Pygal: Python Data Playbook

GETTING DATA INTO PYGAL

Kishan lyer LOONYCORN www.loonycorn.com

Overview

SVG (Scalable Vector Graphics) is a popular vector format

SVG images are defined as markup that is rendered, usually in a browser

Great for interactivity, indexing, and searching

Retain sharpness regardless of resizing or screen resolution

Pygal is a great Python library for building SVG images

Introducing Pygal

Visualization

Visualizations are very efficient at conveying information

Visualization

Our brains are wired to understand visualizations - cognitively efficient

Visualization in Exploratory Data Analysis

Important step in data exploration

Helps develop an intuition for relationships in data

Precursor to higher-level data analysis using Machine Learning techniques

Interactivity

Interactivity helps with exploration and experimentation

Interactivity in Visualization

Easy to underestimate importance of interactivity

Lacking from many visualization tools

Enables exploration

Dramatically increases understanding

Pygal

Python visualization library optimized for creating and working with SVG images, with rich support for interactivity and animation

An XML-based vector image format for two-dimensional graphics with support for interactivity and animation

Visualization Libraries in Python

Matplotlib Seaborn

Bokeh Plotly.py

Many Libraries, Many Niches

Matplotlib is powerful

Seaborn is easy-to-use

Bokeh for interactivity

Plotly.py for collaboration

Pygal's niche is working with SVG images

Understanding SVG

An XML-based vector image format for two-dimensional graphics with support for interactivity and animation

Vector and Raster Image Formats

Raster Image Formats

PNG, JPEG

Image files contain grid of pixels representing color

Inherently binary data

Larger image files

Hard to convert to vector format

Simple to render

Vector Image Formats

SVG, PDF

Image files contain points and movements

Can be specified in markup

Smaller image files

Easy to convert to raster format

Complex, specialized programs needed to render

Vector and Raster Image Formats

Raster Image Formats

Harder to search and index

Harder to resize

Tend to render best on high-resolution devices

Inherently non-interactive

Lose quality on zooming, scaling, moving, and resizing

Vector Image Formats

Easier to search and index

Easier to resize

Can render sharply even on poor-resolution devices

Support animation and interactivity

Maintain quality on zooming, scaling, moving, and resizing

An XML-based vector image format for two-dimensional graphics with support for interactivity and animation

An XML-based vector image format for two-dimensional graphics with support for interactivity and animation

SVG is an image format like PNG, JPEG, or TIFF

An XML-based vector image format for two-dimensional graphics with support for interactivity and animation

SVG image files are actually XML files, i.e. they contain markup

An XML-based vector image format for two-dimensional graphics with support for interactivity and animation

That markup needs to be interpreted and rendered by an external program (e.g. a browser)

An XML-based vector image format for two-dimensional graphics with support for interactivity and animation

SVG is a vector format, as opposed to PNG or JPEG, which are raster formats

An XML-based vector image format for two-dimensional graphics with support for interactivity and animation

Pygal makes it really simple to build and work with SVG images

SVG

Used to draw shapes using a vector representation

SVG

XML format for shape specification

SVG Shapes

Predefined shape elements

<path> element is used to define a path

Path is defined with a series of commands

Commands

Points on the axes

M	move to	Move from one point to another
L	line to	Create a line
C	curve to	Create a curve
Q	quadratic bezier curve	Create a quadratic bezier curve
Z	close path	Close the path

Basic path commands

Move cursor to point 1,1

Draw line from 1,1 to 1,4

Draw line from 1,4 to 4,1

Close the path

M 1,1 L 1,4 L 4,1 Z

SVG

Can specify several complex features Can include:

- Nested SVG images
- Embedded raster images

SVG

Paths

Basic shapes

Text

Painting

Color

Fonts

S\/G

Animation

Scripting

Links

Filters

Metadata

Demo

Install Pygal

Demo

Plot data contained in a CSV file

Summary

Used Jupyter and pip to work with Pygal

Loaded CSV data and visualized using Pygal

Visualized both in-memory and file data

Rendered to SVG file format