

General Description

The QM3006D is the highest performance trench N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The QM3006D meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- 100% EAS Guaranteed
- Green Device Available

Absolute Maximum Ratings

N-Ch 30V Fast Switching MOSFETs

Product Summery

BVDSS	RDSON	ID
30V	5.5mΩ	80A

Applications

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- Networking DC-DC Power System
- Load Switch

TO252 Pin Configuration

		Rating		
Symbol	Parameter	10s	Steady State	Units
V _{DS}	Drain-Source Voltage		30	V
V _{GS}	Gate-Source Voltage	<u>+</u>	20	V
I _D @T _C =25℃	Continuous Drain Current, V _{GS} @ 10V ¹		80	Α
I _D @T _C =100℃	Continuous Drain Current, V _{GS} @ 10V ¹		57	Α
I _D @T _A =25℃	Continuous Drain Current, V _{GS} @ 10V ¹	27	17	Α
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	23	14.5	А
I _{DM}	Pulsed Drain Current ² 160		160	Α
EAS	Single Pulse Avalanche Energy ³ 252		mJ	
I _{AS}	Avalanche Current 48		А	
P _D @T _C =25°C	Total Power Dissipation ⁴ 53		W	
P _D @T _A =25℃	Total Power Dissipation ⁴	6	2.4	W
T _{STG}	Storage Temperature Range	-55	-55 to 175	
TJ	Operating Junction Temperature Range	-55	-55 to 175	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction-ambient (Steady State) ¹		62	°C/W
$R_{ heta JA}$	Thermal Resistance Junction-Ambient ¹ (t ≤10s)		25	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-Case ¹		2.8	°C/W

N-Ch 30V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25 $^{\circ}{\mathbb{C}}$, I _D =1mA		0.028		V/°C
В	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =30A		4.7	5.5	mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =15A		7.5	9	1117.5
$V_{GS(th)}$	Gate Threshold Voltage)/ -\/ -250\	1.0	1.5	2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{GS} =V _{DS} , I _D =250uA		-6.16		mV/℃
	Drain Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55℃			5	— uA
I _{GSS}	Gate-Source Leakage Current	V_{GS} = $\pm 20V$, V_{DS} = $0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =30A		43		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7	3.1	Ω
Q_g	Total Gate Charge (4.5V)	V _{DS} =15V , V _{GS} =4.5V , I _D =15A		20	28	
Q_{gs}	Gate-Source Charge			7.6	10.6	nC
Q_{gd}	Gate-Drain Charge			7.2	10.1	1
T _{d(on)}	Turn-On Delay Time			7.8	15.6	
Tr	Rise Time	V_{DD} =15V , V_{GS} =10V , R_{G} =3.3 Ω		15	27	
T _{d(off)}	Turn-Off Delay Time			37.3	74.6	ns
T _f	Fall Time			10.6	21.2	
C _{iss}	Input Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		2295	3213	
C _{oss}	Output Capacitance			267	374	pF
C _{rss}	Reverse Transfer Capacitance			210	294	

Guaranteed Avalanche Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy ⁵	V _{DD} =25V , L=0.1mH , I _{AS} =24A	63			mJ

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous Source Current ^{1,6}	V V 0V 5 0:			80	Α
I _{SM}	Pulsed Source Current ^{2,6}	V _G =V _D =0V , Force Current			160	Α
V_{SD}	Diode Forward Voltage ²	V_{GS} =0 V , I_{S} =1 A , T_{J} =25 $^{\circ}$ C			1	V
t _{rr}	Reverse Recovery Time			14		nS
Qrr	Reverse Recovery Charge	lF=30A , dl/dt=100A/μs , T _J =25℃		5		nC

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =48A
- 4.The power dissipation is limited by 175 $^{\circ}\mathrm{C}$ junction temperature
- 5. The Min. value is 100% EAS tested guarantee.
- 6.The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation. \bigcirc by UBIQ Semiconductor Corp., All Rights reserved.

N-Ch 30V Fast Switching MOSFETs

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics of Reverse

Fig.5 Normalized V_{GS(th)} vs. T_J

Fig.2 On-Resistance vs. G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} vs. T_J

N-Ch 30V Fast Switching MOSFETs

Fig.7 Capacitance Fig.8 Safe Operating Area Normalized Thermal Response (Reac) DUTY=0.5 0.2 - 0.1 0.1 0.05 0.02 0.01 SINGLE 0.001 0.0001 0.001 0.1 0.00001 0.01 10 t, Pulse Width (s)

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform