The Newspaper Seller's Problem

Problem formulation

- A classic example of a decision-making problem under uncertainty.
- The newspaper seller buys the newspapers for 33 cents, and sells them for 50 cents, with profits equal to 17 each.
- At the end of the day the remaining newspapers are sold for 5 cents each as scrap.
- The newspapers can be purchased as bundles, that is the seller can buy 10, 20, 30, etc. from these newspapers

Cont.

- The type of news is one important factor in this process
 - Good news means people are more interested in buying newspapers, and poor news means people are not interested much in reading the newspaper.
- if you know that the distribution of the news type is 0.35, 0.45, and 0.20 for good, fair, and poor news, respectively.
 - Find the best number of newspapers to buy to maximize the profits

Distributions

The news type distribution

Type of Newsday	Probability	Random-Digit Assignment
Good	0.35	
Fair	0.45	
Poor	0.20	

 The demand distribution for each news type

	Demand Probability Distribution					
Demand	Good	Fair	Poor			
40	0.03	0.10	0.44			
50	0.05	0.18	0.22			
60	0.15	0.40	0.16			
70	0.20	0.20	0.12			
80	0.35	0.08	0.06			
90	0.15	0.04	0.00			
100	0.07	0.00	0.00			

Cumulative

		Cumulative	Random-Digit
Type of Newsday	Probability	Probability	Assignment
Good	0.35	0.35	01 - 35
Fair	0.45	0.80	36 - 80
Poor	0.20	1.00	81 - 00

	Cumulative DistributionRandom-Digit Assignme								
Demand	Good	Fair	Poor	Good	Fair	Poor			
40	0.03	0.10	0.44	01 - 03	01-10	01-44			
50	0.08	0.28	0.66	04 - 08	11 - 28	45-66			
60	0.23	0.68	0.82	09 - 23	29 - 68	67 - 82			
70	0.43	0.88	0.94	24 - 43	69 - 88	83 - 94			
80	0.78	0.96	1.00	44 - 78	89-96	95 - 00			
90	0.93	1.00		79 - 93	97 - 00				
100	1.00			94 - 00					

Profits calculation

 The profits from selling newspapers can be expressed in the following equation

$$Profit = Revenue - Cost + Salvage - Lost Profit$$

- 1. Revenue: number of sold newspapers * sell price
- 2. *Cost*: number of purchased papers * cost of each paper
- 3. Salvage: number of scrap papers * price of scrap paper
- 4. Lost Profits: The number of over-demanded papers * profit from each paper

- We will simulate the process for 20 days starting with 70 newspapers bought by the newspaper's man
 - Another run will be with 80 papers
 - Another with 100
 - Another with 20
 - Compare to see which number of newspapers should be bought to provide the highest profits
- Each simulation can be run (repeated several times, e.g., 10 times) and take the average profits for each number of bought papers

• We start by creating random numbers for the news type and demand

	Random Digits for		Random		Revenue	Lost Profit	Salvage	
Day	Type of Newsday	Type of Newsday	Digits for Demand	Demand	from Sales	from Excess Demand	from Sale of Scrap	Daily Profit
1	94		80					
2	77		20					
3	49		15					
4	45		88					
5	43		98					
	: 4: 4:							

• Select the expected type of news from its distribution

	Random						
	Digits for		Random			Cumulative	Random-Digit
	Type of	Type of	Digits for	Type of Newsday	Probability	Probability	Assignment
Day	Newsday	Newsday	Demand	Good	0.35	0.35	01-35
1	94		80	Fair	0.45	0.80	36-80
2	77		20	Poor	0.20	1.00	81-00
3	49		15				
4	45		88				
5	43		98				
×	* *		14.44				

• The demand amount depends upon its distribution, based on the news type

Day	Random Digits for Type of Newsday	Type of Newsday	Random Digits for Demand	Demand
1	94	Poor	80	
2	77	Fair	20	
3	49	Fair	15	
4	45	Fair	88	
5	43	Fair	98	

	Cumulative DistributionRandom-Digit Assignment									
Demand	Good	Fair	Poor	Good	Fair	Poor				
40	0.03	0.10	0.44	01-03	01-10	01-44				
50	0.08	0.28	0.66	04-08	11-28	45 - 66				
60	0.23	0.68	0.82	09-23	29-68	67-82				
70	0.43	0.88	0.94	24-43	69-88	83-94				
80	0.78	0.96	1.00	44-78	89-96	95-00				
90	0.93	1.00	1.00	79-93	97-00					
100	1.00	1.00	1.00	94-00						

• it is the value that corresponds to the interval 46-82 of the poor column

Day	Digits for Type of Newsday	Type of Newsday	Random Digits for Demand	Demana
1	94	Poor	80	
2	77	Fair	20	
3	49	Fair	15	
4	45	Fair	88	
5	43	Fair	98	

		Cumulative DistributionRandom-Digit Assignment-									
	Demand	Good	Fair	Poor	Good	Fair	Poor				
ſ	40	0.03	0.10	0.44	01-03	01-10	01-44				
	50	0.08	0.28	0.66	04-08	11-28	45-66				
	60	0.23	0.68	0.82	09-23	29-68	67-82				
l	70	0.43	0.88	0.94	24-43	69-88	83-94				
	80	0.78	0.96	1.00	44-78	89-96	95-00				
	90	0.93	1.00	1.00	79-93	97-00					
	100	1.00	1.00	1.00	94-00						

70 bought – 60 sold = 10 remaining (scrap) 10 * 0.05 = 0.5\$

This comes from the equation earlier
60 * 50 = 300 = 30\$

	Random							
	Digits for		Random		Revenue	Lost Profit	Salvage	
	Type of	Type of	Digits for		from	from Excess	fron Sale	Daily
Day	Newsday	Newsday	Demand	Demand	Sales	Demand	of Strap	Profit
1	94	Poor	80	60	\$30.00	-	\$0.50	\$7.40
2	77	Fair	20	50				
3	49	Fair	15	50				
4	45	Fair	88	70				
5	43	Fair	98	90		ofits = 30\$ 23.1\$ + 0.5		8)\$ + 0.5
					•	•	•	

• We complete the same. Note the difference between day 4 and day 5 => same revenue from sales. However, cause at day 5 we missed some profits, this caused the daily profit to decrease

	Random				Revenue	Lost Profit	Salvage	
	Digits for		Random					
	Type of	Type of	Digits for		from	from Excess	from Sale	Daily
Day	Newsday	Newsday	Demand	Demand	Sales	Demand	of Scrap	Profit
1	94	Poor	80	60	\$30.00	-	\$0.50	\$7.40
2	77	Fair	20	50	25.00	-	1.00	2.90
3	49	Fair	15	50	25.00	-	1.00	2.90
4	45	Fair	88	70	35.00	-	-	11.90
5	43	Fair	98	90	35.00	\$3.40	-	8.50
	**			* *				

Demand greater than supply

• This process continues till the end of the simulation, then we calculate the total profits

TotalProfit = Total Revenue - TotalCost + TotalSalvage - TotalLost Profit

	Random Digits for		Random		Revenue	Lost Profit	Salvage	
Day	Type of Newsday	Type of Newsday	Digits for Demand	Demand	from Sales	from Excess Demand	from Sale of Scrap	Daily Profit
20	78	Fair	96	80	35.00 \$645.00	1.70 \$13.60	- \$5.50	10.20 \$174.90

Total profits =
$$645$$
\$ - $(70 * 0.33 * 20)$ \$ + 5.5 \$ - 13.6 \$ = 645 \$ - 462 \$ + 5.5 \$ - 13.6 \$ = 174.9 \$

More ideas

- We can plot the daily profits to see the whole performance
 - This plot for another run for the simulation, using the same parameters

