Στοιχεία Γραμμικής Άλγεβρας -Χειμ. Εξ. 2020-21

Ασχήσεις του Κεφ. 5 - Απαντήσεις

3.
$$\mathbf{A}\pi$$
. Nai, $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$

4. •
$$\begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}$$
 $\lambda = 1, 5$
A π . $\lambda = 1, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \lambda = 5, \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

•
$$\begin{bmatrix} 4 & -2 \\ -3 & 9 \end{bmatrix}$$
, $\lambda = 10$
A π . $\lambda = 10$, $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

$$\bullet \begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}, \quad \lambda = 3$$

$$\mathbf{A}\pi. \quad \lambda = 3, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

5. $\mathbf{A}\boldsymbol{\pi}$.

$$\lambda_1=1$$
, Βάση του ιδιόχωρου: $\mathbf{v}_1=\begin{bmatrix}0\\1\\0\end{bmatrix}$ $\lambda_2=2$, Βάση του ιδιόχωρου: $\mathbf{v}_2=\begin{bmatrix}-1\\2\\2\end{bmatrix}$ $\lambda_3=3$, Βάση του ιδιόχωρου: $\mathbf{v}_3=\begin{bmatrix}-1\\1\\1\end{bmatrix}$.

8.
$$(\alpha')$$
 $\begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$ $\mathbf{A}\pi$. $\lambda^2 - 4\lambda - 45$

$$(\beta') \begin{bmatrix} 3 & -2 \\ 1 & -1 \end{bmatrix}$$

$$\mathbf{A}\pi. \ \lambda^2 - 2\lambda - 1$$

$$(\gamma') \begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & -1 \\ 0 & 6 & 0 \end{bmatrix}$$

$$\mathbf{A}\pi. \ -\lambda^3 + 4\lambda^2 - 9\lambda - 6$$

$$\mathbf{A}\pi. \quad -\lambda^3 + 4\lambda^2 - 9\lambda - 6$$

$$\begin{bmatrix} 4 & 0 & 0 \end{bmatrix}$$

(δ')
$$\begin{bmatrix} 4 & 0 & 0 \\ 5 & 3 & 2 \\ -2 & 0 & 2 \end{bmatrix}$$
$$\mathbf{A}\pi. \quad -\lambda^3 + 9\lambda^2 - 26\lambda + 24$$

9.
$$\mathbf{A}\pi$$
. $\lambda_1 = 0$, $\lambda_2 = \lambda_3 = 1$, $\lambda_4 = \lambda_5 = 3$

10.
$$(\alpha')$$
 $\begin{bmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & -3 \end{bmatrix}$,

$$\mathbf{A}\pi$$
. $\lambda_1 = 1$, $\mathbf{v}_1 = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$, $\lambda_2 = 2$, $\mathbf{v}_2 = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\lambda_3 = 3$, $\mathbf{v}_3 = \begin{bmatrix} -1\\1\\1 \end{bmatrix}$

$$(\beta') \begin{bmatrix} 2 & 0 & -2 \\ 0 & 4 & 0 \\ -2 & 0 & 5 \end{bmatrix}$$

$$\mathbf{A}\pi. \ \lambda_1 = 1, \ \mathbf{v}_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \quad \lambda_2 = 4, \ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \lambda_3 = 6, \ \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$

11. $A\pi$.

$$\lambda_1 = 1, \ \pi(\lambda_1) = 1, \ \gamma(\lambda_1) = 1, \ E_{\lambda_1} = \text{Span}\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \right\},$$

$$\lambda_2 = 2, \ \pi(\lambda_2) = 2, \ \gamma(\lambda_2) = 2, \ E_{\lambda_2} = \text{Span}\left\{ \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \ \begin{bmatrix} 2\\0\\1 \end{bmatrix} \right\}.$$

12.
$$\mathbf{A}\pi$$
. $A^4 = \begin{bmatrix} 226 & -525 \\ 90 & -209 \end{bmatrix}$

13. (a')
$$\begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$$
, $\mathbf{A}\pi$. \bullet $P = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$, and $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$$(β')$$
 $\begin{bmatrix} 3 & -1 \\ 1 & 5 \end{bmatrix}$ **Aπ.** Δεν είναι διαγωνοποιήσιμος.

$$(\mathbf{y'}) \ \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix} \mathbf{A} \boldsymbol{\pi}. \bullet P = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 1 \\ 4 & 3 & 1 \end{bmatrix}, \ \mathrm{kal} \ D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(\delta') \begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix} \mathbf{A} \pi. \bullet P = \begin{bmatrix} -1 & 2 & 1 \\ -1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \text{ fail } D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(\varepsilon') \begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix} \mathbf{A} \pi. \bullet P = \begin{bmatrix} -2 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 0 \end{bmatrix}, \text{ for } D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

- 14. Απ. Ναι. Γιατί;
- 15. Απ. Όχι. Γιατί;
- 16. Απ. Όχι. Γιατί;

17.
$$(\alpha')$$
 $\begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$ $\mathbf{A}\pi$. $\lambda = 2 + i$, $\begin{bmatrix} -1 + i \\ 1 \end{bmatrix}$, $\lambda = 2 - i$, $\begin{bmatrix} -1 - i \\ 1 \end{bmatrix}$,

$$(\beta') \begin{bmatrix} 1 & 5 \\ -2 & 3 \end{bmatrix}$$

$$\mathbf{A}\pi. \ \lambda = 2 + 3i, \begin{bmatrix} 1 - 3i \\ 2 \end{bmatrix}, \ \lambda = 2 - 3i, \begin{bmatrix} 1 + 3i \\ 2 \end{bmatrix}$$

18. $A\pi$.

(
$$\alpha'$$
) $\begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$, $\lambda = \sqrt{3} \pm i$, $\phi = \pi/6$, $r = 2$

(
$$\beta'$$
) $\begin{bmatrix} -\sqrt{3}/2 & 1/2 \\ -1/2 & -\sqrt{3}/2 \end{bmatrix}$, $\lambda = -\sqrt{3}/2 \pm (1/2)i$, $\phi = -5\pi/6$, $r = 1$

$$(\gamma') \ \left[\begin{array}{cc} 0.1 & 0.1 \\ -0.1 & 0.1 \end{array} \right], \qquad \lambda = 0.1 \pm 0.1i, \ \phi = -\pi/4, \ r = \sqrt{2}/10$$

19. $A\pi$.

$$(\alpha') \ \ A = \left[\begin{array}{cc} 1 & -2 \\ 1 & 3 \end{array} \right] \qquad P = \left[\begin{array}{cc} -1 & -1 \\ 1 & 0 \end{array} \right], \ C = \left[\begin{array}{cc} 2 & -1 \\ 1 & 2 \end{array} \right]$$

$$(\beta') \ A = \begin{bmatrix} 1 & 5 \\ -2 & 3 \end{bmatrix}, \qquad P = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}$$