P803198/WO/1

: 1912 Regid PGTATO 17 11111 2006

DaimlerChrysler AG

Vehicle steering column arrangement

- 5 The present invention relates to a vehicle steering column in accordance with the precharacterizing clause of patent claim 1.
- Steering column arrangements in vehicles serve in general to make it possible for the height and the length of the steering wheel to be displaced, in order to adapt to different anatomies or seat positions of drivers for the purpose of increasing comfort.
- In order to make it possible for steering column arrangements of this type to be displaced axially, an inner steering column element is provided which has mounted a steering spindle which is connected to the steering wheel. The inner steering column element is mounted in an outer steering column element, it being possible for the two steering column elements to be displaced relative to one another, in order to permit the axial displacement in a desired manner.
- 25 Here, it is necessarily required that the parts can be displaced relative to one another only with small forces, it not being the intention that the overall rigidity of the steering column arrangement influenced. For this purpose, the connection between 30 steering column element inner and the outer steering column element has to be as free of play as possible, as the operating loads are transmitted mainly via the inner steering column element.
- It is already known to provide a sliding bush between these two elements, with the result that one steering column element can slide relative to the other steering column element, the sliding bush also serving to avoid vibrations which are undesirable in the steering wheel.

10

15

20

25

30

35

It is known from the prior art to press the sliding bush onto the inner steering column element or to fasten it thereto permanently by upset forging or by other means. It is made possible for the inner steering column element to slide relative to the sliding bush by the selection of a narrow tolerance between the outer shape of the sliding bush and the inner shape of the outer steering column element, which tolerance is so narrow that the required axial setting can be carried out.

For this purpose, however, the outer steering column to have a sufficient element has length axially parallel with respect to the sliding bush, in order to cover the desired total axial displacement path. means that the inner steering column element, the outer steering column element and the sliding bush have to be to appropriate dimensional tolerances excessively accurate manner, which firstly proves expensive for their manufacture and it being necessary secondly for the manufacturing tolerances already to be taken into consideration for the later interaction of these three components. For these reasons, tilting of the parts with respect to one another, which leads to vibrations, cannot be precluded.

In relation to this, it is known from the prior art, for example from DE 199 45 160 A1, to bond the sliding bush adhesively to the outer steering column element. Here, only filling holes are provided in the outer steering column element, with the result that only punctiform connecting locations which reduce the strength are formed between the sliding bush and the outer steering column element.

Proceeding from this, it is an object of the present invention to improve a steering column arrangement in such a way that a reliable, vibration free connection P803198/WO/1

4 4 1

- 3 -

is brought about between the sliding bush and the outer steering column element, it being intended for the manufacturing tolerances to have no influence on the later operation.

5

This object is achieved with the features of patent claim 1.

Accordingly, the vehicle steering column according to 10 the invention has an inner steering column element which accommodates a steering spindle, and an outer steering column element which is arranged radially around an inner steering column element, it possible for the inner steering column element and the 15 outer steering column element to be displaced with respect to one another by way of a sliding bush which slidably against the inner steering column element and is connected captively to the outer steering column element, the sliding bush having least two depressions, lying radially on the outside, 20 in the form of pockets, which are filled with plastic by injection molding through the outer steering column element, with the formation of a fixed connection between the outer steering column element and the 25 sliding bush.

Here, at least two depressions are provided which are made in opposing ends of the sliding bush, with the result that they are at a maximum possible spacing from one another which precludes the ability to tilt axially. It goes without saying that it is also possible for more depressions, for example three, to be provided, with one depression in the center between the two outwardly lying depressions.

35

30

In one preferred embodiment of the invention, the sliding bush has a slot over its entire length. Here, the depressions extend circumferentially as far as both sides of the slot.

10

sliding bush is under a prestress and has a considerable amount of play with respect to the outer steering column element, to which play manufacturing tolerances can be added. However, this play is eliminated during manufacture by the injection molding of the plastic, with the result that the inner steering column element can be displaced axially in the sliding bush with minimum play and with low tensile and compressive forces. For this purpose, the sliding bush composed of a suitable material with properties, in particular of a plastic with friction properties.

- In a further embodiment of the invention, the sliding bush has a plurality of reinforcing ribs between the depressions which lie apart from one another, in order to increase the stability of the sliding bush.
- 20 For better torque transmission, it is customary for the inner steering column element, the outer steering column element and the sliding bush to be of triangular configuration, such that their shapes complementary. However, they are advantageously 25 cylindrical design, which makes simple manufacturing possible.

refinement according to the invention sliding bush which is connected via plastic injection 30 molding to the outer steering column element has the advantage that the components can be made without mechanical machining, and a locating fit is required between the sliding bush and the steering column element. During the injection molding of the plastic into the pocketlike depressions, 35 playfree connection can be established between the outer steering column element and the sliding bush, a connection having sufficient sliding properties being ensured constantly between the sliding bush and the inner steering column element.

Further details of the invention result from the exemplary embodiments which will be described in the following text in conjunction with the appended drawings, in which:

- fig. 1 shows a diagrammatic sectional view through a steering column arrangement according to the invention; and
- fig. 2 shows a diagrammatic perspective view of a sliding bush which is used in a steering column arrangement according to the invention.
 - Fig. 1 shows a sectional view of a vehicle steering column according to the invention.
- The vehicle steering column 1 has an inner steering column element 2 which accommodates a steering spindle (not shown) telescopically. Lying radially on the outside in an overlapping region, an outer steering column element 3 is provided. In the present case, the respective components are of rotationally symmetrical shape.

A sliding bush 4 made from a plastic material is arranged between the outer steering column element 3 and the inner steering column element 2. The inner steering column element 2 can be displaced in the sliding bush 4 in an axially slidable manner.

The sliding bush 4 itself is connected fixedly to the 35 outer steering column element 3. For this purpose, the sliding bush has two depressions 5 on its circumferential face which lies radially outside, which two depressions 5 are provided spaced apart from one another at the two ends of the sliding bush 4.

The depressions 5 form cavities or pockets 6 opposite the outer steering column element 3 which lies on the outside. Said pockets 6 or depressions 5 of the sliding bush 4 are filled with plastic mass, possibly by injection molding, from the outside through the outer steering column element 3, with the result that a fixed connection can be formed between these components.

Fig. 2 shows a perspective view of the sliding bush 4 according to the invention.

15

10

The sliding bush 4 has a slot 7 over its entire length. The depressions 5 which then form the pockets 6 with the outer steering column element 3 are provided at both ends and extend on both sides of the slot 7 as far 20 as the latter. When the plastic is filled in in the assembled state of the vehicle steering column, depressions 5 are filled completely, with the result that manufacturing tolerances are eliminated between the sliding bush 4 and the outer steering column Here, the slot 7 is pushed together. 25 element 3. fixed connection is thus produced between the sliding bush 4 and the outer steering column element 3, and a connection is produced between the sliding bush 4 and the inner steering column element 2, which connection permits the inner steering column element 2 to slide in 30 the bush 4. For this purpose, the sliding bush 4 can be manufactured from a material with sliding properties (for example, plastic). All tolerances between the outer steering column element 3 and the sliding bush 4 35 eliminated by the solution according invention. The inner steering column element 2 can be displaced in the sliding bush 4 with minimum play and low forces.

Reinforcing ribs 8 are provided between the depressions 5 in order to increase the rigidity of the sliding bush 4. The solution according to the invention affords the advantage that the two steering column elements 2, 3 do not have to be machined mechanically and no locating fit has to be produced. The injection pockets lie apart from one another as far as possible, in order to maximize the supporting levers.