

Universidad de San Carlos de Guatemala Facultad de Ingeniería Práctica Investigación de Operaciones II Sección "P" Primer Semestre 2023 Aux. José Pablo Tobar

Carné:	201900597	Nombre:	André Joaquin Ortega De Paz	
Fecha:	26-01-23	CUI:	3191363100501	

HOJA DE TRABAJO NO. # 1

1. A una venta de choco frutas, llegan en promedio 48 clientes por hora y el empleado puede atender a 57 clientes por hora.

Determine lo siguiente:

- a. Factor de utilización.
- b. Probabilidad de que ningún cliente este en la cola.
- c. Cantidad promedio de clientes en la línea de espera.
- d. Cantidad promedio de clientes en el sistema.
- e. Tiempo promedio que pasa un cliente en línea de espera.
- f. Tiempo promedio que pasa un cliente en el sistema.
- g. Probabilidad de que un cliente que llega tenga que esperar por el servicio.
- h. Probabilidad de que se tengan a 5 clientes en el sistema.

λ=	48	clientes/hora
μ=	57	clientes/hora
a)	$\rho = \lambda/\mu =$	0.842105263
b)	Po = 1 - λ/μ =	0.157894737
c)	$Lq = (\lambda^2)/(\mu(\mu-\lambda)) =$	4.49122807
d)	Ls = $\lambda/(\mu-\lambda)$ =	5.333333333
e)	$Wq = \lambda/(\mu(\mu-\lambda)) =$	0.093567251
f)	Ws = $1/(\mu-\lambda)$ =	0.111111111
g)	$Pn>k = (\lambda/\mu)^{k+1} =$	0.709141274
h)	Pn = (λ/μ)^(k+1) =	0.356613919

2. Dream Donuts es una pequeña cafetería donde ofrecen postres de sabores particulares, entre semana los clientes llegan al lugar a una tasa promedio de 1.25 clientes por minuto. El dependiente del mostrador puede atender un promedio de 2 clientes por minuto.

Determinar:

- a. La probabilidad de que no haya clientes en el sistema.
- b. Numero promedio de clientes que esperan por el servicio.
- c. Tiempo promedio que espera un cliente para que comience el servicio.
- d. Probabilidad de que un cliente que llega tenga que esperar por el servicio.
- e. Tiempo promedio que una unidad pasa en el sistema.

λ=	1.25	clientes/hora
μ=	2	clientes/hora
a)	Po = $1 - \lambda/\mu =$	0.375
b)	$Lq=(\lambda^2)/(\mu(\mu-\lambda))=$	1.041666667
c)	$Wq = \lambda/(\mu(\mu-\lambda)) =$	0.833333333
d)	$Pn>k = (\lambda/\mu)^{k+1} =$	0.390625
e)	$Ws = 1/(\mu - \lambda) =$	1.333333333

3. En un salón de belleza, 4 asistentes utilizan el secador profesional, el tiempo promedio de llegadas de cada una a la secadora es de 30 minutos, equivalente a una tasa de llegadas de 0.033 llegadas por minuto. El tiempo medio que una asistente pasa en la secadora con su cliente es de 6 minutos, equivalente a 0.167 por minuto.

Determinar lo siguiente:

- La probabilidad de que la secadora esté desocupada.
- b. El número promedio de asistentes que esperan a que se desocupe la secadora.
- c. El número promedio de asistentes en el sistema.
- d. El tiempo promedio que un asistente pasa en espera de la secadora.
- e. El tiempo promedio que un asistente pasa en el sistema.

λ =	0.033	
μ=	0.167	clientes/hora
N =	4	
a)	Po =	0.40310092
b)	$Lq = N - ((\lambda + \mu)/\lambda)*(1-Po) =$	0.382429817
c)	Ls = Lq + (1 - Po) =	0.979328897
d)	$Wq = Lq/(\lambda(N-L))$	3.836492596
e)	$Ws = Wq + 1/\mu =$	9.824516548