

Основы электротехники

Отчёт по лабораторной работе №3

Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока

Группа *Р3331*

Вариант *29*

Выполнил: Нодири Хисравхон

Дата сдачи отчёта: 06.11.2024

Дата защиты: 21.11.2024

Контрольный срок защиты: 23.10.2024

Количество баллов:

Содержание	Error! Bookmark not defined.
Цель работы	4
Часть 1 4	
1.1 Введение	4
1.2 Параметры элементо	ов исследуемых схем 4
1.3 Общие расчеты	4
1.4 Двухполюсник 1	5
1.4.1 Схема исследуем	ой цепи 5
1.4.2 Расчётные форму	лы и расчёты5
1.4.3 Векторы входного	о напряжения и тока 6
1.5 Двухполюсник $2 \dots$	6
1.5.1 Схема исследуем	ой цепи 6
1.5.2 Расчётные форму	лы и расчёты6
1.5.3 Векторы входного	о напряжения и тока 7
1.6 Двухполюсник 3	7
1.6.1 Схема исследуем	ой цепи 7
1.6.2 Расчётные форму	лы и расчёты7
1.6.3 Векторы входного	напряжения и тока 8
1.7 Двухполюсник 4	8
1.7.1 Схема исследуемо	ой цепи 8
1.7.2 Расчётные форму	лы и расчёты8
1.7.3 Векторы входного	о напряжения и тока 9
1.8 Двухполюсник 5	9
1.8.1 Схема исследуемо	ой цепи 9
1.8.2 Расчётные форму	лы и расчёты9
-	о напряжения и тока 10
1.9 Двухполюсник 6	
1.9.1 Схема исследуемо	ой цепи 10
1.9.2 Расчётные форму	лы и расчёты10
1.9.3 Векторы входного	напряжения и тока11
1.10 Двухполюсник 7	

1.10.1 Схема исследуемой цепи	11
1.10.2 Расчётные формулы и расчёты	11
1.10.3 Векторы входного напряжения и тока	12
1.11 Двухполюсник 8	12
1.11.1 Схема исследуемой цепи	12
1.11.2 Расчётные формулы и расчёты	12
1.11.3 Векторы входного напряжения и тока	13
1.12 Двухполюсник 9	13
1.12.1 Схема исследуемой цепи	13
1.12.2 Расчётные формулы и расчёты	13
1.13.3 Векторы входного напряжения и тока	14
1.13 Заполнение таблицы 2.2	
1.13 Выводы	15
Часть 2 16	
2.1 Введение	16
2.2 Параметры элементов исследуемых схем	16
2.3 Двухполюсник 6	16
2.3.1 Схема исследуемой цепи	16
2.3.2 Расчётные формулы и расчёты	17
2.3.3 Графики зависимостей от частоты	18
2.3.4 Векторная диаграмма для состояния резонанса	20
2.4 Двухполюсник 9	20
2.4.1 Схема исследуемой цепи	20
2.4.2 Расчётные формулы и расчёты	21
2.4.3 Графики характеристических зависимостей от ча	стоты 22
2.4.4 Векторная диаграмма для состояния резонанса	23
2.5 Выводы	
Литература Error! Bookmark not	defined.

Цель работы

Исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов.

Часть 1

1.1 Введение

В данной части лабораторной работы произведены измерения действующих значений входного напряжения, тока и фазового сдвига между ними для девяти различных двухполюсников, а также произведены сравнения результатов с расчётными значениями.

1.2 Параметры элементов исследуемых схем

1. Расчёт амплитуды синусоидального напряжения:

$$U_{max} = U_{\pi} \sqrt{2} = 14 \cdot \sqrt{2} = 19.799B.$$

2. Известные значения:

$$U_{\rm A}=14~{
m B}, \qquad \psi_{
m H}=0^{\circ}$$
, $f=397.887~{
m \Gamma II}, \qquad R_1=25~{
m Om}, R_k=15~{
m Om}$ $L_k=2.798~{
m mTH}$, $C=27.713~{
m mk\Phi}$.

1.3 Общие расчеты

1. Угловая частота:

$$\omega = 2\pi f = 2 \cdot 3.1416 \cdot 397.887 \approx 2500 \,\mathrm{pag/c}$$

2. Реактивная составляющая сопротивления ёмкостного элемента:

$$X_C = \frac{1}{\omega C} = \frac{1}{2500 \cdot 27.713 \cdot 10^{-6}} \approx 14.4 \text{ Om.}$$

3. Реактивная составляющая сопротивления индуктивного элемента:

$$X_L = \omega L = 2500 \cdot 2.798 \cdot 10^{-3} \approx 6.995 \, \text{Om}$$

4. Реактивная проводимость ёмкостного элемента:

$$B_C = \omega C = 2500 \cdot 27.713 \cdot 10^{-6} = 0.0693 \text{ Cm}$$

5. Реактивная проводимость индуктивного элемента:

$$B_k = \frac{X_L}{R_k^2 + X_L^2} = \frac{6.995}{15^2 + 6.995^2} \approx 0.0255 \text{ Cm}.$$

1.4 Двухполюсник 1

1.4.1 Схема исследуемой цепи

Рис. 1: Схема замещения Двухполюсника 1 в LTspice

1.4.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}};$$

 $X = 0; R = R_1 \Rightarrow I = \frac{U}{R_1} = \frac{14}{25} = 0.56 \text{ A}.$

$$\varphi = \arctan(X/R) = \arctan(0/R_1) = 0^\circ$$
.

1.4.3 Векторы входного напряжения и тока

1.5 Двухполюсник 2

1.5.1 Схема исследуемой цепи

Рис. 2: Схема замещения Двухполюсника 2 в LTspice

1.5.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}};$$
 $X = -X_C, \qquad R = 0 \Rightarrow I = \frac{U}{X_C} = \frac{14}{14.4} \approx 0.970 \text{ A}.$

$$\varphi = \arctan(-\infty) \approx -90^{\circ}.$$

1.5.3 Векторы входного напряжения и тока

1.6 Двухполюсник 3

1.6.1 Схема исследуемой цепи

Рис. 3: Схема замещения Двухполюсника 3 в LTspice

1.6.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}};$$
 $X = -X_C, \qquad R = R_1 \Rightarrow I = \frac{U}{\sqrt{R_1^2 + X_C^2}} = \frac{14}{\sqrt{25^2 + 14.4^2}} \approx 0.485 \text{ A}.$

$$\varphi = \arctan(-X_C/R_1) = \arctan(-14.4/25) \approx -30^{\circ}.$$

1.6.3 Векторы входного напряжения и тока

1.7 Двухполюсник 4

1.7.1 Схема исследуемой цепи

Рис. 4: Схема замещения Двухполюсника 4 в LTspice

1.7.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}};$$
 $X = X_L, \qquad R = R_k \implies I = \frac{U}{\sqrt{R_k^2 + X_C^2}} = \frac{14}{\sqrt{15^2 + 14.4^2}} \approx 0.846 \text{ A}.$

$$\varphi = \arctan\left(\frac{X_L}{R_k}\right) = \arctan\left(\frac{6.995}{15}\right) \approx 25.0^{\circ}.$$

1.7.3 Векторы входного напряжения и тока

1.8 Двухполюсник 5

1.8.1 Схема исследуемой цепи

Рис. 5: Схема замещения Двухполюсника 5 в LTspice.

1.8.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}};$$

$$X = X_L, \qquad R = R_1 + R_k \Rightarrow I = \frac{U}{\sqrt{(R_1 + R_k)^2 + X_L^2}} = \frac{14}{\sqrt{(25 + 15)^2 + 6.995^2}}$$

$$\approx 0.345 \text{ A}.$$

$$\varphi = \arctan\left(\frac{X_L}{R_1 + R_k}\right) = \arctan\left(\frac{6.995}{25 + 15}\right) \approx 9.9^{\circ}.$$

1.8.3 Векторы входного напряжения и тока

1.9 Двухполюсник 6

1.9.1 Схема исследуемой цепи

Рис. 6: Схема замещения Двухполюсника 6 в LTspice.

1.9.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}};$$

$$X = X_L - X_C,$$

$$R = R_1 + R_k \Rightarrow I = \frac{U}{\sqrt{(R_1 + R_k)^2 + (X_L - X_C)^2}} = \frac{14}{\sqrt{(25 + 15)^2 + (6.995 - 14.4)^2}} \approx 0.344 \text{ A}.$$

$$\varphi = \arctan\left(\frac{X_L - X_C}{R_1 + R_k}\right) = \arctan\left(\frac{6.995 - 14.4}{25 + 15}\right) \approx -10.5^{\circ}.$$

1.9.3 Векторы входного напряжения и тока

1.10 Двухполюсник 7

1.10.1 Схема исследуемой цепи

Рис. 7: Схема замещения Двухполюсника 7 в LTspice.

1.10.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = UY = U\sqrt{G^2 + B^2};$$

$$G = \frac{1}{R_1}, B = -B_C, \implies I = U\sqrt{\frac{1}{R_1^2} + B_C^2} = 14 \cdot \sqrt{\frac{1}{25}^2 + 0.0693^2} \approx 1.120 \text{ A}.$$

$$\varphi = \arctan\left(\frac{-B_C}{\frac{1}{R_1}}\right) = \arctan\left(\frac{-0.0693}{0.04}\right) \approx -60.0^{\circ}.$$

1.10.3 Векторы входного напряжения и тока

1.11 Двухполюсник 8

1.11.1 Схема исследуемой цепи

Рис. 8: Схема замещения Двухполюсника 8 в LTspice

1.11.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = UY = U\sqrt{G^2 + B^2};$$

$$G = G_1 + G_k, B = B_k, \implies I = U\sqrt{(G_1 + G_k)^2 + B_k^2} =$$

$$= U\sqrt{\left(1/R_1 + \frac{R_k}{R_k^2 + X_L^2}\right)^2 + B_k^2} =$$

$$= 14 \cdot \sqrt{\left(\frac{1}{25} + \frac{15}{15^2 + 6.995^2}\right)^2 + \left(\frac{6.995}{15^2 + 6.995^2}\right)^2} \approx 1.374 \text{ A}.$$

2. Расчёт фазового сдвига:

$$\varphi = \arctan\left(\frac{B_k}{1/R_1 + \frac{R_k}{R_k^2 + X_L^2}}\right) = \arctan\left(\frac{-0.0267}{0.096}\right) \approx 15.1^\circ.$$

1.11.3 Векторы входного напряжения и тока

1.12 Двухполюсник 9

1.12.1 Схема исследуемой цепи

Рис. 9: Схема замещения Двухполюсника 9 в LTspice

1.12.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = UY = U\sqrt{G^2 + B^2};$$

$$\begin{split} G &= G_1 + G_k, B = B_k - B_1, \quad \Rightarrow I = U\sqrt{(G_1 + G_k)^2 + (B_k - B_1)^2} = \\ &= U\sqrt{\left(\frac{R_1}{R_1^2 + X_C^2} + \frac{R_k}{R_k^2 + X_L^2}\right)^2 + \left(\frac{X_L}{R_k^2 + X_L^2} - \frac{X_C}{R_1^2 + X_C^2}\right)^2} = \\ &= 14 \cdot \sqrt{\left(\frac{25}{25^2 + 14.4^2} + \frac{15}{15^2 + 6.995^2}\right)^2 + \left(\frac{6.995}{15^2 + 6.995^2} - \frac{14.4}{25^2 + 14.4^2}\right)^2} \approx \\ &\approx 1.192 \text{ A}. \end{split}$$

2. Расчёт фазового сдвига:

$$\varphi = \arctan\left(\frac{B_k - B_1}{G_1 + G_k}\right) = \arctan\left(\frac{0.0255 - 0.0173}{0.04 - 0.055}\right) \approx 4.95^\circ.$$

1.13.3 Векторы входного напряжения и тока

1.13 Заполнение таблицы 2.2

При заполнении таблицы 2.2 экспериментальными данными моделирующая программа LTspice настраивалась таким образом, чтобы в окне графиков сразу отображались действующие значения синусоидальных величин, зависящих от времени. Это осуществлялось введением формул $U_{\rm d}=U_m/\sqrt{2}$ для напряжений и $I_{\rm d}=I_m/\sqrt{2}$ для токов в окнах настройки соответствующих кривых.

Фазовый сдвиг между током и напряжением измерялся по разности вертикального положения двух курсоров.

Таблица 2.2

Номер	Парал	метры д	вухполю	сников		езультат змерени	Результаты вычислений		
схемы	R_1	R_k	L	С	U	I	φ	I	φ
цепи	Ом		мГн	мкФ	В	A	0	A	0
1	25	-	-	-	14	0.56	0	0.56	0
2	-	-	-	27.713	14	0.97	-90	0.97	-90.0
3	25	-	-	27.713	14	0.48	-31.4	0.485	-30.0
4	-	15	2.798	-	14	0.836	25.7	0.846	25.0
5	25	15	2.798	-	14	0.344	10	0.345	9.9
6	25	15	2.798	27.713	14	0.345	10.4	0.344	-10.5
7	25	-	-	27.713	14	1.12	-60.2	1.12	-60.0
8	25	15	2.798	-	14	1.372	15.1	1.374	15.1
9	25	15	2.798	27.713	14	1.198	15.24	1.192	5.0

1.13 Выводы

В ходе выполнения работы были исследованы параметры девяти двухполюсников, включая значения действующего тока, напряжения и фазового сдвига.

Теоретические расчёты подтвердились экспериментальными данными, что указывает на корректность проведённых опытов.

В цепях с резисторами (двухполюсник 1) фазовый сдвиг отсутствует, так как ток и напряжение меняются синхронно. В цепях с конденсаторами (двухполюсники 2, 3 и 7) ток опережает напряжение, что соответствует свойствам ёмкостных элементов. В цепях с индуктивностью (двухполюсники 4, 5 и 8) ток, наоборот, запаздывает относительно напряжения, что также согласуется с физическими явлениями в индуктивности.

В цепях с одновременным присутствием индуктивности и ёмкости (двухполюсники 6 и 9), фазовый сдвиг между током и напряжением зависит от соотношения реактивных составляющих элементов цепи.

Небольшие расхождения между теоретическими и эмпирическими значениями можно объяснить погрешностями измерений и округлением результатов расчетов.

Часть 2

2.1 Введение

В данной части лабораторной работы выполнены исследование и анализ частотных характеристик RCL-цепи с последовательным и параллельным подключениями индуктивных и ёмкостных элементов.

2.2 Параметры элементов исследуемых схем

Известные значения:

$$U_{\rm д}=14~{
m B}, \qquad \psi_{
m H}=120^{\circ}, f=397.887~{
m \Gamma II}, \qquad R_1=12~{
m Om}, R_k=15~{
m Om}$$
 $L_k=2.798~{
m mTH}, C=27.713~{
m mk}$ Ф.

2.3 Двухполюсник 6

2.3.1 Схема исследуемой цепи

Рис. 10: Схема замещения Двухполюсника 6 (в резонансе) в LTspice

2.3.2 Расчётные формулы и расчёты

1. Резонансная частота:

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{2.798\cdot27.713\,\cdot10^{-3}\cdot10^{-6}}} = \;571.55\;\Gamma$$
ц.

2. Угловая частота:

$$\omega = 2\pi f$$
.

3. Действующий ток в цепи:

$$I = \frac{U_{\rm A}}{\sqrt{(R_1 + R_k)^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}.$$

4. Напряжение на резистивном элементе:

$$U_{R_k} = I \cdot R_1.$$

5. Напряжение на индуктивном элементе:

$$U_k = I \sqrt{R_k^2 + (\omega L)^2}.$$

6. Напряжение на ёмкостном элементе:

$$U_C = \frac{I}{\omega C}.$$

7. Фазовый сдвиг между входным напряжением и током:

$$\varphi = \arctan \frac{\omega L - \frac{1}{\omega C_1}}{R_1 + R_k}.$$

8. Добротность контура:

$$Q_{\mathrm{p}} = \frac{
ho}{R_1 + R_k}$$
 — расчетная;

$$Q_e = \frac{U_{C0}}{U}$$
 — экспериментальная;

 $ho = \sqrt{L/C}$ — характеристическое сопотивление.

Таблица 2.3

$U=14~\mathrm{B};~\mathrm{R_1}=12~\mathrm{Om};~\mathrm{L}=2,798~\mathrm{m}\Gamma\mathrm{H};~\mathrm{C}=27,713~\mathrm{m}\kappa\Phi;~\mathrm{f_0}=571,55~\Gamma\mathrm{ц}$									5 Гц	
f			Расчет			Эксперимент				
		6	$Q_{\rm p} = 0.37$	72		$Q_{\rm e} = 0.381$				
	φ	I	U_{R1}	$U_{\rm k}$	U_{C}	φ	I	U_{R1}	$U_{\rm k}$	U_{C}
Гц	0	A				0	A			
57.2	-74.8	0.136	1.63	2.042	13.648	-74.2	0.136	1.62	2.04	13.65
114.3	-60.8	0.253	3.039	3.833	12.725	-61.0	0.253	3.04	3.80	12.72
171.5	-48.5	0.344	4.126	5.261	11.516	-48.3	0.343	4.13	5.26	11.51
228.6	-38.0	0.409	4.903	6.344	10.263	-38.7	0.408	4.89	6.34	10.25
285.8	-29.2	0.453	5.433	7.162	9.099	-29.4	0.452	5.42	7.16	9.08
342.9	-21.7	0.482	5.783	7.791	8.071	-22.2	0.482	5.78	7.79	8.06
400.1	-15.2	0.5	6.005	8.291	7.184	-15.6	0.50	6.0	8.29	7.17
457.2	-9.5	0.511	6.137	8.703	6.423	-9.6	0.511	6.13	8.69	6.41
514.4	-4.5	0.517	6.203	9.054	5.771	-5.2	0.517	6.21	9.33	5.20
571.6	<mark>0.</mark>	0.519	6.222	9.362	$\frac{5.21}{}$	<mark>0.</mark>	0.518	6.25	$\frac{9.33}{2}$	$\frac{5.33}{2}$
628.7	4.1	0.517	6.207	9.637	4.725	4.0	0.516	6.21	9.64	4.72
685.9	7.8	0.514	6.165	9.887	4.302	7.7	0.515	6.17	9.89	4.30
743.0	11.2	0.509	6.104	10.118	3.932	11.2	0.509	6.10	10.12	3.93
800.2	14.3	0.502	6.029	10.332	3.606	14.2	0.501	6.01	10.34	3.60
857.3	17.2	0.495	5.943	10.531	3.318	17.3	0.494	5.94	10.54	3.32
914.5	19.9	0.487	5.849	10.717	3.061	20.2	0.487	5.85	10.72	3.06
971.6	22.5	0.479	5.75	10.892	2.832	22.5	0.480	5.76	10.892	2.83
1028.8	24.8	0.471	5.646	11.056	2.627	25.3	0.472	5.65	11.06	2.63
1085.9	27.1	0.462	5.54	11.209	2.442	27.2	0.462	5.54	11.21	2.45
1143.1	29.2	0.453	5.433	11.354	2.275	29.1	0.453	5.42	11.35	2.28
1200.3	31.1	0.444	5.325	11.489	2.123	31.1	0.443	5.32	11.49	2.12

2.3.3 Графики зависимостей от частоты

Графики расчетных и экспериментальных зависимостей $I(f), \varphi(f)$ представлены на рисунке 11 , зависимостей $U_{R_1}(f), U_k(f), U_C(f)$ — на рисунке 12.

Рис. 11: Зависимость действующего тока и фазового сдвига от частоты

Рис. 12: Зависимость действующих напряжений от частоты

2.3.4 Векторная диаграмма для состояния резонанса

Векторная диаграмма для двухполюсника 6 в состоянии резонанса представлена ниже.

В данном случае имеет место резонанс напряжений, при котором реактивные составляющие напряжений индуктивности и емкости компенсируют друг друга, двухполюсник представляет собой чисто активную нагрузку для источника.

2.4 Двухполюсник 9

2.4.1 Схема исследуемой цепи

Рис. 13: Схема замещения Двухполюсника 9 (в резонансе) в LTspice

2.4.2 Расчётные формулы и расчёты

1. Характеристическое сопротивление:

$$ho = \sqrt{L/C} = \sqrt{\frac{2.798 \cdot 10^{-3}}{27.713 \cdot 10^{-6}}} = 10.048 \text{ Om}.$$

2. Резонансная частота:

$$\begin{split} f_0 = & \frac{1}{2\pi\sqrt{LC}} \sqrt{\frac{\rho^2 - R_k^2}{\rho^2 - R_1^2}} = \\ = & \frac{1}{2\pi\sqrt{2.798 \cdot 27.713 \, \cdot 10^{-3} \cdot 10^{-6}}} \sqrt{\frac{10.048^2 - 15^2}{10.048^2 - 12^2}} = \, 970.31 \, \Gamma \text{ц}. \end{split}$$

3. Общая проводимость G:

$$G = G_1 + G_k = \frac{R_1}{R_1^2 + X_C^2} + \frac{R_k}{R_k^2 + X_L^2}.$$

4. Общая проводимость В:

$$B = B_k - B_1 = \frac{X_L}{R_k^2 + X_L^2} - \frac{X_C}{R_1^2 + X_C^2}.$$

5. Общий ток *I*:

$$I = U\sqrt{G^2 + B^2}.$$

6. Ток через индуктивный элемент I_1 :

$$I_1 = \frac{U}{\sqrt{R_k^2 + X_L^2}}.$$

7. Ток через емкостный элемент I_2 :

$$I_2 = \frac{U}{\sqrt{R_1^2 + X_0^2}}.$$

8. Фазовый сдвиг между входным напряжением и током ф:

$$\varphi = \arctan\left(\frac{B}{G}\right).$$

Таблица 2.4

	U = 14	B; $R_1 = 12$	2 Ом; L =	2.798 мГ	н; $C = 27.713 \text{ мк}\Phi$; $f_0' = 970.31 \text{ Гц}$					
\mathbf{f}	f Расчет				Эксперимент					
	φ	I	I_1	I_2	φ	I	I_1	I_2		
Гц	0		A		0	A				
97	-7.2	0.975	0.927	0.232	-9.4	0.975	0.925	0.232		
194.1	-11	1.072	0.91	0.438	-11.0	1.070	0.910	0.438		
291.1	-11.4	1.174	0.883	0.606	-11.2	1.165	0.883	0.604		
388.1	-10	1.255	0.85	0.735	-10.5	1.254	0.849	0.734		
485.2	-8	1.309	0.811	0.831	-8.	1.309	0.809	0.830		
582.2	-5.9	1.34	0.771	0.901	-5.9	1.337	0.767	0.899		
679.2	-4	1.354	0.73	0.954	-3.9	1.351	0.729	0.949		
776.2	-2.4	1.357	0.69	0.993	-2.6	1.353	0.689	0.991		
873.3	-1.1	1.353	0.652	1.023	0	1.348	0.651	1.020		
970.3	<mark>0</mark>	1.345	0.616	1.046	0	1.342	0.614	1.043		
1067.3	0.8	1.335	0.583	1.065	0	1.334	0.586	1.063		
1164.4	1.5	1.325	0.552	1.079	1.3	1.327	0.550	1.081		
1261.4	2	1.314	0.523	1.091	1.8	1.312	0.524	1.090		
1358.4	2.4	1.303	0.496	1.1	2	1.303	0.494	1.102		
1455.5	2.7	1.293	0.472	1.108	2.8	1.291	0.469	1.106		
1552.5	2.9	1.284	0.45	1.115	2.9	1.285	0.451	1.114		
1649.5	3.1	1.275	0.429	1.12	3.0	1.273	0.430	1.121		
1746.6	3.2	1.267	0.41	1.125	3.2	1.265	0.412	1.126		
1843.6	3.3	1.26	0.392	1.129	3.3	1.27	0.391	1.131		
1940.6	3.3	1.253	0.376	1.133	3.4	1.254	0.375	1.134		

2.4.3 Графики характеристических зависимостей от частоты

Графики зависимостей I(f), $\varphi(f)$, $I_1(f)$, $I_2(f)$ представлены на рисунках 14 и 15 Первый показывает зависимость характеристик $\varphi(f)$, второй -I(f), $I_1(f)$, $I_2(f)$.

Рис. 14: Зависимость фазового сдвига от частоты

Рис. 15: Зависимость действующих токов суммарного I(f), через индуктивность $I_1(f)$,и через емкость $I_2(f)$

2.4.4 Векторная диаграмма для состояния резонанса

В данном случае для двухполюсника 9 имеет место резонанс токов, при котором реактивные составляющие токов индуктивности и емкости компенсируют друг друга. Двухполюсник представляет собой чисто активную нагрузку для источника.

2.5 Выводы

При выполнении второй части работы был исследован резонанс в линейных RLC-двухполюсниках, питаемых однофазным источником

синусоидального напряжения. При резонансной частоте реактивные сопротивления как последовательно, так и параллельно соединенных индуктивного и ёмкостного элементов взаимно компенсируются. Двухполюсник в состоянии резонанса имеет чисто активное сопротивление.

Проведенный анализ показал согласие экспериментальных результатов с расчётами. Незначительные расхождения численных значений объясняются погрешностями измерений и ошибками округления.