CLAIMS

What is claimed is:

ZUB 5		les of the formula I
61	R^1R^2	N-¢HX-CO-A-B-D-E-(G) _s -K
	where	
	\mathbb{R}^1	is hydrogen, methyl; or ethyl;
	\mathbb{R}^2	is methyl; or ethyl; or
10	R^1-N-R^2	together are a pyrrolidine ring;
	Α	is a valyl, isoleucyl, allo-isoleucyl, 2-tert-butylglycyl, 2-
		ethylgycyl, norleucyl or norvalyl residue;
	В	is a N-methyl-valyl, N-methyl-norvalyl, N-methyl-leucyl, N-
		methyl-isoleucyl, N-methyl-2-tert-butylglycyl, N-methyl-2-
15		ethylglycyl, or N-methyl-norleucyl residue;
	D	is a prolyl homoprolyl, hydroxyprolyl, or thiazolidine-4-carbonyl
		residue;
	E .	is a prolyl, homoprolyl, hydroxyprolyl, thiazolidine-4-carbonyl,
1		trans-4-fluoro-L-prolyl, cis-4-fluoro-L-prolyl, trans-4-chloro-L-
20		prolyl or cis-4chloro-L-prolyl residue;
~	X	is ethyl, propyl, butyl, isopropyl, sec. butyl, tertbutyl,
		cyclopropyl, or dyclopentyl;
	G	is a L-2-tert.butylglycyl, D-2-terr.butylglycyl, D-valyl, D-
		isoleucyl, D-leucyl D-norvalyl, 1-aminopentyl-1-carbonyl, or 2,2-
25		dimethylglycyl residue;
	S	is 0 or 1;
	K	is -NH- C_{1-8} -alkyl, -NH- C_{3-8} -alkenyl, -NH- C_{3-8} -alkinyl, -NH- C_{6-8} -
		cycloalkyl, -NH-C ₁₋₄ -alkene-C ₃₋₈ -cycloalkyl, C ₁₋₄ -alkyl-N-C ₁₋₆ -
		alkyl, in which residues one CH ₂ group may be replaced by O or

I H Have H H H H H W ... And Then H A Thomas A Thomas H H

.

上の一、一般の事を上をつ

W. Ment Look dark W. T. C.

-47-

Sub

S, one H by phenyl or cyano, or 1, 2 or 3 H by F, except the N-methoxy-N-methylamino, N-benzylamino, or N-methyl-N-benzylamino residue, or K is

5

10

15

$$-NH$$
 \longrightarrow $-NH$ \longrightarrow $-NH$ \longrightarrow $-NH$ \longrightarrow $-NH$ \longrightarrow $-NH$

20

$$-NH$$
 $-NH$
 $-NH$
 $-NH$
 $-NH$
 $-NH$
 $-NH$
 $-NH$

25

and the salts thereof with physiologically tolerated acids.

2.	Novel pentid	es of the formula I
EuB)		N-CHX-CO-A-B-D-E-(G) _s -K
c\(where	1-C11/1-CO-11-D-D-L-(G) ₅ -IX
	R ¹	is hydrogen, methyl; or ethyl;
5	R^2	is methyl; or ethyl; or
J	R^1-N-R^2	together are a pyrrolidine ring;
	A	is a valyl, isoleucyl, allo-isoleucyl, 2-tert-butylglycyl, 2-
	A	ethylglycyl, norleucyl or norvalyl residue;
	В	
10	Ь	is a N-methyl-valyl, N-methyl-norvalyl, N-methyl-leucyl, N-methyl isolovari. N. methyl 2 text bytholysed, N. methyl 2
10		methyl-isoleucyl, N-methyl-2-tert-butylglycyl, N-methyl-2-
	, D	ethylglycyl, or N-methyl-norleucyl residue;
	D	is a prolyl, homoprolyl, hydroxyprolyl, or thiazolidine-4-carbonyl
	Е	residue;
1.5	E	is a problyl, homoprolyl, hydroxyprolyl, thiazolidine-4-carbonyl,
15		trans-4\fluoro-L-prolyl, cis-4-fluoro-L-prolyl, trans-4-chloro-L-
	77	prolyl of cis-4-chloro-L-prolyl residue;
	X	is ethyl, propyl, butyl, isopropyl, sec. butyl, tert.butyl, cyclopropyl,
		or cyclopentyl;
	G	is a L-2-tert butylglycyl, D-2-terr butylglycyl, D-valyl, D-
20		isoleucyl, D\leucyl, D-norvalyl, 1-aminopentyl-1-carbonyl, or 2,2-
	•	dimethylglycyl residue;
	S	is 0 or 1; \setminus
	K	-NHCH ₃ , -NHC H_2 CH ₃ , -NH(CH ₂) ₂ CH ₃ , -NH(CH ₂) ₃ CH ₃ ,
		$-NH(CH_2)_4CH_3$, $-NH(CH_2)_5CH_3$, $-NH(CH_2)_6CH_3$,
25		-NHCH(CH ₂) ₇ CH ₃ -NHCH(CH ₃) ₂ , -NHCH(CH ₃)CH ₂ CH ₃ ,
		-NHCH(CH ₂ CH ₃) ₂ , -NHCH(CH ₂ CH ₂ CH ₃) ₂ , -NHC(CH ₃) ₃ ,
		-NHCH(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ , -NHCH(CH ₃)CH(CH ₃) ₂ ,
		-NHCH(CH ₂ CH ₃)CH(CH ₃) ₂ , -NHCH(CH ₃)C(CH ₃) ₃ ,
		-NH-cyclohexyl, -NH-cycloheptyl, -NH-cyclooctyl,

10

15

20

-49--N(CH₃)OCH₂CH₃, -N(CH₃)OCH₂CH₂CH₃, -N(CH₃)OCH(CH₃)₂, $-N(CH_3)O(CH_2)_3CH_3$, $-N(CH_3)OCH_2C_6H_5$, $-NH(CH_2)_7C_6H_5$, -NH(CH₂)₃C₆H₅, -NHCH(CH₃)C₆H₅, -NHC(CH₃)₂C₆H₅, -NHC(CH₃)₂CH₂CH₃, -NHC(CH₃)(CH₂CH₃)₂, -NHCH[CH(CH₃)₂]₂, -NHQ(CH₃)₂CN, -NHCH(CH₃)CH(OH)C₆H₅, -NHCH₂-cyclohexyl, -NHC\(\frac{1}{2}C(CH_3)_3\), -NHCH2CH(CH_3)_2, -NHCH2CF3, -NHCH(CH2F)_2, -NHCH2CH2CH2OCH3, -NHCH2CH2SCH3, -NHCH₂CHCH₂, -NH-C(CH₃)₂CH=CH₂, -NHC(CH₃)₂C \equiv CH, -NHC(CH₂CH₃)₂C≡CH, -NHC(CH₃)₂CH₂CH₂OH, -NH(CH₂CH₂O)₂CH₂CH₃, -NHC(CH₃)₂CH(CH₃)₂, -NHC(CH₃) CH₂CH₂CH₃, -NHC(CH₃)₂CH₂C₆H₅, -N(OCH₃)CH₂(CH₃)₂, -N(OCH₃)CH₂CH₃, -N(OCH₃)CH₂CH₂CH₃, -N(OCH₃)CH₂C₆H₅, -N(OCH₃)C₆H₅, -N(CH₃)OC₆H₅, -NHCH[CH(CH₃)₂]₂, -N(OCH₃)CH₂CH₂CH₂CH₃, or K is

$$-NH$$

-50-CH₃ ģΗЗ CONH₂ 5 .CH₃ or -CONH CH₃

10

25

And the salts thereof with physiologically tolerated acids.

Novel peptides of the formula I 3.

 R^1R^2N -CHX-CO-A-B-D-E-(G)_s-K

Ι

15 where

 \mathbb{R}^1

is hydrogen, methyl; or ethyl;

 \mathbb{R}^2 is methyl; or ethyl;

A is a valyl isoleucyl, 2-tert-butylglycyl, 2-ethylglycyl, norleucyl or

norvalyl residue;

20 В is a N-methyl-valyl, N-methyl-norvalyl, N-methyl-isoleucyl, N-

-methyl-2-tert-butylglycyl, N-methyl-2-ethylglycyl, or-N-methyl-

norleucyl residue;

D is a prolyl, or thiazolidine-4-carbonyl residue;

is a prolyl, homoprolyl, thiazolidine-4-carbonyl, trans-4-fluoro-L-Ε

prolyl, cis-4-lluoro-L-prolyl, trans-4-chloro-L-prolyl or cis-4-

chloro-L-prolyl residue;

X is ethyl, propyl, isopropyl, sec. butyl, tert.-butyl, or cyclopropyl;

G is a L-2-tert.butylglycyl, D-2-terr.butylglycyl, D-valyl, D-isoleucyl,

D-leucyl, or 2 2-dimethylglycyl residue;

is 0 or 1;

is -NH-C₁₋₈-alkyl, -NH-C₆₋₈-cycloalkyl, -NH-CH₂-cyclohexyl, C₁₋₄-alkyl-N-C₁₋₆-alkyl, in which residues one CH₂ group may be eplaced by O, one H by phenyl or 1 or 2 H by F, except the N-methoxy-N-methylamino, N-benzylamino or N-methyl-N-benzylamino residue, or K is

10 -NH

15

25

- ME -

20 -NH - CH3

$$-NH$$
 CH₃ $-N$ O $-N$ O $-N$

— NH

The state of the second st

Novel peptides of the formula I

 R^1R^2 N-CHX-CO-A-B-D-E-(G)_s-K

I

where

 R^1

s methyl;

is methyl;

 R^2

Α

is a valyl, isoleucyl, 2-tert-butylglycyl, or 2-ethylglycyl;

В

is a N-methyl-valyl, N-methyl-isoleucyl, N-methyl-2-tert-

but viglycyl, N-methyl-2-ethylglycyl, or N-methyl-norleucyl residue;

D

is a prolyl, or thiazolidine-4-carbonyl residue;

10

Ε

is a prolyl, trans-4-fluoro-L-prolyl, cis-4-fluoro-L-prolyl, trans-4-

chloro-L-prolyl or cis-4-chloro-L-prolyl residue;

X

is ethyl, isopropyl, sec. butyl, or tert.butyl;

G

is a II-2-tert.butylglycyl, D-2-terr.butylglycyl, D-valyl, D-isoleucyl,

D-leucyl, or 2,2-dimethylglycyl residue;

15

is 0 or 1; S

K

is -NH\C₁₋₈-alkyl, -NH-C₆₋₈-cycloalkyl, -NH-CH₂-cyclohexyl, C₁₋₄-

alkyl-N-C₁₋₆-alkyl, in which residues one CH₂ group may be

replaced by O, one H by phenyl or 1 or 2 H by F, except the N-

methoxy-N-methylamino, N-benzylamino or N-methyl-N-

benzylamino residue, or K is

20

25

H₃C -NH

SUB

5

15

20

-NHC(CH₂CH₃)₂C=CH, -NHC(CH₃)₂CH₂CH₂OH,

-NHC(CH₃)₂CH(CH₃)₂, -NHC(CH₃)₂CH₂CH₂CH₃,

-NHC(CH₃)₂CH₂C₆H₅, -N(OCH₃)CH(CH₃)₂, -N(OCH₃)CH₂CH₃,

-N(OCH₃)CH₂CH₂CH₃, -N(OCH₃)CH₂C₆H₅, -N(OCH₃)C₆H₅,

-N(CH₃)OC₆H₅, -N(OCH₃)CH₂CH₂CH₂CH₃.

or K is

$$-N \longrightarrow -N \longrightarrow -NH \longrightarrow$$

$$-NH$$
 \longrightarrow $-NH$ \longrightarrow $-NH$ \longrightarrow $-NH$ \longrightarrow $-NH$ \longrightarrow $-NH$

-NH - CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CO - NH - CH₂ CH₂ CH₃ CDNH₂ CDNH₂ CH₃ CH

and the salts thereof with physiologically tolerated acids.

6. Novel peptides of the formula I

 $R^{1}R^{2}N$ -CHX-CO-A-B-D-E-(G)_s-K

where

R¹ is methyl;

R² is methyl;

A is a valyl residue;

B is a N-methyl-valyl residue;

D is a prolyl residue; E is a prolyl residue; X is isopropyl; is 0 or 1; S K 5 $i \S - NHC(CH_3)_3$, $-NHCH(CH_2CH_2)CH(CH_3)_2$, $-NHCH(CH_3)C(CH_3)_3$, $-N(CH_3)OCH_2CH_3$, $-N(CH_3)OCH_2CH_2CH_3$, $-N(CH_3)OCH(CH_3)_2$, $-N(CH_3)O(CH_2)_3CH_3$, $-N(CH_3)OCH_2C_6H_5$, $-NHC(CH_3)_2C_6H_5$, -NHC(CH₃)₂CH₂CH₃, -NHC(CH₃) (CH₂CH₃)₂ -NHCH[CH(CH₃)₂]₂, -NHC(CH₃)₂CN, -NHCH(CH₃)CH(OH)C₆H₅, $-NH + C(CH_3)_2CH = CH_2$, $-NHC(CH_3)_2C = CH$, 10 -NHC(CH₂CH₃)₂C≡CH, -NHC(CH₃)₂CH₂CH₂OH, -NHC(CH₃)₂CH(CH₃)₂, -NHC(CH₃)₂CH₂CH₂CH₃, $-NHC(C_{H_1})_2CH_2C_6H_5$, $-N(OCH_3)CH(CH_3)_2$, $-N(OCH_3)CH_2CH_3$, -N(OCH₃)CH₂CH₂CH₃, -N(OCH₃)CH₂C₆H₅, -N(OCH₃)C₆H₅, -N(CH₃)O(\(\daggeright\)₆H₅, -N(OCH₃)CH₂CH₂CH₂CH₇CH₁ 15 or K is 20 25 CH: CH₃ CONH₂

and the salts thereof with physiologically tolerated acids.

Novel peptides of the formula I 7. R^1R^2N -CHX-CO-A-B-D-E-(G)_s-K Ι where R^1 is methyl; is methyl; R^2 5 is a valyl, isoleucyl, or 2-tert-butylglycyl residue; A is a N-methyl-valyl, N-methyl-isoleucyl, or N-methyl-2-tert-В butylglycyl residue; is a prolyl, or thiazolidine-4-carbonyl residue; D is a prolyl residue; E 10 is isopropyl, sec. butyl, or tert.-butyl; X s a D-2-tert.butylglycyl, D-isoleucyl, 2,2-dimethylglycyl residue, G n-valyl or L-2-tert.butylglycyl; is\1; s is $NHCH_3$, $-NHCH_2CH_3$, $-NH(CH_2)_2CH_3$, $-NH(CH_2)_3CH_3$, 15 K -NH(CH₂)₄CH₃, -NH(CH₂)₅CH₃, -NHCH(CH₃)₂, -NHCH(CH₃)CH₂CH₃, -NHCH(CH₂CH₃)₂, -NHC(CH₃)₃, -NHcyclphexyl, -NHC(CH₃)₂CN, -NCH(CH₃)₂C≡CH or -NHC(CH₃)₂CONH₂;

25

and the salts thereof with physiologically tolerated acids.

The state

- 3. Compounds of formula I or salts thereof for use in treating diseases.
- 9. The method or preparing compounds of formula I according to claim 1 characterized in that they are prepared according to known methods of peptide chemistry.

add)