

支持双向 SCP、PD3.0 等快充协议,支持 2~4 节串联电池,集成升降压驱动,最大功率 45W 的移动电源 SOC

1 特性

- 同时支持多个 USB 口
- ◆ 2 个 USB-A □输出
- ◆ 1个USB-C □输入输出
- ♦ 1 个 Lightning 口输入
- 快充规格
- ♦ 所有 USB 口均支持快充
- ◆ 集成 QC2.0、QC3.0、QC3+输出快充协议
- ◆ 集成 FCP 输入输出快充协议
- ◆ 集成 AFC 输入输出快充协议
- ◆ 集成 SCP 输入输出快充协议
- ◆ 集成 DRP Try.SRC 协议, PD3.0 输入输出快充
- ◆ 兼容 BC1.2、Apple 手机快充
- 集成 USB Power Delivery (PD2.0/PD3.0) 协议
- ◆ 支持 PD2.0 双向输入输出协议
- ◆ 支持 PD3.0 双向输入输出协议、PPS 输出协议
- ◆ 支持 5V、9V、12V、15V、20V 电压档位输入
- ◆ 支持 5V、9V、12V、15V、20V 电压档位输出
- ◆ 支持 PPS 20mV/Step 输出电压档位
- ◆ 集成硬件的双向标记编解码 (BMC) 协议
- ◆ 集成物理层协议(PHY)
- ◆ 集成硬件 CRC
- ◆ 支持 Hard Reset
- 集成功率控制
- ◆ 集成双向 Buck-Boost 升降压功率 NMOS 驱动
- ◆ 集成 Charge-Pump 控制外置路径 NMOS
- 充电规格
- ◆ 自适应充电电流调节
- ◆ 支持 4.15V、4.20V、4.30V、4.35V、4.40V 规格的电池
- ◆ 支持磷酸铁锂电池 3.65V 电池
- ◆ 支持2节、3节、4节串联电池

• 放电规格

- ◆ 输出功率最大 45W
- ◆ 同步开关放电 5V@2A 效率达 94%以上
- ◆ 支持线补
- 电量显示
- ◆ 内置 14bit ADC 和电量计
- ◆ 支持4颗、2颗、1颗 LED 电量显示
- ♦ 支持 188 数码管电量显示
- ◆ 支持电量自学习,电量显示更均匀
- ◆ 支持电池初始容量 PIN 选
- 其他功能
- ◆ 自动检测手机插入和拔出
- ◆ 快充状态指示
- ◆ 支持电池温度检测
- ◆ 智能识别负载,轻载自动进待机
- ◆ 内置照明灯驱动
- 多重保护、高可靠性
- ◆ 输入过压、欠压保护
- ◆ 输出过流、过压、短路保护
- ◆ 电池过充、过放、过流保护
- ◇ 芯片过温保护
- ◆ 充放电电池温度 NTC 保护
- ◆ ESD 4KV, 输入(含CC、DP、DM 引脚)耐压 30V
- BOM 极简
- ◆ 内置开关功率 MOS 驱动
- ◆ 单电感实现充电、放电功能
- 封装规格: 7mm × 7mm 0.5Pitch QFN48

2应用产品

1/32

- 移动电源、便携式储能电源
- 手机、平板电脑等便携设备

3 概述

IP5386 是一款集成 QC2.0/QC3.0/QC3+输出快充协议、AFC/FCP/SCP 输入输出快充协议、TYPE-C PD2.0/TYPE-C PD3.0 输入输出协议、TYPE-C PD3.0 PPS 输出协议,兼容 BC1.2 Apple 手机、同步双向升降压转换器、锂电池充电管理、电池电量指示等多功能的电源管理 SOC,为快充移动电源提供完整的电源解决方案。IP5386 可同时支持 USB-A x2, USB-C,Lightning 口四个 USB 口,单独使用任何一个 USB 口都可以支持快充,同时使用两个及以上输出口时,只支持 5V 输入输出。

得益于 IP5386 的高集成度与丰富功能,在应用时仅需极少的外围器件,只需一个电感实现双向升降压功能,有效减小整体方案的尺寸,降低 BOM 成本。

IP5386 支持 2 节、3 节、4 节串联电池,同步开关升降压系统可提供最大 45W 的输入输出功率,轻载时自动进入休眠状态。

IP5386 的同步开关充电系统,提供高达 8A 充电电流,内置芯片温度、电池温度和输入电压控制环路,智能调节充电电流。

IP5386 内置 14bit ADC, 精确测量电池电压和电流,通过积分电池端电流,可准确获取电池电量信息。 IP5386 支持 4 颗、2 颗、1 颗 LED 电量显示; 支持 188 数码管电量显示; 支持可选的电池 NTC 温度检测。

IP5386

目录

1	特性	1
2	应用产品	1
3	概述	2
4	修改记录	4
5	典型应用原理图	5
6	IP 系列型号选择表	6
	6.1 移动电源芯片	
	6. 2 IP5386 常见型号说明	6
7	引脚定义	7
	7.1 IP5386 引脚说明	7
	芯片内部框图	
9	极限参数	9
10)推荐工作条件 1	0
11	电气特性	0
12	2 功能描述	3
	12.1 低电锁定与激活	3
	12.2 充电	3
	12.3 放电	3
	12. 3. 1 USB C	4
	12. 3. 2 USB-C PD	
	12.3.3 快充功能	6
	12.4 充放电路径管理1	7
	12.4.1 待机1	7
	12.4.2 放电	7
	12.4.3 充电	
	12.4.4 边充边放	8
	12.5 季 机自动检测	8
	12.5.1 手机插入自动检测功能1	8
	12.5.2 手机充满自动检测功能	8
	12.6 按键选择1	8
	12.7 快充状态指示1	9

IP5386

12.8 电量计和电量显示	
12.8.1 电量计	
12.8.2 LED 灯电量显示模式	20
12.8.3 数码管电量显示模式	21
12.9 系统输入输出最大功率设定	22
12.10 电池串联数量设定	22
12.11 VSET(电池类型设定)	
12. 12 NTC	
13 Layout 注意事项	
13.1 VIO 和 BAT 端采样线	
13.2 VIO 和 BAT 电容	25
13.3 VIO 到输出 USB-A1、USB-A2 MOS 管的走线	26
14 应用原理图	27
14.1 LED 灯方案应用原理图	
14.2 数码管方案应用原理图	
15 封装信息	30
15.1 芯片封装	30
15.2 芯片字印说明	31
16 责任及版权申明	32
4 修改记录	
备注:以前版本的页码可能与当前版本的页码不同。	
更改版本 V1.0(2022 年 5 月)至 V1.01	页码
● 更新格式	1

5 典型应用原理图

6 IP 系列型号选择表

6.1 移动电源芯片

芯片 充放电			主要特点						封装			
型号	放电	充电	LED 灯数	照明 灯	按键	I2C	DCP	USB C	QC 认证	PD3. 0 /PPS	规格	兼容
IP5303T	1.0A	1.2A	1,2	√	\checkmark	-	-	-	-	-	ESOP8	
IP5305T	1.0A	1.2A	1,2,3,4	√	\checkmark	-	-	-	-	-	ESOP8	PIN2
IP5306	2.4A	2.1A	1,2,3,4	√	√	√	-	-	-	-	ESOP8	PIN
IP5306H	2.4A	2.1A	1,2,3,4	√	√	√	-	-	-	1	ESOP8	
IP5407	2.4A	2.1A	1,2,4	√	√	-	-	-	-	1	ESOP8	
IP5209	2.4A	2.1A	3,4,5	√	√	√	√	-		1	QFN24	PIN2
IP5209U	2.4A	2.1A	3,4,5	√	√	√	√	-	-)	QFN24	PIN
IP5189T	2.1A	2.1A	1,2,3,4	√	√	√	√		-	-	QFN24	PIN2
IP5189TH	2.1A	2.1A	1,2,3,4	√	√	√	√	-	-	-	QFN24	PIN
IP5310	3.1A	3.0A	1,2,3,4	√	√	1	1	1		-	QFN32	
IP5506	2.4A	2.1A	数码管	√	√		-	-	-	-	ESOP16	
IP5508	2.4A	2.1A	数码管	√	√	-	√	-	-	-	QFN32	
IP5320	3.1A	3.0A	数码管	√	1	V	1	√	-	-	QFN28	
IP5566	3.1A	3.0A	1,2,3,4	1	1	-	1	√	-	-	QFN40	
IP5322P	18W	4.0A	1,2,3,4	√	V	1	<i>,</i> √	-	√	-	QFN32	
IP5332	18W	4.0A	1,2,3,4	1	1	V	√	√	√	√	QFN32	
IP5328P	18W	4.0A	1,2,3,4	1	√	1	√	√	√	√	QFN40	
IP5356	22.5W	5.0A	数码管	V	\checkmark	-	√	√	√	√	QFN40	
IP5353	22.5W	5.0A	4	1	√	√	√	√	√	√	QFN32	
IP5358	22.5W	5.0A	数码管	√	√	-	√	√	√	√	QFN48	
IP5568	22.5W	5.0A	数码管	√	√	-	√	√	√	√	QFN64	
IP5388	30W	5.0A	数码管	√	√	-	√	√	√	√	QFN64	
IP5389	100W	8.0A	数码管	√	√	-	√	√	√	√	QFN64	
IP5386	45W	8.0A	数码管	√	√	-	√	√	√	√	QFN48	

6.2 IP5386 常见型号说明

型号	功能说明
IP5386_LED_BZ	支持 2-4 节电池,最大功率支持 45W,支持 4、2、1 灯
IP5386_188_BZ_30W2S	支持 2 节电池, 支持功率 30W, 支持 188 数码管

7引脚定义

图 2 IP5386 引脚图

7.1 IP5386 引脚说明

序号	名称	PIN 定义说明			
1	VOUT2G	USB-A2 口输出路径 NMOS 控制引脚			
2	LT	Lightning 解码引脚			
3	CC3	Lightning 口检测和快充通信引脚			
4	LED2	电量显示灯驱动引脚			
5	LED1	电量显示灯驱动引脚			
6	VIN	Lightning 口输入充电电源引脚			
7	VING	Lightning 口输入路径 NMOS 控制引脚			
8	VBUS	USB-C 口输入输出电源引脚			
9	VBUSG	USB-C 口输入输出路径 NMOS 控制引脚			
10	VBUS_I	USB-C 口路径电流检测引脚			
11	AGND	模拟地			
12	VIO	移动电源输入输出端引脚			
13	CSP1	输入输出端电流采样正端			
14	CSN1	输入输出端电流采样负端			

IP5386

15	PCIN	输入输出端峰值电流采样引脚
16	HG1	H 桥功率管输入输出端上管控制引脚
17	BST1	H 桥功率管输入输出端自举电压引脚
18	LX1	输入/输出端电感连接引脚
19	LG1	H 桥功率管输入输出端下管控制引脚
20	LG2	H 桥功率管电池端下管控制引脚
21	LX2	电池端电感连接引脚
22	BST2	H 桥功率管电池端自举电压引脚
23	HG2	H桥功率管电池端上管控制引脚
24	PCON	电池端峰值电流采样引脚
25	CSN2	电池端平均电流采样负端
26	CSP2	电池端电流采样正端
27	BAT	电池端供电引脚
28	NC	悬空
29	VCC5V	系统 5V 供电电源,给芯片内部模拟电路供电
30	AGND	模拟地
31	KEY	按键和照明灯引脚
32	VCCIO	系统 3.3V 供电电源,给芯片内部数字电路供电
33	FCAP	电池容量选择引脚,连接不同的电阻,可选择不同的电池容量
34	LED3	电量显示灯驱动引脚,复用为 VSET 功能
35	FSEL	最大输入输出功率选择和 NTC 功能选择引脚,连接不同的电阻,可选择不同的输入输出功率和 NTC 阈值
36	HLED	快充模式状态指示,复用电池串数选择
37	NTC	NTC 电阻检测引脚
38	CC2	USB-C 口检测和快充通信引脚 CC2
39	DPC	USB-C 口快充智能识别 DP
40	DMC	USB-C 口快充智能识别 DM
41	CC1	USB-C 口检测和快充通信引脚 CC1
42	DPA1	USB-A1 口快充智能识别 DP
43	DMA1	USB-A1 口快充智能识别 DM
44	VOUT1	USB-A1 口 VOUT1 输出电源引脚
45	VOUT1G	USB-A1 口输出路径 NMOS 控制引脚
46	DPA2	USB-A2 口快充智能识别 DP
47	DMA2	USB-A2 口快充智能识别 DM
48	VOUT2	USB-A2 口 VOUT2 输出电源引脚

8 芯片内部框图

9 极限参数

参数	符号	值	单位
端口输入电压范围	VBAT/VIN/VBUS	-0.3 ~ 35	V
协议接口电压范围	DP/DM/CC	-0.3 ~ 30	V
数字 GPIO 电压范围	LED/FCAP	-0.3 ~ 8	V
结温范围	T_J	-40 ~ 125	°C
存储温度范围	Tstg	-60 ~ 150	${\mathbb C}$
热阻(结温到环境)	θ_{JA}	26	°C/W
人体模型(HBM)	ESD	4	ΚV

^{*}高于绝对最大额定值部分所列数值的应力有可能对器件造成永久性的损害,在任何绝对最大额定值条件下暴露的时间过长都有可能影响器件的可靠性和使用寿命。

10 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
输入电压	VBAT	5.6		18	٧
输入电压	V _{IN} /V _{BUS}	4.5		24	V
工作环境温度	T _A	-40		85	ပ္

^{*}超出这些工作条件,器件工作特性不能保证。

11 电气特性

除特别说明,TA=25℃,L=4.7µH

1/3/1	, 171–200,	<u> </u>					
参数	符号	测·	试条件	最小值	典型值	最大值	单位
			充电系统				
输入电压	V _{IN} /V _{BUS}			4.5	5/9/12/15/20	25	V
输入过压电压	V _{IN}				13	14	V
和八 及压电压	V _{BUS}				22	24	V
		电池节数为 N,	$R_{VSET} = 27k\Omega$	N*4.16	N*4.20	N*4.24	V
		电池节数为 N,	$R_{VSET} = 18k\Omega$	N*4.26	N*4.30	N*4.34	V
大山福田市田	\/	电池节数为 N,	$R_{VSET} = 13k\Omega$	N*4.31	N*4.35	N*4.39	V
充电恒压电压	V _{TRGT}	电池节数为 N,	$R_{VSET} = 9.1k\Omega$	N*4.36	N*4.40	N*4.44	V
		电池节数为 N,	$R_{VSET} = 6.2k\Omega$	N*4.11	N*4.15	N*4.19	V
		电池节数为 N,	$R_{VSET} = 3.6k\Omega$	N*3.50	N*3.65	N*3.70	V
		VIN=5V,输入	电流	1.8	2.0	2.3	Α
		VIN=9V,输入	电流	1.8	2.0	2.2	Α
		VIN=12V,输	\ 电流	1.35	1.5	1.7	Α
		VBUS=5V,输	入电流	2.7	3.0	3.3	Α
		VBUS=9V,	非 PD 快充	1.8	2.0	2.3	Α
		输入电流	PD 快充	2.7	3.0	3.3	Α
充电电流	I _{CHRG}	VBUS=12V,	非 PD 快充	1.35	1.5	1.7	Α
		输入电流	PD 快充	2.7	3.0	3.3	Α
		VBUS =15V,	功率配置为 30W	1.8	2.0	2.3	Α
		输入电流	功率配置为 45W	2.7	3.0	3.3	Α
		VBUS =20V,	功率配置为 30W	1.35	1.5	1.7	Α
		输入电流	功率配置为 45W	2.0	2.2	2.4	Α
四次去山山水		VIN=5V, VBAT	<2.5V		50	100	mA
涓流充电电流	I _{TRKL}	VIN=5V, 2.5V<	=VBAT <n*3.0v< td=""><td>150</td><td>0.025*FCAP</td><td>1000</td><td>mA</td></n*3.0v<>	150	0.025*FCAP	1000	mA
加冰井儿市厅	V_{TRKL}	电池节数为 N,	V _{TRGT} ♯ 3.65V	N*2.9	N*3.0	N*3.1	V
涓流截止电压	V _{TRKL}	电池节数为 N,	V _{TRGT} =3.65V	N*2.7	N*2.75	N*2.85	V
充电停充电流	I _{STOP}			100	0.025*FCAP		mA
再充电阈值	V _{RCH}	电池节数为 N			V _{TRGT} – N*0.1		V
充电截止时间	T _{END}			45	48	51	Hour
	•	•	放电系统				

IP5386

电池工作电压	V_{BAT}	电池节数为 N	N*2.75		N*4.5	V
		V _{OUT} =5V@1A	4.75	5.00	5.25	V
	QC2.0	V _{OUT} =9V@1A	8.70	9.00	9.30	V
	V_{OUT}	V _{OUT} =12V@1A	11.60	12.00	12.40	V
	QC3.0/					
50 2 2 3 4 3 4 5 5	QC3+	@1A	3.6		12	V
DC 输出电压	V_OUT					
	QC3.0			000		v.
	Step			200		mV
	QC3+			20		
	Step			20		mV
		VBAT=4*3.7V, VOUT=5V,		40		m)/
		Fs=400kHz, lout=1A		40		mV
 输出电压纹波	ΔV_{OUT}	VBAT=4*3.7V, VOUT=9V ,		40		mV
制 出 电 压 纹 仮	ΔVOUT	Fs=400kHz, lout=1A		40		IIIV
		VBAT=4*3.7V , VOUT=12V ,		40		mV
		Fs=400kHz, lout=1A		40		IIIV
放电系统最大	P_{max}	PD 协议下,不同 FSEL 电阻值	20		45	w
输出功率	· IIIdx					
		V _{BAT} =8V, V _{OUT} =5V,		94		%
		Іоит=ЗА				
		V _{BAT} =8V, V _{OUT} =9V,		93		%
		I _{OUT} =3A				
		V _{BAT} =8V, V _{OUT} =12V,		94		%
放电系统效率	η _{out}	I _{OUT} =3A				
		V_{BAT} =15V, V_{OUT} =5V,		90		%
		lour=3A				
		V _{BAT} =15V, V _{OUT} =9V,		94		%
		I _{OUT} =3A				
		V _{BAT} =15V, V _{OUT} =12V,		94		%
		I _{OUT} =3A	4.0	4.0	5.0	Λ
		VBAT=N*3.7V,多口输出 5V	4.3	4.6	5.0	Α
		VBAT= N *3.7V,单口输出 5V	3.2	3.6	4.0	Α
边电系统进运		VBAT= N *3.7V, 单口输出 9V, 非 PD 状态	2.22	2.4	2.7	Α
放电系统过流 关断电流	I _{shut}	# PD 扒心 VBAT= N *3.7V, 单口输出 12V,				
<u> </u>		VBAI = N *3.7V, 単口制出 12V,	1.67	1.8	2	Α
		FD (√/次 VBAT= N *3.7V, 单口输出 PD 状				
		VBAI = N 3.7 V, 早口棚山 FD 扒		PDO * 1.15		Α
<u></u> 输出轻载关机						
功率	P_{out}	VBAT=3.7V		350		mW
负载过流检测	T _{UVD}	输出电压持续低于 2.4V		30		ms
2	- 575	184 - 0 - 44 - 57 197 4		- •	I .	1

IP5386

	,				ı	
时间						
负载短路检测 时间	T _{OCD}	输出电压持续低于 2.2V		40		μs
		控制系统				
开关频率	Fs	放电开关频率		400		kHz
7 大妙竿	Гъ	充电开关频率		400		kHz
VCCIO 输出电 压	V _{CCIO}		3.15	3.30	3.45	V
电池端待机电流	I _{STB}	VBAT=14.8V,按键关机后的平均 电流		200		μА
VCCIO 输出电 流	I _{LDO}		25	30	35	mA
LED 照明驱动 电流	I _{WLED}		10	15	20	mA
LED 显示驱动	I _{L1}					
电流	I _{L2} I _{L3}	电压下降 10%		3	9	mA
总负载轻载关 机自动检测时 间	T1 _{load}	负载功率持续小于 350mW	30	32	34	S
输出口轻载关 断自动检测时 间	T2 _{load}		14	16	18	S
短按键唤醒时间	T _{OnDebounce}		60		500	ms
打开 WLED 时间	T _{Keylight}		1.2	2	3	s
热关断温度	T _{OTP}	上升温度	110	125	140	$^{\circ}$
热关断温度迟 滞	$\Delta T_{ m OTP}$			40		$^{\circ}$

12 功能描述

12.1 低电锁定与激活

IP5386 首次接入电池时,无论电池电压为多少,芯片均处于锁定状态,电量灯最低位或者数码管个位 闪烁 4 次;在非充电状态,当电池电压过低触发低电关机,IP5386 会进入锁定状态。

IP5386 为了降低静态功耗,在电池低电锁定状态下,IP5386 不支持负载插入检测功能,无法通过按键进行激活。此时按键动作无法开启升降压输出,电量灯最低位闪烁 4 次进行提示。

IP5386 在锁定状态,必须要有充电动作才能激活芯片功能。

12.2 充电

IP5386 集成同步开关结构的涓流、恒流、恒压锂电池充电管理系统,支持自动匹配不同的充电电压规格:

当电池电压小于 VTRKI 时, 采用涓流电流充电;

当电池电压大于 VTRKL 时,进入输入恒流充电,电池端最大充电电流 8A;

当电池电压接近设定的电池电压时,进入恒压充电;

当电池端充电电流小于停充电流 I_{STOP} 且电池电压接近恒压电压时,停止充电。充电完成后,若电池电压低于(V_{TRGT} – N*0.1)V,重新开启电池充电。

IP5386 采用开关充电技术,开关频率 400kHz; 普通 5V 输入充电时,输入功率 10W; 快充输入充电时,最大输入功率 45W; 充电效率最高达到 96%、能缩短 3/4 的充电时间。

IP5386 支持边充边放功能;在边充边放时,输入输出均为5V。

12.3 放电

IP5386 集成高压输出的同步开关转换器系统,支持 3V~21V 宽电压范围输出。同步开关升降压系统可提供最大 45W 输出能力。IP5386 内置软启动功能,防止在启动时冲击电流过大引起故障。IP5386 集成输出过流、短路、过压、过温等保护功能,确保系统稳定可靠地工作。

IP5386 放电系统电流支持随温度自动调节,确保芯片温度在设定温度以下。

VBAT=8V, VOUT=5/9/12/15V/20V时,放电效率曲线如下:

图 4 VBAT=8V 放电效率曲线图

VBAT=15.2V, VOUT=5/9/12/15V/20V 时, 放电效率曲线如下:

图 5 VBAT=15V 放电效率曲线图

12.3.1 USB C

IP5386 集成 USB-C 输入、输出识别接口,自动切换内置上下拉电阻,自动识别插入设备的充放电属性。IP5386 带有 Try.SRC 功能,当连接到对方为 DRP 设备时,可优先给对方充电。

当作为 DFP 工作时,使用 CC 引脚配置对外输出 3A 电流能力信息;当作为 UFP 工作时,可识别出对方的输出电流能力。

表 1 上下拉能力

名称	值
lp_3P0	330μΑ
Rd	5.1kΩ

表 2	上拉山	o 使能时的比较器阈值

	Minimum Voltage	Maximum Voltage	Threshold
Powered cable/adapter (vRa)	0.00V	0.75V	0.80V
vRd-Connect	0.85V	2.45V	2.60V
No connect(vOPEN)	2.75V		

表 3 下拉电阻 Rd 使能时的比较器阈值

Detection	Min voltage	Max voltage	Threshold
vRa	-0.25V	0.15V	0.20V
vRd-Connect	0.25V	2.04V	
vRd-USB	0.25V	0.61V	0.66V
vRd-1.5	0.70V	1.16V	1.23V
vRd-3.0	1.31V	2.04V	

Figure 4-36 DRP Timing

表 4 USB-C 检测周期

	Minimum	Maximum	Description
tDRP	50ms	100ms	The period a DRP shall complete a Source to Sink and
IDKF	301115	1001115	back advertisement
dcSRC.DRP	200/	70%	The percent of time that a DRP shall advertise Source
UCSKC.DKP	DRP 30% 70		during tDRP
tDPPTransition	tDRPTransition 0ms 1ms		The time a DRP shall complete transitions between Source
IDIAFTIAIISIUOIT			and Sink roles during role resolution
tDRPTry	75ms	150ms	Wait time associated with the Try.SRC state
tDRPTryWait	400ms	800ms	Wait time associated with the Try.SNK state

图 8 USB-C 检测状态转换

12.3.2 USB-C PD

IP5386 集成 USB-C Power Delivery PD2.0、PD3.0、PPS 协议,集成物理层协议(PHY)、硬件双向标记编解码(BMC)模块。

IP5386 支持 PD2.0、PD3.0 双向输入/输出协议,支持 PPS 输出协议。IP5386 最大支持 45W 功率输出,输入支持 5V、9V、12V、15V、20V 电压档位,输出支持 5V、9V、12V、15V、20V 电压档位。

例如: 当输出功率配置为 30W 时,输出广播能力 5V@3A、9V@3A、12V@2.5A、15V@2A、20V@1.5A、PPS 3.3V~16V@2A。

12.3.3 快充功能

IP5386 支持多种规格的快充协议: QC2.0、QC3.0、QC3+、FCP、AFC、SCP、Apple。

给 IP5386 充电不支持 QC2.0、QC3.0、QC3+协议,不支持外置快充协议芯片。

IP5386 给手机充电时,自动检测 DP、DM 引脚上的快充时序,智能识别手机类型。可支持 QC2.0、QC3.0、QC3+、FCP、AFC、SCP 协议的手机,支持 Apple 2.4A 模式、BC1.2 普通 Android 手机 1A 模式。

Apple 2.4A 模式时: DP=DM=2.7V。

BC1.2 模式时: DP 与 DM 短接。

在 BC1.2 模式下,当检测到 DP 电压大于 0.325V 且小于 2V 持续 1.25s 时,初判为有快充请求,这时将会断开 DP 与 DM 之间的短接通路,同时在 DM 下拉 20kΩ 电阻到地,如果持续 2ms 满足 DP 电压大于 0.325V 且小于 2V、DM 电压小于 0.325V,则认为快充连接成功,就可以按照 QC2.0、QC3.0、QC3+需求

输出负载请求的电压。任何时候当 DP 电压小于 0.325V,强制退出 QC 快充模式,输出电压立即恢复到默认 5V。

DP	DM	Result
0.6V	0V	5V
3.3V	0.6V	9V
0.6V	0.6V	12V
0.6V	3.3V	Continuous Mode
3.3V	3.3V	保持

表 5 QC2.0、QC3.0、QC3+输出电压请求规则

Continuous Mode 是 QC3.0、QC3+特有的工作模式,在该模式下输出电压根据 QC3.0 的协议要求,按照 200mV/Step 进行电压调节,QC3+握手成功后,按照 20mV/Step 进行精细的电压调节。

农 6 11 3000 有 1 000 自由文的 的人允许农					
协议	USB-A1 输出口	USB-A2输出口	Lightning 输入口	USB-C 输出	USB-C 输入
QC2.0	√	√	-	√	-
QC3.0	√	√	-	√	-
QC3+	√	√		1	-
AFC	√	√	-	√	√
FCP	√	√		√	√
SCP	√	√	-	√	√
PD2.0	-	4		√	√
PD3.0	-	-	1	√	√
PPS	-	-	-	√	-

表 6 IP5386 各个 USB 口的支持的快充协议

支持: √ 不支持: -

12.4 充放电路径管理

12.4.1 待机

如果 Lightning 口或者 USB-C 口插入充电电源,可直接启动充电。 如果 USB-C 上插入 USB-C UFP 设备或者 USB-A 上插入用电设备,可自动开启放电功能。 如果有按键动作,USB-A1、USB-A2、USB-C 上有负载连接时才会开启,否则会保持关闭状态。

12.4.2 放电

IP5386 无按键动作的情况下,只有连接用电设备的输出口才会开启;未连接设备的输出口保持关闭。USB-A1、USB-A2、USB-C 均支持输出快充协议。但由于该方案是单电感方案,只能支持一个电压输出,所以只有一个输出口开启的情况下才能支持快充输出。同时使用两个或者三个输出口时,会自动关闭快充功能。

按照"典型应用原理图"所示连接,任何一个输出口已经进入快充输出模式时,当其他输出口插入用电设备,会先关闭所有输出口,关闭高压快充功能,再开启有设备存在的输出口。此时所有输出口仅支持Apple、BC1.2 模式充电。当处于多口输出模式时,任一输出口的输出电流小于约 80mA(MOS Rds_ON@10mohm)时,持续 16s 后会自动关闭该口。从多个用电设备减少到只有一个用电设备时,持续约 16s 后会先关闭所有输出口,开启高压快充功能,再开启最后一个用电设备存在的输出口,以此方式来

重新激活设备请求快充。当只有一个输出口开启的情况下,总的输出功率小于 350mW 持续约 32s 时,会关闭输出口和放电功能,进入待机状态。

12.4.3 充电

Lightning 口和 USB-C 口任何一个插入电源都可以进行充电,如果都连接电源充电时,会优先使用先插入的电源进行充电。

在单充电的模式下,支持自动识别电源的快充模式,匹配合适的充电电压和充电电流。

12.4.4 边充边放

当同时连接充电电源和用电设备时,自动进入边充边放模式。在该模式下,芯片会自动关闭内部快充输入请求。为保证用电设备的正常充电,IP5386 会将充电欠压环路提高到 4.9V 以上,以保证优先给用电设备供电。在 VIO 电压只有 5V 的情况下,开启放电路径给用电设备供电,为了安全考虑,如果 VIO 电压大于 5.6V,不会开启放电路径。

在边充边放过程中,如果拔掉充电电源,IP5386 会关闭充电功能,重新启动放电功能给用电设备供电。 为了安全考虑,同时也为了能够重新激活用电设备请求快充,转换过程中会有一段时间输出电压掉到 0V。

在边充边放过程中,如果拔掉用电设备、用电设备充满或者停止抽电持续约 16s 时,IP5386 会自动关闭对应的放电路径。当放电路径都关闭,状态回到单充电模式时,会降低充电欠压环路,自动重新申请快充,加速给移动电源充电。

12.5 手机自动检测

12.5.1 手机插入自动检测功能

IP5386 自动检测手机插入, 手机插入后即刻从待机状态唤醒, 开启升压给手机充电, 省去按键操作, 可支持无按键模具方案。

12.5.2 手机充满自动检测功能

IP5386 通过内部 ADC 模块采样每个口的输出电流,当单个口的输出电流小于约 80mA(MOS Rds_ON@10mΩ)且持续 16s 时,会将该输出口关闭。当输出总功率小于约 350mW 且持续 32s 时,认为所有输出口手机已经充满或者拔出,会自动关闭升降压输出。

12.6 按键选择

图 9 KEY 按键电路

IP5386 按键连接方式如图 7 所示,可识别长按键和短按键操作。

- 按键持续时间长于 100ms, 但小于 2s, 即为短按动作。短按会打开电量显示灯和升压输出。
- 按键持续时间长于 2s, 即为长按动作。长按会开启或者关闭照明灯。
- 小于 30ms 的按键动作不会有任何响应。

- 在 1s 内连续两次短按键,会关闭升压输出、电量显示和照明灯。
- 超长按 10s 可复位整个系统。

12.7 快充状态指示

HLED 可指示当前快充状态,进入快充模式时,指示灯会自动亮起。

图 10 快充指示灯电路

12.8 电量计和电量显示

IP5386 内置电量计功能,可精准实现电池电量计算。

IP5386 支持 4 灯、2 灯、1 灯模式。

IP5386 支持 188 数码管显示电量。

12.8.1 电量计

IP5386 支持外部设置电池的初始化容量,利用电池端电流和时间的积分来管理电池的剩余容量。当电池端电流检测 CSP2 和 CSN2 引脚采用 5mΩ 检测电阻时,可以精准显示当前电池的容量。同时 IP5386 支持电量从 0%到 100%一次不间断的充电过程自动校准当前电池的总容量,更合理地管理电池的实际容量。

IP5386 外部引脚设定电池初始容量公式: 电池容量=R21*1.0 (mAH)。最小支持 2000mAH,最大支持 30000mAH,容量为单串电池的容量。

当 FCAP 引脚上电压小于 100mV 或者大于 2700mV 时,R21 电阻识别为短路或者开路状态,导致容量初始化设置异常。

注: 表中电芯容量指单节电池的电芯容量

图 11 电池容量配置电路

12.8.2 LED 灯电量显示模式

IP5386 支持 4 颗、2 颗、1 颗电量显示灯方案,连接方式如下:

图 12 4 颗、2 颗、1 颗 LED 连接方式

4 灯的显示方式: 充电时

表 7 IP5386 充电灯显

电量 C(%)	D1	D2	D3	D4
充满	亮	亮	亮	亮
75%≤C	亮	亮	亮	0.5Hz 闪烁
50%≤C<75%	亮	亮	0.5Hz 闪烁	灭
25%≤C<50%	亮	0.5Hz 闪烁	灭	灭
C<25%	0.5Hz 闪烁	灭	灭	灭

放电时

表 8 IP5386 放电灯显

电量 C(%)	D1	D2	D3	D4
C≥75%	亮	亮	亮	亮
50%≤C<75%	亮	亮	亮	灭
25%≤C<50%	亮	亮	灭	灭
5%≤C<25%	亮	灭	灭	灭
0% <c<5%< td=""><td>1Hz 闪烁</td><td>灭</td><td>灭</td><td>灭</td></c<5%<>	1Hz 闪烁	灭	灭	灭
C=0%	灭	灭	灭	灭

2 灯模式的显示方式为:

充电时: D1 灯以 2s 周期闪烁(1s 亮 1s 灭), 充满时常亮。

放电时: D2 灯常亮, 当电量低于 5%时 1Hz 闪烁(0.5s 亮 0.5s 灭)。

1 灯模式的显示方式为:

充电时: D1 灯以 2s 周期闪烁(1s 亮, 1s 灭), 充满时常亮。

放电时: D1 灯常亮, 当电量低于 5%时 1Hz 闪烁(0.5s 亮 0.5s 灭)。

12.8.3 数码管电量显示模式

IP5386 默认支持的数码管如表 9 所示。

表 9 IP5386 数码管显示方式

数码管	充电		放电	
数1円目	未充满状态 充满状态		电量小于 5%	电量大于 5%
188 型	0-99%个位 0.5HZ 闪烁	常亮 100%	0-5%个位 1HZ 闪烁	5%-100% 常亮

5PIN 188 型数码管原理图如下:

(未注尺寸公差 Unspecified Tolerances is: ±0.2 发光颜色: 白色、翠绿

图 13 188 数码管原理图

图 14 188 数码管 PIN 脚

12.9 系统输入输出最大功率设定

IP5386 通过判断 FSEL 引脚连接的 R16 电阻阻值来设定系统输入输出的最大功率连接电路图和输入输出最大功率配置表:

图 15 功率配置连接电路

12.10 电池串联数量设定

IP5386 通过判断 HLED 引脚连接的 R17 电阻阻值来设定系统电池串联数量,配置相应的电池参数。电池串联数量配置表:

R17	电池串数
9. 1kΩ	2串
6. 2kΩ	3串
3. 6kΩ	4串

图 16 电池串数连接电路

12.11 VSET (电池类型设定)

IP5386 通过在 VSET(LED3)引脚上输出 80μA 电流,外接不同的电阻到 GND 来设定电池类型,配置电池充电的恒压电压。当 VSET 引脚的电压超出所有判断电压范围,会识别为检测电阻短路或者开路异常。VSET 引脚外接对 GND 电阻大小和设定的电池类型如下表所示:

\$1.12 BIONETICAL						
VSET 端到 GND 电阻	VSET 引脚电压(理论电压)	VSET 判断电压范围	对应电池类型			
27kΩ	2160mV	1750mV~2550mV	4.20V			
18kΩ	1440mV	1220mV~1750mV	4.30V			
13kΩ	1040mV	860mV~1220mV	4.35V			
9.1kΩ	728mV	600mV~860mV	4.40V			
6.2kΩ	496mV	384mV~600mV	4.15V			
3.6kΩ	288mV	216mV~384mV	3.65V			

表 10 电池类型选择

备注:

- (1) 3.65V 为磷酸铁锂电池,对应低电关机电压调整到 2.75V。
- (2)注意外接电阻要用 1%精度电阻,电阻选型需要考虑到尽量把 VSET 的电压取在判断范围的中间。

12.12 NTC

IP5386 集成 NTC 功能,可检测电池温度。IP5386 工作的时候,在 NTC 引脚产生一个恒流源,与外部 NTC 电阻来产生电压。芯片内部通过检测 NTC 引脚的电压来判断当前电池的温度。

注:在 NTC 引脚对 GND 并联的 100nF 电容,电容要求靠近芯片引脚放置

图 17 电池 NTC 比较

IP5386 在 FSEL 引脚上放出 80μA 电流,外接不同的电阻时,芯片内部检测 FSEL 引脚电压可以选择不同的 NTC 档位。当 FSEL 引脚的电压超出所有判断电压范围,会识别为检测电阻短路或者开路异常。

图 18 NTC 档位选择

表 11 NTC 阈值选择

FSEL 引脚上外接电阻	FSEL 理论电压	FSEL 电压判断范围	NTC 功能定义
27 kΩ	2160 mV	1750 mV~2550 mV	NTC 第一档
18 kΩ	1440 mV	1220 mV~1750 mV	NTC 第二档
13 kΩ	1040 mV	860 mV~1220 mV	NTC 第三档
9.1 kΩ	728 mV	600 mV~860 mV	NTC 第四档
6.2 kΩ	496 mV	380 mV~600 mV	NTC 第五档
3.6 kΩ	288 mV	216 mV~380 mV	NTC 第六档

*外接电阻要用 1%精度电阻,电阻选型需要考虑到尽量把 FSEL 引脚的电压取在判断范围的中间。 IP5386 内置了六种 NTC 功能可供选择,通过改变 FSEL 引脚到 GND 的电阻阻值,可设置对应的 NTC 阈值。各个功能如下:

NTC 第一档阈值:

充电状态下: NTC 温度低于 0℃(0.55V)停止充电,0~45℃之间正常充电,NTC 温度高于 45℃(0.39V)停止充电。

放电状态下: NTC 温度低于-20℃ (1.39V) 时停止放电,-20℃到 60℃之间正常放电,NTC 温度高于60℃ (0.24V) 停止放电。

NTC 第二档阈值:

充电状态下: NTC 温度低于 2℃(0.50V)停止充电,2~43℃之间正常充电,NTC 温度高于 43℃(0.42V)停止充电。

放电状态下: NTC 温度低于-10℃(0.86V)时停止放电,-10℃~55℃之间正常放电,NTC 温度高于55℃(0.28V)停止放电。

NTC 第三档阈值:

充电状态下: NTC 温度低于 0℃(0.55V)停止充电,0~45℃之间正常充电,NTC 温度高于 45℃(0.39V)停止充电。

放电状态下: NTC 温度低于-10℃ (0.86V) 时停止放电,-10℃~55℃之间正常放电,NTC 温度高于55℃ (0.28V) 停止放电。

NTC 第四档阈值:

充电状态下: NTC 温度低于-10℃(0.86V)停止充电,-10~0℃之间 BAT 端电流限流 0.2C 充电,C 等于 FCAP 设置的电池容量,0~45℃(0.39V)之间正常充电;45℃~55℃之间恒压充电电压降低 0.1V*N 给电池正常电流充电,NTC 温度高于 55℃(0.28V)停止充电。

放电状态下: NTC 温度低于-20℃ (1.39V) 时,停止放电,-20℃~55℃之间正常放电,NTC 温度高于55℃ (0.28V) 停止放电。

NTC 第五档阈值:

充电状态下: NTC 温度低于 2℃(0.50V)停止充电,2~17℃(0.27V)之间 BAT 端电流限流 0.1C 充电,C 等于 FCAP 设置的电池容量、17℃~43℃(0.42V)之间正常充电,NTC 温度高于 43℃停止充电。

放电状态下: NTC 温度低于-20℃ (1.39V) 时,停止放电,-20℃~60℃之间正常放电,NTC 温度高于60℃ (0.24V) 停止放电。

NTC 第六档阈值:

充电状态下: NTC 温度低于-10℃(0.86V)停止充电,-10℃~0℃(0.55V)之间 BAT 端电流限流 0.2C 充电,0~45℃之间正常充电,45℃~55℃(0.28V)之间 BAT 端电流限流 0.2C 充电,C 等于 FCAP 设置的电池容量,NTC 温度高于 55℃(0.28V)停止充电。

放电状态下: NTC 温度低于-20℃ (1.39V) 时,停止放电,-20℃~55℃之间正常放电,NTC 温度高于55℃ (0.28V) 停止放电。

注

(1)在 NTC 检测到温度异常后,恢复温度为保护温度±5℃。上述括号内为该温度对应的 NTC 引脚电压, 计算方法为: NTC 引脚放出的电流乘以该温度下的 NTC 电阻阻值。

(2)以上温度范围参考的 NTC 电阻型号为 $10k\Omega@25$ $^{\circ}$ B=3380。如果方案不需要 NTC 功能, 必须在 NTC 引脚对地接 $10k\Omega$ 电阻,不能浮空或者直接接地。

13 Layout 注意事项

13.1 VIO 和 BAT 端采样线

在原理图中,BAT、CSP2 属于同一网络,但走线时必须分别走到 $5m\Omega$ 采样电阻端,同理,CSN2、PCON 也需要分别走到 $5m\Omega$ 采样电阻端。

图 19 5mΩ 电阻采样线

13.2 VIO 和 BAT 电容

VIO 和 BAT 端电容需要靠近采样电阻,且电容的地需要靠近 H 桥下管的地,尽量多打过孔。例如: BAT 端电容位置。

图 20 BAT 电容

13.3 VIO 到输出 USB-A1、USB-A2 MOS 管的走线

VIO 到 USB-A1、USB-A2 输出 MOS 的走线,需要在 VBUS_I 电阻的 VIO 处分开走线,否则可能会影响多口转单口时的自动恢复快充功能。

图 21 VIO 到各输出口走线

14 应用原理图

14.1 LED 灯方案应用原理图

14.2 数码管方案应用原理图

BOM 表

BOM &						
序号	元件名称	型号&规格	位置	用量	备注	
1	贴片芯片	QFN48 IP5386	U1	1		
2	贴片电容	0603 100nF 10% 50V	C1 C2	2		
3	贴片电容	0603 1µF 10% 16V	C3 C4	2		
4	贴片电容	0603 2.2µF 10% 16V	C5 C6	2		
5	贴片电容	0805 10µF 10% 25V	CP1 CP3 CP4 CP5	4		
6	贴片电容	0805 22µF 10% 25V	CP6 CP7 CP8 CP11 CP12	5		
7	贴片电容	0603 2.2nF 10% 50V	C8 C9	2		
8	固态电容	100µF 35V 10%	CP10 CP15	2		
9	一体成型电感	4.7µH SPA1265-4R7	L1	1		
		RDC<0.01R				
10	贴片 MOS 管	CWT3081AP	H 桥 NMOS	4	*	
11	瞬态抑制二极管	30V TVS	T1 T2	2		
12	贴片电阻	0603 10Ω 1%	R26 R27	2		
13	贴片电阻	0603 2Ω 1%	R21 R22	2		
14	贴片电阻	1206 0.005Ω 1%	R4 R5	2	建议 ppm<75	
15	贴片电阻	0603 10kΩ 1%	R21	1	FCAP	
16	贴片电阻	0603 9.1kΩ 1%	R16	1	PMAX	
17	贴片电阻	0603 27kΩ 1%	R18	1	NTC_MODE	
18	贴片 MOS 管	2N7002	Q5 Q6	2	中沙山中米	
19	贴片电阻	0603 9.1kΩ 1%	R17	1	电池串数	
20	贴片电容	0603 100nF 10% 50V	C7	1	NTC由版	
21	NTC 热敏电阻	10kΩ@25°C B=3380	RNTC	1	- NTC 电路	
22	贴片电阻	0603 100Ω 1%	R12 R13	4		
23	贴片 LED	0603 蓝灯	D1 D2 D3 D4	4	I FD 主安洪	
24	贴片 LED	0603 红灯	D5	1	LED 方案选 择	
25	贴片电阻	0603 100Ω 1%	R8	1	洋	
26	贴片电阻	0603 27kΩ 1%	R14	1		
27	数码管	YFTD1508SWPG-5D	SMG1	1	数码管方案选	
28	贴片电阻	0603 100Ω 1%	R12 R13 R15 R19 R20	5	择	
29	LED灯	5MM LED	D6	1	四四小十四	
30	贴片电阻	0603 20Ω 1%	R23	1	照明灯电路	
31	贴片电阻	0603 10kΩ 1%	R6	1	+++ <i>L</i> 1+ ++ 11 <i>b</i>	
32	按键	SMT 3*6 按键	K1	1	按键电路	
33	贴片 MOS 管	AET3121BP	Q1 Q2 Q3 Q4	4		
34	贴片电容	0603 4.7nF 10% 50V	C10 C11 C12 C13	4		
35	输出 USB	AF10 8 脚插件 USB	USB1 USB2	2		
36	USB C 座子	USB C 座子	USB3	1		
37	Lightning 座子	苹果头母座	USB4	1		
38	贴片电阻	0603 3kΩ 1%	R24	1	Lightning 电	
39	贴片电阻	0603 510Ω 1%	R25	1	路	
	I.	l	L	·		

15 封装信息

15.1 芯片封装

SYMBOL	MILLIMETER			
STWIBOL	MIN	NOM	MAX	
A	0.70	0.75	0.80	
A1	-	0.02	0.05	
b	0.18	0.25	0.30	
b1	0.11	0.16	0.21	
С	0.18	0.20	0.23	
D	6.90	7.0	7.10	
D2	5.30	5.40	5.50	
е		0.5 BSC		
Ne		5.50BSC		
Nd		5.50BSC		
,) E	6.90	7.0	7.10	
E2	5.30	5.40	5.50	
L	0.35	0.40	0.45	
h	0.30	0.35	0.40	

15.2 芯片字印说明

说明:

--英集芯标志

1. **(i)** 2. IP5386

--产品批号 3、XXXXXXXX 一生产批号

一引脚1的位置标识

芯片丝印图 图 24

16 责任及版权申明

英集芯科技有限公司有权对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的销售条款与条件。

英集芯科技有限公司对应用帮助或客户产品设计不承担任何义务。客户应对其使用英集芯的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全验证。

客户认可并同意,尽管任何应用相关信息或支持仍可能由英集芯提供,但他们将独力负责满足与其产品及在其应用中使用英集芯产品相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类关键应用中使用任何英集芯产品而对英集芯及其代理造成的任何损失。

对于英集芯的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。英集芯对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

英集芯会不定期更新本文档内容,产品实际参数可能因型号或者其他事项不同有所差异,本文档不作 为任何明示或暗示的担保或授权。

在转售英集芯产品时,如果对该产品参数的陈述与英集芯标明的参数相比存在差异或虚假成分,则会 失去相关英集芯产品的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。英集芯对任何此类虚假 陈述均不承担任何责任或义务。