1 Préparatifs

Dirigez-vous vers le dossier de cette semaine en exécutant la commande: cd ~/praktika/bte5024-digital/mini_project

2 Mini Project

Nous allons construire le système montré ci-dessous:

Le système possède trois blocs de contruction de base. La fonctionnalité et les exigences de ces trois blocs sont décrites par la suite.

Important: Il est interdit d'employer plusieurs différents clocks.

Exemple: Toutes les bascules ont besoin d'être cadencées avec le même cycle d'horloge de 48 MHz.

2.1 Le récepteur

Le robot contient un récepteur radio-controllé générant un signal digital comme montré ci-dessous. Le signal digital entre dans la FPGA en tant que $canal\ x$ et est un signal de type $PWM\ (Pulse\ Width\ Modulated)$.

Si la télécommande est enclenchée (sender on), le récepteur reçoit un signal périodique avec une période $\frac{1}{45}$ s $\leq T_{rep} \leq \frac{1}{55}$ s. Si la télécommande est éteinte

(sender off), le récepteur reçoit des impulsions aléatoires non périodiques. Si la télécommande est enclenchée, la largeur des impulsions signifie les actions suivantes:

- Pas de mouvements. Si la largeur d'impulsion est de 1.5 ms la roue et la gachette de la télécommande sont dans leur position milieu.
- Maximum avant/droite. Si la largeur d'impulsion est de 2.0 ms, la roue de la télécommande se trouve dans sa position maximale dans le sens horaire et la gachette est tirée dans sa position maximale.
- Maximum arrière/gauche. Si la largeur d'impulsion est de 1.0 ms, la roue de la télécommande se trouve dans sa position maximale antihoraire et la gachette est poussée dans sa position maximale.

Fonctionnalité: Le récepteur transforme les signaux digitaux reçus vers un vecteur 4 bits avec l'interprétation signe et magnitude où le bit de signe indique avant/arrière, respectivement gauche/droite. La magnitude représente la vitesse.

De plus, si la télécommande est éteinte, le récepteur devrait mettre la valeur décimale +0 sur le vecteur 4 bits. Un signal d'un seul bit indique si la télécommande est allumée (1) ou éteinte (0); ce signal peut être affiché sur une LED du robot. Indice: Pensez à la métastabilité!

2.2 L'émetteur

L'émeteur génère un signal PWM égal à celui de la télécommande lorsqu'elle est enclenchée (voir en dessus). La période du signal $T_{rep} = \frac{1}{50}s$.

Fonctionnalité: L'émetteur reçoit un vecteur 4 bits avec l'interprétation signe et magnitude, où le signe représente avant/arrière, respectivement gauche/droite et la magnitude représente la vitesse. Le récepteur transforme cette valeur S&M vers le signal PWM décrit. Indice: Pensez aux Hazards!

2.3 Le calculateur

Le calculateur reçoit les deux vecteurs 4 bits indiquant les mouvements avant/arrière et gauche/droite. Le calculateur transforme ces informations vers deux vecteurs 4 bits qui sont envoyés vers les moteurs gauche et droite. Les calculs qui doivent être entrepris sont les suivants:

• Si il n'y a pas de mouvements gauche/droite, les deux moteurs doivent fonctionner avec la même vitesse avant/arrière indiquée par les vecteurs 4 bits venant du récepteur avant/arrière.

- Si il y a des mouvements à gauche, le moteur gauche doit fonctionner, le montant indiqué par le mouvement gauche, plus lentement que le moteur droit.
- Si il y a des mouvements à droite, le moteur droit doit fonctionner, le montant indiqué par le mouvement droit, plus lentement que le moteur gauche.

Conditions requises: Il faudra uniquement générer un test-bench pour ce bloc

Indice: Pensez aux overflow et underflow!

3 Pins FPGA

Le tableau ci-dessous décrit toutes les pins sur lesquelles les leds, le clock, les moteurs et les canaux sont connectés. Vous devrez employer ce tableau pour éditer le fichier project.ucf.

Composant	Pin FPGA	Composant	Pin FPGA
Channel 1	N5	Channel 2	M8
Channel 3	M7	Left engine	R14
Right engine	T14	Clock	N9
LED 0	P13	LED 1	P12
LED 2	N11	LED 3	P11
LED 4	P10	LED 5	P9
LED 6	P8	LED 7	P7
LED 8	P6	LED 9	N6
LED 10	P5	LED 11	T2
LED 12	Т3	LED 13	R3
LED 14	T4	LED 15	T5
LED 16	R5	LED 17	Т6
LED 18	T7	LED 19	R7

4 Evaluation:

Chaque groupe dispose de 10 minutes pendant la dernière leçon du semestre pour montrer ces résultats. Les notes sont données de la manière suivante:

• **Récepteur:** Simulation correcte dans Modelsim seulement: $\frac{1}{2}$ point. Démonstration de la fonctionnalité correcte sur le robot: 1 point.

- Émetteur: Simulation correcte dans Modelsim seulement: $\frac{1}{2}$ point. Démonstration de la fonctionnalité correcte sur le robot: 1 point.
- Calculateur: Simulation correcte dans Modelsim seulement: ¹/₂ point.
 Avoir un modèle C qui marche: ¹/₂ point.
 Avoir un testbench qui marche: ¹/₂ point.
 Calculateur complet avec démonstration: 2 points.
 Par exemple ce module peut donner au maximum 2 points.
- Système complet: Système complet fonctionnant correctement sur le robot: 1 point.

Si le système n'est pas implémenté avec la représentation signe et magnitude, chaqune des parties ci-mentionnées sera punie de $-\frac{1}{4}$ de point. Points maximum: 5.