Healthcare

AV-JANATAHACK-HEALTHCARE-ANALYTICS

BIT4333 Introduction to Machine Learning By Group 3 Taught by Sir Nazmirul Izzad Bin Nassir

AGENDA

- 1.0 Executive Summary
- 2.0 Problem Statement
- 3.0 Dataset
- 4.0 Data Preparation Process
- 5.0 Model Development
- 6.0 Evaluation
- 7.0 Deployment
- 8.0 Results & Demonstration
- 9.0 Conclusion

1.0 EXECUTIVE SUMMARY

This project uses *machine learning* to *improve early detection of heart disease*, the world's leading cause of death. Using the *UCI Heart Disease dataset*, *predictive models* are developed to *analyze patient attributes*, support *faster* and more *accurate diagnoses*, and enable *timely*, *personalized treatment*.

The project shows how healthcare analytics can enhance decision-making, optimize resources, and reduce unnecessary tests. Still, challenges such as *data quality*, *model interpretability*, and *privacy concerns* must be addressed to ensure *safe* and *effective implementation*.

2.0 PROBLEM STATEMENT

Problem No 1

High Mortality from Cardiovascular Disease:

Cardiovascular disease causes ~19.8 million deaths annually (32% of all deaths worldwide), showing the urgent need for better early detection methods.

Problem

No 2

Limitations of Traditional Diagnostics:

Tests such as angiography are invasive, expensive, and slow, often requiring specialists. This leads to delays, higher costs, and unequal access, especially in resource-limited areas.

Problem

No 3

Fragmented & Poor-Quality Data:

Patient information
(blood pressure,
cholesterol, ECG, chest
pain type, etc.) is often
stored separately,
incomplete, or
duplicated, making it
hard to get a full and
accurate picture.

Problem

No 4

Weaknesses in Conventional Analysis:

Current approaches rely on fixed thresholds (e.g., cholesterol cut-offs) and examine attributes individually, which fails to capture interactions and hidden risk patterns.

Problem

No 5

Data Complexity
Limitations:

Manual or threshold-based methods struggle to handle *large*, *complex datasets* with many variables, making it *difficult to achieve accurate* and *scalable diagnosis*.

3.0 DATASET

Number 1

Source of Dataset

- Heart Disease Cleveland UCI dataset (via Kaggle).
- Contains real clinical information reflecting actual diagnoses.
- Widely used in research →
 allows benchmarking and
 validation of predictive models.

Number 2

Dataset Content

- 303 patient records and 14 attributes (after cleaning 297).
- Features include both:
- 1. **Numerical:** Age, resting blood pressure, cholesterol, max heart rate, etc.
- 2. **Categorical:** Sex, chest pain type, exercise-induced angina, thalassemia, etc.
- **Target variable:** Binary classification (0 = no heart disease, 1 = heart disease).

Number 3

Clinical Relevance

- Features chosen are wellestablished risk indicators in medical literature (cholesterol, BP, chest pain type).
- Enables exploration of *multiple* risk factors simultaneously.
- Ensures models provide clinically meaningful insights for decision-making.

Number 4

Data Preparation

- Missing values handled: Median (numerical), mode (categorical).
- One-hot encoding: categorical features converted to binary columns.
- **Standardization:** numerical features scaled to equalize importance.
- Exploratory analysis: checked distributions, correlations, and patterns (cholesterol vs. age).

3.0 DATASET - STRENGTHS

- Structured, clean, and balanced after preprocessing.
- Dataset is *small but diverse*, ensuring efficient training while capturing variability.
- Contains a rich mix of categorical and numerical variables.
- Includes *clinically relevant features* (cholesterol, blood pressure, chest pain type) supported by medical literature.
- Provides a *solid foundation* for building *reliable machine learning models* in healthcare.
- Enables *early pattern discovery and benchmarking*, supporting both academic studies and practical clinical applications.

4.0 DATA PREPARATION PROCESS

Data Cleaning

- Started with 303 patient records across 14 attributes.
- Removed *duplicates*, resulting in **297 unique cases**.
- Checked dataset for incomplete, inconsistent, or duplicate entries.
- Ensured *data integrity* before further analysis.
- Created a reliable baseline for preprocessing and modelling.

Handling Missing Values

- Missing values can distort model training and reduce accuracy.
- Numerical variables
 (cholesterol, blood pressure) →
 filled with median, preserving
 central tendency and reducing
 outlier effects.
- Categorical variables (chest pain type, thalassemia) → filled with mode, keeping clinically common categories.
- Prevent loss of important patient records.
- Ensured dataset remained
 balanced and representative.

Encoding Categorical Feature

- Categorical features cannot be directly interpreted by ML models.
- Applied One-Hot Encoding →
 converts categories into binary
 form.
- Example: Chest pain type split into multiple binary columns.
- This lets the model detect unique patterns across categories.
- Avoids bias from treating categories as numerical values.

4.0 DATA PREPARATION PROCESS

Feature Scaling

- Variables had different ranges (cholesterol vs. max heart rate).
- Used standardization → brings all features to a common scale.
- Prevents features with large ranges from dominating training.
- Especially important for algorithms sensitive to magnitude (SVM).
- Ensures fair contribution of all features in model learning.

Exploratory Data Analysis

- Performed *descriptive statistics* → mean, range, distribution.
- Example: Average patient age = 54.5 years, cholesterol range = 126–564 mg/dl.
- Visualized class balance →
 fairly even split of disease vs no
 disease.
- Identified trends: chest pain type & exercise-induced angina linked to disease presence.
- Correlations guided feature selection & preprocessing strategy.

Final Dataset Ready

- Final dataset: 297 patients, 14
 attributes, target variable (0 = no disease, 1 = disease).
- Cleaned, structured, and balanced dataset.
- Features include both numerical (age, cholesterol, BP) and categorical (sex, angina, thalassemia).
- Ensures robust and reproducible predictive analysis.
- Provides a solid foundation for training reliable machine learning models.

5.0 MODEL DEVELOPMENT - MODELS

M1

- Acts as baseline model.
- *Fast*, interpretable, and coefficients show risk contribution.
- Helps benchmark performance of advanced models.

M2 Logistic Regression Random Forest

- Combines many decision trees → stronger predictions.
- Avoids overfitting, handles missing data effectively.
- Provides feature **importance** for clinical insights.

M3 SVM

- Finds optimal **decision** boundary (hyperplane).
- Works well with scaled data.
- Robust in handling complex boundaries in classification.

M4 $\chi GBoost$

- Builds models sequentially, correcting errors step by step.
- Highly accurate for structured/tabular clinical data.
- Detects subtle differences between healthy and highrisk patients.

5.0 MODEL DEVELOPMENT - WORKFLOW

- Data Preprocessing: *Encoded categorical features* and *scaled numerical values*, ensuring fair model comparison.
- Train-Test Split: Divided the dataset into 80% training and 20% testing, maintaining proper class balance.
- Hyperparameter Tuning: Applied *GridSearchCV* with *cross-validation* to optimize settings and prevent overfitting.
- Model Training: *Trained 4 learning models* on 297 patient records.
- Performance Evaluation: Compared models using Accuracy, F1-score, ROC-AUC, and Confusion Matrix results.
- Feature Insights: Analyzed feature importance to *identify key clinical predictors* of *heart disease*.

5.0 MODEL DEVELOPMENT - COMPARISON

Model	Strengths	Contribution
Logistic Regression	Simple, interpretable, fast	Establishes baseline, identifies main risk factors
Random Forest	Captures complex patterns, avoids overfitting	Improves reliability, highlights feature importance
Support Vector Machine (SVM)	Works well with scaled data, clear separation	Robust classification in two- class problems
XGBoost	High accuracy, efficient with structured data	Detects subtle differences, top-performing model

6.0 EVALUATION - METRICS

Model	Strengths	Contribution
Accuracy	Percentage of overall correct predictions.	Quick comparison, but misleading when false negatives matter.
Precision	Proportion of predicted positives that are truly positive.	Reduces false alarms, builds clinical trust.
Recall	Proportion of actual patients correctly identified.	Critical to avoid missing true heart disease cases.
F1-Score	Harmonic mean of Precision & Recall.	Balances false positives and false negatives.
ROC-AUC	Ability to separate healthy vs diseased across thresholds.	Shows diagnostic strength; higher = better model discrimination.

6.0 EVALUATION - COMPARISON RESULTS

Model	Performance Summary	Remarks	
Logistic Regression	Moderate Accuracy, lower Recall.	Easy to interpret, weaker predictions.	
Random Forest	High Accuracy, strong Recall & ROC-AUC.	Best balance of accuracy & sensitivity.	
Support Vector Machine (SVM)	Good Accuracy, moderate Recall.	Finds patterns well, less transparent.	
XGBoost	Highest Accuracy, very strong Recall & ROC-AUC.	Most accurate, detects subtle differences.	

6.0 EVALUATION - RESULTS

• Logistic Regression Results: Accuracy: 0.91666666666666666666666666666666666666				
ROC-AUC: 0.95	3125			
	precision	recall	f1-score	support
	2.06	1 00	0.03	22
0	0.86	1.00	0.93	32
1	1.00	0.82	0.90	28
accuracy			0.92	60
macro avg	0.93	0.91	0.91	60
weighted avg	0.93	0.92	0.92	60

Random F	orest Re	sults:			
Accuracy: 0	.88333333	33333333	3		
F1 Score: 0	.86274509	98039215	7		
ROC-AUC: 0.	944754464	42857144			
	precis	sion	recall	f1-score	support
	0 (0.84	0.97	0.90	32
	1 6	9.96	0.79	0.86	28
accurac	у			0.88	60
macro av	g (9.90	0.88	0.88	60
weighted av	g (0.89	0.88	0.88	60

• SVM Result Accuracy: 0.9 F1 Score: 0.8				
ROC-AUC: 0.93		428		
Not Act. 0.33	precision		f1-score	support
0	0.84	1.00	0.91	32
1	1.00	0.79	0.88	28
accuracy			0.90	60
macro avg	0.92	0.89	0.90	60
weighted avg	0.92	0.90	0.90	60

◆ XGBoost Re	sults:			
Accuracy: 0.8	5			
F1 Score: 0.8	301886792452	831		
ROC-AUC: 0.94	419642857142	86		
	precision	recall	f1-score	support
0	0.83	0.91	0.87	32
1	0.88	0.79	0.83	28
accuracy			0.85	60
macro avg	0.85	0.85	0.85	60
weighted avg	0.85	0.85	0.85	60

7.0 DEPLOYMENT

The heart disease prediction model was deployed as a web application using Streamlit. Users input health details like age, cholesterol, blood pressure, and chest pain type. The system then predicts whether the patient is at high or low risk of heart disease, with a confidence score to improve clarity and trust. It also reduces reliance on invasive and costly diagnostic methods, offering a faster alternative.

The app is *fast*, *user-friendly*, and *secure*, accessible on both desktop and mobile devices. It acts as a *prototype tool* for *early detection* and *clinical support*, with potential for future integration into hospital systems and expansion using larger datasets.

8.0 RESULTS AND DEMONSTRATION

Aspect	Details
Best Performing Models	Random Forest & XGBoost achieved high recall and ROC-AUC, effectively detecting patients at risk while minimizing false negatives.
Other Models	Logistic Regression: interpretable but lower accuracy. SVM: good boundary separation but limited clinical transparency.
Evaluation Metrics	Accuracy, F1-Score, Recall, Precision, ROC-AUC, Confusion Matrix. Provides a <i>comprehensive performance assessment</i> .
Demonstrating Inputs	Patient attributes such as age, sex, cholesterol, blood pressure, chest pain type, exercise-induced angina, and thalassemia.

8.0 RESULTS AND DEMONSTRATION

Aspect	Details
Output	Predicted heart disease status (0 = no, 1 = yes) with confidence probability, supporting early detection and clinical decision-making.
Clinical Impact	Offers a fast, non-invasive tool to <i>assist doctors</i> , reduce misdiagnoses, and <i>prioritize high-risk patients</i> for intervention.

9.0 CONCLUSION

This project showed how *machine learning* can improve *early detection* of heart disease using the Cleveland dataset. Models like Random Forest and XGBoost achieved high predictive performance while staying clinically relevant.

A user-friendly web application allows clinicians to input patient data and get real-time predictions with probability scores. The project highlights benefits of data-driven decision support, including better diagnostic accuracy, early intervention, and optimized healthcare resources. These results demonstrate the potential of predictive analytics to transform cardiovascular care.

Thank you

AV-JANATAHACK-HEALTHCARE-ANALYTICS

BIT4333 Introduction to Machine Learning By Group 3 Taught by Sir Nazmirul Izzad Bin Nassir