AMENDMENTS TO THE CLAIMS

WHAT IS CLAIMED IS:

1. (Original): A compound of the formula

wherein the bond of atoms C₂₂ and C₂₃ is a single or double bond;

m is 0 or 1;

n is 0, 1 or 2;

p is 0 or 1;

 R_1 is C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl or C_2 - C_{12} -alkenyl;

 R_2 is H, C_1 - C_{12} -alkyl, C_1 - C_{12} -haloalkyl, C_1 - C_{12} -hydroxyalkyl, OH, halogen, -N₃, SCN, NO₂, CN, C_3 - C_8 cycloalkyl unsubstituted or substituted by from one to three methyl groups, C_3 - C_8 halocycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_2 - C_1 -alkenyl, C_2 - C_1 -haloalkenyl, C_2 - C_1 -haloalkenyloxy, C_2 - C_1 -alkynyloxy, C_3 - C_1 -haloalkynyloxy, -P(=O)(OC₁- C_6 alkyl)₂, -Si(C₁- C_6 alkyl)₃, -(CH₂)-Si(C_1 - C_6 alkyl)₃, -Si(C_1 - C_1 -C

other, $-C(=X)-R_7$, $-(CH_2)-C(=X)-R_7$, $-O-C(=X)-R_7$, $-(CH_2)-O-C(=X)-R_7$, $-S-C(=X)-R_7$, $-(CH_2)-S-C(=X)-R_7$, $-(CH_2)-C(=X)-R_7$, $-(CH_2)-C(=X)-R_7$, $-(CH_2)-C(=X)-R_7$, $-(CH_2)-C(=X)-R_7$, $-(CH_2)-C(=X)-R_9$, $-(CH_2)-C(=X)-C(=X)-R_9$, $-(CH_2)-C(=X)-R_9$, $-(CH_2)-C(=X)-C(=X)-R_9$, $-(CH_2)-C(=X)-C(=X)-R_9$, $-(CH_2)-C(=X)-C(=X)-C(=X)-R_9$, $-(CH_2)-C(=X)-C($

- 3 -

 C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyloxy, C_2 - C_{12} haloalkynyl, C_3 - C_{12} alkynyloxy, C_3 - C_{12} haloalkynyloxy and phenoxy;

or, when p is 1, R₂ together with R₃ is a bond;

or R_2 together with R_4 is =0 or =S;

or R_2 together with R_4 form with the carbon to which they are bound a three- to seven-membered ring, which may be monocyclic or bicyclic, and may be saturated or unsaturated, and that may contain one or two hetero atoms selected from the group consisting of N, O and S, and which is either unsubstituted or independently of one another mono- to pentasubstituted with substituents selected from OH, =O, SH, =S, halogen, CN, -N₃, SCN, NO₂, aryl, C_1 - C_{12} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} alkylthio, C_1 - C_1 -haloalkylthio, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_2 - C_1 -haloalkenyl, C_2 - C_1 -haloalkynyl, C_3 - C_1 -haloalkynyl, C_3 - C_1 -haloalkynyl, C_3 - C_1 -haloalkynyloxy, phenoxy, phenyl- C_1 - C_6 alkyl, -N(R_9)₂ wherein the two R_9 are independent of each other, C_1 - C_6 alkylsulfinyl, C_3 - C_8 cycloalkylsulfinyl, C_3 - C_8 cycloalkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, and C_3 - C_8 halocycloalkylsulfinyl, or

 R_2 together with R_4 is =NN(R_{12})₂, wherein the two substituents R_9 are independent of each other;

or, when p is 0, R_2 together with R_4 and R_6 is $\equiv N$;

or when p is 0, R_2 together with R_6 is =NOR₁₂ or =NN(R₁₂)₂, wherein the two substituents R_9 are independent of each other;

 R_3 is H, C_1 - C_{12} -alkyl, halogen, halo- C_1 - C_2 alkyl, CN, -N₃, SCN, NO₂, C_3 - C_8 cycloalkyl unsubstituted or substituted by from one to three methyl groups, C_3 - C_8 halocycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_3 - C_8 cycloalkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} alkylthio, C_3 - C_8 cycloalkylthio, C_1 - C_{12} haloalkylsulfinyl, C_3 - C_8 cycloalkylsulfinyl, C_1 - C_1 2alkylsulfonyl, C_3 - C_8 cycloalkylsulfonyl, C_1 - C_1 2alkylsulfonyl, C_3 - C_8 cycloalkylsulfonyl, C_3 - C_8 cycloalkylsulfonyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_2 - C_1 2haloalkylsulfonyl, C_3 - C_1 2haloalkylsulfonyl, C_3 - C_1 2haloalkynyloxy, -N(C_1 2, wherein the two substituents C_1 2 are independent of each other, aryl, heterocyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen, CN, NO₂, C_1 - C_1 2alkyl, C_3 - C_8 cycloalkyl, C_1 - C_1 2haloalkyl, C_1 - C_1 2haloalkoxy, C_1 -

 C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyloxy, C_2 - C_{12} haloalkynyloxy;

or when p is 1, R₃ together with R₂ is a bond;

 R_4 is H, C₁-C₁₂-alkyl, C₁-C₁₂-haloalkyl, C₁-C₁₂-hydroxyalkyl, OH, halogen, NO₂, CN, C₃-C₈cycloalkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, -P(=O)(OC₁-C₆alkyl)₂, -Si(C₁-C₆alkyl)₃, -(CH₂)-Si(C₁-C₆alkyl)₃, -Si(OC₁-C₆alkyl)₃, -N(R₉)₂, -(CH₂)-N(R₉)₂, wherein the two substituents R₉ are independent of each

other, $-C(=X)-R_7$, $-(CH_2)-C(=X)-R_7$, $-O-C(=X)-R_7$, $-(CH_2)-O-C(=X)-R_7$, $-S-C(=X)-R_7$, $-(CH_2)-S-C(=X)-R_7$, $-NR_9C(=X)R_7$, $-(CH_2)-NR_9C(=X)R_7$, $-NR_9NHC(=X)-R_7$, $-NR_9-OR_{10}$, $-(CH_2)-NR_9-OR_{10}$, $-SR_9$, -S(=O) R_{11} , $-S(=O)_2R_{11}$, aryl, heterocyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1 - C_{12} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} haloalkylthio, C_1 - C_{12} haloalkylthio, C_1 - C_{12} haloalkenyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyloxy and phenoxy;

or R₄ together with R₂ forms =O or =S;

or when p is 1, R₄ together with R₅ is a bond;

or, when p is 0, together with R_2 and R_6 is $\equiv N$;

 R_5 and R_6 independently of each other are H, C_1 - C_{12} -alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo- C_1 - C_2 alkyl, hydroxy- C_1 - C_2 alkyl, C_3 - C_8 cycloalkyl that is unsubstituted or substituted by from one to two methyl groups, C_3 - C_8 halocycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_3 - C_8 cycloalkoxy, C_1 - C_1 2haloalkoxy, C_1 - C_1 2haloalkylthio, C_2 - C_8 alkenyl, C_2 - C_1 2haloalkenyl, C_2 - C_1 2haloalkynyl, C_2 - C_1 2haloalkynyl, C_2 - C_1 2haloalkynyl, C_3 - C_1 2haloalkynyloxy, -P(=O)(OC₁- C_6 alkyl)₂, -CH₂-P(=O)(OC₁- C_6 alkyl)₂, -Si(OC₁- C_6 alkyl)₃, -N(C_1 - C_1 2, wherein the two substituents C_1 2 are independent of each other, -C(=X)- C_1 3, -CH=NOH, -CH=NOC₁-

 C_6 alkyl, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S (=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy, -NR₉-hetero-

cyclyl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, -CH₂-NR₉-C₁-C₂alkyl, -CH₂-heterocyclyl, -CH₂-O-heter

ocyclyl and -CH₂-NR₉-heterocyclyl; wherein the aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy and -NR₉-heterocyclyl radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, =O, SH, =S, halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, phenoxy, methylenedioxy, NH₂, NH(C₁-C₁₂alkyl), N(C₁-C₁₂alkyl)₂ and C₁-C₆alkylsulfinyl; or

 R_5 and R_6 are, together with the carbon atom to which they are bound, a five- to seven-membered ring, which may be saturated or unsaturated, and which may contain one or two members selected from the group consisting of O, NR₈ and S; and which is optionally substituted with one to three substituents selected from C_1 - C_{12} -alkyl, CN, NO₂, OH, halogen, halo- C_1 - C_2 alkyl, C_3 - C_8 cycloalkyl C_3 - C_8 halocycloalkyl, C_1 - C_1 2alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_3 - C_8 cycloalkoxy, C_1 - C_1 2haloalkoxy, C_1 - C_1 2alkylthio, C_3 - C_8 cycloalkylthio, C_1 - C_1 2haloalkylthio, C_2 - C_1 2haloalkynyl, C_2 - C_1 2haloalkynyl and C_3 - C_1 2haloalkynyloxy;

or when p is 1, R₅ together with R₄ is a bond;

or, when p is 0, R_6 together with R_2 and R_4 is $\equiv N$;

R₇ is H, OH, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₂-C₁₂alkenyl, C₂-C₁₂alkynyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₆-alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₈alkenyloxy, C₃-C₈alkinyloxy, -N(R₈)₂ wherein the two R₈ are independent of each other, aryl, aryloxy, benzyloxy, heterocyclyl, heterocyclyloxy or heterocyclylmethoxy; and wherein the aryl, aryloxy, benzyloxy, heterocyclyl and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, monoto penta-substituted by substituents selected from the group consisting of halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₈alkynyl, C₂-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

R₈ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, hydroxy and cyano, C₃-C₈-cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂,

 C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} alkylthio, C_2 - C_{12} alkenyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkynyl, C_2 - C_{12} haloalkynyl, C_3 - C_{12} haloalkylthio; and C_1 - C_{12} haloalkylthio;

 R_9 is H, C_1 - C_6 alkyl, C_1 - C_6 cycloalkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_2 - C_1 2alkenyl, C_2 - C_1 2alkynyl, benzyl, aryl or heteroaryl;

R₁₀ H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, NO₂, hydroxy and cyano, C₁-C₁₂haloalkyl, C₂-C₁₂alkenyl, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂alkynyl, C₃-C₈-cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

 R_{11} is H, C_1 - C_6 alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, hydroxy and cyano, -N(R_9)₂ wherein the two substituents R_9 are independent of each other, C_3 - C_8 cycloalkyl, C_3 - C_8 halocycloalkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyloxy, C_2 - C_{12} alkynyl, C_3 - C_{12} haloalkynyl, C_3 - C_{12} haloalkynyloxy, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1 - C_{12} alkyl, C_1 - C_{12} haloalkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} haloalkoxy, C_2 - C_{12} haloalkylthio, C_2 - C_{12} haloalkynyl and C_3 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyloxy, C_2 - C_{12} haloalkynyl and C_3 - C_{12} haloalkynyloxy;

 R_{12} is H, C_1 - C_6 alkyl, C_1 - C_6 cycloalkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_2 - C_1 -alkyl, C_1 - C_2 - C_1 -alkyl, C_1 - C_2 - C_1 - C_2 -alkyl, C_1 - C_2 - C_1 - C_2 -alkyl, C_1 - C_2 - C_1 - C_2 -alkyl, C_1 - C_2 - C_2 - C_3 - C_4 - C_4 - C_4 - C_5 - C_4 - C_5 -

X is O or S;

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form;

with the proviso, that the group R_6 -[$C(R_3)(R_5)$] $_p$ - $C(R_2)(R_4)$ -[CH_2] $_n$ -, which is attached to the ε -position of the compound of the formula (I), is not NC- CH_2 - or HOOC- CH_2 - when m is 1 and the bond between atoms 22 and 23 is a single bond.

- 2. (Currently Amended): A pesticide <u>composition</u> which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
- 3. (Currently Amended): A method for controlling pests wherein comprising applying a composition as described in claim 2 is applied to the pests or their habitat.
- 4. (Currently Amended): A process for preparing a composition as described in claim 2 which contains at least one auxiliary, wherein the active compound is mixed intimately and/or ground with the auxiliary(s) comprising intimately mixing and/or grinding the active compound with at least one auxiliary.
 - 5. (Cancelled).
 - 6. (Cancelled).
- 7. Currently Amended): A method according to claim 3 for protecting plant propagation material, wherein the propagation material or the location where the propagation material is planted is treated, comprising applying a composition as described in claim 2.
- 8. (Original): Plant propagation material treated in accordance with the method described in claim 7.