Chapter 6 — Electron Structure

Michael Brodskiy
Instructor: Mr. Morgan

November 10, 2020

- Atoms gain and lose energy in set amounts Quantized
- Lower energy level is ground state, higher is called excited
- An atom which gains energy moves electrons to a higher energy level
- An atom which loses energy has electrons move back down (Electron Jumping)
- Energy is seen as different wavelengths of light in a flame test
- E = hV and $C = \lambda V$, where h is Planck's constant, V is the frequency, λ is the wavelength, C is the speed of light, and E is energy
- Bohr's Model Electrons orbit the nucleus, and, when they gained energy, jump up to a new level
- Quantum Mechanical Model It is unknown how electrons move, but we know where they probably are, which is demonstrated in probability maps
- Probability Maps Orbitals (Four Types) s, p, d, and f (sometimes called sublevels)
- s forms a circular probability, p forms a 2 leaf clover, d forms 4 leaf clover, and f is technically 6, but is hard to map out
- 2 Electrons per orbital

	Type	Orbitals	Electrons
	\mathbf{s}	1	2
•	p	3	6
	d	5	10
	f	7	14

• Electron configuration and Box diagrams (often called Orbital Diagrams)

• Quantum Numbers:

- 1. Energy Level (n)
- 2. Sublevel (l): Type (s=0; p=1; d=2; f=3)
- 3. Box number (Number of orbitals, m_l): $-l \le m_l \le l$
- 4. Spin (m_s) : $-\frac{1}{2} \le m_s \le \frac{1}{2}$
- Hund's Rule Electrons spread out
- Pauli Exclusion Principle No two electrons have the same 4 quantum numbers