

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIENCIAS EXATAS E NATURAIS FACULDADE DE COMPUTAÇÃO SISTEMAS DE INFORMAÇÃO

PEDRO PAULO LISBOA DE SOUSA

PROBABILIDADE E ESTATÍSTICA RESOLUÇÃO DAS QUESTÕES DA LISTA DE VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIENCIAS EXATAS E NATURAIS FACULDADE DE COMPUTAÇÃO SISTEMAS DE INFORMAÇÃO ESTUDANTE: Pedro Paulo Lisboa de Sousa/ 201711140038

TURMA: 2017

DATA: 04 de Dezembro de 2018

RESOLUÇÃO DAS QUESTÕES DA LISTA DE VARIÁVEIS ALEATÓRIAS

Resolução das questões da lista referentes à disciplina de Probabilidade e Estatística, do curso de Bacharelado em Sistemas de Informação, como complemento à 2ª avaliação.

Professor: Miguel Monteiro de Souza

Sumário

Variável Aleatória Discreta
Modelos de Probabilidade Discretos
Variável Aleatória Contínua
Modelos de Probabilidade Contínuos
Referências Bibliográficas

Variável Aleatória Discreta

- 1. Em um determinado condomínio residencial 30% das famílias não tem filhos, 40% tem 1 filho, 20% tem 2 filhos e 10% tem 3 filhos. Seja *X* o número de filhos de uma família sorteada ao acaso dentro desse condomínio residencial.
 - a) Determine a função de probabilidade e a distribuição acumulada de *X*.
 - b) Calcule a esperança e o desvio padrão de *X*.
- 2. Um indivíduo que possui um seguro de automóvel de uma determinada empresa é selecionado aleatoriamente. Seja *Y* o número de infrações ao código de trânsito para as quais o indivíduo foi reincidente nos últimos 3 anos. A função de de probabilidade de *Y* é:

ſ	Y	0	1	2	3
	P(Y = y)	0,60	0,25	0,10	0,05

- a) Calcule E(Y).
- b) Suponha que um indivíduo com Y infrações reincidentes incorra em uma multa de U100Y^2$. Calcule o valor esperado da multa.
- 5. Um dado é lançado duas vezes. Seja X a soma dos resultados. Calcule E(X).
- 6. Um homem possui 4 chaves em seu bolso. Como está escuro, ele não consegue ver qual a chave correta para abrir a porta de sua casa. Ele testa cada uma das chaves até encontrar a correta.
 - a) Defina um espaço amostral para esse experimento.
 - b) Defina a v.a. X = número de chaves experimentadas até conseguir abrir a porta (inclusive a chave correta). Quais são os valores de X? Qual é a função de probabilidade de X?
- 7. Seja uma v.a. X com fdp dada na tabela a seguir:

X	0	1	2	3	4	5
P(X=x)	0	p^2	p^2	p	p	p^2

- a) Encontre o valor de p.
- b) Calcule $P(X \ge 4)$ e P(X < 3).
- c) Calcule $P(|X-3| \ge 2)$.

Modelos de Probabilidade Discretos

- 1. Um atirador acerta na mosca do alvo, 20% dos tiros. Qual a probabilidade de ele acertar na mosca pela primeira vez no 10° tiro?
- 2. Joga-se um dado equilibrado. Qual é a probabilidade de serem necessários 10 lançamentos até a primeira ocorrência de um seis?
- 3. Joga-se um dado equilibrado. Qual é a probabilidade de serem necessários 10 lançamentos até a terceira ocorrência de um seis?
- 4. Um atirador acerta na mosca do alvo, 20% dos tiros. Se ele dá 10 tiros, qual a probabilidade de ele acertar na mosca no máximo 1 vez?
- 5. Entre os 16 programadores de uma empresa, 12 são do sexo masculino. A empresa decide sortear 5 programadores para fazer um curso avançado de programação. Qual é a probabilidade dos 5 sorteados serem do sexo masculino?
- 6. Uma central telefônica recebe uma média de 5 chamadas por minuto. Supondo que as chamadas que chegam constituam uma distribuição de Poisson, qual é a probabilidade de a central não receber nenhuma chamada em um minuto? e de receber no máximo 2 chamadas em 2 mintuos?
- 7. Seja *X* uma v.a. aleatória binomial (n, p) com n = 5, $p = \frac{1}{3}$. Calcule $E(X^2)$.
- 8. Em um certo tipo de fabricação de fita magnética, ocorrem cortes a uma taxa de um corte por 2000 pés. Qual é a probabilidade de que um rolo com comprimento de 4000 pés apresente no máximo dois cortes? Pelo menos dois cortes?
- A probabilidade de uma máquina produzir uma peça defeituosa em um dia é 0,1.
 - a) Qual a probabilidade de que, em 20 peças produzidas em um dia, exatamente 5 sejam defeituosas?
 - b) Qual a probabilidade de que a 10^a peça produzida em um dia seja a primeira defeituosa?
- 11. Certo curso de treinamento aumenta a produtividade de uma certa população de funcionários em 80% dos casos. Se 10 funcionários quaisquer participam deste curso, encontre a probabilidade de:
 - a) exatamente 7 funcionários aumentarem a produtividade;
 - b) pelo menos 3 funcionários não aumentarem a produtividade;
 - c) não mais que 8 funcionários aumentarem a produtividade.

3

Variável Aleatória Contínua

1. Seja *X* uma v.a. contínua cuja densidade de probabilidade é dada por:

$$f(x) = kx^2 \text{ se } 0 \le x \le 1.$$

- a) Determine o valor de k.
- b) Calcule $P(\frac{1}{4} < X < \frac{1}{2})$.
- c) Calcule E(X) e Var(X).
- 2. O tempo de vida útil, em anos, de um eletrodoméstico é uma variável aleatória com densidade dada por

$$f(x) = \frac{xe^{\frac{-x}{2}}}{4}, \ x > 0.$$

- a) Mostre que f(x) integra 1.
- b) Se o fabricante dá um tempo de garantia de seis meses para o produto, qual a proporção de aparelhos que devem usar essa garantia?
- 4. A percentagem de álcool (100X) em certo composto pode ser considerada uma variável aleatória com a seguinte fdp:

$$f(x) = 20x^3(1-x), 0 < x < 1.$$

- a) Estabeleça a FD de X.
- b) Calcule $P(X < \frac{2}{3})$.
- c) Suponha que o preço de venda desse composto dependa do conteúdo de álcool. Especificamente, se $\frac{1}{3} < X < \frac{2}{3}$, o composto se vende por C_1 dólares/galão, caso contrário ele se vende por C_2 dólares/galão. Se o custo C_3 dólares/galão, calcule a distribuição de probabilidade do lucro líquido por galão.

Modelos de Probabilidade Contínuos

- 1. Dada a v.a. X, uniforme em [5,10], calcule as probabilidades abaixo:
 - a) P(X < 7).
 - b) P(8 < X < 9).
 - c) P(X > 8,5).
 - d) P(|X-7,5| > 2).
- 3. Suponha que a duração de uma componente eletrônica possui distribuição exponencial com parâmetro $\lambda=1$, calcule:
 - a) A probabilidade de que a duração seja menor a 10.
 - b) A probabilidade de que a duração esteja entre 5 e 15.
 - c) O valor t tal que a probabilidade de que a duração seja maior a t assuma o valor 0.01.
- 4. As alturas de 10:000 alunos de um colégio têm distribuição aproximadamente normal, com média 170cm e desvio padrão 5cm. Qual o número esperado de alunos com altura superior a 165cm?
- 11. O saldo médio dos clientes de um banco é uma v.a. normal com média *R*\$2.000,00 e desvio padrão *R*\$250,00. Os clientes com os 10% maiores saldos médios recebem tratamento VIP, enquanto aqueles com os 5% menores saldos médios receberão propaganda extra para estimular maior movimentação da conta.
 - a) Quanto você precisa de saldo médio para se tornar um cliente VIP?
 - b) Abaixo de qual saldo médio o cliente receberá a propaganda extra?

Referências Bibliográficas

- [1] MEYER, P.L. *Probabilidade: Aplicações à Estatística*. 2 ed. Rio de Janeiro: Livros Técnicos e Científicos, 1983.
- [2] BUSSAB, W.; Morettin, P. Estatística básica. 5.ed. São Paulo: Saraiva, 2006. ISBN 9788502034979.