class BTree E
B Node * root:
int t:
Blue () {
root = NULL;
t - 2;
2
3
void insert (int k) {
upot = new 7 BNode, ();
$root \rightarrow keys[0] = k;$ $root \rightarrow n = 1;$
$gelse: l(xont \rightarrow n = 2^{-t} - 1)$
BNode *5 = new BNode ().
$s \rightarrow C[0] = noot;$
s → split (o, root);
int i = 0
if (s → keys [o] <k)< th=""></k)<>
i++;
s → c[i] → insertinto Node [k);
root = s;
3 else E
vont = invertintoNode(k);
7
2
J

void insertint Node (int k) {
int i. n - 1;
Il (1 leas) {
while (1>=0 44 keys [1] > K) { Keys [1+1] = keys [1],
Keyp [i+1] = keyp [i];
;
<u> </u>
keys[1+1]=k
n = n + 1;
- le s
C
while (; >=0 44 keys [;] >k)
$\frac{1}{2}\left(C(1-1) \rightarrow n = 2+1\right)$
if (keys[i+1] < 4)
THE CHARGE (T)
3
C[i+1] -> insert into Node (10):
3
void edit(int; BTree, * 4) f
BTree +2 = new BTree (y -> ky):
Z→n=t-1;
for (int j=0; j<+-1; j++)
Z > Keys [1] = y > Keys [: +]
Z → keyo [,] = y → keyo [,+t]. if (y → leaf = = false)
for (int ;=0; i<+:i4.)
$for (int j=0; j \le t; j + 1)$ $z \to C[j] = y \to [j+t];$
J 5

 $y \to n = t - 1;$ $y \to n = t + 1 = n + 1;$ $y \to n = t + 1;$