part4-churn

December 13, 2019

1 Part 4: Churn Prediction

Every company puts its efforts into knowing who their best customer are and then it also work hard on retaining them. That's what makes **Retention Rate** is one of the most critical metrics.

Retention Rate is an indication of how good is your product market fit (PMF). If your PMF is not satisfactory, you should see your customers churning very soon. One of the powerful tools to improve Retention Rate (hence the PMF) is Churn Prediction. By using this technique, you can easily find out who is likely to churn in the given period.

In this notebook, we will use a Telco dataset and go over following steps to develop churn prediction: * Exploratory data analysis * Feature engineering * Investigating how the features affect Retention by using Logistic Regression * Building a classification model with XGBoost

1.1 Exploratory Data Analysis

We start with checking out how our data looks like and visualize how it interacts with our label (churned or not?).

	customerID	gender	Sanior	litizen	Dartn	۵r	Depend	anta	taniira	PhoneServic	۰ ۵
^		•	penior				ререна				
0	7590-VHVEG	Female		0	Y	es		No	1	1/	О
1	5575-GNVDE	Male		0		No		No	34	Ye	s
2	3668-QPYBK	Male		0		No		No	2	Υe	s
3	7795-CFOCW	Male		0		No		No	45	Ŋ	o
4	9237-HQITU	Female		0		No		No	2	Ye	s
	Multiple	Lines Tr	nternetSe	ervice (Online	Sec	uritv	Dev	iceProt	tection \	
0	No phone se			DSL			No			No.	
	no phone se										
1		No		DSL			Yes	•••		Yes	
2		No		DSL			Yes	•••		No	
3	No phone se	rvice		DSL			Yes	•••		Yes	
4		No	Fiber	optic			No	•••		No	
	TbC	C+	TV C+				0-		D	D:11:	,
	TechSupport	Streamin	•	amingmo					-	LessBilling	\
0	No		No		No	Мо	nth-to	-month		Yes	
1	No		No		No		On	e year		No	
2	No		No		No	Мо	nth-to	-month		Yes	
3	Yes		No		No		On	e year		No	
4	No		No		No	Мо	nth-to	-month		Yes	

	${\tt PaymentMethod}$	MonthlyCharges	TotalCharges	Churn
0	Electronic check	29.85	29.85	No
1	Mailed check	56.95	1889.5	No
2	Mailed check	53.85	108.15	Yes
3	Bank transfer (automatic)	42.30	1840.75	No
4	Electronic check	70.70	151.65	Yes

[5 rows x 21 columns]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):

7043 non-null object customerID 7043 non-null object gender SeniorCitizen 7043 non-null int64 Partner 7043 non-null object Dependents 7043 non-null object tenure 7043 non-null int64 PhoneService 7043 non-null object MultipleLines 7043 non-null object InternetService 7043 non-null object OnlineSecurity 7043 non-null object OnlineBackup 7043 non-null object DeviceProtection 7043 non-null object 7043 non-null object TechSupport StreamingTV7043 non-null object StreamingMovies 7043 non-null object Contract 7043 non-null object PaperlessBilling 7043 non-null object PaymentMethod 7043 non-null object MonthlyCharges 7043 non-null float64 TotalCharges 7043 non-null object Churn 7043 non-null object dtypes: float64(1), int64(2), object(18) memory usage: 1.1+ MB

Our data fall under two categories: * Categorical features: gender, streaming tv, payment method &, etc. * Numerical features: tenure, monthly charges, total charges

Now starting from the categorical ones, we shed light on all features and see how helpful they are to identify if a customer is going to churn.

Gender Let's start with how Churn rate looks with respect to Gender:

gender mean
0 Female 0.269209
1 Male 0.261603

Female customers are more likely to churn vs. male customers, but the difference is minimal ($\sim 0.8\%$). Let's replicate this for all categorical columns.

InternetService

	InternetService	mean
0	DSL	0.189591
1	Fiber optic	0.418928
2	No	0.074050

This chart reveals customers who have Fiber optic as Internet Service are more likely to churn. I normally expect Fiber optic customers to churn less due to they use a more premium service. But this can happen due to high prices, competition, customer service, and many other reasons.

Contract

	Contract	mean
0	Month-to-month	0.427097
1	One year	0.112695
2	Two year	0.028319

As expected, the shorter contract means higher churn rate.

Tech Support

		Tech	Support	mean
0			No	0.416355
1	No	${\tt internet}$	service	0.074050
2			Yes	0.151663

Customers don't use Tech Support are more like to churn ($\sim 25\%$ difference).

Payment Method

	${\tt PaymentMethod}$	mean
0	Bank transfer (automatic)	0.167098
1	Credit card (automatic)	0.152431
2	Electronic check	0.452854
3	Mailed check	0.191067

Automating the payment makes the customer more likely to retain in your platform ($\sim 30\%$ difference).

Others

Partner mean
0 No 0.329580
1 Yes 0.196649

PhoneService mean
0 No 0.249267
1 Yes 0.267096

		Multip	pleLines	mean
0			No	0.250442
1	No	phone	service	0.249267
2			Yes	0.286099

		OnlineS	Security	mean
0			No	0.417667
1	No	${\tt internet}$	service	0.074050
2			Yes	0.146112

		Onlin	neBackup	mean
0			No	0.399288
1	No	${\tt internet}$	service	0.074050
2			Yes	0.215315

		DevicePro	otection	mean
0			No	0.391276
1	No	${\tt internet}$	service	0.074050
2			Yes	0.225021

		Stre	eamingTV	mean
0			No	0.335231
1	No	${\tt internet}$	service	0.074050
2			Yes	0.300702

		Streamin	ngMovies	mean
0			No	0.336804
1	No	${\tt internet}$	service	0.074050
2			Yes	0.299414

PaperlessBilling mean
0 No 0.163301
1 Yes 0.335651

Other indicative columns are: Partner, Online Security, Online Backup, Paperless Billing. We are done with the categorical features. Let's see how numerical features look like.

Tenure To see the trend between Tenure and average Churn Rate, let's build a scatter plot: [Text(0, 0.5, 'Churn Rate'), Text(0.5, 1.0, 'Tenure based Churn Rate')]

Super apparent that the higher tenure means lower Churn Rate. We are going to apply the same for Monthly and Total Charges.

Monthly Charges

count	7043.000000
mean	64.761692
std	30.090047
min	18.250000
25%	35.500000
50%	70.350000
75%	89.850000
max	118.750000

Name: MonthlyCharges, dtype: float64

[Text(0, 0.5, 'Churn Rate'), Text(0.5, 1.0, 'Monthly Charges vs. Churn Rate')]

Total Charges

0 29 1 1889

2 108

3 1840

4 151

Name: TotalCharges, dtype: int32

[Text(0, 0.5, 'Churn Rate'), Text(0.5, 1.0, 'Total Charges vs. Churn Rate')]

Unfortunately, there is no trend between Churn Rate and Monthly & Total Charges.

1.2 Feature Engineering

In this section, we are going to transform our raw features to extract more information from them. Our strategy is as follows: 1. Group the numerical columns by using clustering techniques 1. Apply Label Encoder to categorical features which are binary 1. Apply get_dummies() to categorical features which have multiple value

1.2.1 Numerical Columns

As we know from the EDA section, We have three numerical columns: * Tenure * Monthly Charges * Total Charges

We are going to apply the following steps to create groups: * Using Elbow Method to identify the appropriate number of clusters * Applying K-means logic to the selected column and change the naming * Observe the profile of clusters

Tenure Cluster

According to elbow method, for tenure we optimal choice is 3 clusters. We could go with other number if business requires so.

	count	mean	std	min	25%	50%	75%	max
TenureCluster								
High	2239.0	63.048682	7.478229	49.0	56.0	64.0	70.0	72.0
Low	2941.0	7.801428	6.227163	0.0	2.0	6.0	13.0	21.0
Mid	1863.0	34.288782	7.992701	22.0	27.0	34.0	41.0	48.0

Monthly Charges This is how it looks after applying the same for Monthly & Total Charges:

According to elbow method, for Monthly Charges we optimal choice is 3 clusters. We could go with other number if business requires so.

	count	mean	std	min	25%	50%	75%	\
${\tt MonthlyChargesCluster}$								
High	2912.0	39.717720	23.984937	0.0	17.0	41.0	63.0	
Low	2239.0	25.930326	23.381947	0.0	4.0	18.0	46.0	
Mid	1892.0	28.686047	23.827175	0.0	7.0	23.0	49.0	
	max							
${\tt MonthlyChargesCluster}$								
High	72.0							
Low	72.0							
Mid	72.0							

Total Charges Total charges after converting to numeric hace few NA values. Those are customers that just signed up and didn't receive their first invoice yet or only received single invoice.

	tenure	${\tt MonthlyCharges}$	TotalCharges
92	0	20.25	NaN
138	0	25.75	NaN
425	0	19.85	NaN

488	0	25.35	NaN
566	0	20.00	NaN
681	0	19.70	NaN
1977	0	52.55	NaN
2116	0	56.05	NaN
3016	0	73.35	NaN
3029	0	61.90	NaN
4252	0	80.85	NaN
	tenure	MonthlyCharges	TotalCharges
92	0	20.25	20.25
138	0	25.75	25.75
425	0	19.85	19.85
488	0	25.35	25.35
566	0	20.00	20.00
681	0	19.70	19.70
1977	0	52.55	52.55
2116	0	56.05	56.05
3016	0	73.35	73.35
3029	0	61.90	61.90
4252	0	80.85	80.85

According to elbow method, for Monthly Charges we optimal choice is clusters. We could go with other number if business requires so.

	count	mean	std	min	25%	50%	75%	\
${\tt TotalChargesCluster}$								
High	1259.0	64.373312	7.420728	43.0	59.0	66.0	71.0	
Low	4171.0	18.173100	19.185982	0.0	3.0	12.0	24.0	
Mid	1613.0	44.106634	13.433636	19.0	33.0	43.0	54.0	
	max							
${\tt TotalChargesCluster}$								
High	72.0							
Low	72.0							
Mid	72.0							

1.2.2 Categorical Columns

Before using categorical columns we need to convert them from lables to numbers. Two approaches are available: * Label Encoder converts categorical columns to numerical by simply assigning integers to distinct values. For instance, the column gender has two values: Female & Male. Label encoder will convert it to 1 and 0. * get_dummies() method creates new columns out of categorical ones by assigning 0 & 1s

Let's use both to handle remaining columns.

<class 'pandas.core.frame.DataFrame'>
Int64Index: 7043 entries, 0 to 7042
Data columns (total 24 columns):

customerID	7043	non-null	object
gender	7043	non-null	object
SeniorCitizen	7043	non-null	int64
Partner	7043	non-null	object
Dependents	7043	non-null	object
tenure	7043	non-null	int64
PhoneService	7043	non-null	object
MultipleLines	7043	non-null	object
InternetService	7043	non-null	object
OnlineSecurity	7043	non-null	object
OnlineBackup	7043	non-null	object
DeviceProtection	7043	non-null	object
TechSupport	7043	non-null	object
StreamingTV	7043	non-null	object
StreamingMovies	7043	non-null	object
Contract	7043	non-null	object
PaperlessBilling	7043	non-null	object
PaymentMethod	7043	non-null	object
MonthlyCharges	7043	non-null	float64
TotalCharges	7043	non-null	float64
Churn	7043	non-null	int64
TenureCluster	7043	non-null	object
MonthlyChargesCluster	7043	non-null	object
TotalChargesCluster	7043	non-null	object
dtypes: float64(2), in	t64(3),	object(19	9)

memory usage: 1.7+ MB

Check out how the data looks like for the selected columns:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 7043 entries, 0 to 7042
Data columns (total 51 columns):

Data Columns (Cotal of Columns).	
customerID	7043 non-null object
gender	7043 non-null int32
SeniorCitizen	7043 non-null int64
Partner	7043 non-null int32
Dependents	7043 non-null int32
tenure	7043 non-null int64
PhoneService	7043 non-null int32
PaperlessBilling	7043 non-null int32
MonthlyCharges	7043 non-null float64
TotalCharges	7043 non-null float64
Churn	7043 non-null int64
MultipleLines_No	7043 non-null uint8
MultipleLines_No phone service	7043 non-null uint8
MultipleLines_Yes	7043 non-null uint8
InternetService_DSL	7043 non-null uint8
InternetService_Fiber optic	7043 non-null uint8
<pre>InternetService_No</pre>	7043 non-null uint8

OnlineSecurity_No	7043 non-null uint8
OnlineSecurity_No internet service	7043 non-null uint8
OnlineSecurity_Yes	7043 non-null uint8
OnlineBackup_No	7043 non-null uint8
OnlineBackup_No internet service	7043 non-null uint8
OnlineBackup_Yes	7043 non-null uint8
DeviceProtection_No	7043 non-null uint8
DeviceProtection_No internet service	7043 non-null uint8
DeviceProtection_Yes	7043 non-null uint8
TechSupport_No	7043 non-null uint8
TechSupport_No internet service	7043 non-null uint8
TechSupport_Yes	7043 non-null uint8
StreamingTV_No	7043 non-null uint8
StreamingTV_No internet service	7043 non-null uint8
StreamingTV_Yes	7043 non-null uint8
StreamingMovies_No	7043 non-null uint8
StreamingMovies_No internet service	7043 non-null uint8
StreamingMovies_Yes	7043 non-null uint8
Contract_Month-to-month	7043 non-null uint8
Contract_One year	7043 non-null uint8
Contract_Two year	7043 non-null uint8
<pre>PaymentMethod_Bank transfer (automatic)</pre>	7043 non-null uint8
<pre>PaymentMethod_Credit card (automatic)</pre>	7043 non-null uint8
PaymentMethod_Electronic check	7043 non-null uint8
PaymentMethod_Mailed check	7043 non-null uint8
TenureCluster_High	7043 non-null uint8
TenureCluster_Low	7043 non-null uint8
TenureCluster_Mid	7043 non-null uint8
MonthlyChargesCluster_High	7043 non-null uint8
MonthlyChargesCluster_Low	7043 non-null uint8
MonthlyChargesCluster_Mid	7043 non-null uint8
TotalChargesCluster_High	7043 non-null uint8
TotalChargesCluster_Low	7043 non-null uint8
TotalChargesCluster_Mid	7043 non-null uint8
dtypes: float64(2), int32(5), int64(3),	object(1), uint8(40)
memory usage: 1.1+ MB	
gender Partner TenureCluster_High	TenureCluster_Low TenureCluster_Mi
0 0 1 0	1
1 0 0 0	1

	gender	Partner	TenureCluster_High	TenureCluster_Low	TenureCluster_Mid
0	0	1	0	1	0
1	0	0	0	1	0
2	1	0	0	1	0
3	1	0	0	1	0
4	1	1	0	1	0

As we can see easily, gender & Partner columns became numerical ones, and we have three new columns for TenureCluster.

It is time to fit a logistic regression model and extract insights to make better business decisions.

1.3 Logistic Regression

Predicting churn is a binary classification problem. Customers either churn or retain in a given period. Along with being a robust model, Logistic Regression provides interpretable outcomes too. As we did before, let's sort out our steps to follow for building a Logistic Regression model: 1. Prepare the data (inputs for the model) 1. Fit the model and see the model summary

And the summary looks like below:

Generalized Linear Model Regression Results

Coef std err z
Intercept 0.2509 0.276 0.908
0.364 -0.291 0.792
gender -0.0249 0.065 -0.383
0.702 -0.152 0.103
SeniorCitizen 0.2236 0.085 2.638
0.008 0.057 0.390
Partner 0.0011 0.078 0.013
0.989 -0.152 0.154
Dependents -0.1386 0.090 -1.539
0.124 -0.315 0.038
tenure -0.0644 0.008 -7.668
0.000 -0.081 -0.048
PhoneService 0.2292 0.403 0.569
0.569 -0.560 1.018
PaperlessBilling 0.3476 0.075 4.647
0.000 0.201 0.494
MonthlyCharges -0.0336 0.032 -1.055 0.292 -0.096 0.029
TotalCharges 0.0001 9.98e-05 1.260
0.208 -6.98e-05 0.000
MultipleLines_No -0.1126 0.130 -0.869
0.385 -0.367 0.141
MultipleLines_No_phone_service 0.0217 0.160 0.136
0.892 -0.291 0.335

W 7 7 T W	0.0440	0.000	4 000
MultipleLines_Yes	0.3418	0.283	1.208
0.227 -0.213 0.896	0 5057	0.000	0.607
InternetService_DSL	-0.5957	0.226	-2.637
0.008 -1.039 -0.153			
InternetService_Fiber_optic	1.0419	0.577	1.804
0.071 -0.090 2.174			
InternetService_No	-0.1953	0.091	-2.145
0.032 -0.374 -0.017			
OnlineSecurity_No	0.3267	0.108	3.023
0.002 0.115 0.538			
OnlineSecurity_No_internet_service	-0.1953	0.091	-2.145
0.032 -0.374 -0.017			
OnlineSecurity_Yes	0.1195	0.261	0.458
0.647 -0.392 0.631			
OnlineBackup_No	0.2216	0.107	2.075
0.038 0.012 0.431			
OnlineBackup_No_internet_service	-0.1953	0.091	-2.145
0.032 -0.374 -0.017	0.12000	0.00	_,
OnlineBackup_Yes	0.2246	0.260	0.863
0.388 -0.286 0.735	0.2210	0.200	0.000
DeviceProtection_No	0.1464	0.107	1.365
0.172 -0.064 0.357	0.1404	0.107	1.505
	-0.1953	0.091	-2.145
DeviceProtection_No_internet_service 0.032 -0.374 -0.017	-0.1955	0.091	-2.145
	0.0000	0.000	4 4 5 4
DeviceProtection_Yes	0.2998	0.260	1.151
0.250 -0.211 0.810	0.0400	0.400	0.000
TechSupport_No	0.3129	0.108	2.903
0.004 0.102 0.524			
TechSupport_No_internet_service	-0.1953	0.091	-2.145
0.032 -0.374 -0.017			
TechSupport_Yes	0.1332	0.262	0.509
0.611 -0.380 0.646			
StreamingTV_No	-0.0566	0.048	-1.177
0.239 -0.151 0.038			
StreamingTV_No_internet_service	-0.1953	0.091	-2.145
0.032 -0.374 -0.017			
StreamingTV_Yes	0.5027	0.339	1.481
0.139 -0.162 1.168			
StreamingMovies_No	-0.0575	0.048	-1.186
0.236 -0.152 0.038			
StreamingMovies_No_internet_service	-0.1953	0.091	-2.145
0.032 -0.374 -0.017			
StreamingMovies_Yes	0.5036	0.339	1.484
0.138 -0.162 1.169			
Contract_Month_to_month	0.7777	0.118	6.611
0.000 0.547 1.008	V.1111	0.110	0.011
	0.0953	0.121	0.788
Contract_One_year	0.0903	0.121	0.100
0.431 -0.142 0.332			

Contract_Two_year		-0.6222	0.148	-4.195
0.000 -0.913	-0.331			
PaymentMethod_Bank_tran	sferautomatic_	0.0308	0.097	0.316
0.752 -0.160	0.221			
PaymentMethod_Credit_ca	rdautomatic_	-0.0538	0.099	-0.546
0.585 -0.247	0.139			
PaymentMethod_Electroni	0.3224	0.087	3.727	
0.000 0.153	0.492			
PaymentMethod_Mailed_ch	-0.0485	0.097	-0.500	
0.617 -0.239	0.142			
TenureCluster_High		0.5670	0.187	3.028
0.002 0.200	0.934			
TenureCluster_Low		-0.1745	0.172	-1.017
0.309 -0.511	0.162			
TenureCluster_Mid		-0.1417	0.119	-1.190
0.234 -0.375	0.092			
${\tt MonthlyChargesCluster_H}$	0.0592	0.169	0.351	
0.726 -0.272	0.390			
${\tt MonthlyChargesCluster_L}$	0.0749	0.127	0.591	
0.555 -0.174	0.324			
MonthlyChargesCluster_M	id	0.1168	0.195	0.600
0.548 -0.265	0.498			
TotalChargesCluster_Hig		0.3622	0.206	1.754
0.079 -0.042	0.767			
TotalChargesCluster_Low	-0.2718	0.177	-1.535	
0.125 -0.619	0.075			
TotalChargesCluster_Mid 0.1605 0.122 1.316				1.316
0.188 -0.079	0.400			

We have two important outcomes from this report. When you prepare a Churn Prediction model, you will be faced with the questions below: 1. Which characteristics make customers churn or retain? 1. What are the most critical ones? What should we focus on?

For the first question, you should look at the 4th column (P>|z|). If the absolute p-value is smaller than 0.05, it means, that feature affects Churn in a statistically significant way. Examples are: * SeniorCitizen * InternetService_DSL * OnlineSecurity_NO

Then the second question. We want to reduce the Churn Rate, where we should start? The scientific version of this question is;

Which feature will bring the best ROI if I increase/decrease it by one unit?

That question can be answered by looking at the coef column. Exponential coef gives us the expected change in Churn Rate if we change it by one unit. If we apply the code below, we will see the transformed version of all coefficients:

Intercept 1.285160 gender 0.975395

a a	4 050005
SeniorCitizen	1.250605
Partner	1.001054
Dependents	0.870603
tenure	0.937642
PhoneService	1.257575
PaperlessBilling	1.415616
MonthlyCharges	0.966963
TotalCharges	1.000126
MultipleLines_No	0.893466
-	
MultipleLines_No_phone_service	1.021935
MultipleLines_Yes	1.407524
InternetService_DSL	0.551151
InternetService_Fiber_optic	2.834684
InternetService_No	0.822587
OnlineSecurity_No	1.386373
OnlineSecurity_No_internet_service	0.822587
OnlineSecurity_Yes	1.126925
OnlineBackup_No	1.248082
OnlineBackup_No_internet_service	0.822587
OnlineBackup_Yes	1.251792
DeviceProtection_No	1.157608
-	0.822587
DeviceProtection_No_internet_service	
DeviceProtection_Yes	1.349626
TechSupport_No	1.367448
TechSupport_No_internet_service	0.822587
TechSupport_Yes	1.142521
StreamingTV_No	0.945018
StreamingTV_No_internet_service	0.822587
StreamingTV_Yes	1.653236
StreamingMovies_No	0.944158
StreamingMovies_No_internet_service	0.822587
StreamingMovies_Yes	1.654743
Contract_Month_to_month	2.176561
Contract_One_year	1.100015
Contract_Two_year	0.536769
•	1.031241
PaymentMethod_Bank_transfer_automatic_	
PaymentMethod_Credit_cardautomatic_	0.947615
PaymentMethod_Electronic_check	1.380499
PaymentMethod_Mailed_check	0.952640
TenureCluster_High	1.763036
TenureCluster_Low	0.839915
TenureCluster_Mid	0.867882
MonthlyChargesCluster_High	1.060993
MonthlyChargesCluster_Low	1.077803
MonthlyChargesCluster_Mid	1.123842
TotalChargesCluster_High	1.436438
TotalChargesCluster_Low	0.762027
	5.,02021

TotalChargesCluster_Mid

dtype: float64

1.174086

As an example, one unit change in Monthly Charge (coef. 0.965881) means $\sim 3.4\%$ improvement in the odds for churning if we keep everything else constant. From the table above, we can quickly identify which features are more important. Now, everything is ready for building our classification model.

1.4 Binary Classification Model with XGBoost

To fit XGBoost to our data, we should prepare features (X) and label(y) sets and do the train & test split.

Accuracy of XGB classifier on training set: 0.84 Accuracy of XGB classifier on test set: 0.82

By using this simple model, we have achieved 83% accuracy,

Our actual Churn Rate in the dataset was 26.5% (reflects as 73.5% for baseline model performance). This shows our model is a useful one. Better to check our classification model to see where exactly our model fails.

		precision	recall	f1-score	support
	0	0.86	0.92	0.89	265
	1	0.69	0.53	0.60	88
micro	avg	0.82	0.82	0.82	353
macro	avg	0.77	0.73	0.74	353
weighted	avg	0.82	0.82	0.82	353

We can interpret the report above as if our model tells us, 100 customers will churn, 70 of it will churn (0.70 precision). And actually, there are around 170 customers who will churn (0.58 recall). Especially recall is the main problem here, and we can improve our model's overall performance by: * Adding more data (we have around 2000 rows for this example) * Adding more features * More feature engineering * Trying other models * Hyper-parameter tuning

Moving forward, let's see how our model works in detail. First off, we want to know which features our model exactly used from the dataset. Also, which were the most important ones? For addressing this question, we can use the code below:

<matplotlib.axes._subplots.AxesSubplot at 0x1bcd234e588>

We can see that our model assigned more importance to **TotalCharges** and **MonthlyCharges** compared to others.

Finally, the best way to use this model is assigning Churn Probability for each customer, create segments, and build strategies on top of that. Below we get the churn probability from our model:

	customerID	proba
0	7590-VHVEG	0.631970
1	6713-OKOMC	0.189523
2	7469-LKBCI	0.013183
3	8779-QRDMV	0.885242
4	1680-VDCWW	0.034147

Now we know if there are likely to churn customers in our best segments and we can build actions based on it!