Matemática Discreta

2020/21 Funções

Professores: João Araújo, Júlia Vaz Carvalho e Manuel Silva Departamento de Matemática FCT/UNL

Baseados em textos e slides elaborados por professores do Departamento de Matemática

Programa

- Parte 1 Conjuntos e Relações e Funções
 - Conjuntos, representações e operações básicas; conjunto das partes; cardinalidade.
 - Relações binárias: equivalências e ordens parciais.
 - Se Funções: bijecções; inversão e composição.
- Parte 2 Indução
 - Definições indutivas
 - Indução nos naturais e estrutural
 - Primeiro e segundo princípios de indução
 - ¶ Funções recursivas e provas por indução
- Parte 3 Grafos e Aplicações
 - Generalidades
 - Conexidade
 - Árvores
 - Grafos Eulerianos
- Departamento de Matemática (FCT/UNL)

1.3. Funções

Sejam X e Y dois conjuntos. Uma aplicação (ou função) de X em Y é uma relação R de X em Y (i.e. $R \subseteq X \times Y$) verificando que, para qualquer $x \in X$, existe um e um só $y \in Y$ tal que $(x, y) \in R$, ou seja, simbolicamente

$$(\forall x \in X) \ (\exists^1 y \in Y) \ (x, y) \in R.$$

Se f é uma aplicação de X em Y escrevemos $f: X \longrightarrow Y$ e, dado $x \in X$, denotamos por f(x) ou xf o único elemento $y \in Y$ tal que $(x, y) \in f$. (A notação xf é muito prática como veremos mais tarde). Este elemento é designado por imagem de x (por meio de f).

Dada uma aplicação $f: X \longrightarrow Y$, chamamos:

- $lue{o}$ conjunto de partida de f a X;
- conjunto de chegada de f a Y;
- imagem de f (ou contradomínio de f) ao conjunto das imagens por (meio de) f de todos os elementos $x \in X$:

Exemplos

- 1. Sejam $X = \{1, 2, 3\}$ e $Y = \{1, 2, 3, 4\}$. Então:
 - $R = \{(1,2), (2,3), (3,4), (1,4)\}$ é uma relação de X em Y, mas não é uma aplicação de X em Y.

• $R = \{(2,3), (3,4)\}$ é uma relação de X em Y, mas não é uma aplicação de X em Y.

• $R = \{(1,1), (2,3), (3,3)\}$ é uma aplicação de X em Y.

2. Sejam $X = Y = \mathbb{R}$. Então:

• $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x = y^2\}$ é uma relação de \mathbb{R} em \mathbb{R} , mas não é uma aplicação de \mathbb{R} em \mathbb{R} .

• $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 = y\}$ é uma aplicação de \mathbb{R} em \mathbb{R} .

Definição

Sejam $f: X \longrightarrow Y$ uma aplicação, $A \subseteq X$ e $B \subseteq Y$. Designamos por:

- imagem de A (por meio de f) ao conjunto $f(A) = \{f(x) \mid x \in A\}$;
- ullet imagem recíproca (ou pré-imagem) de B (por meio de f) ao conjunto

$$f^{-1}(B) = \{x \in X \mid f(x) \in B\}.$$

Se $B = \{y\}$, denotamos também $f^{-1}(B)$ por $f^{-1}(y)$.

Exemplo

Sejam
$$X = \{1, 2, 3, 4, 5\}, f : X \longrightarrow X \text{ tal que } f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 4 & 3 & 3 \end{pmatrix},$$

$$A=\{1,\ 2,\ 3\}$$
 e $B=\{1,\ 2,\ 3\}.$ Então,

$$Im f = \{2, 3, 4\}, f(A) = \{2, 4\} e$$

$$f^{-1}(B) = \{1, 2, 4, 5\}.$$

Observe-se que
$$f(f^{-1}(B)) = \{2, 3\} \subset B$$
.

Definição

Seja $f: X \longrightarrow Y$ uma aplicação. Dizemos que:

- f é injectiva (ou uma injecção) se $(\forall a, b \in X)$ $f(a) = f(b) \Rightarrow a = b$ (equivalentemente, se $(\forall a, b \in X)$ $a \neq b \Rightarrow f(a) \neq f(b)$);
- f é sobrejectiva (ou uma sobrejecção) se f(X) = Y, i.e. se $(\forall y \in Y)(\exists x \in X) \ y = f(x)$;
- f é bijectiva (ou uma bijecção) se for simultaneamente injectiva e sobrejectiva, i.e., equivalentemente, se $(\forall y \in Y)(\exists^1 x \in X)$ y = f(x).

Exemplos

- A aplicação $f: X \longrightarrow X$ do exemplo anterior, $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 4 & 3 & 3 \end{pmatrix}$, não é injectiva nem sobrejectiva.
- A aplicação $f : \mathbb{N} \longrightarrow \mathbb{N}$ definida por f(n) = n + 1, para qualquer $n \in \mathbb{N}$, é injectiva mas não é sobrejectiva.
- Seja X um conjunto qualquer e f : X → X a aplicação definida por f(x) = x, para qualquer x ∈ X. Então, f é injectiva e sobrejectiva, donde f é bijectiva. Esta aplicação designa-se por aplicação identidade de X e denota-se por 1_X ou id_X ou I_X.

• Sejam $X = \{1, 2, 3, 4\}, Y = \{1, 2\} e f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 2 \end{pmatrix}$ aplicação de X em Y.

Então f é sobrejectiva mas não é injectiva.

• Sejam $X = \{1, 2, 3\}$, $Y = \{1, 2, 3, 4\}$ e $f = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 4 \end{pmatrix}$ aplicação de X em Y.

Então f é injectiva mas não é sobrejectiva.

Observação

Sejam X e Y conjuntos e $f: X \longrightarrow Y$ uma aplicação. Afirmar que

$$(\forall x, y \in X) \ x = y \Rightarrow f(x) = f(y)$$

é o mesmo que dizer que f é uma aplicação. Não confundir com o conceito de injectividade!

Teorema

Sejam $f: X \longrightarrow Y$ e $g: Y \longrightarrow Z$ duas aplicações. Então a relação composição de g com f, de X em Z, é uma aplicação $f \circ g: X \longrightarrow Z$ que está definida por $(f \circ g)(x) = g(f(x))$, para qualquer $x \in X$.

É na composição que se vê como a notação xf é mais natural que f(x).

De facto, $(f \circ g)(x) = g(f(x))$ enquanto $x(f \circ g) = (xf)g$.

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

$$x \xrightarrow{f} f(x) \xrightarrow{g(f(x)) = (f \circ g)(x)}$$

Observação

Sejam $f: X \longrightarrow Y$ e $g: Y \longrightarrow Z$ duas aplicações.

- A composta $g \circ f$ está (formalmente) definida se, e só se, Z = X;
- Se Z=X então as aplicações $f\circ g$ e $g\circ f$ estão definidas, mas não temos necessariamente $f\circ g=g\circ f$. Claro que, se $X\neq Y$, então $f\circ g:X\longrightarrow X$ e $g\circ f:Y\longrightarrow Y$, pelo que $f\circ g\neq g\circ f$. Mas mesmo quando X=Y, podemos ter $f\circ g\neq g\circ f$.

Por exemplo, sejam $X=\{1,\ 2,\ 3\}$ e $f=\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix}$, $g=\begin{pmatrix}1&2&3\\3&1&2\end{pmatrix}$ duas aplicações de X em X. Então,

$$g \circ f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = f \circ g.$$

Proposição

Sejam $f: X \longrightarrow Y$, $g: Y \longrightarrow Z$ e $h: Z \longrightarrow W$ três aplicações. Então, estão definidas as aplicações $(f \circ g) \circ h$ e $f \circ (g \circ h)$ de X em W e temos

Teorema

Sejam $f: X \longrightarrow Y$ e $g: Y \longrightarrow Z$ duas aplicações. Então:

- Se f e g são injectivas, então f ∘ g é injectiva;
- Se f e g são sobrejectivas, então f ∘ g é sobrejectiva;
- Se f e g são bijectivas, então f ∘ g é bijectiva.

Definição

Dizemos que uma aplicação $f: X \longrightarrow Y$ é invertível se existir uma aplicação $g: Y \longrightarrow X$ tal que $f \circ g = id_X$ e $g \circ f = id_Y$.

Proposição

Seja $f: X \longrightarrow Y$ uma aplicação invertível. Então, existe uma e uma só aplicação g : Y \longrightarrow X tal que $f \circ g = id_X$ e $g \circ f = id_Y$.

Nas condições da Proposição anterior, à aplicação g chamamos aplicação inversa de f e denotamo-la por f^{-1} : $f^{-1} \circ f = id_Y$ e $f \circ f^{-1} = id_X$.

Observemos ainda que, dados $x \in X$ e $y \in Y$, temos

$$y = f(x) \Leftrightarrow x = f^{-1}(y).$$

Observação

É evidente que, se $f: X \longrightarrow Y$ é uma aplicação invertível, então a sua inversa $f^{-1}: Y \longrightarrow X$ é também invertível e temos $(f^{-1})^{-1} = f$.

Proposição

Sejam $f: X \longrightarrow Y$ e $g: Y \longrightarrow Z$ duas aplicações invertíveis. Então, a aplicação $f \circ g: X \longrightarrow Z$ é invertível e tem-se $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

Teorema

Uma aplicação $f: X \longrightarrow Y$ é invertível se e só se é uma bijecção.