Linear Algebra

March 29, 2023

1 Basis and Rank

The goal of this chapter is the inspection of special vectors that can create any other vector in the vector space by some linear combination.

2 Generating Set and Basis

Definition - Generating Set and Span

Condider a vector space $V = (\mathcal{V}, +, \cdot)$ and a set of vectors $\mathcal{A} = \{x_1, \dots, x_k\} \subseteq \mathcal{V}$. If every vector $v \in \mathcal{V}$ can be expressed as a linear combination of x_1, \dots, x_k , \mathcal{A} is called a *generating set* of V. The set of all linear combinations of vectors in \mathcal{A} is called the *span* of \mathcal{A} . If \mathcal{A} spans the vector space V, we write $V = span[\mathcal{A}]$ or $V = span[x_1, \dots, x_k]$.

Definition - Basis

Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and $\mathcal{A} \subseteq \mathcal{V}$. A generating set \mathcal{A} of V is called *minimal* if there exists no smaller set $\tilde{\mathcal{A}} \subseteq \mathcal{A} \subseteq \mathcal{V}$ that spans V. Every linearly independent generating set of V is minimal and is called a *basis* of V.

Example - basis

• Canonical basis in \mathbb{R}^3

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\} \tag{1}$$

• Different bases in \mathbb{R}^3

$$\mathcal{B}_{1} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}, \mathcal{B}_{2} = \left\{ \begin{bmatrix} 0.5\\0.8\\0.4 \end{bmatrix}, \begin{bmatrix} 1.8\\0.3\\0.3 \end{bmatrix}, \begin{bmatrix} -2.2\\-1.3\\3.5 \end{bmatrix} \right\}$$
(2)

• Linearly independent set, but not generating set of \mathbb{R}^4

$$\mathcal{A} = \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-4 \end{bmatrix} \right\} \tag{3}$$

3 Rank

The number of linearly independent columns of a matrix $A \in \mathbb{R}^{m \times n}$ equals the number of linearly independent rows and is called the rank of A and is denoted as rk(A).

Some important properties:

- $rk(\mathbf{A}) = rk(\mathbf{A}^T)$, i.e., the column rank equals the row rank.
- The columns of $\mathbf{A} \in \mathbb{R}^{m \times n}$ span a subspace $U \subseteq \mathbb{R}^m$ with $dim(U) = rk(\mathbf{A})$. Later we will call this subspace the *image* or *range*. A basis of U can be found by applying Gaussian elimination to \mathbf{A} to identify the pivot columns.
- The rows of $\mathbf{A} \in \mathbb{R}^{m \times n}$ span a subspace $W \subseteq \mathbb{R}^n$ with $dim(W) = rk(\mathbf{A})$. A basis of W can be found by applying Gaussian elimination to \mathbf{A}^T .
- For all $\mathbf{A} \in \mathbb{R}^{n \times n}$ it holds that \mathbf{A} is regular (invertible) if and only if $rk(\mathbf{A}) = n$.
- For all $A \in \mathbb{R}^{m \times n}$ and all $b \in \mathbb{R}^m$ it holds that the linear equation system Ax = b can be solved if and only if rk(A) = rk(A|b), where A|b denotes the augmented system.
- For $A \in \mathbb{R}^{m \times n}$ the subspace of solutions for Ax = 0 possesses dimension n rk(A). Later, we will call this subspace the *kernel* or the *null space*.
- A matrix $A \in \mathbb{R}^{m \times n}$ has full rank if its rank equals the largest possible rank for a matrix of the same dimensions. This means that the rank of a full-rank matrix is the lesser of the number of rows and columns, i.e., rk(A) = min(m, n). A matrix is said to be rank deficient if it does not have full rank.