ML&AI STUDY

AlexNet

2143978

김예령

CONTENTS

01. AlexNet이란?

· 간단한 설명

02. 주요개념설명

- · ReLU 함수
- · Overlapping Pooling
- · LRN

03. AlexNet 구조

• 전체적인 구조

04. Overfitting 줄이기

- · DropOut
- $\cdot \ \text{data augmentation} \\$

01 AlexNet이란?

AlexNet

2012년 개최된 ILCVRX의 우승을 찾이한 CNN의 구조 AlexNet의 original 논문명은 "ImageNet Classification with Deep Convolutional Neural Networks" 논문의 첫번째 저자가 Alex Khrizevsky이기 때문에 그의 이름을 땄음

우승 알고리즘의 분류 에러율(%)

02 주요개념설명

ReLU 함수

Tanh 함수 대신에 ReLU 함수가 사용됨. 같은 정확도를 유지하면서 Tanh 함수를 사용하는 것보다 6배 빠름

ReLU VS Tanh

Error rate가 0.25에 도달하기 위한 epoch 수

02 주요개념설명

Overlapping Pooling

풀링 커널이 중첩되면서 지나감 top-1, top-5 error rates를 각각 0.4% 0.3% 감소시킬 수 있었음 과대적합(overfitting) 되는 것을 방지할 수 있음

pooling window의 크기 > stride의 크기

Tranditional pooling

pooling window의 크기 = stride의 크기

LRN(Local Response Normalization)

특정값에 의해서 과대 적합이 되는 걸 방지하기 위해 사용 top-1, top-5 error rates 각각 1.4%, 1.2% 감소시킴

Lateral inhibition

신경생물학 개념 활성화된 뉴련이 주변 이웃 뉴런들을 억누르는 현상

AlexNet 구조

03 AlexNet 구조

04 Overfitting 줄이기

Dropout

0.5의 확률로 hidden neuron의 값을 0으로 바꿔줌 Dropout된 hidden neuron은 forward, backpropagation 시 영향을 끼치지 않는다. 3개의 Fully-connected layer 중 앞에 2개의만 적용 Test시Dropout 적용x, 대신 0.5를 곱해줌

Data Augmentation

Image Translation and horizontal reflection

좌우반전(horizontal reflction) 사용하여 이미지의 양을 2배로 증가 256 x 256 이미지를 랜덤으로 잘라 224 x 224로 만들어 1024배 증가 (256 - 224) * (256 - 224) * 2 = 2048배 증가

감사합니다