MATEMÁTICA

$N^{\circ}1$ - Q175:2016 - H7 - Proficiência: 916.38

 Triângulos e quadrados, apenas. Triângulos, quadrados e trapézios, apenas. Triângulos, quadrados, trapézios e quadriláteros irregulares, apenas. 	 Triângulos e quadrados, apenas. Triângulos, quadrados e trapézios, apenas. Triângulos, quadrados, trapézios e quadriláteros irregulares, apenas. Triângulos, quadrados, trapézios, quadriláteros 	e ir em pol um Se pos	È comum os artistas plásticos se apropriarem de tes matemáticos para produzirem, por exemplo, formas magens por meio de manipulações. Um artista plástico, uma de suas obras, pretende retratar os diversos igonos obtidos pelas intersecções de um plano com a pirâmide regular de base quadrada. gundo a classificação dos polígonos, quais deles são ssíveis de serem obtidos pelo artista plástico? Quadrados, apenas.
 Triângulos, quadrados, trapézios e quadriláteros irregulares, apenas. Triângulos, quadrados, trapézios, quadriláteros 	 Triângulos, quadrados, trapézios e quadriláteros irregulares, apenas. Triângulos, quadrados, trapézios, quadriláteros 		
Triângulos, quadrados, trapézios, quadriláteros	Triângulos, quadrados, trapézios, quadriláteros		Triângulos, quadrados, trapézios e quadriláteros
			™ ' I
		0	
		9	
		9	
		9	
		9	

Nº2 - Q146:2018 - H29 - Proficiência: 985.4

QUESTÃO 146

Para ganhar um prêmio, uma pessoa deverá retirar, sucessivamente e sem reposição, duas bolas pretas de uma mesma urna.

Inicialmente, as quantidades e cores das bolas são como descritas a seguir:

- Urna A Possui três bolas brancas, duas bolas pretas e uma bola verde;
- Urna B Possui seis bolas brancas, três bolas pretas e uma bola verde;
- Urna C Possui duas bolas pretas e duas bolas verdes;
- Urna D Possui três bolas brancas e três bolas pretas.

A pessoa deve escolher uma entre as cinco opções apresentadas:

- Opção 1 Retirar, aleatoriamente, duas bolas da uma A;
- Opção 2 Retirar, aleatoriamente, duas bolas da urna B;
- Opção 3 Passar, aleatoriamente, uma bola da urna C para a urna A; após isso, retirar, aleatoriamente, duas bolas da urna A;
- Opção 4 Passar, aleatoriamente, uma bola da urna D para a urna C; após isso, retirar, aleatoriamente, duas bolas da urna C;
- Opção 5 Passar, aleatoriamente, uma bola da urna C para a urna D; após isso, retirar, aleatoriamente, duas bolas da urna D.

Com o objetivo de obter a maior probabilidade possível de ganhar o prêmio, a pessoa deve escolher a opção

- 4 1.
- ② 2.
- 3.
- 4.
- 3 5.

Nº3 - Q157:2021 - H6 - Proficiência: 1065.85 Questão 157 = Questão 157 — enemicor O Atomium, representado na imagem, é um dos principais pontos turísticos de Bruxelas. Elle foi construído em 1958 para a primeira grande exposição mundial depois da Segunda Guerra Mundial, a Feira Mundial de Bruxelas. Trata-se de uma estrutura metálica construída no formato de um cubo. Essa estrutura está apoiada por um dos vértices sobre uma base paralela ao plano do solo, e a diagonal do cubo, contendo esse vértice, é ortogonal ao plano da base. Centradas nos vértices desse cubo, foram construídas oito esferas metálicas, e uma outra esfera foi construída centrada no ponto de interseção das diagonais do cubo. As oito esferas sobre os vértices são interligadas segundo suas arestas, e a esfera central se conecta a elas pelas diagonais do cubo. Todas essas interligações são feitas por tubos cilindricos que possuem escadas em seu interior, permitindo o deslocamento de pessoas pela parte interna da estrutura. Na diagonal ortogonal à base, o deslocamento é feito por um elevador, que permite o deslocamento entre as esferas da base e a esfera do ponto mais alto, passando pela esfera central. Considere um visitante que se deslocou pelo interior do Atomium sempre em linha reta e seguindo o menor trajeto entre dois vértices, passando por todas as arestas e todas as diagonais do cubo. A projeção ortogonal sobre o plano do solo do trajeto percorrido por esse visitante é representada por

Nº4 - Q177:2021 - H21 - Proficiência: 1071.67

Questão 177 —

enem202

Para a comunicação entre dois navios é utilizado um sistema de codificação com base em valores numéricos. Para isso, são consideradas as operações triângulo Δ e estrela *, definidas sobre o conjunto dos números reais por $x\Delta y = x^2 + xy - y^2$ e x * y = xy + x.

O navio que deseja enviar uma mensagem deve fornecer um valor de entrada b, que irá gerar um valor de saída, a ser enviado ao navio receptor, dado pela soma das duas maiores soluções da equação $(a\Delta b)*(b\Delta a)=0$. Cada valor possível de entrada e saída representa uma mensagem diferente já conhecida pelos dois navios.

Um navio deseja enviar ao outro a mensagem "ATENÇÃO!". Para isso, deve utilizar o valor de entrada b = 1.

Dessa forma, o valor recebido pelo navio receptor será

- $\bigcirc \sqrt{5}$
- $\odot \sqrt{3}$
- **⊙** √1
- $\bullet \frac{-1+\sqrt{5}}{2}$
- **a** $\frac{3+\sqrt{5}}{2}$

N°5 - Q145:2018 - H12 - Proficiência: 1084.78

QUESTÃO 145

Para decorar um cilindro circular reto será usada uma faixa retangular de papel transparente, na qual está desenhada em negrito uma diagonal que forma 30° com a borda inferior. O raio da base do cilindro mede $\frac{6}{\pi}$ cm, e ao

enrolar a faixa obtém-se uma linha em formato de hélice, como na figura.

O valor da medida da altura do cilindro, em centímetro, é

- $0 36\sqrt{3}$
- **3** $24\sqrt{3}$
- **9** $4\sqrt{3}$
- 36
- G 72

					GA	BAF	RIT	O - I	Mate	emá	tica								
1 1	1	1 1	1	,	1	1		٧	1	ı		1	-		V	ı	1		1
	2 - E	3	- E	4 - E	=	5	- B												
										•						•		 	
					•	•			•	•	•	•				•	•		
						•			•	•		•	•			•	•		
					•	•			•	•		•	•			•	•		
				•												•			
						•				•						•			
									•				•			•	•		•
					•				•	•		•	•			•	•		
					•	•			•			•	•			•	•		-
					•											•			
						•										•			
																•			
										•									
																•			
					•			-	•	•		•	-			•			
•	•	•	•	•	•	•			•	•		•	•		•	•			
				•															
									•							•			
																•		 	
										•									
						• •										•	• •		
	•	•	•		•	•				•		•	•			•			-
•		•	•	•	•	• • •				•		•	•	•		•	•		•