Exponential functions

It's a function with a base a defined like this

$$f(x) = a^x$$

where a > 0, a \neq 1, and x is a real number

- If the base was a negative number, the value of the function would be a complex number for some values of x
- If a was equal to 1, then f(x) will always be 1 and we will get a constant function

PROPERTIES OF THE EXPONENTIAL FUNCTION

- 1. The domain (x values) of the function is between $(-\infty, \infty)$, and the range (y values) is between $(0, \infty)$
- 2. The graph is a smooth continuous curve that has a y-intercept at (0,1), and passes the point (1, a), if it didn't then it's not an exponential graph
- 3. The graph has no x-intercepts no matter the x value, if it did that then it's not an exponential graph
- 4. The x-axis is a horizontal asymptote for every exponential function

When a is

transformation	equation	Effect on graph	Gif for visuals
Horizontal shift	$y = a^{x+b}$	the graph shifts by b amount of units -Left when b increases -Right when b decreases	25 -3 -25 -2 -15 -1 -05 0 05 1 15 2 25 3 35 4 a = 0.1
Vertical shift	$y = a^x + b$	The graph shifts by b amount of units -up when b increases -down when b increases	-3 -25 -2 -15 -1 -05 0 05 1 15 2 25 3 35 a=01
Stretching or Compressing (vertically)	$y = c\alpha^x$	The y coords are multiplied by c, the graph is ->vertically <stretched c="" is="" when=""> 1 -compressed when 1 > c > 0</stretched>	-3 -25 -2 -15 -1 -05 0 05 1 15 2 25 3 35 =01
Reflection on the x axis	$y = -a^x$	Reflects the graph on the x axis	-10 = -5 -4 -2 0 2 4 6 6 10 12 14 -2 2 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Reflection on the y axis	$y = a^{-x}$	Reflects the graph on the y axis	-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -

Natural Exponential function

For all real numbers x, the function defined by $f(x) = e^x$

\equiv

LOGARITHMIC FUNCTIONS

$$f(x) = log_b(x)$$

This equation works when x > 0 and b is a positive constant which isn't equal to 1

The notation is read (the logarithm (or log) base b of x)

Logarithmic functions $log_b(x)$ are opposite to exponential functions b^x

compositing logarithmic and exponential functions

- When x > 0, b > 0, $b \ne 1$, knowing that
 - \circ g(x) = b^x
- then
 - o $g(f(x)) = b^{\log_b(x)} = x$, because b and \log_b cancel each other out
 - \circ f(g(x)) = $log_h(b^x)$ = x

NOTES

- the exponential form of $y = log_b(x)$ is $b^y = x$
- the logarithmic form of b^y = x is y = log_b(x)

Basic logarithmic properties

- 1. $\log_b(b) = 1$
- 2. $\log_b(1) = 0$
- 3. $log_b(b^x) = x$
- 4. $b^{\log_b(x)} = x$

PROPERTIES OF THE LOGARITHMIC FUNCTION

• the graph always intercepts the x axis at point (1, 0) and passes through the point (b, 1)

• When **b** is

Common and Natural Logarithms

The common logarithmic function is defined as $f(x) = log_{10}(x)$, it is customarily written as log(x)

the natural logarithmic function is defined as $f(x) = log_e(x)$, it is customarily written as ln(x)

Properties of logarithms

in the following properties, b, M, and N are positive real numbers with $b \neq 0$

Product property

$$Log_b(MN) = log_b(M) + log_b(N)$$

Quotient property

$$log_b\left(\frac{M}{N}\right) = log_b(M) - log_b(N)$$

Power property

$$Log_b(M^p) = p log_b(M)$$

Logarithm of each side property

$$M = N \rightarrow implies that \rightarrow Log_b(M) = Log_b(N)$$

One to one property

$$Log_b(M) = Log_b(N) \rightarrow implies that \rightarrow M = N$$

LOGARITHMIC EQUATION

$$Log_a(x^m) = m log_a(x)$$

EXPONENTIAL GROWTH AND DECAY FUNCTIONS

If a quantity N increases/decreases at a rate proportional to the amount present at time Then the quantity can be modeled as

$$N(t) = N_0 e^{kt}$$

- N(t) is the quantity at time t,
- No is the initial quantity,
- e is the base of the natural logarithm (approximately 2.71828),
- k is the growth or decay rate, and
- t is time.

The function shows that the rate of change of the quantity is proportional to the current quantity. This means that the faster the quantity is growing or decaying, the larger the quantity itself.

Exponential growth function

Exponential decay function

COMPOUND INTREST FORMULA

A principal (**p**) is invested at an annual intrest rate (**r**), exprecced as a decimal and compounded (**n**) amount of times per year, for (**t**) years, produces a balance

$$A=p(1+\frac{r}{n})^{nt}$$

where,,,

A = amount after t years

P = principal

r = annual interest rate (expressed as a decimal)

n = number of times interest is compounded each year

t = number of years

Continuous Compounding intrest formula

If an account with principal (**P**) and annual intrest rate (**r**) is compounded continuously for (**t**) amount of years, then the balance is equal to

$$A = pe^{rt}$$

A = amount after t years

P = principal

r = annual rate (expressed as a decimal)

t = number of years

Interest application	Discrete intervals	Continuous
Frequency	Defined by compounding period (e.g., annually)	Infinitely small periods
Formula complexity	Relatively simple	More complex, involving natural logarithms (In)
Practical applicability	Commonly used in finance	Theoretical concept
Impact on final amount	Interest earned grows with more frequent compounding	Highest possible final amount among all compounding frequencies

The difference between the compound interest and continuous compounding interest is that in the first one you have a set number of time of compounding interests in a year, but in the second one, imagine your interest compounding every second of the year, that's the difference in a nutshell

