3 Qubits supraconducteurs

3.1 Jonction Josephson

On a constaté que de piloter un circuit LC à sa fréquence de résonance génère un état cohérent (ce qui ne ressemble pas du tout à un système à deux niveau). Pour avoir un système à deux niveau on ajoute un élément non linéaire à notre circuit: la jonction josephson

3.1.1 Hamiltonien et relation de commutation

Figure 1: constitution de jj

$$n_1 + n_2 = cte$$

 $n = n_1 - n_2$ peut changer par effet tunnel!

Description quantique

Base de charge:

$$\hat{n} |n\rangle = n |n\rangle \quad n \in]-\infty, \infty[$$

Dans cette base, l'hamiltonien qui décrit l'effet tunnels de paires de cooper est

$$H_{J} = -\frac{E_{J}}{2} \sum_{n=-\infty}^{\infty} (|n\rangle \langle n+1| + |n+1\rangle \langle n|)$$

 $E_J = \frac{h\Delta}{8e^2R_n}$ est l'énergie de Josephson

avec Δ l'énergie de gap et R_n la résitance de l'état normal

3.1.2 Base de phase

$$|\psi\rangle = \sum_{n=-\infty}^{\infty} e^{in\varphi} |n\rangle$$

avec $\varphi \in [0, 2\pi[$

De la même façon

$$|n\rangle = \frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\varphi e^{-in\varphi} |\psi\rangle$$

Dans cette base le Hamiltonien s'écrit

$$H_{J} = -\frac{E_{J}}{2} \sum_{n=-\infty}^{\infty} \left(\frac{1}{(2\pi)^{2}} \iint_{0}^{2\pi} d\varphi d\varphi' e^{-in\varphi} e^{i(n+1)\varphi'} |\varphi\rangle \langle \varphi'| + \text{H.C.} \right)$$
$$= -\frac{E_{J}}{2} \frac{1}{2\pi} \int_{0}^{\infty} d\varphi \left(e^{i\varphi} + e^{-i\varphi} \right) |\varphi\rangle \langle \varphi|$$

On introduit

$$e^{i\hat{\varphi}} = \frac{1}{2\pi} \int d\varphi e^{i\varphi} |\varphi\rangle \langle \varphi|$$

qui agit sur $|n\rangle$ comme

$$e^{\pm i\hat{\varphi}} |n\rangle = |n \mp 1\rangle$$

$$H_g = E_J \frac{e^{i\hat{\varphi}} + e^{-i\varphi}}{2} = -E_J \cos \varphi$$

la variable $\varphi=\varphi_1-\varphi_2$ s'interprète comme la différence de phase entre les deux côté de la jonction

Relation de commutation et relation constiutive 3.1.3

$$[e^{\pm i\hat{\varphi}}, \hat{n}] = e^{\pm i\hat{\varphi}}$$

C'est plus clair quand $\hat{\varphi}$ est dans une fonction periodique

En utilisant la représentation de Heisenberg on peut trouver comment les opérateurs évoluent

$$\frac{d\hat{\varphi}}{dt} = \frac{2e}{\hbar}\hat{V} \tag{1}$$

$$\hat{I} = I_c \sin \hat{\varphi} \tag{2}$$

$$\hat{I} = I_c \sin \hat{\varphi} \tag{2}$$

$$I_c = \frac{2eE_J}{\hbar}$$
: le courant critique

Le sinus est la non linéarité qu'on cherchait!

Transmons 4

Figure 2: remplacement par une inductance non-lineaire

On remplace l'inductance par une jonction josephson qui agit dans un certain régime comme un inducteur linéaire

$$H = 4E_c \left(\hat{n} - n_g\right)^2 - E_J \hat{\varphi}$$

Figure 3: Energie en fonction du flux

H est controlé par un seul paramètre soit le ratio $\frac{E_J}{E_C}$. Quel ration donne le meilleur qubit? On veut une bonne anharmonicité et un bon temps de cohérence L'anharmonicité est $< alpha = E_{12} - E_{01}$

anharmonicité relative:

$$\alpha_r = \frac{\alpha}{E_{01}}$$

Temps de cohérence T_2 :