CSF13: Fundamentos de Programação 1

Projeto computacional # (Lebre × Tartaruga)

	Professora: Leyza Dorini	Estudante:	
--	--------------------------	------------	--

Nesse problema, você recriará uma das mais belas histórias folclóricas: a clássica competição entre a lebre e a tartaruga. Nossas duas competidoras precisam percorrer 70 posições, sendo que a primeira a chegar é recompensada com um cesto de cenouras frescas e alface. O percurso envolve subir uma montanha escorregadia, de modo que, ocasionalmente, elas voltam para trás. Sua tarefa consiste em fazer um programa (com as funções especificadas abaixo) que permita determinar a posição dos animais a cada passo, até que haja um vencedor.

(A) Funções para movimentar os animais

Considere as regras da Tabela 1 abaixo ¹.

α 1 1 D	• ,	• ~ 1	1 1	1 1 1
Cuadro 1: Reg	ras para amstar	as posicoes da	tartaruga e	da lebre
	tab para a jabaar	an posiçoes aa	car car and	ad IODIO

	0 1	J 1 3	0
Animal	Tipo de Movimento	Porcentagem do Tempo	Movimento Real
Tartaruga	Caminhada rápida	50%	3 quadrados à direita
	Escorregão	20%	6 quadrados à esquerda
	Caminhada lenta	30 %	1 quadrados à direita
Lebre	Dormindo	20%	Sem nenhum movimento
	Salto grande	20%	9 quadrados à direita
	Escorregão grande	10%	12 quadrados à esquerda
	Salto pequeno	30 %	1 quadrados à direita
	Escorregão pequeno	20%	2 quadrados à esquerda

OBS.: Se um animal escorregar para a esquerda antes da primeira posição, mova-o de volta para o quadrado 01. Caso ultrapasse a posição máxima, coloque-o na posição 70.

Defina as seguintes funções:

```
void moverTartaruga( int *ptrTar )
void moverLebre( int *ptrLeb )
```

Cada função recebe como parâmetro de entrada um ponteiro para a variável contendo a posição do animal em questão e faz a atualização de acordo com as regras acima. **OBS.:** será descontada pontuação caso sejam declaradas mais variáveis que o necessário.

 $^{^1}$ Dica: gere as porcentagens na tabela produzindo um inteiro aleatório, k, no intervalo 1 <= k <= 10. Para a tartaruga, realize uma "caminhada rápida" quando 1 <= k <= 5, um "escorregão" quando 6 <= k <= 7 ou uma "caminhada lenta" quando 8 <= k <= 10. Utilize uma técnica semelhante para mover a lebre.

(B) Função para imprimir a movimentação

Crie a função

```
void imprimirPosicoesAtuais( int *ptrTar, int *ptrLeb )
```

que imprime as 70 posições mostrando a letra T na posição da tartaruga e a letra L na posição da lebre (mostre espaços em branco nas demais). De vez em quando, as competidoras aterrissarão no mesmo quadrado. Nesse caso, a tartaruga morde a lebre e o programa deve imprimir AI!!!!.

(C) Função principal

Complemente o trecho de código abaixo:

```
int main(){
    int tartaruga = 1, lebre = 1, winner;
2
    ______// inicializada a semente do rand
      ()
    while (______) {
5
6
      moverTartaruga( ______);
      moverLebre( ______);
9
10
      imprimirPosicoesAtuais( ______,
11
         _____);
    }
12
   //verifica se alguem alcancou ou passou da posicao 70. Em caso de empate,
13
      assuma que a vencedora eh a tartaruga
14
      printf( "A TARTARUGA VENCEU!!! EH!!! \n" );
15
16
      printf( "A LEBRE GANHOU. OH. \n" );
17
18
    return 0;
19
  }
20
```