AMPLIACIÓN DE MATEMÁTICAS TRABAJO PRÁCTICO 5: E.D.O. de segundo orden.

Resolvamos la EDO lineal de segundo orden:

$$y'' - y' - 2y = t^2. (1)$$

Para ello, consideramos la Ecuación homogénea y su polinomio característico:

$$\lambda^2 - \lambda - 2$$
, cuyas raices son: $\lambda_1 = 2$ $\lambda_2 = -1$

Las soluciones de la ecuación homogénea son:

$$x_1(t) = e^{it}$$
 $x_2(t) = e^{-it}$

Ahora consideremos la función $y_0 = c_1(t)x_1(t) + c_2(t)x_2(t)$ (con c_1 y c_2 aún sin conocer). Substituyendo $y=y_0$ en (1), sabiendo que x_1 y x_2 son soluciones de la ecuación homogénea y suponiendo que obtenemos una ecuación más débil que el sistema:

$$\left. \begin{array}{lcl}
 c_1'(t)x_1'(t) + c_2'(t)x_2'(t) & = & t^2 \\
 c_1'(t)x_1(t) + c_2'(t)x_2(t) & = & 0
 \end{array} \right\}
 \tag{2}$$

Resuelve el sistema por Cramer e integra las soluciones para obtener c_1 y c_2 , y por tanto

Resulve el sistema por Cramer e integra las soluciones para obtener
$$c_1$$
 y c_2 , y por tanto

 $c_1'(t) = \frac{|t^2 - e^{-t}|}{|t^2 - e^{-t}|} = \frac{|t^2 - t|}{|t^2 - e^{-t}|} = \frac{|t^2 - t|$

Por tanto, cualquier solución de (1) será de la forma $y(t) = y_0(t) + kx_1(t) + lx_2(t)$. Determina k y l para que y(0)=1 e y'(0)=2 (no tiene por qué haber una solución

$$y(t) = \frac{-t^{2}}{2} + \frac{t}{2} - \frac{3}{4} + ke^{2t} + le^{-t}$$

$$y'(t) = -t + \frac{1}{2} + 2ke^{2t} - le^{-t}$$

$$y'(t) = -t + \frac{1}{2} + 2ke^{2t} - le^{-t}$$

$$y'(0) = \frac{1}{2} + 2k - le^{-t}$$

$$y'(0) = \frac{1}{2} + 2k$$

Resulve:

$$y'' + 2y = 1, y(0) = 0, y'(0) = 1$$
 $y'' + 2y = 1, y(0) = 0, y'(0) = 1$
 $x_{1}(t) = cor(t)$
 $x_{2}(t) = cor(t)$
 $x_{3}(t) = cor(t)$
 $x_{4}(t) = cor(t)$
 $x_{5}(t) = cor(t)$
 $x_{5}(t$