UNIVERSITY OF MASSACHUSETTS LOWELL

Small-Step Semantics Assignment

ASHISH KOSANA

UML ID: 02148256

Collaborators: NONE (if any)

1 Small-Step Semantics (25 points)

Let us define the calculator language below that performs arithmetic and boolean operations. It has three different syntactic classes: (1) arithmetic expressions a (2) boolean expressions b, and (3) final values v.

The following questions require you define small-step semantics. That is, first you need to define the configuration. Then, you need to write inference rules that show one configuration small-steps to another configuration.

$$n \in \mathbb{Z}$$
 $a ::= n \mid a_1 + a_2 \mid a_1 \times a_2$
 $b ::= \text{true} \mid \text{false} \mid a = a \mid a \neq a$
 $\mid a \leq a \mid a > a \mid \neg b \mid b \& \& b$
 $v ::= n \mid \text{true} \mid \text{false}$

- (a) Write small-step semantics for the syntactic class of arithmetic expressions generated by a.
- (b) Write small-step semantics for the syntactic class of boolean expressions generated by b.

(a) Small-step semantics for arithmetic expressions

Configuration: $\langle a, \sigma \rangle$, where a is an arithmetic expression and σ is the store. Inference rules:

where n_3 is the sum of n_1 and n_2

$$\frac{\langle a_1, \sigma \rangle \to_a a'_1}{\langle a_1 \times a_2, \sigma \rangle \to_a a'_1 \times a_2}$$

$$\frac{\langle a_2, \sigma \rangle \to_a a'_2}{\langle n_1 \times a_2, \sigma \rangle \to_a n_1 \times a'_2}$$

$$\frac{\langle n_1 \times n_2, \sigma \rangle \to_a n_3}{\langle n_1 \times n_2, \sigma \rangle \to_a n_3}$$

where n_3 is the product of n_1 and n_2

(b) Small-step semantics for boolean expressions

Configuration: $\langle b, \sigma \rangle$, where b is a boolean expression and σ is the store. Inference rules:

if $n_1 = n_2$

$$\langle n_1 = n_2, \sigma \rangle \to_b \text{ false}$$

if $n_1 \neq n_2$

$$\frac{\langle a_1, \sigma \rangle \to_a a'_1}{\langle a_1 \neq a_2, \sigma \rangle \to_b a'_1 \neq a_2}$$

$$\frac{\langle a_2, \sigma \rangle \to_a a_2'}{\langle n_1 \neq a_2, \sigma \rangle \to_b n_1 \neq a_2'}$$

$$\overline{\langle n_1 \neq n_2, \sigma \rangle \to_b \text{ true}}$$

if $n_1 \neq n_2$

$$\langle n_1 \neq n_2, \sigma \rangle \to_b \text{ false}$$

if $n_1 = n_2$

$$\frac{\langle a_1, \sigma \rangle \to_a a_1'}{\langle a_1 \le a_2, \sigma \rangle \to_b a_1' \le a_2}$$

$$\frac{\langle a_2, \sigma \rangle \to_a a_2'}{\langle n_1 \le a_2, \sigma \rangle \to_b n_1 \le a_2'}$$

$$\langle n_1 \leq n_2, \sigma \rangle \to_b \text{true}$$

if
$$n_1 \leq n_2$$

$$\langle n_1 \leq n_2, \sigma \rangle \to_b \text{ false}$$

if $n_1 > n_2$

$$\frac{\langle a_1, \sigma \rangle \to_a a'_1}{\langle a_1 > a_2, \sigma \rangle \to_b a'_1 > a_2}$$

$$\frac{\langle a_2, \sigma \rangle \to_a a_2'}{\langle n_1 > a_2, \sigma \rangle \to_b n_1 > a_2'}$$

$$\overline{\langle n_1 > n_2, \sigma \rangle \rightarrow_b \text{true}}$$

if $n_1 > n_2$

$$\overline{\langle n_1 > n_2, \sigma \rangle \to_b \text{ false}}$$

if $n_1 \leq n_2$

$$\frac{\langle b, \sigma \rangle \to_b b'}{\langle \neg b, \sigma \rangle \to_b \neg b'}$$

$$\langle \neg \text{true}, \sigma \rangle \to_b \text{false}$$

$$\langle \neg \text{false}, \sigma \rangle \rightarrow_b \text{true}$$

$$\frac{\langle b_1, \sigma \rangle \to_b b_1'}{\langle b_1 \& \& b_2, \sigma \rangle \to_b b_1' \& \& b_2}$$

$$\frac{}{\langle \text{true}\&\&b, \sigma\rangle \to_b b}$$

$$\langle \text{false\&\&}b, \sigma \rangle \to_b \text{false}$$