Вариант 1

- 1. Дан симметричный ортогональный тензор $A(\mathbf{x},\mathbf{x}) = x_1^2 2\,x_2^2 + x_3^2 4\,x_1x_2 8\,x_1x_3 + 4\,x_2x_3$. Записать характеристический многочлен. Записать тензор в главных осях. Выписать главные направления так, чтобы они составляли ортонормированный правый базис. $(\lambda = -3)$
- 2. Выделить симметричную S и антисимметричную A части ортогонального тензора $T = \begin{pmatrix} -11 & 3 & 2 \\ 7 & 1 & 8 \\ 0 & 4 & 4 \end{pmatrix}.$ Симметричную часть разделить на шаровую часть и девиатор. Найти декартовы координаты вектора \mathbf{w} : $A = \mathbf{w} \times$
- 3. Ортогональный тензор T в базисе $\mathbf{e}_1 = \frac{3}{\sqrt{58}}\mathbf{i} + \frac{7}{\sqrt{58}}\mathbf{j}$, $\mathbf{e}_2 = -\frac{7}{\sqrt{58}}\mathbf{i} + \frac{3}{\sqrt{58}}\mathbf{j}$, имеет компоненты $t_{111} = 1$, $t_{112} = 3$, $t_{121} = 5$, $t_{122} = 7$, $t_{211} = 9$, $t_{212} = 11$, $t_{221} = 13$, $t_{222} = 0$, . Найти компоненту t'_{222} в базисе $\{\mathbf{i},\mathbf{j}\}$.
- 4. Тензор $(t_{klmnrs}^{ij}),\,i,j,k,l,m,n,r,s=1,2,3,4,5,6$ задан своими компонентами $t_{154362}^{12}=11,$ $t_{321546}^{12}=13,\,t_{412563}^{12}=15,\,t_{643215}^{21}=17,\,t_{261345}^{12}=19,\,t_{523456}^{12}=21,$ остальные компоненты равны нулю. Определим тензор $a_{klmnrs}^{ij}=t_{[klmnrs]}^{ij}$. Вычислить a_{214536}^{12} .
- 5. Заданы: базис $\mathbf{e_1} = 3\,\mathbf{i} + \mathbf{j} + 2\,\mathbf{k}; \, \mathbf{e_2} = \mathbf{i} + \mathbf{j} + \mathbf{k}; \, \mathbf{e_3} = -\mathbf{i} \mathbf{j} + 2\,\mathbf{k};$ тензор $(t_j^i) = (\mathbf{e_1} + \mathbf{e_2} + 3\,\mathbf{e_3}) \otimes (\mathbf{e^1} + 2\,\mathbf{e^3}) + (\mathbf{e_1} \mathbf{e_2}) \otimes (2\,\mathbf{e^2} + \mathbf{e^3}),$ ковектор $\mathbf{v} = 2\,\mathbf{e^1} + \mathbf{e^2} + 5\,\mathbf{e^3}.$ Выписать координаты тензора (t_j^i) . Найти длину ковектора \mathbf{u} , если $u_j = t_j^i v_i$.

Вариант 2.

- 1. Дан симметричный ортогональный тензор $A(\mathbf{x},\mathbf{x}) = 5\,x_1^2 + 2\,x_2^2 + 5\,x_3^2 4\,x_1x_2 8\,x_1x_3 + 4\,x_2x_3$. Записать характеристический многочлен. Записать тензор в главных осях. Выписать главные направления так, чтобы они составляли ортонормированный правый базис. $(\lambda = 1)$
- 2. Выделить симметричную S и антисимметричную A части ортогонального тензора $T = \begin{pmatrix} -13 & 4 & 7 \\ 6 & -1 & -2 \\ 5 & -6 & 2 \end{pmatrix}.$ Симметричную часть разделить на шаровую часть и девиатор. Найти декартовы координаты вектора \mathbf{w} : $A = \mathbf{w} \times$
- 3. Ортогональный тензор T в базисе $\mathbf{e}_1 = \frac{1}{\sqrt{65}}\mathbf{i} + \frac{8}{\sqrt{65}}\mathbf{j}$, $\mathbf{e}_2 = -\frac{8}{\sqrt{65}}\mathbf{i} + \frac{1}{\sqrt{65}}\mathbf{j}$, имеет компоненты $t_{111} = 0$, $t_{112} = 2$, $t_{121} = 4$, $t_{122} = 6$, $t_{211} = 8$, $t_{212} = 10$, $t_{221} = 12$, $t_{222} = 14$. Найти компоненту t'_{111} в базисе $\{\mathbf{i}, \mathbf{j}\}$.
- 4. Тензор $(t^{ij}_{klmnrs}),\,i,j,k,l,m,n,r,s=1,2,3,4,5,6$ задан своими компонентами $t^{31}_{124565}=12,$ $t^{31}_{324651}=14,\,t^{31}_{215436}=16,\,t^{31}_{312654}=18,\,t^{31}_{461253}=20,\,t^{31}_{532651}=22,$ остальные компоненты равны нулю. Определим тензор $a^{ij}_{klmnrs}=t^{ij}_{[klmnrs]}$. Вычислить a^{31}_{642351} .
- 5. Заданы: базис $\mathbf{e_1} = 2\,\mathbf{i} + 3\,\mathbf{j} + \mathbf{k}; \, \mathbf{e_2} = \mathbf{i} \mathbf{j} \mathbf{k}; \, \mathbf{e_3} = -2\,\mathbf{i} + 3\,\mathbf{j} 5\,\mathbf{k};$ тензор $(t_j^i) = (\mathbf{e_1} + \mathbf{e_2} + \mathbf{e_3}) \otimes (\mathbf{e^1} + 5\,\mathbf{e^2}) + (-2\,\mathbf{e_2} + \mathbf{e_3}) \otimes (2\,\mathbf{e^1} + \mathbf{e^3}),$ ковектор $\mathbf{v} = \mathbf{e^1} + 3\,\mathbf{e^2} + 4\,\mathbf{e^3}.$ Выписать координаты тензора (t_j^i) . Найти длину ковектора \mathbf{u} , если $u_j = t_j^i v_i$.