

Agilent EEsof EDA

Presentation on Power Amplifier Design using ADS

This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest information on Agilent's line of EEsof electronic design automation (EDA) products and services, please go to:

www.agilent.com/find/eesof

Power Amplifier Design using ADS

Wilfredo Rivas-Torres
Technical Support Application Engineer
October 12, 2004

Outline

- Introduction
- DC and Loadline analysis
- Bias and Stability
- LoadPull
- Matching using Smith Chart Utility
- SourcePull
- PA Characterization Did we meet the specification?
- Optimize/Fine Tune the design
- Test Design with real world modulated signals
- Layout

Why do we need a Power Amplifier?

Power Amplifiers (PA) are in the transmitting chain of a wireless system. They are the final amplification stage before the signal is transmitted, and therefore must produce enough output power to overcome channel losses between the transmitter and the receiver.

Basic Transmitter

PA requirements

- The PA is typically the primary consumer of power in a transmitter. A major design requirement is how efficiently the PA can convert DC power to RF output power.
- The design engineer has to often concern himself with the Efficiency of the Power Amplifier. Notice that efficiency translates into either lower operation cost (e.g. cellular basestation) or longer battery life (e.g. wireless handheld).
- PA linearity is another important requirement, the input/output relationship must be linear to preserve the signal integrity.
- The design of PAs often involves the tradeoff of efficiency and linearity.

PA Design Requirement

- RF Output Power: 50 W PEP
- Input Drive Level: 1 W
- Output Load (RL): 50 Ω
- Efficiency $(\eta) > 50\%$
- Bias Voltage: 28 V
- Device: MRF9045M

DC Curves

DC Curves

VDsat VDS=0.600 IDS.i=0.562 VGS=3.800000 IQ VDS=28.000 IDS.i=0.717 VGS=3.800000 m3 VDS=33.400 IDS.i=0.004 VGS=2.500000

Bias and Stability

Stability Analysis

Stability Analysis

Impedance Matching

- The need for matching circuits is because amplifiers, in order to perform in a certain way(e.g. maximize output power), must be presented with a certain impedance at both the load and the source ports.
- For example in order to deliver maximum power to the load R_L the transistor must have termination Z_s and Z_L .
- The input matching network is designed to transform the generator impedance $R_{\rm s}$ to the optimum source impedance $Z_{\rm s}$.
- The output matching network transform the load termination R_L (50 Ω) to the optimum load impedance Z_L .
- A LoadPull measurement will help the designer determine the optimum load impedance Z_L.

LoadPull Setup

HARMONIC Harmonic Balance

HARMONIC BALANCE

HB1
Freq[1]=RFfreq
Order[1]=15

Set Load and Source impedances at harmonic frequencies

VAR VAR2

 $Z_1_2 = Z_0 + j*_0$ $Z_1_3 = Z_0 + j*_0$

 $Z \mid 4 = Z0 + j*0$

 $Z \mid 5 = Z0 + i*0$

Z = 1.0 + j*0

 $Z_s^2 = Z_0 + j*0$

 $Z_s_3 = Z_0 + j*_0$

 $Z_s_4 = Z_0 + j*0$

 $Z_s_5 = Z_0 + j*0$

I Probe

LoadPull Contours

m2 indep(m2)=6 Pdel_contours_p=0.914 / 171.170 level=44.195857, number=1 impedance = 2.265 + j3.852

m1 indep(m1)=6 PAE_contours_p=0.914 / 171.180 level=47.552308, number=1 impedance = 2.265 + j3.848

indep(Pdel_contours_p) (0.000 to 46.000) indep(PAE_contours_p) (0.000 to 18.000)

Matching using Smith Chart Utility

Matching using Smith Chart Utility

Output Match

DA_SmithChartMatch1_output_match_design

DA_SmithChartMatch1

F=760 MHz

Zs=50 Ohm

ZI=(2.300-j*3.800) Ohm

Z0=50 Ohm

SourcePull Contours

m2 indep(m2)=4 Pdel_contours_p=0.960 / 174.023 level=46.038749, number=1 impedance = 1.016 + j2.609

m1 indep(m1)=4 PAE_contours_p=-0.952 + j0.100 level=58.130703, number=1 impedance = 1.096 + j2.618

Matching Circuits

Complete Design Power Sweep

Power Compression Curve

Gain Compression Curve

Power Added Efficiency

Getting ready to Optimize the PA

- The next step is to optimize the design to meet the requirements.
- The Designer can take the opportunity to see if other requirements, such as layout will require any changes before proceeding to optimize.
- Example: we notice that the transistor pads are rather wide and the Tlines leading up to it are not the same width.
- Since the Tlines are much narrower, we could add a taper so we have a nice transition.
- We included a MTAPER at the input and output side

MTAPER
Taper2
Subst="MSub1"
W1=199.971654 mi
W2=63.670079 mil
L=100.0 mil

Optimization Setup

Optim1

OptimType=Gradient

MaxIters=25

DesiredError=0.0

FinalAnalysis="None"

NormalizeGoals=no

SetBestValues=yes

SaveSolns=yes

SaveGoals=yes

SaveOptimVars=no

UpdateDataset=yes

SaveNominal=no

SaveAllIterations=no

UseAllOptVars=yes

UseAllGoals=yes

SaveCurrentEF=no

GOAL

GOAL

Goal

Goal Goal 2

Expr="dBm(Vload[1])" Expr="dBm(Vload[2])-dBm(Vload[1])"

Goal

SimInstanceName="HB1" SimInstanceName="HB1"

Min=47.0 Min=

Max= Max=-40 Weight=

RangeVar[1]= RangeVar[1]=

RangeMin[1]= RangeMin[1]=

RangeMax[1]= RangeMax[1]=

Optimization Results

InitialEF	FinalEF	
67.187	0.000	

optlter	Goal1	Goal2
10	47.003	-40.017

Optimization Values

TL39.L*1e5/2.54

551.591

TL15.L*1e5/2.54

247.144

TL7.L*1e5/2.54

320.449

TL30.L*1e5/2.54

814.900

TL8.L*1e5/2.54

622.341

TL31.L*1e5/2.54

202.643

TL9.L*1e5/2.54

248.635

TL32.L*1e5/2.54

184.709

TL10.L*1e5/2.54

244.711

PA Results

Power Added Efficiency

Gain Compression Curve

Complex Modulated Signal

16 QAM Modulated Source

DSP and Analog Circuits Setup

- Create a subcircuit with your analog design.
- You need to add either Circuit Envelope or Transient controller to the analog circuit.
- We use Circuit Envelope specifically with our PA since we have a Modulated Carrier.
- Circuit Envelope will also allow the use of Fast Cosim (Automatic Verification Modeling – AVM). This will dramatically increase the simulation speed.
- In the DSP schematic we will create the Modulated Carrier, feed it to the PA and collect the signal samples and spectrum.
- The DSP schematic contains a Envelope Output Selector component used for interfacing between circuit subnetwork output and the signal processing components.

Ptolemy Cosim Schematic

Fast Cosim Improvements

Simulation Time Benchmark:

Total bits: 1024 bits

AVM disabled: 410 sec

AVM enabled: 13 sec

AVM data reuse: 5.5 sec

AVM data reuse (16 Kbits): 17.5 sec

Cosimulation Results - Spectrum

Cosimulation Results - Constellation

Cosimulation Results

Carrier Power 30 dBm

peakP_in	eakP_in peak_avg_in avgP	
32.163	4.951	27.212

peakP_out	peak_avg_out	avgPout
47.969	3.516	44.453

Carrier Power 25 dBm

peakP_in	peak_avg_in	avgPin
30.000	7.788	22.212

peakP_out	peak_avg_out	avgPout
44.715	4.832	39.883

Cosimulation Results – CCDF

EVM vs. Power Measurement

EVM vs. Power Results

ADS to VSA link

VSA Spectrum from ADS Cosim

VSA Constellation from ADS Cosim

Carrier Power 30 dBm

VSA Constellation from ADS Cosim

Carrier Power 30 dBm

VSA EVM from ADS Cosim

Carrier Power 30 dBm

	D: Ch1 10	QAM Sym	s/Errs		Tir	me:27	
EVM	= 4.1676	%rms	12.719	% pk at	sym	1468	
Mag Err	= 3.1291	%rms	-11.221	% pk at	sym	2507	
Phase Err	= 2.6647	deg	-11.881	deg pk at	sym	3471	
Freq Err	= 5.1206	mHz					
IQ Offset	= -65.85	dB	SNR(ME	R) = 25.051		dB	
Quad Err	= 94.065	mdeg	Gain Imb	0.01		dB	

PA Layout

PA Layout – Generated from Schematic

PA Layout – Ground Fill

Other Possibilities

- Run an EM Cosimulation include layout effects in the simulation.
 Optimize design if necessary.
- Run Loadpull for IP3 or ACPR. The optimum load would then be a compromise between all the requirements.
- Use Connection Manager and real PA to validate design and compare vs. simulated results.
- Create a behavioral data model that can be used to protect you IP yet give access to your design results.

If there is any topic about PA Design and ADS you wish to discuss email me: wilfredo_rivas-torres@agilent.com

For more information about Agilent EEsof EDA, visit:

www.agilent.com/find/eesof

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas	
Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444

Asia Pacific	
Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100

0800 047 866

1 800 226 008

Europe & Middle East

Taiwan

Thailand

Austria	0820 87 44 11	
Belgium	32 (0) 2 404 93 40	
Denmark	45 70 13 15 15	
Finland	358 (0) 10 855 2100	
France	0825 010 700*	
	*0.125 €/minute	
Germany	01805 24 6333**	
	**0.14 €/minute	
Ireland	1890 924 204	
Israel	972-3-9288-504/544	
Italy	39 02 92 60 8484	
Netherlands	31 (0) 20 547 2111	
Spain	34 (91) 631 3300	
Sweden	0200-88 22 55	
Switzerland	0800 80 53 53	
United Kingdom	44 (0) 118 9276201	
Other European Countries:		
www.agilent.com/find/contactus		

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2008 Printed in USA, October 12, 2004 5989-9594EN

Revised: March 27, 2008

