TT					1		4
н	Λ	m	Δτ	ATI	\mathbf{or}	~	Д.
	u	111	\mathbf{c}	/V L		•	т

Questions No.	1	2	3	4	Total
Score	20%	20%	30%	30%	100%

Q4.1 Water flows through the hose with a velocity of 2m/s. Determine the force **F** needed to keep the circular plate moving to the left at 2m/s.

Q4.2 Oil flows through the 100-mm-diameter pipe with a velocity of 5m/s. If the pressure in the pipe at A and B is 80kPa, determine the x and y components of force the flow exerts on the elbow. The flow occurs in the horizontal plane. Take $\rho_0 = 900kg/m^3$.

Q4.3 The barge is being loaded with an industrial waste liquid having a density of $1200 \ kg/m^3$. Determine the maximum force in the tie rope needed to hold the barge stationary. The waste can enter the barge at any point within the 10-m region. Also, what is the speed of the waste exiting the pipe at A when this occurs? The pipe has a diameter of 100mm.

Q4.4 Water flows into the tank at the rate of $0.05m^3/s$ from the 100-mm-diameter pipe. If the tank is 500mm on each side, determine the compression in each of the four springs that support its corners when the water reaches a depth of h = 1m. Each spring has a stiffness of k = 8kN/m. When empty, the tank compresses each spring 30mm.

