MP* Lycée Kérichen 2020-2021

DM facultatif no5

Groupes d'isométries sur \mathbb{R}^n

Notations

Dans ce sujet, n est un entier naturel supérieur ou égal à 2 et on note :

- E l'espace vectoriel \mathbb{R}^n et $\mathcal{B} = (e_1, ..., e_n)$ sa base canonique
- $\langle .,. \rangle$ le produit scalaire **canonique** sur E : si $x=(x_1,..,x_n \text{ ey } y=(y_1,..,y_n) \text{ sont deux vecteurs de } E, \text{ on a}$ $\langle x,y\rangle={}^tXY=\sum_{i=1}^nx_iy_i$ où X et Y sont les matrices colonnes des vecteurs x et y dans la base \mathcal{B} (\mathcal{B} est donc une base orthonormale pour $\langle ., . \rangle$
- $\mathcal{L}(E)$ la IR-algèbre des endomorphismes de E
- GL(E) le groupe des automorphismes de E
- $M_{n,1}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices à n lignes et une colonne
- $\mathcal{M}_n(\mathbb{R})$ la \mathbb{R} -algèbre des matrices carrées réelles de taille n
- $GL_n(\mathbb{R})$ le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$
- pour une matrice A de $\mathcal{M}_n(\mathbb{R})$, ^tA est sa matrice transposée
- $\mathcal{O}_n(\mathbb{R})$ le groupe des matrices orthogonales, c'est-à-dire des matrices A de $\mathcal{M}_n(\mathbb{R})$ vérifiant ${}^tAA = I_n$ où I_n est la matrice unité de $\mathcal{M}_n(\mathbb{R})$
- $S_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques définies positives de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire des matrices A de $S_n(\mathbb{R})$ vérifiant : pour toute matrice $X \in M_{n,1}(\mathbb{R})$ non nulle, ${}^tXAX > 0$.

Si $x_1, x_2, ...x_n$ sont des réels, on note diag $(x_1, x_2, ..., x_n)$ la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ qui admet pour coefficients diagonaux les réels $x_1, x_2, ..., x_n$ dans cet ordre.

Si p est un réel supérieur ou égal à 1, on note $\|.\|_p$ la ${\bf norme}\ p$ sur E :

si
$$x = (x_1, ..., x_n) \in E$$
, $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$

si $x = (x_1, ..., x_n) \in E$, $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$ On note $||.||_{\infty}$ la **norme infinie** sur E: si $x = (x_1, ..., x_n) \in E$, $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

Une norme N sur E est dite euclidienne s'il existe un produit scalaire φ sur E tel que pour tout $x \in E$, $N(x) = \sqrt{\varphi(x,x)}$

Objectifs

Si N est une norme sur E, on dit qu'un endomorphisme $u \in \mathcal{L}(E)$ est une N-isométrie si pour tout $x \in E$, N(u(x)) = N(x)

On note Isom(N) l'ensemble des N-isométries.

L'objectif du problème est de déterminer le nombre d'éléments de Isom(N) dans le cas des normes euclidiennes puis des normes p.

I. Description des normes euclidiennes

1. Identité du parallélogramme

- (a) Montrer que si N est une norme euclidienne alors elle vérifie l'identité du parallélogramme, c'est-à-dire pour tous vecteurs x et y de E, on a $(N(x+y))^2 + (N(x-y))^2 = 2[(N(x))^2 + (N(y))^2]$ En déduire que la norme $\|.\|_{\infty}$ n'est pas euclidienne.
- (b) Justifier que la norme $\|.\|_2$ est euclidienne puis montrer que pour $p \neq 2$, la norme $\|.\|_p$ n'est pas euclidienne.
- 2. Soit $S \in S_n^{++}(\mathbb{R})$

Si
$$x = (x_1, ..., x_n)$$
 et $y = (y_1, ..., y_n)$ sont deux vecteurs de E , on note $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ les matrices

colonnes associées. Montrer que si l'on pose $\langle x, y \rangle_S = {}^t X S Y$, alors $\langle ., . \rangle_S$ définit un produit scalaire sur E.

3. Soit φ un produit scalaire sur E et S la matrice de coefficients $(\varphi(e_i, e_i))$. Justifier que pour tous vecteurs x et $y \text{ de } E \varphi(x,y) = {}^{t}XSY \text{ et que } S \in S_{n}^{++}(\mathbb{R}).$

On a donc montré que $\varphi = \langle ., . \rangle_S$.

Toute norme euclidienne peut donc s'écrire sous la forme : $N_S: x \mapsto \sqrt{tXSX}$ avec $S \in S_n^{++}(\mathbb{R})$ où X désigne la matrice colonne associée à x.

II. Quelques généralités et exemples

Soit N une norme sur E.

- 4) Montrer que (Isom(N), \circ) est un sous-groupe de GL(E)
- 5) Une caractérisation géométrique des N-isométries

On note $\Sigma(N) = \{x \in E, N(x) = 1\}$, la sphère unité pour N

Soit $u \in \mathcal{L}(E)$. Montrer que u est une N-isométrie si et seulement si $u(\Sigma(N)) = \Sigma(N)$.

Le groupe des N-isométries est donc l'ensemble des endomorphismes laissant stable la N-sphère unité.

6) Dans cette question uniquement n = 2 et donc $E = \mathbb{R}^2$.

On note s la symétrie orthogonale par rapport à la droite $D = \text{Vect}\{e_1 - e_2\}$ où (e_1, e_2) est la base canonique de \mathbb{R}^2 et r la rotation vectorielle d'angle $\frac{\pi}{3}$.

Les endomorphismes s et r sont-ils des $\|.\|_1$ -isométries?

7) Dans cette question uniquement n = 3 et donc $E = \mathbb{R}^3$.

Si $(x, y, z) \in \mathbb{R}^3$, on pose $q(x, y, z) = 3x^2 + 2y^2 + 3z^2 - 2xz$, ce qui définit une forme quadratique q.

- (a) On note $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, déterminer une matrice symétrique $S \in \mathcal{M}_3(\mathbb{R})$, telle que $q(x, y, z) = {}^t X S X$
- (b) Déterminer une matrice $P \in \mathcal{O}_3(\mathbb{R})$ et une matrice diagonale $D \in \mathcal{M}_3(\mathbb{R})$ telles que $S = PD^tP$.
- (c) Justifier alors que l'application $N_q:(x,y,z)\mapsto \sqrt{q(x,y,z)}$ est une norme euclidienne sur \mathbb{R}^3
- (d) Donner l'allure de $\Sigma(N_q)$, la sphère unité pour la norme N_q et en donner une équation simple dans une nouvelle base
- (e) Justifier que $\Sigma(N_q)$ est une surface de révolution, préciser un vecteur qui dirige son axe.
- (f) Déduire de la question 5, par une considération géométrique, que $\operatorname{Isom}(N_q)$ a une infinité d'éléments.

III. Étude de Isom(N) lorsque N est une norme euclidienne

Si $u \in \mathcal{L}(E)$, on note $[u]_{\mathcal{B}}$ la matrice de u dans la base \mathcal{B} . Si N est une norme, on note $ISOM(N) = \{[u]_{\mathcal{B}}, u \in Isom(N)\}$. L'ensemble ISOM(N) est par construction un groupe isomorphe à Isom(N), c'est "sa version matricielle".

- 8) Caractérisation matricielle des isométries euclidiennes
 - (a) Soit $S \in S_n^{++}(\mathbb{R})$, N_S la norme euclidienne associée et $\langle .,. \rangle_S$ le produit scalaire associé. Soit $u \in \mathcal{L}(E)$. Montrer que u est une N_S -isométrie si et seulement si pour tous vecteurs x et y de E, on a $\langle u(x), u(y) \rangle_S = \langle x, y \rangle_S$
 - (b) En déduire que u est une N_S -isométrie si et seulement si sa matrice A dans \mathcal{B} vérifie ${}^tASA = S$
- 9) Reconnaître alors $ISOM(\|.\|_2)$. Que peut-on dire du nombre d'éléments de $ISOM(\|.\|_2)$? Justifier votre réponse.
- 10) Une application des polynômes interpolateurs

 $\mathbb{R}_r[X]$ désigne le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à r.

On se donne r + 1 réels $x_0 < x_1 < ... < x_r$.

On considère l'application linéaire u de $\mathbb{R}_r[X]$ vers \mathbb{R}^{r+1} définie par $P \mapsto (P(x_0), P(x_1), ..., P(x_r))$

- (a) Déterminer le noyau de u. En déduire que pour tous réels $y_0, y_1, ..., y_r$, il existe un unique polynôme L de $\mathbb{R}_r[X]$ tel que pour tout $i \in \{0, ..., r\}$, $L(x_i) = y_i$ (un tel polynôme est appelé polynôme interpolateur).
- (b) Application : soit n un entier naturel non nul et $u_1,...,u_n$ des réels strictement positifs, on pose $U=\operatorname{diag}(u_1,...,u_n)$ et $V=\operatorname{diag}(\sqrt{u_1},...,\sqrt{u_n})$. Montrer qu'il existe un polynôme L, à coefficients réels, tel que V=L(U).
- 11) Racine carrée dans $S_n^{++}(\mathbb{R})$
 - (a) Soit $S \in S_n^{++}(\mathbb{R})$. Déterminer une matrice $A \in S_n^{++}(\mathbb{R})$ telle que $A^2 = S$. On dit que A est une racine carrée de S.
 - (b) Soit $B \in S_n^{++}(\mathbb{R})$ une autre racine carrée de S. Montrer qu'il existe un polynôme Q, à coefficients réels, tel que A = Q(B). En déduire que A et B commutent.
 - (c) Montrer que la somme de deux matrices symétriques définies positives est une matrice inversible.
 - (d) Déduire des questions précédentes que A = B (on pourra calculer (A + B)(A B)). Désormais, on note \sqrt{S} l'unique racine carrée dans $S_n^{++}(\mathbb{R})$ de S.

12) Étude du groupe d'isométrie pour une norme euclidienne

Soit N une norme euclidienne. Il existe donc une matrice $S \in S_n^{++}(\mathbb{R})$ telle que pour tout $x \in E$, $N(x) = N_S(x) = \sqrt{tXSX}$ où X est le vecteur colonne associée à x.

- (a) Montrer que si $M \in \mathcal{O}_n(\mathbb{R})$, la matrice $\left(\sqrt{S}\right)^{-1} M \sqrt{S}$ appartient à ISOM (N_S)
- (b) Montrer que l'application ψ de $\mathcal{O}_n(\mathbb{R})$ dans $\mathrm{ISOM}(N_S)$ définie par $M \mapsto \left(\sqrt{S}\right)^{-1} M \sqrt{S}$ est une bijection. Le groupe d'isométrie d'une norme euclidienne est-il fini?

IV. Étude du cardinal de Isom(p)

Dans cette partie p est un réel strictement supérieur à 1, on appelle **exposant conjugué** de p l'unique réel q tel que $\frac{1}{p} + \frac{1}{q} = 1$

Pour alléger l'écriture, une p-isométrie désigne une isométrie pour la norme $\|.\|_p$ et on note Isom(p) le groupe des p-isométries.

Si $u \in \mathcal{L}(E)$, u^* désigne l'adjoint de u pour $\langle ., . \rangle$. On rappelle que $u^* \in \mathcal{L}(E)$, est caractérisé par l'égalité suivante : pour tout $(x,y) \in E^2$, $\langle u(x),y \rangle = \langle x,u^*(y) \rangle$.

13) Endomorphismes de permutation signée

 \mathcal{P}_n désigne le groupe des permutations de l'ensemble 1,2,...,n.

Soit $\sigma \in \mathcal{P}_n$ et $\varepsilon = (\varepsilon_1, ..., \varepsilon_n) \in \{-1, +1\}^n$. On note $u_{\sigma, \varepsilon}$ l'endomorphisme de E qui vérifie pour tout $i \in \{1, 2, ..., n\}$, $u_{\sigma, \varepsilon}(e_i) = \varepsilon_i e_{\sigma(i)}$.

- (a) Montrer que $u_{\sigma,\varepsilon}$ est une p-isométrie.
- (b) Écrire la matrice de $u_{\sigma,\varepsilon}$ dans la base canonique dans le cas où n=4, $\sigma=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ et $\varepsilon=(1,1,-1,1)$

14) Inégalité de Holdër

- (a) Montrer que pour tous réels a et b positifs ou nuls, on a $ab \leqslant \frac{1}{p}a^p + \frac{1}{q}b^q$. On pourra utiliser la fonction logarithme népérien.
- (b) En déduire que pour tous vecteurs x et y de E, on a $|\langle x,y\rangle| \leq ||x||_p ||y||_q$. Ce résultat s'appelle **l'inégalité** de **Holdër** (on pourra d'abord démontrer l'inégalité lorsque $||x||_p = ||y||_q = 1$).
- (c) Que devient l'inégalité si p = 2?

Dans toute la suite, u désigne une p-isométrie. On note (a_{ij}) les coefficients de la matrice $A = [u]_B$.

15) Montrer que pour tout $j \in \{1, 2, ..., n\}$, $\sum_{i=1}^{n} |a_{ij}|^p = 1$. En déduire la valeur de $\sum_{j=1}^{n} \sum_{i=1}^{n} |a_{ij}|^p$

16) Une formule clé de dualité

Soit $x \in E$. On note $\Sigma_q = \{z \in E, ||z||_q = 1\}$.

(a) Justifier l'existence du réel $\max_{y\in \Sigma_q} |\langle x,y\rangle|.$

- (b) Justifier que $\max_{y \in \Sigma_q} |\langle x, y \rangle| \leqslant ||x||_p$.
 - Soit $i \in \{1, 2, ..., n\}$; si $x_i \neq 0$, on pose $y_i = \varepsilon_i |x_i|^{p-1} ||x||_p^{1-p}$ où ε_i désigne le signe de x_i et si $x_i = 0$, on pose $y_i = 0$. On définit ainsi un vecteur $y = (y_1, ..., y_n)$. Montrer que $|\langle x, y \rangle| = ||x||_p$ puis montrer l'égalité suivante : $||x||_p = \max_{y \in \Sigma_q} |\langle x, y \rangle|$.
- 17) En déduire que si u est une p-isométrie, u^* est une q-isométrie. Donner alors, en justifiant, la valeur de $\sum_{j=1}^n \sum_{i=1}^n |a_{ji}|^q$
- 18) On suppose de plus que $p \neq 2$
 - (a) Soient $\alpha_1, \alpha_2, ..., \alpha_r$ des réels dans [0,1] vérifiant $\sum_{k=1}^r \alpha_k^{\ p} = \sum_{k=1}^r \alpha_k^{\ q}$. Montrer avec soin que pour tout $k \in \{1,2,...,r\}$, α_k ne prend qu'un nombre fini de valeurs à déterminer.
 - (b) En déduire que pour tout i et j dans $\{1, 2, ..., n\}$, $|a_{ij}|$ ne peut prendre que 2 valeurs différentes que l'on précisera (on rappelle que les a_{ij} sont les coefficients de la matrice d'une p-isométrie).

19) Conclusion

Montrer alors que lorsque $p \neq 2$, Isom(p) est un groupe fini dont on déterminera le cardinal. On remarquera en particulier que ce cardinal est indépendant de p.

Commentaire : Les p-isométries pour $p \neq 2$ sont seulement en nombre fini, contrairement aux isométries euclidiennes qui forment un groupe infini mais compact (pas très difficile à montrer). Sur \mathbb{R}^n , la géométrie euclidienne est donc plus riche que celle des normes p pour $p \neq 2$.