UNIDAD V

APLICACIONES DE LA DERIVADA

1.1. Teoremas de las funciones derivables

Definición 1: Sea $f: A \to \mathbb{R}$ con $A \subseteq \mathbb{R}$ y tal que y = f(x). Sea un punto $x_0 \in A$ se dice $m \acute{a} x i m o$ de f si es $f(x_0) \geq f(x)$ para todo x en el dominio de f y se dice $m \acute{n} i m o$ de f si es $f(x_0) \leq f(x)$ para todo x en el dominio de f.

Dicho de otra manera, un máximo de f es un punto donde f alcanza su máximo valor posible y un mínimo de f es un punto en donde f alcanza su menor valor posible.

Definición 2: Sea $f: A \to \mathbb{R}$ con $A \subseteq \mathbb{R}$ y tal que y = f(x).

Sea un punto $x_0 \in A$ se dice $m \acute{a} ximo$ relativo de f si existe un entorno de centro x_0 y radio δ tal que $f(x_0) \geq f(x)$ para todo x en dicho entorno y se dice $m \acute{n} imo$ relativo de f si existe un entorno de centro x_0 y radio δ tal que $f(x_0) \leq f(x)$ para todo x en dicho entorno.

Al observar la siguiente figura, se puede ver que en los máximos o mínimos de la función, la recta tangente a la gráfica de la misma es horizontal.

Recordemos que la pendiente de la recta tangente a la gráfica de una función

en un punto está dada por la derivada de la función en dicho punto. Esta observación y la del parrafo anterior motivan enunciar el siguiente teorema:

Teorema 1.1 (Teorema de Fermat)

Sea f una función definida en un intervalo abierto (a, b), si $x_0 \in (a, b)$ y es un máximo o un mínimo de f y si f es derivable en x_0 entonces, $f'(x_0) = 0$.

Teorema 1.2 (Teorema de Rolle)

Sea f una función continua en un intervalo cerrado [a,b] y derivable en (a,b) y f(a) = f(b), entonces existe $c \in (a,b)$ tal que f'(c) = 0.

Discutir si es aplicable el T de Rolle en el intervalo indicado. Si lo es, hallar todos los c del intervalo tales que f'(c) = 0. Interpretar geométricamente.

a)
$$f(x) = x^2 - 3x + 2$$
 en [1; 2]
b) $f(x) = \frac{1}{2}x^3 - 2x$ en [-2; 0]
c) $f(x) = x^{\frac{2}{3}}$ en [-1; 1]

1.2. Regla de L'Hospital

■ Caso $\frac{0}{0}$ Sean f y g dos funciones definidas y derivables en un intervalo (a, b). Para $x_0 \in (a, b)$, supongamos $g'(x) \neq 0$ para $x \in (a, b), x \neq x_0$ y $f(x_0) = g(x_0) = 0$. En esas condiciones, si existe

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)},$$

entonces existe $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ y además

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Ejemplo 1: Calcular $\lim_{x\to 1} \frac{ln(x)}{x-1}$.

El numerador y el denominador valen 0 cuando x=1, y además $(x-1)'=1\neq 0$, luego estamos en condiciones de aplicar la regla enunciada:

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = \lim_{x \to 1} \frac{1/x}{1} = 1$$

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)},$$

entonces existe $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ y además

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Ejemplo 2: Calcular $\lim_{x\to 0} x.ln(x)$.

Este límite no es del tipo enunciado, ya que es de la forma $0.\infty$, pero lo podemos llevar a la forma $\frac{\infty}{\infty}$.

$$\lim_{x \to 0} \frac{\ln(x)}{1/x} = \lim_{x \to 0} \frac{1/x}{(-1/x^2)}$$

$$\lim_{x \to 0} \frac{1/x}{-1/x^2} = \lim_{x \to 0} (-x) = 0$$

$$\Rightarrow \lim_{x \to 0} \frac{\ln(x)}{1/x} = 0$$

Resolver:

$$a)\lim_{x\to 1}\frac{\ln(x)}{x-1}$$

$$b)\lim_{x\to 0}\frac{2x^2}{e^x-1}$$

a)
$$\lim_{x \to 1} \frac{\ln(x)}{x-1}$$
b)
$$\lim_{x \to 0} \frac{2x^2}{e^x - 1}$$
c)
$$\lim_{x \to 0} \frac{\sin(x) - x}{2x^3}$$

ESTUDIO DE FUNCIONES

Funciones crecientes y decrecientes

Una función f es creciente sobre un intervalo I si para cualquier para cualquier par de números x_1 y x_2 , en dicho

intervalo, tales que si

$$x_1 < x_2 \text{ es } f(x_1) < f(x_2).$$

Una función f es decreciente sobre un intervalo I si para cualquier para cualquier par de números $x_1 y x_2$ en dicho

intervalo, tales que $x_1 < x_2$ es $f(x_1) > f(x_2)$.

2.2. Criterio para las funciones crecientes y decrecientes

Sea una función continua en el intervalo [a, b] y derivable en (a, b), entonces

- Si f'(x) > 0 para todo x en (a, b), entonces f es creciente en [a, b].
- Si f'(x) < 0 para todo x en (a, b), entonces f es decreciente en [a, b].

Punto Crítico

Definición:

Diremos que x_0 es un punto crítico de f, si $f'(x_0) = 0$, o bien, f' no está definida en x_0 .

2.3. Criterio de la derivada primera

Sea x_0 un punto crítico de f que es continua en un intervalo abierto I que contiene a x_0 . Si f es derivable en dicho intervalo, execpto posiblemente en x_0 , entonces:

- Si f'(x) cambia de **negativa** a **positiva** en x_0 , entonces f tiene un mínimo relativo en $(x_0, f(x_0))$.
- Si f'(x) cambia de **positiva** a **negativa** en x_0 , entonces f tiene un $m\acute{a}ximo$ relativo en $(x_0, f(x_0))$.
- Si f'(x) no cambia de signo en x_0 , entonces f no tiene ni un máximo ni un mínimo relativo en $(x_0, f(x_0))$.

$$f'(x) = \frac{2}{3} (x^2 - 4)^{-1/3} (2x)$$
$$f'(x) = \frac{4x}{3(x^2 - 4)^{1/3}}$$

Observemos que f'(x) = 0 si x = 0, y que f' no está definida en x = -2 y en x = 2. Luego, los puntos críticos son x = -2, x = 0 y x = 2. La siguiente tabla resume los valores de prueba de cuatro intervalos determinados por esto puntos. críticos:

Intervalo	$(-\infty, -2)$	(-2,0)	(0, 2)	$(2,+\infty)$
Signo de f'	f'(x) < 0	f'(x) > 0	f'(x) < 0	f'(x) > 0
Conclusión	Decreciente	Creciente	Decreciente	Creciente

Aplicando el criterio de la derivada primera se puede concluir que f tiene un mínimo relativo en (-2,0), un máximo relativo en $(0,\sqrt[3]{16})$ y mínimo relativo en (2,0).

Figura 1: Gráfico de una función $f(x) = \sqrt[3]{(x^2 - 4)^2}$

Funciones convexas y cóncavas

Sea $f: A \to \mathbb{R}$ con $A \subseteq \mathbb{R}$. Sean a y b dos puntos de A. Dados los puntos (a; f(a)) y (b; f(b)) en el plano, consideramos la recta secante a la gráfica de f por esos puntos.

Sea $I \subseteq A$ un intervalo. La función $f: I \to \mathbb{R}$ se llama convexa cuando su gráfico está situado debajo de cualquier secante. Una función $f: I \to \mathbb{R}$ se dice cóncava cuando -f es convexa, esto es, cuando el gráfico de f está encima de cualquier secante.

Figura 3: Gráfico de una función convexa

Figura 4: Gráfico de una función cóncava

Si la función es derivable hay una manera muy sencilla de caracterizar la concavidad y la convexidad. En los intervalos de convexidad a medida que x aumenta, crece la pendiente de la tangente, es decir f'(x) crece. Y en los intervalos de concavidad, a medida que aumenta x, decrece f'(x). Luego podemos enunicar el siguiente resultado:

- Si f''(x) > 0 en (a, b), entonces la función f es convexa en (a, b).
- Si f''(x) < 0 en (a, b), entonces la función f es cóncava en (a, b).

Un punto donde la curva cambia de convexa a cóncava o viceversa, se denomina punto de inflexión.

De lo enunciado anteriormente se puede deducir que si x_0 es un punto de inflexión, entonces $f''(x_0) = 0$.

Encontrar los extremos relativos a $f(x) = x^3 - 3x^2 + 2$

En primer lugar observemos que f es continua en todo R. La derivada de f viene dada por:

$$f'(x) = 3x^2 - 6x$$

Observemos que f'(x) = 0 en x = 0 y en x = 2. Luego, los puntos críticos son x = 0 y x = 2.

Intervalo	(-∞; 0)	(0; 2)	(2; +∞)
Signo de $f'(x)$	$f^{'}(x) > 0$	$f^{'}(x) < 0$	f'(x) > 0
Conclusión	Creciente	Decreciente	Creciente

Aplicando el criterio de la derivada primera se puede concluir que f tiene un máximo relativo en (0; 2) y un mínimo relativo en (2; -2).

La derivada segunda de f es: f''(x) = 6x - 6 y f''(x) = 0 en x = 1

Intervalo	(-∞;1)	(1;∞)
Signo de $f''(x)$	$f^{'\prime}(x) > 0$	$f^{''}(x) < 0$
Conclusión	convexa	cóncava

Por lo tanto en x = 1 existe un punto de inflexión

