

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
28 June 2001 (28.06.2001)

PCT

(10) International Publication Number
WO 01/47038 A1

(51) International Patent Classification⁵: H01L 33/00 (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US00/35184

(22) International Filing Date: 21 December 2000 (21.12.2000)

(25) Filing Language: English (26) Publication Language: English (30) Priority Data: 09/469,652 22 December 1999 (22.12.1999) US

(71) Applicant: LUMILEDS LIGHTING U.S., LLC [US/US]; MS 91/UK, 370 W. Trimble Road, San Jose, CA 95131 (US).

(72) Inventors: WIERER, Jonathan, J. Jr.; Apt. No. 204, 880 Fremont Avenue, Sunnyvale, CA 94087 (US). KRAMES, Michael, R.; 550 Front Lane, Mountain View, CA 94041 (US). RUDAZ, Serge, L.; 382 Sunset Avenue, Sunnyvale, CA 94086 (US).

(74) Agents: OGNOWSKY, Brian, D. et al.; Suite 700, 25 Metro Drive, San Jose, CA 95110 (US).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MULTI-LAYER HIGHLY REFLECTIVE OHMIC CONTACTS FOR LIGHT-EMITTING SEMICONDUCTOR DEVICES

(57) Abstract: A high performance, highly reflective ohmic contact, in the visible spectrum (400nm - 750nm), has the following multi-layer metal profile. A uniform and thin ohmic contact material is deposited and optionally alloyed to the surface of a light-emitting semiconductor device. A thick reflector layer selected from a group that includes Al, Cu, Au, Rh, Pd, Ag and any multi-layer combinations is deposited over the ohmic contact material.

WO 01/47038 A1

MULTI-LAYER HIGHLY REFLECTIVE OHMIC CONTACTS FOR LIGHT-EMITTING SEMICONDUCTOR DEVICES**FIELD OF THE INVENTION**

This invention relates to electrical contacts on optoelectronic devices such as
5 light-emitting diodes (LEDs).

BACKGROUND

Optoelectronic devices such as light-emitting diodes (LEDs) emit light in response to an excitation signal. A typical LED is a heterostructure that has been deposited on a host substrate via a growth technique such as liquid phase, hydride phase, 10 molecular beam, and metal-organic phase epitaxy. The heterostructure includes n and p-type semiconductor layers that sandwich active light producing layers. Electrical contacts are attached to the n and p-type semiconductor layers. When a forward voltage is applied across the contacts, electrons and holes are injected from the n and p-type semiconductor layers into the active region. Light is produced when the electrons and 15 holes radiatively recombine in the active layer(s).

Wall-plug efficiency is the amount of light power produced compared to the electrical power applied. High wall-plug efficiency can be achieved by maximizing the total efficiency of the device. The total efficiency of the device is a product of the various efficiencies of the device including the injection, internal quantum, and light 20 extraction efficiencies. The first two parameters depend on the material quality of the device (epitaxial growth and electronic band structure) while the light extraction efficiency depends on the geometry and all the light absorption present in the device. The light extraction efficiency is the ratio of the amount of light leaving the LED compared to the amount of light generated inside the LED. One way to increase the light 25 extraction efficiency is to reduce the absorption and redirect light into useful (higher extraction) directions. Therefore, absorbing paths in the device should be avoided and light should be scattered into the proper escape cones of the device. The angle of the escape cones depend on the refraction indices of the light-producing semiconductor and the exiting medium, (e.g. for GaN into air the angle of the escape cone is 25°). The 30 electrical contacts are one example of light absorption in a typical LED. Therefore, it is preferable to reduce the absorption and for some devices also to increase the reflectance

in these electrical contacts. This must be done without compromising the contact resistance. Resistance in the electrical contacts leads to wasted energy (electricity) thus lowering the wall-plug efficiency.

Highly reflective ohmic contacts are desirable in LEDs. There are many prior art approaches to creating these types of contacts. The simplest way is to use a thick sheet of the ohmic contact metal. This thick sheet acts as a contact and reflector. A good reflector is one that absorbs less than 25% from an incident hemispherical isotropic light source. Therefore, isotropic light will lose less than 25% of its intensity after reflecting off of this medium (e.g. a maximum reflection of >75%). For the entire visible spectrum (400nm - 750nm), this leaves two metals that fit the requirement: Al and Ag. Other metals that work in only parts of the visible spectrum are Au, Rh, Cu, and Pd. Although a single thick sheet is preferred, these metals do not always make good ohmic contacts to the selected material system. There are additional reliability issues with the use of Ag because of electromigration, and Cu because it may diffuse into the light-producing active region thereby creating deep levels in some semiconductor materials hindering light output.

One prior art approach, disclosed by Chai, et al. in U.S.P.N. 4,355,196, is to pattern the ohmic contact metal, and overlay the ohmic patterned metal with a reflective metal. Although Chai, et al. teaches a reflective contact with a solar cell device, the idea can be extended to all other optoelectronic devices including LEDs. This patterned contact is not advantageous when used on a device with semiconductor layers that do not spread current efficiently laterally (i.e. a low conductivity semiconductor such as p-GaN with a resistivity, ρ , greater than $0.5 \Omega\text{-cm}$). The low conductivity semiconductor cannot spread current efficiently from the patterned contact; therefore electrical carriers will not be injected uniformly into the active light-producing region of the device. Non-uniform injection reduces the wall-plug efficiency of the device. Also, patterning of the contacts adds additional complicated processing steps. Any non-uniformity of the pattern will be manifest in non-uniform current injection and light generation. For low conductivity semiconductor devices, the ohmic contact needs to be a uniform sheet. This type of approach is described by Aegenheister, et al. in EP0051172, although not for reasons of uniformly injecting in low conductivity semiconductor devices. It teaches using an Au/Ge (ratio 99:1) ohmic layer that is 200\AA thick. Although this ohmic contact layer is thin for a long wavelength emitting device, this contact is too thick for a device emitting in the visible spectrum (i.e. at 505nm absorption ~29%). Also, the overlaying reflective

metal is Ag. Ag is known to electro-migrate (when used as a p-contact) in devices that operate with high electric fields in humid environment (accelerated) life tests, thus shorting out the device and rendering it useless. Therefore, electro-migrating electrical contacts are not useful in commercial LEDs. A multi-layer highly reflective ohmic

5 contact is also described in P.M. Mensz et. al., Elec. Lett., 33, 2066-2068 (1997) where the contact is Ni/Al or Ni/Ag to p-GaN for a GaN based LED. This approach is also problematic because its operating forward voltage (V_f) is 5 V at 20mA (for a 300 μ m x 300 μ m contact area). This voltage is 1.5°2.0 V too high for an GaN LED of that size, indicating that the contact is not ohmic and that specific contact resistance is too high.

10 The additional contact resistance decreases the wall-plug efficiency of the LED device.

SUMMARY OF THE INVENTION

A high performance, highly reflective ohmic contact, in the visible spectrum (400nm - 750nm) has the following multi-layer metal profile. First, a uniform ohmic contact material is deposited and optionally alloyed to the semiconductor surface. The

15 ohmic contact material is thin (<200 \AA) to reduce any absorption associated with it (below 25%), but is thick enough to keep the specific contact resistance below $10^{-2} \Omega\text{-cm}^2$. A low contact resistance ensures a low forward operating voltage and low resistive electrical losses. The maximum ohmic contact metal thickness will depend greatly on the type of reflector material to achieve a reflectivity of greater than 75%. A reflector layer

20 selected from a group including Al, Cu, Au, Rh, Pd, Ag and any multi-layer combinations is deposited over the ohmic contact material. The appropriate reflector layer yields a combined multi-layer contact reflectivity that has an absorptance, from an incident hemispherically isotropic light source, of < 25% (reflectance > 75%) at the operating wavelength of the contacted device. Because the reflectivity of a metal

25 increases quickly and asymptotically with thickness the reflector layer should be greater than 500 \AA to achieve the maximum reflection. The thick reflector layer is also an excellent way to spread current uniformly across the device especially in low conductivity semiconductors with resistivity, p , greater than 0.5 $\Omega\text{-cm}$. Although Ag is highly reflective, it electro-migrates in high electric fields and humid environments.

30 Therefore, because of reliability issues, Ag is used only in the low operating electric field embodiments.

In an alternate embodiment, a barrier layer interposes the ohmic and reflector layers to prevent any unwanted device-degrading inter-metallics created by ohmic and

reflector layer diffusion. It is desirable to use a thin barrier metal (<100Å) to keep any absorption associated with it below 25%.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a cross-sectional view of an embodiment of the present invention.

5 Figure 2 illustrates how the relationship between contact resistance and forward operating voltage versus the ohmic layer thickness for a p-GaN contact.

Figure 3 shows the theoretical absorption per pass and forward operating voltage versus Au thickness for a p-GaN Au/NiO/Al contact.

10 Figure 4 shows an alternate embodiment of the present invention. Figure 5 shows a vertical current LED structure. Figure 6 shows a lateral current LED structure.

DETAILED DESCRIPTION

The present invention is a multi-layer contact that consists of multiple material layers providing high reflectivity, low specific contact resistance, and high reliability. Figure 1 shows a cross-sectional embodiment of a semiconductor device 10 with a 15 multilayer contact 12. The multi-layer contact 12 includes an ohmic layer 12A and a reflective layer 12B. In combination, the ohmic and reflective layers 12A, 12B form a highly reflective ohmic electrical contact to the semiconductor structure 11. Various optoelectronic semiconductor structures 11 can be used with the multi-layer reflective contact layers 12.

20 Ohmic layer 12A is at least one layer that provides a good ohmic contact to the semiconductor 11. A good ohmic contact has minimal voltage drop (linear I-V) across the semiconductor/metal interface when current flows across it. A figure of merit for contacts is their specific contact resistance. The specific contact resistance varies greatly depending on the semiconductor and contact material, but a good ohmic contact should 25 have a specific contact resistance of less than 10^{-2} $\Omega\text{-cm}^2$. The ohmic layer 12A, which may be optionally alloyed to the semiconductor surface, is thin to minimize the absorption to less than 25% of the light generated in the semiconductor device 10 while being thick enough so that the specific contact resistance is less than 10^{-2} $\Omega\text{-cm}^2$. The composition of the ohmic layer 12A depends on the material system used for the

semiconductor structure 11. The thickness of the ohmic layer 12A depends upon on how the specific contact resistance increases as the layers are thinned.

For a p-type GaN material system, the composition of the ohmic layer is selected from a group that includes Au, Ni, Pt, Pd, Ti, W, Cr/Au, Ni/Au, Au/NiO, Pt/Au, Pd/Au, 5 Co/Au, Cu/Au, Ni/Pt, Ni/AuZn, Cr/AuZn, Ni/Cr/Au, Ni/Pt/Au, Pt/Ni/Au, Pd/Pt/Au, and TiAlNiAu. Figure 2 shows an example of how the contact resistance increases as the ohmic layer thickness is thinned for a p-GaN contact. The ohmic layer is Au/NiO and Al is the reflector layer. The Au is intermixed in the NiO layer. Various Au/NiO layer thickness are investigated and the forward operating voltage (V_f) at 20mA (contact area = 10 $250\mu\text{m} \times 350\mu\text{m}$) and the barrier voltage (V_b) across the contact/p-GaN interface versus Au (NiO) thickness are measured. The Au/NiO contact are formed by oxidizing and annealing a bi-layer of Ni/Au (thickness ratio = 2/1) in a humid N_2/O_2 (80%/20%) atmosphere at elevated temperatures (greater than 575°C). This oxidation and anneal creates the ohmic layer of NiO intermixed with Au. After oxidation the Al is deposited 15 (~1500Å) and the contacts are patterned by photolithography and etching. The V_b measurement is performed by applying a voltage between two contacts to the p-GaN, measuring the current flow across the p-GaN and contact interfaces and extrapolating the linear high-current regime to the intercept (zero current). For the given contact area, a specific contact resistance of less than 10^{-2} ohm-cm² has a V_b less than 50 mV. The V_f 20 measurement is performed by attaching one of the voltage probes to the n-GaN layer and the other to the p-GaN contact and applying a voltage across them. For a GaN LED with low specific contact resistance the V_f at 20mA should be less than 3.5V. Therefore the optimal thickness of Au (Ni) necessary for low specific contact resistance is ~20-35Å (40-70Å).

25 For an n-type GaN system, the composition of the ohmic layer is selected from a group that includes Ti, W, Ti/Al, TiW, W/Al, TiWAl, V, V/Al, and Pd. GaN LEDs with Ti/Al (30Å/15KÅ) multi-layer contacts to n-GaN, and p-GaN contacts of Au/NiO/Al have been fabricated yielding a $V_f = 3.0$ V at 350mA with a $1000 \times 1000 \mu\text{m}^2$ contact area. This Ti/Al contact has a reflectivity of 79%.

30 For a p-type GaP system, the composition of the ohmic layer may include Au/Be, Au/Zn, Pd/Zn/Pd, Au/Mg, Ni/Au/Be, Ni/Au/Zn, Ni/Au/Mg, and In/Zn. For an n-type GaP system, the composition of the ohmic layer may include Au/Ge, Au/Ni, Au/Si, Au/Sn, Au/Te, In, In/Al, In/Sn, Ni/Si, Si/Pd, Pd/In, Ni/Ge/Au, Ni/Si/Au and Sn. For a

p-type GaAs system, the composition of the ohmic layer may be Ti/Au, Ti/Pt/Au, Au/Zn, Au/Be, Au/Mg, Ni/Au, Ni/Au/Mg, Ni/Au/Be, Ti/Au/Be and In/Zn. For an n-type GaAs system, the composition of the ohmic layer may include Ge/Au, Ge/Au/Ni/Au, Au/Sn, Au/Te, In, In/Au, In/Ni, Pd/Ge, Sn/Ni, and Sn/Sb. For an n-type SiC, the composition of the ohmic layer may include Pd, Pt, Al/Si, Ti, Au, Ni, Cr, Ti/Si, TaSi, and Si/Ni.

Reflective layer 12B is selected from a group that includes Al, Cu, Rh, Au, Pd, and Ag, alone and any combination. Ag is used in special cases because of electro-migration issues. Al does not electro-migrate as severely as Ag and therefore can be used more reliably in reflective multi-layer contacts.. Using Al as the reflector, the maximum 10 ohmic layer thickness in the visible region is 150Å for Rh, 200Å for Cu, and 100Å for Au in order to achieve a reflectivity of greater than 75%. Ohmic contact metals that are more absorbing need to be less than 100Å in the visible spectrum. The reflector layer is greater than 500Å thick so that no light will pass through; thus maximum reflectivity is achieved. This layer not only acts as the light reflector but it also will do most of the 15 lateral current spreading, because of the thickness. This is beneficial because the ohmic layer 12A is typically too thin to spread current effectively on its own. Current spreading by a thick reflector layer (>500Å) in optoelectronic devices, has many benefits including low V_f (lower spreading resistance). Also, the reflector layer connects any discontinuity in the multi-layer contact created by the surface roughness of the semiconductor structure 20 surface.

The Au/NiO/Al contact is a multi-layer contact with high reflectivity. Figure 3 shows the theoretical average absorption per pass (at 505nm), and V_f (at 20mA) for the p-GaN Au/NiO/Al contact. The Al thickness is kept constant at ~1500Å, and the deposited Ni/Au thickness is varied keeping a thickness ratio of 2/1 (before the oxidation 25 and anneal). As the Au/NiO contact layer is thinned, the contact approaches the minimum one pass isotropic absorption (maximum reflection) of ~13%. Also as shown above, the V_f increases as the Ni/Au thickness is decreased because of the increase in specific contact resistance. This illustrates the trade-off between specific contact resistance and reflectivity. This optimization technique can be applied to determine the 30 thinnest ohmic layer to maximize reflection while preserving low specific contact resistance in multilayer contacts. Also, this optimization of the contact insures devices with high wall-plug efficiencies.

Figure 4 illustrates an alternate embodiment of the multi-layer contact 22 to a semiconductor device 20 with multiple contact layers 22A, 22B, and 22C. A barrier metal layer 22B interposes the ohmic 22A and reflector layers 22C. The barrier layer 22B is used to prevent diffusion of the ohmic layer 22A into the reflector layer 22C, thus preventing the creation of any inter-metallics. These inter-metallics could degrade the specific contact resistance and reflectivity of the contact and thus the efficiency of the device. This is a reliability issue that should be avoided for long lasting devices. The barrier metal layer should be kept thin, e.g. <100Å, to minimize light absorption and should be as reflective as possible to contribute to the reflectivity of the contact. Exact metals will vary depending on the ohmic 22A and reflector layers 22C but some candidates include Ni, Co, NiO, Rh, Cr, Pt, Mo, Ti, TiW, WSi, WSi:N, TaSi, TaSi:N, InSnO or TiW:N. The contact 22A and reflector 22 C layers provide the same function as described in the first embodiment.

An example of a multi-layer contact as described in the alternative embodiment suitable for a p-GaN material system has Ni/Au as the ohmic layer 22A, Rh as a barrier metal layer 22B, and Al as the reflector layer 22C. Just as in the Au/NiO/Al contact, the Au is preferably ~20-35Å thick to make a good ohmic contact. The Rh is preferably ~25-50Å thick to separate the Au from the Al. A GaN LED with a Ni/Au/Rh/Al (10A/30A/50A/2200Å) p-GaN contact and a Ti/Al n-GaN contact has a $V_f = 3.2$ V at 20mA for a $350 \times 250 \mu\text{m}^2$ die. The reflectivity of this contact is 75%.

Figure 5 shows a vertical current LED structure. The multi-layer contact is located on the bottom-side of a LED device 30 that has a conductive substrate 35 so that contacts can be placed on opposing sides of the device creating vertical current (perpendicular to the contacts) paths. The top contact 31 is either a small area contact or a thin full sheet (not shown) to minimize absorption. The top contact 31 is the electrical contact layer to the n or p-type semiconductor layer(s) 32 of the LED. The active light producing region 33 interposes the top and bottom n or p-type semiconductor layer(s) 32, 34. Either of the multi-layer contacts shown in Figure 1 or 4 may be used with an ohmic contact layer 36, a reflector layer 38, and a barrier layer (for the alternative embodiment) 37.

In another configuration, the top contact 31, shown in Figure 5, is also a multilayer contact as shown in either Figure 1 and 4.

The material with the greatest reflectivity in the visible region is Ag. Ag is known to electro-migrate (when used as a p-type contact) in devices that operate in humid environment (accelerated) life tests, thus shorting out the device and rendering it useless. For commercial LEDs it is desirable to have devices that last for greater than 5 10,000 hours. LEDs such as the vertical conducting structure (Figure 5) operate at sufficiently low enough electric fields ($E \leq 500 \text{ V/cm}$) so that shorting due to Ag migration will not occur within this time frame. Under these low field conditions, Ag can be used in the reflector 38 and ohmic contact layer 36.

An alternate configuration for an LED device 40 with multi-layer contacts is 10 shown in Figure 6. The contacts are attached on the same side of the device because the substrate 41 is non-conductive to create a device that relies on lateral current (parallel to the contacts) to operate. This is made possible by exposing the lower conducting n or p-type layer 42 by etching. The active light-producing region 43 interposes the top and 15 bottom n or p-type layer(s) 42, 44. Either of the multi-layer contact shown in Figures 1 and 4 may be used with an ohmic contact layer 45,48, a reflector layer 47,50, and a barrier layer (for the alternative embodiment) 46,49.

In Figure 6, the LED device 40 could consist of layers 42,43, and 44 that are 20 materials such as GaN, InN, AlN, InGaN, AlGaN, AlInN, or InAlGaN that are grown on a sapphire substrate 41. The semiconductor layers are contacted by either of the multilayer contacts shown in Figures 1 and 4. For a GaN device, it is preferable to use Au/NiO/Al or Ni/A h/Al p-contacts and the Ti/Al n-contact.

CLAIMS

We claim:

1. A light-emitting device comprising:
 - 5 a heterostructure of semiconductor materials having at least one p and one n-type layer; and
 - a p and an n contact, the p contact electrically connected to the p-type layer, the n contact electrically connected to the n-type layer, wherein one of the p and n contacts is a multi-layer contact having at least one ohmic contact layer and one reflector layer.
 - 10 2. A device, as defined in Claim 1, wherein the multi-layer contact has a reflectivity greater than 75%.
 - 15 3. A device, as defined in Claim 1, wherein the multi-layer contact has a specific contact resistance less than $10^{-2} \Omega\text{-cm}^2$.
 4. A device, as defined in Claim 1, the multi-layer contact further comprising a barrier layer interposing the ohmic contact layer and the reflector layer.
 - 20 5. A device, as defined in Claim 1, wherein the reflector layer has a thickness greater than 500Å.
 6. A device, as defined in Claim 1, wherein the ohmic contact layer has a thickness less than 200Å.
 - 25 7. A device, as defined in Claim 1, wherein the reflector layer is selected from a group that includes Al, Cu, Rh, Pd, and Au.
 8. A device, as defined in Claim 1, wherein the p and n contacts are on opposing faces of the heterostructure.
 - 30 9. A device, as defined in claim 8, wherein the ohmic contact layer includes Ni and Ag.
 - 35 10. A device, as defined in claim 8, wherein the reflector layer is Ag.

11. A light-emitting semiconductor device comprising a GaN-based heterostmcture having at least one p and one n-type layer;
 - 5 a p and an n contact, the p contact electrically connected to the p-type layer, the n contact electrically connected to the n-type layer, wherein one of the p and n contacts is a multi-layer contact having at least one ohmic contact layer and one reflector layer.
12. A device, as defined in claim 11, wherein the multi-layer contact has a reflectivity greater than 75%.
- 10
13. A device, as defined in claim 11, wherein the multi-layer contact has a specific contact resistance less than $10^{-2} \Omega\text{-cm}^2$.
14. A device, as defined in claim 11, the multi-layer contact further comprising a
- 15 barrier layer interposing the ohmic contact layer and the reflector layer.
15. A device, as defined in claim 11, the reflector layer having a thickness greater than 500A.
- 20 16. A device, as defined in claim 11, the ohmic contact layer having a thickness less than 200A.
17. A device, as defined in claim 11, the reflector layer being selected from a group that includes Al, Cu, Rh, Pd, and Au.
- 25
18. A device, as defined in claim 11, wherein the ohmic contact layer is selected from a group that consists of Ti, Au/NiO, and Ni/Au.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

INTERNATIONAL SEARCH REPORT

Intern. Application No
PCT/US 00/35184A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 HO1L33/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 HO1L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

INSPEC, EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 13, 30 November 1999 (1999-11-30) -& JP 11 220168 A (TOYODA GOSEI CO), 10 August 1999 (1999-08-10) the whole document ---	1-3,5-7, 11-13, 15-17
A	EP 0 926 744 A (HEWLETT PACKARD CO) 30 June 1999 (1999-06-30) paragraphs '0015!-'0031!	8,9,18
X	EP 0 926 744 A (HEWLETT PACKARD CO) 30 June 1999 (1999-06-30) paragraphs '0015!-'0031!	1-5, 11-15
A	---	6,8,10, 16
X	PATENT ABSTRACTS OF JAPAN vol. 018, no. 270 (E-1552), 23 May 1994 (1994-05-23) -& JP 06 045651 A (SANYO ELECTRIC CO), 18 February 1994 (1994-02-18) the whole document ---	1-3,5, 8-10
A	---	6,11
		-/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *C* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Z document member of the same patent family

Date of the actual completion of the international search

23 May 2001

Date of mailing of the international search report

31/05/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5816 Patenttaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-3016

Authorized officer

van der Linden, J.E.

INTERNATIONAL SEARCH REPORT

Intern. Application No
PCT/US 00/35184

C/(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	MENSZ P ET AL: "InGaN/AlGaN violet LEDs with reflective p-contacts" ELECTRONICS LETTERS, 1997, vol. 33, pages 2066-2068, XP000734311 ISSN: 0013-5194 cited in the application the whole document	1,2, 5-12, 15-18
X	DE 41 13 969 A (TELEFUNKEN ELECTRONIC) 5 November 1992 (1992-11-05)	1-3,5-8
A	the whole document	11
X	EP 0 051 172 A (SIEMENS AG) 12 May 1982 (1982-05-12)	1,5-8
A	cited in the application	
A	the whole document	9-11
A	WO 95 00974 A (CREE RESEARCH INC) 5 January 1995 (1995-01-05)	1-3, 7-13,17
A	the whole document	
A	PATENT ABSTRACTS OF JAPAN vol. 009, no. 255 (E-349), 12 October 1985 (1985-10-12) & JP 60 102733 A (OKI DENKI KOGYO KK), 6 June 1985 (1985-06-06) abstract	1,3,5,7

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat ional Application No

PCT/US 00/35184

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
JP 11220168	A	10-08-1999	NONE		
EP 0926744	A	30-06-1999	JP 11186598 A	09-07-1999	
			JP 11186599 A	09-07-1999	
			US 6194743 B	27-02-2001	
JP 06045651	A	18-02-1994	NONE		
DE 4113969	A	05-11-1992	JP 2550257 B	06-11-1996	
			JP 5121353 A	18-05-1993	
			KR 164226 B	15-12-1998	
			US 5250466 A	05-10-1993	
EP 0051172	A	12-05-1982	DE 3041358 A	09-06-1982	
			DE 3164751 D	16-08-1984	
			JP 57106087 A	01-07-1982	
WO 9500974	A	05-01-1995	US 5416342 A	16-05-1995	
			AU 6818494 A	17-01-1995	
JP 60102733	A	06-06-1985	NONE		