Decision tree models

Yulia Newton, Ph.D.
CS156, Introduction to Artificial Intelligence
San Jose State University
Spring 2021

What are decision trees in ML?

- Can be used for both classification and regression supervised problems
 - Most often used for classification
- Sometimes referred to as CART (Classification and Regression Trees)
- Provide a way to do supervised learning in non-parametric way
 - Non-parametric

Terminology

- Decision tree hierarchical tree which can be traversed to make a decision
 - Decisions are made top to bottom, by splitting nodes into sub-nodes based on some criteria
 - Most decision trees are binary (bifurcating splits) but not a requirement
- Root the initial node in the tree
 - Initial decision on which to split
- Sub-tree a part of the decision tree with a non-root node at the root
 - Also called branch
- Splitting process of splitting a tree based on a given criteria (e.g. value of an independent variable)
- Decision node a node at which splitting occurs
- Terminal node final node at which no splitting occurs
 - Also called a leaf
- Tree pruning process of removing a sub-tree from a decision tree

Basic structure of a decision tree

Toy example

Toy example 2

• In practice decision trees are most often binary but they don't have to be

Joshua Emmanuel

Major types of decision trees

- Categorical decision trees
 - The output/dependent variable is categorical
 - Classification tasks
- Continuous variable decision trees
 - The output/dependent variable is continuous
 - Regression tasks

A few notes about decision trees

- Non-parameteric models
- Have been shown to work well in making decisions in complex scenarios/ problems
 - Can produce simpler models than other methods (feature selection)
 - We prefer smaller trees simpler explanations of dependent variable
 - Low depth, small number of nodes
 - Capture non-linear relationships well
- Both the model and its predictions are easily interpretable
- Work by computing relationships between each independent variable and the dependent variable

So how do we come up with a decision tree for a given problem?

- We pick an independent variable
 - If this variable is categorical, then we split the tree on each category
 - If this variable is continuous, then we can discretize it
 - E.g. age >= / < 18 yo
- We repeat until we only have leaf nodes
 - The faster we reach that point the better our decision tree is (shallow trees provide more robust models)

Many options for decision trees when there are multiple independent variables:

Machine Learning- Sudeshna Sarkar

Continue until can make a prediction for the dependent variable on all paths

Machine Learning- Sudeshna Sarkar

Predict new/unseen samples by following decision nodes in the tree until reach a leaf

e e	nin	g Exam _l	oles:								
е			Training Examples:								
е		Action	Author	Thread	Length	Where					
1	1	skips	known	new	long	Home					
	2	reads	unknown	new	short	Work					
e	23	skips	unknown	old	long	Work					
е	24	skips	known	old	long	home					
е	25	reads	known	new	short	home					
е	e6	skips	known	old	long	work					
New Examples:											
е	27	???	known	new	short	work					
е	8	???	unknown	new	short	work					

Machine Learning- Sudeshna Sarkar

e7 and e8: short (Length) -> new (Thread)

Assumptions of the decision tree algorithms

- The goal is to find decision nodes and the splits which optimally separate the data into correct classes
- Initially all of the independent variables are considered for the root decision node
- Continuous independent variables need to be discretized or an optimal threshold must be computed (usually using the sum of squares of the residuals)
- The ordering of decision nodes is done using statistical methods
- If all classes are correctly separated by a decision node then the split is called "pure"

How to find a good tree that models your response variable

- Fitting a tree model is called "induction of a decision tree"
- The space of all decision trees is too large to use
- We have to utilize statistical techniques to find a root decision node and then go from there
- Steps:
 - Choose a root decision node based on a statistical step
 - For each of the subtrees use the same statistical step to pick the next independent variable for the next decision node
 - Continue until a prediction can be made with all paths (e.g. reach a leaf)
 - No root-to-leaf path should contain the same discrete attribute twice

Independent variable selection for a decision node

- There are several approaches for how a root decision node is selected
 - Information Gain
 - Gini index
 - Sometimes called Gini Impurity
 - Chi-square test

Information gain

- Represents a measurement of the amount of information that is gained by using the independent variable
 - Calculated using entropy
 - Amount of uncertainty/chaos/randomness
 - The less order/organization/relationship there is, the higher the entropy is
 - Sometimes entropy is used by itself for building a decision tree (without being a part of the information gain calculation)
 - Can be thought of as expected decrease in entropy if we partition data based on this variable
- A root decision node should be the one with the highest information gain
 - Then perform information gain calculation for the remaining independent variables at each split decision
- Used by ID3 (Iterative Dicotomizer3), C4.5, and C5.0 algorithms

Entropy:

$$E(s) = \sum_{i=1}^c -p_i \log_2 p_i$$

p_i - probability of a category in a given class for a given input variable

Information gain (cont'd)

S - set of all samples A - independent variable Values(A) - all unique value categories in A (all classes in A) S_v - set of all samples where A = v

Information gain is biased to those variables with most observations

Information gain (cont'd)

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} . Entropy(S_v)$$

```
For the set X = {a,a,a,b,b,b,b,b}  
Total intances: 8  
Instances of b: 5  
Instances of a: 3  
EntropyH(X) = -\left[\left(\frac{3}{8}\right)log_2\frac{3}{8} + \left(\frac{5}{8}\right)log_2\frac{5}{8}\right] 
= -[0.375 * (-1.415) + 0.625 * (-0.678)] 
= -(-0.53-0.424) 
= 0.954
```

geeksforgeeks.org

S - set of all samples A - independent variable Values(A) - all unique value categories in A (all classes in A) S_v - set of all samples where A = v

Gini index

- Remember that splitting data into correct classes on an independent variable means the split is pure
- Gini index/impurity likelihood that a randomly chosen observation is incorrectly classified by a given decision node
 - How much the model deviates from a pure split
 - Values are in [0,1] interval
 - 0 pure split
 - 1 random split
 - A variable with lower Gini index is preferred

Gini index (cont'd)

$$Gini = 1 - \sum_{i=1}^n (p_i)^2$$

https://blog.paperspace.com/decision-trees/

Gini index (cont'd)

Independent variables Response variable

	4				\leftarrow
INDEX	A	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	1.2	positive
3	5	3.4	1.6	0.2	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.7	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

We choose some split values for our independent variables:

A	В	С	D
>= 5	>= 3.0	>= 4.2	>= 1.4
< 5	< 3.0	< 4.2	< 1.4

Calculating Gini Index for Var A:

Value >= 5: 12

Attribute A >= 5 & class = positive: $\frac{5}{12}$

Attribute A >= 5 & class = negative: $\frac{l}{12}$

Gini(5, 7) = 1 -
$$\left[\left(\frac{5}{12} \right)^2 + \left(\frac{7}{12} \right)^2 \right] = 0.4860$$

Value < 5: 4

Attribute A < 5 & class = positive: $\frac{3}{4}$

Attribute A < 5 & class = negative: $\frac{1}{4}$

Gini(3, 1) = 1 -
$$\left[\left(\frac{3}{4}\right)^2 + \left(\frac{1}{4}\right)^2\right] = 0.375$$

By adding weight and sum each of the gini indices:

$$gini(Target, A) = \left(\frac{12}{16}\right) * (0.486) + \left(\frac{4}{16}\right) * (0.375) = 0.45825$$

geeksforgeeks.org

Chi-square test

- Remember from statistics that Chi-square distribution models variance
- Chi-square method finds statistical significance of the variations that exist between parent nodes and their children nodes
 - Observed vs. expected frequencies of the dependent variable value
- This method can perform multiple splits at a single decision node

$$chi-square = \sqrt{rac{(Actual-Expected)^2}{Expected}}$$

https://blog.paperspace.com/decision-trees/

Regularization in decision trees

- Just like with other types of models we can use regularization to prevent overfitting the model
 - Regularization adding small bias to the model to minimize model variability (performs well on the training data but not on new data)
- We add regularization in a heuristic way (hard to implement Ridge or Lasso methods with decision trees)
 - We add "limiting" hyper-parameters to the decision tree model to restrict finding the "best fit" tree

Regularization in decision trees (cont'd)

Some of the regularization parameters

- Max_depth: It is the maximal length of a path that is from root to leaf. Leaf nodes are
 not split further because they can create a tree with leaf nodes that takes many
 inspections on one side of the tree whereas nodes that contain very less inspection get
 again split.
- 2. Min_sample_spilt: It is the limit that is imposed to stop the further splitting of nodes.
- 3. <u>Min_sample_leaf:</u> A min number of samples that a leaf node has. If leaf nodes have only a few findings it can then result in overfitting.
- 4. <u>Max_leaf_node</u>: It is defined as the max no of leaf nodes in a tree. (Relatable <u>article</u>: What are the Model Parameters and Evaluation Metrics used in Machine Learning?)
- 5. <u>Max_feature_size:</u> It is computed as the max no of features that are examined for the splitting for each node.
- 6. <u>Min_weight_fraction_leaf:</u> It is similar to min_sample_leaf that is calculated in the fraction of total no weighted instances.

https://www.analyticssteps.com/blogs/introduction-decision-tree-algorithm-machine-learning

Tree pruning

- Another way to add regularization to a decision tree is by pruning it
- Pruning has been shown to significantly improve prediction accuracy
- Types of pruning
 - Pre-pruning
 - Replace stop criterion in the decision tree induction
 - Minimum information gain or max Gini index
 - More efficient than post-pruning (do not need to run induction on the whole training set)
 - Pre-mature termination
 - Post-pruning
 - A way to simplify a tree after induction is completed
 - Decision nodes and sub-trees are replaced with leaf nodes
 - At random or in some systematic way

Tree post-pruning example 1

https://www.cs.cmu.edu/~bhiksha/courses/10-601/decisiontrees/

Tree post-pruning example 2

medium.com

Regression trees

- Instead of predicting a categorical outcome variable regression trees predict a continuous variable
- The leaf values are usually computed as an average dependent variable value across all observations in that node

Probability of kyphosis after surgery:

en.wikipedia.org

Regression trees predict a continuous outcome

https://www.saedsayad.com/decision_tree_reg.htm

Advantages of using decision trees

- Have been shown to work well in making decisions in complex scenarios/problems
- Can produce simpler models than other methods
- Capture non-linear relationships well
- Can deal with continuous as well as categorical variables
- Both the model and its predictions are easily interpretable and do not require special expertise
- Requires little to no data preprocessing

Disadvantages of using decision trees

- Might change a lot if there are even small changes to the training data
- Large trees are harder to interpret
- Without regularization can grow a lot in depth

Random forest models

- An ensemble learning method based on decision trees
 - A forest of decision trees
- Create a number of different decision trees from subsets of the independent variables
- Useful for datasets with large number of features (independent variables)
- Solves the tendency of single decision trees to overfit the model to the training data
- Average the prediction across multiple decision trees in the forest

Random forest models (cont'd)

Majority classification is Class 1

https://towardsdatascience.com

Random forest models (cont'd)

Tally: Six 1s and Three 0s **Prediction: 1**

https://towardsdatascience.com

Gradient boosting models

- Decision tree based model that aggregates less accurate models into a more accurate model
 - We usually mean shallow decision trees
 - Each weak predictor compensates the weaknesses of its predecessor predictors
- Boosting reduces model bias
- Big idea: one is weak, together we are strong, learning from past is the best

Train-test cycle:

https://www.akira.ai/glossary/gradient-boosting/

Gradient boosting vs. random forest

https://medium.com

Gradient boosting models (cont'd)

https://towardsdatascience.com

Some concluding remarks

- Let's look at some python code examples in Jupyter notebooks
 - DecisionTrees.Breast.ipynb