1 Operatori lineari

Sia \mathcal{V} uno spazio vettoriale sul campo \mathbb{K} . Un'applicazione lineare $f \colon \mathcal{V} \to \mathcal{V}$ è detta operatore lineare su \mathcal{V} o endomorfismo su \mathcal{V} . La matrice associata a \mathcal{V} nella base \mathcal{B} corrispondente all'operatore f è indicata con $M_{\mathcal{B}}(f)$ (abbreviazione di $M_{\mathcal{B},\mathcal{B}}(f)$).

Definizione 1 (matrici simili). Due matrici $M, N \in \mathbb{K}^{n,n}$ si dicono simili se esiste una matrice $A \in \mathbb{K}^{n,n}$ invertibile tale che

$$M = A \cdot N \cdot A^{-1}$$

Osservazione. La similitudine tra matrici è una relazione di equivalenza in $\mathbb{K}^{n,n}$, infatti soddisfa le proprietà di riflessività, simmetria e transitività.

- 1. Considerata la matrice $M\in\mathbb{K}^{n,n}$, essa è sempre simile a sé stessa, infatti $M={I_n}^{-1}\cdot M\cdot I_n.$
- 2. Si considerino due matrici $M, N \in \mathbb{K}^{n,n}$ simili. Si ha che

$$\begin{split} M &= A \cdot N \cdot A^{-1} \\ A^{-1} \cdot (M) \cdot A &= A^{-1} \cdot (A \cdot N \cdot A^{-1}) \cdot A \\ A^{-1} \cdot (M) \cdot A &= (A^{-1} \cdot A) \cdot N \cdot (A^{-1} \cdot A) \\ A^{-1} \cdot (M) \cdot A &= I_n^{-1} \cdot N \cdot I_n \\ A^{-1} \cdot (M) \cdot A &= N \end{split}$$

3. Siano $M, N, C \in \mathbb{K}^{n,n}$. Se $M = A \cdot N \cdot A^{-1}$ e $N = B \cdot C \cdot B^{-1}$, si ha $M = A \cdot N \cdot A^{-1} = A \cdot (B \cdot C \cdot B^{-1}) \cdot A^{-1} = (A \cdot B) \cdot C \cdot (B^{-1} \cdot A^{-1}) = (AB) \cdot C \cdot (AB)^{-1}$

Definizione 2 (operatori diagonalizzabili). Sia \mathcal{V} uno spazio vettoriale su \mathbb{K} con dim $\mathcal{V} = n$. Un operatore lineare $f \colon \mathcal{V} \to \mathcal{V}$ si dice diagonalizzabile se esiste una base $\mathcal{B} = (\mathbf{v_1}, \dots, \mathbf{v_n})$ tale che

$$M_{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & & O \\ & \ddots & \\ O & & \lambda_n \end{pmatrix}$$

per opportuni valori $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$. In tal caso, \mathcal{B} è una base diagonalizzante per f.

Osservazione. Rifacendosi alla nozione di matrice associata di f, si ha che

$$f(\mathbf{v_1}) = \lambda_1 \mathbf{v_1} + 0 \cdot \mathbf{v_2} + \dots + 0 \cdot \mathbf{v_n} = \lambda_1 \mathbf{v_1}$$

$$f(\mathbf{v_2}) = 0 \cdot \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \dots + 0 \cdot \mathbf{v_n} = \lambda_2 \mathbf{v_2}$$

$$\vdots$$

$$f(\mathbf{v_n}) = 0 \cdot \mathbf{v_1} + 0 \cdot \mathbf{v_2} + \dots + \lambda_n \mathbf{v_n} = \lambda_n \mathbf{v_n}$$

Da ciò si evince che se f è diagonalizzabile, allora $f(\mathbf{v_i}) = \lambda_i \mathbf{v_i}$ è multiplo di $\mathbf{v_i}$.

Nel porsi il problema di stabilire l'esistenza di basi diagonalizzanti un determinato operatore lineare, vengono introdotti i concetti di "autovalore" e "autovettore".

Definizione 3 (autovalore). Sia \mathcal{V} uno spazio vettoriale su \mathbb{K} e $f: \mathcal{V} \to \mathcal{V}$ un endomorfismo. Uno scalare $\lambda \in \mathbb{K}$ si dice *autovalore* per f se esiste un vettore $\mathbf{v} \in \mathcal{V}$ tale che $\mathbf{v} \neq \mathbf{0}_{\mathcal{V}}$ e $f(\mathbf{v}) = \lambda \mathbf{v}$. Il sottoinsieme di \mathbb{K} costituito dagli autovalori per f si dice *spettro* di f.

Definizione 4 (autovettore). Sia \mathcal{V} uno spazio vettoriale su \mathbb{K} e $f: \mathcal{V} \to \mathcal{V}$ un endomorfismo. Un vettore $\mathbf{v} \in \mathcal{V}$ si dice *autovettore* per f relativo all'autovalore λ se $f(\mathbf{v}) = \lambda \mathbf{v}$. L'insieme degli autovettori per f relativi a λ è detto *autospazio* di f relativo all'autovalore λ e corrisponde all'insieme

$$\mathcal{V}_{\lambda}(f) = \{ \mathbf{v} \in \mathcal{V} : f(\mathbf{v}) = \lambda \mathbf{v} \}$$

Osservazione. $\lambda \in \mathbb{K}$ è un autovalore se e solo se esiste un autovettore non nullo relativo a λ . Se λ è un autovalore per f, il vettore nullo $\mathbf{0}_{\mathcal{V}}$ è sempre autovettore relativo a f: infatti, $f(\mathbf{0}_{\mathcal{V}}) = \lambda \mathbf{0}_{\mathcal{V}} = \mathbf{0}_{\mathcal{V}}$ per qualunque $\lambda \in \mathbb{K}$.

Basandosi sui concetti appena definiti, è possibile formulare una proposizione che stabilisca un "criterio" di diagonalizzazione di un operatore lineare.

Proposizione 1 (criterio di diagonalizzazione). Sia V uno spazio vettoriale su \mathbb{K} e $f: V \to V$ un operatore lineare. Allora, f è diagonalizzabile se e solo se usiste una base \mathcal{B} di V costituita da autovettori per f.

Dimostrazione. La dimostrazione si basa sulle osservazioni finora compiute e sulle definizioni affrontate riguardo agli operatori lineari.

Proposizione 2. Sia $\lambda \in \mathbb{K}$ un autovalore per $f : \mathcal{V} \to \mathcal{V}$. Allora, $\mathcal{V}_{\lambda}(f)$ è un sottospazio vettoriale di \mathcal{V} .

Dimostrazione. Verifichiamo che \mathcal{V}_{λ} soddisfi le proprietà dei sottospazi vettoriali.

- 1. $\mathbf{0}_{\mathcal{V}} \in \mathcal{V}_{\lambda}$, come osservato precedentemente.
- 2. Dati $\mathbf{v_1}, \mathbf{v_2} \in \mathcal{V}_{\lambda}$, si ha che

$$f(\mathbf{v_1} + \mathbf{v_2}) = f(\mathbf{v_1}) + f(\mathbf{v_2}) = \lambda \mathbf{v_1} + \lambda \mathbf{v_2} = \lambda(\mathbf{v_1} + \mathbf{v_2})$$

da cui si deduce che $\mathbf{v_1} + \mathbf{v_2} \in \mathcal{V}_{\lambda}(f)$.

3. Dati $k \in \mathbb{K}$ e $\mathbf{v} \in \mathcal{V}_{\lambda}$, si ha che

$$f(k\mathbf{v}) = k \cdot f(\mathbf{v}) = k \cdot \lambda \mathbf{v} = \lambda \cdot k\mathbf{v}$$

da cui si deduce che $k\mathbf{v} \in \mathcal{V}_{\lambda}(f)$.

Essendo soddisfatte le proprietà dei sottospazi vettoriali, $\mathcal{V}_{\lambda}(f)$ è uno sottospazio vettoriale di \mathcal{V} .

Definizione 5 (molteplicità geometrica). Dato $\lambda \in \mathbb{K}$, si dice *molteplicità* geometrica dell'autovalore λ la dimensione di $\mathcal{V}_{\lambda}(f)$. Viene definito il simbolo

$$\mathcal{M}_g(\lambda) := \dim \mathcal{V}_{\lambda}(f)$$

Osservazione. Essendo $\mathcal{V}_{\lambda}(f)$ costituito da almeno un vettore $\mathbf{v} \neq \mathbf{0}_{\mathcal{V}}$, si ha che per ogni autovalore λ vale

$$\mathcal{M}_{q}(\lambda) \geq 1.$$

Il prossimo problema che viene affrontato è relativo agli autovalori. Dato un endomorfismo, è possibile calcolarne tutti gli autovalori relativi?

Sia $\mathcal{B}'=(\mathbf{b_1},\ldots,\mathbf{b_n})$ una base dello spazio vettoriale \mathcal{V} . Un vettore $\mathbf{v}\in\mathcal{V}$ può essere espresso come combinazione lineare dei vettori di \mathcal{B}' , ovvero

$$\mathbf{v} = a_1 \mathbf{b_1} + \dots + a_n \mathbf{b_n}$$

Uno scalare $\lambda \in \mathbb{K}$ è autovalore per f se $f(\mathbf{v}) = \lambda(a_1\mathbf{b_1} + \cdots + a_n\mathbf{b_n})$. Riprendendo la nozione di matrice associata e autovalore, si ha quindi

$$\lambda \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = M_{\mathcal{B}'}(f) \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

Ricordando che $M \cdot I_n = M$, l'espressione appena formulata è equivalente a

$$(M_{\mathcal{B}'}(f) - \lambda I_n) \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Si può affermare che λ è autovalore per f se e solo se il sistema lineare omogeneo $(M_{\mathcal{B}'}(f) - \lambda I_n)\mathbf{X} = \mathbf{0}$ ammette una soluzione non nulla. Per Rouché-Capelli, si ha che lo spazio delle soluzioni ha dimensione $n - \rho(M_{\mathcal{B}'}(f) - \lambda I_n)$, con $n = \dim \mathcal{V}$ corrispondente al numero delle incognite del sistema. Ne consegue che λ è autovalore per f se e solo se

$$n - \rho(M_{\mathcal{B}'}(f) - \lambda I_n) \ge 1 \implies \rho(M_{\mathcal{B}'}(f) - \lambda I_n) \le n - 1$$

che equivale a dire che il rango di $M_{\mathcal{B}'}(f) - \lambda I_n$ non è massimo, condizione verificata per $\det(M_{\mathcal{B}'}(f) - \lambda I_n) = \mathbf{0}$.

Definizione 6 (polinomio caratteristico). Sia f un endomorfismo sullo spazio vettoriale \mathcal{V} avente una base \mathcal{B}' . Il polinomio caratteristico di f corrisponde a

$$p(\lambda) = \det(M_{\mathcal{B}'}(f) - \lambda I_n)$$

Osservazione. Cosa accade a $p(\lambda)$ al variare della scelta della base? $p(\lambda)$ è effettivamente un polinomio?

1. Basi diagonalizzanti uno stesso operatore lineare sono simili tra loro, ovvero, date le basi $\mathcal{B}', \mathcal{B}''$ dello spazio vettoriale \mathcal{V} e le rispettive matrici associate $M_{\mathcal{B}'}(f), M_{\mathcal{B}''}(f)$, vale $M_{\mathcal{B}''}(f) = A \cdot M_{\mathcal{B}'}(f) \cdot A^{-1}$, con $A \in \mathbb{K}^{n,n}$ invertibile. È possibile affermare che

$$\det(M_{\mathcal{B}''}(f) - \lambda I_n) = \det(A \cdot M_{\mathcal{B}'}(f) \cdot A^{-1} - \lambda A \cdot I_n \cdot A^{-1}) = \det(A \cdot (M_{\mathcal{B}'}(f) - \lambda I_n) \cdot A^{-1})$$

Per il teorema di Binet si ha che

$$\det A \cdot (M_{\mathcal{B}'}(f) - \lambda I_n) \cdot A^{-1} = \det A \cdot \det(M_{\mathcal{B}'}(f) - \lambda I_n) \cdot \det A^{-1} = \det(M_{\mathcal{B}'}(f) - \lambda I_n)$$

essendo det $A^{-1}=\frac{1}{\det A}.$ Ne consegue che, qualunque sia la base scelta, $p(\lambda)$ non varia.

2. $p(\lambda)$ è un polinomio di grado n per la regola di Laplace:

$$p(\lambda) = \det(M_{\mathcal{B}'}(f) - \lambda I_n)$$

$$= \det\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \\ a_{n1} & \dots & a_{nn} \end{pmatrix} - \lambda \begin{pmatrix} 1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & 1 \end{pmatrix} \end{pmatrix}$$

$$= \det\begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & & \ddots & \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

Quindi, è dimostrato che λ è autovalore per f se e solo se λ è radice del polinomio caratteristico $p(\lambda)$.

Esempio 1 (calcolo di autovalori dato un endomorfismo). Sia

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (x,x+y)$

si determinino gli autovalori per f.

Soluzione. Si consideri la base banonica $\mathcal{C}_{\mathbb{R}^2}$. La matrice associata a f nella base $\mathcal{C}_{\mathbb{R}^2}$ corrisponde a $M_{\mathcal{C}_{\mathbb{R}^2}}(f) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Pertanto, si ha che

$$p(\lambda) = \det(M_{\mathcal{C}_{\mathbb{R}^2}}(f) - \lambda I_2) = \det\begin{pmatrix} 1 - \lambda & 0\\ 1 & 1 - \lambda \end{pmatrix} = (1 - \lambda)^2$$

e quindi 1 è radice di molteplicità 2 di $p(\lambda)$.

Promemoria. Dato un polinomio avente radice x_0 , essa ha molteplicità m se

$$p(x) = (x - x_0)^m \cdot q(x)$$

con q(x) tale che $q(x_0) \neq 0$.

Definizione 7 (molteplicità algebrica). Dato $\lambda \in \mathbb{K}$, si dice molteplicità algebrica dell'autovalore λ – indicata con $\mathcal{M}_a(\lambda)$ – la sua molteplicità come radice del polinomio caratteristico $p(\lambda)$.

Teorema 1 (13.12 SERNESI). Sia f un endomorfismo e λ un autovalore per f. Allora, vale la relazione

$$1 \leq \mathcal{M}_q(\lambda) \leq \mathcal{M}_a(\lambda)$$

Dimostrazione. Si scomponga la disequazione in casi più semplicemente analizzabili.

- 1. $1 \leq \mathcal{M}_q(\lambda)$ è vero per definizione.
- 2. Sia $d := \mathcal{M}_g(\lambda)$ e sia $\mathcal{B} = (\mathbf{v_1}, \dots, \mathbf{v_d})$ una base di \mathcal{V}_{λ} . Completandola a una base di \mathcal{V} ovviamente, $(n := \dim \mathcal{V}) \geq d$ si ottiene

$$\mathcal{B}' = (\mathbf{v_1}, \dots, \mathbf{v_d}, \mathbf{v_{d+1}}, \dots, \mathbf{v_n})$$

la cui matrice associata per f corrisponde a

$$M_{\mathcal{B}'}(f) = \begin{pmatrix} M_{\mathcal{B}}(f) & A \\ O^{n-d,d} & B \end{pmatrix}, \quad A \in \mathbb{K}^{d,n-d}, B \in \mathbb{K}^{n-d,n-d}$$

Sia t un autovalore per f con base $\mathcal{B}'.$ Il polinomio caratteristico corrisponde a

$$p(t) = \det(M_{\mathcal{B}'}(f) - tI_n)$$

Applicando Laplace rispetto alle colonne di $M_{\mathcal{B}'}(f)$, si ottiene

$$p(t) = (\lambda - t)^d \cdot \det(B)$$

Pertanto, p(t) ha molteplicità debolmente maggiore di d. Ne consegue che $(\mathcal{M}_q(\lambda) = d) \leq \mathcal{M}_a(\lambda)$.

Riassumendo Dato l'endomorfismo f, esiste una base \mathcal{B} di \mathcal{V} tale che $M_{\mathcal{B}}(f)$ sia matrice diagonale? Se sì, quali sono le condizioni perché ciò sia possibile?

- Una base \mathcal{B} che soddisfa tale proprietà è formata da autovettori per f, cioè da vettori $\mathbf{v_i}$ tali che $f(\mathbf{v_i}) = \lambda_i \mathbf{v_i}$.
- Un numero λ tale che $\mathbf{v} \in \mathcal{V}, \mathbf{v} \neq \mathbf{0}_{\mathcal{V}}$ con $f(\mathbf{v}) = \lambda \mathbf{v}$ si dice *autovalore* per f.
- $\mathcal{V}_{\lambda} = \{ \mathbf{v} \in \mathcal{V} : f(\mathbf{v}) = \lambda \mathbf{v} \}$ è un sottospazio vettoriale di \mathcal{V} e

$$\mathcal{M}_{a}(\lambda) := \dim \mathcal{V}_{\lambda} \geq 1$$

è la sua molteplicità geometrica.

• λ è radice del polinomio caratteristico

$$p(t) = \det(A - tI_n)$$

dove $A = M_{B'}(()f)$ e la sua molteplicità è detta molteplicità algebrica, indicata con $\mathcal{M}_a(\lambda)$.

- La disuguaglianza $1 \leq \mathcal{M}_g(\lambda) \leq \mathcal{M}_a(\lambda)$ è sempre valida.

Affrontiamo ora il problema di caratterizzare quando f è diagonalizzabile.

- 1. Punto di partenza: f è diagonalizzabile se e solo se esiste una base $(\mathbf{v_1}, \dots, \mathbf{v_n})$ di \mathcal{V} formata da autovettori.
- 2. Ciò equivale a dire che esistono n autovettori per f linearmente indipendenti. (1 \iff 2)
- 3. Dati tutti gli autovalori per f, la somma dei loro autospazi deve essere debolmente maggiore di n, ovvero

$$\sum_{\lambda} \dim \mathcal{V}_{\lambda} \ge n$$

con λ autovalore per f. (2 \Longrightarrow 3)

Si ottiene quindi la disuguaglianza

$$n \le \left(\sum_{\lambda} \dim \mathcal{V}_{\lambda} = \sum_{\lambda} \mathcal{M}_{g}(\lambda)\right) \le \sum_{\lambda} \mathcal{M}_{a}(\lambda) \le n$$

L'ultima disuguaglianza è data dal fatto che la somma delle molteplicità delle radici di un polinomio di grado n è alpiù n (e.g.: $x^2 + 1 = 0$ non ha radici in \mathbb{R} , ma ha due radici in \mathbb{C}). Quindi, l'unica condizione per cui la catena di disuguaglianze risulta vera è che tutti i valori siano uguali!

Conseguenze

1.
$$\begin{cases} \sum_{\lambda} \mathcal{M}_g(\lambda) = \sum_{\lambda} \mathcal{M}_a(\lambda) \\ 1 \leq \mathcal{M}_g(\lambda) \leq \mathcal{M}_a(\lambda) \end{cases} \implies \mathcal{M}_g(\lambda) = \mathcal{M}_a(\lambda) \ \forall_{\lambda} \text{ autovalore per } f.$$

2. $\sum_{\lambda} \mathcal{M}_a(\lambda) = n$ implica che il polinomio caratteristico $p(\lambda)$ ha tutte le radici nel campo \mathbb{K} .

Pertanto, condizione necessaria affinché f sia diagonalizzabile è

- 1. $p(\lambda)$ ha tutte le sue radici in \mathbb{K} .
- 2. $\mathcal{M}_q(\lambda) = \mathcal{M}_a(\lambda)$ per ogni autovalore λ .

Per verificare che queste condizioni sono anche sufficienti, dimostriamo:

Lemma (SERNESI 13.7). Autovettori relativi ad autovalori distinti sono linearmente indipendenti.

Dimostrazione. Si vuole dimostrare che se $\lambda_1, \ldots, \lambda_k$ sono autovalori a due a due distinti (non ve ne è uno uguale ad un altro) e $\mathbf{v_i} \in \mathcal{V}_{\lambda_i} \setminus \{0\}$ per ogni i=1..k allora $\mathbf{v_1}, \ldots, \mathbf{v_k}$ sono linearmente indipendenti. Per induzione su k. Per k=1 l'affermazione è banalmente vera, infatti un singolo autovettore è sicuramente linearmente indipendente. Supposta la tesi vera per k, dimostriamo che è vera anche per k+1. Dalla combinazione lineare

$$c_1\mathbf{v_1} + \dots + c_k\mathbf{v_k} + c_{k+1}\mathbf{v_{k+1}} = \mathbf{0}$$
 (*)

dovrà risultare che i vettori sono linearmente indipendenti. Applicando l'endomorfismo f ad entrambi i membri dell'uguaglianza si ottiene

$$f(c_1\mathbf{v_1} + \dots + c_k\mathbf{v_k} + c_{k+1}\mathbf{v_{k+1}}) = f(\mathbf{0}) = \mathbf{0}$$

in quanto $f(\mathbf{0}) = \lambda \mathbf{0} = \mathbf{0}$. Essendo f lineare, è possibile riscrivere l'equazione nella forma

$$c_1 f(\mathbf{v_1}) + \dots + c_k f(\mathbf{v_k}) + c_{k+1} f(\mathbf{v_{k+1}}) = \mathbf{0}$$

ed essendo f un endomorfismo si ha

$$c_1\lambda_1\mathbf{v_1} + \dots + c_k\lambda_k\mathbf{v_k} + c_{k+1}\lambda_{k+1}\mathbf{v_{k+1}} = \mathbf{0}$$
 (**)

Si moltiplichi (*) per λ_{k+1} :

$$c_1\lambda_{k+1}\mathbf{v_1} + \dots + c_k\lambda_{k+1}\mathbf{v_k} + c_{k+1}\lambda_{k+1}\mathbf{v_{k+1}} = \mathbf{0}$$
 (***)

sottraendo (***) da (**) si ottiene

$$c_1(\lambda_1 - \lambda_{k+1})\mathbf{v_1} + \dots + c_k(\lambda_k - \lambda_{k+1})\mathbf{v_k} = \mathbf{0}$$

 $(c_{k+1}\mathbf{v_{k+1}}$ si annulla). Per ipotesi induttiva, essendo la tesi supposta vera per $k, \mathbf{v_1}, \dots, \mathbf{v_k}$ sono linearmente indipendenti

$$\begin{cases} c_1(\lambda_1 - \lambda_{k+1}) = 0 \\ \vdots \\ c_k(\lambda_k - \lambda_{k+1}) = 0 \end{cases}$$

Essendo gli autovalori distinti tra loro per ipotesi c_1, \ldots, c_k sono uguali a 0; ciò implica (da (*)) che $c_{k+1}\mathbf{v_{k+1}} = \mathbf{0}$, quindi $c_{k+1} = 0$. Per cui, $\mathbf{v_1}, \ldots, \mathbf{v_{k+1}}$ sono linearmente indipendenti.

Supponiamo (soddisfatte) ora:

- 1. $p(\lambda)$ ha tutte le radici nel campo \mathbb{K} .
- 2. $\mathcal{M}_a(\lambda) = \mathcal{M}_q(\lambda)$ per ogni autovalore λ .

Da 1 segue che $\sum_{\lambda} \mathcal{M}_a(\lambda) = n$. Per cui, da 2 segue che anche $\sum_{\lambda} \mathcal{M}_g(\lambda) = n$. Siano $\lambda_1, \ldots, \lambda_k$ gli per autovalori f e siano $\mathcal{B}_i = (\mathbf{v_1}^{(i)}, \ldots, \mathbf{v_{\mathcal{M}_g(\lambda_i)}}^{(i)})$ per ogni i = 1..k basi degli autospazi \mathcal{V}_{λ_i} . Sia \mathcal{B} l'insieme-unione di \mathcal{B}_i per i da 1 a k

$$\mathcal{B} = \bigcup_{i=1}^{k} \mathcal{B}_i = (\underbrace{\mathbf{v_1}^{(1)}, \dots, \mathbf{v_{\mathcal{M_g}(\lambda_1)}}^{(1)}}_{\mathcal{M_g(\lambda_1)} \text{vettori}}, \dots, \underbrace{\mathbf{v_1}^{(k)}, \dots, \mathbf{v_{\mathcal{M_g}(\lambda_k)}}^{(k)}}_{\mathcal{M_g(\lambda_k)} \text{vettori}})$$

 \mathcal{B} è un insieme di autovettori. Quanti sono questi autovettori? In \mathcal{B} ci sono $\sum_{\lambda} \mathcal{M}_g(\lambda) = n$ autovettori. Verifichiamo che sono linearmente indipendenti. Ciò vuol dire che

$$c_1{}^{(1)}\mathbf{v_1}{}^{(1)} + \dots + c_{\mathcal{M}_q(\lambda_1)}{}^{(1)}\mathbf{v}_{\mathcal{M}_\mathbf{g}(\lambda_1)}{}^{(1)} + \dots + c_1{}^{(k)}\mathbf{v_1}{}^{(k)} + \dots + c_{\mathcal{M}_q(\lambda_k)}{}^{(k)}\mathbf{v}_{\mathcal{M}_\mathbf{g}(\lambda_k)}{}^{(k)} = \mathbf{0}$$

Vogliamo verificare che $c_1^{(1)}=\cdots=c_{\mathcal{M}_g(\lambda_1)}^{(1)}=\cdots=c_1^{(k)}=\cdots=c_{\mathcal{M}_g(\lambda_k)}^{(k)}=0$. Prese distintamente le combinazioni lineari di autospazi relativi ad autovalori distinti, esse possono essere considerate come autovettori a coefficienti uguali a 1. Per il Lemma, l'unica possibilità è che per ogni i=1..k si abbia $c_1^{(1)}=\cdots=c_{\mathcal{M}_g(\lambda_i)}^{(i)}=0$. Pertanto B è una base di autovettori e f è diagonalizzabile. [SERNESI 13.13]

Abbiamo dimostrato:

Teorema 2 (Criterio di diagonalizzabilità). Dato $f: \mathcal{V} \to \mathcal{V}$ lineare, condizione necessaria e sufficiente affinché f sia diagonalizzabile è

- 1. il polinomio caratteristico $p(\lambda) = \det(A \lambda I_n)$ dove $A = M_{\mathcal{B}}(f)$ per qualche base \mathcal{B} di \mathcal{V} ha tutte le radici nel campo \mathbb{K} .
- 2. $\mathcal{M}_a(\lambda) = \mathcal{M}_g(\lambda)$ per ogni autovalore λ .