ENME 351

SP3 – Traditional/Laplace Methods

$$m\ddot{x} + c\dot{x} + kx = f$$

$$x(0) = x_0 \text{ and } \dot{x}(0) = v_0$$

Homogenous DEM

Use Traditional method, Laplace transform method, and Linear algebra method.

Consider only (a) undamped and (b) underdamped $\xi = 0.3$ and (c) overdamped $\xi = 1.2$) (select numerical values for system parameters (m,c,k), initial conditions to illustrate your analysis) (explain in detail, include computer simulation results).

Case 1		
f(t)=0		
$x(0)=x_0$		
$v(0)=v_0$		

Non-Homogenous DEM

Use Traditional method and Laplace transform method

Consider: (a) undamped $\xi = 0$; (b) underdamped $\xi = 0.3$ and (c) overdamped $\xi = 1.2$)

Select numerical values for system parameters (m,c,k), initial conditions, step value (F_o) , and forcing frequency (w) to illustrate your analysis) (explain in detail, include computer simulation results).

Case 2	Case 3
$f(t) = F_0$	$f(t) = F_0 \cos(wt)$
x(0)=0	x(0)=0
v(0)=0	v(0)=0