

EMC Test Report

Applicant : Pismo Labs Technology Limited

Product Type : Pepwave / Peplink / Pismo Labs Wireless Product

Trade Name : peplink, PEPWAVE, Pismo

Model Number : SpeedFusion Engine

SFE-CAM-AB-LTEA-W SFE-CAM-VM-LTEA-W

SFE-CAM Pismo827 Pismo 827

Applicable Standard: FCC 47 CFR PART 15 SUBPART B

ANSI C63.4: 2014

Receive Date : Sep. 11, 2018

Test Period : Oct. 30 ~ Nov. 07, 2018

Issue Date : Dec. 05, 2018

Issue by

A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade District,

Taoyuan City 33465, Taiwan (R.O.C)

Tel: +886-3-2710188 / Fax: +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330

Test Firm MRA designation number: TW1062

Note: This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. This document may be altered or revised by A Test Lab Techno Corp. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Revised By
00	Nov. 28, 2018	Initial Issue	Serene Yang
01	Dec. 05, 2018	Revised Report Information	Serene Yang

Verification of Compliance

Issued Date: Dec. 05, 2018

Applicant : Pismo Labs Technology Limited

Product Type : Pepwave / Peplink / Pismo Labs Wireless Product

Trade Name : peplink, PEPWAVE, Pismo

Model Number : SpeedFusion Engine

SFE-CAM-AB-LTEA-W SFE-CAM-VM-LTEA-W

SFE-CAM Pismo827 Pismo 827

EUT Rated Voltage : DC 12 V, 2 A

Test Voltage : 120 Vac / 60 Hz, 240 Vac / 60 Hz

Applicable Standard : FCC 47 CFR PART 15 SUBPART B

ANSI C63.4: 2014

Test Result : Complied

Performing Lab. : A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade District,

Taoyuan City 33465, Taiwan (R.O.C)

Tel: +886-3-2710188 / Fax: +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330

http://www.atl-lab.com.tw/e-index.htm

The above equipment has been tested by A Test Lab Techno Corp., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved By : Misky Wu Reviewed By

(Manager) (Misty Wu) (Testing Engineer)

(Terry Liao)

TABLE OF CONTENTS

1	General Information	5
	1.1. Summary of Test Result	5
	1.2. Testing Location	
	1.3. Measurement Uncertainty	6
	1.4. Test Site Environment	6
2	EUT Description	7
3	Test Methodology	8
	3.1. Decision of Test Mode	8
	3.2. EUT Test Step	8
	3.3. Configuration of Test System Details	g
	3.4. Test Instruments	10
4	Measurement Procedure	12
	4.1. Conducted Emission	12
	4.2. Radiated Emission	14
5	Test Results	17
	5.1. Conducted Emission	17
	5.2. Radiated Emission	

1 General Information

1.1. Summary of Test Result

Emission					
Standard Item			Remark		
FCC 47 CFR PART 15 SUBPART B ANSI C63.4	Conducted Emission	PASS	Meet Class A limit		
FCC 47 CFR PART 15 SUBPART B ANSI C63.4	Radiated Emission	PASS	Meet Class A limit		

The test results of this report was related only to the tested sample(s) identified in this report.

1.2. Testing Location

Site Name: A Test Lab Techno Corp.

http://www.atl-lab.com.tw/e-index.htm

Site Address: No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C)

Tel: +886-3-2710188 Fax: +886-3-2710190

1.3. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty (dB)
Conducted Emission	AC Dower Dort	9 kHz ~ 150 kHz	2.7
	AC Power Port	150 kHz ~ 30 MHz	2.7

Test Item	Test Site	Frequency I	Range	Uncertainty (dB)
	TE06	30 MHz ~ 1000 MHz	Horizontal	5.6
	TEU0	30 MH2 ~ 1000 MH2	Vertical	6.0
		1000 MHz ~ 6	000 MHz	5.2
	TE01	6000 MHz ~ 18000 MHz		5.5
Radiated Emission		18000 MHz ~ 26500 MHz		4.8
Radiated Emission		26500 MHz ~ 4	4.8	
		1000 MHz ~ 6000 MHz		4.9
	TE09	6000 MHz ~ 18	8000 MHz	5.3
	1509	18000 MHz ~ 2	6500 MHz	4.5
		26500 MHz ~ 4	0000 MHz	4.8

Note: The Vertical and Horizontal measurement uncertainty of 1 GHz to 40 GHz is evaluated and choose which polarity is worst value.

1.4. Test Site Environment

Test Item	Items	Required (IEC 60068-1)	Actual
	Temperature (°C)	15-35	26
Conducted Emission	Humidity (%RH)	25-75	60
	Barometric pressure (mbar)	860-1060	990
	Temperature (°C)	15-35	26
Radiated Emission	Humidity (%RH)	25-75	60
	Barometric pressure (mbar)	860-1060	990

2 EUT Description

Applicant	Pismo Labs Technology Limited A5, 5/F, HK Spinners Industrial Building, Phase 6, 481 Castle Peak Road, Cheung Sha Wan, Kowloon, Hong Kong					
Manufacturer	Unit A5, 5/F, HK	Pismo Labs Technology Limited Unit A5, 5/F, HK Spinners Industrial Building, Phase 6, 481 Castle Peak Road, Cheung Sha Wan, Kowloon, Hong Kong				
Product Type	Pepwave / Pepli	nk / Pismo Labs Wi	reless Product			
Trade Name	peplink, PEPWA	VE, Pismo				
Model Number	SpeedFusion Engine SFE-CAM-AB-LTEA-W SFE-CAM-VM-LTEA-W SFE-CAM Pismo827 Pismo 827					
Product Type / Trade Name / Models Different Description	I I nose model numbers ditter from each other in selling region			on.		
I/O Ports	Refer to User Ma	anual				
Highest Operating Frequency	5850 MHz					
		Component Lis	t .			
	Trade Name	DVE	Model Number	DSA-24PFM-12 FUS		
Device adopted	I/P: 100-240 VAC, 50/60 Hz, 0.8 A					
Power adapter	O/P: 12 VDC, 2 A					
	Cable out: Shielded, 1.5 m with one core					

3 Test Methodology

3.1. Decision of Test Mode

3.1.1. The following test mode(s) were scanned during the preliminary test:

Pre-Test Mode
Mode 1: LTE Band1 / Wi-Fi / GPS link mode (AC 120 V, 60 Hz)
Mode 2: LTE Band1 / Wi-Fi / GPS link mode (AC 240 V, 60 Hz)
Mode 3: WCDMA Band1 / Wi-Fi / GPS link mode (AC 240 V, 60 Hz)

3.1.2. After the preliminary scan, the following test mode was final mode and found to produce the highest emission level.

Final Test Mode					
	Conducted Emission		Mode 1 / Mode 2		
Emission	Emission Radiated Emission	Below 1 GHz	Mode 1 / Mode 2		
		Above 1 GHz	Mode 1 / Mode 2		

The above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

3.2. EUT Test Step

1	Setup the EUT and simulators as shown on 3.3.		
2	Turn on the power of all equipment.		
3	The EUT Link to MT8820C for 4G.		
4	The EUT Link to CMU200 for 3G.		
5	The EUT Link to SMU200A for GPS.		
6	The Notebook link to EUT by LAN.		
7	The Notebook link to EUT by Wi-Fi.		
8	Start to test till get the worst reading.		

Mea	Measurement Software					
No.	Description	Software	Version			
1	Conducted Emission	EZ EMC	1.1.4.3			
2	Radiated Emission _ Below 1 GHz	EZ EMC	1.1.4.2			
3	Radiated Emission _ Above 1 GHz	EZ EMC	1.1.4.4			

3.3. Configuration of Test System Details

Devices Description								
	Product Manufacturer Model Number Serial Number Power Cord							
(1)	Notebook	DELL	LATITUDE E5440	25627158361	Non-Shielded, 0.8 m			
(2)	Notebook	DELL	LATITUDE E5440	6699565657	Non-Shielded, 0.8 m			
(3)	Notebook	DELL	LATITUDE 7370	10811202626	Non-Shielded, 0.8 m			

3.4. Test Instruments

Test Period: Oct. 30, 2018

	Condu	cted Emission test	site		
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
Test Receiver	R&S	ESCI	100367	05/21/2018	1 year
LISN R&S		ENV216	101040	04/11/2018	1 year
LISN R&S		ENV216	101041	03/23/2018	1 year
Wireless COM.TEST.SET	R&S	CMU200	109369	12/01/2016	2 years
Radio Communication Analyzer	Anritsu	MT8820C	6201342039	12/10/2017	1 year
Signal Generator	Signal Generator R&S		102598	04/26/2018	1 year
Test Site	ATL	TE02	TE02	N.C.R.	

Test Period: Oct. 30, 2018

	Radiated Er	mission - 10 Meter C	Chamber		
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
Amplifier	EMCI	EMC9135	980298	10/24/2018	1 year
Amplifier	Amplifier EMCI		980299	03/05/2018	1 year
Test Receiver	R&S	ESCI	100722	10/24/2018	1 year
Test Receiver	R&S	ESCI	101000	12/18/2017	1 year
Broadband Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB 9168	670	10/23/2018	1 year
Broadband Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB 9168	671	02/28/2018	1 year
Wireless COM.TEST.SET	R&S	CMU200	109369	12/01/2016	2 years
Radio Communication Analyzer	Anritsu	MT8820C	6201342039	12/10/2017	1 year
Signal Generator	R&S	SMU200A	102598	04/26/2018	1 year
Test Site	ATL	TE06	TE06	10/21/2018	1 year

Note: N.C.R. = No Calibration Request.

Test Period: Nov. 07, 2018

	Radiated E	mission - 3 Meter C	hamber		
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
EXA Spectrum Amalyzer	Agilent	N9010A MY48030518		11/04/2017	1 year
Amplifier	Amplifier Agilent		3008A02456	03/13/2018	1 year
Double Ridged Horn Antenna (1~18 GHz)	ETS	3117	00152321	09/27/2018	1 year
Preamplifier	EMCI	EMC2654045	980028	08/23/2018	1 year
Horn Antenna (18~40 GHz)	ETS	3116	00086467	09/18/2018	1 year
Wireless COM.TEST.SET	R&S	CMU200	109369	12/01/2016	2 years
Radio Communication Analyzer	Anritsu	MT8820C	6201342039	12/10/2017	1 year
Signal Generator	R&S	SMU200A	102598	04/26/2018	1 year
Test Site	ATL	TE09	TE09	04/21/2018	1 year

Note: N.C.R. = No Calibration Request.

4 Measurement Procedure

4.1. Conducted Emission

■ Test Setup

■ Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 Ω // 50 uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 Ω // 50 uH coupling impedance with 50ohm termination.

Tabletop device shall be placed on a non-conducting platform, of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The wall of screened room shall be located 40cm to the rear of the EUT. Other surfaces of tabletop or floor standing EUT shall be at least 80cm from any other ground conducting surface including one or more LISNs. For floor-standing device shall be placed under the EUT with a 12 mm insulating material.

Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a resolution bandwidth of 9 kHz. The equipment under test (EUT) shall be meet the limits in section 4.1.1, as applicable, including the average limit and the quasi-peak limit when using respectively, an average detector and quasi-peak detector measured in accordance with the methods described of related standard. When all of peak value were complied with quasi-peak and average limit from 150 kHz to 30 MHz then quasi-peak and average measurement was unnecessary.

The AMN shall be placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for AMNs mounted on top of the ground reference plane. This distance is between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment shall be at least 0,8 m from the AMN. If the mains power cable is longer than 1m then the cable shall be folded back and forth at the centre of the lead to form a bundle no longer than 0.4 m. All of interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long. All of EUT and AE shall be separate place more than 0.1 m. All 50 Ω ports of the LISN shall be resistively terminated into 50 Ω loads when not connected to the measuring instrument.

If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored.

4.2. Radiated Emission

■ Test Setup

Below 1 GHz

Above 1 GHz

Test arrangement for radiated emissions of tabletop equipment.

■ Test Procedure

Below 1 GHz

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. When the EUT is floor-standing equipment, it is placed on the ground plane which has a 12 mm non-conductive covering to insulate the EUT from the ground plane.

The turn table is 0.8 m height and 2.0 m wide x 1.0 m deep size. It can rotate 360 degrees to determine the position of the maximum emission level. The spcing between the each equipment was 10 cm. The mains cables are dropped to floor and are round to recepatacle. Interconnecting cables of table top equipment that hang closer than 0.4 m to the ground plane are folded back and forth forming a bundle 0.3 m to 0.4 m long, hanging approximately in the middle between ground plane and table. The EUT was positioned such that the distance from antenna to the EUT was 10 meters and the receive antenna was moved from 1 m to 4 m to investigate maximum highest emission at least 6 points over the frequency range from 30 MHz to 1 GHz using a resolution bandwidth of 120 kHz and measured by the quasi-peak detector.

According to this standard paragraph 15.109, as an alternative to the radiated emission limits, digital devices may be shown to comply with the standards contained in Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement".

Above 1 GHz

The Setup is same as Below 1 GHz placement. The turn table is 0.8 m height and 1.8 m wide x 1.0 m deep size. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meter for above 1 GHz, the highest frequency performed according to internal source frequency of the EUT, the specification was below:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)		
Below 1.705	30		
1.705 - 108	1000		
108 - 500	2000		
500 - 1000	5000		
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower		

Absorber shall be spread between floor of a turn table and a receive antenna shown in 4.2.3. The antenna used boresight antenna master from 1 meter and 4 meters to find out the maximum emission level and find the highest emission at least 6 points. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated on radiated measurement.

Radiated emissions were applied to above 1 GHz using a resolution bandwidth of 1 MHz and measured by the peak and average detector which antenna to the EUT distance was 3 meters. If the EUT was meet both limits and measurement with the average detector receiver is unnecessary.

5 Test Results

5.1. Conducted Emission

■ Limit

Frequency (MHz)	Class A	(dBuV)	Class B (dBuV)		
Frequency (Minz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Note: (1) The lower limit shall apply at the transition frequencies.

⁽²⁾ The limit decreases in line with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

■ Test Result

Test Standard: FCC Part 15B Power Line: L

Test Mode: Mode 1 Test Power: AC 120 V / 60 Hz

Description:

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1500	51.50	24.39	9.59	61.09	33.98	79.00	66.00	-17.91	-32.02	Pass
2	0.1620	52.08	24.13	9.60	61.68	33.73	79.00	66.00	-17.32	-32.27	Pass
3	0.1740	51.19	22.97	9.60	60.79	32.57	79.00	66.00	-18.21	-33.43	Pass
4	0.1860	50.19	21.88	9.60	59.79	31.48	79.00	66.00	-19.21	-34.52	Pass
5	0.2340	46.40	19.68	9.60	56.00	29.28	79.00	66.00	-23.00	-36.72	Pass
6	4.3980	13.83	7.68	9.74	23.57	17.42	73.00	60.00	-49.43	-42.58	Pass
7	13.5580	18.51	8.87	9.90	28.41	18.77	73.00	60.00	-44.59	-41.23	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

Test Standard: FCC Part 15B Power Line: N

Test Mode: Mode 1 Test Power: AC 120 V / 60 Hz

Description:

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1540	52.59	25.67	9.60	62.19	35.27	79.00	66.00	-16.81	-30.73	Pass
2	0.1660	51.94	23.75	9.60	61.54	33.35	79.00	66.00	-17.46	-32.65	Pass
3	0.1740	51.19	23.12	9.60	60.79	32.72	79.00	66.00	-18.21	-33.28	Pass
4	0.1900	50.08	21.89	9.60	59.68	31.49	79.00	66.00	-19.32	-34.51	Pass
5	0.2020	49.03	20.43	9.60	58.63	30.03	79.00	66.00	-20.37	-35.97	Pass
6	4.7660	10.56	3.44	9.76	20.32	13.20	73.00	60.00	-52.68	-46.80	Pass
7	13.8700	20.08	13.02	9.90	29.98	22.92	73.00	60.00	-43.02	-37.08	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

Test Standard: FCC Part 15B Power Line: L1

Test Mode: Mode 2 Test Power: AC 240 V / 60 Hz

Description:

Test Standard: FCC Part 15B Power Line: L1

Test Mode: Mode 2 Test Power: AC 240 V / 60 Hz

Description:

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1540	56.31	27.57	9.60	65.91	37.17	79.00	66.00	-13.09	-28.83	Pass
2	0.1620	55.91	27.79	9.60	65.51	37.39	79.00	66.00	-13.49	-28.61	Pass
3	0.1750	55.16	26.40	9.60	64.76	36.00	79.00	66.00	-14.24	-30.00	Pass
4	0.1860	54.48	25.79	9.60	64.08	35.39	79.00	66.00	-14.92	-30.61	Pass
5	0.1980	53.41	25.51	9.60	63.01	35.11	79.00	66.00	-15.99	-30.89	Pass
6	0.2100	52.73	23.88	9.60	62.33	33.48	79.00	66.00	-16.67	-32.52	Pass
7	0.2220	51.65	23.78	9.60	61.25	33.38	79.00	66.00	-17.75	-32.62	Pass
8	0.2340	51.13	22.98	9.60	60.73	32.58	79.00	66.00	-18.27	-33.42	Pass
9	0.2460	51.27	23.54	9.60	60.87	33.14	79.00	66.00	-18.13	-32.86	Pass
10	0.2580	51.05	22.65	9.60	60.65	32.25	79.00	66.00	-18.35	-33.75	Pass
11	0.2700	50.35	21.94	9.60	59.95	31.54	79.00	66.00	-19.05	-34.46	Pass
12	4.5180	16.55	9.37	9.74	26.29	19.11	73.00	60.00	-46.71	-40.89	Pass
13	12.5140	18.05	8.01	9.89	27.94	17.90	73.00	60.00	-45.06	-42.10	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

Test Standard: FCC Part 15B Power Line: N

Test Mode: Mode 2 Test Power: AC 240 V / 60 Hz

Description:

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1500	56.34	28.32	9.59	65.93	37.91	79.00	66.00	-13.07	-28.09	Pass
2	0.1660	55.36	28.04	9.60	64.96	37.64	79.00	66.00	-14.04	-28.36	Pass
3	0.1780	54.63	25.95	9.60	64.23	35.55	79.00	66.00	-14.77	-30.45	Pass
4	0.1900	54.27	26.44	9.60	63.87	36.04	79.00	66.00	-15.13	-29.96	Pass
5	0.2020	54.18	25.07	9.60	63.78	34.67	79.00	66.00	-15.22	-31.33	Pass
6	0.2140	52.85	23.99	9.60	62.45	33.59	79.00	66.00	-16.55	-32.41	Pass
7	0.2260	51.93	23.50	9.60	61.53	33.10	79.00	66.00	-17.47	-32.90	Pass
8	0.2620	50.07	22.20	9.60	59.67	31.80	79.00	66.00	-19.33	-34.20	Pass
9	0.3300	47.04	19.72	9.59	56.63	29.31	79.00	66.00	-22.37	-36.69	Pass
10	4.2980	16.85	9.80	9.74	26.59	19.54	73.00	60.00	-46.41	-40.46	Pass
11	13.3180	18.33	10.60	9.90	28.23	20.50	73.00	60.00	-44.77	-39.50	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

5.2. **Radiated Emission**

■ Limit

Under 1 GHz test shall not exceed following value

That I all took on all hot oxed a following value										
FCC 47 CFR PART 15 SUBPART B										
Frequency range (MHz)	Clas	ss A	Class B							
	Distance (m)	dBuV/m	Distance (m)	dBuV/m						
30 to 88	10	39	3	40						
88 to 216	10	43.5	3	43.5						
216 to 960	10	46.4	3	46						
Above 960	10	49.5	3	54						

	CISPR 22								
Frequency range (MHz)	Clas	ss A	Class B						
	Distance (m)	dBuV/m	Distance (m)	dBuV/m					
30 to 230	10	40	10	30					
230 to 1000	10	47	10	37					

Above 1 GHz test shall not exceed following value

Frequency (MHz)	dBuV/m (Distance 3 m)						
	Clas	ss A	Class B				
(**** 12)	Average	Peak	Average	Peak			
1000 ~ 40000	1000 ~ 40000 60		54	74			

- Remark: 1. The tighter limit shall apply at the edge between two frequency bands.
 - 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
 - 3. RF Voltage (dBuV/m) = 20 log RF Voltage (uV/m)
 - 4. Peak detector limit is corresponding to 20 dB above the maximum permitted average limit.

According to FCC Part 15.33 (b), for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or in which the device operated or tunes (MHz)	Upper frequency of measurement range (MHz)				
Below 1.75	30				
1.75-108	1000				
108-500	2000				
500-1000	5000				
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower				

■ Test Result

Test Standard: FCC Part 15B (limit use CISPR 22) Test Distance: 10 m

Test Mode: Test Power: AC 120 V / 60 Hz

Measurement Range: 30 MHz~1 GHz Ant.Polar.: Horizontal

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Height	Degree	Damark
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Remark
1	173.8135	47.91	-16.61	31.30	40.00	-8.70	400	336	QP
2	280.0237	43.61	-15.61	28.00	47.00	-19.00	400	343	QP
3	375.9385	42.81	-13.41	29.40	47.00	-17.60	200	355	QP
4	760.7036	38.43	-5.93	32.50	47.00	-14.50	100	45	QP
5	842.1296	42.46	-5.16	37.30	47.00	-9.70	100	359	QP
6	922.5157	44.58	-3.98	40.60	47.00	-6.40	100	38	QP

Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV).

Example: 31.30 = -16.61 + 47.91

Test Standard: FCC Part 15B (limit use CISPR 22) Test Distance: 10 m

Test Mode: Mode 1 Test Power: AC 120 V / 60 Hz

Measurement Range: 30 MHz~1 GHz Ant.Polar.: Vertical

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Height	Degree	Damark
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Remark
1	48.3318	47.01	-15.81	31.20	40.00	-8.80	100	343	QP
2	69.6005	46.82	-18.22	28.60	40.00	-11.40	399	270	QP
3	117.7725	46.48	-17.88	28.60	40.00	-11.40	100	103	QP
4	169.5990	50.09	-14.99	35.10	40.00	-4.90	100	230	QP
5	280.0237	47.71	-13.91	33.80	47.00	-13.20	100	0	QP
6	375.9385	43.59	-11.49	32.10	47.00	-14.90	100	61	QP

Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV).

Test Standard: FCC Part 15B (limit use CISPR 22) Test Distance: 10 m

Test Mode: Mode 2 Test Power: AC 240 V / 60 Hz

Measurement Range: 30 MHz~1 GHz Ant.Polar.: Horizontal

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Height	Degree	Damark
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Remark
1	99.8777	45.23	-20.93	24.30	40.00	-15.70	300	183	QP
2	169.5990	47.51	-16.21	31.30	40.00	-8.70	400	307	QP
3	280.0237	43.11	-15.61	27.50	47.00	-19.50	398	0	QP
4	375.9385	42.91	-13.41	29.50	47.00	-17.50	200	360	QP
5	842.1296	42.76	-5.16	37.60	47.00	-9.40	100	246	QP
6	922.5157	44.28	-3.98	40.30	47.00	-6.70	100	246	QP

Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV).

Test Standard: FCC Part 15B (limit use CISPR 22) Test Distance: 10 m

Test Mode: Test Power: AC 240 V / 60 Hz

Measurement Range: 30 MHz~1 GHz Ant.Polar.: Vertical

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Height	Degree	Damark
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Remark
1	48.3318	47.41	-15.81	31.60	40.00	-8.40	100	359	QP
2	68.1514	45.76	-17.96	27.80	40.00	-12.20	100	0	QP
3	99.8777	49.90	-20.20	29.70	40.00	-10.30	100	85	QP
4	167.8243	49.80	-14.90	34.90	40.00	-5.10	100	209	QP
5	280.0237	48.41	-13.91	34.50	47.00	-12.50	100	0	QP
6	922.5157	38.49	-0.19	38.30	47.00	-8.70	152	0	QP

Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV).

Test Mode: Test Power: AC 120 V / 60 Hz

Measurement Range: 1 GHz~40 GHz Ant.Polar.: Horizontal

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Height	Degree	Damank
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Remark
1	2200.000	38.72	3.18	41.90	80.00	-38.10	100	321	peak
2	3184.000	42.30	4.69	46.99	80.00	-33.01	100	227	peak
3	7072.000	31.99	10.23	42.22	80.00	-37.78	200	8	peak
4	9268.000	33.08	11.00	44.08	80.00	-35.92	100	195	peak
5	10912.000	32.44	16.45	48.89	80.00	-31.11	200	198	peak
6	12304.000	33.11	19.49	52.60	80.00	-27.40	200	234	peak

Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV).

Example: 41.90 = 38.72 + 3.18

Test Mode: Mode 1 Test Power: AC 120 V / 60 Hz

Measurement Range: 1 GHz~40 GHz Ant.Polar.: Vertical

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Height	Degree	Damade
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Remark
1	1804.000	40.91	1.25	42.16	80.00	-37.84	100	0	peak
2	3184.000	42.29	4.69	46.98	80.00	-33.02	100	247	peak
3	4540.000	33.48	7.08	40.56	80.00	-39.44	100	165	peak
4	7240.000	33.16	10.21	43.37	80.00	-36.63	100	0	peak
5	10060.000	33.91	12.89	46.80	80.00	-33.20	100	274	peak
6	12064.000	34.35	18.86	53.21	80.00	-26.79	100	342	peak

Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV).

Test Mode: Mode 2 Test Power: AC 240 V / 60 Hz

Measurement Range: 1 GHz~40 GHz Ant.Polar.: Horizontal

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Height	Degree	Demont
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Remark
1	2416.000	38.20	3.70	41.90	80.00	-38.10	100	0	peak
2	3196.000	36.96	4.69	41.65	80.00	-38.35	100	208	peak
3	4828.000	32.82	7.51	40.33	80.00	-39.67	178	0	peak
4	7156.000	32.73	10.22	42.95	80.00	-37.05	200	347	peak
5	9652.000	35.23	11.69	46.92	80.00	-33.08	100	360	peak
6	12868.000	32.69	20.63	53.32	80.00	-26.68	100	204	peak

Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV).

Test Mode: Mode 2 Test Power: AC 240 V / 60 Hz

Measurement Range: 1 GHz~40 GHz Ant.Polar.: Vertical

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Height	Degree	Domark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Remark
1	1804.000	41.35	1.25	42.60	80.00	-37.40	100	358	peak
2	3196.000	43.15	4.69	47.84	80.00	-32.16	100	120	peak
3	6748.000	32.36	10.27	42.63	80.00	-37.37	100	0	peak
4	9652.000	35.93	11.69	47.62	80.00	-32.38	100	12	peak
5	10636.000	32.75	15.18	47.93	80.00	-32.07	100	333	peak
6	12172.000	32.22	19.15	51.37	80.00	-28.63	200	1	peak

Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV).