Project Synopsis/Proposal Guidelines

1. Abstract

- With the advancement of technology especially in Robotics it is very much possible to replace humans with robots for fighting the fire. This would improve the efficiency of firefighters and would also prevent them from risking human lives.
- According to National Crime Records Bureau (NCRB), it is estimated that more than 1.2 lakh deaths have been caused because of fire accidents in India from 2010-2014. Even though there are a lot of precautions taken for Fire accidents, these natural/man-made disasters do occur now and then. In the event of a fire breakout, to rescue people and to put out the fire we are forced to use human resources which are not safe.

2. Introduction of the Project:

- We are going to build a Fire Fighting Robot using Arduino, which will automatically sense the fire and start the water pump to extinguish fire breakouts.
- The main aim of this project is to develop a fire extinguishing robot which detects the fire location and extinguish fire by using sprinklers on triggering the pump.
- Fire causes tremendous damage and loss of human life and property. Recently, in order to cope with such catastrophic accidents, research on fire-fighting robots has been carried out in many countries. That why we have chosen this topic.
- It is sometimes impossible for fire-fighting personnel to access the site of a fire because of explosive materials, smoke, and high temperatures. In such environments, fire-fighting robots can be useful.

3. Objective:

- The main objective of this project is to design and implement the Robotic firefighting systems at low cost.
- Robotic firefighting systems include analyzing and locating fires, conducting search and rescue, monitoring hazardous variables and the primary task of fire control and suppression.
- Our Fire Fighting Robot will automatically detect the fire with the help of sensors.
- Once it detects the fire breakout location, it navigates itself accordingly to reach the fire source and extinguishes the fire by using built-in fire extinguishing system.

4. Scope:

- It is sometimes impossible for fire-fighting personnel to access the site of a fire because of explosive materials, smoke, and high temperatures. In such environments, fire-fighting robots can be useful.
- The advent of IOT with revolutionizes the information system and computing technologies.
- For future enhancements additional features can be integrated onto the system namely:
 - Obstacle avoidance
 - Image processing technique to analyze fire source in accordance with flame sensors.
 - Using cloud technology for wireless communication module.

5. Study of Existing System:

No.	Existing	Features	Disadvantages	Limitations/Gaps
1.	system/website/software		Human control	This will not be
1.				
	Using Ultrasonic	developed a fire extinguisher	using Bluetooth	able to detect flame
	Camera and Wi-Fi	robot that connected to the	and Wi-Fi	and smoke on its
	Network	Smartphone via Wi-Fi networks	networks.	own without any
		so that it can be controlled at a		human
		certain distance.		intervention.
2.	An autonomous fire	When the fire is detected and the	It has only two	It is difficult to
	fighting robot with	robot is at a distance near to fire,	wheels for the	navigate the robot
	multisensor fire	a centrifugal pump is used to	movement of	to the fire breakout
	detection using PID	throw water for extinguishment	the robot.	place with two
	controller	purpose. A water spreader is used		wheels only.
		for effective extinguishing. It is		
		seen that velocity of water is		
		greatly reduced due to the use of		
		water spreader. Two sensors:		
		LM35 and Arduino Flame		
		Sensors are used to detect the fire		
		and distances on its way towards		
		fire.		

3.	Android controlled	This has four integrated	It becomes	Difficulty in
	Integrated Semi -	ultrasonic sensor and infra red	heavy as it	rotation of the
	Autonomous Fire	sensor forms the location system,	consists many	robot.
	Fighting Mobile Robot	LDR and thermistor forms the	types of	
		detection system, water container	different	
		and sprinkler forms the	sensors.	
		extinguishing system and the		
		communication system is by the		
		blue-tooth module through which		
		the locomotion of robot are also		
		controlled.		

6. Project Description:

- Fire accidents are very common and sometimes it becomes very hard for a fireman to protect someone's life.
- This project is based on detecting the fire and extinguishing it in real-time. Firefighting robots with some artificial intelligence can be very helpful to overcome such situation without risking human lives.
- Robotic firefighting systems include analyzing and locating fires, conducting search and rescue, monitoring hazardous variables and the primary task of fire control and suppression.
- Our Fire Fighting Robot will automatically detect the fire with the help of sensors.
- Once it detects the fire breakout location, it navigates itself accordingly to reach the fire source and extinguishes the fire by using built-in fire extinguishing system.
- The key feature of our system is to provide surveillance of fire so that major fire accidents can be prevented and loss of human lives gets minimized.

7. Resources and Limitations:

REQUIREMENT:

SOFTWARE REQUIREMENT:

> Arduino IDE Software:

- Arduino is open-source software. Arduino are able to read inputs light on a sensor, a finger on a button, activating a motor, turning on an LED, etc.
- The IDE is written in Java and based on the Processing development environment.

HARDWARE REQUIREMENT:

- Arduino UNO
- L293D Motor Driver
- IR Flame Sensor
- BO Motor
- Wheels
- Servo Motor
- Jumper Wires
- Submersible Water Pump
- Mini Breadboard

LIMITATIONS:

- It is not used to put out large fires.
- No remote control for the robot movement
- No monitoring system for the robot.
- It cannot leave outside for long period of time due to battery life.
- It cannot work beyond the limit.

8. Conclusion:

Our project aids to share out the burden of fire fighters in firefighting task as our robot will be able to prevent massive fire breakout. Our project aims to build a real time firefighting robot which moves in a constant speed, identify the fire and then extinguish it with the help of pumping mechanism. The detection and extinguishing was done with the help basic hardware components attached with the robot. Firstly, IR Flame sensors are used for the detection of fire. Secondly, BO Motors and Rubber wheels are used to navigate the robot to reach the fireplace. Finally, the robot extinguishes the fire with the help of submersible water pump and servo motors.

9. Bibliography:

- http://www.iosrjournals.org/iosr-jce/papers/Vol18-issue6/Version-5/U180605113119.pdf
- https://www.researchgate.net/publication/317610964_Fire_Extinguishing_Robot
- https://www.researchgate.net/publication/332415751_F2R_AN_ARDRUINO_BASED_FIRE FIGHTING_ROBOT
- Tawfiqur Rakib, M. A. Rashid Sarkar, "Design and fabrication of an autonomous firefighting robot with multi sensor fire detection using PID controller", ICIEV Volumn 23 issue-1 JUNE 2016.
- Saravanan P. ,Soni Ishawarya Android controlled intergrated semi autonomous fire fighting robot.Ineternational journal of innovative science Engg. and Technology 2015.
- S. Jakthi Priyanka, R. Sangeetha Android controlled firefighting robot Ineternational journal of innovative science Engg. and Technology, Volumn 3, 2017.

Annexure-l

Fire Extinguishing Robot A Minor Project Synopsis Submitted to

Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal Towards Partial Fulfillment for the Award of

Bachelor of Engineering (Computer Science Engineering)

Under the Supervision of Prof. Narendra Pal Singh Rathore

Submitted By

- 1. Durgesh Sharma (0827CS181072)
- 2. Harshala Gaikwad (0827CS181072)
- 3. Kartavya Verma (0827CS181103)

Department of Compute Science Engineering Acropolis Institute of Technology & Research, Indore Jan-June 2021