10 класс.

Задача 1. «Такие разные колеса»

1. «Игрушка» При изготовлении колеса детской игрушки была допущена небольшая ошибка — тонкие диски, расположенные на жесткой оси длиной $l=1,00\,\mathrm{cm}$, имели разные радиусы $R_1=10,0\,\mathrm{cm}$ и $R_2=10,1\,\mathrm{cm}$. Определите радиус R, окружности, которую опишет такое колесо, если его толкнуть без проскальзывания.

2. «**Автомобиль**» При повороте автомобиля по окружности радиуса $R = 20\,\mathrm{m}$ его

колеса вращаются с различными угловыми скоростями. Это возможно благодаря тому, что каждое колесо радиусом $r=40\,\mathrm{cm}$ имеет возможность независимого вращения (например, ось разбита на две полуоси). Расстояние между колесами $l=1,0\,\mathrm{m}$. Найдите разность $\Delta\omega$ угловых скоростей вращения колес автомобиля при повороте со скоростью $\upsilon=36\,\frac{\mathrm{KM}}{\mathrm{q}}$. Движение происходит без проскальзывания.

3. «Поезд» При повороте поезда используется жесткая ось, поэтому колеса имеют одинаковую угловую скорость вращения. В этом случае дискам вагонных колес придают форму усеченных конусов (см. рис.) с малым углом $\alpha = 5.0^{\circ}$ при вершине, что позволяет колесной

паре поворачивать без проскальзывания: при повороте колеса смещаются на некоторое расстояние ΔR от центра поворота так, чтобы проскальзывание

отсутствовало. Найдите смещение колесной пары поезда при повороте радиусом $R=1,0\,\mathrm{km}$. Расстояние между колесами поезда $l=1,5\,\mathrm{m}$, радиус колеса $r=40\,\mathrm{cm}$.

4. Рассмотрим два цилиндра радиусами R_1 и R_2 , между которыми без проскальзывания движется малый цилиндр. Определите угловую скорость ω вращения малого цилиндра вокруг собственной оси и угловую скорость Ω движения центра малого

цилиндра относительно точки O. Рассчитайте численные значения скоростей ω и Ω при следующих параметрах: угловая скорость вращения внутреннего цилиндра $\omega_1 = 5.5 \frac{\text{рад}}{\text{c}}$, внешнего $\omega_2 = 7.5 \frac{\text{рад}}{\text{c}}$, $R_1 = 10 \, \text{cm}$, $R_2 = 11 \, \text{cm}$. Рассмотрите различные случаи направления вращения вешнего и внутреннего цилиндров.