Final Assessment Test (FAT) - November/December 2022

Programme	B.Tech.	Semester	Fall Semester 2022-23
Course Title	ANALOG CIRCUITS	Course Code	BECE206L
Faculty Name	Prof. Sangeetha R G	Slot	C2+TC2
		Class Nbr	CH2022231001118
Time	3 Hours	Max. Marks	100
If any data is n	nissing assume and justify		

SECTION A (7 X 10 Marks) Answer All questions

1. The Common-Emitter bias configuration is shown in Figure.1

[10]

Figure. 1 Common-Emitter bias circuit

- (a) Find R_{i} , R_{o} , and A_{v} considering early voltage $V_{A}=\infty$, (b) Repeat part (a) for early voltage $V_A=50 V$.
- 2. For the transistor in the circuit shown in Figure. 2, the nominal parameter values are $V_{TN} = 1 \text{ V}$ and $K_n = 0.5 \text{ mA/V}^2$.

Figure 2. Voltage divider MOSFET Circuit

- (a) Determine the quiescent values V_{GSQ} , I_{DQ} , and V_{DSQ} . (b) Determine the range in I_D and V_{DS} values for a $\pm 5\%$ variation in V_{TN} and K_n .
- 3. For a class B amplifier providing a 20 V peak-peak signal to a 16 Ω load (speaker) and a power supply of $V_{DD} = 30 \text{ V}$,

Determine the

- (a) Input power (2.5 Marks)
- (b) Output power (2.5 Marks)
- (c) Power efficiency (2.5 Marks)
- (d) Power dissipated by heat (2.5 Marks)
- 4. (a) Sketch the basic MOSFET two-transistor current mirror and explain the operation. (5 marks) [10]
- (b) Sketch a MOSFET cascode current mirror circuit and discuss the advantages of this design. (5 marks)
- 5. (a) Determine a circuit that is not stable in either state that utilizes timer IC. Briefly discuss the functionality. (5 Marks)

[10]

- (b) Derive the expression of the duty cycle for the above circuit (5 Marks)
- 6. The inverting summer amplifier is given in Figure 3,

Figure 3

- a) Derive the expression of output voltage in terms of input voltages V_1 , V_2 , and V_3 for the given circuit. (6 marks)
- b) For the special case of $R_1=R_2=R_3=R_f$, what will be the output voltage in terms of input voltages? (2 marks)
- c) For the special case of $R_1=R_2=R_3=3R_f$, what will be the output voltage in terms of input voltages? (2 marks)
- 7. A Non-inverting amplifier shown in Figure 4, has $R_1 = 1k\Omega$ and $R_f = 8k\Omega$. This opamp has $V_{ios} = 10 \text{mV}$; $I_B = 400 \text{nA}$ and $I_{os} = 50 \text{nA}$.

Figure 4

- a) Find maximum output offset voltage due to Vios and IB (4 marks)
- b) Calculate the value of R_{comp} needed to reduce the effect of $I_{\rm B}$ (2 marks)

© C) Calculate max output offset voltage if R_{comp} calculated in (b) is connected in the circuit (4 marks)

SECTION B (2 X 15 Marks) Answer All questions

- 8. (a) Explain the RC Phase shift oscillator with a neat circuit diagram and derive its frequency of oscillation. Also, design an RC phase shift oscillator so that $f_o = 500$ Hz. Assume C=1 μ F (7 marks)
 - (b) (i) Design a first-order high pass filter at a cut-off frequency of 1 kHz with a pass band gain of 2. (4 marks)
 - (ii) Plot the frequency response of the filter designed in part b(i). (4 marks)
- 9. Explain the function of a three-bit R-2R ladder digital to analog converter (DAC) with the necessary diagram and derive the expression for the output voltage.

