8 класс

Первый день

- **8.1.** Из пункта A в пункт B выехал велосипедист, а ещё через 15 минут вслед за ним выехал второй велосипедист. Через 27 минут после выезда второго велосипедиста из пункта B в пункт A выехал мотоциклист. Все трое участников движения встретились ровно посередине между пунктами A и B. Мотоциклист, доехав до A, и второй велосипедист, доехав до B, развернулись, поехали в обратном направлении и снова одновременно встретились с первым велосипедистом. За сколько минут мотоциклист проехал расстояние от B до A?
- **8.2.** Шестизначное число \overline{abcdef} делится на 3367. Докажите, что сумма чисел $\overline{bcdefa} + \overline{fabcde}$ также делится на 3367.
 - (Как обычно, запись $\overline{xy...z}$ означает число, десятичная запись которого состоит из цифр x, y, ..., z в указаном порядке; например, $\overline{136} = 136$.)
- **8.3.** Через вершину D прямоугольника ABCD проведена прямая ℓ , не имеющая с прямоугольником ABCD никаких других общих точек, кроме точки D. На прямой ℓ отмечена точка M так, что площадь треугольника MBD в два раза больше площади треугольника MAD. Найдите все возможные значения отношения площадей треугольников MCD и MAD.
- **8.4.** Забор состоит из менее 40 дощечек (штакетинок), расположенных через равные промежутки. На некоторых из них сидит по воробью, всего 10 воробьёв.
 - **а)** Докажите, что среди попарных расстояний между воробьями найдутся два равных.
 - **б**) Докажите, что это утверждение останется в силе даже, если один из воробьёв улетит.

8 класс

Второй день

8.5. Натуральные числа a, b и c удовлетворяют равенству

$$\frac{a^2 - a - c}{b} + \frac{b^2 - b - c}{a} = a + b + 2.$$

Докажите, что их сумма a+b+c является квадратом натурального числа.

- **8.6.** В параллелограмме ABCD угол ADC равен 40° . Точка K такова, что отрезок AK пересекает сторону BC, AK=BC и $\angle BAK=80^\circ$. А точка L такова, что отрезок CL пересекает сторону AD, CL=AB и $\angle BCL=80^\circ$. Найдите углы треугольника BKL.
- **8.7.** Окружности ω_1 и ω_2 с центрами O_1 и O_2 соответственно пересекаются в точке X. Прямая XO_1 пересекает ω_1 в точках X и A, а прямая XO_2 пересекает ω_2 в точках X и B. Точка M середина отрезка AB. Луч MO_1 пересекает ω_1 в точке D, а луч MO_2 пересекает ω_2 в точке C.
 - **а)** Докажите, что треугольник MDC равнобедренный;
 - **б)** Докажите, что прямая DC проходит через точку X.
- **8.8.** В каждой клетке таблицы 3×3 расположено по некоторому числу фишек (количества фишек указаны на рисунке). За один ход можно переместить одну фишку из любой клетки в соседнюю с ней по стороне клетку. За какое наименьшее число ходов можно уравнять количества фишек во всех клетках?

1	2	3
4	5	6
7	8	9