Contractive Containment, Stationary Dilations, and Partial Isometries: Equivalence, Properties, and Geometric Intuition

BY STEPHEN ANDREW CROWLEY
December 15, 2024

Table of contents

1	Preliminaries	1
2	Main Results	2
3	Structure Theory	3
4	Convergence Properties	4
5	Partial Isometries: The Mathematical Scalpel	5

1 Preliminaries

Definition 1

[Hilbert Space Contraction] A bounded linear operator $T: H_1 \to H_2$ between Hilbert spaces is called a contraction if

$$||Tx||_{H_2} \le ||x||_{H_1} \quad \forall x \in H_1$$
 (1)

Equivalently, $||T|| \le 1$.

Definition 2

[Stationary Process] A stochastic process $\{Y(t)\}_{t\in\mathbb{R}}$ is stationary if for any finite set of time points $\{t_1,\ldots,t_n\}$ and any $h\in\mathbb{R}$, the joint distribution of

$$\{Y(t_1+h),\ldots,Y(t_n+h)\}\tag{2}$$

is identical to that of $\{Y(t_1), \ldots, Y(t_n)\}.$

Definition 3

[Stationary Dilation] Given a non-stationary process X(t), a stationary dilation is a stationary process Y(s) together with a family of bounded operators $\{\phi(t,\cdot)\}_{t\in\mathbb{R}}$ such that

$$X(t) = \int_{\mathbb{R}} \phi(t, s) Y(s) ds$$
 (3)

where $\phi(t,s)$ is a measurable function satisfying:

- 1. $\|\phi(t,\cdot)\|_{\infty} \leq 1$ for all t
- 2. The map $t \mapsto \phi(t,\cdot)$ is strongly continuous

Remark 4. The conditions on $\phi(t, s)$ ensure that the integral is well-defined and the resulting process X(t) inherits appropriate regularity properties from Y(s).

2 Main Results

Proposition 5

[Properties of Scaling Function] The scaling function $\phi(t,s)$ in a stationary dilation satisfies:

- 1. $\|\phi(t,s)\| \le 1$ for all $t,s \in \mathbb{R}$
- 2. For fixed $t, s \mapsto \phi(t, s)$ is measurable
- 3. For fixed $s, t \mapsto \phi(t, s)$ is continuous

Theorem 6

[Equivalence of Containment] For a non-stationary process X(t) and a stationary process Y(s), the following are equivalent:

- ullet Y(s) is a stationary dilation of X(t)
- There exists a contractive mapping Φ from the space generated by Y to the space generated by X such that

$$X(t) = (\Phi Y)(t) \forall t \tag{4}$$

Proof. $(1 \Rightarrow 2)$: Define Φ by

$$(\Phi Y)(t) = \int_{\mathbb{R}} \phi(t, s) Y(s) ds$$
 (5)

For any finite linear combination $\sum_{i} \alpha_i Y(t_i)$:

$$\|\Phi(\sum_{i} \alpha_{i} Y(t_{i}))\|^{2} = \|\sum_{i} \alpha_{i} \int_{\mathbb{R}} \phi(t_{i}, s) Y(s) ds\|^{2}$$

$$\leq \|\sum_{i} \alpha_{i} Y(t_{i})\|^{2}$$
(6)

where the inequality follows from the bound on $\|\phi(t,s)\|$ and the Cauchy-Schwarz inequality.

 $(2 \Rightarrow 1)$: The contractive mapping Φ induces a family of operators $\phi(t,s)$ via the Kernel theorem for Hilbert spaces. The stationarity of Y and the contractivity of Φ ensure that these operators satisfy the required properties.

Lemma 7

[Minimal Dilation Property] If Y(s) is a minimal stationary dilation of X(t), then the scaling function $\phi(t,s)$ achieves the bound

$$\sup_{t,s} \|\phi(t,s)\| = 1 \tag{7}$$

Proof. If $\sup_{t,s} \|\phi(t,s)\| < 1$, we could construct a smaller dilation by scaling Y(s), contradicting minimality.

3 Structure Theory

Theorem 8

[Sz.-Nagy Dilation] For any contraction T on a Hilbert space H, there exists a minimal unitary dilation U on a larger space $K \supseteq H$ such that:

$$T^n = P_H U^n|_H \quad \forall n \ge 0 \tag{8}$$

where P_H is the orthogonal projection onto H.

Lemma 9

[Defect Operators] For a contraction T, the defect operators defined by:

$$D_T = \sqrt{I - T^* T} \tag{9}$$

$$D_{T^*} = \sqrt{I - TT^*} \tag{10}$$

satisfy:

- 1. $||D_T|| \le 1$ and $||D_{T^*}|| \le 1$
- 2. $D_T = 0$ if and only if T is an isometry
- 3. $D_{T^*} = 0$ if and only if T is a co-isometry

4 Convergence Properties

Theorem 10

[Strong Convergence] For a contractive stationary dilation, the following limit exists in the strong operator topology:

$$\lim_{n \to \infty} T^n = P_{ker(I-T^*T)} \tag{11}$$

where $P_{ker(I-T^*T)}$ is the orthogonal projection onto the kernel of $I-T^*T$.

Proof. For any x in the Hilbert space:

- 1. The sequence $\{\|T^n x\|\}$ is decreasing since T is a contraction
- 2. It is bounded below by 0
- 3. Therefore, $\lim_{n\to\infty} ||T^n x||$ exists
- 4. The limit operator must be the projection onto the space of vectors x satisfying ||Tx|| = ||x||
- 5. This space is precisely $ker(I-T^*T)$

Corollary 11

[Asymptotic Behavior] If T is a strict contraction (i.e., ||T|| < 1), then

$$\lim_{n \to \infty} T^n = 0 \tag{12}$$

in the strong operator topology.

5 Partial Isometries: The Mathematical Scalpel

Definition 12

[Partial Isometry] An operator A on a Hilbert space H is a partial isometry if A^*A is an orthogonal projection.

Remark 13. [Geometric Intuition] A partial isometry is like a mathematical scalpel that carves out a section of space:

- It acts as a perfect rigid motion (isometry) on a specific subspace
- It completely annihilates the rest of the space

This property makes partial isometries powerful tools for selecting and transforming specific parts of a Hilbert space while cleanly disposing of the rest.

Proposition 14

[Key Properties of Partial Isometries] Let A be a partial isometry. Then:

- 1. A is an isometry when restricted to $(ker(A))^{\perp}$
- 2. $A(ker(A))^{\perp} = range(A)$
- 3. A^* is also a partial isometry
- 4. $A A^* A = A \text{ and } A^* A A^* = A^*$

Theorem 15

[Geometric Characterization] For a partial isometry A:

$$A^* A = P_{(ker(A))^{\perp}} \tag{13}$$

and

$$A A^* = P_{range(A)} \tag{14}$$

where P_S denotes the orthogonal projection onto subspace S.

Proof. The action of A can be decomposed as:

1. Project onto $(ker A)^{\perp}$ (this is $A^* A$)

2. Apply a perfect rigid motion to the projected space

This two-step process ensures A^*A is the projection onto $(kerA)^{\perp}$.

Remark 16. [The "Not So Partial" Nature] Despite the name, there's nothing incomplete about a partial isometry. It performs a complete operation:

- It's a full isometry on its initial space $(ker(A))^{\perp}$
- It perfectly maps this initial space onto its final space ran(A)
- It precisely annihilates everything else

This makes partial isometries fundamental building blocks in operator theory, crucial in polar decompositions, dimension theory of von Neumann algebras, and quantum mechanics.