# Which Is Deeper Comparison of Deep Learning Frameworks Atop Spark

Zhe Dong, Dr. Yu Cao EMC Corporation





#### **Outline**

- Motivation
- Theoretical Principle
- State-of-the-Art
- Evaluation Criteria
- Evaluation Results
- Summary
- Conclusion



#### Deep Learning on Spark Motivation







- Dedicated deep learning cluster
  - Massive data movement
  - High maintenance cost
- Spark+Deep Learning = Truly All-in-One

## **Theoretical Principle**

- Large Scale Distributed Deep Networks, Jeffrey Dean, 2012
  - Model parallelism
  - Data parallelism







https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf

#### Data Parallelism for distributed SGD

- Model is replicated on worker nodes
- Two repeating steps
  - Train each model replica with mini-batches
  - Synchronize model parameters across cluster
- Specific implementations can be different
  - How parameters are combined
  - Synchronization (strong or weak)
  - Parameter server (centralized or not)





#### DownpourSGD Client Pseudo code

**Algorithm 7.1:** DOWNPOURSGDCLIENT( $\alpha, n_{fetch}, n_{push}$ )

```
procedure StartAsynchronouslyFetchingParameters(parameters)
parameters \leftarrow GetParametersFromParamServer()
procedure StartAsynchronouslyPushingGradients(accruedgradients)
 SENDGRADIENTSTOPARAMSERVER(accruedgradients)
 accrued gradients \leftarrow 0
main
 global parameters, accrued gradients
 step \leftarrow 0
 accrued gradients \leftarrow 0
 while true
        if (step \bmod n_{fetch}) == 0
         then StartAsynchronouslyFetchingParameters(parameters)
        data \leftarrow GETNEXTMINIBATCH()
        gradient \leftarrow ComputeGradient(parameters, data)
        accrued gradients \leftarrow accrued gradients + gradient
        parameters \leftarrow parameters - \alpha * gradient
        if (step \bmod n_{push}) == 0
         then STARTASYNCHRONOUSLYPUSHINGGRADIENTS(accruedgradients)
        step \leftarrow step + 1
```



## DL on Spark – State-of-the-Art

- AMPLab SparkNet
- Yahoo! CaffeOnSpark
- Arimo Tensorflow On Spark deeper?
- Skymind DeepLearning4J
- DeepDist
- H2O Spark



### **Evaluation Criteria**

| Evaluation<br>Criteria              | Dimensions                             | For Example                                                |  |  |  |  |
|-------------------------------------|----------------------------------------|------------------------------------------------------------|--|--|--|--|
| Ease of Getting<br>Started          | Documentation                          | Are there detailed, well-organized, up-to-date documents?  |  |  |  |  |
|                                     | Installation                           | How automatic it is?                                       |  |  |  |  |
|                                     | Built-in Examples                      | Built-in Examples Examples available for quick warming up? |  |  |  |  |
| Ease of Use                         | Interface Programming language support |                                                            |  |  |  |  |
|                                     | Model Encapsulation                    | Model/Layer/Node                                           |  |  |  |  |
| Functionality                       | Built-in Models                        | Which NN models have been implemented?                     |  |  |  |  |
|                                     | Parallelism                            | Model parallelism or data parallelism                      |  |  |  |  |
| Performance MNIST benchmark results |                                        | MNIST benchmark results                                    |  |  |  |  |
| Status Quo                          | Community Vitality                     | Github project statistics                                  |  |  |  |  |
| Q                                   | Enterprise Support                     | Contributions from organizations?                          |  |  |  |  |

### **SparkNet**

- Started by AMPLab from 2015
- Wrapper of Caffe and Tensorflow
- Centralized parameter server
- Strong SGD synchronization
- Differentiating feature: A fixed number (τ) of iterations (minibatch) on its subset of data



|            | Evaluation Dimensions<br>Criteria                    |           |        |   | SparkN | Score  |         |  |
|------------|------------------------------------------------------|-----------|--------|---|--------|--------|---------|--|
| East<br>St | e of Cotting                                         | ***       |        |   |        |        |         |  |
| SI         | val netParams = NetParams(                           |           |        |   |        |        |         |  |
|            | RDDLayer("data", shape=List(batchsize, 1, 28, 28)),  |           |        |   |        |        |         |  |
| Εŧ         | workers.for                                          | reach( => | 1      |   | 2      | 3      | 4       |  |
| F.         | Iterations                                           | S         | 1000   |   | 2000   | 5000   | 10000 g |  |
| Fι         | Time (se                                             | conds)    | 2130   |   | 4218   | 10471  | 21003   |  |
| P€         | Accurac                                              | У         | 94.13% | 6 | 94.26% | 94.01% | 94.22%  |  |
| St         | solumaxwithLoss("loss", List("lpz", "label"))  t )   |           |        |   |        |        |         |  |
|            | Listing 2: Example network specification in SparkNet |           |        |   |        |        |         |  |
| Support    |                                                      |           |        |   |        |        |         |  |

## Deeplearning4J

- Started by Skymind from 2014
- An open-source, distributed deep-learning project in Java and Scala
- Parameter server: IterativeReduce
- Strong SGD synchronization





| Evaluation Criteria  | on                                                        | Dimensions DL4J            |                                             |               |                       |         | Score |
|----------------------|-----------------------------------------------------------|----------------------------|---------------------------------------------|---------------|-----------------------|---------|-------|
| Ease of C<br>Started | Getting                                                   | Docui<br>Instal<br>Built-i | .seed(1:<br>.iterat:<br>.weight:<br>.update |               | ☆☆☆☆<br>☆☆☆☆☆<br>☆☆☆☆ |         |       |
| Ease of U            | Jse                                                       | Mode<br>Fncal              | .optimi<br>.learni<br>.regula<br>.list()    | ****<br>***** |                       |         |       |
| Function             | Epoch                                                     | าร                         |                                             | <b>1</b> 5    | 2<br>10               | 3<br>15 | 20    |
| Performa             | Perform: Time (seconds)                                   |                            | nds)                                        | 2098          | 4205                  | 6303    | 8367  |
| Status C             | Status C Accuracy                                         |                            |                                             | 70% 79% 82.7% |                       |         | 84.6% |
| a spuin.             | .pretrain(false).backprop(true)  Enter .build();  Support |                            |                                             |               |                       |         | ***   |

SPUIN,

SPARK SUMMIT 2016

### CaffeOnSpark

- Started by Yahoo! from 2015
- Peer-to-Peer narameter server



| Evaluation<br>Criteria | Dimensions            |                           | Score                                         |                        |                 |  |  |
|------------------------|-----------------------|---------------------------|-----------------------------------------------|------------------------|-----------------|--|--|
| Ease of Gettin         | g Documentation       | Blog; README.md           | ***                                           |                        |                 |  |  |
| Otantod                | Installation          | Have to install all Ca    | Have to install all Caffe needed in each node |                        |                 |  |  |
|                        | Built-in<br>Examples  | Cifar10/MNIST             | ☆☆☆                                           |                        |                 |  |  |
| Ease of Use            | Interface             | .lava/Scala DataFra       |                                               |                        |                 |  |  |
|                        |                       | 1                         | 2                                             | 3                      | 4               |  |  |
|                        | erations              | 1000                      | 2000                                          | 5000                   | 10000           |  |  |
| Functional             | ime(seconds)          | 224                       | 445                                           | 1113                   | 2229            |  |  |
| Performan              | ccuracy               | 97%                       | 99.4%                                         | 99.7%                  | 99.6%           |  |  |
| renormance             | 1 GHOITHANGC          | IVII VIC .                |                                               |                        | क्रिक्र क्रिक्र |  |  |
| Status Quo             | Community<br>Vitality | <b>⊙</b> Watch 105 ★ Star | 626                                           | commits 4 contributors | ***             |  |  |
|                        | Enterprise<br>Support | Yahoo!                    |                                               |                        | ****            |  |  |
| SPAR                   | 14                    |                           |                                               |                        |                 |  |  |

### **Tensorflow on Spark**

- Started by Arimo from 2014
- A data-parallel Downpour SGD implementation on Spark
- Centralized parameter server
- Weak SGD synchronization





| Evaluation<br>Criteria | Dimension             | s                                                                 | Tensorflow on Spark                                                                                     |       |       |  |  |
|------------------------|-----------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------|-------|--|--|
| Ease of Gettin         | g Documen de          | efinit(self): session = tf.Interactive                            | ☆☆☆☆                                                                                                    |       |       |  |  |
| Otartou                | Installatio           | x = tf.placeholder("floa                                          | t", shape=[None, 784], nam<br>[-1,28,28,1], name='reshap                                                |       | ***   |  |  |
|                        | Built-in<br>Examples  | <pre>y_ = tf.placeholder("flo<br/>W_conv1 = weight_variable</pre> | = tf.placeholder("float", shape=[None, 10], name='y_') onv1 = weight_variable([5, 5, 1, 32], 'W_conv1') |       |       |  |  |
| Ease of Use            | Interface             | h_conv1 = tf.nn.relu(con                                          | <pre>onv1 = bias_variable([32], 'b_conv1') onv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)</pre>  |       |       |  |  |
|                        | Model                 |                                                                   | _pool1 = max_pool_2x2(h_conv1) _conv2 = weight_variable([5, 5, 32, 64], 'W_conv2')                      |       |       |  |  |
| Function               |                       | 1                                                                 | 2                                                                                                       | 3     | 4     |  |  |
| Epochs Time(seconds)   |                       | 5                                                                 | 10                                                                                                      | 15    | 20    |  |  |
|                        |                       | 223                                                               | 415                                                                                                     | 615   | 828   |  |  |
| Status Acc             | uracy                 | 93%                                                               | 94%                                                                                                     | 94.2% | 95.4% |  |  |
|                        | Vitality              |                                                                   | fc2 = weight_variable([1024, 10], 'W_fc2')                                                              |       |       |  |  |
|                        | Enterprise<br>Support | b_fc2 = bias_variable([1                                          | 0], 'b_fc2')                                                                                            |       | ***   |  |  |
|                        |                       |                                                                   |                                                                                                         |       | 16    |  |  |

#### Benchmark - MNIST



One master (16-Core,64GB) Five slaves (8-Core, 32GB)

Executor memory: 20GB

Batch size: 64

-SparkNet

-DL4J

CaffeOnSpark

Tensorflow on Spark

Time (seconds)

Spark

#### **Benchmark – MNIST**

Spark

SPARK SUMMIT 2016



Time (seconds)

One master (16-Core,64GB)

| Evaluation<br>Criteria     | Dimensions          | SparkNet   | DL4J | CaffeOnSpark  | Tensorflow on<br>Spark                                  |
|----------------------------|---------------------|------------|------|---------------|---------------------------------------------------------|
| Ease of<br>Getting Started | Documentation       | ***        | ***  | ☆☆☆☆          | ☆☆☆☆                                                    |
| John 19 Juniou             | Installation        | ***        | ***  | ***           | ***                                                     |
|                            | Built-in Examples   | ***        | ***  | ***           | ***                                                     |
| Ease of Use                | Interface           | ***        | ***  | ☆☆☆☆☆         | 2                                                       |
|                            | Model Encapsulation | $^{\circ}$ | ☆☆☆☆ | ☆☆☆☆ <b>☆</b> | $\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$ |
| Functionality              | Built-in Models     | ***        | ***  | ***           | ***                                                     |
|                            | Parallelism         | <b>☆☆☆</b> | ***  | ☆☆☆           | <b>☆☆☆</b>                                              |
| Performance                | Performance         | ***        | ***  | ***           | ***                                                     |
| Status Quo                 | Community Vitality  | ***        | ***  | ☆☆☆☆          | ***                                                     |
|                            | Enterprise Support  | 2          | ***  | 2             | 22                                                      |

SPARK SUMMIT 2016

#### Conclusion

- Common issues
  - Lack of model parallelism
  - Potential network congestion
  - Early-stage development
- Future evaluation work
  - GPU integration
  - SGD synchronization
  - Scalability



## THANK YOU.

Zhe.Dong@emc.com

