

逻辑与计算机设计基础实验

与课程设计

实验六

7段码显示译码器设计

施青松

Asso. Prof. Shi Qingsong College of Computer Science and Technology, Zhejiang University zjsqs@zju.edu.cn

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

淅沙人学系统结构与系统软件实验室

实验目的

- 掌握七数码管显示原理
- 掌握七段码显示译码设计
- 掌握多位数码管扫描显示控制 **3.**
- 进一步熟悉ISE平台,利用原理图综合学习Verlog-4. HDL语言

实验环境

实验设备

- 1. 计算机(Intel Core i3以上,1GB内存以上)系统
- 2. Sword 开发板
- 3. Xilinx ISE12.4及以上开发工具

材料

无

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

洲沙太学系统结构与系统软件实验室

实验任务

- 设计十六进制通用七段显示译码电路
- 2. 仿真测试并封装MC14495兼容显示译码器
- 设计实现四位十六进制数动态扫描显
- 设计实现八位十六进制数静态显示*
- 5. 学习显示译码电路的HDL描述方法

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

浙江大学系统结构与系统软件实验室

7段显示(器)结构

- □ 由7+1个LED构成的数字显示器件
- □ 每个LED显示数字的一段,另一个为小数点
- □ LED的正极(负极)连在一起,另一端作为点亮的控制
 - □ 共阳:正极连在一起,负极=0,点亮
 - □ 共阴:负极连在一起,正极=1,点亮

а	b	С	d	е	f	g	
0	0	0	0	0	0	1	Uc
1	0	0	1	1	1		U,
0	0	1	0	0	1	0	11
0	0	0	0	1	1	0	Uc
1	0	0	1	1	0	0	
0	1	0	0	1	0	0	- 0
0	1	0	0	0	0	0	
0	0	0	1	1	1	1	ñ.
0	0	0	0	0	0	0	11,
0	0	0	0	1	0	0	12721111
	0		1				11"
	1					0	IJ,
						1	11
						0	Uc
	1	1	0	0		0	
0	1	1	1	0	0	0	0
	0 1 0 0 1 0 0 0	0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0	0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1	0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0	0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0	0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0	0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0

共阳7段码显示器结构和显示原理

共阳连接: 8个LED正极连在一起,负极低电平时点亮 共阴连接: 8个LED负极连在一起,正极高电平时点亮

Hex 7- segment decoder

common anode

兼容MC14495 略掉:

> Pin11=VCR Pin4=h+i

其它

共阳: 74LS46/47 共阴: 74LS48/49

CMOS4511

Hex	$\mathbf{D}_3\mathbf{D}_2\mathbf{D}_1\mathbf{D}_0$	BI/LE	а	b	С	d	е	f	g	р
0	0 0 0 0	1	0	0	0	0	0	0	1	р
1	0 0 0 1	1	1	0	0	1	1	1	1	р
2	0 0 1 0	1	0	0	1	0	0	1	0	р
3	0 0 1 1	1	0	0	0	0	1	1	0	р
4	0 1 0 0	1	1	0	0	1	1	0	0	р
5	0 1 0 1	1	0	1	0	0	1	0	0	р
6	0 1 1 0	1	0	1	0	0	0	0	0	р
7	0 1 1 1	1	0	0	0	1	1	1	1	р
8	1 0 0 0	1	0	0	0	0	0	0	0	Р
9	1 0 0 1	1	0	0	0	0	1	0	0	Р
Α	1 0 1 0	1	0	0	0	1	0	0	0	Р
В	1 0 1 1	1	1	1	0	0	0	0	0	Р
C	1 1 0 0	1	0	1	1	0	0	0	1	Р
D	1 1 0 1	1	1	0	0	0	0	1	0	Р
Е	1 1 1 0	1	0	1	1	0	0	0	0	Р
F	1 1 1 1	1	0	1	1	1	0	0	0	Р
X	X X X X	0	1	1	1	1	1	1	1	1

计算机学院 系统结构与系统软件实验室

Hex to 7-segment decoder: Simplifying

a				k	כ					C				(d	_				e		l i		
	0	1	0	0		0	0	0	0		0	0	0	1		0	1	0	0		0	1	1	0
	1	0	0	0		0	1	0	1		0	0	0	0		1	0	1	0		1	J	V	0
	0	1	0	0		1	0	1	1		1	0	1	1		0	0	1	0		0	0	0	0
	0	0	1	0		0	0	1	0		0	0	0	0		0	0	0	1		0	1	0	0

$$\mathbf{a} = \overline{D}_3 \overline{D}_2 \overline{D}_1 D_0 + \overline{D}_3 D_2 \overline{D}_1 \overline{D}_0 + D_3 \overline{D}_2 D_1 D_0 + D_3 \overline{D}_2 D_1 \overline{D}_0$$

$$b = \overline{D}_3 D_2 \overline{D}_1 D_0 + D_2 D_1 \overline{D}_0 + D_3 D_2 \overline{D}_0 + D_3 D_1 D_0$$

 $\mathbf{c} = \overline{D}_{3}\overline{D}_{2}D_{1}\overline{D}_{0} + D_{3}D_{2}\overline{D}_{0} + D_{3}D_{2}D_{1}$

有错误请修整

1	1	0	0
0	0	1	0
1	0	0	0
0	0	0	0

$$\begin{split} \mathbf{d}&= \overline{D}_3 \overline{D}_2 \overline{D}_1 D_0 + \overline{D}_3 D_2 \overline{D}_1 \overline{D}_0 + D_2 D_1 D_0 + \overline{D}_3 D_2 D_1 \overline{D}_0 \\ \mathbf{e}&= \overline{D}_3 D_0 + \overline{D}_3 D_2 \overline{D}_1 + \overline{D}_2 \overline{D}_1 D_0 \\ \mathbf{f}&= \overline{D}_3 \overline{D}_2 D_0 + \overline{D}_3 \overline{D}_2 D_1 + \overline{D}_3 D_1 D_0 + D_3 D_2 \overline{D}_1 D_0 \\ \mathbf{g}&= \overline{D}_3 \overline{D}_2 \overline{D}_1 + \overline{D}_3 D_2 D_1 D_0 + D_3 D_2 \overline{D}_1 \overline{D}_0 \end{split}$$

Hex to 7-segment decoder Schematic

多位七段数码管显示原理

- 静态显示
 - 每个7段码对应一个显示译码电路
- 动态扫描显示: 时分复用显示
 - 利用人眼视觉残留
 - 一个7段码译码电路分时为每个7段码提供译码
- 控制时序
 - 用定时计数信号控制公共极,分时输出对应七段码的显示信号:

分时控制示意

浙江大学 计算机学院 系统结构与系统软件实验室

四位七段动态显示控制

□动态扫描显示方案

- 扫描信号来自计数器: **时序转化为组合电路**
- 由板载时钟clk(50MHz)作为计数器时钟,分频后输入到数据选择器的 控制端,作为数码管扫描信号
- 计数器的分频系数要适当,眼睛舒适即可

□条件语句实现

■ if_then 或case语句实现条件输出电路

洲江大学

计算机学院 系统结构与系统软件实验室

二位七段动态显示实现

□ 使用if then语句实现条件输出

```
//端口变量说明与定义合并
module displayswitch(input clk,
                    input[7:0]Hexs,
                    output reg[3:0]AN,
                    output reg[3:0]Hex);
 assign AN[0] = SW[0];
 assign AN[1] = \sim SW[0];
 assign AN[2] = 1;
                                   //不用
                                   //不用
 assign AN[3] = 1;
                                   //时钟触发(也可以信号变化触发)
 always @ (posedge clk) begin
                                   //显示"1" Hexs[7:4]=4'b0001
  if (SW[4]) Hex \leftarrow Hexs[7:4];
                                   //显示"0" Hexs[3:0]=4'b0010
  else Hex \le Hexs[3:0]:
  end
                                                        SW[4]
                                                                      SW[4]
endmodule
                                                             b (G13)
                                 4'b0001
                                                              (N15)
                                 4'b0010
```

使用Case语句实现条件输出

四位七段动态显示实现

```
//端口变量说明与定义合并
module dispsync(input [15:0] Hexs,
                input [1:0] Scan,
                input [3:0] point,
                input [3:0] blink,
                output reg[3:0] Hex,
                output reg p,LE,
                output reg[3:0] AN);
 always @* begin
                                      //信号变化触发 (组合电路不用时钟触发)
      case (Scan)
           2'b00 : begin Hex <= Hexs[3:0]; AN <= 4'b 1110; ... //同步输出
           2'b01: begin Hex <= Hexs[7:4]; AN <= 4'b 1101; ... //同步输出
           2'b10: begin Hex <= Hexs[11:8]; AN <= 4'b 1011; ... //同步输出
           2'b11: begin Hex <= Hexs[15:12]; AN <= 4'b 0111; ... //同步输出
      endcase
 end
                                                         分时输出控制信号
                              clk div[17] -
                                                             低电平
                              clk div[18]-
endmodule
                                                                 AN3~AN0
                             待显示数
                                     分时
                                            Hex27Seg
                              0001 -
                              0010 -
                                     传数
                              0011 -
                              0100 -
```


always 深入学习

- □ 过程描述语句always
 - 对于复杂的电路行为,用assign赋值无法描述
 - always可以用来描述复杂的信号传输过程
 - 赋值必须是reg变量,但结果由电路综合决定,不一定是reg

Always @ (触发表达式)begin //过程赋值 //条件语句

- □ 触发事件表达式有:
 - □ 组全电路使用变量: (a)、(a or b),可用 "*" 代替
 - □ 时序电路用时钟边沿:
 (posedge clk) //上升沿
 (negdge clk) //下降沿
 (posedge clk or negdge res)

//上下边沿

- □赋值
 - 非阻塞赋值: <=, 触发边沿同时赋值(并行)
 - 阻塞赋值: =, 先赋值再同步, 较难把握(组合电路)
- □辅助模块: 时钟分频模块
 - 实验经常需要用到各种不同频率的时钟
 - 在要求不高时可以用计数器分频获取

辅助模块: 时钟计数分频器

□ 32位时钟计数分频器

- 可输出2-232分频信号,可用于一般非同步类时钟信号
- 延时较高,要求不高的时钟也可以用
- 本实验多位七段显示器动态扫描可用

```
module clkdiv(input clk,
               input rst,
               output reg[31:0]clkdiv
               );
// Clock divider-时钟分频器
   always @ (posedge clk or posedge rst) begin
      if (rst) clkdiv <= 0;
      else clkdiv <= clkdiv + 1'b1;
   end
endmodule
```

浙江大学

学 计算机学院 系统结构与系统软件实验室

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

洲沙太学系统结构与系统软件实验室

设计工程一: Hex27Seg

- ◎设计实现十六进制七段显示译码器
 - € 兼容MC14495
 - € 省略Pin11=VCR和Pin4=h+i功能
- ◎仿真验证
 - € 设计时序仿真激励代码
 - € 仿真通过封装, 名称: MC14495_ZJU
- ◎说明
 - € 电路描述文档命名约定(非后缀)
 - ⊙原理: ???_sch
 - ⊙代码:???
 - ⊙测试: ???_test
 - ⊙封闭: 原理图模块封装模块符号去掉"_sch"
 - ◆ 符号改名用另存
 - ◆注意校对模块调用名称

设计要点

◎新建工程: Hex27Seg

E Hex to seven segment decoder

◎设计七段显示模块

€ 模块命名: MC14495_ZJU

€ 验证表达式并原理图输入

$$\begin{split} \mathbf{a} &= \overline{D}_3 \overline{D}_2 \overline{D}_1 D_0 + \overline{D}_3 D_2 \overline{D}_1 \overline{D}_0 + D_3 \overline{D}_2 D_1 D_0 + D_3 \overline{D}_2 D_1 \overline{D}_0 \\ \mathbf{b} &= \overline{D}_3 D_2 \overline{D}_1 D_0 + D_2 D_1 \overline{D}_0 + D_3 D_2 \overline{D}_0 + D_3 D_1 D_0 \\ \mathbf{c} &= \overline{D}_3 \overline{D}_2 D_1 \overline{D}_0 + D_3 D_2 \overline{D}_0 + D_3 D_2 D_1 \\ \mathbf{d} &= \overline{D}_3 \overline{D}_2 \overline{D}_1 D_0 + \overline{D}_3 D_2 \overline{D}_1 \overline{D}_0 + D_2 D_1 D_0 + \overline{D}_3 D_2 D_1 \overline{D}_0 \\ \mathbf{e} &= \overline{D}_3 D_0 + \overline{D}_3 D_2 \overline{D}_1 + \overline{D}_2 \overline{D}_1 D_0 \\ \mathbf{f} &= \overline{D}_3 \overline{D}_2 D_0 + \overline{D}_3 \overline{D}_2 D_1 + \overline{D}_3 D_1 D_0 + D_3 D_2 \overline{D}_1 D_0 \\ \mathbf{g} &= \overline{D}_3 \overline{D}_2 \overline{D}_1 + \overline{D}_3 D_2 D_1 D_0 + D_3 D_2 \overline{D}_1 \overline{D}_0 \end{split}$$

◎仿真测试

- € 设计测试代码
- € 封装符号图并修改

end

```
for (i=0; i<=15;i=i+1) begin
#50;
{D3,D2,D1,D0}=i;
point = i;
end
#50;
i=i+1;
assign LE = 1;
```


◎学习Veri代码描述

至 打开View HDL Functional Model分析学习模块的代码描述

沙人乡系统结构与系统软件实验室

◎设计顶层模块

€ Hex27Seg_sch,设置为顶层模块

系统结构与系统软件实验室

- □ UCF引脚定义
 - 输入
 - SW[3:0]=AN[3:0]
 - $SW[7:4]=D_3D_2D_1D_0$
 - **SW[14]=p**
 - SW[15]=LE
 - - SEGMENT=g~a, p, AN=AN
- 根据设计修改UCF

```
#MC14495-ZJU
#switch
NET "SW[0]"
                     LOC = AA10 | IOSTANDARD = LVCMOS15; #to AN[3]
NET "SW[1]"
                                 | IOSTANDARD = LVCMOS15; #to AN[0]
NET "SW[3]"
                                   IOSTANDARD = LVCMOS15; #D2
                                 | IOSTANDARD = LVCMOS15; #D1
                                  | IOSTANDARD = LVCMOS15; #D0
                                 | IOSTANDARD = LVCMOS15 ;
                                 | IOSTANDARD = LVCMOS15 ;
#NET "SW[12]"
                                 | IOSTANDARD = LVCMOS15 ;
                                 | IOSTANDARD = LVCMOS15 ;
                     LOC = AF24
                                      | IOSTANDARD = LVCMOS33 ;
                     LOC = AB22
                                      | IOSTANDARD = LVCMOS33 ; #a
                     LOC = AD24
                                       IOSTANDARD = LVCMOS33 : #b
                                       IOSTANDARD = LVCMOS33
                                       IOSTANDARD = LVCMOS33
                     LOC = W20
                                      | IOSTANDARD = LVCMOS33
                     LOC = AC24
                                       IOSTANDARD = LVCMOS33 ;
                     LOC = AC23
                                      | IOSTANDARD = LVCMOS33 :#g
                     LOC = AA22
                                      | IOSTANDARD = LVCMOS33 : #point
                     LOC = AD21
                                      | IOSTANDARD = LVCMOS33
                                      | IOSTANDARD = LVCMOS33
NET "AN[2]"
                     LOC = AB21
                                      | IOSTANDARD = LVCMOS33 ;
```

NET "AN[3]" LOC = AC22 | IOSTANDARD = LVCMOS33 ;

四位七段公共端:AN₃~AN₀

设计工程二: Hex427Seg

- ◎设计4位七段码显示模块
- ◎说明
 - € 顶层模块名: Hex427Seg_sch
 - ○原理图输入
 - ⊙调用模块实现
 - ◆ 调用MC14495(从Hex27Seg工程复制)
 - ◆设计调用扫描同步输出模块,符号: dispsync.sym(制作)
 - ◆ 设计调用辅助时钟分频模块,符号: clkdiv.sym(制作)

设计要点

□新建工程

- 复制MC14495_ZJU138逻辑符号到当前工程根目录
 - □ MC14495.sym
- 复制MC14495.sch代码存放目录

■ 设计动态扫描同步输出模块

- 模块名: dispsync.v
- 用Verilog HDL设计
- ■制作逻辑符号并修改: dispsync.syn

■ 设计通用计数分频模块

- 模块名: clkdiv.v
- 用Verilog HDL设计
- 制作逻辑符号并修改: clkdiv.sym


```
-Scan(1:0) Hex(3:0)
-Hexs(15:0) LE
-point(3:0) dispsync p
-LES(3:0) AN(3:0)
```

```
clk clkdiv(31:0) —
rst clkdiv
```


系统结构与系统软件实验室

设计要点

□设计顶层模块: Hex427Seg_sch.sch

- VCC是电源实例,用于逻辑画图,实现逻辑"1"
- GND是地线实例,用于逻辑画图,实现逻辑"0"
- 固定显示1234=0100-0011-0010-0001
 - □ 输入Hex_num= G0,V5,G0,G0,G0,G0,V5,V5,G0,G0,V5,G0,G0,G0,V5

浙沙大学 计算机学院 系统结构与系统软件实验室

理验证

- □ UCF引脚定义
 - - 使能控制: SW[7:4]=LE[3:0]

 - 小数点输入: SW[3:0]=point[3:0] 复位: RSTN(阵列键盘右边第二个红键)
 - - a~g, p=SEGMENTNET "clk_100mhz"
 - **AN[3:0]**
 - 根据设计修改UCF

```
#Created by Constraints Editor (xc7k160t-ffg676-21) - 2015/06/20
#系统时钟
```

```
LOC = AC18
                                     | IOSTANDARD = LVCMOS18 ;
NET "clk 100mhz"
                    TNM NET = TM CLK ;
```

TIMESPEC TS CLK 100M = PERIOD "TM CLK" 10 ns HIGH 50%;

#Reset or CR NET "RSTN"

LOC = W13

设计工程三(选修): Hex827Seg

◎设计8位七段码显示模块

- ◎二种实验方式
 - ◎ 用Arduino Sword-002子板四位动态扫描扩展
 - ◎用主板调用P2S模块输出静态显示

◎说明

- € 顶层模块名: Hex827Seg_sch
 - ○原理图输入
 - ⊙调用模块实现
 - ◆ 调用MC14495(Hex27Seg工程复制)
 - ◆调用辅助时钟分频模块,符号: clkdiv.sym(制作)
 - ◆ 修改4位七段扫描同步输出模块,符号: dispsync32.sym 或设计八位七段静态译码模块(HexTo8SEG8),调用P2S输出

计算机学院 系统结构与系统软件实验室

参考设计: 静态译码-调用P2S输出

□八位七段显示器结构

■ 静态译码移位输出模块结构: Sseg_Dev

HexTo8SEG模块结构


```
module HexTo8SEG(input [31:0] Hexs,
                                           //端口变量说明与定义合并
                  input [2:0] Scan,
                  input [7:0] points,
                  input [7:0] LES,
                  input flash,
                  output[63:0] SEG TXT
                  );
  Hex2Seg HTS0(Hexs[31:28], LES[7], points[7], flash, SEG TXT[7:0]);
  Hex2Seg HTS1(Hexs[27:24], LES[6], points[6], flash, SEG TXT[15:8]);
  Hex2Seg HTS2 (Hexs[23:20],
  Hex2Seg HTS3 (Hexs[19:16],
                                                                  1);
  Hex2Seg HTS4 (Hexs[15:12], ESS
                                                                  ]);
  Hex2Seg HTS5 (Hexs[11:8],
   Hex2Sed HTS6(Hexs[7:4], LES[1], points[1], flash, SEG TXT[55:48]);
   Hex2Seg NTS7(Hexs[3:0], LES[0], points[0], flash, SEG TXT[63:56]);
                                                                                      什么用途?
endmodule
                     Hex2Seg(input[3:0]Hex,
           modul
                             input LE,
                             input point,
                            input flash,
                             output[7:0]Segment
                             ) :
                 wire en = LE & flash;
                 MC14495 ZJU MSEG(.D3(Hex[3]),.D2(Hex[2]),.D1(Hex[1]),.D0(Hex[0]),.LE(en),.point(point),
                                   .a(a),.b(b),.c(c),.d(d),.e(e),.f(f),.g(g),.p(p));
                 assign Segment = {a,b,c,d,e,f,g,p}; //p,g,f,e,d,c,b,a
           endmodule
```

浙江大学

计算机学院 系统结构与系统软件实验室

物理验证参考

Hex num(31:0) = 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 10010 0001

思考题

- □ 如何最简单地修改工程实现共阴七段译码?
- □ 如何实现多于4位十六进制数显示?
- □ 怎么实现七段码特殊符号显示?
 - 如习题3-32:

- □ 在多位七段显示中,如何使其中某位闪烁?
 - 如交通信号闪烁倒计数(秒)
 - 提示: 利用使能信号LE
- □ 如何将一些特殊的时序电路转化为计数+组合电路?
 - 如本实验动态扫描, 习题3-7也是

浙江大学 计算机学院 系统结构与系统软件实验室

同学们:每次做完实验请整理好实验台,放好 仪器,理清桌面。

Thank you!