Московский физико-технический институт

Лабораторная работа

Закон Кюри-Вейса и обменное взаимодействие в ферромагнетиках

выполнила студентка 653 группы ФФКЭ Карпова Татьяна

1 Цель работы

- 1. Исследовать температурной зависимости магнитной восприимчивости ферромагнетика в парамагнитной области выше точки Кюри
- 2. По полученной в работе температуре Кюри оценить энергию обменного взаимодействия гадолиния

2 Физическая суть явления

Тождественность одинаковых частиц приводит в квантовой механике к специфическому взаимодействию между ними, называемому обменным взаимодействием. Оно характеризуется обменной энергией A, добавляемой к энергии обычного кулоновского взаимодействия. Обменная энергия так же является результатом кулоновского взаимодействия и обусловлена спецификой квантовых законов поведения систем одинаковых частиц. Обменная энергия тем больше, чем больше степень перекрытия волновых функций рассматриваемых частиц. В зависимости от знака обменной энергии в природе реализуются ферромагнетики — магнитные вещества с одинаково ориентированными спинами — и антиферромагнетики, у которых спины соседних электронов антипараллельны.

Опыты Энштейна – де Гааза , в которых была обнаружена связь между магнитным и механическим моментами вещества, позволяют предположить, что ферромагнетизм по своему происхождению не является магнитным эффектом, а обусловлен кулоновскими силами связи атомных носителей магнетизма в твердом теле. Естественно предположить, что именно обменное взаимодействие за возникновение спонтанной намагниченности ферромагнетика.

Феноменологическая теория ферромагнетизма была построена до создания квантовой механики. Для описания взаимодействия соседних электронов было предложено, что в ферромагнетике имеется некоторое эффективное магнитное поле. Такой подход позволил объяснить наличие особой точки, называемой точкой Кюри, когда вещество переходит из ферромагнитного состояния в парамагнитной.

Магнитные свойства редкоземельных металлов существенно отличаются от магнетиков группы железа, так как в последних за магнетизм ответственны электроны 3d-оболочки, а у редкоземельных элементов, например, гадолиния, магнетизм определяется спиновым магнитным моментом 4f-оболочки, расположенной в глубине атома.

3 Теоретические положения

3.1 Квантово-механическая природа обменного взаимодействия

Рассмотрим происхождение обменного взаимодействия на примере системы из двух электронов. Пренебрегая спин-орбитальным взаимодействием, представим волновую функцию как произведение координатной функции $\Phi(r_1, r_2)$ на спиновую функцию $S(s_{z1}, s_{z2})$:

$$\Psi(1,2) = \Phi(r_1, r_2) S(s_{z1}, s_{z2}) \tag{1}$$

Согласно принципу Паули, волновая функция Ψ должна быть антисимметричной. Тогда один из множителей должен быть симметричным, а другой - антисимметричным.

Представим волновую функцию в виде произведения волновых функций отдельных частиц. Пусть Ψ_{α} - координатная волновая функция одного из электронов в состоянии α , Ψ_{β} - координатная функция другого электрона в состоянии β , тогда координатная функция системы двух электронов:

$$\Phi(r_1, r_2) = \frac{1}{\sqrt{2}} [\Psi_{\alpha}(r_1) \Psi_{\beta}(r_2) \pm \Psi_{\alpha}(r_2) \Psi_{\beta}(r_1)]$$
 (2)

Если оба электрона находятся возле одного силового центра, то формула (2) справедлива при $\alpha \neq \beta$, если электроны находятся у разных силовых центров, то выполняется и для $\alpha = \beta$.

Средняя потенциальная энергия взаимодействия между электронами (оператор энергии $\hat{U}=e^2/r_{12}$):

$$\langle U \rangle = \int \Phi^* \hat{U} \Phi dv_1 dv_2 \tag{3}$$

Введём обозначения:

$$\rho_{\alpha}(r1) = -e|\Psi_{\alpha}(r_1)|^2; \quad \rho_{\beta}(r2) = -e|\Psi_{\beta}(r_2)|^2; \quad \rho_{\alpha\beta}(r1) = -e\Psi_{\alpha}(r_1)^*\Psi_{\beta}(r_1); \quad \rho_{\alpha\beta}^*(r2) = -e\Psi_{\alpha}(r_2)\Psi_{\beta}(r_2)^*$$
(4)

Тогда

$$\langle U \rangle = \int \frac{\rho_{\alpha}(r1)\rho_{\beta}(r2)}{r_{12}} dv_1 dv_2 \pm \frac{\rho_{\alpha\beta}(r1)\rho_{\alpha\beta}^*(r2)}{r_{12}} dv_1 dv_2 = K \pm A$$
 (5)

Первый член K характеризует классическое взаимодействие двух заряженных тел с плотностями зарядов $\rho_{\alpha}(r1)$ и $\rho_{\beta}(r2)$. Второе слагаемое имеет существенно квантовый характер и называется обменной энергией. Обменная энергия отлична от нуля только в том случае, когда волновые функции Ψ_{α} и Ψ_{beta} перекрываются. Чем больше степень перекрытия волновых функций, тем больше обменная энергия. Также обменная энергия может иметь любой знак в зависимости от того, симметрична или антисимметрична спиновая функция. Поэтому, благодаря обменной энергии, в одной и той же системе могут существовать как силы притяжения, так и отталкивания.

Простейшая модель ферромагнетизма основывается на представлении, что вся обусловленная принципом Паули зависимость энергии от намагниченности проявляется посредством энергии обмена, и фактически она является обобщением теории молекулы водорода на случай большого числа атомов. Предполагается, что имеется кристалл, состоящий из N водородоподобных атомов, электроны которых находятся
в S-состоянии. Обменная энергия кристалла есть сумма обменных энергий между соседними атомами:

$$U_{ex} = -2\sum_{i< j} J_{ij} \mathbf{S}_i \mathbf{S}_j, \tag{6}$$

где $\mathbf{S}_i\mathbf{S}_j$ - скалярное произведение i-го и j-го спинов. Для молекулы водорода: магнитное спиновое число $m_s=\pm 1/2$, если обменный интеграл J<0, то энергия триплетного состояния равна $U_{ex}=\frac{1}{2}|J|$, энергия синглетного состояния $U_{ex}=-\frac{1}{2}|J|$. Разность энергий этих состояний, равная -|J|, связана с переворотом спина, и равна обменному интегралу. Если обменный интеграл положителен, то низшую энергию имеет симметричное состояние (ферромагнитное), а если отрицателен - антисимметричное (антиферромагнитное).

3.2 Феноменологическая теория ферромагнетизма

Намагниченность I - магнитный момент в единице объёма, связан с внешним магнитным полем H через магнитную восприимчивость вещества κ :

$$I = \kappa H \tag{7}$$

Рассмотрим, чем определяется восприимчивость парамагнитного вещества, в котором магнитный момента атома обусловлен только спином одного электрона. Проекция спинового магнитного момента электрона может иметь значения $\mu_z = \mp \mu$, где μ - абсолютное значение проекции магнитного момента. Магнитный момент взаимодействует с внешним полем B, У атома возникают два возможных уровня энергии: $E_- = -\mu B$ (магнитный момент параллелен полю) и $E_+ = +\mu B$ (магнитный момент антипараллелен полю). Можно вычислить разность числа электронов с энергией E_+ и E_- (через распределение Больцмана):

$$\triangle N \simeq N \frac{\mu H}{k_B T},\tag{8}$$

тогда магнитная восприимчивость (через магнитный момент $I = \mu \triangle N$):

$$\kappa = N \frac{\mu_{Bohr}^2}{k_B T} \tag{9}$$

В более общем виде с учётом связи магнитного момента электрона μ с механическим моментом J ($\mu=g\mu_{Bohr}J$), а также выражений для среднего квадрата спина и квадрата магнитного момента:

$$\langle \mu_z^2 \rangle = \frac{1}{3}\mu^2 = \frac{g^2 \mu_{Bohr}^2 S(S+1)}{3},$$
 (10)

общее выражение для парамагнитной восприимчивости (закон Кюри):

$$\kappa = \frac{Ng^2 \mu_{Bohr}^2 S(S_1)}{3k_B T} \tag{11}$$

Введём эффективное магнитное поле $H_{ef}=\lambda I,\,\lambda>0$ у ферромагнетиков и $\lambda<0$ у антиферромагнетиков. С учётом поля H_{ef} :

$$I = N \frac{\mu^2 H}{k_B (T - \Theta)},\tag{12}$$

где Θ - параметр, имеющий размерность температуры:

$$\Theta = \frac{Ng^2 \mu_{Bohr}^2 S(S_1)}{3k_B} \lambda \tag{13}$$

Тогда получаем формулу Кюри-Вейса:

$$\kappa = \frac{I}{H} = \frac{Ng^2 \mu_{Bohr}^2 S(S_1)}{3k_B (T - \Theta)} \propto \frac{1}{T - \Theta}$$
(14)

3.3 Связь эффективного поля Вейсса с обменным интегралом

Энергия обменного взаимодействия атомов i и j выражается соотношением

$$U_{ex} = -2J\mathbf{S}_i\mathbf{S}_j \tag{15}$$

Величина обменного интеграла J зависит от степени перекрытия волновых функций соответствующих электронов. Найдём энергию, требуемую для переворота спина в присутствии других спинов: $U \simeq 2(2JnS^2)$. При феноменологическом описании каждый магнитный атом испытывает действие эффективного поля Вейсса $H_{ef} = \lambda I$. Воздействие всех спинов на данный характеризуется намагниченностью, энергию переворота запишем в виде

$$U = 2\mu H_{ef} = 2\mu \frac{\lambda \mu}{V},\tag{16}$$

с учётом $\mu = qS\mu_{Bohr}$:

$$=\frac{2nJV}{g^2\mu_{Bohr}^2}\tag{17}$$

Объём, занимаемый одним атомом, V = 1/N, тогда окончательно

$$J = \frac{3k_B\Theta}{2nS(S+1)} \tag{18}$$

У гадолиния, исследуемого в работе, суммарный спин равен S=7/2, орбитальный момент L=0, а число ближайших соседей у каждого иона в гранецентрированной решётке n=12

4 Экспериментальная установка

Рис. 1: Схема экспериментальной установки: 1 – капсула с образцом; 2 – катушка самоиндукции; 3 – медный цилиндр; 4 – пенопластовый корпус; 5 – шток; 6 – цанговый зажим; 7 – измерительный спай термопары; 8 – электронагреватель

Экспериментальная установка для измерения восприимчивости магнетиков представлена на рис. 1. Ферромагнитный образец может перемещаться в катушке, которая является индуктивностью колебательного контура, входящего в состав LC-генератора. Катушка самоиндукции помещена в термостат. Исследуемый ферромагнетик является проводником тока; для того, чтобы в образце не возникали токи Фуко, он изготовлен из мелких гранул. Магнитная восприимчивость образца определяется по изменению самондукции, происходящем при его введении в катушку. Самоиндукция катушки с образцом $L = \mu \frac{4\pi n^2 S}{I}$,

без образца $L_0 = \frac{4\pi n^2 S}{l}$, тогда $\frac{L-L_0}{L_0} = \mu - 1 = 4\pi \kappa$. Частота f колебательного контура определяется как $1/f = 2\pi \sqrt{LC}$. Тогда рабочая формула:

$$\frac{1}{\kappa} = \frac{4\pi f^2}{f_0^2 - f^2} \tag{19}$$

Измерения проводятся в интервале температур от 10° C до 70° C. Температура образца измеряется медно-константановой термопарой.

5 Ход работы

- 1. Включим установку: печь, блок генератора и вольтметр.
- 2. Приступим к охлаждению образца, затем, начиная с самых нижних температур, снимем показания частот контура с образцом в катушке f и без образца f_0 при повышении температуры. Результаты измерений занесём в таблицу 1.

Таблица 1: Зависимость частоты колебательного контура от температуры

Напряжение на	-0,82	-0,7	-0,53	-0,38	-0,27	-0,2	-0,11	-0,05	-0,03	0
термопаре, мВ										
Температура	277,15	280,08	284,22	287,88	290,56	292,27	294,47	295,93	296,42	297,15
образца, К										
f , к Γ ц	849,2	848,77	848,87	849,82	850,77	853,86	858,2	861,82	863,14	864,69
f_0 , к Γ ц	870,14	870,11	870,16	870,1	870,14	870,21	870,35	870,3	870,53	870,67
$f^2/f_0^2 - f^2$	20,03	19,64	19,69	20,71	21,71	25,86	35,07	50,57	58,15	72,05
Напряжение на	0,08	0,19	0,32	0,39	0,52	0,62	0,72	0,82	0,94	
термопаре, мВ										
Температура	299,10	301,78	304,95	306,66	309,83	312,27	314,71	317,15	320,08	
образца, К										
f , к Γ ц	867,95	869,04	869,46	869,69	869,73	869,89	870,1	870,32	870,1	
f_0 , к Γ ц	870,38	870,52	870,56	870,83	870,7	870,62	870,91	870,99	870,81	
$f^2/f_0^2 - f^2$	178,34	293,34	394,96	381,19	448,06	595,57	536,85	649,24	612,50	

3. По результатам измерений построим график зависимости $f^2/f_0^2 - f^2(T)$ (рис. 2). Экстраполируя прямую, определим температуру Кюри исследуемого образца $(T_C = -\frac{Intercept}{Slope})$:

$$T_C = \Theta = 292.32 \pm 1.62 \text{ K}$$

6 Анализ полученных результатов

1. Сравним полученное значение температуры Кюри исследуемого образца(гадолиний) с табличным:

Экспериментальное значение: $T_C = 292.32 \pm 1.62 \; \mathrm{K}$

Табличное значение: $T_C = 293.4 \text{ K}$

Значения совпадают в пределах погрешности.

2. Оценим величину обменного интеграла по формуле (18). Суммарный спин гадолиния S=7/2, число ближайших соседей у каждого иона в гранецентрированной решётке n=12:

$$J = \frac{3k_B\Theta}{2nS(S+1)} = 2 \cdot 10^{-4} \text{ 9B} = 2.32 \text{ K}$$

Рис. 2: Зависимость $f^2/f_0^2-f^2(T)$ и определение температуры Кюри

7 Вывод

В ходе работы была изучена физическая суть явления обменного взаимодействия и ферромагнетизма. Была исследована температурная зависимость магнитной восприимчивости гадолиния от температуры в парамагнитной области выше точки Кюри, по этим данным было получено значение температуры Кюри исследуемого образца. Полученное значение практически совпало с табличным:

$$T_{Cexp} = 292.32 \pm 1.62 \text{ K}$$
 $T_{Cth} = 293.4 \text{ K}$

Также была оценена величина обменного интеграла, $J=2\cdot 10^{-4}~{\rm pB}=2.32~{\rm K}$