

Optimierung von Fertigungsprozessen mit Bayesian Structure Learning and Knowledge Graph

Tek Raj Chhetri, Sareh Aghaei, Anna Fensel, Ulrich Göhner, Sebnem Gül-Ficici, Oleksandra Roche-Newton, and Jorge Martinez-Gil

Agenda

- 1) Problemstellung
- 2) Ziel / Vorgehensweise
- 3) Ergebnisse
- *4)* Schlussfolgerungen
- 5) Weitere Schritte
- 6) Demo

Problemstellung

Problemstellung

Die Verwendung von Knowledge Graphen führen zu:

- guten Ergebnissen
- erleichtern die Interpretierbarkeit der Modelle
- erfordert wenige Trainingsdaten
- ermöglicht erweiterte Abfragen
- erfasst komplexe Zusammenhänge

Da typischerweise wenige verwertbare Daten zur Verfügung stehen, führt dies zu Schwierigkeiten.

Ziel / Vorgehensweise

- 1. Das "Grundgerüst" erstellen
- 2. Komplexe Zusammenhänge erfassen
- 3. Informationen in einer KG konsolidieren
- 4. Validierung durch den Experten

Vorgehensweise – Das "Grundgerüst" erstellen

- Verwenden von Score basierten Ansatz.
- Festlegen von einem Kriterium, um zu bewerten, wie gut das Bayes'sche Netzwerk zu den Daten passt.
- Der Score basierte Ansatz besteht aus zwei Teilen: der Definition einer Score - Metrik und dem Suchalgorithmus.

Problemstellung

Ein Knowledge Graph (KG) ist ein semantisches Netzwerk realer Entitäten und Beziehungen zwischen ihnen.

Informationen in KGs werden als Sammlung von Fakten gespeichert, die in Form von Tripeln dargestellt werden:

<subject> <object>

Beispiel:

- <Bob> <is a> <person>.
- <Bob> <is born on> <the 4th of July 1990>.
- <Bob> <is interested in> <the Mona Lisa>.
- <The Mona Lisa> <was created by> <Leonardo da Vinci>.

Source: https://www.w3.org/TR/rdf11-primer/

In unserem Fall werden KG und seine Ontologie durch die Technik des Maschinellen Lernens mit Bayes'scher Struktur generiert, um potenzielle Schritte zur Vermeidung von Produktionsfehlern zu identifizieren.

Automatisch generiertes Schema (oder Ontologie) aus erlernter bayesian structure DAG

Automatisch generierter Knowledge Graph aus aus erlernter bayesian structure DAG

Optimising Manufacturing Process with Bayesian Learning and Knowledge Graphs

Tek Raj Chhetri, Sareh Aghaei, Jarge Martinez-Gil, Sebnem Gül-Ficici, Anna Fensel and Ulrich Göhner

Frage-Antworten über Knowledge Graphs

Frage:

Welche Panels wurden nach Panel P1 und vor dem 03.04.2022 bearbeitet?

SPARQL Query:

SELECT DISTINCT ?p2
WHERE {
 ?p1 psmt: panelld 'p1';
 psmt: pTStamp ?ts1.
 ?machine psmt:hasProcessedPanel ?p2.
 ?p2 psmt:pTStamp ?ts2.
FILTER (?ts2 > ?ts1 &&
 ?ts2 < '2022-04-03'^^xsd:date)}</pre>

Frage-Antworten über kleine und mittlere KGs

- 1. Offline-Phase
- 2. Semantische Parsing-Phase

Frage-Antworten über große KGs

- 1. Knowledge Subgraphen Extraktion
- 2. Generierung von Fragen Graphen
- Graph-Matching
- 4. Abfrage Ausführung

Frage-Antworten über kleine und mittlere KGs

- SalzburgerLand KG (eine praktische KG des Salzburger Landes mit 31K Fakten).
- Endgültige Genauigkeit ist 0.72, d.h. 72
 Prozent der Fragen (127 Fragen von insgesamt 175 Fragen) können richtig beantwortet werden.

Hop	Questions	Right	Recall	Precision	F1-score
1-hop	23	23	1.0	1.0	1.0
2-hop	44	34	0.86	0.84	0.84
3-hop	22	13	0.90	0.73	0.80
4-hop	86	57	0.70	0.66	0.67

Tabelle 1. Ergebnisse zu verschiedenen Hop-Fragen.

S. Aghaei, E. Raad, and A. Fensel: *Question Answering over Knowledge Graphs: A Case Study in Tourism.* Journal of IEEE Access, 2022.

Frage-Antworten über große KGs

- Der Rückruf der Extraktion von Knowledge Subgraphen für WebQSP-, QLAD-6- und MetaQA-Datensätze durch NPR und unsere Methode (BiDPPR) mit 500 Entitäten sind in Tabelle 2 dargestellt.
- Im Vergleich zu GAnswer und den Systemen in den QALD-6-Wettbewerben erreicht unser Ansatz eine bessere Genauigkeit (ca. 5 %).

Dataset	NPR	BiDPPR
WebQSP	89.9	92.2
QLAD-6	62.7	84.8
MetaQA-1hop	100	100
MetaQA-2hop	100	100
MetaQA-3hop		92.2

Tabelle 2. Rückruf von Knowledge Subgraphen in BiDPPR und NPR.

S. Aghaei, K. Angele, and A. Fensel: Building knowledge subgraphs in question answering over knowledge graphs. In: Proceedings of the 22nd International Conference on Web Engineering, 2022.

Schlussfolgerungen

- Darstellung eines automatisch gelernten Knowledge Graphen aus Daten einer Montagelinie.
- Verwendung von Bayes'schen Lernmethoden allerdings nicht ausreichend informativ über die Abhängigkeiten zwischen den Variablen.
- KGs werden genutzt, um die semantische Interoperabilität zu verbessern und Informationen zwischen Menschen und Maschinen auszutauschen.
- Frage-Antwort-System, das kleine, mittlere und große KGs abdeckt.

Vorteile

- Unsere Lösung spart Zeit und Geld.
- Unser vorgeschlagenes Vorgehen erhöht die Produktivität, durch die Identifizierung der Hauptursache für das Scheitern der Produkte.
- Die Verwendung von KGs steigert die Interoperabilität.
- Die vorgeschlagene Lösung kann durch das Einbringen von Frage-Antwort-Systeme erweitert werden, um die menschliche Interaktion mit dem Computer zu verbessern.

Veröffentlichungen

- T.R. Chhetri, S. Aghaei, A. Fensel, U. Göhner, S. Gül-Ficici, J. Martinez-Gil. 2022,
 Optimising Manufacturing Process with Bayesian Structure Learning and Knowledge Graphs. Eurocast, Las Palmas de Gran Canaria Canary Islands, Spain
- Chhetri, T.R., Kurteva, A., Adigun, J.G. and Fensel, A., 2022. *Knowledge Graph Based Hard Drive Failure Prediction*. Sensors, 22(3), p.985.

Optimising Manufacturing Process with Bayesian Learning and Knowledge Graphs

Tek Raj Chhetri, Sareh Aghaei, Jarge Martinez-Gil, Sebnem Gül-Ficici, Anna Fensel and Ulrich Göhner

FRAGEN

ANREGUNGEN

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT

www.uibk.ac.at

Weitere Schritte

- Es sollten mehrere Beziehungstypen definiert und untersucht werden.
- Es ist sehr wichtig, den Validierungsprozess der endgültigen KG zu automatisieren.
 Der regelmäßige Rückgriff auf Experten ist nicht effizient.
- Es sind weitere Forschungsarbeiten zu den Fragen der Verwertung der gewonnen KG erforderlich.

Vorgehensweise – Das "Grundgerüst" erstellen

Für die Bewertung wurde das Bayes'sche Informationskriterium (BIC) gewählt.

Für die Suche wurde folgendes getestet:

- Hill Climb search
- Exhaustive search
- Verschiedene Varianten des Frameworks Notears

Vorgehensweise – Informationen in einer KG konsolidieren

```
-1.7979798 , -1.75757576, -1.71717172, -1.67676768, -1.63636364,
-1.5959596 , -1.55555556, -1.51515152, -1.47474747, -1.43434343,
-1.39393939, -1.35353535, -1.31313131, -1.27272727, -1.23232323,
-1.19191919, -1.15151515, -1.11111111, -1.07070707, -1.03030303,
-0.98989899, -0.94949495, -0.90909091, -0.86868687, -0.82828283,
-0.78787879, -0.74747475, -0.70707071, -0.666666667, -0.62626263,
-0.58585859, -0.54545455, -0.50505051, -0.46464646, -0.42424242,
-0.38383838, -0.34343434, -0.3030303, -0.26262626, -0.22222222,
-0.18181818, -0.14141414, -0.1010101, -0.06060606, -0.02020202,
 0.02020202, 0.06060606, 0.1010101, 0.14141414, 0.18181818,
 0.2222222, 0.26262626, 0.3030303, 0.34343434, 0.38383838,
 0.42424242, 0.46464646, 0.50505051, 0.54545455, 0.58585859,
 0.62626263, 0.66666667, 0.70707071, 0.74747475, 0.78787879,
 0.82828283, 0.86868687, 0.90909091, 0.94949495, 0.98989899,
1.03030303, 1.07070707, 1.11111111, 1.15151515, 1.19191919,
1.23232323, 1.27272727, 1.31313131, 1.35353535, 1.39393939,
1.43434343, 1.47474747, 1.51515152, 1.55555556, 1.5959596,
1.63636364, 1.67676768, 1.71717172, 1.75757576, 1.7979798,
```


Schließlich muss die KG von Fachleuten validiert werden.

