WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

A1

(11) International Publication Number:

WO 90/07500

C07D 207/277, A01N 43/36

۱ *ا* د

(43) International Publication Date:

12 July 1990 (12.07.90)

(21) International Application Number:

PCT/US89/05402

(22) International Filing Date:

29 November 1989 (29.11.89)

(30) Priority data:

_290,139

27 December 1988 (27.12.88) US

(71) Applicant: ICI AMERICAS INC. [US/US]; 1200 South 47th Street, Box 4023, Richmond, CA 94804-0023 (US).

(72) Inventor: WOOLARD, Frank, X.; 413 High Street, Richmond, CA 94703 (US).

(74) Agents: POLYN, Denis, A. et al.; ICI Americas Inc., 1200 South 47th Street, Box 4023, Richmond, CA 94804-0023 (US). (81) Designated States: AT (European patent), AU, BE (European patent), BR, CH (European patent), DE (European patent), ES (European patent), FR (European patent), GB (European patent), HU, IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report.

(54) Title: 1-PHENYL-3-CARBOXYAMIDOPYRROLIDONES AND THEIR USE AS HERBICIDES

$$(F)_{n} \xrightarrow{Y} X Z R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

(57) Abstract

1-Phenyl-3-carboxyamidopyrrolidones of formula (I), in which R¹ is H, alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, phenyl, halophenyl, benzyl, halobenzyl, or alkyl substituted with alkoxy, alkylthio, phenyl, hydroxy or cyano; and R² is H or alkyl; or R¹ and R² are combined as alkylene or alkyleneoxyalkylene; R³ is alkyl or alkenyl; R⁴ is H, halogen, CH₃, CF₂CHF₂, OCF₂CHF₂, OCH5₂, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, methoxyiminomethyl, methoxyimino-1-ethyl, benzyloxyiminomethyl, or benzyloxyimino-1-ethyl; n is zero or 1; X is H or halogen; Y is O or S; and Z is O or S, are useful as herbicidal agents.

DOCID: <WO___9007500A1_I_:

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AT	Austria	ES	Spain	MG	Madagascar
	ΑU	Australia	FI	Finland		
	BB	Barbados	FR	France	ML	Mali
- 1	BE	Belgium	GA	Gabon	MR	Mauritania
1	BF	Burkina Fasso	GB		MW	Malawi
	BG	Bulgaria		United Kingdom	NL	Netherlands
	B.J	Benin	HU	Hungary	NO	Norway
			П	Italy	RO	Romania
	BR	Brazil	JP	Japan	SD	Sudan
	CA	Canada	KP	Democratic People's Republic	SE	Sweden
(CF	Central African Republic		of Korea	SN	
	CG	Congo	KR	Republic of Korea	SU	Senegal
	CH	Switzerland	u	Liechtenstein		Soviet Union
	CM	Cameroon	ĽΚ	Sri Lanka	TD	Chad
	DE.	Germany, Federal Republic of			TG	Togo
_	DK	Denmark	w	Luxembourg	us	United States of America
	- T	L-CHRISTE	MC	Monroe		

DOCID: <WO___9007500A1_I_>

10

15

20

25

30

35

40

1-PHENYL-3-CARBOXYAMIDOPYRROLIDONES AND THEIR USE AS HERBICIDES

BACKGROUND AND SUMMARY OF THE INVENTION

This invention relates to substituted pyrrolidones and to their use in herbicidal formulations. In particular, this invention relates to substituted 1-phenyl-3-carboxy-amido-pyrrolidones of the formula

$$(F)_{n} \longrightarrow N \qquad \qquad X \qquad Z \qquad \qquad R^{1}$$

$$R^{2} \longrightarrow R^{2}$$

in which:

R¹ is a member selected from the group consisting of H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ alkoxy, phenyl, halosubstituted phenyl, benzyl, halosubstituted benzyl, and C₁-C₆ alkyl substituted with one or more members selected from the group consisting of C₁-C₆ alkoxy, C₁-C₆ alkylthio, phenyl, hydroxyl and cyano, and

- R^2 is a member selected from the group consisting of H and $C_1 C_6$ alkyl, or
- R^1 and R^2 are combined to form a member selected from the group consisting of C_2 - C_6 alkylene and C_2 - C_6 alkyleneoxyalkylene;
- R^3 is a member selected from the group consisting of C_1-C_6 alkyl and C_2-C_6 alkenyl;
- R⁴ is a member selected from the group consisting of H, halogen, CH₃, CF₃, CF₂CHF₂, OCF₂CHF₂, OCHF₂,

10

15

20

25

30

35

OCF₃, SCH₃, S(0)CH₃, SO₂CH₃, methoxyiminomethyl, methoxyimino-l-ethyl, benzyloxyiminomethyl, and benzyloxyimino-l-ethyl;

- n is zero or 1;
- X is a member selected from the group consisting of H and halogen;
- Y is a member selected from the group consisting of O and S; and
- Z is a member selected from the group consisting of O and S.

The compounds of the present invention, as will be seen from the description and test data which follows, have utility as both pre-emergence and post-emergence herbicides, against a wide range of plant species. The preferred method of application is pre-emergence, and certain compounds, notably that in which X is H, R^1 is CH_3 , R^2 is H, R^3 is C_2H_5 , R^4 is CF_3 , Y is O, Z is O, and n is zero, is particularly useful on sugarcane crops in view of its selectivity.

The terms "herbicide" and "herbicidal" are used herein to denote the inhibitive control or modification of undesired plant growth. Inhibitive control and modification include all deviations from natural development such as, for example, total killing, growth retardation, defoliation, desiccation, regulation, stunting, tillering, stimulation, leaf burn, and dwarfing. The term "herbicidally effective amount" is used to denote any amount which achieves such control or modification when applied to the undesired plants themselves or to the area in which these plants are growing. The term "plants" is intended to include germinant seeds, emerging seedlings and established vegetation, including both roots and above-ground portions.

It will be noted that the generic formula representing the pyrrolidones of the present invention indicates two chiral centers, one at the 3-position and the other at the 4-position of the pyrrolidone ring. Other chiral centers may exist in the various substituent groups, depending on the particular compound. The specific

10

15

20

25

30

35

H.

compounds disclosed herein each represent a mixture of enantiomers at all chiral centers present, unless otherwise indicated. Herbicidal activity for the mixture is an indication of herbicidal activity for each individual enantiomer. In certain cases, however, as is known among those skilled in the art, one enantiomer will have a greater herbicidal activity than the other enantiomer for a given chiral center.

DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS

Within the scope of the above formula, certain embodiments are preferred, as follows.

Preferred R^1 groups (when not combined with R^2) are C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, and C_1 - C_6 alkyl substituted with C_1 - C_6 alkoxy. Particularly preferred among these are C_1 - C_3 alkyl, allyl, propargyl and cyclopropyl.

R¹ when likewise not combined with R² is preferably

In embodiments where R¹ and R² are combined, the preferred combined group is either $-(CH_2)_2-O-(CH_2)_2-$, $-(CH_2)_4-$, or $-(CH_2)_5-$.

Preferred R³ groups are ethyl and vinyl, with ethyl the most preferred.

R4 is preferably trifluoromethyl.

Of the remaining groups, n is preferably zero; X is preferably H or chloro, most preferably H; and Y and Z are preferably O.

The terms "alkyl," "alkenyl," and "alkynyl,"

"alkoxy" are used herein to denote both straight-chain and
branched-chain groups. Examples of alkyl groups are methyl,
ethyl, n-propyl, isopropyl, n-butyl, t-butyl, 2-methyl-nbutyl, and n-hexyl. Examples of alkenyl groups are vinyl,
allyl, and 2-butenyl. Examples of alkynyl groups are
acetyl, propargyl (2-propynyl), 1-propynyl and 3-butynyl.

10

15

20

25

30

35

Examples of alkoxy groups are methoxy, ethoxy, isopropoxy, and n-butoxy.

The compounds of this invention are prepared by a step-wise sequence of transformations that begins with the preparation of N-alkyl anilines variously substituted on the aromatic ring. These N-alkyl anilines are prepared either by:

- (a) the alkylation of the acetanilide with an alkyl halide and strong base such as sodium hydride, followed by hydrolysis, or
- (b) the reaction of an aniline with an aliphatic aldehyde in the presence of a water scavenger such as titanium tetrachloride, followed by reduction of the product imine with sodium borohydride.

The N-alkyl anilines are then treated with an alkyl malonyl chloride in a non-polar solvent such as chloroform, methylene chloride, toluene or benzene, in the presence of an organic base such as triethylamine or pyridine, while maintaining the temperature between 5°C and 20°C. resulting ethyl N-aryl-N-alkylmalonate monoamides are then combined in a polar organic solvent, for example acetonitrile, with equivalent amounts of p-toluenesulfonyl azide and an organic base such as triethylamine to form ethyl Naryl-N-alkyldiazomalonate monoamides. The dropwise addition of these compounds to a refluxing suspension of rhodium (II) acetate dimer in benzene decomposes the diazo group to nitrogen gas and a carbene species which immediately undergoes intramolecular reaction to form a 3-carboethoxy-4alkylpyrrolidone ring. Treatment of the latter with a chlorinating agent such as sulfuryl chloride in a non-polar aprotic solvent such as methylene chloride adds a chlorine to the 3-position of the pyrrolidone ring, if desired.

Hydrolysis of the ester group is then achieved with either potassium or sodium hydroxide in water/ethanol mixtures followed by acidification with a mineral acid. The acid is then converted to its acid chloride by conventional procedures, followed by reaction with a large excess of an

10

15

20

25

30

35

amine. Alternatively, the ester may itself be reacted with a large excess of amine. Both are done in a solvent such as tetrahydrofuran (THF) or ethanol. The large excess of amine ensures that the HCl liberated by the reaction is neutralized. Neutralization can also be achieved by the use of a second, tertiary amine, such as triethylamine or pyridine.

The following are examples of compounds which have been synthesized by the procedures described above. These examples are offered strictly for purposes of illustration, and are intended neither to limit nor to define the invention in any manner.

EXAMPLE 1

This example illustrates the preparation of 1-(3-trifluoromethyl)phenyl-3-(N-methyl)carboxamido-4-ethyl-2-pyrrolidone in which, according to the above formula, R^1 is CH_3 , R^2 is H, R^3 is C_2H_5 , R_4 is CF_3 , n is zero, X is H and Y and Z are both O. This compound is represented in Table I below as Compound No. 3.

The compound was prepared by two routes.

In the first route, the synthesis began with the preparation of m-(N-n-butyl)aminobenzotrifluoride, as fol-A two-liter three-necked round-bottomed flask equipped with a mechanical stirrer, thermometer, and pressure equalizing addition funnel carrying a nitrogen bubbler was charged with 64.46 g (0.40 mol) of m-aminobenzotrifluoride, 101.19 g (1.00 mol) of triethylamine, and 200 mL of dry ether. The solution was stirred and cooled to 3°C by immersing the flask in an external ice bath. Freshly distilled butyraldehyde (36.05 g, 0.50 mol) in 200 mL of ether was then added all at once. A solution of titanium tetrachloride in 35 mL of dry benzene was then added dropwise at such a rate that the temperature did not rise above 5°C. When the addition was complete an additional 10 mL of butyraldehyde were added and the mixture filtered through diatomaceous earth to remove the precipitated titanium

10

15

20

25

30

35

dioxide. The ether solvent was then removed in vacuo and the resulting yellow oil dissolved in 600 mL of absolute ethanol. The solution was stirred magnetically and 15.13 g (0.40 mol) of sodium borohydride added batchwise in portions of approximately 1 g each at such a rate that the foaming was controlled. One-half hour after the last addition gas chromatography (GC) analysis showed the reaction to be complete.

After removal of the bulk of the ethanol in vacuo 250 mL of water was added to the residue and the pH adjusted to 8 with concentrated HCl. The oily aqueous mixture was then extracted with three 100 mL portions of ethyl acetate. The extracts were combined, dried (MgSO₄), and the solvent removed in vacuo to give a light yellow oil that was distilled under reduced pressure to yield 54.05 g (62%) of m-(N-n-butyl)aminobenzotrifluoride as a colorless oil; boiling point 62.5-63.5°C at 0.050 mm Hg.

As an alternative route to the same intermediate, N-(3-trifluoromethyl)phenyl-N-butyldichloroacetanilide was formed and converted as follows. A one-liter round-bottomed flask equipped with a mechanical stirrer, heating mantle, pressure equalizing addition funnel, and reflux condenser carrying a nitrogen bubbler was charged with 5.23 g (0.22 mol) of sodium hydride and 100 mL of tetrahydrofuran (THF) freshly distilled from sodium/benzophenone. The suspension was stirred, and a solution of 54.41 g (0.20 mol) of 3trifluoromethyl-dichloroacetanilide in 100 mL of THF was added dropwise with stirring at such a rate that hydrogen evolution was controlled. When the addition was complete, 27.41 g (0.20 mol) of n-butyl bromide were added all at once and the solution was heated to reflux for 48 hours. solution was then allowed to cool, and 50 mL of 3% aqueous HCl cautiously added.

The THF was then removed under reduced pressure and the crude N-(3-trifluoromethyl)phenyl-N-butyldichloroacetanilide, weighing 58.15 g was dissolved in 150 mL of absolute ethanol. A solution of 6.8 g of sodium hydroxide in 10 mL

10

15

20

25

30

35

of water was added all at once. The solution was stirred at room temperature for 18 hours at which time the ethanol was removed in vacuo. The resulting semi-solid was partitioned between 100 mL of water and 100 mL of ethyl acetate. The layers were separated and the aqueous phase extracted with two 50-mL portions of ethyl acetate. The organic layers were combined, dried (MgSO₄) and the solvent removed under reduced pressure. Vacuum distillation of the residual oil provided 14.50 g (33%) of m-(N-n-butyl)aminobenzotrifluoride as a colorless oil; boiling point 62.5-63.5°C at 0.05 mm Hg.

Conversion to ethyl N-(3-trifluoromethyl)phenyl-Nbutylmalonate monoamide then proceeded as follows. 300-mL three-necked round-bottomed flask equipped with a magnetic stirrer, thermometer, and pressure equalizing addition funnel carrying a nitrogen bubbler was added 12.92 g (59.5 mmol) of the aminobenzotrifluoride, 100 mL of methylene chloride, and 4.82 g (61.0 mmol) of pyridine. solution was stirred, cooled to 5°C with an external ice bath, and 9.18 g (61.0 mmol) of ethyl malonyl chloride in 25 mL of methylene chloride added at such a rate that the temperature did not rise above 10°C. When the addition was complete the stirring was continued for one-half hour. reaction mixture was then washed with two 150-mL portions of 3% aqueous HCl, followed by 100 mL of water, then dried (MgSO₄), and the solvent removed in vacuo to give 18.56 g (94%) of the monoamide as a tan-yellow oil.

This was then converted to ethyl N-(3-trifluoromethyl)phenyl-N-butyldiazomalonate monoamide as follows. A 100-mL three-necked round-bottomed flask equipped with a magnetic stirrer, thermometer, and pressure equalizing addition funnel carrying a nitrogen bubbler was charged with 10.00 g (30.2 mmol) of the product of the last step, 40 mL of acetonitrile, and 3.05 g (30.2 mmol) of triethylamine. The solution was stirred and a solution of 5.96 g (30.2 mmol) of p-toluenesulfonylazide added dropwise over 15 minutes. During this time there was a three-degree exotherm (to 27°C). The mixture was then allowed to stir at room temper-

10

15

20

25

30

35

ature and after 36 hours silica gel thin-layer chromatography (TLC) (1:1 ethyl acetate/hexanes) showed the reaction to be complete. The solvent was then removed in vacuo and the residual oil dissolved in 50 mL of ether. The solution was sequentially washed with 1.81 g of KOH in 20 mL of water, 0.6 g of KOH in 20 mL of water, and 20 mL of water, then dried (Na₂SO₄) and the solvent removed under reduced pressure to give 9.81 g (91%) of the N-butyldiazomalonate monoamide as a pale yellow oil.

To convert this to 1-(3-trifluoromethyl)phenyl-3carboethoxy-4-ethyl-2-pyrrolidone, a 300-mL three-necked round-bottomed flask equipped with a magnetic stirrer, heating mantle, thermometer, pressure-equalizing addition funnel, and reflux condenser carrying a nitrogen bubbler was charged with 190 mg of rhodium (II) acetate dimer and 150 mL of benzene. The suspension was stirred, heated to reflux, and a solution of 15.18 g (42.5 mmol) of the N-butyldiazomalonate monoamide in 50 mL of benzene was added dropwise over one hour. When the addition was complete the refluxing was continued for an additional hour, during which time the slow evolution of nitrogen ceased. The suspension was then allowed to cool to room temperature and filtered through diatomaceous earth to remove the rhodium catalyst. Removal of the solvent under reduced pressure provided a red oil that was purified by medium pressure liquid chromatography (MPLC) on silica gel using 30% ethyl acetate/hexanes as eluant. The yield was 6.89 g (49%) of the pyrrolidone ester as a very pale yellow oil.

The ester was then converted to the acid, 1-(3-trifluoromethyl)phenyl-3-carboxy-4-ethyl-2-pyrrolidone, as follows. To a 250-mL boiling flask equipped with a magnetic stirrer was added 6.08 g (16.7 mmol) of the ester, 100 mL of ethanol, and 0.67 g (16.7 mmol) of NaOH in 5 mL of water. The mixture was stirred at room temperature and after two hours, silica gel TLC (1:1 ethyl acetate/hexanes) showed the reaction to be complete. The bulk of the ethanol was removed in vacuo and the residue taken up in 50 mL of water.

10

15

20

25

30

35

The clear solution was washed with two 40-mL portions of ether, acidified with concentrated HCl, and extracted with three 40-mL portions of methylene chloride. The methylene chloride extracts were combined and dried (MgSO₄), and the solvent removed under reduced pressure to yield 4.96 g (88%) of the acid as a very pale yellow foam.

To then convert the acid to the acid chloride, a 100-mL boiling flask equipped with a magnetic stirrer and nitrogen bubbler was charged with 2.21 g (7.3 mmol) of the acid, 48 mL of benzene, and three drops of dimethylformamide (DMF). While the solution was stirred, 1.02 g (8.1 mmol) of oxalyl chloride in 8.5 mL of benzene was added all at once.

After the resulting gas evolution had ceased (approximately one-half hour), the acid chloride was converted to the final product by cooling the solution to 5°C by immersion of the flask in an ice bath. A stream of gaseous methylamine was then introduced below the surface of the liquid for five minutes. After stirring for an additional thirty minutes, the mixture was poured into 100 mL of water and the layers separated.

The organic layer was washed with two 50-mL portions of water, dried (MgSO₄), and the solvent removed under reduced pressure to give a white solid. Recrystallization from benzene yielded 1.10 g (48% yield) of the product in the form of small colorless prisms, with melting point 157-160°C. The structure of the product was confirmed as that of 1-(3-trifluoromethyl)phenyl-3-(N-methyl)carboxamido-4-ethyl-2-pyrrolidone by infrared spectroscopy (IR), mass spectrometry (MS) and nuclear magnetic resonance (NMR).

The second route to the same compound began with the ester 1-(3-trifluoromethyl)phenyl-3-carboethoxy-4-ethyl-2-pyrrolidone prepared above as one of the intermediates in the first route.

To convert this ester to the product, 21.11 g (64.1 mmol) of the ester was combined with 250 mL of THF in a 500-mL boiling flask equipped with a magnetic stirrer and nitrogen bubbler. The solution was stirred and saturated with a

20

25

30

35

stream of anhydrous methylamine. After 24 hours, the solution was cooled by immersing the flask in an ice bath. The solution was then resaturated with methylamine. After an additional 24 hours, the solvent was removed in vacuo and the residual solid recrystallized from benzene-cyclohexane to yield 14.66 g (73%) of the product, identical in all respects to that prepared by the first route.

EXAMPLE 2

This example illustrates the preparation of 1-(3-trifluoromethyl)phenyl-3-(N-methyl)carboxamido-4-vinyl-2-pyrrolidone in which, according to the above formula, R¹ is CH₃, R² is H, R³ is -CH=CH₂, R₄ is CF₃, n is zero, X is H and Y and Z are both O. This compound is represented in Table I below as Compound No. 29.

A 250-mL three-necked round-bottomed flask equipped with a magnetic stirrer, thermometer, and pressure equalizing addition funnel carrying a nitrogen bubbler was charged with 5.00 g (23.2 mmol) of N-crotyl-3-aminobenzotrifluoride, 1.98 g (25.0 mmol) of pyridine, and 100 mL of methylene chloride. The solution was stirred and cooled to 5°C by immersion in an ice bath. A solution of 3.76 g (25.0 mmol) of ethyl malonyl chloride in 25 mL of methylene chloride was added dropwise at such a rate that the temperature did not rise above 15°C. When the addition was complete, the stirring was continued overnight at room temperature. sulting suspension was then poured into 100 mL of 3% aqueous HCl, and the layers separated. The organic phase was washed with an additional 100 mL of 3% HCl, then dried (MgSO4), and the solvent removed under reduced pressure, to yield 7.71 g (101%) of ethyl N-crotyl-N-(3-trifluoromethyl)phenyl-malonate monoamide as a yellow-orange oil.

The latter was then converted to 1-(3-trifluorometh-yl)phenyl-3-carboethoxy-4-vinyl-2-pyrrolidone as follows. A 100-mL three-necked round-bottomed flask equipped with a thermometer, heating mantle, magnetic stirrer and reflux condenser carrying a nitrogen bubbler was charged with 29 mL

10

15

20

25

30

35

of glacial acetic acid and 5.53 g (22.6 mmol) of manganese diacetate tetrahydrate. The resulting suspension was stirred and heated to 90°C, and 0.85 g (5.4 mmol) of potassium permanganate was added in one portion, causing the temperature to rise to 10°C. After the temperature had returned to 90°C, 9,0 mL (9.73 g, 95.8 mmol) of acetic anhydride was added, and the temperature was allowed to fall to 62°C. The product of the last paragraph (4.63 g, 14.1 mmol) was then added in one portion, followed quickly by 12.87 g (0.157 The temperature of the reaction mol) of sodium acetate. mixture rose to 76°C, and was then allowed to fall, then maintained at 62°C for 2.5 hours. The mixture was then poured into 125 mL of water, and the resulting oily mixture extracted with three 25-mL portions of toluene. tracts were combined, washed with 75 mL of water, dried (MgSO,), and the solvent removed under reduced pressure to yield a brownish-orange oil. Purification by medium pressure liquid chromatography (MPLC) on silica gel with 20% ethyl acetate/hexanes yielded 1.14 g (25%) of product as a pale pink oil.

To convert the latter to the 1-(3-trifluoromethyl)phenyl-3-(N-methyl)carboxamido-4-vinyl-2-pyrrolidone, a 100-mL boiling flask equipped with a magnetic stirrer and nitrogen bubbler was charged with 0.44 g (1.34 mmol) of the ester and 100 mL of THF. The flask was immersed in an ice bath and the solution saturated with a stream of anhydrous The mixture was then allowed to stir for methylamine gas. four days at room temperature and the solvent removed under Recrystallization of the residual solid reduced pressure. from ethyl acetate/cyclohexane yielded 0.30 g (71%) as small The structure was identified as that of colorless prisms. 1-(3-trifluoromethyl)phenyl-3-(N-methyl)carboxamido-4-vinyl-2-pyrrolidone by IR, MS and NMR.

EXAMPLE 3

This example illustrates the preparation of 1-(3-trifluoromethyl)phenyl-3-(N-allyl)carboxamido-4-ethyl-2-

10

15

20

25

30

35

pyrrolidone in which, according to the above formula, R^1 is $-CH_2-CH=CH_2$, R^2 is H, R^3 is C_2H_5 , R_4 is $3-CF_3$, R_5 is H, X is H and Y and Z are both O. This compound is represented in Table I below as Compound No. 7.

The synthesis of this compound began with the acid chloride, 1-(3-trifluoromethyl)phenyl-3-chlorocarbonyl-4-ethyl-2-pyrrolidone, as the starting material, prepared as described in Example 1, where it was an intermediate to the final product.

A 100-mL three-necked round-bottomed flask equipped with a thermometer, magnetic stirrer, and pressure equalizing addition funnel carrying a nitrogen bubbler was charged with 2.97 g (9.3 mmol) of the acid chloride, and immersed in an ice bath where the compound was stirred and cooled to 5°C. A solution of 0.53 g (10.2 mmol) of allyl amine and 1.88 g (18.6 mmol) of triethylamine in 10 mL of benzene was then added dropwise at such a rate that the temperature did not rise above 15°C. After the addition was complete, the stirring was continued for one-half hour. The resulting suspension was then washed with two 50-mL portions of aqueous HCl, one 50-mL portion of water, and one 50-mL portion of brine, then dried (MgSO4), and the solvent removed under reduced pressure to yield a thick yellow syrup. product was purified by MPLC on silica gel with 30% ethyl acetate/hexanes as eluant to yield 1.58 g (50%) of product, as a thick yellow oil that solidified upon standing, with melting point 84.0-89.0°C. The structure was confirmed as that of 1-(3-trifluoromethyl)phenyl-3-(N-allyl)carboxamido-4-ethyl-2-pyrrolidone by IR, MS and NMR.

These and further compounds prepared by similar procedures are listed in Table I below, together with physical data in the form of refractive indices or melting points where such measurements were possible, and physical descriptions where they were not.

13

TABLE I COMPOUNDS

			N	R ³	N R ²	
	No.	_ <u>X</u> _	F ₃ Ć	R ²	R ³	n _p 30 or m.p. °C
	1	н	н	Ħ	CH,	thick syrup
	2	H	н	н	C_2H_5	thick syrup
	3	н	CH,	Ħ	C ₂ H ₅	157-160
	4	н	i-C ₃ H ₇	н	C ₂ H ₅	115-116
•	5	Cl	CH ₃	н	C_2H_5	120-127
	6	н	CH3	CH ₃	C ₂ H ₅	thick syrup
	7	н	CH ₂ -CH=CH ₂	H	C_2H_5	84-89
	8	н	n-C ₄ H ₉	H	C_2H_5	thick syrup
	9	н	n-C ₄ H ₉	n-C ₄ H ₉	C_2H_5	thick syrup
	10	н	C_2H_5	н	C_2H_5	118-121
	11	н	$n-C_3H_7$	H	C_2H_5	81-85
	12	н	i-C ₄ H ₉	H	C ₂ H ₅	68-72
	13	н	2-Cl-benzyl	H	C ₂ H ₅	88-92
	14	н	cyclopropyl	H	C_2H_5	87-97
	15	н	-CH2CH2OCH3	H	C ₂ H ₅	82-85
	16	H	cyclopentyl	H	C_2H_5	111-113
	17	н	OCH ₃	H	C ₂ H ₅	137-142
	18	H	OCH,	CH,	C_2H_5	1.4989
	19	H	cyclobutyl	н	C ₂ H ₅	thick syrup

14
TABLE 1 (continued)

No.	<u>x</u>	R¹	R ²	R ³	n _p or m.p. oc
20	H	-CH-CH2OCH3 CH3	H	C_2H_5	58-65
21	н	-CH ₂ CH(OCH ₃) ₂	н	C_2H_5	waxy solid
22	H	OC_2H_5	H	C_2H_5	99-102
23	H	CHC≡CH	н	C ₂ H ₅	123-130
24	H	4-F-phenyl	H	C_2H_5	thick syrup
25	Ħ	-CH ₂ -CH=CHCl	н	C_zH_s	81-88
26	H	-CH ₂ -CH ₂ -O-CH ₂	2-CH ₂ - }	C ₂ H ₅	thick syrup
27	H	-CH-CH₂CH₃ CH₃	H	C_2H_5	waxy solid
28	H	-CH-n-C,H, CH,	Ħ	C ₂ H ₅	waxy solid
29	H	CH,	н	-CH=CH ₂	143-146
30	H	-CH ₂ CH ₂ OH	H	C_2H_5	waxy solid
31	H.	-CH2CH2SCH3	H	C_2H_5	thick syrup
32	H	-CH2CH2CH2OCH3	H	C_2H_5	60-66
33	H	-CH2CH2CH2SCH3	H	C_2H_5	43-50
34	H	{ -CH ₂ -CH ₂ -CH ₂ -	CH ₂ - }	C_zH_5	1.5033
35	H	{ -CH ₂ -CH ₂ -CH ₂ -CH	CH ₂ }	C_2H_5	1.5140
36	Ħ	-CH-C _E H ₅ '1' CH ₃	H	C ₂ H ₅	134-137
37	H	-CH ₂ -CH-CH ₃ ⁽²⁾ OH	н	C ₂ H ₅	thick syrup
38 .	н	-CH ₂ -CH-CH ₃ '3' OH	н	C ₂ H ₅	thick syrup
39	H	-CH ₂ CN	H	C ₂ H ₅	127-133

15
TABLE 1 (continued)

No.	_ <u>x</u> _	R¹	R ²	R ³	n _b or m.p. °C
40	Н	-CH ₂ -CH-CH ₃ '*'	н	C_2H_5	89-94
⁽⁵⁾ 41	н	ÖH −CH−C₅H₅ CH₃	н	C ₂ H ₅	thick syrup

NOTE: The optically active compounds in the above table are as follows:

(1) R^1 is as follows:

Optical rotation of compound:

$$[\alpha]_{p}^{22.3} = -25.8^{\circ}$$

(CH₂Cl₂, c = 16.6)

- (2) The compound shown is a racemic mixture.
- (3) R^1 is as follows:

 $[\alpha]_{D}^{22.5} = -24.3^{\circ}$ $(CH_{2}Cl_{2}, c = 28.8)$

(4) R^1 is as follows:

 $[\alpha]_{D}^{20.8} = +67.3^{\circ}$ (CH₂Cl₂, c = 8.8)

(5) Entire formula is as follows:

The compounds listed in the foregoing table were tested for herbicidal activity by various methods and at various rates of application. The results of some of these tests are given below. As one skilled in the art is aware, the results obtained in herbicidal screening tests are affected by a number of factors that are not readily controllable. Environmental conditions such as amount of sunlight and water, soil type, soil pH, temperature and humidity, are examples of such factors. The depth of planting and the application rate of the herbicide, as well as the nature of crops being tested, can also affect the test results. Results will also vary from crop to crop and within the crop varieties.

The test procedures used are as follows:

15

20

25

30

35

10

5

Pre-Emergence Herbicidal Evaluation at 4 lb/acre

Planting flats were filled with sandy loam soil containing a fungicide and fertilizer. The soil was leveled and rows of grassy weeds, broadleaf weeds and yellow nutsedge (Cyperus esculentus), were planted thickly enough so that several seedlings emerged per inch of row. The grassy weeds were yellow foxtail (Setaria viridis), watergrass (Echinochloa crusgalli) and wild oat (Avena fatua). Broadleaf weeds utilized were annual morningglory (Ipomoea purpurea), velvetleaf (Abutilon theophrasti), wild mustard (Brassica kaber), and curly dock (Rumex crispus).

Solutions of the test compounds were made by weighing out 333 mg of the test compound into a 60-mL wide-mouth bottle, then dissolving the compound in 25 mL of acetone containing 1% Tween® 20 (polyoxyethylene sorbitan monolaurate emulsifier). Additional solvents, not exceeding 5 mL, were used if needed to dissolve the compound. A 20.5-mL aliquot was then taken from the solution and diluted with 25 mL of an acetone:water mixture (19:1) containing 1% Tween® 20. This was used as the spray solution.

One day after planting, the flats were sprayed with the spray solution at a rate of 80 gallons of solution per

10

15

20

25

30

35

acre with the compound being applied at a rate of 4 pounds per acre (4.48 kg/hectare).

The flats were then returned to the greenhouse and watered daily by sprinkling. The degree of weed control was estimated and recorded 3 weeks after treatment, as percentage control compared to the growth of the same species in an untreated check flat of the same age.

The percent control is the total injury to the plants due to all factors, including inhibited germination, killing of the plant tissue after emergence, stunting, malformation, chlorosis, and other types of injury. The control ratings vary from 0 to 100 percent, where 0 represents no effect with growth equal to the untreated control, and 100 represents complete kill; a dash indicates that no test was performed at that level of application.

Post-Emergence Herbicidal Evaluation at 4 lb/acre

The soil was prepared and seeded with the same varieties used in the pre-emergence test. The flats were placed in the greenhouse at 70-85°F (21-29°C) and watered by sprinkling. Twelve to fourteen days after planting, the flats were sprayed at a rate of 80 gallons of solution per acre. Each compound was applied at the rate of 4 pounds/acre (4.48 kg/hectare), using a spray solution prepared as in the pre-emergence test.

The flats were returned to the greenhouse after spraying and watered daily without wetting the foliage. Three weeks after treatment the degree of weed control was estimated and recorded as percentage control compared to the growth of the same species in an untreated check flat of the same age. The percent control ratings were assigned on the same basis as for the pre-emergence evaluation.

The following table lists the results of these tests, in terms of averages for the grasses and broadleaf weeds, with yellow nutsedge listed separately, in both preand post-emergence evaluations.

TABLE II HERBICIDE TEST RESULTS --PERCENT CONTROL AT 4 LB/ACRE

Abbreviations: YNS: Yellow Nutsedge

AVG:

Yellow Nutsedge Grasses averaged Broadleaf weeds averaged AVB:

Compound		-Emerg			st-Emer	gence
No.	YNS	<u>AVG</u>	AVB	YNS	AVG	<u>AVB</u>
1	0	12	8	0	17	41
2	7 5	77	79	. 0	38	44
3						
4						
5	75	97	100	80	73	60
6	10	93	100	. 0	50	. 77
.7	80	93	100	0	50	77
8	80	93	97	80	60	70
9	O	37	67	0	0	47
10	80	93	100	. 80	70	80
11	80	93	100	80	70	80
12	80	93	100	30	73	70
13	O .	10	30	o	5	73
.14	80	98	100	80	80	80
15	80	100	100	. 80	88	92
16	30	90	100	0	50	57
17	80	100	.100	. 80	. 88	85
18	0	63	70	0	57	70
19	80	100	100	80	98	90
20	70	100	100	o	55	77
21 [.]	70	87	93	60	88	80
22	20	73	80	0	37	43
23	80	100	100	80	87	87

19
TABLE II (continued)

Compound	Pre	-Emerge	ence			t-Emerc	
<u>No.</u>	YNS	AVG	AVB		<u>YNS</u>	<u>AVG</u>	AVB
24	30	83	93		80	83	80
25	80	100	100		80	90	100
26	80	93	100		80	95	100
27	80	100	100		70	93	93
28	0	93	93		30	60	87
29	80	100	100		80	100	93
30	80	98	100		. 80	95	87
31	60	100	100		30	97	87
32	80	95	100		80	83	87
33	10	93	87		30	70	87
34	0	33	27		0	3	57
35	O	37	33		0	37	63
36	0	40	68	; ·	. 0	0	33
37	80	97	100		80	97	93
38	80	100	100		80	100	90
39	80	97	100		80	100	97
40	80	100	100		85	100	100
41	0	83	80		0	0	27

20

Herbicidal and Crop Injury Tests at 0.25-2.0 lb/acre

Pre-emergence and post-emergence tests were performed at application rates of 0.25, 0.50. 1.00, and 2.00 lb/acre (0.28, 0.56, 1.12, and 2.24 kg/hectare), based on the active ingredient, for a number of the compounds listed in Table I. This round of testing extended to both weed and crop species, and followed the same general procedure as the 4 lb/acre tests, except for the plant species used. The species were as follows:

•			
10	Grass weeds:	yellow foxtail	Setaria viridis
		annual ryegrass	Lolium multiflorum
		watergrass	Echinochloa crusgalli
		shattercane	Sorghum bicolor
		wild oat	Avena fatua
15		broadleaf	Brachiaria platyphylla
		signalgrass	
	Broadleaf weeds:	annual morningglory	Ipomoea purpurea
		cocklebur	Xanthium pensylvanicum
		sesbania	Sesbania exasperata
20		velvetleaf	Abutilon theophrasti
		sicklepod	Cassia obtusifolia
	Other:	yellow nutsedge	Cyperus esculentus
	Crops:	cotton	Gossypium herbaceum
		soybean	Glycine max
25		corn	Zea mays
		milo	Sorghum vulgare
		wheat	Triticum aestivum
		rice	Oryza sativa
		sugarbeet	Beta vulgaris
30	The result	ts of these tests are	e listed in Table III.

in which the indicia used are the same as those in Table II.

DOCID: <WO__9007500A1_I_>

21

TABLE III HERBICIDE AND CROP INJURY TEST RESULTS PERCENT CONTROL AT 2 LB/ACRE AND LESS

				Crops*	٠.				Weeds	
Rate	(1)	(2)	<u>(3)</u>	<u>(4)</u>	<u>(5)</u>	<u>(6)</u>	<u>(7)</u>	<u>YNS</u>	AVG	<u>AVB</u>
Compou	ind No.	3 P	re-Emer	gence:						
0.25	100	100	100	100	100	100	100	100	100	99
0.50	100	100	100	100	100	100	100	100	100	100
1.00	100	100	100	100	100	100	100	100	100	100
2.00	100	100	100	100	100	100	100	100	100	100
Сопроз	ınd No.	3 F	ost-Eme	rgence:						
1.00	100	100	100	100	80	80	100	80	98	91
2.00	100	100	100	90	90	90	100	95	98	95
Сотро	ınd No.	4 F	re-Emer	gence:						
0.25	30	100	60	100	100	75	100	40 .	86	85
0.50	10	100	60	70	35	25	100	0	69	66
1.00	50	100	. 80	100	100	100	100	100	100	86
Сопро	and No.	4 I	Post-Eme	rgence:						
0.50	10	50	. 10	0	0	0	30	. 0	38	76
1.00	70	100	70	35	25	50	100	35	98	95

^{*} Crops:

- Cotton (1)
- (2) Soybean
- Corn Milo (3) (4)
- Wheat (5)
- (6) (7) Rice
- Sugarbeet

10

15

20

25

30

35

The compounds of the present invention are useful as herbicides and can be applied in a variety of ways known to those skilled in the art, at various concentrations. practice, the compounds are applied as formulations containing the various adjuvants and carriers known to or used in the industry for facilitating dispersion. choice of formulation and mode of application for any given compound may affect its activity, and selection will be made The compounds of the invention may thus be accordingly. formulated as granules, as wettable powders, as emulsifiable concentrates, as powders or dusts, as flowables, as solutions, suspensions or emulsions, or in controlledrelease forms such as microcapsules. These formulations may contain as little as about 0.5% to as much as about 95% or more by weight of active ingredient. The optimum amount for any given compound will depend upon the nature of the seeds or plants to be controlled. The rate of application will generally vary from about 0.01 to about 10 pounds per acre, preferably from about 0.02 to about 4 pounds per acre.

Wettable powders are finely divided particles which disperse readily in water or other liquid carriers. The particles contain the active ingredient retained in a solid matrix. Typical solid matrices include fuller's earth, kaolin clays, silicas and other readily wet organic or inorganic solids. Wettable powders normally contain about 5% to about 95% of the active ingredient plus a small amount of wetting, dispersing, or emulsifying agent.

Emulsifiable concentrates are homogeneous liquid compositions dispersible in water or other liquid, and may consist entirely of the active compound with a liquid or solid emulsifying agent, or may also contain a liquid carrier, such as xylene, heavy aromatic naphthas, isophorone and other non-volatile organic solvents. In use, these concentrates are dispersed in water or other liquid and normally applied as a spray to the area to be treated. The amount of active ingredient may range from about 0.5% to about 95% of the concentrate.

10

15

20

25

30

35

Granular formulations include both extrudates and relatively coarse particles, and are usually applied without dilution to the area in which suppression of vegetation is desired. Typical carriers for granular formulations include sand, fuller's earth, attapulgite clay, bentonite clays, montmorillonite clay, vermiculite, perlite and other organic or inorganic materials which absorb or which can be coated with the active compound. Granular formulations normally contain about 5% to about 25% active ingredients which may include surface-active agents such as heavy aromatic naphthas, kerosene or other petroleum fractions, or vegetable oils; and/or stickers such as dextrins, glue or synthetic resins.

Dusts are free-flowing admixtures of the active ingredient with finely divided solids such as talc, clays, flours and other organic and inorganic solids which act as dispersants and carriers.

Microcapsules are typically droplets or granules of the active material enclosed in an inert porous shell which allows escape of the enclosed material to the surroundings at controlled rates. Encapsulated droplets are typically about 1 to 50 microns in diameter. The enclosed liquid typically constitutes about 50 to 95% of the weight of the capsule, and may include solvent in addition to the active compound. Encapsulated granules are generally porous granules with porous membranes sealing the granule pore openings, retaining the active species in liquid form inside the granule pores. Granules typically range from 1 millimeter to 1 centimeter, preferably 1 to 2 millimeters in diameter. Granules are formed by extrusion, agglomeration or prilling, or are naturally occurring. Examples of such materials are vermiculite, sintered clay, kaolin, attapulgite clay, sawdust and granular carbon. Shell or membrane materials include natural and synthetic rubbers, cellulosic materials, styrene-butadiene copolymers, polyacrylonitriles, polyacrylates, polyesters, polyamides, polyureas, polyurethanes and starch xanthates.

10

15

20

25

30

35

Other useful formulations for herbicidal applications include simple solutions of the active ingredient in a solvent in which it is completely soluble at the desired concentration, such as acetone, alkylated napthalenes, xylene and other organic solvents. Pressurized sprays, wherein the active ingredient is dispersed in finely-divided form as a result of vaporization of a low boiling dispersant solvent carrier, such as the Freons, may also be used.

Many of these formulations include wetting, dispersing or emulsifying agents. Examples are alkyl and alkylaryl sulfonates and sulfates and their salts; polyhydric alcohols; polyethoxylated alcohols; esters and fatty amines. These agents when used normally comprise from 0.1% to 15% by weight of the formulation.

The compounds of the present invention are also useful when combined with other herbicides and/or defoliants, dessicants, growth inhibitors, and the like. These other materials can comprise from about 5% to about 95% of the active ingredients in the formulations. These combinations frequently provide a higher level of effectiveness in controlling weeds and often provide results unattainable with separate formulations of the individual herbicides.

Examples of other herbicides, defoliants, dessicants and plant growth inhibitors with which the compounds of this invention can be combined are:

chlorophenoxy herbicides such as 2,4-D, 2,4,5-T, MCPA, MCPB, 2,4-DB, 2,4-DEB, 4-CPA, 2,4,5-TB, and silvex; carbamate herbicides such as propham, chlorpropham, swep, and barban;

thiocarbamate and dithiocarbamate herbicides such as CDEC, metham-sodium, EPTC, diallate, PEBC, and vernolate; substituted urea herbicides such as norea, dichloral urea, chloroxuron, cycluron, fenuron, monuron, monuron TCA, diuron, linuron, monolinuron neburon, buturon and trimeturon:

symmetrical triazine herbicides such as simazine, chlorazine, desmetryne, norazine, ipazine, prometryn, atrazine, trietazine, simetone, prometone, propazine and ametryne;

chlorinated aliphatic acid herbicides such as TCA and dalapon;

chlorinated benzoic acid and phenylacetic acid herbicides such as 2,3,6-TBA, dicamba, tricamba, chloramben, fenac, PBA, 2-methoxy-3,6-dichlorophenylacetic acid, 3-methoxy-2,6-dichlorophenylacetic acid, 2-methoxy-3,5,6-trichlorophenylacetic acid and 2,4-dichloro-3-nitrobenzoic acid;

and such compounds as aminotriazole, maleic hydrazide, phenylmercury acetate, endothal, technical chlordane, DCPA, diquat, erbon, DNC, DNBP, dichlobenil, DPA, diphenamide, dipropalin, trifluralin, solan, dicryl, merphos, DMPA, DSMA, MSMA, potassium azide, acrolein, benefin, bensulide, AMS, bromacil, 2-(3,4-dichlorophenyl)-4-methyl-1,2,4-oxazolidine-3,5-dione, bromoxynil, cacodylic acid, CMA, CPMF, cypromid, DCB, DCPA, dichlone, diphenatril, DMTT, DNAP, EBEP, EXD, HCA, ioxynil, IPX, isocil, potassium cyanate, MAA, MAMA, MCPES, MCPP, MH, molinate, NPA, OCH, paraquat, PCP, picloram, DPA, PCA, sesone, terbacil, terbutol, TCBA, alachlor, nitralin, sodium tetraborate, calcium cyanamide, S,S,S-tributylphosphorotrithioate and propanil.

These formulations can be applied to the areas where control is desired by conventional methods. Dust and liquid compositions, for example, can be applied by the use of power-dusters, boom and hand sprayers and spray dusters. The formulations can also be applied from airplanes as a dust or a spray or by rope wick applications. To modify or control growth of germinating seeds or emerging seedlings, dust and liquid formulations can be distributed in the soil to a depth of at least one-half inch below the soil surface

5

10

15

20

25

30

or applied to the soil surface only, by spraying or sprinkling. The formulations can also be applied by addition to irrigation water. This permits penetration of the formulations into the soil together with the irrigation water. Dust compositions, granular compositions or liquid formulations applied to the surface of the soil can be distributed below the surface of the soil by conventional means such as discing, dragging or mixing operations.

The following are examples of typical formulations.

10

5

5% dust: 5 parts active compound 95 parts talc

2% dust:

2 parts active compound

15

1 part highly dispersed silicic acid

97 parts talc

These dusts are formed by mixing the components then grinding the mixture to the desired particle size.

20

25

30

5% granules:

5 parts active compound

0.25 part epichlorohydrin

0.25 part cetyl polyglycol ether

3.5 parts polyethylene glycol

91 parts kaolin (particle size 0.3-0.8 mm)

Granules are formed by mixing the active compound with epichlorohydrin and dissolving the mixture in 6 parts of acetone. The polyethylene glycol and cetyl polyglycol ether are then added. The resultant solution is sprayed on the kaolin and the acetone evaporated *in vacuo*.

3DOCID: <WO___9007500A1_I_>

we	tt	ab	le	pow	de	rs	:
----	----	----	----	-----	----	----	---

	70%:	70 parts active compound
		5 parts sodium dibutylnaphthylsulfonate
5		<pre>3 parts naphthalenesulfonic acid/phenolsulfonic acid/formaldehyde condensate (3:2:1)</pre>
	•	10 parts kaolin
		12 parts Champagne chalk
	40%:	40 parts active compound
10		5 parts sodium lignin sulfonate
		1 part sodium dibutylnaphthalenesulfonic acid
		54 parts silicic acid
	25%:	25 parts active compound
15	•	4.5 parts calcium lignin sulfate
		<pre>1.9 parts Champagne chalk/hydroxyethyl cellulose (1:1)</pre>
		1.5 parts sodium dibutylnaphthalenesulfonate
		19.5 parts silicic acid
20		19.5 parts Champagne chalk
		28.1 parts kaolin
	25%:	25 parts active compound
		2.5 parts isooctylphenoxy-polyethylene-ethanol
25		<pre>1.7 parts Champagne chalk/hydroxyethyl cellulose (1:1)</pre>
		8.3 parts sodium aluminum silicate
		16.5 parts kieselguhr
		46 parts kaolin
30		
	10%:	10 parts active compound
		3 parts of a mixture of sodium salts of saturated fatty alcohol sulfates
35		5 parts naphthalenesulfonic acid/formaldehyde condensate
		82 parts kaolin

These wettable powders are prepared by intimately mixing the active compounds with the additives in suitable mixers, and grinding the resulting mixtures in mills or rollers.

- 5 25% emulsifiable concentrate:
 - 25 parts active substance
 - 2.5 parts epoxidized vegetable oil
 - 10 parts of an alkylarylsulfonate/fatty alcohol polyglycol ether mixture
 - 5 parts dimethylformamide
 - 57.5 parts xylene

DOCID: <WO___9007500A1_I_>

WHAT IS CLAIMED IS:

A compound having the formula

$$(F)_{n} = \begin{pmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

in which:

R¹ is a member selected from the group consisting of H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ alkoxy, phenyl, halosubstituted phenyl, benzyl, halo-substituted benzyl, and C₁-C₆ alkyl substituted with one or more members selected from the group consisting of C₁-C₆ alkoxy, C₁-C₆ alkylthio, phenyl, hydroxyl and cyano, and

 R^2 is a member selected from the group consisting of H and C_1-C_6 alkyl, or

 R^1 and R^2 are combined to form a member selected from the group consisting of C_2 - C_6 alkylene and C_2 - C_6 alkyleneoxyalkylene;

 R^3 is a member selected from the group consisting of C_1-C_6 alkyl and C_2-C_6 alkenyl;

R⁴ is a member selected from the group consisting of H, halogen, CH₃, CF₃, CF₂CHF₂, OCF₂CHF₂, OCHF₂, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, methoxyiminomethyl, methoxyimino-1-ethyl, benzyloxyiminomethyl, and benzyloxyimino-1-ethyl;

n is zero or 1;

X is a member selected from the group consisting of H and halogen;

Y is a member selected from the group consisting of O and S; and

15

10

5

20

25

30

35

15

20

30

- Z is a member selected from the group consisting of O and S.
- A compound according to claim 1 in which n is
 zero.
 - 3. A compound according to claim 1 in which R^1 is a member selected from the group consisting of C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, and C_1 - C_6 alkyl substituted with C_1 - C_6 alkoxy; and R^2 is a member selected from the group consisting of H and C_1 - C_6 alkyl.
 - 4. A compound according to claim 1 in which R¹ is a member selected from the group consisting of C₁-C₃ alkyl, allyl, propargyl and cyclopropyl; and R² is H.
 - 5. A compound according to claim 1 in which R^1 and R^2 are combined to form a member selected from the group consisting of C_2 - C_6 alkylene and C_2 - C_6 alkyleneoxyalkylene.
 - 6. A compound according to claim 1 in which R^1 and R^2 are combined to form a member selected from the group consisting of $-(CH_2)_2-O-(CH_2)_2-$, $-(CH_2)_4-$, and $-(CH_2)_5-$.
- 7. A compound according to claim 1 in which R^3 is C_1-C_6 alkyl.
 - 8. A compound according to claim 1 in which \mathbb{R}^3 is ethyl.
 - 9. A compound according to claim 1 in which X is a member selected from the group consisting of H and chloro.
 - 10. A compound according to claim 1 in which X is H.
 - 11. A compound according to claim 1 in which Y is O.

- 12. A compound according to claim 1 in which Z is O.
- 13. A compound according to claim 1 in which n is zero, R^1 is CH_3 , R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
 - 14. A compound according to claim 1 in which n is zero, R^1 is $i-C_3H_7$, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 15. A compound according to claim 1 in which n is zero, R^1 is allyl, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 15 16. A compound according to claim 1 in which n is zero, R^1 is C_2H_5 , R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 17. A compound according to claim 1 in which n is zero, R^1 is $n-C_3H_7$, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 18. A compound according to claim 1 in which n is zero, R^1 is cyclopropyl, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
 - 19. A compound according to claim 1 in which n is zero, R^1 is $-CH_2CH_2OCH_3$, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
 - 20. A compound according to claim 1 in which n is zero, R^1 is $-CH_2C\equiv CH$, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 21. A compound according to claim 1 in which n is zero, R^1 is CH_3 , R^2 is H, R^3 is $-CH=CH_2$, R^4 is trifluoromethyl, X is H, Y is O and Z is O.

10

15

20

25

30

35

40

22. An herbicidal composition comprising:

(a) an herbicidally effective amount of a compound having the formula

 $(F)_{n}$ N R^{3}

in which:

 R^1 is a member selected from the group consisting of H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_z - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy, phenyl, halosubstituted phenyl, benzyl, halosubstituted benzyl, and C_1 - C_6 alkyl substituted with one or more members selected from the group consisting of C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, phenyl, hydroxyl and cyano, and

 R^2 is a member selected from the group consisting of H and $C_1\text{--}C_6$ alkyl, or

 R^1 and R^2 are combined to form a member selected from the group consisting of C_2 - C_6 alkylene and C_2 - C_6 alkyleneoxyalkylene;

 R^3 is a member selected from the group consisting of C_1-C_6 alkyl and C_2-C_6 alkenyl;

R⁴ is a member selected from the group consisting of H, halogen, CH₃, CF₃, CF₂CHF₂, OCF₂CHF₂, OCF₂, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, methoxyiminomethyl, methoxyimino-l-ethyl, benzyloxyiminomethyl, and benzyloxyimino-l-ethyl;

n is zero or 1;

X is a member selected from the group consisting of H and halogen;

DOCID: <WO___9007500A1_I_>

- Y is a member selected from the group consisting of O and S: and
- Z is a member selected from the group consisting of O and S:
- 5 and

15

20

25

- (b) an herbicidally suitable diluent or carrier.
- 23. An herbicidal composition according to claim 22 in which n is zero.
- 24. An herbicidal composition according to claim 22 in which R^3 is a member selected from the group consisting of C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, and C_1 - C_6 alkyl substituted with C_1 - C_6 alkoxy; and R^2 is a member selected from the group consisting of H and C_1 - C_6 alkyl.
- 25. An herbicidal composition according to claim 22 in which R^1 is a member selected from the group consisting of C_1 - C_3 alkyl, allyl, propargyl and cyclopropyl; and R^2 is H.
 - 26. An herbicidal composition according to claim 22 in which R^1 and R^2 are combined to form a member selected from the group consisting of C_2 - C_6 alkylene and C_2 - C_6 alkyleneoxyalkylene.
 - 27. An herbicidal composition according to claim 22 in which R^1 and R^2 are combined to form a member selected from the group consisting of $-(CH_2)_2-O-(CH_2)_2-$, $-(CH_2)_4-$, and $-(CH_2)_5-$.
 - 28. An herbicidal composition according to claim 22 in which R^3 is C_1 - C_6 alkyl.
- 29. An herbicidal composition according to claim 22 in which R³ is ethyl.

- 30. An herbicidal composition according to claim 22 in which X is a member selected from the group consisting of H and chloro.
- 5 31. An herbicidal composition according to claim 22 in which X is H.
 - 32. An herbicidal composition according to claim 22 in which Y is O.
- 33. An herbicidal composition according to claim 22 in which Z is O.
- 34. An herbicidal composition according to claim 22 in which n is zero, R^1 is CH_3 , R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 35. An herbicidal composition according to claim 22 in which n is zero, R¹ is i-C₃H₇, R² is H, R³ is C₂H₅, R⁴ is trifluoromethyl, X is H, Y is O and Z is O.
 - 36. An herbicidal composition according to claim 22 in which n is zero, R^1 is allyl, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
 - 37. An herbicidal composition according to claim 22 in which n is zero, R^1 is C_2H_5 , R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 38. An herbicidal composition according to claim 22 in which n is zero, R^1 is $n-C_3H_7$, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 39. An herbicidal composition according to claim 22 in which n is zero, R^1 is cyclopropyl, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.

10

15

20

25

30

35

- 40. An herbicidal composition according to claim 22 in which n is zero, R^1 is $-CH_2CH_2OCH_3$, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 41. An herbicidal composition according to claim 22 in which n is zero, R^1 is $-CH_2C\equiv CH$, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 42. An herbicidal composition according to claim 22 in which n is zero, R^1 is CH_3 , R^2 is H, R^3 is $-CH=CH_2$, R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 43. A method of controlling undesirable vegetation comprising applying to said vegetation or to the locus thereof an herbicidally effective amount of a compound having the formula

in which:

R¹ is a member selected from the group consisting of H, C₁-C6 alkyl, C₂-C6 alkenyl, C₂-C6 alkynyl, C₃-C6 cycloalkyl, C₁-C6 alkoxy, phenyl, halosubstituted phenyl, benzyl, halo-substituted benzyl, and C₁-C6 alkyl substituted with one or more members selected from the group consisting of C₁-C6 alkoxy, C₁-C6 alkylthio, phenyl, hydroxyl and cyano, and

 R^2 is a member selected from the group consisting of H and C_1-C_6 alkyl, or

OCID: <WO___9007500A1_I_>

10

15

20

25

30

- R^1 and R^2 are combined to form a member selected from the group consisting of C_2 - C_6 alkylene and C_2 - C_6 alkyleneoxyalkylene;
- R^3 is a member selected from the group consisting of C_1-C_6 alkyl and C_2-C_6 alkenyl;
- R⁴ is a member selected from the group consisting of H, halogen, CH₃, CF₃, CF₂CHF₂, OCF₂CHF₂, OCHF₂, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, methoxyiminomethyl, methoxyimino-l-ethyl, benzyloxyiminomethyl, and benzyloxyimino-l-ethyl;

n is zero or 1;

- X is a member selected from the group consisting of H and halogen;
- Y is a member selected from the group consisting of O and S; and
- Z is a member selected from the group consisting of O and S.
- 44. A method according to claim 43 in which n is zero.
- 45. A method according to claim 43 in which R^1 is a member selected from the group consisting of C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, and C_1 - C_6 alkyl substituted with C_1 - C_6 alkoxy; and R^2 is a member selected from the group consisting of H and C_1 - C_6 alkyl.
- 46. A method according to claim 43 in which R^1 is a member selected from the group consisting of C_1 - C_3 alkyl, allyl, propargyl and cyclopropyl; and R^2 is H.
- 47. A method according to claim 43 in which R^1 and R^2 are combined to form a member selected from the group consisting of C_2 - C_6 alkylene and C_2 - C_6 alkyleneoxyalkylene.
- 48. A method according to claim 43 in which R^1 and R^2 are combined to form a member selected from the group consisting of $-(CH_2)_2-O-(CH_2)_2-$, $-(CH_2)_4-$, and $-(CH_2)_5-$.

- 49. A method according to claim 43 in which R^3 is C_1-C_6 alkyl.
- 5 50. A method according to claim 43 in which R³ is ethyl.
 - 51. A method according to claim 43 in which X is a member selected from the group consisting of H and chloro.
 - 52. A method according to claim 43 in which X is H.
 - 53. A method according to claim 43 in which Y is O.
- 15 54. A method according to claim 43 in which Z is O.
 - 55. A method according to claim 43 in which n is zero, R^1 is CH_3 , R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 56. A method according to claim 43 in which n is zero, R^1 is $i-C_3H_7$, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 25 57. A method according to claim 43 in which n is zero, R^1 is allyl, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 58. A method according to claim 43 in which n is zero, R^1 is C_2H_5 , R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 59. A method according to claim 43 in which n is zero, R^3 is $n-C_3H_7$, R^2 is H, R³ is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.

- 60. A method according to claim 43 in which n is zero, R^1 is cyclopropyl, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 5 61. A method according to claim 43 in which n is zero, R^1 is $-CH_2CH_2OCH_3$, R^2 is H, R^3 is C_2H_5 , R^4 is trifluoromethyl, X is H, Y is O and Z is O.
- 62. A method according to claim 43 in which n is zero, 10 R¹ is -CH₂C≡CH, R² is H, R³ is C₂H₅, R⁴ is trifluoromethyl, X is H, Y is O and Z is O.
- 63. A method according to claim 43 in which n is zero, R^1 is CH_3 , R^2 is H, R^3 is $-CH=CH_2$, R^4 is trifluoromethyl, X is H, Y is O and Z is O.

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/US 89/05402

I. CLASSIFICATION OF SUBJECT MATTER IN Several Classific	
According to International Parent Classification (IPC) or to both Nation	hal Classification and IPC
IPC5: C 07 D 207/277, A 01 N 43/36	
II. FIELDG SEAF CHEC	
Latitutos gr. tur	to Auraichan F
Classification p. et	*, 23%, % c. mone
	·
IPC5 C 07 D; A 01 N	~
trans.	Lipport in matter. See Equipment of Assa Barrened 9.
•	
III. DOCUMENTS CONSIDERED TO 15 "12/ANT" Category *	Relevant to Claim No. 13
Category *	minute, C. 178 Trip val. December
A US, A, 3136620 (HARRY C. BUCHA E 9 June 1964,	T AL.) 1-63
see the whole document	:
	÷
	!
	15 August 1980 1-63
A CH, A5, 618682 (CIBA-GEIGY AG) 1 see the whole document	is August 1960,
·	
	
	- <u>-</u>
	· .
·	
	·
Special categories of cited documents: 10	"T" later document published after the International filing date
"A" document defining the general state of the art which is not	or priority date and not in conflict with the application but cited to understand the principle or theory underlying the
considered to be of particular relevance "E" earlier document but published on or after the international	invention "X" document of particular relevance; the claimed invention
filing date	cannot be considered novel or cannot be considered to involve an inventive stop
to (s)mich virong no stduob wordt vam docum inemuoob "3"	"Y" document of particular relevance; the claimed invention
Citation or other abocist radium tax absoluted: "O" document reterring to an oral disclosure, side, exhibition or	cannut no considered to involve an inventive step when the uccument is compined with one or more other such docu-
other means	กรกระ, รูบอก combination being obvious to a person skilled
"P" document cupilanes prior to the international filling date of later toan the priority date claimed	"1" accument member of the same patent family
IV. CERTIFICATION	
Date of the Advice Completion of the international description	con or Marina or this international Search Report
2nd March 1990	2 1. 03. 90
	annetuse of a proported Offices
International dearening Authority	
EUROPEAN PATENT OFFICE	T.K. WILLIS

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

PCT/US 89/05402

SA

32936

7

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office FIPP file on 08/11/89. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

US-A- 3136620 09/06/64 CH-A5- 618682 15/08/80	NONE NL-A- 7612152 FR-A-B- 2330318	10/05/77
CH-A5- 618682 15/08/80	.01110	10/05/77
	BE-A- 848015 DE-A- 2650604 AU-D- 19350/76 AT-A- 344755 US-A- 4129573 JP-A- 52061226 GB-A- 1563835 CA-A- 1079289 AU-A- 511853 SE-A- 7612365	10/05/77 03/06/77 05/05/77 12/05/77 11/05/78 10/08/78 12/12/78 20/05/77 02/04/80 10/06/80 11/09/80

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82

DOCID: <WO___9007500A1_I_>