Final Presentation - The Gould-en Rule Stats 101C Lecture 3

Andy Shen, Ethan Allavarpu

Fall 2020

Introduction

Introduction

- With the rise in popularity of YouTube, many people are now making a living off creating YouTube videos
- The more views gained by the video, the more likely it is for that channel to profit
- We are interested in predicting the growth rate in video views between the second and sixth hour that a YouTube video is published

Pre-Processing

Outliers

- Examined a univariate plot to look for stray points and removed them systematically
 - Based off personal judgment and inference on the effect of the stray points
- We also remove highly correlated variables as indicated by a heat map
 - ► To avoid overfitting based on having too many predictors

Predictor Selection

- We use LASSO to select significant predictors
 - Used to refine predictors from a large subset
 - LASSO pushes non-significant predictors to zero and keeps the most significant ones
- ullet First fit a LASSO model for a sequence of candidate λ values
- ullet Then select our optimal value of λ as the one that is one standard deviation above the λ value that resulted in the lowest test MSE
- Then extract the predicted coefficients in this LASSO model as our predictors for the candidate model

Model Fitting

Overview

- Most of our models were fit using bagging or random forest
 - lacktriangle Only adjusted certain parameters at a time (number of trees, depth, and λ)

Candidate Model: Random Forest

- After running LASSO to refine predictors, we use this smaller subset to find m for random forest
 - ▶ *m* is the number of variables the model randomly considers in each node of each decision tree
 - ► Find optimal *m* using 5-fold cross-validation and select *m* corresponding to the lowest *median* RMSE of the 5 folds
 - ▶ Median is more preferable than mean due to the mean's sensitivity to extreme points
- ullet Once optimal m is selected, fit another random forest model to 80% of the preprocessed training data
 - ▶ Fit this extra model to ensure the model was performing consistently

Candidate Model: Bagging

• Considered a bagging approach as well as random forest (m = p)

RMSEs

2.0

1.5

1.0

0.5

0.0

RMSE

1.4544

Bagging

Best m for Random Forest

Method

Random Forest

1.4116

LASSO

1.6484

Results

Results

Kaggle scores:

- 1.39753
- **1.40285**

Model (B) only differs from (A) in the sense that m=p as opposed to m equaling the value with the lowest median RMSE. Here p is the number of predictors.

Conclusion

Conclusion

- We believed our model performed well due to the fact that it works as an ensemble method
 - ► Combines multiple individual models to get more accurate responses
- ullet By using cross-validation for our selection of m, we limit the potential effect of a random seed showing us an inaccurately good or bad RMSE