Planning and Learning using Adaptive Entropy Tree Search

Piotr Kozakowski, Mikołaj Pacek, Piotr Miłoś

Contributions

- We present Adaptive Entropy Tree Search (ANTS) that outperforms MENTS, TENTS and PUCT (AlphaZero) in planning-learning loop setup
- Evaluate planning algorithms in isolation from learning. Our algorithm exhibits superior robustness

Model-Based Reinforcement Learning

- Planning
- Perfect model of the environment

AlphaZero

Beating world-champions

- Chess
- Shogi
- Go

Monte Carlo Tree Search (MCTS)

Classical planning algorithm.

Four phases repeated in a loop:

selection expansion evaluation backup

Monte Carlo Tree Search (MCTS)

Selection using Upper Confidence bounds for Trees (PUCT):

$$PUCT(s, a) = Q(s, a) + c\hat{\pi}(a|s) \frac{\sqrt{N(s)}}{N(s, a) + 1}$$

Backpropagation:

$$V(s) \leftarrow (1 - \alpha) \left[\frac{1}{|A|} \sum_{a \in A} Q(s, a) \right] + \alpha \hat{V}(s), \ \alpha = \frac{1}{N(s)}$$
$$Q(s, a) \leftarrow r_{s, a} + \gamma V(s')$$

Maximum Entropy RL

Exploration by rewarding high-entropy policies

$$J(\pi) = \mathbb{E}_{(s_t, a_t)_{t=0}^{\infty}} \left[\sum_{t=0}^{\infty} \gamma^t \left[\mathcal{R}(s_t, a_t) + \tau \mathcal{H}(\pi(\cdot|s_t)) \right] \right]$$

Maximum Entropy for Tree Search (MENTS)

Selection using the Extended Empirical Exponential Weight (E3W) sampling strategy:

$$\pi_{\tau}^{e3w}(a|s) = (1 - \lambda_s) \ \pi_{\tau}(a|s) + \lambda_s \frac{1}{|\mathcal{A}|}, \qquad \lambda_s = \frac{\epsilon |\mathcal{A}|}{\log(N(s) + 1)}$$
$$\pi_{\tau}(a|s) \propto \exp\left(\frac{1}{\tau}Q(s, a)\right),$$

Backpropagation using the optimal entropy-regularized value equation:

$$Q(s, a) \leftarrow \mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(\cdot | s, a)} V(s')$$

 $V(s) \leftarrow \tau \log \sum_{s} \exp \left(\frac{1}{\tau} Q(s, a)\right).$

Xiao et al, 2019 - Maximum Entropy Monte-Carlo Planning Dam et al, 2021 - Convex Regularization in Monte-Carlo Tree Search

Adaptive Entropy Tree Search (ANTS)

Temperature adaptation

$$\mathcal{H}^{+}(\tau) = \left[\frac{1}{|\mathcal{S}_{\text{tree}}|} \sum_{s \in \mathcal{S}_{\text{tree}}} \mathcal{H}(\pi_{\tau}(\cdot|s)) \right] - \mathcal{H}_{\text{avg}},$$
where $\pi_{\tau}(a|s) \propto \exp\left(\frac{1}{\tau}Q(s,a)\right)$.

Pseudoreward shaping

$$Q(s, a; \tau) \leftarrow \mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(\cdot | s, a)} V(s'; \tau)$$
$$V(s; \tau) \leftarrow \tau \log \sum_{a \in \mathcal{A}} \exp \left(\frac{1}{\tau} Q(s, a; \tau)\right) - \tau \mathcal{H}_{\max},$$

Add temperature to Q-networks' input

Entropies

Shannon

$$-\sum_{x}p(x)\log p(x)=\mathbb{E}[-\log p(X)]$$

Tsallis

$$\mathbb{E}_{\pi} \left[\frac{1}{2} (1 - \pi(a|s)) \right]$$

Planning and learning

		PUCT	MENTS	TENTS	ANTS-S	ANTS-T
	Alien	2853	2590	2606	2783	2554
Pretrained Q-networks	Amidar	137	251	236	148	184
	Asterix	48506	8305	10406	51741	49758
	Asteroids	3657	3786	3541	4059	3554
	Atlantis	278156	275681	267429	277870	280492
	BankHeist	680	543	472	707	715
	BeamRider	21745	9424	7534	21268	18536
	Breakout	389	306	243	351	377
	Centipede	18662	59167	99631	51387	133842
	DemonAttack	55947	49952	45960	53998	53462
	Enduro	794	800	800	794	800
	Frostbite	204	197	197	179	184
	Gopher	9606	9330	8150	10770	10766
	Hero	20715	19940	19845	20618	20443
	MsPacman	3880	3873	3358	4923	4846
	Phoenix	8875	6788	6857	9187	9557
	Qbert	15120	13877	13815	15472	15223
	Robotank	55	27	26	49	51
	Seaquest	3270	1764	1533	2557	2656
	SpaceInvaders	4630	2043	2024	4714	4453
	WizardOfWor	11834	7063	8030	12937	13386
	#best scores	14/21	4/21	3/21	14/21	13/21

Robustness

$$\rho(A, H) = \mathbb{E}_{g \sim G} \operatorname{Var}_{h \sim H} \operatorname{score}(A, h, g)$$

Thanks for the attention