

Von der grünen Wiese zum Hochsicherheits-rechenzentrum

Richard Hartmann

richard.hartmann@space.net

Hintergrund 1/2

- Die DIN EN 50600 hat den Markt langfristig verändert
 - ...durch echte Vergleichbarkeit
 - ...durch Ausschreibungstexte & Anforderungskataloge (siehe ISO 27001)
 - ...durch Kostensteigerung von "Rechnerräumen"
- Anforderungen von Kunden & Wirtschaftsprüfern können nicht mehr wegdiskutiert werden
- Früher war "Nach [Uptime Institute] Tier 2/3 geplant" Standard
- Im Markt ist eine Bewegung hin zu VK4 zu beobachten
 - DIN EN 50600 VK3: Redundanz im Normalbetrieb
 - DIN EN 50600 VK4: Redundanz im Wartungsfall

Produktionskosten je m² & kWh steigen massiv Eigenbetrieb lohnt für den Mittelstand nicht

Hintergrund 2/2

- SpaceNet hat schon immer einen strategischen Fokus auf München & Umgebung
- Der Münchner Rechenzentrumsmarkt explodiert
- SpaceNet wächst beständig
- Innenstädte sind auf Grund von Preisdruck und Immisionsschutzauflagen uninteressant
- BSI Grundschutzkatalog: 5 km Abstand
- Trotzdem kurze Fahrwege für Kunden
- Aufrüstung von Bestandsgebäuden lässt sich nicht kosteneffizient abbilden

Neubau mit SK4 & VK 4 im Umland an Netzknotenpunkten

Function follows form

- Altes RZ-Design oder "Ertüchtigung" (plakativ, aber nicht falsch)
 - Raumhöhe ~3m oder mehr
 - Doppelboden einbringen
 - Punktlasten auf dem Dach ggf. mit Unterkonstruktion ableiten
 - Wanddurchbrüche für Strom und Kaltwasserkreislauf
 - Fenster abkleben oder mit Rigips verblenden
 - Passende Türe finden und Schleuse nennen
- Klassische Immobilien hierfür
 - Druckereien
 - Metallwarenlager
 - Kühlhäuser
 - Office-Gebäude

Form follows function - Gebäude

- Sicherheit bedeutet, Dinge unmöglich zu machen
 - Vereinzelung und physikalischer Schutz sind zwingend
 - Klassische Gebäude optimieren Laufwege
 - Konsequente r\u00e4umliche Trennung von RZ und Nicht-RZ
 - Minimierung der gemeinsam mit anderen Gebäudeteilen genutzten Infrastrukturen
- Die Kosten des Gebäudes liegen unter den Kosten für TGA

Form follows function - Modularität

- Ausbau der Flächen
- Ausbau innerhalb der Flächen
- Zutrittswege
- Säulenfreiheit
- Kühlung
- Stromzuführung

Form follows function - Kühlung

- P[W]UE der möglichen Lösungen fast gleich
 - Luft/Wasser/Luft benötigt für VK4 immense Investitionen
 - Indirekte Luft/Luft & direkte Luft benötigen riesige Wand- & Deckendurchbrüche
- Es ist kostengünstig, viel Luft langsam zu bewegen
 - Deckenhöhen müssen Doppelboden/abgehängte Decken mit 1-3m erlauben
 - Kostenvorteil für abgehängte Decke
 - Racks müssen vorne und hinten auf voller Höhe Lochblechtüren haben
 - Zwingend Einhausung, Kaltgang vs. Warmgang energetisch fast egal
 - Doppelboden → Kaltgang
 - Abgehängte Decke → Warmgang

Kein späterer Nutzwert des Gebäudes außer als Rechenzentrum

Beton vs. Stahl

- Vorteile Beton
 - Gute Endkundenakzeptanz
 - Regelmäßige Brandschutzprüfung einfacher
 - Säulenfreier White Space
 - Betriebsfähigkeit nach Havarie
 - Einfachere Handhabung bei Erweiterungen, Umbauten, etc.
- Vorteile Stahlbau
 - Günstiger
 - Mehr Vorproduktion in der Fabrik
 - EMV-Abnahme einfacher

Make or Buy 1/2

- Auch mit Erfahrung in Betrieb und Errichtung ist eine Neuplanung nach allen Standards eine hochkomplexe Aufgabe
- Vorteile "Make"
 - Bessere Kostenkontrolle
 - Direkter Durchgriff auf alle Fachplaner
 - Individuelle Planung sichergestellt
- Nachteile "Make"
 - Risiko
 - Finanziell
 - Planerisch
 - Schnittstellen im Gewerkeübergang

Make or Buy 2/2

- Vorteile "Buy"
 - Risikoeindämmung
 - Ein Ansprechpartner
 - Planung und Bau sind für GU/GÜ Routine
- Nachteile "Buy"
 - Margenmultiplikation
 - Teile des Know-Hows bleiben extern
 - Im Fall aller Fälle sind auch Haftung & ggf. Patronatserklärung wenig hilfreich

Entscheidung: Buy

- Kerngeschäft der SpaceNet AG ist nicht der Bau, sondern der Betrieb
- Strategische Vorentscheidungen
 - Partner muss Erfahrung haben
 - Augenhöhe
 - Fähigkeit & Willigkeit zu individuellen Planungsleistungen
 - Technische Exzellenz

Partner: Vertiv

- Name früher: Emerson Network Power
- Vorteil: Fast alle RZ-Technik im Konzern
- Nachteil: Fast alle RZ-Technik im Konzern
- Nicht namentlich für fast alle Großen in Cloud & Social gebaut
 - Vertiv-interner Standard "Hyperscale"
 - FAANG interessieren offizielle Standards nur bedingt, die eigenen sind aber abgedeckt
- Augenhöhe durch Ehrlichkeit & Vertrauen
- Herausragendes technisches Planungsteam

Projektsteuerer: Argos

- Onboarding zur Endauswahl zwischen den letzten beiden Anbietern
 - Momentaner Projektrahmen: Steuerung bis zum Abschluss Phase 1
- Warum?
 - Erfahrungsschatz in Bauabläufen
 - Zugriff auf unabhängige technische Experten
 - Externe Prüfung von Plänen
 - Dritte Instanz in Diskussionen

Eckdaten 1/2

- Fünfphasiger Ausbau
 - Phase 1 a/b/c inklusive Office-Bau
 - Phasen 2-5
- Betonbau mit Fertigteilen
- Je Phase ~1000m² auf zwei Ebenen
- Kühlung: Indirekt Luft/Luft, adiabatisch unterstützt
 - 100% DX Backup
- Design-PWUE: 1,2
- Aktueller Ausbauplan Phase 1c: bis 1,85 kW/m²
 - → Racks mit 20 kW vs Caging
- Einige Alleinstellungsmerkmale in der Nachhaltigkeit leider noch nicht öffentlich

Eckdaten 2/2

- DIN FN 50600 VK4 & SK4
 - Vorraussichtlich erstes Rechenzentrum nach neuer Revision der DIN EN 50600
- Gefahrenabwehr in Schichten
 - Brandlöschung
 - White Space: N2 mit Frühesterkennung, Schalldämpfer & Vorlöschung
 - 100% Reserve
 - Kein Oxyreduct
 - USV & Batterien: Novec
 - NEAs: CO2
 - SK4 bedingt Anfahr- & Sprengschutz
 - Mehrstufiges Zugriffskonzept mit Need-to-Have

Learnings 1/3

- Vertragsdetails nach Anbieterentscheidung dauern länger als geplant
- Jeder noch so genaue Vertrag hat Lücken
 - Vertragsumfang: Ein Leitz-Ordner
 - Bisherige Missverständnisse: 4
 - Details der Kostenberechnung
 - Kostenübergang bei technischen Details
 - Prozesse & Design der NEA Tests
 - Details der Strommesstechnik

Learnings 2/3

- Politische Unterstützung ist wertvoll
 - Kurze Wege in der Verwaltung sind Zeit & Geld wert
- Trotzdem: Genehmigung ist schlecht planbar
 - Überraschung in unserem Fall: Wasserver- und -entsorgung
 - Trotz Schotterebene mit ~13 m Wasserschicht
- Projektsteuerung != Projektleitung
 - Kein Selbstläufer
 - "Communication is expensive"
 - Die Vision muss die eigene sein & bleiben

Learnings 3/3

- Großteil der Effizienzgewinne & Nachhaltigkeit werden vor Baubeginn realisiert
- Ein modernes Rechenzentrum ist ein Zweckbau ohne weiteren Nutzwert
- VK 4 vs. Kühlung
 - PUE von Luft/Wasser/Luft & indirekt Luft/Luft ungefähr gleich
 - Chilled Water hat aufgeholt
 - Installations- & Betriebskosten von Luft/Luft viel niedriger
 - L/W/L braucht doppelte Verrohrung & Ventile
- Detailarbeit lohnt sich
 - Möglichkeit fünf- bis sechsstellig an nicht betriebsrelevanten Details zu sparen

Eigenbau oder Auslagerung?

- Kurze Antwort für Mittelständler: Auslagerung
 - Investitionskosten sind massiv gestiegen
 - Schulungsaufwand um aktuell zu bleiben ähnlich gestiegen
 - Fachpersonal wird nicht komplett mit RZ-Themen ausgelastet und ist damit schwerer zu finden & binden
- Kurze Antwort f
 ür Großunternehmen: Auslagerung
 - Rechenzentren sind Kostenstelle, keine Kernkompetenz
- Gemeinsame Vorteile
 - Mietverträge einfacher zu kündigen als Mitarbeiter und Standorte
 - Schneller auf Wachstum reagieren

Auslagerung gleich Kontrollverlust, aber will ich die Kontrolle & Verantwortung?

Ansprechpartner

- Technik: richard.hartmann@space.net
- Vertrieb:
 - britta.weber@space.net
 - michael.wenig@space.net

