

Fakultät Mathematik Institut für Numerik, Professur für Numerik der Optimalen Steuerung

OPTIMIERUNG UND NUMERIK

Dr. John Martinovic

Wintersemester 2019/20

Autor : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Inhaltsverzeichnis

1	Einführung	2
	1.1 Aufgabenstellung und Grundbegriffe	2
	1.2 Beispiele zur kontinuierlichen Optimierung	3
	1.2.1 Transportoptimierung	3

— Kapitel 1 — EINFÜHRUNG

1.1 Aufgabenstellung und Grundbegriffe

Es seien $G \subseteq \mathbb{R}^n$ und $f: G \to \mathbb{R}$ gegeben. In dieser Vorlesung betrachten wir Optimierungsaufgaben (OA) der Form

$$f(x) \to \min$$
 bei $x \in G$ (1.1)

Man nennt

- \blacksquare f die **Zielfunktion**,
- \blacksquare G den **zulässigen Bereich** und
- \blacksquare ein $x \in G$ zulässigen Punkt (oder zulässige Lösung).

Ein zulässiger Punkt $x^* \in G$ heißt **optimal** (oder Lösung oder optimale Lösung), wenn für alle $x \in G$ die Ungleichung

$$f(x^*) \le f(x) \tag{1.2}$$

gilt. Falls das Problem (1.1) lösbar ist, so wird mit $f^* = f(x^*)$ der **Optimalwert** bezeichnet. Das Problem (1.1) ist ein

- unrestringiertes (oder freies) Optimierungsproblem, wenn $G = \mathbb{R}^n$ gilt,
- \blacksquare and emfalls (d.h. für $G \neq \mathbb{R}^n$) ein **restringiertes** Problem

und außerdem eine

- diskrete (oder ganzzahlige) OA (engl. integer program), falls jede Variable eine diskreten
 Menge angehört
- kontinuierliche (oder stetige) OA, falls alle Variablen stetige Werte annehmen
- gemischt ganzzahlige OA, wenn sowohl stetige als auch diskrete Variablen vorkommen.

Gilt in (1.1) $f(x) = c^{\top}x$ für ein $c \in \mathbb{R}^n$ und ist G durch lineare Bedingungen beschreibbar, so heißt (1.1) **linear**. In diesem Fall lässt sich (1.1) schreiben als

$$c^{\top}x \to \min$$
 bei $Ax = a, Bx \le b$ (1.3)

mit geeigneten Matrizen A und B sowie Vektoren a und b.

Gerade für (gemischt) ganzzahlige OA kann die Lösung der Originalaufgabe schwierig sein. Eine verwandte, jedoch im Allgemeinen leichter zu lösende Aufgabe kann in diesen Fällen wie folgt erhalten werden:

Definition 1.1

Wir betrachten die Optimierungsaufgaben

- (P) $f(x) \to \min$ bei $x \in D \cap E$
- (Q) $g(x) \to \min$ bei $x \in E$
- (Q) heißt **Relaxation** zu (P) falls $g(x) \leq f(x)$ für alle $x \in D \cap E$ gilt. In vielen Fällen wird dabei g = f gewählt.

Der Optimalwert der Relaxation kann als Näherung (bzw. untere Schranke) für den tatsächlichen Optimalwert von (P) genutzt werden. Meistens liefert die Lösung von (Q) jedoch keinen zulässigen Puntk für (P).

Satz 1.1

Ist \overline{x} eine Lösung von (Q) und gilt $\overline{x} \in D$ sowie $f(\overline{x}) = g(\overline{x})$, dann löst \overline{x} auch (P).

Beweis. siehe Übung

Definition 1.2

Seien (Q1) und (Q2) Relaxationen zu (P). (Q1) heißt **stärker** (oder strenger) als (Q2), wenn die Schranke (d.h. der Optimalwert) von (Q1) größer oder gleich der Schranke (Optimalwert) von (Q2) für jede Instanz von (P) ist.

Anmerkung. Zur Erklärung des Begriffes "Instanz" betrachte das folgende Beispiel.

- Problemklasse: $c^{\top}x \to \min$
- Instanz der Problemklasse: $x_1 + 2x_2 3x_3 \rightarrow \min$

Eine Instanz ist also eine konkrete Belegung.

1.2 Beispiele zur kontinuierlichen Optimierung

1.2.1 Transportoptimierung

Es gebe Erzeuger $i \in I = \{0, ..., n\}$ und Verbraucher $j \in J = \{1, ..., n\}$. Weiterhin seien die Kosten c_{ij} für den Transport einer Einheit von i nach j sowie der Vorrat $a_i > 0$ und der Bedarf $b_j > 0$ für alle i und j gegeben. Wie muss der Transport organisiert werden, damit die Gesamtkosten minimal sind?

Für jedes mathematische Modell einer OA braucht man

- \blacksquare geeignete Variablen $(\rightarrow x)$
- Zielfuntkion $(\rightarrow f)$
- Nebenbedingungen $(\rightarrow G)$

Variablen $x_{ij} \geq 0$ für alle $i \in I$ und $j \in J$ beschreibe die Einheiten, die von i nach j transportiert werden.

Zielfunktion
$$f(x) = \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \to \min$$

KAPITEL 1. EINFÜHRUNG

Nebenbedingungen

- Kapazitätsbeschränkung der Erzeuger $i \in I$: $\sum_{j \in J} x_{ij} \leq a_i \quad (i \in I)$ Bedarfserfüllung von Verbrauchern $j \in J$: $\sum_{i \in I} x_{ij} \geq b_j \quad (j \in J)$

Somit können wir als Modell formulieren:

$$f(x) = \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \to \min \quad \text{bei } \sum_{j \in J} x_{ij} \le a_i \ (i \in I),$$

$$\sum_{i \in I} x_{ij} \ge b_j \ (j \in J),$$

$$x_{ij} \ge 0 \ ((i,j) \in I \times J)$$