GEO LIBRARY FOR MATLAB

1. Introduction

This library contains a set of functions aimed to deal with different coordinate systems and includes several utilities to compute rhumbs and different kind of lines connecting points. Using it with the KML library is a useful tool in the context of the subject. Below is brief description of each function together with the parameters used.

2. Conversion between coordinate systems

FUNCION NAME	LLA2ECEF
DESCRIPTION	Converts lat/lon/height (LLA) coordinates to Earth-Centered Earth-Fixed
	(ECEF) coordinates, using WGS84 ellipsoid
MATLAB	<pre>ecef = lla2ecef(llh);</pre>
SINTAXIS	
INPUT	11h = 3x1 array containing lat, long, height location (rad, rad, user
PARAMETERS	units)
OUTPUT	ecef = 3x1 array with x,y,z (user units)
PARAMETERS	

FUNCION NAME	ECEF2LLA
DESCRIPTION	Converts cartesian (x,y,z) coordinates of a reference point (ECEF) to lat,
	lon, height (LLA) coordinates in the WGS 84 system
MATLAB	<pre>11h = ecef21la(ecef);</pre>
SINTAXIS	
INPUT	ecef = 3x1 arrar x,y,z (user units)
PARAMETERS	
OUTPUT	11h = 3x1 array lat, long, height location (rad, rad, user units)
PARAMETERS	

3. Great circle and rhumb lines computation

3.1. Direct problem solution

FUNCION NAME	ORTO_RECKON
DESCRIPTION	Travels a given distance along a given azimuth starting at a given initial
	point, using the WGS-84 Earth ellipsoid.
	Returns the endpoint and final azimut.
MATLAB	<pre>[lat2,lon2,a21] = orto_reckon(lat1,lon1,s,a12);</pre>
SINTAXIS	
INPUT	lat1 = initial latitude (degrees)
PARAMETERS	lon1 = initial longitude (degrees)
	s = distance (meters)
	a12 = initial azimuth (degrees)
OUTPUT	<pre>lat2, lon2 = endpoint (degrees)</pre>
PARAMETERS	a21 = reverse azimuth (degrees), at final point facing back toward
	initial point

FUNCION NAME	LOXO_RECKON
DESCRIPTION	Travels a given distance following a rhumb line, i.e, with a constant
	azimuth.
	Returns the endpoint and final azimut.
MATLAB	<pre>[lat2,lon2,a21] = loxo_reckon(lat1,lon1,s,a12)</pre>
SINTAXIS	
INPUT	lat1 = inital latitude (degrees)
PARAMETERS	lon1 = initial longitude (degrees)
	s = distance (meters)
	a12 = initial azimuth (degrees)
OUTPUT	<pre>lat2, lon2 = endpoint (degrees)</pre>
PARAMETERS	a21 = reverse azimuth (degrees), at final point facing back toward
	initial point

FUNCION NAME	VINCENTY_RECKON
DESCRIPTION	Travels a given distance along a given azimuth starting at a given initial
	point, using the WGS-84 Earth ellipsoid.
	Returns the endpoint and final azimut within a few millimeters of
	accuracy using Vincenty's algorithm
MATLAB	<pre>[lat2,lon2,a21] = vincenty_reckon(lat1,lon1,s,a12)</pre>
SINTAXIS	
INPUT	lat1 = inital latitude (degrees)
PARAMETERS	lon1 = initial longitude (degrees)
	s = distance (meters)
	a12 = initial azimuth (degrees)
OUTPUT	<pre>lat2, lon2 = endpoint (degrees)</pre>
PARAMETERS	a21 = reverse azimuth (degrees), at final point facing back toward
	initial point

3.2. Inverse problem solution

FUNCION NAME	ORTO_DISTAZI
DESCRIPTION	Computes the distance between two points assuming a perfectly
	spherical earth and Haversine approximation.
	Computes also forward azimuth, and backward azimuth.
MATLAB	s = orto_distazi(lat1,lon1,lat2,lon2);
SINTAXIS	[s,a12] = orto_distazi(lat1,lon1,lat2,lon2);
	[s,a12,a21] = orto_distazi(lat1,lon1,lat2,lon2);
INPUT	lat1 = GEODETIC latitude of first point (degrees)
PARAMETERS	lon1 = longitude of first point (degrees)
	<pre>lat2, lon2 = second point (degrees)</pre>
	(inputs may be scalars, vectors, or matrices)
OUTPUT	s = distance in meters
PARAMETERS	a12 = azimuth in degrees from first point to second point (forward)
	a21 = azimuth in degrees from second point to first point (backward)
	(Azimuths are in degrees clockwise from north.)

FUNCION NAME	LOXO_DISTAZI
DESCRIPTION	Computes the distance between two points through a loxodromic
	(rhumb) line in a spher. Computes forward azimuth, and backward
	azimuth. The azimuth remains constant so forward and backward match.
MATLAB	s = loxo_distazi(lat1,lon1,lat2,lon2);
SINTAXIS	[s,a12] = loxo_distazi(lat1,lon1,lat2,lon2);
	[s,a12,a21] = loxo_distazi(lat1,lon1,lat2,lon2);
INPUT	lat1 = GEODETIC latitude of first point (degrees)
PARAMETERS	lon1 = longitude of first point (degrees)
	<pre>lat2, lon2 = second point (degrees)</pre>
	(inputs may be scalars, vectors, or matrices)
OUTPUT	s = distance in meters
PARAMETERS	a12 = azimuth in degrees from first point to second point
	(forward)
	a21 = azimuth in degrees from second point to first point (backward)
	(Azimuths are in degrees clockwise from north.)

FUNCION NAME	VINCENTY_DISTAZI
DESCRIPTION	Compute the distance between two points within a few millimeters of
	accuracy using the WGS-84 Earth ellipsoid. Compute forward azimuth,
	and compute backward azimuth, all using a vectorized version of
	Vincenty's algorithm
MATLAB	s = vincenty_distazi(lat1,lon1,lat2,lon2);
SINTAXIS	<pre>[s,a12] = vincenty_distazi(lat1,lon1,lat2,lon2);</pre>
	[s,a12,a21] =
	<pre>vincenty_distazi(lat1,lon1,lat2,lon2);</pre>
INPUT	lat1 = GEODETIC latitude of first point (degrees)
PARAMETERS	lon1 = longitude of first point (degrees)
	<pre>lat2, lon2 = second point (degrees)</pre>
	(inputs may be scalars, vectors, or matrices)
OUTPUT	s = distance in meters
PARAMETERS	a12 = azimuth in degrees from first point to second point
	(forward)
	a21 = azimuth in degrees from second point to first point (backward)
	(Azimuths are in degrees clockwise from north.)

4. Utilities

FUNCION NAME	SEX2DEC
DESCRIPTION	Converts from sex degrees to decimal degrees
MATLAB	x = sex2dec(rfs);
SINTAXIS	
INPUT	TWO FORMATS ADMITTED
PARAMETERS	FORMAT 1
	Format 'N039°29"22.00"'
	Format 'W028°30''54.00"'
	FORMAT 2
	Format 402959N / ddmmss for latitude
	Format 0005020W / ddmmss for longitude
OUTPUT	x: result in decimal degrees
PARAMETERS	

FUNCION NAME	DIST_POINT_TO_LINE
DESCRIPTION	Returns the distance in feets between a point and a line defined by two
	points
MATLAB	<pre>dist = dist_point_to_line(Lonp1, Latp1, Lonr1,</pre>
SINTAXIS	Latr1, Lonr2, Latr2);
INPUT	lonp1, Latp1: Longitude and latitude of the point
PARAMETERS	Lonr1, Latr1, Lonr2, Latr2: Longitude and latitude of the
	points r1 and r2 that they define the line
OUTPUT	dist = in feets
PARAMETERS	

FUNCION NAME	DIST_FLAT
DESCRIPTION	Returns the distance in kilometers between two points. It assumes 'flat
	earth' simplification. Aprox:
	1 latitude degree = 110 km
	1 longitud degrees= 111 km
MATLAB	<pre>dist = dist_flat(lon1, lat1, lon2, lat2);</pre>
SINTAXIS	
INPUT	lon1, lat1 = first point longitude and latitude
PARAMETERS	lon2, lat2 = second point longitude and latitude
OUTPUT	dist = in km
PARAMETERS	