NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-541

A Compilation of Laboratory Spectra

J. S. Margolis

(NASA-CR-126985) A COMPILATION OF LABORATORY SPECTRA J.S. Margolis (Jet Propulsion Lab.) 15 May 1972 4 p CSCL 20H N72 - 25648

Unclas G3/24 30446

NATIONAL TECHNICAL INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

May 15, 1972

Technical Memorandum 33-541

A Compilation of Laboratory Spectra

J. S. Margolis

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

May 15, 1972

Prepared Under Contract No. NAS 7-100 National Aeronautics and Space Administration

PRECEDING PAGE BLANK NOT FILMED

PREFACE

The work described in this memorandum was performed by the Space Sciences Division of the Jet Propulsion Laboratory.

PRECEDING PAGE BLANK NOT FILMED

CONTENTS

Introduction	 	.	1
TABLE		i	
1. Spectra measurements and experimental conditions.	 		2

ABSTRACT

This report contains an up-to-date listing of the spectra obtained in the spectroscopy laboratory and a complete description of the experimental conditions.

INTRODUCTION

The Spectroscopy Laboratory at the Jet Propulsion Laboratory acquires the spectra of many molecules under conditions which may be of interest to investigators in other laboratories. For this reason we have compiled an up-to-date listing of our spectra with a complete description of the experimental conditions.

The spectrometers used are either a 1.8-m Jarrell-Ash vacuum scanning spectrometer or a Beckman model IR-12. The Jarrell-Ash spectrometer is equipped with a 20-cm (8-in.) 300 ℓ /mm grating which is blazed at 5.7 μ ; the best resolution achieved is 0.03 cm⁻¹. The best resolution obtainable from the Beckman IR-12 is about 1 cm⁻¹. The entire light path, from source to detector, used in the Jarrell-Ash spectrometer is evacuable, and no spurious atmospheric absorptions are observed under the ordinary operating conditions. The Beckman IR-12 instrument is continuously flushed with dry nitrogen obtained from boiled-off liquid N₂.

There are a number of short cells up to 40 cm in length for use with the Jarrell-Ash spectrometer. However, the main one is a 2-m White cell which can be pressurized up to $2.0 \times 10^5 \text{ N/m}^2$ (2 atm) absolute pressure. The path length may be varied in steps of 8 m. Usable path lengths up to 160 m have been obtained with this White cell.

Molecules	Spectral region, µm	Pressure, N/cm ² (torr)	Slit Path width, µm	Instrument	Operator
H ₂ CO	3.543 - 3.560 3.506 - 3.543 3.445 - 3.505 3.366 - 3.445 3.300 - 3.355 3.225 - 3.300 3.604 - 3.635 3.354 - 3.360 3.800 - 3.908 3.620 - 4.000	4.00×10 ² (3)	10 cm	J. A. 1.8 m	R. Beer
нсоон	3.750 - 4.050	$1.40 \times 10^2 (1.045)$	8 m	J. A. 1.8 m	R. Beer
н ₂ s	3.850 - 3.900 3.600 - 3.650 3.650 - 3.700 3.750 - 3.800 3.675 - 3.700 3.650 - 3.675 3.750 - 3.781 3.750 - 3.800 3.600 - 3.625 3.600 - 3.650 3.700 - 3.750 3.800 - 3.850	6.65×10 ³ (50)	16 m	J. A. 1.8 m	R. Beer
СН ₃ SH	3.600 - 3.680 3.852 - 3.874 3.775 - 4.000 3.870 - 3.977 3.680 - 3.850	6.65×10^2 (5)	16 m	J. A. 1.8 m	R. Beer
CH ₄	3.975 - 4.000 3.900 - 3.950 3.710 - 3.810 3.810 - 3.895	6.65×10 ² (5)	16 m	J. A. 1.8 m	R. Beer
C ₂ H ₂	3.600 - 3.783 3.660 - 3.874	$5.33 \times 10^3 (40)$	8 m	J. A. 1.8 m	R. Beer
nо ₂ :n ₂ 0 ₄	3.400 - 3.475 3.500 - 3.675 3.700 - 3.925 3.795 - 3.923	1.33×10 ³ (100)	10 cm	J. A. 1.8 m	R. Beer
cos	4.15 - 3.37	6.65×10^2 (50)	10 cm	Beckman	R. Beer
H ₂ S	4.00 - 3.45	6.65×10^4 (500)	10 cm .	I. R. 12	R. Beer
нсоон	4.16 - 2.46 4.08 - 3.30	6.65×10^{2} (5) 6.65×10^{3} (50)	10 cm		R. Beer
C ₂ H ₂	4.16 - 3.42 4.16 - 3.42	6.65×10 ³ (50) 6.65×10 ⁴ (500)			R. Beer
NO_2/N_2O_4	4.08 - 3.42	4.00×10 ⁴ (302)			R. Beer
CH ₃ Cl	4.16 - 3.13 3.57 - 3.13 4.16 - 3.33	6.65×10 ³ (50) 2.66×10 ⁴ (200) 6.65×10 ⁴ (500)			R. Beer
сн ₃ он	4.16 - 3.57 4.16 - 3.17 3.65 - 3.45	2.66×10 ⁴ (200) 6.65×10 ³ (50) 1.33×10 ³ (10)			R. Beer
сн ₃ sн	4.00 - 3.50 4.00 - 3.16 4.16 - 3.23	6.65×10 ³ (50) 2.66×10 ⁴ (200) 6.65×10 ³ (50)			R. Beer
нсон	4.16 - 3.37	4.00×10^2 (3)			R. Beer

Molecules	Spectral region, µm	Pressure, N/cm ² (torr)	Path	Slit width, µm	Instrument	Operator
СН3Е	3.57 - 3.00 3.57 - 2.96	6.65×10 ³ (50) 2.66×10 ⁴ (200)				R. Beer
N2O.	2.3 - 2.252	1,33×10 ³ (10)	8 m	47	J. A. 1.8 m	J. Margolis
N ₂ O/N ₂	2.300 - 2.252	$1.33 \times 10^3 / 9.85 \times 10^4 (10 / 740)$	8 m	47	J. A. 1.8 m	J. Margolis
N ₂ O/N2	2.300 - 2.252	$1.33 \times 10^2 / 1.0 \times 10^5 (1.0 / 749)$	8 m	47	J. A. 1.8 m	J. Margolis
N ₂ O/N ₂	2.3000 - 2.252	$4.00 \times 10^2 / 6.60 \times 10^3 (3.0 / 497)$	8 m	47	J. A. 1.8 m	J. Margolis
N ₂ O	2.3000 - 2.252	4.00×10^2 (3.0)	8 m	47	J. A. 1.8 m	J. Margolis
N ₂ O	2.2925 - 2.2520	$1.33 \times 10^2 (1.023)$		47	J. A. 1.8 m	J. Margolis
N ₂ O	2.2975 - 2.2520	4.00×10 ² (3.046)	8 m	. 47	J. A. 1.8 m	J. Margolis
N ₂ O	2.3050 - 2.2990	1.33×10^3 (10)	8 m	47	J. A. 1.8 m	J. Margolis
NH ₃ /H ₂	2.2750 - 2.1775	$2.00 \times 10^2 / 6.65 \times 10^4 (1.507 / 501)$	16 m	45	J. A. 1.8 m	J. Margolis
NH ₃	2.2750 - 2.1750	4.40(0.33)	16 m	45	J. A. 1.8 m	J. Margolis
NH ³ /H ₂	2.3370 - 2.2640	$2.7 \times 10^2 / 7.98 \times 10^4 (2.03 / 598)$	16 m	45	J. A. 1.8 m	J. Margolis
NH ₃ /H ₂	2.3400 - 2.3255	$1.33 \times 10^2 / 7.98 \times 10^4 (1.000 / 599)$	16 m	45	J. A. 1.8 m	J. Margolis
NH ₃ /N ₂ O	2.3125 - 2.1740	$1.34 \times 10^2 / 1.50 \times 10^2 (1.010 / 1.130)$	16 m	45	J. A. 1.8 m	J. Margolis
NH ₃ /CO	2.3755 - 2.1770	$40.0/3.40 \times 10^{2} (0.334/2.562)$	16 m	45	J. A. 1.8 m	J. Margolis
NH ₃ /CO	2.3760 - 2.2440	$1.46 \times 10^2 / 1.45 \times 10^2 (1.100 / 1.087)$	16 m	45	J. A. 1.8 m	J. Margolis
NH ₃	2.3625 - 2.2745	$1.45 \times 10^2 (1.093)$	16 m.	45	J. A. 1.8 m	J. Margolis
NH ₃ /CO	2.4020 - 2.2510	$5.50 \times 10^2 / 3.35 \times 10^2 (4.137/2.517)$	16 m	45	J. A. 1.8 m	J. Margolis
NH ₃	2.3375 - 2.2750	40.0 (0.333)	16 m	45	J. A. 1.8 m	J. Margolis
NH ₃	2.3375 - 2.2750	136.0(1.019)	16 m	45	J. A. 1.8 m	J. Margolis
NH ₃	2.3625 - 2.3020	134.0(1.100)	8 m	50	J. A. 1.8 m	J. Margolis
NH ₃	2.3375 - 2.2750	136.0(1.019)	8 m	50	J. A. 1.8 m	J. Margolis
NH ₃	2.2750 - 2.1750	132 (0.990)	8 m	50	J. A. 1.8 m	J. Margolis
N ₂ O	2.83 - 2.93	40-4.0×10 ⁴ (0.3-300)	0,4-32 m	70	J. A. 1.8 m	R. Toth
N ₂ O	2.93 - 3.04	40-4.0×10 ⁴ (0.3-300)	0,4-32 m	70	J. A. 1.8 m	R. Toth
н ₂ со	2.79 - 2.96	40.0-66.5 (0.3-0.5)	8-16 m	60	J. A. 1.8 m	R. Toth
coz	2.05 - 2.15	$(1.0-6.65)\times10^2(1-5)$	8-16 m	70	J. A. 1.8 m	R. Toth
Solar Spect.	2.375 - 2.325			. 70	J. A. 1.8 m	R. Toth
Solar Spect.	3,475 - 3,429			120	J. A. 1.8 m	R. Toth
Solar Spect.	1.920 - 1.595	,		90	J. A. 1.8 m	R. Toth
Solar Spect.	2.41 - 2.315			70	J. A. 1.8 m	R. Toth
Solar Spect.	2.410 - 2.218	,		70	J. A. 1.8 m.	R. Toth
Solar Spect.	2.045 - 1.908			60	J. A. 1.8 m	
Solar Spect.	1.913 - 1.823	•		65	J. A. 1.8 m	
Solar Spect.	1.800 - 1.380			65	J. A. 1.8 m	

Molecules	Spectral region, µm	Pressure, N/cm ² (torr)	Path	Slit width, µm	Instrument	Operator
N ₂ O	2.30 - 2.25	40-1.33×10 ³ (0.33-10.0)	8 m	50	J. A. 1.8 m	J. Margolis
N ₂ O	2.85 - 2.25	6.65×10^3 (500)	41 cm	50	J. Å. 1.8 m	J. Margolis
NH ₃	3.2 - 2.25	66.5-6.65×10 ⁴ (0.5-500)	8 m	65	J. A. 1.8 m	J. Margolis
N ₂ O	3.1 - 2.90	$(1.33-6.65)\times10^2(1-5)$	41 cm	65	J. A. 1.8 m	J. Margolis
N ₂ O	2.3 - 2.250	$2.66 \times 10^{2} - 6.65 \times 10^{4} (2-500)$	8 m	50	J. A. 1.8 m	J. Margolis
N ₂ O	2.3 - 2.275	5.33×10 ⁴ (400)	41 cm	50	J. A. 1.8 m	J. Margolis
N ₂ O/N ₂	2.2875 - 2.25	$2.66 \times 10^2 / 6.65 \times 10^4 (2 / 500)$	8 m	50	J. A. 1.8 m	J. Margolis
NO ₂	3,475 - 3,400	6.5×10^4 (4.9)	16.m	170	J. A. 1.8 m	R. Toth
н ₂ со	3.55 - 3.39	40.0 (0.3)	16 m	100	J. A. 1.8 m	R. Toth
NO ₂	3.53 - 3.39	$(1.33-6.65)\times10^2$ $(1.0-5.0)$	16 m	100	J. A. 1.8 m	R. Toth
C ₂ H ₄	3.43 - 3.09	$1.0 \times 10^2 - 6.65 \times 10^3 (0.75 - 50.0)$	8 m	100	J. A. 1.8 m	R. Toth
C_2H_4	3.415 - 3.11	$(1.06-1.33)\times10^2$ (0.8-1.0)	41 cm	90	J. A. 1.8 m	R. Toth
NH ₃	2.385 - 2.15	$(4.0-8.0)\times10^2$ (3.0-6.0)	8 m	45	J. A. 1.8 m	R. Toth
H ₂ CQ	3.20 - 2.70	53.5 (0.40)	48 m	75	J. A. 1.8 m	R. Toth
н ₂ о	3.4 - 3.00	$1.39 \times 10^3 (10.4)$	48 m	100	J. A. 1.8 m	R. Toth
H ₂ O	3.158 - 3.1	4.05×10^2 (3.03)	48 m	100	J. A. 1.8 m	R. Toth