Algorithms & Data Structures I: 1 Introduction

Contact

Mikhail Anukhin

email: anukhinm@gmail.com

telegram: @clumpytuna

Today's Topics

- Why algorithms are important
- Course general information
 - Course program
 - Skills you will learn
 - Assessment: criterias, formats
 - Collaboration policy
 - Supporting Materials
 - Useful links: chats, course page, etc.
- How to measure efficiency of an algorithm?
 - Big O-notation: definition, examples.
 - Master Theorem
- Binary search. Time complexity

Why Algorithms are important

- Important for all other branches of computer science
- Plays a key role in modern technological innovation
- Provides novel "lens" on processes outside of computer science and technology
- Challenging (i.e., good for the brain!)
- Let you go through the job interview

About the course program

- Unit 1: Introduction. Algorithms vocabulary
 - o Introduction. Big-O notation. Master Theorem. Binary Search
 - Linked Lists. Stack implementation using a linked list
- Unit 2: Sorting
 - Sorting. Lower bound for comparisons in the sort. Insertion sort. Bubble Sort. Time complexity & space complexity
 - Quick Sort
 - Merge Sort
 - Binary Heap. Sift Up, Sift Down, Insert, GetMin, ExtractMin,
 DecreaseKey. Heap Sort.

About the course program

- Unit 3: Binary Trees
 - Binary Search Trees. Insert & Delete & BST Sort
 - Balanced Binary search Trees. AVL Tree. Height of AVL Tree on n nodes.
- Unit 4: Hashing
 - Hash Table Chaining. Insert & Delete & Search
 - Hash Table Open Addressing. Insert & Delete & Search
 - Bloom Filter. Insert & Search. Applications. Time complexity & space complexity

Skills you will learn

- Become a better programmer
- Sharpen your mathematical and analytical skills
- Start "thinking algorithmically"
- Prepare for technical interviews

Supporting materials

Books:

- oKleinberg/Tardos, *Algorithm Design*, 2005
- o Dasgupta/Papadimitriou/Vazirani, Algorithms, 2006.
- oCormen/Leiserson/Rivest/Stein, Introduction to
- Algorithms, 2009 (3rd edition).

oMehlhorn/Sanders, *Data Structures and Algorithms*:

The Basic Toolbox, 2008.

Supporting materials

• GitHub page of the course: https://github.com/clumpytuna/data-structures-and-algorithms-l-2021

- oprogram
- ohomework & deadlines
- olectures records & notes & slides
- Chats & Channels: Feel free to ask your questions!
 - ochat: https://t.me/joinchat/Hqx22qg99bl-qu84
 - ochannel: https://t.me/dsa2021

Assessment

- •11 points in total:
 - opoints for work during the semester: hw, contests, quizzes
 - og points for final exam
 - on bonus point for lecture and workshop activity
- •homework:
 - oevery 1-2 week a contest on Y.Contest
 - one random problem from every contest is chosen for code review. You get feedback about your code, and can have 1 submission to improve it.
- •contests:
 - OAfter every unit you write a 1.5-2 hours contest based on unit content
- •quizzes:
 - oIntroduction unit + Sorting unit quiz
 - oFinal quiz

Collaboration Policy

- The goal of homework is to give you practice in mastering the course material.
- You must write up each problem solution by yourself without assistance
- Code you submit must also be written by yourself
- No other student may use your solutions
- Plagiarism and other anti-intellectual behavior cannot be tolerated in any academic environment that prides itself on individual accomplishment
- Read more on the course GitHub page

How to measure efficiency of an algorithm? $_{2}$, γ_{1}

Big O-notation: Big O

Let f, o): N -> W, then f= O(0) [f(w) = D(o)(n))], if] en such that 4 new, h>(m)(E)c. o)(h)

Mikhail Anukhin

Big O-notation: Big

Big O-notation: Theta bound

olef Let f, y & W -> /W, then

$$f = 0$$

Mikhail Anukhin

Big O-notation: Theta

$$f_1(x) = x^2$$

$$f_2(x) = 1.1x^2 + (x^{1.9} + 10)\sin(10x + 1.5) + 30$$

Big O-notation: Theta

Det Let f, a: W > W, Then 1- (5), it 3 (1, C2, 6 N) 3 (No N). $guch + holt: \forall hold:$ $C_1 \cdot g(h) \leq f(u) \leq C_2 \cdot g(h)$

Big O-notation: Omega lower
Def:
$$f,g: N \rightarrow M$$
, then bound
 $f=\Omega(g)$, $if \exists c \in M, N \in M, Such$
that $f(n)(\neg)C \cdot Oj(n)$
 $N.B f=\Omega(0) = 0$

Big O-notation: Omega

Binary Search Idea A = C

Binary Search Pseudocode


```
function binary_search(A, n, T) is
    L := 0
    R := n - 1
    while L \leq R do
   m := floor((L + R) / 2)
if A[m] < T then</pre>
            L := m + 1
        else if A[m] > T then
            R := m - 1
        else:
             return m
    return unsuccessful
                                 (109h · O(1) = 0 (109h)
```

Your questions!

```
function binary_search(A, n, T) is
   L := 0
   R := n - 1
   while L \leq R do
       m := floor((L + R) / 2)
        if A[m] < T then
            L := m + 1
        else if A[m] > T then
            R := m - 1
        else:
            return m
    return unsuccessful
```