Computer Networks

Fundamental Limits (§2.1)

Topic

 How rapidly can we send information over a link?

```
Nyquist limit (~1924) »
```

Shannon capacity (1948) »

 Practical systems are devised to approach these limits

Key Channel Properties

- The bandwidth (B), signal strength (S), and noise strength (N)
 - B limits the rate of transitions
 - S and N limit how many signal levels we can distinguish

```
Bandwidth B Signal S, Noise N
```

Nyquist Limit

The maximum <u>symbol</u> rate is 2B

 Thus if there are V signal levels, ignoring noise, the maximum bit rate is:

 $R = 2B \log_2 V bits/sec$

Claude Shannon (1916-2001)

- Father of information theory
 - "A Mathematical Theory of Communication", 1948
- Fundamental contributions to digital computers, security, and communications

Electromechanical mouse that "solves" mazes!

Credit: Courtesy MIT Museum

Shannon Capacity

- How many levels we can distinguish depends on S/N
 - Or SNR, the <u>Signal-to-Noise Ratio</u>
 - Note noise is random, hence some errors
- SNR given on a log-scale in deciBels:

$$-SNR_{dB} = 10log_{10}(S/N)$$

$$\leq = 100 \Rightarrow 36 dB$$

Computer Networks

6

Shannon Capacity (2)

 Shannon limit is for capacity (C), the maximum information carrying rate of the channel:

$$C = B \log_2(1 + S/N) \text{ bits/sec}$$

Wired/Wireless Perspective

- Wires, and Fiber
 - Engineer link to have requisite SNR and B
 - → Can fix data rate
- Wireless
 - Given B, but SNR varies greatly, e.g., up to 60 dB!
 - →Can't design for worst case, must adapt data rate

Computer Networks

8

Wired/Wireless Perspective (2)

Wires, and Fiber

Engineer SNR for data rate

- Engineer link to have requisite SNR and B
- → Can fix data rate
- Wireless

Adapt data rate to SNR

- Given B, but SNR varies greatly, e.g., up to 60 dB!
- →Can't design for worst case, must adapt data rate

Computer Networks

9

Putting it all together – DSL

- DSL (Digital Subscriber Line, see §2.6.3) is widely used for broadband; many variants offer 10s of Mbps
 - Reuses twisted pair telephone line to the home; it has up to
 2 MHz of bandwidth but uses only the lowest ~4 kHz

DSL (2)

- DSL uses passband modulation (called OFDM §2.5.1)
 - Separate bands for upstream and downstream (larger)
 - Modulation varies both amplitude and phase (called QAM)
 - High SNR, up to 15 bits/symbol, low SNR only 1 bit/symbol

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey