

Рисунок 4.5 – Метод діаграм Вейча

$$f_{4MH/I/\Phi} = (X_4 \overline{X}_2) V \overline{X}_3 \overline{X}_2 X_1 V \overline{X}_3 X_2 \overline{X}_1 V \overline{X}_3 X_2 X_1.$$

3.4. Спільна мінімізація функцій f_1, f_2, f_3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуємо таблицю покриття (таблиця 4.5).

\mathcal{K}'	• • •
0000 {1,2,3}	<i>OXXO {1,3}</i>
0001 {1,2} 00X0 {1,2,3}	<i>X0X0 {3}</i>
0010 {1,2,3} 0X00 {1,3}	OXXO {1,3}
0100 {1*,3} X000 {1,3}	XX00 {1,3}
1000 {1,3} OX10 {1,2,3}	XOXO {3}
0110 {1,2*,3*} X010 {3}	XX00 {1,3}
-1001 {3}	X1X0 {1}
1010 {3}	X1X0 {1}
1100 {1,2*,3} 100X {3}	X11X {1,2}
0111 {1*,2*,3} 10X0 {3}	X11X {1,2}
-1110 {1,2} 	
1111 {1,2,3} 011X {1,2*,3}	
X110 {1,2}	
11X0 {1,2}	
X111 {1,2,3}	
111X {1,2}	

Рисунок 4.6 – Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.5 – Таблиця покриття системи

				i	f_1						f_2							f_3				
	0000	0001	0000	0110	1000	1100	1110	1111	0000	0001	0100	1110	1111	0000	0000	0100	0111	1000	1001	1010	1100	1111
1100 {1,2*,3}						+															+	
000X {1,2}	+	+							+	+												
00X0 {1,2,3}	+		+						+		+			+	+							
OX10 {1,2,3}			+	+							+				+							
100X {3}																		+	+			
011X {1,2*,3}				+													+					
11X0 {1,2}						+	+					+										
X111 {1,2,3}								+					+				+					+
111X {1,2}							+	+				+	+									
OXXO {1,3}	+		+	+										+	+	+						
X0X0 {3}														+	+			+		+		
XX00 {1,3}	+				+	+								+		+		+			+	
X1X0 {1}				+		+	+															
X11X {1,2}				+			+	+				+	+									

Після мінімізації визначили кожну з функцій в формі І/АБО.

$$f_{1MIIH\phi} = (X_4 X_3 X_2) v(X_4 X_2 X_1) v(X_2 X_1) v(X_3 X_2);$$

$$f_{2MIIH\Phi} = (X_4 X_3 X_2) V(X_4 X_2 X_1) V(X_3 X_2);$$

$$f_{3M\Pi H\phi} = (x_3 x_2 x_1) v(x_4 \overline{x_3} \overline{x_2}) v(\overline{x_3} \overline{x_1}) v(\overline{x_2} \overline{x_1}).$$

Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДКНФ. Запишемо ДКНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

Зм.	Арк.	№ докум.	Підп.	Дата

 K_{Ω} K₁
(Xv0v0v1 {3*} K_2 *0v0v0v1 {3}* 1v0vXvX {2} 1v0v0v0 {1*,2*} 1v0v0vX {2*} 1v0vXvX {2} Ov1vXvX {2} 0v0v1v0 {1,2,3} 1v0vXv0 {1,2} Ov1vXvX {2} 1v0v0v1 {2*,3*} | Xv1v0v0 {1,2,3} Xv0v1vX {2} 0v1vXv0 {1,2} **OvXv1vX {2}** 1v1v0v0 {1,2,3} 1v0v1v0 {1.2.3} 0v1v0vX {1,2} XvOv1vX {2} Xv0v1v0 {1,2,3} OvXv1vX {2} *0v1v1v0 [1,2]* Ov1v0v1 {1.2} OvXv1v0 {1.2} 0v0v1vX {2} 0v0v1v1 {2*} 1v0v1v1 {1*.2} 1v0vXv1 {2} 1v1vXv0 {3} *0v1v1v1 {2}* 1v0v1vX {1,2} 1v1v1v0 {3} *[1vXv1v0 {3}*] *0v1v1vX {2} 0v1vXv1 {2}* Xv0v1v1 {2} OvXv1v1 {2}

Рисунок 4.7 – Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

IA/IЦ.463626.004	13
------------------	----

Таблиця 4.6 – Таблиця покриття системи

	f_1								i	, 2						1	ç 3			
	1111010	11/01/10	011110	0v1v0v1	0v1v0v0	01/1010	1111010	1404141	11/01/10	011111	011110	0v1v0v1	0111010	0v0v1v0	111110	1111010	1404140	0v1v0v0	0v0v1v0	OvOv0v1
Xv0v0v1 {3}																				+
1vXv0v0 {1,2}	+						+													
1v0vXv0 {1,2}		+							+											
Xv1v0v0 {1,2,3}	+				+		+						+			+		+		
0v1vXv0 {1,2}			+		+						+		+							
0v1v0vX {1,2}				+	+							+	+							
Xv0v1v0 {1,2,3}		+				+			+					+			+		+	
0vXv1v0 {1,2}			+			+					+			+						
1v1vXv0 {3}															+	+				
1v0v1vX {1,2}		+						+	+											
1vXv1v0 {3}															+		+			
1v0vXvX {2}								+	+											
0v1vXvX {2}										+	+	+	+							
Xv0v1vX {2}								+	+					+						
0vXv1vX {2}										+	+			+						

Після мінімізації випишемо кожну з функцій в формі І/АБО-НЕ.

$$f_{1M\Pi H \phi} = \overline{(X_{3}X_{2}X_{1})V(X_{4}X_{3}X_{1})V(X_{4}X_{3}X_{2})V(X_{3}X_{2}X_{1})};$$

$$f_{2M\Pi H \phi} = \overline{(X_{3}X_{2}X_{1})V(X_{4}X_{3}X_{2})V(X_{3}X_{2})V(X_{4}X_{2})};$$

$$f_{3M\Pi H \phi} = \overline{(X_{3}X_{2}X_{1})V(X_{3}X_{2}X_{1})V(X_{3}X_{2}X_{1})V(X_{4}X_{3}X_{1})}.$$

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальні форми I/AБО, I/AБО-НЕ. Оскільки у формі I/AБО менше термів(7<8), то розглянемо програмування ПЛМ для системи перемикальних функцій, що подана в формі I/AБО.

Зм.	Арк.	№ докум.	Підп.	Дата

Позначимо терми системи:

$$P_1 = \overline{X_4 X_3 X_2}$$

$$P_2 = \overline{X_4} X_2 \overline{X_{i}}$$

$$P_3 = \overline{X_2X_1}$$

$$P_4 = x_3 x_2$$

$$P_5 = X_3 X_2 X_1$$

$$P_6 = X_4 \overline{X_3} \overline{X_2}$$

$$P_7 = \overline{X_3} \overline{X_1}.$$

Тоді функції виходів описуються системою:

$$f_1 = (\overline{X_4} \overline{X_3} \overline{X_2}) V(\overline{X_4} \overline{X_2} \overline{X_1}) V(\overline{X_2} \overline{X_1}) V(\overline{X_3} \overline{X_2}) = P_1 V P_2 V P_3 V P_4$$

$$f_2 = (\overline{x_4} \overline{x_3} \overline{x_2}) v(\overline{x_4} x_2 \overline{x_1}) v(x_3 x_2) = P_1 v P_2 v P_4$$

$$f_3 = (x_3 x_2 x_1 / v / (x_4 x_3 x_2 / v / (x_3 x_1 / v / (x_2 x_1 / v / x_3 x_2 / v / x_3 x_2 / v / x_3 x_1 / v / (x_2 x_1 / v / x_3 x_2 / v / x_3 x_2 / v / x_3 x_1 /$$

Визначимо параметри ПЛМ:

п = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

р = 7— число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3— число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему П/ІМ(4,10,3) (рисунок 4.8).

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.8 – Мнемонічна схема ПЛМ

Складемо карту програмування ПЛМ(4, 7,3) (таблиця 4.7).

Таблиця 4.7 – Карта програмування ПЛМ

No		Вхи	оди		Виходи				
ШИНИ	<i>X</i> 4	<i>X3</i>	<i>X2</i>	<i>X1</i>	f1	<i>f2</i>	<i>f3</i>		
P1	0	0	0	1	1	1	0		
<i>P2</i>	0	ı	1	0	1	1	0		
P3	-	ı	0	0	1	0	1		
P4	-	1	1	-	1	1	0		
P5	-	1	1	1	0	0	1		
P6	1	0	0	-	0	0	1		
<i>P7</i>	-	0	-	0	0	0	1		

Зūм.	Арк.	№ докум.	Підп.	Дата

Покажемо умовне графічне позначення даної ПЛМ (рисунок 4.8).

Рисунок 4.8 – умовне графічне позначення ПЛМ

Зм.	Арк.	№ докум.	Підп.	Дата

IA/ILI.463626.004	26.004 ПЗ
-------------------	-----------

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Автомат керуючий. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докум.	Підп.	Дата

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2016р.

Зм.	Арк.	№ докум.	Підп.	Дата