# Σχέσεις Μερικής Διάταξης

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο



# Σχέση (Μερικής) Διάταξης

- Σχέση **Μερικής Διάταξης** (ή μερική διάταξη): ανακλαστική, αντισυμμετρική, και μεταβατική.
  - Αριθμοί:  $a \le β$  (αλλά όχι a < β), a | β,
  - Σύνολα (σχέση στο P(S)): A ⊆ B.
- Ποιες από τις παρακάτω είναι σχέσεις (μερικής) διάταξης;



#### Διατεταγμένα Σύνολα

- □ Σχέση μερικής διάταξης: γράφουμε a ≤ β (αντί (α, β) ∈ R).
- □ Σύνολο A με σχέση μερικής διάταξης  $\leq$  : μερικώς διατεταγμένο σύνολο  $(A, \leq)$  (ή poset).
  - (N, ≤), (N\*, |), (P(N), ⊆), (Άνθρωποι, Πρόγονος).
- $\square$  Av  $\alpha \leq \beta$  ή  $\beta \leq \alpha$ , α και β συγκρίσιμα. Διαφορετικά μη συγκρίσιμα.
  - (N\*, |): 3 και 9 συγκρ., 5 και 7 όχι. (P(N), ⊆): {1} και {2} όχι.
- Poset (A, ≤) και όλα τα ζεύγη στοιχείων είναι συγκρίσιμα:
  ολικά διατεταγμένο σύνολο (ολική διάταξη ή αλυσίδα).
  - $(A, \leq)$  και  $B \subseteq A$  ώστε  $(B, \leq)$  ολικά διατεταγμένο: B αλυσίδα (TOU A).
  - Πεπερασμένη (μη κενή) αλυσίδα έχει μέγιστο και ελάχιστο στοιχείο.
- □ (A, ≤) και B ⊆ A ώστε στο (B, ≤) κανένα ζεύγος συγκρίσιμο:
  Β αντιαλυσίδα (του A).

# Ακυκλικά Γραφήματα

- Κατευθυνόμενο Ακυκλικό Γράφημα (ΚΑΓ, DAG) δεν έχει κύκλους, μπορεί να έχει ανακυκλώσεις.
  - Συχνά αναπαριστούν εξαρτήσεις δραστηριοτήτων, εργασιών.
- R σχέση που αντιστοιχεί σε ΚΑΓ. Η ανακλαστική μεταβατική κλειστότητα S της R είναι σχέση μερικής διάταξης. ({1,2,3,4
  - Av  $a \neq \beta$ ,  $(a, \beta)$ ,  $(\beta, a) \in S$ , έχουμε κὐκλο (στην R).
  - Άρα ΑΜΚ της R είναι αντισυμμετρική.
- □ Κάθε μερική διάταξη αντιστοιχεί σε ΚΑΓ.
  - Μεταβατική ιδιότητα: κύκλος ανν όχι αντισυμμετρική.
- Μορφή ΚΑΓ για σχέσεις ολικής διάταξης;
- Αλυσίδες αντιστοιχούν σε μονοπάτια ΚΑΓ.Αντιαλυσίδες σε ανεξάρτητα σύνολα ΚΑΓ.



#### Διαγράμματα Hasse

- Απέριττοι γράφοι για αναπαράσταση μερικών διατάξεων.
  - Ξεκινάμε από ΚΑΓ και αφαιρούμε ανακυκλώσεις (εννούνται).
  - Αφαιρούμε «μεταβατικές» ακμές (μόνο «βασικές» ακμές):
    - □ Για κάθε α  $\gamma$  διαδρομή μήκους  $\geq$  2, αφαιρούμε ακμή (α,  $\gamma$ ).
  - Για κάθε ακμή (α, β), β πάνω από α και αφαιρούμε φορά (βέλος).



# Διαγράμματα Hasse







 $(\mathcal{P}\{a,b,c\},\subseteq)$ 



 $({2,4,5,10,12,20,25},|)$ 

# Μέγιστα και Ελάχιστα Στοιχεία

- $\square$  α maximal στοιχείο (A, ≤) αν δεν υπάρχει β ≠ α με α ≤ β.
- □ a minimal στοιχείο (A,  $\leq$ ) αν δεν υπάρχει β  $\neq$  α με β  $\leq$  α.
  - ({1, 2, 3, 4, 6, 8, 12}, |): maximal 8 кал 12, minimal 1.
  - $(\{2, 4, 5, 10, 12, 20, 25\}, |)$ : maximal 12, 20, 25, minimal 2, 5.
  - $(P({a, b, c}), \subseteq)$ : maximal  ${a, b, c}$  ka minimal  $\emptyset$ .
- α μέγιστο στοιχείο (A, ≤),αν μοναδικό maximal, ∀β(β ≤ α).
- □ α ελάχιστο στοιχείο (A, ≤), αν μοναδικό minimal, ∀β(α ≤ β).



#### Άνω και Κάτω Φράγμα

- $\square$  α ἀνω φράγμα στοιχείων  $B \subseteq A$ , αν για κάθε  $\beta \in B$ ,  $\beta \le a$ .
- $\square$  α κάτω φράγμα στοιχείων  $B \subseteq A$ , αν για κάθε  $\beta \in B$ , α  $\leq \beta$ .
  - 'Aνω για {a, b, c}: e, f, j, h. Κάτω: a.
  - Ανω για {j, h}: ὁχι. Κάτω: f, d, e, b, c, a.
- □ α ελάχιστο άνω φράγμα B ⊆ A (sup): α άνω
  φράγμα B και για κάθε β άνω φράγμα B, α ≤ β.
- $\square$  α μέγιστο κάτω φράγμα  $B \subseteq A$  (inf): α κάτω φράγμα B και για κάθε  $\beta$  κάτω φράγμα B,  $\beta \le a$ .
- Αν υπάρχουν, είναι μοναδικά.
  - Ελάχιστο άνω φράγμα α, β στο (N\*, |): ΕΚΠ(α, β).
  - Μέγιστο κάτω φράγμα α, β στο (Ν\*, |): ΜΚΔ(α, β).
  - Ελάχιστο άνω φράγμα Α, Β στο (P(S), ⊆): A ∪ B.
  - Μέγιστο κάτω φράγμα Α, Β στο P(S), ⊆): A ∩ B.



## Δικτυωτά (Lattices)

- □ (A, ≤) είναι δικτυωτό (lattice) αν κάθε ζεύγος στοιχείων έχει ελάχιστο άνω φράγμα και μέγιστο κάτω φράγμα.
  - Ποια από τα παρακάτω είναι δικτυωτά;
  - Eivaι δικτυωτά τα (N\*, |), (P(S), ⊆);
  - Είναι δικτυωτό το ({1, 2, ..., k}, |);



# Ερώτηση

- Τι δηλώνουν οι παρακάτω προτάσεις;
  - Αληθεύουν σε πεπερασμένο σύμπαν;
  - Αληθεύουν σε άπειρο σύμπαν;

$$\forall x R(x, x) \land \\ \forall x \forall y (R(x, y) \land R(y, x) \rightarrow x = y) \land \\ \forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z))) \rightarrow \exists x \forall y (y \neq x \rightarrow \neg R(y, x)) \land \\ \forall x R(x, x) \land \\ \forall x \forall y (R(x, y) \land R(y, x) \rightarrow x = y) \land \\ \forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z)) \land \rightarrow \exists x \forall y R(x, y) \land \\ \forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z)) \land \rightarrow \exists x \forall y R(y, x) \land \\ \forall x \forall y (R(x, y) \lor R(y, x)) \rightarrow \exists x \forall y R(y, x) \land \\ \forall x \forall y (R(x, y) \lor R(y, x)) \rightarrow \exists x \forall y R(y, x) \land \\ \forall x \forall y (R(x, y) \lor R(y, x)) \rightarrow \exists x \forall y R(y, x) \land \\ \exists x \forall x R(y, x) \land \\ \exists x \forall x R(y, x) \land \\ \exists x \forall x R(y, x) \land \\ \exists x R(y, x) \land \\ \exists$$

## Αλυσίδες και Αντιαλυσίδες

- Α σύνολο μαθημάτων,  $(a, β) \in R$  ανν α προαπαιτούμενο β.
  - Αντισυμμετρική και μεταβατική: σχέση προτεραιότητας.
  - Ανακλαστική κλειστότητα R: σχέση (μερικής) διάταξης.
- Μήκος μεγαλύτερης αλυσίδας: ελάχιστος #εξαμήνων για πτυχίο.
- Μέγεθος μεγαλύτερης αντιαλυσίδας: μέγιστος #μαθημάτων στο ίδιο εξάμηνο.
- Αν μακρύτερη αλυσίδα στο (Α, ≤) έχει μήκος  $k \ge 1$ , στοιχεία Α διαμερίζονται σε k αντιαλυσίδες.
- Αν μεγαλύτερη αντιαλυσίδα στο (Α, ≤) έχει μέγεθος [  $k \ge 1$ , στοιχεία Α διαμερίζονται σε k αλυσίδες.



#### Αλυσίδες και Αντιαλυσίδες

- Αν μακρύτερη αλυσίδα στο (Α, ≤) έχει μήκος  $k \ge 1$ , στοιχεία Α διαμερίζονται σε k αντιαλυσίδες.
  - Απόδειξη με επαγωγή.
  - Βάση k = 1: Αν μακρύτερη αλυσίδα έχει 1 στοιχείο, όλα τα στοιχεία αποτελούν 1 αντιαλυσίδα.
  - Επαγωγική υπόθεση: σε κάθε (Α, ≤) με μακρύτερη αλυσίδα μήκους k, διαμέριση A σε k αντιαλυσίδες.
  - Επαγωγικό βήμα:
    - □ (A, ≤) με μακρύτερη αλυσίδα μήκους k+1.
    - Μ σύνολο maximal στοιχείων: Αντιαλυσίδα με 1 στοιχείο (τελευταίο) σε κάθε αλυσίδα.
    - □ (A M, ≤) έχει μακρύτερη αλυσίδα μήκους k.
    - Διαμέριση Α Μ σε k αντιαλυσίδες.
    - Διαμέριση Α σε k+1 αντιαλυσίδες.



#### Αλυσίδες και Αντιαλυσίδες

- Aν μακρύτερη αλυσίδα στο (A, ≤) έχει μήκος k ≥ 1, στοιχεία Α διαμερίζονται σε k αντιαλυσίδες.
  - Av  $|A| \ge nm+1$ , τότε είτε αλυσίδα μήκους  $\ge n+1$ είτε αντιαλυσίδα μεγέθους ≥ m+1.
- Σε σύνολο nm+1 ανθρώπων, είτε αλυσίδα απογόνων μήκους m+1 είτε n+1 άνθρωποι χωρίς σχέση προγόνου-απογόνου.
  - Αν όλες αλυσίδες μήκους ≤ m, διαμέριση σε ≤ m αντιαλυσίδες. Αν όλες αντιαλυσίδες μεγέθους ≤ n, #ανθρώπων ≤ nm.
- Σύνολο S με n<sup>2</sup>+1 διαφορετικούς θετικούς φυσικούς:
  - Για κάθε  $A \subseteq S$ , |A| = n+1, υπάρχουν  $x, y \in A$ ,  $x \ne y$ , με  $x \mid y$ .
  - Νδο υπάρχει  $\{x_1, x_2, ..., x_{n+1}\}$  ⊆ S όπου  $x_i \mid x_{i+1}$ , για κάθε i = 1, ..., n.
- Πρέπει νδο στο poset (S, |), υπάρχει αλυσίδα μήκους  $\ge$  n+1.
  - Μεγαλύτερη αντιαλυσίδα έχει μέγεθος ≤ n.
  - Άρα υπάρχει αλυσίδα μήκους  $\geq n+1$ .

#### Παράδειγμα

- Σε κάθε ακολουθία n²+1 διαφορετικών αριθμών, είτε αύξουσα υπακολουθία μήκους n+1 είτε φθίνουσα υπακολ. μήκους n+1.
  - Υπακολουθία προκύπτει με διαγραφή κάποιων αριθμών.
  - **0,** 8, **4,** <u>12,</u> 2, <u>10,</u> <u>6,</u> 14, 1, **9,** <u>5,</u> 13, <u>3,</u> 11, 7, 15, 16
- Αύξουσα υπακολουθία αντιστοιχεί σε αλυσίδα και φθίνουσα υπακολουθία σε αντιαλυσίδα, για μερική διάταξη ≤ που λαμβάνει υπόψη σειρά εμφάνισης στην ακολουθία.
  - Θεωρούμε σχέση διάταξης σε ζεύγη (θέση εμφάνισης , τιμή):  $(1, a_1), (2, a_2), ..., (k, a_k)$  (yia  $k = n^2 + 1$ )
  - Για κάθε (i,  $a_i$ ) και (j,  $a_j$ ), με i < j: (i,  $a_i$ )  $\leq$  (j,  $a_j$ ) ανν  $a_i$  <  $a_j$ .
  - Αύξουσα υπακολουθία αντιστοιχεί σε αλυσίδα.
  - Φθίνουσα υπακολουθία αντιστοιχεί σε αντιαλυσίδα.

## Τοπολογική Διάταξη

- □ Ολική διάταξη  $(a_1, a_2, ..., a_n)$  συμβατή με μερική διάταξη (A, ≤).
  - **Συμβατότητα:** Για κάθε i < j, είτε  $a_i \le a_j$  είτε  $a_i$ ,  $a_j$  μη συγκρίσιμα.
  - Γραμμική διάταξη κορυφών ΚΑΓ ώστε ακμές (εκτός ανακυκλώσεων)
    κατευθύνονται από αριστερά προς δεξιά.
- $\square$  (A,  $\leq$ ), Α πεπερασμένο, επιδέχεται τοπολογικής διάταξης. <sup>8</sup>
  - Γράφος είναι ΚΑΓ ανν επιδέχεται τοπολογικής διάταξης.
- $\Box$  (A, ≤), A πεπερασμένο, έχει ≥ 1 minimal στοιχείο.
  - Ξεκινάμε επιλέγοντας οποιοδήποτε στοιχείο.
  - Ακολουθούμε «ακμές» στην αντίθετη φορά.
  - Όχι κύκλοι και πεπερασμένο: τερματίζουμε σε minimal.



## Τοπολογική Διάταξη

- Υπολογισμός τοπολογικής διάταξης:
  - $a_1$ : minimal  $(A, \leq)$ .
  - $a_2$ : minimal (A  $\{a_1\}$ ,  $\leq$ ).
  - $a_3$ : minimal (A − { $a_1$ ,  $a_2$ }, ≤).

  - 1, 3, 2, 6, 4, 12, 8
  - A, C, E, B, D, G
- Αναζήτηση κατά Βάθος (DFS) στο ΚΑΓ ή στο διάγραμμα Hasse (με φορά ακμών).
  - Κορυφές σε αντίστροφη σειρά «αποχώρησης».
  - Ολοκλήρωση εξερεύνησης κορυφής και γειτόνων: εισαγωγή κορυφής σε στοίβα.
  - Ολοκλήρωση DFS και εξαγωγή από στοίβα: τοπολογική διάταξη.





#### Λεξικογραφική Διάταξη

- Posets  $(A_1, \leq_1)$  kai  $(A_2, \leq_2)$ .
- Λεξικογραφική διάταξη  $\leq$  στο  $A_1 \times A_2$ :
  - $\blacksquare$  (a<sub>1</sub>, a<sub>2</sub>) < (β<sub>1</sub>, β<sub>2</sub>) αν είτε a<sub>1</sub> <<sub>1</sub> β<sub>1</sub> είτε a<sub>1</sub> = β<sub>1</sub> και a<sub>2</sub> <<sub>2</sub> β<sub>2</sub>.
  - $(a_1, a_2) = (\beta_1, \beta_2)$  av  $a_1 = \beta_1$  kai  $a_2 = \beta_2$ .
  - $(N \times N, \leq)$ :  $(2, 4) \leq (2, 5) \leq (3, 2) \leq (5, 1) \leq (5, 100) \leq (6, 0)$ .
- $\Box$  Λεξικογραφική διάταξη ≤ στο  $A_1 \times A_2 \times ... \times A_n$ :
  - $(a_1, a_2, ..., a_n) < (β_1, β_2, ..., β_n)$  αν για κάποιο  $k \ge 0$ ,  $a_1 = \beta_1, ..., a_k = \beta_k \text{ kai } a_{k+1} <_{k+1} \beta_{k+1}.$
- Λεξικογραφική διάταξη συμβολοσειρών με βάση (ολική) διάταξη γραμμάτων του αλφαβήτου.
  - Το «κενό» προηγείται κάθε συμβόλου, τόνοι αγνοούνται. Π.χ. μαντείο < μάντης < μηλιά < μήλο < το < τόπι.

## Χρονοπρογραμματισμός Εργασιών

- $\Box$  m iδιους επεξεργαστές {  $p_1, p_2, ..., p_m$  }.
- $\square$  n εργασίες  $\{t_1, t_2, ..., t_n\}$  με χρόνους εκτέλεσης  $w_1, w_2, ..., w_n$ .
- Μερική διάταξη επί των εργασιών:
  - $t_j \le t_i$  avv  $t_i$  δεν μπορεί να αρχίσει πριν ολοκληρωθεί η  $t_j$ .
- Χρονοδιάγραμμα εκτέλεσης εργασιών:
  - Για κάθε εργασία t<sub>i</sub> χρόνος έναρξης s(i) και επεξεργαστής π(i).
    - □ Εργασίες δεν διακόπτονται: εκκίνηση s(i), τερματισμός s(i)+w<sub>i</sub>
  - Κάθε χρονική στιγμή, το πολύ μία εργασία σε κάθε επεξεργαστή:
    - $\Pi(i) = \Pi(j) \Rightarrow [s(i), s(i)+w_i) \cap [s(j), s(j)+w_j) = \emptyset$
  - Για κάθε  $t_j$  με  $t_j \le t_i$ ,  $s(j)+w_j \le s(i)$ .





## Χρονοπρογραμματισμός Εργασιών

- Χρονοδιάγραμμα με ελάχιστο χρόνο διεκπεραίωσης.
  - Ελαχιστοποίηση χρόνου ολοκλήρωσης τελευταίας εργασίας.
  - Τοπολογική διάταξη αν μόνο ένας επεξεργαστής.
  - NP-δύσκολο για m ≥ 2.
- Βέλτιστος χρόνος διεκπεραίωσης τουλάχιστον:
  - $(w_1 + ... + w_n) / m$ .
  - Συνολικός χρόνος κατά μήκος μακρύτερης (χρονικά) αλυσίδας.
- Ποτέ επεξεργαστής αδρανής εσκεμμένα.
  - Δεν εγγυάται βέλτιστη λύση.
  - Еγγυάται χρόνο διεκπεραίωσης  $\leq (2 \frac{1}{m}) \times$  ελάχιστο χρ. διεκπ.

$$m = 2$$
  $t_1 / 10$   $t_2 / 9$   $t_3 / 9$ 

## Χρονοπρογραμματισμός Εργασιών

Ανάλυση για m = 2, χρ.διεκπ. = ω, βέλτιστος χρ.διεκπ.  $= ω^*$ 

$$\omega = \frac{1}{2} \left( \sum_{i=1}^n w_i + \sum_{\alpha_i \in A} χοόνος(\alpha_i) \right) \le \omega^* + \frac{1}{2} \sum_{\alpha_i \in A} χοόνος(\alpha_i)$$

- Υπάρχει <mark>αλυσίδα εργασιών</mark> με χρονική διάρκεια ≥ συνολική διάρκεια περιόδων αδράνειας.
  - Περίοδος αδράνειας α<sub>i</sub> «προκαλείται» από αλυσίδα εργασιών που εκτελείται στον άλλο επεξεργαστή.
  - Αλυσίδα εργασιών που «προκαλεί» α; έχει διάρκεια ≥ χρόνος(α;).
  - Ένωση αλυσίδων που «προκαλούν» περιόδους αδράνειας δίνει αλυσίδα με διάρκεια ≥ συνολική διάρκεια περιόδων αδράνειας.

$$ω \le ω^* + \frac{1}{2} \sum_{\alpha_i \in A} χρόνος(\alpha_i) \le \frac{3}{2} ω^*$$