- **Задача 1.** Докажите, что дифференцирования $\frac{\partial}{\partial t_i}$ и $\frac{\partial}{\partial t_j}$ кольца многочленов $\mathbf{k}[t_1,...,t_n]$ коммутируют между собой, то есть $\frac{\partial}{\partial t_i} \circ \frac{\partial}{\partial t_j} = \frac{\partial}{\partial t_i} \circ \frac{\partial}{\partial t_j}$.
- **Задача 2.** Из курса матанализа известна формула Тейлора для многочлена Q(t) от одной переменной над полем \mathbf{k} . Напишите ее обобщение для случая многочлена $Q(t_1,...,t_n)$ от n переменных над \mathbf{k} .

Далее всюду предполагается, что $\mathbf{k} = \overline{\mathbf{k}}$, $\operatorname{char} \mathbf{k} \neq 2$.

- Задача 3. Пусть \mathcal{C} невырожденная коника в \mathbb{P}^2 . Пусть в 6-угольнике $ABCA_1B_1C_1$ две точки A и B совпали. Дайте синтетическое (т.е. невычислительное) доказательство теоремы Паскаля для такого 6-угольника (утверждающей, что три точки пересечения пар противоположных его сторон, то есть точки $M = (AB) \cap (A_1B_1)$, $N = (BC) \cap (B_1C_1)$, $P = (CA_1) \cap (C_1A)$, коллинеарны), если под его стороной AB понимать касательную $\mathbb{T}_A\mathcal{C}$ к конике \mathcal{C} в точке A.
- Задача 4. В условиях предыдущей задачи пусть коника $\mathcal C$ задана уравнением $\{\sum_{i,j=0}^2 a_{ij}x_ix_j=xAx^T=0\}$, где $x=(x_0,x_1,x_2)^T$ строка однородных координат в $\mathbb P^2$, $A=(a_{ij})$ невырожденная симметрическая (3×3) -матрица, а точка y имеет координаты $(y_0:y_1:y_2)$. На семинаре мы установили, что уравнение поляры p_y точки y относительно коники $\mathcal C$ есть линейное по координатам $(x_0:x_1:x_2)$ точки x уравнение вида $\{xAy^T=0\}$.
- 1) Докажите, что если $y \not\in \mathcal{C}$, то поляра p_y пересекает конику \mathcal{C} в двух различных точках.
- 2) Докажите, что если $y \in \mathcal{C}$, то поляра p_y имеет с \mathcal{C} единственную общую точку y, то есть $p_y = \mathbb{T}_y \mathcal{C}$.
- **Задача 5.** В условиях задачи 3 пусть $\check{\mathcal{C}}$ двойственная коника к конике \mathcal{C} , лежащая в двойственной проективной плоскости $\check{\mathbb{P}}^2$. (Определение двойственной коники $\check{\mathcal{C}}$ было дано на семинаре.) Сформулируйте для исходной коники \mathcal{C} теорему, двойственную к теореме Паскаля для двойственной коники $\check{\mathcal{C}}$. (Эта теорема называется теоремой Брианшона для коники \mathcal{C} .)

B=B, chark +2 $(x_0: \mathcal{X}_2: x_2) \in \mathbb{P}^2 \mathbb{P}(V),$ $\sum_{i,j=0}^{\infty} a_{i,j} x_i x_j =$ $y = (y_0 : y_1 : y_2)$ $y = (y_0, y_1, y_2)$ $C = \{ \vec{x} A \vec{x} = 0 \} = \{ x A x = 0 \}$ Th-ue nought Py morku y 2. C' une yp-ve $P_{y} = \left\{ xAy^{T} = 0 \right\} = \left\{ yAx^{T} = 0 \right\}$ $x A y^T = (x A y^T)^T = y A x^T$ B1B2 - 4x2 $\{a_1b\} = Cn(xy) \Rightarrow ab + xy$ $0 = x + \lambda y \Rightarrow \lambda_2 = -\lambda_1 \Rightarrow ab + xy$ $b = x + \lambda_2 y$ $0 = F(\alpha) = F(x+\lambda y) = (x+\lambda y)A(x+\lambda y) = xAx^{T} + \lambda(yAx^{T}+xAy^{T}) + xAy^{T}$ $+\lambda^{2}(yAy^{T})$ $0 = xAx^{T} + \lambda^{2}(yAy^{T}) \Rightarrow$ $\lambda_1 = \sqrt{-\frac{xAx^{T}}{yAy^{T}}} \neq 0$ Pagara.

Pyn $C = \{xAy^T = 0\} \cap \{xAx^T = 0\}$ Typing y = noons = n. $b \in P^2$, x = x = 0Typing y = noons = n. $b \in P^2$, x = x = 0 y = noons. y = noons = n. y = x = x = 0 y = noons. y = noons = n. y = x = x = 0Sagara. Eun $y \in C$, m.e. $y \neq y \neq y = 0$, mo $f \cap C = \{y\}$, m.e. f = T, 5cb'=0, x-compoka b'-completely $p: \mathbb{P}^2 \longrightarrow \mathbb{P}^2$, $y \mapsto p_y$ $y \mapsto y = (Ay^T)^T$ P: V - usone-u bekun. np.b - reborp. u-ya $C := k \omega + w k a = P(C) = \{ B \in \mathbb{P}^2 \mid B = y A, \iff y = b A^{-1} \}$ 6-cmpoka ko-am 6P2 $\begin{cases} O = (BA^{-1})A(A^{-1}B^{T}) = BA^{-1}B^{T} = 0 \end{cases}$ yh - ue we boutp: P2 —> P3 b -> P8, rge P8-varapa m. BE P2
omnoc. C $P(C) = C'_{-komuka} c yp-nen <math>x(A_{-}^{-1})^{-1}x^{-1} = 0 \beta P$ (C) = C npurusun gboucunbermochnu Dagara. Mesp. Hackard Mesp. Spuannona, gloucombenneau.