Übungsaufgaben zur VU Computermathematik Serie 4

We use the packages plots and LinearAlgebra.

Exercise 4.1: Visualization of linear mappings.

- a) With plots[arrow] you can draw arrows. Use this to visualize the behavior of a linear mapping $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ represented by its coefficient matrix, by drawing the parallelogram spanned by the images of the unit vectors (1,0) and (0,1) under the mapping. Produce a nice plot.
- **b)** Analogous to **a)**, but for $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$.

Exercise 4.2: Data-sparse representation of a linear mapping.

A <u>data-sparse representation</u> of a low-rank linear mapping or of its coefficient matrix A is a procedural representation which does not involve the explicit form of the matrix. Example:

$$Ax = \prod_{k=1}^{m} (I - u_k v_k^T) \cdot x = (I - u_m v_m^T) \cdot \cdot \cdot (I - u_1 v_1^T) \cdot x, \quad u_k, v_k \in \mathbb{R}^n$$

with $m \ll n$. Here, the column vectors $u_k, v_k \in \mathbb{R}^n$ contain the full information about the mapping.

Design a procedure mvmul(U::Matrix,V::Matrix,x::Vector) which computes Ax without explicitly building the matrix A. (Here, the columns of $U,V \in \mathbb{R}^{n \times m}$ represent the vectors $u_k, v_k, k = 1 \dots m$.) Use inner products and scalar \cdot vector multiplications only. Verify the correctness of your code for at least one example.

Hint: Since matrix multiplication is associative, we have $(uv^T)x = u(v^Tx) = (v^Tx)u$.

Exercise 4.3: Sherman-Morrison-Woodbury (SMW).

Let $A \in \mathbb{R}^{n \times n}$ be invertible, and $U, V \in \mathbb{R}^{n \times m}$. Then, the <u>Sherman-Morrison-Woodbury</u> - formula holds true: $A + UV^T \in \mathbb{R}^{n \times n}$ is invertible iff $I + V^T A^{-1}U \in \mathbb{R}^{m \times m}$ is invertible, and

$$(A + UV^T)^{-1} = A^{-1} - A^{-1}U(I + V^TA^{-1}U)^{-1}V^TA^{-1}.$$

This identity (which is not very difficult to prove) can be used to compute the inverse $(A + UV^T)^{-1}$, assuming A^{-1} is already known. The additional effort involves only computing the small inverse $(I + V^T A^{-1} U)^{-1} \in \mathbb{R}^{m \times m}$; thus, using the SMW formula is more efficient than direct inversion of $(A + UV^T)^{-1}$, if $m \ll n$.

Implement this formula in form of a procedure

and test.

Exercise 4.4: A matrix depending on two parameters.

Consider the matrix

$$A = \begin{pmatrix} 0 & \alpha & 1 & 0 & \beta \\ 0 & 1 & 0 & \alpha & 0 \\ \alpha & 0 & 1 & 0 & 0 \\ \beta & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \alpha\beta & 0 \end{pmatrix}$$

depending on two parameters $\alpha, \beta \in \mathbb{C}$.

a) What is the generic rank of A? ¹

¹ Recall from lecture what is to be understood by 'generic'.

b) Determine all possible values of the parameters α, β such that A is a singular matrix, and determine the rank of A for these special cases.

Exercise 4.5: Projection in 3D.

Let \mathcal{U} be a linear subspace of \mathbb{R}^3 of dimension 2 (i.e., a plane containing the point 0). We wish to determine the matrix representation of the <u>projector</u> P, a linear mapping which projects points $x \in \mathbb{R}^3$ onto \mathcal{U} in the direction of a given vector $0 \neq w \notin \mathcal{U}$. It is not difficult to see (*check this*) that P is a rank 2 matrix uniquely determined by the requirements

$$Pu = u$$
, $Pv = v$, $Pw = 0$,

where $u, v \in \mathcal{U}$ are given linearly independent vectors spanning \mathcal{U} .

a) Design a procedure

```
projector(u::Vector,v::Vector,w::Vector)
```

which returns the matrix $P \in \mathbb{R}^{3\times 3}$ in form of an object of type Matrix. Use LinearSolve.

- **b)** It is easy to see that $P^2 = P$. Check this by an example.
- c) If $w \perp \mathcal{U}$, the outcome P is the so-called <u>orthogonal projector</u> onto \mathcal{U} . In this case not only $P^2 = P$ holds, but also P = Q. What is $Q ? ^2$

Exercise 4.6: (*) Similar matrices.³

A pair of matrices $A, B \in \mathbb{R}^{n \times n}$ is called <u>similar</u> if there exists a regular matrix $X \in \mathbb{R}^{n \times n}$ such that $B = X A X^{-1}$. For given A, B we want to find X (if it exists).

- a) Reformulate the problem in a way such that the inverse of the unknown matrix X is not involved.
- b) Try to solve this problem for the special case n=2, at least for a simple numerical example.

Exercise 4.7: Derivation of a formula for the numerical approximation of a second derivative.

Let h > 0, and consider

$$\varphi(x,h) = c_{-2} f(x-2h) + c_{-1} f(x-h) + c_0 f(x) + c_1 f(x+h) + c_2 f(x+2h),$$

where the constants c_i are to be determined in a such a way that $\varphi(x,h)$ approximates the second derivative f''(x) of some function f at the point x.

Find the c_i such that as many as possible terms in the Taylor expansion of $\varphi(x,h) - f''(x)$ about h = 0 vanish.

Hint: Use taylor and solve a system of linear equations.

Exercise 4.8: Polynomial derivatives and matrix representation.

We consider the (n+1)-dimensional vector space \mathcal{P}_n of polynomials p of degree $\leq n$,

$$p(t) = a_0 + a_1 t + a_2 t^2 + \ldots + a^n t^n,$$

and the linear operation $D: \mathcal{P}_n \to \mathcal{P}_{n-1}$ defined by D(p) = p' (first derivative w.r.t. t).

- a) Computation of the polynomial D(p) = p' is equivalent to a linear transformation which maps the coefficient vector $(a_0, a_1, a_2, \ldots, a_n)$ of p(t) to the corresponding coefficient vector of $p'(t) = a_1 + 2a_2t + \ldots$
 - Design a procedure which, for given n, returns the matrix representation $A \in \mathbb{R}^{(n-1)\times n}$ of this linear transformation.
- b) How can you use a) to generate the analogous matrix representation of $D^{(2)}(p) = p''$?

Validate your findings using numerical examples (i.e., for some concrete values of n and the a_k).

² This is a nice exercise in linear algebra. If you do not already know the answer, you may test examples, and such an experiment maybe helpful for grabbing the idea of the proof.

³ This problem looks simple at first sight, but it is not straightforward to solve (see the course Linalg 2). Do not worry too much about it – it is not mandatory. On the other hand, it is a realistic example in the following sense: If not sure what is going on with some problem, one may use computer algebra for trying to get an idea.