M such that $M(i) = k_i$ for every $i, 1 \le i \le n$, is denoted by $k_1 \cdot 1 + \cdots + k_n \cdot n$, or more simply, by (k_1, \ldots, k_n) , and $\deg(k_1 \cdot 1 + \cdots + k_n \cdot n) = k_1 + \cdots + k_n$ is the *size* or *degree* of M. The set of all multisets over I is denoted by $\mathbb{N}^{(I)}$, and when $I = \{1, \ldots, n\}$, by $\mathbb{N}^{(n)}$.

Intuitively, the order of the elements of a multiset is irrelevant, but the multiplicity of each element is relevant, contrary to sets. Every $i \in I$ is identified with the multiset M_i such that $M_i(i) = 1$ and $M_i(j) = 0$ for $j \neq i$. When $I = \{1\}$, the set $\mathbb{N}^{(1)}$ of multisets $k \cdot 1$ can be identified with \mathbb{N} and $\{1\}^*$. We will denote $k \cdot 1$ simply by k.

However, beware that when $n \geq 2$, the set $\mathbb{N}^{(n)}$ of multisets cannot be identified with the set of strings in $\{1,\ldots,n\}^*$, because multiset union is commutative, but concatenation of strings in $\{1,\ldots,n\}^*$ is not commutative when $n\geq 2$. This is because in a multiset $k_1\cdot 1+\cdots+k_n\cdot n$, the order is irrelevant, whereas in a string, the order is relevant. For example, $2\cdot 1+3\cdot 2=3\cdot 2+2\cdot 1$, but $11222\neq 22211$, as strings over $\{1,2\}$.

Nevertherless, $\mathbb{N}^{(n)}$ and the set \mathbb{N}^n of ordered *n*-tuples under component-wise addition are isomorphic under the map

$$k_1 \cdot 1 + \cdots + k_n \cdot n \mapsto (k_1, \dots, k_n).$$

Thus, since the notation (k_1, \ldots, k_n) is less cumbersome that $k_1 \cdot 1 + \cdots + k_n \cdot n$, it will be preferred. We just have to remember that the order of the k_i is really irrelevant.

But when I is infinite, beware that $\mathbb{N}^{(I)}$ and the set \mathbb{N}^{I} of ordered I-tuples are not isomorphic.

We are now ready to define polynomials.

30.2 Polynomials

We begin with polynomials in one variable.

Definition 30.2. Given a ring A, we define the set $\mathcal{P}_A(1)$ of polynomials over A in one variable as the set of functions $P \colon \mathbb{N} \to A$ such that $P(k) \neq 0$ for finitely many $k \in \mathbb{N}$. The polynomial such that P(k) = 0 for all $k \in \mathbb{N}$ is the null (or zero) polynomial and it is denoted by 0. We define addition of polynomials, multiplication by a scalar, and multiplication of polynomials, as follows: Given any three polynomials $P, Q, R \in \mathcal{P}_A(1)$, letting $a_k = P(k)$, $b_k = Q(k)$, and $c_k = R(k)$, for every $k \in \mathbb{N}$, we define R = P + Q such that

$$c_k = a_k + b_k,$$

 $R = \lambda P$ such that

$$c_k = \lambda a_k$$

where $\lambda \in A$,