The basetable timeline

INTERMEDIATE PREDICTIVE ANALYTICS IN PYTHON

Nele Verbiest Ph. D.

Senior Data Scientist @PythonPredictions

The predictive modeling process

Foundations of predictive analytics I:

- Build predictive models
- Evaluate predictive models
- Present predictive models to business stakeholders

Foundations of predictive analytics II:

Construct the basetable

The basetable (1)

The basetable (2)

The basetable (3)

The basetable (4)

		Age	Target Donate		
Population	$\overset{\circ}{\wedge}$	25 60	F	12 5	0
	Å	45	F	9	0

The timeline (1)

The timeline (2)

The timeline (3)

The timeline (4)

Reconstructing history (1)

Reconstructing history (2)

Reconstructing history (3)

Selecting relevant data in Python

```
import pandas as pd
gifts = pd.read_csv("gifts.csv")
gifts["date"] = pd.to_datetime(gifts["date"])
print(gifts.head())
```

```
id date amount
0 1 2015-10-16 75.0
1 1 2014-02-11 111.0
2 1 2012-03-28 93.0
3 1 2013-12-13 113.0
4 1 2012-01-10 93.0
```

```
start_target = datetime(year = 2018, month = 5, day = 1)
end_target = datetime(year = 2018, month = 8, day = 1)
gifts_target = gifts[(gifts["date"]>=start_target) & (gifts["date"]<end_target)]
gifts_pred_variables = gifts[(gifts["date"]<start_target]</pre>
```

Let's practice!

INTERMEDIATE PREDICTIVE ANALYTICS IN PYTHON

The population

INTERMEDIATE PREDICTIVE ANALYTICS IN PYTHON

Nele Verbiest Ph. D.

Senior Data Scientist @PythonPredictions

Population requirements

	_	Age	Target Donate		
Population	°	25 60	F M	12 5	0 1
	[]	45		9	

Population should be eligible for being target:

- Address available
- Privacy settings
- •

Timeline compliant population: age (1)

Timeline compliant population: age (2)

Timeline compliant population: donations (1)

Timeline compliant population: donations (2)

Timeline compliant population: donations (3)

Population in python

```
donations_2016 = gifts[gifts["date"].dt.year==2016]
donors_include = set(donations_2016["id"])
print(donors_include)
```

```
& (gifts["date"].dt.month<5)]
donors_exclude = set(donations_2017["id"])
print(donors_exclude)
```

```
{2451,3047,4474, ...}
```

```
population = donors_include.difference(donors_exclude)
```


Let's practice!

INTERMEDIATE PREDICTIVE ANALYTICS IN PYTHON

The target

INTERMEDIATE PREDICTIVE ANALYTICS IN PYTHON

Nele Verbiest Ph. D.

Senior Data Scientist @PythonPredictions

Target definition

		Candidate predictors Age Gender Previous gifts			Target Donate
Population	$\overset{\circ}{\wedge}$	25 60	F	12 5	0
	Å	45	F	9	0

Target timeline (1)

Target timeline (2)

Target timeline (3)

Defining the target in Python

```
unsubscribe_2017[:5]
[90112, 65537, 24577, 8196, 73737]
baseteable.head()
```

```
donor_id
0 65537
1 65538
2 4
3 98328
4 65564
```

```
basetable["target"] = pd.Series([1 if donor_id in unsubscribe_2017 else 0 \
for donor_id in basetable["donor_id"]])
```


Defining an aggregated target in Python

```
print(gifts.head(2))
```

```
donor_id
0 65537
1 65538
```

```
# Target period
start_target = datetime(year = 2017, month = 1, day = 1)
end_target = datetime(year = 2018, month = 1, day = 1)
# Select target period donations
gifts_target = gifts[(gifts["date"]>=start_target) & (gifts["date"]<end_target)]
# Group and sum donations by donor
gifts_target_byid = gifts_target.groupby("id")["amount"].sum().reset_index()
# Derive targets and add to basetable
targets = list(gifts_target_byid["id"][gifts_target_byid["amount"]>500])
basetable["target"] = pd.Series([1 if donor_id in targets else 0 for donor_id in basetable["donor_id"]])
```


The basetable

```
print(basetable.head())
```

```
donor_id target

0 65537 0

1 65538 1

2 65539 0

3 65540 1

4 65541 0
```

Let's practice

INTERMEDIATE PREDICTIVE ANALYTICS IN PYTHON

