Name:	
J#:	Dr. Clontz
Date:	

MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

	Mark:
Standard E1.	

Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & -1 & 7 \\ 1 & -1 & 3 & -1 \end{bmatrix}$$

Standard E

Mark:

Find RREF A, where

$$A = \begin{bmatrix} 2 & -1 & 5 & | & 4 \\ -1 & 0 & -2 & | & -1 \\ 1 & 3 & -1 & | & -5 \end{bmatrix}$$

Standard E3.

Mark:

Solve the system of equations

$$x + 3y - 4z = 5$$

$$3x + 9y + z = 2$$

Standard E4.

Mark:

Find a basis for the solution set to the system of equations

$$x + 2y - 3z = 0$$

$$2x + y - 4z = 0$$

$$3y - 2z = 0$$

$$x - y - z = 0$$

Standard V1. Mark:

Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 1))$

- (a) Show that this vector space has an additive identity element **0** satisfying $(x, y) \oplus \mathbf{0} = (x, y)$.
- (b) Determine if V is a vector space or not. Justify your answer.

Standard V2.

Determine if $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, and $\begin{bmatrix} -3\\-2\\5 \end{bmatrix}$.

Does span
$$\left\{ \begin{bmatrix} 2\\-1\\4\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\3\\5\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\5\\1\\-3 \end{bmatrix} \right\} = \mathbb{R}^5?$$

Let W be the set of all polynomials of the form $ax^3 + bx$. Determine if W is a subspace of \mathcal{P}^3 .

Standard S1.

Mark:

Determine if the set of vectors $\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Standard S2.

Mark:

Determine if the set $\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\-2 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3

Standard S3.

Mark:

Let W be the subspace of \mathcal{P}_2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

Standard S4. $\begin{bmatrix} & & & \\ & & & & \\ & &$

Additional Notes/Marks