

370.007 FACHVERTIEFUNG ENERGIESYSTEME

INVESTITIONSRECHNUNG FÜR HAUSHALTE

Gruppe: D

DATUM: 19.05.2020

AUTOREN: TANJA MOSER 01526699

Andreas Patha 01609934 Tim Edinger 01525912

Konstantin Kobel 01525841

In halts verzeichn is

1	Aufgabenstellung	3
	1.1 Aufgabe 3.1	
	1.2 Aufgabe 3.2	4
	1.3 Aufgabe 3.3	4
	1.4 Aufgabe 3.4	5
2	Berechnungen 2.1 Temperaturabhängigkeit einer PV-Anlage	6
3	Ergebnisse	6
4	Literatur	7

1 Aufgabenstellung

Das Ziel der dritten Übung ist es, die Wirtschaftlichkeit einer PV-Anlage, für einen Haushalt, zu errechnen.

Die einzelnen Aspekte werden in drei Aufgaben behandelt.

1.1 Aufgabe 3.1

Aufgabe 3.1 befasst sich mit dem Barwert (= dem Kapitalwert) einer 10kWp PV-Anlage. In dieser ersten Aufgabe wird davon ausgegangen, dass die gesamte Produktion verkauft wird.

Zur Berechnung werden folgende Parameter definiert:

- Der Zinssatz beträgt 4%.
- Die Systemkosten betragen $1200 \in /kWp$.
- Die Betriebskosten/die Versicherung belaufen sich auf $4 \in /(kWpa)$.
- Die Lebensdauer der PV-Anlage kann mit 25 Jahren angenommen werden.
- Der $Einspeisetarif_{OeMAG}$ beträgt $8.24 \, Cent/kWh$.
- Die $F\ddot{o}rderdauer_{OeMAG}$ beträgt 13 Jahre.
- Die relevanten Spotpreise werden in der Datei *Spotpreise.mat* zur Verfügung gestellt.
- Informationen zu Förderungen können folgendem Link entnommen werden: http://www.oem-ag.at/de/foerderung/photovoltaik/

Es werden folgende **Annahmen** getroffen:

- Das Jahr 2016 steht exemplarisch für jedes kommende Jahr.
- Auch nach dem Vertragsende wird der Strom, bis zum Ende der Lebensdauer, am Spotmarkt verkauft. Die Preise entsprechen dabei den Preisen aus dem Jahr 2016.

Die Aufgaben lauten:

- a) Berechnen Sie den Barwert (= Kapitalwert) einer 10 kWp PV-Anlage unter der Annahme, dass die gesamte Produktion am Spotmarkt verkauft wird.
 - Wie hoch dürfen die Investitionskosten maximal sein, damit die Wirtschaftlichkeit der Investition positiv bewertet wird (Barwert ¿ 0)?

- Stellen Sie die Entwicklung des Kapitalwerts (=Barwert) der Investition über die Lebensdauer in einem Diagramm dar.
- b) Führen Sie die Berechnung noch einmal unter der Annahme durch, dass Sie den aktuellen OeMAG Einspeisetarif für 13 Jahre erhalten. Vergleich Sie diesen Fall mit dem nicht geförderten Fall.

1.2 Aufgabe 3.2

In Aufgabe 3.2 wird der Eigenverbrauch der Haushalte berücksichtigt und nur noch der Überschuss der Produktion verkauft.

Folgende Parameter sind gegeben:

- Es handelt sich um eine 5kWp PV-Anlage.
- Das Einspeiseprofil der PV-Anlage wird in der Datei PV_E inspeiseprofil.mat zur Verfügung gestellt.
- Der Standort der PV-Anlage ist Wien.
- Die Ausrichtung der PV-Anlage ist mit einem Azimut von 180° und einem Neigungswinkel von 30° gegeben.
- Die benötigte Leistung der Haushalte ist in der Datei LeistungHaushalte.mat definiert.

Die Aufgaben lauten:

- a) Berechnen Sie den Eigenverbrauch und die Überschusseinspeisung einer 5kWp-Anlage für 5 der gegebenen 30 Haushalte.
- b) Stellen Sie die Entwicklung des Eigenverbrauchsanteils und der Deckungsgrade der Haushalte für eine Anlagengröße von 0kWp bis 20kWp für die 5 Haushalte dar.
- c) Erstellen Sie eine Grafik, in der die Erzeugung, die Last und der Eigenverbrauch für die Woche 3 und 25 für Haushalt 1 dargestellt wird. Verwenden Sie für die Darstellung des Eigenverbrauchs die Plot-Funktion *area*.

1.3 Aufgabe 3.3

In Aufgabe 3.3 sollen die Berechnungen von Aufgabe 3.2 erweitert werden.

Dazu werden folgende **Annahmen** getroffen:

- Für den Eigenverbrauch kann eine Ersparnis in Höhe des Haushaltsstrompreises angesetzt werden. Diese beträgt $15\,Cent/kWh$.
- Für die Überschusseinspeisung kann ein Einspeisetarif von $5\,Cent/kWh$ angenommen werden.

Die **Aufgaben** lauten:

- a) Erstellen Sie eine Investitionsrechnung (Barwert) für die 5 gegebenen Haushalte und einer Anlagengröße von 5kWp. Vergleichen Sie dazu den Fall mit PV-Anlage mit dem Fall ohne PV-Erzeugung.
- b) Wie hoch dürfen die spezifischen Investitionskosten (EUR/kW) je Haushalt maximal sein, damit die Investition als wirtschaftlich gewertet wird?

1.4 Aufgabe 3.4

In Aufgabe 3.4 soll eine Beurteilung von PV-Anlagen in Österreich, auf Basis der in den vorigen Aufgaben durchgeführten Berechnungen, getroffen werden.

Die **Fragen** lauten:

- a) Erstellen Sie eine Investitionsrechnung (Barwert) für die 5 gegebenen Haushalte und einer Anlagengröße von 5kWp. Vergleichen Sie dazu den Fall mit PV-Anlage mit dem Fall ohne PV-Erzeugung.
- b) Wie hoch dürfen die spezifischen Investitionskosten (EUR/kW) je Haushalt maximal sein, damit die Investition als wirtschaftlich gewertet wird?

- 2 Berechnungen
- 2.1 Temperaturabhängigkeit einer PV-Anlage
- 3 Ergebnisse

4 Literatur

• Literatur 1

Abbildungsverzeichnis