SATzilla: Portfolio-based Algorithm Selection for SAT

Xu, Hutter, Hoos, Leyton-Brown

JAIR'08

Reading

Another comprehensive journal paper on a seminal work

Check website for specific sections to read •••

SAT

One of the most fundamental problems in computer science

Planning

Graph coloring

Formal verification

And many more applications!

SATzilla

Summary of approach:

- 1. Took 7 solvers from the 2006 SAT competition AKA, a **portfolio** of solvers
- 2. ML model predicts which solver to use on any input
- Won several gold medals at the 2007 SAT competition
- Kept winning gold medals at future SAT competitions...
- In 2013, portfolio-based approaches were disallowed

Outline

- 1. Introduction
- 2. Overview of approach
- 3. Censored data
- 4. Incorporating hardness predictions
- 5. Experiments
- 6. Follow-up research

1: Model the application domain

Recall:

Application-specific distribution \mathcal{D} over SAT problems, e.g.:

- Distribution over radio spectrum graph coloring problems
- Uniform distribution over benchmark dataset

This paper:

Set of all instances from previous SAT competitions

2: Select candidate solvers

- Choose a set of candidate solvers
- ullet Should have relatively **uncorrelated** runtimes on ${\mathcal D}$
- Each solver should perform well on **some** instances

This paper: 7 solvers entered in the 2006 SAT competition

3: Identify features

Identify features that characterize problem instances This paper: 48 hand-designed features

Example: $(x_1 \lor x_2) \land (x_1 \lor \bar{x}_3 \lor \bar{x}_4) \land (x_1 \lor x_4 \lor x_5) \land (x_2 \lor x_6)$

- Number of clauses: 4
- Number of variables: 6

3: Identify features

Identify features that characterize problem instances This paper: 48 hand-designed features

Example:
$$(x_1 \lor x_2) \land (x_1 \lor \overline{x_3} \lor \overline{x_4}) \land (x_1 \lor x_4 \lor x_5) \land (x_2 \lor x_6)$$

Variable -clause graph

Variable node degree statistics:

- Mean: $\frac{1}{6}(3+2+1+2+1+1) = \frac{5}{3}$
- Min: 1
- Max: 3
- •

3: Identify features

Identify features that characterize problem instances This paper: 48 hand-designed features

Example: $(x_1 \lor x_2) \land (x_1 \lor \bar{x}_3 \lor \bar{x}_4) \land (x_1 \lor x_4 \lor x_5) \land (x_2 \lor x_6)$

Variable graph

Node degree statistics:

- Mean: $\frac{1}{6}(5+2+3+3+2+1) = \frac{8}{3}$
- Min: 1
- Max: 5
- ...

4: Obtain training data

- Sample SAT instances $\pi_1, \dots, \pi_N \sim \mathcal{D}$
- For each π_i , compute features $\mathbf{x}(\pi_i) \in \mathbb{R}^d$ In the paper, d=48
- Run all solvers on all instances to determine runtimes

	Instance π_1	Instance π_2	Instance π_N
Solver s_1	$(\boldsymbol{x}(\pi_1), \operatorname{runtime}(s_1, \pi_1))$	$(\boldsymbol{x}(\pi_2), \operatorname{runtime}(s_1, \pi_2))$	$(\boldsymbol{x}(\pi_N), \operatorname{runtime}(s_1, \pi_N))$
Solver s_2	$(\boldsymbol{x}(\pi_1), \text{runtime}(s_2, \pi_1))$	$(\boldsymbol{x}(\pi_2), \operatorname{runtime}(s_2, \pi_2))$	• $(x(\pi_N), \text{runtime}(s_2, \pi_N))$
Solver s_3	$(\boldsymbol{x}(\pi_1), \text{runtime}(s_3, \pi_1))$	$(\boldsymbol{x}(\pi_2), \operatorname{runtime}(s_3, \pi_3))$	$(\boldsymbol{x}(\pi_N), \operatorname{runtime}(s_3, \pi_N))$

5: Identify a presolver

Remove instances that solve quickly with presolver Training effort will be focused on hard instances

	Instance π_1	Instance π_2	Instance π_N
Solver s_1	$(\boldsymbol{x}(\pi_1), \operatorname{runtime}(s_1, \pi_1))$	$(x(\pi_2), \text{runtime}(s_1, \pi_2))$	$(\boldsymbol{x}(\pi_N), \operatorname{runtime}(s_1, \pi_N))$
Solver s_2	$(\boldsymbol{x}(\pi_1), \operatorname{runtime}(s_2, \pi_1))$	$(\mathbf{x}(\pi_2), \text{runtime}(s_2, \pi_2))$	• $(\mathbf{x}(\pi_N), \text{runtime}(s_2, \pi_N))$
Solver s_3	$(\boldsymbol{x}(\pi_1), \operatorname{runtime}(s_3, \pi_1))$	$(\boldsymbol{x}(\pi_2), \operatorname{runtime}(s_3, \pi_3))$	$(\boldsymbol{x}(\pi_N), \operatorname{runtime}(s_3, \pi_N))$

6: Train ML model for each solver

- Train ML model $f_i: \mathbb{R}^d \to \mathbb{R}$ for each solver s_i
- Ideally, for $\pi \sim \mathcal{D}$, $f_i(\mathbf{x}(\pi)) \approx \text{runtime}(s_i, \pi)$

Predicted runtime Actual runtime

	Instance π_1	Instance π_2	Instance π_N
Solver s_1	$(\boldsymbol{x}(\pi_1), \operatorname{runtime}(s_1, \pi_1))$	$(\mathbf{x}(\pi_2), \text{runtime}(s_1, \pi_2))$	$(\boldsymbol{x}(\pi_N), \operatorname{runtime}(s_1, \pi_N))$
Solver s_2	$(\boldsymbol{x}(\pi_1), \operatorname{runtime}(s_2, \pi_1))$	$(\boldsymbol{x}(\pi_2), \text{runtime}(s_2, \pi_2))$	$(\boldsymbol{x}(\pi_N), \operatorname{runtime}(s_2, \pi_N))$
Solver s_3	$(\boldsymbol{x}(\pi_1), \operatorname{runtime}(s_3, \pi_1))$	$(\mathbf{x}(\pi_2), \text{runtime}(s_3, \pi_3))$	$(\boldsymbol{x}(\pi_N), \operatorname{runtime}(s_3, \pi_N))$

Runtime protocol

On a **new instance** π :

- 1. Run presolver until predetermined cutoff time reached
- 2. Compute $f_i(\mathbf{x}(\pi))$ for every solver s_i
- 3. Run solver with smallest predicted runtime

7: Optimizing the final portfolio

Since predictions $f_i(x(\pi))$ aren't perfect, It's possible to improve performance by **removing** a solver

Using validation set:

Find **subset** of solvers leading to best end-to-end runtime

Outline

- 1. Introduction
- 2. Overview of approach
- 3. Censored data
- 4. Incorporating hardness predictions
- 5. Experiments
- 6. Follow-up research

Accounting for censored data

Computing the runtime of any solver can take weeks!

Sometimes need to terminate before completing

Still want to accurately predict runtime(s_i, π)

Accounting for censored data

- 1. Train each f_i treating capped runtime as true runtime
- 2. Repeat until convergence:
 - i. Estimate runtime of capped runs using f_i

	Instance π_1	Instance π_2	Instance π_N
Solver s_1	$(\boldsymbol{x}(\pi_1), \operatorname{runtime}(s_1, \pi_1))$	$(\boldsymbol{x}(\pi_2), \operatorname{runtime}(s_1, \pi_2))$	$(x(\pi_N), \operatorname{cap} \kappa)$
Solver s_2	$(x(\pi_1),\operatorname{cap}\kappa)$	$(\boldsymbol{x}(\pi_2), \text{runtime}(s_2, \pi_2))$	$(\boldsymbol{x}(\pi_N), \operatorname{runtime}(s_2, \pi_N))$
Solver s_3	$(\boldsymbol{x}(\pi_1), \operatorname{runtime}(s_3, \pi_1))$	$(\boldsymbol{x}(\pi_2), \operatorname{cap} \kappa)$	$(\boldsymbol{x}(\pi_N), \operatorname{runtime}(s_3, \pi_N))$

Accounting for censored data

- 1. Train each f_i treating capped runtime as true runtime
- 2. Repeat until convergence:
 - i. Estimate runtime of capped runs using f_i
 - ii. Retrain f_i treating **estimated runtimes** as true runtimes

	Instance π_1	Instance π_2	Instance π_N
Solver s_1	$(\boldsymbol{x}(\pi_1), \text{runtime}(s_1, \pi_1))$	$(x(\pi_2), \text{runtime}(s_1, \pi_2))$	$(x(\pi_N), f_1(x(\pi_N)))$
Solver s_2	$\left(x(\pi_1),f_2(x(\pi_1))\right)$	$(\boldsymbol{x}(\pi_2), \text{runtime}(s_2, \pi_2))$	$(\boldsymbol{x}(\pi_N), \operatorname{runtime}(s_2, \pi_N))$
Solver s_3	$(\boldsymbol{x}(\pi_1), \text{runtime}(s_3, \pi_1))$	$\left(\boldsymbol{x}(\pi_2), f_3(\boldsymbol{x}(\pi_2))\right)$	$(\boldsymbol{x}(\pi_N), \operatorname{runtime}(s_3, \pi_N))$

Outline

- 1. Introduction
- 2. Overview of approach
- 3. Censored data
- 4. Incorporating hardness predictions
- 5. Experiments
- 6. Follow-up research

Hardness + runtime predictions

Can get better predictions if **only** train on **satisfiable** problems ...or **only** on **unsatisfiable** problems

Approach:

- 1. Train classifier $s(x(\pi)) \in \{\text{sat, unsat}\}\$ to predict if satisfiable
- 2. For each solver s_i , train model $f_{i,sat}$ to predict runtime Train only on satisfiable instances
- 3. Also train $f_{i,unsat}$ to predict runtime Train only on unsatisfiable instances

Hardness + runtime predictions

RV $z \in \{\text{sat, unsat}\}\ \text{represents belief of whether}$ $f_{i,\text{sat}} \text{ or } f_{i,\text{unsat}} \text{ is a better prediction of runtime}$

Predict runtime as

$$f_i(\mathbf{x}(\pi)) = \sum_{k \in \{\text{sat,unsat}\}} f_{i,k}(\mathbf{x}(\pi)) \cdot \mathbb{P}[z = k \mid \mathbf{x}(\pi), s(\mathbf{x}(\pi))]$$
Need to learn

Hardness + runtime predictions

Predict runtime as

$$f_i(\mathbf{x}(\pi)) = \sum_{k \in \{\text{sat,unsat}\}} f_{i,k}(\mathbf{x}(\pi)) \cdot \mathbb{P}[z = k \mid \mathbf{x}(\pi), s(\mathbf{x}(\pi))]$$
Need to learn

Choose
$$\mathbb{P}[z = k \mid x(\pi), s(x(\pi))]$$
 to minimize
$$\sum_{j=1}^{N} \left(\text{runtime}(\pi_j, s_i) - f_i(x(\pi_j)) \right)^2$$

Sum over the N training instances

Outline

- 1. Introduction
- 2. Overview of approach
- 3. Censored data
- 4. Incorporating hardness predictions
- 5. Experiments
- 6. Follow-up research

Experiments: example

Outline

- 1. Introduction
- 2. Overview of approach
- 3. Censored data
- 4. Incorporating hardness predictions
- 5. Experiments
- 6. Follow-up research

Empirical performance models

Follow-up work by the same group [Hutter et al. AIJ'14]:

- Expanded set of hand-designed features for SAT to 138
- Random forests are great for runtime prediction Suggests \mathbb{R}^{138} can be split into regions where runtime is ~constant

Empirical performance models

Overview

SATzilla: seminal paper on portfolio-based algorithm selection

Won several gold medals at the 2007 SAT competition

Uses ML to decide which solver from the '06 competition to use