Imaging Biomarker Development for Detection of Hepatocellular Carcinoma

David Fuentes

The University of Texas MD Anderson Cancer Center

Biomedical Systems Engineering - Advanced Techniques for Biomedical Signal and Image Processing and Device Modeling October 28, 2024

Background

 Screening programs for patients with cirrhosis are well established and have been demonstrated to improved survival outcomes through early detection of HCC

 However, there are currently limited methods to risk-stratify patients or quantitatively characterize small liver lesions, measuring less than 2cm in diameter, in screened populations.

 Hypothesis: Quantitative imaging signal of the background parenchyma, with or without small liver lesions present, characterizes a patient's risk of developing HCC.

What do we do with indeterminate lesions?

Journal of Hepatocellular Carcinoma

Dovepress

open access to scientific and medical research

ORIGINAL RESEARCH

Enhancement Pattern Mapping for Early Detection of Hepatocellular Carcinoma in Patients with

Cirrhosis

Newsha Nikzad (1)¹⁻³,*, David Thomas Fuentes⁴,*, Millicent R Matthew Cagley (1)², Mohamed Badawy⁴, Ahmed Elkhesen⁵, N Laura Beretta⁸, Eugene Jon Koay (1)², Prasun Kumar Jalal (1)

¹Department of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA; ²D MD Anderson Cancer Center, Houston, TX, USA; ³Department of Internal Medicine, Th ⁴Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁶Department of Epidemiolog Houston, TX, USA; ⁷Department of Abdominal Imaging, The University of Texas MD And Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center,

*These authors contributed equally to this work

Correspondence: Newsha Nikzad; Prasun Kumar Jalal, Email nnikzad@bcm.edu; jalal@bc

Increasing conspicuity of lesions

63 y/o male with HCC

Our approach: Maximize standard of care imaging

- Aggregate all the imaging data, enabling a comprehensive assessment
- Apply radiomic and machine learning to these novel signals

Workflow

Reproducible Relational database
 driven workflow

High throughput Processing pipeline
 implemented on HPC
 cluster for analysis at
 scale

Image series curation

- Build searchable DICOM database with 3d Slicer
 - Local self contained sqlite
- REGEX to identify image series

Final image types:

- 1. T1w liver protocol image
 - I. pre-contrast
 - II. Arterial phase
 - III. Venous phase
 - IV. Delay
 - V. Post-contrast

MR intensity normalization

- MR images are non-quantitative.
- Scaling based on bias correction, zscore, clipping [-5,5]

Image Segmentation

Role of NN is for EPM support:

Segmentation

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2021

PocketNet:

Saves time

Saves memory

PocketNet: A Smaller Neural Network For Medical Image Analysis

Adrian Celaya, Jonas A. Actor, Rajarajesawari Muthusivarajan, Evan Gates, Caroline Chung, Dawid Schellingerhout, Beatrice Riviere, and David Fuentes

Preserves performance

https://ieeexplore.ieee.org/document/9964128

Under the hood

Layer 8 Convolution Module 2 Level

Input Channels

64x64x64x64

Under the hood

Layer 14 Convolution Module 3 Levi

Input Channels

32x32x32x128

Under the hood

Layer 19 Maxpool Module 3

Input Channels

16x16x16x256

Geometric Multigrid Methods (GMMs)

- GMMs are used for solving the linear system
- A u = f
- Matrix A, vector f, and unknown u are related to the geometric grid
- GMMs construct a series of grid at hierarchical resolutions
 - specific frequencies are inherent to each resolution
 - solution is a superposition of the frequencies
 - not necessary to double the number of channels

$$x_{0} = h^{\otimes} (L_{64 \leftarrow 32} \ h^{\otimes} (n^{\otimes} (L_{32 \leftarrow 4}I + b)) + b)$$

$$x_{1} = h^{\otimes} (L_{128 \leftarrow 64} \ h^{\otimes} (n^{\otimes} (L_{64 \leftarrow 64} \ P \ x_{0} + \vec{b})) + \vec{b})$$

$$x_{2} = h^{\otimes} (L_{256 \leftarrow 128} \ h^{\otimes} (n^{\otimes} (L_{128 \leftarrow 128} \ P \ x_{1} + \vec{b})) + \vec{b})$$

$$x_{3} = h^{\otimes} (L_{512 \leftarrow 256} \ h^{\otimes} (L_{256 \leftarrow 256} \ P \ x_{2} + \vec{b}) + \vec{b})$$

$$x_{4} = h^{\otimes} \left(L_{256 \leftarrow 256} \ h^{\otimes} \left(L_{256 \leftarrow 768} \ \begin{bmatrix} L^{\top} x_{3} + \vec{b} \\ x_{2} \end{bmatrix} + \vec{b} \right) + \vec{b} \right)$$

$$x_{5} = h^{\otimes} \left(L_{128 \leftarrow 128} \ h^{\otimes} \left(L_{128 \leftarrow 384} \ \begin{bmatrix} L^{\top} x_{4} + \vec{b} \\ x_{1} \end{bmatrix} + \vec{b} \right) + \vec{b} \right)$$

$$x_{6} = h^{\otimes} \left(L_{64 \leftarrow 64} \ h^{\otimes} \left(L_{64 \leftarrow 192} \ \begin{bmatrix} L^{\top} x_{5} + \vec{b} \\ x_{0} \end{bmatrix} + \vec{b} \right) + \vec{b} \right)$$

$$O = \phi^{\otimes} (L_{2 \leftarrow 64} \ x_{6} + \vec{b}) = \phi^{\otimes} \left(\left[\sum_{\alpha} w_{1}^{\alpha} x_{6\alpha} \ \dots \ \sum_{\alpha} w_{N_{\text{class}}}^{\alpha} x_{6\alpha} \right] + \vec{b} \right)$$

Full U-Net

Pocket U-Net

Can we reduce the time and memory required?

Can we preserve accuracy?

Parameter Savings in Practice

Can we reduce the time and memory required?

Can we preserve accuracy?

Segmentation Tasks – LiTS

131 CT scans of the liver

Comparable Accuracy **Ground truth**

Full U-Net

Pocket U-Net

Comparable Accuracy – LiTS

Task	Architecture	Variant	# Params (M)	Hausdorff 95 (mm)		n roluo
				Mean (Std)	Median	p-value
LiTS	U-Net	Full	90.5	9.715 (23.95)	0.967	NS
		Pocket	0.8	7.845 (21.67)	0.959	No
	ResNet	Full	91.9	9.105 (28.40)	0.729	NS
		Pocket	0.8	10.38 (26.90)	0.742	No
	DenseNet	Full	135.9	18.97 (50.65)	0.781	NS
		Pocket	1.3	10.16 (27.21)	1.000	IND
	HRNet	Full	6.5	6.126 (19.37)	0.756	NS
		Pocket	0.7	8.805 (26.97)	0.787	IND
	nnUNet	Full	31.2	6.364 (12.88)	1.182	NS
		Pocket	0.8	$4.086 \ (18.55)$	0.758	IND

NS, p-value > 0.05

^{*,} p-value < 0.05

^{**,} p-value < 0.01

^{***,} p-value < 0.001

MICCAI BraTS 2024

- MIST model has <u>771,000</u>
 <u>parameters</u>
- nnUNet has 31,000,000 parameters
- Trained five-fold crossvalidation with <u>8 H100 GPUs</u> for 4 days

MICCAI BraTS 2024

Class	Labels	Dice	Hausdorff 95 (mm)
NETC	1	0.7010	58.165
SNFH	2	0.9208	6.6536
ET	3	0.7427	27.950
RC	4	0.6841	49.321
TC	1, 3	0.7379	28.514
WT	1, 2, 3	0.9257	6.6367

Accuracy in terms of the Dice and 95th percentile Hausdorff distances for each segmentation class in the Adult Glioma Post-Treatment validation dataset.

Liver Segmentation Experiments

Three Models

- SMIT (Swin UNet Transformers)
- Pocketnet NNU-Net
- NNUnet-version 2

Two Experiments:

- Experiment 1: Single Origin
- Experiment 1: Multi-site Origin

Comprehensive Dataset:

- AMOS
- ATLAS
- CHAOS
- DUKE
- MDACC
- Methodist

scientific reports

OPEN Training robust T1-weighted magnetic resonance imaging liver segmentation models using ensembles of datasets with different contrast protocols and liver disease etiologies

www.nature.com/scientificrepo

Nihil Patel^{1,4,5}, Adrian Celaya^{1,4,6,5}, Mohamed Eltaher^{1,4,5}, Rachel Glenn^{1,4}, Kari Brewer Savannah^{1,8}, Kristy K. Brock^{1,8}, Jessica I. Sanchez^{3,8}, Tiffany L. Calderone^{3,8} Darrel Cleere^{4,5}, Ahmed Elsaiey^{4,6}, Matthew Cagley^{5,8}, Nakul Gupta^{6,8}, David T. Fuentes^{3,8,2} Laura Beretta^{3,8}, Eugene J. Koay^{5,8}, Tucker J. Netherton^{7,8,2,2} & David T. Fuentes^{3,8,2,2}

Comprehensive Dataset-T1 MRI data

Origin	Patients	Images	Image Distribution		
CHAOS	20	40	In phase (n=20)	Opposed Phase (n=20)	
DLDS	72	210	In Phase non-Fat Saturation (n=56) Late dynamic (n=2) Opposed phase (n=36)	Precontrast Fat Suppressed (n=54) Early Arterial (n=1) Mid Arterial (n=3) Portal Venous (n=56)	
AMOS	57	57			
ADACC (Morfeus Lab)	10	12	Precontrast (n=6) Post-contrast (n=3)	Dual-Echo (n=1) 5-minute (n=2)	
ATLAS	58	58	VIBE (n=58)		
Methodist	72	352	3D Axial LAVA POST Delay (n=215) Axial T1 FS VIBE (n = 74)	Axial VIBE DIXON (n = 35) Axial LAVA Delay (n=20) Coronal LAVA Post Delay (n=8)	
MDACC (Koay)	34	102	Pre-Contrast (n=34)	Arterial Phase (n=34) Portal Venous Phase (n=34)	

Total: 831

Liver Segmentation

Model Generalizability

Longitudinal registration

- NN for image segmentation
- Padded liver mask reduces the optimization space of the deformable registration

Patient Population

- N=48 cases, N=99 controls longitudinal data registered to the diagnostic time point (case) or baseline (control)
 - Cases = Patients with a confirmed HCC diagnosis, a diagnostic MRI, and at least one pre-diagnostic MRI
 - Hepatitis C, Alcohol, NAFLD, Hemachromatosis
 - Controls = Patients with MRI surveillance studies who don't develop HCC
 - Alcohol, NAFLD

Results

- Quantifiable differences between HCC cases and controls in a screening population with indeterminate lesions
 - The mean CNR of EPM was 3.10 vs. 2.61 on the arterial phase of the prediagnostic MRI and vs. 0.88 on the PV phase of MRI
- Cases 48 patients at HCC diagnostic time point
- Control 99 control studies
 - EPM signals of the normal liver parenchyma of the case patients and the control patients were similar

Case Pre-Dx (parenchyma and pre-malignant lesions)
vs
Control

Case Dx (parenchyma and HCC)
vs
Control

Summary

- EPM provides a unique imaging biomarker
 - EPM = .37 is our current threshold

- Work In Progress
 - Minimize Human in the Loop -Infrastructure automates the workflow to process at scale
 - Review each dataset 1-by-1 for multisite
 QA
 - registration failure is the typical mode of failure.

Goal

HCC probability = a * age/gender + b * blood biomarker + c * imaging biomarker

- Blood based
 - GALAD Berhane, Toyoda, et al. 2016
 - ASAP Yang, Xing, et al 2019.

Image based lesion classification

- Yamashita, Mittendorf et al. 2020
 - 60% accuracy LR-1/2, LR-3, LR-4, vs LR-5
- Yasaka, Akai et al. 2018
 - 84% accuracy LR-1, LR-5, vs LR-M
- Wu, White et al. 2020
 - 90% accuracy LR-3 vs LR-4/5 lesions

Acknowledgements

- National Institutes of Health
 - R01CA195524, R21CA249373, U01CA230997
- Tumor Measurement Initiative
- QIAC, IRG, CCSG
- National Science Foundation
 - NSF-2111147 and NSF-2111459
- CPRIT
 - RP220119

Cancer Prevention & Research Institute of Texas

THE UNIVERSITY OF TEXAS

D Anderson

ancer Center

Acknowledgements

- Collaborators
 - Laura Beretta

Making Cancer History®

THE UNIVERSITY OF TEXAS

MDAnderson

- Ahmed Kaseb
- Khaled Elsayes
- Prasun Jalal
- Manal Hassan
- Mohamed Badawy

- Cancer Center Cancer Physics and Engineering Lab
 - Eugene Koay
 - Newsha Nikzad
 - Millicent Roach
 - Tasadduk Chowdhury
 - Connor Thunshelle
 - Mohamed Zaid
 - Kevin Sun

Questions?

https://github.com/aecelaya/MIST

PocketNet...

Simple modification

Significantly reduces computational costs

Preserves accuracy

Behaves similarly to full networks under dataset size

