MQE: Economic Inference from Data: Module 2: Fixed Effects

Claire Duquennois

6/9/2020

Module 2: Fixed Effects

- Data Structures
- Fixed Effects
- -A simulation
- -Fixed effects as demeaned data
- -Thinking about variation
- -Example: Crime and Unemployment

Controlling for unobservables

We saw with AGG(2006) that even with many covariates, unobservables are a problem.

Certain types of data allow us to control for more of these unobservables by using fixed effects.

Example:

$$Income_i = \beta_0 + \beta_1 Schooling_i + \epsilon$$

 β_1 cannot be interpreted as causal: big OVB problems, even with lots of control variables. Unlikely to have good measures of 'ability', 'enthusiasm', 'grit'...

What if I can control for unchanging individual characteristics?

Data Structures: Cross-Section

Individual	Income	Schooling	Female
1 2	22000 57000	12 16	1 1
 N	 15000	12	0

Each individual is observed once.

Data Structures: Panel Data

Individual	Income	Schooling	Female	Year
1	22000	12	1	2001
1	23000	12	1	2002
2	57000	16	1	2001
2	63000	17	1	2002
N	15000	12	0	2001
N	13000	12	0	2002

Each individual is observed multiple times.

Data Structures: Panel Data Subscripts

Unique observations must be identified by both the individual and time dimensions. . . notice the new subscripts:

$$Income_{it} = \beta_0 + \beta_1 Schooling_{it} + \epsilon.$$

Data Structures: Panel Data

Panel Data can be

- -balanced: same number of observations for each unit
- -unbalanced: some units are observed more often then others (probably good to look into why)

Review: Indicator (Dummy) Variables

If I have multiple Female observation and multiple non-female observations I can control for the effect of being female on wages:

$$Income_{it} = \beta_0 + \beta_1 Schooling_{it} + \beta_2 Female_i + \epsilon.$$

Fixed Effects as Individual Indicator Variables

Indiv	Income	School	Female	Year	Indiv1	Indiv2		IndivN
1	22000	12	1	2007	1	0	0	0
1	23000	12	1	2008	1	0	0	0
2	57000	16	1	2007	0	1	0	0
2	63000	17	1	2008	0	1	0	0
N	15000	12	0	2007	0	0	0	1
N	13000	12	0	2008	0	0	0	1

Fixed Effects as Individual Indicator Variables

I can estimate:

$$\mathit{Inc}_{it} = \beta_0 + \beta_1 \mathit{School}_{it} + \beta_2 \mathit{Fem}_i + \beta_{a1} \mathit{Ind1}_i + \beta_{a2} \mathit{Ind2}_i + \ldots + \beta_{aN-1} \mathit{Ind}(N-1)_i + \epsilon.$$

What do the β_{ak} coefficients tell me?

Also:

- -Why do the *IndN* indicators only have an *i* subscript?
- -What is the implied assumption if *Fem* only has an *i* subscript?
- -Why are there only (N-1) individual dummies?

Fixed Effects as Individual Indicator Variables

What will these individual controls control for?

- $-\beta_{a1}$ will control for the effect of being individual 1 on income that is not explained by that person's gender or schooling.
- -Any **time invariant** characteristic that affects individual 1's income, such as ability, grit, enthusiasm. . . will be controlled for by adding this individual dummy variable.
- -These controls are known as individual **fixed effects**.

For notational convenience:

$$Income_{it} = \beta_0 + \beta_1 Schooling_{it} + \beta_2 Female_i + \gamma_i + \epsilon.$$

Fixed Effects

With my panel data, what else can I control for?

$$Income_{it} = \beta_0 + \beta_1 Schooling_{it} + \beta_2 Female_i + \gamma_i + \tau_t + \epsilon.$$

- -What is τ_t ?
- -What is this estimation equivalent to?

You are a principle of a small school composed of four classrooms. You have just implemented a new option available to teachers for students to spend some small group reading time with a para-educator. You would like to know how this reading time is affecting reading scores.

You have data for ten students in each class that tells you:

- -the class the student is in
- -whether they participated in small group reading
- -their reading score.

Generating Simulated Data

I will work with a simulated dataset to show how the use of fixed effects can help us recover the true treatment effect.

I start by loading the dplyr package and "setting the seed":

```
#install.packages("dplyr")
library(dplyr)

## Warning: package 'dplyr' was built under R version 3.6.3

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
set.seed(1999)
```

I generate a vector of class identifiers and a random error term.

```
class<-c(1,2,3,4)
scores<-as.data.frame(class)
scores<-rbind(scores,scores,scores,scores,scores,scores,scores,scores,scores,scores)
scores$error<-rnorm(40, mean=0, sd=5)
#note: if you are not working in markdown you would just write head(scores)
knitr::kable(head(scores))</pre>
```

class	error
1 2 3 4 1 2	3.6633624 -0.1891486 6.0150457 7.3490101 0.6684515 2.5991362

I simulate some selection into treatment. The probability of getting treated is

-0.8 for students in classrooms 3 and 4

-0.2 in classrooms 1 and 2.

```
scores$treat1<-rbinom(40,1,0.2)
scores$treat2<-rbinom(40,1,0.8)
scores$treat[scores$class%in%c(1,2)]<-scores$treat1[scores$class%in%c(1,2)]
scores$treat[scores$class%in%c(3,4)]<-scores$treat2[scores$class%in%c(3,4)]</pre>
knitr::kable(head(scores))
```

class	error	treat1		treat2		treat	
1	3.6633624		0		1		0
2	-0.1891486		0		1		0
3	6.0150457		0		1		1
4	7.3490101		1		0		0
1	0.6684515		0		1		0
2	2.5991362		0		1		0
			_		_		_

I drop unneeded variables and generate a dummy variable for each classroom

```
scores<->%select(class,error,treat)
scores <- fastDummies::dummy_cols(scores, select_columns = "class")
knitr::kable(head(scores))</pre>
```

class	error	treat	class_1	class_2	class_3	class_4	
1	3.6633624	()	1	0	0	(
2	-0.1891486	(0	0	1	0	(
3	6.0150457		1	0	0	1	(
4	7.3490101		0	0	0	0	
1	0.6684515	(0	1	0	0	(
2	2.5991362		0	0	1	0	(