11 Veröffentlichungsnummer:

0 338 400 A2

12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89106489.1

(f) Int. Cl.4: G01F 23/26, G01F 23/24

2 Anmeldetag: 12.04.89

Priorität: 16.04.88 DE 3812687

Veröffentlichungstag der Anmeldung: 25.10.89 Patentblatt 89/43

Benannte Vertragsstaaten:

DE ES FR GB IT SE

Anmelder: DODUCO GMBH + Co Dr. Eugen Dürrwächter Im Altgefäll 12 D-7530 Pforzheim(DE)

② Erfinder: Normann, Norbert, Dr. Dipl.-Phys. Hauptstrasse 384
D-7532 Niefern-Öschelbronn 2(DE)
Erfinder: Uhl, Günter, Dr. Dipl.-Ing.
Landhausstrasse 45
D-7267 Unterreichenbach(DE)

Vertreter: Twelmeier, Ulrich, Dipl.Phys. et al Westliche Karl-Friedrich-Strasse 29-31 D-7530 Pforzheim(DE)

- (A) Kapazitiver Sensor zum Bestimmen des Niveaus einer Flüssigkeit in einem Behälter.
- Es wird ein kapazitiv arbeitender Sensor angegeben, der zwei in eine Flüssigkeit eintauchende Elektroden (5 und 6) hat, von denen wenigstens eine eine elektrisch isolierende Deckschicht hat. Durch Messen bei zwei unterschiedlichen Frequenzen werden der Wirkwiderstand und der kapazitive Blindwiderstand der Elektrodenanordnung und daraus sowohl der Füllstand als auch der Wassergehalt der Flüssigkeit bestimmt.

Fig. 1

Xerox Copy Centre

EP 0 338 400 A2

Kapazitiver Sensor zum Bestimmen des Niveaus einer Flüssigkeit in einem Behälter

Die Erfindung geht aus von einem Sensor mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen. Ein solcher Sensor ist aus der DE-OS 23 19 008 bekannt. Es handelt sich dabei um einen kapazitiven Niveauschalter zur Kontrolle des Bremsflüssigkeitsniveaus im hydraulischen Bremssystem von Kraftfahrzeugen, der bei Unterschreiten eines vorgegebenen Füllstandes ein Warnsignal abgibt. Der Füllstand, bei dem dieses Warnsignal abgegeben wird, kann dadurch variiert werden, dass der Sensor höhenverstellbar im Bremsflüssigkeitsbehälter angeordnet ist. Mit dem bekannten Sensor kann jedoch nicht der aktuelle Füllstand der Bremsflüssigkeit beobachtet und zur Anzeige gebracht werden.

Vorratsbehälter für die Bremsflüssigkeit in den hydraulischen Bremsanlagen von Kraftfahrzeugen haben üblicherweise eine Belüftungsöffnung. Durch diese Belüftungsöffnung nimmt die Bremsflüssigkeit Luftfeuchtigkeit auf und reichert sich allmählich mit Wasser an. Ein zu hoher Wasseranteil in der Bremsflüssigkeit kann zu einem lebensgefährlichen Versagen der Bremsanlage führen. Es wäre deshalb nützlich, den Wassergehalt der Bremsflüssigkeit zu kennen. Ein Meßfühler zur laufenden Überwachung des Wassergehaltes von Bremsflüssigkeit ist bisher nicht bekannt.

Andererseits ist es aus der DE-OS 34 13 135 bekannt, den Wassergehalt von Flüssigkeiten, z.B. von Schmieröl, mittels eines speziellen kapazitiven Sensors zu bestimmen, bei dem zwischen zwei Elektroden eine nichtleitende Membran angeordnet ist, in die die zu untersuchende Flüssigkeit eindringen kann. Dabei wird für die Bestimmung des Wassergehaltes das sich mit dem Wassergehalt ändernde dielektrische Verhalten der Flüssigkeit beobachtet. Dieser bekannte Sensor dient jedoch nicht zur Füllstandsüberwachung.

Der Erfindung liegt die Aufgabe zugrunde, eine möglichst einfache, für die Massenproduktion geeignete Möglichkeit zur laufenden Überwachung des Füllstandes und des Wassergehaltes von Bremsflüssigkeit in Kraftfahrzeugen zu schaffen.

Diese Aufgabe wird gelöst durch einen Sensor mit den im Anspruch 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.

Mit dem erfindungsgemäßen Sensor kann sowohl der Füllstand (Niveau) der Bremsflüssigkeit als auch ihr Wassergehalt bestimmt werden, und zwar geschieht das dadurch, dass die komplexe Impedanz des Sensors bei wenigstens zwei unterschiedlichen Frequenzen gemessen und ausgewertet wird. Um das zu verstehen, muss man sich vergegenwärtigen, dass die in die Bremsflüssigkeit eintauchenden Elektroden der angeschlossenen Schaltung eine komplette Impedanz darbieten, die sich als Serienschaltung eines ohmschen Wirkwiderstandes und eines oder zweier kapazitiver Blindwiderstände darstellt. Der ohmsche Wirkwiderstand ist gegeben durch den Widerstand der zwischen den Elektroden stehenden Bremsflüssigkeit. Der kapazitive Blindwiderstand ist bestimmt durch die Kapazität des Kondensators, der durch die mit elektrisch isolierendem Material beschichtete Elektrode, die Bremsflüssigkeit als Gegenelektrode und die elektrisch isolierende Deckschicht als die Dielektrikum gebildet ist. Tragen - wie es bevorzugt wird - beide Elektroden eine solche Deckschicht aus elektrisch isolierendem Material, dann wird der kapazitive Blindwiderstand bestimmt durch die Kapazität der Serienschaltung zweier solcher Kondensatoren mit der Bremsflüssigkeit als gemeinsamer Gegenelektrode.

Zur Bestimmung des Niveaus der Bremsflüssigkeit wird der kapazitive Blindwiderstand des Sensors gemessen, und zwar am besten mit Hilfe eines Wechselstroms, dessen Frequenz f₁ so niedrig gewählt ist, dass bei dieser Frequenz der kapazitive Blindwert der Impedanz des Sensors groß ist gegen den ohmschen Wirkwiderstand. Da die Abmessungen und die Anordnung der Elektroden sowie das den kapazitiven Blindwiderstand mitbestimmende Dielektrikum (die nicht leitende Deckschicht auf der bzw. den Elektroden) bekannt und konstant sind, hängt der kapazitive Blindwiderstand nur noch von der wirksamen Elektrodenfläche, das ist die eingetauchte Elektrodenfläche, also von der Eintauchtiefe der Elektroden ab. Der gemessene kapazitive Blindwiderstand ist also unmittelbar ein Maß für das Niveau der Bremsflüssigkeit im Vorratsbehälter.

Zur Messung des Wassergehaltes in der Bremsflüssigkeit wird der ohmsche Wirkwiderstand des Sensors bestimmt, und zwar am besten mit Hilfe eines Wechselstroms, dessen Frequenz f₂ so hoch gewählt ist, dass der bei dieser Frequenz gemessene ohmsche Widerstand groß ist gegen den kapazitiven Widerstand. Dieser ohmsche Wirkwiderstand ist der ohmsche Widerstand der zwischen den beiden Elektroden stehenden Bremsflüssigkeit und wird ausser durch die Abmessungen und die Anordnung der Elektroden bestimmt durch die Eintauchtiefe der Elektroden in die Bremsflüssigkeit und durch den spezifischen Widerstand der Bremsflüssigkeit. Die Abmessungen und Anordnung der beiden Elektroden sind bekannt und konstant, die Eintauchtiefe der Elektroden in die Bremsflüssigkeit ist variabel, aber aus der voraufgegangenen Füllstandsmessung bekannt. Der Quotient aus dem gemessenen Wirkwiderstand und

der zuvor bestimmten Eintauchtiefe der Elektroden ist deshalb unmittelbar ein Maß für den spezifischen Widerstand der Bremsflüssigkeit seinerseits hängt in charakteristischer Weise vom Wassergehalt der Bremsflüssigkeit ab. Die Auswerteschaltung kann deshalb aus dem ermittelten spezifischen Widerstand den Wassergehalt bestimmen, vorzugsweise mittels eines Mikrocomputers, der den ermittelten spezifischen Widerstand mit einer ihm vorgegebenen und eingespeicherten Kennlinie vergleicht, die die Abhängigkeit des spezifischen Widerstandes vom Wassergehalt angibt.

An den Aufbau und die Art der verwendeten Elektroden sind keine besonderen Anforderungen zu stellen mit Ausnahme der Forderung, dass wenigstens eine der Elektroden eine Deckschicht aus elektrisch isolierendem Material tragen soll, welche den elektrisch leitenden Kern der Elektrode gegenüber der Flüssigkeit isoliert, wobei diese Deckschicht möglichst dicht sein soll, damit die zu überwachende Flüssigkeit darin nicht eindringt und ihre dielektrische Eigenschaft verändert. Besonders geeignet ist eine Anordnung aus einer stabförmigen Elektrode und einer sie koaxial umgebenden rohrförmigen Elektrode, denn eine solche Anordnung ist besonders kompakt und leicht zu handhaben und Schwankungen des Flüssigkeitsspiegels infolge von Fahrbewegungen werden in einer solchen Elektrodenanordnung gedämpft. Die zugehörige Schaltung kann eine hochintegrierte dadurch kompakte und preiswerte elektronische Schaltung sein. Zur Erzeugung der Wechselströme mit den beiden unterschiedlichen Frequenzen verwendet man vorzugsweise einen digital arbeitenden Sinusgenerator, wie er z.B. in der DE-Z Elektronik, Heft 17, 1983, Seiten 52 und 52 oder in der älteren, aber nicht vorveröffentlichten DE-A-36 43 389 beschrieben ist. Für die Impedanzmessung eignet sich besonders ein digital arbeitendes Messgerät, welches in der älteren, aber nicht vorveröffentlichten EP-A-0 271 849 offenbart ist. Dieses Meßgerät hat zur Auswertung der Meßwerte einen Mikrocomputer, der mit Vorteil auch eingesetzt werden kann, um aus den Messwerten Füllstandssignale und Wassergehaltssignale abzuleiten und zur Anzeige zu bringen.

Somit ist der erfindungsgemäße Sensor in seinem Aufbau sehr kompakt und preiswert herzustellen. Er kann ohne Schwierigkeit anstelle eines bislang zur Überwachung des Füllstandes von Bremsflüssigkeit üblichen Niveauschalters eingesetzt werden und liefert nicht nur bei Unterschreiten eines vorgegebenen Niveaus ein Signal, sondern kann den Füllstand über einen größeren Niveaubereich - abhängig von der maximalen Eintauchtlefe der Elektroden - und darüberhinaus den aktuellen Wassergehalt der Bremsflüssigkeit anzeigen.

Die Anwendungsmöglichkeiten des erfindungsgemäßen Sensors sind nicht auf die Überwachung von Bremsflüssigkeit beschränkt, er kann vielmehr überall dort eingesetzt werden, wo es darum geht, zumindest schwach leitende ineinander mischbare Flüssigkeiten hinsichtlich ihres Mischungsverhältnisses oder eine sich in ihrem spezifischen Widerstand verändernde Flüssigkeit hinsichtlich ihres Zustandes und des Füllstandes zu überwachen.

Der weiteren Erläuterung der Erfindung dienen die beigefügten Zeichnungen:

Figur 1 zeigt schematisch im Vertikalschnitt die Anordnung des Elektrodenpaares eines Sensors in einem Vorratsbehälter für Bremsflüssigkeit,

Figur 2 zeigt im Detail vergrößert einen Längsschnitt durch das Elektrodenpaar aus Fig. 1,

Figur 3 zeigt ein Ersatzschaltbild des Sensors, und

Figur 4 zeigt ein Blockschaltbild des Sensors.

Figur 1 zeigt einen Vorratsbehälter 1, der bis zu einem Niveau 2 mit einer Bremsflüssigkeit angefüllt ist. Der Vorratsbehälter 1 hat auf seiner Oberseite einen Einfüllstutzen 3, der durch einen Deckel 4 verschlossen ist. Der Deckel 4 besteht aus einem elektrisch isolierenden Kunststoff und trägt an seiner Unterseite zwei Elektroden 5 und 6. Die Elektrode 5 ist eine stabförmige Innenelektrode und die Elektrode 6 ist eine rohrförmige, die Innenelektrode 5 koaxial umgebende Aussenelektrode. Beide Elektroden bestehen aus Titan und tragen eine Deckschicht 7 bzw. 8 aus Titandioxid, welche dadurch gebildet werden kann, dass man das Titan an Luft oxidieren läßt. Die Deckschichten 7 und 8 sind leitend und so dicht, dass sie keine Bremsflüssigkeit ein dringen lassen. Elektrisch leitend ist nur der nicht oxidierte Kern 5a bzw. 6a der Elektroden. Die Elektroden tauchen beide in die Bremsflüssigkeit ein. Die Elektroden 5 und 6 sind mit je einer elektrischen Leitung 9 bzw. 10 verbunden, welche durch den Deckel 4 hindurchgeführt sind und zu einer elektronischen Schaltung 11 führen.

In einem praktisch ausgeführten Beispiel hat die Innenelektrode 5 einen Durchmesser von 4 mm, die Außenelektrode 6 einen Innendurchmesser von 10 mm; beide Elektroden sind 40 mm lang und ihre Deckschicht 7 bzw. 8 aus Titan ist wenige um dick. Damit lassen sich Eintauchtiefen zwischen 10 mm und 25 mm sowie Wassergehalte in Bremsflüssigkeit von weniger als 0,05 % bestimmen.

Die Figur 3 zeigt das Ersatzschaltbild dieser Anordnung. Es besteht aus eben dieser Schaltung 11 sowie aus zwei Kapazitäten C1 und C2 und einem ohmschen Widerstand R in Serienschaltung. Die Schaltung 11 dient zur Bestimmung der komplexen Impedanz

35

$$\underline{z} = \sqrt{R^2 + \frac{1}{(2\pi L f(C_1 + C_2))^2}}$$

Die Kapazität C1 ist die Kapazität des Kondensators, der gebildet wird durch den Kern 5a der Innenelektrode als erster Elektrode, der in der Elektrodenanordnung bis zum Niveau 2 stehenden Bremsflüssigkeit als Gegenelektrode und der Deckschicht 7 als Dielektrikum. Die Kapazität C2 ist die Kapazität des Kondensators, der durch den Kern 6a der äußeren Elektrode als erster Elektrode, durch die bis zum Niveau 2 stehende Bremsflüssigkeit als Gegenelektrode und durch die Deckschicht 8 als Dielektrikum gebildet wird. R ist der ohmsche Widerstand der in der Aussenelektrode stehenden Bremsflüssigkeit.

Bei der gegebenen Elektrodenanordnung hängt die Kapazität C1 + C2 allein von der wirksamen Elektrodenfläche, das ist die von der Bremsflüssigkeit benetzte Oberfläche der Elektroden 5 und 6, also nur von der Eintauchtiefe der Elektroden 5 und 6 in die Bremsflüssigkeit ab.

Bei derselben gegebenen Anordnung hängt der ohmsche Widerstand R von der Eintauchtiefe der Elektroden in die Bremsflüssigkeit und von deren aktuellem spezifischem Widerstand ab.

C1 + C2 wird bestimmt, indem die Elektrodenanordnung mit einem Wechselstrom gespeist wird, dessen Frequenz f_1 so niedrig ist, dass der kapazitive Blindwiderstand

$$\frac{1}{2 \, \pi \, f_1 \, (C_1 + C_2)}$$

groß ist gegen den ohmschen Wirkwiderstand R. Der Blindwiderstand ist direkt ein Maß für die Eintauchtiefe der Elektroden in die Bremsflüssigkeit und damit für das zu-bestimmende Niveau 2.

Der Wirkwiderstand R wird bestimmt, indem die Elektrodenanordnung mit einem Wechselstrom gespeist wird, dessen Frequenz f₂ so groß ist, dass der Wirkwiderstand R groß ist gegen den kapazitiven Blindwiderstand. Der Wirkwiderstand R ist um so kleiner, je größer die Eintauchtiefe der Elektroden 5 und 6 ist. In erster Näherung ist der Wirkwiderstand R der Eintauchtiefe umgekehrt proportional. Aus dem gemessenen Wirkwiderstand und der zuvor bei der Frequenz f₁ bestimmten Eintauchtiefe läßt sich deshalb der spezifische Widerstand der Bremsflüssigkeit bestimmen. Der spezifische Widerstand der Bremsflüssigkeit ist abhängig von ihrem Wassergehalt; die Abhängigkeit ist bekannt bzw. kann für eine gegebene Bremsflüssigkeit empirisch ermittelt werden. Durch Vergleich des gemessenen spezifischen Widerstandes mit der bekannten bzw. empirisch ermittelten Kennlinie, die die Abhängigkeit des spezifischen Widerstandes vom Wassergehalt angibt, kann somit der Wassergehalt ermittelt und angezeigt werden. Diese Auswertung geschieht am einfachsten mit Hilfe eines Mikrocomputers.

Figur 4 zeigt das Blockschaltbild einer dazu geeigneten Schaltung 11. Die Elektrodenanordnung ist schematisch als eine Impedanz Z dargestellt, welche durch die Anschlußleitungen 9 und 10 mit der auf einer Platine 12 angeordneten Schaltung 11 verbunden ist. Die Schaltung 11 besteht im wesentlichen aus einer Impedanzmeßschaltung 13, aus einem digitalen Sinusgenerator 14, aus einem Strom/Spannungs-Wandler 15 und aus einer Auswerteschaltung in Gestalt eines Mikrocomputers 16. Der digitale Sinusgenerator 14 liefert Wechselspannungen U1 mit den Frequenzen f1 und f2, wobei die Frequenzeinstellung durch den Mikrocomputer 16 bewirkt wird. Der Ausgang des Sinusgenerators 14 ist einerseits mit dem Strom Spannungs-Wandler 15 und andererseits mit der Impedanzmeßschaltung 13 verbunden. Der Strom/Spannungs-Wandler 15 speist in die Elektrodenanordnung mit der zu bestimmenden Impedanz Z einen der Spannung UI entsprechenden Strom I ein. Die dementsprechend an der Elektrodenanordnung abfallende Wechselspannung Us, welche gegenüber der Spannung UI um den Winkel o in der Phase verschoben ist, wird dem Eingang der Impedanzmeßschaltung 13 mitgeteilt, die aus dem Verhältnis Us Ul die Wirkkomponente der Impedanz Z ermittelt und auch die Phasenverschiebung o bestimmt. Beispiele, wie eine solche Impedanzmessung durchgeführt werden kann, finden sich in der europ. Patentanmeldung 87 118 435.4. Aus der Wirkkomponente der Impedanz und der Phasenverschiebung φ errechnet der Mikrocomputer 16 auf an sich bekannte Weise die Blindkomponente der Impedanz und wertet die Wirkkomponente und die Blindkomponente - wie oben angegeben -zur Ausgabe von Füllstand und Wassergehalt aus.

Ansprüche

- 1. Kapazitiver Sensor zum Bestimmen des Niveaus einer zumindest schwach elektrisch leitfähigen Flüssigkeit in einem Behälter, insbesondere zum Bestimmen des Niveaus der Bremsflüssigkeit im hydraulischen Bremssystem von Kraftfahrzeugen, bestehend aus zwei zum Eintauchen in die Flüssigkeit bestimmten Elekroden und einer aktiven Schaltung, welche die Elektroden miteinander verbindet, dadurch gekennzeichnet, dass wenigstens eine der beiden Elektroden (5, 6) eine Deckschicht (7, 8) aus elektrisch isolierendem Material trägt, welche den elektrisch leitenden Kern (5a, 6a) der Elektrode (5, 6) gegenüber der Flüssigkeit isoliert,
- und dass die elektrische Schaltung (11) eine Impedanzmeßschaltung (13), welche bei wenigstens zwei unterschiedlichen Frequenzen die komplexe Impedanz des Sensors nach Realteil (ohmscher Wirkwiderstand) und Imaginärteil (kapazitiver Blindwiderstand) ermittelt,
 - sowie eine Auswerteschaltung (16) umfaßt, welche aus dem frequenzabhängigen Verlauf von Real- und Imaginärteil der Impedanz das Niveau (2) der Flüssigkeit und z.B. über den spezifischen Widerstand der Flüssigkeit den Wassergehalt oder eine andere den spezifischen Widerstand mitbestimmende Zustandsgröße der Flüssigkeit bestimmt.
 - 2. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass die Impedanzmeßschaltung die Impedanz bei zwei unterschiedlichen Frequenzen f₁ und f₂ mißt, wobei die Frequenz f₁ so niedrig gewählt ist, dass der kapazitive Blindwiderstand der bei ihr gemessenen Impedanz groß ist gegen den ohmschen Wirkwiderstand und die Frequenz f₂ so hoch gewählt ist; dass der ohmsche Wirkwiderstand der bei ihr gemessenen Impedanz groß ist gegen den kapazitiven Blindwiderstand,
 - und dass die Auswerteschaltung (16) aus dem bei der niedrigeren Frequenz f₁ ermittelten Blindwiderstand das Niveau (2) der Flüssigkeit bestimmt und aus dem bei der höheren Frequenz f₂ ermittelten Wirkwiderstand unter Berücksichtigung des bestimmten Niveaus (2) den spezifischen Widerstand der Flüssigkeit bestimmt.
 - 3. Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass beide Elektroden (5, 6) eine Deckschicht (7, 8) aus elektrisch isolierendem Material tragen.
 - 4. Sensor nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Deckschicht (7, 8) dicht ist.
 - 5. Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Impedanzmeßschaltung (13) mit einem die nötigen Meßsignale liefernden digitalen Sinusgenerator (14) verbunden ist und die Auswerteschaltung einen Mikrocomputer (16) umfaßt.
 - 6. Sensor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Elektroden (5, 6) aus Titan und die Deckschicht(en) (7, 8) aus Titandioxid bestehen.
- Sensor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die eine Elektrode
 (5) stabförmig ausgebildet und koaxial in der rohrförmig ausgebildeten anderen Elektrode (6) angeordnet ist.

40

45

50

:55

Nou cingareicht / Newly filed Nouvellement déposé

Fig. 1

Fig. 2

Fig. 3

Fig. 4

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89106489.1

(51) Int. Cl.5: G01F 23/26, G01F 23/24

2 Anmeldetag: 12.04.89

@ Priorität: 16.04.88 DE 3812687

43 Veröffentlichungstag der Anmeldung: 25.10.89 Patentblatt 89/43

 Benannte Vertragsstaaten: DE ES FR GB IT SE

(88) Veröffentlichungstag des später veröffentlichten Recherchenberichts: 06.02.91 Patentblatt 91/06 7) Anmelder: DODUCO GMBH + Co Dr. Eugen Dürrwächter im Altgefäll 12 D-7530 Pforzheim(DE)

(72) Erfinder: Normann, Norbert, Dr. Dipl.-Phys. Hauptstrasse 384 D-7532 Niefern-Öschelbronn 2(DE) Erfinder: Uhl, Günter, Dr. Dipl.-Ing. Landhausstrasse 45 D-7267 Unterreichenbach(DE)

(74) Vertreter: Twelmeier, Ulrich, Dipl.Phys. et al Westliche Karl-Friedrich-Strasse 29-31 D-7530 Pforzheim(DE)

(S) Kapazitiver Sensor zum Bestimmen des Niveaus einer Flüssigkeit in einem Behälter.

S Es wird ein kapazitiv arbeitender Sensor angegeben, der zwei in eine Flüssigkeit eintauchende Elektroden (5 und 6) hat, von denen wenigstens eine eine elektrisch isolierende Deckschicht hat. Durch Messen bei zwei unterschiedlichen Frequenzen werden der Wirkwiderstand und der kapazitive Blindwiderstand der Elektrodenanordnung und daraus sowohl der Füllstand als auch der Wassergehalt der Flüssigkeit bestimmt.

Fig. 1

EUROPÄISCHER RECHERCHENBERICHT

EP 89 10 6489

EINSCHLÄGIGE DOKUMENTE					
ategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile			etrifft spruch	KLASSIFIKATION DER ANMELDUNG (Int. CI.5)
Α	MEASUREMENT AND CONTROL. vol. 21, no. 1, Februar 1988, LONDON GB Seiten 15 - 19; N. WATMOUGH: "CAPACITANCE FOR LEVEL MEASUREMENT" " Seite 17, rechte Spalte, Absatz 1; Figuren 4, 6, 7 *		ruar 1		G 01 F 23/26 G 01 F 23/24
D,A	WO-A-8 504 718 (G. HELLWIG) * Seite 13, Absatz 4 - Seite 19, Absatz 1; Figuren 1, 2 *		. 1,3	-7 [°]	·.
Α	DE-A-3 322 657 (VEGA) * Seite 10, Absatz 2; Figur 1 *			•	
Α	NL-A-7 603 909 (M.G.J. ARTS) * Seite 2, Zeilen 19 - 36; Figur 3 *				
Α	NL-A-6 714 416 (SIMMONDS PRECISION PRODUCTS INC.) * Seite 4, Zeile 29 - Seite 5, Zeile 2; Figur *				·
A	JOURNAL OF PHYSICS E. SCIENTIFIC INSTRUMENTS. vol. 16, no. 9, September 1983, ISHING, BRISTOL GB Seiten 827 - 828; P.I. ROSS: "A WATER-LEVEL SENSOR USING A CAPACITANCE TO FREQUENCY CONVERTER" * Seite 827, rechte Spalte, Absatz 1; Figur 2 *				RECHERCHIERTE SACHGEBIETE (Int. Cl.5) G 01 F
D,A	DE-A-2 319 008 (F. MAHNE) * Seite 2, letzter Absatz - Seite 4, Absatz 2; Figur 1 *		1		
D,P,A	EP-A-0 271 849 (E. DODUCO) * Seite 4, Zeile 39 - Seite 5, Zeile 46; Figur 1 *		1		
P,A	EP-A-0 288 215 (SIMMON INC.) * Spalte 1, Zeilen 17 - 37 * * Zeile 54; Figur 1 *				
D	er varliegende Recherchenbericht wur	de für alle Patentansprüche erstel	ıt		
Recherchenart		Abschlußdatum der Recherche			Prüfer
Y: A:	Den Haag KATEGORIE DER GENANTEN I von besonderer Bedeutung allein be von besonderer Bedeutung in Verbit anderen Veröffentlichung derselber technologischer Hintergrund	etrachtet ndung mit einer	E: älteres Pa nach dem D: in der Ann L: aus ander	Anmelded reldung ar en Gründe	HEINSIUS R. nent, das jedoch erst am oder latum veröffentlicht worden ist ngeführtes Dokument nn angeführtes Dokument nn Patentfamilie.
O:	technologischer Hintergrund nichtschriftliche Offenbarung Zwischenliteratur der Erfindung zugrunde liegende Th	eorien oder Grundsätze	&: Mitglied d übereinsti	er gleiche mmendes	n Patentfamilie, Dokument

BNSDOCID: <EP____0338400A3_I_>