

Bayesian Machine Learning

Prof. Seungchul Lee Industrial AI Lab.

Bayesian Decision Theory 1:

Classification

Binary Classification with Gaussian

- Suppose the data $x \in \mathbb{R}$ in 1 D.
- Assume we have two classes (C_1 and C_2) with the probability density functions (pdf) and their cumulative distribution functions (cdf).

$$f_1(x) = \frac{\partial F_1(x)}{\partial x}$$

$$f_2(x) = \frac{\partial F_2(x)}{\partial x}$$

- We further assume two classes are Gaussian distributed and $\mu_1 < \mu_2$.
- Then an instance $x \in \mathbb{R}$ belongs to one of the these two classes:

$$x \sim egin{cases} \mathcal{N}(\mu_1, \sigma_1^2), & ext{if } x \in \mathcal{C}_1 \ \mathcal{N}(\mu_2, \sigma_2^2), & ext{if } x \in \mathcal{C}_2 \end{cases}$$

Optimal Boundary for Classes

• Since this is a binary classification problem in 1 dimensional space, we have to determine the threshold ω where $\mu_1 < \omega < \mu_2$. Then

$$\left\{ egin{array}{ll} ext{if } x < \omega, & x \in \mathcal{C}_1 \ ext{if } x > \omega, & x \in \mathcal{C}_2 \end{array}
ight.$$

We want to minimize a misclassification rate (or error)

$$egin{align} P(ext{error}) &= P(x > \omega, x \in \mathcal{C}_1) + P(x < \omega, x \in \mathcal{C}_2) \ &= P(x > \omega \mid x \in \mathcal{C}_1) P(x \in \mathcal{C}_1) + P(x < \omega \mid x \in \mathcal{C}_2) P(x \in \mathcal{C}_2) \ &= (1 - F_1(\omega)) \,\, \pi_1 + F_2(\omega) \, \pi_2 \ \end{aligned}$$

where

$$P(x \in \mathcal{C}_1) = \pi_1 \ P(x \in \mathcal{C}_2) = \pi_2$$

Minimum Error Rate Classification

Minimize

$$\min_{\omega} P(ext{error}) = \min_{\omega} \left\{ (1 - F_1(\omega)) \,\, \pi_1 + F_2(\omega) \, \pi_2
ight\}$$

We take derivatives

$$rac{\partial P(ext{error})}{\partial \omega} = - f_1(\omega) \, \pi_1 + f_2(\omega) \, \pi_2 = 0$$

$$\implies f_1(\omega) \, \pi_1 = f_2(\omega) \, \pi_2$$

Posterior Probabilities

- Another way is equating the posterior probabilities to have the equation of the classification boundary.
- For *x* on the boundary

$$P(x \in \mathcal{C}_1 \mid X = x) = P(x \in \mathcal{C}_2 \mid X = x)$$
 $rac{P(X = x \mid x \in \mathcal{C}_1)P(x \in \mathcal{C}_1)}{P(X = x)} = rac{P(X = x \mid x \in \mathcal{C}_2)P(x \in \mathcal{C}_2)}{P(X = x)}$ $f_1(x) \, \pi_1 = f_2(x) \, \pi_2$

Boundaries for Gaussian

• Now let us think of data as multivariate Gaussian distributions, $x \sim \mathcal{N}(\mu, \Sigma)$

$$f(x) = rac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)
ight)$$

Then the equation of boundary

$$\frac{1}{\sqrt{(2\pi)^d |\Sigma_1|}} \exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1)\right) \pi_1 = \frac{1}{\sqrt{(2\pi)^d |\Sigma_2|}} \exp\left(-\frac{1}{2}(x-\mu_2)^T \Sigma_2^{-1}(x-\mu_2)\right) \pi_2$$

- Two cases
 - Equal covariance
 - Not equal covariance

Equal Covariance

•
$$\Sigma_1 = \Sigma_2 = \Sigma$$

$$\frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma^{-1}(x-\mu_1)\right) \pi_1 = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu_2)^T \Sigma^{-1}(x-\mu_2)\right) \pi_2$$

$$\exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma^{-1}(x-\mu_1)\right) \pi_1 = \exp\left(-\frac{1}{2}(x-\mu_2)^T \Sigma^{-1}(x-\mu_2)\right) \pi_2$$

$$-(x-\mu_1)^T \Sigma^{-1}(x-\mu_1) + 2\ln \pi_1 = -(x-\mu_2)^T \Sigma^{-1}(x-\mu_2) + 2\ln \pi_2$$

$$-x^T \Sigma^{-1} x + x^T \Sigma^{-1} \mu_1 + \mu_1 \Sigma^{-1} x - \mu_1^T \Sigma^{-1} \mu_1 + 2\ln \pi_1 = -x^T \Sigma^{-1} x + x^T \Sigma^{-1} \mu_2 + \mu_2 \Sigma^{-1} x - \mu_2^T \Sigma^{-1} \mu_2 + 2\ln \pi_2$$

$$2\left(\Sigma^{-1}(\mu_2 - \mu_1)\right)^T x + \left(\mu_1^T \Sigma^{-1} \mu_1 - \mu_2^T \Sigma^{-1} \mu_2\right) + 2\ln \frac{\pi_2}{\pi_1} = a^T x + b = 0$$

• If the covariance matrices are equal, the decision boundary of classification is a line.

Not Equal Covariance

• $\Sigma_1 \neq \Sigma_2$

$$\frac{1}{\sqrt{(2\pi)^d |\Sigma_1|}} \exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1)\right) \pi_1 = \frac{1}{\sqrt{(2\pi)^d |\Sigma_2|}} \exp\left(-\frac{1}{2}(x-\mu_2)^T \Sigma_2^{-1}(x-\mu_2)\right) \pi_2$$

$$\frac{1}{\sqrt{(|\Sigma_1|}} \exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1)\right) \pi_1 = \frac{1}{\sqrt{(|\Sigma_2|}} \exp\left(-\frac{1}{2}(x-\mu_2)^T \Sigma_2^{-1}(x-\mu_2)\right) \pi_2$$

$$-\ln(|\Sigma_1|) - (x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1) + 2\ln \pi_1 = -\ln(|\Sigma_2|) - (x-\mu_2)^T \Sigma_2^{-1}(x-\mu_2) + 2\ln \pi_2$$

$$-\ln(|\Sigma_1|) - x^T \Sigma_1^{-1} x + x^T \Sigma_1^{-1} \mu_1 + \mu_1 \Sigma_1^{-1} x - \mu_1^T \Sigma_1^{-1} \mu_1 + 2\ln \pi_1 = -\ln(|\Sigma_2|) - x^T \Sigma_2^{-1} x + x^T \Sigma_2^{-1} \mu_2 + \mu_2 \Sigma_2^{-1} x - \mu_2^T \Sigma_2^{-1} \mu_2 + 2\ln \pi_2$$

$$x^T (\Sigma_1 - \Sigma_2)^{-1} x + 2\left(\Sigma_2^{-1} \mu_2 - \Sigma_1^{-1} \mu_1\right)^T x + \left(\mu_1^T \Sigma_1^{-1} \mu_1 - \mu_2^T \Sigma_2^{-1} \mu_2\right) - \ln \frac{|\Sigma_2|}{|\Sigma_1|} + 2\ln \frac{\pi_2}{\pi_1} = x^T A x + b^T x + b = 0$$

- If the covariance matrices are not equal, the decision boundary of classification is a quadratic.
- When we assume a linear model for any given data set, we should be careful.

Examples of Gaussian Decision Regions

 When the covariances are all equal, the separating surfaces are hyperplanes

• When the covariances are not equal, the separating surfaces are quadratic functions.

Bayesian Decision Theory 2:

Classification

Bayesian Classifier

- Given the height x of a person, decide whether the person is male (y=1) or female (y=0).
- Binary classes: $y \in \{0,1\}$

$$P(y=1 \mid x) = rac{P(x \mid y=1)P(y=1)}{P(x)} = rac{P(x \mid y=1)P(y=1)}{P(x)}$$

$$P(y = 0 \mid x) = \frac{P(x \mid y = 0)P(y = 0)}{P(x)}$$

Decision

If
$$P(y = 1 \mid x) > P(y = 0 \mid x)$$
, then $\hat{y} = 1$
If $P(y = 1 \mid x) < P(y = 0 \mid x)$, then $\hat{y} = 0$

$$\therefore \frac{P(x \mid y=0)P(y=0)}{P(x \mid y=1)P(y=1)} \begin{cases} > 1 & \Longrightarrow \hat{y}=0 \\ = 1 & \Longrightarrow \text{ decision boundary} \\ < 1 & \Longrightarrow \hat{y}=1 \end{cases}$$

Bayesian Classifier

- Equal variance and equal prior
- Equal variance and not equal prior
- Not equal variance and equal prior
- Not equal variance and not equal prior

Equal Variance and Equal Prior

Equal Variance and Not Equal Prior

Equal Variance and Equal Prior

Not Equal Variance and Equal Prior

Back to Logistic Regression

Logistic regression makes assumption on the posterior

$$P(y \mid x, \omega) = \sigma\left(y\omega^T x
ight) = rac{1}{1 + \exp(-y\omega^T x)}$$

• At the decision boundary labels -1/+1 becomes equiprobable

$$P(y=+1\mid x,\omega) = P(y=-1\mid x,\omega)$$
 $rac{1}{1+\exp(-\omega^T x)} = rac{1}{1+\exp(\omega^T x)}$ $\exp(-\omega^T x) = \exp(\omega^T x)$ $\omega^T x = 0$

Probability Density Estimation:

Kernel Density Estimation

Kernel Density Estimation

- non-parametric estimate of density
- Lecture: Learning Theory (Reza Shadmehr, Johns Hopkins University)

Kernel Density Estimation

```
m = 10
mu = 0
sigma = 5
x = np.random.normal(mu, sigma,[m,1])
xp = np.linspace(-20,20,100)
y0 = np.zeros([m,1])
X = []
for i in range(m):
    X.append(norm.pdf(xp,x[i,0],sigma))
X = np.array(X).T
Xnorm = np.sum(X,1)/m
plt.figure(figsize=(10,6))
plt.plot(x,y0,'kx')
plt.plot(xp,X,'b--')
plt.plot(xp,Xnorm,'r',linewidth=5)
plt.show()
```


Probability Density Estimation:

Bayesian Density Estimation

Bayesian Density Estimation

- Not parameter estimation any more
- Probability density estimation
 - (Gaussian case: parameter = pdf)
- Start with prior beliefs, which can be thought of as a summary of opinions.
 - might be subjective
- Given our prior, we can update our opinion, and produce a new opinion.
 - This new distribution is called the posterior
- Iterate
 - if more data is available

Hidden State

• Estimate a probability density function of a hidden state from multiple observations

- *H*: Hypothesis, hidden state
- $D = \{d_1, d_2, \dots, d_m\}$: data, observation, evidence

$$P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D)}$$

Likelihood

$$P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D)}$$

Posterior

$$P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D)}$$

Combining Multiple Evidences

- Compute posterior probability
- Assume conditional independence

$$P(H \mid \underbrace{d_1, d_2, \cdots, d_m}_{ ext{multiple evidences}}) = rac{P(d_1, d_2, \cdots, d_m \mid H) \ P(H)}{P(d_1, d_2, \cdots, d_m)}$$

$$=\frac{P(d_1\mid H)P(d_2\mid H)\cdots P(d_m\mid H)\;P(H)}{P(d_1,d_2,\cdots,d_m)}$$

$$=\eta\prod_{i=1}^m P(d_i\mid H)P(H), \qquad \eta: ext{normalizing}$$

Recursive Bayesian Estimation

Two identities

$$P(a,b) = P(a \mid b)P(b)$$

 $P(a,b \mid c) = P(a \mid b,c)P(b \mid c)$

• When multiple d_1, d_2, \cdots

$$P(H \mid d_1) = \frac{P(d_1 \mid H)P(H)}{P(d_1)} = \eta_1 \ P(d_1 \mid H) \underbrace{P(H)}_{\text{prior}}$$

$$P(H \mid d_1d_2) = \frac{P(d_1d_2 \mid H)P(H)}{P(d_1d_2)} = \frac{P(d_1 \mid d_2, H)P(d_2 \mid H)P(H)}{P(d_1d_2)} = \frac{P(d_1 \mid H)P(d_2 \mid H)P(H)}{P(d_1d_2)} = \eta_2 \ P(d_2 \mid H) \underbrace{P(H \mid d_1)}_{\text{acting as a prior}}$$

:

$$P(H \mid d_1, d_2, \cdots, d_m) = \eta_m \, P(d_m \mid H) \underbrace{P(H \mid d_1, d_2, \cdots, d_{m-1})}_{ ext{acting as a prior}}$$

Recursive Bayesian Estimation

Recursive

$$P_0(H) = P(H) \implies P(H \mid d_1) = P_1(H) \implies P(H \mid d_1d_2) = P_2(H) \implies \cdots$$

Recursive Bayesian Estimation

Posterior → prior as more evidence is collected

Example 1: Bernoulli Model

$$d=\{0,1\}, \qquad heta\in[0,1]$$

$$p(d\mid heta) = P[D=d\mid heta] = heta^d(1- heta)^{1-d} = egin{cases} 1- heta, & d=0\ heta, & d=1 \end{cases}$$

Bernoulli Model

$$d=\{0,1\}, \qquad heta \in [0,1]$$

$$p(d\mid heta) = P[D=d\mid heta] = heta^d(1- heta)^{1-d} = egin{cases} 1- heta, & d=0\ heta, & d=1 \end{cases}$$

```
def normalize(y, x):
    return y / np.trapz(y, x)
```

```
N = 101
theta = np.linspace(0, 1, N)
prior = normalize(np.repeat(1, N), theta)

d = np.random.choice([0,1])

likelihood = theta**d * (1 - theta)**(1 - d)

posterior = likelihood * prior
posterior = normalize(posterior, theta)
```


Recursive Bayesian Estimation

```
def bernoulli_model(d, theta, prior):
    likelihood = theta**d * (1 - theta)**(1 - d)
    posterior = likelihood * prior
    return normalize(posterior, theta)
```

```
for n in range(9):
    observed = np.random.choice([0,1])
    posterior = bernoulli_model(observed, theta, prior)

ax[n].plot(theta, prior, linestyle = '--')
    ax[n].plot(theta, posterior)
    ax[n].set_title('observed: %d' % observed)
    ax[n].set_xlim([0,1])

prior = posterior
```


Recursive Bayesian Estimation

```
prior = normalize(np.repeat(1, N), theta)
observation = []
for _ in range(100):
    observed = np.random.choice([0,1])
    observation.append(observed)
    posterior = bernoulli model(observed, theta, prior)
    prior = posterior
print(observation, '\n')
print(np.mean(observation))
plt.figure(figsize = (8,6))
plt.plot(theta, posterior)
plt.axvline(0.5, color = 'red', linestyle = '--')
plt.xlabel(r'$\theta$', fontsize = 15)
plt.show()
```

0.49

Example 2: Gaussian Model

$$p(d \mid h) \sim \mathcal{N}(h, \sigma^2)$$

Posterior Probability

```
H = np.linspace(-30,30, N)
prior = normalize(np.repeat(1, N), H)

d = np.random.normal(0, sigma)

likelihood = []
for h in H:
    likelihood.append(stats.norm.pdf(d,h,sigma))

posterior = likelihood * prior
posterior = normalize(posterior, H)
```


Recursive Bayesian Estimation

```
def Gaussian_model(d, H, prior):
    likelihood = []
    for h in H:
        likelihood.append(stats.norm.pdf(d,h,sigma))

    posterior = likelihood * prior
    return normalize(posterior, H)
```

```
fig, ax = plt.subplots(ncols = 3, nrows = 3, figsize = (14,14))
ax = np.ravel(ax)

for n in range(9):
    observed = np.random.normal(0, sigma)
    posterior = Gaussian_model(observed, H, prior)

    ax[n].plot(H, prior, '--')
    ax[n].plot(H, posterior)
    ax[n].set_title('observed: %1.2f' % observed)
    ax[n].set_ylim([0,0.3])
    ax[n].set_xlim([-15,15])

    prior = posterior

plt.show()
```


Recursive Bayesian Estimation

```
prior = normalize(np.repeat(1, N), H)

observation = []

for _ in range(20):
    d = np.random.normal(0, sigma)
    observation.append(d)
    posterior = Gaussian_model(d, H, prior)

    prior = posterior
```

-0.7185173390571822

Summary

- Bayesian Machine Learning
- Bayesian Classifier
- Bayesian Density Estimation
- Bayes' Rule
 - Prior
 - Likelihood
 - Posterior