## Chapter 1

# Fermi theory of $\beta$ -decay

Fermi's Golden Rule gives the rate in general form,

$$\Gamma = 2\pi \left| A_{fi} \right|^2 \frac{\mathrm{d}N}{\mathrm{d}E_f} \tag{1.1}$$

#### The matrix element 1.1

$$A_{fi} = \langle \Psi_f | A | \Psi_i \rangle \tag{1.2}$$

where  $\langle x|\Psi_i\rangle=\psi_i$  and  $\langle x|\Psi_f\rangle=\psi_f\,\phi_e\,\phi_\nu$ . From the diagram for  $\beta$ -decay  $\langle x|A|x\rangle=G_F\equiv g_w^2/M_W^2$ . Therefore the matrix element is given by

$$A_{fi} = G_F \int_{\text{nucleus}} d^3 \mathbf{x} \, \phi_e^* \, \phi_\nu^* \, \psi_f^* \, \psi_i$$
 (1.3)

Next we make the assumptions that the electron and neutrino may be treated as plane waves. That is,

$$\phi_e(\mathbf{x}) = \frac{1}{\sqrt{V}} \exp(-i\,\mathbf{p_e} \cdot \mathbf{x})$$

$$\phi_{\nu}(\mathbf{x}) = \frac{1}{\sqrt{V}} \exp(-i\,\mathbf{p_{\nu}} \cdot \mathbf{x})$$
(1.4a)
$$(1.4b)$$

$$\phi_{\nu}(\mathbf{x}) = \frac{1}{\sqrt{V}} \exp(-i \,\mathbf{p}_{\nu} \cdot \mathbf{x})$$
(1.4b)

Then

$$\phi_e^* \phi_\nu^* = \frac{1}{V} e^{i \mathbf{p} \cdot \mathbf{x}} \tag{1.5a}$$

$$= 1 + i \mathbf{p} \cdot \mathbf{x} - (\mathbf{p} \cdot \mathbf{x})^2 + \dots$$
 (1.5b)

$$\approx 1$$
 (1.5c)

Therefore

$$A_{fi} \approx \frac{G_F}{V} \underbrace{\int_{\text{nucleus}} d^3 \mathbf{x} \ \phi_f^* \ \phi_i}_{M_{fi}}$$
 (1.6a)

$$= \frac{G_F}{V} M_{fi} \tag{1.6b}$$

So the expression for the rate becomes

$$\Gamma = 2\pi \frac{G_F^2}{V^2} \left| M_{fi} \right|^2 \frac{\mathrm{d}N}{\mathrm{d}E_f} \tag{1.7}$$

### 1.2 Density of states

Assume the daughter nucleus is so heavy is doesn't recoil, so we don't need to include a density of states for it.

$$dN = \left(4\pi \frac{V}{(2\pi)^3} p_e^2 dp_e\right) \left(4\pi \frac{V}{(2\pi)^3} p_\nu^2 dp_\nu\right)$$
 (1.8a)

$$= \frac{(4\pi)^2}{(2\pi)^6} V^2 p_e^2 p_\nu^2 dp_e dp_\nu$$
 (1.8b)

Now we take  $E_f = E_e + E_{\nu}$ , therefore  $dE_f = dE_{\nu} = dp_{\nu}$  for a fixed  $E_e$  (assuming  $E_{\nu} \approx p_{\nu}$ ).

$$\frac{\mathrm{d}N}{\mathrm{d}E_f} = \frac{(4\pi)^2}{(2\pi)^6} V^2 p_e^2 (E_f - E_e)^2 \,\mathrm{d}p_e \tag{1.9}$$

so

$$d\Gamma = 2\pi G_F^2 |M_{fi}|^2 \frac{1}{4\pi^4} (E_f - E_e)^2 p_e^2 dp_e$$
(1.10)

Integrating through possible electron momenta from 0 to  $p_f$  (and using  $p_e \approx E_e$ ), we obtain the result

$$\boxed{\Gamma \propto E_f^5} \tag{1.11}$$

## 1.3 Assumptions

- $|Q| \ll M_W$ , so the propagator factor is purely the mass of the exchange boson;
- The wavefunctions for the electron and neutrino may be approximated as plane waves;
- $(\mathbf{p_e} + \mathbf{p}_{\nu}) \cdot \mathbf{x} \ll 1$ , which simplifies the matrix element to some scalar multiple of the nuclear form factor;
- The daughter nucleus is heavy and there is no recoil, so there is no density of states;
- The electron and neutrino are ultrarelativistic, so  $E \approx p$ .