Formulaire de réponse Projet ML

1. Algorithme Perceptron Simple

- Donner quelques éléments de commentaires sur la stratégie que vous avez utilisée pour développer le perceptron simple.
- Montrer que votre code fonctionne dans le cas du OU
- Afficher la figure individu/frontière et commenter

2. Apprentissage Widrow: ensemble Test 1 / Test 2

- Donner quelques éléments de commentaires sur la stratégie que vous avez utilisée pour développer l'apprentissage Widrow.
- Pour l'ensemble Test 1,
 - Indiquez graphiquement quelques étapes de l'apprentissage (ensemble et droite de séparation).
 - o Représenter l'erreur en fonction des itérations.
 - Faites quelques tests avec des initialisations différentes, commenter le résultat après convergence.
- Pour l'ensemble Test 2,
 - Indiquez graphiquement quelques étapes de l'apprentissage (ensemble et droite de séparation).
 - o Représenter l'erreur en fonction des itérations. Comparer avec l'opération sur test 1
 - Faites quelques tests avec des initialisations différentes, commenter le résultat après convergence.

3. Mise en place d'un perceptron Multicouche

- 4. Donner quelques éléments de commentaires sur la stratégie que vous avez utilisée pour développer le perceptron Multicouche.
- Indiquer le résultat numérique et par calcul (en donnant le détail) pour le test demandé

5. Apprentissage Multicouches

- Donner quelques éléments de commentaires sur la stratégie que vous avez utilisée pour développer l'apprentissage Multicouche.
- Représenter l'erreur en fonction des itérations. Commenter
- Tester votre structure après apprentissage et montrer que c'est bien un XOR
- Représenter les trois droites séparatrices et l'ensemble d'apprentissage. Expliquer le fonctionnement
- Question bonus : si vous avez fait une version On-line la transformer en Batch et comparer l'évolution de l'erreur en fonction des itérations.

Formulaire de réponse Projet ML – volet classification

6. Volet Chargement des descripteurs

• Expliciter comment sous Python vous avez importé et créer votre corpus : vecteur de labels, ensemble d'apprentissage, ensemble de tests.

7. Classification par Full Connected

Pour tous les tests et comparaisons qui suivent, vous vous appuierez sur le taux d'erreur et la matrice de confusion :

- Donner quelques éléments de commentaires sur la stratégie que vous avez utilisée pour développer le perceptron (Full-connected).
- Comparer la qualité de la discrimination en fonction de la caractéristique utilisée ou du cumul de toutes les mesures
- Avec les meilleures combinaisons de mesures, paramétrer au mieux l'algorithme Full Connected
- Avec le meilleur discriminateur évaluer la qualité de la procédure de discrimination selon la classe d'images.
- Comparer avec l'algorithme KppV

8. Classification par Deep

Pour tous les tests et comparaisons qui suivent, vous vous appuierez sur le taux d'erreur et la matrice de confusion :

- Donner quelques éléments de commentaires sur la stratégie que vous avez utilisée pour développer votre structure Deep.
- Comparer la qualité de la discrimination en fonction des caractéristiques du réseau. Etudier notamment l'évolution de la fonction de cout/ Accuracy. Bonus : proposer une stratégie pour optimiser les hyperparamètres.
- Avec la meilleure combinaison comparer avec le Full Connected
- Avec le meilleur discriminateur évaluer la qualité de la procédure de discrimination selon la classe d'images.
- Faire progresser les résultats avec une procédure de Data Augmentation.
- Evaluer les performances avec les stratégies limitant l'overfitting si besoin ou la "'disparition" du gradient
- Evaluer les performances par transfert Learning