Bellekten okunan opcode degeri OFh dir. Opcode tablomuzda böyle bir komut olmadığını düşünürsek bilaisayar sistemimiz nasıl bir yanıt yerir? (Not. Doğal mod adresleme bitleri 000 dır.)

A	ospi I	1 byte ilerideki komuta gider. Sistem kilitlenir.				
c	: (3 byte ilerideki komuta gider.				
NO D	1080	2 byte ilerideki komuta gider.				
E		Tekrar aynı komuta gider.				

Soru 2

2 giriş (x_1, x_2) ve 1 çıkışa (z) sahip Moore tarzı bir devre tasarlanacaktır. Bu devrenin son 2 clock saykılında girişleri eşitse çıkışının 1 olması istenmektedir. Bu tasarım 3 durumla çözülecektir.

A durumu, son girişlerin eşit olmadığı durum,

B durumu, girişlerin 1 defa eşit olduğu durum,

C durumu, girişlerin 2 veya daha fazla kez eşit olduğu durumu ifade etmektedir.

	,
x ₁	000111001
X ₂	100100001
Z	001100011

Durumlara (q_1q_2) A=00, B=01, C=11 atayarak devreyi D tipi flip floplarla tasarlamak istiyoruz. Buna göre aşağıdaki 3 soruyu yanıtlayınız.

D2 'nin uyarma denklemi ne olur?

2 giriş (x₁, x₂) ve 1 çıkışa (z) sahip Moore tarzı bir devre tasarlanacaktır. Bu devrenin son 2 clock saykılında girişleri eşitse çıkışının 1 olması istenmektedir. Bu tasarım 3 durumla çözülecektir.

A durumu, son girişlerin eşit olmadığı durum,

B durumu, girişlerin 1 defa eşit olduğu durum,

C durumu, girişlerin 2 veya daha fazla kez eşit olduğu durumu ifade etmektedir.

	,
X ₁	000111001
X ₂	100100001
Z	001100011

Durumlara (q_1q_2) A=00, B=01, C=11 atayarak devreyi D tipi flip floplarla tasarlamak istiyoruz. Buna göre aşağıdaki 3 soruyu yanıtlayınız.

z nin denklemi ne olur?

B 0 q1+q

Soru 4

2 giriş (x₁, x₂) ve 1 çıkışa (z) sahip Moore tarzı bir devre tasarlanacaktır. Bu devrenin son 2 clock saykılında girişleri eşitse çıkışının 1 olması istenmektedir. Bu tasarım 3 durumla çözülecektir.

A durumu, son girişlerin eşit olmadığı durum,

B durumu, girişlerin 1 defa eşit olduğu durum,

C durumu, girişlerin 2 veya daha fazla kez eşit olduğu durumu ifade etmektedir.

X ₁	000111001
X ₂	100100001
Z	001100011

Durumlara (q_1q_2) A=00, B=01, C=11 atayarak devreyi D tipi flip floplarla tasarlamak istiyoruz. Buna göre aşağıdaki 3 soruyu yanıtlayınız.

D₁ 'in uyarma denklemi ne olur?

$$B = q_2(x_1 \otimes x_2)$$

$$D \qquad x_1 \oplus x_2$$

Aşağıdakilerden hangisi/hangileri yanlıştır?

- 1. Statik RAM'ler dinamik RAM'lerden daha hızlıdır.
- 2. Statik RAM'ler dinamik RAM'lerden daha maliyetlidir.
- 3. Statik RAM'ler cache bellek oluşturmak için kullanılır.
- 4. Statik RAM'lerde bilgi kalıcı olarak depolanır.
- 5. Dinamik RAM'ler uçucu (volatile) yapıya sahiptir.
- 6. Bit başına, statik RAM'ler dinamik RAM'lerden daha fazla yer kaplarlar.

B 4 ve 5

C 1, 2 ve 6

D 3,5 ve 6

E 4 ve 6

Soru 6

D tipi flip-floplardan oluşan 2 bitlik bir kaydediciyi (q1q2) S sinyali ile 0 ile sağa kaydırmak istiyoruz. D1 ucuna ne uygulanmalıdır?

D1 = S.(
$$q1 \oplus q2$$
)

Soru 7 A B

Yukarıdaki durum diyagramını gerçeklemek için JK (Yüksek anlamlı bit - ql) ve T (Düşük anlamlı bit - q0) tipi flip floplar kullanılacağını farz ederek aşağıdaki 2 soruyu yanıtlayınız. (Not: A=00, B=01, C=11 atayarak işlemlerinizi yapınız.)

T nin uyarma işlevi ne olur?

B ql'

C 0 q0'+q1

D q0

Soru 8

Yukarıdaki durum diyagramını gerçeklemek için JK (Yüksek anlamlı bit - q1) ve T (Düşük anlamlı bit - q0) tipl flip floplar kullanılacağını farz ederek aşağıdaki 2 soruyu yanıtlayınız. (Not: A=00, B=01, C=11 atayarak işlemlerinizi yapınız.)

J ve K nın uyarma işlevi ne olur?

B J =q0' K= q0

C J =q1' K= q0'

D J =q0 K=1

/Lojik VE işlemi AC=AC . DR (VE işlemini uygularken operantları iklilik sistemde düşünmeniz, sonucu 16 lık sisteme dönüştürmeniz gerekir.)

AND 4000h

STA (2000h)

17 • 20

D 22

Program bellekte kaç byte yer kaplar?

/Doğal mod sonlandırma komutu

Soru 11 Aşağıdaki 3 soruyu verilen programa göre yanıtlayınız. (# ivedi adreslemeyi, () dolaylı adreslemeyi, işaret kullanılmamışsa direkt adreslemeyi ifade etmektedir.) LDA #4000h / Aküye değer yükle STA 2000h / Akūnūn içeriğini belirtilen bellek bölgesine yaz LDA #5000h STA (2000h) LDA #A0A0h /Lojik VE işlemi AC=AC . DR (VE işlemini uygularken operantları ikilik sistemde düşünmeniz, sonucu AND 4000h STA (2000h) HLT /Doğal mod sonlandırma komutu Programın işletimi tamamlandığında Aküdeki değer ne olur? A0A0h ABCDh 0000h AlB1h B000h Soru 12 Aşağıdaki 3 soruyu verilen programa göre yanıtlayınız. (# ivedi adreslemeyi, () dolaylı adreslemeyi, işaret kullanılmamışsa direkt adreslemeyi ifade etmektedir.) LDA #4000h / Aküye değer yükle STA 2000h / Akünün içeriğini belirtilen bellek bölgesine yaz LDA #5000h STA (2000h) LDA #A0A0h AND 4000h /Lojik VE işlemi AC=AC . DR (VE işlemini uygularken operantları ikilik sister STA (2000h) HLT /Doğal mod sonlandırma komutu Programın bitiminde, aküdeki bilgi hangi bellek adresinden itibaren saklanacaktır? 0 2000h 1FFFh 5000h 0000h 4000h

P+R+U+V

P+R+U

E

KOMUTUN MİR	CRO İŞLEM ADIMLARI
P=T3* IDEC16*ADRMD3	TR _H ←M[AR],AR←AR+1
Q=T4* IDEC16*ADRMD3	TRL←M[AR],PC←PC+1
R=T5* IDEC16*ADRMD3	AR←TR
S=T6* IDEC16*ADRMD3	TR _H ←M[AR],AR←AR+1
T=T7* IDEC16*ADRMD3	TR _L ←M[AR]
U=T8* IDEC16*ADRMD3	AR←TR
V=T9* IDEC16*ADRMD3	M[AR]←AC _H ,AR←AR+1
Y=T10* IDEC16*ADRMD3	M[AR]←ACLSC←0

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri
Program Counter(PC)	0011
InstructionRegister(IR)	0100
Adres Register(AR)	1000
Memory(M)	1001
TemporaryRegister (TR)	0111
Akümülatör (AC)	0010
Data Register (DR)	0101

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 5 soruyu yanıtlayınız.

Bu komutun execute (işlet) saykılında, AR'nin Load (LD) girişine uygulanacak olan kontrol sinyalleri ne olmalıdır?

KOMUTUN MİR	KRO İŞLEM ADIMLARI
P=T3* IDEC16*ADRMD3	TR _H ←M[AR],AR←AR+1
Q=T4* IDEC16*ADRMD3	TRL←M[AR],PC←PC+1
R=T5* IDEC16*ADRMD3	AR←TR
S=T6* IDEC16*ADRMD3	TR _H ←M[AR],AR←AR+1
T=T7* IDEC16*ADRMD3	TR _L ←M[AR]
U=T8* IDEC16*ADRMD3	AR←TR
V=T9* IDEC16*ADRMD3	M[AR]←AC _H ,AR←AR+1
Y=T10* IDEC16*ADRMD3	M[AR]←ACLSC←0

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri
Program Counter(PC)	0011
InstructionRegister(IR)	0100
Adres Register(AR)	1000
Memory(M)	1001
TemporaryRegister (TR)	0111
Akümülatör (AC)	0010
Data Register (DR)	0101

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 5 soruyu yanıtlayınız.

Bu komut bellekte kaç byte yer kaplar?

A

.

c .

D 0 4

E 3

Soru 15

KOMUTUN MİR	KRO İŞLEM ADIMLARI	
P=T3* IDEC16*ADRMD3	TR _H ←M[AR],AR←AR+1	
Q=T4* IDEC16*ADRMD3	TRL←M[AR],PC←PC+1	
R=T5*IDEC16*ADRMD3	AR←TR	
S=T6* IDEC16*ADRMD3	TR _H ←M[AR],AR←AR+1	
T=T7* IDEC16*ADRMD3	TR _L ←M[AR]	
U=T8* IDEC16*ADRMD3	AR←TR	
V=T9*IDEC16*ADRMD3	M[AR]←AC _H ,AR←AR+1	
Y=T10* IDEC16*ADRMD3	M[AR]←ACLSC←0	

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri
Program Counter(PC)	0011
InstructionRegister(IR)	0100
Adres Register(AR)	1000
Memory(M)	1001
TemporaryRegister (TR)	0111
Akümülatör (AC)	0010
Data Register (DR)	0101

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 5 soruyu yanıtlayınız.

Mikro işlem adımları incelendiğinde, bu komut hangi adresleme metodunu kullanır?

A Doğal

B Indi

c lved

Dolay

E Direkt

KOMUTUN MİKRO İŞLEM ADIMLARI		
P=T3* IDEC16*ADRMD3	TR _H ←M[AR],AR←AR+1	
Q=T4* IDEC16*ADRMD3	TRL←M[AR],PC←PC+1	
R=T5* IDEC16*ADRMD3	AR←TR	
S=T6* IDEC16*ADRMD3	TR _H ←M[AR],AR←AR+1	
T=T7* IDEC16*ADRMD3	TR∟←M[AR]	
U=T8* IDEC16*ADRMD3	AR←TR	
V=T9* IDEC16*ADRMD3	M[AR]←ACH,AR←AR+1	
Y=T10* IDEC16*ADRMD3	M[AR]←ACLSC←0	

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri
Program Counter(PC)	0011
InstructionRegister(IR)	0100
Adres Register(AR)	1000
Memory(M)	1001
TemporaryRegister (TR)	0111
Akümülatör (AC)	0010
Data Register (DR)	0101

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 5 soruyu yanıtlayınız.

Bu komutun opcode değeri nedir?

A O A0h

R 3Fh

C 16h

D 0Ah

E B0h

KOMUTUN MİR	KOMUTUN MİKRO İŞLEM ADIMLARI	
P=T3* IDEC16*ADRMD3	TR _H ←M[AR],AR←AR+1	
Q=T4* IDEC16*ADRMD3	TR _L ←M[AR],PC←PC+1	
R=T5*IDEC16*ADRMD3	AR←TR	
S=T6* IDEC16*ADRMD3	TR _H ←M[AR],AR←AR+1	
T=T7* IDEC16*ADRMD3	TR _L ←M[AR]	
U=T8* IDEC16*ADRMD3	AR←TR	
V=T9* IDEC16*ADRMD3	M[AR]←AC _H ,AR←AR+1	
Y=T10* IDEC16*ADRMD3	M[AR]←ACLSC←0	

Veri Yolunu Kullanacak Eleman	Kod Çözücü Girişleri
Program Counter(PC)	0011
InstructionRegister(IR)	0100
Adres Register(AR)	1000
Memory(M)	1001
TemporaryRegister (TR)	0111
Akümülatör (AC)	0010
Data Register (DR)	0101

Temel bilgisayar sistemimizde yer alan bir komutun mikroişlem adımları yukarıda verilmiştir. Buna göre aşağıdaki 5 soruyu yanıtlayınız.

T5 ve T6 adımları için, ortak yol ile bağlantılı dekoderlerin girişlerine uygulanacak kontrol sinyalleri ne olmalıdır?

A 0 y3:y2:y1:y0 = S:R:R:(S+R) d3:d2:d1:d0 = 0:R:R:R

B y3:y2:y1:y0 = 0:R:R:R d3:d2:d1:d0 = S:R:R:R

c y3:y2:y1:y0 = 0:R:R:R d3:d2:d1:d0 = 0:R:R:R

y3:y2:y1:y0 = R:R:R:R d3:d2:d1:d0 = S:S:S:S

y3:y2:y1:y0 = 0:R:R:R d3:d2:d1:d0 = S:R:R:(S+R)