Probability of Winning

7 distinct numbers are randomly distributed to players numbered 1 through 7. Whenever two players compare their numbers, the one with the higher one is declared the winner. Initially, players 1 and 2 compare their numbers; the winner then compares her number with that of player 3, and so on.

Let X denote the number of times player 2 is a winner. Find $\mathsf{P}(X=5)$.

Answer =	Answer = number (3 significant figures)	

Save & Grade

Save only

New variant

Solution

Player 1,3,4,5,6

(an bowle any number among $\{1,2,\dots,5\}$)

= $\{1,2,\dots,5\}$ = $\{1,2,\dots,5\}$ = $\{1,2,\dots,5\}$ = $\{1,2,\dots,5\}$ = $\{1,2,\dots,5\}$ = $\{1,2,\dots,5\}$

Compute Mean

Let X be a random variable taking only the values 0,1,2,3,4 with probabilities given by P(X=0)=5c, P(X=1)=4c, P(X=2)=4c, P(X=3)=3c, P(X=4)=5c for some constant c>0. Find $\mathrm{E}(X)$.

Answer = number (3 significant figures)

Save & Grade

Save only

New variant

$$\sum_{k=0}^{4} P(x=\lambda) = C \cdot (S+4+4+3+5)$$

$$= 21 C$$

$$= 1$$
i.e. $C = \frac{1}{21}$

$$\mathbb{E}_{X} = \frac{1}{2!} (0.5 + 1.4 + 2.4 + 3.3 + 4.5)$$

$$= \frac{4!}{2!}$$

0

Expectation of a Polynomial from mean and variance

Let X be a random variable with $\mathsf{E}(X)=4$ and $\mathsf{Var}(X)=2$. Find $\mathsf{E}((4X+5)^2)$.

Answer = number (3 significant figures)

Save & Grade

Save only

New variant

$$V_{ar}(x) = \lambda = Ex^{2} - (Ex)^{2} = Ex^{2} - 16$$

i.e. $Ex^{2} = 18$
 $E(4x+5)^{2} = E[16x^{2}+40x+25]$
 $= 16.Ex^{2}+40Ex+25$
 $= 16.18+40.4+25$
 $= 473$

Expectation of a function					
Let X be a Poisson distributed random variable with mean $1.75.$ Find $\mathbb{E}(5^X).$					
Answer =	number (3 significant figures)	0			
Save & Grad	de Save only		New variant		

Solution
$$\mathbb{E}[5^{k}] = \sum_{k=0}^{\infty} 5^{k} \cdot e^{-\lambda} \frac{\lambda^{k}}{k!} \qquad (\lambda = 1.75)$$

$$= \sum_{k=0}^{\infty} e^{-\lambda} \frac{(5\lambda)^{k}}{k!}$$

$$= e^{-\lambda} \sum_{k=0}^{\infty} e^{-\lambda} \frac{(5\lambda)^{k}}{k!}$$