Техническое и программное обеспечение вычислительных систем

Устройство компьютера

- 1. Краткая история развития компьютеров
- 2. Устройство компьютера
- 3. Машинные команды
- 4. Типы интерфейсов

XVII - XVIII BB

Логарифмическая линейка – механический аналоговый компьютер. Первые линейки могли выполнять операции * и /. Позднее их «научили» вычислять тригонометрические функции, возводить в степень, извлекать корни.

«Считающие часы» Шиккарда и арифометр Лейбница выполняли операции +, -, *,/

(www.openedu.ru)

XIX век

Жаккар придумал программировать рисунок для ткацкого станка с помощью **перфокарт**.

«Интеллектуальные машины» Семёна Корса́кова решали задачи поиска, классификации и сравнения в перфокарточных базах данных.

«Разностная машина» Бэббиджа выполняла аппроксимацию и табуляцию функций с помощью многочленов: $\sin(x) \approx a * x^3 + b * x^2 + c * x + d$ (как подобрать a, b, c и d?).

Концепция «Аналитической машины» Бэббиджа стала прообразом современных компьютеров («мельница» выполняла команды, записанные на перфокартах, используя «склад» для хранения результатов).

XIX век

Вплоть до 1980-х годов продолжали развиваться аналоговые компьютеры: интегрирование, решение дифф. уравнений $(y'_x = x^2 + 5^*y)$ и многое другое.

Параллельно возникали следующие поколения цифровых компьютеров:

- Первое (1940-50): электронные лампы
- 2. Второе (1950-60): транзисторы
- 3. Третье (1960-70): интегральные схемы

- ? взаимодействие с человеком напрямую ?
- ? искусственный интеллект, нанотехнологии ?
- ? квантовые и молекулярные компьютеры ?

(www.openedu.ru)

Основные понятия

Компьютер — универсальное многофункциональное электронное программно-управляемое устройство для обработки, хранения и обмена информацией с внешними объектами.

Шина (магистраль) — это среда передачи сигналов, к которой может параллельно подключаться несколько компонентов вычислительной системы и через которую осуществляется обмен данными.

Контроллер — плата, управляющая работой периферийного устройства (дисководом, винчестером, монитором) и обеспечивающая его связь с материнской платой.

Чипсет — комплект микросхем с системной логикой. Может быть реализован в виде раздельных чипов, либо в виде интегральной монокристальной схемы.

Классическая структура ЭВМ

Классическая структура ЭВМ

Основы учения об архитектуре ЭВМ заложил американский математик Джон фон Нейман.

28 декабря 1903 г. – 8 февраля 1957 г.

Джон фон Нейман выдвинул основополагающие принципы логического устройства ЭВМ и предложил структуру, которая применялась в ЭВМ первых двух поколений.

Устройства компьютера

Процессор (центральный процессор (ЦП)) – функционально законченное программно-управляемое устройство обработки информации, выполненное в виде одной или нескольких интегральных схем.

Устройство управления формирует и передает во все блоки машины управляющие импульсы; формирует адреса ячеек памяти, используемых выполняемой операцией.

Арифметико-логическое устройство (АЛУ) предназначено для выполнения арифметических и логических операций над числовой или символьной информацией. АЛУ является составной частью микропроцессора.

Сумматор

Сумматор — электронная логическая схема в составе АЛУ, выполняющая сложение двоичных чисел.

Одноразрядный сумматор

а; — цифра первого слагаемого,

b_і — цифра второго слагаемого,

рі — перенос из младшего разряда,

р_{і-1} — перенос из данного разряда в старший,

сі — цифра для суммы.

С помощью одноразрядного сумматора можно сложить два одноразрядных двоичных числа.

Типы устройств персонального компьютера

типы устройств

Устройства ввода информации

(клавиатура, мышь, сканер, модем)

Устройство для обработки информации

(микропроцессор)

Устройства вывода информации

(дисплей, принтер, плоттер)

Устройства памяти

(внутренняя и внешняя память)

Устройства системного блока

СИСТЕМНЫЙ БЛОК

Блок питания

Системная (материнская) плата

Накопители

Разъемы для дополнительных устройств

Устройства материнской платы

МАТЕРИНСКАЯ ПЛАТА

Микропроцессор

Системная шина

Микросхемы ОЗУ

Микросхемы ПЗУ

Системная шина используется для объединения функциональных устройств компьютера в вычислительную систему. Включает шины данных, адреса, инструкций (управления), питания.

ПЗУ — постоянное запоминающее устройство — строится на основе модулей (кассет); используется для хранения неизменяемой информации, например, загрузочных программ операционной системы, программ тестирования устройств компьютера; это энергонезависимая память.

ОЗУ — оперативное запоминающее устройство — предназначено для хранения и считывания информации, непосредственно участвующей в вычислительном процессе; это энергозависимая память.

Основные понятия

Операционная часть команды — это группа разрядов в команде, предназначенная для представления кода операции машины.

Адресная часть команды — это группа разрядов в команде, в которых записываются коды адреса ячеек памяти машины, предназначенных для оперативного хранения информации.

Операнды — числа, участвующие в операции.

Типовая структура трехадресной команды

КОП — код операции; А1 и А2 — адреса ячеек (регистров), где расположены соответственно первое и второе числа, участвующие в операции; А3 — адрес ячейки (регистра), куда следует поместить число, полученное в результате выполнения операции.

Машинные команды по видам выполняемых операций

МАШИННЫЕ КОМАНДЫ

Пересылка информации внутри компьютера

Арифметические операции

> Логические операции

Обращение к внешним устройствам

Операции передачи управления

Обслуживающие и вспомогательные

Основные понятия

Интерфейс — совокупность средств сопряжения и связи устройств ПК, обеспечивающая их эффективное взаимодействие.

Интерфейс — это аппаратное и программное обеспечение, предназначенное для сопряжения систем или частей системы.

Внутримашинный системный интерфейс — совокупность электрических линий связи, схем сопряжения с компонентами компьютера, протоколов передачи сигналов.

СОПРЯЖЕНИЕ

Выдача и **прием** информации

Управление передачей данных

Согласование источника и приемника информации

Технические характеристики интерфейсов

ХАРАКТЕРИСТИКИ ИНТЕРФЕЙСОВ

Разрядность

Топология соединения

Максимальная длина линии связи

Пропускная способность или скорость передачи

Вместимость (максимально возможное количество абонентов, одновременно подключаемых к контроллеру интерфейса)

Системные интерфейсы

Устаревшие

ISA — архитектура промышленного стандарта — первый стандартный системный интерфейс для ПК; шина для обеспечения питания и взаимодействия плат расширения с системной платой.

VLB — локальный системный интерфейс в виде 32/64-разрядных шины адреса и шины данных.

Системные интерфейсы-2

Теряющие актуальность

PCI — взаимодействие внешних компонентов — не зависит от конкретного типа процессора, дает возможность параллельной работы с устройствами расширения.

Актуальные

PCI-Express — в топологии «звезда» каждое устройство монопольно использует канал связи с концентратором PCI.

AGP — высокоскоростной графический порт — по топологии не является шиной, так как один порт поддерживает только одну видеокарту.

Интерфейсы периферийных устройств

IDE (ATA)

IDE — электроника, интегрированная в накопитель — подразумеваются устройства, совместимые с интерфейсом ATA.

ATA — AT (Attachment) — подключение к AT (Advanced Technology — передовая технология) — спецификация ПК 80-х.

SCSI — универсальный интерфейс, к шине которого подключаются устройства с ID.

IrDA — инфракрасный интерфейс — устанавливает связь (до 1 м) с периферийным оборудованием в режиме «точка-точка».

Стартовый бит	8 бит данных	Стоповый бит

Интерфейсы периферийных устройств-2

USB — универсальная последовательная шина с топологией «звезда».

15 января 1996 г. — первая версия интерфейса.

USB 1.0 1,5 Мбит/с

USB 1.1 12 Мбит/с

USB 2.0 480 Mбит/c

USB 3.0 **5000** Мбит/с

USB 4.0 10000 M6uT/c

IEE1394 — дуплексная последовательная шина для подключения записывающей и воспроизводящей видео-, аудиоаппаратуры, дисковых накопителей.