第1章 体

体について述べる。

1.1 体

定義 1.1.1 (素体). k を体とする。k の部分体すべての共通部分を k の素体 (prime field) という。

定義 1.1.2 (標数). k を体とし、環準同型 $\mathbb{Z} \to k$, $n \mapsto n1_k$ を ϕ とおく。 $1_k = \phi(1) \in \operatorname{Im} \phi$ ゆえに $\operatorname{Im} \phi \neq 0$ であり、また $\operatorname{Im} \phi$ は整域だから、準同型定理より $\operatorname{Ker} \phi$ は \mathbb{Z} の素イデアルである。よって $\operatorname{Ker} \phi = (p)$ (p は 0 または素数) と表せる。p を k の**標数** (characteristic) という。

1.2 有限体

定義 1.2.1 (有限体). 濃度が有限の体を**有限体 (finite field)** という。

定理 1.2.2 (有限体の濃度). 有限体の濃度は素数の冪である。

証明. k を有限体とし、k の標数を p とおく。 p=0 だとすると k が \mathbb{Z} と同型な部分環を含むことになり k の濃度が有限であることに反するから、p は素数である。よって k は $\mathbb{Z}/p\mathbb{Z}$ と同型な部分環、より強く部分体をもつ。k を左正則加群とみなせば、係数制限により k は $\mathbb{Z}/p\mathbb{Z}$ 上のベクトル空間となり、いま k の濃度は有限だから $\dim_{\mathbb{Z}/p\mathbb{Z}} k$ $=: n \in \mathbb{Z}_{\geq 1}$ である。 よって k の濃度は $\sharp k = p^n$ である。

第2章 体の拡大

2.1 体の拡大

多角形の対称変換と多項式の Galois 群との関連は次のように整理できる:

[TODO] なぜここに書いてある?

頂点 $Vert(P) = \{v_1, \dots, v_n\}$ 根 $\alpha_1, \dots, \alpha_n$ 線型変換 E の自己同型

直交変換 F を固定する E の自己同型 P を固定する直交変換の群 Gal(f) = Gal(E/F)

定義 2.1.1 (体の拡大). L を体とする。L の部分環 K が体であるとき、K を L の部分体 (subfield) といい、L を K の拡大体 (extension field) という。L/K は体の拡大であるともいう。L の K-ベクトル空間としての次元を [L:K] と書き、L の K 上の拡大次数 (degree of field extensioni) という。

例 2.1.2 (拡大体の例).

- ℝは ℚ の拡大体である。
- \mathbb{C} は \mathbb{R} の拡大体である。 \mathbb{C} は \mathbb{R} -ベクトル空間として基底 $\{1,\sqrt{-1}\}$ がとれるので $[\mathbb{C}:\mathbb{R}]=2$ である。したがって \mathbb{C} は \mathbb{R} の 2 次拡大である。
- $d \neq 1$ を square-free な整数とする(e.g. d = 6)。 $L = \mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d} \in \mathbb{Q}: a, b \in \mathbb{Q}\}$ は \mathbb{C} の部分体である(実際、 $\mathbb{Q}[\sqrt{d}] \cong \mathbb{Q}[x]/(x^2 d)$ であり、 $x^2 d$ は $\mathbb{Q}[x]$ の既約元(: L は \mathbb{C} の部分環ゆえに整域)だから、 \mathbb{Q} が体であることと併せて $\mathbb{Q}[x]/(x^2 d)$ は体である)。 $\sqrt{d} \notin \mathbb{Q}$ ゆえに $[L: \mathbb{Q}] \geq 2$ である。L は \mathbb{Q} -ベクトル空間として基底 $\{1, \sqrt{d}\}$ がとれるので $[L: \mathbb{Q}] = 2$ である。
- K を体とする。 $A = K[x_1, ..., x_n]$ を n 変数多項式環、 $L = K(x_1, ..., x_n)$ を n 変数有理 関数体とする。A の K-ベクトル空間としての次元は ∞ である。さらに A は整域なので、 その商体 $K(x_1, ..., x_n)$ への自然な準同型は単射、したがって A は $K(x_1, ..., x_n)$ に含まれ

る。よって $K(x_1,...,x_n)/K$ は無限次拡大である。

定義 2.1.3 (代数体). ℚ の有限次拡大体を**代数体 (algebraic field)** という。

定義 2.1.4 (合成体). *L* を体とし、*M*₁, *M*₂ を *L* の部分体とする。[TODO]

命題 2.1.5 (体の準同型). K を体とし、L,M を K の拡大体とする。

(1) $S \subset L$ に対し包含写像 $S \hookrightarrow K(S)$ は K の拡大体の圏のエピ射である。

$$S \hookrightarrow K(S) \Longrightarrow \bullet \tag{1}$$

すなわち、K の拡大体の間の準同型 $K(S) \rightarrow \bullet$ は S 上の値で決まる。

(2) [TODO]

証明. cf. [雪江] p.163

2.2 添加

定義 2.2.1 (添加). L/K を体の拡大、 $S \subset L$ を部分集合とする。

• S が有限集合 $S = \{\alpha_1, \ldots, \alpha_n\}$ なら

$$K(S) \coloneqq \left\{ \frac{f(\alpha_1, \dots, \alpha_n)}{g(\alpha_1, \dots, \alpha_n)} \in L : \frac{f(x_1, \dots, x_n)}{g(x_1, \dots, x_n)}$$
は K 係数有理式, $g(\alpha_1, \dots, \alpha_n) \neq 0 \right\}$ (1)

S が無限集合なら

$$K(S) := \bigcup_{\substack{S' \subset S \\ |S'| \neq \infty}} K(S') \tag{2}$$

と定義する。K(S) を K に S を**添加 (adjunction)** した体という。

- *S* が有限集合ならば *K*(*S*) は *K* 上**有限生成 (finitely-generated)** といい、
- S が 1 元集合ならば K(S) は K の単拡大 であるという。

例 2.2.2 (有限生成だが有限次拡大でない例). K を体とする。K 上の 1 変数有理関数体 K(x) は K 上有限生成である。しかし拡大次数は ∞ である。

定義 2.2.3 (代数拡大と超越拡大). L/K を体の拡大、 $x \in L$ とする。 $a_0, \ldots, a_n \in K$ 、少なくとも ひとつは 0 でない、が存在して

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0 {3}$$

が成り立つとき、x は K 上代数的 (algebraic) であるといい、そうでなければ x は K 上超越的 (trancendental) であるという。L のすべての元が K 上代数的ならば、L/K は代数拡大 (algebraic extension) といい、そうでなければ L/K は超越拡大 (trancendental extension) という。

例 2.2.4 (有限生成と代数拡大).

- $\mathbb{Q}(\pi)/\mathbb{Q}$ は有限生成だが代数拡大でない。
- $\mathbb{Q}(\{\sqrt[n]{2}: n = 1, 2, ...\})$ は代数拡大だが有限生成でない。

命題 2.2.5 (有限次拡大は代数拡大). 体の拡大 L/K が有限次拡大ならば、L/K は代数拡大である。

証明. 省略

命題 2.2.6 (有限群の Lagrange の定理の類似). L/M, M/K を体の有限次拡大とする。このとき、L/K も有限次拡大で

$$[L:K] = [L:M][M:K]$$
 (4)

が成り立つ。

証明. 省略

定義 2.2.7 (最小多項式). L/K を体の代数拡大とし、 $\alpha \in L$ とする。K 上の 0 でないモニック 多項式 f で $f(\alpha) = 0$ をみたすもののうち $\deg f(x)$ が最小となるものが一意に存在する(証明略)。これを α の K 上の最小多項式 (minimal polynomial) という。

定義 2.2.8 (共役). L, M を K の拡大体、 $\alpha \in L$ とする。 α の K 上の最小多項式を f とするとき、f の根で M に属するものを、 α の M における K 上の共役 (conjugate)、あるいは単に K 上の

共役という。

例 2.2.9 (共役の例). $d \neq 1$ を square-free な整数とする (e.g. d=6)。 \sqrt{d} の $\mathbb Q$ 上の最小多項式は $x^2-d=(x-\sqrt{d})(x+\sqrt{d})$ なので、 \sqrt{d} の $\mathbb Q$ 上の共役は $\pm\sqrt{d}$ である。

命題 2.2.10 (共役は K 準同型で保たれる). L/K を代数拡大、F/K を拡大とする。各 $\alpha \in L$ と $\phi \in \operatorname{Hom}^{\operatorname{al}}_K(L,F)$ に対し、 $\phi(\alpha)$ は α の共役である。

証明. cf. [雪江] p.167

2.3 代数閉包

定義 2.3.1 (代数閉包). K を体とする。L/K が代数拡大であり L が代数的閉体であるとき、L を K の代数閉包 (algebraic closure) という。

定理 2.3.2 (代数閉包の存在 (Steinitz)). [TODO]

証明. 省略

2.4 分離拡大

定義 2.4.1 (分離拡大).

- $f(x) \in K[x], \alpha \in \overline{K}$ で、f(x) が $\overline{K}[x]$ で $(x \alpha)^2$ で割り切れるとき、 α を f(x) の**重根** (multiple root) という。
- f(x) が \overline{K} に重根を持たないとき、f(x) を**分離多項式 (separable polynomial)** という。
- $\alpha \in \overline{K}$ の K 上の最小多項式が分離多項式であるとき、 α は K 上**分離的** (separable) であるといい、そうでなければ**非分離的** (inseparable) であるという。
- K の代数拡大 L のすべての元が K 上分離的であるとき、L を K の**分離拡大** (separable extension) といい、そうでなければ**非分離拡大** (inseparable extension) であるという。
- *K* の任意の代数拡大が *K* の分離拡大ならば、*K* を**完全体 (perfect field)** という。

多項式が分離多項式かどうかは、微分をみて判定することができる。

命題 2.4.2 (分離多項式と微分). K を体とし、 $f(x) \in K[x]$ とする。このとき、次は同値である:

- (1) f(x) は分離多項式である。
- (2) f(x) と f'(x) は互いに素である。

証明. 省略

例 2.4.3 (分離的な元). p を素数、K を標数 p の体とする。 $a \in K$, $f(x) = x^p - x - a$ とおく。 $\alpha \in \overline{K}$ が f(x) の根なら、f'(x) = -1 なので、 α は K 上分離的である(実際、もし α が K 上分離的でなかったとすれば、 α の K 上の最小多項式 g(x) は \overline{K} に重根を持つ。よって、いま $f(\alpha) = 0$ ゆえに f は g で割り切れることから、f は \overline{K} に重根を持つ。一方、f(x) と f'(x) は \overline{K} に重根を持たず、矛盾)。

例 2.4.4 (非分離拡大の例). [TODO]

代数拡大が分離拡大かどうかを考えるとき、もとの体が完全体ならば話は簡単である。次の命題 は体が完全体であるための十分条件を与える。

命題 2.4.5 (完全体であるための十分条件). 標数 0 の体と有限体は完全体である。

証明. 省略

定義 2.4.6 (分離閉包). L/K を代数拡大とする。L の元で K 上分離的なもの全体の集合を L_s と書き、L における K の分離閉包 (separable closure) という。また、 \overline{K} における K の分離閉包を K^s と書き、K の分離閉包という。

定義 2.4.7 (分離次数). L/K を有限次拡大とする。

- $[L_s: K]$ を L の K 上の**分離次数 (separable degree)** といい、 $[L: K]_s$ と書く。
- $[L: L_s]$ を L の K 上の非分離次数 (inseparable degree) といい、 $[L: K]_i$ と書く。

命題 2.4.8 (分離次数とホムセットの濃度). L/K を有限次拡大とする。

- (1) [TODO]
- (2) $[L: K]_s = |\operatorname{Hom}_K^{\operatorname{al}}(L, \overline{K})|$

証明. cf. [雪江] p.183

例 2.4.9 ($\mathbb{Q}(\sqrt{d})$ のホムセット). $d \neq 1$ を square-free な整数とし (e.g. d = 6)、 $L = \mathbb{Q}(\sqrt{d})$ とする。 $\mathrm{ch}\,L = 0$ なので、 L/\mathbb{Q} は分離拡大である (命題 2.4.5)。 よって $|\mathrm{Hom}^{\mathrm{al}}_{\mathbb{Q}}(L,\mathbb{Q})| = 2$ である (命題 2.4.8)[TODO]?。 $\sigma \in \mathrm{Hom}^{\mathrm{al}}_{\mathbb{Q}}(L,\mathbb{Q})$ とすると、L が \mathbb{Q} の代数拡大であることから、命題 2.2.10 より $\sigma(\sqrt{d})$ は \sqrt{d} の \mathbb{Q} 上の共役、すなわち $\sigma(\sqrt{d}) = \pm \sqrt{d}$ である (例 2.2.9)。L は \mathbb{Q} 上 \sqrt{d} で生成されるので、 σ は \sqrt{d} での値で定まる (命題 2.1.5)。 σ はちょうど 2 通りあるので、両方の可能性が起きなければならない。そこで σ を $\sigma(\sqrt{d}) = -\sqrt{d}$ なるものとすれば、 $\mathrm{Hom}^{\mathrm{al}}_{\mathbb{Q}}(L,\mathbb{Q}) = \{\mathrm{id}_L,\sigma\}$ と決まる。

2.5 正規拡大

定義 2.5.1 (正規拡大). L/K を代数拡大とする。すべての $\alpha \in L$ に対し α の K 上の最小多項式 が L 上で 1 次式の積になるとき、L/K を正規拡大 (normal extension) という。

次の定理により、正規拡大かどうかはホムセットをみることで判定できる。

定理 2.5.2 (正規拡大とホムセット). L/K を体の有限次拡大とする。このとき、次は同値である:

(1) *L/K* は正規拡大である。

(2) $\operatorname{Hom}^{\operatorname{al}}_{K}(L,\overline{K})$ の元は L の元を固定する。

証明. cf. [雪江] p.185

正規拡大のうちとくに重要なのは、ホムセットが自己同型となる場合である。

命題 2.5.3 (ホムセットが自己同型群となる場合). L/K を正規代数拡大とする。このとき $\operatorname{Hom}^{\operatorname{al}}_K(L,L)=\operatorname{Aut}^{\operatorname{al}}_KL$ である。

証明. cf. [雪江] p.185

例 2.5.4 (正規拡大の例). $d \neq 1$ を square-free な整数とする (e.g. d = 6)。例 2.4.9 より各 $\phi \in \operatorname{Hom}^{\operatorname{al}}_K(L,\overline{K})$ は $\phi(\mathbb{Q}(\sqrt{d})) \subset \mathbb{Q}(\sqrt{d})$ をみたすから、定理 2.5.2 より $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$ は正規拡大である。

定義 2.5.5 (最小分解体). K を体とし、 $f(x) \in K[x]$ とする。 f(x) を

$$f(x) = a_0(x - \alpha_1) \dots (x - \alpha_n) \quad (a_0 \in K^{\times}, \ \alpha_i \in \overline{K})$$
 (1)

と表すとき、 $K(\alpha_1, ..., \alpha_n)$ を f の K 上の最小分解体 (splitting field) という。

例 2.5.6 (最小分解体の例). [TODO] cf. [雪江] p.186

2.6 Galois 拡大

[TODO] キーワード: Galois の基本定理、円分体、有限体、Kummer 理論、Artin-Schreier 理論、可解性、作図分離性と正規性を兼ね備えた拡大が Galois 拡大である。

定義 2.6.1 (Galois 拡大). L/K を代数拡大とする。

• *L/K* が分離拡大かつ正規拡大なら **Galois 拡大 (Galois extension)** という。

L/K をさらにガロア拡大とする。

- Aut $_K^{al}$ L を Gal(L/K) と書き、L の K 上の Galois 群 (Galois group) という。
- Gal(L/K) がアーベル群なら、L/K を**アーベル拡大 (abelian extension)** という。

• Gal(L/K) が巡回群なら、L/K を**巡回拡大 (cyclic extension)** という。

定義 2.6.2 (多項式の Galois 群). K を体、 $f(x) \in K[x]$ とし、L を f(x) の K 上の最小分解体とする。Gal(L/K) を f(x) の K 上の Galois 群 (Galois group) という。

次の例より、Galois 群の元は複素共役の一般化とみなせることがわかる。

例 2.6.3 (Galois 拡大の例 1). 体の拡大 \mathbb{C}/\mathbb{R} は命題 2.4.5 と定理 2.5.2 により分離拡大かつ正規拡大だから、Galois 拡大である。例 2.4.9 と同様の議論により $|\operatorname{Hom}_{\mathbb{R}}^{\operatorname{al}}(\mathbb{C},\mathbb{C})| = 2$ であるから、命題 2.5.3 より $|\operatorname{Gal}(\mathbb{C}/\mathbb{R})| = |\operatorname{Aut}_{\mathbb{R}}^{\operatorname{al}}(\mathbb{C})| = 2$ である。したがって $\operatorname{Gal}(\mathbb{C}/\mathbb{R}) \cong \mathbb{Z}/2\mathbb{Z}$ である。

例 2.6.4 (Galois 拡大の例 2). $d \neq 1$ は square-free な整数とする(e.g. d = 6)。例 2.4.9 と例 2.5.4 により、代数拡大 $\mathbb{Q}(\sqrt{d})$ は分離拡大かつ正規拡大だから、Galois 拡大である。命題 2.5.3 より $\mathrm{Gal}(\mathbb{Q}(\sqrt{d})/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z}$ が従う。

定理 2.6.5 (Galois 群は対称群の部分群). K を体とし、 $f(x) \in K[x]$ を $\deg f(x) = n$ なる分離多項式とする。このとき、f(x) の K 上の Galois 群は対称群 S_n の部分群と同型である。

証明. f(x) の相異なる n 個の根を $\alpha_1, \ldots, \alpha_n \in \overline{K}$ とおくと、f(x) の K 上の Galois 群は $L := K(\alpha_1, \ldots, \alpha_n)$ と表せる。 $\sigma \in \operatorname{Gal}(L/K)$ は σ の $A := \{\alpha_1, \ldots, \alpha_n\}$ 上での値で決まるから、

$$Gal(L/K) \to S_n, \quad \sigma \mapsto \sigma|_A$$
 (1)

は単射準同型である。

2.7 不変体と Artin の定理

定義 2.7.1 (不変体). L を体、G を有限群とし、G は L に忠実に作用しているとする。このとき、

$$L^G := \{ \alpha \in L \colon g \cdot \alpha = \alpha \ (\forall g \in G) \}$$
 (1)

を G の**不変体 (fixed field)** という。

命題 2.7.2 (Artin の定理). 定義 **2.7.1** の設定のもとで、 L/L^G は Galois 拡大であり、 $Gal(L/L^G) \cong G$ が成り立つ。

2.8 Galois 理論の基本定理

命題 2.8.1 (中間体の束). L/K を体の拡大とする。Lat(L/K) を L/K の中間体全体の集合とし、Lat(L/K) 上に半順序 \leq を

$$B \le C \quad \Leftrightarrow \quad B \subset C \tag{1}$$

で定めると、 $(Lat(L/K), \leq)$ は共通部分を交わり、合成体を結びとして束となる。

証明. 省略

次の補題は Galois 拡大の分離性と正規性を利用するもので、Galois 理論の基本定理の証明に重要な役割を果たす。

補題 2.8.2 (中間体と Galois 拡大). L/K を有限次 Galois 拡大とし、 $M \in \text{Lat}(L/K)$ とする。このとき、L/M は Galois 拡大である。

証明. [TODO]

定理 2.8.3 (Galois 理論の基本定理). L/K を有限次 Galois 拡大とし、Galois 群を $G = \operatorname{Gal}(L/K)$ とする。

(1) 写像 γ : Sub(G) \rightarrow Lat(L/K),

$$H \mapsto L^H$$
 (2)

は order-reversing な全単射であり、逆写像は

$$Gal(L/M) \longleftrightarrow M$$
 (3)

で与えられる。

(2) $M \in \text{Lat}(L/K)$ に関し

$$M/K$$
 が Galois 拡大 \iff Gal (L/M) が G の正規部分群 (4)

が成り立つ。

証明. 不変体の定義から order-reversing であることは明らか。[TODO]

2.9 Hilbert の定理 90

証明. cf. [?, p.197]

定理 2.9.1 (Galois 拡大の推進定理). [TODO] cf. [?, p.219]

定義 2.9.2 (Galois コホモロジー). [TODO]

定理 2.9.3 (Hilbert の定理 90). [TODO]