Детекция и сегментация

Марк Блуменау, Магистратура ИИ

Классификация = бесполезно?

Что такое детекция?

Какие есть подходы?

Two shot (stage) detector: R-CNN 2013

Fast R-CNN 2015: we need to go faster

ROI Projection

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal Rol conv features: C x h x w for region proposal Fully-connected layers expect low-res conv features:

C x h x w

Сравнение скорости работы

Faster R-CNN 2015 (+2 month): а если выкинуть классику?

https://doi.org/10.1109/TPAMI.2016.2577031

Выкидываем классику

R-CNN Test-Time Speed

https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-volo-object-detection-algorithms-36d53571365e

А ещё быстрее?

Но как выглядит архитектура?

https://arxiv.org/pdf/1506.02640

А учить это как?

$$\begin{split} \lambda_{\textbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\textbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

https://arxiv.org/pdf/1506.02640

И зачем мы с этим возились?

Real-Time Detectors	Train	mAP	FPS	
100Hz DPM [31]	2007	16.0	100	•
30Hz DPM [31]	2007	26.1	30	
Fast YOLO	2007+2012	52.7	155	
YOLO	2007+2012	63.4	45	←
Less Than Real-Time				•
Fastest DPM [38]	2007	30.4	15	•
R-CNN Minus R [20]	2007	53.5	6	
Fast R-CNN [14]	2007+2012	70.0	0.5	
Faster R-CNN VGG-16[28]	2007+2012	73.2	7	
Faster R-CNN ZF [28]	2007+2012	62.1	18	*
YOLO VGG-16	2007+2012	66.4	21	

https://arxiv.org/pdf/1506.02640

А что делают сейчас?

https://medium.com/@nikhil-rao-20/yolov11-explained-next-level-object-detection-with-enhanced-speed-and-accuracy-2dbe2d376f71

И что это дает?

https://github.com/ultralytics/ultralytics

Non-maximum suppression (NMS)

Before non-max suppression

Non-Max Suppression

After non-max suppression

https://blog.cubed.run/nms-non-maximum-suppression-157be5bc61ca?qi=9906bd5982df

Non-maximum suppression (NMS)

- •Модель выдаёт для класса C список прямоугольников с уверенностями
- •Проходим в порядке уменьшения уверенности
- •Для каждого прямоугольника удаляем все последующие, с которыми Intersection over Union (IoU) > 0.5

Метрика качества

- 1) Получаем список bbox
- 2) Если IoU(y, pred) > 0.5 -> bbox корректный
- 3) Если класс детекции корректен тоже, то ставим True Positive (TP)
- 4) Если IoU < 0.5 или бокс дублируется False Positive (FP)
- 5) Если IoU > 0.5, но класс неверный или bbox вовсе нет – False Negative (FN)

PR кривая

Precision = TP/(TP + FP)

Recall = TP/(TP+FN)

AP = Average Precision = AUC PR

mAP = mean Average Precision

Сегментация

Что такое сегментация?

https://encord.com/blog/instance-segmentationn-guide-computer-vision/

Как это оценивать?

Попиксельная Accuracy:

$$L(y, a) = \frac{1}{n} \sum_{i=1}^{n} [y_i = a_i]$$

Мера Жаккара:

$$J_k(y, a) = \frac{\sum_{i=1}^n [y_i = k][a_i = k]}{\sum_{i=1}^n \max([y_i = k], [a_i = k])}$$

Функция потерь

Categorical cross-entropy

$$L(y, a) = \sum_{i=1}^{n} \sum_{k=1}^{K} [y_i = k] \log a_{ik}$$

где (softmax):

$$a_{ik} = \frac{\exp(b_{ik})}{\sum_{m=1}^{K} \exp(b_{im})}$$

База (UNet)

А как раздувать?

Раздуваем по-хитрому

Результат

