Exercise 5 - Solutions

December 14, 2003

Question 1

- a) Denote by G' the flow network after changing the capacity of e, and assume f is a maximal flow in G. f is also a flow in G' (the capacity of e is higher, and other edges did not change). The value of a minimal cut in G' differs in at most 1 from that of G and thus also the value of a maximal flow. So, it is anough to search once for an augmenting path, i.e. for a path from s to t in the residual network. This can be done in time O(V+E) (for example by using BFS)
- b) The solution is similar to the one in section (a). Only in this case, f may not be a valid flow in G' (it might break the capacity constraint in the edge e). To fix this we must find a path form s to t through e and reduce the flow by 1 in this path. If there is no such path, f(e) = 0 and f is a valid flow in G'.

Question 2

We are looking for a subset $A \subset \{1, \ldots, n\}$ that minimizes the expression

$$\sum_{i \in A} \alpha_i + \sum_{j \in \overline{A}} \beta_j + \sum_{i \in A, j \in \overline{A}} c_{ij}$$

Define the following flow network. The vertices of the network are s, t, v_1, \ldots, v_n . The edges are: (s, v_i) with capacity α_i , (v_i, t) with capacity β_i , $i = 1, \ldots, n$ and (v_i, v_j) with capacity c_{ij} , $1 \le i, j \le n$.

A cut (S,T) in this network is defined uniquely by the subset of the v_i 's that belongs to T. Denote by $A = T \setminus \{t\}$. The capacity of this cut is

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v) = \sum_{i \in A} \alpha_i + \sum_{j \in \overline{A}} \beta_j + \sum_{i \in A, j \in \overline{A}} c_{ij},$$

where $\sum_{i\in A} \alpha_i$ is the capacity of the edges from s to T, $\sum_{j\in \overline{A}} \beta_j$ is the capacity of the edges from S to t. And the third summand is the capacity $c(A, \overline{A})$. Thus we have reduced our problem to the problem of finding a minimal cut in a flow

network which we know how to solve (see exercise 6, if this does not hold for you).

Question 3

Theorem 1 Let G = (V, E) be an undirected graph, and let $u, v \in V$. There are d edge disjoint paths from u to v if and only if we cannot disconnect u from v by taking out of G a set of edges with d-1 edges or less.

outline of the proof: we define a flow network in which the value of the maximal flow equals the maximal number of edge disjoint paths for u to v, and the capacity of a minimal cut equals the number of edges in a minimal cut in G having u in one set and v in its complement. We then use the MIN-CUT MAX-FLOW theorem which can be stated as follows: there is a flow of value d in the flow network if and only if there is no cut with capacity d-1 or less.

Proof Define the following flow network $G_{u,v}$. The set of vertices of the network is V. There are edges (v_i, v_j) and (v_j, v_i) with capacity 1, for every edge $(v_i, v_j) \in E$. s = u is the source, and t = v is the target.

Claim 2 There is a flow with value d in $G_{u,v}$ if and only if there are d disjoint paths from u to v in G.

Proof \Leftarrow we define d flows along each of the edge disjoint paths, and denote them by $f_i, 1 \leq i \leq n$. A flow along a path $v_1 \to v_2 \to v_3 \ldots \to v_k$, assignes 1 to each of the edges $(v_1, v_2), (v_2, v_3), \ldots, (v_{k-1}, v_k)$ in the path, -1 to each of the edges $(v_2, v_1), (v_3, v_2), \ldots, (v_k, v_{k-1})$ in the oposite direction, and 0 to all other edges. It is easy to check that this is a valid flow. Consider $f = \sum_{i=1}^d f_i$, as a sum of edge disjoint flows f is also a flow, and $|f| = \sum_{i=1}^d |f_i| = d$. \Rightarrow we use induction: It is true when d = 0. For d > 0, assume f is a flow

 \Rightarrow we use induction: It is true when d=0. For d>0, assume f is a flow with value d. Consider all edges in $G_{u,v}$, with nonzero flow. Since d>0, there is a path from u to v along these edges, call it p. Reduce the flow along p to zero. We are left with a flow of value d-1, that does not use the edges of p, and we can take these edges out. By the induction hypotheses there are d-1 edge disjoint paths in the graph without the edges of p, adding p we get p dege-disjoint paths.

Claim 3 There is a cut in $G_{u,v}$ with capacity d-1 or less if and only if there is a set with less than d edges in G that taking them out disconnects u form v

Proof \Rightarrow A cut with capacity k in $G_{u,v}$ implies a cut with k edges in G (for any k). \Leftarrow Assume there are k < d edges in G that when they are taken out, G breaks into 2 or more connected components with u in one component and v in another. Define the following cut (S,T), S contains the vertices of the connected component u is in, and T contains all other vertices. This is a valid

cut since v is not in the connected component u is in. The capacity of this cut is the number of edges between the component u is in and other connected components. But the edges we took out are the only edges between connected components, thus the capacity of this cut is at most k < d.

Using the two claims Theorem (1) is equivalent to the MIN-CUT MAX-FLOW theorem on $G_{u,v}$.

Theorem 4 Let G = (V, E) be an undirected graph, and let $u, v \in V$. There are d vertex disjoint paths from u to v if and only if we cannot disconnect u from v by taking out of G a set of d-1 vertices or less.

The proof of this theorem is similar to the proof of Theorem 1, but we need to define a different flow network. The flow network we build for this case is as follows: The vertices are $s=u,\,t=v$ and w^{in},w^{out} for all $w\in V\setminus\{u,v\}$. The edges are (w^{in},w^{out}) with capacity 1 for all $w\in V\setminus\{u,v\}$, (w^{out}_i,w^{in}_j) and (w^{out}_j,w^{in}_i) with capacity ∞ for all $(w_i,w_j)\in E$, (s,w^{in}) and (w^{out},t) with infinite capacity for all $(u,w)\in E$ and $(w,v)\in E$. In this network there are d edge disjoint paths form s to t if and only if there are d vertex disjoint paths for u to v in G. Also, there is a cut with capacity k in G' if and only if there is a set of vertices of size k that disconnects u from v in G.

Note, we can assume that (u, v) is not an edge in G, since otherwise u and v cannot be disconnected by taking out any set of vertices.