Course Outline

Probability and Statistics for Engineers-I Stat 1103

About the Instructor

Mahbub Latif

- Professor of Applied Statistics and Data Science
- Institute of Statistical Research and Training (ISRT) at the University of Dhaka

Educational Qualifications

- PhD in Applied Statistics (University of Goettingen, Germany) [2005]
- MSc in Statistics (University of British Columbia, Canada) [2001]
- BSc and MSc in Statistics (University of Dhaka, Bangladesh) [1993, 1995]

Homepage @ ISRT

https://www.isrt.ac.bd/people/mlatif/

Contact details

Office

• Room 104, ISRT Building

Email

• mlatif@iit.du.ac.bd

Meetings

• Sundays 8:00-9:00 am, Tuesdays 8:00-10:00 am

Office hours

• TBA

About the Course

Textbook

• **Sheldon M. Ross** (2009). *Introduction to Probability and Statistics for Engineers and Scientists*, fourth edition. Elsevier.

Reference Book

• Anthony Hayter (2012). *Probability and Statistics* for Engineers and Scientists, fourth edition. Cengage Learning.

Course contents

Introduction to Statistics (Chapter 1)

- Data Collection and descriptive Statistics
- Inferential Statistics and probability models
- Populations and Samples

Descriptive statistics (Chapter 2)

- Describing data sets: Frequency tables and graphs;
 Relative frequency tables and graphs; Grouped data, histograms, ogives, stem and leaf plots;
- Summarizing data sets: Sample mean, sample median, sample mode; Sample variance and sample standard deviation; Sample percentiles and box plots;
- Chebyshev's inequality
- Normal data sets
- Paired data set and sample correlation coefficient

Course contents

Elements of Probability (Chapter 3)

• Sample space and events; Venn diagrams and algebra of events; Axioms of probability; Conditional Probability; Bayes' Theorem; Independent Events;

Random Variables and Expectation (Chapter 4)

Random Variables; Types of Random Variables;
 Jointly Distributed Random Variables; Expectation;
 Properties of Expected Values; Variance; Covariance
 and Variance of Sums of Random Variables; a
 Moment Generating Functions; Chebyshev's
 inequality and weak law of large numbers;

Special Random Variables (Chapter 5)

- The Bernoulli and Binomial Random Variables; The Poisson Random Variables; The hypergeometric random variable; Uniform Random Variables; Normal Random Variables; Exponential random Variables; Gamma Distribution
- Distributions arising from normal distribution: Chi-Square Distribution, t-Distribution and F-Distribution

Course contents

Distributions of Sampling Statistics (Chapter 6)

• The sample mean; Central Limit Theorem; The sample variance; Sampling Distribution from a Normal Population; Sampling from a Finite Population;

Parameter Estimation (Chapter 7)

 Maximum Likelihood Estimators; Interval Estimates; Estimating the difference in Means of Two Normal Populations; Approximate Confidence Interval for the Mean; Confidence Interval of the Mean of the Exponential Distribution; Bayes' Estimator

Grading distribution

Grading tool	% points
Midterm	20
Quiz (4x)	10
Attendance + Participation	5
Assignments (x)	5
Final Exam	60
Total	100

Some useful stuffs for the course!

A Scientific Calculator

- You should bring a scientific calculator to all the classes and exams.
- Mobile phone cannot be used as a calculator!

Differentiation

ullet Derivative of a function y=f(x) is defined as

$$rac{dy}{dx} = rac{d}{dx} \, f(x)$$

• E.g. $y = 2x^2 + 5x + 10$

$$rac{dy}{dx}=rac{d}{dx}(2x^2+5x+10)=4x+5$$

Differentiation

$$ullet \ y = [g(x)]^n \ \Rightarrow \ rac{dy}{dx} = n[g(x)]^{n-1}ig[rac{dg(x)}{dx}ig]$$

$$E.\,g.\ \ y = (2x+3)^4$$
 $rac{dy}{dx} = 8(2x+3)^3$

$$ullet \ y = g(x)f(x) \ \Rightarrow \ rac{dy}{dx} = rac{dg(x)}{dx}f(x) + g(x)rac{df(x)}{dx}$$

$$E.\,g.\ \ y=(2x+3)(x^2+5)$$
 $rac{dy}{dx}=2x(2x+3)+2(x^2+5)$

Differentiation

$$ullet \ y=rac{g(x)}{f(x)} \ \Rightarrow \ rac{dy}{dx}=rac{f(x)rac{dg(x)}{dx}-g(x)rac{df(x)}{dx}}{f(x)^2}$$

•
$$y = \ln x \Rightarrow \frac{dy}{dx} = \frac{1}{x}$$

$$ullet y=e^x \;\Rightarrow\; rac{dy}{dx}=e^x$$

•
$$y = e^{g(x)} \Rightarrow \frac{dy}{dx} = e^{g(x)} \left[\frac{dg(x)}{dx} \right]$$

Integration

• For $n \neq -1$,

$$y=x^n \hspace{3mm} \Rightarrow \hspace{3mm} \int_a^b x^n \, dx = rac{x^{n+1}}{n+1} \Big|_a^b = rac{b^{n+1}-a^{n+1}}{n+1}$$

• It can be shown

$$rac{d}{dx}rac{x^{n+1}}{n+1} = (n+1)rac{x^n}{(n+1)} = x^n$$

Integration

$$ullet \int_a^b e^x dx = e^x \Big|_a^b = e^b - e^a$$

$$E.\,g.\quad \int_1^2 e^x dx = e^2 - e^1$$

$$ullet \int_a^b e^{kx} dx = rac{e^{kx}}{k} \Big|_a^b = rac{e^{kb} - e^{ka}}{k}$$

$$E.\,g.\,\,\,\int_1^2 e^{5x} dx = rac{e^{10} - e^5}{5}$$