

POWERED BY Dialog

METHINE COMPOUND AND OPTICAL RECORDING MEDIUM CONTAINING THE SAME

Publication Number: 10-053710 (JP 10053710 A), February 24, 1998

Inventors:

SEIRIYUU MASAYUKI

Applicants

• NIPPON KAYAKU CO LTD (A Japanese Company or Corporation), JP (Japan)

Application Number: 08-226076 (JP 96226076), August 09, 1996

International Class (IPC Edition 6):

- C09B-023/00
- B41M-005/26
- C07D-209/14
- C07D-215/12
- C07D-235/14
- C07D-263/56
- C07D-277/64
- C07D-293/12
- G11B-007/24

JAPIO Class:

- 14.3 (ORGANIC CHEMISTRY--- Dyes)
- 14.1 (ORGANIC CHEMISTRY--- Organic Compounds)
- 29.4 (PRECISION INSTRUMENTS--- Business Machines)
- 42.5 (ELECTRONICS--- Equipment)

JAPIO Keywords:

- R002 (LASERS)
- R014 (MICROFILTERS)
- R125 (CHEMISTRY--- Polycarbonate Resins)

Abstract:

PROBLEM TO BE SOLVED: To obtain a methine compound having high reflectivity, solubility and storage stability by reacting a specified tribasic aldehyde derivative with a 1,1-diphenylethene derivative.

SOLUTION: A tribasic aldehyde derivative represented by formula I is condensed with a 1,1-

diphenylethene derivative represented by formula II at 0-80 deg.C in an acidic medium comprising acetic acid and/or acetic anhydride to obtain a methine compound represented by formula III (wherein R (sub 1) is an (un)substituted alkyl; R(sub 2) is a halogen, a lower alkyl, an alkyloxy or phenyl, provided that the adjoining groups may be combined to each other to form an aromatic ring; n is 0-2; R(sub 3) to R(sub 6) are each an (un)substituted alkyl, an (un)substituted alkenyl or an (un)substituted aryl; Y is O, NR(sub 7)-, S, selenium, -C(CH(sub 3))(sub 2)- or -CH=CH-; R(sub 7) is an (un)substituted alkyl; and X is an anion, provided it is null when R(sub 1) is a sulfoalkyl).

JAPIO

© 2001 Japan Patent Information Organization. All rights reserved. Dialog® File Number 347 Accession Number 5770610

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-53710

(43)公開日 平成10年(1998) 2月24日

1	(51) Int.Cl. ⁶	識別記号	宁内整理番号	FΙ				技術表示箇所	
)	C 0 9 B 23/00			C 0 9	9 B 23/00		L		
							M		
	B 4 1 M 5/26	·	•	C 0 '	7 D 209/14				
	C 0 7 D 209/14				215/12			•	
	215/12				235/14				
			審査請求	未請求	請求項の数7	FD	(全 16 頁)	最終頁に続く	
	(21)出願番号 特願平8-226076			(71) 出願人 000004086					
	(22)出願日 平成8年(1996)8月9日			日本化薬株式会社 東京都千代田区富士見1丁目11番2号					

(72)発明者 清柳 正幸

(54) 【発明の名称】 メチン系化合物およびこれを含有する光記録媒体

(57) 【要約】

【課題】溶剤に対する溶解性に優れ、反射率が高く、保存性の良好なメチン系化合物、および、該化合物を用いた光記録媒体を提供することにある。。

*【解決手段】下記式(1)で表されるメチン系化合物、 及び該化合物を用いた光記録媒体。 【化1】

埼玉県与野市上落合1090

(式(1)において R_1 は置換もしくは未置換のアルキル基を表し、 R_2 はハロゲン原子、低級アルキル基、アルキルオキシ基、フェニル基もしくは隣接する基が連結し、芳香環を形成してもよく、n は $0\sim2$ の整数を表し、 R_3 , R_4 , R_5 , R_6 はそれぞれ独立に置換もしくは未置換のアルキル基、置換もしくは未置換のアルケニル基、置換もしくは未置換のアリール基を表し、更

に、 R_3 と R_4 、 R_5 と R_6 が連結して環を形成してもよい。Yは酸素原子、-N R_7 一、硫黄原子、セレン原子、-C (C H_3) $_2$ 一、-C H=C H 一を表し、 R_7 は置換もしくは未置換のアルキル基を表し、X はアニオンを表す(但し、 R_1 がスルホン酸アルキル基の時はX は存在しない))。

【特許請求の範囲】

*【化1】

【請求項1】下記式(1)で表されるメチン系化合物 *

(式(1)においてR:は置換もしくは未置換のアルキル基を表し、R2はハロゲン原子、低級アルキル基、アルキルオキシ基、フェニル基もしくは隣接する基が連結し、芳香環を形成してもよく、nは0~2の整数を表し、R3,R4,R5,R6はそれぞれ独立に置換もしくは未置換のアルキル基、置換もしくは未置換のアルケニル基、置換もしくは未置換のアリール基を表し、更に、R3とR4、R5とR6が連結して環を形成してもよい。Yは酸素原子、-NR7-、硫黄原子、セレン原子、-C(CH3)2-、-CH=CH-を表し、R7は置換もしくは未置換のアルキル基を表し、Xはアニオンを表す(但し、R:がスルホン酸アルキル基の時はXは存在しない))。

【請求項2】 R_3 , R_4 , R_5 , R_6 が同一の置換もしくは未置換のアルキル基である請求項1 に記載のメチン系化合物。

【請求項3】Yが-C (CH₃)₂ -である請求項1に 30 記載のメチン系化合物。

【請求項4】R: がC1-C6の置換もしくは未置換アルキル基である請求項1に記載のメチン系化合物。

【請求項5】 R_2 が水素原子または塩素原子であり、 R_3 , R_4 , R_5 , R_6 が $C1\sim C6$ の置換もしくは未置換のアルキル基である請求項1 に記載のメチン系化合物。

【請求項6】基板上に請求項1~5のいずれか一項記載 の化合物の少なくとも1種を含有する記録層を担持せし めたことを特徴とする光記録媒体。

【請求項7】記録層中に1重項酸素クエンチャーを有することを特徴とする請求項6の光記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、メチン系化合物及

びこれを含有する光記録媒体に関し、詳しくはレーザー 光による情報記録、再生もしくは画像形成に有用なメチン系化合物及びこれを含有する光記録媒体に関する。 【0002】

【従来の技術】従来、有機性色素の記録媒体、特に1回のみ記録可能なCD-R用色素としてフタロシアニン誘導体やインドレニン系シアニン色素等の色素が種々提案されている。しかし、フタロシアニン系色素は耐光性、耐保存性に優れるものの、一般的に使用されるポリカーボレートを侵さない溶媒等の制約から、溶剤に対する溶解度が余りなく、基盤上に溶剤に溶解した色素を塗布する際、所望の濃度を得られないという点があり、もう一つの色素であるシアニン色素では、ある程度の溶剤溶解性を有するものの、使用できる溶剤の種類も限定されており、更に、耐光性、耐保存性等に問題がある。

[0003]

【発明が解決しようとする課題】本発明の目的は溶剤に 対する溶解性に優れ、反射率が高く、保存性の良好な化 合物、および該化合物を用いた光記録媒体を提供するこ とにある。

[0004]

【課題を解決するための手段】本発明者らは前記したような課題を解決すべく鋭意努力した結果、下記式(1)のような構造を有する溶剤溶解性良好なメチン系化合物を合成し、更にこのメチン系化合物を少なくとも1種、光記録媒体に含有せしめることにより、安定な光記録材40 料が製出できることを見いだし本発明を完成させた。すなわち本発明は、(1)下記式(1)で表されるメチン系化合物

[0005]

【化2】

 $\begin{array}{c}
R_{6} - N \\
R_{1} \\
R_{1}
\end{array}$ $\begin{array}{c}
R_{4} \\
R_{3}
\end{array}$ $\begin{array}{c}
R_{4} \\
R_{3}
\end{array}$ $\begin{array}{c}
R_{4} \\
R_{3}
\end{array}$ $\begin{array}{c}
R_{2} \\
R_{3}
\end{array}$

【0006】(式(1)においてRIは置換もしくは未置換のアルキル基を表し、R2はハロゲン原子、低級アルキル基、アルキルオキシ基、フェニル基もしくは隣接する基が連結し、芳香環を形成してもよく、nは0~2の整数を表し、R3,R4,R5,R6はそれぞれ独立に置換もしくは未置換のアルキル基、置換もしくは未置換のアルケニル基、置換もしくは未置換のアリール基を表し、更に、R3とR4、R5とR6が連結して環を形成してもよい。Yは酸素原子、-NR7-、硫黄原子、セレン原子、-C(CH3)2-、-CH=CH-を表し、R7は置換もしくは未置換のアルキル基を表し、Xはアニオンを表す(但し、R1がスルホン酸アルキル基の時はXは存在しない))、(2)R3,R4,R5,R6が同一の置換もしくは未置換のアルキル基である

(1) に記載のメチン系化合物、(3) Yが-C (CH3) 2 -である(1) に記載のメチン系化合物、(4) R1 がC1-C6の置換もしくは未置換アルキル基である(1) に記載のメチン系化合物、(5) R2 が水素原子または塩素原子であり、R3, R4, R5, R6 がC1~C6の置換もしくは未置換のアルキル基である

(1) に記載のメチン系化合物、(6) 基板上に(1) ~ (5) 記載の化合物の少なくとも1種を含有する記録層を担持せしめたことを特徴とする光記録媒体、(7) 記録層中に1重項酸素クエンチャーを有することを特徴とする(6) の光記録媒体、に関する。

[0007]

【発明の実施の形態】一般式(1)において、RI、R3、R4、R5、R6、R7で表される未置換のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、2ーメチルプロピル基、ブチル基、オクタデシル基等のC1~C18アルキル基、ドデシル本ルをはC1~C4のアルキル基があげられる。置換アルキル基の置換基としては、アルキルオキシ基、ハロゲン原子、アルキルオキシアルキルオキシ末、アリール基、水酸基等があげられ、具体的には、ヒドロキシメチル基、メトキシエチル基、エトキシエチル基、ブトキシエチル基、フェニルプロピル基、ベンジル基、テトラフロロプロピル基、トリフロロエチル

基、メトキシエチルオキシエチル基、メトキシプロピル 基、ヒドロキシプロピル基、フルフリル基、アセチルオ キシエチル基等のC1~C9の置換アルキル基があげら れ、好ましくは、C1~C6の置換アルキル基があげら れる。RI における置換アルキル基としては、例えば3 -スルホニルプロピル基、4-スルホニルブチル基等の スルホン酸アルキル基があげられる。R2 のハロゲン原 子としては、フッ素原子、塩素原子、臭素原子、ヨウ素 原子等があげられるが、塩素原子が好ましく、低級アル キル基としてはメチル基、エチル基、プロピル基、ブチ ル基等のC1-C4アルキル基があげられ、アルキルオ キシ基としてはメトキシ基、エトキシ基、プロピルオキ シ基、ブトキシ基等のC1-C4アルコキシ基があげら れ、nは0もしくは1が好ましい。 R_3 、 R_4 、 R_5 、 R6 における置換もしくは未置換のアルケニル基として は、アリル基、ブテニル基、シンナミル基等のC3-C 9アルケニル基があげられ、置換もしくは未置換のアリ ール基としては、フェニル基、4ークロロフェニル基、 4ーメチルフェニル基等のC6-C7アリール基があげ られる。

【0008】R3 とR4 、R5 とR6 が連結して形成さ れる環として好ましいものは、5員環、もしくは6員環 である。具体的には、ピロリジン環、ピペリジン環、モ ルホリン環があげられる。Yとして好ましいものは、酸 素原子、硫黄原子、一CH=CH-等があげられるが、 溶解性から-C (CH3)2 ーがより好ましい。Xのア ニオンとしては有機カルボン酸、有機スルホン酸等の有 機酸アニオンとハロゲンイオン等の無機アニオン、遷移 金属錯体アニオンがあげられ、有機酸アニオンとして具 体的には、酢酸イオン、メタンスルホン酸イオン、テト ラフェニルホウ酸イオン、ブチルトリフェニルホウ酸イ オン、トルエンスルホン酸イオン、4ーヒドロキシナフ タレンスルホン酸イオン、ナフタレンスルホン酸イオ ン、乳酸イオン、ベンゼンスルホン酸イオン、エタンス ルホン酸イオン、トリフロロ酢酸イオン、プロピオン酸 イオン、安息香酸イオン、シュウ酸イオン、コハク酸イ オン、ステアリン酸イオン、トリフロロメタンスルホン 酸イオン等があげられ、遷移金属錯体アニオンとしては ベンゼンジチオール誘導体のNi錯体、ナフタレンジチ

4

オール誘導体のNi錯体、エテンジチオール誘導体のNi錯体等があげられる。無機アニオンの具体例としては、塩素イオン、臭素イオン、フッ素イオン、チオシアン酸イオン、ヨウ素イオン、6フッ化アンチモン酸イオン、過塩素酸イオン、硝酸イオン、テトラフロロホウ酸イオン、ヘキサフロロリン酸イオン、モリブデン酸イオン、タングステン酸イオン、チタン酸イオン、バナジン酸イオン、リン酸イオン、ホウ酸イオン等があげられ、**

*好ましいものとしては、テトラフロロホウ酸イオン、ヘキサフロロリン酸イオン、過塩素酸イオン等があげられる。

【0009】本発明の式(1)の化合物の具体例としては下記の化合物が挙げられるが、これらに限定されるものではない。

[0010]

[0011]

【化4】

Et Et

[0012]

【化5】

Et _____N Et

$$H_3C$$
 SO_3
 Et
 Me
 H_3C
 SO_3

[0013]

【化6】

[0014]

[化7]

$$H_3COH_2CH_2C-N$$
 M_6
 $M_$

[0015]

$$\begin{array}{c|c}
Et-N \\
\hline
\\
S \\
\hline
\\
Et
\end{array}$$

$$\begin{array}{c}
E_1 \\
\hline
\\
E_2 \\
\hline
\end{array}$$

$$\begin{array}{c}
E_1 \\
\hline
\\
E_1 \\
\hline
\end{array}$$

$$\begin{array}{c}
(17) \\
\hline
\end{array}$$

[0016]

【化9】

[0017]

【化10】

$$E_{i}$$
 H_{3}
 M_{c}
 M_{c

$$E_{t}$$
 E_{t}
 E_{t

[0018]

【化11】

$$Et-N$$
 Et
 Cl
 N
 Et
 BF_4
 Et
 Et
 Et

$$\begin{array}{c} E_{t} \\ \\ \\ E_{t} \\ \\ BF_{4} \end{array} \qquad \begin{array}{c} E_{t} \\ \\ \\ E_{t} \end{array} \qquad (27)$$

[0019]

【化12】

Et PF6
$$\stackrel{\text{Et}}{=}$$
 $\stackrel{\text{Et}}{=}$ $\stackrel{\text{Et}$

[0020]

【化13】

26-

$$Et \longrightarrow Et$$

$$Me \longrightarrow Me$$

$$Et$$

$$CH_2CH_2CH_2CH_2SO_3$$

$$(31)$$

$$\begin{array}{c}
Et-N \\
Me \\
Me
\end{array}$$

$$\begin{array}{c}
Me \\
Ni \\
Me
\end{array}$$

$$\begin{array}{c}
Me \\
Ni \\
Me
\end{array}$$

$$\begin{array}{c}
Me \\
Ni \\
S
\end{array}$$

$$\begin{array}{c}
Me \\
Ni \\
S
\end{array}$$

$$\begin{array}{c}
Me \\
Me
\end{array}$$

$$\begin{array}{c}
Me \\
Me$$

$$\begin{array}{c}
Me \\
Me
\end{array}$$

$$\begin{array}{c}
Me \\
Me$$

$$\begin{array}{c}
Me$$

$$\begin{array}{c}
Me \\
Me$$

$$\begin{array}{c}
Me \\$$

【0021】本発明の一般式(1)で表される化合物は、下記式(2)で表されるトリベースアルデヒド誘導体と下記式(3)で表される1、1ージフェニルエテン誘導体とを溶媒中、好ましくは酢酸中または無水酢酸中もしくは無水酢酸と酢酸の混合溶媒中等の酸性媒体中、0-80℃好ましくは5-30℃で縮合反応させることにより得られる。対イオンを交換する場合はその反応液に、対応する酸もしくはその塩を溶解可能な溶媒、好ま

30 しくは無水酢酸もしくは酢酸に溶解して添加するか、一 旦取り出した色素をアルコール、DMF、酢酸等の水に 可溶な溶媒もしくはそれらと水との混合溶媒中に溶解 し、所望のアニオンの酸もしくは塩を添加して塩交換を 行う方法により合成することが出来る。

[0022] 【化14】

$$(R_{2})_{n}$$

$$R_{5}$$

$$R_{6}$$

$$R_{6}$$

$$R_{6}$$

$$R_{7}$$

$$R_{8}$$

50

【0023】尚、本発明の一般式(1)で表される化合物は、共鳴を考慮すると、上記式(4)のようにも記することが出来る。

【0024】本発明の記録媒体は基板とメチン系化合物を含有する記録層からなり、必要に応じ、反射層、表面コート層が設けられる。記録層中のメチン系化合物は単独で用いても、2種以上併用してもよく、また、本発明の色素以外の色素と併用して用いてもよい。本発明の色素以外の色素と併用して用いてもよい。本発明の色素以外の色素としては、例えばシアニン系色素、スクワリリウム系色素、インドアニリン系色素、フタロシアニン系色素、アゾ色素等があげられる。また、読み取り耐久性向上や耐光性向上のため種々の酸化防止剤や紫外線吸収剤、一重項酸素クエンチャーを併用してもよい。一重項酸素クエンチャーとしては一般的なニッケル錯体等の遷移金属錯体やアミニウム系もしくはジイモニウム系化合物(例えば日本化薬製 IRG-002、IRG-022、IRG-023等)があげられる、また、種々の樹脂を併用してもよい。本発明において、一般式

(1)で示される化合物のカチオンと、クエンチャーの アニオンとの結合体を使用することもできる。クエンチャーは一般式(1)の化合物1モルに対して、一般的に 0.01~10モル、好ましくは0.03~1.2モル 必要により使用される。 【0025】基板としては既知の物を任意に使用することが出来る。例えば、ガラス、金属板もしくはプラスチックがあげられ、プラスチックとしてはアクリル樹脂、ポリカーボネート樹脂、メタクリル樹脂、ポリスルホン樹脂、ポリイミド樹脂、非晶質ポリオレフィン樹脂、ポリエステル樹脂、ポリプロピレン樹脂等があげられる。基板の形状に付いては、ディスク状、カード状、シート状、ロールフィルム状等種々のものがあげられる。

【0026】ガラスまたはプラスチック基板上には記録時のトラッキングを容易にするために案内溝を形成させてもよい。また、ガラスまたはプラスチック基板にはプラスチックバインダーまたは無機酸化物、無機硫化物等の下引層を設けてもよく、下引層は基板より熱伝導率の低いものが好ましい。

(1)で表されるメチン系化合物および必要に応じてクエンチャーを有機溶剤、例えば、テトラフロロプロパノール、ダイアセトンアルコール、メタノール、エタノール、メチルセロソルブ、エチルセロソルブ、イソプロピルアルコール、アセトン、メチルエチルケトン、ジクロロエタン、ジクロロメタン、プロピレングリコールモノメチルエーテルモノアセテート、シクロヘキサノン、3ーヒドロキシー3ーメチルー2ーブタノン等に溶解し、

必要に応じて、適当なバインダーを加え、その溶液をスピンコーター等により基板上に塗布することにより得ることが出来る。その他の方法としては、真空蒸着法、スパッタリング法、ドクターブレード法、キャスト法もしくは基板を溶液中に漬けるディッピング法によっても得ることが出来る。

【0028】記録層の膜厚は、 $0.01\mu m - 5\mu m$ 、好ましくは、 $0.02\mu m - 3\mu m$ であり、反射読み出しの場合はより好ましくは読み出しに使用するレーザー波長の1/40奇数倍である。

【0029】本発明の光記録媒体には、必要により基板上に下引き層、記録層上に保護層、また、基板上もしくは記録層上に反射層を設けることが出来る。反射層を設ける場合は、反射層は蒸着法、スパッタリング法、イオンプレーティング法や金、銀、銅等の金属塩もしくは金属錯塩の還元による銀鏡反応を利用してもよい。

【0030】本発明の光記録媒体において情報の記録、あるいは画像の形成はレーザー、例えば、半導体レーザー、ヘリウムーネオンレーザー、He‐Cdレーザー、YAGレーザー、Arレーザー等の集光したスポット状 20の高エネルギービームを基板を通して、もしくは基板と反対側から記録層に照射することにより行われ、情報あるいは画像の読み出しは、低出力のレーザービームを照射することにより、ピット部とピットが形成されていない部分の反射光量もしくは透過光量の差を検出することにより行われる。

[0031]

【実施例】以下実施例により本発明を更に具体的に説明するが、本発明は、これらの実施例に限定されるものではない。尚、実施例中、部は特に限定しない限り重量部 30を表す。

実施例1

酢酸5部、無水酢酸2部の混合溶媒中にトリベースアルデヒド0.72部を添加し更に1、1ービス(pージエチルアミノフェニル)エテン1.16部を加え、室温にて数分間撹はん後、無水酢酸5.39部中に冷却下注意

しながら、42%ホウフッ化水素酸0.75部を添加した溶液を加え、室温にて1夜撹はんする。その後水250部を添加し、室温にて4時間撹拌後濾過、60部の水で水洗し、乾燥することにより化合物例(1)の暗緑色結晶を得た(2max659nm(アセトン)、mp.218~220℃)。この結晶を室温でジアセトンアルコールに5%添加、撹拌し、メンブランフィルタにて濾過を行ったが、フィルタ上に不溶解物は認められず、容易に5%溶液が得られた。上記と同様にして、対応するトリベースアルデヒド誘導体と1、1ージフェニルエテン誘導体を反応させることにより、また対応するアニオン生成化合物を添加することにより化合物例(2)~(33)を合成できる。

【0032】実施例2 (記録媒体例)

実施例1で得られた化合物例(1) 0. 2 部をダイアセトンアルコール1 0部に溶解し、0. 2 μ mのフィルターを通過させて塗布液を得た。この溶液5 m 1 をグループ付5インチポリカーボネート樹脂基板上にピペットにて滴下し、スピンコーターにて塗布し、50℃にて5分間乾燥し、記録層を形成した。塗布膜の最大吸収波長は689 n m であった。反射率は79%(780 n m)であった。得られた塗布膜に中心波長830 n m の半導体レーザー光を出力6 m W で照射したところ輪郭の明瞭なピットが形成された。更に、この塗布基板を1.3 m / s で回転させながら、中心波長780 n m レーザービーム径1.6 μ mの半導体レーザー光で記録周波数720 KHzで照射したところ、出力8 m W で C / N 比51 d b を得た。この塗布膜の保存安定性は60℃×80% R H の条件下で25日以上良好であった。

[0033]

【発明の効果】本発明のメチン系化合物は、有機溶剤に 対する溶解性が高く、コーティングにより容易に色素膜 を得ることが出来る。更に、反射率が高く、保存安定性 が良好であることが特徴であり、光記録媒体用色素とし て有用である。

フロントページの続き

(51) Int. Cl. ⁶	識別記号	庁内整理番号	FI .	技術表示箇所
C 0 7 D 235/14			C 0 7 D 263/56	
263/56			277/64	
277/64			293/12	
293/12		8721-5D	G11B 7/24	5 1 6
G11B 7/24	516		B 4 1 M 5/26	Y