Wprowadzenie do uczenia maszynowego część l

Franciszek Górski 2021

Czym jest uczenie maszynowe?

- Uczenie maszynowe proces poprawy wyników algorytmu wraz ze zdobywanym doświadczeniem, które to doświadczenie pozyskiwane jest z danych.
- Proces pozyskiwania doświadczenia nazywany jest uczeniem się.
- W czasie uczenia tworzony jest model na podstawie danych uczących.

Dane uczące

Jeżeli model ma zdobywać doświadczenie z danych, to dane muszą zawierać informację. Dlatego w Informatyce dane przedstawiane są w postaci zbioru parametrów np. - dane opisujące różne komputery

Pamięć RAM	Pamięć VRAM GPU	Liczba rdzeni CPU	Taktowanie CPU
8	0	4	2,4
16	6	8	2,5
8	2	8	2,3

Etykiety danych

Przedstawione dane mają z kolei przypisane etykiety. Załóżmy, że prezentowany przez nas zbiór ma służyć opisaniu cen komputerów w zależności od ich parametrów:

Pamięć RAM	Pamięć VRAM GPU	Liczba rdzeni CPU	Taktowanie CPU	Cena
8	0	4	2.4	1500
16	6	8	2.5	3000
8	2	8	2.3	1900

Dane uczące

Pamięć RAM	Pamięć VRAM GPU	Liczba rdzeni CPU	Taktowanie CPU
8	0	4	2.4
16	6	8	2.5
8	2	8	2.3

Cena	
1500	
3000	
1900	

X - macierz liczb rzeczywistych o wymiarach 3x4 (3 przykłady danych, każdy opisany 4 parametrami)

y - wektor liczb rzeczywistych 3x1

Dane uczące - nasze uproszczenie

Pamięć RAM
8
16
8

X - macierz (wektor) liczb rzeczywistych owymiarach 3x1 na nasze potrzeby załóżmy 1parametr opisujący dane

y - wektor liczb rzeczywistych 3x1

Cena	
1500	
3000	
1900	

Hipoteza h(x)

Przykładowa hipoteza dla naszego przypadku - cena laptopów na rynku:

$$h(x) = a*x1 + b$$

Nasze dane:

$$X[0] = [8]$$

$$X[1] = [16]$$

$$X[2] = [8]$$

$$h(X[0]) = 8a + b$$

$$h(X[1]) = 16a + b$$

$$h(X[2]) = 8a + b$$

Inicjalizacja wag w hipotezie h(x)

Nasza hipoteza: h(x) = a*x1 + b

Etykiety danych: Nasze wyniki:

h(X[0]) = 8a + by[0] = 1500

h(X[1]) = 16a + b

y[1] = 3000

h(X[2]) = 8a + by[2] = 1900Wyniki predykcji:

Inicjalizacja wag - wektor parametrów θ (theta)

 $\theta = [a, b]$

 $\theta = [100, 150]$

y pred[1] = 1600 + 150 = 1750y pred[2] = 800 + 150 = 950

y pred[0] = 800 + 150 = 950

GRADIENT

Jak zmierzyć błąd algorytmu? - funkcja kosztu L(y, y_pred)

Nasze wyniki predykcji:

$$y_pred[0] = 800 + 150 = 950$$

$$y_pred[1] = 1600 + 150 = 1750$$

$$y_pred[2] = 800 + 150 = 950$$

Przykładowa funkcja kosztu I(y[i], y_pred[i]):

lub

 $I(y[i], y_pred[i]) = (y[i] - y_pred[i])^2$

Posiadane etykiety danych:

$$y[0] = 1500$$

$$y[1] = 3000$$

$$y[2] = 1900$$

MSE (mean square error):

$$L(y, y_pred) = 1/n * \sum_{i \in \{(y[i] - y_pred[i])^2\}}$$

Jak zmierzyć błąd algorytmu? - funkcja kosztu L(y, y pred) c.d.

Funkcja kosztu L(y, y_pred)

1/3 * 2767500 ~= **922500**

 $L(y, y_pred) = \frac{1}{3} * [(1500 - 950)^2 +$ $(3000 - 1750)^2 + (1900 - 950)^2 =$

1/3 * [302500 + 1562500 + 902500] =

Nasze wyniki predykcji:	Posiadane etykiety danych:

y pred[0] = 800 + 150 = 950y[0] = 1500

y[1] = 3000

Nasza funkcja kosztu L(y, y_pred)

MSE (mean square error):

L(y, y pred) = $1/n * \sum i [(y[i] - y[i])]$

y pred[i])^2]

y pred[1] = 1600 + 150 = 1750y pred[2] = 800 + 150 = 950y[2] = 1900

Funkcja kosztu L(y, y_pred)

Funkcja kosztu L(y, y_pred) = 922500 - to nie jest dobry wynik :)

Co jest naszym celem? - minimalizacja funkcji kosztu L(y, y_pred) czyli min L(y, y_pred)

Co jest naszym celem? - minimalizacja funkcji kosztu L(y, y_pred) czyli min L(y, y_pred)

Jak to zrobić? - zmieniając parametry θ = [a = 100, b = 150] przy pomocy metody gradientu prostego - *Gradient Descent*

Metoda gradientu prostego (Kocioł pod Polskim Grzebieniem, Tatry Słowackie)

Metoda gradientu prostego

Jest wiele metod optymalizujących funkcję, my skupimy się na jednej z najpopularniejszych z nich - metodzie gradientu prostego.

Wyobraźmy sobie dolinę wśród gór w której chcemy znaleźć najniżej położony punkt, który określimy jako minimum globalne.

W tym celu zastosujemy właśnie metodę gradientu prostego, która licząc pochodne cząstkowe parametrów optymalizowanej funkcji wskazuje kierunek wzrostu funkcji!

Metoda gradientu prostego

Wzrostu? Ale my chcemy minimalizować funkcję! - Dlatego będziemy wykorzystywali zanegowaną wartość gradientu - negacja wzrostu == spadkowi

Startujemy w punkcie A i korzystając z zanegowanej wartości gradientu kierujemy się w dół zbocza doliny.

Aż do punktu D, który jest najniżej położonym punktem w dolinie.

Uwaga na lokalne minima np. w punkcie C!

Metoda gradientu prostego - obliczenia

$$L(y, y_pred) = 1/n * \sum i \{(y[i] - y_pred[i])^2\}$$

$$PL(a, b) = \{\partial a, \partial b\} = \{\partial a$$

b1 := b0 - $\eta * \partial b$ = b0 - $\eta * (-2/n * \sum i \{(y[i] - a0*x[i] + b0)\})$ = b0 - $\eta * (-2/n * \sum i \{(y[i] - y_pred[i])\})$

η (eta)- współczynnik uczenia (ang. *learning rate*)

Metoda gradientu prostego - obliczenia

$$\theta 0 = [a0 = 100, b0 = 150]$$

Nasze nowe parametry **01**:

$$y = [1500, 3000, 1900]$$

$$\mathbf{01} = [\mathbf{a1} = -78,66, \mathbf{b1} = -175]$$

$$\eta = 0.001$$

```
a1 := 100 - 0.001 * \frac{2}{3} * [8 * (1500 - 950) + 16 * (3000 - 1750) + 8 * (1900 - 950)] = <math>100 - 0.001 * \frac{2}{3} * [8 * 550 + 16 * 1250 + 8 * 950] = 100 - 0.001 * \frac{2}{3} * (4400 + 20000 + 7600) = 100 - 0.001 * \frac{2}{3} * 32000 = 100 - \frac{2}{3} * 32 \sim = 100 - 21,33 = -78,66
```

```
b1 := 150 - 0.001 * \frac{2}{3} * [150 * (1500 - 950) + 150 * (3000 - 1750) + 150 * (1900 - 950)] = 150 - 0.001 * \frac{2}{3} * [150 * 550 + 150 * 1250 + 150 * 950] = 150 - 0.001 * \frac{2}{3} * (82500 + 187500 + 142500) = 100 - 0.001 * \frac{2}{3} * 412500 = 100 - \frac{2}{3} * 412,5 \sim 100 - 275 = -175
```

Regresja liniowa jednej zmiennej

Pamięć RAM	
8	
16	

Omawiany przez nas przykład określany jest jako regresja liniowa jednej zmiennej.

Regresja oznacza, że **zbiorem** wartości funkcji są liczby rzeczywiste.

W ramach uproszczenia przedstawiliśmy regresję dla hipotezy z jedną zmienną niezależną x.

Regresja liniowa wielu zmiennych

Pamięć RAM	Pamięć VRAM GPU	Liczba rdzeni CPU	Taktowanie CPU
8	0	4	2.4
16	6	8	2.5
8	2	8	2.3

Cena	
1500	
3000	
1900	

W prawdziwych problemach spotkacie się jednak z danymi zawierającymi wiele zmiennych niezależnych x, czyli wieloma parametrami danych.

Regresja liniowa wielu zmiennych

$$h(x) = a*x4 + b*x3 + c*x2 + d*x1 + e$$

I wtedy taka hipoteza zostanie wykorzystana do treningu modelu, reszta kroków pozostaje niezmienna ...

Jednak w przypadku wielu zmiennych model liniowy może okazać się niewystarczający, ale o tym kiedy indziej ...

Klasyfikacja

- Zbiorem wartości zamiast liczb rzeczywistych są dyskretne (z góry określone) wartości np. liczby [1, 2, 3]
- Klasyfikacja polega na przypisania danych do konkretnych klas
- Tak samo jak w regresji tutaj też jest hipoteza, jej parametry, funkcja kosztu i optymalizacja parametrów np. metodą gradientu prostego
- Inne są jednak hipotezy i funkcje kosztu

Klasyfikacja - dane

Pamięć RAM	Pamięć VRAM GPU	Liczba rdzeni CPU	Taktowanie CPU
8	0	4	2.4
16	6	8	2.5
8	2	8	2.3

Klasa jakości (1 -3)	
1	
3	
2	

= y

Jak widać teraz te same dane zostały przypisane do jednej z 3 klas określających poziom "możliwości" poszczególnych laptopów

Klasyfikacja - hipoteza

Jako hipotezy w klasyfikacji wykorzystuje się funkcje logistyczne takie jak sigmoid, tangens hiperboliczny czy ReLu.

$$sigmoid(x) = 1 / (1 + e^{-x})$$

Zbiór wartości : <0, 1> albo <-1, 1>

Klasyfikacja - funkcja kosztu

Funkcja kosztu ma postać:

$$L(y, y_pred) = 1/n * \sum_{i \in [y[i]} * (-log(y_pred[i])) + (1 - y[i])*(-log(1 - y_pred[i]))]$$

gdzie
$$y_pred[i] = sigmoid(x[i]) = 1 / (1 + e^-x[i])$$

Pytania?

Jeśli nie to ...

pora na krótką prezentację w Colabie

