

Financial Econometrics Multivariate Regression

Tim C.C. Hung 洪志清

March 7^{th} , 2022

Multivariate Regression

- There are a few things we have not covered in univariate regression.
 - ▶ The general form of OLS.
 - Prove of BLUE and BUE of OLS under Gauss-Markov.
 - ▶ Why $\frac{1}{n-2}\sum_{i=1}^n \widehat{u_i}^2$ is an unbiased estimator for σ_u^2
 - How to deal with heteroskedasticity when we do not have A5.
 - Why sample mean is also a least square estimator.
 - Relationship between multiple independent (explanatory) variables.
 - Hypothesis testing of multiple coefficient estimates (and the entire model).
- We will first review for some matrix properties and show you the general multivariate regression derivations.

Review of Matrix Property

- A matrix is an array of numbers. It is usually denoted by an upper-case alphabet in boldface (e.g. \mathbf{A}), and its $(i,j)^{th}$ element (the element at the i^{th} row and j^{th} column) is denoted by the corresponding lower-case alphabet with subscripts ij (e.g., a_{ij}).
- The following is an example of a $m \times n$ matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Review of Matrix Property

- An $n \times 1$ $(1 \times n)$ matrix is an n-dimensional column (row) vector.
- A matrix is square if its number of rows equals the number of columns.
- A matrix is said to be diagonal if its off-diagonal elements (i.e., a_{ij} , for $i \neq j$) are all zeros and at least one of its diagonal elements is non-zero, i.e., $a_{ii} \neq 0$ for some i.
- A diagonal matrix whose diagonal elements are all ones is an identity matrix, denoted as I. We also write the $n \times n$ identity matrix as I_n .

- Two matrices A_{mn} and B_{mn} are said to be the same if 1) they have the same number of rows (m) and same number of columns (n); and 2) $a_{ij} = b_{ij}$ for all i and j.
- Matrix Addition: defined only for two matrices of the same size (same m and n). A + B = B + A, (A + B) + C = A + (B + C)
- Transpose: the transpose of A, denoted as A', is a matrix whose $(i,j)^{th}$ element is the $(j,i)^{th}$ element of A. For A_{mn} , its transpose A', has n rows and m columns, i.e. A' is a $n \times m$ matrix.

- Scalar Multiplication: $c\mathbf{A}_{mn}$ changes all elements in the \mathbf{A}_{mn} matrix from a_{ij} to $c*a_{ij}$ for all (i,j).
- Matrix Multiplication: AB is only defined for matrix A and B when the number of columns of A is the same as the number of rows of B.
- ullet Therefore, AB
 eq BA. (BA may not even be well defined.)
- Specifically, when ${\bf A}$ is $m \times n$ and ${\bf B}$ is $n \times p$, their product, ${\bf C} = {\bf AB}$, is a $m \times p$ matrix whose $(i,j)^{th}$ element is

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

- Matrix Multiplication: Rules
 - ightharpoonup Associative: (AB)C = A(BC)
 - ▶ Distributive: A(B + C) = AB + AC
 - (AB)' = B'A'
 - For a $m \times n$ matrix \mathbf{A} , $\mathbf{I}_m \mathbf{A} = \mathbf{A} \mathbf{I}_n = \mathbf{A}$
 - ▶ A squared matrix A is idempotent if AA = A.

Determinant:

Given a square matrix A_n , let A_{ij} denote the sub-matrix obtained from A by deleting its i^{th} row and j^{th} column. The determinant of A is:

$$det(\mathbf{A}) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \ det(\mathbf{A}_{ij})$$

for any $j = 1, 2, \cdots, n$

• Example:
$$det(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}) = (-1)^2 * 1 * 4 + (-1)^3 * 2 * 3 = 1 * 4 - 2 * 3 = -2$$

Determinant: Rules

- ▶ The determinant of a scalar is itself.
- ▶ A square matrix with non-zero determinant is said to be *nonsingular*; otherwise, it is *singular*.
- $\det(\mathbf{A}) = \det(\mathbf{A}')$
- $det(c\mathbf{A}) = c^n det(\mathbf{A})$
- $det(\mathbf{AB}) = det(\mathbf{BA}) = det(\mathbf{A}) * det(\mathbf{B})$
- $det(\mathbf{I}) = 1$ for all size of \mathbf{I}

Trace:

The trace of a square matrix is the sum of its diagonal elements:

$$trace(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

Rules:

- $ightharpoonup trace(\mathbf{A}') = trace(\mathbf{A}')$
- $trace(c\mathbf{A} + d\mathbf{B}) = c \ trace(\mathbf{A}) + d \ trace(\mathbf{B})$
- $ightharpoonup trace(\mathbf{I}_n) = n$
- ▶ $trace(\mathbf{AB}) = trace(\mathbf{BA})$ ***Important Lemma!

- Inverse: a nonsingular matrix A possesses a unique inverse A^{-1} in the sense that $AA^{-1} = A^{-1}A = I$
- Given a invertible A, its inverse

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A}^{-1})} \mathbf{F}'$$

where \mathbf{F} is the matrix of cofactors, i.e., the $(i,j)^{th}$ element of \mathbf{F} is the cofactor: $(-1)^{i+j}det(\mathbf{A}_{ij})$. The matrix \mathbf{F}' is known as the *adjoint* of \mathbf{A} .

• Example: for a 2×2 matrix **A**, $\mathbf{A}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$

• Inverse: Rules

- Matrix inversion and transposition can be interchanged,
 i.e. (A')⁻¹ = (A⁻¹)'
- ► For nonsingular **A** and **B**, $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$
- For a diagonal matrix \mathbf{A} , \mathbf{A}^{-1} is also diagonal with the diagonal elements a_{ii}^{-1} .
- $ightharpoonup I^{-1} = I$ for all size of I

• Linear Dependence:

the vectors $\mathbf{z}_1, \dots, \mathbf{z}_n$ are said to be linearly independent if the only solution to $c_1\mathbf{z}_1 + c_2\mathbf{z}_2 + \dots + c_n\mathbf{z}_n = 0$ is the trivial solution: $c_1 = \dots = c_n = 0$. Otherwise, they are linearly dependent.

Rank:

the column (row) rank of a matrix A is the maximum number of linearly independent column (row) vectors of A.

- Assume for $\mathbf{A}_{n \times k}$, n < k, and that \mathbf{A} has r < n linearly independent rows. Row vectors can be written as $\mathbf{a}_i = q_{i1}\mathbf{a}_1 + q_{i2}\mathbf{a}_2 + \cdots + q_{ir}\mathbf{a}_r$, with the j^{th} element, $a_{ij} = q_{i1}a_{1j} + q_{i2}a_{2j} + \cdots + q_{ir}a_{rj}$. We can then see that the column rank is also r!
- Lemma: the column rank and row rank of a matrix are equal.

Rank: Rules

- $ightharpoonup rank(\mathbf{A}') = rank(\mathbf{A}')$
- ▶ for two $n \times k$ matrices **A** and **B**, $rank(\mathbf{A} + \mathbf{B}) \leq rank(\mathbf{A}) + rank(\mathbf{B})$
- for $\mathbf{A}_{n \times k}$ and $\mathbf{B}_{k \times m}$, $rank(\mathbf{A}) + rank(\mathbf{B}) k \le rank(\mathbf{AB}) \le min[rank(\mathbf{A}), rank(\mathbf{B})]$
- ▶ for a nonsingular matrix \mathbf{A} , $rank(\mathbf{AB}) \leq rank(\mathbf{B}) = rank(\mathbf{A}^{-1}\mathbf{AB}) \leq rank(\mathbf{AB})$ $\Rightarrow rank(\mathbf{AB}) = rank(\mathbf{B})$ similarly, $rank(\mathbf{BC}) = rank(\mathbf{C'B'}) = rank(\mathbf{B'}) = rank(\mathbf{B})$
- Lemma: let $A_{n \times n}$ and $C_{k \times k}$ be nonsingular matrices. then for any $n \times k$ matrix B, rank(B) = rank(AB) = rank(BC)

• Matrix Derivative: scalar-valued function Say, we have a function $y = f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{bmatrix}$$

A second derivatives matrix or Hessian is computed as:

$$\begin{bmatrix} \partial^2 y/\partial x_1 \partial x_1 & \partial^2 y/\partial x_1 \partial x_2 & \cdots & \partial^2 y/\partial x_1 \partial x_n \\ \partial^2 y/\partial x_2 \partial x_1 & \partial^2 y/\partial x_2 \partial x_2 & \cdots & \partial^2 y/\partial x_2 \partial x_n \\ \vdots & \vdots & \ddots & \vdots \\ \partial^2 y/\partial x_n \partial x_1 & \partial^2 y/\partial x_n \partial x_2 & \cdots & \partial^2 y/\partial x_n \partial x_n \end{bmatrix}$$

Matrix Derivative:

Now, suppose we have a linear combination $y = \mathbf{a}'\mathbf{x} = \mathbf{x}'\mathbf{a} = \sum_i a_i x_i$

We can easily see that

$$\frac{\partial y}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}' \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

• Similarly, in a set of linear function $\mathbf{Y} = \mathbf{A}\mathbf{x}$, $\frac{\partial \mathbf{A}\mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}'$

Matrix Derivative:

Lastly, for a quadratic form with a symmetric \mathbf{A} , $\mathbf{x}'\mathbf{A}\mathbf{x} = \sum_{i} \sum_{j} x_{i}x_{j}a_{ij}$,

$$\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = 2 \mathbf{A} \mathbf{x}$$

• For example, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$, $\mathbf{x}' \mathbf{A} \mathbf{x} = x_1^2 + 4x_2^2 + 6x_1x_2$ $\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \begin{bmatrix} 2x_1 + 6x_2 \\ 6x_1 + 8x_2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2\mathbf{A} \mathbf{x}$

• If ${\bf A}$ is not symmetric, then $\frac{\partial {\bf x}' {\bf A} {\bf x}}{\partial {\bf x}} = ({\bf A} + {\bf A}') {\bf x}$

Matrix - Skipped Concepts

- Things you don't need to worry about in this course:
 - Kronecker product
 - Orthogonalization
 - Eigen Value and Eigen Vector

Multivariate Regression

• Suppose we have k regressors (X_1, X_2, \dots, X_k) and n observations, the regression function / Data Generating Process (DGP) is as the following:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i$$

for
$$i = 1, 2, \dots, n$$

Let's group things into matrices!

$$\mathbf{X}_{n \times (k+1)} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1k} \\ 1 & X_{21} & X_{22} & \cdots & X_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{nk} \end{bmatrix} \quad \boldsymbol{\beta}_{(k+1) \times 1} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix}$$

Multivariate Regression in Matrix

- X is a $n \times (k+1)$ matrix of independent variables.
- β is a $(k+1) \times 1$ column vector of coefficients.
- $\mathbf{X}\boldsymbol{\beta}$ will be of $n \times 1$ dimension.

$$\mathbf{X}\boldsymbol{\beta} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \dots + \beta_k \mathbf{x}_k$$

where x_i , $i = 1, \dots, k$ are also $(n \times 1)$ column vectors.

We can compactly write the linear model as the following:

$$\mathbf{Y}_{(n\times 1)} = \mathbf{X}\boldsymbol{\beta}_{(n\times 1)} + \mathbf{u}_{(n\times 1)}$$

• We can also look at individual level, where \mathbf{x}_i' is the i^{th} row of \mathbf{X} :

$$Y_i = \mathbf{x}_i' \boldsymbol{\beta} + u_i$$

Multivariate Regression in Matrix

• Let $\widehat{\beta}$ be the matrix of estimated regression coefficients and $\widehat{\mathbf{Y}}$ be the vector of fitted values:

$$\widehat{oldsymbol{eta}} = egin{bmatrix} \widehat{eta}_0 \ \widehat{eta}_1 \ \widehat{eta}_2 \ dots \ \widehat{eta}_k \end{bmatrix} \qquad \widehat{\mathbf{Y}} = \mathbf{X}\widehat{oldsymbol{eta}}$$

• It might be helpful to see this again more written out:

$$\widehat{\mathbf{Y}} = \begin{bmatrix} \widehat{Y_1} \\ \widehat{Y_2} \\ \vdots \\ \widehat{Y_n} \end{bmatrix} = \mathbf{X}\widehat{\boldsymbol{\beta}} = \begin{bmatrix} 1\widehat{\beta_0} + X_{11}\widehat{\beta_1} + \dots + X_{k1}\widehat{\beta_k} \\ 1\widehat{\beta_0} + X_{12}\widehat{\beta_1} + \dots + X_{k2}\widehat{\beta_k} \\ \vdots \\ 1\widehat{\beta_0} + X_{1n}\widehat{\beta_1} + \dots + X_{kn}\widehat{\beta_k} \end{bmatrix}$$

Residual in Matrix Form

• We can easily write the residuals in matrix form:

$$\widehat{\mathbf{u}} = \mathbf{Y} - \mathbf{X}\widehat{\boldsymbol{\beta}}$$

• Our goal, again, is to minimize the sum of the squared residuals:

$$\sum_{i=1}^{n} \widehat{u_i}^2 = \widehat{\mathbf{u}}' \widehat{\mathbf{u}} = (\mathbf{Y} - \mathbf{X} \widehat{\boldsymbol{\beta}})' (\mathbf{Y} - \mathbf{X} \widehat{\boldsymbol{\beta}})$$
$$= \mathbf{Y}' \mathbf{Y} - \mathbf{Y}' \mathbf{X} \widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{Y} + \widehat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{X} \widehat{\boldsymbol{\beta}}$$

OLS in Matrix Form

- Goal: minimize the sum of the squared residuals.
- Take (matrix) derivatives, set equal to 0.
- Resulting first order conditions:

$$-2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\widehat{\boldsymbol{\beta}} = 0$$

Rearranging:

$$X'X\widehat{\beta} = X'Y$$

• Assume that X'X is nonsigular and invertible, \leftarrow **A3!**

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

• Pronunciation: ex prime ex inverse ex prime y

Intuition for the OLS in Matrix Form

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

- What's the intuition here?
 - ightharpoonup Numerator X'Y: is approximately composed of the covariances between the columns of X and Y
 - Denominator X'X is approximately composed of the sample variances and covariances of variables within X
- Thus, we have something like:

$$\widehat{m{eta}} pprox (\mathsf{Variance} \ \mathsf{of} \ \mathbf{X})^{-1}(\mathsf{Covariance} \ \mathsf{between} \ \mathbf{X} \ \mathsf{and} \ \mathbf{Y})$$

- \Rightarrow an analogous to the simple linear regression case!
- Check the univariate regression on board: $\mathbf{X} = \begin{bmatrix} \mathbf{1} & \mathbf{x} \end{bmatrix}$ and $\boldsymbol{\beta} = \begin{bmatrix} \widehat{\beta_0} \\ \widehat{\beta_1} \end{bmatrix}$!

CLRM Assumptions in Matrix Form

- 1 Linearity: $Y = X\beta + u$
- 2 Randomness: (y_i, \mathbf{x}_i') are IID samples from the populaiton.
- 3 No Perfect Collinearity: \mathbf{X} is an $n \times (k+1)$ matrix with rank $k+1 \rightarrow \mathsf{lf} < k+1$, $\mathbf{X}'\mathbf{X}$ will not be invertible!
- 4 Zero Conditional Error: $E[\mathbf{u}|\mathbf{X}] = \mathbf{0}$
- 5 Homoskedasticity: $Var(\mathbf{u}|\mathbf{X}) = \sigma_u^2 \mathbf{I}_n$
- 6 Normality: $\mathbf{u}|\mathbf{X} \sim N(\mathbf{0}, \sigma_u^2 \mathbf{I}_n)$

Unbiasedness of $\widehat{\boldsymbol{\beta}}$

• Again, with CLRM assumptions 1-4:

$$\begin{split} \widehat{\boldsymbol{\beta}} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \qquad \text{(linear form and no collinearity)} \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \mathbf{u}) \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u} \\ &= \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u} \end{split}$$

$$E[\widehat{\boldsymbol{\beta}}|\mathbf{X}] = E[\boldsymbol{\beta}|\mathbf{X}] + E[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}|\mathbf{X}]$$

$$= \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E[\mathbf{u}|\mathbf{X}] \quad \text{(zero conditional error)}$$

$$= \boldsymbol{\beta}$$

CLRM Assumption 5

- What does $Var(\mathbf{u}|\mathbf{X}) = \sigma_u^2 \mathbf{I}_n$ mean?
- I_n is the $n \times n$ identity matrix, σ_u^2 is a scalar.
- Visually:

$$Var(\mathbf{u}) = \sigma_u^2 \mathbf{I}_n = \begin{bmatrix} \sigma_u^2 & 0 & 0 & \cdots & 0 \\ 0 & \sigma_u^2 & 0 & \cdots & 0 \\ 0 & 0 & \sigma_u^2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma_u^2 \end{bmatrix}$$

• In other words, $var(u_i) = \sigma_u^2$ for all i (constant variance) $cov(u_i, u_j) = 0$ for all $i \neq j$ (implied by IID)

Conditional Variance of $\widehat{\boldsymbol{\beta}}$

- A quick note: For a linear transformation of matrices: $A\mathbf{u} + \mathbf{B}$, $Var(A\mathbf{u} + \mathbf{B}) = AVar(\mathbf{u})A'$
- Now, with $\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}$,

$$\begin{split} Var[\widehat{\boldsymbol{\beta}}|\mathbf{X}] &= Var[\boldsymbol{\beta}|\mathbf{X}] + Var[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}|\mathbf{X}] \quad \text{(no covariance term)} \\ &= Var[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}|\mathbf{X}] \quad \text{(Var(scalar)=0)} \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Var[\mathbf{u}|\mathbf{X}]((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')' \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Var[\mathbf{u}|\mathbf{X}]\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma_u^2\mathbf{I}_n\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \quad \text{(homoskedasticity)} \\ &= \sigma_u^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= \sigma_u^2(\mathbf{X}'\mathbf{X})^{-1} \end{split}$$

• This is a $(k+1) \times (k+1)$ variance-covariance matrix of $\widehat{\boldsymbol{\beta}}$.

BLUE of $\widehat{\boldsymbol{\beta}}$

- ullet Our purpose is to show that given CLRM assumptions 1-5, \widehat{eta} has the minimum variance among all unbiased linear estimators.
- Suppose we have some unbiased linear estimator $\tilde{\boldsymbol{\beta}} = \mathbf{A}'\mathbf{Y}$. For $\tilde{\boldsymbol{\beta}}$ to be an unbiased estimator, We need $\mathbf{A}'\mathbf{X} = \mathbf{I}_{(k+1)}$ so that $E[\tilde{\boldsymbol{\beta}}|\mathbf{X}] = \mathbf{A}'E[\mathbf{Y}|\mathbf{X}] = \mathbf{A}'\mathbf{X}\boldsymbol{\beta} + \mathbf{A}'E[\mathbf{u}|\mathbf{X}] = \mathbf{A}'\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\beta}$
- Under such circumstance, $Var[\tilde{\boldsymbol{\beta}}|\mathbf{X}] = Var[\mathbf{A}'\mathbf{u}|\mathbf{X}] = \sigma_u^2\mathbf{A}'\mathbf{A}$
- Our goal is to show that $\sigma_u^2 \mathbf{A}' \mathbf{A} \geq \sigma_u^2 (\mathbf{X}' \mathbf{X})^{-1}$
- Now assume some $\mathbf{C} = \mathbf{A} \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}$

BLUE of $\widehat{\beta}$

We can first show that

$$\mathbf{X}'\mathbf{C} = \mathbf{X}'\mathbf{A} - \mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} = \mathbf{I}_{(k+1)} - \mathbf{I}_{(k+1)} = \mathbf{0}$$

Then,

$$\begin{aligned} \mathbf{A}'\mathbf{A} - (\mathbf{X}'\mathbf{X})^{-1} &= (\mathbf{C} + \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1})'(\mathbf{C} + \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}) - (\mathbf{X}'\mathbf{X})^{-1} \\ &= \mathbf{C}'\mathbf{C} + \mathbf{C}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{C} \\ &+ (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} - (\mathbf{X}'\mathbf{X})^{-1} \\ &= \mathbf{C}'\mathbf{C} + \mathbf{0} + \mathbf{0} + (\mathbf{X}'\mathbf{X})^{-1} - (\mathbf{X}'\mathbf{X})^{-1} \\ &= \mathbf{C}'\mathbf{C} \ge \mathbf{0} \end{aligned}$$

• The matrix $\mathbf{C}'\mathbf{C}$ is positive semi-definite. Therefore, $\sigma_u^2(\mathbf{X}'\mathbf{X})^{-1}$ is the minimum variance of all linear unbiased estimators for $\boldsymbol{\beta}$.

BUE of $\widehat{\beta}$

- To go from BLUE to BUE, we need to relax the set of candidates from linear unbiased estimators to all unbiased estimators.
- We will not cover the details in this course!
- But the intuition is:
 with CLRM assumption 6, we know the exact distribution of u.
- With the distribution known, we may use another estimator, the Maximum Likelihood Estimator (MLE).
- In a more advanced econometric course, you will learn that MLE is BUE and that with CLRM assumption 6, the MLE closed form solution coincides with OLS estimator, $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$.
- Lastly, Hansen, B. (2022). A Modern Gauss-Markov Theorem.
 Econometrica, forthcoming. finds that A1-A5 ⇒ OLS is BUE!

Estimating σ_u^2

- Similar to the univariate version, our goal is again to infer the variance of the error term from the residual!
- Let's first introduce another matrix $\mathbf{M} = \mathbf{I}_n \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ \mathbf{M} is called the residual matrix or the orthogonal projection matrix. E.g. $\mathbf{M}\mathbf{Y} = \mathbf{Y} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{Y} - \mathbf{X}\widehat{\boldsymbol{\beta}} = \widehat{\mathbf{u}}$.
- \bullet For some $\tilde{Y},$ the output of $M\tilde{Y}$ is the residual of regressing \tilde{Y} on X!
- Important properties of M:
 - $lackbox{M}$ is a symmetric square, i.e. $\mathbf{M}=\mathbf{M}'$
 - $ightharpoonup \mathbf{M}$ is idempotent. i.e. $\mathbf{M}\mathbf{M} = \mathbf{M}$
 - As $\mathbf{MY} = \widehat{\mathbf{u}}$, $\mathbf{Mu} = \widehat{\mathbf{u}}$
- Thus, $Var[\widehat{\mathbf{u}}|\mathbf{X}] = Var[\mathbf{M}\mathbf{u}|\mathbf{X}]!$

Estimating σ_u^2

• Now, let's calculate $MSD(\widehat{u}) = \frac{1}{n} \sum_{i=1}^{n} \widehat{u}_{i}^{2}$.

$$\begin{split} MSD(\widehat{u}) &= \frac{1}{n} \sum_{i=1}^{n} \widehat{u_i}^2 \\ &= \frac{1}{n} \widehat{\mathbf{u}}' \widehat{\mathbf{u}} \\ &= \frac{1}{n} \mathbf{u}' \mathbf{M}' \mathbf{M} \mathbf{u} \\ &= \frac{1}{n} \mathbf{u}' \mathbf{M} \mathbf{u} \\ &= \frac{1}{n} trace(\mathbf{u}' \mathbf{M} \mathbf{u}) \qquad \text{(because it's a scalar)} \\ &= \frac{1}{n} trace(\mathbf{M} \mathbf{u} \mathbf{u}') \qquad \text{(trace property)} \end{split}$$

Estimating σ_u^2

$$E[MSD(\widehat{u})|\mathbf{X}] = \frac{1}{n}trace(E[\mathbf{Muu'}|\mathbf{X}]) = \frac{1}{n}trace(\mathbf{M}E[\mathbf{uu'}|\mathbf{X}])$$

$$= \frac{1}{n}trace(\mathbf{M}\sigma_{u}^{2}\mathbf{I}_{n}) \qquad \text{(homoskedasticity)}$$

$$= \frac{1}{n}\sigma_{u}^{2}trace(\mathbf{M}) = \frac{1}{n}\sigma_{u}^{2}trace(\mathbf{I}_{n} - \mathbf{X}(\mathbf{X'X})^{-1}\mathbf{X'})$$

$$= \frac{1}{n}\sigma_{u}^{2}[trace(\mathbf{I}_{n}) - trace(\mathbf{X}(\mathbf{X'X})^{-1}\mathbf{X'})]$$

$$= \frac{1}{n}\sigma_{u}^{2}[trace(\mathbf{I}_{n}) - trace((\mathbf{X'X})^{-1}\mathbf{X'X})]$$

$$= \frac{1}{n}\sigma_{u}^{2}[trace(\mathbf{I}_{n}) - trace((\mathbf{I}_{k+1}))] = \frac{n - (k+1)}{n}\sigma_{u}^{2}$$

- Therefore, an unbiased estimator for σ_u^2 is: $s^2 = \frac{1}{n-(k+1)} \sum_{i=1}^n \widehat{u_i}^2$
- \bullet We can now estimate $Var(\widehat{\boldsymbol{\beta}}|\mathbf{X}) = s^2(\mathbf{X}'\mathbf{X})^{-1}$

Heteroskedasticity

- CLRM assumption 5 assumes for Homoskedasticity, or IID, in the error term. All the u_i are drawn from the exact same distribution and are drawn independently. Therefore, they should have the same variance, σ_u^2 .
- Now, let's still assume for independence but relax the assumption that they all have the same variance. For each u_1, u_2, \dots, u_n , the corresponding variance is: $\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2$.
- The variance-covariance matrix goes from

$$\sigma_u^2 \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \qquad \text{to} \qquad \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix}$$

Heteroskedasticity

- What are the consequences?
- First, OLS is not BLUE anymore, but OLS estimates are still unbiased. \rightarrow To resume BLUE, we need GLS (Generalized Least Square)!
- Second, we cannot estimate $Var(\widehat{\boldsymbol{\beta}}|\mathbf{X}) = s^2(\mathbf{X}'\mathbf{X})^{-1}$ anymore.
- Assume the Var-Cov matrix of the error term is denoted as Ω .

$$Var[\widehat{\boldsymbol{\beta}}|\mathbf{X}] = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \underline{Var}[\mathbf{u}|\mathbf{X}]\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$$
$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \underline{\Omega} \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}$$
$$= (\mathbf{X}'\mathbf{X})^{-1} \left(\sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}' u_{i}^{2}\right) (\mathbf{X}'\mathbf{X})^{-1}$$

• If we can observe u_i , we could estimate $Var[\widehat{\boldsymbol{\beta}}|\mathbf{X}]$ as above.

Heteroskedasticity

• Since we cannot observe u_i , we could only approximate using the residual terms \widehat{u}_i .

$$Var^{robust}[\widehat{\boldsymbol{\beta}}|\mathbf{X}] = \frac{n}{n - (k+1)} (\mathbf{X}'\mathbf{X})^{-1} \left(\sum_{i=1}^{n} \mathbf{X_i} \mathbf{X_i}' \widehat{u_i}^2 \right) (\mathbf{X}'\mathbf{X})^{-1}$$

- This is the heteroskedasticity-consistent or heteroskedasticity-robust variance-covariance matrix estimator. It is also sometimes called the robust covariance matrix estimator.
- People also use the term, the White robust covariance matrix estimator, giving reference to White (1980) which first introduces this concept.
- In Stata, you can simply implement this using the command:
 reg Y X, r

Partition (Frisch—Waugh—Lovell Theorem) 🚳 🐧 🕹 套 資 * 李

- It is equally important to study the cross-relationship between different independent variables.
- ullet Now, let's partition X into $[X_1 \ X_2]$, and eta into $[eta_1 \ eta_2]$
- ullet We can then rewrite $\mathbf{Y} = \mathbf{X}oldsymbol{eta} + \mathbf{u}$ as

$$\mathbf{Y} = \mathbf{X_1}\boldsymbol{\beta_1} + \mathbf{X_2}\boldsymbol{\beta_2} + \mathbf{u}$$

• The solution to $[\widehat{m{eta_1}} \ \widehat{m{eta_2}}]$ is

$$\begin{split} \widehat{\boldsymbol{\beta_1}} &= (\mathbf{X_1'}\mathbf{M_2X_1})^{-1}\mathbf{X_1'}\mathbf{M_2Y} \\ \widehat{\boldsymbol{\beta_2}} &= (\mathbf{X_2'}\mathbf{M_1X_2})^{-1}\mathbf{X_2'}\mathbf{M_1Y} \end{split}$$

where
$$\mathbf{M_i} = \mathbf{I}_n - \mathbf{X_i}(\mathbf{X_i'X_i})^{-1}\mathbf{X_i'}, i = 1, 2$$

Partition (Frisch—Waugh—Lovell Theorem) 🚳 🛦 まず * 李

Quick demonstration:

$$\begin{split} \mathbf{Y} &= \mathbf{X}_{1}\beta_{1} + \mathbf{X}_{2}\beta_{2} + \mathbf{u} \\ \mathbf{M}_{1}\mathbf{Y} &= \mathbf{M}_{1}\mathbf{X}_{1}\beta_{1} + \mathbf{M}_{1}\mathbf{X}_{2}\beta_{2} + \mathbf{M}_{1}\mathbf{u} \\ \mathbf{M}_{1}\mathbf{Y} &= \mathbf{M}_{1}\mathbf{X}_{2}\beta_{2} + \mathbf{M}_{1}\mathbf{u} \\ \tilde{\mathbf{Y}} &\equiv \tilde{\mathbf{X}}\beta_{2} + \tilde{\mathbf{u}} \\ \widehat{\boldsymbol{\beta}_{2}} &= (\tilde{\mathbf{X}}'\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}'\tilde{\mathbf{Y}} \\ &= (\mathbf{X}_{2}'\mathbf{M}_{1}'\mathbf{M}_{1}\mathbf{X}_{2})^{-1}\mathbf{X}_{2}'\mathbf{M}_{1}'\mathbf{M}_{1}\mathbf{Y} \\ &= (\mathbf{X}_{2}'\mathbf{M}_{1}\mathbf{X}_{2})^{-1}\mathbf{X}_{2}'\mathbf{M}_{1}\mathbf{Y} \end{split}$$

- ullet Important takeaway: To obtain $\widehat{eta_2}$
 - $1\,$ Regress Y on X_1 and obtain residuals $\tilde{u_1}$
 - 2 Regress X_2 on X_1 and obtain residuals X_2
 - 3 Regress $\tilde{\mathbf{u_1}}$ on $\tilde{\mathbf{X_2}}$ and obtain $\hat{\boldsymbol{\beta_2}}$ as well as residuals $\hat{\mathbf{u}}$
- What if X_1 and X_2 are independent/orthogonal to each other?

- $\frac{\widehat{\beta_1} E[\widehat{\beta_1}]}{\sqrt{Var[\widehat{\beta_1}]}} \sim N(0,1)$ under CLT.
- Thus, under some null hypothesis about β_1 , $\widehat{\beta}_1$ can be tested using the t-statistics. And the 95% confidence interval is: $\widehat{\beta}_1 \pm 1.96 \times SE[\widehat{\beta}_1]$
- This is also the case for $\beta_2, \cdots, \beta_k!$
- However, we might want to test more than one coefficient at the same time as well!
- For example, for $Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \beta_3 X_{3,i} + \beta_4 X_{4,i} + u_i$ we might be interested in testing the following hypotheses:
 - $\beta_1 = \beta_2$
 - $2\beta_3 + 3\beta_4 = 0$
 - $\beta_1 = 10$

- The hypotheses are called linear hypotheses:
- To test linear hypotheses jointly, let's form the a matrix of constraints:

$$\mathbf{R}\boldsymbol{\beta} = \mathbf{q}$$

- Let's first rewrite the constraints above as:
 - $\beta_1 \beta_2 = 0$
 - $2\beta_3 + 3\beta_4 = 0$
 - $\beta_1 10 = 0$
- Each entry of ${\bf R}$ is a coefficient for ${\boldsymbol \beta}$ and each row is a constraint we want to test. ${\bf q}$ is a vector of scalars.

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix}$$

• Now, suppose we want to test *j* hypotheses jointly:

$$H_0: \mathbf{R}\boldsymbol{\beta} - \mathbf{q} = \mathbf{0}$$

$$H_1: \mathbf{R}\boldsymbol{\beta} - \mathbf{q} \neq \mathbf{0}$$

- ullet Now Assumes that $\mathbf{m}_{(j imes 1)} = \mathbf{R}oldsymbol{eta} \mathbf{q}$
- Asymptotically, $W \equiv \mathbf{m}'(Var[\mathbf{m}|\mathbf{X}])^{-1}\mathbf{m} \sim \chi^2(j)$
- Lastly, $F_{j,n-k-1} = \frac{W/j}{s^2/\sigma_u^2} = \frac{W}{j} \frac{\sigma_u^2}{s^2}$
- ullet W is called a Wald Statistic, and the F test is called a Wald test.
- $\bullet \ \ \text{Under homoskedasticity,} \ F_{j,n-k-1} = \tfrac{(\mathbf{R}\widehat{\boldsymbol{\beta}} \mathbf{q})'\{\mathbf{R}[s^2(\mathbf{X}'\mathbf{X})^{-1}]\mathbf{R}'\}^{-1}(\mathbf{R}\widehat{\boldsymbol{\beta}} \mathbf{q})}{j}$

- Under heteroskedasticity, $F_{j,n-k-1} = \frac{(\mathbf{R}\widehat{\boldsymbol{\beta}} \mathbf{q})'\{\mathbf{R}[s^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\Omega\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}]\mathbf{R}'\}^{-1}(\mathbf{R}\widehat{\boldsymbol{\beta}} \mathbf{q})}{j},$ where Ω is to be estimated.
- If we only consider one constraint and if we only test one β coefficient, the F-statistic will nest down to a t-statistic.
- Under homoskedasticity, there is a special solution for F:

$$F = \frac{(R_{\text{unrestricted}}^2 - R_{\text{restricted}}^2)/j}{(1 - R_{\text{unrestricted}}^2)/(n - k_{\text{unrestricted}} - 1)}$$

where $R_{\rm restricted}^2$ is the R^2 when we restrict the testing model under the null hypotheses.

Model Specification

- Problem of potential omitted variable.
 - → Check the white board!
- Is adding control variables always a good idea?
 - ightarrow Think about collinearity and bad controls. We'll talk more about bad controls under the potential outcome framework!
- Problem of measurement bias or error.
 - → Check the white board!
- Interpretation of R^2
 - \rightarrow Is a higher R^2 always better?