Работа 1.4.1

Изучение физического маятника

Константин Ерёмин Б03-204

Декабрь 2022

1 Введение

Цель работы: исследовать вынужденную прецессию гироскопа; установить зависимость скорости вынужденной прецесии от величины момента сил, действующих на ось гироскопа; определить скорость вращения ротора гироскопа и сравнить её со скоростью, рассчитанной по скорости прецесии.

В работе используются: гироскоп в карданном подвесе, секундомер, набор грузов, отдельный ротор гироскопа. цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

2 Теоретическое описание работы

Вращение гироскопа, обладающего моментом импульса \vec{L} и угловой скоростью вращения его оси $\vec{\Omega}$ (ckopocmb npeqecuu), описывается уравнением

$$\frac{d\vec{L}}{dt} = \vec{\Omega} \times \vec{L}$$
, где $\frac{d\vec{L}}{dt} = \vec{M}$.

 \vec{M} — момент сил, приложенный к оси маховика.

Для гироскопа с закреплённым на оси на расстоянии l от центра подвеса грузом массой m скорость прецесии равна

$$\Omega = \frac{mgl}{I_z \omega_0},$$

где I_z — один из главных моментов инерции, ω_0 — угловая скорость вращения маховика, причём для гироскопа $I_z\omega_0\gg I_x\omega_x,I_y\omega_y.$

Для определения момента инерции ротора гироскопа используется отдельный ротор неиспользуемого гироскопа. Измеряются крутильные колебания ротора-копии, период которых зависит от момента инерции I_0 и модуля кручения проволоки f:

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}}. (1)$$

Чтобы исключить модуль кручения проволоки, вместо ротора гироскопа к той же проволоке подвешивают цилиндр изместных массы и диаметра. Его момент инерции равен

Рис. 1: Гироскоп в карданном подвесе

Рис. 2: Схема экспериментальной установки

 $I_{\mathrm{II}}=rac{md^2}{8}$ После исключения f получаем:

$$I_0 = I_{\rm II} \frac{T_0^2}{T_{\rm II}^2}. (2)$$

Также скорость вращения ротора можно определить с помощью осциллографа. Статор гироскопа имеет две обмотки, одна из которых раскручивает гироскоп, в другой обмотке, неподвижной(?), ротор наводит переменную ЭДС, частоты которой близка к частоте вращения. Частоту ЭДС можно измерить по фигурам Лиссажу: при совпадении частот получаем на экране эллипс.

3 Ход работы

После включения питания ротор раскручивается до максимальной скорости в течение 4-5 минут. При лёгком постукивании по оси гироскоп покоится, а при подвешивании груза Γ к рычагу C (см. рис. 2) наблюдается прецессия. Трение в оси приводит к тому, что рычаг опускается.

На ось гироскопа будем закреплять различные грузы и тем самым, измеряя периоды прецесии, получим зависимость $\Omega(M)$ (таблица 1 и рисунок 3). По методу наименьших квадратов находим $(I_z w_0)^{-1}$.

Для оценки погрешности $(I_z w_0)^{-1}$ по Ω и M примем погрешность измерения периода прецессии равной 0.5 секунды. Тогда полная погрешность складывается из случайной (по МНК), погрешности измерения периода и массы груза:

$$\sigma_k \approx k\sqrt{\frac{0.0001^2}{0.0589} + \frac{0.5^2}{60} + \frac{1}{100}^2} = k \cdot 0.013 = 0.773 \times 10^{-3}$$

$m = 93 \; гр$	T, c	106.14	110.27	110.24	110.17	110.13
$m = 142 \; \text{гр}$	T, c	71.77	71.22	71.52	71.39	71.46
m = 173 гр	T, c	59.02	59.12	59.55	59.54	59.22
$m = 215 \; гр$	T, c	47.18	47.24	47.40	47.28	47.34
$m = 268 \; \text{гр}$	T, c	37.69	37.62	37.48	37.64	37.67
m = 338 гр	T, c	30.09	30.15	30.02	30.08	30.07

Таблица 1: Измерение периодов прецессии при различных приложенных моментах

Рис. 3: График $\Omega\left(M\right)$

$T_{\text{цилиндр}}$, с	4.050	4.054	4.053	4.047	-	$T = 4.051 \pm 0.003 \text{ c}$
$T_{\rm potop}$, c	3.244	3.103	3.225	3.210	3.230	$T = 3.202 \pm 0.057 \text{ c}$

Таблица 2: К измерению I_0 ротора

Найдём момент инерции ротора I_0 по формуле 2. Для этого найдём периоды колебаний ротора и цилиндра (таблица 2), момент инерции цилиндра $I_{\rm ц}=\frac{md^2}{8}=1.223\times 10^{-3}\cdot$ кг м². Получаем, что $I_0=(0.768\pm 0.014)\times 10^{-3}\cdot$ кг м².

Находим, наконец, частоту вращения ротора:

$$\nu = \frac{\omega_0}{2\pi} = \frac{1}{2\pi \cdot 0.517 \cdot 0.000768} = 400.84 \ \Gamma \text{ц}$$

Погрешность:

$$\sigma_{\nu} = \nu * \sqrt{\frac{0.014^2}{0.768} + 0.013^2} = 6.8 \ \Gamma \text{H}$$

Теперь определим частоту ротора с помощью осциллографа: подключим его к гироскопу и подберём такую частоту генератора, подключённого ко второму входу осциллографа, чтобы на экране появилась фигура Лиссажу, а именно эллипс. С включённым двигателем гироскопа частота получается равной 400 Гц, что совпадает в пределах погрешностей с полученным ранее. Однако включённый двигатель наводит токи в обмотке, с помощью которой мы измеряем частоту вращения маховика, и на самом деле на осциллографе мы можем получить частоту тока, а не вращения. Если отключить двигатель и тут же, пока Вращение не замедлилось, измерить частоту, то она будет равной 389 Гц, что уже не попадает в погрешность измеренной нами чатоты.

4 Вывод

В ходе работы двумя способами была определа частота вращения маховика гироскопа в карданном подвесе.

- С помощью измерений периода прецесии: $\nu = 400.8 \pm 6.8~\Gamma$ ц
- С помощью осциллографа: $\nu = 389~\Gamma$ ц