ASSIGNMENT 3 CLL788

Submitted by: Mohd Zaki 2019CEZ8233 Department of Civil Engineering

Table of Contents

2
2
2
2
2
3
4
4
6
6
2
2
3
3
3

Solution to Question 1

1) Visualizing training data (Data1.xlsx)

Figure 1 – Visualizing training dataset

Solution to Question 2

2.) Training data with decision boundary obtained by running vanilla version of SVM

Figure 2 - SVM Result

Solution to Question 3

3.) Modified Optimization Problem

Figure 3a – Comparing effect of C

Figure 4b – Comparing effect of $C \leq 1$

Figure 5c – Comparing effect of $C \le 1$

It has been observed from Figure 3a and 3b that number of misclassified points decreases when we enforce the optimization part strongly i.e. use **large C value.**

Also, we made an attempt in comparing our own optimization code and inbuilt SVM, the results hardly have a difference of 0.01 in accuracy which is equal to total correctly classified points/total number of points.

Solution to Question 4

4.) Naïve Bayes Classification

Pre-requisites:

Probability	Value
P(stolen = yes)	0.5
P(stolen = no)	0.5
P(red stolen = yes)	0.6
P(red stolen = no)	0.4
P(SUV stolen = yes)	0.2
P(SUV stolen = no)	0.6
P(domestic stolen = yes)	0.4
P(domestic stolen = no)	0.6

Hence,

P(stolen = yes | (Color = red, Type = SUV, Origin = Domestic)

= P(red | stolen=yes) x P(SUV | stolen=yes) x P(domestic | stolen=yes) x P(stolen=yes)

$$= \frac{3}{5} \times \frac{1}{5} \times \frac{2}{5} \times \frac{1}{2}$$

 $= 0.6 \times 0.2 \times 0.4 \times 0.5$

= 0.024

P(stolen = no | (Color = red, Type = SUV, Origin = Domestic)

= P(red | stolen=no) x P(SUV | stolen=no) x P(domestic | stolen=no) x P(stolen=no)

$$= \frac{2}{5} \times \frac{3}{5} \times \frac{3}{5} \times \frac{1}{2}$$

 $= 0.4 \times 0.6 \times 0.6 \times 0.5$

= 0.072

By normalizing the above quantities to sum to one,

The conditional probability that the target value is no, given the observed attribute values =

$$\frac{0.072}{0.072\ + 0.024}\,=0.75$$

The conditional probability that the target value is yes, given the observed attribute values =

$$\frac{0.024}{0.072\ + 0.024}\,=0.25$$

Since, conditional probability of target value as No > conditional probability of target value as Yes Thus, our example gets classified as 'NO' or

The STOLEN status for Red Domestic SUV will be highly YES.

Solution to Question 5

5.) K-Means classification

Iteration-1

Var1	Var2	Mean=x1	Mean=y1	Mean=x2	Mean=y2	D1	D2	CLASS
-1.54	2.29	0.5	1.5	-4.5	-5	2.19	7.87	1
-0.44	2.34	0.5	1.5	-4.5	-5	1.26	8.39	1
0.03	0.41	0.5	1.5	-4.5	-5	1.19	7.06	1
1.2	1.87	0.5	1.5	-4.5	-5	0.79	8.93	1
0.65	2.39	0.5	1.5	-4.5	-5	0.90	9.01	1
-4.67	-4.8	0.5	1.5	-4.5	-5	8.15	0.26	2
-3.37	-5.41	0.5	1.5	-4.5	-5	7.92	1.20	2
-3.93	-4.64	0.5	1.5	-4.5	-5	7.57	0.67	2
-4.78	-4.96	0.5	1.5	-4.5	-5	8.34	0.28	2
-4.12	-5.36	0.5	1.5	-4.5	-5	8.27	0.52	2

Iteration-2

Var1	Var2	Mean=x1	Mean=y1	Mean=x2	Mean=y2	D1	D2	CLASS
-1.54	2.29	-0.02	1.86	-4.17	-5.03	1.58	7.78	1
-0.44	2.34	-0.02	1.86	-4.17	-5.03	0.64	8.27	1
0.03	0.41	-0.02	1.86	-4.17	-5.03	1.45	6.88	1
1.2	1.87	-0.02	1.86	-4.17	-5.03	1.22	8.75	1
0.65	2.39	-0.02	1.86	-4.17	-5.03	0.85	8.85	1
-4.67	-4.8	-0.02	1.86	-4.17	-5.03	8.12	0.55	2
-3.37	-5.41	-0.02	1.86	-4.17	-5.03	8.00	0.89	2
-3.93	-4.64	-0.02	1.86	-4.17	-5.03	7.59	0.46	2
-4.78	-4.96	-0.02	1.86	-4.17	-5.03	8.32	0.61	2
-4.12	-5.36	-0.02	1.86	-4.17	-5.03	8.30	0.33	2

Iteration-3

Var1	Var2	Mean=x1	Mean=y1	Mean=x2	Mean=y2	D1	D2	CLASS
-1.54	2.29	-0.02	1.86	-4.17	-5.03	1.58	7.78	1
-0.44	2.34	-0.02	1.86	-4.17	-5.03	0.64	8.27	1
0.03	0.41	-0.02	1.86	-4.17	-5.03	1.45	6.88	1
1.2	1.87	-0.02	1.86	-4.17	-5.03	1.22	8.75	1
0.65	2.39	-0.02	1.86	-4.17	-5.03	0.85	8.85	1
-4.67	-4.8	-0.02	1.86	-4.17	-5.03	8.12	0.55	2
-3.37	-5.41	-0.02	1.86	-4.17	-5.03	8.00	0.89	2
-3.93	-4.64	-0.02	1.86	-4.17	-5.03	7.59	0.46	2
-4.78	-4.96	-0.02	1.86	-4.17	-5.03	8.32	0.61	2
-4.12	-5.36	-0.02	1.86	-4.17	-5.03	8.30	0.33	2

Center of Cluster 1 = (-0.02, 1.86)

Center of Cluster 2 = (-4.17, -5.03)