Consider
$$f(\bar{x})$$

And consider

$$f(x,y) = xy^2 + 1$$

using our divison algorithm, we

get that $f(x,y) = y \cdot h(x,y) + r$

However, let's swap out our f & h for something harder.

Let's first select a leading term that

will establish a term order to help solve

let's use lex order, where

this problem.

So When we compare:

aab > aabb

If we use graded lex order, we look at the degree first $\frac{1}{2}$ then alphobetically so, $a^2b^{11} < a^2b^{12}$

Now, let's book at Degree Choice.	Abbreviation
Our first x has the highest degree	LT = leading term
1 x > x if B > a	LC = leading coeficcient
2 2 b > 2 if it comes first in lex order	LM = leading munomial
So now let's use lex order in an example	
$f = xy^2 + 1 h = xy + y^2$	
2	0.000
And we need f in terms of h . ∞ is our leading to $xy^2+1=q(xy^2+y^2)+r$	rivic
$= y(xy + y^2) + r$	
$= xy^2 + y^3 + r$	
r=-y ³ +1	
Let's try with y as our leading term	
$xy^2+1=x(xy+y^2)+r$	
$= x^2y + xy^2 + r$	
r=-x2y+1	
So our remainder changes depending on our orc	lecina.
	<u> </u>
Now, another problem arises. What happens if w	e want to divide
$f(x,y)$ by $g(x,y) \in \mathcal{N}(x,y)$ at the same time?	,
How do we choose what to divide first?	

We get that
$$f(x,y) = q_1q_1+r_1$$

 $r_1 = q_2h+r_2$

a linear combination of gin.

This can be problematic though.

Let
$$f = xy^2 + 1$$

$$g = xy + 1$$

$$h = y + 1$$

$$f = y + 1$$

$$f = y + 1$$

$$f = y + 1 = -(y + 1) + r_2$$

r, = 2

What happens if we divide by h first?

We got different quotients, but the same remainder.

Now consider:

$$f = g + h \Rightarrow f = (x+y)g + 1h - x - 1$$