GRAPHES: REPRÉSENTATION ET PARCOURS

Graphes non-orientés

Déf. Un graphe non-orienté est representé par un couple (V, E) où $E \subseteq \binom{V}{2}$ (paires non-ordonnées).

V est l'ensemble des sommets et E est l'ensemble des arêtes.

Barabási & Oltvai Nature Rev Genet 5:101, 2004

Graphes orientés

Déf. Un graphe orienté est representé par un couple (V, E) où $E \subseteq V \times V$ (paires ordonnées).

V est l'ensemble des nœuds ou sommets, et E est l'ensemble des arcs.

Terminologie

Graphe non-orienté

L'arête $\{u,v\}$ est dénotée par uv.

Si $uv \in E$, alors v est adjacent à u.

L'arête $uv \in E$ est incidente aux sommets u et v.

Le degré de $u \in V$ est le nombre d'arêtes qui y sont incidentes.

Graphe orienté

L'arc (u, v) est dénotée par uv: l'arc part de u et arrive à v.

Si $uv \in E$, alors v est adjacent à u.

Le degré sortant de $u \in V$ est le nombre d'arcs qui y partent; le degré rentrant est le nombre d'arcs qui y arrivent.

Chemins

Un **chemin** de longueur ℓ est une séquence v_0, v_1, \ldots, v_ℓ où $v_{i-1}v_i \in E$ pour tout $i = 1, \ldots, \ell$.

 $(\ell = 0 \text{ est OK} : \text{chemin sans arêtes/arcs.})$

Si $v_0 = v_\ell$, alors le chemin forme un **cycle**.

(Plus précisement, les sommets initial et final ne sont pas distingués dans le cycle.)

Le chemin $v_0 \cdots v_\ell$ est élémentaire ssi v_1, \dots, v_ℓ sont distincts. Si $v_0 = v_\ell$, alors le chemin forme un cycle élémentaire.

Un graphe sans cycle est dit acyclique.

Un graphe non-orienté est **connexe** si chaque paire de sommets est relié par un chemin.

Un graphe non-orienté connexe acyclique est un arbre.

Sous-graphes

Le graphe G'=(V',E') est un sous-graphe de G=(V,E) ssi $V'\subseteq V$ et $E'\subseteq E$.

Étant donné un sous-ensemble de sommets $V' \subseteq V$, le sous-graphe de G engendré par V' est le graphe G' = (V', E') avec $E' = \{uv \in E : u, v \in V'\}$.

Pondération

Graphe ponderé : chaque arc (ou arête) possède un **poids** ou coût associé, défini par la fonction de pondération $c \colon E \mapsto \mathbb{R}$.

Poids d'un sous-graphe : somme de poids des arcs dans le sous-graphe

Poids d'un chemin : somme de poids des arcs dans le chemin

Questions intéressantes

Stocker les graphes dans le mémoire d'un ordinateur

Parcours d'un graphe

Vérifier si le graphe est connexe

Plus court chemins

Arbres couvrants

Comment stocker le graphe?

Matrice d'adjacence : matrice $V \times V$, A[u,v] donne le poids de uv ($\pm \infty$ ou NaN pour arcs non-existants), ou valeurs booléennes pour noter juste présence

Listes d'adjacence : liste $\mathsf{Adj}[u]$ pour chaque sommet u qui stocke l'ensemble $\{v\colon uv\in E\}$ ou l'ensemble des couples $\{\langle v,c(u,v)\rangle\colon uv\in E\}$.

Usage de mémoire : dépend de la densité du graphe $\frac{|E|}{|V|^2}$.

Déterminer si $uv \in E$ ou c(u, v): rapide avec la matrice mais plus lente avec les listes d'adjacence

Parcours d'un arbre

Un parcours visite tous les nœuds de l'arbre.

- * parcours préfixe (preorder traversal) : chaque nœud est visité avant que ses enfants soient visités.
- * parcours postfixe (postorder traversal) : chaque nœud est visité après que ses enfants sont visités.
- * avec un arbre binaire, on a aussi le **parcours infixe** (*inorder traversal*) : chaque nœud est visité après son enfant gauche mais avant son enfant droit.

Parcours préfixe et postfixe

```
Algo PARCOURS-PRÉFIXE(x)

1 if x \neq \text{null then}

2 visiter x

3 for i \leftarrow 1, \dots, k do PARCOURS-PRÉFIXE(\text{enfant}(x, i))
```

```
Algo PARCOURS-POSTFIXE(x)

1 if x \neq \text{null then}

2 for i \leftarrow 1, ..., k do PARCOURS-POSTFIXE(enfant(x, i))

3 visiter x
```

(enfant(x, i) donne l'enfant de <math>x étiqueté par i— s'il n'y en a pas, alors null)

Maintenant PARCOURS-PRÉFIXE (racine) va visiter tous les nœuds dans l'arbre dans l'ordre préfixe.

Parcours infixe

Algo PARCOURS-INFIXE(x)1 if $x \neq \text{null then}$ 2 PARCOURS-INFIXE(gauche(x))3 visiter x4 PARCOURS-INFIXE(droit(x))

Arbre syntaxique

notation infixe: 2*(3+7) notation préfixe: * 2 + 3 7 notation postfixe: 2 3 7 + *

Parcours avec pile

```
Algo PARCOURS-PILE

1 initialiser la pile P

2 P.push(root)

3 while P \neq \emptyset

4 x \leftarrow P.pop()

5 if x \neq null then

6 «visiter» x

7 for y \in x.children do P.push(y)
```

Parcours avec queue

```
Algo PARCOURS-NIVEAU

1 initialiser la queue Q

2 Q.enqueue(root)

3 while Q \neq \emptyset

4 x \leftarrow Q.dequeue()

5 if x \neq null then

6 «visiter» x

7 for y \in x.children do Q.enqueue(y)
```

PostScript

PostScript est un langage de programmation qui utilise une pile Opérations en Postscript : add, sub mul div

P.e., la suite d'instructions 5 2 sub place 5 et 2 sur la pile (dans cet ordre), et l'opérateur sub prend les deux éléments en haut de la pile pour les remplacer par le résultat de la soustraction. Dans ce cas-ci, la pile contiendra le seul élément 3 à la fin.

Opérateurs en PS

pile avant	opérateur	pile après	description
Arithmétique			
$x_1 x_2$	add	x	addition $(x = x_1 + x_2)$
$x_1 x_2$	sub	x	soustraction ($x = x_1 - x_2$)
$x_1 x_2$	mul	x	multiplication ($x = x_1 \cdot x_2$)
$x_1 x_2$	div	x	division $(x = x_1/x_2)$
nm	mod	r	$reste (r = n \mod m)$
n	neg	-n	négative
Manipulation de la pile			
x	pop	_	dépile le haut
$x_1 x_2$	exch	$x_2 x_1$	échange les deux éléments en haut
x	dup	x x	duplique l'élément en haut
$x_1 x_2 \ldots x_n n$	copy	$x_1 x_2 \ldots x_n x_1 x_2 \ldots x_n$	duplique n éléments en haut
$x_n x_{n-1} \dots x_0 n$	index	$x_n x_{n-1} \dots x_0 x_n$	copiage d'un élément arbitraire
$x_{n-1} x_{n-2} \ldots x_0 n j$	roll	$x_{(j-1) mod n} \dots x_0, x_{n-1} \dots x_j mod n$	décalage circulaire
Opérateurs de contrôle			
b p	if	_	exécute p si b est vraie
$b p_1 p_2$	ifelse	_	exécute p_1 si b est vraie; p_2 sinon
$n_{0}dn_{max}p$	for	_	boucle exécutée avec $n_0, n_0 + d, \dots n_{\text{max}}$
n p	repeat	_	boucle exécutée n fois (sans variables d'itération)
Tableaux	-		1/1 1 1 11
	Į	marque	début de construction de tableau
$marque x_0 \dots x_{n-1}$	1	tableau	finit la construction du tableau
tableau i	get	x_i	accès à élément avec indice i (=0 pour le premier)
tableau	length	n	longueur du tableau
tableau p	forall	_	boucle exécutée pour chaque élément du tableau
Affichage sur sortie standard			
x	=	_	affiche le haut de la pile sur le flux standard
	stack	_	affiche le contenu de la pile sans la détruire

PostScript

```
%!PS-Adobe-3.0 EPSF-3.0
                                       `%%' dénote un commentaire spécial. Ici on montre le préambule minimal
%%BoundingBox: 0 0 612 792 selon la spécification EPSF (encapsulated PostScript) qui inclut l'indication de la
%%EndComments
                                      boîte englobant tout le dessin (BoundingBox) en points (=1/72 pouce)
% a. manipulation de la pile ← `%' dénote un commentaire jusqu'à la fin de la ligne (comme // en Java).
1 2 3.25 4e10 -5 6 7 8 % valeurs empilees ←on écrit les nombres comme en Java
                ←rotation circulaire de quatre éléments vers le bas de la pile
4 1 roll
            ← dépile l'élément en haut
pop
exch
            ← échange les deux éléments en haut de la pile
7 -4 roll
                 ← rotation circulaire de sept éléments vers le haut de la pile
% b. nouvel operateur
                                        on définit un nouvel opérateur op par /op { ... } def
/mystique ← `/' sert comme caractère d'échappement; ceci évite l'évaluation immédiate
                   ← accolades enferment un bloc d'instructions; ceci aussi évite l'évaluation immédiate
     2 copy ← duplique les deux éléments en haut (avant: x y, après: x y x y)
                 ← test logique de «plus grand que»; remplace les deux éléments en haut par true ou false
          exch
     } if
               ← énoncé conditionnel; s'écrit par { ... } if. Cela consume la valeur booléenne en haut de la pile,
     pop
               et exécute le code bloc si elle est vraie. Pour avoir une branche «sinon», utiliser {code pour si}
} def
                {code pour sinon} ifelse
10 25 add /dfrnc exch def
                                      ← on définit une variable var par /var valeur def. Souvent, on combine
                                      avec exch quand la valeur est le résultat d'un calcul (pour lisibilité).
/sigle (IFT2015\tA13:) def ← une chaîne de caractères s'écrit entre parenthèses (et non pas guillemets);
                                      '\t' est le caractère de tabulation, échappée comme en Java.
/montableau [1 2 3 -4] def ← on définit un tableau par crochets
    [0 2 1000 {} for] ← définition d'un tableau contenant 0,2,4,6,...,1000; for définit une boucle (init,
/autretbl exch def incrément, valeur finale). (Logique de PostSript: il exécute le bloc {...} après avoir placé la
                            valeur de la variable d'itération sur la pile à chaque itération. Comme on ne dépile pas,
                            toutes les valeurs restent sur la pile et ']' les enlève jusqu'au crochet ouvert.)
% c. parcours d'un tableau
                                         Par convention, on décrit l'usage d'un opérateur en spécifiant les
/tbl.? % [x0 x1 ...] tbl.? x
                                         arguments (de gauche à droit, dans l'ordre d'empiler), et le résultat
                                         de l'opération remplaçant les arguments. Il n'y a pas de restriction
     0 exch
                                         sur le nom d'opérateurs — on peut utiliser tout caractère sauf %.
          0 lt {1 add } if ← lt est le test logique de «plus petit que»
     } forall ← boucle sur les éléments du tableau: {...} forall. En chaque itération,
} def
                 le prochain élément du tableau est automatiquement empilé et le code bloc
                 est exécuté; le tableau même est dépilé avant la première itération.
montableau tbl.? ← exécuter tbl.? avec montableau
20 string cvs \leftarrow conversion en string; le syntaxe est x s cvs s', où x est la valeur à convertir, s est un string
                    de longueur suffisante, allouée par 20 string. Le résultat s' remplace le contenu de s
/Times-Roman 12 selectfont ← sélection de police de 12 pt. Times est une des polices prédéfinies.
10 20 moveto ← déplacement aux coordonnées (10, 20). Axes X et Y vont de gauche à droit et de bas vers haut
sigle show show ← dessin de 2 strings à partir de la position courante (10,20).
5 3.5 rmoveto 612 792 lineto stroke ← déplacement+dessin de ligne; stroke raie le chemin construit
% %EOF ←commentaire spécial exigé par la spécification EPSF à la fin du fichier.
```

Parcours de graphe

Idée générale : suivre toujours une arête qui mène d'un sommet visité à un sommet non-visité

Parcours par profondeur : choix d'arête/arc uv où u est visité le plus récemment (pile)

Parcours par largeur : choix d'arête/arc uv où u est visité le moins récemment (queue)

Parcours en profondeur — DFS

Technique essentielle: marquage/coloriage «jamais vu», «déjà vu»

```
(init) \operatorname{\mathsf{parent}}[s] \leftarrow s; \operatorname{\mathsf{for}} u \leftarrow 0, 1, \dots, n-1 do \operatorname{\mathsf{couleur}}[u] \leftarrow \operatorname{\mathsf{verte}}
\operatorname{\mathsf{DFS}}(s) \qquad \qquad // \operatorname{\mathsf{parcours}} \operatorname{\mathsf{en}} \operatorname{\mathsf{profondeur}} \operatorname{\mathsf{a}} \operatorname{\mathsf{partir}} \operatorname{\mathsf{de}} \operatorname{\mathsf{sommet}} s
\operatorname{\mathsf{D1}} \operatorname{\mathsf{couleur}}[s] \leftarrow \operatorname{\mathsf{jaune}} \qquad \qquad // \operatorname{\mathsf{prévisite}} \operatorname{\mathsf{de}} s
\operatorname{\mathsf{D2}} \operatorname{\mathsf{for}} st \in \operatorname{\mathsf{Adj}}[s] \operatorname{\mathsf{do}} \qquad // \operatorname{\mathsf{pour}} \operatorname{\mathsf{tout}} \operatorname{\mathsf{sommet}} t \operatorname{\mathsf{adjacent}} \operatorname{\mathsf{a}} s
\operatorname{\mathsf{D3}} \quad \operatorname{\mathsf{if}} \operatorname{\mathsf{couleur}}[t] = \operatorname{\mathsf{verte}} \operatorname{\mathsf{then}} \operatorname{\mathsf{DFS}}(t); \operatorname{\mathsf{parent}}[t] \leftarrow s \qquad // \operatorname{\mathsf{visite}} \operatorname{\mathsf{du}} \operatorname{\mathsf{voisin}} t
\operatorname{\mathsf{D4}} \operatorname{\mathsf{couleur}}[s] \leftarrow \operatorname{\mathsf{rouge}} \qquad // \operatorname{\mathsf{post-visite}} \operatorname{\mathsf{de}} s
```

(Généralisation du parcours préfixe ou postfixe sur les arbres.)

Graphe biparti (avec DFS)

```
(init) partition[s] \leftarrow 1; for u \leftarrow 0, 1, ..., n-1 do couleur[u] \leftarrow verte DFS-BIP(s)  // tester si la composante connexe des est biparti 1 couleur[s] \leftarrow jaune 2 for st \in Adj[u] do 3 if couleur[t] = verte then  // arête de liaison 4 partition[t] = 3 - partition[t]  // 1 \leftrightarrow 2 DFS-BIP(t) 6 else if couleur[t] = jaune then  // parent ou arête retour 7 if partition[t] \neq partition[t] then die(«Cycle de longueur impaire»)
```

Tri topologique (avec DFS)

```
(init) \operatorname{\mathsf{parent}}[s] \leftarrow s; \operatorname{\mathsf{for}} u \leftarrow 0, 1, \dots, n-1 do \operatorname{\mathsf{couleur}}[u] \leftarrow \operatorname{\mathsf{verte}}
\operatorname{\mathsf{DFS}}(s) \qquad \qquad // \operatorname{\mathsf{parcours}} \operatorname{\mathsf{en}} \operatorname{\mathsf{profondeur}} \operatorname{\mathsf{a}} \operatorname{\mathsf{partir}} \operatorname{\mathsf{de}} \operatorname{\mathsf{sommet}} s
\operatorname{\mathsf{D1}} \operatorname{\mathsf{couleur}}[s] \leftarrow \operatorname{\mathsf{jaune}} \qquad \qquad // \operatorname{\mathsf{prévisite}} \operatorname{\mathsf{de}} s
\operatorname{\mathsf{D2}} \operatorname{\mathsf{for}} st \in \operatorname{\mathsf{Adj}}[s] \operatorname{\mathsf{do}} \qquad // \operatorname{\mathsf{pour}} \operatorname{\mathsf{tout}} \operatorname{\mathsf{sommet}} t \operatorname{\mathsf{adjacent}} \operatorname{\mathsf{a}} s
\operatorname{\mathsf{D3}} \operatorname{\mathsf{if}} \operatorname{\mathsf{couleur}}[t] = \operatorname{\mathsf{verte}} \operatorname{\mathsf{then}} \operatorname{\mathsf{DFS}}(t); \operatorname{\mathsf{parent}}[t] \leftarrow s \qquad // \operatorname{\mathsf{visite}} \operatorname{\mathsf{du}} \operatorname{\mathsf{voisin}} t
\operatorname{\mathsf{D4}} \operatorname{\mathsf{couleur}}[s] \leftarrow \operatorname{\mathsf{rouge}}; P.\operatorname{\mathsf{push}}(u)
```


À la fin, P.pop défile dans l'ordre topologique.

Parcours en largeur

Utiliser une file FIFO (queue) Q

```
1 BFS(s)
 2 for u \leftarrow 0, 1, \dots, n-1 do couleur[u] \leftarrow jaune
 3 d[s] \leftarrow 0; parent[s] \leftarrow s
 4 Q.enqueue(s); couleur[s] \leftarrow jaune
    while Q \neq \emptyset do
 6
          u \leftarrow Q.\mathsf{dequeue}()
          for uv \in Adj[u] do
                 if couleur[v] = verte then
                       d[v] \leftarrow d[u] + 1; \mathsf{parent}[v] \leftarrow u
                       Q.enqueue(v); couleur[v] \leftarrow jaune
10
11
                 end
12
           end
           couleur[u] \leftarrow rouge
13
14 end
```

BFS trouve les plus courts chemins

