Digital IC Design

Lec 1: Overview & Design Methodology

黄柏蒼 Po-Tsang (Bug) Huang bughuang@nycu.edu.tw

International College of Semiconductor Technology National Chiao Tung Yang Ming University

General Information

- Instructor : Professor Po-Tsang (Bug) Huang
 - ◆ Email: bughuang@nycu.eud.tw
 - ◆ Office Hours: After class or by appointment @ MIRC 601

Regular class hours

◆ Monday 1:20 AM - 4:20 PM

Grading of this Course

- 20% Exercises
 - ◆ On-line choice questions for Each Lecture
- 60% Labs (self-evaluation for your grades)
 - ◆ Tools: Verilog, HSPICE
 - ◆ Most exercises are related to circuit-level implementation
- 20% Final Team Project

Undergraduate Course v.s. Graduate Course

Undergraduate courses (VLSI)

- Basic transistor and circuit models
- Basic circuit design styles
- ◆ First experiences with design creating a solution with given numbers of specifications

Graduate courses

- ◆ Transistor models of varying accuracy
- Design under constraints: power-constrained, flexible, robust,...
- ◆ Learning the more advanced techniques
- ◆ Study the challenges facing design in the near future
- Creating new solutions to challenging design problems

Digital Processing or Digital Computing

- Analog real world v.s. digital computing system
 - ◆ Discrete digital data (binary digits: 0 & 1)

Digital Circuits and Analog Circuits

Software

Sensor, power

- ◆ Dense digital logic
- Large noise margin
- ◆ High scalability
- Easy extension

- High performance
- Interface to real world

Signal Characteristics

- Analog signals
 - ◆ DC + Small signals

- Digital binary signals
 - **♦** 0 & 1

Binary Digital Signal

- An information variable represented by physical quantity.
- Binary values are represented abstractly by:
 - Digits 0 and 1
 - ◆ Words (symbols) False (F) and True (T)
 - Words (symbols) Low (L) and High (H)
 - And words on and off

Binary values are represented by ranges of values of physical quantities.

Digital or Analog Signal?

- $X_1(t)$ is operating at 100Mb/s and $X_2(t)$ is operating at 1Gb/s.
- A digital signal operating at very high frequency is very "analog".

Binary Logic Level

The signal voltage must make into the "End Zone" within the allotted period of time.

Introduction to Signal Aberration

- Power noises (power integrity)
- Parasitic R,L,C
- Coupling effect
- Non-continuous physical links

2-level Circuits

2-level Circuits

Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

What is Transistor?

CMOS Inverter

Α	Υ
0	1
1	0

CMOS NAND Gate

А	В	Υ	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

CMOS NOR Gate

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

Basic Logic for Digital System in CMOS ICs

- Combination logic
 - Control switch (MUX)
 - ◆ Computation (XOR)
 - ◆ Basic logic INV, NAND, NOR
- Sequential circuits & Finite State Machine (FSM)
 - Storage element (Latch, Flip-Flop)
- Data storage
 - ◆ Register file, SRAM, eDRAM, eFlash...
- I/O (input/output)
 - ◆ ESD protection, driving ability, level-sensing

The Regenerative Property for SRAM

cascaded inverters

If the gain in the transient region is larger than 1, only A and B are stable operation points. C is a metastable operation point.

How to put together millions of transistors?

- Well chosen design methodologies
- Well chosen architectures
- Extensive use of power full CAD tools
- Strict design management
- Well chosen testing methodologies
- Design re-use
- One can NOT use same design methodologies and architectures when complexity increases orders of magnitude

General Principles

- Technology changes fast => important to understand general principles
 - optimization, tradeoffs
 - work as part of a group
 - ◆ leverage existing work: programs ,building blocks
- Concepts remain the same:
 - ◆ Example: relays -> tubes -> bipolar transistors -> MOS transistors -> FinFET -> GAAFET (MBCFET)

DTCO: Design-technology co-optimization

MOS Transistor: 3D Perspective

$$I_{DS} = \frac{W}{L} \mu C_{ox} \left(V_{GS} - V_{Th} - \frac{V_{DS}}{2} \right) V_{DS}$$

$$I_{DS} = \frac{W}{2I} \mu C_{ox} (V_{GS} - V_{Th})^2$$

FinFET

Complementary Charastertcis

GAAFET, MBCFET, RibbonFET

- Transistors have evolved to provide better PPA for designers
- GAA is the ultimate transistor with 4-sided channel
 - ◆ GAA flexible Weff provides more freedom to optimize PPA

Design Abstraction Levels

Typical IC Design Flow (Methodology)

Foundry Design Kit (FDK, PDK)

Full-Custom Design

- Design some or all of the circuits, logic cells, layout specifically
 - ◆ Required cells/IPs are not available
 - Existing cell libraries can not meet the requirements
 Area, speed or power consumption
 - ◆ Technology migration (analog or mixed-mode design)
 - ◆ Demand long design time

Cell-based (IP-Based) Design

- Use pre-designed logic cells (known as standard cells) and micro cells or IPs
- Each standard cell can be optimized individually
- All mask layers are customized
- Custom blocks can be embedded

System Design Paradigm

- ◆ Data computation (functional IP)
- Data communication (platform)
- ◆ Data storage (memory)

SoC Hardware Design Methodology

Design Metrics

- Evaluate performance of a digital circuit and System
 - ◆ Cost
 - Speed (delay, operating frequency)
 - ◆ Power dissipation
 - Energy to perform a function
 - **♦** Robustness
 - **◆** Reliability
 - **♦** Scalability

Design Challenges for Future IC Design

- Large variations
- Increasing leakage current
- Increasing RC of Interconnects
- Power integrity (large power noises)

Problems of Wire Delay

- Wire loading: timing optimization is based on a wire loading model.
- Loading of gate = input capacitance of following gates + wire capacitance
 - Gate loading known by synthesizer
 - Wire loading must be estimated
 - ◆ R-C delay calculation very complicated

