Параболические подгруппы группы p-Базилики

Алексей Исковских, Михаил Ураков, Владислав Гребенюк Май 2024

Сириус, IV Майская проектная смена по математике и теоретической информатие

Введение и постановка задачи

Группы, действующие на корневых деревьях

Группы, действующие на деревьях играют важную роль в теории групп: именно среди групп такого типа был обнаружен первый пример группы промежуточного роста.

Группа p-Базилики

Группа p-Базилики (подробнее в [Dom+21]) — подгруппа группы автоморфизмов p-регулярного дерева на двух образующих:

$$a = (1, 1, \dots b)$$

Параболические подгруппы

$$P(\mathbf{e}) = \bigcap_{x_i \in x_e} St(x_i), \ x_e = \{e_1, \ e_1e_2, \ e_1e_2e_3...\}$$

Параболические подгруппы

Предложение из [BG01]

Пусть G < Aut(T), каждый элемент группы меняет каждый луч в конечном колличестве мест и обладает транзитивностью на уровне. Тогда существуют константы λ, μ такие, что $|g_i| \leq \lambda |g| + \mu$ для всех $i \in X$. Тогда асимптотический рост G/P это полином степени $\log_{1/\lambda'}(d)$, где λ' инфимум λ .

Основные результаты

Стабилизатор $P_{2^{\infty}}$

$$P_{2^{\infty}} = \langle \xi^n(a^b), \, \xi^n(a^{b^2}) \mid n \in \mathbb{N} \cup \{0\} \rangle, \quad \xi : \quad {a \mapsto b^3 \atop b \mapsto a}$$

Рис. 1: Представление порождающго множества P_{2^∞}

Обобщение на произвольный луч

Рис. 2: Представление порождающего множества $P_{021...}$

Некоторые факты о стабилизаторах

Предложение

- 1. $\operatorname{St}_G(2^{n+1}) = \langle a^b, a^{b^2}, \xi(\operatorname{St}_G(2^n)) \rangle$
- 2. $\operatorname{St}_G(2^{n+1}) \leq \operatorname{St}_G(2^n)$
- 3. $\operatorname{St}_G(2^n)/\operatorname{St}_G(2^{n+1})=C_3$

Сопряжения параболической подгруппы

Предложение

$$\mathbf{P}_{e_{1}e_{2}\dots e_{m}\dots}^{t_{e_{1}}(\dots t_{e_{m-1}}(b^{k})\dots)} = \mathbf{P}_{e_{1}e_{2}\dots \sigma^{k}(e_{m})\dots},\ k\in\mathbb{Z}$$

Рис. 3: Сопряжение стабилизаторов луча

Сопряжения параболической подгруппы

$$\psi(g^{b^{np+k}}) = (g|_{\sigma^{k}(0)}^{a^{n}}, g|_{\sigma^{k}(1)}^{a^{n}}, \dots, g|_{\sigma^{k}(p-k-1)}^{a^{n}}, g|_{\sigma^{k}(p-k)}^{a^{n+1}}, \dots, g|_{\sigma^{k}(p-1)}^{a^{n+1}}),$$

$$g \in B_{p}, n \in \mathbb{Z}, k \in \mathbb{Z}/p\mathbb{Z}$$

$$\xi \colon \begin{array}{c} a \mapsto b^{p} \\ b \mapsto a \end{array}$$

$$t_{x}(g) = \xi(g)^{b^{p-x-1}}$$

Ссылки

Список литературы

[BG01] Laurent Bartholdi и Rostislav I. Grigorchuk. *On Parabolic*Subgroups and Hecke Algebras of Some Fractal Groups. 2001.

arXiv: math/9911206 [math.GR].

[Dom+21] Elena Di Domenico и др. *p-Basilica groups.* 2021. arXiv: 2105.12443 [math.GR].

Спасибо за внимание!

Рис. 4: Ёж недоволен