MAT218 : Algèbre multilinéaire - Courbes et surfaces

Exercice 1.

1. On considère les formes linéaires f_1 et f_2 sur \mathbb{R}^2 définies par

$$f_1(x,y) = x + y;$$
 $f_2(x,y) = x - y.$

- (a) Montrer que $\gamma^* = (f_1, f_2)$ est une base de $(\mathbb{R}^2)^*$,
- (b) Exprimer les formes linéaires g et h dans la base γ^\star :

$$g(x,y) = x$$
, $h(x,y) = 2x - 6y$.

- 2. (a) Montrer que les polynômes $u_1(X) = 1 X + X^2$, $u_2(X) = 1 + X^2$ et $u_3(X) = 1 X^2$ forment une base de $\mathbb{R}_2[X]$.
 - (b) Déterminer la base duale associée à la base (u_1, u_2, u_3) .
- 3. (a) Montrer que l'application

$$q(x, y, z) = x^2 + 3y^2 - 8z^2 - 4xy + 2xz - 10yz$$

définie une forme quadratique sur \mathbb{R}^3 .

- (b) Montrer que le cône d'isotropie de q est la réunion de deux plans dont on déterminera des équations
- (c) Déterminer la forme polaire de q.
- (d) Déterminer le noyau de q.
- 4. Considérer la forme quadratique définie sur \mathbb{R}^3 par :

$$q(x,y,z) = xy + yz + xz.$$

- (a) Déterminer la signature, le rang et une base q-orthogonale de \mathbb{R}^3 .
- (b) Soit $e_1 = (1,0,0) \in \mathbb{R}^3$. On considère $F = \mathbb{R}e_1$. Déterminer F^{\perp} .

Exercice 2.

On considère, pour $\alpha \in \mathbb{R}$, la forme quadratique

$$q_{\alpha}(x, y, z) = \alpha(x^2 + y^2 + z^2) - 2(xy + xz + yz).$$

- 1. Justifier que q_{α} est une forme quadratique pour toute valeur de α , et déterminer la forme polaire associée.
- 2. Déterminer une matrice M_{α} de q_{α} , puis le rang de q_{α} en fonction de α .
- 3. Déterminer les valeurs de α pour les quelles q_{α} est définie positive.
- 4. Réduire q_{α} en fonction des valeurs de α .
- 5. Déterminer une base q_{α} -orthogonale pour tout α . Indication : Remarquer que

$$q_{\alpha}(x,y,z) = (\alpha+1)(x^2+y^2+z^2) - (x+y+z)^2$$