Структурированное обучение

Сергей Губанов Яндекс esgv@yandex-team.ru

11 октября 2018 г.

План

Деревья зависимостей

Transition-based parsing

ML for transition-based parsing

Структурированное обучение

Итоги

Далее,

План

Деревья зависимостей

Transition-based parsing

ML for transition-based parsing

Структурированное обучение

Итоги

- Один корень
- Связное
- Ацикличное

- ▶ Один корень
- Связное
- Ацикличное

- ▶ Один корень
- Связное
- Ацикличное

- ► Treebank: корпус размеченных деревьев.
- ► http://universaldependencies.org/

CoNLL format

http://ilk.uvt.nl/conll/

ID	FORM	LEMMA	CPOSTAG	POSTAG	FEATS	HEAD	DEPREL
1	I	I	PRON	PRP	Case=Nom Number=Sing	2	nsubj
2	saw	see	VERB	VBD	Mood=Ind Tense=Past	0	root
3	a	a	DEP	DT	Definite=Ind PronType=Art	4	det
4	cat	cat	NOUN	NN	Number=Sing	2	dobj
5			PUNCT		_	0	punct

CoNLL format

http://ilk.uvt.nl/conll/

ID	FORM	LEMMA	CPOSTAG	POSTAG	FEATS	HEAD	DEPREL
1	I	I	PRON	PRP	Case=Nom Number=Sing	2	nsubj
2	saw	see	VERB	VBD	Mood=Ind Tense=Past	0	root
3	a	a	DEP	DT	Definite=Ind PronType=Art	4	det
4	cat	cat	NOUN	NN	Number=Sing	2	dobj
5			PUNCT		_	0	punct

Далее,

υ,

Transition-based parsing

План

Деревья зависимостей

Transition-based parsing

ML for transition-based parsing

Структурированное обучение

Итоги

▶ Начальная вершина

- ▶ Начальная вершина
- ▶ Переходы в другие вершины

- Начальная вершина
- ▶ Переходы в другие вершины
- ▶ Конечная вершина

- ▶ Начальная вершина
- ▶ Переходы в другие вершины
- ▶ Конечная вершина
- Путь

Где еще

- ▶ Конечные автоматы
 - Детерминированные и нет
 - Трансдьюсеры
- Таггеры
 - POS
 - ► NER
 - CJK segmentation
 - Дизамбигуация
- Парсера
 - Оба вида
- Опечатки
 - Генерация гипотез
 - Выбор конечного варианта

Где еще

- ▶ Конечные автоматы
 - Детерминированные и нет
 - Трансдьюсеры
- Таггеры
 - POS
 - NER
 - CJK segmentation
 - Дизамбигуация
- Парсера
 - ▶ Оба вида
- Опечатки
 - Генерация гипотез
 - Выбор конечного варианта
- Машинный перевод

План

- ▶ Определяем систему переходов для парсинга
- Обучаем классификатор для выбора наилучшего перехода
- Парсим, последовательно применяя классификатор

[ROOT] I saw a cat .

- ► S: Shift
- ► R: Reduce
- ► *S_{RA}*: Right-arc shift
- ► R_{IA}: Left-arc reduce

[ROOT I] saw a cat .

S I

- ► S: Shift
- ► R: Reduce
- ► S_{RA}: Right-arc shift
- ► R_{IA}: Left-arc reduce

```
[ROOT] saw a cat .
|
|
|
```

```
S I
R<sub>LA</sub> I←saw
```

- ▶ *S*: Shift
- ► R: Reduce
- ► S_{RA}: Right-arc shift
- ► R_{IA}: Left-arc reduce

```
[ROOT saw] a cat .
```

```
\begin{array}{ll} \textbf{S} & \textbf{I} \\ \textbf{R}_{\textbf{LA}} & \textbf{I} {\longleftarrow} \textbf{saw} \\ \textbf{S}_{\textbf{RA}} & \textbf{ROOT} {\longrightarrow} \textbf{saw} \end{array}
```

▶ *S*: Shift

► R: Reduce

• S_{RA} : Right-arc shift

► R_{IA}: Left-arc reduce

```
[ROOT saw a] cat .
```

```
\begin{array}{lll} \textbf{S} & \textbf{I} \\ \textbf{R}_{\textbf{LA}} & \textbf{I} {\longleftarrow} \mathsf{saw} \\ \textbf{S}_{\textbf{RA}} & \texttt{ROOT} {\longrightarrow} \mathsf{saw} \\ \textbf{S} & \textbf{a} \end{array}
```

► S: Shift

► R: Reduce

• S_{RA} : Right-arc shift

► R_{LA}: Left-arc reduce

$$egin{array}{c|cccc} \mathbf{S} & \mathbf{I} & & & & & & & & \\ \mathbf{R_{LA}} & \mathbf{I} \longleftarrow \mathsf{saw} & & & & & & \\ \mathbf{S_{RA}} & \mathsf{ROOT} \longrightarrow \mathsf{saw} & & & & & \\ \mathbf{S} & \mathsf{a} & & & & & & \\ \end{array}$$

► *S*: Shift

► R: Reduce

• S_{RA} : Right-arc shift

► R_{IA}: Left-arc reduce

► *S*: Shift

► R: Reduce

S_{RA}: Right-arc shift
 R_{IA}: Left-arc reduce

► *S*: Shift

► R: Reduce

• S_{RA} : Right-arc shift

► R_{IA}: Left-arc reduce

▶ *S*: Shift

► R: Reduce

S_{RA}: Right-arc shift
 R_{IA}: Left-arc reduce

Свойства

- Любой путь задает дерево
- ▶ Для любого проективного дерева найдется путь
- Любой путь конечен
- (И другие хорошие свойства)

Свойства

- Любой путь задает дерево
- ▶ Для любого проективного дерева найдется путь
- Любой путь конечен
- (И другие хорошие свойства)

Пройтись до конечного состояния

=

Построить дерево

Проективность

Непроективное – это когда нельзя нарисовать без пересечения дуг.

Проективное, если

$$\forall i, j : i < j \text{ and } (i \longrightarrow j \text{ or } i \longleftarrow j)$$
 \Longrightarrow
 $\forall k : i < k < j \Rightarrow i \longrightarrow^* k \text{ or } j \longrightarrow^* k$

Далее,

ML for transition-based parsing

План

Деревья зависимостей

Transition-based parsing

ML for transition-based parsing

Структурированное обучение

Итоги

Последовательное принятие решений

[ROOT] I saw a cat .

Последовательное принятие решений

► S, S_{RA}

Последовательное принятие решений

► S, S_{RA}

[ROOT I] saw a cat .

▶ *S*, *S*_{RA}

- ► *S*, *S*_{RA}
- ► *S*, *S*_{RA}

- ► *S*, *S*_{RA}
- \triangleright S, S_{RA} , R_{LA}

- ▶ *S*, *S*_{RA}
- \triangleright S, S_{RA} , R_{LA}

- ▶ *S*, *S*_{RA}
- \triangleright S, S_{RA} , R_{LA}

- ▶ *S*, *S*_{RA}
- \triangleright S, S_{RA} , R_{LA}
- ► *S*, *S*_{RA}
- **.** . . .

[ROOT] I saw a cat .	5, S _{RA}
[ROOT I] saw a cat .	S, S _{RA} , R _{LA}
[ROOT] X saw a cat .	S _{RA} , S
•••	

- ▶ Проходим эталонную последовательность состояний
- На каждом шаге учим классификатор принимать правильное решение

Extract features

- Extract features
- ▶ Invoke model

- Extract features
- ► Invoke model
- Make decision
- Compute loss

•
$$I(S_0 = "a")$$

- $I(S_0 = "a")$ $I(S_0 = "the")$

- $I(S_0 = "a")$ $I(S_0 = "the")$

- $I(S_0 = "a")$
- $I(S_0 = "the")$
- ▶ $I(S_0 = w)$ для каждого слова w

 S_0 – это feature template (она же – категориальная фича).

Feature template

Более сложная фича: S_0N_0 .

Т.е: для любых слов w и v, $I(S_0 = w) \cdot I(N_0 = v)$.

Feature template

Более сложная фича: S_0N_0 .

Т.е: для любых слов w и v, $I(S_0 = w) \cdot I(N_0 = v)$.

Dep. parser feature templates

Dep. parser feature templates

- ► From single words: S_0wp ; S_0w ; S_0p ; N_0wp ; N_0w ; N_0p ; N_1wp ; N_1w ; N_1p ; N_2wp ; N_2w ; N_2p
- ► From word pairs: S_0wpN_0wp ; S_0wpN_0w ; S_0wN_0wp ; S_0wpN_0p ; S_0pN_0p ; S_0
- ▶ From three words: $N_0 p N_1 p N_2 p$; $S_0 p N_0 p N_1 p$; $S_{0h} p S_0 p N_0 p$; $S_0 p S_{0l} p N_0 p$; $S_0 p S_0 p N_0 p$; $S_0 p N_0 p N_0 p$
- ▶ Distance: S_0wd ; S_0pd ; N_0wd ; N_0pd ; S_0wN_0wd ; S_0pN_0pd ;
- ► Valency: S_0wv_r ; S_0pv_r ; S_0wv_l ; S_0pv_l ; N_0wv_l ; N_0pv_l
- ▶ Unigrams: $S_{0h}w$; $S_{0h}p$; $S_{0l}I$; $S_{0l}w$; $S_{0l}p$; $S_{0l}I$; $S_{0r}w$; $S_{0r}p$; $S_{0r}I$; $N_{0l}w$; $N_{0l}p$; $N_{0l}I$
- ▶ Third-order: $S_{0h2}w$; $S_{0h2}p$; $S_{0h}l$; $S_{0l2}w$; $S_{0l2}p$; $S_{0l2}l$; $S_{0r2}w$; $S_{0r2}p$; $S_{0r2}l$; $N_{0l2}w$; $N_{0l2}p$; $N_{0l2}l$; $S_{0p}S_{0l}pS_{0l2}p$; $S_{0p}S_{0r}pS_{0r2}p$; $S_{0p}S_{0h}pS_{0h2}p$; $N_{0p}N_{0l}pN_{0l2}p$
- ▶ Label set: S_0ws_r ; S_0ps_r ; S_0ws_l ; S_0ps_l ; N_0ws_l ; N_0ps_l

w – word, p – POS-tag, v_I , v_r – valency, I – deprel, s_I , s_r – labelset.

Model

Линейная модель

$$s = w^T \cdot f$$

- Каждой фиче соответствует свой вес.
- Идеально ложится на sparsity, hashing trick, и т.д.

Loss

Мультиклассификация: S, R, S_{RA} , R_{LA}

$$s_i = w_i^T f$$

 $c = \operatorname{argmax} s_i$

Perceptron loss

$$\mathcal{L} = \max s_i - s_{\text{correct}}$$

(Но можно вообще любой loss)

$$s = w^T f$$

$$c = I(s > 0)$$

Бинарная классификация, линейная модель

$$s = w^T f$$
$$c = I(s > 0)$$

▶ Правильно \Rightarrow ничего не делаем.

$$s = w^T f$$
$$c = I(s > 0)$$

- Правильно ⇒ ничего не делаем.
- Неправильно
 - ullet $c_{
 m correct}=0, c=1 \Rightarrow$ надо бы опустить s
 - ullet $c_{
 m correct}=1, c=0 \Rightarrow$ надо бы поднять s

$$s = w^T f$$
$$c = I(s > 0)$$

- Правильно ⇒ ничего не делаем.
- Неправильно
 - $ightharpoonup c_{\text{correct}} = 0, c = 1 \Rightarrow w = w f$
 - $c_{\text{correct}} = 1, c = 0 \Rightarrow w = w + f$

$$s = w^T f$$
$$c = I(s > 0)$$

- Правильно ⇒ ничего не делаем.
- Неправильно
 - $ightharpoonup c_{\text{correct}} = 0, c = 1 \Rightarrow w = w f$
 - $c_{\text{correct}} = 1, c = 0 \Rightarrow w = w + f$

$$s' = (w - f)^T f = w^T f - f^T f = s - \underbrace{f^T f}_{\geq 0}$$
$$\nabla_w s = f$$

Linear model + Perceptron loss + SGD

$$s_0 = -w^T f$$
$$s_1 = +w^T f$$

Linear model + Perceptron loss + SGD

$$egin{aligned} s_0 &= -w^T f \ s_1 &= +w^T f \ \mathcal{L} &= \max(s_i) - s_{ ext{correct}} \ w^{(t)} &= w^{(t-1)} -
abla \mathcal{L}^{(t-1)} \end{aligned}$$

Linear model + Perceptron loss + SGD

$$egin{aligned} s_0 &= -w^T f \ s_1 &= +w^T f \ \mathcal{L} &= \max(s_i) - s_{ ext{correct}} \ w^{(t)} &= w^{(t-1)} - egin{aligned} \mathcal{L}^{(t-1)} \end{aligned}$$

Это то же самое.

Результат

Transitions Arc-eager
Features [Zhang and Nivre, 2011]
Model Linear
Loss Perceptron
Training SGD

Результат

Transitions Arc-eager, Arc-standard, Easy-first, ...

Features [Zhang and Nivre, 2011], ...

Model Linear, Neural network, ...

Loss Perceptron, Logistic, SVM, ...

Training SGD, L-BFGS, Averaged SGD, ...

Далее,

Структурированное обучение

План

Деревья зависимостей

Transition-based parsing

ML for transition-based parsing

Структурированное обучение

Итоги

Проблемы

Проблемы

- Жадность
 - ► Garden-path sentences
 - ► The students forgot the solution ...

- Жадность
 - ► Garden-path sentences
 - ► The students forgot the solution was

- Жадность
 - ► Garden-path sentences
 - ► The students forgot the solution was in the back of the book.

- Жадность
 - Garden-path sentences
 - The students forgot the solution was in the back of the book.
- Error propagation
 - Одна ошибка ведет к другой.
 - Классификатор получает на вход данные, на которых он не обучался.

- Жадность
 - Garden-path sentences
 - The students forgot the solution was in the back of the book.
- Error propagation
 - Одна ошибка ведет к другой.
 - Классификатор получает на вход данные, на которых он не обучался.
- ▶ Не все ошибки одинаково вредны
 - ▶ Неправильно приклеить корень более страшно, чем неправильно приклеить артикль.

- ▶ Веса на ребрах
- ▶ Общий вес пути есть сумма весов ребер

$$s_e = w^T f_e$$

 $s = \sum_e s_e$

Multiclass for NLP

$$s_i = w_i^T f$$

- ▶ К комплектов параметров
- ▶ 1 комплект фичей

Multiclass for NLP

$$s_i = w_i^T f$$

- ▶ К комплектов параметров
- 1 комплект фичей

$$s_i = w^T f_i$$

- ▶ 1 комплект параметров
- К комплектов фичей

▶ Хотим, чтобы вес правильного пути был наилучшим

- ► Хотим, чтобы вес правильного пути был наилучшим *на каждом шаге?*
- ► Хотим, чтобы вес правильного пути был наилучшим *среди* всех путей?

- ► Хотим, чтобы вес правильного пути был наилучшим *на каждом шаге?*
- ► Хотим, чтобы вес правильного пути был наилучшим *среди* всех путей?

- ► Хотим, чтобы вес правильного пути был наилучшим *на каждом шаге?*
- ► Хотим, чтобы вес правильного пути был наилучшим *среди* всех путей?
- ▶ Есть один правильный путь, но много просто хороших.

- ► Хотим, чтобы вес правильного пути был наилучшим *на каждом шаге?*
- Хотим, чтобы вес правильного пути был наилучшим среди всех путей?
- ▶ Есть один правильный путь, но много просто хороших.
- ▶ В начале может быть непонятно, какой путь станет лучшим.

Ответ

Стратегия обучения зависит от того, какой будет inference.

Exact inference

Если можем перебрать все пути

Exact inference

Если можем перебрать все пути

- Правильно ⇒ ничего не делаем.
- ▶ Неправильно \Rightarrow надо бы опустить s_{correct} и поднять s_{best} .

$$w = w + \nabla s_{\text{correct}} - \nabla s_{\text{best}}$$
$$= w + \sum_{e \in \text{correct}} \nabla s_e - \sum_{e \in \text{best}} \nabla s_e$$

Exact inference

Если можем перебрать все пути

- Правильно ⇒ ничего не делаем.
- ▶ Неправильно \Rightarrow надо бы опустить $s_{\rm correct}$ и поднять $s_{\rm best}$.

$$w = w + \nabla s_{\text{correct}} - \nabla s_{\text{best}}$$
$$= w + \sum_{e \in \text{correct}} \nabla s_e - \sum_{e \in \text{best}} \nabla s_e$$

Greedy search

Если действуем жадно

Greedy search

Если действуем жадно

Лучше действовать как раньше.

Greedy search

Если действуем жадно

Лучше действовать как раньше.

- length \times beam size = O(length)
- Отбрасываем заведомо проигрышные варианты
- Greedy это когда beam size = 1, exact inference это когда beam size = ∞ .

► No update

► No update

► No update

- ► No update
- ► Invalid update (потому что от него может не быть толку)

Дилемма

- ► Хотим, чтобы вес правильного пути был наилучшим *на каждом шаге?*
- ► Хотим, чтобы вес правильного пути был наилучшим *среди всех путей?*

Дилемма

- ► Хотим, чтобы вес правильного пути был наилучшим *на каждом шаге?*
- ► Хотим, чтобы вес правильного пути был наилучшим *среди всех путей?*
- Хотим, чтобы вес правильного пути не выпадал из бима

Дилемма

- ► Хотим, чтобы вес правильного пути был наилучшим *на каждом шаге?*
- ► Хотим, чтобы вес правильного пути был наилучшим *среди всех путей?*
- Хотим, чтобы вес правильного пути не выпадал из бима
- Хотим, чтобы вес правильного пути был лучшим в конце

- ► No update
- ► Invalid update (потому что от него может не быть толку)

- ► No update
- ► Invalid update (потому что от него может не быть толку)

- ► No update
- ► Invalid update (потому что от него может не быть толку)

- ► No update
- ► Invalid update (потому что от него может не быть толку)
- ► Early update

Parsing vs tagging

[Huang et al., 2012]

Max-violation

▶ "Все, что требуется – это violation"

[Huang et al., 2012]

Прогресс

- ▶ Жадность
- ▶ Error propagation
- ▶ Цена разных ошибок

Прогресс

- ▶ Жадность
- ► Error propagation
- ▶ Цена разных ошибок


```
[ROOT I] saw a cat
```

$$\triangleright$$
 S_{RA} / S

Представьте, что мы уже сделали ошибку.

- \triangleright $S_{RA} / S, R$
- ▶ Оракул: "лучше сделать R".

 Учимся в идеальной (эталонной) ситуации принимать правильное решение

[Goldberg and Nivre, 2013]

- Учимся в идеальной (эталонной) ситуации принимать правильное решение (в начале обучения).
- В конце обучения учимся принимать решение в любой ситуации.

[Goldberg and Nivre, 2013]

Если в любой момент времени применить текущую модель, будет достаточно нештатных ситуаций.

[ROOT] I	saw	a	cat	5 , S _{RA}
[ROOT I]	saw	a	cat	S, S _{RA} , R
[ROOT] *	saw	а	cat	S _{RA} , S

- ▶ 10% exploration (или какая-то другая политика)
- ▶ Учимся ровно на том, что встретим в рантайме

Как построить оракула — отдельная проблема.

[Goldberg and Nivre, 2012]

Method	UAS	LAS
Greedy	89.88	87.69

(Stanford basic dependencies, WSJ 23)

 $\mathsf{UAS} = \mathsf{Unlabeled} \ \mathsf{Attachment} \ \mathsf{Score}; \ \mathsf{LAS} = \mathsf{Labeled} \ \mathsf{Attachment} \ \mathsf{Score}$

► [Goldberg and Nivre, 2013]

Method	UAS	LAS
Greedy	89.88 90.96	87.69
Dynamic oracle	90.96	88.72

(Stanford basic dependencies, WSJ 23)

 $\mathsf{UAS} = \mathsf{Unlabeled} \ \mathsf{Attachment} \ \mathsf{Score}; \ \mathsf{LAS} = \mathsf{Labeled} \ \mathsf{Attachment} \ \mathsf{Score}$

► [Goldberg and Nivre, 2013]

Method	UAS	LAS
Greedy	89.88	
Dynamic oracle	90.96	88.72
Beam search	93.5	91.9

(Stanford basic dependencies, WSJ 23)

 $\mathsf{UAS} = \mathsf{Unlabeled} \ \mathsf{Attachment} \ \mathsf{Score}; \ \mathsf{LAS} = \mathsf{Labeled} \ \mathsf{Attachment} \ \mathsf{Score}$

- ► [Goldberg and Nivre, 2013]
- ► [Zhang and Nivre, 2011]

Method	UAS	LAS
Greedy	89.88	
Dynamic oracle	90.96	88.72
Beam search	93.5	91.9
LSTM + dyn. oracle	93.56	91.42

(Stanford basic dependencies, WSJ 23)

 $\mathsf{UAS} = \mathsf{Unlabeled} \ \mathsf{Attachment} \ \mathsf{Score}; \ \mathsf{LAS} = \mathsf{Labeled} \ \mathsf{Attachment} \ \mathsf{Score}$

- ► [Goldberg and Nivre, 2013]
- ► [Zhang and Nivre, 2011]
- ► [Ballesteros et al., 2016]

Прогресс

- ▶ Жадность
- ► Error propagation
- ▶ Цена разных ошибок

Прогресс

- ▶ Жадность
- ► Error propagation
- ▶ Цена разных ошибок

▶ Политика – это классификатор

- ▶ Политика это классификатор
- ▶ Ожидаемая потеря $\mathbb{E}\mathcal{L}(c_i)$ после шага c_i .

- Политика это классификатор
- ▶ Ожидаемая потеря $\mathbb{E}\mathcal{L}(c_i)$ после шага c_i .
- ▶ Regret для действия *c_i*

$$\mathbb{E}\mathcal{L}(c_i) - \min_{c}\mathbb{E}\mathcal{L}(c)$$

- Политика это классификатор
- ▶ Ожидаемая потеря $\mathbb{E}\mathcal{L}(c_i)$ после шага c_i .
- ▶ Regret для действия c_i

$$\mathbb{E}\mathcal{L}(c_i) - \min_{c} \mathbb{E}\mathcal{L}(c)$$

 ▶ Оракул — это политика (доступная только на обучающих данных)

Searn

Search + Learn

- Имеем классификатор политику π
- ▶ Применяем, получаем цепочку состояний $S_0, ..., S_n$.

Searn

Search + Learn

- Имеем классификатор политику π
- ▶ Применяем, получаем цепочку состояний $S_0, ..., S_n$.
- ► Задача для нового классификатора: в каждом состоянии, выбирать переход с minimal regret

Searn

Search + Learn

- Имеем классификатор политику π
- ▶ Применяем, получаем цепочку состояний $S_0, ..., S_n$.
- ► Задача для нового классификатора: в каждом состоянии, выбирать переход с minimal regret
- Обучаем новый cost-sensitive классификатор π' , cost = regret

Searn

Search + Learn

- Имеем классификатор политику π
- ▶ Применяем, получаем цепочку состояний $S_0, ..., S_n$.
- ► Задача для нового классификатора: в каждом состоянии, выбирать переход с minimal regret
- Обучаем новый cost-sensitive классификатор π' , cost = regret
- $\pi = (1 \alpha)\pi + \alpha\pi'$

Searn

Search + Learn

- Имеем классификатор политику π
- ▶ Применяем, получаем цепочку состояний $S_0, ..., S_n$.
- ► Задача для нового классификатора: в каждом состоянии, выбирать переход с minimal regret
- Обучаем новый cost-sensitive классификатор π' , cost = regret
- $= (1 \alpha)\pi + \alpha\pi'$

Начальная политика — оракул

Прогресс

- ▶ Жадность
- ► Error propagation
- ▶ Цена разных ошибок

Ключевые слова

- ► Structured learning, Learning to search
- Structured Perceptron / SVM
- Searn, Dagger, AggreVaTe, LOLS
- Reinforcement learning
- Vowpal Wabbit

```
http://nlpers.blogspot.ru/2016/03/a-dagger-by-any-other-name-scheduled.html
```

Далее,

Итоги

План

Деревья зависимостей

Transition-based parsing

ML for transition-based parsing

Структурированное обучение

Итоги

Парсер

- Arc-eager
- ► Features (см. статью).
- Perceptron loss

Парсер

- ▶ Arc-eager
- ► Features (см. статью).
- Perceptron loss
- +Structured
- ▶ +Beam search
- ▶ +Early update
- ► +Max-violation (по желанию)

Парсер

- Arc-eager
- ► Features (см. статью).
- Perceptron loss
- ▶ +Dynamic oracle

Таггер

Система переходов:

"John saw Mary"

Таггер

Features

- ▶ Not rare: w_i
- ▶ Rare: prefix $w_i[:N]$, $N \le 4$; suffix $w_i[-N:]$, $N \le 4$; I(w contains number); I(w contains uppercase char); I(w contains hyphen)
- ► Every word: t_{i-1} ; $t_{i-2}t_{i-1}$; w_{i-1} ; w_{i-2} ; w_{i+1} ; w_{i+2}

w – word, t – POS-tag.

Таггер

- Perceptron loss
- ▶ +Structured
- ▶ +Beam search
- +Early update (по желанию)
- ► +Max-violation (по желанию)

```
[Collins, 2002]
[Ratnaparkhi, 1996]
```

Pipeline:

- 1. POS-tagger
- 2. Dependency parser

Проблема:

Pipeline:

- 1. POS-tagger
- 2. Dependency parser

Проблема:

Error propagation

Joint tagging & parsing.

- ► S
- ▶ R
- $\rightarrow S_{RA}(r)$
- $ightharpoonup R_{LA}(r)$

E.g. [Bohnet and Nivre, 2012]

Joint tagging & parsing.

- $\rightarrow S(t)$
- ▶ R
- \triangleright $S_{RA}(r,t)$
- $ightharpoonup R_{LA}(r)$

E.g. [Bohnet and Nivre, 2012]

Joint transition-based...

- ► POS-tagging + Parsing
- ► CJK segmentation + POS-tagging + Parsing
- Parsing + Dysfluency detection

Joint transition-based...

- ► POS-tagging + Parsing
- ► CJK segmentation + POS-tagging + Parsing
- ▶ Parsing + Dysfluency detection

Зачем:

- Больше информации о тегах в синтаксисе
- ▶ Выбираем теги, с которыми складывается хороший разбор

Машинный перевод

Система переходов:

▶ Разное число шагов от начала до конца

Машинный перевод

Система переходов:

- ▶ Разное число шагов от начала до конца
- Нужны стеки для того, чтобы сравнивать пути
- ▶ Нужен future cost estimation
- ▶ И т.д.

Машинный перевод

- Фичи (см. статью)
- Perceptron loss
- +Structured
- ► +Beam search
- ► +Max-violation

[Yu et al., 2013]

Вопросы?

Бонус:

Hack of the Day

Averaged SGD

▶ Обычный SGD:

$$w_{t} = w_{t-1} - \alpha \cdot \nabla \mathcal{L}(w_{t-1})$$

$$w_{\text{final}} = w_{T}$$

Averaged SGD

▶ Обычный SGD:

$$w_{t} = w_{t-1} - \alpha \cdot \nabla \mathcal{L}(w_{t-1})$$

$$w_{\text{final}} = w_{T}$$

Averaged SGD:

$$w_t = w_{t-1} - \alpha \cdot \nabla \mathcal{L}(w_{t-1})$$
 $w_{\text{final}} = \frac{1}{T} \sum w_t$

Averaged SGD

▶ Обычный SGD:

$$w_t = w_{t-1} - \alpha \cdot \nabla \mathcal{L}(w_{t-1})$$

 $w_{\text{final}} = w_T$

Averaged SGD:

$$w_t = w_{t-1} - \alpha \cdot \nabla \mathcal{L}(w_{t-1})$$
 $w_{\text{final}} = \frac{1}{T} \sum w_t$

Менее хардкорно: усреднять несколько последних чекпоинтов.

Бонус:

HMM, MEMM & CRF

HMM vs MEMM vs CRF

HMM vs MEMM vs CRF

HMM vs MEMM vs CRF

Summary

$$\vec{s} = s_1, s_2, \dots s_n \qquad \vec{o} = o_1, o_2, \dots o_n \qquad \qquad \mathbf{S_{t-1}} \qquad \mathbf{S_t} \qquad \mathbf{S_{t+1}} \qquad \cdots \\ \mathbf{HMM} \qquad P(\vec{s}, \vec{o}) \propto \prod_{t=1}^{|\vec{o}|} P(s_t \mid s_{t-1}) P(o_t \mid s_t) \qquad \qquad \mathbf{O_{t-1}} \qquad \mathbf{O_t} \qquad \mathbf{O_{t+1}} \qquad \cdots \\ \mathbf{MEMM} \qquad P(\vec{s} \mid \vec{o}) \propto \prod_{t=1}^{|\vec{o}|} P(s_t \mid s_{t-1}, o_t) \qquad \qquad \mathbf{S_{t-1}} \qquad \mathbf{S_t} \qquad \mathbf{S_{t+1}} \qquad \cdots \\ \propto \prod_{t=1}^{|\vec{o}|} \frac{1}{Z_{s_{t-1}, o_t}} \exp \begin{bmatrix} \sum_{j} \lambda_j f_j(s_t, s_{t-1}) \\ + \sum_{k} \mu_k g_k(s_t, x_t) \end{bmatrix} \qquad \mathbf{O_{t-1}} \qquad \mathbf{O_t} \qquad \mathbf{O_{t+1}} \qquad \cdots \\ \mathbf{CRF} \qquad P(\vec{s} \mid \vec{o}) \propto \frac{1}{Z_{\vec{o}}} \prod_{t=1}^{|\vec{o}|} \exp \begin{bmatrix} \sum_{j} \lambda_j f_j(s_t, s_{t-1}) \\ + \sum_{k} \mu_k g_k(s_t, x_t) \end{bmatrix} \qquad \mathbf{O_{t-1}} \qquad \mathbf{O_t} \qquad \mathbf{O_{t+1}} \qquad \cdots \\ \mathbf{O_{t-1}} \qquad \mathbf{O_t} \qquad \mathbf{O_{t-1}} \qquad \mathbf{O_t} \qquad \mathbf{O_{t-1}} \qquad \cdots \\ \mathbf{O_{t-1}} \qquad \mathbf{O_{t-1}} \qquad \mathbf{O_{t-1}} \qquad \mathbf{O_{t-1}} \qquad \cdots \\ \mathbf{O_{t-1}} \qquad \mathbf{O_{t-1}} \qquad \mathbf{O_{t-1}} \qquad \mathbf{O_{t-1}} \qquad \cdots \\ \mathbf{O_{t-1}} \qquad \mathbf{O_{t-1}} \qquad \mathbf{O_{t-1}} \qquad \mathbf{O_{t-1}} \qquad \cdots \\ \mathbf{O_{t-1}} \qquad \mathbf{O_{t-1}}$$

Что произошло

- ▶ Structured perceptron: не нормализуем ничего
- ► CRF: нормализуем *пути*
- ▶ MEMM: нормализуем переходы
- ▶ НММ: нормализуем переходы И порождение

MEMM

Бонус:

Sparse features & Hashing trick

Feature template

$$I(S_0 = w) \cdot I(N_0 = v) \ \forall w, v$$

Feature template

$$I(S_0 = w) \cdot I(N_0 = v) \ \forall w, v$$

- Просматриваем обучающий корпус.
- ▶ Собираем все встречающиеся фичи.
- Записываем индекс в хеш-таблицу.
- ▶ ...

Feature template

$$I(S_0 = w) \cdot I(N_0 = v) \ \forall w, v$$

- Просматриваем обучающий корпус.
- ▶ Собираем все встречающиеся фичи.
- Записываем индекс в хеш-таблицу.
- **.**..

Проблемы:

- Сложно
- Плохо (не встретили много комбинаций)

Мотивация

$$I(S_0 = w) \cdot I(N_0 = v) \ \forall w, v$$

- ▶ Есть фичи *i*
- \blacktriangleright Есть вектор фичей f.
- ightharpoonup Есть вектор параметров w
- f[i] = 1

- ▶ Есть фичи *i*
- \blacktriangleright Есть вектор фичей f.
- \blacktriangleright Есть вектор параметров w
- f[i] = 1
- ► a + b
- αν
- ightharpoonup tanh(v)
- ► (f, w)

- ▶ int i
- ▶ vector<float> f
- ▶ vector<float> w
- \rightarrow f[i] = 1

```
▶ int i
vector<float> f
▶ vector<float> w
\rightarrow f[i] = 1
\triangleright c[i] = a[i] + b[i]
▶ u[i] = alpha * v[i]
\blacktriangleright u[i] = tanh(v[i])
▶ c += f[i] * w[i]
```

▶ string s

Свойства:

► K примеру, s = "S0=a|N0=cat"

- ▶ string s
- ▶ map<string, float> f
- ► map<string, float> w

- ▶ К примеру, s = "S0=a|N0=cat"
- ▶ 0 по умолчанию

- ▶ string s
- ▶ map<string, float> f
- ► map<string, float> w
- f[s] = 1

- ▶ К примеру, s = "S0=a|N0=cat"
- ▶ 0 по умолчанию

- ▶ string s
- ▶ map<string, float> f
- ► map<string, float> w
- \rightarrow f[s] = 1
- \triangleright c[s] = a.get(s, 0) + b.get(s, 0)

- ▶ К примеру, s = "S0=a|N0=cat"
- ▶ 0 по умолчанию

> string s
> map<string, float> f
> map<string, float> w
> f[s] = 1
> c[s] = a.get(s, 0) + b.get(s, 0)
> u[s] = alpha * v[s]
> u[s] = tanh(v[s])

- ▶ К примеру, s = "S0=a|N0=cat"
- ▶ 0 по умолчанию

- string s
 map<string, float> f
 map<string, float> w
- \rightarrow f[s] = 1
- \triangleright c[s] = a.get(s, 0) + b.get(s, 0)
- \triangleright u[s] = alpha * v[s]
- \triangleright u[s] = tanh(v[s])
- ightharpoonup c += f.get(s, 0) * w.get(s, 0)

- ▶ К примеру, s = "S0=a|N0=cat"
- 0 по умолчанию

- ▶ string s
- ▶ map<string, float> f
- ► map<string, float> w
- f[s] = 1
- \triangleright c[s] = a.get(s, 0) + b.get(s, 0)
- \triangleright u[s] = alpha * v[s]
- \triangleright u[s] = tanh(v[s])
- ightharpoonup c += f.get(s, 0) * w.get(s, 0)

- ▶ К примеру, s = "S0=a|N0=cat"
- 0 по умолчанию
- Большинство фичей нули
- ▶ Храним только то, что не равно нулю

- string s
 map<string, float> f
 map<string, float> w
- \rightarrow f[s] = 1
- \triangleright c[s] = a.get(s, 0) + b.get(s, 0)
- \bullet u[s] = alpha * v[s]
- \triangleright u[s] = tanh(v[s])
- \triangleright c += f.get(s, 0) * w.get(s, 0)

- ▶ К примеру, s = "S0=a|N0=cat"
- 0 по умолчанию
- ▶ Большинство фичей нули
- ▶ Храним только то, что не равно нулю
- ▶ Не надо перечислять заранее

Hashing trick

```
N = 2 ** 20
class HashTable:
    def __init__(self):
        self.array = np.zeros(N)
    def get(self, feat_str):
        return self.array[HASH(feat_str) % N]
    def set(self, feat_str, value):
        self.array[HASH(feat_str) % N] = value
```

Hashing trick

```
N = 2 ** 20
class HashTable:
    def init (self):
        self.array = np.zeros(N)
   def get(self, feat_str):
        return self.array[HASH(feat_str) % N]
   def set(self, feat_str, value):
        self.array[HASH(feat_str) % N] = value
```

- Коллизии
- ▶ Не надо заранее перечислять фичи
- Быстрее

Hashing trick

```
N = 2 ** 20
class HashTable:
    def __init__(self):
        self.array = np.zeros(N)
    def get(self, feat_str):
        return self.array[HASH(feat_str) % N]
    def set(self, feat_str, value):
        self.array[HASH(feat_str) % N] = value
```

- Коллизии
- Не надо заранее перечислять фичи
- Быстрее
- ▶ Модель фиксированного размера