

CSE 344: Intro to Data Management Joining Tables

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements

HW1 due on Wednesday

Foreign Key

A **Key** is one or more attributes that **uniquely** identify a row.

Foreign Key

A **Key** is one or more attributes that **uniquely** identify a row.

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Foreign Key

A **Key** is one or more attributes that **uniquely** identify a row.

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Foreign Key

A **Key** is one or more attributes that **uniquely** identify a row.

A **Foreign Key** is one or more attrs that uniquely identify a row in *another table*.

Key

References

Name	Job	Salary
Jack	TA	50000
Allison	TA	60000
Magda	Prof	90000
Dan	Prof	100000
	Jack Allison Magda	Jack TA Allison TA Magda Prof

UserID	Car
123	Charger
567	Civic
567	Pinto

Foreign Key

A **Key** is one or more attributes that **uniquely** identify a row.

Agenda

Joins

Nested Loop Semantics

Self Joins

Outer Joins

Joins

Joins

Joins link records from different tables.

 May use the key / foreign-key relationship, but may also use any other relationships

For each employee, find the cars that they drive

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each TA, find the cars that they drive

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each TA, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';

Name	Car
Jack	Charger

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each TA, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';

Name	Car	
Jack	Charger	

and is a Boolean expression; let's review.

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

■ AND, OR, NOT

Example: are these true or false?

$$(5 < 7)$$
 or $(7 < 5)$

$$(5 < 7)$$
 or $(5 < 8)$

$$(5 < 7)$$
 and $(7 < 5)$

$$(5 < 7)$$
 and not $(7 < 5)$

$$(1 < 2)$$
 and $((2 != 3) \text{ or } (4 < 3))$

■ AND, OR, NOT

Example: are these true or false?

Make sure you understand why

$$(5 < 7)$$
 or $(7 < 5)$

TRUE

$$(5 < 7)$$
 or $(5 < 8)$

TRUE

$$(5 < 7)$$
 and $(7 < 5)$

FALSE

$$(5 < 7)$$
 and not $(7 < 5)$

TRUE

$$(1 < 2)$$
 and $((2 != 3) \text{ or } (4 < 3))$

TRUE

In the WHERE clause: may use AND, OR, NOT

```
SELECT Name
FROM Payroll
WHERE Job = 'TA' or (Salary > 55000 and Salary < 95000);</pre>
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

In the WHERE clause: may use AND, OR, NOT

```
SELECT Name
FROM Payroll
WHERE Job = 'TA' or (Salary > 55000 and Salary < 95000);</pre>
```

Name
Jack
Allison
Magda

21

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

In the WHERE clause: may use AND, OR, NOT

```
FROM Payroll
WHERE Job = 'TA' or (Salary > 55000 and Salary < 95000);

SELECT Name
FROM Payroll
WHERE Job = 'TA' and (Salary > 55000 and Salary < 95000);</pre>
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Name

Jack

Allison

Magda

In the WHERE clause: may use AND, OR, NOT

```
SELECT Name
FROM Payroll
WHERE Job = 'TA' or (Salary > 55000 and Salary < 95000);

SELECT Name
FROM Payroll
WHERE Job = 'TA' and (Salary > 55000 and Salary < 95000);

Name
Allison
Allison
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Joins

When we use joins we often have multiple conditions in the WHERE clause: and/or/not

Next: two ways to write the join

24

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

SELECT P.Name, R.Car

FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID;

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

Means the same thing

26

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P,Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P,Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID
WHERE P.Job = 'TA';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P,Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID
WHERE P.Job = 'TA';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID
and P.Job = 'TA';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

29

ON same as WHERE for now; but wait for it...

```
SELECT P.Name, R.Car
FROM Payroll AS P,Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID
WHERE P.Job = 'TA';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID
and P.Job = 'TA';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Discussion

A join is often between a key and a foreign key

But not always! Let's see some examples

-- find the cars they are driving SELECT P.Name, R.Car FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

-- find the cars they are driving

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

33

-- find the cars they are not driving

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID != R.UserID;

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

-- find the cars they are driving

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

-- find the cars they are not driving

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID != R.UserID;

Name	Car
Jack	Civic
Jack	Pinto
Allison	Charger
Allison	

34

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

-- find the cars they are driving

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

SELECT P. Name, R. Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID != R.UserID;

-- find WHAT??

SELECT P. Name, R. Car

FROM Payroll AS P, Regist AS R

Name	Car
Jack	Civic
Jack	Pinto
Allison	Charger
Allison	

35

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

-- find the cars they are driving

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

SELECT P. Name, R. Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID != R.UserID;

SELECT P. Name, R. Car

FROM Payroll AS P, Regist AS R

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Discussion

FROM clause: several table names

WHERE clause: some condition on these tables

Q: What does it mean?

A: For-Each semantics (Nested Loop Semantics)!

37

Nested Loop Semantics (again!)

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

September 30, 2024 Joins 39

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
<mark>123</mark>	Charger
567	Civic
<mark>567</mark>	Pinto

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

How do we algorithmically get our results?

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name Car

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
  for each row2 in Regist:
    if (row1.UserID = row2.UserID):
      output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	(
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
  for each row2 in Regist:
    if (row1.UserID = row2.UserID):
      output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	(
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
  for each row2 in Regist:
    if (row1.UserID = row2.UserID):
      output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
  for each row2 in Regist:
    if (row1.UserID = row2.UserID):
      output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Final answer

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

59

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```


Key / Foreign-key join

```
for each row1 in Payroll:
  for each row2 in Regist:
   if (row1.UserID = row2.UserID):
      output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Key / Foreign-key join

for each row1 in Payroll:
 for each row2 in Regist:
 if (row1.UserID = row2.UserID):
 output (row1.Name, row2.Car)

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R;

Cross product

for each row1 in Payroll:
 for each row2 in Regist:
 output (row1.Name, row2.Car)

60

Summary: Nested-Loop Semantics

■ FROM clause contains tables T1, T2, T3, ...

■ WHERE clause contains condition

■ SELECT clause contains attr1, attr2, ...

```
for each r1 in T1:
  for each t2 in T2:
    for each t3 in T3:
    ...
    if (condition):
      output (attr1,attr2,...)
```

Self-Joins

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

Name	Car1	Car2
Magda	Civic	Pinto

Find all people who drive a Civic-and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

Let's start with Pinto...

Find all people who drive a Civic-and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Pinto';
```

Let's start with Pinto...

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' AND
R.Car = 'Pinto';
```

Now both

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' AND
R.Car = 'Pinto';
```

Now both

Will this work?

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Car
Charger
Pinto
Tesla
Civic
Pinto

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
    R.Car = 'Civic' AND
    R.Car = 'Pinto';
```

Will this work? Nope, returns the empty set.

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

Is this better?

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
<mark>123</mark>	Pinto
123	Tesla
567	Civic
567	Pinto

Is this better?
Nope, it returns
both Jack and Magda.

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

Discuss with the people around you how you would solve this.

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

```
SELECT P.Name, R1.Car as Car1, R2.Car as Car2
  FROM Payroll AS P, Regist AS R1, Regist AS R2
WHERE P.UserID = R1.UserID AND
    P.UserID = R2.UserID AND
    R1.Car = 'Civic' AND
    R2.Car = 'Pinto';
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

```
SELECT P.Name, R1.Car as Car1, R2.Car as Car2

FROM Payroll AS P, Regist AS R1, Regist AS R2

WHERE P.UserID = R1.UserID AND

P.UserID = R2.UserID AND

R1.Car = 'Civic' AND

R2.Car = 'Pinto';

Name Car1 Car2

Magda Civic Pinto
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

The person we look for must drive TWO cars

```
FROM Payroll AS P, Regist AS R1, Regist AS R2
WHERE P.UserID = R1.UserID AND
P.UserID = R2.UserID AND
R1.Car = 'Civic' AND
R2.Car = 'Pinto';

Magda Civic Pinto
```

When a relation occurs twice in the FROM clause we call it a "self-join"

• If we have a self-join, we must use table aliases;
Otherwise, the attribute names are ambiguous

Outer Joins

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

79

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

```
SELECT P.Name, R.Car
FROM Payroll AS P
    LEFT OUTER JOIN Regist AS R
    ON P.UserID = R.UserID;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

81

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 LEFT OUTER JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto
Allison	NULL
Dan	NULL

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 LEFT OUTER JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto
Allison	NULL
Dan	NULL

NULL means

"unknown" or

"missing"

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

September 30, 2024 Joins 83

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 LEFT OUTER JOIN Regist AS R
 ON P.UserID = R.UserID;

<i>J</i>	
Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto
Allison	NULL
Dan	NULL

84

Left outer join:

- Perform the join <u>with the ON clause</u>
- 2. Add all missing tuples from LEFT
- 3. Check the WHERE clause (if present)

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 LEFT OUTER JOIN Regist AS R
 ON P.UserID = R.UserID;

J	
Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto
Allison	NULL
Dan	NULL

85

Left outer join:

- Perform the join <u>with the ON clause</u>
- 2. Add all missing tuples from LEFT
- 3. Check the <u>WHERE clause</u> (if present)
 Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

ON, WHERE differ (next lecture)

UserID	Car
123	Charger
567	Civic
567	Pinto

Outer Joins

LEFT OUTER JOIN

Add missing tuples from the LEFT

RIGHT OUTER JOIN

Add missing tuples from the RIGHT

FULL OUTER JOIN

Add missing tuples from both

Outer Joins

LEFT OUTER JOIN

Add missing tuples from the LEFT

Useful, especially for aggregates (next lecture)

RIGHT OUTER JOIN

Add missing tuples from the RIGHT

FULL OUTER JOIN

Add missing tuples from both

Rarely used

87