```
library(readxl)

file_path <- "C:/Users/KHOOBTEK/Desktop/Final_Data_Translated.xlsx"

data <- read_excel(file_path)

head(data)</pre>
```

Year	Overall Index	Interest Rate	Inflation Rate	Exchange Rate	Oil Price
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1379	2978.30	14.79	0.140	819	18
1380	3758.80	13.80	0.130	800	20
1381	5062.80	13.00	0.158	801	30
1382	11379.37	13.00	0.156	832	30
1383	12113.01	13.00	0.152	874	36
1384	9459.36	13.00	0.104	904	53

6 rows

```
summary(data)
    Year Overall Index Interest Rate Inflation Rate Exchange R
      Oil Price
ate
      :1379 Min. : 2978 Min. :13.00 Min. :0.0900
Min.
                                                        Min. :
800.0 Min. : 18.00
1st Qu.:1385    1st Qu.: 10017    1st Qu.:14.95    1st Qu.:0.1227
                                                         1st Qu.:
917.5 1st Qu.: 34.75
Median: 1390 Median: 31973 Median: 16.00 Median: 0.1570
                                                         Median: 1
905.5 Median: 54.50
Mean :1390 Mean : 337073 Mean :17.36 Mean :0.2217
                                                        Mean : 7
001.6 Mean : 60.25
3rd Qu.:1396 3rd Qu.: 116882 3rd Qu.:20.00 3rd Qu.:0.3155 3rd Qu.: 4
950.0 3rd Qu.: 83.75
```

```
:1402 Max. :2195092 Max. :25.00 Max. :0.5230 Max. :50
Max.
900.0 Max. :108.00
          Year
Min. :1379 Min. : 2978 Min. :13.00 Min. :0.0900 Min. : 800.0 Min. : 18.00
 1st Qu.:1385    1st Qu.: 10017    1st Qu.:14.95    1st Qu.:0.1227    1st Qu.: 917.5    1st Qu.: 34.75
Median: 1390 Median: 31973 Median: 16.00 Median: 0.1570 Median: 1905.5 Median: 54.50
Mean :1390 Mean : 337073 Mean :17.36 Mean :0.2217 Mean : 7001.6 Mean : 60.25
3rd Qu.:1396 3rd Qu.: 116882 3rd Qu.:20.00 3rd Qu.:0.3155 3rd Qu.: 4950.0 3rd Qu.: 83.75
Max. :1402 Max. :2195092 Max. :25.00 Max. :0.5230 Max. :50900.0 Max. :108.00
if (!requireNamespace("nortest", quietly = TRUE)) {
 install.packages("nortest")
library(nortest)
for (var in c("Overall Index", "Interest Rate", "Inflation Rate", "Exchange R
ate", "Oil Price")) {
 cat("\n======\n")
 cat("Variable:", var, "\n")
 cat("======\n\n")
 ad result <- ad.test(data[[var]])</pre>
 print(ad result)
}
______
Variable: Overall Index
______
   Anderson-Darling normality test
data: data[[var]]
```

```
A = 4.8328, p-value = 2.293e-12
_____
Variable: Interest Rate
_____
  Anderson-Darling normality test
data: data[[var]]
A = 0.89836, p-value = 0.01833
_____
Variable: Inflation Rate
_____
  Anderson-Darling normality test
data: data[[var]]
A = 1.2371, p-value = 0.002512
Variable: Exchange Rate
_____
  Anderson-Darling normality test
data: data[[var]]
A = 3.8774, p-value = 5.5e-10
```

```
D = 0.39358, p-value = 0.0007315
alternative hypothesis: two-sided
______
Variable: Interest Rate
_____
Warning: ties should not be present for the one-sample Kolmogorov-Smirnov tes
   Asymptotic one-sample Kolmogorov-Smirnov test
data: data[[var]]
D = 0.18137, p-value = 0.4088
alternative hypothesis: two-sided
Variable: Inflation Rate
_____
Warning: ties should not be present for the one-sample Kolmogorov-Smirnov tes
   Asymptotic one-sample Kolmogorov-Smirnov test
data: data[[var]]
D = 0.23483, p-value = 0.1417
alternative hypothesis: two-sided
_____
Variable: Exchange Rate
```

```
for (var in c("Overall Index", "Interest Rate", "Inflation Rate", "Exchange R
ate", "Oil Price")) {
  cat("\n==========\n")
  cat("Variable:", var, "\n")
  cat("==========\n\n")

  shapiro_result <- shapiro.test(data[[var]])
  print(shapiro_result)
}</pre>
```

برای دسته بندی های متفاوت 3 تا کد داریم . فقط سومی رو اجرا کردیم ولی برات گذاشتم بقیه هم باشه

```
data$Year_Group <- cut(
   data$Year,
   breaks = c(1379, 1383, 1387, 1391, 1395, 1399, 1403),
   labels = c("1379-1382", "1383-1386", "1387-1390", "1391-1394", "1395-1398",
   "1399-1402"),
   include.lowest = TRUE,
   right = FALSE
)</pre>
```

```
data$Year_Group <- cut(
    data$Year,
    breaks = c(1379, 1385, 1391, 1397, 1403), # لـن 6 مرزهاى بـازه ها بـراه ها بـراه ها كـراه ما بـراه ما كـراه كـرا
```

```
1379-1381 1382-1384 1385-1387 1388-1390 1391-1393 1394-1396 1397-1399 1400-14 02

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
```

```
Hide
numeric vars <- c("Overall Index", "Interest Rate", "Inflation Rate", "Exchan
ge Rate", "Oil Price")
for (var in numeric vars) {
 cat("\n======\n")
 cat("Variable:", var, "\n")
 cat("======\n\n")
 cat(">>> Bartlett Test <<<\n")</pre>
 print(
  bartlett.test(
    as.formula(paste0("`", var, "` ~ Year_Group")),
    data = data
 cat("\n\n")
_____
Variable: Overall Index
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
```

```
data: Overall Index by Year Group
Bartlett's K-squared = 81.114, df = 7, p-value = 8.164e-15
_____
Variable: Interest Rate
_____
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Interest Rate by Year_Group
Bartlett's K-squared = Inf, df = 7, p-value < 2.2e-16
_____
Variable: Inflation Rate
_____
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Inflation Rate by Year_Group
Bartlett's K-squared = 8.7885, df = 7, p-value = 0.2682
```

```
_____
Variable: Exchange Rate
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Exchange Rate by Year Group
Bartlett's K-squared = 82.511, df = 7, p-value = 4.233e-15
_____
Variable: Oil Price
_____
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Oil Price by Year_Group
Bartlett's K-squared = 5.4547, df = 7, p-value = 0.6047
```

```
# در صورت نیاز) car (در صورت نیاز)

if (!requireNamespace("car", quietly = TRUE)) {

install.packages("car")

}

library(car)
```

```
برای هر متغیر Levene آزمون #
numeric vars <- c("Overall Index", "Interest Rate", "Inflation Rate", "Exchan</pre>
ge Rate", "Oil Price")
for (var in numeric_vars) {
 cat("\n======\n")
 cat("Variable:", var, "\n")
 cat("======\n\n")
 cat(">>> Levene Test <<<\n")</pre>
 print(
  leveneTest(
    as.formula(paste0("`", var, "` ~ Year Group")),
    data = data
  )
 )
 cat("\n\n")
_____
Variable: Overall Index
_____
>>> Levene Test <<<
Levene's Test for Homogeneity of Variance (center = median)
    Df F value Pr(>F)
group 7 2.2105 0.08954 .
  16
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
_____
```

```
Variable: Interest Rate
_____
>>> Levene Test <<<
Levene's Test for Homogeneity of Variance (center = median)
    Df F value Pr(>F)
group 7 1.5764 0.2128
    16
______
Variable: Inflation Rate
_____
>>> Levene Test <<<
Levene's Test for Homogeneity of Variance (center = median)
   Df F value Pr(>F)
group 7 0.6186 0.7334
    16
_____
Variable: Exchange Rate
>>> Levene Test <<<
Levene's Test for Homogeneity of Variance (center = median)
    Df F value Pr(>F)
group 7 1.1343 0.3904
    16
```

```
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Overall Index by Year_Group
Fligner-Killeen:med chi-squared = 6.623, df = 7, p-value = 0.4692
______
Variable: Interest Rate
_____
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Interest Rate by Year Group
Fligner-Killeen:med chi-squared = 8.7819, df = 7, p-value = 0.2687
Variable: Inflation Rate
_____
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Inflation Rate by Year Group
```

```
Fligner-Killeen:med chi-squared = 3.0459, df = 7, p-value = 0.8807
_____
Variable: Exchange Rate
______
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Exchange Rate by Year_Group
Fligner-Killeen:med chi-squared = 6.5089, df = 7, p-value = 0.4817
_____
Variable: Oil Price
______
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Oil Price by Year Group
Fligner-Killeen:med chi-squared = 2.0776, df = 7, p-value = 0.9554
```

```
numeric_vars <- c("Overall Index", "Interest Rate",</pre>
```

```
"Inflation Rate", "Exchange Rate", "Oil Price")
for (var in numeric_vars) {
  برای مشاهده توزیع QQ ترسیم هیستوگرام و نمودار #
  par(mfrow = c(1, 2))
  hist(data[[var]],
      main = paste("Histogram of", var),
      xlab = var,
      col = "lightgray",
      breaks = 10,
      prob = TRUE)
  curve(dnorm(x, mean(data[[var]]), sd(data[[var]])),
       col = "red", lwd = 2, add = TRUE)
  qqnorm(data[[var]], main = paste("QQ Plot of", var))
  qqline(data[[var]], col = "blue", lwd = 2)
  بازنشانی پارامترهای گرافیکی #
  par(mfrow = c(1, 1))
}
```

Histogram of Overall Index

QQ Plot of Overall Index

Histogram of Interest Rate

QQ Plot of Interest Rate

Histogram of Inflation Rate

QQ Plot of Inflation Rate

Histogram of Exchange Rate

QQ Plot of Exchange Rate

Histogram of Oil Price

QQ Plot of Oil Price

Hide

NA

NA

```
# كتابخانه هاى لازم ا
library(car)

# Overall Index

data$Overall_Index_Transformed <- bcPower(data$`Overall Index`, lambda = -0.1

8)

# Exchange Rate (Log Transform)

data$Exchange_Rate_Transformed <- log(data$`Exchange Rate` + 1) # ا بالوگيرى ا
```

```
# Inflation Rate
data$Inflation Rate Transformed <- bcPower(data<math>$Inflation Rate, lambda = -0
.476)
# Interest Rate (Inverse Transform)
data$Interest Rate Transformed <- 1 / data$`Interest Rate`</pre>
# Oil Price
data$Oil Price Transformed <- bcPower(data$`Oil Price`, lambda = 0.426)</pre>
بررسی نرمالیت نهایی #
transformed vars <- c(</pre>
  "Overall Index Transformed",
  "Exchange Rate Transformed",
  "Inflation Rate Transformed",
  "Interest Rate Transformed",
  "Oil Price Transformed"
for (var in transformed vars) {
  cat("\n=== Normality Check for", var, "===\n")
 print(shapiro.test(data[[var]]))
=== Normality Check for Overall Index Transformed ===
    Shapiro-Wilk normality test
data: data[[var]]
W = 0.94795, p-value = 0.2445
=== Normality Check for Exchange Rate Transformed ===
    Shapiro-Wilk normality test
```

```
data: data[[var]]
W = 0.8397, p-value = 0.001416
=== Normality Check for Inflation Rate Transformed ===
    Shapiro-Wilk normality test
data: data[[var]]
W = 0.94206, p-value = 0.1813
=== Normality Check for Interest Rate Transformed ===
    Shapiro-Wilk normality test
data: data[[var]]
W = 0.93403, p-value = 0.12
=== Normality Check for Oil Price Transformed ===
    Shapiro-Wilk normality test
data: data[[var]]
W = 0.94605, p-value = 0.2221
```

```
# برای مشاهده توزیع QQ ترسیم هیستوگرام و نمودار par(mfrow = c(1, 2))
hist(data[[var]],
    main = paste("Histogram of", var),
    xlab = var,
    col = "lightgray",
    breaks = 10,
    prob = TRUE)

curve(dnorm(x, mean(data[[var]]), sd(data[[var]])),
    col = "red", lwd = 2, add = TRUE)

qqnorm(data[[var]], main = paste("QQ Plot of", var))
qqline(data[[var]], col = "blue", lwd = 2)

# كارافيرهای گرافيکی بارافيرهای گرافيکی بارافيرهای گرافيکی بارافيرهای گرافيکی بارافيرهای گرافيکی بارافيرهای گرافيکی بارافيرهای شروع (mfrow = c(1, 1))
```

Histogram of Overall_Index_Transform QQ Plot of Overall_Index_Transform

Histogram of Interest_Rate_Transform QQ Plot of Interest_Rate_Transforme

Histogram of Inflation_Rate_Transform QQ Plot of Inflation_Rate_Transform

Histogram of Exchange_Rate_Transfor QQ Plot of Exchange_Rate_Transform

Histogram of Oil_Price_Transforme

QQ Plot of Oil_Price_Transformed


```
# بررسي VIF (Variance Inflation Factor) برراى مدل رگرسيون VIF (Variance Inflation Factor) بررسي التاليات التال
```

```
# چاپ VIF
cat("\n==========\n")
```

```
cat("Variance Inflation Factors (VIF):\n")
Variance Inflation Factors (VIF):
```

Hide

Hide

```
print(vif_values)

Interest_Rate_Transformed Inflation_Rate_Transformed Exchange_Rate_Transformed Oil_Price_Transformed

3.001090 1.850678 3.185
271 1.338095
```

Hide

```
cat("(انتایج مدل رگرسیون خطی اولیه (با متغیرهای تبدیلشده) انتایج مدل رگرسیون خطی اولیه (با متغیرهای تبدیلشده)
```

```
summary(model)
Call:
lm(formula = Overall Index Transformed ~ Interest Rate Transformed +
   Inflation Rate Transformed + Exchange Rate Transformed +
   Oil Price Transformed, data = data)
Residuals:
     Min 1Q Median 3Q Max
-0.156347 -0.037062 -0.000229 0.058333 0.103735
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
                         2.836386 0.351022 8.080 1.44e-07 ***
(Intercept)
Interest Rate Transformed 0.171163 2.468426 0.069 0.9454
Inflation Rate Transformed -0.023808 0.020098 -1.185 0.2508
Exchange Rate Transformed 0.204104 0.023258 8.776 4.13e-08 ***
Oil Price Transformed 0.017663 0.006831 2.586 0.0181 *
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
Residual standard error: 0.08186 on 19 degrees of freedom
Multiple R-squared: 0.9279, Adjusted R-squared: 0.9128
F-statistic: 61.17 on 4 and 19 DF, p-value: 1.379e-10
```

```
residuals_model <- residuals(model)

# المال ال
```

Residuals vs. Fitted

Hide

```
اگر الگوی قیفی شکل یا روند خاصی در نمودار دیده شد، احتمال واریانس ناهمسان و #
.جود دارد
```

```
if (!requireNamespace("lmtest", quietly = TRUE)) {
   install.packages("lmtest")
}
library(lmtest)

bptest(model) # ازمون بروس-پگان

studentized Breusch-Pagan test
```

```
data: model
BP = 7.5887, df = 4, p-value = 0.1079
```

```
cook_values <- cooks.distance(model)
plot(cook_values,
    ylab = "Cook's Distance",
    main = "Cook's Distance for Each Observation")
abline(h = 4/(nrow(data) - length(coef(model)) - 1), col = "red")</pre>
```

Cook's Distance for Each Observation


```
influential_points <- which(cooks.distance(model_temp) > 0.2)
```

```
print(influential_points)
1 24
1 24
```

```
data cleaned <- data[-influential points, ]</pre>
model temp cleaned <- lm(`Overall Index Transformed` ~ `Interest Rate Transfo</pre>
rmed` +
                        `Inflation_Rate_Transformed` + `Exchange_Rate_Transf
ormed` +
                        `Oil Price Transformed`, data = data cleaned)
summary(model temp cleaned)
Call:
lm(formula = Overall Index Transformed ~ Interest Rate Transformed +
   Inflation Rate Transformed + Exchange Rate Transformed +
   Oil_Price_Transformed, data = data_cleaned)
Residuals:
     Min 1Q Median 3Q
                                          Max
-0.131290 -0.031205 -0.006619 0.053827 0.077457
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         2.89862 0.29787 9.731 2.31e-08 ***
Interest Rate Transformed -0.20025 1.99285 -0.100 0.9211
Inflation Rate Transformed -0.01784 0.01595 -1.119 0.2788
Exchange Rate Transformed 0.20952 0.02001 10.470 7.87e-09 ***
Oil Price Transformed 0.01285 0.00586 2.193 0.0425 *
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
Residual standard error: 0.06458 on 17 degrees of freedom
Multiple R-squared: 0.9474, Adjusted R-squared: 0.935
F-statistic: 76.55 on 4 and 17 DF, p-value: 1.217e-10
```

```
# انجام تحلیل واریانس برای مدل رگرسیون
anova_results <- anova(model_temp_cleaned)

# مایش جدول ANOVA

cat("\n=========\n")
```

Hide

```
cat("اجدول تحلیل واریانس (ANOVA Table)\n") جدول تحلیل واریانس (ANOVA Table)
```

Hide

Hide

```
# تـوضيحات تـكميلى
cat("\n-----\n")
```

```
cat("عفسیر جدول ANOVA:\n") تفسیر جدول ANOVA:
```

Hide

```
cat("-.مجموع مربعات برای هر متغیر 'Sum Sq' ستون (n").
مجموع مربعات برای هر متغیر 'Sum Sq' ستون -
```

Hide

```
cat("-میانگین مربعات برای هر متغیر 'Mean Sq': میانگین مربعات برای هر متغیر.\n")
```

Hide

```
("n").برای هر متغیر F مقدار آماره 'F value' ستون - ").برای هر متغیر F مقدار آماره 'F value' ستون -
```

Hide

```
cat("- ستون | Pr(>F) ': مون فرضیه اثرگذاری p مقدار (n").\n")
- برای آزمون فرضیه اثرگذاری p مقدار (Pr(>F) ستون
```

Hide

```
cat("----\n\n")
```

```
دریافت مقادیر باقیمانده ها و نقاط برازش شده #
```

Scatterplot of Residuals vs. Fitted Values


```
# 2. غاط برازش شده پاسخ 2. # 2. غالم برازش شده پاسخ 2. plot(fitted_values, residuals_model^2, xlab = "Fitted Values", ylab = "Squared Residuals", main = "Scatterplot of Squared Residuals vs. Fitted Values",
```

```
pch = 19,
    col = "green")
abline(h = 0, col = "red", lwd = 2)
```

Scatterplot of Squared Residuals vs. Fitted Values

Scatterplot of Absolute Residuals vs. Fitted Values

Hide

```
# اجرای آزمون گلدفیلد-کوانت
goldfeld_quandt_test <- gqtest(model_temp_cleaned, order.by = fitted(model_temp_cleaned))
# مایش نتایج
cat("\n=======\n")
```

Hide

```
cat("نتایج آزمون گلدفیلد-کوانت (Goldfeld-Quandt)\n") (Goldfeld-Quandt) نتایج آزمون گلدفیلد-کوانت
```

```
print(goldfeld_quandt_test)

Goldfeld-Quandt test

data: model_temp_cleaned

GQ = 0.27958, df1 = 6, df2 = 6, p-value = 0.9269

alternative hypothesis: variance increases from segment 1 to 2
```

Hide

```
# بارگذاری کتابخانه مورد نیاز

if (!requireNamespace("lmtest", quietly = TRUE)) {

install.packages("lmtest")
}

library(lmtest)

# برای مدل تمیز شده Breusch-Pagan اجرای آزمون #

bp_test <- bptest(model_temp_cleaned)

# نمایش نتایج آزمون 
cat("\n=======\n")
```

Hide

```
cat("نتایج آزمون Breusch-Pagan (BP Test)\n")
نتایج آزمون Breusch-Pagan (BP Test)
```

```
print(bp_test)

studentized Breusch-Pagan test

data: model_temp_cleaned

BP = 3.677, df = 4, p-value = 0.4515
```

Hide

```
# راهنمای تفسیر
cat("\n-----\n")
```

Hide

```
cat("راهنمای تفسیر):\n")
دراهنمای تفسیر
```

Hide

```
cat("- اگر p-value < 0.05 واریانس) رد می شود p-value < 0.05 اگر الله الله الله و اریانس) رد می شود p-value < 0.05 اگر
```

Hide

```
cat("- اگر p-value > 0.05 (واریانس همگن است) p-value > 0.05 (واریانس همگن است) p-value > 0.05 (واریانس همگن است) p-value > 0.05 (واریانس همگن است)
```

```
cat("----\n\n")
```

```
# الماد الم
```

```
if (!requireNamespace("lmtest", quietly = TRUE)) {
    install.packages("lmtest")
}
library(sandwich)
library(lmtest)

# معاسبه ضرایب استوار #
robust_se <- coeftest(model_temp_cleaned, vcov = vcovHC(model_temp_cleaned, type = "HC3"))

# יمایش ضرایب استوار #
cat("\n=========\n")</pre>
```

Hide

```
("n)ضرایب رگرسیونی با خطای استاندارد استوار)
ضرایب رگرسیونی با خطای استاندارد استوار
```

Hide

Hide

Hide

```
# راهنمای تفسیر:
cat("\n-----\n")
```

```
cat("راهنمای تفسیر ضرایب):\n")
:راهنمای تفسیر ضرایب
```

Hide

```
cat("- در صورتی که ضرایب معنادار باقی بمانند، مدل قابل قبول است - \n")
در صورتی که ضرایب معنادار باقی بمانند، مدل قابل قبول است -
```

Hide

```
cat("-----\n")
```

Hide

```
cat("خلاصه مدل رگرسیون وزنی")
خلاصه مدل رگرسیون وزنی
```

Hide

```
summary(wls_model)
Call:
lm(formula = Overall_Index_Transformed ~ Interest_Rate_Transformed +
   Inflation Rate Transformed + Exchange Rate Transformed +
   Oil Price Transformed, data = data cleaned, weights = weights)
Weighted Residuals:
   Min 1Q Median 3Q Max
-0.36170 -0.14777 -0.02628 0.20256 0.30573
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                      (Intercept)
Interest Rate Transformed -0.806682 1.284992 -0.628 0.5385
Exchange Rate Transformed 0.210794 0.012538 16.812 5.00e-12 ***
Oil Price Transformed 0.010754 0.004558 2.359 0.0305 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2456 on 17 degrees of freedom
Multiple R-squared: 0.969, Adjusted R-squared: 0.9617
F-statistic: 132.9 on 4 and 17 DF, p-value: 1.384e-12
```

```
آزمون واریانس باقیمانده ها در مدل وزنی #
cat("\n=============\n")
```

Hide

```
cat("آزمون همگنی واریانس در مدل وزنی \n")
آزمون همگنی واریانس در مدل وزنی
```

Hide

Hide

```
bptest(wls_model)

studentized Breusch-Pagan test

data: wls_model

BP = 1031.6, df = 4, p-value < 2.2e-16</pre>
```

```
# نصب كتابخانه مورد نياز

if (!requireNamespace("MASS", quietly = TRUE)) {

   install.packages("MASS")

}

library(MASS)

# مال مقاوم با استفاده از الگوريتم

# robust_model <- rlm(`Overall_Index_Transformed` ~ `Interest_Rate_Transformed` +

   ` Inflation_Rate_Transformed` + `Exchange_Rate_Transformed` +

   coil_Price_Transformed`, data = data_cleaned)
```

```
# خلاصه مدل مقاوم
cat("\n=============\n")
```

```
cat("اخلاصه مدل مقاوم) n")
خلاصه مدل مقاوم
```

Hide

```
cat("======\n\n")
```

```
summary(robust model)
Call: rlm(formula = Overall Index Transformed ~ Interest Rate Transformed +
   Inflation_Rate_Transformed + Exchange_Rate_Transformed +
   Oil Price Transformed, data = data cleaned)
Residuals:
     Min 1Q Median 3Q Max
-0.142652 -0.032023 -0.007332 0.051666 0.068809
Coefficients:
                       Value Std. Error t value
(Intercept)
                        2.9449 0.3043 9.6776
Interest_Rate_Transformed -0.2915 2.0358 -0.1432
Inflation Rate Transformed -0.0170 0.0163 -1.0447
Exchange_Rate_Transformed 0.2072 0.0204 10.1353
Oil Price Transformed 0.0112 0.0060 1.8732
Residual standard error: 0.0652 on 17 degrees of freedom
```