Single Deep CNN Features to Detect Neurodegenerative Diseases and Context Behind the Detection: Alzheimer's, Parkinson's, Dementia

by

Mohammad Sabbir Ahmed,	ID: 17183103004
Syeda Nowshin Ibnat,	ID: 17183103020
Rakibul Ahasan,	ID: 17183103022
Nusrat Jahan Anka,	ID: 17183103008
Sk. Abu Hanif,	ID: 17183103043

Submitted in partial fulfillment of the requirements of the degree of Bachelor of Science in Computer Science and Engineering

Department of Computer Science and Engineering Bangladesh University of Business and Technology

November 2021

Declaration

We do hereby declare that the research works presented in this thesis entitled "Single Deep CNN Features to Detect Neurodegenerative Diseases and Context Behind the Detection: Alzheimer's, Parkinson's, Dementia" are the results of our own works. We further declare that the thesis has been compiled and written by us. No part of this thesis has been submitted elsewhere for the requirements of any degree, award or diploma, or any other purposes except for publications. The materials that are obtained from other sources are duly acknowledged in this thesis.

ID: 17183103004

Syeda Nowshin Ibnat

ID: 17183103020

Rakibul Ahasan

ID: 17183103022

Nusrat Jahan Anka

ID: 17183103008

Sk. Abu Hanif

ID: 17183103043

Rakibul Ahasan

Stamp

Approval

We do hereby acknowledge that the research works presented in this thesis entitled "Single Deep CNN Features to Detect Neurodegenerative Diseases and Context Behind the Detection: Alzheimer's, Parkinson's, Dementia" result from the original works carried out by Mohammad Sabbir Ahmed, Syeda Nowshin Ibnat, Rakibul Ahasan, Nusrat Jahan Anka and Sk. Abu Hanif ID No: 17183103004, 17183103020, 17183103022, 17183103008 and 17183103043 Department of CSE, Bangladesh University of Business and Technology (BUBT) under the supervision of Milon Biswas, Assistant Professor, Department of Computer Science and Engineering (CSE). We declare that no part of this thesis has been submitted elsewhere for the requirements of any degree, award or diploma, or any other purposes except for publications.

Milon Biswas

Assistant Professor and Supervisor

Department of Computer Science and Engineering (CSE)

Bangladesh University of Business and Technology (BUBT)

Mirpur-2, Dhaka-1216, Bangladesh

Dr. M. Firoz Mridha

Chairman & Associate Professor

Department of Computer Science and Engineering (CSE)

Bangladesh University of Business and Technology (BUBT)

Mirpur-2, Dhaka-1216, Bangladesh

Acknowledgment

We would like to express our heartfelt gratitude to the almighty Allah who offered upon our family and us kind care throughout this journey. Also, we express our sincere respect and gratitude to our supervisor Milon Biswas, Assistant Professor, Department of Computer Science and Engineering, Bangladesh University of Business and Technology(BUBT). Without his guidance, this work would not exist. We are grateful to him for his excellent supervision and for putting his utmost effort into developing this project. We owe him a lot for his assistance, encouragement, and guidance, which has shaped our mentality as a researcher.

Finally, we are grateful to all our faculty members of the CSE department, BUBT, for making us compatible to complete this research work with the proper guidance and support throughout the last three years.

Abstract

Deep learning has recently been used for the analysis of neuroimages, such as magnetic resonance imaging (MRI), and it has achieved significant performance improvements over traditional machine learning. Modern neuroimaging has been defined by the development of magnetic resonance imaging (MRI) techniques. Besides, The amount of data generated by neuroimaging is both huge and complex. This thesis paper proposes a new model by stacking the Deep Convolutional Neural Network. Our method consists of convolution layers. By this model we can detect three neurodegenerative diseases: Alzheimer's, Parkinson's, Dementia at a time and Context Behind the Detection.

List of Tables

List of Figures
1.1 Flow of the work
List of Abbreviations
DL Deep Learning.
CNN Convolutional Neural Network.
DCNN Deep Convolutional Neural Network.
MRI Magnetic Resonance Imaging.
AD Alzheimer's Disease.
PD Parkinson's Disease.
DD Dementia Disease.

Contents

Declaration	2
Approval	3
Acknowledgement	4
Abstract	5
List of Tables	6
List of Figures	6
List of Abbreviations	6
1 Introduction	
1.1 Introduction	8
1.2 Problem Statement	9
1.3 Problem Background	9
1.4 Research Objectives	9
1.5 Motivations	10
1.6 Flow of the Research.	11
1.7 Significance of the Research	12
1.8 Research Contribution	12
1.9 Thesis Organization.	12
1.10 Summary	13
2 Background	
2.1 Introduction	14
2.2 Literature Review	
2.3 Problem Analysis.	15
2.4 Summary	15

Chapter 1

Introduction

Introduction

Neurodegenerative disease is an umbrella term for a range of conditions that primarily affect the neurons in the human brain. Neurodegenerative diseases occur when nerve cells in the brain or peripheral nervous system lose function over time and ultimately die. Alzheimer's disease, Parkinson's disease, and dementia are examples of neurodegenerative diseases. Alzheimer's disease (AD), a chronic neurodegenerative disease causing the death of nerve cells and tissue loss throughout the brain [1]. Parkinson's disease (PD) is a non-curable progressive neurological disorder, which affects the motor system of the human brain [4]. Dementia disease is a neurological disorder that is characterized by a decline in memory, language, problem-solving, and other cognitive skills [11]. Deep learning methods have gained more popularity recently in medical image analysis [7], this work proposes a deep convolutional neural network (DCNN) that can detect three neurodegenerative disease using magnetic resonance imaging(MRI) samples. Deep-learning algorithms have notable advantages rather than machine learning methods. Many recent research studies that have used brain MRI scans and convolutional neural networks (CNN) achieved promising results [3]. In our work, we will build a new DL model to detect three neurodegenerative diseases at a time. Founding the suitable MRI dataset was the most difficult task for us so far.

Problem Statement

Neurodegenerative diseases detection is one of the unavoidable areas to treat patients at an early stage. Identifying neurodegenerative diseases with proper explanation is quite challenging. In this work, we will design a deep-learning-based disease detection model using the collected data which will detect Alzheimer's, Parkinson's, and Dementia diseases, including the context behind the detection. However, until now, our system hasn't been proposed yet so it will create a new path in the medical field.

Problem Background

The present neurodegenerative diseases detection system only detects one disease such as Parkinson's, Huntington's, Alzheimer's, Dementia, Schizophrenia at a time. In this modern era, the medical field is now updated technology-based while the existing system is quite backdated. Identifying neurodegenerative diseases and behind the reason of appearing is a deadly problem that needs to be solved. Diagnosis of Alzheimer's, Parkinson's, and Dementia diseases, including the context behind the detection, is very challenging due to the similarities in disease phenotypes, accurate detection. Most importantly, finding a proper dataset is the critical challenge of our research.

Research Objectives

The objectives of our research work are as follows:

- Identifying present difficulty to work with neuroimaging data.
- Build a new DL model to detect three Neurodegenerative Diseases named Alzheimer's, Parkinson's and Dementia.
- Get decent accuracy using a suitable MRI dataset.
- Use XAI to know the context behind the detection.
- Comparing the existing architectures with the proposed one for neurodegenerative diseases detection.

Motivations

Deep Learning (DL) is an emerging field that attracts researchers, specifically in the field of engineering and medical sciences. Deep learning techniques have opened up possibilities for enhanced analysis of neuroimaging data during the last decade. In this, we will provide deep learning architectures, applications, and the role of deep learning in the detection of neurodegenerative diseases like Alzheimer's, Parkinson's, Dementia disease. In general, we all know that using MRI to detect any of these three disorders is time-consuming and expensive. However, with our work, we can get results in a short period of time. As a result, we believe that detecting these three neurodegenerative diseases is essential in order to treat patients at an early stage. As a result, detection of neurodegenerative diseases is crucial in our society, as we have a significant number of elderly people who are suffering. So, in this work, we'll create a single model architecture that can detect Alzheimer's, Parkinson's, and Dementia diseases, including the context behind the detection.

Flow of the Research

The research work is developing into several steps. First, we have analysed the research topics and then studied the basic theory of neurodegenerative disease. Then we have investigated the application of neurodegenerative for the MRI dataset. We investigated the lack of present architectures and that motivated us to build a new architecture based on state-of-the-art deep learning approaches. Figure 1.1 illustrates the overall steps to the research procedure in the following diagram.

Figure 1.1. The figure illustrates the flow of the thesis work

Significance of the Research

We observe that most of the works of Neurodegenerative Disease (ND) are on a particular disease. Therefore this study introduces a new model to detect three Neurodegenerative Diseases named Alzheimer's, Parkinson's and Dementia. Also, we have planned to propose a CNN architecture that will give the best result. This neurodegenerative disease detection problem will become a state-of-the-art architecture to estimate the detection of neurodegenerative disease and significantly impact society and the country.

Research Contribution

The overall contribution of the research works are:

- Identifying present difficulty to detect Neurodegenerative Disease (ND) using neuroimaging dataset.
- A new DL model to detect three neurodegenerative diseases.
- A novel CNN approach to detect neurodegenerative diseases.

Thesis Organization

The thesis work is organized as follows. Chapter 2 highlights the background and literature review on the field of Neurodegenerative Disease (ND) detection. Chapter 3 will contain the Neurodegenerative Disease (ND) detection's proposed architecture and a detailed walk-through of the overall procedures. Chapter 4 will include the details of the tests and evaluations performed to evaluate our proposed architecture. Chapter 5 will explain the Standards, Impacts, Ethics, Challenges, Constraints, Timeline, and Gantt Chart. Finally, Chapter 6 contains the overall conclusion of our thesis work.

Summary

This chapter includes a broad overview of the problem that we aimed explicitly at our research work's objectives, the background, and the research work's motivation. This chapter also illustrates the overall steps on which we carried out our research work.

Chapter 2

Background

2.1 Introduction

Neurodegenerative diseases are illnesses that involve the death of certain parts of the brain. The majority of existing approaches focus on classifying common diseases such as Parkinson's, Huntington's, Alzheimer's, Dementia, Schizophrenia. Some existing proposed models concentrate on the diagnosis of the diseases. However, before this study, no work has introduced the context behind the detection of three neurodegenerative diseases at a time. In this paper, We are going to present a single model architecture that can detect Alzheimer's, Parkinson's, and Dementia diseases, including the explanation of why that disease occurs using MRI images.

2.2 Literature Review

Student's Id and Name: 17183103004, Mohammad Sabbir Ahmed

Aspects	Paper # 1
Title / Question	Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation.
Objectives/ Goal	They found 3 problems and their goal is to solve these problems:
	1. The classification performance is difficult to compare across studies
	due to variations in components such as participant selection, image
	preprocessing, or validation procedure.
	2. These studies are hardly reproducible because their frameworks are not publicly accessible and because implementation details are lacking.

	3. Some of these papers may report a biased performance due to	
	inadequate or unclear validation or model selection procedures.	
Methodology/ Theory	They proposed a solution:	
	1. Performed a systematic literature Review. To do so, they Identified	
	four main types of approaches:	
	i) 2D slice-level,	
	ii) 3D patch-level,	
	iii) ROI-based and	
	iv) 3D subject-level CNN	
	2. Their second contribution is the extension of an open-source	
	framework for the classification of AD using CNN and T1-weighted	
	MRI. The framework comprises previously developed tools to	
	automatically convert ADNI, AIBL, and OASIS data into the BIDS	
	standard, and a modular set of image preprocessing procedures,	
	classification architectures, and evaluation procedures dedicated to	
	deep learning.	
	3. Finally, they used this framework to rigorously compare different	
	CNN architectures.	
Software Tools	image preprocessing procedures were implemented with Nipype,	
	The DL models were built using the Pytorch library,	
	TensorboardX was embedded into the current framework to	
	dynamically monitor the training process.	
	The linear SVM was implemented using Scikit Learn	
Terminology		
	Convolutional neural network Reproducibility Alzheimer's disease	
	classification Magnetic resonance imaging	

Aspects	Paper # 2
---------	-----------

Title/ Question	Classification of MRI images for Alzheimer's disease detection
Objectives/ Goal	To develop an early diagnosis, which would allow people with dementia to plan ahead while they still have the capacity to make important decisions about their future care as well as it would allow them to access available drug and non-drug therapies that may improve their cognition and enhance their quality of life.
Software Tools	SPM5 toolbox, MATLAB,
Simulation/ Test Data	They used ADNI Dataset
Result/ Conclusion	This paper deals with the important challenge of identification of Alzheimer's disease and the condition prior to dementia which is Mild Cognitive Impairment (MCI), developing intelligent classifiers, which using the information of magnetic resonance imaging, can successfully classify different patients according to their condition
Obstacles/ Challenges	They identified the identification of Alzheimer's disease and the condition prior to dementia which is Mild Cognitive Impairment (MCI) as a challenge for them.
Terminology	Support Vector Machine (SVM); Alzheimer's Disease; Mild Cognitive Impairment (MCI); PCA; Wavelets; MRI

Aspects	Paper # 3
Title / Question	A CNN based framework for classification of Alzheimer's disease.
Software Tools	Google Colab, Python, Kears package for deep learning, ReLU, SoftMax
Result/ Conclusion	Their proposed framework achieved 99.6%, 99.8%, and 97.8% classification accuracy on Alzheimer's disease Neuroimaging Initiative (ADNI) dataset for the binary classification of AD and Cognitively Normal (CN). In multi-classification experiments, the proposed framework achieved 97.5% classification accuracy on the ADNI dataset
Terminology	AD-classification, Convolutional neural network (CNN), Magnetic resonance imaging (MRI), Adaptive momentum estimation (Adam), Glorot uniform weight initializer

Aspects	Paper # 4
Title / Question	Detection of Parkinson Disease in Brain MRI using Convolutional Neural Network.
Software Tools	software package to convert DICOM-to-JPEG, MATLAB,

Simulation/	
Test Data	They used PPMI Dataset which contains 250 MRI scans of PD while 250
	for HC. Furthermore, these data are divided into training, validation and
	testing sets with a ratio of 70%, 10%, and 20% respectively.
Obstacles/	
Challenges	During the experimentation, they found that the limited dataset was a
	major issue, leading the CNN model towards overfitting.
Terminology	
	Parkinson Disease, MRI, Deep Learning, Convolutional Neural Network,
	CNN

Aspects	Paper # 5
Title / Question	Automated MRI-Based Deep Learning Model for Detection of
	Alzheimer's Disease Process*
Software Tools	Think Server TS560, UBUNTU, Python , TensorFlow, Keras,
Simulation/ Test Data	They used ADNI Dataset. They randomly assigned the samples according to the proportion of 85% in the training group and 15% in the validation group and ensured that the proportion of patients in the two groups was similar

Aspects	Paper # 6
rispects	
Title / Question	Deep learning to differentiate parkinsonian disorders separately using
	single midsagittal MR imaging: a proof of concept study
Objectives/ Goal	
	To evaluate the diagnostic performance of deep learning with the
	convolutional neural networks (CNN) to distinguish each representative
	parkinsonian disorder using MRI
Methodology/	They used CNN to find the solution.
Theory	
Software Tools	
	Python, Keras, EZR software ver. 1.33 for statistical analyses
Test/	They trained the CNN to distinguish each parkinsonian disorder using
Experiment	single mid-sagittal T1-weighted MRI with a training group to minimize
	the differences between predicted output probabilities and the clinical
	diagnoses; then, we adopted the trained CNN to the validation data set.
Result/	The accuracy of diagnostic performances regarding PD, PSP, MSA-P,
Conclusion	and normal subjects were 96.8, 93.7, 95.2, and 98.4%, respectively.
	The areas under the receiver operating characteristic curves for
	distinguishing each condition from others (PD, PSP, MSA-P, and normal
	subjects) were 0.995, 0.982, 0.990, and 1.000, respectively
Terminology	Artificial intelligence . Parkinson disease . Magnetic resonance imaging . ROC
	curve . Deep learning
	1 0

Student's Id and Name: 17183103020, Syeda Nowshin Ibnat

Aspects	Paper #7
Aspects	
Title / Question	Deep Learning-Based Alzheimer Disease Detection.
Objectives / Goal	The objective of this work is to present a framework based on deep
	convolutional neural networks for Alzheimer's disease detection in
	terms of accuracy.
Methodology/	The proposed methodology consists of two steps- preprocessing and
Theory	network training.
	network truming.
	1) For preprocessing, MRI samples were converted into JPEG
	slices in the MATLAB tool.
	2) For network training, the architecture consists of three sets of
	convolutional and max-pooling layers.
Software Tools	Anaconda, Keras, Tensor- flow
Test/ Experiment	Experiments are conducted using ADNI dataset.
Simulation/	A total of 9540 images were used for training the network and 4193
Test Data	images for testing.
Result /	Model accuracy is 98.57% and the validation accuracy is 87.72%.
Conclusion	
Obstacles/	Fails to interpret the reasoning behind the result obtained.
Challenges	
L	

Terminology	Alzheimer's Disease, Convolutional Neural Network, Deep Learning,
	MRI, DCNN.
Review	From this article we got to know about AD detection using CNN. The
Judgment	accuracy rate is decent for this model but slightly less than some other
	work.
Review Outcome	In this article, they used deep convolutional neural networks for
	Alzheimer's disease detection in terms of accuracy. From this work,
	we got an overview of how to gain the utmost accuracy.

Aspects	Paper # 8
Aspects	
Title / Question	A CNN Model: Earlier Diagnosis and Classification of Alzheimer
	Disease using MRI.
Objectives/ Goal	The objective of this work is to make the best prediction and detection
	tools for the help of radiologists, doctors, caregivers to save time, cost,
	and help the patient suffering from this disease.
Methodology/	A plan was created for each step that customized the needs and the steps
Theory	included MRI data collection, preparing of collected data, training, and
	testing of the data.
Software Tools	The implementation of the model has been done using Anaconda for
	Python and TensorFlow.
Test/ Experiment	Both training along with a testing set containing a total of 7635 number
	images. Randomly select 80% of training data, and 20% of remaining
	data is used for validation of the model.

Simulation/	This model achieved the test accuracy rate of 0.99% and low percentage
Test Data	of test loss with the rate of 0.0571 and the train and test model using
	7635 images.
Result/	A significant accuracy of 99% has been achieved.
Conclusion	
Obstacles/	MRI data collection and data processing.
Challenges	
Terminology	Alzheimer's Disease, Deep Learning, Convolutional Neural Network,
	Magnetic Resonance Imaging, ADNI.
Review	From this article we gained knowledge of earlier diagnosis and
Judgment	classification of Alzheimer Disease. The accuracy rate is decent for this
	model and slightly more than other works.
Review Outcome	From this work we got an overview of how to gain the utmost accuracy
	from a model. We can use this knowledge for our own work.
	model and slightly more than other works. From this work we got an overview of how to gain the utmost accuracy

Aspects	Paper # 9
Title / Question	Deep learning based diagnosis of Parkinson's disease using
	convolutional neural network.
Objectives / Goal	The objective of this work is to classify the MR images of healthy
	control and Parkinson's disease subjects using deep learning neural
	networks.
Methodology/	For this work, the AlexNet model is used as the CNN architecture
Theory	which comprises different layers. Transfer learning is applied to the
	pre-trained AlexNet model, and the classification accuracy measures to
	evaluate the model for a given input image dataset.

Software Tools	Python, tensorflow.
Test/ Experiment	For the experiment, AlexNet has been pre-trained with color images of
	size 227 X 227 pixels and processed in their respective layers, from
	input to output. The image dataset with 80% of the input data is used for
	training and the remaining 20% is used for testing.
Simulation/	The PPMI cohort used in this study consists of 182 subjects with 82
Test Data	Healthy Control and 100 Parkinson's disease subjects. The model
	accuracy is 88.90%. Sensitivity and specificity values of 89.30% and
	88.40% are exhibited by this architecture respectively.
Result/	The model is trained to learn the low level to high-level features and the
Conclusion	classification results are validated. An accuracy of 88.90% is achieved
	for classifying the HC and PD subjects.
Obstacles/	The proposed methodology is not extended on deep fine-tuning of the
Challenges	AlexNet model to obtain improved performance levels.
Terminology	Parkinson's Disease, MRI, Deep Learning, AlexNet, Convolutional
	Neural Networks, Deep Learning.
Review	This work got less accuracy than some other models.
Judgment	
Review Outcome	Transfer learning gives better result for parkinson's disease detection.

Aspects	Paper # 10
Title/ Question	Diagnosis of Parkinson's disease using deep CNN with transfer learning and data augmentation.
Objective/ Goal	The objective of this work is to propose a method that offers an improved diagnosis of Parkinson's disease compared to state-of-the-art research.

Methodology/	1. Accommodate the variety of contrasting images and reduce some
Theory	noise.
	2. Data augmentation procedures to address the issue of the dataset's
	limited size and to improve the performance of the proposed
	approach.
	3. Transfer learning is applied to the pre-trained Alex-Net, and the
	last few layers are replaced to accommodate new categories of
	images for our application.
	4. The performance of the model proposed is evaluated on test MR
	images of HC and PD patients.
Software Tools	Keras software with Theano, Python 2.7.0.
Test/	The approach proposed is analyzed using 72 MR images of HC and PD
Experiment	patients with a proportion of 1:1. The test images are only used once for a
	single said purpose.
Simulation/	A total of 504 images are collected, and 360 images are used to augment
Test Data	data. The increased data set of this model is as many as 4200 images.
Result/	The deep learning model proposed here shows an excellent differential
Conclusion	fluency by reporting the 0.9723 AUC value from the ROC curve. The
	scope of the proposed model can be further expanded to bring the
	AlexNet model fine-tuning within its ambit for obtaining superior
	working results.
Obstacles/	Data processing.
Challenges	
Terminology	Parkinson's disease, GenerativeAdversarial Network, Alex-Net, Transfer
	learning, Overfitting.
Review	For this work AlexNet model has been used which made it diffferent from
Judgment	other works.

Review	We have to do data processing carefully for our own work.
Outcome	

Paper # 11
Dementia Detection and Classification from MRI Images Using Deep
Neural Networks and Transfer Learning.
The objective of this work is to present a new approach in the field of
Deep Machine Learning, that comprises both DCNN (Deep
Convolutional Neural Network) model and Transfer Learning model to
detect and classify dementia disease.
The methodology of this work includes the following steps:
(1) Image pre-processing, (2) feature extraction, and (3) Learning
classification model.
All the experiments are performed using Keras software with Theano as
a deep learning backend in python 2.7.0 software
In this paper, MRI images from the OASIS 1 dataset are being used for
the detection of dementia . Each class contains 14 subjects that were
used to train the DCNN training model.
This data set consists of a cross- sectional collection of about 416
subjects, who are aged between 18 to 96 years and in a total of 436
imaging sessions.
DCNN model produced an important classification accuracy of
81.94%. In opposition, the Transfer Learning model resulted in an
accuracy of 68.13%. Results showed that the DCNN model achieved
significant accuracy for better Dementia diagnosis.

Obstacles/	This work did not use a large brain dataset in a wide range of subjects
Challenges	which could improve the accuracies of these Learning models by
	yielding better results.
Terminology	DCNN, Transfer Learning, Dementia, MRI, Bag of features, K-means.
Review	This work makes a comparison between CNN and Transfer learning as
Judgment	per the objective of their work which differentiates this work from the
	other works.
Review Outcome	DCNN model achieved significant accuracy for better Dementia
	diagnosis.

Paper # 12
DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer
Diseases and Dementia From MR Images.
The objective of the proposed model is to detect the dementia stages
from MRI and also predict AD classes in order to assess the efficacy of
the proposed model.
This model contains four main steps: data pre-processing, balancing the
dataset using SMOTE and classification using DEMNET.
Anaconda, TensorFlow.
The confusion matrix of DEMNET architecture with SMOTE technique
to classify the dementia stages to predict AD.

Simulation/	The AD dataset consists of 6400 MR Images. Dataset distribution after
Test Data	SMOTE tech- nique increased to 12800 images, with each class
	containing 3200 images. The dataset is divided into 80% training, 10%
	validation, and 10% for testing.
	, ,
Result/	This model is tested with testing data consisting of 4 classes and
Conclusion	achieved an overall accuracy of 95.23% with 97% AUC when
	compared to the existing methods.
Obstacles/	Major class imbalance problem of the dataset.
Challenges	
Terminology	Deep learning, Alzheimer's Disease, MRI image, Convolutional Neural
Terminology	Network.
	Network.
Review	The objective of the proposed model is to detect the dementia stages
Judgment	and to predict AD classes. The model achieved a descent accurecy
	when compared to the existing methods.
Review	For our work we can use the SMOTE technique to eradicate the class
Outcome	imbalance problem of the dataset.

Student's Id and Name: 17183103022, Rakibul Ahasan

A 4	Paper # 13
Aspects	
Title/ Question	Auto-Detection of Alzheimer's Disease Using Deep Convolutional
	Neural Network
Objectives/Goal	The objective of this work is to present a DCNN for diagnosing the
	diseases of AD/MCI and Achieve a high level of accuracy.
Methodology/Th	For this work, Firstly, the structural MRIs are pre-processed in a
eory	strict pipeline. Then, instead of parcellating regions of interest, Each
	volume is re-sliced and resliced images put into a DCNN
	directly. Finally, four stages of Alzheimer's are identified.
Software Tools	Adni database, grinder pipeline(data processing framework),
	FSL-BET toolbox(brain extraction),3.0 tesla SIEMENS
	scanners,SPM toolbox (segmented brain into GM, WM, and CSF)
Test/	
	When downloading data from the ADNI database, NII has selected
Experiment	the format data.
	In order to obtain the data with the same parameters to avoid many
	other problems in processing procedure, the pre-processed data
	were preferred here.
	The steps of pre-processing include gradient unwarping and a
	nonparametric non-uniformed bias correction (N3) algorithm, both
	can be done with Grinder Pipeline. The structural MR images were
	obtained from 3.0 tesla SIEMENS scanners.
Simulation/	http://adni.loni.usc.edu/
Test Data	Data has been selected from different phases of ADNI.In the first
	group 785 normal controllers, 542 MCI patients, and 336 AD
	patients from ADNI1 and ADNI-GO were picked. In the second

	group, 1106 normal controllers, 1583 early mild cognitive
	impairment (EMCI), 1304 late mild cognitive impairment (LMCI),
	and 336 NC were picked. The age of all the subjects ranges from 60
	to 85 years old. There is no noticeable difference between these
	three groups in terms of gender and age.
Result/	The accuracy of classifying NC with AD is 95.45%, the accuracy of
Conclusion	classifying NC with MCI is 95.39% and the accuracy of classifying
	NC with AD is 93.97%. The convolutional neural network
	framework implemented here offers much more accuracy. The
	results show that the DCNN outperforms existing methods.
	AD patients are much smaller than the groups of EMCI, LMCI, and
	normal controllers.
Obstacles/	
Challenges	The Challenges in this paper, Selecting data from different stages of
	ADNI, AD/MCI detection using DCNN, MRI data collection, and
	data processing.
Terminology	Deep Learning; Alzheimer's Disease; MRI; Early Diagnose;
Review	From this article, we got to know about AD/MCI detection using
Judgment	DCNN. The convolutional neural network framework implemented
	here offers much more accuracy and the results show that the
	DCNN outperforms existing methods.
Review	In this paper, In order to achieve the best result, They tried several
Outcome	activation functions. Finally, the Relu activation function was
	adopted. 3 classes of tasks including AD versus NC, AD versus
	MCI, and MCI versus NC are considered. Each task was repeated
	10 times in order to check the robustness of the performance. From
	this work, we got an overview of how to gain the utmost accuracy.

Aspects	Paper # 14
Aspects	
Title/ Question	Early Diagnosis of Alzheimer' Disease with Deep Learning
Objectives/Goal	Diagnosis of AD and MCI based on deep learning architecture. To
	overcome the bottleneck and aid the diagnosis of AD and its
	prodromal stage, Mild Cognitive Impairment (MCI).
	Analyzing multiple classes in one setting, and requires less labeled
	training samples and minimal domain prior knowledge. A significant
	performance gain on the classification of all diagnoses, groups
	achievement in these experiments
Methodology/Th	Extracted the grey matter volumes from MRI and CMRGlc patterns
eory	from PET. The features were further selected with Elastic Net
	before each classification task. To support the sigmoidal decoder, all
	the features are normalized to zero-mean and between 0 and 1.
Software Tools	ADNI database, Elastic Net, MATLAB 2013a, LIBSVM library,
TD /	
Test/	Extracted the grey matter volumes from MRI and CMRGlc patterns
Experiment	from PET. The features were further selected with Elastic Net
	before each classification task. To support the sigmoidal decoder, all
	the features are normalized to zero-mean and between 0 and 1.
	Implemented the deep learning framework described in this paper
	on Matlab 2013a. A random search in a log domain was applied to
	choose the hyper-parameters. Used single-kernel SVM (SK-SVM)
	and multi-kernel SVM (MK-SVM) were chosen to compare with
	the proposed method.
Simulation/	Used the neuroimaging data obtained from Alzheimer's disease
Test Data	Neuroimaging Initiative (ADNI) database.Recruited the MRI

	images of 311 subjects from the ADNI baseline cohort, including 65
	AD subjects, 67 cMCI subjects, 102 ncMCI subjects and 77 normal
	control subjects.All the MRI images are nonlinearly registered to
	the ICBM_152 template and further segmented into 83 functional
	regions.
Result/	The deep learning method produced a better overall accuracy
Conclusion	(87.76%) in binary.
Obstacles/	
Challenges	neuroimaging data processing,
Terminology	Alzheimer's disease, neuroimaging, classification
Review	From this article, we got to know how to diagnose AD and MCI
Judgment	based on deep learning architecture. To overcome the bottleneck and
	how to aid diagnosis of AD
Review	The SVM method conducts AD diagnosis as a multi-class
Outcome	classification task, with minimal prior knowledge dependency in the
	model optimization. The proposed method also performs
	dimensionality reduction and data fusion at the same time to reserve
	the synergy between data modalities.
	the synergy between data modanties.

Aspects	Paper # 15
Title/ Question	Deep Learning-based Pipeline to Recognize Alzheimer's Disease
	using fMRI Data
Objectives/Goal	Diagnosis of Deep Learning-based Pipeline to Recognize
	Alzheimer's Disease using fMRI Data. Deploying a convolutional
	neural network to distinguish an Alzheimer's brain from a normal,

	healthy brain.
Methodology/Th	Employ a convolutional neural network to distinguish an
eory	Alzheimer's brain from a normal, healthy brain and the most
	problematic aspect has always been selecting the strongest
	discriminative features. Using the Convolutional Neural Network
	(CNN) and the famous architecture LeNet-5, successfully classified
	functional MRI data of Alzheimer's subjects from normal controls.
Software Tools	FMRIB Software Library v5.0, LeNet-5,convolutional neural
	network (CNN)
Test/	Employ a convolutional neural network to distinguish an
Experiment	Alzheimer's brain from a normal, healthy brain and the most
	problematic aspect has always been selecting the strongest
	discriminative features. Using the Convolutional Neural Network
	(CNN) and the famous architecture LeNet-5, successfully classified
	functional MRI data of Alzheimer's subjects from normal
	controls.Classified AD data from normal control data using CNN
	deep learning architecture (LeNet), which was trained and tested
	with a massive number of images. First, anatomical scans were
	performed with a 3D MP-RAGE sequence (TR=2s, TE=2.63 ms,
	FOV=25.6 cm, 256 x 256 matrix, 160 slices of 1mm thickness).
	Next, functional scans were obtained with an EPI sequence (150
	volumes, TR=2 s, TE=30 ms, flip angle=70, FOV=20 cm, 64 x 64
	matrix, 30 axial slices of 5mm thickness, no gap).
Simulation/	In this work, 28 Alzheimer's disease (AD) patients and 15 normal
Test Data	control (NC) subjects (24 female and 19 male) with a mean age of
	74.9 5.7 years were selected from the ADNI dataset.
Result/	The accuracy of testing data reached 96.85%. The rate of accuracy
Conclusion	achieved in this work was very high. and confirming that the
	network architecture was correctly selected.

Obstacles/	challenges in traditional medical image processing, data processing,
Challenges	Classifying clinical data in the medical conditions
Terminology	Deep learning; Alzheirmer's Disease; fMRI
Review	This experiment suggests that the shift and scale-invariant features
Judgment	extracted by CNN followed by deep-learning classification
	represents the most powerful method of distinguishing clinical data
	from healthy data in fMRI. This approach also allows for the
	expansion of the methodology to predict more complicated systems.
	This deep learning solution and the proposed pipeline not only open
	new avenues in medical image analysis, but also enable researchers
	and physicians to potentially predict any new data. This deep
	learning solution and the proposed pipeline not only open new
	avenues in medical image analysis, but also enable researchers and
	physicians to potentially predict any new data and classified AD
	data from normal control data with 96.86% accuracy using CNN
	deep learning architecture (LeNet).
Review	From this work we got an overview of how to gain the utmost
Outcome	accuracy from a model .The importance of classifying this type of
	medical data lies in its potential to develop a predictive model or
	system in order to recognize the symptoms of Alzheimer's disease
	when compared with normal subjects and to estimate the stages of
	the disease. We can use this knowledge for our own work.

Aspects	Paper # 16
Title/ Question	Detection of Parkinson Disease in Brain MRI using Convolutional Neural Network
Objectives/Goal	The objective of this work is the Detection of Parkinson's Disease in
	Brain MRI using a Convolutional Neural Network. This paper

	presents a Convolutional Neural Network (CNN) based automatic
	diagnosis system which accurately classifies PD and healthy control
	(HC).
	(IIC).
Methodology/Th	The proposed system receives MR images as input, which is
eory	eventually labeled as PD or HC. The model contains a total number
	of 8 major layers. Generally, these techniques work on hand-crafted
	features. CNN is implemented on the NVIDIA GeForce 940MX
	CUDA-enabled GPU using Keras. All the MRI scans are
	downloaded in DICOM format.convert images from DICOM to
	JPEG format by using software package of DICOM-to-JPEG.
Software Tools	python, keras, Theano - Tensorflow library, MATLAB
	py mon, norms, 2 norms 2 on 10 norms, 1 norms, 1 norms, 2 norms
Test/	The midbrain slices of 500, T2-weighted MRI are selected and
Experiment	aligned using the image registration technique. The performance of
Experiment	
	the proposed technique is evaluated using accuracy, sensitivity,
	specificity and AUC (Area Under Curve). Several experiments are
	performed with different network settings. Network settings include
	kernel size, batch size, stride, and padding. During the training of
	the model, validation and training accuracies are recorded after each
	epoch. Each time after training the model is tested on the test set.
	Furthermore, data is divided into training, validation and testing sets
	with a ratio of 70%, 10%, and 20% respectively.
Simulation/	(http://www.ppmiinfo.org) The dataset used in this research is
Test Data	obtained from PPMI.The midbrain slices of 500, T2-weighted MRI
	are selected and aligned using the image registration technique. 22
	is collected against each patient's data. The data contains 250 MRI
	scans of PD while 250 for HC.
Result/	CNN achieved a better performance from 3% - 9% in terms of
Conclusion	accuracy, sensitivity, specificity, and AUC. Each time after training
Conclusion	accuracy, sonsitivity, specificity, and 1100. Lacif time after training

	the model, is tested on the test set. In all experiments, the
	classification accuracy fluctuates between 95 to 98%. The green line
	shows the validation accuracy while the blue line represents the
	training accuracy. the training vs validation loss where the x-axis
	shows the number of epochs and the y-axis shows the loss.
Obstacles/	The Challenges in this paper, Selecting data from different stages of
Challenges	ADNI, AD/MCI detection using CNN, MRI data collection, and
	data processing, limited dataset was a major issue.
Terminology	Parkinson Disease, MRI, Deep Learning, Convolutional Neural
	Network, CNN
Review	In the paper, a limited dataset was a major issue., leading the CNN
Judgment	model towards overfitting. The detailed comparison in the result
	section shows that CNN achieved a better performance from 3% -
	9% in terms of accuracy, sensitivity, specificity, and AUC when
	compared to some existing techniques.
Review	From this work we got an overview of how to gain the utmost
Outcome	accuracy from a model. We can use this knowledge for our own
	work. In this paper, the limited dataset was a major issue. For our
	work, we can use dropout layers in the network for the overfitting
	problem.

Aspects	Paper # 17
Title/ Question	Early Diagnosis of Parkinson's Disease in brain MRI using Deep Learning Algorithm.
Objectives/Goal	Detection of PD is done using deep learning algorithms to discriminate between PD and controlled subjects. Using the

ork (CNN) and the LeNet-5 architecture,
was successfully classified from the
•
From Parkinson's Progression. Markers
ARI dataset was in DICOM format and
the images were labelled for the
ol data. At the end, the last few slices of
as they didn't contain any functional
of the images), Python
, , , , , , , , , , , , , , , , , , ,
veighted (T1w) MRI images based on a
D MRI dataset was in DICOM format
ards, the images were labelled for the
rol data. At the end, the last few slices of
as they didn't contain any functional
ntaining useful images was then divided
a, 90% of the images was for training
esting.
From Parkinson's Progression. Markers
el was trained using a big dataset
Loss function was used to measure how
ified the PD subjects. For this work, 30
ontrolled subjects (with ages from 60 to
he mentioned dataset.
ed using LeNet-5 architecture with
e and dropout algorithm. No batch
d, training accuracy and test accuracy

	were 96.65% and 97.62% respectively. The model loss was 0.07%. Which batch normalization was performed, the training accuracy and test accuracy were 95.44% and 97.92% respectively. The loss
	was 0.05%.
Obstacles/ Challenges	MRI data collection, and data processing.
Terminology	LeNet-5, Parkinson's disease, Python, Deep Learning, Keras, CNN
Review	In this research, the chance of curing increases significantly if
Judgment	appropriate steps are taken early and precious time could be saved if the detection process is carried by a computer. The diagnosis of Parkinson's Disease data was successfully performed, with and without batch normalization. 97.92% accuracy was achieved.
Review	For our work, This research may open scope for analysing medical
Outcome	or neuro images. We can use this knowledge for our own work.

Aspects	Paper # 18
Title/ Question	Alzheimer's Disease And Dementia Detection From 3D Brain MRI
	Data Using Deep Convolutional Neural Networks.
Objectives/Goal	Alzheimer's Disease And Dementia Detection From 3D Brain MRI
	Data Using Deep Convolutional Neural Networks Diagnosis. In this
	paper an alternative approach has been discussed, that is fast, costs
	less and is more reliable. 3D MRI Images Introduce a Sophisticated
	Deep Convulsive Neural Network to Detect Alzheimer's Disease
	and Dementia.
Methodology/Th	This thesis work has been done using OASIS data. The problem this
eory	thesis work is trying to solve is a supervised classification problem

	problem. Clinical Dementia Rating or CDR score is the basis of the
	classification. The main concern here is the attribute named CDR. If
	the CDR score is greater than Zero then the person has Alzheimer's
	disease. And if CDR=0 then-No Alzheimer's disease. So it is now a
	binary classification problem. Our Xinput is a 3D MRI scan and Y
	input is whether the person has Alzheimer's disease or not (1 or 0).
	CDR scores for all subjects are not given. Some have NaN CDR
	scores. In this thesis NaN CDR score has been replaced by 1. Since
	Alzheimer's disease mostly affects the Gray matter of the Brain,
	while image pre-processing white matter and gray matter have been
	divided from each MRI using. Gray matter has been the main
	concern.
Software Tools	Python,OASIS data, Support Vector Machine (SVM)
Test/	The main concern here is the attribute named CDR. If the CDR
Experiment	score is greater than Zero then the person has Alzheimer's disease.
	And if CDR=0 then-No Alzheimer's disease. So it is now a binary
	classification problem. Our Xinput is a 3D MRI scan and Y input is
	whether the person has Alzheimer's disease or not (1 or 0). CDR
	scores for all subjects are not given. Some have NaN CDR scores.
	In this thesis, the NaN CDR score has been replaced by 1. Since
	Alzheimer's disease mostly affects the Gray matter of the Brain,
	while image pre-processing white matter and gray matter have been
	divided from each MRI using. Gray matter has been the main
	concern.
Simulation/	This thesis work has been done using OASIS data. The dataset has
Test Data	416 Subjects cross-sectional brain MRI data and all of them were
	diagnosed from mild to severe dementia and non dementia.
	l l

Result/	Using Support Vector Machine (SVM) to detect Alzheimer's
Conclusion	Disease with the OASIS dataset accuracy level of 80%. Another
	thesis using v-SVM an alternative formulation of SVM to detect
	Alzheimer's Disease with the OASIS dataset accuracy level of 92%
Obstacles/	
Challenges	Most of the modern deep learning models can not represent
	uncertainty perfectly. So, the Challenge is how well the neural
	network performs in the case of 3D Neuroimaging data.
Terminology	Neural Networks, Deep Learning, 3D Brain MRI, Alzheimer's
	Disease And Dementia, Machine Learning, Big Data, High
	Dimensional Input.
Review	From this article, fast, costs less, and more reliable detection of
Judgment	Alzheimer's Disease and Dementia from 3D MRI images.
Review	For our work, we can use the Vector Machine (SVM) technique to
Outcome	detect Alzheimer's Disease with the dataset. We can use this
	knowledge for our own work.
L	

Student's Id and Name: 17183103008, Nusrat Jahan Anka

	Paper # 19
Aspects	_
Title / Question	Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer's disease, Parkinson's disease, and schizophrenia.
Objectives / Goal	The main objective of the proposed model are -
Methodology/ Theory	 To detect these disorders at the earliest stage possible so that their progress can be slowed down, if not fully stopped. To critically examine and compare performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer's disease, Parkinson's disease, and schizophrenia—from MRI data. In this article, Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM), Deep Neural Network (DNN), and
	Autoencoder (AE) methods were proposed.
Software Tools	DL algorithms in computer vision.
Test / Experiment	DL methods in detecting neurological disorders from MRI datasets.
Simulation/Test Data	Free parameters are being used in this article.
Result/	The highest accuracy 98.09 of schizophrenia detection has been
Conclusion	
Conclusion	observed which has employed 3D-CNN-based classification. By
	using 3D-CNN achieved 100% accuracy on the validation and test
	sets for PD diagnosis. At the same time, the study in discriminated PD from typical parkinsonian syndromes had 85.7% test accuracy.
	1 D from typical parkinsonian syndronies had 63.7% test accuracy.

Obstacles/	DL algorithms present impact and accurate solutions for large
Challenges	datasets. However, high-dimensional CNN such as 2D-CNN and
	3D-CNN will provide high accuracy for the large and multimodal
	neuroimages. On the other hand, Generative Adversarial Networks
	(GAN) can generate synthetic neuroimages which may also be used
	along with CNN. Adversarial noise can add to the neuroimages and
	may reduce the classification accuracy. Thus, the cancellation of
	adversarial errors is a challenge.
Terminology	Machine learning, Alzheimer's disease, Parkinson's disease,
	Schizophrenia, Neuroimaging.
Review	In this article, it is shown that using 3D-CNN 100% accuracy can
Judgment	be achieved easily for PD diagnosis.
Review Outcome	I am going to prepare a new methodology which is single deep
	CNN. I am going to use it to detect the disease.

Aspects	Paper # 20
Title / Question	A review of Parkinson's disease.
Objectives / Goal	Collect the basic information on Parkinson's disease.
Methodology/	Although there is no cure, there are several management options for
Theory	the early treatment of PD. As the disease progresses, further treatment options are available; however, the management of late-stage motor complications and non-motor symptoms remains particularly challenging and will benefit from further clinical research.
Software Tools	No software tools are being used.
Test/ Experiment	Google collab, Keras

Simulation/Test	Hyper-parameter optimization methods
Data	
Result/	A large number of agents together with surgical interventions are
Conclusion	now available to treat early and late complications of PD. Increasing
	attention is being given to the diagnosis and treatment of non-motor
	complications in PD
Obstacles/Challe	It's a review paper of previous papers which were related to
nges	Parkinson's disease. So no challenges came up.
Terminology	Parkinson's, disease, review, clinical diagnosis.
Review	This paper focuses on the basic information on Parkinson's disease.
Judgment	
Review Outcome	From this paper we learned the importance of detecting parkinson
	disease.

Aspects	Paper # 21
1	
Title / Question	A Survey on Deep Learning for Neuroimaging-Based Brain Disorder
	Analysis
Objectives / Goal	This paper reviews computer-aided analysis of four typical brain
	disorders, including Alzheimer's disease, Parkinson's disease, Autism
	spectrum disorder, Schizophrenia, and importantly, the limitations of
	existing studies and present possible future directions discussed.
Methodology/	Deep learning methods using structural magnetic resonance imaging
Theory	(MRI), functional MRI, and positron emission tomography (PET)
Software Tools	Platform - Linux, Windows, Android, Javascript.
	Language - C, C++, JAVA, Python, MATLAB.
	Caffe, Deeplearning4j, TensorFlow, Pytorch as open-source toolkits
	being used.
Test/ Experiment	Through analyzing and discussion using deep learning they do their
	work.

Simulation/Test	Hyper-parameter optimization methods, including manual (e.g., grid
Data	search and random search) and automatic (e.g., Bayesian
	Optimization), are proposed
Result/	This paper reviewed the most recent studies on the subject of applying
Conclusion	deep learning techniques in neuroimaging-based brain disorder
	analysis and focused on four typical disorders.
Obstacles/	It is difficult to trust these predictions based on features you cannot
Challenges	understand. The lack of sufficient training data in neuroimage analysis
	has been repeatedly mentioned as a challenge to apply deep learning
	algorithms. To address this challenge, a data augmentation strategy
	has been proposed, and it is widely used to enlarge the number of
	training samples. An effective fusion of multimodal data has always
	been a challenge in the field.
Terminology	Neuroimaging, Parkinson's, Alzheimer's, Deep CNN, MRI, PPMI.
Review	Through this approach we are able to understand the importance of
Judgment	deep learning over machine learning.
Review Outcome	This paper provides a comprehensive overview of deep learning
	techniques and popular network architectures by introducing various
	types of deep neural networks and recent developments. however,
	using deep learning for implementation was the best choice to get
	their desirable result.

Aspects	Paper # 22
Title / Question	Deep Learning Based Binary Classification for Alzheimer's Disease Detection using Brain MRI Images
Objectives / Goal	The proposed method classifies diseases like Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal control (NC).

Methodology/	This paper methodology includes two steps preprocessing and
Theory	network training.
Software Tools	Tensorflow
Test / Experiment	In this paper, the ADNI dataset is being used.
Simulation/Test	Hyper Parameters.
Data	
Result/	98.57% accuracy on the dataset without using any handcrafted
Conclusion	features for training the network. Validation accuracy achieved is
	87.72%.
Obstacles/	To achieve the highest accuracy.
Challenges	
Terminology	Alzheimer's disease · Convolutional neural network · Deep learning ·
	MRI · Neurological disorder
Review	Here, they were able to achieve the highest accuracy than other
Judgment	existing proposed systems.
Review Outcome	After reviewing their results we were inspired and decided that we
	will prepare a new methodology which is a single deep CNN to detect
	the disease.

Aspects	Paper # 23
Title / Question	Automatic Alzheimer's Disease Recognition from MRI Data Using Deep Learning Method.
Objectives / Goal	 To get the highest accuracy. Resulting in an accurate recognition.

Theory Software Tools Tensorflow, google collab etc. Test/ Experiment Testing CNN is being proposed to extract seven middle cross-sections as patches. Since not all patches are abnormal in AD cases, only when all seven patches were classified as NC, here, considered the data as NC. Simulation/Test The MRI data acquired from Alzheimer's Disease Neuroimaging Initiative (ADNI) database Result/ Conclusion This paper achieved sensitivity at a patch level is 0.69 and specificity is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN Review This paper specifically defined each segment which is really
Test/ Experiment Testing CNN is being proposed to extract seven middle cross-sections as patches. Since not all patches are abnormal in AD cases, only when all seven patches were classified as NC, here, considered the data as NC. Simulation/Test The MRI data acquired from Alzheimer's Disease Neuroimaging Initiative (ADNI) database Result/ Conclusion This paper achieved sensitivity at a patch level is 0.69 and specificity is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
Test/ Experiment Testing CNN is being proposed to extract seven middle cross-sections as patches. Since not all patches are abnormal in AD cases, only when all seven patches were classified as NC, here, considered the data as NC. Simulation/Test The MRI data acquired from Alzheimer's Disease Neuroimaging Initiative (ADNI) database Result/ Conclusion This paper achieved sensitivity at a patch level is 0.69 and specificity is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
as patches. Since not all patches are abnormal in AD cases, only when all seven patches were classified as NC, here, considered the data as NC. Simulation/Test The MRI data acquired from Alzheimer's Disease Neuroimaging Initiative (ADNI) database Result/ This paper achieved sensitivity at a patch level is 0.69 and specificity is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
as patches. Since not all patches are abnormal in AD cases, only when all seven patches were classified as NC, here, considered the data as NC. Simulation/Test The MRI data acquired from Alzheimer's Disease Neuroimaging Initiative (ADNI) database Result/ This paper achieved sensitivity at a patch level is 0.69 and specificity is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
all seven patches were classified as NC, here, considered the data as NC. Simulation/Test The MRI data acquired from Alzheimer's Disease Neuroimaging Initiative (ADNI) database Result/ Conclusion This paper achieved sensitivity at a patch level is 0.69 and specificity is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
NC. Simulation/Test Data The MRI data acquired from Alzheimer's Disease Neuroimaging Initiative (ADNI) database Result/ Conclusion is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
Simulation/Test The MRI data acquired from Alzheimer's Disease Neuroimaging Initiative (ADNI) database This paper achieved sensitivity at a patch level is 0.69 and specificity is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93.
Result/ This paper achieved sensitivity at a patch level is 0.69 and specificity is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
Result/ This paper achieved sensitivity at a patch level is 0.69 and specificity is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
Conclusion is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
Conclusion is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
Conclusion is 0.98. When using the AD detection rule which was mentioned in the testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
testing section, the case level sensitivity is 1 and specificity is 0.93. Obstacles/Challe In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
nges layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
normalization layer which was really challenging. Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
Terminology Alzheimer's Disease, AD, Recognition, Magnetic Resource Imaging, MRI, Deep Learning, Convolutional Neural Network, CNN
MRI, Deep Learning, Convolutional Neural Network, CNN
Review This paper specifically defined each segment which is really
Fup From the results of th
Judgment important. The proposed system is built and tested with the MRI data
acquired from Alzheimer's Disease Neuroimaging Initiative (ADNI)
database
Review Outcome This paper describes an automatic AD recognition algorithm that is
based on deep learning on 3D brain MRI. From this work, we got an
overview of how to gain the utmost accuracy.

	Paper # 24
Aspects	
Title / Question	
	Early Detection of Parkinson's Disease Using Deep Learning and
	Machine Learning
	A:
Objectives / Goal	Aims to contribute to the PD diagnosis process by using a
	convolutional neural network, a type of deep neural network
	architecture, to differentiate between healthy controls and PD patients.
	This paper focused on discovering deviations in patients' movements
	with the use of drawing tasks.
Methodology/	CNN model is being used in this paper.
Theory	
Software Tools	Keras, Google collab
Test / Experiment	The compact model has the potential to be developed into an offline
	real-time automated single-task diagnostic tool, which can be easily
	deployed within a clinical setting.
Simulation/Test	Using three steps the simulation was done.
Data	
Result/	With 93.5% accuracy, a convolutional classifier, trained with images
Conclusion	of the pentagon drawing task and augmentation techniques, can be
	used as an objective method to discriminate PD from healthy controls.
Obstacles/	Although the accuracy of the model is competitive against other
Challenges	approaches to get the highest accuracy was a hard challenge for the
	authors. The limitations of this study include (1) its proof-of-concept
	nature; (2) the interpretability of the results typical of using a
	black-box optimization approach; (3) the relatively small size of the
	dataset and its imbalanced nature.
Terminology	Parkinson's, Disease, CNN, Optimization.
Review Judgment	This paper the focus has been on using increasingly complex
	predictive models to raise accuracy rates, with the best accuracies
	achieved using deep architectures and ensemble models.

Review Outcome	After	analy	zing this	papeı	some	problema	tic	issue sho	uld be	erer	minded
	that	large	datasets	are	very	difficult	to	acquire	and	to	detect
	Parki	nson's	disease C	CNN	is best	algorithm	1.				

Student's Id and Name: 17183103043, Sk. Abu Hanif

Aspects	Paper # 25				
Aspects					
Title/ Question	Deep learning based diagnosis of Parkinson's disease using convolutional neural network.				
Objectives/ Goal	The objective of the work is to present a new approach in the field of deep learning models are able to help clinicians in the diagnosis of Parkinson's disease and yield an objective and better patient group classification in the near future.				
Methodology/	The MR image database, pre-processing of the MR images, CNN				
Theory	AlexNet architecture, Transfer learning applied to the pre-trained AlexNet model and the classification accuracy measures to evaluate the model for given input image dataset				
Software Tools	AlexNet, PET, SPECT, PPMI database.				
Test / Experiment	MR image dataset used in this work includes the Healthy Control and Parkinson's disease subjects considered from the PPMI database. AlexNet architecture is able to achieve an accuracy of 88.90%.				
Simulation/	AlexNet has been pre-trained with colour images of size 227 X 227				
Test Data	pixels and process them in its respective layers, from input to output. The image dataset with 80% of the input data is used for training and the remaining 20% is used for testing.				
Result/ Conclusion	The model is trained to learn the low level to high level features and the classification results are validated. An AUC value of 0.9618 is reported from the ROC curve which shows a better discriminative proficiency of the proposed deep learning model				
Obstacles/	The proposed methodology is not extended on deep fine-tuning of the AlexNet model to obtain improved performance levels.				

Challenges	
Terminology	Parkinson's disease, MRI, Deep learning, Convolutional neural networks, AlexNet.
Review Judgment	An accuracy of 88.90% is achieved for classifying the HC and PD subjects. The PPMI cohort used in this study consists of 182 subjects with 82
	Healthy Control and 100 Parkinson's disease subjects.
Review Outcome	In this work, analysis of T2 weighted MR brain images for discrimination of healthy control and PD subjects is attempted using CNN model.

Aspects	Paper # 26
Title/ Question	Unified deep learning approach for prediction of Parkinson's disease
Objectives/ Goal	Internal representations of the trained DNNs constitute the extracted knowledge which is used in a transfer learning and domain adaptation manner, so as to create a unified framework for prediction of Parkinson's across different medical environments.
Methodology/Th eory	Our approach starts by training a deep neural architecture, such as a convolutional, or convolutional-recurrent network to predict the status (PD, or NPD) of subjects. This is based on analysis of medical images, i.e. DaTscans and/or MRI images, collected in a specific medical centre, or hospital. we consider a CNN part that has a well-known structure, such as ResNet-50, generally composed of convolutional and pooling layers, followed by one, or two fully-connected layers.
Software Tools	ML, DaTscans, (PPMI) database, SWEDD, Tensorflow.
Test/ Experiment	The PPMI study includes a cohort of 423 patients with PD, who have been diagnosed for two years or less and do not take PD medications; 196 control subjects, with no PD (NPD). Other categories, such as subjects who have been consented as PD, but whose DaTscans do not reveal dopaminergic deficit (SWEDD), prodromal ones, or subjects with genetic mutations are also followed in the study. As a consequence, the medical image inputs to the DNNs consist of a DaTscan and/or three consecutive MRIs.

Simulation/ Test Data	Parkinson's database has been recently developed [11], based on anonymised data from 75 subjects, 50 subjects with PD and 25 controls, of the Georgios Gennimatas Hospital. It includes at least one DaTscan, in the form of colour image, and many MRIs per subject. In total, it includes 925 DaTscans, 595 of which come from subjects with PD and 330 from controls; and 41528 MRIs, 31147 of which represent PD and 10381 NPD.
Result/ Conclusion	During the last three years, ML techniques, such as support vector machines (SVMs), logistic regression, random forests (RFs), and decision trees have been used for PD diagnosis. Such methods have been applied based on patient questionnaires [16], reporting an accuracy over 95%.
Obstacles/ Challenges	MRI data collection and data processing.
Terminology	Parkinson, ML, DNN, MRI, deep learning, DaTscans, SVMs, RMs, Tensorflow.
Review Judgment	Use of Tensorflow as an interface for PD diagnosis based on medical imaging has been proposed [22], using a neural network model and providing an accuracy of 97.34%. This work high accuracy then some other models.
Review Outcome	At first, we extract appropriate internal features, say features v, from the DNN model trained with the data set developed. We also that the proposed approach can improve Parkinson's prediction in cases and environments where some input data types, e.g. DaTscans, are not available and prediction is made only through MRI analysis.

Aspects	Paper # 27
Title/ Question	Classification of MRI images for Alzheimer's disease detection.
Objectives/ Goal	This paper deals with the important challenge of identification of Alzheimer's disease and the condition prior to dementia which is Mild Cognitive Impairment (MCI), developing intelligent classifiers, which using the information of magnetic resonance imaging, can successfully classify different patients according to their condition.
Methodology/ Theory	This paper presents a new methodology for classification of Alzheimer's disease from MR images for medical support. A large database with more than one thousand patients was used. Two different problems are tackled in this work: a first one where a classification

	method is developed to classify MR images as either normal or with the Alzheimer's disease and a second one for the identification and classification between normal subjects, MCI patients and AD patients.
Software Tools	MATLAB, SPM5.
Test/ Experiment	They used ADNI Dataset. ADNI is a multisite longitudinal clinical/imaging/genetic/biospecimen/biomarker study. Its goal is to determine the characteristics of AD as the pathology that evolves from normal aging to mild symptoms, to MCI, to dementia.
Simulation/ Test Data	Once they were normalized and some images with errors were eliminated, 1350 images (443 are from cognitively normal subjects, 448 from MCI subjects and 459 from AD subjects) are left with a size of 15.7 MB each one, which makes a database of normalized MR images with a size of approximately 21 GB.
Result/ Conclusion	Afterwards and as suggested in previous works [7][8][16], PCA was used to reduce the dimensions of features to a higher degree. Once the principal components and their associated variances were calculated, a number of them that preserves 95% of total variance was kept [16].
Obstacles/ Challenges	They identified the identification of Alzheimer's disease and the condition prior to dementia which is Mild Cognitive Impairment (MCI) as a challenge for them.
Terminology	Support Vector Machine (SVM); Alzheimer's Disease; Mild Cognitive Impairment (MCI); PCA; Wavelets; MRI
Review Judgment	Results show a very high performance in classification results in the NAD problem, higher than 95% for both types of wavelets transformations without the use of PCA feature reduction.
Review Outcome	We study on the optimal slices to perform the classification, the use of other dimensionality reduction algorithms which could attain a reduction in time complexity for the problem, and the study on other databases of the same algorithm proposed here.

	Paper # 29
Aspects	•
Title / Question	Computer-Aided Classification of Multi-Types of Dementia via
	Convolutional Neural Networks
Objectives/	This paper proposes a deep learning- based computeraided diagnosis approach for the early detection of multi-type of dementia.
Goal	approach for the earry detection of matti-type of dementia.
Methodology/	To show the performance of the proposed CAD algorithm, three
Theory	conventional CAD methods are implemented for comparison. This
lifeory	architecture initially builds CNN whose first layer takes the preprocessed
	images as inputs, and then builds logistic regression model to classify all
	examples of dataset into one of different classes of dementia.
Software Tools	Python, pandas.
Tr. 4	A 1 'C' (' C1 (' A 4 1 MD' 11 4 1C 74
Test /	A classification of dementia was tested on MR images collected from 74 different subjects. These images have been stored in the dataset that has
Experiment	been chosen among many datasets available on the Open Access Series of
	Imaging Studies (OASIS) for conducting our experiment.
	All healthy control subjects had a clinical dementia rating (CDR) of 0. On
	the other hand, subjects diagnosed with dementia had a CDR of at least 0.5.
	0.5.
Simulation/	To evaluate the performance of the proposed model when deployed to
Test Data	make prediction on a new unseen data, 7- fold cross validation is
	performed on 734 MRI images.
	After getting preprocessed dataset, seven random datasets are produced to repeat training and testing of model in which 60% of MRI images are
	assigned to the training set while 40% of images are used for testing the
	algorithm.
Result/	The proposed algorithm yields a 74.93% accuracy in early diagnosis of
	multi-type of dementia and outperforms the state of the art CAD methods.
Conclusion	
Obstacles/	The early diagnosis of dementia is a challenging task due to the image
Challenges	quality, noise, and human brain irregularities.
Chancinges	

Terminology	Alzheimer's disease; Brain imaging; Computer-Aided Diagnosis; Convolutional Neural Networks; Dementia; Early diagnosis; Magnetic Resonance Imaging;
Review Judgment	This work got less accuracy then some other models.
Review Outcome	These investigations about the performance of our model could be improved in the future studies.

Aspects	Paper # 30
Title / Question	Deep learning based-classification of dementia in magnetic resonance imaging scans .
Objectives/ Goal	Deep learning is much preferred in image processing applications since it can give fast and important results. This research aims at developing an open source software for deep learning based-classification of dementia in magnetic resonance imaging scans.
Methodology/ Theory	https://www.oasis-brains.org/ In this research, Open Access Series of Imaging Studies-2 dataset includes longitudinal MRI scans in non-demented and demented elder individuals. 3 or 4 individual T1-weighted MRI scans achieved from one scan sessions are contained for each subject. The basic architecture of the concept of deep learning is considered as convolutional neural networks (CNNs).
Software Tools	TensorFlow, Keras, Sklearn, OpenCV, Pandas, NumPy, MatPlotLib, and Flask.
Test/ Experiment	The related individuals are all right-handed and comprise men and women. 72 of the individuals were defined as non-demented during the study. 64 of the subjects were defined as demented at the time of their early visits and ensuing scans were obtained.
Simulation/	The image dataset encapsulates 1592 MRI scans for demented and 2032 MRI scans for non-demented .

Test Data	
Result/ Conclusion	Deep-learning framework is performed with respect to accuracy, sensitivity, specificity, positive and negative predictive values together with 95% confidence interval (CI) levels in training and testing stages. 95% confidence interval values for all the metrics are calculated by our developed software.
Obstacles/ Challenges	The early diagnosis of dementia is a challenging task due to the image quality, noise, and human brain irregularities.
Terminology	Classification, deep-learning, dementia, Keras, magnetic resonance imaging.
Review Judgment	This work got less accuracy then some other models.
Review Outcome	In the researches that will be carried out in the following stages, it may be suggested to develop artificial intelligence based-classification models and softwares that can classify the types of dementia (i.e., vascular, Lewy bodies, frontotemporal, Alzheimer, etc.) and non-dementia status.

2.3 Problem Analysis

Through magnetic resonance imaging (MRI) neurodegenerative disease detection is a common process. Generally, the existing approaches can detect one disease at a time which is time-consuming and expensive. In this thesis work, we will discuss an explainable model while maintaining a high level of learning performance.

2.4 Summary

This chapter investigated and reviewed the latest techniques of neurodegenerative disease detection, including the drawbacks. The thesis's target is to eliminate the imperfections as much as possible and introduce a new model to detect three neurodegenerative diseases at a time.

Reference

- [1] J. Wen *et al.*, "Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation," *Med. Image Anal.*, vol. 63, p. 101694, 2020, doi: 10.1016/j.media.2020.101694.
- [2] L. J. Herrera, I. Rojas, H. Pomares, A. Guillén, O. Valenzuela, and O. Baños, "Classification of MRI images for Alzheimer's disease detection," *Proc. Soc.* 2013, pp. 846–851, 2013, doi: 10.1109/SocialCom.2013.127.
- [3] Y. AbdulAzeem, W. M. Bahgat, and M. Badawy, "A CNN based framework for classification of Alzheimer's disease," *Neural Comput. Appl.*, vol. 33, no. 16, pp. 10415–10428, 2021, doi: 10.1007/s00521-021-05799-w.
- [4] P. M. Shah, A. Zeb, U. Shafi, S. F. A. Zaidi, and M. A. Shah, "Detection of Parkinson disease in brain mri using convolutional neural network," *ICAC 2018 2018 24th IEEE Int. Conf. Autom. Comput. Improv. Product. through Autom. Comput.*, no. September, pp. 1–6, 2018, doi: 10.23919/IConAC.2018.8749023.
- [5] W. Feng *et al.*, "Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process," *Int. J. Neural Syst.*, vol. 30, no. 6, pp. 1–14, 2020, doi: 10.1142/S012906572050032X.
- [6] S. Kiryu *et al.*, "Deep learning to differentiate parkinsonian disorders separately using single midsagittal MR imaging: a proof of concept study," *Eur. Radiol.*, vol. 29, no. 12, pp. 6891–6899, 2019, doi: 10.1007/s00330-019-06327-0.
- [7] S. S. Kundaram and K. C. Pathak, *Deep Learning-Based Alzheimer Disease Detection*, vol. 673. Springer Singapore, 2021.
- [8] A. W. Salehi, P. Baglat, B. B. Sharma, G. Gupta, and A. Upadhya, "A CNN Model: Earlier Diagnosis and Classification of Alzheimer Disease using MRI," *Proc. Int. Conf. Smart Electron. Commun. ICOSEC 2020*, no. Icosec, pp. 156–161, 2020, doi: 10.1109/ICOSEC49089.2020.9215402.
- [9] S. Sivaranjini and C. M. Sujatha, "Deep learning based diagnosis of Parkinson's disease using convolutional neural network," 2019, [Online]. Available: https://doi.org/10.1007/s11042-019-7469-8.
- [10] S. Kaur, H. Aggarwal, and R. Rani, "Diagnosis of Parkinson's disease using deep CNN with transfer learning and data augmentation," *Multimed. Tools Appl.*, vol. 80, no. 7, pp. 10113–10139, 2021, doi: 10.1007/s11042-020-10114-1.

- [11] A. Bidani and M. S. Gouider, "Dementia Detection and Classi fi cation from MRI Images Using Deep Neural Networks and Transfer Learning," vol. 1, pp. 925–933, doi: 10.1007/978-3-030-20521-8.
- [12] S. Murugan, C. Venkatesan, M. G. Sumithra, S. Member, and X. Gao, "DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer Diseases and Dementia From MR Images," *IEEE Access*, vol. 9, pp. 90319–90329, 2021, doi: 10.1109/ACCESS.2021.3090474.
- [13] L. Yue *et al.*, "Auto-detection of alzheimer's disease using deep convolutional neural networks," *ICNC-FSKD 2018 14th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov.*, pp. 228–234, 2018, doi: 10.1109/FSKD.2018.8687207.
- [14] S. Liu, S. Liu, W. Cai, S. Pujol, R. Kikinis, and D. Feng, "Early diagnosis of Alzheimer's disease with deep learning," 2014 IEEE 11th Int. Symp. Biomed. Imaging, ISBI 2014, pp. 1015–1018, 2014, doi: 10.1109/isbi.2014.6868045.
- [15] S. Sarraf and G. Tofighi, "Deep learning-based pipeline to recognize Alzheimer's disease using fMRI data," FTC 2016 Proc. Futur. Technol. Conf., no. December, pp. 816–820, 2017, doi: 10.1109/FTC.2016.7821697.
- [16] P. M. Shah, A. Zeb, U. Shafi, S. F. A. Zaidi, and M. A. Shah, "Detection of Parkinson disease in brain mri using convolutional neural network," *ICAC 2018 2018 24th IEEE Int. Conf. Autom. Comput. Improv. Product. through Autom. Comput.*, no. September, pp. 1–6, 2018, doi: 10.23919/IConAC.2018.8749023.
- [17] M. Husaini and B. Nadri, "Signal using Deep Learning Algorithm," no. Icicv, pp. 1467–1470, 2021.
- [18] H. M. T. Ullah, Z. A. Onik, R. Islam, and D. Nandi, "Alzheimer's Disease and Dementia Detection from 3D Brain MRI Data Using Deep Convolutional Neural Networks," 2018 3rd Int. Conf. Converg. Technol. 12CT 2018, pp. 8–10, 2018, doi: 10.1109/I2CT.2018.8529808
- [19] C. A. Davie, "A review of Parkinson's disease," *Br. Med. Bull.*, vol. 86, no. 1, pp. 109–127, 2008, doi: 10.1093/bmb/ldn013.
- [20] L. Zhang, M. Wang, M. Liu, and D. Zhang, "A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis," *Front. Neurosci.*, vol. 14, no. October, pp. 1–19, 2020, doi: 10.3389/fnins.2020.00779.
- [21] E. Hussain, M. Hasan, S. Z. Hassan, T. Hassan Azmi, M. A. Rahman, and M. Zavid Parvez, "Deep Learning Based Binary Classification for Alzheimer's Disease Detection using Brain MRI Images," *Proc. 15th IEEE Conf. Ind. Electron. Appl. ICIEA* 2020, pp. 1115–1120, 2020, doi: 10.1109/ICIEA48937.2020.9248213.

- [22] S. Luo, X. Li, and J. Li, "Automatic Alzheimer's Disease Recognition from MRI Data Using Deep Learning Method," *J. Appl. Math. Phys.*, vol. 05, no. 09, pp. 1892–1898, 2017, doi: 10.4236/jamp.2017.59159.
- [23] W. Wang, J. Lee, F. Harrou, and Y. Sun, "Early Detection of Parkinson's Disease Using Deep Learning and Machine Learning," *IEEE Access*, vol. 8, pp. 147635–147646, 2020, doi: 10.1109/ACCESS.2020.3016062.
- [24] M. Binth, T. Noor, N. Z. Zenia, M. S. Kaiser, S. Al Mamun, and M. Mahmud, "Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer's disease, Parkinson's disease and schizophrenia," *Brain Informatics*, 2020, doi: 10.1186/s40708-020-00112-2.
- [25] S. Sivaranjini and C. M. Sujatha, "Deep learning based diagnosis of Parkinson's s disease using convolutional neural network," 2019, [Online]. Available: https://doi.org/10.1007/s11042-019-7469-8.
- [26] J. Wingate, I. Kollia, L. Bidaut, and S. Kollias, "Unified deep learning approach for prediction of Parkinson's disease," *IET Image Process.*, vol. 14, no. 10, pp. 1980–1989, 2020, doi: 10.1049/iet-ipr.2019.1526.
- [27] L. J. Herrera, I. Rojas, H. Pomares, A. Guillén, O. Valenzuela, and O. Baños, "Classification of MRI images for Alzheimer's disease detection," *Proc. Soc. 2013*, pp. 846–851, 2013, doi: 10.1109/SocialCom.2013.127.
- [28] S. Sarraf and G. Tofighi, "Deep learning-based pipeline to recognize Alzheimer's disease using fMRI data," *FTC 2016 Proc. Futur. Technol. Conf.*, no. December, pp. 816–820, 2017, doi: 10.1109/FTC.2016.7821697.
- [29] E. M. Alkabawi, A. R. Hilal, and O. A. Basir, "Computer-aided classification of multi-types of dementia via convolutional neural networks," 2017 IEEE Int. Symp. Med. Meas. Appl. MeMeA 2017 - Proc., pp. 45–50, 2017, doi: 10.1109/MeMeA.2017.7985847.
- [30] H. Ucuzal, A. K. Arslan, and C. Colak, "Deep learning based-classification of dementia in magnetic resonance imaging scans," 2019 Int. Conf. Artif. Intell. Data Process. Symp. IDAP 2019, pp. 1–6, 2019, doi: 10.1109/IDAP.2019.8875961.