Universidade do Sul de Santa Catarina - UNISUL - Campus: Grande Florianópolis Curso: Sistemas de Informação - Disciplina: Programação Linear e Grafos - 2019 - B

- 1. Dada a matriz valorada de um grafo: (1,5 pts.)
- a. Desenhar o grafo.
- b. Construir a matriz de adjacência e de incidência do grafo.
- c. Indicar os graus de cada vértice do grafo.

	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	7	0	0	9
V ₂	7	0	5	4	0
V ₃	0	5	0	3	5
V ₄	0	4	3	0	2
V ₅	9	0	5	2	0

2. Calcular o caminho de custo mínimo entre o vértice V_0 e os demais vértices do grafo abaixo, usando o algoritmo de Dijkstra's. (1,5 pts.)

	V ₀	V ₁	V ₂	V ₃	V ₄	V_5
Vo	0	6	9	8	8	5
V ₁	8	0	5	×	4	8
V ₂	6	∞	0	2	5	8
V ₃	8	3	4	0	8	8
V ₄	5	8	8	4	0	7
V ₅	8	6	∞	∞	3	0

- 3. Dadas a matriz de distância de um passo (D_1) e de até três passos (D_3), calculadas usando o algoritmo de Floyd faça: (2,0 pts.)
- **a.** Calcular os caminhos de custo mínimo de até **4** passos.
- **b.** Dada a matriz de roteamento final R_4 , indicar qual é a sequência de vértices a percorrer para encontrar o caminho mínimo de V_3 até V_2 ; de V_5 até V_4 e de V_1 até V_5 .

R_4	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	V_1	V_2	V_2	V_2	
V ₂	V ₃	V_2	V ₃	V ₃	V_3
V ₃	V_4	V_4	V ₃	V_4	V_4
V ₄	V_1	V_1	V_1	V_4	V_5
V_5	V_1	V_1	V_1	V_1	V_5

D ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	5	8	15	8
V ₂	∞	0	2	8	8
V ₃	∞	∞	0	4	∞
V ₄	7	∞	∞	0	3
V ₅	9	∞	∞	∞	0

D ₃	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	5	7	11	18
V ₂	13	0	2	6	9
V ₃	11	16	0	4	7
V ₄	7	12	14	0	3
V ₅	9	14	16	24	0

4. Dada a matriz de distância inicial e a matriz de distância final e matriz, encontrar um ciclo de Euler de custo mínimo e indicar o "custo" do ciclo. (2,0 pts.)

		V ₀	V ₁	V ₂	V ₃	V ₄	V ₅
ſ	V_0	0	6	3	8	8	5
	V ₁	6	0	5	8	4	8
	V ₂	3	5	0	2	5	8
	V ₃	8	8	2	0	4	8
	V ₄	8	4	5	4	0	8
	V ₅	5	8	8	8	8	0
	Ма	triz	de [Dista	ncia	Inio	cial

	Vo	V ₁	V_2	V ₃	V_4	V_5
Vo	0	6	3	5	8	5
V ₁	6	0	5	7	4	11
V ₂	3	5	0	2	5	8
V ₃	5	7	2	0	4	8
V ₄	8	4	5	4	0	12
V ₅	5	11	8	8	12	0
	Matr	iz de	Dist	anci	a Fina	

	V ₀	V ₁	V ₂	V ₃	V ₄	V ₅
V ₀	-	V_1	V ₂	V_2	V ₂	V_5
V ₁	V ₀	-	V ₂	V_2	V ₄	V ₀
V_2	V_0	V_1	-	V_3	V_4	V_0
V ₃	V ₂	V ₂	V ₂	-	V ₄	V_5
V ₄	V ₂	V_1	V ₂	V ₃	-	V ₃
V_5	V_0	V_0	V ₀	V ₃	V ₃	-
	Ма	atriz	de C	amir	nhos	

- 5. Indique para a matriz de distância final do exercício 4: a excentricidade, raio, centro, diâmetro, mediana e o anticentro (1,0 pts.).
- 6. Com o grafo valorado do exercício 1, construir uma árvore expandida de custo mínimo usando o algoritmo de Kruskal. **(2,0 pts.).**