Assignment -3 Problem Statement :- Build CNN Model for Classification Of Flowers

Assignment Date	09 October 2022
Student Name	S.SNEKA
Student Roll Number	923119106007
Maximum Marks	2 Marks

1.Download the dataset

Already downloaded in question paper.

In [34]:

```
from google.colab import drive
drive.mount('/content/drive')
Drive already mounted at /content/drive; to attempt to forcibly remount, ca
ll drive.mount("/content/drive", force remount=True).
```

Unzip the data

In [4]:

Extract data

```
!unzip '/content/drive/MyDrive/Flowers-Dataset (1).zip'
Archive: /content/drive/MyDrive/Flowers-Dataset (1).zip
  inflating: flowers/daisy/100080576 f52e8ee070 n.jpg
  inflating: flowers/daisy/10140303196 b88d3d6cec.jpg
  inflating: flowers/daisy/10172379554 b296050f82 n.jpg
  inflating: flowers/daisy/10172567486_2748826a8b.jpg
  inflating: flowers/daisy/10172636503 21bededa75 n.jpg
  inflating: flowers/daisy/102841525 bd6628ae3c.jpg
  inflating: flowers/daisy/10300722094 28fa978807 n.jpg
  inflating: flowers/daisy/1031799732 e7f4008c03.jpg
  inflating: flowers/daisy/10391248763 1d16681106 n.jpg
  inflating: flowers/daisy/10437754174_22ec990b77_m.jpg
  inflating: flowers/daisy/10437770546 8bb6f7bdd3 m.jpg
  inflating: flowers/daisy/10437929963 bc13eebe0c.jpg
  inflating: flowers/daisy/10466290366 cc72e33532.jpg
  inflating: flowers/daisy/10466558316 a7198b87e2.jpg
  inflating: flowers/daisy/10555749515 13a12a026e.jpg
  inflating: flowers/daisy/10555815624 dc211569b0.jpg
  inflating: flowers/daisy/10555826524_423eb8bf71_n.jpg
```

2.Image augmentation

In [6]:

Import necessary lib.

from tensorflow.keras.preprocessing.image import ImageDataGenerator

```
In [7]:
# Data Augmentation on training variable
train datagen = ImageDataGenerator(rescale=1./255,
                                   zoom range=0.2,
                                   horizontal flip=True)
                                                                       In [40]:
# Data Augmentation on flowers data
xtrain = train_datagen.flow_from_directory('/content/flowers',
                                           target size=(64,64),
                                           class_mode='categorical',
                                           batch size=100)
Found 4317 images belonging to 5 classes.
3.Create model
                                                                       In [41]:
# Importing reg lib
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Convolution2D, MaxPooling2D, Flatten,
Dense
4.Build the model
                                                                       In [33]:
# Build a CNN block
model = Sequential() # Initializing sequential model
model.add(Convolution2D(32,(3,3),activation='relu',input shape=(64,64,3)))
# convolution layer
model.add(MaxPooling2D(pool size=(2, 2))) # Max pooling layer
model.add(Flatten()) # Flatten layer
model.add(Dense(300,activation='relu')) # Hidden layer 1
model.add(Dense(150,activation='relu')) # Hidden layer 2
model.add(Dense(4,activation='softmax')) # Output layer
5.Compile the model
                                                                       In [13]:
# Compiling the model
model.compile(optimizer='adam',loss='categorical crossentropy',metrics=['ac
curacy'])
```

6.Fit the model

Here we have one folder...but fit model wants two or more type of folder to fit the function.....

so we couldn't fit the model....in this assignment.....!!!

7.Save model

```
In [14]:
# Save model
model.save('flowers.h5')
8. Testing model
                                                                         In [42]:
from tensorflow.keras.preprocessing import image
import numpy as np
                                                                         In [43]:
# Testing the model
img =
image.load img('/content/flowers/sunflower/10386503264 e05387e1f7 m.jpg',ta
rget size=(64,64)) # Reading image
x = image.img to array(img)
x = np.expand dims(x,axis=0)
pred = np.argmax(model.predict(x))
op = ['daisy','dandelion','rose','sunflower','tulip']
op[pred]
                                                                        Out[43]:
'sunflower'
                                                                         In [46]:
image.load img('/content/flowers/rose/11233672494 d8bf0a3dbf n.jpg',target
size=(64,64)) # Reading image
x = image.img_to_array(img)
x = np.expand dims(x,axis=0)
pred = np.argmax(model.predict(x))
op = ['daisy','dandelion','rose','sunflower','tulip']
op[pred]
                                                                        Out[46]:
'sunflower'
                                                                         In [47]:
img =
image.load img('/content/flowers/dandelion/8083321316 f62ea76f72 n.jpg',tar
get size=(64,64)) # Reading image
x = image.img to array(img)
```