Introdução às Bases de Dados

Modelo Relacional - III Passagem do EA para Relacional

FCUL, Departamento de Informática Ano Letivo 2021/2022

Ana Paula Afonso

Sumário e Referências

Sumário

- Passagem de EA para Relacional
 Enquadramento no processo de desenho de BD
- Entidades para Tabelas
- Transformação de Associações

Associações com Restrições de Chave Restrições de Participação

- Entidades Fracas
- Generalizações
- Agregações
- Referências
 - R. Ramakrishnan (capítulo 3, secção 3.5)

Processo de Desenho de BDs

Fonte: António Ferreira, Guião SIBD, 2016

Passagem de EA para Relacional

codcliente telefone

cliente faz empréstimo

nome idade codempréstimo valor

datanascimento

- Modelo entidade-associação (EA)
 - Adequado para o desenho inicial, de alto nível, da base de dados
 - Representação gráfica para facilitar discussão de alternativas por equipas
 - Mas não entendido pelos sistemas de gestão de bases de dados (SGBD)
- Modelo relacional
 - Suportado pelos SGBDs relacionais, muito populares

- CREATE TABLE cliente (
 codcliente integer,
 )
- Mas de baixo nível, com comandos de texto, que dificultam discussão
- Maior risco de perder a visão do todo, focando apenas nas partes
- Após discussão de alternativas e integração de diagramas EA
 - Esquema EA é traduzido num esquema relacional (ER) aproximado
 - Com tabelas e restrições de integridade escritas na linguagem SQL
 - Algumas restrições de integridade EA podem não ser concretizadas em SQL

Entidades para ER

Nome da tabela igual ao nome da entidade Colunas da tabela são os atributos da entidade Chave primária da tabela vem da chave primária da entidade


```
CREATE TABLE Employees (
ssn CHAR(11),
name CHAR(30),
lot INTEGER,
PRIMARY KEY (ssn))
```

Caso 1: sem restrições de chave e participação

Nome da tabela igual ao nome da associação

Chave primária da tabela é **composta p**elas chaves primárias das entidades participantes Chaves estrangeiras referenciam as entidades


```
CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)
```

Caso 1: sem restrições de chave e participação

Papéis ajudam a dar nome às colunas


```
CREATE TABLE Reports_To (
supervisor_ssn CHAR (11),
subordinate_ssn CHAR (11),
PRIMARY KEY (supervisor_ssn, subordinate_ssn),
FOREIGN KEY (supervisor_ssn) REFERENCES Employees,
FOREIGN KEY (subordinate_ssn) REFERENCES Employees)
```

Caso 1: sem restrições de chave e participação

Caso 2: com restrição de chave

Abordagem 1: criação de uma nova tabela

Nota: (ssn,did) como chave não cumpre a regra de ser o conjunto minímo

Caso 2: com restrição de chave

Abordagem 2: Adição de chave estrangeira à tabela Dept existente


```
CREATE TABLE Dept_Mgr(
    did INTEGER,
    dname CHAR(20),
    budget REAL,
    ssn CHAR(11),
    since DATE,
    PRIMARY KEY (did),
    FOREIGN KEY (ssn) REFERENCES Employees)
```

Caso 2: com restrição de chave

Duas abordagens

1. Criar uma nova tabela

Vantagens

- Atributos descritivos da associação na sua própria tabela
- Restrição de participação parcial facilmente suportada: basta não inserir linhas na tabela

Desvantagens

- Mais uma tabela no esquema relacional torna pesquisas mais complexas
- Restrição de participação total custosa: necessárias asserções

Usar em casos de associações com muitos atributos descritivos

Caso 2: com restrição de chave

Duas abordagens

2. Adicionar chave estrangeira à tabela existente

Vantagens

- Menos uma tabela no esquema relacional permite pesquisas mais simples
- Restrição de participação total facilmente suportada: basta usar NOT NULL

Desvantagens

- Mistura atributos da associação e entidade na mesma tabela
- Restrição de participação parcial pode levar a muitos valores nulos nas linhas da tabela

Caso 3: com restrição de chave e participação

Adição de chave estrangeira à tabela existente e restrição NOT NULL


```
CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFE
```

NO ACTION

ação por defeito. Um empregado não pode ser removido se tiver um Dept_Mgr a referenciá-lo

FOREIGN KEY (ssn) REFERENCES Employees ON DELETE NO ACTION)

Caso 4: com restrição de participação

Criação de uma nova tabela e asserção

Nota: Por agora, Asserção é uma restrição de integridade textual

RI-1: cada departamento tem de ter pelo menos um empregado (e vice-versa)

Entidades Fracas para ER

Criação de nova tabela e chave estrangeira para entidade forte

Chave primária da entidade fraca é composta...

... por chave parcial e chave primária da entidade forte

Entidades Fracas para ER


```
CREATE TABLE Dep_Policy (

pname CHAR(20),

age INTEGER,

cost REAL,

ssn CHAR (11),

PRIMARY KEY (pname, ssn),

FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE)
```

Generalizações para ER

Abordagem 1

Criação de tabelas para a super-entidade e sub-entidades Restrições de cobertura e sobreposição como asserções

Nas tabelas das sub-entidades

- Chave primária vem da super-entidade E se a sub-entidade tiver uma chave própria?
- Chave estrangeira para a super-entidade com propagação de remoções


```
CREATE TABLE Hourly_Emps (
hours_worked INTEGER,
hourly_wages REAL,
ssn CHAR (11),
PRIMARY KEY (ssn),
FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE )
```

Generalizações para ER

Abordagem 2

lot INTEGER,

contractid INTEGER,

PRIMARY KEY (ssn))

```
Criação de tabelas apenas para as sub-entidades
Restrições de cobertura e sobreposição como asserções
                                                                name
                                                        ssn
                                                                          lot
Apenas aplicável quando existe cobertura total
                                                               Employees
  CREATE TABLE Hourly Emps (
   ssn CHAR (11),
                                                   hours_worked
                                     hourly_wages
   name CHAR(30),
                                                                  IS-A
   lot INTEGER,
                                                                        contractid
   hours worked INTEGER,
   hourly wages REAL,
                                                                     Contract Emps
   PRIMARY KEY (ssn))
                                                     Hourly_Emps
  CREATE TABLE Contract Emps (
   ssn CHAR (11),
   name CHAR(30),
```

Generalizações para ER

Duas abordagens

- 1. Criação de tabelas para a super-entidade e sub-entidades
 - Sempre aplicável
 - Necessário consultar duas tabelas para obter todos os dados de cada subentidade
- 2. Criação de tabelas apenas para as sub-entidades
 - Mais eficiente para interrogações a sub-entidades específicas
 - Apenas aplicável quando existe cobertura total

Restrições de cobertura e sobreposição como asserções

Agregações para ER

Passagem semelhante à aplicada às associações

Primeiro traduz-se o interior da agregação

Sponsors

- Depois a associação com a agregação
 - Monitors

ssn CHAR(11),

CREATE TABLE Monitors (

```
started_on since dname budget

Projects Sponsors Departments
```

ssn

name

Employees

Monitors

lot

until

20

```
pid INTEGER,
did INTEGER,
until CHAR(11),
PRIMARY KEY (ssn,pid,did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (pid,did) REFERENCES Sponsors)
© 2021-Docentes SI-DI/FCUL
```

Exercício 1 Passagem do EA para ER

Exercício 1


```
CREATE TABLE Policies (
policyid INTEGER,
cost REAL,
ssn CHAR (11) NOT NULL,
PRIMARY KEY (policyid),
FOREIGN KEY (ssn)
REFERENCES Employees
ON DELETE CASCADE)
```

```
CREATE TABLE Dependents (
pname CHAR(20),
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid),
FOREIGN KEY (policyid)
REFERENCES Policies
ON DELETE CASCADE)
```

Exercício 2 Passagem do EA para ER

Exercício 2

```
name
                                                                pname
                                                                          age
CREATE TABLE Policies (
                            ssn
                                         lot
policyid INTEGER,
                                                                     Dependents
 cost REAL,
                               Employees
 ssn CHAR (11),
PRIMARY KEY (policyid, ssn),
                                          Purchaser
 FOREIGN KEY (ssn)
                                                              Beneficiary
   REFERENCES Employees
    ON DELETE CASCADE )
                                                            Policies
             CREATE TABLE Dependents (
                                                     policyid
                                                                 cost
              pname CHAR(20),
              age INTEGER,
              ssn CHAR (11),
              policyid INTEGER,
              PRIMARY KEY (pname, policyid, ssn),
              FOREIGN KEY (policyid, ssn) REFERENCES Policies
                                                 ON DELETE CASCADE ))
```