Линейная алгебра

Дима Трушин

Семинар 5

Ранг системы векторов

Пусть V – некоторое векторное пространство. Системой векторов называется последовательность (v_1, \ldots, v_k) из векторов V, в которой векторы v_i могут повторяться.

По определению рангом системы (v_1, \ldots, v_k) называется максимальное количество линейно независимых векторов в этой системе. Ранг такой системы будет обозначаться $\mathrm{rk}(v_1, \ldots, v_k)$.

Утверждение. Если (v_1, \ldots, v_k) – некоторая система векторов в векторном пространстве V, то $\mathrm{rk}(v_1, \ldots, v_k) = \dim \langle v_1, \ldots, v_k \rangle$.

Матричный ранг

Пусть $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ – некоторая матрица. Сейчас я определю пять разных определений ранга матрицы. Все эти ранги между собой совпадают и полученная величина будет просто называться рангом матрицы A и обозначаться $\mathrm{rk}\,A$.

Определение. Пусть $A_1, \ldots, A_n \in \mathbb{R}^m$ – столбцы матрицы A, то есть $A = (A_1 | \ldots | A_n)$. Тогда столбцовым рангом матрицы A называется ранг системы (A_1, \ldots, A_n) , то есть $\mathrm{rk}_{\mathtt{столб}} A = \mathrm{rk}(A_1, \ldots, A_n)$.

Определение. Пусть $A_1, \ldots, A_m \in \mathbb{R}^n$ – строки матрицы A, то есть $A^t = (A_1 | \ldots | A_m)$. Тогда строковым рангом матрицы A называется ранг системы (A_1, \ldots, A_m) , то есть $\mathrm{rk}_{\mathrm{crp}} A = \mathrm{rk}(A_1, \ldots, A_m)$.

Определение. Факториальным рангом матрицы A называется следующее число

$$\min\{k \mid A = BC, \text{ где } B \in M_{m,k}(\mathbb{R}), C \in M_{k,n}(\mathbb{R})\}$$

то есть это минимальное число k такое, что матрица A представима в виде произведения матриц BC, где общая размерность для B и C, по которой они перемножаются, есть k.

Определение. Тензорным рангом матрицы А называется следующее число

$$\min\{k \mid A = x_1 y_1^t + \ldots + x_k y_k^t, \text{ где } x_i \in \mathbb{R}^m, y_i \in \mathbb{R}^n\}$$

то есть это минимальное число k такое, что матрица A представима в виде суммы k «тощих» матриц вида xy^t , где $x \in \mathbb{R}^m$ и $y \in \mathbb{R}^n$.

Если я в матрице A выделю какой-нибудь набор из k строк и одновременно набор из k столбцов, а потом возьму матрицу составленную из элементов на пересечении этих строк и столбцов, то я получу квадратную матрицу размера k. Такие матрицы мы будем называть квадратными подматрицами матрицы A.

Определение. Минорным рангом матрицы A называется размер наибольшей невырожденной квадратной подматрицы. 2

Главное для нас следующее утверждение.

Утверждение. Для любой матрицы $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ все пять видов ранга совпадают и не превосходят $\min(m,n)$.

¹В подобной ситуации повторяющиеся векторы различаются по индексу – «ключу».

²На самом деле можно дать более сильное определение, а именно, минорный ранг – это размер любой максимальной невырожденной подматрицы. То есть мы берем какую-то квадратную подматрицу, которая невырождена, а любая большая подматрица уже вырождена. Оказывается, что все максимальные невырожденные подматрицы имеют одинаковый размер и он называется минорным рангом.

Примеры

- 1. В начале заметим, что матрица имеет ранг 0 тогда и только тогда, когда A=0.
- 2. Ранг матрицы A равен единице тогда и только тогда, когда она не нулевая и все столбцы пропорциональны одному общему столбцу (или что эквивалентно, все строки пропорциональны одной общей строке). Если воспользоваться определением факториального ранга, то мы видим, что тогда матрица A имеет вид $A = xy^t$, где $x \in \mathbb{R}^m$ и $y \in \mathbb{R}^n$ ненулевые вектора.

Свойства ранга

Прежде всего надо запомнить как ранг связан с матричными операциями.

Утверждение. Пусть $A, B \in M_{m,n}(\mathbb{R})$, тогда

$$|\operatorname{rk} A - \operatorname{rk} B| \leq \operatorname{rk}(A+B) \leq \operatorname{rk} A + \operatorname{rk} B$$

Надо понимать, что, во-первых, все эти эффекты можно увидеть на диагональных матрицах; во-вторых, все границы неравенств достигаются. Смысл этого утверждения вот в чем: если вы шевелите матрицу A с помощью матрицы B, то ранг A может измениться не более чем на ранг B в любую сторону. Теперь посмотрим на матрицы: $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ и C = -A. Тогда $\operatorname{rk}(A + B) = \operatorname{rk} A + \operatorname{rk} B$ и $\operatorname{rk}(A + C) = \operatorname{rk} A - \operatorname{rk} C$.

Утверждение. Пусть $A \in M_{m,n}(\mathbb{R})$ и $B \in M_{n,k}(\mathbb{R})$, тогда

$$\operatorname{rk} A + \operatorname{rk} B - n \leqslant \operatorname{rk}(AB) \leqslant \min(\operatorname{rk} A, \operatorname{rk} B)$$

Как и в предыдущем случае, все обе границы неравенства достигаются и все можно пронаблюдать на диагональных матрицах. Пусть $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ и $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Тогда $\operatorname{rk}(AA) = \operatorname{rk} A$ и $\operatorname{rk}(AB) = \operatorname{rk} A + \operatorname{rk} B - 2$.

Утверждение. Пусть $A \in M_n(\mathbb{R})$ – квадратная матрица. Тогда $\operatorname{rk} A = n$ тогда и только тогда, когда A невырождена, т.е. $\det A \neq 0$.

Таким образом на ранг можно смотреть как на степень невырожденности матрицы A. Самый высокий ранг у невырожденных матриц, самый маленький у нулевой, но есть еще и промежуточные состояния.

Утверждение. Если матрица $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ находится в ступенчатом виде и имеет k ступенек, то ее ранг равен k.

Это утверждение вместе со следующим дают эффективный способ считать ранг.

Утверждение. Для любой матрицы $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ и любых невырожденных матриц $C \in \mathrm{M}_m(\mathbb{R})$ и $D \in \mathrm{M}_n(\mathbb{R})$ верно: $\mathrm{rk}\,A = \mathrm{rk}(CA) = \mathrm{rk}(AD)$.

В частности ранг матрицы не меняется при элементарных преобразованиях столбцов и строк. Обычно этим пользуются для нахождения ранга. Более того, если $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ имеет ранг r, то элементарными преобразованиями строк и столбцов она приводится к виду

$$A\mapsto egin{pmatrix} E & 0 \ 0 & 0 \end{pmatrix},$$
 где $E\in \mathrm{M}_r(\mathbb{R})$ – единичная матрица

Следствием данного замечания является следующее.

Утверждение. Для любых матриц $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ и $B \in \mathrm{M}_{s\,t}(\mathbb{R})$ имеем

$$\operatorname{rk}\begin{pmatrix} A & 0\\ 0 & B \end{pmatrix} = \operatorname{rk} A + \operatorname{rk} B$$

 $^{^3{}m B}$ частности ранг не меняется при элементарных преобразованиях строк и столбцов.

Линейные отображения

Пусть V и U — векторные пространства, например, можно считать, что $V=\mathbb{R}^n$, а $U=\mathbb{R}^m$. Напомню, что линейным отображение $\phi\colon V\to U$ — это отображение, удовлетворяющее двум условиям: (1) $\phi(v+u)=\phi(v)+\phi(u)$ для всех $v,u\in V$ и (2) $\phi(\lambda v)=\lambda\phi(v)$ для всех $v\in V$ и $\lambda\in\mathbb{R}$. Если при этом ϕ бьет из одного пространства, в то же самое, т.е. $\phi\colon V\to V$, то ϕ называется линейным оператором. Напомню, что множество всех линейных отображений из V в U обозначается Hom(V,U).

Правильно думать про линейные операторы как про «линейные деформации пространства V». Например, в \mathbb{R}^n мы можем делать растяжения вдоль координатных осей (на самом деле растяжения вдоль любых прямых годятся). Или можем делать повороты вокруг каких-то прямых. Можно «наклонить» одну координатную ось, зеркальная симметрия, симметрия относительно прямой, плоскости, проекция вектора на прямую, плоскость и еще куча других преобразований описывается линейными операторами.

Важный вопрос: а как задавать линейные отображения и операторы? Оказывается для этого достаточно знать куда отправляется базис.

Утверждение. Пусть e_1, \ldots, e_n – некоторый базис векторного пространства V и u_1, \ldots, u_n – произвольный набор векторов другого пространства U. Тогда существует единственное линейное отображение $\phi: V \to U$ такое, что $\phi(e_i) = u_i$.

Доказательство. Действительно, пусть $v=x_1e_1+\ldots+x_ne_n$ – произвольный вектор из V. Тогда, если ϕ существует, то он должен действовать по правилу

$$\phi(v) = \phi(x_1 e_1 + \dots + x_n e_n) = x_1 \phi(e_1) + \dots + x_n \phi(e_n) = x_1 u_1 + \dots + x_n u_n$$

С другой стороны, легко видеть, что данное равенство однозначно задает линейное отображение.

В частности этот критерий позволяет отвечать на вопросы следующего вида: существует ли отображение $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$, со следующим свойством

$$\phi\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}-1\\1\end{pmatrix}, \quad \phi\begin{pmatrix}1\\-1\end{pmatrix}=\begin{pmatrix}2\\0\end{pmatrix}, \quad \phi\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}1\\1\end{pmatrix}$$

В данном случае векторы

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

являются базисом, а

$$v_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{2}(v_1 + v_2)$$

По утверждению, векторы v_1 и v_2 можно отправить куда угодно и тогда найдется единственное $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ со свойствами

$$\phi\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}-1\\1\end{pmatrix},\quad \phi\begin{pmatrix}1\\-1\end{pmatrix}=\begin{pmatrix}2\\0\end{pmatrix}$$

Теперь осталось лишь проверить, удовлетворяет ли наше ϕ последнему свойству. С одной стороны мы хотим, чтобы

$$\phi\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\1\end{pmatrix}$$

С другой стороны, как мы выяснили $v_3 = \frac{1}{2}(v_1 + v_2)$. Значит

$$\phi(v_3) = \frac{1}{2}(\phi(v_1) + \phi(v_2)) = \frac{1}{2}\left(\begin{pmatrix} -1\\1 \end{pmatrix} + \begin{pmatrix} 2\\0 \end{pmatrix}\right) = \frac{1}{2}\begin{pmatrix} 1\\1 \end{pmatrix}$$

Не сходится. Значит, не существует. Если бы сошлось, то существовал бы. Отметим, что наивный подход заключается в том, чтобы задать отображение ϕ в виде $x\mapsto Ax$, где $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Тогда условия на ϕ можно переписать как систему линейных уравнений на a,b,c,d. Три вектора, по две координаты, будет всего 6 условий и 4 неизвестные. Это намного неприятнее, чем предложенный выше метод.

Линейные отображения между \mathbb{R}^n и \mathbb{R}^m

В случае $V=\mathbb{R}^n$ и $U=\mathbb{R}^m$ мы можем полностью описать линейные отображения в терминах матриц. Действительно, пусть (в обозначениях предыдущего утверждения) $\phi(e_i)=u_i=\begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix}$, где e_i – стандартный базисный вектор \mathbb{R}^n . Тогда

$$\phi\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \phi(x_1e_1 + \ldots + x_ne_n) = x_1u_1 + \ldots + x_nu_n = x_1\begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \ldots + x_n\begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \ldots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пристально вглядевшись в то, что мы только что сделали, можно получить следующее.

Утверждение. Отображение $M_{m\,n}(\mathbb{R}) \to \operatorname{Hom}(\mathbb{R}^n,\mathbb{R}^m)$, которое каждой матрице A ставит в соответствие линейное отображение ϕ_A , действующее $\phi_A(x) = Ax$, где $x \in \mathbb{R}^n$, является изоморфизмом векторных пространств, т.е. это правило биективно и $\phi_{A+B} = \phi_A + \phi_B$ и $\phi_{\lambda A} = \lambda \phi_A$.

Заметим, что под действием биекции из упражнения выше операция композиции линейных отображений соответствует операции умножения матриц: если $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ и $B \in \mathrm{M}_{n\,k}(\mathbb{R})$, то они соответствуют $\phi_A \colon \mathbb{R}^n \to \mathbb{R}^m$ и $\phi_B \colon \mathbb{R}^k \to \mathbb{R}^n$. Тогда $\phi_A \phi_B \colon \mathbb{R}^k \to \mathbb{R}^m$ совпадает с ϕ_{AB} . Таким образом, как только в пространствах V и U выбраны базисы, нет разницы между изучением линейных отображений и матриц.

Удобный формализм

Матрица линейного отображения Пусть у нас есть линейное отображение $\phi: V \to U$ и пусть e_1, \ldots, e_n – некоторый базис V и f_1, \ldots, f_m – некоторый базис U. Тогда каждый вектор $\phi(e_i)$ является линейной комбинацией векторов f_i , т.е. $\phi(e_i) = a_{1i}f_1 + \ldots + a_{mi}f_m$. Это можно записать в матричном виде так

$$(\phi(e_1) \dots \phi(e_n)) = (f_1 \dots f_m) \begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \dots & a_{mn} \end{pmatrix}$$

или еще короче

$$\phi(e_1 \dots e_n) = (f_1 \dots f_m) A$$

Здесь $\phi(e_1,\ldots,e_n)$ имеется в виду покомпонентное умножение вектора из e_i на ϕ слева. Это одна из форм блочного умножения матриц. Матрица A в этом случае называется матрицей линейного отображения ϕ в базисах e_i и f_i .

Действие линейного отображения в координатах Пусть теперь $v \in V$ – некоторый вектор, который раскладывается по базису $v = x_1 e_1 + \ldots + x_n e_n = (e_1, \ldots, e_n)x$, где $x \in \mathbb{R}^n$. Тогда

$$\phi(v) = \phi(e_1, \dots, e_n)x = (f_1, \dots, f_m)Ax$$

То есть вектор $\phi(v)$ раскладывается по базису f_i с координатами Ax. Значит в координатах, наше линейное отображение задается по правилу $x\mapsto Ax$. На этот факт можно смотреть так. Если есть отображение $\phi\colon V\to U$, то после выбора базиса в V оно превращается в \mathbb{R}^n , после выбора базиса в U оно превращается в \mathbb{R}^m , а ϕ должен превратиться в отображение умножения на некоторую матрицу слева. Так вот матрица линейного оператора для ϕ – это в точности та самая матрица, в которую превратился ϕ после выбора базиса.

Смена базиса и линейные отображения

Линейные отображения – это отображения прежде всего и потому они ничего не знают про выбор базиса. С другой стороны, такие отображения задаются разными матрицами в разных базисах. Тут есть пара вещей которые надо понимать: (1) как меняется матрица линейного отображения и (2) смена базиса позволяет упростить вид матрицы.

Начнем с первого вопроса. Тут есть две ситуации: $\phi\colon V\to U$ и $\phi\colon V\to V$, т.е. случай общего линейного отображения и случай линейного оператора. Главная разница в том, что в первом случае мы можем менять одновременно два базиса и в области определения ϕ и в области куда ϕ бьет. Во втором случае, базисы меняются одновременно.

Утверждение. Пусть e_1, \ldots, e_n и e'_1, \ldots, e'_n – два базиса V, также f_1, \ldots, f_m и f'_1, \ldots, f'_m – два базиса U. Пусть

$$(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C\ u\ (f'_1,\ldots,f_m)=(f_1,\ldots,f_m)D$$

где $C \in \mathrm{M}_n(\mathbb{R})$ и $D \in \mathrm{M}_m(\mathbb{R})$ – матрицы перехода. Если ϕ задается матрицей A в базисах e_i и f_i , то в базисах e_i' и f_i' он задается матрицей $D^{-1}AC$.

Доказательство. Для доказательства воспользуемся замечанием из предыдущего раздела. Нам известно, что $\phi(e_1,\ldots,e_n)=(f_1,\ldots,f_m)A$, а надо найти матрицу A' такую, что $\phi(e'_1,\ldots,e'_n)=(f'_1,\ldots,f'_m)A'$. Давайте посчитаем:

$$\phi(e'_1 \dots e'_n) = \phi(e_1 \dots e_n) C = (f_1 \dots f_m) AC = (f'_1 \dots f'_m) D^{-1}AC$$

Значит $A' = D^{-1}AC$, что и требовалось.

Следствие. Если $\phi: V \to V$ в базисе e_1, \ldots, e_n записывается матрицей A, то в базисе e'_1, \ldots, e'_n заданном $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C$, ϕ записывается матрицей $C^{-1}AC$.

Смена базиса в координатах

Пусть теперь $V=\mathbb{R}^n$ и $U=\mathbb{R}^m$, также e_1,\ldots,e_n обозначает стандартный базис в \mathbb{R}^n и f_1,\ldots,f_m – стандартный базис в \mathbb{R}^m . Пусть e'_1,\ldots,e'_n – другой базис \mathbb{R}^n . Это вектор столбцы, из которых я могу соорудить матрицу $C\in \mathrm{M}_n(\mathbb{R})$, поставив e'_i подряд в качестве столбцов. Аналогично, если f'_1,\ldots,f'_m – другой базис из \mathbb{R}^m я могу составить из них матрицу $D\in \mathrm{M}_m(\mathbb{R})$. Обе матрицы C и D невырождены.

Любой вектор $v \in \mathbb{R}^n$ можно записать как

$$v=x_1e_1+\ldots+x_ne_n=egin{pmatrix} x_1\ dots\ x_n \end{pmatrix}$$
 в этом случае мы говорим, что задали его в координатах x_i

С другой стороны, мы можем записать v так

$$v=y_1e_1'+\ldots+y_ne_n'=Cegin{pmatrix} y_1\ dots\ y_n \end{pmatrix}$$
 в этом случае мы говорим, что задали его в координатах y_i

Аналогично в пространстве \mathbb{R}^m любой вектор u может быть записан в двух системах координат:

$$u=w_1f_1+\ldots+w_mf_m=egin{pmatrix}w_1\ dots\ w_m\end{pmatrix}$$
 или $u=z_1f_1'+\ldots+z_mf_m'=Degin{pmatrix}z_1\ dots\ z_m\end{pmatrix}$

Пусть теперь наше отображение $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ задано матрицей A, то есть вектор в координатах x_i переходит в вектор в координатах w_i по правилу

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
или кратко $x \mapsto w = Ax$

Мы хотим переписать ϕ в координатах y_i и z_i , то есть записать отображение ϕ в виде $y\mapsto z=A'y$. Для этого надо пройти по следующей диаграмме

$$x = Cy \longmapsto w = Ax = ACy$$

$$\downarrow \qquad \qquad \downarrow$$

$$y \longmapsto z = D^{-1}w = D^{-1}ACy$$

Стартуем с координат y (левый нижний угол). По ним сначала рассчитываем координаты x (вверх по диаграмме). Потом действуем отображением ϕ с помощью матрицы A и получаем вектор $\phi(v)$ в координатах w (вправо по стрелке). Потом пересчитываем координаты w в координаты z (вниз по диаграмме). В результате получаем, что $y \mapsto z = D^{-1}ACy$, т.е. $A' = D^{-1}AC$.

 $[\]overline{\ \ }^4$ В этом случае мы также имеем $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C$. Это лишь другой способ описать ту же конструкцию, что и в предыдущем пункте. В столбцах матрицы C стоят координаты векторов e'_i относительно стандартного базиса e_i .

Образ и ядро отображения

Если ϕ : $V \to U$ — линейное отображение (как и выше $V = \mathbb{R}^n$ и $U = \mathbb{R}^m$), то с ним можно связать два подпространства. Первое из них — $s\partial po$ ϕ , а именно: $\ker \phi = \{v \in V \mid \phi(v) = 0\}$. Второе — $s\partial po$ ϕ : $\ker \phi = \{v \in V \mid \phi(v) = 0\}$. Второе — $s\partial po$ ϕ : $\ker \phi = \{v \in V \mid \phi(v) = 0\}$.

Связь со СЛУ Пусть ϕ задается матрицей $A \in M_{mn}(\mathbb{R})$, то есть наше отображение имеет вид $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ по правилу $x \mapsto y = Ax$, здесь $x \in \mathbb{R}^n$ и $y \in \mathbb{R}^m$.

- Ядро это пространство решений однородной системы линейных уравнений $\{y \in \mathbb{R}^n \mid Ay = 0\}$.
- Образ. Введем следующие обозначения для столбцов матрицы A: $A = (A_1 | \dots | A_n)$. Тогда по определению в образе ϕ лежат все возможные векторы вида Ax. Давайте распишем это так:

$$\operatorname{Im} \phi = \{Ax \mid x \in \mathbb{R}^n\} = \{x_1 A_1 + \ldots + x_n A_n \mid x_i \in \mathbb{R}\} = \langle A_1, \ldots, A_n \rangle$$

То есть образ – это линейная оболочка столбцов матрицы A. Если e_1, \ldots, e_n – это стандартный базис \mathbb{R}^n , то есть все координаты e_i кроме i-ой равны нулю, а i-я равна единице, тогда i-ый столбец матрицы A – это образ вектора e_i .

- Прообраз вектор. Пусть мы зафиксировали вектор $b \in \mathbb{R}^m$ и хотим найти все векторы $x \in \mathbb{R}^n$ такие, что они переходят в b под действием ϕ . Тогда это означает, что нам надо решить уравнение Ax = b, то есть решение неоднородной системы означает, что мы ищем прообраз к некоторому вектору.
- Связь между ОСЛУ и СЛУ. Пусть x_0 произвольное решение для Ax = b и $\ker \phi = \{y \in \mathbb{R}^n \mid Ax = 0\}$ решения однородной системы. Тогда все решения системы Ax = b имеют вид $x_0 + z$, где $z \in \ker \phi$. То есть прообраз любого вектора b является сдвигом ядра отображения ϕ . Однако, обратите внимание, прообраз вектора b может быть пуст, а ядро всегда не пусто, в нем как минимум всегда найдется нулевой вектор. Таким образом ядро отвечает за единственность решения, если оно есть.

Полезно понимать, что для любого b найдется прообраз относительно ϕ , если в системе Ax=0 (или Ax=b) количество главных переменных равно количеству строк матрицы A, то есть m. В терминах ранга это означает, что $\operatorname{rk} A=m$.

Свойсва ядра и образа

Утверждение. Пусть V и U – векторные пространства и $\varphi \colon V \to U$ – линейное отображение. Тогда

- 1. φ сюръективно тогда и только тогда, когда ${\rm Im}\, \varphi = U$.
- 2. φ инъективно тогда и только тогда, когда $\ker \varphi = 0$.
- 3. $\dim \ker \varphi + \dim \operatorname{Im} \varphi = \dim V$.

Доказательство. (1) Это просто переформулировка сюръективности на другом языке.

- (2) Так как $\ker \varphi = \varphi^{-1}(0)$ и прообраз всегда содержит 0, то из инъективности вытекает, что $\ker \varphi = 0$. Наоборот, пусть $\varphi(v) = \varphi(v')$, тогда $\varphi(v) \varphi(v') = 0$. А значит, $\varphi(v v') = 0$. То есть v v' лежит в ядре, а значит равен 0, что и требовалось.
 - (3) Этот пункт я пояснять не буду.

Еще полезно понимать, что если в пространствах V и U задать пару подпространств $V' \subseteq V$ и $U' \subseteq U$ такую, что $\dim V' + \dim U' = \dim V$, то найдется (и не одно) линейное отображение $\phi \colon V \to U$ такое, что $\ker \phi = V'$, а $\operatorname{Im} \phi = U'$.

 $^{^5}$ В англоязычной технической литературе ядро еще называют nullspace, что можно перевести как нулевой пространство.