BME-VIK Méréstechnikai és Információs Rendszerek Tanszék Intelligens rendszerek szakirány

EGÉSZSÉGÜGYI KÓDOLÁSTÁMOGATÓ RENDSZER FEJLESZTÉSE

BSc szakdolgozat

Készítette: Sárándi István

Külső konzulens: Héja Gergely (GYEMSZI)

Tanszéki konzulens: Strausz György

2012. január 5.

Tartalom

- Bevezető
- Osztályozó módszerek
- Implementáció
- Eredmények, további lehetőségek

BEVEZETŐ

A problémáról

- Egészségügyi kódolás
 - Betegségek formalizált ábrázolására
 - Pl. BNO-rendszer
 - Diagnózisok, zárójelentések kódolása
 - Statisztika, finanszírozás
- Automatizálás igénye
 - Manuálisan lassú, drága
 - Legalább részben automatizálni

Mi automatizálható?

- Teljes automatizálás nehéz
 - Szakértők is tévednek
- Kevesebb kódnak kelljen manuálisan utánanézni
 - 1. Felhasználó begépeli a diagnózist
 - 2. A rendszer visszaad egy tipplistát
 - 3. A felhasználó megnézi a talált kódok leírását és dönt
 - Ehhez szakértelem szükséges!
- Felhasználó–szolgáltatás kommunikáció
 - Webes felület

Példa

fibrillatio auricula paroxysmalis

Kódoló rendszer

Kód	Bizonyosság
148H0	0,762
14710	0,144
14900	0,048
I5130	0,027
14990	0,019

- Bizonyosságértékek (relevancia)
 - Mivel érdemes kezdeni
 - Mennyire biztos magában a rendszer
 - Nem feltétlenül valószínűség (%)

Megközelítési módok

- Szabályalapú
 - Elkészítéséhez tárgyterületi tudás kell
- Természetesnyelv-feldolgozás (NLP)
 - Morfológiai elemzés
 - Előfeldolgozás
 - Szintaktikai elemzés itt nem releváns.
 - Szemantika
 - Ontológiákkal

Gépi tanulás, statisztikai osztályozás

- Nem kell tárgyterületi szaktudás
- Minták kellenek
- Számításigényes
 - De egyre gyorsabb gépek

OSZTÁLYOZÓ MÓDSZEREK

Gépi tanulás, statisztika

- Vektortér
- Naiv Bayes-háló
- Neurális hálózatok
 - Többrétegű perceptron
- SVM
- Kevert módszerek

Vektorizálás

- Vektorbemenet kell
- Szóhalmaz-modell (bag of words)
 - Elvész információ
 - Sorrend
 - Diagnózisoknál nem lényeges
 - Szóhasonlóságok (pl. morfológia, szinonimák)
 - Előfeldolgozás

Példa

"fibrillatio aricula paroxysmalis"

Vektortér

- · Folytonossági hipotézis
- · Összehasonlítás sokdimenziós vektortérben
 - · Koszinuszos hasonlóságmérték

•
$$cosSim(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \cdot \|\mathbf{w}\|}$$

- · Gendek
 - · Sok összehasonlítás, nem hatékony
 - · Invertaltindex (96%-kali kevesebb összehasonlítás)
 - · Azonosan kezeli a dimenziókat (szavakat)
 - · Súlyozás keli

IDF-súlyozás

- ·"inverse document frequency"
- Gyalkram szereplő szó kevésbé fontos
- · Információelméletileg is alátámasztható

$$\mathbf{v}'_{j} = \mathbf{v}_{j} \cdot \log \left(\frac{|D|}{|\{\mathbf{w} \in D \mid \mathbf{w}_{j} = 1\}|} \right)$$

Relevancia: feltételes valószínűség

 $p(\mathcal{C}_i|\boldsymbol{v}) = p(\boldsymbol{v}|\mathcal{C}_i) \cdot \frac{p(\mathcal{C}_i)}{p(\mathcal{C}_i)}$ • feltételes együttes eloszlás becslés production element element

- p(kæ|vé) fæittételeksæignyüttés-elgyszbésbbestékése mintákból
 - Rengetegntár, den dón paramétegyenge becslés
- Bayersyttágótárolandó paraméter
- Bappadabb leírás feltételes függetlenségek fennállásakor
- Nakvræsb leírás feltételes függetlenségek fennállásakor
- Nalin (szó) páronként feltételesen független, ismerve
 - a célváltozót (BNO-kód) Minden attributum (szó) páronként feltételesen független, ismerve a célváltozót (BNO-kód)

Naiv Bayes

$$p(\boldsymbol{v}|C_i) = \prod_j p(v_j|C_i)$$

- · Ha a mintából becsülve 0, elvész információ
 - Laplace-simítással nem lehet 0
- Ha $p(v_i|C_i)$ a mintából becsülve 0, elvész információ
 - Laplace-simítással nem lehet 0

$$\hat{p}(v_j|C_i) = \frac{\theta + |\{\boldsymbol{w} \mid w_j = v_j \land \mathcal{D}(\boldsymbol{w}) = C_i\}|}{2 \cdot \theta + |\{\boldsymbol{w} \mid \mathcal{D}(\boldsymbol{w}) = C_i\}|}$$

Neurális hálózatok

- Biológiai mechanizmusok alapján konstruált számító rendszerek
- Felügyelt tanulásra egyik legnépszerűbb a többrétegű perceptron (MLP)
 - Elemi neuronja: perceptron, kimenetén szigmoid nemlinearitással

$$\frac{1}{0.5} = \frac{1}{1 + \exp(-(s) - s)}$$

Többrétegű perceptron

Többrétegű perceptron

- Kimeneti neuronok a kódok relevanciáját becslik
 - Többezer kimeneti neuron

Többrétegű perceptron

- Tamítása hibakrittérium alapján
 - Wánhattó mégyzetes hilba
 - Maximum likelihood (más néven) kereszténtrópia)
- Maximum likelihood (más néven keresztentrópia) Súlytérben a hiba negatív gradiense felé mozdulunk $J(W) = \mathbb{E}_x \left\{ -\sum_i \left(d_j(x) \cdot \log[y_j(x,W)] + \left(1 d_j(x)\right) \cdot \log[1 y_j(x,W)] \right) \right\}$
- ச தெரிழுத்திக்கு pegatív gradiense felé mozdulunk
 - Hiba=visazaterjesztés (láncszabály alapján)
- Tamíga hiba csökken (csúszóablak)
 - Hiba-visszaterjesztés (láncszabály alapján)
 - Amíg a hiba csökken (csúszóablak)

Szupport vektor gép (SVM)

- Lineáris változat
 - Nagy margó (biztonsági sáv) az elválasztó hipersík körül
- Lágy lineáris
 - "Rossz helyen" lévő minta megengedett, de büntetjük
 - Együttes optimalizálás (súlyozva)

- Nagydimenziójú jellemzőtérben lineáris
- Szövegosztályozásnál általában nem szükséges

Többosztályos SVM

- Dekomponálás bináris feladatokra
- Megkülönböztethetünk
 - Egy osztályt a többitől (őket egybevonva)
 - Páronként az osztályokat
- SVM feladat átfogalmazása (több feltétel)

Keveréses módszerek

Kód	Bizonyosság
В	0,27
С	0,26
A	0,25
D	0,11

Kód	Bizonyosság
D	0,28
Α	0,25
В	0,17
E	0,16
С	0,14

Kód	Bizonyosság
A	0,25
В	0,22
С	0,20
D	0,195
E	0,135

Kiértékelési mérce

- Találati arámy (teljesség, recall)
 - · Alista megengedett hosszától függ
 - $R(h) = \frac{\text{# helyes k\'od a list\'an}}{\text{# teszthemenetek}}$
 - Súlyozás lehetséges a listán elfoglalt hely szerint (nem Sulyozás lehetséges a listán elfoglalt hely szerint (nem csak, hogy rajta van-e), relevancia szerint stb. csak, hogy rajta van-e), relevancia szerint stb.

Keveréses módszerek

- Több osztályozó eredménylistájának összevonása
- Jobb eredmény, mint a legjobb különálló
 - Ha a hibás kódok "véletlenszerűek" vagy a sorrendjük véletlenszerű, de a jó kód nagyrészükön szerepel
 - Optimális konstans súlyok keresése (konstans súlyozó)
 - Ha a bemeneti tér különböző részein jók
 - Bemenetfüggő optimális súly tanulása (súlybecslő)
 - Tanuljuk meg, melyik hol milyen jó (jóságbecslő)

Keveréses módszerek

- Keverendő osztályozók előállítása
 - Eltérő modell
 - Eltérő tanítóminták
 - BNO hierarchikus
 - Főcsoportonként külön osztályozó (szakértőegyüttes, mixture of experts)
 - Külön kapuzó osztályozó tanulja: melyik bemenet melyik főcsoporthoz

IMPLEMENTÁCIÓ

Implementáció

Alapvető felépítés

Osztályozóprogram

- Különböző módok
 - Tanítás és a kapott osztályozó fájlba szerializálása
 - Fájlból beolvasott osztályozóval TCP-n figyelés, érkező kérések (diagnózis) kiszolgálása (kódlista)
 - Keresztkiértékelés

Szükséges

- Osztályozó felépítésének megadása (XML)
- Üzenetek (kérdés, válasz) formátuma (XML)

XML példák: Lekérés szervertől

XML példák: Szerver válasza

```
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<resultsets>
 <resultset>
   <result>
     <class>N8310</class>
     <confidence>0.38768336305190293</confidence>
    </result>
   <result>
     <class>D6990</class>
     <confidence>0.17026160892877706</confidence>
   </result>
   <result>
      <class>H4310</class>
     <confidence>0.15751956314998392/confidence>
   </result>
   <result>
     <class>R58H0</class>
     <confidence>0.15043689961141468
   </result>
   <result>
     <class>K2280</class>
     <confidence>0.13409856525792138</confidence>
   </result>
 </resultset>
</resultsets>
```

Összetett osztályozó megadása (részlet)

```
<classifier id="team">
    <type>ConstantWeightTeam</type>
    <param name="c1">
        <classifier ref="moe" />
    </param>
    <param name="c2">
        <classifier ref="idf" />
    </param>
    <param name="ratio">0.4</param>
</classifier>
```

Keretrendszer

- Java nyelven készítettem el
- Osztályozási feladatok kezelése általánosan
 - Tanítás
 - Kiértékelés
 - Bemeneti és kimeneti transzformációk
 - Mintahalmazok manipulációja (keverés, vágás, iteráció)
 - Eredményhalmazok kezelése
 - Párhuzamosítás egyszerűen
- Egyszerű bővíthetőség
 - Új osztályozók
 - Új kiértékelési mércék
 - Új transzformációk (pl. nyelvi feldolgozás)

Webes felület

JSP prototípus oldal

EREDMÉNYEK

Mintahalmazok

- Magyar (3081 minta)
 - Tisztítatlan
 - Tisztított
- Német (93863 minta)
 - Feldolgozatlan
 - Szótövezett
 - Morfológiailag elemzett

Magyar minta (tisztított)

Német minta (morfológiailag elemzett)

Tanulási görbék (német feldolgozatlan)

Továbbfejlesztési lehetőségek

- A különböző algoritmusok hasonlóan teljesítenek
- Nagyobb különbséget okoz a minta jósága, mérete
- Előfeldolgozás finomítása
 - Morfológiai elemzés
- Ontológiák használata
 - Pl. speciális fogalmak általánosítása
 - Szinonimák felismerése
- Felhasználói felület bővítése, BNO-adatbázissal összekötés

KÖSZÖNÖM A FIGYELMET!