Discrete-time Fourier Transform (DTFT)

• The DTFT pair is defined as follows: Let x[n] be a discrete-time signal, $n \in \mathbb{Z}$.

Forward DTFT:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Inverse DTFT:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{n} X(e^{j\omega})e^{j\omega n} d\omega$$

Convolution of Discrete-time Signals

Definition of discrete-time convolution:

$$y[n] \equiv x[n] * h[n]$$

$$= \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

Convolution is commutative

$$y[n] \equiv x[n] * h[n] = h[n] * x[n]$$

 Similar to the definition for the continuous-time signals, but summation is used instead of integration.

Example

Example

• $h_1[n] * h_2[n]$

n	n < 0	0	1	2	3	4	5	6	n > 6
$h_1[n]$	0	1	1	1	1	0	0	0	0
$h_2[n]$	0	0	1	1	1				
$h_2[0]h_1[n]$	0	0	0	0	0	0	0	0	0
$h_2[1]h_1[n-1]$	0	0	1	1	1	1	0	0	0
$h_2[2]h_1[n-2]$	0	0	0	1	1	1	1	0	0
$h_2[3]h_1[n-3]$	0	0	0	0	1	1	1	1	0
h[n]	0	0	1	2	3	3	2	1	0

Analogous to the arithmetic multiplication

- In fact, convolution has an intuitive explanation: it is just the "arithmetic multiplication"
- Eg.,

$$x[n] = 0., 0, 5, 2, 3, 0, 0...$$

$$h[n] = 0., 0, 1, 4, 3, 0, 0...$$

• x[n] * h[n]:

Convolution result

Interpreted as Polynomial Multiplication

- Convolution can also be explained as polynomial multiplication:
- Consider f[n] * h[n]

3. Let
$$f(z) = \sum_{n=0}^{\infty} f[n]z^n$$

$$h(z) = \sum_{n=0}^{\infty} h[n] z^n$$

then g[n] is the coefficient of z^n for the polynomial g(z) obtained by g(z) = f(z) × h(z)

4.	\mathbf{f}_0	\mathbf{f}_1	f_2	f_3	f_4	f_5
h_0	$f_0 h_0$	f_1h_0	f_2h_0	f_3h_0	f_4h_0	f_5h_0
$g_0 h_1$	$f_0 h_1$	f_1h_1	f_2h_1	f_3h_1	f_4h_1	f ₅ h ₁
g_1 h_2	f_0h_2	f_1h_2	f_2h_2	f_3h_2	f_4h_2	f_5h_2
g_2 h_3	f_0h_3	f_1h_3	f ₂ h ₃	f ₃ h ₃	f ₄ h ₃	f ₅ h ₃
$g_3 h_4$	$f_0 h_4$	f ₁ h ₄	f ₂ h ₄	f ₃ h ₄	f ₄ h ₄	f_5h_4
${f g}_4$ - Summing up along the arrow gives the g[n] ${f g}_9$						

DTFT Theorems Reviews (From Oppenheim)

Linearity

$$x_1[n] \leftrightarrow X_1(e^{jw})$$
 and $x_2[n] \leftrightarrow X_2(e^{jw})$ implies that

$$a_1 x_1[n] + a_2 x_2[n] \leftrightarrow a_1 X_1(e^{jw}) + a_2 X_2(e^{jw})$$

Time shifting

$$x[n] \leftrightarrow X(e^{jw})$$

implies that

$$x[n-n_d] \longleftrightarrow e^{-jwn_d} X(e^{jw})$$

DTFT Theorems Reviews (continue)

Frequency shifting

$$x[n] \leftrightarrow X(e^{jw})$$

implies that

$$e^{jw_0n}x[n] \longleftrightarrow X(e^{j(w-w_0)})$$

Time reversal

$$x[n] \leftrightarrow X(e^{jw})$$

If the sequence is time reversed as being x[-n], then $x[-n] \leftrightarrow X(e^{-jw})$

DTFT Theorems Reviews (continue)

Differentiation in frequency

$$x[n] \longleftrightarrow X(e^{jw})$$

implies that

$$nx[n] \longleftrightarrow j \frac{dX(e^{jw})}{dw}$$

DTFT Theorems (continue)

Parseval's theorem

$$x[n] \leftrightarrow X(e^{jw})$$

implies that

$$E = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{jw})|^2 dw$$

DTFT Theorems (continue)

The convolution theorem

$$x[n] \leftrightarrow X(e^{jw})$$
 and $h[n] \leftrightarrow H(e^{jw})$,
and if $y[n] = x[n] * h[n]$, then
 $Y(e^{jw}) = X(e^{jw})H(e^{jw})$

The modulation or windowing theorem

$$x[n] \leftrightarrow X(e^{jw})$$
 and $w[n] \leftrightarrow W(e^{jw})$,
and if $y[n] = x[n]w[n]$, then

$$Y(e^{jw}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) W(e^{j(w-\theta)}) d\theta \qquad \text{Periodic convolution,}$$
$$Y(e^{jw}) = Y(e^{j(w+2\pi)})$$

DTFT Theorems (continue)

- Hence, unlike continuous Fourier transform, DTFT's time and frequency domains are not that analogous.
- For example, convolution in the time domain implies multiplication in the frequency domain.
- But multiplication in the time domain implies periodic-convolution in the frequency domain.

DTFT Pairs

$$\delta[n] \longleftrightarrow 1$$

$$\delta[n - n_0] \longleftrightarrow e^{-jwn_0}$$

$$1 \left(-\infty < n < \infty \right) \longleftrightarrow \sum_{k=-\infty} 2\pi \delta \left[w + 2\pi k \right]$$

DTFT Pairs (continue)

Real Exponentials

$$a^{n}u[n] (|a|<1) \leftrightarrow \frac{1}{1-ae^{-jw}}$$

$$u[n] \leftrightarrow \frac{1}{1-e^{-jw}} + \sum_{k=-\infty}^{\infty} \pi \delta[w+2\pi k]$$

$$(n+1)a^{n}u[n] (|a|<1) \leftrightarrow \frac{1}{(1-ae^{-jw})^{2}}$$

Example: Determining a Fourier Transform Pairwise Formulas

Suppose we wish to find the DTFT of

$$x[n] = a^{n}u[n-5], |a| < 1$$

$$x_{1}[n] = a^{n}u[n] \leftrightarrow \frac{1}{1-ae^{-jw}} = X_{1}(e^{jw})$$

$$x_{2}[n] = x_{1}[n-5]$$
Thus, $X_{2}(e^{jw}) = e^{-j5w}X_{1}(e^{jw}) = \frac{e^{-j5w}}{1-ae^{-jw}}$

$$x[n] = a^{5}x_{2}[n], \text{ so } X(e^{jw}) = \frac{a^{5}e^{-j5w}}{1-ae^{-jw}}$$

Symmetry Property

- Even function: f[n] = f[-n]
- Odd function: f[n] = -f[-n]
- If x[n] is a real-valued sequence (i.e., x[n] is real) then
 - $|X(e^{jw})| = |X(e^{-jw})|$ (magnitude is an even function)
 - $\angle X(e^{jw}) = -\angle X(e^{-jw})$ (phase is an odd function)

Example of Symmetry Properties

The Fourier transform of the real sequence

$$x[n] = a^n u[n] \text{ for } a < 1 \text{ is } X(e^{jw}) = \frac{1}{1 - ae^{-jw}}$$

Its magnitude is an even function, and phase is

Symmetry Property (cont.)

- If x[n] is both real and even, then $X(e^{jw})$ is also both real and even.
 - Eg., rectangular function, cosine function.

More detailed table for your ref.

DTFT Theorems and Properties

Property	Time Domain	Frequency Domain
Notation:	x(n)	$X(\omega)$
	$x_1(n)$	$X_1(\omega)$
	$x_2(n)$	$X_1(\omega)$
Linearity:	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(\omega) + a_2 X_2(\omega)$
Time shifting:	x(n-k)	$e^{-j\omega k}X(\omega)$
Time reversal	x(-n)	$X(-\omega)$
Convolution:	$x_1(n) * x_2(n)$	$X_1(\omega)X_2(\omega)$
Multiplication:	$x_1(n)x_2(n)$	$\frac{1}{2\pi} \int_{2\pi} X_1(\lambda) X_2(\omega - \lambda) d\lambda$
Correlation:	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$
		$= X_1(\omega)X_2^*(\omega)$ [if $x_2(n)$ real]
Frequency Differentiation:	nx(n)	$j\frac{dX(\omega)}{d\omega}$
Wiener-Khintchine:	$r_{xx}(l) = x(l) * x(-l)$	$S_{xx}(\omega) = X(\omega) ^2$

In this table, $X(e^{j\omega})$ is abbreviated as $X(\omega)$

More detailed table for your ref.

DTFT Symmetry Properties

Time Sequence	DTFT
x(n)	$X(\omega)$
$x^*(n)$	$X^*(-\omega)$
$x^*(-n)$	$X^*(\omega)$
x(-n)	$X(-\omega)$
$x_R(n)$	$X_e(\omega) = \frac{1}{2}[X(\omega) + X^*(-\omega)]$
$jx_I(n)$	$X_o(\omega) = \frac{1}{2} [X(\omega) - X^*(-\omega)]$
	$X(\omega) = X^*(-\omega)$
	$X_R(\omega) = X_R(-\omega)$
x(n) real	$X_I(\omega) = -X_I(-\omega)$
	$ X(\omega) = X(-\omega) $
	$\angle X(\omega) = -\angle X(-\omega)$
$x'_e(n) = \frac{1}{2}[x(n) + x^*(-n)]$	$X_R(\omega)$
$x'_{o}(n) = \frac{1}{2}[x(n) - x^{*}(-n)]$	$jX_I(\omega)$

In this table, $X(e^{j\omega})$ is abbreviated as $X(\omega)$