Seat	
No.	0, 10,
	0, 9,

[5559]-140

S.E. (II Semester) (Electronics/ETC) EXAMINATION, 2019 ANALOG COMMUNICATION (2015 PATTERN)

		(2015 PATTERN)	
Time	: 2	Hours Maximum Marks:	50
<i>N.B.</i>	:	(i) Answer Q. No. 1 or 2, 3 or 4, 5 or 6, 7 or 8.	
		(ii) Neat diagrams must be drawn wherever necessary.	
		(iii) Figures to the right indicate full marks.	
		(iv) Your answers will be valued as a whole.	
		(v) Use of logarithmic tables side rule, Mollier charts, electron	nic
	X	pocket calculator and steam tables is allowed.	
		(vi) Assume suitable data, if necessary.	
1.	(<i>a</i>)	What is base communication? What are its limitations?	[6]
	(<i>b</i>)	Explain non-linear modulator for DSBSC generation.	[6]
		Or	5
2.	(<i>a</i>)	What are the tracking methods in AM superheterody	'ne
		receiver.	[6]
	<i>(b)</i>	Explain the following terms:	[6]
		(i) Selectivity	
		(ii) Sensitivity	
		(iii) Fidelity	
		(iv) Image Frequency.	
3.	(<i>a</i>)	Describe Armstrong method for FM generation.	[6]
	(<i>b</i>)	Draw and explain FM stereo receiver.	[6]
		Or	
4.	(<i>a</i>)	Explain Pre-emphasis and De-emphasis.	[6]
	(<i>b</i>)	Justify ratio detector act as Detector as well as limiter.	.[6]

P.T.O.

5.	(a)	Explain different types of internal noise.	[6]
	<i>(b)</i>	Derive expression for Friss formula for noise factor of ampli	fier
		in cascade.	[7]
		Or	
6.	(a)	Explain the performance of SSBSC in presense of noise	.[7]
	<i>(b)</i>	There resistors have values $R_1 = 10 \text{ k}\Omega$, $R_2 = 14 \text{ k}\Omega$	and
		$R_3 = 24 \text{ k}\Omega$. It is known that thermal noise voltage general	ited
		by R_1 is 0.3 μ V. Assume $T = 27^{\circ}$ C. Calculate thermal no	oise
		voltage generated by:	
		(i) the three resistors connected in series.	
		(ii) the three resistors connected in parallel.	[6]

Describe types of sampling with their merits and demerits.[7] **7**. (*a*)

Compare PAM, PWM and PPM with waveform. (*b*) [6] Or

(a) With the help of neat diagram, explain the transmitter and 8. receiver of pulse code modulation. [7]

What is meant by 'Aperture effect' ? How can it be (*b*) 2 And Andrew The Andre reduced ?

[5559]-140