SOME IMPORTANT MATHEMATICAL FORMULAE

: Area = πr^2 ; Circumference = $2\pi r$.

Square : Area = x^2 ; Perimeter = 4x.

Rectangle: Area = xy; Perimeter = 2(x+y).

Triangle: Area = $\frac{1}{2}$ (base)(height); Perimeter = a+b+c.

Area of equilateral triangle = $\frac{\sqrt{3}}{4}$ a²

: Surface Area = $4\pi r^2$; Volume = $\frac{4}{3}\pi r^3$.

: Surface Area = $6a^2$; Volume = a^3 Cube

: Curved Surface Area = πrl ; Volume = $\frac{1}{2} \pi r^2 h$ Cone

Total surface area = $\pi_r 1 + \pi_r^2$

Cuboid: Total surface area = 2 (ab + bh + lh); Volume = lbh.

Cylinder: Curved surface area = $2\pi rh$; Volume = $\pi r^2 h$

Total surface area (open) = $2\pi rh$;

Total surface area (closed) = $2\pi rh + 2\pi r^2$.

SOME BASIC ALGEBRAIC FORMULAE:

 $\begin{aligned} 1.(a+b)^2 &= a^2 + 2ab + b^2 \ . \\ 3.(a+b)^3 &= a^3 + b^3 + 3ab(a+b). \end{aligned} \qquad \begin{aligned} 2.\ (a-b)^2 &= a^2 - 2ab + b^2 \ . \\ 4.\ (a-b)^3 &= a^3 - b^3 - 3ab(a-b). \end{aligned}$

 $5.(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$.

 $6.(a + b + c)^3 = a^3 + b^3 + c^3 + 3a^2b + 3a^2c + 3b^2c + 3b^2a + 3c^2a + 3c^2a + 6abc.$

 $7.a^2 - b^2 = (a + b)(a - b)$.

 $8.a^3 - b^3 = (a - b)(a^2 + ab + b^2).$

 $9.a^3 + b^3 = (a + b) (a^2 - ab + b^2).$

 $10.(a + b)^2 + (a - b)^2 = 4ab.$

11. $(a + b)^2$ - $(a - b)^2$ = $2(a^2 + b^2)$.

12.If a + b + c = 0, then $a^3 + b^3 + c^3 = 3$ abc.

INDICES AND SURDS

1.
$$a^m a^n = a^{m+n}$$
 2. $\frac{a^m}{a^n} = a^{m-n}$ 3. $(a^m)^n = a^{mn}$ 4. $(ab)^m = a^m b^m$

5.
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
. 6. $a^0 = 1$, $a \ne 0$. 7. $a^{-m} = \frac{1}{a^m}$. 8. $a^x = a^y \Rightarrow x = y$

9.
$$a^X = b^X \Rightarrow a = b$$
 10. $\sqrt{a \pm 2\sqrt{b}} = \sqrt{x} \pm \sqrt{y}$, where $x + y = a$ and $xy = b$.

LOGARITHMS

$$a^{X} = m \Rightarrow \log_{a} m = x (a > 0 \text{ and } a \neq 1)$$

1.
$$\log_a mn = \log m + \log n$$
.

2.
$$\log_a \left(\frac{m}{n}\right) = \log m - \log n$$
.

3.
$$\log_a m^n = n \log m$$
.

4.
$$\log_b a = \frac{\log a}{\log b}$$
.

5.
$$\log_a a = 1$$
.

6.
$$\log_a 1 = 0$$
.

7.
$$\log_b a = \frac{1}{\log_a b}$$
.

8.
$$\log_a 1 = 0$$
.

9.
$$\log (m + n) \neq \log m + \log n$$
.

10.
$$e^{\log x} = x$$
.

11.
$$\log_a a^x = x$$
.

PROGRESSIONS

ARITHMETIC PROGRESSION

a, a + d, a+2d,-----are in A.P. n^{th} term, $T_n = a + (n-1)d$.

Sum to n terms,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$
.

If a, b, c are in A.P, then 2b = a + c.

GEOMETRIC PROGRESSION

a, ar, ar²,----- are in G.P.

Sum to n terms,
$$S_n = \frac{a(1-r^n)}{1-r}$$
 if $r < 1$ and $S_n = \frac{a(r^n-1)}{r-1}$ if $r > 1$.

Sum to infinite terms of G.P, $S_{\infty} = \frac{a}{1-r}$.

If a, b, c are in A.P, then $b^2 = ac$.

HARMONIC PROGRESSION

Reciprocals of the terms of A.P are in H.P

$$\frac{1}{a}$$
, $\frac{1}{a+d}$, $\frac{1}{a+2d}$, ----- are in H.P

If a, b, c are in H.P, then $b = \frac{2ac}{a+c}$.

MATHEMATICAL INDUCTION

$$1 + 2 + 3 + \dots + n = \sum_{n=1}^{\infty} n = \frac{n(n+1)}{2}.$$

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \sum_{n=1}^{\infty} n^2 = \frac{n(n+1)(2n+1)}{6}.$$

S B SATHYANARAYANA M. Sc., M.I.E., M Phil. 9481477536

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \sum n^3 = \frac{n^2(n+1)^2}{4}.$$

PERMUTATIONS AND COMBINATION

$$\begin{split} n \ P_r &= \frac{n!}{\left(\, n - r\right)!} \, \cdot \\ n C_r \ &= \frac{n!}{r! \left(\, n - r\right)!} \, \cdot \\ n! &= 1.2 \ 3. -----n. \\ n C_r \ &= n C_{n-r}. \\ n C_r + n C_{r-1} &= \left(n + 1\right) C_r. \\ (m+n) C_r &= \frac{\left(m + n\right)!}{m! n!} \, . \end{split}$$

BINOMIAL THEOREM

$$(x+a)^n = x^n + nC_1 x^{n-1} a + nC_2 x^{n-2} a^2 + nC_3 x^{n-3} a^3 + \dots + nC_n a^n$$

 n^{th} term, $T_{r+1} = nC_r x^{n-r} a^r$.

PARTIAL FRACTIONS

- $\frac{f(x)}{g(x)}$ is a proper fraction if the deg (g(x)) > deg(f(x)).
- $\frac{f(x)}{g(x)}$ is a improper fraction if the deg $(g(x)) \le deg(f(x))$.
- 1. Linear non- repeated factors

$$\frac{f(x)}{(ax+b)(cx+d)} = \frac{A}{ax+b} + \frac{B}{(cx+d)}.$$

2. Linear repeated factors

$$\frac{f(x)}{(ax+b)(cx+d)^{2}} = \frac{A}{ax+b} + \frac{B}{(cx+d)} + \frac{C}{(cx+d)^{2}}.$$

3. Non-linear(quadratic which can not be factorized)

$$\frac{f(x)}{(ax^2+b)(cx^2+d)} = \frac{Ax+B}{ax^2+b} + \frac{Cx+D}{(cx^2+d)}.$$

ANALYTICAL GEOMETRY

- 1. Distance between the two points (x_1, y_1) and (x_2, y_2) in the plane is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$ OR $\sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$.
- 2 Section formula

$$\left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right) \text{ (for internal division),}$$

$$\left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}\right) \text{ (for external division).}$$

3. Mid point formula

$$\left(\frac{\mathbf{x}_1 + \mathbf{x}_2}{2}, \frac{\mathbf{y}_1 + \mathbf{y}_2}{2}\right).$$

4. Centriod formula

$$\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$$

5. Area of triangle when their vertices are given,

$$\frac{1}{2} \sum x_1 (y_2 - y_3)$$

$$= \frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$$

STRAIGHT LINE

Slope (or Gradient) of a line = tangent of an inclination = $tan\theta$.

Slope of a X- axis = 0

Slope of a line parallel to X-axis = 0

Slope of a Y- axis = ∞

Slope of a line parallel to Y-axis = ∞

Slope of a line joining
$$(x_1, x_2)$$
 and $(y_1, y_2) = \frac{y_2 - y_1}{x_2 - x_1}$.

If two lines are parallel, then their slopes are equal $(m_1=m_2)$

If two lines are perpendicular, then their product of slopes is -1 $(m_1 m_2 = -1)$

EQUATIONS OF STRAIGHT LINE

1. y = mx + c (slope-intercept form)

 $y - y_1 = m(x-x_1)$ (point-slope form)

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$
 (two point form)

$$\frac{x}{a} + \frac{y}{b} = 1$$
 (intercept form)

 $x \cos \alpha + y \sin \alpha = P \text{ (normal form)}$

Equation of a straight line in the general form is $ax^2 + bx + c = 0$

Slope of
$$ax^2 + bx + c = 0$$
 is $-\left(\frac{a}{b}\right)$

2. Angle between two straight lines is given by, $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$

Length of the perpendicular from a point (x_1,x_2) and the straight line $ax^2 + bx + c$

$$= 0$$
 is $\left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$

Equation of a straight line passing through intersection of two lines $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ is $a_1x^2 + b_1x + c_1 + K(a_2x^2 + b_2x + c_2) = 0$, where K is any constant.

Two lines meeting a point are called intersecting lines.

More than two lines meeting a point are called concurrent lines.

Equation of bisector of angle between the lines $a_1x + b_1y + c_1 = 0$ and

$$a_2x + b_2y + c_2 = 0$$
 is $\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y_2 + c_2}{\sqrt{a_2^2 + b_2^2}}$

PAIR OF STRAIGHT LINES

1. An equation $ax^2 + 2hxy + by^2 = 0$, represents a pair of lines passing through origin generally called as homogeneous equation of degree 2 in x and y and

angle between these is given by
$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$
.

 $ax^2 + 2hxy + by^2 = 0$, represents a pair of coincident lines, if $h^2 = ab$ and the same represents a pair of perpendicular lines, if a + b = 0.

If m_1 and m_2 are the slopes of the lines $ax^2 + 2hxy + by^2 = 0$, then $m_1 + m_2 = -\frac{2h}{b}$

and
$$m_1$$
 $m_2 = \frac{a}{b}$.

2. An equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is called second general second order equation represents a pair of lines if it satisfies the the condition

$$abc + 2fgh - af^2 - bg^2 - ch^2 = 0.$$

The angle between the lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is given by

$$\tan\theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| .$$

 $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, represents a pair of parallel lines, if $h^2 = ab$ and $af^2 = bg^2$ and the distance between the parallel lines is

$$\frac{2\sqrt{g^2 - ac}}{a(a+b)}$$

 $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, represents a pair of perpendicular lines, if a + b = 0.

TRIGNOMETRY

Area of a sector of a circle = $\frac{1}{2}$ r² θ .

Arc length,
$$S = r \theta$$
.

$$\begin{split} \sin\theta &= \frac{opp}{hyp}, \cos\theta = \frac{adj}{hyp}, \tan\theta = \frac{opp}{adj}, \cot\theta = \frac{adj}{opp}, \sec\theta = \frac{hyp}{adj}, \csc\theta = \frac{hyp}{opp} \\ \sin\theta &= \frac{1}{\cos ec\theta} \text{ or } \csc\theta = \frac{1}{\sin\theta}, \cos\theta = \frac{1}{\sec\theta} \text{ or } \sec\theta = \frac{1}{\cos\theta}, \\ \tan\theta &= \frac{1}{\cot\theta} \text{ or } \cot\theta = \frac{1}{\tan\theta}, \tan\theta = \frac{\sin\theta}{\cos\theta}, \cot\theta = \frac{\cos\theta}{\sin\theta}. \\ \sin^2\theta + \cos^2\theta = 1; \Rightarrow \sin^2\theta = 1 - \cos^2\theta; \cos^2\theta = 1 - \sin^2\theta; \\ \sec^2\theta - \tan^2\theta = 1; \Rightarrow \sec^2\theta = 1 + \tan^2\theta; \tan^2\theta = \sec^2\theta - 1; \\ \csc^2\theta - \cot^2\theta = 1; \Rightarrow \csc^2\theta = 1 + \cot^2\theta; \cot^2\theta = \csc^2\theta - 1. \end{split}$$

STANDARD ANGLES

	$0^{0 \text{ or } 0}$	$30^0 \text{ or } \frac{\pi}{6}$	$45^0 \text{ or } \frac{\pi}{4}$	$60^0 \text{ or } \frac{\pi}{3}$	90^0 or $\frac{\pi}{2}$	15^0 or $\frac{\pi}{12}$	$75^0 \text{ or } \frac{5\pi}{12}$
Sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}-1}{2\sqrt{2}}$	$\frac{\sqrt{3}+1}{2\sqrt{2}}$
Cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$\frac{\sqrt{3}+1}{2\sqrt{2}}$	$\frac{\sqrt{3}-1}{2\sqrt{2}}$
Tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	8	$\frac{\sqrt{3}-1}{\sqrt{3}+1}$	$\frac{\sqrt{3}+1}{\sqrt{3}-1}$
Cot	8	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$\frac{\sqrt{3}+1}{\sqrt{3}-1}$	$\frac{\sqrt{3}-1}{\sqrt{3}+1}$
Sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	1	8	$\frac{2\sqrt{2}}{\sqrt{3}+1}$	$\frac{2\sqrt{2}}{\sqrt{3}-1}$
Cosec	8	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	$\frac{2\sqrt{2}}{\sqrt{3}-1}$	$\frac{2\sqrt{2}}{\sqrt{3}+1}$

ALLIED ANGLES

Trigonometric functions of angles which are in the 2nd, 3rd and 4th quadrants can be obtained as follows:

If the transformation begins at 90° or 270°, the trigonometric functions changes as

$$\sin \leftrightarrow \cos$$
 $\tan \leftrightarrow \cot$
 $\sec \leftrightarrow \csc$

where as the transformation begins at 180° or 360° , the same trigonometric functions will be retained, however the signs (+ or -) of the functions decides ASTC rule.

COMPOUND ANGLES

$$Sin(A+B) = sinAcosB + cosAsinB.$$

$$Sin(A-B) = sinAcosB - cosAsinB.$$

$$Cos(A+B) = cosAcosB - sinAsinB.$$

$$Cos(A-B) = cosAcosB + sinAsinB.$$

$$tan(A+B) = \frac{tan A + tan B}{1 - tan A tan B}$$

$$tan(A-B) = \frac{tan A - tan B}{1 + tan A tan B}$$

$$tan\left(\frac{\pi}{4} + A\right) = \frac{1 + tan A}{1 - tan A}$$

$$tan\left(\frac{\pi}{4} - A\right) = \frac{1 - tan A}{1 + tan A}$$

$$tan(A+B+C) = \frac{tan A + tan B + tan C - tan A tan B tan C}{1 - (tan A tan B + tan B tan C + tan C tan A)}$$

$$sin(A+B) sin(A-B) = sin^2 A - sin^2 B = cos^2 B - cos^2 A$$

$$cos(A+B) cos(A-B) = cos^2 A - sin^2 B$$

MULTIPLE ANGLES

1.sin 2A=2 sinA cosA. 2. sin 2A=
$$\frac{2 \tan A}{1 + \tan^2 A}$$
.
3.cos 2A = $\cos^2 A - \sin^2 A$
=1-2 sin² A.
= $2\cos^2 A - 1$
= $\frac{1 - \tan^2 A}{1 + \tan^2 A}$
4. tan 2A= $\frac{2 \tan A}{1 - \tan^2 A}$, 5. 1+cos 2A=2 cos² A, 6. cos² A= $\frac{1}{2}$ (1+cos 2A).
7. 1-cos 2A=2 sin² A, 8. sin² A= $\frac{1}{2}$ (1-cos 2A), 9.1+sin 2A=(sin A + cos A)², 10. 1-sin 2A=(cos A - sin A)²=(sin A - cos A)², 11.cos 3A=4 cos³ A - 3 cos A, 12. sin 3A= $\frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$.

HALF ANGLE FORMULAE

1)
$$\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$
. 2) $\sin \theta = \frac{2 \tan \left(\frac{\theta}{2}\right)}{1 + \tan^2 \left(\frac{\theta}{2}\right)}$. 3) $\cos \theta = \cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2}$.

4)
$$\cos \theta = 1 - 2\sin^2 \frac{\theta}{2}$$
. 5) $\cos \theta = 2\cos^2 \frac{\theta}{2} - 1$. 6) $\cos \theta = \frac{1 - \tan^2 \left(\frac{\theta}{2}\right)}{1 + \tan^2 \left(\frac{\theta}{2}\right)}$.

7)
$$\tan \theta = \frac{2 \tan \left(\frac{\theta}{2}\right)}{1 - \tan^2 \left(\frac{\theta}{2}\right)}$$
. 8) $1 + \cos \theta = 2 \cos^2 \frac{\theta}{2}$. 9) $1 - \cos \theta = 2 \sin^2 \frac{\theta}{2}$.

PRODUCT TO SUM

$$2 \sin A \cos B = \sin(A+B) + \sin(A-B).$$

$$2 \cos A \sin B = \sin(A+B) - \sin(A-B)$$
.

$$2\cos A\cos B = \cos(A+B) + \cos(A-B).$$

$$2 \sin A \sin B = \cos(A+B) - \cos(A-B)$$
.

SUM TO PRODUCT

$$Sin C + sin D = 2sin \left(\frac{C+D}{2}\right) cos \left(\frac{C-D}{2}\right).$$

$$Sin C - sin D = 2cos \left(\frac{C+D}{2}\right) sin \left(\frac{C-D}{2}\right).$$

$$Cos C + cos D = 2cos \left(\frac{C+D}{2}\right) cos \left(\frac{C-D}{2}\right).$$

$$Cos C - cos D = -2sin \left(\frac{C+D}{2}\right) sin \left(\frac{C-D}{2}\right).$$

$$OR$$

$$Cos C - cos D = 2sin \left(\frac{D+C}{2}\right) sin \left(\frac{D-C}{2}\right).$$

PROPERTIES AND SOLUTIONS OF TRIANGLE

Sine Rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$, where R is the circum radius of the triangle.

Cosine Rule:
$$a^2 = b^2 + c^2 - 2bc \cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$,

$$b^2 = a^2 + c^2 - 2ac \cos B$$
 or $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$,
 $c^2 = a^2 + b^2 - 2ab \cos C$ or $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$.

Projection Rule:
$$a = b \cos C + c \cos B$$

$$b = c \cos A + a \cos C$$

 $c = a \cos B + b \cos A$

Tangents Rule:

$$\tan\left(\frac{B-C}{2}\right) = \frac{b-c}{b+c}\cot\left(\frac{A}{2}\right),$$

$$\tan\left(\frac{C-A}{2}\right) = \frac{c-a}{c+a}\cot\left(\frac{B}{2}\right),$$

$$\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b}\cot\left(\frac{C}{2}\right).$$

Half angle formula:

$$\sin\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{bc}}, \cos\left(\frac{A}{2}\right) = \sqrt{\frac{s(s-a)}{bc}}, \tan\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$$

$$\sin\left(\frac{B}{2}\right) = \sqrt{\frac{(s-a)(s-c)}{ac}}, \cos\left(\frac{B}{2}\right) = \sqrt{\frac{s(s-b)}{ac}}, \tan\left(\frac{B}{2}\right) = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}.$$

$$\sin\left(\frac{C}{2}\right) = \sqrt{\frac{(s-a)(s-b)}{ab}}, \cos\left(\frac{C}{2}\right) = \sqrt{\frac{s(s-c)}{ab}}, \tan\left(\frac{C}{2}\right) = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}.$$
Area of triangle ABC = $\sqrt{s(s-a)(s-b)(s-c)}$,

Area of triangle ABC = $\frac{1}{2}$ bc sin A = $\frac{1}{2}$ ac sin B = $\frac{1}{2}$ ab sin C.

LIMITS

- 1. If f(-x) = f(x), then f(x) is called **Even Function**
- 2. If f(-x) = -f(x), then f(x) is called **Odd Function**
- 3. If P is the smallest +ve real number such that if f(x+P) = f(x), then f(x) is called a **periodic function** with period P.
- 4. Right Hand Limit (RHL) = $\lim_{x \to a+} (f(x)) = \lim_{h \to 0} (f(a+h))$

Left Hand Limit (LHL) =
$$\lim_{x \to a^{-}} (f(x)) = \lim_{h \to 0} (f(a-h))$$

If RHL=LHL then $\lim_{x\to a} (f(x))$ exists and

$$\lim_{x \to a} (f(x)) = RHL = LHL$$

5. Lt
$$\lim_{n\to\infty} \frac{1}{n^p} = 0$$
, if $p > 0$ and $\lim_{n\to\infty} \ln n^p = \infty$ if $p > 0$

6.
$$Lt \frac{\sin x}{x} = Lt \frac{\tan x}{x} (x \text{ in radians}) = Lt \frac{x}{\sin x} = Lt \frac{x}{\sin x} = 1$$

7.
$$Lt_{x\to 0} \frac{\sin x^0}{x} = Lt_{x\to 0} \frac{\tan x^0}{x} = \frac{\pi}{180}$$

8.
$$Lt \frac{\sin x}{x \to \frac{\pi}{2}} = \frac{2}{\pi}$$

9.
$$\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1 = \lim_{x \to 0} \frac{\tan^{-1} x}{x}$$

10.
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$
, where n is an **integer** or a **fraction**.

11.
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log a, \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = \log e = 1$$

12.
$$\lim_{x \to \infty} \left(1 + \frac{1}{n} \right)^n = e,$$
 $\lim_{x \to 0} \left(1 + n \right)^{\frac{1}{n}} = e$

13.
$$\lim_{x \to a} [kf(x)] = k \lim_{x \to a} f(x)$$

14.
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

15.
$$\lim_{x \to a} f(x) . g(x) = \lim_{x \to a} f(x) . \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ provided } \lim_{x \to a} g(x) \neq 0$$

16. A function f(x) is said to be **continuous** at the point x = a if

(i)
$$\lim_{x \to a} f(x)$$
 exists

(ii)
$$f(a)$$
 is defined

(iii)
$$\lim_{x \to a} f(x) = f(a)$$

A function f(x) is said to be **discontinuous or not continuous** at x = a if 17.

(i)
$$f(x)$$
 is not defined at $x = a$

(i)
$$f(x)$$
 is not defined at $x = a$ (ii) $\lim_{x \to a} f(x)$ does not exist at $x = a$

(iii)
$$\lim_{x \to a+0} f(x) \neq \lim_{x \to a-0} f(x) \neq f(a)$$

If two functions f(x) and g(x) are continuous then f(x) + g(x) is continuous 18.