RL Circuits

1 Introduction

The above figure shows a RL series circuit consisting of an inductor of inductance L connected in series with a resistor of resistance R. The switch, S, is closed at a time t=0 and remains closed.

Using Kirchhoff's voltage law around the loop, we have

$$V_s - I(t) \cdot R - L rac{dI(t)}{dt} = 0$$

This differential equation can be solved for I(t), the current at any time. If the current at t=0 is zero, the solution is

$$I(t) = rac{V_s}{R} \left(1 - e^{-t/(L/R)}
ight)$$

After a long time* (specifically, $t \gg \tau$), the current approaches a constant value of $I = V_s/R$ because the exponential term approaches zero. How quickly the exponential term approaches zero depends on a quantity called the RL time constant defined by

$$au \equiv L/R$$

which has units of seconds when L is in Henrys (H) and R is in Ohms (Ω). Using τ , we have

$$I(t) = rac{V_s}{R} \left(1 - e^{-t/ au}
ight)$$

When $t/\tau \simeq 0$, $e^{-t/\tau} \simeq e^0 = 1$, so $I(t) \simeq (V_s/R)(1-1) = 0$. As a result, we state that initially the inductor behaves like an open circuit because the current through it is nearly zero.

When $t/\tau \gg 1$, the exponential term $e^{-t/\tau}$ becomes much smaller than one, so $I(t) \simeq (V_s/R)(1-0) = V_s/R$. If we replace the inductor with a wire, this is the same current that we would find. As a result, we state that after a long time, an inductor behaves like a resistanceless wire.

* Informally, we often use phrases such as "after a long time". This phrase is ambiguous because a reference length of time is not given. To be specific, one should instead state $t \gg t_{\rm ref}$, where $t_{\rm ref}$ is a reference length of time.

In this problem, you will consider the circuit and equation

$$I(t) = rac{V_s}{R} \left(1 - e^{-t/ au}
ight)$$

that was described in the introduction.

1. If $V_s=10~\mathrm{V}$ and $R=1~\Omega$, plot dots for the values of I at $t=0,2,4,6,12~\mathrm{s}$ using $L/R=\tau=2~\mathrm{s}$

- 2. Based on the equation, at t = 0 does the inductor behave like an open circuit or a resistanceless wire?
- 3. Based on the equation, at $t \gg \tau$ does an inductor behave like an open circuit or a resistanceless wire?
- 4. If L doubles but R remains constant
 - a. does the time constant τ increase, decrease, or remain the same?;
 - b. how will the position of the points that you drew for part 1. change? (Will they move up, down, or remain the same?)
 - c. Does your answer to b. make sense physically? That is, an inductor tends to impede changes in current and so is your answer to b. consistent with this?
- 5. The voltage across the inductor is LdI/dt. Compute dI/dt and sketch its curve on the graph above. Is this equation consistent with the statement that for large t/τ , the voltage across the inductor is zero?

3 Problem II

If the circuit in the introduction has L=40 mH, R=2 Ω , and $V_s=20$ V,

- 1. What is the current after a very long time after the switch is closed?
- 2. What is the time constant of this RL series circuit?
- 3. How long does it take for the current to reach 63% of its maximum value?

- 4. What is the voltage across the inductor at t = 10 ms?
- 5. What is the current at $t = \tau$ after the switch is closed?

4 Problem III

In the circuit above, an inductor with L=10 mH and a resistor with R=1 Ω is connected as shown. The battery has an emf of 10 V. At t=0, the switch S_1 is closed.

- 1. What is the current through the resistor at t = 0?
- 2. What is the current through the inductor at t = 0?
- 3. After a long time, what is the current through the resistor and inductor?
- 4. S_1 is opened and S_2 is closed simultaneously at $t = t_o$. Write Kirchhoff's voltage law around the new closed loop.
- 5. Show that the equation $I(t) = I_o e^{-(t-t_o)/\tau}$ satisfies the equation in your answer to the previous question.
- 6. If switch S_1 was opened and switch S_2 was closed at $t_o = 5$ ms, plot I(t) from t = 0 to t = 10 ms.

