Theorem. For all lists l, even_parity $l = even_parity_t l$.

Proof. By structural induction on 1.

• Base case: 1 = []

• Step: 1 = x :: xs for some element x and list xs.

Inductive Hypothesis: even_parity xs = even_parity_tr xs

```
- Case 1. x = true
```

```
even_parity_tr 1
   = even_parity_tr true :: xs
                                               By definition of even_parity_tr
   = parity false true :: xs
   = parity (false <> true) xs
                                                       By definition of parity
                                                             By definition of \oplus
   = parity true xs
   = not (not(parity true xs))
                                                           By definition of not
(*) = not (parity false xs)
                                  Since parity false l = not parity true l
   = not (even_parity_tr xs)
                                               By definition of even_parity_tr
   = not (even_parity xs)
                                                                        By IH
                                                  By definition of even_parity
   = even_parity true :: xs
```

- Case 2. x = false.

= even_parity xs By IH = even_parity false :: xs By definition of even_parity

Step (*) may not be correct/may require more expansion.