

Данные

Даны следующие распределения и параметры:

Тип Распределения	Параметры
Гамма	p=10, b=5.3
Нормальное	a=2.3, σ=0.3
Отрицательное Биномиальное	m=32, p=1/5

Распределение в файле: file

Выполнение работы

Необходимо для каждого распределения:

• а. сгенерировать выборку длины 1000 из данного распределения (см. стр. 19 методички)

```
#а. сгенерировать выборку длины 1000 из данного распределения (стр. 19)
n <- 1000;
rG <<- rgamma(n = n, shape = 10, rate = 5.3);
...
```

• b. построить по данной выборке эмпирическую функцию распределения;

```
#b. построить по данной выборке эмпирическую функцию распределения;
bildEmpiricalPlots <- function(){ empiricalPlot(rG); ... }

# значения функции распределения в точке х
funP <-- list(G = {function(x){ pgamma(q = x, shape = 10, rate = 5.3);}}, ... }
);
```

Эмпирические

Выводы:

- с. построить гистограмму частот;
- d. сравнить гистограмму частот и реальную плотность данного распределения (вычисление значения плотности в точке в пакете R описано на той же 19 стр.)

```
#c&d. сравнить гистограмму частот и реальную плотность данного распределения
# точки для наложения
ranges <- list(G = (((range(rG)[1]*100):(range(rG)[2]*100))/100), ...)
# плотности
densitys <- list(G = dgamma(x = ranges$G,shape = 10, rate = 5.3), ...)
# построение Зеленый - ген.совок. Красный - выборка
hist3 <- function(){
{
    hist(rG, breaks = 20, freq = F, ...);
    lines(density(rG), col = "red", lwd = 2);
    lines(x = ranges$G, y = densitys$G, col = "green", lwd = 2);
}
```

Реальное распределение - ЗЕЛЕНЫМ

Выборочное распределение - КРАСНЫМ

Гистограммы

Выводы:

По гистограммам видно, что распр. выборки из 1000 наблюбений близко к ген.сов.

Так же очевидно, что работает ЗБЧ и ЦПТ

И гамма и NB иногда могут быть приближены нормальным распределением

• е. вычислить следующие выборочные характеристики: выборочное среднее, выборочную дисперсию, выборочную асимметрию, выборочный эксцесс; (см. стр. 20-22 методички)

```
# e. все характеристики
allProp <<- function(x){ data.frame(mean = mean(x), var = var(x), asm = asm(x), exc = exc(x))}
```

• f. сравнить результаты пункта е с реальными характеристиками распределения

	meansReal	means	varsReal	vars	asmsReal	asms	exc
G	0.64033225	1.88373867	0.1428149	0.35542869	-0.5960285	0.4780694	-1.2
N,	0.48069643	2.31551091	0.16544511	0.09183933	0.0701878	-0.010092957	-1.7
NB	2.75245521612138e- 20	127.153	2.2098810347116e- 39,	599.19078	2.085205315	0.29146007	2.53
4							

Выводы:

Значения выборки совпали с исходными(в задании),

но не совпали с вычисленными, видимо я рукожоп сгенерировал для них новое распределение

Распределение из файла:

```
# читаем темпиратуры
AnnualDiameter<<-as.data.frame(read.csv("IDZ_1/annual-diameter-of-skirt-at-hem-.csv",col.names = c("AnnualDiameter"))
```

Повторяем пункты а-d

,	<u>I</u>							
	mean	var	asm	exc				

© 2017 GitHub, Inc. Terms Privacy Security Status Help

Contact GitHub API Training Shop Blog About