3-1 True-False Exercises

- 1. The vectors (a, b) and (a, b, 0) are equivalent. \times
- 2. If k is a scalar and \mathbf{v} is a vector, then \mathbf{v} and $k\mathbf{v}$ are parallel if and only if $k \ge 0$.
- 3. The vectors $\mathbf{v} + (\mathbf{u} + \mathbf{w})$ and $(\mathbf{w} + \mathbf{v}) + \mathbf{u}$ are the same.
- 4. If $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.
- 5. If a and b are scalars such that $a\mathbf{u} + b\mathbf{v} = \mathbf{0}$, then \mathbf{u} and \mathbf{v} are parallel vectors.

- 6. If (a, b, c) + (x, y, z) = (x, y, z), then (a, b, c) must be the zero vector.
- 7. If k and m are scalars and \mathbf{u} and \mathbf{v} are vectors, then $(k+m)(\mathbf{u}+\mathbf{v})=k\mathbf{u}+m\mathbf{v}$
- 8. If the vectors \mathbf{v} and \mathbf{w} are given, then the vector equation $3(2\mathbf{v} \mathbf{x}) = 5\mathbf{x} 4\mathbf{w} + \mathbf{v}$ can be solved for \mathbf{x} .
- 9. The linear combinations $a_1\mathbf{v}_1 + a_2\mathbf{v}_2$ and $b_1\mathbf{v}_1 + b_2\mathbf{v}_2$ can only be equal if $a_1 = b_1$ and $a_2 = b_2$.

- False. According to Definition 2, equivalent vectors must have the same number of components.
- False. v and kv are parallel for any k.
- True. This is a consequence of Theorem 3.1.1.
- True. This is a consequence of Theorem 3.1.1.
- 5 False. At least one of the scalars must be nonzero for the vectors to be parallel.
- 6. True.
- 7. False. $(k+m)(\mathbf{u}+\mathbf{v})=(k+m)\mathbf{u}+(k+m)\mathbf{v}$.
- 8. True. $\mathbf{x} = \frac{5}{8}\mathbf{v} + \frac{1}{2}\mathbf{w}$.
- 9. False. For instance, if $\mathbf{v}_2 = 2\mathbf{v}_1$ then $4\mathbf{v}_1 + 2\mathbf{v}_2 = 2\mathbf{v}_1 + 3\mathbf{v}_2$.

3-2 True-False Exercises

- 1. If each component of a vector in \mathbb{R}^3 is doubled, the norm of that vector is doubled.
- 2. Every vector in \mathbb{R}^n has a positive norm. \times
- 3. If \mathbf{v} is a nonzero vector in \mathbb{R}^n , there are exactly two unit vectors that are parallel to \mathbf{v} .
- 4. The expressions $(\mathbf{u} \cdot \mathbf{v}) + \mathbf{w}$ and $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})$ are both meaningful and equal to each other. \mathbf{X}
- 5. If $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.
- 6. If $\mathbf{u} \cdot \mathbf{v} = 0$, then either $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.

- 1. True. By Theorem 3.2.1(b), $\|2\mathbf{v}\| = |2| \|\mathbf{v}\| = 2 \|\mathbf{v}\|$.
- 2. False. Norm can be zero for the zero vector.
- 3. True. The two vectors are $\frac{1}{\|\mathbf{v}\|}\mathbf{v}$ and $-\frac{1}{\|\mathbf{v}\|}\mathbf{v}$.
- False. The first expression does not make sense since the scalar u·v cannot be added to a vector.
- 5. False. For example, let $\mathbf{u} = (1,0)$, $\mathbf{v} = (0,1)$, and $\mathbf{w} = (0,2)$. We have $\mathbf{v} \neq \mathbf{w}$ even though $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$.
- 6. False. For example, for $\mathbf{u} = (1,1) \neq (0,0)$ and $\mathbf{v} = (1,-1) \neq (0,0)$ we have $\mathbf{u} \cdot \mathbf{v} = 0$.

3-3 True-False Exercises

- The vectors (3, -1, 2) and (0, 0, 0) are orthogonal.
- 2. If **u** and **v** are orthogonal vectors, then for all nonzero scalars k and m, ku and mv are orthogonal vectors. \bigcirc
- 3. The orthogonal projection of **u** on **a** is perpendicular to the vector component of **u** orthogonal to **a**.
- 4. If **a** and **b** are orthogonal vectors, then for every nonzero vector **u**, we have $\operatorname{proj}_{a}(\operatorname{proj}_{b}(\mathbf{u})) = \mathbf{0}$
- 5. If **a** and **u** are nonzero vectors, then $proj_a(proj_a(\mathbf{u})) = proj_a(\mathbf{u})$
- 6. If the relationship $proj_a \mathbf{u} = proj_a \mathbf{v}$ holds for some nonzero vector \mathbf{a} , then $\mathbf{u} = \mathbf{v}$.

- 1. True. $(3,-1,2)\cdot(0,0,0)=0$.
- 2. True. By Theorem 3.2.2(c) and Theorem 3.2.3(e), $(k\mathbf{u})\cdot(m\mathbf{v})=(km)(\mathbf{u}\cdot\mathbf{v})=(km)(0)=0$.
- 3. True. This follows from Theorem 3.3.2.
- 4. True. $\operatorname{proj}_{\mathbf{a}}\left(\operatorname{proj}_{\mathbf{b}}\left(\mathbf{u}\right)\right) = \frac{\left(\frac{\mathbf{u} \cdot \mathbf{b}}{\|\mathbf{b}\|^2}\mathbf{b}\right) \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} = \frac{\frac{\mathbf{u} \cdot \mathbf{b}}{\|\mathbf{b}\|^2}(\mathbf{b} \cdot \mathbf{a})}{\|\mathbf{a}\|^2} \mathbf{a} = \mathbf{0}\mathbf{a} = \mathbf{0}$ $\left(\operatorname{proj}_{\mathbf{b}}\left(\mathbf{u}\right) \text{ has the same direction as } \mathbf{b} \text{ , so it is also orthogonal to } \mathbf{a}\right).$
- 5. True. $\operatorname{proj}_{\mathbf{a}}\left(\operatorname{proj}_{\mathbf{a}}\left(\mathbf{u}\right)\right) = \frac{\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} = \frac{\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}}{\|\mathbf{a}\|^2} \mathbf{a} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} = \operatorname{proj}_{\mathbf{a}}\left(\mathbf{u}\right)$ $\left(\operatorname{proj}_{\mathbf{a}}\left(\mathbf{u}\right) = k\mathbf{a} \text{ for some scalar } k \text{ and then } \operatorname{proj}_{\mathbf{a}}\left(k\mathbf{a}\right) = k\mathbf{a}\right).$
- 6. False. For instance, let \mathbf{u} be a nonzero vector orthogonal to \mathbf{a} . Then $\operatorname{proj}_{\mathbf{a}}(\mathbf{u}) = \operatorname{proj}_{\mathbf{a}}(2\mathbf{u}) = \mathbf{0}$ even though $\mathbf{u} \neq 2\mathbf{u}$.

3-4 True-False Exercises

- 1. The points lying on a line through the origin in R^2 or R^3 are all scalar multiples of any nonzero vector on the line.
- 2. All solution vectors of the linear system $A\mathbf{x} = \mathbf{b}$ are orthogonal to the row vectors of the matrix A if and only if $\mathbf{b} = \mathbf{0}$.
- 3. If \mathbf{x}_1 and \mathbf{x}_2 are two solutions of the nonhomogeneous linear system $A\mathbf{x} = \mathbf{b}$, then $\mathbf{x}_1 \mathbf{x}_2$ is a solution of the corresponding homogeneous linear system.

- 1. True.
- 2. True.

If $\mathbf{b} = \mathbf{0}$ then by Theorem 3.4.3, all solution vectors of $A\mathbf{x} = \mathbf{b}$ are orthogonal to the row vectors of A. If all solution vectors of $A\mathbf{x} = \mathbf{b}$ are orthogonal to the row vectors of A, $\mathbf{r}_1, \dots, \mathbf{r}_m$ then the ith component of the product $A\mathbf{x}$ is $\mathbf{r}_i \cdot \mathbf{x} = \mathbf{0}$, so we must have $\mathbf{b} = \mathbf{0}$.

3. True. Subtracting $A\mathbf{x}_1 = \mathbf{b}$ from $A\mathbf{x}_2 = \mathbf{b}$ yields $A\mathbf{x}_1 - A\mathbf{x}_2 = \mathbf{b} - \mathbf{b}$, i.e., $A(\mathbf{x}_1 - \mathbf{x}_2) = \mathbf{0}$.

3-5 True-False Exercises

- 1. The cross product of two nonzero vectors **u** and **v** is a nonzero vector if and only if **u** and **v** are not parallel.
- 2. A normal vector to a plane can be obtained by taking the cross product of two nonzero and noncollinear vectors lying in the plane.
- 3. The scalar triple product of **u**, **v**, and **w** determines a vector whose length is equal to the volume of the parallelepiped determined by **u**, **v**, and **w**.
- 4. For all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in 3-space, the vectors $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ and $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ are the same.
- 5. If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in R3, where \mathbf{u} is nonzero and $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.

- 1. True. This follows from Formula (6): for nonzero vectors \mathbf{u} and \mathbf{v} , $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$ is zero if and only if $\sin \theta = 0$ (i.e., the vectors are parallel).
- 2. True. The cross product of two nonzero noncollinear vectors in a plane is a nonzero vector perpendicular to both vectors, and therefore to the entire plane.
- 3. False. The scalar triple product is a scalar, rather than a vector.
- 4. False. These two triple vector products are generally not the same, as evidenced by parts (d) and (e) of Theorem 3.5.1.
- 5. False. For instance, let $\mathbf{u} = \mathbf{v} = \mathbf{i}$ and $\mathbf{w} = 2\mathbf{i}$. We have $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w} = 0$ even though $\mathbf{v} \neq \mathbf{w}$.