Санкт-Петербургский Государственный Университет» Кафедра Системного Программирования

Сулягина Анастасия Александровна

Оптимизация предсказания оттока абонентов оператора сотовой связи

Курсовая работа

Научный руководитель:

ведущий разработчик ООО «НМТ» Константин Невоструев

Санкт Петербург, 2015

Содержание

Введение	3
Предметная область	4
Машинное обучение	4
Оценка эффективности	4
Обзор	5
Постановка задачи	7
Цель	7
Инструменты	7
Обучение	8
Построение модели	8
Настройка классификаторов	9
Группировка данных	9
Результаты	10
Классификация	10
Улучшение результатов	11
Группировка	11
Итоги	12
Список питературы	13

Введение

Каждый год провайдеры телекоммуникационных услуг терпят убытки изза оттока абонентов. Отрасль очень конкурентна, компании регулярно выдвигают все более выгодные предложения, и клиенты, предпочитающие высокое качество за низкую цену, переходят от одного оператора к другому. Годовой отток клиентов телекоммуникационных компаний в среднем составляет 25%, что немало.

Так как привлечение новых клиентов в несколько раз дороже, чем удержание старых, предотвращение оттока абонентов особо привлекательно для изучения. Точные предсказания оттока абонентов позволяют менеджерам телекоммуникационных компаний применять стратегии удержания клиентов, экономя большое количество средств.

С развитием методов машинного обучения точность прогнозов значительно возросла, что сделало возможным для компаний внедрять предсказывающие системы. Имея точные предсказания, оператор может своевременно предпринять необходимые шаги для удержания абонента: предложить лучший тариф, отправить спецпредложение или бонусы.

Для предсказания оттока надо решить задачу бинарной классификации абонентов, то есть разделения их на две группы: останутся они или уйдут. Наиболее хорошие результаты на данный момент показывают такие методы машинного обучения как градиентный бустинг, нейронные сети, случайный лес решающих деревьев.

В представленной работе описан процесс разработки классификатора, предсказывающего отток абонентов крупного российского мобильного оператора, также приведено его сравнение с другими существующими решениями и оценка его точности.

Предметная область

Машинное обучение

Классификация - разбиение множества объектов на несколько классов

Классификатор - модель машинного обучения, выполняющая задачу классификации

Выборка - набор данных с определенными классами

Ансамбль классификаторов - сложная модель машинного обучения, полученная комбинированием различных классификаторов

Оценка эффективности

Положительный класс - уходящие абоненты

Отрицательный класс - остающиеся абоненты

- 1. **True positive (TP)** верно определенные классификатором в положительный класс
- 2. **True negative (TN)** верно определенные классификатором в отрицательный класс
- 3. **False positive (FP)** неверно определенные классификатором в положительный класс
- 4. **False negative (FN)** неверно определенные классификатором в отрицательный класс

Precision - отношение (TP / (TP + FP))

Recall - отношение (TP / (TP + FN))

ROC кривая - кривая, показывающая отношение TP к FP

AUC - площадь под ROC кривой над прямой случайного угадывания (FP = TP)

Accuracy - процент верных предсказаний

Обзор

Предсказание оттока абонентов - актуальная задача, поэтому существует множество работ на эту тему. Для выбора наиболее перспективных моделей машинного обучения и оценки существующих решений мной были рассмотрены следующие работы:

Автор	Использованные решения
V. Umayaparvathi, K. Iyakutti [1]	Деревья решений, Нейронные сети
Mozer MC, Wolniewicz R [2]	Логистическая регрессия,
	Нейронные сети
Chih-Ping Wei, I-Tang Chiu [3]	Деревья решений
Hung, Shin-Yuan and Yen [4]	Нейронные сети, Деревья решений,
	K-Means – кластеризация
М.Корыстов [5]	Градиентный бустинг, ансамбли классификаторов

Работа Максима Корыстова «Применение методов машинного обучения для предсказания поведения абонентов оператора сотовой связи» заслуживает особого внимания, так как именно ее результаты необходимо улучшить.

Лучший результат прошлого года

	precision	recall	AUC
Ансамбль классификаторов	0.75	0.66	0.90

Данные

Работа была проведена с данными, предоставленными мобильным оператором «Мегафон». Были выгружены данные на 50000 абонентов в промежутке 15 месяцев, содержащие следующую информацию:

- количество минут входящих вызовов
- количество минут исходящих вызовов на городские номера в пределах области подключения
- количество минут исходящих вызовов на мобильные номера прочих мобильных операторов в за пределы области подключения
- количество минут исходящих вызовов на мобильные номера прочих мобильных операторов в пределах области подключения
- количество минут исходящих вызовов на данного оператора за пределы области подключения
- количество минут исходящих вызовов на данного оператора в пределах области подключения
- количество минут исходящих вызовов по междугородней связи
- количество минут исходящих вызовов по международной связи
- количество мегабайт потребленного интернет трафика
- количество отправленных СМС
- некоторые персональные данные

Данные для каждого пользователя были преобразованы во временные ряды по 3 месяца, были введены новые признаки, показывающие динамику изменения предпочтений пользователя.

Постановка задачи

Цель

Цель данной курсовой работы - повышения качества предсказаний классификатора по сравнению с предыдущей работой [5]. Для достижения данной цели необходимо решить следующие задачи:

- Провести анализ существующих решений
- Разработать классификатор, предсказывающий уход абонентов на основе выгруженных данных
- Настроить классификатор для улучшения результата
- Попробовать различные способы группировки данных
- Оценить точность разработанных моделей

Инструменты

- Язык программирования Python
- Библиотеки
 - scikit learn и xgboost для построения и настройки классификаторов
 - theano и lasagne для написания нейронной сети
 - pandas для работы с данными

Обучение

Построение модели

Классификаторы, реализованные в процессе работы

1. Решающее дерево

Дерево, в листах которого находятся атрибуты, а в остальных узлах признаки, по которым классифицируется объект

2. Логистическая регрессия

Простейшая модель машинного обучения, считает линейную функцию от признаков в класс объекта

3. Случайный лес решающих деревьев

Ансамбль, состоящий из решающих деревьев, в узлах которых находятся случайные признаки. Предсказания деревьев комбинируются для получения более точного результата

4. Метод к ближайших соседей

Модель машинного обучения, в которой класс объекта определяется голосованием к ближайших к нему объектов тренироврчной выборки

5. Градиентный бустинг

Ансамбль, состоящий из решающих деревьев, в котором каждое следующее дерево добавляется с подсчетом градиента таким образом, чтобы скорректировать ошибку уже существующего ансамбля.

6. Нейронная сеть

Модель машинного обучения, состоящая из соединенных и взаимодействующих перцептронов - искусственных нейронов. Перцептроны передают друг другу сигналы и обучаются на их основе

Для сравнения были выбраны градиентный бустинг и нейронная сеть, также были реализованы ансамбли классификаторов

1. Ансамбль на основе случайных лесов и градиентного бустинга, объединенных логистической регрессией

Каждая модель обучается на части данных, делает свое предсказание, предсказания усредняются и на них обучается логистическая регрессия.

2. Ансамбль на основе случайного леса и метода к ближайших соседей

Случайный лес обучается на исходных данных и передает свою конфигурацию в метод k ближайших соседей

Была проведена настройка выбранных классификаторов для улучшения результатов и кросс-валидация для избежания переобучения.

Настройка классификаторов

- 1. **Градиентный бустинг** были настроены такие параметры как количество деревьев, количество признаков для обучения и вероятностный порог
- 2. **Нейронные сети** настроены такие параметры как количество слоев, их порядок, для каждого слоя был определен тип и размер.

3. Ансамбли

- 3.1. Основанный на деревьях решений настроены такие параметры как тип взаимодействующих классификаторов, их количество, для каждого было определено количество деревьев, функция подсчета потерь.
- 3.2. Основанный на методе ближайших соседей на основе случайного леса настроено количество соседей и количество деревьев в лесе

Группировка данных

Пользователи были сгруппированы по возрасту, длительности пользования оператором, предпочитаемому типу связи, юридическое или физическое лицо. Наиболее хорошие результаты получились для пользователей следующих групп:

- 40+ лет
- юридические лица
- < двух лет с оператором
- пользующиеся интернетом

Имея такие результаты и большее количество данных, имело бы смысл реализовать классификатор, обучающийся на данных группах абонентов отдельно.

Результаты

Классификация

Сравнение классификаторов было проведено при помощи представленных в таблице метрик и на основании графика ROC. Для данной задачи наиболее важные метрики - precision, recall и AUC, так как они в большей степени, чем ассигасу учитывают правильность отнесения объекта к положительному классу, в то время как доминирующий в выборке класс - отрицательный.

Модель	precision	recall	AUC	accuracy
Ансамбль*	0.75	0.72	0.92	0.88
Градиентный бустинг(XGB)	0.74	0.69	0.92	0.87
Нейронная сеть	0.70	0.62	0.89	0.86
Ближайшие соседи + случайный лес	0.74	0.60	0.86	0.87

График ROC иллюстрирует метрику AUC, видно, что лучшие результаты показывает ансамбль и XGBoost

^{*} Cocmoum из двух RandomForest, двух ExtraTrees с разными функциями качества и одного бустинга

Улучшение результатов

С помощью ансамбля классификаторов, состоящего из случайных лесов и градиентного бустинга, улучшен результат прошлого года:

	precision	recall	AUC
Моя работа	0.75	0.72	0.92
Работа [5]	0.75	0.66	0.90

Группировка

Группа	precision	recall	AUC	accuracy
юр.лицо	0.81	0.93	0.87	0.81
физ.лицо	0.70	0.59	0.90	0.90
> 2 лет с оператором	0.75	0.58	0.86	0.94
< 2 лет с оператором	0.74	0.79	0.86	0.78
< 40 лет	0.71	0.63	0.86	0.90
> 40 лет	0.79	0.77	0.93	0.89
пользуются интернетом	0.74	0.73	0.92	0.88
пользуются только связью	0.75	0.69	0.91	0.89

Итоги

В рамках данной работы были изучены существующие решения в области предсказания оттока пользователей, выбраны и реализованы классификаторы, показывающие наибольшую точность при решении данной задачи. Был проведен сравнительный анализ реализованных моделей с помощью метрик precision, recall, ROC AUC и ассигасу. Параметры моделей были настроены для улучшения результатов. Также были проведены эксперименты по группировке данных, которые показали перспективность реализации классификатора, обучающегося на разных группах абонентов по отдельности и комбинирующего предсказания при наличии большего объема данных.

Наилучший результат был получен с помощью ансамбля, основанного на комбинации различных случайных лесов, градиентного бустинга и линейной регрессии.

precision	recall	AUC
0.75	0.72	0.92

Результат прошлого года улучшен.

Список литературы

- [1] V Umayaparvathi and K Iyakutti. Applications of data mining techniques in telecom churn prediction. International Journal of Computer Applications, 42(20):5–9, 2012.
- [2] Michael C Mozer, Richard Wolniewicz, David B Grimes, Eric Johnson, and Howard Kaushansky. Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry. Neural Networks, IEEE Transactions on, 11(3):690–696, 2000.
- [3] Chih-Ping Wei and I-Tang Chiu. Turning telecommunications call details to churn prediction: a data mining approach. Expert systems with applications, 23(2):103–112, 2002.
- [4] Shin-Yuan Hung, David C Yen, and Hsiu-Yu Wang. Applying data mining to telecom churn management. Expert Systems with Applications, 31(3):515–524, 2006.
- [5] Максим Корыстов. Применение методов машинного обучения для предсказания поведения абонентов сотовой связи. 2015