(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 May 2003 (01.05.2003)

PCT

(10) International Publication Number WO 03/035833 A2

(51) International Patent Classification7:

...........

(21) International Application Number: PCT/US02/33542

(22) International Filing Date: 21 October 2002 (21.10.2002)

(25) Filing Language:

English

C12N

(26) Publication Language:

English

(30) Priority Data:

60/338,733 60/357,600 22 October 2001 (22.10.2001) US 15 February 2002 (15.02.2002) US

(71) Applicant (for all designated States except US): EX-ELIXIS, INC. [US/US]; P.O. Box 511, 170 Harbor Way, South San Francisco, CA 94083-0511 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BELVIN, Marcia [US/US]; 921 Santa Fe Avenue, Albany, CA 94706 (US). FRANCIS-LANG, Helen [GB/US]; 1782 Pacific Avenue, Apt. 2, San Francisco, CA 94109 (US). PLOWMAN, Gregory, D. [US/US]; 35 Winding Way, San Carlos, CA 94070 (US). FUNKE, Roel, P. [NL/US]; 343 California Avenue, South San Francisco, CA 94080 (US). LI, Danxi [US/US]; 90 Behr Avenue, #302, San Francisco, CA 94141 (US). FRIEDMAN, Lori [US/US]; 113 Arundel Road, San Carlos, CA 94070 (US).

(74) Agents: SHAYESTEH, Lateh et al.; Exelixis, Inc., P.O. Box 511, 170 Harbor Way, South San Francisco, CA 94083-0511 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

035833 A2

(54) Title: MODIFIER OF THE P53 PATHWAY AND METHODS OF USE

(57) Abstract: Human HM genes are identified as modulators of the p53 pathway, and thus are therapeutic targets for disorders associated with defective p53 function. Methods for identifying modulators of p53, comprising screening for agent that modulate the activity of HM are provided.

MODIFIERS OF THE p53 PATHWAY AND METHODS OF USE

REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional patent applications 60/338,733 filed 10/22/2001 and 60/357,600 filed 2/15/2002. The contents of the prior applications are hereby incorporated in their entirety.

10

15

20

25

BACKGROUND OF THE INVENTION

The p53 gene is mutated in over 50 different types of human cancers, including familial and spontaneous cancers, and is believed to be the most commonly mutated gene in human cancer (Zambetti and Levine, FASEB (1993) 7:855-865; Hollstein, et al., Nucleic Acids Res. (1994) 22:3551-3555). Greater than 90% of mutations in the p53 gene are missense mutations that alter a single amino acid that inactivates p53 function. Aberrant forms of human p53 are associated with poor prognosis, more aggressive tumors, metastasis, and short survival rates (Mitsudomi et al., Clin Cancer Res 2000 Oct; 6(10):4055-63; Koshland, Science (1993) 262:1953).

The human p53 protein normally functions as a central integrator of signals including DNA damage, hypoxia, nucleotide deprivation, and oncogene activation (Prives, Cell (1998) 95:5-8). In response to these signals, p53 protein levels are greatly increased with the result that the accumulated p53 activates cell cycle arrest or apoptosis depending on the nature and strength of these signals. Indeed, multiple lines of experimental evidence have pointed to a key role for p53 as a tumor suppressor (Levine, Cell (1997) 88:323-331). For example, homozygous p53 "knockout" mice are developmentally normal but exhibit nearly 100% incidence of neoplasia in the first year of life (Donehower *et al.*, Nature (1992) 356:215-221).

The biochemical mechanisms and pathways through which p53 functions in normal and cancerous cells are not fully understood, but one clearly important aspect of p53 function is its activity as a gene-specific transcriptional activator. Among the genes with known p53-response elements are several with well-characterized roles in either regulation of the cell cycle or apoptosis, including GADD45, p21/Waf1/Cip1, cyclin G, Bax, IGF-BP3, and MDM2 (Levine, Cell (1997) 88:323-331).

Leucine-rich repeats (LRRs) are short motifs of 22-28 residues in length and are found in various cytoplasmic, membrane, and extracellular proteins (Rothberg, J. et al. (1990) Genes Dev (12A): 2169-87). These proteins play diverse roles, with protein-protein

interactions being the most common property. In vitro studies of a synthetic LRR from *Drosophila* Toll protein have implied that the peptides form gels by adopting beta-sheet structures that form extended filaments. These results support the idea that LRRs mediate protein-protein interactions and cellular adhesion (Gay, N. (1991) FEBS Lett; 291(1): 87-91). Other functions of LRR-containing proteins include the binding of enzymes (Tan, F. et al. (1990) J Biol Chem; 265(1): 13-9) and vascular repair (Hickey, M. (1989) Proc Natl Acad Sci U S A; 86(17): 6773-7). The 3-D structure of ribonuclease inhibitor, a protein containing 15 LRRs, has been determined (Kobe, B. and Deisenhofer, J. (1993) Nature; 366(6457): 751-6) demonstrating LRRs to be a new class of alpha/beta fold. LRRs form elongated non-globular structures and are often flanked by cysteine rich domains.

5

10

15

20

25

30

LRRN1 is a protein containing nine LRRs, leucine rich repeat C-terminal and N-terminal cysteine rich domains, and an immunoglobulin (Ig) domain. It shares sequence similarity with D2S448, a melanoma associated gene (Nagase, T. et al. (2000) DNA Res; 7(2): 143-50).

In vivo, insulin-like growth factors I (IGF1) and II (IGF2) are always complexed to one of a family of 6 IGF-binding proteins, IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, and IGFBP6. Until birth, binary IGFBP/IGF complexes predominate in serum. In juvenile and adult mammals, however, 80% to 85% of serum IGFs are found in a ternary complex composed of 1 molecule each of IGF, IGFBP3, and a protein that is found only in serum, the acid-labile subunit (ALS). ALS retains the IGFBP3/IGF complexes in the vascular compartment and extends the half life of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. Insulin-like growth factor binding protein acid-labile subunit (IGFALS) mediates the formation of IGF1 and IGFBP3 complex (Leong, S. R., et al (1992) Mol Endocrinol 6:870-6). IGFALS is required for postnatal accumulation of IGF1 and IGFBP3 but, consistent with findings supporting a predominant role for locally produced IGF1, is not critical for growth. IGFALS is necessary for blood sugar regulation, and shows deficiency in non islet cell tumor hypoglycemia syndrome and in liver cirrhosis (Ottesen, L. H., et al (2001) Liver 21: 350-6; Baxter, R. C. (1996) Horm Res 46, 195-201).

The DNA ligase activity in most proliferating mammalian cells is due to the high molecular weight enzyme designated DNA ligase I (LIG1). It acts as a DNA replication and repair enzyme (Lindahl, T.; Barnes, D. (1992) Annu. Rev. Biochem 61: 251-281). Mutations in genes in this location are known to cause a Bloom syndrome-like phenotype with immmunodeficiency, growth retardation and predisposition to cancer (Barnes, D. et

al. (1992) Genomics 12: 164-166). LIG1 is thought to mediate increased expression in quiescent cells in response to growth factors.

NAG14 is a protein containing eight LRRs, leucine rich repeat C-terminal and N-terminal cysteine rich domains, and an immunoglobulin (Ig) domain. It is similar to chondroadherin (Shen, Z. et al. (1998) Biochem J; 330 (Pt 1):549-57).

5

15

20

25

30

KIAA1580 is a protein containing an immunoglobulin (Ig) domain, a leucine rich repeat N-terminal and C-terminal cysteine rich domain and nine LRRs. It is similar to glycoprotein V (Kitaguchi, T. et al. (1997) Thromb Res; 87(2):235-44).

DKFZp76 is a protein containing three LRRs, a leucine rich repeat C-terminal cysteine rich domain and an immunoglobulin (Ig) domain. It has a region of low homology to a region of melanoma associated gene D2S448.

The FLRT family of proteins structurally resembles small leucine-rich proteoglycans found in the extracellular matrix (ECM). The ECM is composed of collagens, proteoglycans, and noncollagenous glycoproteins, which provide cells and tissues with a mechanical scaffold for adhesion, migration, and signal transduction. These functions are varied and complex and depend on interactions between ECM components and cellular receptors, such as integrins and proteoglycans, which are located at the cell surface (Lacy, S. et al. (1999) Genomics 62: 417-426).

Fibronectin leucine rich transmembrane protein 1 (FLRT1) is a member of the FLRT family, which has a putative type I membrane protein with ten LRRs flanked by cysteinerich regions (Lacy, S. et al. (1999) supra). FLRT1 is expressed in adult and fetal brain and kidney, and portions of the brain. FLRT1 functions in cell adhesion and/or receptor signaling (Lacy, S. et al. (1999) supra).

FLRT2 (KIAA0405) is a protein with eighteen LRRs, two leucine rich repeat C-terminal and two leucine rich repeat N-terminal cysteine rich domains and two fibronectin type III domains. It is similar to mouse fibromodulin (Ishikawa et al. (1997) DNA Res. 4: 307-313). FLRT2 is expressed in pancreas, skeletal muscle, brain, and heart. FLRT2 is also thought to be involved in cell adhesion and/or receptor signaling (Lacy, S. et al. (1999) supra).

Fibronectin leucine rich transmembrane protein 3 (FLRT3) is also a member of the FLRT family, which has a putative type I membrane protein with ten LRRs flanked by cysteine-rich regions. It may function as a receptor involved in cell-cell contact and cell adhesion (Lacy, S. et al. (1999) *supra*). FLRT3 is expressed in kidney, skeletal muscle, lung, and brain, and at lower levels in pancreas, liver, placenta, and heart.

The ability to manipulate the genomes of model organisms such as Drosophila provides a powerful means to analyze biochemical processes that, due to significant evolutionary conservation, have direct relevance to more complex vertebrate organisms. Due to a high level of gene and pathway conservation, the strong similarity of cellular processes, and the functional conservation of genes between these model organisms and mammals, identification of the involvement of novel genes in particular pathways and their functions in such model organisms can directly contribute to the understanding of the correlative pathways and methods of modulating them in mammals (see, for example, Mechler BM et al., 1985 EMBO J 4:1551-1557; Gateff E. 1982 Adv. Cancer Res. 37: 33-74; Watson KL., et al., 1994 J Cell Sci. 18: 19-33; Miklos GL, and Rubin GM. 1996 Cell 86:521-529; Wassarman DA, et al., 1995 Curr Opin Gen Dev 5: 44-50; and Booth DR. 1999 Cancer Metastasis Rev. 18: 261-284). For example, a genetic screen can be carried out in an invertebrate model organism having underexpression (e.g. knockout) or overexpression of a gene (referred to as a "genetic entry point") that yields a visible phenotype. Additional genes are mutated in a random or targeted manner. When a gene mutation changes the original phenotype caused by the mutation in the genetic entry point, the gene is identified as a "modifier" involved in the same or overlapping pathway as the genetic entry point. When the genetic entry point is an ortholog of a human gene implicated in a disease pathway, such as p53, modifier genes can be identified that may be attractive candidate targets for novel therapeutics.

10

15

20

25

30

All references cited herein, including patents, patent applications, publications, and sequence information in referenced Genbank identifier numbers, are incorporated herein in their entireties.

SUMMARY OF THE INVENTION

We have discovered genes that modify the p53 pathway in *Drosophila*, and identified their human orthologs, hereinafter referred to as HM. The invention provides methods for utilizing these p53 modifier genes and polypeptides to identify HM-modulating agents that are candidate therapeutic agents that can be used in the treatment of disorders associated with defective or impaired p53 function and/or HM function. Preferred HM-modulating agents specifically bind to HM polypeptides and restore p53 function. Other preferred HM-modulating agents are nucleic acid modulators such as antisense oligomers and RNAi that repress HM gene expression or product activity by, for example, binding to and inhibiting the respective nucleic acid (i.e. DNA or mRNA).

HM modulating agents may be evaluated by any convenient *in vitro* or *in vivo* assay for molecular interaction with an HM polypeptide or nucleic acid. In one embodiment, candidate HM modulating agents are tested with an assay system comprising an HM polypeptide or nucleic acid. Agents that produce a change in the activity of the assay system relative to controls are identified as candidate p53 modulating agents. The assay system may be cell-based or cell-free. HM-modulating agents include HM related proteins (e.g. dominant negative mutants, and biotherapeutics); HM-specific antibodies; HM-specific antisense oligomers and other nucleic acid modulators; and chemical agents that specifically bind to or interact with HM or compete with HM binding partner (e.g. by binding to an HM binding partner). In one specific embodiment, a small molecule modulator is identified using a binding assay. In specific embodiments, the screening assay system is selected from an apoptosis assay, a cell proliferation assay, an angiogenesis assay, and a hypoxic induction assay.

5

10

15

20

25

30

In another embodiment, candidate p53 pathway modulating agents are further tested using a second assay system that detects changes in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation changes produced by the originally identified candidate agent or an agent derived from the original agent. The second assay system may use cultured cells or non-human animals. In specific embodiments, the secondary assay system uses non-human animals, including animals predetermined to have a disease or disorder implicating the p53 pathway, such as an angiogenic, apoptotic, or cell proliferation disorder (e.g. cancer).

The invention further provides methods for modulating the HM function and/or the p53 pathway in a mammalian cell by contacting the mammalian cell with an agent that specifically binds an HM polypeptide or nucleic acid. The agent may be a small molecule modulator, a nucleic acid modulator, or an antibody and may be administered to a mammalian animal predetermined to have a pathology associated the p53 pathway.

DETAILED DESCRIPTION OF THE INVENTION

Genetic screens were designed to identify modifiers of the p53 pathway in *Drosophila*, where a genetic modifier screen was carried out in which p53 was overexpressed in the wing (Ollmann M, et al., Cell 2000 101: 91-101). Modifiers of the p53 pathway were identified. Accordingly, vertebrate orthologs of these modifiers, and preferably the human orthologs, Human modifiers (HM) genes (i.e., nucleic acids and polypeptides) are attractive drug targets for the treatment of pathologies associated with a defective p53

signaling pathway, such as cancer. Table 1 lists the modifiers and their orthologs (see example II).

In vitro and in vivo methods of assessing HM function are provided herein. Modulation of the HM or their respective binding partners is useful for understanding the association of the p53 pathway and its members in normal and disease conditions and for developing diagnostics and therapeutic modalities for p53 related pathologies. HM-modulating agents that act by inhibiting or enhancing HM expression, directly or indirectly, for example, by affecting an HM function such as binding activity, can be identified using methods provided herein. HM modulating agents are useful in diagnosis, therapy and pharmaceutical development.

Nucleic acids and polypeptides of the invention

10

20

25

30

Sequences related to HM nucleic acids and polypeptides that can be used in the invention are disclosed in Genbank (referenced by Genbank identifier (GI) or RefSeq number), and shown in Table 1. SEQ ID NOs for each disclosed sequence is also indicated in Table 1.

The term "HM polypeptide" refers to a full-length HM protein or a functionally active fragment or derivative thereof. A "functionally active" HM fragment or derivative exhibits one or more functional activities associated with a full-length, wild-type HM protein, such as antigenic or immunogenic activity, ability to bind natural cellular substrates, etc. The functional activity of HM proteins, derivatives and fragments can be assayed by various methods known to one skilled in the art (Current Protocols in Protein Science (1998) Coligan et al., eds., John Wiley & Sons, Inc., Somerset, New Jersey) and as further discussed below. In one embodiment, a functionally active HM polypeptide is an HM derivative capable of rescuing defective endogenous HM activity, such as in cell based or animal assays; the rescuing derivative may be from the same or a different species. For purposes herein, functionally active fragments also include those fragments that comprise one or more structural domains of an HM, such as a binding domain. Protein domains can be identified using the PFAM program (Bateman A., et al., Nucleic Acids Res, 1999, 27:260-2). Methods for obtaining HM polypeptides are also further described below. In some embodiments, preferred fragments are functionally active, domain-containing fragments comprising at least 25 contiguous amino acids, preferably at least 50, more preferably 75, and most preferably at least 100 contiguous amino acids of

any one of SEQ ID NOs:15-28 (an HM). In further preferred embodiments, the fragment comprises the entire functionally active domain.

The term "HM nucleic acid" refers to a DNA or RNA molecule that encodes an HM polypeptide. Preferably, the HM polypeptide or nucleic acid or fragment thereof is from a human, but can also be an ortholog, or derivative thereof with at least 70% sequence identity, preferably at least 80%, more preferably 85%, still more preferably 90%, and most preferably at least 95% sequence identity with human HM. Methods of identifying orthlogs are known in the art. Normally, orthologs in different species retain the same function, due to presence of one or more protein motifs and/or 3-dimensional structures. Orthologs are generally identified by sequence homology analysis, such as BLAST analysis, usually using protein bait sequences. Sequences are assigned as a potential ortholog if the best hit sequence from the forward BLAST result retrieves the original query sequence in the reverse BLAST (Huynen MA and Bork P, Proc Natl Acad Sci (1998) 95:5849-5856; Huynen MA et al., Genome Research (2000) 10:1204-1210). Programs for multiple sequence alignment, such as CLUSTAL (Thompson JD et al, 1994, Nucleic Acids Res 22:4673-4680) may be used to highlight conserved regions and/or residues of orthologous proteins and to generate phylogenetic trees. In a phylogenetic tree representing multiple homologous sequences from diverse species (e.g., retrieved through BLAST analysis), orthologous sequences from two species generally appear closest on the tree with respect to all other sequences from these two species. Structural threading or other analysis of protein folding (e.g., using software by ProCeryon, Biosciences, Salzburg, Austria) may also identify potential orthologs. In evolution, when a gene duplication event follows speciation, a single gene in one species, such as Drosophila, may correspond to multiple genes (paralogs) in another, such as human. As used herein, the term "orthologs" encompasses paralogs. As used herein, "percent (%) sequence identity" with respect to a subject sequence, or a specified portion of a subject sequence, is defined as the percentage of nucleotides or amino acids in the candidate derivative sequence identical with the nucleotides or amino acids in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by the program WU-BLAST-2.0a19 (Altschul et al., J. Mol. Biol. (1997) 215:403-410) with all the search parameters set to default values. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular

20

25

30

sequence and composition of the particular database against which the sequence of interest

is being searched. A % identity value is determined by the number of matching identical nucleotides or amino acids divided by the sequence length for which the percent identity is being reported. "Percent (%) amino acid sequence similarity" is determined by doing the same calculation as for determining % amino acid sequence identity, but including conservative amino acid substitutions in addition to identical amino acids in the computation.

5

10

15

20

25

30

A conservative amino acid substitution is one in which an amino acid is substituted for another amino acid having similar properties such that the folding or activity of the protein is not significantly affected. Aromatic amino acids that can be substituted for each other are phenylalanine, tryptophan, and tyrosine; interchangeable hydrophobic amino acids are leucine, isoleucine, methionine, and valine; interchangeable polar amino acids are glutamine and asparagine; interchangeable basic amino acids are arginine, lysine and histidine; interchangeable acidic amino acids are aspartic acid and glutamic acid; and interchangeable small amino acids are alanine, serine, threonine, cysteine and glycine.

Alternatively, an alignment for nucleic acid sequences is provided by the local homology algorithm of Smith and Waterman (Smith and Waterman, 1981, Advances in Applied Mathematics 2:482-489; database: European Bioinformatics Institute; Smith and Waterman, 1981, J. of Molec.Biol., 147:195-197; Nicholas et al., 1998, "A Tutorial on Searching Sequence Databases and Sequence Scoring Methods" (www.psc.edu) and references cited therein.; W.R. Pearson, 1991, Genomics 11:635-650). This algorithm can be applied to amino acid sequences by using the scoring matrix developed by Dayhoff (Dayhoff: Atlas of Protein Sequences and Structure, M. O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA), and normalized by Gribskov (Gribskov 1986 Nucl. Acids Res. 14(6):6745-6763). The Smith-Waterman algorithm may be employed where default parameters are used for scoring (for example, gap open penalty of 12, gap extension penalty of two). From the data generated, the "Match" value reflects "sequence identity."

Derivative nucleic acid molecules of the subject nucleic acid molecules include sequences that hybridize to the nucleic acid sequence of any of SEQ ID NOs:1-14. The stringency of hybridization can be controlled by temperature, ionic strength, pH, and the presence of denaturing agents such as formamide during hybridization and washing. Conditions routinely used are set out in readily available procedure texts (e.g., Current Protocol in Molecular Biology, Vol. 1, Chap. 2.10, John Wiley & Sons, Publishers (1994); Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). In some embodiments,

a nucleic acid molecule of the invention is capable of hybridizing to a nucleic acid molecule containing the nucleotide sequence of any one of SEQ ID NOs:1-14 under high stringency hybridization conditions that are: prehybridization of filters containing nucleic acid for 8 hours to overnight at 65° C in a solution comprising 6X single strength citrate (SSC) (1X SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5X Denhardt's solution, 0.05% sodium pyrophosphate and 100 μ g/ml herring sperm DNA; hybridization for 18-20 hours at 65° C in a solution containing 6X SSC, 1X Denhardt's solution, 100 μ g/ml yeast tRNA and 0.05% sodium pyrophosphate; and washing of filters at 65° C for 1h in a solution containing 0.1X SSC and 0.1% SDS (sodium dodecyl sulfate).

In other embodiments, moderately stringent hybridization conditions are used that comprise: pretreatment of filters containing nucleic acid for 6 h at 40° C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH7.5), 5mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 μ g/ml denatured salmon sperm DNA; hybridization for 18-20h at 40° C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH7.5), 5mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 μ g/ml salmon sperm DNA, and 10% (wt/vol) dextran sulfate; followed by washing twice for 1 hour at 55° C in a solution containing 2X SSC and 0.1% SDS.

10

15

20

25

30

Alternatively, low stringency conditions can be used that comprise: incubation for 8 hours to overnight at 37° C in a solution comprising 20% formamide, 5 x SSC, 50 mM sodium phosphate (pH 7.6), 5X Denhardt's solution, 10% dextran sulfate, and 20 μ g/ml denatured sheared salmon sperm DNA; hybridization in the same buffer for 18 to 20 hours; and washing of filters in 1 x SSC at about 37° C for 1 hour.

<u>Isolation</u>, <u>Production</u>, <u>Expression</u>, and <u>Mis-expression of HM Nucleic Acids and</u> Polypeptides

HM nucleic acids and polypeptides, useful for identifying and testing agents that modulate HM function and for other applications related to the involvement of HM in the p53 pathway. HM nucleic acids and derivatives and orthologs thereof may be obtained using any available method. For instance, techniques for isolating cDNA or genomic DNA sequences of interest by screening DNA libraries or by using polymerase chain reaction (PCR) are well known in the art. In general, the particular use for the protein will dictate the particulars of expression, production, and purification methods. For instance, production of proteins for use in screening for modulating agents may require methods that preserve specific biological activities of these proteins, whereas production of proteins

for antibody generation may require structural integrity of particular epitopes. Expression of proteins to be purified for screening or antibody production may require the addition of specific tags (e.g., generation of fusion proteins). Overexpression of an HM protein for assays used to assess HM function, such as involvement in cell cycle regulation or hypoxic response, may require expression in eukaryotic cell lines capable of these cellular 5 activities. Techniques for the expression, production, and purification of proteins are well known in the art; any suitable means therefore may be used (e.g., Higgins SJ and Hames BD (eds.) Protein Expression: A Practical Approach, Oxford University Press Inc., New York 1999; Stanbury PF et al., Principles of Fermentation Technology. 2nd edition. Elsevier Science, New York, 1995; Doonan S (ed.) Protein Purification Protocols, 10 Humana Press, New Jersey, 1996; Coligan JE et al, Current Protocols in Protein Science (eds.), 1999, John Wiley & Sons, New York). In particular embodiments, recombinant HM is expressed in a cell line known to have defective p53 function (e.g. SAOS-2 osteoblasts, H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from American Type Culture 15 Collection (ATCC), Manassas, VA). The recombinant cells are used in cell-based screening assay systems of the invention, as described further below.

The nucleotide sequence encoding an HM polypeptide can be inserted into any appropriate expression vector. The necessary transcriptional and translational signals, including promoter/enhancer element, can derive from the native HM gene and/or its flanking regions or can be heterologous. A variety of host-vector expression systems may be utilized, such as mammalian cell systems infected with virus (e.g. vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g. baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, plasmid, or cosmid DNA. An isolated host cell strain that modulates the expression of, modifies, and/or specifically processes the gene product may be used.

20

25

30

To detect expression of the HM gene product, the expression vector can comprise a promoter operably linked to an HM gene nucleic acid, one or more origins of replication, and, one or more selectable markers (e.g. thymidine kinase activity, resistance to antibiotics, etc.). Alternatively, recombinant expression vectors can be identified by assaying for the expression of the HM gene product based on the physical or functional properties of the HM protein in in vitro assay systems (e.g. immunoassays).

The HM protein, fragment, or derivative may be optionally expressed as a fusion, or chimeric protein product (i.e. it is joined via a peptide bond to a heterologous protein

sequence of a different protein), for example to facilitate purification or detection. A chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other using standard methods and expressing the chimeric product. A chimeric product may also be made by protein synthetic techniques, e.g. by use of a peptide synthesizer (Hunkapiller et al., Nature (1984) 310:105-111).

Once a recombinant cell that expresses the HM gene sequence is identified, the gene product can be isolated and purified using standard methods (e.g. ion exchange, affinity, and gel exclusion chromatography; centrifugation; differential solubility; electrophoresis). Alternatively, native HM proteins can be purified from natural sources, by standard methods (e.g. immunoaffinity purification). Once a protein is obtained, it may be quantified and its activity measured by appropriate methods, such as immunoassay, bioassay, or other measurements of physical properties, such as crystallography.

The methods of this invention may also use cells that have been engineered for altered expression (mis-expression) of HM or other genes associated with the p53 pathway. As used herein, mis-expression encompasses ectopic expression, over-expression, under-expression, and non-expression (e.g. by gene knock-out or blocking expression that would otherwise normally occur).

Genetically modified animals

10

15

20

25

30

Animal models that have been genetically modified to alter HM expression may be used in *in vivo* assays to test for activity of a candidate p53 modulating agent, or to further assess the role of HM in a p53 pathway process such as apoptosis or cell proliferation. Preferably, the altered HM expression results in a detectable phenotype, such as decreased or increased levels of cell proliferation, angiogenesis, or apoptosis compared to control animals having normal HM expression. The genetically modified animal may additionally have altered p53 expression (e.g. p53 knockout). Preferred genetically modified animals are mammals such as primates, rodents (preferably mice or rats), among others. Preferred non-mammalian species include zebrafish, *C. elegans*, and *Drosophila*. Preferred genetically modified animals are transgenic animals having a heterologous nucleic acid sequence present as an extrachromosomal element in a portion of its cells, i.e. mosaic animals (see, for example, techniques described by Jakobovits, 1994, Curr. Biol. 4:761-763.) or stably integrated into its germ line DNA (i.e., in the genomic sequence of most or all of its cells). Heterologous nucleic acid is introduced into the germ line of such

transgenic animals by genetic manipulation of, for example, embryos or embryonic stem cells of the host animal.

5

10

15

20

25

30

Methods of making transgenic animals are well-known in the art (for transgenic mice see Brinster et al., Proc. Nat. Acad. Sci. USA 82: 4438-4442 (1985), U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Pat. No. 4,873,191 by Wagner et al., and Hogan, B., Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1986); for particle bombardment see U.S. Pat. No., 4,945,050, by Sandford et al.; for transgenic Drosophila see Rubin and Spradling, Science (1982) 218:348-53 and U.S. Pat. No. 4,670,388; for transgenic insects see Berghammer A.J. et al., A Universal Marker for Transgenic Insects (1999) Nature 402:370-371; for transgenic Zebrafish see Lin S., Transgenic Zebrafish, Methods Mol Biol. (2000);136:375-3830); for microinjection procedures for fish, amphibian eggs and birds see Houdebine and Chourrout, Experientia (1991) 47:897-905; for transgenic rats see Hammer et al., Cell (1990) 63:1099-1112; and for culturing of embryonic stem (ES) cells and the subsequent production of transgenic animals by the introduction of DNA into ES cells using methods such as electroporation, calcium phosphate/DNA precipitation and direct injection see, e.g., Teratocarcinomas and Embryonic Stem Cells, A Practical Approach, E. J. Robertson, ed., IRL Press (1987)). Clones of the nonhuman transgenic animals can be produced according to available methods (see Wilmut, I. et al. (1997) Nature 385:810-813; and PCT International Publication Nos. WO 97/07668 and WO 97/07669).

In one embodiment, the transgenic animal is a "knock-out" animal having a heterozygous or homozygous alteration in the sequence of an endogenous HM gene that results in a decrease of HM function, preferably such that HM expression is undetectable or insignificant. Knock-out animals are typically generated by homologous recombination with a vector comprising a transgene having at least a portion of the gene to be knocked out. Typically a deletion, addition or substitution has been introduced into the transgene to functionally disrupt it. The transgene can be a human gene (e.g., from a human genomic clone) but more preferably is an ortholog of the human gene derived from the transgenic host species. For example, a mouse HM gene is used to construct a homologous recombination vector suitable for altering an endogenous HM gene in the mouse genome. Detailed methodologies for homologous recombination in mice are available (see Capecchi, Science (1989) 244:1288-1292; Joyner et al., Nature (1989) 338:153-156). Procedures for the production of non-rodent transgenic mammals and other animals are also available (Houdebine and Chourrout, supra; Pursel et al., Science (1989)

244:1281-1288; Simms et al., Bio/Technology (1988) 6:179-183). In a preferred embodiment, knock-out animals, such as mice harboring a knockout of a specific gene, may be used to produce antibodies against the human counterpart of the gene that has been knocked out (Claesson MH et al., (1994) Scan J Immunol 40:257-264; Declerck PJ et al., (1995) J Biol Chem. 270:8397-400).

5

10

15

20

25

30

In another embodiment, the transgenic animal is a "knock-in" animal having an alteration in its genome that results in altered expression (e.g., increased (including ectopic) or decreased expression) of the HM gene, e.g., by introduction of additional copies of HM, or by operatively inserting a regulatory sequence that provides for altered expression of an endogenous copy of the HM gene. Such regulatory sequences include inducible, tissue-specific, and constitutive promoters and enhancer elements. The knockin can be homozygous or heterozygous.

Transgenic nonhuman animals can also be produced that contain selected systems allowing for regulated expression of the transgene. One example of such a system that may be produced is the cre/loxP recombinase system of bacteriophage P1 (Lakso et al., PNAS (1992) 89:6232-6236; U.S. Pat. No. 4,959,317). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355; U.S. Pat. No. 5,654,182). In a preferred embodiment, both Cre-LoxP and Flp-Frt are used in the same system to regulate expression of the transgene, and for sequential deletion of vector sequences in the same cell (Sun X et al (2000) Nat Genet 25:83-6).

The genetically modified animals can be used in genetic studies to further elucidate the p53 pathway, as animal models of disease and disorders implicating defective p53 function, and for *in vivo* testing of candidate therapeutic agents, such as those identified in screens described below. The candidate therapeutic agents are administered to a genetically modified animal having altered HM function and phenotypic changes are compared with appropriate control animals such as genetically modified animals that receive placebo treatment, and/or animals with unaltered HM expression that receive candidate therapeutic agent.

In addition to the above-described genetically modified animals having altered HM function, animal models having defective p53 function (and otherwise normal HM function), can be used in the methods of the present invention. For example, a p53 knockout mouse can be used to assess, *in vivo*, the activity of a candidate p53 modulating agent identified in one of the *in vitro* assays described below. p53 knockout mice are described in the literature (Jacks et al., Nature 2001;410:1111-1116, 1043-1044; Donehower *et al.*, supra). Preferably, the candidate p53 modulating agent when administered to a model system with cells defective in p53 function, produces a detectable phenotypic change in the model system indicating that the p53 function is restored, i.e., the cells exhibit normal cell cycle progression.

Modulating Agents

5

10

15

20

25

30

The invention provides methods to identify agents that interact with and/or modulate the function of HM and/or the p53 pathway. Modulating agents identified by the methods are also part of the invention. Such agents are useful in a variety of diagnostic and therapeutic applications associated with the p53 pathway, as well as in further analysis of the HM protein and its contribution to the p53 pathway. Accordingly, the invention also provides methods for modulating the p53 pathway comprising the step of specifically modulating HM activity by administering an HM-interacting or -modulating agent.

As used herein, an "HM-modulating agent" is any agent that modulates HM function, for example, an agent that interacts with HM to inhibit or enhance HM activity or otherwise affect normal HM function. HM function can be affected at any level, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In a preferred embodiment, the HM - modulating agent specifically modulates the function of the HM. The phrases "specific modulating agent", "specifically modulates", etc., are used herein to refer to modulating agents that directly bind to the HM polypeptide or nucleic acid, and preferably inhibit, enhance, or otherwise alter, the function of the HM. These phrases also encompasses modulating agents that alter the interaction of the HM with a binding partner, substrate, or cofactor (e.g. by binding to a binding partner of an HM, or to a protein/binding partner complex, and altering HM function). In a further preferred embodiment, the HM- modulating agent is a modulator of the p53 pathway (e.g. it restores and/or upregulates p53 function) and thus is also a p53-modulating agent.

Preferred HM-modulating agents include small molecule compounds; HM-interacting proteins, including antibodies and other biotherapeutics; and nucleic acid modulators such as antisense and RNA inhibitors. The modulating agents may be formulated in pharmaceutical compositions, for example, as compositions that may comprise other active ingredients, as in combination therapy, and/or suitable carriers or excipients. Techniques for formulation and administration of the compounds may be found in "Remington's Pharmaceutical Sciences" Mack Publishing Co., Easton, PA, 19th edition.

Small molecule modulators

5

10

15

20

25

30

Small molecules are often preferred to modulate function of proteins with enzymatic function, and/or containing protein interaction domains. Chemical agents, referred to in the art as "small molecule" compounds are typically organic, non-peptide molecules, having a molecular weight less than 10,000, preferably less than 5,000, more preferably less than 1,000, and most preferably less than 500. This class of modulators includes chemically synthesized molecules, for instance, compounds from combinatorial chemical libraries. Synthetic compounds may be rationally designed or identified based on known or inferred properties of the HM protein or may be identified by screening compound libraries. Alternative appropriate modulators of this class are natural products, particularly secondary metabolites from organisms such as plants or fungi, which can also be identified by screening compound libraries for HM—modulating activity. Methods for generating and obtaining compounds are well known in the art (Schreiber SL, Science (2000) 151: 1964-1969; Radmann J and Gunther J, Science (2000) 151:1947-1948).

Small molecule modulators identified from screening assays, as described below, can be used as lead compounds from which candidate clinical compounds may be designed, optimized, and synthesized. Such clinical compounds may have utility in treating pathologies associated with the p53 pathway. The activity of candidate small molecule modulating agents may be improved several-fold through iterative secondary functional validation, as further described below, structure determination, and candidate modulator modification and testing. Additionally, candidate clinical compounds are generated with specific regard to clinical and pharmacological properties. For example, the reagents may be derivatized and re-screened using *in vitro* and *in vivo* assays to optimize activity and minimize toxicity for pharmaceutical development.

Protein Modulators

Specific HM-interacting proteins are useful in a variety of diagnostic and therapeutic applications related to the p53 pathway and related disorders, as well as in validation assays for other HM-modulating agents. In a preferred embodiment, HM-interacting proteins affect normal HM function, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In another embodiment, HM-interacting proteins are useful in detecting and providing information about the function of HM proteins, as is relevant to p53 related disorders, such as cancer (e.g., for diagnostic means).

An HM-interacting protein may be endogenous, i.e. one that naturally interacts genetically or biochemically with an HM, such as a member of the HM pathway that modulates HM expression, localization, and/or activity. HM-modulators include dominant negative forms of HM-interacting proteins and of HM proteins themselves. Yeast two-hybrid and variant screens offer preferred methods for identifying endogenous HM-interacting proteins (Finley, R. L. et al. (1996) in DNA Cloning-Expression Systems: A Practical Approach, eds. Glover D. & Hames B. D (Oxford University Press, Oxford, England), pp. 169-203; Fashema SF et al., Gene (2000) 250:1-14; Drees BL Curr Opin Chem Biol (1999) 3:64-70; Vidal M and Legrain P Nucleic Acids Res (1999) 27:919-29; and U.S. Pat. No. 5,928,868). Mass spectrometry is an alternative preferred method for the elucidation of protein complexes (reviewed in, e.g., Pandley A and Mann M, Nature (2000) 405:837-846; Yates JR 3rd, Trends Genet (2000) 16:5-8).

An HM-interacting protein may be an exogenous protein, such as an HM-specific antibody or a T-cell antigen receptor (see, e.g., Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory; Harlow and Lane (1999) Using antibodies: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press). HM antibodies are further discussed below.

In preferred embodiments, an HM-interacting protein specifically binds an HM protein. In alternative preferred embodiments, an HM-modulating agent binds an HM substrate, binding partner, or cofactor.

30

10

15

20

25

Antibodies

In another embodiment, the protein modulator is an HM specific antibody agonist or antagonist. The antibodies have therapeutic and diagnostic utilities, and can be used in screening assays to identify HM modulators. The antibodies can also be used in dissecting

the portions of the HM pathway responsible for various cellular responses and in the general processing and maturation of the HM.

5

10

15

20

25

30

Antibodies that specifically bind HM polypeptides can be generated using known methods. Preferably the antibody is specific to a mammalian ortholog of HM polypeptide, and more preferably, to human HM. Antibodies may be polyclonal, monoclonal (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab').sub.2 fragments, fragments produced by a FAb expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above. Epitopes of HM which are particularly antigenic can be selected, for example, by routine screening of HM polypeptides for antigenicity or by applying a theoretical method for selecting antigenic regions of a protein (Hopp and Wood (1981), Proc. Nati. Acad. Sci. U.S.A. 78:3824-28; Hopp and Wood, (1983) Mol. Immunol. 20:483-89; Sutcliffe et al., (1983) Science 219:660-66) to the amino acid sequence shown in any of SEQ ID NOs:15-28. Monoclonal antibodies with affinities of 10⁸ M⁻¹ preferably 10⁹ M⁻¹ to 10¹⁰ M⁻¹, or stronger can be made by standard procedures as described (Harlow and Lane, supra; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed) Academic Press, New York; and U.S. Pat. Nos. 4,381,292; 4,451,570; and 4,618,577). Antibodies may be generated against crude cell extracts of HM or substantially purified fragments thereof. If HM fragments are used, they preferably comprise at least 10, and more preferably, at least 20 contiguous amino acids of an HM protein. In a particular embodiment, HM-specific antigens and/or immunogens are coupled to carrier proteins that stimulate the immune response. For example, the subject polypeptides are covalently coupled to the keyhole limpet hemocyanin (KLH) carrier, and the conjugate is emulsified in Freund's complete adjuvant, which enhances the immune response. An appropriate immune system such as a laboratory rabbit or mouse is immunized according to conventional protocols.

The presence of HM-specific antibodies is assayed by an appropriate assay such as a solid phase enzyme-linked immunosorbant assay (ELISA) using immobilized corresponding HM polypeptides. Other assays, such as radioimmunoassays or fluorescent assays might also be used.

Chimeric antibodies specific to HM polypeptides can be made that contain different portions from different animal species. For instance, a human immunoglobulin constant region may be linked to a variable region of a murine mAb, such that the antibody derives its biological activity from the human antibody, and its binding specificity from the murine fragment. Chimeric antibodies are produced by splicing together genes that

encode the appropriate regions from each species (Morrison et al., Proc. Natl. Acad. Sci. (1984) 81:6851-6855; Neuberger et al., Nature (1984) 312:604-608; Takeda et al., Nature (1985) 31:452-454). Humanized antibodies, which are a form of chimeric antibodies, can be generated by grafting complementary-determining regions (CDRs) (Carlos, T. M., J. M. Harlan. 1994. Blood 84:2068-2101) of mouse antibodies into a background of human framework regions and constant regions by recombinant DNA technology (Riechmann LM, et al., 1988 Nature 323: 323-327). Humanized antibodies contain ~10% murine sequences and ~90% human sequences, and thus further reduce or eliminate immunogenicity, while retaining the antibody specificities (Co MS, and Queen C. 1991 Nature 351: 501-501; Morrison SL. 1992 Ann. Rev. Immun. 10:239-265). Humanized antibodies and methods of their production are well-known in the art (U.S. Pat. Nos. 5,530,101, 5,585,089, 5,693,762, and 6,180,370).

HM-specific single chain antibodies which are recombinant, single chain polypeptides formed by linking the heavy and light chain fragments of the Fv regions via an amino acid bridge, can be produced by methods known in the art (U.S. Pat. No. 4,946,778; Bird, Science (1988) 242:423-426; Huston et al., Proc. Natl. Acad. Sci. USA (1988) 85:5879-5883; and Ward et al., Nature (1989) 334:544-546).

15

20

25

30

Other suitable techniques for antibody production involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors (Huse et al., Science (1989) 246:1275-1281). As used herein, T-cell antigen receptors are included within the scope of antibody modulators (Harlow and Lane, 1988, *supra*).

The polypeptides and antibodies of the present invention may be used with or without modification. Frequently, antibodies will be labeled by joining, either covalently or non-covalently, a substance that provides for a detectable signal, or that is toxic to cells that express the targeted protein (Menard S, et al., Int J. Biol Markers (1989) 4:131-134). A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, fluorescent emitting lanthanide metals, chemiluminescent moieties, bioluminescent moieties, magnetic particles, and the like (U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241). Also, recombinant immunoglobulins may be produced (U.S. Pat. No. 4,816,567). Antibodies to cytoplasmic polypeptides may be delivered and reach their

targets by conjugation with membrane-penetrating toxin proteins (U.S. Pat. No. 6,086,900).

When used therapeutically in a patient, the antibodies of the subject invention are typically administered parenterally, when possible at the target site, or intravenously. The therapeutically effective dose and dosage regimen is determined by clinical studies. Typically, the amount of antibody administered is in the range of about 0.1 mg/kg—to about 10 mg/kg of patient weight. For parenteral administration, the antibodies are formulated in a unit dosage injectable form (e.g., solution, suspension, emulsion) in association with a pharmaceutically acceptable vehicle. Such vehicles are inherently nontoxic and non-therapeutic. Examples are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Nonaqueous vehicles such as fixed oils, ethyl oleate, or liposome carriers may also be used. The vehicle may contain minor amounts of additives, such as buffers and preservatives, which enhance isotonicity and chemical stability or otherwise enhance therapeutic potential. The antibodies' concentrations in such vehicles are typically in the range of about 1 mg/ml to about10 mg/ml.

Immunotherapeutic methods are further described in the literature (US Pat. No. 5,859,206; WO0073469).

Specific biotherapeutics

5

10

30

In a preferred embodiment, an HM-interacting protein may have biotherapeutic applications. Biotherapeutic agents formulated in pharmaceutically acceptable carriers and dosages may be used to activate or inhibit signal transduction pathways. This modulation may be accomplished by binding a ligand, thus inhibiting the activity of the pathway; or by binding a receptor, either to inhibit activation of, or to activate, the receptor. Alternatively, the biotherapeutic may itself be a ligand capable of activating or inhibiting a receptor. Biotherapeutic agents and methods of producing them are described in detail in U.S. Pat. No. 6,146,628.

When the HM is a ligand, it may be used as a biotherapeutic agent to activate or inhibit its natural receptor. Alternatively, antibodies against HM, as described in the previous section, may be used as biotherapeutic agents.

When the HM is a receptor, its ligand(s), antibodies to the ligand(s) or the HM itself may be used as biotherapeutics to modulate the activity of HM in the p53 pathway.

Nucleic Acid Modulators

5

10

15

20

25

30

Other preferred HM-modulating agents comprise nucleic acid molecules, such as antisense oligomers or double stranded RNA (dsRNA), which generally inhibit HM activity. Preferred nucleic acid modulators interfere with the function of the HM nucleic acid such as DNA replication, transcription, translocation of the HM RNA to the site of protein translation, translation of protein from the HM RNA, splicing of the HM RNA to yield one or more mRNA species, or catalytic activity which may be engaged in or facilitated by the HM RNA.

In one embodiment, the antisense oligomer is an oligonucleotide that is sufficiently complementary to an HM mRNA to bind to and prevent translation, preferably by binding to the 5' untranslated region. HM-specific antisense oligonucleotides, preferably range from at least 6 to about 200 nucleotides. In some embodiments the oligonucleotide is preferably at least 10, 15, or 20 nucleotides in length. In other embodiments, the oligonucleotide is preferably less than 50, 40, or 30 nucleotides in length. The oligonucleotide can be DNA or RNA or a chimeric mixture or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone. The oligonucleotide may include other appending groups such as peptides, agents that facilitate transport across the cell membrane, hybridization-triggered cleavage agents, and intercalating agents.

In another embodiment, the antisense oligomer is a phosphothioate morpholino oligomer (PMO). PMOs are assembled from four different morpholino subunits, each of which contain one of four genetic bases (A, C, G, or T) linked to a six-membered morpholine ring. Polymers of these subunits are joined by non-ionic phosphodiamidate intersubunit linkages. Details of how to make and use PMOs and other antisense oligomers are well known in the art (e.g. see WO99/18193; Probst JC, Antisense Oligodeoxynucleotide and Ribozyme Design, Methods. (2000) 22(3):271-281; Summerton J, and Weller D. 1997 Antisense Nucleic Acid Drug Dev. :7:187-95; US Pat. No. 5,235,033; and US Pat No. 5,378,841).

Alternative preferred HM nucleic acid modulators are double-stranded RNA species mediating RNA interference (RNAi). RNAi is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. Methods relating to the use of RNAi to silence genes in *C. elegans*, *Drosophila*, plants, and humans are known in the art (Fire A, et al., 1998 Nature 391:806-811; Fire, A. Trends Genet. 15, 358-363 (1999);

Sharp, P. A. RNA interference 2001. Genes Dev. 15, 485-490 (2001); Hammond, S. M., et al., Nature Rev. Genet. 2, 110-1119 (2001); Tuschl, T. Chem. Biochem. 2, 239-245 (2001); Hamilton, A. et al., Science 286, 950-952 (1999); Hammond, S. M., et al., Nature 404, 293-296 (2000); Zamore, P. D., et al., Cell 101, 25-33 (2000); Bernstein, E., et al., Nature 409, 363-366 (2001); Elbashir, S. M., et al., Genes Dev. 15, 188-200 (2001); WO0129058; WO9932619; Elbashir SM, et al., 2001 Nature 411:494-498).

Nucleic acid modulators are commonly used as research reagents, diagnostics, and therapeutics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used to elucidate the function of particular genes (see, for example, U.S. Pat. No. 6,165,790). Nucleic acid modulators are also used, for example, to distinguish between functions of various members of a biological pathway. For example, antisense oligomers have been employed as therapeutic moieties in the treatment of disease states in animals and man and have been demonstrated in numerous clinical trials to be safe and effective (Milligan JF, et al., Current Concepts in Antisense Drug Design, J Med Chem. (1993) 36:1923-1937; Tonkinson JL et al., Antisense Oligodeoxynucleotides as Clinical Therapeutic Agents, Cancer Invest. (1996) 14:54-65). Accordingly, in one aspect of the invention, an HM-specific nucleic acid modulator is used in an assay to further elucidate the role of the HM in the p53 pathway, and/or its relationship to other members of the pathway. In another aspect of the invention, an HM-specific antisense oligomer is used as a therapeutic agent for treatment of p53-related disease states.

Assay Systems

15

20

25

The invention provides assay systems and screening methods for identifying specific modulators of HM activity. As used herein, an "assay system" encompasses all the components required for performing and analyzing results of an assay that detects and/or measures a particular event. In general, primary assays are used to identify or confirm a modulator's specific biochemical or molecular effect with respect to the HM nucleic acid or protein. In general, secondary assays further assess the activity of an HM modulating agent identified by a primary assay and may confirm that the modulating agent affects HM in a manner relevant to the p53 pathway. In some cases, HM modulators will be directly tested in a secondary assay.

In a preferred embodiment, the screening method comprises contacting a suitable assay system comprising an HM polypeptide or nucleic acid with a candidate agent under

conditions whereby, but for the presence of the agent, the system provides a reference activity (e.g. binding activity), which is based on the particular molecular event the screening method detects. A statistically significant difference between the agent-biased activity and the reference activity indicates that the candidate agent modulates HM activity, and hence the p53 pathway. The HM polypeptide or nucleic acid used in the assay may comprise any of the nucleic acids or polypeptides described above.

Primary Assays

The type of modulator tested generally determines the type of primary assay.

10

15

20

25

30

Primary assays for small molecule modulators

For small molecule modulators, screening assays are used to identify candidate modulators. Screening assays may be cell-based or may use a cell-free system that recreates or retains the relevant biochemical reaction of the target protein (reviewed in Sittampalam GS et al., Curr Opin Chem Biol (1997) 1:384-91 and accompanying references). As used herein the term "cell-based" refers to assays using live cells, dead cells, or a particular cellular fraction, such as a membrane, endoplasmic reticulum, or mitochondrial fraction. The term "cell free" encompasses assays using substantially purified protein (either endogenous or recombinantly produced), partially purified or crude cellular extracts. Screening assays may detect a variety of molecular events, including protein-DNA interactions, protein-protein interactions (e.g., receptor-ligand binding), transcriptional activity (e.g., using a reporter gene), enzymatic activity (e.g., via a property of the substrate), activity of second messengers, immunogenicty and changes in cellular morphology or other cellular characteristics. Appropriate screening assays may use a wide range of detection methods including fluorescent, radioactive, colorimetric, spectrophotometric, and amperometric methods, to provide a read-out for the particular molecular event detected.

Cell-based screening assays usually require systems for recombinant expression of HM and any auxiliary proteins demanded by the particular assay. Appropriate methods for generating recombinant proteins produce sufficient quantities of proteins that retain their relevant biological activities and are of sufficient purity to optimize activity and assure assay reproducibility. Yeast two-hybrid and variant screens, and mass spectrometry provide preferred methods for determining protein-protein interactions and elucidation of protein complexes. In certain applications, when HM-interacting proteins are used in

screens to identify small molecule modulators, the binding specificity of the interacting protein to the HM protein may be assayed by various known methods such as substrate processing (e.g. ability of the candidate HM-specific binding agents to function as negative effectors in HM-expressing cells), binding equilibrium constants (usually at least about $10^7 \, \mathrm{M}^{-1}$, preferably at least about $10^8 \, \mathrm{M}^{-1}$, more preferably at least about $10^9 \, \mathrm{M}^{-1}$), and immunogenicity (e.g. ability to elicit HM specific antibody in a heterologous host such as a mouse, rat, goat or rabbit). For enzymes and receptors, binding may be assayed by, respectively, substrate and ligand processing.

The screening assay may measure a candidate agent's ability to specifically bind to or modulate activity of an HM polypeptide, a fusion protein thereof, or to cells or membranes bearing the polypeptide or fusion protein. The HM polypeptide can be full length or a fragment thereof that retains functional HM activity. The HM polypeptide may be fused to another polypeptide, such as a peptide tag for detection or anchoring, or to another tag. The HM polypeptide is preferably human HM, or is an ortholog or derivative thereof as described above. In a preferred embodiment, the screening assay detects candidate agent-based modulation of HM interaction with a binding target, such as an endogenous or exogenous protein or other substrate that has HM—specific binding activity, and can be used to assess normal HM gene function.

10

15

20

25

30

Suitable assay formats that may be adapted to screen for HM modulators are known in the art. Preferred screening assays are high throughput or ultra high throughput and thus provide automated, cost-effective means of screening compound libraries for lead compounds (Fernandes PB, Curr Opin Chem Biol (1998) 2:597-603; Sundberg SA, Curr Opin Biotechnol 2000, 11:47-53). In one preferred embodiment, screening assays uses fluorescence technologies, including fluorescence polarization, time-resolved fluorescence, and fluorescence resonance energy transfer. These systems offer means to monitor protein-protein or DNA-protein interactions in which the intensity of the signal emitted from dye-labeled molecules depends upon their interactions with partner molecules (e.g., Selvin PR, Nat Struct Biol (2000) 7:730-4; Fernandes PB, supra; Hertzberg RP and Pope AJ, Curr Opin Chem Biol (2000) 4:445-451).

A variety of suitable assay systems may be used to identify candidate HM and p53 pathway modulators (e.g. U.S. Pat. Nos. 5,550,019 and 6,133,437 (apoptosis assays); U.S. Pat. No. 6,020,135 (p53 modulation), U.S. Pat. No. 6,114,132 (phosphatase and protease assays), U.S. Pat. Nos. 5,976,782, 6,225,118 and 6,444,434 (angiogenesis assays), among others). Specific preferred assays are described in more detail below.

Protein phosphatase assays. Protein phosophatases catalyze the removal of a gamma phosphate from a serine, threonine or tyrosine residue in a protein substrate. Since phosphatases act in opposition to kinases, appropriate assays measure the same parameters as kinase assays. In one example, the dephosphorylation of a fluorescently labeled peptide substrate allows trypsin cleavage of the substrate, which in turn renders the cleaved substrate significantly more fluorescent (Nishikata M et al., Biochem J (1999) 343:35-391). In another example, fluorescence polarization (FP), a solution-based, homogeneous technique requiring no immobilization or separation of reaction components, is used to develop high throughput screening (HTS) assays for protein phosphatases. This assay uses direct binding of the phosphatase with the target, and increasing concentrations of target-phosphatase increase the rate of dephosphorylation, leading to a change in polarization (Parker GJ et al., (2000) J Biomol Screen 5:77-88).

10

15

Apoptosis assays. Assays for apoptosis may be performed by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling (TUNEL) assay. The TUNEL assay is used to measure nuclear DNA fragmentation characteristic of apoptosis (Lazebnik et al., 1994, Nature 371, 346), by following the incorporation of fluorescein-dUTP (Yonehara et al., 1989, J. Exp. Med. 169, 1747). Apoptosis may further be assayed by acridine orange staining of tissue culture cells (Lucas, R., et al., 1998, Blood 15:4730-41). An apoptosis assay system may comprise a cell that expresses an HM, and 20 that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the apoptosis assay system and changes in induction of apoptosis relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, an apoptosis assay may be used as a secondary assay to test a candidate p53 modulating agents that is 25 initially identified using a cell-free assay system. An apoptosis assay may also be used to test whether HM function plays a direct role in apoptosis. For example, an apoptosis assay may be performed on cells that over- or under-express HM relative to wild type cells. Differences in apoptotic response compared to wild type cells suggests that the HM plays a direct role in the apoptotic response. Apoptosis assays are described further in US Pat. 30 No. 6,133,437.

Cell proliferation and cell cycle assays. Cell proliferation may be assayed via bromodeoxyuridine (BRDU) incorporation. This assay identifies a cell population

undergoing DNA synthesis by incorporation of BRDU into newly-synthesized DNA. Newly-synthesized DNA may then be detected using an anti-BRDU antibody (Hoshino *et al.*, 1986, Int. J. Cancer 38, 369; Campana *et al.*, 1988, J. Immunol. Meth. 107, 79), or by other means.

5

10

15

20

25

30

Cell Proliferation may also be examined using [³H]-thymidine incorporation (Chen, J., 1996, Oncogene 13:1395-403; Jeoung, J., 1995, J. Biol. Chem. 270:18367-73). This assay allows for quantitative characterization of S-phase DNA syntheses. In this assay, cells synthesizing DNA will incorporate [³H]-thymidine into newly synthesized DNA. Incorporation can then be measured by standard techniques such as by counting of radioisotope in a scintillation counter (e.g., Beckman LS 3800 Liquid Scintillation Counter). Another proliferation assay uses the dye Alamar Blue (available from Biosource International), which fluoresces when reduced in living cells and provides an indirect measurement of cell number (Voytik-Harbin SL et al., 1998, In Vitro Cell Dev Biol Anim 34:239-46).

Cell proliferation may also be assayed by colony formation in soft agar (Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). For example, cells transformed with HM are seeded in soft agar plates, and colonies are measured and counted after two weeks incubation.

Involvement of a gene in the cell cycle may be assayed by flow cytometry (Gray JW et al. (1986) Int J Radiat Biol Relat Stud Phys Chem Med 49:237-55). Cells transfected with an HM may be stained with propidium iodide and evaluated in a flow cytometer (available from Becton Dickinson), which indicates accumulation of cells in different stages of the cell cycle.

Accordingly, a cell proliferation or cell cycle assay system may comprise a cell that expresses an HM, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the assay system and changes in cell proliferation or cell cycle relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the cell proliferation or cell cycle assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system such as a cell-free assay system. A cell proliferation assay may also be used to test whether HM function plays a direct role in cell proliferation or cell cycle. For example, a cell proliferation or cell cycle assay may be performed on cells that over- or under-express

HM relative to wild type cells. Differences in proliferation or cell cycle compared to wild type cells suggests that the HM plays a direct role in cell proliferation or cell cycle.

5

10

15

20

25

30

Angiogenesis. Angiogenesis may be assayed using various human endothelial cell systems, such as umbilical vein, coronary artery, or dermal cells. Suitable assays include Alamar Blue based assays (available from Biosource International) to measure proliferation; migration assays using fluorescent molecules, such as the use of Becton Dickinson Falcon HTS FluoroBlock cell culture inserts to measure migration of cells through membranes in presence or absence of angiogenesis enhancer or suppressors; and tubule formation assays based on the formation of tubular structures by endothelial cells on Matrigel® (Becton Dickinson). Accordingly, an angiogenesis assay system may comprise a cell that expresses an HM, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the angiogenesis assay system and changes in angiogenesis relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the angiogenesis assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system. An angiogenesis assay may also be used to test whether HM function plays a direct role in cell proliferation. For example, an angiogenesis assay may be performed on cells that over- or under-express HM relative to wild type cells. Differences in angiogenesis compared to wild type cells suggests that the HM plays a direct role in angiogenesis. U.S. Pat. Nos. 5,976,782, 6,225,118 and 6,444,434, among others.

Hypoxic induction. The alpha subunit of the transcription factor, hypoxia inducible factor-1 (HIF-1), is upregulated in tumor cells following exposure to hypoxia in vitro. Under hypoxic conditions, HIF-1 stimulates the expression of genes known to be important in tumour cell survival, such as those encoding glyolytic enzymes and VEGF. Induction of such genes by hypoxic conditions may be assayed by growing cells transfected with HM in hypoxic conditions (such as with 0.1% O2, 5% CO2, and balance N2, generated in a Napco 7001 incubator (Precision Scientific)) and normoxic conditions, followed by assessment of gene activity or expression by Taqman®. For example, a hypoxic induction assay system may comprise a cell that expresses an HM, and that optionally has a mutated p53 (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the hypoxic induction assay system and

changes in hypoxic response relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the hypoxic induction assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system. A hypoxic induction assay may also be used to test whether HM function plays a direct role in the hypoxic response. For example, a hypoxic induction assay may be performed on cells that over- or underexpress HM relative to wild type cells. Differences in hypoxic response compared to wild type cells suggests that the HM plays a direct role in hypoxic induction.

5

10

15

20

25

30

Cell adhesion. Cell adhesion assays measure adhesion of cells to purified adhesion proteins, or adhesion of cells to each other, in presence or absence of candidate modulating agents. Cell-protein adhesion assays measure the ability of agents to modulate the adhesion of cells to purified proteins. For example, recombinant proteins are produced, diluted to 2.5g/mL in PBS, and used to coat the wells of a microtiter plate. The wells used for negative control are not coated. Coated wells are then washed, blocked with 1% BSA, and washed again. Compounds are diluted to 2× final test concentration and added to the blocked, coated wells. Cells are then added to the wells, and the unbound cells are washed off. Retained cells are labeled directly on the plate by adding a membrane-permeable fluorescent dye, such as calcein-AM, and the signal is quantified in a fluorescent microplate reader.

Cell-cell adhesion assays measure the ability of agents to modulate binding of cell adhesion proteins with their native ligands. These assays use cells that naturally or recombinantly express the adhesion protein of choice. In an exemplary assay, cells expressing the cell adhesion protein are plated in wells of a multiwell plate. Cells expressing the ligand are labeled with a membrane-permeable fluorescent dye, such as BCECF, and allowed to adhere to the monolayers in the presence of candidate agents. Unbound cells are washed off, and bound cells are detected using a fluorescence plate reader.

High-throughput cell adhesion assays have also been described. In one such assay, small molecule ligands and peptides are bound to the surface of microscope slides using a microarray spotter, intact cells are then contacted with the slides, and unbound cells are washed off. In this assay, not only the binding specificity of the peptides and modulators against cell lines are determined, but also the functional cell signaling of attached cells

using immunofluorescence techniques in situ on the microchip is measured (Falsey JR et al., Bioconjug Chem. 2001 May-Jun;12(3):346-53).

Cell Migration. An invasion/migration assay (also called a migration assay) tests the ability of cells to overcome a physical barrier and to migrate towards pro-angiogenic signals. Migration assays are known in the art (e.g., Paik JH et al., 2001, J Biol Chem 276:11830-11837). In a typical experimental set-up, cultured endothelial cells are seeded onto a matrix-coated porous lamina, with pore sizes generally smaller than typical cell size. The matrix generally simulates the environment of the extracellular matrix, as described above. The lamina is typically a membrane, such as the transwell polycarbonate membrane (Corning Costar Corporation, Cambridge, MA), and is generally part of an upper chamber that is in fluid contact with a lower chamber containing pro-angiogenic stimuli. Migration is generally assayed after an overnight incubation with stimuli, but longer or shorter time frames may also be used. Migration is assessed as the number of cells that crossed the lamina, and may be detected by staining cells with hemotoxylin solution (VWR Scientific, South San Francisco, CA), or by any other method for determining cell number. In another exemplary set up, cells are fluorescently labeled and migration is detected using fluorescent readings, for instance using the Falcon HTS FluoroBlok (Becton Dickinson). While some migration is observed in the absence of stimulus, migration is greatly increased in response to pro-angiogenic factors. As described above, a preferred assay system for migration/invasion assays comprises testing an HM's response to a variety of pro-angiogenic factors, including tumor angiogenic and inflammatory angiogenic agents, and culturing the cells in serum free medium.

25 Primary assays for antibody modulators

10

15

20

30

For antibody modulators, appropriate primary assays test is a binding assay that tests the antibody's affinity to and specificity for the HM protein. Methods for testing antibody affinity and specificity are well known in the art (Harlow and Lane, 1988, 1999, *supra*). The enzyme-linked immunosorbant assay (ELISA) is a preferred method for detecting HM-specific antibodies; others include FACS assays, radioimmunoassays, and fluorescent assays.

In some cases, screening assays described for small molecule modulators may also be used to test antibody modulators.

Primary assays for nucleic acid modulators

For nucleic acid modulators, primary assays may test the ability of the nucleic acid modulator to inhibit or enhance HM gene expression, preferably mRNA expression. In general, expression analysis comprises comparing HM expression in like populations of cells (e.g., two pools of cells that endogenously or recombinantly express HM) in the presence and absence of the nucleic acid modulator. Methods for analyzing mRNA and protein expression are well known in the art. For instance, Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR (e.g., using the TaqMan®, PE Applied Biosystems), or microarray analysis may be used to confirm that HM mRNA expression is reduced in cells treated with the nucleic acid modulator (e.g., Current Protocols in Molecular Biology (1994) Ausubel FM et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman WM et al., Biotechniques (1999) 26:112-125; Kallioniemi OP, Ann Med 2001, 33:142-147; Blohm DH and Guiseppi-Elie, A Curr Opin Biotechnol 2001, 12:41-47). Protein expression may also be monitored. Proteins are most commonly detected with specific antibodies or antisera directed against either the HM protein or specific peptides. A variety of means including Western blotting, ELISA, or in situ detection, are available (Harlow E and Lane D, 1988 and 1999, supra).

In some cases, screening assays described for small molecule modulators, particularly in assay systems that involve HM mRNA expression, may also be used to test nucleic acid modulators.

Secondary Assays

10

15

20

25

30

Secondary assays may be used to further assess the activity of HM-modulating agent identified by any of the above methods to confirm that the modulating agent affects HM in a manner relevant to the p53 pathway. As used herein, HM-modulating agents encompass candidate clinical compounds or other agents derived from previously identified modulating agent. Secondary assays can also be used to test the activity of a modulating agent on a particular genetic or biochemical pathway or to test the specificity of the modulating agent's interaction with HM.

Secondary assays generally compare like populations of cells or animals (e.g., two pools of cells or animals that endogenously or recombinantly express HM) in the presence and absence of the candidate modulator. In general, such assays test whether treatment of cells or animals with a candidate HM-modulating agent results in changes in the p53 pathway in comparison to untreated (or mock- or placebo-treated) cells or animals.

Certain assays use "sensitized genetic backgrounds", which, as used herein, describe cells or animals engineered for altered expression of genes in the p53 or interacting pathways.

Cell-based assays

5

10

15

20

25

30

Cell based assays may use a variety of mammalian cell lines known to have defective p53 function (e.g. SAOS-2 osteoblasts, H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from American Type Culture Collection (ATCC), Manassas, VA). Cell based assays may detect endogenous p53 pathway activity or may rely on recombinant expression of p53 pathway components. Any of the aforementioned assays may be used in this cell-based format. Candidate modulators are typically added to the cell media but may also be injected into cells or delivered by any other efficacious means.

Animal Assays

A variety of non-human animal models of normal or defective p53 pathway may be used to test candidate HM modulators. Models for defective p53 pathway typically use genetically modified animals that have been engineered to mis-express (e.g., over-express or lack expression in) genes involved in the p53 pathway. Assays generally require systemic delivery of the candidate modulators, such as by oral administration, injection, etc.

In a preferred embodiment, p53 pathway activity is assessed by monitoring neovascularization and angiogenesis. Animal models with defective and normal p53 are used to test the candidate modulator's affect on HM in Matrigel® assays. Matrigel® is an extract of basement membrane proteins, and is composed primarily of laminin, collagen IV, and heparin sulfate proteoglycan. It is provided as a sterile liquid at 4°C, but rapidly forms a solid gel at 37°C. Liquid Matrigel® is mixed with various angiogenic agents, such as bFGF and VEGF, or with human tumor cells which over-express the HM. The mixture is then injected subcutaneously(SC) into female athymic nude mice (Taconic, Germantown, NY) to support an intense vascular response. Mice with Matrigel® pellets may be dosed via oral (PO), intraperitoneal (IP), or intravenous (IV) routes with the candidate modulator. Mice are euthanized 5 - 12 days post-injection, and the Matrigel® pellet is harvested for hemoglobin analysis (Sigma plasma hemoglobin kit). Hemoglobin content of the gel is found to correlate the degree of neovascularization in the gel.

In another preferred embodiment, the effect of the candidate modulator on HM is assessed via tumorigenicity assays. In one example, a xenograft comprising human cells from a pre-existing tumor or a tumor cell line is used. Tumor xenograft assays are known in the art (see, e.g., Ogawa K et al., 2000, Oncogene 19:6043-6052). Xenografts are typically implanted SC into female athymic mice, 6-7 week old, as single cell suspensions either from a pre-existing tumor or from in vitro culture. The tumors which express the HM endogenously are injected in the flank, 1 x 10⁵ to 1 x 10⁷ cells per mouse in a volume of 100 µL using a 27 gauge needle. Mice are then ear tagged and tumors are measured twice weekly. Candidate modulator treatment is initiated on the day the mean tumor weight reaches 100 mg. Candidate modulator is delivered IV, SC, IP, or PO by bolus administration. Depending upon the pharmacokinetics of each unique candidate modulator, dosing can be performed multiple times per day. The tumor weight is assessed by measuring perpendicular diameters with a caliper and calculated by multiplying the measurements of diameters in two dimensions. At the end of the experiment, the excised tumors maybe utilized for biomarker identification or further analyses. For immunohistochemistry staining, xenograft tumors are fixed in 4% paraformaldehyde, 0.1M phosphate, pH 7.2, for 6 hours at 4°C, immersed in 30% sucrose in PBS, and rapidly frozen in isopentane cooled with liquid nitrogen.

10

15

20

30

In another preferred embodiment, tumorogenicity is monitored using a hollow fiber assay, which is described in U.S. Pat No. US 5,698,413. Briefly, the method comprises implanting into a laboratory animal a biocompatible, semi-permeable encapsulation device containing target cells, treating the laboratory animal with a candidate modulating agent, and evaluating the target cells for reaction to the candidate modulator. Implanted cells are generally human cells from a pre-existing tumor or a tumor cell line. After an appropriate period of time, generally around six days, the implanted samples are harvested for evaluation of the candidate modulator. Tumorogenicity and modulator efficacy may be evaluated by assaying the quantity of viable cells present in the macrocapsule, which can be determined by tests known in the art, for example, MTT dye conversion assay, neutral red dye uptake, trypan blue staining, viable cell counts, the number of colonies formed in soft agar, the capacity of the cells to recover and replicate in vitro, etc.

In another preferred embodiment, a tumorogenicity assay use a transgenic animal, usually a mouse, carrying a dominant oncogene or tumor suppressor gene knockout under the control of tissue specific regulatory sequences; these assays are generally referred to as transgenic tumor assays. In a preferred application, tumor development in the transgenic

model is well characterized or is controlled. In an exemplary model, the "RIP1-Tag2" transgene, comprising the SV40 large T-antigen oncogene under control of the insulin gene regulatory regions is expressed in pancreatic beta cells and results in islet cell carcinomas (Hanahan D, 1985, Nature 315:115-122; Parangi S et al, 1996, Proc Natl Acad Sci USA 93: 2002-2007; Bergers G et al, 1999, Science 284:808-812). An "angiogenic switch," occurs at approximately five weeks, as normally quiescent capillaries in a subset of hyperproliferative islets become angiogenic. The RIP1-TAG2 mice die by age 14 weeks. Candidate modulators may be administered at a variety of stages, including just prior to the angiogenic switch (e.g., for a model of tumor prevention), during the growth of small tumors (e.g., for a model of intervention), or during the growth of large and/or invasive tumors (e.g., for a model of regression). Tumorogenicity and modulator efficacy can be evaluating life-span extension and/or tumor characteristics, including number of tumors, tumor size, tumor morphology, vessel density, apoptotic index, etc.

15 Diagnostic and therapeutic uses

10

20

25

30

Specific HM-modulating agents are useful in a variety of diagnostic and therapeutic applications where disease or disease prognosis is related to defects in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation disorders. Accordingly, the invention also provides methods for modulating the p53 pathway in a cell, preferably a cell predetermined to have defective or impaired p53 function (e.g. due to overexpression, underexpression, or misexpression of p53, or due to gene mutations), comprising the step of administering an agent to the cell that specifically modulates HM activity. Preferably, the modulating agent produces a detectable phenotypic change in the cell indicating that the p53 function is restored. The phrase "function is restored", and equivalents, as used herein, means that the desired phenotype is achieved, or is brought closer to normal compared to untreated cells. For example, with restored p53 function, cell proliferation and/or progression through cell cycle may normalize, or be brought closer to normal relative to untreated cells. The invention also provides methods for treating disorders or disease associated with impaired p53 function by administering a therapeutically effective amount of an HM -modulating agent that modulates the p53 pathway. The invention further provides methods for modulating HM function in a cell, preferably a cell predetermined to have defective or impaired HM function, by administering an HM modulating agent. Additionally, the invention provides a method for treating disorders or

disease associated with impaired HM function by administering a therapeutically effective amount of an HM -modulating agent.

The discovery that HM is implicated in p53 pathway provides for a variety of methods that can be employed for the diagnostic and prognostic evaluation of diseases and disorders involving defects in the p53 pathway and for the identification of subjects having a predisposition to such diseases and disorders.

Various expression analysis methods can be used to diagnose whether HM expression occurs in a particular sample, including Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR, and microarray analysis. (e.g., Current Protocols in Molecular Biology (1994) Ausubel FM et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman WM et al., Biotechniques (1999) 26:112-125; Kallioniemi OP, Ann Med 2001, 33:142-147; Blohm and Guiseppi-Elie, Curr Opin Biotechnol 2001, 12:41-47). Tissues having a disease or disorder implicating defective p53 signaling that express an HM, are identified as amenable to treatment with an HM modulating agent. In a preferred application, the p53 defective tissue overexpresses an HM relative to normal tissue. For example, a Northern blot analysis of mRNA from tumor and normal cell lines, or from tumor and matching normal tissue samples from the same patient, using full or partial HM cDNA sequences as probes, can determine whether particular tumors express or overexpress HM. Alternatively, the TaqMan® is used for quantitative RT-PCR analysis of HM expression in cell lines, normal tissues and tumor samples (PE Applied Biosystems).

10

15

20

25

30

Various other diagnostic methods may be performed, for example, utilizing reagents such as the HM oligonucleotides, and antibodies directed against an HM, as described above for: (1) the detection of the presence of HM gene mutations, or the detection of either over- or under-expression of HM mRNA relative to the non-disorder state; (2) the detection of either an over- or an under-abundance of HM gene product relative to the non-disorder state; and (3) the detection of perturbations or abnormalities in the signal transduction pathway mediated by HM.

Thus, in a specific embodiment, the invention is drawn to a method for diagnosing a disease or disorder in a patient that is associated with alterations in HM expression, the method comprising: a) obtaining a biological sample from the patient; b) contacting the sample with a probe for HM expression; c) comparing results from step (b) with a control; and d) determining whether step (c) indicates a likelihood of the disease or disorder.

Preferably, the disease is cancer, most preferably a cancer as shown in TABLE 2. The probe may be either DNA or protein, including an antibody.

EXAMPLES

5

10

15

20

25

The following experimental section and examples are offered by way of illustration and not by way of limitation.

I. Drosophila p53 screen

The Drosophila p53 gene was overexpressed specifically in the wing using the vestigial margin quadrant enhancer. Increasing quantities of Drosophila p53 (titrated using different strength transgenic inserts in 1 or 2 copies) caused deterioration of normal wing morphology from mild to strong, with phenotypes including disruption of pattern and polarity of wing hairs, shortening and thickening of wing veins, progressive crumpling of the wing and appearance of dark "death" inclusions in wing blade. In a screen designed to identify enhancers and suppressors of Drosophila p53, homozygous females carrying two copies of p53 were crossed to 5663 males carrying random insertions of a piggyBac transposon (Fraser M et al., Virology (1985) 145:356-361). Progeny containing insertions were compared to non-insertion-bearing sibling progeny for enhancement or suppression of the p53 phenotypes. Sequence information surrounding the piggyBac insertion site was used to identify the modifier genes. Modifiers of the wing phenotype were identified as members of the p53 pathway. Human orthologs of the modifiers are referred to herein as HM.

II. Analysis of Table 1

BLAST analysis (Altschul et al., supra) was employed to identify Targets from Drosophila modifiers. The column "HM name" provides a symbol or the known name abbreviations for the Targets, where available, from Genbank. "HM RefSeq_NA or GI_NA", "HM GI_AA", and "HM Description" provide the reference DNA sequences for the HMs as available from National Center for Biology Information (NCBI), HM protein Genbank identifier number (GI#), and HM description, all available from Genbank, 30 respectively. The respective SEQ ID NO for each nucleic acid and polypeptide sequence is indicated next to the sequence. The length of each amino acid is in the "HM Protein Length" column.

Names and Protein sequences of *Drosophila* modifiers of p53 from screen (Example I), are represented in the "Modifier Name" and "Modifier GI_AA" column by GI#, respectively.

5 Table 1

	HM.	HM:							Modifier
	Na	RefS	A	AA	SEQ				GI <u>-</u> AA
	me	eq_	4					Name	
d	整建	NA	<u>SE</u>		NO.		lengt		13 M 1 1 2 T
	7.4	or 🔭	Ä				h		
, s		or GL	Q.					0.31	
		NA	<u>D</u>						
3	2.0		N						
y.		7	- 15 15				13	14.7	
~ ~		新華	<u>O</u> .				級於		
	LRR	1449	1	gi 795925	15	KIAA1497 protein [Homo	730	caps	gi 3885974 gb A
		5560		5 dbj BAA		sapiens]; NP_032542		-	AC78144.1
Į				96021.1]	leucine rich repeat protein 1,			·
1			·	'	İ	neuronal [Mus musculus]			
	LOC	1475	2	gi 147510	16	similar to neuronal leucine-	708	caps	gi 3885974 gb A
	9246	1033		34 ref XP_		rich repeat protein-3;			AC78144.1
	8			045260.1	ſ	WUGSC:H_RG118D07.1,	[
					l	Homo sapiens BAC clone			
					i	CTB-118D7 from 7q31;		l	Ì
	}	l	1		ł	similar to murine leucine-	ł	1	ł
						rich repeat protein; possible			
		Ì	1			role in neural development			
		}			1	by protein-protein)	1
	ĺ		1		1	interactions; 93% similarity		ļ	
_		1004	<u>_</u>	1122006	1.77	to D49802 (PID:g1369906)	606		gi 3885974 gb A
3	1	1004	t .	gi 123096	11/	bA438B23.1 (neuronal	000	caps	AC78144.1
		5383		30 emb C AC22713.		leucine-rich repeat protein) [Homo sapiens]		ļ	AC70144.1
	23.1	ł		AC22/13.		[Homo sapiens]			
	XP	1530	14	gi 153012	18	hypothetical protein	614	caps	gi 3885974 gb A
	W-				110		L .	Jun	
•	0531	1260	ı	70 ref XP_	1	XP_053144 [Homo sapiens]	l l	1	AC78144.1

[-	TOP	4826		gi 482677	19	insulin-like growth factor	605	caps	gi 3885974 gb A
	ALS	771		2 ref NP_0 04961.1		binding protein, acid labile subunit; INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN COMPLEX ACID LABILE CHAIN PRECURSOR [Homo sapiens]			AC78144.1
6		1442 3348		gi 144233 49 gb AA K62357.1 AF381545 _1	20	Homo sapiens membrane glycoprotein LIG-1 mRNA,	###	caps	gi 3885974 gb A AC78144.1
7		1449 5560		gi 144955 61 gb AA G28019.2 AF196976 _1		Homo sapiens brain tumor associated protein NAG14 (NAG14)	653	caps	gi 3885974 gb A AC78144.1
8		1004 7234	8	gi 100472 35 dbj BA B13406.1	22	KIAA1580 protein	640	caps	gi 3885974 gb A AC78144.1
9	DKF Zp76 1A1 79	6808 025	9	gi 680802 6 emb CA B70743.1		Homo sapiens Mrna; cDNA DKFZp761A179	422	caps	gi 3885974 gb A AC78144.1
1 0	KIA A06 44		10	gi 766222 0 ref NP_0 55632.1		KIAA0644 gene product [Homo sapiens]	811	caps	gi 3885974 gb A AC78144.1
		8051 591	11	gi 701937 9 ref NP_0 37412.1		fibronectin leucine rich transmembrane protein 1 [Homo sapiens]	674	caps	gi 3885974 gb A AC78144.1
1 2	FLR T2	6808 604	12	gi 680860 5 gb AAF 28460.1 A F169676_ 1	26	leucine-rich repeat transmembrane protein FLRT2	660	caps	gi 3885974 gb A AC78144.1
3	FLR T3	6808 606	13	gi 680860 7 gb AAF 28461.1 A F169677_ 1	27	Homo sapiens leucine-rich repeat transmembrane protein FLRT3	649	caps	gi 3885974 gb A AC78144.1

1	BG7	1400	14	gi 128526	28	2	279	tyrosin	gi 7301043 gb A
4	2419			96 dbj BA					AF56179.1
Ì	8		1	B29504.1				phosp	·
	i	1		MOUSE		ì		hatase	
			l	261aa;		l .		CG10	
				gi 128495	•			371	
	ŀ			78 dbj BA				ļ	j
				B28400.1					
				mOUSE					
				279aa;					
İ			Ì	ref NT_00					
				8978.5 Hs					
				11_9135 =					
	1			human	1				
L	<u> </u>	Ĺ		genomic				Ĺ	

III. High-Throughput In Vitro Fluorescence Polarization Assay

Fluorescently-labeled HM peptide/substrate are added to each well of a 96-well microtiter plate, along with a test agent in a test buffer (10 mM HEPES, 10 mM NaCl, 6 mM magnesium chloride, pH 7.6). Changes in fluorescence polarization, determined by using a Fluorolite FPM-2 Fluorescence Polarization Microtiter System (Dynatech Laboratories, Inc), relative to control values indicates the test compound is a candidate modifier of HM activity.

10 IV. <u>High-Throughput In Vitro Binding Assay.</u>

5

15

³³P-labeled HM peptide is added in an assay buffer (100 mM KCl, 20 mM HEPES pH 7.6, 1 mM MgCl₂, 1% glycerol, 0.5% NP-40, 50 mM beta-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors) along with a test agent to the wells of a Neutralite-avidin coated assay plate and incubated at 25°C for 1 hour. Biotinylated substrate is then added to each well and incubated for 1 hour. Reactions are stopped by washing with PBS, and counted in a scintillation counter. Test agents that cause a difference in activity relative to control without test agent are identified as candidate p53 modulating agents.

V. Immunoprecipitations and Immunoblotting

For coprecipitation of transfected proteins, 3×10^6 appropriate recombinant cells containing the HM proteins are plated on 10-cm dishes and transfected on the following day with expression constructs. The total amount of DNA is kept constant in each transfection by adding empty vector. After 24 h, cells are collected, washed once with phosphate-buffered saline and lysed for 20 min on ice in 1 ml of lysis buffer containing 50

mM Hepes, pH 7.9, 250 mM NaCl, 20 mM -glycerophosphate, 1 mM sodium orthovanadate, 5 mM p-nitrophenyl phosphate, 2 mM dithiothreitol, protease inhibitors (complete, Roche Molecular Biochemicals), and 1% Nonidet P-40. Cellular debris is removed by centrifugation twice at $15,000 \times g$ for 15 min. The cell lysate is incubated with 25 μ l of M2 beads (Sigma) for 2 h at 4 °C with gentle rocking.

After extensive washing with lysis buffer, proteins bound to the beads are solubilized by boiling in SDS sample buffer, fractionated by SDS-polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride membrane and blotted with the indicated antibodies. The reactive bands are visualized with horseradish peroxidase coupled to the appropriate secondary antibodies and the enhanced chemiluminescence (ECL) Western blotting detection system (Amersham Pharmacia Biotech).

VI. Expression analysis

10

25

30

All cell lines used in the following experiments are NCI (National Cancer Institute)

lines, and are available from ATCC (American Type Culture Collection, Manassas, VA

20110-2209). Normal and tumor tissues were obtained from Impath, UC Davis, Clontech,

Stratagene, and Ambion.

TaqMan analysis was used to assess expression levels of the disclosed genes in various samples.

RNA was extracted from each tissue sample using Qiagen (Valencia, CA) RNeasy kits, following manufacturer's protocols, to a final concentration of 50ng/µl. Single stranded cDNA was then synthesized by reverse transcribing the RNA samples using random hexamers and 500ng of total RNA per reaction, following protocol 4304965 of Applied Biosystems (Foster City, CA).

Primers for expression analysis using TaqMan assay (Applied Biosystems, Foster City, CA) were prepared according to the TaqMan protocols, and the following criteria: a) primer pairs were designed to span introns to eliminate genomic contamination, and b) each primer pair produced only one product.

Taqman reactions were carried out following manufacturer's protocols, in 25 µl total volume for 96-well plates and 10 µl total volume for 384-well plates, using 300nM primer and 250 nM probe, and approximately 25ng of cDNA. The standard curve for result analysis was prepared using a universal pool of human cDNA samples, which is a mixture of cDNAs from a wide variety of tissues so that the chance that a target will be present in

appreciable amounts is good. The raw data were normalized using 18S rRNA (universally expressed in all tissues and cells).

For each expression analysis, tumor tissue samples were compared with matched normal tissues from the same patient. A gene was considered overexpressed in a tumor when the level of expression of the gene was 2 fold or higher in the tumor compared with its matched normal sample. In cases where normal tissue was not available, a universal pool of cDNA samples was used instead. In these cases, a gene was considered overexpressed in a tumor sample when the difference of expression levels between a tumor sample and the average of all normal samples from the same tissue type was greater than 2 times the standard deviation of all normal samples (i.e., Tumor – average(all normal samples) > 2 x STDEV(all normal samples)).

10

15

20

Results are shown in Table 2. Number of pairs of tumor samples and matched normal tissue from the same patient are shown for each tumor type. Percentage of the samples with at least two-fold overexpression for each tumor type is provided. "ND" means not done. A modulator identified by an assay described herein can be further validated for therapeutic effect by administration to a tumor in which the gene is overexpressed. A decrease in tumor growth confirms therapeutic utility of the modulator. Prior to treating a patient with the modulator, the likelihood that the patient will respond to treatment can be diagnosed by obtaining a tumor sample from the patient, and assaying for expression of the gene targeted by the modulator. The expression data for the gene(s) can also be used as a diagnostic marker for disease progression. The assay can be performed by expression analysis as described above, by antibody directed to the gene target, or by any other available detection method.

Table 2

SEQ	(1.)	J. 19	na de la companya de La companya de la co	# of	3, 4	# of		# of	10	# of		# of		# of		# of
D.	Breas	# of	Colo	Pai	3.3	Pai		Pai	1.00	Pai		Pai	Prostat	Pai	Q.	Pai rs
	, t	Pairs	n	rs	Kidney	rs	Lung	rs	Ovary:	rs	Uterus	rs.	e	rs	Skin	rs
9	5.3%	19	6.1%	33	29.2%	24	0.0%	21	8.3%	12	5.3%	19	16.7%	12	0.0%	3
11	16.7%	12	0.0%	30	ND	0	42.9 %	14	42.9%	7	ND	0_	ND	0	ND	0
12	0.0%	12	33.3 %	30	ND	0	21.4	14	0.0%	7	ND	0	ND	0	ND	0
13	41.7%	12	26.7 %	30	ND	0	14.3 %	14	28.6%	7	ND	0	ND	ò	ND	0_
10	33.3%		30.0 %	30	ND	0	14.3	14	28.6%	7	ND	0	ND	0	ND	0
8	8.3%	12	30.0 %	30	ND	0	14.3	14	14.3%	7	ND	0	ND	0	ND	0
6	25.0%		10.0	30	ND	0	14.3 %	14	42.9%	7	ND	0	ND	0	ND	0
7	0.0%	12	16.7 %	30	ND	0	14.3	14	28.6%	7	ND	0	ND	0	ND	0
3	8.3%	12	39.3 %	28	ND	0	14.3 %	14	28.6%	7	ND	0	ND	0	ND	0

WHAT IS CLAIMED IS:

5

10

15

1. A method of identifying a candidate p53 pathway modulating agent, said method comprising the steps of:

- a. providing an assay system comprising a purified HM polypeptide or nucleic acid or a functionally active fragment or derivative thereof;
- contacting the assay system with a test agent under conditions whereby, but for the presence of the test agent, the system provides a reference activity; and
- c. detecting a test agent-biased activity of the assay system, wherein a difference between the test agent-biased activity and the reference activity identifies the test agent as a candidate p53 pathway modulating agent.
- 2. The method of Claim 1 wherein the assay system comprises cultured cells that express the HM polypeptide.
- 3. The method of Claim 2 wherein the cultured cells additionally have defective p53 function.
- 4. The method of Claim 1 wherein the assay system includes a screening assay comprising an HM polypeptide, and the candidate test agent is a small molecule modulator.
 - 5. The method of Claim 4 wherein the assay is a binding assay.
- 25 6. The method of Claim 1 wherein the assay system is selected from the group consisting of an apoptosis assay system, a cell proliferation assay system, an angiogenesis assay system, and a hypoxic induction assay system.
- 7. The method of Claim 1 wherein the assay system includes a binding assay comprising an HM polypeptide and the candidate test agent is an antibody.
 - 8. The method of Claim 1 wherein the assay system includes an expression assay comprising an HM nucleic acid and the candidate test agent is a nucleic acid modulator.

9. The method of claim 8 wherein the nucleic acid modulator is an antisense oligomer.

10. The method of Claim 8 wherein the nucleic acid modulator is a PMO.

5

10

- 11. The method of Claim 1 additionally comprising:
 - d. administering the candidate p53 pathway modulating agent identified in (c) to a model system comprising cells defective in p53 function and, detecting a phenotypic change in the model system that indicates that the p53 function is restored.
- 12. The method of Claim 11 wherein the model system is a mouse model with defective p53 function.
- 15 13. A method for modulating a p53 pathway of a cell comprising contacting a cell defective in p53 function with a candidate modulator that specifically binds to an HM polypeptide, whereby p53 function is restored.
- 14. The method of claim 13 wherein the candidate modulator is administered to a vertebrate animal predetermined to have a disease or disorder resulting from a defect in p53 function.
 - 15. The method of Claim 13 wherein the candidate modulator is selected from the group consisting of an antibody and a small molecule.

25

30

- 16. The method of Claim 1, comprising the additional steps of:
 - a. providing a secondary assay system comprising cultured cells or a non-human animal expressing HM,
 - contacting the secondary assay system with the test agent of (b) or an agent derived therefrom under conditions whereby, but for the presence of the test agent or agent derived therefrom, the system provides a reference activity; and
 - c. detecting an agent-biased activity of the second assay system,

17. wherein a difference between the agent-biased activity and the reference activity of the second assay system confirms the test agent or agent derived therefrom as a candidate p53 pathway modulating agent,

18. and wherein the second assay detects an agent-biased change in the p53 pathway.

19. The method of Claim 16 wherein the secondary assay system comprises cultured cells.

5

20

- 20. The method of Claim 16 wherein the secondary assay system comprises a non-10 human animal.
 - 21. The method of Claim 18 wherein the non-human animal mis-expresses a p53 pathway gene.
- 15 22. A method of modulating p53 pathway in a mammalian cell comprising contacting the cell with an agent that specifically binds an HM polypeptide or nucleic acid.
 - 23. The method of Claim 20 wherein the agent is administered to a mammalian animal predetermined to have a pathology associated with the p53 pathway.
 - 24. The method of Claim 20 wherein the agent is a small molecule modulator, a nucleic acid modulator, or an antibody.
 - 25. A method for diagnosing a disease in a patient comprising:
- a. obtaining a biological sample from the patient;
 - b. contacting the sample with a probe for HM expression;
 - c. comparing results from step (b) with a control;
 - d. determining whether step (c) indicates a likelihood of disease.
- 30 26. The method of claim 23 wherein said disease is cancer.
 - 27. The method according to claim 24, wherein said cancer is a cancer as shown in Table 2 as having >25% expression level.

SEQUENCE LISTING

<110> Exelixis, Inc.	
<120> MODIFIERS OF THE p53 PATHWAY AND METHODS OF USE	
<130> EX02-120C-PC	•
<150> 60/338,733 <151> 2001-10-22	
<150> 60/357,600 <151> 2002-02-15	
<160> 28	
<170> PatentIn version 3.1	
<210> 1 <211> 2306 <212> DNA <213> Homo sapiens	
<400> 1 cggggacacc acgccagtgc tttcctgcct tccttccgag atggaaagag gagctcctag	60
ctcacttaag ccggggtagg gctggttctc ctttccgagc caaaatccca ggcgatggtg	120
aattatgaac gtgccacacc atgaagctct tgtggcaggt aactgtgcac caccacacct	180
ggaatgecat cetgeteeeg ttegtetace teaeggegea agtgtggatt etgtgtgeag	240
ccatcgctgc tgccgcctca gccgggcccc agaactgccc ctccgtctgc tcgtgcagta	300
accagttcag caaggtggtg tgcacgcgcc ggggcctctc cgaggtcccg cagggtattc	360
cctcgaacac ccggtacctc aacctcatgg agaacaacat ccagatgatc caggccgaca	420
ccttccgcca cctccaccac ctggaggtcc tgcagttggg caggaactcc atccggcaga	480
ttgaggtggg ggccttcaac ggcctggcca gcctcaacac cctggagctg ttcgacaact	540
ggctgacagt catccctagc ggggcctttg aatacctgtc caagctgcgg gagctctggc	600
ttegeaacaa ecceategaa ageateceet ettaegeett caacegggtg eccteectea	660
tgcgcctgga cttgggggag ctcaagaagc tggagtatat ctctgaggga gcttttgagg	720
ggctgttcaa cctcaagtat ctgaacttgg gcatgtgcaa cattaaagac atgcccaatc	780
tcaccccct ggtggggctg gaggagctgg agatgtcagg gaaccacttc cctgagatca	840
ggcctggctc cttccatggc ctgagctccc tcaagaagct ctgggtcatg aactcacagg	900
tcagcctgat tgagcggaat gcttttgacg ggctggcttc acttgtggaa ctcaacttgg	960
cccacaataa cetetettet ttgccccatg acctetttac ecegetgagg tacetggtgg	1020
agttgcatct acaccacaac ccttggaact gtgattgtga cattctgtgg ctagcctggt	1080

ggcttcgaga	gtatataccc	accaattcca	cctgctgtgg	ccgctgtcat	gctcccatgc	1140
acatgcgagg	ccgctacctc	gtggaggtgg	accaggcctc	cttccagtgc	tetgeceect	1200
tcatcatgga	cgcacctcga	gacctcaaca	tttctgaggg	tcggatggca	gaacttaagt	1260
gtcggactcc	ccctatgtcc	tccgtgaagt	ggttgctgcc	caatgggaca	gtgctcagcc	1320
acgeeteeeg	ccacccaagg	atctctgtcc	tcaacgacgg	caccttgaac	ttttcccacg	1380
tgctgctttc	agacactggg	gtgtacacat	gcatggtgac	caatgttgca	ggcaactcca	1440
acgcctcggc	ctacctcaat	gtgagcacgg	ctgagcttaa	cacctccaac	tacagettet	1500
tcaccacagt	aacagtggag	accacggaga	tctcgcctga	ggacacaacg	cgaaagtaca	1560
agcctgttcc	taccacgtcc	actggttacc	agccggcata	taccacctct	accacggtgc	1620
tcattcagac	tacccgtgtg	cccaagcagg	tggcagtacc	cgcgacagac	accactgaca	1680
agatgcagac	cagcctggat	gaagtcatga	agaccaccaa	gatcatcatt	ggctgctttg	1740
tggcagtgac	tctgctagct	gccgccatgt	tgattgtctt	ctataaactt	'cgtaagcggc	1800
accagcagcg	gagtacagtc	acagccgccc	ggactgttga	gataatccag	gtggacgaag	1860
acatcccagc	agcaacatcc	gcagcagcaa	cagcagctcc	gtccggtgta	tcaggtgagg	1920 .
gggcagtagt	gctgcccaca	attcatgacc	atattaacta	caacacctac	aaaccagcac	1980
atggggccca	ctggacagaa	aacagcctgg	ggaactetet	gcaccccaca	gtcaccacta	2040
tctctgaacc	ttatataatt	cagacccata	ccaaggacaa	ggtacaggaa	actcaaatat	2100
gactcccctc	ccccaaaaaa	cttataaaat	gcaatagaat	gcacacaaag	acagcaactt	2160
ttgtacagag	tggggagaga	ctttttcttg	tatatgctta	tatattaagt	ctatgggctg	2220.
gttaaaaaaa	acagattata	ttaaaattta	aagacaaaaa	gtcaaaacaa	aaaaaaaaa	2280
aaaaaaaaat	tccgagatgt	caggga				2306
<210> 2 <211> 247 <212> DNA <213> Hom					·	

ctagtacaag	ctgtagataa	aaaagtggat	tgtccacggt	tatgtacgtg	tgaaatcagg	420
ccttggttta	cacccagatc	catttatatg	gaagcatcta	cagtggattg	taatgattta	480
ggtcttttaa	ctttcccagc	cagattgcca	gctaacacac	agattcttct	cctacagact	540
aacaatattg	caaaaattga	atactccaca	gactttccag	taaaccttac	tggcctggat	600
ttatctcaaa	acaatttatc	ttcagtcacc	aatattaatg	taaaaaagat	gcctcagctc	660
ctttctgtgt	acctagagga	aaacaaactt	actgaactgc	ctgaaaaatg	tctgtccgaa	720
ctgagcaact	tacaagaact	ctatattaat	cacaacttgc	tttctacaat	ttcacctgga	780
gcctttattg	gcctacataa	tcttcttcga	cttcatctca	attcaaatag	attgcagatg	840
atcaacagta	agtggtttga	tgctcttcca	aatctagaga	ttctgatgat	tggggaaaat	900
ccaattatca	gaatcaaaga	catgaacttt	aagcctctta	tcaatcttcg	cagcctggtt	960
atagctggta	taaacctcac	agaaatacca	gataacgcct	tggttggact	ggaaaactta	1020
gaaagcatct	ctttttacga	taacaggctt	attaaagtac	cccatgttgc	tcttcaaaaa	1080
gttgtaaatc	tcaaattttt	ggatctaaat	aaaaatccta	ttaatagaat	acgaaggggt	1140
gattttagca	atatgctaca	cttaaaagag	ttggggataa	ataatatgcc	tgagctgatt	1200
tccatcgata	gtcttgctgt	ggataacctg	ccagatttaa	gaaaaataga	agctactaac	1260
aaccctagat	tgtcttacat	tcaccccaat	gcatttttca	gactccccaa	gctggaatca	1320
ctcatgctga	acagcaatgc	tctcagtgcc	ctgtaccatg	gtaccattga	gtctctgcca	1380
aacctcaagg	aaatcagcat	acacagtaac	cccatcaggt	gtgactgtgt	catccgttgg	1440
atgaacatga	acaaaaccaa	cattcgattc	atggagccag	attcactgtt	ttgcgtggac	1500
ccacctgaat	tccaaggtca	gaatgttcgg	caagtgcatt	tcagggacat	gatggaaatt	1560
tgtctccctc	ttatagctcc	tgagagcttt	ccttctaatc	taaatgtaga	agctgggagc	1620
tatgtttcct	ttcactgtag	agctactgca	gaaccacagc	ctgaaatcta	ctggataaca	1680
ccttctggtc	aaaaactctt	gcctaatacc	ctgacagaca	agttctatgt	ccattctgag	1740
ggaacactag	atataaatgg	cgtaactccc	aaagaagggg	gtttatatac	ttgtatagca	1800
actaacctag	ttggcgctga	cttgaagtct	gttatgatca	aagtggatgg	atcttttcca	1860
caagataaca	atggctcttt	gaatattaaa	ataagagata	ttcaggccaa	ttcagttttg	1920
gtgtcctgga	aagcaagttc	taaaattctc	aaatctagtg	ttaaatggac	agcctttgtc	1980
aagactgaaa	attctcatgo	tgcgcaaagt	gctcgaatac	catctgatgt	caaggtatat	2040
aatcttacto	atctgaatco	atcaactgag	tataaaattt	gtattgatat	teccaccatc	2100
tatcagaaaa	acagaaaaaa	atgtgtaaat	gtcaccacca	aaggtttgca	cectgatcaa	2160

aa	agagtatg	aaaagaataa	taccacaaca	cttatggcct	gtcttggagg	ccttctgggg	2220
at	tattggtg	tgatatgtct	tatcagctgc	ctctctccag	aaatgaactg	tgatggtgga	2280
ca	cagctatg	tgaggaatta	cttacagaaa	ccaacctttg	cattaggtga	gctttatcct	2340
cc	tctgataa	atctctggga	agcaggaaaa	gaaaaaagta	catcactgaa	agtaaaagca	2400
ac	tgttatag	gtttaccaac	aaatatgtcc	taaaaaccac	caaggaaacc	tactccaaaa	2460
at	gaacaaaa	a					2471
<2 <2	10> 3 11> 177 12> DNA 13> Hom	851 o sapiens					
	00> 3 attcttt	tgttttgtaa	atattcccaa	tatcatggtt	gtataagatg	aatttttctc	60
ag	tatcatta	gataggataa	aatgccttct	attatatgtt	gttgaagaaa	atgacatctg	120
gc	atgcgatt	tttgccttta	cttttccttt	cctacctgta	tgttgggcta	agtgagccat	180
ag	cggagaag	gtacaaaatg	atataatttg	actgtctttt	tgagaccaaa	atttttgagt	240
at	agcacaac	ataaatggag	tttatatttt	gatgacttaa	tatttgaatt	actcttcaga	300
ta	tttatttc	tcactgcatt	taacagtctc	agggaccacg	cagacttagc	atctcactcc	360
ga	gactatgo	gagtgcatat	tcttttatat	ttattttatt	ttgtaattac	tagaatgcat	420
at	ggcctgag	caaatttaac	aaattatttt	tgttgcttca	cttataaatg	tctgaaatca	480
aa	agtttcat	gaagctactg	ttttattagc	tettettage	tattatgcaa	agaaagaata	540
tt	ttatatgo	tgaacgagaa	taaaaagtat	tataatgcac	tttcaatatt	tatgccaagc	600
tt	tttttcca	tgaaaaatga	ttatatcatc	aatttgcatc	attttaataa	tttttattgg	660
Cā	itataatgt	agtatcttgg	ctgaaatata	acaacagatg	gctacaaatt	tttgagttat	720
to	gatttatgo	atatagatat	ttaagaacag	gaagggaaaa	gggttctagg	acactcattc	780
aa	atgaaggo	taacaagaat	ggagttttaa	aaggaagggg	ccttaatctc	ttgactgtca	840
aa	tattaaga	caaaactagt	tcactcctga	cagatttgag	taaattgagc	aaatatcttt	900
ga	acacctac	aatcagacaa	tgttttactg	gaatagtcat	tagtccagaa	tccatgcagt	960
aç	ggtgggaaa	attagtggat	aaacctctgg	ataggaaaga	gcctaatgat	aagggcctca	1020
aa	acatcttga	tgttattcaa	aggcagtgaa	gagccactgg	agccatgcaa	acagggaatt	1080
ag	gagaggaga	gaggctggag	gtagaaccat	cttagtatat	ccatacacta	ttagtgtaat	1140

1200

agtactataa cctagaactc tagggaagag aatcaaagaa ttagaagaaa ggcagaaatg

	ttgcacagtt	aaaggagtgg	gtgggagaca	ccagagttga	taggtacaga	atgtagcaac	1260 ·
	taattagtgg	taaatagaaa	tatcaaagtt	aaatctaagt	tttcaagtac	ctgtaaccgg	1320
,	gaatacactg	atcatgttat	aaaaagacag	aagtcacagg	aggaagcatt	tggggaatat	1380
	gatgaggtat	gagatattca	tgtaaggtta	tctaataggt	gggtaaagtg	ttatttgtct	1440
	gggacttggt	taagaagatg	aggtattagg	cattatacac	acaatatata	ggattaggat	1500
	atgtatttag	gaatcatttg	gaggcatttg	tggtattgta	aaaaaaaaa	aaaaaaaac	1560
	aaaaaacaaa	acaaaaaaac	cactagattt	aaatagtagg	gttaaattta	cagactttgc	1620
	cactttccag	ctttgaggcc	ctgggcaggt	cactgcccct	gtctgagtct	cagtttcctc	1680
	ttctctgaaa	tcacaatagg	ttgttgcgag	tattaaagga	aaggctatgt	acattttata	1740
	agtgtctaga	caaatacaag	gtacaattac	acaggaaagg	tgatggtgaa	tatgtgagag	1800
	gagagcaaat	gagattgcca	agggagtgag	cgcaaggaga	taggaaagac	tctttgggaa	1860
			gggaagaggc				1920
	agactaagca	tgaggtcaat	aatgacaaaa	agtatccaag	aaggatgggg	agaggtttcc	1980
	tgttgaaagg	aacccatcaa	attggataag	ttgctgctca	ccaaatgctg	aaccctcaga	2040
	aaaacagttt	caatgacagt	gtgacagcag	aaatcagaga	taaatgaatg	ggagggaata	2100
	tgtctctctg	gtagaacacc	tttgccactc	agcatcagca	tagatcctca	atgcatacaa	2160
	caagatcaag	atgttcctct	ttcttgctct	ctggactttt	atgtcttgat	accttcagca	2220
	gtcaggtaag	aggtttcagg	agagatgctg	ggaggagcaa	cagaacaaaa	ccttcatagc	2280
	tactttaagg	atgtggtacc	atatattta	ccaaatgagt	ttgtggtacc	atttattttg	2340
	tctttactgt	tgtatctgta	attacatgaa	tgtttccttt	acttctccat	gtaaataacc	2400
	atactagtaa	atttatagga	ggccaaaatc	caagggtaga	gtgcactgca	attgccattt	2460
	gtctcgttct	aattcttcac	caaactcctg	tttctgtttt	ctacatggca	gtagttcttc	2520
	atattctgga	ttatagttto	tataaactgc	ccaagtacta	atagccttca	tttttattct	2580
•	ttatgctcct	tagtaaatct	ttgaatacct	tgcagtctgt	gtgtatgtgt	ggtagtagtt	2640
	gtggggctgg	gactgcatgt	aattctatcg	gattatccac	tctaccttcc	ttacaatgtt	2700
	tctgattctt	ctgatagaat	ggttttcttc	tattaaatca	. cagttttagt	gaatctgaaa	2760
	gcaaaagtta	ccttccttt	: tcccagcaaa	attgtattct	aatggaggaa	aataaattct	2820
	_					ttaaagtatg	2880
	-					attetgttca	2940
						gggtttgatt	3000

gcttggtggg	tgacagtcca	aagagcacaa	gtaaggagga	tttaacaagg	ggattttcat	3060
aacttgcaac	aagtaaggag	gacactggga	ataattcccc	aaagcagtgc	ctttgtgaac	3120
caaggtgaag	acagggcttt	tatgaggcca	gttttctgag	tcatcctatg	cagaggtgga	3180
ataaaggcag	agcaggcaca	attgtcagtg	atgcttccac	atggtcgcat	gtatagaaaa	3240
tggagaacaa	getectecet	gggcagggtt	tttagtatca	taaagaggag	agtttgccaa	3300
agttcatctc	caactcaggc	attctggatt	caactgtttt	tttttttc	ttcctgccag	3360
ggatgggctt	cttcgtggac	ctttttgaaa	taacaagaac	ttcaagatgc	aaçagttaca	3420
gataggtaca	ttttcatagt	gtgtactcca	aacctcatgg	accctgggtt	aggaatccct	3480
cctgagacat	tccactcctc	attcctgagg	gtttagagac	agagttcatg	cttctgtaac	3540
tatttcatgc	tgaccgagtg	tgttgagctc	cctaaagtta	aaggagtgag	actcttgggc	3600
tgctgagttc	aaataagttt	ttcggtcacc	tggagttgct	caaaggggct	gatattgttg	3660
taataaagct	ggagatgaaa	ccgtttgagt	cttgaggaca	caaagtttgc	tactgcattg	3720
gcctccgagc	gtcctctggc	aatctagatc	ttctagtgtt	ggagtatgca	acctaatggg	3780
tttttctcta	ggattgaggt	ctggtttccc	ccaccctcag	acacaaccct	caggatctga	3840
tcccagcttc	caaaagattt	aaatatcaga	ttgttatgca	tatgtgtgat	aattgaggtt	3900
ttectetcaa	aaagcgtctc	tcaaaaaact	ctctaaggtg	tagatccaca	gtaagccaat	3960
atgtgagggt	gacccagtgg	ttccctagtg	taaccccatg	aacatcccca	aaactctgat	4020
tgcaccactt	ggtgaccctc	ctgggtgtca	cgtgaagcag	ctgccccttt	ttttaaaagc	4080
tgatacttga	gaagaactca	ctcaggtggt	ccagggatgc	attggtaaga	gcctcttctc	4140
ttatgttaca	attttcgcag	cctagttgtc	aagactgagg	gcttccagat	gtacctgggt	4200
cgtttcccac	tttggaaaat	gccccccgaa	tctaaggatc	ttaaacctgt	cttcctggaa	4260
aagttgatcc	tcatgggtaa	tctggctagg	tacagattgc	tgtttattgt	gacagggatg	4320
cctcccaacc	ctccagagca	cagagtggcc	agggatcagg	attgccagtt	gccatgatgg	4380
gagtgtatct	caatcctcca	gggcaccaac	tggcaaaagg	tggaaactaa	aacaagaggt	4440
gcattgtggt	tagictggag	atcctgttgc	tagatcctag	gagttttccc	ttttagtcag	4500
ccaacagggt	gaagtccact	taccgccctg	aaggagcacc	aaacaaaagg	teeggaceae	4560
tgcttccact	cttttgggct	agatccaagt	gatggcctag	tggactctac	cccaagatga	4620
agateettag	gaattgcacc	caaccctctc	aggcaacatg	agcacgttag	cccagccaag	4680
ctgccgctgt	ccactgcttt	gcccatagca	agcctttgtg	aagttagcgt	tagaactgga	4740
gtctttgtct	catctcggtt	gccagggttg	ttacccacac	aatgagtgtg	tttgattgct	4800

tggtgggtga	tagtccaatg	accacaacaa	agaaagatct	aacaagggga	ttttattact	4860
tgcaataaat	aaggagggta	ccggggataa	ttccccaaag	taggccttcc	caattaaagg	4920
ttcaaacaag	gcttttatta	ggctagttag	cetctacete	atatgcagag	gtggaataaa	4980
ggcagagcag	gcataatctc	caatcatgcc	tctagatggt	tgcatttatg	aaaaatatag	5040
aataagctcc	tccatgggca	gggtttttag	tatggtaatt	gggagaattt	gccaaagttt	5100
acctccaact	caggcatete	tgaatccaat	cagtttttgt	tttgacaggg	atgggcttct	5160
ttctggaact	tgtctgcaag	gataagaact	caaggtttaa	tagttccaag	tggattcttt	5220
ttcacagtgt	gtaccccaaa	acctggagaa	actgggttac	atgtgctttg	agaaccatga	5280
gaagtcaaaa	tttaccttca	cgtgaggaga	gatttgaatt	tctgttgaat	ttgtctttgg	5340
aatttacgga	tgaattccaa	agagaaattt	atcctggtaa	tgttaaaata	tcttatgcta	5400
ggaattggct	ggtgatcatg	tcaacatcct	aataatgttt	attaagattc	tacatacgtt	5460
ggtaatcttt	actatggtta	agtcccttat	gatgatgact	ttaaaaatgt	tcattttgca	5520
gcataagtca	tatgcaagtg	aactggttaa	tatgcatgtt	acagatatag	tctgtccaat	5580
cacatgcatt	atcactaatt	ggtttctatt	agttaagaca	gatgatgtaa	tgctaaagag	5640
atcagatgga	ctgacacatc	tgtcatctct	gatagtgtat	ttteteteet	tatcaagttt	5700
tacctttaca	gttagatgga	tttgtggtac	gaattaaaat	gaaagtgttt	tgcaaataat	5760
attagactag	aggaggtgac	ctaagcgttt	tcatttcaga	tccatcatga	accaaccatg	5820
tatgtaactt	gggcaaatca	ctccatctcc	tetggcetca	cttagttttc	tcaactacag	5880
aaagaaggtt	tgattagatt	atctctaagg	gecttctaag	tctgtgattc	caagttttct	5940
tttctttaga	acacatgatt	ttatgcgtgc	ctgtctctct	gaaagagttc	acagtatgag	6000
attcaggccc	tgtcaccttg	acacgtttgt	gtttgagctg	gctccctggt	gcttgtgtca	6060
gctctgggct	tttcttcaca	aagagtgcct	acaggctgaa	gtactctcat	ctctcaagtg	6120
tttgaacacc	ccctgaattt	gtaatccgtt	tttcttttt	tttttttagc	actagttctc	6180
attaaatgaa	ttaagtcact	tccagtggct	atggaccctt	atgtttcctt	atatacccag	6240
tgatcttaca	ggagtccaat	ccagattgct	tcaattcatg	caaacctgct	cactgttcta	6300
ctgtgtccat	tttttagtat	tattttcttt	gtccaaagaa	tattgatata	ggaaggttgt	6360
gttaattagg	gttctccaga	gaaacagagt	caatagcatt	catatagata	aataagagag	6420
attttattgt	gggaattggc	tcacatgatt	atggagactg	agaagtccca	cgataatgct	6480
gtctgcatgc	gggagaaccg	gaaaagctgg	taatgtgatt	ctgaagaagg	cctaagtaag	6540
taaattctta	agactggaaa	gcctgaggac	caagagctct	gatgtcagag	ggcaggagaa	6600

gatggatgtc	ccagcttcaa	gagagaaaaa	gaacttgccc	ttaatttgca	tttggttcta	6660
tttgggcact	cagtggattg	ggtgacacct	acccatgttg	gtgagggtgg	aacttcttta	6720
cttagtctac	tgattcaaat	gctaatctct	tcttaaaaca	gcctcagagg	cacacccaga	6780
aataaagttt	taccagctat	ctgggcatcc	cttaacccag	tcaagctgac	acataaacca	6840
ccacaaggat	gttaattctt	atgcaaaatg	gctttattct	ttgccatcta	atcttaatat	6900
tcttttgttt	aaaggttcat	aggctccttc	taccctcagt	cttccaaggt	ccttcatcct	6960
ctattcatgg	cattcaggag	actaataaac	tcatttcttt	tcaagggata	gctgtattcc	7020
tttccttttg	tagctggctt	tgtcacagag	gcacaccaga	gcccagggcc	tttagcatac	7080
tegettetge	tgtaagtgac	ccactctctt	agagcacctt	gggctctgtt	ataattaaga	7140
gtcaatgcca	aaagatcagg	tcaagcaagg	gatttctaaa	teetttttee	aataccctgc	7200
cttcaccttt	tggcattttc	attgtcaata	cccattaatt	tttgtacgcg	ttcagactac	7260
agctcttttc	ctgcctccca	aagaagctac	ttccttttct	tatgctctct	tetgeettte	7320
aagccttatt	tattaggacg	aaaccaagaa	aagataatac	ccattggatg	caaaggagat	7380
agctgtcctt	agtcccatca	tggattcctc	agacgetece	agaaaaaatt	cctgtaagtg	7440
ttataaatct	catagtggat	tttgccctct	aagtaagccc	atggtgaagg	caatcccatg	7500
ttttagttac	actctttgta	atttatgatg	gttaatttta	tgcggcaact	tgactgagac	7560
aaagggtccc	cagattaaat	attatttctg	gatgtgctgt	gagggtattt	acagatgata	7620
ttaacatttg	aatcagtgga	ctgggtaaag	cagattgccc	tctccaaggt	ggatgggcat	7680
catccaatct	gttgcaagct	taaacatgac	aaaaggagga	ggaaggggga	atttgctgtc	7740
tgccatctgc	ttgatctggg	acateggtet	tctgccctca	actgtgactc	gcaccatcag	7800
ccctctggta	ttgagaacta	catcattgcc	tttcctgagt	ctccagcttg	cagacagcag	7860
atcatgggac	tgctcagcct	ccctaatcac	tttgccaatt	ccttacgctg	taataaattt	7920
tttttctcta	tccatccatc	ctcttggttc	tgtttctttg	gagaacctta	actaatagag	7980
tattcttatt	tttatctgat	agtttgtgtt	tgcctcttct	ccagttttat	ggcccaaact	8040
ttgaactgtt	ctgggcttta	agatttatac	tggtatttta	ccttacggaa	ctttccccta	8100
catcataaac	cataaggcat	ctgcttctag	ttttggtaaa	aatgttgatg	atttatgcct	8160
accatccttt	gataccttgg	tttgctctaa	tgggaatcga	catctatatt	tgttaattgt	8220
aggcaggcca	ttacctgggt	ccctgggctc	atctctgtct	tcctaggctg	ccctgctggc	8280
cagatctgtt	ttgaggcaat	gacagtaagc	taagaaaggc	agctctttgt	aagctggcga	8340
tagattcctt	aggaacttcc	aaagggtacc	acaaataagg	taaaaagttc	tgtggaggtt	8400

ttaccttcaa	gagtagctca	ttgtaaagtc	ttttgtatgt	ctaagttaca	tgcttagaca	8460
aaaagaaaag	ttggtaactc	tccctgcttt	gcttgtaaca	tattagctga	aataacactg	8520
acttctttgt	cagacagaat	ctatcttttc	tgtctgtgtt	tctttttcag	aacatgcatc	8580
tctggtaggc	aagagaaata	catgctatgc	tagtgttcgg	acacaaaaaa	cgatgaagag	8640
caaatatttc	taaatgcgtg	tttagacaat	atggtctcta	acgtccctta	aaatttgtaa	8700
tgttctctta	ggctttaggg	agagaaaaaa	aacatgtgca	agtgctatgt	tttggatttg	8760
tgtccccacc	caaatctcat	gtcaaattgt	aatccccagt	gttggagcag	gggcctggca	8820
gaaggtgatt	ggatcatgga	ggcagatttt	ccccttgctg	ttcttgtgat	agtgagtgag	8880
ttctcatgag	atctgcttgt	ttaaaagtgt	gcagcacctc	cgcctgctct	ttcttcctcc	8940
tgctctgtcc	atctaaaatg	tgcctccttc	atctttgttt	tctgccatga	ttttaagctt	9000
cctgaggcct	ccccagtcat,	gcttaatgca	tagcctgtgg	aattgtgagt	cagttaaact	9060
tettttett	aaaattaccc	agtctcaggt	agttctttat	agcaacgcaa	gaatgaacta	9120
atacagcaag	taacaaaagt	agtccatagg	gaatatcaaa	ccattcatct	ccttcatatt	9180
agatgagtct	aggctcccag	gaagcccaaa	ggcaaactct	aggaaaagaa	atcttcctta	9240
actgtgtgaa	ttcaacctct	acagaggatt	taggagtcta	aaaacaaaca	gaatccctcc	9300
tacgctccac	aaaacctttt	ccttgggacc	cacagagagt	tagaacttta	taagcctgat	9360
cagtgagatt	tcctaaatgg	gaacctctgg	cttggccaga	cagaacatgg	agctatctta	9420
agtcttatta	caagtagcct	ggaattagta	tgcttctgtg	acacatacta	cacacagaca	9480
gcttaaatgg	agtggtactc	tgatctgttc	ctcttttgat	cacctccaaa	cttgagccat	9540
gtttggacag	atctcaaatt	gcaaagaaag	caggcttatt	acattcagta	caaagaacaa	9600
ctaccaggga	aagaatcact	gcaaagtaga	tgtgtactga	ataattccca	aaacttagaa	9660
aggattggga	gacatttgaa	tctgatcagc	cagagtagag	agacttggat	gaacctggaa	9720
ctcttagtga	acacaacaga	aggattacct	ttttatttt	tatttttaaa	tttttttggt	9780
agcagggcta	aactattect	acagtggtat	cctaggtgca	cctttaaaaa	tcttaaaata	9840
agtctcaaaa	atgtcaagct	gaaatctgtc	tgccaaaaaa	agaaaatcaa	acacacacac	9900
acacacacac	acacacacac	acaaatgcaa	agcaataagc	caacacttaa	tcctctttaa	9960
aagcagataa	caaactcctg	acactccata	acataaaatg	tacgatttct	agttcagaat	10020
acaaagtcat	tagatatgca	agaagcagga	aaatatgacc	tatcgtgaag	agaaagcaca	10080
ttaatagaaa	cagacccagg	aataacagag	attatggaat	tatcaaacac	agactttaaa	10140
acaatattat	aaaaatgatt	aaagatttaa	aggaaattac	atataggaaa	aagagaagat	10200

acaacaaaat	aaccagtgga	acttctgaag	ttgaaaaaca	cagtacttga	aatagaaaat	10260
tcactggctt	tgtgtaacag	tagatgagat	actggagaaa	aatagatgaa	tgagcttaaa	10320
gagcaatcaa	aataatttaa	atcaaaagac	acatacaaag	acacaagatg	aaaaacaatg	10380
tgtagagtct	tagtgacctg	tgtgacaatg	tcaaacaatc	ttacatacac	gaaatttgta	10440
ttccagaaag	agagagtggc	agaaaaatgt	ttaaagaaat	aatgagcaaa	attatcctta	10500
ttgattaaaa	gtatgttcta	gaactctgtg	aagttaaaag	gtaaatacat	accccaaacc	10560
cataccagga	cacatcaaaa	tcaaatggct	gaaattcagt	gataaagaga	aaatatcaaa	10620
agcagtcaga	gtggggagaa	agactttta	taaagagaag	caaagatagg	aattatcact	10680
gacttctcat	cagaagcaat	gcaagccagg	aaacggtgga	atagtattca	aactagaatt	10740
ccatattgtg	cacaaatatc	ctttataaaa	gaaggcaaaa	gaaaggaggc	attttagaaa	10800
agcaaattat	gagagaattc	attggtagca	gacctgtact	acaagaaaca	tttaaaaaag	10860
ttcttttcac	aaaagaaaaa	taatatcaga	tgaaaacttg	gatctaccaa	agagttgaag	10920
agtaacatca	taaatatgtg	aatataaaca	gacttttctt	cacaagcttt	tgttttttaa	10980
atataatgaa	ttgcttaatt	caacaaaatg	tattgtgcag	tttataccat	atgtggaaat	11040
aaaatctgta	acaactgcac	aaatgttagt	ggaatggtgt	gatggggtta	tggagtatgc	11100
tgtttaaaga	ttcttatatt	cggcatatat	gaagagatat	gatataacga	aagaagactg	11160
tagtgagttc	aaaatgaatc	ttataaatcc	tagagaaaca	aatactgatg	taacaaacta	11220
gtaatttttc	aagaggaaat	tctttagatg	taaagttgat	gtagccactt	aaaaataagt	11280
tgtattagct	aatattaaat	gtactaaatt	aacatgctac	tcccctcaca	aacaaacact	11340
agcaaagaag	agtagaagga	acaagaaaga	cacaatagcc	tttctttgct	ctatgaattt	11400
ggaattctgc	tgagacagaa	tttatcttct	gtggactttt	tgagaaagtt	gttaaaaaga	11460
atgggaaggg	agaaggaata	tttcttcata	ttgtaagggt	gcatctgaag	atggagagca	11520
tgtttgtggt	gacattagtc	cacagagttg	ggcattttc	tccagcagtg	attagccatt	11580
tgaagggcag	ggaagtcagg	tgattaaatt	gatataagac	tggcatgtca	gatagacagt	11640
aataaaattg	tgggaatata	tgagttcaaa	tgatgggtga	gatctaatcc	aaatgtgtga	11700
ggaagttatt	tcactatggg	gtttatttgt	ttggaagaat	atagttaaat	ggactagagġ	11760
tcttagtaat	gccaaagaat	aggtataatt	agagtgataa	aatgagagca	gtgaaggcaa	11820
cagagattta	gagcagaaaa	ctagaattaa	agatttcaca	ggtgggacag	ttttctgttt	11880
gtttgtttgg	tttgttgtt	tgttttttgt	tttattttat	tttgagacgg	agtctcgctg	11940
tgtcgcccag	gctggactgc	agtggtgcga	tctcggctca	ctgcaagctc	cgcctcccgg	12000

gttcacgctg	ttctcctacc	tcagcctcct	aagtagctgg	gactacaggc	gcctgccacc	12060
acgcccggct	aattttttgt	atttttagta	gaggcggggt	ttcactgtgt	tagccaggat	12120
ggtctctatc	tcctgacctc	gtgatccgcc	cgcctctgcc	tcccaaagtg	ctgggattac	12180
aggcatgagc	caccgcgccc	ggccaggtgg	gacagtttta	ggtgacatca	ataagtgaaa	12240
tgcaagtgtt	gattggtggg	gtccgggagg	ctgttattga	ctttgtgaag	ttggcatgct	12300
tggtgggctg	tccataaaga	tttgtatctt	actcaagaca	atagtgggat	ttgagattca	12360
tagaccctga	gccaggtgac	aatagcctgt	gatcaatagt	attttcaggg	gataagagcc	12420
gttttttata	tgcctaatga	ggtccatgat	ttttgacttc	cccatgcttt	aatttagtca	12480
gctgaactaa	cccgttgcag	tactcagtaa	atgttgaata	tttatgatga	gaaaactagg	12540
ggaatattac	cggaagtctc	cttatggata	aaatacagta	gctactaata	tttacttata	12600
ctctctttcc	aatcatatgt	taagaaatat	aaaaaacaag	tgaatcactt	ctactatgca	12660
ttatttagaa	actttaagga	aggtaggatt	ataaatatca	atatctatat	tcagatatta	12720
tattgcatag	gtcggtatgt	aatgcagagg	aaaagctggg	agaagcacca	acataagcca	12780
atttctatct	gatgtacttt	ctgtatgttt	agtgaggtgt	gaactcttat	aattacttta	12840
tagatgagga	aactgaggct	caaagagata	tcagctctct	gagttgtatt	agactgatac	12900
agagaatttt	aatctggaag	gattacctgg	aagaataatt	ttaattttga	aataaaactg	12960
atacaattgc	ctctgcaatt	acctggggct	tttattcact	cttctggtca	ttgtaattag	13020
aggtctgcag	agtgaaagaa	attattgata	gatttggtta	agttatctat	agctttaaac	13080
cctagcatta	aattcgtaat	tcttcttaat	ttttattttg	aaatgctcca	ttaaactaca	13140
cagagtaaca	aatagatcat	ttggcttttg	atttgtcatc	tactttctct	ccatttcttt	13200
ctttctttat	ttggtctata	tctttattt	ttgcacatca	tgtatataca	tttgtgattg	13260
cttgcctcca	tgacagatac	tgatggtctg	ccatcagtta	ttttaataat	tagtaattgg	13320
caaaaataag	ttattaatct	tgattttgtt	attttgttt	ctcatctaga	caacaaacca	13380
tggcaatttc	: tagaatattt	tgtatagact	aattactcaa	tttgggctca	agttttatat	13440
acagtgacct	: ttgagttaaa	atatcacatc	atctgatgtt	tatgccttaa	tgtagttttt	13500
aagtattaac	atctacagct	cccctaaatc	tttttttt	tttaactaga	gctcagtatt	13560
ttgtaacagg	g aggaatctgo	cactcctttt	: tttttcttt	ctgtcctttc	cattcagacc	13620
tacgtctcca	a cccagatgtt	cttccctcct	: ctgcctgtga	tattctacta	tatatatata	13680
tatatatata	a tatatatata	a tatctccttg	, tttttcaaaa	tggaactttt	ggagataagc	13740
actagggaag	g gatgtagati	t acatactttt	ggttactgta	aagaataaa	aaaggaataa	13800

aattaacatg	tattgagtct	acatttatcc	catcactctt	ctcaatcatt	tacatatatc	13860
atctcattaa	tcttcctgtc	cactatatta	tgtattatct	tcatattatt	aatgaggaaa	13920
ttgaggctgg	ggaggtttga	ttccaaaacc	tatttcttct	attatactca	attgcctcta	13980
aaatagtttä	taattgaata	atatttggaa	atgagaagaa	ataaaactct	cagageceta	14040
agaaaaaaat	acttttaacg	gcagacaaaa	gttagtgatg	ttagcaacta	ggaagaacaa	14100
taatagtaat	ataacgcaaa	agataaaata	ttaaataact	aacctgtatg	aaattcattt	14160
atagattaac	tagggttctg	taatgtaaac	aagagtcaac	ggtggtgttt	gatcaaatgc	14220
agattccttg	acctgactcc	agacctcctg	aatcagaaac	tattgggatg	ggccactgat	14280
aatgatggtc	cacatggtat	ctttaaaaga	cacaagaatc	aaggaaaaaa	aaaatgaaat	14340
gaaagcatac	caggttaaaa	aggtgaaatt	aattttcaat	ttcttcatca	aatgttgaat	14400
caaccaatgg	aaccactgat	gcccttctgc	tcaggctatg	cttggtgcac	tgacaatttt	14460
agtgtggtct	tgtggtgaga	gatcaagaag	ttccgactca	tctttccacc	atcaaagctg	14520
cattagacca	catggccacc	tggctccagg	cctctgctgc	ctctcctggc	caagtgcagt	14580
actgcgcaca	ccttgaccag	gtgactggaa	gctgttggtc	cagctcagct	gcaggaactt	14640
tgaagaagag	aactaaggtg	ataaagccaa	gataaacttt	cattttgttt	tggaaagaga	14700
agaagaaggg	agtaagcaag	aggcttactg	tttggagctg	gcagtgtaat	ataaaaatat	14760
ggtgaaatgg	aggccatgtc	cctcaaatcc	taaacctctt	ttattccccc	attaaaaatg	14820
cactacagat	tataggctgc	ataaccaata	ttattataga	agtagagtag	aacagggcca	14880
ccccaaaggt	tttaactttc	ctgatcaata	tttaataact	taagagcact	gatggaactt	14940
ttaggagaga	ttcctgaaca	atactgtcaa	tccagagaat	ataggtgaaa	aacaggagag	15000
gcatcagaag	tagagatggg	atcatgtctt	cctggttttc	caaaaaagaa	acatagtcga	15060
tattgcaata	tgacccagta	acattgattg	gttccctaga	aaaaaatttt	aatgcggttt	15120
cttcatttaa	. attgtttcaa	atctacttaa	aaagaaataa	tcacaaacac	cattttgtca	15180
ggaataaatg	aggtcagata	taagtttact	tetttettt	gtaggcctac	taaattagta	15240
gttccaaagg	aacgtagatc	taggtatete	atatgcacca	ctgcatttga	attaaagtct	15300
ctaaagccac	aggccacaaa	agttttcttc	teggtttact	taattcccta	atccttcatc	15360
catcttcagt	: tagctcagga	gttgcaatga	tgacaaaagt	agactgttca	caggacaagt	15420
gatcattgcg	,tcctttttag	gatgcttgtc	tatcaagaca	gacagagaag	ggtcggtcag	15480
tggtgacata	attataaaat	caatagttct	gacatcttgg	taagagaggt	gcatgaggcc	15540
atccttacat	tagactaacc	tgacaggttg	ttgttttaca	atatttttc	cacttctata	15600

tgcttaactt	attaaccatt	gtttctattc	ttaaaaataa	aactaataaa	tatacatact	15660
ttaaaacatt	cacaaagttc	atagagctat	aaaaagagac	aaaaatgtca	ctgggtccag	15720
tctctacctc	ttttctttaa	gaaataccgc	tgttaaccgt	tttttttcc	agaaaaaaag	15780
cctgtatgtc	cccatatact	tatacacatt	ggatcatact	atatgtactg	ttttacgtct	15840
tcctttttag	tattgaatga	tatgcctggg	ggatctacac	atatctacgc	atgtaaaaaa	15900
ttcattttat	tctgttacat	ttatgaagta	ttccatactc	gtggtcttca	ataccttagc	15960
aactagtcac	tagccactag	ctactagttc	gataccttag	tcacattaaa	tatttgaaat	16020
gtggctactg	ccaattaaga	tatgctatat	gtgtatttca	ctttgcagat	acattgtgtt	16080
tgttttctat	ttagtggaca	tttgggttgt	ttatagcttt	tttgttgtta	ttcctagtag	16140
tgctactatg	aacattcttg	aacatatttc	ttcatgtgtt	taaaagtttt	tctcggatgg	16200
atattttcaa	tttttatttt	ttatcacaac	tcagtgcaaa	acacatctta	caatatatag	16260
aacgegtgca	cacacacaga	tatgtcatga	actctcctct	cetetetect	gtcctctatt	16320
ttatcgtgag	gcaaattgca	taccatcttc	ttcaagagtc	cgatagtaat	tcttgatcct	16380
ttactgttgc	atataaattt	cataataggc	ttgtcaactt	ccacgaaggg	ccctgtcagc	16440
attttgatta	gattctagtt	aagtctatag	tttgattagt	aggacattga	taaaaaacaa	16500
gacaagggtt	tctggtcaag	aatatgatat	atcttcccat	atgtttttat	attcgagttt	16560
gagtgacaga	gttatgatct	tttgtaaagt	ctactcttaa	attatccctt	atttttaaa	16620
aattgttttc	tctgtttttg	gcacaaattg	atatttatat	gtgcttgata	tttaaatgta	16680
tcttgtttac	aggaaccaca	agaaaatttt	aatcattttc	tttcttaaaa	tgtcaaatcc	16740
tggctgcatt	ggtatcactc	tgatgctctg	aaatttattc	aacttttcta	gtttttcagg	16800
ctacaagagg	tagtctgatg	caaaatgaaa	tgactcagtc	aaaatagaat	atattttac	16860
atatatattc	ataatgtttt	tgtctggtat	tggtataaag	gttatagtag	actcttaaaa	16920
ttattgagaa	cacttcctct	tttctcttcg	ttaacaaatt	ttgccttaga	ttcgctagat	16980
gtttctgaat	gtttggtaga	acttctttgt	aaaactatgg	tggccttgtt	tattttcatg	17040
aaacattttt	ttattttaaa	atagtgtagc	agttatagta	tcaaatatta	tatttctttt	17100
gagtcagctt	tggaatttat	acttttctag	gaattcctta	tgtttcgttt	ttcacatgtg	17160
ttggcatcaa	attactcata	gtattttatt	ttcttttaaa	tctctatgta	atctccagtt	17220
ccctcccttt	taatccatac	taacataatt	tccatcttct	ctttttcaat	ttccttcaga	17280
aatttgtcta	ttatttttt	cctcaaataa	tcagttgatg	actttgttga	tcatcttaat	17340
tctttggact	ttcattagtt	ttcattgttg	gcattaattt	ttacttttct	tattttctag	17400

catgagcgtt	taaagctttg	ctgcatttcg	aggctgtcga	tggcttgcca	cagcccaact	17460
acgtgatctt	cttacctgaa	tcttaccttc	ctcttccaac	agactgccag	gcaggctgtt	17520
cagcaaaagc	atgattgagt	gtgttcctta	aagatagatg	ctgacacaat	cttctccttt	17580
ttcacctttc	atcttcctct	catctcctag	ttttcatttt	aagctaagaa.	atatttctct	17640
attacttata	agctaggtat	attaaatata	catgttagca	ttgtaataca	atgccaaagt	17700
tcttctaaaa	ataattgatg	tatctttcaa	catcaaatgc	acatttatat	taaaaagaat	17760
aacatagcaa	ctgaagtttc	cggtttacct	tggcctcaga	agaagtgtat	gtacatataa	17820
aagagtctca	aaagtctgga	gctatgatgt	gcttttgaaa	atttgccatg	tcccaagcac	17880
tgtagtttga	attggctgat	ggtgagatag	ctatttttaa	ggctagagtt	gttcaaatct	17940
gaatgtcgac	accaagggga	aaacaagaga	gcctggctct	gtgtattatt	tatgaggaat	18000
taccttgaaa	cttatcttca	ggtcctttgt	ggtaataact	tctcttaata	atcagatata	18060
gtttcagagc	aggetgtttc	tcattcattt	aaaatggttt	aaaattctgt	atcagtttga	18120
ttaaagaaaa	taatttactg	cccaggtcga	acactgagta	aattgagatt	gaatttctgt	18180 .
ttcttaaaaa	tgtattttt	cactttgtgt	gcaaaagata	agttttcaga	ctaaatgctg	18240
aaaaagtctg	cgctgaccag	tctgtgtgcc	aagtttagat	ggcctcaatt	aagtttctgg	18300
ccctatagca	cccgctgctc	ctctgcttcc	caggateete	catgcccttg	ctgaggggtc	18360
atttgtctgc	tgctctcact	ttgtttaggg	gcctggccag	gatcttcctc	agaacgattt	18420
cctcctccc	accetttect	cagtcagctc	agggagttgg	gagttggtta	ggccttgggg	18480
actcagggcc	tgaactaaat	gccttatcca	gaatggctaa	agtttctcta	ggtaccaaga	18540
caacttaaat	gtatttatct	atagataaag	ctatacttaa	tttggaaatg	ttagcacctt	18600
atttgttaga	ggattgatga	tgtggtcatc	ttctcattta	gataatttct	attattaaat	18660
tatattacta	taataaaaaa	catgtttgtg	gatatcctga	caggaaaatc	aacagatgct	18720
acttaactct	tggttcatct	cagcagtcag	aaagagtggg	gatatttact	ccgtgtatcc	18780
acttttcctt	tttgatttat	aatccagggg	caggcactgg	aaaggccctg	aagaaataaa	18840
gagtaattct	gctttaccag	atatgcggct	atagtgtggg	aagaggttaa	attttggtca	18900
gatgtctgga	aataatgggg	ctgaagatcc	tctgtggcct	gactgagttg	attctggatt	18960
tgttgaatgt	gcttatatcc	ccaggaagcc	agcaaatcct	gtaaagtcct	tgatgggcat	19020
ctagctaaaa	cagcactgta	agttaactct	gacatttgct	gctcagttca	ataagagtag	19080
ggaattctca	tgcagttttt	gacaggtata	gatagattat	tacaaccact	tattcaaggc	19140
ttgagaacac	aatagcatta	ggaaaagtga	gacccaagct	ttaagagttt	tcaggatcta	19200

atggatttat	gacctggaag	cagaataata	aacataacat	ctaccttaat	attggaatcc	19260
ttttctggga	aagaaatggt	gatggcctgg	gtgtagctgt	ccctgtgaag	gaggccatag	19320
ggataacctg	gaatgcacaa	tcaatctcat	ggtggaggtt	ggaagaggag	gaggaggtag	1,9380
aggaaatagt	gctatcattt	tcttcctagg	ttatctacat	gtacctgtat	gaaagaccag	19440
cagatgtcct	ggtetetgee	ttttgagctg	ctctattcca	aagataccta	aagccattca	19500
aaacttgggc	ctgagaaact	tattaaagcc	atttatttat	ctttggccat	ttcctatatt	19560
tgatttacta	catgtcatca	tcaaaggagt	aaataatata	attaaagact	atattgtaat	19620
caagtatttt	cccagtcctc	cttttttt	ttttaaaaaa	aaggtagaat	tgaggctcag	19680
agagctgaaa	ctctaaggac	caacaagcaa	tacattattg	aaaagctttc	ttttttttc	19740
taatatgact	gtttcaatga	ggagatggtg	taaagcaaac	caagctatgc	atctcagcaa	19800
agcatctctt	ggagttcagt	cagtaagtag	ttataattag	gttcaaaatc	tccagacgtt	19860
ataaaaaact	aaaatgtact	tcctattata	agtgatataa	aaaggagtgg	aagggtagta	19920
attggagact	agtatcactc	accattctca	atatattgga	gacatgagaa	acttgtggga	19980
agttcctgtg	gactgtgtcc	agggacagca	ttaacccaga	tattgacctt	tcttgtgtga	20040
gtatgaaggc	aatgaaaaaa	attcttcaag	aaatttgcat	aatttgggag	gagaatatta	20100
aatgtgtggt	atttagaaat	ctacttagtt	aagtaagtct	ttgcatggaa	ttggccagat	20160
ttcttaggag	ccatgcatag	ctttgtgagg	aggtgatcta	ttttcttgca	acattgtttc	20220
tgccctacat	cactgattct	tgagaataca	tatgagactc	tcttatttaa	accaaaacag	20280
aggagagaaa	catttgctgt	ttaattttga	tctttttcaa	aagatctttt	tttttttt	20340
tttttttt	gagagctagg	caggaagaca	aattcctcat	cctcgcaact	gcaataagtg	20400
aatagaacca	aaccatgact	ttccttgcac	aggtgctaaa	gtgagacatg	gctggtttgc	20460
cacaatatta	aactatccct	gagcctttca	gtgatgtgat	tgagaatttc	tgtggatggg	.20520
atttgggatt	gagaatttct	gtggatagga	tttgggaatt	ttgtcaccag	tgagggattc	20580
catctttta	tggttctttc	acagettttg	aggtttgagg	acagtagagt	gtttttgaga	20640
aatctacagg	aatgtggggc	cgctcttaga	gagatgagtc	tggaaactca	gcttggattc	20700
ttaccagtgt	tcagcactca	tgggctgaca	ttggatccca	cagttagaat	ctcaaaaagg	20760
agatatatat	gtacagctac	tttccttaat	aaaatcttca	gttggcagca	aagagaattt	20820
ctacaagtga	gaggcttagc	cagactctaa	aaccagacta	tgtttccttt	tttctagagt	20880
ttttcttgca	aattttcatt	accaccatct	tggagatgat	ggcatgagta	tacggcattg	20940
ctccttttga	agtttttctt	tgtctgagag	gcagtccatt	tttctattaa	cagttaggcc	21000

acttcctttt	ccccacgact	tttgtaatca	atatagatta	ttgcactgtc	aatgctgcca	22860
ataccagaga	tagaaggaat	atagtgaaag	agagccaacc	aagattgttc	ttgcttggct	22920
attaaaatta	agtcttgatc	tatacttgtt	tacttatact	ttcattctcc	aataagttaa	22980
atacaaggtg	ctttccaagc	catgccttat	gtaatttaat	tctcatagca	acctatgacg	23040
ttgcccatta	ttaaagtgtt	aaaccaaatt	ctcagaaact	aaattgattg	ttccaatttt	23100
ťacttttgat	atggctgcta	gagtagaaaa	ttatgttgta	ccactgaact	ggtgtatctg	23160
agtagacagc	tttaacttgg	acaataaagc	ttttaaatgg	gaccaccaaa	taattattta	23220
ccattccata	cttattgcat	tttagttgga	gtgtgataat	gattatttt	gacctattta	23280
gattttcctt	ataatcagat	ttatctcaaa	gcctaccagt	tgttcatatt	tgaccaaatg	23340
cttttcttat	tggttaagat	ggctgttctc	tgtggagtta	cctgaaagat	gtatccatgt	23400
cgatttctaa	gtctggcatt	tgagtcatcc	aaaaggattc	tgtcagtaaa	taagagctat	23460
ttctagctct	ttgacctctt	aatctgcatc	tttaccaagg	tcattatttg	tttgagaatg	23520
catgggatgg	atagaacctt	tattgtttcc	tgttatatat	tcatggtatt	attaaatgaa	23580
ataaagatca	acatcaattt	tattccaatt	tttcaacttt	atagatgtct	gagaaatatt	23640
atttactgaa	aagtagatgg	gaatgaagga	gttttgttat	agcaatgtca	ctcactttga	23700
aattcttctg	agatacatgg	caaacacccc	ataatgatta	atcatcaaaa	atattttta	23760
tgaacagccg	tccactgata	agttcttcaa	tcaatctctt	tgaaagcaaa	taattggata	23820
ccccttgact	gagaagagga	tttttaaaga	tccagtcact	aaacttcttc	attttctcaa	23880
cactaacacc	gatatttaaa	tcatccattt	gtttgacatc	ccagagactg	ttaaaaaaga	23940
agcaaggaaa	. catggtaaaa	tagagatgga	tgagaagcaa	gactttacca	acttttttga	24000
gcttcagttt	ctgtgtaaaa	ttgggataac	agtgtaccta	tctcttatgt	ttattgtgag	24060
atattataaa	tgagttatgt	atctatcata	gcaatactaa	gaaccaccca	agacgtagct	24120
attaaatgat	gcactcgggc	ctgatttagg	cagttaacct	taccttacct	tactaaaggt	24180
gagtagggca	cacaatggcc	aaatataaaa	caggcagcac	aatcaagatt	ttcttataca	24240
tcacattttg	, aggtagaatt	ttatctagtg	gtaacatcta	atctctttgg	ggaggagatt	24300
ggctaaggtt	aggttgggtg	tcaggactct	agaagcatgg	gcttaggtaa	acagaaaact	24360
ctaatttcca	gcaggaaggc	agtgaaggag	, aatctgttee	agacttccct	cetatattcc	24420
caggtaacto	ttgggttgta	gatgagacct	ccctgtgtag	aagttctctc	ctcttcatat	24480
teettetgta	tgtatctctc	: tgtatgtcca	aatttctcct	tttaataaac	: acattagata	24540
caggcgtacc	ttaatgacca	caccttaact	: tgaacaccct	tgtcatctat	ggagccccta	24600

tttctaaata	aggtcatagt	tacaggtcct	tggggttaag	aggtcaacat	ttttgcagag	24660
tacacaattc	aacccataac	agtgatatat	cattaagtaa	gagataggca	gatattaggg	24720
acataaaaat	acccatggct	tttcctagag	agtagccgta	agtgactttc	cttcaaaagt	24780
cttaatctta	gttttcttat	ctctgcagtg	ggagtaaagc	ttcacagttt	tgtctgaagt	24840
attataataa	aggaggacat	ataggtaata	gtgatttgta	aactgtgtta	caaagatact	24900
gtatataatt	atagttgtta	ttaatgcatt	tattttatgc	cctatgtttc	ctagattttt	24960
ccagaaattg	aataaataaa	gttgaaagat	ctgaagtagc	tgaaaggcaa	gtagaggcag	25020
gggccattat	ccgtatgatc	agtttttgaa	ttagcaatga	gtgatttcac	tgtaaacatt	25080
aacatggttt	aataactggc	tatcataagc	ataatttaaa	atatgttgca	tgtttcacag	25140
tttcctatat	ggaatgattt	ctttattagc	ctatagaata	ttgagaggca	aaacaacttt	25200
aaaaatattt	gctattgttt	gtaagaaaag	cactgtgctg	aacgcccatg	aggggagaaa	25260
tataccaaat	taaagagtat	gtatatatat	tttattcctc	tgtcaaaaca	atgctggtat	25320
aagactgtgc	acggtcaaat	tgggttctaa	ctgctatgag	ttaaacttcc	atctttggct	25380
aaacgaattt	cctcagcctt	ttattctgca	ttcttggtaa	aagttttggg	ggctgacaga	25440
ttgctgttat	gaccacttca	gacattgaaa	aatgacttag	gagaaacagc	cacagettgg	25500
gagagacaaa	tagcttccca	gaagagagcg	attcatgcag	gggtcattac	cacatattca'	25560
actacctgaa	cctcaaatat	gcgtagacag	ttcagtattt	gccagaatca	gtacagaagt	25620
taccttctaa	tcccttctat	caggcacaaa	cagaaaccca	gagagaaaga	gcacagccct	25680
ttagtccatg	tagcatgtaa	cttcatgaac	acattctgtt	ctttacatgg	ctcagataat	25740
tatatgtaag	attacagaat	gtaagtgcag	attacatagg	ctagtcaaca	tgcagtaaat	25800
aataaataaa	catgatgcct	ggcaccattc	taagcccaga	gaggccagag	ccagaaacca	25860
gataagtagc	ctttaaaaga	tttatgattt	agtgaagtag	tacaataagc	aaataattat	25920
gacacagtgt	taaaactgca	atgattagga	atatacagat	gctgctgtgg	gagtattcag	25980
gagagcaacc	ttacctggac	tgggagatgg	gtgtaataat	ggtaaaaaag	atttcctaag	26040
gaagaatttt	tcacttttac	agtgtgttga	aggtgtaagc	atggcaagat	ttattatctg	26100
cctcattata	agaaaggagg	tgaggaacat	tccattttaa	actgctactg	agaagaaata	26160
ttagggctta	atttagttat	aaattgaaca	tgttcttaag	ggaatggaaa	ctcctggctt	26220
tttcaattca	tttgccttag	aagccaagta	gacgtataac	ctatgtgcga	aatactagta	26280
ttctgagcgg	ctaggacctg	ttggtagaat	tgtcatactt	ctggaacaga	cttccaccta	26340
agaaaaatct	ctcaacagag	tgtcggataa	acccacagta	gctccatacg	tccaaagcac	26400

acaggacaaa atata	aagaca gttggtttat	: ttacatgtaa	aacaaaataa	taaatgtagt	26460
aaataatatt gacgo	cttagt aactcagggt	ccgttggagt	atctgtacct	acatggatta	26520
aggtctaacg tgact	ttgcca tccctggate	, aaagattgta	ttcacagcag	aggtttctgc	26580
caacaggaat accac	cagtga agccaagtgg	actcctctt	tcctagaagg	gtccttcctc	26640
tggaattgtt gacac	ctgggc ctgcctctct	: tcagccacag	catctgtatc	atatatgcca	26700
gagcaatgtg tgggt	tcccaa atgatactt	tccttcctat	agaactcctg	ttcatattta	26760
tgctatgctg tttga	agtgag gtcagccta	a agtggttttc	actgctatga	agattattgg	26820
caacttctct tttcc	cagaac cacgtggaga	a tacagcagaa	agtgaccttg	ttaaaaacaa	26880
gtcacagtag ccagg	ggtaaa ttcactcat	tttttctcac	ttattcagaa	ttccactttt	26940
attttattat acatt	tttcct aaaaacaga	atatatatct	tgccttgatt	ctttattagc	27000
ctaaaaatct caatt	taattt ttattaatt	gtccattctt	taaactagta	acatgttgtt	27060
tcaaatattg tttta	aatata tactttaag	tctagggcac	atgtgcacaa	cgtgcaggtt	27120
tgctacatat gtata	acatgt gccatgttg	tgtgctgcac	ccattaactc	atcatttaca	27180
ttagttatat ctcct	taatgc tttccctcc	c cccttccccc	accccacaac	aggccccggt	27240
gtgtgatgtt cccct	ttcctg tgtccaagt	g ttctcattgt	tcaatttcca	cctatgagtg	27300
agaacatgtg gtgtt	ttggtt ttttgtcct	t gtgatagttt	gctgagaatg	atggtttcca	27360
gcttcatcca tgtco	cctgca aaggacatg	a actcatcctt	ttttatggct	gcataccatg	27420
gtgaatatgt gccad	catttt cttaatcca	g tctatgattg	atgcacattt	gggttggttc	27480
caagtctttg ctatt	tgtgaa tagtgccac	a ataaacatat	gtgtgcatgt	gtctttacag	27540
cagcatgatt tatas	atcatt tgggtgtct	a cccagtaatg	ggatcactgg	atcaaatggt	27600
atttctagtt ctaga	atcctt gaggaatcg	c cacactgtct	tccacaatgg	ttgaaccagt	27660
ttacagtccc accaa	acagtg tacaagtgt	t cctatttctc	cacatcctct	ccagcacctg	27720
ttgtttcctg acat	tttaat gattgccat	t ctaactggtg	tgagatggta	tctcattgtg	27780
gttttgattt gcat	ttctct gatggccag	t gatgatgagc	attttttca	tgtgtctttt	27840
ggctgcataa atgt	cttctt ttgagaagt	g tctgttcaca	teettegeee	acttgttgat	27900
ggggttgctt tttt	cttgta aatttgttt	g agttctttgt	agattctgga	tattagccct	27960
ttgtcagata agta	gattgc aaaaatttt	c teceattetg	taggttgcct	gttcactttg	28020
atggtagttt cttt	tgctgt gcagaagtt	c cttagtttaa	ttagatccca	tttgtcaatt	28080
teggettttg ttge	cattgc ttttggtgt	t ttagacatga	agtecttgee	catgcctatg	28140
tcctgaatgg tatt	gcctag gttttcttc	t agggtttta	tggttttagg	tctaacattt	28200

	•					
aagtctttt	a aaatactttt	tagtaactag	taataaaagt	ccctctttat	tactcttctc	28260
ttttgtattc	: taaagaatgt	caaactatta	aaaagtagtg	ggaacaatgt	aatacccatg	28320
atctcactgo	cctaataaac	gtcttaacat	ttctttatat	ttacattcat	tttaaaatat	28380
aggaaataaa	atattataaa	acattcttt	tgactactat	tcccagttac	atgacttccc	28440
taccttttcc	ccaaggcaaa	caccatcatg	aaattcaaat	gcagttttct	aggtcattta	28500
atttttttt	tcatttttag	gcttttttt	tttttttt	tttttttt	ttttttagaa	28560
tagttgctaa	atcactttat	ttatttattt	tcacataagt	tactggggta	caagtggtat	28620
ttggttacat	gagtaagttc	cttagaggtg	atttgtgaca	ttttggtgca	cccatcaccc	28680
gagcagtata	cactgcacca	tatttgtatt	cttctatccc	ttgcctcctg	cttctctcct	28740
tccccgcaag	tececaaagt	tcactgtatc	attttcatgc	ctttgtgtcc	tcatagctta	28800
gctgccacat	atcagtgaga	acatacgatg	tttggttttt	cattcctgag	ttacttcact	28860
tagagtaata	gtctccaatc	tcatccaggt	tgctgcaaat	gctgttaatt	cattctttt	28920
tatggctgag	tagtattcca	tcgtacatat	ataccatagt	ttctttatcc	actcattgat	28980
tgatgggcat	ttgggttggt	tccacgattt	tgcaattgtg	aattgtgctg	ctttaaacat	29040
gcatgtgcaa	gtatctttt	cgtataatga	cttctttcc	tctgggtaga	tacccagtag	29100
tgggattact	ggatcaaatg	gtagttctac	ttttagttct	ttaaggaatc	tccacatgtt	29160
ttccatagtg	gctgtattag	tttacattct	caccagcagt	gtagaagtgt	ttcctgttca	29220
ttgcatccat	gccaacatct	actttttct	attttttgat	tatggccatt	cttgcaggag	29280
taaggtgtta	ttgcattgtg	gttttgattt	gcatttccct	gatcattagt	gatgttgagc	29340
attttttaaa	tacatttgtt	ggccatttgt	atatcttctt	ttgaaaattg	tctattcatg	29400
tccttagcct	actttttgat	gggattgttt	gttttttac	tgatttcttt	gagttcgttg	29460
tggattctgg	atattagtcc	tttgtcagat	gtatagattg	tgaagatttt	ctcctactct	29520
gtggattgtc	tttttactct	gctgactgtt	ctttttacca	tgcaaaagct	ctttagttta	29580
attaagtacc	aactatttat	ctttgttttt	attgcatttt	cttttgggtt	cttggtcatg	29640
aaacccttgc	ctaatccatt	gtctagaagg	gtttttccag	tgttatcttc	tagaattttt	29700
atagcctttt	gtttagtaag	aaggacagaa	agctggacaa	gattgcatgg	ttctattcta	29760
gctgctttct	ataaagaggt	gtgcttagaa	aagagaggtt	tttggtcttt	tettetgtta	29820
accaaagctt	gatttctgat	tggataggtc	atgtctataa	tcaataaatt	ggggactcct	29880
tttccttttt	gcagagetta	aaattcataa	ggaaacaggt	catttatttg	tagtaaaggt	29940
aaccttcagc	tgtaggttgt	ttgttcataa	ggacaagtct	gttgtttatt	actggcacag	30000

tgatgacaaa	ggcaaggaag	attaggccaa	gcctacactt	tcaggagagt	ctatcattgg	30060
gttgactttg	gtgttcagaa	gcagcctttc	tcaaaaagca	ggcagggaag	gggccagtga	30120
tacttctcgg	cttgttgagg	catatatctt	ceteteteag	gacggtattt	gtccattttg	30180
ataagtctca	catggtacta	tttataactt	gtaagatcat	ttcaagttag	tataggtcag	30240
taagttcgat	atttaagttt	atttgtgcca	cccaaatcat	gatttctatg	acctaggaac	30300
acccattgtc	cacattttta	atggcatgaa	atctgtcttg	caatttgatc	ttacagcata	30360
tacttggaat	agatttttaa	aaactgtaag	cttgacagta	gtggctatgc	ttctaaactt	30420
gtacaggtga	tcaaatgatt	tctttccttg	tgggattctt	tggtttatct	ggacctttat	30480
tttgatttaa	gttttattta	tctataagca	caagcaaatt	ggactatatc	aaggggtatt	30540
ttctgctcca	tttgctatgg	cttcttccaa	tagttcttcc	agagtgtctt	cagcagaacc	30600
aaggttttct	tgctgctgga	agtgcttaac	agagtcaaac	ttcatagaac	gaagtacact	30660
gactgtgttg	tcagtcaaaa	gttggtctgt	taagcatttg	ggccatttat	atcgatttta	30720
agatgaactg	ggagcacgaa	gaaagagacg	atgagtttct	cctctcacca	acacataact	30780
tttccaaatg	gaaaggaggg	aaaatacggg	gtaaaggttt	atagaacaga	ggttaggaaa .	30840
gaaagtaggt	tgctccagac	atattttccc	caactcagag	tggaaaaagt	gaaaataaga	30900
tcaaggaagg	aaggaaggaa	ggaaggaagg	aaggaaggaa	ggaaggaagg	aaggagcatt	30960
aggaatgcag	taaagcatat	gattgtgtac	agagagtcag	atacaggatt	gaagttccag	31020
ccttgccact	ttctagctgt	gtaaccttgg	gcaagttact	taacggtact	aagcaccagt	31080
ttctttacct	acaaaatgaa	aataacaata	gcaccettet	tttttttt	tttttttt	31140
tttttttt	tgagacggag	tctcgctctg	tegtecagge	tggagtgcag	tggcacggtc	31200
taggctcact	gcaagctccg	ctcccaactt	cacgccattc	tccggcctca	agcctcccga	31260
gtagctggga	ttacaggcgc	cagccaccgc	geceggetaa	tttttttg	tatttttagt	31320
agagacgggg	tttcactgtg	gtctcgatct	cctgaccttg	caatagcacc	cttcttacag	31380
tgttgttatg	agaatcaaac	aagataatac	ataaagtggg	cttagttcat	ggtaaatacc	31440
aaataaatag	tggtcaggat	ttcagttatt	atcaatgttt	tctttttcc	acaactattt	31500
tgagaagcag	tgaaatctta	catatttggc	cttcactgtt	acataattac	tcagacagaa	31560
atcaagctga	agttaccttg	ctgaacaacc	tttcctgtga	agttagcatt	actcaattag	31620
tatgattaat	taacacagtt	aatagactag	acaaaactga	aatagattta	tttgttgaga	31680
aatactgact	caacaaatgt	ctcttttgct	tacttagctt	aggctaagat	tcaattatta	31740
ggtgcatctg	aaaattaaaa	tacttctccc	aaactgaatt	tcttttaaga	aatctacatt	31800

ttatactatt caatgagtta	gactttcctc	tccaattaat	tgaaaagaat	aaagttttag	31860
agtctaatgc aatttccttg	tctaaaattt	aaaaatataa	taaaatcccc	gggcagctct	31920
cttttcagga cagggtcaca	ctacaccatg	gataatcgaa	ttccgttgaa	tttgaacaat	31980
gatetettag ceteatteat	gatcttaagc	agtctgtgag	tgattaccta	aagactgctt	32040
gaagactctt aaaccctaat	gaggaatgag	aattttactg	aaaatgtaac	aacttcctta	32100
atacatcctt cataaagtcc	tttgcactct	cagtagtcta	tgtaaaaata	ctaactagaa	32160
ctcaactgga cttcaattat	ggcggtatgt	catcgaaata	catcetectt	cataaagtat	32220
gtaaaaatac taactagaac	ttaactgaac	ttcatgctgc	catattattt	gtcatcaaaa	32280
gaacagtagt tgagtggcct	ttattctagt	tttggctttg	gccaaaatca	acaacaagac	32340
cttgggaaag ttatcaaatc	aatccaggtc	tcagttacat	cattgtaaaa	tgggacatac	32400
ctctaatttc ctttagcttt	aacattaatc	aaaatgcatc	cagtcactca	caaacttctt	32460
gtttgtaaaa gatgctgtcc	tgtccggagc	agtaatatac	tecetetttg	tgtctgcaaa	32520
attaacacaa ggttattgtt	cttgggatta	ttacatcatt	ttatatttat	catttetete	32580
tgtagacttc actggacaga	caattgtatt	ttttaatcat	ttttaaatac	tagtcttgtg	32640
aagttggcca gataacagca	acctcactcc	atgaaccagg	gacaacctat	tagcagtcct	32700
aaaattggag ccatgcagat	aatcacacaa	agaaccaaat	attgttataa	atgaagtatt	32760
tgtgaaagga gaaaatgaca	aatagggaaa	ttttcttgtg	ctcccagaat	aaaggaaatg	32820
aggcaaggtc ttaagagcta	cataaattaa	aattcccata	ctgatcaaaa	ccatttccat	32880
catgaataat gagaatggtg	catacactat	taggccagag	attggggact	gggagtctga	32940
ggaggcaget agetggaaca	gtcttacagt	gcaatccttt	aagtcaggga	taagatoota	33000
gatttcagtc caagaagttc	ccataatgcg	tttctacaat	gtttgaaaac	atattggaca	33060
ttaaattagt taattttatg	atttgtacac	caagaaggga	aggaatggca	tgcttcatgt	33120
atgcctgagt aaggggtgct	cgttcacata	gaagcaacgt	gatattcaat	gttgtcaggt	33180
aggaggtgtt attaaccttc	teteetetee	tgatgcaaaa	gaatattact	tagctcagga	33240
attcagatgc atttccttaa	tattgcccaa	agggatatat	atatatttt	ttacttagga	33300
ctttgtaaag atagcaaaac	aatgtggaag	gaataggacc	cacaaaataa	actctgcata	33360
ttgaaccatt aataaatatc	ttataatgtg	cagttattcc	ttctcattag	agttcgggtg	33420
accctctatt tttatgcgaa	ctacagtaca	gtcacttttc	tggtctggtc	ctagtcttta	33480
tcacttatat tccattgtaa	tcatgttctg	tggtagtcat	caatgcttct	cacagaatac	33540
atccagcttt ccactttcca	gacaatgaca	gacatttact	atttgaatac	cttgtggttg	33600

agtgggacaa	tgtggccaat	tctaatgaag	gagttttgag	cagaagggac	atgtgttact	33660
tccaggtgaa	tcaaattacc	tgtgagaaac	tgaacaaagt	attcttttt	cttagggata	33720
actactggat	cagcagtact	ccagacagtg	cttcaccaga	ctgggtccct	ggatgatgaa	33780
agagtcccc	ctgcagtacc	acaataaaaa	tgtagtgtga	atgagggata	catctttgtc	33840
tcttgagcca	ctaagatttg	agatatagtt	actgcagcat	aatctagtct	tttttgacta	33900
atgtctatgc	agtgttacat	ttcactcgtg	tggacaccat	ttcttatcag	acaggtcaaa	33960
tatatttact	agttatgaag	tgttcccagt	ctttgctgct	cttatttcaa	gttccatctt	34020
taaagcacag	cacctttcag	ttcagactat	acagcaacct	accaattgaa	ttttattgcc	34080
caaggatttt	ggttactact	tgtcattcca	caaaagtata	caaatacaca	aaatgctagc	34140
aatatgtgtg	agaccacata	ttgccctcta	aaatcatgcc	ctctgaatcc	taagcaaaga	34200
ggacaaagct	gaaggcacca	cactgactga	cttcaaacta	tactatagcg	atccataacc	34260
aaaacagcat	ggtaccggta	caaaaacaga	cacatagaca	aatagaacaa	aatagagagc	34320
tgagaaataa	ggccacacat	cagcaagtat	ctgacctttg	acaaagatga	caaaagcaat	34380
caggaaagga	ctccctgttc	aataaatttt	actgggatta	ctggctaggc	atatgcagaa	34440
aattgaaact	ggatcccttc	cttacaccgc	atacaaaaat	caactaatat	agattcaaga	34500
cttaaatgta	aaaccacaaa	gtattaaaac	cctggaagac	aacctagtca	tgatcattct	34560
agatatagga	atgagcaaag	atttcatgaa	gatgccaaaa	gcaattgcaa	caaaagcaga	34620
aatcgaccaa	tgggatctaa	ttaaactaaa	gagctccttc	tgcacagcac	aggaaattct	34680
cagaataaac	agatgaccta	cagaatagga	gaaaattttt	gcaaactatg	catctgacgg	34740
gggtctaata	tccagcacct	ataaggaatt	taaacaaatt	tgcaaggaaa	aaccaagcaa	34800
ccccattata	gagtgggcaa	aagacatgaa	gacacttttc	aaaacacatg	catgtggcca	34860
acaattatat	gaaaaaaagc	tcaacttcac	tgatcattag	agaaatgcaa	atcaaaacca	34920
caatgagata	ctacctcaca	acagtcagaa	tggttattat	aaaaagtcaa	aaaaaaagaa	34980
gagatgctgc	tgaggttgtg	gagaaaaagg	aacatttata	caccattggt	ggcagtgtaa	35040
attagttcaa	ccattggagg	aaacagtgtg	tcaattcctc	aaagggctaa	cagaaatatc	35100
attcaaccca	gcaattctat	tattgggtat	atagacaaag	gaatataaat	tgttctatta	35160
taaagacacc	tgcacacata	tattcactgc	agcactattc	acagtagcaa	agacatgaaa	35220
tgaacctaaa	tgcccatcaa	tgatagactg	gataaggaaa	atgtggtaca	tatatacaat	35280
gaaacagtat	gcaaccataa	aaaagaatga	gatcatgtcc	tttgcgggaa	cttggatgga	35340
gctggaggcc	attttcctta	gcaaactaat	gcagaaatac	aaaaccaaat	accggaagtt	35400

ctcacttgtt agtgggagct	aactgatgag	acacatggac	ataaagaagg	aaacagacac	35460
tggggtctac ttgagggtgg	gaggagggag	aggatcagga	aaaataatgg	gtactgggtc	35520
taatatctgg ggacaaaata	atctgtacaa	caaactccca	tgacacaagt	ttacctgtat	35580
aacaaacctg catgtgtacc	actgaactta	aaataacaat	taaaaaaatt	aaaaataaaa	35640
ccaaataatg ccctatgcaa	aatcccatag	ctttgattgc	ataggtgttt	cataggccat	35700
gatgatgcgt agaggagaag	tgaaaaatgt	ttggactgag	tgcattctgg	aagactgtcc	35760
catttcatgt aaaatcgttc	acctactgtt	gttctgtctc	acactaataa	atgaaccttg	35820
gctttaacta ctgtttgtgg	ccatcctgta	ataacaaaaa	aagtagatta	aatatataca	35880
tagcataatg taaacaagat	tgaaaaaaat	tttaaagatc	atcagatctt	ctttgcttat	35940
atacaattta gtaattatct	tttactgtac	tttttttcta	tttttgtagg	caccetcaaa	36000
acactggaaa attaccatat	gcatcagtag	catatgtaat	gatgaaatta	ttaagatact	36060
gaagtgactg cctctcttga	aaatatatct	accacttgct	gtttcatgag	gctggtaggc	36120
ctatatttgg tagaaaatgt	cttgcattca	atagtcagag	ctgatgcttc	caacagatac	36180
aatcttgata gagaaaaacc	aagggtatag	tgaatatttt	caaggaatta	ggaatcatca	36240
tagtaaacag aaaaaaaaaa	agacactaag	actaatatga	ggagggaaaa	aaggctaatg	36300
ctgactacct atagtttttc	atagaatggt	ttttttaata	ataaaatgga	agactttgga	36360
gcagtcattg atgtaagtac	taattgaaat	tgaaacctga	atgccattct	taatatccta	36420
atcatgaaag ccattcctat	ggaggtgcca	ttttttcttc	tctttgtatc	attagtatct	36480
tttccattac ctcctacaac	caaggatcgt	atctttagct	gcttgcagcc	tcatttaact	36540.
cccttcatgc ttcccataca	agaatctggt	tcttacactt	cccagacaga	gtccagtggg	36600
tttcttcaca atattgagaa	gtatgtctat	catttctgga	gtatttctgt	tttacctaat	36660
ccatttgaga atgaatgatt	tttatgtagt	agtgtcttcc	attttattt	tggttgttta	36720
tcacgaatca aatgaaacac	ccactgggca	tacaactgac	ttttattggt	gacctcatgt	36780
ttttatagga ggagccctat	ggataaaaat	ttgagaaatt	caaccaaatt	attgttgttg	36840
tottattato atacaatcca	caactgcacc	attttggtaa	caatattgcg	tttatctaat	36900
tattttattt agaataatat	atgtaactta	tcacattagg	aagttaaaac	tggtttgggt	36960
gaataatgaa gttgaacttc	tattattta	aaaatatatt	tttttaagag	aaattttagg	37020
tgcatcacaa aattgagtgg	aagatactaa	tatttccaat	atageetetg	cctctgcaca	37080
tacatageet ecceattate	actaacctcc	catcagagag	ggtggtcatt	ttttataact	37140
gatgaagcca cattgacaca	tcattatcct	tcagagtcca	tagttaacat	taagattcat	37200

ttttgtcatg gattttatgg	gttaggacaa	atatataatg	acatataccc	agaattgtag	37260
tgttatagag agtggttaca	cttccctaaa	aatcctgtgt	gctctgctta	ttcatccctc	37320
tctcccccag aacctttggc	aaccagtgat	ctttttttt	tttgagactg	agtcttgccc	37380
tgtcgcccag gctggagtgc	agtggcacga	tctcgactca	ctgcaacctc	cgcctcccgg	37440
gttcatataa ttggaatcat	atatcatgta	gccttttcag	attggctttt	acttagtaat	37500
acatatccaa gttttctcca	tgtctttca	tggctcgata	gctcatttct	tttcagtgct	37560
gggtaatatt cattgtctga	atgtgtcact	tttttattta	ttcattcatc	tactgaaaga	37620
catcttggtt gcttccaagt	ttgggtaatt	atgaataaag	atgctataaa	tatctgtatg	37680
taggtttcat tgtggacact	cattttcaac	ttatttgaga	aaacaccaag	gactgtaatt	37740
gctagaccat acggtaaaag	ttggttttgt	aagaaactgc	caaactccct	tcctaaatgg	37800
ctgtaccatt ttgcatttcc	accagcaatg	aatgagagtt	tetgetgeet	cttatccttg	37860
acagcatttg gtgttgtcag	tgctctggat	ttgggccatt	ctaataggtg	tgtagtggta	37920
teteettgtt getttaattt	gcatttctgt	ggtggcatat	gatgtggagc	atactttcaa	37980
atgcttttca gccatctgta	tattttctgt	gacgaggtgc	ctgttcaggt	ctttggctca	38040
ttttttaaat tgggttcttt	ggttcttgtt	cttgacttct	aagagttctt	tatatatttc	38100
gtataatagt cctatctgat	atatgtgtcc	tgcaaacatt	ttctcccaat	ctgtgcttac	38160
cttttcatta tcttggtggt	gtcctttcag	agaagatagt	tttaatttta	atgaagtcca	38220
gctcatcagt tctttcataa	tttatgcctt	tggtattgca	cctaaaatgt	catcattaaa	38280
cccaaggttg tctagatttt	cccctatgtt	atcttctaaa	agcttttata	gttttgcatt	38340
ttacatctag gcctccgact	cattttgagt	taatttttgt	gaagattcac	aaaatcttca	38400
taaaagattc atctttttt	tgcatgaaga	tgttcggtaa	ttccagcccc	atttttggaa	38460
aagactttat tttctccatt	gtatttcctt	tattgcttcg	tcaaagatca	gttgactgca	38520
tttatatgag tgtatctcta	tgctctttat	tetgttecat	tgaactattt	gtctattctt	38580
tttctaatat cacactatct	tcattactgt	acctttatag	taaatcttga	aatcaggtag	38640
tgtcagttct tccttcagct	ttattgttct	ccttcaatat	tgtgttagct	gttctgggtc	38700
ttttgcctct ccatagaaac	attagaatca	ctttgtcaat	atccacaaaa	tgacttgctg	38760
ggattttgtc tgggattgca	ttgaatctgt	aggtaaagtt	ggcatattga	caattgcttt	38820
gatctgaatg tttgtgtttc	cccaacatat	acattgaaat	ctttccctca	tggtgatgat	38880
attaagagat agggcctttg	ggacatgatt	aaaaaataga	gtcctcatga	gtggaattag	38940
tgcccttaca aaagggagct	tgtttgccca	ttccccatgt	gagtacatag	agagaagcta	39000

attccgttat	aaattctaaa	gcaagggaat	tctatacaag	ctattttgat	aaaaatctga	40860
ccactatgtt	taattataca	gttgtgaatt	ttagaaaaca	caagctactg	ttccctaagt	40920
aaaaggcata	taaaggcata	taaaggcata	tgaagcttaa	aatagtcttt	gatttcccag	40980
tatgttccta	tttttgtatg	aatactgatt	tagtagtttc	aatctcccat	caggccaact	41040
caagaagaaa	accatttggc	tggtggaact	ctgaaaaagt	tcatcttgac	atagaggtaa	41100
gtattgctga	ggattcttgt	tgctacattt	ttgatccaac	ataacaacct	ggggaggcac	41160
tctgaatatt	aaagtgaatg	tgtcttttat	agtgcttgta	aatgaagctt	gttcagccaa	41220
cagcaaaggc	aaatgcagtt	gcggaatttc	ctgctggttt	tctgctttta	tagcatcata	41280
atcttcaagg	tggcttcaag	atggcacaag	tgtgaaagga	gtgaattgtc	tgtgaataca	41340
gcaagagtgc	cccaagcaaa	aaaatcaaac	aataacaaat	ccaagcaaca	tgaaacacaa	41400
aagcaaaaaa	taaaacattt	ttattttgat	taagaacttc	tatttcccat	cccatatatg	41460
gttgatggaa	gacaagaaat	gacttttgat	ccaacatttt	tccttataca	tccatgaata	41520
tagcttatgt	tgtttacttc	aaatgccatt	taaattcttt	tcgagattga	tatttggttt	41580
cctcgccact	gtttttttt	taaatagggc	tgaagctgtt	ctactttcaa	attgcgtttg	41640
tttttttata	cgaatggttt	ctttctttt	caactaatat	ataaatcttg	ctttctgaat	41700
tggatgtgac	acttgggggc	tggtatttgg	ctggtaacag	ttaactgggg	gaggaggagt	41760
tcatctggca	ttcggattac	ccaaagttgc	agtcaatgct	ttggcagagg	cagacctagc	41820
catactgcag	atgtggtagt	ttgttgagca	gaggggtgct	ggagatcaaa	gtgtgctttc	41880
aatttacaga	tgaaactcag	tcctcaaatg	aagtttcctg	acacttetee	tgtttttgta	41940
ttgccatcat	cctccgagaa	acatttggaa	tgagagtatg	gttagcttta	agattgatct	42000
gggtcccatt	tgagcttcag	aatgagggag	taaaggcagc	cacatcttaa	tggttctatc	42060
agttttacgg	tttggggagt	catagaagca	ggtgctcctg	gattgcaatt	gccaccttct	42120
gtgagctcat	tcagtaggag	gggtgaaatt	agaagaaata	ttccatgtta	ctgaacccag	42180
ttacttgggg	agcgatcaag	aattgctaaa	atatgtgtgt	gtgtgtgcac	acgcgtgtcg	42240
cgtgtgtttg	tacatgtgtg	tatgtgtttt	atgatcaata	gttaagaaat	tttgatggaa	42300
tggagagaga	ggaccccagc	aagcctctta	atatatatat	atatctctaa	agataccttt	42360
tattgaacat	tacccagetg	gcttgaatta	ttacttataa	tgtattcctt	ttttctccag	42420
aagttcatat	tggttctcta	agaccttaaa	acatcctaaa	ggagtattga	tatgcctaat	42480
tagagaggta	gaagaactaa	tagacagaga	ggatggagac	cttctttgtc	attgattgct	42540
ttaatgcctg	gtagccaaat	cagaggctgc	actcatttct	gagatgacac	aatgcaaatc	42600

atatggaagg	aagaactgtc	ttttatattt	tgaccctctt	gggaagtgca	gaccctaaag	42660
cacaaaacac	tgaccttaaa	caggacatac	gaaaggaaat	attttatatg	tgtctgagcg	42720
aggaatagta	cagaccgatt	ttgcaagatc	tgaagagtag	gtttgctcac	tttgacgcat	42780
cacttttccc	agaaaaacgt	tgattcaaga	gatgctttgg	agagtgcagg	aggcaaagtc	42840
tatggcttac	aatgaaatca	gatgaacatt	caggctcgga	aggtttaatg	agatetttag	42900
aatgcctttc	tttgctttgg	gcacgatgtt	gctgaaaatt	atcttcagct	gtttgctgat	42960
atatgcaggt	ctttgttaat	tctgggtagc	tggcatcatg	gcaaactggg	aaactgaatt	43020
gctctagtaa	tttaacattt	tggccaacag	ttagacacct	gttttctccc	aacattagga	43080
tcacctcact	ctctctgtgt	ctctgtttct	ctctcctctc	totototo	gctcgctctc	43140
tectecttet	ctttctgtct	tctctttatc	ttgcaagttt	tcttttggga	tgtccatagg	43200
gaaaaagaac	tttggaagaa	caaggttgct	tgactgaaaa	gaaggacacc	ttagcaaaaa	43260
tgtatactat	atattttata	tatgtttcac	agtccaatta	tagaccaaaa	gaagaaaata	43320
gatcaagcag	agcttctcag	caatcagcaa	tgaaataggc	tatcctagaa	gactgggagt	43380
tctcccatca	ctggaagttc	aagtcatcta	caagactttt	tgtggacatg	ttatttcatg	43440
tecetttggt	atatatatat	atacacataa	gtgtgtttac	tatatatatg	tgatttatat	43500
gagttctatt	aatagttgct	gcacactctc	ttcaacaatt	ggaattgtta	gtctttttaa	43560
ttttagccat	tctggtgggt	gtggagtggt	atctcattgt	ggttttaatg	tgtatttcta	43620
taaaaaaaga	ttatgttgag	cactgtttta	tgtgcttatg	ggccatttta	attttcttct	43680
ccaaaatgtc	catttaaaat	gtttctccat	tttctgaact	ttttattatt	aaagtatagg	43740
agtttctcat	ttatctttga	taccaattct	ttgtcagata	tacgttatgt	gaatattttt	43800
tcccagtctg	tcacttgtct	atttacttaa	tgatgtattt	taaagagaag	tttctcattt	43860
tgatgaagtc	taatagatga	ttattttctc	tcatgattat	tattttctgt	gtcctgtgga	43920
agaaacattt	ctgacaccta	agtggtcgtc	ctatctcctt	ttagaatatt	tctaatttaa	43980
tcattgacat	ttagatatat	aatccagctc	aaataaattt	atgagtatgg	tgtaaggtag	44040
gggtcaaagt	tcatttattt	cctatgaata	ctagttgtgc	tagtactgtt	ttttgtcaag	44100
actgattttc	ttatggattg	ctttggtgct	tttgtcaaaa	atcaaatgat	catataaatg	44160
tgagtctatt	tctaaattca	ttattttgtt	ctgtttgcca	ctgcgttgat	catttcacaa	44220
taccacactt	actttatagt	aaggettgge	attgggcaat	atttatcttc	cgactttacc	44280
ctttttggag	attgctttag	ctgttctaag	tcattttcat	atctatttcc	atataaattt	44340
tagtattggc	ttgccaattt	ctacaaaaag	ccgagtggaa	ttatgattgg	gattgcattg	44400

attctataga	tcatttgggg	gagagctgac	atctaagcaa	tattgaatct	taaaattcat	44460
aaacgtgatt	tatctccttt	tttattaaag	tttaattag	tcactctcag	cagttttgta	44520
atcttcaatg	cagaagtctg	acaggtattt	tgttaaatgt	attccttagt	aagcatgttg	44580
tgtttttgt	aatagaaatt	gtaaatgaaa	ttattctttt	aattgaattt	tccaattgaa	44640
gatactgata	tgcaacaatg	taatttattt	tgaatattga	ccttaaatcc	tgcaaccctg	44700
ctaaacttag	gtattaattc	tagtagttgt	tttatatatt	ccttaggatt	ttctgcataa	44760
gcaattatgc	cattcgtgag	agaagtttta	cctcttttta	atggtctttt	taatttcatt	44820
tcttttagcc	ttattgtgcc	actaggatcg	ctggtaagat	gttgaataag	tatattgaga	44880
gtggacatcc	tagccttatg	ctaaatttca	agaagaaagc	cttaagtatt	tccccattaa	44940
gtatgatatt	agctccagat	ttgttacaga	tggcttatgt	agtttgaaga	aattctctta	45000
tttttgtaat	agtttagatg	ttctattatg	aatgggtatt	aaaacttgtc	aaatattttt	45060
ctagcttttt	tttgagatga	ttatataaat	tttctccctt	attctattaa	tatgatgaat	45120
tatattgagt	tttgaatgtt	aagcetacct	agcattcctg	ggacaatctt	ccttggtgat	45180
gatggaatac	catttttata	tattgctaga	tttgatttga	aaatattttc	aggtagtţtt	45240
tgtacccata	aatataaatt	catttttcat	tttaaaaact	cctttacaaa	agtgaacagt	45300
taaaaacaat	tatctgtcat	gggatttatg	acatatataa	aagtaaaatg	tttaacaaca	45360
atagttcaaa	ttatctaaca	tatagatttt	aaagtaaaat	tgacatatag	taaagatgta	45420
tattacaaag	cgcagcataa	caattgaaac	acaaaacaaa	gaggtaaaat	caattagcca	45480
atagtggaga	aaaaaacaga	atcctattaa	atacttaacc	caaaagaagg	caggaaaata	45540
gggaaaagta	aaaaacacat	aagtagaaaa	taacaagata	gtatatgtaa	gcccaatgat	45600
attgatattt	atattaaatg	tatatcatca	aaacattcta	attaaaagag	attatcagat	45660
tagatagaaa	atgccaacca	tatgtattca	ataggaaaac	cacttaatcc	ttatggtagt	45720
atgttgtaat	ttttacttta	aagtcatata	tcttttaaag	aaaaagaaaa	aaattctcta	45780
tctatctatg	tatctatcta	gatatctata	tagatagata	gatagataag	ctaaagtttc	45840
taattttaat	gaagtccaat	atgtcacctt	ttcacctttt	tcttttatgg	ttagtgtgtc	45900
ctgtgttctg	ttgaagaaac	atttgtctat	ctccgagtgg	cacccatctt	ttagggggaa	45960
gccatagttt	ctgattttaa	ctccggcctt	gtcactatac	catgacgaaa	ttctgcatat	46020
ggtagtgcta	tgctcactgt	caagtgccat	cacattactt	gacttcaaat	tgtactacaa	46080
agctatagca	acaaaaacag	catggtactt	atctaaaaat	agatacattg	atcaatggaa	46140
cagaacagag	aacccagaaa	taaagccaca	tacctactga	tctttgacaa	agttgacaaa	46200

aatatacaac	ggggaaagga	caccctattt	aacaaatgat	gttgagacag	ttggagaatc	46260
atatacagaa	gaatgaaact	ggacccctat	gtttcaccat	agacaaaaat	taactcaaga	46320
tggattaaag	acttaaatgt	aagacctaaa	actatgtaaa	tcccagagga	aaacttagga	46380
aaaaattttc	tggacattgg	tctaggcaac	aaatttatga	ttaaatcctc	aaaaggacat	46440
gcagcaaaaa	caaaatagaa	aaatgggact	taaactaaaa	aaaatttctg	cacagcaaaa	46500
aaaaaaaaa	aatagcaaca	gagttaacag	acaacttaca	gaatgggaga	aaatatttgc	46560
aaaccatgca	tctgacaaag	ggcttgtaat	tctttgagaa	tatacaaaca	actcaacaag	46620
agaaaaacat	aactccatta	aaaactgagc	aaaggacatg	aacagacatt	tttcaaaaga	46680
aggcatacaa	gtggccaaaa	aacatgtaaa	aaactgctca	acatcactaa	tcatcagaga	46740
aatgcaaatt	aaaaccgcaa	tgagatacca	tcttacacca	gtcaggatgg	ctattattta	46800
aaaaaaaac	aaataagaga	tgctgttgag	gatgcagagg	agaaaaggga	atgcttatac	46860
tctattggtg	ggaatgtaaa	ttagtacaaa	ctctgtggaa	aacagtatgc	agatttctca	46920
aagaactaaa	aatagaacta	ccctttggtc	cagcaattcc	actactgggt	atctacccaa	46980
aggaaaaaaa	aatattttat	taaaaaaaac	ctgcactcgt	atgttgtttg	tagcactgtt	47040
cacaatagca	aagtcgtgaa	atcaacctaa	ttgttcatca	atggatgatt	ggataaaaaa	47100
atgtggtaca	catatgccac	ggaattctac	tcaaccatta	aaaaaaaaag	gagtgatatc	47160
aagtcttttg	tagcaatatg	gatggaactg	gagaacatta	tccttagtta	aatgactcag	47220
aaactgaaaa	tctgtatgtt	ctcatttgta	agtgggagct	aaacaatggg	tgggtacaca	47280
tggacataca	aagtagaata	atagacactg	aaaacttcaa	ctagtaggag	ggtgacaggc	47340
agtgaagaat	gaaatatcac	ctgtttgggt	ctaattattt	gtgtatgggt	acactgaaag	47400
ctcaaatttc	accactatge	aatatattca	tgtaacacaa	ctgcacttgt	acacataatt	47460
tcataaaaat	aaaaaaatta	attccaaaaa	aatttaaaaa	aggaaatgtg	aggccgggcg	47520
cagtggctca	cgcctgtaat	ccttgcactt	tgggaggctg	aggcgggtgg	gtcacaatgt	47580
caggagatgg	agacaaccct	ggctaacatg	gtgaaacatg	tctctactaa	aaatacaaaa	47640
aactagccgg	gcatggtggc	acgcacctat	agtcccagct	actcgggagg	ctgaggcagg	47700
aaaatcgctt	gaaaccagga	ggtggaggtt	gcagtgagcc	gagatcgcac	cactgcactc	47760
cagcctggga	gacacagaga	gactctgtca	aaaaaaaaaa	aaaaacccac	caaaaaaaaa	47820
aaaaaaaaaa	aaaggaaatg	tgtagttttt	aaggaatctt	acaacttcca	gtcagtggtc	47880
actaggagat	tatgagatta	ggaatcatat	tgtcagcagc	tgggcatcct	tgccatgaga	47940
gatttccagt	ccaggtgtct	gactgctatg	aataatgcct	gcagccattt	ttcctgtcag	48000

gacagagtct	tcaatggcag	atgctaagat	tatttgaata	tctctctatt	ctaggcctgt	48060
tccctataga	cactaccatt	tcaccaacca	cttgataaaa	acgtagtatg	tatataaatg	48120
tctacaccac	aagtttgagt	tggtgtgctc	ttctccatca	ggggagtgaa	tattagctgg	48180
accatgacgt	aggagactgg	gagtaggaca	aggtgatggt	aaatggggaa	aaaaaccttc	48240
cgtgaacagc	tcttgtaagt	caatttggct	ttagagtgaa	ctggggatgg	cattgtctgg	48300
ttttctaaat	cacaagttaa	tggaagtgag	tttaattttt	ttccctaatt	tagtattttt	48360
ttttcccaaa	tgaatctgac	acagaacact	attattagaa	gagatcaagt	ctgacctgct	48420
ctgtaaaaga	aggtagatgg	cttagaagcc	acttcttttc	ctcggtgaca	gccttgaaca	48480
gagtctaaaa	atatagcaaa	gattcttcat	tgacaaggtt	tggaaagaaa	tccagttaaa	48540
tctacattga	gctatgttta	tttagctgat	gagccaacat	aaaaacaagc	attctatcac	48600
taaagcaaaa	cagaaaagac	tgataaagtc	acctacatag	aagtttcaaa	ttgtgtgatg	48660
gtaacaaaaa	aagctaaaag	actacaacac	tctagtagaa	cagattttca	acatataaga	48720
caatggacta	actgccttaa	ttcactaagt	ggtcatacaa	atcagtaatg	aaaagatgag	48780
caaccttaaa	aaacaaacag	gaaaaagcag	agaaaaggta	attaacagaa	aaaaggaatt	48840
caaatactta	aacaaacatg	aaatgaagct	caacttcact	cataattaag	gatatgcaca	48900
aagtaacaat	gagataatcg	ttetteetet	tccccatcag	atgggaaaat	attaaacggt	48960
ctaatgacat	ccagagctgg	tggtaaaaga	gttaataatg	gaaaccctca	aactttgttg	49020
ctggtagaaa	attgatgcag	tctttcaggg	gggatattta	gcaacatcta	tgaagataaa	49080
gatgacccag	cattccgtgt	gctaggtatt	tattctatag	ctatgcttgc	aaaaaaaat	49140
tgcaaataca	tgtctttcca	aagagcatgt	ggatecttte	ttctatactc	ctcatgcttt	49200
ctcccatgtg	aaaggacete	tgccaacata	agactcgggc	ctttccctgt	tecetecece	49260
tcagggaaga	tggagccatc	tatctaattt	gtgagcttgg	aaggagaaac	agacatgtga	49320
atctctgccc	ctgcctttct	ccctttctaa	ggaagctatc	tacctgagga	gaacaggcgt	49380
gccactctgc	ctcctctatg	ttgtaatata	tgtttgtata	tgtgtgtgtg	catgtgcttg	49440
tgggagagca	actcttactc	ggtgggtaaa	tettetgatt	tggggttgaa	ttattaggaa	49500
gccctttgca	gatagattta	aaccgcattc	tctaatatca	gcttcacagt	attgaaacag	49560
cattttggca	tttgtatgcc	ttagtctttc	ttatctctct	cttatttgat	agagaacaga	49620
gaacaagggt	gggacaaaaa	ggccagtcct	tgagaaatat	aaaggaatga	aattttaggt	49680
gcaaaaggaa	tcataaagat	atttgtcttg	gcagattaat	gtgaccttat	gttgggtaat	49740
gagctgtttt	tctagagttc	tgccctattt	ttaattgcta	taactggaat	tgataggttt	49800

agagtacatg	acattcacat	aaagacagtt	gtgatttaag	aggcaggaaa	tgtaattatg	51660
tgctgctgac	agtcttgtcc	ttgcttatga	aagggcttag	caaacaaaaa	attcccgtat	51720
cctgggcgct	accaagtgtt	gctatggctt	gttggagaga	tcccaagaat	caacactgaa	51780
aatcacctct	cctgacatag	tgctttgtga	attgcgataa	gtagatttat	atttaattta	51840
ggtgtgtgtt	gctgaattga	tgaataaatg	aactagatgc	tagaagtgtc	tatctctaga	51900
actcatccag	aggtaatatg	gtatetetgt	tctttatatc	caggatettt	gggtaatgtc	51960
tctttcccgt	tttgttctgt	cctaaattta	cctcagtagt	ctacaccata	cagactaaaa	52020
gtggaaagtt	caccagcatc	aacatatcta	atataaatag	agagggaaaa	taataggtaa	52080
gagaagtagt	aaggacacac	aggcatatgc	actagcatgt	tcctacagta	agtcaggagg	52140
ccacaactag	catttactat	tttcatgccc	tgttattagc	ctctccacct	cctccttttc	52200
tctatccagc	atctcagatg	gtcaagattc	tttgcctagt	atggtaacat	aaatatttat	52260
ttctgagaag	gcaaagttca	tagtagtcct	acctacgtgt	agtttgagag	agtctgctct	52320
taaggtaaga	agagtgaagc	aggaggtagt	ttagggtatc	ttctgggttc	aaattcctcg	52380
tgcccaacag	caacattttc	tgctattgtc	ggtgtcaatc	atacaaagcc	aatcccatgc	52440
ccccttttt	tatgtaaggc	ataaggttct	gaaataccca	tagtgcacgt	caactatcat	52500
ttagtggaaa	tgttgtctgt	gctgcagtag	aaatgtctct	cccatgagag	ctaaacctgt	52560
ggaccagcag	agtgctaagt	atgaaatcaa	gaggcaaaca	ctttgaaaat	agactattaa	52620
atgtaaagtc	aagaggtacc	ttccacacct	ccactgttgg	gttcccaggt	gtggtatttg	52680
ggttgtcagt	gaaaagaaat	gtttatacat	tacattataa	aactattaat	tcaactttgt	52740
attttctcca	agctgggact	atatecattt	ctagttactc	cttataatat	ttgtcaatat	52800-
agetgetttt	ggatgatgag	gtacataata	agaccagtga	ttatctctgg	cttcagaatt	52860
tagaatggtg	agcctggttg	ttacagcagg	cttgcctaaa	gaatttacaa	ctgagctgag	52920
agttaaggca	tgagaaggca	tttaatagat	gaaggaggaa	ggggcaagtg	tettecaage	52980
agatggaaga	aagtacgtgc	agagettgtg	gtgggagaaa	taatatggag	aaacccaaca	53040
caaataataa	tatagtgaag	catagagatt	gaggggaaga	agagtatgaa	atgaaggtag	53100
agatataggc	aggggccaga	gcatataggg	ccttattgac	catgccaggt	atttttggtc	53160
tttatcctaa	aaatgagaga	gccaggaaaa	tgttttaaat	attatgtgtg	tgtgtgtgtg	53220
tgttgtgggg	gtgggcaaag	gggaaatgtt	ttgaccttgc	catatttgtt	atacaaaatt	53280
ttetetetae	ctgtggcatg	aagaacacat	tgttaagggt	gccaaataag	atacagaaga	53340
ctactttaga	ggctgcagca	aaagtgtgag	aagaaaaagg	tggtagcttg	gtggcaatga	53400

WO 03/035833

agacggggag	gagcgtatag	aattcaagag	attttcagaa	ggtaactgaa	gagatagaaa	53460
tagatatatt	tacccaagaa	ggagtacaga	ctaagaatca	aagaagggct	aagtttgagc	53520
cttgagggaa	cttaaacatt	taatactgga	atggaaaagg	ataaacctgt	aaagagggct	53580
gataagaaga	tcatagaaag	ttagaaggaa	accagaagag	tcttgtcatg	gaagctaagg	53640
gaagaaagta	tttctggcaa	tgggtgttgt	caatagcata	aaatgctagt	gagaggtaaa	53700
ataagagcag	cactgaaaaa	tatacatttg	attttgtatt	caggagacat	tggtgatcct	53760
tagcaagagc	tgctttggtg	gatgactgtg	agtgaaagaa	agactgggaa	gtgagcaaca	53820
gagacagaga	catggtgaca	aattatttga	aaaattcttc	tgttacaaaa	aggagggaga	53880
ttatttgctg	gggaggaatg	tggggtagtg	ggtggtggtg	gtggtgtttt	aatgagactt	53940
tgtgagaagg	gatactgtat	agtgaaaatt	taattaaata	agaaaggata	ggattcaaac	54000
aggtaggtgg	ctgcacagct	cctttactgt	gataacaggg	aagtgaatgt	agatgtggga	54060
atatggaggt	ggcaggaaac	tgaggagttc	ccatttgatg	gcacctaatt	tctccgtaaa	54120
gtacaagtta	tctgctgaga	gggaagagaa	atagggagaa	agactgggca	ttggagagga	54180
gaagttttga	aatcagtgtt	agggagaatg	gaagaatgag	atgatcatga	aaagaaagaa	54240
aagaaacact	aggactgctg	gagggtgagg	gtgactatgc	atttacagta	tcagaatagg	54300
taggctgagg	cgcaggttat	ggagaataga	gggcaagttc	aaatgtattt	atcttggcca	54360
ctaactctta	gactatgtct	aacaggtttt	cagttaaata	cctaagatat	gaatagacac	54420
ttagctaaaa	aagaatagca	tgggggaaaa	gtcctgtcta	ccgtctccct	cacttggaga	54480
ttcatgtact	ttatcgtgct	gcatggtctg	gaagaagtgt	tcaaaccaat	tgcctcaaga	54540
caagtcttca	tgatctggcc	tctgcttgct	gatectgeca	cttgctaatc	tcccaaccta	54600
cagtttccct	tcccactctc	ctgaactatt	cacatttctt	gaaaatgccc	aacccttctt	54660
tcctcaagtc	ctttgcacag	gttattcctt	tagcctggaa	catctttttc	ccatccactt	54720
ttcctatgat	tgtctctgga	tagaaatcat	ttatgccaga	aatgcttcct	cgcatggctc	54780
aagctttgag	tcaggtttct	atatttatct	gttctcctat	tctgtgctca	aaacacctga	54840
actccctgtt	tgcttaccct	ctaccccact	acaacttgaa	gcatggaaat	atgtcttctt	54900
cagacctgtc	taaagtagat	acaagtatcc	aaagaggagc	atagtgtaag	gaccaaagaa	54960
gggctaagtt	agagccttga	ggaacttaaa	cacatttaat	agaggaatgg	aagaggataa	55020
acctgcagag	gaggctgata	aggatatcac	agaaaggtgg	aaggaaacga	ggagacatgt	55080
catagaagtc	agttacctag	cacggggttg	acacatagta	cacactttgt	atgtggctag	55140
agaatgtggc	tgaggaatga	atggtgaatg	cctcttcctt	ttacctgggt	gggggtggag	55200

ggaaggaggt	gattgctaga	gatgctgaat	tagatgaaga	tgaccctgga.	caaacttact	55260
taagcagcaa	atatctatgt	taatgctggt	gtcttacgtt	tctatatatg	tgatcgttac	55320
tctgcacaga	atttgatatg	tgcatctgtt	cacatataca	tccatgcatg	cacacagatg	55380
tctacacaca	caggtatgta	cagtttgcac	ttcctatttt	ctcagctttt	acttccacct	55440
gttccatctg	ccccagattc	ctatggactc	gtggttgttt	tcacattctt	catgcttatc	55500
ttgatctctc	tccctcccct	tataatattt	cctgtattcg	ttcctctggg	ccttttggcc	55560
tttcattttg	ttttttattt	ctgctgcttc	tttccagtct	gcttaaagca	cctcccaaca	55620
gattttcaat	aggaatacaa	aggeteaett	tggcagtgca	gatgttatac	aatggcaatg	55680
ttcagtgctt	tttttttct	tttttttc	ggttcctaca	gggactggat	gcatacagtg	55740
tttcactgct	gattctttgt	aatagtactg	cacaggcaaa	atgttaataa	attatagcag	55800
cagaactaat	taaaaggcat	gcattataca	tcttgtggac	acattcttca	ttagcataaa	55860
ttctcagcat	tacacatcca	tgtcagaggg	aattaaaagg	aaaaacttaa	aaataaaaag	55920
gcatacatac	agagacccaa	atgctttggt	ttccccaagg	cttttgctga	gcatatgccc	55980
ttgcggattc	agtagttctt	ttaatttttg	tgtgttattt	taaaggaaat	atactatgtc	56040
ccatttttat	gtactttaaa	aatcaaacca	gctttaagat	gataaagtta	atcccgttta	56100
tcccccttgc	aacaaagttt	aaataatatt	cagtgaacag	gtttctagaa	ctagaaacaa	56160
actcctagtt	tttccataat	attttctaat	aggcatttga	ttataagtag	ctcaataacc	56220
agtctctcat	gttagcaata	ttgttgtttt	cacctgagtt	cttattttag	agcccaggtt	56280
ggtaagacag	acccaagggt	cacagggaaa	gggggcagct	catagttccc	ttatattacc	56340
attcagttat	tcaacttctt	ccttaggaaa	atgcattgat	tctggctttt	tgtaaagatc	56400
atgcttaaca	ataccgggcc	atgcattttc	tgggccgaca	cagttccctt	gtgcattagc	56460
aatcctcata	actttctcta	cacatggaaa	ccaatttgat	agatagtggc	aatgatgata	56520
gggagatgac	caggcatect	ttagtccctg	agccagggga	ttctcctttt	aatgatgagt	56580
attcatatca	cttttaattt	cttgcctcct	tecaaaaegg	gattgaaggg	cttgaaacaa	56640
ctagatgcct	acacttttac	aagagttttc	caactcatct	tcctacttcc	actcttggcc	56700
tagaggcttt	tctcctcgta	acagtccaaa	ggagctttgg	aaaatgtaaa	tcaggccaca	56760
ctgcattcct	gttgaaagcc	cțtcaatgtc	ccccatcact	tggaataaaa	ttcaaagtct	56820
gctaaatagc	ctgccagacc	ctacttgatt	tggctcattc	ttcaattttg	ttgcttgctg	56880
tctttccact	ttcctccagt	aatactactg	gcattcttgc	tgttctgtga	acatgccatg	56940
ctcacttctt	tcctaggacc	tctgcacatt	gcttttcctt	ctttcagatg	aaagcatggc	57000

ttgatcactc	agtatctgtt	caggtgtctc	ctcagagcgg	gggtctctga	gtaccctatc	57060
tagaacacca	agtagcacta	acggctacct	gatattgtat	atgtattagt	ctgttttcat	57120
accactataa	agagctgccc	aagactgggt	aatttataaa	ggaaagagat	ttagttgact	57180
cacagticag	catagctggg	aaggcctcag	gaaacttaca	atcatggcaa	aaggtgaagg	57240
ggaagcaagg	caccttcttt	acaagacggc	aggaagaagt	gcagcgtgag	tggggaagag	57300
ccccttatga	aaccctcaga	·tatcatgaga	actcactcac	tattagaaga	atagcatggg	57360
ggaaaccacg	cctatgatct	aattacctcc	gcctggtctc	tcttttgaca	tgtgaggact	57420
atggggatta	aaattcaaaa	tgagatttgg	gtggggacag	aaagcctaac	atatcggtat	57480
acctatttgc	aaattttctt	tettttetat	caaaatacaa	gctcttcgtg	gttagaggtt	57540
ttatctatct	ggttcaatgt	tttcatacta	gagtccagaa	gagtgcctgg	tgtattgaaa	57600
gtactcaata	tatgtttatt	gagtaaatga	ataactgaag	cttcttgcct	acagttgagt	57660
gagtactggt	atttttattt	taccagttaa	taaattagaa	aagacctgtt	aggcacatgc	57720
ctctttaatg	caagaacttg	agagtaaatt	acatgattaa	aaaaaccctt	tgcaaacaaa	57780
tggtccagta	tcattgcagg	gcaataaatt	ggggtcaggt	gggatcaaag	tgtgcttcat	57840
gtaaaaggaa	agaatgacaa	cctttattat	agatgctgct	ttcatcaaaa	tctagaatag	57900
ctcatgacgg	gttagggaaa	agagtccttt	tataccettt	tggtcaattt	gtaaattggt	57960
acctctctgg	aggttaatct	atcactaaaa	agcctcaaaa	attgcattac	tttctgactc	58020
agtaattcca	tttctaataa	tttaacttaa	ggacataatt	atgagcatga	atgaagattt	58080
atttccaaag	gtattaagta	catagtaagt	tattatcaga	taaaacatct	gaaacaacca	58140
aagtatctaa	tcatagtatt	ttggttaaat	tacagtataa	ttaaagaatg	gaattctcta	58200
agattcacaa	taaaatgcta	agcaaaaatc	aagtaggaac	ccactaaaga	tacatatata	58260
tacatataaa	taataattta	tcctcatgtt	aatgtaacca	tctaagtgtt	agcagtgtta	58320
tctcttcatg	ttggaatgat	tacaaatgtt	agttttttg	ttttttaatc	tgttttttc	58380
tagtggttct	aaagtaaaca	tatattgtgt	aattaaaaat	taaaaatata	taccaataaa	58440
ctccacaaaa	agtgaacaat	taaagagatt	cgtgtagata	aactcttact	ccttctctgt	58500
gaatatgatt	gctcaccacg	tgccctgtct	ttctaggtca	tgtacccatt	aatccagcat	58560
acatttattg	agcacctatt	atatgcagca	ttctgtatta	ggctacccțt	ccaccaaggg	58620
gttattgaca	teccagaget	gtttaccacc	attgtaagta	gttttataag	acagaggaag	58680
gaatctatta	catacctctt	tttcttttc	tggaaggtat	ttctgaaatg	gaaagtgtct	58740
gtgccagccc	aatcctaaaa	gttttcattt	tgaacagtct	ctaaagagac	tttttgccca	58800

gcagagctgc tccttggtag caaagctgaa cttgtgacca agtgtttgtg ccctaaggtc 58860 ttttccttgc tatttcactg ggctatgtgc ctggcgcagc ttcccgtggc agaactgata 58920 taccaacctt gtttttcacc ttacaaaggt ggcagtggct tgaataaaag gcagtctgct 58980 gaatgacttc cagatagagc aggggctgaa gaacaggcag tgacttgttg ccttttccag 59040 gtgtcttgtt tagtgcagaa gcctcagtgc ctagtgtgtt agctgacaca gagtaggcac 59100 tgagtaaata gttgagcaaa tgatttacaa ggaggccaga tgtcagccct ctttctaatc 59160 tcactgaaag cacccaagaa tgggcccatt tctttagatt tctccatata ccaactcagg 59220 qacatqtgaa aatataagga atttggaaaa ggtactttgt gtgtaataag gctgacaaat 59280 gaaagcatgt gatggtaaaa tgacagagat gagaaggaac atcaataatc catgctgcac 59340 tgcagagatt gcaaaagcac acaaggacaa agtggccttg tctctctgct taacaagcag 59400 gcgtttaatt ggaaacctaa ataacgtatt aagttttctg tgttggaatt actctatgcc 59460 gttetgeeta tetgtetetg aatgagatga attaccagtg geatgettgg gttgetttag 59520 tcaacaccag caggcagetg ttgttaatga tetttactet cetggtagtt ggagtggagt 59580 ttccatcctc ctggggaagg cagctgtggt gettgggcca gagttaccac accgtgtgca 59640 totgcaccat taacctotgg agagagagtg gtototatot ototoctaco coaatttaca 59700 gaaattccca gccttattca atacccagtg ttctctaact gggcaaacat gctcctttgt ttcagttact ccaagattta cctcccttct gtaggaaact gaagttctgc agaatggaca 59820 59880 aagatgattt cctattaaaa aaaaaaaaaa aagcagatgt ggttttctct ccctatggat gacaatctag ttttatcttt tacttcaatt ctaggaaaat tcattcccat catgaaaaat 59940 60000 atgtcagaag aaaagcagac cactctgttg tatttgggtc acataccaat tttctaagct agctaatgaa aagggactat attaacatga aggtagaaga tttttgaagg tgatgaggaa 60060 60120 tgacaatctt tttccctgtg ttggctgtgc aatcacaaga tgataatttc aggggaagaa aaatgaccct ttgcccttta agacagtcaa taggctttta gaagcaggca accaaagatt 601.80 gcactgtatt agcatttaat ttttaattaa cactagatta caattgcatt ttcagaacat 60240 ccctccttag gcccacattt gcagtaagag agttcacctg gatggatatt attgcagaga 60300 acaccagggg aatgaataag agatccacaa ctgctgtcag cggaaagcac aaaaaggaaa 60360 tgaatcaact aacagcaaag ggagctctgg aagctgcatg gcacgtgtac ggcacgataa 60420 tcagaggccc ctctgtgaaa tgattccaag gttttgttct acctagaaaa gttttggagt 60480 tgagaggcag catggcagag tggaaagagg atggattttg gaattagaca gctcgaggtg 60540 aaaatcctgt aacacagaaa agatagtgtg aatgtctggg gctacgggga agatgaacaa

gccagctttt	gtaaagtgcc	agatacatag	gtgtccagta	actggtagat	attattgcct	60660
cttgtttgga	ttcacaaatt	tcaaagagaa	ctctaaagac	tggcctgagt	aaattgtgtt	60720
aaagaaaatg	aacttttaag	gatacaactc	acatcaccat	cactgtagag	gattttctca	60780
gaaccctcat	ctgaggctct	ggatgagaaa	gtaggcaggt	tacttctgtt	ttgggagcag	60840
aagttacttt	cttgacattt	tacaagaggc	cttggaatgc	ttagtggaaa	gaaggggtaa	60900
ggaaagggga	aagggaagga	ggaatagaag	aagcaggggg	gaggagaaaa	agaaagagca	60960
gaggtaggaa	ggagttgtgg	tgtggtagtg	aaacatttta	aatcttgatt	ttaaaaccca	61020
ttttattact	ttgaaaagac	caaaaggtat	tctattataa	caacggctgt	gattgccttt	61080
gaaagatagg	agtataaaat	attttttctg	acttgttatt	ttttccaaat	tttctcattg	61140
agtaagcaca	tattactttt	ataattagga	aaataaaaat	ggcacccttg	ttaattattt	61200
caggatcaca	tgtctttttg	tggtcctttg	aaagagtaat	gtttgagaag	cttcattaac	61260
taacgatgta	tacaaatagg	acctgagaga	tttaggaatt	caaattccag	ccgtaggaat	61320
catcataacc	aaggtaggcc	aggaccccta	ggeteettte	accttcacga	aaggcaaaag	61380
gcagagtgtt	tcatatgggg	gagtctagtt	tagtaaacac	aaatcaatct	ccgacaaact	61440
acggttgttt	tacatgagga	ccctaaccct	ttctccctga	cctttcccta	atttctggaa	61500
tttagtattc	cagtgtgtgg	gataagtctc	tgtgaacttg	cttccaaccc	agcatttttg	61560
ttctctggaa	acttcaggga	gcatgagtga	attcgacaga	tgctggctta	tcacactgcg	61620
cctgacacct	ggctctgcac	tatctgcaaa	accaatagaa	atagctacag	gggaacttgt	61680
atgcatcttg	aacaactttt	aatttaggca	gttatcttct	tcaaacactt	tgggtctcta	61740
catttcaatc	atcaggactc	ttcaggacaa	gcaaaaagcc	teagtaaacc	agtaaacacc	61800
acagtgctta	tttagacatg	aacactttga	ttaacgttta	catactgaaa	taaccgtgga	61860
gaacaagcaa	acagccccat	cccttgactc	acatagatga	gcccatttac	atactgaaaa	61920
tggtacaaac	tgtccaggat	agtgagtaca	tttggaccat	gaagggaata	tcaccatgct	61980
ttttcccttg	tgtagtgatt	gttttagcat	gtgttggaac	ataatcaaag	gagaacttga	62040
tgtgtttggg	aggagcatca	gatgagtgat	aggtattcca	gaaagacgtt	agttgactaa	62100
tgatactgag	taaaagaaaa	agaaacgtaa	gtggtgaaga	cttttaagaa	gtgggaacat	62160
agetetgggg	atgtgttatg	agaaatcagg	actttagtgt	tataggatga	aaagttatat	62220
gccattgcag	aaaattagcg	acaacttggt	cagagtcttg	aagtgtcaag	gaataataaa	62280
ataagtacaa	taaagaggaa	tatttactag	ttgttgaaac	ccttttctgt	tccatatttg	62340
cttgtttata	ttgactttct	taacttgcct	tcctaatata	taacatcctt	cctactcatg	62400

gtaaagaaag atgatgtagc	attttgatca	atgtgcagaa	accaatggct	atgcactgaa	62460
ttgtgccccc gctccgatcc	atacattgaa	gcactaacct	tcaatgtgat	catgttttga	62520
aatagggttt ttaggaggta	attatgatta	aatgaggtca	taaaggtagg	gtgctaaatt	62580
aatagaattg gtggccttat	aaaaaaggaa	tetetetete	tctgcatgca	ctgaagaaag	62640
accctgtgag gacaaagaga	gaaggtgtcc	acctacagcc	caagcagaga	gcccttacta	62700
gatactagat actccgctgg	caccttgacc	ttagactttc	cagcctccag	aaggcggaaa	62760
aacaaacttc tgttgtttaa	gccaccgagc	ctgtggtatt	ttactatggc	agccagaact	62820
aagacaccaa caatattttg	ttttaagttt	ctctaaatta	atatggcaaa	atcttgaacc	62880
agagcactta aaaaaatgaa	gctcagttac	tttcatctca	tttcttagtt	tcttgactga	62940
cagaagtaat atcttctggc	catttcccgt	cacttatggt	gatattttcc	attggaaaag	63000
taggccttga aagtcctatt	tttcacagcc	atctatctgt	ctgagtgtca	ttccatggtc	63060
agccttaaat gcagacacct	cagaatgggc	tcttcatgat	ttgcttcaat	tctacatgtt	63120
gaataacttt actttactgt	ttcccaagtt	tatgtcgtaa	aggactgagc	tataataata	63180
gatgtaggag aaggataggc	ttctattata	tgattaataa	ggcaacacta	ttaatgaaat	63240
attaaaaaga tgaagagaag	cataaatgct	gttttagaac	attcaagaac	aaaatgcaat	63300
tttttaagaa agtattttat	ttttgtgtct	caacagatga	aattcataac	cttgttttct	63360
gataagacaa ttcaaacata	caaatcaatt	acaacaatgt	gcttatcagc	teccetecca	63420
cccctatatt ttaatgcaac	tgacagtttt	gaaggacacc	aagacaatag	ggcttagcta	63480
aacaatacgg caattaaaaa	tggccctcta	agaaaataat	tacaatagtt	gttgaaaaga	63540
atttgtcctt tgagcaaaac	agactgaaaa	ggattatcat	gaaatgagga	gaattatagc	63600
ttetetteca ataaaggaga	aaaggggatg	tatgttaaaa	caatgataca	gaaagctggg	63660
gagtcagact gaaaacagaa	agececagge	aataaatgtc	tccaataaaa	tgcatcccct	63720
tgaagatatc cattcaaact	cttgtttcat	attgaaataa	ataactgttc	cgccacaccc	63780
agcacctgga agtgaatcat	ttttgttctc	ctttgttaaa	attaatttaa	taatttttcc	63840
aatccagcat ctctctgaga	aagaggtgtc	gttacgaatt	ttgtaaaagt	caatgacatt	63900
aaagataacc taagccaatc	gatggccaac	accattttag	attctagccg	taaagagatt	63960
agacatattc tggcaaacct	ggggctccca	gggaaagcag	ggttcatact	caatgatatc	64020
tagttactct aatcctgtag	cacctttcta	ctaggtcccc	aattctatat	accatttcct	64080
catgetttte atggtaagee	tcacagcacc	cttgtgaggt	aggtagtgtt	atggttattt	64140
tgagagatgg ggatgcagag	atgttaagta	gcttgcccat	aaagaaacat	gaatccagtg	64200

acatagccct	agggactctc	actocacato	cttatcttt	tagtacttaa	ctattetase	64260
		•				
	tggatcatta					64320
gtggacacta	aggcctatct	ctaaaccaca	tgatttagat	gacagaatga	gacacaagtt	64380
gcaatcaata	tggaagccaa	aggagttaat	gtggagaaac	acagaġctaa	ggtttaaacc	64440
acagtttgat	aatgacttca	gtgacgggca	gctcgattac	tatgataatg	gatactcagt	64500
agatgttgca	taattaaatg	agtaaatgaa	tgaaaggaga	ttgtgcttgg	ataattggaa	64560
aattaaattt	tctgtatctt	ttaaaacaaa	gctagagaaa	tctgatttt	aacttctaat	64620
caaggatgag	aaggaaagga	ccgagtagat	tcctgaatat	tttgagggca	tgtatttaag	64680
ctaattattg	gcaatattta	aaagatataa	atagacattt	aaaatgattt	tcaatataga	64740
atgtatttac	ttatcaattt	ggaaaccaac	tcaagatcaa	tattagaggc	agtgtgaťat	64800
gcataatcat	ccattttcct	ctgcaattaa	attetettae	acatgctcat	atgatcattg	64860
ccatttattt	gaaatgcttg	tgttctccaa	ttcttattaa	atgttctttt	gaaatatatt	64920
caaccattag	aacaatgaac	tactcttcct	acactcacca	gccaggatac	atttttcagt	64980
tactttcagt	ttccgtgaac	ccattcttt	tcctccagaa	gactcacagc	agaaaacagc	65040
tgccctatat	tgaaaccagc	cctgcgttaa	agccagcaac	tttcttacag	aactgccatg	65100
aagagctctt	gagaccactg	aagcacagac	cactggattc	tccaggtgtt	gctaaaacag	65160
aagagcttat	ataaatcaag	gtggtggagg	tgacttggta	atctctttgc	attacacatt	65220
tgttctgtgc	tcagtgaatt	aattccctgt	aggatgtttg	tactgataca	gtgtgaggct	65280
taaagaaact	ctggatgcca	cagtatggat	ttgtgtgtgc	aggtttgaag	aagtgtttaa	65340
cttttatgaa	atccctgcat	gtatagaatg	gatgtaacct	gttagtcttt	tgtacatcca	65400
gctaatagcc	catggctaaa	ggaataggct	agatgtggtg	aattgcctct	gtgctatggt	65460
actagcatac	ttgatctctt	gtgcttggaa	ataatatgaa	tagtgatgct	gcagttagaa	65520
aagggttcac	ataaatgtta	tttctgcctt	agatggggat	ctggtaaaca	aatttatctc	65580
ccaatgtgac	aatacaaaat	tattcactat	agatataact	ttcacaatca	cataaaagat	65640
ttaggtattt	taatcaaaga	ggtatcctct	ctagcagtct	gttctttttg	tagagactct	65700
ccttgggttt	tcatttctga	gaccctgact	ctggtgattc	aggtgaggtc	ttagtttttt	65760
tagcagacaa	atagaatagg	gagaatccac	atattttcca	cctgccttat	ctttttttat	65820
tttttaaatt	ttcttatttt	tttccccaga	tggttcttag	taatagatat	gtatatacgt	65880
gtcattctgc	cattaatata	catatactac	tttgagagat	ttattgacat	gtcctgattt	65940
gccaatgaca	gcgttataga	ataaaacaat	acctgcatag	ctgtaataag	cgatctcctt	66000

cccaatcctt	tattttttga	tagagggtca	taatttttgc	atttagttat	ttataagagt	66060
tgatgaaagg	caccagtgtg	acaagcccta	gaagccagtg	ttttcagatt	ttccaccagt	66120
cagtggcaga	aatagtaggt	aaatttcccc	tcaggtttct	cacttttctc	cttaacttgg	66180
ctttattcca	cattaatctt	catgtcctgt	gttttaggtc	tgataatgaa	gtaattaaga	66240
aaagaatata	gggttgtaca	ataagcttat	ctgccttgaa	gggagtcggt	agaaactcct	66300
aatttttatt	tcgactgtat	caaacaacac	aaaaacatta	acagccatct	agcaagggca	66360
gtatgctcat	gactgagaaa	aatgaaagga	agaagaaacc	aaacagaaac	agaaacacag	66420
aactatgaag	aacttctaaa	tttatgaagt	aatacatgac	cagaaagtct	ttaaggtgca	66480
gagctagaag	ccaggccact	gagttaaaag	tatgtttagc	ttcgagttca	ttatattatc	665 4 0
ttcttcccat	tgtttaagta	caagttctga	agtattggga	tcatcttatc	cctgattggt	66600
gagtttactg	gacaagctaa	ctcctaatat	taattggcga	gatgtctacc	caacacattc	66660
aaaactatgc	ttatgggaaa	tggccctttg	ttttagtctt	actgatttac	tagcataaaa	66720
taaaagccca	ctgttagaga	tgtgactctg	accagagcag	ctctggcatt	aacagaacat	66780
tttcaagaaa	ttetetetet	aggggcaagc	ttttcatttt	gcaattaaat	agcagcaggc	66840
cgggtgcagt	gactcatgtc	tgtaatccct	gcactttggg	aagccgaggt	gggcggatca	66900
cgaggtcagg	agatcgagac	catcctggcc	aacatggtga	aaccctgtct	ctactaaaaa	66960
aatacaaaaa	ttagccgggt	gtggtggtgg	gtgcctgtaa	tcccagctac	tggggaggct	67020
gaggcaggag	aatctcttga	acccgggacg	gggaggttgc	agtgagccga	gattgtgcca	67080
ctgtactcca	gcctgttgac	agagtgagac	tcaaaaaaga	aaagaaaaga	aaagaagaat	67140
agcaaaggga	ccttttctgg	tttcttgcta	acagtctcag	tatttgtgtg	tttattgctt	67200
cctggagatg	aatcccggac	tttcttgttc	tctaacaatg	tgactttcag	gtaccatgac	67260
tgtcagcttt	ctgcttcctt	ctctacctcc	tectecttca	ctggaagcca	tctaatgagc	67320
cacagggagt	aaagatgata	ccctagatga	tgacacctgc	ctgaacacat	ctctctaaag	67380
cccattccct	caagtacgaa	aggtaaagag	agggcacctt	cactctcagc	ccaagaggag	67440
tttaaaaatt	ttcaattcat	ttcctcttta	acactagaca	attttctctt	tecettttt	67500
caatttgctt	gaagactaaa	gttgtttctc	tttttattt	ttttgtggct	tectacttga	67560
cacaatgttt	tgaatcattt	ggctgagtga	aggctaactc	agaaagaaaa	actagagggt	67620
ggtgttgtat	gtatggcttg	ctgaaccctt	cagttcttgc	tcaaatagat	cttacgcctt	67680
aagttatgcc	cattacttgc	ttatgttatt	aagtcacatg	aatttgggat	acttttgcaa	67740
gtgatacagg	atttaactcc	acaaaagtag	aatatcttta	gagtgtggtt	gatattacat	67800

	aaatttggat	gecçateagg	ttgaactatg	acccctttgt	aactttatgt	aactggatag	67860
	cctgtctttt	gattcctctg	tgagttatct	ccactcacct	tagcatttga	atgagattcc	67920
	actggacctg	cttcatctct	gacagtattg	gggattacta	attaatacag	tgatacctca	67980
	cgttccctgt	gagactcata	taacctactt	ctctcaataa	gaaaatattt	ttatacgact	68040
	ccgattgtct	catattgcat	ttcttattaa	tacttcagtg	aatttaactg	agatgtcaga	68100°
	tgcttaagcc	ctttcatccg	aaaagaaaac	atgttttctt	aacttatttt	acatgttaat	68160
	aagttaattt	gtttttacat	gttaaaaaaa	acatgcccac	aacaattaac	caatagctaa	68220
	agagatgcaa	acctaaatca	agatactttt	gtcattagca	ttaatttttt	gaaaacaaaa	68280
	actttcaggc	attttttacg	aaaagttttg	ttaggttctt	ggttattaac	tttcaatcat	68340
	gggatattct	caaaatagga	ttttgataaa	agacattaaa	ggaaaacaca	gatacacatt	68400
	ctgtctcttt	ttctcctgct	caggcttatc	aacttttaaa	acggttataa	tttaaacaca	68460
	aạaaaatcta	accaccette	cccacatatt	tatatatgta	tatataaaca	atagaaatta	68520
	attatgattt	ggggtattct	ataccacatg	gaaaaaacct	gaaaacaact	gtcttgttat	68580
	gaagcaactc	aggtttttat	gatatacctg	attttgtaac	tggggagaaa	aacagcatgt	68640
	tttcttccaa	acageeteta	tgcaaagttt	gttcatgcca	attccaatct	cttgttatca	68700
	cacagatatg	tatatacatc	attttgctgc	tggacataca	ttgtaaagaa	tgaaaaattt	68760
	tttttgcaag	tctgaattaa	tctcctgttt	attatttatc	ttatattgtt	gattttactc	68820
	aatatattgc	agtgtaaaga	tattaaagca	atttagaata	ggaggtgtgc	aacaacataa	68880
	agttaacatg	gcaaccaaat	ttctgctttt	ttttggtcct	tttagaacag	gcataaagtc	68940
	tttggctgac	ccatcttcag	tatggacagt	tatcttttga	actttattgg	aatatagtta	69000
	agcaatttag	taaaacataa	atttgcattt	ttgttgtctt	ctaatgacta	ttttgcatat	69060
	taaaggtaaa	gtcttcttta	aaatgtgaag	tactctcttg	attatgccag	ctcttttctc	69120
	attctgctaa	ggctataaat	aaagctttct	atttaagget	ggcattatat	caacccacct	69180
•	gcttctggaa	gggagaggaa	aaaaaatcag	aatcactcaa	cctgcagatt	gctgtcagct	69240
	tgtgattatg	tgaatggtaa	gtcttaactt	ttaaagtgtt	atgtgagata	gctggagggt	69300
	tttttttt	taaagcaatt	tccagtttaa	caattaccca	agaatctcag	ttaccaatga	69360
	aagaagactt	atccctggag	agagcgttca	ttgatgagga	tggcagcagc	tgagaagtga	69420
	cagtggtaag.	taggcagaga	gtgaaggatc	atttcaattg	ctgcatcagg	aaaggaggca	69480
	agaatgtggg	ggaataccaa	agcttttctc	cttctgtggg	ctgtctcagg	ggactttagt	69540
	tcctgctctt	tttctccttc	ctattcagga	tgttctccag	ggagaagggg	atcagggagg	69600

gagaagaggt	attaaagacc	ttggtaaact	tgagaaaggg	cagtctgggg	cacatgcaag	69660
cttgtcctga	tcaaactccc	aaatttggaa	agagtaacat	cagccccaat	cctattttag	69720
aaaaataaac	cttttacaaa	catcttaatt	atgtattttg	ttgttgttgg	acacatttta	69780
tectagacca	tttgttaaaa	atctcacata	agataaggaa	gttctagtcc	ctaccttttt	69840
gagaagacat	gcagttacac	atactgttct	ccaaacaggc	aaaccaactt	cagagtcgaa	69900
aacctgtcat	taattgttga	tttaaaacct	tgtttacttg	gctaaacctt	gcaagcctag	69960
acatatggcc	cctggaccca	gtgtttatta	ggttaattga	gctaaagagc	acagcaatca	70020
gctatcattt	tatcctgtac	acctatgttg	taaagctgtc	ctttcccagc	tggaatgtaa	70080
atgagaaggc	tcttttggga	atggcttttg	aaggtgaaaa	ggggagcatc	actgagagat	70140
tcatgtcaag	tgtttgccaa	agtaccagaa	aacaccctct	gttgcctaac	gaaaatagaa	70200
aattcaaaaa	tcaaacaaat	aatatttcat	tectcaaaac	tttctatacc	caaaggcaga	70260
ataattccca	aactcctcaa	tcagaaaaac	atcaagggtt	ctagctgaaa	ggaattaaaa	70320
ggtgctccca	aagccaacgg	tggaaaatca	atggaaataa	ccaggcacat	gatgtatgag	70380
tctaacaaac	agggaatgtt	aattatagta	atagagataa	taagtcttta	cctaagtgct	70440
gagtagaatg	aatgcctttg	gtcccaaagg	ttttgttact	agattcagat	gccacagaat	70500
ccatttggga	tagctcatgt	gagatatagg	tgactgggtc	atagaaaaaa	ggtataaaaa	70560
ggacttcagt	gaaagtcaag	gaagaacata	atctctgatt	cttcttcagg	taggagataa	70620
ctacaaaaat	tggcaagaaa	gaaaacagga	ttaacatggg	tcaagtgtċt	gcctccaacc	70680
ttctttaaag	tcttgatata	tctttatgtt	tggtcttaga	cttctaagct	gaaaattatg	70740
taatttttt	ctttcctaga	aaccctcaag	acatatgcag	tgttgaatgg	cttctgagta	70800
catcccctga	agttaaaaca	aatgtcttga	cacagagatg	aagagagacc	ctggaaatac	70860
aagttaattt	acatgggact	ttactcaatt	ttatttctcc	aagatcacat	tetetettt	70920
gttcctctga	tataaaaata	catgtgtttg	taccagagta	aagtgacaaa	agtcággcct	70980
caatgcaaat	gacatttaaa	taatcatttt	ttaaagagtc	acagaagact	gcaacttctg	71040
gactcctgta	agaactgagg	aacacagaat	atttgacaga	ataatgaaaa	aagaatccat	71100
cctaaatact	gtagggcaac	ttctgaatgt	gtttttccta	ctagggagtt	gtcagtaaca	71160
agcaaaattt	ctgagaaagt	tgagcaaaac	cagagtggaa	tgaaaaccaa	ctggagtgaa	71220
atgctgagtc	aaacaacagt	atttctttct	gggatacttt	gaaacaaagc	ctctgggaag	71280
aaaatgactc	agagatgtca	tatttaagtg	agtagttggc	ccctgtgctg	gtatgagctg	71340
ttatgctcta	ccatggtcta	gttgatataa	caaagaggta	atcagaagcc	atgagggaaa	71400

attcattaac	ccttttgtga	aactgagtac	taaagcacca	gcgtttcact	caatggatac	71460
cagagetttg	cacgcacaaa	aagaacccaa	gatctgctca	gatagtgaga	gtgtagaaaa	71520
ttaaatgtct	attcaattac	ctcttaatcc	attgctatga	tggatgcttc	aggcaaaaag	71580
tagccaattc	ccctgaaaat	atctggtcaa	tatactttta	tgatctaagc	actgacacag	71640
tcaatatttt	tttggtagtc	tatcggaggc	caattcaaac	agtaatttta	ctcttattgg	71700
aaacattagg	tttaggaata	cgtcacaaga	gtattactct	agtctgaagt	agaccaaccg	71760
gggttctatg	gagctctagt	ttttgaaaat	gttaacagtt	atagcacgaa	aagaagtgct	71820
ttctgctcat	ataaattagt	gaagcctgaa	gataaacaat	attaaacagg	attcctgttt	71880
acaggacttt	tcagaggatt	tattaggctc	atatagattt	tgaatctcta	aaggtggtta	71940
cagaatgcat	ttccctgata	gactggtcaa	caggactttt	ttggaagaat	gcttagaaat	72000
atcttaaata	actattattc	catagatcag	agtatgggac	cgctgagaaa	atccattctc	72060
ttttcttcca	ataaaatgaa	tagtaacaaa	atcttttaac	taaatctttt	tcatggatgg	72120
gtacatttta	atccaatttc	atttcactca	gctgtttttg	gccaactttt	attttgacaa	72180
aagagcagtg	aaaatcacaa	agccctctta	ttaattgctc	aatgtttctc	ttttatgaca	72240
attagttgaa	tactacactt	cacacaatgc	tgcaaaatag	tttctattaa	cttttggaag	72300
tttttttgaa	atctctaaca	gttcattttt	aaatttgaaa	gaccccattc	catttgcaca	72360
caagttggat	ttgtgataga	gtttgcagca	gagcttgatt	tgcattgttt	gatataaggt	72420
atttggcaca	aatggaaaat	aaaattctaa	aagatctatg	atagtcatca	gaaaagtcaa	72480
atgaaaaatg	gcttgaacag	gcaattcttc	aatctttcat	catattttcc	accetttatt	72540
aggggagaaa	tgggtttaac	tctgttgcta	tctgattggc	aaaataattt	ctgggcttat	72600
cctactttta	ttggggtcaa	tttaatttta	ttaaagttct	tcaaaatttc	aaattttcaa	72660
atttcaaact	aaaaagccag	ccttttgaat	gtcaacccgc	caatccaata	tgtcaagaag	72720
caaaccccag	agactttcta	ctccagctta	catgttatta	aaaacatgac	ctattttcag	72780
atecetettg	aaataggaaa	agtatagata	tttcctatca	gttctatgct	gattaaatat	72840
ttgacattgc	atgaacacag	tccacattca	attetttete	agatcacata	accatatgct	72900
ttgaaagtca	ttcactgaac	atttagccaa	atgaaactat	gcctgctctg	aaccagatga	72960
ctggtggtca	cggcatgaca	tcagttttta	aaaactggga	tgtttaactt	tgagtaacag	73020
tcattaatac	aaactgaatt	ggataagtat	ccttgggtca	gagagaggaa	aaaaaatcag	73080
cacaacttga	catatttatg	gggctataac	cttgctttt	cctcagtgga	gaaaaaaaac	73140
actaaatggt	ttttaatcca	ccttgttttt	tctcagttct	tagaaaacaa	gacaaattcc	73200

tctttattat acaagataat	tttcaaagaa	aaaaccaaaa	tctaattggt	aaggaagcag	73260
gaagaaaccc tgaagttgtc	tattcaaggt	aatattgtgt	gtacagtatt	caagtagaga	73320
acatcagagt ggcagtagct	agatgttccc	ttgactagca	gcaatctagc	atgcaggcag	73380
ctatcatgtt ttaaacaaat	cgttgtttgc	attaacatca	tgttatgtat	gtatcaccct	73440
ggtttgtgtt ggcatctgag	aagaactctt	tettattcag	agagcttttg	aacatctgaa	73500
ttcttgatct tagccactgg	tgaatattat	cctatggtta	tttgtaacca	ttacctcttc	73560
ttccattttc tattaacccg	ctaatagtga	ctgtggaaag	taaaatcaag	gagtgattaa	73620
atgaatcatt ttcattatta	acacctacct	tgcattttac	aggtacatct	agtggtgtac	73680
caccttctgg agaaaccaag	ggctttgttt	acagtaaact	ggtccagtgt	gatattatta	73740
caagtataaa aaatattcca	ttctgtatca	aaactaggca	catgccttta	tttatagtaa	73800
cagaagttaa cagagttgag	cagttttgcc	ttgggtcctg	tttcttggca	tcctacatca	73860
gacaaacaca tctctcaaaa	tatctccgcc	cataactcca	gggatctagt	ctcagggtca	73920
tctgtaggta acggaaggtg	aaatcacact	tggatctata	gtggtgagta	actaaaagca	73980
caacctctca ttcatattgc	tttaaaacat	gtacagcata	tatgtttcaa	aaaaggaaga	74040
aaagaatata ttgatctctt	tgtggtactg	aaccaacaat	atggtatgat	gcaaggcttt	74100
aacaaatgat aatcatagat	acaaattttt	ctgtagagta	tgttttagac	aaatgtgtct	74160
ttttaatatg taaatcctac	actgtaggtt	gttcttttt	attttttctt	ttgttttttg	74220
cagtggtaga aaatgctgaa	taattgtccg	tgagtgtgag	ccaaatattc	aggttcatta	74280
ctgagatccc cagaacgcca	atatttgcaa	cgcaaacact	tagtatccca	ctgtgtgaag	74340
ggctctgaca catgcctgcc	tgcctgcctt	tcgatggaga	gtctccattg	gaagtcctcc	74400
tgcttccata gaccctgctt	ttgatacagg	ggcagctgca	catggctgcc	tcttaatcta	74460
gtaatttact gtgccatact	gtcttactga	ttacccacat	tgacaaagag	acagtaatgt	74520
gaggggtggg ccttcaaatc	attttcatgt	tgaacctcct	gggtccagct	acctcccctt	74580
ccacaacage accattgttt	tttctgggca	catactcaag	gtcaatgctg	tttttgtgct	74640
tgcctttccc tcggctccac	acaaaaagga	gaagaaaaca	aaataaaacc	actcccagga	74700
atgtgaagca gcccatagct	gtagacacca	gtattgtttt	aaggtccagg	gaaaaagtat	74760
tggcattggt gccattggaa	atggtgtcat	tggagtcggt	catgtacata	ggggtcctgt	74820
tcgcataaag aaaacgatct	gaagcgaatc	ctttcacagt	taaggaggct	gtgaaggtat	74880
cattcccagc agcattgcta	gcgatgcaaa	catacatccc	gctgtcttga	tcctgggcaa	74940
ageggattte caaggtgeea	tcacccaaca	cggtggctct	tccattggac	ttggtggtga	75000

tgaaacgcct	tcggggtgtc	acccaggaaa	tcacaggctg	cgggtctcca	tctgcactgc	75060
attctagctg	gactgtctgc	ccttcatcta	ctagcagatg	ctgcaacttc	ttttcacgga	75120
ttttgggttt	tttgcaggta	aagtaaaaag	aaagggcagt	gctatggaaa	tccttgaaag	75180
acctctcacg	gatggtgtct	gggccagcac	acataggttg	ctggccacca	aactgcaggg	75240
tgggctgtcg	ctgcaagatc	cagagaaggc	ggcagtcaca	ggccagaggg	ttgttgttaa	75300
tgctcaagac	ctccagagcc	ctaggggagg	agaagacatt	ctcttccaaa	gtttccagca	75360
ggttctgaga	cacattgagc	acgcgtagga	agcggagccc	ttggaaggag	tgaggeteaa	75420
tggtgcgaag	ctgggccccc	actatatgaa	gctcctgaag	gcggatcagg	tcagagaaca	75480
tgcctgcttc	aatagtgctg	atgggattgt	aggagaggtt	aaggtgagtc	aggtatacca	75540
ggtgtttaaa	ggcaaggaag	ggtacagtag	acagattggt	gttggtgact	gaaagggatg	75600
tgaggttgag	accgtagagg	ctattggcag	gcatcatatc	cagtaaaggc	caatagtcaa	75660
tctctaggtg	tttcaggtgg	aacaatcttt	taaaggcata	cacaggcata	ttgttgatat	75720
tgagatgctt	cagatgcagg	ctgatgaggc	tgcggaggtg	ggagagggct	tctgttggta	75780
ctgctgttaa	gttgcatttc	tccagggtga	gctgctccaa	gctaagaagc	ccactgaatg	75840
ccctgtgtga	tatataaacc	aaatcattgt	cecceaette	tagagacttc	aggttatgta	75900
gatcttggaa	catgtagtct	agtaaaatga	caatcttatt	ctcactaatg	tcaagcttag	75960
tgagattgga	cageceegtg	aatactccca	aagggaccag	ctttagacga	ttgcctttta	76020
ggcggaggga	acgcaggtta	aagagattgt	tgaatgctcc	tggttccaca	ttggcaatga	76080
tgttgtcact	caagtctatc	tettecagea	gaggatatga	tatgaattct	tcagggttga	76140
cgctttttag	cctgttttta	ctgaggtcca	agattttggt	ttcgatggga	atgccctctg	76200
ggatggcgat	caatcgcctt	ctgtgacagc	taacagattt	gttctgggca	gagcactcac	76260
-agcgagcggg	gcagccaatg	gtggatccca	tgaagattaa	caccacagcc	agacccagga	76320
atggctgcca	gcatgatatg	gccgtgtgaa	gcatgactcc	acttcttagt	ctacaccttg	76380
gtcacgggtc	tgcatggaag	ggacacaaga	agggaggaag	agaaggtgag	ttaggatata	76440
aataggtgaa	ggggcataaa	tagggcagca	agtgtaatgg	aaaggatact	ggatttggaa	76500
tcaatcagat	ttgggcataa	acctgatgga	cgaccctctt	agtaacaggt	tcttggtcaa	76560
gttatttaat	ctctctgcat	tttagttttc	ctggctgtga	aatggggata	atagtgataa	76620
tagtaatagc	ttcccagagt	tgtcatgaca	atttcaatgt	ttgacaagta	taaagataat	76680
gtgtgacaca	gactgtgaga	caacacagta	taaatttcac	actcaaaggc	tcagttttaa	76740
tttaaatgaa	agaaacaggt	caacagctaa	gaagaaagca	gttgagtttg	aatcagtgtc	76800

ggcatcacta atgtttagga tatcatcctc tattcaaaac aaagctaaca gaagtttcat 76860 tctatatcag gcctttaggt gcaacataca aaacaaactt atattcagtg caaggtgttg 76920 gaatgttttt cttcatgtat acattttcta cttttaacct ttgaatttta atgtacgcat 76980 ctttcatcac ttagcaaact ttaatttatg aagggatttt cttatttgag gcagacaaaa 77040 gatcctcaaa gtatccctgt attgtttttg tttctcatag gaatgaggca gaatcaaggt 77100 acaagatggc tataataaaa atgctctttt aaatgatttt gagataaata ttgaggaatg 77160 ggaagataaa taattttcag aaaaagtatc atttaatgat aaatgaacta tccctctttc 77220 acattcagac aaactcagtg gacccgttaa agtgaaatta aataggtagc aaatgagaag 77280 ggaaatgagt atgttttaaa tgtggatagt ttagcagata ctgaatccaa ctgaataaat 77340 aaaaggtgta ttactgagct ctgcttttca acttggggtt ctcaggggta cactttatcc 77400 acgaacacca tattttaatt aaggttcagt agtttgaaac aatactttta gataaagaag 77460 tatttcataa acttcaacat tcattcctqa gctgcaaagg aaaaattagt aaaaaaataa 77520 ttatccgatt acagtattta catatatatc tatgtctaca accacagtat gtctatatgt 77580 aaacaaattt atgaataaaa aataacaagt aggatcaaac ttaatggtga atcactaaat 77640 cactagaaaa ttttcctcca aatgtagaaa ctaggcaaaa acccagaaag tgctagcaaa 77700 tcaattagat aggaagaggt ataatttttg gaaaatatgt ggcaaaacta tcattattca 77760 cagatcaaat taatgtctat catggaaacc aatggaaatc aactaaaatg attagaacag 77820 tagaataagt gacttagaat actacaaaat aaatgtaatt taaaaaaaat titcttgtct 77880 acacaaacca tttagaaaat actattgtaa aaattatctc agtcatggca tctcaaaaac 77940 atcaaatcct tagtataaac ttaacaagaa atacatagaa ctaatatgac aactattaaa 78000 ccctatcaag aatcaaaata actaaaagag agatgtacta tgtagagaga ttaaatatta 78060 taaaaatatt gatttetttt teeatagaac acacattaca aagaataatg ttttaagett 78120 gaaaaattaa ttctaaagtt catttggaag aaaacatata tgaaaataat cagaaacagt 78180 aaaaaaatta tgaaaacacc tgccatacaa tgcattcaca cataagatac aaaactataa taataaatca gcatgctatt tacacaaaaa taaagtcaag aaaacagaaa gtaaggaatt 78300 atatctaaat atatttgaaa agccagttta tgttaaaggc ggcattttaa atcagtgaga 78360 aaaatacaaa tgattggctt gatattttgt gggaaaattt gcatactaac tttacttctt 78420 ccaataaatt ccagatgaat taaggattca aatgtaagaa gaaaacatgt actagaagaa aattcaataa ttttataata ttagagttaa gtagcatttt ctgtgaataa agttagaaac 78540 ccaggaagga agagaatgat tgactctgtt gtacacattt taaaaacttg gtataacaaa 78600

caaataacac acacatgtga	ttgctaaact	ggagaatata	tttaaaacat	atgtaataga	78660
tgaaaaggtg aatgccaata	gaaaattagg	aaatgagtat	aataaaatta	aaaatagcca	78720
ataagtatat gaaagggtga	ttagctatta	gtaagcaaaa	gaaatgcaaa	tttaaaaata	78780
gggggtatgt agtttttgcc	tgtcatattg	ataaagtttg	ataatcattt	ttagccagaa	78840
ttaacaaggg tagaagaaaa	tgaacatcca	catactgata	aggaataaaa	actggacatt	78900
aattgatata gtagatttaa	atatatctaa	gttcaatatg	ttaattcttt	tgacttttt	78960
tcctatttct agaaatgtat	cattagaaaa	taagcgaact	actatacatg	tttgttacag	79020
atttgtctat aatagagcaa	aatggaaata	tgtaacagta	ggaatttagt	tatataagtt	79080
ataaagcagc catacagtaa	aataccatct	agccaataca	ctgtaaccct	tgacggctaa	79140
tatggtttgg ctgtgtcccc	acccaaatct	catctggaat	tataattccc	ataatcccca	79200
catgttgtgg gaggtaactg	aatagtgggg	gtggttatcc	ccatgctgct	gttcttgtga	79260
taatgagagt tctcacaaga	tctggtggtt	ttataagggg	cttttccctc	tttgttcatt	79320
cttttccttc ctgctgccat	atgaggaagg	atgtgtttgc	tteccectite	agtcataagt	79380
ttcctgaggc ctccccagcc	atgctgatgt	gtgagtcaat	taaacctctt	ttctttataa	79440
atcacccagt cttgggtatt	tcttcacagc	agcatgagaa	caaactaata	caactgtagc	79500
ttaacatgga aaatgaaatg	atatatgctg	tactcacatt	tgtatgaaca	tattttataa	79560
atatgaatat acatacatgt	atgaaaggag	aaaactggaa	ggatataata	aagatgttga	79620
caatactaac tttttgaggt	ggtgggatta	atggtgattt	tcactttctt	.tttataacat	79680
tatgaattct gaatttttc	aaaaacatac	ctgtattact	tttataatta	gaaaaataat	79740
ttctgaaata tttttcattg	atacataata	tttgtacgta	tttatgtaac	aatgtgatat	79800
tttgttacat gcatagaatg	taatgatcaa	gttagagtat	atagagtatc	catcaccttg	79860
agtatatatc acttctatgt	gttgggaaca	tttcaagtct	tccagccgtt	ttgaaataca	79920
caatatatta ttaactacag	tcactctact	gtggaacatt	agaactgatt	ccttctgtct	79980
aactgtacgt tggtatccat	taacaaacct	ctcttcatct	cctcccttga	tcttggccac	80040
agttcccagt gtctggtatc	tatcattcta	ctttcaacct	ccatgctctc	aatgtttta	80100
gctcctacat ttgagtgaga	acatgtgata	ctgtctttct	gtgctcggct	taattcactt	80160
actataatgg ccttcagttc	tatccatgtt	gctgcaaaca	acactttata	ctttctttt	80220
ggtagaatag tatttcattg	tatacatgta	ccacattttc	tttatccatt	catttgttga	80280
tggacactta gattgattct	gtatetttge	tactgtgaat	agtgctgcaa	taaacatggg	80340
catacagata tacctttgat	atactgtgta	ttactccatt	ttcatgctga	tgataaagac	80400

atacccaaga	ctgggaagaa	aaagaggttt	aatggactta	cagtcccagc	agtgggattg	80460
ctggatcata	cgagagttct	atttttagtt	tttctgagaa	attttcatac	tgtttaccat	80520
agtggctgta	gtagttcaca	tttacaccaa	caatgtttaa	gagttccttt	ttctgcacat	80580
ccttaccagc	ataaattatt	ttttgtcatt	ttaataatag	ccattctaac	tggggtaaga	80640
tgatctctca	atgtggtttt	gatttgcatt	tccctgatga	ttactgacgt	tgagcatgca	80700
ttttgtttc	atattcctgt	tgactacttg	tatgtctttt	gagaaatgtc	tactgatgtc	80760
cttgacatta	ttttgacatt	caaaaagtca	tggatatgtt	ttataatgaa	agatagaatt	80820
gcatggcttt	taaaaaaagg	ctcaactaag	tcatttattt	agatgtctaa	tgcacagaat	80880
aattcataga	aaattataat	ttatttagtt	accttgacat	tattcctccc	tcatcaattt	80940
ctccacctca	tagaaggtgg	acttttaggt	agtaaagatt	gtgatcatta	tttgccacct	81000
aaattaagaa	gaaaacttaa	aacgtgtcaa	tcgtttgatt	ttaagcatac	agctcaatga	81060
atttagaaag	atgtttacac	ctttgtaagc	accatcacaa	tctgatacag	aacattacca	81120
tcatcctctt	tacctctttt	ccgtctatcc	caacctctgt	taccggctta	aagtaagcac	81180
tgatctgcat	tgtcactata	gattagtatt	cattttatat	aattttatat	caatgaaatc	81240
atataatata	tactcttatg	tccagcatct	ttcactcagc	atgtttttga	gattcatgtt	81300
gttgcatgta	acagtagttt	gttcttttt	tatgtctggt	agtattgttt	tgtcacaact	81360
tgctattcaa	ctatttttgg	aagcttgggc	tgtgtccaag	agctgctatg	aatattaata	81420
taaacatctt	tgtgcatact	tatgttttt	cttaaatata	tacctagaaa	tatataccta	81480
tatatagggt	aggaatatgt	atagtattta	taagaaacag	gcacatcatt	tcccaaagag	81540
attatgccat	tcagcatttc	cactagcaat	gcaagggagt	tțcatgtgtt	ccatatcccc	81600
ttcgacatgg	atactgactt	tttttttt	ttttttttg	agacggagtt	tegetettgt	81660
tgcccaggct	ggagtgcaat	ggcatgatct	tggctcactg	caacctccgc	ctcctgcgtt	81720
caagcgattc	tcctgcctca	gcctcctgag	tagctgggat	cacaaggcgt	gcgccaccat	81780
gcctggctaa	ttttgtattt	ttagcagaga	cggggttttc	tccgtgttgg	tcaggctggt	81840
ctcgaactcc	ggagacctca	ggtgatctgc	ccgcctcggc	tcccaaaatg	ttgggattac	81900
aggcgtgagt	cactgcgcct	ggccgactgt	cttttatatg	ttatccattc	ttgtgggact	81960
atattatctc	tttgcatttt	cctcataact	agtgatgctg	agcatctgtt	tgtctgctta	82020
ttgcccattt	aggtagattc	tttggtatat	tttatgttca	acattttct	cacttttaat	82080
tgcattttta	aattattgag	atataaatgt	tatgtatata	ttctaaatac	aagttcttta	82140
ttagatatat	gtattgtgaa	tattttatgc	tcatctatgg	tttacctttt	tgttttcttc	82200

atatttctta	aagagcagaa	gttttaaaat	ttaaatccat	tttaacattt	ttttaatgat	82260
ttgtcctttt	ggtttctatt	taagagcccc	tagagcctat	atgccaatgt	cttgaagatt	82320
ttctcctatg	tattcttctg	gaaatttta	tagttttatt	atttacattc	aagtccgtga	82380
cccattttga	attgattttt	gtgtgtggta	tgaagtaggg	aagatgattt	attttcctcc	82440
tacagctatc	tagtttttt	gtagtgttat	ttcttaaaaa	gactttcctt	tctggccaga	82500
tatggtggct	cacacgtgta	atcccagcat	ttttgaaggt	tgaggtggga	ggattgcttg	82560
aagccatgag	tttgagatca	gcctgggcaa	cagagcaaga	tctcatatct	acaaaaataa	82620
aaaataaaat	agccaggcat	ggtggcatgc	atctgtattc	ctagctactc	aggaagctga	82680
ggtgggagaa	ttgcttgagc	tgaggagttc	gaagctgcag	taagctgtga	ttgacactgc	82740
actccagtct	gggtgacagt	gagaccctgt	ctctacaaaa	atataaataa	gtaaacaaaa	82800
ataaaaataa	atactttctt	ttccctataa	cattacctgg	ggacctttat	caaaaatcag	82860
ttgaccgtat	atgcacatct	ccatttctct	tttctattct	gctccaccag	aatagataca	82920
gtatgtacag	ctgtactata	ttataccagt	acggctgtct	tggttactgt	agcttttatt	82980
ttttgtttgt	ttgttgggac	agagtcttgc	tttgtcgccc	ggctggagtg	aggtggcgca	83040
atcttggctc	actgcaacct	ccgactccct	ggttcaagag	atteteetge	ctcagcctcc	83100
cgagtagctg	ggattacagg	catgtgtcac	caggcccagc	tattttttgt	acttttagta	83160
gagacagggt	ttcaacatgt	tggccaggat	gatctcgatc	tectgacett	gtgatctgcc	83220
caccttggcc	tececaaagt	gctgggatta	caggcgtgag	ccaccgcacc	cggccactgt	83280
agcttttat	catcagttta	attcttgaaa	tcagatggtg	ttgttcatcc	aatttttgtc	83340
ttcttttcca	aaaatccttt	gggcttttct	agatcatttg	aatttccata	taaattttag	83400
catcaacttg	atgatttcta	aagaaatttt	ctgtgatatt	gacaaaaaat	gtgttgatta	83460
aattaataaa	tctatggaga	atcgatatta	taacagtatt	gaacaacttt	ccaattcacg	83520
aatgttgtac	gagcttctta	tctttaggta	ttctttaatt	tccttcaaca	aatattttgt	83580
catctagaaa	taaagacagt	ttcattcttt	cctttctgat	ttgtatacct	tcattttttg	83640
tctttcgcat	ttgttagtac	ctcttgtaca	atgtcaaata	gaagtgctga	gagctatctt	83700
ccttcctttc	ctaatcttag	aggacaatta	tttggttttt	caccattaag	tttgatgtta	83760
gctgtgggtt	tttcatagat	gaccttcatt	aagattggga	agtgttttt	cttagttaac	83820
taagatttt	taaaattaca	agtgagtacg	gaatgaaaaa	atgcttttct	gtatctatgg	83880
agatgatctt	attgttttc	tccattattc	ttttaatatg	acaagtaata	ctgattaatt	83940
tttgaagatt	aaaccaacct	cacacttctg	ggataaacct	tactttgtca	tttattgaat	84000

attgtgtttg	taatatttt	tggaattgtt	ctgttaatat	ttggtcagta	gtttttctac	84060
ttcgtgagaa	tttttgtcta	atttttagtt	tctttgtgat	gtatctatat	acttttagta	84120
tcagagtaca	gtagcccctc	cgtattcatg	attttgcttt	ctgtggttta	ttactaatgg	84180
tcaactgtgg	tccaaaatca	ggtgagtaca	atagttattt	taagggagag	tgagagagag	84240
agactacatț	catataactt	ttattatagt	atattttat	aattgtccta	tttattagc	84300
aatttttaaa	atcttgtatt	gtggataatt	tacaaattaa	actttatcat	aggtgtgtat	84360
acatagggaa	aaacatagta	tttgtagggt	ttggtagtat	ctgcagtttc	aggcatccac	84420
cagggaactt	ggaacgtata	ccctgtggtt	aaggggggac	tactgcaata	cagttctcac	84480
aaagccagtt	agaaagtgtt	ccttgatttt	tgttctcttt	ttcctaagaa	gtttgtatag	84540
aatttttatt	atttatttta	aaaatatttg	gcagaactta	cctgcgaatc	caaacagacc	84600
ctagaatttc	tgtgtttgaa	tgctgtaaaa	tacaaattga	tttctttggc	agatattgga	84660
atatttacat	gtcctatttc	cttgtgtgtc	aattttggta	atttgtttca	agaaattttg	84720
ttatttcatc	taagctatca	aatttattgc	ctgaagttgt	cataaacttc	ccttattatt	84780
cttctaatgt	ctgaaaatct	agaggttatc	tgttttattc	ctgatatcag	tgagttgtgc	84840
ctttctttc	tcttgagaaa	tctagaattt	tttcagtttt	attaaaattt	tcaaaggacc	84900
aacttttgct	tgtattgatt	ttctctattg	tgtcttttta	tttcattaat	ttctgttctt	84960
atccttatta	tttgactatt	tattttgtct	tcagtccagt	cttttaattc	attttcgctt	85020
cctaagatta	gatcattaat	tttggacctt	tettetteac	tgacttaagg	tataaaaact	85080
ataaatatcc	ctttctacat	gctttagcta	catatcacaa	attgattttt	tataaagtat	85140
cattcggtca	aaaacgtttt	ctaatttact	ttgtgcttcc	ttctttgtcc	catctaaatc	85200
atcttctaaa	tccccaacaa	aattcccttc	tttaggattt	agttggttta	ttcttaaatg	85260
tttaggtctt	cttctaaata	tatcatttct	aatttaattc	tgtgaggtca	gagaatacac	85320
tatgaaaaat	ttccatcttt	tgaaacctac	tatgattgtt	ttattggacc	agcgtatgat	85380
caatcttgct	gccaggccat	gtgcacttga	aatggatgtg	aatttgtact	ttttgggtga	85440
agcagtcttt	aaaagtcatt	aaggctaatg	tggttgaatg	tgttgttcag	ctcttctaaa	85500
tccttatgaa	ttttttctaa	gttatgttaț	caattcctga	gaaatgggta	ttaaaatctc	85560
taactatgaa	tgtgaacttg	tctgcatatt	cctaagttct	ataggtttgg	gtttcatgta	85620
tgttaaagct	ctgatattaa	gcacatgctc	gatttctgat	gtataaatca	tttatcatta	85680
ggaagaatcc	atatttgtat	ctagtaatgt	tecttgtttt	taagtcatct	ttgttggggt	85740
aatatattgg	gggttatttc	attttggttc	attccttaat	tttcagaaaa	taagatattc	85800

aaatatatga	atacaaggag	aatattcaag	agaacgacag	gaacaaccag	cttccttcca	85860
ttttgaaatt	aagatttta	aaaaaacaag	ctgttaaaat	ctggttgttc	tgctagtcta	85920
aattgttgag	aaatagagtc	ctggttaatc	aatctagagc	tgaaactatt	ttcaaataat	85980
tatgcttcag	tattcacagt	ccactggaaa	cacacttgaa	gccaaatatt	tcctggcaac	86040
agaggtgaac	tgatagcatt	cgataaaaca	tgacctgaga	agcatctaaa	cagacaatat	86100
ttgctttgcc	attgaggatt	ccctatcttg	cagctataat	ttccccacag	caagtaccct	86160
ttgcctggtt	cacagtatag	ctttctgctg	ttttccttaa	gctgtgattc	agccatctgt	86220
aacacacaaa	atgtggcgtg	acattttaaa	tgattaaaac	agccactcta	gctttcttaa	86280
agtttttgtg	gtatatcttt	tttttttt	tttttttact	tgtacataca	tgtggttttg	86340
catttagaaa	gcttctcttt	ttgacagcat	gtagttattt	cttgcttttg	aatctagtct	86400
cataatctct	gccttttgtt	atactgctta	gtccatttaa	atttaatata	gttattgata	86460
tggttgcatt	tagggatgtc	attttgctat	ttgctgtcta	tttgtccctt	gcatttttg	86520
ttectgtett	tttcatttct	tgccttattc	tgatttttgt	tttgtatttc	aattcctcct	86580
gtgactttta	aactatgttt	tattacttat	ttttatttat	tectetaggg	attaaagtat	86640
atagatggtc	tccaatttat	aatggtcgat	ttataatttt	tcaactttac	aatggtgtga	86700
aagcaatatg	cattcagcag	aaactgtatt	ctgagtgccc	atacaaccat	tctgttttcc	86760
catttcagta	cagtattcaa	taagttacat	gagatattca	atactttatt	acaaaatagg	86820
ctttctgtta	gatgatattg	tccaccttta	gggtaatgta	agtgttgtga	gcacatataa	86880
gttaggctag	actaagctat	ggtgtatttt	caatgtaatg	atatcttcaa	cttgtaatag	86940
gttcattggg	atgtgacccc	atcataagtc	atggagtgtc	tgtatatett	categeagte	87000
aactttaata	tegaattget	tcaagtaaaa	tataggagct	ctgcaacagc	atatttccat	87060
ttatactcct	cccctcatcc	ttggtggaga	gaggtacaga	catagcgaat	agtgtttgca	87120
aaggcatgga	gacagtaaga	aacactctgc	aattggggac	acagtagttc	agaatggttg	87180
gaacaaaaac	tgaggagaga	aaagagactg	aagaggtaat	tagaggaatg	atttacaagg	87240
ggcttataca	ctgtgataag	ctgtttacac	gttatccgga	gagcaatggc	aagccattaa	87300
agtgttttåt	gcaaaagagt	gatatgatca	gatttacatt	ttggaaaaat	taatctgatt	87360
ccaacacgaa	aaatagactt	gcagaagaga	aagacttgaa	gctgatcact	caggaggctg	87420
ttaattcaag	tcagaaaaaa	atagtggtta	ctctcagggt	catgggtgta	ggcttgggta	87480
aatgggcaaa	ttcaagaggt	attctgaggc	acaacagaaa	tgcttcacag	ccaatcggct	87540
gtggagggtg	tatgagagga	gaagccaaga	ttatttacac	tcttttgaca	actgggtgag	87600

acctggtgtc	cttcactgag	atggagaatt	taaagcagca	tgaggaattc	ctggtttcct	87660
caaatgtgtc	tatcactaga	ccaaaatgtg	tggggtgcct	gggcagatta	atgacttttc	87720
cactccttaa	aaagaatatt	attttgtaat	agcttttaga	atttctttgg	tagggcaggg	87780
aaatagattt	tcaattataa	tcagatgact	atgtccaaca	taaaagtttt	atgatgtact	87840
tcatactttc	cagttcgttt	ttgaattgac	ggtaaagtgc	gagtcgtttt	ttatagattc	87900
cactggagag	tactgtctta	tttggcagaa	tttgcccaat	ctgcctatca	ccaattaaat	87960
atagaagtaa	ttggcatctt	atttctgatt	tatttcaata	gtggttaaga	gaaagttcat	88020
ttattgttta	gattccttaa	tttggctgta	agtatgtctg	ccacggaaga	cagtatctaa	88080
ctaaatcatg	gccaaaactg	aactagaaag	gagctcaact	aaggtggatc	aatttcagct	88140
ccaaagtgaa	ggactgccaa	aaagaagggt	ggataagcac	cccggcaagc	ctgctgtagg	88200
caaggtccct	ttacatctgg	aactgctccc	ccccttctac	gactgtcctt	cagctaggca	88260
aaagtggata	atttggggtc	atateteate	aactttttga	gtagcttaga	aactgtggag	88320
gaatgttgtg	ctttgttatt	ctcctcacaa	atatttctca	gttttagccc	agaaggcaaa	88380
ctgctggctc	cacttagett	tcactgtcag	cagaagtctt	acaatccaaa	gcttgctcat	88440
aatgtccgac	tgtgaccaag	gtttgacaag	atgaattttg	tttcattagg	aataaagcag	88500
gaagctaaaa	tctataggga	gttgactagg	gcctttccat	taattctgat	caaagggatt	88560
ctcaagcaca	atgattagta	cgtacctttt	aaaacctagc	atgtaaagtt	ggatatttt	88620
atacttacat	ttttcgtatg	ctgggtattt	attccccact	tattctattc	atgtaaggaa	88680
cacaaatcaa	aatatcagga	aatagactta	aagaagcaac	atgaaagact	aaaaatagca	88740
taaatgtgtg	ctcacttata	cctggcccaa	attctgattt	tgacatttgt	tagctgtggg	88800
actttttcat	ctatgtctat	gattctcact	atttcctctg	ttaatttttg	ataacacaga	88860
ataactgagc	attaaaggtg	gtatacatgg	tgcctagcac	ataaataata	gctgtcattg	88920
tgattatttt	ttataggata	atggtttcgt	ttgttgaatc	agtatttgtc	aggacagaaa	88980
gcaaaccaaa	taaaggcata	tatttcctct	gcaataggac	tacacttcag	aaagatgtcc	89040
tcaaacagat	acagtgataa	ggagagtgaa	gagattggta	aaatggagaa	agagaaatga	89100
attttaagca	accattattt	ttaaaaaaca	caagtaagaa	aggaaagaga	tcatggttgt	89160
tgtatgttgt	ttaaaaagaa	agtttäggag	gaaacagctg	ctttgatgga	taaggtaatg	89220
ataaattgct	tagcctggaa	attctatgat	taatttagtt	ctctgactgg	caaatgaaca	89280
agggcacaaa	acaataaatg	gatagcacag	aaatctctgt	aaaccttctg	acaatctata	89340
agacttttt	gtttttttga	agtcagtaaa	gctatttctc	aaatggagaa	gaatgggtga	89400

agagtgggtt gaggtaaggg	taaaaaaaaa	aaaaaagcaa	gcaaaggttt	taatgaataa	89460
tggtgtccaa aatacatctg	aggctataat	ttccagatat	ctaaaaactg	taacttcaga	89520
aatcctggac tccatgaaat	cagatactga	agagttgtga	aagttgtata	aaacatttta	89580
aaactaaaag aaatcaattt	tagtatgagc	aagtctggaa	aatcaccagg	gttacctaag	89640
ttctttgaag gaccccaagc	caacttgaga	tgaagcccaa	agtcccagac	ctggcaggaa	89700
acattggatt tcaactctct	ttttacagaa	ataaaatata	tctttataca	tgatttctaa	89760
ttatcctcca aaccattgca	tttttaccta	tttctctcta	cttatttatg	gtaaggaagg	89820
aatggaaact ttcaatattg	aggttcaact	tggagaacat	tcaaggggaa	atggaaacag	89880
ccaaaatgaa agccagactt	ggagagcatc	aaatgtgtta	tatattataa	catatttttt	89940
tctaaaagtt tacaggtgta	atgctaaaat	tattcagtgg	ctcacgcaag	taggtagaca	90000
gttactcact attgtaaata	cctttcaatt	agctatatgc	tgattaccaa	ttctgggggt	90060
aactgaagat agtattttgg	tctataatta	cttggctagg	gactgatata	tgctggcaat	90120
tattatatgg tttgaagcct	ataaagacaa	tgtgagattc	tatctgtata	aaaattagct	90180
gaattagctg ttaatatgat	ttaatgcaat	gaaatcgata	taaaatgggc	atacaactac	90240
taaattgagc agacaatata	gtcagacagc	atctttattc	ttttcttcta	ttgtctcttt	90300
ataatttatt caggggaggt	aagaggatca	agaaaattgt	tatttaattg	gaactgtgct	90360
atagataact taatgtcctc	tgggactggg	gaatttcaaa	gctcagtcct	tttgtgtagc	90420
aatttctggg ggttcttcag	gatccacaat	caagagctat	cctgcatgta	gtttcctttc	90480
atctggatga gtaaatctcc	attctggctt	gttgagtagt	tattccatag	tctctaggaa	90540
tatettattt geagaggtee	tgtaacctct	tccaggtggc	cttgttataa	agtatgtata	90600
tgtatgttgc cttcaacggc	atggaaaaaa	ctcatttgcc	caaaaaacct	ctggaaatgc	90660
agagcaatcc caatacagca	gcaactttct	ttactctccc	acaagaaaca	aaagaggata	90720
tctagcctaa tatttgtttt	ctagatttgc	caggaaggag	ttagacagaa	gtcatgatgt	90780
gtctttaact acaggcaaag	actattaagg	attccatata	atcctgttga	agcaattttc	90840
tcctgatttc aggagaaggg	gaaagaaact	tttcttgctt	gatgagtcat	ttgcctaatg	90900
ttacagtctc agtaagggaa	caagtatttc	tatccaggat	tttttgactc	tcagtatttt	90960
tttttcagtc caggtttttt	tgagctctta	acttttacct	tatacttctc	tcatgcttta	91020
tcactgaaat acctctcatt	gcaaatagat	agcaactcta	ttttaaaaag	cagattttt	91080
ccagtaacgc ttccttttaa	aaatagaaaa	aaaaaaacc	cacacaattt	tctcattttc	91140
tctctgggtt atgctttgtt	atcttttcc	ctgattctca	gtcatctttc	caatggactg	91200

tatctatctg aaaacatgaa ttcatcttgt attccagcga ctagtgaaca attagcaaag 91260 cttgtcctaa gtcattaatt gatagtttct gtttaatctt tcccgaaact ggagagccct 91320 ctgttctcgt gtttattttg atctctttgg aatgcaaatt atttgctctt ctacagttct 91380 gaatotoott ttggootaca tagaaatact tggacatata tagtatgoot attotactta 91440 aaattttaaa agatgaaagt gatttttgtc tagctttgag gtctctttga aattaatatt 91500 actaattaaa gggtagttgg cttaagatgc ctgctggcct cacaaatgcg acacaaaatg 91560 accctaatct ataaggcagt ataaggtaat ggctaaaagc acatatgcgc aaccgtcaaa 91620 ctgtgtttaa atcttaaccc tctattattc tcagttttct tacctttaaa atgagaacaa 91680 tattaactat cctacagggt tactgtgtga atgaaatgtg atcgtgtaca taaagtcaga 91740 gctccatact tttattatta ttatcactat ttaggcaaag ggaaatgttg ctcattgtat 91800 gacacaaaat ctctcaactg aaggaagtac tgaaaaccct ttttgatgca aatagccaca 91860 gagaggatat gcaatctgga ggcaatggat taatctatta aggtagatgt taaagtctgt 91920 taagtatttt atattacagc tgaaaacaaa ggaggtaatc atactcaggg caaaaattcc 91980 tgctaagaag ttacttaagt tcctctaaag atacagttag gacaagctat gaaatacatg 92040 cctcaatata caccacggaa tactatgcag ccataaaaaa gaatcagtta acgtcctttg 92100 cagggacatg gatgaaattt gaaaccatca tcctcaacaa actaacacag gaacagaaaa 92160 ccaaacaccg cttgttctca ctcataagtg ggaattgaac agtgggaaca catggacaca 92220 gggaggggaa catcccacac tggggcctgt caggggttgt gaggaagcgg gaaggagagc 92280 attaggacaa atacctaatg catgtggggc ttaaaaccta gatgacaggt tgatagctgc 92340 agcaaaccac catggcacat atatacctat gtaacaaacc tgcatgttca gcacacgtat 92400 cccagaattt acagtaaaat taaaaaaaga aaaaaaataa atatgcgcct caactttggg 92460 tcaaagaaag tttggctgcc ttctgtgata attgttcagg tttcaaaacc cacccaggcc 92520 catctagata gaacgtgtgc ctacggagaa caactacccc tccttcataa ggttattaaa 92580 ttttacttgg gaaatatcaa ctggagaaga attctgttaa gtagttttcc cttgcagatt 92640 cttcaatttt atcgattgtt ccatgaaaaa ctggactctt tgaagtgtgg atattcttga 92700 acaaaagata atctctctgg agattacctg gttttaatta gttggtgctg aatgcaccta 92760 gacattttag cetettete aettaaaget gtteagaeaa gatagetgte ttaaateeet 92820 tetggaacae tetggaaatg aacaaataaa tttetaccag ettetgtaac agataaacce 92880 ttaaatctca gtggcttaaa acaatagaag tttattagtt ctgctctgtg aagacatcga 92940 qqqacttqqq ctttattttg tggctcctcc ctcttctagg tctttgaagt cctttccatt 93000

tgacatgaaa aaagatgaag	aggatcataa	ttataaggtt	ttcataaacc	agacccaaca	93060
ataaactcat aatgtctgtt	cacatttcat	tagtcagaac	tcagtcatgt	gggcacaccc	93120
aactaaatgc aaaggaggca	ggaacatgta	gtttagctac	gtggctatga	agtagagaaa	93180
atgctggtgt gtagcttgcc	agtatctgcc	aaaataaata	taaattgata	ttaatatgaa	93240
tctagtatat atgcctagat	ttatgcttct	attttttgtt	tatttataaa	ttgtttcaga	93300
gaagacacag gcatctggaa	aatgacctat	tgtctatcta	tctatttata	tcaactatct	93360
aaatgatcac tgatgccatt	ttgtatttaa	ctctgtgtgc	atgtttttac	acattagaga	93420
aacacatctt gccatagtaa	ggtttaactc	tgacctttgt	taatgtaatc	cttttccaga	93480
tacagetgea tetaaaatte	ccatttgcat	gcctactctt	aattcatact	aaattgttat	93540
tagattccta ggtggtataa	atgcaacctt	taaaacaatt	atatatcagt	caagctaagc	93600
aagaacatgc aattctttat	attccaaaaa	ctgtaataac	atatttttg	cctgtaactt	93660
tagcagatat ttgggaactt	ttatctactg	atggttgcca	acttactgct	tgagttctgt	93720
ccaaaaaaga gtagaaaact	atcaaagtag	gaagtatatt	taattgaact	caataaacac	93780
cttctggcta ccttttatat	gcaaagtgga	gctggggaca	gagatgagca	aatgcaatac	93840
tattctaaaa cagcttatag	tctagtaagg	aaactctgtc	cagtaaacaa	attaattata	93900
ttgactttcc caaattggaa	tcacataatt	ttaagcagca	aagatgcact	ttattacatt	93960
attttatata ttgaaatact	gaaaaaacaa	tatccagcta	tggaaagaca	attgtattat	94020
tcatgactca tggttccaaa	tggactatta	tgcaggaatt	aaaatgatgg	ctataagaga	94080
tatttaataa tttggaaaat	gtttatataa	aaaagatatt	aagtgaaaaa	ataaatttat	94140
atctacatcc tgaacatagt	taaggaaaaa	taccttcatg	cataaagcaa	aagaatgaaa	94200
ggaaatatgc caaactttaa	agtgttagat	tgtgctatag	gtattagtta	cttattctag	94260
gagttctgct ttctcttcat	tttttattta	aaaaatgttt	tcaatgcgca	ttgtattgca	94320
ctgattttga ggaaacaata	aaaacaaaaa	tacaataaaa	gtccttcaaa	attcaatcat	94380
aggtaaactc tgttctgaat	gaataatgta	tatagataac	ttgctatatc	tttagtcaat	94440
taattagcca cattataaag	ttagggcaaa	gataaggcte	cttttcttta	ctacttctat	94500
tttccctgtt atggtaattt	acctctacct	ttaaaacatt	tataatatat	aattgtatat	94560
aaaattataa tttctcacct	ctctctctct	ctactaagga	aattacatat	aggagaggta	94620
gagagaagat caaatatgta	tatattctag	tttatttata	ttttgataaa	catttttgaa	94680
atcataggga atcacattaa	tatttacatt	aatataatat	acatgctaat	tatcctcttc	94740
tgaataattt gtattgaaag	aaaaccaata	aatggctcag	caaacagatt	ttcatgattc	94800

aaaatgaagt gaaaaacaga taaagtatga aagagcagat agagtataaa acagcttaca	94860
taaagaaatg aatcctggaa atttaacttt gttttatgga aaacaaagtc atttcaggct	94920
ttaacttagc cacttcagga gtataattca taggttatgt ttatatgaaa gcttcattga	94980
gtatgtacaa ctaggtgaac acttagttca gttttccaac aagaaaactg gttttaaaat	95040
aagcctgtta gtgtctaacg atgtgtggcc agaaaaaaag aaatattaac taacaatttc	95100
tggaacaaat catttacagg gctactaaat atctttctat ataatatttg gaaataatga	95160
taataataaa aatacttatg acatgattat ctgatatcca ttattttatt	95220
aacaatctcc cctgagatag gaactgttct cattaccatt ttgtagataa gaaaagtgag	95280
tetetgggtt aagtttaett gtacaaggae ttgeageaaa gaagtgatag aaaggggatt	95340
caaactcacg totttctggc totaaagtcc tagttactct agtaaaacaa acaaacaaac	95400
aaacaaacac aaccaaaaaa accctgagtg gtaggtggca ttattcctat ccctttaaca	95460
gaataggcaa ttgagtctca ggagatctga gctactagat caaggtcagt taggtagtgt	95520
ggcagaacta ggattccaat gcaaatctgt cattgacctg gctgaggtcc ctctacccat	95580
ctttgaaaag ctgtagacct gccgtagcag aaaaactaag ccctatccct caatacattt	95640
tgtaaatgaa acaagcagca tttattatac aatttactag tttcagcttt atcaaggcct	95700
cataatgttg tattaatatg ttgtattaat attgcatgtt ctcagcatga aaaatccaag	95760
gtgaaagtgg gtacatttgt atctgctctg taatctaggt tttctacaag tagagtgacc	95820
atagactata ccacacaca tgggatgctt ctgtaggagt ggggacactg tgtgtagtaa	95880
tgctgggcag cggtgaaaaa cagagactgt cttagtcaaa ggaggacata tggccaccac	95940
tgttcctggg acatgtagac cctccctctt gacagtcatt ggctggtttt tcccttaggc	96000
tcgggggatc tgttataaat actcttgtct cagatattgc tctgaaacca actgagaact	96060
tttaatgtaa atctgaagaa acgtatcttt ctttgttcct aattgattaa tctagtttta	96120
ggaaaaacat gtctaaaatc aagtaagagg ttttgagctg gaattgagca gattttcctg	96180
cettttgggg ggcattgtca tgtttacage tagaagactg ttacagtaag gggtttgcat	96240
tttaaccctg agtaaacatt gatttttgtg ttccattttt gctgtagaaa gagtgatgct	96300
tatgaagtot attaacacco aaggaagtaa tgttgccttc aactttcaat ccttgctctg	96360
atctccattg tgagaacttg gactaataag agtgaactat gttattttct tatcaacatt	96420
gttctaattg gcagctgact tcatgattaa aaacttggaa ctagcaattc atcatcaaga	96480
catcaaagat ataatggtat gctatggaaa cagagatata accatgaaaa taaataacat	96540
ggaaagagaa tagggcattt tgaatagcca tatctgagag caatttctga ttttgtaaat	96600

ggtgataact	gtgttaatct	agtatgtaaa	ctcataaggc	atgagtttcc	caatgtcaag	96660
gataatatct	acatctttct	atttgttttg	atacttaaat	gagttgaaag	tacataaaat	96720
agcaagcata	gagaaagccc	ctagcaaatg	gtggttctcc	tctttttatt	ttttatttaa	96780
aatagcaaag	tcaaacccca	agttctatag	ctacatgctg	tacctgtatt	tttcacaata	96840
aacatactaa	acgtcacaat	ctatctttt	tccctcctat	tccctctatt	ttcacttctt	96900
tttcttgtcc	ttactgtttc	catctttcct	tctatttctt	ctgtttttt	cttattatgc	96960
cctcttccct	tccccatctt	tccctctcac	ccaaagtctt	aaggtggcca	acatattata	97020
aaatgaacat	actgcacatc	cgcatgtgaa	aaatgatttg	aaatttaaat	tttattattt	97080
tttagattga	gttctgctcc	atcgcccagg	ctggagtgcg	gtggccatga	tctggacttg	97140
ctgcaacctc	cgcctggctg	gttcaagcaa	ttcttctgct	tcagccaccc	aagtagctgg	97200
gattacagct	gtgcatcacc	acgcctggct	aattttttt	cttgtatgtt	tagtagagaa	97260
ggggtttcac	catgttgacc	aggctggtct	caaactcttg	acctcaagtg	atctgcccac	97320
ctcagcctcc	caaagtgctg	ggattacaga	catgagccac	ggcgcccggc	ctgaaattta	97380
gtctttttag	aagtgatcgt	tattatcaaa	atcattagcc	ctttaatcaa	ggataagtca	97440
ggtttgttta	taaggccttt	ggggacagat	ttcaatggca	tctcttagaa	aagaaacacg	97500
ggatgtgtaa	agtgctgaca	aaatttttcc	tctggaggat	aaatttctct	gtagcagaca	97560
gacacatgaa	tattatattt	agatagagtg	ctcttcaata	ttagtttcat	tccttaaaac	97620
aaaatggaaa	atattggtat	atgtaaagcc	tttactatcc	ttataagatt	gaaacttctg	97680
ttagtgctca	tgtttgttta	tatttttctt	ctttgatcct	ttccctaagg	ccttcaataa	97740
tgggtactgc	aatggaacca	aagtcacaaa	,aggacttata	aaaaggaatt	aaaaaacgaa	97800
agagaaagga	atgaaaggta	cttaggtaaa	agaaagagga	ggaagttgag	gaatcaaact	97860
tctctgtctt	ggtttaggaa	acggtgaggg	catctaagga	tttattgtat	gaatctgatt	97920
tttcagtact	tttctgcatc	agcagctggg	ttccggtaac	tgaaagctga	ttactgcgta	97980
aaggagtgaa	aaatagatgt	taattagata	aaattgtctg	aggagaatag	caacattttg	98040
gaaacctggg	atataagaaa	gctagacttt	ctgcaagttt	atttaacaag	ggagagtttc	98100
cccttcttat	cctaatcttc	gtttctctgt	cctcctaaaa	gccctcctaa	aaatcctcca	98160
acaacetcag	teegteatga	acaagtcaca	gatccacagt	gcagagtctg	gactagtgct	98220
gaccttgaca	gtgatggaca	ccctgtgatc	tggacttggc	tctccatcac	aacaatccca	98280
ggtctattta	ctgtaagacc	aatttacaga	ctaaagggct	taacttttct	gtccacgcag	98340
gtagaaattt	ctgagtattc	caggcaggct	ggtattgagg	cttaccacag	gagtcagaag	98400

İ	ttatttttcc	acctggaatg	cacttcaatt	tttccacatg	gactactcc	tgatttcct	98460
ć	accactgcca	caaaggacat	tgatagttac	attcaaactg	acatacaaaa	ttaaacatc	98520
ě	agagatgcc	aggatagtta	. ccaaaacttt	aacacttgaa	tcagtaggco	: aagtaaagat	98580
(tgctgttac	cagtgtgggt	gaacattgtt	caatctgtga	gggctcagag	, acaacaaggo	98640
t	gaaaaaaag	caaattttct	ctccctctct	tcttgagctg	agacatccat	cttctcctat	98700
t	ctctgatat	gggagctcct	tgttctcagg	cctttgggct	cagtctatgt	tgtatcactg	98760
9	gettteetgg	ttttccggct	tgcagagagc	agatggtagg	acttcttggc	cttcataatt	98820
. ç	gcatgatcca	atgaccataa	atctgtgtgt	aagtttgtgt	gcatccacat	cttattgatt	98880
c	tgtttctct	ggggaattct	gactaaaaca	gacactttaa	ataaatgtca	ttgttggctt	98940
ā	aagcagtgg	attctccagt	tttagtatac	taagaagtca	tcctggaaga	gtataacagg	99000
g	raagaatatt	tgttctgatt	catcaggtcc	agggaggtac	ctatgaatct	tcactgttca	99060
t	gaacaattt	caggtgattc	tcattcagct	gatgaaagga	ccactcttcc	aatagaagag	99120
t	gtagaacag	aaactctatt	ctaaggaatt	cacgcctcaa	aggaaggaat	gggtcaaatt	99180
c	tctttctga	cttaacagca	atagctgtga	aactgaagct	ctaaaacatt	taaggaagga	99240
t	atgtttcaa	caggaaagga	aaagaagcca	acgtggtcag	tatgtttcct	aggaaagaga	99300
g	tcactggat	gagatgggga	tggtcactgc	cagcttagcc	cagcctttgg	gttttcagat	99360
a	tagcttctg	agtatctttc	ctgtggaaag	agtacctggg	cgtccttgaa	gaccacttga	99420
a	gattctagt	attgccattg	cgagaaaaaa	atgttacttt	aagaataatc	aaaggacatg	99480
a	tggttcatt	caccaatctt	ttgggttttt	attgtattag	tgttttatca	aaagccagat	99540
a	aagtggcag	ctctgtgtgt	gaccaatgac	atttacatat	aaggcacatt	cctgtgacat	99600
t	cccagatta	tgagtctgtg	ggatagataa	aatatattga	ttaactccac	cettttetet	99660
t	ctactcaag	agtacaaatg	gactcaagag	taagtaaaaa	tggtggtgtt	atatggagag	99720
t	cagtggttc	attctgcttg	ttaataggct	tcattcctca	aacttccaca	atcaagctgt	99780
t	attgatcaa	aaatgacttg	tcatagccat	cacaactgct	gcgtgaacac	gcagttggga	99840
a	ctgtgacaa	gagaggtggc	tttgtacttt	atggccctga	gaggatgagg	attacatgct	99900
g	tcatgttag	gggttcagga	gagatgttac	ctcaagctgc	aatcctccat	gatgggtcct	99960
C	tetactett	cctgggattg	cagaaaagat	ctgtaattga	acaccatcta	tttttctgca	100020
ci	tgtcttatc	agcggtcata	acaggtette	agagaaagct	ttttaggggg	cttttgagtg	100080
ci	tacacagtg	ttggtgtagt	tttgaaggac	ggtagcaatg	tctgaaaaac	acagegeaga	100140
g١	tcaccttcc	tattgagtca	ccaaaggcct	gcaggtactc	cttggataat	ggggattccc	100200

tcgaagaacc tgcaacacag tccatgcaat gctagtcacc atgactgtgt tcattaccac 100260 ccggtattgc atgcttttat tcagggcttg ttataacttc aagtgttacc aggacaaaag 100320 cagtcagtaa teettetgat taetgaatgg aegttttgae cataaacagt tgggettaac 100380 aaacagggag caggtaatta aaatacctta aagtcattta atttattcaa tatttcagcc 100440 atcactaaga tgagaaaaga aaaaaaagtt tcttgcttat caccttagag aaagaaaggg 100500 tcgacagggc aagtgtaaga ataatctcaa cctgttcgag gaattccaag cctatttaat 100560 tctagaaaat tttgaaacgc tacttggttt caggaaatgc ttgctgtaag ggtcaaagac 100620 aggcaggtta gaagcacaat cctaacttat caaacctgcc ccagacatac tccacattgt 100680 tcattctgtt gccagaggag ttattagaaa tctagacttc tgatttgcat cctaggaata 100740 tcagagtgag gacctagagg catttttttc ctcatgatgt atttagcttt aaggactgtg 100800 tagaaataaa tatttagatc tttaatagca aagggatgag agataaattc tgtgtgtcga 100860 atccacattt tttggttact ggcaagaatt tagtgattga agttaagaac tcaatactgt 100920 gattaacgtg ctatttaatg tgccagtctt agtaatgcac tatttaaagt atctttcttt 100980 ttaaaagtcc ctactatgta gaatttggtt taggattgaa aacctacttg gaatagtggt 101040 aaatgettaa caactggett tecaaagggt ggggtaaatg ggggggetgg ggttgaggaa 101100 gtcctgtttt ctaccttttg cagatttcca tgatgtaaat attttctatc atgatcaatt 101160 tctacctcac aatatgataa catgcttata aaatttgtgg aaaatcaaca gttgattctt 101220 gcaaagctga tataagttgg atccagcaca cacaagtacc tggaccctac ttctttgaat 101280 gcaatagctc catatatatt aagaccetgt tttatgtaat gtatataatt ttgacgtaaa 101340 ttttgtgtaa ccaaatgtaa tacattgtac ttttaaaaaa ccttgttatt ggttcaaaac 101400 actgttatgt cttatttcat aaaactgttt ctgaaagttc tgaaaggctg caagtgcatt 101460 gaaaatttcc taaattcatt ataggtgaaa tctgacacaa attttattgt cttcaaaaga 101520 tttccatttt aaaaagtata tatttaattt gtcttttgtg ttacattttc acatttgata 101580 qttgcatagt aaagaaaggc agttcttaat caaacttggt gattatatgg aaacaagtgt 101640 ctattaggcc tcattttgag ggcaggaagg tggcacagac taatggttaa gcccatgggt 101700 ttggaatcag gctggtccta gcacttacca cctgaatgaa ttaaaatggg gcagttactt 101760 aacctgtttg cctcaatttt acctttgtaa aatgggatac taacagtacc tacttcataa 101820 aattqttgca ggcttaaaca agttaacata tgtaaagtgc ttagagcagt gtctgccact 101880 tactaagtac cacatgattc tgcttttatg gccactaata tattttagga cagcaattaa 101940 caagctatta gtgtagaact cgataaatgt tgccttagat tagggttctc aaagtatggg 102000

gcccccaaaa tctgtgtttt aataagcatg caggtatatc tgatgaactc ctgtgttcta 102060 aaagtgtgaa tgttctttct gggagaaagt gtccctccat attatagttt tttgagacca 102120 aatggtctgg attaagcaaa ctgcttaaca attaaaaaat agctataatt ttatatgcca 102180 ggcataatgc taggtttttt tctgtgtatc atagcattta ctcctcacaa caactctaga 102240 aaggaggtac tgctattgtc attgttttat agataggcaa ttgattttca gagtccttaa 102300 gacatgtgcc caatgtcgca gtctagtaat aagtctggtt ccatcatctc tacttttgcc 102360 cactatacca tacggcctaa tatttctaaa tagggactat tcagaaatct cactttcatt 102420 taagaaatta agttttagga aggtgattaa gctttaagaa agcacaaaat aaatgttaca 102480 tccttcatat tttccagttg agtagatgcc aggctgggag tcagcctcac tggaaaagaa 102540 taatttgtgt gataatacac aatgaactgg accactctcg tggtattttg cagaactttc 102600 tgtgtatttt tttttaaatc taagtttgtt tctaaataca taaatctctg agaaagcccg 102660 tgagaagatt ccactaaggc agcaacaaag acttctgttc cactggactt tttttaggta 102720 aatggaaaaa aaaaagaagt ggaagcaaac aactgaacat tcgtaagatg ctatctctca 102780 ataattacgt aatattatgg aaatagactc taggcaacat tctaaaattt gggctttacc 102840 tacttttttt ttttccattt tcaaagagtg gaagaccaca aaagagaaaa gatattcaca 102900 atcacagacc acagagataa agacaagagg agacatttca gggttactcc taatgctaag 102960 tatetgagaa ttaaacetee cagacaacea ggaaggette aactgetggg aatatteaca 103020 cctttttgga tgactaatta attacttcag gtgatagaga gctcgaaggg cactaaagag 103080 tgtgtgtcgg gggcgggttg gggggagcag tcttaccctt attgcctcaa aagaaaatta 103140 ccttttgcac ttctccagat tacgacgact ccctgactac aagtataaat aaaaataatc 103200 tattcagaag catctattac aaataacatt ctagggagag ctcttgactg catatcctca 103260 gaagacaagt tttattagaa ataaaaaagg agtgtgagca tactaaacag cagcaccatc 103320 actatacaca tgttaaatat tttactactg tgttagtgaa atatttaaag tgatctctaa 103380 acttttctcc ccccatcaca tgggagcctg aatatgtcac tacccaatgc tgtctgacaa 103440 cctcacgttg gcaaaatgct tcccagggga aagaaaaaaa aaaaggaaga gaaaacaaga 103500 aacaattcat gtgaaagagt gactgcaact attttgattt ttaataggaa agaaatagat 103560 ctcatattaa acaaagtggt gaggctaggc attaagagat gttgcaagcc gtttgtccca 103620 gattctggct ctgcaaacaa gccccagcag gcttcaatga aaacatcatt ttttggtgtag 103680 ctgagtgtgt ggctcgactg ctcttagctg cctcttgctg aatgatgtca ctggaaagga 103740 catccaataa aaaagcctct cggacctgct tatactgtgt gggttctttg tcctttacag 103800

taaaactgag gaggaggaag aatcatatct catgtgggta gtcaccatct ctcacctatt 105660 atggaggttg gattccggtc ccatcctgta ttgacatgtg aaggggacag gacttaaggt 105720 gcatagtaac tatttccaac accagctgtt cagagtactt tagttaatac ctcacttcga 105780 gcaagaatt ttgccttgat actgagaaag aaaggtgcaa aggaaggatc Ctgcttagcc 105840 agaagaagca aaataatgta tagtaatgaa gccagtctta aacacagttc aagaaagaca 105900 cagetttage tataaggeae teaaaegtge aggatgetaa gtgeetttet atgeeattta 105960 ttcattcaat tccctggcaa taaactacta agaaaatttt aaactaataa tgcattttac 106020 aggttgaatc tgaggccctg attttccaga aaaactttcc agaaaaacat ggtaaggcac 106080 agcaattgga ggaaaactgt ccaagcttct ggccatcaag tattacacat ttatttattt 106140 acttagtgct tccaagttca ggaggcagaa tatattgcta ttgcctttaa agggaatatc 106200 ttcaatgttt tgaccgctgc taacaagatg attagcatgt ctttaaacca tctttattaa 106260 gcagatgttt gccctggcat ttttccagcc cttcttgggt catcaagcct aatattctct 106320 tttcatttgt tggtatgctg ttcatttctg gtcctcagtg aggggactgc ttcttgacct 106380 tgtcatgcac atggtttgat ttcataagtg agaggttggc ctatctggga tgggtgagga 106440 tattccctta gcccttgcac aggtcatcag tgaagctcag gcagcttgag gggataaggc 106500 aataggggaa gtgcttctta agtgatactt tttccttggt gaggactctg tttatgttta 106560 gtttcttatg tgacataatg aattaggaac taaaggcaat ttgaagattt gtgccctatg 106620 tgcagaacag aaatttaatg tatgaaagca aaccacaggt cagttaggag agttgatcaa 106680 tattgatatt gctctttaat gaaaggaaat aaccctgatg gattttcctt gggattgctg 106740 atgagtatgt atttgtactc aacacatggg gcttttcatt gatctcagtc aaattaaaat 106800 tttattaaca agtcagacat ccatctgtat ttttccagaa gttccactgt ttccaaaagc 106860 cagttaatac teetgeetet gtttetetet etetgaatta acatttacac atceattatg 106920 tgccaaacac tttcccatgt tttatctcac ctagtcctct taacaacctt gtaagataat 106980 attateteca tttacagata agaaaatega ggeagaaaae agetaggtaa ettteeeett 107040 atcacacaga taataaaaag cgaaacatga gctcaaatag atctagtttt ctttgacact 107100 aaagttegta ttatttetae aaaceteaea etgtteeeag tggeagaatg agggttattt 107160 tgaagtatgg ttttgtttga atggagatga tatgaaagga taaatgacga ggatggcaaa 107220 accagcagtt caggaactct tataacccac ccaggaggac ctaaggactg ctgttgttcc 107340 cctcttattg agagagcaga tcttcattgt ccatctagat tagtgaaggt ccagaaagaa 107400

aaacatggca cctccaagta aagtgacaga gtttagcaca tgtgacccta aagccttctg 107460 agattggtcc cttggttttt agaagctata atgcaaatac aatagtagtt tgaagttttc 107520 tactccctga ctatttggat acagtgttct cactttgttc aaaggctgat tttagacatc 107580 caagcaacat gtaccaggtt agtttgaggt ttaatcaata aaattgacca ggaaagaatt 107640 caaaagccac accgtctgat tctatacttc atatatgggg cagacaccac gctcttgtct 107700 tgtgtttaat ctacagagte tetgtgaaaa etgaetttte etteeeteat gaaattttaa 107760 attacageet geettatatt tagtgggetg cagggttact atggcaatea geteetgaag 107820 tatagggatt ttatctgage attttagtga agagtacatt agaggtcaga ggtttgtctc 107880 tgttcctctt ctacacattg ggaccetttc cccaaatgga tggtcagatg catgctctca 107940 attgcctcat aaatacacca cacataattt ataaatcagc cggacactag gaatgggctc 108000 ttttgtataa aggaaatgaa gtatacttca gaagtaaatc tgtgagattt ccaaaaatgg 108060 gagaaacagt tcagtgtcaa cacatataga catacatata aacacataca catgcatgca 108120 tgtgcataca gataaacaca cagcaactaa tatttattaa gtgtttccta catatcaggt 108180 tctaagaact tcacatgcat taactcaatt cccttaataa ccatatatgg taggttacat 108240 cctcatccct ttttgtgaat gggaaactga ggcatataaa ggttaagtaa cttaccttat 108300 ttagctcaca cagctaataa gtggcaaaac tgtgatgtta aaactgagta atctgattaa 108360 agaggttett etetgaacta eeetatgetg gtttaagatt tgtgetgaga geagagaace 108420 tggatatgaa tettagetat agetttgtga tettggatga caagtcaett caatgatget 108480 tacttageet cagetteeta ttagtaaaet gtggttaata atateaaeee tacacaatgg 108540 ttgaggggag ttaatgagaa aaatgtatgt aaagtgcttt acatacactt acgaactgta 108600 aagtgctaca tacatgttat caatccattg tacatgcagc acacaatacg tactctgtct 108660 ttcctactta tacttctcgg tcaccttgcc tctccccaca atgaactgaa cacataaaaa 108720 catataatat ggaaaaataa tttcctaata cccttgaaac attttcatac gtcctaatct 108780 aactattaat aattgtatac atacatttta tgtctcagag aaaatgaaat aatttcagag 108840 caatggttac aaattttacc acatcaagtt atgtgaaatg catgcatctt agaagctcta 108900 tgaatttata tgcttacata aaaagcatta gttaatagta gagatgttac tgccatcaag 108960 acaatgagac tggtgtacac tggtgttccg tatcataaat acacagactg gaagttctca 109020 atcatttgaa gtaggtggga ccttaacgga aaagaggcac agtgaggaag tgagacacca 109080 agtaggacac agggcattga ccctggattc agaaaaccca gatacaagtc atcatccatc 109140 caaaagtcat tgaattccta ccatgtacca ggaccctgtt ggtaggtacc agagatgcaa 109200

aagcatataa agacatgatg ctttcctaga gtcatcctgc atcccactaa ctgtgtgacc 109260 ttacatcagt cattgtatct tactatgaaa agccttgatt tccatattaa taaaagaaag 109320 caaataaaga atcagagagg taaaatcacc attcaaagtt catgcatcta actggtggca 109380 cagaaaaagg tgagaataaa acttcaaact tccaatttgg tactttccct gaccagattt 109440 catcattect titgeaatte ceacegiggt tigitteaca tacttaagtt tgactgicae 109500 atgccaagat attagttatt aatttttgag ttatcccaga gttttttctc tgctttccta 109560 ccagaaattt ctggcaaggt ctacatcaga gtcttccttt tcttgtcctc caagatgggc 109620 gtggtcttgc acagttccag ggctgtgcag tggaagaatg acagaaaagg ggcagagtag 109680 aggacgaaaa gaagaaagag aaaacaaggg ctgtggagtt ttcatgggtt gagaaaggca 109740 gettatactg tgtggggeag tggactggga agaacaaaca gaaaaacaag attttaagat 109800 taccagagat ttgtggtccc tttcataata ttgaggaatg ctagcttgag tagttttgaa 109860 gttattcttg gttgcctggg ttgtagtcat ttaagcacaa ttgctctgaa attgatctat 109920 gagggtaaca ggtttatgag ccttacaaca accattggct tcatcttctt agcagtggaa 109980 gactgcatgt ggaccttccc aatgcatctc atatgtgaga ctcaaccagg ttttaatagg 110040 tgagcagtga gctgtgtagc tcaactggtt gaaatctagt gatgaaatgg tatcagcaaa 110100 tggaattggg tcttctgaac actgtcttgt taagtaaata cctatgtcaa aacttccttc 110160 aaagctctga gttagaaggg aaaacacacc teetgtcatt cataagcctg agctctgggc 110220 tctggattgt ggtctgaggg aatatagaaa gagcattgct cttttatggg ctaaggagat 110280 ggaattettt etaetataga teaetgagaa aateageata atatttaatt eattttgtgt 110340 tcctagctct ggagtagggg tcatagctgg ctcttgatct ttagaatttt atattctaga 110400 agcagagtaa ggtaaggaga ttggctttta ctgagatcat gtgataatga gtttatattc 110460 atcatctgtt tctaaaaaaa tctttataac accctatgtg gtggcattag tattatctcc 110520 attttataaa tgaggaaaat tttgagttta aatgacttgc ccaaggtcac aacattgtaa 110580 ttatcacagt atattttagg caggaaaagg aaatagcgta tttaattata aagtaaatgc 110640 tgtaaacaat agagttttag gggaagaggt tgaactgaag taagcacttc tgttttgaca 110700 aaaataatta gacacgtttc tctttggact ctgaattatt ttagtttaac agtttaggtg 110760 tgatataaat acatggaaat gagacaacag aattgttatg acattcttct tttctgaatg 110820 aggaaagaag gtgtgtctac cagtagtttc tcactcttca caacatgagt gtcataacac 110880 atcaaccatg agcatcatat atatacaaca tgtatttttc ttccacttat ttttggttct 110940 gaatctgctg tgatgtgaaa gtgtaataat tttagtcaat caaaatagta tttcaaatta 111000

aacagctcca caacaaggca tcaaacataa aatttacagt atacatccaa cataaaaggt 111060 taggatatec eegattttet cetettgttt teatatteag ttaagacatt geatttggae 111120 tcaggagccc ttggcttgaa ggctagcttg aacagtttaa ctgtgcatct ttgagtaaat 111180 taataatacc aagtttetga atetttgttt teteatetgt gtgatttgag gataattttt 111240 gggggatttt ttgacattaa ttagcaaaac acaagaaaaa gtgtagtaca agataaggca 111300 tacagtaggt ggtaaatgtt tatggttttc aattagggtt tattattatt acttctatga 111360 tgatgatgat tactatgatt ctactggctg agagaaaaag gtagcctaaa caagcaaaat 111420 ccccttgaaa ttcccccaa cacttcccag gccatcctga atatcccagc aaacagagca 111480 gaagaaaggt gaatgaagat atcaagtgca gacagactcc agtgaggtga aaattgcaat 111540 ggtgagaggt tgatggtaaa atcaaacgga acttgttatt ttgtcattct gatggactgg 111600 aactgaggat tttcaatttc ctctccaacc caagacactt ctcactggaa aactctcaca 111660 atcacattta taacaaagga gaggcaatgt tattctcaga aattcctttt agaaagtaaa 111720 ctgccttgtt ggggaaagta tttcttctgg gtggtagatg actaggccct gaggaaattg 111780 . gtttaggctg aattcttact tacaaacctt ggggtggagc tggcttctgg agggggaaca 111840 ggagaaaaaa aaaacagcca gagaagacag aaaagagaca gaagatggtc cattatccca 111900 tgttacattt tccagtgacc acattcccca actcaacaca cacacacac cagagcagtt 111960 aacaggggca aagggactga gtacttttga aattagcacc tgtgacccgt ggaagcagga 112080 agtggggcaa cgggaggtaa gctgtccaca gccattacag tagtgaattt agtactctcc 112140 ggttatatac gcagagtttg ggcaccattt aggagtaggg cctttaggag tgggacttcc 112200 tagtactatt tattcattca acaatatttc ctaagggtct atgttaggaa aaactgacag 112260 cctctcactg ctcttgcacg agaatgcaca ggaaagaaag ggactgcagg tctgactttg 112320 agggaaggta ggtgcaaaca gatcatggct ggagtatcag ggaaagtgct cgtccctcct 112380 tgagcacttt ctccttaaag gctgtaaaac tagtttccta aagatgtaga ggtatacatt 112440 ccaaaatcaa catggtaacg gtcatttgtg acataatgct taagactggc caaacgagct 112500 ggagaagggt gggttataca gaaaggagaa agtacatggt atctttttgg ggatgttcta 112560 ctatccaaga agaggaagag cataaaagag ggctggctcc ctgcacatca gttcctcaac 112620 tcagtcagca agacctgctc cttgggctat ttcctatgga gataaggtgg ggaatagtaa 112680 ttcccacttt ttcactccat ctcacttatg gtcgactttt ttttgtgtgt gtgtgagttt 112740 cagcaaaatt gttaactttt ctacatgtca gtcaactact caataaatga agctaaaaaa 112800

ccaaccttca aggggtactt atgaggatga aagtagatgt cttctaaaat gaataaaatt 112860 teteceatag caaatattet taataagtag etattagttt tgagtettee ttgteaacat 112920 ttgcaatgtg gctaaatatg tctgtagtca ggatatttcc ctccctcccg tctttccttc 112980 ctctcttcct tgcttctttc ctcccttccc tcctttcctg agacaggttc tcactatgtt 113040 acctaggetg ggeteaaacg atecetecag geteageett ttgagtaget gagaatatag 113100 gtatgtgtca ctgtgcctgg ctgactttaa aagctagttg ctttaagtat agattagact 113160 ttcaattcta gctttgtaag tactgtaccc cccaaacagc taagacaata gctctagatc 113220 actgttagat taaataaaca agatatttgg tttgaagacg ttagcttcgt atgccaaagt 113280 aaagcattca ctccatctca ctatggtcaa ctatttttga ctgtgggaga agtggggttg 113340 tctatgtagg taactccttg gccttgtaag tgaatgctat tgtgtttctc agactgtggc 113400 cttggaagga tccaattaac tcatgtggag ccctaaaatt ccacttaaat aaatcaagta 113460 cccagattca tttatgactc tttaaatata tatatacaca cacacaaaat cccaaaccaa 113520 attgaccttc ccacaaacct gttctccctt ttatacgtta agttctaggg tacatgtgca 113580 caatgtgcag gtttgttaca tatgcataat gtgccatgtt ggcgtgctgc atccattaac 113640 tegteattta tattaggtgt atetectaat getateeete etecateeet ecaececaca 113700 acaggeeetg gtgtgtgatg tteceettee tgtgteeaag tgtteteata gtttaattee 113760 cacctatgat cgagaacatg tggtgtttgt ttttttgtcc ttgtgatagt ttgctgagaa 113820 tgatggtttc ctgcttcatc catgtcccta caaaggacat gaactcattt tttatggctg 113880 catagtattc catggtgtat atgtgccaca ttttctcaat ccagtctatc gttgatggac 113940 atttgggttg gttccaagtc tttgctattg tgaatagtgc cacaataaac atatgtgtgc 114000 atgtgtcttt atagcagcat gatttataat cetttgggta tacacccagt aatgggatgg 114060 ctgggtccaa tggtattct agttctagat ccctgaggaa tcaccacact gtcttccaca 114120 atggttgaac tagcttacag tcccaccaac agtgtaaaag tgttcctatt tctccacatc 114180 ctctccagca cctgttgttt cctgactttt taatgatcgt cattctaact ggtgtgagat 114240 ggtatctcac tgtggttttg atttgtattt gtctgatggc cagtgatgag cattttttca 114300 tgtctgtcgg ctgcataaat gtcttctttt gagtagtgtc tgttcatatc ctttgcccac 114360 tttttgatgg ggttgtttgt ttctgttctc cctatcttta taactggcat cactgttcat 114420 ctgacctcgc ccacagactg ttctttctct actcttccta tctctgtaac tggcaccact 114480 gttcatccag ttgctcagag caggtcagca gctatcattg attcctgtct ttctcatacc 114540 acceteatee aattaateag caacttgatt gateaettea tettaaaaaa gaaaaaaaga 114600

tgaaactatt cttatcactt ccactgctac caccctagtt cacatcataa ttatctcttg 114660 cttgaatgac tgcaatagcc tctcagtctt cttcctctac cactgctcac caacctgagc 114720 cttctatttc ccataaagcc atcagagcag tcagttcgcc cagctttgtt gatagttttg 114780 aaacttgtcc aaatcttctc caccttggga aatttgcaat ccttctttct ccctggaaag 114840 ctctaaccca ggtctttgca tggcttgttc tttcactaag ttcagcattc ccatcaaggg 114900 tetgeteate atcetetget agtettetga tttattatta tteaaageet etgteactae 114960 ctggaatttt actgtatgct gatttgttca tttttgattg cctagtttcc caacaaaata 115020 taagatacat tcagatgggg attttatcct acctattgct tcatcttcaa agcatatagt 115080 ttgtgatcaa gaagtactta tttaatgaat aacagagtga atgctctctg tgtgtgtgt 115140 tgtgtgtgtg tgtgtgtgt tatgtgtgca ggaatacaga aaatatcgaa ctatagaaag 115200 aactatatca tgagtggaaa gttctggcag gcactagggg atgaaatgct caggcagaca 115260 ttaggccaat ccagaaagcc agcatcatca ccatatatat agaaactgca ttatgattat 115320 gcacagctgg aaccaaagac ctatgtccag aacaaaagaa cacagataac tatgagttaa 115380 acaccgtgct acacacttta acgcattgac ccatttagtt ctcaccccaa caagactggt 115440 tatttttctc attttgacca aatgaagaaa cagaaatctg gaaagcttaa tgatgaagtt 115500 catgcaagaa agttgtagaa ctgggattta aactcaggtt ttatgatttc aagccttttg 115560 ctcttcccct aaaactgttg ttctatgttc ttaacaatag ttggactaag ctcaaaagaa 115620 ggaaaaagag aagagaagag aggaggaatg agaagtggtt ccagctctag gaacctcaat 115680 caagccacaa gtctgcacag atcattccct attgctatag tgcatactaa gcaatcattc 115740 ctttgaatga attgttagta ttaaaatcac tctccttcag caaatagcac tgcttacttc 115800 attttaactg atcttttac acatacattg tccaactgtt aggetgagtc ttatgaaatt 115860 gccaatattc taccattttt gacctacaaa aacagcattt caacaagatt caacataata 115920 gaatgagcat tccctgaagg caggtatcac atctaatgta gctttgccac tagtttctga 115980 ctgattaaat atctgttcat gatttctgta tatattatca tcactcttat ttaaacagat 116040 agaggataga cacaatggct tatgttcctc agcacattgg atatatttta gaaatgttgc 116100 tgagetteag tatetgeaaa aageateaet teagtggtet caataceee ecceetttta 116160 tgaagtagtc aattttaaaa atttggaaca aaggcattaa aaaaagaaaa actatgtatt 116280 atatcaaaat gagtcttttt aacactcctg tggggagaaa aaataccctt atttcacagt 116340 agaggaggtt atcgcattca gtggttgagt gcattgacca atgtaagtgg aagagtcaga 116400

atgaaaaccc aggtetgeet gacacaaagt etatgtggtt aaccactetg atatactaca 116460 tcatctctgc ctagcaggca tcaagggctt tgctccctgt aaaaagaagt cattaaaggt 116520 gtcatgaaaa cagggatccc acactaattt gctacctggc atccattttc tccagcgtgc 116580 ctaaaagcaa agagctgaac ttgctctcct gaagaaacca gggagttcag aatctctggt 116640 gtaaacagcc actttccacg gggaaggcag cctctctcag cctaagtctt accaaataca 116700 gctgggcagg acagggccag cacagacctt atactatacc gaaaagccaa caaaaaaagg 116760 gaagggtact ctgaaaatgc cagcattgaa aatcaaggaa aaattacaca aaccttaatg 116820 attattctaa gctctgtttt tctttctcaa agcacttaga ttcaggtact cacactacta 116880 cataaggact ctggttgaat acaatgaacg gcaacaacaa caacaacaaa ggatttttt 116940 ccatactgag gtgagttatt gagggtgtct acagcettet etgaagaget tagagagtaa 117000 tttttctctc ccggatgatt tgcttgtggc tttggtcttt ttacctcagt gcaagcaagt 117060 ggataggtga cctttcaagg ttattccata agccctggca atctgtgttc agatgataaa 117120 tcaaaacaaa gacagttcag aggttcgcca gggctcttta ggggcagcca caattagcat 117180 agetetetea agacceggea gatgetagge gteaaggeat cettattttt agaacactgg 117240 aggtggttgc ccccaaaaag gatatagaca gaaagaggag ctgaccatgt caagggcaac 117300 ttcaaacaca taggaacaca agtaaaacat tgatcatgca aacataggga ccgtataact 117360 ttacatttgg cagccattgc cactagctgt ttctcccatc tcataagact cctatggata 117420 gaacatttta gaagacaaaa gtgagaaata tgcattattt tatgtcagag gaagtcctgg 117480 taggtgtttg cattgttttg tgagaaatag gcagtcatat taaaatatta tatgtttcag 117540 tacctgtcac ttttcagctg agctgccttc cattttttaa aaaatgtgca tttgatccca 117600 atttgctttc acctgtctct caatttccac aagactctag ttgtcaccaa tatcgtacac 117660 tcattttcac ttctatctgt acctaaaccc aaaccctgac tatgggaaat tactactctg 117720 ggtattcgga cgcatttctc caacttttct gcttctgtca ggtgttaatg acaaaggtgt 117780 taatgacaac actgcaggct gtggccccca aataactcac catcaggttg atgaattttc 117840 actgaaaata cccctccagt cctttgccct aacctgtcac tgacatatat aaacattttg 117900 actttatata tgtgtgctta aatccttttg ttttctaata tttggatact aatcccaaga 117960 agggcagtgg atacatgcaa aataattgaa aaccatgtaa aacgtagcca tagatacaat 118020 gactacataa atcatgatgt gttggttcaa tgtaatgtat gcacttacat aaaattattc 118080 aacaattatt tattgagtct atgtgccata ttttatgcaa gttgttagag cagaggcaaa 118140 gaaaactatc tctatatgga aatattatca taggtaagga aaagccaaaa aaaattaaaa 118200

tagttatgta atgcagtaaa tgttataatg aaggcgagac taggatgctg cgggagaaca 118260 gaggagggag tgatcaatgc aaaactaatt taataatata aagtgaaaaa ataaaattat 118320 atcaatacta taaacacatt atacatgcat atagacaaac attaggaagc aatgagggaa 118380 agtgaagtta tgttaaggtg gtggatttct ggttggtttt ctcttttttc cttctcttta 118440 tttttgtaat aaatgaaagt ttggtgaggg aacattaact aaaagtaaat ggtgccttgt 118500 gtgaagcgtc acttataaaa tggatcttac caaactaata ggagacacaa aaggatactg 118560 acagacttte tatacataga cacatgaaac tgatgtgcag accaatecca ataccactga 118620 aaaggcaact tgtgagaact atgggagcta ttttttcctt atattaacta gaatatattg 118680 tcattagatg ggaaatcaac tgtagaaatc aatcattgtc tggataaaaa tcattaatca 118740 cttgacgatg gttaatgcaa aatattgact aatatgctaa tttcacagat gatgctaaca 118800 tttatctaat tttctggagt ttggtaaggc tagcattcaa attgcagttg aatttagagt 118860 tcttttatgt catattaaat tggtaatttt cccccctctt tttctttgcc ttttcacatg 118920 catccaaagt taagaaatag cttttctttc tttgttgagg taatattttg aacttggatt 118980 gtggataatt tcagtattat tgttggtttc tcatgaacaa tatccatatg aattctccta 119040 cgtgttgaaa teetatetat caataaaage eeaggetggg catggtgtet catgeetgta 119100 atcccaacat attgggaggc tgaggtggag gattgcttga gcccaggagg ttgaggctac 119160 agtgattcat gatcatacca ctgcactcca gccttccagc ctgggtaaca tagtgagacc 119220 ctgtcacata cacaaaaaag ttcatatcta gccacaactt tcttatgaaa tctttcctgt 119280 cgaaaacaaa tottaaatgg atatattttc ctctttttag aatgcctgcc totttaaata 119340 taggttaata attggtaatt tattagtgtc taaatatttg tgtgctagtc ttcactactt 119400 taattataat tgctgaaaga aaggtaatct tacattttaa catttacccc tagtacctag 119460 taaatggctg caaacataaa agcaattgaa tcaaaccgac acagaacatt ttatccaact 119520 gctgctgaat atgcattctt tttgtgagca cctggaacat tttgcaatat agaccatatg 119580 ttctctgacc accgtggaat aaaactaaaa ataacgagga actttggaaa ctgtacaaaa 119700 aatatggaaa ttaatcaaca tactcctgaa tgaccaatga gtcaataaag aaattaagaa 119760 ggaaacttaa aaatttcttg agacacatta aaatggaaac aacatactaa aacctatagg 119820 atacagcaaa agtagtacta aacggaaatt tatagcaata aatgaccaca tcaaaaaagt 119880 aaaaagactt cagataaaca toocaaaaat ggacotcaaa gaactagaaa agtgagaaca 119940 aaccaaaccc gaaattagta gaatgaaaga aataaagatc aaagcagaaa taaatcaaat 120000

tgaaactaaa aaaaaggaaa atttcgtttt taaaaaaagt taaacaaatt gacaaacatt 120060 tgactagact aagaaaaatg agaaaagaac caaataagta aaattgttag agtaggcaga 120120 taggtagaca tgagcaggag aggggagccc ctgagaaaag ggaggtctgg gaaatcccac 120180 gccccaggga ccactggaac cagcatgctg gatatgagga ggggaagttc ctaggcagaa 120240 aggaacaccc attaagaagc cctgtaatca ttcactctgc atttaacctg tcagaacgta 120300 gttcgatgca tgcctaagga ggggcaaagg gcaatgaaga aattcctaag agataacaca 120360 ggaaccattc atattcaaca ttggcccacg catgtgcacc aattaatagt aactgatggt 120420 cctacaaaag cctgagacag ggactaggca gggaggtggt ggggaaagaa gtaggggact 120480 taaggcaggg ctgacatcac aaaatcccaa tgcagaactc tcagggtgct gctggcccat 120540 tecettaage agettgeage ttgetttgte ttatetttte agagtgtaet gtetetetet 120600 caataaactc tctgctctta atttgccttc aatgaattct ttttggctaa attagtcact 120660 tggcagaata ctttctctaa gtaacactaa taaccaggat tcctgaacct cctggtaatg 120720 aaacaaagac aaaaaaggag accttataac tgataccaca gaaatacaaa gaatcattag 120780 agaatcgtgt gcagcaatac accaataaat tgaaaaacct cgaagaaatg gataaattct 120840 taaacacatg caccctacca agattgaacc ataaagaaat agtaaatctg aacagactaa 120900 taatgaataa tgagatagag gtggtaataa aaagcctccc atcataaaaa atcccaggcc 120960 ctgatggcat cactgctgaa ttccaccaaa tatttaaaga cctaatacta attctactca 121020 aactgttaca aaaatttaaa aagaaatact tetaaactca ttecatgagg ccagetttac 121080 cctgctaccc aaaccagaca aagacgaaca ataaaaaacg ctacatgcca atatccttaa 121140 tgaacacaga tgcagacatc ctaaacaaaa tattagcaaa ccaaattgaa caacacatta 121200 aaaagagcag tototatoat caggtgggat ttattocaga gatgtaaaga tggttaatca 121260 cattagtaga atcaaggaca aaagccatat gattatttga tgatctcaat aaatgccaaa 121320 aagcacttga ctaaatttta catcactgca tggtaaaaac tttcaacaaa ttgagtataa 121380 atttagaagt aatatacctc taaacaataa agaccatgta tggacaaaca cacagctaac 121440 atcatactga atggggcaaa attgaaagcc tttaaaggtt tggaacaaga caaggatgcc 121500 caatttcacc acttatattc aacatagtac taaaagtttt agcaaaagca attatacagc 121560 agaaagagat acaaggcatc caaatgggaa agaagtcaac tgtatttgtc tgcaaatgat 121620 atgacettae atttagaaaa aettaaaaac ttaaaaactt caataaaaat gttagaactg 121680 ataaattaat toagtaaggt tgoagtaaat gaaaaaaaat gotoacoato attactoato 121740 tgggaaatac aaatcataac cacagtgaga tatcatttca tccccattaa aatggctatt 121800

tgggtttcag gaaggggatt cacatgagcc tttttttggg gtgggagggg gggaggtgga 123660 caccagtetg aattagttgc tattttgaaa attataatat tttagtttaa tataatgagc 123720 ttgataccca ctgaggtagc ttgtctccaa gataacggcc atcaattcct ttcttctctg 123780 tatgcacagg cccttgaaag gtaaggtctg tttctcttgc tacttgaatc tgagctagcc 123840 tatgtctaca ttgaccaaca gaatgtagag aaatggagaa tatggagaaa gtggtgctgt 123900 gtgactctga ggctaggtca tatgaaacct ttcagcctcc acctgactct tttggaatgc 123960 tcactttcgg tgaagccagc tgccatgtaa aaatgccaac tgctcaaaga ccattatgct 124020 gtggagaagt ctaaactagc catgggaaga agcttcatag ggggatatgc ctgaccagcc 124080 ctcagctgtt ccagttatgc cagcccagga accagcaagg atgccctcag atgattccag 124140 teteageeac catetgaegt cagatatata agaatttgag geetggeacg gtggeteatg 124200 cctgtaatcc caccactttg ggatgccaag gcaggcagat cacctgaggc caggaattcg 124260 agaccagcct ggccaacatt gtgaaacccc gtttctacta aaaatgaaaa agaagtagct 124320 gtgcgtggtg gcaggcacct ataatcccag ctacttggga ggtttaggca ggagaattgc 124380 tgaaaccagg gaagtggagg ttgcagtgag ctgagatcat gccattactg ggtcatgcat 124440 tccatcctgg gtgatagagg gagactgtct caaaaaaaaca gaacaaaaca aaacagaatt 124500 cgagtaagaa ctgcccagct gagatccata actgccacag catgagagag aagagtaaac 124560 tattattatg aggtgggttg ttgttacacc atacaaattt taaaaaatact ctaagttcag 124620 cettaagtac ctagggttet acagaaggtg cagattaggg teagacecag agttgtetet 124680 tacttttggt atctggttaa aatcttggca cagtagagaa tttatgtgca cctaggagtg 124740 ggcacattgg gtcctggacc tcatactcca ggttagtgca cataactaaa aatgaaaaag 124860 caaaaaaaa cccaacactg ccaacaacaa caacatactc tctgaaaagc caagacagag 124920 aagccaagag ggtttaggaa ggccataatc agaaagcatc aaccacaaaa attataatgg 124980 aggaatgcct gggtaagaga ctcaggtgga aaagagaaag atatgatgtt ttgtgtgcag 125040 gtgtaacttg ccagctggcc gacgaactgc agatttgact tcataaacct ctacgactta 125100 atcacagtgc ctaatcttca gagagagaga gagagagaga gagagagaga gagagtctgt 125160 gtgatgcacg tgcatttgca tgtatgctta tgtagggagt gtgatagacc ttatatataa 125220 aggatactca ttgggctttt catccttgac acagtatgtt tatagtgggt cacttctttc 125280 ctctgctgcc tccctggaag agactgccac caggtttctg gagtgccctt ccagaagtct 125340 tcttttgaaa tattagtgat atccattatc atgtacactg acttctctaa gtccaatgaa 125400

gegeetgtgt tacatteagt getaettaat ggeagacata actacaaate aagatttatt 127260 tgcccaagtc cagtgctttt cctatattgt tgcaagtctt tcagaggcat tgttccgggg 127320 agaaaggaaa aaaaaagcac aagtacagct gaattattgt tagtttcaag tctgaaggaa 127440 actaggaatg aaatcattgt ttacaagagg cttacaatct agtcaggaaa aaaaggatga 127500 tgcacaaaag gatgtttaca acttctgtga tgctctaaga agatctactc caagcaatga 127560 caagtattta tcaaaatttt gataattgat acattgaaag ttactctgag atatgagaaa 127620 aacttgccac accacacgt tgaaaattaa aatttatagc aaaatttgac aatcaagttc 127680 ataaaagctg ccctatggca aaactttcat acattttggg aaggagcact tactatttca 127740 caagtcacag cactcagata ggctaaacct agaccgatca atcagattga atattacagt 127800 gtgagcacca gcaacatgac caatgaacat agataaatgg gtcctgggag cagacagtgt 127860 aggcagattt atacactaat attttattgt ccaccatgaa cttaccgtca gtgcccaaca 127920 aattaaattc tetetteeet teeeteeatt ttttttttgt teeetetegt attteaattt 127980 gtttcatatg acaaacccaa gcctgtaaaa ttcatctatc agcaagtggt tctaaattag 128040 aaagtaccac aactgagaaa gaagcagact ttctaatagt gccaatttat ttattttct 128100 attyttyaaa accactatay tcatattaaa yyaacttatt caaaaaaatt ctcatttcta 128160 taactgtttt ccatttgtcc agattcccaa tctgtttata ttcttatata tttttaaaat 128220 agttcaaato atgctgtgcc acataatttt gcattcttgt tgattgttgc cctctgtaag 128280 aatttgtgtg atgttgctac ttagtctgtt tgacagagac ccttaaacaa agccaatgta 128340 tatggagata tttaagtaca agtccttgaa taacgccatt tcagtcaaca tcatttcatc 128400 ataacattga tgagaaaaaa aatcgattcc tagctagggc cactgtctgt gtggagatgg 128460 cacattetee cegteagtgg gtttteteag getactetgg ttteettega aacaccatag 128520 atgtgcatgt tagctgcgtt ggtgtgtttc aatcgtgtgg tgtgttctaa tcccagtgtg 128580 agtgcgtgtc agtgtatgtg tgagtgtgcc ctacaatggg atggcatcct gtccatggat 128640 agttgctctc ttgagtgtga agctgctgga atgggctctg gccacctgtg acccccaaat 128700 ggaaaaagtg gattgaaaaa tgaataagtt aatgaatatg aattattata aaattaaaat 128760 ttgtaaagta tatatgataa tcacacaaat gcatgacaat aaatgatgtg gtaagaaagc 128820 attagtgatc ctgccatatt tgtgattatt tgcttttgga ctgcatggtg gtagggagag 128880 ctccttaaaa tttctgcttt gcaaacattt attccttgat ttaattcact acaacaactg 128940 ctgtcactca ctgattcaca aaaaattggg taattatctc actcattttt attagttttt 129000

gttaaccata	tagatatata	gatatataga	tagatagata :	gatagataga	tagatagata	129060
gatagatata	gagagagaga	gagttagaga	gttcacattt	atttcagtgt	ttactattag	129120
aggtgttttg	ggtctttatt	tagaagttca	atgattttg	agatggagtc	tegetgtgtt	129180
gcccaggctg	gagtacagtg	gcacaatctc	ggctcactgc	aagctccgcc	tcccgagttc	129240
atgccattct	tctcctgcct	cagcctcctg	agtagctggg	actacaggcg	cctgccacca	129300
cacceggeta	atttttcgta	tttttagtag	aaacggggtt	tcaccatgtt	agccaggatg	129360
gtctcgatct	cctgaccttg	tgatccgccc	gccttggcct	cccagttgat	gatgtttttg	129420
taactagaaa	tatgccagag	gaacttaatc	cttgattata	ccaattggtc	tgtggtaaaa	129480
ttggttttgt	tatatgtcct	aagttgcagt	ttccaggaac	ctaacaacat	taagtgagga	129540
tttattgcat	atgaaaacta	gtcatcttgg	ttgggaccga	gtttgtctta	tttgaacacc	129600
actatgtacc	aacactaagg	aaatgcaaac	attgctggtt	gaatatttt	ttaactagcc	129660
atttgaaaaa	agagtgaatt	tgaacccact	taatacataa	tttaacccaa	aggtgacatg	129720
ctttctttt	aagaacaatg	aaataatcaa	actagccttc	agtatgagaa	ttataatttg	129780
tacgatatct	gtcttggaac	atcttgaatt	ggccccttat	taatctagct	tttcttgata	129840
cagtggtttg	tattaaaaat	gaagtatcga	cctaatccta	tataataaca	attaatcatt	129900
tcccatgata	agtttttgat	ctttgtttt	cttatatact	ttaaaatacc	aggcaagata	129960
aattatatta	tttaaattta	atgtatattt	aaatagacag	tagcctgtta	gttcattaaa	130020
aggtagagat	ttttatccga	ttcatttttt	tctctcacag	cttaaagcac	agtattgtac	130080
aaatagtata	tgctcaataa	aagttaattg	aattgcattg	atcttagttt	caaaataatc	130140
aattactaga	agacgtacct	tcttgataaa	tgtaagccag	tttgtcacat	aggttctgac	130200
acttatgagt	catttagtgt	atttatcaat	taactgcgtt	gatggtaagg	agtgtgatat	130260
attagttgat	gacatatcaa	ctaatagttg	ataaatagtg	tgataagtag	tttttttcc	130320
ccagagtttg	aaacattctc	tggcttatag	tggatactca	acaaaggcac	ctgaacaaat	130380
taatggagtt	caagagaaag	caaaattggg	ctgggttitg	aagacaggta	agagagctga	130440
tgtagcagaa	tgagaaagag	acaccaaaat	agggtgatgg	tttgaaatgg	aggtatgggt	130500
agagatagaa	atgttggaga	atgeggeagg	gatctctgtt	ttggtagcag	gtatgtatat	130560.
aagaggagtt	ccttccagaa	atgggtttgt	gtttttatcg	atatgatttt	taaaaccatc	130620
aaccagccca	gtaataatga	acagtaatga	acatgggagg	ctttttctta	gacatatgca	130680
gcgaggctgc	ctttgttacg	caagaagagg	ggaaatgtcc	ctgataccca	taattaggca	130740
gtacatctga	aagtggcagg	atacagttgt	ttccttccct	tggaaaaagg	gaaataatta	130800

actagettte ccagtaacae atgactetea actggataaa etttetaett eetgeaegat 130860 gtgactggct gaggtcatac caatccagtg gtcctcagcc aaataatcat gtcaggcatt 130920 ttccatagtg ttatgtgccc accatggaca ctttagaagt taagaccatg tgtagctgtt 130980 ttaacettag ccaatttggt tatcatgttt cttaactgct ctggtgagga tatcatatgt 131040 gattcccaac ttctctgaga tgatttcaga acaaatgaga caggattaaa aaacttttct 131100 cagggeetea tittatiett teeettteee ettetettge cagtetittt ceetetaett 131160 ttcttcccca cagtttctat ctaattctcc acatatccta agacacttgg tattcggtgt 131220 gaatatggct ggtcccaaag tcttgtgggg ctgtaggctt gcttgagtgt gttgtgttgg 131340 tggtgatttc agtctgagat tcatttcagc cgatgaggga agtaaaaatg gcaatgaatt 131400 tatttttaat atataatett ttattttgat tgcagetttg acagaactge atttttcaaa 131460 tettteettt atagggecae caagacagag cagaggagaa acagetteat aagaaageat 131520 ccaaaaatgc atagatggcc ttatcatttt gagatagtca acctggccca gtattccttc 131580 tttgtctggt ttctattaaa gccattaatg gattcagagc actgcacttt ctgtctatct 131640 tcctaaagat gtaaacccca gtagcatcag aatcatatga ataggcctgt atgtactgat 131700 aagcaattat cactggggta aaaggaagaa tgataaggte taggeetate acagggcaaa 131760 gacattaaga tttatttcca gtgtcaccag gagagctttg ctacccatgc aaagctcctt 131820 ccggaagaaa aaaagaaaaa agatggaaaa aagcataagg ggagataaca tttcttgcaa 131880 acatttatca gtcaaaacaa gaaactctga atgtgaaatt gaaacacaat cacaaagtca 131940 attttaaatg gggaaaagag ccacagaaaa catgggcctt ctgaggatta aaaagaagaa 132000 atccttacct aagattaaaa aaatccttac cagagatcaa aatagtgggg ctatcagagg 132060 gaggaatagt ggagattgcc tttacaagtg atttgggatt gaaataattt atacagcttg 132120 tattcagcca ctgagagcaa gatggaaaat ttatataact gtataaaatg ccttgcatta 132180 gacaagaact ataaaaaata gaacagaagc tcaactccag ggacacagaa tttttttatt 132240 aggaaatcta ggttggccat ggaatgtaat tttaatcatg aactcaatga tgatgcatat 132300 taattccaaa ccaacccttt taaccatggt atattttgcc ccagtaggac tacaataatc 132360 tctcaaggat agatgaaaac tcttttaggg aacacttctc actacatgtt ctttcttaag 132420 geotectete agaggagtta tetageagat catggeatge taaaatgatg tateatacat 132480 caacctcagt gttgccatgt ctcagaaatg ctttccccta aaactaaaca gcaataccta 132540 acaaatgttt atggttgaac aagtgtagag agcagctaat ccacatatac tgagctagtc 132600

taattcattt tatctattca tgtaacaatt atttattgaa tacctagtat gtgttaggca 132660	
ccagactaag tactagggat gcttccaatc tggacccttg tgactagcaa tggggcaatc 132720	
ttgtgtttca ctagtctgtt agtttgcttt taagctgttt cataaagcta gtaactcctc 132780	
tttaaaacaa aatcacttac gtagcataga atagcagact tgtacagata gaaacaaact 132840	
cagagacagt catctagccc aactccttaa tataagaaac aaagtaagtt ctatagtctc 132900	
ttgttgacag cctcatcgtc cacgttagga agtggcgcca aacccaggaa atagtgttat 132960	
gtaaaataac agacaccctg gagagtcatt tatagaagaa tagaaaacaa ttgcatggta 133020	
gaagaggagg gcaggaaaga caaaaagcgc tacgcatgat gaaaactgag taacagtcca 133080	
gtaccaagta aaggcttact agcagaaaag ttactagatt actactccaa aaatgaacag 133140	
taaatctgac tgtgaaaatg tccttttaat tatattttat ccactaaaat aacctcactt 133200	
atctttattt ctgaaatatt aaaatggctc tattgataat taagataaaa tggctatggg 133260	
gaaccctctg ttagtcacca gatgccctga caaataaaac aaaacattgg agaaaatata 133320	
atgggattet ateagtttta cagataatte cateaaactg acteteatae ettggagetg 133380	
cagaaacatc agtggtttcc taaatgttat catttttat tttcataaca atcatctgac 133440	
ggttggatgg caaacacacc aatttttatg ctacagtgag aacatgtaag tgacctggtg 133500	
tgaaagtcac aaaagaaatc aagattatgg actacatttt tctggctcct ggcttggttt 133560	
tetttecatt ttaccaeggt gteacteaaa caageetaat gtteaaaaag tteageaggt 133620	
gagttcttcc tctgctcatg acaacattca tgtggcatct tccgccgagc ttagatggtg 133680	
aagatgacca gcgcatgttt actgaatgac cactttttgt tgaaatcagg ggcttttgtt 133740	
atatgtccta atggaggctc ccgtcttaca tcgtttgtca tcagaatctc cttcactctc 133800	
aggagaggtc tgcaaaggtg agtgggcttt ctatgaaaag tgatgaagta gggagaaact 133860	
caaagattat gttgctgagt tgcaaactac tggaaaatat taaagtctaa tatgattctc 133920	
ttatgatgtt tctcagcctt ctggtattta ttcctctata tcatcataac ttgtgtgtta 133980	
aaaatataca totatttaco tatgttatao atataatata gatgatatot ataaaatatg 134040	
taaatacaac cagaaaggta cagctgtatc cttcttaaat cagtgaacat atccatttaa 134100	
tataactcca ctcttgcaac ttctattcac cattgcactg aagattctac tcaagacagt 134160	
tatggaagga aaaaaaggaa aagactdaga ttgtaaagga agaattaaaa atctctcttt 134220	
gttgatgaca tctaaaataa tccactaaaa actattagaa tagatgagtt ttagcaagat 134280	
ttcagaatac aagatcaata taaatacata aatactgaat gtatttgaca atctgaaaat 134340	
gaaatttaaa aaattgaatt tocaatagca toaagaagaa taagatactt agaactaagt 134400	

ttaagaaaac aaatgcaaaa ctaaaacatt gttgaaagac attaaaggcc taagcatatg 134460 gaaatatacc acatatgttc accgattgaa aggtttaata ctgttaagat gacagtgccc 134520 accaaagtga tttgcagatt taatgtaata catatcaaaa tcatgactgc tttttgtttg 134580 cagaaataga aaagctgatt taaatttcat aaagaaatta taaggaaccc aaggtgccaa 134640 aacaatctca agaaagaata tatttggatt attcacactt accgatttca aaatttacta 134700 taaagcaaca gtaatcaaaa cagtgtggtg ctgacattag gacagacata tagactaatg 134760 gaatagaatt gagagtctag aaataaattt gttgtttttt tgacagataa ttcaaaggga 134820 aaagtttttt ttttttccaa catatggtgc tgagacaaat ggatatccat atgcaaaaga 134880 ataaagttga acccctaact tcatatgata cacacaaaaa agttaactca aaatgagtca 134940 tagacaaact atgaggetet tagaagaaca cacaggaata catetteatg atcetgggtt 135000 agctaagate ttettacagt atcaaaagca caagtgataa aaaaaaaaag ataaaatggg 135060 ctctatcaaa atgaaaacta gtgctgcaaa taataccatt aagaaaatga atagacaacc 135120 cacagaatgc aataaaacat ttgtaaatta taaatatata ataaaaactt gtaagaagac 135180 tatatataga acttttatga ctcaataaaa taacccaatt aaaaaatagac aaaagatctg 135240 aatagatatg teteceaaga agattttaaa atgaceacta aacacatgaa aaaaatatte 135300 aacatcatta gccatcaggg aaagacaaat cgaagccaca atgaaatact acttcacatc 135360 tgctagatgg ttacaataaa aaaggcagat agcaacaagt gttgacaatg atgtggagat 135420 atgggaactc tcatatattc ctggtggaaa tgtaaaatgg tgcagcctgt ttgaacaaca 135480 gtttggcagt ttctcaaaaa gttactatgg taacataggt gtaccacata acccagcact 135540 totactcctg ggtacatact caagagaagt aacaataaat atotatacaa aaacttgcat 135600 gtgaacattc atagcaccat ttttcataat agccaaaaag tagaaacttc caaatgtcca 135660 taaactgatg aacggataaa taaaatgtgt tatccgtatc tatgcaaaga agtatccttt 135720 gacaataaaa gggaatgaag tactgattaa catgctacaa tcgggatgaa tcttgatatc 135780 attacgcaaa gtgaaaaagg tcattcacaa aagatcacgt attacatgat tccagttaca 135840 taaaatgtcc atagaggaag cagaaagtgt acatcattgt gaatattcta aaaaccactg 135900 aattgtatac ctaacatgtg tatcttaaaa ttttagcatt aaattttctt tttaattaca 135960 aaatttaagt ataactgatt tgtatggaga tagtttgagt tgtaacagca ttgágtcagc 136020 atgactctgc cctaacatag tttgtaacct agacacctgg acactgagac ctcactcctc 136080 tgggcccctt tcctcaccca tatgatacca cttgattgtt tttcaagcat tataatccct 136140 cctttttgct ctgaataaaa tcttacatgg aaactcaatg tataaagcag agaaaagccc 136200

gcgagagaat ggagagttta aaaagtttct ggcttacctt gcttttttgc atgtggccaa 138060 aagggttata ggttcctcat gatttatcct caaggataaa aaaaaaaaa agttaatcaa 138120 agttagagte ttctaggtte taacettete tactgeettt etetaetgte tetgetgeea 138180 aggtccattc aacggcagtg agaggagtgc aatgctaatc atagttttac aagacgtagc 138240 ctgacttttt gttcctccaa caatccattc aagccaccag ctcctccttt tctcacccta 138300 cttctgattg gcaacccctc cataccgcct ggccaagaca ctttactcca caagccagtc 138360 atccatcatc agttatttca gttggggttt gtagctttct caagatgatc atttttgctc 138420 atagctgcca cctccctggg caactcccac ttatagcccc aaggagccta ctttctttc 138480 ttcactttta tgatatctcc attcaaaaac tgtctatctg aaattgacta ttaaaagaaa 138540 caccacette tetaaattee tgtttgttet eagtetttgg acageageag aateaettge 138600 agegettgtt aagacagatt cetgagetee atcetgatte tgattgegga attacataaa 138660 gaatgctgcg tgagattttg tttttctaac aacttctcca gtaatattga tgttgttggt 138720 ctagggttag catgttgaga acgaatgctt tacacatttt aaacctgtaa aatgttggaa 138780 tgatgtttta gcatagggta cccgagtgta ttttctgagc actgggtctc tagtaacaat 138840 caggatttta gggatgataa aagacatttt ggcacataga attccctatt tctgccttcc 138900 actititggic titgiatite tittictict cettlatata tgtatittaa atteticaet 138960 cttattcacc ttttcctcct gctccaagcc tgacttagaa gggtcttatg atccagacga 139020 ttgtaacatg taataggaat agtgtgagaa agaagcccca aggtaaaagg aatctgctta 139080 tetgetgtae teagggaaaa atetegttga tgttaaaeta gtgtggtete teetteetet 139140 agcatagtta ttcaggaatc aatcaatcaa aattatccaa atatcctgca aacatttggc 139200 ttaaaacttt tatcagtatt ttcaacaact gtcaaatact cttgtacaga ggaatgtggc 139260 aaagacgggg agtgaatgag aagaagctga tagtaagtag ctctactttt agtttcttat 139320 tgtctacaat ggctcttcat tttgaagctg gagctttgct ttatggttgg ttcctggctt 139380 gctaataaga agcagatgtt tcccacaaag atatttctga ttctttttt ctataccct 139440 actttcaact tggagttgga aatcagtaag ttcaagggaa tttattacct ttatcctctt 139500 agcacatgaa attggaagat gatagggttt taactagttg tcagattgtt aggtgaaagg 139560 atatttctgg ctaaagaatg gggctttcat tgccgttatt ttcttttcaa ttctttctgc 139620 agtteetaga aagaaateaa aetagttaga ttgetaaggt gaagaagtae atgetetggt 139680 atttttgcag tgaagttett caggeeetga tacetetcaa geecagatgt caateattte 139740 cagcaagtge ageetttttt tgecaccact gtgtaggacg tggttaccac tcagaaatta 139800

tggcaagtta	atctgcaggc	cttattcaat	aattcttaga	aacacatgaa	cacagttggt	139860
gegetegaģe	atttggaaaa	ttaaattatt	ctttagaatt	agcctactga	gctggaagaa	139920
aataaagaac	acttaccaaa	ggggaaaaaa	tgacaaaaaa	ttctaatgac	taatggtttt	139980
tcattataat	tgcataatag	tctcttgata	caagtgctac	tcattgttct	gataattcac	140040
tgatccatta	ggcccctcca	tacatatgca	agcacctaga	ttagaaaaca	gaagaataag	140100
aatatgtaat	tgcactcaag	tgccttaaat	tagatcaatt	caatggcact	cttaaccatc	140160
ctactattag	cagatgctga	gaatatgaga	aatgataagc	aacttccaac	tgatacacta	140220
gataaatttt	acttttttat	ccaggataag	acaattaaca	aaggtaacat	ttagttcata	140280
gtaacatttt	aaaaatttct	gacgattatg	catagtgtgc	tataaacatt	catctactag	140340
tttttatgta	gacaagtttt	tatttccctt	ggacatattc	ctagaagttg	agttgttgag	140400
ccacaaatta	tattttgtga	ctgtctgacc	ttgaagggcc	cacagaagat	aattctgtgt	140460
tggtggttat	aagaatctag	gtatatgtta	gtcctcatag	aactgtacac	caaaaaagtg	140520
actactacct	catgcaaatt	caatatttt	aataatttag	aaaactctcc	aaataatctg	140580
catagattta	taaattccat	caaattatta	catgaatcat	taacatacct	ctagtgcttc	140640
aaaaactaaa	gtttgtacaa	aaaatgtggt	gataaaaaac	aaaatagttc	ctgaagtgaa	140700
taatttttag	tgggtagagt	tatatatcac	atatagcaaa	gttgtgtctc	aaattgaatg	140760
tcaagagaac	tggaaattct	ttgatccaaa	aggcaaccaa	atcgtccacg	ctactcagtc	140820
cttattcaag	atcctttaac	aaaatggaaa	tatattagtg	ggaagtaatt	cttggatagg	140880
agctgggata	acaagttcct	cttattaaac	ctactgattt	cattctccta	ttctcccaag	140940
gtttagcaaa	agcaggcctt	acattacaaa	tttcttgtag	tattgagaaa	aggttccact	141000
tctgtacatg	gagcttacaa	attttttatc	ccatggagaa	ttgttaaaga	ttataaaaat	141060
gcatagaaca	cacacagggc	aataatgtat	tgaggagttt	taaattgtaa	tttttactgt	141120
caagcccgta	agtaaatcat	caatgcaaga	attctgaggt	tcaacgttta	aataagaaaa	141180
ttagtactct	tccttctatg	tttaaattcc	gtgtttgaca	ttgtctggaa	aaatgtcaat	141240
aaatattact	tgtgatattt	tcaattttca	aagcaattat	tacattagga	acacaggttt	141300
tggaaagaat	cacaactaat	gtccctgaaa	gggtaatgat	gccaaggata	gttgttttta	141360
ataaaaagtt	agaatgtaca	tcgtgacaaa	ctaacaatca	caattagagc	tatctttgtc	141420
ccttttctac	cctcaaaaca	acctgagact	caggtgataa	tcccagttta	ccttaatgtt	141480
aataattttt	agttattaat	ttgttcattt	tacaaatata	tattggatat	aactatgcac	141540
cctgaactgt	gctgaatgtt	tcagatgcaa	tggagagcaa	agcacttgaa	ctctgattta	141600

caagaggaga ccaaataatc acacaaatat ttaatgagaa actgtgctaa ctaaccgtta 141660 tgaaggaaaa gtaaaaggga caaaaaaaaa aaaaaaagat acctcaggga tatattaagg 141720 aaatgtacct attctgaagt ttaatggagg cttccttgga gaagtggcat ttgatcctga 141780 ttttgtgacc aatgacctgc atttcctgat tccaatttct tttccctcct cattccagct 141840 aatatccaag aataatctca gggtaattgc tttaggttcc aaatgggacc taaaattaca 141900 ttaaaagctg gcagtagata caatggcagt ggcctatgtg ggactctgag cataggcttg 141960 gcattatgtc cagggtttcc gttgcagatc ccaccacttc caaatactta ggtcaggcta 142020 tctgaggtac aacatgagct acaaaccctt ttatcttcta ggatattttt atcccctgaa 142080 agtotgacti otgaaatgaa titaatatta toaagaaata ggaaggagaa otgtatotga 142140 caaatatgac atttcaaatc agagtcggaa gttcttatag taaaagacaa atttcccaca 142200 gaaataataa aaacccctaa gagactacta tgaacacctc tatgcacaca agctagaaaa 142260 tctagaagaa atggataaat ctctggaaat atacaacctc ccaagactga accaggaaga 142320 aaagcctacc aacccacaaa aagcccagga ccaggcagac tcacagctga attctaccac 142440 atgtataaag aagagctggt atcaatccta cggaaaatag tccaaaaaat tgaggaggaa 142500 ggacttetee tegacteatt etateaaate aggaaeetaa taceaaaaet tageagagae 142560 aacaacaaca aaacaacaac ttcaggccaa tatccttgat gaacatagat ggaaaaatcc 142620 tcaacaaaat actagcaaac caaaacctgc agcatataaa acagctaatt caccacgatc 142680 aagtaggett catecetagg atgeaaggtt ggtteaacat acatacatea ataaatgtga 142740 ttcaccacat aaacagaget aaaaacaaaa accacctgat catttcaata gatgcagaaa 142800 aggettttga taaaageeaa cateeettea tgttaaaaac teteaataaa etaggeattg 142860 aaggaacaca cttcaaaata ataagagcca tctatgacaa acccacagcc aacatcatac 142920 tgaacaggca aaagctggaa acattctcct tgagaactag aataccacaa ggatgccctt 142980 tcactactcc tatgcaacat agtactggaa gccctagcca gagcaattag gcaagagaaa 143040 gegataacag geatgeaaat aggaagagag gaaateaaag tatetetgtt tgeagaeatt 143100 atgaccgtat tcctagaaaa tcccatagtg tctgcccaaa agccccttgg tcagataaac 143160 aaattcagca aaatttcagg atacaaaaat aaatgtacat aaatcagatc ataaatcaat 143220 atctataaat cagtagtact tctatatatc ggcaacatcc aagctgagag ccaaatcaag 143280 aacacagtcc cttaagccac aaacagagta aaatacctag gaatacagct aatcagggag 143340 gttgaaagat ctctacaaat gagaatttca aaacactgct taaagaaatc agagatgaca 143400

aatataatca ggtatattta atctatgagt atttgctcat atttgctatg agtaaaatag 145260 caaataaagt ggtcagatgc atcagaattg agcagggctt atctttaagt ggtagggtca 145320 tggcctattc ctaatttatt ctttttgctt atctatactt tctgaatact gactctacca 145380 ttctattttt tcattaggga tgcaaaagca atatttttc taaaaataat gtatatatat 145440 gtgtgtatat attatattgc ttatcaaatt caggatttaa gcctcagttt tttcaccaat 145500 ttaaccaact tgctgagtaa cctttggcaa attccccttg cctcctggac tcaagttctt 145560 cetacttgte aaatgaggag atgggccagg tetgttteee aaacttagee aatetteaga 145620 atcettteag ceaactgtta aaaataaaat eecaagagea eetgaaatea geeaaatgag 145680 . acattccaga gagaagcccg ggaagatgtg ttgtacaagt gcccccaagt gattcataga 145740 aatagccaag cctcagaaac actacactag atgatgctta tggtcacttc cagtctgaat 145800 gagccatete tgegttaaca tttagcacae agcatgcaat ceetetetaa gtgggaaaat 145860 gactettgtt ggaactggge aggageactg agageacage ettteetttt atetggttte 145920 agtgttaggg tcatgctggg cttatacaat aaactagaaa gtgttatttg ggaagctgag 145980 gagggcagac cacttgaggt caggagtttg tgaccagcct aaccaatacg gtgaaacctc 146040 gactetacta acaatacaaa aactageeag gtgtggtgge aggeacetgt cateceaget 146100 actcaggagg ctgagacatg cgaatcactt taacctgggt ggtggaggtt gctgtgagcc 146160 gagategeae tactgeaete cageetggee aacagagtga gaetetgtet tataaaaaca 146220 aaacaaaaca aaacaaaaca aaacaaaaca aaacaaacaa aacaagaaag tgttacctct 146280 gettetattt ttgaggagac tgtggaaaat tagcatcaat etttggtagt attcaccagt 146340 ggaaccatct gggcctggtg cattatttt ttgaaaggta attattgatt caacatctta 146400 aacagaggta agcctattca gattgtatca atttctccct gttttggtag tttgtgtctt 146460 ttgaggattt agtccacttt atctaaggta acaaaattgc aggaatagtt gcttgtagca 146520 tttetttate atttaaacet cettggaate tatagtaatg acceetetet eteatttetg 146580 atattggtaa tttgtggctt ttccttatta ttatttttgg ctagcctggc taaagattta 146640 tcagttgtat tgatcatttc aaagaaccag cttttggttt catttctttt ctttgttttc 146700 tttctttcca ttgcattgat ttttgctcaa tttttttta ttatttcttt tcttctgttg 146760 ctttaggctt aacttgctct tttttaattt cctatggtgg aagcttaaat tatttagatg 146820 tttttttcta atatatgcac ttgatgctac aaaatatttc taaggactga tttttctgta 146880 tcatacattt taataagtag tattttegtt tteatttaaa ggtattette agagttettt 146940 gacccatgtg ttatgtacaa gtgtctttta atttctaaat atttgacatt ttctagctgt 147000

ctttctgtta ttgatttcta ctttaatccc attgtagtct aagtacattg tataattctt 147060 attaaagttt ttgaggtgte ttatggccca cagtgtggte tattttggtg aatgctccac 147120 gtgagtatca gaagaatgta tattttcctg ttgctggatg ccatattcta taaatgtcaa 147180 ttagattaag ttgattggta gagctgtttg ggtcaactgt atcattattg attgtctgcc 147240 tgcttgattt accaattatt gaaagagagc tgttaaagtt tccaacaata atagtgaatt 147300 ggtccatttc tccttggaat tttatcagtt ttgcctctta ttttgatgct ttgtggttag 147360 gtacacatac atcttggatt gttatgtact cttggagaac tgacctattt atataatgct 147420 ctttatccca gataattttc cttgttctga agtcagtttc gtttaataca ctacttctgt 147480 ttcttttgat tagtaggagc acagtaaaat tttttccatc tttgttttta agccgaatct 147540 tgatctttaa agtgggtttt cttgcagatg acatggagtt gtgttttgtt tttgtatttt 147600 taattcactt taaaatgttc cataattact gcatttaacc ataaatattt aaagtaatat 147660 tgataaaact ggattaatat ctaccatatt tgaattgttt tatatttgtt acatttgttc 147720 ttggttcttt tctgccctct ctagatttag ttgaatattt atatgattca attttagctc 147780 ctcttttgga atatcagtta taccttatta aattttatta aaaattaaat tttgcaatat 147840 acataattca ctaataaagt ccaatttcaa ataccactat attgcttgat atgtggtgca 147900 ggtattttaa cagaatatcc ttgaaatttc tecetectat tettegtgac attgetatca 147960 ttcatttcac tcgtcctatc ttctataatc actcaataca tcattgctac tattaaacag 148020 ttettttata teaattaaga ttagaagtaa gaaaaataaa attttateet teettattee 148080 ttctgttaca ctcttcttaa tataggtatg agtttctgac ctatataatt tccttttccc 148140 tgaaggattt attttaacat ctgcagagtg gtcttctggt catgaaatcc ctcagctttt 148200 gctggtctga aaaactaatt ctcttttgag gttgagtttc actggatatt ctatatttgt 148260 ggactttttc cctttcaaca gtttaaatat tttttatttc attctgttct tgcttgcata 148320 actetettet ttttetetet cetteettee ttteetteat tttgatattt ateetgetgg 148380 tgtttgctga acttcttgga ttctgtggtt tagtatctgt cattaatttt gggaaatttt 148440 cgtcattatt acttacattt cttctgtttt ctcttctct ttctctttta attatgttta 148500 ttttgttttt cagtttggga ggcttctatt gtgacttatc ttaaaagctc attgtttctt 148620 ttctcagctg tgtctgttct actaatgaac tcctcaaaga catttttcat tctattttt 148680 atttetagea ttttgattet tteteagagt ttteeatate tetgattata ttaateatgt 148740 gttattgtgt attttctaca ttttcaatta gagcctttaa catattaatc agctatttta 148800

aattoottat otgataattt gaaaatotgt gtoacagaat cagtotgatt otgatgtttg 148860 cattttgtct tcagactttt ttcttgtttt actatacctt gtaatttttt gttcaaagtt 148920 ggacatgatg tttcaggtaa taggagctga ggtaaatgta ccttaaccca taaaagttta 148980 atgtttatct ggctagaagt tgaactgtgt ttaatggttg ctgtatttgg gtaccctaat 149040 agaggaatta gaggcttcaa attcctgtaa tatccttgtt tttgtcactt cattaagtag 149100 aatctatgcc tggcagttct ttcatctgta acccactgtt actatattgg aaacttgttg 149160 gtatggtggt aaggtgtaga gagggaaaat gttctatact cttatgaacc aatctcagtc 149220 tttcagtggg cttgcgtttt gtggttatga ccttacaagt tttcttagct tctccgcagc 149280 ccagttgaaa caggaaagct agaggatgct gaagtcagag aaatatatct ttctcctggc 149340 aggacaaagc cttttcctct ggatttgtca tttgttaaga agtctcttgg catatttcac 149400 aatggtaact cttcttcttc tcccctgcca aagccaagaa gagatctttc ctgggtttct 149460 aacatgagaa cetggtgact tteetagaga taaaaettae caaagtatgg ggeecectaa 149520 gattatgeca cacaggaatt tttteettta getagteeat acteageete caacaateea 149580 tcaaatctac cactgaagtt tttctaccca tttatggttc cagtagcatc tgtccaggga 149640 agegaattte attittgegt etetggatte acctttetgt ttagattetg ggatageagt 149700 ttgctttgta ttctcaattc tatgaggagt ccaagaaatg tcaccaattt ttcagtttgc 149760 tcagattttt ctagttttaa gaacaggagt gaccacttcc aagctcttta cctgtgggaa 149820 ctgcaactgg aaatggccct ttctgagaaa taaccatgca tttctggtga tacctttaag 149880 caaatcagca tgatttttaa ataagtactt tcagggctgc ttcctacagt tgtgaaggtt 149940 gtgctctaca aggacaacca ggctaagagg caaaaagagg gtggcatcta gtttgtgcaa 150000 aggtgcccgg aggatgggtg gagggtgggt aacagctgac cctgctttgc aaggttgcac 150060 aagggaggtt gaagcctgag ctcatcaatt ccaaccatct tatgaaacaa tccagtggct 150120 cttcttagct cagtttgtgg ggaacattca gaactgctcc aaggattcct tcatcttgtt 150180 caggetttga tggaacaggg ccagtagcag agagetettt cagatettca gattttgcat 150240 ttatctccag cctcactctt tgagaaggcc aaagcctcct tttgtaatac ctttccttta 150300 tcatgcctcc aactgcctta tgcttgccta gctgcctggt tagacagctt acatttgtaa 150360 ccaacaagtg agttccaatg ttccaaagtc attgcatctt catggatatc ctcattcatt 150420 gttctgggga gccacatggt gaatgtgaac ttgagttctg aagagtaggc ttgtgccagg 150480 cagccagctt ccccgacgtg gagccaaatg ttgcatctga gcagcatttg agcagtatct 150540 ccccagccgc gacaatgaaa tcaggtcctt actagagagt aggggattgg tgactgtaga 150600

ctctggtaat gattctggca ctgcaccagt agcaggcagc cctcatttgt tttgctgcct 150660 agcacccggg cgagatcatt gtttattatg gctcaaaggc agtaatcatt tcacataatg 150720 tgaggatttc tttcactcaa ttactttcat gctttgggct gatgagaata ataatcatgt 150780 gttgattacc ggtatcttga cagatgatgc tgagaaacgc aggtcactgc ttgctcctac 150840 ccttttttcc ccttaaacac tcaaggttgt gatttggaat ttcattcagt caccactatt 150900 acatcccaaa gtttctgatg ctgagaagac caagacaaaa tatttcttac aggggccctc 150960 aattootgoa gtotgoocta tgggataatt tatgttgatt tgttttaaag agacaggcat 151020 acataattca tgtcctgtgc atttcggctt ttggccattg aaaatactat ctcttttggc 151080 agegettgea ggaactaget acaataaaca tttcatacet cagtggacac tettttetca 151140 gctaaaagaa gcctgactta tatgtagact ccatcatgag aggcctgtat ttaatgaatt 151200 cagctgagca ttttttcctt ccaaagcata aaacaagctt attatctgta tcaatagttg 151260 gtttttctca aaaggagtca aggtgtgaat gggcatgaaa gggaaattaa attgaaactc 151320 ttggtggttt catggttgga ggccagttta aaactcatac tctaataact gcttttgaac 151380 tagctaggag aattgttaga tcagaaaagc atacagattt gaagagagac atcagggtag 151440 gcttcccatc cagaaggcag agagccagac aaacgacact tttgaagata tcggtgccac 151500 tgctgaggat ggctggattc atacctgtgt agattacagg gggttaaata tggtctacac 151560 atgtagtgcc aaagtagtaa tttaaaaatg caaatctcat caagctgctc ttctcctcaa 151620 attectteag tggettteea ttteacagag gatgaagace aaggaggetg catgateatt 151680 tgggtctcca atgcttcatc ctcatccagt ctcctgttgc ctttacttac tgtgttctag 151740 ctactgaggc cttcctttgc ttctctacaa ctgtttgctt ttacctaaaa ctcctgttta 151800 tgtttcagga ttcatcctaa ataatacttc tcccaggaac ttctgtttat tctggtaagt 151860 ttaaatccct ttgttaagtg tactcatgcc ctttttgttg ctaagatttt attactcggg 151920 taatttttga tgtttacata cctactagac tgtaaactcc ttaaaggcac ctggaggatt 151980 ccactttgca aatgtatcca cctaaggcat aatagatatt aaatgagtga gtaagttagt 152040 gcagtggttc tcaaacagtt tgaacatcag aatcacctgg atggcttgat aaggcacagg 152100 ttgctgggcc cctagagttt cttctgcata aagctgggac caaataatct gcatttctaa 152160 ggcgttctgg gatggtgctg tagtcacact ttgagaacca cataataatg taaagtcttt 152220 tcattactgc actactgcat tcttaccatg gggaccccaa gttataaagc ttgcattttg 152280 gatecatete tgcaactaaa tgcctggaaa acettaagca agttettata ttttcaagte 152340 agtcaataca tottactgtt tottattttt ttgaggtato coctoogtto ottocototg 152400

ccctgtttct agatggaagc attgtaacct cacatttgaa ctactgtaac cacatcctta 152460 ttctcttggc taccattctc tgctccttga actatttatt ttttattgcc agttataagt 152520 geetcagatg teattatgae taaaetttge eettgtetaa aaatgttgaa gatetcagta 152580 ttcaaggett tttcacgace tagateteet gtgtgtgttg etcacetete etaaatttgc 152640 atgcaactct tcatagctta ttgtagttat ctaatggtcc atctttcctg acaggctgcc 152700 agetgtatag gggcaageac catgacatte teatteactt aacaaacttg acetgttgtt 152760 gttgcatcat aatacattac taaacagatg aaagtcactg aacactatat tttgcctctt 152820 gtataacagt aacactgata accctagaag cacttaaatg gatttactct atgccagaat 152880 tcattcttca aacaacttta cacatatcga tgtatttatt cttacactaa agcatcccca 152940 ttttacgggt gaggaaattg aggtatagag aagtaacttg tccaagatct cgcaagtggt 153000 ggttcaagca tgcatactct ggaatttggc tgtagttcat tatcttacct accatgactg 153060 aggcatagtc caaataatgc ctaaaattac ctgaagcaat aacaatctct tgtgtgccag 153120 tttattgaac tacacataat cacaaaaaaa ttattcagca ccttttattt gtagggagct 153180 acggcaaata ctggggaagc aagcatgggt ggaatacagc atgtaaggtg caagtctgtc 153240 taatcctaca ggtggaggca gacaacccat gtttcaccac tttcttagta atgtgacctt 153300 gggcaagtta ctcaaccttt ctgtgttccg tttctttaaa atggggaaaa taaaacatat 153360 tttacaaact ttctggcagg attaaatgcg aggtggtata taaagtattt agcacaatga 153420 aacacgtcat gtctgcttag tagataagag ctatcattct agccctggcc ttaaggagct 153480 teceatatat teateagtag acageaattg gtagtgatge tettggatta agaatttage 153540 tgccataaat ttttgcctca atatgtctaa gacgaaatct catgtgtcca ggattggccc 153600 caaaagtata taggagtggt gggccatatc caattaaaga ggaaatcaaa cttaaagaac 153660 ataaaatgat tcataaatgg aggttttttc ttgaccactc acttatttgt tatttattga 153720 gcaggtgtca aactgctagg caccaagaat tcagagaaga aaatagtgtt tgtcttttt 153780 ctctcaaaac tgttttcatc actcatgcta tatttgaact tctgttattg actctcttga 153840 ccggtgtttt aagataatga agctaagttt aggcttatat agaaaacata ccaaagagct 153900 tatattgaac agaattagaa ggcttcaggt tggtagactt ttaacatagc ttttccacaa 153960 ctaggcaggt gcaatgccat catataaaat ctttatttca tcgattctca tctttcactt 154020 tagcagettt teaagetget etacetgtea tagcaacagt gttacateat gatgagetgg 154080 taggatatta cggacatcta cagtataaaa ggtggaagta ggatttaggt ttctatagat 154140 gctatacttg ctcatataca aatgtatata cacgtaacac ccagagaaga ttataacaat 154200

atgtcaatat attttatcac aatgtagttt ttattaataa gttgtgttga ctaacaagtc 156060 aacaccctaa actaagactc attggtattt atgcaattaa ctcagaagaa gtcttacaaa 156120 attectaagg ttactgttgt atcacaaaga tgaaatttta aaaggteeag agacaettea 156180 ctcccttata agctaaatat ctggcaatcc caaatgtata aaatggcctg gaagtgggaa 156240 ataataagtg ttggctactc aatgctttaa gtatctaaca gcagatatta agtgtctgct 156300 ccaggacctg gtatcacagc acttgcagta atgcaccatc cctttcagtt tgagtgactg 156360 agttactcat attctcagaa gctaattaat cttatttgaa ataaaattct aacatgttgt 156420 aaccctacta tcaacagcac actacattgt agcttaaggt ggtacaatta agggcaaaaa 156480 gtggcaggga gtaatccaat gatgaaggaa atggaaaaac aaaaaaagca gacaaagatt 156540 caaaatgaga ctctgaagtc atttaagtaa atcctgtatt cgcttgcata ccattgacaa 156600 attgctgaac tccccaaggc cacattgcac tttgagacaa aggggtagca agagatagat 156660 gagagagaga gatttcctga gaacaaggat ttaaatgata tgatcaatct tatactttcc 156720 caattctaat attgattcta taataattaa tggagtcgat taatgaggct ttatagtgtt 156780 agatcaaget theeteatat ceaagettet cettggetgt aaatgageet teaaaatggg 156840 agaaacactc atcttcctgg aggccgagac tatataaagg atgtgatttc tctgatatat 156900 taaaaattta agtggtgggc ttgtgttagc tttggagata ctcactaaat aaaatgggac 156960 catccaccat gtttaacctt gttttgcata tattaagcag tctctttata cccacttcag 157020 tagaaaaaca ggatggtttt ttttttttt tacaattttt aaaaaattta acattgacat 157080 aattatattt atgggttaca atatgttttg acttatgttt acattgtgga atgattaaat 157140 caatctaatt gaatccatca ccttacaaat ttctaaaaag ctgatggatt ttgatggcat 157200 cagattgctt tagtaggaat ctaggatctg ccacttactt gctgtgtgac cttagctact 157260 teteacteae titeeteate titaaagtgg ggacagtetg gtgtetgeea cacaacattg 157320 gttttgggat gagattagtt gagataatta tgatctgete tgtctgtgte ggetaageeg 157380 attattgttt gtccagggct gattgggaat acctgggaga cctctgccag ctccctttca 157440 gtgctgtatg gcagcaagct gtccagaaca cacacttgtc tatcaaagga aaacagatca 157500 ttacagagag atattagtga ttctattctt aaactgttgg gtaaaaccac gcttcaccat 157560 gatgetecaa atcetectta aaatacette aatetggtgt attattgtga cagecaactg 157620 tgtgccaggc aggcagtacc tattaaaagt tgtttggaga ttagggctca gagaacagct 157680 gggtacettt gttactagca gtctgctgac tcaaaatgag gggtgggggg ggaaagcete 157740 actgggatga agacagcaaa gaaaaaccgc agagctgggg ggaaaataaa aacagctttg 157800

gcctttgaaa accgattgct ctgctgtcct gtcatgaagt aggtaatatg ggcattcaca 157860 attccacaca ggatctaatt caagtcttaa aaaaaaaata caacatgata aaaacccagg 157920 tccaggtgca ggctgttttc tcttggtact tggtttgagg aagcatttgt tgctctatta 157980 tgaaagegea cacactgeet geeetegetg ceeageacee caceteagte teeagggeta 158040 taggaatgct gatcacagat gggctcccac tgccttagca gagggagatt cctgtctttg 158100 tcaacattac atatgattca cataactaac tgctcatgcc ttatgattcc aggcaatcaa 158160 tggtgaatct agttacagct taagagaacc aggtgccaga aatatcttcc atctctcagt 158220 gcctttgggc attctcattc agtactgaaa gcagcttgac aaaggaggca acataaatgt 158280 ttttagtccc ttttacagat gaaaacactg agacccaaaa tgttcaaaca tcctgcccat 158340 cgtcccagaa ctagttggcg acagaccagg aatcttggaa tgaaaaccta taacccatga 158400 gtgagcatac agtgacatag atcctgccag aaacactcca cattttcacc ccatgacaat 158460 ggacactgtg tccctgaaaa gttctacttt ggtttgggtc tagtagatgg tgccacatca 158520 gggaaacact gtacaacaga agggatacaa ttttaaaata aagttttcca tcaggcggct 158580 geettetttt gtetgagaaa gatttgtgee tgaaagtttt aggagaeage atcccagtea 158640 getteattet ttetetgata atttateeat atgaaateet tgeggetete aaateagatg 158700 agaaatgtto tagaatacta gaaaacatgg tgtagacaga agccagtact gttgcagcta 158760 atacaaagcc tgaaaccctc tgcatttgct gctatgatcc ctttacttac gttgttagtt 158820 gegtatgtga attgtgeett ecatteeett tgeaaatgtt eagtgggett geacagtgtg 158880 ttacactaaa taggtgtgca tgaattttac caaatctcat tgaattccta tggcttgtct 158940 tcagaactat acatgttaca ttccagagtc aaaagaagct cagtgatggg ggtggggcaa 159000 gagtcagtac cctccgaaat gggagcatgt tggagacact gtggcaatgc tagggagggg 159060 gatetettat tageagteat caaaggttet tgeecacttg caetggeetg etgttetgee 159120 ctactgaaac ctgtgcagga gagaaccatc aacagcttta gttggtggga aggggaggca 159180 gagcactagg agaataaact gccacggtat agttgtaaaa ggctactgga aagtaaacac 159240 accaaaatgt caattaggta atttcatcat ggactgatgc tttctctcct agttttttta 159300 tattttgagg atggattact tttataatgg caaaaaaaa attacttcaa aattttttgc 159360 agtgttteta ttetgeecca atttaatace ateettacaa ageteacate atgtgtgaaa 159420 cttattgaaa agtataacca ggataatctg ctaaattcgt taggaagaca gaagatgtag 159480 ctgacttcag tgagagtttg aagtgaatgc aacccaagtc atgtatagtt cacttgaagg 159540 acattigite agicaacaag gatticccat cececacace caagiccage cetticcagi 159600

gggcccttgt gcgttttatt cttgtaaaca cacttcaata tcaccttctc taagaagggg 159660 ctgttcattt gtatgagctt ctgtaggtct cccttctaag agatgcctta gcgaagcttc 159720 atgtgctctg gaggtctcgg gccctcctcc ctgtctagga ggctcctcca aagtgaatta 159780 gcttcatttc ccattttcat tctaccttaa acctgtgagg tgtttgtttc ctggggccag 159840 ggettgetgg ggegtteage ageetgeaca ceagetgetg etetgeteec cagtgtacat 159900 cttgtaacaa cgcagctcct ttgctggttg ttgaataggt agaggggcag ctgtgaaggg 159960 cagaagaaag ccgattattt cactttcttt cttttcggaa ttctgctttg tgatcttgtt 160020 ccctcttaga atgtttcccg agaagcccgt tctatttagc tcttctcttg ctagggagca 160080 ttttctgaca gttttccaaa atgtgtatat tccaggcagt tagttggagg tttcgcacat 160140 attotagtta ggaaagetea geetggettt tgtggeecag aageecagaa ttteageaac 160200 tcacaaagaa ctcaaatatc cttatgtgtg atatttgaag gatagggctt tgcaagtcag 160260 cctagaaaac gaggataata tctcttggct gtagaacaaa ctgaaaactc attccattct 160320 ggcttggaga acaaggattt ctctctcaga acaagttttc agggatgata gttaatgacc 160380 tgtcatgttt ttcttatgat ttcaaaaaac taaattaaaa ttgctactta tttttataaa 160440 ttatatgtga aatgtattta ataatttaaa cttacttett aaattgettt tetteagaga 160500 ccttttgtct cctctcactt gtttgacctc agtcttcaga agcaaaccaa aataccattt 160560 caggtagatc agttagcaat tgctaataaa gtgtgagttg cagattttga gtgtatagag 160620 taagtgtage tagetatgag caetgtgtae atgagaagta tetateaetg tgtetttete 160680 cattccacag ctcttgcaaa ccacagaact caacatccat gcaactcctt aactgatgtg 160740 cctgtttgga tattcaaata ctttctaaaa aaccaaaaat tatgcattag cttgcagcac 160800 ctacactcta gaaaaatcaa ccctcagggt cttttggtac catggtctgg agttgctttt 160860 attttcctag cttttgtcag catactgcta actcggttga taagtgttct ttctgtttaa 160920 tgatttatgc ttcagaggga tttgtatagg caaaatagat aaagccatat atttccttat 160980 aggacatatt ttagatgaca ttactttgaa ttcagaacct gtgctctcac tgtgggtatc 161040 aatgacttcc tcaaaacaat tcaataattt caagggcact gtctcatttg tgaaggtctt 161100 ttacagttaa tatgactacc tcagataatt acaatactgc ttctggtatg ctacagtata 161160 taatagaatc cagtgttatt aactgaaatg aaatagtcga atttttggta aatgtaacaa 161220 tttgataatt agccacacat gctattatcc attccatatt cacataattg gtaaatgtta 161280 tgcagtttta tcttcagtga aaacatttaa gtatcttgtt gacttttgtt tcagagaaaa 161340 catttttaaa attctatgaa tgtcttaggg cactagaatt gaagtgaaat acatcttttg 161400

ttttagtaga aaggtgctgt atgaatgtga aagctcctaa ttagcttttg taaatcctct 161520 agctatgaat tgctttttaa acaaggatga aatgatagca gaacacacac acacaaacac 161580 acacacacac acacacacat gegetaatat aatactgact cateaggeag ttgacatgat 161640 gtggtcattc aatatctagc ctctactttt aaaaaattat tgttggaata gtagatagga 161700 atatagattt agcaaagtge tttgagattt aggaagcate tetacagaat gccaagaaag 161760 tgttaaagaa tttaaatgag acctaaagga gttttctact ggtgaggcag taattatatt 161820 agaagccaaa ccatcacata ttaaggactg ttttgtgctc accatttgta ggtgaaaagg 161880 caatcttttg gaagacaaaa agaacaaaca gcccatcatc atgtagaaat gtagaaacat 161940 tgtgctgttc acaatcttgt taccaataat tagctaatta ttctttttta ctaaaagcga 162000 aaggatacat gagcactgca catcatggga aaggagaggt gtcatcagaa caggctgcag 162060 acacacatcc agggtaaagt tagctggatt attgtgggtc ctggttggtc aaaccatggt 162120 tgccaggaaa accaggaaga tttaagttat caatctagtt ctagtagacc tatgactgag 162180 ggtatttatc tgtctagaag gaagaatttt tagtcaatgg aggcaataat tttaggcaaa 162240 tatggtttcc atcagaaaag tccaaaggaa aagtgttgct ttgggaaata tgcgaagaat 162300 gacaaaggga caagacttta gcccaaagat tggtgcaacc taacctgagt tgactcataa 162360 gtccatgatt caatggagga cagtagttca tttttagtag gctagtcaaa tatctaaaat 162420 ggaaaaatgc aaatagatac acgtgtaaga taagagacaa ttaggaaaaa aggctcctta 162480 caaagttagc tcaagaaaat tcaaaagaag caggagaagc cagactattt ctagacacag 162540 aaaatataat gactagctca gcctcaacaa aaggtctgaa agtaaaattg gactggaaaa 162600 atagaaggtt ctcagaccat acaaatgaga agttgggtgt ttaagtgaga caagtgtaac 162660 atttactgca cttagttaca cattaagggc tctgcacaca tcttgatgta tctgtgtatt 162720 attcatccat gctgctgctt ggcttattgt ggatgaattc ctatttctaa ggatccgagt 162780 tcaagcagtc aattcaagtg atgttaaagt aggaaaacgg aagtatgggt ggaataaaat 162840 aaccacataa tcacaacctg tgtctactcc aggtacggag acaactctga attgaacgcc 162900 tagttataca aacagtagtt atgcaacaaa cagcagctgt ctgacttgga tctatcatct 162960 taccagggeg cactaagttg ctctagcacc atctcttgcc atttctagac ttaaacttta 163020 tactccagta agactaaatt gcttactatt tcagaacttt tcacactatt taccttgcct 163080 tgatcttttc ctgctcgttt tcctgttggg ctgctattca ttcttcaact cttcagctaa 163140 tcttctgtct cctttaaaaa aaaagtcttc tgagagctcc tcaacagtct taattactcg 163200

ttcctttgca ctgccttgtc tcttataggc ttttttattc ttgctgtttc acactgcatt 163260 ttaatttgtt tgttatgtag ttattttatc cgcagcgctt gagctctttg gaagaaacag 163320 tgtcttgttc atctttgtgg cttcatagct ggcatacagc cagaattgcc atggaaggga 163380 ctcaatgaac taccaataaa ttagcgaatg aatgaattag aacccaggaa ctcaaatatg 163440 gatcacaaat gtggttgcct ttagttctag caaattttca tgcagtatct gtaagacaca 163500 acctcttaaa acacctattt ggaggcagat actatgttag gcgtcagcta ctctactagt 163560 cetttacetg aagtaactca tatacagtgt caccaaaacc etgtgagaag ggatgttete 163620 cctttagata aggaagctga ggcataaaga ggttaagtaa ttttcccagg attacacagt 163680 gaatagtaac tgaactaaga tgaaacagtg gtagtgagtt tcagagctga gctctcaacc 163740 accataccac tittiaataa gattitatga aagtiggoto tictiagata attoigaaaa 163800 atgagtccgg aatttcattt tctggaatga taagaggcat tttagctgaa gcaacccaac 163860 atttgtaatg gatttaattt gagaccatgc caggacagtt atcatggttc atttaagtat 163920 ccattaagtg gatggggaaa agaaaaccac tatgagacca gaaggggcct ctaatgagaa 163980 aaaagaagag gatgtgggaa actaagtatc tgaagtattg ggaacatata ttatacaaca 164040 ttatagagac gtgcacctgc tcatattcat aaattttaaa aaagccttgc ttatggctgg 164100 gegeggtgge teaegeetgt aateceagea etttgggagg eegaggeggg eggateaega 164160 ggtcaggaga tcgagaccat cccggctaaa acggtgaaac ccagtctcta ctaaaaatac 164220 aaaaaattag ccgggcgtag tggtgggcgc ctgtagtccc agctacttgg gaggctgagg 164280 caggagaatg gcgtgaaccc gggaggcgga gcttgcagtg agccgagatt gcaccactgc 164340 agtccagcct gggcgacaga gcgagactcc gtctcaaaaa aaaaaaaaa agccttgctt 164400 ataaaattat aacatatgta gtagacccaa gcagtgttga aatcaaacac tccaacaaac 164460 aaaatgtaca ttcaaagaaa agcagcetet ttgcatgtat ttttcagata ctgaagaata 164520 ttcgcaaacc acagcaatat ttttaaaatt ctatttgttt ctgtattcac ttccctcaga 164580 caccatagtt gttcgctctc tagaagttgt cactaaatct cttccaaata aaccttctga 164640 atttccttct ctaggtctac aattcttttt gattgtgtag cacgaaatct taaaggagtt 164700 tggcaaggaa agatetteet ttgtegggga gtaaggggga gggaggaagt ttagggcaaa 164760 gccaaggacc cttttagtaa gcaaggggaa gaggacggac ctctatatga acaattgttc 164820 ctctggctca ccaaattgaa aaacaagtat aagtaggccg tgggcatcta caaactgaac 164880 atacataaag ttgttttcta taaatgtttc ccagaggaat aaggctgcac ccttaatttt 164940 aagaaattgg gctaataaaa ggaaaaggcc aatacacttg actacgcaat tttaaaaagc 165000

tgactgaaaa atgitccctc aaaagagatc caagaccatc tttgtgtctg aatctagcat 166860 ctattctgtc tattgcacct cataaactgt tttctcagag ttatgaggtg gaagaggtca 166920 gcacaggttc atacaatgtg gcaagaattc tggaccaggg tccagatcaa cgtaacttag 166980 ttcacaaaaa ttgtcagaga acagtgcagt agatagactg gctgttgtct taatgttcat 167040 actgtacgga gtgagtgagc tgcttggaac tctttacctg tgtgcttctg tgtataaaac 167100 etgetetgaa ttgteettee ttgaataaaa ataatgetag gtatgtagaa tatagagggg 167160 tgctgggtat gtgtgcgtgt gtagttaaga gctacttaga ggaaaattgg ctgacatgga 167220 aggetgatat aatttaagte cageccaact gageatteag atgttttaaa gteteagtte 167280 tgacttgaga tgtaaaatcc atcaacaaga aaaagtaaat catggaagaa aaatatgatt 167340 tatatatttg atctaatcaa atcactttat atttggcaga gatgtgagcc cagagaatta 167400 tragtiragg accaracata tigitagra catattataa titaratata tittrettit 167460 ccatgacacc ttaccctaca acatacaaat ttatagttat aattattgta actcaaaaag 167520 tttataaact ccgtagtacc tggaataata ttttcaaaac ccatgaacta ctttagcatg 167580 atctttgcag tgagtcaatg aggtgcagta gaaataaaac aggtgttaga ttcagacaga 167640 gctggtttta aagcttagct ctgtgacttc ctaagctgta tggttttggg caagtaactg 167700 aacttctaga ttttcagttt catcatctgt aaaatgggga gaataaaatt tacctacata 167760 catacttcta aggatttaat caaatacagt gtataaagca cgaagcttag tacaattaca 167820 aatgttagtt ccgatgagtc aggatctaca tattatttac ttccttttct tccatttgct 167880 ttcaatttaa aactctggtt catttaagaa cagacatgat taggacatgc ttcagagtag 167940. aaaattcacc ccattaatgt taatctccat gactatcacc cctacaactt gctccctttt 168000 getetaceet gaggaaatea ateageteea tattaattgt caacttgtat aaaacageaa 168060 aatctgacaa attttggaaa aagatgaaaa agtcactggt atatgctggg agtttgagga 168120 tgagctatgt ctttgactgt catatgaata tttttaatgg catactgttt tgagttttgt 168180 agagaagcta tagaagagga agtgttataa ccaaagtcca ccatctttca tcttgaacct 168240 cttattagca tgtctaggat atgaaagaaa ggtacaaatt caagaggata tttttcccta 168300 ctctaattct catcatgtgt cttatggaaa aattcatata ttcaatctat ttttcagtct 168360 ccatttcaga ctcccactat aatcaagata atgtacttgc ttcattcatg ttctgcaatc 168420 aatatcatct tatattettt attetteece tetececcat atatgttate tttgeetatt 168480 ttetteette tteeetttaa caaatgttat tatacaaata agagttetga ttaatatega 168540 gagtgaaagt tattaatgaa acattgccac tttgtctcac tgcagctgaa tttgccagat 168600

acctagitica giagcaccgi gatgagaaaa atcccgtaaa cattictaaa gaaaacaggi 168660 acactttaag ggtctaatgc aatgtgactt gaggatattt catggtttga ataaagactg 168720 cctagatagg atgcacaggc aaattggggc accctgcctg ggctaagccc ctggtgttaa 168780 tgagacacte tgeagggeat cetggetgea ceaacgagae aggtagaaga tgteagtgtg 168840 tgcctcctcg gcatttgaag ctagcactaa ttttcaaatt tccgtcctgc ctggcagggg 168900 aaacacttcc tcagacacat gataaaactg cggtaagaag tggaataaca aggctctggc 168960 aaggcctgtt tcagacagcc attgtgttca ctagctgtgt tgactgcatg ccctcaacac 169020 tcacacatga ataactcaag tgaactgact acctctcttt actgtacaca ttgaggaaga 169080 tttttcatct gacaagtgta gtatgtagaa ggagagtatg gcagtctctg cagtggttga 169140 aggtgagggg ttgagagact ggaaacaaat tacgtaaatg catgtttgct taatattaga 169200 aaaacaacac teeettgate agaacteaaa geataaggaa tgetgtteta gttattacec 169260 catttttgag aacttttctt tatggaaagt ttcaaacata tacaaaacta tgaaagaatt 169320 aaccetcatg tacceatcac ccagtttcaa caatgatcaa attttgetca atgatcaatt 169380 ttgtttcatc taccaccttt cttgtcccca cccaatcctc cacctcacat tacatggaaa 169440 caatcetgge atgactaatt teatetacaa tgattttgca tatatatete caggagetat 169500 ttaaaaagcct gatagctaca aaacaaacaa taattcccta taatcaagta tccgtttagt 169560 caatgttcaa tttccctgac atttttacat tgtgtttgaa tcaagatcaa aataagattg 169620 ttctattgca gttggttgat gtatatgtta gtactatttt taatctatgt gttttcccca 169680 tttggtttgg agtattette gaatgtgaag etecatgeet ttgtaetage agttttagat 169740 ctgtctttaa aacttcaggc aagttaaatg tctacgtatg gaggaatgct tgaatcaact 169800 acactatgtg tgtttgctta aatcttģggc atgatgcagt tgaaagaatg gcctttgtga 169860 aataagttat tittgaacct gaatgtatca titgtaaaat gggagtaatg ataccacctc 169920 aaggattaag tacattcatc tcccattatg gtgctaagta tataacacca gagcataaat 169980 gggtatttta aatggtatac atgttaaaat tatatcaaat tttttaatga acgtatttcc 170040 ccattaaatc atgttagatt tcaactaagt ctttttcttc agggaaggag acagtggggg 170100 ctgccccatg catcatggat cagctgtaag tctcaaaaca gactttccta agaacataga 170160 caacctgaaa gccaggtttc tggagcaaca gcatgggttg ctaattttaa agtccctcct 170220 ttctcatatg aagagatagg ccttataaca atattttttg tttggtttga ttttttttta 170280 ggttgacaga aaaaacacag gataaagtat ggtatggtag ttctaagtca agcaagaaga 170340 ggaaaccatg ctatcaatgc tggtgcaggg gagaatccaa acgagcagag agatgtgaac 170400

aaaaagteca aactggaagg gaagagatt agggcaagca ggtgggaagc atgtgtettg 170460 gcttctctct caggcatatg ttataaggaa tcagagactt ttccgtaggt tgaagagaaa 170520 gctgaaagtg caggggtggt ttccctttct gtacttagaa aatttcacct ttaactcagg 170580 gccaaatcca aagtaatata ggagcgatgg tgtaaaactg ataaagatgg ttagacagac 170640 gagcagaaaa cagttttcct gactcccatg tgcatttcgt aatcccagtg tgccagtggg 170700 cccaggggag cgagtgtggg ggctctgaga aagccagtga accagtagaa gtcaggcaat 170760 ataatagaag aggaaaaaat tgagactttt teeceeceat eettatgate eeacataage 170820 cattttccgg tccattccca ccactacccc tccaaaaaaa acccacacac acacaaacta 170880 cagattgtct tgtaaagaaa cagatggaaa acaaatctaa aacactgagc ctgtaaaata 170940 cgctcagtca cccaagggac tatttttaac ctcaccctga cagagggaga gttaaacttt 171000 gagtatttta tagacagact gcttaaactg gaagaaatta agctattatg aattgtcaag 171060 ttttccgaat tacctaataa gaatcaagtt agctctagca acttataaag ctatattctc 171120 tttgcatatc tgaatgttgt gtaatttgac tctaatgcac aatgatacag gggaaaagta 171180 gaactcagaa ttttaaaagt gattataaac atgtaaaatg aagtatgaga gaaaagattg 171240 agaattattg ttctaaaatg taaatagttt gtgtttgatt atgggagcct agaggatttt 171300 cttcttactc ttgtcattta atacttacag atatttttaa acttggaata ttgaccaaat 171360 taaacacatt acaattaata agcaatgatt gaacactaat tttcacaggt actatgctaa 171420 gcactatgga agataaaggt ggatgagaca tggccccaaa gccaaatgaa cttacagcgt 171480 ggagagacat atgggtaagc ggcaagggaa ttcaacactg attatctcct agctatgaga 171540 aactacaatg ttcttcccat ctactacaac ccacctcctg aggatttcaa ttcagtttga 171600 tgatgatgaa aagcaaagag ttaaactatg ataactcagg tttctcttca tttcctcatg 171660 tgtccctttg gcaaaaagtt tagacctata atgaggatga tccatgcctc cactagtgga 171720 catagettgg tatgatgtga ggcatecate egtttttggg atacetgaag tteagetaaa 171780 tgttatttca tagttcacat tatgaagcca tttattggct aaaaccactt tttaaatgag 171840 atccttttgc tatttcaata gctaacttcc cttagatgca gtatacgatt gatattgcat 171900 tgaatgctat aaaagcatac tgtgtgacaa gaagaagagt ttaacagttt aactctgtac 171960 aggaccatta agaatttatc taggttagaa gttctccagt cttagcctgt atcagaagca 172020 tttgcatgac ttgttaagat tcagactggt ggaccccacc ctcactttcc gattcagtag 172080 tccggaatgg ggtccaccaa tttgcatttc taactgtggt ttttggtgga cgctactggt 172140 cctggacttg cactttaaga acctataatt taagccaact tcctttgcag tttaggaata 172200

attttttgta taacaataac taaaattcag aaggaaatct caaagtgaaa aagctgggta 174060 agccaatgac atgaacatca aaattacata aatattaata aacaaatacc gaggaaacac 174120 tatcccaaat ggaacctgaa gataccttta gtcacctatt aaaaaagcaa atggattaag 174180 aaatattgta ttcattgcca gtgaaagtaa ggaatccatt tatttattta tagtgatctt 174240 ataaattggc atacctcttt tggacagtaa ttaagcataa taatttatag actgattcgg 174300 taattttatt ctctagaatt tctaattatt caacaaacaa tatatgcaca gaacacttat 174360 ctacgatgcc aaaaggctga aaatagcata aatgtccaag attaaaggaa aagatttaat 174420 aaattcaacc tagaaaaata tgtaatcatt aaaatgataa ttatgaagga tatatagaaa 174480 tgttaaaagt accacaatcg atgaaaatag caacatatat atgtaactat atatatatgt 174540 agtttgtgtt tgtgtttatg ccaacatata tagttatgtt tatgcacata gaacaaattc 174600 tatcccgagt gtaacaaagc aaatgcatgt atgtgaaata taaaaggcaa aaagtactaa 174660 tagcagtatt agaattatga ttaattttta aatcatttaa gcattctttg aagttttctt 174720 tccagtataa attaaaatta actttgaatt cctcttctgt aacagagtaa tgtgtttgca 174780 catcactaag tgtatgcaat gccttcatgt cttcatgcct ttatcctagt cagcaatgca 174840 tcatgggaca acatcaagag ctctgtggcc catagtcatc ccttgtactc acccagcatg 174900 tgtttactga gccgatattc tggctgtctt ttgtatatac aagaataacc caatatatct 174960 cagecetgtt ggtctagtgg aggtagacat gtcaatgate attaagttae aacatagtae 175020 gtacagtact agggttaggc tattttagaa cccccaaggt ggtatcaaat tcaacatagc 175080 aggtaataaa acatattaga tottatttot acgggatggg tagagttago gaggcaaaaa 175140 ggataagtgg ctggaggaaa gacattgcat atagggacta ggcatgaagg taggaaatag 175200 catggtgagt aagaaatatg tttgcagtat ggaagggcaa gggcttcagg ttcatgttta 175260 agtctagatt ttaccgctta ttagcttatt attcaaatct tatctaaaaa tgcaaataat 175320 tccatttatg tcacaaattg atataaggat gaaatgagac caaatgtgta aaggaggcat 175380 tataatgcct gatgcggcag gtctaacagg tctatttcaa gggctttgac attactggaa 175440 ccaagtacaa ggtgggatga ggtaggaggt aggagacaat cagatcatgg agaacttctt 175500 catcaagget aaageggttg gactecatte cataagteae tgaageetet gaagattttt 175560 aaatcaagag agcaacatga tcagggttgt ttttcagatg gatcactaaa aactgtcttg 175620. aagctggatt tgatggggcc aagcctggca gcaaggtcag tttgtgggct gttttaatag 175680 ttctggagac agtgaaggct gaagcaggaa tggaaatgag gaaatggttg gagaaatatt 175740 catcaggtaa aaaggtaggg ctttgtgatt agattgagat ggaaggagag aagagtgagg 175800

acaataaaaa acacagaata ttcaaaatca taattgccct gggcactgta agcattgcct 177660 caaattccaa ctgtcctaga tctctcatta tacagttggg gctgtctctt gcactatgct 177720 ctctgcgttc ttatcacttt gatatgctaa ggagctttga atttagcaga gggtaaactg 177780 ggcccagtaa gtggtttcag atttaaattt taattcgtta aagaagcaca tagttcctct 177840 gtagtgaatt c 177851

<210> 4 <211> 2233 <212> DNA

<213> Homo sapiens

<400> 4 tgcaggtgag caagaggatg ctggcggggg gcgtgaggag catgcccagc cccctcctgg 60 cetgetggca geceatecte etgetggtge tgggetcagt getgteagge teggecaegg 120 getgeeegee cegetgegag tgeteegeee aggacegege tgtgetgtge cacegeaage 180 gctttgtggc agtccccgag ggcatcccca ccgagacgcg cctgctggac ctaggcaaga 240 accgcatcaa aacgctcaac caggacgagt tcgccagctt cccgcacctg gaggagctgg 300 ageteaacga gaacategtg agegegtgg ageceggege etteaacaac etetteaace 360 teeggaeget gggteteege ageaacegee tgaageteat eeegetagge gtetteaetg 420 gcctcagcaa cctgaccaag ctggacatca gcgagaacaa gatcgttatc ctactggact 480 acatgtttca ggacctgtac aacctcaagt cactggaggt tggcgacaat gacctcgtct 540 acatetetea eegegeette ageggeetea acageetgga geagetgaeg etggagaaat 600 gcaacctgac ctccatcccc accgaggcgc tgtcccacct gcacggcctc atcgtcctga 660 ggctccggca cctcaacatc aatgccatcc gggactactc cttcaagagg ctgtaccgac 720 teaaggtett ggagatetee caetggeeet aettggacae catgacaeec aactgeetet 780 acggcctcaa cctgacgtcc ctgtccatca cacactgcaa tctgaccgct gtgccctacc tggccgtccg ccacctagtc tatctccgct tcctcaacct ctcctacaac cccatcagca 900 ccattgaggg ctccatgttg catgagctgc tccggctgca ggagatccag ctggtgggcg 960 ggcagctggc cgtggtggag ccctatgcct tccgcggcct caactacctg cgcgtgctca 1020 atgtctctgg caaccagctg accacactgg aggaatcagt cttccactcg gtgggcaacc 1080 tggagacact catcetggac tecaaceege tggeetgega etgteggete etgtgggtgt 1140 teeggegeeg etggeggete aactteaace ggeageagee caegtgegee aegeeegagt 1200 ttgtccaggg caaggagttc aaggacttcc ctgatgtgct actgcccaac tacttcacct

1320

gccgccgcgc ccgcatccgg gaccgcaagg cccagcaggt gtttgtggac gagggccaca

aggacggget ettegaggge eteggeagee tetgggaeet caacetegge tggaatagee

540

600

tggcggtgct	ccccgatgcg	gegtteegeg	gcctgggcag	cctgcgcgag	ctggtgctgg	660
cgggcaacag	gctggcctac	ctgcagcccg	cgctcttcag	eggeetggee	gageteeggg	720
agctggacct	gagcaggaac	gcgctgcggg	ccatcaaggc	aaacgtgttc	gtgcagctgc	780
cccggctcca	gaaactctac	ctggaccgca	acctcatcgc	tgccgtggcc	ccgggcgcct	840
tectgggect	gaaggcgctg	cgatggctgg	acctgtccca	caaccgcgtg	gctggcctcc	900
tggaggacac	gttccccggt	ctgctgggcc	tgcgtgtgct	geggetgtee	cacaacgcca	960
tegecageet	geggeeeege	accttcaagg	acctgcactt	cctggaggag	ctgcagctgg	1020
gccacaaccg	catccggcag	ctggctgagc	gcagctttga	gggcctgggg	cagcttgagg	1080
tgctcacgct	agaccacaac	cagctccagg	aggtcaaggc	gggcgctttc	ctcggcctca	1140
ccaacgtggc	ggtcatgaac	ctctctggga	actgtctccg	gaaccttccg	gagcaggtgt	1200
teeggggeet	gggcaagctg	cacagcctgc	acctggaggg	cagctgcctg	ggacgcatcc	1260
gcccgcacac	cttcaccggc	ctctcggggc	teegeegaet	cttcctcaag	gacaacggcc	1320
tcgtgggcat	tgaggagcag	agcctgtggg	ggctggcgga	gctgctggag	ctcgacctga	1380
cctccaacca	gctcacgcac	ctgccccacc	gcctcttcca	gggcctgggc	aagctggagt	1440
acctgctgct	ctcccgcaac	cgcctggcag	agctgccggc	ggacgccctg	ggccccctgc	1500
agegggeett	ctggctggac	gtctcgcaca	accgcctgga	ggcattgccc	aacagcctct	1560
tggcaccact	ggggcggctg	cgctacctca	gcctcaggaa	caactcactg	cggaccttca	1620
cgccgcagcc	cccgggcctg	gagcgcctgt	ggctggaggg	taacccctgg	gactgtggct	1680
gccctctcaa	ggcgctgcgg	gacttcgccc	tgcagaaccc	cagtgctgtg	ccccgcttcg	1740
tccaggccat	ctgtgagggg	gacgattgcc	agccgcccgc	gtacacctac	aacaacatca	1800
cctgtgccag	cccgcccgag	gtcgtggggc	: tegacetgeg	ggacctcago	gaggcccact	1860
ttgctccctg	ctgaccaggt	ccccggactc	: aagccccgga	ctcaggcccc	cacctggctc	1920
accttgtgct	. ggggacaggt	cctcagtgtc	ctcaggggcc	: tgcccagtgc	acttgctgga	1980
agacgcaagg	gcctgatggg	gtggaaggca	tggcggccc	cccagctgtc	atcaattaaa	2040
ggcaaaggca	atcgaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	2100
aaaaaaaaa	aaaaaaaaa	aaaaa				2125

<210> 6

<211> 4762 <211> DNA <213> Homo sapiens

gcgctccaga caagatggcg cggccggtcc ggggagggct cggggccccg cgccgctcgc 60

	cttgccttct	ccttctctgg	ctggttttgg	ttcggctgga	gccggtgacc	gccgcggccg	120
			gccgcctgca				180
	ggegeggget	ggctgcgttg	cccggggacc	tgccctcctg	gacgcggagc	ctaaacctga	240
			attgaccctg				300
•			gagttgacag				360
			cagcacaaca				420
			gtgttagatc	•			480
			ccgcctataa				540
			tttgatggtc				600
			cttcctgtaa				660
	•		attcggctga				720
			cagcgaaaca				780
	ggggactgtc	caagatgcat	gtgctgcacc	tggagtacaa	cagcctggta	gaagtgaaca	840
	gcggctcgct	ctacggcctc	acggccctgc	atcagctcca	cctcagcaac	aattccatcg	900
	ctcgcattca	ccgcaagggc	tggagcttct	gccagaagct	gcatgagttg	gtcctgtcct	960
	tcaacaacct	gacacggctg	gacgaggaga	gcctggccga	gctgagcagc	ctgagtgtcc	1020
	tgcgtctcag	ccacaattcc	atcagccaca	ttgcggaggg	tgccttcaag	ggactcagga	1080
	gcctgcgagt	cttggatctg	gaccataacg	agatttcggg	cacaatagag	gacacgagcg	1140
	gegeettete	agggctcgac	agcctcagca	agctgactct	gtttggaaac	aagatcaagt	1200
	ctgtggctaa	gagagcattc	tcggggctgg	aaggcctgga	gcacctgaac	cttggaggga	1260
	atgcgatcag	atctgtccag	tttgatgcct	ttgtgaagat	gaagaatctt	aaagagctcc	1320
	atatcagcag	cgacagcttc	ctgtgtgact	gccagctgaa	gtggctgccc	ccgtggctaa	1380
	ttggcaggat	gctgcaggcc	tttgtgacag	ccacctgtgc	ccacccagaa	tcactgaagg	1440
	gtcagagcat	tttctctgtg	ccaccagaga	gtttcgtgtg	cgatgacttc	ctgaagccac	1500
	agatcatcac	ccagccagaa	accaccatgg	ctatggtggg	caaggacatc	cggtttacat	1560
	gctcagcagc	cagcagcagc	agetececca	tgacctttgc	ctggaagaaa	gacaatgaag	1620
•	tcctgaccaa	tgcagacatg	gagaactttg	tecaegteca	cgcgcaggac	gggaagtga	1680
	tggagtacac	caccatcetg	cacctccgtc	aggtcacttt	cgggcacgag	ggccgctacc	1740
	aatgtgtcat	caccaaccac	tttggctcca	cctattcaca	taaggccagg	ctcaccgtga	1800
	atgtgttgcc	atcattcacc	aaaacgcccc	acgacataac	catccggacc	accaccgtgg	1860

cccgcctcga	atgtgctgcc	acaggtcacc	caaaccctca	gattgcctgg	cagaaggatg	1920
gaggcacgga	tttccccgct	gcccgtgagc	gacgcatgca	tgtcatgccg	gatgacgacg	1980
tgtttttcat	cactgatgtg	aaaatagatg	acgcaggggt	ttacagetgt	actgctcaga	2040
actcagccgg	tțctatttca	gctaatgcca	ccctgactgt	cctagagacc	ccatccttgg	2100
tggtcccctt	ggaagaccgt	gtggtatctg	tgggagaaac	agtggccctc	caatgcaaag	2160
ccacggggaa	ccctccgccc	cgcatcacct	ggttcaaggg	ggaccgcccg	ctgagcctca	2220
ctgagcggca	ccacctgacc	cctgacaacc	agctcctggt	ggttcagaac	gtggtggcag	2280
aggatgcggg	ccgatatacc	tgtgagatgt	ccaacaccct	gggcacggag	cgagctcaca	2340
gccagctgag	cgtcctgccc	gcagcaggct	gcaggaagga	tgggaccacg	gtaggcatct	2400
tcaccattgc	tgtcgtgagc	agcatcgtcc	tgacgtcact	ggtctgggtg	tgcatcatct	2460
accagaccag	gaagaagagt	gaagagtaca	gtgtcaccaa	cacagatgaa	accgtcgtgc	2520
caccagatgt	tccaagctac	ctctcttctc	aggggaccct	ttctgaccga	caagaaaccg	2580
tggtcaggac (cgagggtggc	cctcaggcca	atgggcacat	tgagagcaat	ggtgtgtgtc	2640
caagagatgc	aagccacttt	ccagageceg	acactcacag	cgttgcctgc	aggcagccaa	2700
agetetgtge	tggʻatctgcg	tatcacaaag	agccgtggaa	agcgatggag	aaagctgaag	2760
ggacacctgg	gccacataag	atggaacacg	gtggccgggt	cgtatgcagt	gactgcaaca	2820
ccgaagtgga (ctgttactcc	aggggacaag	ccttccaccc	ccagcctgtg	tccagagaca	2880
gcgcacagcc a	aagtgcgcca	aatggcccgg	agccgggtgg	gagtgaccaa	gagcattctc	2940
cacatcacca g	gtgcagcagg	actgccgctg	ggteetgeee	cgagtgccaa	gggtegetet	3000
accccagtaa (ccacgataga	atgctgacgg	ctgtgaagaa	aaagccaatg	gcatctctag	3060
atgggaaagg (ggattcttcc	tggactttag	caaggttgta	tcacccggac	tccacagagc	3120
tacageetge a	atcttcatta	acttcaggca	gtccagagcg	cgcggaagcc	cagtacttgc	3180
ttgtttccaa 1	tggccacctc	cccaaagcat	gtgacgccag	tcccgagtcc	acgccactga	3240
caggacaget o	cccgggaaa	cagagggtgc	cactgctgtt	ggcaccaaaa	agctaggttt	3300
tgtctacctc a	agttcttgtc	ataccaatct	ctacgggaaa	gagaggtagg	agaggctgcg	3360
aggaagcttg (ggttcaagcg	tcactcatct	gtacatagtt	gtaactccca	tgtggagtat	3420
cagtcgctca d	caggacttgg	atctgaagca	cagtaaacgc	aagaggggat	ttgtgtacaa	3480
aaggcaaaaa a	aagtatttga	tatcattgta	cataagagtt	ttcagagatt	tcatatatat	3540
cttttacaga (ggctatttta	atctttagtg	catggttaac	agaaaaaaat	tatacaattt	3600
tgacaatatt a	atttttcgta	tcaggttgct	gtttaatttt	ggagggggtg	gggaaatagt	3660

tctggtgcct	taacgcatgg	ctggaattta	tagaggctac	aaccacattt	gttcacagga	3720
gtttttggtg	cggggtggga	aggatggaag	gccttggatt	tatattgcac	ttcatagacc	3780
cctaggctgc	tgtgcggtgg	gactccacat	gcgccggaag	gagcttcagg	tgagcactgc	3840
tcatgtgtgg	atgcccctgc	aacaggcttc	cctgtctgta	gagccagggg	tgcaagtgcc	3900
atccacactt	gcagtgaatg	gcttttcctt	ttaggtttaa	gtcctgtctg	tctgtaaggc	3960
gtagaatctg	tccgtctgta	aggcgtagaa	tgagggttgt	taatccatca	caagcaaaag	4020
gtcagaacag	ttaaacactg	cctttcctcc	tcctcttatt	ttatgataaa	agcaaatgtg	4080
gccttctcag	tatcattcga	ttgctatttg	agacttttaa	attaaggtaa	aggctgctgg	4140
tgttggtacc	tgtggatttt	tctatactga	tgttttcgtt	ttgccaatat	aatgagtatt	4200
acattggcct	tgggggacag	aaaggaggaa	gttctgactt	ttcagggcta	ccttatttct	4260
actaaggacc	cagagcaggc	ctgtccatgc	cattccttcg	cacagatgaa	actgagctgg	4320
gactggaaag	gacagccctt	gacctgggtt	ctgggtataa	tttgcacttt	tgagactggt	4380
agctaaccat	cttatgagtg	ccaatgtgtc	atttagtaaa	acttaaatag	aaacaaggtc	4440
cttcaaatgt	tectttggcc	aaaagctgaa	gggagttact	gagaaaatag	ttaacaatta	4500
ctgtcaggtg	tcatcactgt	tcaaaaggta	agcacattta	gaattttgtt	cttgacagtt	4560
aactgactaa	tettaettee	acaaaatatg	tgaatttgct	gcttctgaga	ggcaatgtga	4620
aagagggagt	attactttta	tgtacaaagt	tatttattta	tagaaatttt	ggtacagtgt	4680
acattgaaaa	ccatgtaaaa	tattgaagtg	tctaacaaat	ggcattgaag	tgtctttaat	4740
aaaggttcat	ttataaatgt	ca		·		4762
•						

<210> 7

<211> 2306

<212> DNA

<213> Homo sapiens

<400> 7

cggggacacc acgccagtge ttteetgeet teetteegag atggaaagag gageteetag 60
cteacttaag eeggggtagg getggttete ettteegage caaaateeca ggegatggtg 120
aattatgaac gtgecacacc atgaagetet tgtggeaggt aactgtgeac caccacacct 180
ggaatgeeat eetgeteeeg ttegtetace teacggegea agtgtggatt etgtgtgeag 240
ecategetge tgeegeetea geegggeeee agaactgeee etcegtetge tegtgeagta 300
accagtteag caaggtggtg tgeacgege ggggeetete egaggteeeg eagggtatte 360
ectegaacac eeggtaeete aaceteatgg agaacaacat ecagatgate caggeegaca 420

ccttccgcca cctccaccac	ctggaggtcc	tgcagttggg	caggaactcc	atccggcaga	480
ttgaggtggg ggccttcaac	ggcctggcca	gcctcaacac	cctggagctg	ttcgacaact	540
ggctgacagt catecetage	ggggcctttg	aatacctgtc	caagctgcgg	gagctctggc	600
ttcgcaacaa ccccatcgaa	agcatecect	cttacgcctt	caaccgggtg	ccctccctca	660
tgcgcctgga cttgggggag	ctcaagaagc	tggagtatat	ctctgaggga	gcttttgagg	720
ggctgttcaa cctcaagtat	ctgaacttgg	gcatgtgcaa	cattaaagac	atgcccaatc	780
tcaccccct ggtggggctg	gaggagctgg	agatgtcagg	gaaccacttc	cctgagatca	840
ggcctggctc cttccatggc	ctgageteec	tcaagaagct	ctgggtcatg	aactcacagg	900
tcagcctgat tgagcggaat	gcttttgacg	ggctggcttc	acttgtggaa	ctcaacttgg	960
cccacaataa cctctcttct	ttgccccatg	acctctttac	cccgctgagg	tacctggtgg	1020
agttgcatct acaccacaac	ccttggaact	gtgattgtga	cattctgtgg	ctagcctggt	1080
ggcttcgaga gtatataccc	accaattcca	cctgctgtgg	ccgctgtcat	gctcccatgc	1140
acatgcgagg ccgctacctc	gtggaggtgg	accaggeete	cttccagtgc	tctgccccct	1200
tcatcatgga cgcacctcga	gacctcaaca	tttctgaggg	tcggatggca	gaacttaagt	1260
gtcggactcc ccctatgtcc	tccgtgaagt	ggttgctgcc	caatgggaca	gtgctcagcc	1320
acgcctcccg ccacccaagg	atctctgtcc	tcaacgacgg	caccttgaac	ttttcccacg	1380
tgctgctttc agacactggg	gtgtacacat	gcatggtgac	caatgttgca	ggcaactcca	1440
acgcctcggc ctacctcaat	gtgagcacgg	ctgagcttaa	cacctccaac	tacagcttct	1500
tcaccacagt aacagtggag	accacggaga	tctcgcctga	ggacacaacg	cgaaagtaca	1560
agcctgttcc taccacgtcc	actggttacc	agccggcata	taccacctct	accacggtgc	1620
tcattcagac tacccgtgtg	cccaagcagg	tggcagtacc	cgcgacagac	accactgaca	1680
agatgcagac cagcctggat	gaagtcatga	agaccaccaa	gatcatcatt	ggctgctttg	1740
tggcagtgac tctgctagct	gccgccatgt	tgattgtctt	ctataaactt	cgtaagcggc	1800
accagcagcg gagtacagtc	acagccgccc	ggactgttga	gataatccag	gtggacgaag	1860
acatcccagc agcaacatcc	gcagcagcaa	cagcagetee	gtccggtgta	tcaggtgagg	1920
gggcagtagt gctgcccaca	attcatgacc	atattaacta	caacacctac	aaaccagcac	1980
atggggccca ctggacagaa	aacagcctgg	ggaactctct	gcaccccaca	gtcaccacta	2040
tctctgaacc ttatataatt	cagacccata	ccaaggacaa	ggtacaggaa	actcaaatat	2100
gactcccctc ccccaaaaaa	cttataaaat	gcaatagaat	gcacacaaag	acagcaactt	2160
ttgtacagag tggggagaga	ctttttcttg	tatatgctta	tatattaagt	ctatgggctg	2220

WO 03/0358	333				PC	T/US02/3354
gttaaaaaaa	acagattata	ttaaaattta	aagacaaaaa	gtcaaaacaa	aaaaaaaaa	2280
aaaaaaaat	tccgagatgt	caggga				2306
	sapiens					
<400> 8 aagaaagagg	ggcagaggag	ggaaggcgac	tgcagtccga	aaggagcttt	tggaagctag	60
gaccctaagc	gtcaggacgt	ggcattggtc	gagagaaagc	ctgggctggc	aagagctgcc	120
gccggtgctg	ggagagcatt	tatttgggag	aaaaagaggg	gagagagcag	agggagggg	180
aggaagagag	ttcaaaccga.	agtggatgga	aggggactgg	ggtttctgcc	gcgcagggag	240
ccgtgagcca	gggcgatggc	gctaagggcg	gegeggagea	getgegetee	cgagaacgcg	300
tctcctcgca	gaggactagc	agacatcggg	aaggtctgcg	ccaacgggaa	ccaacttgtg	360
actocaaaat	atacccaaca	canctanaaa	toacatcaaa	actaceatta	catttgagaa	420

gctccaaaat gtacccaacg cagctggaaa tgagatcaaa gctgcagttg catttgagaa ggatgagaag agccagcgat tagggaattt tttttttacc cgttttcttc ctttttcttt 480 540 caccetgtet gtecceteae ttegecetee ceatttgaaa taaaageeee agteteaaet 600 tecateacet eggegeteee ggagecacta eeggetgatg gaggagaagg ggaeeegggg 660 getggcaggg gccaccggcg agggaccgca tcctgcgtct cccccgtgat cccggccccg 720 accgcggagt tctgcaacac ctggaggatc tggaccgggt gctgggggtg ggggcgggga 780 840 cagaggaagg aaaggcaccc cgagccttaa aaagaaaaaa aaaaagtagc ggggggagga 900 atgggtttct tcttgacagc tgacggagcc ttgaaatttt cctccactac ctccgccccc gccccgccc ccgcccccg cactccattt aacgtgagat tatgaaattg cagaggcggt 960 1020 ggagggaagg agacaggata taaccggagt ttggagggga gaggggaagg tggctggccg 1080 ggtggctgaa atcaaaaatt caattgcgca ctgggttgtg atgagaaatc taatcagatc tttggcgaag gggccggccg gaaggatgga gagtgggggg gaagttgctc cccaaattct 1140 tcgaagggga ggctggggag aggaattgac catgtaaaag gagacttttt tttttggtgg 1200 tggtggctgt tgggtgcctt gcaaaaatga aggatgcagg acgcagcttt ctcctggaac 1260 cgaacgcaat ggataaactg attgtgcaag agagaaggaa gaacgaagct ttttcttgtg 1320 agecetggat ettaacacaa atgtgtatat gtgcacacag ggagcattca agaatgaaat 1380 aaaccagagt tagacccgcg ggggttggtg tgttctgaca taaataaata atcttaaagc 1440 agctgttccc ctccccccc ccaaaaaaaa ggatgattgg aaatgaagaa ccgaggattc 1500

acaaagaaaa	aagtatgttc	atttttctct	ataaaggaga	aagtgagcca	aggagatatt	1560
tttggaatga	aaagtttggg	gctttttag	taaagtaaag	aactggtgtg	gtggtgtttt	1620
cttttcttt	tgaatttccc	acaagaggag	aggaaattaa	taatacatct	gcaaagaaat	1680
ttcagagaag	aaaagttgac	cgcggcagat	tgaggcattg	attgggggag	agaaaccagc	1740
agagcacagt	tggatttgtg	cctatgttga	ctaaaattga	cggataattg	cagttggatt	1800
tttcttcatc	aacctccttt	tttttaaatt	tttattcctt	ttggtatcaa	gatcatgcgt	1860
tttctcttgt	tcttaaccac	ctggatttcc	atctggatgt	tgctgtgatc	agtctgaaat	1920
acaactgttt	gaattccaga	aggaccaaca	ccagataaat	tatgaatgtt	gaacaagatg	1980
accttacatc	cacagcagat	aatgataggt	cctaggttta	acagggccct	atttgacccc	2040
ctgcttgtgg	tgctgctggc	tcttcaactt	cttgtggtgg	ctggtctggt	gcgggctcag	2100
acctgccctt	ctgtgtgctc	ctgcagcaac	cagttcagca	aggtgatttg	tgttcggaaa	2160
aacctgcgtg	aggttccgga	tggcatctcc	accaacacac	ggctgctgaa	cctccatgag	2220
aaccaaatcc	agatcatcaa	agtgaacagc	ttcaagcact	tgagacactt	ggaaatccta	2280
cagttgagta	ggaaccatat	cagaaccatt	gaaattgggg	ctttcaatgg	tctggcgaac	2340
ctcaacactc	tggaactctt	tgacaatcgt	cttactacca	tcccgaatgg	agcttttgta	2400
tacttgtcta	aactgaagga	gctctggttg	cgaaacaacc	ccattgaaag	catcccttct	2460
tatgctttta	acagaattcc	ttatttgaga	cgactagact	taggggaatt	gaaaagactt	2520
tcatacatct	cagaaggtgc	ctttgaaggt	ctgtccaact	tgaggtattt	gaaccttgcc	2580
atgtgcaacc	ttcgggaaat	ccctaacctc	acaccgctca	taaaactaga	tgagctggat	2640
ctttctggga	atcatttatc	tgccatcagg	cctggctctt	tccagggttt	gatgcacctt	2700
caaaaactgt	ggatgataca	gtcccagatt	caagtgattg	aacggaatgc	ctttgacaac	2760
cttcagtcac	tagtggagat	caacctggca	cacaataatc	taacattact	gcctcatgac	2820
ctcttcactc	ccttgcatca	tctagagcgg	atacatttac	atcacaaccc	ttggaactgt	2880
aactgtgaca	tactgtggct	cagctggtgg	ataaaagaca	tggccccctc	gaacacagct	2940
tgttgtgccc	ggtgtaacac	tecteccaat	ctaaagggga	ggtacattgg	agagetegae	3000
cagaattact	tcacatgeta	tgctccggtg	attgtggagc	cccctgcaga	cctcaatgtc	3060
actgaaggca	tggcagctga	gctgaaatgt	cgggcctcca	catccctgac	atctgtatct	3120
tggattactc	caaatggaac	agtcatgaca	catggggcgt	acaaagtgcg	gatagctgtg	3180
ctcagtgatg	gtacgttaaa	tttcacaaat	gtaactgtgc	aagatacagg	catgtacaca	3240
tgtatggtga	gtaattccgt	tgggaatact	actgcttcag	ccaccctgaa	tgttactgca	3300

gcaaccacta	ctcctttctc	ttacttttca	accgtcacag	tagagactat	ggaaccgtct	3360
caggatgagg	cacggaccac	agataacaat	gtgggtccca	ctccagtggt	cgactgggag	3420
accaccaatg	tgaccacctc	tctcacacca	cagagcacaa	ggtcgacaga	gaaaaccttc	3480
accatcccag	tgactgatat	aaacagtggg	atcccaggaa	ttgatgaggt	catgaagact	3540
accaaaatca	tcattgggtg	ttttgtggcc	atcacactca	tggctgcagt	gatgctggtc	3600
attttctaca	agatgaggaa	gcagcaccat	cggcaaaacc	atcacgcccc	aacaaggact	3660
gttgaaatta	ttaatgtgga	tgatgagatt	acgggagaca	cacccatgga	aagccacctg	3720
cccatgcctg	ctatcgagca	tgagcaccta	aatcactata	actcatacaa	atctcccttc	3780
aaccacacaa	caacagttaa	cacaataaat	tcaatacaca	gttcagtgca	tgaaccgtta	3840
ttgatccgaa	tgaactctaa	agacaatgta	caagagactc	aaatctaaaa	catttacaga	3900
gttacaaaaa	acaaacaatc	aaaaaaaag	acagtttatt	aaaaatgaca	caaatgactg	3960
ggctaaatct	actgtttcaa	aaaagtgtct	ttacaaaaaa	acaaaaaaga	aaagaaattt	4020
atttattaaa	aattctattg	tgatctaaag	cagac			4055

<210> 9

<211> 1267

<212> DNA

<213> Homo sapiens

<400> 9 gcatgtgcaa cctcaaggac atccccaacc tgacggccct ggtgcgcctg gaggagctgg 60 agetyteggg caaceggety gacetyatec geegggete ettecagggt etcaceagee 120 tgcgcaagct gtggctcatg cacgcccagg tagccaccat cgagcgcaac gccttcgacg 180 240 acctcaagtc gctggaggag ctcaacctgt cccacaacaa cctgatgtcg ctgcccacg 300 acctcttcac gcccctgcac cgcctcgagc gcgtgcacct caaccacaac ccctggcatt gcaactgcga cgtgctctgg ctgagctggt ggctcaagga gacggtgccc agcaacacga 360 cgtgctgcgc ccgctgtcat gcgcccgccg gcctcaaggg gcgctacatt ggggagctgg 420 accagtegea tttcacetge tatgegeeeg teategtgga geegeeeaeg gaeeteaaeg 480 teacegaggg catggetgee gageteaaat geegeaeggg caceteeatg aceteegtea 540 actggctgac gcccaacggc accctcatga cccacggctc ctaccgcgtg cgcatctccg 600 tcctgcatga cggcacgctt aacttcacca acgtcaccgt gcaggacacg ggccagtaca 660 cgtgcatggt gacgaactca gccggcaaca ccaccgcctc ggccacgctc aacgtctcgg 720 ccgtggaccc cgtggcggcc gggggcaccg gcagcggcgg gggcggccct gggggcagtg 780

WO 03/035833	PCT/US02/33542

gtggtgttgg	agggggcagt	ggcggctaca	cctacttcac	cacggtgacc	gtggagaccc	840
tggagacgca	gcccggagag	gaggecetge	agccgcgggg	gacggagaag	gaaccgccag	900
ggcccacgac	agacggtgtc	tggggtgggg	geeggeetgg	ggacgcggcc	ggccctgcct	960
cgtcttctac	cacggcaccc	gccccgcgct	cctcgcggcc	cacggagaag	gcgttcacgg	1020
tgcccatcac	ggatgtgacg	gagaacgccc	tcaaggacct	ggacgacgtc	atgaagacca	1080
ccaaaatcat	categgetge	ttcgtggcca	tcacgttcat	ggccgcggtg	atgctcgtgg	1140
ccttctacaa	gctgcgcaag	cagcaccagc	tccacaagca	ccacgggccc	acgcgcaccg	1200
tggagatcat	caacgtggag	gacgagctgc	cegeegeete	ggccgtgtcc	gtggccgccg	1260
cggccgc						1267

<210> 10

4933

<212> DNA

<213> Homo sapiens

<400> 10 cagaaatgca acaagtagta cccggggtct gcagagcgcc ccgcgccgcc tgacttggcc gggcgaagcc cgcctgcaga gacccgggcc ggcctccgga caaaggacgg aggaggggct ggacggcgct gcgaagtccg aaagaggcca tttagcgact ctggccaggc taaggggaat

60

1080

180 240 gcagaggaga cacagagccg gcgggccaag aggacgatcc ggccgctgca cgcagggcgg 300 gaggegatgg aggetgeecg egeettgege etectgeteg tggtgtgegg etgeetegeg 360 ctcccgccgc tggccgagcc cgtgtgcccg gagcgctgcg actgccagca tccccagcat 420 ctcctgtgca ccaacagggg gctccgcgta gtgcccaaga ccagctcgct gccgagcccc cacgacgtgc tcacctacag cctcggcggc aacttcataa ccaacatcac ggccttcgac 480 ttccaccgtc tggggcagct cagacggctg gacctgcagt acaaccagat ccgctctctg 540 caccccaaga cettegagaa getetegegg etggaagage tgtacetggg gaacaacete . 600 ttgcaggcgc tcgccccggg cacgctggcc ccgctgcgca agctgcgcat cctctacgcc 660 aacgggaacg agatcagccg cetaagccge ggeteetteg agggeetgga gagtetagte 720 780 aagetgegge tggaegggaa egeeetgggg gegetgeegg aegeggtett egeteeettg 840 ggcaacctgc tctacctaca tctggagtcc aaccggatcc gctttctggg caagaacgcc 900 ttcgcccagc taggcaagct gcgcttcctc aacctctctg ccaacgagct acagccctcc ctgcgccacg cggccacctt cgcaccgctg cgctccctct cctccctcat cctctcggcc 960 aacagcctgc agcacctcgg gccgcgcatc ttccagcacc tgccacgtct cggcctgctc 1020

tegeteaggg geaaceaget caegeacete gegeetgagg cettttgggg ettggaggee

ctgcgcgagc tgcgcctgga	gggtaatcgg	ctgagccagc	tgccaactgc	gctgctggag	1140
cctctgcaca gcctggaggc	gctggacctg	agcggcaatg	agctgtccgc	cctgcacccg	1200
gccacetteg gccacetggg	ccggctgcgc	gagctcagcc	tgcgcaacaa	cgcgctcagc	1260
gccctatccg gggacatctt	cgccgccagc	ccagcccttt	atcggctgga	tctagacggc	1320
aacggctgga cctgcgactg	ccggctgcga	ggcctgaagc	gctggatggg	cgactggcac	1380
tegeagggee ggeteetead	tgtcttcgtg	cagtgtcgcc	acccccggc	cctgcgaggc	1440
aaatacctgg attacctgga	tgaccagcag	ctgcaaaatg	gatectgege	ggateceteg	1500
ccctcagett ccctgacege	tgaccgcagg	cggcagcccc	tacccacggc	cgcaggggag	1560
gagatgacgc cacctgcagg	tctcgcggag	gagctgccgc	cgcagccgca	gctccagcag	1620
caggggcgat ttctagctgg	ggtggcctgg	gatggggccg	ccagggagct	ggtaggcaac	1680
cgcagcgctc taaggctgag	teggeggge	cegggeetee	agcagcccag	ceceteegte	1740
getgeegeeg egggeeegge	tccacagtcc	ctagacctgc	acaagaagcc	ccagcggggc	1800
cgtccgactc gggcagatco	egecetegeg	gagcccaccc	caacggcctc	tcctggctct	1860
gegecatege eegeeggega	cccctggcag	cgcgcgacga	agcatcgtct	gggcacggag	1920
caccaggage gtgccgccca	gtccgacggt	ggggccgggc	tgccgccgct	ggtgtccgac	1980
ccatgcgact tcaacaagtt	cattetgtge	aacctgacgg	tggaggcggt	gggcgcagac	2040
agcgcctcgg tgcgctgggc	cgtgcgcgag	caccgcagtc	cccggccgct	gggcggcgcg	2100
cgcttccgcc tgctctttga	ccgctttggc	cagcagccca	agttccaccg	cttcgtctac	2160
ctgcctgaga gcagcgacto	ggccacgctg	cgcgagctgc	gcggggacac	cccctacctg	2220
gtgtgcgtgg agggcgtgct	tgggggccgt	gtctgccctg	tggctccccg	ggaccactgc	2280
geggggetgg teaccetace	ggaggccggg	agccggggcg	gegtegaeta	ccagctgctg	2340
accttggccc tgctgacggt	caacgcgctg	ctggtgctcc	tggccttggc	ggcctgggcg	2400
tetegetgge tgegtaggaa	actgcgggct	aggcggaagg	geggggeeec	ggtccacgtt	2460
cggcacatgt actccacccg	acggeeeetg	cgctccatgg	gcaccggcgt	gtccgccgac	2520
ttctcgggat tccagtcgca	ccggccacgc	accaccgtgt	gegegeteag	tgaggcggac	2580
ctcatcgaat tecectgega	ccgcttcatg	gacagtgcgg	geggeggege	gggcggcagc	2640
ctgagacggg aggaccgtct	cctgcagcga	tttgccgact	aggtccaggg	catatagaga	2700
ccatctcatt ggccctaagg	agccgcctct	ccgtgaggcc	caccagccca	cetcagggga	2760
agtgccgttt tgtgcacttg	r ccagagaggc	cggtggggac	agagggccaa	ttcgggcacc	2820
atcccccaat tcccaatact	cgagaagtaa	atggatggta	cttggtggtc	agagccagag	2880

taggggacaa atgga	tggtg ggatgctgag	gtcggaggct	tcgcttggag	gctttgacac	2940
agctatgcga atggc	ttttg tagcactgca	atgcagaagc	caggctttgg	gggtagaaag	3000
ggggtgcttg tgccc	ccaac atggccagaa	atatttgggt	gcatgctttt	tgtttgctca	3060
gtgtcaaaca gagaa	gtttt gtttctatt!	aaggaaggaa	cttattacca	ttacaaagga	3120
ggcttggcca gggac	tccac tggtttggtg	g atctctgcca	agaaggggga	tgtaaacagg	3180
tggtaaagtt taaca	taccc gccaaggaad	tegtttatgt	tggctgatag	agcattcagg	3240
ataccttaaa gttta	ataag agacgcattt	tttttttca	aaaatgtgaa	aagctctgac	3300
atttaacgaa ctgac	caata gactcaagga	a ctgttttagt	tggactgggc	cattttatta	3360
tgttcctttt aatati	taaca gtacaagago	gettgetgae	ttcgaggata	actaagatta	3420
catactttct caggag	gaagg ctgcatgcaa	gacttetetg	tcagggttgc	tcctgtggct	3480
tttttaattt tattt	tttta aacctatata	ı tggaaaagga	aatttcaatg	ccagatttga	3540
taaaagaatg tgatg	tatat gtagctgato	g acccactggg	gaacaccagt	gttccagttc	3600
acttaccaca tctgt	gacag tgtgtttaga	ı ttggaataaa	tgtgatgcat	tacttcttat	3660
gtttttatca gtgaca	atggt tgactgtgco	ctaattctct	tgagttgcag	ttaagcaatg	3720
aaggttattt cctaal	taggg aagcaaaagg	, tgattgtcaa	ttgatagttt	aatgtttgac	3780
cacattagtg tottta	atatg aaatagtaga	a ggggaagaaa	ttatagaaaa	caaatgtgaa	3840
aaaaatacac cagtgg	ggtat ctgttctact	aaaaccagaa	gattgttatg	agtacttaaa	3900
cctcactgtg aaataa	atgat atattttgca	attaatccct	ccccaactga	gtgtcttact	3960
gtgttattaa atctta	atctt ttagttaata	gttgcagtat	ttcttttaaa	tgtttttgtt	4020
ttaaacttag gggtag	ggatc ctttatttgt	tcagttgttt	ccaactattt	gggatacttt	4080
cattecetge tattta	atgaa gtacatgttt	atcactaagt	gtagtggttt	ggtttacatt	4140
aataatttta tgtgtg	ggtct aaaaatgcag	r tcactaagag	aatgtacact	gtggttatgg	4200
tcacagtggt tatgga	attta ttggcagtgg	g agtaccatgg	aggtcactgc	aatggtgcta	4260
aggetgacag tggaal	totto tgtttagggd	cttaagcccc	tgagggtcct	ggtgactcag	4320
ggaatccatc acagco	cccgg gtctttcacc	ccagttcact	ccttttatgt	ttggcctaga	4380
ttgacccatg cctgc	cctct tctcaacago	tgagtaggga	accagccatc	tgaatgagct	4440
gatcgttgtt tatgt	tcaaa tgagtaaatg	f tccagaccac	ttaaaactac	agctgctttt	4500
ctggcagtct cgtctg	gcggg gccaaaactt	aataaaccac	aggaaataga	ctgtcattct	4560
tagtttgctg ccaggg	gctta ttttagattç	g agagcatact	ggtacatgag	agcagtagtg	4620
ttgtttgctc ttatt	ttcaa ccagggagct	atctggcacc	ttttgtgctc	ctggcttttt	4680

tcaatcatag	cactattgca	tctcctagct	atttcttttg	cccagcaggg	taatattgag	4740
tcccattgca	agtatggaca	aggcctctgg	ttctcctcac	cacccacctt	ttcagccata	4800
gaacatcact	gaaaatgcct	aatgcctgga	tctgtgttct	actttagttt	cactgggaag	4860
tctttcagtg	ggagatgaat	aaatgttata	cattgttatg	tccagttatg	tcaataaacc	4920
cactaataga	gat					4933
<210> 11 <211> 2693 <212> DNA <213> Home	sapiens			·		
<400> 11 atggtggtgg	cacaccccac	cgccactgcc	accaccacgc	ccactgccac	tgtcacggcc	60
accgttgtga	tgaccacggc	caccatggac	ctgcgggact	ggctgttcct	ctgctacggg	120
ctcatcgcct	tcctgacgga	ggtcatcgac	agcaccacct	gcccctcggt	gtgccgctgc	180
gacaacggct	tcatctactg	caacgaccgg	ggactcacat	ccatccccgc	agatatccct	240
gatgacgcca	ccaccctcta	tctgcagaac	aaccagatca	acaacgctgg	catcccccag	300
gacctcaaga	ccaaggtcaa	cgtgcaggtc	atctacctat	acgagaatga	cctggatgag	360
ttecccatca	acctgccccg	ctccctccgg	gagctgcacc	tgcaggacaa	caatgtgcgc	420
accattgcca	gggactcgct	ggcccgcatc	ccgctgctgg	agaagctgca	cctggatgac	480
aactccgtgt	ccaccgtcag	cattgaggag	gacgccttcg	ccgacagcaa	acagctcaag	540
ctgctcttcc	tgagccggaa	ccacctgagc	agcatecect	cggggctgcc	gcacacgctg	600
gaggagctgc	ggctggatga	caaccgcatc	tccaccatcc	cgctgcatgc	cttcaagggc	. 660
ctcaacagcc	tgeggegeet	ggtgctggac	ggtaacctgc	tggccaacca	gcgcatcgcc	720
gacgacacct	tcagccgcct	acagaacctc	acagagetet	cgctggtgcg	caattcgctg	780
gccgcgccac	ccctcaacct	gcccagcgcc	cacctgcaga	aactctacct	gcaggacaat	840
gccatcagcc	acatccccta	caacacgctg	gccaagatgc	gtgagctgga	gcggctggac	900
ctgtccaaca	acaacctgac	cacgctgccc	cgcggcctgt	tegaegaeet	ggggaacctg	960
gcccagctgc	tgctcaggaa	caacccttgg	ttttgtggct	gcaacctcat	gtggctgcgg	1020
gactgggtga	aggcacgggc	ggccgtggtc	aacgtgcggg	gcctcatgtg	ccagggccct	1080
gagaaggtcc	ggggcatggc	catcaaggac	attaccagcg	agatggacga	gtgttttgag	1140
acggggccgc	agggcggcgt	ggccaatgcg	gctgccaaga	ccacggccag	caaccacgcc	1200
tctgccacca	cgccccaggg	ttccctgttt	accctcaagg	ccaaaaggcc	agggetgege	1260

ctccccgact	ccaacattga	ctaccccatg	gccacgggtg	atggcgccaa	gaccctggcc	1320
atccacgtga	aggccctgac	ggcagactcc	atccgcatca	cgtggaaggc	cacgeteece	1380
gcctcctctt	tccggctcag	ttggctgcgc	ctgggccaca	gcccagccgt*	gggctccatc	1440
acggagacct	tggtgcaggg	ggacaagaca	gagtacctgc	tgacagccct	ggagcccaag	1500
tccacctaca	tcatctgcat	ggtcaccatg	gagaccagca	atgcctacgt	agctgatgag	1560
acacccgtgt	gtgccaaggc	agagacagcc	gacagctatg	gccctaccac	cacactcaac	1620
caggagcaga	acgctggccc	catggcgagc	ctgcccctgg	cgggcatcat	cggcggggca	1680
gtggctctgg	tettectett	cctggtcctg	ggggccatct	gctggtacgt	gcaccagget	1740
ggcgagctgc	tgacccggga	gagggcctac	aaccggggca	gcagggaaaa	ggatgactat	1800
atggagtcag	ggaccaagaa	ggataactcc	atcctggaaa	tccgcggccc	tgggctgcag	1860
atgctgccca	tcaacccgta	ccgcgccaaa	gaggagtacg	tggtccacac	tatetteece	1920
tccaacggca	gcagcctctg	caaggccaca	cacaccattg	gctatggcac	cacgcggggc	1980
taccgggacg	geggeatece	cgacatagac	tactcctaca	catgatgccc	gcccacccgg	2040
gctgccccgc	ctcagcccca	gctgccctgg	cgtggccatg	tggctttgcc	cagcctgctg	2100
caatccaaga	gagcaaggaa	gagaaattcc	atgggtgact	ttcctctgca	gaaagcaaag	2160
tttggggagg	gctgacgatt	ttgtagaaca	caacagtgac	aattttttt	aaaagaatag	2220
aaggcaggag	ggggaattcg	acattgttga	agacataatt	tataccaagt	tatgccagtt	2280
ggggagggaa	ggactaaaaa	taatattgca	ggcagggctg	ggttgggttt	tttttttcc	2340
cccctgaact	ggaaggatac	tacctgtaca	acatctgtgg	acacctcatg	ctctgttcaa	2400
ggccatcaca	aaggaaccgc	ccagggagaa	gcagccggct	ctcaaagctc	ccacgcagct	2460
ctcccgccac	tggccactcg	ctggcgaccc	gatggaaggt	tttcaggctc	ctcacaaagg [,]	2520
agagagggaa	gaaaagatct	tttgccctgg	agatatggtc	ctgaaatctc	teceetgget	2580
tattccatac	catttccctt	gcagatttgc	agaaacatgg	catctttcac	tgcattcttt	2640
gaacaatcat	gtagtcgatt	aaaaaaaaa	aacaaaaaaa	aaaaaaaaaa	aaa	2693

<210> 12

<211> 2253

<212> DNA

<213> Homo sapiens

<400> 12

ttitttttt ctttttcttt ttcccaccac attgtattt atttccgtac ttcagaaatg 60 ggcctacaga ccacaaagtg gcccagccat ggggcttttt tcctgaagtc ttggcttatc 120 atttccctgg ggctctactc acaggtgtcc aaactcctgg cctgccctag tgtgtgccgc 180

tgcgacagga	actttgtcta	ctgtaatgag	cgaagcttga	cctcagtgcc	tettgggate	240
ccggagggcg	taaccgtact	ctacctccac	aacaaccaaa	ttaataatgc	tggatttcct	300
gcagaactgc	acaatgtaca	gtcggtgcac	acggtctacc	tgtatggcaa	ccaactggac	360
gaattcccca	tgaaccttcc	caagaatgtc	agagttctcc	atttgcagga	aaacaatatt	420
cagaccattt	cacgggctgc	tcttgcccag	ctcttgaagc	ttgaagagct	gcacctggat	480
gacaactcca	tatccacagt	gggggtggaa	gacggggcct	tccgggaggc	tattagcctc	540
aaattgttgt	ttttgtctaa	gaatcacctg	agcagtgtgc	ctgttgggct	tcctgtggac	600
ttgcaagagc	tgagagtgga	tgaaaatcga	attgctgtca	tatccgacat	ggccttccag	660
aatctcacga	gcttggagcg	tcttattgtg	gacgggaacc	tcctgaccaa	caagggtatc	720
gccgagggca	ccttcagcca	tctcaccaag	ctcaaggaat	tttcaattgt	acgtaattcg	780
ctgtcccacc	ctcctcccga	tctcccaggt	acgcatctga	tcaggctcta	tttgcaggac	840
aaccagataa	accacattcc	tttgacagcc	ttctcaaatc	tgcgtaagct	ggaacggctg	900
gatatatcca	acaaccaact	geggatgetg	actcaagggg	tttttgataa	tctctccaac	960
ctgaagcagc	tcactgctcg	gaataaccct	tggttttgtg	actgcagtat	taaatgggtc	1020
acagaatggc	tcaaatatat	cccttcatct	ctcaacgtgc	ggggtttcat	gtgccaaggt	1080
cctgaacaag	tccgggggat	ggccgtcagg	gaattaaata	tgaatctttt	gtcctgtccc	1140
accacgaccc	ccggcctgcc	tctcttcacc	ccagccccaa	gtacagcttc	tccgaccact	1200
cagcctccca	ccctctctat	tccaaaccct	agcagaagct	acacgcctcc	aactcctacc	1260
acatcgaaac	ttcccacgat	tcctgactgg	gatggcagag	aaagagtgac	cccacctatt	1320
tctgaacgga	tccagctctc	tatccatttt	gtgaatgata	cttccattca	agtcagctgg	1380
ctctctctct	tcaccgtgat	ggcatacaaa	ctcacatggg	tgaaaatggg	ccacagttta	1440
gtagggggca	tcgttcagga	gcgcatagtc	agcggtgaga	agcaacacct	gagcctggtt	1500
aacttagagc	cccgatccac	ctatcggatt	tgtttagtgc	cactggatgc	ttttaactac	1560
cgcgcggtag	aagacaccat	ttgttcagag	gccaccaccc	atgcctccta	tctgaacaac	1620
ggcagcaaca	cagcgtccag	ccatgagcag	acgacgtccc	acagcatggg	ctcccccttt	1680
ctgctggcgg	gcttgatcgg	gggcgcggtg	atatttgtgc	tggtggtctt	gctcagcgtc	1740
ttttgctggc	atatgcacaa	aaaggggcgc	tacacctccc	agaagtggaa	atacaaccgg	1800
ggccggcgga	aagatgatta	ttgcgaggca	ggcaccaaga	aggacaactc	catcctggag	1860
atgacagaaa	ccagttttca	gategtetee	ttaaataacg	atcaactcct	taaaggagat	1920
ttcagactgo	agcccattta	caccccaaat	gggggcatta	attacacaga	ctgccatatc	1980

cccaacaaca tgcgatactg caacagcagc gtgccagacc tggagcactg ccatacgtga	2040
cagecagagg cecagegtta teaaggegga caattagaet ettgagaaca caetegtgtg	2100
tgcacataaa gacacgcaga ttacatttga taaatgttac acagatgcat ttgtgcattt	2160
gaatactctg taatttatac ggtgtactat ataatgggat ttaaaaaaag tgctatcttt	2220
totatttcaa gttaattaca aacagttttg taa	2253
<210> 13 <211> 2575 <212> DNA <213> Homo sapiens	
<400> 13 gegtegacag caggacaage teageetgea getgeegtgg getttgtgtg gaetggaege	. 60
agagettggg agaeggggga gggetattae tecaatteae tgteaatgga attaeageta	120
tageggeagt gtatatagga ttgettttte tegtetteet gggttetgaa gtaaeggaag	180
ctaccttgta taaagacctc aacactgctg accatgatca gcgcagcctg gagcatcttc	240
ctcatcggga ctaaaattgg gctgttcctt caagtagcac ctctatcagt tatggctaaa	300
teetgteeat etgtgtgteg etgegatgeg ggttteattt actgtaatga tegetttetg	360
acatccattc caacaggaat accagaggat gctacaactc tctaccttca gaacaaccaa	420
ataaataatg ctgggattcc ttcagatttg aaaaacttgc tgaaagtaga aagaatatac	480
ctataccaca acagtttaga tgaatttcct accaacctcc caaagtatgt aaaagagtta	540
catttgcaag aaaataacat aaggactatc acttatgatt cactttcaaa aattccctat	600
ctggaagaat tacatttaga tgacaactct gtctctgcag ttagcataga agagggagca	660
ttccgagaca gcaactatct ccgactgctt ttcctgtccc gtaatcacct tagcacaatt	720
ccctggggtt tgcccaggac tatagaagaa ctacgcttgg atgataatcg catatccact	780
atttcatcac catctcttca aggtctcact agtctaaaac gcctggttct agatggaaac	840
ctgttgaaca atcatggttt aggtgacaaa gttttcttca acctagttaa tttgacagag	900
ctgtccctgg tgcggaattc cctgactgct gcaccagtaa accttccagg cacaaacctg	960
aggaagettt atetteaaga taaceacate aategggtge eeccaaatge tttttettat	1020
ctaaggcagc tctatcgact ggatatgtcc aataataacc taagtaattt acctcagggt	1080
atetttgatg atttggacaa tataacacaa etgattette geaacaatee etggtattge	1140
gggtgcaaga tgaaatgggt acgtgactgg ttacaatcac tacctgtgaa ggtcaacgtg	1200
cgtgggctca tgtgccaagc cccagaaaag gttcgtggga tggctattaa ggatctcaat	1260

						-,
gcagaactgt	ttgattgtaa	ggacagtggg	attgtaagca	ccattcagat	aaccactgca	1320
atacccaaca	cagtgtatcc	tgcccaagga	cagtggccag	ctccagtgac	caaacagcca	1380
gatattaaga	accccaagct	cactaaggat	caccàaacca	cagggagtcc	ctcaagaaaa	1440
acaattacaa	ttactgtgaa	gtctgtcact	tctgatacca	ttcatatctc	ttggaaactt	1500
gctctaccta	tgactgcttt	gagactcagc	tggcttaaac	tgggccatag	cccggcattt	1560
ggatctataa	cagaaacaat	tgtaacaggg	gaacgcagtg	agtacttggt	cacagecetg	1620
gagcctgatt	caccctataa	agtatgcatg	gttcccatgg	aaaccagcaa	cctctaccta	1680
tttgatgaaa	ctcctgtttg	tattgagact	gaaactgcac	cccttcgaat	gtacaaccct	1740
acaaccaccc	tcaatcgaga	gcaagagaaa	gaaccttaca	aaaaccccaa	tttacctttg	1800
gctgccatca	ttggtggggc	tgtggccctg	gttaccattg	cccttcttgc	tttagtgtgt	1860
tggtatgttc	ataggaatgg	atcgctcttc	tcaaggaact	gtgcatatag	caaagggagg	1920
agaagaaagg	atgactatgc	agaagctggc	actaagaagg	acaactctat	cctggaaatc	1980
agggaaactt	cttttcagat	gttaccaata	agcaatgaac	ccatctcgaa	ggaggagttt	2040
gtaatacaca	ccatatttcc	tcctaatgga	atgaatctgt	acaaaaacaa	tcacagtgaa	2100
agcagtagta	accgaagcta	cagagacagt	ggtattccag	actcagatca	ctcacactca	2160
tgatgctgaa	ggactcacag	cagacttgtg	ttttgggttt	tttaaaccta	agggaggtga	2220
tggtaggaac	cctgttctac	tgcaaaacac	tggaaaaaga	gactgaaaaa	aagcaatgta	2280
ctgtacattt	gccatataat	ttatatttaa	gaacttttta	ttaaaagttt	caaatttcag	2340
gttactgctg	cgattgatgt	agtggagatg	cctgaacaca	attctatatt	ttagtatttt	2400
ttagtaattt	gtactgtatt	ttccttgcaa	atattggagt	tataaaccat	ttactttgtg	2460
ttctactgag	taagatgact	tgttgactgt	gaaagtgaat	tttcttgctg	tgtcgaacaa	2520
tcaggactgc	attcatatga	gatccttgta	gtataagcac	aggccatttt	tcagt	2575
	o sapiens					
<400> 14 agcggggggg	ccgacgggtc	geegetgege	cgggccggga	tggcggccac	cgcgctgctg	60
gaggccggcc	tggcgcgggt	gctcttctac	ccgacgctgc	tctacaccct	gttccgcggg	120
aaggtgccgg	gtcgggcgca	ccgggactgg	taccaccgca	tcgaccccac	cgtgctgctg	180

- 240

300

ggcgcgctgc cgttgcggag cttgacgcgc cagctggtac aggacgagaa cgtgcgcggg

gtgatcacca tgaacgagga gtacgagacg aggttcctgt gcaactcttc acaggagtgg

aagagactag	gagtcgagca	gctgcggctc	agcacagtag	acatgactgg	gatececace	360
ttggacaacc	tccagaaggg	agtccaattt	gctctcaagt	accagtcgct	gggccagtgt	420
gtttacgtgc	attgtaaggc	tgggcgctcc	aggagtgcca	ctatggtggc	agcatacctg	480
attcaggtgc	acaaatggag	tccagaggag	gctgtaagag	ccatcgccaa	gatccggtca	540
tacatccaca	tcaggcctgg	ccagctggat	gttcttaaag	agttccacaa	gcagattact	600
gcacgggcaa	caaaggatgg	gacttttgtc	atttcaaaga	catgatgtat	ggggattaga	660
aagaactcaa	gacactcctg	cttgatacag	aacaaaaaga	gcttaacagg	ac	712

<210> 15

<211> 730 <212> PRT

<213> Homo sapiens

<400> 15

Asn Phe Gly Val Ser Gly Val Glu Leu Ala Gln Gln Ala Ser Met Ala

Arg Met Ser Phe Val Ile Ala Ala Cys Gln Leu Val Leu Gly Leu Leu 25 30

Met Thr Ser Leu Thr Glu Ser Ser Ile Gln Asn Ser Glu Cys Pro Gln

Leu Cys Val Cys Glu Ile Arg Pro Trp Phe Thr Pro Gln Ser Thr Tyr 50 55

Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Arg Leu Thr Arg Ile

Pro Ser Asn Leu Ser Ser Asp Thr Gln Val Leu Leu Gln Ser Asn 90

Așn Ile Ala Lys Thr Val Asp Glu Leu Gln Gln Leu Phe Asn Leu Thr

Glu Leu Asp Phe Ser Gln Asn Asn Phe Thr Asn Ile Lys Glu Val Gly 115 120 125

Leu Ala Asn Leu Thr Gln Leu Thr Thr Leu His Leu Glu Glu Asn Gln 130 135

Ile Thr Glu Met Thr Asp Tyr Cys Leu Gln Asp Leu Ser Asn Leu Gln

121/161

145 150 155 160

Glu Leu Tyr Ile Asn His Asn Gln Ile Ser Thr Ile Ser Ala His Ala 165 170 175

Phe Ala Gly Leu Lys Asn Leu Leu Arg Leu His Leu Asn Ser Asn Lys 180 185 190

Leu Lys Val Ile Asp Ser Arg Trp Phe Asp Ser Thr Pro Asn Leu Glu 195 200 205

Ile Leu Met Ile Gly Glu Asn Pro Val Ile Gly Ile Leu Asp Met Asn 210 225 220

Phe Lys Pro Leu Ala Asn Leu Arg Ser Leu Val Leu Ala Gly Met Tyr 225 230 235 240

Leu Thr Asp Ile Pro Gly Asn Ala Leu Val Gly Leu Asp Ser Leu Glu 245 250 255

Ser Leu Ser Phe Tyr Asp Asn Lys Leu Val Lys Val Pro Gln Leu Ala 260 265 270

Leu Gln Lys Val Pro Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro 275 280 280

Ile His Lys Ile Gln Glu Gly Asp Phe Lys Asn Met Leu Arg Leu Lys 290 295 300

Glu Leu Gly Ile Asn Asn Met Gly Glu Leu Val Ser Val Asp Arg Tyr 305 310 315 320

Ala Leu Asp Asn Leu Pro Glu Leu Thr Lys Leu Glu Ala Thr Asn Asn 325 330 335

Pro Lys Leu Ser Tyr Ile His Arg Leu Ala Phe Arg Ser Val Pro Ala 340 345 350

Leu Glu Ser Leu Met Leu Asn Asn Asn Ala Leu Asn Ala Ile Tyr Gln 355 360 365

Lys Thr Val Glu Ser Leu Pro Asn Leu Arg Glu Ile Ser Ile His Ser 370 380

Asn Pro Leu Arg Cys Asp Cys Val Ile His Trp Ile Asn Ser Asn Lys

385 390 395 400

Thr Asn Ile Arg Phe Met Glu Pro Leu Ser Met Phe Cys Ala Met Pro 405 415

Pro Glu Tyr Lys Gly His Gln Val Lys Glu Val Leu Ile Gln Asp Ser 420 425 430

Ser Glu Gln Cys Leu Pro Met Ile Ser His Asp Ser Phe Pro Asn Arg 435 440 445

Leu Asn Val Asp Ile Gly Thr Thr Val Phe Leu Asp Cys Arg Ala Met 450 . 455 . 460

Ala Glu Pro Glu Pro Glu Ile Tyr Trp Val Thr Pro Ile Gly Asn Lys 465 470 470 480

Ile Thr Val Glu Thr Leu Ser Asp Lys Tyr Lys Leu Ser Ser Glu Gly
485 490 495

Thr Leu Glu Ile Ser Asn Ile Gln Ile Glu Asp Ser Gly Arg Tyr Thr 500 505 510

Cys Val Ala Gln Asn Val Gln Gly Ala Asp Thr Arg Val Ala Thr Ile 515 520 525

Lys Val Asn Gly Thr Leu Leu Asp Gly Thr Gln Val Leu Lys Ile Tyr 530 535 540

Val Lys Gln Thr Glu Ser His Ser Ile Leu Val Ser Trp Lys Val Asn 545 550 555 555

Ser Asn Val Met Thr Ser Asn Leu Lys Trp Ser Ser Ala Thr Met Lys 565 570 575

Ile Asp Asn Pro His Ile Thr Tyr Thr Ala Arg Val Pro Val Asp Val 580 585 590

His Glu Tyr Asn Leu Thr His Leu Gln Pro Ser Thr Asp Tyr Glu Val 595 600 605

Cys Leu Thr Val Ser Asn Ile His Gln Gln Thr Gln Lys Ser Cys Val 610 620

Asn Val Thr Thr Lys Asn Ala Ala Phe Ala Val Asp Ile Ser Asp Gln

625 630 635 640

Glu Thr Ser Thr Ala Leu Ala Ala Val Met Gly Ser Met Phe Ala Val 645 650

Ile Ser Leu Ala Ser Ile Ala Val Tyr Phe Ala Lys Arg Phe Lys Arg 665

Lys Asn Tyr His His Ser Leu Lys Lys Tyr Met Gln Lys Thr Ser Ser 680

Ile Pro Leu Asn Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Gly 695

Asp Ser Glu Lys Asp Lys Asp Gly Ser Ala Asp Thr Lys Pro Thr Gln 715

Val Asp Thr Ser Arg Ser Tyr Tyr Met Trp 725

<210> 16 <211> 708

<212> PRT

<213> Homo sapiens

<400> 16

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile

Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu 25

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro

Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu Leu Gln Thr Asn Asn

Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe Pro Val Asn Leu Thr Gly 90

Leu Asp Leu Ser Gln Asn Asn Leu Ser Ser Val Thr Asn Ile Asn Val 100

Lys Lys Met Pro Gln Leu Leu Ser Val Tyr Leu Glu Glu Asn Lys Leu 115 $\,$ 120 $\,$ 125 $\,$

Thr Glu Leu Pro Glu Lys Cys Leu Ser Glu Leu Ser Asn Leu Gln Glu 130 135 140

Leu Tyr Ile Asn His Asn Leu Leu Ser Thr Ile Ser Pro Gly Ala Phe 145 150 155 160

Ile Gly Leu His Asn Leu Leu Arg Leu His Leu Asn Ser Asn Arg Leu 165 170 175

Gln Met Ile Asn Ser Lys Trp Phe Asp Ala Leu Pro Asn Leu Glu Ile 180 185 190

Leu Met Ile Gly Glu Asn Pro Ile Ile Arg Ile Lys Asp Met Asn Phe 195 200 205

Lys Pro Leu Ile Asn Leu Arg Ser Leu Val Ile Ala Gly Ile Asn Leu 210 215 220

Thr Glu Ile Pro Asp Asn Ala Leu Val Gly Leu Glu Asn Leu Glu Ser 225 230 235 240

Ile Ser Phe Tyr Asp Asn Arg Leu Ile Lys Val Pro His Val Ala Leu 245 250 255

Gln Lys Val Val Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro Ile 260 265 . 270

Asn Arg Ile Arg Arg Gly Asp Phe Ser Asn Met Leu His Leu Lys Glu 275 280 285

Leu Gly Ile Asn Asn Met Pro Glu Leu Ile Ser Ile Asp Ser Leu Ala 290 295 300

Val Asp Asn Leu Pro Asp Leu Arg Lys Ile Glu Ala Thr Asn Asn Pro 305 310 315 320

Arg Leu Ser Tyr Ile His Pro Asn Ala Phe Phe Arg Leu Pro Lys Leu 325 330 335

Glu Ser Leu Met Leu Asn Ser Asn Ala Leu Ser Ala Leu Tyr His Gly 340 345 350

Thr Ile Glu Ser Leu Pro Asn Leu Lys Glu Ile Ser Ile His Ser Asn 355 360 365

- Pro Ile Arg Cys Asp Cys Val Ile Arg Trp Met Asn Met Asn Lys Thr 370 375 380
- Asn Ile Arg Phe Met Glu Pro Asp Ser Leu Phe Cys Val Asp Pro Pro 385 390 395 400
- Glu Phe Gln Gly Gln Asn Val Arg Gln Val His Phe Arg Asp Met Met 405 410 415
- Glu Ile Cys Leu Pro Leu Ile Ala Pro Glu Ser Phe Pro Ser Asn Leu
 420 425 430
- Asn Val Glu Ala Gly Ser Tyr Val Ser Phe His Cys Arg Ala Thr Ala 435 440 445
- Glu Pro Gln Pro Glu Ile Tyr Trp Ile Thr Pro Ser Gly Gln Lys Leu 450 455 460
- Leu Pro Asn Thr Leu Thr Asp Lys Phe Tyr Val His Ser Glu Gly Thr 465 470 475 480
- Leu Asp Ile Asn Gly Val Thr Pro Lys Glu Gly Gly Leu Tyr Thr Cys 485 490 495
- Ile Ala Thr Asn Leu Val Gly Ala Asp Leu Lys Ser Val Met Ile Lys
 500 505 510
- Val Asp Gly Ser Phe Pro Gln Asp Asn Asn Gly Ser Leu Asn Ile Lys 515 520 525
- Ile Arg Asp Ile Gln Ala Asn Ser Val Leu Val Ser Trp Lys Ala Ser
 530 540
- Ser Lys Ile Leu Lys Ser Ser Val Lys Trp Thr Ala Phe Val Lys Thr 545 550 560
- Glu Asn Ser His Ala Ala Gln Ser Ala Arg Ile Pro Ser Asp Val Lys. 565 570 575
- Val Tyr Asn Leu Thr His Leu Asn Pro Ser Thr Glu Tyr Lys Ile Cys 580 585 590

Ile Asp Ile Pro Thr Ile Tyr Gln Lys Asn Arg Lys Lys Cys Val Asn 600

Val Thr Thr Lys Gly Leu His Pro Asp Gln Lys Glu Tyr Glu Lys Asn 615 620

Asn Thr Thr Thr Leu Met Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile 630 635

Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp 650

Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala 660 665

Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys 675 680

Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro 695

Thr Asn Met Ser 705

<210> 17 <211> 606

<212> PRT

<213> Homo sapiens

<400> 17

Met Leu His Thr Ala Ile Ser Cys Trp Gln Pro Phe Leu Gly Leu Ala

Val Val Leu Ile Phe Met Gly Ser Thr Ile Gly Cys Pro Ala Arg Cys 25

Glu Cys Ser Ala Gln Asn Lys Ser Val Ser Cys His Arg Arg Leu 40

Ile Ala Ile Pro Glu Gly Ile Pro Ile Glu Thr Lys Ile Leu Asp Leu 50

Ser Lys Asn Arg Leu Lys Ser Val Asn Pro Glu Glu Phe Ile Ser Tyr 70

Pro Leu Leu Glu Glu Ile Asp Leu Ser Asp Asn Ile Ile Ala Asn Val 85 90 95

- Glu Pro Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Ser Leu Arg Leu
 100 105 110
- Lys Gly Asn Arg Leu Lys Leu Val Pro Leu Gly Val Phe Thr Gly Leu 115 120 125
- Ser Asn Leu Thr Lys Leu Asp Ile Ser Glu Asn Lys Ile Val Ile Leu 130 135 140
- Leu Asp Tyr Met Phe Gln Asp Leu His Asn Leu Lys Ser Leu Glu Val 145 150 155 160
- Gly Asp Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu 165 170 175
- Leu Ser Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ala Val
- Pro Thr Glu Ala Leu Ser His Leu Arg Ser Leu Ile Ser Leu His Leu 195 200 205
- Lys His Leu Asn Ile Asn Asn Met Pro Val Tyr Ala Phe Lys Arg Leu 210 215 220
- Phe His Leu Lys His Leu Glu Ile Asp Tyr Trp Pro Leu Leu Asp Met 225 230 230 240
- Met Pro Ala Asn Ser Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Val 245 250 255
- Thr Asn Thr Asn Leu Ser Thr Val Pro Phe Leu Ala Phe Lys His Leu 260 265 270
- Val Tyr Leu Thr His Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile 275 280 285
- Glu Ala Gly Met Phe Ser Asp Leu Ile Arg Leu Gln Glu Leu His Ile 290 295 300
- Val Gly Ala Gln Leu Arg Thr Ile Glu Pro His Ser Phe Gln Gly Leu 305 310 315 320

Arg Phe Leu Arg Val Leu Asn Val Ser Gln Asn Leu Leu Glu Thr Leu 325 330 335

Glu Glu Asn Val Phe Ser Ser Pro Arg Ala Leu Glu Val Leu Ser Ile 340 345 350

Asn Asn Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Ile Leu Gln 355 360 365

Arg Gln Pro Thr Leu Gln Phe Gly Gly Gln Gln Pro Met Cys Ala Gly 370 375 380

Pro Asp Thr Ile Arg Glu Arg Ser Phe Lys Asp Phe His Ser Thr Ala 385 390 395 400

Leu Ser Phe Tyr Phe Thr Cys Lys Lys Pro Lys Ile Arg Glu Lys Lys 405 415

Leu Gln His Leu Leu Val Asp Glu Gly Gln Thr Val Gln Leu Glu Cys
420 425 430

Ser Ala Asp Gly Asp Pro Gln Pro Val Ile Ser Trp Val Thr Pro Arg 435 440 445

Arg Arg Phe Ile Thr Thr Lys Ser Asn Gly Arg Ala Thr Val Leu Gly 450 460

Asp Gly Thr Leu Glu Ile Arg Phe Ala Gln Asp Gln Asp Ser Gly Met 465 470 475 480

Tyr Val Cys Ile Ala Ser Asn Ala Ala Gly Asn Asp Thr Phe Thr Ala 485 490 495

Ser Leu Thr Val Lys Gly Phe Ala Ser Asp Arg Phe Leu Tyr Ala Asn 500 505 510

Arg Thr Pro Met Tyr Met Thr Asp Ser Asn Asp Thr Ile Ser Asn Gly 515 520 525

Thr Asn Ala Asn Thr Phe Ser Leu Asp Leu Lys Thr Ile Leu Val Ser 530 540

Thr Ala Met Gly Cys Phe Thr Phe Leu Gly Val Val Leu Phe Cys Phe 545 550 555 560

Leu Leu Leu Phe Val Trp Ser Arg Gly Lys Gly Lys His Lys Asn Ser

Ile Asp Leu Glu Tyr Val Pro Arg Lys Asn Asn Gly Ala Val Val Glu 585

Gly Glu Val Ala Gly Pro Arg Arg Phe Asn Met Lys Met Ile 595 600

<210> 18

<211> 614 <212> PRT <213> Homo sapiens

<400> 18

Met Leu Ala Gly Gly Val Arg Ser Met Pro Ser Pro Leu Leu Ala Cys

Trp Gln Pro Ile Leu Leu Leu Val Leu Gly Ser Val Leu Ser Gly Ser

Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys Ser Ala Gln Asp Arg Ala

Val Leu Cys His Arg Lys Arg Phe Val Ala Val Pro Glu Gly Ile Pro

Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys Asn Arg Ile Lys Thr Leu 70 75

Asn Gln Asp Glu Phe Ala Ser Phe Pro His Leu Glu Glu Leu Glu Leu

Asn Glu Asn Ile Val Ser Ala Val Glu Pro Gly Ala Phe Asn Asn Leu 100 105

Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser Asn Arg Leu Lys Leu Ile 115

Pro Leu Gly Val Phe Thr Gly Leu Ser Asn Leu Thr Lys Leu Asp Ile 135 130

Ser Glu Asn Lys Ile Val Ile Leu Leu Asp Tyr Met Phe Gln Asp Leu 155

130/161

Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp Asn Asp Leu Val Tyr Ile 165 170 175

- Ser His Arg Ala Phe Ser Gly Leu Asn Ser Leu Glu Gln Leu Thr Leu 180 185 190
- Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr Glu Ala Leu Ser His Leu 195 200 205
- His Gly Leu Ile Val Leu Arg Leu Arg His Leu Asn Ile Asn Ala Ile 210 215 220
- Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg Leu Lys Val Leu Glu Ile 225 230 235 240
- Ser His Trp Pro Tyr Leu Asp Thr Met Thr Pro Asn Cys Leu Tyr Gly
 245 250 255
- Leu Asn Leu Thr Ser Leu Ser Ile Thr His Cys Asn Leu Thr Ala Val
 260 265 270
- Pro Tyr Leu Ala Val Arg His Leu Val Tyr Leu Arg Phe Leu Asn Leu 275 280 285
- Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly Ser Met Leu His Glu Leu 290 295 300
- Leu Arg Leu Gln Glu Ile Gln Leu Val Gly Gln Leu Ala Val Val 305 310 315 320
- Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr Leu Arg Val Leu Asn Val 325 330 335
- Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu Ser Val Phe His Ser Val 340 345 350
- Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser Asn Pro Leu Ala Cys Asp 355 360 365
- Cys Arg Leu Leu Trp Val Phe Arg Arg Arg Trp Arg Leu Asn Phe Asn 370 375 380
- Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu Phe Val Gln Gly Lys Glu 385 390 395 400

131/161

Phe Lys Asp Phe Pro Asp Val Leu Leu Pro Asn Tyr Phe Thr Cys Arg 405 410

Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln Gln Val Phe Val Asp Glu 420 425 430

Gly His Thr Val Gln Phe Val Cys Arg Ala Asp Gly Asp Pro Pro Pro 435 440 445

Ala Ile Leu Trp Leu Ser Pro Arg Lys His Leu \dot{Val} Ser Ala Lys Ser 450 460

Asn Gly Arg Leu Thr Val Phe Pro Asp Gly Thr Leu Glu Val Arg Tyr 465 470 475 480

Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu Cys Ile Ala Ala Asn Ala 485 490 495

Gly Gly Asn Asp Ser Met Pro Ala His Leu His Val Arg Ser Tyr Ser 500 505 510

Pro Asp Trp Pro His Gln Pro Asn Lys Thr Phe Ala Phe Ile Ser Asn 515 520 525

Gln Pro Gly Glu Gly Glu Ala Asn Ser Thr Arg Ala Thr Val Pro Phe 530 540

Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala Thr Thr Met Gly Phe Ile 545 550 555 555

Ser Phe Leu Gly Val Val Leu Phe Cys Leu Val Leu Leu Phe Leu Trp 565 570 575

Ser Arg Gly Lys Gly Asn Thr Lys His Asn Ile Glu Ile Glu Tyr Val 580 585 590

Pro Arg Lys Ser Asp Ala Gly Ile Ser Ser Ala Asp Ala Pro Arg Lys 595 600 605

Phe Asn Met Lys Met Ile 610

<210> 19

<211> 605

<212> PRT

<213> Homo sapiens

<400> 19

Met Ala Leu Arg Lys Gly Gly Leu Ala Leu Ala Leu Leu Leu Leu Ser 1 5 10 15

Trp Val Ala Leu Gly Pro Arg Ser Leu Glu Gly Ala Asp Pro Gly Thr 20 25 30

Pro Gly Glu Ala Glu Gly Pro Ala Cys Pro Ala Ala Cys Val Cys Ser 35 40 45

Tyr Asp Asp Asp Ala Asp Glu Leu Ser Val Phe Cys Ser Ser Arg Asn 50 55 60

Leu Thr Arg Leu Pro Asp Gly Val Pro Gly Gly Thr Gln Ala Leu Trp 65 70 75 80

Leu Asp Gly Asn Asn Leu Ser Ser Val Pro Pro Ala Ala Phe Gln Asn 85 90 95

Leu Ser Ser Leu Gly Phe Leu Asn Leu Gln Gly Gly Gln Leu Gly Ser 100 105 110

Leu Glu Pro Gln Ala Leu Leu Gly Leu Glu Asn Leu Cys His Leu His
115 120 125

Leu Glu Arg Asn Gln Leu Arg Ser Leu Ala Leu Gly Thr Phe Ala His 130 135 140

Thr Pro Ala Leu Ala Ser Leu Gly Leu Ser Asn Asn Arg Leu Ser Arg 145 150 155 160

Leu Glu Asp Gly Leu Phe Glu Gly Leu Gly Ser Leu Trp Asp Leu Asn 165 170 175

Leu Gly Trp Asn Ser Leu Ala Val Leu Pro Asp Ala Ala Phe Arg Gly
180 185 190

Leu Gly Ser Leu Arg Glu Leu Val Leu Ala Gly Asn Arg Leu Ala Tyr
195 200 205

Leu Gln Pro Ala Leu Phe Ser Gly Leu Ala Glu Leu Arg Glu Leu Asp 210 215 220

Leu Ser Arg Asn Ala Leu Arg Ala Ile Lys Ala Asn Val Phe Val Gln

133/161

225 230 235 240

Leu Pro Arg Leu Gln Lys Leu Tyr Leu Asp Arg Asn Leu Ile Ala Ala 245 250 255

Val Ala Pro Gly Ala Phe Leu Gly Leu Lys Ala Leu Arg Trp Leu Asp 260 265 270

Leu Ser His Asn Arg Val Ala Gly Leu Leu Glu Asp Thr Phe Pro Gly 275 280 285

Leu Leu Gly Leu Arg Val Leu Arg Leu Ser His Asn Ala Ile Ala Ser 290 295 300

Leu Arg Pro Arg Thr Phe Lys Asp Leu His Phe Leu Glu Glu Leu Gln 305 310 315 320

Leu Gly His Asn Arg Ile Arg Gln Leu Ala Glu Arg Ser Phe Glu Gly 325 330 335

Leu Gly Gln Leu Glu Val Leu Thr Leu Asp His Asn Gln Leu Gln Glu 340 345 350

Val Lys Ala Gly Ala Phe Leu Gly Leu Thr Asn Val Ala Val Met Asn 355 360 365

Leu Ser Gly Asn Cys Leu Arg Asn Leu Pro Glu Gln Val Phe Arg Gly 370 380

Leu Gly Lys Leu His Ser Leu His Leu Glu Gly Ser Cys Leu Gly Arg 385 390 395 400

Ile Arg Pro His Thr Phe Thr Gly Leu Ser Gly Leu Arg Arg Leu Phe 405 410 415

Leu Lys Asp Asn Gly Leu Val Gly Ile Glu Glu Gln Ser Leu Trp Gly
420 425 430

Leu Ala Glu Leu Leu Glu Leu Asp Leu Thr Ser Asn Gln Leu Thr His
435 440 445

Leu Pro His Arg Leu Phe Gln Gly Leu Gly Lys Leu Glu Tyr Leu Leu 450 455 460

Leu Ser Arg Asn Arg Leu Ala Glu Leu Pro Ala Asp Ala Leu Gly Pro

465 470 475 480

Leu Gln Arg Ala Phe Trp Leu Asp Val Ser His Asn Arg Leu Glu Ala 485 490 495

Leu Pro Asn Ser Leu Leu Ala Pro Leu Gly Arg Leu Arg Tyr Leu Ser 500 505

Leu Arg Asn Asn Ser Leu Arg Thr Phe Thr Pro Gln Pro Pro Gly Leu 515 520 525

Glu Arg Leu Trp Leu Glu Gly Asn Pro Trp Asp Cys Gly Cys Pro Leu 530 535 540

Lys Ala Leu Arg Asp Phe Ala Leu Gln Asn Pro Ser Ala Val Pro Arg 545 550 555 560

Phe Val Gln Ala Ile Cys Glu Gly Asp Asp Cys Gln Pro Pro Ala Tyr 565 570 575

Thr Tyr Asn Asn Ile Thr Cys Ala Ser Pro Pro Glu Val Val Gly Leu 580 585 590

Asp Leu Arg Asp Leu Ser Glu Ala His Phe Ala Pro Cys 595 600 605

<210> 20

<211> 1093

<212> PRT

<213> Homo sapiens

<400> 20

Cys Leu Leu Leu Trp Leu Val Leu Val Arg Leu Glu Pro Val Thr

Ala Ala Gly Pro Arg Ala Pro Cys Ala Ala Ala Cys Thr Cys Ala
35 40 45

Gly Asp Ser Leu Asp Cys Gly Gly Arg Gly Leu Ala Ala Leu Pro Gly 50 60

Asp Leu Pro Ser Trp Thr Arg Ser Leu Asn Leu Ser Tyr Asn Lys Leu 65 70 75 80

Ser Glu Ile Asp Pro Ala Gly Phe Glu Asp Leu Pro Asn Leu Gln Glu 85 90 95

- Val Tyr Leu Asn Asn Glu Leu Thr Ala Val Pro Ser Leu Gly Ala 100 105 110
- Ala Ser Ser His Val Val Ser Leu Phe Leu Gln His Asn Lys Ile Arg 115 120 125
- Ser Val Glu Gly Ser Gln Leu Lys Ala Tyr Leu Ser Leu Glu Val Leu 130 135 140
- His Gly Pro Pro Ile Lys Glu Leu Asn Leu Ala Gly Asn Arg Ile Gly 165 170 175
- Thr Leu Glu Leu Gly Ala Phe Asp Gly Leu Ser Arg Ser Leu Leu Thr 180 185 190
- Leu Arg Leu Ser Lys Asn Arg Ile Thr Gln Leu Pro Val Arg Ala Phe 195 200 205
- Lys Leu Pro Arg Leu Thr Gln Leu Asp Leu Asn Arg Asn Arg Ile Arg 210 215220
- Leu Ile Glu Gly Leu Thr Phe Gln Gly Leu Asn Ser Leu Glu Val Leu 225 230 235
- Lys Leu Gln Arg Asn Asn Ile Ser Lys Leu Thr Asp Gly Ala Phe Trp 245 250 255
- Gly Leu Ser Lys Met His Val Leu His Leu Glu Tyr Asn Ser Leu Val 260 265 270
- Glu Val Asn Ser Gly Ser Leu Tyr Gly Leu Thr Ala Leu His Gln Leu 275 280 285
- His Leu Ser Asn Asn Ser Ile Ala Arg Ile His Arg Lys Gly Trp Ser 290 295 300
- Phe Cys Gln Lys Leu His Glu Leu Val Leu Ser Phe Asn Asn Leu Thr 305 310 315 320

Arg Leu Asp Glu Glu Ser Leu Ala Glu Leu Ser Ser Leu Ser Val Leu 325 330 330

- Arg Leu Ser His Asn Ser Ile Ser His Ile Ala Glu Gly Ala Phe Lys 340 345 350
- Gly Leu Arg Ser Leu Arg Val Leu Asp Leu Asp His Asn Glu Ile Ser 355 360 365
- Gly Thr Ile Glu Asp Thr Ser Gly Ala Phe Ser Gly Leu Asp Ser Leu 370 380
- Ser Lys Leu Thr Leu Phe Gly Asn Lys Ile Lys Ser Val Ala Lys Arg 385 390 395 400
- Ala Phe Ser Gly Leu Glu Gly Leu Glu His Leu Asn Leu Gly Gly Asn 405 410 415
- Ala Ile Arg Ser Val Gln Phe Asp Ala Phe Val Lys Met Lys Asn Leu 420 425 430
- Lys Glu Leu His Ile Ser Ser Asp Ser Phe Leu Cys Asp Cys Gln Leu 435 440 445
- Lys Trp Leu Pro Pro Trp Leu Ile Gly Arg Met Leu Gln Ala Phe Val 450
- Thr Ala Thr Cys Ala His Pro Glu Ser Leu Lys Gly Gln Ser Ile Phe 465 470 480
- Ser Val Pro Pro Glu Ser Phe Val Cys Asp Asp Phe Leu Lys Pro Gln 485 490 495
- Ile Ile Thr Gln Pro Glu Thr Thr Met Ala Met Val Gly Lys Asp Ile
 500 505 510
- Arg Phe Thr Cys Ser Ala Ala Ser Ser Ser Ser Ser Pro Met Thr Phe 515 .
- Ala Trp Lys Lys Asp Asn Glu Val Leu Thr Asn Ala Asp Met Glu Asn 530 540
- Phe Val His Val His Ala Gln Asp Gly Glu Val Met Glu Tyr Thr Thr 545 550 555 560

Ile Leu His Leu Arg Gln Val Thr Phe Gly His Glu Gly Arg Tyr Gln 565 570 575

- Cys Val Ile Thr Asn His Phe Gly Ser Thr Tyr Ser His Lys Ala Arg 580 585 590
- Leu Thr Val Asn Val Leu Pro Ser Phe Thr Lys Thr Pro His Asp Ile 595 600 605
- Thr Ile Arg Thr Thr Thr Val Ala Arg Leu Glu Cys Ala Ala Thr Gly 610 620
- His Pro Asn Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe 625 630 635 640
- Pro Ala Ala Arg Glu Arg Met His Val Met Pro Asp Asp Val
 645 650 655
- Phe Phe Ile Thr Asp Val Lys Ile Asp Asp Ala Gly Val Tyr Ser Cys 660 665 670
- Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr Leu Thr
 675 680 685
- Val Leu Glu Thr Pro Ser Leu Val Val Pro Leu Glu Asp Arg Val Val 690 695 700
- Ser Val Gly Glu Thr Val Ala Leu Gln Cys Lys Ala Thr Gly Asn Pro 705 710 715 720
- Pro Pro Arg Ile Thr Trp Phe Lys Gly Asp Arg Pro Leu Ser Leu Thr 725 730 735
- Glu Arg His His Leu Thr Pro Asp Asn Gln Leu Leu Val Val Gln Asn 740 . 745 . 750
- Val Val Ala Glu Asp Ala Gly Arg Tyr Thr Cys Glu Met Ser Asn Thr 755 760 765
- Leu Gly Thr Glu Arg Ala His Ser Gln Leu Ser Val Leu Pro Ala Ala 770 780
- Gly Cys Arg Lys Asp Gly Thr Thr Val Gly Ile Phe Thr Ile Ala Val 785 790 795 800

Val Ser Ser Ile Val Leu Thr Ser Leu Val Trp Val Cys Ile Ile Tyr 805 810 815

Gln Thr Arg Lys Lys Ser Glu Glu Tyr Ser Val Thr Asn Thr Asp Glu 820 825 830

Thr Val Val Pro Pro Asp Val Pro Ser Tyr Leu Ser Ser Gln Gly Thr 835 840 845

Leu Ser Asp Arg Gln Glu Thr Val Val Arg Thr Glu Gly Gly Pro Gln 850 860

Ala Asn Gly His Ile Glu Ser Asn Gly Val Cys Pro Arg Asp Ala Ser 865 870 870 880

His Phe Pro Glu Pro Asp Thr His Ser Val Ala Cys Arg Gln Pro Lys 885 890 895

Leu Cys Ala Gly Ser Ala Tyr His Lys Glu Pro Trp Lys Ala Met Glu 900 905 910

Lys Ala Glu Gly Thr Pro Gly Pro His Lys Met Glu His Gly Gly Arg 915 920 925

Val Val Cys Ser Asp Cys Asn Thr Glu Val Asp Cys Tyr Ser Arg Gly 930 940

Gln Ala Phe His Pro Gln Pro Val Ser Arg Asp Ser Ala Gln Pro Ser 945 950 955 960

Ala Pro Asn Gly Pro Glu Pro Gly Gly Ser Asp Gln Glu His Ser Pro 965 970 975

His His Gln Cys Ser Arg Thr Ala Ala Gly Ser Cys Pro Glu Cys Gln
980 985 990

Gly Ser Leu Tyr Pro Ser Asn His Asp Arg Met Leu Thr Ala Val Lys 995 1000 1005

Lys Lys Pro Met Ala Ser Leu Asp Gly Lys Gly Asp Ser Ser Trp 1010 1015 1020

Thr Leu Ala Arg Leu Tyr His Pro Asp Ser Thr Glu Leu Gln Pro 1025 1030 1035

139/161

Ala Ser Ser Leu Thr Ser Gly Ser Pro Glu Arg Ala Glu Ala Gln 1045

Tyr Leu Leu Val Ser Asn Gly His Leu Pro Lys Ala Cys Asp Ala 1055 1060 1065

Ser Pro Glu Ser Thr Pro Leu Thr Gly Gln Leu Pro Gly Lys Gln 1080 1075

Arg Val Pro Leu Leu Ala Pro Lys Ser

<210> 21 <211> 653 <212> PRT

<213> Homo sapiens

<400> 21

Met Lys Leu Trp Gln Val Thr Val His His His Thr Trp Asn Ala 10

Ile Leu Leu Pro Phe Val Tyr Leu Thr Ala Gln Val Trp Ile Leu Cys 20 25 30

Ala Ala Ile Ala Ala Ala Ala Ser Ala Gly Pro Gln Asn Cys Pro Ser

Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val Val Cys Thr Arg Arg

Gly Leu Ser Glu Val Pro Gln Gly Ile Pro Ser Asn Thr Arg Tyr Leu

Asn Leu Met Glu Asn Asn Ile Gln Met Ile Gln Ala Asp Thr Phe Arg 90

His Leu His His Leu Glu Val Leu Gln Leu Gly Arg Asn Ser Ile Arg 100

Gln Ile Glu Val Gly Ala Phe Asn Gly Leu Ala Ser Leu Asn Thr Leu 115 120

Glu Leu Phe Asp Asn Trp Leu Thr Val Ile Pro Ser Gly Ala Phe Glu 135

Ser Ile Pro Ser Tyr Ala Phe Asn Arg Val Pro Ser Leu Met Arg Leu 165 170 175

Asp Leu Gly Glu Leu Lys Lys Leu Glu Tyr Ile Ser Glu Gly Ala Phe 180 185 190

Glu Gly Leu Phe Asn Leu Lys Tyr Leu Asn Leu Gly Met Cys Asn Ile 195 200 205

Lys Asp Met Pro Asn Leu Thr Pro Leu Val Gly Leu Glu Glu Leu Glu 210 220

Met Ser Gly Asn His Phe Pro Glu Ile Arg Pro Gly Ser Phe His Gly 225 230 235 240

Leu Ser Ser Leu Lys Lys Leu Trp Val Met Asn Ser Gln Val Ser Leu 245 250 255

Ile Glu Arg Asn Ala Phe Asp Gly Leu Ala Ser Leu Val Glu Leu Asn 260 265 270

Leu Ala His Asn Asn Leu Ser Ser Leu Pro His Asp Leu Phe Thr Pro 275 280 285

Leu Arg Tyr Leu Val Glu Leu His Leu His His Asn Pro Trp Asn Cys 290 295 300

Asp Cys Asp Ile Leu Trp Leu Ala Trp Trp Leu Arg Glu Tyr Ile Pro 305 310 315

Thr Asn Ser Thr Cys Cys Gly Arg Cys His Ala Pro Met His Met Arg 325 330 335

Gly Arg Tyr Leu Val Glu Val Asp Gln Ala Ser Phe Gln Cys Ser Ala 340 345 350

Pro Phe Ile Met Asp Ala Pro Arg Asp Leu Asn Ile Ser Glu Gly Arg 355 360 365

Met Ala Glu Leu Lys Cys Arg Thr Pro Pro Met Ser Ser Val Lys Trp 370 375 380

Leu Leu Pro Asn Gly Thr Val Leu Ser His Ala Ser Arg His Pro Arg 385 390 395 400

- Ile Ser Val Leu Asn Asp Gly Thr Leu Asn Phe Ser His Val Leu Leu 405 410 415
- Ser Asp Thr Gly Val Tyr Thr Cys Met Val Thr Asn Val Ala Gly Asn 420 . 425 430
- Ser Asn Ala Ser Ala Tyr Leu Asn Val Ser Thr Ala Glu Leu Asn Thr 435 440 445
- Ser Asn Tyr Ser Phe Phe Thr Thr Val Thr Val Glu Thr Thr Glu Ile 450 455 460
- Ser Pro Glu Asp Thr Thr Arg Lys Tyr Lys Pro Val Pro Thr Thr Ser 465 470 475 480
- Thr Gly Tyr Gln Pro Ala Tyr Thr Thr Ser Thr Thr Val Leu Ile Gln 485 490 495
- Thr Thr Arg Val Pro Lys Gln Val Ala Val Pro Ala Thr Asp Thr Thr 500 505 510
- Asp Lys Met Gln Thr Ser Leu Asp Glu Val Met Lys Thr Thr Lys Ile
 515 520 525
- Ile Ile Gly Cys Phe Val Ala Val Thr Leu Leu Ala Ala Ala Met Leu 530 540
- Ile Val Phe Tyr Lys Leu Arg Lys Arg His Gln Gln Arg Ser Thr Val 545 550 555 560
- Thr Ala Ala Arg Thr Val Glu Ile Ile Gln Val Asp Glu Asp Ile Pro 565 570 575
- Ala Ala Thr Ser Ala Ala Ala Thr Ala Ala Pro Ser Gly Val Ser Gly
 580 585 590
- Glu Gly Ala Val Val Leu Pro Thr Ile His Asp His Ile Asn Tyr Asn 595 600 605
- Thr Tyr Lys Pro Ala His Gly Ala His Trp Thr Glu Asn Ser Leu Gly 610 615 620

Asn Ser Leu His Pro Thr Val Thr Thr Ile Ser Glu Pro Tyr Ile Ile 625 630

Gln Thr His Thr Lys Asp Lys Val Gln Glu Thr Gln Ile 645 650

<210> 22

<211> 640 <212> PRT

<213> Homo sapiens

<400> 22

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly Pro 5 10

Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu Leu Ala

Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln Thr Cys Pro

Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val Ile Cys Val Arg 55 60

Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser Thr Asn Thr Arg Leu

Leu Asn Leu His Glu Asn Gln Ile Gln Ile Ile Lys Val Asn Ser Phe

Lys His Leu Arg His Leu Glu Ile Leu Gln Leu Ser Arg Asn His Ile 100 105

Arg Thr Ile Glu Ile Gly Ala Phe Asn Gly Leu Ala Asn Leu Asn Thr 115 120 125

Leu Glu Leu Phe Asp Asn Arg Leu Thr Thr Ile Pro Asn Gly Ala Phe 130 135

Val Tyr Leu Ser Lys Leu Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile 150

Glu Ser Ile Pro Ser Tyr Ala Phe Asn Arg Ile Pro Ser Leu Arg Arg

143/161

Leu Asp Leu Gly Glu Leu Lys Arg Leu Ser Tyr Ile Ser Glu Gly Ala $180 \hspace{1cm} 185 \hspace{1cm} 190 \hspace{1cm}$

- Phe Glu Gly Leu Ser Asn Leu Arg Tyr Leu Asn Leu Ala Met Cys Asn 195 200 205
- Leu Arg Glu Ile Pro Asn Leu Thr Pro Leu Ile Lys Leu Asp Glu Leu 210 215 220
- Asp Leu Ser Gly Asn His Leu Ser Ala Ile Arg Pro Gly Ser Phe Gln 225 230 235 240
- Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile Gln 245 250 255
- Val Ile Glu Arg Asn Ala Phe Asp Asn Leu Gln Ser Leu Val Glu Ile 260 265 270
- Asn Leu Ala His Asn Asn Leu Thr Leu Leu Pro His Asp Leu Phe Thr 275 280 285
- Pro Leu His His Leu Glu Arg Ile His Leu His His Asn Pro Trp Asn 290 295 300
- Cys Asn Cys Asp Ile Leu Trp Leu Ser Trp Trp Ile Lys Asp Met Ala 305 310 315 320
- Pro Ser Asn Thr Ala Cys Cys Ala Arg Cys Asn Thr Pro Pro Asn Leu 325 330 335
- Lys Gly Arg Tyr Ile Gly Glu Leu Asp Gln Asn Tyr Phe Thr Cys Tyr 340 345 350
- Ala Pro Val Ile Val Glu Pro Pro Ala Asp Leu Asn Val Thr Glu Gly 355 360 365
- Met Ala Ala Glu Leu Lys Cys Arg Ala Ser Thr Ser Leu Thr Ser Val 370 375 380
- Ser Trp Ile Thr Pro Asn Gly Thr Val Met Thr His Gly Ala Tyr Lys 385 390 395 400
- Val Arg Ile Ala Val Leu Ser Asp Gly Thr Leu Asn Phe Thr Asn Val 405 410 415

Thr Val Gln Asp Thr Gly Met Tyr Thr Cys Met Val Ser Asn Ser Val 420 . 425 430

Gly Asn Thr Thr Ala Ser Ala Thr Leu Asn Val Thr Ala Ala Thr Thr 435 440 445

Thr Pro Phe Ser Tyr Phe Ser Thr Val Thr Val Glu Thr Met Glu Pro 450 455 460

Ser Gln Asp Glu Ala Arg Thr Thr Asp Asn Asn Val Gly Pro Thr Pro 465 470 475 480

Val Val Asp Trp Glu Thr Thr Asn Val Thr Thr Ser Leu Thr Pro Gln 485 490 495

Ser Thr Arg Ser Thr Glu Lys Thr Phe Thr Ile Pro Val Thr Asp Ile 500 505 510

Asn Ser Gly Ile Pro Gly Ile Asp Glu Val Met Lys Thr Thr Lys Ile 515 520 525

Ile Ile Gly Cys Phe Val Ala Ile Thr Leu Met Ala Ala Val Met Leu 530 535 540

Val Ile Phe Tyr Lys Met Arg Lys Gln His His Arg Gln Asn His His 545 550 555 560

Ala Pro Thr Arg Thr Val Glu Ile Ile Asn Val Asp Asp Glu Ile Thr 565 570 575

Gly Asp Thr Pro Met Glu Ser His Leu Pro Met Pro Ala Ile Glu His 580 585 590

Glu His Leu Asn His Tyr Asn Ser Tyr Lys Ser Pro Phe Asn His Thr
595 600 605

Thr Thr Val Asn Thr Ile Asn Ser Ile His Ser Ser Val His Glu Pro 610 615 620

Leu Leu Ile Arg Met Asn Ser Lys Asp Asn Val Gln Glu Thr Gln Ile 625 630 635 640

<210> 23

<211> 422

<212> PRT

<213> Homo sapiens

<400> 23

Met Cys Asn Leu Lys Asp Ile Pro Asn Leu Thr Ala Leu Val Arg Leu 1 5 5 10 10 15

Glu Glu Leu Glu Leu Ser Gly Asn Arg Leu Asp Leu Ile Arg Pro Gly 20 25 30

Ser Phe Gln Gly Leu Thr Ser Leu Arg Lys Leu Trp Leu Met His Ala 35 40 45

Gln Val Ala Thr Ile Glu Arg Asn Ala Phe Asp Asp Leu Lys Ser Leu 50 60

Glu Glu Leu Asn Leu Ser His Asn Asn Leu Met Ser Leu Pro His Asp 65 70 75 80

Leu Phe Thr Pro Leu His Arg Leu Glu Arg Val His Leu Asn His Asn 85 90 95

Pro Trp His Cys Asn Cys Asp Val Leu Trp Leu Ser Trp Trp Leu Lys
100 105 110

Glu Thr Val Pro Ser Asn Thr Thr Cys Cys Ala Arg Cys His Ala Pro 115 120 125

Ala Gly Leu Lys Gly Arg Tyr IIe Gly Glu Leu Asp Gln Ser His Phe 130 140

Thr Cys Tyr Ala Pro Val Ile Val Glu Pro Pro Thr Asp Leu Asn Val 145 150 155 160

Thr Glu Gly Met Ala Ala Glu Leu Lys Cys Arg Thr Gly Thr Ser Met 165 170 175

Thr Ser Val Asn Trp Leu Thr Pro Asn Gly Thr Leu Met Thr His Gly
180 185 190

Ser Tyr Arg Val Arg Ile Ser Val Leu His Asp Gly Thr Leu Asn Phe 195 200 205

Thr Asn Val Thr Val Gln Asp Thr Gly Gln Tyr Thr Cys Met Val Thr 210 215 220

Asn Ser Ala Gly Asn Thr Thr Ala Ser Ala Thr Leu Asn Val Ser Ala

146/161

225 230 235 240

Val Asp Pro Val Ala Ala Gly Gly Thr Gly Ser Gly Gly Gly Pro 245 250 255

Gly Gly Ser Gly Gly Val Gly Gly Gly Ser Gly Gly Tyr Thr Tyr Phe 260 265 270

Thr Thr Val Thr Val Glu Thr Leu Glu Thr Gln Pro Gly Glu Glu Ala 275 280 285

Leu Gln Pro Arg Gly Thr Glu Lys Glu Pro Pro Gly Pro Thr Thr Asp 290 295 300

Gly Val Trp Gly Gly Gly Arg Pro Gly Asp Ala Ala Gly Pro Ala Ser 305 310 315 320

Ser Ser Thr Thr Ala Pro Ala Pro Arg Ser Ser Arg Pro Thr Glu Lys 325 330 335

Ala Phe Thr Val Pro Ile Thr Asp Val Thr Glu Asn Ala Leu Lys Asp 340 345 350

Leu Asp Asp Val Met Lys Thr Thr Lys Ile Ile Gly Cys Phe Val 355 360 365

Ala Ile Thr Phe Met Ala Ala Val Met Leu Val Ala Phe Tyr Lys Leu 370 380

Arg Lys Gln His Gln Leu His Lys His His Gly Pro Thr Arg Thr Val 385 390 395 400

Glu Ile Ile Asn Val Glu Asp Glu Leu Pro Ala Ala Ser Ala Val Ser 405 410 415

Val Ala Ala Ala Ala Ala 420

<210> 24

<211> 811

<212> PRT

<213> Homo sapiens

<400> 24

Met Glu Ala Ala Arg Ala Leu Arg Leu Leu Leu Val Val Cys Gly Cys 1 5 10 15

Leu Ala Leu Pro Pro Leu Ala Glu Pro Val Cys Pro Glu Arg Cys Asp 20 25 30

- Cys Gln His Pro Gln His Leu Leu Cys Thr Asn Arg Gly Leu Arg Val 35 40 45
- Val Pro Lys Thr Ser Ser Leu Pro Ser Pro His Asp Val Leu Thr Tyr 50 55 60
- Ser Leu Gly Gly Asn Phe Ile Thr Asn Ile Thr Ala Phe Asp Phe His 65 70 75 80
- Arg Leu Gly Gln Leu Arg Arg Leu Asp Leu Gln Tyr Asn Gln Ile Arg 85 90 95
- Ser Leu His Pro Lys Thr Phe Glu Lys Leu Ser Arg Leu Glu Glu Leu 100 105 110
- Tyr Leu Gly Asn Asn Leu Leu Gln Ala Leu Ala Pro Gly Thr Leu Ala 115 120 125
- Pro Leu Arg Lys Leu Arg Ile Leu Tyr Ala Asn Gly Asn Glu Ile Ser 130 140
- Arg Leu Ser Arg Gly Ser Phe Glu Gly Leu Glu Ser Leu Val Lys Leu 145 150 155 160
- Arg Leu Asp Gly Asn Ala Leu Gly Ala Leu Pro Asp Ala Val Phe Ala 165 170 175
- Pro Leu Gly Asn Leu Leu Tyr Leu His Leu Glu Ser Asn Arg Ile Arg 180 185 185
- Phe Leu Gly Lys Asn Ala Phe Ala Gln Leu Gly Lys Leu Arg Phe Leu 195 200 205
- Asn Leu Ser Ala Asn Glu Leu Gln Pro Ser Leu Arg His Ala Ala Thr 210 225
- Phe Ala Pro Leu Arg Ser Leu Ser Ser Leu Ile Leu Ser Ala Asn Ser 225 230 235 240
- Leu Gln His Leu Gly Pro Arg Ile Phe Gln His Leu Pro Arg Leu Gly 245 250 255

Leu Leu Ser Leu Arg Gly Asn Gln Leu Thr His Leu Ala Pro Glu Ala 260 265 270

Phe Trp Gly Leu Glu Ala Leu Arg Glu Leu Arg Leu Glu Gly Asn Arg 275 280 285

Leu Ser Gln Leu Pro Thr Ala Leu Leu Glu Pro Leu His Ser Leu Glu 290 295 300

Ala Leu Asp Leu Ser Gly Asn Glu Leu Ser Ala Leu His Pro Ala Thr 305 310 315 320

Phe Gly His Leu Gly Arg Leu Arg Glu Leu Ser Leu Arg Asn Asn Ala 325 330 335

Leu Ser Ala Leu Ser Gly Asp Ile Phe Ala Ala Ser Pro Ala Leu Tyr 340 345 350

Gly Leu Lys Arg Trp Met Gly Asp Trp His Ser Gln Gly Arg Leu Leu 370 375 380

Thr Val Phe Val Gln Cys Arg His Pro Pro Ala Leu Arg Gly Lys Tyr 385 390 395 400

Leu Asp Tyr Leu Asp Asp Gln Gln Leu Gln Asn Gly Ser Cys Ala Asp
405
410
415

Pro Ser Pro Ser Ala Ser Leu Thr Ala Asp Arg Arg Gln Pro Leu 420 425 430

Pro Thr Ala Ala Gly Glu Glu Met Thr Pro Pro Ala Gly Leu Ala Glu 435 440 445

Glu Leu Pro Pro Gln Pro Gln Leu Gln Gln Gln Gly Arg Phe Leu Ala 450 455 460

Gly Val Ala Trp Asp Gly Ala Ala Arg Glu Leu Val Gly Asn Arg Ser 465 470 475 480

Ala Leu Arg Leu Ser Arg Arg Gly Pro Gly Leu Gln Gln Pro Ser Pro
485 490 495

Ser Val Ala Ala Ala Gly Pro Ala Pro Gln Ser Leu Asp Leu His 500 505 510

- Lys Lys Pro Gln Arg Gly Arg Pro Thr Arg Ala Asp Pro Ala Leu Ala 515 520 525
- Glu Pro Thr Pro Thr Ala Ser Pro Gly Ser Ala Pro Ser Pro Ala Gly 530 535 540
- Asp Pro Trp Gln Arg Ala Thr Lys His Arg Leu Gly Thr Glu His Gln 545 550 550 560
- Glu Arg Ala Ala Gln Ser Asp Gly Gly Ala Gly Leu Pro Pro Leu Val 565 570 575
- Ser Asp Pro Cys Asp Phe Asn Lys Phe Ile Leu Cys Asn Leu Thr Val 580 585 590
- Glu Ala Val Gly Ala Asp Ser Ala Ser Val Arg Trp Ala Val Arg Glu 595 600 605
- His Arg Ser Pro Arg Pro Leu Gly Gly Ala Arg Phe Arg Leu Leu Phe 610 615 620
- Asp Arg Phe Gly Gln Gln Pro Lys Phe His Arg Phe Val Tyr Leu Pro 625 630 635 640
- Glu Ser Ser Asp Ser Ala Thr Leu Arg Glu Leu Arg Gly Asp Thr Pro 645 650 655
- Tyr Leu Val Cys Val Glu Gly Val Leu Gly Gly Arg Val Cys Pro Val 660 665 670
- Ala Pro Arg Asp His Cys Ala Gly Leu Val Thr Leu Pro Glu Ala Gly 675 680 685
- Ser Arg Gly Gly Val Asp Tyr Gln Leu Leu Thr Leu Ala Leu Leu Thr 690 700
- Val Asn Ala Leu Leu Val Leu Leu Ala Leu Ala Ala Trp Ala Ser Arg 705 710 715 720
- Trp Leu Arg Arg Lys Leu Arg Ala Arg Arg Lys Gly Gly Ala Pro Val 725 730 735

His Val Arg His Met Tyr Ser Thr Arg Arg Pro Leu Arg Ser Met Gly 740 745 750

Thr Gly Val Ser Ala Asp Phe Ser Gly Phe Gln Ser His Arg Pro Arg 755 760 765

Thr Thr Val Cys Ala Leu Ser Glu Ala Asp Leu Ile Glu Phe Pro Cys 770 780

Asp Arg Phe Met Asp Ser Ala Gly Gly Gly Ala Gly Gly Ser Leu Arg 785 790 795 800

Arg Glu Asp Arg Leu Leu Gln Arg Phe Ala Asp 805 810

<210> 25

<211> 674

<212> PRT

<213> Homo sapiens

<400> 25

Met Val Val Ala His Pro Thr Ala Thr Ala Thr Thr Thr Pro Thr Ala 1 5 10 15

Thr Val Thr Ala Thr Val Val. Met Thr Thr Ala Thr Met Asp Leu Arg 20 25 30

Asp Trp Leu Phe Leu Cys Tyr Gly Leu Ile Ala Phe Leu Thr Glu Val 35 40 45

Ile Asp Ser Thr Thr Cys Pro Ser Val Cys Arg Cys Asp Asn Gly Phe 50 60

Ile Tyr Cys Asn Asp Arg Gly Leu Thr Ser Ile Pro Ala Asp Ile Pro 65 70 75 80

Asp Asp Ala Thr Thr Leu Tyr Leu Gln Asn Asn Gln Ile Asn Asn Ala 85 90 95

Gly Ile Pro Gln Asp Leu Lys Thr Lys Val Asn Val Gln Val Ile Tyr

Leu Tyr Glu Asn Asp Leu Asp Glu Phe Pro Ile Asn Leu Pro Arg Ser 115 120 125.

Leu Arg Glu Leu His Leu Gln Asp Asn Asn Val Arg Thr Ile Ala Arg 130 135 140

Asp Ser Leu Ala Arg Ile Pro Leu Leu Glu Lys Leu His Leu Asp Asp 145 150 155 160

Asn Ser Val Ser Thr Val Ser Ile Glu Glu Asp Ala Phe Ala Asp Ser 165 170 175

Lys Gln Leu Lys Leu Leu Phe Leu Ser Arg Asn His Leu Ser Ser Ile 180 185 190

Pro Ser Gly Leu Pro His Thr Leu Glu Glu Leu Arg Leu Asp Asp Asn 195 200 205

Arg Ile Ser Thr Ile Pro Leu His Ala Phe Lys Gly Leu Asn Ser Leu 210 215 220

Arg Arg Leu Val Leu Asp Gly Asn Leu Leu Ala Asn Gln Arg Ile Ala 225 230 235 240

Asp Asp Thr Phe Ser Arg Leu Gln Asn Leu Thr Glu Leu Ser Leu Val 245 250 250

Arg Asn Ser Leu Ala Ala Pro Pro Leu Asn Leu Pro Ser Ala His Leu 260 265 270

Gln Lys Leu Tyr Leu Gln Asp Asn Ala Ile Ser His Ile Pro Tyr Asn 275 280 285

Thr Leu Ala Lys Met Arg Glu Leu Glu Arg Leu Asp Leu Ser Asn Asn 290 295 300

Asn Leu Thr Thr Leu Pro Arg Gly Leu Phe Asp Asp Leu Gly Asn Leu 305 310 315 320

Ala Gln Leu Leu Leu Arg Asn Asn Pro Trp Phe Cys Gly Cys Asn Leu 325 330 330

Met Trp Leu Arg Asp Trp Val Lys Ala Arg Ala Ala Val Val Asn Val 340 345 350

Arg Gly Leu Met Cys Gln Gly Pro Glu Lys Val Arg Gly Met Ala Ile 355 360 365

Lys Asp Ile Thr Ser Glu Met Asp Glu Cys Phe Glu Thr Gly Pro Gln 370 380

Gly Gly Val Ala Asn Ala Ala Ala Lys Thr Thr Ala Ser Asn His Ala 385 390 395 400

Ser Ala Thr Thr Pro Gln Gly Ser Leu Phe Thr Leu Lys Ala Lys Arg
405 410 415

Pro Gly Leu Arg Leu Pro Asp Ser Asn Ile Asp Tyr Pro Met Ala Thr 420 425 430

Gly Asp Gly Ala Lys Thr Leu Ala Ile His Val Lys Ala Leu Thr Ala 435 440 445

Asp Ser Ile Arg Ile Thr Trp Lys Ala Thr Leu Pro Ala Ser Ser Phe 450 455 460

Arg Leu Ser Trp Leu Arg Leu Gly His Ser Pro Ala Val Gly Ser Ile 465 470 475 480

Thr Glu Thr Leu Val Gln Gly Asp Lys Thr Glu Tyr Leu Leu Thr Ala 485 490 495

Leu Glu Pro Lys Ser Thr Tyr Ile Ile Cys Met Val Thr Met Glu Thr
500 505 510

Ser Asn Ala Tyr Val Ala Asp Glu Thr Pro Val Cys Ala Lys Ala Glu 515 520 525

Thr Ala Asp Ser Tyr Gly Pro Thr Thr Thr Leu Asn Gln Glu Gln Asn 530 540

Ala Gly Pro Met Ala Ser Leu Pro Leu Ala Gly Ile Ile Gly Gly Ala 545 550 555 560

Val Ala Leu Val Phe Leu Phe Leu Val Leu Gly Ala Ile Cys Trp Tyr 565 570 575

Val His Gln Ala Gly Glu Leu Leu Thr Arg Glu Arg Ala Tyr Asn Arg 580 585 590

Gly Ser Arg Glu Lys Asp Asp Tyr Met Glu Ser Gly Thr Lys Lys Asp 595 600 605

Asn Ser Ile Leu Glu Ile Arg Gly Pro Gly Leu Gln Met Leu Pro Ile 615

Asn Pro Tyr Arg Ala Lys Glu Glu Tyr Val Val His Thr Ile Phe Pro 630 635

Ser Asn Gly Ser Ser Leu Cys Lys Ala Thr His Thr Ile Gly Tyr Gly

Thr Thr Arg Gly Tyr Arg Asp Gly Gly Ile Pro Asp Ile Asp Tyr Ser 665

Tyr Thr

<210> 26 <211> 660 <212> PRT

<213> Homo sapiens

<400> 26

Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu

Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys 25

Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr . 35

Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly 55 50

Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe

Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr 90

Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg

Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala 120

Leu Ala Gln Leu Leu Lys Leu Glu Glu Leu His Leu Asp Asp Asn Ser 130 135 140

Ile Ser Thr Val Gly Val Glu Asp Gly Ala Phe Arg Glu Ala Ile Ser 145 150 155 160

Leu Lys Leu Leu Phe Leu Ser Lys Asn His Leu Ser Ser Val Pro Val
165 170 175

Gly Leu Pro Val Asp Leu Gln Glu Leu Arg Val Asp Glu Asn Arg Ile 180 185 190

Ala Val Ile Ser Asp Met Ala Phe Gln Asn Leu Thr Ser Leu Glu Arg
195 200 205

Leu Ile Val Asp Gly Asn Leu Leu Thr Asn Lys Gly Ile Ala Glu Gly 210 215 . 220

Thr Phe Ser His Leu Thr Lys Leu Lys Glu Phe Ser Ile Val Arg Asn 225 230 235 240

Ser Leu Ser His Pro Pro Pro Asp Leu Pro Gly Thr His Leu Ile Arg 245 250 255

Leu Tyr Leu Gln Asp Asn Gln Ile Asn His Ile Pro Leu Thr Ala Phe 260 265 270

Ser Asn Leu Arg Lys Leu Glu Arg Leu Asp Ile Ser Asn Asn Gln Leu 275 280 285

Arg Met Leu Thr Gln Gly Val Phe Asp Asn Leu Ser Asn Leu Lys Gln 290 295 300

Leu Thr Ala Arg Asn Asn Pro Trp Phe Cys Asp Cys Ser Ile Lys Trp 305 310 315 320

Val Thr Glu Trp Leu Lys Tyr Ile Pro Ser Ser Leu Asn Val Arg Gly 325 330 335

Phe Met Cys Gln Gly Pro Glu Gln Val Arg Gly Met Ala Val Arg Glu 340 345 350

Leu Asn Met Asn Leu Leu Ser Cys Pro Thr Thr Thr Pro Gly Leu Pro 355 360 365

155/161

Thr Leu Ser Ile Pro Asn Pro Ser Arg Ser Tyr Thr Pro Pro Thr Pro 385 390 395 400

Thr Thr Ser Lys Leu Pro Thr Ile Pro Asp Trp Asp Gly Arg Glu Arg
405 410 415

Val Thr Pro Pro Ile Ser Glu Arg Ile Gln Leu Ser Ile His Phe Val 420 425 430

Asn Asp Thr Ser Ile Gln Val Ser Trp Leu Ser Leu Phe Thr Val Met 435 440 445

Ala Tyr Lys Leu Thr Trp Val Lys Met Gly His Ser Leu Val Gly Gly 450 455 460

Ile Val Gln Glu Arg Ile Val Ser Gly Glu Lys Gln His Leu Ser Leu 465 470 475 480

Val Asn Leu Glu Pro Arg Ser Thr Tyr Arg Ile Cys Leu Val Pro Leu 485 490 495

Asp Ala Phe Asn Tyr Arg Ala Val Glu Asp Thr Ile Cys Ser Glu Ala 500 505 510

Thr Thr His Ala Ser Tyr Leu Asn Asn Gly Ser Asn Thr Ala Ser Ser 515 520 525

His Glu Gln Thr Thr Ser His Ser Met Gly Ser Pro Phe Leu Leu Ala 530 535 540

Gly Leu Ile Gly Gly Ala Val Ile Phe Val Leu Val Val Leu Leu Ser 545 550 555 560

Val Phe Cys Trp His Met His Lys Lys Gly Arg Tyr Thr Ser Gln Lys 565 570 575

Trp Lys Tyr Asn Arg Gly Arg Arg Lys Asp Asp Tyr Cys Glu Ala Gly 580 585

Thr Lys Lys Asp Asn Ser Ile Leu Glu Met Thr Glu Thr Ser Phe Gln 595 600 605

Ile Val Ser Leu Asn Asn Asp Gln Leu Leu Lys Gly Asp Phe Arg Leu 615

Gln Pro Ile Tyr Thr Pro Asn Gly Gly Ile Asn Tyr Thr Asp Cys His 635 630

Ile Pro Asn Asn Met Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu

His Cys His Thr

<210> 27 <211> 649

<212> PRT

<213> Homo sapiens

<400> 27

Met Ile Ser Ala Ala Trp Ser Ile Phe Leu Ile Gly Thr Lys Ile Gly

Leu Phe Leu Gln Val Ala Pro Leu Ser Val Met Ala Lys Ser Cys Pro 20 25

Ser Val Cys Arg Cys Asp Ala Gly Phe Ile Tyr Cys Asn Asp Arg Phe

Leu Thr Ser Ile Pro Thr Gly Ile Pro Glu Asp Ala Thr Thr Leu Tyr 55

Leu Gln Asn Asn Gln Ile Asn Asn Ala Gly Ile Pro Ser Asp Leu Lys

Asn Leu Leu Lys Val Glu Arg Ile Tyr Leu Tyr His Asn Ser Leu Asp 90

Glu Phe Pro Thr Asn Leu Pro Lys Tyr Val Lys Glu Leu His Leu Gln 105

Glu Asn Asn Ile Arg Thr Ile Thr Tyr Asp Ser Leu Ser Lys Ile Pro

Tyr Leu Glu Glu Leu His Leu Asp Asp Asn Ser Val Ser Ala Val Ser 135 140 130

Ile Glu Glu Gly Ala Phe Arg Asp Ser Asn Tyr Leu Arg Leu Leu Phe

157/161

145 150 155 160

Leu Ser Arg Asn His Leu Ser Thr Ile Pro Trp Gly Leu Pro Arg Thr
165 170 175

Ile Glu Glu Leu Arg Leu Asp Asp Asn Arg Ile Ser Thr Ile Ser Ser 180 185 190

Pro Ser Leu Gln Gly Leu Thr Ser Leu Lys Arg Leu Val Leu Asp Gly
195 200 205

Asn Leu Leu Asn Asn His Gly Leu Gly Asp Lys Val Phe Phe Asn Leu 210 215 220

Val Asn Leu Thr Glu Leu Ser Leu Val Arg Asn Ser Leu Thr Ala Ala 225 230 235 240

Pro Val Asn Leu Pro Gly Thr Asn Leu Arg Lys Leu Tyr Leu Gln Asp
245 250 255

Leu Tyr Arg Leu Asp Met Ser Asn Asn Asn Leu Ser Asn Leu Pro Gln 275 280 285

· Gly Ile Phe Asp Asp Leu Asp Asn Ile Thr Gln Leu Ile Leu Arg Asn 290 295 300

Asn Pro Trp Tyr Cys Gly Cys Lys Met Lys Trp Val Arg Asp Trp Leu 305 310 315 320

Gln Ser Leu Pro Val Lys Val Asn Val Arg Gly Leu Met Cys Gln Ala 325 330 335

Pro Glu Lys Val Arg Gly Met Ala Ile Lys Asp Leu Asn Ala Glu Leu $340 \hspace{1cm} 345 \hspace{1cm} 350 \hspace{1cm} 350$

Phe Asp Cys Lys Asp Ser Gly Ile Val Ser Thr Ile Gln Ile Thr Thr 355 360 365

Ala Ile Pro Asn Thr Val Tyr Pro Ala Gln Gly Gln Trp Pro Ala Pro 370 380

Val Thr Lys Gln Pro Asp Ile Lys Asn Pro Lys Leu Thr Lys Asp His

385 390 395 400

Gln Thr Thr Gly Ser Pro Ser Arg Lys Thr Ile Thr Ile Thr Val Lys
405 410 415

Ser Val Thr Ser Asp Thr Ile His Ile Ser Trp Lys Leu Ala Leu Pro 420 425 430

Met Thr Ala Leu Arg Leu Ser Trp Leu Lys Leu Gly His Ser Pro Ala 435 440 445

Phe Gly Ser Ile Thr Glu Thr Ile Val Thr Gly Glu Arg Ser Glu Tyr 450 455 460

Leu Val Thr Ala Leu Glu Pro Asp Ser Pro Tyr Lys Val Cys Met Val 465 470 475 480

Pro Met Glu Thr Ser Asn Leu Tyr Leu Phe Asp Glu Thr Pro Val Cys 485 490 495

Ile Glu Thr Glu Thr Ala Pro Leu Arg Met Tyr Asn Pro Thr Thr Thr 500 505 510

Leu Asn Arg Glu Gln Glu Lys Glu Pro Tyr Lys Asn Pro Asn Leu Pro 515 520 525

Leu Ala Ala Ile Ile Gly Gly Ala Val Ala Leu Val Thr Ile Ala Leu 530 535 . 540

Leu Ala Leu Val Cys Trp Tyr Val His Arg Asn Gly Ser Leu Phe Ser 545 550 555 556

Arg Asn Cys Ala Tyr Ser Lys Gly Arg Arg Arg Lys Asp Asp Tyr Ala 565 570 575

Glu Ala Gly Thr Lys Lys Asp Asn Ser Ile Leu Glu Ile Arg Glu Thr
580 585 590

Ser Phe Gln Met Leu Pro Ile Ser Asn Glu Pro Ile Ser Lys Glu Glu 595 600 605

Phe Val Ile His Thr Ile Phe Pro Pro Asn Gly Met Asn Leu Tyr Lys 610 615 620

Asn Asn His Ser Glu Ser Ser Ser Asn Arg Ser Tyr Arg Asp Ser Gly

625 630 635 640

Ile Pro Asp Ser Asp His Ser His Ser 645

<210> 28 <211> 261 <212> PRT <213> Homo sapiens

<400> 28

Met Ala Pro Val Pro Gly Ser Leu Gly Gln Gly Arg Asp Ser Gly Asp

Ser Ala Ser Lys Ser Arg Glu Ala Ser Gly Gly Pro Gln Leu Ser Ser 20

Ser Ala Ser Phe Ser Arg Trp Leu Val Ala Ser Pro Gly Ala Gly Gly 40

Trp Pro Leu Arg Leu Ala Gly Trp Gly Ala Ser Pro Leu Arg Leu Ala 55

Gly Trp Gly Gly Met Ala Ala Ser Ala Trp Leu Glu Ala Gly Leu Ala

Arg Val Leu Phe Tyr Pro Thr Leu Leu Tyr Thr Val Phe Arg Gly Arg

Val Arg Gly Pro Ala His Arg Asp Trp Tyr His Arg Ile Asp His Thr 100 105

Val Leu Leu Gly Ala Leu Pro Leu Lys Asn Met Thr Arg Arg Leu Val 115 120

Leu Asp Glu Asn Val Arg Gly Val Ile Thr Met Asn Glu Glu Tyr Glu

Thr Arg Phe Leu Cys Asn Thr Ser Lys Glu Trp Lys Lys Ala Gly Val 155

Glu Gln Leu Arg Leu Ser Thr Val Asp Met Thr Gly Val Pro Thr Leu

Ala Asn Leu His Lys Gly Val Gln Phe Ala Leu Lys Tyr Gln Ala Leu 180 185

Gly Gln Cys Val Tyr Val His Cys Lys Ala Gly Arg Ser Arg Ser Ala 195 200 205

Thr Met Val Ala Ala Tyr Leu Ile Gln Val His Asn Trp Ser Pro Glu 210 215 220

Glu Ala Ile Glu Ala Ile Ala Lys Ile Arg Ser His Ile Ser Ile Arg 225 230 235 240

Pro Ser Gln Leu Glu Val Leu Lys Glu Phe His Lys Glu Ile Thr Ala 245 250 255

Arg Ala Ala Lys Asn 260

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 1 May 2003 (01.05.2003)

(10) International Publication Number WO 2003/035833 A3

(51) International Patent Classification7: C07K 14/00

G01N 33/53,

(21) International Application Number:

PCT/US2002/033542

- (22) International Filing Date: 21 October 2002 (21.10.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/338,733 60/357,600

22 October 2001 (22.10.2001) 15 February 2002 (15.02.2002)

- (71) Applicant (for all designated States except US): EX-ELIXIS, INC. [US/US]; P.O. Box 511, 170 Harbor Way, South San Francisco, CA 94083-0511 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BELVIN, Marcia [US/US]; 921 Santa Fe Avenue, Albany, CA 94706 (US). FRANCIS-LANG, Helen [GB/US]; 1782 Pacific Avenue, Apt. 2, San Francisco, CA 94109 (US). PLOWMAN, Gregory, D. [US/US]; 35 Winding Way, San Carlos, CA 94070 (US). FUNKE, Roel, P. [NL/US]; 343 California Avenue, South San Francisco, CA 94080 (US). LI, Danxi [US/US]; 90 Behr Avenue, #302, San Francisco, CA 94141 (US). FRIEDMAN, Lori [US/US]; 113 Arundel Road, San Carlos, CA 94070 (US).

- (74) Agents: SHAYESTEH, Laleh et al.; Exelixis, Inc., P.O. Box 511, 170 Harbor Way, South San Francisco, CA 94083-0511 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 7 October 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MODIFIER OF THE P53 PATHWAY AND METHODS OF USE

(57) Abstract: Human HM genes are identified as modulators of the p53 pathway, and thus are therapeutic targets for disorders associated with defective p53 function. Methods for identifying modulators of p53, comprising screening for agent that modulate the activity of HM are provided.

International application No.

PCT/US02/33542

A. CLASSIFICATION OF SUBJECT MATTER									
PC(7) : G01N 33/53; C07K 14/00									
US CL	: 435/7.1; 530/350 International Patent Classification (IPC) or to both nati	ional classi	fication and IPC						
	DS SEARCHED								
<u> </u>		v classifica	ion symbols)						
Minimum documentation searched (classification system followed by classification symbols) U.S.: 435/7.1; 530/350									
				als Calde seed					
Decumentation	on searched other than minimum documentation to the	extent that	such documents are included in	the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Continuation Sheet									
C. DOC	UMENTS CONSIDERED TO BE RELEVANT								
Category *	Citation of document, with indication, where ap			Relevant to claim No.					
A NAGASE et al. Prediction of the coding sequences of unidentified human genes. XVII. The complete sequences of 100 new cDNA clones from brain which codes for large proteins in vitro. DNA Research. 2000, Vol. 7, pages 143-150. See entire document, and especially protein KIAA1497.				1, 4-5, 7					
A	A US 20030108963 A1 (SCHLEGEL et al) 25 July 2002, SEQ ID NO:206.								
	·								
			i	•					
				•					
			e e						
Furthe	r documents are listed in the continuation of Box C.		See patent family annex.						
•	Special categories of cited documents:	"T"	later document published after the inte date and not in conflict with the applic						
	nt defining the general state of the art which is not considered to be		principle or theory underlying the inve						
of particular relevance "E" earlier application or patent published on or after the international filing date		*X*	document of particular relevance; the considered novel or cannot be consider when the document is taken alone						
"L" docume	nt which may throw doubts on priority claim(s) or which is cited to	4325		alalmad lawarian acassa ba					
establish specifie	the publication date of another citation or other special reason (as	*Y*	document of particular relevance; the considered to involve an inventive ste	p when the document is					
•	nt referring to an oral disclosure, use, exhibition or other means		combined with one or more other such being obvious to a person skilled in the						
ł	•	# C.P	•	•					
"P" document published prior to the international filing date but later than the "&" document member of the same patent family priority date claimed									
Date of the actual completion of the international search Date of mailing of the international search report									
02 April 2004 (02.04.2004) 96 AUG 2004									
Name and mailing address of the ISA/US Authorized Officer Charles Charles									
	ail Stop PCT, Attn: ISA/US ommissioner for Patents	/ YVON	TE EYEER O VOUN RUNC						
P.O. Box 1450			ne No. 703-308-0916	TOR					
	lexandria, Virginia 22313-1450 Io. (703) 305-3230	15.50401							

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.

PCT/US02/33542

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)					
This	internati	onal report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1.		Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
2.		Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:			
3.		Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box	d Op	servations where unity of invention is lacking (Continuation of Item 2 of first sheet)			
		ional Searching Authority found multiple inventions in this international application, as follows: ontinuation Sheet			
1. 2. 3.		As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:			
4.	nark on	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Claims 1, 4-5, 7, SEQ ID NO:15 Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.			

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

_			
PCT/I	ISM	/335/2	١

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

It is noted that claims 17-16 are not searchable, because they are incomprehensible. It is further noted that claim 26 is not searchable, because the language "said disease" in claim 26 lacks antecedent basis and is not found in claim 23, to which claim 26 is dependent. Similarly, claim 27 is not searchable, because the language "said cancer" in claim 27 lacks antecedent basis and is not found in claim 24, to which claim 27 is dependent

Group 1, claim(s) 1, 4-5, 7, drawn to a method for identifying a candidate p53 pathway modulating agent, comprising providing a binding assay, using a HM polypeptide of SEO ID NO:15 (or LRRN1).

Groups 2-14, claim(s) 1, 4-5, 7, drawn to a method for identifying a candidate p53 pathway modulating agent, comprising providing a binding assay, using a HM polypeptide of SEQ ID NO: 16-28. A method using each of the HM polypeptides of SEQ ID NO: 16-28 constitutes a single invention.

Groups 15-27, claim(s) 1-3, 6, drawn to a method for identifying a candidate p53 pathway modulating agent, comprising providing an apoptosis assay, using a polynucleotide encoding a HM polypeptide of SEQ ID NO: 1-14. A method using each of the polynucleotides encoding the HM polypeptides of SEQ ID NO: 1-14 constitutes a single invention.

Groups 28-41, claim(s) 1-3, 6, drawn to a method for identifying a candidate p53 pathway modulating agent, comprising providing a cell proliferation assay, using a polynucleotide encoding a HM polypeptide of SEQ ID NO: 1-14. A method using each of the polynucleotides encoding the HM polypeptides of SEQ ID NO: 1-14 constitutes a single invention.

Groups 42-55, claim(s) 1-3, 6, drawn to a method for identifying a candidate p53 pathway modulating agent, comprising providing an angiogenesis assay, using a polynucleotide encoding a HM polypeptide of SEQ ID NO: 1-14. A method using each of the polynucleotides encoding the HM polypeptides of SEQ ID NO: 1-14 constitutes a single invention.

Groups 56-69, claim(s) 1-3, 6, drawn to a method for identifying a candidate p53 pathway modulating agent, comprising providing a hypoxic induction assay, using a polymucleotide encoding a HM polypeptide of SEQ ID NO: 1-14. A method using each of the polymucleotides encoding the HM polypeptides of SEQ ID NO: 1-14 constitutes a single invention.

Groups 70-83, claim(s) 1, 8-10, drawn to a method for identifying a candidate p53 pathway modulating agent, comprising providing an expression assay, using a polynucleotide encoding a HM polypeptide of SEQ ID NO: 1-14. A method using each of the polynucleotides encoding the HM polypeptides of SEQ ID NO: 1-14 constitutes a single invention.

Groups 84-97, claim(s) 1, 11-12, drawn to a method for identifying a candidate p53 pathway modulating agent, comprising detecting a phenotype change in a mouse model, using a modulator of a HM polypeptide of SEQ ID NO: 15-28. A method using the modulators of each of the HM polypeptides of SEQ ID NO: 15-28 constitutes a single invention.

Groups 98-111, claim(s) 1, 11-12, drawn to a method for identifying a candidate p53 pathway modulating agent, comprising detecting a phenotype change in a mouse model, using a modulator of a polynucleotide encoding a HM polypeptide of SEQ ID NO: 1-14. A method using the modulators of each of the polynucleotide encoding the HM polypeptides of SEO ID NO: 1-14 constitutes a single invention.

Groups 112-125, claims 13-15, 22-24, drawn to a method for modulating a p53 pathway of a cell using a candidate antibody modulator that specifically binds to a HM polypeptide of SEQ ID NO: 15-28. A method using the modulators of each of the HM polypeptides of SEQ ID NO: 15-28 constitutes a single invention.

Groups 126-139, claims 13-15, 22-24, drawn to a method for modulating a p53 pathway of a cell using a small molecule modulator that specifically binds to a HM polypeptide of SEQ ID NO: 15-28. A method using the modulators of each of the HM polypeptides of SEQ ID NO: 15-28 constitutes a single invention.

Groups 140-153, claims 1, 16, 19, drawn to a method for identifying a candidate p53 pathway modulating agent, comprising providing two assay system, wherein the second assay system comprises cultured cells, using a polynucleotide encoding a HM polypeptide of SEQ Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US02/33542

ID NO: 1-14. A method using each of the polynucleotide encoding the HM polypeptides of SEQ ID NO: 1-14 constitutes a single invention.

Groups 154-167, claims 1, 16, 20-21, drawn to a method for identifying a candidate p53 pathway modulating agent, comprising providing two assay system, wherein the second assay system comprises a non-human animal, using a polynucleotide encoding a HM polypeptide of SEQ ID NO: 1-14. A method using each of the polynucleotide encoding the HM polypeptides of SEQ ID NO: 1-14 constitutes a single invention.

Groups 168-181, claims 22-24, drawn to a method for modulating a p53 pathway of a cell using a nucleic acid modulator that specifically binds to polynucleotide encoding a HM polypeptide of SEQ ID NO: 1-14. A method using the modulators of each of the polynucleotides encoding the HM polypeptides of SEQ ID NO: 1-14 constitutes a single invention.

Groups 162-195, claim 25, drawn to a method for diagnosing a disease, comprising detecting HM protein expression of SEQ ID NO: 15-28. A method detecting each of the HM polypeptides of SEQ ID NO: 15-28 constitutes a single invention.

Groups 196-209, claim 25, drawn to a method for diagnosing a disease, comprising detecting mRNA expression of HM polymucleotides of SEQ ID NO: 1-14. A method detecting each of the HM polymucleotides of SEQ ID NO: 1-14 constitutes a single invention.

The inventions listed as Groups 1-209 do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

According to PCT Rule 13.2, unity of invention exists only when the shared same or corresponding technical feature is a contribution over the prior art. The inventions listed as groups 1-209 do not relate to a single general inventive concept because they lack the same or corresponding technical feature. The technical feature of group I is a method for identifying a candidate p53 pathway modulating, comprising providing a binding assay using a HM polypeptide of SEQ ID NO:15 (or LRRN1). The LRRN1 protein or SEQ ID NO:15 is known in the art, as disclosed in the specification on page 2, second paragraph, and table 1.

Continuation of B. FIELDS SEARCHED Item 3:

MPSRCH sequence similarity search

Search terms: human modifiers protein, assay