UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION, DECEMBER 2001

Fourth Year - Engineering Science

AER506F - SPACECRAFT DYNAMICS AND CONTROL I

Exam Type: X

Examiner - T D Barfoot

All questions are of equal value. Mark breakdown indicated in left margin. Your mark will be based on your best 5 (of 6) questions.

1. Short answer

- 2 (a) Describe qualitatively a sequence of thruster burns that would enable a satellite to get from a circular parking orbit about Earth to a circular parking orbit about Mars. Discuss how all the different intermediate orbits involved would fit together (with a diagram).
- 3 (b) You would like to alter a satellite's circular orbit such that the radius is larger. Which orbital transfer method is more efficient: the Hohmann transfer or the bielliptic transfer? Answer in terms of both the fuel and time required to carry out the transfer. Discuss.
- 3 (c) A satellite is intended to be geostationary over longitude 110 degrees West, but at initial orbit insertion it is in fact in a slightly elliptical orbit with perigee 1% too low, apogee 1% too high, and $\lambda_{long} = 70$ degrees West. Suggest a set of maneuvers that will raise the perigee and lower the apogee both to the geostationary radius and drift the satellite to its intended longitude.
- 2 (d) Two satellites orbit the same planet in coplanar orbits. Their major diameters, a, are equal but their major axes are at an angle of 60 degrees. Their eccentricities are related, $e_1 = 2e_2$. For each intersection point of the two orbits find the ratio of the speed of one satellite to the other at the point. Explain.

- 5. An axisymmetric spacecraft has the shape of a solid circular cylinder (radius r, length ℓ) and has a uniform mass distribution. It orbits the Earth in a geostationary circular orbit with its axis of symmetry nominally aligned with the pitch axis.
- (a) If $\tau = \sqrt{\frac{7}{3}}\ell$, what range(s) of absolute angular velocity, ν , will ensure attitude stability in the presence of the gravity-gradient torque? Does the answer change when internal energy dissipation is considered?
- 3 (b) What are the frequencies of the roll-yaw modes (nondimensionalized by the orbital frequency, ω_0) when $\hat{\nu} = -1$?
 - (c) How small could the radius be made to still have a stable spin when $\hat{\nu} = -1$ and there is energy dissipation in the cylinder?
 - 6. Consider a gyrostat consisting of a carrier, \mathcal{R} which is nominally spinning about the b_2 axis at a rate $\nu = -\omega_0$, and an axisymmetric rotor, \mathcal{W} , which is spinning at a rate of ω_s with respect to the carrier (also about the b_2 axis). The gyrostat is placed in a circular orbit about the Earth with the b_2 axis nominally aligned with the pitch axis. The principal moments of inertia of the combined gyrostat are

$$I_1 = 1000 \text{ kg.m}^2$$
 $I_2 = 1100 \text{ kg.m}^2$ $I_3 = 200 \text{ kg.m}^2$

The moment of inertia of the rotor about its spin axis is $I_s = 50 \text{ kg.m}^2$.

(a) Show that in the presence of the gravity-gradient torque, the conditions for roll-yaw stability become

$$p > 0$$
, $q > 0$, $p^2 - 4q > 0$

where

5

2

6

$$p \stackrel{\triangle}{=} 1 + 3k_1 + \hat{k}_1 \hat{k}_3 \qquad \hat{k}_1 \stackrel{\triangle}{=} k_1 + \frac{\omega_2}{\nu} \frac{I_1}{I_1} \qquad k_1 \stackrel{\triangle}{=} \frac{I_2 - I_3}{I_1} q \stackrel{\triangle}{=} \hat{k}_3 (\hat{k}_1 + 3k_1) \qquad \hat{k}_3 \stackrel{\triangle}{=} k_3 + \frac{\omega_2}{\nu} \frac{I_2}{I_3} \qquad k_3 \stackrel{\triangle}{=} \frac{I_2 - I_1}{I_3}$$

- 2 (b) Comment on the case that $\frac{\omega_z}{\nu} = 0$. Will this motion be stable (i.e., will the same side of the carrier always face Earth)?
- 2 (c) Comment on the case when $\frac{\omega_4}{\nu} = -100$. Will this motion be stable (i.e., will the same side of the carrier always face Earth)?