Fundamental Physical Constants — Universal constants

Quantity	Symbol	Value	Unit	Relative std. uncert. u_r
	~ J			
speed of light in vacuum	c, c_0	299 792 458	$m s^{-1}$	(exact)
magnetic constant	μ_0	$4\pi \times 10^{-7}$	NA^{-2}	
		$= 12.566370614 \times 10^{-7}$	$N A^{-2}$	(exact)
electric constant $1/\mu_0 c^2$	ε_0	$8.854187817\times 10^{-12}$	${ m F}{ m m}^{-1}$	(exact)
characteristic impedance				
of vacuum $\sqrt{\mu_0/\epsilon_0} = \mu_0 c$	Z_0	376.730313461	Ω	(exact)
Newtonian constant				
of gravitation	G	$6.673(10) \times 10^{-11}$	$m^3 kg^{-1} s^{-2}$	1.5×10^{-3}
	$G/\hbar c$	$6.707(10) \times 10^{-39}$	$(\text{GeV}/c^2)^{-2}$	1.5×10^{-3}
Planck constant	h	$6.62606876(52) \times 10^{-34}$	J s	7.8×10^{-8}
in eV s		$4.13566727(16) \times 10^{-15}$	eV s	3.9×10^{-8}
$h/2\pi$	ħ	$1.054571596(82) \times 10^{-34}$	J s	7.8×10^{-8}
in eV s		$6.58211889(26) \times 10^{-16}$	eV s	3.9×10^{-8}
Planck mass $(\hbar c/G)^{1/2}$	m_{P}	$2.1767(16) \times 10^{-8}$	kg	7.5×10^{-4}
Planck length $\hbar/m_{\rm P}c = (\hbar G/c^3)^{1/2}$	$l_{ m P}$	$1.6160(12) \times 10^{-35}$	m	7.5×10^{-4}
Planck time $l_P/c = (\hbar G/c^5)^{1/2}$	$t_{ m P}$	$5.3906(40) \times 10^{-44}$	S	7.5×10^{-4}