Microelectronic Circuits I (Quiz 1)

date: 2008/10/17 (Fri)

time: 14:20~15:10

- 1. (50%) The circuit is in Fig.1.
 - (a) Find the resistances looking into node V_1 , R_1 ; node V_2 , R_2 ; node V_3 , R_3 ; and node V_4 , R_4 .
 - (b) Find the currents I1, I2, I3, and I4 in terms of the input current I.
 - (c) Find the voltages V_1 , V_2 , V_3 , and V_4 in terms of (IR).

2. (50%) Derive the transfer function of the circuit in Fig.2 (for an ideal op amp)
(a) show that it can be written in the form

$$\frac{V_{\rm o}}{V_{i}} = \frac{-\frac{R_{2}}{R_{i}}}{[1 + \frac{\omega_{1}}{j\omega}] \times [1 + j\frac{\omega}{\omega_{2}}]},$$

Where
$$\omega_1 = \frac{1}{C_1 R_1}$$
 and $\omega_2 = \frac{1}{C_2 R_2}$.

Assuming that the circuit is designed such that $\omega_2 >> \omega_1$, find approximate expressions for the transfer function in the following frequency regions:

- (b) $\omega \ll \omega_1$
- (c) $\omega_1 \ll \omega \ll \omega_2$
- (d) $\omega >> \omega_2$
- (e) If $\omega_1 >> \omega_2$, find an approximate expression for the transfer function in the frequency range of $\omega_2 << \omega << \omega_1$. (50%)

