NASA Technical Memorandum

NASA TM - 86456

TESTING AND EVALUATION OF VESPEL UP TO 450°F WHEN USED IN NUTS AND BOLTS AS A SELF-LOCKING ELEMENT

By Carl M. Wood

Materials and Processes Laboratory Science and Engineering

August 1984

George C. Marshall Space Flight Center

1. REPORT NO.		NICAL REPORT STANDARD TITLE PAGE 3. RECIPIENT'S CATALOG NO.
NASA TM - 86456	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
4. TITLE AND SUBTITLE		5. REPORT DATE
Testing and Evaluation of Ve	spel* up to 450°F When Use	ed August 1984
in Nuts and Bolts as a Self-I	ocking Element	6. PERFORMING ORGANIZATION CODE
		EH44
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT #
Carl M. Wood 9. PERFORMING ORGANIZATION NAME AND A		10. WORK UNIT NO.
9. PERFORMING ORGANIZATION NAME AND AL	DURESS	10. WORK BRIT NO.
George C. Marshall Space Fli	rht Contor	11. CONTRACT OR GRANT NO.
Marshall Space Flight Center,	-	
marshar bpace riight center,	Magama 00012	13. TYPE OF REPORT & PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS	3	
National Assumpting and English	a Administration	Technical Memorandum
National Aeronautics and Space Washington, D.C. 20546	se Administration	
washington, D.C. 20040		14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES		
	onoggos Ishanatamy Sajana	e and Engineering
Prepared by Materials and Pr	ocesses Laboratory, Science	e and mignicering.
* A DuPont SP-1 polyimide pr	roduct	
16. ABSTRACT		
the Solid Rocket Booster to re nuts and be used as self-lock locking elements were tested theating to 450°F and exposure at a level consistent with the The investigation reveale capability for threaded fastene nuts for installation on the SF requirements for reuse, however nuts/anchor nuts that fully ments.	eplace all-metal deformed seeing elements for bolts and for prevailing torque retents for 3 hr, breakaway torque maximum expected on the seed of the s	screws. The Vespel self- cion at room temperature, after ue at 450°F and for vibration SRB at lift-off and reentry. at can provide a self-locking be used in nuts and anchor its did not meet all our SRB ign for Vespel elements in nuts/anchor nuts be pro- ie galling problems now
17. KEY WORDS	18. DISTRIBUTIO	N STATEMENT
Fastener, Bolt, Nut, Anchor N		classified — Unlimited
Torque, Self-locking, Vibratio	π, δομα	classified Unfillified
Rocket Booster, Tensile Streng	gth, A-286,	
Inconel 718, MP35N		
19. SECURITY CLASSIF. (of this report)	20. SECURITY CLASSIF. (of this page)	21. NO. OF PAGES 22. PRICE

Unclassified

Unclassified

41

NTIS

ACKNOWLEDGMENTS

The information reported in this document is based on extensive work accomplished with the assistance of Annette Maddox, William Norton, Joseph Montano, Wendell De Weese, Calvin Kelly, Jim McGee, Clifton Kirby and R. Morris.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
PROCUREMENT OF FASTENERS FOR THE TESTING INVESTIGATION	2
TEST PLAN FOR EVALUATION OF VESPEL AS A SELF-LOCKING ELEMENT IN BOLTS	2
TEST PLAN FOR ANCHOR NUTS WITH VESPEL SELF-LOCKING ELEMENTS	10
RESULTS AND DISCUSSION OF TESTS ON FASTENERS INSTALLED	
WITH VESPEL SELF-LOCKING ELEMENTS	10
CONCLUSIONS	33
RECOMMENDATIONS	34

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Bolts used for evaluation of Vespel self-locking elements	3
2.	Free running nut used for evaluation of Vespel self-locking elements	4
3.	Anchor nut with Vespel self-locking element	5
4.	Test and evaluation plan for investigation of Vespel self-locking elements	6
5.	Fixture used in vibration tests on bolts installed with Vespel self-locking elements	8
6.	NAS 1958C50M bolts with two Vespel self-locking strip elements before torque testing	13
7.	NAS 1958C50M bolts with two Vespel self-locking strip elements after torque testing	14
8.	NAS 1954C50M, NAS 1958C50M, and NAS 1962C50M bolts showing Vespel self-locking strip elements before	
	torque testing	16
9.	Vibration test set-up for Vespel self-locking elements	17

LIST OF TABLES

Table	Title	Page
1.	Comparison of Self-Locking Element Size Requirements and Vendor Supplied Elements	7
2.	Torque Requirements for Self-Locking Elements	8
3.	Vibration Criteria for Evaluation of Vespel Self-Locking Elements	9
4.	Test Results of 180 KSI Ftu Bolt Tensile Testing	11
5.	Summary of 50 Cycle Torque Test Results on 180 KSI A-286 Self-Locking Bolts with Vespel Round Elements and Non-Locking Nuts at Room Temperature and After Three Hours Exposure at 450°F	18
6.	Summary of 15 Cycle Torque Test Results on 180 KSI A-286 Self-Locking Bolts with Vespel Strip Elements and Non-Locking Nuts at Room Temperature and After Three Hours Exposure at 450°F	19
7.	Results of 50 Cycle Room Temperature Torque Tests on NAS 1954C50M (1/4 in.) Bolts with Round Vespel Self-Locking Elements	20
8.	Results of 50 Cycle Room Temperature Torque Tests on NAS 1958C50M (1/2 in.) Bolts with Round Vespel Self-Locking Elements	21
9.	Results of 50 Cycle Room Temperature Torque Tests on NAS 1962C50M (3/4 in.) Bolts with Round Vespel Self-Locking Elements	22
10.	Results of 50 Cycle Room Temperature Torque Tests on 450°F Heat-Conditioned NAS 1954C50M (1/4 in.) Bolts with Round Vespel Self-Locking Elements	23
11.	Results of 50 Cycle Room Temperature Torque Tests on 450°F Heat-Conditioned NAS 1958C50M (1/2 in.) Bolts with Round Vespel Self-Locking Elements	24
12.	Results of 11 Cycle Room Temperature Torque Tests on 450°F Heat-Conditioned NAS 1962C50M (3/4 in.) Bolts with Round Vespel Self-Locking Elements	25
13.	Results of 15 Cycle Room Temperature Torque Tests on NAS 1954C50M (1/4 in.) Bolts with Vespel Self-Locking Strip Elements	26
14.	Results of 15 Cycle Room Temperature Torque Tests on NAS 1958C50M (1/2 in.) Bolts with Vespel Self-Locking Strip Elements	27

LIST OF TABLES (Concluded)

Table	Title	Page
15.	Results of 15 Cycle Room Temperature Torque Tests on NAS 1962C50M (3/4 in.) Bolts with Vespel Self-Locking Strip Elements	28
16.	Results of 15 Cycle Room Temperature Torque Tests on 450°F Heat-Conditioned NAS 1954C50M (1/4 in.) Bolts with Vespel Self-Locking Strip Elements	29
17.	Results of 15 Cycle Room Temperature Torque Tests on 450°F Heat-Conditioned NAS 1958C50M (1/2 in.) Bolts with Vespel Self-Locking Strip Elements	30
18.	Results of 15 Cycle Room Temperature Torque Tests on 450°F Heat-Conditioned NAS 1962C50M (3/4 in.) Bolts with Vespel Self-Locking Strip Elements	31
19.	Results of Breakaway Torque Tests at 450°F on NAS 1954C50M (1/2 in.) Bolts with Vespel Self-Locking Strip Elements	32
20.	Results of 60 Room Temperature Torque Tests on Anchor Nut, P/N 109VA21-79-048, With Vespel Self-Locking Ring Element	33
21.	Results of Torque Testing with Vespel Self-Locking Elements Installed in Bolts	35

TECHNICAL MEMORANDUM

TESTING AND EVALUATION OF VESPEL UP TO 450°F WHEN USED IN NUTS AND BOLTS AS A SELF-LOCKING ELEMENT

INTRODUCTION

Self-locking nuts made from A-286 and other corrosion resisting (CRES) materials are widely used on the Solid Rocket Booster (SRB). Because the CRES self-locking nuts are made with a deformed section at the top of the nut there have been numerous cases of seizing or galling after one or only a few times reuse. The severity of the problem is evidenced by the high number of requests for an alternative method to achieve self-locking of the fastener assembly.

The bolts used on the SRB are mostly manufactured from CRES materials and with ultimate tensile strength levels of 180 KSI Ftu and higher. These bolts are made from A-286, Inconel 718, and MP35N and all are subject to seizing from repeated use with CRES self-locking nuts. Military Specification MIL-F-18240, Fastener, Externally Threaded, 250°F, Self-Locking Element For, covers performance levels for non-metallic elements which can be used to provide a self-locking element at temperatures from -65°F to 250°F. An extension of the temperature level to 450°F would be highly desirable. There are no self-locking bolts with non-metallic elements that are qualified to 450°F use temperature.

Self-locking nuts used on the SRB are purchased to conform to a document which requires reuse for 15 installation and removal cycles with each size having a maximum and minimum torque value limit. The document requires reuse cyclic testing to be made without an axial load on the bolt, therefore, it does not simulate actual installation conditions.

We have been convinced the galling problem was the result of interference at the deformed portion of the all-metal nut, therefore, a locking devise could be required on the nut or bolt which would eliminate interference between the nut and bolt thread. One potential material is "Vespel", which is a registered name for a Dupont product and is made from SP-1 polyimide. Parts made from Vespel have high mechanical strength, excellent wear resistance, low creep and low outgassing properties and are highly desirable for non-metallic elements for use in self-locking nuts and bolts. Several vendors can supply Vespel self-locking elements installed in threaded fasteners but its wide use is limited by higher initial cost.

The object of this investigation was to determine if Vespel has a potential to qualify for use as a self-locking element at a temperature up to 450°F. It would provide MSFC with reusable nut and bolt design configurations that use non-metallic self-locking elements up to 450°F and, therefore, would make possible the selection of a fastener system that would eliminate galling and greatly increase its reuse potential.

^{*} Vespel, a DuPont product made from polyimide resin, Type SP-1.

PROCUREMENT OF FASTENERS FOR THE TESTING INVESTIGATION

The controlling document for bolts used by the Government is Military Specification MIL-F-18240 which covers performance for self-locking elements to be used in bolts and screws. Using this document as a guide, a test program evolved for an investigation of the Vespel element which included most of the performance requirements of MIL-F-18240 plus temperature level raised from 250°F to 450°F and changing vibration to replicate the SRB at lift-off and reentry. The fasteners were changed to A-286 CRES material with threads made to conform to MIL-S-8879, Screw Threads, Controlled Radius Root with Increased Minor Diameter; General Specification For.

Fastener sizes selected for the test program were 1/4, 1/2 and 3/4 in. diameter. Purchased bolts were made from A-286 per AMS 5731 or AMS 5737 and conformed to Standard NAS 1953 through 1970 (Fig. 1) except thread length was longer. Vespel SP-1 self-locking elements were specified for installation and composance with MS15981, Fasteners, Externally Threaded, Self-locking, Design and Usage Limitations For, and MIL-F-18240.

Nuts selected to be tested with the self-locking bolts were purchased to conform to Standard NAS 1805 but with a self-locking feature (Fig. 2). The nuts were made from A-286 per AMS 5737 and the dry film lubricant conformed to MIL-L-8937, Lubricant, Solid Film, Heat Cured, Corrosion Inhibiting.

Two lug, floating, regular height, self-locking anchor nuts were procured with nuts made from A-286 per AMS 5732 or AMS 5737 and with a Vespel SP-1 self-locking element and threads lubricated per MIL-L-8937 (Fig. 3). The nut was specified to have 125 KSI minimum tensile strength and comply with MIL-N-25027, Nut, Self-Locking, 250°F, 450°F and 800°F, 125 KSI Ftu, 60 Ksi Ftu and 30 KSI Ftu. (A similar anchor nut made from carbon steel is available on Military Standard MS14179 and it provides minimum tensile strength of 160 KSI and 500 seated reuse cycles.)

TEST PLAN FOR EVALUATION OF VESPEL AS A SELF-LOCKING ELEMENT IN BOLTS

Our test plan (Fig. 4) consisted essentially of the same criteria as given in MIL-F-18240 but with maximum temperature raised to 450°F. A description of the testing criteria is given in the following sections.

Examination of Product

Two types of self-locking elements were evaluated after being installed in three bolt sizes with bare and dry film lubricated threads. The round elements were installed in bare bolts and the two strips were installed in dry film lubricated bolts. A comparison of the round and strip self-locking element sizes given in MIL-F-18240 and those actually tested is given in Table 1.

Tensile Strength

Three bolts each of NAS 1954C50M, NAS 1958C50M and NAS 1962C50M, except with a longer thread, were tested for ultimate tensile strength.

Figure 1. Bolts used for evaluation of Vespel self-locking elements.

Figure 2. Free running nut used for evaluation of Vespel self-locking elements.

Figure 3. Anchor nut with Vespel self-locking element.

Figure 4. Test and evaluation plan for investigation of Vespel self-locking elements.

Torque, Maximum Locking and Minimum Breakaway

Ten new bolts of NAS1954C50M, NAS1958C50M and NAS1962C50M with round and strip self-locking elements were tested for compliance to the room temperature requirements of MIL-F-18240 (Table 2). Each installation consisted of installing the nut until two thread pitches were exposed. The nut was rotated an additional one-fourth turn and the highest torque level was recorded. Minimum breakaway torque was measured as the torque required to start removal from the installed position.

Torque, Maximum Locking and Minimum Breakaway with Heat-Conditioned Bolts

This test consisted of heating ten new bolts of each size with installed nuts to 450°F, holding for 3 hr, and cooling to room temperature in less than 1 hr. The bolts and nuts were then tested for maximum locking and minimum breakaway torque as specified above.

Minimum Breakaway Torque at 450°F

One lot of 10 heat conditioned NAS1958C50M bolts with dry film lubricated threads and two Vespel strips were installed with nuts, heated and tested for break-away torque after 1 hr at 450°F.

Vibration Tests

A fixture was designed and fabricated to incorporate five bolt and nut assemblies and it was used for vibration testing of NAS 1954C50M, NAS 1958C50M, and NAS 1962C50M bolts made with self-locking elements. The fixture and fastener

TABLE 1. COMPARISON OF SELF-LOCKING ELEMENT SIZE REQUIREMENTS AND VENDOR SUPPLIED ELEMENTS

Î

B ² NOMINAL INCH	.214	.291	.377	C ² NOMINAL INCH	.361	.550	.665
		.261		C ¹ MAX MIN INCH	.267	.375	
B ¹ MAX MIN INCH	191. 162.	301			.437	.684	
		-		D ² NOMINAL INCH	.080	.105	.105
A ² NOMINAL INCH	.100	.147	.220	o Min INCH		.035	Ø55
1 XIX NIX	898	.146	-209	E ² NOMINAL INCH			. 440
A A MIN INCH	.144	.166	.235	T. Y.	.267	.375	.416
				E ¹ MAX MIN INCH	.437	.684	666.
BOLT THREAD SIZE	1/4-28UNF-3A	1/2-20UNF-3A	3/4-10UNF-3A	BOLT THREAD SIZE	1/4-28UNF-3A	1/2-20UNF-3A	3/4-10UNF-3A
ROUND CONFIGURATION		W	₩ — ¥ — — — — — — — — — — — — — — — — —	STRIP CONFIGURATION D	*	_ ↓ ↓	

NOTES:

^{1.} REQUIRED BY MIL-F-1824Ø 2. DIMENSIONS OF VENDOR SUPPLIED ELEMENT 3. MULTIPLY INCH X 0.0254 TO CONVERT TO METER

TABLE 2. TORQUE REQUIREMENTS FOR SELF-LOCKING ELEMENTS (At room temperature in inch-pounds)

Bolt Size	Maximum Torque (Installation or Removal)	Minimum Breakaway Torque
0.250-28 UNJF-3A	30	3.5
0.500-20 UNJF-3A	150	18.0
0.750-16 UNJF-3A	400	50.0

Note: Maximum locking torque limit can be increased 50 percent on heat-conditioned bolts.

assemblies are shown in Figure 5. The first vibration test was made with round Vespel elements installed in bare bolts assembled with nuts made to conform with NAS 1805 except they were coated with Kaylube dry film lubricant instead of lubricant conforming to MIL-L-8937. Prior to initiation of the test, the nuts were installed and removed four times to expose two thread pitches on each bolt and the maximum locking and minimum breakaway torque was checked for compliance to MIL-F-18240. On the fifth installation cycle the locking torque was checked again and, thereafter, the 1/4 in. nuts were torqued to 60 lbf-in., 1/2 in. nuts torqued to 300 lbf-in., and the 3/4 in. nuts torqued to 800 lbf-in.

Figure 5. Fixture used in vibration tests on bolts installed with Vespel self-locking elements.

The SRB has a wide range of vibration criteria and it was decided to use criteria representing the envelope with the maximum applicable zonal criteria. Therefore, the criteria given in Table 3 was used to simulate conditions the fastener would encounter if used in that specific location. The fasteners were vibrated in accordance with the Flight Random Vibration Criteria to simulate five flights in each of the "X", "Y" and "Z" axes of the SRB. The fasteners were then vibrated in accordance with the Reentry Random Vibration Criteria to simulate five flights in each of the three axes.

TABLE 3. VIBRATION CRITERIA FOR EVALUATION OF VESPEL SELF-LOCKING ELEMENTS

Flight Random	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Composite = 47.2 g _{rms} Test Time = 840 sec	
Reentry Random	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Composite = 68.3 g_{rms} Test Time = 210 sec	

A second vibration test, essentially the same as noted, was made using the same fixture but with different fasteners. This time five lubricated 1/4 in. diameter NAS 1954C50M bolts were installed in dry film lubricated anchor nuts, P/N 109VA21-79-048, installed with Vespel self-locking ring elements. Three lubricated and two bare 1/2 in. diameter NAS 1958C50M bolts with two Vespel self-locking strip elements were assembled with lubricated NAS 1805 nuts. Three lubricated 3/4 in. diameter NAS 1962C50M bolts with two Vespel self-locking elements were assembled with lubricated NAS 1805-12 nuts. In order to prevent damage to the vibration equipment two changes were made to the Random Reentry Vibration Criteria. 60 Hz to 97 Hz at 4.0 $\rm G^2/Hz$ was changed to 60 Hz to 97 Hz at 2.0 $\rm g^2/Hz$ and 120 Hz at 9.12 Hz at 9.12 $\rm G^2/Hz$ was changed 120 Hz to 200 Hz at 8.0 $\rm G^2/Hz$. The second set of fasteners was tested in accordance with the Flight Random Vibration Criteria for 480 sec with equal time in each axis. If inspection of fasteners revealed no failures, they were tested in accordance with the revised Reentry Random Vibration Criteria for 210 sec total with equal time in each axis.

Reusability

After each series of torque tests were completed, the bolts and nuts were examined for damage to the threads or self-locking elements.

TEST PLAN FOR ANCHOR NUTS WITH VESPEL SELF-LOCKING ELEMENTS

The Navy has issued Military Standard MS14179, Nut, Plate, Self-Locking, Floating, Two Lug, Reduced Rivet Spacing, Steel, (Vespel Insert), 500 Cycles Reuse, Replaceable Nut, 160 KSI Ftu, 450°F, but this nut configuration cannot be used on the SRB because it does not have enough corrosion resistance. Since MS14179 was issued on 30 January 1979, one vendor has received qualification approval, therefore, our testing was limited to reuse at room temperature with A-286 bolts and CRES anchor nuts purchased for this investigation. It was decided to torque test the anchor nuts for conformance to MIL-N-25027 for 50 reuse cycles at room temperature without seating plus 10 additional cycles with 90 lbf-in. seating torque.

RESULTS AND DISCUSSION OF TESTS ON FASTENERS INSTALLED WITH VESPEL SELF-LOCKING ELEMENTS

Examination of Product

Ninety of the bare bolts with round Vespel self locking elements were examined for defects and the only deficiency was the presence of excessive burrs and slivers on the periphery of holes for the round elements. Thirty each of the 3 sizes were later modified by removing the round elements and two Vespel strips were installed plus the application of a dry film lubricant per MIL-L-8937 (Kal Gard Type FA). The 1/4 in. NAS 1954C50M bolts were installed with two strips instead of one as required in MIL-F-18240.

Round Vespel elements were removed from three bolts each of the 1/4 in., 1/2 in. and 3/4 in. diameter in order to inspect threads for compliance to MIL-S-8879 using Method "A" gaging methods. All threaded portions of the bolts were inspected with "GO" and "LO" thread ring gages and all failed to pass due to burrs and slivers. After an extensive clean-up, the bolt threads passed the thread inspection check.

Tensile Strength

Three bolts each of NAS 1954C50M (1/4 in.), NAS 1958C50M (1/2 in.) and NAS 1962C50M (3/4 in.) were tested to determine their tensile strength as required in NAS 19531953 through 1970 and MIL-F-18240. Threaded adapters instead of nuts were installed to within two thread pitches of thread run-out and tests were conducted in accordance with MIL-STD-1312, Test No. 8. The tensile strength results of individual bolts are shown in Table 4.

Surprisingly, the 3/4 in. diameter bolts failed to pass the tensile test and it was decided to perform a metallurgical evaluation on all nine bolts. It revealed the cause of head failure in the 1/2 in. and 3/4 in. diameter bolts was due primarily

TABLE 4. TEST RESULTS OF 180 KSI Ftu BOLT TENSILE TESTING

				-بــَــ						
TYPE OF	TALLONE.			BOLT THREAD	BOLT HEAD					
/3 YIELD	rbs.	6,540	6,075	6,630	24,000	23,850	22,500	55,200	62,400	57,000
JOHNSON'S 2/3 YIELD	NEWTONS	29,090	27,020	29,490	106,760	106,090	100,090	245,550	277,580	253,560
LOAD	LBS.	7,900	7,800	8,300	31,680	32,400	32,280	000,49	68,200	63,400
ULTIMATE LOAD	NEWTONS	35,140	34,700	36,920	140,920	144,130	143,590	284,690	303,350	282,020
PART NO.		NAS1954C50M	NAS1954C50M	NAS1954C50M	NAS1958C50M	NAS1958C50M	NAS1958C50M	NAS1962C50M	NAS1962C50M	NAS1962C50M
NOMINAL		1/4-28	1/4-28	1/4-28	1/2-20	1/2-20	1/2-20	3/4-16	3/4-16	3/4-16
SAMPLE NO.			7	m	7	2	9	7	∞	6

NOTES:
1. NAS 1954 MINIMUM TENSILE STRENGTH IS 6,980 LBS.
2. NAS 1958 MINIMUM TENSILE STRENGTH IS 30,900 LBS.
3. NAS 1962 MINIMUM TENSILE STRENGTH IS 71,100 LBS.

to the reduction of hardness and strength in the head to shank area which was caused by the hot heading operation during manufacturing, and secondarily to the head design associated with shear bolts.

Torque, Maximum Locking and Minimum Breakaway

Ten each of the NAS 1954C50M, NAS 1958C50M, and NAS 1962C50M bolts installed with round Vespel self-locking elements and assembled with NAS 1805 nuts were tested for torque at room temperature for 50 cycles or failure. Ten NAS 1954C50M, nine NAS 1958C50M, and one NAS 1962C50M passed the room temperature torque test. A summary of torque test results for the round Vespel self-locking elements is shown in Table 5 and individual results are shown in Tables 7 through 9.

Ten each of the three lubricated bolt sizes installed with two Vespel self-locking strip elements and assembled with NAS 1805 nuts were tested for torque at room temperature for 15 cycles or failure. Ten NAS 1954C50M,, ten 1958C50M, and seven NAS1962C50M bolts passed the room temperature torque test. A summary of results for the strip self-locking elements is shown in Table 6 and individual results are shown in Tables 13 through 15. Figures 6 and 7 illustrate NAS 1958C50M (1/2 in.) bolts with two Vespel self-locking strip elements before and after torque testing for 15 cycles. Figure 8 illustrates all three bolt sizes with two Vespel strip elements installed in the bolt threads.

Torque, Maximum Locking and Minimum Breakaway with Heat Conditioned Bolts

Ten each of the NAS 1954C50M, NAS 1958C50M, and NAS 1962C50M bolts installed with round Vespel self-locking elements and assembled with NAS 1805 nuts were heated for 3 hr at 450°F and, after cooling to room temperature, were torque tested for 50 cycles or failure. Eight 1/4 in., seven 1/2 in., and no 3/4 in. diameter bolts passed the torque test for heat-conditioned bolts. A summary of test results is shown in Table 5 and individual results are shown in Tables 10 through 12.

Ten each of the three lubricated bolt sizes installed with two Vespel self-locking strip elements and assembled with NAS 1805 nuts were heated for 3 hr at 450°F and, after cooling to room temperature, were torque tested for 15 cycles or failure. All three bolt sizes passed the 15 cycle reuse torque test for heat-conditioned bolts. A summary of test results is shown in Table 6 and individual results are shown in Tables 16 through 18.

Torque, Minimum Breakaway Test at 450°F

Ten NAS 1958C50M (1/2 in.) bolts previously tested as heat-conditioned bolts (3 hr at 450°F) were again heated to 450°F and held for 1 hr. At this time the nuts were tested for breakaway torque and all ten bolts passed. The test results are shown in Table 19.

Vibration Testing

Five each of the NAS 1954C50M, NAS 1958C50M, and NAS 1962C50M bare shank bolts fabricated with round Vespel self-locking elements were installed in a vibration test fixture and assembled with dry film lubricated NAS 1805 nuts. These fasteners

Figure 6. NAS 1958C50M bolts with two Vespel self-locking strip elements before torque testing.

NAS 1958C50M bolts with two Vespel self-locking strip elements after torque testing. Figure 7.

were vibrated to criteria representing a five mission Shuttle flight and all fasteners passed because there was no nut rotation. Figure 9 illustrates the fasteners and fixture mounted on the vibration machine.

When it was decided to use dry film lubricated bolts and nuts, a second round of vibration testing became necessary. This time the fixture included the following:

Item	Quantity	Description
1	5	Bolt, NAS 1954C50M, Lubricated per MIL-L-8937
2	5	Anchor Nut, P/N 109VA21-79-048, Lubricated
3	2	Bolt, NAS 1958C50M, Bare
4	3	Bolt, NAS 1958C50M, Lubricated per MIL-L-8937
5	5	Nut, NAS 1805-8, Lubricated
6	3	Bolt, NAS 1962C50M, Lubricated per MIL-L-8937
7	3	Nut, NAS 1805-12, Lubricated

The second set of fasteners was tested to the same Flight Random Vibration Criteria as the first set but the Reentry Random Vibration Criteria level was reduced which resulted in a composite level of 65.6 $\rm g_{rms}$ instead of 68.3 $\rm g_{rms}$. This change was required to prevent damage to the vibration machine. The time represented a four mission Shuttle flight. Fasteners were removed and reinstalled four times after completing vibration in each of the three axes. Locking and breakaway torque was measured on each cycle and torque values remained within tolerance. This second lot of fasteners passed the vibration test and nut rotation was not evident on any of the three fastener sizes.

Reusability

After the 15 and 50 cycle reuse torque testing was completed on the bare and lubricated fasteners they were carefully examined for any thread defects or other problems. The nut threads were visually inspected and checked with thread plug gages and no evidence of deformation or galling was revealed in all the nuts. The bolt threads were visually inspected and checked with "Snap" thread gages and no problems were evident. The anchor nut threads were checked with plug gages up to the self-locking element and all five parts passed.

There was a problem with the Vespel strip element. During the reuse torque tests, the strips usually broke within approximately 1/16 in. from the end of the strip. The broken portion was subsequently driven to a position which was determined by how many times the nut was rotated.

The five anchor nuts passed the 50 cycle torque reuse tests without any significant problems (Table 20). The only discrepancy was higher torque values than allowed in documents covering this type of nut. In order to apply some preload the bolts were torqued to 90 lbf-in. for ten additional reuse testing cycles and the Vespel self-locking ring element continued to perform satisfactorily with only a slight reduction in torque values.

Figure 8. NAS 1954C50M, NAS 1958C50M, and NAS 1962C50M bolts showing Vespel self-locking strip elements before torque testing.

Figure 9. Vibration test set-up for Vespel self-locking elements.

BOLTS WITH VESPEL ROUND ELEMENTS AND NON-LOCKING NUTS AT ROOM TEMPERATURE AND AFTER THREE HOURS EXPOSURE AT 450°F TABLE 5.

Torque Tests at Room Temperature	Failure to Comply With MIL-F-18240	7R 8R 9R 10R 50 50 50 50	17R 18R 19R 20R 50 29 50 50	27R 28R 29R 30R 50 (8) 38 24	Torque Tests at Room Temperature After 3 Hours Soak at 450°F	Failure to Comply with MIL-F-18240	37R 38R 39R 40R 50 50 50 50	47R 48R 49R 50R 50 50 50 50	57R 58R 59R 60R
t Room Te	at	6R 50	16R 50	26R 32	erature Af	at	36R 50	46R 50	56R
Tests a	or Cycles	5R 50	15R 50	25R) 18	om Tempe	or Cycles	35R 42	45R 50	55R
Torque	s Tested	4R 50	3 14R 50	R 24R 2) (13)	sts at Ro	s Tested	34R 41	t 44R 37	t 54R
	o./Cycle	3R 50	R 13R 50	R 23R) (12)	rque Tes	o./Cycle	R 33R 50	R 43R) 35	R 53R
	Fastener No./Cycles	R 2R	.R 12R	R 22R	To	Fastener No./Cycles	R 32R	R 42R	R 52R
, a		1R 50	11R 50	21R (6)		Fa	31R 50	41R 50	51R
Torque, max. & min.	lbf-in.	30/3.5	150/18	400/50			45/3.5	225/18	600/50
Bolt Size	Inch	0.250	0.500	0.750			0.250	0.500	0.750

Cycles noted () indicates failure to pass 15 cycle reuse requirement in MIL-F-18240 Torque values were checked after nut was installed with two thread pitches exposed. Bolts were bare and NAS 1805 nuts were coated with Kaylube dry film lubricant. 3 25 1 Notes:

SUMMARY OF 15 CYCLE TORQUE TEST RESULTS ON 180 KSI A-286 SRLF-LOCKING BOLTS WITH VESPEL STRIP ELEMENTS AND NON-LOCKING NUTS AT ROOM TEMPERATURE AND AFTER THREE HOURS EXPOSURE AT 450°F TABLE 6.

Bolt Nom.	Torque Regd. max.				Torque Tests at Room Temperature	lests at	Room Te	emperatu	lre		
inch	Breakaway lbf-in.	Faster	Fastener No./Cycles		Tested or	r Cycles	at	Failure to Co	Comply wi	with MIL-F-18240	F-18240
0.250	30/3.5	1S 15	2S 15	3S 15	4S 15	5S 15	6S 15	7S 15	8S 15	9S 15	10S 15
0.500	150/18	11S 15	12S 15	13S 15	14S 15	15S 15	16S 15	17S 15	18S 15	19S 15	20S 15
0.750	400/50	21S 15	22S (14)	23S 15	24S 15	25S 15	26S 15	27S (7)	28S 15	29S 15	30S (8)
		Ă	Torque Tests	at	Room Temperature After 2 Hours	nperatur	e After	2 Hours	Soak at	450°F	(232°C)
		Fastene	ner No./	r No./Cycles Tested	rested or	r Cycles	at	re to C	Failure to Comply with MIL-F-18240	th MIL-	F-18240
0.250	45/3.5	31S 15	32S 15	33S 15	34S 15	35S 15	36S 15	37S 15	38S 15	39S 15	40S 15
0.500	225/18	41S 15	42S 15	43S 15	44S 15	45S 15	46S 15	47S 15	48S 15	49S 15	50S 15
0.750	600/50	51S 15	52S 15	53S 15	54S 15	55S 15	56S 15	57S 15	58S 15	59S 15	60S 15

Cycles noted () indicates failure to pass 15 cycle reuse requirement in MIL-F-18240. Torque values were checked after nut was installed with two thread pitches exposed. Bolts were coated with lubricant per MIL-L-8937 (Kal Gard FA) NAS1805 nuts were coated with Kaylube dry film lubricant. Notes:

RESULTS OF 50 CYCLE ROOM TEMPERATURE TORQUE TESTS ON NAS 1954C50M (1/4 in.) BOLTS WITH ROUND VESPEL SELF-LOCKING ELEMENTS TABLE 7.

					,
	OFF	16 11 11	11 10 10 8 8	umber 10R	27 14 15 13 11 11
	NO	16 13 10	- 20 20 20 20 CO	Bolt Nı	32 11 12 12 10 9
, lbf-in.	OFF	17 15 12	110 110 8 8	mber 9R	19 10 10 10 10 10 9
Torque	NO	18 13 8	n co co −1 co co co	Bolt Nu	13 10 10 10 10 9
ı	OFF	20 18 14	12 12 10 10	mber 8R	17 12 10 13 13 9 6 6
1	NO	22 15 12 11	10 10 10 8	Bolt Nu	18 12 10 10 7 7 5
(ON)	OFF	21 17 14	11 12 11 11 11	mber 7R	18 12 13 12 12 12 12 12
Installatic	NO	18 14 11	111 10 9 9	Bolt Nu	20 111 12 10 10 10 110
	OFF	20 14 13	111 100 10 8 9	mber 6R	20 19 13 13 11 11
	NO	19 12 11 11	10 10 6 8 8 7	Bolt Nu	22 112 10 11 10 9 9
Jacon Name of the Control of the Con		1 8 9 6	112 122 30 40 50		1 6 9 112 30 40 50
	ation (ON) and Breakaway (OFF) Torque,	ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON	Installation (ON) and Breakaway (OFF) Torque, lbf-in. ON OFF ON OFF ON OFF ON 19 20 18 21 22 20 18 17 16 12 14 14 17 15 18 13 15 13 11 13 11 14 12 14 10 12 10 11 12 13 11 12 14 10 12 10	Installation (ON) and Breakaway (OFF) Torque, lbf-in. ON OFF ON OFF ON OFF ON 19 20 18 21 22 20 18 17 16 11 14 17 15 18 13 15 13 11 12 14 12 14 10 12 10 10 11 14 10 12 8 11 7 9 10 9 12 10 12 8 10 8 8 9 11 10 12 10 12 8 7 8 9 9 11 9 10 6 8 6 7 9 9 11 8 10 5 8 6	ON OFF ON ON OFF ON ON OFF ON

MIL-F-18240 requirement for torque is 30 lbf-in. maximum ON and 3.5 lbf-in. minimum OFF breakaway. Notes:

Torque values were checked after nut was installed with two thread pitches exposed. % 6 7

RESULTS OF 50 CYCLE ROOM TEMPERATURE TORQUE TESTS ON NAS 1958C50M (1/2 in.) BOLTS WITH ROUND VESPEL SELF-LOCKING ELEMENTS TABLE 8.

		Т									T					_						
umber 15R		OFF	72	36		98	36	32	28	25		Number 20R	44	31	27	24	23	24	22	21	19	20
Bolt Number		NO	74 40	31	32	7 7 8 7 8	34	29	22	24		Bolt N	20	34	56	24	24	24	56	20	18	19
mber 14R	e, lbf-in.	OFF	70	39	45	41	34	32	26	18		Number 19R	44	28	28	27	25	26	22	21	21	20
Bolt Number) Torque	ON	75 43	38	41	35	33	28	21	18		Bolt Nu	39	26	23	22	23	22	20	19	18	20
Bolt Number 13R	Breakaway (OFF)	OFF	62 35	28	26	22	27	25	24	21		Number 18R	09	40	35	31	28	24	21	at		
Bolt Nu	and Breal	ON	62 30	22	5 6	23 21	 26	24	21	18		Bolt Nu	62	35	33	26	24	23	20	Failed	Cycle	,
Number 12R	llation (ON) 8	OFF	42 28	87	22	27	26	25	22	19		Number 17R	50	40	32	33	31	31	33	25	28	24
Bolt Nu	Installat	NO	43	23	20	7 7 7	27	22	21	18		Bolt Nu	58	37	37	33	90	31	31	26	22	19
Bolt Number 11R		OFF	50 35	28	23	21	26 26	24	26	20		Number 16R	58	35	36	39	35	34	30	26	26	24
Bolt Nu		NO	45 30	30	24	217	21	$\frac{1}{21}$	22	18		Bolt Nı	55	32	37	37	34	32	24	24	21	20
Cycle	Number		7	9	o (1 T	20	308	40	20			*	ന	9	o	12	15	20	30	40	20

MIL-F-18240 requirement for torque is 150 lbf-in. maximum ON and 18 lbf-in. minimum OFF breakaway. Torque values were checked after nut was installed with two thread pitches exposed. Notes:

Bolts were bare and NAS 1805 nuts were coated with Kaylube dry film lubricant. 4 w

RESULTS OF 50 CYCLE ROOM TEMPERATURE TORQUE TESTS ON NAS 1962C50M (3/4 in.) BOLTS WITH ROUND VESPEL SELF-LOCKING ELEMENTS TABLE 9.

Bolt Number 25R		ON OFF	160 100 100 95	.25 80 70 65			Failed at	Cycle No. 18	Bolt Number 30R	190 130	_		02 02	09 02	55 45	Failed at	Cycle No. 15		
Bc		O	1				щ	0	BC		1	7				14	0		
Bolt Number 24R	e, lbf-in.	OFF	105 110	08	20	20	at	No. 13	mber 29R	113	80	75	75	09	09	65	65	at	No. 38
Bolt Nu	F) Torque,	ON	155 115	105 85	55	45	Failed	Cycle No.	Bolt Number	100	80	22	20	09	09	09	20	Failed	Cycle No.
mber 23R	Breakaway (OFF)	OFF	08 08	80 80	35	45	at	No. 12	mber 28R	100	75	22	40	40	40	at	No. 8		
Bolt Number	and Breał	ON	120 85	75 75	45	20	Failed	Cycle No.	Bolt Number	100	82	70	40	40	40	Failed	Cycle		
Number 22R	Installation (ON)	OFF	75 75	40 40	35		at	No. 4	Number 27R	100	80	0.2	20	75	65	09	65	09	09
Bolt Nu	Installat	ON	95 95	45	40	22	Failed	Cycle No.	Bolt Nu	112	06	85	80	75	20	80	65	09	65
Bolt Number 21R		OFF	100 90	45 45	45	45		No. 6	mber 26R	140	115	06	100	85	20	09	20	at	Vo. 32
Bolt Nu		ON	100 120	55 48	48	20	Failed	Cycle No	Bolt Number	150	140	80	120	100	80	65	02	Failed	Cycle No.
Cycle	iv winder		3 1	မ က	12	15	20	30 40 50		-	က	9	6	12	15	20	30	40	20

MIL-F-18240 requirement for torque is 400 lbf-in. maximum ON and 50 lbf-in. minimum OFF breakaway. Notes:

Torque values were checked after nut was installed with two thread pitches exposed. Bolts were bare and NAS 1805 nuts were coated with Kaylube dry film lubricant. લું હ

450°F TABLE 10. RESULTS OF 50 CYCLE ROOM TEMPERATURE TORQUE TESTS ON HEAT-CONDITIONED NAS 1954C50 (1/4 in.) BOLTS WITH ROUND VESPEL SELF-LOCKING ELEMENTS

					11	
Bolt Number 35R		ON OFF	8 6 6 6 6 6 5 5		Cycle No. 42 Bolt Number 40R	4444444444 6666666
Bolt Number 34R	ue, lbf-in.	OFF	w 4 4 4	1	ed at tle No. 1 Number 39R	11 9 7 7 6 6 6 5 5
Bolt N	F) Torque,	NO	ကကက		Cycle No Bolt Numb	0
Number 33R	Breakaway (OFF)	OFF	4400	20400	4 Number 38R	4 4 4 4 4 4 6 4 6
Bolt N	and Brea	NO	ক ক ক ক	44544	Bolt N	ਰਾ ਰਾ ਰਾ ਰਾ ਰਾ ਰਾ ਰਾ ਰਾ
Number 32R	(NO)	OFF	10 8 7 8	. 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Number 37R	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Bolt Nı	Installation	NO	6 7 9	ພວນເວຍ	#	იიის იი ი ი ი 4
Number 31R		OFF	18 15 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Number 36R	ତ ଦ ଦ ର ର ର ର ର ର
Bolt Nu		NO	12 14 14 14	11 11 10 10 10 10 10 10 10 10 10 10 10 1	ا بداا	გი44440 ი 00
Cycle	N ulli Defr		1 8 9 6	12 15 20 30 40	Or I	1 6 9 112 20 30 40 50

MIL-F-18240 requirement for torque is 45 lbf-in. maximum ON and 3.5 lbf-in. minimum OFF breakaway. Notes:

Torque values were checked after nut was installed with two thread pitches exposed. Bolts were bare and NAS 1805 nuts were coated with Kaylube dry film lubricant. 0, E

RESULTS OF 50 CYCLE ROOM TEMPERATURE TORQUE TESTS ON 450°F HEAT-CONDITIONED NAS 1958C50M (1/2 in.) BOLTS WITH ROUND VESPEL SELF-LOCKING ELEMENTS TABLE 11.

				-														-			
umber 45R		OFF	25 25	25	25	25	25	20	25	1	Number 50R	20	20	20	25	25	25	25	25	21	26
Bolt Number		NO	25 25	20	20 20 20	20	20	18	20 18	o f	Bolt Nu	20	20	20	20	20	25	25	25	25	25
umber 44R	e, lbf-in.	OFF	25 20	20	20 20	20	20		at No. 37		Number 49R	25	20	20	20	20	20	20	20	19	18
Bolt Number) Torque,	NO	20 20	20	70 70 70	20	20	18	Failed		Bolt Nı	25	20	20	20	20	20	20	20	22	20
umber 43R	Breakaway (OFF)	OFF	20 20						at No. 35		Number 48R	25	30	20	20	20	20	20	20	23	25
Bolt Number	and Breal	NO	20 20	20	70 70 70	20	22	20	Failed Cycle		Bolt Nu	25	22	25	22	22	25	20	20	24	25
Number 42R	lation (ON) a	OFF	15 10	10	10	10	at	No. 1			Number 47R	25	20	20	20	20	20	50	20	21	22
Bolt Ni	Installat	NO	20 10	10	10	10	Failed	Cycle			Bolt Nı	25	20	20	20	20	20	20	20	22	20
umber 41R		OFF	25 25	20	70 70 70	20	20	20	22 18		Number 46R	30	25	25	22	25	25	30	28	30	27
Bolt Number		NO	25 25	20	70 70	20	70	20	21		Bolt Nu	35	25	22	25	25	25	25	22	26	27
Cycle	n umper		-1 es	9 (12	15	20	30	40 50 0				က	9	6	12	15	20	30	40	20

MIL-F-18240 requirement for torque is 225 lbf-in. maximum ON and 18 lbf-in. minimum OFF breakaway. 1: Notes:

Torque values were checked after nut was installed with two thread pitches exposed. Bolts were bare and NAS 1805 nuts were coated with Kaylube dry film lubricant. લું સ

RESULTS OF 11 CYCLE ROOM TEMPERATURE TORQUE TESTS ON 450°F HEAT-CONDITIONED NAS 1962C50M (3/4 in.) BOLTS WITH ROUND VESPEL SELF-LOCKING ELEMENTS TABLE 12.

=

Bolt Number 55R		OFF	38	40	48	40	26	d at	Cycle No. 1	Bolt Number 60R	35	42	34	38	42	d at	Cycle No. 1
Bolt N		ON	32	35	43	45	29	Failed	Cycle	Bolt N	30	30	28	32	35	Failed	Cycle
Bolt Number 54R	e, Ibf-in.	OFF	51	52	39	48	50	at	No. 4	umber 59R	75	40	41	42	45	at	No. 2
Bolt Nu	') Torque,	NO	40	46	32	42	42	Failed at	Cycle No.	Bolt Number	73	32	31	32	40	Failed at	Cycle No.
Bolt Number 53R	daway (OFF)	OFF	40	32	30	20	45	at	Cycle No. 1	Bolt Number 58R	30	38	39	20	30	at	No. 1
Bolt Nu	nd Brea	NO	40	30	29	40	40	Failed at	Cycle	Bolt Ni	28	28	30	43	28	Failed at	Cycle No.
Number 52R	lation (ON) and Breakaway	OFF	09	42	09	58	56	at	No. 2	Number 57R	52	40	29	30	36	ed at	No. 2
Bolt Nı	Installat	NO	50	40	52	48	52	Failed	Cycle No.	Bolt No	52	40	23	29	31	Failed	Cycle No.
Bolt Number 51R		OFF	09	42	45	48	45	at	No. 3	Bolt Nnumber 56R	40	40	37	52	09	at	No. 1
Bolt Nı		NO	58	40	38	48	46	Failed at	Cycle No	Bolt Ni	32	40	38	42	52	Failed at	Cycle No
Cycle				က	9	6	11				H	က	9	6	11		

MIL-F-18240 requirement for torque is 600 lbf-in. maximum ON and 50 lbf-in. minimum OFF breakaway. Notes:

Torque values were checked after nut was installed with two thread pitches exposed. Bolts were bare and NAS 1805 nuts were coated with Kaylube dry film lubricant. 3 %

RESULTS OF 15 CYCLE ROOM TEMPERATURE TORQUE TESTS ON NAS 1954C50M (1/4 in.) BOLTS WITH VESPEL SELF-LOCKING STRIP ELEMENTS TABLE 13.

Γ	Г			_					н	-						
Bolt Number 5S		OFF	25	14	14	13	13	13		Number 10S	26	17	16	15	14	14
Bolt		ON	24	13	13	11	11	11		Bolt	25	15	13	13	14	13
umber 4S	e, lbf-in.	OFF	21	16	16	15	16	17		Number 98	23	16	14	16	16	15
Bolt Number	F) Torque,	NO	20	14	14	14	14	15		Bolt Nı	22	14	15	14	14	14
umber 3S	Breakaway (OFF)	OFF	24	15	15	14	13	14		Number 8S	34	16	17	14	13	16
Bolt Number	and Break	ON	24	14	14	13	12	13		Bolt Nu	30	15	15	13	11	13
Number 2S	lation (ON)	OFF	20	15	14	14	14	15		Number 7S	29	14	13	13	12	14
Bolt Nu	Installat	NO	20	12	12	12	13	13		Bolt Nu	26	13	12	10	11	11
umber 1S		OFF	23	14	14	14	12	14		mber 6S	25	19	18	16	18	18
Bolt Number		NO	19	13	12	12	12	12		Bolt Number	2.1	16	16	13	15	15
Cycle			₩	က	9	6	12	15			₩	က	9	6	12	15

MIL-F-18240 requirement for torque is 30 lbf-in. maximum ON and 3.5 lbf-in. minimum OFF breakaway. ij Notes:

Torque values were checked after nut was installed with two threads exposed. 2 es 4

Bolts were coated with lubricant per MIL-L-8937 (Kal Gard FA). NAS 1805 nuts were coated with Kaylube dry film lubricant.

RESULTS OF 15 CYCLE ROOM TEMPERATURE TORQUE TESTS ON NAS 1958C50M (1/2 in.) BOLTS WITH VESPEL SELF-LOCKING STRIP ELEMENTS TABLE 14.

THE RESIDENCE OF THE PROPERTY AND PERSONS ASSESSMENT OF THE PERSONS AS

								1						
mber 15S		160	135	08	20	65	09	Number 20S	165	06	80	0.2	70	65
Bolt Number		135	95	65	55	22	55	Bolt Nu	135	65	45	45	45	40
Bolt Number 14S	, lbf-in.	145	115	06	80	02	75	Number 19S	140	92	65	22	20	50
Bolt Nu) Torque,	130	100	20	09	55	55	Bolt Nu	125	20	45	45	40	40
Bolt Number 13S	away (OFF)	110	75	55	20	20	50	mber 18S	155	80	70	09	55	20
Bolt Nu	and Breakaway	92	65	45	40	40	40	Bolt Number	145	20	55	20	45	45
Number 12S	(NO)	160	115	80	09	09	55	Number 17S	170	115	06	06	82	75
Bolt Nu	Installation	135	100	65	55	55	20	Bolt Nu	140	95	0.2	70	70	09
Bolt Number 11S		170	110	80	0.2	02	02	Bolt Number 16S	150	115	100	95	70	06
Bolt Nu		140	06	09	09	55	55	Bolt Nu	130	95	80	75	09	75
Cycle	Number	н	က	9	6	12	15		H	က	9	6	12	15 ·

MIL-F-18240 torque requirements are 150 lbf-in. maximum ON and 18.0 lbf-in. minimum OFF breakaway.

Torque values were checked after nut was installed with two threads exposed. Bolts were coated with lubricant per MIL-L-8937 (Kal Gard FA). NAS1805 nuts were coated with Kaylube dry film lubricant. 2. 6. 4.

RESULTS OF 15 CYCLE ROOM TEMPERATURE TORQUE TESTS ON NAS 1962C50M (3/4 in.) BOLTS WITH VESPEL SELF-LOCKING STRIP ELEMENTS TABLE 15.

Bolt Number 25S		300	190	140	120	110	100	ımber 30S	180	100	80	65	65	09
Bolt Nu		400	140	100	90	110	75	Bolt Number	140	75	55	40	45	35
Bolt Number 24S	e, lbf-in.	375	200	150	145	145	115	umber 29S	300	150	120	115	110	100
Bolt Nu) Torque,	350	150	120	105	110	82	Bolt Number	275	100	82	75	75	75
Bolt Number 23S	lation (ON) and Breakaway (OFF)	425	175	120	110	110	105	mber 28S	175	200	175	160	155	150
Bolt Nu	nd Break	400	115	80	75	20	70	Bolt Number	260	150	115	100	100	92
Number 22S	on (ON) a	200	82	70	09	09	55	Number 27S	150	100	09	55	55	20
Bolt Nu	Installati	175	75	55	20	20	45	Bolt Nu	185	75	20	40	40	40
Bolt Number 21S		375	160	130	100	06	80	Bolt Number 26S	300	175	140	125	125	115
Bolt Nu		375	100	80	20	65	65	Bolt Nu	260	115	95	82	82	08
Cycle	Jagiiin	1	က	9	6	12	15		П	က	9	6	12	15

MIL-F-18240 requirement for torque is 400 lbf-in. maximum and 50 lbf-in. minimum Notes:

OFF breakaway.

Torque values were checked after nut was installed with two thread pitches exposed. NAS 1805 nuts were coated with Kaylube dry film lubricant. Bolts were coated with dry film lubricant per MIL-L-8937 (Kal Gard FA). a; e; 4;

TABLE 16. RESULTS OF 15 CYCLE ROOM TEMPERATURE TORQUE TESTS ON 450°F HEAT-CONDITIONED NAS 1954C50M (1/4 in.) BOLTS WITH VESPEL SELF-LOCKING STRIP ELEMENTS

=

									11							
mber 35S		OFF	36	24	22	22	22	22		mber 40S	28	17	15	16	16	14
Bolt Number		ON	33	22	19	19	17	17		Bolt Number	25	16	14	13	14	12
nber 34S	, lbf-in.	OFF	26	20	18	20	20	19		Number 39S	21	16	15	16	17	17
Bolt Number	') Torque,	ON	23	18	16	16	18	15		Bolt Nur	19	16	13	13	15	14
mber 33S	away (OFF)	OFF	27	17	16	15	17	14		Number 38S	26	13	12	13	12	12
Bolt Number	and Breakaway	NO	24	15	14	12	13	11		Bolt Nu	24	14	11	11	10	10
Number 32S	(NO)	OFF	30	10	10	10	10	10		Number 37S	35	28	24	24	24	28
Bolt Nu	Installation	NO	26	10	∞	6	6	6		Bolt Nu	32	25	20	20	21	21
mber 31S		OFF	36	23	21	22	22	22		mber 36S	22	13	13	14	15	14
Bolt Number		NO	33	20	20	19	19	1.7		Bolt Number	20	12	12	11	12	11
Cycle	Number		 1	က	9	6	12	15				က	9	6	12	15

MIL-F-18240 requirement for torque is 45 lbf-in. maximum and 3.5 lbf-in. minimum OFF breakaway. Notes:

Torque values were checked after nut was installed with two thread pitches exposed. NAS 1805 nuts were coated with Kaylube dry film lubricant. Bolts were coated with dry film lubricant per MIL-L-8937 (Kal Gard FA). ა. 4.

RESULTS OF 15 CYCLE ROOM TEMPERATURE TORQUE TESTS ON 450°F HEAT-CONDITIONED NAS 1958C50M (1/2 in.) BOLTS WITH VESPEL SELF-LOCKING STRIP ELEMENTS TABLE 17.

Bolt Number 45S		OFF	210	140	120	95	06	06	mber 50S	155	75	09	09	50	45
Bolt Nu		NO	180	105	90	75	80	20	Bolt Number	155	70	09	45	45	45
Bolt Number 44S	, lbf-in.	OFF	170	06	80	55	09	09	Number 49S	140	80	09	45	45	40
Bolt Nu) Torque,	ON	150	75	65	20	55	55	Bolt Nu	130	09	45	35	35	20
Bolt Number 43S	away (OFF)	OFF	190	110	92	65	80	82	Number 48S	170	06	02	20	20	20
Bolt Nu	and Breakaway	ON	165	82	20	20	55	09	Bolt Nu	155	80	09	45	40	45
Number 42S	(ON)	OFF	180	110	100	85	0.2	70	Number 47S	180	80	09	55	20	09
Bolt Nu	Installation	ON	155	95	82	65	65	0.2	Bolt Nu	155	65	09	45	45	20
Bolt Number 41S		OFF	160	75	75	20	20	20	nber 46S	180	110	82	55	20	55
Bolt Nu	ļ	NO	140	2.0	09	20	55	20	Bolt Number	165	95	80	20	45	55
Cycle			-	က	9	6	12	15		-	က	9	6	12	15

MIL-F-18240 requirement for torque is 225 lbf-in. maximum and 18 lbf-in. minimum OFF breakaway. Notes:

Torque values were checked after nut was installed with two thread pitches exposed. NAS 1805 nuts were coated with Kaylube dry film lubricant. Bolts were coated with dry film lubricant per MIL-L-8937 (Kal Gard FA).

ა. ა. 4.

RESULTS OF 15 CYCLE ROOM TEMPERATURE TORQUE TESTS ON 450°F HEAT-CONDITIONED NAS 1962C50M (3/4 in.) BOLTS WITH VESPEL SELF-LOCKING STRIP ELEMENTS TABLE 18.

									П	Т						
umber 55S		OFF	435	200	180	150	130	140		umber 60S	285	100	06	80	75	80
Bolt Number		NO	375	150	150	125	115	115		Bolt Number	260	06	20	09	55	22
mber 54S	, lbf-in.	OFF	425	125	110	95	06	06		mber 598	375	175	160	135	115	115
Bolt Number) Torque,	NO	375	100	100	80	75	80		Bolt Number	310	125	120	105	82	82
mber 53S	away (OFF)	OFF	350	150	160	135	135	135		mber 58S	410	150	120	95	06	85
Bolt Number	and Breakaway	ON	275	125	120	100	100	100		Bolt Number	350	125	100	80	65	65
Number 52S	(NO)	OFF	250	150	130	110	110	110	11	Number 57S	425	160	145	120	120	120
Bolt Nu	Installation	ON	235	140	115	100	95	92	11	Bolt Nu	375	125	125	100	92	92
mber 51S		OFF	350	135	140	120	110	110		Bolt Number 56S	410	150	145	120	120	120
Bolt Number		NO	300	100	120	100	06	06		Bolt Nu	350	125	110	85	06	82
Cycle	Number		H	က	9	6	12	15				က	9	6	12	15

OFF breakaway.

Torque values were checked after nut was installed with two thread pitches exposed.

NAS 1805 nuts were coated with Kaylube dry film lubricant. MIL-F-18240 requirement for torque is 600 lbf-in. maximum and 50 lbf-in. minimum Notes:

25 co 4

Bolts were coated with dry film lubricant per MIL-L-8937 (Kal Gard FA).

TABLE 19. RESULTS OF BREAKAWAY TORQUE TESTS AT 450°F ON NAS 1954C50M (1/2 in.) BOLTS WITH VESPEL SELF-LOCKING STRIP ELEMENTS

						-	П						
Bolt Number 45S		OFF	06	52	65	52		umber 50S	45	30	52	ţ	
Bolt Nu		ON	20	45	ı	57		Bolt Number	45	22	I	ſ	
Bolt Number 44S		OFF	09	ı	41	52		umber 49S	40	29	09	ļ	
Bolt Nu	ds (Nm)	NO	55	ı	ı	57		Bolt Number	20	22	ı	21	
Bolt Number 43S	Breakaway Torque, inch pounds (Nm)	OFF	85	21	41	40		Bolt Number 48S	50	25	59	30	
Bolt Nu		NO	09	21	ı	_		Bolt Nu	45	23	1	30	
Number 42S	Breakaway	OFF	70	09	89	39		Number 47S	09	ı	45	28	
Bolt		NO	70	48	1	ı		Bolt Nu	20	ı	I	1	
Bolt Number 41S		OFF	50	31	09	20		umber 46S	Bolt Number 46S	55	37	09	30
Bolt Nu		NO	50	29	ſ	21		Bolt Nu	55	33	1	ı	
Cycle	Tagrim N		15 (1)	16 (2)	17 (3)	18 (4)			15 (1)	16 (2)	17 (3)	18 (4)	

Maximum and breakaway torque values for 450°F (232°C) heat conditioned fastener assembly. Notes:

Recorded torque values prior to initiation of heat for breakaway torque test at 450°F (232°C). 8

Breakaway torque values at 450°F ± 10°F (232°C ± 5.6°C).

Maximum and breakaway torque values after approximately 24 hours. . 4 ა

MIL-F-18240 requirement for torque is 18.0 lbf-in. minimum breakaway.

TABLE 20. RESULTS OF 60 ROOM TEMPERATURE TORQUE TESTS ON ANCHOR NUT, P/N 109VA21-79-048, WITH VESPEL SELF-LOCKING RING ELEMENT

Cycle No.	Anchor Nut No. 1		Anchor Nut No. 2		Anchor Nut No. 3		Anchor Nut No. 4		Anchor Nut No. 5		
	Installation (ON) and Breakaway (OFF) Torque, lbf-in.										
	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON	OFF	
1	34	40	39	38	39	40	46	38	31	31	
10	25	34	37	38	26	34	35	39	29	30	
20	26	29	33	32	37	38	24	29	30	30	
30	26	31	31	34	26	31	24	26	32	33	
40	28	30	32	39	31	38	29	32	32	35	
50	29	34	38	34	31	34	38	40	34	38	
	Bolts Were Torqued to 90 lbf-in. from Cycle 51 through 60										
60	24	20	33	33	28	28	22	27	27	26	

- Notes: 1. Anchor nut, P/N 109VA21-79-048 was purchased from the Amerace Corporation, ESNA Division, and is a CRES adaption of P/N 22NA21-22-048.
 - 2. MIL-N-25027 requirement for torque is 30 lbf-in. maximum ON and 3.5 lbf-in. minimum OFF breakaway.
 - 3. Torque values were checked after bolt was installed with two thread pitches exposed.
 - 4. CRES bolts were bare.

CONCLUSIONS

This test program has demonstrated the acceptability of a fully reuseable self-locking fastener system, employing Vespel (SP-1 polyimide) elements in lieu of crimped nuts, for SRB application. The torque tests performed on fasteners installed with three different configurations of Vespel self-locking elements confirm that Vespel has properties which can be used in threaded fasteners at temperatures to 450°F. Our testing investigation of up to 60 reuse cycles on three bolt sizes did not reveal any galling or seizure problems and this one feature of using Vespel achieved our goal of extended reuse without damage and solved the main problem in using A-286 fasteners.

Vespel self-locking elements in nuts/anchor nuts successfully met all requirements for SRB use. Locking torque was marginally high, but considered acceptable. The Navy's qualification approval of Vespel elements in steel anchor nuts (MS14179) for 500 reuses and our success in passing SRB vibration tests lends confidence that Vespel elements are acceptable for SRB.

TABLE 21. RESULTS OF TORQUE TESTING WITH VESPEL SELF-LOCKING ELEMENTS INSTALLED IN BOLTS

					1			
450°F Breakaway Torque 10 Specimens		Not Tested	Not Tested	Not Tested	10 Specimens	Not Tested	Passed	Not Tested
Vibration 5 Specimens		Passed	Passed	Passed	3/5 Specimens	Passed*	Passed	Passed
Strips ycles 3olts	Heat- Cond. Torque					Passed	Passed	Passed
Two Vespel Strips 15 Reuse Cycles Lubricated Bolts 10 Specimens	Room Temperature Torque					Passed	Passed	Failed
spel s ycles ts	Heat- Cond. Torque	Failed	Failed	Failed				
Round Vespel Elements 15 Reuse Cycles Bare Bolts 10 Specimens	Room Temperature Torque	Passed	Passed	Failed				
sspel ts Yycles Its	Heat- Cond. Torque	Failed	Failed	Failed				
Round Vespel Elements 50 Reuse Cycles Bare Bolts 10 Specimens	Room Temperature Torque	Passed	Failed	Failed				
Bolt Size (in.)		1/4	1/2	3/4		1/4	1/2	3/4

Note: * Denotes Anchor Nut only.

- 1) CRES lubricated nuts/anchor nuts in sizes No. 10, 1/4 in. and 5/16 in. are acceptable for SRB use.
- 2) CRES lubricated and bare bolts plus other sizes of lubricated CRES nuts/ anchor nuts with Vespel elements require further testing and evaluation for certification for SRB use.

Table 21 shows the results of all tests completed in our investigation of Vespel for use as self-locking elements installed in bolts. It shows the round element failed all but one of the reuse torque tests and the reason is most likely the size elements furnished with the bolts. The lubricated bolts with two Vespel strip elements passed all torque and vibration tests except for three 3/4 in. bolts which failed the minimum locking torque requirements at room temperature. The strip element configuration was not satisfactory because it broke in all bolts.

RECOMMENDATIONS

We recommend that nuts and anchor nuts in sizes No. 10-32 UNJF-3B 1/4-28UNJF-3B and 5/16-24UNJF-3B currently being used on the SRB be changed to include the use of Vespel self-locking elements in the nut when the maximum service temperature will not exceed 450°F. Specific part drawings will be required. Guidelines are:

A. BOLTS

- 1. Bolts shall be made from A-286 material and the surface finish shall be bare and passivated.
- 2. The bolt threads shall comply with MIL-S-8879 and shall be rolled after heat treatment.
- 3. Material and strength shall be specified on the part drawing.
- 4. Certificate of performance shall be furnished with all bolts made to these requirements.

B. NUTS/ANCHOR NUTS - Self-locking

- 1. The nut/anchor nut shall be coated with a dry film lubricant qualified in accordance with MIL-L-8937 or approved by M & P Laboratory.
- 2. The self-locking element shall be Vespel polyimide, Type SP-1.
- 3. The self-locking element shall provide a minimum of 25 cycles reuse and pass all torque tests in MIL-N-8937 except the maximum locking torque shall be increased 1/3 and minimum breakaway torque shall be tested at 450°F on new bolts.
- 4. Material and strength shall be specified on the drawing.
- 5. Certificate of performance shall be furnished with all nuts/anchor nuts made to these requirements.
- C. Drawings shall include bolt and mating nut/anchor nut.

APPROVAL

TESTING AND EVALUATION OF VESPEL UP TO 450°F WHEN USED IN NUTS AND BOLTS AS A SELF-LOCKING ELEMENT

By Carl M. Wood

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

J. H. EHL

Chief, Tooling Applications Branch

P. H. SCHUERER

Chief, Process Engineering Division

R. J. SCHWINGHAMER

Director, Materials and Processes Laboratory