Reconstructing a Point from Distances

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright © 1998-2012. All Rights Reserved

Created: April 3, 2006

Last Modified: March 1, 2008

${\bf Contents}$

1	Case $n=1$	2
2	Case $n=2$	2
3	Case $n=3$	4

Given a collection of n known points in three dimensions, call them \mathbf{P}_i for $0 \le i < n$, if another point \mathbf{X} is known to be at a distance r_i from point \mathbf{P}_i for all i, we would like to determine \mathbf{X} .

1 Case n=1

If there is only a single known point \mathbf{P}_0 , there are infinitely many points \mathbf{X} which are a distance r_0 from \mathbf{P}_0 . These points lie on a sphere centered at \mathbf{P}_0 and having radius r_0 .

Figure 1.1 The set of all points a known distance r_0 from a fixed point \mathbf{P}_0 is a sphere.

2 Case n = 2

Given two distinct points \mathbf{P}_0 and \mathbf{P}_1 , the set of points \mathbf{X} for which $|\mathbf{X} - \mathbf{P}_0| = r_0$ and $|\mathbf{X} - \mathbf{P}_1| = r_1$ is either the empty set, a single point, or a circle. The set of points is the intersection of two spheres. The distance between sphere centers is $d = |\mathbf{P}_1 - \mathbf{P}_0|$. If $r_0 + r_1 < d$, the spheres do not intersect. If $r_0 + r_1 = d$, the spheres intersect in a single point. If $r_0 + r_1 > d$, the spheres intersect in a circle.

Figure 2.1 The set of all points a known distance r_0 from a fixed point \mathbf{P}_0 and a known distance r_1 from a fixed point \mathbf{P}_1 is either (a) empty (and separated), (b) a single point, (c) a circle, or (d) empty (and contained).

When there is a single point of intersection, the point is

$$\mathbf{X} = \mathbf{P}_0 + \frac{r_0}{r_0 + r_1} \left(\mathbf{P}_1 - \mathbf{P}_0 \right) \tag{1}$$

When there is a circle of intersection, the points are of the form

$$\mathbf{X} = (1 - s)\mathbf{P}_0 + s\mathbf{P}_1 + \alpha\mathbf{U} + \beta\mathbf{V} \tag{2}$$

where $(1-s)\mathbf{P}_0 + s\mathbf{P}_1$ is a point on the segment connecting the sphere centers for some $s \in [0,1]$. The vectors \mathbf{U} and \mathbf{V} are unit length, mutually perpendicular, and both perpendicular to the segment direction $\mathbf{P}_1 - \mathbf{P}_0$. Replacing this equation in $|\mathbf{X} - \mathbf{P}_0| = r_0$, $|\mathbf{X} - \mathbf{P}_1| = r_1$, and squaring both equations leads to

$$r_0^2 = s^2 d^2 + \alpha^2 + \beta^2, \quad r_1^2 = (s-1)^2 d^2 + \alpha^2 + \beta^2$$
 (3)

where $d = |\mathbf{P}_1 - \mathbf{P}_0|$ is the distance between the sphere centers. Subtracting the two equations,

$$r_1^2 - r_0^2 = [(s-1)^2 - s^2]d^2 = (1-2s)d^2$$
(4)

This may be solved for s, namely,

$$s = \frac{1}{2} \left(1 - \frac{r_1^2 - r_0^2}{d^2} \right) \tag{5}$$

The circle has center $\mathbf{K} = (1 - s)\mathbf{P}_0 + s\mathbf{P}$, lies in the plane $(\mathbf{P}_1 - \mathbf{P}_0) \cdot (\mathbf{X} - \mathbf{K}) = 0$, and has radius $r = \sqrt{\alpha^2 + \beta^2} = \sqrt{r_0^2 - s^2 d^2}$. This is represented parametrically by

$$\mathbf{X}(\theta) = \mathbf{K} + r\left((\cos\theta)\mathbf{U} + (\sin\theta)\mathbf{V}\right) \tag{6}$$

for $\theta \in [0, 2\pi)$.

3 Case n = 3

Given three distinct points \mathbf{P}_0 , \mathbf{P}_1 , and \mathbf{P}_2 and three distances r_0 , r_1 , and r_2 , the set of points \mathbf{X} which are the specified distances from the fixed points is either empty, a single point, two points, or a circle. The set S of common points is the set of intersection of three spheres. The possibilities are described geometrically,

- 1. Two spheres do not intersect. $S = \emptyset$ (the empty set).
- 2. Two spheres intersect in a point **A**.
 - (a) The third sphere does not contain **A**. $S = \emptyset$.
 - (b) The third sphere contains **A**. $S = \{A\}$.
- 3. Two spheres intersect in a circle C.
 - (a) The third sphere does not intersect C. $S = \emptyset$.
 - (b) The third sphere intersects C in a single point \mathbf{A} . $S = \emptyset$.
 - (c) The third sphere intersects C in two points A and B. $S = \{A, B\}$.
 - (d) The third sphere contains all of C. S = C.

Item 1 occurs when

$$r_i + r_j < |\mathbf{P}_i - \mathbf{P}_j| \text{ for some pair } (i, j) \text{ with } i \neq j$$
 (7)

In item 2, suppose that sphere i and sphere j intersect in a single point, where $i \neq j$. This point is

$$\mathbf{A} = \mathbf{P}_i + \frac{r_i}{r_i + r_j} \left(\mathbf{P}_j - \mathbf{P}_i \right) \tag{8}$$

If k is the other index $(k \neq i \text{ and } k \neq j)$, then item 2a occurs when

$$r_k \neq |\mathbf{A} - \mathbf{P}_k| \tag{9}$$

Item 2b occurs when

$$r_k = |\mathbf{A} - \mathbf{P}_k| \tag{10}$$