

Algorithmen und Datenstrukturen

Wintersemester 2018/19
13. Vorlesung

Binäre Suchbäume

Zwischentest II: Do, 20. Dez, 8:30 – 10:00

- Zufallsexperimente, (Indikator-) Zufallsvariable, Erwartungswert
- (Randomisiertes) QuickSort
- Untere Schranke f\u00fcr WC-Laufzeit von vergleichsbasierten Sortierverfahren
- Linearzeit-Sortierverfahren
- Auswahlproblem (Median)
- Elementare Datenstrukturen
- Hashing
- Binäre Suchbäume

Anmeldung: ab sofort, aber nur bis zum 18.12.

Dynamische Menge

verwaltet Elemente einer sich ändernden Menge *M*

Abstrakter Datentyp	Funktionalität				
ptr Insert(key k , info i))	 A d - w)		
Delete(ptr x)	Anderungen		Wörterbuch		
ptr Search(key k))		J		
ptr Minimum()			•		
ptr Maximum()		Anfragen			
ptr Predecessor(ptr x)					
ptr Successor(ptr x)					

Implementierung: je nachdem...

Implementierung

*) unter bestimmten Annahmen.

	Search	Ins/Del	Min/Max	Pred/Succ
unsortierte Liste	$\Theta(n)$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
unsortiertes Feld	$\Theta(n)$	$\Theta(1)/\Theta(n)$	$\Theta(1)^\oplus$	$\Theta(n)$
sortiertes Feld	?	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$
Hashtabelle	$\Theta(1)^{\star}$	$\Theta(1)^{\star}$		
Binärer Suchbaum	$\Theta(h)$	$\Theta(h)$	$\Theta(h)$	$\Theta(h)$

 $h(T) = H\ddot{o}he des Baums T$

= Anz. Kanten auf längstem Wurzel-Blatt-Pfad

$$= egin{cases} 0 & \text{falls Baum} = \mathsf{Blatt} \ 1 + \mathsf{max}\{h(T_\ell), h(T_r)\} & \mathsf{sonst.} \end{cases}$$

Suche 21!

hier im Worst Case

Lineare Suche: 13 n Schritte

Suche 21!

im Worst Case hier

Lineare Suche:

13

Schritte

Binäre Suche:

Schritte*

grob: Wie oft muss ich *n* halbieren, bis ich bei 1 bin?

genau: $T(n) \le T(|n/2|) + 1$ und T(1) = 1

$$\leq T(\lfloor n/4 \rfloor) + 1 + 1 \leq \cdots \leq T(1) + 1 + \cdots + 1$$

 $^{^{\}star}$) Je nach Implementierung braucht ein Schritt ein oder zwei Vergleiche (z.B. = und <).

Suche 21!

hier

im Worst Case

 ≈ 1 Mio.

Lineare Suche:

13

Schritte

 $2^{20}-1$

Binäre Suche:

$$\lceil \log_2(n+1)
ceil$$
 Schritte *

20

 $^{^{\}star}$) Je nach Implementierung braucht ein Schritt ein oder zwei Vergleiche (z.B. = und <).

Suche 21!

Binärer Suchbaum

Binärer-Suchbaum-Eigenschaft: Für jeden Knoten v gilt: alle Knoten im linken Teilbaum von v haben Schlüssel $\leq v.key$ rechten

Bin. Suchbaum

Abs. Datentyp

BinSearchTree()

Node Search(key k)

Node Insert(key k)

Delete(Node x)

Node Minimum()

Node Maximum()

Node Predecessor(Nd. x)

Node Successor(Node x)

Implementierung

root = nil | Node(key k, Node par) | Nodekey = kp = par

right = left = nil

Node root

 $\mathsf{key}\ key$ Node left Node rightNode p

Inorder-Traversierung

(Binäre) Bäume haben eine zur Rekursion einladende Struktur...

Beispiel: Gib Schlüssel eines binären Suchbaums sortiert aus!

Lösung:

- 1. Durchlaufe rekursiv linken Teilbaum der Wurzel.
- 2. Gib den Schlüssel der Wurzel aus.
- 3. Durchlaufe rekursiv rechten Teilbaum der Wurzel.

Code:

$$egin{aligned} & \operatorname{InorderTreeWalk}(\operatorname{Node}\ x = root) \ & \operatorname{if}\ x
eq nil\ & \operatorname{then} \ & \operatorname{InorderTreeWalk}(x.left) \ & \operatorname{gib}\ x.key\ & \operatorname{aus} \ & \operatorname{InorderTreeWalk}(x.right) \end{aligned}$$

Korrektheit

zu zeigen: Schlüssel werden in sortierter Rf. ausgegeben.

Induktion über die Baumhöhe h.

h = -1: Baum leer, d.h. root = nil

 $h \ge 0$: Ind.-Hyp. sei wahr für Bäume der Höhe < h.

Seien T_{links} und T_{rechts} li. & re. Teilbaum der Wurzel.

 T_{links} und T_{rechts} haben Höhe < h. [rekursive Def. der Höhe!]

Also werden ihre Schlüssel sortiert ausgegeben.

 $Bin\ddot{a}rer-Suchbaum-Eigenschaft \Rightarrow$

Ausgabe (sortierte Schlüssel von T_{links} , dann root.key, dann sortierte Schlüssel von T_{rechts}) ist sortiert.

Code:

InorderTreeWalk(Node x = root)

if $x \neq nil$ then

InorderTreeWalk(x.left)

gib x.key aus

InorderTreeWalk(x.right)

Laufzeit

Anz. der Knoten im linken / rechten Teilbaum der Wurzel

$$T(n) = \begin{cases} 1 & \text{falls } n = 1, \\ T(k) + T(n-k-1) + 1 & \text{sonst.} \end{cases}$$

Zeige (mit Substitutionsmethode) $T(n) \le c \cdot n - 1$

Code:

Inorder Tree Walk (Node
$$x = root$$
)

if $x \neq nil$ then

Inorder Tree Walk ($x.left$)

gib $x.key$ aus

Inorder Tree Walk ($x.right$)

Laufzeit

$$T(n) = egin{cases} 1 & ext{falls } n = 1, \ T(k) + T(n-k-1) + 1 & ext{sonst.} \end{cases}$$

Zeige (mit Substitutionsmethode) $T(n) \le c \cdot n - 1$

oder:

Für jeden Knoten und jede Kante des Baums führt InorderTreeWalk eine konstante Anz. von Schritten aus.

Für Bäume gilt: #Kanten = #Knoten -1 = n-1

Ubung: zeig's mit Induktion!

Code:

InorderTreeWalk(Node
$$x = root$$
)

if $x \neq nil$ then

InorderTreeWalk($x.left$)

gib $x.key$ aus

InorderTreeWalk($x.right$)

Laufzeit

$$T(n) = egin{cases} 1 & ext{falls } n = 1, \ T(k) + T(n-k-1) + 1 & ext{sonst.} \end{cases}$$

Zeige (mit Substitutionsmethode) $T(n) \le c \cdot n - 1$

oder: Für jeden Knoten und jede Kante des Baums führt InorderTreeWalk eine konstante Anz. von Schritten aus.

Für Bäume gilt:
$$\#$$
Kanten $= \#$ Knoten $-1 = n-1$

$$\Rightarrow T(n) = c_1 \cdot (n-1) + c_2 \cdot n \in O(n).$$

Code:

InorderTreeWalk(Node x = root)

if $x \neq nil$ then

InorderTreeWalk(x.left)

gib x.key aus

InorderTreeWalk(x.right)

Suche

Aufgabe: Schreiben Sie Pseudocode für die rekursive Methode

```
Node Search(key k, Node x = root)
            if x == nil or x.key == k then
                return x
            if k < x.key then
rekursiv
                  return Search(k, x.left)
            else return Search(k, x.right)
```


iterativ

```
while x \neq nil and x.key \neq k do
   if k < x.key then
         x = x.left
   else x = x.right
return x
```

Laufzeit: O(h)

Trotzdem schneller, da keine Verwaltung der rekursiven Methodenaufrufe.

Minimum & Maximum

Frage: Was folgt aus der Binäre-Suchbaum-Eigenschaft für die Position von Min und Max im Baum?

Antwort: Min steht ganz links, Max ganz rechts!

Aufgabe: Schreiben Sie für binäre Suchbäume die Methode

```
Node Minimum(Node x = root) — iterativ!

if x == nil then return nil

while x.left \neq nil do

x = x.left

return x
```

Nachfolger (und Vorgänger)

Vereinfachende Annahme: alle Schlüssel sind verschieden.

Erinnerung: Nachfolger(x) = Knoten mit kleinstem Schlüssel unter allen y mit y.key > x.key.

= $arg min_y \{y.key \mid y.key > x.key\}$.

Nachfolger(19) := nil

Nachfolger(12) = ?

Nachfolger(9) = ?

13 == Minimum(,,12.right'')

9 hat kein rechtes Kind; 9 == Maximum(,,12.left")

Nachfolger (und Vorgänger)

Vereinfachende Annahme: alle Schlüssel sind verschieden.

Erinnerung: Nachfolger(x) = Knoten mit kleinstem Schlüssel unter allen y mit y.key > x.key.

= $arg min_y \{y.key \mid y.key > x.key\}$.

Tipp: Probieren Sie auch z.B. Successor("19")!

Einfügen

```
Node Insert(key k)
y = nil
x = root
while x \neq nil do
y = x
if k < x.key then
x = x.left
else x = x.right
```

Insert(11)

Einfügen

```
Node Insert(key k)
                                                   12
  y = nil
  x = root
                                                               19
                                        6
  while x \neq nil do
      y = x
                                  3
      if k < x.key then
            x = x.left
                                                      13
      else x = x.right
  z = \text{new Node}(k, y)
                                              Insert(11)
                                              x == nil
```

Einfügen

```
Node Insert(key k)
  y = nil
  x = root
                                        6
  while x \neq nil do
      y = x
                                  3
                                             9
      if k < x.key then
           x = x.left
      else x = x.right
  z = \text{new Node}(k, y)
  if y == nil then root = z
  else
      if k < y.key then y.left = z
                          y.right = z
      else
  return z
```


x == nil

19

14

Löschen

Sei z der zu löschende Knoten. Wir betrachten drei Fälle:

1. z hat keine Kinder.

Falls z linkes Kind von z.p ist, setze z.p.left = nil; sonst umgekehrt. Lösche z.

2. z hat ein Kind x.

3. z hat zwei Kinder.

Löschen

Sei z der zu löschende Knoten. Wir betrachten drei Fälle:

1. z hat keine Kinder.

Falls z linkes Kind von z.p ist, setze z.p.left = nil; sonst umgekehrt. Lösche z.

2. z hat ein Kind x.

Setze den Zeiger von z.p, der auf z zeigt, auf x. Setze x.p = z.p. Lösche z.

3. z hat zwei Kinder.

14

Löschen

Sei z der zu löschende Knoten. Wir betrachten drei Fälle:

1. z hat keine Kinder.

Falls z linkes Kind von z.p ist, setze z.p.left = nil; sonst umgekehrt. Lösche z.

2. z hat ein Kind x.

Setze den Zeiger von z.p, der auf z zeigt, auf x. Setze x.p = z.p. Lösche z.

3. z hat zwei Kinder.

Setze y = Successor(z) und z.key = y.key. Lösche y. (Fall 1 oder 2!)

Zusammenfassung

Satz. Binäre Suchbäume implementieren alle

dynamische-Menge-Operationen in O(h) Zeit,

wobei h die momentane Höhe des Baums ist.

Aber: Im schlechtesten Fall gilt $h \in \Theta(n)$.

Ziel: Suchbäume balancieren $\Rightarrow h \in O(\log n)$