Lanterne

Nome del problema	Lanterns
File di input	standard input
File di output	standard output
Limite di tempo	3 secondi
Limite di memoria	1024 megabyte

John il pastore ha portato la sua mandria di mucche in escursione sulle Alpi! Dopo un po' si è fatta notte e l'escursione è finita; tuttavia, alcune mucche sono rimaste intrappolate lungo tutta la catena montuosa, e ora John deve andare a riprenderle.

La catena montuosa percorsa dalle mucche si può rappresentare con una successione di n vertici in un piano 2D disposto in verticale. Chiameremo tali vertici "vette". Le vette sono numerate da 1 a n, da sinistra a destra. La vetta i ha coordinate (i, h_i) . Il valore h_i denota l'**altitudine** della vetta i. È garantito che h_1, h_2, \ldots, h_n formano una permutazione di $1, 2, \ldots, n$.

Per ogni i ($1 \le i < n$), le vette i e i + 1 sono connesse da un segmento rettilineo.

Essendo notte fonda, John non può trovarsi in alcun punto della catena montuosa a meno che non abbia con sé una lanterna funzionante. Per fortuna, sono in vendita k lanterne. Per ogni j ($1 \le j \le k$), la lanterna j può essere acquistata sulla vetta p_j al costo di c_j franchi svizzeri.

Purtroppo, la laterna j funziona solo quando John si trova ad un'altitudine compresa nell'intervallo $[a_j,b_j]$ (estremi inclusi). Nota però che le laterne non si rompono uscendo dal loro intervallo, semplicemente non illuminano. Per esempio, quando l'altitudine supera b_j , la lanterna j smetterà di fare luce, ma riprenderà a farlo non appena John rientrerà nell'intervallo.

Quando John si trova sulla vetta p, può compiere una delle seguenti azioni:

- Acquistare una delle lanterne disponibili su quella vetta (se ve ne sono). Potrà usarla per sempre.
- Spostarsi sulla vetta p-1 se p>1.
- Spostarsi sulla vetta p + 1 se p < n.

John non può spostarsi al buio, quindi deve avere sempre con sé almeno una lanterna

accesa. Non è necessario che la luce arrivi da una singola lanterna durante il tragitto tra due vette.

Per esempio, supponi che John si trovi su una vetta con altitudine 4 e voglia spostarsi su una vetta adiacente con altitudine 1. Avendo due lanterne con intervalli [1,3] e [3,4] John sarebbe in grado di raggiungere la destinazione.

Se però avesse due lanterne che funzionano solo negli intervalli [1,1] e [2,5], non riuscirebbe ad arrivare a destinazione perché, per esempio, nel punto 1.47 sarebbe al buio.

Il tuo compito è determinare la risposta a diverse domande indipendenti.

Per ogni $1 \le j \le k$ che soddisfa $a_j \le h_{p_j} \le b_j$, supponi che John inizi la ricerca sulla vetta p_j comprando la laterna j. Per completare la ricerca deve visitare tutte le n vette almeno una volta. Per ciascun j, determina la minima quantità di franchi da spendere per completare la ricerca (includendo il costo della lanterna j).

Input

La prima riga contiene n e k ($1 \le n \le 2000$, $1 \le k \le 2000$) – il numero di vette e il numero di lanterne.

La seconda riga contiene n interi h_1, h_2, \ldots, h_n $(1 \le h_i \le n)$ separati da spazi: le altitudini di ciascuna vetta. È garantito che queste siano una permutazione degli interi da 1 a n.

La j-esima delle successive k righe contiene 4 interi p_j , c_j , a_j e b_j ($1 \le p_j \le n$, $1 \le c_j \le 10^6$, $1 \le a_j \le b_j \le n$) separati da spazi – la vetta dove è possibile acquistare la lanterna j, il suo costo e il suo intervallo di funzionamento.

Output

Per ciascun j ($1 \le j \le k$) stampa una singola riga con:

- -1 se h_{p_i} è fuori dall'intervallo $[a_j, b_j]$.
- ullet -1 se John non è in grado di completare la ricerca acquistando per prima la lanterna j.
- Altrimenti il minimo numero di franchi che deve spendere per completare la ricerca acquistando per prima la lanterna j.

Assegnazione del punteggio

Subtask 1 (9 punti): $n \le 20$ e $k \le 6$.

Subtask 2 (12 punti): $n \le 70$ e $k \le 70$.

Subtask 3 (23 punti): $n \leq 300$, $k \leq 300$ e $h_i = i$ per tutti gli $1 \leq i \leq n$.

Subtask 4 (16 punti): $n \le 300$, $k \le 300$.

Subtask 5 (40 punti): nessuna limitazione aggiuntiva.

Esempi

standard input	standard output
7 8	7
$4\; 2\; 3\; 1\; 5\; 6\; 7$	-1
3 1 2 4	4
1 2 1 3	10
4 4 1 7	30
6 10 1 7	-1
6 20 6 6	-1
6 30 5 5	-1
7 40 1 6	
7 50 7 7	

Note

Se John inizia comprando la lanterna 1 nella vetta 3, può fare la seguente sequenza di operazioni:

- spostarsi a sinistra due volte fino alla vetta 1
- acquistare la lanterna 2
- spostarsi a destra fino alla vetta 4
- acquistare la lanterna 3
- spostarsi a destra fino alla vetta 7

A questo punto, John ha visitato ogni vetta almeno una volta spendendo 1+2+4=7 franchi.

John non può iniziare acquistando la lanterna 2, 6 oppure 7, visto che non illuminano all'altitudine alla quale sono in vendita. Quindi la risposta per queste lanterne deve essere -1.

Se John inizia acquistando le lanterne 3 o 4, può visitare tutte le vette senza dover acquistare ulteriori lanterne.

Se John acquista per prima la lanterna 5, deve acquistare anche la lanterna 4 successivamente.

Se John inizia acquistando la lanterna 8, rimarrà bloccato alla vetta 7. Se anche

acquistasse la laterna 7, non sarebbe comunque in grado di raggiungere la vetta 6.	