数学物理方程

第一章方程的一般概念

第一节方程的基本概念

■ 定义: 一个含有多元未知函数及其偏导数的方程, 称为偏微分方程。

一般形式:

$$F(x_1, x_2, \dots, x_n, u, u_{x_1}, u_{x_2}, \dots, u_{x_n}, u_{x_1x_1}, \dots) = 0$$

其中u 为多元未知函数,F是 x_1, x_2, \dots, x_n, u 以及 u的有限个偏导数的已知函数。

注意: 在偏微分方程中可以不含未知函数u, 但必须含有 未知函数u的偏导数。

- 定义:偏微分方程中未知函数的最高阶偏导数的阶数称为偏微分方程的阶。
- 定义:如果一个偏微分方程对于未知函数及其各阶偏导数都是一次的,及其系数仅依赖于自变量,就称为线性偏微分方程。
- 二阶线性偏微分方程的一般形式:

$$\sum_{i,j=1}^{n} a_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x_{i}} + cu = f(x_{1}, \dots, x_{n}).$$

波动方程

$$u_{tt} = a^2 u_{xx} + f(x,t)$$

热传导方程

$$u_t = a^2 u_{xx} + f(x,t)$$

位势方程

$$u_{xx} + u_{yy} = f(x, y) \Rightarrow \begin{cases} f(x, y) = 0, Laplace$$
 方程
$$f(x, y) \neq 0, Poisson$$
 方程

第二节二阶线性偏微分方程的分类

- 一、方程的分类
 - 一般形式

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + b_1u_x + b_2u_y + cu = f$$
 (1)

其中 $\mathbf{u}(\mathbf{x},\mathbf{y})$ 是未知函数, $a_{11},a_{12},a_{22},b_1,b_2,c,f$

都是x,y的已知函数,且 a_{11},a_{12},a_{22} 不同时为零。

称 $\Delta = a_{12}^2 - a_{11}a_{22}$ 为方程的判别式。

定义:(1)若在 (x_0, y_0) 处 $\Delta > 0$,称方程(1)在点 (x_0, y_0) 处为双曲型方程;

- (2) 若在(x_0 , y_0) 处 $\Delta = 0$, 称方程(1) 在点(x_0 , y_0) 处为抛物型方程;
- (3)若在 (x_0, y_0) 处 $\Delta < 0$,称方程(1)在点 (x_0, y_0) 处为椭圆型方程。

例: 波动方程 $u_{tt} = a^2 u_{xx} + f(x,t)$ $\Delta = a^2 > 0$ 双曲型

热传导方程
$$u_t = a^2 u_{xx} + f(x,t)$$
 $\Delta = 0$ 抛物型

位势方程
$$u_{xx} + u_{yy} = f(x, y)$$
 $\Delta = -1$ 椭圆型

二、方程的标准形式

定义: 方程

$$u_{xy} = A_1 u_x + B_1 u_y + C_1 u + D_1,$$

 $u_{yy} - u_{xx} = A_2 u_x + B_2 u_y + C_2 u + D_2,$ 分别称为

双曲型方程的第一标准形和第二标准形。

方程 $u_{xx} + u_{yy} = A_5 u_x + B_5 u_y + C_5 u + D_5$, 称为椭圆型方程的标准形。

三、方程的化简

步骤:第一步:写出判别式 $\Delta = a_{12}^2 - a_{11}a_{22}$,根据判别式判断方程的类型;

第二步:根据方程(1)写如下方程

$$a_{11}(\frac{dy}{dx})^2 - 2a_{12}\frac{dy}{dx} + a_{22} = 0$$
 (2) 称为方程(**1**)的特征方程。方程(**2**)可分解为两个一次方程

$$\frac{dy}{dx} = \frac{a_{12} \pm \sqrt{\Delta}}{a_{11}}$$
 (3) 称为特征方程,其解为特征线。

设这两个特征线方程的特征线为 $\varphi(x,y) = c_1, \psi(x,y) = c_2$.

第三步(1)当 $_{\Delta>0}$ 时,令 $\xi=\varphi(x,y),\eta=\psi(x,y)$. 以 ξ,η 为 新变量方程(1)化为标准形 $u_{\xi\eta}=Au_{\xi}+Bu_{\eta}+Cu+D$, 其中A,B,C,D都是 ξ,η 的已知函数。

(2)当 $\Delta = 0$ 时,特征线 $\varphi(x,y) = c$. $\diamondsuit \xi = \varphi(x,y), \eta = \psi(x,y)$. 其中 $\eta(x,y)$ 是与 $\varphi(x,y)$ 线性无关的任意函数,这样以 ξ,η 为新变量方程(1)化为标准形 $u_{\eta\eta} = Au_{\xi} + Bu_{\eta} + Cu + D$, 其中A,B,C,D都是 ξ,η 的已知函数。

(3)当 $\Delta < 0$ 时,令 $\alpha = \frac{1}{2}(\xi + \eta), \beta = \frac{1}{2i}(\xi - \eta)$. 以 α, β 为新 变量方程(1)化为标准形 $u_{\alpha\alpha} + u_{\beta\beta} = Au_{\alpha} + Bu_{\beta} + Cu + D$,其中A,B,C,D都是 α, β 的已知函数。

例**1.**化标准形式并求通解 $u_{xx} + u_{xy} - 2u_{yy} = 0$.

例2.化标准形式 $au_{xx} + 2au_{xy} + au_{yy} + bu_x + cu_y + u = 0.$

例3.化标准形式 $u_{xx} + 4u_{xy} + 5u_{yy} + u_x + 2u_y = 0$.

注意: 二阶偏微分方程含有两个任意函数,

二阶常微分方程含有两个任意常数。

第二章 行波法

第一节 定解问题

一、定义

- 1.我们把描述一个物理过程的偏微分方程称为泛定方程。
- 2.一个过程中发生的具体条件称为定解条件。
- 3.泛定方程带上适当的定解条件,就构成一个定解问题。
- **4.**用来表示初始状态的条件称为初始条件; 用来描述边界上的约束情况的条件称为边界条件。
- 注意:初始条件的个数与方程中出现的未知函数u对时间变量t的导数的阶数有关。

二、定解问题

- 1.初值问题(Cauchy问题) 只有泛定方程和初始条件的定解问题。
- 2.边值问题 泛定方程加上边界条件的定解问题。
- 注意:位势方程只有边值问题(位势方程与时间无关,所以不提初始条件)。
- 3.混合问题 既有初始条件又有边界条件的定解问题。

三、叠加原理

■ 原理:

- 线性方程的解可以分解成几个部分的线性叠加, 只要这些部分各自满足的方程的相应的线性叠加 正好是原来的方程
- 如:L u₁ = f₁
- $\blacksquare \qquad L u_2 = f_2$
- 则: L (au₁+ bu₂)= af₁ + bf₂

四、弦的振动方程的导出

(考察一根均匀柔软的细弦,平衡时沿ox轴绷紧) 考察一根长为l的细弦,给定弦的一个初始位移和初始 速度,弦作横振动,确定弦上各点的运动规律。

- 设弦在xu平面内振动,在某一时刻t,弦的瞬时状态已给出,此时x点弦的位移为u(x,t).
- 考察原长为dx的一小段弦(x,x+dx).在振动时这小段 弦的长度为

$$\Delta s = \int_{x}^{x+dx} \sqrt{(du)^{2} + (dx)^{2}} = \int_{x}^{x+dx} \sqrt{1 + (u_{x})^{2}} dx.$$

由于只考虑微小振动,略去 $(u_x)^2$,所以 $\Delta s = dx$. 即弦的长度变化忽略不计。而在弦上 \mathbf{x} 及 $\mathbf{x}+\mathbf{d}\mathbf{x}$ 点弦的张力为 $F_T(x,t),F_T(x+dx,t)$ 与 \mathbf{x} 轴夹角为 α_1,α_2 用 $\boldsymbol{\rho}$ 表示单位长度弦的质量,则长为 $\mathbf{d}\mathbf{x}$ 的一小段弦的质量为 $\boldsymbol{\rho}dx$ 。 u_{tt} 是弦的加速度,及单位长度弦上所受的外力大小为 $\mathbf{F}(\mathbf{x},\mathbf{t})$.

则根据牛顿第二定律,有

$$\rho dx u_{tt} = F_{T,x+dx} \sin \alpha_2 - F_{T,x} \sin \alpha_1 + F(x,t) dx.$$

$$F_{T,x+dx} \cos \alpha_2 - F_{T,x} \cos \alpha_1 = 0.$$

对微小振动, α_1,α_2 . 都很小,故 $\cos \alpha_1 \approx \cos \alpha_2 \approx 1$.

即 $F_{T,x+dx} \approx F_{T,x}$,并且 F_T 的值不随时间变化,为常数。同样 α_1,α_2 . 都很小,有 $\sin \alpha_1 \approx tg\alpha_1,\sin \alpha_2 \approx tg\alpha_2$.

根据导数的几何意义:

$$tg\alpha_1 = u_x(x,t), tg\alpha_2 = u_x(x+dx,t).$$

这样方程变为

$$F_{T}\left\{\frac{\partial u(x+dx,t)}{\partial x} - \frac{\partial u(x,t)}{\partial x}\right\} + F(x,t)dx = \rho dx u_{tt},$$

$$\Leftrightarrow a^{2} = \frac{F_{T}}{\rho}, f(x,t) = \frac{F(x,t)}{\rho},$$

则

$$u_{tt} = a^2 u_{xx} + f(x,t)$$

为一维波动方程。

第二节一维齐次波动方程的cauchy问题

一、D'Alembert公式

考虑无界弦的自由振动(cauchy问题即初值问题)

$$\begin{cases} u_{tt} = a^2 u_{xx}, -\infty < x < +\infty, t > 0, \\ u(x,0) = \varphi(x), u_t(x,0) = \psi(x). \end{cases}$$

解:(1)化标准形,然后求通解

$$\left(\frac{dx}{dt}\right)^2 - a^2 = 0 \Rightarrow \begin{cases} x + at = c_1 \\ x - at = c_2 \end{cases} \Rightarrow \begin{cases} \xi = x + at \\ \eta = x - at \end{cases}$$

故原方程化为 $u(\xi,\eta)=0$.

则 $u(\xi,\eta) = F(\xi) + G(\eta)$,

方程的通解u(x,t) = F(x+at) + G(x-at).

(2)由初始条件确定F,G

$$\begin{cases} F(x) + G(x) = \varphi(x), \\ a(F'(x) - G'(x)) = \psi(x) \end{cases}$$

$$\begin{cases} F(x) + G(x) = \varphi(x), \\ F(x) + G(x) = \frac{1}{a} \int_{x_0}^x \psi(\xi) d\xi + c \end{cases}$$

解得
$$\begin{cases} F(x) = \frac{1}{2}\varphi(x) + \frac{1}{2a}\int_{x_0}^x \psi(\xi)d\xi + \frac{c}{2}, \\ G(x) = \frac{1}{2}\varphi(x) - \frac{1}{2a}\int_{x_0}^x \psi(\xi)d\xi - \frac{c}{2}. \end{cases}$$

$$\begin{aligned}
u(x,t) &= F(x+at) + G(x-at) \\
&= \frac{1}{2} \{ \varphi(x+at) + \varphi(x-at) \} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi.
\end{aligned}$$

为D'Alembert公式。

二、解的物理意义

说明
$$u(x,t) = F(x+at) + G(x-at)$$
的物理意义。
设 $u_1(x,t) = F(x+at), u_2(x,t) = G(x-at),$
 $u_1(x,t), u_2(x,t)$ 都是 $u_{tt} = a^2 u_{xx}$ 的解,且
 $u(x,t) = u_1(x,t) + u_2(x,t).$

考察 $u_2(x,t) = G(x-at)$.

对于固定时刻 t_0 , $G(x-at_0)$ 只是自变量 \mathbf{x} 的函数。

考虑时刻 $t_0 + 1$, 由于 $G(x - at_0) = G(x + a - a(t_0 + 1))$

这说明弦上点**x**在时刻 t_0 的振幅和弦上点**x**+a在时刻 t_0 +1的振幅相同,或者说,弦上点**x**在时刻 t_0 的振幅在时刻 t_0 +1传到了**x**+a.由于此关系对弦上的全体点**x**都成立。这说明在时刻 t_0 时的波形 $u_2(x,t_0)$ 经过单位时刻以后,向右平移了 a,即 $u_2(x,t)$ 表示以速度a向右传播的行波称之为右行波。同样, $u_1(x,t)=F(x+at)$ 称之为左行波。

左右行波统称为行波。因此,解可以表示成左右行波 的叠加。这种用左右行波叠加来构造解的方法,称为行波 法。

三、其他cauchy问题

例**1.**
$$\begin{cases} u_{xx} + 2u_{xy} - 3u_{yy} = 0, \\ u(x,0) = \sin x, u_y(x,0) = x. \end{cases}$$

解:
$$\left(\frac{du}{dx}\right)^2 - 2\frac{du}{dx} - 3 = 0 \Rightarrow \begin{cases} y - 3x = c_1, \\ y + x = c_2 \end{cases}$$

故有

$$u_{\xi\eta} = 0 \Longrightarrow u(x, y) = F(y - 3x) + G(y - x)$$

$$\begin{cases} F(-3x) + G(x) = \sin x, \\ F'(-3x) + G'(x) = x. \end{cases}$$

$$\Rightarrow \begin{cases} F(-3x) + G(x) = \sin x, \\ -\frac{1}{3}F(-3x) + G(x) = \frac{1}{2}x^2 + c, \end{cases}$$

$$\Rightarrow \begin{cases} F(x) = -\frac{3}{4}\sin\frac{x}{3} - \frac{1}{24}x^2 - \frac{3}{4}c, \\ G(x) = \frac{1}{4}\sin x + \frac{1}{8}x^2 + \frac{3}{4}c. \end{cases}$$

所以定解问题的解为

$$u(x,y) = \frac{1}{4}\sin(x+y) + \frac{3}{4}\sin(x-\frac{y}{3}) + xy + \frac{1}{3}y^{2}.$$

例2.求解特征初值问题

$$\begin{cases} u_{tt} - a^{2}u_{xx} = 0, \\ u|_{x-at=0} = \varphi(x), \\ u|_{x+at=0} = \psi(x), \sharp \psi(0) = \psi(0). \end{cases}$$

解: 方程的通解为
$$u(x,t) = F(x+at) + G(x-at)$$

当 $x-at=0$ 时, $F(2x) + G(0) = \varphi(x) \Rightarrow F(x) = \varphi(\frac{x}{2}) - G(0)$;
当 $x+at=0$ 时, $F(0) + G(2x) = \psi(x) \Rightarrow G(x) = \psi(\frac{x}{2}) - F(0)$;
且 $F(0) + G(0) = \psi(0) = \varphi(0)$
故 $u(x,t) = \varphi(\frac{x+at}{2}) + \psi(\frac{x-at}{2}) - \varphi(0)$.

第三节一维非齐次波动方程的cauchy 问题

无界弦的强迫振动问题

(B)
$$\begin{cases} u_{tt} = a^2 u_{xx} + f(x,t), -\infty < x < +\infty, t > 0, \\ u(x,0) = 0, u_t(x,0) = 0. \end{cases}$$
 解记为 $u_2(x,t)$

由叠加原理可知 $u(x,t) = u_1(x,t) + u_2(x,t)$.

对于问题(B),指弦在初始时刻静止于平衡位置,受外 力作用而振动。f(x,t)表示时刻t在x处单位质量所受外力, 是连续的力。从时刻O延续到时刻t, t时刻后的力对弦在 时刻t振动没影响,不必考虑。把[0, t]分成若干小时间段, 设 是其由一段,在时间 [元内把力近似地看 成常力,以 表示, 由Newton第二定律, 常外力 使单位质量产生加速度,所以输上x点在时间段 内产生的速度改变量为 $f(x,\tau)d\tau$ 把这个改变量看作是 $t=\tau$ 时刻的初始速度,这种把外力 化成初始速度的原理称为Duhamel原理。由初始速度 所产生的振动可由下面齐次方程的Cauchy问题描述。

(c)
$$\begin{cases} \tilde{\omega}_{tt} = a^2 \tilde{\omega}_{xx}, t > \tau \\ \tilde{\omega}|_{t=\tau} = 0, \tilde{\omega}_t|_{t=\tau} = f(x,\tau) d\tau \end{cases}$$

$$\Rightarrow \begin{cases} \left(\frac{\tilde{\omega}}{d\tau}\right)_{tt} = a^2 \left(\frac{\tilde{\omega}}{d\tau}\right)_{xx}, t > \tau \\ \left(\left(\frac{\tilde{\omega}}{d\tau}\right)\right)_{t=\tau} = 0, \left(\frac{\tilde{\omega}}{d\tau}\right)_{t} |_{t=\tau} = f(x,\tau) \end{cases}$$

$$\Leftrightarrow \frac{\tilde{\omega}}{1} = \omega,$$

則 (D)
$$\begin{cases} \omega_{tt} = a^2 \omega_{xx}, t > \tau \\ \omega|_{t=\tau} = 0, \omega_t|_{t=\tau} = f(x, \tau) \end{cases}$$

显然 $\tilde{\omega} = \omega d\tau$, 即 $\tilde{\omega}(x,t;\tau) = \omega(x,t;\tau)d\tau$.

$$\Leftrightarrow t' = t - \tau,$$

则 (E)
$$\begin{cases} \omega_{t't'} = a^2 \omega_{xx}, t' > 0 \\ \omega_{t'=0} = 0, \omega_{t'} |_{t'=0} = f(x, \tau) \end{cases}$$

其解为

$$\omega(x,t';\tau) = \frac{1}{2a} \int_{x-at'}^{x+at'} f(\xi,\tau) d\xi.$$

故(D)的解为

$$\omega(x,t;\tau) = \frac{1}{2a} \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,\tau) d\xi.$$

定理(齐次化定理)设 $\omega(x,t;\tau)$ 是问题(D)的解,则

$$u(x,t) = \int_0^t \omega(x,t;\tau)d\tau$$

是问题(B)的解。

证明:
$$u_t = \omega(x,t;t) + \int_0^t \omega_t(x,t;\tau) d\tau$$
.

曲 $\omega(x,t)|_{t=\tau}=0$,故 $\omega(x,t;t)=0$.

所以
$$u_t = \int_0^t \omega_t(x,t;\tau)d\tau$$
.

又 $u|_{t=0} = 0, u_t|_{t=0} = 0$ 故满足 (B) 的初始条件。

而 $u_{tt} = \omega_t(x,t;t) + \int_0^t \omega_{tt}(x,t;\tau)d\tau$

$$= f(x,t) + \int_0^t \omega_{tt}(x,t;\tau)d\tau$$
.
$$u_{xx} = \int_0^t \omega_{xx}(x,t;\tau)d\tau$$
.
$$\omega(x,t;\tau)$$
 满足 $\omega_{tt} = a^2\omega_{xx}$, 故 $u(x,t)$ 满足
$$u_{tt} = a^2u_{xx} + f(x,t)$$
.

第四节 三维波动方程的cauchy问题

一、三维齐次波动方程的cauchy问题

$$\begin{cases} u_{tt} = a^{2}(u_{xx} + u_{yy} + u_{zz}), & -\infty < x, y, z < +\infty, t > 0. \\ u|_{t=0} = f(x, y, z), u_{t}|_{t=0} = g(x, y, z). \end{cases}$$
 (*)

对一维波动方程的cauchy问题公式

$$u(x,t) = \frac{1}{2} \left[f(x+at) + f(x-at) \right] + \frac{1}{2a} \int_{x-at}^{x+at} g(\xi) d\xi$$
$$= \frac{\partial}{\partial t} \left(\frac{t}{2at} \int_{x-at}^{x+at} f(\xi) d\xi \right) + \frac{t}{2at} \int_{x-at}^{x+at} g(\xi) d\xi$$

 $\frac{1}{2at}\int_{x-at}^{x+at} f(\xi)d\xi$ 与 $\frac{1}{2at}\int_{x-at}^{x+at} g(\xi)d\xi$ 是初始位置**f**与初始速度 **g**在以**x**为中心,以**at**为半径的区域[**x-at**, **x+at**]上的算术 平均值。

考虑f(x,y,z)和g(x,y,z)在以M(x,y,z)为中心,以at为 半径的球面上的平均值

$$\overline{f} = \frac{1}{4\pi a^2 t^2} \oiint_{s_{at}^M} f(\xi, \eta, \zeta) ds, \overline{g} = \frac{1}{4\pi a^2 t^2} \oiint_{s_{at}^M} g(\xi, \eta, \zeta) ds.$$

于是(*)问题的解为

$$u(x, y, z, t) = \frac{\partial}{\partial t} (t\overline{f}) + t\overline{g} = \frac{\partial}{\partial t} \left[\frac{t}{4\pi a^2 t^2} \oiint_{s_{at}^M} f(\xi, \eta, \zeta) ds \right] + \frac{t}{4\pi a^2 t^2} \oiint_{s_{at}^M} g(\xi, \eta, \zeta) ds$$
$$= \frac{1}{4\pi a} \frac{\partial}{\partial t} \left(\oiint_{s_{at}^M} \frac{f(\xi, \eta, \zeta)}{r} ds \right) + \frac{1}{4\pi a} \oiint_{s_{at}^M} \frac{g(\xi, \eta, \zeta)}{r} ds$$

该公式称为poisson公式 (球面均值法)

其中 s_{at}^M 是以M(x,y,z)为中心,以r=at为半径的球面。

将公式在球坐标下化为累次积分

球面
$$s_{at}^{M}$$
 的方程为 $(\xi - x)^{2} + (\eta - y)^{2} + (\zeta - z)^{2} = (at)^{2}$

则有

$$\begin{cases} \xi = x + at \sin \theta \cos \varphi \\ \eta = y + at \sin \theta \sin \varphi, 0 < \theta \le \pi \\ \zeta = z + at \cos \theta \quad 0 < \varphi \le 2\pi \end{cases}$$
$$ds = a^2 t^2 \sin \theta d\theta d\varphi$$

故

$$u(x, y, z, t) = \frac{\partial}{\partial t} \left[\frac{t}{4\pi} \int_0^{2\pi} \int_0^{\pi} f(x + at \sin\theta \cos\varphi, y + at \sin\theta \sin\varphi, z + at \cos\theta) \sin\theta d\theta d\varphi \right]$$
$$+ \frac{t}{4\pi} \int_0^{2\pi} \int_0^{\pi} g(x + at \sin\theta \cos\varphi, y + at \sin\theta \sin\varphi, z + at \cos\theta) \sin\theta d\theta d\varphi$$

例:
$$\begin{cases}
u_{tt} = a^2(u_{xx} + u_{yy} + u_{zz}), & -\infty < x, y, z < +\infty, t > 0. \\
u|_{t=0} = x + 2y, u_t|_{t=0} = 0.
\end{cases}$$

解:

$$u = \frac{\partial}{\partial t} \left[\frac{t}{4\pi} \int_0^{2\pi} \int_0^{\pi} \left[(x + at \sin \theta \cos \varphi) + 2(y + at \sin \theta \sin \varphi) \right] \sin \theta d\theta d\varphi$$
$$= x + 2y$$

二、三维非齐次波动方程的cauchy问题

$$\omega(x, y, z, t, \tau) = \frac{1}{4\pi a} \iint_{S_{a(t-\tau)}^{M}} \frac{F(\xi, \eta, \zeta, \tau)}{r} \big|_{r=a(t-\tau)} ds$$

$$\therefore u_2(x, y, z, t) = \frac{1}{4\pi a} \int_0^t d\tau \, \bigoplus_{s_{a(t-\tau)}^M} \frac{F(\xi, \eta, \zeta, \tau)}{r} \big|_{r=a(t-\tau)} \, ds$$

$$=\frac{1}{4\pi a^2}\int_0^{at}dr \bigoplus_{s_{a(t-\tau)}^M} \frac{F(\xi,\eta,\zeta,t-\frac{r}{a})}{r}ds$$

$$= \frac{1}{4\pi a^2} \iiint_{r \leq at} \frac{F(\xi, \eta, \zeta, t - \frac{r}{a})}{r} dv$$

故

$$u(x, y, z, t) = \frac{\partial}{\partial t} \left[\frac{t}{4\pi a^2 t^2} \oiint_{s_{at}^M} f(\xi, \eta, \zeta) ds \right] + \frac{t}{4\pi a^2 t^2} \oiint_{s_{at}^M} g(\xi, \eta, \zeta) ds$$

$$+\frac{1}{4\pi a^2} \iiint_{r \leq at} \frac{F(\xi, \eta, \zeta, t - \frac{r}{a})}{r} dv.$$

第五节 二维波动方程的cauchy问题

一、二维齐次波动方程(降维法)

$$\begin{cases} u_{tt} = a^{2}(u_{xx} + u_{yy}), & -\infty < x, y < +\infty, t > 0. \\ u|_{t=0} = f(x, y), u_{t}|_{t=0} = g(x, y). \end{cases}$$

令
$$\tilde{u}(x, y, z, t) = u(x, y, t)$$
 $\tilde{u}_{tt} = u_{tt}, \tilde{u}_{xx} = u_{xx}, \tilde{u}_{yy} = u_{yy}, \tilde{u}_{zz} = 0,$ 改写方程为 $\begin{cases} \tilde{u}_{tt} = a^2(\tilde{u}_{xx} + \tilde{u}_{yy} + \tilde{u}_{zz}), \\ \tilde{u}|_{t=0} = f(x, y), \ \tilde{u}_{t}|_{t=0} = g(x, y). \end{cases}$

利用三维波动问题的poisson公式 $\tilde{u} = \frac{\partial}{\partial t}(t\bar{f}) + t\bar{g}$ **1)** $\bar{f} = \frac{1}{4\pi a^2 t^2} \iint_{\Sigma_{+}^{M}} f ds$,

$$\Sigma_{at}^{M} : (\xi - x)^{2} + (\eta - y)^{2} + (\zeta - z)^{2} = (at)^{2}$$

上、下半球面在坐标平面上的投影为

$$(\xi - x)^2 + (\eta - y)^2 \le (at)^2$$

上、下半球面的面积元素相同

$$\zeta = z \pm \sqrt{(at)^{2} - (\xi - x)^{2} - (\eta - y)^{2}},$$

$$ds = \sqrt{1 + \zeta_{\xi}^{2} + \zeta_{\eta}^{2}} d\xi d\eta,$$

$$\zeta_{\xi} = \frac{-(\xi - x)}{\sqrt{(at)^{2} - (\xi - x)^{2} - (\eta - y)^{2}}},$$

$$\zeta_{\eta} = \frac{-(\eta - y)}{\sqrt{(at)^{2} - (\xi - x)^{2} - (\eta - y)^{2}}},$$

$$\therefore ds = \sqrt{1 + \zeta_{\xi}^{2} + \zeta_{\eta}^{2}} d\xi d\eta$$

$$= \frac{atd\xi d\eta}{\sqrt{(at)^{2} - (\xi - x)^{2} - (\eta - y)^{2}}},$$

$$\overline{f} = \frac{1}{4\pi a^2 t^2} \oiint_{\Sigma_{at}^M} fds$$

$$=\frac{1}{4\pi a^2 t^2} \left(\iint_{\Sigma_{\pm}} f ds + \iint_{\Sigma_{\mp}} f ds \right)$$

$$=\frac{2}{4\pi a^2 t^2} \iint_{\Sigma_h} f ds$$

$$= \frac{2}{4\pi a^2 t^2} \iint_D \frac{atf}{\sqrt{(at)^2 - (\xi - x)^2 - (\eta - y)^2}} d\xi d\eta$$

$$= \frac{1}{2\pi at} \iint_{(\xi-x)^2 + (\eta-y)^2 \le (at)^2} \frac{f(\xi,\eta)}{\sqrt{(at)^2 - (\xi-x)^2 - (\eta-y)^2}} d\xi d\eta$$

所以, $u = \tilde{u} = \frac{\partial}{\partial t}(t\overline{f}) + t\overline{g}$.

该公式为二维波动方程的poisson公式。

二、二维非齐次波动方程的cauchy问题

$$\omega(x, y, t, \tau) = \frac{1}{2\pi a} \iint_{\Sigma_{a(t-\tau)}^{M}} \frac{F(\xi, \eta, \tau)}{\sqrt{\sqrt{(a(t-\tau))^{2} - (\xi - x)^{2} - (\eta - y)^{2}}}} d\xi d\eta$$

$$\therefore u_{2}(x, y, z, t) = \frac{1}{2\pi a} \int_{0}^{t} d\tau \iint_{\Sigma_{a(t-\tau)}^{M}} \frac{F(\xi, \eta, \tau)}{\sqrt{\sqrt{(a(t-\tau))^{2} - (\xi - x)^{2} - (\eta - y)^{2}}}} d\xi d\eta,$$

因此,
$$u = u_1 + u_2 = \frac{1}{2\pi a} \frac{\partial}{\partial t} \iint_{\Sigma_{at}^M} \frac{f(\xi, \eta, \tau)}{\sqrt{\sqrt{(a(t-\tau))^2 - (\xi - x)^2 - (\eta - y)^2}}} d\xi d\eta$$

$$+\frac{1}{2\pi a} \iint_{\Sigma_{at}^{M}} \frac{g(\xi, \eta, \tau)}{\sqrt{(a(t-\tau))^{2} - (\xi-x)^{2} - (\eta-y)^{2}}} d\xi d\eta$$

$$+\frac{1}{2\pi a}\int_{0}^{t}d\tau \iint\limits_{\Sigma_{a(t-\tau)}^{M}} \frac{F(\xi,\eta,\tau)}{\sqrt{\sqrt{(a(t-\tau))^{2}-(\xi-x)^{2}-(\eta-y)^{2}}}}d\xi d\eta.$$

例:
$$\begin{cases} u_{tt} = a^2(u_{xx} + u_{yy}), & -\infty < x, y < +\infty, t > 0. \\ u|_{t=0} = 0, u_t|_{t=0} = x + y. \end{cases}$$

$$\begin{aligned}
\widehat{H}: & f = 0 \Rightarrow \overline{f} = 0, \\
\therefore u = t\overline{g} &= \frac{t}{2\pi at} \int_0^{2\pi} d\theta \int_0^{at} \frac{x + r\cos\theta + y + r\sin\theta}{\sqrt{(at)^2 - r^2}} r dr \\
&= \frac{1}{2\pi a} \left[\int_0^{2\pi} d\theta \int_0^{at} \frac{x + y}{\sqrt{(at)^2 - r^2}} r dr + \int_0^{2\pi} d\theta \int_0^{at} \frac{r\cos\theta + r\sin\theta}{\sqrt{(at)^2 - r^2}} r dr \right] \\
&= (x + y)t.
\end{aligned}$$

第三章 固有值问题与特殊函数

第一节二阶常微分方程的级数解

求解固有值问题时,经常遇到二阶线性齐次常微分方程的求解问题。

二阶齐次常微分方程的一般形式:

$$y'' + p(x)y' + q(x)y = 0.$$
 (1)

定义:在方程(1)中,若p(x),q(x)在 x_0 处解析,则称 点物方程(1)的正常点;若 是 p(x),q(x)的孤立奇点,则称 x_0 点为方程(1)的奇点;若 x_0 是p(x)的不超过一级的极点,并且 是q(x)不超过二级的极点,则 x_0 为方程(1)的正则奇点;否则称 x_0 为方程(1)的非正则奇点。

定理(cauchy定理)设 x_0 是方程(**1**)的正常点,则在 x_0 的某邻域内存在形如

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 (2)

的解,且满足初始条件 $y(x_0) = a_0, y'(x_0) = a_1$ 的解存在、唯一。

作法(待定系数法): 先将p(x),q(x)在点 x_0 展成 Taylor级数,然后将展开式和(2)代入(1)。满足等式来确定 $a_0,a_1,\cdots,a_n,\cdots$

若 x_0 是方程(1)的正则奇点,则p(x),q(x)可展开成 Laurent级数

$$p(x) = \sum_{n=-1}^{\infty} a_n (x - x_0)^n, q(x) = \sum_{n=-2}^{\infty} b_n (x - x_0)^n.$$

此时设方程(1)有广义幂级数解

$$y(x) = \sum_{n=0}^{\infty} c_{s+n} (x - x_0)^{s+n}$$
 (3)

有
$$y'(x) = \sum_{n=0}^{\infty} c_{s+n}(s+n)(x-x_0)^{s+n-1},$$

$$y''(x) = \sum_{n=0}^{\infty} c_{s+n}(s+n)(s+n) - 1(x-x_0)^{s+n-2},$$
則 $y'' + P(x)y' + q(x)y$

$$= \sum_{n=0}^{\infty} c_{s+n}(s+n)(s+n) - 1(x-x_0)^{s+n-2}$$

$$+(\sum_{k=-1}^{\infty} a_k(x-x_0)^k)(\sum_{n=0}^{\infty} c_{s+n}(s+n)(x-x_0)^{s+n-1})$$

$$+(\sum_{k=-2}^{\infty} b_k(x-x_0)^k)(\sum_{n=0}^{\infty} c_{s+n}(x-x_0)^{s+n})$$

$$= 0.$$

最低幂的系数,即 $(x-x_0)^{-2}$,其系数为 $c_s \cdot s(s-1) + a_{-1} \cdot c_s \cdot s + b_{-2} \cdot c_s = 0$ 且 $c_s \neq 0$ 。 则 $s(s-1) + a_{-1}s + b_{-2} = 0$ 称为方程(1)的判定方程。

定理:设 x_0 是方程(1)的正则奇点

- (1) 若判定方程的两根之差不是整数,则s取这两个根构造的形如(3)的两个广义幂级数均是(1)的解(且两个解线性无关);
- (2) 若判定方程的两根之差是整数,则相对于较大的根所对应的形如(3)的广义幂级数仍是(1)的解,另一个解形式如

 $y_2(x) = Ay_1(x)\ln(x-x_0) + \sum_{n=0}^{\infty} c_n(x-x_0)^{n+s_2},$

其中 $y_1(x)$ 为较大根对应解, s_2 是判定方程相对较小的根,且 $y_1(x)$ 和 $y_2(x)$ 线性无关。

方程的通解情况:设 s₁,s₂ 为判定方程的两个根。

(1) 若 $s_1 - s_2 \notin Z$ 则

$$y_1(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^{s_1 + n}, y_2(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^{s_2 + n}.$$

通解为 $y(x) = Ay_1(x) + By_2(x)$.

(2) 若 $s_1 - s_2 \in Z \coprod s_1 > s_2$, 则

$$y_1(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^{s_1 + n}, y_2(x) = Ay_1(x) \ln(x - x_0) + \sum_{n=0}^{\infty} c_n (x - x_0)^{n + s_2},.$$

通解为 $y(x) = Ay_1(x) + By_2(x)$.

第二节 正交函数系及广义Fourier级数

- 一、正交函数系的概念
- 1.定义:设函数 $\varphi(x)$, $\psi(x)$ 在区间[a,b]上有定义,积分 $\int_a^b \varphi(x)\psi(x)dx$.

称为函数 $\varphi(x)$ 与 $\psi(x)$ 的内积,记作

$$\langle \varphi, \psi \rangle = \int_a^b \varphi(x) \psi(x) dx.$$

函数 $\varphi(x)$ 与自身的内积的开方称为该函数的范数

(模),记作
$$|\varphi(x)|$$
,即
$$||\varphi(x)|| = \sqrt{\langle \varphi, \varphi \rangle} = \sqrt{\int_a^b \varphi^2(x) dx}.$$

2.定义:设一族定义在[a,b]上的函数

$$\varphi_0(x), \varphi_1(x), \cdots, \varphi_n(x), \cdots$$
 (1)

若满足

$$\langle \varphi_n(x), \varphi_m(x) \rangle = 0, n \neq m. \exists \|\varphi_n\| \neq 0, \quad n = 0, 1, 2, \cdots$$

则称函数系(1)是[a,b]上的正交函数系,简称正交系,记为 $\{\varphi_n\}_{n=0}^{\infty}$ 或 $\{\varphi_n\}$.

例: $1,\cos x,\sin x,\cdots,\cos nx,\sin nx,\cdots$ 是区间 $[-\pi,\pi]$ 上的正交函数系。

- 若(1)还满足 $\|\varphi_n\|=1, n=0,1,2\cdots$,则称函数系(1)是[a,b]上的标准正交系。
- 一切正交函数系都可标准化,即可取适当常数

$$\mu_0, \mu_1, \cdots \mu_n, \cdots$$

使 $\mu_0 \varphi_0, \mu_1 \varphi_1, \cdots \mu_n \varphi_n, \cdots$ 成为标准正交系,取 $\mu_n = \frac{1}{\|\varphi_n\|}.$

3.定义: 若函数系 $\{\varphi_n\}$ 在[a,b]上满足

$$\int_{a}^{b} \varphi_{m}(x)\varphi_{n}(x)\rho(x)dx = \begin{cases} 0, & m \neq n, \\ \neq 0, & m = n, \end{cases} \qquad m, n = 0, 1, \dots$$

其中 $\rho(x)$ 为权函数,则称函数系 $\{\varphi_n\}$ 在[a,b]上关于权函数 $\rho(x)$ 正交,或称按权函数 $\rho(x)$ 构成正交系。

二、广义Fourier级数

设 $\{\varphi_n\}$ 是定义在[a,b]上的一个正交函数系,f(x)是[a,b]上给定的函数,设f(x)可以写成

$$f(x) = c_0 \varphi_0(x) + c_1 \varphi_1(x) + \dots + c_n \varphi_n(x) + \dots$$
 (1).

的形式, 其中 $c_0, c_1, \dots, c_n, \dots$ 是常数.

确定 C_n , 将 (1) 式两端同乘 $\varphi_n(x)$, 在[a,b]上积分

$$\int_a^b f(x)\varphi_n(x)dx = \int_a^b \left(\sum_{k=0}^\infty c_k \varphi_k(x)\right)\varphi_n(x)dx.$$

且假设级数(1)可逐项积分,则由 $\{\varphi_n\}$ 的正交性,有

若 $\{\varphi_n\}$ 为标准正交系,则 $c_n = \int_a^b f(x)\varphi_n(x)dx$, $n = 0,1,2\cdots$

若
$$\{\varphi_n\}$$
关于 $\rho(x)$ 正交,则 $c_n = \frac{\int_a^b f(x)\varphi_n(x)\rho(x)dx}{\int_a^b \varphi_n^2(x)\rho(x)dx}$, $n = 0,1,2\cdots$

称级数 (1) 为f(x)按正交函数系 $\{\varphi_n\}$ 展开的广义Fourier级数, c_n 为广义Fourier系数。

第三节 Sturm-Liouville问题

常微分方程

$$c_1(x)X''(x) + c_2(x)X'(x) + [c_3(x) + \lambda]X = 0, a < x < b$$
 (1) 其中 λ 与 x 无关的参数。

(1) 式适当变形后,可化成

$$\frac{d}{dx}[p(x)X'(x)] + [q(x) + \lambda s(x)]X = 0$$
 (2)

 $(1) \times s(x)$ 得

$$s(x)c_1(x)X''(x) + s(x)c_2(x)X'(x) + s(x)[c_3(x) + \lambda]X = 0$$
 (3)

(2)式改写成

$$p(x)X''(x) + p'(x)X'(x) + [q(x) + \lambda s(x)]X = 0$$
 (4)

比较(3)和(4)有
$$s(x)c_1(x) = p(x), \quad s(x)c_2(x) = p'(x),$$
 则 $[s(x)c_1(x)]' = s(x)c_2(x),$ 解得 $s'(x)c_1(x) + s(x)c_1'(x) = s(x)c_2(x),$
$$s'(x)c_1(x) = s(x)(c_2(x) - c_1'(x)),$$

$$s(x) = \frac{1}{c_1(x)}e^{\int_{c_1}^{c_2}dx},$$
 进而 $p(x) = e^{\int_{c_1}^{c_2}dx}, q(x) = \frac{c_3}{c_1}p(x).$

方程(2)称为Sturm-Liouville方程,简记S-L方程, 其中 λ 是与x无关的参数,p(x),q(x),s(x)都是实值且假 设q(x),s(x)连续,p(x)连续可微。

若函数p(x)和s(x)在[a,b]上为正,S-L方程称为[a,b] 上正则,当区间是无穷或半无穷,或当p(x)或s(x)在有限 区间的一个或两个端点处为零时,S-L方程称为奇异的。

1.S-L方程(**2**)+端点条件
$$\begin{cases} a_1X(a) + a_2X'(a) = 0 \\ b_1X(b) + b_2X'(b) = 0 \end{cases}$$
 一起

称为S-L问题, 其中 $a_1, a_2, b_1, b_2 \in R$.

对于使S-L问题有非零解的 λ 值称为固有值,相应的固有值 λ 的非零解称为固有函数,因而,S-L问题有时也称为固有值问题。

$$2. \stackrel{\text{\tiny $\underline{\square}$}}{=} p(a) = p(b) + \begin{cases} X(a) = X(b) \\ X'(a) = X'(b) \end{cases},$$

正则S-L方程同周期端点条件一起称为周期S-L问题。

3.定理 设S-L问题中的函数p,q,s在[a,b]上连续,对应于不同固有值 λ_i 和 λ_j 的固有函数 X_i 和 X_j 连续可微,则 X_i 和 X_j 在[a,b]上关于权函数s(x)正交。

证明:因为 X_i 和 X_j 是对应于 λ_i 和 λ_i 的方程的解,则

$$\frac{d}{dx}(p(x)\frac{dX_i}{dx}) + [q(x) + \lambda_i s]X_i = 0 \qquad 1)$$

$$\frac{d}{dx}(p(x)\frac{dX_j}{dx}) + [q(x) + \lambda_j s]X_j = 0 \qquad 2)$$

将1)×
$$X_{j}$$
-2) X_{i} 得,
$$(\lambda_{i} - \lambda_{j})X_{i}X_{j}s = \frac{d}{dx}(pX_{j}'X_{i} - pX_{i}'X_{j})$$
則
$$(\lambda_{i} - \lambda_{j})\int_{a}^{b}X_{i}X_{j}sdx = [pX_{j}'X_{i} - pX_{i}'X_{j}]|_{a}^{b}$$

$$= p(b)[X_{i}(b)X_{j}'(b) - X_{i}'(b)X_{j}(b)]$$

$$-p(a)[X_{i}(a)X_{j}'(a) - X_{i}'(a)X_{j}(b)]$$
3)

上式右端称为S-L问题的边界项。下面证明边界项为零。

$$X_{i}$$
、 X_{j} 在 $x = b$ 处满足端点条件
$$\begin{cases} b_{1}X_{i}(b) + b_{2}X_{i}'(b) = 0 & 4) \\ b_{1}X_{j}(b) + b_{2}X_{j}'(b) = 0 & 5) \end{cases}$$
 若 $b_{2} \neq 0$, $X_{j}(b) \times 4 - X_{i}(b) \times 5$ 得
$$b_{2}[X_{i}(b)X_{j}'(b) - X_{i}'(b)X_{j}(b)] = 0$$
 因 $b_{2} \neq 0$,故 $X_{i}(b)X_{j}'(b) - X_{i}'(b)X_{j}(b) = 0$ 6)

故在这种情况下,6)也成立。

同样可得 $X_i(a)X_j'(a)-X_i'(a)X_j(a)=0.$

这样证明了边界项为零,所以 $(\lambda_i - \lambda_j) \int_a^b X_i X_j s dx = 0$,

由 $\lambda_i \neq \lambda_j$,有 $\int_a^b X_i X_j s dx = 0$.

4.推论 区间[a,b]上的周期S-L问题,属于不同固有值的固有函数在[a,b]上关于权函数s(x)正交。

5.关于同一个固有值的两个固有函数 X_1 与 X_2 是

2的两个线性无关的固有函数,取

$$X^*(x) = c_1 X_1(x) + c_2 X_2(x).$$

则 $X^*(x)$ 也是 λ 的固有函数,则

$$\int_{a}^{b} X_{1} X^{*} s dx = \int_{a}^{b} X_{1} (c_{1} X_{1} + c_{2} X_{2}) s dx = c_{1} \int_{a}^{b} s X_{1}^{2} dx + c_{2} \int_{a}^{b} s X_{1} X_{2} dx.$$

为了使 X_1 与 X^* 正交,取 c_1 和 c_2 使

$$\frac{c_1}{c_2} = -\frac{\int_a^b sX_1 X_2 dx}{\int_a^b sX_1^2 dx}.$$

有
$$\int_a^b X_1 X^* s dx = 0.$$

可见, X,与X*是属于同一固有值的固有函数, 且关于权函数s正交。

6.定理(1)任何正则S-L问题存在一个实固有值的无穷序列 $\lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots$

其中 $\lim_{n\to\infty} \lambda_n = \infty$,且对应的固有函数 X_n (除常数因子外是唯一确定的)组成一个完备正交系;

(2) 在[a,b]上分段光滑的任一函数f(x),如果满足正则S-L问题的端点条件,则f(x)可以按固有函数系展开为绝对且一致收敛的级数,即

例1.求解S-L问题

$$\begin{cases} X''(x) + \lambda X = 0, 0 < x < \pi \\ X(0) = X(\pi) = 0. \end{cases}$$

解: p=1,q=0,s=1

(1) 当 λ < 0时,此方程通解为 $X(x) = Ae^{\sqrt{-\lambda}x} + Be^{-\sqrt{-\lambda}x}$,

代入端点条件,得
$$\begin{cases} A+B=0\\ Ae^{\sqrt{-\lambda}\pi}+Be^{-\sqrt{-\lambda}\pi}=0 \end{cases}$$

解之的A = B = 0,此时方程没有非零解,仅有平凡解,即 $\lambda < 0$ 时,无固有值。

(2) 当 $\lambda = 0$ 时,此方程通解为X(x) = Ax + B,

代入端点条件,得 $\begin{cases} B=0 \\ A\pi+B=0 \end{cases}$,

解之的A = B = 0,此时方程没有非零解,仅有平凡解,即 $\lambda = 0$ 时,无固有值。

(3) 当 $\lambda > 0$ 时,此方程通解为 $X(x) = A\cos\sqrt{\lambda}x + B\sin\sqrt{\lambda}x$, 代入端点条件,得 $\begin{cases} A = 0 \\ B\sin\sqrt{\lambda}\pi = 0 \end{cases}$

为时S-L问题有非零解,则 $B \neq 0$,故 $\sin \sqrt{\lambda} \pi = 0$,因此,固有值为 $\lambda_n = n^2, n = 1, 2, \cdots$

对应固有函数是 $X_n(x) = \sin nx, n = 1, 2, \cdots$

例1.求解周期S-L问题

$$\begin{cases} X''(x) + \lambda X = 0, -\pi < x < \pi \\ X(-\pi) = X(\pi), \\ X'(-\pi) = X'(\pi). \end{cases}$$

解: $p = 1, p(-\pi) = p(\pi)$.

(1)当 λ < 0时,此方程通解为 $X(x) = Ae^{\sqrt{-\lambda}x} + Be^{-\sqrt{-\lambda}x}$,代入端点条件,得

$$\begin{cases} Ae^{\sqrt{-\lambda}\pi} + Be^{-\sqrt{-\lambda}\pi} = Ae^{-\sqrt{-\lambda}\pi} + Be^{\sqrt{-\lambda}\pi} \\ \sqrt{-\lambda}(Ae^{\sqrt{-\lambda}\pi} - Be^{-\sqrt{-\lambda}\pi}) = \sqrt{-\lambda}(Ae^{-\sqrt{-\lambda}\pi} - Be^{\sqrt{-\lambda}\pi}) \end{cases}$$
解得 $A = B = 0$,故当 $\lambda < 0$ 时无固有值。

(2)当 $\lambda = 0$ 时,此方程通解为X(x) = Ax + B, 代入端点条件,由 $X(-\pi) = X(\pi)$ 得 $-A\pi + B = A\pi + B$ 有 $A = 0, B = X_0$ (任意非零常数),显然 $B = X_0$ 满足 $X'(-\pi) = X'(\pi)$ 的条件,故 $\lambda = 0$ 是固有值,相应的 固有函数是1 (3)当 $\lambda > 0$ 时,此方程通解为 $X(x) = A\cos\sqrt{\lambda}x + B\sin\sqrt{\lambda}x$,代入端点条件,得

$$\begin{cases} A\cos\sqrt{\lambda}\pi + B\sin\sqrt{\lambda}\pi = A\cos\sqrt{\lambda}\pi - B\sin\sqrt{\lambda}\pi, \\ -\sqrt{\lambda}A\sin\sqrt{\lambda}\pi + \sqrt{\lambda}B\cos\sqrt{\lambda}\pi = \sqrt{\lambda}A\sin\sqrt{\lambda}\pi + \sqrt{\lambda}B\cos\sqrt{\lambda}\pi \end{cases}$$

$$\exists \mathbb{E} \begin{bmatrix} B\sin\sqrt{\lambda}\pi = 0, \\ A\sin\sqrt{\lambda}\pi = 0. \end{bmatrix}$$

 $\cos nx, \sin nx, n = 1, 2 \cdot \cdot \cdot;$

总之,固有值为0, $\{n^2\}$, $n=1,2\cdots$, 对应固有函数为1, $\{\cos nx\}$, $\{\sin nx\}$, $n=1,2\cdots$.

第四节 Bessel函数

一、「函数

1.定义: $\forall x > 0$,由广义积分 $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ 所表达的函数 称为 Γ 函数。

注:这个积分对所有x > 0收敛,且 $\Gamma(x)$ 连续。

- $2.\Gamma(x)$ 的性质
- (1) 递推公式 $\Gamma(x+1) = x\Gamma(x)$.

有
$$\Gamma(x) = \frac{\Gamma(x+k)}{x(x+1)\cdots(x+k-1)}$$

$$(2)\Gamma(n+1) = n!, n = 1, 2, \dots$$

$$\Gamma(n+1) = 1 \cdot 2 \cdot \dots n\Gamma(1) = n!$$

$$(3)\Gamma(\frac{1}{2}) = \int_0^\infty t^{-\frac{1}{2}} e^{-t} dt = \int_0^\infty u^{-1} e^{-u^2} 2u du$$

$$= 2\int_0^\infty e^{-u^2} du = \sqrt{\pi}.$$

二、Bessel方程和Bessel函数

Bessel方程的标准形式:

$$x^2y'' + xy' + (x^2 - v^2)y = 0 \quad (v \in R \perp v \ge 0)$$
 (1)

(1)又可化为
$$y'' + \frac{1}{x}y' + (\frac{x^2 - v^2}{x^2})y = 0$$
 (2)

得*x*=0是(2)的正则奇点,由定理得,可设Bessel 方程的级数解为

$$y(x) = \sum_{k=0}^{\infty} a_k x^{s+k}, a_0 \neq 0,$$
 (3)

下面求判定方程:

$$x^{2} \sum_{k=0}^{\infty} (s+k)(s+k-1)a_{k}x^{s+k-2} + x \sum_{k=0}^{\infty} (s+k)a_{k}x^{s+k-1} + (x^{2} - \upsilon^{2}) \sum_{k=0}^{\infty} a_{k}x^{s+k} = 0,$$

整理后得

$$(s^{2} - \upsilon^{2})a_{0}x^{s} + [(s+1)^{2} - \upsilon^{2}]a_{1}x^{s+1} + \sum_{k=2}^{\infty} \{[(s+k)^{2} - \upsilon^{2}]a_{k} + a_{k-2}\}x^{s+k} = 0$$
 (4)

是恒等式,即各项系数均等于零。令

$$(s^2 - v^2)a_0 = 0, \quad a_0 \neq 0.$$

有

$$s^2 - v^2 = 0$$

则

$$s_1 = \upsilon, s_2 = -\upsilon.$$

根据定理, 分两种情况讨论

 $case1.s_1 - s_2 = 2v \neq 整数, 此时方程的两个线性无关的解为$

$$y_1(x) = \sum_{k=0}^{\infty} a_k x^{\nu+k}, y_2(x) = \sum_{k=0}^{\infty} a_k x^{-\nu+k}.$$

首先求 $y_1(x)$,在(4)中,令 $x^{\nu+1}$ 的系数为零,则 $(2\nu+1)a_1=0$,

又因为 $\upsilon > 0,2\upsilon + 1 > 0$,故只有 $a_1 = 0$.再令 $x^{\upsilon + k}$ 的系数为零,得

$$[(\upsilon + k)^{2} - \upsilon^{2}]a_{k} + a_{k-2} = 0.$$

即

$$a_k = \frac{-a_{k-2}}{k(2\upsilon + k)}, k \ge 2,$$

因为
$$a_1 = 0$$
,故由上式可得 $a_{2k+1} = 0$, $k = 0,1,2,\cdots$

$$a_{2k} = \frac{-a_{2k-2}}{2k(2\upsilon + 2k)} = \frac{-a_{2k-2}}{2^2k(\upsilon + k)}, k = 1, 2, \dots$$
 (5)

反复应用(5),有

$$a_{2k} = \frac{(-1)^2 a_{2k-2\cdot 2}}{2^{2\cdot 2} k(k-1)(\upsilon+k)(\upsilon+k-1)}$$

$$=\frac{(-1)^3 a_{2k-2\cdot 3}}{2^{2\cdot 3} k(k-1)(k-2)(\upsilon+k)(\upsilon+k-1)(\upsilon+k-2)}$$

. . .

$$= \frac{(-1)^k a_0}{2^{2k} k! (\upsilon + k) (\upsilon + k - 1) \cdots (\upsilon + 1)}$$

$$=\frac{(-1)^{k} 2^{\nu} \Gamma(\nu+1) a_{0}}{2^{2k+\nu} k! \Gamma(\nu+k+1)}.$$

则
$$y_1(x) = a_0 \sum_{k=0}^{\infty} \frac{(-1)^k 2^{\upsilon} \Gamma(\upsilon+1) x^{2^{k+\upsilon}}}{2^{2^{k+\upsilon}} k! \Gamma(\upsilon+k+1)}$$
,其中 a_0 为任意常数,
$$\mathbf{R} a_0 = \frac{1}{2^{\upsilon} \Gamma(\upsilon+1)}, \quad \mathbf{U}$$

$$y_1(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2^{k+\upsilon}}}{2^{2^{k+\upsilon}} k! \Gamma(\upsilon+k+1)} \stackrel{\diamondsuit}{=} J_{\upsilon}(x),$$
类似得 $y_2(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2^{k-\upsilon}}}{2^{2^{k-\upsilon}} k! \Gamma(-\upsilon+k+1)} \stackrel{\diamondsuit}{=} J_{-\upsilon}(x),$
分别称为 υ 阶和 $-\upsilon$ 阶第一类Bessel函数,显然 $y_1(x)$
和 $y_2(x)$ 线性无关,因此方程的通解为

 $y(x) = c_1 J_{12}(x) + c_2 J_{-12}(x).$

 $case 2.s_1 - s_2 = 2\upsilon = 整数,由定理知有两个解,一个解表示为 <math>J_{\nu}(x)$ 的形式,而关于另一个解分两种情况讨论

$$(i)s_1 - s_2 = 2\upsilon = 2n + 1(n = 0, 1, 2\cdots), \exists \beta s_1 = n + \frac{1}{2}, s_2 = -n - \frac{1}{2}.$$

则
$$y_2(x) = AJ_{\upsilon}(x)\ln x + J_{-\upsilon}(x)$$
,其中 $\upsilon = n + \frac{1}{2}$, $-\upsilon = -n - \frac{1}{2}$.

代入(1)经过计算A=0, 故 $y_2(x) = J_{-\nu}(x)$, 所以方程的通解为

$$y(x) = c_1 J_{\upsilon}(x) + c_2 J_{-\upsilon}(x).$$
 $(\upsilon = n + \frac{1}{2})$

$$(ii)s_1 - s_2 = 2\nu = 2n(n = 1, 2\dots), \exists \Gamma s_1 = n, s_2 = -n.$$

此时
$$J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+n}}{2^{2k+n} k! \Gamma(n+k+1)}, J_{-n}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k-n}}{2^{2k-n} k! \Gamma(-n+k+1)}.$$

而当
$$-n+k+1$$
为零和负整数时 $\Gamma(-n+k+1)=\infty$,即 $\frac{1}{\Gamma(-n+k+1)}=0$,

故 $J_{-n}(x)$ 的前n项系数均为零,

$$J_{-n}(x) = \sum_{k=n}^{\infty} \frac{(-1)^k x^{2k-n}}{2^{2k-n} k! \Gamma(-n+k+1)}$$

$$= \sum_{\alpha=k-n}^{\infty} \frac{(-1)^{\alpha+n} x^{2\alpha+n}}{2^{2\alpha+n} (\alpha+n)! \Gamma(\alpha+1)}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^{k+n} x^{2k+n}}{2^{2k+n} (k+n)! \Gamma(k+1)}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^{k+n} x^{2k+n}}{2^{2k+n} k! (k+n) (k+n-1) \cdots (k+1) \Gamma(k+1)}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^{k+n} x^{2k+n}}{2^{2k+n} k! \Gamma(n+k+1)}$$

$$= (-1)^n J_n(x)$$

因此 $J_{-n}(x)$ 和 $J_n(x)$ 线性相关,故再找与 $J_n(x)$ 线性无关的解,

通常取
$$Y_{\upsilon}(x) = \frac{\cos \upsilon \pi J_{\upsilon}(x) - J_{-\upsilon}(x)}{\sin \upsilon \pi}$$
 (6)

作为Bessel方程的第二个解,称它为 υ 阶第二类Bessel函数,显然 $Y_{\upsilon}(x)$ 是方程(1)的解,且当 υ 不是整数时与 $J_{\upsilon}(x)$ 线性无关;当 υ 是整数时,(6)式右端无意义,此时定义

$$Y_n(x) = \lim_{\nu \to n} \frac{\cos \nu \pi J_{\nu}(x) - J_{-\nu}(x)}{\sin \nu \pi}$$

可验证 $Y_n(x)$ 与 $J_n(x)$ 线性无关,

且当 $x \to 0^+$ 时, $J_n(x)$ 为有限值, $Y_n(x) \to \infty$.

综上, Bessel方程的通解为

$$y(x) = \begin{cases} c_1 J_{\upsilon}(x) + c_2 J_{-\upsilon}(x), & \upsilon \neq 整数 \\ c_1 J_n(x) + c_2 Y_n(x), & \upsilon = n 为整数 \end{cases}$$
 $= c_1 J_{\upsilon}(x) + c_2 Y_{\upsilon}(x), \qquad \forall \neg \cup \upsilon.$

三、Bessel函数的递推公式

$$J_{\upsilon}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k+\upsilon}}{2^{2k+\upsilon} k! \Gamma(\upsilon + k + 1)},$$

$$J_{-\upsilon}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k-\upsilon}}{2^{2k-\upsilon} k! \Gamma(-\upsilon + k + 1)},$$

$$\frac{d}{dx} [x^{\upsilon} J_{\upsilon}(x)] = \frac{d}{dx} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k+2\upsilon}}{2^{2k+\upsilon} k! \Gamma(\upsilon + k + 1)}$$

$$= x^{\upsilon} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k+\upsilon - 1}}{2^{2k+\upsilon - 1} k! \Gamma(\upsilon + k)} = x^{\upsilon} J_{\upsilon - 1}(x),$$

$$\mathbb{P} \frac{d}{dx} [x^{\upsilon} J_{\upsilon}(x)] = x^{\upsilon} J_{\upsilon - 1}(x), \qquad (7)$$

同理
$$\frac{d}{dx}[x^{-\nu}J_{\nu}(x)] = \frac{d}{dx} \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{2^{2k+\nu}k!\Gamma(\nu+k+1)}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k 2kx^{2k-1}}{2^{2k+\nu}k!\Gamma(\nu+k+1)} = \sum_{k=1}^{\infty} \frac{(-1)^k 2kx^{2k-1}}{2^{2k+\nu}k!\Gamma(\nu+k+1)}$$

$$= \sum_{\alpha=k-1=0}^{\infty} \frac{(-1)^{\alpha+1}2(\alpha+1)x^{2\alpha+1}}{2^{2\alpha+\nu+2}(\alpha+1)!\Gamma(\nu+\alpha+2)}$$

$$= \sum_{k=\alpha=0}^{\infty} \frac{(-1)^{k+1}2(k+1)x^{2k+1}}{2^{2k+\nu+2}(k+1)!\Gamma(\nu+k+2)}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^{k+1}x^{2k+1}}{2^{2k+\nu+1}k!\Gamma(\nu+k+2)}$$

$$= -x^{-\nu}\sum_{k=0}^{\infty} \frac{(-1)^{k+1}x^{2k+\nu+1}}{2^{2k+\nu+1}k!\Gamma(\nu+k+2)}$$

$$= -x^{-\nu}J_{\nu+1}(x).$$

IP $\frac{d}{dx}[x^{-\nu}J_{\nu}(x)] = -x^{-\nu}J_{\nu+1}(x)$ (8)

将(7)和(8)式左端导数求出,并化简得

$$xJ_{v}'(x) + vJ_{v}(x) = xJ_{v-1}(x),$$

$$xJ_{v}'(x) - vJ_{v}(x) = -xJ_{v+1}(x),$$

两式相减和相加得递推公式

$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x), \tag{9}$$

$$J_{\nu-1}(x) - J_{\nu+1}(x) = 2J_{\nu}'(x), \qquad (10)$$

四、Bessel函数的正交性及模

1.含参数λ的Bessel方程

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - n^{2})y = 0$$
 (*)

且满足端点条件 $\begin{cases} y(0) < \infty \\ y(a) = 0 \end{cases}$ 的固有值问题。

$$在(*)$$
中令 $\xi = \lambda x$,方程变为

$$\xi^2 y_{\xi\xi}'' + \xi y_{\xi}' + (\xi^2 - n^2)y = 0.$$

其解为 $y = c_1 J_n(\xi) + c_2 Y_n(\xi)$,

故
$$y = c_1 J_n(\lambda x) + c_2 Y_n(\lambda x).$$

由
$$y(0) < \infty$$
及 $Y_n(\lambda x)$ 在 $x = 0$ 处无界,则 $c_2 = 0$,故
$$y_n = c_1 J_n(\lambda x).$$

再y(a) = 0,得 $J_n(\lambda a) = 0$.

即 λa 是 $J_n(x)$ 的零点,以 $\mu_1^{(n)},\cdots,\mu_m^{(n)},\cdots$ 表示 $J_n(x)$ 的正零点,

则(*)的固有值为
$$\lambda_m^{(n)} = \frac{\mu_m^{(n)}}{a}, m = 1, 2, \cdots$$

固有函数 $J_n(\frac{\mu_m^{(n)}}{a}x)$, $m=1,2,\cdots$

因此固有函数 $J_n(\frac{\mu_m^{(n)}}{a}x)$ 在[0,a]上关于权函数x正交,即

$$\int_0^a J_n(\frac{\mu_m^{(n)}}{a}x)J_n(\frac{\mu_k^{(n)}}{a}x)xdx = \begin{cases} 0, & m \neq k \\ \neq 0, & m = k \end{cases}.$$

下面验证,不妨取[0,1]则 $\{J_n(k,x)\}$ 关于权函数x正交, $\int_{0}^{a} J_{n}(k_{i}x) J_{n}(k_{j}x) x dx = 0, \qquad i \neq j, J_{n}(k_{i}) = 0.$ $i \exists J_n(k_i x) = y_i, \lambda_i = k_i;$ $J_n(k_i x) = y_i, \lambda_i = k_i;$ y_i, y_i 分别满足 $x^2y'' + xy' + (\lambda^2 x^2 - n^2)y = 0$, $\mathbb{I} \frac{d}{dx} \left[x \frac{dy_i}{dx} \right] + \left[k_i^2 x - \frac{n^2}{x} \right] y_i = 0,$ $\frac{d}{dx} \left[x \frac{dy_{j}}{dx} \right] + \left[k_{j}^{2} x - \frac{n^{2}}{x} \right] y_{j} = 0,$

$$(1) \times y_i - (2) \times y_i$$
得

$$\frac{d}{dx}[x\frac{dy_i}{dx}]y_j - \frac{d}{dx}[x\frac{dy_j}{dx}]y_i + (k_i^2 - k_j^2)xy_iy_j = 0, 即$$

$$(k_i^2 - k_j^2)xy_iy_j = \frac{d}{dx}[x(y_j'y_i - y_i'y_j)].$$
再从0到1积分得,
$$(k_i^2 - k_j^2)\int_0^1 xy_iy_jdx = \int_0^1 d[x(y_j'y_i - y_i'y_j)]$$

$$= y_i(1)y_j'(1) - y_i'(1)y_j(1).$$
而 $y_i(1) = J_n(k_i) = 0, y_j(1) = J_n(k_j) = 0, 则$

$$(k_i^2 - k_j^2)\int_0^1 xy_iy_jdx = 0,$$
而 $k_i \neq k_j$,因此 $\int_0^1 xy_iy_jdx = 0$,即 $\int_0^1 xJ_n(k_ix)J_n(k_jx)dx = 0$.

2.Bessel函数的模

$$||J_{nm}||^2 = \int_0^a J_n^2 (\frac{\mu_m^{(n)}}{a} x) x dx, m = 1, 2, \dots, \exists J_n(\mu_m^{(n)}) = 0.$$

Bessel 方程
$$\frac{d}{dx}[x\frac{dy}{dx}] + [\lambda^2 x - \frac{n^2}{x}]y = 0, 0 < x < a$$

记
$$R_1(x) = J_n(\frac{\mu_m^{(n)}}{a}x), R_2(x) = J_n(\alpha x),$$

则 $R_1(x)$, $R_2(x)$ 分别满足方程

$$\frac{d}{dx}\left[x\frac{dR_1}{dx}\right] + \left[\left(\frac{\mu_m^{(n)}}{a}\right)^2 x - \frac{n^2}{x}\right]R_1 = 0,\tag{1}$$

$$\frac{d}{dx}\left[x\frac{dR_2}{dx}\right] + \left[\alpha^2 x - \frac{n^2}{x}\right]R_2 = 0,$$
 (2)

$$(1) \times R_2 - (2) \times R_1$$
,再从0到a积分得

$$\left[\left(\frac{\mu_m^{(n)}}{a}\right)^2 - \alpha^2\right] \int_0^a x R_1 R_2 dx + \left\{x \left[R_1' R_2 - R_1 R_2'\right]\right\} \Big|_0^a = 0,$$

而
$$J_n(\mu_m^{(n)}) = 0$$
,可得

$$\int_0^a x J_n(\frac{\mu_m^{(n)}}{a}x) J_n(\alpha x) dx = -\frac{\mu_m^{(n)} J_n(\alpha x) J_n'(\mu_m^{(n)})}{(\frac{\mu_m^{(n)}}{a})^2 - \alpha^2},$$

当
$$\alpha \to \frac{\mu_m^{(n)}}{a}$$
时,上式右端" $\frac{0}{0}$ ",
利用罗比达法则(对 α 求导,令 $\alpha = \frac{\mu_m^{(n)}}{a}$)
$$\int_0^a x J_n^{\ 2} (\frac{\mu_m^{(n)}}{a} x) dx = \frac{a^2}{2} [J_n'(\mu_m^{(n)})]^2,$$
再 $x J_v'(x) + v J_v(x) = x J_{v-1}(x) \mathcal{D} J_n(\mu_m^{(n)}) = 0.$
则 $x J_n'(\mu_m^{(n)}) = x J_{n-1}(\mu_m^{(n)}) \Rightarrow J_n'(\mu_m^{(n)}) = J_{n-1}(\mu_m^{(n)}),$
故 $\int_0^a x J_n^{\ 2} (\frac{\mu_m^{(n)}}{a} x) dx = \frac{a^2}{2} J_{n-1}^{\ 2} (\mu_m^{(n)}).$

第五节 Legendre函数

一、Legendre方程

$$(1-x^2)y'' - 2xy' + \upsilon(\upsilon+1)y = 0 \quad (\upsilon \in R)$$

上式又可化为

$$y'' - \frac{2x}{1 - x^2}y' + \frac{\upsilon(\upsilon + 1)}{1 - x^2}y = 0$$

可知 $x = \pm 1$ 为方程的奇点,x = 0为方程的正常点。 则在x = 0的某个邻域内求解,有设

$$y(x) = \sum_{k=0}^{\infty} a_k x^k,$$

$$\text{III} (1-x^2) \sum_{k=0}^{\infty} a_k k(k-1) x^k - 2x \sum_{k=0}^{\infty} a_k k x^{k-1} + \upsilon(\upsilon+1) \sum_{k=0}^{\infty} a_k x^k = 0$$

$$\Rightarrow \sum_{k=2}^{\infty} a_k k(k-1) x^{k-2} - \sum_{k=0}^{\infty} a_k k(k-1) x^k$$

$$-2x \sum_{k=0}^{\infty} a_k k x^k + \upsilon(\upsilon+1) \sum_{k=0}^{\infty} a_k x^k = 0$$

$$\Rightarrow \sum_{k=2}^{\infty} a_k k(k-1) x^{k-2} - \sum_{k=2}^{\infty} a_{k-2}(k-2)(k-3) x^{k-2}$$

$$-2x \sum_{k=2}^{\infty} a_{k-2}(k-2) x^{k-2} + \upsilon(\upsilon+1) \sum_{k=2}^{\infty} a_{k-2} x^{k-2} = 0$$

$$\stackrel{\frown}{=} \sum_{k=2}^{\infty} \{k(k-1) a_k + [\upsilon(\upsilon+1) - (k-1)(k-2)]\} x^{k-2} = 0$$

则有
$$a_k = \frac{(k-1)(k-2)-\upsilon(\upsilon+1)}{k(k-1)}a_{k-2}$$
,

即 $a_{k+2} = \frac{k(k+1)-\upsilon(\upsilon+1)}{(k+1)(k+2)}a_k$

$$= -\frac{\upsilon(\upsilon+1)-k(k+1)+\upsilon k-\upsilon k}{(k+1)(k+2)}a_k$$

$$= -\frac{(\upsilon-k)(\upsilon+k+1)}{(k+1)(k+2)}a_k, (k \ge 0) \qquad (1)$$
则 $a_2, a_4, \dots, a_{2k}, \dots$ 自 a_0 确定;
 $a_3, a_5, \dots, a_{2k+1}, \dots$ 自 a_1 确定,而 $a_0, a_1 \in R$.

于是有
$$a_2 = -\frac{\upsilon(\upsilon+1)}{2!}a_0$$
;
$$a_4 = -\frac{(\upsilon-2)(\upsilon+3)}{3\times 4}a_2 = (-1)^2 \frac{\upsilon(\upsilon-2)(\upsilon+1)(\upsilon+3)}{4!}a_0;$$
...
$$a_{2k} = (-1)^k \frac{\upsilon(\upsilon-2)\cdots(\upsilon-2k+2)(\upsilon+1)(\upsilon+3)\cdots(\upsilon+2k-1)}{(2k)!}a_0;$$
...

$$a_{3} = -\frac{(\upsilon - 1)(\upsilon + 2)}{3!}a_{1};$$

$$a_{5} = (-1)^{2} \frac{(\upsilon - 1)(\upsilon - 3)(\upsilon + 2)(\upsilon + 4)}{5!}a_{1};$$

. . .

$$a_{2k+1} = (-1)^k \frac{(\upsilon - 1)(\upsilon - 3)\cdots(\upsilon - 2k + 1)(\upsilon + 2)(\upsilon + 4)\cdots(\upsilon + 2k)}{(2k+1)!} a_1;$$

. . .

于是

$$y(x) = a_0 \left[1 + \sum_{k=1}^{\infty} (-1)^k \frac{\upsilon(\upsilon - 2)\cdots(\upsilon - 2k + 2)(\upsilon + 1)(\upsilon + 3)\cdots(\upsilon + 2k - 1)}{(2k)!} x^{2k}\right]$$

$$+ a_1 \left[x + \sum_{k=1}^{\infty} (-1)^k \frac{(\upsilon - 1)(\upsilon - 3)\cdots(\upsilon - 2k + 1)(\upsilon + 2)(\upsilon + 4)\cdots(\upsilon + 2k)}{(2k + 1)!} x^{2k+1}\right]$$

$$= a_0 p_{\upsilon}(x) + a_1 q_{\upsilon}(x).$$

易证,当|x|<1时级数收敛,且 $p_{\nu}(x)$ 与 $q_{\nu}(x)$ 线性无关。

因此,上式是Legendre方程的通解。

二、Legendre多项式

1. 由上式可知,当 $v \notin Z$ 时,在 $x \to \pm 1$ 时, $p_v(x)$ 与 $q_v(x)$ 发散。 但往往要求在 $x = \pm 1$ 时解也是有界的,所以当 $v \notin Z$ 时, $p_v(x)$ 与 $q_v(x)$ 不满足要求。下面讨论 $v \in Z$ 时,不考虑正负,取v = n, n为非负整数时,

曲(1):
$$a_{k+2} = -\frac{(n-k)(n+k+1)}{(k+1)(k+2)} a_k, (k \ge 0)$$
知,
$$a_{n+2} = a_{n+4} = \dots = 0.$$

故当n为偶数时, $p_n(x)$ 只到 x^n 项,是n次多项式, $q_n(x)$ 是无穷级数;

当n为奇数时, $q_n(x)$ 只到 x^n 项,

是n次多项式, $p_n(x)$ 是无穷级数。

因此,对于任意的n为负整数,

 $p_n(x)$ 与 $q_n(x)$ 有且只有一个是多项式。

下面求表达式:

取v=n,n为非负整数,

为了得到Legendre方程的一个多项式解 $P_n(x)$,

由递推公式(1),改写成

$$a_k = -\frac{(k+1)(k+2)}{(n-k)(n+k+1)} a_{k+2}, (k \le n-2) \qquad (只有n项)$$

下面用最高项系数an表示其他各项系数。

$$a_{n-2} = -\frac{n(n-1)}{2(2n-1)}a_n;$$

$$a_{n-4} = -\frac{(n-2)(n-3)}{4(2n-3)}a_{n-2} = \frac{n(n-1)(n-2)(n-3)}{2 \cdot 4(2n-1)(2n-3)}a_n;$$

. . .

$$a_{n-2k} = (-1)^k \frac{n(n-1)(n-2)\cdots(n-2k+1)}{2^k \cdot k!(2n-1)(2n-3)\cdots(2n-2k+1)} a_n.$$

为了得到多项式解 $P_n(x)$ 形式简单,并且 $P_n(1)=1$,取

$$a_n = \frac{(2n)!}{2^n (n!)^2} = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!}, n = 1, 2, \dots$$

从而

$$a_{n-2k}$$

$$= (-1)^k \frac{n(n-1)(n-2)\cdots(n-2k+1)}{2! \cdot k! (2n-1)(2n-3)\cdots(2n-2k+1)} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{n!}$$

$$= (-1)^k \frac{1}{2^k \cdot k! (n-2k)!} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{(2n-1)(2n-3)\cdots (2n-2k+1)}$$

$$\overline{m} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{n!} = \frac{(2n)!}{2^n (n!)^2} \Rightarrow 1 \cdot 3 \cdot 5 \cdots (2n-1) = \frac{(2n)!}{2^n n!}$$

故
$$a_{n-2k}$$

$$\frac{1}{2^{k} \cdot k!(n-2k)!} \frac{(2n)!}{2^{n} n!(2n-1)(2n-3)\cdots(2n-2k+1)} \\
= \frac{(-1)^{k}}{2^{n} \cdot k!(n-2k)!} \frac{2n(2n-1)\cdots(2n-2k+1)(2n-2k)!}{2^{k} n!(2n-1)(2n-3)\cdots(2n-2k+1)} \\
= \frac{(-1)^{k} (2n-2k)!}{2^{n} \cdot k!(n-2k)!} \frac{2n(2n-2)\cdots(2n-2k+2)}{2^{k} n!} \\
= (-1)^{k} \frac{(2n-2k)!}{2^{n} k!(n-2k)!} \frac{(2n-2k)!}{2^{k} n!} \\
= (-1)^{k} \frac{(2n-2k)!}{2^{n} k!(n-2k)!(n-k)!}$$
其中 $(k=0,1,2,\cdots,M)$ $M = \begin{cases} \frac{n}{2}, n$ 是偶 $\frac{n-1}{2}, n$ 是奇.

于是,

$$P_n(x) = \frac{1}{2^n} \sum_{k=0}^{M} (-1)^k \frac{(2n-2k)!}{k!(n-2k)!(n-k)!} x^{n-2k},$$

其中
$$M = \begin{cases} \frac{n}{2}, n$$
是偶
$$\frac{n-1}{2}, n$$
是奇.

被称为n阶Legendre函数(或n次Legendre多项式).

2.微分表示

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} [(x^2 - 1)^l] \to$$
罗德里格斯公式.

验证:用二项式定理把 $(x^2-1)^l$ 展开:

$$\frac{1}{2^{l} l!} (x^{2} - 1)^{l} = \frac{1}{2^{l} l!} \sum_{k=0}^{l} \frac{l!}{(l-k)! k!} (x^{2})^{l-k} (-1)^{k}$$
$$= \sum_{k=0}^{l} \frac{(-1)^{k}}{2^{l} (l-k)! k!} (x^{2})^{l-k}.$$

于是对上式求/阶导数,可见次数低于/的项都是零,

即只有
$$2l-2k \ge l$$
,即 $k \le \frac{l}{2}$ 项。

$$\frac{1}{2^{l}l!} \frac{d^{l}}{dx^{l}} [(x^{2}-1)^{l}]$$

$$= \sum_{k=0}^{M} (-1)^{k} \frac{(2l-2k)(2l-2k-1)\cdots(l-2k+1)}{2^{l}(l-k)!k!} x^{l-2k}$$
分子、分母同乘 $(l-2k)!$,有
$$\frac{1}{2^{l}l!} \frac{d^{l}}{dx^{l}} [(x^{2}-1)^{l}]$$

$$= \sum_{k=0}^{M} (-1)^{k} \frac{(2l-2k)(2l-2k-1)\cdots(l-2k+1)(l-2k)!}{2^{l}(l-k)!k!(l-2k)!} x^{l-2k}$$

$$= \sum_{k=0}^{M} (-1)^{k} \frac{(2l-2k)!}{2^{l}(l-k)!k!(l-2k)!} x^{l-2k}$$

$$= P_{l}(x).$$

3.Legendre多项式的递推公式

$$(1) (n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0, n \ge 1$$

$$(2) (x^{2} - 1)P'_{n}(x) = nxP_{n}(x) - nP_{n-1}(x), n \ge 1$$

(3)
$$nP_n(x) + P_{n-1}'(x) - xP_n'(x) = 0, n \ge 1$$

$$(4) P_n'(x) - x P_{n-1}'(x) = n P_{n-1}(x), n \ge 1$$

(5)
$$P_{n+1}'(x) = xP_n'(x) + (n+1)P_n(x), n \ge 0$$

 $4.记Q_n(x)$ 为另一个无穷级数解,

被称为第二类Legendre函数。

 $P_n(x)$ 与 $Q_n(x)$ 是Legendre方程

$$(1-x^2)y'' - 2xy' + n(n+1)y = 0.$$

的线性无关的解, 故通解为

$$y(x) = c_1 P_n(x) + c_2 Q_n(x),$$

且一般要求在端点 $x = \pm 1$ 处的解是有界的,

而 $Q_n(x)$ 在 $x = \pm 1$ 处是无穷大,所以一般取 $c_2 = 0$.

故Legendre方程

$$(1-x^2)y''-2xy'+\lambda y=0, x\in[-1,1]$$

在有界条件下,固有值为 $\lambda_n=n(n+1), n=0,1,2,\cdots$
固有函数为 $P_n(x), n=0,1,2,\cdots$

Legendre方程

$$(1-x^2)y'' - 2xy' + \lambda y = 0, \quad x \in [-1,1]$$

可变成

$$\frac{d}{dx}[(1-x^2)\frac{dy}{dx}] + \lambda y = 0,$$

则权函数s(x) = 1.

则Legendre多项式在[-1,1]上正交,即

$$\int_{-1}^{1} P_k(x) P_l(x) = \begin{cases} 0, & k \neq l \\ \frac{2}{2n+1}, & k = l = n \end{cases}$$

即 $\{P_k(x)\}$ 是[-1,1]上的完备正交函数系。

下面证明正交性,即验证
$$\int_{-1}^{1} P_k(x) P_l(x) = 0, k \neq l$$

$$P_k(x) = P_l(x)$$
都满足方程 $\frac{d}{dx}[(1-x^2)\frac{dy}{dx}] + \lambda y = 0,$ 于是
$$\frac{d}{dx}[(1-x^2)\frac{dP_l(x)}{dx}] + l(l+1)P_l(x) = 0, \qquad (1)$$

$$\frac{d}{dx}[(1-x^2)\frac{dP_k(x)}{dx}] + k(k+1)P_k(x) = 0, \qquad (2)$$

$$(1) \times P_k(x) - (2) \times P_l(x),$$
再在 $[-1,1]$ 上积分
$$\int_{-1}^{1} P_k(x)\frac{d}{dx}[(1-x^2)\frac{dP_l(x)}{dx}]dx - \int_{-1}^{1} P_l(x)\frac{d}{dx}[(1-x^2)\frac{dP_k(x)}{dx}]dx$$

$$+[l(l+1)-k(k+1)]\int_{-1}^{1} P_k(x)P_l(x)dx = 0.$$

即

$$[(1-x^{2})P_{k}(x)P'_{l}(x)]|_{-1}^{1} - \int_{-1}^{1} (1-x^{2})P'_{k}(x)P'_{l}(x)dx$$

$$-[(1-x^{2})P_{l}(x)P'_{k}(x)]|_{-1}^{1} + \int_{-1}^{1} (1-x^{2})P'_{k}(x)P'_{l}(x)dx$$

$$+[l(l+1)-k(k+1)]\int_{-1}^{1} P_{k}(x)P_{l}(x)dx = 0,$$
因此, $[l(l+1)-k(k+1)]\int_{-1}^{1} P_{k}(x)P_{l}(x)dx = 0,$
且 $k \neq l$,有 $\int_{-1}^{1} P_{k}(x)P_{l}(x)dx = 0.$

三、连带的Legendre多项式

$$(1-x^2)y'' - 2xy' + \left[\lambda - \frac{m^2}{1-x^2}\right]y = 0 \quad (m \in \mathbb{Z})$$
 (1)

该方程称为连带的Legendre方程,

当m = 0时,连带的Legendre方程就是Legendre方程。

下面是在 $\lambda = n(n+1)$ 时求解,方程(1)的解与m的符号无关,

假定
$$m \ge 0$$
,作变换 $y(x) = (1-x^2)^{\frac{m}{2}}u(x)$,

方程(1)变为

$$(1-x^2)u'' - 2(m+1)xu' + (n-m)(n+m+1)u = 0, (2)$$

而对Legendre方程

$$(1-x^2)y'' - 2xy' + n(n+1)y = 0,$$

微分m次,得

$$(1-x^2)y^{(m+2)} - 2(m+1)xy^{(m+1)} + (n-m)(n+m+1)y^{(m)} = 0,(3)$$

(2)与(3)是同形方程,故设Legendre方程的解为Y(x),

则(3)的解为 $Y^{(m)}(x)$,因此(2)的解为 $Y^{(m)}(x)$,

所以连带的Legendre方程的解为

$$y(x) = (1-x^2)^{\frac{m}{2}} Y^{(m)}(x),$$
 $\ddagger P(x) = c_1 P_n(x) + c_2 Q_n(x),$

$$\mathbb{U}y(x) = c_1 (1 - x^2)^{\frac{m}{2}} \frac{d^m P_n(x)}{dx^m} + c_2 (1 - x^2)^{\frac{m}{2}} \frac{d^m Q_n(x)}{dx^m},$$

$$\frac{m}{2} \frac{d^m P_n(x)}{dx^m} + c_2 (1 - x^2)^{\frac{m}{2}} \frac{d^m Q_n(x)}{dx^m},$$

$$\exists \Box P_n^m(x) = (1-x^2)^{\frac{m}{2}} \frac{d^m P_n(x)}{dx^m}, Q_n^m(x) = (1-x^2)^{\frac{m}{2}} \frac{d^m Q_n(x)}{dx^m},$$

分别称为第一类连带的Legendre函数

和第二类连带的Legendre函数。

 $P_n^m(x)$ 在[-1,1]上有界,而 $Q_n^m(x)$ 在边界无界,

且当m > n时, $P_n^m(x) = 0$.

连带的Legendre方程可变形为

$$\frac{d}{dx}[(1-x^2)y'] + [\lambda - \frac{m^2}{1-x^2}]y = 0,$$

当方程取有界解时,

固有值 $\lambda_n = n(n+1), n = m, m+1, \cdots$

固有函数 $P_n^m(x)$, $n=m,m+1,\cdots$

易知, $\{P_n^m(x)\}$ 在[-1,1]上是完备正交函数系。

第四章 分离变量法

第一节 波动方程

$$\begin{cases} u_{tt} = a^{2}u_{xx}, 0 < x < l, t > 0 \\ u|_{t=0} = f(x), u_{t}|_{t=0} = g(x), 0 \le x \le l \\ u|_{x=0} = u|_{x=l} = 0, t \ge 0 \end{cases}$$

且 $f(0) = f(l) = 0, g(0) = g(l) = 0.$
解:1) 设分离变量形式解为 $u(x,t) = X(x)T(t)$;
2) 分离方程得 $XT'' = a^{2}X''T$,
对于使 $X(x)T(t) \ne 0$ 的点 (x,t) ,有

则

$$X'' + \lambda X = 0,$$

$$T'' + \lambda a^2 T = 0.$$
 (1)

3)分离边界条件

$$u(0,t) = X(0)T(t) = 0, T(t) \neq 0,$$

故
$$X(0) = 0$$
,同理 $X(l) = 0$.

4)解固有值问题

$$\begin{cases} X'' + \lambda X = 0.0 < x < l \\ X(0) = X(l) = 0. \end{cases}$$

固有值为
$$\lambda_n = (\frac{n\pi}{l})^2, n = 1, 2, \cdots$$

固有函数为
$$X_n(x) = \sin \frac{n\pi}{l} x, n = 1, 2, \cdots$$

因此,方程的通解为 $X_n(x) = B_n \sin \frac{n\pi}{l} x$.

5) 求定解问题的形式解

当
$$\lambda = \lambda_n = (\frac{n\pi}{l})^2$$
时,方程(1)的通解为

$$T_n(t) = C_n \cos \frac{n\pi a}{l} t + D_n \sin \frac{n\pi a}{l} t.$$

則
$$u_n(x,t) = X_n(x)T_n(t)$$

$$= (a_n \cos \frac{n\pi a}{l}t + b_n \sin \frac{n\pi a}{l}t)\sin \frac{n\pi}{l}x,$$

由叠加原理设

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi a}{l} t + b_n \sin \frac{n\pi a}{l} t \right) \sin \frac{n\pi}{l} x,$$

下面利用初始条件确定系数a_n, b_n

$$\boxplus u(x,0) = f(x) = \sum_{n=1}^{\infty} a_n \sin \frac{n\pi}{l} x,$$

$$u_t(x,0) = g(x) = \sum_{n=1}^{\infty} b_n \frac{n\pi a}{l} \sin \frac{n\pi}{l} x,$$

 a_n , $b_n \frac{n\pi a}{l}$ 分别是f(x), g(x)关于正交函数系 $\{\sin \frac{n\pi}{l}x\}$ 展开的系数,其中

$$\int_{0}^{l} \sin \frac{n\pi}{l} x \sin \frac{k\pi}{l} x dx = \begin{cases} 0, n \neq k \\ \frac{l}{2}, n = k \end{cases}$$
这样有 $a_n = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n\pi}{l} x dx, n = 1, 2, \cdots,$

$$b_n = \frac{2}{n\pi a} \int_{0}^{l} g(x) \sin \frac{n\pi}{l} x dx, n = 1, 2, \cdots$$

第二节 热传导方程

$$\begin{cases} u_{t} = ku_{xx}, 0 < x < l, t > 0 \\ u|_{t=0} = f(x), 0 \le x \le l \\ u|_{x=0} = u|_{x=l} = 0, t \ge 0 \end{cases}$$
解:1) 设分离变量形式解为 $u(x,t) = X(x)T(t)$;
2) 分离方程得 $XT' = kX'T$,
对于使 $X(x)T(t) \ne 0$ 的点 (x,t) ,有
$$\frac{X''}{X} = \frac{1}{k}\frac{T'}{T} = -\lambda,$$

则

$$X'' + \lambda X = 0,$$

$$T' + \lambda kT = 0.$$
 (1)

3)分离边界条件

$$u(0,t) = X(0)T(t) = 0, T(t) \neq 0,$$

故
$$X(0) = 0$$
,同理 $X(l) = 0$.

4)解固有值问题

$$\begin{cases} X'' + \lambda X = 0.0 < x < l \\ X(0) = X(l) = 0. \end{cases}$$

固有值为
$$\lambda_n = (\frac{n\pi}{l})^2, n = 1, 2, \cdots$$

固有函数为
$$X_n(x) = \sin \frac{n\pi}{l} x, n = 1, 2, \cdots$$

因此,方程的通解为 $X_n(x) = B_n \sin \frac{n\pi}{l} x$.

5)求定解问题的形式解

当
$$\lambda = \lambda_n = (\frac{n\pi}{l})^2$$
时,方程(1)的通解为

$$T_n(t) = C_n e^{-\left(\frac{n\pi}{l}\right)^2 kt}.$$

則
$$u_n(x,t) = X_n(x)T_n(t)$$

$$= a_n e^{-(\frac{n\pi}{l})^2 kt} \sin \frac{n\pi}{l} x,$$

由叠加原理设

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} a_n e^{-(\frac{n\pi}{l})^2 kt} \sin \frac{n\pi}{l} x,$$

下面利用初始条件确定系数an,

$$\boxplus u(x,0) = f(x) = \sum_{n=1}^{\infty} a_n \sin \frac{n\pi}{l} x,$$

 a_n 是f(x)关于正交函数系 $\{\sin \frac{n\pi}{l}x\}$ 展开的系数,其中

$$\int_0^l \sin \frac{n\pi}{l} x \sin \frac{k\pi}{l} x dx = \begin{cases} 0, n \neq k \\ \frac{l}{2}, n = k \end{cases}.$$

这样有
$$a_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi}{l} x dx, n = 1, 2, \dots,$$

第三节 非齐次问题

一、有外力的弦的振动问题

于是 $v_{tt} = a^2 v_{xx}$.

$$\begin{cases} u_{tt} = a^{2}u_{xx} + F(x), 0 < x < l, t > 0 \\ u|_{t=0} = f(x), u_{t}|_{t=0} = g(x), 0 \le x \le l \\ u|_{x=0} = A, u|_{x=l} = B, t \ge 0 \end{cases}$$
解: 设解的形式为 $u(x,t) = v(x,t) + w(x),$ 则 $v_{tt} = a^{2}(v_{xx} + w'') + F(x),$ 为使v满足齐次方程,令 $a^{2}w_{xx} + F(x) = 0,$

再由条件有

$$u|_{t=0} = v|_{t=0} + w(x) = f(x),$$
 $u_t|_{t=0} = v_t|_{t=0} = g(x),$
 $u|_{x=0} = v|_{x=0} + w(0) = A,$
 $u|_{x=l} = v|_{x=l} + w(l) = B,$
为使v还满足齐次边界条件,
 $令 w(0) = A, \quad w(l) = B,$
于是

 $v(x,0) = f(x) - w(x), v_t(x,0) = g(x).$

(1)
$$\begin{cases} a^{2}w_{xx} + F(x) = 0, \\ w(0) = A, \quad w(l) = B, \end{cases}$$
(2)
$$\begin{cases} v_{tt} = a^{2}v_{xx}, \\ v(x,0) = f(x) - w(x), \\ v_{t}(x,0) = g(x), \\ v|_{x=0} = v|_{x=l} = 0. \end{cases}$$

先解(1)

$$\begin{split} w_{x} &= -\frac{1}{a^{2}} \int_{0}^{x} F(\xi) d\xi + C, \\ w(x) &= -\frac{1}{a^{2}} \int_{0}^{x} (\int_{0}^{\eta} F(\xi) d\xi) d\eta + Cx + D, \\ \overline{\oplus} &= W(0) = A, \quad w(l) = B, \quad \widehat{\oplus} EC, D. \overline{\oplus} E\overline{\uparrow} \\ w(x) &= A + (B - A) \frac{x}{l} + \frac{x}{l} \int_{0}^{l} [\frac{1}{a^{2}} \int_{0}^{\eta} F(\xi) d\xi] d\eta \\ &- \int_{0}^{x} [\frac{1}{a^{2}} \int_{0}^{\eta} F(\xi) d\xi] d\eta. \end{split}$$

问题(2)的解为

$$v(x,t) = \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi a}{l} t + b_n \sin \frac{n\pi a}{l} t) \sin \frac{n\pi}{l} x,$$
其中 $a_n = \frac{2}{l} \int_0^l [f(x) - w(x)] \sin \frac{n\pi}{l} x dx, n = 1, 2, \cdots,$

$$b_n = \frac{2}{n\pi a} \int_0^l g(x) \sin \frac{n\pi}{l} x dx, n = 1, 2, \cdots$$
于是 $u(x,t) = v(x,t) + w(x).$

例:
$$\begin{cases} u_{tt} = a^2 u_{xx} + h, 0 < x < l, t > 0, h 为常数 \\ u|_{t=0} = u_t|_{t=0} = 0, 0 \le x \le l \\ u|_{x=0} = u|_{x=l} = 0, t \ge 0 \end{cases}$$

解: 设解的形式为u(x,t) = v(x,t) + w(x), 则 $v_{tt} = a^2(v_{xx} + w'') + h$, 为使v满足齐次方程,令 $a^2w_{xx} + h = 0$, 于是 $v_{tt} = a^2v_{xx}$.

再由条件有

$$u|_{t=0} = v|_{t=0} = 0,$$

$$u_t \mid_{t=0} = v_t \mid_{t=0} = 0,$$

$$u|_{x=0} = v|_{x=0} + w(0) = 0,$$

$$u|_{x=l} = v|_{x=l} + w(l) = 0,$$

为使v还满足齐次边界条件,

$$\Rightarrow w(0) = 0, \quad w(l) = 0,$$

于是

$$v(x,0) = -w(x), v_t(x,0) = 0.$$

则

(1)
$$\begin{cases} a^2 w_{xx} + h = 0, \\ w(0) = w(l) = 0, \end{cases}$$

$$\begin{cases}
v_{tt} = a^{2}v_{xx}, \\
v(x,0) = -w(x), \\
v_{t}(x,0) = 0, \\
v_{t}(x,0) = v|_{x=0} = 0.
\end{cases}$$

先解(1)得,
$$w(x) = \frac{h}{2a^2}(lx - x^2)$$
.

而(2)的解为:
$$v(x,t) = \sum_{n=1}^{\infty} a_n \cos \frac{n\pi a}{l} t \sin \frac{n\pi}{l} x$$
,

其中
$$a_n = \frac{2}{l} \int_0^l [-w(x)] \sin \frac{n\pi}{l} x dx$$

$$= \frac{2}{l} \int_0^l \frac{h}{2a^2} (x^2 - lx) \sin \frac{n\pi}{l} x dx$$

$$= \frac{2hl^2}{n^3 \pi^3 a^2} (\cos n\pi - 1)$$

$$= \begin{cases} -\frac{4hl^2}{n^3 \pi^3 a^2}, n$$
 奇

所以u(x,t) = v(x,t) + w(x).

二、有热源的热传导方程

$$\begin{cases} u_{t} = ku_{xx} + F(x), 0 < x < l, t > 0 \\ u|_{t=0} = f(x), 0 \le x \le l \\ u|_{x=0} = A, u|_{x=l} = B, t \ge 0 \end{cases}$$
解: 设解的形式为 $u(x,t) = v(x,t) + w(x)$, 得 $v_{t} = k(v_{xx} + w'') + F(x)$, 为使 v 满足齐次方程,令 $kw_{xx} + F(x) = 0$, 于是 $v_{t} = kv_{xx}$.

再由条件有

$$u|_{t=0} = v|_{t=0} + w(x) = f(x),$$
 $u|_{x=0} = v|_{x=0} + w(0) = A,$
 $u|_{x=l} = v|_{x=l} + w(l) = B,$
为使v还满足齐次边界条件,
令 $w(0) = A, \quad w(l) = B,$
于是
 $v(x,0) = f(x) - w(x).$

则

(1)
$$\begin{cases} kw_{xx} + F(x) = 0, \\ w(0) = A, \quad w(l) = B, \end{cases}$$
(2)
$$\begin{cases} v_t = kv_{xx}, \\ v(x,0) = f(x) - w(x), \\ v|_{x=0} = v|_{x=l} = 0. \end{cases}$$

$$w(x) = A + (B - A)\frac{x}{l} + \frac{x}{l} \int_0^l \left[\frac{1}{k} \int_0^{\eta} F(\xi) d\xi \right] d\eta$$
$$- \int_0^x \left[\frac{1}{k} \int_0^{\eta} F(\xi) d\xi \right] d\eta.$$

再解(2)得,

$$v(x,t) = \sum_{n=1}^{\infty} a_n e^{-(\frac{n\pi}{l})^2 kt} \sin \frac{n\pi}{l} x,$$
其中 $a_n = \frac{2}{l} \int_0^l [f(x) - w(x)] \sin \frac{n\pi}{l} x dx, n = 1, 2, \dots,$
于是 $u(x,t) = v(x,t) + w(x).$

三、非齐次方程问题

$$\begin{cases} u_t = a^2 u_{xx} + f(x,t), 0 < x < l, t > 0 \\ u|_{t=0} = \varphi(x), 0 \le x \le l \\ u|_{x=0} = u|_{x=l} = 0, t \ge 0 \end{cases}$$
解: 1) 求特征函数
$$\begin{cases} u_t - a^2 u_{xx} = 0 \\ u|_{x=0} = u|_{x=l} = 0 \end{cases}$$

$$u = X(x)T(t) \Rightarrow \begin{cases} X'' + \lambda X = 0 \\ X(0) = X(l) = 0 \end{cases}$$

$$\therefore X_n = \sin \frac{n\pi}{l} x. n = 1, 2, \cdots$$

2) 按特征函数展成Fourier级数

$$(1) u(x,t) = \sum_{n=1}^{\infty} u_n(t) \sin \frac{n\pi}{l} x$$

$$(2)f(x,t) = \sum_{n=1}^{\infty} f_n(t)\sin\frac{n\pi}{l}x, f_n(t) = \frac{2}{l}\int_0^l f(x,t)\sin\frac{n\pi}{l}xdx$$

(3)
$$\varphi(x) = \sum_{n=1}^{\infty} \varphi_n \sin_n \phi_n = \frac{2}{l} \int_0^l \varphi(x) \sin \frac{n\pi}{l} x dx$$

将(1),(2)代入泛定方程得

$$\frac{\partial}{\partial t} \left[\sum_{n=1}^{\infty} u_n(t) \sin \frac{n\pi}{l} x \right] - a^2 \frac{\partial^2}{\partial x^2} \left[\sum_{n=1}^{\infty} u_n(t) \sin \frac{n\pi}{l} x \right]$$

$$= \sum_{n=1}^{\infty} f_n(t) \sin \frac{n\pi}{l} x,$$

$$\mathbb{E} \sum_{n=1}^{\infty} \frac{du_n(t)}{at} \sin \frac{n\pi}{l} x - a^2 \sum_{n=1}^{\infty} l_n(t) \frac{\partial^2}{\partial x^2} \sin \frac{n\pi}{l} x$$

$$= \sum_{n=1}^{\infty} f_n(t) \sin \frac{n\pi}{l} x$$

$$\Rightarrow \sum_{n=1}^{\infty} \left\lfloor \frac{du_n(t)}{dt} + (\frac{an\pi}{l})^2 u_n(t) - f_n(t) \right\rfloor \sin \frac{n\pi}{l} x = 0$$

$$\Rightarrow \frac{du_n(t)}{dt} + (\frac{an\pi}{l})^2 u_n(t) = f_n(t)$$

$$\overrightarrow{mu}|_{t=0} = \sum_{n=1}^{\infty} u_n(0) \sin \frac{n\pi}{l} x,$$

$$\Rightarrow \varphi(x) = \sum_{n=1}^{\infty} u_n(0) \sin \frac{n\pi}{l} x = \sum_{n=1}^{\infty} \varphi_n \sin \frac{n\pi}{l} x,$$

$$\Rightarrow u_n(0) = \varphi_n$$

3)
$$\begin{cases} \frac{du_n(t)}{dt} + (\frac{an\pi}{l})^2 u_n(t) = f_n(t), \\ u_n(0) = \varphi_n. \end{cases}$$

解得
$$u_n(t) = e^{-(\frac{an\pi}{l})^2 t} \left[\int_0^t f_n(\tau) e^{(\frac{an\pi}{l})^2 \tau} d\tau + c_0 \right],$$

$$\Rightarrow u_n(t) = e^{-(\frac{an\pi}{l})^2 t} \left[\int_0^t f_n(\tau) e^{(\frac{an\pi}{l})^2 \tau} d\tau + \varphi_n \right],$$

把 u_n 的表式代入(1)得

$$u(x,t) = \sum_{n=1}^{\infty} e^{-(\frac{an\pi}{l})^2 t} \left[\int_0^t f_n(\tau) e^{(\frac{an\pi}{l})^2 \tau} d\tau + \varphi_n \right] \sin \frac{n\pi}{l} x.$$

四、边界齐次化

$$\begin{cases} u_t - a^2 u_{xx} = f(x,t), 0 < x < t, t > 0 \\ u|_{t=0} = \varphi(x). \end{cases}$$

1)
$$u|_{x=0} = g_1(t), u|_{x=l} = g_2(t)$$

2)
$$u_x|_{x=0} = g_1(t), u|_{x=l} = g_2(t)$$

3)
$$u|_{x=0} = g_1(t), u_x|_{x=l} = g_2(t)$$

4)
$$u_x|_{x=0} = g_1(t), u_x|_{x=l} = g_2(t)$$

1)令
$$u(x,t) = v(x,t) + \omega(x,t)$$

得 $v_t + \omega_t - a^2(v_{xx} + \omega_{xx}) = f(x,t),$
⇒ $v_t - a^2v_{xx} = f - (\omega_t - a^2\omega_{xx}),$
由 $u|_{t=0} = \varphi(x) \Rightarrow v|_{t=0} = \varphi(x) - \omega(x,0)$
 $u|_{x=0} = v|_{x=0} + \omega|_{x=0} = g_1(t),$ 要使 $v|_{x=0} = 0,$ 令 $\omega|_{x=0} = g_1(t)$
 $u|_{x=l} = v|_{x=l} + \omega|_{x=l} = g_2(t),$ 要使 $v|_{x=l} = 0,$ 令 $\omega|_{x=l} = g_2(t)$

$a) \omega(x,t)$ 有

$$\omega(0,t) = g_1(t), \omega(l,t) = g_2(t),$$

$$\therefore \omega(x,t) = \frac{g_2 - g_1}{l} x + g_1.$$

$$\begin{cases} \upsilon_{t} - a^{2}\upsilon_{xx} = f - (\omega_{t} - a^{2}\omega_{xx}), \\ \upsilon|_{x=0} = \upsilon|_{x=l} = 0, \\ \upsilon|_{t=0} = \varphi(x) - \omega(x, 0). \end{cases}$$

$$\Rightarrow \begin{cases} \upsilon_{t} - a^{2}\upsilon_{xx} = \overline{f}(x,t), \\ \upsilon|_{t=0} = \overline{\varphi}, \\ \upsilon|_{x=0} = \upsilon|_{x=l} = 0. \end{cases} \Rightarrow u(x,t) = \upsilon(x,t) + \omega(x,t)$$

$$2)u = v(x,t) + \omega(x,t) \Rightarrow v_{t} - a^{2}v_{xx} = f - (\omega_{t} - a^{2}\omega_{xx}),$$

$$v|_{t=0} = \varphi(x) - \omega|_{t=0}$$

$$u_{x}|_{x=0} = v_{x}|_{x=0} + \omega_{x}|_{x=0} = g_{1}(t),$$

$$\Leftrightarrow \omega_{x}|_{x=0} = g_{1}(t), \therefore v_{x}|_{x=0} = 0$$

$$u|_{x=l} = v|_{x=l} + \omega|_{x=l} = g_{2}(t),$$

$$\Leftrightarrow \omega|_{x=l} = g_{2}(t), \therefore v|_{x=l} = 0$$

$$\begin{cases} v_{t} - a^{2}v_{xx} = \overline{f}(x,t) = f - (\omega_{t} - a^{2}\omega_{xx}), \\ v_{x}|_{x=0} = 0, v|_{x=l} = 0, \\ v|_{t=0} = \overline{\varphi} = \varphi(x) - \omega|_{t=0} \end{cases}$$

b) 求
$$\omega(x,t)$$
,使 $\omega_x \mid_{x=0} = g_1(t), \omega(l,t) = g_2(t)$
令 $\omega = kx + b \Rightarrow \omega_x = k \Rightarrow \omega = g_1(t)x + b$,
 $\omega \mid_{x=l} = g_1(t)l + b = g_2(t) \Rightarrow b = g_2(t) - g_1(t)l$
 $\Rightarrow \omega = g_1(t)x + g_2(t) - g_1(t)l$
3) 略 $\omega = kx + b$
4) ω 采 用 $\omega = ax^2 + bx, u = v + \omega, \omega = ax^2 + bx$
 $\Rightarrow \omega_x = 2ax + b$
 $\omega_x \mid_{x=0} = b = g_1(t), \omega_x \mid_{x=l} = 2al + g_1(t) = g_2(t)$
 $\Rightarrow a = \frac{g_2(t) - g_1(t)}{2l}$
 $\Rightarrow \omega = \frac{g_2(t) - g_1(t)}{2l}x^2 + g_1(t)x$.

第五章 积分变换法

第一节 δ-函数

-、 δ -函数定义

设在一条直线上有一单位质量集中在点x₀,假定质量所分布的区间长度小得可忽略不计,这一集中质量的线密度为

$$\rho(x-x_0) = \begin{cases} 0, & x \neq x_0 \\ \lim_{\Delta x \to 0} \frac{1}{\Delta x}, & x = x_0 \end{cases}.$$

$$\exists P \rho(x - x_0) = \begin{cases} 0, & x \neq x_0 \\ \infty, & x = x_0 \end{cases}.$$

$$\overrightarrow{\text{mi}} \int_{-\infty}^{\infty} \rho(x - x_0) dx = 1.$$

定义:设有定义在($-\infty$, ∞)上的函数 $\delta(x-x_0)$, 其中x为自变量, x_0 为任意常数,若有如下性质:

$$\begin{cases} \mathcal{S}(x - x_0) = \begin{cases} 0, & x \neq x_0 \\ \infty, & x = x_0 \end{cases} \\ \int_{-\infty}^{\infty} \mathcal{S}(x - x_0) dx = 1. \end{cases}$$

则称 $\delta(x-x_0)$ 为 δ -函数.

当
$$x_0 = 0$$
时, δ -函数为
$$\begin{cases} \delta(x) = \begin{cases} 0, & x \neq 0 \\ \infty, & x = 0 \end{cases} \\ \int_{-\infty}^{\infty} \delta(x) dx = 1. \end{cases}$$

二维 δ -函数 $\delta(x-x_0,y-y_0)$,满足

$$\begin{cases} \delta(x - x_0, y - y_0) = \begin{cases} 0, & \text{if } d \\ \infty, & x = x_0, y = y_0 \end{cases} \\ \iint_{\mathbb{R}^2} \delta(x - x_0, y - y_0) dx dy = 1. \end{cases}$$

二、 δ -函数性质

(1)
$$\delta(x) = \delta(-x)$$
;

(2)若f(x)是定义在 $(-\infty,\infty)$ 上的任一连续函数,

则有
$$\int_{-\infty}^{\infty} \delta(x-x_0) f(x) dx = f(x_0);$$

$$(3)\delta(ax) = \frac{\delta(x)}{|a|}, (a \neq 0);$$

$$(4)\varphi(x)\delta(x-a) = \varphi(a)\delta(x-a);$$

(5)
$$H'(x) = \delta(x), \sharp \oplus H(x) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases}$$
;

(6)对任一二维连续函数f(x,y),有

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x - x_0, y - y_0) dx dy = f(x_0, y_0);$$

$$(7)\delta(x - x_0, y - y_0) = \delta(x - x_0)\delta(y - y_0).$$

第二节 Fourier变换

- 一、Fourier变换的定义
- 1.Fourier积分定理:

若f(t)在 $(-\infty,\infty)$ 上满足下列条件:

- (1) f(t)在任一有限区间上连续或只有有限个第一类间断点且只有有限个极值点;
- (2) f(t)在无限区间 $(-\infty,\infty)$ 上绝对可积 $(\mathbb{P}\int_{-\infty}^{\infty} |f(t)| dt$ 收敛),

则有
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(\tau) e^{-i\omega\tau} d\tau \right] e^{i\omega t} d\omega$$
成立,而左端 $f(t)$

在它的间断点t处,应以 $\frac{f(t+0)+f(t-0)}{2}$ 来代替.

2. 定义:若函数f(t)满足Fourier积分定理中的条件,则在 f(t)的连续点处,使有

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(\tau) e^{-i\omega\tau} d\tau \right] e^{i\omega t} d\omega$$

成立,设 $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$,则 $f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)e^{i\omega t}d\omega$,则 $F(\omega) = F[f(t)]$ 称为f(t)的Fourier变换式, $F(\omega)$ 称为f(t)的像函数. $f(t) = F^{-1}[F(\omega)] = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)e^{i\omega t}d\omega$ 称为 $F(\omega)$ 的逆变换式,f(t)称为 $F(\omega)$ 像原函数。

二、Fourier变换的性质

1.Fourier变换的性质

1)线性性质 : 设
$$F_1(\omega) = F[f_1(t)], F_2(\omega) = F[f_2(t)],$$

$$F^{-1}[\alpha F_1(\omega) + \beta F_2(\omega)] = \alpha f_1(t) + \beta f_2(t).$$

2)位移性质:
$$F[f(t \pm t_0)] = e^{\pm i\omega t_0} F[f(t)]$$
,

$$(F[f(t \pm t_0)] = \int_{-\infty}^{\infty} f(t \pm t_0) e^{-i\omega t} dt = \int_{-\infty}^{\infty} f(u) e^{-i\omega(u \mp t_0)} du$$
$$= e^{\pm i\omega t_0} \int_{-\infty}^{\infty} f(u) e^{-i\omega u} du);$$

$$F^{-1}[F(\omega \mp \omega_0)] = f(t)e^{\pm i\omega t_0}.$$

3)微分性质: 如果f(t)在 $(-\infty, \infty)$ 上连续或只有有限个可去间断点,且当 $|t|\to\infty$ 时, $f(t)\to 0$,则 $F[f'(t)]=i\omega F[f(t)]$.

证明: 由定义
$$F[f'(t)] = \int_{-\infty}^{\infty} f'(t)e^{-i\omega t}dt$$

$$= f(t)e^{-i\omega t} \Big|_{-\infty}^{\infty} + i\omega \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

$$= i\omega F[f(t)].$$

推论: 若 $f^{(k)}(t)$ 在 $(-\infty, \infty)$ 上连续或只有有限个可去间断点,且 $\lim_{|t|\to\infty} f^{(k)}(t) = 0, k = 0, \dots, n-1, 则有<math>F[f^{(n)}(t)] = (i\omega)^n F[f(t)].$

4)积分性质: 如果当 $t \to \infty$ 时, $g(t) = \int_{-\infty}^{t} f(t)dt \to 0$,

则
$$F[\int_{-\infty}^{t} f(t)dt] = \frac{1}{i\omega}F[f(t)].$$

证明: 由 $\frac{d}{dt}\int_{-\infty}^{t} f(t)dt = f(t)$,两边取Fourier变换

$$F[\frac{d}{dt}\int_{-\infty}^{t}f(t)dt]=F[f(t)],$$
由Fourier微分性质,得

$$F\left[\frac{d}{dt}\int_{-\infty}^{t} f(t)dt\right] = i\omega F\left[\int_{-\infty}^{t} f(t)dt\right], \quad \exists \exists$$

$$F[\int_{-\infty}^{t} f(t)dt] = \frac{1}{i\omega} F[f(t)].$$

2.卷积定义: 若已知函数 $f_1(t)$, $f_2(t)$ 在 $(-\infty,\infty)$ 上有定义,则积分

$$\int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau$$

称为函数 $f_1(t)$ 与 $f_2(t)$ 的卷积,记为 $f_1(t)*f_2(t)$,即

$$f_1(t) * f_2(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau.$$

$$F[f_1(t)] = F_1(\omega), F[f_2(t)] = F_2(\omega), \text{II}$$

$$F[f_1(t) * f_2(t)] = F_1(\omega) \cdot F_2(\omega),$$

$$F^{-1}[F_1(\omega) \cdot F_2(\omega)] = f_1(t) * f_2(t).$$

例1. δ -函数的Fourier变换

 $F[\delta(x)] = \int_{-\infty}^{\infty} \delta(x)e^{-i\omega x}dx = e^{-i\omega x}|_{x=0} = 1, F^{-1}[1] = \delta(x),$ 则 $\delta(x)$ 与1构成Fourier变换对,同理 $\delta(x-x_0)$ 与 $e^{-i\omega x_0}$ 也构成一个变换对.

例2.求 $\sin \omega_0 t$ 的Fourier变换

解: 求的是广义Fourier变换, $\sin \omega_0 t = \frac{e^{i\omega_0 t} - e^{-i\omega_0 t}}{2i}$,

$$F[\sin \omega_0 t] = \int_{-\infty}^{\infty} \sin \omega_0 t e^{-i\omega t} dt = \int_{-\infty}^{\infty} \frac{e^{i\omega_0 t} - e^{-i\omega_0 t}}{2i} e^{-i\omega t} dt$$

$$=\frac{1}{2i}\int_{-\infty}^{\infty}e^{-i(\omega-\omega_0)t}dt-\frac{1}{2i}\int_{-\infty}^{\infty}e^{-i(\omega+\omega_0)t}dt,$$

又因为
$$\frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega)e^{-i\omega t}d\omega=1$$
,则1与 $2\pi\delta(\omega)$ 构成一个 Fourier变换对,从而 $\int_{-\infty}^{\infty}e^{-i(\omega-\omega_0)t}dt=2\pi\delta(\omega-\omega_0)$,
$$\int_{-\infty}^{\infty}e^{-i(\omega+\omega_0)t}dt=2\pi\delta(\omega+\omega_0)$$
,则
$$F[\sin\omega_0 t]=\frac{1}{2i}[2\pi\delta(\omega-\omega_0)-2\pi\delta(\omega+\omega_0)]$$

$$=i\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)].$$

例3.求 $F(\omega) = e^{-a^2\omega^2t}$ 的Fourier逆变换

解:
$$F^{-1}[e^{-a^2\omega^2t}] = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-a^2\omega^2t} e^{i\omega x} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-a^2\omega^2t} [\cos \omega x + i\sin \omega x] d\omega$$

因为 $e^{-a^2\omega^2t}\sin\omega x$ 为 ω 的奇函数,固 $\int_{-\infty}^{\infty}e^{-a^2\omega^2t}\sin\omega xd\omega=0$,

因为 $e^{-a^2\omega^2t}\cos\omega x$ 为 ω 的偶函数,固

$$\int_{-\infty}^{\infty} e^{-a^2\omega^2 t} \cos \omega x d\omega = 2\int_{0}^{\infty} e^{-a^2\omega^2 t} \cos \omega x d\omega, \quad$$
 于是

$$F^{-1}[e^{-a^2\omega^2t}] = \frac{1}{\pi} \int_0^\infty e^{-a^2\omega^2t} \cos \omega x d\omega.$$

下面推导令一个积分公式:
$$\int_0^\infty e^{-x^2} \cos 2bx dx = \frac{\sqrt{\pi}}{2} e^{-b^2}.$$

$$J'(b) = -\int_0^\infty 2xe^{-x^2}\sin 2bx dx = e^{-x^2}\sin 2bx \Big|_{x=0}^\infty -2b\int_0^\infty e^{-x^2}\cos 2bx dx = -2bJ(b),$$

当
$$b = 0$$
时, $J(0) = \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$,于是

$$\begin{cases} J'(b) + 2bJ(b) = 0, \\ J(0) = \frac{\sqrt{\pi}}{2}. \end{cases} \Rightarrow J(b) = \frac{\sqrt{\pi}}{2}e^{-b^2}.$$

所以,
$$\int_0^\infty e^{-x^2} \cos 2bx dx = \frac{\sqrt{\pi}}{2} e^{-b^2}$$
.

利用上式,可得

$$F^{-1}[e^{-a^2\omega^2t}] = \frac{1}{\pi} \int_0^\infty e^{-a^2\omega^2t} \cos \omega x d\omega = \frac{1}{2a\sqrt{\pi t}} e^{-\frac{x^2}{4a^2t}}.$$

第三节 Fourier变换的应用

$$\text{ for } 1. \begin{cases} u_t = a^2 u_{xx} + f(x,t), -\infty < x < \infty, t > 0, \\ u|_{t=0} = \varphi(x). \end{cases}$$

解:1)取x为变元进行Fourier变换,t为参数.

设
$$F[u(x,t)]$$
=U(ω , t), $F[f(x,t)]$ =F(ω , t), $F[\varphi(x)]$ = $\phi(\omega)$.

对方程两边取Fourier变换:

$$F[u_t] = F[a^2 u_{xx}] + F[f(x,t)] \Rightarrow \frac{\partial}{\partial t} F[u] = -a^2 \omega^2 F[u] + F(\omega,t)$$

$$\Rightarrow \frac{dU(\omega,t)}{dt} = -a^2 \omega^2 U(\omega,t) + F(\omega,t),$$

$$\overrightarrow{\mathbb{m}}u\mid_{t=0} = \varphi(x) \Rightarrow F[u\mid_{t=0}] = F[\varphi(x)] = \phi(\omega) \Rightarrow U\mid_{t=0} = \phi(\omega),$$

2)解常微分方程

$$\begin{cases} \frac{dU(\omega,t)}{dt} = -a^2 \omega^2 U(\omega,t) + F(\omega,t), \\ U|_{t=0} = \phi(\omega). \end{cases} \Rightarrow \mathbb{H}$$

$$U(\omega,t) = e^{-a^2\omega^2t} \left[\int_0^t F(\omega,\tau) e^{a^2\omega^2\tau} d\tau + c(\omega) \right],$$

$$\overline{\mathbb{T}}U|_{t=0}=\phi(\omega)$$
,则

$$U(\omega,t) = \phi(\omega)e^{-a^2\omega^2t} + \int_0^t F(\omega,\tau)e^{-a^2\omega^2(t-\tau)}d\tau.$$

3)取逆

曲
$$F^{-1}[e^{-a^2\omega^2t}] = \frac{1}{2a\sqrt{\pi t}}e^{-\frac{x^2}{4a^2t}}$$
,有

$$\begin{split} u(x,t) &= F^{-1}[U(\omega,t)] = F^{-1}[\phi(\omega)e^{-a^2\omega^2t}] + F^{-1}[\int_0^t F(\omega,\tau)e^{-a^2\omega^2(t-\tau)}d\tau] \\ &= F^{-1}[\phi(\omega)] * F^{-1}[e^{-a^2\omega^2t}] + \int_0^t F^{-1}[F(\omega,\tau)e^{-a^2\omega^2(t-\tau)}]d\tau \\ &= \phi(x) * \frac{1}{2a\sqrt{\pi t}}e^{-\frac{x^2}{4a^2t}} + \int_0^t f(x,\tau) * \frac{1}{2a\sqrt{\pi t}}e^{-\frac{x^2}{4a^2(t-\tau)}}d\tau \\ &= \frac{1}{2a\sqrt{\pi t}}\int_{-\infty}^\infty \phi(\tau)e^{-\frac{(x-\tau)^2}{4a^2t}}d\tau + \int_0^t [\int_{-\infty}^\infty f(\xi,\tau)\frac{1}{2a\sqrt{\pi(t-\tau)}}e^{-\frac{(x-\xi)^2}{4a^2(t-\tau)}}d\xi]d\tau \\ &= \frac{1}{2a\sqrt{\pi t}}\int_{-\infty}^\infty \phi(\tau)e^{-\frac{(x-\tau)^2}{4a^2t}}d\tau + \frac{1}{2a\sqrt{\pi}}\int_0^t [\int_{-\infty}^\infty \frac{f(\xi,\tau)}{\sqrt{t-\tau}}e^{-\frac{(x-\xi)^2}{4a^2(t-\tau)}}d\xi]d\tau. \end{split}$$

步骤: 1. 根据自变量的变化范围选取一个变量,两边关于该变量取Fourier变换,将其余变量看做参变量,得到关于像函数的常微分方程,再对定解条件取Fourier变换得到像函数满足的定解条件:

- 2. 解常微分方程定解问题,求的解为像函数;
- 3. 对像函数取Fourier逆变换得到原定解问题的解。

$$\sup_{t \in \mathbb{R}} |u_{t}| = a^{2}u_{xx}, -\infty < x < \infty, t > 0,$$

$$u_{t=0} = \sin x.$$

解:1)取x为变元进行Fourier变换, t为参数.

设
$$F[\sin x]=i\pi[\delta(\omega+1)-\delta(\omega-1)]=f(\omega),$$

对方程两边取Fourier变换:

$$F[u_t] = F[a^2 u_{xx}] \Rightarrow \frac{\partial}{\partial t} F[u] = -a^2 \omega^2 F[u]$$

$$\Rightarrow \frac{dU(\omega,t)}{dt} = -a^2 \omega^2 U(\omega,t),$$

$$\overrightarrow{\mathbb{II}} u \mid_{t=0} = \sin x \Rightarrow F[u \mid_{t=0}] = F[\sin x] \Rightarrow U \mid_{t=0} = f(\omega),$$

2)解常微分方程

$$\begin{cases} \frac{dU(\omega,t)}{dt} = -a^2 \omega^2 U(\omega,t), \\ U|_{t=0} = f(\omega). \end{cases}$$

$$\Rightarrow$$
 通解为 $U(\omega,t)=f(\omega)e^{-a^2\omega^2t}$,

$$\mathbb{E} U(\omega,t) = i\pi \delta(\omega+1)e^{-a^2\omega^2t} - i\pi \delta(\omega-1)e^{-a^2\omega^2t}.$$

3)取逆

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} i\pi \delta(\omega + 1) e^{-a^2 \omega^2 t} e^{i\omega x} d\omega - \frac{1}{2\pi} \int_{-\infty}^{\infty} i\pi \delta(\omega - 1) e^{-a^2 \omega^2 t} e^{i\omega x} d\omega$$

$$= \frac{i}{2} e^{-a^2 t} e^{-ix} - \frac{i}{2} e^{-a^2 t} e^{ix}$$

$$= \frac{i}{2} e^{-a^2 t} [e^{-ix} - e^{ix}]$$

$$= \frac{i}{2} e^{-a^2 t} [\cos x - i \sin x - \cos x - i \sin x]$$

$$= \sin x e^{-a^2 t}.$$

第四节 Laplace变换

一、定义:设函数f(t)在 $[0, +\infty)$ 上有定义,而且积分 $\int_0^{+\infty} f(t)e^{-st}dt$ 在s的某一范围内收敛,其中 $s = \beta + i\omega$ 为复参数,设

$$F(s) = \int_0^{+\infty} f(t)e^{-st}dt$$

称上式为函数f(t)的Laplace变换式,记为F(s) = L[f(t)],F(s)称为f(t)的Laplace变换或称为像函数,同时f(t)称为F(s)的Laplace逆变换或原函数,记为 $f(t) = L^{-1}[F(s)]$.

定理(Laplace变换存在定理)

若函数f(t)满足下列条件:

- (1)在t≥0的任意有限区间上分段连续;
- (2)当 $t \to +\infty$ 时,f(t)的增长速度不超过某一指数函数,

即 $\exists (M > 0) \in R$ 及 $C \ge 0$,使得 $|f(t)| \le Me^{ct}$, $0 \le t < +\infty$ 成立,

则f(t)的Laplace变换 $F(s) = \int_0^{+\infty} f(t)e^{-st}dt$ 在半平面Re(s) > c

上一定存在,右端积分在 $Re(s) \ge c_1 > c$ 上绝对且一致收敛,

并且在Re(s) > c的半平面内F(s)解析。

例1:
$$L[e^{kt}] = \int_0^\infty e^{kt} e^{-st} dt = \int_0^\infty e^{-(s-k)t} dt$$

$$= -\frac{1}{s-k} e^{-(s-k)t} \Big|_0^\infty = \frac{1}{s-k} \qquad (\text{Re}(s) > k)$$

同理
$$L[\cos kt] = \frac{s}{s^2 + k^2}$$
.

例3:
$$L[1] = \int_0^\infty e^{-st} dt = -\frac{1}{s} e^{-st} \Big|_0^\infty = \frac{1}{s}.$$

二、性质

1.线性性质: 设
$$L[f_1(t)] = F_1(s)$$
, $L[f_2(t)] = F_2(s)$,

 $a,b \in R$,有

$$L[af_1(t) + bf_2(t)] = aL[f_1(t)] + bL[f_2(t)] = aF_1(s) + bF_2(s),$$

$$L^{-1}[aF_1(s) + bF_2(s)] = af_1(t) + bf_2(t).$$

2.微分性质: 设
$$L[f(t)] = F(s)$$
, 则 $L[f'(t)] = sF(s) - f(0)$.

证明:
$$L[f'(t)] = \int_0^\infty f'(t)e^{-st}dt = f(t)e^{-st}\Big|_0^\infty - \int_0^\infty (-s)f(t)e^{-st}dt$$

= $sF(s) - f(0)$.

推论: 设L[f(t)] = F(s),则

$$L[f^{(n)}(t)] = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0),$$

当
$$f(0) = f'(0) = \cdots = f^{(n-1)}(0) = 0$$
时,上式为 $L[f^{(n)}(t)] = s^n F(s)$.

3.积分性质: 若L[f(t)] = F(s), 则 $L[\int_0^t f(\tau)d\tau] = \frac{1}{s}F(s)$.

证明: 设 $g(t) = \int_0^t f(\tau)d\tau, g'(t) = f(t), g(0) = 0,$

由微分性质,L[g'(t)] = sL[g(t)] - g(0) = sL[g(t)],

即sL[g(t)] = L[f(t)],所以 $L[\int_0^t f(\tau)d\tau] = \frac{1}{s}L[f(t)] = \frac{1}{s}F(s)$.

4.位移性质: 设L[f(t)] = F(s), 则 $L[e^{at} f(t)] = F(s-a)$.

证明: $L[e^{at}f(t)] = \int_0^\infty e^{at}f(t)e^{-st}dt = \int_0^\infty f(t)e^{-(s-a)t}dt = F(s-a).$

5.延迟性质: 设L[f(t)] = F(s), 当 $t \in (-\infty, 0)$ 时f(t) = 0,则 $L[f(t-\tau)] = e^{-s\tau}F(s)$, 其中 τ 为非负参数。 证明: $L[f(t-\tau)] = \int_0^\infty f(t-\tau)e^{-st}dt$ $= \int_0^{\tau} f(t-\tau)e^{-st}dt + \int_{\tau}^{\infty} f(t-\tau)e^{-st}dt$ $=\int_{\tau}^{\infty}f(t-\tau)e^{-st}dt = \int_{0}^{\infty}f(u)e^{-s(u+\tau)}du$ $=e^{-s\tau}\int_{0}^{\infty}f(u)e^{-su}du$ $=e^{-s\tau}F(s).$

例: $f(t) = t^m (m > 0 \in \mathbb{Z})$ 的Laplace变换.

解: $f'(t) = mt^{m-1}$, $f''(t) = m(m-1)t^{m-2}$, ..., $f^{(m)}(t) = m!$

$$f(0) = f'(0) = \dots = f^{(m-1)}(0) = 0,$$

由Laplace变换的微分性质有

$$L[m!] = L[f^{(m)}(t)] = s^m F(s) = s^m L[f(t)] = s^m L[t^m],$$

而
$$L[m!] = m!L[1] = \frac{m!}{s}$$
,故 $L[t^m] = \frac{1}{s^m}L[m!] = \frac{m!}{s^{m+1}}$.

三、Laplace逆变换

方法一:利用函数适当的变形,及Laplace变换的性质.

例: 求
$$F(s) = \frac{2s+3}{s^2+9} - \frac{1}{s+3}$$
的Laplace逆变换.

解:
$$L^{-1}[F(s)] = L^{-1}\left[\frac{2s}{s^2+9}\right] + L^{-1}\left[\frac{3}{s^2+9}\right] - L^{-1}\left[\frac{1}{s+3}\right]$$

= $2\cos 3t + \sin 3t - e^{-3t}$.

方法二: 留数法

则
$$L^{-1}[F(s)] = \sum_{k=1}^{n} \operatorname{Re} s[F(s)e^{st}, s_k]$$
,其中 $\operatorname{Re} s[F(s)e^{st}, s_k]$ 为函数

 $F(s)e^{st}$ 在奇点 s_k 处的留数.

若有限点 z_0 是f(z)的m级极点,则

Re
$$s[f(z), z_0] = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z - z_0)^m f(z)],$$

当
$$m = 1$$
时,Re $s[f(z), z_0] = \lim_{z \to z_0} (z - z_0) f(z)$.

例:
$$F(s) = \frac{1}{s^2(s-1)}$$
,

s=0是二级极点, s=1是一级极点;

Res[F(s) est, 0]=
$$\lim_{s\to 0} \frac{d}{ds} [s^2 F(s) e^{st}] = \lim_{s\to 0} \frac{d}{ds} [\frac{e^{st}}{s-1}]$$

= $\lim_{s\to 0} \frac{t e^{st} (s-1) - e^{st}}{(s-1)^2} = -t - 1;$

Res[F(s) est, 1]=
$$\lim_{s\to 1} (s-1)F(s)e^{st} = \lim_{s\to 1} \frac{e^{st}}{s^2} = e^t$$

所以,
$$L^{-1}[F(s)] = -t - 1 + e^t$$
.

方法三: 卷积求逆

定义: 假定 $t \in (-\infty, 0)$ 时, $f_1(t) = f_2(t) = 0$,定义Laplace变换中 $f_1(t)$ 与 $f_2(t)$ 的卷积为

$$f_1(t) * f_2(t) = \int_0^t f_1(\tau) f_2(t-\tau) d\tau.$$

定理(卷积定理):设 $f_1(t)$ 与 $f_2(t)$ 满足Laplace变换条件,

$$L[f_1(t)] = F_1(s), L[f_2(t)] = F_2(s), \emptyset$$

$$L[f_1(t)*f_2(t)] = F_1(s)F_2(s); \quad \text{$\text{\tiny{\text{\text{\tinter{\text{\tilde{\text{\text{\tilde{\text{\tin}\text{\text{\tinitex{\text{\text{\text{\text{\text{\text{\text{\text{\tiliex{\text{\text{\text{\tiliex{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinitex{\text{\text{\text{\text{\text{\text{\ti}\tilex{\text{\text{\tiliex{\text{\tiliex{\tinitex{\text{\text{\text{\text{\text{\text{\text{\tiliex{\tilex{\tilex{\tilex{\tilex{\texict{\tilex{\tilex{\tilex{\texi{\texi{\tilex{\texi}\texi{\texi{\texict{\tilex{\tilex{\texi{\texi{\texiclex{\tilex{\texi{\texi{\texi{\texi{\tilex{\tilex{\tii}\tilex{\tii}\tiil\tilex{\tilex{\tilex{\tilex{\tilex{\tilex{\tii}\tilex{\tii$$

例:
$$L^{-1}\left[\frac{1}{s^2(1+s^2)}\right] = L^{-1}\left[\frac{1}{s^2}\frac{1}{(1+s^2)}\right]$$

$$= L^{-1}\left[\frac{1}{s^2}\right] * L^{-1}\left[\frac{1}{(1+s^2)}\right]$$

$$= t * \sin t$$

$$= \int_0^t \tau \sin(t-\tau)d\tau$$

$$= t - \sin t.$$

第五节 Laplace变换的应用

$$\text{FII.} \begin{cases} u_t = a^2 u_{xx}, x > 0, t > 0 \\ u|_{t=0} = 0, \\ u|_{x=0} = f(t). \end{cases}$$

已知
$$L^{-1}\left[\frac{1}{s}e^{-\frac{x}{a}\sqrt{s}}\right] = \frac{2}{\sqrt{\pi}}\int_{\frac{x}{2a\sqrt{t}}}^{\infty}e^{-y^2}dy.$$

解:两边关于t取Laplace变换.设L[u(x,t)]=U(x,s), L[f(t)]=F(s).则对方程两边取Laplace变换:

$$L[u_t] = a^2 L[u_{xx}] \Rightarrow sU = a^2 \frac{d^2 U}{dx^2} \Rightarrow \frac{d^2 U}{dx^2} - \frac{s}{a^2} U = 0$$

$$\overrightarrow{\text{III}} u|_{x=0} = f(t) \Rightarrow L[u|_{x=0}] = L[f(t)] = F(s) \Rightarrow U|_{x=0} = F(s),$$

则
$$\begin{cases} \frac{d^2U}{dx^2} - \frac{s}{a^2}U = 0, & 通解为U(x,s) = c_1(s)e^{-\frac{\sqrt{s}}{a}x} + c_2(s)e^{\frac{\sqrt{s}}{a}x}, \\ U|_{x=0} = F(s) & \end{cases}$$

且 $c_1(s) + c_2(s) = F(s)$,而当 $x \to \infty$ 时,u(x,t)有界,所以

U(x,s)有界,即 $c_2(s)=0$.所以, $U(x,s)=F(s)e^{-\frac{\sqrt{s}}{a}x}$. 下面求逆:

$$f(0) = 0, L[f(t)] = F(s) = \frac{1}{s}e^{-\frac{x}{a}\sqrt{s}},$$
 $\exists t \in L[f'(t)] = sF(s) - f(0),$

则
$$L[f'(t)] = sF(s) \Rightarrow$$

$$L^{-1}[e^{-\frac{x}{a}\sqrt{s}}] = f'(t) = \frac{d}{dt}\left[\frac{2}{\sqrt{\pi}}\int_{\frac{x}{2a\sqrt{t}}}^{\infty} e^{-y^2}dy\right] = \frac{x}{2a\sqrt{\pi}t^{\frac{3}{2}}}e^{-\frac{x^2}{4a^2t}},$$

所以,
$$u(x,t) = L^{-1}[U(x,s)] = L^{-1}[F(s)e^{-\frac{\sqrt{s}}{a}x}]$$

= $f(t)*\frac{x}{2a\sqrt{\pi}t^{\frac{3}{2}}}e^{-\frac{x^2}{4a^2t}}$

$$= \frac{x}{2a\sqrt{\pi}} \int_0^t \frac{1}{(t-\tau)^{\frac{3}{2}}} f(\tau) e^{-\frac{x^2}{4a^2(t-\tau)}} d\tau.$$

$$\begin{cases}
 u_{tt} = a^2 u_{xx}, x > 0, t > 0 \\
 u|_{t=0} = 0, u_t|_{t=0} = 0, \\
 u|_{x=0} = f(t).
 \end{cases}$$

解: 1) 两边关于t取Laplace变换. 设L[u(x,t)]=U(x,s), L[f(t)]=F(s). 则对方程两边取Laplace变换:

$$L[u_{tt}] = a^{2}L[u_{xx}] \Rightarrow s^{2}U - su|_{t=0} - u_{t}|_{t=0} = a^{2}\frac{d^{2}U}{dx^{2}} \Rightarrow \frac{d^{2}U}{dx^{2}} - \frac{s^{2}}{a^{2}}U = 0$$

$$\overrightarrow{\Pi}u|_{x=0} = f(t) \Rightarrow L[u|_{x=0}] = L[f(t)] = F(s) \Rightarrow U|_{x=0} = F(s),$$

2)
$$\begin{cases} \frac{d^{2}U}{dx^{2}} - \frac{s^{2}}{a^{2}}U = 0, & \text{if } \text{if }$$

且 $c_1(s) + c_2(s) = F(s)$,而当 $x \to \infty$ 时,u(x,t)有界,所以

$$U(x,s)$$
有界,即 $c_1(s) = 0$.所以, $U(x,s) = F(s)e^{-\frac{3}{a}x}$.

3)取逆,利用延迟性 $L[f(t-\tau)] = e^{-s\tau}F(s)$,

$$\mathbb{U}[u(x,t)] = L^{-1}[F(s)e^{-\frac{s}{a}x}] = f(t-\frac{x}{a}) = \begin{cases} 0, & t < \frac{x}{a} \\ f(t-\frac{x}{a}), t \ge \frac{x}{a} \end{cases}.$$

第六章 Green函数法

第一节 Green函数

一、基本解

定义:设L是线性微分算子,称方程 $LU=S(M-M_0)$ 的解为方程LU=f(M)或LU=0的基本解,或称为算子L的基本解,有时也称为自由空间的Green函数,M为 Ω 内任意一点, M_0 为 Ω 中的任一固定点.

1.三维Poisson方程和Laplace方程:

$$-\Delta u = f(x, y, z)$$
和 $-\Delta u = 0$ 的基本解为

$$-\Delta U = \delta(x - x_0, y - y_0, z - z_0)$$
的解,

即
$$U = \frac{1}{4\pi r_{M_0M}}$$
,其中 $r_{M_0M} = [(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2]^{\frac{1}{2}}$.

2.二维Poisson方程和Laplace方程:

$$-\Delta u = f(x, y)$$
和 $-\Delta u = 0$ 的基本解为

$$-\Delta U = \delta(x - x_0, y - y_0)$$
的解,

即
$$U = \frac{1}{2\pi} \ln \frac{1}{r_{M_0M}},$$
其中 $r_{M_0M} = [(x - x_0)^2 + (y - y_0)^2]^{\frac{1}{2}}.$

二、Green函数定义:

満足
$$\begin{cases} -\Delta G = \delta(x-\xi,y-\eta),$$
在Ω内 $G=0,$ 在Γ上

的函数 $G(x, y; \xi, \eta)$ 称为Laplace方程边值问题的Green函数。

三、Green函数法

$$G = U + g : (U 为基本解)$$

満足
$$\begin{cases} -\Delta U = \delta(x - \xi, y - \eta), 在 D$$
内 $-\Delta g = 0,$ 在 D 内

而 $G|_{\Gamma}=0$,则 $(U+g)|_{\Gamma}=0$.

定理: 若u满足如下三维定解问题 $\left\{ \begin{array}{l} -\Delta u = 0, & \alpha \Omega \\ u = \varphi, & \alpha \Gamma \end{array} \right\}$

则 $u(M_0) = -\iint_{\Gamma} \varphi(M) \frac{\partial G}{\partial n} ds$,其中 $M(\xi, \eta, \zeta)$ 是积分变量.

四、Laplace方程的边值问题

$$G = U + g \Rightarrow \begin{cases} n = 2, U = \frac{1}{2\pi} \ln \frac{1}{r_{M_0 M}}, & \{-\Delta G = \delta(M - M_0), \text{在 }\Omega \text{内}, \\ n = 3, U = \frac{1}{4\pi r_{M_0 M}}, \\ G = 0, & \text{在 }\Gamma \text{上} \end{cases},$$
满足
$$\begin{cases} -\Delta U = \delta(M - M_0), \text{在 }\Omega \text{内}, \\ -\Delta g = 0, & \text{在 }\Gamma \text{L} \end{cases}$$

$$\Rightarrow \begin{cases} -\Delta_n u = 0, \text{在 }\Omega \text{内}, \\ u = \varphi, & \text{在 }\Gamma \text{L} \end{cases}$$

$$\Rightarrow 1)n = 2 \text{时}, \quad u(M_0) = - \oint_{\Gamma} \varphi \frac{\partial G}{\partial n} ds,$$

$$2)n = 3 \text{ th}, \quad u(M_0) = - \oint_{\Gamma} \varphi \frac{\partial G}{\partial n} ds.$$

例1.半空间
$$\begin{cases} -\Delta_3 u = 0, -\infty < x, y < \infty, z > 0 \\ u|_{\Gamma} = \varphi, \end{cases}$$

解:1.求Green函数

1)
$$\forall M_0 \in \Omega$$
,

- 2)确定 M_0 关于Γ的对称点 M_0 ,
- 3)当M ∈ Γ 时,建立r与r'的关系: r = r'

$$\Rightarrow \frac{1}{4\pi r} - \frac{1}{4\pi r'} = 0,$$

4) 当
$$M \in \Omega$$
时,令 $G = \frac{1}{4\pi r} - \frac{1}{4\pi r'}$,
其中 $r = [(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2]^{\frac{1}{2}}$,
 $r' = [(x - x_0)^2 + (y - y_0)^2 + (z + z_0)^2]^{\frac{1}{2}}$;
(可验证 $g = \frac{1}{4\pi r'}$ 为调和的,即 $\Delta g = 0$)

$$\begin{aligned} 2. & \text{ if } \widehat{\beta} \frac{\partial G}{\partial n} \big|_{\Gamma} = ? \mathbb{P} \frac{\partial G}{\partial n} \big|_{\Gamma} = -\frac{\partial G}{\partial z} \big|_{z=0} = ? \\ & \frac{\partial G}{\partial z} = \frac{\partial}{\partial z} \left(\frac{1}{4\pi r} - \frac{1}{4\pi r'} \right) = \frac{1}{4\pi} \left[-\frac{1}{r^2} \frac{z - z_0}{r} + \frac{1}{r'^2} \frac{z - z_0}{r'} \right], \\ & \frac{\partial G}{\partial z} \big|_{z=0} = \frac{1}{4\pi} \left\{ \frac{z_0}{\left[(x - x_0)^2 + (y - y_0)^2 + z_0^2 \right]^{\frac{3}{2}}} + \frac{z_0}{\left[(x - x_0)^2 + (y - y_0)^2 + z_0^2 \right]^{\frac{3}{2}}} \right\} \\ & = \frac{1}{2\pi} \frac{z_0}{\left[(x - x_0)^2 + (y - y_0)^2 + z_0^2 \right]^{\frac{3}{2}}}, \\ & \text{ If } \frac{\partial G}{\partial n} \big|_{\Gamma} = \frac{-z_0}{2\pi \left[(x - x_0)^2 + (y - y_0)^2 + z_0^2 \right]^{\frac{3}{2}}}; \end{aligned}$$

3.代入公式

$$u(M_0) = - \iint_{\Gamma} \varphi \frac{\partial G}{\partial n} ds, \, \overline{m} ds = \sqrt{1 + z_x^2 + z_y^2} dx dy,$$

且z = 0,则ds = dxdy,所以

$$u(M_0) = - \iint_{\Gamma} \varphi \frac{\partial G}{\partial n} ds = \frac{z_0}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\varphi(x, y)}{\left[(x - x_0)^2 + (y - y_0)^2 + {z_0}^2 \right]^{\frac{3}{2}}} dx dy.$$

例2.半平面
$$\begin{cases} -\Delta_2 u = 0, -\infty < x < \infty, y > 0 \\ u|_{\Gamma} = \varphi, \end{cases}$$

解:1.求Green函数

1)
$$\forall M_0 \in \Omega$$
,

- 2)确定 M_0 关于 Γ 的对称点 M_0 ,
- 3)当M ∈ Γ 时,建立r与r的关系: r = r'

$$\Rightarrow \frac{1}{2\pi} \ln \frac{1}{r} - \frac{1}{2\pi} \ln \frac{1}{r'} = 0,$$

4) 当
$$M \in \Omega$$
时,令 $G = \frac{1}{2\pi} \ln \frac{1}{r} - \frac{1}{2\pi} \ln \frac{1}{r'}$,
其中 $r = [(x - x_0)^2 + (y - y_0)^2]^{\frac{1}{2}}$,
$$r' = [(x - x_0)^2 + (y + y_0)^2]^{\frac{1}{2}};$$

(可验证 $g = \frac{1}{2\pi} \ln \frac{1}{r'}$ 为调和的,即 $\Delta g = 0$)

$$2.计算 \frac{\partial G}{\partial n}|_{\Gamma} = ? \ \frac{\partial G}{\partial n}|_{\Gamma} = -\frac{\partial G}{\partial y}|_{y=0} = ?$$

$$\frac{\partial G}{\partial y} = \frac{1}{2\pi} \frac{\partial}{\partial y} (\ln \frac{1}{r} - \ln \frac{1}{r'}) = \frac{1}{2\pi} \frac{\partial}{\partial y} [-\ln r + \ln r']$$

$$= \frac{1}{2\pi} [-\frac{1}{r} r_y + \frac{1}{r'} r'_y] = \frac{1}{2\pi} [-\frac{y - y_0}{r^2} + \frac{y + y_0}{r'^2}],$$

$$\frac{\partial G}{\partial y}|_{y=0} = \frac{1}{2\pi} \frac{2y_0}{(x - x_0)^2 + y_0^2} = \frac{y_0}{\pi [(x - x_0)^2 + y_0^2]},$$

$$\boxed{\mathbb{I}} \frac{\partial G}{\partial n}|_{\Gamma} = -\frac{y_0}{\pi [(x - x_0)^2 + y_0^2]};$$

3.代入公式

$$u(M_0) = -\oint_{\Gamma} \varphi \frac{\partial G}{\partial n} ds, \overrightarrow{m} ds = \sqrt{1 + y_x^2} dx,$$

且y = 0,则ds = dx,所以

$$u(M_0) = -\oint_{\Gamma} \varphi \frac{\partial G}{\partial n} ds = \frac{y_0}{\pi} \int_{-\infty}^{\infty} \frac{\varphi(x)}{(x - x_0)^2 + y_0^2} dx.$$

Ш	ШШ		Ш	Ш