Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Departement Informatik Wintersession 2021

Prof. Ueli Maurer

Exam Diskrete Mathematik

5. Februar 2021

Hinweise:

- 1.) Erlaubte Hilfsmittel: Selbstverfasste, handgeschriebene Notizen auf 6 A4-Seiten. Es ist erlaubt ein Wörterbuch zu benutzen. Es sind keine weiteren Hilfsmittel erlaubt (auch kein Taschenrechner).
- 2.) Die Prüfung besteht aus 4 Aufgaben mit total 115 Punkten. Die Aufgaben sind in drei Schwierigkeitsstufen von (\star) bis $(\star \star \star)$ eingeteilt.
- 3.) Die Aufgaben sind direkt auf dem Prüfungsblatt zu lösen. Bei Platzmangel befinden sich am Ende der Prüfung vier Zusatzblätter. Weitere Zusatzblätter können während der Prüfung bei uns bezogen werden. Nur von uns verteilte Zusatzblätter sind erlaubt.
- 4.) Bitte verwenden Sie einen dokumentenechten Stift (also keinen Bleistift) und nicht die Farben Rot oder Grün.
- 5.) Bitte legen Sie die Legi für die Ausweiskontrolle auf den Tisch.
- 6.) Sie dürfen bis 10 Minuten vor Ende der Prüfung vorzeitig abgeben und den Raum still verlassen.
- 7.) Mobiltelefone und Smartwatches müssen komplett ausgeschaltet sein (kein Standby) und dürfen nicht am Körper getragen werden.

Prüfungs-Nr.	
StudNr.:	
Name:	
Unterschrift:	

Korrektur:

		Punkte	Unterschrift	
Aufgabe	Max	Erreicht	Korr.	Ver.
1	32			
2	18			
3	30			
4	35			
Total	115			

Task 1. Sets, Relations and Functions	• • • • • • • • • • • • •	32 Points
a) Short Questions. Each correct answer gives one point. No justificat	tion is required	. (10 Points)
1.) List the elements of the set $\{0,1\} \times \{(0,1)\}$.		
2.) List the elements of the set $(\varnothing \cup \{\varnothing\}) \cap \{\varnothing, \{\varnothing\}\}$.		
3.) How many elements has the set $\mathcal{P}(\{\varnothing, \{\varnothing\}, \varnothing\} \cup \{\{\varnothing\}, \{\{\varnothing\}\}\}\})$? 4.) For any set A and any relation ρ on A we have		
$id_A \subseteq ho \iff id_A \subseteq \widehat{ ho}.$	□ True	□ False
5.) The composition of two symmetric relations is symmetric.6.) The union of two transitive relations is transitive.7.) The complement of an irreflexive relation is reflexive.	□ True □ True □ True	□ False □ False □ False
8.) Find a set A and a function $f: A \to A$ such that f is injective by		
9.) The power set of the set of all prime numbers is countable.	□ True	□ False
10.) For all $n \in \mathbb{N}$, the set $(\mathbb{Q}[x])^n$ is countable.	□ True	□ False

c)	$(\star \star)$ Let $(A; \preceq)$ be a poset and define the relation \prec on A by				
	$a \prec b \iff a \leq b \land a \neq b$				
	for all $(a, b) \in A \times A$. Prove that \prec is transitive.	(5 Points			

d)	$A \stackrel{\mathrm{d}}{=}$	want to define the integers \mathbb{Z} based on the natural numbers \mathbb{N} . In order to do the $\mathbb{N} \times \mathbb{N}$ and think of an element $(a,b) \in A$ as a representation of the integer therence of a and b .	
	1.)	(\star) Find an equivalence relation \sim on A which captures that two representations c to the same integer, i.e., allowing us to define	orrespond
		$\mathbb{Z} \stackrel{\mathrm{def}}{=} A/\!\!\sim .$	
		Use only addition (and no minus sign $-$) in \mathbb{N} . No justification is required.	wing us to define $\mathbb{Z} \stackrel{\mathrm{def}}{=} A/\!\!\sim .$ inus sign $-$) in \mathbb{N} . No justification is required. (1 Point) presentations of integers as a function $sum : A^2 \to A$, only using $-$) in \mathbb{N} . No justification is required. (1 Point) is called θ -consistent for an equivalence relation θ on B if B'_1 and B'_2 and B'_2 B'_2 B'_3 B'_4 B'_4 and B'_4 B'_5 B'_6
	2.)	(*) Define the sum of two representations of integers as a function sum : $A^2 \to A$, addition (and no minus sign $-$) in \mathbb{N} . No justification is required.	
	3.)	$(\star \star)$ A function $f: B^2 \to B$ is called θ -consistent for an equivalence relation θ on	B if
		$(b_1 \theta b'_1 \text{ and } b_2 \theta b'_2) \implies f(b_1, b_2) \theta f(b'_1, b'_2)$	
		is true for all $b_1, b_2, b'_1, b'_2 \in B$.	
		Prove that sum is \sim -consistent (for the choices of \sim and sum of the previous subtas sure that no minus sign — occurs in your proof.	

$S = \left\{ a \in \mathbb{N}^{\infty} \mid \forall i \in \mathbb{N} \ \exists j \in \mathbb{N} \ \left(i < j \land a_j = 2^{a_i} \right) \right\}$						
is countable. Hint: Recall tha and any $i \in \mathbb{N}$, a Hint: The seque	a_i is the natura	l number at th	e i-th position		(7 Poin preover, for any $a \in \mathbb{I}$	

	2. Number Theory	• • • • • • • • • • • • • • • • • • • •	10 1 Offics
Sho	ort Questions. Each correct answer gives one point. No justif	ication is required.	(5 Points)
1.)	Compute $R_{31}(31313133333333333333333333333333333$		
2.)	Compute $R_{12345}(12344^{(1234512345^{1234512345})})$.		
-		□ True	□ False
` ′			(1 Point)
2.)	Find the secret key d that corresponds to the public key (n,e)).	(2 Points)
3.)	The ciphertext $y = 7$ was encrypted with the public key (n, e)	. Decrypt it.	(1 Point)
gene	erated by $g = 2$. Alice sends the message $y_A = 8$. They agr		
Cal	culation. You will get full points if the answer above is correct.	Otherwise, you may	get partial
	1.) 2.) 3.) 4.) 5.) (*) 1.) 2.) What Call	 Compute R₃₁(313131033³¹³¹³¹³¹³¹³¹⁸). Compute R₁₂₃₄₅(12344⁽¹²³⁴⁵¹²³⁴⁵¹²³⁴⁵⁾). Compute gcd(284, 384). Find x ∈ Z₁₃ such that 4x ≡₁₃ 1. There exists x ∈ Z₁₃₇₈₇₅ such that 256x ≡₁₃₇₈₇₅ 1. We have generated the RSA public key (n, e) = (15, 3). Encrypt the message m = 4 under the public key (n, e). Find the secret key d that corresponds to the public key (n, e). Find the secret key d that corresponds to the public key (n, e). Alice and Bob execute the Diffie-Hellman protocol using the generated by g = 2. Alice sends the message y_A = 8. They agr. What message did Bob send? 	 2.) Compute R₁₂₃₄₅(12344⁽¹²³⁴⁵¹²³⁴⁵¹²³⁴⁵¹²³⁴⁵⁾). 3.) Compute gcd(284, 384). 4.) Find x ∈ Z₁₃ such that 4x ≡₁₃ 1. 5.) There exists x ∈ Z₁₃₇₈₇₅ such that 256x ≡₁₃₇₈₇₅ 1. □ True (*) We have generated the RSA public key (n, e) = (15, 3). 1.) Encrypt the message m = 4 under the public key (n, e). 2.) Find the secret key d that corresponds to the public key (n, e). 3.) The ciphertext y = 7 was encrypted with the public key (n, e). Decrypt it. (*) Alice and Bob execute the Diffie-Hellman protocol using the subgroup of ⟨Z₁₅; generated by g = 2. Alice sends the message y_A = 8. They agree on the secret key what message did Bob send? Calculation. You will get full points if the answer above is correct. Otherwise, you may

f(x)	$f(x) = (R_m(x), R_n(x))$ for all $x \in \mathbb{Z}_{mn}$.			
Prove that if f is injective then g	$\gcd(m,n)=1.$		(6 Points	

Ta	sk 3	3. Algebra	$\mathbf{t}\mathbf{s}$
a)		Port Questions. Each correct answer gives one point. No justification is required. (5 Point Every group of order 17 has 16 generators.	ĺ
	ŕ		156
		How many zerodivisors has \mathbb{Z}_{91} ? (Hint: $91 = 7 \cdot 13$)	
	3.)	Find a field with 27 elements.	_
	4.)	Compute $(2x + 2) \cdot (2x + 1)$ in $\mathbb{Z}_3[x]_{x^2+1}$.	
	5.)	List all irreducible monic polynomials of degree 2 in $\mathbb{Z}_2[x]$.	
b)		Consider the algebra $\langle \mathbb{Z}; \star \rangle$ where \star is defined by $a \star b \stackrel{\text{def}}{=} a^3 + b^3$ for any $a, b \in \mathbb{Z}$. Decide ther $\langle \mathbb{Z}; \star \rangle$ is a monoid, a group or neither. Prove your answer. (3 Point	

t	$\langle R; +, -, 0, \cdot, 1 \rangle$ be a ring and let $a, b \in R$. Use only the ring axioms and the fact that $= 0$ for all $x \in R$ to prove that	c)
	(-a)b = a(-b).	
)	(6 Points)	
1		

	(4 Po

h remainders.	(6 Points

Task 4. Logic
a) Short Questions. Each correct answer gives one point. No justification is required. (3 Points)
1.) The expression $(\forall x P(x)) \lor (\exists x \neg P(x))$ is a mathematical statement. \Box True \Box False
2.) The following derivation rule is sound: $\{F, \neg F\} \vdash G$. \Box True \Box False 3.) Any calculus with the following derivation rule is complete: $\varnothing \vdash F$. \Box True \Box False
b) (*) Consider the formula $\exists x \ ((\forall y \ Q(x,y)) \to P(z)) \land Q(y,x)$. Give an equivalent formula in prenex form. No justification is required. (2 Points)
c) (*) Let $S = \{2, 3, 5, 7, 9\}$ and $P = \mathbb{N} \setminus \{0, 1\}$. Moreover, define for all $s \in S$ and all $p \in P$
$\tau(s) = 1 \iff s \text{ is not prime}, \text{and} \phi(s, p) = 1 \iff p^2 \mid s.$
Is the proof system (S, P, τ, ϕ) sound? Is it complete? Justify both of your answers. (4 Points)

d) (*) Mark each step that is wrong in the following derivation in the resolution calculus. (2 Points)

e) (*) Prove or disprove: If F and G are formulas such that $\neg F$ and $F \lor G$ are satisfiable, then G is satisfiable. (3 Points)

(*) Prove that $(\neg C \land (A \rightarrow B)) \lor C \equiv A$	\rightarrow $(B \lor C)$ by using only the following rule
1.) $F \to G \equiv \neg F \lor G$	$10.) \ \neg \neg F \equiv F$
2.) $F \wedge F \equiv F$	11.) $\neg (F \land G) \equiv \neg F \lor \neg G$
3.) $F \lor F \equiv F$	12.) $\neg (F \lor G) \equiv \neg F \land \neg G$
$4.) \ F \wedge G \equiv G \wedge F$	13.) $F \lor \top \equiv \top$
5.) $F \lor G \equiv G \lor F$	14.) $F \wedge \top \equiv F$
6.) $(F \wedge G) \wedge H \equiv F \wedge (G \wedge H)$	15.) $F \lor \bot \equiv F$
7.) $(F \vee G) \vee H \equiv F \vee (G \vee H)$	16.) $F \wedge \bot \equiv \bot$
8.) $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$	17.) $F \vee \neg F \equiv \top$
9.) $F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$	18.) $F \wedge \neg F \equiv \bot$
In each step, syntactically apply exactly one rule Within one step, do not apply a rule multiple time. Example step: $\neg A \lor ((C \land B) \lor \neg B) \stackrel{7.)}{\equiv} (\neg A \lor ((C \land B) \lor \neg B))$	mes.
Example step: $\neg A \lor ((C \land B) \lor \neg B) \stackrel{\tau.)}{=} (\neg A \lor \neg B)$	$(C \wedge B)) \vee \neg B.$ (8 Points

{1	$F \to G, F$ \varnothing \varnothing \varnothing	\vdash_{R_1} \vdash_{R_2} \vdash_{R_3} \vdash_{R_4}	G $F \to (G \to F)$ $(\neg F \to \neg G) \to (G \to F)$ $(F \to (G \to H)) \to ((F \to G) \to (F \to H))$	
Formally derive A	$\rightarrow A$ from	Ø in th	ne calculus.	(6 Points)

g) (* *) Consider the calculus consisting of the following four derivation rules:

oredicate logic.		(7 Poi