

Rapid NLP annotation through binary decisions, pattern bootstrapping and active learning

Ines Montani Explosion Al

Why we need annotations

- o Machine Learning is "programming by example"
- o annotations let us specify the **output** we're looking for
- o even unsupervised methods need to be evaluated on labelled examples

Why annotation tools need to be efficient

- o annotation needs **iteration**: we can't expect to define the task correctly the first time
- o good annotation teams are **small** and should collaborate with the **data scientist**
- o lots of high-value opportunities need **specialist knowledge** and expertise

Why annotation needs to be semi-automatic

- o impossible to perform boring, unstructured or multi-step tasks reliably
- o humans make **mistakes** a computer never would, and vice versa
- humans are good at context, ambiguity and precision, computers are good at consistency, memory and recall

"But annotation sucks!"

1. Excel spreadsheets

Problem: Excel. Spreadsheets.

"But annotation sucks!"

1. Excel spreadsheets

Problem: Excel. Spreadsheets.

2. Mechanical Turk or external annotators

Problem: If your results are bad, is it your label

scheme, your data or your model?

"But it's
just cheap click work.
Can't we outsource
that?"

"But annotation sucks!"

1. Excel spreadsheets

Problem: Excel. Spreadsheets.

2. Mechanical Turk or external annotators **Problem:** If your results are bad, is it your label scheme, your data or your model?

3. Unsupervised learning

Problem: So many clusters – but now what?

Labelled data is not the problem. It's data collection.

Ask simple questions, even for complex tasks – ideally binary

- o better annotation speed
- o better, easier-to-measure reliability
- o in theory: **any task** can be broken down into a sequence of binary (yes or no) decisions it just makes your gradients sparse

How can we train from incomplete information?

Barack H. Obama was the president of America

PERSON

```
['B-PERSON', 'I-PERSON', 'L-PERSON', '0', '0', '0', '0', 'U-LOC']
```

Learning from complete information


```
O gradient_of_loss = predicted - target
```

o In the simple case with one known correct label:

```
target = zeros(len(classes))
target[classes.index(true_label)] = 1.0
```

o But what if we don't know the full target distribution?

X

Barack H. Obama was the president of America org

```
['?', '?', 'U-ORG', '?', '?', '?', '?', '?']
```

Barack H. Obama was the president of America

LOC

```
['?', '?', 'U-ORG', '?', '?', '?', '?', '?']
['?', '?', '?', '?', '?', '?', 'U-LOC']
```

X

Barack H. Obama was the president of America

PERSON

```
['?', '?', 'U-ORG', '?', '?', '?', '?', '?']

['?', '?', '?', '?', '?', '?', 'Y-LOC']

['B-PERSON', 'L-PERSON', '?', '?', '?', '?', '?']
```

Barack H. Obama was the president of America

PERSON

```
['?', '?', 'U-ORG', '?', '?', '?', '?']

['?', '?', '?', '?', '?', '?', 'U-LOC']

['B-PERSON', 'L-PERSON', '?', '?', '?', '?', '?']

['B-PERSON', 'I-PERSON', 'L-PERSON', '?', '?', '?', '?']
```


Training from sparse labels

- o **goal:** update the model in the best possible way with what we know
- o just like multi-label classification where examples can have more than one right answer
- o update towards: wrong labels get 0 probability, rest is **split proportionally**

```
&XPLOS 10
```

```
token = 'Obama'
```

```
labels = ['ORG', 'LOC', 'PERSON']
predicted = [ 0.5,  0.2,  0.3 ]
```

```
WXPLOSIO
```

```
token = 'Obama'
```

```
target = [ 0.0, 0.0, 1.0 ] < gradient = predicted - target
```

```
&XPLOSIO
```

```
token = 'Obama'
```

```
&XPLOSIO
```

```
token = 'Obama'
```

```
labels = ['ORG', 'LOC', 'PERSON']
predicted = [ 0.5,  0.2,  0.3 ]

target = [ 0.0, 0.2 / (1.0 - 0.5), 0.3 / (1.0 - 0.5) ]
```

target = [0.0, 0.4, 0.6] < redistribute proportionally

Barack H. Obama was the president of America

Training from sparse labels

- o if we have a model that predicts something, we can work with that
- o once the model's already quite good, its second choice is **probably correct**
- o new label: even from cold start, model will **still converge** it's just slow

How to get over the cold start when training a new label?

- o model needs to see enough positive examples
- o rule-based models are often quite good
- o rules can pre-label entity candidates
- o write rules, annotate the exceptions

Microsoft Announces Major Solar Buy in Virginia GPE

SOURCE: The New York Times

Does this work for other structured prediction tasks?

- o approach can be applied to other non-NER tasks: dependency parsing, coreference resolution, relation extraction, summarization etc.
- o structures we're predicting are highly correlated
- o annotating it all at once is super inefficient binary supervision can be much better

Benefits of binary annotation workflows

- o better data quality, reduce human error
- o automate what humans are bad at, focus on what humans are needed for
- o enable **rapid iteration** on data selection and label scheme

Iterate on your code and your data.

EXPLOSIO

the part you work on

"Regular" programming

"Regular" programming

Machine Learning

If you can master annotation...

- o ... you can try out **more ideas** quickly. Most ideas don't work but some succeed wildly.
- o ... fewer projects will fail. Figure out **what works** before trying to scale it up.
- o ... you can build entirely **custom solutions** and nobody can lock you in.

Thanks!

** Explosion Al explosion.ai

Follow us on Twitter

@_inesmontani

@explosion_ai