Dealing with Imbalanced Data Set-KKBox Churn Rate Prediction

Xiatong Gui PO'19 Minh-Quan Do PO'19 Zihao Xu PO'19

Motivation

KKbox

kaggle

What are we doing?

- KKbox is a music streaming platform in Asia (Like Spotify!)
- Building a model to predict whether a user will churn when their subscription to KKBox expires

Why are we doing this?

- Important for marketing strategy
- To explore complicated models that improves prediction accuracy
- To practice handling "unwieldy" data
- Eyes on the prize (\$\$\$)

Understanding "Churn"

What is "churn"?

TL;DR: When users end their subscription to your (company's') service!

More details

- KKBox's subscription model: 30 days -> users resubscribe every month
- criteria: no new valid service subscription within 30 days after the current membership expires

A Brief Summary of Our Data

Dataset	Variables
Training Set	user_id, is_churn
Member Portfolio	user_id, city, age, gender registered_method, registration_init_time
Transaction Information	user_id, payment method, payment plan, plan price, actual amount paid, auto renew, transaction date, membership expire date, cancel
Login Information	user_id, # of songs played less than 25/50/75/98.5/100% of song length, # of unique songs played, total seconds played
Test Set	user_id, is_churn

Relationship Between Predictors and Churn Rate

Transaction and User Log and Churn Rate Reference: https://www.kaggle.com/headsortails/should-i-stay-or-should-i-go-kkbox-eda

Technical Challenges

Very Large Datasets:

- user_log.csv has <u>30 GB, 2 billion</u> entries
- Use Kaggle kernel!

Imbalanced response variable:

churn/no churn rate is 1:15.5

 Accuracy is unreliable (predicting all no churn yields 94% accuracy)

Technical Challenges

Messy Features:

- Each user has multiple transaction and log in data
 - Furthermore, users who
 don't churn have more
 transaction and log in ->
 exagerate no churn when
 merge

Outliers

- Numerous features have outliers:
 - Birthday -> 1000 yrs old user
 - Total secs: negative value
 - Date: beyond the scope
 - Gender: missing info

Focus 1

Feature Selection

Feature Selection:

Over 100 features

Fun fact:

47 features included!

Feature Engineering:

- 1. Time: day, weekday, month
- 2. Hidden info:# trans, # logs
- 3. Dummy encoding:
 - a. Correlation Matrix
 - b. Counts
 - c. Average churn rate

Features in the original data set:

```
['is_churn', 'bd', 'registration_init_time', 'actual_amount_paid', 'is_auto_renew', 'transaction_date', 'membership_expire_date', 'is_cancel', 'num_100', 'num_25', 'num_unq', 'total_secs']
```

Time features:

```
['last_user_log_date', 't_month', 't_day', 't_wday', 'm_month', 'm_day', 'm_wday', 'r_month', 'r_day', 'r_wday', 'l_day', 'l_wday', ...]
```

Hidden info:

```
['trans_count', 'logs_count']
```

Dummy encodings:

```
['pm_id_41', 'pm_id_40', 'pm_id_39', 'pm_id_38', 'pp_days_30', 'pp_days_0', 'pp_days_31', 'city_11', ...]
```

Dummy encoding: Payment Method id

Dummy encoding:

Payment Method and Churn Rate

Focus 2

Tackle Imbalanced Data in Machine Learning

New Methods:

- Over-sampled in Random Forest (SMOTE package)
- Autoencoder (Neural Net)

New Performance Metrics:

- Area under ROC Curve
- Precision-Recall Plot (Optional)

ROC Curve

ROC Curve: Receiver Operating Characteristic

Area Under the Curve (AUC)

- visualize all possible classification thresholds
- is a useful metric for datasets with highly unbalanced classes

Model 1: Oversampled Random Forest

Algorithm:

- (Optional) Preprocess the features
- Split to Train / Test sets
- Oversample the obs. from churn class during bootstrap
- CV using OOB to tune "mtry", "min_samples_leaf (max-depth)"
- Model Evaluation: confusion matrix and Area Under the Curve (AUC)

Results

Variable Importance

...

Model 2: Autoencoder

- Anomaly Detection and Neural Nets
- Particularly useful in dealing with imbalanced data set
- Applications: fraud detection

Reference: http://amid.fish/images/simple_anomaly.jpg

Anomaly Detection

Model Training:

- Train the model only on the normal, "no_churn", obs.
- Find the **patterns** of the normal group

Prediction:

- Feed new observations to the trained model
- The ones that deviates the most are predicted as "anomaly" or "churn"

Model 2: Autoencoder

Encode: lower dimensional representation of features

Decode: reconstruct the original features from the Compressed Data

Reference: https://blog.keras.io/img/ae/autoencoder_schema.jpg

Model 2: Autoencoder

Reconstruction Error:

A numeric measure of how **different** are the reconstructed inputs from the original inputs

Training and Reconstruct

Train: using 73,842 **no_churn** observations

Test: using 19,639 mixed observations

Reconstruction error w/ churn group

Results

Results

Thoughts:

- Not as good as Oversampled-RF solely based on the AUC measure
- But! We can adjust the cut_off for reconstruction error!

Summary

What we've talked about:

- Challenges of dataset:
 - Big and messy data
 - Imbalanced class

Key Takeaway:

Feature Selection:

- Identify key features
- Dummy encoding

Tackle Imbalanced Data:

- New Performance Metrics
 - ROC Curve
- New Prediction Models
 - Oversampled RF
 - Autoencoder

Future Potential

Next steps:

- Try more advanced models:
 - XGBoosting
 - Other forms of Neural Nets

Bibliography

- Yaya Xie, Xiu Li, E.W.T. Ngai, Weiyun Ying, Customer churn prediction using improved balanced random forests, In Expert Systems with Applications, Volume 36, Issue 3, Part 1, 2009, Pages 5445-5449, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2008.06.121
- 2. https://shiring.github.io/machine_learning/2017/05/01/fra ud
- 3. https://medium.com/@curiousily/credit-card-fraud-detectio-n-using-autoencoders-in-keras-tensorflow-for-hackers-part-vii-20e0c85301bd
- 4. https://lazyprogrammer.me/a-tutorial-on-autoencoders/