APPM 5600 - Homework 7

Eappen Nelluvelil

October 15, 2021

1. We want to construct a rational function of the form

$$R(z) = \frac{\alpha + \beta z}{1 + \gamma z}$$

that interpolates the data (z_1, f_1) , (z_2, f_2) , and (z_3, f_3) at distinct points z_1, z_2, z_3 . In other words, we see α, β , and γ such that

$$R(z_j) = f_j, \quad j = 1, 2, 3.$$

Show how you can determine α , β , and γ by setting a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ for the unknown vector $\mathbf{x} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$.

(Just write the system down - you do not need to solve it.)

For the rational function to interpolate f at the three data points, it must be the case that

$$\frac{\alpha + \beta z_1}{1 + \gamma z_1} = f_1 \implies \alpha + \beta z_1 = f_1 + f_1 \gamma z_1 \implies \alpha + \beta z_1 - f_1 z_1 \gamma = f_1,$$

$$\frac{\alpha + \beta z_2}{1 + \gamma z_2} = f_2 \implies \alpha + \beta z_2 = f_2 + f_2 \gamma z_2 \implies \alpha + \beta z_2 - f_2 z_2 \gamma = f_2,$$

$$\frac{\alpha + \beta z_3}{1 + \gamma z_3} = f_3 \implies \alpha + \beta z_3 = f_3 + f_3 \gamma z_3 \implies \alpha + \beta z_3 - f_3 z_3 \gamma = f_3.$$

Thus, to determine α , β , and γ , we can solve the following linear system

$$\begin{bmatrix} 1 & z_1 & -f_1z_1 \\ 1 & z_2 & -f_2z_2 \\ 1 & z_3 & -f_3z_3 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}.$$

2. We studied in class interpolation of functions defined in 1D. We can adapt the technique to higher dimensions. For instance, let

$$f(x,y) = e^x \sin(y).$$

We want to construct a polynomial of the form

$$p(x,y) = c_0 + c_1x + c_2y + c_3xy + c_4x^2 + c_5y^2$$

that interpolates f at the points (x_i, y_i) :

$$p(x_i, y_i) = f(x_i, y_i), \quad 0 \le i \le 5.$$

1

(a) Set up a linear system $\mathbf{Ac} = \mathbf{f}$ to determine the coefficients c_0, \dots, c_5 . We can set up the following linear system to determine the coefficients $c_0, \dots c_5$:

$$\begin{bmatrix} 1 & x_0 & y_0 & x_0y_0 & x_0^2 & y_0^2 \\ 1 & x_1 & y_1 & x_1y_1 & x_1^2 & y_1^2 \\ 1 & x_2 & y_2 & x_2y_2 & x_2^2 & y_2^2 \\ 1 & x_3 & y_3 & x_3y_3 & x_3^2 & y_3^2 \\ 1 & x_4 & y_4 & x_4y_4 & x_4^2 & y_4^2 \\ 1 & x_5 & y_5 & x_5y_5 & x_5^2 & y_5^2 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} = \begin{bmatrix} f\left(x_0, y_0\right) \\ f\left(x_1, y_1\right) \\ f\left(x_2, y_2\right) \\ f\left(x_3, y_3\right) \\ f\left(x_4, y_4\right) \\ f\left(x_5, y_5\right) \end{bmatrix}.$$

(b) Write a MATLAB code to determine c when the data points are

$$(0,0)$$
, $(0,2)$, $(1,0)$, $(1,2)$, $(2,1)$, $(2,3)$.

Report your value for c.

Using the above data points, we get that

$$\mathbf{c} = \begin{bmatrix} 0 \\ -0.949163105223492 \\ 5.059193000070850 \\ 0.781214622589569 \\ 0.949163105223492 \\ -2.302272143329005 \end{bmatrix}.$$

(c) Plot your polynomial p over $x \in [-1,3]$, $y \in [-1,3]$ using MATLAB's surf command (or the corresponding command in your preferred coding language). Compare this plot to a similar plot for f. See attached code.

We see that the second-order multivariate polynomial interpolates f at the provided notes, which is expected, but does not match f elsewhere. This is also expected because the nodes are not clustered near the boundaries of the meshgrid, and thus, the interpolant does a poor job of approximating other than at the specified nodes.

3. Recall the Lagrange basis functions ℓ_j defined for x_0,\ldots,x_n are defined by

$$\ell_j(x) = \prod_{i \neq j} \left(\frac{x - x_i}{x_j - x_i} \right)$$

for $i = 0, \ldots, n$.

(a) Prove that for any $n \ge 1$,

$$\sum_{j=0}^{n} \ell_j(x) = 1$$

for all $x \in \mathbb{R}$.

Define ℓ to be the polynomial $\ell(x) = \sum_{j=0}^{n} \ell_j(x)$. We know that ℓ interpolates the data points $(x_i, 1)$ for $i = 0, \ldots, n$ by definition of the ℓ_j 's. However, ℓ is an n^{th} degree polynomial that interpolates 1 at n+1 locations. This implies that ℓ must be identically equal to the constant 1 for all $x \in \mathbb{R}$, as desired.

(b) Define $\psi(x) = (x - x_0) \cdots (x - x_n)$. Show that the polynomial interpolant of degree n that interpolates the data $(x_i, f(x_i))$ for $i = 0, \dots, n$ can be written in the form

$$p_{n}(x) = \sum_{i=0}^{n} \frac{\psi(x)}{(x - x_{i}) \psi'(x_{i})} f(x_{i}),$$

provided $x \neq x_i$ for all i.

Taking the logarithm of ψ , we have that

$$\log (\psi(x)) = \sum_{i=0}^{n} \log (x - x_i).$$

We know that $\frac{\mathrm{d}}{\mathrm{d}x}\left(\log\left(\psi\left(x\right)\right)\right)=\frac{\psi^{'}\left(x\right)}{\psi\left(x\right)},$ and we also know that

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\log\left(\psi\left(x\right)\right)\right) = \sum_{i=0}^{n} \frac{1}{x - x_{i}},$$

which is defined for all $x \neq x_0, \dots, x_n$. Equating the two expressions, we have that

$$\frac{\psi^{'}\left(x\right)}{\psi\left(x\right)} = \sum_{i=0}^{n} \frac{1}{x - x_{i}} \implies \psi^{'}\left(x\right) = \psi\left(x\right) \sum_{i=0}^{n} \frac{1}{x - x_{i}},$$

which is defined for all $x \neq x_0, \dots x_n$. Then, we have that $\psi^{'}(x_i)$ is given by

$$\psi'(x_i) = \psi(x_i) \sum_{j=0}^{n} \frac{1}{x_i - x_j}$$

$$= (x_i - x_0) \cdots (x_i - x_n) \sum_{j=0}^{n} \frac{1}{x_i - x_j}$$

$$= \sum_{j=0}^{n} \frac{(x_i - x_0) \cdots (x_i - x_n)}{x_i - x_j}$$

$$= \sum_{j=0}^{n} (x_i - x_0) \cdots (x_i - x_{j-1}) (x_i - x_{j+1}) \cdots (x_i - x_n)$$

$$= \prod_{j=0, j \neq i}^{n} (x_i - x_j).$$

We see that the i^{th} term of p_n is given by

$$\frac{\psi(x)}{(x-x_i)\psi'(x_i)}f(x_i) = \frac{\prod_{j=0, j\neq i}^n x - x_j}{\prod_{j=0, j\neq i}^n x_i - x_j}f(x_i)$$
$$= \ell_i(x)f(x_i).$$

Thus, we see that i^{th} term of p_n is the i^{th} Lagrange polynomial multiplied by $f(x_i)$. That is, p_n is given by

$$p_n(x) = \sum_{i=0}^{n} \ell_i(x) f(x_i),$$

which we know is the unique polynomial interpolant of degree n that interpolates the data $(x_i, f(x_i))$ for $i = 0, \ldots, n$.

(c) Define next

$$w_i = \frac{1}{\psi'(x_i)}.$$

Show that the polynomial interpolant of degree n that interpolates the data $(x_i, f(x_i))$ for $i = 0, \dots, n$ can be written in the form

$$p_n(x) = \frac{\sum_{i=0}^{n} \frac{w_i f(x_i)}{x - x_i}}{\sum_{i=0}^{n} \frac{w_i}{x - x_i}},$$

provided $x \neq x_i$ for all i. This form is called the barycentric representation of p_n , giving it as a weighted sum of the values $f(x_0), \ldots, f(x_n)$.

From part (b), we note that the i^{th} Lagrange polynomial is given by

$$\ell_i(x) = \frac{\psi(x)}{(x - x_i) \psi'(x_i)}$$
$$= \psi(x) \frac{w_i}{(x - x_i)}.$$

Then, the unique polynomial interpolant of degree n that interpolates the data $(x_i, f(x_i))$ for $i = 0, \dots, n$ is given by

$$p_n(x) = \sum_{i=0}^n \ell_i(x) f(x_i)$$
$$= \sum_{i=0}^n \psi(x) \frac{w_i f(x_i)}{(x - x_i)}$$
$$= \psi(x) \sum_{i=0}^n \frac{w_i f(x_i)}{(x - x_i)}.$$

We also recall from part (a) that

$$\sum_{i=0}^{n} \ell_i(x) = \sum_{i=0}^{n} \psi(x) \frac{w_i}{(x - x_i)}$$
$$= \psi(x) \sum_{i=0}^{n} \frac{w_i}{(x - x_i)}$$
$$= 1.$$

Rearranging the above equation to solve for $\psi(x)$, we have that

$$\psi\left(x\right) = \frac{1}{\sum_{i=0}^{n} \frac{w_i}{(x - x_i)}}.$$

Thus, we have that

$$p_{n}(x) = \psi(x) \sum_{i=0}^{n} \frac{w_{i} f(x_{i})}{(x - x_{i})}$$
$$= \frac{\sum_{i=0}^{n} \frac{w_{i} f(x_{i})}{(x - x_{i})}}{\sum_{i=0}^{n} \frac{w_{i}}{(x - x_{i})}},$$

as desired.

Homework 7

Problem 2

```
clc;
clear;
close all;
f = @(x, y) \exp(x).*\sin(y);
x_{interp} = [0; 0; 1; 1; 2; 2];
y_interp = [0; 2; 0; 2; 1; 3];
A = [ones(size(x_interp)), x_interp, y_interp, x_interp.*y_interp, ...
     x_interp.^(2), y_interp.^(2)];
b = f(x_interp, y_interp);
% Solve for the multivariate interpolant coefficients
c = A \setminus b;
fprintf("Coefficients for question 2b: \n");
disp(c);
f_{interp} = @(c, x, y) c(1)*ones(size(x)) + c(2)*x + c(3)*y + c(4)*x.*y +
c(5)*x.^{(2)} + c(6)*y.^{(2)};
a = -1; b = 3; n = 25;
[XX, YY] = meshgrid(linspace(a, b, n), linspace(a, b, n));
ZZ_f = f(XX, YY);
ZZ_f_interp = f_interp(c, XX, YY);
figure(1);
surf_f = surf(XX, YY, ZZ_f);
xlabel("x");
ylabel("y");
zlabel("z");
title("Surface plot of f(x) = e^{x} \sin(y)");
legend(surf_f, {'f'});
figure(2);
surf_f_interp = surf(XX, YY, ZZ_f_interp);
xlabel("x");
ylabel("y");
zlabel("z");
title("Surface plot of p_{6} interpolant of f(x) = e^{x} \sin(y)");
legend(surf_f_interp, {'p_6'});
Coefficients for question 2b:
         0
   -0.9492
    5.0592
    0.7812
```

0.9492 -2.3023

2

-1

Х

Published with MATLAB® R2021b

У