Dissertation 2022

Daniel Kongsgaard

Contents

1	Coh	nomology of Unipotent Groups	1
	1.1	Introduction	1
	1.2	The p -valuation	2
	1.3	A multiplicative spectral sequence	11
	1.4	Dimension of cohomology of \mathfrak{n} and $N = \mathcal{N}(\mathbb{Z}_p)$	11
	1.5	Cohomology of $N = \mathcal{N}(\mathbb{Z}_p)$	12
2	Coh	nomology of Iwahori Subgroups	14
	2.1	Intoduction	14
	2.2	$I \subseteq \mathrm{SL}_2(\mathbb{Z}_p)$	14
	2.3	$I \subseteq \mathrm{GL}_2(\mathbb{Z}_p)$	15
	2.4	$I \subseteq \mathrm{SL}_3(\mathbb{Z}_p)$	16
3	List	-Decodable Mean Estimation and Clustering	34
	3.1	Introduction	34
Bi	bliog	graphy	35
In	\mathbf{dex}		36

CONTENTS ii

Some extra stuff.

Chapter 1

Cohomology of Unipotent Groups

cha:cohunigps

sec:cohunigps-intro

1.1 Introduction

So far some of the details are still skipped, but I have tried to write pretty much everything that's not already written in results I cite.

Notation and setup

Let p be a prime and let $k = \mathbb{Z}_p$. Also note that the following is true for any integral domain k (in particular also for \mathbb{F}_p).

Let $\mathcal{G}_{\mathbb{Z}}$ be a split and connected reductive algebraic \mathbb{Z} -group and let $\mathcal{G} = (\mathcal{G}_{\mathbb{Z}})_k$ (the base change from \mathbb{Z} to k). Let $\mathcal{T}_{\mathbb{Z}}$ be a split maximal torus of $\mathcal{G}_{\mathbb{Z}}$ and set $\mathcal{T} = (\mathcal{T}_{\mathbb{Z}})_k$. Let $\Phi = \Phi(\mathcal{G}, \mathcal{T})$ be the root system of \mathcal{G} with respect to \mathcal{T} and note that Φ can be identified with the root system of $\mathcal{G}_{\mathbb{Z}}$ with respect to $\mathcal{T}_{\mathbb{Z}}$. Also note that $\operatorname{Lie}(\mathcal{G}) = \operatorname{Lie}(\mathcal{G}_{\mathbb{Z}}) \otimes_{\mathbb{Z}} k$ and for any $\alpha \in \Phi$ we have the root subgroup $\mathcal{N}_{\alpha} \subseteq \mathcal{G}$ with $\operatorname{Lie} \mathcal{N}_{\alpha} = (\operatorname{Lie} \mathcal{G})_{\alpha} = (\operatorname{Lie} \mathcal{G}_{\mathbb{Z}})_{\alpha} \otimes_{\mathbb{Z}} k$. Now fix a k-basis X_{α} of the Lie algebra of \mathcal{N}_{α} . This choice gives rise to a unique isomorphism isomorphism of group schemes $x_{\alpha} : \mathcal{G}_{a} \xrightarrow{\cong} \mathcal{N}_{\alpha}$ such that $(dx_{\alpha})(1) = X_{\alpha}$. We furthermore fix a basis $\Delta \subseteq \Phi$ of the root system such that we get a decomposition $\Phi = \Phi^+ \cup \Phi^-$ into positive and negative roots. Let $\mathcal{B} = \mathcal{T} \mathcal{N}$ and $\mathcal{B}^+ = \mathcal{T} \mathcal{N}^+$ denote the

DK Note: We might be able to avoid going through \mathbb{Z} at first with some work. Also, we may need to assume that \mathcal{G} is simple.

Borel subgroups of \mathcal{G} corresponding to Φ^- and Φ^+ , respectively, with unipotent radicals \mathcal{N} and \mathcal{N}^+ . (Here we also have corresponding algebraic \mathbb{Z} -groups.)

For any total ordering of Φ^- the multiplication induces an isomorphism of schemes $\prod_{\alpha \in \Phi^-} \mathcal{N}_{\alpha} \xrightarrow{\cong} \mathcal{N}$. For convenience we fix in the following such a total ordering which has the additional property that $\alpha_1 \geq \alpha_2$ if $\operatorname{ht}(\alpha_1) \leq \operatorname{ht}(\alpha_2)$. All products indexed by Φ^- are meant to be taken according to this ordering. Here we have the height function $\operatorname{ht} \colon \mathbb{Z}[\Delta] \to \mathbb{Z}$ given by $\sum_{\alpha \in \Delta} m_{\alpha} \alpha \mapsto \sum_{\alpha \in \Delta} m_{\alpha}$. In particular, since $\Phi \subseteq \mathbb{Z}[\Delta]$ the height $\operatorname{ht}(\beta)$ of any root $\beta \in \Phi$ is defined.

Let furthermore ρ be the half-sum of the elements of Φ^+ , let $X = X(\mathcal{T}) \cong X(\mathcal{T}_{\mathbb{Z}})$ be the character group of \mathcal{T} , let

$$X^+ = \{ \lambda \in X \mid \langle \lambda, \alpha^{\vee} \rangle \ge 0 \text{ for all } \alpha \in \Phi^+ \},$$

and let h be the Coxeter number of \mathcal{G} and assume from now on that $p \geq h - 1$. For any $\lambda \in X^+$, let $V_{\mathbb{Z}}(\lambda)$ be the Weyl module for $\mathcal{G}_{\mathbb{Z}}$ over \mathbb{Z} with highest weight λ , and let $V_k(\lambda) = V_{\mathbb{Z}}(\lambda) \otimes_{\mathbb{Z}} k$.

Let Φ^{\vee} be the dual root system of Φ and let W be the corresponding Weyl group with length function ℓ on W. Let $\mathfrak{n}_{\mathbb{Z}} = \mathrm{Lie}(\mathcal{N}_{\mathbb{Z}})$ be the Lie algebra of $\mathcal{N}_{\mathbb{Z}}$ over \mathbb{Z} and $\mathfrak{n} = \mathfrak{n}_{\mathbb{F}_p} = \mathrm{Lie}(\mathcal{N}_{\mathbb{F}_p}) = \mathfrak{n}_{\mathbb{Z}} \otimes \mathbb{F}_p$ be the Lie algebra of $\mathcal{N}_{\mathbb{F}_p}$ over \mathbb{F}_p .

Finally let
$$G = N = \mathcal{N}(\mathbb{Z}_p) = \mathcal{N}_{\mathbb{Z}}(\mathbb{Z}_p)$$
 and let $\mathfrak{g} = \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \operatorname{gr} G$.

1.2 The *p*-valuation

sec:pval

This section is mainly based on some unpublished notes by Schneider.

In this section we will write N for $\mathcal{N}(\mathbb{Z}_p)$, and we note that as a set N is the direct product $N = \prod_{\alpha \in \Phi^-} x_{\alpha}(\mathbb{Z}_p)$, which allows us to introduce the function

$$\begin{aligned}
&\omega \colon N \setminus \{1\} \to \mathbb{N} \\
&\prod_{\alpha \in \Phi^{-}} x_{\alpha}(a_{\alpha}) \mapsto \min_{\alpha \in \Phi^{-}} \left(v_{p}(a_{\alpha}) - \operatorname{ht}(\alpha)\right),
\end{aligned} \tag{1.1}$$

where v_p denotes the usual p-adic valuation on \mathbb{Z}_p . Here it is important to note that we write any $g \in N$ uniquely as product

$$g = \prod_{\alpha \in \Phi^-} x_{\alpha}(a_{\alpha})$$

by taking the product following the total ordering \geq of Φ^- defined above. Now, with the convention that $\omega(1) := \infty$, we define the descending sequence of subsets

$$N_m := \{ g \in N \mid \omega(g) \ge m \}$$

in N for $m \geq 0$. The main goal of this section is to show that ω is a p-valuation by a careful analysis of the sequence of subsets given by N_m .

We first note that clearly $N_1 = N$, $\bigcap_m N_m = \{1\}$, and

$$\begin{split} N_m &= \prod_{\alpha \in \Phi^-} x_\alpha (p^{\max(0,m+\operatorname{ht}(\alpha))} \mathbb{Z}_p) \\ &= \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -1}} x_\alpha (p^{m-1} \mathbb{Z}_p) \cdots \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -(m-1)}} x_\alpha (p \mathbb{Z}_p) \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) \leq -m}} x_\alpha (\mathbb{Z}_p). \end{split} \tag{1.2}$$

In our analysis of this sequence we will also need two other filtrations of N. Firstly we will consider the filtration by congruence subgroups

$$N(m) := \ker \left(\mathcal{N}(\mathbb{Z}_p) \to \mathcal{N}(\mathbb{Z}/p^m \mathbb{Z}) \right)$$

$$= \prod_{\alpha \in \Phi^-} x_{\alpha}(p^m \mathbb{Z}_p)$$
(1.3) [eq:N(m)}

for $m \geq 0$. Secondly, using the descending central series of the group $\mathcal{G}(\mathbb{Q}_p)$ defined by $C^1\mathcal{G}(\mathbb{Q}_p) := \mathcal{G}(\mathbb{Q}_p)$ and $C^{m+1}\mathcal{G}(\mathbb{Q}_p) := [C^m\mathcal{G}(\mathbb{Q}_p), \mathcal{G}(\mathbb{Q}_p)]$, we consider the filtration given by

$$N_{(m)} := N \cap C^m \mathcal{G}(\mathbb{Q}_p)$$

for $m \geq 1$. By BT we have that

$$N_{(m)} = \prod_{\substack{\alpha \in \Phi^{-} \\ \operatorname{ht}(\alpha) \leq -m}} x_{\alpha}(\mathbb{Z}_{p}). \tag{1.4} \qquad \text{Check feasing (m)}$$

We note that the natural map

$$\prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -m}} x_{\alpha}(\mathbb{Z}_p) \to N_{(m)}/N_{(m+1)}$$

is an isomorphism of abelian groups, and that all the subgroups N(m) and $N_{(m)}$ are normal in N.

We are now ready to prove the following lemma, which will help us when showing that ω is a p-valuation.

Lemma 1.1.

lem:N_m
item:N_m

(i) $N_m = \prod_{1 \le i \le m} N(m-i) \cap N_{(i)}$, for any $m \ge 1$, is a normal subgroup of N which is independent of the choices made.

item:N_mcom

- (ii) $[N_{\ell}, N_m] \subseteq N_{\ell+m}$ for any $\ell, m \ge 1$.
- (iii) N_m/N_{m+1} , for any $m \geq 1$, is an \mathbb{F}_p -vector space of dimension equal to $|\{\alpha \in \Phi^- \mid \mathrm{ht}(\alpha) \geq -m\}|$.

item:g^p

(iv) Let $g \in N_m$ for some $m \ge 1$. If $g^p \in N_{m+2}$, then $g \in N_{m+1}$.

Proof. (i) Using (1.3) and (1.4) we note that

$$\prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -i}} x_{\alpha}(p^{m-1}\mathbb{Z}_p) \subseteq N(m-i) \cap N_{(i)} \quad \text{and} \quad \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) \leq -m}} x_{\alpha}(\mathbb{Z}_p) = N(0) \cap N_{(m)}$$

for $1 \leq i < m$, so by (1.2) it's clear that $N_m \subseteq \prod_{1 \leq i \leq m} N(m-i) \cap N_{(i)}$. We also note, by (1.3) and (1.4), that

$$(N(m-i) \cap N_{(i)}) (N(m-i-1) \cap N_{(i+1)})$$

$$\subseteq \Big(\prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -i}} x_{\alpha}(p^{m-i}\mathbb{Z}_p) \Big) (N(m-i-1) \cap N_{(i+1)})$$

for any $1 \le i < m$, so

$$\prod_{1 \le i \le m} N(m-i) \cap N_{(i)}
\subseteq \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -1}} x_{\alpha}(p^{m-1}\mathbb{Z}_p) \cdots \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -(m-1)}} x_{\alpha}(p\mathbb{Z}_p) (N(0) \cap N_{(m)})
= N_m$$

by induction, (1.2) and (1.4). This shows the equality and that N_m is normal clearly follows.

(ii) We first recall the following formulas for commutators

$$[gh,k] = g[h,k]g^{-1}[g,k]$$
 and $[g,hk] = [g,h]h[g,k]h^{-1}$. (1.5) [eq:comformulas]

Now, using (1.5), (i) and the fact that all the involved subgroups are normal, it's enough to show that

$$[N(\ell) \cap N_{(i)}, N(m) \cap N_{(j)}] \subseteq N(\ell + m) \cap N_{(i+j)}.$$

This further reduces to showing that

$$[N(\ell), N(m)] \subseteq N(\ell + m)$$
 and $[N_{(i)}, N_{(j)}] \subseteq N_{(i+j)}$.

The right inclusion is a well known property of the descending central series, so it follows from our defintion of $N_{(m)}$. For the left inclusion it suffices, by (1.3), to show that

$$[x_{\alpha}(p^{\ell}\mathbb{Z}_p), x_{\beta}(p^m\mathbb{Z}_p)] \subseteq N(\ell+m)$$

for any $\alpha, \beta \in \Phi^-$. To show this inclusion we recall Chevalley's commutator formula

$$[x_{\alpha}(a), x_{\beta}(b)] \in x_{\alpha+\beta}(ab\mathbb{Z}_p) \prod_{\substack{i,j \ge 1\\i+j > 2}} x_{i\alpha+j\beta}(a^ib^j\mathbb{Z}_p),$$

where on the right hand side the convention is that $x_{i\alpha+j\beta} \equiv 1$ if $i\alpha + j\beta \notin \Phi$ (cf. BT). From (1.3) and Chevalley's commutator formula the inclusion follows. DK Note:

Check reference.

(iii) We note that

1010

$$N(m-i) \cap N_{(i)} = \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) \le -i}} x_{\alpha}(p^{m-i}\mathbb{Z}_p)$$

for $1 \le i \le m$, so the statement follows from (i) and (ii).

DK Note:

(iv) For any $1 \le \ell \le m$ we consider the chain of normal subgroups

Write (iii) better.

$$N_{m+2}(N_m \cap N_{(\ell+1)}) \subseteq N_{m+1}(N_m \cap N_{(\ell+1)}) \subseteq N_{m+1}(N_m \cap N_{(\ell)})$$

between N_{m+2} and N_m . By (1.5) and an argument like in (ii), we get that

$$[N_{m+1}(N_m \cap N_{(\ell)}), N_{m+1}(N_m \cap N_{(\ell)})] \subseteq N_{m+2}(N_m \cap N_{(\ell+1)}),$$

so the quotient group

$$N_{m+1}(N_m \cap N_{(\ell)})/N_{m+2}(N_m \cap N_{(\ell+1)})$$

is abelian. Now looking carefully at the groups as sets, we see that

$$N_m \cap N_{(\ell)} = \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) \le -\ell}} x_{\alpha}(p^{\max(0, m + \operatorname{ht}(\alpha))} \mathbb{Z}_p)$$

and thus (using Chevalley's commutator formula and the fact that $\operatorname{ht}(i\alpha+j\beta) \leq \operatorname{ht}(\alpha+\beta) < \operatorname{ht}(\alpha), \operatorname{ht}(\beta)$ to move the products for the $\operatorname{ht}(\alpha) = -\ell$ term)

$$N_{m+1}(N_m \cap N_{(\ell)}) = \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) > -\ell}} x_{\alpha}(p^{\max(0,m+1+\operatorname{ht}(\alpha))} \mathbb{Z}_p)$$

$$\cdot \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) = -\ell}} x_{\alpha}(p^{m-\ell} \mathbb{Z}_p)$$

$$\cdot \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) < -\ell}} x_{\alpha}(p^{\max(0,m+\operatorname{ht}(\alpha))} \mathbb{Z}_p).$$

Similarly

$$\begin{split} N_{m+2}(N_m \cap N_{(\ell+1)}) &= \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) > -\ell}} x_\alpha(p^{\max(0,m+2+\operatorname{ht}(\alpha))} \mathbb{Z}_p) \\ &\cdot \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) = -\ell}} x_\alpha(p^{m+2-\ell} \mathbb{Z}_p) \\ &\cdot \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) \leq -(\ell+1)}} x_\alpha(p^{\max(0,m+\operatorname{ht}(\alpha))} \mathbb{Z}_p), \end{split}$$

and since the quotient group

$$N_{m+1}(N_m \cap N_{(\ell)})/N_{m+2}(N_m \cap N_{(\ell+1)})$$

is abelian, we see that it is isomorphic to

$$\prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) > -\ell}} \frac{x_{\alpha}(p^{\max(0,m+1+\operatorname{ht}(\alpha))}\mathbb{Z}_p)}{x_{\alpha}(p^{\max(m+2+\operatorname{ht}(\alpha))}\mathbb{Z}_p)} \times \prod_{\operatorname{ht}(\alpha) = -\ell} \frac{x_{\alpha}(p^{m-\ell}\mathbb{Z}_p)}{x_{\alpha}(p^{m+2-\ell}\mathbb{Z}_p)}.$$

Here the subgroup

$$N_{m+1}(N_m \cap N_{(\ell+1)})/N_{m+2}(N_m \cap N_{(\ell+1)})$$

corresponds to

$$\prod_{\operatorname{ht}(\alpha)>-\ell} \frac{x_{\alpha}(p^{\max(0,m+1+\operatorname{ht}(\alpha))}\mathbb{Z}_p)}{x_{\alpha}(p^{\max(0,m+2+\operatorname{ht}(\alpha))}\mathbb{Z}_p)} \times \prod_{\operatorname{ht}(\alpha)=-\ell} \frac{x_{\alpha}(p^{m+1-\ell}\mathbb{Z}_p)}{x_{\alpha}(p^{m+2-\ell}\mathbb{Z}_p)}.$$

It follows that $N_{m+1}(N_m \cap N_{(\ell+1)})/N_{m+2}(N_m \cap N_{(\ell+1)})$ is the *p*-torsion subgroup of $N_{m+1}(N_m \cap N_{(\ell)})/N_{m+2}(N_m \cap N_{(\ell+1)})$.

Now let $g \in N_m$ for some $m \geq 1$ and assume that $g^p \in N_{m+2}$. For $\ell = 1$ we have $g \in N_m = N_{m+1}(N_m \cap N_{(1)})$, since $N_{(1)} = N$, and clearly $g^p \in N_{m+2}(N_m \cap N_{(2)})$. Since $N_{m+1}(N_m \cap N_{(2)})/N_{m+2}(N_m \cap N_{(2)})$ is the p-torsion subgroup of $N_{m+1}(N_m \cap N_{(1)})/N_{m+2}(N_m \cap N_{(2)})$, it follows that $g \in N_{m+1}(N_m \cap N_{(2)})$ and $g^p \in N_{m+2}(N_m \cap N_{(3)})$. By induction on ℓ , we thus get that $g \in N_{m+1}(N_m \cap N_{(m+1)}) = N_{m+1}$. Here the last equality follows from the fact that $N_{(m+1)} \subseteq N_{m+1}$ by (1.2) and (1.4).

Proposition 1.2. The function ω is a *p*-valuation on N, i.e., it satisfies for any $g, h \in N$:

- (a) $\omega(g) > \frac{1}{p-1}$,
- (b) $\omega(g^{-1}h) \ge \min(\omega(g), \omega(h)),$
- (c) $\omega([g,h]) \ge \omega(g) + \omega(h)$,
- (d) $\omega(g^p) = \omega(g) + 1$.

Proof. We note that (a) is obvious by our definition of ω , (c) follows from Lemma 1.1 (ii) and (d) follows from Lemma 1.1 (iv).

It only remains to show (b), which we will do by following the proof idea of Lemma 1 from [Zab], i.e., we are going to use triple induction. Here we DK Note: add note that all products $\prod_{\alpha \in \Phi^-} x_{\alpha}(a_{\alpha})$ are in ascending order in Φ^- (so descending in height). For notational ease, we prove equivalently that $\omega(gh^{-1}) \geq \min(\omega(g), \omega(h))$ for $g, h \in N$.

At first by induction on the number of non-zero coordinates among $(a_{\beta})_{\beta \in \Phi^{-}}$ in $\prod_{\beta \in \Phi^{-}} x_{\beta}(a_{\beta})$ we are reduced to the case where h is of the form $h = x_{\beta}(a_{\beta})$ for some $\beta \in \Phi^{-}$ and $a_{\beta} \in \mathbb{Z}_{p}$. To see this let $h \in N \setminus \{1\}$ and write

 $h = \prod_{\beta \in \Phi^-} x_{\beta}(a_{\beta})$ in our unique way (according to the ordering of Φ^-), and let α be the smallest element of Φ^- for which $a_{\alpha} \neq 0$ so that $h = x_{\alpha}(a_{\alpha}) \cdot h'$. Then $gh^{-1} = g(h')^{-1} \cdot x_{\alpha}(a_{\alpha})^{-1}$ and thus strong induction will imply that

$$\omega(gh^{-1}) \ge \min(\omega(g(h')^{-1}), v(a_{\alpha}) - \operatorname{ht}(\alpha))$$

$$\ge \min(\omega(g), \omega(h'), v(a_{\alpha}) - \operatorname{ht}(\alpha)) = \min(\omega(g), \omega(h)).$$

Fix $h = x_{\beta}(a_{\beta})$ and let now g be of the form $g = \prod_{k=1}^{r} x_{\alpha_{k}}(a_{\alpha_{k}})$ with $\alpha_{1} < \alpha_{2} < \cdots < \alpha_{r}$ in Φ^{-} . If $\beta > \alpha_{r}$, then $gh^{-1} = \prod_{k=1}^{r-1} x_{\alpha_{k}}(a_{\alpha_{k}}) \cdot x_{\alpha_{r}}(a_{\alpha_{r}})x_{\beta}(-a_{\beta})$, so (b) is clearly true if $\beta > \alpha_{1}$ (by the definition of ω), and if $\beta = \alpha_{r}$, then $x_{\alpha_{r}}(a_{\alpha_{r}})x_{\beta}(-a_{\beta}) = x_{\beta}(a_{\alpha_{r}} - a_{\beta})$ and (b) follows from $v_{p}(a - b) \geq \min(v_{p}(a), v_{p}(b))$ for $a, b \in \mathbb{Z}_{p}$.

On the other hand, if $\beta < \alpha_r$, then we write

$$gh^{-1} = \prod_{k=1}^{r} x_{\alpha_k}(a_{\alpha_k}) \cdot x_{\beta}(-a_{\beta})$$
$$= \prod_{k=1}^{r-1} x_{\alpha_k}(a_{\alpha_k}) \cdot x_{\beta}(-a_{\beta}) \cdot x_{\alpha_r}(a_{\alpha_r}) \cdot [x_{\alpha_r}(-a_{\alpha_r}), x_{\beta}(a_{\beta})].$$

Now we use descending induction on β in the chosen ordering of Φ^- and suppose that the statement (b) is true for any g and any h' of the form $h' = x_{\beta'}(a_{\beta'})$ with $\beta' > \beta$. Note that the base case is trivial and recall that Φ^- is finite and totally ordered. Note furthermore that Chevalley's commutator formula gives us

$$[x_{\alpha'}(a_{\alpha'}), x_{\beta'}(a_{\beta'})] = \prod_{\substack{i\alpha' + j\beta' \in \Phi^-\\i,j > 0}} x_{i\alpha' + j\beta'}(c_{\alpha',\beta',i,j}a_{\alpha'}^i a_{\beta'}^j)$$
(1.6) [{eq:Chevalley}

for any $\alpha', \beta' \in \Phi^-$, where $c_{\alpha',\beta',i,j} \in \mathbb{Z}_p$. Also, we have $\operatorname{ht}(i\alpha' + j\beta') \leq \operatorname{ht}(\alpha' + \beta') < \operatorname{ht}(\alpha')$, ht (β') , so we can apply the induction hypothesis for $x_{\alpha_r}(a_{\alpha_r})$ and each $x_{i\alpha_r+j\beta}(c_{\alpha_r,\beta,i,j}(-a_{\alpha_r})^i a_{\beta}^j)$ in $[x_{\alpha_r}(-a_{\alpha_r},x_{\beta}(a_{\beta}))]$, since $\alpha_r > \beta$ and all terms on the right side of (1.6) are larger than β (and α_r) in the ordering of

 Φ^- . We thus obtain

$$\begin{split} \omega(gh^{-1}) &\geq \min \bigg(\min_{\substack{i\alpha_r + j\beta \in \Phi^-\\ i, j > 0}} \omega(x_{i\alpha_r + j\beta}(c_{\alpha_r,\beta,i,j}(-a_{\alpha_r})^i a_{\beta}^j)), \\ &\qquad \qquad \omega(x_{\alpha_r}(a_{\alpha_r})), \omega \bigg(\prod_{k=1}^{r-1} x_{\alpha_k}(a_{\alpha_k}) \cdot x_{\beta}(-a_{\beta}) \bigg) \bigg). \end{split} \tag{1.7}$$

Now, for i, j > 0 with $i\alpha' + j\beta' \in \Phi^-$,

$$\omega(x_{i\alpha'+j\beta'}(c_{\alpha',\beta',i,j}a_{\alpha'}^{i}a_{\beta'}^{j})) = v_{p}(c_{\alpha',\beta',i,j}a_{\alpha'}^{i}a_{\beta'}^{j}) - \operatorname{ht}(i\alpha' + j\beta')$$

$$\geq v_{p}(c_{\alpha',\beta',i,j}) + v_{p}(a_{\alpha'}^{i}) + v_{p}(a_{\beta'}^{j}) - \operatorname{ht}(\alpha' + \beta')$$

$$\geq v_{p}(a_{\alpha'}) - \operatorname{ht}(\alpha') + v_{p}(a_{\beta'}) - \operatorname{ht}(\beta')$$

$$= \omega(x_{\alpha'}(a_{\alpha'})) + \omega(x_{\beta'}(a_{\beta'}))$$

$$\geq \min(\omega(x_{\alpha'}(a_{\alpha'})), \omega(x_{\beta'}(a_{\beta'}))).$$

(1.8) {eq:omega(Chev)}

So taking $\alpha' = \alpha_r$ and $\beta' = \beta$ and using (1.8) in (1.7), we get that

$$\omega(gh^{-1}) \ge \min \left(\omega(x_{\alpha_r}(a_{\alpha_r})), \omega(x_{\beta}(a_{\beta})), \omega\left(\prod_{k=1}^{r-1} x_{\alpha_k}(a_{\alpha_k}) \cdot x_{\beta}(-a_{\beta})\right) \right). \quad (1.9) \quad \boxed{\{\text{eq:omega(ginvh)2}\}}$$

Finally induction on r will imply that

$$\omega\left(\prod_{k=1}^{r-1} x_{\alpha_k}(a_{\alpha_k}) \cdot x_{\beta}(-a_{\beta})\right) \ge \min\left(\omega\left(\prod_{k=1}^{r-1} x_{\alpha_k}(a_{\alpha_k})\right), \omega(x_{\beta}(a_{\beta}))\right)$$
$$= \min\left(\min_{1 < k < r-1} \omega(x_{\alpha_k}(a_{\alpha_k})), \omega(x_{\beta}(a_{\beta}))\right),$$

which by (1.9) implies that

$$\omega(gh^{-1}) \ge \min \left(\min_{1 \le k \le r} \omega(x_{\alpha_k}(a_{\alpha_k})), \omega(x_{\beta}(a_{\beta})) \right)$$
$$= \min \left(\omega(g), \omega(h) \right),$$

thus finishing the proof.

We have now shown that $N = \mathcal{N}(\mathbb{Z}_p)$ is a p-valuable group with the p-valuation ω introduced in (1.1), which is the main result of this section. Before continuing, we will prove another useful result from Schneider's notes.

DK Note: Introduce grading and Lie algebra structure and σ . Recall grading of \mathfrak{n} .

We note that

$$\operatorname{gr}_{\bullet} N := \bigoplus_{m \ge 1} N_m / N_{m+1}$$

is a graded \mathbb{F}_p -vector space, and recall the following well known result, cf. [Laz] DK Note: cite or [Sch] §25.

Proposition 1.3 (Lazard). gr_• N is a Lie algebra over the polynomial ring $\mathbb{F}_p[\pi]$ in one variable π where

$$[gN_{\ell+1}, hN_{m+1}] := [g, h]N_{\ell+m+1}$$
 and $\pi(gN_{m+1}) := g^pN_{m+2}$,

and as an $\mathbb{F}_p[\pi]$ -module $\operatorname{gr}_{\bullet} N$ is free of rank $|\Phi^-|$.

Lemma 1.4. gr_• $N \cong \mathbb{F}_p[\pi] \otimes_{\mathbb{F}_p} \mathfrak{n}$ as graded Lie algebras (where π has degree 1).

Proof. We first note that the elements X_{α} , where X_{α} is our fixed \mathbb{Z}_p -basis of Lie \mathcal{N}_{α} , reduce modulo p to an \mathbb{F}_p -basis $\{\overline{X}_{\alpha}\}_{\alpha\in\Phi^-}$ of \mathfrak{n} . On the other hand all

$$\sigma(x_{\alpha}(1)) \in \operatorname{gr}_{-\operatorname{ht}(\alpha)} N,$$

with $x_{\alpha}(1) \in N_{-\operatorname{ht}(\alpha)}$, form an $\mathbb{F}_p[\pi]$ -basis of $\operatorname{gr}_{\bullet} N$, cf. [Sch] Proposition 26.5. Hence the map

$$\mathbb{F}_p[\pi] \otimes_{\mathbb{F}_p} \mathfrak{n} \to \operatorname{gr}_{\bullet} N$$
$$f \otimes \overline{X}_{\alpha} \mapsto f \cdot \sigma(x_{\alpha}(1))$$

is an isomorphism of graded modules. Chevalley's commutator formula says DK Note: that there are p-adic integers $c_{\alpha,\beta}$ such that $[X_{\alpha}, X_{\beta}] = c_{\alpha,\beta} X_{\alpha+\beta}$ and clarify

$$[x_{\alpha}(1), x_{\beta}(1)] \in x_{\alpha+\beta}(c_{\alpha,\beta}) N_{-\operatorname{ht}(\alpha)-\operatorname{ht}(\beta)+1} = x_{\alpha+\beta}(1)^{c_{\alpha,\beta}} N_{-\operatorname{ht}(\alpha)-\operatorname{ht}(\beta)+1},$$

where $X_{\alpha+\beta} = 0$ and $x_{\alpha+\beta} \equiv 1$ if $\alpha + \beta \notin \Phi$. This implies that the image of the above map is a Lie subalgebra, and thus that the map is an isomorphism of Lie algebras.

1.3 A multiplicative spectral sequence

sec:specsec

In this section we will write G for $\mathcal{N}(\mathbb{Z}_p)$, and we let $\mathfrak{g} = \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \operatorname{gr} G$.

Here gr $G \cong \mathbb{F}_p[\pi] \otimes_{\mathbb{F}_p} \mathfrak{n}$ by Proposition 3.2 of Schneider's notes, so $\mathfrak{g} \cong \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \mathbb{F}_p[\pi] \otimes_{\mathbb{F}_p} \mathfrak{n} \cong \mathfrak{n}$. (Which can also be shown by looking at the Chevalley constants.)

Note that G is a pro-p-group and by Corollary 2.2 of Schneider's notes G is p-valuable, so by Theorem 29.8 of [Sch] G is a (compact) p-adic Lie group.

Now we have a p-valued group (G, ω) , so by [Sør] we get a multiplicative convergent spectral sequence

$$E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p).$$

Here $H^{s,t}(\mathfrak{g},\mathbb{F}_p) = H^{s+t}(\operatorname{gr}^s C^{\bullet}(\mathfrak{g},\mathbb{F}_p))$ by definition, where the Lie algebra $\mathfrak{g} \cong \mathfrak{n}$ is graded by the height function.

DK Note: This actually takes quite a lot of work to write the argument for, but it's mostly written in Schneider's notes already.

1.4 Dimension of cohomology of \mathfrak{n} and $N = \mathcal{N}(\mathbb{Z}_p)$

sec:dimofcoh

By Corollary 2.10 and Corollary 3.8 of [PT] and the Universal Coefficient Theorem there is a finite, natural $\mathcal{T}_{\mathbb{Z}}(\mathbb{Z})$ -filtration such that we get isomorphisms of \mathbb{F}_p -vector spaces¹

$$H^n(\mathfrak{n}_{\mathbb{Z}}, V_{\mathbb{F}_p}(0)) \cong \bigoplus_{\substack{w \in W \\ \ell(w) = n}} V_{\mathbb{F}_p}(w \cdot 0) \cong \operatorname{gr} H^n(\mathcal{N}_{\mathbb{Z}}(\mathbb{Z}), V_{\mathbb{F}_p}(0))$$

for any $n \geq 0$ if $p \geq h-1$ (which we assumed to be the case). (Here $V_{\mathbb{F}_p}(\lambda) \cong \mathbb{F}_p$ with $\mathcal{T}_{\mathbb{Z}}(\mathbb{F}_p) = \mathcal{T}(\mathbb{F}_p) = \mathcal{T}_{\mathbb{F}_p}(\mathbb{F}_p)$ acting via λ .)

Furthermore

$$H^n(\mathcal{N}_{\mathbb{Z}}(\mathbb{Z}), V_{\mathbb{F}_p}(0)) \cong H^n(\mathcal{N}(\mathbb{Z}_p), V_{\mathbb{F}_p}(0)).$$

To see this, first note that \mathbb{Z} is a discrete group, \mathbb{Z}_p is a profinite group, and the homomorphism $\mathbb{Z} \to \mathbb{Z}_p$ has dense image in \mathbb{Z}_p . So we have homomorphisms

$$H^n(\mathbb{Z}_p,\mathbb{F}_p)\to H^n(\mathbb{Z},\mathbb{F}_p)$$

¹You get more than this, but we don't need more here.

for all $n \geq 0$ from [Ser, Section I §2.6]. Now both $H^0(\mathbb{Z}, \cdot)$ and $H^0(\mathbb{Z}_p, \cdot)$ are the functor of taking invariant, both $H^1(\mathbb{Z}, \cdot)$ and $H^1(\mathbb{Z}_p, \cdot)$ are the functor of taking coinvariants, and all $H^n(\mathbb{Z}, \cdot)$ and $H^n(\mathbb{Z}_p, \cdot)$ vanish for $n \geq 2$, so \mathbb{Z} is "good" in the sense of [Ser, Section I §2.6 Exercise 2]. Thus [Ser, Section I §2.6 Exercise 2(d)] implies that the homomorphisms

$$H^n(\mathcal{N}(\mathbb{Z}_p), \mathbb{F}_p) \to H^n(\mathcal{N}(\mathbb{Z}), \mathbb{F}_p) \qquad n \ge 0.$$

induced by the homomorphism $\mathcal{N}(\mathbb{Z}) \to \mathcal{N}(\mathbb{Z}_p)$, are all isomorphisms.

Hence

$$\dim_{\mathbb{F}_p} H^n(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(\mathcal{N}_{\mathbb{Z}}(\mathbb{Z}), \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(\mathcal{N}(\mathbb{Z}_p), \mathbb{F}_p).$$

Now $\mathfrak{n} = \mathfrak{n}_{\mathbb{Z}} \otimes \mathbb{F}_p$, and $H^n(\mathfrak{g}, \mathbb{F}_p) \cong H^n(\mathfrak{n}, \mathbb{F}_p)$ (since $\mathfrak{g} \cong \mathfrak{n}$) is the homology of the complex

$$C^{\bullet}(\mathfrak{n}, \mathbb{F}_p) = \operatorname{Hom}_{\mathbb{F}_p} \left(\bigwedge^{\bullet} \mathfrak{n}, \mathbb{F}_p \right)$$

while $H^n(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p)$ is the homology of the complex

$$C^{\bullet}(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p) = \operatorname{Hom}_{\mathbb{F}_p} \left(\bigwedge^{\bullet} \mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p \right).$$

Here $\bigwedge^{\bullet} \mathfrak{n}_{\mathbb{Z}}$ is a free \mathbb{Z} -module and $(\bigwedge^{\bullet} \mathfrak{n}_{\mathbb{Z}}) \otimes \mathbb{F}_p \cong \bigwedge^{\bullet} (\mathfrak{n}_{\mathbb{Z}} \otimes \mathbb{F}_p) \cong \bigwedge^{\bullet} \mathfrak{n}$, so we have natural isomorphisms

$$\operatorname{Hom}_{\mathbb{F}_p} \left(\bigwedge^{\bullet} \mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p \right) \cong \operatorname{Hom}_{\mathbb{F}_p} \left(\left(\bigwedge^{\bullet} \mathfrak{n}_{\mathbb{Z}} \right) \otimes \mathbb{F}_p, \mathbb{F}_p \right) \cong \operatorname{Hom}_{\mathbb{F}_p} \left(\bigwedge^{\bullet} \mathfrak{n}, \mathbb{F}_p \right).$$

These isomorphisms are clearly compatible with the differentials, so $C^{\bullet}(\mathfrak{n}, \mathbb{F}_p) \cong C^{\bullet}(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p)$, and thus $H^n(\mathfrak{n}, \mathbb{F}_p) \cong H^n(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p)$. Hence

$$\dim_{\mathbb{F}_p} H^n(\mathfrak{n}, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(\mathcal{N}(\mathbb{Z}_p), \mathbb{F}_p).$$

1.5 Cohomology of $N = \mathcal{N}(\mathbb{Z}_p)$

Now Section 1.4 implies that

$$\sum_{s+t=n} \dim_{\mathbb{F}_p} H^{s,t}(\mathfrak{g}, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(\mathfrak{g}, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(G, \mathbb{F}_p),$$

so the multiplicative spectral sequence

$$E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p)$$

from Section 1.3 converges on the first page. I.e.,

$$H^n(N, \mathbb{F}_p) = H^n(G, \mathbb{F}_p) \cong H^n(\mathfrak{g}, \mathbb{F}_p) \cong H^n(\mathfrak{n}, \mathbb{F}_p),$$

giving us a good description of $H^n(\mathcal{N}(\mathbb{Z}_p), \mathbb{F}_p)$.

Chapter 2

Cohomology of Iwahori Subgroups

cha:cohiwagps

2.1 Intoduction

sec:cohiwagps

2.2 $I \subseteq \mathrm{SL}_2(\mathbb{Z}_p)$

sec:Iwa-SL2

$$I = \begin{pmatrix} 1 + p\mathbb{Z}_p & \mathbb{Z}_p \\ p\mathbb{Z}_p & 1 + p\mathbb{Z}_p \end{pmatrix} \subseteq \mathrm{SL}_2(\mathbb{Z}_p).$$

Obvious try (using that $(1+p)^{\mathbb{Z}_p} = 1 + p\mathbb{Z}_p$):

$$g_1' = \begin{pmatrix} 1 & 0 \\ p & 1 \end{pmatrix}, \qquad g_2' = \begin{pmatrix} 1+p & 0 \\ 0 & (1+p)^{-1} \end{pmatrix}, \qquad g_3' = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Better:

$$g_1 = \begin{pmatrix} 1 & 0 \\ p & 1 \end{pmatrix}, \quad g_2 = \begin{pmatrix} \exp(p) & 0 \\ 0 & \exp(-p) \end{pmatrix}, \quad g_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \tag{2.1} \quad \text{{eq:gis-SL2}}$$

For $g = (a_{ij})$

$$\omega(g) := \min \left(v_p(a_{11} - 1), \frac{1}{2} + v_p(a_{12}), -\frac{1}{2} + v_p(a_{21}), v_p(a_{22} - 1) \right).$$

$$\begin{split} g_1^{x_1} g_2^{x_2} g_3^{x_3} &= \begin{pmatrix} \exp(px_1) & \exp(px_2)x_3 \\ px_1 \exp(px_2) & px_1x_3 \exp(px_2) + \exp(-px_2) \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}. \\ g_{ij} &= [g_i, g_j] \\ & \sigma(g_{12}) = (p-2)\pi \cdot \sigma(g_1), \\ & \sigma(g_{13}) = (p-1)\pi \cdot \sigma(g_1) + (p-1)\sigma(g_2) + \pi \cdot \sigma(g_3), \\ & \sigma(g_{23}) = (p-2)\pi \cdot \sigma(g_3). \end{split}$$

So with $\xi_i = 1 \otimes \sigma(g_i)$:

$$[\xi_1, \xi_2] = 0,$$
 $[\xi_1, \xi_3] = -\xi_2,$ $[\xi_2, \xi_3] = 0.$

2.3 $I \subseteq \operatorname{GL}_2(\mathbb{Z}_n)$

sec:Iwa-GL2

$$g_{1} = \begin{pmatrix} 1 & 0 \\ p & 1 \end{pmatrix}, \qquad g_{2} = \begin{pmatrix} \exp(p) & 0 \\ 0 & \exp(-p) \end{pmatrix},$$

$$g_{3} = \begin{pmatrix} \exp(p) & 0 \\ 0 & \exp(p) \end{pmatrix}, \qquad g_{4} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

$$(2.3) \quad \boxed{\{eq:gis-GL2\}}$$

$$g_{1}^{x_{1}}g_{2}^{x_{2}}g_{3}^{x_{3}}g_{4}^{x_{4}}$$

$$= \begin{pmatrix} \exp(p(x_{2} + x_{3})) & \exp(p(x_{2} + x_{3}))x_{4} \\ px_{1}\exp(p(x_{2} + x_{3})) & \exp(p(x_{2} + x_{3}))px_{1}x_{4} + \exp(p(x_{3} - x_{2})) \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

$$g_{ij} = [g_{i}, g_{j}]$$

$$\sigma(g_{12}) = (p - 2)\pi \cdot \sigma(g_{1}),$$

$$\sigma(g_{14}) = (p - 1)\pi \cdot \sigma(g_{1}) + (p - 1)\sigma(g_{2}) + \pi \cdot \sigma(g_{3}),$$

$$\sigma(g_{24}) = (p - 2)\pi \cdot \sigma(g_{3}),$$

$$\sigma(g_{13}) = \sigma(g_{23}) = \sigma(g_{24}) = 0.$$

$$(2.4)$$

So with
$$\xi_i = 1 \otimes \sigma(g_i)$$
:

$$[\xi_1, \xi_4] = -\xi_2$$

is the only non-zero commutator.

2.4 $I \subseteq SL_3(\mathbb{Z}_p)$

sec:Iwa-SL3

To make the notation easier to read for the bigger matrices, we will write any zeros as blank space in matrices in this section.

$$g_{1} = \begin{pmatrix} 1 \\ 1 \\ p \end{pmatrix}, \quad g_{2} = \begin{pmatrix} 1 \\ p & 1 \\ 1 \end{pmatrix}, \quad g_{3} = \begin{pmatrix} 1 \\ 1 \\ p & 1 \end{pmatrix},$$

$$g_{4} = \begin{pmatrix} \exp(p) \\ \exp(-p) \\ 1 \end{pmatrix}, \quad g_{5} = \begin{pmatrix} 1 \\ \exp(p) \\ \exp(-p) \end{pmatrix}, \quad (2.5) \quad \text{{eq:gis-SL3}}$$

$$g_{6} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad g_{7} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad g_{8} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

$$g_{1}^{x_{1}}g_{2}^{x_{2}}g_{3}^{x_{3}}g_{4}^{x_{4}}g_{5}^{x_{5}}g_{6}^{x_{6}}g_{7}^{x_{7}}g_{8}^{x_{8}} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

where

$$a_{11} = \exp(px_4),$$

$$a_{12} = x_7 \exp(px_4),$$

$$a_{13} = x_8 \exp(px_4),$$

$$a_{21} = px_2 \exp(px_4),$$

$$a_{22} = px_2x_7 \exp(px_4) + \exp(p(x_5 - x_4)),$$

$$a_{23} = px_2x_8 \exp(px_4) + x_6 \exp(p(x_5 - x_4)),$$

$$a_{31} = px_1 \exp(px_4),$$

$$a_{32} = px_1x_7 \exp(px_4) + px_3 \exp(p(x_5 - x_4)),$$

$$a_{33} = px_1x_8 \exp(px_4) + px_3x_6 \exp(p(x_5 - x_4)) + \exp(-px_5).$$

$$(2.6) \quad \{eq:gixi-SL3\}$$

subsec:non-id-gij-SL3

Non-identity $[g_i, g_j]$

 $g_{ij} = [g_i, g_j]$

Except in the first case, we will note that $x_i \in p\mathbb{Z}_p$ implies that the coefficient on ξ_k in ξ_{ij} is zero.

on ξ_k in ξ_{ij} is zero. DK Note: Note that we repeatedly use that $-1 = (p-1) + (p-1)p + (p-1)p^2 + \cdots$ Introduce $O(p^k)$ in \mathbb{Z}_p and -1 = p-1 in \mathbb{F}_p .

 $g_{14} = \begin{pmatrix} 1 \\ p(1 - \exp(-p)) \\ 1 \end{pmatrix} : \text{ Comparing } g_{14} \text{ with } (2.6), \text{ we see that } x_2 = x_4 = x_7 = x_8 = 0, \text{ and thus also } x_3 = x_5 = x_6 = 0. \text{ This leaves } a_{31} = px_1 = p(1 - \exp(-p)) = p^2 + O(p^3), \text{ which implies that } x_1 = p + O(p^2).$ Hence $\sigma(g_{14}) = \pi \cdot \sigma(g_1)$, which implies that $\xi_{14} = 0$.

 $g_{15} = \begin{pmatrix} 1 \\ p(1 - \exp(-p)) \\ \text{that } \xi_{15} = 0. \end{pmatrix}$: Since $g_{15} = g_{14}$, the above calculation shows

 $g_{16}=\begin{pmatrix}1\\-p&1\\1\end{pmatrix}$: Comparing g_{16} with (2.6), we see that $x_1=x_4=x_7=x_8=0$, and thus also $x_3=x_5=x_6=0$. This leaves $a_{21}=px_2=-p$, which implies that $x_2=-1$. Hence $\sigma(g_{16})=-\sigma(g_2)$, which implies that $\xi_{16}=-\xi_2$.

 $g_{17} = \begin{pmatrix} 1 \\ 1 \\ p \end{pmatrix}$: Comparing g_{17} with (2.6), we see that $x_1 = x_2 = x_4 = x_7 = x_8 = 0$, and thus also $x_5 = x_6 = 0$. This leaves $a_{32} = px_3 = p$, which implies that $x_3 = 1$. Hence $\sigma(g_{17}) = \sigma(g_3)$, which implies that $\xi_{17} = \xi_3$.

 $g_{18} = \begin{pmatrix} 1-p & p \\ 1 & 1 \\ -p^2 & 1+p+p^2 \end{pmatrix}$: Comparing g_{18} with (2.6), we see that $x_2 =$

 $x_7 = 0$, and thus also $x_3 = x_6 = 0$ and $x_4 = x_5$. Using

$$a_{11} = \exp(px_4) = 1 - p,$$

 $a_{13} = x_8 \exp(px_4) = x_8(1 - p) = p,$
 $a_{31} = px_1 \exp(px_4) = px_1(1 - p) = -p^2,$

we get that

$$x_4 = \frac{1}{p}\log(1-p) = \frac{1}{p}((-p) + O(p^2)) = -1 + O(p),$$

$$x_8 = \frac{p}{1-p} = p + O(p^2),$$

$$x_1 = \frac{-p^2}{p(1-p)} = -p + O(p^2).$$

Hence $\sigma(g_{18}) = -\pi \cdot \sigma(g_1) - \sigma(g_4) - \sigma(g_5) + \pi \cdot \sigma(g_8)$, which implies that $\xi_{18} = -(\xi_4 + \xi_5)$.

$$g_{23} = \begin{pmatrix} 1 \\ -p^2 \end{pmatrix}$$
: Comparing g_{23} with (2.6), we see that $x_2 = x_4 = x_7 = x_8 = 0$, and thus also $x_3 = x_5 = x_6 = 0$. This leaves $a_{31} = px_1 = -p^2$,

 $x_8 = 0$, and thus also $x_3 = x_5 = x_6 = 0$. This leaves $a_{31} = px_1 = -p^2$, which implies that $x_1 = -p$. Hence $\sigma(g_{23}) = -\pi \cdot \sigma(g_1)$, which implies that $\xi_{23} = 0$.

$$g_{24} = \begin{pmatrix} 1 \\ p(1 - \exp(-2p)) & 1 \\ 1 \end{pmatrix} : \text{ Comparing } g_{24} \text{ with } (2.6), \text{ we see that } x_1 = x_4 = x_7 = x_8 = 0, \text{ and thus also } x_3 = x_5 = x_6 = 0. \text{ This leaves } a_{21} = px_2 = p(1 - \exp(-2p)) = p(1 - (1 + (-2p) + O(p^2))) = 2p^2 + O(p^3), \text{ which implies that } x_2 = 2p + O(p^2). \text{ Hence } \sigma(g_{24}) = 2\pi \cdot \sigma(g_1), \text{ which implies that } \xi_{24} = 0.$$

$$g_{25} = \begin{pmatrix} 1 \\ p(1 - \exp(p)) & 1 \\ 1 \end{pmatrix}$$
: Except a factor -2 in the exponential, which

clearly doesn't change the final result, we have the same calculation as for g_{24} . Thus $\xi_{25} = 0$.

$$g_{27} = \begin{pmatrix} 1-p & p \\ -p^2 & 1+p+p^2 \\ 1 \end{pmatrix}$$
: Comparing g_{27} with (2.6), we see that $x_1 = \frac{1}{2}$

 $x_8 = 0$, and thus also $x_3 = x_6 = 0$, so $x_5 = 0$. Using

$$a_{11} = \exp(px_4) = 1 - p,$$

 $a_{12} = x_7 \exp(px_4) = x_8(1 - p) = p,$
 $a_{21} = px_2 \exp(px_4) = px_2(1 - p) = -p^2,$

we get that

$$x_4 = \frac{1}{p}\log(1-p) = \frac{1}{p}((-p) + O(p^2)) = -1 + O(p),$$

$$x_7 = \frac{p}{1-p} = p + O(p^2),$$

$$x_2 = \frac{-p^2}{p(1-p)} = -p + O(p^2).$$

Hence $\sigma(g_{27}) = -\pi \cdot \sigma(g_2) - \sigma(g_4) + \pi \cdot \sigma(g_7)$, which implies that $\xi_{27} = -\xi_4$.

$$g_{28} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
: Comparing g_{28} with (2.6), we see that $x_1 = x_2 = x_4 = x_7 = x_8 = 0$, and thus also $x_3 = x_5 = 0$. This leaves $a_{23} = x_6 = p$. Hence $\sigma(g_{28}) = \pi \cdot \sigma(g_6)$, which implies that $\xi_{28} = 0$.

$$g_{34} = \begin{pmatrix} 1 \\ p(1 - \exp(p)) \\ 1 \end{pmatrix}$$
: Comparing g_{34} with (2.6), we see that $x_1 = x_2 = x_4 = x_7 = x_8 = 0$, and thus also $x_5 = x_6 = 0$. This leaves $a_{32} = px_3 = p(1 - \exp(p)) = p(1 - (1 + p + O(p^2))) = -p^2 + O(p^3)$, which implies that $x_3 = -p + O(p^2)$. Hence $\sigma(g_{34}) = -\pi \cdot \sigma(g_3)$, which implies that $\xi_{34} = 0$.

$$g_{35} = \begin{pmatrix} 1 & & & \\ & 1 & \\ & p(1 - \exp(-2p)) & 1 \end{pmatrix}$$
: Except a factor -2 in the exponential, which

clearly doesn't change the final result, we have the same calculation as for g_{34} . Thus $\xi_{35} = 0$.

$$g_{36} = \begin{pmatrix} 1 \\ 1-p & p \\ -p^2 & 1+p+p^2 \end{pmatrix}$$
: Comparing g_{36} with (2.6), we see that $x_1 = x_2 = x_4 = x_7 = x_8 = 0$. Using
$$a_{22} = \exp(px_5) = 1-p,$$

$$a_{23} = x_6 \exp(px_5) = x_6(1-p) = p,$$

$$a_{32} = px_3 \exp(px_5) = px_3(1-p) = -p^2,$$

we get that

$$x_5 = \frac{1}{p}\log(1-p) = \frac{1}{p}((-p) + O(p^2)) = -1 + O(p),$$

$$x_6 = \frac{p}{1-p} = p + O(p^2),$$

$$x_3 = \frac{-p^2}{p(1-p)} = -p + O(p^2).$$

Hence $\sigma(g_{36}) = -\pi \cdot \sigma(g_3) - \sigma(g_5) + \pi \cdot \sigma(g_6)$, which implies that $\xi_{36} = -\xi_5$.

$$g_{38} = \begin{pmatrix} 1 & -p \\ & 1 \\ & 1 \end{pmatrix}$$
: Comparing g_{38} with (2.6), we see that $x_1 = x_2 = x_4 = x_8 = 0$, and thus also $x_3 = x_5 = x_6 = 0$. This leaves $a_{12} = x_7 = -p$. Hence $\sigma(g_{38}) = -\pi \cdot \sigma(g_3)$, which implies that $\xi_{38} = 0$.

$$g_{46} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
: Comparing g_{46} with (2.6), we see that $x_1 = x_2 = x_4 = x_7 = x_8 = 0$, and thus also $x_3 = x_5 = 0$. This leaves $a_{23} = x_6 = \exp(-p) - 1 = -p + O(p^2)$. Hence $\sigma(g_{46}) = -\pi \cdot \sigma(g_6)$, which implies that $\xi_{46} = 0$.

$$g_{47} = \begin{pmatrix} 1 & \exp(2p) - 1 \\ & 1 \end{pmatrix}$$
: Comparing g_{47} with (2.6), we see that $x_1 = x_2 = x_4 = x_8 = 0$, and thus also $x_3 = x_5 = x_6 = 0$. This leaves $a_{12} = x_7 = \exp(2p) - 1 = 2p + O(p^2)$. Hence $\sigma(g_{47}) = 2\pi \cdot \sigma(g_7)$, which implies that $\xi_{47} = 0$.

$$g_{48} = \begin{pmatrix} 1 & \exp(p) - 1 \\ 1 & 1 \end{pmatrix}$$
: Comparing g_{48} with (2.6), we see that $x_1 = x_2 = x_4 = x_7 = 0$, and thus also $x_3 = x_5 = x_6 = 0$. This leaves $a_{13} = x_8 = \exp(p) - 1 = p + O(p^2)$. Hence $\sigma(g_{48}) = \pi \cdot \sigma(g_8)$, which implies that $\xi_{48} = 0$.

$$g_{56} = \begin{pmatrix} 1 \\ 1 & \exp(2p) - 1 \\ 1 \end{pmatrix}$$
: Except a factor -2 in the exponential, which clearly doesn't change the final result, we have the same calculation as for g_{46} . Thus $\xi_{56} = 0$.

$$g_{57} = \begin{pmatrix} 1 & \exp(-p) - 1 \\ 1 & 1 \end{pmatrix}$$
: Except a factor -2 in the exponential, which clearly doesn't change the final result, we have the same calculation as for g_{47} . Thus $\xi_{57} = 0$.

 $g_{58} = \begin{pmatrix} 1 & \exp(p) - 1 \\ 1 & \\ 1 \end{pmatrix}$: Since $g_{58} = g_{48}$, the above calculation shows that

$$g_{67} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
: Comparing g_{67} with (2.6), we see that $x_1 = x_2 = x_4 = x_7 = 0$, and thus also $x_3 = x_5 = x_6 = 0$. This leaves $a_{13} = x_8 = -1$. Hence $\sigma(g_{67}) = -\sigma(g_8)$, which implies that $\xi_{67} = -\xi_8$.

The non-zero commutators are:

$$\begin{aligned} [\xi_1, \xi_6] &= -\xi_2, & [\xi_1, \xi_7] &= \xi_3, & [\xi_1, \xi_8] &= -(\xi_4 + \xi_5), \\ [\xi_2, \xi_7] &= -\xi_4, & [\xi_3, \xi_6] &= -\xi_5, & [\xi_6, \xi_7] &= -\xi_8. \end{aligned}$$

 $\mathfrak{g}=k\otimes_{\mathbb{F}_p[\pi]}\operatorname{gr} I=\operatorname{span}\{\xi_1,\ldots,\xi_8\}=\mathfrak{g}_{\frac{1}{3}}\oplus\mathfrak{g}_{\frac{2}{3}}\oplus\mathfrak{g}_1=\mathfrak{g}^1\oplus\mathfrak{g}^2\oplus\mathfrak{g}^3.$

$$[\mathfrak{g}^i, \mathfrak{g}^j] = \begin{cases} \mathfrak{g}^2 & \text{if } i = j = 1, \\ \mathfrak{g}^3 & \text{if } (i, j) \in \{(1, 2), (2, 1)\}, \\ 0 & \text{otherwise.} \end{cases}$$
 (2.8)
$$[\text{eq:5}]$$

$$\operatorname{gr}^j\left(\bigwedge^n\mathfrak{g}\right) = \bigoplus_{j_1 + \dots + j_n = j} \mathfrak{g}^{j_1} \wedge \dots \wedge \mathfrak{g}^{j_n}.$$

 $n \geq 9$:

$$\operatorname{gr}^{j}\left(\bigwedge^{n}\mathfrak{g}\right)=0 \text{ for all } j.$$

n = 8:

$$\operatorname{gr}^{j}\left(\bigwedge^{8}\mathfrak{g}\right) = \begin{cases} \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 15, \\ 0 & \text{otherwise.} \end{cases}$$

n = 7:

$$\operatorname{gr}^{j}\left(\bigwedge^{7}\mathfrak{g}\right) = \begin{cases} \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 14, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 13, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} & j = 12, \\ 0 & \text{otherwise.} \end{cases}$$

n = 6:

$$\operatorname{gr}^{j}\left(\bigwedge^{6}\mathfrak{g}\right) = \begin{cases} \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 13, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 12, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 11, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} & j = 11, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} & j = 10, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} & j = 9, \\ 0 & \text{otherwise} \end{cases}$$

n = 5:

$$\operatorname{gr}^{j}\left(\bigwedge^{5}\mathfrak{g}\right) = \begin{cases} \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 12, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 11, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 10, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} & j = 10, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 9, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} & j = 8, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} & j = 8, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} & j = 7, \\ 0 & \text{otherwise.} \end{cases}$$

n = 4:

$$\operatorname{gr}^{j}\left(\bigwedge^{4}\mathfrak{g}\right) = \begin{cases} \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 10, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 9, \\ \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} & j = 8, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} & j = 8, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} & j = 7, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} & j = 7, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{3} & j = 6, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} & j = 5, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} & j = 5, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} & j = 5, \end{cases}$$
 otherwise.

n = 3:

$$\operatorname{gr}^{j}\left(\bigwedge^{3}\mathfrak{g}\right) = \begin{cases} \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 8, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 7, \\ \oplus \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} & j = 6, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} & j = 6, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{3} & j = 5, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} & j = 4, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} & j = 3, \\ 0 & \text{otherwise.} \end{cases}$$

n = 2:

$$\operatorname{gr}^{j}\left(\bigwedge^{2}\mathfrak{g}\right) = \begin{cases} \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} & j = 6, \\ \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} & j = 5, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{3} & j = 4, \\ \oplus \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} & j = 4, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} & j = 3, \\ \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} & j = 2, \\ 0 & \text{otherwise.} \end{cases}$$

n = 1:

$$\operatorname{gr}^{j}(\mathfrak{g}) = \begin{cases} \mathfrak{g}^{3} & j = 3, \\ \mathfrak{g}^{2} & j = 2, \\ \mathfrak{g}^{1} & j = 1, \\ 0 & \text{otherwise.} \end{cases}$$

n = 0:

$$\operatorname{gr}^{j}(k) = \begin{cases} k & j = 0, \\ 0 & \text{otherwise.} \end{cases}$$

n^{j}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1															
1		3	3	2												
2			3	9	9	6	1									
3				1	9	15	19	9	3							
4						3	11	21	21	11	3					
5								3	9	19	15	9	1			
6										1	6	9	9	3		
7													2	3	3	
8																1

Table 2.1: Dimensions of $\operatorname{gr}^{j}(\bigwedge^{n}\mathfrak{g})$.

tab:graded-dims-SL3

$$\operatorname{Hom}_k\left(\bigwedge^n \mathfrak{g}, k\right) = \bigoplus_{s \in \mathbb{Z}} \operatorname{Hom}_k^s\left(\bigwedge^n \mathfrak{g}, k\right)$$

With j = -s, we get the same table for dimensions of the graded homspaces.

Note that when finding cohomology, we only need to consider $H^{s,t}=H^{s,n-s}$ for the non-zero entries of Table 2.1.

We repeatedly use that, if

$$d \stackrel{\mathsf{SNF}}{\sim} \mathrm{SNF}^{n,m}(a_1,\ldots,a_r,0,\ldots,0)$$

with a_1, \ldots, a_r non-zero (in \mathbb{F}_p), then

$$\dim \ker(d) = m - r,$$

$$\dim \operatorname{im}(d) = r,$$

 $\dim \operatorname{coker}(d) = n - r.$

 gr^0 :

$$0 \longrightarrow k \longrightarrow 0$$

$$0 \longleftarrow \operatorname{Hom}_{k}^{0}(k,k) \longleftarrow 0$$

So $H^0 = H^{0,0}$ with dim $H^{0,0} = 1$.

 gr^1 :

$$0 \longrightarrow \mathfrak{g}^1 \longrightarrow 0$$

$$0 \longleftarrow \operatorname{Hom}_{k}^{-1}(\mathfrak{g}, k) \longleftarrow 0$$

So dim $H^{-1,2} = 3$ by Table 2.1.

 gr^2 :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$0 \longrightarrow \mathfrak{g}^1 \wedge \mathfrak{g}^1 \longrightarrow \mathfrak{g}^2 \longrightarrow 0$$

$$\begin{split} &\mathfrak{g}^1 \wedge \mathfrak{g}^1 \to \mathfrak{g}^2 \\ &\xi_1 \wedge \xi_6 \mapsto -[\xi_1, \xi_6] = \xi_2 \\ &\xi_1 \wedge \xi_7 \mapsto -[\xi_1, \xi_7] = -\xi_3 \\ &\xi_6 \wedge \xi_7 \mapsto -[\xi_6, \xi_7] = \xi_8. \end{split}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$0 \longleftarrow \operatorname{Hom}_{k}^{-2}(\bigwedge^{2} \mathfrak{g}, k) \longleftarrow \operatorname{Hom}_{k}^{-2}(\mathfrak{g}, k) \longleftarrow 0$$

$$d = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \overset{\mathsf{SNF}}{\sim} \mathrm{SNF}^{3 \times 3}(1, -1, 1).$$

So

$$\dim H^{-2,3} = \dim \ker(d) = 0,$$

$$\dim H^{-2,4} = \dim \operatorname{coker}(d) = 0.$$

 gr^3 :

$$0 \longrightarrow \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \longrightarrow \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \longrightarrow \mathfrak{g}^{3} \longrightarrow 0$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & -1 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 \leftarrow \operatorname{Hom}_{k}^{-3}(\bigwedge^{3}\mathfrak{g}, k) \leftarrow \operatorname{Hom}_{k}^{-3}(\bigwedge^{2}\mathfrak{g}, k) \leftarrow \operatorname{Hom}_{k}^{-3}(\mathfrak{g}, k) \leftarrow 0 \\
\begin{pmatrix}
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 & 0
\end{pmatrix}^{\mathsf{T}}$$

$$d_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \stackrel{\mathsf{SNF}}{\sim} \mathrm{SNF}^{9 \times 2}(1, -1),$$

$$d_2 = \begin{pmatrix} 0 & 0 & -1 & 0 & -1 & 0 & -1 & 0 & 0 \end{pmatrix} \overset{\mathsf{SNF}}{\sim} \mathrm{SNF}^{1 \times 9}(-1).$$

So

$$\dim H^{-3,4} = \dim \ker(d_1) = 2 - 2 = 0,$$

$$\dim H^{-3,5} = \dim \frac{\ker(d_2)}{\operatorname{im}(d_1)} = (9 - 1) - 2 = 6,$$

$$\dim H^{-3,6} = \dim \operatorname{coker}(d_2) = 1 - 1 = 0.$$

 gr^4 :

$$0 \longrightarrow \mathfrak{g}^1 \wedge \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^2 \xrightarrow{d^{\top}} \overset{\mathfrak{g}^1 \wedge \mathfrak{g}^3}{\oplus \mathfrak{g}^2 \wedge \mathfrak{g}^2} \longrightarrow 0$$

$$0 \longleftarrow \operatorname{Hom}_{k}^{-4}(\bigwedge^{3} \mathfrak{g}, k) \stackrel{d}{\longleftarrow} \operatorname{Hom}_{k}^{-4}(\bigwedge^{2} \mathfrak{g}, k) \longleftarrow 0$$
$$d \stackrel{\mathsf{SNF}}{\sim} \operatorname{SNF}^{9 \times 9}(1, 1, 1, -1, 1, -1, 0, 0, 0)$$

So

$$\dim H^{-4,6} = \dim \ker(d) = 9 - 6 = 3,$$

$$\dim H^{-4,7} = \dim \operatorname{coker}(d) = 9 - 6 = 3.$$

 gr^5 :

$$0 \longrightarrow \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^2 \xrightarrow{d_2^{\top}} \xrightarrow{\mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^3} \xrightarrow{d_1^{\top}} \mathfrak{g}^2 \wedge \mathfrak{g}^3 \longrightarrow 0$$

$$0 \leftarrow \operatorname{Hom}_{k}^{-5}(\bigwedge^{4}\mathfrak{g}, k) \stackrel{d_{2}}{\leftarrow} \operatorname{Hom}_{k}^{-5}(\bigwedge^{3}\mathfrak{g}, k) \stackrel{d_{1}}{\leftarrow} \operatorname{Hom}_{k}^{-5}(\bigwedge^{2}\mathfrak{g}, k) \leftarrow 0$$

$$\begin{aligned} d_1 &\overset{\mathsf{SNF}}{\sim} & \mathrm{SNF}^{15 \times 6}(1,1,-1,-1,1,1), \\ d_2 &\overset{\mathsf{SNF}}{\sim} & \mathrm{SNF}^{3 \times 15}(-1,1,1). \end{aligned}$$

So

$$\dim H^{-5,7} = \dim \ker(d_1) = 6 - 6 = 0,$$

$$\dim H^{-5,8} = \dim \frac{\ker(d_2)}{\operatorname{im}(d_1)} = (15 - 3) - 6 = 6,$$

$$\dim H^{-5,9} = \dim \operatorname{coker}(d_2) = 3 - 3 = 0.$$

 gr^6 :

$$0 \longrightarrow \frac{\mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^3}{\oplus \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^2} \xrightarrow{d_2^{\top}} \frac{\mathfrak{g}^1 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^3}{\oplus \mathfrak{g}^2 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^2} \xrightarrow{d_1^{\top}} \mathfrak{g}^3 \wedge \mathfrak{g}^3 \longrightarrow 0$$

$$0 \leftarrow \operatorname{Hom}_{k}^{-6}(\bigwedge^{4}\mathfrak{g}, k) \stackrel{d_{2}}{\leftarrow} \operatorname{Hom}_{k}^{-6}(\bigwedge^{3}\mathfrak{g}, k) \stackrel{d_{1}}{\leftarrow} \operatorname{Hom}_{k}^{-6}(\bigwedge^{2}\mathfrak{g}, k) \leftarrow 0$$

$$\begin{split} d_1 &\overset{\mathsf{SNF}}{\sim} \; \mathrm{SNF}^{19 \times 1}(-1), \\ d_2 &\overset{\mathsf{SNF}}{\sim} \; \mathrm{SNF}^{11 \times 19}(-1,1,-1,1,-1,-1,-1,1,1,1,-2). \end{split}$$

So

$$\dim H^{-6,8} = \dim \ker(d_1) = 1 - 1 = 0,$$

$$\dim H^{-6,9} = \dim \frac{\ker(d_2)}{\operatorname{im}(d_1)} = (19 - 11) - 1 = 7,$$

$$\dim H^{-6,10} = \dim \operatorname{coker}(d_2) = 11 - 11 = 0.$$

 gr^7 :

$$0 \to \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^2 \overset{d_2^{\top}}{\to} \overset{\mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^3}{\oplus \mathfrak{g}^1 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^2} \overset{d_1^{\top}}{\to} \overset{\mathfrak{g}^1 \wedge \mathfrak{g}^3 \wedge \mathfrak{g}^3}{\oplus \mathfrak{g}^2 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^3} \to 0$$

$$0 \leftarrow \operatorname{Hom}_{k}^{-7}(\bigwedge^{5} \mathfrak{g}, k) \stackrel{d_{2}}{\leftarrow} \operatorname{Hom}_{k}^{-7}(\bigwedge^{4} \mathfrak{g}, k) \stackrel{d_{1}}{\leftarrow} \operatorname{Hom}_{k}^{-7}(\bigwedge^{3} \mathfrak{g}, k) \leftarrow 0$$

$$\begin{aligned} d_1 &\overset{\mathsf{SNF}}{\sim} & \mathrm{SNF}^{21 \times 9}(-1, -1, -1, 1, 1, 1, 1, -1, 1), \\ d_2 &\overset{\mathsf{SNF}}{\sim} & \mathrm{SNF}^{3 \times 21}(1, 1, -1). \end{aligned}$$

So

$$\dim H^{-7,10} = \dim \ker(d_1) = 9 - 9 = 0,$$

$$\dim H^{-7,11} = \dim \frac{\ker(d_2)}{\operatorname{im}(d_1)} = (21 - 3) - 9 = 9,$$

$$\dim H^{-7,12} = \dim \operatorname{coker}(d_2) = 3 - 3 = 0.$$

The following calculations are not necessary, since we can get the results using a version of Poincaré duality for Lie algebra cohomology, but we keep the sketch work to make it clear that nothing goes wrong.

 gr^8 :

$$\begin{split} d_1 &\overset{\mathsf{SNF}}{\sim} \; \mathrm{SNF}^{21 \times 3}(1,-1,1), \\ d_2 &\overset{\mathsf{SNF}}{\sim} \; \mathrm{SNF}^{9 \times 21}(-1,-1,-1,1,1,-1,-1,1,-1). \end{split}$$

So

$$\dim H^{-8,11} = \dim \ker(d_1) = 3 - 3 = 0,$$

$$\dim H^{-8,12} = \dim \frac{\ker(d_2)}{\operatorname{im}(d_1)} = (21 - 9) - 3 = 9,$$

$$\dim H^{-8,13} = \dim \operatorname{coker}(d_2) = 9 - 9 = 0.$$

 gr^9 :

$$\begin{split} d_1 &\overset{\mathsf{SNF}}{\sim} \; \mathrm{SNF}^{19 \times 11}(-1,-1,1,-1,1,-1,-1,-1,-1,1,-1), \\ d_2 &\overset{\mathsf{SNF}}{\sim} \; \mathrm{SNF}^{1 \times 19}(-1). \end{split}$$

So

$$\dim H^{-9,13} = \dim \ker(d_1) = 11 - 11 = 0,$$

$$\dim H^{-9,14} = \dim \frac{\ker(d_2)}{\operatorname{im}(d_1)} = (19 - 1) - 11 = 7,$$

$$\dim H^{-9,15} = \dim \operatorname{coker}(d_2) = 1 - 1 = 0.$$

 gr^{10} :

$$\begin{split} d_1 &\overset{\mathsf{SNF}}{\sim} \; \mathrm{SNF}^{15 \times 3}(1,1,-1), \\ d_2 &\overset{\mathsf{SNF}}{\sim} \; \mathrm{SNF}^{6 \times 15}(-1,1,1,-1,1,1). \end{split}$$

So

$$\dim H^{-10,14} = \dim \ker(d_1) = 3 - 3 = 0,$$

$$\dim H^{-10,15} = \dim \frac{\ker(d_2)}{\operatorname{im}(d_1)} = (15 - 6) - 3 = 6,$$

$$\dim H^{-10,16} = \dim \operatorname{coker}(d_2) = 6 - 6 = 0.$$

 gr^{11} :

$$d \stackrel{\mathsf{SNF}}{\sim} \mathrm{SNF}^{9 \times 9} (1, 1, -1, -1, -1, -1, 0, 0, 0).$$

So

$$\dim H^{-11,16} = \dim \ker(d) = 9 - 6 = 3,$$

 $\dim H^{-11,17} = \dim \operatorname{coker}(d) = 9 - 6 = 3.$

 gr^{12} :

$$d_1 \overset{\mathsf{SNF}}{\sim} \mathrm{SNF}^{9 \times 1}(1),$$

 $d_2 \overset{\mathsf{SNF}}{\sim} \mathrm{SNF}^{2 \times 9}(1, -1).$

So

$$\dim H^{-12,17} = \dim \ker(d_1) = 1 - 1 = 0,$$

$$\dim H^{-12,18} = \dim \frac{\ker(d_2)}{\operatorname{im}(d_1)} = (9 - 2) - 1 = 6,$$

$$\dim H^{-12,19} = \dim \operatorname{coker}(d_2) = 2 - 2 = 0.$$

 gr^{13} :

$$d \stackrel{\mathsf{SNF}}{\sim} \mathrm{SNF}^{3 \times 3}(-1, 1, -1).$$

So

$$\dim H^{-13,19} = \dim \ker(d) = 3 - 3 = 0,$$

$$\dim H^{-13,20} = \dim \operatorname{coker}(d) = 3 - 3 = 0.$$

$$\operatorname{gr}^{14}:$$

$$0 \longrightarrow \mathfrak{g}^{1} \wedge \mathfrak{g}^{1} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{2} \wedge \mathfrak{g}^{3} \wedge \mathfrak{g}^{3} \longrightarrow 0$$

$$0 \longleftarrow \operatorname{Hom}_{k}^{-14} (\bigwedge^{7} \mathfrak{g}, k) \longleftarrow 0$$

So $\dim H^{-14,21}=3$ by Table 2.1. gr^{15} :

$$0 \longrightarrow \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^3 \wedge \mathfrak{g}^3 \longrightarrow 0$$

$$0 \longleftarrow \operatorname{Hom}_{k}^{-15}(\bigwedge^{8}\mathfrak{g},k) \longleftarrow 0$$

So $H^8=H^{-15,23}$ with dim $H^{-15,23}=1$ by Table 2.1. Altogether:

$$\begin{split} H^0 &= H^{0,0}, \\ H^1 &= H^{-1,2}, \\ H^2 &= H^{-3,5} \oplus H^{-4,6}, \\ H^3 &= H^{-4,7} \oplus H^{-5,8} \oplus H^{-6,9}, \\ H^4 &= H^{-7,11} \oplus H^{-8,12}, \\ H^5 &= H^{-9,14} \oplus H^{-10,15} \oplus H^{-11,16}, \\ H^6 &= H^{-11,17} \oplus H^{-12,18}, \\ H^7 &= H^{-14,21}, \\ H^8 &= H^{-15,23} \end{split}$$

and we have the following table: Thus

t^{s}	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-13	-14	-15
0	1															
1																
2		3														
3																
4																
5				6												
6					3											
7					3											
8						6										
9							7									
10																
11								9								
12									9							
13																
14										7						
15											6					
16												3				
17												3				
18													6			
19																
20																
21															3	
22																
23																1

Table 2.2: Dimensions of $H^{s,t} = \operatorname{gr}^s H^{s+t}(\mathfrak{g}, k)$.

tab:graded-coh-dims-Sl

$$\dim H^{i} = \begin{cases} 1 & i = 0, \\ 3 & i = 1, \\ 9 & i = 2, \\ 16 & i = 3, \\ 18 & i = 4, \\ 16 & i = 5, \\ 9 & i = 6, \\ 3 & i = 7, \\ 1 & i = 8. \end{cases}$$

Chapter 3

List-Decodable Mean Estimation and Clustering

cha:robstat

3.1 Introduction

sec:robstat-intro

Bibliography

- PT [PT] P. Polo and J. Tilouine. "Bernstein-Gelfand-Gelfand complexes and cohomology of nilpotent groups over \mathbb{Z}_p for representations with p-small weights". In: ().
- Sch Sch Peter Schneider. p-Adic Lie Groups. Springer, 2011.
- GalCoh [Ser] Jean-Pierre Serre. Galois Cohomology. Trans. by Patrick Ion. Springer, 2002.
 - Sor [Sør] Claus Sørensen. "Hochschild Cohomology and p-Adic Lie Groups". In: ().

Index

algebraic group, 1