

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	:	Kordyum, et al.) Group Art Unit: 1636
Appl. No.	:	09/859,651	#10/B
Filed	:	May 17, 2001	Tuta
For	:	PHAGE-DEPENDENT SUPER PRODUCTION OF BIOLOGICALLY ACTIVE PROTEIN AND PEPTIDES	4/13/03
Examiner	:	Leffers, Jr., Gerald G.	RECEIVED

APR 0 1 2003

AMENDMENT

TECH CENTER 1600/2900

Assistant Commissioner for Patents Washington, D.C. 20231

Dear Sir:

In response to the Office Action mailed October 21, 2002, Applicants respectfully request the Examiner to enter the following amendments and consider the following arguments.

IN THE CLAIMS:

<u>Please cancel claim 48. Please amend claims 41, 49, 53, 58, and 63 as shown. All claims are shown for convenience.</u>

41. (Currently amended) A method for producing a soluble biologically-active protein, comprising:

transforming an E coli host cell with a plasmid having at least one copy of an expressible eukaryotic gene encoding said protein;

lytically infecting the transformed bacterial host cell with a bacteriophage λ having cI_{857} , Q_{am117} , and R_{am54} mutations; and

cultivating the *E. coli* host cell under a culture condition that induces lytic growth of said cell without lysis to produce the soluble, biologically-active protein.