```
10.1
```

- a. $K(a) \wedge W(m)$
- b. $K(a) \rightarrow Q(g)$
- c. K(a) ∧ P(a, e)
- d. $\neg A(m, l)$
- e. $L(l, g) \vee L(g, l)$

10.2

- a. $(\forall x)(D(x) \rightarrow H(l, x))$
- b. $(\forall x)(D(x) \rightarrow N(x, l))$
- c. Interpret the sentence as "Not every dragon was keen on Merlin", that is to say, there exists one or more dragon that was not keen on Merlin,

thus, we have
$$(\exists x)(D(x) \land \neg K(d, m))$$
,

or $\neg(\forall x)(D(x) \rightarrow K(d, m))$, which is basically the same thing.

d.
$$\neg(\forall x)(P(x) \rightarrow S(x, h))$$
, or $(\exists x)(P(x) \land \neg S(x, h))$

* I read the textbook and saw the different "restricted quantification" and the standard format, I am not sure which format should I use here, I hope the standard one will do.

10.3

- a. true, for \leq Gawaine, Igraine \geq is in $F_3(L)$
- b. false, for \leq dragon, Lancelot \geq is not in $F_3(C)$
- c. false, for $\langle Elaine \rangle$ is in $F_3(M)$ while $\langle Elaine, Gawaine \rangle$ is not in $F_3(L)$
- d. true, for \leq Igraine \geq is in $F_3(M)$ and \leq Igraine, Gawaine \geq is in $F_3(L)$
- e. true, <Lancelot, dragon> is in $F_3(S)$, so S(l, d) is true, there exists no pair like <_, Elaine> in $F_3(L)$, so $\neg(\exists x: K(x)) L(x, e)$ is true
- f. true, there is only one \leq dragon \geq in $F_3(D)$, and \leq Lancelot, dragon \geq is in $F_3(S)$, so $(\forall x: D(x)) S(l, x)$ is true, for both \leq Elaine \geq and \leq Igraine \geq in $F_3(M)$,

> is in F₃(F), so
$$(\forall y: M(y)) F(l, y)$$
 is true

10.4

- a. $F(l, e) \vee F(l, i) = true \vee true = true$
- b. $F(l,e) \vee F(l,i) = true \vee true = false$
- c. $S(l, d) \rightarrow F(l, e) = true \rightarrow true = true$
- d. $L(g, i) \rightarrow F(g, i) = true \rightarrow false = false$