Section 3.5

Angular Momentum for Several Particles

Read Section 3.5.

Consider N particles, with masses m_{α} , velocities \boldsymbol{v}_{α} and positions \boldsymbol{r}_{α} .

$$\{ \alpha = 1 \ 2 \ 3 \dots N \}$$

The total angular momentum is

$$\mathbf{L} = \sum_{\alpha=1}^{\mathbf{N}} \boldsymbol{\ell}_{\alpha}$$

$$\mathbf{L} = \sum_{\alpha=1}^{\mathbf{N}} m_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{v}_{\alpha}$$

Remember: ℓ and L are defined w.r.t. O.

The importance of L ...

[I] If the internal forces are *central*, thendL/dt = the external torque.

[I] For an isolated system with central internal forces, dL/dt = 0; i.e., then L is a constant of the motion.

Figure 3.8

Figure 3.8 The vector $\mathbf{r}_{\alpha\beta} = (\mathbf{r}_{\alpha} - \mathbf{r}_{\beta})$ points to particle α from particle β . If the force $\mathbf{F}_{\alpha\beta}$ is central (points along the line joining α and β), then $\mathbf{r}_{\alpha\beta}$ and $\mathbf{F}_{\alpha\beta}$ are collinear and their cross product is zero.

What is this figure telling us?

For an isolated system with central forces, the total angular momentum is constant.

Consider a system with two isolated particles and a *central* force.

 $F_{\alpha\beta}$ = the force on α exerted by β

Consider an arbitrary origin:

$$r_{\alpha}$$
 = position vector of α

$$r_{\beta}$$
 = position vector of β

The total angular momentum is

$$\mathbf{L} = \boldsymbol{\ell}_{\alpha} + \boldsymbol{\ell}_{\beta}$$

$$= \mathbf{m}_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{v}_{\alpha} + \mathbf{m}_{\beta} \mathbf{r}_{\beta} \times \mathbf{v}_{\beta}$$

and so

$$dL/dt = \mathbf{r}_{\alpha} \times \mathbf{F}_{\alpha\beta} + \mathbf{r}_{\beta} \times \mathbf{F}_{\beta\alpha}$$

$$= (r_{\alpha} - r_{\beta}) \times F_{\alpha\beta} = r_{\alpha\beta} \times F_{\alpha\beta} = 0$$

Moment of Inertia I

- You learned this in PHY 183.
- I "Moment of inertia" is a property of a solid body.
- I.e., there is a continuum mass density, $\rho(\mathbf{r})$.
- I Often we'll have $\rho(r) = constant$, called uniform mass density.
- I Moment of inertia is defined with respect to an axis of rotation, which might be a symmetry axis of the body (but not necessarily).

<u>Definition of the moment of inertia</u>

(This is Taylor's Problem 3.30; more complete discussion in Chapter 10.)

Consider rotation about the z axis,

Divide the body into N small parts (treat them as particles) with masses m_{α} { α = 1 2 3 ... N }; then take the continuum limit N $\rightarrow \infty$ and $m_{\alpha} \rightarrow 0$ with M constant.

What is the total angular momentum?

Definition of the moment of inertia

Consider rotation about the z axis.

Let $m_{_{\alpha}}$ be one particle in the system

What is the angular momentum?

$$\vec{l}_{d} = m_{d} \vec{r}_{d} \times \vec{v}_{d}$$

$$= m_{d} (r_{d\perp} \hat{e}_{d\perp} + Z_{d} \hat{e}_{z}) \times (r_{d\perp} \omega \hat{e}_{d} \omega)$$

$$= m_{d} (r_{d\perp}^{2} \omega \hat{e}_{z} + m_{d} Z_{d} r_{d\perp} \omega (-\hat{e}_{d\perp}))$$

For uniform density,
$$\beta = \frac{M}{\int_{B} r_{\perp}^{2} dV}$$

$$I = M \frac{\int_{B} r_{\perp}^{2} dV}{\int_{B} dV}$$

Example 3.3

A lump of putty collides with a turntable

Figure 3.9 A lump of putty of mass m is thrown with velocity \mathbf{v} at a stationary turntable. The putty's line of approach passes within the distance b of the table's center O.

After the collision the lump of putty sticks to the turntable (i.e., it's an *inelastic collision*).

Note the *impact parameter* b defined in the picture.

The problem is to calculate the final angular velocity of the turntable with the lump of putty stuck to it.

§ The principle is conservation of angular momentum.

§ Before the collision (anyplace on the dashed line)

$$\vec{L} = m \left(* \hat{e}_x + y \hat{e}_y \right) * \left(v_x \hat{e}_x \right)$$

$$= m \left(-b \right) v_o \left(-\hat{e}_z \right) = m b v_o \hat{e}_z$$

§ After the collision:

$$L_{Z} = I\omega + mR^{2}\omega$$

$$= (I + mR^{2})\omega$$

$$\omega = \frac{mb \sigma_{0}}{I + mR^{2}}$$

For a disk,
$$I = \frac{1}{2}MR^2 \Rightarrow \omega = \frac{bv_0}{R^2(\frac{M}{2m} + 1)}$$

Angular momentum vector of a rigid body that rotates about an axis through the center of mass position

$$\int_{B}^{Z} \int_{CoM} \int$$

= $I_{\text{for this axis}} \omega e_{\mathbf{z}}$ because we specified that the CoM lies on the axis of rotation; $\oint e_{\mathbf{z}} d\phi = 0$

Example 3.4

A Sliding and Spinning Dumbbell

See Figure 3.10. Kick the sphere on the left—an *impulsive force*—as shown. Calculate the motion.

Figure 3.10 I he left mass of the dumbbell is given a snarp tap in the y direction.

$$M = 2m$$
 and $I = 2 m b^2$

Principles:

The impulsive force causes the center of mass to accelerate briefly; impulse $F \Delta t = \kappa$;

$$d\mathbf{P}/dt = \mathbf{F}^{\mathbf{ext}} \Rightarrow \Delta \mathbf{P} = \mathbf{F} \Delta t = \kappa \mathbf{e}_{\mathbf{v}}$$

The impulsive *torque* causes a brief angular acceleration;

$$dL_z/dt = N_z = -bF$$
 \Rightarrow $\Delta L_z = -bF \Delta t = -b\kappa$

After the impulse, the momentum and angular momentum are constant (\exists no force and \exists no torque);

$$v_{CM} = P/M = \kappa / (2m)$$

and

$$\omega = L/I = -b\kappa/I$$
 so $\omega = -v_{CM}/b$

Describe the motion after the impulsive force:

- the center of mass moves along the y axis;
- the two spheres revolve round the center of mass;
- $\mathbf{v}_{cm} = -\mathbf{b} \ \omega$

Chapter 10 (PHY 422) – the inertia tensor

Homework Assignment #6
due in class Friday, October 14
[27] Problem 3.16 *
[28] Problem 3.20 **
[29] Problem 3.22 **
[30] Problem 3.27 **
[30x] Problem 3.35 **

Use the cover sheet.