

黄道煜 2024年1月19日

目录

- 1. 广义中位数
- 2. Weiszfeld 算法
- 3. 核方法
- 4. 基于核方法的广义中位数计算算法
- 5. 效果评估

给定定义域O,对象集合 $O = \{o_1, o_2, \dots o_n\}$,距离函数 $\delta(o_i, o_j)$ 广义中位数:

$$\bar{o} = \arg\min_{o \in \mathcal{O}} \sum_{o_i \in O} \delta(o_i, o)$$

给定定义域O,对象集合 $O = \{o_1, o_2, \dots o_n\}$,距离函数 $\delta(o_i, o_j)$ 广义中位数:

$$\bar{o} = \arg\min_{o \in \mathcal{O}} \sum_{o_i \in O} \delta(o_i, o)$$

很多问题都可以归类为广义中位数: 拉普拉斯分布和高斯分布的最大似然估计 欧氏空间的几何中位数 斯坦纳字符串 肯尼共识问题

对于未知对象 \bar{o} 的观测结果 $\{o_1,o_2,\dots o_n\}$ 若满足拉普拉斯分布

$$\mathcal{L}(o|\bar{o},\sigma) = \frac{1}{2\sigma} exp\left(-\frac{\delta(o,\bar{o})}{\sigma}\right)$$

 \bar{o} 的最大似然估计即为

$$\bar{o} = \arg\min_{o \in \mathcal{O}} \sum_{i=1}^{n} \delta(o_i, o)$$

对于未知对象 \bar{o} 的观测结果 $\{o_1,o_2,\dots o_n\}$ 若满足高斯分布

$$\mathcal{N}(o|\bar{o},\sigma) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{\delta^2(o,\bar{o})}{2\sigma^2}\right)$$

 \bar{o} 的最大似然估计即为

$$\bar{o} = arg \min_{o \in \mathcal{O}} \sum_{i=1}^{n} \delta^{2}(o_{i}, o)$$

Weiszfeld 算法

求解欧氏空间的几何中位数的算法

点集 $x_1,...,x_n$, 初始解 y_0 迭代计算

$$y_{j+1} = \frac{\sum_{i=1}^{n} w_i^j x_i}{\sum_{i=1}^{n} w_i^j}$$

其中
$$w_i^j = \frac{1}{\|y_j - x_i\|}$$

Weiszfeld 算法

推导过程

对目标函数 $f(y) = \sum_{i=1}^{n} \|y - x_i\|$ 求梯度,其中梯度的第 j个分量为:

$$\frac{\partial f}{\partial y_j} = \sum_{i=1}^n \frac{y_j - x_{ij}}{\parallel y - x_i \parallel}$$

将 y 的每个分量减去对应梯度得到 y', 有:

$$y' = \left(\sum_{i=1}^{n} \frac{x_{i1}}{\|y - x_i\|}, \dots, \sum_{i=1}^{n} \frac{x_{im}}{\|y - x_i\|}\right) = \sum_{i=1}^{n} \frac{x_i}{\|y - x_i\|}$$

Weiszfeld 算法

算法本质是梯度下降法

欧氏空间中目标函数是凸函数, 因此一定会收敛于全局最优解

核函数: 对于二元函数 $K: R^d \times R^d \to R$,如果存在某个希尔伯特空间 \mathcal{H}_k 和函数 $\phi: R^d \to \mathcal{H}_k$,使得 $K(x,y) = \langle \phi(x), \phi(y) \rangle$,则称该函数为核函数。 \mathcal{H}_k 被称为特征空间, ϕ 被称为特征映射。

核方法:将目标通过特征映射 $\phi: R^d \to \mathcal{H}_k$ 转换到特征空间中,通过核函数 $K: R^d \times R^d \to R$ 在特征空间中求解问题。

知行合一、经世致用

核方法: 将对象通过特征映射 $\phi: R^d \to \mathcal{H}_k$ 转换到特征空间中,通过核函数 $K: R^d \times R^d \to R$ 在特征空间中求解问题。

在特征空间中,可以根据内积的定义诱导出距离(模长)的概念:

$$\|\phi(o_{a}) - \phi(o_{b})\|_{2} = (\langle \phi(o_{a}) - \phi(o_{b}), \phi(o_{a}) - \phi(o_{b}) \rangle)^{\frac{1}{2}}$$

$$= (\langle \phi(o_{a}), \phi(o_{a}) \rangle - 2\langle \phi(o_{a}), \phi(o_{b}) \rangle$$

$$+ \langle \phi(o_{b}), \phi(o_{b}) \rangle)^{\frac{1}{2}}$$

$$= (K(o_{a}, o_{a}) - 2K(o_{a}, o_{b}) + K(o_{b}, o_{b}))^{\frac{1}{2}}$$
(3)

该距离在核方法中一般能反映出对象之间的相似度

核方法: 将对象通过特征映射 $\phi: R^d \to \mathcal{H}_k$ 转换到特征空间中,通过核函数 $K: R^d \times R^d \to R$ 在特征空间中求解问题。

核方法优势:

- 特征空间中目标集合更可能满足线性可分性
- •可以通过核函数避免对特征映射和特征空间中的坐标进行显式计算
- 可以通过核函数将树、图、字符串等异构对象纳入统一的处理框架

核方法: 将对象通过特征映射 $\phi: R^d \to \mathcal{H}_k$ 转换到特征空间中,通过核函数 $K: R^d \times R^d \to R$ 在特征空间中求解问题。

例子:

String Subsequence Kernel $\phi^{ssk}(s) = (\phi_{u_1}(s), \phi_{u_2}(s), ...), \quad \phi_u(s) = \sum_{\mathbf{i}: u = s[\mathbf{i}]} \lambda^{l(\mathbf{i})}$ 每个维度代表一个字符串 u_i ,值表示 u_i 在s中出现的频率和紧密度 核函数 $K(s_a, s_b)$ 表示两个字符串间的相似度

- 1. 显式转换算法
- 2. 隐式转换算法
- 3. 对于非正定核的扩展算法

显式转换算法

- 1. 计算输入对象在特征空间中的映射
- 2. 使用Weiszfeld算法计算特征空间中的几何中位数

$$\bar{x}_{j+1} = \frac{\sum_{i=1}^{n} \omega_i^j \phi(o_i)}{\sum_{i=1}^{n} \omega_i^j}$$
(4)

$$\omega_i^j = \frac{1}{\|\bar{x}_i - \phi(o_i)\|_2} \tag{5}$$

3. 根据特征空间中的几何中位数构造近似解

Fig. 1. Computation of the ratio α between objects for reconstruction.

 \bar{x}_j 表示第 j 次迭代的计算结果 令 $w_i^0 = 1$,因此 \bar{x}_0 为几何平均数

找出距离几何中位数最近的 o_a, o_b 并计算 α 在问题空间中根据 o_a, o_b, α 构造近似解

隐式转换算法

$$\bar{x}_{j+1} = \frac{\sum_{i=1}^{n} \omega_i^j \phi(o_i)}{\sum_{i=1}^{n} \omega_i^j}$$

$$\omega_i^j = \frac{1}{\|\bar{x}_j - \phi(o_i)\|_2}$$

 \bar{x} 是 $\phi(o_i)$ 的加权平均,权值是 距离的反比

(4) 权值可以由核函数计算出,可以 直接迭代计算 w_i^j

算法收敛时,权值越大的点距几 何中位数越近

可以根据权值得到距中位数最近的对象

计算α只涉及点积运算,也可以 由核函数计算出

隐式转换算法:中位数求解

Algorithm 3. Kernel-Based Generalized Median Framework

Input: Object set O, distance function $\delta()$, weighted mean function wm(), kernel function K()

Output: Median object \bar{o}

/* Computation of median weights */

- 1: Initialize $\omega_i^0 = 1$ for all $1 \le i \le |O|$
- 2: **for** j = 1 to j_{max} **do**
- 3: **for** i = 1 to n **do**
- 4: Compute ω_i^j using Eq. (7), (8), and (9)
- 5: end for
- 6: end for

/* Reconstruction */

- 7: Compute \bar{o} using reconstruction Algorithms 1 or 2
- 8: **return** \bar{o} with the related SOD

$$\omega_i^j = 1/(\langle \bar{x}_i, \bar{x}_i \rangle - 2\langle \bar{x}_i, \phi(o_i) \rangle + \langle \phi(o_i), \phi(o_i) \rangle)^{\frac{1}{2}}$$
 (7)

$$\langle \bar{x}_{j}, \bar{x}_{j} \rangle = \left\langle \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} \phi(o_{u})}{\sum_{u=1}^{n} \omega_{u}^{j-1}}, \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} \phi(o_{u})}{\sum_{u=1}^{n} \omega_{u}^{j-1}} \right\rangle$$

$$= \frac{\sum_{u=1}^{n} \sum_{v=1}^{n} \omega_{u}^{j-1} \omega_{v}^{j-1} K(o_{u}, o_{v})}{\left(\sum_{u=1}^{n} \omega_{u}^{j-1}\right)^{2}}$$
(8)

$$\langle \bar{x}_{j}, \phi(o_{i}) \rangle = \left\langle \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} \phi(o_{u})}{\sum_{u=1}^{n} \omega_{u}^{j-1}}, \phi(o_{i}) \right\rangle$$

$$= \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} K(o_{u}, o_{i})}{\sum_{u=1}^{n} \omega_{u}^{j-1}}$$
(9)

隐式转换算法: 重构

Algorithm 1. Kernel-Based Linear (L=2) and Triangular (L=3) Reconstruction

Input: Object set O, integer l, final weights ω_i , weighted mean function wm()

Output: Median object \bar{o}

1: Select $o_1, ..., o_l$ with the l maximal ω_i

2: $\bar{o}_1 = o_1$

3: **for** j = 2 to l **do**

4: Compute α using Eq. (11) with objects \bar{o}_{j-1} , o_j

5: $\bar{o}_j = wm(\bar{o}_{j-1}, o_j, \alpha)$

6: end for

7: **return** \bar{o}_l with the related SOD

Fig. 1. Computation of the ratio α between objects for reconstruction.

$$\alpha = \frac{\left\langle \frac{\sum_{i=1}^{n} \omega_{i} \phi(o_{i})}{\sum_{i=1}^{n} \omega_{i}} - \phi(o_{a}), \phi(o_{b}) - \phi(o_{a}) \right\rangle}{\left| |\phi(o_{b}) - \phi(o_{a})| \right|^{2}}$$

$$= \frac{\sum_{i=1}^{n} \omega_{i} (K(o_{i}, o_{b}) - K(o_{i}, o_{a}))}{\sum_{i=1}^{n} \omega_{i}} - K(o_{a}, o_{b}) + K(o_{a}, o_{a})}{K(o_{b}, o_{b}) - 2K(o_{b}, o_{a}) + K(o_{a}, o_{a})}$$
(11)

隐式转换算法: 重构

Algorithm 1. Kernel-Based Linear (L=2) and Triangular (L=3) Reconstruction

Input: Object set O, integer l, final weights ω_i , weighted mean function wm()

Output: Median object \bar{o}

1: Select $o_1, ..., o_l$ with the l maximal ω_i

2: $\bar{o}_1 = o_1$

3: **for** j = 2 to l **do**

4: Compute α using Eq. (11) with objects \bar{o}_{j-1} , o_j

5: $\bar{o}_j = wm(\bar{o}_{j-1}, o_j, \alpha)$

6: end for

7: **return** \bar{o}_l with the related SOD

$$\alpha = \frac{\left\langle \frac{\sum_{i=1}^{n} \omega_{i} \phi(o_{i})}{\sum_{i=1}^{n} \omega_{i}} - \phi(o_{a}), \phi(o_{b}) - \phi(o_{a}) \right\rangle}{\left| |\phi(o_{b}) - \phi(o_{a})| \right|^{2}}$$

$$= \frac{\frac{\sum_{i=1}^{n} \omega_{i} (K(o_{i}, o_{b}) - K(o_{i}, o_{a}))}{\sum_{i=1}^{n} \omega_{i}} - K(o_{a}, o_{b}) + K(o_{a}, o_{a})}{K(o_{b}, o_{b}) - 2K(o_{b}, o_{a}) + K(o_{a}, o_{a})}$$
(11)

隐式转换算法: 重构

Algorithm 2. Kernel-Based Linear (Triangular) Recursive Reconstruction

Input: Object set O, final weights ω_i , weighted mean function wm()

Output: Median object \bar{o}

- 1: $\bar{o}_{best} = \emptyset$
- 2: **while** |O| > 1 **do**
- 3: Divide O into |O|/2 pairs (|O|/3 triples) by grouping maximal ω_i first.
- 4: $O' = \emptyset$
- 5: **for** each pair (o_a, o_b) (triple (o_a, o_b, o_c)) **do**
- 6: Compute \bar{o} using Algorithm 1 with l = 2 (l = 3)
- 7: $O' = O' \cup \{\bar{o}\}\$
- 8: end for
- 9: $\bar{o}_{best} = \arg\min_{o \in \{\bar{o}_{best}\} \cup O'} SOD(o)$
- 10: O = O'
- 11: end while
- 12: **return** \bar{o}_{best} with the related SOD

将对象集合O分组 每一组根据算法1计算出近似解ō 将所有ō加入O' O'为下次迭代的对象集合

隐式转换算法:对于非正定核的扩展算法

二元函数正定性: 二元函数 $K: R^d \times R^d \to R$ 满足正定性, 当前仅当对于任意n,任意向量组 $x_1, ..., x_n$,任意非零向量a,都满足 $\sum_{i=1}^n \sum_{j=1}^n a_i a_j K(x_i, x_j) > 0$ 。即对于任意向量组 $x_1, ..., x_n$,矩阵 $\left[K(x_i, x_j)\right]_{i,i=1}^n$ 都满足正定性。

性质:二元函数 $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ 是核函数,当且仅当该函数满足正定性。

隐式转换算法:对于非正定核的扩展算法

$$\omega_i^j = \frac{1}{\|\bar{x}_i - \phi(o_i)\|_2} \tag{5}$$

$$\omega_i^j = 1/(\langle \bar{x}_j, \bar{x}_j \rangle - 2\langle \bar{x}_j, \phi(o_i) \rangle + \langle \phi(o_i), \phi(o_i) \rangle)^{\frac{1}{2}}$$
 (7)

$$\langle \bar{x}_{j}, \bar{x}_{j} \rangle = \left\langle \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} \phi(o_{u})}{\sum_{u=1}^{n} \omega_{u}^{j-1}}, \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} \phi(o_{u})}{\sum_{u=1}^{n} \omega_{u}^{j-1}} \right\rangle$$

$$= \frac{\sum_{u=1}^{n} \sum_{v=1}^{n} \omega_{u}^{j-1} \omega_{v}^{j-1} K(o_{u}, o_{v})}{\left(\sum_{u=1}^{n} \omega_{u}^{j-1}\right)^{2}}$$
(8)

$$\langle \bar{x}_{j}, \phi(o_{i}) \rangle = \left\langle \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} \phi(o_{u})}{\sum_{u=1}^{n} \omega_{u}^{j-1}}, \phi(o_{i}) \right\rangle$$

$$= \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} K(o_{u}, o_{i})}{\sum_{u=1}^{n} \omega_{u}^{j-1}}$$
(9)

推导过程中向量运算需要改写成复数形式:

$$u \cdot v = \sum_{i=1}^{n} u_i \overline{v_i}$$

$$\parallel u \parallel = \sqrt{\sum_{i=1}^{n} |u_i|^2}$$

复向量运算满足如下性质:

$$\langle u, v \rangle = \overline{\langle \underline{v}, u \rangle}$$

$$\langle \mathbf{u}, \lambda \mathbf{v} \rangle = \overline{\lambda} \langle \mathbf{u}, \mathbf{v} \rangle$$

隐式转换算法:对于非正定核的扩展算法

$$\omega_i^j = \frac{1}{\|\bar{x}_i - \phi(o_i)\|_2} \tag{5}$$

$$\omega_i^j = 1/(\langle \bar{x}_j, \bar{x}_j \rangle - 2\langle \bar{x}_j, \phi(o_i) \rangle + \langle \phi(o_i), \phi(o_i) \rangle)^{\frac{1}{2}}$$
 (7)

$$\langle \bar{x}_{j}, \bar{x}_{j} \rangle = \left\langle \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} \phi(o_{u})}{\sum_{u=1}^{n} \omega_{u}^{j-1}}, \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} \phi(o_{u})}{\sum_{u=1}^{n} \omega_{u}^{j-1}} \right\rangle$$

$$= \frac{\sum_{u=1}^{n} \sum_{v=1}^{n} \omega_{u}^{j-1} \omega_{v}^{j-1} K(o_{u}, o_{v})}{\left(\sum_{u=1}^{n} \omega_{u}^{j-1}\right)^{2}}$$
(8)

$$\langle \bar{x}_{j}, \phi(o_{i}) \rangle = \left\langle \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} \phi(o_{u})}{\sum_{u=1}^{n} \omega_{u}^{j-1}}, \phi(o_{i}) \right\rangle$$

$$= \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} K(o_{u}, o_{i})}{\sum_{u=1}^{n} \omega_{u}^{j-1}}$$
(9)

推导过程中向量运算需要改写成复数形式:

$$\omega_i^j = 1/(\langle \bar{x}_j, \bar{x}_j \rangle - \langle \bar{x}_j, \phi(o_i) \rangle - \overline{\langle \bar{x}_j, \phi(o_i) \rangle} + \langle \phi(o_i), \phi(o_i) \rangle)^{\frac{1}{2}}$$
(14)

$$\langle \bar{x}_{j}, \bar{x}_{j} \rangle = \left\langle \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} \phi(o_{u})}{\sum_{u=1}^{n} \omega_{u}^{j-1}}, \frac{\sum_{u=1}^{n} \omega_{u}^{j-1} \phi(o_{u})}{\sum_{u=1}^{n} \omega_{u}^{j-1}} \right\rangle$$

$$= \frac{\sum_{u=1}^{n} \sum_{v=1}^{n} \omega_{u}^{j-1} \overline{\omega_{v}^{j-1}} K(o_{u}, o_{v})}{\left(\sum_{u=1}^{n} \omega_{u}^{j-1}\right) \left(\overline{\sum_{u=1}^{n} \omega_{u}^{j-1}}\right)}$$
(15)

核函数:正定核函数

String Subsequence Kernel $\phi^{ssk}(s) = (\phi_{u_1}(s), \phi_{u_2}(s), ...), \quad \phi_u(s) = \sum_{\mathbf{i}: u = s[\mathbf{i}]} \lambda^{l(\mathbf{i})}$ 每个维度代表一个字符串 u_i ,值表示 u_i 在s中出现的频率和紧密度 核函数 $K(s_a, s_b)$ 表示两个字符串间的相似度

核函数: 非正定核函数

Distance Substitution Kernels

$$K_{\delta}^{lin}(o_a, o_b) = \frac{1}{2} \Big(\delta(o_a, o)^2 + \delta(o_b, o)^2 - \delta(o_a, o_b)^2 \Big)$$

其中o为参照对象

核函数 $K(o_a, o_b)$ 就等于 o_a, o_b 在问题空间中的距离

Benchmark Algorithm:

• Prototype-Embedding

$$p_1, p_2, ..., p_d$$
 为 n 个输入对象中的特定 d 个,映射函数 $\phi(o) = (\delta(0, p_1), \delta(0, p_2), ..., \delta(0, p_d))$

Curvilinear Component Analysis(CCA)

 $x_1, x_2, ..., x_d$ 为欧氏空间的 d 个点,F 为有界的单调递减函数, λ_t 是依赖迭代次数的序列。使用神经网络迭代调整 $x_1, x_2, ..., x_d$ 最小化函数 $E = \frac{1}{2} \sum_{i \neq j} \left(\delta(o_i, o_j) - \delta_e(x_i, x_j)\right)^2 F(\delta_e(x_i, x_j), \lambda_i)$

函数的目的是尽可能保留对象映射后的距离关系。CCA通过函数F控制迭代过程中优化的重点,最初迭代时距离较大的点对会有较高的权重,随后后距离较小点对的影响会逐渐增大。

算法理论比较:

- 对于 PE 等存在显式映射函数的算法,可以与核方法等价。但映射后的向量只是对象的特征值,这些点在特征空间内的距离无实际意义。距离保持核能够保留所有距离信息。但因为特征空间中向量加减运算不能通过核函数计算,重构时只能使用比例信息。
- 对于 CCA等不存在映射函数的算法,在特征空间中保留了一定的距离信息。虽然距离信息 有一定损失,但可以设计更灵活准确的重构方法。

对于只需要特征空间中距离的算法,核方法(距离保持核)最适合。

距离保持性:核函数得出的距离与欧氏距离的比例保持不变

$$\delta(o_i, o_j) = c \cdot \|\phi(o_i) - \phi(o_j)\|_2 \tag{17}$$

论文中的常用核函数只有 K_d^{rbf} 不满足距离保持性

Weiszfeld算法收敛速度

每列左边数字代表非正定核,右边代表正定核

论文中说算法在非正定核中的收敛性待证明。 目标函数在正定核空间中能够保持凸性,梯度 在正定核中也能够更好保持(待验证)

算法的迭代次数可以看成常数,整个框架的时间复杂度为 $O(n^2)$

TABLE 3
Convergence of the Weiszfeld Algorithm for 5 Indefinite Kernel Functions K_{δ}^{lin} , K_{δ}^{nd} , K_{δ}^{pol} , K_{δ}^{rbf} , K_{δ}^{comb} (First Value in Each Column) and 3 Positive Definite Kernel Functions K^{ssk} , K^{part} , K^{kend} (Second Value in Each Column).

Dataset (num sets)	max-iter	med-iter	complex weights		
Darwin (36)	29 / 13	9 / 11	28/0 (of 180)		
CCD (22)	17 / 33	12 / 24	0/0 (of 110)		
Gen-Cluster (8)	14 / 12	10 /10	0/0 (of 40)		
UCI-Cluster (8)	27 / 19	20 / 15	0/0 (of 40)		
ranking-bio (40)	144 / 85	42 / 76	2/0 (of 200)		
ranking-real (40)	31 /23	17 / 17	0/0 (of 200)		
random-string (1000)	11 / 11	10 / 10	0/0 (of 5000)		
random-cluster (1000)	14 / 11	12 / 10	0/0 (of 5000)		
random-ranking (1000)	8/9	6/8	0/0 (of 5000)		

Weiszfeld算法收敛速度:

每列左边数字代表非正定核,右边代表正定核

论文中说算法在非正定核中的收敛性待证明。 目标函数在正定核空间中能够保持凸性,梯度 在正定核中也能够更好保持(待验证)

算法的迭代次数可以看成常数,整个框架的时间复杂度为 $O(n^2)$

TABLE 3
Convergence of the Weiszfeld Algorithm for 5 Indefinite Kernel Functions K_{δ}^{lin} , K_{δ}^{nd} , K_{δ}^{pol} , K_{δ}^{rbf} , K_{δ}^{comb} (First Value in Each Column) and 3 Positive Definite Kernel Functions K^{ssk} , K^{part} , K^{kend} (Second Value in Each Column).

Dataset (num sets)	max-iter	med-iter	complex weights		
Darwin (36)	29 / 13	9 / 11	28/0 (of 180)		
CCD (22)	17 / 33	12 / 24	0/0 (of 110)		
Gen-Cluster (8)	14 / 12	10 /10	0/0 (of 40)		
UCI-Cluster (8)	27 / 19	20 / 15	0/0 (of 40)		
ranking-bio (40)	144 / 85	42 / 76	2/0 (of 200)		
ranking-real (40)	31 /23	17 / 17	0/0 (of 200)		
random-string (1000)	11 / 11	10 / 10	0/0 (of 5000)		
random-cluster (1000)	14 / 11	12 / 10	0/0 (of 5000)		
random-ranking (1000)	8/9	6/8	0/0 (of 5000)		

效果对比:

CCA为之前广义中位数研究 中表现较好的算法

Prototype为较经典的广义中 位数算法

五个常用核函数中有四个的表现优于之前的算法 $(K_{\delta}^{lin}, K_{\delta}^{nd}, K_{\delta}^{pol} \text{ and } K_{\delta}^{comb})$

	(d) UCI Cluster dataset										
		(a) Darw	vin dataset			35	linear	triangular	lin-rec	triang-rec	lin-search
	linear	triangular	lin-rec	triang-rec	lin-search	K_{δ}^{lin}	0.3055+	0.3055+	0.3055*	0.3055+	0.2844*
K_{δ}^{lin} K_{δ}^{nd} K_{δ}^{pol} K_{δ}^{rbf} K_{δ}^{romb}	0.3683* 0.3683+ 0.3683* 0.8284 0.3683+	0.3090* 0.3090* 0.3090* 0.8284 0.3090*	0.2070+ 0.2070+ 0.2070+ 0.8284 0.2070+	0.1969* 0.1969* 0.1969* 0.8284 0.2041*	0.1056* 0.1056* 0.1056* 0.1925 0.1056*	K^{nd}_{δ} K^{pol}_{δ} K^{rbf}_{δ} K^{comb}_{δ} K^{part}	0.3055+ 0.3055+ 1.4435 0.3055+ 0.3055*	0.3055+ 0.3055+ 1.4435 0.3055+ 0.3055*	0.3055* 0.3055* 1.4435 0.3055* 0.3055*	0.3055+ 0.3055+ 1.4435 0.3055+ 0.3055*	0.2844* 0.2844* 0.2907* 0.2844*
K ^{ssk}	0.4107	0.3682	0.4023	0.2932	0.1487	CCA Prototype	0.3078 0.4385	0.3078 0.4301	0.3078 0.3321	0.3078 0.3427	0.2929 0.2964*
Prototype						(e) ranking-bio dataset					
		(b) CCD	dataset			0g.	linear	triangular	lin-rec	triang-rec	lin-search
	linear	triangular	lin-rec	triang-rec	lin-search	K_{δ}^{lin}	0.1113	0.1113+	0.1113+	0.1113+	0.1058+
K_{δ}^{lin} K_{δ}^{nd} K_{δ}^{pol} K_{δ}^{rbf} K_{δ}^{comb}	0.3103* 0.3103* 0.3103* 0.6376 0.3103*	0.3024* 0.3024* 0.3024* 0.6376 0.3024*	0.2693+ 0.2693+ 0.2693+ 0.6376 0.2693+	0.2769* 0.2769* 0.2769* 0.6376 0.2769*	0.2330+ 0.2330+ 0.2330+ 0.2948 0.2330+	K^{nd}_{δ} K^{pol}_{δ} K^{rbf}_{δ} K^{comb}_{δ} K^{kend}	0.1113 0.1113 0.1458 0.1113 0.1187	0.1113+ 0.1113+ 0.1458 0.1113+ 0.1187	0.1113+ 0.1113+ 0.1458 0.1113+ 0.1412	0.1113+ 0.1113+ 0.1458 0.1113+ 0.1187	0.1058+ 0.1058+ 0.1324 0.1058+ 0.1063
K ^{ssk}	0.4513	0.4455	0.4829	0.4560	0.2970	CCA	0.1107	0.1113	0.1113	0.1113	0.1087
CCA Prototype	0.3177 0.4693	0.3177 0.4241	0.2812 0.3001	0.2835	0.2590 0.2452*	Prototype	0.1113	0.1113	0.1113	0.1113	0.1087
,1	0.7876	(a) Can Clu	ıster dataset					(f) ranking-	real dataset		222.11
	linear	triangular	lin-rec	triang-rec	lin-search	(<u> </u>	linear	triangular	lin-rec	triang-rec	lin-search
K_{δ}^{lin} K_{δ}^{nd} K_{δ}^{pol} K_{δ}^{rbf} K_{δ}^{rbf} K_{δ}^{comb} K_{δ}^{part}	0.4575* 0.4575* 0.4575* 0.6968 0.4575* 0.4583	0.4567+ 0.4567+ 0.4567+ 0.6968 0.4567* 0.4583	0.4412+ 0.4412+ 0.4412+ 0.6968 0.4412+ 0.4412*	0.4567+ 0.4567+ 0.4567+ 0.6968 0.4428+ 0.4583	0.4075* 0.4098* 0.4075* 0.4560* 0.4098* 0.4098*	K^{lin}_{δ} K^{nd}_{δ} K^{pol}_{δ} K^{rbf}_{δ} K^{comb}_{δ} K^{kend}	0.2818+ 0.2818+ 0.2818+ 0.5647 0.2818+ 0.3058	0.2818* 0.2818* 0.2818* 0.5647 0.2818* 0.3058	0.2649+ 0.2649+ 0.2649+ 0.5647 0.2649+ 0.2783	0.2698+ 0.2698+ 0.5647 0.2743+ 0.3058	0.2200+ 0.2200+ 0.2200+ 0.2662 0.2200+ 0.2240*
CCA Prototype	0.4575 0.6055	0.4567 0.5706	0.4575 0.4966	0.4543 0.4862	0.4183 0.4176*	CCA Prototype	0.2968 0.3841	0.2812 0.3826	0.2723 0.3000	0.2831 0.3203	0.2216 0.2363