

Winning Space Race with Data Science

Aparna Srivastava 12-08-2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - 1. Data Collection from SpaceX API and Wikipedia Scrap
 - 2. Data Wrangling
 - EDA with Data Visualization and SQL
 - 4. Interactive Analysis with Folium
 - 5. Plotly DashBoard
 - 6. Predictive Analysis Classification
- Summary of all results
 - 1. Exploratory Data analysis
 - 2. Model Evaluation
 - 3. Discussions
 - 4. Conclusions

Introduction

- This project was developed to train data science skills as a capstone project for the IBM Data Science course at Coursera.
- The Problem consists of collecting, pre-process, cleaning and modeling analyse data from SpaceX company located on 2 sources. The first one, company website, contains technical information about the mission and, the second one, wikipedia contains history of the launches.
- The objective of the analysis is to help a new fictitious company SpaceY to catch up on this new space race.
- Methods like Exploratory data analysis with queries and graphics, interactive map plots, dashboards and machine learning models were used to better understand the relations between the success of a mission and the explanatory variables.

Methodology

Executive Summary

- Data collection methodology:
 - Describe how data was collected
- Perform data wrangling
 - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Data Sources:
 - 1. SpaceX API
 - 2. <u>List of Falcon 9 and Falcon Heavy launches (Wikipedia)</u>
- Data Pipe Line Flow

Data Collection - SpaceX API

Request and parse the SpaceX launch data using the GET request.

RangeIndex: 94 entries, 0 to 93					
Data	columns (total	17 columns):			
#	Column	Non-Null Count	Dtype		
0	FlightNumber	94 non-null	int64		
1	Date	94 non-null	object		
2	BoosterVersion	94 non-null	object		
3	PayloadMass	88 non-null	float64		
4	Orbit	94 non-null	object		
5	LaunchSite	94 non-null	object		
6	Outcome	94 non-null	object		
7	Flights	94 non-null	int64		
8	GridFins	94 non-null	bool		
9	Reused	94 non-null	bool		
10	Legs	94 non-null	bool		
11	LandingPad	64 non-null	object		
12	Block	90 non-null	float64		
13	ReusedCount	94 non-null	int64		
14	Serial	94 non-null	object		
15	Longitude	94 non-null	float64		
16	Latitude	94 non-null	float64		

Data Collection - Scraping

 Request and parse List of Falcon 9 and Falcon Heavy launches using the GET request and retrive data tables using BeautifulSoap.

RangeIndex: 121 entries, 0 to 120					
Data columns (total 11 columns):					
#	Column	Non-Null Count	Dtype		
0	Flight No.	121 non-null	object		
1	Launch site	121 non-null	object		
2	Payload	121 non-null	object		
3	Payload mass	121 non-null	object		
4	Orbit	121 non-null	object		
5	Customer	120 non-null	object		
6	Launch outcome	121 non-null	object		
7	Version Booster	121 non-null	object		
8	Booster landing	121 non-null	object		
9	Date	121 non-null	object		
10	Time	121 non-null	object		

Data Wrangling

SpaceX

- Filter the dataframe to only include Falcon 9 launches.
- 2. Dealing with Missing Values.

Wikipedia

- Filter the dataframe to only include Falcon 9 launches.
- 2. Dealing with Missing Values.
- 3. Inspect value counts from Orbit, Launch Site and Outcome columns.
- 4. Define Binary Class column from Outcome categories.
- 5. One hot encoding to binarize categorical variables.

EDA with Data Visualization

Plots:

- Category plot of Payload Mass by Flight number with Class on color dimension.
- Category plot of Launch Site by Flight number with Class on color dimension.
- Scatter plot of Launch Site by Payload Mass with Class on color dimension.
- Barchart of Succes rate by Orbit.
- Scatter plot of Orbit by Flight Number with Class on color dimension.
- Scatter plot of Orbit by Payload Mass with Class on color dimension.
- Line plot of Success by Year.

EDA with SQL

SQL Queries

- Unique Launch Sites.
- Launch Sites biginning with CAA.
- Total Payload Mass carried by booster lauched from NASA CRS.
- Average Payload Mass caried by F9 v1.1 boosters.
- Date of the first success landing outcome in ground pads.
- Boosters success in drone ship with payload between 4000 and 6000.
- Total number of successful and failure mission outcomes.
- Booster_versions which have carried the maximum payload mass.
- Failed landing_outcomes in drone ship in 2015.
- Descending Landing outcomes between 2010-06-04 and 2017-03-20.

Interactive Map with Folium

Map elements

- Blue circle on NASA location with name and popup.
- Red circles for launch sites with names and popup.
- Marker cluster for success and faillures on launchs with red and green.
- Distance from nearest Railroad with blue connect line.
- Distance from nearest city Titusville with blu connect line.

Dashboard with Plotly Dash

Dashboard

- Interactive Pychart to show parts of a whole to compare number of lauch attemps in all dites or parts of a whole for each lauch site selected on the dropdown menu to compare number success and faillures.
- Interactive Scatterplot to compare the relation of Class by Paylod Mass (KG) allowing to change both launch sites and range of payload mass.

Predictive Analysis (Classification)

Modeling

- Load X and Y data from IBM SkillsNetwork in .csv flat files format.
- Standardize X features with normalization.
- Split data in train and test samples 80/20
- Cross vadidation for Logistic Regression score to find best parameters.
- Cross vadidation for SVM score to find best parameters.
- Cross vadidation for Decision Tree score to find best parameters.
- Cross vadidation for KNN score to find best parameters.
- Plot confusion matrices to visualize positive and negative predictions.

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- Most missions occurred at CCAFS SLC 40.
- Most landing faillures occurred before Flight Number 20.
- After Flight Number 80 all landings outcomes were success.

Payload vs. Launch Site

- Most payload were below 8000 kg.
- Most faillures occurred with payload between 2500 and 7500 kg.
- After Flight Number 80 all landings outcomes were success.

Success Rate vs. Orbit Type

- Success Rate is 100% at ES-L1, GEO, HEO and SSO.
- Succes Rate between 40% and 80% at GTO, ISS, LEO, MEO, PO and VLEO.
- Just at SO orbit the success rate is 0%.

Flight Number vs. Orbit Type

- From flight 0 to 60 just LEO, ISS, PO, GTO, ES-L1 and SSO orbits were contemplated.
- From flight 60 to today HEO, MEO, VLEO, SO and GEO orbits begin to be contemplated.
- It seens the after acomplished the first group of orbits, SpaceX focus on the newest ones to achieve the same level of success.

Payload vs. Orbit Type

- Heavy payload mass over 8000 kg seens to be concentrated on ISS, PO and VLEO orbits.
- Most faillures concentrate on low 1500 to 3000 kg and medium, 2500 and 7500 kg payload mass on ISS and GTO orbits.

Launch Success Yearly Trend

- From years 2010 to 2013 the faillures predominate.
- From years 2013 to 2017 occurred 2 majors improvements on succes rate.
- From 2017 to 2018 there was a fall on succes rate recovered from 2018 to 2019.

All Launch Site Names

- Cape Canaveral Space Launch Complex 40 (CCAFS LC-40).
- Vandenberg Space Launch Complex 4 (VAFB SLC-4E).
- Kennedy Space Center Launch Complex 39 (KSC LC-39A).
- Cape Canaveral Space Launch Complex 40 (CCAFS SLC-40).

Launch Site Names Begin with 'CCA'

	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit
0	04-06-2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO
1	08-12-2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)
2	22-05-2012	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)
3	08-10-2012	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)
4	01-03-2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)
6	03-12-2013	22:41:00	F9 v1.1	CCAFS LC-40	SES-8	3170	GTO
7	06-01-2014	22:06:00	F9 v1.1	CCAFS LC-40	Thaicom 6	3325	GTO
8	18-04-2014	19:25:00	F9 v1.1	CCAFS LC-40	SpaceX CRS-3	2296	LEO (ISS)
9	14-07-2014	15:15:00	F9 v1.1	CCAFS LC-40	OG2 Mission 1 6 Orbcomm-OG2 satellites	1316	LEO

Only 10 rows were displayed from 100 Launch Sites that the name starts with CCA.

Total Payload Mass

Total Payload by booster from NASA is 45596 Kg.

Average Payload Mass by F9 v1.1

The average Payload Mass of F9 v1.1 is 2928.4 Kg

First Successful Ground Landing Date

• The first Successful Ground Landing Date is at 01-05-2017.

Successful Drone Ship Landing with Payload between 4000 and 6000

Boosters:

23		F9	FT B1022
27		F9	FT B1026
31	F9	FT	B1021.2
42	F9	FT	B1031.2

Total Number of Successful and Failure Mission Outcomes

Success			98
Success			1
Success	(payload status	unclear)	1
Failure	(in flight)		1

Boosters Carried Maximum Payload

• Booster Version that carried the maximum payload mass is F9 B5 B1048.4.

2015 Launch Records DroneShip Failures

Booster_Version Launch_Site

Date

2015-10-01	F9 v1.1 B1012	CCAFS LC-40
2015-04-14	F9 v1.1 B1015	CCAES LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

No attempt	10
Success (ground pad)	5
Success (drone ship)	5
Failure (drone ship)	5
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	1
Precluded (drone ship)	1

Launch Sites SpaceX Map

 The locations are on both coats os US.

Launch Sites Succes and Failures Map

Launch Site Proximity to Railway

Launch Success by Site

Pie Chart of Launch Succes by Site

• CCAFS LC-40 and KSC LC-39A sum up 71.9% of the success launchs.

Launch Site with the Highest Success Ratio

Pie chart of KSC LC-39A Mission Outcome

• KSC LC-39A performed best with 76.9% of success rate.

Launch Outcomes by Payload Mass and Boosters

• From 2000 to 7000 kg of payload mass for all launch sites the FT Booster achieved more success then the other boosters.

Classification Accuracy

• Three methods performed equally with 3 false positives or 3 events were first booster not landed successfully but the model predict in fact it did.Logistic Regression, Support Vector MachineKNN.

Confusion Matrix Logistic Regression

• Logistic Regression performed well on predicting landed and performs randonly on predicting not landed missions with 50% correct predictions.

Conclusions

- The succes rate gets better after 2013 and impproved even more in 2015.
- The best succes rate occurs in orbits ES-L1, GEO, HEO and SSO.
- He best payload mass is between 200 and 7000 kg
- The best succes launch site is <u>CCAFS SLC-40</u>
- The coefficients that impact most positive on the outcomes are, Block, ReusedCount, LandingPad_5e9e3032383ecb267a34e7c7, LandingPad_5e9e3032383ecb6bb234e7ca, GridFins_True, Legs_True.
- The coefficients that impact most positive on the outcomes are Serial_B1017, Serial_B1018, Serial_B1020, Serial_B1028, Serial_B1044, Serial_B1050, GridFins_False, Legs_False.

Appendix

GitHub Notebook Data Collection Spacex API

GitHub Notebook Data Collection Web Scraping WikiPedia

GitHub Notebook Data Wrangling

GitHub Notebook EDA

GitHub Notebook Interactive Map

GitHub Python Script DashBoard

GitHub Python Notebook Predict Modeling

