Теоремы о лямбда-исчислении.

Некоторые базовые определения — повторение

Определение

Пред-лямбда-терм:

$$\Lambda ::= (\lambda x.\Lambda)|(\Lambda \Lambda)|x$$

Определение

Лямбда-терм: $\Lambda/(=_{lpha})$

Определение

 $R \subseteq A \times B$ — бинарное отношение.

3апишем aRb, если $\langle a,b\rangle \in R$

Отношение для инфиксной операции $a \star b : \langle a, b \rangle \in (\star)$

eta-редуцируемость

Определение

 $(woheadrightarrow_{eta})$ — транзитивное и рефлексивное замыкание отношения $(woheadrightarrow_{eta})$ А именно, будем говорить, что $A woheadrightarrow_{eta} B$, если найдутся такие $X_1 \dots X_n$, что $A =_{lpha} X_1 woheadrightarrow_{eta} X_2 woheadrightarrow_{eta} \dots woheadrightarrow_{eta} X_{n-1} woheadrightarrow_{eta} X_n =_{lpha} B$.

Пример

$$\Omega \twoheadrightarrow_{\beta} \Omega$$

Определение (Ромбовидное свойство)

Отношение R обладает ромбовидным свойством, если для любых a,b,c: из aRb, aRc, $b \neq c$ следует существование d, что bRd и cRd.

Пример

 (\leqslant) на \mathbb{N}_0 обладает ромбовидным свойством:

$$d = max(b, c)$$
: $2 \le 7, 3 \le 7 \Rightarrow d = 7$

(>) на \mathbb{N}_0 не обладает ромбовидным свойством:

$$3 > 1, 3 > 0$$
: HET $d: 1 > d, 0 > d$

Теорема Чёрча-Россера

Теорема (Черча-Россера)

 $(--)_{\beta}$) обладает ромбовидным свойством.

Следствие

Если у А есть нормальная форма, то она единственная.

Доказательство.

Пусть $A \twoheadrightarrow_{\beta} B$ и $A \twoheadrightarrow_{\beta} C$. B, C — нормальные формы и $B \neq_{\alpha} C$. Тогда по теореме Черча-Россера найдётся D: $B \twoheadrightarrow_{\beta} D$ и $C \twoheadrightarrow_{\beta} D$. Тогда $B =_{\alpha} D$ и $C =_{\alpha} D \Rightarrow B =_{\alpha} C$. Противоречие.

Лемма

Если В — нормальная форма, то не существует Q такой, что $B \to_{\beta} Q$. Значит если $B \to_{\beta} Q$, то количество шагов редукции равно 0.

Лемма

Если R — обладает ромбовидным свойством, то и R^* (транзитивное, рефлексивное замыкание R) им обладает.

Доказательство.

Две вложенных индукции.

Лемма

 (\rightarrow_{β}) не обладает ромбовидным свойством.

Пусть $A = (\lambda x. xx)({\rm II})$. Покажем, что в таком случае не будет выполняться ромбовидное свойство:

Рис.: Нет такого D, что $B \rightarrow_{\beta} D$ и $C \rightarrow_{\beta} D$.

Определение (Параллельная β -редукция)

$$A \rightrightarrows_{\beta} B$$
, если

- 1. A = B
- 2. $A = P_1 Q_1$, $B = P_2 Q_2 \cup P_1 \Rightarrow_{\beta} P_2$, $Q_1 \Rightarrow_{\beta} Q_2$
- 3. $A = \lambda x.P_1$, $B = \lambda x.P_2$ u $P_1 \Rightarrow_{\beta} P_2$
- 4. $A =_{\alpha} (\lambda x. P_1) Q_1$, $B =_{\alpha} P_2[x := Q_2]$, причем Q_2 свободна для подстановки вместо x в P_2 и $P_1 \Longrightarrow_{\beta} P_2$, $Q_1 \Longrightarrow_{\beta} Q_2$

Лемма: если $P_1 ightrightarrows_{eta} P_2$ и $Q_1 ightrightarrows_{eta} Q_2$, то $P_1[x \coloneqq Q_1] ightrightarrows_{eta} P_2[x \coloneqq Q_2]$

- ▶ Пусть $P_1 =_{\alpha} P_2$. Индукция по структуре выражения.
- ightharpoonup Пусть $P_1\equiv A_1B_1$, $P_2\equiv A_2B_2$. По определению $(\rightrightarrows_{eta})$ $A_1\rightrightarrows_{eta}A_2$ и $B_1\rightrightarrows_{eta}B_2$. Тогда:
 - 1. $x \in FV(A_1)$. По индукционному предположению $A_1[x \coloneqq Q_1] \rightrightarrows_{\beta} A_2[x \coloneqq Q_2]$. Тогда $A_1[x \coloneqq Q_1]B_1 \rightrightarrows_{\beta} A_2[x \coloneqq Q_2]B_2$. Тогда $A_1B_1[x \coloneqq Q_1] \rightrightarrows_{\beta} A_2B_2[x \coloneqq Q_2]$.
 - 2. $x \in FV(B_1)$. По индукционному предположению $B_1[x := Q_1] \rightrightarrows_{\beta} B_2[x := Q_2]$. Тогда $A_1B_1[x := Q_1] \rightrightarrows_{\beta} A_2B_2[x := Q_2]$.
- ▶ Пусть $P_1 \equiv \lambda y.A_1$, $P_2 \equiv \lambda y.A_2$. По определению (\Rightarrow_{β}) $A_1 \Rightarrow_{\beta} A_2$. Тогда по индукционному предположению $A_1[x \coloneqq Q_1] \Rightarrow_{\beta} A_2[x \coloneqq Q_2]$. Тогда $\lambda y.(A_1[x \coloneqq Q_1]) \Rightarrow_{\beta} \lambda y.(A_2[x \coloneqq Q_2])$ по определению (\Rightarrow_{β}) . Следовательно $\lambda y.A_1[x \coloneqq Q_1] \Rightarrow_{\beta} \lambda y.A_2[x \coloneqq Q_2]$ по определению подстановки.
- ▶ Пусть $P_1 =_{\alpha} (\lambda y.A_1)B_1$, $P_2 =_{\alpha} A_2[y := B_2]$ и $A_1 \rightrightarrows_{\beta} A_2$, $B_1 \rightrightarrows_{\beta} B_2$. По индукционному предположению получаем, что $A_1[x := Q_1] \rightrightarrows_{\beta} A_2[x := Q_2]$, $B_1[x := Q_1] \rightrightarrows_{\beta} B_2[x := Q_2]$. По определению $(\rightrightarrows_{\beta})$ тогда $(\lambda y.A_1[x := Q_1])B_1[x := Q_1] \rightrightarrows_{\beta} A_2[y := B_2][x := Q_2]$

Лемма: (\Rightarrow_{β}) обладает ромбовидным свойством

Будем доказывать индукцией по определению $(\Longrightarrow_{\beta})$. Покажем, что если $M \Longrightarrow_{\beta} M_1$ и $M \Longrightarrow_{\beta} M_2$, то существует M_3 , что $M_1 \Longrightarrow_{\beta} M_3$ и $M_2 \Longrightarrow_{\beta} M_3$. Рассмотрим случаи:

- ▶ Если $M \equiv M_1$, то просто возьмем $M_3 \equiv M_2$.
- ▶ Если $M \equiv \lambda x.P$, $M_1 \equiv \lambda x.P_1$, $M_2 \equiv \lambda x.P_2$ и $P \Rightarrow_{\beta} P_1$, $P \Rightarrow_{\beta} P_2$, то по предположению индукции существует P_3 , что $P_1 \Rightarrow_{\beta} P_3$, $P_2 \Rightarrow_{\beta} P_3$, тогда возьмем $M_3 \equiv \lambda x.P_3$.
- ▶ Если $M \equiv PQ$, $M_1 \equiv P_1Q_1$ естественное доказательство.
- ▶ Если $M \equiv (\lambda x.P)Q$, $M_1 \equiv P_1[x \coloneqq Q_1]$ и $P \rightrightarrows_\beta P_1$, $Q \rightrightarrows_\beta Q_1$, то рассмотрим случаи:
 - 1. $M_2 \equiv (\lambda x. P_2) Q_2$, $P \rightrightarrows_{\beta} P_2$, $Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме существует такой $M_3 \equiv P_3[x \coloneqq Q_3]$, что $P_1 \rightrightarrows_{\beta} P_3$, $Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3$, $Q_2 \rightrightarrows_{\beta} Q_3$.
 - 2. $M_2 \equiv P_2[x := Q_2], \ P \Rightarrow_{\beta} P_2, \ Q \Rightarrow_{\beta} Q_2$. Тогда по предположению индукции и лемме существует такой $M_3 \equiv P_3[x := Q_3]$, что $P_1 \Rightarrow_{\beta} P_3, \ Q_1 \Rightarrow_{\beta} Q_3$ и $P_2 \Rightarrow_{\beta} P_3, \ Q_2 \Rightarrow_{\beta} Q_3$.

Лемма

- 1. $(\Rightarrow_{\beta})^* \subseteq (\rightarrow_{\beta})^*$
- 2. $(\rightarrow_{\beta})^* \subseteq (\rightrightarrows_{\beta})^*$

Следствие

$$(\rightarrow_{\beta})^* = (\rightrightarrows_{\beta})^*$$

Из приведенных выше лемм и следствия докажем теорему Черча-Россера.

Доказательство.

 $(\rightarrow_{\beta})^* = (\twoheadrightarrow_{\beta})$. Тогда $(\twoheadrightarrow_{\beta}) = (\rightrightarrows_{\beta})^*$. Значит из того, что $(\rightrightarrows_{\beta})$ обладает ромбовидным свойством и леммы 2, следует, что $(\twoheadrightarrow_{\beta})$ обладает ромбовидным свойством.

Нормальный и аппликативный порядок вычислений

Пример

Выражение $KI\Omega$ можно редуцировать двумя способами:

- 1. $KI\Omega =_{\alpha} ((\lambda a. \lambda b. a) I)\Omega \rightarrow_{\beta} (\lambda b. I)\Omega \rightarrow_{\beta} I$
- 2. $KI\Omega =_{\alpha} ((\lambda a.\lambda b.a) I)((\lambda x.x x)(\lambda x.x x)) \twoheadrightarrow_{\beta} ((\lambda a.\lambda b.a) I)((\lambda x.x x)(\lambda x.x x)) \rightarrow_{\beta} KI\Omega$

Определение (нормальный порядок редукции)

Pедукция самого левого β -редекса.

Определение (аппликативный порядок редукции)

Редукция самого левого β -редекса из самых вложенных.

Теорема (Приводится без доказательства)

Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.

Нормальный порядок — медленный

Пример

Рассмотрим λ -выражение $(\lambda x.x \times x)(II)$. Попробуем редуцировать его нормальным порядком:

Как мы увидим, в данной ситуации аппликативный порядок редукции оказывается значительно эффективней:

$$(\lambda x.x \times x \times x)(II) \rightarrow_{\beta} (\lambda x.x \times x \times x) I \rightarrow_{\beta} IIII \rightarrow_{\beta} III \rightarrow_{\beta} II \rightarrow_{\beta} I$$

Как программировать? Любое значение – замыкание

```
let x = sqrt 256 let x = fun () -> sqrt 256
```

Плюс мемоизация:

```
let x = fun () -> sqrt 256;;
let y = x;;
y () + x () (* вычисляется два раза *)
```

Давайте запоминать результаты!

```
type int-value = Compute of unit -> int | Result of int;;
let compute v = match !v with
    Compute f -> let res = f () in v := Result res; res
    | Result r -> r;;
```

```
let x = ref (Compute (fun () -> sqrt 256));;
let y = x;;
compute y + compute x
```

Ленивые и энергичные вычисления

Энергичные вычисления: аппликативный порядок. Ленивые вычисления: нормальный порядок + мемоизация. If всегда ленив

let fact n = if n > 1 then n * fact (n-1) else 1

Ленивое общение с внешним миром бессмысленно.

Импликационный фрагмент ИИВ

Рассмотрим подмножество ИИВ, со следующей грамматикой: $\Phi := x \mid (\Phi \to \Phi)$ Добавим в него схему аксиом

$$\overline{\Gamma, \varphi \vdash \varphi}$$

Правило введения импликации:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

Правило удаления импликации:

$$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

Теорема

Если Γ и φ состоят только из импликаций, то $\Gamma \vdash \varphi$ равносильна $\Gamma \vdash_{\rightarrow} \varphi$.

Замкнутость И.Ф.ИИВ

Lemma

Если $\Gamma \vdash \varphi$, то в любой модели Крипке из $\Vdash \Gamma$ следует $\Vdash \varphi$

Доказательство.

Пусть $\Gamma \vdash \varphi$. Тогда $\vdash \&\Gamma \to \varphi$, где $\&\Gamma$ — конъюнкция всех утверждений в Γ . По корректности моделей Крипке, будет выполнено $\Vdash \&\Gamma \to \varphi$. Переписывая & и \to по определению, получаем $\Vdash \Gamma \implies \Vdash \varphi$.

Замкнутость И.Ф.ИИВ

Доказательство.

Теорема

 $\Gamma \vdash_{\rightarrow} \varphi$ т.и.т.т. в любой модели Крипке из $\Vdash \Gamma$ следует $\Vdash \varphi$

- ▶ (⇒) Очевидно по лемме 5.
- ▶ (\Leftarrow) Пусть в любой модели Крипке из \Vdash Γ следует \Vdash φ . Докажем $\Gamma \vdash_{\rightarrow} \varphi$. Выберем подходящую модель Крипке. Напомним, что моделью Крипке называется тройка $\langle C, \geq, \Vdash \rangle$, где C – множество миров, \geq – отношение частичного порядка на $C_1 \Vdash -$ отношение вынужденности переменной. Построим модель Крипке $\mathcal{C} = \langle \mathcal{C}, \geq, \vdash \rangle$.

Пусть $C = \{ \Delta \mid \Gamma \subseteq \Delta, \Delta \text{ замкнут относительно } \vdash_{\rightarrow} \}$. Δ замкнут относительно доказуемости, когда для любого φ если $\Delta \vdash_{\rightarrow} \varphi$, то $\varphi \in \Delta$. $C_1 \geqslant C_2$, если $C_1 \supseteq C_2$.

 $\Delta \Vdash \alpha$, если $\alpha \in \Delta$, α — переменная.

Лемма: В модели $\mathcal{C} \Delta \Vdash \varphi$ т.и.т.т. $\varphi \in \Delta$

Доказательство.

База. $\varphi \equiv \alpha$. $\Delta \Vdash \alpha \Leftrightarrow \alpha \in \Delta$ следует из определения вынужденности.

Индукционный переход. $\varphi \equiv \psi \rightarrow \sigma$

Индукционное предположение: $\forall \Delta \in \mathcal{C} : \Delta \Vdash \psi \Leftrightarrow \psi \in \Delta, \ \Delta \Vdash \sigma \Leftrightarrow \sigma \in \Delta.$

Докажем, что $\Delta \Vdash \psi \to \sigma \Leftrightarrow \psi \to \sigma \in \Delta$ (два включения).

Доказательство $\Delta \Vdash \psi \to \sigma \Leftrightarrow \psi \to \sigma \in \Delta$

 (\Rightarrow) Пусть $\Delta \Vdash \psi \to \sigma$.

Рассмотрим мир $\Pi = (\Delta \cup \{\psi\})^*$. $\Pi \Vdash \psi \to \sigma$, т.к. $\Delta \leqslant \Pi$.

 $\psi\in\Pi$. Тогда, по инд. пред., $\Pi\Vdash\psi$. Значит, $\Pi\Vdash\sigma$. В самом деле, из определения вынужденности импликации в Π следует, что если $\Pi\Vdash\psi$, то $\Pi\vdash\sigma$.

По инд. пред. заключаем $\sigma \in \Pi$, т.е. $\Pi \vdash_{\rightarrow} \sigma$, т.к. Π – замкнут по доказуемости.

Ясно, что $\Delta, \psi \vdash_{\to} \sigma$. Действительно, в гипотезах доказательства $\Pi \vdash_{\to} \sigma$ использовалось не все бесконечное множество Π , а лишь конечный набор утверждений из него. Каждое такое утверждение выводится из Δ, ψ , потому что Π - замыкание $\Delta \cup \{\psi\}$.

Из $\Delta, \psi \vdash_{\to} \sigma$ следует $\Delta \vdash_{\to} \psi \to \sigma$. Таким образом, $\psi \to \sigma \in \Delta$. (\Leftarrow) Пусть $\psi \to \sigma \in \Delta$.

Рассмотрим произвольный мир $\Pi: \Delta \leqslant \Pi \land \Pi \Vdash \psi$. По инд. пред. $\psi \in \Pi$. $\psi \to \sigma \in \Pi$, т.к. $\Delta \subseteq \Pi$. $\Pi \vdash_{\to} \psi$, $\Pi \vdash_{\to} \psi \to \sigma$. Очевидно, $\Pi \vdash_{\to} \sigma$. $\sigma \in \Pi$. Тогда, по инд. пред., $\Pi \Vdash \sigma$. Таким образом, $\Pi \Vdash \psi \to \sigma$, а следовательно, $\Delta \Vdash \psi \to \sigma$.

Завершение доказательства

Теперь можем доказать теорему о замкнутости ИФИИВ.

Доказательство.

Следствие $\Gamma \vdash_{\rightarrow} \varphi \Rightarrow \Gamma \vdash \varphi$ очевидно.

Пусть $\Gamma \vdash \varphi$. По 5 получаем, что в любой модели Крипке из $\Vdash \Gamma$ следует $\Vdash \varphi$.

Отсюда, по теореме 0.4, доказывается $\Gamma \vdash_{\rightarrow} \varphi$.

Просто-типизированное лямбда-исчисление

Определение (λ_{\rightarrow} по Карри)

$$\frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma, x : \varphi \vdash A : \varphi} \ x \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x . A : \varphi \to \psi} \ x \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \varphi \to \psi}{\Gamma \vdash BA : \psi}$$

Определение (λ_{\rightarrow} по Чёрчу)

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \times \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x^{\varphi}.A : \varphi \to \psi} \times \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \varphi \to \psi}{\Gamma \vdash BA : \psi}$$

Просто-типизированное лямбда-исчисление

Определение (λ_{\rightarrow} по Карри)

$$\frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma, x: \varphi \vdash A: \varphi} \; x \notin \Gamma \qquad \frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma \vdash \lambda x. A: \varphi \rightarrow \psi} \; x \notin \Gamma \qquad \frac{\Gamma \vdash A: \varphi \qquad \Gamma \vdash B: \varphi \rightarrow \psi}{\Gamma \vdash BA: \psi}$$

Определение (λ_{\rightarrow} по Чёрчу)

$$\frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma, x: \varphi \vdash x: \varphi} \; x \notin \Gamma \qquad \frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma \vdash \lambda x^{\varphi}. A: \varphi \to \psi} \; x \notin \Gamma \qquad \frac{\Gamma \vdash A: \varphi \qquad \Gamma \vdash B: \varphi \to \psi}{\Gamma \vdash BA: \psi}$$

Пример

По Карри	По Черчу
$\lambda f.\lambda x.f\ (f\ x):(\alpha \to \alpha) \to (\alpha \to \alpha)$	$\lambda f^{\alpha \to \alpha} . \lambda x^{\alpha} . f(f x) : (\alpha \to \alpha) \to (\alpha \to \alpha)$

Просто-типизированное лямбда-исчисление

Определение (λ_{\rightarrow} по Карри)

$$\frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma, x: \varphi \vdash A: \varphi} \; x \notin \Gamma \qquad \frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma \vdash \lambda x. A: \varphi \rightarrow \psi} \; x \notin \Gamma \qquad \frac{\Gamma \vdash A: \varphi \qquad \Gamma \vdash B: \varphi \rightarrow \psi}{\Gamma \vdash BA: \psi}$$

Определение (λ_{\rightarrow} по Чёрчу)

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \times \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x^{\varphi}.A : \varphi \to \psi} \times \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi}{\Gamma \vdash BA : \psi}$$

Пример

По Карри	По Чёрчу
$\lambda f.\lambda x.f\ (f\ x):(\alpha\to\alpha)\to(\alpha\to\alpha)$	$\lambda f^{\alpha \to \alpha} . \lambda x^{\alpha} . f(f(x)) : (\alpha \to \alpha) \to (\alpha \to \alpha)$
$\lambda f.\lambda x.f\ (f\ x): (\beta \to \beta) \to (\beta \to \beta)$	$\lambda f^{\beta \to \beta} . \lambda x^{\beta} . f(f(x)) : (\beta \to \beta) \to (\beta \to \beta)$

Теоремы о λ_{\rightarrow}

Лемма (о редукции, subject reduction)

Если $A \rightarrow_{\beta} B$ и $\vdash A : \tau$, то $\vdash B : \tau$.

Лемма

Если $\vdash A$: τ , то любое подвыражение A также имеет тип.

Теорема (Чёрча-Россера)

Если \vdash $A : \tau$, $A \twoheadrightarrow_{\beta} B$, $A \twoheadrightarrow_{\beta} C$ и $B \neq C$, то найдётся D, что \vdash $D : \tau$, и $B \twoheadrightarrow_{\beta} D$, $C \twoheadrightarrow_{\beta} D$.

Соответствие между исчислениями

Определение

$$|A| = \begin{cases} x, & A = x \\ \lambda x.|Q| & A = \lambda x^{T}.Q \\ |P| |Q| & A = P Q \end{cases}$$

Теорема

- 1. Если $\Gamma \vdash_{\mathsf{q}} A : \tau$, то $|\mathsf{Gamma}| \vdash_{\mathsf{K}} |A| : \tau$;
- 2. Если $\Gamma \vdash_{\kappa} A : \tau$, то найдётся такой B : A = |B|, что $\Gamma \vdash_{\neg} B : \tau$.

Теорема (уникальность типов, для исчисления по Чёрчу)

- 1. $\Gamma \vdash_{\neg} M : \sigma$ и $\Gamma \vdash_{\neg} M : \tau$ влечёт $\sigma = \tau$;
- 2. $\Gamma \vdash_{\neg} M : \sigma, \Gamma \vdash_{\neg} N : \tau$ и $M =_{\beta} N$ влечёт $\sigma = \tau$.

Лемма (о расширении, subject expansion)

Если $\Gamma \vdash_{\neg} A : \tau$ и $B \twoheadrightarrow_{\beta} A$, то $\Gamma \vdash_{\neg} B : \tau$.

Изоморфизм Карри-Ховарда

Теорема (изоморфизм Карри-Ховарда)

- 1. Если $\Gamma \vdash au$, то найдётся Δ , A, что $\Gamma = |\Delta|$ и $\Delta \vdash A : au$;
- 2. Если $\Gamma \vdash A : \tau$, то $|\Gamma| \vdash \tau$.