Inverse Laplace Transform Part 1

Saturday, June 14, 2025 10:36 PM

Author: Kuman Anwag

· Inverse laplace transform is the method to find the time domain function ILt) whenever we are given the frequency domain function F(s).

1. Introduction of Involve Japlace Transform (ILT):

$$f(t) = \frac{1}{2\pi j} \int_{\nabla -j\omega}^{\nabla +j\omega} f(s) \cdot e^{st} ds$$

· Since, the above expression is bit complicated so we will avoid using this expression, insted we will use method of partial Proutons and some proporties to obtain time domain signal f(t).

2. Examples:

> Skample 01: Find the ILT of FLS) = 1
(5+3)2 Let y (+) = t, then

 $L[y(t)] = \frac{1}{S^2}$ [: Using formula] Using frequency shifting property of LT:

$$L\left[e^{3t}, y(t)\right] = \frac{1}{(s+3)^{2}} = F(s)$$

$$L^{-1} \left[L\left[e^{-3t}, y(t)\right]\right] = L^{-1}\left[F(s)\right]$$

e-3t, y(t) = f(t)

 $f(t) = e^{-3t}$. t

$$\frac{2}{(5+1)(5+2)} = \frac{f}{(5+1)} + \frac{B}{(5+2)}$$

Solution: Using partial faction decomposition:

-> Multiply both sides by (S+1) and set ce+1)=0

Using cover-up method:

A = 2

$$\frac{2}{(S+1)(S+2)} \cdot (S+1) = A + B \cdot (S+2)$$

$$A = \frac{2}{S+2} = \frac{2}{(-1)+2} = \frac{2}{1} \cdot (S+1) = 0 \Rightarrow S=-1$$

 $\frac{2}{(S+1)(S+2)}$. $\frac{2}{(S+1)}$. $\frac{A}{(S+1)}$. $\frac{2}{(S+1)}$

$$B = \frac{2}{5+1} = \frac{2}{(-2)+1} \qquad [:: s+2=0 \Rightarrow s=-2]$$

$$B = -2$$

 $F(s) = \frac{2}{(s+1)(s+1)} = \frac{2}{s+1} - \frac{2}{s+2}$

There fore,

$$F(s) = \frac{2}{S+1} - \frac{2}{S+2}$$

Applying the frequency shift proporty of LT:

 $L\left[e^{t}ult\right]^{2} \frac{1}{St1} \Rightarrow L\left[2e^{t}ult\right]^{2} \frac{2}{St1}$

.1. L[2efbult)]-L[2e^{2t}ult)]: 2 - 2 = F(s)

Taking Inviver LT both sides, we get:

$$2e^{-t}u(t) - 2e^{-2t}u(t) = L^{-1}[F(s)] = f(t)$$

3. References!

1. Neso Academy

 $f(t) = 2u(t) \left[e^{-t} - e^{-2t} \right]$

f(t)= 2 e^{-t}[1-e^{-t}]