Aula 11

28 Maio 2019

Resumo da aula passada

- Caracterização do domínio de atração da origem ao se empregar a lei de controle preditivo com restrição terminal pontual
- Alternativa para ampliação do domínio de atração: Uso de conjunto terminal

Aula de hoje

• Gerenciamento de problemas de (não) factibilidade

Problemas de (não) factibilidade

Como visto nas duas últimas aula, é possível formular a lei de controle preditivo de modo a obter factibilidade recursiva e estabilidade assintótica da malha de controle.

Com isso, se o problema de otimização for factível no instante k=0, a factibilidade será mantida em todos os instantes de tempo posteriores e o estado x(k) convergirá para a origem quando $k\to\infty$.

Contudo, pode ser necessário gerenciar problemas de não factibilidade se:

- (1) O problema de otimização não for factível no instante k=0, isto é, se o estado inicial x(0) estiver fora do domínio de atração associado ao controlador preditivo.
- (2) A factibilidade for perdida durante a tarefa de controle. Isso pode ocorrer devido a erros de predição causados por:
 - Imperfeições do modelo
 - Perturbações externas
 - Ruído de medida

Adicionalmente, pode ocorrer perda de factibilidade se for usada uma lei de controle preditivo sem os elementos necessários para garantia de factibilidade recursiva.

Exemplo

Seja uma planta com dinâmica descrita por

$$y(k+1) = 2y(k) + u(k)$$

sendo $u(k), y(k) \in \mathbb{R}$. Suponha que o valor inicial da saída seja y(0) = 3, com u(-1) = 0.

Considere ainda que o controle a ser aplicado a cada instante k seja obtido como solução do seguinte problema de otimização:

$$\min_{\hat{u}(k|k), \hat{y}(k+1|k) \in \mathbb{R}} J = [\hat{y}(k+1|k) - 10]^2 + [\Delta \hat{u}(k|k)]^2$$

s.a.

$$\hat{y}(k+1|k) = 2y(k) + u(k-1) + \Delta \hat{u}(k|k)$$
$$\hat{y}(k+1|k) \le 11, \quad -4 \le \Delta \hat{u}(k|k) \le 4$$

No instante k=0, o problema de otimização a ser resolvido é

$$\min_{\Delta \hat{u}(0|0), \hat{y}(1|0) \in \mathbb{R}} J = [\hat{y}(1|0) - 10]^2 + [\Delta \hat{u}(0|0)]^2$$

s.a.

$$\hat{y}(1|0) = 2y(0) + u(-1) + \Delta \hat{u}(0|0)$$
$$\hat{y}(1|0) \le 11, \quad -4 \le \Delta \hat{u}(0|0) \le 4$$

Se as restrições não estiverem ativas, a solução do problema de otimização pode ser obtida da seguinte forma:

$$J = [2y(0) + u(-1) + \Delta \hat{u}(0|0) - 10]^{2} + [\Delta \hat{u}(0|0)]^{2}$$

$$\frac{dJ}{d\Delta \hat{u}(0|0)} = 2[2y(0) + u(-1) + \Delta \hat{u}(0|0) - 10] + 2\Delta \hat{u}(0|0)$$

$$= 2[2\Delta \hat{u}(0|0) + 2y(0) + u(-1) - 10]$$

$$\frac{dJ}{d\Delta \hat{u}(0|0)} = 2[2\Delta \hat{u}(0|0) + 2y(0) + u(-1) - 10]$$

Impondo que a derivada seja igual a zero, obtém-se

$$\Delta \hat{u}(0|0) = 5 - y(0) - \frac{u(-1)}{2}$$

Como y(0) = 3 e u(-1) = 0, tem-se

$$\Delta \hat{u}(0|0) = 2$$

e, portanto:

$$\hat{y}(1|0) = 2y(0) + u(-1) + \Delta \hat{u}(0|0) = 8$$

Como esses valores satisfazem as restrições

$$\hat{y}(1|0) \le 11, -4 \le \Delta \hat{u}(0|0) \le 4$$

a solução ótima de fato é dada por $\Delta \hat{u}^*(0|0) = 2$.

Aplicando-se o controle $u(0) = u(-1) + \Delta \hat{u}^*(0|0) = 2$, a saída da planta no instante k = 1 torna-se

$$y(1) = 2y(0) + u(0) = 8$$

O novo problema de otimização a ser resolvido passa a ser

$$\min_{\Delta \hat{u}(1|1), \hat{y}(2|1) \in \mathbb{R}} J = [\hat{y}(2|1) - 10]^2 + [\Delta \hat{u}(1|1)]^2$$

s.a.

$$\hat{y}(2|1) = 2y(1) + u(0) + \Delta \hat{u}(1|1)$$
$$\hat{y}(2|1) \le 11, \quad -4 \le \Delta \hat{u}(1|1) \le 4$$

Analisemos o novo conjunto de restrições com y(1) = 8 e u(0) = 2.

$$\hat{y}(2|1) = 16 + 2 + \Delta \hat{u}(1|1) \tag{1}$$

$$\hat{y}(2|1) \le 11 \tag{2}$$

$$-4 \le \Delta \hat{u}(1|1) \le 4 \tag{3}$$

De (1) e (2), tem-se que $18+\Delta \hat{u}(1|1)\leq 11$, isto é

$$\Delta \hat{u}(1|1) \le -7 \tag{4}$$

que é incompatível com as restrições em (3).

Portanto, o problema de otimização era factível em k=0, mas se tornou não factível em k=1.

Verificação de factibilidade

No exemplo apresentado, foi possível determinar por simples inspeção que o problema deixou de ser factível em k=1.

De maneira geral, seria conveniente dispor de um procedimento sistemático para verificação de factibilidade.

Considerando restrições da forma $S\Delta\hat{\mathbf{u}} \leq b$, com $S \in \mathbb{R}^{r \times M}$, $b \in \mathbb{R}^r$ a verificação de factibilidade consiste em responder a seguinte pergunta:

Existe
$$\Delta \hat{\mathbf{u}} \in \mathbb{R}^M$$
 tal que $S\Delta \hat{\mathbf{u}} \leq b$?

A resposta pode ser obtida resolvendo-se o seguinte problema de otimização:

$$\min_{\Delta \hat{\mathbf{u}} \in \mathbb{R}^M, \varepsilon \in \mathbb{R}} \varepsilon$$
 s.a. $S\Delta \hat{\mathbf{u}} \leq b + 1_r \varepsilon$

$$\min_{\Delta \hat{\mathbf{u}} \in \mathbb{R}^M, \varepsilon \in \mathbb{R}} \varepsilon$$
 s.a. $S\Delta \hat{\mathbf{u}} \leq b + 1_r \varepsilon$

Inicialmente, vale observar que este problema sempre é factível. Com efeito, basta tomar $\Delta \hat{\mathbf{u}} = \mathbf{0}_M$ e $\varepsilon = -\min_{i=1,2,\dots,r} b_i$.

Supondo ainda que as restrições incluam limitantes para $\Delta \hat{\mathbf{u}}$ da forma $[\Delta u_{min}]_M \leq \Delta \hat{\mathbf{u}} \leq [\Delta u_{max}]_M$, com $\Delta u_{min} < 0 < \Delta u_{max}$, pode-se mostrar que o problema sempre terá uma solução ótima $(\Delta \hat{\mathbf{u}}^*, \varepsilon^*)$.

Se $\varepsilon^* \leq 0$, conclui-se que a restrição $S\Delta \hat{\mathbf{u}} \leq b + 1_r \varepsilon$ pode ser satisfeita com $\varepsilon = 0$, ou seja, o problema original é factível.

Caso contrário, o problema original não é factível.

O problema a ser resolvido para verificação de factibilidade pode ser reescrito como

$$\min_{\Delta \hat{\mathbf{u}} \in \mathbb{R}^M, \varepsilon \in \mathbb{R}} \begin{bmatrix} \mathbf{0}_M^T & 1 \end{bmatrix} \begin{bmatrix} \Delta \hat{\mathbf{u}} \\ \varepsilon \end{bmatrix}$$

s.a.

$$[S - 1_r] \left[\begin{array}{c} \Delta \hat{\mathbf{u}} \\ \varepsilon \end{array} \right] \leq b$$

ou ainda

$$\min_{z \in \mathbb{R}^{M+1}} c^T z \quad \text{s.a.} \quad S_z z \le b$$

sendo

$$z = \begin{bmatrix} \Delta \hat{\mathbf{u}} \\ \varepsilon \end{bmatrix}, \quad c = \begin{bmatrix} 0_M \\ 1 \end{bmatrix}, \quad S_z = \begin{bmatrix} S & -1_r \end{bmatrix}$$

$$\min_{z \in \mathbb{R}^{M+1}} c^T z \quad \text{s.a.} \quad S_z z \le b$$

Custo Linear + Restrições lineares \Rightarrow Problema de Programação Linear (PPL)

Matlab Optimization Toolbox: Função LINPROG

Uso da função LINPROG

Sintaxe:

```
x = linprog(f,A,b,Aeq,beq,LB,UB)
minimiza f'*x
sujeito a A*x <= b, Aeqx = beq, LB <= x <= UB</pre>
```

Em nosso caso:

$$x_{lp} = \Delta \hat{\mathbf{u}}$$

$$f_{lp} = c$$

$$A_{lp} = S_z$$

$$b_{lp} = b$$

Exemplo de teste de factibilidade

Problema: Existe $\Delta \hat{u} \in \mathbb{R}$ tal que $-\Delta \hat{u} \leq -3$ e $\Delta \hat{u} \leq 1$?

PPL a ser resolvido:

$$\min_{\Delta \hat{u},\,\varepsilon\in\mathbb{R}}\varepsilon$$

s.a.

$$\begin{array}{rcl}
-\Delta \hat{u} & \leq & -3 + \varepsilon \\
\Delta \hat{u} & \leq & 1 + \varepsilon
\end{array}$$

ou, equivalentemente,

$$-\Delta \hat{u} - \varepsilon \leq -3 \tag{i}$$

$$\Delta \hat{u} - \varepsilon \leq 1$$
 (ii)

$$\begin{array}{cccc} -\Delta \hat{u} - \varepsilon & \leq & -3 & \text{(i)} \\ \Delta \hat{u} - \varepsilon & \leq & 1 & \text{(ii)} \end{array}$$

 $\min_{\Delta \hat{u},\,\varepsilon\in\mathbb{R}}\varepsilon$

Solução: $\varepsilon^*=1$

Conclusão: Como $\varepsilon^* > 0$, conclui-se que o problema original não é factível.

Gerenciamento de problemas de (não) factibilidade

Considerações iniciais

As restrições podem ser divididas em dois tipos:

- Restrições **Físicas**: não podem ser relaxadas
- Restrições Operacionais: são mais restritivas do que o estritamente necessário, mas podem ser relaxadas

O segundo tipo inclui as restrições terminais que tiverem sido impostas para obter garantias (nominais) de factibilidade recursiva e estabilidade.

Vale salientar que restrições sobre as variáveis manipuladas (u ou Δu) sempre podem ser respeitadas (por definição).

O mesmo não se pode dizer das variáveis controladas (y).

Possíveis abordagens

- Abordagens "simplistas"
- Remoção de restrições por ordem de prioridade
- Abordagem codificada na função QUADPROG
- Introdução de variáveis de relaxamento
- Selaxamento do horizonte de restrições
- Modificação no custo para penalizar violações (soft constraints approach)

Abordagens simplistas

Exemplos:

- Calcular o controle ótimo ignorando as restrições, saturando o controle se necessário. No próximo instante de amostragem (k+1), o valor de u(k) a ser usado na lei de controle deve ser o valor efetivamente aplicado à planta no instante k.
- Remover as restrições de saída, mantendo as restrições de controle.
- Fazer $u(k) = \hat{u}^*(k|k-1)$.

Remoção de restrições por ordem de prioridade

Procedimento:

- Define-se a priori uma ordem de importância para as restrições.
- ② Diante de um problema de não factibilidade, as restrições são removidas (ou relaxadas até os limites físicos) sequencialmente, de acordo com a ordem pré-estabelecida.

Abordagem codificada na função QUADPROG

Critério adotado em caso de não factibilidade: Minimizar a maior violação (em termos da distância às fronteiras definidas pelas restrições).

Exemplo:

$$x_1 \leq 0$$
 (i)

$$x_2 \leq 0$$
 (ii)

$$x_2 \geq -\frac{x_1}{2} + 1$$
 (iii)

Abordagem codificada na função QUADPROG: Exemplo

$$\theta = \arctan \frac{1}{2} = 26.6^{\circ}$$

$$\frac{d}{2-d} = \tan 13.3^{\circ} = 0.236$$

$$d = 0.472 - 0.236d \Rightarrow 1.236d = 0.472$$

$$\boxed{d = 0.382}$$

Utilizando a função QUADPROG:

$$\min_{\mathbf{x} \in \mathbb{R}^2} \mathbf{x}^T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x}$$

s.a.

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ -1 & -2 \end{array}\right] x \le \left[\begin{array}{c} 0 \\ 0 \\ -2 \end{array}\right]$$

Neste caso:

$$H_{qp} = \left[egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight], \; f_{qp} = \left[egin{array}{cc} 0 \\ 0 \end{array}
ight], \; A_{qp} = \left[egin{array}{cc} 1 & 0 \\ 0 & 1 \\ -1 & -2 \end{array}
ight], \; b_{qp} = \left[egin{array}{cc} 0 \\ 0 \\ -2 \end{array}
ight]$$

Limitações:

- A solução gerada pode não ser implementável, devido a restrições físicas nos atuadores.
- Mesmo que o controle esteja dentro das limitações dos atuadores, a solução pode envolver violações nas restrições físicas da saída.

Introdução de variáveis de relaxamento

a) Mesmo relaxamento para todas as restrições:

$$\min_{\Delta \hat{\mathbf{u}} \in \mathbb{R}^M, \, \varepsilon \in \mathbb{R}} \varepsilon$$

s.a.

$$S\Delta\hat{\mathbf{u}} \leq b + 1_r\varepsilon$$

Tendo-se obtido ε^* , resolve-se o problema de programação quadrática original com restrições relaxadas, isto é, $S\Delta\hat{\mathbf{u}} \leq b + 1_r \varepsilon^*$.

Desvantagem: Algumas restrições podem ser relaxadas sem necessidade.

b) Relaxamento separado para cada restrição:

$$\min_{\Delta\hat{\mathbf{u}}\in\mathbb{R}^{M},\,\varepsilon\in\mathbb{R}^{r}}\!d^{T}\varepsilon$$

s.a.

$$\begin{array}{rcl} S\Delta\hat{\mathbf{u}} & \leq & b+\varepsilon \\ \varepsilon & \geq & 0 \\ \varepsilon & \leq & \varepsilon_{max} \end{array}$$

em que:

- $\varepsilon_{max} \in \mathbb{R}^r$ corresponde ao máximo relaxamento permitido para cada uma das r restrições.
- $d \in \mathbb{R}^r$ (d > 0) é um vetor de pesos ajustado de modo a refletir a importância atribuída a cada restrição.

c) Caso intermediário: Mesmo relaxamento ao longo de todo o horizonte, tratando-se separadamente cada variável manipulada e controlada.

Exemplo (caso SISO): Suponha que o relaxamento seja introduzido nas restrições operacionais sobre a excursão da saída *y*.

Nesse caso, o PPL seria formulado como

$$\min_{\Delta \hat{\mathbf{u}} \in \mathbb{R}^M,\, \varepsilon_1,\, \varepsilon_2 \in \mathbb{R}} d_1 \varepsilon_1 + d_2 \varepsilon_2$$

s.a.

$$egin{bmatrix} I_M \ -I_M \ T_M \ -T_M \ G \ -G \end{bmatrix} \Delta \hat{\mathbf{u}} \leq egin{bmatrix} 1_M \Delta u_{max} \ -1_M \Delta u_{min} \ 1_M [u_{max} - u(k-1)] \ 1_M [u(k-1) - u_{min}] \ 1_N (y_{max} + arepsilon_1) - \mathbf{f} \ \mathbf{f} - 1_N (y_{min} - arepsilon_2) \end{bmatrix}$$

$$0 \le \varepsilon_1 \le y_{max}^{fis} - y_{max}$$
$$0 \le \varepsilon_2 \le y_{min} - y_{min}^{fis}$$

em que y_{max}^{fis} e y_{min}^{fis} correspondem às restrições físicas sobre os valores máximo e mínimo de y, respectivamente.

Para uso da função LINPROG, o PPL pode ser reescrito na forma

$$\min_{\Delta \hat{\mathbf{u}} \in \mathbb{R}^M, \, arepsilon_1, \, arepsilon_2 \in \mathbb{R}} \left[egin{array}{ccc} \mathbf{0}_M^T & d_1 & d_2 \end{array}
ight] \left[egin{array}{ccc} \Delta \hat{\mathbf{u}} & & & \\ arepsilon_1 & & & \\ arepsilon_2 & & & \\ \end{array}
ight]$$

s.a.

$$\begin{bmatrix} I_{M} & 0_{M} & 0_{M} \\ -I_{M} & 0_{M} & 0_{M} \\ T_{M} & 0_{M} & 0_{M} \\ -T_{M} & 0_{M} & 0_{M} \\ G & -1_{N} & 0_{N} \\ -G & 0_{N} & -1_{N} \\ 0_{M}^{T} & 1 & 0 \\ 0_{M}^{T} & -1 & 0 \\ 0_{M}^{T} & 0 & 1 \\ 0_{M}^{T} & 0 & -1 \end{bmatrix} \begin{bmatrix} \Delta \hat{\mathbf{u}} \\ \varepsilon_{1} \\ \varepsilon_{2} \end{bmatrix} \leq \begin{bmatrix} 1_{M} \Delta u_{max} \\ -1_{M} \Delta u_{min} \\ 1_{M} [u_{max} - u(k-1)] \\ 1_{M} [u(k-1) - u_{min}] \\ 1_{N} y_{max} - \mathbf{f} \\ \mathbf{f} - 1_{N} y_{min} \\ y_{max}^{fis} - y_{max} \\ 0 \\ y_{min} - y_{min}^{fis} \\ 0 \end{bmatrix}$$

MPC com relaxamento de restrições sobre y (Caso SISO)

Informação requerida sobre a planta:

- Matrizes A,B,C do modelo no espaço de estados
- Limitantes sobre os incrementos no controle: Δu_{min} , Δu_{max}
- Limitantes sobre a excursão do controle: u_{min}, u_{max}
- Limitantes operacionais sobre a excursão da saída: y_{min}, y_{max}
- Limitantes físicos sobre a excursão da saída: $y_{min}^{fis}, y_{max}^{fis}$

Parâmetros de projeto:

- ullet Peso do controle ho
- Horizonte de predição N
- Horizonte de controle M
- Pesos das variáveis de relaxamento: d_1 (associado a y_{max}) e d_2 (associado a y_{min})

Inicialização:

Fazer

$$\tilde{A} = \begin{bmatrix} A & B \\ 0_n^T & 1 \end{bmatrix}, \quad \tilde{B} = \begin{bmatrix} B \\ 1 \end{bmatrix}, \quad \tilde{C} = \begin{bmatrix} C & 0 \end{bmatrix}$$

$$G = \begin{bmatrix} \tilde{C}\tilde{B} & 0 & \cdots & 0 \\ \tilde{C}\tilde{A}\tilde{B} & \tilde{C}\tilde{B} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{C}\tilde{A}^{N-1}\tilde{B} & \tilde{C}\tilde{A}^{N-2}\tilde{B} & \cdots & \tilde{C}\tilde{A}^{N-M}\tilde{B} \end{bmatrix}, \ \Phi = \begin{bmatrix} \tilde{C}\tilde{A} \\ \tilde{C}\tilde{A}^2 \\ \vdots \\ \tilde{C}\tilde{A}^N \end{bmatrix}$$

• Fazer
$$H_{qp} = 2(G^TG + \rho I)$$
, $A_{qp} = \begin{bmatrix} I_M \\ -I_M \\ T_M \\ -T_M \\ G \\ -G \end{bmatrix}$

Fazer

$$f_{lp} = \begin{bmatrix} 0_{M} \\ d_{1} \\ d_{2} \end{bmatrix}, \quad A_{lp} = \begin{bmatrix} I_{M} & 0_{M} & 0_{M} \\ -I_{M} & 0_{M} & 0_{M} \\ T_{M} & 0_{M} & 0_{M} \\ -T_{M} & 0_{M} & 0_{M} \\ G & -1_{N} & 0_{N} \\ -G & 0_{N} & -1_{N} \\ 0_{M}^{T} & 1 & 0 \\ 0_{M}^{T} & -1 & 0 \\ 0_{M}^{T} & 0 & 1 \\ 0_{M}^{T} & 0 & -1 \end{bmatrix}$$

• Fazer k = 0, u(-1) = 0.

Rotina principal:

- Ler x(k) (estado da planta) e y_{ref} (valor de referência para a saída)
- ② Fazer $\mathbf{r} = [y_{ref}]_N$
- Fazer

$$\xi(k) = \left[\begin{array}{c} x(k) \\ u(k-1) \end{array} \right]$$

• Calcular $\mathbf{f} = \Phi \, \xi(k) \, \mathbf{e} \, f_{qp} = 2 \, G^T (\mathbf{f} - \mathbf{r})$

Fazer

Resolver o PPL

$$z^* = \arg\min_{z \in \mathbb{R}^{M+2}} f_{lp}^T z$$
 s.a. $A_{lp}z \leq b_{lp}$

1 Extrair $\Delta \hat{\mathbf{u}}_{lo}^*, \varepsilon_1^*, \varepsilon_2^*$ da solução z^* do PPL:

$$z^* = \left[\begin{array}{c} \Delta \hat{\mathbf{u}}_{lp}^* \\ \varepsilon_1^* \\ \varepsilon_2^* \end{array} \right]$$

Fazer

$$b_{qp} = egin{bmatrix} 1_M \Delta u_{max} \ -1_M \Delta u_{min} \ 1_M [u_{max} - u(k-1)] \ 1_M [u(k-1) - u_{min}] \ 1_N (y_{max} + arepsilon_1^*) - \mathbf{f} \ \mathbf{f} - 1_N (y_{min} - arepsilon_2^*) \end{bmatrix}$$

Resolver o PPQ

$$\Delta \hat{\mathbf{u}}^* = \arg\min_{\Delta \hat{\mathbf{u}} \in \mathbb{R}^M} \frac{1}{2} \Delta \hat{\mathbf{u}}^T H_{qp} \Delta \hat{\mathbf{u}} + f_{qp}^T \Delta \hat{\mathbf{u}}$$
 s.a. $A_{qp} \Delta \hat{\mathbf{u}} \leq b_{qp}$

- **©** Calcular o incremento no controle $\Delta u(k) = [1 \ 0 \cdots 0] \Delta \hat{\mathbf{u}}^*$
- $oldsymbol{0}$ Atualizar o controle aplicado à planta: $u(k) = u(k-1) + \Delta u(k)$
- \bigcirc Fazer k = k + 1
- Aguardar o próximo instante de amostragem e retornar ao passo 1.

Implementação no Matlab

- matrizes_ss_du_restricoes_relaxamento.m
- mpc_ss_du_restricoes_relaxamento.m

Exemplo: Controle do sistema de levitação magnética.

- parametros_maglev_ss.m
- levitador_mpc_ss_du_restricoes_relaxamento.mdl

Relaxamento do horizonte de restrições

Ideia: Desconsiderar as restrições de saída na parte inicial do horizonte de predição.

Problema: Qual o comprimento do trecho a ser desconsiderado na imposição das restrições ?

Relaxamento do horizonte de restrições sobre a saída

Algoritmo:

- Resolver o PPQ desconsiderando (ou relaxando o máximo possível) as restrições de saída ao longo de todo o horizonte de predição, mantendo as restrições de controle.
- ② Seja $\{\hat{y}^{(1)}(k+i|k), i=1,2,\ldots,N\}$ a sequência de valores preditos de saída obtida como solução do PPQ no Passo 1. Seja i_0 $(1 \leq i_0 \leq N)$ o menor índice tal que

$$y_{min} \le \hat{y}^{(1)}(k+i|k) \le y_{max}, \ i=i_0, i_0+1, \dots, N$$

(Com i_0 assim escolhido, o PPQ será factível impondo-se as restrições de saída para $i=i_0,i_0+1,\ldots,N$, por construção. Se não existir $i_0\leq N$ para o qual as restrições acima sejam satisfeitas, o relaxamento consistirá em desconsiderar as restrições de saída ao longo de todo o horizonte de predição)

- **3** Reestabelecer as restrições de saída para $i = i_0 1, i_0, \dots, N$ e verificar se o PPQ resultante é factível.
- **3** Se o PPQ for factível, fazer $i_0 \leftarrow i_0 1$ e retornar ao Passo 3. Caso contrário, prosseguir para o Passo 5.
- Resolver o PPQ com restrições de saída impostas para $i=i_0,i_0+1,\ldots,N$ (Fim da rotina de tratamento de não factibilidade).

Obs: Por hipótese, o PPQ é não factível com restrições de saída impostas para $i=1,2,\ldots,N$. Portanto, o algoritmo necessariamente terminará se $i_0=2$.

Soft Constraint Approach: Penalização de violações

Ideia: Incluir as variáveis de folga na função de custo:

$$\min_{\hat{\mathbf{y}} \in \mathbb{R}^N, \, \Delta \hat{\mathbf{u}} \in \mathbb{R}^M, \, \varepsilon \in \mathbb{R}^N} J = (\hat{\mathbf{y}} - \hat{\mathbf{r}})^T (\hat{\mathbf{y}} - \hat{\mathbf{r}}) + \rho \Delta \hat{\mathbf{u}}^T \Delta \hat{\mathbf{u}} + \mu \varepsilon^T \varepsilon$$

s.a.

$$\hat{\mathbf{y}} = G\Delta\hat{\mathbf{u}} + \mathbf{f}$$
 $1_{M}\Delta u_{min} \leq \Delta\hat{\mathbf{u}} \leq 1_{M}\Delta u_{max}$
 $1_{M}u_{min} \leq \hat{\mathbf{u}} \leq 1_{M}u_{max}$
 $\hat{\mathbf{u}} = T_{M}\Delta\hat{\mathbf{u}} + 1_{M}u(k-1)$
 $1_{N}y_{min} - \varepsilon \leq \hat{\mathbf{y}} \leq 1_{N}y_{max} + \varepsilon$
 $\varepsilon > 0$

sendo o peso $\mu > 0$ um parâmetro de projeto a ser ajustado.

Resumo da aula de hoje

- Verificação de factibilidade
- Gerenciamento de problemas de (não) factibilidade:
- Abordagens "simplistas"
- Remoção de restrições por ordem de prioridade
- Abordagem codificada na função QUADPROG
- Introdução de variáveis de relaxamento
- Relaxamento do horizonte de restrições
- Modificação no custo para penalizar violações (soft constraints approach)

Tópicos da próxima aula

 Controle preditivo robusto empregando desigualdades matriciais lineares