma_{\alpha}^{2})$$

$$\propto \left[\prod_{\alpha_{g} \neq 0} N(\alpha_{g} \mid \theta_{\alpha}, \sigma_{\alpha}^{2})] \right] \cdot N(\theta_{\alpha} \mid 0, \gamma_{\alpha}^{2})$$

From algebra similar to the derivation of $p(\theta_{\phi} \mid \cdots)$, we get:

$$p(\theta_{\alpha} \mid \cdots) = N \left(\frac{\gamma_{\alpha}^{2} \sum_{\alpha_{g} \neq 0} \alpha_{g}}{G_{\alpha} \gamma_{\alpha}^{2} + \sigma_{\alpha}^{2}}, \frac{\gamma_{\alpha}^{2} \sigma_{\alpha}^{2}}{G_{\alpha} \gamma_{\alpha}^{2} + \sigma_{\alpha}^{2}} \right)$$

where G_{α} is the number of genes for which $\alpha_g \neq 0$.

A.12 $p(\frac{1}{\sigma_{\alpha}} \mid \cdots)$: Truncated Gamma

$$p(\sigma_{\alpha} \mid \cdots) = \left[\prod_{g=1}^{G} \pi_{\alpha}^{1-I(\alpha_{g})} [(1-\pi_{\alpha})N(\alpha_{g} \mid \theta_{\alpha}, \sigma_{\alpha}^{2})]^{I(\alpha_{g})} \right] \cdot U(\sigma_{\alpha} \mid 0, \sigma_{\alpha 0})$$

$$\propto \prod_{\alpha_{g} \neq 0} N(\alpha_{g} \mid \theta_{\alpha}, \sigma_{\alpha}^{2}) \cdot I(0 < \sigma_{\alpha}^{2} < \sigma_{\alpha 0}^{2})$$

$$\propto \prod_{\alpha_{g} \neq 0} (\sigma_{\alpha}^{2})^{-1/2} \exp\left(-\frac{(\alpha_{g} - \theta_{\alpha})^{2}}{2\sigma_{\alpha}^{2}}\right) \cdot I(0 < \sigma_{\alpha}^{2} < \sigma_{\alpha 0}^{2})$$

$$= (\sigma_{\alpha}^{2})^{-G_{\alpha}/2} \exp\left(-\frac{1}{\theta_{\alpha}^{2}} \frac{1}{2} \sum_{\alpha_{g} \neq 0} (\alpha_{g} - \theta_{\alpha})^{2}\right) \cdot I(0 < \sigma_{\alpha}^{2} < \sigma_{\alpha 0}^{2})$$

where G_{α} is the number of genes for which $\alpha_g \neq 0$. Transformation: let $z = \sigma_{\alpha}^2 = g(\sigma_{\alpha})$ so that $g^{-1}(z) = \sqrt{z}$. Then:

$$p(\sigma_{\alpha}^{2} = z \mid \cdots) = p(\sigma_{\alpha} = \sqrt{z} \mid \cdots) \left| \frac{d}{dz} \sqrt{z} \right|_{z}$$

$$= (z)^{-G_{\alpha}/2} \exp\left(-\frac{1}{z} \frac{1}{2} \sum_{\alpha_{g} \neq 0} (\alpha_{g} - \theta_{\alpha})^{2}\right) \cdot I(0 < z < \sigma_{\alpha 0}^{2}) \left| -\frac{1}{2} z^{-1/2} \right|$$

$$= (z)^{-(G_{\alpha}/2 - 1/2 + 1)} \exp\left(-\frac{1}{z} \frac{1}{2} \sum_{\alpha_{g} \neq 0} (\alpha_{g} - \theta_{\alpha})^{2}\right) \cdot I(0 < z < \sigma_{\alpha 0}^{2})$$

which is the kernel of an Inverse-Gamma distribution. Hence:

$$p(\frac{1}{\sigma_{\alpha}^2} \mid \cdots) = \text{Gamma}\left(\frac{1}{\sigma_{\alpha}^2} \mid \text{shape} = \frac{G_{\alpha} - 1}{2}, \text{ rate} = \frac{1}{2} \sum_{\alpha_g \neq 0} (\alpha_g - \theta_{\alpha})^2\right)$$

A.13 $p(\pi_{\alpha} \mid \cdots)$: Beta

$$p(\pi_{\alpha} \mid \cdots) = \left[\prod_{g=1}^{G} \pi_{\alpha}^{1-I(\alpha_g)} [(1-\pi_{\alpha}) N(\alpha_g \mid \theta_{\alpha}, \sigma_{\alpha}^2)]^{I(\alpha_g)} \right] \cdot \text{Beta}(\pi_{\alpha} \mid a_{\alpha}, b_{\alpha})$$

$$\propto [\pi_{\alpha}^{G-G_{\alpha}} (1-\pi_{\alpha})^{G_{\alpha}}] \pi_{\alpha}^{a_{\tau}-1} (1-\pi_{\alpha})^{b_{\tau}-1}$$

$$= \pi_{\alpha}^{G-G_{\alpha}+a_{\tau}-1} (1-\pi_{\alpha})^{G_{\alpha}+b_{\tau}-1}$$

where G_{α} is the number of genes for which $\alpha_g \neq 0$. Hence:

$$p(\pi_{\alpha} \mid \cdots) = \text{Beta}(G - G_{\alpha} + \alpha_{\tau}, G_{\alpha} + b_{\tau})$$

A.14 $p(\delta_g \mid \cdots)$: Metropolis

$$p(\delta_g \mid \cdots) = \left[\prod_{k(n)=2} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \delta_g, \delta_g))) \right] \pi_{\delta}^{1-I(\delta_g)} [(1 - \pi_{\delta}) N(\theta_{\delta}, \sigma_{\delta}^2)]^{I(\delta_g)}$$

$$\propto \left[\prod_{k(n)=2} \lambda_{g,n}^{y_{g,n}} \exp(-\lambda_{g,n}) \right] \exp\left(-I(\delta_g) \frac{(\delta_g - \theta_{\delta})^2}{2\sigma_{\delta}^2}\right)$$

$$= \exp\left(\sum_{k(n)=2} [y_{g,n} \log \lambda_{g,n} - \lambda_{g,n}] - I(\delta_g) \frac{(\delta_g - \theta_{\delta})^2}{2\sigma_{\delta}^2} \right)$$

A.15 $p(\theta_{\delta} \mid \cdots)$: Normal

$$p(\theta_{\delta} \mid \cdots) = \left[\prod_{g=1}^{G} \pi_{\delta}^{1-I(\delta_{g})} [(1-\pi_{\delta}) N(\delta_{g} \mid \theta_{\delta}, \sigma_{\delta}^{2})]^{I(\delta_{g})} \right] \cdot N(\theta_{\delta} \mid 0, \gamma_{\delta}^{2})$$

$$\propto \left[\prod_{\delta_{g} \neq 0} N(\delta_{g} \mid \theta_{\delta}, \sigma_{\delta}^{2})] \right] \cdot N(\theta_{\delta} \mid 0, \gamma_{\delta}^{2})$$

From algebra similar to the derivation of $p(\theta_{\phi} \mid \cdots)$, we get:

$$p(\theta_{\delta} \mid \cdots) = N\left(\frac{\gamma_{\delta}^{2} \sum_{\delta_{g} \neq 0} \delta_{g}}{G_{\delta} \gamma_{\delta}^{2} + \sigma_{\delta}^{2}}, \frac{\gamma_{\delta}^{2} \sigma_{\delta}^{2}}{G_{\delta} \gamma_{\delta}^{2} + \sigma_{\delta}^{2}}\right)$$

where G_{δ} is the number of genes for which $\delta_q \neq 0$.

A.16 $p(\frac{1}{\sigma_{\delta}} \mid \cdots)$: Truncated Gamma

$$p(\sigma_{\delta} \mid \cdots) = \left[\prod_{g=1}^{G} \pi_{\delta}^{1-I(\delta_{g})} [(1-\pi_{\delta}) N(\delta_{g} \mid \theta_{\delta}, \sigma_{\delta}^{2})]^{I(\delta_{g})} \right] \cdot U(\sigma_{\delta} \mid 0, \sigma_{\delta 0})$$

$$\propto \prod_{\delta_{g} \neq 0} N(\delta_{g} \mid \theta_{\delta}, \sigma_{\delta}^{2}) \cdot I(0 < \sigma_{\delta}^{2} < \sigma_{\delta 0}^{2})$$

$$\propto \prod_{\delta_{g} \neq 0} (\sigma_{\delta}^{2})^{-1/2} \exp\left(-\frac{(\delta_{g} - \theta_{\delta})^{2}}{2\sigma_{\delta}^{2}}\right) \cdot I(0 < \sigma_{\delta}^{2} < \sigma_{\delta 0}^{2})$$

$$= (\sigma_{\delta}^{2})^{-G_{\delta}/2} \exp\left(-\frac{1}{\theta_{\delta}^{2}} \frac{1}{2} \sum_{\delta_{g} \neq 0} (\delta_{g} - \theta_{\delta})^{2}\right) \cdot I(0 < \sigma_{\delta}^{2} < \sigma_{\delta 0}^{2})$$

where G_{δ} is the number of genes for which $\delta_g \neq 0$. Transformation: let $z = \sigma_{\delta}^2 = g(\sigma_{\delta})$ so that $g^{-1}(z) = \sqrt{z}$. Then:

$$p(\sigma_{\delta}^{2} = z \mid \cdots) = p(\sigma_{\delta} = \sqrt{z} \mid \cdots) \left| \frac{d}{dz} \sqrt{z} \right|_{z}$$

$$= (z)^{-G_{\delta}/2} \exp\left(-\frac{1}{z} \frac{1}{2} \sum_{\delta_{g} \neq 0} (\delta_{g} - \theta_{\delta})^{2}\right) \cdot I(0 < z < \sigma_{\delta 0}^{2}) \left| -\frac{1}{2} z^{-1/2} \right|$$

$$= (z)^{-(G_{\delta}/2 - 1/2 + 1)} \exp\left(-\frac{1}{z} \frac{1}{2} \sum_{\delta_{g} \neq 0} (\delta_{g} - \theta_{\delta})^{2}\right) \cdot I(0 < z < \sigma_{\delta 0}^{2})$$

which is the kernel of an Inverse-Gamma distribution. Hence:

$$p(\frac{1}{\sigma_{\delta}^2} \mid \cdots) = \text{Gamma}\left(\frac{1}{\sigma_{\delta}^2} \mid \text{shape} = \frac{G_{\delta} - 1}{2}, \text{ rate} = \frac{1}{2} \sum_{\delta_g \neq 0} (\delta_g - \theta_{\delta})^2\right)$$

A.17
$$p(\pi_{\delta} \mid \cdots)$$
: Beta

$$p(\pi_{\delta} \mid \cdots) = \left[\prod_{g=1}^{G} \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta}) N(\delta_g \mid \theta_{\delta}, \sigma_{\delta}^2)]^{I(\delta_g)} \right] \cdot \text{Beta}(\pi_{\delta} \mid a_{\delta}, b_{\delta})$$

$$\propto [\pi_{\delta}^{G-G_{\delta}} (1-\pi_{\delta})^{G_{\delta}}] \pi_{\delta}^{a_{\tau}-1} (1-\pi_{\delta})^{b_{\tau}-1}$$

$$= \pi_{\delta}^{G-G_{\delta}+a_{\tau}-1} (1-\pi_{\delta})^{G_{\delta}+b_{\tau}-1}$$

where G_{δ} is the number of genes for which $\delta_g \neq 0$. Hence:

$$p(\pi_{\delta} \mid \cdots) = \text{Beta}(G - G_{\delta} + \delta_{\tau}, G_{\delta} + b_{\tau})$$