Calcback

Nikolai Weidt

November 13, 2018

Contents

1	What	is this?	2
2	2.1 T	Todos: ODO Write a loop for all wavelengths after it works for one. ODO Then take even more wavelengths (rows)	3 3
3	Imports:		3
4	Defining some variables:		3
5	Read .csv-file:		3
6	Calculate ρ 6.1 Create a matrix containing every possible refractive index $(n+ik)$:		3 4
7	7.1 Pl 7.2 Pl 7.3 Pl 7.4 Pl	ome things for checking results: lot $\Delta \& \Psi$:	5 6 7
	7.5 Pl 7.6 Pl	ined minimum:	8 9 10 11

8	Testing:			
	8.1	$\mathrm{snell}()$:	12	
	8.2	$fresnel(): \dots \dots$	12	
	8.3	$\operatorname{calc_{rho}}(): \ldots \ldots \ldots \ldots \ldots$	12	

1 What is this?

This is a script to get the complex refractive index n=n*ik from the ellipsometric parameters Δ and Ψ I got from a simulation. The result for 300nm SiO₂ should look like this:

Figure 1: Refractive index should look like this

2 List of Todos:

- 2.1 TODO Write a loop for all wavelengths after it works for one.
- 2.2 TODO Then take even more wavelengths (rows)
- 3 Imports:

4 Defining some variables:

Defining some variables for later use:

5 Read .csv-file:

Read the values into a two dimensional numpy array as [[lambda,Psi,Delta, n_S , k_S],...] (Skip columns 3 and 4)

:DEBUG: The array looks like this:

6 Calculate ρ

6.1 Create a matrix containing every possible refractive index (n+ik):

Change the last number in the "linspaces" to adjust the resolution. This gives the following matrix: [1. 1.004 1.008 ... 4.992 4.996 5.]

6.2 Calculate ρ :

6.2.1 First we define some functions:

1. Snell's Law to calculate the refractive angles: Phi is the incident angle for the layer, n1 and n2 are refractive indices of first and second medium. Returns the angle of refraction.

Figure 2: Snell's Law

- 2. Calculate $\rm r_p$ and $\rm r_s$ with Fresnel equations:
- 3. Calculate ρ for the layer with eq. 5.2 in Spectroscopic Ellipsometry fujiwara2009spectroscopic:

6.2.2 Then we call these functions one after another to calculate ρ :

Get refractive index of the substrate (n_S) and lambda from the csv:

6.2.3 Identify the best fitting rho with $\rho = \tan(\psi) * e^{i\Delta}$:

7 Plot some things for checking results:

If we use a high resolution, those plots are not showing much, thats why they are only showing the first 10000 values.

7.1 Plot $\Delta \& \Psi$:

 Ψ from input in blue, $\Psi_{\rm L}$ in red.

7.2 Plot refractive index of substrate n_S :

Real part n in blue, imaginary part k in red

7.3 Plot real and imaginary part of the created $n_{\rm L}$ matrix: Real part is blue, imaginary is red.

7.4 Plot of the difference between $\rho_{\rm L}$ and the given ρ and determined minimum:

The difference is shown in blue, the red lines show the minimum.

7.5 Plot refractive angle phi_L and n_L :

 $n_{\rm L}$ is shown in green, real part of $phi_{\rm L}$ in blue, imaginary in red. A relation between these should be visible.

7.6 Plot $\rho_{\rm given}$ - $\rho_{\rm L}$ Red line shows the found refractive index at the minimum

7.7 Plot n

8 Testing:

```
Testing with constant n<sub>L</sub>, phi<sub>i</sub> at i=0
```

8.1 snell():

```
should be: (1.220429-0.02737074 i)
```

0.25693777375213495 - 0.0029123892267902147j

should be: (0.151671-0.175494i)

8.2 fresnel():

```
\begin{split} rs_{al}, \, rp_{al} &= fresnel(n_{air}, \, phi_i, \, n_L, \, phi_L) \\ rs_{ls}, \, rp_{ls} &= fresnel(n_L, \, phi_L, \, n_S, \, phi_S) \end{split}
```

0.0

should be: (-0.003398-0.04239i)

0.0

should be:

-0.8254138705368641 - 0.00029432103501708976j

0.13326188486753962 + 0.0001555019055111361j

8.3 $\operatorname{calc}_{\operatorname{rho}}()$:

 $rho_L = calc_{rho}(rs_{al}, \, rp_{al}, \, rs_{ls}, \, rp_{ls}, \, d_L, \, n_L, \, lambda_{vac})$ Just copied this from above with beta returned

0.805865977238737

should be: 2.1558487 + 0.18312240i

-0.16144861157373563 - 0.00013082428937188695j