Университет ИТМО Кафедра ИПМ

Отчет по лабораторной работе № 3 «Моделирование СМО с помощью аналитических и численных методов»

Выполнил: студент группы Р3317

Плюхин Д.А.

Преподаватель: Соснин В.В.

Расчет варианта

Имя: Дмитрий (7 букв)

Фамилия: Плюхин (6 букв)

$$k = 2 + (7 \mod 7) = 2$$

$$M[b] = 6$$

$$\lambda = 2 * 0.9 / 6 = 0.3$$

$$q = 6 / (6 + 7) = 0.462$$

E1= +∞

$$E2 = 3 + (6 \mod 5) = 4$$

$$E3 = 9 - 4 = 5$$

Схема СеМО

Расчет характеристик CMO-1 с помощью аналитического моделирования ^{Используемые формулы:}

$$\rho = \frac{\lambda b}{K} \quad w = \frac{Pb}{K(1-\rho)} \quad P = \frac{(K\rho)^K}{K!(1-\rho)} P_0$$

$$P_0 = \left[\frac{(K\rho)^K}{K!(1-\rho)} + \sum_{i=0}^{K-1} \frac{(K\rho)^i}{i!} \right]^{-1} \quad u = w + b = \frac{b}{1-\rho}$$

$$l = \lambda w = \frac{\rho^2}{1-\rho} \quad m = \lambda u = \frac{\rho}{1-\rho}$$

Полученные результаты с учетом известных значений K = 2, b = 6 и $\lambda = 0.3$:

r =	0,9	Загрузка системы
P0 =	0,052632	Вероятность простоя
P =	0,852632	Вероятность занятости всех приборов
w =	25,57895	Среднее время ожидания заявок
u =	31,57895	Среднее время пребывания в системе
l =	7,673684	Средняя длина очереди заявок
m =	9,473684	Среднее число заявок в системе

Расчёт характеристик для CMO-2 и CMO-3 с помощью численного моделирования

Экспоненциальное распределение времени обслуживания в СМО-2 (исходная система) Граф переходов:

Вероятности пребывания в пяти состояниях, соответствующих возможному количеству заявок в системе от 0 до 5 посчитаны при помощи приложения WinMark.

λ =	0,138462	Интенсивность входного потока		
μ=	0,166667	Интенсивность обслуживания заявок		
p0 =	0,280355	Вероятность отсутствия заявок		
p1 =	0,23276	Вероятность наличия одной заявки в приборе		
p2 =	0,193245	Вероятность наличия двух заявок		
p3 =	0,160439	Вероятность наличия трех заявок		
p4 =	0,133202	Вероятность наличия четырех заявок		

Используемые формулы для расчета характеристик:

$$\pi=p_4$$
, $\lambda'=\lambda\pi$, $r=\sum_{i=1}^4p_i$, $l=\sum_{i=2}^4(i-1)*p_i$, $m=\sum_{i=1}^4i*p_i$ $w=\frac{l}{\lambda-\lambda'}$, $u=\frac{m}{\lambda-\lambda'}$

Полученные результаты с учетом известных вероятностей и интенсивностей:

π =	0,133202	Вероятность потери заявки
λ' =	0,018443	Интенсивность потерь заявок
r =	0,719646	Загрузка системы
I =	0,913729	Средняя длина очереди

m =	1,633375	Среднее число заявок в системе
w =	7,613255	Среднее время ожидания заявок
u =	13,6094	Среднее время пребывания в системе

Экспоненциальное распределение времени обслуживания в СМО-3 (исходная система)

Граф переходов (за исключением того, что добавится еще одно состояние), используемые формулы и метод расчета вероятностей аналогичны предыдущему пункту.

Полученные результаты:

λ =	0,161538	Интенсивность входного потока
μ=	0,166667	Интенсивность обслуживания заявок
p0 =	0,180144	Вероятность отсутствия заявок
p1 =	0,174525	Вероятность наличия одной заявки в приборе
p2 =	0,169081	Вероятность наличия двух заявок
p3 =	0,163807	Вероятность наличия трех заявок
p4 =	0,158697	Вероятность наличия четырех заявок
p5 =	0,153746	
π =	0,153746	Вероятность потери заявки
λ' =	0,024836	Интенсивность потерь заявок
r =	0,819856	Загрузка системы
l =	1,58777	Средняя длина очереди
m =	2,407626	Среднее число заявок в системе
w =	11,61478	Среднее время ожидания заявок
u =	17,61215	Среднее время пребывания в системе

Распределение Эрланга второго порядка времени обслуживания в СМО-2 Граф переходов:

Полученные результаты:

μ=	0,333333	Интенсивность обслуживания заявок
p0 =	0,255655	Вероятность отсутствия заявок
p1 =	0,150381	Вероятность наличия одной заявки
p2 =	0,106235	Вероятность наличия одной заявки
p3 =	0,1068	Вероятность наличия двух заявок
p4 =	0,106635	Вероятность наличия двух заявок
p5 =	0,081235	Вероятность наличия трех заявок
p6 =	0,088691	Вероятность наличия трех заявок
p7 =	0,033756	Вероятность наличия четырех заявок
p8 =	0,070611	Вероятность наличия четырех заявок
π =	0,070611	Вероятность потери заявки
λ' =	0,009777	Интенсивность потерь заявок
r =	0,744344	Загрузка системы
l =	0,866388	Средняя длина очереди
m =	1,610732	Среднее число заявок в системе
w =	6,732645	Среднее время ожидания заявок
u =	12,51689	Среднее время пребывания в системе

Двухфазное гиперэкспоненциальное распределение времени обслуживания в СМО-3 Граф переходов:

Исходные данные:

λ =	0,161538	Интенсивность входного потока		
μ1 =	0,104167	Интенсивность обслуживания заявок 1		
μ2 =	0,27027	Интенсивность обслуживания заявок 2		
q =	0,4	Вероятность - параметр закона распределения		
~1 -	0.004615			
qλ =	0,064615			
(1-q)λ =	0,096923			
qμ1 =	0,041667	Интенсивности для нахождения вероятностей состояний		
qμ2 =	0,108108	интенсивности для нахождения вероятностей состояний		
(1 - q)μ1 =	0,0625			
$(1 - q)\mu 2 =$	0,162162			

Матрица интенсивностей:

Полученные результаты:

p0 =	0,360027	Вероятность отсутствия заявок		
p1 =	0,200233	Вероятность наличия одной заявки		
p2 =	0,138046	Вероятность наличия одной заявки		
p3 =	0,105884	Вероятность наличия двух заявок		
p4 =	0,056585	Вероятность наличия двух заявок		
p5 =	0,054546	Вероятность наличия трех заявок		
p6 =	0,024593	Вероятность наличия трех заявок		
p7 =	0,027697	Вероятность наличия четырех заявок		
p8 =	0,01119	Вероятность наличия четырех заявок		
p9 =	0,017187	Вероятность наличия пяти заявок		
p10 =	0,004013	Вероятность наличия пяти заявок		
π =	0,0212	Вероятность потери заявки		
λ' =	0,003425	Интенсивность потерь заявок		
r =	0,639974	Загрузка системы		
l =	0,522208	Средняя длина очереди		
m =	1,162182	Среднее число заявок в системе		
w =	3,302734	Среднее время ожидания заявок		

Графики изменения загрузки, времени пребывания и вероятности потерь в зависимости от нагрузки на CMO-1

Сравнение результаты расчётов с результатами, полученными с помощью имитационного моделирования в домашнем задании №2

Расчет характеристик СМО-1					
Величина	Результат расчета	Результат из ДЗ 2	Наименование		
r =	0,9	0,905±0,002	Загрузка системы		
w =	25,57894737	27,743±1,219	Среднее время ожидания заявок		
u =	31,57894737	33,7308±1,219	Среднее время пребывания в системе		
l =	7,673684211	8,3852±0,352	Средняя длина очереди заявок		
	Расчет характер	истик СМО-2 (экспон	енциальное распределение)		
Величина	Результат расчета	Результат из ДЗ 2	Наименование		
π =	0,133202	0,1074±0,004	Вероятность потери заявки		
r =	0,719646	0,7474±0,003	Загрузка системы		
=	0,913729	0,8762±0,012	Средняя длина очереди		
w =	7,613254632	7,0316±0,091	Среднее время ожидания заявок		
u =	13,60939599	13,0272±0,109	Среднее время пребывания в системе		
	Расчет характер	истик СМО-3 (экспон	енциальное распределение)		
Величина	Результат расчета	Результат из ДЗ 2	Наименование		
π =	0,153746	0,1576±0,003	Вероятность потери заявки		
r =	0,819856	0,8224±0,004	Загрузка системы		
=	1,58777	1,6028±0,021	Средняя длина очереди		
w =	11,61477805	11,6804±0,143	Среднее время ожидания заявок		
u =	17,61214887	17,6712±0,167	Среднее время пребывания в системе		
	Расчет характ	еристик СМО-2 (эрла	нговское распределение)		
Величина	Результат расчета	Результат из ДЗ 2	Наименование		
π =	0,070611	0,072±0,003	Вероятность потери заявки		
r =	0,744344	0,7798±0,003	Загрузка системы		
=	0,866388	0,8126±0,012	Средняя длина очереди		
w =	6,732645498	6,2512±0,074	Среднее время ожидания заявок		
u =	12,51689491	12,2512±0,074	Среднее время пребывания в системе		
Расчет характеристик СМО-3 (гиперэкспоненциальное распределение)					
Величина	Результат расчета	Результат из ДЗ 2	Наименование		
π =	0,0212	0,1818±0,003	Вероятность потери заявки		
r =	0,639974	0,8104±0,004	Загрузка системы		
l =	0,522208	1,638±0,014	Средняя длина очереди		
w =	3,302734155	12,2454±0,1	• • • •		
u =	7,350286065	18,3032±0,13	Среднее время пребывания в системе		

Таким образом, значения, полученные в ходе аналитического и численного моделирования хотя преимущественно и находятся за пределами выявленных доверительных интервалов, но отстоят от них на относительно малые величины. Вероятно, это связано с недостаточно большим количеством заявок, пропущенных через СМО во время моделирования. Исключение составляет лишь СМО-3 со временем обслуживания, распределенным по гиперэкспоненциальному закону — результаты расчета и результаты имитационного моделирования отличаются существенно.

Выводы по проделанной работе

1. Изменение разброса времени обслуживания в приборах приводит к увеличению времени ожидания заявок в очередях, и, соответственно, общего времени пребывания заявок в системе.

- 2. При низкой загрузке СМО-1 выходной поток заявок определяется законом распределения времени обслуживания, а поскольку он является экспоненциальным, то имеем дело в худшем случае с системой M/G/1, характеристики которой, в соответствии с формулой Поллачека-Хинчина, зависят только от первых двух моментов и не зависят от закона распределения времени обслуживания.
- 3. При загрузке СМО-1, стремящейся к нулю, время нахождения заявок в СМО-1 распределено по тому же закону, что и время обслуживания в приборе (очередей почти нет и именно время обслуживания определяет время нахождения заявки в системе), то есть, по экспоненте. В случае же перегрузки СМО-1 время нахождения в системе от заявки к заявке постоянно увеличивается таким образом, что величина, обратная времени нахождения заявке в такой системе окажется распределена по экспоненциальному закону.
- 4. При увеличении разброса времени обслуживания и увеличении нагрузки на СМО увеличивается доверительный интервал времени пребывания заявок в системе.