영상처리 실제 Image Processing Practice

신재혁

naezang@cbnu.ac.kr

5장 지역 특징

- 대응점 문제_{correspondence problem}
 - 이웃한 영상에 나타난 같은 물체의 같은 곳을 쌍으로 맺는 일
 - 파노라마, 물체 인식, 물체 추적, 스테레오 비전, 카메라 갤리브레이 션 등에 필수
 - 예) 파노라마 영상 제작에서 봉합 점을 결정하는데 필수

그림 5-1 지역 특징으로 대응점 문제를 해결해서 제작한 파노라마 영상

- 에지 특징이나 영역 특징은 여러모로 부족
- 2000년대 초에 지역 특징으로 해결책 모색
 - 여러 실용 시스템 등장하여 컴퓨터 비전을 혁신함

• 영역특징과 지역특징의 차이

구분	지역특징(Local Features)	영역특징(Region Features)
범위	작은 패치, 점 단위	넓은 영역, 객체 단위
추출 방식	특징점 기반 (e.g., SIFT)	영역 제안 또는 Rol 기반
표현 방식	디스크립터 (벡터)	CNN 피처맵에서 추출된 텐서
용도	정합, 추적, 구조 추정	객체 인식, 분할, 탐지
분포	희소 (sparse)	조밀하거나 영역 중심

- 물체 추적에서 대응점 찾기
 - 예) 다중 물체 추적 챌린지 MOT-17-14-SDP 동영상 데이터셋 (https://motchallenge.net/data/MOT17)
 - 반복성_{repeatability}이 뛰어난 특징 필요

[그림 5-2] 대응점 찾기(MOT-17-14-SDP 동영상의 70번째와 83번째 영상)』

- 1980년대에는 에지 경계선에서 모퉁이_{corner} 찾는 연구 왕성
 - 특징점이 물체의 실제 모퉁이에 해당해야한다는 생각이 지배적
 - 1990년대 시들하다가 2000년대 초에 자취를 감춤. 지역 특징이라는 대안이 떠오름

- 지역 특징의 발상
 - 좁은 지역을 보고 특징점 여부 결정 ([그림 5-2] 녹색 박스)
 - 물체의 실제 모퉁이에 위치해야 한다는 완고한 생각을 버림
 - 반복성을 더 중요하게 취급하는 발상의 전환

- 지역 특징의 표현
 - (위치, 스케일, 방향, 특징 기술자)로 표현
 - 위치와 스케일은 검출 단계에서 알아냄 (5.2~5.4.1절)
 - 방향과 특징 기술자는 기술 단계에서 알아냄 (5.4.2절)

- 지역 특징의 조건
 - 반복성_{repeatability}
 - 불변성_{invariance}
 - 분별력_{discriminating power}
 - _ 지역성_{locality}
 - _ 적당한 양
 - 계산 효율

- 이들 조건은 상충 관계
 - 응용에 따라 적절히 조절할 필요

- 간단한 인지 실험
 - 왼쪽 영상의 a, b, c 중에 어느 것이 오른쪽 영상에서 찾기 쉬울까?
 - a가 가장 쉽고 c가 가장 어려움. 왜?

그림 5-3 대응점 찾기 인지 실험(MOT-17-14-SDP 동영상의 70번째와 83번째 영상)

- 모라벡의 설명
 - a는 여러 방향으로 색상 변화가 있어 찾기 쉬운데 c는 어느 방향으로도 미세한 변화만 있어 찾기 어려움
 - 여러 방향에 대해 색상 변화를 측정하는 제곱차의 합이라는 식 (5.1) 제안

$$S(v,u) = \sum_{v} \sum_{x} \left(f(y+v,x+u) - f(y,x) \right)^{2}$$
 (5.1)

• 예) 화소 위치 (y,x)가 (4,3)인 경우

$$S(v,u) = \sum_{3 \le y \le 5} \sum_{2 \le x \le 4} (f(y+v,x+u) - f(y,x))^{2}$$

모라벡 알고리즘

[예시 5-1] 제곱차의 합 계산

[그림 5-4(a)]에서 b로 표시된 점 (4,3)에 계산을 적용한다고 가정한다.

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	c ₀	0	0
2	0	0	0	1	0	0	0	0	0	0
3	0	0	0	1	1	0	0	0	0	0
4	0	0	0	b ₁	1	1	0	0	0	0
5	0	0	0	1	1	1	1	0	0	0
6	0	0	0	1	1	1	1	а 1	0	0
7	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0

		и				u				и	
	-1	0	1		-1	0	1		-1	0	1
-1		4									
ν 0	2	0	2	ν0	3	0	4	ν0	0	0	0
1	4	3	2	1	3	0	3	1	0	0	0
		а				b				С	

(a) 원래 영상

(b) 세 점에서 추출한 S 맵

그림 5-4 제곱차의 합계산

아래 식은 v는 0, u는 1인 경우인 S(0,1)을 계산하는 과정이다.

$$S(0,1) = \sum_{3 \le y \le 5} \sum_{2 \le x \le 4} (f(y,x+1) - f(y,x))^2 = 4$$

(v,u)의 나머지 칸을 계산해 3×3 맵에 채우면 점 b의 맵은 [그림 5-4(b)]의 가운데가된다.

모라벡 알고리즘

- 식 (5.1)의 의도
 - c는 모든 방향에서 변화가 없어 S 맵의 모든 요소가 0. 지역 특징으로 자격이 없음
 - b는 수평 방향만 변화가 있어 S 맵의 좌우 이웃만 큰 값. 지역 특징으로 부족
 - a는 모든 방향으로 변화가 있어 S 맵에서 8이웃 모두 큰 값. 지역 특징으로 훌륭함

$$C = \min(S(0,1), S(0,-1), S(1,0), S(-1,0))$$
 (5.2)

- 특징 가능성 값 측정
 - S 맵에서 상하좌우 네 이웃 화소의 최소값

- 모라벡은 지역 특징의 길을 열었지만 현실적이지 않음
 - 실제 세계의 영상은 식 (5.2)의 상하좌우 이웃만 보는 것으로 부족
 - 해리스의 확장

- 2차 모멘트 행렬을 통한 특징점 검출
 - 잡음에 대처하기 위해 가우시안 적용하여 가중치 제곱차의 합을 식(5.3)으로 정의

$$S(v,u) = \sum_{v} \sum_{x} G(y,x) (f(y+v,x+u) - f(y,x))^{2}$$
 (5.3)

- 테일러 확장으로 식 (5.4) 성립

$$f(y+v,x+u) \cong f(y,x) + vd_y(y,x) + ud_x(y,x)$$
 (5.4)

- 식 (5.4)를 식 (5.3)에 대입하면 식 (5.5)

$$S(v,u) \cong \sum_{v} \sum_{x} G(y,x) \left(vd_{y}(y,x) + ud_{x}(y,x)\right)^{2}$$
(5.5)

■ 식 (5.5)를 정리하면

$$S(v,u) \cong \sum_{y} \sum_{x} G(y,x) (vd_{y} + ud_{x})^{2} = \sum_{y} \sum_{x} G(y,x) (v^{2}d_{y}^{2} + 2vud_{y}d_{x} + u^{2}d_{x}^{2})$$

$$= \sum_{y} \sum_{x} G(y,x) (v - u) \begin{pmatrix} d_{y}^{2} & d_{y}d_{x} \\ d_{y}d_{x} & d_{x}^{2} \end{pmatrix} \begin{pmatrix} v \\ u \end{pmatrix}$$

$$= (v - u) \sum_{y} \sum_{x} G(y,x) \begin{pmatrix} d_{y}^{2} & d_{y}d_{x} \\ d_{y}d_{x} & d_{x}^{2} \end{pmatrix} \begin{pmatrix} v \\ u \end{pmatrix}$$

$$= (v - u) \begin{pmatrix} \sum_{y} \sum_{x} G(y,x)d_{y}^{2} & \sum_{y} \sum_{x} G(y,x)d_{y}d_{x} \\ \sum_{y} \sum_{x} G(y,x)d_{y}d_{x} & \sum_{y} \sum_{x} G(y,x)d_{x}^{2} \end{pmatrix} \begin{pmatrix} v \\ u \end{pmatrix}$$

■ 컨볼루션 연산자 ◈를 이용하여 쓰면

$$S(v,u) \cong (v \quad u) \begin{pmatrix} G \otimes d_y^2 & G \otimes d_y d_x \\ G \otimes d_y d_x & G \otimes d_x^2 \end{pmatrix} \begin{pmatrix} v \\ u \end{pmatrix} = \mathbf{u} \mathbf{A} \mathbf{u}^{\mathrm{T}}$$
 (5.6)

■ 2차 모멘트 행렬 A

$$\mathbf{A} = \begin{pmatrix} G \otimes d_y^2 & G \otimes d_y d_x \\ G \otimes d_y d_x & G \otimes d_x^2 \end{pmatrix}$$
 (5.7)

■ 2차 모멘트 행렬 A의 특성

- (*v*,*u*)는 실수 가능
- A는 화소 주위의 영상 구조를 표현하기 때문에 A만 분석하면 지역 특징 여부 알 수 있음((v,u)를 변화시키면서 맵을 생성할 필요 없음)

■ 해리스의 특징 가능성 계산

■ **A**의 고유값 λ₁과 λ₂

$$C = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2\right)^2 \qquad (5.8)$$

■ 식 (5.9)를 이용한 빠른 계산

$$C = (pq - r^2) - k(p + q)^2 \qquad (5.9)$$

$$\mathbf{A} = \begin{pmatrix} p & r \\ r & q \end{pmatrix}$$

표 5-1 [그림 5-4(a)]에서 세 점의 특징 가능성 측정

	а	b	С		
2차 모멘트 행렬	$\mathbf{A} = \begin{pmatrix} 0.52 & -0.2 \\ -0.2 & 0.53 \end{pmatrix}$	$\mathbf{A} = \begin{pmatrix} 0.08 & -0.08 \\ -0.08 & 0.8 \end{pmatrix}$	$\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$		
고윳값	$\lambda_1 = 0.72, \lambda_2 = 0.33$	$\lambda_1 = 0.81, \lambda_2 = 0.07$	$\lambda_1 = 0.0, \ \lambda_2 = 0.0$		
특징 가 능 성 값	C=0.1925	C=0.0237	C=0.0		

■ C 계산 예제와 비최대 억제 적용([프로그램 5-1]의 실행 결과)

```
[[ 0.
       0.
            -0.
                   -0.
                           -0.
                                  0.
                                         0.
                                                 0.
                                                              0.1
                                                        0.
[ 0.
                           0.02
      -0.
             0.02
                    0.04
                                  -0.
                                         0.
                                                 0.
                                                       0.
                                                              0.1
[ 0.
      -0.
           0.07
                    0.19
                           0.08
                                  -0.02
                                         -0.
                                                 0.
                                                       0.
                                                              0.1
           0.03
[ 0.
      -0.
                   0.17
                           0.09
                                  -0.06
                                         -0.02
                                                              0.]
                                                -0.
                                                       0.
[ 0.
                    0.02
                            0.05
      -0.
            -0.02
                                  -0.06
                                        -0.06
                                                -0.02
                                                       -0.
                                                              0.1
[ 0.
                    0.09
                            0.08
      -0.
            0.02
                                  0.05
                                         0.09
                                                 0.08
                                                       0.02
                                                             -0. ]
[ 0.
            0.07
                    0.19
                           0.09 0.02
                                         0.17
                                                0.19
                                                       0.04 -0.1
      -0.
[ 0.
           0.03
                    0.07
                            0.02
                                  -0.02
                                         0.03
                                                0.07
                                                       0.02
      -0.
                                                             -0.]
[ 0.
                   -0.
                                  -0.
                                                              0.]
       0.
            -0.
                           -0.
                                         -0.
                                                -0.
                                                       -0.
Γ0.
       0.
             0.
                    0.
                           0.
                                  0.
                                          0.
                                                 0.
                                                              0.11
                                                       0.
```


그림 5-5 특징 가능성 맵 C와 비최대 억제로 찾은 지역 특징점

프로그램 5-1 해리스 특징점 검출 구현하기 01 import cv2 as cv 02 import numpy as np 03 04 img=np.array([[0,0,0,0,0,0,0,0,0,0,0], 05 [0,0,0,0,0,0,0,0,0,0]06 [0,0,0,1,0,0,0,0,0,0]07 [0,0,0,1,1,0,0,0,0,0]80 [0,0,0,1,1,1,0,0,0,0]09 [0,0,0,1,1,1,1,0,0,0]10 [0,0,0,1,1,1,1,1,0,0],11 [0,0,0,0,0,0,0,0,0,0]12 [0,0,0,0,0,0,0,0,0,0]13 [0,0,0,0,0,0,0,0,0,0], dtype=np.float32) 14 15 ux=np.array([[-1,0,1]])uy=np.array([-1,0,1]).transpose() 16 k=cv.getGaussianKernel(3,1) 17 g=np.outer(k,k.transpose()) 18

19

```
dy=cv.filter2D(img,cv.CV_32F,uy)
20
    dx=cv.filter2D(img,cv.CV_32F,ux)
21
22
    dyy=dy*dy
23
    dxx=dx*dx
    dyx=dy*dx
24
    gdyy=cv.filter2D(dyy,cv.CV_32F,g)
25
    gdxx=cv.filter2D(dxx,cv.CV_32F,g)
26
    gdyx=cv.filter2D(dyx,cv.CV_32F,g)
27
    C = (qdyy*qdxx-qdyx*qdyx)-0.04*(qdyy+qdxx)*(qdyy+qdxx)
28
29
    for j in range(1,C.shape[0]-1):
30
                                             # 비최대 억제
        for i in range(1,C.shape[1]-1):
31
           if C[j,i]>0.1 and sum(sum(C[j,i]>C[j-1:j+2,i-1:i+2]))==8:
32
              img[j,i]=9
                                              # 특징점을 원본 영상에 9로 표시
33
34
```

```
np.set_printoptions(precision=2)
35
36
    print(dy) ①
    print(dx) ②
37
38
    print(dyy) 3
39
    print(dxx) @
    print(dyx) 5
40
    print(gdyy) 6
41
    print(gdxx) ⑦
42
    print(gdyx) 8
43
    print(C) 9
                                            # 특징 가능성 맵
44
45
    print(img) @
                                            # 특징점을 9로 표시한 원본 영상
46
47
    popping=np.zeros([160,160],np.uint8) # 화소 확인 가능하게 16배로 확대
    for j in range(0,160):
48
       for i in range(0,160):
49
           popping[j,i]=np.uint8((C[j//16,i//16]+0.06)*700)
50
51
    cv.imshow('Image Display2',popping) (1)
52
    cv.waitKey()
53
    cv.destroyAllWindows()
54
```

```
1
                                 0.
                0. 0.
                        0.
                             0.
                                 0.
                                     0.]
                                             0. 0.
                                                     0.
                                                        0. 0. 0. 0. 0.
                                                                           0. 0.1
      0. 0. 1.
                 1. 0.
                         0.
                             0.
                                 0.
                                     0.]
                                           [ 0. 0. 1.
                                                        0. -1.
                                                               0. 0.
                                                                       0.
                                                                               0.]
                 1. 1.
                         0.
                             0.
                                 0.
                                     0.1
                                           [ 0. 0. 1.
                                                        1.
                                                           -1. -1. 0. 0.
                 0.
                     1.
                         1.
                             0.
                                 0.
                                     0.1
                                           [ 0. 0. 1.
                                                        1.
      0. 0. 0. 0. 0. 1.
                            1.
                                 0.
                                     0.]
                                           [ 0.
                                                 0. 1.
                                                               0. -1. -1.
                                                        1.
                                                            0.
  0. 0. 0. -1. -1. -1. -1.
                                 0.
                             0.
                                     0.]
                                           [ 0. 0. 1.
                                                        1.
  0. 0. 0. -1. -1. -1. -1. -1.
                                    0.]
                                           [ 0. 0. 0.
                                                        0.
                                                            0. 0.
                                                                               0.1
                 0. 0. 0.
                             0.
                                 0.
                                    0.1
                                           [ 0. 0. 0. 0.
                                                            0. 0.
 [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
                                           [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
                                 4
                                                                  (5)
(3)
                                                                  [[ 0. 0. 0. 0.
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
                                 [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
                                                                                    0.
 [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
                                  [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
                                                                   [ 0. 0. 0. 0. 0. 0.
                                                                                            0.
                                                                                                0.
                                                                                                   0.
                                                                                                       0.1
                                                                   [ 0. 0. 0. 0. -1. 0. 0.
 [0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0.]
                                  [0. 0. 1. 0. 1. 0. 0. 0. 0. 0.]
                                                                                               0.
 [0. 0. 0. 0. 1. 1. 0. 0. 0. 0.]
                                                                   [ 0. 0. 0. 0. -1. -1. 0.
                                  [0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
                                                                   [ 0. 0. 0. 0. 0. -1. -1.
 [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]
                                  [0. 0. 1. 1. 0. 1. 1. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 1. 0. 0.]
                                  [0. 0. 1. 1. 0. 0. 1. 1. 0. 0.]
                                                                   0. 0. 0. 0. 0.
 [0. 0. 0. 1. 1. 1. 1. 0. 0. 0.]
                                  [0. 0. 1. 1. 0. 0. 0. 1. 1. 0.]
                                                                   [ 0. 0. 0. -1. -0. -0. -0. -0. -0.
 [0. 0. 0. 1. 1. 1. 1. 1. 0. 0.]
                                  [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
                                                                   [ 0. 0. 0. -0. -0. -0. -0. -0.
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
                                  [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
                                                                   [ 0. 0. 0. 0. 0. 0. 0.
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
                                 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
                                                                  [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
                                                   (7)
                                                    [[0.
[[0.
      0.
           0.15 0.25 0.15 0.
                              0.
                                   0.
                                       0.
                                            0.
                                                          0.
                                                               0.
                                                                    0.
                                                                         0.
                                                                             0.
                                                                                  0.
                                                                                       0.
                                                                                           0.
                                                                                                0.
                                       0.
                                            0.
                                                          0.08 0.12 0.15 0.12 0.08 0.
                                                                                                0.
 10.
      0.
           0.2 0.4 0.32 0.08 0.
                                   0.
                                                     10.
                                                                                       0.
 [0.
      0.
           0.2 0.53 0.6 0.32 0.08 0.
                                       0.
                                            0.
                                                     [0.
                                                         0.2 0.4 0.52 0.48 0.32 0.08 0.
                                                                                                0.
 [0.
           0.08 0.32 0.6 0.6 0.32 0.08 0.
                                            0.
                                                     [0.
                                                          0.27 0.65 0.8 0.73 0.6 0.32 0.08 0.
 [0.
               0.08 0.32 0.6 0.6 0.32 0.08 0.
                                                     [0.
                                                         0.27 0.73 0.8 0.6 0.6 0.6 0.32 0.08 0.
 [0.
           0.08 0.2 0.35 0.6 0.73 0.48 0.12 0.
                                                    [0.
                                                          0.27 0.73 0.73 0.35 0.32 0.6 0.6 0.32 0.15]
 [0.
     0.
           0.2 0.53 0.73 0.8 0.8 0.52 0.15 0.
                                                    [0.
                                                          0.2 0.53 0.53 0.2 0.08 0.32 0.53 0.4 0.251
 [0.
           0.2 0.53 0.73 0.73 0.65 0.4 0.12 0.
                                                     [0.
                                                          0.08 0.2 0.2 0.08 0.
                                                                                  0.08 0.2 0.2 0.15]
           0.08 0.2 0.27 0.27 0.27 0.2 0.08 0.
                                                     [0.
                                                                    0.
 [0.
                                                          0.
                                                               0.
                                                                        0.
                                                                             0.
                                                                                  0.
                                                                                       0.
                                                                                                0.
                         0.
                              0.
                                       0.
                                                11
                                                     10.
                                                          0.
                                                                    0.
                                                                        0.
                                                                             0.
                                                                                  0.
                                                                                       0.
                                                                                                0.
                                                                                                    ]]
 [0.
                                   0.
                                            0.
                                                               0.
```

```
(8)
[[ 0.
                            0.
                                  0.
                                        0.
[ 0.
         0.
               0.
                    -0.08 -0.12 -0.08
                                        0.
                                              0.
                                                    0.
                                                           0.
 [ 0.
                    -0.2 -0.4 -0.32 -0.08 0.
         0.
   0.
                    -0.2 -0.53 -0.6 -0.32 -0.08
 [ 0.
                    -0.08 -0.32 -0.6 -0.6 -0.32 -0.08
              -0.08 -0.12 -0.15 -0.32 -0.53 -0.4
                                                    -0.12
   0.
              -0.12 -0.2 -0.12 -0.08 -0.2
                                                    -0.08
                                             -0.2
  0.
         0.
              -0.08 -0.12 -0.08 0.
                                              0.
                                                    0.
   0.
         0.
               0.
                     0.
                            0.
                                  0.
                                        0.
                                              0.
                                                    0.
   0.
                     0.
                            0.
                                  0.
                                        0.
                                              0.
                                                    0.
         0.
               0.
                                                           0.
9
                                                                  (10)
                                                                                                      (11)
                                                                   [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[[ 0.
              -0.
                     -0.
                           -0.
                                  0.
                                        0.
                                              0.
                                                     0.
                                                           0.
                                                                    [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0.
        -0.
               0.02 0.04 0.02 -0.
                                                     0.
                                                           0.
        -0.
               0.07 0.19 0.08 -0.02 -0.
                                               0.
                                                     0.
                                                           0.
                                                                    [0. 0. 0. 9. 0. 0. 0. 0. 0. 0.]
                                                                                                        ■ - □
                                                                   [0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0.]
  0.
                                                           0.
        -0.
               0.03 0.17 0.09 -0.06 -0.02 -0.
                                                     0.
                                                                    [0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0.]
                     0.02 0.05 -0.06 -0.06 -0.02
        -0.
               -0.02
                                                                    [0. 0. 0. 1. 1. 1. 1. 0. 0. 0.]
  0.
               0.02 0.09 0.08 0.05 0.09 0.08
        -0.
                                                    0.02 -0.
                                                                    [0. 0. 0. 9. 1. 1. 1. 9. 0. 0.]
   0.
        -0.
               0.07 0.19 0.09 0.02 0.17
                                              0.19
                                                                    [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
   0.
        -0.
               0.03 0.07 0.02 -0.02 0.03
                                              0.07
                                                    0.02 -0.
                                                                    [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [ 0.
         0.
                     -0.
                           -0.
                                 -0.
                                       -0.
                                              -0.
                                                    -0.
                                                           0.
              -0.
                                        0.
                                                     0.
                                                                    [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
   0.
               0.
                     0.
                            0.
                                  0.
                                              0.
                                                           0.
```

- 해리스 특징점의 분석
 - 물체의 실제 모퉁이 뿐 아니라 블롭에서도 검출
 - 이후에는 모퉁이 대신 특징점_{feature point} 또는 관심점_{interest point}으로 부름
 - 이동과 회전에 불변
 - 스케일에는 불변 아님

그림 5-6 물체의 크기에 따라 마스크의 크기를 적절하게 정해야 하는 상황

스케일 불변한 지역특징

스케일 불변한 지역 특징

- 사람은 스케일 불변인 특징 사용
 - 거리에 상관없이 같은 물체를 같다고 인식
 - 거리에 따라 세세한 내용에만 차이가 있음
- 스케일 공간_{scale space} 이론은 컴퓨터 비전에 스케일 불변 가 능성 열어 줌

[알고리즘 5-1] 스케일 공간에서 특징점 검출

입력: 명암 영상f

출력: 스케일에 불변한 특징점 집합

- 1. 입력 영상 f로부터 다중 스케일 영상 \tilde{f} 를 구성한다.
- $2. \ \tilde{f}$ 에 적절한 미분 연산을 적용하여 다중 스케일 미분 영상 \tilde{f} '를 구한다.
- $3. \tilde{f}$ '에서 극점을 찾아 특징점으로 취한다.

스케일 불변한 지역 특징

- 다중 스케일 영상 구현하는 방법
 - 입력은 영상 한 장. 여러 거리에서 보았을 때 나타나는 현상을 흉내 내는 수밖에 없음
 - 가우시안 스무딩과 피라미드 방법

(a) 가우시안 스무딩 방법

(b) 피라미드 방법

그림 5-7 다중 스케일 영상을 구성하는 두 가지 방법[오일석2014]

스케일 불변한 지역 특징

• 가우시안 스무딩은 스케일을 연속값으로 조절할 수 있는 장점

그림 5-8 스케일 공간 (v, x, t)에 정의된 다중 스케일 영상[오일석2014]

• 스케일 공간의 미분 ([알고리즘 5-1]의 2행)은 정규 라플라시안 사용

라플라시안:
$$\nabla^2 f = d_{yy} + d_{xx}$$
 (5.10)

정규 라플라시안:
$$\nabla^2_{normal} f = \sigma^2 \mid d_{yy} + d_{xx} \mid$$
 (5.11)

SIFT

SIFT

- SIFT는 [알고리즘 5-1]을 구현하는 가장 성공적인 방법
 - 5.4.1절은 [알고리즘 5-1]로 SIFT 검출하는 과정
 - 5.4.2절은 특징점에서 기술자를 추출하는 과정
 - 5.5절은 특징점을 빠르게 매칭하는 방법

검출

- 1단계: 다중 스케일 영상 구축
 - 가우시안 스무딩과 피라미드 방법을 결합해 사용 ([그림 5-9])
- 2단계: 다중 스케일 영상에 미분 적용
 - 식 (5.11)의 정규 라플라시안 사용. 시간이 많이 걸려 유사한 DOG_{difference of Gaussian} 사용
 - DOG는 가우시안 영상은 이미 있고 이웃한 가우시안을 빼면 되기 때문에 획기적으로 빠름

검출 5.0797 4.0317 3.2000 2.5398 2.0159 1.6000 5.0797 다운샘플링 4.0317 3.2000 2.5398 2.0159 1.6000 (a) 다중 스케일 영상 (b) DOG

32

검출

- 3단계: 극점 검출
 - 3차원에서 비최대 억제 적용

그림 5-10 3차원 구조의 DOG 영상에서 특징점(키포인트) 검출

- 특징점은 (y, x, o, i)로 표현
 - (y,x)는 위치 표현. 옥타브 o와 DOG 번호 i는 스케일 표현

SIFT 기술자

- 특징점 주위를 살펴 풍부한 정보를 가진 기술자 추출
 - 불변성 달성이 매우 중요

- 기술자 추출 알고리즘(그림은 다음 슬라이드)
 - o와 i로 가장 가까운 가우시안을 결정하고 거기서 기술자 추출하여 스케일 불변성 달성
 - 기준 방향을 정하고 기준 방향을 중심으로 특징을 추출하여 회전 불변성 달성
 - 기술자 x를 단위 벡터로 바꿈으로써 조명 불변성 달성

SIFT 기술자

(a) 지배적인 방향의 윈도우

(b) 16×16 부분 영역 샘플링과 기술자 추출

그림 5-11 SIFT 특징점에서 기술자 추출

SIFT 기술자

```
SIFT 검출
프로그램 5-2
    import cv2 as cv
01
02
03
    img=cv.imread('mot_color70.jpg')
                                      # 영상 읽기
04
    gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
05
06
    sift=cv.SIFT_create()
    kp,des=sift.detectAndCompute(gray,None)
07
08
    gray=cv.drawKeypoints(gray,kp,None,flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_
09
    KEYPOINTS)
    cv.imshow('sift', gray)
10
11
    k=cv.waitKey()
12
13
    cv.destroyAllWindows()
```

SIFT 기술자

SIFT 기술자

- SIFT의 변종
 - 특징점 검출에 SURF, FAST, AGAST 등
 - 기술자 추출에 PCA-SIFT, GLOH, 모양 컨텍스트, 이진 기술자 등

매칭

매칭

- 매칭은 컴퓨터 비전의 다양한 문제에서 핵심 역할
 - 물체 인식
 - _ 물체 추적
 - 스테레오
 - 카메라 캘리브레이션

–

매칭 전략

- 매칭은 꽤 까다로운 문제
 - 두 영상 모두 특징점이 많아 후보 쌍이 아주 많음
 - 잡음이 섞인 기술자

매칭 전략

■ 문제의 이해

- 두 영상에서 추출한 기술자 집합 $A = \{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_m\}$ 와 $B = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}$ 에서 같은 물체의 같은 곳에서 추출된 \mathbf{a}_i 와 \mathbf{b}_i 쌍을 모두 찾는 문제
- 매칭을 적용하는 다양한 상황
 - 물체 인식에서는 물체의 모델 영상이 A고 장면 영상이 B
 - 물체 추적이나 스테레오는 두 영상이 동등한 입장
- 가장 쉬운 매칭 방법
 - mn개 쌍 각각에 대해 거리 계산하고 거리가 임계값보다 작은 쌍을 모두 취함
 - [그림 5-12]는 이런 순진한 방법의 한계를 보여줌

42

매칭 전략

■ 두 기술자의 거리 계산

■ 매칭 전략

$$d(\mathbf{a}, \mathbf{b}) = \sqrt{\sum_{k=1,d} (a_k - b_k)^2} = \|\mathbf{a} - \mathbf{b}\|$$
 (5.12)

- 고정 임계값: 식 (5.13)을 만족하는 모든 쌍을 매칭으로 간주
- 최근접 이웃: \mathbf{a}_i 는 가장 가까운 \mathbf{b}_j 를 찾고, \mathbf{a}_i 와 \mathbf{b}_j 가 식 (5.13)을 만족하면 매칭 쌍 $d\left(\mathbf{a}_i,\mathbf{b}_j\right) < T \qquad (5.13)$
- 최근접 이웃 거리 비율 : \mathbf{a}_i 는 가장 가까운 \mathbf{b}_j 와 두번째 가까운 \mathbf{b}_k 를 찾음. \mathbf{b}_j 와 \mathbf{b}_k 가 식 (5.14)를 만족하면 \mathbf{a}_i 와 \mathbf{b}_j 는 매칭 쌍. 세 가지 전략 중 가장 높은 성능

$$\frac{d\left(\mathbf{a}_{i},\mathbf{b}_{j}\right)}{d\left(\mathbf{a}_{i},\mathbf{b}_{k}\right)} < T \tag{5.14}$$

그림 5-13 세 가지 매칭 전략의 비교

매칭 성능 측정

- 성능 측정은 컴퓨터 비전에서 아주 중요
 - 알고리즘 개선이나 최선의 알고리즘을 선택하는 기준
 - 현장 투입 여부 결정하는 기준
- 정밀도와 재현률

그림 5-14 매칭의 네 가지 경우(같은 색이 진짜 매칭 쌍이고 ----은 매칭 알고리즘이 맺어준 쌍)

표 5-2 혼동 행렬

		정답(GT)	
		긍정	부정
예측	긍정	참 긍정(TP)	거짓 긍정(FP)
	부정	거짓 부정(FN)	참 부정(TN)

정밀도 =
$$\frac{TP}{TP + FP}$$
재현율 = $\frac{TP}{TP + FN}$

$$F1 = \frac{2 \times \text{정밀도} \times \text{재현율}}{\text{정밀도} + \text{재현율}}$$
(5.15)

정확율 =
$$\frac{TP + TN}{TP + TN + FP + FN}$$
 (5.16)

매칭 성능 측정

- ROC_{Receiver Operating Characteristic} 곡선과 AUC_{Area Under Curve}
 - 식 (5.14)에서 T를 작게 하면 거짓 긍정률_{FPR, False Positive Rate}은 작아짐
 - T를 크게 하면 거짓 긍정률이 커지는데 참 긍정률 $_{\mathsf{TPR},\;\mathsf{True\;Positive\;Rate}}$ 도 따라 커지

는 경향

참 긍정률 =
$$\frac{TP}{TP + FN}$$

거짓 긍정률 = $\frac{FP}{TN + FP}$ (5.17)

그림 5-15 ROC 곡선

- 속도라는 성능 지표
 - 실시간 요구되는 응용에서 양보할 수 없는 강한 조건
 - 컴퓨터 과학에서 개발한 빠른 자료 구조 도입해 사용
 - 이진 탐색 트리_{binary search tree}와 해싱_{hashing}

(a) 이진 탐색 트리

(b) 해싱

그림 5-16 빠른 탐색을 위한 자료 구조

- kd 트리
 - 특징점 매칭의 독특한 성질 때문에 이진 탐색 트리 그대로 적용 불 가능
 - 특징점은 여러 값으로 구성된 특징 벡터임
 - 같은 값이 아니라 최근접 이웃을 찾음
 - kd 트리는 이런 경우에 적합한 자료 구조
 - kd 트리 만들기 과정 [그림 5-17(a)]
 - kd 트리 탐색 [그림 5-17(b)]

■ [예시 5-2] d=2, m=10인 상황

- $X = \{\mathbf{x}_1 = (3,1), \mathbf{x}_2 = (2,3), \mathbf{x}_3 = (6,2), \mathbf{x}_4 = (4,4), \mathbf{x}_5 = (3,6), \mathbf{x}_6 = (8,5), \mathbf{x}_7 = (7,6.5), \mathbf{x}_8 = (5,8), \mathbf{x}_9 = (6,10), \mathbf{x}_{10} = (6,11)\}$
- 두 축 값은 (3,2,6,4,...,6)과 (1,3,2,4,...,11). 두 번째 축의 분산이 더 커서 두 번째 축 선택
- 두번째 축 (1,3,2,4,...,11) 정렬. 중앙값은 j=5, 즉 다섯 번째 기술자 \mathbf{x}_5 가 분할 기준
- \mathbf{x}_5 와 두 번째 축을 기준으로 나머지 9개 기술자를 분할하면 $X_{left} = \{\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_6\}$ 과 $X_{right} = \{\mathbf{x}_7, \mathbf{x}_8, \mathbf{x}_9, \mathbf{x}_{10}\}$
- 루트 노드에 \mathbf{x}_5 를 배치하고 2번 축을 기준으로 분할했다는 정보를 기록
- $\blacksquare X_{left}$ 와 X_{right} 각각에 대해 같은 과정을 재귀적으로 반복

■ [그림 5-17(b)]

■ 새로운 특징 벡터 $\mathbf{x} = (7,5.5)$ 가 입력되었다고 가정하고 최근접 이웃을 찾는 과정

- 위치 의존 해싱
 - 일반적인 해싱 [그림 5-16(b)]
 - 해시 함수로 O(1) 시간에 탐색 달성
 - 효율적인 해시 함수와 충돌 해결 기법이 개발되어 있음
 - 특징점 매칭에 사용하려면 개조 필요
 - 특징 벡터이고 최근접 이웃 찾아야 하기 때문
 - 충돌을 최소화하는 일반 해싱과 달리 비슷한 특징 벡터를 같은 칸에 담 아야 함
 - 위치 의존 해싱은 이런 조건을 만족하는 방법
- 빠른 매칭을 보장하는 라이브러리: FLANN과 FAISS

FLANN을 이용한 특징점 매칭

```
프로그램 5-3
               FLANN 라이브러리를 이용한 SIFT 매칭
    import cv2 as cv
01
02
    import numpy as np
    import time
03
04
05
    img1=cv.imread('mot_color70.jpg')[190:350,440:560] # 버스를 크롭하여 모델 영상으로 사용
06
    gray1=cv.cvtColor(img1,cv.COLOR_BGR2GRAY)
    img2=cv.imread('mot_color83.jpg')
07
                                                   장면 영상
80
    gray2=cv.cvtColor(img2,cv.COLOR_BGR2GRAY)
09
10
    sift=cv.SIFT create()
    kp1,des1=sift.detectAndCompute(gray1,None)
11
12
    kp2,des2=sift.detectAndCompute(gray2,None)
13
    print('특징점 개수:',len(kp1),len(kp2)) ①
14
```

FLANN을 이용한 특징점 매칭

```
start=time.time()
15
16
    flann_matcher=cv.DescriptorMatcher_create(cv.DescriptorMatcher_FLANNBASED)
    knn_match=flann_matcher.knnMatch(des1,des2,2)
17
18
                                      식 (5.14)의 최근접 이웃 거리 비율 적용
19
    T=0.7
    good_match=[]
20
    for nearest1,nearest2 in knn_match:
21
22
       if (nearest1.distance/nearest2.distance)<T:
          good_match.append(nearest1)
23
    print('매칭에 걸린 시간:',time.time()-start) ②
24
25
26
    img_match=np.empty((max(img1.shape[0],img2.shape[0]),img1.shape[1]+img2.
    shape[1],3),dtype=np.uint8)
    cv.drawMatches(img1,kp1,img2,kp2,good_match,img_match,flags=cv.
    DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
28
29
    cv.imshow('Good Matches', img_match)
30
31
    k=cv.waitKey()
32
    cv.destroyAllWindows()
```

FLANN을 이용한 특징점 매칭

, 아주 빠른 FLANN

특징점 개수: 231 4096 ①

매칭에 걸린 시간: 0.03124260902404785 ②

- SIFT 검출과 기술자 추출 이후에 해야 할 일
 - 물체 위치 찾기(아웃라이어 걸러내기)
 - 호모그래피_{homography}는 이런 일을 해줌

• 3차원 투영

- 3차원 공간에 있는 평면 P의 두 점 p1과 p2 그리고 카메라 A와 B가 있는 상황
- p1과 p2가 카메라의 2차원 영상 평면에 투영 변환됨

■ 투영 변환

- 3차원 점 p를 동차 좌표로 표현하면 (x,y,z,1). 투영 변환 행렬은 4*4
- p1과 p2가 같은 평면 상에 있다고 가정하고 z=0으로 간주하면 3*3 행렬로 표 현 가능
- 이런 제한된 상황에서 이루어지는 투영 변환을 평면 호모그래피(줄여 호모그 래피)라 부름

■ [그림 5-18]에는 세 개의 평면이 있음

- 물체가 놓인 평면 P, 카메라 A와 B의 영상 평면
- 어떤 평면의 점 a를 다른 평면의 점 b로 투영하는 변환 행렬을 H라 하면,

$$\mathbf{b}^{\mathrm{T}} = \begin{pmatrix} b_{x} \\ b_{y} \\ 1 \end{pmatrix} = \begin{pmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & 1 \end{pmatrix} \begin{pmatrix} a_{x} \\ a_{y} \\ 1 \end{pmatrix} = \mathbf{H}\mathbf{a}^{\mathrm{T}}$$
 (5.18)

풀어쓰면,
$$b_x = \frac{h_{00}a_x + h_{01}a_y + h_{02}}{h_{20}a_x + h_{21}a_y + 1}$$
, $b_y = \frac{h_{10}a_x + h_{11}a_y + h_{12}}{h_{20}a_x + h_{21}a_y + 1}$ (5.19)

■ 방정식을 풀어 H 구하기

- 매칭 쌍 (a₁,b₁), (a₂,b₂), (a₃,b₃), ...을 가지고 품
- 알아내야 할 값은 8개. 매칭 쌍 하나가 두 방정식을 제공하므로 최소 4개 매칭 쌍이면 됨
- 실제에서는 많은 매칭 쌍을 이용하여 최적의 H를 계산

■ 매칭 쌍을 가지고 H 추정

- 매칭 쌍 n개를 $(\mathbf{a}_1,\mathbf{b}_1)$, $(\mathbf{a}_2,\mathbf{b}_2)$, $(\mathbf{a}_3,\mathbf{b}_3)$, ..., $(\mathbf{a}_n,\mathbf{b}_n)$ 으로 표기하면 식 (5.20)이 성립
 - B는 \mathbf{b}_i 를 i번째 열에 배치한 3*n 행렬이고 A는 \mathbf{a}_i 를 i번째 열에 배치한 3*n 행렬

강인한 호모그래피 추정

■ 최소평균제곱오차 방법

- 식 (5.21)의 E가 최소인 H를 찾음
 - numpy의 lstsq 또는 scipy의 leastsq 함수 사용하여 풀 수 있음
 - 모든 매칭 쌍이 같은 자격으로 참여하므로 강인함 없음

$$E = \frac{1}{n} \sum_{i=1,n} \|\mathbf{H} \mathbf{a}_{i}^{\mathrm{T}} - \mathbf{b}_{i}\|_{2}^{2}$$
 (5.21)

- 식 (5.21)의 평균 대신 중앙값 사용하면 강인함 확보 가능
 - 아웃라이어는 중앙값 계산까지만 영향을 미치고 수렴 여부 결정에서는 빠짐

강인한 호모그래피 추정

• 더욱 강인한 RANSAC

[알고리즘 5-2] 호모그래피 추정을 위한 RANSAC

입력: 매칭 쌍 집합 $X=\{(\mathbf{a}_1,\mathbf{b}_1),(\mathbf{a}_2,\mathbf{b}_2),\cdots,(\mathbf{a}_n,\mathbf{b}_n)\}$, 반복 횟수 m, 임곗값 t, d, e

출력: 최적 호모그래피 Ĥ

- 1. h=[]
- 2. for j=1 to m
- 3. X에서 네 쌍을 랜덤하게 선택하고 식 (5.21)을 풀어 호모그래피 행렬 \mathbf{H} 를 추정한다.
- 4. 이들 네 쌍으로 *inlier* 집합을 초기화한다.
- 5. for (3행에서 선택한 네 쌍을 제외한 모든 쌍 <math>p에 대해)
- 6. if (p)가 허용 오차 t 이내로 **H**에 적합하면) p를 inlier에 삽입한다.
- 7. if (*inlier*가 *d*개 이상의 요소를 가지면)
- 8. inlier의 모든 요소를 가지고 호모그래피 행렬 H를 다시 추정한다.
- 9. if (8행에서 적합 오차가 e보다 작으면) **H**를 h에 삽입한다.
- 10. h에 있는 호모그래피 중에서 가장 좋은 것을 $\hat{\mathbf{H}}$ 로 취한다.

프로그램 5-4 RANSAC을 이용해 호모그래피 추정하기

```
01
    import cv2 as cv
02
    import numpy as np
03
    img1=cv.imread('mot_color70.jpg')[190:350,440:560] # 버스를 크롭하여 모델 영상으로 사용
04
    gray1=cv.cvtColor(img1,cv.COLOR_BGR2GRAY)
    img2=cv.imread('mot_color83.jpg')
06
                                                  # 장면 영상
07
    gray2=cv.cvtColor(img2,cv.COLOR_BGR2GRAY)
80
09
    sift=cv.SIFT create()
10
    kp1,des1=sift.detectAndCompute(gray1,None)
11
    kp2,des2=sift.detectAndCompute(gray2,None)
12
13
    flann_matcher=cv.DescriptorMatcher_create(cv.DescriptorMatcher_FLANNBASED)
    knn match=flann matcher.knnMatch(des1,des2,2) # 최근접 2개
14
15
   T=0.7
16
17 good_match=[]
18
   for nearest1, nearest2 in knn match:
       if (nearest1.distance/nearest2.distance)<T:
19
20
          good_match.append(nearest1)
21
    points1=np.float32([kp1[gm.queryIdx].pt for gm in good_match])
22
23
    points2=np.float32([kp2[gm.trainIdx].pt for gm in good match])
24
```

```
25
    H, =cv.findHomography(points1,points2,cv.RANSAC)
26
27
    h1,w1=img1.shape[0],img1.shape[1]
                                                       # 첫 번째 영상의 크기
    h2,w2=img2.shape[0],img2.shape[1]
28
                                                       # 두 번째 영상의 크기
29
30
    box1=np.float32([[0,0],[0,h1-1],[w1-1,h1-1],[w1-1,0]]).reshape(4,1,2)
31
    box2=cv.perspectiveTransform(box1,H)
32
33
    img2=cv.polylines(img2,[np.int32(box2)],True,(0,255,0),8)
34
35
    img_match=np.empty((max(h1,h2),w1+w2,3),dtype=np.uint8)
36
    cv.drawMatches(img1,kp1,img2,kp2,good_match,img_match,flags=cv.
    DrawMatchesFlags NOT DRAW SINGLE POINTS)
37
    cv.imshow('Matches and Homography',img match)
38
39
40
    k=cv.waitKey()
    cv.destroyAllWindows()
41
```

