Normal Probability Rules

Let X be a normal random variable with parameters μ and σ . Then

$$P[-\sigma < X - \mu < \sigma] \approx 0.68$$

$$P[-2\sigma < X - \mu < 2\sigma] \approx 0.95$$

$$P[-3\sigma < X - \mu < 3\sigma] \approx 0.997$$

$$P[-\sigma < X - \mu < \sigma] = P\left[-1 < \frac{X - \mu}{\sigma} < 1\right] = P[-1 < Z < 1] \approx 0.68$$

$$P[-2\sigma < X - \mu < 2\sigma] = P\left[-2 < \frac{X - \mu}{\sigma} < 2\right] = P[-2 < Z < 2] \approx 0.95$$

$$P[-3\sigma < X - \mu < 3\sigma] = P\left[-3 < \frac{X - \mu}{\sigma} < 3\right] = P[-3 < Z < 3] \approx 0.997$$

If X is a normal variable, we can be 99.7% sure that a value x will be within 3σ distance from the center μ

It is 0.3% rare that a value of a normal variable can be 3σ away from the center μ .

Chebyshev's Inequality

Let X be a random variable with mean μ and standard deviation σ . Then for any positive number k,

$$P[|X - \mu| < k\sigma] \ge 1 - \frac{1}{k^2}$$

$$k = 1: P[|X - \mu| < \sigma] = P[-\sigma < X - \mu < \sigma] \ge 1 - 1 = 0$$

$$k = 2: P[|X - \mu| < 2\sigma] = P[-2\sigma < X - \mu < 2\sigma] \ge 1 - \frac{1}{4} = 0.75$$

$$k = 3: P[|X - \mu| < 3\sigma] = P[-3\sigma < X - \mu < 3\sigma] \ge 1 - \frac{1}{9} = 0.89$$

This result is for any random variable.

Example: Check the normal probability rules using the Chebyshev's Inequality

$$P[|X - \mu| < \sigma] = P[-\sigma < X - \mu < \sigma] \ge 1 - 1 = 0 \quad vs \quad 0.68$$

$$P[|X - \mu| < 2\sigma] = P[-2\sigma < X - \mu < 2\sigma] \ge 1 - \frac{1}{4} = 0.75 \quad vs \quad 0.95$$

$$P[|X - \mu| < 3\sigma] = P[-3\sigma < X - \mu < 3\sigma] \ge 1 - \frac{1}{9} = 0.89 \quad vs \quad 0.997$$

The result from Chebyshev's inequality is more conservative.

Chebyshev's Inequality

Example: Let *M* denote the total staffing-hours working without a serious accident. Past experience indicates that *M* has a mean of 2 million and a standard deviation of 0.1 million. A serious accident has just occurred. Would it be unusual for the next serious accident to occur within the next 1.6 million staffing-hours?

Solution:

We need to find the probability $P[M \le 1.6]$ with the distribution of M unknown!!! However, from Chebyshev's inequality with k = 4, we have,

$$P[|M-2| < 0.4] \ge 1 - \frac{1}{16} = 0.9375$$

 $\Rightarrow P[1.6 < M < 2.4] \ge 0.9375$

This implies that: $P[M \le 1.6] + P[M \ge 2.4] \le 0.0625$ Since $P[M \ge 2.4] \ge 0$, we have, $P[M \le 1.6] \le 0.0625$ Therefore, it is unusual.

If it is known that the density of M is symmetric, can this probability be improved?

Since the density if symmetric, we have $P[M \le 1.6] = P[M \ge 2.4]$. Therefore, $P[M \le 1.6] \le \frac{0.0625}{2} = 0.03125$

Continuous Distributions

Distributions	Density function	Moment generating function	Mean	Variance
Gamma	$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-\frac{x}{\beta}},$ $x > 0, \alpha > 0, \beta > 0$	$(1-\beta t)^{-\alpha}$	αβ	$lphaeta^2$
Exponential	$f(x) = \frac{1}{\beta} e^{-\frac{x}{\beta}}, \qquad x > 0, \beta > 0$	$(1-\beta t)^{-1}$	β	eta^2
Chi-Squared	$f(x, \gamma) = \frac{x^{(\frac{\gamma}{2} - 1)} e^{-x/2}}{2^{\frac{\gamma}{2}} \Gamma(\frac{\gamma}{2})}, x > 0$	$(1-2t)^{-\gamma/2}$	γ	2γ
Normal	$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}}$	$e^{(\mu t + \frac{1}{2}\sigma^2 t^2)}$	μ	σ^2

Joint density of discrete random variables:

Let X and Y be discrete random variables. The ordered pair (X,Y) is called a two dimensional discrete random variable.

A function $f_{XY}(x,y) = P[X = x \text{ and } Y = y]$ is called the joint density for (X,Y) if

$$f_{XY}(x,y) \ge 0$$
 and $\sum_{all\ x} \sum_{all\ y} f_{XY}(x,y) = 1$

Example:

In an automobile plant, one robot is welding two joints. The second robot is tightening three bolts. Let X denote the number of defective welds and Y the number of improperly tightened bolts produced per car. The joint density function for (X,Y) is shown in the table.

X\Y	0	1	2	3
0	0.840	0.030	0.020	0.010
1	0.060	0.010	0.008	0.002
2	0.010	0.005	0.004	0.001

- 1. Verify that the joint density function in the table is a discrete joint density function
- 2. Calculate the probability that there will be exactly one error made
- 3. Calculate the probability that there will be no improperly tightened bolts

Marginal densities of discrete random variables:

Let (X,Y) be a two dimensional discrete random variable with joint density $f_{XY}(x,y)$.

The marginal density for X, denoted by f_X , is given by $f_X(x) = \sum_{all \ y} f_{XY}(x,y)$

The marginal density for Y, denoted by f_Y , is given by $f_Y(y) = \sum_{all \ x} f_{XY}(x,y)$

Example:

In an automobile plant, one robot is welding two joints. The second robot is tightening three bolts. Let X denote the number of defective welds and Y the number of improperly tightened bolts produced per car. The joint density function for (X,Y) is shown in the table. Find the marginal density f_X and f_Y .

X\Y	0	1	2	3
0	0.840	0.030	0.020	0.010
1	0.060	0.010	0.008	0.002
2	0.010	0.005	0.004	0.001

Joint density of continuous random variables:

Let X and Y be continuous random variables. The ordered pair (X,Y) is called a two dimensional continuous random variable.

A function $f_{XY}(x,y)$ is called the joint density for (X,Y) if $f_{XY}(x,y) \ge 0$. and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) dy dx = 1$

$$P[a \le X \le b \text{ and } c \le Y \le d] = \int_{a}^{b} \int_{c}^{d} f_{XY}(x, y) dy dx$$

Where , a, b, c, d are real constants.

Practice Example: The joint density for (X, Y) is $f_{XY}(x, y) = c$, $8.5 \le x \le 10.5, 120 \le y \le 240$.

- (1) Find the value of c so that $f_{XY}(x, y)$ is a valid density.
- (2) Calculate $P[9 \le x \le 10 \ and \ 125 \le y \le 140]$

(1) We want
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) dy dx = 1 \Rightarrow \int_{8.5}^{10.5} \int_{120}^{240} c dy dx = 1 \Rightarrow 240c = 1 \Rightarrow c = \frac{1}{240}$$

(2)
$$P[9 \le x \le 10 \text{ and } 125 \le y \le 140] = \int_{9.0}^{10.0} \int_{125}^{140} \frac{1}{240} dy dx = \frac{1}{16}$$

Marginal densities of continuous random variables:

Let (X,Y) be a two dimensional continuous random variable with joint density $f_{XY}(x,y)$.

The marginal density for X, denoted by f_X , is given by $f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) dy$

The marginal density for Y, denoted by f_Y , is given by $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x,y) dx$

Example:

Assume that the joint density for (X,Y) is given by $f_{XY}(x,y) = \frac{c}{x}$, $27 \le y \le x \le 33$

- (1) Find the value of c so that $f_{XY}(x, y)$ is a valid density function
- (2) Find the marginal density $f_X(x)$ and $f_Y(y)$

(1) In order for $f_{XY}(x,y)$ to be a valid density function, we need, $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) dy dx = 1 \Rightarrow \int_{27}^{33} \int_{27}^{x} \frac{c}{x} dy dx = 1 \Rightarrow \int_{27}^{33} \frac{c}{x} (x-27) dx = 1$ $\Rightarrow c \int_{27}^{33} (1 - \frac{27}{x}) dx = 1 \Rightarrow c \left[6 - 27 \ln \left(\frac{33}{27} \right) \right] = 1 \Rightarrow c = \frac{1}{6 - 27 \ln \left(\frac{33}{27} \right)} \approx 1.72$ (2) $f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) dy = \int_{27}^{x} \frac{c}{x} dy = c \left(1 - \frac{27}{x} \right), 27 \leq x \leq 33$ $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x,y) dx = \int_{y}^{33} \frac{c}{x} dx = c(\ln 33 - \ln y), \ 27 \leq y \leq 33$

