

Ing Marcelo Semeria

Data Link Layer Puntos a Considerar

Servicios provistos por la capa

Armado de Tramas

Control de errores

Control de flujo

Funciones

Relacion entre paquetes y tramas.

Servicios a capa de red

Servicios a Capa de Red (2)

Ubicacion de protocolos

Entramado (1)

El flujo de caracters

a) Sin Errores b) Con un error

Entramado (2)

- (a) Trama delimitada por bits de flag.
- (b) Cuatro ejemplos de secuencias de byte antes y despues del stuffing.

Entramado (3)

(a) 01101111111111111110010

(c) 011011111111111111110010

Bit stuffing

- (a) Data original
- (b) El dato como aparece en la linea.
- (c) El dato como es almacenado en la memoria del recptor.

Errores

durante la transmisión pueden aparecer errores

en la recepción hay que comprobar si ha habido error

- Es necesario realizar, en el extremo receptor, una detección de errores
- La detección se realiza mediante códigos detectores de error:
 - Estos códigos incorporan a los datos, antes de ser transmitidos, información adicional que le sirve al receptor para saber si ha habido un error durante la transmisión

Codigos detectores de errores

 El receptor evalúa el código detector de error y determina si ha habido (o no) errores en la transmisión

E, E' = códigos de detección de errores
f = función generadora del código de detección

Que hacer con un error?

- Para poder corregir los errores se pueden emplear dos estrategias:
 - FEC (Forward Error Correction): añade información de control que permitirá al receptor reconstruir la información correcta
 - ARQ (Automatic Repeat Request): el receptor solicita al transmisor el reenvío de la información correcta

Control de paridad

Manejo de errores

El **precio** para detectar y corregir es **redundancia**:

- a) Tiempo de envío
- b) Cantidad de datos a enviar
- c) Tiempo de procesamiento

Error Detection and Correction

Codigos Correctores de error

Ej: Hamming

Codigos Detectores de error

Ej: CRC

Aplicación de Hamming (Generación)

Mensaje a transmitir : **10110** m = 5

Bits de redundancia $\mathbf{r} = \mathbf{4}$ (Ver tabla a)

A) Se elijen como redundancia los bit potencia de 2 (en verde)

		1		0	1	1		0
1	2	3	4	5	6	7	8	9

	r	m+r+1 =	< 2 ^r
	a)	7	2
	a) b)	8	4
	c)	9	8
Cumple	d)	10	16

B) Se competan los bit de redundancia para obtener **paridad par** en los bit controlados según **tabla b**.

Ej: Bit 1 controla bits 1, 3, 5, 7, 9 \square X 1 0 1 0 \square x=0 Bit 2 controla bits 2, 3, 6, 7 \square X, 1, 1, 1 \square x=1

0	1	1	0	0	1	1	0	0
1	2	3	4	5	6	7	8	9

Se transmite la palabra: 011001100

	,	Tabla b
de 2	1	1
clas	2	2
oten	3	1 ,2
or po	4	4
Decimales formados por potencias de	5	1,4
rmac	6	2,4
se fo	7	1,2,4
male	8	8
Jeci	9	1,8

Aplicación de Hamming (Recuperación)

Mensaje recibido: 011011100 Del slide anterior con 1 error

A) El receptor verifica si hay errores, elije como redundancia los bit potencia de 2 (en verde)

0	1	1	0	1	1	1	0	0
1	2	3	4	5	6	7	8	9

B) El receptor verifica paridad con los mismos criterios que el transmisor

0	1	1	0	1	1	1	0	0
1	2	3	4	5	6	7	8	9

X	Ok		X				ok	
---	----	--	---	--	--	--	----	--

Bit 1 X : 1,3,5,7,9,

Bit 2 ok: 2,3,6,7,

Bit 4 X: 4,5,6,7,

Bit 8 ok: 8 9

Los bit comunes en los controles con error 5 y 7 Pero el contro da como ok el 7

La forma practica es sumar los pesos de los controles con error: 1 + 4 = 5 □

La palabra corregida es 011001100

Hamming

Char.	ASCII	Check bits	
Н	1001000	00110010000	Hamming
а	1100001	10111001001	
m	1101101	11101010101	Mediante el
m	1101101	11101010101	agregado de redundancias
i	1101001	01101011001	se logra poder
n	1101110	01101010110	corregir errores
g	1100111	01111001111	
	0100000	10011000000	
С	1100011	11111000011	
0	1101111	10101011111	
d	1100100	11111001100	
е	1100101	00111000101	
		Y	

Order of bit transmission

CRC Fundamento

Suponga que Tx y Rx comparten un mismo polinomio generador G(x) Sea M(x) el mensaje a transmitir

Inconvenientes del método

- a) Se pude producir un error que mantenga resto cero (en el e) 15 🗆 25)
- **b)** $\mathbf{M}(x)$ puede no tener resto cero con el $\mathbf{G}(x)$ dado

CRC Fundamento

Suponga que **Tx** y **Rx** comparten un mismo polinomio generador **G(x)** Sea **M(x)** el mensaje a transmitir

Frame

1101011011

Generator: 10011 Message after 4 zero bits are appended: 110101110110000 00001010 10011 0 1 0 1 0 0 0 0 1 OR Mensaje a Transmitir: 0 0 0 **Exclusive** 0 0 0 0 11010110111110 0 0 0 1 0 0 0 0 0 0 1 0 00000 El **resto** debe En el **R**x luego de verificar que no reemplazar los ceros 0 0 0 0 agregados al tenga errores (resto cero) se mensaje

resto el 0 0 1 eliminan los 4 resto al mensaje. últimos bits. 0 0 0 0 0 1 0 0 0 0 1 1 00000 Remainder

CRC (en forma de polinomio)

- Divisor: x² + 1
- Datos iniciales: 110100111
- Añadimos tantos ceros como el grado del divisor: 11010011100

$$11010011100 = x^{10} + x^9 + x^7 + x^4 + x^3 + x^2$$

$$\frac{x^{10} + x^9 + x^7 + x^4 + x^3 + x^2}{x^2 + 1} = x^8 + x^7 + x^6 + x^4 + x + 1 + \frac{x + 1}{x^2 + 1}$$

$$x^{10} + x^9 + x^7 + x^4 + x^3 + x^2 + x + 1$$

Información a transmitir: 11010011111

FIN ppt#9

Continuación

- a) Problemas de Tanenbaum
- b) Presentación de simulador a usar en próxima practica

