Chương 2 Mạch tổ hợp

Nội dung chương 2

- Khái niệm chung
- Mạch mã hóa giải mã
- Mạch ghép kênh phân kênh
- Mạch so sánh
- Mạch số học (cộng, trừ)

Khái niệm chung

- Mạch tổ hợp: ngõ ra là các hàm logic theo ngõ vào
- Các ngô ra thay đổi trạng thái ngay khi các ngô vào thay đổi trạng thái (nếu bỏ qua thời gian trễ của các phần tử logic)
- Tín hiệu ra tại mỗi thời điểm chỉ phụ thuộc vào giá trị các tín hiệu vào tại thời điểm đó
- Xét mạch tố hợp có n ngõ vào và m ngõ ra:

Khái niệm chung (tt)

- Thiết kế mạch tổ hợp:
 - Lập bảng trạng mô tả hoạt động của mạch
 - Lập hàm logic ngô ra theo ngô vào
 - Lập sơ đồ logic hệ tổ hợp
- Một số mạch tổ hợp cụ thể:
 - Mạch mã hóa giải mã
 - Mạch ghép kênh phân kênh
 - Mach so sánh
 - Mạch số học

Mạch mã hóa nhị phân

- Mạch mã hóa nhị phân biến đổi tín hiệu ngõ vào thành một từ mã nhị phân tương ứng ở ngõ ra
- Xét mạch mã hóa nhị phân từ 8 sang 3 (8 ngõ vào, 3 ngõ ra):

Mạch mã hóa nhị phân

- Mạch mã hóa nhị phân từ 8 sang 3:
 - Bảng trạng thái (khi ngô vào tác động mức 1):

\mathbf{x}_0	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	C	В	A
1							0			0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Phương trình logic:

$$A = x_1 + x_3 + x_5 + x_7$$

$$B = x_2 + x_3 + x_6 + x_7$$

$$C = x_4 + x_5 + x_6 + x_7$$

Mạch mã hóa nhị phân (tt)

- Mạch mã hóa nhị phân từ 8 sang 3:
 - Sơ đồ logic (khi ngõ vào tác động mức 1):

Mạch mã hóa nhị phân (tt)

- Mạch mã hóa nhị phân từ 8 sang 3:
 - Bảng trạng thái (khi ngô vào tác động mức 0):

X ₀	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	C	В	A
	1		1							0
1	0	1	1	1	1	1	1	0	0	1
1	1	0	1	1	1	1	1	0	1	0
1	1	1	0	1	1	1	1		1	1
1	1	1	1	0	1	1	1	1	0	0
1	1	1	1	1	0	1	1	1	0	1
1	1	1	1	1	1	0	1	1	1	0
1	1	1	1	1		1	0	1	1	1

Phương trình logic:

$$A = \overline{x_1} + \overline{x_3} + \overline{x_5} + \overline{x_7} = \overline{x_1 x_3 x_5 x_7}$$

$$B = \overline{x_2} + \overline{x_3} + \overline{x_6} + \overline{x_7} = \overline{x_2 x_3 x_6 x_7}$$

$$C = \overline{x_4} + \overline{x_5} + \overline{x_6} + \overline{x_7} = \overline{x_4 x_5 x_6 x_7}$$

Mạch mã hóa nhị phân (tt)

- Mạch mã hóa nhị phân từ 8 sang 3:
 - Sơ đồ logic (khi ngõ vào tác động mức 0):

Mạch mã hóa thập phân

Mạch mã hóa từ 10 sang 4

Mạch mã hóa thập phân (tt)

- Mạch mã hóa từ 10 sang 4 (10 ngõ vào, 4 ngõ ra)
 - Bảng trạng thái (khi ngô vào tác động mức 1):

\mathbf{x}_0	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X 9	D	C	В	A
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	1

Mạch mã hóa thập phân (tt)

- Mạch mã hóa từ 10 sang 4
 - Phương trình logic:

$$A = x_1 + x_3 + x_5 + x_7 + x_9$$

$$B = x_2 + x_3 + x_6 + x_7$$

$$C = x_4 + x_5 + x_6 + x_7$$

$$D = x_8 + x_9$$

• Sơ đồ logic:

Mạch mã hóa ưu tiên

- Khi có nhiều tín hiệu cùng tác động, mạch sẽ tạo ra từ mã nhị phân ứng với ngõ vào có mức độ ưu tiên cao nhất
- Xét mạch mã hóa ưu tiên từ 4 sang 2 (4 ngõ vào, 2 ngõ ra):

Mạch mã hóa ưu tiên (tt)

- Mạch mã hóa ưu tiên từ 4 sang 2
 - Bảng trạng thái (khi ngỗ vào tác động mức 1, độ ưu tiên $x_0 < x_1 < x_2 < x_3$):

$\mathbf{x_0}$	x ₁	$\mathbf{x_2}$	X ₃	В	A
1	0	0	0	0	0
X	1	0	0	0	1
X	X	1	0	1	0
X	X	X	1	1	1

Phương trình logic:

$$A = x_1.\overline{x_2}.\overline{x_3} + x_3 = x_1.\overline{x_2} + x_3$$

 $B = x_2.\overline{x_3} + x_3 = x_2 + x_3$

Mạch mã hóa ưu tiên (tt)

- Mạch mã hóa ưu tiên từ 4 sang 2:
 - Sơ đồ logic:

Mạch giải mã

- Úng với mỗi tổ hợp nhị phân của ngõ vào, chỉ có một ngõ ra ở trạng thái tích cực, các ngõ ra còn lại ở trạng thái không tích cực (trừ một số mạch như BCD LED 7 đoạn)
- Có 2 dạng tích cực:
 - Tích cực mức cao (mức 1)
 - Tích cực mức thấp (mức 0)
- Mạch giải mã thường gặp:
 - n sang 2^n (2 sang 4, 3 sang 8,...)
 - BCD sang thập phân, BCD sang LED 7 đoạn

Mạch giải mã nhị phân 2 sang 4

Sơ đồ khối:

Bảng trạng thái:

(Ngõ ra tích cực mức 1)

В	A	y ₀	y ₁	$\mathbf{y_2}$	y_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Phương trình logic:

$$y_0 = \overline{B}.\overline{A}$$

 $y_1 = \overline{B}.A$
 $y_2 = B.\overline{A}$
 $y_3 = B.A$

• Sơ đồ logic:

Mạch giải mã nhị phân 2 sang 4 (tt)

• Bảng trạng thái:

(Ngõ ra tích cực mức 0)

В	A	y ₀	y ₁	\mathbf{y}_2	\mathbf{y}_3
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

Phương trình logic:

$$y_0 = B + A$$

$$y_1 = B + \overline{A}$$

$$y_2 = \overline{B} + A$$

$$y_3 = \overline{B} + \overline{A}$$

Sơ đồ logic:

Mạch giải mã nhị phân 2 sang 4 (tt)

Sơ đồ khối: Thêm Enable (E)

Bảng trạng thái:

(E và ngõ ra tích cực mức 1)

В	A	E	y ₀	y ₁	y ₂	y ₃
X	X	0	0	0	0	0
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	1

Phương trình logic:

$$y_0 = E. \overline{B}. \overline{A}$$

 $y_1 = E. \overline{B}. A$
 $y_2 = E. B. \overline{A}$
 $y_3 = E. B. A$

Sơ đồ logic:

• LED 7 đoạn: mỗi đoạn là một đèn LED

LED 7 đoạn Anode chung

Anode của các đoạn LED được nối chung với nhau và đưa lên mức logic

→ muốn đoạn LED nào tắt, nối
 Cathode tương ứng lên mức logic 1
 → muốn đoạn LED nào sáng, nối
 Cathode tương ứng xuống mức logic 0

LED 7 đoạn Cathode chung

Cathode của các đoạn LED được nối chung với nhau và đưa xuống mức logic 0

- → muốn đoạn LED nào tắt, nối Anode tương ứng xuống mức logic 0
- → muốn đoạn LED nào sáng, nối Anode tương ứng lên mức logic 1

- 4 ngõ vào: từ mã BCD 4 bit
- 7 ngô ra: nối đến 7 Anode/Cathode của LED 7 đoạn để biểu diễn số thập phân tương ứng
- Sơ đồ khối:

- Thiết kế mạch giải mã BCD 8421 LED 7 đoạn Anode chung
 - Bảng trạng thái:

D	C	В	A	a	b	c	d	e	f	g	Số hiển thị
0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	1	0	0	1	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0	2
0	0	1	1	0	0	0	0	1	1	0	3
0	1	0	0	1	0	0	1	1	0	0	4
0	1	0	1	0	1	0	0	1	0	0	5
0	1	1	0	0	1	0	0	0	0	0	6
0	1	1	1	0	0	0	1	1	1	1	7
1	0	0	0	0	0	0	0	0	0	0	8
1	0	0	1	0	0	0	0	1	0	0	9
1	0	1	0	X	X	X	X	X	X	X	X
1	0	1	1	X	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X	X

Phương trình logic:

Phương trình logic:

$$d = C\overline{B}\overline{A} + CBA + \overline{D}\overline{C}\overline{B}A$$

$$g = CBA + \overline{D}\overline{C}\overline{B}$$

Lập sơ đồ logic

Phương trình logic:

 $g = CBA + \overline{D}\overline{C}\overline{B}$

$$a = \overline{CBA} + \overline{DCBA}$$

$$b = C(B \oplus A)$$

$$c = \overline{CBA}$$

$$d = \overline{CBA} + \overline{CBA} + \overline{DCBA}$$

$$= \overline{CBA} + a$$

$$e = \overline{CB} + A$$

$$f = \overline{BA} + \overline{DCA} + \overline{CB}$$

Sơ đồ logic:

• Mạch mô phỏng trên Proteus:

Mạch ghép kênh – phân kênh

- Mạch ghép kênh (chọn kênh): chọn lần lượt 1 trong N kênh vào để đưa đến ngõ ra duy nhất
 - Mạch ghép kênh còn gọi là mạch chuyển dữ liệu song song ở ngô vào thành dữ liệu nối tiếp ở ngô ra
- Mạch phân kênh (tách kênh): tách nguồn dữ liệu cùng một đầu vào thành N ngõ ra khác nhau
 - Mạch phân kênh còn gọi là mạch chuyển dữ liệu nối tiếp ở ngô vào thành dữ liệu song song ở ngô ra

Mạch ghép kênh

• Xét mạch ghép kênh có 4 ngõ vào và 1 ngõ ra:

- c_1 , c_2 là các ngõ vào điều khiển mạch ghép kênh chọn lần lượt 1 trong 4 kênh vào
- Nếu có N kênh vào thì có n ngõ vào điều khiển sao cho:

$$N=2^n$$

Mạch ghép kênh (tt)

- Mạch ghép kênh có 4 ngô vào và 1 ngô ra:
 - Bảng trạng thái:

c_1	c_2	y
0	0	x_1
0	1	x_2
1	0	x_3
1	1	x_4

• Phương trình logic:

$$y = \overline{c_1}\overline{c_2}x_1 + \overline{c_1}c_2x_2 + c_1\overline{c_2}x_3 + c_1c_2x_4$$

Mạch ghép kênh (tt)

- Mạch ghép kênh có 4 ngô vào và 1 ngô ra:
 - Sơ đồ logic:

Mạch phân kênh

• Xét mạch phân kênh có 1 ngõ vào và 4 ngõ ra:

Bảng trạng thái:

c_1	c_2	<i>y</i> ₁	y_2	y ₃	y ₄
0	0	x	0	0	0
0	1	0	х	0	0
1	0	0	0	х	0
1	1	0	0	0	x

Mạch phân kênh (tt)

- Xét mạch phân kênh có 1 ngõ vào và 4 ngõ ra:
 - Phương trình logic:

$$y_1 = \overline{c_1}\overline{c_2}x$$

$$y_2 = \overline{c_1}c_2x$$

$$y_3 = c_1\overline{c_2}x$$

$$y_4 = c_1c_2x$$

Sơ đồ logic:

Mạch so sánh

- Mạch so sánh dùng để so sánh các số nhị phân về mặt độ lớn
- Mach so sánh 1 bit:
 - Sơ đồ khối:

Mạch so sánh (tt)

- Mạch so sánh 1 bit:
 - Bảng trạng thái:

а	b	y ₁ (a < b)	$y_2 (a = b)$	$y_3 (a > b)$
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

Phương trình logic:

$$y_1 = \bar{a}b$$

$$y_2 = \bar{a}\bar{b} + ab = \bar{a}\oplus \bar{b}$$

$$y_3 = a\bar{b}$$

Mạch so sánh (tt)

- Mạch so sánh 1 bit:
 - Sơ đồ logic:

- Mạch so sánh nhiều bit:
 - Xét mạch so sánh 2 số nhị phân 4 bit A $(a_3a_2a_1a_0)$ và B $(b_3b_2b_1b_0)$:

- Mạch so sánh 4 bit:
 - Thực hiện trên cơ sở mạch so sánh 1 bit:
 - Bảng trạng thái:

Ngõ vào			Ngõ ra			
a_3 v à b_3	a_2 v à b_2	$a_1 v$ à b_1	a_0 v à b_0	$Y_1 (A < B)$	$Y_2 (A = B)$	$Y_3 (A > B)$
<	x	x	x	1	0	0
>	x	x	x	0	0	1
=	<	х	х	1	0	0
=	>	x	x	0	0	1
=	=	<	x	1	0	0
=	=	>	x	0	0	1
=	=	=	<	1	0	0
=	=	=	>	0	0	1
=	=	=	=	0	1	0

- Mạch so sánh 4 bit:
 - Thực hiện trên cơ sở mạch so sánh 1 bit:
 - Phương trình logic:

$$Y_{1} = (A < B)$$

$$= (a_{3} < b_{3}) + (a_{3} = b_{3})(a_{2} < b_{2}) + (a_{3} = b_{3})(a_{2} = b_{2})(a_{1} < b_{1})$$

$$+ (a_{3} = b_{3})(a_{2} = b_{2})(a_{1} = b_{1})(a_{0} < b_{0})$$

$$Y_{2} = (A = B)$$

$$= (a_{3} = b_{3})(a_{2} = b_{2})(a_{1} = b_{1})(a_{0} = b_{0})$$

$$Y_{3} = (A > B)$$

$$= (a_{3} > b_{3}) + (a_{3} = b_{3})(a_{2} > b_{2}) + (a_{3} = b_{3})(a_{2} = b_{2})(a_{1} > b_{1})$$

$$+ (a_{3} = b_{3})(a_{2} = b_{2})(a_{1} = b_{1})(a_{0} > b_{0}).$$

- Mạch so sánh 4 bit:
 - Thực hiện trên cơ sở mạch so sánh 1 bit:

- Sơ đồ logic:

• Mạch so sánh 1 bit cải tiến:

- Mạch so sánh 1 bit cải tiến:
 - Bảng trạng thái:

Ng	gõ vào điều khiến		Ngõ vào	Ngõ vào đữ liệu		Ngõ ra	
c ₁ (a < b)	$c_2 \ (a = b)$	$c_3 \ (a > b)$	a	b	$y_1 (a < b)$	$y_2 (a = b)$	$y_3 \ (a > b)$
1	0	0	х	х	1	0	0
0	0	1	x	х	0	0	1
0	1	0	0	0	0	1	0
0	1	0	0	1	1	0	0
0	1	0	1	0	0	0	1
0	1	0	1	1	0	1	0

Phương trình logic :

$$y_1 = (a < b) = c_1 + c_2 \bar{a}b$$

 $y_2 = (a = b) = c_2 (\bar{a} \oplus \bar{b})$
 $y_3 = (a > b) = c_3 + c_2 a \bar{b}$

- Mạch so sánh 4 bit:
 - Thực hiện trên cơ sở mạch so sánh 1 bit cải tiến:
 - Sơ đồ logic:

Mạch số học

- Mạch số học có chức năng thực hiện các phép toán số học cộng, trừ, nhân, chia
- Bộ cộng bán phần (Half Adder):
 - Bộ cộng bán phần thực hiện cộng hai số nhị phân 1 bit
 - Sơ đồ khối:

Trong đó a, b là số cộng, S là tổng, C là số nhớ

- Bộ cộng bán phần:
 - Bảng trạng thái:

а	b	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Phương trình logic:

$$S = a\overline{b} + \overline{a}b = a \oplus b$$
$$C = a \cdot b$$

• Sơ đồ logic:

- Bộ cộng toàn phần (Full Adder):
 - Sơ đồ khối:

Trong đó: C_{n-1} là số nhớ của lần cộng trước đó C_n là số nhớ của lần cộng hiện tại S_n là tổng hiện tại

- Bộ cộng toàn phần:
 - Bảng trạng thái:

a_n	b_n	C_{n-1}	S_n	C_n
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

- Bộ cộng toàn phần:
 - Phương trình logic: tối thiểu hóa dùng bảng Karnaugh

$S_n a_n b_n$	00	01	_11_	10
0	0	1	0	1
1	1	0	1	0

$$S_n = \overline{a_n} \, \overline{b_n} C_{n-1} + a_n b_n C_{n-1} + \overline{a_n} b_n \overline{C_{n-1}} + a_n \overline{b_n} \, \overline{C_{n-1}}$$

$$S_n = a_n \oplus b_n \oplus C_{n-1}$$

$$C_n = a_n C_{n-1} + b_n C_{n-1} + a_n b_n = a_n b_n + C_{n-1} (a_n + b_n)$$

- Bộ cộng toàn phần:
 - Sơ đồ logic:

- Bộ cộng toàn phần:
 - Sử dụng HA để thực hiện FA:

Half adder:

$$S = a \oplus b$$

$$C = a.b$$

Full adder:

$$S_n = a_n \oplus b_n \oplus C_{n-1}$$

$$C_n = a_n b_n + C_{n-1} (a_n + b_n)$$

- Bộ trừ bán phần (Half Subtractor):
 - Bộ trừ bán phần thực hiện trừ hai số nhị phân 1 bit
 - Sơ đồ khối:

Trong đó a là số bị trừ, b là số trừ, D là hiệu, B là số mượn

- Bộ trừ bán phần:
 - Bảng trạng thái:

а	b	D	В
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Phương trình logic:

$$D = a\overline{b} + \overline{a}b = a \oplus b$$
$$B = \overline{a} \cdot b$$

• Sơ đồ logic:

- Bộ trừ toàn phần (Full Subtractor):
 - Sơ đồ khối:

Trong đó: B_{n-1} là số mượn của lần trừ trước đó B_n là số mượn của lần trừ hiện tại D_n là hiệu hiện tại

- Bộ trừ toàn phần:
 - Bảng trạng thái:

a_n	b_n	C_{n-1}	S_n	C_n
0	0	0	0	0
0	1	0	1	1
1	0	0	1	0
1	1	0	0	0
0	0	1	1	1
0	1	1	0	1
1	0	1	0	0
1	1	1	1	1

- Bộ trừ toàn phần:
 - Phương trình logic: tối thiểu hóa dùng bảng Karnaugh

$D_n a_n b_n$ B_{n-1}	00	01	11	10	1
0	0	1	0	1	
1	1	0	1	0	

$B_n a_n b_n$	00	01	11	10
B_{n-1}	0	1	0	0
1	1	1	1	0

$$D_n = \overline{a_n} \, \overline{b_n} B_{n-1} + a_n b_n B_{n-1} + \overline{a_n} b_n \overline{B_{n-1}} + a_n \overline{b_n} \, \overline{B_{n-1}}$$

$$D_n = a_n \oplus b_n \oplus B_{n-1}$$

$$B_n = \overline{a_n} \, B_{n-1} + b_n B_{n-1} + \overline{a_n} b_n = \overline{a_n} b_n + B_{n-1} (\overline{a_n} + b_n)$$

- Bộ trừ toàn phần:
 - Sơ đồ logic:

- Bộ trừ toàn phần:
 - Sử dụng HS để thực hiện FS:

Half subtractor:

$$D = a \oplus b$$

$$B = \bar{a} \cdot b$$

Full subtractor:

$$D_n = a_n \oplus b_n \oplus B_{n-1}$$

$$B_n = \overline{a_n}b_n + B_{n-1}(\overline{a_n} + b_n)$$