Guide to the coursework

Dr. Klaus Draeger

March 14, 2021

Networks

- The coursework deals with flows on networks
- A network is a directed graph . . .
 - Nodes
 - ▶ Edges $m \rightarrow n$ for some pairs of nodes m, n
- With additional data:
 - Two special nodes, the source and the target
 - Each edge has a capacity (how much flow it can accommodate)

Flows

- The coursework deals with flows on networks
- A flow associates a number with each edge
 - At least 0, at most the edge's capacity
 - ▶ Flow along an edge $m \rightarrow n$ flows **out of** m and **into** n
 - For each node n except the source and target, the total flow into n must equal the total flow out of n
 - No flow into the source or out of the target
- We want a flow which maximises the flow out of the source.

What to do: part 1

- Choose a suitable data structure to represent networks
 - The lecture introduced some ways of representing graphs
 - Think about how these can be adapted to accommodate additional data (capacity and flow for each edge)
- Implement your data structure
- You will also need a method for printing a graph (for debugging and showing steps of your algorithm)

What to do: part 2

- Implement a parser to read a network from a file
- The file format is:
 - One line containing the number N of nodes
 - Nodes are numbered $0, \ldots, N-1$
 - ► The source is always node 0
 - ► The target is always node N − 1
 - Several lines describing edges: for example, 2 4 5 means that there is an edge
 - from node 2
 - to node 4
 - with capacity 5

What to do: part 3

- Choose an algorithm to compute the maximum flow
- We will describe one (Ford-Fulkerson) in the lecture
- Implement your algorithm
- Test it using several examples, such as the benchmarks provided
- Write your report:
 - A short explanation of your choice of data structure and algorithm
 - A run of your algorithm on a small benchmark example
 - Timing analysis of your implementation