Teorema di Gershgorin

Data la matrice $A \in \mathbb{C}^{n \times n}$, definiamo il cerchio di Gershgorin relativo alla riga A_i :

$$K_i = \left\{ z \in \mathbb{C} \mid |z - a_{ii}| \le \sum_{\substack{j=1 \ j \ne i}}^n |a_{ij}| \right\},$$

cioè il cerchio di centro a_{ii} e raggio $\sum \dots$ Per ogni autovalore λ di A,

$$\lambda \in \bigcup_{i=0}^{n} K_i$$
.

Visto che A^{t} ha gli stessi autovalori, vale anche:

$$\lambda \in \left(\bigcup_{i=0}^{n} K_i\right) \cap \left(\bigcup_{j=0}^{n} H_i\right),$$

dove H_j sono i cerchi di Gershgorin di A^{t} .

In particolare, se 0 non è nei cerchi la matrice è invertibile (le matrici singolari hanno sempre almeno un autovalore 0).