		+	+		L	חל	ис	αн	ne		900	OPA	чA	ra		4	3 <i>x</i> c	ga		И		60	wo	ga						+	+	+
1	E	Зхс	9																													
			,																													
/	Yoa		uο	-PA	ММ	A	7	PHI	чил	IAE	T	Н	4	ВХ	og		X D	РН	OBC	ky	ю	9	POF	M S	905	,	ĸo	TO	PO	ū		
преди	UEC	TBE	E	-	ĸ	n-	во	,	TEPE	EME	ЕНН	ыx		в	HE	ū		ч	CAI	N 4	7	1EP	EM	EHI	4876	Ε,	K	וסזכ	P 67	e	npe	g -
CTABI	лян	тс	Я	cī	POR	юū		вид	A.	: 7	1EP	ВАЯ	?	nΕ	PE	4E	чн	, גו		1	ne	05	EΛ	j	В	ГОР	AR	n	EPE	ME	нна	8 ;
1 n	POE	E/	,	٠.	.,	. ,	roc	N E	дих	R	n E	PEM	ΕH	нА.	۹.	X	РН	080	CKA.	१	9	PDF	му	Λ Α		ΠP	Eg	ста	BN:	RET	Cle	
инпі	w	CAY	ия	ми	8	и	o	TPL	ıya	TE	16	НЫ	ML	,	g	143	310	Н	KTA	M	ч,	u	c	De	uş	UM	ш	и	3	gı	138	юн
zui	ng	θOl	13 t	Por	оне	ne	2	κο	nu	4E	ств	A	(TF	щ	LAF	ш	ī.		U	1 <i>[</i>]	шк	AL	zu.	ЯМ		п	PEG	ru	ECI	Ву	e T
ux .	KO	nuu	E	7B(2 .	G	, AM	9	u	un/	ик	Ay	us	?	ni	Eg	ст	AB.	ΛЯΕ	TC	e	-	JP(ori	วนิ		ви	gA		ΠΕ	PBA	Я
NEPE	ME	нн	98		1	ne	06	ΕΛ	·	BI	TO P	4.7	n	EPE	M	EHA	(AX	÷	1	n	°0E	EΛ	,			. ,	cur	181	2/1	,	> ′	j
1 n	POE	TE/	j	ſ	1PA	ΒA	Я	п	EP	EME	Н	ı A S	8	и	мП	ли	KA	yı	ш	<u>;</u>	си	мв	OΛ	,	ز	,	T. (е.	n	PH.	3 <i>H</i> A	}.c
KOH																																
TIPE	gc.	TAE	nE	на			cri	OA	oū		ВИ	g A		77	ΈP	BA.	8	n	EPE	ME	НН	'AZ	į	1	пе	05	ΈΛ			910	PAX	
NEPE																																
Пец			4																													
										F		,																	9-			
XOP	408	3CK	AR		9 -,	1 4	,																									
4																																
X 2	+	y	+	Z	(V	+	+															_					\vdash		+		+
W		y		z	3		,	(φ	=	1	w	۷ 4	1 ^	z	→	X) ,	۸ (_,	×) ^	(w	νĀ	-	<u>,</u>	٨	Z
>		x					ľ		,						ľ		Ĺ					i				1						
2																																
W		х		y																												
					1																											

	Mos	reo	TPAMMA	Выв	DOUT	лиδ	50 00	бицение	"UNSA	Τ"	B CAYYAE	HEBH-
					V							
ОЛН	14MOC7	Γ4 X	OPHOBE	oū	POPHY	n,	ли50	выполн	810 w uu	EE	HAEOP	3HA4E
ии	77/	OWNER	Выхо	ga ne	DCPAMA	102	(gave	входных	данных	ш	примера	выше)
							. 9	0	0	0		,
1	Horn	Sat	:									
	x :	false	2									
	4	true										

```
Псевдокод алгоритма
p-e hornSat (4) {
// Bxog: хорновская формила 4 , представленная:
// • контейнером переменных 'vars', где для катдой переменной в 'vars'
// KANOYOM 'key' SONZETUS EË HASBAHUR, A SHAYEHUR VALUE NO STONY KANOYY-
// EË SHAYEHUE true unu false, USHAYANDHO BCE false (vars [key] = value);
// • инпликацияни 'implications', где каждая инпликация в 'implications'
// RPEGCTABREHA CRUCKOM REPEMBHHMX 'Left' CREBA OT SHAKA - 4, COOTBET-
Il CTBYPOULET STOMY CTUCKS REPENEUHOU "right" CAPABA OT SHAKA "-";
// • Отрицательными дизъюнктами disjuncts, состоящими из дизъющий произ-
II вольного кол-ва отрицаний, которые представлены списком переменных
// выход: выполняющий 4 набор значений, в случае выполнимости
// 4, UNU COOFWEHUE "UNSAT", & OFFATHOM CASURE
// Примечание: стэк empty Impl Left Elem cosquetae для импликаций, которые
// не содержат переменных в левой части При напичии таких имплика-
// ций, в empty ImplLeft Elem Будут помещаться их правые переменных.
    инициализация стэка empty ImplLeft Elem;
    для каждой импликации impl в implications:
        ECNH impl. left nuct:
            empty ImplLieft Elem . push (impl right);
    пока empty ImplLeft Elem не пуст:
        true Var := empty ImplLeft Elem . top();
        empty ImplLieft Elem . pop();
        vars [true Var] := true ;
        для каждой импликации impl в implications:
           для каждой переменной 'v' в impl. left:
                ECNU v = = true Var :
                   yopato 'v' us implett;
                   ECNY impl. Left nyer:
                        empty ImplLeft Elem . push (impl right);
```

```
gnz каждой дизгюнкции d' в disjuncts:

count:=0;

gnz каждой переменной v' в':

Ecnu vars [v] == false:

выход из цикла;

count++;

Ecnu count paben кол-ву d':

вывод сообщения "UNSAT";

return;

вывод vars;
```

I I — кол-во инпликаций, N — инимарное кол-во перешенных во всех инпликацийх. В худшем случае за одну ителацию в стэк может попасть одна "пустах" инпликация. Изнагально там метих одна "пустах" инпликация. Изнагально там метих одна "пустах" инпликация, как самый худиній слугай. Тогда в решеннах сложность алгоритма — это $O(N \cdot I^2)$. I к. I и N — не более, гем длина формулог => врешеннах сложность от длиног входной строки - формулог.

Код программы

```
#include <iostream>
#include <vector>
#include <stack>
#include <list>
#include <map>
class HornFormula
public:
  HornFormula(int n, std::map<char, bool>& vars);
  void addImplication(std::pair<std::list<char>, char> &impl);
  void addDisjunction(std::list<char> &disjunction);
  void printSolution();
  void hornSat();
private:
  int n_;
  std::map<char, bool> vars_;
  std::vector<std::pair<std::list<char>, char>> implications_;
  std::vector<std::list<char>> disjunctions_;
};
HornFormula::HornFormula(int n, std::map<char, bool>& vars)
  this->n_=n;
  this->vars_ = vars;
}
//Добавление импликации в хорновскую формулу
void HornFormula::addImplication(std::pair<std::list<char>, char>
&implication)
{
  implications_.push_back(implication);
}
//Добавление дизъюнкции в хорновскую формулу
void HornFormula::addDisjunction(std::list<char> &disjunction)
  disjunctions_.push_back(disjunction);
}
//Фукнция проверяющая выполнимость хорновской формулы
void HornFormula::hornSat()
  //стэк для элементов справа от '->' импликаций, в которых нет элементов
  //слева от '->'
  std::stack<char> emptyFirstElemImpl;
  for (auto i: implications_)
  {
    if (i.first.empty())
      emptyFirstElemImpl.push(i.second);
  while (!emptyFirstElemImpl.empty()) //пока есть не выполненная импликация
    char trueVar = emptyFirstElemImpl.top();
    emptyFirstElemImpl.pop();
    vars_[trueVar] = true; //присваивание переменной справа значения true
```

```
for (auto& i: implications_)
      for (auto j = i.first.begin(); j != i.first.end(); j++)
        if (*j == trueVar)
          i.first.erase(j);
          if (i.first.empty())
            emptyFirstElemImpl.push(i.second);
          break;
        }
      }
   }
  }
  for (auto i: disjunctions_)
    int count = 0;
    for (auto j: i)
      if (vars_[j] == false)
      {
        break;
      count++; //количество положительных переменных дизъюнкции
      if (count == i.size())
        std::cout << "\nUNSAT\n";</pre>
        return; //формула невыполнима
    }
  }
  printSolution();
  return;
//Функция вывода решения в консоль
void HornFormula::printSolution()
  std::cout << "\nHornSat:\n";</pre>
  for (auto i: vars_)
    std::cout << i.first << ": ";</pre>
    if (i.second == true)
      std::cout << "true" << '\n';</pre>
    }
    else
      std::cout << "false" << '\n';</pre>
  }
```

}

}

```
int main()
  std::map<char, bool> elements;
 int nElements = 0;
  char elem;
  std::cin >> nElements;
  for (int i = 0; i < nElements; i++)
   std::cin >> elem;
    elements[elem] = false;
 HornFormula hornFormula(nElements, elements);
  int nImlications = 0;
  std::cin >> nImlications;
  for (int i = 0; i < nImlications; i++)</pre>
    std::cin >> elem;
    std::pair<std::list<char>, char> implication;
   while (elem != '>')
      implication.first.push_back(elem);
      std::cin >> elem;
    std::cin >> elem;
   while (elem != ';')
      implication.second = elem;
      std::cin >> elem;
   hornFormula.addImplication(implication);
  int nDisjunctions = 0;
  std::cin >> nDisjunctions;
  for (int i = 0; i < nDisjunctions; i++)</pre>
  {
    std::cin >> elem;
    std::list<char> disjunction;
   while (elem != ';')
      disjunction.push_back(elem);
      std::cin >> elem;
    hornFormula.addDisjunction(disjunction);
 hornFormula.hornSat();
  return 0;
}
```

Тесты

Входные данные	Выходные данные (с пояснением)
$\varphi = (w \land y \land z \rightarrow x) \land (x \land z \rightarrow w) \land (x \rightarrow y)$ $\land (\rightarrow x) \land (x \land y \rightarrow w) \land (\overline{w} \lor \overline{x} \lor \overline{y}) \land \overline{z}$	Начинаем со всех значений false и далее видим, что 'х' должно быть true в силу импликации ' \rightarrow х'. Импликация 'х \rightarrow у' вынуждает присвоить 'у' значение true. Т.к. 'х' и 'у' – true, импликация 'х \wedge у \rightarrow w' вынуждает присвоить 'w' значение true. Т.о. дизъюнкт ' \overline{w} \vee \overline{x} \vee \overline{y} ' ложен \Rightarrow ф невыполнима.
4 x y z w 5 w y z > x; x z > w; x > y; >x; x y > w; 2 w x y; z;	UNSAT
$\varphi = (w \land y \land z \rightarrow x) \land (x \land z \rightarrow w) \land (x \rightarrow y)$ $\land (\rightarrow x) \land (x \land y \rightarrow w) \land (\overline{w} \lor \overline{x} \lor \overline{y} \land \overline{z})$	Начинаем со всех значений false и далее видим, что 'х' должно быть true в силу импликации ' \rightarrow х'. Импликация 'х \rightarrow у' вынуждает присвоить 'у' значение true. Т.к. 'х' и 'у' – true, импликация 'х \wedge у \rightarrow w' вынуждает присвоить 'w' значение true. Т.о. импликация 'х \wedge z \rightarrow w' – истинна, как и дизъюнкт ' \overline{w} \vee \overline{x} \vee \overline{y} \wedge \overline{z} ' \Rightarrow ϕ выполнима.
4	HornSat: w: true x: true y: true z: false
$\varphi = (x \rightarrow y) \land (\rightarrow y) \land (\overline{x} \lor \overline{y})$	Начинаем со всех значений false и далее видим, что 'у' должно быть true в силу импликации ' \rightarrow у'. С выбранным значением для 'у' импликация 'х \rightarrow у' — истинна, как и дизъюнкт ' \overline{x} \vee \overline{y} ' \Rightarrow ϕ выполнима.

2 x y 2 x > y; > y; 1 x y;	HornSat: x: false y: true
$\varphi = (x \rightarrow y) \land (y \rightarrow x) \land \bar{x}$	Начинаем со всех значений false и далее видим, что с выбранными значениями все условия формулы истины ⇒ φ выполнима.
2 x y 2 x > y; y > x; 1 x;	HornSat: x: false y: false

Задание 8

```
Псевдокод

процедура тах Vaiting Time Order (n, t) {

// Вход: коммество клиентов n; набор врешен общутивания клиентов

// t_i: i \in (1,...,n).

// Выход: последовательность ночеров клиентов, которая максими зируст

// сутмарное вренх отмуаних клиентов.

сортировать t по убыванию t_i;

вернуть t;
```

```
Оценка временной сложности

I T(n) - время работ ф-и тах Vaiting Time Order.

Временная сложность сортировки п элементов есть O(nlogn);

Следовательно, получим T(n) = O(nlogn) - время работ ф-и тах Vaiting Time Order.
```