

BFU725F

NPN wideband silicon germanium RF transistor

Rev. 01 — 6 December 2007

Product data sheet

1. Product profile

1.1 General description

NPN silicon germanium microwave transistor for high speed, low noise applications in a plastic, 4-pin dual-emitter SOT343F package.

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

1.2 Features

- Low noise high gain microwave transistor
- Noise figure (NF) = 0.7 dB at 5.8 GHz
- High maximum stable gain 27 dB at 1.8 GHz
- 110 GHz f_T silicon germanium technology

1.3 Applications

- 2nd LNA stage and mixer stage in DBS LNB's
- Satellite radio
- Low noise amplifiers for microwave communications systems
- WLAN and CDMA applications
- Analog/digital cordless applications
- Ka band oscillators DRO's

NPN wideband silicon germanium RF transistor

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	N	/lin	Тур	Max	Unit
V_{CBO}	collector-base voltage	open emitter	-		-	10	V
V_{CEO}	collector-emitter voltage	open base	-		-	2.8	V
V_{EBO}	emitter-base voltage	open collector	-		-	0.55	V
I _C	collector current		-		25	40	mA
P _{tot}	total power dissipation	T _{sp} ≤ 90 °C	[1] -		-	136	mW
h _{FE}	DC current gain	$I_C = 10 \text{ mA}; V_{CE} = 2 \text{ V};$ $T_j = 25 ^{\circ}\text{C}$	3	00	430	640	
C _{CBS}	collector-base capacitance	$V_{CB} = 2 \text{ V}; f = 1 \text{ MHz}$	-		70	-	fF
f _T	transition frequency	I_C = 25 mA; V_{CE} = 2 V; f = 2 GHz; T_{amb} = 25 °C	-		70	-	GHz
G _{p(max)}	maximum power gain	I_C = 25 mA; V_{CE} = 2 V; f = 5.8 GHz; T_{amb} = 25 °C	[2] _		18	-	dB
NF	noise figure	I_C = 5 mA; V_{CE} = 2 V; f = 5.8 GHz; Γ_S = Γ_{opt}	-		0.7	-	dB
·		· · · · · · · · · · · · · · · · · · ·					

^[1] T_{sp} is the temperature at the solder point of the emitter lead.

2. Pinning information

Table 2. Discrete pinning

3		
Description	Simplified outline	Symbol
emitter		
base	3 4	4
emitter		2 —
collector	2 1	1, 3 mbb159
	Description emitter base emitter	Description Simplified outline emitter base emitter collector

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
BFU725F	-	plastic surface-mounted flat pack package; reverse pinning; 4 leads	SOT343F

^[2] $G_{p(max)}$ is the maximum power gain, if K > 1. If K < 1 then $G_{p(max)}$ = Maximum Stable Gain (MSG).

NPN wideband silicon germanium RF transistor

4. Marking

Table 4. Marking

•		
Type number	Marking	Description
BFU725F	B6*	* = p : made in Hong Kong
		* = t : made in Malaysia
		* = w : made in China

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CBO}	collector-base voltage	open emitter	-	10	V
V_{CEO}	collector-emitter voltage	open base	-	2.8	V
V_{EBO}	emitter-base voltage	open collector	-	0.55	V
I _C	collector current		-	40	mA
P _{tot}	total power dissipation	T _{sp} ≤ 90 °C	<u>[1]</u> _	136	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	150	°C

^[1] T_{sp} is the temperature at the solder point of the emitter lead.

6. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-sp)}$	thermal resistance from junction to solder point		440	K/W

NPN wideband silicon germanium RF transistor

7. Characteristics

Table 7. Characteristics

 $T_j = 25 \,^{\circ}C$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{(BR)CBO}$	collector-base breakdown voltage	$I_C = 2.5 \mu A$; $I_E = 0 \text{ mA}$	10	-	-	V
$V_{(BR)CEO}$	collector-emitter breakdown voltage	$I_C = 1 \text{ mA}; I_B = 0 \text{ mA}$	2.8	-	-	V
l _C	collector current		-	25	40	mΑ
I _{CBO}	collector-base cut-off current	$I_E = 0 \text{ mA}; V_{CB} = 4.5 \text{ V}$	-	-	100	nΑ
h _{FE}	DC current gain	$I_C = 10 \text{ mA}; V_{CE} = 2 \text{ V}$	300	430	640	
C _{CES}	collector-emitter capacitance	$V_{CB} = 2 V$; $f = 1 MHz$	-	268	-	fF
C _{EBS}	emitter-base capacitance	$V_{EB} = 0.5 \text{ V}; f = 1 \text{ MHz}$	-	342	-	fF
C _{CBS}	collector-base capacitance	$V_{CB} = 2 \text{ V}; f = 1 \text{ MHz}$	-	70	-	fF
f _T	transition frequency	$I_C = 25 \text{ mA}; V_{CE} = 2 \text{ V}; f = 2 \text{ GHz};$ $T_{amb} = 25 \text{ °C}$	-	70	-	GHz
$G_{p(max)}$	maximum power gain	I_C = 25 mA; V_{CE} = 2 V; T_{amb} = 25 °C	<u>[1]</u>			
		f = 1.5 GHz	-	28	-	dB
		f = 1.8 GHz	-	27	-	dB
		f = 2.4 GHz	-	25.5	-	dB
		f = 5.8 GHz	-	18	-	dB
		f = 12 GHz	-	13	-	dB
$ S_{21} ^2$	insertion power gain	I_C = 25 mA; V_{CE} = 2 V; T_{amb} = 25 °C				
		f = 1.5 GHz	-	26.7	-	dB
		f = 1.8 GHz	-	25.4	-	dB
		f = 2.4 GHz	-	23	-	dB
		f = 5.8 GHz	-	16	-	dB
		f = 12 GHz	-	9.3	-	dB
NF	noise figure	I_C = 5 mA; V_{CE} = 2 V; Γ_S = Γ_{opt} ; T_{amb} = 25 °C				
		f = 1.5 GHz	-	0.42	-	dB
		f = 1.8 GHz	-	0.43	-	dB
		f = 2.4 GHz	-	0.47	-	dB
		f = 5.8 GHz	-	0.7	-	dB
		f = 12 GHz	-	1.1	-	dB
3 _{ass}	associated gain	I_C = 5 mA; V_{CE} = 2 V; Γ_S = Γ_{opt} ; T_{amb} = 25 °C				
		f = 1.5 GHz	-	24	-	dB
		f = 1.8 GHz	-	22	-	dB
		f = 2.4 GHz	-	20	-	dB
		f = 5.8 GHz	-	13.5	-	dB
		f = 12 GHz	-	10	-	dB

 Table 7.
 Characteristics ...continued

 $T_i = 25 \,^{\circ}C$ unless otherwise specified

,	эттээ эрээтэ					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
P _{L(1dB)}	output power at 1 dB gain compression	I_{C} = 25 mA; V_{CE} = 2 V; Z_{S} = Z_{L} = 50 Ω ; T_{amb} = 25 °C				
		f = 1.5 GHz	-	8.5	-	dBm
		f = 1.8 GHz	-	9	-	dBm
		f = 2.4 GHz	-	8.5	-	dBm
		f = 5.8 GHz	-	8	-	dBm
IP3	third-order intercept point	I_{C} = 25 mA; V_{CE} = 2 V; Z_{S} = Z_{L} = 50 Ω ; T_{amb} = 25 °C				
		f = 1.5 GHz	-	17	-	dBm
		f = 1.8 GHz	-	17	-	dBm
		f = 2.4 GHz	-	17	-	dBm
		f = 5.8 GHz	-	19	-	dBm

 $[\]label{eq:Gpmax} [1] \quad G_{p(max)} \mbox{ is the maximum power gain, if } K>1. \mbox{ If } K<1 \mbox{ then } G_{p(max)}=MSG.$

NPN wideband silicon germanium RF transistor

(1) $I_B = 110 \mu A$

- (9) $I_B = 30 \mu A$
- (10) $I_B = 20 \mu A$
- (11) $I_B = 10 \mu A$

 $f = 1 \text{ MHz}, T_{amb} = 25 \,^{\circ}\text{C}$

Fig 4. Collector-base capacitance as a function of collector-base voltage; typical values

- (1) $V_{CE} = 1 V$
- (2) $V_{CE} = 1.5 \text{ V}$
- (3) $V_{CE} = 2 V$

Fig 3. DC current gain as a function of collector current; typical values

 $V_{CE} = 2 \text{ V}$; f = 2 GHz; $T_{amb} = 25 \,^{\circ}\text{C}$

Fig 5. Transition frequency as a function of collector current; typical values

6 of 12

- (1) f = 1.5 GHz
- (2) f = 1.8 GHz
- (3) f = 2.4 GHz
- (4) f = 5.8 GHz
- (5) f = 12 GHz

 V_{CE} = 2 V; T_{amb} = 25 °C

Fig 6. Gain as a function of collector current; typical value

 V_{CE} = 2 V; I_{C} = 5 mA; T_{amb} = 25 °C

Fig 7. Gain as a function of frequency; typical values

 V_{CE} = 2 V; I_{C} = 25 mA; T_{amb} = 25 °C

Fig 8. Gain as a function of frequency; typical values

7 of 12

NXP Semiconductors

BFU725F

NPN wideband silicon germanium RF transistor

- (1) f = 12 GHz
- (2) f = 5.8 GHz
- (3) f = 2.4 GHz
- (4) f = 1.8 GHz
- (5) f = 1.5 GHz

 V_{CE} = 2 V; T_{amb} = 25 °C

- (1) $I_C = 25 \text{ mA}$
- (2) $I_C = 5 \text{ mA}$

 $V_{CE} = 2 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}$

Fig 10. Minimum noise figure as a function of frequency; typical values

8 of 12

8. Package outline

Fig 11. Package outline SOT343F

9. Abbreviations

Table 8. Abbreviations

Acronym	Description
CDMA	Code Division Multiple Access
DBS	Direct Broadcast Satellite
DC	Direct Current
DRO	Dielectric Resonator Oscillator
LNA	Low Noise Amplifier
Ka	Kurtz above
LNB	Low Noise Block
NPN	Negative-Positive-Negative
RF	Radio Frequency
WLAN	Wireless Local Area Network

10. Revision history

Table 9. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BFU725F_1	20071206	Product data sheet	-	-

11. Legal information

11.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

11.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

11.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

11.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

12. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

BFU725F **NXP Semiconductors**

NPN wideband silicon germanium RF transistor

13. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking 3
5	Limiting values 3
6	Thermal characteristics 3
7	Characteristics 4
8	Package outline 9
9	Abbreviations
10	Revision history
11	Legal information
11.1	Data sheet status
11.2	Definitions
11.3	Disclaimers
11.4	Trademarks11
12	Contact information
13	Contents 12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 6 December 2007 Document identifier: BFU725F_1