CHEM 203

Final Exam December 18, 2013

Your name:		

This a closed-notes, closed-book exam

You may use your set of molecular models

This test consists of 10 pages

Time: 2h 30 min

- 1. _____/20
- 2. _____/20
- 3. _____/30
- 4. _____/30
- 5. _____/30
- 6. _____/40
- 7. _____/40
- 8. _____/40

TOTAL / 250 = ____/ 100

This exam counts for 37.5% of your CHEM 203 grade

1. (20 pts.) The reagents shown below have not been discussed in class, but they are structurally related to reagents that have been covered in CHEM 203. On the basis of structural analogy, indicate the probable use of each of them (write your answers in the boxes):

		probably used as/for:		probably used as/for:
a.	O-CH ₃		c. P-P	
b.	HO O CF ₃		d. NC N N CN	

2 (20 pts) Check the appropriate box to indicate whether the following statements are true or false:

	true	talse
a. An aqueous solution of H ₂ CrO ₄ and H ₂ SO ₄ oxidizes primary alcohols to aldehydes and secondary alcohols to ketones		
b. An alkene will form the same epoxide upon treatment with either ${\rm Br_2}$ and ${\rm H_2O}$ followed by base, or with MCPBA		
c. Rearrangements may occur during $S_{N}1$ reactions, but not during $S_{N}2$ reactions		
d. Rearrangements may occur during E2 reactions, but not during E1 reactions		
e. Carbocations may add to alkenes		
f. Radicals do not rearrange by the 1,2-shift mechanism typical of carbocations		
g. A C–Si bond provides more effective hyperconjugative stabilization than a C–C bond		
h. A bromohydrin is easily converted into a Grignard reagent upon reaction with metallic Mg		
i. An acetal is a special type of ether		
j. The Fischer-Kiliani synthesis of monosaccharide involves the addition of H–CN to an aldehyde		

- 3. (30 pts.) Check the appropriate boxes to indicate whether:
 - a. The following carbohydrates belong to the D or the L series:

b. The following carbohydrates possess the α - or the β -anomeric configuration:

c. The following derivatives of glucose are reducing or nonreducing:

4.	(30	O pts) In the appropriate box, draw the s	tructui	re of:	
	a.	a. A carbocation that forms as the major product of protonation of an alkene and that is likely to undergo rearrangement, and one that also forms as the major product of protonation of an alkene, but that is not likely to undergo rearrangement:			
		likely to rearrange	unlikely to rearrange		
b. A <i>trans</i> -alkene that gives a chiral product upon reaction with Cl ₂ and a <i>trans</i> -alkene that gives an achiral product upon reaction with Cl ₂ :			e that		
		gives a chiral product		gives an achiral product	
	c. An alkyl halide that is likely to undergo substitution by the $S_{\rm N}2$ mechanism, and one this likely to undergo substitution by the $S_{\rm N}1$ mechanism:			ne that	
	reacts by S _N 2			reacts by S _N 1	

d.	An alkene that is a good substrate for allylic bromination, and one that is a poor subs for the same reaction:			substrate
	good substrate		poor substrate	
	good outstand		poor Gaberrato	
e. An alkyne containing at least 3 carbon atoms, that produces an achiral diol when treate with H ₂ and Lindlar catalyst, followed by OsO ₄ and then aqueous NaHSO ₃ , or when treated with Na in liquid NH ₃ , followed by MCPBA and then aqueous H ₂ SO ₄ , and an alkyne also containing at least 3 carbon atoms that produces a chiral diol when treated under the same conditions:				nen d an
	produces an achiral diol		produces a chiral diol	
f. An alcohol that gives the same product when treated either with PCC or with the Jor reagent, and one that gives two different products under the same conditions:				Jones
	gives the same product		gives two different products	_

5. (30 pts) Write accurate mechanisms for the following known reactions:

c.
$$\begin{array}{c|c} O & HO & OH \\ \hline & cat. \ H_2SO_4 \\ -H_2O \end{array}$$

6. (40 pts.) Draw the structure of the major product expected from the following reactions (write your answer in the boxes). If no change is predicted, answer "NO REACTION."

a.	OH	1. NaBH ₄ , then mild H ₃ O ⁺ 2. Br ₂ 3. OK	
b.		1. HBr, rad. initiator 2. NaN ₃ 3. Zn, H+	
C.		1. BH ₃ , then H ₂ O ₂ , aq. NaOH 2. PBr ₃ 3. Mg 4. CO ₂ , then mild H ₃ O ⁺	
d.		1. Cl ₂ , hv 2. OK 3. MCPBA 4. ONA then mild H ₃ O+	
e.		1. O ₃ , then Zn, H+ 2. CH ₃ MgBr 3. H ₂ SO ₄ , 160 °C 4. Br ₂ and H ₂ O	

5. NaH

7. (40 pts.) Indicate all the reagents, catalysts, etc., in the correct order, that are necessary to induce the transformations shown below. List such reagents above / below the reaction arrows. **NOTE**: aqueous workups are understood and do not need to be shown.

c.
$$NH_2$$

$$d. \rightarrow \boxed{}$$

$$f.$$
 \bigcirc

h.
$$O$$
 OH OH O OH O

8. (40 pts.) Propose a good synthesis of the molecules shown below using **only methanol**, **acetylene** and **ethylene oxide** (see below) as the sources of carbon atoms. Intermediates / products obtained during an earlier sequence may be employed in a subsequent procedure. Assume the availability of all necessary reagents (such as bases, acids, BH₃, Mg, TsCl, PCC, PBr₃, MCPBA, etc.).

methanol: CH_3OH acetylene: $H-C\equiv C-H$ ethylene oxide: OH_2C-CH_2

Important:

i. Aqueous workups at the end of each reaction are understood and need not to be shown.

ii. It is not necessary to write mechanisms.