Determining an Optimal Threshold on the Online Reserves of a Bitcoin Exchange

Samvit Jain Edward Felten Steven Goldfeder

Princeton University
Department of Computer Science

Overview

- Central question: how to store Bitcoin in a way that reduces impact of theft events
- Key concepts
 - Bitcoin ownership
 - Hot/cold wallet storage
 - Hot online (e.g. file on computer, smartphone app)
 - Cold offline (e.g. hard drive locked in safe, paper wallet)

Problem Formulation

Motivation

- Prevalence of high profile Bitcoin theft
 - 45% of exchanges ever operational shut down (2013)
- Theft nullifies advantages of using Bitcoin
 - Subsidized by higher insurance premiums and exchange fees
- Theft undermines public trust in Bitcoin
 - Influences exchange rate, funding climate, community growth

Related Work

- Companies (e.g. Coinbase) implement security heuristics
 - Data encryption, safe storage, geographic diversification
 - Practices don't generalize, aren't necessarily optimal
- Significant research on improving Bitcoin wallets
 - Extensions to core protocol, cryptographic innovations
- What's missing: system analysis at a given level of security
 - Goal: better high-level designs for storage systems

Related Work

Approach

- Goal: maximize hot/cold wallet balance at arbitrary time T
- Formula for expected total balance
 - By linearity of expectation

$$B(T) = Ex[D - W] - k_1\mu - \frac{k_2}{\mu}$$

- D W represents net arrivals (deposits minus withdrawals)
- $k_1\mu$ represents losses due to hot wallet theft
- k_2/μ represents losses due to cold wallet theft

Approach

• Determine optimal hot wallet threshold μ

$$B(T) = Ex[D - W] - k_1\mu - \frac{k_2}{\mu}$$

• Optimize B(T) by setting first derivative to 0 and solving for μ

$$\frac{dB(T)}{d\mu} = -k_1 + \frac{k_2}{\mu^2} = 0$$

$$\mu = \sqrt{\frac{k_2}{k_1}}$$

Approach

• Experimental evidence that optimal μ can be found

- · Series of models, each a larger subsystem of original setup
 - Model 1: Hot wallet only. No thefts.
 - Model 2: Hot wallet only. Hot wallet theft with rate λ_{ht}
 - Model 3: Hot and cold wallet.

The result

- Gives hot/cold wallet balance after long time T
- Must only look at events since last cold wallet theft
 - First term expected net arrivals
 - Second term losses due to hot wallet theft

Expected time to empty hot wallet
(C→H refill)

Probability of cold wallet theft

Hot Wallet Depletions

$$t = 0$$

t = t'

t = T

Cold Wallet Thefts

Last cold wallet theft in [0, T]

- How to find X_{μ} (time to empty hot wallet)
 - Model hot wallet balance as continuous time random walk

<u>Event</u>	State Transition	Probability
Deposit	$X_k \rightarrow X_{k+1}$	\lambda dt
Withdrawal	$X_k \rightarrow X_{k-1}$	\lambda _wt
Hot Wallet Theft	$X_k \rightarrow X_0$	\(\lambda_{\text{ht}} \tau_{\text{t}} \)
No Event	$X_k \rightarrow X_k$	$1 - (\mathbf{\lambda}_{d} + \mathbf{\lambda}_{w} + \mathbf{\lambda}_{ht})t$

- How to find X_u (time to empty hot wallet)
 - Can write recurrence relation

$$X_{k} = t + (\lambda_{d}t)X_{k+1} + (\lambda_{w}t)X_{k-1} + (\lambda_{t_{h}}t)X_{0} + (1 - (\lambda_{d} + \lambda_{w} + \lambda_{t_{h}})t)X_{k}$$

- LHS expected time to reach 0 BTC from k BTC
- RHS t + expected time to reach 0 BTC after passage of small time t
- Solve recurrence
 - Write/solve characteristic polynomial
 - Impose boundary conditions $(X_0 \text{ and } X_u)$

- How to find X_u (time to empty hot wallet)
 - Solution

$$X_{\mu} = \frac{1}{\lambda_{t_h}} + \frac{1}{\lambda_{t_h}} \left(\frac{\lambda_w (x_2 - x_1)(x_1 x_2)^{\mu - 1}}{\left[\lambda_w (x_1 - 1) + \lambda_{t_h} x_1\right] x_1^{\mu - 1} - \left[\lambda_w (x_2 - 1) + \lambda_{t_h} x_2\right] x_2^{\mu - 1}} \right)$$

Expected Time $X\mu$ vs. Threshold μ

Experiment

- Event-driven simulation
 - Set values for λ_d , λ_w , λ_{ht} , p_{ct} (e.g. 80/hour, 78/hour, 0.01/hour, 0.01/access)
 - Set simulation parameters threshold μ , timespan T, iterations i

```
while (time < T) {
    Event nextEvent = drawEvent(\(\lambda_d\), \(\lambda_w\), \(\lambda_{ht}\))
    switch (nextEvent.Type) {
        case (Event.DEPOSIT): deposit()
        case (Event.WITHDRAWAL): withdraw()
        case (Event.HOT_THEFT): emptyHotWallet()
    }
    if (hotBalance == 0) refillHotWallet(\(\mathbf{p}_{ct}\))
    time += nextEvent.Time
}

print(mu, hotBalance + coldBalance)</pre>
```

Results

<u>Theory</u>

$$Ex[B] = (\lambda_d - \lambda_w) \frac{X_{\mu}}{p_{t_c}} - (\gamma \mu) \left(\lambda_{t_h} \frac{X_{\mu}}{p_{t_c}} \right)$$

Simulation

Average over 1000 iterations

Optimal Threshold

Theory	$\mu = 112.88$
Empirical (abs. maximum)	$\mu = 114$
Empirical (poly. interpolation)	$\mu = 111.05$

Applications

- Calibrated threshold
 - Exploits periodicities in transaction frequency
 - Organization maintains history block
 - Record of last k hours of deposits, withdrawals, thefts, $C \rightarrow H$ transfers
 - Capacity of hot wallet (i.e. μ) computed and updated dynamically

Further Work

- Multiple wallet systems
 - Goal: separate servicing from storage
 - Pyramid model
 - Layers of security
 - Wallet W_k overflows into W_{k+1} and refills W_{k-1}
 - Lower layers hold majority of reserves

Question: optimal threshold for each level?

References

Special thanks to our reviewers and to WEIS for hosting this event

Papers

• T. Moore and N. Christin, "Beware the Middleman: Empirical Analysis of Bitcoin-Exchange Risk," in FC 2013, Springer, 2013, pp. 25-33.

Books

A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, *Bitcoin and Cryptocurrency Technologies*, Princeton University, 2015.

Images

- https://www.coinbase.com/security
- http://organofcorti.blogspot.com/2014/11/daily-and-weekly-bitcoin-transaction.html
- https://pixabay.com/en/pyramids-layers-blue-3d-305074/

See https://github.com/SamvitJ/WEIS2016-Programs for simulation code

Appendix

- Expectation
 - Sum rule (linearity)
 - Product rule
- Poisson processes
 - Linear rate scaling
 - Memorylessness

$$Ex[A + B] = Ex[A] + Ex[B]$$

$$Ex[AB] = Ex[A] \cdot Ex[B]$$

λ expected arrivals in time 1 Τλ expected arrivals in time T

Time to next arrival *not* dependent on time waited