NSI 1ère - Données

Introduction et historique

qkzk

Comment stocker des informations dans une machine ?

Une idée relativement récente

- Machine à calculer : Antiquité
- Machine pour **stocker de l'information** : XVIIIeme siècle.

Historique sommaire

En 1725 on voit l'apparition des cartes perforées : feuilles de papier rigides sur lesquelles sont disposés des trous qui symbolisent des données.

On stockait, par exemple, les plans de conception de tricot jacquard

Technologies modernes

- l'électromagnétisme (aimants) et de la mécanique (ça tourne):
 bande, cassette, disquette et disques durs pour le stockage.
- de l'électronique pure pour la mémoire vive et la mémoire flash.
 10⁴ fois plus rapide. . .

Mémoire vive vs mémoire morte

- *mémoire vive* RAM : non persistante. Perdue sans alimentation.
- mémoire morte ROM : persistante. Écrite une fois, ne peut qu'être lue.
- mémoire de masse : persistante. Sert au stockage.
 Réinscriptible.

Pourquoi utiliser la mémoire vive si on peut la perdre ? Parce que c'est plus (beaucoup) rapide !

Objectifs

Optimiser à la fois l'espace en mémoire et les temps d'accès.

Mémoire flash

Depuis 30 ans : mémoire flash, plus rapide, sans élément mécanique, peu gourmande en énergie mais coûteuse.

Pyramide de la mémoire

On peut résumer ainsi :

- Rapide = coûteux = limité en espace
- Lent = économique = vaste en espace

Pyramide de la mémoire

Données : deux unités de mesure

Nous avons 10 doigts et comptons avec 10 chiffres.

En informatique on emploie un autre système pour représenter les nombres :

les bits 0 et 1 et les octets

- 1 bit : 0 ou 1. Unité minimale de symbole b, parfois bit.
- 1 octet : paquet de 8 bits. Symbole B (anglais pour Byte) ou
 o.

1 octet peut donc représenter $2^8 = 256$ valeurs distinctes.

Pourquoi deux unités ? Parce que

Attention aux confusions!

Données : ordre de grandeur

kilo milliers 10^3 $3,5$ kb = 3500 bits mega millions 10^6 1 Mb = 1 million d giga milliards 10^9	
giga milliards 10^9	
	${\sf bits} = 125~{\sf kB}$
téra billions 10^{12} 1 TB = 8×10^{12} b	
péta billiards 10 ¹⁵	

Quelques exemples

Objet	Espace mémoire
1 lettre	7 bits en ASCII
1 page de texte	3×10^4 bits
Disquette 3.5"	$1,44 \; \text{MB} = 1,2 \times 10^7 \; \text{bits}$
Disque dur en 1980	20 MB $= 1,6 \times 10^8$ bits
Bdd du WDCC	5000 TB $= 4 \times 10^{16}$ bits
Trafic internet (2016)	$1.56 \times 10^9 \text{ TB} = 1,25 \times 10^{22} \text{ bits}$
1 gramme d'ADN	$1,8 \times 10^{22}$ bits

Nombres en informatique.

Pourquoi les bits de données ?

Partons de ce qu'on sait faire :

- On sait construire de très petits transistors.
- On sait les concentrer sur une petite surface.
- L'amélioration des technologies permet de concentrer l'information et la puissance de calcul.

Par exemple:

- 1971 : 2300 transistors dans un processeur 4004.
- 2014 : 2,6 milliards dans un core i7 d'intel.

