

Matematyczna analiza konfliktów zbrojnych

Dyplomant: Yana Negulescu

Matematyka stosowana, W13

Promotor: dr Tomasz Stroiński

Motywacja

- ✓ Rosnące znaczenie analizy konfliktów zbrojnych dla globalnego bezpieczeństwa
- ✓ Potrzeba obiektywnego podejścia zamiast intuicyjnych ocen
- ✓ Możliwość wykorzystania metod matematycznych do prognozowania konfliktów

Cele

- Zastosowanie modelowania matematycznego do identyfikacji kluczowych czynników wpływających na przebieg wojen
- Opracowanie modelu zaproponowanego przez J. Davida Singera w projekcie Correlates of War [1][9]
- Modyfikacja modelu Singera w celu dostosowania go do nowszych danych

Teoretyczne podstawy modelu Singera: Moc państwa w systemie

Elementy zdolności [8]:

- całkowita populacja państwa,
- populacja miejska,
- konsumpcja energii przemysłowej,
- produkcja żelaza i stali,
- liczba personelu wojskowego,
- wydatki wojskowe.

Teoretyczne podstawy modelu Singera: Zmienna zależna

Zmienna odzwierciedla intensywność prowadzenia wojen, mierzona jako średni roczny czas trwania wojen międzynarodowych w miesiącach prowadzonych w badanym okresie [10]

$$WAR_{t_1 \to t_2} = \frac{1}{t} \sum_{w} \sum_{p} m_{w,p}$$

gdzie:

w – liczba wojen w okresie $t = t_2 - t_1$,

p – liczba uczestników wojen,

 $m_{w,p}$ – liczba miesięcy udziału uczestnika p w wojnie w.

Teoretyczne podstawy modelu Singera: Zmienne niezależne

Koncentracja mocy w systemie

$CON_{t_0} = \sqrt{\frac{\sum_{N_{t_0}} S_{it_0}^2 - \frac{1}{N_{t_0}}}{1 - \frac{1}{N_{t_0}}}}$

Zmiana koncentracji mocy w systemie

$$\Delta CON_{t_0 \to t_1} = \frac{CON_{t_1} - CON_{t_0}}{t_1 - t_0} \qquad MOVE_{t_0 \to t_1} = \frac{\sum_{N_t} |S_{it_1} - S_{it_0}|}{2(1 - S_{mt})}$$

llość mocy przesunięta między państwami

$$MOVE_{t_0 \to t_1} = \frac{\sum_{N_t} |S_{it_1} - S_{it_0}|}{2(1 - S_{mt})}$$

gdzie:

 S_{it_0} – moc państwa i w czasie t_0 ,

 S_{it_1} – moc państwa i w czasie t_1 ,

 N_t – liczba państw w systemie w okresie t.

 S_{mt} – państwo z najmniejszą mocą w czasie $t = t_1 - t_0$.

Źródło: [7] [10]

Teoretyczne podstawy modelu Singera: Model regresji wielokrotnej

$$WAR_{t_1 \to t_2} = \alpha + \beta_1 CON_{t_0} + \beta_2 \Delta CON_{t_0 \to t_1} + \beta_3 MOVE_{t_0 \to t_1} + \epsilon$$

gdzie:

 $WAR_{t_1 \to t_2}$ – zmienna zależna, reprezentująca wystąpienie wojny w przedziale czasu pomiędzy t_1 a t_2 ;

 CON_{t_0} – poziom koncentracji mocy w czasie t_0 ;

 $\Delta CON_{t_0 \to t_1}$ – zmiana koncentracji mocy między t_0 a t_1 ;

 $MOVE_{t_0 \to t_1}$ – ilość przesuniętej mocy między t_0 a t_1 ;

 α - stała;

 β_i - współczynnik regresji, odzwierciedlający wpływ poszczególnych zmiennych niezależnych na wystąpienie wojny; ϵ - składnik losowy.

$$t_1 - t_0 = t_2 - t_1 = \dots = t_n - t_{n-1} = t$$

Teoretyczne podstawy modelu Singera: Wersje modelu

Wersje z wskaźnikiem koncentracji mocy liczonym na początku okresu t Wersja addytywna ADD/CON LEADS

$$WAR_{t_1 \to t_2} = \alpha + \beta_1 CON_{t_0} + \beta_2 \Delta CON_{t_0 \to t_1} + \beta_3 MOVE_{t_0 \to t_1} + \epsilon$$

Wersja multyplikatywna MULT/CON LEADS

$$WAR_{t_1 \to t_2} = \alpha \cdot \beta_1^{CON_{t_0}} \cdot \beta_2^{\Delta CON_{t_0 \to t_1}} \cdot \beta_3^{MOVE_{t_0 \to t_1}} \cdot \epsilon$$

Wersje z wskaźnikiem koncentracji mocy liczonym na kóńcu okresu t Wersja addytywna MULT/CON LAGS

$$WAR_{t_1 \to t_2} = \alpha + \beta_1 CON_{t_1} + \beta_2 \Delta CON_{t_0 \to t_1} + \beta_3 MOVE_{t_0 \to t_1} + \epsilon$$

Wersja multyplikatywna MULT/CON LAGS

$$WAR_{t_1 \to t_2} = \alpha \cdot \beta_1^{CON_{t_1}} \cdot \beta_2^{\Delta CON_{t_0 \to t_1}} \cdot \beta_3^{MOVE_{t_0 \to t_1}} \cdot \epsilon$$

Źródło: [10]

Empiryczna analiza modelu Singera

Analiza dwuwymiarowa

- Współczynnik korelacji
 Pearsona (R)
- Współczynnik determinacji (R²)

Analiza wielowymiarowa

- Estymacja parametrów regresji wielokrotnej
- Współczynnik korelacji
 Pearsona (R)
- Współczynniki determinacji (R²)
- Standaryzowane
 współczynniki regresji (b)
- Współczynniki korelacji cząstkowe (r²)
- Wykres dopasowania i reszt
- MAE, MSE, Test Shapiro-Wilka

Analiza dwuwymiarowa wpływu pojedyczych zmiennych niezależnych na zmienną zależną dla lat 1950 – 2000 z t = 10

Zmienna niezależna	R	R^2
CON	- 0.56	O.31
ΔCΟΝ	0.59	0.34
MOVE	- O.62	0.38

Analiza wielowymiarowa: Estymacja parametrów modeli dla lat 1950 – 2000 z t = 10

Model	Const		CON		ΔCON		MOVE	
	α	p-wartość	β ₁	p-wartość	β2	p-wartość	β3	p-wartość
ADD / CON LEADS	528.99	0.031	-992.28	0.034	-10270	0.041	-30490	0.033
ADD / CON LAGS	528.99	0.031	-992.28	0.034	-351.87	0.378	-30490	0.033
MULT / CON LEADS	15.27	0.003	-23.59	0.005	-178.36	0.007	-813.70	0.004
MULT / CON LAGS	15.27	0.003	-23.59	0.005	57.53	0.008	-813.70	0.004

Analiza wielowymiarowa: Dopasowanie standaryzowanych modeli dla lat 1950 – 2000 z *t = 10*

Model	R	R ²	R ²	CON		ΔCON		MOVE	
				b	r ²	ь	r ²	b	r ²
ADD / CON LEADS	0.999	0.998	0.993	-2.266	0.997	-2.718	0.996	-2.155	0.997
ADD / CON LAGS	0.999	0.998	0.993	-1.677	0.997	-0.093	0.687	-2.155	0.997
MULT / CON LEADS	1.000	1.000	1.000	-1.293	1.000	-1.133	1.000	-1.381	1.000
MULT / CON LAGS	1.000	1.000	1.000	-0.957	1.000	0.365	1.000	-1.381	1.000

Wykresy dopasowania modeli w latach 1850 – 2000 dla t = 10

Analiza reszt modeli w latach 1950 – 2000 dla t = 10

Reszty mają rozkład normalny we wszystkich modelach

Podsumowanie

Porównanie z analizą Singera

Analiza nie wykazała podobieństwa wyników, co może wynikać z wykorzystania w niniejszej pracy nowszego zbioru danych

Zmiana parametru t

Modele z **t = 5** oraz **t = 10**, wykazali większą skuteczność w porównaniu do modeli z **t= 1**, to znaczy że taki krótki podział nie pozwala modeli na uchwycenie trendów

Prognozy na danych dla lat 1950 – 2000 Analiza wykaza, że modeli trenowane na nowszych danych lepiej przewidują konflikty zbrojne, niż modeli trenowane na lepsze prognozy

Co dalej?

Analiza zależności występowania konfliktów zbrojnych nie w całym systemie międzynarodowym, ale pomiędzy parami państw.

Literatura

- [1] Correlates of War Project. "State System Membership List, v2016".
- http://correlatesofwar.org, 2017. Accessed: 2025-01-10.
- [2] Humphreys, M. Natural resources, conflict, and conflict resolution: Uncovering the mechanisms. Journal of conflict resolution 49, 4 (2005), 508–537.
- [3] Lear, J. B., Macaulay, D., Sarkees, M. R. Escalation and control in international conflict: A simple feedback model 4. In Advancing Peace Research. Routledge, 2012, pp. 69–82.
- [4] Magiera, R. Modele i metody statystyki matematycznej: Wnioskowanie statystyczne. Oficyna Wydawnicza GiS, 2018.
- [5] Sarkees, M. R., Wayman, F. Resort to War: 1816 2007. CQ Press, Washington DC, 2010.

Literatura

- [6] Singer, J. D. Inter-nation influence: a formal model. American Political Science Review 57, 2 (1963), 420–430.
- [7] Singer, J. D. Variables, indicators, and data: The measurement problem in macropolitical research. Social Science History 6, 2 (1982), 181–217.
- [8] Singer, J. D. Reconstructing the correlates of war dataset on material capabilities of states, 1816–1985. International Interactions 14, 2 (1988), 115–132.
- [9] Singer, J. D. Advancing Peace Research: Leaving Traces, Selected Articles. Routledge, 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN, 2012.
- [10] Singer, J. D., Bremer, S. A., Stuckey, J. Capability distribution, uncertainty, and major power war, 1820–1965 1. In Peace, War and Numbers. Sage Publ., 1972, pp. 19–48.

Dziękuję za uwagę!