AMENDMENTS TO THE SPECIFICATION:

Please amend the paragraph starting on page 9, line 6, as follows:

Antibody-dye conjugates that comprise near-infrared dyes are, for example, those from the following classes:

polymethine dyes, such as dicarbocyanine, tricarbocyanine, merocyanine and oxonol dyes (WO 96/17628, which is incorporated by reference, teaches cyanine dyes of formula IIa

wherein

represents the numbers 0, 1 or 2, on condition that, for r=2, the respective

fragments L⁶ and L⁷ that occur in duplicate may be same or different,

L¹ to L⁷ are same or different, each independently representing a fragment CH or CR, where

is a halogen atom, a hydroxy, carboxy, acetoxy, amino, nitro, cyano or sulfonic acid group or an alkyl, alkenyl, hydroxyalkyl, carboxyalkyl, alkoxy, alkoxycarbonyl, sulfoalkyl, alkylamino, dialkylamino or halogenalkyl residue containing up to 6 carbon atoms, an aryl, alkylaryl hydroxyaryl, carboxyaryl, sulfoaryl, arylamino, diarylamino, nitroaryl or halogenaryl residue containing up to 9 carbon atoms,

or where R represents a bond that bonds to another residue R and forms a 4- to
6-member ring together with the interspersed residues L¹ to L⁷,

or where R represents one bond, respectively, at two different positions that are linked via a -CO- fragment,

residue B or W (where B is a biological detecting unit having a molecular weight of up to 30,000 that bonds to specific cell populations or selectively to receptors, or accumulates in tissues or tumours, or generally stays in the blood, or is a macromolecule that bonds non-selectively, and W represents a hydrophilic group that improves water-solubility, with the n-octanol-water distribution coefficient of the compound according to formula I being less than or equal to 2.0 for 1=0,) or an alkyl or alkenyl residue containing up to 6 carbon atoms or an aryl or aralkyl residue containing up to 9 carbon atoms, said alkyl, alkenyl, aryl or aralkyl residue optionally carrying an additional residue W as defined above, or to each pair of adjacent residues R³ to R¹0 are annealed 5- to 6-member rings that may be saturated, unsaturated or aromatic, and that may optionally carry an additional residue R as defined above, with due regard for the interspersed C atoms.

X and Y are same or different, each independently representing an O, S, Se or Te or a
C(CH₃)₂-, -CH=CH- or -CR¹³ R¹⁴- fragment,

where

R¹³ and R¹⁴ independently represent a hydrogen atom, a residue B or W as defined above, or an alkyl or alkenyl residue containing up to 6 carbon atoms or an aryl or aralkyl residue containing up to 9 carbon atoms, the alkyl, alkenyl, aryl or aralkyl residue optionally carrying an additional residue W as defined above;

and teaches cyanine dyes of formula V

where O represents a fragment

$$= CH - C = CH - ,$$

$$= CH - CH = C - CH = CH - ,$$

$$= CH - C = C - C = CH - .$$
or
$$= CH - C = C - C = CH - .$$

$$= CH - C = C - C = CH - .$$

$$= CH - C = C - C = CH - .$$

$$= CH - CH C$$

where

represents a hydrogen atom, a hydroxy group, a carboxy group, an alkoxy

residue containing 1 to 4 carbon atoms or a chlorine atom, b is an integer (2 or

3), R³¹ represents a hydrogen atom or an alkyl residue containing 1 to 4 carbon

X and Y independently represent an -O-, -S-, -CH=CH- or -C(CH₂R³²)(CH₂R³³)
fragment each,

 R^{20} to R^{29} ,

atoms,

R³² and R³³ independently represent a hydrogen atom, a hydroxy group, a carboxy-, a

sulfonic acid residue or a carboxyalkyl-, alkoxycarbonyl or alkoxyoxoalkyl

residue containing up to 10 C atoms or a sulfoalkyl residue containing up to 4

C atoms,

or a non-selectively bonding macromolecule or a residue of the general formula VI

$-(O)_{v}-(CH_{2})_{o}-CO-NR^{34}-(CH_{2})_{s}-(NH-CO)_{o}-R^{35}$ (VI)

on the condition that, where X and Y are O, S, -CH=CH- or -C(CH₃)₂-, at least one of the residues R²⁰ to R²⁹ corresponds to a non-selectively bonding macromolecule or a compound of the general formula VI,

where

o and s equal 0 or independently represent an integer between 1 and 6,

q and v independently represent 0 or 1,

R³⁴ represents a hydrogen atom or a methyl residue,

represents an alkyl residue containing 3 to 6 C atoms and

comprising 2 to n-1 hydroxy groups, with n being the number

of C atoms, or an alkyl residue containing 1 to 6 C atoms that

carries 1 to 3 additional carboxy groups, an aryl residue

containing 6 to 9 C atoms or arylalkyl residue containing 7 to

15 C atoms, or a residue of the general formula III d or III e

on the condition that q is 1,

or a non-selectively bonding macromolecule,

R²⁰ and R²¹, R²¹ and R²², R²² and R²³, R²⁴ and R²⁵, R²⁵ and R²⁶, R²⁶ and R²⁷, together with the interspersed carbon atoms, form a 5- or 6-member aromatic or saturated annelled ring, as well as their physiologically tolerable salts;

and teaches merocyanine dyes of formula IId

wherein r, L¹ to L⁶, R³ to R⁸, R¹¹ and X are as defined above and

G represents an oxygen or sulfur atom.),

rhodamine dyes,

phenoxazine or phenothiazine dyes,

tetrapyrrole dyes, especially benzoporphyrins, chorines and phthalocyanines.

Please amend the paragraph starting on page 10, line 7, as follows:

In particular subjects of this invention are antibody-dye conjugates of general formula I

$$A-(F)_n$$
 (I), $B-(F)_n$ (I)

in which

A [[B]] stands for an antibody or an antibody fragment with high binding to ED-BFN,

- stands for a dye from the class of coumarins, fluoresceins, carboxyfluoresceins, difluorofluoresceins, tetrabromofluoresceins, tetraiodofluoresceins, rhodamines, carboxyrhodamines, carboxyrhodols, 4,4-difluoro-4-bora-3a,4a-diaza-indacenes, polymethine dyes or tetrapyrrole dyes, or the terbium or europium complexes with DTPA or cyclene and its derivatives, and
- n stands for 1 to 5.

Please amend the paragraph starting on page 11, line 3, as follows:

The invention thus relates in particular to those antibody-dye conjugates in which dye $-(F)_n$ of general formula I is a cyanine dye of general formula II

$$D = B - \bigvee_{\substack{N^+ \\ R^1}} L - \bigvee_{\substack{II}}$$

in which

D stands for a radical III or IV

whereby the position labeled with a star means the interface site with radical B, and

B can stand for group V, VI, VII, VIII or IX

in which

R¹ and R² mean C₁-C₄ sulfoalkyl, a saturated or unsaturated, branched or linear C₁-C₅₀ alkyl chain, which optionally can be substituted with up to 15 oxygen atoms, and/or with up to 3 carbonyl groups, and/or with up to 5 hydroxy groups,

 R^3 stands for group -COOE¹, -CONE¹E², -NHCOE¹, -NHCONHE¹, -NE¹E², -OE¹, -OSO₃E¹, -SO₂NHE¹ or -E¹, whereby

E¹ and E², independently of one another, stand for a hydrogen atom, C₁-C₄ sulfoalkyl, saturated or unsaturated, branched or straight-chain C₁-C₅₀ alkyl, which optionally is interrupted with up to 15 oxygen atoms, and/or up to 3 carbonyl groups, and/or can be substituted with up to 5 hydroxy groups,

R⁴ stands for a hydrogen atom or a fluorine, chlorine, bromine or iodine atom,

b stands for 2 or 3,

X <u>and Y, stand</u> stands for oxygen, sulfur or the group $=C(CH_3)_2$ or $-(CH=CH)_-$, and

L stands for a direct bond or a linker, which is a straight-chain or branched carbon chain with up to 20 carbon atoms, which can be substituted with one or more -OH, -COOH, or SO₃ groups and/or optionally can be interrupted in one or more places by an -O-, -S-, -CO-, -CS-, -CONH-, -NHCO-, -NHCSNH-, -SO₂-, PO₄- or an -NH group or an aryl ring.