

 $P_{x,y}(t) = e^{-\lambda t} \frac{(\lambda t)^{y-x}}{(y-x)!}, \quad x,y \in \mathcal{S}, t \geq 0.$

prove pp is CTMC

forward/backward eq

$$P'(t) = QP(t), \quad t \ge 0,$$
 $P'(t) = P(t)Q, \quad t \ge 0,$ $P(0) = I,$ component wise

 $P(0)=I, \qquad \text{component wise}$ $P'_{x,y}(t)=\sum_{z\in \mathscr{S}}Q_{x,z}P_{z,y}(t), \quad x,y\in \mathscr{S}, t\geq 0$ $P_{x,y}'(t) = \sum P_{x,z}(t)Q_{z,y}, \quad x,y \in \mathcal{S}, t \geq 0.$

 $A d \times d$ matrix A is said to be diagonalizable $A = UDU^{-1}$ Observe that if $D = diag(\lambda_1, ..., \lambda_d)$ $\exp(D) = diag(e^{\lambda_1}, \dots, e^{\lambda_d}).$

Let A he a d x d matrix

The matrix exponential of A, which is the $d \times d$ matrix denoted as e^A or $\exp(A)$, is defined as

Then the transition function for $\{X_t\}$ is given by

 $P(t) = \exp(Qt)$. $A = UDU^{-1}$,

 $\exp(A) = U \exp(D) U^{-1}$

The transition matrix of the em bedded chain associated with $\{X_t\}$ is given by $P_{x,y} = \begin{cases} \frac{q_{x,y}}{\sum\limits_{z \neq x} q_{x,z}}, & x \neq y \end{cases}$

q is element of Q matrix

 $T_1 \doteq \inf\{t \geq 0 : X_t \neq X_0\},\$ ransition. Similarly, let $T_2 \doteq \inf\{t > T_1 : X_t \neq X_{T_1}\},\$ $T_n \doteq \inf\{t > T_{n-1} : X_t \neq X_{T_{n-1}}\}\$

embeded

Let
$$\{E_m\}^{itd}_{\sim}$$
 Exp(λ) be independent of X – Geom(p), and define $S_m \doteq \sum_{k=1}^m E_k$.

Then $S_X \sim Exp(\lambda p)$.

$$P \doteq I + \frac{Q}{\lambda}.$$

$$P(t) = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} P^n, \quad t \ge 0.$$

subordinated to a Poisson process.

$$Q \doteq \lambda(P-I)$$
,

a DTMC w/ transition matrix P can simulate CTMC using rate lambda

method of chose M large enough

Proposition 3.32. Let $\{X_t\}$ be a CTMC on $\mathcal{S} = \{1, ..., d\}$ with generator matrix Q. Let $\lambda \doteq \max_{1 \leq x \leq d} |q_{x,x}|,$

and define

$$P \doteq I + \frac{Q}{\lambda}$$
.

For each $M \in \mathbb{N}$, let

$$\hat{P}[M](t) = \sum_{n=0}^{M} e^{-\lambda t} \frac{(\lambda t)^n}{n!} P^n, \quad t \ge 0.$$

Fix $\epsilon > 0$, and let $N^t \sim PP(\lambda t)$. If we choose $M \in \mathbb{N}$ large enough so that

then, for all $s \in [0, t]$,

$$|P_{x,y}(s)-\hat{P}[M]_{x,y}(s)|\leq \epsilon,\quad x,y\in\mathcal{S}.$$

Definition 3.36. Let $\{X_t\}$ be a CTMC on $\mathcal S$ with transition function P. A probability distribution μ on $\mathcal S$ is the **limiting distribution** of $\{X_n\}$ if, for all $x,y\in \mathcal S$,

$$\lim_{t\to\infty}P_{x,y}(t)=\mu_y.$$

Definition 3.37. ALet $\{X_t\}$ be a CTMC on $\mathscr S$ with transition function P. A probability distribution π on $\mathcal S$ is the **stationary distribution** of $\{X_n\}$ if

$$\pi = \pi P(t), \quad t \ge 0.$$

Equivalently, π is a stationary distribution for $\{X_t\}$ if for all $x \in \mathcal{S}$ and $t \geq 0$,

$$\pi_x = \sum_{y \in \mathcal{C}} \pi_y P_{y,x}(t)$$

 $\pi_x = \sum_{y \in \mathcal{G}} \pi_y P_{y,x}(t).$ **Definition 3.38.** Let $\{X_t\}$ be a CTMC on \mathcal{S} with transition function P. We say that a collection of states $\mathscr{C} \subseteq \mathscr{S}$ is a **communication class** if for all $x, y \in \mathscr{S}$, there are $s, t \ge 0$ such that

$$P_{x,y}(s) > 0$$
, $P_{y,x}(s) > 0$.

A communication class $\mathscr C$ is **closed** if for all $y \in \mathscr S$ such that there is some $x \in \mathscr C$ and $t \ge 0$ such that $P_{x,y}(t) > 0$, we have $y \in \mathcal{C}$. We say that $\{X_t\}$ is **irreducible** if for all $x, y \in \mathcal{S}$, there is some t > 0such that $P_{x,y}(t) > 0$. Equivalently, $\{X_t\}$ is irreducible if and only if $\mathscr S$ consists of a single closed communication class.

Theorem 3.41. Consider a CTMC on $\mathcal S$ with generator matrix Q. A probability distribution π on \mathcal{S} is a stationary distribution for the chain if and only if

$$\pi \Omega = 0$$

where $\mathbf{0} \in \mathbb{R}^{|\mathcal{S}|}$ is a vector of zeroes. Coordinate-wise this says that π is a stationary distribution if and only if for each $x \in \mathcal{S}$,

$$\sum_{y\in\mathcal{S}}\pi_yQ_{y,x}=0.$$

Theorem 3.40. Let $\{X_t\}$ be a CTMC on a finite state space $\mathscr S$ with transition function P. If $\{X_t\}$ is irreducible, then there is a unique stationary distribution π , which is also a limiting distribution. In

particular, for each $x, y \in \mathcal{S}$,

$$\lim_{t\to\infty}P_{x,y}(t)=\pi_y,$$

or, equivalently,

$$\lim_{t\to\infty}P(t)=\Pi$$

where Π is an $|\mathcal{S}| \times |\mathcal{S}|$ matrix with entries given by

$$\Pi_{x,y} = \pi_y, \quad x, y \in \mathcal{S}.$$

Additionally, as with DTMCs, the unique stationary distribution describes, in the long term, the proportion of time that the chain spends in each state.

Definition 2.21. Let $\{X_t\}_{t\geq 0}$ be a stochastic process. For $t_1 < t_2$, the quantity $X_{t_2} - X_{t_1}$ is referred to as the **increment** of $\{X_t\}$ over the interval $\{t_1,t_2\}$. We say that $\{X_t\}$ has **stationary increments** if for all $s_1 < s_2$ and $t_1 < t_2$ such that $s_2 - s_1 = t_2 - t_1$, we have

$$X_{t_2} - X_{t_1} \stackrel{d}{=} X_{s_2} - X_{s_1}.$$

We saw that $\{X_t\}$ has independent increments if for all $t_1 < t_2 \le t_3 < t_4$, the random variables $X_{t_2} - X_{t_1}$ and $X_{t_4} - X_{t_5}$ are independent.