

Группа Студент

Преподаватель

Шульга Артём Игоревич Куксова Полина Алексеевна К работе допущен Работа выполнена

Отчёт принят

Рабочий протокол и отчёт по лабораторной работе №1.05

Исследование колебаний физического маятника

1. Цель работы.

Изучение характеристик затухающих колебаний физического маятника.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Ознакомиться с установкой
 - 2. Выполнить измерения времени колебаний маятника
 - 3. Выполнить необходимые расчёты
 - 4. Построить график зависимости квадрата периода от момента инерции
 - 5. Исследовать взаимосвязь колебаний маятника от разного расположения утяжелителей
- 3. Объект исследования.

Маятник Обербека

4. Метод экспериментального исследования.

Многократные измерения времени колебаний маятника при разных конфигурациях положений утяжелителей.

Результаты измерений

ti= 18,03C

Задание 3.2.1

tz= 17,94 C

ta = 18, 13 C

Задание 3.2.2

Таблица 2

Амплитуда отклонения Время	25°	20°	15°	10°	5*
tı, c	12,03	27,56	4105	E21	75.66
t ₂ , c	13,3	27.8	412	-/0	10
t ₃ , c	13	28	432	5010	75.57
t _{cp} , c		Insulant Water	16	34,2	+3)39

Задание 3.2.3

Таблица 3

Положение боковых грузов	t ₁ , c	t ₂ , c	t ₃ , c	t _{cp} , c	Т, с
1 риска	16,16	16.22	16 18		
2 риски	16.81	11.1	17		
3 риски	12,06	19 02	1215		
4 риски	19 32	10/41	10,15		
5 рисок	26.72	20,72	00/0		
6 рисок	22 28	22 38	22.00		In the last

81.05.22

5. Рабочие формулы и исходные данные.

Формулы для коэффициентов a, b по МНК (1) и (2): $b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$; $a = \bar{y} - b\bar{x}$

 \triangle Формула для расчёта значений d_i и D для расчёта СКО в МНК

$$d_i = y_i - (a + bx_i)$$

$$D = \sum (x_i - \bar{x})^2$$

Формулы для СКО коэффициентов a,b по МНК (5) и (6): $S_b^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2}$; $S_a^2 = \left(\frac{1}{n} + \frac{\bar{x}^2}{D}\right) \frac{\sum d_i^2}{n-2}$

Формула рассчитывания от центра до оси вращения (7): $R = l_1 + (n-1)l_0 + b/2$

Формула для расчёта момента инерции грузов (8): $I_{\rm rp} = m_{\rm rp} (R_{\rm верх}^2 + R_{\rm ниж}^2 + 2 R_{\rm бок}^2)$

Формула для расчёта полного момента инерции маятника (9): $I=I_{\rm rp}+I_0$

Формула для коэффициента b при прохождении графика начала координат (10): $b = \frac{\sum x_i y_i}{r^2}$

Формула для расчёта приведённой длины (11): $l_{\rm np} = \frac{T^2 g}{4\pi^2}$

Формула для расчёта приведённой длины (12): $l_{\rm np} = \frac{1}{ml}$

6. Измерительные приборы.

Nº n/n	Наименование	Тип прибора	Тип прибора Используемый	
			диапазон	прибора
1	Линейка на	Аналоговый	0-700 mm	± 0,5 мм
	установке			
2	Секундомер	Цифровой	0-10 c	±0,05 c

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 2. Стенд лаборатории механики (общий вид):

I – основание; 2 – рукоятка сцепления крестовин; 3 – устройство принудительного трения; 4 - поперечина; 5 - груз крестовины; 6 - трубчатая направляющая; 7 – передняя крестовина; 8 – задняя крестовина; 9 – шайбы каретки; 10 - каретка; 11 - система передних стоек.

Данные об установке

Параметр	Значение
Масса каретки	47,0 ± 0,5 г
Масса шайбы	220,0 ± 0,5 г
Масса грузов на крестовине	408,0 ± 0,5 г
Расстояние первой риски от	57,0 ± 0,5 мм
оси	
Расстояние между рисками	25,0 ± 0,2 мм
Диаметр ступицы	46,0 ± 0,5 мм
Диаметр груза на	40,0 ± 0,5 мм
крестовине	
Высота груза на крестовине	40,0 ± 0,5 мм

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

 $t_1 = 18,03$ c

 $t_2 = 17,94 \text{ c}$

 $t_3 = 18, 13 \text{ c}$

Таблица 2

Амплитуда	25°	20°	15°	10°	5°
t ₁ , c	12,03 ± 0,05	27,56 ± 0,05	41,05 ± 0,05	57,60 ± 0,05	75,60 ± 0,05
t ₂ , c	13,30 ± 0,05	27,80 ± 0,05	41,20 ± 0,05	56,80 ± 0,05	74,00 ± 0,05
t ₃ , c	13,00 ± 0,05	28,00 ± 0,05	42,00 ± 0,05	57,20 ± 0,05	75,57 ± 0,05
t _{cp} , c	12,78	27,79	41,42	57,20	75,06

Таблица 3

Положение	t ₁	t ₂	t ₃	t _{cp}	Т
грузов					
1 риска	16,16 ± 0,05 c	16,22 ± 0,05 c	16,19 ± 0,05 c	16,19 c	1,619 c
2 риски	16,81 ± 0,05 c	17,10 ± 0,05 c	17,00 ± 0,05 c	16,97 c	1,697 c
3 риски	18,06 ± 0,05 c	18,03 ± 0,05 c	18,15 ± 0,05 c	18,08 c	1,808 c
4 риски	19,38 ± 0,05 c	19,41 ± 0,05 c	19,43 ± 0,05 c	19,41 c	1,941 c
5 рисок	20,72 ± 0,05 c	20,72 ± 0,05 c	20,68 ± 0,05 c	20,71 c	2,071 c
6 рисок	22,28 ± 0,05 c	22,38 ± 0,05 c	22,00 ± 0,05 c	22,22 c	2,222 c

Вычислим среднее время 10 колебаний: $\bar{t}=18,03$ с Из этого вычислим период: $T=\frac{18,03}{10}=1,8$ с Построим график зависимости амплитуды колебаний от времени.

Из графика можно сделать вывод о том, что в эксперименте преобладает сухое трение. Используя МНК, найдём угловой коэффициент прямой.

$$A = A_0 - 4n\Delta\phi = A_0 - 4\Delta\phi \frac{t}{T}$$

$$b = \frac{-2309, 6}{7133, 162293} = -0, 32$$

$$b = \frac{-4n \cdot \Delta\phi}{T} => \Delta\phi = \frac{Tb}{-4n}$$

$$\Delta\phi = \frac{1, 8 \cdot -0, 32}{-4 \cdot 10} = 0,014^{\circ}$$
Harrison konnection konnection konnection

Найдем количество колебаний:

$$0 = A_0 - 4n\Delta\phi$$

$$n = \frac{A_0}{4\Delta\phi}$$

$$n = \frac{30}{4\cdot 0,014} = 535, 7 \approx 535 \text{ mt}$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Рассчитаем R для грузов сверху, снизу и боковые. В качестве примера рассчитаем R для верхнего груза $R_{\text{Bepx}} = 57 + 0 \cdot 25 + 40/2 = 77 \text{ MM}$

Все остальные вычисления выполняются аналогично.

Рассчитаем моменты инерции для каждого груза по формуле (8) и заполним таблицу. В качестве примера рассчитаем момент инерции для груза с 1 риской.

$$I_{\rm rp} = 408 \cdot (77^2 + 202^2 + 2 \cdot 77^2) = 0,024 \; {\rm kg \cdot M^2}$$

Все остальные вычисления выполняются аналогично.

Также вычислим полный момент инерции маятника по формуле (9). Так как вычисления очень элементарные, то опустим их и заполним таблицу.

$$T = 2\pi \sqrt{\frac{I}{mgl}}$$
$$T^2 = 4\pi^2 \frac{I}{mgl}$$

Используя МНК нарисуем график $T^2(I)$. Так как по теории график должен проходить через начало координат, то воспользуемся формулой (10).

$$b = \frac{1,014297}{0,012423} = 81,65$$

$$b = \frac{4\pi^2}{mgl} => ml = \frac{4\pi^2}{bg}$$

$$ml = \frac{4\pi^2}{81,65\cdot 9,8} = 0,049 \text{ кг} \cdot \text{м}$$

Так как основная масса расположена на спицах, то предположим, что расстояние от центра масс до оси вращения можно посчитать по следующей формуле:

$$l_{ ext{Teop}} = rac{R_{ ext{HM}} - R_{ ext{Bepx}}}{2} => l_{ ext{Teop}} = rac{202 - 77}{2} = 62, 5 \; ext{mm}$$

По формуле (11) приведенную длину маятника и заполним таблицу. Рассчитаем на примере положения боковых грузов на 1 риске:

$$l_{\rm np} = \frac{(1,619)^2*9,8}{4\pi^2} = 0,65 \ {\rm M}$$
 Все остальные расчёты проведём аналогично.

По формуле (12) рассчитаем приведённую длину и заполним таблицу. Рассчитаем на примере положения грузов на 1 риске, притом возьмем l как расстояния от центра масс до оси вращения, а массу равную двум грузам (так как именно они участвуют в колебательном процессе):

$$l_{
m np} = rac{0,032}{2 \cdot 0,408 \cdot 0,0625} = 0,63$$
 м

Все остальные вычисления проведём аналогично.

Таблица 4

Риски	1	2	3	4	5	6
R _{sepx}	px 77 MM					
R _{HUX}			202	MM		
R _{бок}	77 MM	102 mm	127 mm	152 mm	177 mm	202 mm
I _{rg.}	0,024 кг*м²	0,028 кг*м²	0,032 кг*м²	0,038 кг*м²	0,045 кг*м²	0,052 кг*м²
I	0,032 кг*м²	0,036 кг*м²	0,04 кг*м²	0,046 кг*м²	0,053 кг*м²	0,06 кг*м²
Ідр эксп	0,65 M	0,71 M	0,81 m	0,94 m	1,06 M	1,23 M
Ілд теор	0,63 M	0,71 M	0,78 m	0,90 M	1,04 m	1,18 M

- 10. Расчет погрешностей измерений (для прямых и косвенных измерений). Не вычислялись.
- 11. Графики (перечень графиков, которые составляют Приложение 2).

График 2

12. Окончательные результаты.

На установке, которая использовалась в эксперименте преобладает сухое трение, что можно оценить по графику колебательного процесса.

Результаты вычислений приведённой длины маятника:

П							
	I _{пр эксп}	0,65 M	0,71 M	0,81 M	0,94 m	1,06 M	1,23 M
	Ілд теор	0,63 M	0,71 M	0,78 m	0,90 M	1,04 m	1,18 m

Результаты приблизительно одинаковы.

13. Выводы и анализы результата работы.

В ходе выполнения данной лабораторной работы я научился оценивать, какая сила трения преобладает в колебательном процессе, вычислять приведенную длину маятника, а также вычислять количество колебаний в системе.

14. Дополнительные задания.

15. Выполнение дополнительных заданий.

16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещаются в этот пункт).