Debugging Fall 2023 **Mayank Goel** Inspired by content from Michael Hilton, Andreas Zeller, and Stuart Halloway

History of Bugs

Dr. Grace Hopper

History of Bugs

Thomas Edison

Mento Park mch 3rd 78

Wm Orton Esgr

Dear Sir

You were pointly connect, I did find a bug" in my apparatus, but it was not in the telephone proper I was of the genus "callbellum". The insect appears to find conditions for its existence in all call apparatus of telephones. Another delay was the sickness of Adam's wife, I intend to present you with a first class Phonograph for your home, for reproducing music etc. this apparatus wiftrum with a clockwork train, I will also place one in the room called "Experimental room" if you will be so kind as to inform me where that is.

I wish you could find time some afternoon to come down and see my experimental room, (no deske manned with mathematicians) and hear some good phonographic singing and talking,

yours Truly

Thus a Edison

Bugs can be Very Hard to Find

Replying to @mmalex @AeornFlippout

To find out. Eventually the answer came: cleaners arrived. They were more thorough than our cleaners! One hour of vacuuming near the eye toy- white noise- caused the in game chat audio compression to leak a few bytes of memory (only with white noise). Long enough? Crash.

3:32 PM - 23 Nov 2018

Bugs are Hard to Fix

Bugs can be Very Expensive

Bugs are Everywhere!

Types of Bugs

Broadly speaking:

- Compile Errors
- Runtime Errors
- Logic Errors

Let's look at some code.

(runtime_errors_example.c0)

```
#use <coni>
void print_characters(char character, int num)
   int i=num;
   while (i>0)
        printf("%c",character);
int main()
   int j = 0;
   int sizeOfDiamond = 20;
   for (int i=0; i<sizeOfDiamond;i++)</pre>
```

[mayankgoel@MacBook-Pro-255 C and C0 % cc0 diamond_pattern.c0 Could not find coni.h0

Locating Bugs

User or Third-Party Input	
Program State	
Our Code	
Compiler	
Operating System	
Hardware	
Physics	

Locating Bugs: Ockham's Razor

Whenever you have competing theories for how some effect comes to be,

pick the simplest.

What NOT to say when You Encounter an Error?

"That's a weird error!"

"That should have worked!"

"I bet it is because of...."

That's a bit too pedantic!

The idea is do not rely too much on intuition.

It takes time and cannot be guaranteed.

So, What Should We Do?

Start by asking: "I wonder what could cause this."

Scientific Debugging

Overkill? After some experience, maybe spend 10-15 minutes hacking and trying things out.

How To Come Up With A Hypothesis

Think of 20 questions.

Do not start with something super specific.

Resources to generate a hypothesis:

- Error messages
- Deducing from the code How?
- Program output How?
- Multiple trials/runs/outputs
- Earlier hypotheses

Deducing from the Code

- Code review
- Rubber duck method
- Flowcharts / Pseudo-codes

Program Output

Print Debugging

Debugger tools to step through code - *later*.

Write It All Down

Hypothesis	
Prediction	
Experiment	
Observation	
Conclusion	

Let Us Look At An Example

Code to generate factorial of a number.

(debug_factorial.c0)

Initial Hypothesis

Hypothesis	n = 5, the factorial should be 120
Prediction	Output is 120
Experiment	Run the code
Observation	Compile error
Conclusion	Hypothesis is rejected

Hypothesis	The header file is misnamed
Prediction	Renaming header file will fix the problem
Experiment	Rename the header file
Observation	
Conclusion	

Hypothesis	The header file is misnamed
Prediction	Renaming header file will fix the problem
Experiment	Rename the header file
Observation	A different error for an uninitialized variable.
Conclusion	Header file was misnamed. Variable must be uninitialized.

Hypothesis	Variable <u>result</u> is uninitialized.
Prediction	Initializing result will compile code.
Experiment	Initialize <u>result</u>
Observation	
Conclusion	

Hypothesis	Variable <u>result</u> is uninitialized.
Prediction	Initializing result will compile code.
Experiment	Initialize <u>result</u>
Observation	Code compiles
Conclusion	Variable <u>result</u> was not initialized.

Back to our Original Hypothesis

Hypothesis	$\underline{\mathbf{n}}$ = 5, the factorial should be 120
Prediction	Output is 120
Experiment	Run the code
Observation	
Conclusion	

Hypothesis	$\underline{\mathbf{n}}$ = 5, the factorial should be 120
Prediction	Output is 120
Experiment	Run the code
Observation	Output is 0
Conclusion	Hypothesis rejected

Hypothesis	The value of <u>n</u> is not preserved when I call <u>factorial</u> function.
Prediction	n at the invocation of factorial is not 5
Experiment	Observe value of <u>n</u>
Observation	
Conclusion	

Hypothesis	The value of <u>n</u> is not preserved when I call <u>factorial</u> function.
Prediction	n at the invocation of factorial is not 5
Experiment	Observe value of <u>n</u>
Observation	Value of <u>n</u> at the beginning of <u>factorial</u> is 5
Conclusion	Hypothesis rejected

Hypothesis	result is initialized to 0 and is causing all future multiplications to result in 0
Prediction	Changing <u>result</u> 's initial value to 1 should make the output correct
Experiment	Set <u>result</u> 's initial value to 1
Observation	
Conclusion	

Hypothesis	result is initialized to 0 and is causing all future multiplications to result in 0
Prediction	Changing <u>result</u> 's initial value to 1 should make the output correct
Experiment	Set <u>result</u> 's initial value to 1
Observation	As predicted
Conclusion	Hypothesis is confirmed.

Why Document?

- Documentation for the future you, other programmers
- Helps you revisit the problem and code later (perhaps years later in many cases)
- Allows you to "sleep on it"
- As you progress, complexity increases and recollection decreases

One more example for the class exercise

(diamond_pattern.c0)

