Department of Engineering Technology ET-302

Course Number and Name: ET 302, Manufacturing Data Analysis

Credits & Contact Hours

Credits	Lectures	Lab	Semester Contact Hours
3.0	(3) 50 min lectures per week	None	45

Instructors Name: Manuel Gomez

Textbook title, *Statistical Methods for Engineers,* 3rd *edition* **author and year:** by Geoffrey Vining & Scott M. Kowalski, 2011

Specific Course Information:

- **a.** Course Catalog Description Methods for analyzing data collected during manufacturing processes. Emphasis placed on production control utilizing results of statistical methods and design of experiments.
- **b. Prerequisites:** Math 235 (Calculus I).
- c. This course is required for MET, CET, ECET, IET degrees

Course Goals & Objectives: Students will gain an appropriate mastery of the knowledge, techniques, skills and modern tools of their disciplines; including:

- methods for data collection and analysis for manufacturing processes
- graphical analysis for manufacturing data
- probabilistic modeling and descriptive statistics
- variability and distribution for the data
- methods used for formal estimation
- basic statistical concepts for manufacturing process monitoring using control charts
- basic statistical concepts for analyzing formal experiments (Design of Experiments)
- applied Six Sigma as used in Industry
- Minitab statistical software and Mathcad analysis software

Related ABET Objectives & Outcomes: An ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline, to include the following:

(1.) Algebra , trigonometry, Boolean mathematics, calculus, statistics 3.a, 3.b, 3.c, 3.f, 3.k			
(1.) Algebra, trigonometry, Doolean matternaties, calculus, statistics 5.a, 5.0, 5.c, 5.1, 5.k			
and probability, fundamental principles and concepts of science and			
engineering technology, good practice in problem solving , and methods			
of standard practice in the analysis and applied design of mechanical			
systems			
(4.) Current software corresponding to good practice in the 3.a, 3.b, 3.c			
application of mechanical engineering technologies. Software			
application functions to include: word processing, spreadsheet			
calculations, graphing , presentation media , computer assisted drafting			
and manufacturing, manufacturing processes, statistics, data acquisition,			
project management, and the analysis and applied design of systems			
involving mechanisms, machines, or fluid thermal processes.			

ET 302 Statistical Methods for Engineers Spring 2011

Week of	ek of Chapter Topic		
Jan 10	Course Introduction & overview	1	
17	Mathcad, Minitab overview	3	
24	Statistics in Industry, What is Six Sigma?	3	
31	Engineering Method and Data Collection	3	
Feb 07	Data Displays: stem and leaf, boxplots, histogram, time plots	3	
14	Review, [Exam I]	3	
21	Modeling Random Behavior: Probability, Random Variables	3	
28	Modeling Random Behavior: Discrete & Continuous	3	
March 07	Estimation and Testing	3	
14	Control Charts and Statistical Process Control (SPC)	3	
21	Spring Break March 21-25	0	
28	28 Linear Regression, Review, [Exam II]		
April 04	Linear Regression	3	
11	Full factorial and 2 ^k Factorial Experiments	3	
18	Introduction to Response Surface Methodology	3	
25	Review, [Exam III]	3	
May2	Final Exam (optional make-up)	2	

Prepared by Manuel Gomez, 01/21/2011