Quantum programming in Python

https://github.com/groundhogstate/quantum-pycon

Why?

• "Quantum advantage"

https://quantumalgorithmzoo.org/

Security implications and opportunities

RSA compromised!

Fundamental research

E.g. quantum chemistry & condensed matter

• Modern devices are "noisy, intermediate-scale" quantum computers

The hunt is on for near-term commercial advantage

Where?

Quantum Hardware

Yes (But not for you)

Yes! (Q Experience)

Yes! (Quantum Cloud Service)

Yes (For the chosen ones)

Yes! (Starship Engine)

Open Source Software

https://github.com/quantumlib/Cirq

https://github.com/Qiskit

<u>https://github.com/rigetti</u>

Nope!

https://github.com/xanaduai

https://github.com/Microsoft/Quantum

What?

State: Qubits

Programs: Circuits

Operations: Gates

Francois Imper

Measurement

tps://catappy.com

Get entangled!

@groundhogstate 🌒 🏏

PennyLane documentation https://pennylane.readthedocs.io/

An Introduction to quantum computing - Kaye, Laflamme & Mosca https://bit.ly/2LPG57a

Quantum Machine Learning - Peter Wittek @ University of Toronto https://www.edx.org/course/quantum-machine-learning-2

https://github.com/groundhogstate/quantum-pycon