МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Фундаментальная информатика» І семестр Задание 3

«Вещественный тип. Приближенные вычисления. Табулирование функций»

Группа	М8О-109Б-22
Студент	Мозговой Н.Е.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon * 10^k$, где ε - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k – экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблины.

Вариант 25:

Ряд Тэйлора:

$$\frac{1}{4} + \frac{x^4}{4^2} + \ldots + \frac{x^{4n}}{4^{n+1}}$$

Функция:

$$\frac{1}{4-x^4}$$

Значения а и b: 0.0 и 1.0

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

$$\sum_{n=0}^k rac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f^{(1)}(a) (x-a) + rac{f^{(2)}(a)}{2!} (x-a)^2 + \ldots + rac{f^{(k)}(a)}{k!} (x-a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float – $1.19 * 10^{-7}$, double – $2.20 * 10^{-16}$, long double – $1.08 * 10^{-19}$.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать просто деля 1 на 2.

Для каждой N+1 строки нужно просуммировать і членов формулы Тейлора, пока $|A_1-A_2| > \varepsilon$. Для этого просто ищем каждый новый член из формулы Тэйлора и суммируем с результатом

Использованные в программе переменные

Название переменной	Тип переменной	Смысл переменной	
переменнен	переменнон		
n	int64_t	То самое число N, на которое нужно разбить отрезок	
k	int	То самое число K, используемое для вычисления точности.	
FLT_EPSILON	float	То самое машинное эпсилон. 1.192092896e-07F	
step	long double	Формально разница между предыдущим значением из отрезка и следующим, если отрезок разбит на п равных частей.	
X	long double	Переменная, для которой будем производить вычисления	
Taylor(i, x)	long double	То самое значение А1, вычисленное с помощью формулы Тейлора	
f	long double	То самое значение A2, вычисленное с помощью встроенных функций языка	
i	int	Счётчик члена формулы Тейлора + кол- во итераций	

```
Исходный код программы:
```

```
#include <stdio.h>
#include <float.h>
#include <stdint.h>
#include <math.h>
long double Taylor(uint64_t n, long double x) {
  long double res = o;
  for (int i = 0; i < n; ++i) {
    res += (pow(x, 4 * i)/(pow(4, i + 1)));
  }
  return res;
}
long double function(long double x) {
  return 1/(4 - pow(x, 4));
}
int main() {
  long double a = o.o;
  long double b = 1.0;
  uint64_t n;
  scanf("%ld", &n);
  printf("n = %Id\n", n);
  printf("Machine epsilon is equal to: %Lg\n\n", LDBL_EPSILON);
           Table of values of Taylor series and standard function\n");
  printf("
printf("_
                         \n");
 printf("| x | sum of Taylor series | f(x) function value | number of
iterations |\n");
printf("_
                          _\n");
```

```
long double x = o;
long double step = (b - a)/n;
long double f = 1;
int i = o;

while (fabsl(f) > LDBL_EPSILON && (i < 100) && (i < n)) {
    i += 1;
    x += step;
    f = function(x);

printf("|%.5||f|%.20||f|%.20||f| %d |\n", x, Taylor(i, x), f, i);
}

printf("______\n");
return o;
}</pre>
```

Входные данные

Единственная строка содержит одно целое число N (0≤N≤100) – число разбиений отрезка на равные части

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем N+1 строку.

В каждой строке должно быть значение x, для которого вычисляется функция, число A_1 — значение, вычисленное c помощью формулы Тейлора, A_2 — значение, вычисленное c помощью встроенных функций языка, i — количество итерация, требуемых для вычисления, и Δ — разница значений A_1 и A_2 по модулю. A_1 , A_2 и Δ должны быть выведены c точностью 16 знаков после запятой.

Протокол исполнения и тесты

Тест №1

Ввод:

3

Вывод:

Table of values of Taylor series and standard function				
x sum of Taylor series f(x) function value number	of iterations			
0.33333 0.2500000000000000000 0.25077399380804954454	1			
0.66667 0.26234567901234567659 0.26298701298701299134	2			
1.00000 0.3281250000000000000 0.3333333333333333483	3			
Program finished with exit code 0				

Тест №2

Ввод: 100

Вывод:

Table of values of Taylor series and standard function					
x sum of Taylor series f(x) function value number o	f iterations				
0.01000 0.250000000000000000 0.2500000062499999620	1				
0.02000 0.2500000099999999999 0.2500000100000038331	2				
0.03000 0.25000005062501025156 0.25000005062501023945	3				
0.04000 0.25000016000010240005 0.25000016000010238937	4				
0.05000 0.25000039062561035252 0.25000039062561035808	5				
0.06000 0.25000081000262440849 0.25000081000262441844	6				
0.07000 0.25000150063400755564 0.25000150063400755629	7				
0.08000 0.25000256002621466846 0.25000256002621468188	8				
0.09000 0.25000410069226160480 0.25000410069226158827	9				
0.10000 0.25000625015625390634 0.25000625015625393965	10				
0.11000 0.25000915095994801149 0.25000915095994802329	11				

Тест №3

Ввод:

553793

Вывод:

Table of values of Taylor series and standard function					
x sum c	of Taylor series	f(x) function value nu	mber of iterations		
0.00000 0.25	000000000000000000	0.2500000000000000000000	1		
0.00000 0.25	000000000000000000	0.250000000000000000000	2		
0.00001 0.25	000000000000000000	0.250000000000000000000	3		
0.00001 0.25	000000000000000000	0.250000000000000000000	4		
0.00001 0.25	000000000000000000	0.250000000000000000000	5		
0.00001 0.25	000000000000000000	0.250000000000000000000	6		
0.00001 0.25	000000000000000000	0.250000000000000000000	7		
0.00001 0.25	000000000000000000	0.250000000000000000000	8		
		0.250000000000000000000	9		
0.00002 0.25	000000000000000000	0.250000000000000000000	10		
		0.250000000000000000000	11		

Вывод

В работе описано определение машинного эпсилон, приведены его значения для разных переменных языка Си, описана формула Тейлора и составлен алгоритм реализации вычисления значения функции с заданной точностью для заданного числа точек на отрезке. На основе алгоритма составлена программа на языке Си, проведено её тестирование на различных тестах, составлен протокол исполнения программы. В целом, работа понравилась. Приятно применять знания из других областей для решения какой-либо задачи по программированию.

Список литературы

- 1. Машинный ноль URL: https://ru.wikipedia.org/wiki/Maшинный ноль
- 2. Ряд Тейлора URL: https://ru.wikipedia.org/wiki/Ряд Тейлора