**Produkte Products** 



Prüfbericht - Nr.:

50001232 001

Seite 1 von 71 Page 1 of 71

Test Report No.:

Auftraggeber:

Hitachi Automotive Systems, Ltd.

Client:

2520 Takaba Hitachinaka-shi, Ibaraki 312-8503 Japan

Gegenstand der Prüfung:

Test Item:

**CAN GW** 

Bezeichnung:

Identification:

SIB01-001A

Serien-Nr.: Serial No .:

No.1, No.2-6

Wareneingangs-Nr.:

A000040585, A000046174

Eingangsdatum:

2014-03-10

Receipt No.:

Date of Receipt:

Zustand des Prüfgegenstandes bei Anlieferung: Condition of Test Item at Delivery:

Prüfort:

TÜV Rheinland Japan Ltd. – Global Technology Assessment Center

Testing Location:

4-25-2 Kita-Yamata, Tsuzuki-ku, Yokohama 224-0021, Japan

Prüfgrundlage: Test Specification: FCC 47 CFR Part 15, Subpart C, Section 15.247 (October 1, 2013)

Good

ANSI C63.10-2009

Public Notice DA 00-705: Filing and Measurement Guidelines for Frequency Hopping

Spread Spectrum Systems (March 30, 2000)

RSS-210 (Issue 8): 2010 RSS-Gen (Issue 3): 2010 ANSI C63.10-2009

Prüfergebnis:

Der Prüfgegenstand entspricht oben genannter Prüfgrundlage(n).

Test Result:

The test item passed the test specification(s).

Prüflaboratorium:

TÜV Rheinland Japan Ltd. – Global Technology Assessment Center

4-25-2 Kita-Yamata, Tsuzuki-ku, Yokohama 224-0021, Japan Testing Laboratory:

geprüft/ tested by:

kontrolliert/ reviewed by:

2014-05-08

A. Abe / Inspector

2014-05-08

Ralf Meiranke / Reviewer

Datum Date

Name/Stellung Name/Position

Unterschrift Signature

Datum Date

Name/Stellung Name/Position

Unterschrift Signature

Sonstiges I Other Aspects:

Abkürzungen:

P(ass)

entspricht Prüfgrundlage entspricht nicht Prüfgrundlage Abbreviations:

P(ass)

F(ail) N/A

nicht anwendbar

F(ail)

passed failed

not applicable not tested

duplicated in extracts. This test report does not entitle to carry any safety mark on this or similar products.

🛕 TÜVRheinland®

**Produkte Products** 

> Prüfbericht - Nr.: 50001232 001 Seite 2 von 71 Page 2 of 71

Test Report No.:

## **TEST SUMMARY**

5.1.1 SUPPLY VOLTAGE REQUIREMENTS

RESULT: PASS

**5.1.2 ANTENNA REQUIREMENTS** 

RESULT: PASS

5.1.3 RESTRICTED BANDS OF OPERATION

RESULT: PASS

5.2.1 CONDUCTED OUTPUT POWER

RESULT: PASS

5.2.2 CARRIER FREQUENCY SEPARATION

RESULT: PASS

5.2.3 20DB BANDWIDTH

5.2.4 99% BANDWIDTH

5.2.5 NUMBER OF HOPPING FREQUENCIES

RESULT: PASS

5.2.6 AVERAGE TIME OF OCCUPANCY

RESULT: PASS

5.2.7 CONDUCTED SPURIOUS EMISSIONS

RESULT: PASS

5.3.1 RADIATED Spurious Emissions of Transmitter

RESULT: PASS

5.4.1 AC POWER LINE CONDUCTED EMISSION OF TRANSMITTER

RESULT: N/A

#### Produkte Products



Prüfbericht - Nr.: 50001232 001
Test Report No.:

Seite 3 von 71 Page 3 of 71

## **Contents**

| 1.                      | GENERAL REMARKS                             | 5  |
|-------------------------|---------------------------------------------|----|
| 1.1                     | COMPLEMENTARY MATERIALS                     | 5  |
| 2.                      | TEST SITES                                  | 5  |
| 2.1                     | TEST FACILITIES                             | 5  |
| 2.2                     | LIST OF TEST AND MEASUREMENT INSTRUMENTS    | 6  |
| 2.3                     | MEASUREMENT UNCERTAINTY                     | 7  |
| 3.                      | GENERAL PRODUCT INFORMATION                 | 8  |
| 3.1                     | PRODUCT FUNCTION AND INTENDED USE           | 8  |
| 3.2                     | SYSTEM DETAILS                              | 8  |
| 3.3                     | CLOCK FREQUENCIES                           | 8  |
| 3.4                     | Noise Suppressing Parts                     | 8  |
| 4.                      | TEST SET-UP AND OPERATION MODES             | 9  |
| 4.1                     | TEST METHODOLOGY                            | 9  |
| 4.2                     | OPERATION MODES                             | 9  |
| 4.3                     | PHYSICAL CONFIGURATION FOR TESTING          | 9  |
| 4.4                     | Test Software                               | 11 |
| 4.5                     | SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT | 11 |
| 4.6                     | COUNTERMEASURES TO ACHIEVE EMC COMPLIANCE   | 12 |
| 5.                      | TEST RESULTS RADIO                          | 13 |
| 5.1                     | TECHNICAL REQUIREMENTS                      |    |
| 5.1.<br>5.1.            | 1 Supply Voltage Requirements               |    |
| 5.1.                    |                                             |    |
| 5.2                     | CONDUCTED MEASUREMENTS AT ANTENNA PORT      |    |
| 5.2.<br>5.2.            |                                             |    |
| 5.2.                    | 3 20dB Bandwidth                            | 21 |
| 5.2.<br>5.2.            |                                             |    |
| 5.2.                    | 6 Average Time of Occupancy                 | 34 |
| 5.2.                    | •                                           |    |
| <b>5.3</b> 5.3.         | RADIATED MEASUREMENTS                       |    |
| <b>5.4</b> <i>5.4</i> . | AC Power Line Conducted Measurements        | 65 |
|                         |                                             |    |



Products

|    | bericht - Nr.:<br>eport No.: | 50001232 001   | <b>Seite 4 von 71</b> Page 4 of 71 |
|----|------------------------------|----------------|------------------------------------|
| 6. | PHOTOGRAPHS OF               | THE TEST SETUP | 60                                 |
| 7. | LIST OF TABLES               |                | 70                                 |
| 8. | LIST OF FIGURES              |                | 70                                 |
| 9. | LIST OF PHOTOGRA             | APHS           | 7                                  |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |
|    |                              |                |                                    |

Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 5 von 71

 Test Report No.:
 Page 5 of 71

#### 1. General Remarks

#### 1.1 Complementary Materials

There is no attachment to this test report.

#### 2. Test Sites

#### 2.1 Test Facilities

TÜV Rheinland Japan Ltd. – Global Technology Assessment Center 4-25-2 Kita-Yamata, Tsuzuki-ku, Yokohama 224-0021, Japan

The used test equipment is in accordance with CISPR 16 for measurement of radio interference.

The Federal Communications Commission has reviewed the technical characteristics of the radiated and conducted emission facilities and has found these test sites to be in compliance with the requirements of section 2.948 of the FCC rules. The description of the test facility is listed under FCC registration number 299054.

The Industry Canada has reviewed the technical characteristics of the radiated and conducted emission facilities and has found these test sites to be in compliance with Canadian requirements. The description of the test facility is listed under OATS filing number 3466B-1.

The test facility is accredited by VLAC (member of ILAC) under number VLAC-017 according to ISO/IEC 17025:2005.



TÜV Rheinland Japan Ltd. is accredited by the Federal Communications Commission as a Conformity Assessment Body under Designation Number JP0017 and Test Firm Registration Number 386498.

Produkte Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 6 von 71

 Test Report No.:
 Page 6 of 71

## 2.2 List of Test and Measurement Instruments

**Table 1: List of Test and Measurement Equipment** 

| Kind of Equipment                                 | Manufacturer       | Model Name           | Serial<br>Number   | Equipment ID | Calibrated until |
|---------------------------------------------------|--------------------|----------------------|--------------------|--------------|------------------|
| For Antenna Port Cond                             | lucted Emission    |                      |                    |              |                  |
| Spectrum Analyzer                                 | Rohde & Schwarz    | FSP30                | 100006/030         | BT-8017      | 2014-10          |
| RF Power Meter                                    | Agilent            | N1911A               | MY451017<br>37     | RF-0393      | 2014-11          |
| RF Peak Power<br>Sensor                           | Agilent            | N1921A               | MY452422<br>28     | RF-0394      | 2014-11          |
| Temperature Chamber                               | Voetsch            | VT 4018              | 585660250<br>90010 | BT-8012      | 2014-08          |
| For Radiated Emission                             |                    |                      |                    |              |                  |
| Receiver                                          | Rohde & Schwarz    | ESU 8                | 100025             | RF-0020      | 2014-09          |
| Spectrum Analyzer                                 | Rohde & Schwarz    | FSP30                | 100006/030         | BT-8017      | 2014-10          |
| RF Selector (10m<br>Chamber)                      | Toyo Corporation   | NS4900               | 0703-182           | RF-0029      | 2014-11          |
| Trilog Antenna No. 2, 30-1000MHz                  | Schwarzbeck        | VULB9168             | 9168-475           | RF-0462      | 2015-01          |
| 10dB Attenuator                                   | Hewlett Packard    | 8491A 10dB           | 58354              | RF-0314      | 2014-11          |
| Low Noise<br>Preamplifier, 9kHz-<br>1GHz          | TSJ                | MLA-10K01-<br>B01-35 | 1370750            | RF-0253      | 2014-11          |
| Low Pass Filter, DC-<br>1GHz                      | R&K                | LP1000CH3            | 12104001           | RF-0515      | 2014-11          |
| Horn Antenna, 1-8GHz                              | Schwarzbeck        | BBHA9120D            | 1059               | RF-0553      | 2014-03          |
| Microwave<br>Preamplifier, 1-8GHz                 | Toyo Corporation   | TPA0108-40           | 0634               | RF-0052      | 2014-11          |
| Band Reject Filter, 1-<br>8GHz                    | Nitsuki            | NF-49BT              | 027                | RF-0131      | 2014-11          |
| Horn Antenna with<br>Preamplifier, 8-18GHz        | Toyo Corporation   | HAP06-18W            | 00000025           | RF-0065      | 2014-05          |
| High Pass Filter, 8-<br>18GHz                     | Micro-Tronics      | HPM50107             | 006                | RF-0334      | 2014-05          |
| Horn Antenna with<br>Preamplifier, 18-<br>26.5GHz | Toyo Corporation   | HAP18-26N            | 00000010           | RF-0070      | 2014-05          |
| Constant Voltage Cons                             | tant Frequency Sta | bilizers and Po      | wer Accessor       | ies          |                  |
| CVCF (Shielded Room)                              | NF Corporation     | ES2000S              | 9075612            | RF-0210      | N/A              |
| CVCF Booster<br>(Shielded Room)                   | NF Corporation     | ES2000B              | 9074403            | RF-0211      | N/A              |
| CVCF (10m Chamber)                                | NF Corporation     | ES2000U              | 9067307            | RF-0212      | N/A              |
| CVCF Booster (10m<br>Chamber)                     | NF Corporation     | ES2000B              | 9074408            | RF-0213      | N/A              |
| DC Power Supply                                   | Conrad Electronic  | PS-2403-D            | -                  | Y3-0273      | N/A              |
| True RMS Multimeter                               | Fluke              | 87V                  | 97680445           | RF-0281      | 2015-01          |



Produkte Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 7 von 71

 Test Report No.:
 Page 7 of 71

Conformance of the used measurement and test equipment with the requirements of ISO/IEC 17025:2005 has been confirmed before testing.

## 2.3 Measurement Uncertainty

**Table 2: Emission Measurement Uncertainty** 

| Measurement Type                | Frequency      | Uncertainty |
|---------------------------------|----------------|-------------|
| Antenna Port Conducted Emission | 20Hz - 40GHz   | ±1.5dB      |
| Radiated Emission               | 9kHz – 150kHz  | ±4.0dB      |
|                                 | 150kHz - 30MHz | ±4.7dB      |
|                                 | 30MHz - 1GHz   | ±4.7dB      |
|                                 | > 1GHz         | ±4.7dB      |

Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 8 von 71

 Test Report No.:
 Page 8 of 71

#### 3. General Product Information

#### 3.1 Product Function and Intended Use

The EUT (Equipment Under Test) SIB01-001A is an Bluetooth device that transmits vehicle status information to a radio device (e.g. smartphone) with Bluetooth communication.

Note: GDL01-001A is an optional unit for SIB01-001A and stores GPS data into USB memory via USB interface. This optional unit GDL01-001A does not have any transmitter.

#### 3.2 System Details

Radio standard: Bluetooth 2.1 with EDR (class 2)

Specified output power: Max. 4.0dBm

Antenna gain: 0.1dBi (Average), 1.6dBi (Peak)

Antenna type: Chip antenna

Antenna mounting type: Internal (Mounted on PCB)

Frequency range: 2402 - 2480MHz

Number of channels: 79 Channel spacing: 1MHz

Modulation type: FHSS coupled with GFSK, π/4-DQPSK and 8DPSK

FCC classification: DSS (Spread Spectrum Transmitter)

IC classification: Bluetooth Device

Emission designator: 904KFXD (GFSK) and 1M18GXD (π/4-DQPSK & 8DPSK)

Rated voltage: DC 9 - 16 V Rated current: Max. 1.0 A

Protection class: III

Environment: Vehicle use Test voltage: 13.2V

#### 3.3 Clock Frequencies

The highest frequency generated or used by the EUT are 4963MHz for Local VCO frequency in a Bluetooth module and 151.922MHz for the digital interface in a CPU.

## 3.4 Noise Suppressing Parts

Refer to schematics.

Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 9 von 71

 Test Report No.:
 Page 9 of 71

## 4. Test Set-up and Operation Modes

#### 4.1 Test Methodology

The test methodology used is based on the requirements of 47 CFR Part 15, Sections 15.31, 15.33, 15.35, 15.205, 15.207, 15.209 and Public Notice DA 00-705.

The test methods, which have been used, are based on ANSI C63.10-2009 and RSS-Gen (Issue 3).

For details, see under each test item.

#### 4.2 Operation Modes

Testing was performed at the lowest operating frequency (2402MHz), at the operating frequency in the middle of the specified frequency band (2441MHz) and at the highest operating frequency (2480MHz).

The basic operation modes used for testing are:

- A. EUT transmits (TX mode), with full power, at lowest channel (2402MHz), a continuous modulated signal streaming.
- B. EUT transmits (TX mode), with full power, at middle channel (2441MHz), a continuous modulated signal streaming.
- C. EUT transmits (TX mode), with full power, at highest channel (2480MHz), a continuous modulated signal streaming.
- D. EUT transmits on pseudo-random sequence on all channels (hopping mode).

# 4.3 Physical Configuration for Testing

The EUT was tested on a stand-alone basis (only attached to the test jig) and the test system was configured in a typical fashion (as a customer would normally use it).

The justification and manipulation of cables and equipment in order to simulate a worst-case behavior of the test setup has been carried out as prescribed in ANSI C63.10-2009.

Produkte Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 10 von 71

 Test Report No.:
 Page 10 of 71

Figure 1: Block Diagram



**Table 3: Interfaces present on the EUT** 

| No. | Interface            | Cable Length for Testing, Shielding | Interface Classification |
|-----|----------------------|-------------------------------------|--------------------------|
| 1.  | DC Mains for CAN GW  | 2.0m, Un-shielded                   | DC Power Line            |
|     | and Data Logger      |                                     |                          |
| 2.  | CAN cable for CAN GW | 5.2m, Un-shielded                   | Signal and DC Power Line |
| 3.  | CAN cable for CAN GW | 5.2m, Un-shielded                   | Signal and DC Power Line |
| 4.  | Local bus Cable      | 10m, Un-shielded                    | Signal Line              |
| 5.  | GPS Antenna Cable    | 1.3m, Shielded                      | Signal Line              |
| 6.  | USB Cable            | 2.0m, Shielded                      | Signal Line              |

#### Notes:

Two test samples were available. Sample No. 2-6 was used for antenna conducted measurements and sample No. 1 was used for radiated measurements.

(\*) In order to simulate vehicle environment, EUTs were grounded by cables.

For more details, refer to section: Photographs of the Test Set-Up.

Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 11 von 71

 Test Report No.:
 Page 11 of 71

#### 4.4 Test Software

The EUT was provided by the manufacturer with suitable software to allow operation in all the required modes.

Software used for testing: CAN soft for Radio part version 2013/11/29 ver. by Hitachi Automotive Systems.

Software used for testing: CAN soft for EMC part version 2014/03/11 ver. by Hitachi Automotive Systems.

This software was running on the laptop computer connected to the EUT. It was used to enable the test operation modes listed in section 4.2 as appropriate.

## 4.5 Special Accessories and Auxiliary Equipment

The product has been tested together with the following additional accessories:

Product: Laptop Computer

Manufacturer: HP

Model: Compaq 6710b

Rated Voltage: DC 19V Input Current: 4.74A Protection Class: III

Serial Number: CNU83718YN

2. Product: AC Adapter for Laptop Computer

Manufacturer: HP

Model: HSTNN-DA12 Rated Voltage: AC 100-240V

Input Current: 3.5A Frequency: 50-60Hz

Protection Class: II

Serial Number: WBGYE0AAR1U67O

3. Product: Laptop Computer (Conducted Radio Part)

Manufacturer: Hitachi, Ltd.

Model: PC8NB9-X414CCAE0

Rated Voltage: DC 19V Input Current: 3.42A Protection Class: III

Serial Number: T616-014175

# **▲** TÜVRheinland®

Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 12 von 71

 Test Report No.:
 Page 12 of 71

4. Product: AC Adapter for Laptop Computer (Conducted Radio Part)

Manufacturer: Hitachi, Ltd.
Model: PC-AP7900
Rated Voltage: AC 100-240V

Input Current: 1.5A Frequency: 50-60Hz

Protection Class: II

Serial Number: 9YW0608005174

5. Product: CAN Card Bus

Manufacturer: Interface Model: CSI-485120

Protection Class: III

Serial Number: 0273725557

6. Product: GPS Antenna Model: Un-specified

Serial Number 2683

7. Product: USB Memory
Manufacturer: Silicon Power
Model: Ultima110
Rated Voltage: DC 5V
Serial Number: D33B29

8. Product: USB Memory Adapter

Model: Un-specified

9. Product: Cellular Phone (2<sup>nd</sup> Radio Device)

Manufacturer: Sony

Model: Xperia SO-04E Serial Number: CB5A1U5A7S

## 4.6 Countermeasures to achieve EMC Compliance

No additional measures were employed to achieve compliance.

Produkte Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 13 von 71

 Test Report No.:
 Page 13 of 71

#### 5. Test Results RADIO

## 5.1 Technical Requirements

#### 5.1.1 Supply Voltage Requirements

RESULT: Pass

Requirements:

FCC 15.31(e)

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

Verdict:

The EUT is battery operated and it was tested with a new battery. Hence it complies with the supply voltage requirements.

#### 5.1.2 Antenna Requirements

RESULT: Pass

Requirements:

FCC 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Verdict:

The EUT has an internal antenna which is not user accessible. Hence it complies with the antenna requirements.



Produkte Products

| Prüfbericht - Nr.: | 50001232 001 | Seite 14 von 71 |
|--------------------|--------------|-----------------|
| Test Report No.:   |              | Page 14 of 71   |

## **5.1.3 Restricted Bands of Operation**

RESULT: Pass

Requirements:

FCC 15.205 and RSS-Gen 7.2.2

Only spurious emissions are permitted in any of the restricted frequency bands, unless otherwise specified.

Verdict:

The EUT operation frequency range is 2402-2480MHz. Therefore only spurious emissions may be found in the restricted bands of operation and the EUT complies with the restricted frequency band requirement.

Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 15 von 71

 Test Report No.:
 Page 15 of 71

#### 5.2 Conducted Measurements at Antenna Port

#### **5.2.1 Conducted Output Power**

RESULT: Pass

Date of testing: 2014-03-13

Ambient temperature: 24°C
Relative humidity: 40%
Atmospheric pressure: 1005hPa

Requirements:

FCC 15.247(b) (1) and RSS-210 A8.4(2)

For frequency hopping systems operating in the 2400-2483.5MHz band employing at least 75 non-overlapping hopping channels, the maximum peak output power shall be 1W (30dBm). For other hopping systems operating in the 2400-2483.5MHz band, the maximum peak output power shall be 0.125W (21dBm).

Test procedure:

ANSI C63.10-2009, RSS-Gen 4.8 and Public Notice DA 00-705.

The maximum peak output power (conducted) was measured at the antenna connector with a power meter. The final result takes into account the loss generated by all the involved cables.

The measurement was performed at all the available modulations (data rates) in order to identify the one producing the highest output power. The results given here below show that the worst case output power is found at the data rate of 3Mbps for the radio DH5 and of 1Mbps for the radio DH5. Therefore, all the other measurements for the evaluation of the radio properties of the EUT have been performed using this data rates.

Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 16 von 71

 Test Report No.:
 Page 16 of 71

Table 4: Conducted Output Power, Mode A (2402MHz), all Data Rates

| Data Rate<br>[Mbps] | Reading<br>[dBm] | Correction<br>Factor<br>[dB] | Output<br>Power<br>[dBm] | Output<br>Power<br>[mW] | Limit<br>[dBm] | Limit<br>[mW] | Margin<br>[dB] |
|---------------------|------------------|------------------------------|--------------------------|-------------------------|----------------|---------------|----------------|
| DH5                 | -1.50            | 0.50                         | -1.00                    | 0.79                    | 30.00          | 1000          | 31.00          |
| DH3                 | -1.50            | 0.50                         | -1.00                    | 0.79                    | 30.00          | 1000          | 31.00          |
| DH1                 | -1.50            | 0.50                         | -1.00                    | 0.79                    | 30.00          | 1000          | 31.00          |
| 2-DH5               | 0.50             | 0.50                         | 1.00                     | 1.26                    | 20.97          | 125           | 19.97          |
| 2-DH3               | 0.49             | 0.50                         | 0.99                     | 1.26                    | 20.97          | 125           | 19.98          |
| 2-DH1               | 0.49             | 0.50                         | 0.99                     | 1.26                    | 20.97          | 125           | 19.98          |
| 3-DH5               | 0.90             | 0.50                         | 1.40                     | 1.38                    | 20.97          | 125           | 19.57          |
| 3-DH3               | 0.79             | 0.50                         | 1.29                     | 1.35                    | 20.97          | 125           | 19.68          |
| 3-DH1               | 0.86             | 0.50                         | 1.36                     | 1.37                    | 20.97          | 125           | 19.61          |

Notes: Output power = Reading + Correction factor

Correction factor = Total cable loss

 $mW = 10 \land (dBm/10)$  $dBm = 10 \times log(mW)$ 

Table 5: Conducted Output Power, Mode B (2441MHz), all Data Rates

| Data Rate<br>[Mbps] | Reading<br>[dBm] | Correction<br>Factor<br>[dB] | Output<br>Power<br>[dBm] | Output<br>Power<br>[mW] | Limit<br>[dBm] | Limit<br>[mW] | Margin<br>[dB] |
|---------------------|------------------|------------------------------|--------------------------|-------------------------|----------------|---------------|----------------|
| DH5                 | -1.16            | 0.50                         | -0.66                    | 0.86                    | 30.00          | 1000          | 30.66          |
| DH3                 | -1.17            | 0.50                         | -0.67                    | 0.86                    | 30.00          | 1000          | 30.67          |
| DH1                 | -1.17            | 0.50                         | -0.67                    | 0.86                    | 30.00          | 1000          | 30.67          |
| 2-DH5               | 0.90             | 0.50                         | 1.40                     | 1.38                    | 20.97          | 125           | 19.57          |
| 2-DH3               | 0.84             | 0.50                         | 1.34                     | 1.36                    | 20.97          | 125           | 19.63          |
| 2-DH1               | 0.88             | 0.50                         | 1.38                     | 1.37                    | 20.97          | 125           | 19.59          |
| 3-DH5               | 1.25             | 0.50                         | 1.75                     | 1.50                    | 20.97          | 125           | 19.22          |
| 3-DH3               | 1.11             | 0.50                         | 1.61                     | 1.45                    | 20.97          | 125           | 19.36          |
| 3-DH1               | 1.19             | 0.50                         | 1.69                     | 1.48                    | 20.97          | 125           | 19.28          |

Grey shading area shows the highest power in the corresponding modulation.

Notes: Output power = Reading + Correction factor

Correction factor = Total cable loss

 $mW = 10 ^ (dBm/10)$  $dBm = 10 \times log(mW)$ 

**Produkte Products** 



Seite 17 von 71 Prüfbericht - Nr.: 50001232 001 Page 17 of 71 Test Report No.:

#### Table 6: Conducted Output Power, Mode C (2480MHz), all Data Rates

| Data Rate<br>[Mbps] | Reading<br>[dBm] | Correction<br>Factor<br>[dB] | Output<br>Power<br>[dBm] | Output<br>Power<br>[mW] | Limit<br>[dBm] | Limit<br>[mW] | Margin<br>[dB] |
|---------------------|------------------|------------------------------|--------------------------|-------------------------|----------------|---------------|----------------|
| DH5                 | -1.18            | 0.50                         | -0.68                    | 0.86                    | 30.00          | 1000          | 30.68          |
| DH3                 | -1.19            | 0.50                         | -0.69                    | 0.85                    | 30.00          | 1000          | 30.69          |
| DH1                 | -1.18            | 0.50                         | -0.68                    | 0.86                    | 30.00          | 1000          | 30.68          |
| 2-DH5               | 0.87             | 0.50                         | 1.37                     | 1.37                    | 20.97          | 125           | 19.60          |
| 2-DH3               | 0.85             | 0.50                         | 1.35                     | 1.36                    | 20.97          | 125           | 19.62          |
| 2-DH1               | 0.83             | 0.50                         | 1.33                     | 1.36                    | 20.97          | 125           | 19.64          |
| 3-DH5               | 1.25             | 0.50                         | 1.75                     | 1.50                    | 20.97          | 125           | 19.22          |
| 3-DH3               | 1.13             | 0.50                         | 1.63                     | 1.46                    | 20.97          | 125           | 19.34          |
| 3-DH1               | 1.15             | 0.50                         | 1.65                     | 1.46                    | 20.97          | 125           | 19.32          |

Grey shading area shows the highest power in the corresponding modulation.

Notes: Output power = Reading + Correction factor

Correction factor = Total cable loss

 $mW = 10 ^ (dBm/10)$  $dBm = 10 \times log(mW)$ 



Products

Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 18 von 71

 Test Report No.:
 Page 18 of 71

#### **5.2.2 Carrier Frequency Separation**

RESULT: Pass

Date of testing: 2014-03-13

Ambient temperature: 24°C
Relative humidity: 40%
Atmospheric pressure: 1005hPa

Requirements:

FCC 15.247(a)(1) and RSS-210 A8.1(b)

Frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater. In case of an output power less than 125mW, the frequency hopping system may have channels separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

Test procedure:

ANSI C63.10-2009 and Public Notice DA 00-705.

A spectrum analyzer was connected to the antenna port of the EUT. The analyzer resolution bandwidth was set to 30kHz and the video bandwidth to 100kHz. The Delta Marker function was used to determine the separation between the peaks of two adjacent channels.

Produkte Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 19 von 71

 Test Report No.:
 Page 19 of 71

**Table 7: Carrier Frequency Separation** 

| Modulation | Channel<br>Separation<br>[kHz] | Maximum 20dB<br>Bandwidth<br>[kHz] | Limit<br>[kHz] |
|------------|--------------------------------|------------------------------------|----------------|
| GFSK       | 1002                           | 875.00                             | 875.00         |
| 8DPSK      | 1002                           | 1288.46                            | 858.97         |

Notes: Limit = 20dB bandwidth \* 2/3 since it is greater than 125kHz and the output power is less than 125mW.

Figure 2: Carrier Frequency Separation, GFSK



Comment: Hopping Channel, DH5
Date: 14.MAR.2014 15:25:33



Produkte Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 20 von 71

 Test Report No.:
 Page 20 of 71

Figure 3: Carrier Frequency Separation, 8DPSK



Comment: Hopping Channel, 3-DH5
Date: 14.MAR.2014 15:28:07



Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 21 von 71

 Test Report No.:
 Page 21 of 71

#### 5.2.3 20dB Bandwidth

Date of testing: 2014-03-13

Ambient temperature: 24°C Relative humidity: 40% Atmospheric pressure: 1005hPa

Requirements:

FCC 15.247(a)(1) and RSS-210 A8.1(a)

For frequency hopping systems operating in the 2400-2483.5MHz band, no bandwidth limit is specified. Test data is provided for reference.

Test procedure:

ANSI C63.10-2009, RSS-Gen 4.6.2 and Public Notice DA 00-705.

The 20dB bandwidth was measured at the antenna port with a spectrum analyzer using a peak detector. The resolution bandwidth was set to 30kHz and the video bandwidth to 100kHz. Markers placed at the lowest and highest intersections of the trace with a 20dBc line were used to calculate the emission bandwidth.

Produkte Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 22 von 71

 Test Report No.:
 Page 22 of 71

Table 8: 20dB Bandwidth

| Modulation | Operating<br>Frequency<br>[MHz] | 20dB<br>Bandwidth<br>[kHz] |
|------------|---------------------------------|----------------------------|
| GFSK       | 2402                            | 966.00                     |
| GFSK       | 2441                            | 972.00                     |
| GFSK       | 2480                            | 972.00                     |
| 8DPSK      | 2402                            | 1278.00                    |
| 8DPSK      | 2441                            | 1284.00                    |
| 8DPSK      | 2480                            | 1284.00                    |

Figure 4: 20dB Bandwidth, Mode A (2402MHz), GFSK



Comment: 20dB Bandwidth 2402MHz DH5
Date: 13.MAR.2014 12:47:21

Produkte Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 23 von 71

 Test Report No.:
 Page 23 of 71

Figure 5: 20dB Bandwidth, Mode B (2441MHz), GFSK



Comment: 20dB Bandwidth 2441MHz DH5 Date: 13.MAR.2014 12:57:29

Figure 6: 20dB Bandwidth, Mode C (2480MHz), GFSK



Comment: 20dB Bandwidth 2480MHz DH5
Date: 13.MAR.2014 12:59:56

**Produkte Products** 



Prüfbericht - Nr.: 50001232 001 Seite 24 von 71 Page 24 of 71 Test Report No.:

Figure 7: 20dB Bandwidth, Mode A (2402MHz), 8DPSK



Comment: 20dB Bandwidth 2402MHz 3-DH5 Date: 13.MAR.2014 12:51:53

Figure 8: 20dB Bandwidth, Mode B (2441MHz), 8DPSK



Comment: 20dB Bandwidth 2441MHz 3-DH5 13.MAR.2014 12:54:48



**Produkte Products** 

> Seite 25 von 71 Prüfbericht - Nr.: 50001232 001 Page 25 of 71 Test Report No.:

#### Figure 9: 20dB Bandwidth, Mode C (2480MHz), 8DPSK



Comment: 20dB Bandwidth 2480MHz 3-DH5
Date: 13.MAR.2014 13:04:08 Date:



Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 26 von 71

 Test Report No.:
 Page 26 of 71

#### 5.2.4 99% Bandwidth

Date of testing: 2014-03-31

Ambient temperature: 22°C Relative humidity: 20% Atmospheric pressure: 1003hPa

Requirements:

RSS-Gen 4.6.1

The 99% bandwidth shall be reported according to RSS-Gen 4.6.1.

Test procedure:

RSS-Gen 4.6.1.

The 99% bandwidth was measured at the antenna port with a spectrum analyzer using a sample detector. The resolution bandwidth was set to 1MHz (1% of the span) and the video bandwidth to 3MHz. The 99% bandwidth was measured by using the OBW function of the analyzer with a 99% coverage setting.

Produkte Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 27 von 71

 Test Report No.:
 Page 27 of 71

Table 9: 99% Bandwidth

| Modulation | Operating<br>Frequency<br>[MHz] | 99% Bandwidth<br>[kHz] |
|------------|---------------------------------|------------------------|
| GFSK       | 2402                            | 903.85                 |
| GFSK       | 2441                            | 903.85                 |
| GFSK       | 2480                            | 903.85                 |
| 8DPSK      | 2402                            | 1177.88                |
| 8DPSK      | 2441                            | 1177.88                |
| 8DPSK      | 2480                            | 1182.69                |

Figure 10: 99% Bandwidth, Mode A (2402MHz), GFSK



99% Bandwidth 2402MHz DH5 Date: 31.MAR.2014 10:57:00

Produkte Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 28 von 71

 Test Report No.:
 Page 28 of 71

Figure 11: 99% Bandwidth, Mode B (2441MHz), GFSK



99% Bandwidth 2441MHz DH5 Date: 31.MAR.2014 11:02:34

Figure 12: 99% Bandwidth, Mode C (2480MHz), GFSK



99% Bandwidth 2480MHz DH5 Date: 31.MAR.2014 11:04:37

Produkte Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 29 von 71

 Test Report No.:
 Page 29 of 71

Figure 13: 99% Bandwidth, Mode A (2402MHz), 8DPSK



99% Bandwidth 2402MHz 3-DH5 Date: 31.MAR.2014 10:59:08

Figure 14: 99% Bandwidth, Mode B (2441MHz), 8DPSK



99% Bandwidth 2441MHz 3-DH5 Date: 31.MAR.2014 11:01:06



Produkte Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 30 von 71

 Test Report No.:
 Page 30 of 71

#### Figure 15: 99% Bandwidth, Mode C (2480MHz), 8DPSK



99% Bandwidth 2480MHz 3-DH5 Date: 31.MAR.2014 11:06:11



Products

Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 31 von 71

 Test Report No.:
 Page 31 of 71

#### **5.2.5 Number of Hopping Frequencies**

RESULT: Pass

Date of testing: 2014-03-14

Ambient temperature: 24°C Relative humidity: 33% Atmospheric pressure: 1000hPa

Requirements:

FCC 15.247(a)(1)(iii) and RSS-210 A8.1(d)

Frequency hopping systems operating in the 2400-2483.5MHz band shall use at least 15 channels.

Test procedure:

ANSI C63.10-2009 and Public Notice DA 00-705.

A spectrum analyzer was connected to the antenna port of the EUT. The analyzer resolution bandwidth and video bandwidth were set to 1MHz. The spectrum was broken in two plots having each a 45MHz span to show all the hopping frequencies.

Produkte Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 32 von 71

 Test Report No.:
 Page 32 of 71

**Table 10: Number of Hopping Frequencies** 

| Number of<br>Hopping<br>Frequencies | Limit |  |
|-------------------------------------|-------|--|
| 79                                  | 15    |  |

Figure 16: Hopping Frequencies up to 2441MHz, Mode D (Hopping)



Comment: Hopping Sequence, DH5 - 1
Date: 14.MAR.2014 15:35:24



Produkte Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 33 von 71

 Test Report No.:
 Page 33 of 71

#### Figure 17: Hopping Frequencies above 2441MHz, Mode D (Hopping)



Comment: Hopping Sequence, DH5 - 2 Date: 14.MAR.2014 15:37:31



Products

Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 34 von 71

 Test Report No.:
 Page 34 of 71

#### **5.2.6 Average Time of Occupancy**

RESULT: Pass

Date of testing: 2014-03-14

Ambient temperature: 24°C Relative humidity: 33% Atmospheric pressure: 1000hPa

Requirements:

FCC 15.247(a)(1)(iii) and RSS-210 A8.1(d)

For frequency hopping systems operating in the 2400-2483.5MHz band, the average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

Test procedure:

ANSI C63.10-2009 and Public Notice DA 00-705.

A spectrum analyzer was connected to the antenna port of the EUT. The analyzer resolution bandwidth and video bandwidth were set to 1MHz. The average time of occupancy was obtained by measuring first the dwell time of a single packet with the Delta Marker function using a zero span centered on a hopping channel and by counting then the number of hops per channel in a 31.6s period (0.4s times the number of hopping channels).

Products



 Prüfbericht - Nr.:
 50001232 001
 Seite 35 von 71

 Test Report No.:
 Page 35 of 71

**Table 11: Average Time of Occupancy** 

| Packet Type | Packet<br>Duration [ms] | Number of<br>Hops per<br>Channel in a<br>31.6s Period | Average Time of Occupancy [ms] | Limit [ms] |
|-------------|-------------------------|-------------------------------------------------------|--------------------------------|------------|
| DH1         | 0.460                   | 320                                                   | 147.20                         | 400        |
| DH3         | 1.720                   | 160                                                   | 275.20                         | 400        |
| DH5         | 2.960                   | 106.67                                                | 315.74                         | 400        |

Notes: DH1 Packet type permits maximum 1600 / 79 / 2 = 10.13 hops per second in each channel (1 time slot for Tx and 1 time slot for Rx). The number of hops within 31.6 sec. = 320 hops in each channel.

DH3 Packet type permits maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slot for Tx and 1 time slot for Rx). The number of hops within 31.6 sec. = 160 hops in each channel.

DH5 Packet type permits maximum 1600 / 79 / 6 = 3.38 hops per second in each channel (5 time slot for Tx and 1 time slot for Rx). The number of hops within 31.6 sec. = 106.67 hops in each channel.

Average time of occupancy = Packet duration \* Number of hops per channel in a 31.6s period

Figure 18: Dwell Time, Mode D (Hopping), DH1



Comment: Dwell Time, DH1
Date: 14.MAR.2014 15:11:03



Produkte Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 36 von 71

 Test Report No.:
 Page 36 of 71

## Figure 19: Dwell Time, Mode D (Hopping), DH3



Comment: Dwell Time, DH3
Date: 14.MAR.2014 15:10:07

## Dwell Time, Mode D (Hopping), DH5



Comment: Dwell Time, DH5
Date: 14.MAR.2014 15:08:53



Products

Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 37 von 71

 Test Report No.:
 Page 37 of 71

#### **5.2.7 Conducted Spurious Emissions**

RESULT: Pass

Date of testing: 2014-03-13

Ambient temperature: 25°C Relative humidity: 48% Atmospheric pressure: 991hPa

Requirements:

FCC 15.247(d) and RSS-210 A8.5

In any 100kHz bandwidth outside the frequency band in which the intentional radiator is operating, the RF power shall be at least 20dB below that of the maximum in-band 100kHz emission.

Test procedure:

ANSI C63.10-2009, RSS-Gen 4.9 and Public Notice DA 00-705.

The conducted spurious emissions were measured at the antenna port with a spectrum analyzer using a peak detector. The resolution bandwidth was set to 100kHz and the video bandwidth to 300kHz. Measurements were performed from 30MHz to 25GHz (10<sup>th</sup> harmonics).

The worst case was found at the data rate of DH5 in 8DPSK (3-DH5) Therefore, the final measurement was reported accordingly.

The readings of the measurements take into account the loss generated by all the involved cables.

Products





Produkte Products





Produkte Products





Products





Products







Produkte Products

 Prüfbericht - Nr.:
 50001232 001
 Seite 43 von 71

 Test Report No.:
 Page 43 of 71

# Figure 25: Conducted Spurious Emissions, 24.0– 25.0GHz and carrier, Mode A (2402MHz)





Comment: Conducted spurious emissions, mode A, 3-DH5 Date: 13.MAR.2014 14:57:06

Produkte Products





Produkte Products



