A fundamental heat transfer study using OpenFOAM

https://www.youtube.com/watch?v=9vhwIYab7qE

Here two cases are studied using OpenFOAM v2406:

- 1- Constant heat flux
- 2- Constant surface temperature

Re number is input. Entrance length correlation for turbulent flows is

$$x_{fd,h-t} \simeq 10 D = 0.5 m$$
.

This is the length to split pipe wall surface in two in *blockMeshDict*.

U: Using *Re* and given water properties at 25 C° , inlet $U = 0.35747 \, m/s$. noSlip BC is on the walls. Outlet patch is set to zeroGradient.

T: T inlet is 298.15 K. ExternalWallHeatFluxTemperature BC is selected to apply a constant heat flux (1000 W/m^2) on the pipe walls. Outlet is again zeroGradient.

p: For outlet pressure, *p* is at 101325 *Pa*. Inlet and wall patches are set to zeroGradient.

From notes of JM Meyers ME-144 Heat Transfer

Three RANS turbulence models will be tested on $y^+\sim 3$ and $y^+\sim 40$ meshes:

- kEpsilon
- kOmega and kOmegaSST

First, we have to do some preliminary calculations:

For fully developed turbulent flow, Nusselt number can be predicted using Dittus-Boelter correlation

$$Nu_D = 0.023 Re_D^{4/5} Pr^n$$

where n=0.4 is for heating and n=0.3 for cooling.

$$Nu_D = 0.023(20000)^{4/5}(6.13)^{0.4} = 131.13$$

Then, heat transfer coefficient is found as

$$h = \frac{Nu_D k_f}{D_h} = 1591 W/m^2 - K$$

where k_f is thermal conductivity of water and D_h is hydraulic diameter.

From notes of JM Meyers ME-144 Heat Transfer

Dittus-Boelter correlation range

$$\begin{bmatrix} 0.6 \lesssim Pr \lesssim 160 \\ Re_D \gtrsim 10,000 \\ \frac{L}{D} \gtrsim 10 \end{bmatrix}$$

Mean temperature variation along the pipe can be found from energy balance equation applied on an infinitesimal control volume element:

$$\frac{dT_m}{dx} = \frac{qP}{\dot{m}C_p}$$

where P is perimeter. Since RHS is constant, T_m can be integrated as:

$$T_{m}(x) = T_{m,inlet} + \frac{qP}{\dot{m}C_{p}}x$$

To calculate surface temperature T_s , Newton's Law of cooling is applied

$$q = h(T_s - T_m) = constant$$
.

h is also constant along the fully developed portion of the pipe. Then differentiation gives:

$$\frac{dT_s}{dx} = \frac{dT_m}{dx} \Rightarrow T_s(x) = T_m(x) + \frac{q}{h}$$

$$T_m(L) = 298.15 + 0.0537 L = 298.2037 K$$

$$T_s(L) = 298.2037 + 1000/1591 = 298.832 K$$

Steady state simulation (rhoSimpleFoam) – e.g. kOmegaSST-y⁺~3 residual plot

Constant Heat Flux – CFD Results

		y ⁺ ~ 3		
	Correlation	kEpsilon	kOmega	kOmegaSST
dP (Pa)	33	64	40	38
T _{m,outlet} (K)	298.204	298.211	298.218	298.22
T _{s,ave} (K)	298.82	298.5	298.786	298.813
\overline{h} (W/m ² -K)	1591	2840	1572	1509

		y⁺ ~ 40		
	Correlation	kEpsilon	kOmega	kOmegaSST
dP (Pa)	33	37	38	36
T _{m,outlet} (K)	298.204	298.209	298.208	298.209
T _{s,ave} (K)	298.82	298.79	298.774	298.813
h̄ (W/m²-K)	1591	1569	1604	1507

Ts,ave = 0.5 (Ts(L/2) + Ts(L)) = 298.82 K

Recall $h = \frac{q}{T_s - T_{ref}}$. Temperature difference is small and constant q is relatively large, i.e. small difference in temperature can make big difference in h.

Since outlet temperature did not significantly change, T_{ref} was set to 298.15 C° .

Constant Heat Flux – kOmegaSST y⁺~40

On Z-axis, pipe wall within 0.5-1 m range indicates pipeFullyDev patch

Constant Heat Flux – kOmegaSST y⁺~3

Constant Heat Flux – kOmegaSST $y^+\sim 3$ and $y^+\sim 40$

Computational expense brings better profile resolution

Mean temperature variation along the pipe can be found from energy balance equation applied on an infinitesimal control volume element:

$$\frac{dT_m}{dx} = \frac{qP}{\dot{m}C_p}$$

where *P* is perimeter. Since T_s is constant, $\Delta T = T_s - T_m$ is defined. ODE solution is

$$T_{m}(x) = T_{s} - (T_{s} - T_{m,inlet})e^{-\frac{P\bar{h}}{\dot{m}C_{p}}x}$$

h(x) is integrated. Therefore, average h along the entire pipe has to be considered

Let T_s be 100 C^o (fixed, uniform). Average T_m needs to be predicted. As a first guess, average of inlet and outlet temperatures can be taken. There, $T_{m,outlet}$ is set to wall surface temperature ($T_{m,outlet} = T_s$):

$$T_{m,ave} = 1/2(T_s + T_{m,inlet}) = 62.5 C.$$

Then, properties of water are updated with this new *ref* temperature. Here, for simplicity, 60 C° input was used. Dittus-Boelter correlation gives Nu = 165 and h=2158 W/m^2-K .

$$T_m(L) = 100 - (100 - 25)0.891 = 33.2 C$$

Picking $\Delta T = T_s - T_m = 0$ helped us find the neighborhood of $T_{m,outlet}$. Second iteration is needed.

In the second iteration, we use $T_m(L) = 33.2 \, C^o$ from the first iteration.

$$T_{m,ave} = 1/2(33.2+25) = 29.1 C.$$

Using new *ref* temperature, Dittus-Boelter correlation gives Nu = 136 and $\overline{h} = 1679$ W/m^2 -K at 30 C^0 .

$$T_m(L) = 100 - (100 - 25)0.9138 = 31.465 C = 304.62 K$$

For simplicity (or available table data), we stop iteration here and expect to have consistent results with those of CFD.

$$T_{ref} = T_{m,ave} = 1/2(31.465 + 25) = 28.235 C = 301.385 K.$$

		y⁺ ~ 3		
	Correlation	kEpsilon	kOmega	kOmegaSST
dP (Pa)	33	64	40	38
T _{m,outlet} (K)	304.62	311.68	306.62	306.42
\overline{h} (W/m ² -K)	1679	3111.7	1764.3	1669.58

		y⁺ ~ 40		
	Correlation	kEpsilon	kOmega	kOmegaSST
dP (Pa)	33	37	38	36
T _{m,outlet} (K)	304.62	305.31	305.38	305.15
\overline{h} (W/m ² -K)	1679	1706.9	1749.3	1639.5

In CFD calculations, T_{ref} = 301.385 K was used. \overline{h} is average of *pipeEntry* and *pipeFullyDev* patches since ODE integration is done along the entire pipe. However, in constant heat flux case, fully developed h (~constant) is taken so that T_s (x) can be calculated.

Results for T_{ref} = 298.15 K were also printed in the log files.

One major thing we observe is that refining near wall mesh region does not help if a high-Re turbulence model is chosen.

komegaSST - **y**⁺ ~ **40**

X Axis

KomegaSST - $y^+ \sim 3$: Profile is resolved

- 4.3e+03