Análise e Síntese de Algoritmos Emparelhamento de Cadeias de Caracteres [CLRS, Cap. 32]

2011/2012

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Árvores abrangentes
 - Caminhos mais curtos
 - Fluxos máximos
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica
 - Algoritmos greedy
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Emparelhamento de Cadeias de Caracteres
 - Complexidade Computacional
 - Algoritmos de Aproximação

Resumo'

- Definição do ProblemaNotação
- 2 Algoritmo Elementar
- 3 Algoritmo Autómatos Finitos
- 4 Algoritmo Knuth-Morris-Pratt
- 6 Algoritmo Rabin-Karp

Definição do Problema

Verificar a ocorrência de um padrão P num texto T:

- Texto: array com n caracteres, T[1..n]
- Padrão: array com m caracteres, P[1..m]
- ullet Caracteres pertencentes a alfabeto finito Σ
- Padrão P ocorre com deslocamento s em T se:

$$T[s+1..s+m] = P[1..m]$$
 , $0 \le s \le n-m$

Definição do Problema

Verificar a ocorrência de um padrão P num texto T:

- Texto: array com n caracteres, T[1..n]
- Padrão: array com m caracteres, P[1..m]
- ullet Caracteres pertencentes a alfabeto finito Σ
- Padrão P ocorre com deslocamento s em T se:

$$T[s+1..s+m] = P[1..m]$$
 , $0 \le s \le n-m$

Exemplo

- \bullet T = aabababab
- P = ababab
- P ocorre em T com deslocamento 1

Definição do Problema

Verificar a ocorrência de um padrão P num texto T:

- Texto: array com n caracteres, T[1..n]
- Padrão: array com m caracteres, P[1..m]
- ullet Caracteres pertencentes a alfabeto finito Σ
- Padrão P ocorre com deslocamento s em T se:

$$T[s+1..s+m] = P[1..m]$$
 , $0 \le s \le n-m$

Exemplo

- \bullet T = aabababab
- P = ababab
- P ocorre em T com deslocamento 1 e com deslocamento 3

Notação

- Conjunto de todas as cadeias de caracteres (strings) de comprimento finito: Σ^*
- ullet String vazia: ϵ
 - $\epsilon \in \Sigma^*$
- Comprimento da string x, |x|
- Concatenação de x e y:
 - Representação: xy
 - Comprimento: |x| + |y|

Notação

- $w \in \text{prefixo de } x$, $w \sqsubseteq x$, se x = wy, com $y \in \Sigma^*$
- $w \in \text{sufixo de } x$, $w \supseteq x$, se x = yw, com $y \in \Sigma^*$
 - Se $w \supset x$, então $|w| \le |x|$
- Sejam x, y e z strings tais que $x \supset z$ e $y \supset z$. Então,
 - Se $|x| \le |y|$, então $x \supset y$
 - Se $|x| \ge |y|$, então $y \supset x$
 - Se |x| = |y|, então x = y
- Prefixos do padrão pretendido
 - $P_0 = \epsilon; P_k = P[1..k]$
 - $T_k = T[1..k]$

Exemplo

- abb é prefixo de abbabaabb
- aaba é sufixo de abbabaaba

Algoritmo Elementar

```
Naive-String-Matcher(T, P)

1 n \leftarrow length[T]

2 m \leftarrow length[P]

3 for s \leftarrow 0 to n - m

4 do if P[1...m] = T[s + 1...s + m]

5 then print "Padrão encontrado com deslocação", s
```

Complexidade: $\Theta((n-m+1)m)$

Algoritmo Elementar

Definição

- Autómato finito $M(Q, q_0, A, \Sigma, \delta)$:
 - Q é um conjunto finito de estados
 - q₀ é o estado inicial
 - $A \subseteq Q$ é um conjunto de estados de aceitação
 - \bullet Σ é o alfabeto de entrada
 - \bullet δ é uma função de $Q \times \Sigma$ em Q, designada função de transição de M
- Autómato no estado q, com caracter de entrada a, novo estado é dado por $\delta(q,a)$
- Utilizar Autómato Finito para aceitar padrão pretendido

Função de Estado Final

- $\phi(w)$: estado de M após ter lido string w
- M aceita w se e só se $\phi(w) \in A$
- Definição:
 - $\phi(\epsilon) = q_0$
 - $\phi(wa) = \delta(\phi(w), a)$, para $w \in \Sigma^*$, $a \in \Sigma$

Função de Sufixo

• Comprimento do maior prefixo de P[1..m] que é sufixo de x

$$\sigma: \Sigma^* \to \{0,1,\ldots,m\}$$

$$\sigma(x) = \max\{k : P_k \sqsupset x\}$$

Saber em que estado o autómato deve estar dada a string x

Autómato para emparelhamento de strings

- $Q = \{0, 1, \dots, m\}$
- Função de transição: $\delta(q, a) = \sigma(P_q a)$
- Novo estado $\delta(q, a)$ corresponde ao prefixo de P com o maior comprimento que é também sufixo de $P_{a}a$


```
Finite-Automaton-Matcher(T, \delta, m)

1 n \leftarrow length[T]

2 q \leftarrow 0

3 for i \leftarrow 1 to n

4 do q \leftarrow \delta(q, T[i])

5 if q = m

6 then s \leftarrow i - m

7 Print "Padrão encontrado com deslocação", s
```

$\textbf{Compute-Transition-Function}(P, \Sigma)$

```
 \begin{array}{ll} 1 & m \leftarrow length[P] \\ 2 & \textbf{for} \ q \leftarrow 0 \ \textbf{to} \ m \\ 3 & \textbf{do} \ \textbf{for} \ \textbf{each} \ a \in \Sigma \\ 4 & \textbf{do} \ k \leftarrow \min(m+1,q+2) \\ 5 & \textbf{repeat} \ k \leftarrow k-1 \\ 6 & \textbf{until} \ P_k \sqsupset P_q a \\ 7 & \delta(q,a) \leftarrow k \\ 8 & \textbf{return} \ \delta \\ \end{array}
```


Compute-Transition-Function (P, Σ)

```
 \begin{array}{lll} 1 & m \leftarrow length[P] \\ 2 & \textbf{for} \ q \leftarrow 0 \ \textbf{to} \ m \\ 3 & \textbf{do} \ \textbf{for} \ \textbf{each} \ a \in \Sigma \\ 4 & \textbf{do} \ k \leftarrow \min(m+1,q+2) \\ 5 & \textbf{repeat} \ k \leftarrow k-1 \\ 6 & \textbf{until} \ P_k \sqsupset P_q a \\ 7 & \delta(q,a) \leftarrow k \\ 8 & \textbf{return} \ \delta \\ \end{array}
```

Análise de Complexidade

- Complexidade do cálculo de δ : $O(m^3|\Sigma|)$
- Complexidade do algoritmo: $O(n + m^3 |\Sigma|)$
 - É possível obter $O(n + m|\Sigma|)$

P = ababaca T = abcababacababacaabacab

P = ababaca T = abcababacabacaabacab

P = ababaca T = abcababacabacabacab

P = ababaca T = abcababacabacabacab

P = ababaca T = abcababacababacaabacab

P = ababaca T = abcababacababacabacab

P = ababaca T = abcababacababacabacab

P = ababaca T = abcababacababacaabacab

P = ababaca T = abcababacababacaabacab

Vantagens

- Complexidade: O(n+m)
- ullet Evita cálculo da função de transição δ !

Função de Prefixo

ullet Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	С	a
$\pi[i]$										

Função de Prefixo

ullet Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	С	a
$\pi[i]$	0									

Função de Prefixo

ullet Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	С	a
$\pi[i]$	0	0								

Função de Prefixo

• Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	С	a
$\pi[i]$	0	0	1							

Função de Prefixo

ullet Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	С	a
$\pi[i]$	0	0	1	2						

Função de Prefixo

ullet Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

i	1	2	3	4	5	6	7	8	9	10
P[i]										a
$\pi[i]$	0	0	1	2	3					

Função de Prefixo

ullet Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \ldots, m\} \to \{0, 1, \ldots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

i	1	2	3	4	5	6	7	8	9	10
P[i]				l .	l			l		a
$\pi[i]$	0	0	1	2	3	4				

Função de Prefixo

ullet Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

i	1	2	3	4	5	6	7	8	9	10
P[i]		l			l			l	С	a
$\pi[i]$	0	0	1	2	3	4	5			

Função de Prefixo

ullet Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

i	1	2	3	4	5	6	7	8	9	10
P[i]										a
$\pi[i]$	0	0	1	2	3	4	5	6		

Função de Prefixo

ullet Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

i	1	2	3	4	5	6	7	8	9	10
P[i]										
$\pi[i]$	0	0	1	2	3	4	5	6	0	

Função de Prefixo

ullet Comprimento do maior prefixo de P[1..m] que é sufixo de P_q

$$\pi: \{1, 2, \dots, m\} \to \{0, 1, \dots, m-1\}$$

$$\pi[q] = \max\{k : k < q \land P_k \sqsupset P_q\}$$

										10
P[i]	a	b	a	b	a	b	a	b	С	a
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

 $s+(a-\pi lal)$

• Caso o próximo caracter de T não emparelhe, $\pi[q]$ indica qual o maior prefixo de P que é possível obter como sufixo de P_q sabendo que em T existe neste momento (i.e. em T_i) o sufixo P_q (e que $P[q+1] \neq T[i+1]$)

- Se $P[k+1] \neq T[i]$, então P_{k+1} não é sufixo de T_i
 - Encontrar j tal que P_j seja sufixo de T_i
- Observar que:
 - \bullet $P_k \supset T_{i-1}$
 - $P_{\pi[k]} \supset P_k$
 - maior sufixo de P_k e T_{i-1} que é menor que P_k
 - $P_{\pi[\pi[k]]} \supset P_{\pi[k]}$
 - ullet maior sufixo de $P_{\pi[k]}$, P_k e T_{i-1} que é menor que $P_{\pi[k]}$

```
KMP-Matcher(T, P)
   n \leftarrow length[T]
 2 m \leftarrow length[P]
 3 \pi \leftarrow \mathsf{Compute-Prefix-Function}(P, \Sigma)
 4 q \leftarrow 0
 5
     for i \leftarrow 1 to n
            do while (q > 0 \land P[q+1] \neq T[i])
 6
                      do q \leftarrow \pi[q]
                 if P[q + 1] = T[i]
 8
 9
                   then q \leftarrow q + 1
10
                 if q = m
                   then Print "Padrão encontrado com deslocação", i - m
11
12
                          q \leftarrow \pi[q]
```

```
\begin{array}{lll} \textbf{Compute-Prefix-Function}(P,\Sigma) \\ 1 & m \leftarrow length[P] \\ 2 & \pi[1] \leftarrow 0 \\ 3 & k \leftarrow 0 \\ 4 & \textbf{for } q \leftarrow 2 \textbf{ to } m \\ 5 & \textbf{do while } k > 0 & \land & P[k+1] \neq P[q] \\ 6 & \textbf{do } k \leftarrow \pi[k] \\ 7 & \textbf{if } P[k+1] = P[q] \\ 8 & \textbf{then } k \leftarrow k+1 \\ 9 & \pi[q] \leftarrow k \\ 10 & \textbf{return } \pi \end{array}
```

Análise de Complexidade

- Compute-Prefix-Function: O(m)
 - k é incrementado de 1 unidade não mais do que uma vez por cada valor de q, com número total de incrementos limitado superiormente por m
 - Valor de k decrementado devido a atribuição $k=\pi[k]$, mas k>0 e valor acumulado de decremento limitado a um total de m unidades
- KMP-Matcher: O(n+m)
 - Análise semelhante à anterior permite obter resultado

Definições

- - No caso geral podemos assumir que cada caracter é um dígito numa notação base d, onde $d=|\Sigma|$
- Dado o padrão P[1..m], designamos por p o valor decimal correspondente
- Dado o texto T[1..n], designamos por t_s o valor decimal da sub-string de T com dimensão m e deslocamento s, T[s+1..s+m], onde s=0,1,...,n-m

Exemplo

- Ao padrão P = 31415 corresponde o valor decimal p = 31415
- Seja T = 123141567, então:
 - $T[1..5] = 12314 e t_0 = 12314$
 - $T[2..6] = 23141 \text{ e } t_1 = 23141$
 - $T[3..7] = 31415 \text{ e } t_2 = 31415$
 - $T[4..8] = 14156 \text{ e } t_3 = 14156$
 - $T[5..9] = 41567 e t_4 = 41567$

Observações

- $t_s = p$ apenas quando T[s + 1..s + m] = P[1..m], logo apenas neste caso s é um deslocamento válido
- Se:
 - Conseguirmos calcular os valor de p em tempo $\Theta(m)$
 - Conseguirmos calcular cada um dos valores de t_s em tempo $\Theta(n-m+1)$
- Então:
 - Conseguimos determinar todos os deslocamento s válidos em tempo $\Theta(m) + \Theta(n-m+1) = \Theta(n)$, comparando p com cada um dos valores de t_s

Aplicação da Regra de Horner

$$p = P[m] + 10(P[m-1] + 10(P[m-2] + ... + 10(P[2] + 10P[1])...))$$

- Conseguimos calcular p a partir de P[1..m], em tempo $\Theta(m)$
- Conseguimos calcular t_0 a partir de T[1..m], em tempo $\Theta(m)$
- Para calcular os restantes valores $t_1, t_2, ..., t_{n-m}$, em tempo $\Theta(n-m)$, basta observar que t_{s+1} pode ser calculado a partir de t_s , em tempo constante:

$$t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s+m+1]$$

Exemplo

$$p = P[m] + 10(P[m-1] + 10(P[m-2] + ... + 10(P[2] + 10P[1])...))$$
$$t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s+m+1]$$

- Ao padrão P=31415 corresponde o valor decimal p=31415
 - $p = 5 + 10 \times (1 + 10 \times (4 + 10 \times (1 + 10 \times 3)))$
- Seja T = 123141567, então:
 - T[1..5] = 12314 e $t_0 = 12314 = 4 + 10(1 + 10(3 + 10(2 + 10 \times 1)))$
 - $T[2..6] = 23141 \text{ e } t_1 = 23141 = 10(t_0 10000 \times 1)) + 1$
 - $T[3..7] = 31415 \text{ e } t_2 = 31415 = 10(t_1 10000 \times 2)) + 5$
 - $T[4..8] = 14156 \text{ e } t_3 = 14156 = 10(t_2 10000 \times 3)) + 6$
 - $T[5..9] = 41567 \text{ e } t_4 = 41567 = 10(t_3 10000 \times 1)) + 7$

Utilização do Módulo

- p e t_s podem ser demasiado grandes
 - Se P contém m caracteres, para m grande não é razoável assumir que cada operação aritmética em p (que tem m dígitos) será efectuada em tempo constante
- ullet Solução: utilizar o módulo (resto da divisão inteira) por q
 - Calcular p e t_s módulo um determinado valor q
 - q é normalmente escolhido como um número primo tal que 10q cabe numa word, permitindo efectuar todas as operações em aritmética de precisão simples

$$t_{s+1} = (10(t_s - T[s+1] \times 10^{m-1} \mod q) + T[s+m+1]) \mod q$$

Utilização do Módulo

- $t_s = p \mod q$ não implica necessariamente que $t_s = p$
- $t_s \neq p \mod q$ implica que $t_s \neq p$
- Podemos utilizar o teste $t_s = p \mod q$ como uma heurística rápida para invalidar certos deslocamentos s, quando $t_s \neq p \mod q$
- Nos casos em que se verifica $t_s = p \mod q$, temos que verificar explicitamente se P[1..m] = T[s+1..s+m], ou se se trata de um spurious hit
- Se q for suficientemente grande, podemos assumir que os *spurious* hits ocorrem com pouca frequência e logo que o custo de nesse caso ter de verificar se P[1..m] = T[s+1..s+m] será baixo

digit

digit

digit

 $14152 \equiv (31415 - 3 \cdot 10000) \cdot 10 + 2 \pmod{13}$ $\equiv (7 - 3 \cdot 3) \cdot 10 + 2 \pmod{13}$ $\equiv 8 \pmod{13}$

shift digit

Complexidade

- Pré-processamento: $\Theta(m)$
- Procura:
 - $\Theta((n-m+1)m)$, no pior caso, dado que é necessário verificar todos os deslocamentos válidos
 - O(n) + O(m(v + n/q)), onde v é o número de deslocamento válidos e se assume que existem O(n/q) spurious hits
 - O(n), porque no pior caso o teste $p = t_s$ falha n vezes
 - O(m(v+n/q), porque por cada deslocamento válido ou *spurious hit* temos que efectuar a comparação P[1..m] = T[s+1..s+m], que tem um custo $\Theta(m)$