# results of t' = 0, U = 6

#### April 1, 2015

#### Abstract

This report contains results of t'=0, U=6, T=0.5, 0.25, 0.125 which are simulated at fixed n=0.3, 0.6. We present four physical quantities including energy density E, kinetic energy density K, double occupancy density D and chemical potential  $\mu$ . Three techniques have been used including  $G^2\Gamma$ -scheme,  $[G^{(0)}]^2\Gamma^{(0)}$ -scheme and  $[G^{(0)}]^2U$ -scheme. Extrapolation(in the order N) figures are shown in Section 2,3,4, and final results( $N \to \infty$ ) are shown in Table 1, 2, 3.

## 1 Fitting table

Table 1: Extrapolation results:  $G^2\Gamma$  and  $[G^{(0)}]^2\Gamma^{(0)}$  series for  $U=6,\,T=0.5$ 

|                | n                         | 1.0 | 0.875 | 0.8 | 0.6 | 0.3         |
|----------------|---------------------------|-----|-------|-----|-----|-------------|
| $\overline{E}$ | $G^2\Gamma$               | -   | -     | -   | -   | -0.777(2)   |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | -     | -   | -   | -0.779(3)   |
| K              | $G^2\Gamma$               | -   | -     | -   | -   | -0.8115(30) |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | -     | -   | -   | -0.8112(20) |
| D              | $G^2\Gamma$               | -   | -     | -   | -   | 0.0053(5)   |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | -     | -   | -   | 0.0052(5)   |
| $\mu$          | $G^2\Gamma$               | -   | -     | -   | -   | -1.952(10)  |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | -     | -   | -   | -1.964(10)  |

# 2 Fitting table

Table 2: Extrapolation results:  $G^2\Gamma$  and  $[G^{(0)}]^2\Gamma^{(0)}$  series for  $U=6,\,T=0.25$ 

|                | n                         | 1.0 | 0.875 | 0.8 | 0.6 | 0.3        |
|----------------|---------------------------|-----|-------|-----|-----|------------|
| $\overline{E}$ | $G^2\Gamma$               | -   | -     | -   | -   | -0.841(2)  |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | -     | -   | -   | -0.840(3)  |
| K              | $G^2\Gamma$               | -   | -     | -   | -   | -0.877(2)  |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | -     | -   | -   | -0.878(3)  |
| D              | $G^2\Gamma$               | -   | -     | -   | -   | 0.0060(5)  |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | -     | -   | -   | 0.0063(7)  |
| $\mu$          | $G^2\Gamma$               | -   | -     | -   | -   | -1.843(10) |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | _     | -   | -   | -1.842(20) |

# 3 Fitting table

Table 3: Extrapolation results:  $G^2\Gamma$  and  $[G^{(0)}]^2\Gamma^{(0)}$  series for  $U=6,\,T=0.125$ 

|                | n                         | 1.0 | 0.875 | 0.8 | 0.6 | 0.3         |
|----------------|---------------------------|-----|-------|-----|-----|-------------|
| $\overline{E}$ | $G^2\Gamma$               | -   | -     | -   | -   | -0.858(3)   |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | -     | -   | -   | -0.855(7)   |
| K              | $G^2\Gamma$               | -   | -     | -   | -   | -0.8956(20) |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | -     | -   | -   | -0.8965(40) |
| D              | $G^2\Gamma$               | -   | -     | -   | -   | 0.0064(5)   |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | -     | -   | -   | 0.0067(6)   |
| $\mu$          | $G^2\Gamma$               | -   | -     | -   | -   | -1.819(10)  |
|                | $[G^{(0)}]^2\Gamma^{(0)}$ | -   | -     | -   | -   | -1.83(2)    |

# 4 T = 0.5

### **4.1** T = 0.5, n = 0.3









### **4.2** T = 0.5, n = 0.6









### **4.3** T = 0.5, n = 0.8









# T = 0.25

### **5.1** T = 0.25, n = 0.3









### **5.2** T = 0.25, n = 0.6









### **5.3** T = 0.25, n = 0.8









# **6** T = 0.125

#### **6.1** T = 0.125, n = 0.3









### **6.2** T = 0.125, n = 0.6







