Матлог, лекции

1 Введение

Логика — довольно старая наука, но наш предмет довольно молодой В какой-то момент логики как дисциплиниы, которая учит просто правильно рассуждать, стало нехватать. Появилась теория множеств. Общего здравого смысла не хватает, нужен строгий математичесий язык. Это рубеж 19-20 веков.

У нас теория множеств не будет фокусом, как это могло бы быть на мат. факультете.

Теория множеств, когда она была впервые сформулирована, была противоречива (как матан, сформулированный Ньютоном). Чтобы уверенно и эффективно заниматься матаном, нужно суметь его формализовать.

<Парадокс Рассела / парадокс брадобрея> Мы приписываем элементу-человеку свойство, которое невыполнимо. Объекта, выходит, не существует. Мы смогли очень быстро определить противоречие в этом определении. Но, может быть, мы не смогли его определить в других наших определениях? (конструкциях вещественной прямой, и т.д и т.д)

Программа Гильберта.

- 1. Формализуем математику! Сформулируем теорию на языке (не на русском или английском), который не будет допускать парадоксов,
- 2. ... и на котором можно будует доказать непротиворечивость.

В 1930 году становится понятно, что сколько-нибудь сильная (= в ней можно построить формальную арифметику) теория не может быть доказана непротиворечивой.

Возможно, сама наша логика неправильная? Эта идея будет нам полезна, и к ней мы ещё вернемся.

Возможно, что это просто свойство мира, и мы хотим невозможного.

Из этих рассуждений выросло большое множество хороших идей, которые оказались полезны в других местах. Матлогика служит широкому кругу нужд.

Мы можем доказывать, что программа работае корректно. Именно доказывать, а не проверять тестами!

Мы можем изучать свойства самих языков. Изоморфизм Карри-Говарда— доказательство это программа, утверждения это тип. Можно изучать языки программирования и можно развернуть изоморфизм: изучать математкиу как язык программирования.

 Φ ункциональные языки: окамль + хаскель. Ознакомление с этими языками преставляет собой способ ознакомиться с предметом немного с другой стороны.

2 Исчисление высказываний

Мы говоирм на двух языках: на предметном языке и метаязыке. Предметный язык – это то, что изучается, а метаязык – это язык, НА котором это изучается.

На уроках английского предметным является сам английский, а метаязыком может быть русский. Метаязык — это язык исследователя, а предметный язык — это язык исследоваемого. Что такое язык вообще? Хороший вопрос.

Высказывание — это одно из двух:

- 1. Большая латниская буква начала алфавита, возможно с индексами и штрихами это пропозициональные переменные.
- 2. Выражение вида $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$, $(\neg \alpha)$.

В определении выше альфа и бета это метапеременные— места, куда можно подставить высказывание.

- 1. α, β, γ метапеременные для всех высказываний.
- 2. X, Y, Z метапеременные для пропозициональных переменных.

Метапеременные являются частью языка исследователя.

В формализации мы останавливаемся до места, в котором мы можем быть уверены, что сможем написать программу, которая всё проверяет.

Сокращение записи, приоритет операций: сначала ¬, потом &, потом ∨, потом →. Если скобки опущены, мы восстанавливаем их по приоритетам. Выражение без скобок является частью метаязыка, и становится частью предметного, когда мы восстанавливаем их. Скобки последовательных импликаций расставляются по правилу правой ассоциативности — справа налево.

2.1 Теория моделей

У нас есть истинные значения $\{T,F\}$ в классической логике. И есть оценка высказываний $[\![\alpha]\!]$. Например $[\![A \lor \neg A]\!]$ истинно. Всё, что касается истинности высказываний, касается теории моделей.

Определение 1. Оценка — это функция, сопоставляющая высказыванию его истинное (истинностное) значение.

2.2 Теория доказательств

Определение 2. Аксиомы — это список высказываний. Схема аксиомы — высказывание вместе с метопеременными; при любой подстановке высказываний вместо метапеременной получим аксиому.

Определение 3. Доказательство (вывод) — последовательность высказываний $\gamma_1, \gamma_2 \dots$ где γ_i — любая аксиома, либо существуют j, k < i такие что $\gamma_j \equiv (\gamma_k \to \gamma_i)$. (знак \equiv здесь сокращение для "имеет вид"). Это правило "перехода по следствию" или Modus ponens.

Определим следующие 10 схем аксиом для того исчисления высказываний, которое мы рассматриваем.

- 1. $\alpha \to \beta \to \alpha$ добавляет импликацию
- 2. $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$ удаляет импликацию
- 3. $\alpha \wedge \beta \rightarrow \alpha$
- 4. $\alpha \wedge \beta \rightarrow \beta$
- 5. $\alpha \to \beta \to \alpha \land \beta$
- 6. $\alpha \to \alpha \lor \beta$
- 7. $\beta \to \alpha \vee \beta$
- 8. $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to (\neg \alpha)$
- 10. $\neg \neg \alpha \to \alpha$ очень спорная штука.
 - <вывод A o A >

3 Теорема о дедукции

Определение 4. (Метаметаопределение). Будем большими греческими буквами $\Gamma, \Delta, \Sigma \dots$ — списки формул, неупорядоченные.

Определение 5. Вывод из гипотез: $\Gamma \vdash \alpha$ (см. лекцию 1)

Теорема 1. $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \gamma$.

Доказательство. \Leftarrow Пусть $\delta_1, \delta_2 \dots \delta_n \equiv \alpha \to \beta$ выводит $\alpha \to \beta$. Дополним этот вывод двумя новыми высказываниями: $\delta_{n+1} \equiv \alpha$ (дано нам в гипотезе), $\gamma_{n+2} \equiv \beta$ (МР шагов n, n+1) — это и требовалось.

- Напишем программу, которая трансформирует один вывод в другой. Инвариант, который мы будем поддерживать: всё до $\alpha \to \delta_i$ док-во. Доказательство индукцией по n.
 - 1. База: n = 1 без комментариев.
 - 2. Если $\delta_1, \ldots, \gamma_n$ можно перестроить в доказательство $\alpha \to \gamma_n$, то $\gamma_1 \ldots \gamma_{n+1}$ тоже можно перестроить. Разберём случаи:

$$-\delta_i$$
 — гипотеза из Г. Тогда

 $(i-0.1) \, \, \delta_i \, \, ($ аксиома или гипотеза)

$$(i-0.2)$$
 $\delta_i \to \alpha \to \delta_i$ (cxema 1)

(i)
$$\alpha \to \delta_i$$
 (MP)

ДОПОЛНИТЬ

4 Теория моделей

Мы можем доказывать модели или оценивать их. "Мы можем доказать, что мост не развалится или можем выйти и попрыгать на нём."

Определение 6. \mathbb{V} — истинностное множество.

F — множество высказываний нашего исчисления высказываний.

P — множество пропозициональных переменных.

$$\llbracket \cdot \rrbracket : F \to \mathbb{V}$$
 — оценка

Определение 7. Для задания оценки необходимо задать оценку пропозициональных переменных.

$$\llbracket \cdot \rrbracket : P \to \mathbb{V} \quad f_P$$

Тогда:

$$[\![x]\!] = f_p(x)$$

Замечание 1. Обозначение: значения пропозициональных переменных будем определять в верхнем индексе: $[\![\alpha]\!]^{A=T,B=F...}$

Определение 8. α — общезначна (истинна), если $[\![\alpha]\!] = T$ при любой оценке P.

- α невыполнима (ложна), если $[\![\alpha]\!] = F$ при любой оценке P.
- α выполнима, если $\llbracket \alpha \rrbracket = T$ при некоторой f_P .
- α опровержима, если $\llbracket \alpha \rrbracket = F$ при некоторой f_P .

Определение 9. Теория корректна, если доказуемость влечёт общезначимость.

Теория полна, если общезначимость влечёт доказуемость.

Определение 10. $\Gamma \vDash \alpha$, α следует из $\Gamma = \{\gamma_1, \dots, \gamma_n\}$, если $[\![\alpha]\!] = T$ всегда при $[\![\gamma_i]\!] = T$ при любых i.

Теорема 2. Исчисление высказываний корректно

$$\vdash \alpha$$
 влечёт $\models \alpha$

Мы даём доказательство на метаязыке, не пускаясь в отчаянный формализм. Такая строгость нас устраевает.

Доказательство. Индукция по длине доказательства. Не очень сложно.

В матлогике бесмысленно формализовывать русский язык. Она нужна, чтобы дать ответы на сложные вопросы в математике, где здравого смысла недостаточно и нужна формализация.

5 Полнота исчисления высказываний

Теорема 3. Исчисление высказываний полно.

Определение 11.
$$_{[\beta]}\alpha=egin{cases} \alpha, & [\![\beta]\!]=T \\ \neg\alpha, & [\![\beta]\!]=F \end{cases}$$

Лемма 3.1.
$$_{[\alpha]}\alpha, _{[\beta]}\beta \vdash_{[\alpha\star\beta]}\alpha\star\beta$$
 $_{[\alpha]}\alpha \vdash_{[\neg\alpha]}\neg\alpha$

Лемма 3.2. Если $\Gamma \vdash \alpha$, то $\Gamma, \Delta \vdash \alpha$.

Лемма 3.3. Пусть дана α, X_1, \dots, X_n — её переменные.

$$[X_1]X_1, \ldots, [X_n]X_n \vdash_{[\alpha]} \alpha$$

Доказательство. Индукция по структуре. ДОПОЛНИТЬ

Сократим запись и вместо этой кучи X будем писать X'.

Лемма 3.4. Если $\models \alpha$, то $X' \vdash \alpha$.

Лемма 3.5.

$$\Gamma, Y \vdash \alpha, \quad \Gamma, \neg Y \vdash, \text{ TO } \Gamma \vdash \alpha$$

Теорема 4. Если $\models \alpha$, то $\vdash \alpha$.

6 Интуиционистская логика

Мы не хотим дурацких коснтрукций вроде парадокса брадобрея. Мы не хотим странных, но логически верных утверждений вроде $A \to B \lor B \to A$. Интуиционисткая логика предлагает свою математику, в которой своя интерпретация логических связок. ВНК-интерпретация (Брауер-Гейтинг-Колмогоров).

- $\alpha, \beta, \gamma \dots$ это конструкции.
- $\alpha \wedge \beta$ если мы умеем строить и α , и β .
- $\alpha \lor \beta$, если мы умеем строить α, β и знаем, что именно.
- $\alpha \to \beta$, если мы умеем перестроить α в β .
- 1 не имеет построения
- $\bullet \ \neg \alpha \equiv \alpha \to \bot$

"Теория доказательств". Рассмотрим классическое исчисление высказываний и заменим схему аксиом 10 на следующую

$$\alpha \to \neg \alpha \to \beta$$

В этой формализации мы следуем не сути интуиционисткой логики, а традиции. В интуиционисткой логике формализм это не источник логики.

Примеры моделей.

- 1. Модели КИВ подходят: корректны, но не полны.
- 2. Пусть X топологическое пространство.

Рис. 1: Решетка, в которой для a, b не определено псевдодополнение

7 Общая топология

Определение 12. Топологическим пространством называется упорядоченная пара (X,Ω) , $\Omega\subset 2^X$, причем выполнено

- 1. $\emptyset, X \in \Omega$
- 2. $\bigcup A_i \in \Omega$ если $\forall i \ A_i \in \Omega$
- 3. $\bigcap_n A_i \in \Omega$, если $\forall i \ A_i \in \Omega$

Определение 13. Связным топологическим пространством называется такое топ. пространство (X,Ω) , в котором нет $A,B\in\Omega$ таких, что $A\cup B=X$ и $A\cap B=\emptyset$.

Определение 14. Подпространством пространства (X,Ω) называется топологическое пространство (X_1,Ω_1) , где $X_1\subset X$ и $\Omega_1=\{A\cap X_1\mid A\in\Omega\}$. Это подпр-во так же называется индуцированным подпространством.

Определение 15. Подмножество (Y) пр-ва $((X,\Omega))$ называется связным, если связно индуцированное им подпространство.

Пример топологии на (подвешенном) лесе. Теорема: лес связен титт., когда он связен как топ. пространство.

Определение 16. Рассмотрим частично-упорядоченное множество $X, (X, \leq)$. Решеткой называется....

Пример: топологическое пространство с порядком по включению является решеткой. Антипример: произвольное дерево не является решеткой.

Определение 17. Дистрибутивной решеткой называется такая решетка, в которой

$$(a+b)c = ac + bc$$
 $a+bc = (ab) + (ac)$

(Теорема ...)

Определение 18. Псевдодополнение $a \to b$ это наибольший c из всех таких c, что $ac \leqslant b$. Решетка, в которой псевдодополнение определено для всех пар элементов, называется импликативной.

Определение 19. Ноль 0 и единица 1 — это нейтральные элементы операций + и \cdot одновременно.

Теорема 5. Рассмотрим импилкативную решетку (X, \leqslant) с 0. Рассмотрим интуиционисткое исчисление высказываний, определим оценку следующим образом: $[\![\alpha \land \beta]\!] = [\![\alpha]\!] \cdot [\![\beta]\!]$, $[\![\alpha \lor \beta]\!] = [\![\alpha]\!] + [\![\beta]\!]$, $[\![\alpha \to \beta]\!] = [\![\alpha]\!] \to [\![\beta]\!]$, $[\![\neg \alpha]\!] = [\![\alpha]\!] \to 0$.

Исчисление высказываний с которым мы работали называется исчислением гильбертовского типа — очень много аксиом и практически одно правило вывода, и это несколько неудобно, как мы увидели. Не мы одни такие умные. Люди придумали что-то ещё. Полноты ради секвенциальное исчисление будет обсуждаться в конце, если останется время.

Теперь мы обсудим кое-что ещё. Доказательства в этой системе рисуются в виде дерева, в отличиии от длинного списка, как получается в гильбертовском исчислении. Вид док-ва: $\Gamma \vdash \varphi$.

Схемы:

$$\begin{split} &\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}, \quad \frac{\Gamma, \varphi \vdash \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}, \quad \frac{\Gamma, \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \& \psi}, \quad \frac{\Gamma, \vdash \varphi \& \psi}{\Gamma \vdash \varphi}, \quad \frac{\Gamma, \vdash \varphi \& \psi}{\Gamma \vdash \psi}, \\ &\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi}, \quad \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi}, \quad \frac{\Gamma, \varphi \vdash \rho \quad \Gamma, \psi \vdash \rho \quad \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \rho}, \quad \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi}. \end{split}$$

8 Алгебра Гейтинга

Определение 20. Алгебра Гейтинга — это импилкативная решетка с 0.

Определение 21. $\neg a \equiv a \rightarrow 0$.

Определение 22. Булева алгебра — алгебра Гейтинга, где $a + \neg a = 1$.

Пример.

Определение 23. $\alpha \preccurlyeq \beta$, если $\alpha \vdash \beta$.

Определение 24. $\alpha \approx \beta$, если $\alpha \preccurlyeq \beta$ и $\beta \preccurlyeq \alpha$.

Определение 25. Пусть E — множество всех высказываний ИИВ. Тогда $[E]_{\approx}$ — фактормножество высказываний по отношению \approx , называется алгеброй Линденбаума, L.

Теорема 6. Алгебра Линденбаума — это алгебра Гейтинга.

Теорема 7. L — полная и корректная модель ИИВ.

Теорема 8. Алгебра Гейтинга — полная и корректная модель ИИВ.

Определение 26. Исчисление дизьюнктно, если для любых α, β доказуемость $\alpha \lor \beta$ влечет доказуемость или α или β .

Теорема 9. ИИВ дизьюнктно.

Определение 27. Пусть A, B — алгебры Гейтинга. f называется гомоморфизмом, если $f(0_A) = 0_B, f(1_A) = 1_B, f(\alpha \star_A \beta) = f(\alpha) \star_B f(\beta)$.

Определение 28. Гёделева алгебра — та, в которой a+b=1 влечёт a=1 или b=1.

Определение 29. Пусть A — алгебра Гейтинга. Определим $\Gamma(A)$. $\gamma(x) = \begin{cases} \omega, & x = 1_A \\ x, & x < 1_A \end{cases}$.

Добавим 1_B , которое больше каждого $\gamma(t)$.

Теорема 10. $\Gamma(A)$ — гёделева алгебра. В этой алгебре $\Gamma(A)$ выполнено a+b=1 влечёт a=1 или b=1.

Теорема 11. $\Gamma(L)$ гёделева.

Определим $\gamma:\Gamma(L)\to L: \quad g(x)=\begin{cases} 1, & x=1 \text{ или } x=\omega\\ x, & \text{иначе} \end{cases}$. Утверждается, что это гомоорфизм.

Рассмотрим ИИВ и алгебры $L, \Gamma(L)$. Рассмотрим $\vdash \alpha \lor \beta$. $\Gamma(L)$ — геделева алгебра, т.е алгебра Гейтинга.

. . .

Определение 30. Модель ИИВ называется табличной, если множество истиностных значений V = S, $[\![\alpha + \beta]\!] = f_{\star}([\![\alpha]\!], [\![\beta]\!])$. и есть два значения, выделенная истинна И, и $[\![\alpha]\!] = \mathbb{N}$ в том и только том случае, когда $\models \alpha$.