Minimization with Karnaugh Maps

Overview

- K-maps: an alternate approach to representing Boolean functions
- K-map representation can be used to minimize Boolean functions
- ° Easy conversion from truth table to K-map to minimized SOP representation.
- ° Simple rules (steps) used to perform minimization
- ° Leads to minimized SOP representation.
 - Much faster and more more efficient than previous minimization techniques with Boolean algebra.

Karnaugh maps

- Alternate way of representing Boolean function
 - All rows of truth table represented with a square
 - Each square represents a minterm
- Easy to convert between truth table, K-map, and SOP
 - Unoptimized form: number of 1's in K-map equals number of minterms (products) in SOP
 - Optimized form: reduced number of minterms

$$\begin{array}{c|cccc}
x & y & 0 & \hline
1 & & & \\
0 & x'y' & x'y & \\
x & 1 & xy' & xy
\end{array}$$

$$F = \Sigma(m_0, m_1) = x'y + x'y'$$

× ^y	0	1
0	1	1
1	0	0

X	У	F
0	0	1
0	1	1
1	0	0
1	1	0

Karnaugh Maps

- ° A Karnaugh map is a graphical tool for assisting in the general simplification procedure.
- ° Two variable maps.

$$A = \begin{bmatrix} 0 & 1 & & \\ 0 & 0 & 1 & \\ 1 & 1 & 0 & \end{bmatrix}$$
 $F = AB' + A'B$

$$F=AB+A'B+AB'$$

° Three variable maps.

$$F=AB'C'+AB'C+ABC+ABC'+A'B'C+A'BC'$$

Rules for K-Maps

- We can reduce functions by circling 1's in the K-map
- Each circle represents minterm reduction
- Following circling, we can deduce minimized and-or form.

Rules to consider

- Every cell containing a 1 must be included at least once.
- ☐ The largest possible "power of 2 rectangle" must be enclosed.
- □The 1's must be enclosed in the smallest possible number of rectangles.

Karnaugh Maps

- ° A Karnaugh map is a graphical tool for assisting in the general simplification procedure.
- ° Two variable maps.

$$A = \begin{bmatrix} 0 & 1 & & \\ 0 & 0 & 1 & \\ 1 & 1 & 0 & \end{bmatrix}$$
 $F = AB' + A'B$

$$A = \begin{bmatrix} A & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 $F = AB + A'B + AB'$ $1 = A + B$

° Three variable maps.

$$F=AB'C'+AB'C+ABC+ABC'+A'B'C+A'BC'$$

Karnaugh maps

° Numbering scheme based on Gray-code

- e.g., 00, 01, 11, 10
- Only a single bit changes in code for adjacent map cells
- This is necessary to observe the variable transitions

$$G(A,B,C) = A$$

$$F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$$

More Karnaugh Map Examples

° Examples

- 1. Circle the largest groups possible.
- 2. Group dimensions must be a power of 2.
- 3. Remember what circling means!

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

How to use a Karnaugh Map instead of the Algebraic simplification?

$$= (A' + A)BCin + (B' + B)ACin + (Cin' + Cin)AB$$

A	В	Cin	S	Cout	
0	0	0	0	0	←
0	0	1	1	0	←
0	1	0	1	0	←
0	1	1	0	1	←
1	0	0	1	0	←
1	0	1	0	1	←
1	1	0	0	1	←
1	1	1	1	1	←

Now we have to cover all the 1s in the Karnaugh Map using the largest rectangles and as few rectangles as we can.

Karnaugh Map for Cout

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Now we have to cover all the 1s in the Karnaugh Map using the largest rectangles and as few rectangles as we can.

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Now we have to cover all the 1s in the Karnaugh Map using the largest rectangles and as few rectangles as we can.

$$Cout = Acin + AB$$

Karnaugh M	ap for Cout
------------	-------------

A	B	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Now we have to cover all the 1s in the Karnaugh Map using the largest rectangles and as few rectangles as we can.

$$Cout = ACin + AB + BCin$$

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

S = A'BCin'

Karnaugh Map for S

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

S = A'BCin' + A'B'Cin

Karnaugh Map for S

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Karnaugh Map for S

S = A'BCin' + A'B'Cin + ABCin

Can you draw the circuit diagrams?

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Karnaugh Map for S

S = A'BCin' + A'B'Cin + ABCin + AB'Cin'

No Possible Reduction!

Summary

- Karnaugh map allows us to represent functions with new notation
- Representation allows for logic reduction.
 - Implement same function with less logic
- Each square represents one minterm
- Each circle leads to one product term
- Not all functions can be reduced
- Each circle represents an application of:
 - Distributive rule -- x(y + z) = xy + xz
 - Complement rule x + x' = 1