

11 Veröffentlichungsnummer:

0 028 687

A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 80105426.3

22 Anmeldetag: 11.09.80

(51) Int. Cl.³: C 08 G 63/22

C 09 J 3/16, C 09 D 3/64 C 08 K 3/32, C 08 K 5/52

30 Priorität: 13.11.79 DE 2945729

(43) Veröffentlichungstag der Anmeldung: 20.05.81 Patentblatt 81/20

84 Benannte Vertragsstaaten: CH FR GB IT LI NL (1) Anmelder: CHEMISCHE WERKE HÜLS AG Postfach 1320 D-4370 Mari 1(DE)

(72) Erfinder: Horlbeck, Gernot, Dr. In der Thiebrei 80 D-4358 Haltern(DE)

(72) Erfinder: Burzin, Klaus, Dr. Wellerfeldweg 164 D-4370 Marl(DE)

(54) Verfahren zur Herstellung von hochmolekularen, linearen Polyestern.

(57) Verfahren zur Herstellung von hochmolekularen, linearen Copolyestern durch Kondensieren von 40 bis 85 Molprozent Terepthalsäure, die bis zu 50% durch andere Dicarbonsäuren ersetzt sein kann, 60 bis 15 Molprozent Adipinsäure mit Alkandiolen, die 2 bis 6 C-Atome in der Kohlenstoffkette besitzen, in 2 Stufen bei erhöhter Temperatur in Gegenwart von üblichen Katalysatoren, mit dem Kennzeichen, daß vor oder während der 1. Kondensationsstufe 0,005 bis 0, 1 Molprozent - bezogen auf die Säurekomponente - Arylester der phosphorigen Säure oder Phosphorsäure dem Reaktionsgemisch zugesetzt werden und daß nach Beendigung der 2. Kondensationsstufe 0,01 bis 0,2 Molprozent - bezogen auf die Säurekomponente - unter-phosphorige Säure der fertigen Copolyesterschmelze zugefügt werden.

0 028 687

CHEMISCHE WERKE HÜLS AG - RSP PATENTE -

5

0.Z. 3592

Verfahren zur Herstellung von hochmolekularen, linearen Polyestern

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von hochmolekularen, linearen Copolyestern durch Kondensieren von 40 bis 85 Molprozent Terephthalsäure, die bis zu 50 % durch andere Dicarbonsäuren ersetzt sein können, 60 bis 15 Molprozent Adipinsäure mit Alkandiolen, die 2 bis 6 C-Atome in der Kohlenstoffkette besitzen, in 2 Stufen bei erhöhter Temperatur in Gegenwart von üblichen Katalysatoren.

1 -

- Derartige Copolyester sowie ihre Herstellung sind grundsätzlich bekannt (Korshak /Vinogradova - Polyesters, Pergamon Press, Oxford (1965) - Seiten 141 ff; Sorensen/ Campbell - Polyesters, Interscience Publishers, New York (1961), Seiten 111 bis 127; US-PS 2 901 466).
- Thre Anwendung als pulverförmige Überzugsmittel (DE-ASS 26 11 691, 12 22 205) sowie als Schmelzkleber (DE-OS 27 03 417) ist gleichfalls beschrieben.
 - 20 Bei den für die Polykondensation erforderlichen hohen Temperaturen, insbesondere in der 2. Kondensationsstufe (Polykondensationsstufe), ergeben sich durch die Adipinsäure bräunlich bis rot verfärbte Endprodukte, die vom

Verarbeiter der Produkte nicht akzeptiert werden. Es wurde deswegen schon der Zusatz von Estern und Salzen von Phosphorsäuren in Verbindung mit Talkum vorgeschlagen (DE-OS 27 03 417). Bei niedrigem Adipinsäuregehalt (<15 Molprozent bezogen auf die Säurekomponente) der Copolyester verbessern diese Maßnahmen teilweise die Farbe der Fertigprodukte. Bei höheren Adipinsäureanteilen können die unerwünschten Verfärbungen nicht im notwendigen Maße vermieden werden.

10

15

25

30

35

}

5

Hinzu kommt ein weiterer schwerwiegender Mangel adipinsäurehaltiger Copolyester. Sie besitzen in der Schmelze keine hinreichende Stabilität gegen einen thermooxidativen Abbau. Diese Eigenschaft ist jedoch z. B. bei Schmelzklebern unbedingt erforderlich, da diese bei ihrer Verarbeitung über eine längere Zeit in offenen Schmelzbehältern gehalten werden.

Aufgabe der vorliegenden Erfindung war es, lineare,

hochmolekulare Polyester herzustellen, welche die aufgezeigten Nachteile nicht besitzen.

Die Aufgabe wurde dadurch gelöst, daß vor oder während der 1. Kondensationsstufe 0,005 bis 0,1 Molprozent - bezogen auf die Säurekomponente - Arylester der phosphorigen Säure oder Phosphorsäure dem Reaktionsgemisch zugesetzt werden und daß nach Beendigung der 2. Kondensationsstufe 0,01 bis 0,2 Molprozent - bezogen auf die Säurekomponente - unterphosphorige Säure der fertigen Copolyesterschmelze zugefügt werden.

Als Arylester der phosphorigen Säure oder Phosphorsäure kommen z. B. Tri-t.-butylphenyl-, Trimonylphenyl-, Trikresylphosphat o. ä. sowie die entsprechenden Phosphite infrage. Die erfindungsgemäße Aufgabe kann auch dann gelöst werden, wenn nur teilveresterte Verbindungen eingesetzt werden. Bevorzugt wird Triphenylphosphat verwendet. Die Arylester werden insbesondere in Mengen von 0,02 bis 0,06 Molester werden insbesondere in Mengen von 0,02 bis 0,06 Molester werden.

prozent - bezogen auf die Säurekomponente - eingesetzt.

5

10

20

Die unterphosphorige Säure wird vorzugsweise in einer Menge von 0,03 bis 0,15 Molprozent - bezogen auf die Säure-komponente - zugesetzt. Sie wird z. B. als 50 %ige wäßrige Lösung in die Polyesterschmelze eingerührt.

Die Säurekomponente der Copolyester besteht zu 40 bis 85 Molprozent, vorzugsweise 50 bis 75 Molprozent, aus Terephthalsäure und zu 15 bis 60 Molprozent, vorzugsweise 25 bis 50 Molprozent, aus Adipinsäure.

Bis zu 50 % der Terephthalsäure kann durch weitere aromatische, cycloaliphatische und/oder aliphatische

15 Dicarbonsäuren wie Phthalsäure, Isophthalsäure; Tetra(Hexa-)hydrophthalsäure, -isophthalsäure, -terephthalsäure;
Oxalsäure, Malonsäure, Bernsteinsäure, Glutersäure,
Sebacinsäure, Decandicarbonsäure-(1.10), u. a. ersetzt sein.

Alle genannten Säuren können als esterbildende Derivate eingesetzt werden.

Als Diole kommen Alkandiole mit 2 bis 6 C-Atomen in der
Kohlenstoffkette infrage. Als Beispiele seien Ethylenglykol, Propylenglykol, Butylenglykol genannt. Bevorzugt
werden Ethylenglykol und Butylenglykol eingesetzt. Die Alkandiole können auch im Gemisch verwendet werden.

Die Polyesterherstellung ist grundsätzlich bekannt (Sorensen und Campbell - Preparative Methods of Polymer Chemistry, Interscience Publishers, Inc., New York, 1961, Seiten 111 bis 127; Kunststoff-Handbuch, Band 8 (Polyester), Carl Hanser Verlag, München, 1973, Seite 697). So geht man z. B. von den Dimethylestern und den Diolen aus und führt zunächst nach Zusatz eines geeigneten Katalysators eine Umesterung aus. Im Falle, daß Dicarbonsäuren eingesetzt werden, kann die Veresterung gleichzeitig oder nach der Um-

esterung stattfinden. Diese Verfahrensstufe ist vorangehend als 1. Kondensationsstufe bezeichnet.

Anschließend wird unter Vakuum oder in Stickstoffstrom

bei weiterem Erhitzen die Polykondensation durchgeführt

(2. Kondensationsstufe).

Die Copolyester weisen eine Viskositätszahl von 50 bis 120, vorzugsweise 70 bis 100 cm³/g, auf.

Ein weiterer Gegenstand der Erfindung ist die Verwendung der so erhaltenen Copolyester als Schmelzkleber oder pulverförmige Überzugsmittel. -

Die erfindungsgemäß hergestellten und verwendeten Copolyester weisen unter Beibehaltung guter Allgemeineigenschaften eine hervorragende thermooxidative Stabilität auf. Die Produkte zeigen keinen Farbstich.

20 <u>Beispiele</u>

35

10

Die im folgenden aufgeführten Ergebnisse sind mit Hilfe nachstehender Meßverfahren ermittelt worden:

- Die Viskositätszahl wurde an Lösungen von 0,23 g Copolyester in 100 ml Phenol/1.1.2.2-Tetrachlorethan (Gewichtsverhältnis 60:40) bei 25 °C gemessen.
- 2. Die <u>Farbmessungen</u> wurden nach dem Ureibereichsverfahren gegen einen Weißstandard durchgeführt (DIN 5033).
 - 3. Die Oxidationsstabilität wurde durch die prozentuale Abnahme der Viskositätszahl nach einstündiger Lagerung der Proben bei 250 °C im Umlufttrockenschrank charakterisiert.

Polyesterherstellung:

Versuch 1

In einem 100 1-Kessel werden 27,2 kg Dimethylterephthalat, 5 8,7 kg Adipinsäure, 36 kg Butandiol-(1.4), 20 g Triphenylphosphat und 18 g Titantetraisopropylat bei 150 °C aufgeschmolzen und bei 190 °C im Stickstoffstrom unter Rühren um- bzw. verestert, bis die theoretische Menge an Methanol und H_2^0 abgespalten ist. 10

Danach wird innerhalb einer Stunde die Reaktionstemperatur auf 250 °C erhöht und innerhalb einer weiteren Stunde ein Vakuum von 1 mbar angelegt. Unter diesen Bedingungen wird die Schmelze zwei Stunden polykondensiert. Dann wird 15 das Vakuum aufgehoben und der Stickstoff abgetrieben; der Schmelze werden 20 g unterphosphorige Säure (50 %ige Lösung in Wasser) zugesetzt und 30 Minuten eingerührt. Anschließend wird der Polyester ausgefahren, gekühlt und 20 granuliert.

Man erhält ein Produkt mit einem nach der Differential-Scanning-Calorimetry (DSC)-Methode bestimmten Schmelzpunkt von 180 °C.

Versuch 2

25

27,2 kg Dimethylterephthalat, 27 kg Butandiol-(1.4) sowie 20 g Titantetraisopropylat werden in einem 100 1-Kessel aufgeschmolzen und anschließend bei 190 $^{
m o}$ C im N $_{
m 2}$ -Strom 30 solange umgesetzt bis die theoretisch berechnete Menge Methanol abgespalten wurde. Der Schmalze werden dann 50 g Triphenylphosphit zugegeben und 20 Min. eingerührt. Danach werden 8,7 kg Adipinsäure zugefügt und die Reaktion bei 190 $^{\rm o}$ C und ${\rm N_2\text{-}Strom}$ fortgesetzt. Die Veresterung wird 35 nach Abspaltung der theoretischen Wassermenge beendet.

Die Polykondensationsreaktion wird entsprechend Versuch 1

o.z. 3592

geführt.

Nach Abtreiben des Stickstoffs sowie Aufheben des Vakuums werden der Schmelze 40 g H₃PO₂ (50 %ige wäßrige Lösung)

zugesetzt und 30 Min. lang eingerührt.

Versuch 3

27,2 kg Dimethylterephthalat, 8,7 kg Adipinsäure sowie 32 kg

Butandiol-(1.4) und 15 g Titantetraisopropylat werden

zunächst bei 150 °C aufgeschmolzen und dann bei 190 °C im

N2-Strom unter Rühren um- bzw. verestert. Sind 2/3 der

theoretisch berechneten Menge an Methanol und Wasser ab
gespalten, werden 12 g Tri-tert.-butylphenylphosphat der

Reaktionsmischung zugegeben. Die Um- bzw. Veresterung wird

dann bis zur Abspaltung der theoretischen Menge Methanol

und Wasser fortgeführt.

Die sich anschließende Polykondensationsreaktion wird entsprechend Versuch 1 ausgeführt. Nach Aufheben des Vakuums
und Abtreiben des Stickstoffs werden dem geschmolzenen
Polyester 8 g unterphosphorige Säure zugesetzt und 45 Min.
lang eingerührt.

Versuche A und B (nicht erfindungsgemäß)
Die Vergleichsversuche werden nach der Arbeitsvorschrift von Versuch 1 hergestellt. Bei Versuch A wird nach der 2.
Kondensationsstufe keine unterphosphorige Säure in die Schmelze des Copolyesters eingerührt; dasselbe trifft auf Versuch B zu, mit dem Unterschied, daß in der 1. kondensationsstufe anstelle von Triphenylphosphat Triphenylphosphit eingesetzt wird.

Die physikalischen Kennwerte (Viskosität, Schmelzpunkt)

der Polyester entsprechen denen des erfindungsgemäßen
Versuches.

Tabelle

)			0028687				
	Farbe (Blau/Gelb-Wert *)	5,7	5,9	, , ,	17,0	10,4			
	(Blau/	1							
	Abnahme der Viskositätszahl nach 1 h/250 °C/Luft [%]	∞	ω	9	25	. 22			
	Viskositäts- zahl (cm³/g)	70	29	73	72	68	on BaSO ₄ : -1,5		
	Versuch	-	લ	3	Ą	В	* Blau/Gelb-Wert von BaSO $_4$: -1,5		
L				· 		·	*		

5

15

20

^{*} Blau/Gelb-Wert von BaSO4: -1,5

Patentansprüche:

zugefügt werden.

1. Verfahren zur Herstellung von hochmolekularen, linearen Copolyestern durch Kondensieren von 40 bis 85 Molprozent Terephthalsäure, die bis zu 50 % 5 durch andere Dicarbonsäuren ersetzt sein kann, 60 bis 15 Molprozent Adipinsäure mit Alkandiolen, die 2 bis 6 C-Atome in der Kohlenstoffkette besitzen, in 2 Stufen bei erhöhter Temperatur in Gegenwart von üblichen Ka-10 talysatoren, dadurch gekennzeichnet, daß vor oder während der 1. Kondensationsstufe 0,005 bis 0,1 Molprozent - bezogen auf die Säurekomponente - Arylester der phosphorigen Säure oder Phosphorsäure dem Reaktionsgemisch zugesetzt werden und daß 15 nach Beendigung der 2. Kondensationsstufe 0,01 bis 0,2 Molprozent - bezogen auf die Säürekomponente unterphosphorige Säure der fertigen Copolyesterschmelze

20

Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß vor oder während der 1. Kondensationsstufe 0,02
bis 0,06 Molprozent Arylester zugesetzt werden.

25

30

35

- 3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß nach Beendigung der 2. Kondensationsstufe 0,03 bis 0,15 Molprozent unterphosphorige Säure der fertigen Copolyesterschmelze zugefügt werden.
 - 4. Verfahren nach den Ansprüchen 1 bis 3,
 dadurch gekennzeichnet,
 daß als Arylester Triphenylphosphat verwendet wird.
 - 5. Verwendung der Copolyester gemäß den Ansprüchen 1 bis 4 als Schmelzkleber.

O.Z. 3592

6. Verwendung der Copolyester gemäß den Ansprüchen 1 bis 4 als pulverförmige Überzugsmittel.

EUROPÄISCHER RECHERCHENBERICHT

EP 80105426.3

	EINSCHLÄGIGE	DOKUMENTE		KLASSIFIKATION DER ANMELDUNG (Int CI ')
gorie	Kennzeichnung des Dokuments mit Ar maßgeblichen Teile		betrifft Anspruch	
	DE - B2 - 1 962 642 WERKE CHEMISCHE FAE + Spalte 1, Zeil Anspruch 1; Be DE - A1 - 2 703 855 + Ansprüche 1,2	RIK HEINICKE KG) en 43-49; eispiel 6 + 5 (CIBA-GEIGY AG)	1,2,5	C O8 G 63/22 C O9 J 3/16 C O9 D 3/64 C O8 K 3/32 C O8 K 5/52
	20 + GB - A - 1 090 295 HOECHST AG) + Gesamt +		1,2	RECHERCHIERTE SACHGEBIETE (Int. Cl. ³)
	US - A - 2 989 499 + Gesamt +	et al.,	1,3	C 08 G 63/00 C 09 D C 08 K
	FR - A - 1 562 61 KOGYO KABUSHIKI K + Ansprüche 1, 2; Seite 6, DE - A - 1 420 39	AISHA) 2,11; Beispiel Zeilen 16-20 +	1,3	
	HOECHST AKTIENGES + Seite 3, Zei 6, Absätze 4 1 +	len 1-8; Seite 1,5,7; Anspruch		KATEGORIE DER GENANNTEN DOKUMENTE X: von besonderer Bedeutung A: technologischer Hintergrun O: nichtschriftliche Offenbarun P: Zwischenliteratur
	DE - A - 1 420 57 CHEMICAL INDUSTR: + Ansprüche 1 1,9 +	19 (IMPERIAL IES LTD.) ,5-7; Beispiele	1-3	T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: kollidierende Anmeldung D: in der Anmeldung angefüh Dokument L: aus andern Gründen
x	Der vorliegende Recherchenber	angeführtes Dokument &: Mitglied der gleichen Pate familie. Übereinstimmer Dokument		
Reci	herchenort WIEN	Abschlußdatum der Recherche O2-O2-1981	Prüfer	KALTENEGGER

