# Pós-Prática Espectroscopia Raman

Edmur C. Neto - 12558492 Rafael F. Gigante - 12610500

> Instituto de Física de São Carlos Universidade de São Paulo

> > 20/03/2024



- Predito teoricamente por A. Smekal em 1923, observado e interpretado corretamente por C. V. Raman em 1928;
- Experimento de Raman com filtros;



Figura 2. Experimento com filtros realizado por Raman





Figura 1. A. Smekal e C. V. Raman



- Colisões entre Fótons e Matéria (Rayleigh, Stokes, Anti-Stokes)
- Propriedade das Intensidades das Colisões



**Figura 3.** Espalhamento de luz: (a) espalhamento inelástico (região Stokes); (b) espalhamento elástico (Rayleigh); (c) espalhamento inelástico (região anti-Stokes)





**Figura 4.** Representação gráfica das frequências Stokes e Anti-Stokes.



- Regras de Seleção de Espectroscopia Raman:
  - A molécula deve ter um dipolo induzido se submetida a um campo elétrico;
  - A molécula deve ir para o próximo estado vibracional ao qual se encontra.

Dedução semi-clássica:

$$\overline{\mu_{f,i}} = \langle v_f | \alpha(x) | v_i \rangle \mathbf{E}$$

$$\overline{\mu_{f,i}} = \left[ \alpha(0) \langle v_f | v_i \rangle + \left( \frac{d \times}{dx} \right)_0 \langle v_f | x | v_i \rangle + \cdots \right] \mathbf{E}$$

$$\left( \frac{d \times}{dx} \right)_0 \neq 0 \text{ pois } \langle v_f | v_i \rangle = 0 \text{ para } f \neq i$$

$$\langle v_f | x | v_i \rangle \neq 0 \therefore v_f - v_i = \pm 1$$



| 3500 - 3300 cm <sup>-1</sup> | Elongação N-H          | Aminas primárias e secundárias                                     |
|------------------------------|------------------------|--------------------------------------------------------------------|
| 3500 - 3200 cm <sup>-1</sup> | Elongação O-H          | Álcoois (banda forte e<br>larga)                                   |
| 3300 - 2500 cm <sup>-1</sup> | Elongação O-H          | Ácidos (banda larga<br>sobreposta com a banda<br>de elongação C-H) |
| ≈ 3300 cm <sup>-1</sup>      | Elongação C-H          | Alcinos                                                            |
| 3100 - 3000 cm <sup>-1</sup> | Elongação C-H          | Alcenos e aromáticos                                               |
| 3000 - 2850 cm <sup>-1</sup> | Elongação C-H          | Alcanos                                                            |
| 2840 - 2690 cm <sup>-1</sup> | Elongação C - H        | Aldeídos                                                           |
| 2250 - 2100 cm <sup>-1</sup> | Elongação C ≡ C        | Alcinos                                                            |
| 1760 - 1665 cm <sup>-1</sup> | Elongação C=O          | Cetonas, aldeídos,<br>ésteres e ácidos                             |
| 1680 - 1630 cm <sup>-1</sup> | Elongação C = C        | Alcenos                                                            |
| 1600 - 1500 cm <sup>-1</sup> | Elongação C = C (anel) | Aromáticos                                                         |
| 1300 - 970 cm <sup>-1</sup>  | Elongação C - O        | Álcoois, ésteres e ácidos                                          |
| 1250 - 1000 cm <sup>-1</sup> | Elongação C - N        | Aminas                                                             |
| 1600 - 1300 cm <sup>-1</sup> | Elongação N - O        | Compostos nitroílo                                                 |

**Tabela 1.** Frequências conhecidas de vibrações de diversas ligações químicas e o tipo de substância correspondente.



# APLICAÇÕES

#### Espalhamento Rayleigh: coloração do céu



**Figura 5.** (a) Sensibilidade relativa do olho humano para diferentes comprimentos de onda. (b) Espectro da luz solar em função do comprimento de onda, com destaque para a região visível.



**Figura 6.** Um observador na Terra recebendo a luz que vem diretamente do sol e outro observador recebendo a luz que é espalhada pelas moléculas.



#### **OBJETIVOS**

- Familiarizar-se com os conceitos de espectroscopia vibracional das moléculas;
- Qualificar as melhores configurações do fluorímetro e disposições do ambiente;
- Identificar a composição das substâncias submetidas ao experimento de Espectroscopia Raman.



- Utilização de um Fluorímetro e uma lâmpada de xenônio como fonte de luz;
- Calibração do Fluorímetro com uma lâmpada de mercúrio;
- Otimização da resolução do fluorímetro através da variação dos parâmetros de diâmetro do slit e velocidade de varredura
- Preparo de amostras (solventes incolores);
- Leitura e carregamento dos dados com o software do fluorímetro;
- Análise dos dados utilizado um software gráfico.



- Outros fenômenos ópticos também devem ser considerados na realização do experimento:
  - 1. Reflexão
  - 2. Refração
  - 3. Dispersão
  - 4. Difração
  - 5. Polarização
  - 6. Absorção
  - 7. Fluorescência



**Figura 7.** Exemplos de alguns dos fenômenos ópticos citados.







Figura 8. Representação esquemática de um fluorímetro comercial.

Figura 9. Fluorímetro LS-50B que será utilizado na prática.





Figura 10. Representação esquemática de uma fotomultiplicadora.







**Figura 11.** Capturas de tela do software que será utilizado na prática.



Calibração do fluorímetro com uma lâmpada de mercúrio:



Figura 12. Gráfico da emissão da lâmpada de Hg.

Ajuste: **11.3nm** 



#### > Fluorescência da cubeta:





**Figura 13.** (a) Gráfico da emissão das cubetas de vidro e plástico. (b) Imagem da cubeta emitindo luz visível.



#### Resolução do fluorímetro:



**Figura 14.** Gráficos da resolução do fluorímetro com (a) slit de emissão fixa em 10 nm e (b) slit de excitação fixa em 10nm.





**Figura 15.** Gráficos de otimização dos parâmetros do fluorímetro com base na largura à meia altura.



#### Espectro Raman da água da torneira:



**Figura 16.** (a) Espectro de emissão da água da torneira para diferentes excitações e (b) Diferença de comprimento de onda entre o espalhamento Raman e o espalhamento Rayleigh.



#### Espectro Raman da água da torneira:



**Figura 17.** (a) Espectro Raman da água da torneira para diferentes excitações e (b) Diferença de número de onda entre o espalhamento Raman e o espalhamento Rayleigh.



#### Espectro Raman da água destilada:





**Figura 18.** (a) Espectro de emissão da água destilada para diferentes excitações e (b) Espectro Raman da água destilada para diferentes excitações.



Espectro Raman esperado para a água:



Figura 19. Espectro esperado da água (H2O)



> Espectro Raman da solução de água com sal:



**Figura 20.** (a) Espectro de emissão da solução de água com sal para diferentes excitações e (b) Espectro Raman da solução de água com sal para diferentes excitações.



Espectro Raman esperado para a solução de água com sal:



Figura 21: Espectro esperado para a solução de água (H2O) e sal (NaCl)



Espectro Raman da solução de água com sal:



**Figura 22.** Comparação entre o espectro de água e a solução de água com sal.



#### Espectro Raman da Acetona:





**Figura 23.** (a) Espectro de emissão da acetona para diferentes excitações e (b) Espectro Raman da acetona para diferentes excitações.



Espectro Raman esperado para a Acetona:



Figura 24. Espectro esperado para a acetona (C<sub>3</sub>H<sub>6</sub>O)



#### CONCLUSÕES

- A intensidade da luz espalhada inelasticamente pelo efeito Raman é muito baixa;
- A banda de luz gerada pela lâmpada de xenônio e selecionada pelo monocromador é muito larga, o que faz com que a localização dos picos se torne imprecisa;
- Mesmo assim, é possível detectar e obter uma boa estimativa de onde estão as elongações químicas, mas não de localizá-las precisamente;
- Fatores externos como resíduos no recipiente, ou a própria luminescência do material podem interferir no resultado. Outras origens de erros são sistemáticas, ligadas às limitações do fluorímetro.



## REFERÊNCIAS

Lady Katherine Soto Gómez. "Desenvolvimento e aplicações da técnica espectroscopia Raman anti-Stokes coerente multiplex". [Online] Disponível em:

[https://repositorio.ufmg.br/bitstream/1843/49992/1/diserta%C3%A7%C3%A3o\_lady%20katherine%20soto.pdf]. Acesso em 28 de fevereiro de 2024.

"Espectroscopia Raman". [Online] Disponível em:

[https://www.ifsc.usp.br/~lavfis/lavfiswp/wp-content/uploads/2023/04/Espectroscopia-Raman.pdf] Acesso em: 28 de fevereiro de 2024.

"Water Molecule Vibrations with Raman Spectrocopy". [Online] Disponível em: <a href="https://physicsopenlab.org/2022/01/08/water-molecule-vibrations-with-raman-spectroscopy/">https://physicsopenlab.org/2022/01/08/water-molecule-vibrations-with-raman-spectroscopy/</a>]. Acesso em 29 de fevereiro de 2024.

Emiliane Gerbasi Ricci. "APLICAÇÃO DO MÉTODO DE ANÁLISE DOS COMPONENTES PRINCIPAIS E ESPECTROSCOPIA RAMAN PARA A AVALIAÇÃO DA MISTURA DE ETANOL-METANOL".[Online] Disponível em: [https://repositorio.unicid.edu.br/jspui/bitstream/123456789/815/1/Emiliane%20Gerbasi%20Ricci.pdf] Acesso em 29 de fevereiro de 2024.

Prof. Dr. José Pedro Donoso. "SFI 5800 Espectroscopia Física Simetria e Teoria de Grupos". [Online] Disponível em: [https://www.ifsc.usp.br/~donoso/espectroscopia/Simetria.pdf]. Acesso em 29 de fevereiro de 2024.

Andreas W. Momber. "The 50th anniversary of the death of Adolf Gustav Smekal (1895–1959), a pioneer in materials physics". [Online] Disponível em: [https://link.springer.com/article/10.1007/s10853-009-3996-4]. Acesso em 29 de Fevereiro de 2024.

