Course Start

Chapter 1 - The Foundations: Logic and Proofs	
1.7 Introduction to Proofs	
In pursuit of a pythagorean proof	(KA, M)
Proof of Pythagorean Theorem	(?, V)
Origami Proof of Pythagoras	(KA, V)
1.1 - 1.6	
Introduction to Logic	
<u>Truth Tables</u>	
<u>Truth Table Proofs</u>	
<u>Logic Laws</u>	
Conditionals, Converses, Inverses, Contrapositive	<u>s</u>
Quantificational Logic	
1.8 Proof Methods and Strategy †	
Direct Proof	(TT, V)
Proof by Case	(TT, V)
Proof by Contraposition	(TT, V)
Proof by Contradiction	(TT, V)
Mathematical Induction	(TT, V)
Chapter 2 - Basic Structures: Sets, Functions, Sequences, Sums	i
2.1 - Sets	
Review of Sets, Notation	(B, T)
<u>Sets</u>	(TT, V)
<u>Sets</u>	(EC, V)
2.2 - Set Operations	
Set Operations Set Operations	(TT, V)
Oct Operations	(11, V)
2.3 - Functions	
Intro to Functions	(TT, V)
Onto,1-2-1,Surjective,Injective, etc.	(TT, V)
Onto,1-2-1,Surjective,Injective, etc.	(KA, V)
2.4 - Sequences and Summations	
Sequences and Series	(KA, m)
<u>Summations</u>	(KA, ?)

Sequences and Series		(EC, V)
Chapter 3 - Algorithms 3.2 - Growth of Functions	†	
Asymptotic Notation Functions in Asymptotic Notation		(KA, T) (KA, T)
3.3 - Complexity of Algorithms Complexity O, Omega, Theta Big Theta Notation Big O Notation Big Omega Notation Prove f(x) is Big-O of g(X) Prove f(x) is Big-Theta of g(X) Prove f(x) is Big-Omega of g(X)		(X, V) (KA, T) (KA, T) (KA, T) (R, V) (R, V) (R, V)
Chapter 4 - (not really covered) 4.1 Divisibility and Modular Arithmetic		(EC, V) (TT, V)
Chapter 5 - Induction and Recursion 5.1 - Mathematical Induction	††	
Induction (sum of first n integers) Mathematical Induction		(KA, V) (TT, V)
5.2 - Strong Induction and Well-Ordering Well Ordering Strong Induction Proof 5.3 - Recursive Definitions and Structural Induction		(TT, V) (DB, V)
Recursive Algorithms 5.4 - Recursive Algorithms		(KA, T)
Recursive Algorithms Recursive Algorithms		(KA, T)
Chapter 6 - Counting 6.1 - Basics of Counting	†	
Counting & Selection		(EC, V)

Additional Uses For Perms and Combs	(EC, V)
Counting (Probability)	(KA, V)
6.2 - Pigeonhole Principle	
Pigeonhole Principle	(TT, V)
6.3 - Permutations and Combinations	
<u>Shortcuts</u>	(EC, V)
Permutations and Combinations	(EC, V)
Permutations, Combinations, Probability	(KA, V)
6.4 - Binomial Coefficients and Identities	
Intro to Binomial Theorem	(KA, V)
Generalizing to Binomial Theorem	(KA, V)

MIDTERM

Chapter 2 - Basic Structures: Sets, Functions, Sequences 2.5 - Cardinality of Sets (countability of infinite sets)		
Chapter 4		
4.1 Divisibility and Modular Arithmetic		
<u>Division Algorithm</u>		(EC, V)
GCD Euclidean Algorithm		(TT, V)
Chapter 6 - Counting (continued)	†	
6.5 - Distribution & Derangement		(EC, V)
		_
Chapter 8 - Advanced Counting Techniques		†
8.1 - Applications of Recurrence Relations		
Recurrence Relations		(TT, V)
Recurrence Relations		(KA, V)
8.2 - Solving Linear Recurrence Relations		
Homogeneous Recurrence Relations		(TT, V)
Non-Homogeneous Recurrence Relations		(TT, V)
Observan O. Balatiana	_	
Chapter 9 - Relations	†	
9.1 - Relations and Their Properties		
Intro to Relations		(TT, V)

Charter 10 Crarbs (so Dilletta)	
Chapter 10 - Graphs (no Dijkstra) † † 10.1 - Graphs and Graph Models	
·	(K
Graph Representation and describing graphs Representing Graphs	(KA, T) (KA, T)
10.2 - Graph Terminology and Special Types of Graphs	(rvA, 1)
Graph Terminology	(TT, V)
Vertex Degree and Regular Graphs	(TT, V)
10.3 - Representing Graphs and Graph Isomorphism	(11, V)
Isomorphism and Bipartite Graphs	(TT, V)
10.4 - Connectivity	(11, V)
Subgraphs, Complements, and Complete Graphs	(TT, V)
10.5 - Euler and Hamilton Paths	(11, V)
Euler Circuits / Paths	(TT, V)
Hamilton Paths	(TT, V)
10.6 - Shortest Path (not covered)	(, .,
10.7 - Planar Graphs	
Proof: Euler's Equation (e-v+2=r)	(3B, V)
Euler's Theorem	(, ,
(TT, V)	
Planar Graph	(?, V)
Planar Graph	(TT, V)
Chapter 13 - Modeling Computation	†
Languages, Grammars, and FSMs	
13.1 - Languages and Grammars	
Formal Languages	
Formal Language Examples	
13.2 - Finite-State Machines with Output	
albert Finite State Machines	
Formal Definition of a Finite State Machine	
13.3 - Finite-State Machines with No Output	

9.3 - Representing Relations9.5 - Equivalence Relations

Final

Chapters are from Rosen (PDF, Amazon). There is another book also, Epp (PDF, Amazon)

```
Sources = {
       KA = Khan Academy *
       R = Randerson
       TT = <u>TrevTutor</u>
       B = Berkeley CS70
       X = xoax.net
       DB = Math Doctor Bob
       EC = Endeavor Careers *
       3B = <u>3Blue1Brown</u>
}
Methods = {
       V = Video
       T = Text
       M = Mixed Media
* = Very Clear
† = Likely exam question
```