Lab2 Stage 2

Sarthak(2020CS10379)

February 2022

1 Introduction

Single Cycle Multi Component Processor Design in VHDL. Created Components such as Program Counter, Flags and Condition Checker for this stage.

2 Program Counter

The Program Counter is updated by an increment of 4 in every rising edge of the clock cycle. But if we have an offset and a branch instruction then the Program counter is updated by the respective offset + 8.

2.1 Inputs

- PCin x1(32 Bit standard Logic Vector)
- Clk x1(1 bit standard logic clock)
- Predicate x1(1 bit standard logic)
- Offset x1(24 bit standard logic vector)

2.2 Output

• PCout (32 Bit Standard Logic Vector)

3 Flags

The Flags are conditionally updated on every clock cycle.

3.1 Inputs

• carryout: The carry output from ALU

• op1: The first input for ALU

• op2: The second input for ALU

- result: The result of operation from ALU
- S: Standard Logic Selector

3.2 Outputs

- Z: Zero Flag, 0 when result not equal to 0, 1 when result equals 0.
- N: Negative Flag, 1 when result is negative (32nd bit is 1) else 0.
- V: Overflow Flag = op1(31) xor op2(31) xor result(31) xor carryoutput.
- C: Carry Flag = 33nd bit of result

How DP instructions affect Flags C, V, Z, N

	Effect on Flags		
Instructions	if S -bit = 0	if S -bit = 1 and	if S -bit = 1 and
		no shift/rotate	shift/rotate is there
add, sub, rsb, adc, sbc, rsc	No flags are affected	All 4 flags are affected, ALU carry is used	
cmp, cmn	All 4 flags are affected, ALU carry is used		
and, orr, xor, bic,	No flags are affected	Only Z and N are	C, Z and N are affected
mov, mvn		affected	shift/rotate carry is used
tst, teq	Only Z and N are affected		simulotate carry is used

4 Condition Checker

It checks the Cond and outputs the Predicate based on the values of Z flag.

4.1 Inputs

- Cond: 28th and 29th bits of the Instruction
- Z Flag

4.2 Outputs

 \bullet Predicate: Standard Logic which implies branch when 1 and not branch when 0.

5 Gluing Circuit

The fundamental Logic for the Gluing Circuit came from the Diagram in page 40 of Lec 9:

5.1 Inputs

- Clk: Standard Logic Synchronized Clock
- Reset: Standard Logic, Program counter goes to 0 when reset = 1

The individual components i.e. ALU, DataMemory, ProgramMemory, Register-Files, ProgramCounter, Flags and ConditionChecker are glued using the port maps of signals and "If" & "else" statements are used to imitate the multiplexers according to DP/DT/Branch instructions.

The period of the clock is 10 ns and hence a runtime of around 100 ns is expected to be inputted in the Playground.

