

REPORT RESTITUTION

Mikhaël KIBINDA

TITLE:

ON THE ORIGIN OF IMPLICIT REGULARIZATION IN STOCHASTIC GRADIENT DESCENT

First part:

- Literature (State of the art)
- Implementation

Second part:

- Mathematical aspect
- Implementation (complete)

Mikhaël KIBINDA

• Where does this modified loss come from ?

$$\tilde{C}_{SGD}(w) = C(w) + \frac{\epsilon}{4m} \sum_{j=1}^{m} \|\nabla \hat{C}_j(w)\|^2$$

• Backward Error Analysis

- ullet . The gradient flow follows the ODE: $\dot{\omega} = abla C(\omega)$
- This system cannot be solved analytically, we can only approximate the solution by using discrete update like Euler step:

$$\omega(t+\epsilon) \approx \omega(t) + \epsilon f(\omega(t))$$

- ullet The modified system will be $\dot{\omega}=\widetilde{f}(\omega)$ where $\widetilde{f}(\omega)=f(\omega)+\epsilon f_1(\omega)+\epsilon^2 f_2(\omega)+...$
- ullet The standard derivation of BEA begins by taking a Taylor expansion in ullet of the solution to the modified flow.

$$w_{t+n} = w_t + \alpha \tilde{f}(w_t) + \alpha \tilde{f}(w_{t+1}) + \alpha \tilde{f}(w_{t+2}) + \dots$$

$$w_{t+n} = w_t + \alpha \tilde{f}(w_t) + \alpha \tilde{f}(w_t + \alpha \tilde{f}(w_t)) + \alpha \tilde{f}(w_t + \alpha \tilde{f}(w_t) + \alpha \tilde{f}(w_t + \alpha \tilde{f}(w_t))) + \dots$$

$$w_{t+n} = w_t + n\alpha \tilde{f}(w_t) + \frac{n(n-1)}{2} \alpha^2 \nabla \tilde{f}(w_t) \tilde{f}(w_t) + O(n^3 \alpha^3)$$
(1)

When the number of step $n o \infty$ $\alpha = \epsilon/n$

$$w_{t+\epsilon} = w_t + \epsilon \tilde{f}(w_t) + (\epsilon^2/2)\nabla \tilde{f}(w_t)\tilde{f}(w_t) + O(\epsilon^3)$$

$$w_{t+\epsilon} = w_t + \epsilon f(w_t) + \epsilon^2 (f_1(w_t) + (1/2)\nabla f(w_t)f(w_t)) + O(\epsilon^3)$$
(2)

• We now derive the influence of **m** SGD updates. Following the similar approach in (1):

$$w_m = w_0 - \epsilon \nabla \hat{C}_0(w_0) - \epsilon \nabla \hat{C}_1(w_1) - \epsilon \nabla \hat{C}_2(w_2) - \dots$$

$$w_{m} = w_{0} - \epsilon \sum_{j=0}^{m-1} \nabla \hat{C}_{j}(w_{0}) + \epsilon^{2} \sum_{j=0}^{m-1} \sum_{k < j} \nabla \nabla \hat{C}_{j}(w_{0}) \nabla \hat{C}_{k}(w_{0}) + O(m^{3} \epsilon^{3})$$

$$w_m = w_0 - m\epsilon \nabla C(w_0) + \epsilon^2 \xi(w_0) + O(m^3 \epsilon^3)$$

The Euler step for SGD is: $w_{i+1} = w_i - \epsilon \nabla \hat{C}_{i\%m}(w_i)$

• The second order correction $\xi(w) = \sum_{j=0}^{m-1} \sum_{k < j} \nabla \nabla \hat{C}_j(w) \nabla \hat{C}_k(w)$ a random variable which depends on the order of the mini-batches.

$$\begin{split} \mathbb{E}(\xi(w)) &= \frac{1}{2} \left(\sum_{j=0}^{m-1} \sum_{k \neq j} \nabla \nabla \hat{C}_{j}(w) \nabla \hat{C}_{k}(w) \right) \\ &= \frac{1}{2} \nabla \sum_{j=0}^{m-1} \nabla \hat{C}_{j}(w) \sum_{k=0}^{m-1} \nabla \hat{C}_{k}(w) - \frac{1}{2} \nabla \sum_{j=0}^{m-1} \nabla \hat{C}_{j}(w) \nabla \hat{C}_{j}(w) \\ &= \frac{m^{2}}{4} \nabla \left(\|\nabla C(w)\|^{2} - \frac{1}{m^{2}} \sum_{j=0}^{m-1} \|\nabla \hat{C}_{j}(w)\|^{2} \right) \end{split}$$

• Let's compute the expected value of the SGD iterate after one epoch

$$\mathbb{E}(w_m) = w_0 - m\epsilon \nabla C(w_0) + \frac{m^2 \epsilon^2}{4} \nabla \left(\|\nabla C(w_0)\|^2 - \frac{1}{m^2} \sum_{j=0}^{m-1} \|\nabla \hat{C}_j(w_0)\|^2 \right) + O(m^3 \epsilon^3)$$
(3)

• Use (2) to obtain:

$$w(m\epsilon) = w_0 - m\epsilon \nabla C(w_0) + m^2 \epsilon^2 \left(f_1(w_0) + \frac{1}{2} \nabla \nabla C(w_0) \nabla C(w_0) \right) + O(m^3 \epsilon^3)$$

$$= w_0 - m\epsilon \nabla C(w_0) + m^2 \epsilon^2 \left(f_1(w_0) + \frac{1}{4} \nabla \|\nabla C(w_0)\|^2 \right) + O(m^3 \epsilon^3)$$
(4)

•
$$\mathbb{E}(w_{\mathrm{m}}) = w(\mathrm{m}\epsilon) + O(\mathrm{m}^{3}\epsilon^{3})$$
 and let set $\dot{w} = -\nabla C(w) + m\epsilon f_{1}(w)$ where $f_{1}(w) = -\frac{1}{4m^{2}}\nabla\sum_{j=0}^{m-1}\|\nabla\hat{C}_{j}(w_{0})\|^{2}$

• We conclude:

$$\dot{w} = -\nabla \tilde{C}_{SGD}(w)$$

$$-\nabla \tilde{C}_{SGD}(w) = -\nabla C(w) - \frac{\epsilon}{4m} \nabla \sum_{j=0}^{m-1} \|\nabla \hat{C}_j(w_0)\|^2$$

$$\tilde{C}_{SGD}(w) = C(w) + \frac{\epsilon}{4m} \sum_{j=0}^{m-1} \|\nabla \hat{C}_j(w_0)\|^2$$

IMPLEMENTATION/EXPERIMENTAL RESULTS

• For the batch_size = 64

	Train_acc	Test_acc
lr = 1e-2	0.9912	0.9256
lr = 1e-3	0.9981	0.9312
lr = 2e-2	0.112	0.1135

• For the batch_size = 32

	Train_acc	Test_acc
lr = 1e-2	0.993	0.928
lr = 1e-3	0.964	0.9655
lr = 2e-2	0.9893	0.984

IMPLEMENTATION/EXPERIMENTAL RESULTS

• For the batch_size = 16

	Train_acc	Test_acc
lr = 1e-2	0.9629	0.9637
lr = 1e-3	0.9932	0.9892
lr = 2e-2	0.9898	0.9461

After applying implicit regularization, we see the smaller we make the batch size and learning rate, the better and more significant we expect the test accuracy.

Attention is all we need, thank you for your attention !

Questions

