

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출 원 번 호 : 10-2002-0087205
Application Number

출 원 년 월 일 : 2002년 12월 30일
Date of Application DEC 30, 2002

출 원 인 : 주식회사 하이닉스반도체
Applicant(s) Hynix Semiconductor Inc.

2003 년 10 월 06 일

특 허 청

COMMISSIONER

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【참조번호】	0024
【제출일자】	2002. 12. 30
【국제특허분류】	H01L
【발명의 명칭】	포토레지스트 패턴 형성방법
【발명의 영문명칭】	Forming method of photoresist pattern
【출원인】	
【명칭】	주식회사 하이닉스반도체
【출원인코드】	1-1998-004569-8
【대리인】	
【성명】	이후동
【대리인코드】	9-1998-000649-0
【포괄위임등록번호】	1999-058167-2
【대리인】	
【성명】	이정훈
【대리인코드】	9-1998-000350-5
【포괄위임등록번호】	1999-054155-9
【발명자】	
【성명의 국문표기】	복철규
【성명의 영문표기】	BOK,Cheol Kyu
【주민등록번호】	640725-1066613
【우편번호】	120-103
【주소】	서울특별시 서대문구 흥은3동 7/1 204-8
【국적】	KR
【발명자】	
【성명의 국문표기】	정재창
【성명의 영문표기】	JUNG,Jae Chang
【주민등록번호】	641025-1144521

1020020087205

출력 일자: 2003/10/13

【우편번호】 134-797
【주소】 서울특별시 강동구 상일동 주공7단지 724-303
【국적】 KR
【발명자】
【성명의 국문표기】 신기수
【성명의 영문표기】 SHIN,Ki Soo
【주민등록번호】 560726-1000910
【우편번호】 463-070
【주소】 경기도 성남시 분당구 야탑2동 기산아파트 307동 1301호
【국적】 KR
【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대리인
이후동 (인) 대리인
이정훈 (인)
【수수료】
【기본출원료】 13 면 29,000 원
【가산출원료】 0 면 0 원
【우선권주장료】 0 건 0 원
【심사청구료】 0 항 0 원
【합계】 29,000 원
【첨부서류】 1. 요약서·명세서(도면)_1통

【요약서】**【요약】**

본 발명은 포토레지스트 패턴의 선폭 (linewidth)을 감소시킬 수 있는 방법에 관한 것으로, 보다 상세하게는 일반적인 리소그래피 공정에 의하여 형성된 포토레지스트 패턴 전면에 산 함유 유기막을 도포하여, 산을 포토레지스트 패턴 내부로 확산시킨 다음, 산이 확산된 부분의 포토레지스트를 알칼리 용액으로 식각함으로써 포토레지스트 패턴의 선폭을 줄일 수 있는 방법에 관한 것이다.

【대표도】

도 2

【명세서】

【발명의 명칭】

포토레지스트 패턴 형성방법{Forming method of photoresist pattern}

【도면의 간단한 설명】

도 1은 노광에너지 증가에 따라 포토레지스트 패턴의 선폭 및 프로파일이 변화되는 과정을 나타낸 도면.

도 2는 본 발명에 따른 패턴 형성방법을 나타낸 도면.

도 3은 종래의 공정에 의해 형성된 패턴의 SEM 사진.

도 4는 본 발명의 공정에 의해 형성된 패턴의 SEM 사진.

< 도면의 주요부분에 대한 부호의 설명 >

100, 106 : 포토레지스트 패턴 102 : 산 함유 유기막

104 : 산 확산 영역

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<8> 본 발명은 포토레지스트 패턴의 선폭 (linewidth)을 감소시킬 수 있는 방법에 관한 것으로, 보다 상세하게는 일반적인 리소그래피 공정에 의하여 형성된 포토레지스트 패턴 전면에 산 함유 유기막을 도포하여, 산을 포토레지스트 패턴 내부로 확산시킨 다음, 산이 확산된 부분의 포토레지스트를 알칼리 용액으로 식각함으로써 포토레지스트 패턴의 선폭을 줄일 수 있는 방법에 관한 것이다.

- <9> 포토레지스트 패턴의 선폭을 감소시키기 위하여 종래에 가장 흔하게 사용하는 방법 중 하나는 노광에너지 (exposure energy)를 증가시키는 것이다. 노광에너지를 증가시키는 방법은 패턴의 선폭을 줄이는데 매우 효과적인 방법이기는 하지만, 도 1에 나타낸 바와 같이 에너지가 증가됨에 따라 회절 (diffraction)되는 빛의 양도 커지게 되어 패턴 모양이 삼각형 모양으로 변할 뿐만 아니라 패턴의 두께도 줄어든다.
- <10> 이러한 삼각형 모양의 패턴과 레지스트 두께 감소는 후속 식각 공정에 악영향을 미치게 되는데, 구체적으로 삼각형 모양의 패턴은 패턴의 선폭을 측정할 때 측정의 재현성을 저하시킬 뿐 아니라 하층막에 그대로 전사되어 후속 식각 패턴의 모양도 삼각형으로 만들기 때문에 저항의 증가와 같은 문제가 발생된다. 또한, 레지스트 두께 감소는 하층막 식각 공정시, 플라즈마 (plasma)에 대한 마스크 기능을 충분히 제공해 줄 수 없기 때문에, 시각 패턴이 변형되거나 심할 경우 패턴이 끊어지는 문제가 발생된다.
- 【발명이 이루고자 하는 기술적 과제】**
- <11> 이에 본 발명의 목적은 상기와 같은 문제점을 발생시키지 않고 포토레지스트 패턴의 선폭을 감소시킬 수 있는 방법을 제공하는 것이다.
- 【발명의 구성 및 작용】**
- <12> 상기 목적을 달성하기 위하여 본 발명에서는 일반적인 리소그래피 공정에 의하여 형성된 포토레지스트 패턴 전면에 산 함유 유기막을 도포하여, 산을 포토레지스트 패턴 내부로 확산시킨 다음, 산이 확산된 부분의 포토레지스트를 알칼리 용액으로 식각함으로써 패턴의 선폭을 줄일 수 있는 방법을 제공한다.
- <13> 이하 본 발명을 도 2를 예로 들어 상세히 설명한다.

- <14> 본 발명에서는 우선, 하기와 같은 단계를 포함하는 포토레지스트 패턴 형성방법을 제공한다:
- <15> (a) 리소그래피 공정에 의하여 포토레지스트 패턴 (100)을 형성하는 단계;
- <16> (b) 상기 포토레지스트 패턴 전면에 산 함유 유기막 (102)을 도포하는 단계;
- <17> (c) 상기 결과물을 베이크하는 단계; 및
- <18> (d) 상기 결과물을 알칼리 현상액으로 현상하여 선폭이 감소된 포토레지스트 패턴 (106)을 얻는 단계.
- <19> 상기 (a) 단계는 일반적인 포토리소그래피 공정에 의한 포토레지스트 패턴 형성공정으로서,
- <20> (a-1) 반도체 기판 위에 화학증폭형 포토레지스트용 조성물을 도포한 다음 베이크하여 포토레지스트 막을 형성하는 단계;
- <21> (a-2) 상기 결과물을 노광하는 단계;
- <22> (a-3) 상기 결과물을 베이크하는 단계; 및
- <23> (a-4) 상기 결과물을 현상하는 단계를 포함한다.
- <24> 상기 (b) 단계에서의 산 함유 유기막은 수용성 고분자, 강산 및 물을 포함하며, 이때 수용성 고분자 물질은 특별히 제한되지는 않으나, 폴리비닐피롤리돈 수지인 것이 바람직하고, 강산도 특별히 제한되지는 않으나 술폰산인 것이 바람직하다.
- <25> 상기 (a) 단계에서의 포토레지스트 패턴의 높이, 즉 (a-1) 단계에서 도포하는 포토레지스트 막의 두께는 200~300Å인 것이 바람직하고, (b) 단계에서 도포하는 산 함유 유기막의 두께는 상기 포토레지스트 패턴 상부로부터 100~1000Å인 것이 바람직하다.

- <26> 한편, 상기 (c) 단계의 베이크 공정은 산 확산 베이크 (acid diffusion bake) 공정으로서 50~150°C 온도에서 30~90초간 수행하는 것이 바람직하다. 이 단계의 베이크 공정의 목적은 상층 유기막에 존재하는 산을 포토레지스트 패턴 내부로 확산시켜 산이 존재하는 영역 (104)을 증가시킴으로써 알칼리 현상액으로 식각되는 부위를 증가시킨다.
- <27> 이때, 산 확산 베이크의 온도가 높을수록, 유기막의 두께가 두꺼울수록 산 확산 거리가 길어지는 원리를 이용하여 패턴의 선폭을 원하는 크기로 조절할 수 있다.
- <28> 상기 (d) 단계의 알칼리 현상액은 일반적으로 사용되는 TMAH 수용액뿐만 아니라, KOH 수용액 또는 NaOH 수용액을 사용할 수도 있다. 이때, 알칼리 처리시간에 비례하여 패턴의 선폭이 작아지므로 처리 시간을 조절함으로써 목표로 하는 선폭을 얻을 수 있으며, 알칼리 용액의 농도를 높이면 레지스트의 식각 속도가 빨라지므로 처리속도 (throughput)를 향상시킬 수 있는데, 2.38 중량%의 TMAH 수용액으로 30~60초간 처리하는 것이 바람직하다.
- <29> 상기 (a-2) 단계에서의 노광원은 ArF (193nm), KrF (248nm), F₂ (157nm) 또는 EUV (13nm)를 사용할 수 있고, 노광에너지는 10~30mJ/cm²인 것이 바람직하다.
- <30> 상기 (a-1) 단계의 포토레지스트 조성물은 일반적인 화학증폭형 포토레지스트 물질이면 무엇이든 사용가능하나, 특히 하기 화학식 1의 중합반복단위를 포함하는 중합체를 포함할 수 있다.
- <31> [화학식 1]

<32>

<33>

상기 식에서,

<34>

X_1, X_2, Y_1, Y_2, Z_1 및 Z_2 는 각각 CH_2 또는 CH_2CH_2 이고,

<35>

R_1, R_3 및 R_4 는 각각 수소; 또는 치환되거나 치환되지 않은 $C_1 \sim C_{10}$ 알킬이며,

<36>

R_2 는 $C_1 \sim C_{10}$ 히드록시알킬이고,

<37>

R^* 는 산에 민감한 보호기 (acid labile group)이며,

<38>

p, q 및 r 은 각각 0~2 중에서 선택되는 정수이고,

<39>

$a : b : c : d$ 는 5~90 mol% : 5~90 mol% : 0~90 mol% : 0~90 mol%이다.

<40>

또한, 상기 포토레지스트는 상기 화학식 1의 중합반복단위에 더하여 아크릴레이트계 중합반복단위를 포함하는 혼합된 형태 (hybrid type)의 공중합체를 포함할 수도 있다.

<41>

이하 본 발명을 실시예에 의하여 상세히 설명한다. 단 실시예는 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다.

<42>

실시예 1.

<43>

PR (Clariant사 AX1020P 제품)을 도포하고 120 °C 온도에서 90 초 동안 베이크하여 PR 막을 형성하였다. PR 막을 ArF용 노광장비로 노광하고, 120°C 온도로 90초 동안 가열한 다음 2.38wt% TMAH 수용액으로 현상하여 포토레지스트 패턴을 형성시켰다 (선폭 100nm, 도 3 참조).

<44> 다음, 형성된 포토레지스트 패턴 상부에 본 발명의 폴리비닐피롤리돈, 술폰산 및 증류수로 이루어진 유기막 조성물을 패턴 상부로부터 두께 2,400 Å이 되도록 도포한 다음 120°C에서 90 초간 산이 확산되도록 베이크 하였다. 그런 다음 2.38 wt% TMAH 수용액으로 40초간 현상하여 선폭이 20nm 감소된 패턴을 얻었다 (선폭 80nm, 도 4 참조).

【발명의 효과】

<45> 이상에서 살펴본 바와 같이, 본 발명의 공정은 신규한 장비 등의 투자 없이도 간단한 습식 현상 공정에 의해 용이하게 패턴의 선폭을 감소시킬 수 있으므로 비용 절감의 효과가 크며, 궁극적으로는 DRAM 또는 MPU 등의 트랜지스터 선폭을 감소시킴으로써 반도체 소자의 동작속도를 빠르게 할 수 있고, DRAM에서의 비트 라인 선폭을 감소시킴으로써 캐패시턴스 (capacitance)를 향상시킬 수 있다는 장점이 있다.

【특허청구범위】**【청구항 1】**

- (a) 리소그래피 공정에 의하여 포토레지스트 패턴을 형성하는 단계;
- (b) 상기 포토레지스트 패턴 전면에 산 함유 유기막을 도포하는 단계;
- (c) 상기 결과물을 베이크하는 단계; 및
- (d) 상기 결과물을 알칼리 현상액으로 현상하는 단계를 포함하는 것을 특징으로 하는 포토레지스트 패턴 형성방법.

【청구항 2】

제 1 항에 있어서, 상기 (a) 단계는

- (a-1) 반도체 기판 위에 화학증폭형 포토레지스트용 조성물을 도포한 다음 베이크하여 포토레지스트 막을 형성하는 단계;
- (a-2) 상기 결과물을 노광하는 단계;
- (a-3) 상기 결과물을 베이크하는 단계; 및
- (a-4) 상기 결과물을 현상하는 단계를 포함하는 것을 특징으로 하는 포토레지스트 패턴 형성방법.

【청구항 3】

제 1 항에 있어서,

- 상기 산 함유 유기막은 수용성 고분자 물질로 이루어진 것을 특징으로 하는 포토레지스트 패턴 형성방법.

【청구항 4】

제 3 항에 있어서,

상기 산 함유 유기막은 폴리비닐피롤리돈 수지와; 술폰산 및 물을 포함하는 것을 특징으로 하는 포토레지스트 패턴 형성방법.

【청구항 5】

제 1 항에 있어서,

상기 (a) 단계에서의 포토레지스트 패턴의 높이는 200~300Å이고, (b) 단계에서 도포하는 산 함유 유기막의 두께는 상기 포토레지스트 패턴 상부로부터 100~1000Å인 것을 특징으로 하는 포토레지스트 패턴 형성방법.

【청구항 6】

제 1 항에 있어서,

상기 (c) 단계의 베이크 공정은 50~150°C 온도에서 30~90초간 수행하는 것을 특징으로 하는 포토레지스트 패턴 형성방법.

【청구항 7】

제 1 항에 있어서,

상기 (d) 단계의 알칼리 현상액은 TMAH 수용액, KOH 수용액 또는 NaOH 수용액인 것을 특징으로 하는 포토레지스트 패턴 형성방법.

【청구항 8】

제 2 항에 있어서,

상기 (a-2) 단계에서의 노광원은 ArF (193nm), KrF (248nm), F₂ (157nm) 또는 EUV (13nm)인 것을 특징으로 하는 포토레지스트 패턴 형성방법.

【청구항 9】

제 2 항에 있어서,

상기 (a-2) 단계에서의 노광에너지는 10~30mJ/cm²인 것을 특징으로 하는 포토레지스트 패턴 형성방법.

【청구항 10】

제 1 항에 있어서,

상기 (a-1) 단계의 화학증폭형 포토레지스트 조성물에 포함되는 포토레지스트 중합체는 하기 화학식 1의 중합반복단위를 포함하는 것을 특징으로 하는 포토레지스트 패턴 형성방법.

[화학식 1]

상기 식에서,

X₁, X₂, Y₁, Y₂, Z₁ 및 Z₂ 는 각각 CH₂ 또는 CH₂CH₂이고,

R_1 , R_3 및 R_4 는 각각 수소; 또는 치환되거나 치환되지 않은 $C_1 \sim C_{10}$ 알킬이며,

R_2 는 $C_1 \sim C_{10}$ 히드록시알킬이고,

R^* 는 산에 민감한 보호기이며,

p , q 및 r 은 각각 0~2 중에서 선택되는 정수이고,

$a : b : c : d$ 는 5~90 mol% : 5~90 mol% : 0~90 mol% : 0~90 mol%이다.

【청구항 11】

제 10 항에 있어서,

상기 포토레지스트 중합체는 상기 화학식 1의 중합반복단위에 더하여 아크릴레이트계 중합반복단위를 포함하는 혼합된 형태 (hybrid type)의 공중합체인 것을 특징으로 하는 포토레지스트 패턴 형성방법.

【도면】

【도 1】

노광에너지 증가

【도 2】

↓ 산합유 유기막 코팅

↓ 산 확산 베이크

↓ 알카리 현상

1020020087205

출력 일자: 2003/10/13

【도 3】

【도 4】

