

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE

Wydział Matematyki, Fizyki i Informatyki

Kierunek: Informatyka

Specjalność: -

Aleh Hutsko

Nr albumu: 296609

Symulacja wzrostu roślin generowanych przez system Lindenmayera

Simulation of the growth of plants generated by the Lindenmayer system

Praca licencjacka

napisana w Katedrze oprogramowania systemów informatycznych pod kierunkiem dr Krzysztofa Dmitruka

LUBLIN 2022

Spis treści

W	stęp			5	
1	Sys	tem Li	indenmayera	7	
	1.1	Inform	nacje wstępne	. 7	
	1.2	Strukt	tura L systemu	. 7	
	1.3	Interpretacja ciągu znaków			
2	Imp	olemen	ntacja	15	
	2.1	Wyko	rzystane narzędzia	. 15	
		2.1.1	Język i środowisko	. 15	
		2.1.2	Biblioteka Proctree	. 15	
		2.1.3	Biblioteka nlohmann Json	. 15	
		2.1.4	OpenGL	. 15	
	2.2	Funkc	jonalność aplikacji	. 15	
		2.2.1	Planowanie drzew	. 15	
		2.2.2	Symulacja wzrostu	. 15	
		2.2.3	Ustawianie parametrów	. 15	
		2.2.4	Ustawianie tekstur	. 15	
		2.2.5	Zapis do pliku	. 15	
	2.3	Strukt	tura programu	. 15	
3	Test	ty i rez	zultaty	17	
	3.1	Wyda	ijność	. 17	
	3.2		vnanie z innymi rozwiązaniami		
4	Pod	lsumow	wanie	19	

Bibliografia 21

Wstęp

Rośliny to rozległa grupa organizmów żywych, występujących na większości lądów na Ziemi, a także w środowisku wodnym. Należą do nich trawy, drzewa, kwiaty, krzewy, paprocie, mchy i wiele innych. Istnieje około 391,000 gatunków roślin, z których zdecydowana większość, około 369,000 (94%), wytwarza nasiona.[1] Rośliny można znaleźć na całym świecie, na wszystkich kontynentach. Rośliny dostarczają znaczną część tlenu na świecie i stanowią podstawę większości ekosystemów na Ziemi. Tak ważna część świata rzeczywistego prędzej czy później wymagała matematycznego opisu i dalszego zastosowania w różnych rodzajach nauki, w szczególności w informatyce. Modelowanie roślin w informatyce jest szeroko stosowane w wielu dziedzinach, takich jak gry, przemysł filmowy, agrokultura i architektura. Rośliny charakteryzują się złożoną, zwykle fraktalną strukturą, która jest trudna do modelowania. Z tego powodu opracowano różne systemy opisywania modeli roślin, aby uporządkować i uprościć pracę z modelowaniem drzew. Jednym z takich systemów jest system Lindenmaiera, który umożliwia opis struktur fraktalnych, w szczególności roślin na poziomie gramatyki formalnej.

Celem tej pracy jest analiza i zapoznanie się z systemem Lindenmayera, możliwościami jego rozbudowy i wykorzystania do generowania roślin, a konkretnie drzew. Ponadto należy opracować oprogramowanie umożliwiające tworzenie trójwymiarowych modeli drzew z możliwością modyfikacji parametrów drzew i symulacji ich wzrostu. Oprogramowanie powinno posiadać następujące funkcje:

- możliwość wyświetlania drzew w przestrzeni trójwymiarowej,
- możliwość modyfikowania drzew przy użyciu różnych parametrów,
- możliwość wyboru tekstur dla pnia drzewa i liści,
- możliwość symulacji wzrostu drzew,

– możliwość zapisywania i wczytywania drzew o określonych parametrach.

System Lindenmayera

1.1 Informacje wstępne

Systemy Linedmayera (L-Systemy) zostały wprowadzone i rozwinięte w 1968 roku przez Aristida Lindenmayera, węgierskiego biologa teoretycznego i botanika z Uniwersytetu w Utrechcie. Lindenmayer wykorzystał L-systemy do opisu zachowania komórek roślinnych i modelowania procesów wzrostu w rozwoju roślin.

Reguły L-systemu reprezentują rekurencję. Prowadzi to do samopodobieństwa, a więc formy fraktalne można łatwo opisać za pomocą L-Systemu. Modele roślin, komórek i innych form organicznych naturalnie występujących gatunków można łatwo zdefiniować za pomocą L-systemu, ponieważ wraz ze wzrostem poziomu rekurencji forma powoli "rośnie" i staje się coraz bardziej złożona. Systemy Lindenmayera są również popularne w symulowaniu sztucznego życia.

Na rysunku 1.1 jest przykład zastosowania L-systemu dla stworzenia fraktalnej struktury, która przypomina drzewo.

1.2 Struktura L systemu

L-systemy są obecnie powszechnie nazywane parametrycznymi L-systemami, definiowanymi jako krotka:

$$G = (V, \omega, P), \tag{1.1}$$

gdzie

Rysunek 1.1: Przykład stworzonej struktury za pomocą L-systemu

- V (alfabet) to zbiór symboli zawierający zarówno elementy, które można zastąpić (zmienne), jak i te, których nie można zastąpić ("stałe" lub "terminale")
- ω (początek, aksjomat lub inicjator) to ciąg symboli z V, który określa stan początkowy systemu.
- P to zbiór reguł produkcji lub produktów określających sposób zastępowania zmiennych przez kombinacje stałych i innych zmiennych. Produkcja składa się z dwóch ciągów: poprzednika i następnika. Dla każdego symbolu A, który jest członkiem zbioru V i nie występuje po lewej stronie żadnego iloczynu w P, zakłada się tożsamość iloczynu A \rightarrow A; symbole te nazywamy stałymi lub terminalnymi.

W standardowej wersji L-systemów reguły wnioskowania są następujące:

$$v \to \omega,$$
 (1.2)

gdzie v jest znakiem danego alfabetu V, $\omega \in V^*$ jest łańcuchem znaki (ewentualnie puste) w tym samym alfabecie. Każdą regułę można więc interpretować jako podział komórki ($|\omega| > 1$), lub jej modyfikację ($|\omega| = 1$), lub jako jej śmierć ($|\omega| = 0$).

Na tabeli 1.1 przedstawiono przykład L-systemu.

Po zdefiniowaniu L-systemu, zaczyna ona ewoluować zgodnie ze swoimi zasadami. Stanem początkowym L-systemu jest jego aksjomat. Wraz z dalszym rozwojem ta linia opisująca stan ulegnie zmianie. Rozwój L-systemu odbywa się cyklicznie. W każdym cyklu rozwoju ciąg jest oglądany od początku do końca, symbol po symbolu. Dla każdego

Tabela 1.1: Przykład stworzonej struktury za pomocą L-systemu

Alfabet	Aksjomat	Reguly
$\boxed{ \{ \lceil A \rfloor, \lceil B \rfloor, \lceil F \rfloor, \lceil H \rfloor, \lceil J \rfloor, \lceil + \rfloor, \lceil - \rfloor \} }$	$\lceil FB floor$	$\lceil A \rfloor \rightarrow \lceil FBFA + HFA + FB - FA \rfloor$
		$\lceil F_{ floor} ightarrow \lceil$
		$\lceil H \rfloor o \lceil - \rfloor$
		$\lceil J \rfloor \rightarrow \lceil + \rfloor$

znaku wyszukiwana jest reguła, dla której ten znak jest poprzednikiem. Jeśli taka reguła nie zostanie znaleziona, znak jest pozostawiony bez zmian. Innymi słowy, dla tych znaków $\lceil X \rfloor$, dla których nie istnieje reguła jawna, obowiązuje reguła domyślna: $\lceil X \rfloor \rightarrow \lceil X \rfloor$. Jeśli zostanie znaleziona pasująca reguła, znak poprzednika jest zastępowany przez łańcuch następnika z tej reguły.

Dla ilustracji rozważmy następujący L-system (nazywamy go glon (łat. Algx), ponieważ jego rozwój modeluje wzrost pewnego gatunku alg) w tabeli 1.2:

Tabela 1.2: Przykład stworzonej struktury za pomocą L-systemu

Aksjomat	Reguly
$\lceil A floor$	
	$\lceil B \rfloor \to \lceil AB \rfloor$

W tabeli 1.3 przedstawiono stany tego L-systemu odpowiadające pierwszym dziesięciu cyklom rozwoju systemu.

Można zauważyć, że długości ciągów kodujących stan takiego L-systemu tworzą ciąg liczb Fibonacciego, czyli ciąg liczbowy, w którym każda liczba jest równa sumie dwóch poprzednich. Ciągami Fibonacciego będą także numery znaków A i B w tych ciągach. Bardziej zaskakujący jest fakt, że ciąg ciągów ma taką samą prawidłowość jak ciąg liczb Fibonacciego: każdy ciąg jest sumą (konkatenacją) dwóch poprzednich.

Aby uzyskać stan l-systemu po określonej liczbie iteracji, napisałem funkcję (listing 1.1), do której można wstawić aksjomat, zbiór reguł l-systemu oraz liczbę iteracji.

Tabela 1.3: Wyniki l-systemu z tabeli 1.2 od zera do ośmiu iteracji

Generacja	Stan
0	$\lceil A floor$
1	$\lceil B floor$
2	$\lceil AB floor$
3	$\lceil BAB floor$
4	$\lceil ABBAB floor$
5	$\lceil BABABBAB floor$
6	$\lceil ABBABBABABBAB floor$
7	$\lceil BABABBABBABBABBABBAB floor$
8	$\lceil ABBABBABABBABBABBABBABBABBABBABBABBABBA$

Funkcja zwraca stan łańcucha po podanej liczbie iteracji.

```
def iter(axiom: str, rules: dict, iterations: int) -> str:
   if iterations == 0: return axiom
   returnString = ''

for i in axiom:
   if i in rules:
       returnString += rules[i]

else:
       returnString += i
   return iter(returnString, rules, iterations-1)
```

Listing 1.1: Funkcja, która zwraca stan systemu po określonej liczbie iteracji

1.3 Interpretacja ciągu znaków

W celu dalszej graficznej interpretacji otrzymanych ciągów należy wprowadzić pojęcie grafiki żółwia. Grafika żółwia to zasada organizacji graficznej biblioteki wyjściowej oparta na metaforze żółwia, wyimaginowanego (a w niektórych eksperymentach rzeczywistego) urządzenia przypominającego robota, które porusza się po ekranie lub papierze i obraca w zadanym kierunku, pozostawiając za sobą (lub opcjonalnie nie pozostawiając) narysowaną linię o zadanym kolorze i szerokości.

Interpretacja znaków polega na zdefiniowaniu operacji dla symboli (nie jest konieczne dla wszystkich) w alfabecie. Czynności, podobnie jak symbole, są z kolei definiowane przez autora systemu. Rysunek 1.2 przedstawia przykład interpretacji symbolu (z kątem $\alpha=90^\circ$) w następujący sposób:

Rysunek 1.2: Przykładowa interpretacja symboli

- $\lceil F \rfloor$ oznacza przejście do przodu i narysuj linię

Zdefiniujemy również zbiór reguł L-systemu w tabeli 1.4. Łącząc wyże wymieniony zestaw reguł z interpretacją symboli z rysunku 1.2, otrzymujemy strukturę rekurencyjną zwaną krzywą smoka (tabela 1.5).

Tabela 1.4: Zestaw reguł L-system dla krzywej smoka (ang. dragon curve)

Alfabet	Aksjomat	Reguly
$\boxed{ \left\{ \lceil F \rfloor, \lceil X \rfloor, \lceil Y \rfloor \right\} }$	$\lceil FB floor$	$\lceil A \rfloor \rightarrow \lceil FBFA + HFA + FB - FA \rfloor$
		$\lceil F_{ floor} ightarrow \lceil$
		$\lceil H \rfloor o \lceil - \rfloor$
		$\lceil J \rfloor \rightarrow \lceil + \rfloor$

Tabela 1.5: krzywa smoka w iteracji 1-7

Iteracji	Stan
1	لـ
2	5
3	7-5
4	5-6
5	45.5
6	
7	

Widać, że po każdej iteracji struktura staje się coraz bardziej złożona. Wynik piętnastu iteracji pokazano na rysunku 1.3.

W przykładzie krzywej smoka (rysunek 1.3) żółw zawsze porusza się na tę samą odległość, a jego linie mają tę samą szerokość. Jednak w świecie rzeczywistym rośliny i drzewa mają zasadniczo strukturę rozgałęzioną. W strukturze fraktalnej roślin każda pojedyncza gałąź może być przedstawiona jako osobna roślina, choć w zredukowanej formie. Dlatego, aby symulować drzewa, do l-systemu należy dodać parametry długości i szerokości linii utworzonej przez żółwia.

Kolejny zestaw reguł (tabela 1.6) zademonstruje przykład tworzenia struktury przypominającej drzewo. Przykład zaczerpnięty z książki "Alogirytmiczne piękno roślin" [2] (ang. "Alogirthmic Beauty of Plants"), której współautorem jest sam Aristid Lindenmayer. W przykładzie tego l-systemu do alfabetu wprowadzane są nowe znaki. Ich interpretacja przez żółwia jest następująca:

- 「[」 oznacza "zapisać bieżący stan żółwia do stosu",

Rysunek 1.3: Wynik piętnastu iteracji

- $\lceil \rfloor \lrcorner$ oznaca "odczytać bieżący stan żółwia do stosu",
- $\lceil X \rfloor$ jest ignorowany przez żółwia

W przykładzie przedstawionym w książce szerokość linii narysowanej przez żółwia nie zmienia się. Rozszerzyłem przykład z podręcznika i dodałem czynnik szerokości, przez który będzie mnożona grubość w zależności od zagnieżdżenia gałęzi.

W wyniku zastosowania wszystkich powyższych reguł powstaje struktura przypominająca drzewo (rysunek 1.4)

Tabela 1.6: Zestaw reguł L-system dla przykładowego drzewa

Alfabet	Aksjomat	Reguly	Konstanty
$\boxed{ \left\{ \lceil F \rfloor, \lceil X \rfloor, \lceil [\rfloor, \lceil] \rfloor \right\} }$	$\lceil X \rfloor$	$\lceil X \rfloor \to \lceil F[+X]F[-X] + X \rfloor$	Kąt powrotu = 20°
		$\lceil F floor ightarrow \lceil F floor$	Szerokość linii = 6px
			Czynnik szerokości = 0.5

Rysunek 1.4: Utworzona struktura na podstawie reguł z tabeli 1.6

Implementacja

0 1	TX7 1	1 •
2.1	Wykorzystane	narzedzia
	vv y HOLZ y Stalle	

- 2.1.1 Język i środowisko
- 2.1.2 Biblioteka Proctree
- 2.1.3 Biblioteka nlohmann Json
- 2.1.4 OpenGL

2.2 Funkcjonalność aplikacji

- 2.2.1 Planowanie drzew
- 2.2.2 Symulacja wzrostu
- 2.2.3 Ustawianie parametrów
- 2.2.4 Ustawianie tekstur
- 2.2.5 Zapis do pliku

2.3 Struktura programu

Testy i rezultaty

- 3.1 Wydajność
- 3.2 Porównanie z innymi rozwiązaniami

Podsumowanie

Bibliografia

- [1] C. M. and B. W. J, "The number of known plant species in the world and its annual increase," researchgate.net, 2016. [Online; dostęp 19 czerwca 2022].
- [2] P. P. and L. A., *The Algorithmic Beauty of Plants*. Springer-Verlag, New York, 1990.