DMA Domácí úkol č. 9b

Tento úkol vypracujte a pak přineste na cvičení č. 10.

1. Nechť \mathcal{R}_1 , \mathcal{R}_2 jsou relace na stejné množině A.

Dokažte: Jestliže je \mathcal{R}_1 antisymetrická, pak je antisymetrická i relace $\mathcal{R}_1 \cap \mathcal{R}_2$.

Rada: Je tam množinová operace, proto je lepší jazyk množin, tedy spíše psát $(a, b) \in \mathcal{R}$ než $a\mathcal{R}b$.

- 2. Pro následující množiny rozhodněte, zda jsou konečné, spočetné či nespočetné. Svou odpověď dokažte.
- a) M je množina všech vektorů z $\mathbb{N}^2,$ jejichž druhá souřadnice je dvakrát větší než první.

Poznámka: $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$.

- b) M je množina celočíselných 2×2 "trojúhelníkových matic" neboli útvarů typu $\begin{matrix} a \\ b \end{matrix}$ pro $a,b,c\in\mathbb{Z}.$
- c) (bonus) M je množina všech přirozených čísel, která **nejsou** dělitelná třemi.

Pokud v argumentech pracujete s nějakými zobrazeními a jsou důležité jejich vlastnosti, tak je stačí zmínit, netřeba je podrobně dokazovat. V tomto příkladě se soustředíme na mohutnost, ne na vyšetřování zobrazení. Takto to bude i u zkoušky.

Ale z cvičných důvodů je zajímavé si alespoň důkazy prostoty udělat jako bonus.

Mimochodem, c) není přímočará, je pro studenty, které a) a b) nudí.

Řešení:

1. Předpoklad: \mathcal{R}_1 antisymetrická. Ukážeme antisymetrii $\mathcal{R}_1 \cap \mathcal{R}_2$ dle definice.

 $\forall a, b \in A: (a, b) \in \mathcal{R}_1 \cap \mathcal{R}_2 \text{ a } (b, a) \in \mathcal{R}_1 \cap \mathcal{R}_2$ dává dle definice průniku $[(a, b) \in \mathcal{R}_1 \text{ a } (a, b) \in \mathcal{R}_2]$ a $[(b, a) \in \mathcal{R}_1 \text{ a } (b, a) \in \mathcal{R}_2]$.

(Komentář: Jsou to tři logické konjunkce za sebou, tedy lze ignorovat závorky a přerovnávat dle libosti. Také si všimneme, že vlastně nepotřebujeme všechny čtyři dvojice, stačí si vzhledem k předpokladu chytře vybrat dvě. Pokračujme v důkazu.)

Pak máme $(a, b) \in \mathcal{R}_1$ a $(b, a) \in \mathcal{R}_1$, dle antisymetrie \mathcal{R}_1 je $\underline{a = b}$. Důkaz je hotov.

Jak na tento důkaz přijdeme? Chceme čtenáře přesvědčit, že $R_1 \cap R_2$ je antisymetrická. Co pro to musíme udělat? Na to odpoví definice antisymetrie. Je potřeba čtenáře postupnými kroky přesvědčit, že z informace $(a,b) \in \mathcal{R}_1 \cap \mathcal{R}_2$ a $(b,a) \in \mathcal{R}_1 \cap \mathcal{R}_2$ lze postupnými kroky dojít k a=b. Množinový zápis relací zde napoví víc než psát $a\mathcal{R}b$.

Poznámka: Občas se vyskytne tento "důkaz":

$$a, b \in A: (a, b) \in \mathcal{R}_1 \cap \mathcal{R}_2 \longrightarrow (a, b) \in \mathcal{R}_1 \xrightarrow{(P)} \underline{a = b}.$$

Zde jsou dvě věci špatně. Za prvé, aplikace předpokladu je chybná, protože antisymetrie relace R_1 nám dá a=b pouze tehdy, pokud máme k dispozici fakta $(a,b) \in \mathcal{R}_1$ a $(b,a) \in \mathcal{R}_1$. Nám ale to druhé v důkazu chybí, nemáme tedy právo se na antisymetrii odvolávat.

Druhá špatná věc: Pokud spojíme začátek a konec, dostaneme

$$(a,b) \in \mathcal{R}_1 \cap \mathcal{R}_2 \implies a = b.$$

To ale není antisymetrie.

2.

a) Máme $M = \{(1,1), (2,4), (3,6), (4,8), \dots\}.$

Množinu lze vyjádřit jako $M = \{(n, 2n) : n \in \mathbb{N}\}$. Z toho se nabízí zobrazení T(n) = (n, 2n), které je vlastně bijekce $\mathbb{N} \stackrel{\text{na}}{\mapsto} M$. Množiny \mathbb{N} a M tedy mají stejnou mohutnost, proto je M spočetná.

Je také možno ušetřit důkaz surjektivity a postupovat takto:

- 1. Zobrazení T(n)=(n,2n) je prosté $\mathbb{N}\mapsto M,$ proto $|\mathbb{N}|\leq |M|.$
- 2. Evidentně $M \subseteq \mathbb{N}^2$, proto $|M| \leq |\mathbb{N}^2| = |\mathbb{N}|$.

Spojením nerovností dostaneme $|\overline{M}| = |\mathbb{N}|$.

Bonus: Důkazy vlastností pro T(n) = (n, 2n).

Prostota: Nechť $m, n \in \mathbb{N}$, T(m) = T(n). Pak (m, 2m) = (n, 2n), odtud m = n.

Na: Dáno $b \in M$. Dle definice M musí být b = (a, 2a) pro nějaké $a \in \mathbb{N}$. Toto a pak splňuje T(a) = (a, 2a) = b.

b) M je spočetná, protože máme dosti zjevnou bijekci

$$T\begin{pmatrix} a \\ b & c \end{pmatrix} = (a, b, c)$$

z M na \mathbb{Z}^3 a víme, že $|\mathbb{Z}^3| = |\mathbb{N}|$.

c) Je snadné si představit, že množinu $M = \{1, 2, 4, 5, 7, 8, 10, 11, 13, \dots\}$ dokážeme propojit s \mathbb{N} , popřípadě očíslovat. Vzniká něco, co by měla být bijekce:

$$1 \mapsto 1, 2 \mapsto 2, 3 \mapsto 4, 4 \mapsto 5, 5 \mapsto 7, \dots$$

Abychom ale dokázali, že je to bijekce, musíme mít pro ni vzorec, a to je dost obtížná záležitost (viz konec). Je proto lepší zkusit jinou strategii.

- 1. Protože $M\subseteq \mathbb{N},$ máme $|M|\leq |\mathbb{N}|.$ Množina M tedy určitě není nespočetná, jinak řečeno je nejvýše spočetná.
- 2. Cítíme, že je **spočetná**, tedy potřebovali bychom ukázat nerovnost $|\mathbb{N}| \leq |M|$. Jak to dokážeme? Nabízí se dvě cesty.
- Chceme-li dokázat onu nerovnost, pak bychom podle definice měli najít prosté zobrazení $T: \mathbb{N} \to M$. Hledáme vzoreček, jehož výstupy by nikdy nebyly dělitelné trojkou, což je otázka inspirace, buď přijde, nebo ne (v tomto je občas matematika podobná umění a tak trochu zrádná).

Mě napadlo zobrazení T(n) = 3n - 1. Vede $\mathbb{N} \mapsto M$, protože čísla ve tvaru 3n + 1 nejsou dělitelná třemi (dávají jedničku modulo 3). Jelikož je T prosté, máme $|\mathbb{N}| \leq |M|$, což spolu s opačnou nerovností potvrzuje spočetnost M.

Studenty napadají i jiné věci, třeba $T(n) = 2^n$ nebo $3^n - 1$.

Bonus: Důkazy vlastností pro T(n) = 3n - 1.

Prostota: Dáno $m, n \in \mathbb{N}$, předp. T(m) = T(n). Pak 3m - 1 = 3n - 1, tedy m = n.

• Existuje jeden snadný argument: Protože je M nekonečná, podle věty z přednášky platí $|\mathbb{N}| \leq |M|$. Takže $|M| = |\mathbb{N}|$ neboli M je spočetná.

Tento důkaz má problém, že by se někdo mohl zeptat, jak víme, že je M nekonečná. Obvykle se toto ukazuje tak, že v ní najdeme kopii přirozených čísel, což se dělá pomocí prostého zobrazení z $\mathbb N$ do dotyčné množiny. To nás ale vlastně vrátí na předchozí způsob řešení.

Dá se to nějak obejíť? Jedna finta mě napadla. Víme, že prvočísel je nekonečně mnoho. To pak platí i pro prvočísla jiná než 3 (označme jejich množinu P_3) a ta určitě nejsou dělitelná třemi, proto $P_3 \subseteq M$. To ukazuje, že také M musí být nekonečná.

Jiná finta nalezená studenty: Sporem. Kdyby byla M konečná, tak musí mít největší prvek, třeba m. To je přirozené číslo nedělitelné trojkou, pak ovšem také číslo m+3 je nedělitelné trojkou a přirozené, tedy $m+3 \in M$. Protože je m největší, máme $m+3 \le m$ neboli $3 \le 0$, což je spor.

Zajímavá alternativa: je možno napsat

$$M = \{3k - 2: k \in \mathbb{N}\} \cup \{3k - 1: k \in \mathbb{N}\}.$$

Pomocí bijekce $k \mapsto 3k+1$, popřípadě $k \mapsto 3k+2$ hravě ukážeme, že ty dvě množiny napravo jsou spočetné, tudíž i jejich sjednocení musí být spočetné.

Poznámka pro zvídavé: Jak mohou vypadat bijekce $\mathbb{N} \mapsto M$ pro čísla nedělitelná třemi?

Například $T(n) = n + \lfloor \frac{1}{2}(n-1) \rfloor$ (používá zaokrouhlení dolů), popřípadě $T(n) = n - 1 + \lceil \frac{1}{2}n \rceil$ (zaokrouhlení nahoru). Lze také použít $T(n) = n + \lfloor \frac{1}{2}(n-1) \rfloor$ jako bijekci $\mathbb{N}_0 \mapsto M$. Teď ovšem zkuste dokázat, že jsou prostá a na.

Další alternativa je definice indukcí:

$$T(1) = 1$$
, $T(2) = 2$; $T(n+1) = T(n-1) + 1$ pro $n \ge 2$.

Opět drobný problém: jak dokázat prostotu. Musela by se použít indukce. Studenty napadlo i toto:

$$T(1) = 1$$
, $T(2) = 2$; $T(n+1) = T(n) + T(n) \mod 3$ pro $n \ge 2$.

Používá se tam zbytek po dělení třema. Zde má opravdu cyklus délku 3, protože v cílovém prostoru máme 3-periodický obrazec.