PAM

Irma Eunice Martínez de la Cruz

2022-06-05

PARTITION AROUND MEDOIDS (PAM)

```
library(cluster)
```

Cargar la matriz de datos.

```
X<-as.data.frame(state.x77)
colnames(X)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area"</pre>
```

Transformacion de datos

1.- Transformacion de las variables x1,x3 y x8 con la funcion de logaritmo.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Metodo PAM

1.- Separación de filas y columnas.

```
dim(X)
## [1] 50 8
n<-dim(X)[1]
p<-dim(X)[2]</pre>
```

2.- Estandarizacion univariante.

```
X.s<-scale(X)</pre>
```

3.- Aplicacion del algoritmo

```
pam.3<-pam(X.s,3)
```

4.- Clusters

```
cl.pam<-pam.3$clustering
cl.pam</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	2	1	1	3
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	2	3	1	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	2	3	3	2
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	2	1	1	2	3
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	3	3	2	1	3
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##			_	0	2
ππ	2	2	2	2	3
##	2 New Mexico	2 New York	North Carolina	North Dakota	Ohio
	_	2 New York 3	North Carolina 1	North Dakota 2	Ohio 3
##	_	2 New York 3 Oregon	North Carolina 1 Pennsylvania	2	Ohio 3 South Carolina
## ##	New Mexico	3	1	2	3
## ## ##	New Mexico 1 Oklahoma	3	1	2	3 South Carolina 1
## ## ##	New Mexico 1 Oklahoma 3	3 Oregon 2	1 Pennsylvania 3	2 Rhode Island 2	3 South Carolina 1
## ## ## ##	New Mexico 1 Oklahoma 3 South Dakota	3 Oregon 2 Tennessee 1	1 Pennsylvania 3	2 Rhode Island 2 Utah 2	3 South Carolina 1 Vermont 2

5.- Scatter plot de la matriz con los grupos

```
col.cluster<-c("blue","red","green")[cl.pam]
pairs(X.s, col=col.cluster, main="PAM", pch=19)</pre>
```

PAM

Visualizacion con Componentes Principales

CLUSPLOT(X.s)

houette

Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

1.- Generacion de los calculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.pam<-silhouette(cl.pam, dist.Euc)</pre>
```

2.- Generacion del grafico

Silhouette for PAM

Average silhouette width: 0.22