Generalized additive models using Bayesian model selection with mixtures of g-priors

Gyeonghun Kang¹ and Seonghyun Jeong^{1,2}

¹Department of Statistics and Data Science, Yonsei University

²Department of Applied Statistics, Yonsei University

Main Contributions

- Reviewed and extended estimation methods for GAM via BMS using g-priors.
- Proposed a simple slice sampler algorithm to draw from a class of generalized beta distributions, including truncated compound hypergeometric distribution (tCCH).
- Explained different model selection behaviors of mixtures of g-priors in terms of Bayes Factor of adding redundant variable.

Bayesian Model Selection (BMS)

Generalized Additive Model (GAM) via BMS

• GAM is an extension of a linear model assuming, for $X_i \in \mathbb{R}^p$, $i = 1, \dots, n$,

$$h(E[y_i \mid X_i]) = \eta_i = \alpha + \sum_{j=1}^p f_j(x_{ij}), \qquad \sum_{i=1}^n f_j(x_{ij}) = 0$$

- f_j has a spline basis representation $f_j(\cdot) = \sum_{k=1}^{K_j} \beta_{jk} b_{jk}(\cdot)$, where the basis $b_{jk}(\cdot)$ is linear for k=1 and the others are determined by the knots $\xi_j = \{\xi_{j1}, \dots, \xi_{jL_j}\}$.
- We use natural cubic spline basis for $b_{ik}(\cdot)$ so that for $K_i = 0$ it is reduced to linear.
- $\eta = (\eta_1, \dots, \eta_n)^T$ is written as $\eta = \alpha 1_n + B\beta$ for $B = [B_1, \dots, B_p] \in \mathbb{R}^{n \times J}, J = \sum_{j=1}^p K_j,$ $(B_j)_{i,k} = b_{jk}(x_{ij})$, where B is column-wise centered for identifiability.
- We are interested in $L: (\alpha, f_1, \dots, f_p) \mapsto L(\alpha, f_1, \dots, f_p)$ (e.g. pointwise estimate, CI, ...)

$$\pi(L(\alpha, f_1, \dots, f_p) \mid Y) = \int_{\Xi} \pi(L(\alpha, f_1, \dots, f_p) \mid \xi, Y) d\Pi(\xi \mid Y)$$

i.e., via Bayesian Model Selection. To this end, our Bayesian model formulation is $\Pi(\alpha, \beta_{\xi}, \xi) = \Pi(\alpha)\Pi(\beta_{\xi} \mid \xi)\Pi(\xi)$

$$\pi(\xi \mid Y) \propto \pi(\xi)p(Y \mid \xi)$$

$$p(Y \mid \xi) = \int \int p(Y \mid \alpha, \beta_{\xi})d\Pi(\alpha)d\Pi(\beta_{\xi} \mid \xi)$$

Mixtures of g-priors for BMS

 $\tilde{B}_{\xi} = \left[I_n - tr\left(J_n(\hat{\eta}_{\xi})\right)^{-1} 1_n 1_n^T J_n(\hat{\eta}_{\xi})\right] B_{\xi}$

Mixtures of g prior

• For Laplace approximation of $p(Y | \xi)$, we use the variant of g prior for generalized linear model (Li and Clyde, 2018)

$$u \sim tCCH(a, b, z, s, \nu, \theta)$$

$$f(u) = \frac{\nu(\nu u)^{a-1} (1 - \nu u)^{b-1} [\theta + (1 - \theta)\nu u]^{-r} e^{-su}}{e^{-s/\nu} \Phi_1(b, r, a + b, s/\nu, 1 - \theta) B(a, b)} 1_{\{0 < u < 1/\nu\}}$$

Various mixtures of g-priors are classified into two groups according to the prior concentration:

g = O(1)	g = O(n)
Uniform,	Hyper-g/n
Hyper-g	Robust, Intrinsic,
	Beta-prime,
	ZS-adapted,

Mixtures of g-priors as penalty functions

• The Bayes factor of two knots ξ_1 , ξ_2 where $J_{\xi_1} = J_{\xi_2} + k$ ($k \in \mathbb{N}^+$) but $\hat{\eta}_{\xi_1} = \hat{\eta}_{\xi_2}$ is

$$BF[\xi_1; \xi_2] = \begin{cases} (1+b)^{-k/2}, & \text{if } g \sim \delta_b(g), \\ E[(1+g)^{-k/2} \mid \xi_2, Y], & \text{if } g \sim tCCH(a/2, b/2, r, s/2, \nu, \kappa) \end{cases}$$

which is plotted below for k=1: $R_{\xi,pseudo}^2=1-e^{-Q_{\xi}/n}$, where $Q_{\xi}=\hat{\beta}_{\xi}^T\tilde{B}_{\xi}^TJ_n(\hat{\eta}_{\xi})\tilde{B}_{\xi}\hat{\beta}_{\xi}$ is the Wald statistics. n=200, $R_{\xi_1,pseudo}^2=0.2$ n=1000, $R_{\xi_1,pseudo}^2=0.2$ n=200, $J_{\xi_1}=3$

- $BF[\xi_1; \xi_2]$ is the penalty against the model ξ_1 by allowing k redundant variables to no avail $(\hat{\eta}_{\xi_1} = \hat{\eta}_{\xi_2})$. Whereas Unit information prior (g = n) yields a constant penalty regardless of J_{ξ_1} and the goodness-of-fit,
 - 1. mixtures of g-priors favor sparser models when comparing small models, but move towards more complex models when comparing large models, a trait desirable in capturing weak signals in the data.
 - 2. The O(1) priors have the weakest penalty profiles among the mixtures of g-priors. Simulations showed that compared to the O(n), the O(1) priors tend to overfit to noise in the data.

Priors for knots

• A tradeoff exists between computational expedience and flexibility in estimates.

				Even-knot	VS-knot	Free-knot
	Knot Locations	Posterior Sampling	- ξ _i = 2			
Even-knot	Equidistant points	Direct enumeration	Çj - 2			
		Metropolis Hastings	ξ _j = 3	• • •	++++++++++	
VS-knot	Among grid points	Gibbs Sampling				
Free-knot	Anywhere	Metropolis Hastings	$ \xi_j = 4$		+++++++++++++++++++++++++++++++++++++++	0 00

Simulation Results

Comparison among the mixtures of g-priors

• For f_j , j = 1,2,3.test functions, we generated the univariate model $\eta_i = \alpha + f_j(x_i)$ where $x_j \sim Unif(-1,1)$ and the response follows Bernoulli, Poisson and Gaussian, for n = 100,200,300 (n = 500,1000,2000 for Bernoulli) samples. We used VS-knot.

- Unit information prior generally underperforms, opting for simplistic models.
- Beta-prime and ZS-adapted prior exhibit undersmoothing, whereas Uniform, Hyperg, and Hyperg/n prior tend to over-smooth.
- over-smooth.
 The difference between the priors is blurred for a larger n.
- We recommend
 Robust and
 Intrinsic prior,
 and especially
 Robust prior for
 it is easier than
 Intrinsic to
 sample from the
 posterior.

Comparison with other methods

- The competitors, all based on the idea of Bayesian P-splines, include **R2BayesX**, **Blapsr**, and Mgcv with locally adaptive (**Mgcv-ad**) and non-adaptive estimation (**Mgcv-ps**).
- For f_j , j = 1,2,3.test functions, we generated the univariate model $\eta_i = \alpha + \sum_{j=1}^3 f_j(x_i)$ where $x_j \sim Unif(-1,1)$ and the response follows Bernoulli, Poisson and Gaussian, for n = 100,200,300 (n = 1000,1500,2000 for Bernoulli) samples.
- **R2BayesX** and **Blapsr** often oversmooth the targets with excessive penalization, while **Mgcv** provides too wiggly estimates of the linear function, implying undersmoothing. **VS-knot** outperforms in most cases in terms of logRMSE and coverage probability.

Real Data Applications (Pima Diabetes Data)

- Signs of diabetes (binary) of n = 532 women in Pima Indian population, Arizona.
- Our BMS-based methods provide posterior probability that a function is indeed linear. $logit(p_i) = \alpha + f_1(pregnant_i) + f_2(glucose_i) + f_3(pressure_i)$

