多様体論

M. Nakata

目次

1	参考文献	1
2.1	導入 ベクトル東	1
1 参	考文献	

- Loring W. Tu. An Introduction to Manifolds. Springer.
- 小林昭七『接続の微分幾何とゲージ理論』(裳華房)

2 導入

2.1 ベクトル束

M を n 次元多様体として,その点 $p \in M$ における接空間を $T_p M$,余接空間を $T_p^* M$ と書く. (x^1,\dots,x^n) を点 p の近傍での局所座標系とすると, $X \in T_p M$ に対して

$$X = \sum a^i \frac{\partial}{\partial x^i}$$

のとき $X=(x^1(p),\dots,x^n(p),a^1,\dots,a^n)$ として, $TM=\bigcup_{p\in M}T_pM$ に局所座標系を定めることができる. $T^*M=\bigcup_{p\in M}T_p^*M$ にも同様に局所座標系を定義できる.

定義

多様体 M 上の**ベクトル束** (vector bundle) とは、多様体 E であって次の条件をみたすものである:

- i) 微分可能な写像 $\pi: E \to M$ があり、各点 $x \in M$ に対して $E_x = \pi^{-1}(x)$ は同じ次元 r のベクトル空間である。 E_x を x 上のファイバー(fiber)という。
- ii) 各点 $x \in M$ とその近傍 $U \subset M$ に対して、微分同相 $\varphi: \pi^{-1}(U) \to U \times \mathbf{R}^r$ が存在して、 $\{y\} \subset M$ への制限が線形同型となる。

例

- i) TM と T^*M はともにファイバーの次元が n のベクトル東である。実際, $X \in T_pM$ に対して $\pi(X) = p$ とすればこれはファイバーを与え, $\pi^{-1}(p) = T_pM$ と R^n は線形同型となる。 T^*M も同様。
- ii) 直積束 (product bundle) $E = M \times \mathbb{R}^r$ はベクトル束である.

定義

 $\{U_{\alpha}\}\subset M$ を M の被覆とすると各 $\pi^{-1}(U_{\alpha})$ は $U_{\alpha}\times \mathbf{R}^r$ と同型になる.よって, $x\in U_{\alpha}\cap U_{\beta}$ に対して 2つの同型

$$\varphi_{\alpha}(x): E_x \to \mathbf{R}^r \quad \varphi_{\beta}(x): E_x \to \mathbf{R}^r$$

が存在する. このとき, $\psi_{\alpha\beta}(x) = \varphi_{\alpha}(x)\varphi_{\beta}(x)^{-1}$ によって $\psi_{\alpha\beta}$: $U_{\alpha} \cap U_{\beta} \to GL(r,\mathbf{R})$ が定まる. これらの写像の族 $\{\psi_{\alpha\beta}\}$ を被覆 $\{U_{\alpha}\}$ に対する E の変換関数 (transition functions) とよぶ.

注

E の変換関数 $\{\psi_{\alpha\beta}\}$ は次の性質をもつ:

$$\psi_{\alpha\beta}(x)\psi_{\beta\gamma}(x) = \psi_{\alpha\gamma}(x) \quad (x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}); \tag{1}$$

$$\psi_{\alpha\alpha}(x) = I_r; \tag{2}$$

$$\psi_{\beta\alpha}(x) = \psi_{\alpha\beta}(x)^{-1}.\tag{3}$$