Ensemble

Introduction

- We are almost at the end of the semester/final competition.
 - https://inclass.kaggle.com/c/ml2016-cyber-securityattack-defender/leaderboard
 - https://www.kaggle.com/c/outbrain-clickprediction/leaderboard
 - https://www.kaggle.com/c/transfer-learning-on-stackexchange-tags/leaderboard
- You already developed some algorithms and codes.
 Lazy to modify them.
- Ensemble: improving your machine with little modification

Framework of Ensemble

Get a set of classifiers

- Aggregate the classifiers (properly)
 - 在打王時每個人都有該站的位置

Ensemble: Bagging

Review: Bias v.s. Variance

Bagging

This approach would be helpful when your model is complex, easy to overfit.

e.g. decision tree

Decision Tree

Assume each object x is represented by a 2-dim vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

 $x_2 = 0.3$ $x_2 = 0.3$ $x_1 = 0.5$

The questions in training

number of branches, Branching criteria, termination criteria, base hypothesis

Can have more complex questions

Experiment: Function of Miku

http://speech.ee.ntu.edu.tw/~tlkagk/courses/ MLDS_2015_2/theano/miku

(1st column: x, 2nd column: y, 3rd column: output (1 or 0))

Random Forest

train	f_1	f ₂	f ₃	f ₄
X^1	0	X	0	X
x^2	0	X	X	0
x^3	X	0	0	X
x^4	X	0	X	0

- Decision tree:
 - Easy to achieve 0% error rate on training data
 - If each training example has its own leaf
- Random forest: Bagging of decision tree
 - Resampling training data is not sufficient
 - Randomly restrict the features/questions used in each split
- Out-of-bag validation for bagging
 - Using RF = f_2+f_4 to test x^1
 - Using RF = f_2+f_3 to test x^2
 - Using RF = $f_1 + f_4$ to test x^3
 - Using RF = f_1+f_3 to test x^4

Out-of-bag (OOB) error
Good error estimation
of testing set

Depth = 15 10

0

Depth = 20 00

Ensemble: Boosting

Improving Weak Classifiers

Boosting

Training data: $\{(x^1, \hat{y}^1), \cdots, (x^n, \hat{y}^n), \cdots, (x^N, \hat{y}^N)\}$ $\hat{y} = \pm 1$ (binary classification)

- Guarantee:
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - You can obtain 0% error rate classifier after boosting.
- Framework of boosting
 - Obtain the first classifier $f_1(x)$
 - Find another function $f_2(x)$ to help $f_1(x)$
 - However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
 - We want $f_2(x)$ to be complementary with $f_1(x)$ (How?)
 - Obtain the second classifier $f_2(x)$
 - Finally, combining all the classifiers
- The classifiers are learned sequentially.

How to obtain different classifiers?

- Training on different training data sets
- How to have different training data sets
 - Re-sampling your training data to form a new set
 - Re-weighting your training data to form a new set
 - In real implementation, you only have to change the cost/objective function

$$(x^{1}, \hat{y}^{1}, u^{1})$$
 $u^{1} = 1$ 0.4
 $(x^{2}, \hat{y}^{2}, u^{2})$ $u^{2} = 1$ 2.1

$$(x^3, \hat{y}^3, u^3)$$
 $u^3 = 1$ 0.7

$$L(f) = \sum_{n} l(f(x^n), \hat{y}^n)$$

$$L(f) = \sum_{n} u^{n} l(f(x^{n}), \hat{y}^{n})$$

Idea of Adaboost

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n \qquad \varepsilon_1 < 0.5$$

Changing the example weights from u_1^n to u_2^n such that

$$\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5$$
 The performance of f_{1} for new weights would be random.

Training $f_2(x)$ based on the new weights u_2^n

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

$$(x^{1}, \hat{y}^{1}, u^{1}) \quad u^{1} = 1 \qquad \qquad u^{1} = 1/\sqrt{3}$$

$$(x^{2}, \hat{y}^{2}, u^{2}) \quad u^{2} = 1 \qquad \qquad u^{2} = \sqrt{3}$$

$$(x^{3}, \hat{y}^{3}, u^{3}) \quad u^{3} = 1 \qquad \qquad u^{3} = 1/\sqrt{3}$$

$$(x^{4}, \hat{y}^{4}, u^{4}) \quad u^{4} = 1 \qquad \qquad u^{4} = 1/\sqrt{3}$$

$$\varepsilon_{1} = 0.25$$

$$f_{1}(x)$$

$$0.5$$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

```
\begin{cases} \text{If } x^n \text{ misclassified by } f_1 \ (f_1(x^n) \neq \hat{y}^n) \\ u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \quad \text{increase} \end{cases} If x^n correctly classified by f_1 \ (f_1(x^n) = \hat{y}^n) u_2^n \leftarrow u_1^n \text{ devided by } d_1 \quad \text{decrease} \end{cases}
```

 f_2 will be learned based on example weights u_2^n

What is the value of d_1 ?

$$\varepsilon_{1} = \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n}$$

$$\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \qquad f_{1}(x^{n}) \neq \hat{y}^{n} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1}$$

$$= \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} \qquad = \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{2}^{n} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{2}^{n}$$

$$= \sum_{n} u_{1}^{n} d_{1} \qquad = \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} d_{1}$$

$$= \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} d_{1}$$

$$\frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 2$$

$$\begin{split} \varepsilon_{1} &= \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n} \\ &\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \quad \frac{f_{1}(x^{n}) \neq \hat{y}^{n}}{f_{1}(x^{n}) = \hat{y}^{n}} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1} \\ &\frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 2 \quad \frac{\sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 1 \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} = \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} \quad \frac{1}{d_{1}} \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} = d_{1} \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} \\ &\varepsilon_{1} = \frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n}}{Z_{1}} \quad Z_{1}(1 - \varepsilon_{1}) \quad Z_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} \quad Z_{1}(1 - \varepsilon_{1}) / d_{1} = Z_{1}\varepsilon_{1} d_{1} \\ &\int_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{1} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} & J_{1}(1 - \varepsilon_{1}) / J_{2} = J_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n}$$

Algorithm for AdaBoost

- Giving training data
 - $\{(x^1, \hat{y}^1, u_1^1), \dots, (x^n, \hat{y}^n, u_1^n), \dots, (x^N, \hat{y}^N, u_1^N)\}$
 - $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - For n = 1, ..., N:

• If
$$x^n$$
 is misclassified classified by $f_t(x)$:
• $u^n_{t+1} = u^n_t \times d_t = u^n_t \times \exp(\alpha_t)$ $d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$

 $\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$

- $u_{t+1}^n = u_t^n/d_t = u_t^n \times \exp(-\alpha_t)$

$$u_{t+1}^n \leftarrow u_t^n \times exp(\quad \alpha_t)$$

Algorithm for AdaBoost

- We obtain a set of functions: $f_1(x), ..., f_t(x), ..., f_T(x)$
- How to aggregate them?
 - Uniform weight:

•
$$H(x) = sign(\sum_{t=1}^{T} f_t(x))$$

- Non-uniform weight:
 - $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

Smaller error ε_t , larger weight for final voting

$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$
 $\varepsilon^t = 0.1$ $\varepsilon^t = 0.4$ $u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n)\alpha_t)$ $\alpha^t = 1.10$ $\alpha^t = 0.20$

T=3, weak classifier = decision stump

• t=1

T=3, weak classifier = decision stump

• t=2
$$\alpha_1 = 0.42$$

$$d_2 = 0.21$$
 $d_2 = 1.94$

$$\alpha_2 = 0.66$$

T=3, weak classifier = decision stump

• t=3
$$a_1 = 0.42$$
 $a_2 = 0.66$

$$\varepsilon_3 = 0.13$$
 $d_3 = 2.59$
 $\alpha_3 = 0.95$

$$f_3(x)$$
:
 $\alpha_3 = 0.95$

• Final Classifier: $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

Warning of Math

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t f_t(x)\right) \quad \alpha_t = \ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}$$

As we have more and more f_t (T increases), H(x) achieves smaller and smaller error rate on training data.

Error Rate of Final Classifier

• Final classifier: $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

•
$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

Training Data Error Rate

$$=\frac{1}{N}\sum_{n}\delta(H(x^{n})\neq\hat{y}^{n})$$

$$= \frac{1}{N} \sum_{n} \underline{\delta(\hat{y}^n g(x^n) < 0)}$$

$$\leq \frac{1}{N} \sum_{n} \underline{exp(-\hat{y}^n g(x^n))}$$

Training Data Error Rate

$$\leq \frac{1}{N} \sum_{n} exp(-\hat{y}^n g(x^n)) = \frac{1}{N} Z_{T+1}$$

$$g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$$
$$\alpha_t = \ln \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$$

 Z_t : the summation of the weights of training data for training f_t

What is
$$Z_{T+1} = ?$$
 $Z_{T+1} = \sum_{n} u_{T+1}^{n}$

$$u_1^n = 1$$

$$u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n) \alpha_t)$$

$$u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n) \alpha_t)$$

$$Z_{T+1} = \sum_{n} \prod_{t=1}^{T} exp(-\hat{y}^n f_t(x^n) \alpha_t)$$

$$= \sum_{n} exp\left(-\hat{y}^n \sum_{t=1}^{T} f_t(x^n) \alpha_t\right)$$

Training Data Error Rate

$$\leq \frac{1}{N} \sum_{n} exp(-\hat{y}^n g(x^n)) = \frac{1}{N} Z_{T+1}$$

$$g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$$
$$\alpha_t = \ln \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$$

 $Z_1 = N$ (equal weights)

$$Z_{t} = \underline{Z_{t-1}\varepsilon_{t}}exp(\alpha_{t}) + \underline{Z_{t-1}(1-\varepsilon_{t})}exp(-\alpha_{t})$$

Misclassified portion in Z_{t-1} Correctly classified portion in Z_{t-1}

$$= Z_{t-1}\varepsilon_t\sqrt{(1-\varepsilon_t)/\varepsilon_t} + Z_{t-1}(1-\varepsilon_t)\sqrt{\varepsilon_t/(1-\varepsilon_t)}$$

$$= Z_{t-1} \times 2\sqrt{\varepsilon_t(1-\varepsilon_t)} \qquad Z_T$$

$$Z_{T+1} = N \prod_{t=1}^{I} 2\sqrt{\varepsilon_t (1 - \varepsilon_t)}$$

Training Data Error Rate
$$\leq \prod_{t=1}^{r} 2\sqrt{\epsilon_t(1-\epsilon_t)}$$

Smaller and smaller