CHAPITRE OM7 Nombres complexes

1 Écritures d'un nombre complexe

1.1 Forme cartésienne

$$\underline{Z} = a + jb$$
 avec $j^2 = -1$

 $a = \operatorname{Re}(\underline{Z})$: partie réelle de \underline{Z} et $b = \operatorname{Im}(\underline{Z})$: partie imaginaire de \underline{Z}

1.2 Forme exponentielle

$$\underline{Z} = |\underline{Z}|e^{j\arg(\underline{Z})} = |\underline{Z}|e^{j\varphi_Z} = |\underline{Z}|\cos(\varphi_Z) + j|\underline{Z}|\sin(\varphi_Z)$$

 $|\underline{Z}|$: **module** de \underline{Z} et φ_Z : **argument** de \underline{Z}

1.3 Représentation dans le plan complexe

Forme cartésienne

 \rightarrow Forme exponentielle

$$\left|\underline{Z}\right| = \sqrt{a^2 + b^2} > 0$$

$$\varphi_{Z} = \begin{cases} \arctan\left(\frac{b}{a}\right) & \text{si } a > 0 \\ \pi + \arctan\left(\frac{b}{a}\right) & \text{si } a < 0 \end{cases}$$

Forme exponentielle

→ <u>Forme cartésienne</u>

$$a = \operatorname{Re}(\underline{Z})$$
$$= |\underline{Z}|\cos(\varphi_Z)$$

$$b = \operatorname{Im}(\underline{Z})$$
$$= |\underline{Z}|\sin(\varphi_Z)$$

2 Nombres complexes particuliers

<u>Z</u>	Nature	Module	Argument
$\underline{Z} = a$	Réel pur	$ \underline{Z} = a $	$\arg(\underline{Z}) = \begin{cases} 0 & \text{si } a > 0 \\ \pi & \text{si } a < 0 \end{cases}$
$\underline{Z} = jb$	Imaginaire pur	$\left \underline{Z} \right = \left b \right $	$\arg(\underline{Z}) = \begin{cases} \frac{\pi}{2} & \text{si } b > 0 \\ -\frac{\pi}{2} & \text{si } b < 0 \end{cases}$

3 Opérations sur les nombres complexes

3.1 Addition - Soustraction

- ightharpoonup Soient $\underline{Z}_1 = a_1 + jb_1 = |\underline{Z}_1|e^{j\varphi_1}$ et $\underline{Z}_2 = a_2 + jb_2 = |\underline{Z}_2|e^{j\varphi_2}$
- ➤ Addition:

$$\boxed{\underline{Z}_1 + \underline{Z}_2 = a_1 + a_2 + j(b_1 + b_2)}$$

$$\operatorname{Re}(\underline{Z}_1 + \underline{Z}_2) = a_1 + a_2$$
 et $\operatorname{Im}(\underline{Z}_1 + \underline{Z}_2) = b_1 + b_2$

➤ Soustraction:

$$\boxed{\underline{Z}_1 - \underline{Z}_2 = a_1 - a_2 + j(b_1 - b_2)}$$

$$\operatorname{Re}\left(\underline{Z}_{1}-\underline{Z}_{2}\right)=a_{1}-a_{2}$$
 et $\operatorname{Im}\left(\underline{Z}_{1}-\underline{Z}_{2}\right)=b_{1}-b_{2}$

3.2 Multiplication – Division

- ightharpoonup Soient $\underline{Z}_1 = a_1 + jb_1 = |\underline{Z}_1|e^{j\varphi_1}$ et $\underline{Z}_2 = a_2 + jb_2 = |\underline{Z}_2|e^{j\varphi_2}$
- Multiplication:

$$\boxed{\underline{Z}_1 \cdot \underline{Z}_2 = |\underline{Z}_1| e^{j\varphi_1} \cdot |\underline{Z}_2| e^{j\varphi_2} = |\underline{Z}_1| |\underline{Z}_2| e^{j(\varphi_1 + \varphi_2)}}$$

$$\left|\left|\underline{Z}_{1}\cdot\underline{Z}_{2}\right| = \left|\underline{Z}_{1}\right|\cdot\left|\underline{Z}_{2}\right| \quad \text{et} \quad \arg\left(\underline{Z}_{1}\cdot\underline{Z}_{2}\right) = \varphi_{1} + \varphi_{2} = \arg\left(\underline{Z}_{1}\right) + \arg\left(\underline{Z}_{2}\right)\right|$$

Division :

$$\boxed{\frac{\underline{Z}_1}{\underline{Z}_2} = \frac{\left|\underline{Z}_1\right|e^{j\varphi_1}}{\left|\underline{Z}_2\right|e^{j\varphi_2}} = \frac{\left|\underline{Z}_1\right|}{\left|\underline{Z}_2\right|}e^{j(\varphi_1 - \varphi_2)}}$$

$$\left|\frac{\underline{Z}_1}{\underline{Z}_2}\right| = \frac{\left|\underline{Z}_1\right|}{\left|\underline{Z}_2\right|} \quad \text{et} \quad \arg\left(\frac{\underline{Z}_1}{\underline{Z}_2}\right) = \varphi_1 - \varphi_2 = \arg\left(\underline{Z}_1\right) - \arg\left(\underline{Z}_2\right)$$

Lycée M. Montaigne – MP2I

CHAPITRE OM7 Nombres complexes

3.3 Dérivation – Intégration

- $ightharpoonup Soit \underline{s}(t) = S_M e^{j\varphi} e^{j\omega t}$
- Dérivation

$$\frac{d\underline{s}(t)}{dt} = j\omega S_M e^{j\varphi} e^{j\omega t} = j\omega \underline{s}(t)$$

> Intégration

$$\int \underline{s}(t) dt = \frac{S_M}{j\omega} e^{j\varphi} e^{j\omega t} = \frac{1}{j\omega} \underline{s}(t) = -\frac{j}{\omega} \underline{s}(t)$$

Opération	Nombre complexe	Module	Argument
Dérivation	Multiplié par $j\omega$	Multiplié par ω	Ajout de $+\frac{\pi}{2}$
Intégration	Multiplié par $\frac{1}{j\omega}$	Multiplié par $\frac{1}{\omega}$	Ajout de $-\frac{\pi}{2}$