What is Claimed:

form:

- 1. A composite paperboard structure comprising a backing structure adhered to a paperboard layer, said backing structure consisting of:
- a) an oriented polymer film layer;
- b) a thermal bonding polymer layer adjacent and substantially
 coextensive thereto, said thermal bonding polymer layer having a thickness between
 10% and 40% of a combined thickness of the oriented polymer film layer and the
 thermal bonding polymer layer; and
- c) a reinforcing scrim polymer layer adjacent and substantially coextensive with the thermal bonding polymer layer.
- 2. The composite paperboard structure of claim 1, wherein said polymer film layer, said bonding polymer layer and said reinforcing scrim all have a chemical composition that permits recycling said backing structure without separating the layers thereof.
- 3. The composite paperboard structure of claim 1, wherein the oriented polymer film layer, the thermal bonding polymer layer, and the reinforcing scrim polymer layer each individually comprise a synthetic condensation polymer,
- the synthetic condensation polymers each comprising, in polymerized

6	 a) a carboxylic acid or a mixture of carboxylic acids, and
7	b) either i) a diamine or a mixture of diamines, or ii) a diol or a mixture of
8	diols, or
9	2) an ω -amino acid having more than 2 carbon atoms, or a
10	mixture of such amino acids,
11	wherein, for the backing structure taken as a whole,
12	at least 90 mol% of a combined total amount of the carboxylic acid or
13	the mixture of carboxylic acids in the synthetic condensation polymers is the same
14	carboxylic acid,
÷	
15	at least 90 mol% of a combined total amount of the diamine or the
16	mixture of diamines in the synthetic condensation polymers is the same diamine,
17	at least 90 mol% of a combined total amount of the diols or the
18	mixture of diols in the synthetic condensation polymers is the same diol, and
19	at least 90 mol% of a combined total amount of the amino acid or the
20	mixture of amino acids in the synthetic condensation polymers is the same amino
21	acid.
٠	
1	4. The composite paperboard structure of claim 3, wherein the
2	oriented polymer film layer comprises biaxially oriented polyethylene terephthalate.

- The composite paperboard structure of claim 4, further comprising a second backing structure as defined in claim 1 adhered to the paperboard layer.
- 1 6. The composite paperboard structure of claim 4, wherein the
 2 thermal bonding polymer layer comprises an amorphous copolyester of about 60 to
 3 about 90 mol% ethylene terephthalate and correspondingly about 40 to about 10
 4 mol% ethylene isophthalate.
- 7. The composite paperboard structure of claim 4, wherein the backing structure is adhered to the paperboard layer via an adhesive layer.
- The composite paperboard structure of claim 7, wherein the
 adhesive layer comprises an amorphous copolyester of about 60 to about 90 mol%
 ethylene terephthalate and correspondingly about 40 to about 10 mol% ethylene
 isophthalate.
- 9. The composite paperboard structure of claim 4, wherein the reinforcing scrim polymer layer comprises a woven or nonwoven material comprising polyester fibers.
 - 10. The composite paperboard structure of claim 4, wherein the paperboard layer is adhered to the reinforcing scrim polymer layer.

1

2

11. The composite paperboard structure of claim 10, further
comprising a metal layer adjacent and substantially coextensive with the oriented
polymer film layer.

DTG-104US - 26 -

1

2

1

2

3

4

5

6

7

1 12. The composite paperboard structure of claim 4, wherein the paperboard layer is adhered to the oriented polymer film layer.

- 1 13. The composite paperboard structure of claim 12, further
 2 comprising a metal layer adjacent and substantially coextensive with the reinforcing
 3 scrim polymer layer.
- 14. The composite paperboard structure of claim 8, wherein the
 thermal bonding polymer layer comprises an amorphous copolyester of about 60 to
 about 90 mol% ethylene terephthalate and correspondingly about 40 to about 10
 mol% ethylene isophthalate.
- 1 15. The composite paperboard structure of claim 4, wherein paperboard layer is a corrugated paperboard layer.
 - 16. The composite paperboard structure of claim 15, wherein the paperboard layer is adhered to the reinforcing scrim polymer layer.
 - 17. A container comprising a plurality of walls defining a cavity for containing an article, wherein at least one of said plurality of walls comprises a composite paperboard structure comprising a backing structure adhered to a paperboard layer, said backing structure consisting of:
 - a) an oriented polymer film layer;
 - b) a thermal bonding polymer layer adjacent and substantially coextensive thereto, said thermal bonding polymer layer having a thickness between

DTG-104US - 27 -

10% and 40% of a combined thickness of the oriented polymer film layer and the

- 9 thermal bonding polymer layer; and
- c) a reinforcing scrim polymer layer adjacent and substantially coextensive with the thermal bonding polymer layer;
- wherein the oriented polymer film layer, the thermal bonding polymer layer, and the reinforcing scrim polymer layer each individually comprise a synthetic condensation polymer,
- the synthetic condensation polymers each comprising, in polymerized form:
- 1) a) a carboxylic acid or a mixture of carboxylic acids, and
 b) either i) a diamine or a mixture of diamines, or ii) a diol or a mixture of
 diols, or
- 2) an ω -amino acid having more than 2 carbon atoms, or a mixture of such amino acids,
- wherein, for the backing structure taken as a whole,
- at least 90 mol% of a combined total amount of the carboxylic acid or
 the mixture of carboxylic acids in the synthetic condensation polymers is the same
 carboxylic acid,
- at least 90 mol% of a combined total amount of the diamine or the
 mixture of diamines in the synthetic condensation polymers is the same diamine,

- at least 90 mol% of a combined total amount of the diols or the
 mixture of diols in the synthetic condensation polymers is the same diol, and
- at least 90 mol% of a combined total amount of the amino acid or the
 mixture of amino acids in the synthetic condensation polymers is the same amino
 acid.
- 18. The container of claim 17, wherein the oriented polymer film
 layer comprises biaxially oriented polyethylene terephthalate.
- 1 19. The container of claim 18, wherein the paperboard layer is adhered to the reinforcing scrim polymer layer.