

PhD Project: Trustworthy Real-Time Virtualization for Heterogeneous Platforms

José Martins

Advisor:

Prof. Sandro Pinto

Co-Advisors:

Prof. Adriano Tavares &

Prof. Marko Bertogna

AGENDA

01 PhD Proposal

Virtualization & Mixed-Criticality

Bao Hypervisor

04 Bao WIP

Master's Thesis Proposals

PhD PROPOSAL

This project proposes the development of an holistic VIRTUALIZATION infrastructure targeting MIXED-CRITICALITY, CYBER-PHYSICAL systems deployed on heterogeneous platforms.

Main Goals:

- Identify synergies between existing virtualization and security hardware extensions (e.g., Arm's VE and TrustZone) and implement a dual-layer hypervisor architecture embodying these ideas.
- Survey and identify new microarchitectural vulnerabilities (e.g. timing side channels) on existing COTS hardware and existing embedded hypervisors. Propose software approaches to mitigate or minimize and achieve higher virtual-machine microarchitectural isolation.
- Analyze drawbacks and overheads of current existing virtualization extensions having in mind embedded virtualization requirements such as real-time and SWaP-C. Propose alternatives and prototype them using open architectures such as RISC-V.
- Investigating the possible benefits of decentralized virtualization by taking advantage of the reconfigurable fabric in heterogeneous platforms to implement virtualization and security functionality.

VIRTUALIZATION

Allows the execution of multiple Operating Systems in the same hardware platform. An *Hypervisor or VMM* is to an OS, as an OS is to a process.

- Main functions:
 - Resource Management
 - Abstraction
 - Protection/Isolation
- The hypervisor provides a Virtual Machine (VM) abstraction for guest OSs.
- Used extensively in:
 - servers (load balancing, power management)
 - desktops (cross-platform, systems development)

MIXED-CRITICALITY / CYBER-PHYSICAL

- Cyber-Physical Systems
- Growing complexity & connectivity
- Multiple Subsystems:
 - Heterogeneous Software Stacks (RTOS, GPOS)
 - Different Criticality Levels
- Size, Weight, Power, Cost constraints -> Consolidation

CYBERSECURITY

Hackers remotely kill Jeep's engine on highway

NIENA

Siemens: Stuxnet worm hit industrial systems

Tech

Barnaby Jack Could Hack Your Pacemaker and Make Your Heart Explode

VIRTUALIZATION & MIXED-CRITICALITY

Consolidation

Size Weight Power Cost

Low Engineering Cost

Full-Virtualization allows direct porting of guest OSs Add sec/saf mechanisms at hypervisor layer Low-latencies (interrupt, boot, ..) Determinism/Predictability Freedom-from-interference

Real-time & Safety

Isolation & Fault Containment

Sandboxed Environments

Small TCB Side-channel Protection TEE support

Security

Performance

Hardware virtualization ext. Low mode crossing frequency

- Type-1 / Bare-metal
- SMP
- Needs HW Virtualization Extensions
- Static Partitioning:
 - 1:1 vCPU-to-pCPU mapping (no scheduling)
 - Static memory assignment
 - Device Pass-through (needs IOMMU)
 - Hardware interrupts
- Small TCB (~7 KSLoC)
- Arm & RISC-V
- Open-source (checkout bao on github!)
- Main goal: ISOLATION

Paper: <u>Bao: A Lightweight Static Partitioning Hypervisor for</u>

<u>Modern Multi-Core Embedded Systems</u>

AVOIDING INTERFERENCE & SIDE-CHANNELS

- Cache Partitioning (e.g. coloring) solves (most) of cache interference problems.
- But what about the rest of the memory hierarchy?

- DRAM bank coloring
- Memory throttling
- Hardware mechanisms?

AVOIDING INTERFERENCE & SIDE-CHANNELS

<u>DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car</u> Michael G. Bechtel, Elise McEllhiney, Minje Kim, Heechul Yun

IOMMU

- Heterogeneity and limitations:
 - Non-existent (need hypervisor mediation)
 - Limited number of simultaneous active devices (SMMUv2, solved in v3).
 - Platform-specific: IOMMU, master ID programming, ...
- Mitigations (e.g. memory throttling) not currently extended to SMMU.
- Shared micro-architectural structs:
 - TLBs
 - PTWs
- SMMUv3.2 adds MPAM. But...

From Arm SMMU Architecture specification, version 3

RISC-V HYPERVISOR EXTENSION

- First public RTL implementation (only QEMU was available) of the RISC-V hypervisor extension specification.
- Implemented in the <u>Rocket Core</u> using the <u>Chisel Language</u>
- Used by the KVM community for validation of the specification.
- To be used in future research to develop custom extension and hardware modules to assist Bao.

Presented at RISC-V Summit 2020 (video available on <u>voutube</u>)

Paper: <u>A First Look at RISC-V Virtualization from an</u>
Embedded Systems Perspective

arm TEE SUPPORT

MASTER'S THESIS PROPOSALS

- 1. <u>VirtlO</u> infrastructure:
 - Study and select transport
 - Backend repository (virtio-console, virtio-net, virtio-block, ...)
- 2. Trusted Execution Environments using VM-stacking
- 3. Memory throttling, DRAM bank partitioning and Arm MPAM support.
- 4. <u>SMMUv3</u> (Arm <u>IOMMU</u>) support and <u>DMA attack and interference</u> analysis.
- 5. Breaking Bao: attack surface and vulnerability analysis (e.g. using fuzzing).

OTHER OPTIONS

- Bao infrastructure Improvements:
 - Error handling and recovery
 - Automated <u>TDD</u> framework
 - Port using memory-safe languages (<u>Rust</u>)
 - Bao debug/tracing framework
- Implement security functionality:
 - explore secure <u>TrustZone</u> and <u>Realms</u> in Arm processors
 - at hypervisor level (secure Boot, ASLR, CFI/DFI, <u>Arm PAuth support</u>)
 - at VM level (VM introspection, enclaves, secure boot, secure updates, attestation)
- Device sharing/virtualization (related to VirtIO):
 - GPU
 - PCle

•

ANY IDEAS ?!

- RISC-V hypervisor hardware extensions:
 - Implement and explore ePMP and sPMP for partitioning virtualization
 - Hardware interference mitigations (see BRU implemented in <u>Chisel</u>)
 - Design/implement isolation specification/modules (e.g. IOMMU)
 - MISC:
 - VM-level schedulers
 - Develop hypervisor ports and drivers for new hardware
 - New guest support (Zephyr, NuttX, MirageOS Unikernels)
 - Interdisciplinary project using Bao

THANK YOU FOR YOUR TIME! QUESTIONS?

jose.martins@dei.uminho.pt