# 第7章 增征值与增征向量

1. 设 
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ x & y & z \\ 0 & 0 & 1 \end{bmatrix}$$
,且  $\mathbf{A}$  的特征值为 1,2,3,则有( ).

$$(A)x = 2, y = 4, z = 8$$

(B)
$$x = -1, y = 4, z \in \mathbf{R}$$

$$(C)x = -2, y = 2, z \in \mathbf{R}$$

(D)
$$x = -1, y = 4, z = 3$$

**2.** 已知  $\alpha_1 = [-1,1,a,4]^T, \alpha_2 = [-2,1,5,a]^T, \alpha_3 = [a,2,10,1]^T$  是 4 阶方阵 **A** 的 3 个不同特 征值对应的特征向量,则 a 的取值范围为( ).

$$(A)a \neq 5$$

(A) 
$$a \neq 5$$
 (B)  $a \neq -4$  (C)  $a \neq -3$ 

$$(C)a \neq -3$$

(D)
$$a \neq -3$$
且 $a \neq -4$ 

- 3. 设 n 阶矩阵 A 的元素全是 1,则 A 的 n 个特征值是 .
- 4. 设  $\mathbf{A} = \mathbf{E} + \alpha \mathbf{\beta}^{\mathrm{T}}$ ,其中  $\alpha$ ,  $\beta$  均为 n 维列向量,  $\alpha^{\mathrm{T}} \beta = 3$ ,则  $|\mathbf{A} + 2\mathbf{E}| =$
- 5. 设 A 是 3 阶矩阵,|A| = 3,且满足  $|A^2 + 2A| = 0$ , $|2A^2 + A| = 0$ ,则  $A^*$  的特征值是
- 6. 设 A 是 3 阶矩阵, $\xi_1$ , $\xi_2$ , $\xi_3$  是三个线性无关的 3 维列向量,满足  $A\xi_i = \xi_i$ ,i = 1, 2, 3,则

7. 设 
$$\mathbf{A} = \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix}$$
,求  $\mathbf{A}$  的特征值和全部特征向量.

8. 设矩阵
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{bmatrix}$$
,  $\boldsymbol{\alpha} = [1, k, -1]^{T} \mathbf{A}$  的伴随矩阵 $\mathbf{A}^{*}$  对应于特征值 $\lambda$ 的一个

特征向量,求满足条件的常数 k.

10. 设 A 为 n 阶矩阵,  $\lambda_1$  和  $\lambda_2$  是 A 的两个不同的特征值,  $x_1$ ,  $x_2$  是 A 的分别属于  $\lambda_1$  和  $\lambda_2$  的特征 向量.证明: $x_1 + x_2$  不是 A 的特征向量. 考研人的精神家园

微信公众号: 神灯考研

客服微信: KYFT104

QQ群: 118105451



1. 设矩阵  $\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$  可逆,向量  $\boldsymbol{\alpha} = \begin{bmatrix} 1, b, 1 \end{bmatrix}^{\mathrm{T}}$  是矩阵  $\mathbf{A}^*$  对应于特征值  $\lambda$  的一个特征向量,

b > 0,则 $(a,b,\lambda)$ 为(

$$(A)\left(\frac{2}{3},\frac{5}{3},1\right)$$

(B) 
$$\left(\frac{2}{3}, \frac{5}{3}, 4\right)$$

(C) (2,1,1)

(D) (2,2,4)

2. 设矩阵 A 满足  $A^3 - A^2 = A - E$ ,则(

- (A)A + E 与 A E 都不可逆
- (B)A + E 与 A E 至少有一个可逆
- (C)A + E 与 A E 有且仅有一个可逆
- (D)A + E 与 A E 至 多 有 一 个 可 逆
- 3. 已知 A 是 3 阶矩阵,r(A) = 1,则  $\lambda = 0$
- (A) 必是 A 的二重特征值

(B) 至少是  $\mathbf{A}$  的二重特征值

(C) 至多是 A 的二重特征值

- (D) 是一重、二重、三重特征值都可能
- 4. 设  $\alpha$ ,  $\beta$  是 3 维列向量, 矩阵  $A = \alpha \beta^{T}$ , 若  $\alpha^{T}\beta = 1$ , 则  $|A^{2} + A + E| = ($  ).

(A)0

(B)1

(C)2

(D)3

5. 设 A 是 3 阶不可逆矩阵,B 是 3 × 2 矩阵,r(B) = 2, 且 AB + 3B = O, 则行列式  $|\mathbf{A} + 2\mathbf{E}| = ($ 

(A)0

(B)2

(C)3

(D)6

**6.** 已知 2 阶实对称矩阵 **A** 的秩  $r(A) = 1, \lambda_1 = \sqrt{2}$  是其一个特征值, $\xi_1 = [1, -1]^T$  为对应于  $\lambda_1$ 的特征向量,设 k 为任意常数,则非齐次线性方程组  $Ax = \xi_1$  的通解是(

$$(A)k\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix}$$

$$(B)k\begin{bmatrix} -1\\ -1 \end{bmatrix} + \begin{bmatrix} \frac{\sqrt{2}}{2}\\ -\frac{\sqrt{2}}{2} \end{bmatrix}$$

$$(C)k\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix}$$

$$(D)k\begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}\frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}\end{bmatrix}$$

7. 设 A 是 3 阶矩阵,有特征值  $\lambda_1 = 1$ ,  $\lambda_2 = -1$ ,  $\lambda_3 = 2$ .  $A^*$  是 A 的伴随矩阵,E 是 3 阶单位矩阵,

则
$$|A|\begin{bmatrix}O&A^*\\-2E&A\end{bmatrix}|=$$
\_\_\_\_\_.

8. 已知 A, B 为 3 阶相似矩阵,  $\lambda_1 = 1$ ,  $\lambda_2 = 2$  为 A 的两个特征值, |B| = 2, 则行列式

$$\begin{vmatrix} (\mathbf{A} + \mathbf{E})^{-1} & \mathbf{O} \\ \mathbf{O} & (2\mathbf{B})^* \end{vmatrix} = \underline{\hspace{1cm}}.$$

微信公众号: 神灯考研

客服微信: KYFT104 QQ群: 118105451

- 9. 设 A, B 为 3 阶相似矩阵, 且 | 2E + A | = 0,  $\lambda_1 = 1$ ,  $\lambda_2 = -1$  为 B 的两个特征值, 则行列式  $|\mathbf{A} + 2\mathbf{AB}| =$
- 10. 设 A 是 n 阶实对称矩阵, $\lambda_1$ , $\lambda_2$ ,…, $\lambda_n$  是 A 的 n 个互不相同的特征值, $\xi_1$  是 A 的对应于  $\lambda_1$  的 一个单位特征向量,则矩阵  $B = A - \lambda_1 \xi_1 \xi_1^T$  的特征值是\_\_\_\_\_.
- 11. 设  $\mathbf{A}$  是 2 阶实对称矩阵,有特征值  $\lambda_1 = 4$ ,  $\lambda_2 = -1$ ,  $\boldsymbol{\xi}_1 = [-2,1]^T$  是  $\mathbf{A}$  对应于  $\lambda_1$  的特征向 量, $\beta = [3,1]^{\mathrm{T}}$ ,则  $A\beta = _____$ .
  - 12. 已知  $B \in n$  阶矩阵,满足  $B^2 = E$ ,求 B 的特征值的取值范围.
- 13. 已知n阶矩阵A的每行元素之和为a,求A的一个特征值. 当k是正整数时,求 $A^k$ 的每行元素 之和.
- 14. 设A是 3 阶矩阵, $\lambda_1$ , $\lambda_2$ , $\lambda_3$ 是 A的三个不同的特征值, $\xi_1$ , $\xi_2$ , $\xi_3$ 是三个对应的特征向量.证明: 向量组  $\xi_1$ ,  $A(\xi_1 + \xi_2)$ ,  $A^2(\xi_1 + \xi_2 + \xi_3)$  线性无关的充要条件是  $\lambda_2\lambda_3 \neq 0$ .
- 15. 设 A 是 n 阶矩阵,有  $A\xi = \lambda\xi$ , $A^{T}\eta = \mu\eta$ ,其中  $\lambda$ , $\mu$  是实数,且  $\lambda \neq \mu$ , $\xi$ , $\eta$  是 n 维非零列向量. 证明: $\xi$ , $\eta$  正交.
- 16. 设 A 为 3 阶矩阵, $\lambda_1$ , $\lambda_2$ , $\lambda_3$  是 A 的三个不同的特征值,对应的特征向量分别为  $\alpha_1$ , $\alpha_2$ , $\alpha_3$ ,令  $\beta = \alpha_1 + \alpha_2 + \alpha_3$ .
  - (1) 证明  $\beta$ ,  $A\beta$ ,  $A^2\beta$  线性无关;
  - (2) 若  $\mathbf{A}^3\mathbf{\beta} = \mathbf{A}\mathbf{\beta}$ ,求秩  $r(\mathbf{A} \mathbf{E})$  及行列式  $|\mathbf{A} + 2\mathbf{E}|$ .
  - 17. 设 A 是 3 阶矩阵, $\lambda_1 = 1$ , $\lambda_2 = 2$ , $\lambda_3 = 3$  是 A 的特征值,对应的特征向量分别是  $\boldsymbol{\xi}_1 = [2,2,-1]^T, \boldsymbol{\xi}_2 = [-1,2,2]^T, \boldsymbol{\xi}_3 = [2,-1,2]^T,$

且  $\boldsymbol{\beta} = [1,2,3]^{\mathrm{T}}$ . 求:

- $(1)A^{n}\xi_{1};$
- $(2)\mathbf{A}^{n}\mathbf{\beta}.$
- 18. 设  $\mathbf{A}$  为 3 阶实对称矩阵,其特征值为  $\lambda_1 = 0$ ,  $\lambda_2 = \lambda_3 = 1$ ,  $\alpha_1$ ,  $\alpha_2$  是  $\mathbf{A}$  的两个不同的特征向量, 且  $\mathbf{A}(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2) = \boldsymbol{\alpha}_2.$ 
  - (1) 证明  $A\alpha_1 = 0$ ;
  - (2) 求线性方程组  $Ax = \alpha_2$  的通解.

### **© C组 ©**

- 1. 设 A,B 均是 n 阶非零矩阵,已知  $A^2 = A,B^2 = B$ ,且 AB = BA = O.则下列 3 个说法
- ①0 未必是 A 和 B 的特征值;
- ②1 必是  $\mathbf{A}$  和  $\mathbf{B}$  的特征值;
- ③  $\Xi \alpha = A$  的属于特征值 1 的特征向量,则  $\alpha$  必是 B 的属于特征值 0 的特征向量. 正确的个数为(

(A)0

(B)1

- (D)3
- 2. 若任一n维非零列向量都是n阶矩阵A的特征向量,证明A是数量矩阵.
- 3. 已知 3 阶矩阵 A 满足 |A E| = |A 2E| = |A + E| = a,其中 E 为 3 阶单位矩阵.
- (1) 当 a = 0 时,求行列式 |A + 3E| 的值;

微信公众号: 神灯考研 客服微信: KYFT104 QQ群: 118105451

# 

- (2) 当 a = 2 时,求行列式 |A + 3E| 的值.
- **4**. (1) 设  $λ_1$ ,  $λ_2$ ,  $\cdots$ ,  $λ_n$  是 n 阶方阵 A 的互异特征值,  $α_1$ ,  $α_2$ ,  $\cdots$ ,  $α_n$  是 A 的分别对应于这些特征值的特征向量,证明  $α_1$ ,  $α_2$ ,  $\cdots$ ,  $α_n$  线性无关;
- (2) 设 A,B 为 n 阶方阵, $|B| \neq 0$ ,若方程  $|A \lambda B| = 0$  的全部根  $\lambda_1$ , $\lambda_2$ ,…, $\lambda_n$  互异, $\alpha_i$  分别是 方程组 $(A \lambda_i B)x = 0$  的非零解, $i = 1, 2, \dots, n$ . 证明  $\alpha_1$ , $\alpha_2$ ,…, $\alpha_n$  线性无关.
  - 5. 设 A 是 n 阶矩阵, $\lambda$ , $\mu$  是实数, $\xi$  是 n 维非零列向量.
  - (1) 若  $A\xi = \lambda \xi$ ,求  $A^2$  的一个特征值及对应的特征向量;
  - (2) 若  $\mathbf{A}^2 \boldsymbol{\xi} = \mu \boldsymbol{\xi}$ ,问  $\boldsymbol{\xi}$  是否必是  $\mathbf{A}$  的特征向量?并说明理由;
  - (3) 若 A 可逆,且有  $A^3\xi = \lambda\xi$ ,  $A^5\xi = \mu\xi$ ,证明  $\xi$  是 A 的特征向量,并指出其对应的特征值.

## 微信公众号【神灯考研】 考研人的精神家园