Resumo das técnicas apresentadas.

Técnica de Prova	Sentença	Estratégia
Quantificador Universal	$\forall x[P(x)]$	Suponha um x arbitrário. Prove que $P(x)$ é verdadeira.
Por Exaustão	$P(x) \rightarrow Q(x)$ ou $\forall x[P(x) \rightarrow Q(x)]$	Prove a sentença para todos os casos possíveis.
Direta	$P(x) \rightarrow Q(x)$ ou $\forall x [P(x) \rightarrow Q(x)]$	Suponha $P(x)$ e deduza $Q(x)$. Seja x pertencente ao domínio. Assuma que $P(x)$ é verdadeira e prove $Q(x)$.
Por Contraposição	$P(x) \rightarrow Q(x)$ ou $\forall x [P(x) \rightarrow Q(x)]$	Suponha $\neg Q(x)$ e deduza $\neg P(x)$. Assuma que $\neg Q(x)$ é verdadeira e prove que $\neg P(x)$ é verdadeira.
Por Contradição	$P(x) \rightarrow Q(x)$ ou ou $\forall x [P(x) \rightarrow Q(x)]$	Assuma $\neg Q(x)$ e tente obter uma contradição. Suponha $P(x)$ verdadeira. Suponha que $\neg Q$ também é verdadeira e deduza uma contradição.
Quantificador Existencial	$\exists x[P(x)]$	Prova Construtiva: Encontre um valor a tal que $P(a)$ é verdadeira. Prova Não Construtiva: Mostre que $\exists x[P(x)]$ pode ser provada de outra maneira sem exibir explicitamente um elemento a que torne a sentença verdadeira.
Quantificador da Exis- tência e Unicidade	$\exists !x[P(x)]$	Divida a demonstração em duas partes: Parte 1 (Existência): Prove que existe um elemento que torne $P(x)$ verdadeira. Parte 2 (Unicidade): Prove que este elemento é único. Suponha que existe um y que satisfaz $P(y)$ e prove que $y = x$.
Por Casos	$P_1(x) \lor P_2(x) \to Q(x)$ Implicação com Hipótese Disjuntiva $P(x) \to Q_1(x) \land Q_2(x)$ Implicação com Tese Conjuntiva	Prove que $(P_1(x) \to Q(x)) \land (P_2(x) \to Q(x))$ Prove cada das condicionais separadamente Prove que: $(P(x) \to Q_1(x)) \land (P(x) \to Q_2(x))$ Prove cada das condicionais separadamente
Bicondicional	$P(x) \leftrightarrow Q(x)$	Prove $P(x) \to Q(x)$ e $Q(x) \to P(x)$

Propriedades Algébricas.

Sejam $a,b,c\in\mathbb{R}$. São válidas as seguintes propriedades derivadas dos axiomas de corpo, axiomas de ordem e das definições:

- PAD1. (Cancelamento da Adição): Se a + b = a + c, então b = c.
- PAD2. (Subtração): Dados $a \in b$, existe exatamente um único x tal que a + x = b. x é denotado por b a.
- PAD3. b a = b + (-a).
- PAD4. -(-a) = a.
- PAD5. a(b-c) = ab ac.
- PAD6. 0.a = a.0 = 0.
- PAD7. (Cancelamento da Multiplicação): Se ab=ac e $a\neq 0$, então b=c.
- PAD8. (**Divisão**): Dados $a \in b$ com $a \neq 0$. Existe exatamente um inteiro x tal que b = ax. Este x, denotado por a|b (b/a), é chamado de quociente de b e a. Dizemos que b é divisível por a.
- PAD9. Se $a \neq 0$, então $b/a = b.a^{-1}$.
- PAD10. Se $a \neq 0$, então $(a^{-1})^{-1} = a$.
- PAD11. Se ab = 0, então a = 0 ou b = 0.
- PAD12. (Regra da multiplicação com sinais negativos): (-a)b = a(-b) = -(ab), (-a)(-b) = ab e $-\frac{a}{b} = \frac{a}{-b}$.
- PAD13. (Equivalência de Frações): $\frac{ac}{bc} = \frac{a}{b}$, se $b \neq 0$ e $c \neq 0$.
- PAD14. (Soma de Frações): $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$, se $b \neq 0$ e $d \neq 0$.
- PAD15. (Multiplicação de Frações): $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$, se $b \neq 0$ e $d \neq 0$.
- PAD16. (Divisão de Frações): $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$, se $b \neq 0$, $c \neq 0$ e $d \neq 0$.
- PAD17. (Lei da Tricotomia): Para números reais a e b arbitrários, apenas uma das relações é válida: a < b, a > b ou a = b.
- PAD18. **(Transitividade):** Se a < b e b < c, então a < c.
- PAD19. Se a < b, então a + c < b + c.
- PAD20. Se a < b e c > 0, então ac < bc.
- PAD21. Se $a \neq 0$, então $a^2 > 0$.
- PAD22. 1 > 0.
- PAD23. Se a < b e c < 0, então ac > bc.
- PAD24. Se a < b, então -a > -b. Em particular, se a < 0, então -a > 0.
- PAD25. Se ab > 0, então a e b são ambos positivos ou ambos negativos.
- PAD26. Se a < c e b < d, então a + b < c + d.
- PAD27. Se 0 < a < c e 0 < b < d, então 0 < ab < cd.