is also subspace of V.

Email: klaus-robert.mueller@tu-berlin.de

# Week 1: Euclidean Vector Spaces

# Exercise 1

| 1.  | The Cartesian product $A_1 \times \cdots \times A_n$ of sets $A_1, \ldots, A_n$ is defined as                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                     |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | $\Box A_1 \times \cdots \times A_n := A_1 \setminus (A_2 \cup \ldots \cup A_n)$ $\Box A_1 \times \cdots \times A_n := \{(a_1, \ldots, a_n) \mid a_1 \in A_1, \ldots, a_n \in A_n\}$ $\Box A_1 \times \cdots \times A_n := \{a_1 \cdot a_2 \cdot \ldots \cdot a_n \mid a_1 \in A_1, \ldots, a_n \in A_n\}$                                                                                                                                                      |                                                                                                                                                     |                                                                                                                                                     |  |
| 2.  | 2. Let $n \in \mathbb{N} \setminus \{0\}$ . Then $\mathbb{R}^n$ contains                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                     |  |
|     | $\square$ n real numbers                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\square$ <i>n</i> -tuples of real numbers                                                                                                          | $\Box$ <i>n</i> -tuples of vectors                                                                                                                  |  |
|     | Which of the following sets together with standard addition and scalar multiplication does <u>not</u> form a real vector space $\mathbb{Z}$ $\square$ The set of integers $\mathbb{Z}$ $\square$ The set of complex numbers $\mathbb{C}$ $\square$ The set of real-valued, continuous functions $\{f\colon \mathbb{R}^n\to\mathbb{R}\mid f \text{ continuous }\}$ Scalar multiplication in a real vector space $V=(\mathcal{V},+,\cdot)$ is given by a mapping |                                                                                                                                                     |                                                                                                                                                     |  |
| 1.  | $\square \ \mathcal{V} 	imes \mathcal{V} 	o \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                        | $\square \; \mathbb{R} 	imes \mathcal{V} 	o \mathcal{V}$                                                                                            |                                                                                                                                                     |  |
|     | $\sqcup V \times V \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sqcup \mathbb{K} \times V \to V$                                                                                                                  | $\square \ \mathbb{R} 	imes \mathcal{V} 	o \mathbb{R}$                                                                                              |  |
|     | How many vector subspaces does $\mathbb{R}^2$ have? $\square$ two: $\{0\}$ and $\mathbb{R}^2$ $\square$ four: $\{0\}$ , $\mathbb{R} \times \{0\}$ , $\{0\} \times \mathbb{R}$ (the axes), $\mathbb{R}^2$ $\square$ infinitely many  Which of the following subsets of $\mathbb{R}^2$ is <u>not</u> a vector subspace?                                                                                                                                          |                                                                                                                                                     |                                                                                                                                                     |  |
| 6.  | Which of the following subsets of $\mathbb{R}^2$ is in                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                     |                                                                                                                                                     |  |
|     | $\square \ \{0\}$                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\square \{ \boldsymbol{x} \in \mathbb{R}^2 \mid x_1 = 2x_2 \}$                                                                                     | $\square \{ \boldsymbol{x} \in \mathbb{R}^2 \mid x_1 = x_2 + 1 \}$                                                                                  |  |
| 7.  | For which of the following objects does it make sense to say that they are "linearly independent"?                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                                                                                                                                     |  |
| 8.  | □ Elements of a vector space $v_1,, v_n \in \mathcal{V}$ □ Real numbers $\lambda_1,, \lambda_n \in \mathbb{R}$ □ The linear combination $\lambda_1 v_1 + + \lambda_n v_n$ Which of the following vectors form a basis of $\mathbb{R}^2$ ?                                                                                                                                                                                                                      |                                                                                                                                                     |                                                                                                                                                     |  |
|     | $\square  \left[ \begin{array}{c} 2 \\ 4 \end{array} \right], \left[ \begin{array}{c} 2 \\ 3 \end{array} \right]$                                                                                                                                                                                                                                                                                                                                              | $\square  \left[ \begin{array}{c} 1 \\ 0 \end{array} \right], \left[ \begin{array}{c} -1 \\ 0 \end{array} \right]$                                  | $\square \left[\begin{array}{c}1\\5\end{array}\right], \left[\begin{array}{c}3\\-6\end{array}\right], \left[\begin{array}{c}2\\3\end{array}\right]$ |  |
| 9.  | What is the scalar product of the vector                                                                                                                                                                                                                                                                                                                                                                                                                       | $\operatorname{rs} \left[ \begin{array}{c} 1 \\ -2 \\ 0 \end{array} \right] \text{ and } \left[ \begin{array}{c} 3 \\ 0 \\ 3 \end{array} \right] ?$ |                                                                                                                                                     |  |
|     | $\square$ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Box$ 5                                                                                                                                            | □ 7                                                                                                                                                 |  |
| 10. | Which of the following statements is $\underline{\text{fals}}$                                                                                                                                                                                                                                                                                                                                                                                                 | <u>se</u> ?                                                                                                                                         |                                                                                                                                                     |  |
|     | □ For any Euclidean vector space $(V, \langle \cdot, \cdot \rangle)$ the function $\  \cdot \ $ defined by $\  \boldsymbol{v} \  := \sqrt{\langle \boldsymbol{v}, \boldsymbol{v} \rangle}$ $(\boldsymbol{v} \in \mathcal{V})$ satisfies the properties of a norm.                                                                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                     |  |
|     | □ For any Euclidean vector space $(V, \langle \cdot, \cdot \rangle)$ it holds that $\langle \boldsymbol{v}, \boldsymbol{w} \rangle \geq 0$ for all $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}$ .<br>□ Let $M$ be a subspace of an Euclidean vector space $(V, \langle \cdot, \cdot \rangle)$ . Then                                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                     |  |
|     | $\{oldsymbol{v} \in \mathcal{V} \mid orall oldsymbol{u} \in M \colon oldsymbol{u} \mid oldsymbol{u} \}$                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                     |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{M} \subset \mathbf{V} + \mathbf{M} \subset \mathbf{M} : \mathbf{D} + \mathbf{M} >$                                                         |                                                                                                                                                     |  |

#### Exercise 2

Consider  $(\mathbb{R} \setminus \{-1\}, \star)$ , where  $a \star b := ab + a + b$  with  $a, b \in \mathbb{R} \setminus \{-1\}$ .

- 1. Show that  $(\mathbb{R} \setminus \{-1\}, \star)$  is an Abelian group.
- 2. Solve  $3 \star x \star x = 15$  in the Abelian group  $(\mathbb{R} \setminus \{-1\}, \star)$ .
- 3. Is  $(\mathbb{R} \setminus \{-1\}, +, \star)$  a field? Justify!

#### Exercise 3

Show: If  $v_1, \ldots, v_n$  form an orthonormal basis of a Euclidean vector space  $(V, \langle \cdot, \cdot \rangle)$ , the following holds for all  $x \in \mathcal{V}$ :

$$oldsymbol{x} = \sum_{i=1}^n raket{oldsymbol{x}, oldsymbol{v}_i}{oldsymbol{v}_i}$$

*Hint:* Establish first that  $\boldsymbol{x}$  can be expressed as  $\boldsymbol{x} = \lambda_1 \boldsymbol{v}_1 + \ldots + \lambda_n \boldsymbol{v}_n$ . Then show that  $\langle \boldsymbol{x}, \boldsymbol{v}_i \rangle = \lambda_i$  for all  $1 \leq i \leq n$ .

#### Exercise 4

Let  $(V, \langle \cdot, \cdot \rangle)$  be a Euclidean vector space and U an r-dimensional vector subspace  $\mathcal{U} \subseteq \mathcal{V}$  with orthonormal basis  $u_1, \ldots, u_r$ . The orthogonal projection of a vector  $v \in \mathcal{V}$  onto  $\mathcal{U}$  is given by

$$p(\boldsymbol{v}) := \sum_{i=1}^r \langle \boldsymbol{v}, \boldsymbol{u}_i \rangle \, \boldsymbol{u}_i$$

- 1. Compute the orthogonal projection of the vector  $(25,0)^{\top}$  onto the subspace spanned by the vector  $(3,4)^{\top}$ . Visualize the subspace and the projection in a drawing with both vectors.
- 2. Let  $x \in \mathcal{V}$  and  $\lambda \in \mathbb{R}$ . Show:

$$p(\lambda \boldsymbol{x}) = \lambda p(\boldsymbol{x}).$$

3. Let  $x, y \in \mathcal{V}$ . Show:

$$p(\boldsymbol{x} + \boldsymbol{y}) = p(\boldsymbol{x}) + p(\boldsymbol{y}).$$

## Exercise 5

Let  $\langle \cdot, \cdot \rangle$  be the standard scalar product on  $\mathbb{R}^n$ .

1. Show that the mapping

$$k \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
  
 $(\boldsymbol{x}, \boldsymbol{y}) \mapsto \langle \boldsymbol{x}, \boldsymbol{y} \rangle^2$ 

does <u>not</u> define a scalar product on  $\mathbb{R}^2$ .

2. Consider the mapping  $\Phi \colon \mathbb{R}^2 \to \mathbb{R}^3$  with

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \mapsto \left[\begin{array}{c} x_1^2 \\ x_2^2 \\ \sqrt{2} \cdot x_1 x_2 \end{array}\right].$$

Show:

$$\langle \Phi(\boldsymbol{x}), \Phi(\boldsymbol{y}) \rangle = k(\boldsymbol{x}, \boldsymbol{y})$$

#### Exercise 6

The 1-norm is often used for finding sparse solutions to an optimization problem (vectors or matrices with many entries equal to zero). This will be demonstrated in the following exercise:

We are looking for a vector  $\boldsymbol{w} = (x, y)^{\top} \in \mathbb{R}^2$ , which solves the optimization problem

$$\max_{\boldsymbol{w}} f(\boldsymbol{w}) \qquad \text{s.t.} \quad \|\boldsymbol{w}\| = 1$$

Consider  $f(x,y) = \frac{1}{2}x + y$  and compare the solutions to this optimization problem for the 1- and the 2-norm.

1. Draw the set of all points on the x-y-plane that have 2-norm equal to 1 (i.e. the  $\ell_2$  unit circle).

$$C_2 := \left\{ \boldsymbol{w} \in \mathbb{R}^2 \mid \|\boldsymbol{w}\|_2 = \sqrt{x^2 + y^2} = 1 \right\}.$$

2. Draw the set of all points on the x-y-plane that have 1-norm equal to 1 (i.e. the  $\ell_1$  unit circle).

$$C_1 := \left\{ \boldsymbol{w} \in \mathbb{R}^2 \mid \|\boldsymbol{w}\|_1 = |x| + |y| = 1 \right\}.$$

- 3. Draw contour lines c = f(x, y) for c = 0.5, c = 1 and c = 1.1.
- 4. Where in your drawing does the solution to the optimization problem lie for the 1-norm? Where does it lie for the 2-norm?

### Exercise 7

Given training data (red and blue) a new data point (green) should be classified using the k-NN algorithm. Which label does the new data point receive for  $k \in {1, 2, 5}$ ?

