Math 525, Spring 2018. Homework 4 Due: Thursday, February 15, 2018

- (1) For a covering space $p:\widetilde{X}\longrightarrow X$ and a subspace $A\subseteq X$, let $\widetilde{A}=p^{-1}(A)$. Show that the restriction $p:\widetilde{A}\longrightarrow A$ is a covering space.
- (2) Let $p:\widetilde{X}\longrightarrow X$ be a covering space with $p^{-1}(x)$ finite and non-empty for all $x\in X$. Show that \widetilde{X} is compact Hausdorff if and only if X is compact Hausdorff.
- (3) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be such that gf and g are covering maps. If Z is locally path-connected, show that f is also a covering map.
- (4) Let $X = \mathbb{S}^1 \vee \mathbb{S}^1$ and let $Y \subseteq \mathbb{R}^2$ be the union of all horizontal and vertical lines which pass through integer lattice points (i.e., $Y = \bigcup_{n \in \mathbb{Z}} (\mathbb{R} \times \{n\}) \cup (\{n\} \times \mathbb{R})$). Define a covering map $p: Y \longrightarrow X$ and describe the subgroup $p_*(\pi_1(Y; (0,0)))$ of $\pi_1(X)$.
- (5) Construct a simply-connected covering space for each of the following spaces:
 - (a) $\mathbb{S}^1 \vee \mathbb{S}^2$,
 - (b) The union of \mathbb{S}^2 with an arc joining two distinct points of \mathbb{S}^2 ,
 - (c) \mathbb{S}^2 with two points identified,
 - (d) $\mathbb{RP}^2 \vee \mathbb{RP}^2$,
 - (e) $\mathbb{S}^1 \vee \mathbb{T}^2$.