COMP2610/COMP6261 Tutorial 8 Sample Solutions

Tutorial 8: Source Coding

Young Lee and Bob Williamson **Tutors**: Debashish Chakraborty and Zakaria Mhammedi

Week 10 (9th – 13th Oct), Semester 2, 2017

1. (a) We have

$$H(X) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{31}{128}\log\frac{31}{128} - \frac{1}{128}\log\frac{1}{128}$$

= 1.55.

(b) The expected code length is

$$L(C, X) = \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{31}{128} \times 3 + \frac{1}{128} \times 3 = \frac{7}{4}$$

(c) The code lengths for X are

$$\lceil \log_2 \frac{1}{1/2} \rceil = 1$$
, $\lceil \log_2 \frac{1}{1/4} \rceil = 2$, $\lceil \log_2 \frac{31}{1/128} \rceil = 3$, and $\lceil \log_2 \frac{1}{1/128} \rceil = 7$.

An example of a prefix Shannon code for *X* would be:

$$C_S = \{0, 10, 110, 1110001\}$$

The expected code length would be

$$L(C_S, X) = \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{31}{128} \times 3 + \frac{1}{128} \times 7 = 1.78125.$$

(d) We have

$$q_1 = 2^{-1} = \frac{1}{2}, \ q_2 = 2^{-2} = \frac{1}{4}, \ q_3 = 2^{-3} = \frac{1}{8}, \ q_4 = 2^{-3} = \frac{1}{8}$$

(And Z = 1)

(e) By the definition of $D(\mathbf{p}||\mathbf{q})$ we have

$$D(\mathbf{p}||\mathbf{q}) = \sum_{i=1}^{4} p_i \log \frac{p_i}{q_i}$$

$$= \frac{1}{2} \times \log_2 \frac{1/2}{1/2} + \frac{1}{4} \times \log_2 \frac{1/4}{1/4} + \frac{31}{128} \times \log_2 \frac{31/128}{1/8} + \frac{1}{128} \times \log_2 \frac{1/128}{1/8}$$

$$= \frac{31}{128} \times \log_2 \frac{31}{16} + \frac{1}{128} \times 4$$

$$= 0.200.$$

So we have $D(\mathbf{p}||\mathbf{q}) = L(C,X) - H(X)$ as we would expect. We also note that $L(C_S,X)$ is greater (i.e. the code is worse) than C.

- (f) The steps of Huffman coding would be:
 - from set of symbols $\{x_1, x_2, x_3, x_4\}$ with probabilities $\{1/2, 1/4, 31/128, 1/128\}$, merge the two least likely symbols x_3 and x_4 . The new meta-symbol x_3x_4 has probability 1/4.
 - from set of symbols $\{x_1, x_2, x_3x_4\}$ with probabilities $\{1/2, 1/4, 1/4\}$, merge the two least likely symbols x_2 and x_3x_4 . The new meta-symbol $x_2x_3x_4$ has probability 1/2.
 - from set of symbols $\{x_1, x_2x_3x_4\}$ with probabilities $\{1/2, 1/2\}$, merge the two least likely symbols x_1 and $x_2x_3x_4$. The new meta-symbol $x_1x_2x_3x_4$ has probability 1, so we stop.

We then assign a bit for each merge step above. This is summarised below. We then read off the resulting codes by tracing the path from the final meta-symbol to each original symbol. This gives the code $C = \{0, 10, 110, 111\}$. (Note, we could equally derive $C = C_H$ depending on how we labelled the penultimate merge operation.)

Figure 1: Huffman code.

- 2. (a) We know $4 = 2^2$ and $0.25 = 2^{-2}$, so $4.25_{10} = 10.01_2$.
 - (b) One way to proceed would be to first deal with the part before the decimal point: this is $8=2^3$. For the part after the decimal point, we multiply $0.1 \cdot 2 = 0.2, 0.2 \cdot 2 = 0.4, 0.4 \cdot 2 = 0.8, 0.8 \cdot 2 = 1.6, 0.6 \cdot 2 = 0.2, \dots$, where in each step we multiply using the decimal part of the previous step. If the result of the multiplication is greater than 1, there is a bit of 1 in the corresponding power of 2. In this case we note that we end up in an infinite loop as we get back to multiplying $0.2 \cdot 2$. So we conclude the representation is 1000.00011_2 . Here is another way to show it. We know $8=2^3$. Now, $\log_2 0.1 = -3.3219 < -3$, so the first three bits past the decimal point are zero. At this stage we can reduce the problem to finding the binary expansion for $0.1-2^{-4}$. Now, $\log_2(0.1-2^{-4})=-4.7370 < -4$, so the fifth bit is the next to be activated. Repeating, we have $\log_2(0.1-2^{-4}-2^{-5})=-7.3219 < -7$, so the next bit to be active is the 8th. In fact, we can observe that $0.1-2^{-4}-2^{-5}=0.0063=\frac{0.1}{16}$, so that we are effectively recomputing the binary expansion of 0.1, with digits shifted by $\log_2 16=4$ places. Thus, the representation will be 1000.00011_2 . To verify this, note that

$$\sum_{k=1}^{\infty} \frac{1}{2^{4k}} + \frac{1}{2^{4k+1}} = \sum_{k=1}^{\infty} \frac{1}{2^{4k}} \cdot \frac{3}{2} = \sum_{k=1}^{\infty} \frac{1}{16^k} \cdot \frac{3}{2} = \frac{3}{2 \cdot 15} = \frac{1}{10}.$$

3. Suppose $\mathcal{A}_X = \{x_1, \dots, x_4\}$ where $x_1 = a$ and so on. We need to compute the cumulative probabilities F(x), the modified probabilities $\bar{F}(x)$, and truncate the binary expansions of the latter to the first $\ell(x) = \lceil \log_2 \frac{1}{p(x)} \rceil + 1$ bits. These are summarised in the table below.

Evidently, removing the last bit from every codeword means the result will no longer be a prefix code (since we have e.g. 1 and 110 as two codewords, with the first a prefix of the second).

To decode 10001, we compute the codeword intervals starting from the first bit:

• 1 has interval $[0.1, 1.0)_2 = [0.5, 1)_{10}$. This overlaps with the intervals for x_2, x_3, x_4 , so we can't conclude anything.

2

i	$p(x_i)$	$F(x_i)$	$[F(x_{i-1}, F(x_i))]$	$\bar{F}(x_i)$	$\bar{F}(x_i)_2$	$\ell(x_i)$	Codeword
1	0.25	0.25	[0, 0.25)	0.125	0.001	3	001
2	0.5	0.75	[0.25, 0.75)	0.5	0.10	2	10
3	0.125	0.875	[0.75, 0.875)	0.8125	0.1101	4	1101
4	0.125	1.0	[0.875, 1.0)	0.9375	0.1111	4	1111

Table 1: Shannon-Fano-Elias code.

- 10 has interval $[0.10, 0.11)_2 = [0.5, 0.75)_{10}$. This is contained in the interval for x_2 (viz. [0.25, 0.75)), so we can conclude the first symbol is x_2 . At this stage we can forget about the first two bits, since the SFE code for a sequence is just based on the extension i.e. we just concatenate the codewords for the individual outcomes.
- 0 has interval $[0.0, 0.1)_2 = [0, 0.5)_{10}$. This overlaps with the intervals for x_1, x_2 , so we can't conclude anything.
- 00 has interval $[0.00, 0.01)_2 = [0, 0.25)_{10}$. This is exactly the interval for x_1 , so we can conclude that the second symbol is x_1 . We can compute the length of the interval for x_1 on the fly (though we already know it is 3), and conclude that there is one redundant bit we can skip over.
- 4. (a) We assume fixed probabilities.
 - We start with the symbol intervals as computed in the previous question:

$$[0.0000, 0.2500), [0.2500, 0.7500), [0.7500, 0.8750), [0.8750, 1.0000).$$

• The first symbol is a c. So, we slice up the interval [0.7500, 0.8750). Since we are using the same probabilities in every iteration, we end up with:

$$[0.7500, 0.7812), [0.7812, 0.8438), [0.8438, 0.8594), [0.8594, 0.8750).$$

- This is the end of the stream. So, we end up in the final interval, viz. [0.8594, 0.8750). The midpoint of this interval is 0.86718750. This has binary representation 0.1101111. The probability of c is $(1/8)(1/8) \approx 0.0156$. The number of bits to output is $\lceil \log_2 1/0.00156 \rceil + 1 = 7$. So, the codeword is 1101111.
- (b) We assume fixed probabilities.
 - We start with the symbol intervals as computed in the previous part:

```
[0.0000, 0.2500), [0.2500, 0.7500), [0.7500, 0.8750), [0.8750, 1.0000).
```

• The first symbol is a c. So, we slice up the interval [0.7500, 0.8750). Since we are using the same probabilities in every iteration, as per the previous part, we end up with:

```
[0.7500, 0.7812), [0.7812, 0.8438), [0.8438, 0.8594), [0.8594, 0.8750).
```

• The second symbol is a a. So, we slice up the interval [0.7500, 0.7812). Since we are using the same probabilities in every iteration, we end up with:

```
[0.7500, 0.7578), [0.7578, 0.7734), [0.7734, 0.7773), [0.7773, 0.7812).
```

• This is the end of the stream. So, we end up in the final interval, viz. [0.7773, 0.7812). The midpoint of this interval is 0.77929688. This has binary representation 0.1100011110. The probability of ca \Box is $(1/4)(1/8)(1/8) \approx 0.0039$. The number of bits to output is $\lceil \log_2 1/0.0039 \rceil + 1 = 9$. So, the codeword is 110001111.

The codeword for c isn't a prefix for that for ca. So, the code isn't just computing a codeword for each symbol and concatenating them (as we have done for Huffman and SFE codes). Arithmetic coding implicitly associates every sequence with its own codeword.

- (c) We assume adaptive probabilities.
 - We know $p(\Box) = 0.25$. From the virtual counts, we have $p(\cdot|\epsilon) = \frac{0+1}{0+3} \cdot (1-p(\Box)) = 0.25$, since at this stage we have not observed anything. So, we start off with the intervals

[0.0000, 0.2500), [0.2500, 0.5000), [0.5000, 0.7500), [0.7500, 1.0000).

• The first symbol is c. So, we slice up the interval [0.5, 0.75). From the virtual counts, we have $p(\cdot|\mathbf{c}) = (\frac{0+1}{1+3}, \frac{0+1}{1+3}, \frac{1+1}{1+3}) \cdot (1-p(\square)) = (1/4, 1/4, 1/2) \cdot (3/4) = (3/16, 3/16, 3/8)$. So, we have the intervals

$$[0.5000, 0.5469), [0.5469, 0.5938), [0.5938, 0.6875), [0.6875, 0.7500)$$

remembering that we need to scale the probabilities by the length of the interval, viz. 0.75-0.5=0.25.

• The next symbol is a. So, we slice up the interval [0.5, 0.5469). From the virtual counts, we have $p(\cdot|\mathsf{ca}) = (\frac{1+1}{2+3}, \frac{0+1}{2+3}, \frac{1+1}{2+3}) \cdot (1-p(\square)) = (2/5, 1/5, 2/5) \cdot (3/4) = (3/10, 3/20, 3/10)$. So, we have the intervals

$$[0.5000, 0.5141), [0.5141, 0.5211), [0.5211, 0.5352), [0.5352, 0.5469)$$

remembering that we need to scale the probabilities by the length of the interval, viz. $0.5469 - 0.5352 \approx 0.0117$.

• This is the end of the stream. So, we end up with the last interval, [0.5352, 0.5469). The midpoint is 0.54101562. This has representation 0.100010101. The probability of ca \square is $(1/4)(3/16)(1/4) \approx 0.0177$. The number of bits to output is $\lceil \log_2(1/0.0177) \rceil + 1 = 8$. So, the codeword is 10001010.