- 1. Vin is 40 V, R_1 is 50 Ω , R_L is 100 Ω and the breakdown voltage of the zener diode 12V
 - (a) What is the voltage drop across the load resistance R_L?
 - (b) Calculate the current through the load resistor R_L.
 - (c) What is the voltage drop across R_1 ?
 - (d) Calculate the current through R₁.
 - (e) What is the current through the zener diode?
- 2. For the circuit shown in Fig. 2 (i), find the maximum and minimum values of zener diode current.

3. The zener diode shown in Fig. 3 has VZ = 18 V. The voltage across the load stays at 18 V as long as IZ is maintained between 200 mA and 2 A. Find the value of series resistance R so that E0 remains 18 V while input voltage Ei is free to vary between 22 V to 28V.

4. The circuit of Fig. 6 uses two zener diodes, each rated at 15 V, 200 mA. If the circuit is connected to a 45-volt unregulated supply, determine :(i) The regulated output voltage (ii) The value of series resistance R.

- a. Determine V_L , I_L , I_Z , and I_R for the network Fig. 2.181 if $R_L = 180 \Omega$.
- **b.** Repeat part (a) if $R_L = 470 \Omega$.
- c. Determine the value of R_L that will establish maximum power conditions for the Zener diode.
- **d.** Determine the minimum value of R_L to ensure that the Zener diode is in the "on" state.

5.

For the network of Fig. 2.183, determine the range of V_i that will maintain V_L at 8 V and not exceed the maximum power rating of the Zener diode.

6.

7. (a) Design the network to maintain VL at 12 V for a load variation (IL) from 0 to 200 mA. That is, determine Rs and VZ. (b) Determine $P_{Z_{max}}$ for the Zener diode of part (a).