CS6410 Software Verification #3. Tseitin Transform, Modeling systems, BDD

Ashish Mishra

Converting to CNF

Every formula can be converted to CNF:

In exponential time and space with the same set of variables.

- In linear time and space if new variables are added.
 - In this case the original and converted formulas are "equisatisfiable".
 - This technique is called <u>Tseitin's encoding</u>.

source: decision-procedures.org

Converting to CNF: the exponential way

```
CNF(\phi) {
case
    \phi is a literal: return \phi
    \phi is \psi_1 \wedge \psi_2: return CNF(\psi_1) \wedge CNF(\psi_2)
    \phi is \psi_1 \vee \psi_2: return Dist(CNF(\psi_1),CNF(\psi_2))
Dist(\psi_1,\psi_2) {
case
    \psi_1 is \phi_{11} \wedge \phi_{12}: return Dist(\phi_{11}, \psi_2) \wedge \text{Dist}(\psi_{12}, \psi_2)
    \psi_2 is \phi_{21} \wedge \phi_{22}: return Dist(\psi_1, \phi_{21}) \wedge \text{Dist}(\psi_1, \phi_{22})
    else: return \psi_1 \vee \psi_2
```

Converting to CNF: the exponential way

Consider the formula

$$\phi = (\mathbf{x}_1 \wedge \mathbf{y}_1) \vee (\mathbf{x}_2 \wedge \mathbf{y}_2)$$

- $\begin{array}{c} \bullet \quad \mathbf{CNF}(\phi) = \\ (\mathbf{x}_1 \lor \mathbf{x}_2) \land \\ (\mathbf{x}_1 \lor \mathbf{y}_2) \land \\ (\mathbf{y}_1 \lor \mathbf{x}_2) \land \\ (\mathbf{y}_1 \lor \mathbf{y}_2) \end{array}$
- Now consider: $\phi_n = (x_1 \land y_1) \lor (x_2 \land y_2) \lor \cdots \lor (x_n \land y_n)$
- Q: How many clauses CNF(φ) returns ?
- A: 2ⁿ

Converting to CNF: Tseitin's encoding

- Consider the formula $\phi = (A \rightarrow (B \land C))$
- The parse tree:

- Associate a new auxiliary variable with each gate.
- Add constraints that define these new variables.
- Finally, enforce the root node.

Converting to CNF: Tseitin's encoding

Need to satisfy:

$$(\mathbf{a}_1 \leftrightarrow (\mathbf{A} \to \mathbf{a}_2)) \land$$

 $(\mathbf{a}_2 \leftrightarrow (\mathbf{B} \land \mathbf{C})) \land$
 (\mathbf{a}_1)

 Each such constraint has a CNF representation with 3 or 4 clauses.

source: decision-procedures.org

Converting to CNF: Tseitin's encoding

Need to satisfy:

$$(a_1 \leftrightarrow (A \rightarrow a_2)) \land$$

 $(a_2 \leftrightarrow (B \land C)) \land$
 (a_1)

- First: $(a_1 \lor A) \land (a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg A \lor a_2)$
- Second: $(\neg a_2 \lor B) \land (\neg a_2 \lor C) \land (a_2 \lor \neg B \lor \neg C)$

source: <u>decision-procedures.org</u>

1

Converting to CNF: Tseitin's encoding

Let's go back to

$$\phi_n = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \cdots \vee (x_n \wedge y_n)$$

- With Tseitin's encoding we need:
 - 2n auxiliary variables a₁,...,a_{2n}.
 - Each adds 3 constraints.
 - Top clause: $(a_1 \lor \cdots \lor a_n)$

- Hence, we have
 - 6n + 1 clauses, instead of 2ⁿ.
 - 4n variables rather than 2n.

Before how to solve these formulas

- Q: Suppose we can solve the satisfiability problem... how can this help us?
- A: There are numerous problems in the industry that are solved via the satisfiability problem of propositional logic
 - Logistics...
 - Planning...
 - Electronic Design Automation industry...
 - Cryptography...
 - ... (every NP-P problem...)

source: <u>decision-procedures.org</u>

Modeling with PL

Example: placement of wedding guests

- Three chairs in a row: 1,2,3
- We need to place Aunt, Sister and Father
- Constraints:
 - Aunt doesn't want to sit near Father
 - Aunt doesn't want to sit in the left chair
 - Sister doesn't want to sit to the right of Father
- Q: Can we satisfy these constraints?

Example

- Denote: Aunt = 1, Sister = 2, Father = 3
- Introduce a propositional variable for each pair (person, place).
- x_{ij} = person i is sited at place j, for 1 <= i, j <= 3
- Constraints:
 - Aunt doesn't want to sit near father:

$$(x_{11} \to \neg x_{32}) \land (x_{12} \to \neg x_{31} \land \neg x_{33}) \land (x_{13} \to \neg x_{32})$$

Aunt doesn't want to sit in the left chair

$$\neg x_{11}$$

Sister doesn't want to sit to the right (immediate) of the Father

$$(x_{31} \rightarrow \neg x_{22}) \land (x_{32} \rightarrow \neg x_{23})$$

Example

- More constraints
 - Each person is placed

$$(x_{11} \lor x_{12} \lor x_{13}) \land (x_{21} \lor x_{22} \lor x_{23}) \land (x_{31} \lor x_{32} \lor x_{33})$$

No person is placed in more than one place

$$(x_{11} \to \neg x_{12} \land \neg x_{13}) \land (x_{12} \to \neg x_{11} \land \neg x_{13}) \land (x_{13} \to \neg x_{11} \land \neg x_{12}) \land \\ (x_{21} \to \neg x_{22} \land \neg x_{23}) \land (x_{22} \to \neg x_{21} \land \neg x_{23}) \land (x_{23} \to \neg x_{21} \land \neg x_{22}) \land \\ (x_{31} \to \neg x_{32} \land \neg x_{33}) \land (x_{32} \to \neg x_{31} \land \neg x_{33}) \land (x_{33} \to \neg x_{31} \land \neg x_{32})$$

Example 3: assignment of frequencies

- n radio stations
- For each assign one of k transmission frequencies, k < n.
- E -- set of pairs of stations, that are too close to have the same frequency.
- Q: which graph problem does this remind you of?

Example 3 (cont'd)

- $X_{i,j}$ station i is assigned frequency j, for
 - $1 \le i \le n, 1 \le j \le k$
 - Every station is assigned at least one frequency:

$$\bigwedge_{i=1}^{n} \bigvee_{j=1}^{k} x_{ij}$$

• Every station is assigned not more than one frequency:

$$\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{k-1} (x_{ij} \to \bigwedge_{j < t \le k} \neg x_{it})$$

Close stations are not assigned the same frequency.

For each
$$(i,j) \in E$$
,

$$\bigwedge_{t=1}^{k} (x_{it} \to \neg x_{jt})$$

Example 2 (Lewis Carroll)

- (1) All the dated letters in this room are written on blue paper;
 - (2) None of them are in black ink, except those that are written in the third person;
 - (3) I have not filed any of them that I can read;
 - (4) None of them, that are written on one sheet, are undated;
 - (5) All of them, that are not crossed, are in black ink;
 - (6) All of them, written by Brown, begin with "Dear Sir";
 - (7) All of them, written on blue paper, are filed;
 - (8) None of them, written on more than one sheet, are crossed;
 - (9) None of them, that begins with "Dear Sir", are written in the third person.
 - Therefore, I cannot read any of Brown's letters.
- Is this statement valid?

Example 2 (cont'd)

- p = "the letter is dated"
- \mathbf{q} = "the letter is written on blue paper"
 - (1) All the dated letters in this room are written on blue paper;

$$p \rightarrow q$$

- \mathbf{r} = "the letter is written in black ink"
- s = "the letter is written in the third person"
 - (2) None of them are in black ink, except those that are written in the third person;

$$\neg s \rightarrow \neg r$$

...

Overview

- Deciding Propositional Logic
 - □ SAT tools
 - □ BDDs

7

Modern SAT Solvers

 Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or even millions of variables in a

reasonable amount of time.

A High-level Basic SAT algorithm

• Given ϕ in CNF: $(x \lor y \lor z) \land (-x \lor y) \land (-y \lor z) \land (-x \lor -y)$

More realistic DPLL

Basic Backtracking Search

- Organize the search in the form of a decision tree
 - Each node corresponds to a decision
 - Definition: Decision Level (DL) is the depth of the node in the decision tree.
 - Notation: x=v@d $x \in \{0,1\}$ is assigned to v at decision level d

Backtracking Search in Action

No backtrack in this example, regardless of the decision!

Backtracking Search in Action

Status of a clause

- A clause can be
 - □ Satisfied: at least one literal is satisfied
 - □ Unsatisfied: all literals are assigned but non are satisfied
 - □ Unit: all but one literals are assigned but none are satisfied
 - □ Unresolved: all other cases
- Example: $\mathbf{C} = (\mathbf{x}_1 \vee \mathbf{x}_2 \vee \mathbf{x}_3)$

\mathbf{x}_1	X_2	X ₃	С
1	0		Satisfied
0	0	0	Unsatisfied
0	0		Unit
	0		Unresolved

Decision heuristics - DLIS

<u>DLIS</u> (Dynamic Largest Individual Sum) – choose the assignment that increases the most the number of satisfied clauses

- For a given variable **x**:
 - \Box C_{xp} # unresolved clauses in which **x** appears positively
 - \Box C_{xn} # unresolved clauses in which **x** appears negatively
 - \Box Let **x** be the literal for which C_{xp} is maximal
 - \Box Let y be the literal for which C_{yn} is maximal
 - \Box If $C_{xp} > C_{yn}$ choose x and assign it TRUE
 - □ Otherwise choose **y** and assign it FALSE
- Requires I (#literals) queries for each decision.

Decision heuristics - JW

Jeroslow-Wang method

Compute for every clause ω and every variable I (in each phase):

•
$$J(I) := \sum_{l \in \omega, \omega \in \varphi} 2^{-|\omega|}$$

- Choose a variable l that maximizes J(l).
- This gives an exponentially higher weight to literals in shorter clauses.

Pause...

- We will see other (more advanced) decision Heuristics soon.
- These heuristics are integrated with a mechanism called Learning with Conflict-Clauses, which we will learn next.

Implication Graph

- The process of BCP is best illustrated with an implication graph.
- An implication graph represents the current partial assignment and the reason for each of the implications.
- An implication graph is a labeled directed acyclic graph G(V,E), where:
 - V represents the literals of the current partial assignment.
 - $E = \{(vi, vj) \mid vi, vj \in V,\}$ denotes the set of directed edges where each edge (vi, vj) is labeled with **Antecedent (vj).**
 - G can also contain a single conflict node labeled with κ and incoming edges $\{(v, \kappa)\}$ labeled with c for some conflicting clause c.

Example

$$c_{1} = (\neg x_{1} \lor x_{2}) ,$$

$$c_{2} = (\neg x_{1} \lor x_{3} \lor x_{5}) ,$$

$$c_{3} = (\neg x_{2} \lor x_{4}) ,$$

$$c_{4} = (\neg x_{3} \lor \neg x_{4}) ,$$

$$c_{5} = (x_{1} \lor x_{5} \lor \neg x_{2}) ,$$

$$c_{6} = (x_{2} \lor x_{3}) ,$$

$$c_{7} = (x_{2} \lor \neg x_{3}) ,$$

$$c_{8} = (x_{6} \lor \neg x_{5}) .$$

sufficient to create the conflict

In fact, This is a partial implication graph, A subgraph which illustrates the BCP at a specific decision level

Example

$$c_{1} = (\neg x_{1} \lor x_{2}) ,$$

$$c_{2} = (\neg x_{1} \lor x_{3} \lor x_{5}) ,$$

$$c_{3} = (\neg x_{2} \lor x_{4}) ,$$

$$c_{4} = (\neg x_{3} \lor \neg x_{4}) ,$$

$$c_{5} = (x_{1} \lor x_{5} \lor \neg x_{2}) ,$$

$$c_{6} = (x_{2} \lor x_{3}) ,$$

$$c_{7} = (x_{2} \lor \neg x_{3}) ,$$

$$c_{8} = (x_{6} \lor \neg x_{5}) .$$

sufficient to create the conflict

We learn the *conflict clause* $c9:(:\sim x_1 \vee x_5)$ Prunes the space

Reflects the fact that this is the solver's way to learn from its past mistakes.

31

Implication graphs and learning: option #1

Current truth assignment: $\{x_9 = 0@1, x_{10} = 0@3, x_{11} = 0@3, x_{12} = 1@2, x_{13} = 1@2\}$

Current decision assignment: $\{x_1 = 1 @ 6\}$

We learn the *conflict clause* ω_{10} : $(:x_1 \lor x_9 \lor x_{11} \lor x_{10})$

Implication graph, flipped assignment option #1

No decision here

Another conflict clause: ω_{11} : (: $\mathbf{x}_{13} \lor : \mathbf{x}_{12} \lor \mathbf{x}_{11} \lor \mathbf{x}_{10} \lor \mathbf{x}_{9}$)

where should we backtrack to now?

More realistic DPLL

Non-chronological backtracking

Which assignments caused the conflicts?

$$x_9 = 0@1$$

$$x_{10} = 0 @ 3$$

$$x_{11} = 0$$
@3

$$x_{12} = 1@2$$

 $x_{13} = 1@2$

These assignments Are sufficient for Causing a conflict.

Backtrack to DL = 3

Decision Procedures An algorithmic point of view backtracking

Back to the logistics

- Assignment 1
 - Practice: Work out exercise at the end of Chapter 1 in the CoC book. Due Tuesday.
 - Reading: M. Davis, G. Logemann, and D. Loveland.
 A machine program for theorem-proving.
 Communications of the ACM, 5(7):394–397, July
 1962
- Next Class:
 - Backtracking, Decide heuristics
- Class rescheduling.