

Asst. Prof. Ahmet Can Erten (aerten@itu.edu.tr)

1

Network Topology: Nodes, Branches, and Loops

Elements of an electrical circuit can be interconnected in several ways. Some terminology is given below:

- A <u>branch</u> represents a single (*two-terminal*) element such as a voltage source or a resistor below circuit has 5 branches.
- A <u>node</u> is the point of connection between two or more branches (if a short circuit, a connection wire, connects two nodes, the two nodes constitute a single node) below circuit has 3 nodes (a, b, c).
- A <u>loop</u> is any closed path in a circuit.
 (starting from a node, and returning to the same node without passing through any node more than once). A loop is *independent*, if it contains at least one branch which is not part of any other independent loop. Independent loops (I=3 for the circuit below) result In independent set of equations.

A network of *b* branches, *n* nodes, and *l* independent loops will satisfy the fundamental theorem of network topology:

$$b=l+n-1$$

EHB 211E

2

Kirchhoff's Laws - KCL

<u>Kirchhoff's Current Law</u> (KCL) states that algebraic sum of currents entering a node (or closed boundary) is zero.

$$\sum_{n=1}^{N} i_n = 0$$

Where, N is the number of branches entering the node, i_n is the n_{th} current entering the node

EHB 211E

3

Kirchhoff's Laws - KCL

The algebraic sum of currents at a node:

$$i_T(t) = i_1(t) + i_2(t) + i_3(t) + \cdots$$
integrate
 $q_T(t) = q_1(t) + q_2(t) + q_3(t) + \cdots$

Conservation of charge: Sum of electrical charge at a node must not change $\;
ightarrow i_T(t) = 0$

$$i_1 + (-i_2) + i_3 + i_4 + (-i_5) = 0$$

 $i_1 + i_3 + i_4 = i_2 + i_5$

KCL (alternative): The sum of currents entering a node is equal to the sum of currents leaving a node.

EHB 211E 4

Kirchhoff's Laws - KCL

$$I_T + I_2 = I_1 + I_3$$

 $I_T = I_1 - I_2 + I_3$

Equivalent circuit

EHB 211E

5

Kirchhoff's Laws - KVL

Kirchhoff's Voltage Law (KVL) states that algebraic sum of all voltages around a closed path (loop) is zero.

$$\sum_{m=1}^{M} v_m = 0$$

Where, M is the number of voltages in the loop, and $v_{\rm m}$ is the $m_{\rm th}$ voltage.

$$-v_1 + v_2 + v_3 - v_4 + v_5 = 0$$

$$v_2 + v_3 + v_5 = v_4 + v_4$$

EHB 211E

Kirchhoff's Laws - KVL

EHB 211E 7

7

Exercise

For the circuit below, Find v_1 and v_2

$$v_{1} = 2i, \quad v_{2} = -3i \quad \text{Ohm's Law}$$

$$v_{1} = 2i, \quad v_{2} = -3i \quad \text{Ohm's Law}$$

$$-20 + v_{1} - v_{2} = 0 \quad \text{KVL}$$

$$-20 + 2i + 3i = 0 \quad \Rightarrow \quad i = 4 \text{ A}$$

$$v_{1} = 8 \text{ V}, \quad v_{2} = -12 \text{ V}$$

EHB 211E 8

For the circuit below, Find v_0 and i

EHB 211E 9

9

Exercise

For the circuit below, Find v_0 and i_0

EHB 211E 10

For the circuit below, Find the voltages and currents

1E

11

Series Resistors and Voltage Division

$$v_1 = iR_1,$$
 $v_2 = iR_2$
 $v = v_1 + v_2 = i(R_1 + R_2)$ $i = \frac{v}{R_1 + R_2}$
 $v = iR_{eq}$
 $R_{eq} = R_1 + R_2$

VOLTAGE DIVISION

Equivalent resistance of any number of serially connected resistors is the sum of the individual resistances

$$v_1 = \frac{R_1}{R_1 + R_2} v, \qquad v_2 = \frac{R_2}{R_1 + R_2} v$$

$$R_{\text{eq}} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$$

EHB 211E 12

Parallel Resistors and Current Division

$$v = i_1 R_1 = i_2 R_2$$

$$v$$

$$v = i_{1}R_{1} = i_{2}R_{2}$$

$$i_{1} = \frac{v}{R_{1}}, \quad i_{2} = \frac{v}{R_{2}}$$

$$i = i_{1} + i_{2}$$

$$i = i_1 + i_2$$

$$i = \frac{v}{R_1} + \frac{v}{R_2} = v\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{v}{R_{eq}}$$
 $R_{eq} = \frac{R_1R_2}{R_1 + R_2}$

$$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$$

CURRENT DIVISION

Equivalent resistance of two parallel resistors is equal to the product of their resistances divided by their sum

$$i_1 = \frac{R_2 i}{R_1 + R_2}, \qquad i_2 = \frac{R_1 i}{R_1 + R_2}$$

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

13

Equivalent Conductance

equivalent conductance for series / parallel conductance shows opposite behavior to the calculation of equivalent resistance (derive the formulas as an exercise)

$$\frac{1}{G_{\text{eq}}} = \frac{1}{G_1} + \frac{1}{G_2} + \frac{1}{G_3} + \dots + \frac{1}{G_N}$$

$$G_{\text{eq}} = G_1 + G_2 + G_3 + \dots + G_N$$

EHB 211E

Find $G_{\rm eq}$

$$G_{eq} = (20*5)/(20+5) + 6 = 10 S$$

EHB 211E 17

17

Exercise

Find $\mathbf{v}_0,\,\mathbf{i}_0.$ Calculate the power dissipated by the 3 Ω resistor.

$$v_o = \frac{2}{2+4} (12 \text{ V}) = 4 \text{ V}$$

Voltage division

$$v_o = 3i_o = 4 \quad \Rightarrow \quad i_o = \frac{4}{3} \, \text{A} \quad \text{Ohm's Law}$$

$$i_o = \frac{6}{6+3}i = \frac{2}{3}(2 \, \text{A}) = \frac{4}{3} \, \text{A} \quad \text{Alternative way of finding } i_0: \text{ current division}$$

$$i_o = \frac{6}{6+3}i = \frac{2}{3}(2 \text{ A}) = \frac{4}{3} \text{ A}$$

$$p_o = v_o i_o = 4\left(\frac{4}{3}\right) = 5.333 \text{ W}$$

EHB 211E

18

Find v_0 , power supplied by the current source, power absorbed by each resistor

$$i_1 = \frac{18,000}{9,000 + 18,000} (30 \text{ mA}) = 20 \text{ mA}$$

 $i_2 = \frac{9,000}{1000} (30 \text{ mA}) = 10 \text{ mA}$

Power supplied by the source:

$$p_o = v_o i_o = 180(30) \,\text{mW} = 5.4 \,\text{W}$$

$$v_o = 9,000i_1 = 18,000i_2 = 180 \text{ V}$$

Alternatively: $v_0 = 30 \text{*R}_{eq} = 180 \text{ V}$

Power absorbed by the $12-k\Omega$ resistor is

$$p = iv = i_2(i_2R) = i_2^2R = (10 \times 10^{-3})^2 (12,000) = 1.2 \text{ W}$$

Power absorbed by the $6-k\Omega$ resistor is

$$p = i_2^2 R = (10 \times 10^{-3})^2 (6,000) = 0.6 \text{ W}$$

HB 211E

EHB 211E

Power absorbed by the 9-k Ω resistor is $p = v_o i_1 = 180(20) \text{ mW} = 3.6 \text{ W}$

Tellegen's theorem is satisfied!
Power supplied = total power dissipated

19

19

Wye-Delta Transformation

Conditions may occur (like below), where resistors are neither in series nor parallel! <u>Transforming</u> the circuit, allows finding equivalent resistance.

 Δ (Delta) – Π (pi) circuits

 $\begin{array}{c|c}
R_c \\
\hline
R_b & & \\
R_a
\end{array}$

20

Nodal Analysis

Nodal analysis provides a general procedure for analyzing circuits using nodes. Steps to determine node voltages are:

- 1) Select a node as the reference node. Assign $v_1, v_2, ..., v_{n-1}$. The voltages are referenced with respect to the reference node.
- 2) Apply KCL to each n-1 non-reference node.
 Use Ohm's law to express branch currents in terms of node voltages
- 3) Solve the resulting simultaneous equations to obtain the unknown node voltages

EHB 211E 24

Determine the node voltages in the below circuit.

$$i_x = i_2 + i_3 \qquad \Rightarrow \qquad \frac{v_1 - v_2}{2} = \frac{v_2 - v_3}{8} + \frac{v_2 - 0}{4}$$
$$-4v_1 + 7v_2 - v_3 = 0 \qquad (x 8)$$

Node 3

Node 1

$$3 = i_1 + i_x$$
$$3 = \frac{v_1 - v_3}{4} + \frac{v_1 - v_2}{2}$$

$$3v_1 - 2v_2 - v_3 = 12 \quad (x \, 4)$$

 $i_1 + i_2 = 2i_x$ \Rightarrow $\frac{v_1 - v_3}{4} + \frac{v_2 - v_3}{8} = \frac{2(v_1 - v_2)}{2}$

$$2v_1 - 3v_2 + v_3 = 0$$

3 equations, 3 unknowns

$$v_1 = 4.8 \text{ V}, \qquad v_2 = 2.4 \text{ V}, \qquad v_3 = -2.4 \text{ V}$$

27

Nodal Analysis with Voltage Sources

CASE 1:

If connected between reference and non-reference node, set the voltage of the non-reference node equal to the voltage of the v_1 voltage source

 $v_1 = 10 \text{ V}$

If connected between two nonreference nodes, the two nonreference node forms a "supernode".

KCL must be satisfied at the supernode

A supernode is formed by enclosing a (dependent or independent) voltage source connected between two nonreference nodes and any elements connected in parallel with it.

Nodal Analysis with Voltage Sources

Determine the node voltages in the below circuit.

KCL at the supernode

$$i_1 + i_4 = i_2 + i_3$$

$$\frac{v_1 - v_2}{2} + \frac{v_1 - v_3}{4} = \frac{v_2 - 0}{8} + \frac{v_3 - 0}{6}$$

KVL at the supernode

$$-v_2 + 5 + v_3 = 0$$
 \Rightarrow $v_2 - v_3 = 5$

Solution: v_1 is already known v_2 and v_3 are dependent 1 KCL equation, 1 unknown

EHB 211E 29

29

Nodal Analysis with Voltage Sources

Determine the node voltages in the below circuit.

KCL at the supernode

$$2 = i_1 + i_2 + 7$$

$$2 = \frac{v_1 - 0}{2} + \frac{v_2 - 0}{4} + 7 \qquad \Rightarrow \qquad 8 = 2v_1 + v_2 + 28$$
$$v_2 = -20 - 2v_1 \quad (1)$$

KVL at the supernode

$$-v_1 - 2 + v_2 = 0 \implies v_2 = v_1 + 2$$
 (2)

From 1 & 2:

$$v_1 = -7.333 \text{ V}$$

$$v_2 = v_1 + 2 = -5.333 \text{ V}$$

EHB 211E 30

Nodal Analysis with Voltage Sources

Determine the node voltages in the below circuit.

2) KCL @ Supernode 3-4:

$$i_1 = i_3 + i_4 + i_5$$
 \Rightarrow $\frac{v_1 - v_4}{3} = \frac{v_3 - v_2}{6} + \frac{v_4}{1} + \frac{v_3}{4}$
 $4v_1 + 2v_2 - 5v_3 - 16v_4 = 0$

EHB 211E

2 supernodes!

1) KCL @ Supernode 1-2:

$$i_3 + 10 = i_1 + i_2$$

$$\frac{v_3 - v_2}{6} + 10 = \frac{v_1 - v_4}{3} + \frac{v_1}{2}$$

$$5v_1 + v_2 - v_3 - 2v_4 = 60 \text{ (re-arrange)}$$

3)KVL for 3 independent loops

$$v_1 - v_2 = 20$$

$$-v_3 + 3v_x + v_4 = 0$$

$$v_x = v_1 - v_4$$

$$3v_1 - v_3 - 2v_4 = 0$$

31

31

Nodal Analysis with Voltage Sources

Determine the node voltages in the below circuit.

3)KVL for 3 independent loops

ii) $-v_3 + 3v_x + v_4 = 0$

i)
$$v_1 - v_2 = 20$$

$$v_x = v_1 - v_4$$

$$3v_1 - v_3 - 2v_4 = 0$$
iii)
$$v_x - 3v_x + 6i_3 - 20 = 0$$

$$6i_3 = v_3 - v_2$$

$$v_x = v_1 - v_4$$

$$-2v_1 - v_2 + v_3 + 2v_4 = 20$$

4 unknowns, 5 equations (2 equations from KCL, 3 from KVL)

1 equation is redundant / dependent

EHB 211E