Looking at the period of 1963 to 2022, lets run a Fama Macbeth style regression on size and value (Market not considered to simplify methodology)

```
import pandas as pd
import numpy as np
import statsmodels
 import statsmodels.regression.linear_model as sm #Needed for OLS regression
 import matplotlib.pyplot as plt
  varnings.filterwarnings("ignore")
 # Read in FF Three Factor Model data - factor loadings also in this file
ff3 = pd.read_csv("F-F_Research_Data_Factors.csv", header=2)
ff3 = ff3.set_index("Unnamed: 0")
ff3.index.names = ['Date'] #rename index name
 ff3 = ff3.iloc[437:1158,:] # include only simulation dates we're looking for
         Mkt-RF SMB HML RF
 196212
             1.01 -3.80 0.36 0.23
 196301
           4.93 3.08 2.21 0.25
 196303
           3.08 -2.59 2.06 0.23
 196304
            4.51 -1.34 1.00 0.25
           -3.77 1.37 0.30 0.19
202208
           -9.35 -0.79 0.06 0.19
 202210
           7.83 0.09 8.05 0.23
 202211
           4.60 -3.40 1.38 0.29
 202212
 ind_port_30 = pd.read_csv("30_Industry_Portfolios.csv", header = 6) #these are the monthly returns of our industry portfolios
ind_port_30 = ind_port_30.set_index("Unnamed: 0")
ind_port_30.index.names = ["bate"]
 ind_port_30.index.names = [ Date ]
ind_port_30 = ind_port_30.iloc[437:1158,:]
ind_port_30["RP"] = ff3["RP"] #add in risk free rate at the end to determine monthly excess returns next
ind_port_30 = ind_port_30.astype(float) #to allow us to do calculations
 ind port 30
         Food Beer Smoke Games Books Hshld Ciths Hith Chems Txtls ... Servs BusEq Paper Trans Whisi Rtail Meals
   Date
                                                                                           -0.84 -1.39
 196212 2.81 2.46
                       -2.17
                                2.06 -3.65
                                              0.80
                                                    -0.51 0.89
                                                                    1.14
                                                                           0.74 ...
                                                                                      1.47
                                                                                                           1.34
                                                                                                                  0.23 0.08 -2.30 1.68
                                                                                                                                             2.26 0.23
 196302 -2.73 -5.05
                       -3.36 -6.65 -1.94 -3.25 -3.38 -2.58
                                                                   -3.85
                                                                           0.65 ... 0.06
                                                                                            -4.11 -2.17 0.30 -1.87 -0.55 -3.74 -0.30
                                                                                                                                             0.30 0.23
                                1.12 -0.87
                                              4.00
                                                     1.43 1.18
                                                                    3.65
                                                                           0.83 ...
                                                                                             3.70
                                                                                                   3.01
                                                                                                           3.30
                                                                                                                 0.60
                                                                                                                        2.17
         1.73 4.61
                        7.74
                                                                                     3.90
                                                                                                                               -5.72
                                                                                                                                     2.31
                                                                                                                                             5.29 0.23
 196303
 196304
          1.10 0.66
                        6.30
                               -0.80
                                       7.95
                                              6.02
                                                      1.80
                                                            7.62
                                                                    4.44
                                                                           769
                                                                                      2.43
                                                                                             6.78
                                                                                                    4.86
                                                                                                            8.51
                                                                                                                         5.50
                                                                                                                                0.48
                                                                                                                  5.64
                                                                                                                                      3.68
                       -0.12 -2.95 -4.97 -2.16 -6.01 -5.07
                                                                   -1.38 -12.20 ... -4.70
                                                                                           -5.89 -7.66
                                                                                                         -1.46 -1.60 -3.46
202209 -7.79 -5.21 -10.55 -6.24 -13.42 -10.60 -17.36 -1.91 -11.25 -15.53 ... -11.07 -11.54 -13.27 -14.24 -9.46 -7.67 -6.26 -7.73 -6.20 0.19
                               13.36
                                      8.82
                                             5.68 10.72 8.84
                                                                           8.37 ... 1.99
                                                                                                   10.02
                                                                                                           6.68 13.65
202210 9.87 9.49
                       12.08
                                                                    8.94
                                                                                             8.97
                                                                                                                        1.94
                                                                                                                              10.26 12.80 11.25 0.23
                                7.64 15.82
                                              9.44 17.34 5.46
                                                                   10.53
                                                                           7.01 ... 5.66
                                                                                             4.93
                                                                                                    6.96
                                                                                                          10.32
                                                                                                                  5.05
202212 -2.23 -4.15
                        1.87
                              -5.85 -7.63 0.77 -0.33 -1.73
                                                                   -6.27 -0.89 ... -6.68 -9.07 -4.09 -7.66 -5.63 -8.97 -6.82 -5.49 -3.06 0.33
721 rows × 31 columns
Excess Returns
 excess_returns = ind_port_30.transpose() - np.array([ind_port_30["RF"]]) #subtract risk free rate
 excess_returns = excess_returns.transpose()
excess_returns = excess_returns.iloc[:,:-1] #remove risk free rate column
          Food Beer Smoke Games Books Hshld Clths Hith Chems Txtls ... Telcm Servs BusEq Paper Trans Whisi Rtail Meals
                                                                                                                                               Fin Other
                                                                           0.51 ...
 196212 2.58 2.23
                       -2.40
                                1.83 -3.88
                                              0.57 -0.74 0.66
                                                                    0.91
                                                                                      0.85
                                                                                             1.24
                                                                                                    -1.07
                                                                                                           -1.62
                                                                                                                    1.11 0.00 -0.15 -2.53 1.45
                                                                                                                                                    2.03
                        1.47
                                8.44
                                      6.30
                                              5.21
                                                      6.21 5.40
                                                                    4.21
                                                                           8.57 ...
                                                                                     3.88
                                                                                             1.11
                                                                                                    5.89
                                                                                                           7.98
                                                                                                                   5.72
                                                                                                                         3.32 3.87
                                                                                                                                       7.28 3.38
                                                                                                                                                    8.39
 196301
               3.78
         6.39
                                      -2.17
                                -6.88
                                             -3.48
                                                     -3.61 -2.81
                                                                   -4.08
                                                                           0.42
                                                                                     -1.32
                                                                                             -0.17
                                                                                                    -4.34
                                                                                                                   0.07
                                                                                                                                      -3.97 -0.53
                        -3.59
                                                                                                           -2.40
                                                                                                                         -2.10
                                                                                                                               -0.78
                                                                                                                                                     0.07
 196303
         1.50 4.38
                        7.51
                                0.89
                                      -1.10
                                              3.77
                                                     1.20 0.95
                                                                    3.42
                                                                           0.60 ...
                                                                                      1.71
                                                                                            3.67
                                                                                                    3.47
                                                                                                           2.78
                                                                                                                   3.07
                                                                                                                         0.37 1.94 -5.95 2.08
                                                                                                                                                    5.06
                        6.05
                                -1.05
                                                      1.55
                                                                    4.19
                                                                                                    6.53
                                                                                                            4.61
                                                                                                                   8.26
                              -3.14 -5.16 -2.35 -6.20 -5.26
202208 -1.79 -2.06
                       -0.31
                                                                   -1.57 -12.39 ... -3.20 -4.89
                                                                                                   -6.08
                                                                                                         -7.85 -1.65 -1.79 -3.65 -1.66 -2.43 -3.84
                       -10.74
                                -6.43
                                      -13.61 -10.79
                                                    -17.55
                                                           -2.10
                                                                   -11.44
                                                                         -15.72 ...
                                                                                     -14.13
                                                                                           -11.26
                                                                                                   -11.73 -13.46
                                                                                                                 -14.43
                                                                                                                         -9.65
202210 9.64 9.26
                       11.85
                              13.13 8.59 5.45 10.49 8.61
                                                                   8.71 8.14 ... 10.71 1.76
                                                                                                   8.74 9.79
                                                                                                                 6.45 13.42 1.71 10.03 12.57
                                                                                                                                                    11.02
                       5.28 7.35 15.53 9.15 17.05 5.17 10.24
                                                                           6.72 ... 2.03 5.37 4.64 6.67 10.03 4.76 2.66 5.36 4.46 6.25
 202212 -2.56 -4.48 1.54 -6.18 -7.96 0.44 -0.66 -2.06 -6.60 -1.22 ... -7.09 -7.01 -9.40 -4.42 -7.99 -5.96 -9.30 -7.15 -5.82 -3.39
721 rows x 30 columns
Note: Although December 1962 returns are not needed, it makes dataframe handling a lot easier to take the same dates as we need for size and value
```

Import size and transform to log values
size_30 = pd.read_csv("30_Industry_Portfolios.csv", header = 3691)
size_30 = size_30.set_index("Unnamed: 0")
size_30.index.names = ['Date']
size_30 = size_30.iloc(437:1158,:]
size_30 = size_30.astype(float)
size_30 = np.log(size_30)
size_30 = np.log(size_30)

Average Size of firm in industry portfolio, scaled by log - think why

```
Txtls
   Date
 196212 5.373657
                 4.782479
                           5.706911 4.473009 3.936911 5.183748 3.843316 5.869410 6.359712 3.827336 ... 7.956056 4.202451 6.400407 5.711685 4.741448 4.233817 5.335083 3.505257 5.102424 3.958907
 196301 5.399067 4.803283 5.683716 4.491889 3.895284 5.190064 3.834494 5.876222 6.369850 3.832114 ... 7.965466 4.210793 6.391515 5.695750 4.750309 4.231930 5.334794 3.477541 5.136622 3.977249
                 4.841506 5.700778 4.574814 3.958143 5.239787 3.894673 5.930254 6.413311 3.912023 ... 8.005944 4.224203 6.451039 5.773526 4.805905 4.265071 5.371475 3.550192 5.172187 4.058717
 196302 5.462433
                                                                                           3.915417 ... 7.988390 4.222738
 196304 5.445918 4.826953 5.729450 4.509650 3.976124 5.243016 3.869533 5.911555 6.403044 3.920785 ... 8.006281 4.254903 6.442142 5.774955 4.847803 4.246636 5.394763 3.442979 5.186100 4.108247
20208 9.542305 10.190271 11.251582 8.477727 7.557086 9.543585 9.073267 8.447665 8.929250 7.496797 ... 10.008025 9.553296 10.118465 9.078451 9.459722 8.562927 9.97525 9.379798 9.122968 8.233466
202209 9.524296 10.170932 11.250332 8.447569 7.504678 9.521061 9.010989 8.396541 8.923708 7.366673 ... 9.995447 9.511141 10.062708 8.993189 9.456975 8.545569 9.938609 9.379517 9.098566 8.199266
                 10.111905 11.120821 8.382978 7.357339 9.430816 8.816569 8.379482 8.802312 7.197024 ... 9.845059 9.397765
                                                                                                                           9.943381 8.847810 9.302691 8.445366 9.864228 9.314623 9.023036
 202211 9.533208 10.202569 11.234863 8.507512 7.439871 9.481278 8.918408 8.466155 8.887620 7.277386 ... 9.942973 9.421201 10.032598 8.943210 9.367352 8.572092 9.881769 9.411904 9.145231 8.261116
 202212 9.573389 10.313951 11.289090 8.580925 7.585657 9.570899 9.109504 8.520368 8.984852 7.345165 ... 9.984711 9.484863 10.083345 9.005188 9.463093 8.619932 9.916244 9.463617 9.192585 8.445280
721 rows × 30 columns
```

ff3['Mkt-RF'].loc["201801":"202212"].astype(float).mean()*12

Out[153... 9.02

Now take aggregate Book to Market ratio of each industry

```
value_30 = pd.read_csv("30_Industry_Portfolios.csv", header = 4854)
value_30 = value_30.set_index("Unnamed: 0")  #note - only reported on an annual frequency - must be addressed
value_30.index.names = ['bate']
value_30 = value_30.iloc[36:97,:]
value_30 = value_30.astype(float)
value_30
```

Food Beer Smoke Games Books Hshld Clths Hlth Chems Txtls ... Telcm Servs BusEq Paper Trans Whlsl Rtail Meals Fin Other Date 0.48 1.56 ... 1962 0.52 1.01 0.50 0.68 0.51 0.45 0.80 0.28 0.62 0.45 0.20 0.61 2.49 0.78 0.55 1.02 0.71 0.82 0.64 0.27 0.47 0.27 0.74 0.56 1963 0.81 0.56 0.51 0.39 0.26 0.38 1.25 0.53 0.70 0.54 1.70 0.74 0.49 0.70 1.01 0.47 0.53 0.52 0.49 0.35 0.24 0.68 0.26 0.33 0.70 0.23 1.29 0.70 0.66 0.59 1965 0.44 0.69 0.57 0.49 0.34 0.22 0.58 0.23 0.34 0.82 0.54 0.63 0.26 0.55 1.43 0.72 0.39 0.64 0.67 0.81 0.67 0.53 0.22 2018 0.33 0.14 0.14 0.14 0.59 0.24 0.16 0.19 0.42 0.43 ... 0.43 0.16 0.22 0.21 0.32 0.16 0.14 0.55 0.28 0.39 0.48 2019 0.31 0.14 0.17 0.15 0.72 0.18 0.16 0.19 0.61 0.44 0.15 0.19 0.27 0.28 0.33 0.16 0.10 0.56 0.31 2020 0.36 0.17 0.09 0.15 0.80 0.14 0.16 0.19 0.42 0.98 ... 0.50 0.15 0.15 0.31 0.31 0.33 0.14 0.24 0.70 0.44 0.57 ... 0.10 0.16 0.39 0.11 0.11 0.49 2022 0.30 0.15 0.26 0.29 0.69 0.14 0.20 0.22 0.38 0.87 ... 0.55 0.17 0.15 0.28 0.24 0.27 0.16 0.17 0.59 0.40

61 rows × 30 columns

Assume year-end Book to Market ratio is recorded in December, thus, January to November of same year take the previous year's value

Inter annual to monthly frequency value_30.values,12, axis=0)) # duplicated by 12 to run from December-December value_30 m.eolumns = value_30.columns = match column names of industry portfolios value_30_m = value_30_m.iloc[:-11,:] #only need December value_10_mindex = size_30.index #match dates

value 30 m

)	Food	Beer	Smoke	Games	Books	Hshld	Clths	Hith	Chems	Txtls	 Telcm	Servs	BusEq	Paper	Trans	Whisi	Rtail	Meals	Fin	Other
Date	,																			
196212	0.52	1.01	0.50	0.68	0.51	0.45	0.8	0.28	0.48	1.56	 0.62	0.45	0.20	0.61	2.49	0.78	0.55	1.02	0.71	0.82
19630	0.52	1.01	0.50	0.68	0.51	0.45	0.8	0.28	0.48	1.56	 0.62	0.45	0.20	0.61	2.49	0.78	0.55	1.02	0.71	0.82
196302	0.52	1.01	0.50	0.68	0.51	0.45	0.8	0.28	0.48	1.56	 0.62	0.45	0.20	0.61	2.49	0.78	0.55	1.02	0.71	0.82
196303	0.52	1.01	0.50	0.68	0.51	0.45	0.8	0.28	0.48	1.56	 0.62	0.45	0.20	0.61	2.49	0.78	0.55	1.02	0.71	0.82
196304	0.52	1.01	0.50	0.68	0.51	0.45	0.8	0.28	0.48	1.56	 0.62	0.45	0.20	0.61	2.49	0.78	0.55	1.02	0.71	0.82
202208	0.30	0.13	0.03	0.10	0.39	0.12	0.1	0.16	0.29	0.57	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
202209	0.30	0.13	0.03	0.10	0.39	0.12	0.1	0.16	0.29	0.57	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
202210	0.30	0.13	0.03	0.10	0.39	0.12	0.1	0.16	0.29	0.57	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
20221	0.30	0.13	0.03	0.10	0.39	0.12	0.1	0.16	0.29	0.57	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
202212	0.30	0.15	0.26	0.29	0.69	0.14	0.2	0.22	0.38	0.87	 0.55	0.17	0.15	0.28	0.24	0.27	0.16	0.17	0.59	0.40

721 rows × 30 columns

Data now cleaned and proccessed!

fama macbeth data = pd.concat([excess returns, size 30, value 30 m],axis=1).reindex(excess returns.index) fama_macbeth_data

1		Food	Beer	Smoke	Games	Books	Hshld	Clths	Hlth	Chems	Txtls	 Telcm	Servs	BusEq	Paper	Trans	Whisi	Rtail	Meals	Fin	Other
	Date																				
	196212	2.58	2.23	-2.40	1.83	-3.88	0.57	-0.74	0.66	0.91	0.51	 0.62	0.45	0.20	0.61	2.49	0.78	0.55	1.02	0.71	0.82
	196301	6.39	3.78	1.47	8.44	6.30	5.21	6.21	5.40	4.21	8.57	 0.62	0.45	0.20	0.61	2.49	0.78	0.55	1.02	0.71	0.82
	196302	-2.96	-5.28	-3.59	-6.88	-2.17	-3.48	-3.61	-2.81	-4.08	0.42	 0.62	0.45	0.20	0.61	2.49	0.78	0.55	1.02	0.71	0.82
	196303	1.50	4.38	7.51	0.89	-1.10	3.77	1.20	0.95	3.42	0.60	 0.62	0.45	0.20	0.61	2.49	0.78	0.55	1.02	0.71	0.82
	196304	0.85	0.41	6.05	-1.05	7.70	5.77	1.55	7.37	4.19	7.44	 0.62	0.45	0.20	0.61	2.49	0.78	0.55	1.02	0.71	0.82
	202208	-1.79	-2.06	-0.31	-3.14	-5.16	-2.35	-6.20	-5.26	-1.57	-12.39	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
	202209	-7.98	-5.40	-10.74	-6.43	-13.61	-10.79	-17.55	-2.10	-11.44	-15.72	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
	202210	9.64	9.26	11.85	13.13	8.59	5.45	10.49	8.61	8.71	8.14	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
	202211	4.19	2.94	5.28	7.35	15.53	9.15	17.05	5.17	10.24	6.72	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
	202212	-2.56	-4.48	1.54	-6.18	-7.96	0.44	-0.66	-2.06	-6.60	-1.22	 0.55	0.17	0.15	0.28	0.24	0.27	0.16	0.17	0.59	0.40

721 rows × 90 columns

$$r_{i,t+1} - r_{f,t+1} = \delta_t + \lambda_{1,t} LogSize_{it} + \lambda_{2,t} BM_{it} + \epsilon_{it}$$

We repeat this regression for every month, using our 30 industry portfolios as the 'cross-section'

If we wanted to include market beta?

If we wanted to include the market factor, we would first need to measure factor exposures first, then use those as our regressors (instead of the characteristics themselves, betas known as 'generated regressors'). This is almost like a 'step zero' in the Fama Macbeth regression. We would need to first estimate the beta of each stock to the market running some form of a time series regression of stock returns on market returns to then infer the size of the factor premium at the end of the analysis (could naively let it be constant over the sample, or calculate on a rolling basis say every month based on 5 years prior as in FF 92). Can you remember what pre and post ranking hetas in FF 92 referred to and what was the reasoning hebing them?

Important: Measurement error when estimating beta is very important in determining the bias of our overall results (for example correlation with size and insufficient separation between the two leading to Error In Variables bias) .Shanken 1992; Kim 1995; Chen, Lee, and Lee 2015 aim to rectify this.

Step 1: Run cross-sectional regressions over sample period

```
#Here, we run the cross-section regression over every month in our simulation period.

#This is the list of values where we store our regression values every month

delta = {|
    lambda_1 = {|
    lambda_2 = {|
    lambda_2 = {|
    lambda_1 = 6|
    lambda_2 = {|
    lambda_2 = {|
    lambda_2 = {|
    lambda_1 = 6|
    lambda_2 = {|
    lambda_2 = {|
    lambda_1 = 6|
    lambda_2 = {|
    lambda_1 = 6|
    lambda_2 = {|
    lambda_2 = 6|
    lambda_2 = 6|
    lambda_2 = 6|
    lambda_1 = 6|
    lambda_2 = 6|
    lambda_1 = 6
```

Behind the scene in each iteration of the for loops...this is the first month for example

```
returns_df = pd.DataFrame(fama_macbeth_data.iloc[1,:30])  # extracts excess returns t+1 for all industries
returns_df = returns_df.reset_index()  # index reset to concat dataframe

log_size = np.array(fama_macbeth_data.iloc[0,30:60])  # extracts log Size t for all industries
log_size_df = pd.DataFrame(log_size, columns=["Log size"])

bm = np.array(fama_macbeth_data.iloc[0,60:90])  # extracts BM t for all industries
bm_df = pd.DataFrame(bm, columns = ("BM"))

factors = pd.concat([log_size_df,bm_df],axis=1)  # dataframe transformed to desired form for OLS regression

model = sm.OLS(returns_df.iloc[:,1],statsmodels.tools.add_constant(factors[["Log size", "BM"]]))  #Constant assumed
results = model.fit()  # assumes IID
print(results.summary())
```

			=====	======			
Dep. Variable		10	6301	D_ca	uared:		0.139
Model:	•	1,	OLS		R-squared:		0.075
					ntistic:		
Method:		Least Squ					2.182
Date:					(F-statistic)	:	0.132
Time:		12:4	3:45	Log-	Likelihood:		-65.844
No. Observati	ons:		30	AIC:			137.7
Df Residuals:			27	BIC:			141.9
Df Model:			2				
Covariance Ty	me •	nonro	hue+				
covariance ry	pe.	1101110					
							0.0751
	coef				P> t	[0.025	0.975]
					0.005		
Log size	-0.6696	0.437	-	1.532	0.137	-1.567	0.227
BM	0.8481	1.070		0.793	0.435	-1.347	3.043
Omnibus:		1	.240	Durb	in-Watson:		2.483
Prob(Omnibus)	:	0	.538	Jarq	ie-Bera (JB):		1.094
Skew:		-0	.436	Prob	(JB):		0.579
Kurtosis:		2	.659	Cond	. No.		35.8

OLS Regression Results

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified

We are predicting January 1963 returns using book to market and log size from December 1962

And repeat this regression for every month in sample (720 times)

A look at estimated coefficients over time - note scale change of orange due to log transformation

```
plt.figure(figsize=(12,8))
plt.plot(delta,label='delta')
plt.plot(lambda_1,label='lambda 1 - log size')
plt.plot(lambda_2,label='lambda 2 - book-to-market')
plt.ylabel("Value of coefficient estimate")
plt.xlabel("Month number")
plt.legend();
```


Step 2 - Take average of all estimated cross-sectional coefficients calculated in step 1

```
delta_fama_macbeth = np.mean(delta)
lambda_1_fama_macbeth = np.mean(lambda_1)
lambda_2_fama_macbeth = np.mean(lambda_2)
```

Aside on statistical significance and standard error

We need to regress the coefficient estimates on a constant over time, allowing us to take Newey West standard errors - lag number of 6 is common for monthly frequency data. This aims to give us more robust test statistics.

```
'HAC' = heteroskedasticity-autocorrelation robust covariance
```

Coefficient	Coefficient estimate	Newey-West StdErr	P-Value
Delta	0.739095	0.562507	0.18887
Lambda 1 - Monthly return on log size	-0.00741059	0.0606843	0.902806
Lambda 2 - Monthly return on book/market	-0.247442	0.272258	0.363429

Re run on different sub sample of data

```
In [97]:
    fama_macbeth_data_1985 = fama_macbeth_data.loc["198501":,]
    fama_macbeth_data_1985
```

:		Food	Beer	Smoke	Games	Books	Hshld	Clths	Hith	Chems	Txtls	 Telcm	Servs	BusEq	Paper	Trans	Whisi	Rtail	Meals	Fin	Other
	Date																				
	198501	0.12	4.61	1.70	13.20	10.90	6.85	11.89	7.59	6.44	7.84	 1.18	0.40	0.49	0.85	1.02	0.57	0.62	0.50	1.16	0.70
	198502	5.51	0.85	9.25	2.33	1.30	0.11	1.20	3.03	1.66	2.71	 1.18	0.40	0.49	0.85	1.02	0.57	0.62	0.50	1.16	0.70
	198503	6.35	3.66	2.52	0.22	3.69	-3.64	-0.05	2.38	-2.81	-4.34	 1.18	0.40	0.49	0.85	1.02	0.57	0.62	0.50	1.16	0.70
	198504	-2.50	0.75	-8.90	-1.52	-0.37	-1.78	-0.42	-2.42	0.07	-3.54	 1.18	0.40	0.49	0.85	1.02	0.57	0.62	0.50	1.16	0.70
	198505	10.88	7.79	-0.65	5.34	6.46	4.00	8.99	8.88	7.13	2.95	 1.18	0.40	0.49	0.85	1.02	0.57	0.62	0.50	1.16	0.70
	202208	-1.79	-2.06	-0.31	-3.14	-5.16	-2.35	-6.20	-5.26	-1.57	-12.39	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
	202209	-7.98	-5.40	-10.74	-6.43	-13.61	-10.79	-17.55	-2.10	-11.44	-15.72	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
	202210	9.64	9.26	11.85	13.13	8.59	5.45	10.49	8.61	8.71	8.14	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
	202211	4.19	2.94	5.28	7.35	15.53	9.15	17.05	5.17	10.24	6.72	 0.39	0.11	0.11	0.20	0.16	0.22	0.12	0.11	0.49	0.32
	202212	-2.56	-4.48	1.54	-6.18	-7.96	0.44	-0.66	-2.06	-6.60	-1.22	 0.55	0.17	0.15	0.28	0.24	0.27	0.16	0.17	0.59	0.40

```
456 rows × 90 columns
```

```
# Here, we run the cross-section regression over every month in our simulation period.
#This is the list of values where we store our regression values every month
delta_1985 = []
lambda_1_1985 = []
lambda_2_1985 = []

for i in range(len(fama_macbeth_data_1985)-1):
    returns_df = pd.DataFrame(fama_macbeth_data_1985.iloc[i+1,:30]) # extracts excess returns t+1 for all industries
    returns_df = returns_df.reset_index() # index reset to concat dataframe

log_size = np.array(fama_macbeth_data_1985.iloc(i,30:60]) # extracts log_Size t for all industries
    log_size_df = pd.DataFrame(log_size, columns=("Log_size"))

bm = np.array(fama_macbeth_data_1985.iloc(i,60:90]) # extracts BM t for all industries
    bm_df = pd.DataFrame(bm, columns = ["BM"])

factors = pd.concat([log_size_df,bm_df],axis=1) # dataframe transformed to desired form for OLS regression

model = sm.OLS(returns_df.iloc(:,1),statsmodels.tools.tools.add_constant(factors(["Log size", "BM"]])) #Constant assumed
    results = model.fit() # assumes IID

# results saved for every month
    delta_1985.append(results.params[1))
    lambda_2_1985.append(results.params[1))
    lambda_2_1985.append(results.params[1))
```

```
In [99]:
    delta_fama_macbeth_1985 = np.mean(delta_1985)
    lambda_1_fama_macbeth_1985 = np.mean(lambda_1_1985)
    lambda_2_fama_macbeth_1985 = np.mean(lambda_2_1985)

In [132...

    model_1_1985 = sm.OLS(lambda_1_1985, np.ones((455,1))) # Regressing on a constant 1
    results_1_1985 = model_1_1985.fit(cov_type = "HAC", cov_kwds=("maxlags":6;) # Newey West standard errors
    model_2_1985 = sm.OLS(lambda_2_1985,np.ones((455,1))) # Regressing on a constant 1
    results_2_1985 = model_2_1985.fit(cov_type = "HAC", cov_kwds=("maxlags":6;) # Newey West standard errors
    model_3_1985 = sm.OLS(delta_1985,np.ones((455,1))) # Regressing on a constant 1
    results_3_1985 = sm.OLS(delta_1985,np.ones((455,1))) # Regressing on a constant 1
    results_3_1985 = sm.OLS(delta_1985,np.ones((455,1))) # Regressing on a constant 1
    results_3_1985 = sm.OLS(delta_1985,np.ones((455,1))) # Regressing on a constant 1
    results_3_1985 = sm.OLS(delta_1985,np.ones((455,1))) # Regressing on a constant 1
    results_3_1985 = sm.OLS(delta_1985),np.ones((455,1)) # Regressing on a constant 1
    results_3_1985 = sm.OLS(delta_1985),np.ones((455,1)) # Regressing on a constant 1
    results_3_1985 = sm.OLS(delta_1985),np.ones((455,1)) # Regressing on a constant 1
    results_3_1985 = sm.OLS(delta_1985),np.ones((455,1)) # Regressing on a constant 1
    results_3_1985 = sm.OLS(lambda_2_1985,pp.ones((455,1)) # Regressing on a constant 1
    results_3_1985 = sm.OLS(lambda_2_1985,pp.ones((455,1)) # Regressing on a constant 1
    results_3_1985 = sm.OLS(lambda_2_1985,pp.ones((455,1)) # Regressing on a constant 1
    results_3_1985 = sm.OLS(lambda_2_1985,pp.ones((455,1)) # Regressing on a constant 1
    results_3_1985 = sm.OLS(lambda_2_1985,pp.ones((455,1)) # Regressing on a constant 1
    results_3_1985 = sm.OLS(lambda_2_1985,pp.ones((455,1)) # Regressing on a constant 1
    results_3_1985 = sm.OLS(lambda_2_1985,pp.ones((455,1)) # Regressing on a constant 1
    results_3_1985 = sm.OLS(lambda_2_1985,pp.ones((455,1)) # Regressing on a
```

In [133... print(tabulate(table_1985, headers="firstrow", tablefmt="fancy_grid"))

Coefficient	Coefficient estimate	Newey-West StdErr	P-Value
Delta	0.820353	0.707583	0.246304
Lambda 1 - Monthly return on log size	0.0275949	0.0695384	0.691493
Lambda 2 - Monthly return on book/market	-0.482259	0.408329	0.237581