Note: Some of these may already have been incorporated into earlier printings

Chapter 2:

Page 17, 2nd paragraph: Change every occurrence of 0.231 to 0.221

Answers to Selected Problems

Problem 3a. Answer is -13 (not -115)

Chapter 3:

Page 40, Table in middle of page:

First decimal constant should be 74 instead of 9

 $30 = 2^5 A - 2^1 A$ instead of $2^6 A - 2^1 A$.

Answers to Selected Problems

Answer given for Problem 3 is really for Problem 3e

Answer given for Problem 7 is really for Problem 7a

Answer given for Problem 8 is really for Problem 8c

Chapter 4:

Page 60: Replace Table 4-7 with the following table:

TABLE 4-7 Interpreting the Bitwise-XOR

а	b	a XOR b	Interpretation
0	0	$0 \rangle_{h}$	If control bit <i>a</i> is 0, bit <i>b</i> propagates through to the result
"	1	$1\int_{0}^{b}$	unchanged.
	0	$1 \Big)_{h'}$	If control bit a is 1, bit b propagates through to the result
1	1	0 \int_{0}^{D}	inverted.

Page 62: Replace Figure 4-5 with the following figure:

Bits 15 - 11	Bits 10 - 5	Bits 4 - 0	
Hours	Hours Minutes		
Bits 15 - 11	Bits 10 - 6	Bits 5 - 0	
?????	Hours	Minutes	
Bits 15 - 11	Bits 10 - 6	Bits 5 - 0	
00000	00000	Minutes	
15		0	
Minutes			
	Hours Bits 15 - 11 ????? Bits 15 - 11 00000	Hours Minutes Bits 15 - 11 Bits 10 - 6 ????? Hours Bits 15 - 11 Bits 10 - 6 00000 00000 15	

Page 63: Replace Figure 4-6 with the following figure:

Revised: October 5, 2014 Page 1 of 6

Note: Some of these may already have been incorporated into earlier printings

Page 77, problem 11, part I: Change !0(1) to !0

Page 78, problem 17: Change the uppercase A in bit position 7 to a lowercase a.

Page 79, problem 23: Change BYTE8 to uint_8.

Page 79, problem 25: The left-most number above the rectangles should be 31, not 1

Chapter 5:

Page 91, 1st paragraph.

Change the following sentence from:

The EPSR holds the exception number during exception processing.

To:

The IPSR holds the pre-empted exception number during exception processing.

Page 92: Replace Figure 5-12 with the following figure:

Processor Status Register (xPSR)

Page 93: Replace Figure 5-14 with the following figure:

Revised: October 5, 2014 Page 2 of 6

Note: Some of these may already have been incorporated into earlier printings

Page 99, problem 12, part (a): Change "whoose" to "whose".

Page 100, problem 19, part (d): Change "PSW" to "PSR"

Answers to Selected Problems

Problem 27. Answer is B & D (not just B)

Chapter 6:

Page 105, Table 6-1, last row: Change Notes to "<mem> may only be [R_n] or [R_n,#imm]"

Page 108: Replace Table 6-4 with the table shown below:

TABLE 6-4 Offset Addressing Options

Syntax	Memory Address	Example	Notes	
[R]	R	[R5]		
[R ,#constant]	R _n + constant	[R5,#100]		
[R,R]	R + R	[R4,R5]	Not available with LDRD or STRD. Only	
[R ,R ,LSL #constant]	R _n + (R _m << constant)	[R4,R5,LSL #3]	register R _n may be used with these instructions.	

Note: "LDR RO,data" is a special PC-relative case of [R , #constant]

Page 116, end of section 6.8.3:

Replace the #20 constant in the BIC instruction by #x20 (hex), so that it reads "BIC R0,R0,#x20".

Page 121, problem 6c:

The operands in the MLS instruction should be separated by commas, not periods.

Page 121, problem 7:

Add the following declaration: uint16 *pu16;

Revised: October 5, 2014 Page 3 of 6

Note: Some of these may already have been incorporated into earlier printings

Page 122, problems 7w and 7x:

Change p16 to pu16.

Chapter 7:

Page 125: Replace Table 7-2 with ...

TABLE 7-2 ARM Condition Codes

Code	Meaning	Requirements	
EQ	EQ ual	Z = 1	
NE	Not Equal	Z = 0	
HS	Unsigned ≥ ("Higher than or Same")	C = 1	
LO	Unsigned < (" LO wer")	C = 0	
HI	Unsigned > ("HIgher")	C = 1 && Z = 0	
LS	Unsigned ≤ ("Lower or Same")	C = 0 Z = 1	
GE	Signed ≥ (" G reater than or E qual")	N = V	
LT	Signed < ("Less Than")	N≠V	
GT	Signed > ("Greater Than")	Z = 0 && N = V	
LE	Signed ≤ ("Less than or Equal")	Z = 1 N ≠ V	
CS	Carry Set (synonym for HS)	C = 1	
CC	Carry Clear (synonym for LO)	C = 0	
MI	MInus/negative	N = 1	
PL	PL us - positive or zero (non-negative)	N = 0	
VS	o V erflow S et	V = 1	
VC	o V erflow C lear	V = 0	
AL	ALways (unconditional)	(Rarely used)	

Page 125, first paragraph, last sentence: Replace "HI and LS" by "HS, LO, HI and LS".

Page 126, remove third paragraph that begins, "You may have noticed..."

Page 126, fourth paragraph, first sentence: Replace "7-3 and 7-4" by "7-3".

Page 126, Figure 7-3: Change "BG L1; NO!" to "BGT L!; NO!"

Page 127: Remove Figure 7-4.

Page 138, problem 6 (b): Change "void f2(char)" to "void f2(signed char)".

Page 139, problem 6 (I): Change "void swap(long *p1, *p2)" to "void swap(long *p1, long *p2)".

Answers to Selected Problems

Problem 2a. The correct solution is:

LDR R0,x LDR R1,y CMP R1,R0 BLS Else LDR R0,=6 STR R0,z

Revised: October 5, 2014

Note: Some of these may already have been incorporated into earlier printings

B EndIf

Else: STR R0,z

EndIf:

Chapter 8:

Page 142, section 8.1.3, numbered paragraphs 1 and 2: Change all occurences of "PSW" to "PSR".

Page 143, first paragraph, last sentence: Change "PSW" to "PSR".

Page 151, Figure 8-11: Change "BZ" to "BEQ"

Page 152, Figure 8-12: Change "BZ" to "BEQ"

Page 157, Problem 10, part (e): Change "PSW" to "PSR"

Chapter 11:

Page 208, problem 11, the numbered point that appears just before the return statement should be labeled "6", not "5".

Problems at end of chapter:

3d: Change to "may cause the same variable to be initialized more than once during execution?"

3f: Change to "destroy objects invisibly during program execution?"

Chapter 12:

Replace Table 12-2 with the following:

TABLE 12–2 When "x = 0" becomes a Critical Section

Architecture	Operand (x)	8-bit CPU	16-bit CPU	32-bit CPU
Load/Store Architecture: The only instructions that can	8 bits			
reference memory are Load and	16 bits	*		
Store.	32 bits	Х	*	
E.g., RISC processors, such as ARM and MIPS	64 bits	х	х	*
Other Architectures: Instructions	8 bits			
like Add and Subtract may have memory operands.	16 bits	*		
E.g., CISC processors, such as	32 bits	Х	*	
Intel x86.	64 bits	Х	Х	*

^{*}The table assumes that a single instruction can store a memory operand no larger than the

Revised: October 5, 2014 Page 5 of 6

Note: Some of these may already have been incorporated into earlier printings

word size of the processor. However, some processors have instructions that can store a double-length operand (e.g., STRD).

Page 220, Figure 12-12, replace "LORD" in the first column by "LDRD".

Revised: October 5, 2014 Page 6 of 6