Linear Regression

Linear Regression Practical implementation on Boston dataset

Life cycle of Machine learning Project

```
1.Understanding the Problem Statement
2.Data Collection
3.Exploratory data analysis
4.Data Cleaning
5.Data Pre-Processing
6.Model Training
7.Choose best model
```

Data Collection

importing required libraries

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

importing data

In [2]:

from sklearn.datasets import load_boston

In [3]:

```
boston = load_boston()
boston
```

Out[3]:

```
{'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690
e+02,
         4.9800e+00],
        [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
         9.1400e+00],
        [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
        4.0300e+00],
        [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
        5.6400e+00],
        [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
        6.4800e+00],
        [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
         7.8800e+00]]),
 'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.
9, 15.
        18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
        15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
        13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
        21.2, 19.3, 20., 16.6, 14.4, 19.4, 19.7, 20.5, 25., 23.4, 18.9,
        35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16., 22.2, 25., 33., 23.5,
        19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
        20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
       23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
        33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
        21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22.
        20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18., 14.3, 19.2, 19.6,
        23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
        15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
        17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
        25., 50., 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
        23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,
        32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
        34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
        20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,
        26.7, 21.7, 27.5, 30.1, 44.8, 50., 37.6, 31.6, 46.7, 31.5, 24.3,
        31.7, 41.7, 48.3, 29., 24., 25.1, 31.5, 23.7, 23.3, 22., 20.1,
        22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
        42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
        36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
        32., 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46., 50., 32.2, 22.,
        20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
        20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
        22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
        21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,
        19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19., 18.7,
        32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
        18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8,
        16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
        13.8, 15., 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
        7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,
        12.5, 8.5, 5., 6.3, 5.6, 7.2, 12.1,
                                                  8.3, 8.5,
                                                              5., 11.9,
        27.9, 17.2, 27.5, 15., 17.2, 17.9, 16.3,
                                                  7., 7.2,
                                                              7.5, 10.4,
        8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7,
                                                  8.3, 10.2, 10.9, 11.,
```

```
9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,
        10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13., 13.4,
        15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20., 16.4, 17.7,
        19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
        29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
        20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
        23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),
 'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE',
'DIS', 'RAD',
        'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'),
 'DESCR': ".. _boston_dataset:\n\nBoston house prices dataset\n------
   -----\n\n**Data Set Characteristics:** \n\n
                                                        :Number of Instance
             :Number of Attributes: 13 numeric/categorical predictive. Med
s: 506 \n\n
ian Value (attribute 14) is usually the target.\n\n
                                                    :Attribute Informatio
n (in order):\n
                      - CRIM
                                 per capita crime rate by town\n
        proportion of residential land zoned for lots over 25,000 sq.ft.\n
- INDUS
           proportion of non-retail business acres per town\n
Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n
           nitric oxides concentration (parts per 10 million)\n
                                                                      - RM
average number of rooms per dwelling\n
                                             - AGE
                                                        proportion of owner
-occupied units built prior to 1940\n
                                            - DIS
                                                       weighted distances t
o five Boston employment centres\n
                                         - RAD
                                                    index of accessibility
                                      full-value property-tax rate per $10,
to radial highways\n
                           - TAX
            - PTRATIO pupil-teacher ratio by town\n
000\n
(Bk - 0.63)^2 where Bk is the proportion of black people by town\n
LSTAT
        % lower status of the population\n
                                                  MEDV
                                                             Median value o
f owner-occupied homes in $1000's\n\n
                                        :Missing Attribute Values: None\n\n
:Creator: Harrison, D. and Rubinfeld, D.L.\n\nThis is a copy of UCI ML housi
ng dataset.\nhttps://archive.ics.uci.edu/ml/machine-learning-databases/housi
ng/\n\nThis dataset was taken from the StatLib library which is maintained
at Carnegie Mellon University.\n\nThe Boston house-price data of Harrison,
D. and Rubinfeld, D.L. 'Hedonic\nprices and the demand for clean air', J. En
viron. Economics & Management,\nvol.5, 81-102, 1978.
                                                      Used in Belsley, Kuh
& Welsch, 'Regression diagnostics\n...', Wiley, 1980.
                                                       N.B. Various transfo
rmations are used in the table on\npages 244-261 of the latter.\n\nThe Bosto
n house-price data has been used in many machine learning papers that addres
s regression\nproblems.
                         \n
                               \n.. topic:: References\n\n - Belsley, Ku
h & Welsch, 'Regression diagnostics: Identifying Influential Data and Source
s of Collinearity', Wiley, 1980. 244-261.\n - Quinlan, R. (1993). Combining
Instance-Based and Model-Based Learning. In Proceedings on the Tenth Interna
tional Conference of Machine Learning, 236-243, University of Massachusetts,
Amherst. Morgan Kaufmann.\n",
 'filename': 'C:\\Users\\DHARAVATH RAMDAS\\Anaconda3\\lib\\site-packages\\sk
```

learn\\datasets\\data\\boston_house_prices.csv'}

In [4]:

```
print(boston)
```

```
{'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690
e+02,
        4.9800e+00],
       [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
       9.1400e+00],
       [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
        4.0300e+00],
       [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
        5.6400e+00],
       [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
       6.4800e+00],
       [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
        7.8800e+00]]), 'target': array([24., 21.6, 34.7, 33.4, 36.2, 28.7,
22.9, 27.1, 16.5, 18.9, 15.,
      18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
       15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
      13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
       21.2, 19.3, 20., 16.6, 14.4, 19.4, 19.7, 20.5, 25., 23.4, 18.9,
      35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16., 22.2, 25., 33., 23.5,
      19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
      20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
      23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
      33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
      21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22.
      20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18., 14.3, 19.2, 19.6,
      23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
      15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
      17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
      25., 50., 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
      23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50.
      32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
       34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
      20., 21.7, 19.3, 22.4, 28.1, 23.7, 25., 23.3, 28.7, 21.5, 23.,
      26.7, 21.7, 27.5, 30.1, 44.8, 50., 37.6, 31.6, 46.7, 31.5, 24.3,
      31.7, 41.7, 48.3, 29., 24., 25.1, 31.5, 23.7, 23.3, 22., 20.1,
      22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
      42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
       36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
       32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,
      20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
      20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
      22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
      21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,
      19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19., 18.7,
      32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
      18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8,
      16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
      13.8, 15., 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
                  7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,
       7.2, 10.5,
      12.5, 8.5, 5., 6.3, 5.6, 7.2, 12.1, 8.3, 8.5,
       27.9, 17.2, 27.5, 15., 17.2, 17.9, 16.3, 7., 7.2,
                                                             7.5, 10.4,
       8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7,
                                                8.3, 10.2, 10.9, 11.,
       9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4,
                                                9.6, 8.7, 8.4, 12.8,
       10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13., 13.4,
       15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20., 16.4, 17.7,
       19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
```

```
23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),
'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE',
'DIS', 'RAD',
       'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'), 'DESCR': ".._boston_d
ataset:\n\nBoston house prices dataset\n-----\n\n**Dat
a Set Characteristics:** \n\n
                                :Number of Instances: 506 \n\n
of Attributes: 13 numeric/categorical predictive. Median Value (attribute 1
4) is usually the target.\n\n
                               :Attribute Information (in order):\n
           per capita crime rate by town\n
- CRIM
                                                 - ZN
                                                            proportion of r
esidential land zoned for lots over 25,000 sq.ft.\n
                                                          - INDUS
tion of non-retail business acres per town\n
                                                  - CHAS
                                                              Charles River
dummy variable (= 1 if tract bounds river; 0 otherwise)\n
                                                                - NOX
nitric oxides concentration (parts per 10 million)\n
                                                          - RM
                                                                      avera
ge number of rooms per dwelling\n
                                       - AGE
                                                  proportion of owner-occu
pied units built prior to 1940\n
                                       - DIS
                                                  weighted distances to fiv
e Boston employment centres\n
                                    - RAD
                                               index of accessibility to ra
dial highways\n
                                 full-value property-tax rate per $10,000\n
                      - TAX

    PTRATIO pupil-teacher ratio by town\n

                                               - B
                                                          1000(Bk - 0.63)<sup>2</sup>
where Bk is the proportion of black people by town\n
                                                           - LSTAT
er status of the population\n

    MEDV

                                               Median value of owner-occupi
ed homes in 1000's\n\
                          :Missing Attribute Values: None\n\n
                                                                 :Creator:
Harrison, D. and Rubinfeld, D.L.\n\nThis is a copy of UCI ML housing datase
t.\nhttps://archive.ics.uci.edu/ml/machine-learning-databases/housing/\n\n
This dataset was taken from the StatLib library which is maintained at Carne
gie Mellon University.\n\nThe Boston house-price data of Harrison, D. and Ru
binfeld, D.L. 'Hedonic\nprices and the demand for clean air', J. Environ. Ec
onomics & Management,\nvol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch,
'Regression diagnostics\n...', Wiley, 1980.
                                             N.B. Various transformations a
re used in the table on\npages 244-261 of the latter.\n\nThe Boston house-pr
ice data has been used in many machine learning papers that address regressi
on\nproblems. \n
                     \n.. topic:: References\n\n - Belsley, Kuh & Welsc
h, 'Regression diagnostics: Identifying Influential Data and Sources of Coll
inearity', Wiley, 1980. 244-261.\n - Quinlan,R. (1993). Combining Instance
-Based and Model-Based Learning. In Proceedings on the Tenth International C
onference of Machine Learning, 236-243, University of Massachusetts, Amhers
t. Morgan Kaufmann.\n", 'filename': 'C:\\Users\\DHARAVATH RAMDAS\\Anaconda3
\\lib\\site-packages\\sklearn\\datasets\\data\\boston_house_prices.csv'}
```

29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8, 20.6, 21.2, 19.1, 20.6, 15.2, 7. , 8.1, 13.6, 20.1, 21.8, 24.5,

In [5]:

```
boston.keys()
```

Out[5]:

```
dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])
```

In [6]:

```
print(boston.DESCR)
.. _boston_dataset:
Boston house prices dataset
**Data Set Characteristics:**
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive. Median Value
(attribute 14) is usually the target.
    :Attribute Information (in order):
                   per capita crime rate by town
        - CRIM
        - ZN
                   proportion of residential land zoned for lots over 25,000
sq.ft.
        - INDUS
                   proportion of non-retail business acres per town
        - CHAS
                   Charles River dummy variable (= 1 if tract bounds river;
0 otherwise)
                   nitric oxides concentration (parts per 10 million)
        - NOX
        - RM
                   average number of rooms per dwelling
                   proportion of owner-occupied units built prior to 1940
        - AGE
                   weighted distances to five Boston employment centres
        - DIS
        - RAD
                   index of accessibility to radial highways
        - TAX
                   full-value property-tax rate per $10,000
        - PTRATIO pupil-teacher ratio by town
                  1000(Bk - 0.63)^2 where Bk is the proportion of black peo
ple by town
        - LSTAT
                   % lower status of the population
                   Median value of owner-occupied homes in $1000's
    :Missing Attribute Values: None
    :Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ (https://
archive.ics.uci.edu/ml/machine-learning-databases/housing/)
This dataset was taken from the StatLib library which is maintained at Carne
gie Mellon University.
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostic
...', Wiley, 1980.
                     N.B. Various transformations are used in the table on
```

.. topic:: References

pages 244-261 of the latter.

at address regression

problems.

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential

The Boston house-price data has been used in many machine learning papers th

Data and Sources of Collinearity', Wiley, 1980. 244-261.

- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236 -243, University of Massachusetts, Amherst. Morgan Kaufmann.

In [7]:

```
print(boston.data)

[[6.3200e-03 1.8000e+01 2.3100e+00 ... 1.5300e+01 3.9690e+02 4.9800e+00]
[2.7310e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9690e+02 9.1400e+00]
[2.7290e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9283e+02 4.0300e+00]
...
[6.0760e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 5.6400e+00]
[1.0959e-01 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9345e+02 6.4800e+00]
[4.7410e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 7.8800e+00]]
```

In [8]:

```
print(boston.target)
```

```
[24. 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15. 18.9 21.7 20.4
18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5 15.6 13.9 16.6 14.8
18.4 21. 12.7 14.5 13.2 13.1 13.5 18.9 20. 21. 24.7 30.8 34.9 26.6
25.3 24.7 21.2 19.3 20. 16.6 14.4 19.4 19.7 20.5 25. 23.4 18.9 35.4
24.7 31.6 23.3 19.6 18.7 16. 22.2 25. 33. 23.5 19.4 22. 17.4 20.9
24.2 21.7 22.8 23.4 24.1 21.4 20. 20.8 21.2 20.3 28.
                                                      23.9 24.8 22.9
23.9 26.6 22.5 22.2 23.6 28.7 22.6 22. 22.9 25. 20.6 28.4 21.4 38.7
43.8 33.2 27.5 26.5 18.6 19.3 20.1 19.5 19.5 20.4 19.8 19.4 21.7 22.8
18.8 18.7 18.5 18.3 21.2 19.2 20.4 19.3 22. 20.3 20.5 17.3 18.8 21.4
15.7 16.2 18. 14.3 19.2 19.6 23. 18.4 15.6 18.1 17.4 17.1 13.3 17.8
14. 14.4 13.4 15.6 11.8 13.8 15.6 14.6 17.8 15.4 21.5 19.6 15.3 19.4
17. 15.6 13.1 41.3 24.3 23.3 27. 50. 50. 50. 22.7 25. 50. 23.8
23.8 22.3 17.4 19.1 23.1 23.6 22.6 29.4 23.2 24.6 29.9 37.2 39.8 36.2
37.9 32.5 26.4 29.6 50. 32. 29.8 34.9 37. 30.5 36.4 31.1 29.1 50.
33.3 30.3 34.6 34.9 32.9 24.1 42.3 48.5 50. 22.6 24.4 22.5 24.4 20.
21.7 19.3 22.4 28.1 23.7 25. 23.3 28.7 21.5 23. 26.7 21.7 27.5 30.1
         37.6 31.6 46.7 31.5 24.3 31.7 41.7 48.3 29. 24.
                                                           25.1 31.5
23.7 23.3 22. 20.1 22.2 23.7 17.6 18.5 24.3 20.5 24.5 26.2 24.4 24.8
29.6 42.8 21.9 20.9 44. 50. 36. 30.1 33.8 43.1 48.8 31. 36.5 22.8
30.7 50. 43.5 20.7 21.1 25.2 24.4 35.2 32.4 32.
                                                 33.2 33.1 29.1 35.1
45.4 35.4 46. 50. 32.2 22. 20.1 23.2 22.3 24.8 28.5 37.3 27.9 23.9
21.7 28.6 27.1 20.3 22.5 29. 24.8 22. 26.4 33.1 36.1 28.4 33.4 28.2
22.8 20.3 16.1 22.1 19.4 21.6 23.8 16.2 17.8 19.8 23.1 21. 23.8 23.1
20.4 18.5 25.
               24.6 23. 22.2 19.3 22.6 19.8 17.1 19.4 22.2 20.7 21.1
19.5 18.5 20.6 19. 18.7 32.7 16.5 23.9 31.2 17.5 17.2 23.1 24.5 26.6
22.9 24.1 18.6 30.1 18.2 20.6 17.8 21.7 22.7 22.6 25. 19.9 20.8 16.8
21.9 27.5 21.9 23.1 50. 50. 50. 50. 50. 13.8 13.8 15. 13.9 13.3
13.1 10.2 10.4 10.9 11.3 12.3 8.8 7.2 10.5 7.4 10.2 11.5 15.1 23.2
 9.7 13.8 12.7 13.1 12.5 8.5 5.
                                   6.3 5.6 7.2 12.1 8.3 8.5 5.
11.9 27.9 17.2 27.5 15. 17.2 17.9 16.3 7.
                                             7.2 7.5 10.4 8.8 8.4
 16.7 14.2 20.8 13.4 11.7 8.3 10.2 10.9 11.
                                             9.5 14.5 14.1 16.1 14.3
11.7 13.4 9.6 8.7 8.4 12.8 10.5 17.1 18.4 15.4 10.8 11.8 14.9 12.6
14.1 13. 13.4 15.2 16.1 17.8 14.9 14.1 12.7 13.5 14.9 20. 16.4 17.7
19.5 20.2 21.4 19.9 19. 19.1 19.1 20.1 19.9 19.6 23.2 29.8 13.8 13.3
16.7 12. 14.6 21.4 23. 23.7 25. 21.8 20.6 21.2 19.1 20.6 15.2 7.
 8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9
22. 11.9]
```

In [9]:

```
print(boston.feature_names)
```

```
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT']
```

lets prepare dataset

In [10]:

```
dataset = pd.DataFrame(boston.data,columns=boston.feature_names)
```

In [11]:

```
dataset.head()
```

Out[11]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	2
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	į
4													•

output feature adding

In [12]:

```
dataset['Price']=boston.target
```

In [13]:

```
dataset.head()
```

Out[13]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	•
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
4													•

check datatype of features in dataset

In [14]:

```
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
     Column
              Non-Null Count Dtype
 0
     CRIM
              506 non-null
                              float64
 1
     ΖN
              506 non-null
                              float64
                              float64
 2
     INDUS
              506 non-null
 3
     CHAS
              506 non-null
                              float64
 4
     NOX
              506 non-null
                              float64
 5
                              float64
     RM
              506 non-null
 6
     AGE
              506 non-null
                              float64
 7
              506 non-null
                              float64
     DIS
 8
     RAD
              506 non-null
                              float64
 9
     TAX
              506 non-null
                              float64
 10 PTRATIO 506 non-null
                              float64
                              float64
 11
              506 non-null
 12
    LSTAT
              506 non-null
                              float64
                              float64
 13 Price
              506 non-null
dtypes: float64(14)
```

describe is used for statistics analysis

In [15]:

memory usage: 55.5 KB

dataset.describe()

Out[15]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	50
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	1:
4								•

transpose the describe

In [16]:

```
dataset.describe().T
```

Out[16]:

	count	mean	std	min	25%	50%	75%	ma
CRIM	506.0	3.613524	8.601545	0.00632	0.082045	0.25651	3.677083	88.976
ZN	506.0	11.363636	23.322453	0.00000	0.000000	0.00000	12.500000	100.000
INDUS	506.0	11.136779	6.860353	0.46000	5.190000	9.69000	18.100000	27.740
CHAS	506.0	0.069170	0.253994	0.00000	0.000000	0.00000	0.000000	1.000
NOX	506.0	0.554695	0.115878	0.38500	0.449000	0.53800	0.624000	0.871
RM	506.0	6.284634	0.702617	3.56100	5.885500	6.20850	6.623500	8.780
AGE	506.0	68.574901	28.148861	2.90000	45.025000	77.50000	94.075000	100.000
DIS	506.0	3.795043	2.105710	1.12960	2.100175	3.20745	5.188425	12.12€
RAD	506.0	9.549407	8.707259	1.00000	4.000000	5.00000	24.000000	24.000
TAX	506.0	408.237154	168.537116	187.00000	279.000000	330.00000	666.000000	711.000
PTRATIO	506.0	18.455534	2.164946	12.60000	17.400000	19.05000	20.200000	22.000
В	506.0	356.674032	91.294864	0.32000	375.377500	391.44000	396.225000	396.900
LSTAT	506.0	12.653063	7.141062	1.73000	6.950000	11.36000	16.955000	37.970
Price	506.0	22.532806	9.197104	5.00000	17.025000	21.20000	25.000000	50.000
4								•

check the missing values

In [17]:

```
dataset.isnull().sum()
```

Out[17]:

CRIM	0
ZN	0
INDUS	0
CHAS	0
NOX	0
RM	0
AGE	0
DIS	0
RAD	0
TAX	0
PTRATIC	0
В	0
LSTAT	0
Price	0
dtvpe:	int64

relation betweeen independent and dependent feat

In [18]:

EDA

In [19]:

dataset.corr()

Out[19]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996
Price	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929
4								•

In [20]:

we go with more 95%

corr visualization

Pairplot

In [21]:

import seaborn as sns
sns.pairplot(dataset)

Out[21]:

<seaborn.axisgrid.PairGrid at 0x22674e599a0>

Heatmap

In [22]:

```
sns.set(rc={'figure.figsize':(15,10)})
sns.heatmap(dataset.corr(),annot=True)
```

Out[22]:

<AxesSubplot:>

In [23]:

price is dependent feature

Scatter plot

In [24]:

```
plt.scatter(dataset['CRIM'],dataset['Price'])
plt.xlabel("crim")
plt.ylabel("price")
```

Out[24]:

Text(0, 0.5, 'price')


```
In [25]:
```

```
plt.scatter(dataset['RM'],dataset['Price'])
plt.xlabel("rm")
plt.ylabel("price")
```

Out[25]:

Text(0, 0.5, 'price')

In []:

plot data in linear regression

In [26]:

```
sns.regplot(x="RM",y="Price",data=dataset)
```

Out[26]:

<AxesSubplot:xlabel='RM', ylabel='Price'>

In [27]:

```
# shaded region in plot is redge and lasso
# we see more points is there not shaped mean gap
# other have
# point is more the shade region is less
# point is less the shade region is high
```

In [28]:

sns.regplot(x="CRIM",y="Price",data=dataset)

Out[28]:

<AxesSubplot:xlabel='CRIM', ylabel='Price'>

Boxplot

In [29]:

sns.boxplot(dataset["Price"])

C:\Users\DHARAVATH RAMDAS\Anaconda3\lib\site-packages\seaborn_decorators.p y:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misin terpretation.

warnings.warn(

Out[29]:

<AxesSubplot:xlabel='Price'>

In [30]:

sns.boxplot(dataset['CRIM'])

C:\Users\DHARAVATH RAMDAS\Anaconda3\lib\site-packages\seaborn_decorators.p y:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misin terpretation.

warnings.warn(

Out[30]:

<AxesSubplot:xlabel='CRIM'>

In [31]:

sns.boxplot(dataset['ZN'])

C:\Users\DHARAVATH RAMDAS\Anaconda3\lib\site-packages\seaborn_decorators.p y:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misin terpretation.

warnings.warn(

Out[31]:

<AxesSubplot:xlabel='ZN'>

In [32]:

dataset.head()

Out[32]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	_
4												>	

independent and dependent feature seperation

independent col

In [33]:

X=dataset.iloc[:,:-1]

dependent col

In [34]:

y=dataset.iloc[:,-1]

In [35]:

X.head()

Out[35]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
4													•

```
In [36]:
y.head()
Out[36]:
     24.0
1
     21.6
     34.7
2
3
     33.4
4
     36.2
Name: Price, dtype: float64
```

spliting the data into train test split

```
In [37]:
# spliting the data into train test split
# it will return 4 different paremeters
# output feature of x train is y train and x test is y test
# test size = 0.25 if 1000 in 25% of data
# random state
In [38]:
from sklearn.model_selection import train_test_split
In [39]:
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.33,random_state=10)
In [40]:
X train.shape
Out[40]:
(339, 13)
In [41]:
y_train.shape
Out[41]:
(339,)
In [42]:
X_test.shape
Out[42]:
(167, 13)
```

```
In [43]:
```

```
y_test.shape
Out[43]:
(167,)
```

Standardize or featur scalling the datasets

```
In [44]:
```

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
```

```
In [45]:
```

scaler

Out[45]:

StandardScaler()

apply data

```
In [46]:
```

```
X_train=scaler.fit_transform(X_train)
```

```
In [47]:
```

```
X_test=scaler.transform(X_test)
```

In [48]:

```
#data lekage we dont need to leak the data of test to train data
#avoid datalekage use transform
#example :
# is eaxm paper is x_train if you get before exam is called parer lekage
# f to f' we convert mean and std in fit and transform
```

```
In [49]:
```

```
X_test
```

```
Out[49]:
```

```
array([[-0.41664568, 0.87519929, -1.33277144, ..., -0.06616502, 0.41011193, -0.56391444],

[-0.42063267, 1.98340973, -1.22498491, ..., -1.36108953, 0.41021798, -1.11860295],

[-0.41894074, 2.80430634, -1.16175014, ..., -1.12985301, 0.44765291, -1.16980497],

...,

[-0.40804678, 1.36773726, -1.15169007, ..., -1.54607875, 0.29854946, -1.18545003],

[-0.41098494, -0.47928013, 0.19779729, ..., 0.07257689, 0.20119741, -0.13154186],

[-0.37856708, -0.47928013, -0.22328875, ..., -0.06616502, 0.43482111, -0.5141347]])
```

In [50]:

```
X_train
```

Out[50]:

```
array([[-0.13641471, -0.47928013, 1.16787606, ..., -1.77731527, 0.39261401, 2.36597873],
[-0.41777807, -0.47928013, -1.18043314, ..., -0.75987458, 0.14721899, -0.54115799],
[ 1.31269177, -0.47928013, 0.95517731, ..., 0.76628645, 0.19334986, 2.52100705],
...,
[-0.13520965, -0.47928013, 0.95517731, ..., 0.76628645, 0.17012536, 0.06331026],
[-0.40281114, -0.47928013, 2.04022838, ..., 0.25756611, 0.32166792, 0.27238516],
[-0.33104058, 0.34161649, -1.07552092, ..., -2.56351944, 0.39993132, -0.34772815]])
```

Model Training

In [51]:

```
from sklearn.linear_model import LinearRegression
```

In [52]:

```
regression=LinearRegression()
```

```
In [53]:
  regression
```

LinearRegression()

```
In [54]:
```

Out[53]:

```
# fit data and transform
# only fir only apply
# x trian indepe y tai n is dependent
```

```
In [55]:
```

```
regression.fit(X_train,y_train)
```

Out[55]:

LinearRegression()

Coefficient and intercept

```
In [56]:
```

```
## print the coefficient and the intercept
## price 1 unit is increse crime is decrease relation
```

coefficient

```
In [57]:
```

```
print(regression.coef_)

[-1.29099218    1.60949999   -0.14031574    0.37201867   -1.76205329    2.22752218
    0.32268871   -3.31184248    2.70288107   -2.09005699   -1.7609799    1.25191514
```

```
-3.83392028]
```

intercept

```
In [58]:
```

```
print(regression.intercept_)
```

22.077286135693214

prediction for the test data

```
10/17/22, 5:29 PM
                                           krish linear regression - Jupyter Notebook
  In [59]:
  reg pred = regression.predict(X test)
 In [60]:
 reg_pred
 Out[60]:
 array([31.43849583, 31.98794389, 30.99895559, 22.31396689, 18.89492791,
         16.21371128, 35.9881236 , 14.81264582, 25.04500847, 37.12806894,
         21.49110158, 30.88757187, 28.05752881, 34.05600093, 33.75791114,
         40.63880011, 24.24023412, 23.41351375, 25.54158122, 21.34135664,
         32.71699711, 17.88341061, 25.49549436, 25.01006418, 32.54102925,
         20.48979076, 19.48816948, 16.92733183, 38.38530857, 0.36265208,
         32.42715816, 32.15306983, 26.10323665, 23.79611814, 20.67497128,
         19.69393973, 3.50784614, 35.26259797, 27.04725425, 27.66164435,
         34.35132103, 29.83057837, 18.40939436, 31.56953795, 17.91877807,
         28.50042742, 19.49382421, 21.69553078, 38.0954563 , 16.44490081,
         24.58507284, 19.67889486, 24.53954813, 34.30610423, 26.74699088,
         34.87803562, 21.06219662, 19.87980936, 18.68725139, 24.71786624,
         19.96344041, 23.56002479, 39.57630226, 42.81994338, 30.37060855,
         17.03737245, 23.83719412, 3.2425022, 31.5046382, 28.63779884,
         18.49288659, 27.14115768, 19.67125483, 25.34222917, 25.05430467,
         10.29463949, 38.96369453, 8.26774249, 18.52214761, 30.34082002,
         22.87681099, 20.96680268, 20.04604103, 28.73415756, 30.81726786,
         28.23002473, 26.28588806, 31.59181918, 22.13093608, -6.48201197,
         21.53000756, 19.90826887, 24.96686716, 23.44746617, 19.28521216,
         18.75729874, 27.40013804, 22.17867402, 26.82972
                                                            , 23.39779064,
         23.9260607 , 19.16632572, 21.09732823, 11.01452286, 13.7692535 ,
```

20.74596484, 23.54892211, 14.04445469, 28.88171403, 15.77611741, 15.25195598, 22.429474 , 26.60737213, 28.88742175, 24.29797261, 18.26839956, 16.26943281, 17.40100292, 15.53131616, 21.27868825, 33.78464602, 30.00899396, 21.16115702, 13.95560661, 16.18475215, 29.30998858, 13.1866784 , 22.08393725, 24.34499386, 31.86829501, 33.45923602, 5.90671516, 35.20153265, 24.17614831, 17.54200544,

14.51366874, 37.193992 , 25.81821367, 23.31632083, 26.43254504, 11.38255141, 20.46224115, 35.27645709, 20.57841598, 11.48799917, 16.23913171, 24.56511742, 10.53131603, 15.07115005, 25.98488217, 11.2136222 , 11.695686 , 19.40437966, 19.58768384, 32.43800883,

24.25032915, 28.44671354, 34.50123773, 6.33164665,

28.40727267, 12.56461105, 18.31045646, 19.71015745,

Assumption of linear regression

22.66170871, 25.68576052])

```
In [61]:
```

```
## assumption of linear regression
# we used to check model is good or not
# 1.linear relation between y test and
# 2.residuals we get normal distribution
# 3 get uniform distribution
```

1.93565618,

5.50105857,

1.linear relationship between y_test and reg_prediction

In [62]:

```
plt.scatter(y_test,reg_pred)
plt.xlabel("test truth data")
plt.ylabel("test predicted data")
```

Out[62]:

Text(0, 0.5, 'test predicted data')

2.residual we get normal distributin

In [63]:

```
residuals=y_test-reg_pred residuals
```

Out[63]:

```
305
      -3.038496
193
      -0.887944
65
      -7.498956
349
       4.286033
151
       0.705072
442
      -1.004380
451
      -4.387684
      -2.638009
188
76
      -2.661709
314
      -1.885761
Name: Price, Length: 167, dtype: float64
```

In [64]:

sns.displot(residuals,kind="kde")

Out[64]:

<seaborn.axisgrid.FacetGrid at 0x226021f9b80>

3.uniform distributin

In [65]:

scatter plot with prediction and residual
uniform distribution called below plot

In [66]:

plt.scatter(reg_pred,residuals)

Out[66]:

<matplotlib.collections.PathCollection at 0x226062aabe0>

Mean_squared_error, Mean_absolute_error

```
In [67]:
```

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,reg_pred))
print(mean_absolute_error(y_test,reg_pred))
print(np.sqrt(mean_squared_error(y_test,reg_pred)))
```

27.100991709962493

3.520658529879791

5.205861284164465

Performance metrics

R squared and adjusted R square

R squared

```
In [68]:
```

```
from sklearn.metrics import r2_score
linear_score=r2_score(y_test,reg_pred)
print(linear_score)
```

0.7165219393967555

Adjusted R Squared

```
In [69]:
```

```
#### adjusted R square
#### display adjusted R-squared
```

```
In [70]:
```

```
1 - (1-linear_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)
```

Out[70]:

0.6924355682343882

Ridge Regression:-

```
In [71]:
```

```
# importing ridge regression from sklearn library
from sklearn.linear_model import Ridge
```

Train the Model

```
In [72]:
# Train the model
ridgeR = Ridge(alpha=.99)
ridgeR.fit(X_train,y_train)
Out[72]:
Ridge(alpha=0.99)
```

Coefficients and intercepts

22.077286135693214

prediction for test data

In [76]:

```
ridgeR_pred = ridgeR.predict(X_test)
ridgeR_pred
```

Out[76]:

```
array([31.33057488, 31.98187113, 30.96557336, 22.44979345, 18.93136096,
       16.21766097, 35.9695201, 14.84502334, 25.00681679, 37.08865709,
       21.49611307, 30.86418833, 27.98870994, 33.98311439, 33.72761124,
       40.61765149, 24.27260265, 23.3396092 , 25.52874965, 21.42633474,
                 , 17.88580074, 25.50287525, 25.01789638, 32.58713523,
       20.48525253, 19.5157083 , 16.94085284, 38.35830043, 0.3359304
       32.44395443, 32.10396125, 26.13535705, 23.81366531, 20.64418441,
       19.71806618, 3.56120622, 35.17406836, 27.02047743, 27.65050098,
       34.34092247, 29.77294057, 18.39839475, 31.55299939, 17.92572438,
       28.51396241, 19.49629399, 21.65556993, 38.03647563, 16.4768963 ,
       24.5632252 , 19.66078388, 24.49101977, 34.33486274, 26.74628864,
       34.83754441, 21.08503023, 19.88392682, 18.65848344, 24.71541141,
       20.00211437, 23.58561577, 39.60661267, 42.79568807, 30.35504889,
       17.07390321, 23.8441424 , 3.23179317, 31.42616831, 28.74993352,
       18.49735122, 27.14661903, 19.64645914, 25.29002063, 25.07848511,
       10.32184217, 38.9403347, 8.26852687, 18.50639148, 30.38981337,
       22.88691963, 21.08700275, 20.09017432, 28.70320022, 30.81536523,
       28.22571459, 26.28192393, 31.61825054, 22.15757652, -6.42202444,
       21.55921162, 19.89796163, 24.96572959, 23.47335755, 19.25735742,
       18.80337634, 27.37974341, 22.19215481, 26.7827143 , 23.40775675,
       23.92752519, 19.18837687, 21.09793011, 10.90980367, 13.8055226
       20.78564836, 23.49703861, 14.19539174, 28.86460768, 15.85507771,
       15.26390265, 22.39393371, 26.63582763, 28.87665175, 24.26013291,
       18.26466894, 16.26560094, 17.44890671, 15.58548959, 21.24110535,
       33.72653107, 30.07040403, 21.17355072, 14.04499134, 16.21814707,
       29.26687873, 13.18723962, 22.07244012, 24.34914885, 31.88218013,
       33.34343802, 5.95890004, 35.14783652, 24.25615242, 17.5551893,
       24.27003373, 28.42163323, 34.47570069, 6.32390404,
                                                           2.03811704,
       28.40133687, 12.59053332, 18.32099701, 19.75868378, 5.51544542,
       14.42225083, 37.15224879, 25.86016615, 23.29905211, 26.39564847,
       11.41964159, 20.48864901, 35.29511598, 20.61583808, 11.45806067,
       16.36323857, 24.57009605, 10.51061694, 15.13764409, 26.01127654,
       11.22970807, 11.70173265, 19.39461107, 19.59202899, 32.42958757,
       22.67089926, 25.68378556])
```

Asumptions for ridgeRegression

1.linear relationship between y test and reg prediction

In [77]:

```
plt.scatter(y_test,ridgeR_pred)
plt.xlabel("test truth data")
plt.ylabel("test predicted data")
```

Out[77]:

Text(0, 0.5, 'test predicted data')

2.residual we get normal distributin

In [78]:

```
residuals=y_test-ridgeR_pred residuals
```

Out[78]:

305 -2.930575 193 -0.881871 65 -7.465573 4.150207 349 151 0.668639 . . . 442 -0.994611 451 -4.392029 188 -2.629588 -2.670899 76 314 -1.883786 Name: Price, Length: 167, dtype: float64

In [79]:

```
sns.displot(residuals,kind="kde")
```

Out[79]:

<seaborn.axisgrid.FacetGrid at 0x226065fd6a0>

3.uniform distributin

scatter plot with prediction and residual

uniform distribution called below plot

In [80]:

plt.scatter(ridgeR_pred,residuals)

Out[80]:

<matplotlib.collections.PathCollection at 0x2260657ad00>

Performance Matrics

In [81]:

```
# mean squared error , mean absolute error , root mean square error
```

In [82]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,ridgeR_pred))
print(mean_absolute_error(y_test,ridgeR_pred))
print(np.sqrt(mean_squared_error(y_test,ridgeR_pred)))
```

27.076711766488984

3.516149635367478

5.203528780211462

R Square

```
In [83]:
```

```
from sklearn.metrics import r2_score
ridgeR_score = r2_score(y_test,ridgeR_pred)
print(ridgeR_score)
```

0.7167759091171659

Adjusted R Square

```
In [84]:
1 - (1-ridgeR_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)
Out[84]:
0.6927111170813696
```

Lasso Regression:-

```
In [85]:
# import lasso regression from sklearn library
```

```
In [86]:
from sklearn.linear_model import Lasso
```

Train the model

```
In [87]:
```

```
lasso = Lasso(alpha = 0.05)
lasso.fit(X_train,y_train)
```

Out[87]:

Lasso(alpha=0.05)

coefficient and intercept

```
In [88]:
```

```
# coefficient
```

predict lasso

```
In [92]:
```

```
lasso_pred = lasso.predict(X_test)
lasso_pred
```

Out[92]:

```
array([30.57855402, 32.04704681, 30.7836755 , 23.22473341, 19.31928679,
       16.31947881, 36.04756378, 15.14089993, 24.54690088, 36.75657835,
       21.40934745, 30.42914651, 27.51095643, 33.62846912, 33.51369108,
       40.35412747, 24.74380038, 22.64379453, 25.44641771, 21.94003238,
       32.63731951, 17.88286672, 25.46744211, 25.20808824, 32.88728015,
       20.51622533, 19.37852914, 17.08461594, 38.00682559, 0.06256954,
       32.39077209, 31.71723378, 26.30318902, 24.1901777 , 20.3564376 ,
       19.84503741, 3.86980824, 34.72575591, 27.02264842, 27.47090983,
       34.53116392, 29.31157273, 18.25916767, 31.51857148, 17.73102663,
       28.47466208, 19.54285003, 21.45175703, 37.5908217, 16.49354151,
       24.5126893 , 19.48032315, 24.10857748, 34.59994156, 26.81233855,
       34.46731518, 21.20314923, 19.9936519, 18.68266087, 24.75076636,
       20.37856907, 23.69939752, 39.77095878, 42.55019349, 30.379202
       17.38116342, 24.21711232, 3.12416695, 30.75349905, 29.62345485,
       18.5192404 , 27.43236171, 19.47599315, 24.87019176, 25.17221038,
       10.64908788, 38.71843785, 8.15059193, 18.23414632, 30.71384341,
       22.85932785, 21.71206893, 20.38635835, 28.48894474, 30.65193988,
       28.27081287, 26.39867762, 31.80294712, 22.44882748, -6.01035538,
       21.85415236, 19.74998054, 24.86417911, 23.82224106, 18.77079303,
       18.77446874, 27.12552809, 22.12906624, 26.39563297, 23.30345555,
       23.81399841, 19.31351717, 21.04216569, 10.31196755, 13.84686945,
       21.08101131, 22.93217687, 15.20995347, 28.78083174, 16.28804803,
       15.31957849, 22.18278963, 26.74002085, 28.51768319, 23.98128081,
       18.18916848, 15.86212965, 17.71706915, 16.10038338, 21.16042723,
       33.25045535, 30.33820105, 21.33745138, 14.45015516, 16.27700171,
       28.83292852, 13.26778624, 22.1853298 , 24.41571998, 31.899553
       32.49621638, 6.4042328, 34.77744249, 24.93811797, 17.60029616,
       24.71900332, 28.36594981, 34.16829719, 6.20786078,
                                                           3.03375677,
       28.44099918, 12.78225953, 18.34434928, 20.10835996, 5.67421836,
       14.00955543, 36.75926849, 25.9811435, 23.28347761, 26.07126116,
       11.97748528, 20.67267473, 35.29400398, 20.97321467, 11.16644946,
       17.03938045, 24.60074646, 10.28030585, 15.66517757, 26.17739514,
       11.31085536, 11.80389692, 19.28696647, 19.56361505, 32.38793789,
       22.69205019, 25.6203023 ])
```

Assumption of LassoRegression

In [93]:

```
## assumption of linear regression
# we used to check model is good or not
# 1.linear relation between y test and
# 2.residuals we get normal distribution
# 3 get uniform distribution
```

In [94]:

```
# 1.relationship between real data and predict data
```

In [95]:

```
plt.scatter(y_test,lasso_pred)
plt.xlabel("Test Truth data")
plt.ylabel("test predicted data")
```

Out[95]:

Text(0, 0.5, 'test predicted data')

In [96]:

2.calculate the residual

In [127]:

```
residuals = y_test-lasso_pred residuals
```

Out[127]:

-2.178554 305 193 -0.947047 65 -7.283676 349 3.375267 151 0.280713 . . . 442 -0.886966 451 -4.363615 188 -2.587938 76 -2.692050 314 -1.820302 Name: Price, Length: 167, dtype: float64

In [128]:

```
sns.displot(residuals,kind='kde')
```

Out[128]:

<seaborn.axisgrid.FacetGrid at 0x2260191bc70>

In [129]:

3 get uniform distribution

In [130]:

plt.scatter(lasso_pred,residuals)

Out[130]:

<matplotlib.collections.PathCollection at 0x226075444c0>

Performance Matrics

In [103]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,lasso_pred))
print(mean_absolute_error(y_test,lasso_pred))
print(np.sqrt(mean_squared_error(y_test,lasso_pred)))
```

26.891235686064327 3.4901509037901235 5.185676010518236

R Square

```
In [104]:
```

```
from sklearn.metrics import r2_score
lasso_score = r2_score(y_test,lasso_pred)
print(lasso_score)
```

Adjusted R Square

```
In [105]:
1 - (1-lasso_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)
Out[105]:
0.6948160527934066
```

ElasticNet Regression

```
# import model
In [107]:
from sklearn.linear_model import ElasticNet
```

Train the model

In [106]:

```
In [108]:
el_net = ElasticNet(alpha=.02,l1_ratio=.2)
el_net.fit(X_train,y_train)
Out[108]:
```

coefficient and intercept

ElasticNet(alpha=0.02, l1_ratio=0.2)

```
In [109]:
#coefficient
```

prediction

```
In [113]:
```

```
elastic_pred = el_net.predict(X_test)
elastic_pred
```

Out[113]:

```
array([30.85320392, 31.95227044, 30.80930105, 23.0311917, 19.10356298,
       16.24600244, 35.87472708, 14.9895382, 24.82885226, 36.89115631,
       21.4886189 , 30.73150696, 27.67922031, 33.66227778, 33.58606909,
       40.49230464, 24.43871474, 23.00271234, 25.46496544, 21.7949502,
       32.5439557 , 17.8971736 , 25.50064893 , 25.06306784 , 32.76489368 ,
       20.48825102, 19.63035066, 17.00997366, 38.22052183, 0.23782986,
       32.49185944, 31.87233767, 26.27375723, 23.9223078, 20.50068616,
       19.81219508, 3.81973163, 34.78789885, 26.9037553, 27.57428463,
       34.30221555, 29.5059595 , 18.34458072, 31.47505857, 17.96071003,
       28.54751586, 19.50966375, 21.47597087, 37.76635394, 16.61030726,
       24.46653295, 19.57476414, 24.27600651, 34.43751694, 26.73386342,
       34.63692279, 21.16421431, 19.90817887, 18.5488929 , 24.69397623,
       20.16910225, 23.67112496, 39.70500876, 42.65458117, 30.27897294,
       17.23152662, 23.90157845, 3.20344734, 31.05847458, 29.26237067,
       18.51704129, 27.20011652, 19.53951402, 25.03664031, 25.15562111,
       10.48286187, 38.81108622, 8.27808334, 18.45239416, 30.58459273,
       22.93337851, 21.5974977 , 20.28893043, 28.565945 , 30.77233786,
       28.19443256, 26.28702801, 31.72552797, 22.30323027, -6.12234331,
       21.7164113 , 19.85502516, 24.95600212, 23.60608907, 19.13739826,
       19.0018081 , 27.27646041, 22.24833325, 26.55664574, 23.41604877,
       23.9377974 , 19.2681326 , 21.11856869, 10.45988909, 13.96044739,
       20.95875649, 23.24409298, 14.81422861, 28.77838171, 16.21533207,
       15.31662352, 22.2359584 , 26.72672259, 28.80489302, 24.08783381,
       18.24286485, 16.23716435, 17.66088454, 15.84254868, 21.0864064,
       33.4322881 , 30.31853999, 21.22010083, 14.43501547, 16.36111989,
       29.04857322, 13.20498662, 22.03277638, 24.36696995, 31.91173178,
       32.82389714, 6.2106213, 34.89766179, 24.63421167, 17.61283799,
       24.3831644 , 28.31977492, 34.3449386 , 6.3004853 , 2.52616545,
       28.37535208, 12.71389456, 18.36495297, 19.97264189, 5.6008522,
       14.08147588, 36.94100142, 26.03286818, 23.23068726, 26.22291905,
       11.61054969, 20.61949156, 35.33646245, 20.7753819 , 11.32969665,
       16.90317482, 24.59243041, 10.42467596, 15.44611433, 26.10104352,
       11.31065451, 11.74673149, 19.34759372, 19.60773469, 32.36160995,
       22.69729411, 25.6655162 ])
```

Assumptions of ElasticsNetRegression

In [114]:

```
## assumption of linear regression
# we used to check model is good or not
# 1.linear relation between y test and predicted
# 2.residuals we get normal distribution
# 3 get uniform distribution
```

In [115]:

```
# 1.relationship between actual y test and predicted
```

In [116]:

```
plt.scatter(y_test,elastic_pred)
plt.xlabel("test truth data")
plt.ylabel("test predicted data")
```

Out[116]:

Text(0, 0.5, 'test predicted data')

In [117]:

2.residual

In [118]:

```
residuals = y_test - elastic_pred residuals
```

Out[118]:

-2.453204 305 193 -0.852270 -7.309301 65 349 3.568808 151 0.496437 . . . 442 -0.947594 451 -4.407735 188 -2.561610 -2.697294 76 314 -1.865516 Name: Price, Length: 167, dtype: float64

In [119]:

```
sns.displot(residuals,kind='kde')
```

Out[119]:

<seaborn.axisgrid.FacetGrid at 0x22606a99f70>

In [120]:

3.uniform distribution

In [126]:

plt.scatter(elastic_pred,residuals)

Out[126]:

<matplotlib.collections.PathCollection at 0x22607272670>

Performance Matrics

In [122]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,elastic_pred))
print(mean_absolute_error(y_test,elastic_pred))
print(np.sqrt(mean_squared_error(y_test,elastic_pred)))
```

27.000688509169624

3.498561559790622

5.196218674110013

R Square

```
In [131]:
```

```
from sklearn.metrics import r2_score
elastic_score = r2_score(y_test,elastic_pred)
print(elastic_score)
```

Adjusted R Square

```
In [132]:
1 - (1-elastic_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)
Out[132]:
0.693573891779382
In [ ]:
```