Локальная сеть Token Ring

MAU (Multistation Access Unit)

Особенности: Фиксированная задержка. З типа кадров: *кадр маркера, кадр данных и кадр аварийного завершения. Манчестерское кодирование.* Пассивный и активный монитор.

Параметры: Время удержания маркера (10 мс). Размер поля данных кадра: 4500 байт или 16 кбайт

Кадры сети Token Ring

Маркер, данные и кадр аварийного завершения

Маркерный кадр

T=1 – маркер; M=1 – активный монитор; P – приоритет; R –резервные. I=1/0 (промежуточный кадр/последний); E=1 – ошибка при приеме.

СтР	УД	УК	Адрес получателя	Адрес отправителя	Данные	к⊓к	KР	СК
1	1	1	6	6	< 4502	4	1	1

Кадр данных

УК - управление кадром, задает тип *кадра* (сообщение МАС-уровня или пользовательские данные LLC-уровня). СК- *состояние кадра* (индикатор распознавания адреса и бит копирования кадра)

Сеть FDDI – Fiber Distributed Data Interface

Основана на технологии Token Ring; 100 Мбит/с; ВОЛС, кольцо до 100 км – первичное и вторичное.

В штатном режиме данные передаются только по внешнему кольцу. При обрыве линии и выходе из строя рабочей станции осуществляется восстановление (сворачивание) кольца за счет использования внутренней линии связи.

Линейное кодирование 4В/5В, скорость модуляции 125 МГц.

В паузах передачи данных между портами непрерывно передается 5-битовая синхронизирующая комбинация 11111 – *Idle*.

Процедуры сворачивания кольца

Сети Fast Ethernet

Особенности: форматы кадров не совпадают с форматом классической Ethernet; межкадровый интервал равен 0,96 мкс (в классической сети Ethernet – 9,6 мкс), а длительность единичного элемента составляет 10 нс.

100BASE-TX - передача данных по двум витым парам кабеля 5-й категории; одна пара используется для передачи данных, а вторая – для приема (<100 м). Преобразование данных 4B/5B, линейные сигналы MLT-3.

100BASE-FX. Сегмент - два световода оптоволоконного кабеля (один для передачи другой для приема), в частности мультимодовое волокно диаметром 62,5/125 мкм, инфракрасный диапазон 1350 нм. Максимальная длина сегмента составляет 412 м при п/дуплексе и до 2-х км при полном дуплексе. Преобразование кода 4B/5B и способ линейного кодирования NRZI.

100BASE-T4. Передача данных по 4-м витым парам кабеля UTP категории 3 длиной до 100 метров. алгоритм преобразования кодов данных 8B/6T и способ линейного кодирования NRZI.

Сети Fast Ethernet. Линейное кодирование.

Код 4В/5В

Код 8В/10В

Исходный код	Результирующий код	Исходный код	Результирующий код	
0000	11110	1000	10010	
0001	01001	1001	10011	
0010	10100	1010	10110	
0011	10101	1011	10111	
0100	01010	1100	11010	
0101	01011	1101	11011	
0110	01110	1110	11100	
0111	01111	1111	11101	

Линейные сигналы MLT-3

Octet Value	Octet Bits	Current RD –	Current RD +
00	000 00000	100111 0100	011000 1011
01	000 00001	011101 0100	100010 1011
02	000 00010	101101 0100	010010 1011
03	000 00011	110001 1011	110001 0100
04	000 00100	110101 0100	001010 1011
05	000 00101	101001 1011	101001 0100
06	000 00110	011001 1011	011001 0100
07	000 00111	111000 1011	000111 0100
08	000 01000	111001 0100	000110 1011
09	000 01001	100101 1011	100101 0100
0A	000 01010	010101 1011	010101 0100
0B	000 01011	110100 1011	110100 0100
0C	000 01100	001101 1011	001101 0100
0D	000 01101	101100 1011	101100 0100
0E	000 01110	011100 1011	011100 0100
0F	000 01111	010111 0100	101000 1011
10	000 10000	011011 0100	100100 1011
11	000 10001	100011 1011	100011 0100
12	000 10010	010011 1011	010011 0100
13	000 10011	110010 1011	110010 0100
14	000 10100	001011 1011	001011 0100
15	000 10101	101010 1011	101010 0100
16	000 10110	011010 1011	011010 0100

Gigabit-Ethernet

Основу функционирования оборудования в 10GBASE-Первоначально стандарт Gigabit Ethernet был опубликован IEEE в 1998 г. как **IEEE 802.3z** и предполагал использование только оптоволоконного кабеля. Другое широко распространённое название 802.3z — **1000BASE-X**, где -X может означать -CX, -SX, -LX.

IEEE 802.3ab, (1999 г.), определяет стандарт гигабитной передачи данных по неэкранированной витой паре (UTP) категорий 5, 5е и 6, и известен как 1000BASE-T.

1000BASE-Т осуществляется полнодуплексная передача по всем четырем парам кабеля 7-й категории. 10-гигабитный поток расщепляется на четыре потока со скоростями 2,5 Гбит/с. Используется 10-уровневая амплитудно-импульсная модуляция, при этом один передаваемый единичный элемент отображает три бита. В итоге получается скорость передачи 833, 33 Мбод/с.

В 10Gbase для локальных сетей применяется логическое кодирование 64B/66B вместо 8B/10B, используемого в обычной гигабитной сети Ethernet.

Gigabit Ethernet

1000BASE-Т применяется восьмипозиционное сверточное кодирование (на восемь различных состояний). Символы передаются по всем четырем витым парам кабеля одновременно с использованием пятиуровневого кодирования РАМ-5 (-2; -1; 0; 1; 2).

10GBASE-T - полнодуплексная передача по всем четырем парам кабеля 7-й категории. 10-гигабитный поток расщепляется на 4 потока со скоростями 2,5 Гбит/с. Применяется 10-уровневая АИМ, один передаваемый е.э. отображает 3 бита. В итоге получается скорость модуляции 833, 33 Мбод/с.

10GBASE-LR- передача на расстояние до 10 км по одномодовому волокну; область использования – высокопроизводительные магистральные и корпоративные каналы.

10GBASE-ER – на дальности до 40 км по одномодовому волокну.

10GBASE-SR – передача на расстояние до 28 м по мультимодовому волокну, предполагается использовать для соединений коммутаторов друг с другом.

10GBASE-LX4, дальность связи до 300 м по мультимодовому волокну стандарта FDDI – для сетей в пределах одного здания (кодирование 64B/66B).

10Gigabit-Ethernet. Сетевой адаптер.

Стандартизированы разновидности сетей, в частности:

- 10Gbase-LR- передача на расстояние до 10 км по одномодовому волокну. Область использования высокопроизводительные магистральные и корпоративные каналы;
- 10Gbase-ER на дальности до 40 км по одномодовому волокну;
- 10Gbase-SR передача на расстояние до 28 м по мультимодовому волокну, предполагается использовать для соединений коммутаторов друг с другом;
- 10Gbase-LX4, дальность связи до 300 м по мультимодовому волокну стандарта FDDI для сетей в пределах одного здания.
- 10GBASE-X4 реализовано кодирование 8B/10B. В процессе передачи формируется 4 потока по 3,125 Гбит/с, которые передаются по одному волокну (1310 нм) с привлечением техники мультиплексирования длин волн WWDM. В случае 10GBASE-W на уровне MAC увеличена минимальная длина межкадровой паузы IPG.

