# Computational Linguistics

# **Computational Semantics**

Generalized quantifiers and scope ambiguity
Chapter 18 [J&M'09]

#### How to represent the meaning of other quantifiers?

- (1) a. Most diplomats left the building.
  - b. Few diplomats left the building.
  - c. Only diplomats left the building.
  - d. Many diplomats diplomats left the building.
  - e. Six diplomats left the building.
  - f. Half of the diplomats left the building.
  - g. More than half of the diplomats left the building.

#### Most = more than half

$$g[[most_{x}(\phi,\psi)]]_{g}^{\mathcal{M}} \quad iff$$

$$A = \{a : g[x]g' \wedge g'(x) = a \wedge g[\![\phi]\!]_{g'}^{\mathcal{M}} \}$$

$$B = \{b : g[x]g'' \wedge g''(x) = b \wedge g[\![\psi]\!]_{g''}^{\mathcal{M}} \}$$

$$|A \cap B| > |A \backslash B|$$
(where '\' is set difference)

#### **Example:**

Suppose we have  $\mathcal{M} = \langle D, F \rangle$  as

- $D = \{a, b, c, d, e, f, g\}$
- $\bullet \ F = \{\langle cat, \{a, b, c, d, e\} \rangle, \langle dog, \{f, g\} \rangle, \langle sneeze, \{a, b, c, f, g\} \rangle\}$

Then,  $most_x(cat(x), sneeze(x))$  yields:

$$A = \{a, b, c, d, e\}$$
$$|A \cap B| = \{a, b, c\}$$

$$B = \{a, b, c, f, g\},\$$
$$|A \backslash B| = \{d, e\}$$

#### Many

$$\begin{split} g[[many_x(\phi,\psi)]]_g^{\mathcal{M}} & \text{ iff } \\ A &= \{a: g[x]g' \wedge g'(x) = a \wedge {}_g[\![\phi]\!]_{g'}^{\mathcal{M}} \} \\ B &= \{b: g[x]g'' \wedge g''(x) = b \wedge {}_g[\![\psi]\!]_{g''}^{\mathcal{M}} \} \\ |A \cap B| &> m \text{ (cardinal interpretation)} & \text{ or } \\ |A \cap B|/|A| &> m \text{ (proportional interpretation)} \end{split}$$

#### Example:

- Cardinal:
  - (2) a. Many shots were fired.
    - b. Lee found many books in a closet.
- Proportional:
  - (3) a. Many stars are red.
    - b. Many fleas were tested. Few survived.

six

$$g[[six_{x}(\phi,\psi)]]_{g}^{\mathcal{M}} \quad iff$$

$$A = \{a : g[x]g' \wedge g'(x) = a \wedge g[\![\phi]\!]_{g'}^{\mathcal{M}} \}$$

$$B = \{b : g[x]g'' \wedge g''(x) = b \wedge g[\![\psi]\!]_{g''}^{\mathcal{M}} \}$$

$$|A \cap B| = 6$$

Numerals, more generally:

$$g[[N_{x}(\phi, \psi)]]_{g}^{\mathcal{M}} \text{ iff}$$

$$A = \{a : g[x]g' \land g'(x) = a \land g[[\phi]]_{g'}^{\mathcal{M}} \}$$

$$B = \{b : g[x]g'' \land g''(x) = b \land g[[\psi]]_{g''}^{\mathcal{M}} \}$$

$$|A \cap B| = N$$

(note: often it is assumed that  $|A \cap B| \geqslant N$ )

#### no / zero

$$g[[no_{x}(\phi,\psi)]]_{g}^{\mathcal{M}} \text{ iff}$$

$$A = \{a : g[x]g' \wedge g'(x) = a \wedge g[\![\phi]\!]_{g'}^{\mathcal{M}} \}$$

$$B = \{b : g[x]g'' \wedge g''(x) = b \wedge g[\![\psi]\!]_{g''}^{\mathcal{M}} \}$$

$$|A \cap B| = \emptyset$$

#### half of N

$$\begin{split} g[\![\mathit{half-of}_x(\phi,\psi)]\!]_g^{\mathcal{M}} \quad & \textit{iff} \\ A = \{a: g[x]g' \wedge g'(x) = a \wedge {}_g[\![\phi]\!]_{g'}^{\mathcal{M}} \,\} \\ B = \{b: g[x]g'' \wedge g''(x) = b \wedge {}_g[\![\psi]\!]_{g''}^{\mathcal{M}} \,\} \\ |A \cap B| = |A|/2 \end{split}$$

We can use the same approach to represent  $\exists$  and  $\forall$ :

$$\begin{aligned} & \textbf{all } / \textbf{ every } / \textbf{ each} \\ & g \llbracket \forall_x (\phi, \psi) \rrbracket_g^{\mathcal{M}} \quad \textit{iff} \\ & A = \{a: g[x]g' \wedge g'(x) = a \wedge g\llbracket \phi \rrbracket_{g'}^{\mathcal{M}} \} \\ & B = \{b: g[x]g'' \wedge g''(x) = b \wedge g\llbracket \psi \rrbracket_{g''}^{\mathcal{M}} \} \\ & A \subseteq B \end{aligned} \\ & \textbf{some } / \textbf{a(n)} \\ & g \llbracket \exists_x (\phi, \psi) \rrbracket_g^{\mathcal{M}} \quad \textit{iff} \\ & A = \{a: g[x]g' \wedge g'(x) = a \wedge g\llbracket \phi \rrbracket_{g'}^{\mathcal{M}} \} \\ & B = \{b: g[x]g'' \wedge g''(x) = b \wedge g\llbracket \psi \rrbracket_{g''}^{\mathcal{M}} \} \\ & A \cap B \neq \varnothing \end{aligned}$$

#### Quantifiers interact is complex ways:

- (4) Every dog chased a cat. (ambiguous)  $\forall x (dog(x) \Rightarrow \exists y (cat(y) \land chase(x, y)))$   $\exists y (cat(y) \land \forall x (dog(x) \Rightarrow chase(x, y)))$
- (5) Many dogs chased a cat. (ambiguous)  $\begin{aligned} Many_x(dog(x) \Rightarrow \exists y(cat(y) \land chase(x,y))) \\ \exists y(cat(y) \land Many_x(dog(x) \Rightarrow chase(x,y))) \end{aligned}$

## Quantifier scope ambiguity is NOT lexical ambiguity:

(6) a. Every dog chased every cat.

$$\forall x (dog(x) \Rightarrow \forall y (cat \Rightarrow chase(x, y)))$$
  
$$\forall y (cat(y) \Rightarrow \forall x (dog(x) \Rightarrow chase(x, y)))$$
 (redundant)

b. A dog chased a cat.

```
\exists x (dog(x) \land \exists y (cat \land chase(x, y)))
\exists y (cat(y) \land \exists x (dog(x) \land chase(x, y))) (redundant)
```

## More examples of semantic scope ambiguity:

- (7) a. Every student speaks two languages.
  - b. An aide accompanied every guest to the correct table.
  - c. Tom didn't read a book.
  - d. Someone always wins this game.
  - e. John will force you to marry no one.
  - f. John does not speak exactly three languages.
  - g. Kim is looking for a parrot that can talk.

## World knowledge often interferes with scope resolution:

(8) Every hunter killed a duck.

(different ducks)

#### Continuations resolve scope, sometimes creating humor:

(9) Every fifteen seconds a man is arrested in the US. Poor guy!

#### Combinatorial explosion of interpretations

(10) Every dog chased two cats up a tree.

```
 \forall x (dog(x) \Rightarrow \exists y (tree(y) \land \exists w (cats(w) \land |w| = 2 \land chase(x, w, y)))) \\ \forall x (dog(x) \Rightarrow \exists w (cats(w) \land |w| = 2 \land \exists y (tree(y) \land chase(x, w, y)))) \\ (\text{redundant}) \\ \exists y (tree(y) \land \forall x (dog(x) \Rightarrow \exists w (cats(w) \land |w| = 2 \land chase(x, w, y)))) \\ \exists w (cats(w) \land |w| = 2 \land \forall x (dog(x) \Rightarrow \exists y (tree(y) \land chase(x, w, y)))) \\ \exists w (cats(w) \land |w| = 2 \land \exists y (tree(y) \land \forall x (dog(x) \Rightarrow chase(x, w, y)))) \\ \exists y (tree(y) \land \exists w (cats(w) \land |w| = 2 \land \forall x (dog(x) \Rightarrow chase(x, w, y)))) \\ (\text{redundant})
```

3! = 6 combinations, 4 non-equivalent.

#### The number of combinations is at most n! and at least $C_n$

| quantifiers $(n)$ | factorial combinations $(n!)$ | catalan number $\mathcal{C}_n$ |
|-------------------|-------------------------------|--------------------------------|
| 2                 | 2                             | 2                              |
| 3                 | 6                             | 5                              |
| 4                 | 24                            | 14                             |
| 5                 | 120                           | 42                             |
| 6                 | 720                           | 132                            |

## Solution to this combinatorial explosion problem:

Don't resolve scope. In applications like machine translation, scope ambiguities do not matter.

- Quantifier Storage (Cooper Storage; Keller Storage);
- Express semantic structure with a constraint-based system, where scope is resolved dynamically.
   Section 18.3 of [J&M'00]

#### **Cooper Storage**



#### Retrieval:

If  $\langle \psi, \{(\phi, i)\} \cup Y \rangle$  then  $\langle (\phi)(\lambda x_i.\psi), Y \rangle$  such that  $x_i$  occurs in  $\psi$ 

#### Constraint-based scope underspecification

Formulas are trees:



#### Patterns:

- The variable bindings are the same;
- The N semantics ends up in the same place
- The V semantics ends up in the deepest part of the formula

The graph below captures these patterns in a single structure:



The arrows mean 'put this here (directly or indirectly)'

#### We can view these structures as graphs:

- Each FOL expression is labeled  $(l_n)$ ;
- FOL arguments are 'holes'  $(h_m)$ ;
- Semantic structure is expressed by dominance constraints between labels and holes.

This way, multiple scopes can be represented by a semi-lattice:





Is equivalent to:

$$L = \{l_t : h_0, l_1 : \forall x (h_2 \Rightarrow h_3), \ l_4 : dog(x), \ l_5 : \exists y (h_6 \land h_7), \ l_8 : cat(y), \ l_9 : saw(x, y)\}$$
  
$$C = \{l_1 \leqslant h_0, l_5 \leqslant h_0, l_9 \leqslant h_0, l_4 \leqslant h_2, l_8 \leqslant h_6, l_9 \leqslant h_3, l_9 \leqslant h_7\}$$

#### Where:

- '≤' means 'equal or dominated by'.
- '≤' constraint can be resolved as '=' or as '<'.</li>

A disambiguation of an underspecified representation is a bijection from h to l where the resulting graph is a tree.



Two possible disambiguations:

(11) a. 
$$l_1 = h_0, l_4 = h_2, l_5 = h_3, l_8 = h_6, l_9 = h_7$$
  
b.  $l_5 = h_0, l_8 = h_6, l_1 = h_7, l_4 = h_2, l_9 = h_3$ 

No other disambiguation obeys the ≤ constraints and yields a tree.



## The same idea applies to other scope ambiguities:

- (12) a. Tom didn't read a book.
  - b.  $\exists y (book(y) \land \neg read(tom, y))$
  - c.  $\neg(\exists y(book(y) \land read(tom, y)))$



# Some online resources about constraint-based underspecification

- Semantic underspecification in the broader context of CL: here
- Detailed theoretical discussion and Prolog implementation of a  $\lambda-$ calculus based grammar & scope resolution found here

#### Corpora with FOL semantics

- CCGBank, parsed PennTreebank.
- Paralel Meaning Bank (English, German, Dutch and Italian)
- You can create your own corpora, using the OpenCCG Java suite (see also EasyCCG parser)

#### Machine learning of $\lambda$ -term representations

- Wong & Mooney (2007) use a CFG to learn lexical semantic representations from a training corpus.
   Link to ACL paper here
- Zettlemoyer & Collins (2005) use probabilistic CCG grammars to model the combination of lambda terms directly.
- See also Liang et al., 2011; Berant et al., 2013; Kwiatkowski et al., 2013; Artzi and Zettlemoyer, 2013; Kushman and Barzilay, 2013, and Wang et al. 2015.

SOTA accuracy of 89% exact matches on the Geo880 corpus and 82% on the ATIS speech corpus (see here for an overview)