Lora Milam Western Governors University D212 Data Mining II 27 February 2023

D212 Performance Assessment Task 1

1 Introduction

Lora Milam Masters Data Analytics (2/19/2023) Program Mentor:d212@wgu.edu

1.1 Research Question

This analysis will cover a readmission dataset for a popular medical hospital. Utilizing a collection of patient characteristics, it will investigate the extent of readmission within this chain of hospitals.

This analysis will be performed by utilizing K-Means clustering. Once created, the model's accuracy will be tested by silhouette scoring.

1.2 Research Goal

The goal of this analysis is to determine if there are key patient characteristics that are associated with readmission.

2 Technique Justification

2.1 Explanation of Clustering Technique

In summary, the K-Means clustering algorithm is an unsupervised clustering algorithm. This means that the algorithm analyzes the data and formulates its own conclusions based on the connections and patterns it detects.

Since the algorithm does require a predetermined number of cluster centroids, it is best practice to analyze a range of cluster centroids. This can be accomplished by comparing the models' inertia. Utilizing graphical means, locating the "elbow" in the graph can aid in determining a desirable number of cluster centroids.

Once the desirable number of cluster centroids has been determined, the readmission rates of the clusters can be compared to determine if a cluster-readmission relationship exists.

2.2 Summary of Technique Assumption

One assumption of the K-Means clustering algorithm is that all clusters are spherical (Nagar, 2020).

2.3 Packages/Libraries List

Package	Justification
Numpy	Advanced mathematics
Pandas	Arrange and filter data
Seaborn	Styling of plots
Matplotlib.pyplot	Result visualization
Sklearn	Scaling and clustering implementation. Ex: StandardScaler, KMeans, Silhouette scoring

3 Data Preparation

3.1 Data Preprocessing

One data preprocessing goal relevant to the KMeans clustering technique is creating a dataset that only includes continuous variables. This can be done by removing categorical and less meaningful variables from the dataset. Additionally, the dataset will need to scaled so that the model will not be impacted by variables with large ranges of values

3.2 Dataset Variables

Variable	Туре	Used in KMeans		
Children	Continuous	Yes		
Age	Continuous	Yes		
Income	Continuous	Yes Yes		
VitD_levels	Continuous			
Doc_visits	Continuous	Yes		
Full_meals_eaten	Continuous	Yes		

vitD_supp	Continuous	Yes
Initial_days	Continuous	Yes
TotalCharge	Continuous	Yes
Additional_charges	Continuous	Yes
ReAdmis	Categorical	No

3.3 Steps for Analysis

```
In [1]: # Libraries
   import numpy as np
   import pandas as pd
   from pandas import Series, DataFrame
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn.preprocessing import StandardScaler
%matplotlib inline
   from sklearn.cluster import KMeans
   from sklearn.metrics import silhouette_score
```


Out[2]:

:		CaseOrder	Customer_id	Interaction	UID	City	State	County	Zip	Lat	Lng	 TotalCha
	0	1	C412403	8cd49b13- f45a-4b47- a2bd- 173ffa932c2f	3a83ddb66e2ae73798bdf1d705dc0932	Eva	AL	Morgan	35821	34.34960	-86.72508	 3726.702
	1	2	Z919181	d2450b70- 0337-4406- bdbb- bc1037f1734c	176354c5eef714957d486009feabf195	Marianna	FL	Jackson	32446	30.84513	-85.22907	 4193.190
	2	3	F995323	a2057123- abf5-4a2c- abad- 8ffe33512562	e19a0fa00aeda885b8a438757e889bc9	Sioux Falls	SD	Minnehaha	57110	43.54321	-96.63772	 2434.234
	3	4	A879973	1dec528d- eb34-4079- adce- 0d7a40e82205	cd17d7b8d152cb8f23957348d11c3f07	New Richland	MN	Waseca	58072	43.89744	-93.51479	 2127.830
	4	5	C544523	5885f56b- d8da-43a3- 8760- 83583af94288	d2f0425877b10ed6bb381f3e2579424a	West Point	VA	King William	23181	37.59894	-76.88958	 2113.073
	9995	9996	B863060	a25b594d- 0328-486f- a9b9- 0567eb0f9723	39184dc28cc038871912ccc4500049e5	Norlina	NC	Warren	27563	36.42886	-78.23716	 6850.942
	9996	9997	P712040	70711574- f7b1-4a17- b15f- 48c54584b70f	3cd124ccd43147404292e883bf9ec55c	Milmay	NJ	Atlantic	8340	39.43609	-74.87302	 7741.690
99	9997	9998	R778890	1d79569d- 8e0f-4180- a207- d67ee4527d26	41b770aeee97a5b9e7f69c906a8119d7	Southside	TN	Montgomery	37171	38.38855	-87.29988	 8276.481
	9998	9999	E344109	f5a68e69- 2a60-409b- a92f- ac0847b27db0	2bb491ef5b1beb1fed758cc6885c167a	Quinn	SD	Pennington	57775	44.10354	-102.01590	 7644.483
	9999	10000	1589847	bc482c02- f8c9-4423- 99de- 3db5e82a18d5	95663a202338000abdf7e09311c2a8a1	Coraopolis	PA	Allegheny	15108	40.49998	-80.19959	 7887.553

10000 rows \times 50 columns

```
In [3]: # Review dataset
# Variables within dataset
df.columns
```

In [4]: | # Summary stats of variables
df.describe()

Out[4]:

	CaseOrder	Zip	Lat	Lng	Population	Children	Age	Income	VitD_levels	Doc_visits	
coun	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	
mear	5000.50000	50159.323900	38.751099	-91.243080	9965.253800	2.097200	53.511700	40490.495160	17.984282	5.012200	
sto	2886.89568	27469.588208	5.403085	15.205998	14824.758614	2.163659	20.638538	28521.153293	2.017231	1.045734	
mir	1.00000	610.000000	17.967190	-174.209700	0.000000	0.000000	18.000000	154.080000	9.806483	1.000000	
25%	2500.75000	27592.000000	35.255120	-97.352982	694.750000	0.000000	36.000000	19598.775000	16.626439	4.000000	
50%	5000.50000	50207.000000	39.419355	-88.397230	2769.000000	1.000000	53.000000	33768.420000	17.951122	5.000000	
75%	7500.25000	72411.750000	42.044175	-80.438050	13945.000000	3.000000	71.000000	54296.402500	19.347963	6.000000	
max	10000.00000	99929.000000	70.560990	-85.290170	122814.000000	10.000000	89.000000	207249.100000	26.394449	9.000000	

In [5]: M # Determine if there are any missing values within dataset
df.isnull().sum()

	dT.1Shull().Sum()	
Out[5]:	CaseOrder	0
1	Customer_id	0
	Interaction	0
	UID	0
	City	0
	State	0
	County	0
	Zip	0
	Lat	0
	Lng	0
	Population	0
	Area	0
	TimeZone	0
	Job	0
	Children	0
	Age	0
	Income	0
	Marital	0
	Gender	0
	ReAdmis	0
	VitD_levels	0
	Doc_visits	0
	Full_meals_eaten	0
	vitD_supp	0
	Soft_drink	0
	Initial_admin	0
	HighBlood	0
	Stroke	0
	Complication_risk	0
	Overweight	0
	Arthritis	0
	Diabetes	0
	Hyperlipidemia	0
	BackPain	0
	Anxiety	0
	Allergic_rhinitis	0
	Reflux_esophagitis	0
	Asthma	0
	Services	0
	Initial_days	0
	TotalCharge	0
	Additional_charges	0
	Item1 Item2	0
	Item3	0
	Item4	0
	Item4 Item5	0
	Items	0
	Item7	0
	Item/	0
	dtype: int64	9
	atype. Into-	

In [6]: ⋈ # Review variable types df.dtypes

Out[6]: CaseOrder int64 Customer_id object Interaction object UID object city object State object County object Zip int64 Lat float64 Lng float64 Population int64 Area object TimeZone object Job object Children int64 int64 Age Income float64 Marital object Gender object ReAdmis object VitD_levels float64 Doc visits int64 Full_meals_eaten int64 vitD_supp int64 Soft_drink object Initial_admin object HighBlood object Stroke object Complication_risk object Overweight object Arthritis object Diabetes object Hyperlipidemia object BackPain object Anxiety object Allergic_rhinitis object Reflux_esophagitis object Asthma object Services object Initial_days float64 TotalCharge float64 Additional_charges float64 Item1 int64 Item2 int64 Item3 int64 Item4 int64 Item5 int64 Item6 int64 Item7 int64 int64 Item8 dtype: object

	Children	Age	Income	VitD_levels	Doc_visits	Full_meals_eaten	vitD_supp	Initial_days	TotalCharge	Additional_charges
0	-0.507129	-0.024795	1.615914	0.583803	0.944647	-0.993387	-0.634713	-0.907310	-0.727185	0.785005
1	0.417277	-0.121706	0.221443	0.483901	-0.967981	0.990609	0.956445	-0.734595	-0.513228	0.715114
2	0.417277	-0.024795	-0.915870	0.046227	-0.967981	-0.001389	-0.634713	-1.128292	-1.319983	0.698635
3	-0.989332	1.186592	-0.026263	-0.687811	-0.987981	-0.001389	-0.634713	-1.244503	-1.480517	0.009004
4	-0.507129	-1.526914	-1.377325	-0.260388	-0.011687	-0.993387	2.547802	-1.261991	-1.487285	-1.408991

3.4 Cleaned Dataset

```
In [13]: M # Save prepared dataset for further analysis
ss_data.to_csv('D212_Part1_Scaled_Data.csv', index = False)
readmis_values.to_csv('D212_Part1_ReAdmis_Data.csv', index = False)
```

4 Analysis

4.1 Output and Intermediate Calculations


```
In [17]: | # Utilize the graphical "elbow" to determine an appropriate number of clusters
    ks = range(1,10)
    silhouette_scores = []
    inertias = []
    for k in ks:
        model = KMeans(n_clusters = k)
        model.fit(df_scaled)
        inertias.append(model.inertia_)
    plt.plot(ks, inertias, '-o')
    plt.xlabel('Number of Clusters')
    plt.ylabel('Inertia')
    plt.xticks(ks)
    plt.show()
```



```
In [18]: # Analyze Silhoutte Scores for 2+ Clusters
    silhouette_scores = []
    for i in range(2, 11):
        model = KMeans(n_clusters = i)
        model.fit(df_scaled)
        score = silhouette_score(df_scaled, model.labels_, metric = 'euclidean')
        silhouette_scores.append(score)
    plt.plot(range(2,11), silhouette_scores, '-o')
    plt.xlabel('Number of Clusters')
    plt.ylabel('Silhouette Score')
    plt.xticks(range(2,11))
    plt.show()
```



```
In [19]: ▶ # The most accurate number of clusters is 2
                             kmeans = KMeans(n_clusters=2)
                             kmeans.fit(df_scaled)
                            silhouette_score = silhouette_score(df_scaled, kmeans.labels_, metric = 'euclidean')
In [20]: ₩ # Add the ReAdmis coLumn
                            df_scaled['readmis'] = df_readmis['ReAdmis'].eq('Yes').mul(1)
                             df_scaled.head()
        Out[20]:
                                  Children Age Income VitD_levels Doc_visits Full_meals_eaten vitD_supp Initial_days TotalCharge Additional_charges readmis
                              0 -0.507129 -0.024795 1.615914 0.583803 0.944847 -0.993387 -0.634713 -0.907310 -0.727185
                                                                                                                                                                                                                                                          0.765005
                              1 0.417277 -0.121708 0.221443 0.483901 -0.987981
                                                                                                                                                   0.990809 0.958445 -0.734595 -0.513228
                                                                                                                                                                                                                                                          0.715114
                              2 0.417277 -0.024795 -0.915870 0.046227 -0.967981 -0.001389 -0.634713 -1.128292 -1.319983
                                                                                                                                                                                                                                                          0.698635
                                                                                                                                                                                                                                                                                         0
                              3 -0.969332 1.186592 -0.026263 -0.687811 -0.967981 -0.001389 -0.634713 -1.244503 -1.460517
                                                                                                                                                                                                                                                          0.009004
                              4 -0.507129 -1.528914 -1.377325 -0.280388 -0.011887 -0.993387 2.547802 -1.261991 -1.487285
                                                                                                                                                                                                                                                        -1.408991
In [21]: M df_scaled['label'] = kmeans.labels_
                           df_scaled.columns
       dtype='object')
In [22]: M print("Characteristics of the model:")
                             print(kmeans.n_features_in_,' features')
                            print('Labels: ',set(df_scaled['label']))
print(len(df_scaled['label']),' observations')
print('Inertia value for KMean analysis: ', kmeans.inertia_)
print('Silhouette Score for KMean analysis: ', silhouette_score)
                             Characteristics of the model:
                             10 features
                             Labels: {0, 1}
                             10000 observations
                             Inertia value for KMean analysis: 81820.47911665741
Silhouette Score for KMean analysis: 0.18433995873995446
In [23]: # Compare ReAdmis rates by Cluster
                             cluster_0_readmis_rate = (df_scaled[df_scaled['label'] == 0]['readmis']).sum() / (df_scaled[df_scaled['label'] == 0]['readmis']).sum() / (df_scaled[df_scaled['label'] == 1]['readmis']).sum() / (df_scaled[df_scaled['label'] == 1]['readmis']).sum() / (df_scaled[df_scaled['label'] == 1]['readmis']).sum() / (df_scaled[df_scaled['label'] == 1]['readmis']).sum() / (df_scaled['label'] == 0]['readmis']).sum() / (df_scaled['label'] == 0]['readmis']
                            print("Cluster 0 readmission rate: ", cluster_0_readmis_rate)
print("Cluster 1 readmission rate: ", cluster_1_readmis_rate)
                             Cluster 0 readmission rate: 0.7338
                             Cluster 1 readmission rate: 0.0
```

5 Data Summary and Implications

5.1 Accuracy of Clustering Technique

The accuracy of the model corresponds to a silhouette score of \sim .18. This is a very low confidence of accuracy.

5.2 Results and Implications

With this specific set of variables, two clusters would be most accurate. Utilizing two primary clusters, it was found that patients in Cluster 0 were more likely to be readmitted.

Perhaps with more data points and further testing, a silhouette score closer to 1 and higher accuracy confidence can be produced. When this is achieved, the characteristics associated with high readmission can be recorded.

5.3 Limitations

A limitation of the current analysis is that k-means cannot utilize categorical variables. These other variables might be able to better cluster customers into categories.

5.4 Course of Action

A recommended course of action from the results of this analysis would be to:

- 1. Collect more data points
- 2. Test new dataset, comparing cluster sizes until high accuracy and a silhouette score close to 1 is achieved
- 3. Determine new clusters' readmission rates
- 4. Create a plan to target patients of cluster with high readmission rates to decrease readmission rates

Alternatively,

1. Reanalyse attributes to determine clustering with higher accuracy and a silhouette score closer to 1. This can be addressed by possibly converting categorical into numerical variables which would provide more insight concerning patients' characteristics.

6 Supporting Documentation

6.1 Video

This can be found within the attached file 'Panopto Recording'.

6.2 Sources

Nagar, A. (2020, January 26). K-means clustering-everything you need to know. Medium.

Retrieved February 28, 2023, from

https://medium.com/analytics-vidhya/k-means-clustering-everything-you-need-to-know-175dd01766d5

Western Governors University. (n.d.). D212 Data Mining II. Salt Lake City.