

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Институт информационных систем и технологий Кафедра информационных систем

09.03.02 «Информационные системы и технологии»

КУРСОВАЯ РАБОТА

по дисциплине «Проектирование информационных систем» Тема: «Проектирование информационной системы для бронирования туров»

Студент группы ИДБ-15-13	подпись	Прокофьев К.В.
Руководитель Ст. преп	полпись	Овчинников П.Е.

Москва 2018 г.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)	4
ГЛАВА 2. МОДЕЛЬ ПОТОКОВ ДАННЫХ (DFD)	7
ГЛАВА 3. ДИАГРАММЫ КЛАССОВ	10
ЗАКЛЮЧЕНИЕ	12
СПИСОК ЛИТЕРАТУРЫ	13

ВВЕДЕНИЕ

С каждым годом спрос на отдых заграницей растет и поэтому возникает все большая конкуренция между туристическими агентствами, что неизбежно ведет к необходимости рационально и эффективно использовать имеющиеся у них ресурсы. В этих условиях агентства создают большие базы информации о клиентах, услугах, турах. Для облегчения работы целесообразно использовать автоматизированную базу данных. С использованием автоматизации агент будет затрачивать меньше времени на работу, устранится всевозможная путаница, вся информация будет упорядочена и доступ к ней будет более удобен для пользователя. Разрабатываемая система призвана улучшить процесс бронирования туров.

Система предназначена для:

- 1) Поиска и выбора туров в наглядном виде.
- 2) Подсчет стоимости тура.
- 3) Оформление документов.

Объектом исследования является проектирование информационной системы для бронирования туров.

Исследования выполняются путем построения следующих моделей:

- 1) Функциональной (IDEF0).
- 2) Потоков данных (DFD).
- 3) Диаграмма классов (UML).

Моделирование представляет собой процесс визуализации всего процесса работы системы в деталях. Данный процесс способен помочь понять устройство разработанного продукта.

Функциональная модель разрабатывается с точки зрения директора агентства.

ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)

Функциональная модель — методология функционального моделирования и графическая нотация, предназначенная для формализации и описании бизнес процессов [1]. Модель описывает процессы с требуемой точностью.

В IDEF0 все данные разделяются на 4 типа:

- 1) Внешние входные информационные потоки.
- 2) Внешние выходные информационные потоки.
- 3) Внешние управляющие потоки.
- 4) Механизмы.

Внешним входным информационным потоком в процессе работы системы для бронирования туров является:

- 1) Информация о клиентах.
- 2) Информация от туроператоров.

Выходным информационным потоком процесса является:

- 1)Клиент с путевкой.
- 2)Учет проданных путевок.

Основными механизмами процесса являются:

- 1) Сотрудник.
- 2) Клиент.
- 3) Система бронирования туров.

На рисунках 1-3 представлены диаграммы IDEF0, где 3 блока A0, A3, A33 декомпозируются.

Рис. 1. Декомпозиция блока А0

Рис. 2. Декомпозиция блока А3

Рис. 3. Декомпозиция блока А33

ГЛАВА 2. МОДЕЛЬ ПОТОКОВ ДАННЫХ (DFD)

Целью диаграммы DFD является демонстрация, как каждый процесс преобразует свои входные данных в выходные, а также позволяет выявить отношения между процессами [2].

Наименования объектов собственной базы данных информационной системы приводятся в формате «БД.Таблица».

В процессе декомпозиции функциональных блоков было выделено 3 диаграммы потоков данных (рис. 4-6).

Рис. 4. Диаграмма потоков данных «Выбрать туры»

Рис. 5. Диаграмма потоков данных «Оформить договор»

Рис. 6. Диаграмма потоков данных «Оплата»

Расчет эффекта от системы

- Период рассмотрения 20 дней.
- t(бронирования без системы) = 30 минут; t(бронирования с системой) = 15 минут.
- Сотрудник может оформить 20 путевок.
- \bullet В системе: 20x15 = 300 мин/день; 300x20 = 6000 мин = 100 ч (за рассмотренный период).
- \bullet Без системы: 20x30 = 600 мин/день; 600x20 = 12000 мин = 200 ч (за рассмотренный период).
- Пусть 5 сотрудников в день пользуются системой: 5x100 = 500 ч/час.
- Если сотрудники не пользуются системой: 5x200 = 1000 ч/час.
- 1000 500 = 500 ч/час/мес. выгоды

ГЛАВА 3. ДИАГРАММЫ КЛАССОВ

Диаграмма классов (англ. Static Structure diagram) — структурная диаграмма языка моделирования UML, демонстрирующая общую структуру иерархии классов системы, их коопераций, атрибутов (полей), методов, интерфейсов и взаимосвязей между ними. Широко применяется не только для документирования и визуализации, но также для конструирования посредство прямого или обратного проектирования [3].

В курсовой работе были рассмотрены 3 диаграммы классов: для потоков (рис. 7), для модулей (рис. 8), для ролей (рис. 9).

Рис. 7. Диаграмма классов для потоков

Рис. 8. Диаграмма классов для модулей

Рис. 9. Диаграмма классов для ролей

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсового проекта были созданы модели, визуализирующие работу информационной системы бронирования туров. Была составлена диаграмма IDEF0, которая имела 3 уровня декомпозиции и 3 диаграммы потоков данных DFD.

Также в результате подсчетов было выяснено, что при условных 5 сотрудниках пользующихся этой системой в месяц сотрудник обходит по эффективности сотрудника не использующего эту систему на 3750 ч/час/месяц.

Сформированные модели будут использованы в выпускной квалификационной работе «Разработка автоматизированной системы деятельности агентства в сфере туризма».

СПИСОК ЛИТЕРАТУРЫ

- 1) IDEF0 [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/IDEF0.
- 2) DFD [Электронный ресурс]. URL: https://e-educ.ru/bd14.html.
- 3) UML [Электронный ресурс]. URL:

https://ru.wikipedia.org/wiki/Диаграмма_классов.