In [1]: import seaborn as sns import pandas as pd

from sklearn.preprocessing import MinMaxScaler

from sklearn.cluster import KMeans

from sklearn.metrics import confusion_matrix

%matplotlib inline

In [2]: scores=pd.read_csv("2013-2017_School_Math_Results_-_All.csv",na_values="s")
 scores.head()

Out[2]:

	DBN	School Name	Grade	Year	Category	Number Tested	Mean Scale Score	Level1_N	Level1_%	Lev
0	01M015	PS 015 ROBERTO CLEMENTE	3	2013	All Students	27	278.0	16.0	59.3	11.(
1	01M015	PS 015 ROBERTO CLEMENTE	3	2014	All Students	18	286.0	6.0	33.3	9.0
2	01M015	PS 015 ROBERTO CLEMENTE	3	2015	All Students	17	280.0	10.0	58.8	4.0
3	01M015	PS 015 ROBERTO CLEMENTE	3	2016	All Students	21	275.0	13.0	61.9	4.0
4	01M015	PS 015 ROBERTO CLEMENTE	3	2017	All Students	29	302.0	8.0	27.6	9.0

In [3]: scores.dropna(inplace=True)

In [4]: all_grades_filter=scores["Grade"]=="All Grades"

In [5]: scores2=scores[~all_grades_filter]

In [6]: scores2.head()

Out[6]:

	DBN	School Name	Grade	Year	Category	Number Tested	Mean Scale Score	Level1_N	Level1_%	Lev
0	01M015	PS 015 ROBERTO CLEMENTE	3	2013	All Students	27	278.0	16.0	59.3	11.(
1	01M015	PS 015 ROBERTO CLEMENTE	3	2014	All Students	18	286.0	6.0	33.3	9.0
2	01M015	PS 015 ROBERTO CLEMENTE	3	2015	All Students	17	280.0	10.0	58.8	4.0
3	01M015	PS 015 ROBERTO CLEMENTE	3	2016	All Students	21	275.0	13.0	61.9	4.0
4	01M015	PS 015 ROBERTO CLEMENTE	3	2017	All Students	29	302.0	8.0	27.6	9.0

In [7]: scores3=scores2[["Number Tested","Mean Scale Score","Level1_N","Level1_%","Level2_N","Level2_%","Level3_N","Level3_%","Level4_N","Level4_%","Level3+4_N","Level3+4_N","Level3+4_%"]]
scores3.head()

Out[7]:

	Number Tested	Mean Scale Score	Level1_N	Level1_%	Level2_N	Level2_%	Level3_N	Level3_%	Level4
0	27	278.0	16.0	59.3	11.0	40.7	0.0	0.0	0.0
1	18	286.0	6.0	33.3	9.0	50.0	2.0	11.1	1.0
2	17	280.0	10.0	58.8	4.0	23.5	2.0	11.8	1.0
3	21	275.0	13.0	61.9	4.0	19.0	4.0	19.0	0.0
4	29	302.0	8.0	27.6	9.0	31.0	7.0	24.1	5.0

In [8]: x=scores3[["Level1_N","Level1_%","Level2_N","Level2_%"]]
x.head()

Out[8]:

	Level1_N	Level1_%	Level2_N	Level2_%
0	16.0	59.3	11.0	40.7
1	6.0	33.3	9.0	50.0
2	10.0	58.8	4.0	23.5
3	13.0	61.9	4.0	19.0
4	8.0	27.6	9.0	31.0

```
In [9]: kmeans = KMeans(n_clusters=4)
```

```
In [10]: kmeans.fit(x)
```

Out[10]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=4, n_init=10, n_jobs=None, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0)

```
In [11]: clusters = kmeans.predict(x)
```

```
In [12]: clusters
```

Out[12]: array([3, 1, 3, ..., 0, 3, 3], dtype=int32)

In [13]: scores3["clusters"]=clusters
 scores3.head()

/usr/local/lib/python3.4/site-packages/ipykernel_launcher.py:1: SettingWithCo pyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

"""Entry point for launching an IPython kernel.

Out[13]: ____

	Number Tested	Mean Scale Score	Level1_N	Level1_%	Level2_N	Level2_%	Level3_N	Level3_%	Level₄
0	27	278.0	16.0	59.3	11.0	40.7	0.0	0.0	0.0
1	18	286.0	6.0	33.3	9.0	50.0	2.0	11.1	1.0
2	17	280.0	10.0	58.8	4.0	23.5	2.0	11.8	1.0
3	21	275.0	13.0	61.9	4.0	19.0	4.0	19.0	0.0
4	29	302.0	8.0	27.6	9.0	31.0	7.0	24.1	5.0

In [14]: sns.pairplot(scores3,hue="clusters")

Out[14]: <seaborn.axisgrid.PairGrid at 0x7fac9c6c6f28>

In [15]: x2=scores3[["Level3_N","Level3_%","Level4_N","Level4_%"]]
x2.head()

Out[15]:

	Level3_N	Level3_%	Level4_N	Level4_%
0	0.0	0.0	0.0	0.0
1	2.0	11.1	1.0	5.6
2	2.0	11.8	1.0	5.9
3	4.0	19.0	0.0	0.0
4	7.0	24.1	5.0	17.2

```
In [16]: kmeans2 = KMeans(n_clusters=5)
```

In [17]: kmeans2.fit(x)

Out[17]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=5, n_init=10, n_jobs=None, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0)

In [18]: | clusters2 = kmeans2.predict(x)

In [19]: clusters2

Out[19]: array([0, 2, 0, ..., 1, 0, 0], dtype=int32)

In [20]: scores3["clusters2"]=clusters2
scores3.head()

/usr/local/lib/python3.4/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

"""Entry point for launching an IPython kernel.

Out[20]:

	Number Tested	Mean Scale Score	Level1_N	Level1_%	Level2_N	Level2_%	Level3_N	Level3_%	Level ²
0	27	278.0	16.0	59.3	11.0	40.7	0.0	0.0	0.0
1	18	286.0	6.0	33.3	9.0	50.0	2.0	11.1	1.0
2	17	280.0	10.0	58.8	4.0	23.5	2.0	11.8	1.0
3	21	275.0	13.0	61.9	4.0	19.0	4.0	19.0	0.0
4	29	302.0	8.0	27.6	9.0	31.0	7.0	24.1	5.0

In [21]: sns.pairplot(scores3,hue="clusters2")

/usr/local/lib/python3.4/site-packages/seaborn/distributions.py:290: UserWarn ing: Data must have variance to compute a kernel density estimate. warnings.warn(msg, UserWarning)

Out[21]: <seaborn.axisgrid.PairGrid at 0x7fac998349e8>

