Analysis 2 Hausaufgabenblatt Nr. 3

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 9, 2023)

Problem 1. In dieser Aufgabe beweisen wir, dass die Verknüpfung zweier Riemann-integrierbarer Funktionen i.A. nicht Riemann-integrierbar ist. Dazu gehen wir wie folgt vor:

(a) Es sei $q: \mathbb{N} \to \mathbb{Q} \cap [0,1]$ eine Abzählung von $\mathbb{Q} \cap [0,1]$, d.h. eine bijektive Abbildung von \mathbb{N} nach $\mathbb{Q} \cap [0,1]$. Weiterhin sei

$$f(x) = \begin{cases} 0 & x \in [0,1] \backslash \mathbb{Q}, \\ \frac{1}{n} & x = q_n. \end{cases}$$

Zeigen Sie, dass f Riemann-integrierbar ist.

(b) Weiterhin sei

$$g(x) = \begin{cases} 0 & x \in [0,1] \setminus \left\{ \frac{1}{n} | n \in \mathbb{N} \right\}, \\ 1 & x = \frac{1}{n} \text{ für ein } n \in \mathbb{N}. \end{cases}$$

Zeigen Sie, dass g Riemann-integrierbar ist, die Verknüpfung $g \circ f$ mit der Funktion f jedoch nicht.

Proof. (a) Wir definieren rekursiv eine Menge

Problem 2. Es sei $f:[a,b]\to\mathbb{R}$ Riemann-integrierbar auf dem echten Intervall [a,b] mit

$$\int_{a}^{b} f(x) \, \mathrm{d}x > 0.$$

Zeigen Sie, dass es ein echtes Intervall $J \subset [a, b]$ gibt, auf dem f strikt positiv ist, d.h. mit f(x) > 0 für alle $x \in J$.

Hinweis: Eine Möglichkeit ist, die Charakterisierung der Darboux-Integrierbarkeit zu benutzen und Untersummen zu betrachten.

П

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Proof. Wir beweisen es per Widerspruch. Nehme an, dass in jedem Intervall es mindestens ein Punkt x_0 gibt, für die $f(x_0) \leq 0$. Insbesondere gilt das für alle abgeschlossen Intervalle $[c,d] \subseteq [a,b]$.

Sei jetzt \mathcal{J} eine beliebige Zerlegung von $[a,b], \mathcal{J} = \{t_0,t_1,\ldots,t_N\}$, mit die übliche Voraussetzung $t_0 < t_1 < t_2 < \cdots < t_N$. Es gilt

$$\mathcal{U}_{\mathcal{J}} = \sum_{i=1}^{N} \inf \left(f|_{[t_{i-1}, t_i]} \right) (t_i - t_{i-1})$$

$$\leq \sum_{i=1}^{N} (0)(t_i - t_{i-1})$$

$$= 0$$

Weil \mathcal{J} beliebig war, gilt das für alle Zerlegungen, und

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le 0,$$

also

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le 0,$$

ein Widerspruch.

Problem 3. Beweisen oder widerlegen Sie die folgenden Aussagen:

- (a) Ist $f:[a,b]\to\mathbb{R}$ eine Funktion und |f| integrierbar auf [a,b], so ist es auch f.
- (b) Ist $f:[a,b]\to\mathbb{R}$ integrierbar und $f(x)\geq\delta$ für alle $x\in[a,b]$ und ein $\delta>0$, so ist auch $\frac{1}{f}$ über [a,b] integrierbar.
- (c) Sind $f,g:[a,b]\to\mathbb{R}$ integrier bar, so gilt

$$\int_a^b (f \cdot g)(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x \cdot \int_a^b g(x) \, \mathrm{d}x.$$

Proof. (a) Falsch. Sei $f:[0,1] \to \mathbb{R}$

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ -1 & x \notin \mathbb{Q} \end{cases}.$$

Dann ist |f|=1 integrierbar (Proposition 6.1.6). Wir müssen jetzt nur beweisen, dass f nicht integrierbar ist. Sei $\mathcal{J}=\{0=t_0,t_1,\ldots,t_N=1\}$. Es gibt, für alle Intervalle $[a,b]\subseteq [0,1]$, zwei Punkte

$$\mathbb{Q} \ni x_0 \in [a, b]$$
 dichtheit von \mathbb{Q} $\mathbb{R} \setminus \mathbb{Q} \ni x_1 \in [a, b]$ \mathbb{Q} ist nur abzählbar

Also gilt

$$\sup (f|_{[a,b]}) = 1$$
$$\inf (f|_{[a,b]}) = -1$$

Daraus folgt, für jede Zerlegung \mathcal{J} von [0,1], dass

$$\mathcal{O}_{\mathcal{J}}(f) = 1$$
 $\mathcal{U}_{\mathcal{J}}(f) = -1$

also f ist nicht auf [0,1] integrierbar.

(b) Wahr.

Bemerkung

Sei $f:[a,b]\to\mathbb{R}, f\geq\delta$ für ein $\delta>0$. Es gilt dann

$$\frac{1}{\inf(f)} = \sup\left(\frac{1}{f}\right)$$
$$\frac{1}{\sup(f)} = \inf\left(\frac{1}{f}\right)$$

wegen der Monotonie von $x \to 1/x$.

Wir haben auch

Korollar

(Korollar aus Proposition 6.2.3(vi)) $f:[a,b] \to \mathbb{R}$ ist genau dann integrierbar, wenn es zu jedem $\epsilon > 0$ eine Zerlegung $\mathcal{J} = \{a = t_0, t_1, \dots, t_N\}$ von I gibt, sodass

$$\sum_{i=1}^{N} \left[\sup \left(f|_{[a,b]} \right) - \inf \left(f_{[a,b]} \right) \right] (t_i - t_{i-1}) < \epsilon.$$

Wir arbeiten mit dem Korollar. Sei $\mathcal{J} = \{a = t_0, t_1, \dots, t_N\}$ eine Zerlegung von [a, b]. Es gilt

$$\sum_{i=1}^{N} \left[\sup \left(\frac{1}{f} \Big|_{[t_{i-1},t_i]} \right) - \inf \left(\frac{1}{f} \Big|_{[t_{i-1},t_i]} \right) \right] (t_i - t_{i-1})$$

$$= \sum_{i=1}^{N} \left[\frac{1}{\inf \left(f \Big|_{[t_{i-1},t_i]} \right)} - \frac{1}{\sup \left(f \Big|_{[t_{i-1},t_i]} \right)} \right] (t_i - t_{i-1})$$

$$= \sum_{i=1}^{N} \left[\frac{\sup \left(f \Big|_{[t_{i-1},t_i]} \right) - \inf \left(f \Big|_{[t_{i-1},t_i]} \right)}{\sup \left(f \Big|_{[t_{i-1},t_i]} \right)} \right] (t_i - t_{i-1})$$

$$\leq \frac{1}{\delta^2} \sum_{i=1}^{N} \left[\sup \left(f \Big|_{[t_{i-1},t_i]} \right) - \inf \left(f \Big|_{[t_{i-1},t_i]} \right) \right] (t_i - t_{i-1})$$

Per Hypothese gibt es eine Zerlegung \mathcal{J} von [a, b], für die gilt

$$\sum_{i=1}^{N} \left[\sup \left(f|_{[t_{i-1},t_i]} \right) - \inf \left(f|_{[t_{i-1},t_i]} \right) \right] < \epsilon \delta^2.$$

Dies ist genau die gewünschte Zerlegung.

(c) Falsch. Sei f und g Treppefunktionen, $f, g : [0, 1] \to \mathbb{R}$:

$$f(x) = \begin{cases} 1 & 0 \le x \le 0.5 \\ 0 & \text{sonst.} \end{cases}$$
$$g(x) = \begin{cases} 1 & 0.5 < x \le 1 \\ 0 & \text{sonst.} \end{cases}$$

Es gilt $(f \cdot g)(x) = 0$, und daher $\int_0^1 (f \cdot g)(x) dx = 0$. Jetzt sei $\mathcal{J} = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$. Es gilt

$$\mathcal{U}_{\mathcal{J}}(f) \ge \sup \left(f \big|_{\left[\frac{1}{4}, \frac{1}{2}\right]} \right) \left(\frac{1}{2} - \frac{1}{4} \right)$$
$$= 1(1/4) = 1/4$$
$$\mathcal{U}_{\mathcal{J}}(g) \ge \sup \left(g \big|_{\left[\frac{1}{2}, \frac{3}{4}\right]} \right) \left(\frac{3}{4} - \frac{1}{2} \right)$$
$$= 1(1/4) = 1/4$$

Also $\int_0^1 f(x) dx > \frac{1}{4} > 0$, und gleich für $\int_0^1 g(x) dx$. Daher ist

$$\int_0^1 (f \cdot g)(x) \, \mathrm{d}x = 0 \neq \int_0^1 f(x) \, \mathrm{d}x \cdot \int_0^1 g(x) \, \mathrm{d}x.$$

Problem 4. (Wanderdüne) Man gebe eine Folge von nicht-negativen Funktionen f_n : $[0,1] \to \mathbb{R}$ an, sodass

- $\lim_{n\to\infty} \int_0^1 f_n(x) \, \mathrm{d}x = 0$,
- $f_n \not\to 0$ für jedes $x \in [0, 1]$.

Proof. Sei

$$g_{a,b}(x) = \begin{cases} \sin\left(\pi \frac{x-a}{b-a}\right) & x \in [a,b] \cap [0,1] \\ 0 & \text{sonst.} \end{cases}$$

Es gilt

$$\int_0^1 g_{a,b}(x) dx \le \int_a^b g_{a,b}(x) dx$$
$$= \int_a^b \sin\left(\pi \frac{x-a}{b-a}\right) dx$$
$$= \frac{2(b-a)}{\pi}$$