

Spring 2025

CSCE 363/3611 - Digital Signal Processing Attention State Assessment using EEG

Seif Eldawlatly

Neural Engineering

- Neural Engineering is a field of research that focuses on engineering methods to investigate the function of the central and peripheral nervous system and manipulate its behavior
- Neural Interfaces are systems that can help restore sensory function, communication, and control to impaired humans
- The main principle is that disabled people would have their brains or parts of their brains fully functional
- Neural Interfaces make use of functional parts to restore a lost function
- Objectives of Neural Engineering:
 - 1- Understand Brain Function
 - 2- Provide Therapeutic, Assistive and Augmentative Technology

Neural Engineering

Examples of Neural Interfaces:

Motor Brain-Machine Interface

Cochlear Implant

Receiver/stimulator

Visual Prosthesis

Neural Engineering

Types of Neural Interfaces

Electroencephalography (EEG)

 Many EEG-based systems use an electrode placement strategy suggested by the International 10/20 system

EEG Frequency Bands

Signals recorded from EEG are split into several bands

Each frequency band has some correlation with different mental functions

EEG Frequency Bands

EEG frequency bands and consciousness

Attention State Assessment

EEG electrodes are used to record brain activity from the scalp

EEG signal processing can help in monitoring attention levels

Applications

Driver attention assessment

https://www.youtube.com/watch?v=30W9SzPooSg

Focus enhancement

Algorithm to Implement

- 1. Apply Common Average Reference (CAR) filter to the data
- For each electrode do the following:
 - 2.1 For each trial of each class of attention (focused versus drowsy):
 - 2.1.1 Compute the Fourier Transform of the trial signal
 - 2.1.2 Compute the power in each of the delta, theta, alpha, beta, and gamma bands as the mean of the power of the frequencies in each band
 - 2.2 Form a feature vector as required in each deliverable in the project description
 - 2.3 Apply K-Nearest Neighbor (KNN) classifier examining K from 1 to 10 using the training and test datasets
 - 2.4 Compute the classification error for each value of K

Common Average Reference (CAR) Filter

- Eliminates the common noise across electrodes
- The mean of all channels at each time instant acts as a reference
- This reference is subtracted from each channel. It can be represented as follows

$$r_i(j) = s_i(j) - \frac{1}{N} \sum_{k=1}^{N} s_k(j)$$

where $s_i(j)$ represents the raw signal recorded on electrode i at time j, $r_i(j)$ represents the filtered signal and N is the total number of channels

K-nearest Neighbor (KNN) Classifier

- Most basic instance-based method
- Uses Euclidean distance to determine how dissimilar a pair of points are

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{r=1}^n (x_{ir} - x_{jr})^2}$$

- For any new input vector, the nearest K points are considered
- A majority voting scheme is used to classify the new input vector

K-nearest Neighbor (KNN) Classifier

