

Visualizing Linear Models: An R Bag of Tricks Session 1: Getting Started

Michael Friendly SCS Short Course Oct-Nov, 2021

https://friendly.github.io/VisMLM-course/

Today's topics

- What you need for this course
- Why plot your data?
- Data plots
- Model (effect) plots
- Diagnostic plots

What you need

- R, version >= 3.6
 - Download from https://cran.r-project.org/
- RStudio IDE, highly recommended
 - https://www.rstudio.com/products/rstudio/
- R packages: see course web page
 - car
 - effects
 - heplots
 - candisc
 - visreg

Why plot your data?

Getting information from a table is like extracting sunlight from a cucumber. --- Farguhar & Farguhar, 1891

Information that is imperfectly acquired, is generally as imperfectly retained; and a man who has carefully investigated a printed table, finds, when done, that he has only a very faint and partial idea of what he has read; and that like a figure imprinted on sand, is soon totally erased and defaced.

--- William Playfair, The Commercial and Political Atlas (p. 3), 1786

Cucumbers

Table 7 Stevens et al. 2006, table 2: Determinants of authoritarian aggression

	Coefficient			
Variable	(Standard Error			
Constant	.41 (.93)			
Countries				
Argentina	1.31 (.33)**B,M			
Chile	.93 (.32)**B,M			
Colombia	1.31 (.33)**B,M .93 (.32)**B,M 1.46 (.32)**B,M .07 (.32)A,CH,CC			
Mexico	.07 (.32)A,CH,CC			
Venezuela	.96 (.37)**B,M			
Threat				
Retrospective egocentric economic perceptions	.20 (.13)			
Prospective egocentric economic perceptions	.22 (.12)#			
Retrospective sociotropic economic perceptions	21 (.12)#			
Prospective sociotropic economic perceptions	32 (.12)*			
Ideological distance from president Ideology	27 (.07)**			
Ideology	.23 (.07)**			
Individual Differences	.20 (.07)			
Age	.00 (.01)			
Female	03 (.21)			
Education	.13 (.14)			
Academic Sector	.15 (.29)			
Business Sector	.31 (.25)			
Government Sector	10 (.27)			
R ²	.15			
Adjusted R ²	.12			
N	500			

Results of a one model for authoritarian aggression

The information is overwhelmed by footnotes & significance **stars**

**p < .01, *p < .05, #p < .10 (twotailed)
*Coefficient is significantly different from Argentina's at p < .05;
^B Coefficient is significantly different from Brazil's at p < .05
^{CH} Coefficient is significantly different from Chile's at p < .05
^{CO} Coefficient is significantly different from Colombia's at p < .05;
MCoefficient is significantly different from Mexico's at p < .05
VCoefficient is significantly different from Venezuela's at

What's wrong with this picture?

5

Sunlight

Why didn't they say this in the first place?

NB: This is a presentation graph equivalent of the table

Shows coefficient with 95% CI

Run, don't walk toward the sunlight

Graphs can give enlightenment

The greatest value of a picture is when it forces us to notice what we never expected to see.

-- John W. Tukey

Effect of one rotten point on regression

Dangers of numbers-only output

Student: You said to run descriptives and compute the correlation. What next?

Consultant: Did you plot your data?

X Mean: 54.26 Y Mean: 47.83 X SD : 16.76 Y SD : 26.93 Corr. : -0.06

With exactly the same stats, the data could be *any* of these plots

See how this in done in R: https://cran.r-project.org/web/packages/datasauRus/

Sometimes, don't need numbers at all

COVID transmission risk ~ Occupancy * Ventilation * Activity * Mask? * Contact.time

A complex 5-way table, whose message is clearly shown w/o numbers

There are 1+ unusual cells here. Can you see them?

From: N.R. Jones et-al (2020). Two metres or one: what is the evidence for physical distancing in covid-19? *BMJ* 2020;370:m3223, *doi: https://doi.org/10.1136/bmj.m3223*

If you do need tables – make them pretty

Several R packages make it easier to construct informative & pretty semi-graphic tables

Flipper lengths (mm) of the famous penguins of Palmer Station, Antarctica.

Presentation graph
Perhaps too cute!

Distribution of variables shown

Species Distribution
Avg. Std. Dev. Avg. Std. Dev.

188 5.6 192 6.6

192 5.8 200 6.0

Artwork by @allison_horst

Visual table ideas: Heatmap shading

Heatmap shading: Shade the background of each cell according to some criterion

The trends in the US and Canada are made obvious

NB: Table rows are sorted by Jan. value, lending coherence

Background shading ~ value:

US & Canada are made to stand out.

Tech note: use white text on a darker background

Unemployment rate in selected countries

January-August 2020, sorted by the unemployment rate in January.

country	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Japan	2.4%	2.4%	2.5%	2.6%	2.9%	2.8%	2.9%	3.0%
Netherlands	3.0%	2.9%	2.9%	3.4%	3.6%	4.3%	4.5%	4.6%
Germany	3.4%	3.6%	3.8%	4.0%	4.2%	4.3%	4.4%	4.4%
Mexico	3.6%	3.6%	3.2%	4.8%	4.3%	5.4%	5.2%	5.0%
US	3.6%	3.5%	4.4%	14.7%	13.3%	11.1%		
South Korea	4.0%	3.3%	3.8%	3.8%	4.5%	4.3%	4.2%	3.2%
Denmark	4.9%	4.9%	4.8%	4.9%	5.5%	6.0%	6.3%	6.1%
Belgium	5.1%	5.0%	5.0%	5.1%	5.0%	5.0%	5.0%	5.1%
Australia	5.3%	5.1%	5.2%	6.4%	7.1%	7.4%	7.5%	6.8%
Canada	5.5%	5.6%	7.8%	13.0%	13.7%	12.3%	10.9%	
Finland	6.8%	6.9%	7.0%	7.3%	7.5%	7.8%	8.0%	8.1%

Source: OECD • Get the data • Created with Datawrapp

12

15

Visual table ideas: Heatmap shading

As seen on TV ...

Covid rate ~ Age x Date x UK region

Better: incorporate geography, not just arrange regions alphabetically

bbc.co.uk/news

14

Visual table ideas: Sparklines

Sparklines: Mini graphics inserted into table cells or text

Linear models

Model:

$$\mathbf{y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \dots + \beta_{p} \mathbf{X}_{ip} + \varepsilon_{i}$$

- Xs: quantitative predictors, factors, interactions, ...
- Assumptions:
 - Linearity: Predictors (possibly transformed) are linearly related to the outcome, y. [This just means linear in the parameters.]
 - Specification: No important predictors have been omitted; only important ones included. [This is often key & overlooked.]
 - The "holy trinity":
 - Independence: the errors are uncorrelated
 - Homogeneity of variance: $Var(\varepsilon_i) = \sigma^2 = constant$
 - Normality: ε_i have a normal distribution

 $\varepsilon_i \sim_{iid} \mathcal{N}(0,\sigma^2)$

From: https://www.pluralsight.com/guides/tableau-playbook-sparklines

The General Linear Model

- "linear" models can include:
 - transformed predictors: \sqrt{age} , log(income)
 - polynomial terms: age², age³, poly(age, n)
 - categorical "factors", coded as dummy (0/1) variables
 - treated (Yes/No), Gender (M/F/non-binary)
 - interactions: effects of x₁ vary over levels of x₂
 - treated × age, treated × sex, (2 way)
 - treated × age × sex (3 way)
- Linear model means linear in the parameters (β_i),

$$y = \beta_0 + \beta_1 \text{age} + \beta_2 \text{age}^2 + \beta_3 \log(\text{income}) + \beta_4 (\text{sex="F"}) + \beta_5 \text{age} \times (\text{sex="F"}) + \epsilon$$

In R, all handled by lm(y ~ ...)

Fitting linear models in R: Im()

- In R, 1m() for everything
 - Regression models (X1, ... quantitative)

```
lm(y ~ X1, data=dat)  # simple linear regression
lm(y ~ X1+X2+X3, data=dat)  # multiple linear regression
lm(y ~ (X1+X2+X3)^2, data=dat)  # all two-way interactions
lm(log(y) ~ poly(X,3), data=dat)  # arbitrary transformations
```

ANOVA/ANCOVA models (A, B, ... factors)

18

Fitting linear models in R: lm()

- Multivariate models: 1m() with 2+ y vars
 - Multivariate regression

MANOVA/MANCOVA models

Generalized Linear Models: glm()

Transformations of y & other error distributions

- y ∈ (0/1): lived/died; success/fail; ...
- logit (log odds) model:
 - logit(y) = $log \frac{Pr(y=1)}{Pr(y=0)}$
 - linear logit model: logit(y) = $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...$

glm(better ~ age + treat, family=binomial, data=Arthritis)

Generalized Linear Models

Ordinal responses

- Improved ∈ ("None" < "Some" < "Marked")
- Models: Proportional odds, generalized logits, ...

library(MASS) polr(Improved ~ Sex + Treat + Age, data=Arthritis)

library(nnet) multinom(Improved ~ Sex + Treat + Age, data=Arthritis)

Model-based methods: Overview

- models in R are specified by a symbolic model formula, applied to a data.frame
 - mod<-lm(prestige ~ income + educ, data=Prestige)
 - mod<-glm(better ~ age + sex + treat, data=Arthritis, family=binomial)
 - mod<-MASS:polr(improved ~ age + sex + treat, data=Arthritis)
- result (mod) is a "model object", of class "lm", "glm", ...
- method functions:
 - plot(mod), plot(f(mod)), ...
 - summary(mod), coef(mod), predict(mod), ...

22

Plots for linear models

- Data plots:
 - plot response (y) vs. predictors, with smooth summaries
 - scatterplot matrix --- all pairs
- Model (effect) plots
 - plot predicted response (\hat{y}) vs. predictors, controlling for variables not shown.
- Diagnostic plots
 - Influence plots: leverage & outliers
 - Spread-level plots (non-constant variance?)

R packages

- car
 - Enhanced scatterplots
 - Diagnostic plots
- effects
 - Plot fitted effects of one predictor, controlling all others
- visreg
 - similar to effect plots, simpler syntax
- Both effects & visreg handle nearly all formula-based models
 - Im(), glm(), gam(), rlm, nlme(), ...

23

Occupational Prestige data

- Data on prestige of 102 occupations and
 - average education (years)
 - average income (\$)
 - % women
 - type (Blue Collar, Professional, White Collar)

```
> car::some(Prestige, 6)
                  education income women prestige census type
                                                    2141 prof
architects
                      15.44 14163 2.69
                                              78.1
physicians
                      15.96
                             25308 10.56
                                                    3111 prof
commercial.artists
                      11.09
                              6197 21.03
                                                    3314 prof
tellers.cashiers
                      10.64
                              2448 91.76
                                                    4133
                              4199 33.30
                                                    8213
bakers
                       7.54
                                                           bc
                       8.78
                              6573 5.78
                                                    8515
aircraft.workers
```

Informative scatterplots

Scatterplots are most useful when enhanced with annotations & statistical summaries

Data ellipse and regression line show the linear model, prestige ~ income

Point labels show possible outliers

Smoothed (loess) curve and CI show the trend

Boxplots show marginal distributions

25

Informative scatterplots

car::scatterplot() provides all these enhancements

Skewed distribution of income & nonlinear relation suggest need for a transformation

Arrow rule: move on the scale of powers in direction of the bulge e.g.: $x \rightarrow sqrt(income)$ or log(income)

Try log(income)

```
scatterplot(prestige ~ income, data=Prestige,
    log = "x",
    pch = 16,
    regLine = list(col = "red", lwd=3),
    ...)
```

Income now ~ symmetric

Relation closer to linear

log(income): interpret as effect of a multiple

26

Stratify by type?

```
scatterplot(prestige ~ income | type, data=Prestige,
     col = c("blue", "red", "darkgreen"),
    pch = 15:17,
    legend = list(coords="bottomright"),
    smooth=list(smoother=loessLine, var=FALSE, span=1, lwd=4))
```

Formula: | type → "given type"

Different slopes: interaction of income * type

Provides another explanation of the non-linear relation

This may be a new finding!

Scatterplot matrix

```
scatterplotMatrix(~ prestige + education + income + women , data=Prestige, regLine = list(method=lm, lty=1, lwd=2, col="black"), smooth=list(smoother=loessLine, spread=FALSE, lty.smooth=1, lwd.smooth=3, col.smooth="red"), ellipse=list(levels=0.68, fill.alpha=0.1))
```


Fit a simple model

Fits very well

But this ignores:

- nonlinear relation with income: should use log(income)
- occupation type
- possible interaction of income*type

Fit a more complex model

```
> mod1 <- lm(prestige ~ education + women +
                                                               add interaction of log
              log(income)*type, data=Prestige)
> summary(mod1)
                                                               income by type
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                    -152.20589 23.24988 -6.547 3.54e-09 ***
(Intercept)
education
                       2.92817
                       0.08829
                                            2.730 0.00761 **
women
                                  0.03234
log(income)
                      18.98191
                                  2.82853
                                           6.711 1.67e-09 ***
typeprof
                      85.26415
                                 36.50749
                                           0.806
typewc
                      29.41334
                                                  0.42255
log(income):typeprof
                      -9.01239
                                  3.41020
                                          -2.643
                                 4.26034 -0.900 0.37063
                      -3.83343
log(income):typewc
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
                                                                 Fits even better!
Multiple R-squared: (0.8751,) Adjusted R-squared: 0.8654
F-statistic: 90.07 on / and 90 DF, p-value: < 2.2e-16
                                                                 But how to understand?
```

32

Coefs for type compare mean "wc" and "prof" to "bc" Coefs for log(income) *type compare "wc" and "prof" slopes with that of "bc"

Coefficient plots

Plots of coefficients with CI often more informative that tables

```
arm::coefplot(mod0, col.pts="red", cex.pts=1.5)
arm::coefplot(mod1, add=TRUE, col.pts="blue", cex.pts=1.5)
```

This plots raw coefficients, and the Xs are on different scales, so effect of income doesn't appear significant.

Model (effect) plots

- We'd like to see plots of the predicted value (\hat{y}) of the response against predictors (x_i)
 - Ordinary plot of y vs. x_i doesn't allow for other correlations
 - → Must control (adjust) for other predictors (x_{-j}) not shown in a given plot
- Effect plots
 - Variables not shown (x_{-i}) are averaged over.
 - Slopes of lines reflect the partial coefficient in the model
 - Partial residuals can be shown also

For details, see vignette("predictor-effects-gallery", package="effects)

34

Model (effect) plots: education

```
library("effects")
mod1.e1 <- predictorEffect("education", mod1)
plot(mod1.e1)</pre>
```

This graph shows the partial slope for education, controlling for all others

For each ↑ year in education, fitted prestige ↑2.93 points, (other predictors held fixed)

Model (effect) plots

```
mod1.e1a <- predictorEffect("education", mod1, residuals=TRUE)
plot(mod1.e1a,
    residuals.pch=16, id=list(n=4, col="black"))</pre>
```


Partial residuals show the residual of prestige controlling for other predictors

Unusual points here would signal undue influence

Model (effect) plots: women

women predictor effect plot

Surprise!

Prestige of occupations \(^1\) with \(^2\) women (controlling for other variables)

Another 10% women ↑ prestige by 0.88 points

How to interpret this?

Model (effect) plots: income

```
plot(predictorEffect("income", mod1),
    lines=list(multiline=TRUE, lwd=3),
    key.args = list(x=.7, y=.35))
```

income predictor effect plot

Income interacts with type in the model

The plot is curved because log(income) is in the model

Curvature reflects marginal effect of income for each occupation type

visreg plots: Air quality data

Daily air quality measurements in New York, May - Sep 1973

How does Ozone concentration vary with solar radiation, wind speed & temperature?

```
> head(airquality)
  Ozone Solar.R Wind Temp Month
     41
             190
                 7.4
                        67
2
     36
            118 8.0
                        72
                                    2
3
     12
            149 12.6
                        74
     18
             313 11.5
                        62
             NA 14.3
                        56
                                    5
     NA
     28
              NA 14.9
                        66
```

Air quality: main effects model

```
> fit1 <- lm(Ozone ~ Solar.R + Wind + Temp, data=airquality)</pre>
> summary(fit1)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -64.3421
                        23.0547
                                          0.0062
Solar.R
              0.0598
                         0.0232
Wind
             -3.3336
                         0.6544
                                  -5.09 1.5e-06 ***
                                   6.52 2.4e-09 ***
              1.6521
                         0.2535
Temp
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 21.18 on 107 degrees of freedom
  (42 observations deleted due to missingness)
Multiple R-squared: 0.6059,
                                Adjusted R-squared: 0.5948
F-statistic: 54.83 on 3 and 107 DF, p-value: < 2.2e-16
```

visreg conditional plots

```
visreg(fit1, "Solar.R")
visreg(fit1, "Wind")
visreg(fit1, "Temp")
```

model summary =
predicted values (line) +
confidence band (uncertainty) +
partial residuals (objections)

Factor variables & interactions

cut Temp into three ordered levels of equal range

airquality\$Heat <- cut(airquality\$Temp, 3, labels=c("Cool","Mild","Hot"))

fit model with interaction of Wind * Heat

fit2 <- Im(Ozone ~ Solar.R + Wind*Heat, data=airquality) visreg(fit2, "Wind", by="Heat", layout=c(3,1), points=list(cex=1))

Factor variables & interactions

overlay=TRUE → superpose panels gg=TRUE → uses ggplot

This allow slope for Wind to vary with Heat e.g., Wind has no effect when Cool

This model still assumes linear effects of Heat & Wind

Non-linear effects

fit <- Im(Ozone ~ Solar.R + poly(Wind,2) + Temp, data=airquality) visreg(fit, "Wind") fit <- Im(Ozone ~ Solar.R + Wind + poly(Temp,2), data=airquality) visreg(fit, "Temp")

Response surface models (visreg2d)

Fit quadratics in both Wind & Temp and interaction Wind * Temp fitp <- Im(Ozone ~ Solar.R + poly(Wind,2) * poly(Temp,2), data=airquality)

Regression trees

Regression trees are a non-parametric alternative to linear models

- Essential ideas:
 - Find predictor and split value which minimizes SSE
 - fitted value in each subgroupmean
 - repeat, recursively, splitting by next best predictor
- Large literature
 - cost, complexity tradeoff
 - pruning methods
 - boosting, cross-validation
 - tree averaging

4

Prestige data: rpart tree

> library(rpart) # calculating regression trees > library(rpart.plot) # plotting regression trees > rmod <- rpart(prestige ~ education + income + women + type, data=Prestige, method = "anova") > rpart.rules(rmod) # print prediction rules prestige 24 when education < 10 & income < 3600 33 when education < 10 & income is 3600 to 6078 41 when education is 10 to 12 & income < 6078 46 when education < 12 & income >= 63 when education is 12 to 14 73 when education >= 14

Prestige data: rpart tree

rpart.plot(rmod, prefix="prestige=")

Diagnostic plots

- The linear model, $y=X\beta+\epsilon$ assumes:
 - Residuals, ε_i are normally distributed, $\varepsilon_i \sim N(0,\sigma^2)$
 - (Normality not required for Xs)
 - Constant variance, $Var(\varepsilon_i) = \sigma^2$
 - Observations y_i are statistically independent
- Violations → inferences may not be valid
- A variety of plots can diagnose all these problems
- Other methods (boxCox, boxTidwell) diagnose the need for transformations of y or Xs.

49

The "regression quartet"

In R, plotting a 1m model object \rightarrow the "regression quartet" of plots

plot(mod1, lwd=2, cex.lab=1.4)

2 Q-Q plot: should follow the 45° line

3 Scale-location: should be flat if constant variance

Resids vs. leverage: can show influential observations

Unusual data: Leverage & Influence

- "Unusual" observations can have dramatic effects on least-squares estimates in linear models
- Three archetypal cases:
 - Typical X (low leverage), bad fit -- Not much harm
 - Unusual X (high leverage), good fit -- Not much harm
 - Unusual X (high leverage), bad fit -- BAD, BAD, BAD
- Influential observations: unusual in both X & Y
- Heuristic formula:

Influence = X leverage x Y residual

Influence plots

Influence (Cook's D) measures impact of individual obs. on coefficients, fitted values

ر2

Spread-level plots

- To diagnose non-constant variance, plot:
 - log |Std. residual| vs. log (x)
 - log (IQR) vs log (median) [for grouped data]
- If \approx linear w/slope b, transform $y \rightarrow y^{(1-b)}$

Artificial data, generated so $\sigma \sim x$

- $b \approx 1 \rightarrow power = 0$
- → analyze log(y)

Spread-level plot: baseball data

Data on salary and batter performance from 1987 season

slope = .74 \rightarrow p = .26 i.e., y \rightarrow log(y) or y^{1/4}

NB: both axes plotted on log scale

Box Cox transformation

- Box & Cox proposed to transform y to a power, $y \rightarrow y^{(\lambda)}$ to minimize the residual SS (or maximize the likelihood)
 - Makes y^(λ) more nearly normal
 - Makes y^(λ) more nearly linear in with X

Formula for $y^{(\lambda)}$

- y⁽⁰⁾: log_e(y)
- λ < 0: flip sign to keep same order

$$y_i^{(\lambda)} = \left\{ egin{array}{ll} rac{y_i^{\lambda} - 1}{\lambda} & ext{if } \lambda
eq 0, \ & & & & & & & & & & & & \end{array}
ight.$$

Power(p)	Transformation	Name			
1	Y^2	Square			
	Y (No transformation)	Original Data			
1/2	√ Y	Square root			
"0" -½	log Y or log 10 (Y)	Logarithm			
-1/2	-1 / √ Y	Reciprocal Root			
-1 -2	-1 / Y	Reciprocal			
-2	-1 / Y^2	Reciprocal Square			

Example: Cars93 data

How does gas mileage (MPG.city) depend on vehicle weight?

Relationship clearly non-linear

Tukey arrow rule: transform Y (or X) as arrow thru the curve bulges $y \to \sqrt{y}$, log(y), 1/y

 $x \rightarrow \sqrt{x}$, $\log(x)$, 1/x

MASSextra package

- > library(MASSExtra)
- > box_cox(cars.mod) # plot log
 - # plot log likelihood vs. lambda
- > lamba(cars.mod)
- [1] -1.26

The plot of $-\log(L) \sim RSS$ shows the minimum & CI

plot (bc(MPG.city, lamba(cars.mod))

Summary

- Tables are for look-up; graphs can give insight
- "Linear" models include so much more than ANOVA & regression
- Data plots are more effective when enhanced
 - data ellipses → strength & precision of correlation
 - regression lines and smoothed curves
 - point identification → noteworthy observations
- Effect plots show informative views of models
 - Visualize conditional effects, holding others constant
- Diagnostic plots can reveal influential observations and need for transformations.