II Među-ispit iz Interaktivne računalne grafike

1. Zadana je dužina točkama u radnom prostoru V₁=(100 0 20) t=0 i V₂=(500 0 50) t=1. Odrediti perspektivno ispravnu z-koordinatu točke čija je vrijednost parametra u=0,8 u prostoru projekcije. Centar projekcije je u ishodištu, udaljenost do ravnine projekcije je H=20.

- a) 37,46
- b) 31,25
- c) 38,46
- d) 44
- e) ništa od navedenog

2. Zadane su početna i završna točka. V₀=(10 20 10), V₂=(5 30 10), Bezierove krivulje u radnom prostoru i derivacija u završnoj točki V₂'=(5 10 0). Odrediti kvadratnu aproksimacijsku Bezier-ovu krivulju upotrebom Bernstein-ovih težinskih funkcija. Odrediti točku krivulje za iznos parametra t=0.3.

$$b_{in}(t) = \frac{n!}{i!(n-i)!} t^{i} (1-t)^{n-i}$$

- a) P(6,4 22 10) b) P(7,4 22 10)
- c) P(6,4 23,5 15)
- d) P(6,4 23 10)
- e) ništa od navedenog

3. Poligonalni objekt je zadan strukturom krilatog brida. Koji su susjedni bridovi vrhu V₂?

Tablica vrhova					
V1	хух	e1			
V2	хух	e1			
V3	хух	e3			
V4	ХУZ	e3			

Tablica bridova								
e1	V2	V1	P4	P1	e6	e2	e4	e5
e2	V2	V3	P1	P3	e1	e6	e5	e3
e3	V3	V4	P2	P3	e5	e2	e4	e6
e4	V4	V1	P2	P4	e3	e6	e5	e1
e5	V3	V1	P1	P2	e2	e3	e1	e4
e6	V4	V2	P4	P3	e4	e3	e1	e2

Tablica poligona			
P1	e1		
P2	e3		
P3	e3		
P4	e1		

- a) e1, e2, e3
- b) e1, e4, e5
- c) e1, e3, e6
- d) e1, e2, e6
- e) ništa od navedenog

4. Zadan je pravac p točkama $V_0=(10\ 10\ 10)$ i $V_1=(50\ 40\ 20)$. Odrediti rotiranu točku T' koju dobijemo rotacijom točke T= (0 10 10) oko pravca p za +30° (+ znači suprotno smjeru kazaljke na satu) gledano iz V_1 u V_0 .

- a) T'(1.9 6 14.3)
- b) T'(0,5 8,4 12,7) c) T'(0,5 9,4 9,1) d) T'(1,9 9,4 4,1)
- e) ništa od navedenog

5. Napisati jednadžbu u parametarskom obliku za bilinearnu interpolaciju kroz 4 točke. Odrediti parametarski oblik bilinearne interpolacije V(u,v) ako su poznate vrijednosti u točkama V(0,0) = 2, V(0,1) = 3, V(1,0) = 5, V(1,1) = 4. Kolika je vrijednost za V(1.5, 1.5)?

- a) 4,5
- b) 3
- c) 5
- d) 3,5
- e) ništa od navedenog

6. Kronološki poredati sljedeće aktivnosti koje se pojavljuju u stvaranju i prikazu jednog okvira 3D scene (nanižite redne brojeve slijeva nadesno): 1. pozivanje OpenGL funkcija iz procesa operacijskog sustava; 2. preslikavanje teksture na poligone 3. pretvorba informacije iz slikovne prikazne memorije u analogni oblik; **4.** FSAA (engl. full screen anti aliasing); **5.** projekcija 3D prostora na 2D ravninu.

- a) 1 5 4 3 2
- b) 1 2 5 4 3
- c) 5 2 4 1 3
- d) 1 5 2 4 3
- e) ništa od navedenog

ZEMRIS 30.4.2008.

7. Neka je očište (kamera) u točki O = (0, 0, 0) radnog 3D prostora, os kamere usmjerena prema pozitivnom dijelu z-osi, a projekcijska ravnina kamere z = 4. Izračunati xy koordinate točke koja se dobije perspektivnom projekcijom točke T = (8, 3, 7).

- a) (7/32, 7/12)
- b) (12/7, 32/7)
- c) (32/7, 12/7)
- d) (7/32, 12/7)
- e) ništa od navedenog
- 8. Odredite kakav je odnos točaka T_1 =(1 3 7), T_2 =(-1 4 5) i trokuta zadanog vrhovima: V_1 =(-3 5 3), V_2 =(-2 6 3) i V_3 =(8 -5 17).
 - a) T₁ nije u ravnini trokuta, T₂ je unutar trokuta, u ravnini trokuta
 - b) T₁ je izvan trokuta, u ravnini trokuta, T₂ nije u ravnini trokuta
 - c) T₁ je izvan trokuta, u ravnini trokuta, T₂ je unutar trokuta, u ravnini trokuta
 - d) T₁ je unutar trokuta, u ravnini trokuta, T₂ nije u ravnini trokuta
 - e) ništa od navedenog
- 9. Napraviti podjelu prostora Warnock-ovim postupkom (quadtree) za poligone prikazane na slici. Dubina rekurzije je 4. Nacrtati sliku i označiti dobivene prozore sa
- (1) poligon je izvan prozora
- (2) poligon siječe prozor ili je u prozoru
- (3) poligon prekriva prozor
- (4) više poligona prekriva prozor

Površina označena brojem 3 je:

- a) 21
- b) 35
- c) 29
- d) 47
- e) ništa od navedenog


```
GLint faces [6][4] = {
 {0, 1, 2, 3}, {3, 2, 6, 7}, {7, 6, 5, 4},
 {4, 5, 1, 0}, {5, 6, 2, 1}, {7, 4, 0, 3};
GLfloat v[8][3] = {
 \{0.0, 0.0, 0.0\}, \{1.0, 0.0, 0.0\}, \{1.0, 1.0, 0.0\}, \{0.0, 1.0, 0.0\},
 \{0.0, 0.0, 1.0\}, \{1.0, 0.0, 1.0\}, \{1.0, 1.0, 1.0\}, \{0.0, 1.0, 1.0\}
};
void display (void)
 int i;
 for (i = 0; i < 3; i++) {
  glBegin(GL_QUADS);
  glVertex3fv(&v[faces[i][0]][0]);
  glVertex3fv(&v[faces[i][1]][0]);
  glVertex3fv(&v[faces[i][2]][0]);
  glVertex3fv(&v[faces[i][3]][0]);
  glEnd();
 }
}
```

- 10. Što će biti nacrtano na ekranu, izvršavanjem slijedećeg programskog odsječka
- a) 3 kocke
- b) 3 kvadrata koji imaju zajednički vrh
- c) 3 odvojena kvadrata
- d) 3 povezana kvadrata
- e) ništa od navedenog