

Kapittel 17

Alkoholer og fenoler

Alkoholer, fenoler, etere og sulfider

- Litt navnsetting
- Fysikalske og kjemiske egenskaper
- Fremstillingsmetoder
- Typiske reaksjoner

Alkoholer

Navnsetting av alkoholer

- Finn den lengste kjeden som inneholder OH-gruppen og gi navn ved å tilføye -ol etter hydrokarbonets etterstavelse –an
- Nummerer kjeden fra den enden som er nærmest OH-gruppen, angi posisjonen (n) til OH som alkan-n-ol
- Navngi og nummerer andre substituenter; alfabetisk orden
- Nummerer posisjonene (m) til eventuelle dobbeltbindinger i kjeden som alk-m-en-n-ol

Noen egenskaper til alkoholer

Geometri

- sp³ hybridisert O-atom; to posisjoner opptas av ledige elektronpar
- Smeltepunkt og kokepunkt
 - Vesentlig høyere enn for hydrokarboner av tilsvarende størrelse eller molekylmasse
 - Hydrogenbindings-nettverk styrker tiltrekningen mellom molekylene i fast og flytende tilstand

Alkoholers syre-baseegenskaper

Syrestyrke
$$K_a = \frac{\left[A^-\right]\left[H_3O^+\right]}{\left[HA\right]}$$
 og $pK_a = -\log K_a$

- En sterk syre har lav p K_a , en svak syre har høy p K_a
- Alkoholer er (i likhet med vann)
 - Svake syrer
 - Svake baser
- Noen eksempler på p K_a -verdier:

 (CH₃)₃COH 	18.0		
- CH ₃ CH ₂ OH	16.0	⟨ <u>¯</u> ⟩—он	9.9
- H ₂ O	15.7		
− CH₃OH	15.5	$O_2N-\langle \overline{} \rangle -OH$	7.2
- CF ₃ CH ₂ OH	12.4	<u></u>	

Merk at fenoler er spesielt sure, fordi deres korresponderende baser er resonansstabiliserte

Fremstilling av alkoksider (RO-)

- Alkoholer er meget svake syrer og reagerer dermed ikke med svake baser
- Alkoholer kan danne alkoksider (alkoholat-anioner) ved behandling med
 - Alkalimetaller (Li, Na, K)
 - Sterke baser, som for eksempel
 - · Natriumhydrid, NaH
 - Natriumamid, NaNH₂
 - Grignardreagenser, RMgBr etc.
- Alkoksider er sterke baser og sterke nukleofiler og dermed viktige reagenser i organisk syntese

Fremstilling av alkoholer

- Alkoholer fra alkylhalider (kjent fra før)
 - Nukleofil substitusjon (S_N2 eller S_N1)
- Alkoholer fra alkener (kjent fra før):
 - H+, H₂O (Markovnikov)
 - BH₃, deretter H₂O₂ i basisk miljø (anti-Markovnikov)
 - Persyre RCO₃H, deretter H⁺/H₂O (trans diol)
- Alkoholer fra karbonylforbindelser (nytt!):
 - Reduksjon av aldehyder, ketoner, karboksylsyrer og estere
 - Addisjon av Grignard-reagenser til aldehyder, ketoner og estere

Primære alkoholer fra reduksjon av karbonylforbindelser

Reduksjon av aldehyd

O 1. NaBH₄
HO H
$$C$$
R
 C
H
 C
H
 C
H
 C
H
 C
H
 C
H

Reduksjon av ester

Reduksjon av karboksylsyre

O 1. LiAlH₄ HO H
$$C \longrightarrow C$$
R OH R R

Sekundære alkoholer fra reduksjon av karbonylforbindelser

Reduksjon av keton

Alkoholer – litt NMR-spektroskopi

¹H NMR av CH₃CH₂CH₂OH

Grignardreaksjonen: Syntese av alkoholer fra >C=O

Sekundær alkohol – Grignard-addisjon til aldehyd

Tertiær alkohol – Grignard-addisjon til keton

Tertiær alkohol – Grignard-addisjon til ester

Substitusjon på alkoholer

- Primære/sekundære alkoholer substitueres v.h.a.
 SOCl₂ eller PBr₃ og gir primære/sekundære alkylhalider
- Først blir OH omgjort til bedre utgående gruppe
- Deretter S_N2-mekanisme for selve substitusjonen

$$SOCI_2$$
 H
 $CI-C$
 H
inversjon på C-atomet

 PBr_3
 H

Substitusjon på alkoholer

- Tertiære alkoholer substitueres med HCI/HBr og gir tertiære alkylhalider
- Protonering av OH gir bedre utgående gruppe
- Deretter S_N1-mekanisme for selve substitusjonen

Dehydratisering av alkoholer (vannavspalting)

- Produserer alkener (Zaitsev regiokjemi)
 - Det høyst substituerte alkenet foretrekkes
- E1 eliminasjon i surt vandig miljø (kjent fra før):
 - Velegnet for tertiære alkoholer

Dehydratisering av alkoholer (vannavspalting)

- E2 eliminasjon i svakt basisk miljø (nytt!):
 - Unngår behov for bruk av sterk syre (som kan være ødeleggende for mange forbindelser). Milde betingelser.
 - Velegnet for sekundære og tertiære alkoholer
 - POCl₃ i pyridin (som fungerer som løsemiddel og base)
 - Først blir OH gjort om til bedre utgående gruppe
 - Pyridin opptrer som basen i eliminasjonstrinnet

$$CH_3$$
 $O=PCI_3$
 O
 O
 O
 O
 O
 O
 O
 O
 O

Estere fra alkoholer

 Reaksjoner med karboksylsyrer (likevekt)

 Reaksjoner med mer reaktive karboksylsyre-klorider (fullstendig mot høyre)

Mekanismer tas i forbindelse med kap. 21

Oksidasjon av alkoholer

- Primære alkoholer gir aldehyder eller karboksylsyrer
- CrO₃/H₂SO₄ eller K₂Cr₂O₇/H₂SO₄ (Jones' reagens) oksiderer direkte til karboksylsyre via aldehydet (som er mer reaktivt enn alkoholen)

 "Dess-Martin periodinan" oksiderer den primære alkoholen til aldehydet og stopper der:

Oksidasjon av alkoholer

- Sekundære alkoholer gir ketoner
 - Både CrO₃/H₂SO₄ og Dess-Martin fungerer bra
 - Natrium dikromat Na₂Cr₂O₇ i eddiksyre CH₃COOH er hyppig brukt

 Tertiære alkoholer oksideres ikke med de fleste vanlig brukte oksidasjonsmidler

Oksidasjon av alkoholer

Balansert ligning:

- Når vi lager 100,0 g sykloheksanon fra 101,9 g sykloheksanol, så lager vi også
 - 133,3 g Cr₂(SO₄)₃
 - 59,2 g K₂SO₄

Oksidasjon av alkoholer – et grønnere alternativ

Balansert ligning:

- Når vi lager 100,0 g sykloheksanon fra 101,9 g sykloheksanol, så lager vi også
 - 56,6 g CaCl₂