7630 – Autonomous Robotics Introduction to Path and Trajectory Planning

Cédric Pradalier

Today

Introduction

Objectives

- ► Notions on path planning techniques
- ► Focus on graph-based planning
- Deterministic and stochastic methods

Recommended Reading

- ► Planning Algorithms, by Steven M. LaValle, 2006, Cambridge University Pres: available online on http://planning.cs.uiuc.edu/
- ► Robot Motion Planning, Jean-Claude Latombe, Kluwer Academic Publishers, 1991.
- ► http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

Outline

- ► State-space and obstacle representation
- ► Global motion planning
 - Reminder about potential fields and optimal control
 - ► Deterministic graph search (Dijkstra, A*, Lattices)
 - Probabilistic/random/sampling approaches

Outline

State-space and obstacle representation

Global Motion Planning

Conclusions

The Planning Problem (1/2)

The problem: find a path in the work space (physical space) from an initial position to a goal position avoiding all collisions with obstacles

Assumption: there exists a good enough map of the environment for

navigation.

Topological

- Metric
- Hybrid methods

The Planning Problem (2/2)

- We can generally distinguish between
 - (global) path planning and
 - (local) obstacle avoidance.
- First step:
 - Transformation of the map into a representation useful for planning
 - This step is planner-dependent
- Second step:
 - Plan a path on the transformed map
- Third step:
 - Send motion commands to controller
 - This step is planner-dependent (e.g. Model based feed forward, path following)

8 Work Space (Map) → Configuration Space

State or configuration q can be described with k values q_i

of the robot

9 Configuration Space for a Mobile Robot

- Mobile robots operating on a flat ground have 3 DoF: (x, y, θ)
- For simplification, in path planning mobile roboticists often assume that the robot is holonomic and that it is a point. In this way the configuration space is reduced to 2D (x,y)
- Because we have reduced each robot to a point, we have to inflate each obstacle by the size of the robot radius to compensate.

Outline

State-space and obstacle representation

Global Motion Planning

Conclusions

11 Path Planning: Overview of Algorithms

1. Optimal Control

- Solves for the truly optimal solution
- Becomes intractable for even moderately complex and/or nonconvex problems

2. Potential Field

- Imposes a mathematical function over the state/configuration space
- Many physical metaphors exist
- Often employed due to its simplicity and similarity to optimal control solutions

3. Graph Search

Identify a set of edges and connect them to nodes within the free space

Where to put the nodes?

Optimal Control based Path Planning Strategies

- Overview
 - Solves a two-point boundary problem in the continuum
 - Not treated in this course
- Limitations
 - Becomes very hard to solve as problem dimensionality increases
 - Prone to local optima
- Algorithms
 - Pontryagin maximum principle
 - Hamilton-Jacobi-Bellman

13 Potential Field Path Planning Strategies

Khatib

- Robot is treated as a point under the influence of an artificial potential field.
- Operates in the continuum
 - Generated robot movement is similar to a ball rolling down the hill
 - Goal generates attractive force
 - Obstacle are repulsive forces

C Khatib t. ETH Zurich - ASL

14 Potential Field Path Planning: Potential Field Generation

- Generation of potential field function U(q)
 - attracting (goal) and repulsing (obstacle) fields
 - summing up the fields
 - functions must be differentiable
- Generate artificial force field F(q)

$$F(q) = -\nabla U(q) = -\nabla U_{att}(q) - \nabla U_{rep}(q) = \begin{vmatrix} \frac{\partial U}{\partial x} \\ \frac{\partial U}{\partial y} \end{vmatrix}$$

- Set robot speed (v_x, v_y) proportional to the force F(q) generated by the field
 - the force field drives the robot to the goal
 - robot is assumed to be a point mass (non-holonomics are hard to deal with)
 - method produces both a plan and the corresponding control

15 Potential Field Path Planning: Attractive Potential Field

• Parabolic function representing the Euclidean distance $|\rho_{goal}| = ||q - q_{goal}||$ to the goal

$$U_{att}(q) = \frac{1}{2} k_{att} \cdot \rho_{goal}^{2}(q)$$

$$= \frac{1}{2} k_{att} \cdot (q - q_{goal})^{2}$$

Attracting force converges linearly towards 0 (goal)

$$F_{att}(q) = -\nabla U_{att}(q)$$
$$= k_{att} \cdot (q - q_{goal})$$

Potential Field Path Planning: Repulsing Potential Field

- Should generate a barrier around all the obstacle
 - strong if close to the obstacle
 - no influence if fare from the obstacle

$$U_{rep}(q) = \begin{cases} \frac{1}{2} k_{rep} \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0} \right)^2 & \text{if } \rho(q) \le \rho_0 \\ 0 & \text{if } \rho(q) \ge \rho_0 \end{cases}$$

- $\rho(q)$ minimum distance to the object
- Field is positive or zero and tends to infinity as q gets closer to the object

$$F_{rep}(q) = -\nabla U_{rep}(q) = \begin{cases} k_{rep} \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0}\right) \frac{1}{\rho^2(q)} \frac{q - q_{obst}}{\rho(q)} & \text{if } \rho(q) \le \rho_0 \\ 0 & \text{if } \rho(q) \ge \rho_0 \end{cases}$$

17 Potential Field Path Planning:

Notes:

- Local minima problem exists
- problem is getting more complex if the robot is not considered as a point mass
- If objects are non-convex there exists situations where several minimal distances exist → can result in oscillations

19 Potential Field Path Planning: Using Harmonic Potentials

- Hydrodynamics / Electrostatics analogy
 - robot is moving similar to a fluid particle following a stream
- Ensures that there are no local minima

- Neumann Boundary Conditions
 - → equipotential lines orthogonal on object boundaries (as in image above!)
 - → short but dangerous paths
- Dirichlet Boundary Conditions
 - → equipotential lines parallel to object boundaries
 - → long but safe paths

20 Graph Search

Overview

- Solves a least cost problem between two states on a (directed) graph
- Graph structure is a discrete representation

Limitations

■ State space is discretized → completeness is at stake

Feasibility of paths is often not inherently encoded

Algorithms

- (Preprocessing steps)
- Breath first
- Depth first
- Dijkstra
- A* and variants
- D* and variants

21 Graph Construction (Preprocessing Step)

- Methods
 - Visibility graph
 - Voronoi diagram
 - Cell decomposition

Graph Construction: Visibility Graph (1/2)

- Particularly suitable for polygon-like obstacles
- Shortest path length
- Grow obstacles to avoid collisions

Graph Construction: Visibility Graph (2/2)

Pros

- The found path is optimal because it is the shortest length path
- Implementation simple when obstacles are polygons

Cons

- The solution path found by the visibility graph tend to take the robot as close as possible to the obstacles: the common solution is to grow obstacles by more than robot's radius
- Number of edges and nodes increases with the number of polygons
- Thus it can be inefficient in densely populated environments

Graph Construction: Voronoi Diagram (1/2)

- In contrast to the Visibility Graph approach, the Voronoi Diagram tends to maximize the distance between robot and obstacles
- Easily executable: Maximize the minimal sensor readings
- Works also for map-building: Move on the Voronoi edges: 1D Mapping

Graph Construction: Voronoi Diagram (2/2)

Pros

 Using range sensors like laser or sonar, a robot can navigate along the Voronoi diagram using simple control rules

Cons

 Because the Voronoi diagram tends to keep the robot as far as possible from obstacles, any short range sensor will be in danger of failing

Peculiarities

 when obstacles are polygons, the Voronoi map consists of straight and parabolic segments

Graph Construction: Cell Decomposition (1/4)

- Divide space into simple, connected regions called cells
- Determine which open cells are adjacent and construct a connectivity graph

- Possible cell decompositions:
 - Exact cell decomposition
 - Approximate cell decomposition:
 - Fixed cell decomposition
 - Adaptive cell decomposition

Graph Construction: Exact Cell Decomposition (2/4)

28 Graph Construction: Approximate Cell Decomposition (3/4)

Graph Construction: Adaptive Cell Decomposition (4/4)

30 Graph Construction: State Lattice Design (1/2)

Enforces edge feasibility

Offline: **Motion Model**

Online: Incremental Graph Constr.

31 Graph Construction: State Lattice Design (2/2)

State lattice encodes only kinematically feasible edges

32 Graph Search

- Methods
 - Breath First
 - Depth First
 - Dijkstra
 - A* and variants
 - D* and variants
 - •
- Discriminators
 - $f(n) = g(n) + \varepsilon h(n)$
 - g(n') = g(n) + c(n,n')

Graph Search Strategies: Breadth-First Search

34 Graph Search Strategies: Breadth-First Search

- Corresponds to a wavefront expansion on a 2D grid
- Use of a FIFO queue
 - First-found solution is optimal if all edges have equal costs
- Dijkstra's search is an "g(n)-sorted" HEAP variation of breadth first search
 - First-found solution is guaranteed to be optimal no matter the (positive!) cell cost

Fig. 1: NF1: put in each cell its L¹-distance from the goal position (used also in local path planning)

Graph Search Strategies: Depth-First Search

Memory efficient (fully explored subtrees can be deleted)

Graph Search Strategies: A* Search

- Similar to Dijkstra's algorithm, A* also uses a HEAP (but "f(n)-sorted")
- A* uses a heuristic function h(n) (often Euclidean distance)
- $f(n) = g(n) + \varepsilon h(n)$

A*: Choice of heuristic

Requirements

► Must not be over-estimating the real distance

Choices

- ► Euclidian distance
- ► Euclidian distance in 2D/3D for work-space in SE(2), SE(3).
- ▶ Distance L_{∞} , L_1 , ...
- ► Result for another planning in a lower-dimension space.
- **.**...

37 Graph Search Strategies: D* Search

- Similar to A* search, except that the search begins from the goal outward
- $f(n) = g(n) + \varepsilon h(n)$
- First pass is identical to A*
- Subsequent passes reuse information from previous searches

38 Graph Search Strategies: Randomized Search

- Most popular version is the rapidly exploring random tree (RRT)
 - Well suited for high-dimensional search spaces
 - Often produces highly suboptimal solutions

Rapidly Exploring Trees

Reference

► Lavalle: Chapter 5, Section 5.5: http://planning.cs.uiuc.edu/ch5.pdf

Questions

- ► How would you account for obstacles?
- ► Where would you introduce motion constraints?

Outline

State-space and obstacle representation

Global Motion Planning

Conclusions

Conclusions

How to choose your motion planner?

- ► Low-dimension, completion guarantees: discrete grid, graph search
- ► Motion constraints: lattice plus discrete grid (eventually RET)
- ► High-dimension: randomized search
- ► Tight corridors: hybrid methods

Note: these are generic rules of thumb, not necessary definitive for a given problem...

