

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

## Curso de Tecnologia em Sistemas de Computação Disciplina: Computação Gráfica AP3 - 2° semestre de 2014.

### Nome -

### Assinatura -

#### Observações:

- i) Prova sem consulta e sem uso de máquina de calcular.
- ii) Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- iii) Você pode usar lápis para responder as questões.
- iv) Ao final da prova devolva as folhas de questões e as de respostas.
- v) Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Na última página encontra-se a folha de respostas. Preencha corretamente e sem rasuras. Todas as questões tem o mesmo peso.

- Seja *I* a intensidade da luz incidente em um ponto *p*, *l* o vetor que indica a direção de incidência da luz, *v* a posição do observador, *n* a normal em *p* e *r* o raio de luz refletido. NÃO podemos afirmar sobre a equação (r.v)<sup>x</sup>
  - A Trata-se da componente especular do modelo Phong
  - B Quanto maior x, mais distante o material está de um espelho
  - C não são todos os materiais que possuem esta componente
  - D Esta componente é variante de acordo com a posição do observador
  - E r e v devem estar normalizados para que esta equação seja válida
- 2) As coordenadas de texturas para mapear imagens prontas
  - A São vértices e definem uma coordenada espacial para a textura
  - B Devem ser criadas durante o pipeline gráfico
  - C São coordenadas bidimensionais
  - D São usadas em texturas procedurais
  - E São geradas depois do estágio de iluminação
- 3) Se não fosse pelo Z-Buffer:
  - A Não poderíamos realizar a interpolação das cores dos vértices.
  - B Faltariam informações para o clipping
  - C Não haveria como estimar quais polígonos estão fora do frustrum da camera
  - D Não seria pintar os polígonos na ordem de profundidade
  - E Não haveria informação de profundidade da camera

- 4) Qual destes elementos não necessários para calcular o frustrum culling (por exemplo, a BSP):
  - A posição da câmera
  - B Lista de vértices da malha
  - C Lista de Fontes de Luz
  - D Direção da camera
  - E Angulo de abertura da camera.
- 5) Não podemos dizer que um vertex shader:
  - A pode ser programado.
  - B Pode gerar novos triângulos
  - C altera os vértices da geometria.
  - D Pode conter um modelo de iluminação
  - E permite manipular coordenadas de texturas
- 6) Um dos principais gargalos do ray-tracing é:
  - A A projeção dos polígonos
  - B O cálculo de oclusão
  - C O cálculo de interseção raio-polígonos
  - D A interpolação dos triângulos
  - E O cálculo do componente especular
- 7) Pode-se afirmar que curvas poligonais:
  - A Podem aproximar uma região do plano com grau de precisão desejado adicionando e posicionando apropriadamente um número suficiente de vértices
  - B Fornecem uma representação compacta (com poucos elementos) para formas do plano independentemente de sua complexidade
  - C Permitem a fácil manipulação do formato de regiões complexas
  - D São o tipo de curva mais apropriado para representar formas suaves
  - E Não são apropriadas para representar polígonos
- 8) São transformações que preservam distâncias e ângulos de objetos no plano e no espaço:
  - A Transformações projetivas
  - B Escalas e rotações
  - C Transformações lineares
  - D Translações e rotações
  - E Somente rotações
- 9) Não é uma das propriedades das coordenadas homogêneas:
  - A Pontos afins, com coordenadas homogêneas (x,y,1), podem ser convertidos para coordenadas euclidianas descartando a última coordenada
  - B As transformações afins em dimensão n, em coordenadas homogêneas, são dadas por matrizes que descrevem transformações lineares em um espaço de dimensão n+1
  - C A composição de transformações afins e projetivas, utilizando coordenadas homogêneas, pode ser feita somente através de multiplicação de matrizes
  - D Não representam adequadamente pontos no infinito

E Pontos com coordenadas (x,y,w) e (x/w,y/w,1), para w≠0 ,são equivalentes

- 10) São exemplos de B-Splines
  - A Nurbs
  - B Curvas de Bézier
  - C Curvas poligonais
  - D Curvas implícitas
  - E Curvas de Hermite

11) Pode-se afirmar que a matriz 
$$\begin{bmatrix} 2z^2 & 0 & 0 & 0 \\ 0 & 4z^3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
:

- A Aplica uma escala uniforme
- B Aplica uma escala no eixo x e y que depende da coordenada z
- C Efetua uma translação
- D É um movimento de corpo rígido
- E É uma transformação projetiva
- 12) Pode-se afirmar que a matriz  $\begin{bmatrix} 2 & 0 & -4 \\ 3 & 1 & -4 \\ 1 & 0 & 1 \end{bmatrix}$ :
  - A É uma transformação afim
  - B É uma transformação linear
  - C É uma translação e uma rotação
  - D É um movimento de corpo rígido
  - E É uma transformação projetiva

# Tabela de respostas. Preencha sem rasuras apenas uma resposta:

| Questão  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|----------|---|---|---|---|---|---|---|---|---|----|----|----|
| Resposta | В | С | D | С | В | C | Α | D | D | A  | В  | Е  |