Appunti di Network Modeling

Dalle lezioni di Michele Zorzi (Unipd)

June 2018

Contents

1	\mathbf{Pro}	ontuario Esame	3
	1.1	Probabilità	
		1.1.1 Probabilità Condizionata	
		1.1.2 Regola di Bayes	
		1.1.3 Legge della Probabilità Totale	
		1.1.4 Distribuzione Esponenziale	
		1.1.5 Distribuzione Uniforme	
		1.1.6 Distribuzione Geometrica	4
	1.2	Processi di Poisson	4
	1.3	$\operatorname{Coda}\mathrm{M}/\mathrm{G}/\infty\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	4
	1.4	Processi di Rinnovamento	ŀ
		1.4.1 Due Componenti Indipendenti	ŀ
		1.4.2 Processi che si Alternano	6
		1.4.3 Modelli Semi-Markoviani	6
	1.5	Protocollo Go-Back-N	7
		1.5.1 Forward e Feedback Perfetti	7
		1.5.2 Forward Perfetto e Feedback con Errori iid	7
		1.5.3 Forward con Errori iid e Feedback Perfetto	8
		1.5.4 Forward e Feedback con Errori iid	8
2	Cat	tene di Markov	ç
	2.1	Analisi di Primo Passo	Ć
	2.2	Catene di Markov speciali	11
			11
		2.2.2 Passeggiata casuale unidimensionale	11
			11
	2.3		11
	2.4		12
	2.5	La classificazione degli stati	12
3	Pro	ocessi di Poisson	13
•	3.1		13
	3.2		13
	0.2		± e

4	Pro	ocessi di Rinnovamento	15
	4.1	Definizione di Processi di Rinnovamento e Concetti Correlati	15
	4.2	Processi di Poisson Come Processi di Rinnovamento	15
	4.3	Comportamento Asintotico dei Processi di Rinnovamento	15
	4.4	Equazioni di Rinnovamento	16
	4.5	Stopping Time	17
	4.6	Teorema Elementare di Rinnovamento	
5	Ana	alisi di Code e Protocolli	19
	5.1	Coda M/G/1	19
	5.2	Esempi di Protocolli di Livello 2 e 4	
		5.2.1 Protocollo 1	
		5.2.2 Protocollo 2	
6	Per	Esame	21
	6.1	Soluzioni Esercizi	21
		6.1.1 Compito 22 settembre 2005	
		6.1.2 Compito 14 luglio 2006	
		6.1.3 Compito 12 dicembre 2006	
		6.1.4 Compito 09 luglio 2007	
		6.1.5 Compite 09 luglio 2007	
		6.1.6 Compito 5 settembre 2007	
		6.1.7 Compite 24 settembre 2007	
		6.1.8 Compite 21 luglio 2016	
		6.1.9 Compite 12 settembre 2018	

1 Prontuario Esame

1.1 Probabilità

1.1.1 Probabilità Condizionata

$$\begin{split} Pr[A \mid B] &= \frac{Pr[A,B]}{Pr[B]} \\ Pr[A \mid B,C] &= \frac{Pr[A,B \mid C]}{Pr[B \mid C]} \end{split}$$

1.1.2 Regola di Bayes

$$Pr[B \mid A] = \frac{Pr[A \mid B]Pr[B]}{Pr[A]}$$

1.1.3 Legge della Probabilità Totale

$$Pr[A] = \sum_{i} Pr[A \mid B_i] Pr[B_i]$$

1.1.4 Distribuzione Esponenziale

Una variabile aleatoria non negativa X ha distribuzione esponenziale di parametro $\lambda>0$ se la funzione di densità di probabilità è

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{per } x \ge 0\\ 0 & \text{per } x < 0 \end{cases}$$

e con funzione di distribuzione

$$Pr[X \le x] = F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{per } x \ge 0\\ 0 & \text{per } x < 0 \end{cases}$$

Valore atteso e varianza

$$E[T] = \frac{1}{\lambda}$$

$$Var(T) = \frac{1}{\lambda^2}$$

Per due variabili aleatorie con distribuzione esponenziale valgono

$$E[\min\{\xi(\alpha), \xi(\beta)\}] = \frac{1}{\alpha + \beta}$$
$$E[\max\{\xi(\alpha), \xi(\beta)\}] = \frac{1}{\alpha} + \frac{1}{\beta} - \frac{1}{\alpha + \beta}$$

1.1.5 Distribuzione Uniforme

La funzione di densità di probabilità di una variabile aleatoria X uniformemente distribuita è

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{per } x \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

mentre la funzione di distribuzione è data da

$$Pr[X \le x] = F(x) = \begin{cases} 0 & \text{se } x \le a \\ \frac{x-a}{b-a} & \text{se } a < x \le b \\ 1 & \text{se } x > b \end{cases}$$

1.1.6 Distribuzione Geometrica

Calcola la probabilità che il primo successo richieda la ripetizione di k prove indipendenti, ciascuna con probabilità p.

$$Pr[X = k] = p(1 - p)^{k-1}$$
$$E[X] = \frac{1}{p}$$
$$Var(X) = \frac{1 - p}{p^2}$$

1.2 Processi di Poisson

Sia $X(t) = X_1(t) + X_2(t)$. Per $0 < s \le t$ e $0 \le k \le n$ vale

$$Pr[X_1(s) = k \mid X(t) = n] = \binom{n}{m} \left(\frac{\lambda_1 s}{t(\lambda_1 + \lambda_2)}\right)^k \left(1 - \frac{\lambda_1 s}{t(\lambda_1 + \lambda_2)}\right)^{n-k}$$

Per $0 < s \le t$ e per $0 \le k \le n$ vale

$$Pr[X(t) = n \mid X_1(s) = k] = Pr[X_1(t) + X_2(t) - X_1(s) = n - k]$$

$$= \frac{e^{-(t(\lambda_1 + \lambda_2) - s\lambda_1)}(t(\lambda_1 + \lambda_2) - s\lambda_1)^{n-k}}{(n - k)!}$$

Per $0 < s \le t$ e per $0 \le k \le n$ vale

$$Pr[X(s) = n \mid X_1(t) = k] = \sum_{v=0}^{k} Pr[X(s) = n \mid X_1(s) = v] Pr[X_1(s) = v \mid X_1(t) = k]$$

$$Pr[X_1(s) + X_2(s) = n \mid X_2(t) = k] = \sum_{v=0}^{k} Pr[X_1(s) + X_2(s) = v] Pr[X_2(s) = n \mid X_2(t) = k]$$

1.3 Coda $M/G/\infty$

Supponiamo di fornire un servizio al quale arrivano richeste secondo una distribuzione di Poisson con parametro λ . Ogni richiesta ha durata Y_1, Y_2, \ldots , variabili aleatorie con funzione di distribuzione comune $G(y) = P[Y_k \leq y]$. Gli arrivi sono invece regolati dalle variabili W_1, W_2, \ldots che possiamo far diventare variabili aleatorie uniformi.

Sia M(t) una variabile che conta le richieste attive in un dato istante t con M(0) = 0 e sia X(t) il numero totale di richieste arrivate fino all'istante t. Allora

$$M(t) = \sum_{k=1}^{X(t)} \mathbf{1} \{ W_k + Y_k \ge t \}$$

Sia

$$p = P[U_k + Y_k \ge t] = \frac{1}{t} \int_0^t P[Y_k \ge t - u] du$$
$$= \frac{1}{t} \int_0^t [1 - G(t - u)] du = \frac{1}{t} \int_0^t [1 - G(z)] dz$$

Conoscendo il numero n di richieste totali fino all'istante t, la probabilità condizionata fornisce

$$P[M(t) = m \mid X(t) = n] = \frac{n!}{m!(n-m)!}p^{m}(1-p)^{n-m}$$

mentre

$$P[M(t) = m] = e^{-\lambda p t} \frac{(\lambda p t)^m}{m!}$$

Il numero di richieste esistenti al tempo t è un processo di Poisson con media

$$E[M(t)] = \lambda p t$$
$$= \lambda \int_0^t [1 - G(z)] dz$$

Sia G(z) la distribuzione del tempo di servizio. Il contatore per il numero di utenti attivi al tempo $t
in M(t) \sim \mathcal{P}(\Lambda)$, dove:

$$\Lambda = \lambda \int_0^t \left[1 - G(z)\right] dz$$

quindi la probabilità di trovare k richieste attive è $e^{-\Lambda}\Lambda^k/k!$. Da notare che $\Lambda \xrightarrow{t\to\infty} \lambda E[X]$. M(t) condizionata su X(t) è una variabile aleatoria binomiale:

$$Pr[M(t) = m \mid X(t) = n] = \binom{n}{m} p^m (1-p)^{n-m}, \quad p = \frac{1}{t} \int_0^t [1 - G(z)] dz$$

1.4 Processi di Rinnovamento

1.4.1 Due Componenti Indipendenti

Se $ON \sim \xi(\alpha)$ e $OFF \sim \xi(\beta)$, allora

$$Pr[\text{both } OFF] = \left(\frac{\frac{1}{\alpha}}{\frac{1}{\alpha} + \frac{1}{\beta}}\right)^2 = \left(\frac{\alpha}{\alpha + \beta}\right)$$

$$Pr[\text{both } ON] = \left(\frac{\beta}{\alpha + \beta}\right)^2$$

$$Pr[1 ON, 1 OFF] = 2\left(\frac{\alpha}{\alpha + \beta}\right)\left(\frac{\beta}{\alpha + \beta}\right)$$

Se viene chiesto di calcolare la probabilità che, dato un componente rotto, il componente funzionante si rompa prima che l'altro venga aggiustato:

$$\begin{split} Pr[\xi(\alpha) < \xi(\beta)] &= \int_0^\infty Pr[\xi(\beta) > \xi(\alpha) \mid \xi(\alpha) = t] \, Pr[\xi(\alpha) = t] \, d\xi(\alpha) \\ &= \int_0^\infty Pr[\xi(\beta) > t] \, \alpha e^{-\alpha t} \, dt \\ &= \int_0^\infty e^{-\beta t} \, \alpha e^{-\alpha t} \, dt \end{split}$$

Per un ciclo di rinnovamento valgono

$$\begin{split} E[\text{both }OFF] &= \min \xi(\beta), \xi(\beta) = \frac{1}{2\beta} \Rightarrow E[cycle] = \frac{E[\text{both}OFF]}{Pr[\text{both }OFF]} \\ E[\text{both }ON] &= Pr[\text{both }ON] \cdot E[cycle] \\ E[1\ ON, 1\ OFF] &= Pr[1\ ON, 1\ OFF] \cdot E[cycle] \end{split}$$

1.4.2 Processi che si Alternano

Se un sistema si alterna tra 2 stati (ad esempio, pieno e vuoto), in generale è possibile modellizzarlo come un alternating renewal process. L'istante di rinnovamento è il primo arrivo, quando il sistema è vuoto. Di solito si ha a che fare con variabili di Poisson di intensità λ per gli arrivi, quindi in tempo medio in cui il sistema è vuoto è

$$E[\text{empty}] = \frac{1}{\lambda}$$

Il tempo medio in cui il sistema è impegnato dipende dal sistema: può essere esponenziale (anche troncato ad un certo T) o fisso. La probabilità di trovare il sistema occupato è

$$\beta = \frac{E[\text{busy}]}{E[\text{cycle}]} \tag{1}$$

Nel caso di sistemi di trasmissione è utile introdurre una variabile aleatoria N che conta il numero di trasmissioni fallimentari consecutive prima di una che abbia successo. N è una variabile geometrica, quindi

$$E[N] = \sum_{k=1}^{\infty} Pr[N \ge k] = \sum_{k=1}^{\infty} \beta^k = \frac{\beta}{1 - \beta}$$

Il tempo medio di ritardo può essere generalmente calcolato come

$$E[\text{delay}] = E[N]E[\text{busy}]$$

1.4.3 Modelli Semi-Markoviani

$$P = \begin{bmatrix} 0 & P_{01} & 0 \\ P_{10} & 0 & P_{12} \\ P_{20} & 0 & 0 \end{bmatrix} T = \begin{bmatrix} 0 & T_{01} & 0 \\ T_{10} & 0 & T_{12} \\ T_{20} & 0 & 0 \end{bmatrix}$$

Data la matrice di transizione P e la matrice dei tempi T, il tempo medio trascorso nello stato i è

$$\mu_i = \sum_{k=0}^{N} P_{ik} T_{ik}$$

La frazione del tempo speso in i è data da (la probabilità di trovare il processo nello statp i)

$$P_i = \frac{\pi_i \mu_i}{\sum_k \pi_k \mu_k}$$

Metriche per reward, guadagni associati alle transizioni

 r_{ij} = reward associato alla transizione ij $R_{ij} = E[r_{ij}]$ Quando la metrica è il tempo allora se è dato un traffico A_i è associato a ciascuno stato, allora il vettore reward è \vec{R} dove l'i-esima componente è $R_i = \mu_i A_i$. Il throughput è dato da

$$\lim_{t \to \infty} \frac{R(t)}{t} = \frac{\sum_i \pi_i R_i}{\sum_i \pi_i T_i}$$

Negli appunti però si trova che

$$\lim_{t \to \infty} \frac{R(t)}{t} = \frac{\sum_{i} \pi_{i} R_{i}}{\sum_{i} \pi_{i} \mu_{i}}$$

Se si utilizzano altre metriche, come ad esempio i pacchetti utili su tutti i pacchetti inviati, si può utilizzare

$$\lim_{t \to \infty} \frac{R^{(1)}(t)}{R^{(2)}(t)} = \frac{E[R^{(1)}]}{E[R^{(2)}]} = \frac{\sum_{i} \pi R_{i}^{(1)}}{\sum_{i} \pi R_{i}^{(2)}}$$

Se è chiesto di usare la teoria del rinnovamento, in generale valgono

$$E[\text{state } 0] = T_{01} + T_{01}E[N]$$

$$E[\text{state } 1] = T_{10}E[N] + T_{12}$$

$$E[\text{state } 2] = T_{20}$$

$$E[N] = \sum_{k=1}^{\infty} P_{10} = \frac{P_{10}}{1 - P_{10}}$$

1.5 Protocollo Go-Back-N

$$P = \left(\begin{array}{cc} p_{00} & p_{01} \\ p_{10} & p_{11} \end{array}\right) \quad P^{(m)} = \left(\begin{array}{cc} p_{00}(m) & p_{01}(m) \\ p_{10}(m) & p_{11}(m) \end{array}\right)$$

Il numero medio di good slot consecutivi è $\frac{1}{p_{01}}$ mentre il numero medio di bad slot consecutivi è $\frac{1}{p_{10}}$. Throughput nel caso si trasmetta direttamente sul canale (senza protocollo): $thp = \pi_0 = \frac{p_{10}}{p_{10} + p_{01}}$. $E[\text{tempo di ritorno in G}] = m_0 = p_{00} \cdot 1 + p_{01} \left(1 + \frac{m}{p_{10}(m)}\right)$

1.5.1 Forward e Feedback Perfetti

Il throughput è dato da

$$\lim_{t \to \infty} \frac{R(t)}{t} = \frac{p_{10}^{(m)}}{p_{10}^{(m)} + m \, p_{01}}$$

1.5.2 Forward Perfetto e Feedback con Errori iid

Se δ è l'errore nel canale di feedback (o anche errore di ritorno), il throughput è dato da

$$\lim_{t \to \infty} \frac{R(t)}{t} = \frac{(1 - \delta)p_{10}^{(m)}}{(1 - \delta)p_{10}^{(m)} + m\left[(1 - \delta)p_{01} + \delta\left(p_{01}^{(m)} + p_{10}^{(m)}\right)\right]}$$

1.5.3 Forward con Errori iid e Feedback Perfetto

Se ϵ è la probabilità degli errori sul canale forward,il throughput è dato da

$$\lim_{t\to\infty}\frac{R(t)}{t}=\frac{1-\epsilon}{1-\epsilon+m\,\epsilon}$$

1.5.4 Forward e Feedback con Errori iid

Se δ è l'errore sul canale di feedback e ϵ l'errore sul canale di forward, il throughput è dato da

$$\lim_{t\to\infty}\frac{R(t)}{t}=\frac{(1-\delta)(1-\epsilon)}{(1-\delta)(1-\epsilon)+m\left[1-(1-\delta)(1-\epsilon)\right]}$$

2 Catene di Markov

2.1 Analisi di Primo Passo

Consideriamo la seguente matrice di Markov

$$P = \left[\begin{array}{ccc} 1 & 0 & 0 \\ \alpha & \beta & \gamma \\ 0 & 0 & 1 \end{array} \right]$$

con α , β , $\gamma > 0$ e $\alpha + \beta + \gamma = 1$. Vogliamo trovare i valori di

$$u = P[X_T = 0 \mid X_0 = 1]$$

 $v = E[T \mid X_0 = 1]$

dove $T = \min\{n \geq 0 : X_n = 0, X_n = 2\}$, quindi vogliamo conoscere qual è la probabilità che il processo resti intrappolato nello stato 0 sapendo che lo stato iniziale è 1 e vogliamo anche conoscere quanto tempo dovremmo attendere affinché questo accada (valore atteso).

Conoscendo la scomposizione vista in ?? osserviamo che

$$u = P[X_T = 0 \mid X_0 = 1] = P_{10}^{(T)}$$

$$= \sum_{k=0}^{2} P_{1k} P_{k0}^{(T-1)}$$

$$= P_{10} P_{00}^{(T-1)} + P_{11} P_{10}^{(T-1)} + P_{12} P_{20}^{(T-1)}$$

$$= \alpha (1) + \beta (u) + \gamma (0)$$

$$= \alpha + \beta u = \frac{\alpha}{1 - \beta} = \frac{\alpha}{\alpha + \gamma}$$

Abbiamo anche utilizzata l'uguaglianza $P_{ij}^{(T)}=P_{ij}^{(T-1)}$. Mentre per il valore atteso degli istanti impiegati abbiamo

$$v = 1 + \alpha (0) + \beta (v) + \gamma (0)$$
$$= 1 + \beta v$$
$$= \frac{1}{1 - \beta} = \frac{1}{\alpha + \gamma}$$

In generale possiamo avere matrici di Markov come la seguente, di dimensione $(N+1) \times (N+1)$:

$$P = \begin{bmatrix} \mathbf{Q} & \mathbf{R} \\ \mathbf{O} & \mathbf{I} \end{bmatrix} \tag{2}$$

dove \mathbf{O} è una matrice $(N-r+1) \times r$ di zeri e \mathbf{I} è una matrice identità $(N-r+1) \times (N-r+1)$. In questa matrice possiamo riconoscere due tipi di stati (le cui definizioni formali verrano fornite successivamente):

- transient, cioè gli stati da $0, \dots, r-1$ per i quali vale $P_{ij}^{(n)} \to 0$ quando $n \to \infty$ per $0 \le i, j < r;$
- absorbing, gli stati da r, \ldots, N per i quali $P_{ii} = 1$ per $r \leq i \leq N$.

Otteniamo

$$u_i = U_{ik} = P[\text{Assorbimento in k} \mid X_0 = i]$$
 per $0 \le i < r$
= $P_{ik} + \sum_{j=0}^{r-1} P_{ij} U_{jk}$

mentre il tempo medio di assorbimento vale

$$v_i = 1 + \sum_{j=0}^{r-1} P_{ij} v_j$$
 per $0 \le i < r$

Dall'n-esima potenza della matrice di Markov è possibile calcolare

- \bullet il numero medio di visite su uno stato j
- il tempo medio fino all'assorbimento della catena
- \bullet la probabilità di assorbimento in uno stato k.

Tutte questo dipende dallo stato iniziale $X_0 = i$. L'n-esima potenza della matrice 2 è facilmente ottenibile

$$P^{n} = \begin{bmatrix} \mathbf{Q}^{n} & (\mathbf{I} + \mathbf{Q} + \mathbf{Q}^{2} + \dots + \mathbf{Q}^{n-1})R \\ \mathbf{O} & \mathbf{I} \end{bmatrix}$$
(3)

Forniamo un'interpretazione per P^n :

$$\begin{split} W_{ij}^{(n)} &= \text{numero medio di visite allo stato } j \text{ in } n \text{ passi partendo dallo stato } i \\ &= E\left[\sum_{l=0}^n \mathbf{1}\{X_l=j\} \mid X_0=i\right] \text{ ma poiché } E[\mathbf{1}\{X_l=j\} \mid X_0=i] = P_{ij}^{(l)} \\ &= \sum_{l=0}^n E[\mathbf{1}\{X_l=j\} \mid X_0=i] \\ &= \sum_{l=0}^n P_{ij}^{(n)} \end{split}$$

Abbiamo quindi trovato che

$$W^{(n)} = \mathbf{I} + \mathbf{Q} + \mathbf{Q}^2 + \dots + \mathbf{Q}^n$$
$$= \mathbf{I} + \mathbf{Q} (\mathbf{I} + \dots + \mathbf{Q}^{n-1})$$
$$= \mathbf{I} + \mathbf{Q} W^{(n-1)}$$

Passando al limite otteniamo

$$W_{ij} = \lim_{n \to \infty} W_{ij}^{(n)} = E[\text{visite totali a } j \mid X_0 = i] \quad 0 \le i, j < r$$

mentre in forma matriciale si ottiene

$$W = \mathbf{I} + \mathbf{Q} W$$

e quindi

$$W = (\mathbf{I} - \mathbf{Q})^{-1} \tag{4}$$

che è detta matrice fondamentale associata a Q.

2.2 Catene di Markov speciali

2.2.1 Catena di Markov a due stati

Sia data la matrice

$$P = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} \quad \text{con} \quad 0 < a, b < 1$$

allora l'n-esima potenza di P vale

$$P^{(n)} = \frac{1}{a+b} \begin{bmatrix} b & a \\ b & a \end{bmatrix} + \frac{(1-a-b)^n}{a+b} \begin{bmatrix} a & -a \\ -b & b \end{bmatrix} \quad \text{per} \quad n \ge 0$$

che può essere facilmente dimostrato per induzione.

2.2.2 Passeggiata casuale unidimensionale

2.2.3 Success Runs

2.3 Tempi di primo passaggio

Si è interessati nel conoscere quanto tempo è necessario (in media) per raggiungere uno stato j partendo da uno stato i.

$$\theta_{ij}$$
 = numero di transizioni per raggiungere j da i per la prima volta $P[\theta_{ij} = n] = f_{ij}(n) = P[X_n = j, X_m \neq j, m = 1, ..., n - 1 \mid X_0 = i]$

Abbiamo la relazione ricorsiva

$$f_{ij}(n) = \begin{cases} P_{ij} & n = 1\\ \sum_{k \neq j} P_{ik} f_{kj} (n - 1) & n > 1 \end{cases}$$

IMPORTANTE. Per calcolare la il valore atteso del tempo di primo passaggio tra 2 stati i e j usiamo

$$E[\theta_{ij}] = P_{ij} + \sum_{k \neq j} P_{ik} (1 + E[\theta_{kj}])$$
$$= 1 + \sum_{k \neq j} P_{ik} E[\theta_{kj}] \quad \forall i, j$$

Questo comporta la risoluzione di un sistema di equazioni. In particolar modo, se si vuole calcolare $E[\theta_{ii}]$ tutte le variabili nella parte destra non sono note. Tuttavia, come vi vedrà più avanti alla proposizione ?? abbiamo che

$$E[\theta_{ii}] = m_i = \lim_{n \to \infty} \frac{1}{P_{\cdot}^{(n)}} = \frac{1}{\pi_i}$$

Per calcolare il secondo momento (necessario per trovare la varianza) del tempo di primo passaggio usiamo

$$E[\theta_{ij}^{2}] = 2 E[\theta_{ij}] - 1 + \sum_{k \neq j} P_{ik} E[\theta_{kj}^{2}]$$
$$Var(\theta_{ij}) = E[(\theta_{ij} - E[\theta_{ij}])^{2}] = E[\theta_{ij}^{2}] - E[\theta_{ij}]^{2}$$

2.4 Comportamento asintotico delle catene di Markov

Definizione 2.1. Una catena di Markov si dice regolare se la k-esima potenza della matrice P associata alla catena ha tutti elementi strettamente positivi, quindi se

$$P_{ij}^{(k)} > 0 \quad \forall i, j$$

La caratteristica più importante di questa catena è l'esistenza di una distribuzione di probabilità al limite

$$\pi = (\pi_0, \dots, \pi_N) \text{ con } \pi_j > 0 \quad \forall j \in \sum_j \pi_j = 1$$

che è indipendente dallo stato iniziale della catena.

IMPORTANTE. Questi concetti sono utili per conoscere come evolve una catena di Markov all'infinito, quindi per sapere dove in che stato potremmo trovarla.

Proposizione 2.1. Sia P una matrice di probabilità di transizione regolare con stati 0, 1, ..., N. Allora la distribuzione limite $\vec{\pi} = (\pi_0, ..., \pi_N)$ è l'unica soluzione non negativa del sistema

$$\begin{cases} \pi_j = \sum_{k=0}^N \pi_k P_{kj} & j = 0, \dots, N \\ \sum_{k=0}^N \pi_k = 1 & \end{cases}$$

 $con \ \pi_k = \lim_{n \to \infty} P_{ik}^{(n-1)}.$

Risolvendo questo sistema di N+1 incognite e N+2 equazioni (un'equazione è ridondante e può essere rimossa) otteniamo il vettore $\vec{\pi}$ che ci permette di conoscere

$$\lim_{n \to \infty} P^n = \begin{bmatrix} \pi_0 & \pi_1 & \dots & \pi_N \\ \pi_0 & \pi_1 & \dots & \pi_N \\ \vdots & \vdots & & \vdots \\ \pi_0 & \pi_1 & \dots & \pi_N \end{bmatrix}$$

2.5 La classificazione degli stati

Lo stato j è detto raggiungibile dallo stato i $(i \to j)$ se $P_{ij}^{(n)} > 0$ per qualche $n \ge 0$. Due stati sono detti comunicanti $(i \leftrightarrow j)$ se i è raggiungibile da j e viceversa.

Proposizione 2.2. Il concetto di comunicazione è una relazione di equivalenza.

Dimostrazione. Si dimostrano le proprietà di una relazione di equivalenza.

- 1. proprietà riflessiva, $i \leftrightarrow i$ vale perché $P_{ii}^{(0)} = 1$
- 2. proprietà simmetrica, $i \leftrightarrow j \Rightarrow j \leftrightarrow i$
- 3. **proprietà transitiva**, $i \leftrightarrow k$ e $k \leftrightarrow j \Rightarrow i \leftrightarrow j$, infatti se $i \leftrightarrow k$ e $k \leftrightarrow j$ allora esitono n, m tali che $P_{ik}^{(n)} > 0$ e $P_{kj}^{(m)} > 0$, quindi $P_{ij}^{(n+m)} = \sum_{r=0}^{\infty} P_{ir}^{(n)} P_{rj}^{(m)} \ge P_{ik}^{(n)} P_{kj}^{(m)} > 0$

Una catena di Markov è detta *irriducibile* se tutti gli stati comunicano tra di loro (quindi se tutti gli stati appartendono a un'unica classe di equivalenza).

3 Processi di Poisson

3.1 Distribuzione di Poisson

La distribuzione di Poisson con parametro $\mu>0$ è data da

$$p_k = e^{-\mu} \frac{\mu^k}{k!}$$
 per $k = 0, 1, \dots$ (5)

Media e varianza di una variabile aleatoria di Poisson sono date da

$$E[X] = \mu$$

$$E[X^2] = \mu^2 + \mu$$

$$Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2 = \mu$$

Proposizione 3.1. Siano X e Y due variabili aleatorie (indipendenti) con distribuzione di Poisson, rispettivamente di parametro μ e λ . Allora Z=X+Y è una variabile aleatoria di Poisson con con parametro $\mu+\lambda$.

Dimostrazione.

$$\begin{split} P[X+Y=n] &= \sum_{k=0}^{n} P[X=k, Y=n-k] \\ &= \sum_{k=0}^{n} P[X=k] \, P[Y=n-k] \\ &= \sum_{k=0}^{n} e^{-\mu} \frac{\mu^{k}}{k!} \, e^{-\lambda} \frac{\lambda^{n-k}}{(n-k)!} \\ &= e^{-(\mu+\lambda)} \frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \mu^{k} \lambda^{n-k} \\ &= e^{-(\mu+\lambda)} \, \frac{(\mu+\lambda)^{n}}{n!} \end{split}$$

3.2 Processi di Poisson

Definizione 3.1. Un processo di Poisson di intensità $\lambda > 0$ è un processo stocastico a valori interi $\{X(t); t \geq 0\}$ per il quale

1. per ogni valore di tempo $t_0 = 0 < t_1 < \ldots < t_n$, il gli incrementi del processo

$$X(t_1) - X(t_0), \dots, X(t_n) - X(t_{n-1})$$

sono variabili aleatorie indipendenti;

2. $per s \ge 0$ e t > 0 la variabile aleatoria X(s+t) - X(s) ha distribuzione di Poisson

$$P[X(s+t) - X(s) = k] = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$
 per $k = 0, 1, ...$

3. X(0) = 0

Proposizione 3.2. In un processo di Poisson di parametro λ i tempi di interarrivo sono variabili aleatorie indipendenti con distribuzione esponenziale e valore atteso $\frac{1}{\lambda}$.

Dimostrazione. Sia

$$P[s_0 > t] = P[$$
 nessun arrivo in $(0, t]] = e^{-\lambda t}$
 $P[s_1 > t \mid s_0 = s] = \frac{P[s_1 > t, s_0 = s]}{P[s_0 = s]} = P[s_1 > t] = e^{-\lambda t}$

Quindi possiamo generalizzare il procedimento per qualunque s_i .

Proposizione 3.3. Siano W_1, W_2, \ldots i tempi di occorrenza in un processo di Poisson con $\lambda > 0$. Dato N(t) = n, la densità congiunta delle variabili W_1, W_2, \ldots, W_n è

$$f_{W_1, W_2, \dots, W_n}(w_1, w_2, \dots, w_n) = \frac{n!}{t^n}$$
 con $0 < w_1 < w_2 < \dots < w_n \le t$

Proposizione 3.4. Sia X(t) un processo di Poisson con $\lambda > 0$. Allora

$$P[X(u) = k \mid X(t) = n] = \frac{n!}{k! (n-k)!} \left(\frac{u}{t}\right)^k \left(1 - \frac{u}{t}\right)^{n-k}$$
(6)

 $con \ 0 < u < t \ e \ 0 \le k \le n.$

Dimostrazione. Conseguenza diretta della proposizione 3.3. Essendo nota l'informazione X(t) = n, il modo in cui gli n eventi possono distribuirsi nell'intervallo [0,t] è equivalente ad un esperimento ripetuto n volte, con probabilità di successo $\frac{u}{t}$ (cioè che l'evento accada nell'intervallo di lunghezza u incluso in t). Vogliamo conoscere con che probabilità questo esperimento si ha esito positivo k volte. Questo giustifica l'uso della densità binomiale.

Una proprietà significativa

$$P[X_1(t) = k \mid X_1(t) + X_2(t) = n] = \frac{n!}{k!(n-k)!} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n-k}$$
(7)

4 Processi di Rinnovamento

4.1 Definizione di Processi di Rinnovamento e Concetti Correlati

Definizione 4.1. Uno processo contatore (di rinnovamento) è un processo stocastico non negativo a valori interi denominato con $N(t), t \geq 0$. Il processo registra le occorrenze successive di un evento nell'intervallo temporale (0,t], dove i tempi tra eventi consecutivi sono variabili aleatorie i.i.d positive.

- $F(x) = P[X_k \le x]$, distribuzione delle variabili aleatorie X_k .
- $W_n = X_1 + X_2 + \ldots + X_n$, tempo di attesa per l'evento n-esimo.

Nella teoria dei processi di rinnovamento è fondamentale derivare proprietà di alcuni variabili aleatorie associate a N(t) e W_n conoscendo la distribuzione F. Ad esempio

$$E[N(t)] = M(t)$$

che è detta funzione di rinnovamento.

$$P[W_n \le x] = F_n(x) = \int_0^\infty F_{n-1}(x - y) dF(y)$$

$$P[N(t) = k] = F_k(t) - F_{k+1}(t)$$

$$M(t) = E[N(t)] = \sum_{k=1}^\infty P[W_k \le t] = \sum_{k=1}^\infty F_k(t)$$

Tre variabili risultano di particolare interesse:

- $\gamma_t = W_{N(t)+1} t$, vita residua;
- $\delta_t = t W_{N(t)}$, vita corrent;
- $\beta_t = \gamma_t + \delta_t$, vita totale.

4.2 Processi di Poisson Come Processi di Rinnovamento

$$P[N(t) = k] = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$
$$M(t) = E[N(t)] = \lambda t$$

Vita totale media:

$$E[\beta_t] = E[\gamma_t] + E[\delta_t]$$

$$= \frac{1}{\lambda} + \int_0^\infty P[\delta_t > y] \, dy$$

$$= \frac{1}{\lambda} + \frac{1}{\lambda} (1 - e^{-\lambda t}) \to \frac{2}{\lambda} \text{ per } t \gg \frac{1}{\lambda}$$

4.3 Comportamento Asintotico dei Processi di Rinnovamento

Proposizione 4.1. Con probabilità pari a 1 vale

$$\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{\mu} \tag{8}$$

Dimostrazione.

$$\begin{split} S_{N(t)} & \leq t < S_{N(t)+1} \\ \frac{S_{N(t)}}{N(t)} & \leq \frac{t}{N(t)} < \frac{S_{N(t)+1}}{N(t)} \\ \frac{S_{N(t)}}{N(t)} & \leq \frac{t}{N(t)} < \frac{S_{N(t)+1}}{N(t)+1} \cdot \frac{N(t)+1}{N(t)} \\ E[X] & \leq \lim_{t \to \infty} \frac{t}{N(t)} < E[X] \cdot 1 \ con \ E[X] = \mu \end{split}$$

4.4 Equazioni di Rinnovamento

Definizione 4.2. Sia a(t) una funzione nota, F(t) funzione di distribuzione della variabile aleatoria X. Allora

$$A(t) = a(t) + \int_0^t A(t-x) dF(x)$$

è detta equazione di rinnovamento.

Proposizione 4.2. Sia a(t) una funzione limitata. Allora

$$A(t) = a(t) + \int_0^t A(t-x) dF(x)$$

ha un'unica soluzione A limitata su un intervallo finito e questa è

$$A(t) = a(t) + \int_0^t a(t-x) dM(x)$$

con $M(t) = \sum_{k=1}^{\infty} F_k(t)$ è la funzione di rinnovamento.

Grazie al risultato della proposizione 4.2 possiamo dimostrare questa importante relazione

$$E[S_{N(t)+1}] = E[X_1 + X_2 + \dots + X_{N(t)+1}]$$

$$= E[\sum_{i=1}^{N(t)+1} X_i]$$

$$\vdots$$

$$= \mu E[M(t) + 1] \quad \text{con } \mu = E[X_1]$$

dove le X_1, X_2, \ldots sono variabili aleatorie indipendenti e identicamente distribuite mentre N è un valore

casuale. Usando l'argomento di rinnovamento possiamo infatti scrivere

$$\begin{split} A(t) &= E[S_{N(t)+1}] \\ &= \int_0^\infty E[S_{N(t)+1}] \mid X_1 = x] \, dF(x) \\ &= \int_0^t \left[x + A(t-x) \right] dF(x) + \int_t^\infty x \, dF(x) \\ &= \int_t^\infty x \, dF(x) + \int_0^t A(t-x) \, dF(x) \\ &= E[X_1] + \int_0^t A(t-x) \, dF(x) \\ &= E[X_1] + \int_0^t E[X_1] \, dM(t) \quad \text{per il teorema 4.2} \\ &= E[X_1][M(t) + 1] \end{split}$$

4.5 Stopping Time

Proposizione 4.3 (Equazione di Wald). Siano X_1, X_2, \ldots variabili aleatorie i.i.d. con valore atteso finito $(E[X_i] < \infty)$ e sia N uno stopping time per X_1, X_2, \ldots allora

$$E[\sum_{n=1}^{N} X_n] = E[N] E[X]$$

4.6 Teorema Elementare di Rinnovamento

Proposizione 4.4 (Teorema Elementare di Rinnovamento). Sia X_i un processo di rinnovamento con $\mu = E[X_i] < \infty$. Allora

$$\lim_{t \to \infty} \frac{M(t)}{t} = \frac{1}{\mu} \tag{9}$$

Dimostrazione. Sappiamo che $t < S_{N(t)+1}$, usando $E[S_{N(t)+1}] = E[X_1] \cdot [M(t)+1]$ otteniamo

$$\frac{M(t)}{t} > \frac{1}{\mu} - \frac{1}{t} \Rightarrow \lim_{t \to \infty} \frac{M(t)}{t} \ge \frac{1}{\mu}$$

Sia

$$X_i^c = \begin{cases} X_i & se \ X_i \le c \\ 0 & se \ X_i > c \end{cases}$$

(Stuff).

$$X_i^c \le X_i \Rightarrow N^c(t) \ge N(t) \Rightarrow M^c(t) \ge M(t)$$

(Avendo X_i^c vita più breve di X_i , nello stesso periodo temporale (0,t] si registrano più avvenimenti).

$$t + c \ge \mu_c \left(1 + M(t) \right) \Rightarrow \frac{M(t)}{t} \le \frac{1}{\mu_c} + \frac{1}{t} \left(\frac{c}{\mu_c} - 1 \right)$$

e questo porta al limite superiore

$$\lim_{t \to \infty} \frac{M(t)}{t} \le \frac{1}{\mu_c} \quad \forall \, c$$

Non resta che verificare che μ_c tende a μ . Abbiamo che (con grafico di X_i^c si capisce meglio)

$$\lim_{c \to \infty} \mu_c = E[X_i^c]$$

$$= \lim_{c \to \infty} \int_0^c P[X_i^c > c] dx$$

$$= \int_0^\infty [1 - F(x)] dx$$

$$= \mu$$

5 Analisi di Code e Protocolli

$5.1 \quad \text{Coda M/G/1}$

- \bullet M, la distribuzione degli arrivi è esponenziale, quindi gli arrivi sono un processo di Poisson;
- G, i server hanno distribuzione generica G;
- 1, ho un solo server.

Non si tratta di un processo di Markov, è necessario adottare delle ipotesi semplificatrici. Sia X_n la variabile che conta il numero di elementi in coda nell'n-esimo slot di tempo e sia Y_n la variabile che indica il numero di arrivi durante il tempo di servizio tra t_n e t_{n+1} , allora

$$X_{n+1} = \begin{cases} X_n - 1 + Y_n & \text{se } X_n > 0 \\ Y_n & \text{se } X_n = 0 \end{cases}$$

Essendo gli arrivi un processo di Poisson sono tra loro indipendenti, la probabilità che in uno slot temporale di durata x arrivino j nuovi pacchetti è

$$a_{j} = P[Y_{n} = j]$$

$$= E[P[Y_{n} = j \mid \text{tempo di servizio } = x]]$$

$$= E[e^{-\lambda x} \frac{(\lambda x)^{j}}{j!}]$$

$$= \int_{0}^{\infty} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!} dG(x)$$

Da questa probabilità si possono derivare le probabilità di transizione di X

$$P_{ij} = P[Y_n = j - i + 1] = \begin{cases} \int_0^\infty e^{-\lambda x} \frac{(\lambda x)^j}{j!} dG(x) & i \ge 1, \ j \ge i - 1\\ 0 & j < i - 1 \end{cases}$$

La matrice del processo sarà quindi

$$P = \begin{bmatrix} a_0 & a_1 & a_2 & \dots \\ a_0 & a_1 & a_2 & \dots \\ 0 & a_0 & a_1 & \dots \\ 0 & 0 & a_0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

5.2 Esempi di Protocolli di Livello 2 e 4

5.2.1 Protocollo 1

All'inizio di ogni slot temporale trasmetto il contenuto del buffer fino ad un massimo di M pacchetti.

$$X_{n+1} = \begin{cases} Y_n & \text{se } X_n \le M \\ X_n - M + Y_n & \text{se } X_n > M \end{cases}$$

5.2.2 Protocollo 2

All'inizio di ogni slot temporale trasmetto il contenuto del buffer solo se sono presenti almeno m pacchetti. Ho due casi:

• trasmetto tutto il contenuto del buffer

$$X_{n+1} = \begin{cases} Y_n & \text{se } X_n \ge m \\ X_n + Y_n & \text{se } X_n < m \end{cases}$$

 $\bullet\,$ trasmetto fino ad un massimo di $M \geq m$ pacchetti

$$X_{n+1} = \begin{cases} X_n + Y_n & \text{se } X_n < m \\ Y_n & \text{se } m \le X_n \le M \\ X_n - M + Y_n & \text{se } X_n > M \end{cases}$$

6 Per Esame

6.1 Soluzioni Esercizi

6.1.1 Compite 22 settembre 2005

1. Si consideri la catena di Markov X(t) con stati 1, 2, 3 e X(0) = 3 e matrice di transizione

$$P = \left(\begin{array}{ccc} 0.5 & 0.3 & 0.2\\ 0.2 & 0.2 & 0.6\\ 1 & 0 & 0 \end{array}\right)$$

a) Si calcolino le probabilità stazionarie e i tempi medi di ricorrenza di tutti gli stati.

Risposte: $\vec{\pi} = (\frac{40}{72}, \frac{15}{72}, \frac{17}{72})$

b) Si calcolino la media e la varianza del tempo di primo passaggio dallo stato 3 allo stato 1.

Risposte: $m_{31} = 1, v_{31} = 0$

c) Si calcolino la media e la varianza del tempo di primo passaggio dallo stato 1 allo stato 3.

Risposte: $m_{13} = \frac{55}{17}$, $v_{13} = \frac{1490}{289}$

d) Si calcolino $P[X(1) = 1, X(3) = 1 \mid X(2) = 2] = \frac{1}{5}$ e $P[X(2) = 2 \mid X(1) = 1, X(3) = 1] = \frac{2}{17}$

2. Si consideri una coda alla quale arrivano pacchetti secondo un processo di Poisson di intensità $\lambda=1$ pacchetto al secondo. Tutti i pacchetti presenti nella coda vengono trasmessi quando si verifica uno dei seguenti eventi: i) ci sono due pacchetti in coda, ii) c'è un solo pacchetto e il suo tempo d'attesa è pari a 2 secondi. La trasmissione è istantanea.

Risoluzione come processo semi-markoviano. Le matrici incluse e dei tempi sono rispettivamente:

$$P = \begin{bmatrix} 0 & 1 & 0 \\ \alpha & 0 & 1 - \alpha \\ 1 & 0 & 0 \end{bmatrix} \quad T = \begin{bmatrix} - & 1/\lambda & - \\ 2 & - & \beta \\ 0 & - & - \end{bmatrix}$$

dove $\alpha = P[X(2) = 0] = e^{-2\lambda}$ è la probabilità che non arrivi alcun pacchetto entro 2 secondi, mentre β è il tempo medio che il secondo pacchetto impiega per arrivare, essendo noto che questo arrivi, quindi

 $\beta=E[$ tempo arrivo pacchetto | il pacchetto arriva]

$$= \frac{1}{1 - e^{-2\lambda}} \int_0^2 x \lambda e^{x\lambda} dx$$
$$= \frac{1 - 3e^{-2\lambda}}{1 - e^{-2\lambda}}$$

a) Si calcoli la percentiale di tempo durante la quale la coda è vuota.

Risposta: $\frac{\mu_0}{\mu_0 + \mu_1 + \mu_2} = \frac{1}{2 - e^{-2}}$.

b) Si calcoli la media del ritardo di un pacchetto (cioè il tempo medio speso in coda).

21

Risposta: E[ritardo]P[coda piena] = 1 - $\frac{1}{2-e^{-2}} = \frac{1-e^{-2}}{2-e^{-2}}.$

Con un ragionamento alternativo posso calcolare il valore atteso del tempo in cui la coda è piena. Sapendo che i tempi di interarrivo di una Poisson sono variabili esponenziali, bisogna integrare tra 0 e 2 (cioè tutti i valori di tempo in cui la coda può essere piena). Abbiamo quindi

$$E[T_{\text{coda piena}}] = \int_0^2 \lambda e^{-\lambda t} dt = \left[e^{-\lambda t}\right]_0^2 = 1 - e^{-2\lambda}$$

Poiché gli intervalli sono variabili esponenziali il tempo medio in cui la coda resta vuota è

$$E[T_{\text{coda vuota}}] = \frac{1}{\lambda}$$

a) Si calcoli la percentiale di tempo durante la quale la coda è vuota.

Risposta: $\frac{E[T_{\text{coda vuota}}]}{E[T_{\text{coda vuota}}] + E[T_{\text{coda piena}}]} = \frac{1}{2 - e^{-2}}$.

b) Si calcoli la media del ritardo di un pacchetto (cioè il tempo medio speso in coda).

Risposta: $E[\text{ ritardo }] = E[T_{\text{totale}}] \cdot P[\text{ coda vuota }] + 0 \cdot P[\text{ coda piena }].$

- 3. $(Coda\ M/G/\infty)$ Si consideri un sistema di trasmissione a divisione di frequenza in cui il numero di canali è sufficientemente elevato da trascurare la probabilità che tutti siano occupati. A tale sistema arrivano richieste di connessione secondo un processo di Poisson di intensità $\lambda=100$ chiamate all'ora e la durata di ciascuna chiamata è esponenziale con media 6 minuti. Sia X(t) il numero di canali occupati al tempo t.
 - a) Si calcoli la media di X(t) per t = 6, 10 minuti e per $t = \infty$.

Risposta: $E[X(\frac{1}{10})] = 10(1 - e^{-1}), E[X(\frac{1}{6})] = 10(1 - e^{-5/3}), \lim_{t \to \infty} E[X(t)] = 10$

b) Si calcoli P[X(t) = 10] per t = 6 e per $t = \infty$.

Risposta: $P[X(\frac{1}{10}) = 10] = e^{-r} \frac{r^{10}}{10!} = 0.05$, con $r = 10(1 - e^{-1})$, $\lim_{t \to \infty} P[X(t) = 10] = e^{\lambda/\mu} \frac{(\lambda/\mu)^{10}}{10!} = 0.125$.

 \mathbf{c}

$$\lambda pt = \begin{cases} \lambda t & t < 2\\ \lambda t + \lambda \int_2^t \left(1 - \frac{z - 2}{8}\right) dz & 2 \le t \le 10\\ 6\lambda & t > 10 \end{cases}$$

Quindi $E[X(6)] = 2\lambda + \lambda \int_2^6 \left(1 - \frac{z-2}{8}\right) dz = 5\lambda$, mentre $E[X(10)] = 2\lambda + \lambda \int_2^{10} \left(1 - \frac{z-2}{8}\right) dz = 6\lambda$. Per l'ultimo punto abbiamo invece P[X(t) = 10] per $t = 6, \infty$, quindi $\lambda pt = 25/3$, P[X(6) = 10] = 0.107 e $\lambda pt = 10$ per $\lim_{t \to \infty} P[X(t) = 10] = 0.125$.

- 4. Canale markoviano con $p_{00} = 0.99$ e $p_{10} = 0.1$, round-trip time m = 2:
 - a) Calcolare il throughput in assenza di errori.

Risposta: thp= $\frac{p_{10}(2)}{p_{10}(2)+m\,p_{01}} = \frac{0.189}{0.189+2\cdot0.0189} = 0.833$

b) Calcolare il throughput con errori iid $\delta = 0.1$ nel canale di feedback.

Risposta: thp =
$$\frac{(1-\delta)p_{10}^{(m)}}{(1-\delta)p_{10}^{(m)} + m\left[(1-\delta)p_{01} + \delta\left(p_{01}^{(m)} + p_{10}^{(m)}\right)\right]} = \frac{9}{13} = 0.692$$

6.1.2 Compito 14 luglio 2006

1. Si consideri una catena di Markov X_n con la seguente matrice di trasizione (stati da 0 a 2)

$$P = \left(\begin{array}{ccc} 0.2 & 0.4 & 0.4 \\ 0.5 & 0.5 & 0 \\ 0.4 & 0.4 & 0.2 \end{array}\right)$$

a) Si disegni il diagramma di transizione e si calcoli la distribuzione di probabilità di X_1, X_2, X_{500} dato $X_0 = 0$.

Risposta: la distribuzione di probabilità di X_1 corrisponde alla prima riga della matrice P, la distribuzione di X_2 corrisponde alla prima riga di P^2 mentre la distribuzione di X_{500} corrisponde al vettore $\vec{\pi} = (\frac{10}{27}, \frac{12}{27}, \frac{5}{27})$.

b) Si calcoli il tempo medio di primo passaggio dallo stato 0 agli stati 0, 1, 2.

Risposta: $m_{00} = \frac{1}{\pi_0} = \frac{27}{10}$, $m_{01} = \frac{5}{2}$, $m_{02} = \frac{9}{2}$.

c) Sia $W_{ij}^{(n)}$ il numero medio di visite allo stato j a partire dallo stato i durante i primi n istanti dell'evoluzione della catena. Si calcolino $W_{0j}^{(3)}$ e $W_{0j}^{(5000)}$.

Risposta: $W^3=I+P+P^2+P^3$ la prima riga vale (1.964, 1.284, 0.752), per $n\to\infty$ si può approssimare $W_{ij}=n\pi_i$.

- 2. Si consideri un link di capacità $1\,Mbps$ condiviso da un gran numero di utenti che collettivamente producono pacchetti secondo un processo di Poisson di intensità $\lambda=500$ pacchetti al secondo. La lunghezza dei pacchetti è costante e pari a $1000\,bit$. Il protocollo di accesso è un CSMA ideale, secondo cui un pacchetto trova il canale occupato se ne prova la ritrasmissione dopo un tempo esponenziale di media $100/\lambda$. Si supponga che il traffico totale (nuovo più ritrasmissioni) si possa approssimare come poissoniano di intensità λ .
 - a) Si calcoli il throughput (traffico medio smaltito) del link.

Risposta: Il canale può trovarsi in 2 stati: libero o occupato, nell'ultimo caso sta trasmettendo un pacchetto di lunghezza 1000 bit e per questo impiega 1 ms. Quindi abbiamo $E[\text{libero}] = 1/\lambda = 2 \, ms$ e $E[\text{occupato}] = 1000 \, bit/10^6 \, bps = 1 \, ms$ quindi il throughput vale $E[\text{occupato}]/(E[\text{occupato}] + E[\text{libero}]) = 1/3 \, Mbps$.

b) Si calcoli il ritardo medio di accesso, da quando un pacchetto è generato, a quando riesce ad accedere al canale.

Risposta: sia $P[\text{accesso al k-esimo tentativo}] = (1/3)^k (2/3)$, è una variabile aleatoria geometrica con p = 2/3, quindi E[numero tentativi] = 3/2. Il tempo medio di accesso è pari a $E[\text{tempo tra 2 tentativi}] \cdot (E[\text{numero tentativi}] - 1) = 100/\lambda(3/2 - 1) = 50/\lambda$.

c) Se una trasmissione sul canale corrisponde a un guadagno di 1 unità e ogni tentativo di accesso fallito corrisponde ad un costo di 0.2 unità, si calcoli il guadagno totale (in unità al secondo).

Risposta: il guadagno totale è $\lambda(2/3 \cdot 1 - 1/3 \cdot 0.2) = 300$ unità al secondo.

- 3. $(Coda\ M/G/\infty)$ Si consideri una mostra a cui i visitatori arrivano...
 - a) Si calcoli la probabilità che durante la prima mezz'ora arrivino meno di 3 visitatori.

23

Risposta:
$$Pr[M(t) < 3] = Pr[M(t) = 0] + Pr[M(t) = 1] + Pr[M(t) = 2] = e^{\lambda pt} \frac{(\lambda pt)^0}{0!} + e^{\lambda pt} \frac{(\lambda pt)^1}{1!} + e^{\lambda pt} \frac{(\lambda pt)^2}{2!}$$

b) Si calcoli la probabilità che alle 8:15 vi sia un solo visitatore.

Risposta:
$$P[M(15) = 1] =$$

c) Si calcoli la probabilità che all'orario di chiusura la sala sia vuota.

Risposta:
$$P[M(600) = 0] =$$

- 4. Canale markoviano con $p_{00} = 0.98$ e $p_{10} = 0.1$.
 - a) Calcolare il throughput con round trip time m=2 in assenza di errori.

Risposta: thp =
$$\frac{p_{10}(m)}{p_{10}(m)+m}$$
 = $\frac{47}{57}$ = 0.824

b) Si consideri adesso un canale che alterna il comportamento precedente a uno con errori iid con probabilità $\delta=0.01$. In particolare il canale si comporta secondo il modello markoviano precedente per un numero geometrico di media 10^6 slot poi passa al comportamento iid per un numero geometrico di media $2\cdot 10^6$ slot e così via. Calcolare il throughput.

Risposta:
$$\frac{10^6}{10^6+2\cdot10^6} \cdot thp_a + \frac{2\cdot10^6}{10^6+2\cdot10^6} \cdot thp_{iid}$$

6.1.3 Compite 12 dicembre 2006

- 1. (Vedere appunti a pagina 38)
 - a) Le classi in cui la catena si scompone sono $C_1 = \{0, 4\}$ ricorrente positiva periodica di periodo 2, $C_2 = \{2\}$ transitoria e $C_3 = \{1, 3, 5\}$ ricorrente positiva aperiodica.
 - b) Per la classe C_1 abbiamo $\vec{\pi} = (1/2, 1/2)$ mentre per C_3 (essendo la sottomatrice di questa classe doppiamente stocastica) $\vec{\pi} = (1/3, 1/3, 1/3)$. Partendo dallo stato 2 la probabilità di andare in C_1 è 2/5 mentre di andare in C_3 è 3/5. Abbiamo quindi:

$$\lim_{n \to \infty} P^n = \begin{bmatrix} - & 0 & 0 & 0 & - & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ - & 1/5 & 0 & 1/5 & - & 1/5 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ - & 0 & 0 & 0 & - & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \end{bmatrix}$$

c) Con la media temporale possiamo inserire i valori che non hanno un limite definito:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} P^{i} = \begin{bmatrix} 1/2 & 0 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ 1/5 & 1/5 & 0 & 1/5 & 1/5 & 1/5 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ 1/2 & 0 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \end{bmatrix}$$

- d) $P[X_4 = 5, X_2 = 3 \mid X_3 = 1, X_1 = 3] = P_{15} \cdot P_{31} \cdot P_{33} / P_{31}^{(2)} = 0.122.$
- 2. Si consideri un nodo di rete che in condizioni normali riesce a smaltire un traffico pari a 1 Gbps. Tale nodo funziona normalmente per un tempo esponenziale di media 99T, dopodiché entra in uno stato di allarme durante il quale la sua capacità si riduce a 250 Mbps. Dopo essere rimasto T secondi nello stato di allarme, il nodo viene istantaneamente riparato.
 - a) Si calcoli la frazione del tempo che il nodo passa nello stato di allarme e il traffico medio smaltito (supponendo che ci siano sempre pacchetti da trasmettere).

Risposta: E[ciclo] = 99T + T = 100T, quindi il tempo speso nello stato di allarme è $\frac{E[\text{allarme}]}{E[\text{ciclo}]} = 1/100$ mentre il traffico medio smaltito è 1000E[normale] + 250E[allarme] = 992.5 Mbps.

- b) Risposta:
- 3. Si considerino due processi di Poisson indipendenti, $X_1(t)$ e $X_2(t)$, in cui $X_i(t)$ è il numero di arriv del processo i nell'intervallo [0, t]. Il numero medio di arriv dei due processi è $\lambda_1 = \lambda_2 = 1.5$.
 - a) Si calcolino $Pr[X_1(3) = 1 \mid X_1(3) + X_2(3) = 3]$ e $Pr[X_1(3) + X_2(3) = 3 \mid X_1(3) = 1]$.

Risposta:

$$Pr[X_1(3) = 1 \mid X_1(3) + X_2(3) = 3] = \frac{Pr[X_1(3) = 1, X_1(3) + X_2(3) = 3]}{Pr[X_1(3) + X_2(3) = 3]}$$

$$= \frac{Pr[X_2(3) = 2]Pr[X_1(3) = 1]}{Pr[X_1(3) + X_2(3) = 3]} = \frac{3}{8} = 0.375$$

$$\left(= P[X_1(3) = 1, X(3) = 3] = \binom{3}{1} \frac{(3\lambda_2)^2 (3\lambda_1)}{(3(\lambda_1 + \lambda_2))^3}\right)$$

$$Pr[X_1(3) + X_2(3) = 3 \mid X_1(3) = 1] = Pr[X(3) = 3 \mid X_1(3) = 1]$$

= $Pr[X_2(3) = 2] = e^{-3\lambda_2} \frac{(3\lambda_2)^2}{2!}$

b) Si calcolino $Pr[X_1(2) = 1 \mid X_1(3) = 3]$ e $Pr[X_1(3) = 3 \mid X_1(2) = 1]$.

Risposta:

$$\begin{split} Pr[X_1(2) = 1 \mid X_1(3) = 3] &= \frac{Pr[X_1(3) = 3 \mid X_1(2) = 1] Pr[X_1(2) = 1]}{Pr[X_1(3) = 3]} \\ &= \frac{Pr[X_1(1) = 2] Pr[X_1(2) = 1]}{Pr[X_1(3) = 3]} \\ &= \frac{e^{-\lambda}(\lambda)^2}{2!} \cdot \frac{e^{-2\lambda}2\lambda}{1!} \cdot \frac{3!}{e^{-3\lambda}(3\lambda)^3} = \frac{2}{9} \end{split}$$

$$Pr[X_1(3) = 3 \mid X_1(2) = 1] = Pr[X_1(1) = 2]$$

= $\frac{e^{-\lambda}\lambda^2}{2!}$

- 4. Canale markoviano con $p_{00} = 0.98$, $p_{10} = 0.1$.
 - a) Calcolare il throughput del canale in assenza di protocollo (senza ritrasmissioni).

Risposta: thp = $\pi_0 = \frac{p_{10}}{p_{10} + p_{01}} = \frac{5}{6} = 0.833$

b) Calcolare il throughput con round trip time m=2 in assenza di errori.

Risposta: thp = $\frac{p_{10}(m)}{p_{10}(m)+m} = \frac{47}{57} = 0.824$

c) Calcolare il throughput come nel caso precedente ma con errori $\delta=0.1$ iid nel canale di feedback.

Risposta: thp =
$$\frac{(1-\delta)p_{10}^{(m)}}{(1-\delta)p_{10}^{(m)} + m\left\lceil (1-\delta)p_{01} + \delta\left(p_{01}^{(m)} + p_{10}^{(m)}\right)\right\rceil} =$$

6.1.4 Compito 09 luglio 2007

- 1. a) Conoscendo lo stato iniziale $X_0=0$, la distribuzione di probabilità per X_1 corrisponde alla prima riga della matrice di transizione P, la distribuzione di X_2 corrisponde alla prima riga della matrice P^2 mentre la distribuzione per X_{500} abbiamo $P^{500}\approx P^{\infty}$, quindi è necessario calcolarsi $\vec{\pi}=(0.5,0.25,0.25)$ con le tecniche note.
 - b) Calcolare i tempi medi di primo passaggio è lungo ma non difficile (si veda l'apposita sezione), abbiamo $m_{02}=3, m_{12}=2, m_{22}=4.$
 - c) Ottenere il risultato può essere un po' lungo ma bassa applicare la proprietà di Markov e la formula di Bayes, $P[X_1=1,X_3=1\mid X_2=1]=\frac{1}{15},$ $P[X_2=1\mid X_1=1,X_3=1]=\frac{1}{3}.$
- 2. a) $\frac{\beta^2}{(\alpha+\beta)^2} = 0.01$, $\frac{1}{2\beta} = 1.5$ giorni.
 - b) $24 \cdot \frac{\alpha^2}{(\alpha+\beta)^2} + 12 \cdot \frac{2\alpha\beta}{(\alpha+\beta)^2} = 21.6$
 - c) $30 \cdot \frac{\alpha^2}{(\alpha+\beta)^2} + 12 \cdot \frac{2\alpha\beta}{(\alpha+\beta)^2} = 26.46$
- $3.\ \operatorname{Processo}$ semi-markoviano.

a)

$$P = \left[\begin{array}{cccc} 0 & 1 & 0 \\ 1 - \alpha & 0 & \alpha \\ 1 & 0 & 0 \end{array} \right]$$

b)

$$T = \begin{bmatrix} - & T & - \\ \beta T & - & \frac{\beta T}{2} \\ \gamma T & - & - \end{bmatrix}$$

- 4. Processi di Poisson, facile andandosi a vedere le formule.
 - a) $P[X(0.1) = 0] = e^{-2} = 0.1353$
 - b) $P[X(0.1) = 0 \mid X(0.5) = 10] = 0.8^{10}$

6.1.5 Compito 09 luglio 2007

- 1. a)
 - b)
 - c)
- 2. a) Il traffico smaltito vale 2000/E[tempo ciclo]=2000/(E[coda vuota]+E[1 coda piena]+E[tempo trasmissione $])=2000/(\frac{1}{2\lambda}+\frac{1}{\lambda}+10^{-3})=0.5$ Mbps che è un quarto della capacità massima del nodo.
 - b)
 - c)
- 3. a)
 - b)
 - c)
- 4. a)
 - b)

6.1.6 Compito 5 settembre 2007

- 1. a)
 - b)
- 2. a)
 - b)
 - c)
- 3. a)
 - b)
 - c)
- 4. a)
 - b) Si consideri adesso un canale che alterna il comportamento precedente a uno con errori iid con probabilità $\delta=0.01$. In particolare il canale si comporta secondo il modello markoviano precedente per un numero geometrico di media 10^6 slot poi passa al comportamento iid per un numero geometrico di media $2\cdot 10^6$ slot e così via. Calcolare il throughput.

Risposta: $\frac{10^6}{10^6 + 2 \cdot 10^6} \cdot thp_a + \frac{2 \cdot 10^6}{10^6 + 2 \cdot 10^6} \cdot thp_{iid}$

6.1.7 Compito 24 settembre 2007

- 1. (Vedere esercizio 1 appello del 14 luglio 2006)
- 2. a)
 - b)
 - c)
- 3. a)
 - b)
 - c)
- 4. a)
 - b)

6.1.8 Compito 21 luglio 2016

- 1. Protocollo Go-Back-N su un canale markoviano a due stati...
 - a)
 - b)
- 2. a)
 - b)
 - c)
- 3. a)
 - b)
 - c)
- 4. Si consideri il seguente schema per la trasmissione di messaggi. Una sorgente produce messaggi da 1000 bit secondo un processo di Poisson di intensità $\lambda=1000$ messaggi al secondo. I messaggi vengono incapsulati in pacchetti, dove ciascun pacchetto può contenere uno o due messaggi e ha un header di 40 byte. Il tempo di trasmissione è trascurabile. Per minimizzare l'impatto dell'overhead, il sistema cerca di inserire due messaggi per pacchetto. Tuttavia, dato che ogni messaggio non può ritardare più di T=1.5 ms, se un messaggio ha atteso un tempo T e nessun altro messaggio è arrivato, viene inviato un pacchetto con un solo messaggio.

Per maggiori dettagli vedere l'esercizio 2 del 22 settembre 2005. Convertire $\lambda=1000$ messaggi al secondo in $\lambda=1$ messaggio al millisecondo.

a) Calcolare la probabilità che sia presente un messaggio da inviare.

Risposta: $E[\text{pieno}] = \int_0^T \lambda e^{-\lambda t} dt = 1 - e^{-1.5}, E[\text{vuoto}] = \frac{1}{\lambda}, P[\text{pieno}] = \frac{E[\text{pieno}]}{E[\text{pieno} + E[\text{vuoto}]]} = \frac{1 - e^{-1.5}}{2 - e^{1.5}}.$

b) Calcolare il tempo medio di attesa per ciascun messaggio.

Risposta: $E[\text{attesa}] = (E[\text{vuoto}] + E[\text{pieno}]) \cdot P[\text{vuoto}] = 1 - e^{-1.5}$.

c) Calcolare l'efficienza di trasmissione del sistema, cioè il rapporto tra i bit utili e il totale dei bit trasmessi.

Risposta: vedere risoluzione con processi semi-markoviani.

Risolvendo l'esercizio come un processo semi-markoviano abbiamo

$$P = \begin{bmatrix} 0 & \frac{1}{\lambda} & 0 \\ \alpha & 0 & 1 - \alpha \\ 1 & 0 & 0 \end{bmatrix} \quad T = \begin{bmatrix} - & 1 & - \\ T & - & \beta \\ 0 & - & - \end{bmatrix}$$

dove $\alpha = Pr[X(T) = 0] = e^{-T}$ e $\beta = \frac{1}{1 - e^{-\lambda T}} \int_0^T \lambda T e^{-\lambda T} dt = \frac{1 - e^{-T} - T e^{-T}}{1 - e^{-T}}$.

a) Calcolare la probabilità che sia presente un messaggio da inviare.

Risposta: questo significa calcolare la frazione di tempo in cui il sistema si trova nello stato 1, quindi $\frac{\mu_1}{\mu_0 + \mu_1 + \mu_2} = \frac{1 - e^{1.5}}{2 - e^{-1.5}}$.

31

b) Calcolare il tempo medio di attesa per ciascun messaggio.

Risposta:

c) Calcolare l'efficienza di trasmissione del sistema, cioè il rapporto tra i bit utili e il totale dei bit trasmessi.

Risposta: Per rispondere è necessario sviluppare la reward theory con le metriche

- $R^{(1)}$, numero di pacchetti utili,
- $\bullet \ R^{(2)},$ numero totale di pacchetti inviati

$$R_{10}^{(1)} = 1000, \ R_{20}^{(1)} = 2000, \ R_{10}^{(2)} = 1320, \ R_{20}^{(2)} = 2320$$

Quindi, una volta calcolati gli $R_i = \sum_k P_{ik} R_{ik}$, si ottiene

$$\lim_{t \to \infty} \frac{R^{(1)}}{R^{(2)}} = \frac{\pi_1 R_1^{(1)} + \pi_2 R_2^{(1)}}{\pi_1 R_1^{(2)} + \pi_2 R_2^{(2)}} = 0.847$$

6.1.9 Compito 12 settembre 2018

- 1. a)
 - b)
- 2. a)
 - b)
 - c)
- 3. a)
 - b)
 - c)
- 4. Processi di Poisson, $X(t) = X_1(t) + X_2(t)$ con $\lambda_1 = 0.5$ e $\lambda_2 = 1$.
 - a)
 - b) Calcolare $Pr[X_2(1) = 1, X(3) = 3 \mid X_2(2) = 2]$ e $Pr[X_2(2) = 2 \mid X_2(1) = 1, X(3) = 3]$.

Risposta: Usando il metodo grafico si ottiene

$$\begin{split} Pr[X_2(1) = 1, X(3) = 3 \mid X_2(2) = 2] &= \frac{Pr[X_2(1) = 1, X_2(2) - X_2(1) = 1, X_1(3) + X_2(1) = 1]}{Pr[X_2(2) = 2]} \\ &= \frac{e^{-1}e^{-1}e^{-2.5}2.5}{e^{-2}\frac{2^2}{2!}} \\ &Hint: \left(Pr[X_1(3) + X_2(1) = k] = e^{-(3\lambda_1 + 1\lambda_2)}\frac{(3\lambda_1 + 1\lambda_2)^k}{k!}\right) \end{split}$$

$$\begin{split} Pr[X_2(2) = 2 \mid X_2(1) = 1, X(3) = 3] &= \frac{Pr[X_2(2) = 2, X_2(1) = 1, X(3) = 3]}{Pr[X_2(1) = 1, X(3) = 3]} \\ &= \frac{Pr[X_2(1) = 1, X_2(2) - X_2(1) = 1, X(3) - X_2(2) = 1]}{Pr[Pr[X_2(1) = 1, X(3) - X_2(1) = 2]]} \\ &= \frac{Pr[X_2(1) = 1]Pr[X_1(3) + X_2(1) = 1]}{Pr[X_1(3) + X_2(2) = 2]} \\ &= \frac{e^{-1}e^{-2.5}2.5}{e^{-3.5}\frac{3.5^2}{2!}} \end{split}$$