

Course No: ENG 1450 Page No.: 1 of 1

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours EXAMINERS: C. Shafai/B. Kordi

INSTRUCTIONS:

- > Do not remove the staple.
- Closed-book exam. No books/notes allowed.
- Electronic devices (such as calculators, PDAs, iPods, etc.) are NOT allowed.
- ➤ This is a multiple choice examination and consists of 30 questions.
- Mark your answer in pencil on the bubble sheet provided.
- Return both this booklet and the bubble sheet at the end of the examination.
- ➤ No marks will be given for working on this booklet.
- Each correct answer has one mark and each wrong answer has zero marks.
- ➤ No negative marks for wrong answer.
- ➤ A formula sheet is provided on the last page.

PRINT YOUR NAME IN FULL ON THIS LIN SIGNATURE A01 (Prof. Shafai) A02 (Prof. Kord
A01 (Brof Shafai) A02 (Brof Vord
A01 (Prof. Shafai) A02 (Prof. Kord
CIRCLE YOUR SECTION
E2-229 EITC U College – Grea
CIRCLE EXAMINATION CENTRE

Mark	
Out of	30

Course No: ENG 1450 Page No.: 2 of 2

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours EXAMINERS: C. Shafai/B. Kordi

1 | Consider a resistive circuit with DC voltage/current sources. Which of the following is <u>incorrect</u>?

- A) If the circuit has only one source, the source provides power.
- B) If the circuit has only one source, the total power absorbed by all the resistors is equal to the power provided by the source.
- C) If the circuit has two or more sources, there might be a source that absorbs power.
- D) If the circuit has two or more sources, at least one of them provides power.
- E) None of the above.
- In a DC circuit (a circuit with DC sources only), there is a resistor in series with a capacitor. The circuit has been connected for a long time. Which of the following is incorrect?
 - A) The current of the resistor is zero.
 - B) The voltage of the resistor is zero.
 - C) The power absorbed by the resistor is zero.
 - D) The energy stored in the capacitor is equal to the energy absorbed by the resistor.
 - E) None of the above.
- **3** Which of the following is correct?
 - A) $i_1 + i_2 = i_6$
 - B) $i_1 + i_2 = 0$
 - C) $i_1 + i_2 = i_3 + i_5$
 - D) $i_1 + i_2 = i_4$
 - E) None of the above.

- 4 What is the value of $v_w + v_y$ in the circuit shown below?
 - A) 2 V
 - B)-2V
 - C) 3 V
 - D) -3 V
 - E) 0 V

Course No: ENG 1450 Page No.: 3 of 3

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours EXAMINERS: C. Shafai/B. Kordi

5 How much is the total power absorbed by all the resistors?

- A) 5 W
- B) 10 W
- C) 15 W
- D) 20 W
- E) Not enough information is provided.

6 What is the value of R in Problem 5?

- Α) 5 Ω
- B) 10Ω
- C) 15 Ω
- D) 20 Ω
- E) Not enough information is provided.

7 If the power of the component shown below is -5 W, then the voltage V is equal to...

- A) + 10 V
- B) -2.5 V
- C) + 2.5 V
- D) -1.25 V
- E) None of the above.

8 Which of the following is <u>correct</u> for the circuit shown below?

- A) All four voltage sources deliver power.
- B) The current of the loop, *I*, is 1.5 A.
- C) The voltage v_1 is 4.5 V.
- D) The power absorbed by any of the 3- Ω resistors 4.5 W.
- E) None of the above.

Course No: ENG 1450 Page No.: 4 of 4

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours EXAMINERS: C. Shafai/B. Kordi

9 What is the power absorbed by the 4- Ω resistor in the circuit of Problem 8?

- A) 0 W
- B) 6 W
- C) 8 W
- D) 9 W
- E) 16 W

10 What are i_x and i_y , respectively?

- A) + 0.5 A, + 0.25 A
- B) + 0.5 A, -0.25 A
- $C) 0.5 A_{1} + 0.25 A_{2}$
- D) -0.5 A, -0.25 A
- E) None of the above.

A current source is connected to four identical and parallel 2- Ω resistors, as shown below. If the power absorbed by <u>each</u> resistor is 2 W, how much is the value of the current source?

- A) + 1 A
- B)-1 A
- (C) + 4 A
- D)-4A
- E) Both C and D.

12 In the circuit given below, we have $v_1 = 2v_2 = 3v_3$ and $R_1 = 6\Omega$, then $R_1 + R_2 + R_3$ is equal to...

- A) 18 Ω
- B) 11 Ω
- C) 36Ω
- D) 12 Ω
- E) None of the above.

13 What is the voltage *V* in the circuit shown below?

- A)-4V
- B) + 4V
- C)-2V
- \overrightarrow{D}) + 2 V
- E) None of the above.

COURSE NO: ENG 1450 PAGE NO.: 5 of 5

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours EXAMINERS: C. Shafai/B. Kordi

14 What is the voltage V in the circuit shown below?

- A) 2.4 V
- B) + 2.4 V
- C) 6 V
- D) + 3 V
- E) -3 V

15 identical resistor are connected as shown below. If the equivalent resistance at terminals **ab** is 15 Ω , the value of each resistor is...

- A) 25 Ω .
- Β) 9 Ω.
- C) 1Ω .
- D) 10Ω .
- E) not an integer number.

In the circuit shown below, if each of the 4- Ω resistors is replaced by a 2- Ω resistor the equivalent resistance at terminals ab...

- A) increases by $2/15 \Omega$.
- B) decreases by $2/15 \Omega$.
- C) increases by $9/20 \Omega$.
- D) decreases by $9/20 \Omega$.
- E) doesn't change.

The equivalent capacitance of ten identical capacitors that are connected in parallel is $20 \,\mu\text{F}$. If we connect them in series the equivalent resistance is equal to...

- A) $2 \mu F$.
- B) 200 nF.
- C) 20 nF.
- D) 20 μF.
- E) none of the above.

18 The circuit shown below has been connected for a long time. How much is the energy stored in the inductor?

- A) 2 J
- B) 4 J
- C) 0 J

D) 11111110

	Electrical & Computer Engineering	Date & Time:		
Course No:	ENG 1450	PAGE NO.:	6 of 6	
	Intro. Electrical & Computer Eng.	EXAMINATION:	` /	
DURATION:	2 Hours	EXAMINERS:	C. Shafai/B. Kordi	
D) 1.5 J E) None	e of the above.			
				I
W/14 :- 41 :		1/-0		
-	pedance of a 10-nF capacitor at $\omega = 100$	rad/s?		
A) j 10 B) – j 10				
C) $-j/(2$				
D) - j50				
· -	e of the above			
	a 2-H inductor is $i(t) = 5\sin(2t+30^\circ)$. What	at is the voltage of t	the inductor?	
/ / /	= 10sin(2 <i>t</i> -60°) V = 5sin(2 <i>t</i> +90°) V		;(1) 2H	
/ \ /	$= 3\sin(2t+90) \text{ V}$ = $10\sin(2t+120^\circ) \text{ V}$		$i(t)$ \longrightarrow $i(t)$	
D) $v(t) =$	$= 20\sin(2t+120^{\circ}) \text{ V}$		+ v(t) -	
E) None	e of the above.			
	ary representation of $(16DEC10)_{16}$?			
/	011011110110000010000 011011110111000010000			
/	011011110111000010000			
	111011110110000010000			
E) 1011	011011110110000110000			
What is the min	nimum number of bits needed for the uns	igned binary repres	entation of $(511)_{10}$?	
A) 7				
B) 8 C) 9				
D) 10				
E) 11				
The 6-bit binar	y representation of $(-23)_{10}$ using 1's com	nplement is given by	····	
A) 0101	11			
B) 1101				
C) 1010 D) 1011				
E) 1010				
An 8-hit comp	uter that uses 2's complement is used to e	evaluate (= 25) + (+	23) Which of the following is	
	ne computer as the answer?	.varaate (- 23) (25 j. which of the following is	
A) 0000	_			
B) 1111	1101			
C) 0111	1110			

COURSE NO: ENG 1450 PAGE NO.: 7 of 7

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours EXAMINERS: C. Shafai/B. Kordi

E) None of the above.

An 8-bit computer uses 2's complement to store negative numbers. The range of numbers that can be stored in this computer is...

- A) from -256 to +256
- B) from -127 to +127
- C) from -255 to +256
- D) from -128 to +127
- E) none of the above.

26 Which of the following does show the truth table for z=x'+y?

A)	х	у	Z
	0	0	0
	0	1	1
	1	0	1
	1	1	1

B)	\boldsymbol{x}	У	\boldsymbol{z}
	0	0	1
	0	1	0
	1	0	0
	1	1	1

C)	\boldsymbol{x}	У	\boldsymbol{z}
	0	0	1
	0	1	0
	1	0	0
	1	1	0

D)	х	У	Z
	0	0	0
	0	1	0
	1	0	0
	1	1	1

E)	х	у	Z
	0	0	1
	0	1	1
	1	0	0
	1	1	1

27 Which of the following statements is correct?

A) Digital circuits 1 and 4 are equivalent.

- B) Digital circuits 2 and 3 are equivalent.
- C) Digital circuits 3 and 5 are equivalent.
- D) Digital circuits 1 and 5 are equivalent.
- E) Digital circuits 2 and 5 are equivalent.

16th December 2010 at 1800 DEPARTMENT: Electrical & Computer Engineering DATE & TIME:

Course No: ENG 1450 PAGE No.: 8 of 8

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

C. Shafai/B. Kordi **DURATION:** 2 Hours **EXAMINERS:**

28 Which of the following describes the following digital circuit?

A)
$$z=x'\cdot y+x\cdot x'$$

A)
$$z=x' \cdot y + x \cdot x'$$

B) $z=(x' \cdot y + x \cdot x)'$
C) $z=(x' \cdot y + x) \cdot x'$

C)
$$z=(x'\cdot y+x)\cdot x'$$

D)
$$z = [(x' \cdot y + x) \cdot x]'$$

E) None of the above.

29 Which of the following is correct for the circuit shown below?

A) If
$$a=b=c=0$$
, then $d=1$.

B) If
$$a=b=c=1$$
, then $d=0$.

C) If
$$a=b=0$$
 and $c=1$, then $d=1$.

D) If
$$a=1$$
 and $b=c=0$, then $d=1$.

E) None of the above.

The digital variables x and y show if the two front doors of a car are open or not (0: open, 1: closed). The output of a digital circuit, z, controls a light (0: off, 1:on). The circuit must turn the light on when either of (but not both) doors are open. Which of the following does describe the operation of this circuit?

A)	х	v	Z
	0	0	0
	0	1	1
	1	0	1
	1	1	1

B)	х	у	Z
	0	0	1
	0	1	0
	1	0	0
	1	1	1

C)	х	у	Z
	0	0	1
	0	1	0
	1	0	0
	1	1	0

D)	х	у	Z
	0	0	0
	0	1	1
	1	0	1
	1	1	0

COURSE NO: ENG 1450 PAGE NO.: 9 of 9

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours EXAMINERS: C. Shafai/B. Kordi

E)	х	У	Z
	0	0	1
	0	1	1
	1	0	1
	1	1	0

Formula Sheet

Ohm's law: V = RI

Power: P = VI

Voltage division: $V_k = \frac{R_k}{\sum R_i} V_S$

Current division: $I_k = \frac{\frac{1}{R_k}}{\sum \frac{1}{R_k}} I_s$

Resistors in series: $R_{eq} = \sum R_i$

Resistors in parallel: $\frac{1}{R_{ca}} = \sum \frac{1}{R_i}$

Capacitors in series: $\frac{1}{C_{eq}} = \sum \frac{1}{C_i}$

Capacitors in parallel: $C_{eq} = \sum C_i$

Inductors in series: $L_{eq} = \sum L_i$

Inductors in parallel: $\frac{1}{L_{eq}} = \sum \frac{1}{L_i}$

Energy stored in a capacitor: $W = \frac{1}{2}CV^2$

Energy stored in an inductor: $W = \frac{1}{2}LI^2$

Impedance of a capacitor: $Z_C = \frac{1}{i\omega C}$, where $\omega = 2\pi f$

Impedance of an inductor: $Z_L = j\omega L$, where $\omega = 2\pi f$

α 0° 30° 45° 60° 90° 120° 135	o° 150° 180°
-------------------------------	------------------

COURSE NO: ENG 1450 PAGE NO.: 10 of 10

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours Examiners: C. Shafai/B. Kordi

$\sin lpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
an lpha	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	8	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0