Statistics for Data Science - 2 Distribution table

Discrete random variables:

Distribution	PMF $(f_X(k))$	$CDF(F_X(x))$	E[X]	Var(X)
Uniform(A) $A = \{a, a + 1, \dots, b\}$	$ \frac{1}{n}, x = k $ $ n = b - a + 1 $ $ k = a, a + 1, \dots, b $	$\begin{cases} 0 & x < 0 \\ \frac{k-a+1}{n} & k \le x < k+1 \\ & k = a, a+1, \dots, b-1, b \\ 1 & x \ge n \end{cases}$	$\frac{a+b}{2}$	$\frac{n^2-1}{12}$
Bernoulli(p)	$\begin{cases} p & x = 1 \\ 1 - p & x = 0 \end{cases}$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$	p	p(1-p)
$\operatorname{Binomial}(n,p)$	${}^{n}C_{k}p^{k}(1-p)^{n-k},$ $k=0,1,\ldots,n$	$\begin{cases} 0 & x < 0 \\ \sum_{i=0}^{k} {}^{n}C_{i}p^{i}(1-p)^{n-i} & k \le x < k+1 \\ & k = 0, 1, \dots, n \\ 1 & x \ge n \end{cases}$	np	np(1-p)
Geometric(p)	$(1-p)^{k-1}p,$ $k=1,\ldots,\infty$	$\begin{cases} 0 & x < 0 \\ 1 - (1 - p)^k & k \le x < k + 1 \\ & k = 1, \dots, \infty \end{cases}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$\operatorname{Poisson}(\lambda)$	$\frac{e^{-\lambda}\lambda^k}{k!},$ $k = 0, 1, \dots, \infty$	$\begin{cases} 0 & x < 0 \\ e^{-\lambda} \sum_{i=0}^{k} \frac{\lambda^{i}}{i!} & k \le x < k+1 \\ & k = 0, 1, \dots, \infty \end{cases}$	λ	λ

Continuous random variables:

Distribution	PDF $(f_X(k))$	CDF $(F_X(x))$	E[X]	$\operatorname{Var}(X)$
$\operatorname{Uniform}[a,b]$	$\frac{1}{b-a}, a \le x \le b$	$\begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x \ge b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x}, x > 0$	$\begin{cases} 0 & x \le 0 \\ 1 - e^{-\lambda x} & x > 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$Normal(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right),$ $-\infty < x < \infty$	No closed form	μ	σ^2
Normal(0, 1) (Standard Normal)	$\frac{1}{\sqrt{2\pi}} \exp\left(\frac{-x^2}{2}\right),$ $-\infty < x < \infty$	No closed form	0	1
$\operatorname{Gamma}(\alpha,\beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \ x > 0$ $\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1 - x)^{\beta-1}$		$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
$\mathrm{Beta}(lpha,eta)$	$\begin{vmatrix} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} \\ 0 < x < 1 \end{vmatrix}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$