CURSO: Tecnologia em Ciência de Dados

POLO DE APOIO PRESENCIAL: Higienópolis

SEMESTRE: 4° Semestre - 2/2024

COMPONENTE CURRICULAR: PROJETO APLICADO III

NOME COMPLETO DO ALUNO:

Beatriz de Souza Ferreira – RA: 10414697 Eduardo Nogueira Mota – RA: 10414834 Gustavo Castro Sangali – RA: 23023708

Jéssica Clara Da Silva Santos – RA: 10414974

TEMA: Projeto: Sistema de Recomendação de Livros utilizando Dados do Goodreads

NOME DO PROFESSOR: Carolina Toledo Ferraz

Sumário

1.	Intro	odução	3
1.	.1	Contexto do Trabalho	3
1.	.2	Motivação	3
1.	.3	Justificativa	4
1.	.4	Objetivo Geral	4
1.	.5	Objetivo Específicos	4
2.	Cro	nograma	5
3.	Refe	erencial Teórico	5
3.	.1	Técnicas de Treinamento do Modelo	5
3.	.2	Fundamentação Técnica	6
4.	Met	odologia	6
4.	.1	Objetivos Definidos	6
4.2 4.3		Etapas do Projeto	7
		Dificuldades e Soluções	9
4.	.4	Diagrama	. 10
5.	Res	ultados	. 10
5.	.1	Métricas de Avaliação	. 11
5.	.2	Comparação com Baselines	. 12
5.	.3	Gráficos e Visualizações	. 12
5.	.4	Discussão de Resultados	. 15
5.	.5	Descrição e Documentação dos Resultados	. 16
6.	Con	clusões e Trabalhos futuros	. 16
6	.1	Conclusões	. 16
6	.2	Trabalhos Futuros	. 16
7.	Refe	erências Bibliográficas	. 17
8.	Ane	xos <mark>(ATUAUZAR)</mark>	17

1. Introdução

Nos últimos anos, os sistemas de recomendação têm se consolidado como uma ferramenta essencial para personalizar a experiência dos usuários em diversas plataformas digitais. Aplicações como Netflix, Spotify e Goodreads utilizam essas tecnologias para sugerir conteúdos de interesse, auxiliando na descoberta de novos itens em meio a uma vasta quantidade de opções disponíveis. No caso específico do mercado literário, uma ampla oferta de livros pode tornar-se desafiadora para os leitores encontrarem obras que atendam às suas preferências.

Este projeto nasceu da necessidade de auxiliar leitores a explorar o universo literário de forma personalizada e eficiente. Ao utilizar dados da plataforma Goodreads, buscamos desenvolver um sistema de recomendação que não apenas facilite a escolha de títulos, mas também valorize a diversidade literária, destacando obras de autores independentes e menos conhecidos.

O sistema proposto será construído com base em técnicas de colaboração de máquina e análise de dados, explorando abordagens como filtragem e recomendações baseadas em conteúdo. A implementação será realizada utilizando a linguagem Python e bibliotecas especializadas, como Scikit-learn e Surprise, com o objetivo de garantir precisão nas recomendações e oferecer uma base sólida para melhorias futuras.

1.1 Contexto do Trabalho

A evolução tecnológica mudou a forma como consumimos informações e produtos. No campo literário, plataformas como Goodreads desempenham um papel crucial ao fornecer informações sobre milhares de livros. No entanto, a ausência de personalização na descoberta de novos títulos pode limitar o alcance de obras menos conhecidas, restringindo a diversidade cultural.

1.2 Motivação

O projeto é motivado pelo impacto social que um sistema de recomendação personalizado pode gerar. Ao facilitar o acesso a livros alinhados aos interesses de cada leitor, o sistema proposto contribui para o incentivo ao hábito de leitura, promovendo a educação e a inclusão literária em diferentes comunidades.

1.3 Justificativa

Este trabalho é relevante porque:

- Democratiza o acesso a obras literárias diversificadas, destacando autores independentes.
- Promover a educação de qualidade, alinhando-se ao Objetivo de Desenvolvimento Sustentável (ODS) 4 da ONU.
- Proporciona uma solução prática e escalável para bibliotecas comunitárias, escolas e plataformas digitais.

1.4 Objetivo Geral

Desenvolver um sistema de recomendação de livros baseado em dados da plataforma Goodreads, utilizando aprendizado de máquina para personalizar sugestões e incentivar a diversidade literária.

1.5 Objetivo Específicos

- Realizar a análise exploratória e o tratamento dos dados encontrados.
- Implementar técnicas de filtragem colaborativa e baseadas em conteúdo.
- Avaliar o desempenho do modelo por meio de métricas como RMSE e MAE.
- Integrar os resultados em um sistema prático, aplicável em bibliotecas e comunidades.

2. Cronograma

100%	1.1.5	Envio Fase I AVA	1 Dia	11/09/2024	11/09/2024	Jéssica
100%	1.2	FASE II – DEFINIÇÃO DO PRODUTO	23 Dias	12/09/2024	05/10/2024	
100%	1.2.1	Encontro Síncrono A2	1 Dia	30/09/2024	30/09/2024	Prof. Carolina Toledo Ferraz
100% 1	1.2.2	Análise e limpeza da base de dados	6 Dias	12/09/2024	18/09/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.2.3	Escolha da técnica para treinamento do modelo	4 Dias	19/09/2024	23/09/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.2.4	Construção da prova de conceito	5 Dias	24/09/2024	29/09/2024	Beatriz; Eduardo; Gustavo; Jéssica
100% 1	1.2.5	Definição da nota de avaliação de desempenho	2 Dias	01/10/2024	03/10/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.2.7	Envio Fase II AVA	1 Dia	05/10/2024	05/10/2024	Jéssica
100% 1	1.3	FASE III – METODOLOGIA	31 Dias	06/10/2024	06/11/2024	
100%	1.3.1	Encontro Síncrono A3	1 Dia	28/10/2024	28/10/2024	Prof. Carolina Toledo Ferraz
100%	1.3.2	Implementação da técnica proposta	14 Dias	06/10/2024	20/10/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.3.3	Ajuste do pipeline de dados	4 Dias	21/10/2024	25/10/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.3.4	Documentação dos passos implementados	10 Dia	26/10/2024	05/11/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.3.6	Envio Fase III AVA	1 Dia	06/11/2024	06/11/2024	Jéssica
100% 1	1.4	FASE IV – RESULTADOS E CONCLUSÃO	19 Dias	07/11/2024	26/11/2024	
100%	1.4.1	Encontro Síncrono A4	1 Dia	18/11/2024	18/11/2024	Prof. Carolina Toledo Ferraz
100%	1.4.2	Organização e documentação dos resultados	8 Dias	03/11/2024	11/11/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.4.3	Finalização da documentação do projeto	4 Dias	12/11/2024	16/11/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.4.4	Produção do vídeo de apresentação	5 Dias	17/11/2024	22/11/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.4.5	Disponibilização do repositório no GitHub	2 Dias	23/11/2024	25/11/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.4.6	Envio Fase IV AVA	1 Dia	26/11/2024	26/11/2024	Jéssica

3. Referencial Teórico

Sistemas de recomendação são amplamente treinados na área de ciência de dados devido à sua relevância em diversas aplicações. Estes sistemas são projetados para sugerir itens aos usuários, como produtos, filmes ou livros, com base em dados de interações passadas, características dos itens e preferências do usuário. No caso deste projeto, uma abordagem focada no uso de aprendizado colaborativo de máquina e técnicas de filtragem para criar um sistema que auxilie os leitores a encontrarem novos livros.

Na literatura, sistemas de recomendação podem promover a descoberta de novos autores e obras menos conhecidas. Este projeto aplica essas técnicas para democratizar o acesso à leitura, indicando livros que atendem aos interesses dos leitores e incentivando a diversidade literária.

3.1 Técnicas de Treinamento do Modelo

Duas abordagens principais foram cumpridas:

- Filtragem Colaborativa: Utiliza o algoritmo SVD para capturar relações latentes entre usuários e livros, permitindo recomendações baseadas em similaridades entre interações.
- Recomendações Baseadas em Conteúdo: Considere características dos livros para sugestões de tópicos semelhantes que o usuário já avaliou positivamente.

A escolha dessas técnicas foi fundamentada por estudos que destacam sua eficiência em lidar com problemas como esparsidade de dados e "cold start".

3.2 Fundamentação Técnica

As técnicas inovadoras neste projeto incluem:

- Decomposição de Valores Singulares (SVD): Para decompor a matriz de interações e capturar relações latentes entre usuários e itens.
- Matriz Esparsa: Representa interações de forma eficiente, essenciais para grandes conjuntos de dados com muitas entradas ausentes.
- Validação Cruzada: Garante a robustez e precisão das análises, utilizando métricas como RMSE e MAE.

4. Metodologia

A metodologia deste projeto foi estruturada para garantir um desenvolvimento eficiente do sistema de recomendação de livros, passando por etapas organizadas de coleta e preparação de dados, treinamento de modelos, avaliação e ajustes. Cada passo foi planejado para atingir os

4.1 Objetivos Definidos

O objetivo geral do projeto foi desenvolver um sistema de recomendação de livros que combine técnicas de filtragem colaborativa e baseadas em conteúdo, utilizando dados da plataforma Goodreads. Para atingir o objetivo, os seguintes objetivos específicos foram definidos:

- Realizar a análise exploratória e o tratamento dos dados para garantir a consistência e a qualidade.
- Implementar modelos de recomendação utilizando SVD e abordagem baseada em atributos dos livros.
- Validar o desempenho dos modelos com análises como MSE, RMSE e MAE.
- Propor ajustes no pipeline de treinamento para superar desafios como esparsidade e "cold start".

4.2 Etapas do Projeto

4.2.1 Coleta de Dados

A coleta de dados foi realizada a partir do repositório Goodreads, utilizando os arquivos:

- Books.csv: Conteúdo atualizado sobre os livros, como título, autor, avaliações médias e idioma.
- Ratings.csv: Registrando avaliações de números de usuários em livros, variando de 1 a 5.

Os dados foram carregados e manipulados utilizando uma biblioteca pandas, que permite lidar com grandes volumes de dados de maneira eficiente.

4.2.2 Análise Exploratória dos Dados

Para compreender a estrutura e qualidade dos dados, foi realizada uma análise exploratória que incluiu:

- Identificação de valores ausentes e duplicados.
- Geração de histogramas para análise da distribuição das avaliações médias e do número de páginas.
- Contagem de valores exclusivos na coluna language_codepara verificar a diversidade linguística.
- Criação de gráficos de dispersão para visualizar a relação entre avaliação média e número de páginas.

Esses insights ajudaram a identificar inconsistências e a planejar o pré-processamento necessário.

4.2.3 Tratamento e Preparação dos Dados

Durante o pré-processamento, as seguintes ações foram realizadas:

- Limpeza: Exclusão de registros duplicados e substituição de valores ausentes por médias ou medianas, dependendo do contexto.
- Normalização: Renomeação e padronização de colunas para simplificar a manipulação.

 Criação de Matriz Esparsa: Transformação dos dados de avaliações em uma matriz de livro do usuário, preenchendo valores ausentes com 0. Essa matriz foi armazenada no formato esparso para otimizar o uso de memória.

4.2.4 Treinamento dos Modelos

Os modelos de aprendizagem de máquina foram treinados com duas abordagens principais:

1. Filtragem Colaborativa com SVD:

- Utilizou o algoritmo Singular Value Decomposition para identificar relações latentes entre usuários e itens.
- Esse modelo foi eficaz em superar o problema de esparsidade na matriz de interações.

2. Baseado em Conteúdo:

- Analisei atributos dos livros (ex.: título, autor, avaliações médias) para sugerir itens semelhantes aos preferidos pelo usuário.
- Foi implementado para lidar com cenários de "cold start", onde há poucos dados históricos.

4.2.5 Implementação

A implementação foi realizada em Python, utilizando bibliotecas especializadas:

- Pandas: Manipulação e análise de dados. Utilizada para carregar os datasets (books.csv e ratings.csv), realizar operações de agrupamento, cálculo de estatísticas descritivas e criação de tabelas dinâmicas.
- NumPy: Operações matemáticas e processamento de arrays. Utilizada para manipulação de dados numéricos e operações matemáticas, complementando as funcionalidades do pandas.
- Scikit-Learn: Algoritmos de aprendizado de máquina. Utilizada para dividir os dados em conjuntos de treino e teste (train_test_split), calcular a similaridade de cosseno entre usuários (cosine_similarity), e avaliar o desempenho do modelo através da métrica Mean Squared Error (MSE).
- Surprise: Especializada para sistemas de recomendação. Utilizada para implementar e avaliar o modelo SVD (Singular Value Decomposition), facilitando a criação de

recomendações e a realização de validação cruzada para avaliar o desempenho do modelo.

Matplotlib e Seaborn: Criação de gráficos para análise exploratória.
 O código foi estruturado no Google Colab para facilitar o desenvolvimento colaborativo e o compartilhamento.

4.2.6 Validação e Ajustes

Os modelos foram avaliados com base nas análises:

- MSE (Erro Quadrático Médio): forneceu a precisão geral do modelo, com menores valores diminuindo melhor desempenho.
- RMSE (Root Mean Squared Error): Fornece uma métrica mais intuitiva para manter a escala das classificações originais.
- MAE (Erro Médio Absoluto): Indica a média dos erros absolutos.
 Com base nos resultados iniciais, as definições foram realizadas:
- Exclusão de usuários com poucas interações para reduzir ruídos.
- Balanceamento de idiomas para aumentar a diversidade nas recomendações.
- Ajuste de hiperparâmetros do SVD para melhorar a captura de padrões latentes.

4.3 Dificuldades e Soluções

Durante o desenvolvimento, desafios importantes foram enfrentados:

- Problema: Muitos valores ausentes na matriz de avaliações.
- **Solução**: Uso do SVD, que é projetado para lidar com matrizes esparsas.
- Problema: A maioria dos livros estava especializada em poucos idiomas.
- Solução: Aplicação de amostragem balanceada para aumentar a diversidade das recomendações.
- Problema: Dificuldade em recomendar itens para novos usuários ou livros sem histórico.
- Solução: Implementação de um modelo baseado em conteúdo para complementar as recomendações.

4.4 Diagrama

A seguir, o fluxo metodológico do projeto:

5. Resultados

Os resultados demonstram a capacidade do sistema de fornecer recomendações de livros personalizadas com um alto grau de precisão. O modelo foi capaz de identificar e sugerir livros com base nas preferências dos usuários, mostrando-se aplicável em bibliotecas comunitárias, plataformas educacionais e outras aplicações relacionadas. As avaliações de desempenho indicam que o sistema é robusto e eficaz, proporcionando uma experiência de usuário aprimorada através de recomendações precisas e relevantes. Esta abordagem não apenas melhora a satisfação dos usuários, mas também pode ser expandida para incluir outras métricas e algoritmos, aumentando ainda mais a precisão e a aplicabilidade do sistema de recomendação.

5.1 Métricas de Avaliação

Foram realizados diversos procedimentos para analisar o dataset de livros e ratings. Inicialmente, foi carregado o dataset books.csv e foram observadas suas primeiras linhas, estrutura e estatísticas descritivas. Identificou-se a necessidade de renomear colunas e verificar valores ausentes. Em seguida, foram gerados histogramas das avaliações médias e do número de páginas, além de um scatter plot relacionando a avaliação média com o número de páginas. Também foram identificados os livros mais avaliados e a contagem de livros por idioma. Com relação ao dataset ratings.csv, foram observadas suas primeiras linhas, estrutura e estatísticas descritivas, além da verificação de valores ausentes. Histogramas das classificações e a média das classificações por livro foram gerados. A matriz de usuários e livros foi criada, preenchendo valores ausentes com zero. A média das avaliações e o número de avaliações para cada livro foram calculados. Filtrou-se para livros com pelo menos 50 avaliações, classificando pela média das avaliações para selecionar os top 5 livros. Dividiu-se os dados em treino e teste, utilizando o erro quadrático médio para avaliar o desempenho do modelo. Por fim, utilizou-se o modelo SVD da biblioteca Surprise para prever a avaliação de um usuário para um livro específico.

Portanto a avaliação do sistema de recomendação foi realizada utilizando métricas de desempenho amplamente reconhecidas: o *Root Mean Square Error* (RMSE) e o *Mean Absolute Error* (MAE). Essas métricas permitem avaliar a precisão das previsões do sistema de recomendação, comparando as classificações previstas com as reais.

- RMSE (Root Mean Square Error): O RMSE mede a raiz quadrada da média dos
 erros quadráticos das previsões. Ele é especialmente sensível a grandes erros, o
 que o torna uma métrica útil para identificar situações em que o modelo faz
 previsões muito distantes dos valores reais. No experimento realizado, o RMSE
 obtido apresentou um nível aceitável, indicando que o modelo possui uma boa
 precisão, embora ainda haja espaço para melhorias.
- MAE (Mean Absolute Error): O MAE, por sua vez, calcula a média dos valores absolutos das diferenças entre as previsões e os valores reais, oferecendo uma métrica mais direta e menos influenciada por grandes desvios. No experimento, o MAE reforçou a eficácia do modelo em fornecer recomendações próximas às preferências reais dos usuários.

Ambas as métricas foram calculadas utilizando validação cruzada com cinco dobras (*5-fold cross-validation*), garantindo maior robustez nos resultados.

5.2 Comparação com Baselines

• Recomendações Aleatórias

O modelo de recomendações aleatórias apresentou desempenho inferior, pois ignora preferências dos usuários e características dos livros. Comparado a este baseline, o sistema baseado em SVD forneceu recomendações muito mais precisas e personalizadas.

Modelo Baseado em Popularidade

Embora útil em contextos de *cold start*, o modelo baseado em popularidade recomenda itens sem considerar preferências individuais. O sistema SVD superou este baseline ao personalizar as sugestões com base nas interações usuário-livro, garantindo maior relevância.

Comparação com Outros Algoritmos

- KNN: Menor precisão e dificuldades de escalabilidade em datasets grandes.
- Matrix Factorization (SVD): Mostrou-se superior na captura de padrões latentes e no desempenho em dados esparsos.
- Redes Neurais: Embora promissoras, demandam maior poder computacional e ajustes. Não foram implementadas neste projeto devido à simplicidade e eficácia do SVD no contexto avaliado.

O modelo SVD ofereceu um bom equilíbrio entre personalização, precisão e eficiência, destacando-se frente aos baselines e outros algoritmos testados.

5.3 Gráficos e Visualizações

• Distribuição das Avaliações Médias: Este histograma mostra como as avaliações dos livros estão distribuídas. O eixo x representa as avaliações médias, que variam de 0 a 5, enquanto o eixo y mostra a frequência dessas avaliações. A maioria das avaliações está concentrada entre 3 e 5, com um pico em torno de 4, indicando que os usuários geralmente avaliam os livros de maneira positiva.

• Distribuição do Número de Páginas: Este histograma apresenta a distribuição do número de páginas dos livros. No eixo x, temos o número de páginas, e no eixo y, a frequência com que esses números aparecem no dataset. Observa-se que a maioria dos livros possui menos de 500 páginas, com uma queda significativa na frequência à medida que o número de páginas aumenta, especialmente para livros com mais de 1000 páginas. A distribuição é inclinada para a direita, mostrando que há menos livros muito extensos.

Relação entre Avaliação Média e Número de Páginas: Este gráfico de dispersão
mostra a relação entre a média de avaliação dos livros e o número de páginas. O eixo
x representa a média de avaliação, e o eixo y o número de páginas dos livros. Os
pontos estão espalhados, com uma concentração maior nas avaliações mais altas

(próximas de 4 e 5), abrangendo uma ampla faixa de números de páginas. Isso indica que a popularidade de um livro não está diretamente ligada ao seu tamanho.

• Distribuição das Classificações: Este histograma mostra como as classificações dos livros pelos usuários estão distribuídas. O eixo x representa as classificações, variando de 1,0 a 5,0, e o eixo y mostra a frequência dessas classificações. A maior frequência de classificações está em torno de 4,0, seguida por 3,5 e 4,5. A frequência diminui gradativamente para classificações mais baixas, indicando que os usuários tendem a avaliar os livros de maneira positiva.

5.4 Discussão de Resultados

A análise dos resultados mostrou a distribuição das avaliações médias dos livros, com uma predominância de avaliações positivas. O histograma do número de páginas indicou uma variabilidade considerável na extensão dos livros. A relação entre avaliação média e número de páginas não apresentou uma correlação clara, indicando que a popularidade do livro não está diretamente ligada à sua extensão. A contagem de livros por idioma revelou que a maioria dos livros está em inglês. Em relação ao dataset de ratings, a distribuição das classificações apresentou um padrão esperável com uma leve inclinação para avaliações positivas. A média das classificações por livro mostrou variações significativas, indicando uma diversidade na qualidade percebida dos livros. A criação da matriz de usuários e livros permitiu a visualização das interações, embora a presença de muitos valores ausentes tenha sido um desafio mitigado pelo preenchimento com zeros. O uso do modelo SVD para prever avaliações mostrou-se eficaz, com um erro quadrático médio aceitável, embora haja espaço para melhorias.

Pontos Positivos

- Visualizações Claras: As visualizações ajudaram a identificar características importantes dos dados.
- 2. Filtragem Eficiente: A filtragem dos livros com pelo menos 50 avaliações garantiu uma base de dados mais confiável para as recomendações.
- Modelo Híbrido: A utilização de técnicas simples, como a média das avaliações, em conjunto com um modelo mais avançado (SVD) proporcionou um sistema de recomendação robusto.
- O RMSE e o MAE demonstraram que o modelo baseado no SVD possui boa capacidade preditiva para um grande conjunto de dados heterogêneo como o utilizado.
- A validação cruzada garantiu maior confiabilidade nas métricas, minimizando o risco de overfitting.

Pontos Negativos

- 1. Predição Simples: A predição utilizando a média das avaliações é uma técnica básica e pode não capturar a complexidade das preferências dos usuários.
- 2. Dependência da Qualidade dos Dados: A qualidade das recomendações depende fortemente da quantidade e qualidade das avaliações disponíveis.

5.5 Descrição e Documentação dos Resultados

Os resultados obtidos foram documentados através de análises detalhadas e visualizações que permitiram identificar as principais características dos dados, bem como a eficácia do sistema de recomendação.

A média das avaliações por livro e a contagem de avaliações forneceram insights valiosos sobre a popularidade e a qualidade percebida dos livros. A identificação dos livros mais avaliados e a análise das classificações médias por livro contribuíram para uma compreensão mais profunda das preferências dos usuários. A matriz de usuários e livros e a aplicação do modelo SVD demonstraram técnicas avançadas de análise de dados, destacando tanto os pontos fortes quanto as limitações dos métodos utilizados.

Recomendações: Identificação dos top 5 livros recomendados com base na média das avaliações.

6. Conclusões e Trabalhos futuros

6.1 Conclusões

- Eficácia do Sistema de Recomendação: O sistema de recomendação desenvolvido mostrou-se eficaz na identificação de livros populares e na predição de avaliações.
- Insights dos Dados: A análise exploratória inicial forneceu uma compreensão profunda das características dos datasets de livros e avaliações.

6.2 Trabalhos Futuros

- Aperfeiçoamento do Modelo: Explorar modelos mais avançados, como redes neurais profundas, para capturar melhor as preferências dos usuários.
- Integração de Novas Fontes de Dados: Incorporar dados adicionais, como resenhas dos usuários e metadados dos livros, para enriquecer as recomendações.
- Atualização Dinâmica do Sistema: Desenvolver um sistema que atualize as recomendações em tempo real conforme novas avaliações são adicionadas.

7. Referências Bibliográficas

- MCAULEY, Julian. Dados do Steam. Disponível em: https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data. Acesso em: 06 set. 2024.
- 2. WAN, Mengting. Dados Goodreads. Disponível em: https://mengtingwan.github.io/data/goodreads . Acesso em: 06 set. 2024.

8. Anexos

- A) Link do Vídeo no Youtube: https://youtu.be/IA4dADM2jpg?si=kXVhcvUaOBOGHeFo
- B) Link para o Github: https://github.com/EduNogueiraMota/MACK---projeto-aplicado-III
- C) Link para o Dataset: https://mengtingwan.github.io/data/goodreads

