Homework 2

517030910155

Problem 1. Prove the formula

$${r \brace r} + {r+1 \brack r} + {r+2 \brack r} + \cdots + {n \brace r} = {n+1 \brack r+1}$$

Solution.

1.

Problem 2. Let $(X, \preceq_1), (Y, \preceq_2)$ be (partially) ordered sets. We say that they are isomorphic if there exists a bijection $f: X \to Y$ such that for every $x, y \in X$, we have $x \preceq_1 y$ if and only if $f(x) \preceq_2 f(y)$.

Solution.

Problem 3. Prove or disprove: If a partially ordered set (X, \preceq) has a single minimal element, then it is a smallest element as well.

Solution.

Problem 4. Let (X, \preceq) and $(X_{\prime}, \preceq_{\prime})$ be partially ordered sets. A mapping $f: X \to X_{\prime}$ is called an embedding of (X, \preceq) into $(X_{\prime}, \preceq_{\prime})$ if the following conditions hold:

- f is an injective mapping;
- $f(x) \leq f(y)$ if and only if $x \leq y$.

Now consider the following problem:

- a) Describe an embedding of the set $\{1,2\} \times \mathbb{N}$ with the lexicographic ordering into the ordered set (\mathbb{Q}, \leq) .
- b) Solve the analog of a) with the set $N \times N$ (ordered lexicographically) instead of $\{1, 2\} \times N$.

Solution.

Problem 5. Prove the following strengthening of the **Erdos-Szekeres Lemma**: Let \mathcal{K} , \mathcal{L} be natural numbers. Then every sequence of real numbers of length $\mathcal{KL}+1$ contains an nondecreasing subsequence of length $\mathcal{K}+1$ or a decreasing subsequence of length $\mathcal{L}+1$.

Proof.