

Technical University of Munich

Department of Mathematics

Geometric complexes and discrete Morse theory

Tutorial (May 18, 2018)

Problem 1. Enclosing Spheres and the Čech Complex.

Let X be a finite subset of \mathbb{R}^d . Show that $Q \in \check{\operatorname{Cech}}_r(X)$ if and only if the smallest enclosing sphere of Q has radius at most r.

Problem 2. Uniqueness of Circumspheres.

Let $Q \neq \emptyset$ be an affinely independent subset of \mathbb{R}^d , let H be the affine span of Q, and let $Q \in Q$.

- a) Show that the orthogonal complement of H-q parametrizes the circumspheres of Q.
- b) Show that Q has exactly one circumsphere if and only if the cardinality of Q is d + 1.
- c) Show that there is a unique smallest circumsphere of Q.

Problem 3. Enclosing Spheres.

Let T and $Q \neq \emptyset$ be finite subsets of \mathbb{R}^d and assume there is a circumsphere of T enclosing Q. Let M(T,Q) denote the smallest such sphere and let $x \in Q$. Show that

$$M(T,Q) = \begin{cases} M(T,Q \setminus \{x\}) & \text{if this sphere exists and encloses } x \\ M(T \cup \{x\},Q \setminus \{x\}) & \text{otherwise.} \end{cases}$$

Problem 4. Delaunay complex by empty circumspheres.

Let X be a finite subset of some Euclidean space. Show that $Q \subseteq X$ is a simplex of Del(X) iff Q has a circumsphere S bounding an open ball B with $X \cap B = \emptyset$ (an *empty circumsphere*).

Problem 5. Geometric realization of Čech and Delaunay filtrations.

Let X be a finite subset of some Euclidean space.

- a) Show that the Čech and Delaunay complexes for the same radius r>0 have homotopy equivalent geometric realizations: $|\operatorname{Del}_r(X)| \simeq |\operatorname{\check{C}ech}_r(X)|$.
- b) Is $Del_r(X) = Del(X) \cap \check{C}ech_r(X)$?

Problem 6. Delaunay filtrations and smallest circumspheres.

Let *X* be a finite subset of some Euclidean space. Show that $Q \in Del(X)$ is in $Del_r(X)$ iff $s(Q, X) \le r^2$.

Problem 7. Generalized MINISPHERE algorithm.

Let X be a finite set of points in general spherical position and let Q and E be subsets of X such that S = S(Q, E) exists (uniquely).

a) Show that if $x \in Q \setminus E$, then

$$S(Q, E) = \begin{cases} S(Q \setminus \{x\}, E) & \text{if this sphere encloses } x, \\ S(Q, E \cup \{x\}) & \text{otherwise.} \end{cases}$$

Analogously, if $y \in E \setminus Q$, then

$$S(Q, E) = \begin{cases} S(Q, E \setminus \{y\}) & \text{if this sphere excludes } y, \\ S(Q \cup \{y\}, E) & \text{otherwise.} \end{cases}$$

b) Generalize the MINISPHERE algorithm to compute the sphere S(Q, E).

Problem 8. Minimum Spanning Trees.

Let X be a finite set of points in some Euclidean space. Show that a minimum spanning tree T of X is a subcomplex of Del(X).

Problem 9. Generalized discrete vector fields.

- a) Show that any collapse can be obtained as a sequence of elementary collapes.
- b) Let K be a simplicial complex, let $f: K \to \mathbb{R}$ be a monotone function, and let V be a generalized gradient of f. Show that there is a refinement of V which is a discrete vector field.

Problem 10. Induced collapses.

- a) Let f be a generalized discrete Morse function on K. Show that if (s, t] contains no critical value of f, then $K_t \searrow K_s$.
- b) Let K be a simplicial complex with a (generalized) discrete gradient V, and let $L \subseteq K$ be a subcomplex such that $K \setminus L$ is a union of non-critical intervals in V. Show that $K \setminus L$.

2

Problem 11. Čech and Delaunay functions.

We consider the Čech function $s_\emptyset: Q \mapsto s(Q,\emptyset)$ and the Delaunay function $s_X: Q \mapsto s(Q,X)$.

- a) Show that both are generalized Morse functions.
- b) What are the critical simplices of each function?
- c) Show that $Del_r(X) \setminus Wrap_r(X)$.

Problem 12. Simplex Pairing.

Let $E \subseteq F \subseteq X$, and let $Q \subseteq X$ be such that both $S(Q, E) \neq S(Q, F)$ exist.

- a) Show that
 - (i) $S = S(Q \setminus \{x\}, E) = S(Q \cup \{x\}, E)$ iff $x \in Incl S \setminus Front S$,
 - (ii) $S = S(Q, E \setminus \{x\}) = S(Q, E \cup \{x\})$ iff $y \in \text{Excl } S \setminus \text{Back } S$.
- b) Show that there exists a point $x \in F \setminus E$ such that
 - (i) $S(Q \setminus \{x\}, E) = S(Q \cup \{x\}, E)$,
 - (ii) $S(Q \setminus \{x\}, F) = S(Q \cup \{x\}, F)$.
- c) Show that $\operatorname{Cech}_{\ell}(X) \cap \operatorname{Del}(X) \setminus_{\mathcal{A}} \operatorname{Del}_{\ell}(X)$.

Problem 13. Apparent pairs.

Consider a simplexwise filtration $(K_i)_{i \in I}$ of a finite simplicial complex K. We call a pair of simplices (σ, τ) of K an *apparent pair* if both

- σ is the youngest proper face of τ , and
- τ is the oldest proper coface of σ .
- a) The apparent pairs of a simplexwise filtration form a discrete gradient on K.
- b) Given a total order on the vertices $v_1, ... v_n$ of the simplicial complex K, the *lexicographic gradient* V_L is as follows. Whenever possible, pair a simplex $\sigma = \{v_{i_k}, ... v_{i_1}\}, i_k > \cdots > i_1$, with the simplex $\tau = \{v_{i_k}, ... v_{i_1}, v_{i_0}\}$ for which $i_0 < i_1$ is minimal.

Show that the lexicographic gradient V_L is the apparent pairs gradient of the *lexicographic filtration* of K: simplices are ordered by dimension, and simplices of the same dimension are ordered lexicographically according to the given vertex order.