Cheat Sheet

Metric Spaces

Definition 1 (Metric Space). A metric space is a set X equipped with a function d such that:

- 1. $d(x,y) = 0 \iff x = y \text{ (identity of indiscernibles)},$
- 2. d(x,y) = d(y,x) (symmetry),
- 3. $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

Topology

Definition 2. A subset $U \subseteq X$ of a metric space (X,d) is **open** if for every $x \in U$, there exists $\varepsilon > 0$ such that $B(x,\varepsilon) \subseteq U$, where $B(x,\varepsilon)$ denotes the open ball centered at x with radius ε .

Definition 3. A subset $F \subseteq X$ of a metric space (X,d) is **closed** if its complement $X \setminus F$ is open.

Proposition 1. The intersection of any collection of closed sets is closed. The union of any collection of open sets is open.

Proposition 2. A subset $F \subseteq X$ of a metric space (X, d) is closed if and only if it contains all its limit points.

Definition 4 (Limit Point). A point $x \in X$ is a **limit point** of a subset $A \subseteq X$ if every open ball $B(x,\varepsilon)$ centered at x with radius $\varepsilon > 0$ intersects A in some point other than x itself.

Connectedness

Definition 5 (Connected/Disconnected Metric Space). We say that a metric space (X, d) is connected if the only subsets $E \subseteq X$ that are simultaneously open and closed are E = X and $E = \emptyset$. A metric space that is not connected is called disconnected.

Lemma 1. A metric space (X,d) is disconnected if and only if there are two non-empty, disjoint, open subsets $A, B \subseteq X$ such that $X = A \cup B$.

Definition 6 (Connected Subset). A subset $E \subseteq X$ of a metric space (X, d) is connected if (E, d_E) is a connected metric space, where d_E is the restriction of d to $E \times E$.

Proposition 3. A subset $E \subseteq X$ of a metric space (X,d) is disconnected if and only if $E \subseteq U \cup V$ for two open subsets $U, V \subseteq X$ such that $U \cap E \neq \emptyset$, $V \cap E \neq \emptyset$, and $(U \cap V) \cap E = \emptyset$.

Proposition 4. An open subset $E \subseteq X$ of a metric space (X, d) is disconnected if and only if there are two non-empty, disjoint, open subsets $A, B \subseteq X$ such that $E = A \cup B$.

Theorem 1. The interval $(0,1) \subseteq \mathbb{R}$ is connected.

Theorem 2. Suppose that $f: X \to Y$ is a continuous map between metric spaces. If $E \subseteq X$ is connected, then $f(E) \subseteq Y$ is connected.

Definition 7 (Property P). We say that a set $I \subseteq \mathbb{R}$ has property P if whenever $a \le z \le b$ with $a, b \in I$, then $z \in I$.

Theorem 3. A non-empty subset $I \subseteq \mathbb{R}$ is connected if and only if it is an interval.

Corollary 1. Let (X,d) be a connected metric space and $f: X \to \mathbb{R}$ be a continuous function. Then the image of f is an interval $I \subseteq \mathbb{R}$.

Theorem 4 (Bolzano's Theorem). Suppose that $f:[a,b] \to \mathbb{R}$ is a continuous function. If f(a) < c and f(b) > c, then there is some $x \in (a,b)$ such that f(x) = c.

Definition 8 (Path Connectedness). Let (X,d) be a metric space. A path connecting two points x and $y \in X$ is a continuous function $\gamma : [0,1] \to X$ such that $\gamma(0) = x$ and $\gamma(1) = y$. We say that (X,d) is path connected if every pair of points of X is connected by a path.

Theorem 5. A path connected metric space is connected.

Compactness

Definition 9 (Compact Metric Space). A metric space (X,d) is called compact if given any collection of open sets $\{U_{\alpha} \subseteq X : \alpha \in I\}$ such that:

$$X = \bigcup_{\alpha \in I} U_{\alpha},$$

one can find finitely many indices $\alpha_1, \ldots, \alpha_n \in I$ such that:

$$X = U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}.$$

Proof. The metric space $X = \mathbb{R}$ is not compact. To see this, consider the open cover $\{U_{\alpha} : \alpha \in [1, \infty)\}$ where $U_{\alpha} = (-\alpha, \alpha)$. For any finite subcollection $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$, the union is (-M, M) with $M = \max\{\alpha_1, \ldots, \alpha_n\}$, which does not cover \mathbb{R} entirely.

Definition 10 (Compact Subset). A subset $E \subseteq X$ of a metric space (X, d) is compact if for every open cover $\{U_{\alpha} \subseteq X : \alpha \in I\}$ such that:

$$E\subseteq \bigcup_{\alpha\in I}U_{\alpha},$$

there exists a finite subcover $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ such that:

$$E \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$$
.

Lemma 2. A subset $E \subseteq X$ of a metric space (X,d) is compact if and only if the metric space (E,d_E) is compact, where d_E is the restriction of d to $E \times E$.

Theorem 6. The closed interval $[0,1] \subseteq \mathbb{R}$ is compact.

Proof. Let $\{U_{\alpha} \subseteq \mathbb{R} : \alpha \in I\}$ be an open cover of [0,1]. Assume, by contradiction, that no finite subcover exists. Construct a nested sequence of intervals $[0,1] = I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$, where each $I_n = [a_n,b_n]$ cannot be covered by finitely many sets in the open cover. The length of I_n decreases geometrically, and the intersection of all I_n contains exactly one point x. This x must belong to some U_{α} , contradicting the assumption that no finite subcover exists. \square

Theorem 7 (Compactness and Continuity). If $f: X \to Y$ is a continuous function and $K \subseteq X$ is compact, then $f(K) \subseteq Y$ is compact.

Corollary 2. Any finite, closed interval $[a, b] \subseteq \mathbb{R}$ is compact.

Lemma 3. A compact subset K of a metric space X is closed.

Theorem 8 (Weierstrass Theorem). A continuous function $f:[a,b] \to \mathbb{R}$ attains its maximum and minimum values. That is, there exist $x_m, x_M \in [a,b]$ such that:

$$f(x_m) = \min_{x \in [a,b]} f(x), \quad f(x_M) = \max_{x \in [a,b]} f(x).$$

Theorem 9 (Heine-Borel Theorem). A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Definition 11 (Sequential Compactness). A metric space (X, d) is sequentially compact if every sequence of points in X has a convergent subsequence converging to a point in X.

Corollary 3 (Sequential Compactness). A metric space (X, d) is compact if and only if it is sequentially compact.

Completeness

Definition 12 (Cauchy Sequence). A sequence $\{x_n\}$ in a metric space (X, d) is a **Cauchy sequence** if for every $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ such that:

$$d(x_n, x_m) < \varepsilon \quad \text{for all } n, m \ge N.$$

Definition 13 (Complete Metric Space). A metric space (X,d) is called **complete** if every Cauchy sequence in X converges to a point in X.

Lemma 4. Any converging sequence in a metric space is a Cauchy sequence.

Lemma 5. A Cauchy sequence $\{x_n\}$ in a metric space has bounded diameter. Specifically, there exists a constant C such that:

$$\sup_{n,m} d(x_n, x_m) \le C.$$

Lemma 6. If a Cauchy sequence $\{x_n\}$ in a metric space has a converging subsequence $\{x_{n_k}\}$, then $\{x_n\}$ converges to the same limit.

Theorem 10. A compact metric space is complete.

Theorem 11. The space \mathbb{R}^n with the standard Euclidean metric is a complete metric space.

Theorem 12. The space ℓ^2 (the space of square-summable sequences) is a complete metric space.

Sequences of Functions

Definition 14 (Pointwise Convergence). A sequence of functions $\{f_n : I \to \mathbb{R}\}$ is said to converge **pointwise** to a function $f : I \to \mathbb{R}$ on a set $E \subseteq I$ if for every $x \in E$:

$$\lim_{n \to \infty} f_n(x) = f(x).$$

Definition 15 (Uniform Convergence). A sequence of functions $\{f_n : I \to \mathbb{R}\}$ is said to converge **uniformly** to a function $f : I \to \mathbb{R}$ on a set $E \subseteq I$ if for every $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that:

$$|f_n(x) - f(x)| < \varepsilon$$
 for all $n \ge N$ and $x \in E$.

Proposition 5. A sequence $\{f_n\}$ of functions in $B(E,\mathbb{R})$ converges in the metric:

$$d(f,g) = \sup_{x \in E} |f(x) - g(x)|$$

if and only if it converges uniformly on E.

Theorem 13. The metric space $B(E,\mathbb{R})$ (the space of bounded functions on E) is complete under the uniform metric.

Continuity

Theorem 14 (Intermediate Value Theorem (IVT)). Let $f:[a,b] \to \mathbb{R}$ be a continuous function. If $f(a) \neq f(b)$ and k is any value between f(a) and f(b), then there exists some $c \in (a,b)$ such that f(c) = k.

Theorem 15 (Extreme Value Theorem (Weierstrass)). Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then f attains both a maximum and a minimum value on [a,b]. That is, there exist $x_m, x_M \in [a,b]$ such that

$$f(x_m) \le f(x) \le f(x_M)$$
 for all $x \in [a, b]$.

Definition 16 (Continuity at a Point). Let $f : \mathbb{R} \to \mathbb{R}$ be a function. We say that f is **continuous** at a point $c \in \mathbb{R}$ if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that:

$$|f(x) - f(c)| < \varepsilon$$
 whenever $|x - c| < \delta$.

In other words, for every $\varepsilon > 0$, there is a $\delta > 0$ such that if x is within δ of c, then f(x) is within ε of f(c).

Definition 17 (Continuity on an Interval). A function $f : [a,b] \to \mathbb{R}$ is said to be continuous on the interval [a,b] if it is continuous at every point in the interval.

Uniform Continuity

Definition 18 (Uniform Continuity). A function $f:[a,b] \to \mathbb{R}$ is said to be uniformly continuous on [a,b] if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that:

$$|f(x) - f(y)| < \varepsilon$$
 whenever $|x - y| < \delta$ for all $x, y \in [a, b]$.

In other words, the choice of δ does not depend on the point x, but is valid for all $x, y \in [a, b]$.

Definition 19 (Lipschitz Continuity). A function $f: X \to Y$, where X and Y are metric spaces, is said to be **Lipschitz continuous** if there exists a constant $L \ge 0$ such that for all $x, y \in X$, we have:

$$d_Y(f(x), f(y)) \le L \cdot d_X(x, y),$$

where d_X and d_Y are the metrics on X and Y, respectively. The smallest such constant L is called the **Lipschitz constant** of f.

Differentiation

Definition 20 (Existence of Derivative). Let f be a real-valued function defined on an open interval containing a point a. We say f is differentiable at a if

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists and is finite.

$$f'(y) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Theorem 16. If f is differentiable at a point a, then f is continuous at a.

Theorem 17. Let $f: I \to \mathbb{R}$, where I is an open interval. If $x_0 \in I$ is a point of local minimum or maximum of f(x), and f is differentiable at x_0 , then

$$f'(x_0) = 0.$$

Theorem 18 (Rolle's Theorem). Let $f : [a,b] \to \mathbb{R}$ be a continuous function on the closed interval [a,b], differentiable on the open interval (a,b), and suppose f(a) = f(b). Then there exists at least one point $c \in (a,b)$ such that

$$f'(c) = 0.$$

Theorem 19 (Mean Value Theorem). Let $f:[a,b] \to \mathbb{R}$ be a continuous function on the closed interval [a,b] and differentiable on the open interval (a,b). Then there exists a point $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Corollary 4. Let f be a differentiable function on an interval (a,b). Then

- (i) f is strictly increasing if f'(x) > 0 for all $x \in (a, b)$;
- (ii) f is strictly decreasing if f'(x) < 0 for all $x \in (a, b)$;
- (iii) f is increasing if $f'(x) \ge 0$ for all $x \in (a, b)$;
- (iv) f is decreasing if $f'(x) \leq 0$ for all $x \in (a, b)$.

Definition 21 (IVT for Derivatives). Let f be a differentiable function on (a,b). If $a < x_1 < x_2 < b$, and if c lies between $f'(x_1)$ and $f'(x_2)$, there exists [at least one] $x \in (x_1, x_2)$ such that f'(x) = c.

Definition 22 (Differentiability at a Point). Let $f : \mathbb{R} \to \mathbb{R}$ be a function. We say that f is differentiable at a point $c \in \mathbb{R}$ if the following limit exists:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$$

Power Series

Radius of Convergence

For a power series of the form

$$\sum_{n=0}^{\infty} a_n x^n,$$

the radius of convergence describes the distance within which the series converges absolutely and uniformly, and outside of which it diverges.

Definition 23 (Ratio Test).

$$\frac{1}{R} = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

Definition 24 (Root Test).

$$\frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$$

Definition 25 (Taylor Series). The Taylor series of a function f(x) around a point a is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Definition 26 (Partial Sum). The N-th partial sum $b_N(x)$ of a power series is given by

$$b_N(x) = \sum_{n=0}^{N} a_n x^n.$$

Definition 27 (Remainder). Given a function f(x) and its Taylor series expansion at x = a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n,$$

the remainder $R_N(x)$ is defined as the difference between the function f(x) and the partial sum $b_N(x)$:

$$R_N(x) = f(x) - \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Integration

Definition 28. Let f be a function. If f is bounded and has compact support, then f is Riemann integrable.

Theorem 20. A function f is Riemann integrable if and only if for all $\epsilon > 0$, there exist step functions ϕ and ψ such that

$$\phi < f < \psi$$

and

$$\int_{-\infty}^{\infty} \psi - \int_{-\infty}^{\infty} \phi < \epsilon.$$

Theorem 21. A function f is integrable if and only if there exist step functions ϕ_n and ψ_n such that

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \phi_n = \lim_{n \to \infty} \int_{-\infty}^{\infty} \psi_n.$$

Theorem 22. If f and g are Riemann integrable, then

$$\int_{-\infty}^{\infty} (f(x) + g(x)) dx = \int_{-\infty}^{\infty} f(x) dx + \int_{-\infty}^{\infty} g(x) dx.$$

Lemma 7. If f is continuous, then f is Riemann integrable on any compact set.

Lemma 8. If f is increasing, then f is Riemann integrable on any compact set

Theorem 23. Let $f : \mathbb{R} \to \mathbb{R}$ be an increasing or decreasing function. If f is Riemann integrable, then f is Riemann integrable on any compact interval [a, b].

Theorem 24 (Integral Mean Theorem). Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then there exists a point $c \in [a,b]$ such that

$$\int_{a}^{b} f(x) dx = f(c)(b-a).$$

Theorem 25. Let f be an integrable function on the interval [a,b]. Define the function F(x) as

$$F(x) = \int_{a}^{x} f(t) dt.$$

Then, F is differentiable, and

$$F'(x) = f(x)$$
 for all $x \in [a, b]$.

Theorem 26. Let $G:[a,b] \to \mathbb{R}$ be such that G'(x) = f(x) for all $x \in [a,b]$. Then,

$$\int_a^b f(t) dt = G(b) - G(a).$$

Definition 29. Let $X \subset B[a,b]$ denote the subset of integrable functions.

Theorem 27. Let $X \subseteq B[a,b]$ be a subset of the space of functions B[a,b]. If X is closed in B[a,b], then the following is equivalent:

• If $f_n \to f$ in B[a,b] and $f_n \in X$ for all n, then f is the limit of f_n and is integrable.

Theorem 28. A function f is Riemann integrable on [a,b] if and only if for every $\epsilon > 0$, there exist step functions φ and ψ such that:

$$\varphi(x) \le f(x) \le \psi(x)$$
 for all $x \in [a, b]$,

and

$$\int_a^b \psi(x) \, dx - \int_a^b \varphi(x) \, dx < \epsilon.$$

Corollary 5. If $X \subset B[a,b]$, then X is complete, because it is closed in a complete space.

Corollary 6. Let $f:(-R,R)\to\mathbb{R}$ be a power series of the form

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Then f(x) is integrable on all compact intervals that are subsets of (-R, R).

Corollary 7. Let $f_n(x)$ be a sequence of functions. If $f_n(x)$ is converging uniformly to f(x) on any compact interval [a,b[that is a subset of (-R,R), then the convergence is uniform on that interval.

1. Sum of 1

$$\sum_{k=1}^{n} 1 = n$$

2. Sum of k

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

3. Sum of k^2

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

4. Sum of k^3

$$\sum_{k=1}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$