( ) Given that R = 5  $\Omega$ , L = 3 H, C = 1/3 F, if the net impedance is resistive, find the required frequency of the circuit?

## () Given that $R = 5 \Omega$ , L = 3 H, C = 1/3 F, if the net impedance is resistive,





Note: Two versions will be given to avoid misunderstandings, the text version (black) and the image version (blue). If the two contents conflict, please refer to the image version first.

$$\omega = 1 \text{ rad/s}$$

 $\omega = 1 \text{ rad/s}$ 

 $\omega = 0.5 \text{ rad/s}$ 

 $\omega = 1.25 \text{ rad/s}$ 

$$\omega = 0.5 \text{ rad/s}$$

$$\omega = 1.25 \text{ rad/s}$$

$$\omega = 2 \text{ rad/s}$$

$$\omega = 2 \text{ rad/s}$$

1 / 1 pts

$$V_1(t)$$
 $V_1(t)$ 
 $V$ 

Note: Two versions will be given to avoid misunderstandings, the text version (black) and the image version (blue). If the two contents conflict, please refer to the image version first.

$$i(t) = \sqrt{2}\cos(200t + 45^\circ)$$

$$i(t) = 2\cos(200t)$$

 $i(t) = 2\cos(200t)$ 

 $i(t) = \sqrt{2}\cos(200t + 45^{\circ})$ 

Question 2

$$i(t) = \sqrt{2}\cos(200t)$$

$$i(t) = \sqrt{2}\cos(200t)$$

$$i(t) = 10\cos(200t + 45^{\circ})$$
  
 $0.i(t) = 10\cos(200t + 45^{\circ})$ 

$$i(t) = 10\cos(200t + 45^\circ)$$

( ) Given that  $V_s(t) = 10 \sin(100t + 90^\circ)$ , determine  $V_x(t) = 10 \sin(100t + 90^\circ)$ 

() Given that 
$$V_s(t) = 10 \sin(100t + 90^\circ)$$
, determine  $V_x(t)_\circ$ 



Note: Two versions will be given to avoid misunderstandings, the text version (black) and the image version (blue). If the two contents conflict, please refer to the image version first.

540°

- 0.3320°
- 0.33∠0°
- 0.33 ∠ 90°

0.33290°

5490°

5 Z 90°