Bab

Keselamatan Proses dan Teknik Analisis

Disusun oleh Tim Dosen K3L FTUI Ganjil 2020/2021

Outline

- 1.Pendahuluan
- 2. Pengertian Bahaya dan Resiko
- 3. Mechanical Integrity of Process Equipment
- 4. Teknik Menganalisa Bahaya

Kebakaran di Piper Alpha

- 7 Juni 1988, serangkaian kebakaran dan ledakan menenggelamkan anjungan Piper Alpha
- 165 pekerja dan 2 orang petugas penyelamat tewas
- 61 pekerja selamat dengan terjun ke Laut Utara

Katup pengaman pompa lepas → awan uap kondensat terpantik → ledakan awan uap → Anjungan yang bersebelahan masih mengirim minyak → Api yang membesar memecahkan pipa gas bertekanan tinggi → Rangkaian ledakan menihilkan upaya evakuasi dan tindakan darurat lainnya

- Kesalahan sistem ijin kerja
- Gagal mengkomunikasikan status pompa pada giliran kerja setelahnya
- Pompa pemadam kebakaran dioperasikan manual, setelah ledakan, tidak dapat dijangkau kru pemadam
- Banyak katup penyemprot api pemadam tersumbat

Tragedi Bhopal

(Union Carbide, Bhopal, India, 3 Des1984)

- Kebocoran tanki gas ; 40 metrik ton metil isosianat (MIC)
- Menewaskan 4000 orang ditempat, melukai 150.000 hingga 600.000 orang luka-luka.
- Total meninggal <u>+</u>20.000 orang, penyebab cacat bawaan, kontaminasi lingkungan sampai hari ini.
- Penyebabnya: masuk air ke dalam tangki-tangki berisi MIC. Reaksi membentuk banyak gas beracun dan memaksa pengeluaran tekanan secara darurat. Gasnya keluar sementara penggosok kimia yang seharusnya menetralisir gas tersebut sedang dimatikan untuk perbaikan.

SAFETY PROCESS

FOKUS PADA PENGENDALIAN KECELAKAAN

PROCESS SAFETY MENEKANKAN PADA PENGENDALIAN RESIKO SERENDAH MUNGKIN

PROCESS SAFETY TIDAK HANYA BERURUSAN DENGAN SUBSTANSI BERBAHAYA DAN RESIKO KECELAKAAN YANG DITIMBULKAN TETAPI MELIPUTI JUGA FAKTOR MANUSIA, SERTA EFEK YANG DI TIMBULKANNYA PADA LINGKUNGAN, ASSET, DAN BISNIS BERKELANJUTAN.

BAHAYA

Situasi fisik yang berpotensi menyebabkan kecelakaan pada manusia, kerusakan pada aset, kerusakan pada lingkungan, dan kombinasi yang terjadi diantaranya.

RESIKO = EFEK BAHAYA X TINGKAT KEMUNGKINAN

RESIKO

- ☐ Efek bahaya bersifat tetap terdiri atas HIGH, MEDIUM, dan LOW
- Tingkat kemungkinan bahaya terdiri atas HIGH, MEDIUM dan LOW

Parameter dalam memperhitungkan (Kemungkinan)

PARAMETER	HIGH	MEDIUM	LOW
Frekuensi timbulnya bahaya	Setiap kali pekerjaan itu dilakukan	Sekali dalam 10 s/d 100	Satu kali selama pekerjaan itu dilakukan
Frekuensi timbulnya efek bahaya	Hampir setiap kali pekerjaan dilakukan	Sekali dalam 10 s/d 100	Sekali dalam 100 atau lebih
Tingkat kemampuan pelaksana pekerjaan	Tanpa pengalaman, tidak pernah melakukan pekerjaan sebelumnya	Kurang berpengalaman	Berpengalaman, memiliki kemampuan yang baik dan sering melakukan pekerjaan itu
kemampuan pelaksana	tidak pernah melakukan pekerjaan	J	memiliki kemam yang baik dan ser melakukan peker

Parameter dalam memperhitungkan (Efek)

PARAMETER	HIGH	MEDIUM	LOW
Sumber daya manusia	Kematian, cacat, disfungsi tubuh, luka berat	Luka menengah, tubuh masih dapat melakukan kerja	Luka ringan
Aset	Kerusakan besar pada peralatan	Kerusakan yang mengakibatkan menurunnya tingkat produksi	Kerusakan kecil tidak mempengaruhi produksi
Alat proteksi	Alat proteksi tidak ada Berada dalam lingkungan dengan keberadaan zat mudah terbakar	Alat proteksi minim	Alat proteksi tersedia dengan cukup, instalasi terisolasi dengan baik
Ketersediaan waktu evakuasi	Kurang dari 1 menit	Antara 1-30 menit	Lebih dari 30 menit

Mechanical Integrity of Process Equipment

Factor yang mempunyai efek terhadap safety pada proses equipment

- Design
- Fabrication
- Installlation
- Maintenance

Design

- Semua process vessels, pumps, valves, piping dan peralatan yang lain yang digunakan pada fasilitas operasi harus di fabrikasi dan dipasang sesuai dengan spesifikasi design
- Tidak boleh ada kompromi terhadap criteria dan spesifikasi design karena apabila dikompromi/ ditoleransi akan menaikkan potensi kecelakaan
- Bagian part yang kecil seperti Orings,gas-ket dan welds apabila tidak dipilih dan dipasang dengan pas bisa menimbulkan kecelakaan

Fabrication

- Verifikasi prosedur pengelasan dan dimensi dan kapasitas peralatan
- Semua sumber pendapatan fokus kepada proses dan plant design untuk memproduksi fasilitas operasi yang aman dan terpercaya
- Metode dan frekuensi untuk pengecekan instrumen yang critical pada proses dan plant harus pas agar sesuai dengan persyaratan setiap plant
 - Test awal dari system harus dilakukan terlebih dahulu saat plant start-up dan secara periodik setelah plant sudah memulai operasi

Installation

- Pada saat pengerjaan pengelasan dan pemotongan logam serta pengerjaan dengan panas lainnya harus disertai dengan ijin pengerjaan panas yang hanya berlaku setiap 8 jam
- Pada saat proses instalasi jauhkan bahan2 yang berbahaya seperti bahan flammable pada lokasi pengerjaan
- Menambahkan programmable electronic systems untuk mendeteksi error pada peralatan
- Proses instalasi harus dilakukan dengan hati-hati tanpa adanya kesalahan

Maintenance

- Alat-alat yang digunakan sebagai pencegah bahaya seperti venting dan relief pressure dilakukan pengecekan secara berkala dipastikan selalu bekerja sesuai fungsinya
 - Melakukan planned maintenance secara berkala untuk menggetahui kondisi peralatan dan membuat performance peralatan kembali seperti semula atau bahkan lebih baik

HAZARD ANALYSIS TECHNIQUE

WHAT IF ANALYSIS

CHECKLIST

WHAT-IF/CHECKLIST

HAZARD AND OPERATIBILITY (HAZOP)

FAILURE MODE AND EFFECT ANALYSIS

FAULT TREE ANALYSIS

HAZARD IDENTIFICATION

Proses berjalan eksotermis

aliran dari tangki penyimpanan masuk kedalam adukan reactor produk C

laju aliran rata-rata A dan B diatur oleh control valve A dan B

dikontrol dengan air pendingin pada jaket di reactor produk C

reaksi material A dan B menghasilkan produk C yang diproses dengan cepat, dan dikeluarkan melalui bottom dari reactor

Produk C melewati valve C menuju penyimpanan produk C untuk menunggu pengiriman

Temperature, tekanan dan level indicator disediakan untuk mengontrol proses kimia

WHAT IF ANALYSIS

✓ It can be accomplished with a relatively low skill level.

The typical What-If review is a basic brainstorming session, all sorts of topics may be randomly addressed as they come to mind. Combined with a checklist format, the review may become simple questions to answer.

✓ It is fast to implement, compared to other qualitative techniques.

Since the What-If review is a direct question method possibly from a standardized checklist, the questions can be easily and usually rapidly addressed.

✓ It can analyze a combination of failures.

The option of addressing continuing sequential failures can be investigated to the final outcome.

✓ It is flexible.

It is readily adaptable to any type of process flow or facility. Questions can focus on specific potential failures.

WHAT IF ANALYSIS

Digunakan untuk menghubungkan proses yang tidak terlalu rumit

What if	Konsekuensi	Komentar
material A tidak mengalir ke reaktor	material B yang tak bereaksi akan mengkontaminasi produk C	alarm dan penutupan valve B pada aliran pelan valve A
temperatur reaktor melebihi batas operasi	Reaktor akan rusak jika pengendali tekanan gagal	memasok lebih air pendingin;alarm dan menutup valve A dan B ketika temperatur reaktor melebihi batas operasi
material B terkontaminasi	produk akan kurang spesifikasi, reaksi yang tidak diinginkan terjadi	memerlukan pengembangan kualitas kontrol B; memastikan penerimaan dan prosedur material B

CHECKLIST ANALYSIS

- ✓ standarisasi CHECKLIST dikembangkan dan digunakan untuk setiap tahapan proses
- ✓ Setiap pertanyaan pada checklist diberikan jawaban iya atau tidak dimana selanjutnya diperkuat oleh komentar
- ✓ Jumlah dan tipe checklist dibatasi oleh pengetahuan, pengalaman, latar belakang dan kreatifitas dari orang yang menyiapkannya
- ✓ Hanya personil yang berpengalaman yang terlibat dalam pembuatannya

Checklist Question Categories

- Causes of accidents
 - Process equipment
 - Human error
 - External events
- Facility Functions
 - Alarms, construction
 materials, control systems,
 documentation and training,
 instrumentation, piping,
 pumps, vessels, etc.

CHECKLIST ANALYSIS OF SAMPLE PROCESS

Checklist	Jawaban	Komentar
Apakah Setiap Pengantaran Material B Diperiksan Terhadap Kontaminasi	Iya	Suplaier Material B Telah Terpercaya
Apakah Pengendali Tekanan Telah Diperiksa 6 Bulan Terakhir	Iya	Jadwal Inspeksi Valve Telah Dilaksanakan
Apakah Operator Telah Menerima Training Yang Diperlukan	Tidak	Beberapa Pekerja Baru Belum Mengikuti Program Yang Telah Dijadwalkan

KOMBINASI WHAT IF DAN CHECKLIST ANALYSIS

- A hybrid of the What-If and Checklist methodologies
- Combines the *brainstorming* of What-If method with the *structured features* of Checklist method
- Begin by answering a series of previouslyprepared 'What-if' questions
- During the exercise, brainstorming produces additional questions to complete the analysis of the process under study

HAZARD AND OPERATIBILITY STUDY (HAZOP)

- Identifikasi penyimpangan/deviasi yang terjadi pada pengoperasian suatu instalasi indsutri dan kegagalan operasinya yang menimbulkan keadaan tidak terkendali
- Dilakukan pada tahap perencanaan untuk instalasi industri baru
- Dilakukan sebelum melakukan modifikasi alat atau penambahan instalasi baru dari instalasi industri lama
- Analisa sistematis terhadap kondisi kritis disain, instalasi industri, pengaruhnya dan peyimpangan potensial yang terjadi serta potensi bahayanya
 - Dilakukan oleh sekelompok para ahli dari multi disiplin ilmu dan dipimpin oleh spesialis keselamatan kerja yang berpengalaman atau oleh konsultan pelatihan khusus
 - HAZOP analysis menggunakan guide words

Dokumen yang Mendukung HAZOD

✓ For Preeliminary HAZOP

Process Flow Sheet (PFS or PFD)

Description of the Process

✓ For Detailed HAZOP

Piping and Instrumentation Diagram (P&ID)

Process Calculation

Process Data Sheets

Instrumen Data Sheets

Interlock Schedules

Layout Requirements

Hazardous Area Classification

Description of the Process

Terminology HAZOP

Kosakata	Penjelasan
Mode	Titik/ bagian dari proses yang ditentukan sebagai objek analisa
Design Intent	Fungsi,sistem, parameter dan besaran yang telah ditetapkan / dirancang agar proses dapat berjalan lancar
Guide Word	Kata-kata singkat yang digunakan untuk membantu mengarahkan jalannya diskusi pada saat meninjau suatu parameter proses / memebantu brainstorming saat mengidentifikasi risiko proses.seperti contoh : No, more, less, High, dan lain-lain
Parameter	Rujukan / ukuran proses tertentu yang ditinjau. Misal: temperature, pressure, flow dan lain-lain
Deviation	Penyimpangan proses dari design intent yang ada (penggabungan dari guide word dan parameter)
Cause	Alasan yang dikemukakan mengapa suatu penyimpangan dapat terjadi
Consequence	Akibat atau konsekuensi yang dihasilkan jika terjadi penyimpangan
SafeGuard	Peralatan dan instrumen yang ditambahkan untuk tujuan pengendalian dan pengamanan serta sistem yang dibuat secara administratif untuh mencegah suatu penyimpangan terjadi atau mengurangi consequences yang terjadi sebagai akibat penyimpangan
Hazard Category	Nilai / bobot risiko yang ada, biasanya digunakan " Hazard Risk Assesment Matrix"
Recommendation	Rekommendasi untuk perubahan design, prosedur operasi atau untuk studi lebih lanjut

Sumber: Safety Enginer Career Workshop (2003), PhytagorasGlobal Development)

HAZOP GUIDE WORDS

Guide Words	Arti
Dari OSHA	
NO	tak pernah, tak ada
LESS	kuantitas menurun, merendah, terlalu rendah
MORE	kuantitas meningkat,tinggi, terlalu panjang
PART OF	qualitatif menurun, terlalu kecil
AS WELL AS	kualitatif meningkat, terkontaminasi, terlalu banyak
REVERSE	lawan dari maju atau intent
OTHER THAN	susbtitusi komplit, lainnya
Guide words lain yan	g mungkin
YES	selalu
SAME AS	konstan
FORWARD	lawan dari kebalikan
BEGIN	awal
END	selesai
REACH	tercapai

HAZOD ANALYSIS OF SAMPLE PROCESS

ITEM	DEVIATION	CAUSE	CONSEQUENCE	SAFEGUARD	ACTION
Material A to reactor	No Flow	Valve A plugged	Unreacted B will contaminate product C	Periodic maintenance on valve A	Add alarm and shut off the "on" valve B on low flow through valve
Reactor temperature	High Temperature	Excessive reactants in reactor	Reactor may be damaged	Supply more cooling water to reactor jacket; observe reactor temperature closely during	A Add alarm and shut off "on" valves A and B on excessive reactor temperature
Product C	Low pH	Valve B failed to close	Off specification product	operation Periodic maintanance on valve B	Add alarm and shut off "on" valve A on low flow through valve B

FAILURE MODE AND EFFECT ANALYSIS (FMEA)

- ✓ Dimulai dengan mendaftar semua peralatan dan komponen proses yang akan dipelajari.
- ✓ masing-masing komponen dianalisa dengan metode untuk mengetahui mode yang berpotensial gagal, konsekuensinya dan perlindungan keamanan operasi serta hal yang direkomendasikan dalam mencegah bahaya
- ✓ Membutuhkan detail P&ID
- ✓ Sangat aplikatif untuk proyek yang sedang dalam tahap desain

FMEA – Failure Mode Keywords

- Rupture
- Crack
- Leak
- Plugged
- Failure to open
- Failure to close
- Failure to stop
- Failure to start
- Failure to continue
- Spurious stop

- · Loss of function
- High pressure
- · Low pressure
- High temperature
- Low temperature
- Overfilling
- Hose bypass
- Instrument bypassed

FMEA HAZARD ANALYSIS OF SAMPLE PROCESS

item	identifikasi	deskripsi	mode kegagalan	konsekuensi	safeguard	aksi
1	valve A	motor valve, biasanya terbuka, material A servis	fails to open	Aliran material A berlebih ke reaktor	perbaikan berkala valve A	menambah alarm dan menutup valve A
2	Valve B	motor valve, biasanya terbuka, material B servis	kemasan terbongkar	tercecer material B di area operasi	perbaikan berkala valve B	memastikan pengemasan dari material B
3	Valve C	motor valve, biasanya terbuka, material C servis	fails to close	reaktor mengali berlebihan	perbaikan berkala valve C dan kontrol level reaktor	penambahan alarm dan menutup valve A dan B

HIRA

Identifikasi Bahaya dan Kajian Resiko (Hazard Identification and Risk Assesment), analisa yang dilakukan pada AKTIVITAS HARIAN DAN KHUSUS suatu instalasi industri

Tahapan HIRA

- ✓ Pemilahan kegiatan yang akan dilakukan menjadi sub kegiatan yang lebih kecil dan spesifik
- ✓ Identifikasi potensi bahaya untuk setiap sub kegiatan
- ✓ Determinasi resiko yang mungkin terjadi (efek bahaya dan tingkat kemungkinannya)
- ✓ Determinasi cara pencegahan dan penanggulangan terhadapa resiko bahaya
- ✓ Kesimpulan potensi bahaya dan resiko yang dihadapai untuk setiap kegiatan
- ✓ Kesimpulan untuk setiap kegiatan

HIRA PADA KILANG UP VI BALONGAN

Jenis Kegiatan	Potensi bahaya	Efek bahaya	Tingkat Efek bahaya	Tingkat kemungkinan	Resiko	Penanggulangan & pencegahan	Resiko Akhir
Pemeliharaan reaktor dan kolom utama pada RCC	terjatuh	Patah tulang, disfungsi tubuh dan kematian	Н	Н	Н	Pemakaian safety helm Pemakaian tali pengaman	M
Pengisian katalis ke dalam catalyst storage	Katalis tumpah dan tercecer	Pencemaran lingkungan	M	L	M	SOP yang jelas dan pekerja yang terlatih	L
Pengambilan kerosene dari DTU dan atau ARHDM	Kebocoran pipa	Pencemaran lingkungn, kebakaran dan ledakan	Н	Н	Н	Inspeksi dan monitoring rutin pada perpipaan dengan indikator baik, Sistem pemadam kebakaran yang baik di sekitar unit	M

HAZID

Identifikasi bahaya (Hazard Identification), analisa pencegahan terjadinya bahaya pada suatu instalasi industri/pabrik yang DILAKUKAN DENGAN MEMPERHATIKAN KESELURUHAN ASPEK YANG ADA DI DALAMNYA

Keseluruhan aspek dari instalasi industri/pabrik itu adalah:

- Data instalasi industri (PFD,P&ID, la out, data sosial kultural masyarakat, catatan peristiwa)
- lokasi (fasilitas operasi, fasilitas pendukung)
- Resiko (SDM, Lingkungan, aset, image)
- Faktor pemicu bahaya (faktor operasi, transportasi, geografis dan meteorologi, sosisal kultural)
- Potensi bahaya (kebakaran dan ledakan besar, tenggelam, pencemaran lingkungan)

Parameter HAZID dalam Memperhitungkan

PARAMETER	MINOR	MAYOR	SEVERE
SDM	Tidak ada kecelakaan	Kecelakaan tidak fatal	Kecelakaan fatal
ASET	Kerugian lebih rendah dari US\$ 100.000	Kerugian diantara US\$ 100.000 s/d 1.000.000	Kerugian lebih besar dari US\$ 1.000.000
LINGKUNGAN	Tidak ada kerusakan lingkungan	Kerusakan kecil pada lingkungan	Kerusakan besar pada lingkungan

Parameter HAZID dalam Memperhitungkan

probability	most	likely	unlikely
Frekuensi bahaya	Lebih dari 10 kali dalam 10 tahun	Diantara 1 s/d 10 kali dalam 10 tahun	Kurang dari 1 kali dalam 10 tahun

HAZID PADA UREA PLANT PUSRI

LOKASI	DESKRIPSI	PENYEBAB	POTENSI BAHAYA	EFEK BAHAYA	FREKUENSI BAHAYA	PENCEGAHAN
Perumahan karyawan	Tempat tinggal karyawan PUSRI yang terletak di luar area pabrik	Tekanan dan suhu terlalu tinggi pada proses operasi	Ledakan besar, kecelakaan	severe	likely	Pengadaan unit pemadam kebakaran, pengadaan alat deterktor kebakaran
Unit Ammonia	Unit pembuatan NH3 dan CO dari udara, gas alam dan steam	Tekanan dan suhu terlalu tinggi pada proses operasi	Ledakan besar, kecelakaan	severe	likely	Pengecekan secara umum, pengadaan indikator tekanan dan suhu
Unit urea	Unit pembuatan urea dari NH3 dan CO	Tekanan dan suhu terlalu tinggi pada proses operasi	Ledakan besar, kecelakaan	severe	likely	Pengecekan secara umum, pengadaan indikator tekanan dan suhu
Unit gas turbine generator	Unit pemenuhan kebutuhan tenaga listrik untuk pabrik kantor dan perumahan	Tekanan dan suhu terlalu tinggi pada proses operasi	Ledakan besar, kecelakaan	severe	likely	Pengecekan secara umum, pengadaan indikator tekanan dan suhu
Unit pembangkit steam	Unit penghasil steam utama utk berbagai proses	Tekanan dan suhu terlalu tinggi pada proses operasi	Ledakan besar, kecelakaan	severe	likely	Pengecekan secara umum, pengadaan indikator tekanan dan suhu
Unit pengolahan limbah	Unit pengolahan limbah & air hasil proses produksi	Kebocoran operasi proses	Pencemaran lingkungan	severe	likely	Pengecekan secara rutin

FAULT TREE ANALYSIS

- ✓ diagram dari semua urutan kejadian yang menyebabkan kejadian ,kecelakaan atau ledakan
- ✓ merupakan analisa bahaya tingkat tinggi yang special yang menggunakan logika dan simbol kejadian
- ✓ Provides a traceable, logical, quantitative representation of causes, consequences and event combinations
- ✓ Amenable to but for comprehensive systems, requiring – use of software
- ✓ Not intuitive, requires training
- ✓ Not particularly useful when temporal aspects are important

FTA

Job Safety Analysis

Job Safety Analysis (JSA) adalah metoda yang secara sistematis digunakan untuk:

- Memeriksa pekerjaan
- Membagi pekerjaan kedalam tahapantahapan kerja
- Mengidentifikasi bahaya pada setiap tahapan/langkah kerja
- Mengevaluasi resiko pada setiap langkah kerja, dan
- Menentukan tindakan pecegahan yang tepat pada
 tiap langkahnya sampai batas yang dapat diterima

URUTAN LANGKAH JSA

JOB COVERED

MAINTENANCE

POSITION INCLUDED:

Athletic Facilities Maintenance Worker Building Maintenance Worker Delivery Driver Driver/Utility Worker Lead Custodian Project Mechanic - Carpentry Project Mechanic - Plumbing
Project Mechanic HVAC/Electrician
Assistant Director, Maintenance / Operations / Transportation
Director, Maintenance/Operations/Transportation

Risk of falling	Refer to manufacturers specifica-
-	tions.
Fails	Walk slowly and carefully. Be aware of surroundings.
Tripping.	Use caution when walking. Avoid wailing on wet or slippery surfaces.
Dust	Wear proper personal protection (respirator) when necessary.
Falling objects	Be aware of work occurring over- head. Wear personal protection (hard hat) when necessary.
Chemical exposure	Refer to materials safety data sheet. Wear proper personal protection when necessary
Safety Regulations	Refer to Title 8, Chapter 4, Subchap- ter 4
Falls	Walk slowly and carefully. Be aware of surroundings.
Tripping.	Use caution when walking. Avoid wailing on wet or slippery surfaces.
Falling objects	Be aware of work occurring over- head. Wear personal protection (hard hat) when necessary.
Chemical exposure	Refer to materials safety data sheet. Wear proper personal protection when necessary
Risk of eye injury.	Wear proper personal protection (goggles)
	Tripping. Dust Falling objects Chemical exposure Safety Regulations Falls Tripping. Falling objects Chemical exposure

Phase of Work	Safety Hazard	Precautions/Safety Procedures

Produksi Bontang LNG Plant

Tahun	Produksi LNG (tons)	Pengapalan LNG	Produksi LPG (tons)	Pengapalan LPG
1977	713.729	12	-	-
1978	3.332.043	58	-	-
1979	3.257.282	57	-	-
1980	4.155.302	72	-	-
1981	4.076.656	71	-	-
1982	4.263.888	74	-	-
1983	4.476.952	78	-	-
1984	7.298.748	125	-	-
1985	7.399.474	129	-	-
1986 F	7.067.191	126	-	-
1987	6966.899	123	-	-
1988	8.063.054	145	52.744	1
1989	8.0641536	147	385.080	11
990	9.1.7.297	178	465.263	13

Produksi Bontang LNG Plant (Continued)

1991	10.985.525	197	509.686	16
1992	11.789.147	211	582.134	15
1993	12.149.872	214	680.650	23
1994	14.107.104	249	785.895	23
1995	13.707.104	240	733.251	17
1996	15.214.927	245	945.040	21
1997	15.621.658	294	961.132	20
1998	16.413.427	309	976.305	25
1999	18.497.258	340	1.058.065	25
2000	20.588.062	380	931.120	21
2001	21.383.543	408	1.154.159	26
2002	20.219,962	356	906.057	20

PT Badak NGL

- Nama PT badak diambil dari nama lapangan gas raksasa di daerah badak
- Didirikan pada 26 November 1974
- Pada awalnya merupakan perusahaan nonprofit dengan pemegang saham Pertamina, Vico dan Jilco
- Merupakan operator Bontang LNG Plant
- Sangat memperhatikan aspek keselamatan kerja dan lingkungan
 Melakukan program bina masyarakat

Penghargaan-penghargaan yang telah diterima PT Badak NGL

Diberikan Oleh:	Penghargaan	Jumlah
British Safety	Five Stars Award	2
Council	Sword of Honor	6
USA	Award of Honor	7
	Patra Karya Raksatama	2
Pemerintah RI	Patra Karya Nirbhaya Karya Utama	1
	Patra Adikarya Bhumi Utama	2
	"ISO14001 accreditation" "Safety Award"	
Instansi	"Zero Accident"	1
Internasional	"ISO 9001 version 2000 for Quality	
	Management System"	

Proses Produksi di Bontang LNG Plant

STORAGE TANK CO2 REMOVAL DEHYDRATION FRACTIONATION LIQUEFACTION (ABSORBER & REGENERATOR) (H2O & Hg REMOVAL) (SCRUB COLUMN) (MAIN EXCHANGER) FEED GAS **BOIL OFF TO** CO₂ **PLANT FUEL** K.O.D LNG STORAGE LNG MARINE LOADING LPG STORAGE DEETHANIZER PT Badak NGL LPG DEPROPANIZER DEBUTANIZER MCR PROPANE MARINE LOADING REFRIGERATION REFRIGERATION **FRACTIONATION**

Sumber-sumber gas alam

- VICO
 Lapangan mutiara, sambera, badak dan nilam
- TOTAL INDONESIA
 Lapangan tambora, tunu, senipah, bekapai, handil dan peciko
- UNOCAL INDONESIA
 Lapangan attaka dan west seno
- Gas-gas dari sumur-sumur tsb dialirkan menuju bontang LNG Plant dengan pipa transmisi 36" dan 42" dan tiba pada Bontang LNG Plant pada tekanan sekitar 47 kg/cm2
- Sebelum dialirkan ke setiap train sebagai feed gas, gas alam tersebut terlebih dahulu dilewatkan ke Knock Out Drum untuk enjalani proses pemisahan awal

Komposisi Feed Gas

N2	0,12 %
CO2	5,80 %
C1	83,7 %
C2	4,95 %
C3	3,30 %
iC4	0,70 %
nC4	0,80 %
iC5	0,30 %
nC5	0,20 %
Co	70,13 %
	00

Produk Bontang LNG Plant

Komposisi LNG:

C₁ min 85 %

 N_2 max 1 %

C₄ max 2 %

C₅⁺ max 0,1 %

max 0,025 ppbw / 100 ScF

max 1,3 gr / 100 ScF

min 453 kg / m³

Produk Bontang LNG Plant (Continue..)

Komposisi LPG Propana:

C₂ max 1,86 %

C₃ min 96,25 %

 C_4 max 1,89 %

Komposisi LPG butana:

 C_3 max 4,64 %

min 94,84 %

6,88 %

Keselamatan kerja, kesehatan dan lingkungan

Bahan baku dan produk yang terlibat

- CH4/fuel gas
- C3H8/propane
- C2H4/ethylene
- C3H6/propylene
- nC4H10/butane
- C5H12-C11H24/kondensat
- (C6H14 C12H26)/nafta

Masalah lingkungan

Sumber pencemar:

- Limbah gas (CO₂, SO_x, NO_x,dll)
- Limbah cair (Limbah Hg, C₅+,dll)
- Limbah padat (partikulat, Smog, dll)

Dampak negatif dari beberapa aspek:

- : *. flora dan fauna
 - *. manusia

- #. iklim makro
- #. kualitas air
- : +. Demonstrasi warga
 - +. Perkelahian

Pengendalian pencemaran lingkungan

Cara yang dapat digunakan dalam pencegahan pencemaran limbah adalah dengan melakukan pencegahan pencemaran pada "sumber pencemar" di dalam area pabrik, seperti:

- 1. Penyempurnaan meode proses serta peralatan yang dipakai
- 2. Menjaga kebersihan dari tumpahan/ceceran bahan kimia serta ceceran lainnya
- 3. Menambah unit pemanfaatan hasil samping
- 4. Penggunaan kembali air buangan proses (daur ulang) serta usaha-usaha lainnya yang tidak menimbulkan gangguan terhadap peralatan manusia/karyawan serta lingkungan.

ANALISA KESELAMATAN KERJA

HIRA

Jenis kegiatan yang di buat HIRA:

- a.Pembersihan Storage Tank
- b.Pemasangan Instalasi Listrik
- c.Pemasangan dan fitting pipa
- d.Pengecekan alat (pemanas, indikator, Heat exchanger,dll)
- e.Pengangkutan bahan baku dan produk

Aktivitas	Potensi bahaya	Efek bahaya	Tingkat efek bahaya	Frekuensi bahaya	Resiko	Pencegahan	Resiko akhir
Pembersihan tangki penyimpanan	Sisa minyak	Tergelincir	L	Н	M	Safety shoes atau boot dengan grip khusus	L
	Cairan Pembersih	Keracun an	M	н	M	Masker, alat bantu pernapasan	L

HAZID

Lokasi yang dibahas pada HAZID

- Well Facilities
- 2. Main Office, gedung serba guna
- 3. Plant keseluruhan
- 4. LNG/LPG Tank Storage Facilities
- 5. Small Refinery Facilities
- 6. Main Facilities
- 7. Loading Ship
- 8. Pipeline Facilities
- 9. Unit Pengolahan Limbah

HAZID

No	Lokasi	Deskripsi	Penyebab	POTENSI BAHAYA	EFEK Bahaya	FREKUENSI Bahaya	PENCEGAHAN
1.	Well Facilities	Kebocora Kompre- sor	*Korosi, kavitasi atau karena adanya kandungan air yang cukup banyak pada gas alam akibat suhu dan tekanan gas turun (kompressor rusak)	+Plant shut down (gas tidak dapat diambil dari dalam tanah) +Kebakaran (karena gas alam mudah meledak) +Pencema- ran lingkungan	Servere: Kerugian besar karena Plant shut down, Dapat berakibat kematian bila terjadi ledakan besar	unlikely	Peremajaan Kompressor, pengecekan alat secara rutin, menyiapkan aliran bypass agar tidak sampai Plant Shut Down (PSD)
2.	Main Office, gedung serbagu-	Depan gedung main office terjadi pemogo- kan kerja/de- mo	*Gaji karyawan dinilai sudah terlalu rendah dengan kondisi bahan-bahan kebutuhan pokok yang terus naik. *pencemaran lingkungan tempat tinggal warga oleh limbah pabrik atau kebocoran gas.	+Hancurnya gedung karena terjadi bentrok dengan warga setempat, bisa pula terjadi kebakaran	Servere: Dapat terjadi fatality	Unlikely	Selalu memperhati- kan kebutuhan rakyat kecil

Iak NGL	No	Lokasi	Deskripsi	Sebab	POTENSI BAHAYA	EFEK BAHAYA	FREKUENSI Bahaya	PENCEGAHAN
	3.	Plant keseluruh an	Seluruh fasilitas operasi dan pendu- kung plant kebanji- ran	*Tempat penampungan air (DAM) rusak, curah hujan terlalu tinggi dengan intensitas yang besar	+Kebanjiran (dapat menyebab- kan alat-alat DAM rusak) +Penyakit +Plant Shut Down	Severe: Karena plant shut down kerugian perusaha- an besar	Most: Karena daerah Bontang adalah daerah beriklim tropik basah dengan curah hujan yang tinggi	Membuat waduk, DAM, membuang sampah pada tempatnya
		NG/TIPG Tank Storage Facilities	Keboco- ran tank storage	*Korosi, bencana alam seperti gempa bumi hebat, banjir	+Dapat terjadi ledakan karena LNG/LPG mudah meledak, +kematian	Severe: Fatality kerugian produk yang hilang serta image perusaha- an turun	Unlikely	Peremajaan tank, pemerikasaan rutin, penyimpanan storage tank di gedung atau ruangan tertutup

No	Lokasi	Deskripsi	Sebab	POTENSI BAHAYA	EFEK BAHAYA	FREKUENSI Bahaya	PENCEGAHAN
	LNG/ LPG Tank Storage Facilities	Pressure Regulator pd tangki tidak berfungsi dengan baik sehingga tekanan tidak terkontrol	*Tidak rutin memeriksa keadaan tangki khususnya Pressure Regulator.	+Kebakaran dan ledakan besar (karena tekanan terlalu tinggi shg suhunya lebih tinggi daripada suhu ignitation)	Severe: Fatality kerugian dalam jumlah besar	Unlikely	Peremajaan fasilitas yang sudah rusak, rutin memeriksa tekanan pada tangki
5.	Small Refinery Facilities (Fasilitas) pendu kung onerasi	Kebocoran pompa atau pompa tidak dapat bekerja dengan baik	*Korosi, adanya fraksi uap (gelembung- gelembung udara) pada aliran inlet pompa sehingga pompa rusak	+Kerugian materi yang terbuang, pompa yang rusak	Minor	Most	Memeriksakan pompa secara rutin, pengecekan dan pengauditan kondisi pompa, menutup aliran ke pompa dan mengaktifkan bypass line
		LNG/ LPG Tank Storage Facilities Small Refinery Facilities	Pressure Regulator pd tangki tidak berfungsi dengan baik sehingga tekanan tidak terkontrol Small Refinery Facilities (Fasilitas) pendu kung ana dengan bekerja dengan	Pressure Regulator pd tangki tidak berfungsi dengan Facilities baik sehingga tekanan tidak terkontrol Kebocoran pompa atau pompa tidak dapat bekerja dengan *Korosi, adanya fraksi uap (gelembung- gelembung- gelembung udara) pada aliran inlet pompa sehingga nompa rusak	Pressure Regulator pd tangki tidak berfungsi Storage Facilities Small Refinery Facilities Small Refinery Facilities Small Refinery Facilities Regulator baik sehingga tekanan tidak terkontrol Kebocoran pompa atau pompa tidak dapat bekerja dengan Small Refinery Facilities Regulator. *Tidak rutin memeriksa keadaan tangki khususnya Pressure Regulator. Regulator. *Korosi, adanya fraksi uap (gelembung- gelembung- terbuang, pompa yang rusak	Pressure Regulator pd tangki tidak Storage Facilities Facilities Small Femory Facilities Rebocoran pompa atau pompa tidak dapat bekerjia dengan Facilities Rebocoran pompa atau pompa tidak dapat bekerjia dengan Facilities Regulator. *Tidak rutin memeriksa keadaan tangki khususnya pressure Regulator. *Tidak rutin memeriksa keadaan tangki khususnya pressure Regulator. *Kebakaran dan ledakan besar (karena tekanan tekanan telalu tinggi daripada suhu ignitation) *Korosi, adanya fraksi uap (gelembung- gelembung- gelembung udara) pada aliran inlet pompa sehingga rusak Minor	Pressure Regulator pd tangki tidak berfungsi dengan baik sehingga tekanan tidak terkontrol Kebocoran pompa atau pompa (gelembung- gelembung- g

BADAK											
PT Badak NGL	No	Lokasi	Deskripsi	Sebab	POTENSI BAHAYA	EFEK BAHAYA	FREKUENSI BAHAYA	PENCEGAHAN			
	5	Small Refinery Facilities (Fasilitas pendu- kung operasi)	Kerusakan boiler	*Suhu operasi terlalu tinggi melebihi suhu maksimal boiler	+Gangguan produksi, turbin rusak (tidak dapat berfungsi secara maksimal)	Minor	Unlikely	Membeli boiler dengan pertaha-nan yang tinggi			
		Small Refinery Facilities Fasill- tas pendu- kung- ppelasi	Valve/ka- tup macet (aliran tidak dapat dibuka atau ditutup dengan baik)	*Korosi, friksi terlalu besar	+Plant Shut Down (tidak ada aliran atau aliran tidak dapat ditahan sehingga menimbul-kan kerusakan alat lain)	Major : dapat terjadi Plant Shut Down	Likely	Ada aliran bypass atau aliran cabang yang dapat digunakan pada plant			
4											
				Occupation	al Safety and He	ealth		62			

k NGL	No	Lokasi	Deskripsi	Cause	POTENSI BAHAYA	EFEK BAHAYA	FREKUENSI BAHAYA	PENCEGAHAN
	6.	Main utilities	Kebocoran knock out drum sehingga kondesat liquid tidak terpisah dari feed gas	*KOD (knock out drum) mengalami fracture atau fatique karena pemakaian yang terus menerus dengan perawatan yang minim	+Kualitas produk LNG turun, kemungki-nan terjadi kerusakan alat lain krn masih adanya kondesat liquid	Major: Image perusaha- an turun, kerugian material yang terbuang	Unlikely	Peremajaan alat KOD dan pemeriksa-an secara rutin sesuai dengan SOP
		Main utilities	CO ₂ absorber mengalami kerusa-kan	*Amine yang mengabsorb CO ₂ terkontaminasi sehingga kadar CO ₂ yang dapat diserap kecil, feed gas tercemar *Korosi lebih besar dari korosi allowance absorber (3,2mm)	+Kualitas LNG turun karena adanya kontaminan dapat menyebab- kan kerusakan alat lain +Pd P dan T yang terlalu tinggi absorber dapat meledak	Major: Image perusahaan turun, kerugian asset (absorber dan alat- alat lain)	Unlikely	Sebelum masuk LNG plant amine mengalami proses pemurnian terlebih dahulu, pemeriksa-an rutin temperatur dan tekanan indikator dan kontroler

No	Lokasi	Deskripsi	Sebab	POTENSI BAHAYA	EFEK BAHAYA	FREKUENSI BAHAYA	PENCEGAHAN
	Main utilities	Amine regenerato r tidak dapat berfungsi dengan baik sehingga regenerasi amine tidak dapat dilakukan	*Korosi, kadar CO ₂ yang diabsorb amine terlalu besar sehingga larutan MDEA tidak teregenerasi dengan baik	+Masih adanya kandungan CO ₂ pada LNG/LPG (kualitas LNG/LPG turun)	Minor	Unlikely	Peremajaan alat, adanya regenerator bertahap
	Main	Kerusakan feed dryer sehingga kandung- an outletnya masih mengan- dung kadar H ₂ O cukup tinggi	*Korosi lebih besar daripada korosi allowance (1,5mm), tekanan kerja lebih besar daripada tekanan kerja maksimum	+Turunnya mutu LNG, LPG	Minor	Unlikely	Adanya aliran recycle produk untuk pengurangan kadar air lagi, adanya T dan P controler

L	No	Lokasi	Deskripsi	Sebab	POTENSI BAHAYA	EFEK BAHAYA	FREKUENSI BAHAYA	PENCEGAHAN
			Adanya kebocoran pipa aliran outlet mercury (hg) removel vessel	*Penyumbatan partikel endapan, korosi, kekentalan aliran fluida terlalu besar sehingga dapat menjadi penyumbatan pipa	+Pencemaran lingkungan oleh limbah hg	Minor	Likely	Pengecekan rutin sesuai dengan SOP
			Kerusakan scrub column sehingga metana tidak dapat dipisah- kan dari fraksi berat	*Alat pengontrol dan indikator T dan P pada volum tidak berfungsi dengan baik sehingga operator dapat melakukan kesalahan operasi column	+Kerugian alat (scrub column mahal), produk LNG tidak dapat diperoleh (tidak dapat terpisah dari fraksi lain)	Major : Dapat terjadi plant shut down karena LNG tidak dihasilkan	Unlikely	Selalu mengaudit secara rutin T dan P indikator, memilih material scrub column yang tahan korosi dan tekanan tinggi

No	Lokasi	Deskripsi	Sebab	POTENSI BAHAYA	EFEK BAHAYA	FREKUENSI Bahaya	PENCEGAHAN
		C2), DEPROPANZE R (C3), DEBUTANZER (C4) column, scrub column overhead condenser (C5+) tidak berfungsi dengan baik	*Korosi, sudah waktunya untuk diganti (telah lama dipakai dengan perawatan yang minim), T dan P indikator dan regulator rusak	+Kerugian sangat besar karena dapat terjadi plant shut down (karena pemisahan C2, C3, C4, C5+ dari fraksi hidrokarbon lain tidak dapat dilakukan	Major : Produk gagal dihasilkan	Unlikely	Selalu mengaudit secara rutin T dan P indikator, memilih material scrub column yang tahan korosi dan tekanan tinggi
	Di	Heat exchan-ger rusak sehingga C1, C2, C3, C4, C5 tidak dapat	*Suhu air pendingin tidak cukup rendah untuk mendinginkan gas alam menjadi LNG dan LPG	+Kerugian besar karena tidak terbentuk LNG, LPG. Gas C1-C5 dengan P tinggi dpt menimbulk-an ledakan	Severe: Jika sampai terjadi ledakan dapat menimbulka n fatality	Unlikely	Sistem pendinginan bertahap dari media pendingin

No	Lokasi	Deskripsi	Sebab	POTENSI BAHAYA	EFEK BAHAYA	FREKUENSI Bahaya	PENCEGAHAN
7.	Loading ship	Kapal karam sehingga tank LNG/LPG tumpah ke lautan	*Kecerobohan armada kapal dalam pengoperasian kapal pengangkut *Iklim (badai, hujan keras)	+Pencemaran lingkungan (banyak ikan, hewan, tumbuhan laut mati)	Severe: Major environmen tal effect	Likely	Memenuhi SOP pengopera- sian kapal
8.	Pipeline facilities	Kebocoran pipa pengang- kut gas alam dari badak field	*Korosi, tekanan gas terlalu besar sehingga dapat terjadi blow out	+Kerugian besar terutama karena terbuangnya gas alam	Major: Tingkat pencemara n lingkungan yang cukup tinggi	Likely	Pengecekan secara rutin dan auditing operasi
		Kebocoran pipa pengang- kut LNG, LPG	*Korosi, tekanan cairan dan friksi yang besar	+Kerugian besar terutama karena terbuangnya LPG, LNG +Pencema- ran lingkungan	Severe: Karena LNG dan LPG dapat mencema-ri daerah pemukim- an dan sumber air minum	Unlikely	Pengecekan secara rutin dan auditing operasi

No	Lokasi	Des-kripsi	Sebab	POTENSI BAHAYA	EFEK BAHAYA	FREKUENSI BAHAYA	PENCEGAHAN
9.	Unit pengolaha n limbah	Alat-alat pengo-lah limbah tidak berfungsi dengan baik sehing-ga limbah yang dibuang dapat mence- mari lingkungan	*Alat-alat tersebut sudah fatique, fracture sudah waktunya keremajaan	+Pencemaran lingkungan	Major: Pence- maran Iingkungan mence-mari daerah pemukiman	Unlikely	Selalu mengaudit secara rutin T dan P indikator, memilih material unit pengolah-an limbah yang tahan korosi dan tekanan tinggi

HAZOPS

Tabel HAZOPS

No	No Aliran	Kata Panduan	Par. Utama	Potensi Bahaya	Pencegahan	Ket.
1.	8"-FG-BO3-201 Badak NGL	Aliran	Tidak ada	Flash drum separator 5C-1 kosong, Instalasi inhibit	5ESDV-20, PI & FI	Sistem shutdown jika tidak ada aliran masuk 5C-1. FI dan PI dipasang pada pipa aliran masuk.

	No	No Aliran	Kata Panduan	Par. Utama	Potensi Bahaya	Pencegahan	Keterangan
			Aliran	kecil	Tek. Flash drum separat or 5c-1 turun; Level turun	5ESDV- 20, PI&FI, LI &LC	Sis. shutdown jika tekanan 5C-1 tidak m'cukupi. Fl pada pipa aliran masuk. Pl di dalam flash drum 5C-1
JAN I	PT	Badak NGL		B'lebih	Tek flash drum separat or 5C-1 naik;Lev el naik	5ESDV-20, FI&FIC, LI &LIT, PI	5ESDV-20, FI dan FIC pada pipa aliran masuk 5C- 1PI dan LI di dalam 5C-1

No aliran	Kata panduan	Par. Utama	Potensi bahaya	Pencegahan	Keterangan
ADAK) dak NGL	Temp	Naik	Suhu flash drum naik; Tek. Flash drum naik	5esdv-20, Ti&tic	TI di dalam 5C-1
		Turun	Suhu flash drum turun; Tek. Flash dum turun	5esdv-20, Ti&tic	TI di dalam 5C-1
4"-fg- box- 202	Aliran	Tdk ada	Instalasi inhibit, ME tdk dpt bekerja	5esdv-21, Pi	Dipasang pada pipa
	aliran dak NGL	aliran panduan Temp	aliran panduan Utama Temp Naik Turun Tdk	aliran panduan Utama bahaya Temp Naik Temp Naik Tek. Flash drum naik Turun Turun Turun Tok. Flash dum turun Tek. Flash dum turun Tok ada Tok ada	aliran panduan Utama bahaya Pencegahan Temp Naik Suhu flash drum naik; Tek. Flash drum naik Turun Suhu flash drum tlash drum turun; Tek. Flash dum turun Tek. Flash dum turun Tiktic Tiktic Tokada Instalasi inhibit, ME tdk dpt Tokada drum turun Tokada drum turun

No	No Aliran	Kata Panduan	Par. Utama	Potensi Bahaya	Pencegahan	Keterangan
		Aliran	Kecil	Tek MHE 5E- 1 turun, Suhu MHE turun	5ESDV-21, PI, TI &TIC	5ESDV-21 & PI Dipasang pd pipa; TI pd MHE 5E-1
ļ			Ber- lebih	Tek MHE 5E- 1 naik, Suhu MHE naik	5ESDV-21, PI&PIC, TI&TIC	5ESDV-21, PI &PIC pd pipa; TI pd MHE 5E-1

PT Badak NGL @@

	No	No Aliran	Kata Panduan	Par. Utama	Potensi Bahaya	Pencegahan	Keterangan
			Tekanan	Naik	Suhu MHE 5E-1 naik; Tek MHE 5E-1 naik	5ESDV-21, TI &TIC, PI &PIC	TI &PI pd MHE 5E-1PIC dan 5ESDV pd pipa
1				Turun	Suhu MHE 5E-1 turun; Tek MHE 5E-1 turun	5ESDV-21, TI&TIC, PI&PIC	TI & PI pd MHE 5E-1PIC dan 5ESDV-22 pada pipa
BADA	ak NGL						

Kesimpulan

- Keselamatan kerja merupakan salah satu aspek yang harus diperhatikan demi kelancaran proses produksi suatu perusahaan.
- Perusahaan juga perlu memperhatikan aspek kesehatan dan lingkungan
- PT Badak NGL sebagai salah satu perusahaan pengolah gas alam, sudah memiliki standar keselamatan dan kesehatan kerja yang baik.
- Mari kita bersama mewujudkan tempat kerja yang selamat dan

