

Integración de aplicaciones con SOA

Sesión 2: Arquitecturas orientadas a servicios

Puntos a tratar

- Razones para introducir SOA
- El concepto de servicio
- Definición de SOA
- Capas en aplicaciones orientadas a servicios
- El gobierno SOA
- SOA y JBI
- SOA y Servicios Web
- SOA y BPM

Razones para introducir SOA

 El software de empresa está condicionado por requerimientos cambiantes que pueden entrar

"El software de empresa es un animal diferente" (Dirk Krafzig)

Arquitectura del Software de empresa

Los arquitectos software utilizan la refactorización para luchar con el aumento continuo de la complejidad del sistema

Carácterísticas deseables del sw de empresa

- Simplicidad
- Flexibilidad y mantenibilidad
- Reusabilidad
- Desacoplamiento entre funcionalidad y tecnología
- Objetivo: conseguir una empresa ÁGIL

SOA posee estas características

SOA y sus beneficios

 Los procesos y servicios pueden ser rápidamente creados, configurados y reorganizados sin necesidad de personal técnico

El concepto de "servicio"

 Módulo de aplicación autocontenido que es remotamente accesible

Características de un servicio

- Oculta detalles técnicos como la búsqueda y localización del servicio
- Proporcionan funcionalidad de negocio
- No se diseñan para un cliente específico
- Una SOA proporciona acceso "uniforme" a todos los servicios
- Diferencias significativas con objetos:
 - Interfaz orientada a datos (en vez de a comportamiento)
 - Desacoplamiento de datos y comportamiento
 - Un servicio provoca un cambio de estado

SOA: Definición

- Una arquitectura orientada a servicios (SOA) es una arquitectura software basada en los conceptos clave de frontend de aplicaciones, servicio, repositorio de servicios, y bus de servicios
- El concepto de una SOA se centra en la definición de una infraestructura de negocio

SOA: elementos que la componen

Frontend

- Inician y controlan todas las actividades de los sistemas corporativos
- Los frontends de aplicaciones son similares a las capas de nivel más alto en las arquitecturas multi-capa tradicionales

Servicios

Los servicios son el "CORAZÓN" de una arquitectura SOA

Servicio

Interfaz A

- Operación 1
- Operación 2
- Operación 3
- ...

Interfaz B

- Operación 1
- Operación 2
- ...

Contrato del servicio

Implementación

Lógica del negocio

Los servicios deben ser...

- Débilmente acoplados
- De grano grueso (coarse-grained)
- Centrados en el negocio
- Reutilizables

Repositorio de servicios

- Proporciona facilidades para encontrar servicios y adquirir toda la información para utilizar dichos servicios.
- Búsqueda y enlazado (binding) de servicios:
 - En tiempo de desarrollo
 - En tiempo de ejecución
- Niveles de búsqueda y enlazado dinámico:
 - Por nombre
 - Por propiedades
 - Basada en reflection

Búsqueda y *binding* de servicios en tiempo de desarrollo

Bus de servicios

 Proporciona un entorno de ejecución para desplegar los servicios y permitir que se pueda definir la interacción entre dichos servicios (p.ej. orquestación)

Características de un bus de servicios

- Conectividad
- Heterogeneidad de tecnología
- Heterogeneidad de conceptos de comunicación
- Servicios técnicos

Capas en aplicaciones orientadas a servicios

Capa de servicios

- El mayor reto cuando construimos una aplicación orientada a servicios es crear una interfaz con el nivel adecuado de abstracción
- Tenemos dos posibilidades a la hora de construir un servicio:
 - aproximación top-down
 - aproximación bottom-up.

Capa de lógica de negocio

- El principal beneficio que proporciona SOA es la estandarización del modelado de procesos de negocio (orquestación de servicios)
 - BPEL: Estándar de OASIS
 - BPEL es un lenguaje de programación, pero su representación es XML

El gobierno SOA (SOA governance)

- Governance: acción o forma de gobernar
- Marco de toma de decisiones y responsabilidades que fomenta un comportamiento deseable en las IT
- Un equipo de gobierno de IT debe tratar tres cuestiones:
 - ¿Qué decisiones debemos tomar para asegurar una gestión y uso efectivos de la IT?
 - ¿Quién debe tomar dichas decisiones?
 - ¿Cómo se van a tomar dichas decisiones y cómo pueden monitorizarse?

Responsabilidades de gobierno

Strategic Alignment	Value Delivery	Risk Management	Resource Management	Performance Measurement
IT and SOA Principles				
IT Architecture and Service Model				
IT Infrastructure Services supporting Enterprise Services				
Business Application Needs				
IT Investment and Prioritization				

Implementación del gobierno

JBI

- JBI (Java Business Integration) es un estándar basado en Java que aborda las cuestiones principales sobre EAI y B2B, y que está basado en los paradigmas y principios que defiende SOA.
- Actualmente JSR 208 (JSR: Java Specification Request)
- JBI define una arquitectura basada en plug-ins en la que los servicios pueden ser plugged en el entorno de ejecución de JBI.

JSR 208: Ventajas

- Es en sí misma una arquitectura orientada a servicios
- Las máquinas de servicios podrían implementarse en cualquier lenguaje siempre y cuando soporten la definición SPI
- Pueden añadirse nuevas máquinas en el contenedor definiendo los mensajes que utilizarán para interactuar con el resto del sistema.
- Interfaces abiertas

Elementos clave de un entorno JBI

Modelo de componentes JBI

- Componentes de la máquina de servicios (SE: Service Engine)
 - responsables de la implementación de la lógica del negocio y otros servicios
- Componentes de enlazado (BC: Binding components)
 - se utilizan principalmente para proporcionar enlaces a nivel de transporte para los servicios desplegados

Modelo de mensajes JBI

- JBI utiliza un modelo de mensajes que desacopla los consumidores de servicios de los proveedores de servicios.
- El modelo de mensajes se define utilizando WSDL
- Se requiere que los servicios tengan interfaces, formadas por un conjunto de operaciones.
 Cada operación está formada por uno o más mensajes. Un interfaz puede tener uno o más bindings a nivel de transporte.

Elementos clave JBI

- Una forma flexible y abierta de ensamblar las máquinas de ejecución y las comunicaciones que consiguen una solución de integración SOA
- "Service Assembly" Permite definir en un único documento todos los artefactos y servicios que forman una aplicación SOA

SOA y JBI

- SOA
 - Aproximación por capas
 - Elementos integrados y Compartidos: Servicios, Procesos,...
 - Basado en estándares: BPEL, JBI, WSDL,...
- JBI (and JBI-based ESB)
 - Estandariza los componentes de integración "pluggables"
 - Estandariza a administración de los servicios compuestos
 - Estandariza el intercambio de mensajes
 - Proporciona un meta-contenedor SOA con bajo acoplamiento

SOA y Servicios Web (I)

- SOA y Servicios Web NO son sinónimos
- SOA es un principio de diseño, mientras que los servicios Web son una tecnología de implementación
- Una de las principales ventajas de implementar una SOA con servicios Web es que los servicios Web están muy extendidos y constituyen una plataforma sencilla y sobre todo neutral

SOA y Servicios Web (II)

- La combinación de servicios Web y SOA proporciona una integración rápida
- Las aplicaciones pueden intercambiar datos más fácilmente utilizando un servicio Web definido en la capa de lógica de negocio
- El desarrollo de puntos de entrada orientados a servicios en la capa de lógica de negocio permiten a una máquina de gestión de procesos de negocio llevar a cabo un flujo automático de ejecución a través de los múltiples servicios

BPM

- BMP: Business Process Management
- La BMP se encarga de identificar, modelar, desarrollar, desplegar y gestionar sus procesos de negocio
- Ventajas de las BMP:
 - Reducen diferencias entre requerimientos del negocio y de las IT
 - Incrementan la productividad de los empleados
 - Incrementan la flexibilidad y agilidad de la empresa
 - Reduce los costes de desarrollo

Relación entre BMP y SOA

¿Preguntas...?