1 Commutative Algebra

- An ideal I is prime if $fg \in I$ means $f \in I$ or $g \in I$
- An element p is prime if p|fg means p|f or p|g
- An element p is irreducible if it cannot be factored into two non-invertible elements
- In a UFD, irreducible and prime are equivalent
- A polynomial ring over a UFD is a UFD
- A ring is Noetherian if every ascending chain of ideals is stationary, or equivalently every ideal is finitely generated
- A polynomial ring over a Noetherian ring is Noetherian
- prime ideals are radical
- quotient of a prime ideal is an integral domain

2 Topology

- Zariski topology is where closed sets are zero loci
- An irreducible set is not a proper union of closed subsets
- continuous images of irreducible sets are irreducible
- products of irreducible sets are irreducible
- A Noetherian space is where every decreasing chain of closed subsets is stationary
- In a Noetherian space decomposition into irreducible components is unique
- The dimension of an irreducible space is the length of the longest chain of nonempty irreducible closed subsets minus 1; the dimension of any space is the maximum dimension of an irreducible component

3 Abstract Nonsense

- A presheaf of rings is an assignment of rings to open sets, as well as a restriction homomorphism, in such a way that restriction is transitive and reflexive, and the empty set is assigned to the trivial ring.
- A sheaf is a presheaf with the property that a ring element on the global ring can be defined by its restriction to the sets of an open cover
- The stalk of a presheaf is the set of all ring elements of all neighborhoods of P, identifying elements if they agree on some neighborhood of P.
- germs are the elements of a stalk
- the stalk of O_X at P is $O_{X,P}$
- If $f: X \to Y$ is a function, the pull-back $f^*\phi$ of a regular function ϕ on Y is $\phi \circ f$
- A function is a morphism if it pulls back regular functions to regular functions
- A morphism of sheaves F, G is collection of morphisms $f_U : F(U) \to G(U)$ that commute with restriction maps

4 Affine Varieties

- The coordinate ring $A(X) = k[x_i]_i/I(X)$ is the "polynomials" on X
- The rational functions are the fraction field of A(X)
- The regular functions at P are those rational functions that can be evaluated at P; alternatively they are the functions that have a representation as a quotient of polynomials in $k[x_i]_i$ on some neighborhood of P.
- The regular functions on an open set U are the functions that are regular at each $P \in U$.
- $O(X_f) = A(X)_f := \{g/f^r\} \subseteq K(X)$
- A product of affine varieties is an affine variety
- An abstract affine variety is an irreducible space and a sheaf of k-valued functions that is isomorphic to a concrete affine variety
- Distinguished open subsets are abstract affine varieties
- Not all open subsets of varieties are varieties, consider $\mathbb{C}\setminus\{0\}$
- morphisms can be checked on open sets, germs or global sets
- morphisms of affine varieties f correspond to k-algebra homomorphisms f^*

5 Varieties

- A prevariety is an irreducible set with a sheaf of functions that has a finite cover of affine varieties
- Can create a prevariety by gluing two prevarieties along a common open subset: Let f be the isomorphism between open subsets U_1, U_2 of X_1, X_2 and i_1, i_2 be the inclusions into X. The topology is the quotient topology and the sheaf of functions is pairs $(\phi_1, \phi_2) \in O_{X_1}\left(i_1^{-1}(U)\right) \times O_{X_2}\left(i_2^{-1}(U)\right)$ that agree on overlaps
- Same thing works with finite collection of prevarieties, with each pair glued on an open subset, provided isomorphisms are consistent.
- Let $\{V_i\}$ be an affine cover of Y and $\{U_i\}$ be an open cover of X with $f(U_i) \subseteq V_i$ and f a morphism when restricted to each U_i . Then f is a morphism.
- A variety is a prevariety X so that for any prevariety Y and pair of morphisms $Y \to X$, the set where they agree is closed; equivalently, the diagonal is closed.
- an open or closed subprevariety of a variety is a variety.
- A variety is complete if $\pi: X \times Y \to Y$ is closed for every variety Y
- If X is complete then any morphism $X \to Y$ (Y variety) is closed.
- regular functions on complete varieties are constant

6 Projective Space

- think of \mathbb{P}^n as \mathbb{A}^n compactified with a point at infinity for every direction
- A projectivity on \mathbb{P}^n is an element of $\mathrm{GL}_n\left(k\right)/k^*$
- A conic is a symmetric bilinear form on k^3 , which can be represented as $\varepsilon_1 X^2 + \varepsilon Y^2 + \varepsilon Z^2$ after a projectivity
- conics in $\mathbb{P}^2_{\mathbb{R}}$ are
 - nondegenerate $X^2 + Y^2 Z^2$
 - empty $X^2 + Y^2 + Z^2$
 - one point $X^2 + Y^2$
 - two lines $X^2 Y^2$
 - line X^2
 - everything 0
- nondegenerate conics are equivalently $XY = Z^2$, isomorphic to \mathbb{P}^1 with the isomorphism $(U:V) \mapsto (U^2, UV, V^2)$ which can be interpreted as projection
- conics in $\mathbb{P}^2_{\bar{k}}$
 - nondegenerate $X^2 + Y^2 Z^2$
 - two lines $X^2 Y^2$
 - line X^2
 - everything 0
- A degree-d homogeneous form F on \mathbb{P}^n corresponds to a (maximum) degree-d polynomial f in \mathbb{A}^n . If n = 1, the multiplicity of a zero in F is the multiplicity of the corresponding zero in f, or $d \deg f$ for the point at infinity.
- Bezout's theorem: for an algebraically closed field the number of intersections of projective curves is the
 product of their degrees, provided they share no irreducible components and multiplicities are counted appropriately
- Easy cases: line or nondegenerate conic vs a nonincluding curve in \mathbb{P}^n , inequality to compensate for multiplicities
- 5 points in general position define a unique conic

7 Projective Varieties

- Homogeneous ideals are generated by homogeneous polynomials or equivalently contain each homogeneous part of each member, or equivalently are fixed by the action of k^* .
- A projective algebraic set X in \mathbb{P}^n corresponds to a cone C(X) in \mathbb{A}^{n+1}
- The zero set of a homogeneous ideal in \mathbb{A}^{n+1} is the cone of its zero set in \mathbb{P}^n (provided neither are empty)
- the ideal generated by $X \subseteq \mathbb{P}^n$ is the ideal generated by $C(X) \in \mathbb{A}^{n+1}$.
- Nullstellensatz still works provided Z(I) is nonempty; Z(I) can only be empty if $I = \langle 1 \rangle$ or $\sqrt{I} = \langle x_0, \dots, x_n \rangle$.
- Homogeneous coordinate ring is S(X) = A(C(X)); **not** polynomial functions
- rational functions are f/g, where $f,g \in S(X)^{(d)}$ have common degree d

- homogeneous functions of the same degree on homogeneous coordinates give a morphism, provided they never all vanish
- projective varieties are varieties
- The Segre embedding is $\mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^{(n+1)(m+1)-1} : ((x_i), (y_i)) \mapsto (x_i y_j)$. It is the zero locus of $z_{i,j} z_{i',j'} z_{i,j'} z_{i',j}$.
- $\bullet\,$ projective varieties are complete
- A nontrivial projective variety intersects with the zero locus of any homogeneous polynomial
- The Veronese embedding is $\mathbb{P}^n \to \mathbb{P}^{\binom{n+d}{n}-1}$: $(x=(x_i)) \mapsto (x^I)_I$ (monomials of degree d). It is the zero locus of $z_I z_J z_K z_L$, with I+J=K+L