PODD: An Ontology-driven Data Repository for Collaborative Phenomics Research

Yuan-Fang Li

liyf@itee.uq.edu.au

The eResearch Lab, School of ITEE The University of Queensland

IBS Phenomics Data and Informatics Workshop - Canberra 2010

Outline

- **1** Introduction
- 2 Related Work
- 3 The PODD Ontology
- Conclusion

Challenges in phenomics research data management

- Data is huge
 - APN: estimated 1.8TB + 30% growth/year
 - \bullet TPA: 0.5TB/week \sim 25 TB/year

Challenges in phenomics research data management

- Data is huge
 - APN: estimated 1.8TB + 30% growth/year
 - ullet TPA: 0.5TB/week \sim 25 TB/year
- New platforms/processes/technologies emerge

Challenges in phenomics research data management

- Data is huge
 - APN: estimated 1.8TB + 30% growth/year
 - ullet TPA: 0.5TB/week \sim 25 TB/year
- New platforms/processes/technologies emerge
- Data needs context
 - Scientific, administrative & other metadata

Challenges in phenomics research data management

- Data is huge
 - APN: estimated 1.8TB + 30% growth/year
 - ullet TPA: 0.5TB/week \sim 25 TB/year
- New platforms/processes/technologies emerge
- Data needs context
 - Scientific, administrative & other metadata

Repositories for the management of data

Not all questions answered

- Australian Plant Phenomics Facility (APPF)
 - High-throughput (TPA) & high-resolution (HRPPC) centers

- Australian Plant Phenomics Facility (APPF)
 - High-throughput (TPA) & high-resolution (HRPPC) centers
- Australian Phenomics Network (APN)
 - Mouse models, deep imaging and measuring platforms

- Australian Plant Phenomics Facility (APPF)
 - High-throughput (TPA) & high-resolution (HRPPC) centers
- Australian Phenomics Network (APN)
 - Mouse models, deep imaging and measuring platforms
- Atlas of Living Australia (ALA)
 - Biodiversity data collection & management

Data Management Requirements

Data capturing

Flow Cytometry FACS data

Histopathology Zeiss slide images

Plant imaging Lemnatec images, Flourogroscan images, 3D

imaging

Infrared imaging FLIR images

Chemical measure- Chlorophyll content, Stomatal conductance

ments

Visual observation Manual reports

...

Data Management Requirements

Data generation

Project proposal, project plan

Investigation Objectives, design

Materials Lines/genotypes, samples, growth conditions

Devices Specs, settings, versions

Processes Workflows, protocols, variations

Measurements Data, images

Analysis Observations, results

...

Data Management Requirements

Data management Data distribution ? Data sharing ? Data publishing ? Access control ? Archival & versioning ? Structure & metadata ?

Data discovery & analysis

PODD: an ontology-driven repository

Goals

- Supports data captured by different platforms
- Supports different data formats
- Supports effective data management
 - Metadata, distribution, access control, discovery, etc.

PODD: an ontology-driven repository

Goals

- Supports data captured by different platforms
- Supports different data formats
- Supports effective data management
 - Metadata, distribution, access control, discovery, etc.

Approach

- Define domain ontologies focus of this talk
- Design an appropriate architecture
- Develop an ontology-aware repository

PODD: The High-level Architecture

Outline

- Introduction
- Related Work
- 3 The PODD Ontology
- Conclusion

Related Work

FuGe – Functional Genomics Experiment

- Material, Protocol, Data, etc.
- Can be extended to support phenomics
- × May be difficult to extend for new concepts

Related Work

FuGe – Functional Genomics Experiment

- Material, Protocol, Data, etc.
- Can be extended to support phenomics
- × May be difficult to extend for new concepts

OBI – Ontology for Biomedical Investigations

- "An integrated ontology for the description of life-science and clinical investigations."
- Comprehensive: 2,600+ classes, 10,000+ axioms
- \times Complex, computationally $(\mathcal{SHOIN}(D))$

Related Work

Web Ontology Language (OWL)

- Precise, open & extensible exactly what we need!
- Provides core vocabularies for expressing complex ontologies data models
- Main language constructs
 - Classes, e.g, Human
 - Predicates, e.g., hasParent
 - Individuals, e.g., Aristotle
- APIs, query engines & automated reasoners available

Outline

- Introduction
- Related Work
- 3 The PODD Ontology
- 4 Conclusion

The Ontology Approach

Benefits

- Greater extensibility
 - New concepts/relations can be easily added/modified

The Ontology Approach

Benefits

- Greater extensibility
 - New concepts/relations can be easily added/modified
- Better reuse & integration
 - Ontologies are open
 - Other ontologies can be integrated on multiple levels

The Ontology Approach

Benefits

- Greater extensibility
 - New concepts/relations can be easily added/modified
- Better reuse & integration
 - Ontologies are open
 - Other ontologies can be integrated on multiple levels
- Balance between expressivity & reasoning complexity
 - Formal semantics enables automated query & analysis
 - Off-the-shelf tools available

The PODD Ontology

Modeling essentials

- Domain entities
 - Abstract concepts
 - Concrete objects
- Domain entities defined using OWL ontologies

The PODD Ontology

Modeling essentials

- Domain entities
 - Abstract concepts
 - Concrete objects
- Domain entities defined using OWL ontologies

Modeling in OWL

- Domain concepts OWL classes
- Inter-concept relations OWL predicates & OWL restrictions
- Concrete domain objects OWL Individuals
- Comments, descriptions OWL annotations

The PODD Ontology – An Example

Example

The **Project** concept

- The top-level concept
- Constraints on inter-object relations & attributes like everything else

The PODD Ontology – An Example

Example

The **Project** concept

- The top-level concept
- Constraints on inter-object relations & attributes like everything else

```
Project \sqsubseteq = 1 \ hasProjectPlan \sqcap \forall \ hasProjectPlan. ProjectPlan \\ \sqsubseteq \geq 1 \ hasInvestigation \sqcap \forall \ hasInvestigation. Investigation \\ \sqsubseteq = 1 \ hasStartDate \sqcap \forall \ hasStartDate. date \\ \sqsubseteq \leq 1 \ hasPublicationDate \sqcap \forall \ hasPublicationDate. date
```

• Extensibility from inheritance of OWL classes & predicates

The PODD Ontology

The PODD Ontology

- Inspired by FuGe & OBI
- Aim: define all essential domain concepts, attributes & relations
- $\bullet \sim 30$ classes,
 - \sim 80 predicates,
 - \sim 200 Axioms
- Faster reasoning, querying, etc.

PODD Ontology – Roles

Ontologies drives repository functions

Presentation Drives the rendering of the web pages

Object creation, editing, display, etc.

Management Object (de)serialization to/from ontologies

Validation Ontology reasoning performed

Validation on object type, cardinality, etc.

Discovery Multiple ways of finding information

- Queries using SPARQL
- Searches using Lucene

The PODD Ontology – Object creation page rendering

Create Project Object

Project Details ©	
Title: [®]	
Description:	
Has duration:	
Has start date (YYYY-MM-DD):	
2010-04-19	
Has lead Institution:	
	A

Outline

- Introduction
- 2 Related Work
- The PODD Ontology
- 4 Conclusion

Conclusion

To recap

- Large amounts of data need to be managed
 - There is a need for data archival, storage & discovery
- Current approaches lacking/inadequate/inflexible
 - Emerging processes, platforms, technologies require extensible infrastructure
- An ontology-driven approach as the foundation of PODD
 - Extensible & open

Conclusion

Where we are now

- PODD ontology stabilizing
- Development of basic repository functionality
- Development of PODD web interface

Conclusion

Where we are now

- PODD ontology stabilizing
- Development of basic repository functionality
- Development of PODD web interface

What's next

- Development of batch data import/export processes
- Development of object discovery services
- Integrate with AAF federated authentication services
- Exposing data for discovery
- Integrating with other data sources

THANK YOU!

Acknowledgment

Faith Davies, Gavin Kennedy, Jane Hunter eResearch Lab, Schoo of ITEE, UQ