

ELECTRONIC DEVICES

EEE/ECE/INSTR F214

RAMESHACK - IC

Abhijit Pethe-Instructor

Chembian Thambidurai-Instructor

Objectives of EEE F214 / INSTR F214

- 1. Solid understanding of the basic physical phenomena
 - Carrier transport (drift and diffusion)
 - Carrier generation and recombination
 - Carrier injection and extraction
 - Minority versus majority carrier type devices
 - Energy band diagrams
- 2. Solid understanding of mainstream Integrated Microelectronic devices
 - •p-n diode
 - •BJT
 - MOSFET
 - Schottky diode

Course description

Text Book:

"Solid State Electronic Devices", B.G.Streetman & Sanjay Banerjee, 6th ed., PHI, 2006

Reference Books:

- (i) Introduction to Semiconductor Materials and Devices M.S.Tyagi, John Wiley, New York, 1991.
- (ii) Device Electronics for Integrated circuits R.S. Muller & T.I. Kamins 3rd Ed., John Wiley,
- (iii) Semiconductor Devices, Physics & Technology, S.M.Sze, 2nd ed., Wiley.

Course plan

	Lect. No.	Торіс	Learning objectives	Book reference
	1-3	-	Understanding of Crystal lattices, Crystalline and Amorphous solids, Different techniques of crystal growing.	
	4-6	Elementary quantum mechanics	The uncertainty principle, Schroedinger wave equation, step potential, potential well, and Tunneling.	
	7-10	Electrical conduction in solids and statistical mechanics	Periodic potential, allowed and forbidden energy bands, Density of states, Direct and indirect band gap semiconductors, effective mass. Statistical distributions, Fermi-Dirac distribution function, Fermi energy.	
	10-11		Fermi level, equilibrium carrier concentrations, mobility, Hall effect	SB 3.3 – 3.5

12-15	Excess carriers in	Luminescence, Einstein's relation, continuity	SB 4.1 – 4.4
	semiconductors	equation, Haynes-Shockley experiment	
15-21	Junctions	pn junction, IV characteristics, breakdown	
		diodes, Schottky barriers, Ohmic contacts	5.6-5.7
22-27	Field Effect Transistors	Junction FET, MISFET, MOS capacitor, MOSFET	SB 6.2 – 6.5
28-33	Bipolar junction transistors	BJT operations, amplification, carrier distribution, I-V characteristics etc	SB 7.1,7.2, 7 - 7.7.4, 7.7.6 7.8.3
34-37	Optoelectronic Devices	Photodiodes, solar cells, LEDs and Lasers, Semiconductor Lasers	SB 8.1 – 8.4
37-38	High frequency and high power devices	Tunnels Diodes, IMPATT Diodes, GUNN Diodes, p-n-p-n Diode, SCR diode, IGBT	SB 10.1 – 10.
38-40	Compound semiconductor devices	Compound semiconductors; HBT and HEMT	Lecture notes

Evaluation Scheme:

No.	Component	Duration	Marks	Date
1	Mid-Sem (Closed book)	90 min	30%	09/10/18, Tuesday 11:00 AM - 12:30 PM
2	Assignments/Tests/ Tutorials *		30%	Regular (open Book /Closed book)
3	Comprehensive exam (Closed book)	3 hours	40%	03/12/2018 2:00 pm - 5:00 pm

^{*} It is compulsory to attend all the classes. Regular Attendance will be taken during Tutorial classes. Around 6% to 9% weightege will be given for attendance. In Addition to this surprise Quizes also will be conducted.

6. Tutorials:

Assistance will be provided in solving the problems asked in tutorial sheets.

7. Make-up Policy:

Make-up will be given only for Medical cases, requiring hospitalization.

8. Chamber Consultation hours:

Ramesha C K

A 401/6

Tue

4:00 - 5:00 pm

What is Electronics?

What is Electronic Devices?

Sir John Ambrose Fleming (1849–1945) was an English electrical engineer and physicist, known primarily for inventing in 1904 the first **vacuum tube**. It was also called a thermionic valve, **vacuum** diode, kenotron, thermionic **tube**, or Fleming valve.

Bardeen, Brattain, and Shockley **invented** in 1947 was the first point-contact **transistor**.

In 1959, Dawon Kahng and Martin M. (John) Atalla at Bell Labs invented the metal—oxide—semiconductor field-effect transistor (MOSFET) as an offshoot to the patented FET design.

Today's Electronic Devices

020222_1335_0011 www.fotosearch.com

Semiconductor Material

- Semiconductors are a special class of elements having a conductivity between that of a good conductor and that of an insulator.
- They are fall into two classes: single crystal and compound
- Single crystal e.g Ge and Si
- Compound e.g GaAs , CdS, GaN and GaAsP

Importance Semiconductor Devices

These devices enhance

- Performance
- Reliability
- Cost effectiveness of

Energy Systems

Generate, distribute and regulate energy information

Information Systems

store, process and communicate

Course Objective

Terminal Characteristics

DC I-V

AC I-V

Transient

Material Parameters

Geometry

Doping

Energy gap

Mobility

Life time

Dielectric constant

Ambient conditions:

Temperature

illumination

Today's Electronic Devices

Front Back

INTEL Pentium IV processor

Take the cover off a microprocessor. What do you see?

- •A thick web of interconnects, many levels deep.
- High density of very small transistors.

Evolution of Microprocesor Packaging

1971

2001 onwards

PC Motherboard

Keys to success: I. MOSFET

Metal-Oxide-Semiconductor Field-Effect Transistor

MOSFET = switch

Keys to success: II. MOSFET scaling

MOSFET performance improves as size is decreased:

- Shorter switching time
- Lower power consumption

Keys to success: III. CMOS

CMOS: Complementary Metal-Oxide-Semiconductor

- "Complementary" switch activates with V<0.
- Logic without DC power consumption.

SEMICONDUCTORS: They are here, there, and everywhere

Computers, palm pilots, laptops, Silicon (Si) MOSFETs, ICs, CMOS anything "intelligent"

Cell phones, pagers

Si ICs, GaAs FETs, BJTs

CD players

AlGaAs and InGaP laser diodes, Si photodiodes

TV remotes, mobile terminals

Light emitting diodes

Satellite dishes

InGaAs MMICs

Fiber networks

InGaAsP laser diodes, pin photodiodes

 Traffic signals, car taillights GaN LEDs (green, blue)
InGaAsP LEDs (red, amber)

Air bags

Si MEMs, Si Ics