

TD4 - Automates et Langages

octobre 2018

Automates

Exercice 1:

- Q 1 . Quels sont les états accessibles? Les états co-accessibles?
- **Q 2**. Trouver un automate équivalent, déterministe, accessible et complet, comportant 5 états.
- **Q 3** . Écrire en pseudo-langage un programme qui reçoit en argument un automate déterministe $A=(X,\mathcal{Q},q_{ini},\mathcal{F},\delta)$. Le résultat de l'algorithme est l'ensemble des états accessibles de A

Exercice 2:

On considère un automate fini déterministe complet à 2 états $A = (\{a,b\}, \{q_0,q_1\}, q_0, F, \delta)$. Sachant que $aba \in \mathcal{L}(A)$, $aa \in \mathcal{L}(A)$ et $baa \notin \mathcal{L}(A)$, on veut déterminer l'automate A.

- ${\bf Q} \ {\bf 1}$. Trouver l'état $\delta(q_0,b).$ Justifier.
- **Q 2** . Montrer que $\delta(q_0, a) \neq \delta(q_1, a)$.
- **Q 3** . En déduire l'état $\hat{\delta}(q_0, aa)$.
- **Q 4** . Trouver l'automate A.

Exercice 3:

Soit un automate non déterministe à 3 états $A=(Q,\{a,b\},I,F,\delta)$ où $Q=\{q_0,q_1,q_2\}$ I est l'ensemble des états initiaux avec $q_0\in I$, $q_2\in F$ et on cherche à déterminer entièrement cet automate.

- $\mathbf{Q} \ \mathbf{1}$. Sachant que aa est le seul mot de $\mathcal{L}(A)$ de longueur inférieure ou égale à 2, déterminer I et F.
- ${\bf Q}$ 2 . En déduire 2 transitions de A et 4 transitions qui ne peuvent nécessairement pas appartenir à A.
- **Q 3**. Sachant, de plus, que $\forall u_1, u_2 \in \{a, b\}^*, (u_1bau_2 \in \mathcal{L}(A)) \Rightarrow u_2 = \epsilon$ et que $aaba \in \mathcal{L}(A)$, calculer toutes les transitions depuis l'état q_2 .
- **Q 4** . Trouver 2 nouvelles transitions de A et indiquer, en le justifiant, toutes les transitions qui ne peuvent pas appartenir à A.

Exercice 4:

Déterminisez l'automate suivant :

Exercice 5:

Déterminisez l'automate obtenu en fin d'exercice 3