Machine Learning Analysis of Protein Function Prediction

Matthew Segar Tong Wu

Introduction

Methods

Results

Introduction

Methods

Results

A Dichotomy Exists

Sequencing has become increasingly easy

Databases (SwissProt) make it easy to upload data

Data that is sequenced >>>> data that is annotated

Protein Function

"Anything and everything that happens to or through a protein" (Syed)

From sequence alone, the best predictors are only 90% accurate (Rost, Whisstock)

Protein Structure

Introduction

Methods

Results

Data

Randomly selected 5000 protein sequences from SwissProt

Used *Reactome* to determine GO annotation Input list of Uniprot IDs

Output broad function

Reactome

Analysis results, per pathway

This table provides an overview of your expression data in a pathway context. For each Reactome pathway, the total number of proteins is shown, plus the number of genes/proteins in your dataset that match. By clicking on a pathway name, you will be taken to an interactive graphical representation of the pathway, where your expression levels are represented as coloration of proteins.

Select format to download this table: microsoft xcel (tsv) Download							
Pathway ▼ ▲	Species ▼▲	IDs in pathway (%) ▼▲	Enrichment (pval) ▼▲	FDR ▼ ▲			
Not assigned	Not known	75 (0%)					
<u>Apoptosis</u>	Homo sapiens	73 (48%)	2.53E-05	1.52E-04			
Binding and Uptake of Ligands by Scaveng	Homo sapiens	5 (2%)					
Cell Cycle	Homo sapiens	168 (35%)	2.55E-09	5.09E-08			
Cell-Cell communication	Homo sapiens	18 (14%)	8.69E-02	8.69E-02			
Cellular responses to stress	Homo sapiens	36 (14%)					
Chromatin organization	Homo sapiens	4 (4%)					
Circadian Clock	Homo sapiens	4 (11%)	1.87E-02	3.75E-02			
Developmental Biology	Homo sapiens	62 (15%)	1.87E-02	3.74E-02			
<u>Disease</u>	Homo sapiens	280 (25%)	3.24E-03	9.73E-03			
DNA Repair	Homo sapiens	58 (54%)	6.39E-02	6.39E-02			
DNA Replication	Homo sapiens	57 (56%)	2.28E-06	2.28E-05			
Extracellular matrix organization	Homo sapiens	53 (21%)	0.1	0.1			
Gene Expression	Homo sapiens	229 (31%)	3.98E-02	3.98E-02			
<u>Hemostasis</u>	Homo sapiens	116 (27%)	1.55E-03	7.46E-03			
Immune System	Homo sapiens	233 (19%)	1.86E-03	7.46E-03			
<u>Meiosis</u>	Homo sapiens	18 (31%)	4.17E-02	4.17E-02			
Membrane Trafficking	Homo sapiens	13 (9%)	0.5	0.5			
<u>Metabolism</u>	Homo sapiens	353 (24%)	1.51E-02	3.02E-02			
Metabolism of proteins	Homo sapiens	65 (11%)	0.9	0.9			
Muscle contraction	Homo sapiens	1 (1%)	0.2	0.2			
Neuronal System	Homo sapiens	22 (8%)	0.7	0.7			
Organelle biogenesis and maintenance	Homo sapiens	8 (15%)					
Reproduction	Homo sapiens	0 (0%)					
Signal Transduction	Homo sapiens	229 (12%)	1.82E-02	3.64E-02			
Transmembrane transport of small molecul	Homo sapiens	43 (8%)	0.6	0.6			
26 rows							

Filter

Only 3,085 protein sequences had functions

Removed functions with < 40 samples

Each function needed to constitute 1% of the total dataset

Resulted in 19 functions and 3,039 sequences

Data

Row	Function	Count	Percentage
1	Apoptosis	52	1.66%
2	Binding and uptake of ligands by scavenger	110	3.51%
3	Cell Cycle	167	5.33%
4	Cell-Cell communication	167	5.33%
5	Cellular response to stress	71	2.26%
6	Chromatin organization	49	1.56%
7	Developmental Biology	124	3.95%
8	Disease	308	9.83%
9	DNA repair	32	1.02%
10	Extracellular matrix organization	118	3.76%
11	Gene expression	139	4.43%
12	Hemostatis	198	6.32%
13	Immune system	366	11.68%
14	Membrane trafficking	42	1.34%
15	Metabolism	535	16.76%
16	Metabolism of proteins	143	4.56%
17	Neuronal system	138	4.41%
18	Signal transduction	277	8.84%
_19	Transmembrane transport of small molecule	106	3.38%

Protein Sequence Features

Extracted 32 features for each protein

Wrote custom C++ script to calculate most features

R was used for the rest

Output into ARFF format

Features

Dimensions	Sequence Feature	Description
1	Number of amino acids	Total number of amino acids.
2	Molecular weight	Total molecular weight of the protein.
3	Theoretical pI	The isoelectric point.
4-23	Amino Acid Composition	Percentage of each amino acid.
24	Positively charged residue 1	Percentage of lysine and arginine.
25	Positively charged residue 2	Percentage of histidine, lysine, and arginine.
26	Number of atoms	Total number of atoms.
27	Carbon	Total number of carbon atoms.
28	Hydrogen	Total number of hydrogen atoms.
29	Nitrogen	Total number of nitrogen atoms
30	Oxygen	Total number of oxygen atoms.
31	Sulphur	Total number of sulphur atoms.
32	Non standard residue	Does it contain non-standard residue?

ML Analysis

1. Decision Tree

2. Random Forest

3. Support Vector Machine

4. Neural Network

WEKA

WEKA

Introduction

Methods

Results

Results

	Decision Tree	Random Forest	Support Vector Machine	Neural Network
Correct classifications	857 (27%)	1091 (36%)	990 (33%)	1056 (35%)
Incorrect classifications	2182 (72%)	1948~(64%)	2049 (67%)	1983~(65%)
TP Rate	0.282	0.359	0.326	0.347
FP Rate	0.065	0.070	0.105	0.067
Precsion	0.287	0.359	0.263	0.338
Recall	0.282	0.359	0.326	0.347
F-measure	0.284	0.350	0.255	0.338
AUC	0.620	0.737	0.729	0.729

ROC – Binding and Uptake

ROC – Signal Transduction

Introduction

Methods

Results

Conclusion

Random Forest performed best

Best ML application only had 36% correctness

AUC was over 70%

Improvements

Need more data (upwards of 10,000)

More even distribution of functions

Need more protein characteristics

GitHub

Available online at:

www.github.com/msegar/IT529-Protein-Prediction