Verzamelingen-Veltman frames en modellen

Definitie 1.

Een IL_{Set} frame is een L-frame <W,R> met een extra relatie S_w voor iedere $w \in W$, met de volgende eigenschappen:

- (I) $S_w \subseteq W[w] \times P(W[w]) \setminus \emptyset$
- (II) S_w is "reflexief": Als wRx, dan $xS_w\{x\}$ S_w is "transitief": Als xS_wY dan geldt voor alle $y \in Y$ en alle $V \in P(W[w]) : yS_wV \Longrightarrow xS_wV$.

(III)Als wRw'Rw", dan w'Sw{w"}

Een IL_{Set} model bestaat uit een IL_{Set} frame $\langle W,R,S \rangle$ met een \nearrow forcing relatie \Vdash die voldoet aan:

Het is niet moeilijk in te zien dat voor ieder IL_{Set} model K, K⊨ IL.

From ILset models to IL models

Theorem 2.

Let $\langle W,R,S,\Vdash \rangle$ be an IL_{Set} model. Then there is an IL model $\langle W',R',S',\Vdash' \rangle$ and a bijection $f:W\to P(W')$ such that for all $w\in W$ and all $w'\in f(w):w\Vdash \psi^*\Longleftrightarrow w'\Vdash^!\psi$.

Proof.

Let W' consist of all points $\langle x,A \rangle$, where $x \in W$ and A is a set of ordered pairs such that:

For all w, V with xS_wV , there is a $v \in V$ with $\langle w, v \rangle \in A$; and, conversely, if $\langle w, v \rangle \in A$, then there is a V such that $v \in V$ and xS_wV .

Define R', S' as follows: $\langle x,A\rangle R'\langle y,B\rangle \iff xRy \text{ and for all wisuch that } wRx; \text{ and all } z:$ if $\langle w,z\rangle \in B$, then $\langle w,z\rangle \in A$.

 $\langle x,A\rangle S'_{\langle w,C\rangle}\langle y,B\rangle \iff \langle w,C\rangle R'\langle x,A\rangle, \langle w,C\rangle R'\langle y,B\rangle \text{ and for all } v:$

cylish him which a property a

if $\langle w,v \rangle \in B$, then $\langle w,v \rangle \in A$ (thus in particular, because S_w 's being "reflexive" implies $\langle w,y \rangle \in B$, we have $\langle w,y \rangle \in A$).

Finally, define \Vdash as follows: $\langle x,A \rangle \Vdash$ $\uparrow p \iff x \Vdash p$.

We will prove that

- (a) <W',R',S'> is an IL frame
- (b) For all φ , $\langle x,A \rangle \Vdash '\varphi \iff x \Vdash \varphi$

Proof of (a):

First of all, it is not difficult to see that $\langle W',R' \rangle$ is an L-frame. Checking the clauses for $S'_{\langle W,C \rangle}$ requires a bit more work.

- (I') If $\langle w,C \rangle \in W'$, then $S'_{\langle w,C \rangle}$ is a relation on $W'[\langle w,C \rangle]$; this follows immediately from the definition of $S'_{\langle w,C \rangle}$.
- (II') $S'_{\langle w,C \rangle}$ is reflexive; for suppose $\langle w,C \rangle R'\langle x,A \rangle$, then by the definition of $W': \langle x,A \rangle S'_{\langle w,C \rangle}\langle x,A \rangle$. $S'_{\langle w,C \rangle}$ is transitive; for suppose $\langle x,A \rangle S'_{\langle w,C \rangle}\langle y,B \rangle S'_{\langle w,C \rangle}\langle z,D \rangle$, then $\langle w,C \rangle R'\langle x,A \rangle$, $\langle w,C \rangle R'\langle z,D \rangle$ and for all $v: if \langle w,v \rangle \in D$, then $\langle w,v \rangle \in B$, and thus $\langle w,v \rangle \in A$; therefore $\langle x,A \rangle S'_{\langle w,C \rangle}\langle z,D \rangle$.
- (III') If $\langle w,C \rangle R' \langle x,A \rangle R' \langle y,B \rangle$, then wRx and by definition of R': for all z, if $\langle w,z \rangle \in B$, then $\langle w,z \rangle \in A$; therefore $\langle x,A \rangle S'_{\langle w,C \rangle} \langle y,B \rangle$.

Proof of (b):

As usual, the only interesting case is the induction step for >.

Suppose $w \Vdash \psi \rhd \psi$ and $\langle w,C \rangle \in W'$. We want to prove $\langle w,C \rangle \Vdash '\psi \rhd \psi$. So suppose $\langle w,C \rangle R' \langle x,A \rangle$ and $\langle x,A \rangle \Vdash '\psi$.

Then wRx and, by the induction hypothesis, $x \Vdash \phi$. Therefore, there is a \lor with $xS_w \lor$ and $\forall y \in \lor y \Vdash \psi$. We want to find a B such that $\langle x,A \rangle S'_{\langle w,C \rangle} \langle y,B \rangle$. This is possible because of the following two facts:

- (1) By "transitivity" of S_w , we have $\forall \lor (yS_w \lor \Rightarrow xS_w \lor)$
- (2) For any b with bRwRy we have, by (III), $wS_b\{y\}$, and thus by transitivity: if yS_bV , then wS_bV .

Therefore, we can take a B such that $\langle y,B\rangle \in W'$ and, by (1), for all v, if $\langle w,v\rangle \in B$, then $\langle w,v\rangle \in A$; moreover wRy and, by (2), if bRw, then for all z: if $\langle b,z\rangle \in B$, then $\langle b,z\rangle \in C$, so $\langle w,C\rangle R' \langle y,B\rangle$. In conclusion, $\langle x,A\rangle S'_{\langle w,C\rangle} \langle y,B\rangle$ and by induction hypothesis, $\langle y,B\rangle \Vdash '\psi$.

Suppose on the other hand that $w \Vdash \neg (\phi \rhd \psi)$. We will prove $\langle w, C \rangle \Vdash \neg (\phi \rhd \psi)$.

First, $w \Vdash \neg (\phi \rhd \psi)$ implies that there is an x with wRx and for all \lor with $xS_w \lor$ there is a $y \in \lor$ such that $y \Vdash \neg \psi$.

Therefore, it is possible to take an A such that $\langle x,A\rangle \in W'$ and for all y: if $\langle w,y\rangle \in A$, then $y \Vdash \neg \psi$, and moreover $\langle w,C\rangle R'\langle x,A\rangle$ (the extra clause for R' doesn't interfere with our desiderations for A). For this $\langle x,A\rangle$, we have by induction hypothesis $\langle x,A\rangle \Vdash \varphi$.

Moreover, if $\langle x,A \rangle S'_{\langle w,C \rangle} \langle y,B \rangle$, then $\langle w,y \rangle \in B$, and thus $\langle w,y \rangle \in A$ [see earlier remark], so by induction hypothesis $\langle y,B \rangle \Vdash \neg \psi$

Def W[w]:= {w' \in W | w Rw'}

Def

An 11 Set frame is an 1-frame < w, R>+

for each w∈ W, a relation Sw with The

following properties:

(I) $S_{W} \subseteq W[w] \times P(W[w]) \setminus \emptyset$ (II) S_{W} is "quasi-reflexive": for all $w, x, wRx \longrightarrow x S_{W} E \times 3$ S_{W} is "quasi-Framsitive": $S_{W} \times W \longrightarrow V \times P(W[w])(yS_{W} \times S_{W} \times$

An Uset model consists of an User-frame < W, R, {5: wew} > + a foreing relation Itsatisfying the following:

UITIQ => VV (uRV => VITQ) UITQDY => VV (uRVNVITQ=) FV(vSWVAVXEV XITY

It is not difficult to check that for any 12st-model K, K = 1L.

It seems that for some applications, transitivity is more nicely defined as:

XSWYN VyEY (ySwZy) -> XSW yEYZy

+ extra condition:

XSWYN Y \size = -> XSWZ.

We didn't check what happens in this case,
and in the rest of these pages we always use

the first definition

```
M: ADB -> ANDC D BNOC
    What properly does M characterize on set models?
Mx) us V - 3V' = V, (us V' x Yve V'(vRz - uRz))
  Proof
  1) Luppour our frame satisfies M* and
     WIFADB.
     Suppose WRU, UIL ANDC. Because WILAPB,
        FV usu V & tre V v.A.B.
        FV' = V (us V' ~ Yv & V' (vRZ -> uRZ))
         So treV', VIBADC.
         Therefore WIT ANDC D BADC.
      Suppose our frame does not satisfy M+, i.e.
      Suppose usu V but VV' = V (usu V' -> FreV'(URENTURE
      now take a valuation which:
         - forces po only in a
         - forces r in V but nowhere else
      00 - Does not force q in those ve V with URZ 174RZ,
        Then WH PADQ Dradq,
```

because wRu, ult p109.

But for any V' with uSV' and V'It r. we have V' = V, so V' H 119.

TT: ADOB -> D(A -> DB)
What property is characterized by TT on Set frames
(On normal frames 22 is The same as the Mproperty)

TIX: If us V, then FUE V Yz(URZ -> URZ)

Proof 1) Suppose ourse frame satisfies TT, and suppose with $A D \otimes B$. Suppose when and with $A D \otimes B$. Suppose when and with $A D \otimes B$ suppose when and with $A D \otimes B$ suppose when $A D \otimes B$ suppose $A \otimes B$ and $A \otimes B \otimes B$.

Then there is a $A \otimes B \otimes B$ such that $A \otimes B \otimes B \otimes B$ is a suppose $A \otimes B \otimes B$.

By $A \otimes B \otimes B \otimes B$ is $A \otimes B \otimes B \otimes B$.

Therefore $A \otimes B \otimes B \otimes B \otimes B$.

ILT # M :

(p) A (r) (F)

Countermode

This frame satisfies property TI+, but

WHF PD2 -> PADID TADID

P: ADB -> D(ADB)
What property does P characterize on set frames?

* P: USWV ~ WRW'Ru -> FV' = V uSw'V'.

Proof

1) Suppose ours frame satisties *P,

and suppose with ADB.

Moreover suppose wRw', w'Ru and Ult A.

We have by Framitivity wRu, so there is a V

with uSn V and *V & V N I B.

By *P, = IV' & V uSw' V', and *V & V' UI B.

So w' It ADB, Thus wIt D (ADB).

2) Suppose our frame does not satisfy *P, e.f.

Suppose

USNV, WRW'RM, but $\forall V' \subseteq V$ not $uS_{W'}V'$.

Take a valuation such that

p is forced only in a

q is forced everywhere in V, but nowhere else.

Then $w \Vdash p \bowtie q$, but $w' \not \Vdash p \bowtie q$, so $w \not \Vdash (p \bowtie q) \rightarrow \Box(p \bowtie q)$.

F: 4 DO4 - 074

W: EDY - EDYNOTE

KW1: QDOT -> TD76

The ILF#W

1) WIF PDQ -> PDQ107P.

Pf. For, WIF PDQ: from both points in which p holds

(a and d), one can Reach V by Sw, and VIFQ.

Also WIF PDQ107P: from a, we cannot seach any V' with V'IF Q107P 3 because q holds
only in V, and V # 117p because CRd, dIF p.

2) for all φ , ω It φ $\Rightarrow \varphi$ $\Rightarrow \Box \neg \varphi$. So, ω It ILF

Pf. Notice first that a and of are indistinguishable:

They force exactly the same sentences

(proof by induction).

Now suppose that ω It φ $\Rightarrow \varphi$.

Suppose a It φ , Then we must have φ It φ or φ $\Rightarrow \varphi$.

Suppose φ and φ $\Rightarrow \varphi$.

Suppose φ $\Rightarrow \varphi$ $\Rightarrow \varphi$ $\Rightarrow \varphi$.

Suppose φ $\Rightarrow \varphi$ $\Rightarrow \varphi$ $\Rightarrow \varphi$ $\Rightarrow \varphi$ $\Rightarrow \varphi$.

Thus, φ $\Rightarrow \varphi$ $\Rightarrow \varphi$ $\Rightarrow \varphi$.

Th ILF X KWI

1) WH PDQT: from a, we can reach by Sm V, and VIII T from b, we reach \{b\}, and bIII T from e, we reach \{e\} and e IIII T from d, we reach \{e\} and e IIII T from d, we reach V, and VIIII.

WHTDTP: from Q, we can not reach by Sw any set V' with V'III.

2) For all ψ , with $\psi \supset \Diamond \psi \rightarrow \Box \neg \psi$.

Pf. Again, a and d are indistinguishable.

Suppose that with $\psi \supset \Diamond \psi$. Suppose $\psi \subset \varphi$. From either alt $\Diamond \psi \subset \psi \subset \psi$.

Suppose alt ψ , then either alt $\Diamond \psi \subset \psi \subset \psi \subset \psi$.

So especially $\psi \subset \varphi \subset \psi \subset \psi \subset \psi \subset \psi$.

Suppose $\psi \subset \varphi \subset \psi \subset \psi \subset \psi \subset \psi \subset \psi$.

Suppose $\psi \subset \varphi \subset \psi \subset \psi \subset \psi \subset \psi \subset \psi \subset \psi$.

Suppose $\psi \subset \varphi \subset \psi \subset \psi \subset \psi \subset \psi \subset \psi \subset \psi$.

We conclude $\psi \not \subset \varphi \subset \psi \subset \psi \subset \psi \subset \psi \subset \psi \subset \psi$.

We conclude $\psi \not \subset \varphi \subset \psi \subset \psi \subset \psi \subset \psi \subset \psi \subset \psi$.