ECCV 2020

Webpage: https://edbeeching.github.io/papers/learning-to-plan

Edward Beeching

Jilles Dibangoye

Olivier Simonin

Christian Wolf

Introduction

 We aim address the problem of planning and control in photorealistic 3D environments Habitat (Savva et al., ICCV 2019)

• This work:

- Explores the implementation of a neural path planning algorithm
- To learn to plan in uncertain environments
- Performs hierarchical planning and control by coupling a high level planner with a low level policy

Our neural planner:

- Incorporates visual features in the planning process
- Exploits regularities in an uncertain graph adjacency matrix
- Implements an augmented GNN architecture with recurrent updates and a novel gating mechanism

Introduction – Standard recurrent agent

Introduction – Related works

Related works:

- Semi-parametric Topological Memory for Navigation (Savinov et al. ICLR 2018)
 - Couples classical planning and learning in the ViZDoom (Kempka et al. CCIG 2016) environment
- Search on the replay buffer (Eysenbach et al., NeurIPS 2019)
 - Uses values estimates to build a graph
 - Does not generalize to unseen environments
- Neural Topological SLAM for Visual Navigation (Chaplot et al. CVPR 2020)
 - Combines SLAM with a novel graph based method
 - Relies on classical planning

This work:

- Learns a neural approximation of a classical planning algorithm (Bellman-Ford)
- Demonstrates the method outperforms classical methods on uncertain graphs.

Uncertain graph

Classical planning:

- Binary connectivity
- Cannot exploit visual information

Uncertain graph

Classical planning:

- Binary connectivity
- Cannot exploit visual information

Neural planning:

- Exploits uncertain connectivity
- Uses visual features
 - Learn from regularities in the graph structure

Uncertain graph

Graph generation

- Graphs were generated by training: f(o, o, h) an exploratory policy trained to maximize coverage (Chen et al. ICLR 2019)
 - that predicts whether there is line of a parameterized function sight connectivity between two observations.

- Dataset generation:
 - Each graph contains 32 nodes
 - 72,000,000 training examples
 - 16,000,000 test examples

Training

- Treat planning as a classification problem
- During training: ground truth optimal paths are available
- For each node, perform an n-class classification of the next a ode on the optimal path to the target i i i i i i
- Each n θ de, , contains a feature embedding [] Where i
 - t i : visual features
 - **d**: edge connection probabilities
 - s^{i} : boolean value indicating if the node is the target
 - *i*: distances from node to all other nodes
 - : one hot vector identifying the node

Inductive bias

- Inspiration Classical path planning algorithms
 - Dijkstra's algorithm:
 - Contains priority queue which is not differentiable
 - Bellman Ford:
 - Iterates over neighbors
 - Passes messages
 - Updates bounds
 - Potential for a neural approximation with an augmented GNN