2016-09-21

Neural Communication

Biological Psychology

- Discipline of psychology concerned with physical ways neurons cooperate to compose mental processes
- Names:
 - Behavioral Neuroscientists
 - Neuropsychologists
 - Behavior Geneticists
 - Physiological Psychologists
 - Biopsychologists

Phrenology

- The study of the shape of skull and the making of inferences based off of that shape
 - Bumps on head indicate abilities or traits
- Developed by Franz Gall

The Neuron

- Anatomy
 - Soma = body of the cell
 - * Receives action potentials from dendrites
 - Dendrites = branching bodies that connect to other dendrites or axon terminals
 - * Receive action potentials via neurotransmitters
 - Axon = long, thin barrel with myelin sheath that uses electrotonic potential to relay signals from soma to axon terminals
 - * Covered with myelin sheath to split transmission into brief, fast electrotonic potentials and connecting action potentials to keep voltage high
 - Myelin sheath = waxy layer composed of **Schwann Cells**
 - * Serves to insulate stretches of the axon so that electrotonic potential can happen, speeding up transmission

- Nodes of Ranvier = gaps inbetween the myelin sheathing that allows an action potential to happen, keeping the voltage within the cell high enough to ensure the signal isn't lost
- Synapse
 - * The area where two neurons come near to each other
 - * Cite of neurotransmitter release and intake

Action Potential

- Begin at resting potential(-70mV inside neuron)
- Stimulus opens Na+ channels and tons of sodium ions flow in
 - Polarization
- After a threshold is reached, K+ gates open, letting K+ out. Voltage drops as a result
 - Depolorization
- After a while, Sodium-Potassium pumps begin to create the gradient
 - Repolarization

Drugs that Target Neurotransmitters

- Action potential at dendrite is stimulated by neurotransmitter, typically
- Drugs can fit in those receptors
- Antagonist
 - The drug fits, but poorly; as a result, the *real* neurotransmitter can't fit
 - **Inhibits** the targetted neurotransmitter
- Agonist
 - The drug fits really well and simulates the neurotransmitter
 - Excites the neurotransmitter or increases activity

2016-09-22

Neurotransmitters

- Dopamine
 - Used in movement, attention, and learning

- Schizophrenia thought to be related to dopamine imbalance
 - * Thought to be a surplus of dopamine
- Parkinson's disease thought to be related to loss of dopamine-releasing neurons
 - * Symptoms:
 - · Movements are difficult to control
 - · Shaking while at rest
 - · Stooping posture or rigidity
 - · Unbalance
 - * Treatments
 - · L-dopa = agonist that immitates dopamine
 - · Fetal tissue transplants
 - · Adrenal gland transplants
 - · Electrical stimulation of thalamus = stops shaking
- Part of "reward system" or limbic system
- Serotonin
 - Regulates sleeping patterns
 - Thought to be related to depression
 - * Especially low-serotonin
 - * High-serotonin is thought to cause mania
 - * Prozac excites serotonin
 - · SSRI = Selective Serotonin Reuptake Inhibitor
 - · Examples: Welbutrin, Zoloft, Celexa
- Acetylcholine
 - First neurotransmitter we discovered
 - Abbreviated "ACh"
 - Used in motor neurons-stimulates muscles to contract
 - Used in learning, memory, and muscle contraction
 - Nicotine is an agonist for Norepinephrine and ACh
 - Thought to be related to Alzheiumer's Disease
 - * Decay of memory, reasoning, and lanugage
- Endorphins
 - Regulates pain/pleasure
 - Pain is a stimulus for release
 - Agonists
 - * Morphine
 - * Codeine
 - Explains "runners high"
- Norepinephrine

- Excitatory neurotransmitter that causes "fight or flight" response
- Also related to depression
- Used in physical arousal, learning, and memory

• GABA

- Inhibitory
- Thought to be related to Huntington's disease = death of neurons in $\it stratium$ that make use of GABA
 - * Jerky movements
 - * Cognitive deterioration
- Glutamate
 - Very prevelant
 - Excitatory neurotransmitter
 - Excess glutamate and lack of GABA is associated with epilepsy

Neurons can be Excitatory or Inhibitory

- Excitatory = stimulates post-synaptic neuron to carry an action potential
- Inhibitory = Causes post-synaptic neuron to be less likely to start an action potential
 - GABA

2016-09-27

Summary

- Stages
 - Relieved Dolby Rescued Harry = mneumonic for remembering stages of action potential
 - * \mathbf{R} elieved = \mathbf{R} esting
 - * \mathbf{D} olby = \mathbf{D} epolorization
 - * $\mathbf{Rescued} = \mathbf{Repolorization}$
 - * Harry = H
- Ions
 - SIPO = mneumonic for remembering ions
 - * Sodium In, Potassium Out
- Agonists vs Antagonists

- Agonists = mimic effect of neurotransmitter
 - * Nicotine, Morphine
- Antagonists = block or inhibit effect of neurotransmitter

The Nervous System

- Nerves = small strands of neurons that act as highways for action potentials
 - Serve to connect brain to peripheral sensory organs
- Nervous System = the organ system the body employs to communicate between organs
 - Composition
 - * Nerve Cells
 - * Peripheral Nervous System(PNS) = nerve framework that connects brain to peripheral sense organs
 - * Central Nervous System(CNS) = the brain and spinal chord

Model of Nervous System

- Peripheral Nervous System
 - Autonomic Nervous System
 - * Controls unconscious actions of organs
 - * Sympathetic Nervous System = arousal
 - * Parasympathetic Nervous System = calming effect
 - · Think of a parachute-slows you down
 - Skeletal/Somatic Nervous System
 - * Controls voluntary movement of skeletal muscle
- Central Nervous System
 - Brain
 - Spinal Chord

Types of Neurons

- Sensory Neurons
 - Serve as medium through which sensory information travels to brain
 - Sense Organs -> Brain
 - * Uses affarent neurons
 - Brain -> Sense Organs
 - * Uses efferent neurons

- Mneumonic = SAME
 - * Sensory Affarent Motor Efferent
- Interneurons = linking neurons that connect other systems together
 - Only found in brain and spinal chord

Reflexes

- Reflex = a simple action undertaken via the reflex arc
- Reflex Arc = a pathway of nerves through which a reflex happens
 - Generally goes from sensory organ -> affarent neurons -> interneurons
 spinal chord -> interneurons -> efferent neurons -> motor neurons

Neural Networks

- Neural Networks = a web of inter-connected neurons that cooperate to process information
- Through experience and feedback, neural networks are modified

2016-09-29

Lesions

- Lesions = destruction of tissue cause either naturally or by purpose
- Walter Freeman = got Nobel Prize for procedure wherein he quickly caused damage to a part of the brain to cure depression or anxiety

Brain Scan

- Electroencephalogram(EEG)
 - Places 8 electrodes around the brain and records electric brain activity
- Computed Tomography Scan(CAT Scan)
 - X-ray photoraphs taken from different angles
 - A computer generates a composite image
- Positron Emission Tomography Scan(PET Scan)
 - A radioactive form of glucose is ingested and sensors detect where glucose goes

- Magnetic Resonance Imaging Scan(MRI Scan)
 - Large electromagnets and radio waves make water in the brain orient itself in line with the magnetic field
 - Can generate very high-detail images

2016-10-03

Brainstem

- Oldest part of the brain
- Where spinal chord meets brain
- Controls involuntary physical processes
- Medulla
 - Controls
 - * Breathing
 - * Heart rate
 - * Digestion
 - * Swallowing
 - * Coughing
 - * Vomiting
 - * Sneezing
- Pons
 - Controls coordinated motion
- Reticular Formation
 - Also called Reticular Activating System(RAS)
 - Controls
 - * Sleep
 - * Arousal
 - * Attention

Midbrain

- Cerebellum
 - Divided among the two hemispheres
 - Controls voluntary motions on a per-hemisphere basis
 - Lesions can result in
 - * Jerky movements

* Loss of balance

• Thalmus

- Acts like a router for sense data
 - * Except for smell

• Hypothalmus

- Small control center
- Controls
 - * Sexual drive
 - * Hunger
 - * Thirst
 - * Sleep
 - * Regulating electrolyte concentration
 - * Regulating body temperature
 - * Circadian rythym
 - * Hormone secretion

• Amygdala

- Has a role in emotional processing
 - * Especially recognizing facial expressions
- Lesions can result in difficulty socializing

• Hippocampus

- Primarily involved in forming new memories
 - * Anterograde amnesia = inability to form new memories
- Lesions associated with Alzheimer's Disease

Outer Brain

• Cerebral Cortex

- Thin layer of tissue that covers each hemisphere
- Processes information
- Glial Cells = specialized neurons that provde support, nourishment, and protectiond for surrounding neurons
- Composed of 4 **lobes**

* Frontal Lobes

- · Contains motor cortex at rear
- · Speaking
- · Muscle movement
- · Planning/Judging

* Parietal Lobes

- · Contains sensory cortex at front
- · Processes information from Somatic Nervous System
- * Occipital Lobes
 - · Processes visual sense data
 - · Remember: Occular
- * Temporal Lobe
 - · Contains auditory cortex
 - · Processes auditory sense data
- Association Areas = areas of the cerebral cortex not involved in motor or sensory functions

2016-10-04

The Cerebral Cortex Cont

- Aphasia = difficulty with language
 - Associated with damage to Broca's area or Wernicke's area
 - Broca's Area
 - Brain area on left frontal lobe-controls muscles associated with speech
 - Wernicke's Area
 - Brain area in left temporal lobe-processes and understands language
 - Mneumonic: You broca, you no seaka
- Neuroplasticity
 - the ability for neural networks to reform
 - Stronger the younger you are
- Corpus Callosum
 - a collection of many, many neural fibers
 - Serves to connect two brain hemispheres
 - Conveys messages between areas of both hemispheres
- Split Brain Procedure
 - Corpus Callosum is severed, seperating each hemisphere from one another