UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

Tjaša Vrhovnik

MINIMALNE PLOSKVE

Magistrsko delo

Mentor: prof. dr. Franc Forstnerič

Zahvala

Kazalo

Pı	rogram dela	vii
1	$\mathbf{U}\mathbf{vod}$	1
2	Osnovni pojmi 2.1 Ukrivljenost	1
	2.2 Aproksimacijski izreki za Riemannove ploskve	3
	2.3 Variacija ploščine	
3	Izreki o aproksimaciji in interpolaciji minimalnih ploskev	6
Li	iteratura	9

Program dela

Osnovna literatura

Literatura mora biti tukaj posebej samostojno navedena (po pomembnosti) in ne le citirana. V tem razdelku literature ne oštevilčimo po svoje, ampak uporabljamo okolje itemize in ukaz plancite, saj je celotna literatura oštevilčena na koncu.

- [?]
- [?]
- [?]
- [?]

Podpis mentorja:

Minimalne ploskve

POVZETEK

Tukaj napišemo	povzetek	vsebine.	Sem	sodi	razlaga	vsebine	in n	e opis	$_{ m tega,}$	kako	jе
delo organiziran	0.										

English translation of the title

Abstract

An abstract of the work is written here. This includes a short description of the content and not the structure of your work.

Math. Subj. Class. (2010): oznake kot 74B05, 65N99, na voljo so na naslovu http://www.ams.org/msc/msc2010.html

Ključne besede:

Keywords:

1 Uvod

2 Osnovni pojmi

Naj bo M gladka mnogoterost. Za vsako točko $p \in M$ definiramo simetrično pozitivno-definitno bilinearno preslikavo $g_p \colon T_pM \times T_pM \to \mathbb{R}$, ki je gladko odvisna od p. Družino preslikav g_p imenujemo $Riemannova\ metrika\ g$ na mnogoterosti M. Gladki mnogoterosti, opremljeni z Riemannovo metriko, pravimo $Riemannova\ mnogoterost$.

Izkaže se, da vsaka mnogoterost razreda \mathcal{C}^{r+1} premore Riemannovo metriko razreda \mathcal{C}^r .

Naj bo M domena v \mathbb{R}^n s koordinatami $x=(x_1,\ldots,x_n)$. Riemannova metrika na M je tedaj oblike

$$g_p = \sum_{i,j=1}^n g_{i,j}(p) dx_i dx_j, \quad p \in M,$$
(2.1)

kjer je $G(p) = [g_{i,j}(p)]_{i,j=1}^n$ simetrična pozitivno-definitna matrika za vse $p \in M$. Za tangentna vektorja $\xi = (\xi_1, \dots, \xi_n), \ \eta = (\eta_1, \dots, \eta_n) \in \mathbb{R}^n$ velja

$$g_p(\xi, \eta) = \sum_{i,j=1}^n g_{i,j}(p)\xi_i \eta_j = G(p)\xi \cdot \eta.$$
 (2.2)

Vzemimo gladko imerzijo $x\colon M\to \widetilde{M}$ in Riemannovo metriko \widetilde{g} na \widetilde{M} . Povlečena metrika $g=x^*\widetilde{g}$ na M, definirano na paru tangentnih vektorjev $\xi,\eta\in T_pM$, podaja predpis

$$g_p(\xi,\eta) = \tilde{g}_{x(p)}(dx_p(\xi), dx_p(\eta)). \tag{2.3}$$

Če je metrika \tilde{g} razreda \mathcal{C}^r in imerzija x razreda \mathcal{C}^{r+1} , potem je tudi povlečena metrika $g=x^*\tilde{g}$ razreda \mathcal{C}^r .

Oglejmo si primer Riemannove metrike, ki jo bomo v nadaljevanju večkrat uporabili. Na Evklidskem prostoru \mathbb{R}^n s koordinatami $x=(x_1,\ldots,x_n)$ je definirana Evklidska metrika

$$ds^{2} = (dx_{1})^{2} + \dots + (dx_{n})^{2}, \tag{2.4}$$

to je Riemannova metrika, ki ustreza identični matriki I_n . Naj bo D domena v \mathbb{R}^2 in $x \colon D \to \mathbb{R}^n$ imerzija, podana s predpisom $x(u_1, u_2) = (x_1(u_1, u_2), \dots, x_n(u_1, u_2)),$ $(u_1, u_2) \in D$. Pripadajoča metrika na D je enaka

$$g = x^* ds^2 = g_{1,1} du_1^2 + g_{1,2} du_1 du_2 + g_{2,1} du_2 du_1 + g_{2,2} du_2^2,$$
(2.5)

$$g_{1,1} = |x_{u_1}|^2, \ g_{1,2} = g_{2,1} = x_{u_1} \cdot x_{u_2}, \ g_{2,2} = |x_{u_2}|^2$$
 (2.6)

in jo imenujemo prva fundamentalna forma ploskve M = x(D).

Definicija 2.1. Riemannova ploskev je kompleksna mnogoterost kompleksne dimenzije 1.

2.1 Ukrivljenost

Naj bo M ploskev, $n \geq 3$ in $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Izberimo karto (U,ϕ) na M in koordinate $u=(u_1,u_2)\in U$, tako da je zožitev $x|_U \colon U \to \mathbb{R}^n$ vložitev na orientabilno ploskev $S=x(U)\subset \mathbb{R}^n$. Izberimo točko $q\in U$ in označimo $p=x(q)\in S$. Naj bo $t\mapsto (u_1(t),u_2(t))$ parametrizacija vložene krivulje razreda \mathcal{C}^2 v U ter $q=(u_1(t_0),u_2(t_0))$ za nek t_0 . Vsaka krivulja, vložena v S, ki vsebuje točko p, je tedaj oblike

$$\alpha(t) = x(u_1(t), u_2(t)). \tag{2.7}$$

Označimo z s=s(t) ločno dolžino krivulje α . Predpostavimo, da izbrana točka p ustreza $p=\alpha(s_0)\in S$, označimo pripadajoč tangentni vektor $\nu=\alpha'(s_0)\in T_pS$ ter enotsko normalo $N\in N_pS$ v točki p. Količino

$$\kappa^{N}(p,\nu) = \alpha''(s_0) \cdot N \tag{2.8}$$

imenujemo normalna ukrivljenost ploskve S v točki p v tangentni smeri ν in smeri enotske normale N.

Oglejmo si preslikavo $\kappa^N(p,\cdot)$: $\{\nu\in T_pS;\ |\nu|=1\}\to\mathbb{R},\ \nu\mapsto\kappa^N(p,\nu),\ \text{kjer je}\ p\in S$ izbrana fiksna točka. Kot zvezna preslikava na kompaktni množici doseže minimalno in maksimalno vrednost,

$$\kappa_1^N(p) = \min_{|\nu|=1} \kappa^N(p, \nu), \quad \kappa_2^N(p) = \max_{|\nu|=1} \kappa^N(p, \nu),$$
(2.9)

katerima pravimo glavni ukrivljenosti.

Definicija 2.2. 1. Povprečna ukrivljenost ploskve <math>S v točki p in normalni smeri N je povprečje glavnih ukrivljenosti,

$$H^{N}(p) = \frac{1}{2} \left(\kappa_{1}^{N}(p) + \kappa_{2}^{N}(p) \right). \tag{2.10}$$

2. Njun produkt

$$K^{N}(p) = \kappa_1^{N}(p) \cdot \kappa_2^{N}(p) \tag{2.11}$$

definira $Gaussovo\ ukrivljenost\ ploskve\ S\ v\ točki\ p\ in normalni\ smeri\ N.$

3. Projekcijo povprečne ukrivljenosti na normalno ravnino N_pS v smeri tangentne ravnine T_pS imenujemo vektor povprečne ukrivljenosti ploskve S v točki p in označimo s \mathbf{H} . Enačba 2.10 se v tej notaciji glasi $H^N(p) = \mathbf{H} \cdot N$ za vsak $N \in N_pS$.

Lema 2.3. Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Tedaj velja

$$\Delta x = 2\mathbf{H},\tag{2.12}$$

kjer je Δ Laplaceov operator glede na Riemannovo metriko $g=x^*ds^2$ v točki $q\in M$ in \mathbf{H} vektor povprečne ukrivljenosti v točki $p=x(q)\in S$.

2.2 Aproksimacijski izreki za Riemannove ploskve

Izrek 2.4 (Rungejev aproksimacijski izrek za Riemannove ploskve). Naj bo M Riemannova ploskev in K njena kompaktna podmnožica. Potem lahko vsako funkcijo f, ki je holomorfna na okolici K, aproksimiramo enakomerno na K z meromorfnimi funkcijami F na M brez polov na K, ter s holomorfnimi funkcijami na M, če K nima lukenj. Funkcije F lahko izberemo tako, da se z dano funkcijo f na končni množici točk v K ujemajo do izbranega končnega reda in da ima F pole v podmnožici $E \subset M \setminus K$, kjer E vsebuje točko v vsaki luknji množice K.

Definicija 2.5. Naj bo K kompaktna podmnožica Riemannove ploskve M. Njena $holomorfna\ ogrinjača$ je množica

$$\widehat{K}_{\mathcal{O}(M)} = \{ p \in M; \ |f(p)| \le \max_{K} |f| \text{ za vse } f \in \mathcal{O}(M) \}. \tag{2.13}$$

Če velja $K = \widehat{K}_{\mathcal{O}(M)},$ množico K imenujemo $Rungejeva\ množica.$

Izrek 2.6 (Weierstrass-Florackov interpolacijski izrek). Naj bo M odprta Rieman-nova ploskev in K njena Rungejeva podmnožica. Naj bo $A = \{a_i\}_{i=1}^{\infty}$ zaprta diskretna podmnožica v M, U odprta podmnožica M, tako da je $A \cup K \subset U$ in f meromorfna funkcija na U z ničlami in poli le v točkah množice A. Potem za izbrane $\varepsilon > 0$ in števila $k_i \in \mathbb{N}$ obstaja meromorfna funkcija F na M, za katero velja:

- 1. $|F(z) f(z)| < \varepsilon \ za \ vse \ z \in K$,
- 2. v točkah a_i je razlika F f ničelna do reda k_i ,
- 3. F nima ničel in polov na $M \setminus A$.

2.3 Variacija ploščine

Definicija 2.7. 1. Naj bo M gladka kompaktna ploskev z robom, $n \geq 3$ in naj bo preslikava $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Variacija preslikave <math>x s fiksnim robom je 1-parametrična družina \mathcal{C}^2 preslikav

$$x^t \colon M \to \mathbb{R}^n, \ t \in (-\varepsilon, \varepsilon) \subset \mathbb{R},$$
 (2.14)

če je $x^0 = x$ in za vse t z intervala velja $x^t = x$ na bM.

2. Naj bo $p \in M$. Variacijsko vektorsko polje preslikave x^t je vektorsko polje, definirano kot

$$E(p,t) = \frac{\partial x^t(p)}{\partial t} \in \mathbb{R}^n. \tag{2.15}$$

Opazimo, da je za dovolj majhne vrednosti t preslikava x^t imerzija. Po definiciji je na $bM \times (-\varepsilon, \varepsilon)$ variacijsko vektorsko polje E konstantno ničelno.

Definicija 2.8. Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Ploskev M imenujemo $minimalna\ ploskev$, če za vsako kompaktno domeno $D \subset M$ z gladkim robom bD in vsako gladko variacijo x^t preslikave x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Area}(x^t(D)) = 0. \tag{2.16}$$

Ekvivalentno pravimo, da je minimalna ploskev stacionarna točka ploskovnega funkcionala Area: $D \to \mathbb{R}$.

Levo stran enakosti 2.16 imenujemo prva variacija ploščine pri t=0. Slednjo z geometrijskimi lastnostmi preslikave x, natančneje ukrivljenostjo, povezuje prva variacijska formula v naslednjem izreku.

Izrek 2.9. Naj bo M gladka kompaktna ploskev z robom, $n \geq 3$ in $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Naj bo $E = \partial x^t/\partial t|_{t=0}$ variacijsko vektorsko polje preslikave x^t pri t=0, \mathbf{H} vektorsko polje povprečne ukrivljenosti preslikave x in dA ploščinski element glede na Riemannovo metriko x^*ds^2 , definirano na M. Potem za vsako gladko variacijo $x^t \colon M \to \mathbb{R}^n$ imerzije x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} A \operatorname{rea}(x^t(M)) = -2 \int_M E \cdot \mathbf{H} dA. \tag{2.17}$$

Izrek 2.10. Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Ploskev M je minimalna natanko tedaj, ko je na M vektor povprečne ukrivljenosti \mathbf{H} preslikave x identično enak 0.

S podobnimi tehnikami kot v dokazu Izreka 2.9 izpeljemo $drugo\ variacijsko\ formulo$

$$\frac{d^2}{dt^2}\Big|_{t=0} \operatorname{Area}(x^t(M)) = \int_M (4|E|^2 K^E + |\nabla E|^2) dA, \tag{2.18}$$

kjer $K^E = K^N$ označuje Gaussovo ukrivljenost ploskve M.

2.4 Weierstrassova formula

Naj bosta (M,g) in $(\widetilde{M},\widetilde{g})$ Riemannovi mnogoterosti z dim $(M) \leq \dim(\widetilde{M})$. Imerzija $x \colon (M,g) \to (\widetilde{M},\widetilde{g})$ se imenuje konformna, če ohranja kote. Z drugimi besedami je "pullback metric" $x^*\widetilde{g}$ konformno ekvivalentna metriki g, kar pomeni, da za pozitivno funkcijo $\mu > 0$ na M velja $x^*\widetilde{g} = \mu g$.

Naj bo ploskev M orientabilna in $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Potem preslikava x določa enolično strukturo Riemannove ploskve na M, kjer je x konformna imerzija. Zato bomo v nadaljevanju obravnavali Riemannove ploskve in pripadajoče konformne imerzije v Evklidski prostor. Prvi rezultat, ki ga navajamo, opisuje ekvivalentne pogoje minimalnosti ploskve M.

Izrek 2.11. Naj bo M odprta Riemannova ploskev, $n \ge 3$ in $x = (x_1, \ldots, x_n) \colon M \to \mathbb{R}^n$ konformna imerzija razreda \mathcal{C}^2 . Naslednje trditve so ekvivalentne:

- 1. x je minimalna ploskev.
- 2. Vektorsko polje povprečne ukrivljenosti preslikave x je ničelno, tj. $\mathbf{H} = 0$.
- 3. x je harmonična, tj. $\Delta x = 0$.
- 4. 1-forma $\partial x = (\partial x_1, \dots, \partial x_n)$ z vrednostmi v \mathbb{C}^n je holomorfna in velja

$$(\partial x_1)^2 + \dots + (\partial x_n)^2 = 0. \tag{2.19}$$

5. Naj bo θ holomorfna 1-forma na M, ki ni nikjer enaka 0. Potem je preslikava $f = 2\partial x/\theta \colon M \to \mathbb{C}^n$ holomorfna z vrednostmi na ničelni kvadriki

$$\mathbf{A} = \{ (z_1, \dots, z_n) \in \mathbb{C}^n; \ z_1^2 + \dots + z_n^2 = 0 \}.$$
 (2.20)

 $Nadalje\ je\ Riemannova\ metrika\ na\ M,\ inducirana\ s\ konformno\ imerzijo\ x,\ enaka$

$$g = x^* ds^2 = |dx_1|^2 + \dots + |dx_n|^2 = 2(|\partial x_1|^2 + \dots + |\partial x_n|^2).$$
 (2.21)

Definicija 2.12. Naj bo $x: M \to \mathbb{R}^n$ harmonična preslikava. Njen *pretok* je homomorfizem grup $\mathrm{Flux}_x \colon H_1(M,\mathbb{Z}) \to \mathbb{R}^n$, definiran s predpisom

$$\operatorname{Flux}_{x}([C]) = \int_{C} d^{c}x. \tag{2.22}$$

V definiciji pretoka je $[C] \in H_1(M, \mathbb{Z})$, integral pa je odvisen le od homološkega razreda poti C, zato bomo v nadaljevanju pisali kar $\operatorname{Flux}_x(C)$.

- **Definicija 2.13.** 1. Naj bo M odprta Riemannova ploskev in $n \geq 3$. Holomorfno imerzijo $z = (z_1, \ldots, z_n) \colon M \to \mathbb{C}^n$, za katero velja $(\partial z_1)^2 + \cdots + (\partial z_n)^2 = 0$, imenujemo holomorfna ničelna krivulja v \mathbb{C}^n .
 - 2. Naj bo $z = x + iy \colon M \to \mathbb{C}^n$ holomorfna ničelna krivulja. Njena realni del in imaginarni del, $x, y \colon M \to \mathbb{R}^n$ imenujemo konjugirani minimalni ploskvi.
 - 3. Naj bo $t \in \mathbb{R}$. Predstavnike 1-parametrične družine $x^t = \Re(e^{it}z) \colon M \to \mathbb{R}^n$ imenujemo pridružene minimalne ploskve holomorfne ničelne krivulje z.
- Izrek 2.14 (Weierstrassova predstavitev konformnih minimalnih ploskev in holomorfnih ničelnih krivulj). Naj bo $n \geq 3$ in M odprta Riemannova ploskev, na kateri definiramo holomorfno 1-formo $\Phi = (\phi_1, \ldots, \phi_n)$ z vrednsotmi v \mathbb{C}^n , ki je povsod neničelna, in zadošča
 - 1. $\sum_{j=1}^{n} \phi_j^2 = 0$,
 - 2. $\Re \int_C \Phi = 0$ za vse $[C] \in H_1(M, \mathbb{Z})$.

Potem za poljuben izbor točk $p_0 \in M$ in $x_0 \in \mathbb{R}^n$ predpis $x: M \to \mathbb{R}^n$,

$$x(p) = x_0 + \Re \int_{p_0}^p \Phi, \ p \in M,$$
 (2.23)

podaja dobro definirano konformno minimalno imerzijo. Zanjo velja

$$2\partial x = \Phi \quad in \quad g = x^* ds^2 = |dx|^2 = \frac{1}{2} |\Phi|^2. \tag{2.24}$$

Če velja še $\int_C \Phi = 0$ za vse $[C] \in H_1(M, \mathbb{Z})$, potem za poljuben izbor točk $p_0 \in M$ in $z_0 \in \mathbb{C}^n$ predpis $z \colon M \to \mathbb{C}^n$,

$$z(p) = z_0 + \int_{p_0}^p \Phi, \ p \in M, \tag{2.25}$$

podaja dobro definirano holomorfno ničelno krivuljo. Zanjo velja

$$\partial z = \Phi \quad in \quad z^* ds^2 = |dz|^2 = |\partial z|^2 = |\Phi|^2.$$
 (2.26)

Opomba 2.15. Vsaka konformna minimalna imerzija $x \colon M \to \mathbb{R}^n$ je oblike 2.23 in vsaka holomorfna ničelna krivulja $z \colon M \to \mathbb{C}^n$ je oblike 2.25. Prav zato je Weierstrassova predstavitev elegantna metoda za konstrukcijo opisanih preslikav.

Če konformno minimalno imerzijo $x \colon M \to \mathbb{R}^n$ poznamo, potem pripadajočo povsod neničelno holomorfno 1-formo $\Phi = 2\partial x$ z vrednostmi v \mathbb{C}^n imenujemo Weierstrassovi podatki preslikave x. Analogno, za holomorfno ničelno krivuljo $z \colon M \to \mathbb{C}^n$ pripadajočo 1-formo $\Phi = \partial z = dz$ imenujemo Weierstrassovi podatki preslikave z.

Definicija 2.16. Jordanov lok je pot v ravnini, ki je topološko izomorfna intervalu [0, 1]. Jordanova krivulja je ravninska krivulja, ki je topološko ekvivalentna enotski krožnici.

Definicija 2.17. Naj bo M gladka ploskev, K končna unija paroma disjunktnih kompaktnih domen s kosoma zvezno odvedljivimi robovi v M ter $E = S \setminus K^{\circ}$ unija končno mnogo paroma disjunktnih gladkih Jordanovih lokov in zaprtih Jordanovih krivulj, ki se dotikajo K kvečjemu v svojih krajiščih in sekajo rob K transverzalno. Kompaktno podmnožico v M oblike $S = K \cup E$ imenujemo $dopustna \ množica$.

Definicija 2.18. Naj bo M povezana odprta Riemannova ploskev ali kompaktna Riemannova ploskev z robom, na kateri je definirana povsod neničelna holomorfna 1-forma Θ . Konformno minimalno imerzijo $x \colon M \to \mathbb{R}^n$ imenujemo:

- 1. ravna, če je slika x(M) vsebovana v afini ravnini v \mathbb{R}^n ; sicer pravimo, da je x neravna;
- 2. polna, če je preslikava $f = 2\partial x/\Theta \colon M \to \mathbf{A}_*^{n-1}$ polna, tj. \mathbb{C} -linearna ogrinjača slike f(M) je enaka \mathbb{C}^n ;
- 3. neizrojena, če slika x(M) ni vsebovana v nobeni hiperravnini v \mathbb{R}^n .

V dimenziji n=3 za konformno minimalno imerzijo vsi zgornji pojmi sovpadajo. V višjih dimenzijah $(n\geq 4)$ veljata implikaciji

polna \Rightarrow neizrojena \Rightarrow neravna.

3 Izreki o aproksimaciji in interpolaciji minimalnih ploskev

Naj bosta M in X kompleksni mnogoterosti. Prostor holomorfnih presikav $M \to X$ označimo z $\mathcal{O}(M,X)$. Če je K kompaktna podmnožica v M, množico preslikav $K \to X$ razreda $\mathcal{C}^r(M)$, ki so holomorfne v notranjosti $K^\circ \subset K$, označimo z $\mathcal{A}^r(K,X)$. V primeru, ko je $X = \mathbb{C}$, ustrezna prostora označimo z $\mathcal{O}(M)$ oziroma $\mathcal{A}^r(K)$.

Naj bo M odprta Riemannova ploskev in $n \geq 3$. Prostor konformnih minimalnih imerzij $M \to \mathbb{R}^n$ označimo s $\mathrm{CMI}(M,\mathbb{R}^n)$, prostor holomorfnih ničelnih imerzij $M \to \mathbb{C}^n$ pa z $\mathrm{NC}(M,\mathbb{C}^n)$. Nadalje $\mathrm{CMI}_{full}(M,\mathbb{R}^n)$ in $\mathrm{CMI}_{nf}(M,\mathbb{R}^n)$ označujeta prostora polnih oziroma neravnih konformnih minimalnih imerzij. Velja inkluzija $\mathrm{CMI}_{full}(M,\mathbb{R}^n) \subset \mathrm{CMI}_{nf}(M,\mathbb{R}^n)$. Podobno je $\mathrm{NC}_{full}(M,\mathbb{C}^n) \subset \mathrm{NC}_{nf}(M,\mathbb{C}^n)$ v primeru polnih ter neravnih holomorfnih ničelnih krivulj.

Če je M kompaktna omejena Riemannova ploskev z nepraznim gladkim robom bM in $r \in \mathbb{N}$, tedaj prostor konformnih minimalnih imerzij $M \to \mathbb{R}^n$ razreda $\mathcal{C}^r(M)$ označimo s $\mathrm{CMI}^r(M,\mathbb{R}^n)$, prostor holomorfnih ničenih imerzij $M \to \mathbb{C}^n$ razreda $\mathcal{A}^r(M)$ pa z $\mathrm{NC}^r(M,\mathbb{C}^n)$.

Lema 3.1. Naj bo M povezana Riemannova ploskev in \mathbf{A}_* punktirana ničelna kvadrika. Holomorfna preslikava $f: M \to \mathbf{A}_*$ je neravna natanko tedaj, ko je linearna ogrinjača tangentnih prostorov $T_{f(p)}A \subset T_{f(p)}\mathbb{C}^n$ po vseh $p \in M$ enaka \mathbb{C}^n .

Dokaz 1. Oglejmo si preslikavo $\Phi \colon \mathbb{C}^n \to \mathbb{C}$, definirano s predpisom $\Phi(z) = \sum_{j=1}^n z_j^2$. Ničelno kvadriko 2.20 tedaj lahko zapišemo v obliki $\mathbf{A} = \Phi^{-1}(\{0\})$. Njen tangentni prostor v točki $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ je enak jedru diferenciala, ki kvadriko določa, zato je

$$T_z \mathbf{A} = \ker(d\Phi_z) = \ker(z \mapsto \sum_{j=1}^n z_j dz_j).$$

Naj bosta $z, w \in \mathbb{C}^n_*$. Potem sta njuna tangentna prostora enaka, $T_z \mathbf{A} = T_w \mathbf{A}$, natanko tedaj, ko je $z_j = \lambda w_j$ za vse $j = 1, \ldots, n$ in nek $\lambda \in \mathbb{C}$, kar je ekvivalentno pogoju, da sta vektorja z in w kolinearna.

Po definiciji je preslikava f neravna, če njena slika f(M) ni vsebovana v nobeni afini kompleksni premici v \mathbb{C}^n . Skupaj z zgornjim je slednje ekvivalnetno $Lin\{T_{f(p)}\mathbf{A};\ p\in M\}=\mathbb{C}^n$, kar smo želeli dokazati.

Definicija 3.2. Naj bo $S = K \cup E$ dopustna podmnožica Riemannove ploskve M in Θ povsod neničelna holomorfna 1-forma, definirana v okolici $S \subset M$. Naj bosta $n \geq 3$ in $r \in \mathbb{N}$. Posplošena konformna minimalna imerzija $S \to \mathbb{R}^n$ razreda \mathcal{C}^r je par $(x, f\Theta)$, kjer je $x \colon S \to \mathbb{R}^n$ preslikava razreda \mathcal{C}^r , njena zožitev na $S^{\circ} = K^{\circ}$ je konformna minimalna imerzija in preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ zadošča naslednjima pogojema:

- 1. na množici K velja $f\Theta = 2\partial x$;
- 2. za vsako gladko pot α v M, ki parametrizira povezano komponento $E = \overline{S \setminus K}$ velja $\Re(\alpha^*(f\Theta)) = \alpha^*(dx) = d(x \circ \alpha)$.

Posplošena konformna minimalna imerzija $(x, f\Theta)$ je neravna oziroma polna natanko tedaj, ko je preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ neravna oziroma polna na vsaki relativno odprti podmnožici S.

Prostor posplošenih konformnih minimalnih imerzij $S \to \mathbb{R}^n$ razreda \mathcal{C}^r označimo z $GCMI^r(S, \mathbb{R}^n)$. Analogno kot v primeru konformnih minimalnih imerzij velja

$$\operatorname{GCMI}_{full}^r(S, \mathbb{R}^n) \subset \operatorname{GCMI}_{n}^r(S, \mathbb{R}^n) \subset \operatorname{GCMI}^r(S, \mathbb{R}^n).$$

Opomba 3.3. Diferencial d v kompleksnem ima obliko $d = \partial + \bar{\partial}$. Konjugirani difernecial d^c je enak $d^c = i(\bar{\partial} - \partial) = 2\Im(\partial)$. Zato velja $d + id^c = 2\partial$ oziroma drugače, $\Re(2\partial) = dx$. Prvi pogoj iz definicije posplošene konformne minimalne imerzije pravi $f\Theta = 2\partial$, od koder sledi $\Re(f\Theta) = \Re(2\partial) = dx$. Zato je drugi pogoj iz zgornje definicije skladen s prvim.

Tudi za posplošene konformne minimalne imerzije velja Weierstrassova formula. Naj bo S povezana dopustna množica in $(x, f\Theta) \in \operatorname{GCMI}^r(S, \mathbb{R}^n)$. Za poljubno točko $p_0 \in S$ in poznano preslikavo f lahko preslikavo $x \colon S \to \mathbb{R}^n$ konstruiramo s formulo

$$x(p) = x(p_0) + \Re \int_{p_0}^p f\Theta, \ p \in S.$$
 (3.1)

Obratno, če za preslikavo $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ velja $\Re \int_C f\Theta = 0$ za vsako sklenjeno krivuljo C v S, potem f določa posplošeno konformno minimalno imerzijo, dano z Weierstrassovo formulo 3.1.

Definicija 3.4. Naj bo $S = K \cup E$ dopustna podmnožica Riemannove ploskve M in Θ povsod neničelna holomorfna 1-forma, definirana v okolici $S \subset M$. Naj bosta $n \geq 3$ in $r \in \mathbb{N}$. Posplošena ničelna krivulja $S \to \mathbb{C}^n$ razreda \mathcal{C}^r je par $(z, f\Theta)$, kjer preslikavi $z \in \mathcal{A}^r(S, \mathbb{C}^n)$ in $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ zadoščata naslednjima pogojema:

- 1. na množici K velja $f\Theta = dz = \partial z$;
- 2. za vsako gladko pot α v M, ki parametrizira povezano komponento $E = \overline{S \setminus K}$ velja $\alpha^*(f\Theta) = \alpha^*(dz) = d(z \circ \alpha)$.

Posplošena ničelna krivulja $(z, f\Theta)$ je neravna oziroma polna natanko tedaj, ko je preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ neravna oziroma polna na vsaki relativno odprti podmnožici S.

Prostori neravnih, polnih in posplošenih ničelnih krivulj ustrezajo verigi inkluzij

$$\mathrm{GNC}_{full}^r(S,\mathbb{C}^n)\subset\mathrm{GNC}_nf^r(S,\mathbb{C}^n)\subset\mathrm{GNC}^r(S,\mathbb{C}^n).$$

Za povezano dopustno množico S, $(z, f\Theta) \in \mathrm{GNC}^r(S, \mathbb{C}^n)$, znano preslikavo f in točko $p_0 \in S$ preslikavo $z \colon S \to \mathbb{C}^n$ konstruiramo s pomočjo Weierstrassove formule

$$z(p) = z(p_0) + \int_{p_0}^{p} f\Theta, \ p \in S.$$
 (3.2)

Velja tudi obrat; preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$, ki zadošča $\int_C f\Theta = 0$ za vsako sklenjeno krivuljo C v S, določa posplošeno ničelno krivuljo, dano z Weierstrassovo formulo 3.2.

Literatura