Syntax natürlicher Sprachen

7: Komplexe Satzkonstruktionen

A. Wisiorek

Centrum für Informations- und Sprachverarbeitung, Ludwig-Maximilians-Universität München

03.12.2024

1. Komplexe Satzkonstruktionen

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschema
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

Einfacher vs komplexer Satz

Einfacher Satz (clause)

- Grundlegende sprachliche Einheit mit eigenständiger Bedeutung
- Besteht aus einem Subjekt und einem Prädikat
- Bildet die Bausteine für komplexe Sätze

Komplexer Satz (sentence)

- Verbindung (Konjunktion) von einfachen Sätzen (clauses) zu größeren Einheiten
- Konstituentenstruktur: Satz als Konstituente eines (komplexen) Satzes
- Dependenzstruktur: Satz-Wurzelknoten als Dependents
- 2 Typen der Satzverbindung: Koordination und Subordination
- Konjunktion (CONJ) als grammatischer Marker einer Satzverbindung
 - koordinierend: und, aber, denn, ...
 - **subordinierend:** dass, weil, ob, ...

Typen komplexer Sätze

Koordination (auch: Satzreihe / Parataxe)

- gleichrangige Verkettung von Sätzen
- Sätze sind nebengeordnet
- Satz 1 und Satz 2 bilden als Ko-Konstituenten einen komplexen Satz

Subordination (auch: Satzgefüge / Hypotaxe)

- Einbettung eines Satzes als Satzglied in einen Satz (Hauptsatz/Matrixsatz)
- Nebensatz ist untergeordnet (abhängig vom Matrixsatz)
- Satz 1 bildet mit Satz 2 als Subkonstituente einen komplexen Satz

Koordinations- und Subordinationsstruktur

Abbildung: Koordination und Subordination im Konstituentenmodell

Abbildung: Koordination und Subordination im Dependenzmodell

1.1. Subordination

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschema
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

Subordination als Einbettung

Einbettung

- subordinierter Satz erfüllt eine syntaktische Funktion in einem übergeordneten Satz (als Subjekt / Objekt / Adverbial / Attribut)
- Verb des Nebensatzes hängt ab von:
 - Kopf der VP im Matrixsatz (als Satzglied des Matrixsatzes)
 - Kopf einer NP im Matrixsatz (als Attribut des Matrixsatzes)

Nebensatz vs Matrixsatz

- Matrixsatz: Übergeordneter Satz, der andere Sätze als Nebensätze einschließt.
- Nebensatz: subordinierter Satz, der in einem übergeordneten Satz (Matrixsatz) eingebettet ist und nicht eigenständig allein stehen kann.
- Hauptsatz: Matrixsatz höchster Ebene im Satzgefüge.
 - mehrfache Einbettung möglich: Er glaubt, dass sie denkt, die Farbe ist schön.

Verwendete Treebanks

- die Beispiele für komplexe Sätze auf den folgenden Folien stammen aus diesen Dependency-Treebanks:
 - German-UD-Dependency-Treebank: http://universaldependencies.org/de/index.html
 - TIGER-Dependency-Treebank: http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger
 - TIGER Tagset: https://www.linguistik.hu-berlin.de/de/institut/professuren/korpuslinguistik/mitarbeiter-innen/hagen/DDB_edge

1.2. Typen subordinierter Sätze im UD-Annotationschema

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschema
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

Nebensätze in Satzgliedfunktion

Subjektsatz (Komplementsatz)

- Beispiel: Wer anderen eine Grube gräbt, fällt selbst hinein.
- Funktion als Subjekt-Komplement des Matrixsatzes

Objektsatz (Komplementsatz)

- Beispiel: Er sagte, dass er keine Zeit habe.
- Funktion als Objekt-Komplement des Matrixsatzes

Indirekter Objektsatz (Komplementsatz)

- Beispiel: Sie musste zusehen, wie er sich betrank.
- Funktion als Indirektes Objekt-Komplement des Matrixsatzes

Adverbialsatz

- **Beispiel:** *Er weinte, weil sie ihn nicht beachtete.*
- Funktion als Adverbial des Matrixsatzes; Klassifizierung nach semantischen Kriterien: Kausal-, Temporal-Satz usw.

Subordinierungsmarker (mark)

Subordinierungsmarker (mark)

- verbindet Matrixsatz und subordinierten Satz
- Markierung der Abhängigkeitsbeziehung

Typen von Subordinierungsmarkern

- Komplementierer (im engeren Sinne) (Komplementsatz: dass)
- Adverbiale Konjunktion (Adverbialsatz: weil usw.)
- Fragepronomen (Subjektsatz: Wer; in UD gemäß Satzfunktion getaggt, hier: nsubj)
- Relativpronomen (Attributsatz: , welcher ...; in UD gemäß Satzfunktion getaggt, hier: nsubj)

Subjektsatz (**csubj**)

clausal subject (csubj) http://universaldependencies.org/u/dep/csubj Was wir bekamen , war weit mehr

(Indirekter) Objektsatz (ccomp)

clausal complement (ccomp)

http://universaldependencies.org/u/dep/ccomp http://universaldependencies.org/u/dep/mark

Adverbialsatz (advcl)

adverbial clause modifier (advcl) + marker (mark)

http://universaldependencies.org/u/dep/advcl http://universaldependencies.org/u/dep/mark

Attributsätze (in NP eingebettete Nebensätze)

- Funktion als Modifikator einer NP (Einbettung in NP)
- Satz als Teil eines Satzglieds

Relativsatz

- Beispiel: der Mensch, den die Polizei verhaftete,
- eingeleitet durch Relativpronomen
- semantisch: Bezug zu Kopf der NP
- syntaktische Funktion durch Relativpronomen angezeigt (Subjekt: der usw., Objekt: den, Indir. Objekt: dem, Adverbial: in dem/...)

adnominaler Satz

- kein Bezug zu Kopf der NP
- Beispiel finiter Satz: die Frage, wie man das Problem löst
- Beispiel non-finiter Satz: der von seinen Anhängern gestürzte Präsident

Adnominaler Satz (acl)

clausal modifier of noun (adnomial clause) (acl)

http://universaldependencies.org/u/dep/acl

Relativsatz (acl:relcl)

relative clause (type of: clausal modifier of noun) (acl:relcl)

http://universaldependencies.org/u/dep/acl

Eigenschaften Relativssatz

- kann (wie andere Nebensätze) aus NP ins Nachfeld extrahiert werden (= long distance dependency):
 Er hat heute den Hund gesehen, der wieder einmal die Katze angebellt hat.
- Rekursive Einbettung von Relativsätzen als nominaler Modifikator ermöglicht theoretisch unbegrenzte Einbettungstiefe (center embedding): der Hund, der die Katze, die den Vogel jagt, jagt,

1.3. Koordination

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschema
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

Koordination

gleichrangige konjunktionale Verknüpfung

- symmetrische Relation zwischen Köpfen: HEAD HEAD
- nicht auf Satz beschränkt, auch Koordination im nominalen, verbalen und adjektivischen Bereich
- in UD wird Koordination als asymmetrische Relation modelliert: erster Kopf als Kopf der koordinierten Konstruktion
- o conjunction reduction möglich: Ich kam, Ø sah und Ø siegte

Koordination (conj + cc)

conjunct (conj) + coordinating conjunction (cc)

http://universaldependencies.org/u/dep/conj http://universaldependencies.org/u/dep/cc

Parataxe

parataxis (parataxis)

http://universaldependencies.org/u/dep/parataxis

2. Verbale Konstruktionen

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschema
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

2.1. Auxiliarkonstruktionen

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschem.
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

Auxiliarkonstruktionen

- Hilfs-und Modalverben (Auxiliare): bilden als finites Verb mit infiniter
 Verbform den Verbalkomplex
- Neuhochdeutsch: getrennte VP aus Auxiliar und infinitem lexikalischen Element kennzeichnend
- Auxiliar ist der linke Teil der Satzklammer: Aufteilung Satz in Vorfeld, Mittelfeld, Nachfeld:

VORFELD hat MITTELFELD gesehen NACHFELD

Funktion der Hilfsverben/Modalverben

- sein: Perfekt (bei bestimmten Verben) und Kopula = Hilfsverb für Prädikativkonstrution, s. u.
- haben: Perfekt bei übrigen Verben
- werden: Futur
- Modalverben (drücken Sprechereinstellung aus): dürfen, können, mögen, müssen, sollen, wollen

Auxiliar (aux)

auxiliary (aux)

http://universaldependencies.org/u/dep/aux

UD- vs TIGER-Analysekonvention: Auxiliar

- Unterschiedliche Analysekonventionen UD: TIGER-Dependency
 - UD: finites Auxiliar als AUX-Marker, infinite Verbalform als ROOT ('primacy of content words')
 - TIGER: finites Auxiliar als ROOT, infinite Verbalform als OC-Dependent (=object clause)

2.2. Prädikativkonstruktion mit Kopula

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschema
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- 3 Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

Prädikativkonstruktion

- nicht-verbaler Teil des Verbkomplexes, der Eigenschaft angibt: Max ist groß.
- im Deutschen: Prädikativ bildet mit Kopulaverb Prädikat
- Deutsche Kopulaverben: sein, werden, scheinen
 - ACHTUNG: sein kann auch Vollverb sein (Existenzverb): Es sind viele Menschen im Raum.
- Prädikativsatz: Er ist geworden, was er immer werden wollte.

Kopula (cop)

copula (cop) http://universaldependencies.org/u/dep/cop Dies ist ein häufiges Merkmal von Stramenopilen

UD- vs TIGER-Analysekonvention: Kopula

- Unterschiedliche Analysekonventionen UD: TIGER-Dependency
 - UD: Prädikativ als ROOT (als semantischer Kopf des Satzes), Kopula als Prädikativ-Marker ('primacy of content words')
 - TIGER: Kopula = finites Verb als ROOT, Prädikativ als Dependent

2.3. Infinite Konstruktionen

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschema
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

Infinite Konstruktionen

- Infinite Verbformen im Deutschen: Infinitiv und Partizip
- Infinite Formen = nicht flektiert nach den grammatischen Kategorien des finiten Verbs, insbesondere kein Subjektagreement
- Infinite Formen bilden zusammen mit konjugiertem (finitem) Auxiliar
 Verbalkomplex: ich habe gesagt (PPP), ich will sagen (INF)
- Infinite Verben können eingebettete Satzkonstruktionen bilden: er glaubte ein UFO zu sehen.

Subjekt- vs Objektkontrolle

- Infinite Konstruktionen sind subjektlos! (Subjekt nicht ausgedrückt)
- Argument des Matrixsatzes übernimmt die Subjektfunktion (= Kontrolle), abhängig vom Verb:
- Subjektkontrolle: sie versprachen ihm, nach München zu fahren
 sie versprachen ihm, dass sie nach München fahren würden
- Objektkontrolle: sie überzeugen ihn, nach München zu fahren
 sie überzeugen ihn, dass er nach München fahren solle
- Infinitiv-Komplementsatz kann vom Verb gefordert sein (sich bemühen zu gewinnen) oder als Ersatz für finiten Komplementsatz dienen: er glaubte, dass er fliegt: er glaubte zu fliegen

Infinitiv-Komplementsatz (xcomp + mark)

Marker im Dt: zu

open clausal complement (xcomp) http://universaldependencies.org/u/dep/xcomp Jahr Erfinduna machen verspricht

Infinitiv-Adverbialsatz (advcl + mark)

- Marker im Dt: um zu (Finalsatz)
- gleiches Label wie finite Adverbialsätze (s.o.)

adverbial clause modifier (advcl) + marker (mark)

http://universaldependencies.org/u/dep/advcl http://universaldependencies.org/u/dep/mark

Infinitiv-Attributsatz (acl + mark)

- Marker im Dt: zu
- gleiches Label wie finite Attributsätze (s.o.)

3. Konstituentenstruktur komplexer Sätze

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschem.
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- 3 Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

Koordination und Subordination im Konstituentenmodell

- Konjunktion allgemein: Einfache Sätze als Konstituenten von komplexen Sätzen
- Koordination = Sätze als Ko-Konstituenten eines komplexen Satzes
- Subordination = Einbettung von Sätzen als Konstituenten in übergeordneten Satz (Matrixsatz) (= komplexer Satz)

Abbildung: Koordination und Subordination im Konstituentenmodell

3.1. Subordination

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschema
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- 3 Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

Subordination in Konstituentenmodell

- **Besetzung bestimmter Strukturposition** je nach Subordinationstyp:
 - Subjektsatz: S → SBAR VP
 - Objektsatz: VP → V SBAR
 - Adverbialsatz: S → NP VP SBAR
 - Relativsatz: NP → NP SBAR
- Konstituententests zeigen Konstituentenstatus, z. B. durch Koordinierung: weil er ging und weil er kam

Komplementierer und S-Bar: $SBAR \rightarrow COMP$ S

- in Generativer Grammatik: Komplementierer als Bezeichnung einer Position in der Phrasenstruktur von Nebensätzen
 - \rightarrow Komplementierer im weiteren Sinne (vgl. oben)
 - → typischerweise durch **subordinierende Konjunktion** realisiert
 - → muss aber nicht realisiert sein (phonetisch leere Elemente)
- Annahme X-Bar-Struktur auch für subordinierte Sätze (S-Bar):
 SBAR → COMP S
- Rekursion: wiederholte Einbettung von Sätzen ineinander über rekursive Regeln

Komplementsatz im X-Bar-Schema: S-Bar als Verbkomplement

Abbildung: allgemeines X-Bar-Schema

Komplementsatz mit rekursiver Regel (ohne VP-X-Bar-Struktur)

S=NP+VP VP=V+SBAR SBAR=COMP+S

Relativsatz: S-Bar als Adjunkt der NP

Infinitiv-Komplement: VP als Verbkomplement

3.2. Komplexe Satzkonstruktionen in der Penn-Treebank

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschema
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

Penn-Treebank: Komplexe Sätze

- S (Penn-Treebank): 'simple declarative clause, i.e. one that is not introduced by a (possible empty) subordinating conjunction or a wh-word and that does not exhibit subject-verb inversion.'
- SBAR (Penn-Treebank): 'Clause introduced by a (possibly empty) subordinating conjunction.'
- leere Kategorie (0): z. B. für nicht realisierte Komplementierer
- Analyse z. B. von Subjekt-/Objektkontrolle über Indizes (*−1)

Penn-Treebank: Konstituentenanalyse Objekt-Komplementsatz

Abbildung: Konstituentenanalyse Objekt-Komplementsatz (S-Bar mit nicht realisiertem Komplementierer): VP=V+SBAR; SBAR=COMP+S

Penn-Treebank: Konstituentenanalyse Adverbialsatz

Abbildung: Konstituentenanalyse Adverbialsatz (SBAR-ADV): S=SBAR-ADV+S

Penn-Treebank: Konstituentenanalyse Relativsatz

Abbildung: Konstituentenanalyse Relativsatz: NP=NP+SBAR; SBAR=WHNP+S; Analyse Relativpronomen als aus Satz an Komplementiererposition herausbewegtes Subjekt; T=trace

Penn-Treebank: Infinitivkonstruktionen

Abbildung: Konstituentenanalyse Infinitiv-Komplement mit Objektkontrolle: S=NP(NONE)+VP; VP=TO+VP

Penn-Treebank: Konstituentenanalyse Infinitiv-Adverbialsatz

Abbildung: Konstituentenanalyse Infinitiv-Adverbialsatz (PRP=Purpose): S=S-PRP+S; S-PRD=NP(NONE)+VP;VP=TO+VP

3.3. Koordination

- Komplexe Satzkonstruktionen
 - Subordination
 - Typen subordinierter Sätze im UD-Annotationschema
 - Koordination
- Verbale Konstruktionen
 - Auxiliarkonstruktionen
 - Prädikativkonstruktion mit Kopula
 - Infinite Konstruktionen
- Konstituentenstruktur komplexer Sätze
 - Subordination
 - Komplexe Satzkonstruktionen in der Penn-Treebank
 - Koordination

Allgemeines Schema Koordination (Variable n = Bar-Level)

Koordination auf allen Ebenen (N, N' und N"/NP)

Penn-Treebank: Satzkoordination

Abbildung: Konstituentenanalyse S-Koordination: S=S+CC+S+CC