$\begin{array}{c} {\bf Shashank~Singh}\\ {\bf sss1@andrew.cmu.edu}\\ {\bf 21\text{-}355C} \quad {\bf Real~Analysis,~Fall~2011}\\ {\bf Assignment~9} \end{array}$

Due: Wednesday, Novemeber 16

Question 0.1. Let g be a differentiable real function of \mathbb{R} such that, $\forall x \in \mathbb{R}$, $|g'(x)| \leq M$, for some $M \in \mathbb{R}$. Let $\epsilon = \frac{1}{M+1} > 0$. Let $f : \mathbb{R} \to \mathbb{R}$ such that, $\forall x \in \mathbb{R}$, $f(x) = x + \epsilon g(x)$. Then, by Theorem 5.3, since the identity and g are differentiable on \mathbb{R} , f is differentiable on \mathbb{R} and, $\forall x \in \mathbb{R}$, $f'(x) = 1 + \epsilon g'(x)$. $\forall x \in \mathbb{R}$, since -(M+1) < g'(X), $-1 < \epsilon g'(x)$, so f'(x) > 0. Suppose, for sake of contradiction, that f were not injective; in particular, suppose $\exists x_1, x_2 \in \mathbb{R}$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$. Then, by the Mean Value Theorem (in particular, by Theorem 5.10), $\exists x \in \mathbb{R}$ such that $f(x_2) - f(x_1) = (x_2 - x_1)f'(x)$. Since $x_1 \neq x_2$ and $f(x_1) = f(x_2)$, this implies that f'(x) = 0, contradicting the above proof that f'(x) > 0. Thus, f is injective.

Question 0.2. Let $f:(0,\infty)\to\mathbb{R}$ be differentiable its domain, such that $\lim_{x\to\infty}f'(x)=0$. Let $g:\mathbb{R}\to\mathbb{R}$ such that, $\forall x\in\mathbb{R},\ g(x)=f(x+1)-f(x)$. Let $\epsilon\in\mathbb{R}$ with $\epsilon>0$. Since $\lim_{x\to\infty}f'(x)=0$, $\exists x_0\in(0,\infty)$ such that, $\forall x\in\mathbb{R}$ with $x>x_0,\ |f'(x)|<\epsilon$. Let $x\in\mathbb{R}$ with $x>x_0$. Suppose, for sake of contradiction that $g(x)>\epsilon$. Then, by the Mean Value Theorem (in particular, by Theorem 5.10), $\exists c\in(x,x+1)$ such that |g(x)|=|f(x+1)-f(x)|=|((x+1)-x)f'(c)|=|f'(c)|. However, since $c>x_0$, this contradicts the result that $|f'(c)|<\epsilon$. Therefore, $\forall x\in\mathbb{R}$ with $x>x_0,\ |g(x)|<\epsilon$, so that $\lim_{x\to\infty}g(x)=\infty$.

Question 0.3.

Question 0.4.

Lemma 0.5.

Question 0.6.

Question 0.7.

Question 0.8.

Question 0.9.

Question 0.10.