• Frame a policy

MODULE IV

- Predict business opportunity
- Design the prototype
- Gain knowledge on system implications.

MA6201 LINEAR ALGEBRA L	L	Т	Р	EL	TOTAL	CREDITS
3	3	1	0	3		5
OBJECTIVES:						
 To learn to analyze a linear system of equations 						
To study the properties of a linear transformation						
To understand the process of orthogonalization						
To learn to solve linear equations using different method	ods					
To understand the applications of linear algebra in engine		erina				
MODULE I			L	Т	Р	EL
			5	1	-	3
Vector spaces – Subspaces – Linear combinations and linear s	syst	em o	of ec	uation	าร	
SUGGESTED ACTIVITIES :						
Problem solving sessions						
SUGGESTED EVALUATION METHODS:						
Tutorial problems						
Assignment problems						
Quizzes			•			
MODULE II		l	L	T	Р	EL
			5	1	-	3
Linear independence and Linear dependence – Basis and Dim	nens	sion	I	I	L	
SUGGESTED ACTIVITIES :						
Problem solving sessions						
Applications in real life problems						
SUGGESTED EVALUATION METHODS:						
Tutorial problems						
Assignment problems						
Quizzes						
MODULE III		L		Т	Р	EL
		5		1	-	3
Linear Transformation - Null space, Range space - Dimension	ion	theo	rem	- Ma	trix repres	sentations of
Linear Transformations						
SUGGESTED ACTIVITIES :						
Problem solving sessions						
SUGGESTED EVALUATION METHODS:						
Tutorial problems						
Assignment problems						
Quizzes		1			 	

Eigenvalues and Eigenvectors of a linear transformation – Diagonalization of linear transformations –

Application of diagonalization in a linear system of differential equations

L

5

Т

1

EL

3

SUGGESTED ACTIVITIES:

- Problem solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE V	L	Т	Р	EL
	6	2	-	6

Inner Product Spaces –Norms - Orthogonal vectors – Gram Schmidt orthogonalization process - Least Square Approximations

SUGGESTED ACTIVITIES:

Problem solving sessions

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VI	L	T	Р	EL
	3	1	-	3

Solution of linear system of equations – Direct method: Gauss elimination method – Pivoting – Gauss Jordan method -LU decomposition method – Cholesky decomposition method

SUGGESTED ACTIVITIES:

- Problem solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VII	L	T	Р	EL
	3	1	_	3

Iterative methods: Gauss-Jacobi and Gauss-Seidel – SOR Method

SUGGESTED ACTIVITIES:

- Problem solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VIII	L	Т	Р	EL
	3	1	_	3

Eigenvalue Problems: Power method - Inverse Power method - Jacobi's rotation method

- SUGGESTED ACTIVITIES:
- Problem solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE IX	GENERALISED INVERSES	L	Т	Р	EL
		3	1	-	3

QR decomposition - Singular Value Decomposition method

SUGGESTED ACTIVITIES:

- Problem solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

OUTCOMES:

Upon completion of the course, the students will be able to

- Perform linear transformations and write down the matrix representing a linear transformation
- Find the Gram-Schmidt orthogonalization of a matrix
- Determine the rank, determinant, eigenvalues and eigenvectors, diagonalization, and different factorizations of a matrix
- Solve a linear system of equations using direct and iterative methods
- Solve Eigen value problems
- Formulate linear equations for real life problems and solve them

TEXT BOOKS:

- 1. Stephen H. Friedberg, Insel A.J. and Spence L.E., "Linear Algebra", 4th. Edition, Prentice Hall of India, New Delhi, 2003.
- 2. M.K.Jain, S.R.K.Iyengar, R.K.Jain, "Numerical Methods for Scientific and Engineering Computation", New Age International (P) Limited, New Delhi, 2003.
- 3. Richard Bronson, "Matrix Operations", Schaum's Outline Series, 1989.

REFERENCES:

- 1. Strang G., "Linear Algebra and its Applications", Thomson (Brooks/Cole), New Delhi, 2005.
- Kumaresan. S., "Linear Algebra A Geometric Approach", PHI, New Delhi, 2010.
- 3. Faires J.D. and Burden R., "Numerical Methods", Brooks/Cole (Thomson Publications), New Delhi, 2002.
- 4. Gerald C.F., Wheatly P.O., "Applied Numerical Analysis", Pearson Education India, New Delhi, 2002.

EVALUATION METHOD TO BE USED:										
Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester							
Theory	40	20	40							

CO – PO Mapping:

	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	√	✓	√	✓								√
CO2	✓	✓	✓	✓	✓							✓
CO3	✓	✓	✓	✓	✓							✓
CO4	✓	✓	✓	✓	✓							✓
CO5	✓	✓	✓	✓	✓							✓
CO6	✓	✓	✓	✓	√							✓

CS6201	GRAPH THEORY	L	Т	Р	EL	CREDITS
		3	1	0	3	5

Prerequisites for the course: Discrete Mathematics

OBJECTIVES:

- To understand the fundamentals of graph theory
- To study the proofs related to various concepts in graphs
- To study about the different types of graphs and their properties
- To learn about the distinguishing features of various graph algorithms
- To study the applications of graphs in solving engineering problems

MODULE I	INTRODUCTION	L	Т	Р	EL
		4	1	0	3

Introduction - Graph Terminologies - Types of Graphs - Isomorphism - Isomorphic Graphs - Operations on graphs - Degree sequences - Euler graph - Hamiltonian Graph - Related theorems.

SUGGESTED ACTIVITIES:

• EL: Graphs and tournaments, Graphs in real world applications

SUGGESTED EVALUATION METHODS:

Assignment on graphs in real world applications

MODULE II	EDGE GRAPH	L	Т	Р	EL
		3	1	0	3

Edge Graphs and Traversability - Eccentricity Sequences and Sets - Isometry.

SUGGESTED ACTIVITIES:

• Graph Isometry Problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Quizzes

MODULE III	TREES	L	Т	Р	EL
		3	1	0	3

Trees -Properties- Distance and Centres - Types - Rooted and Binary Tree- Tree Enumeration- Labeled Tree - Unlabeled Tree