Tarea 5 Análisis de datos

Ejercicio 4

Pruebe el Teorema que establece la relación entre los valores y vectores propios del algoritmo anterior en relación a los valores y vectores propios del ACP, es decir, pruebe lo siguiente:

Teorema: Existe una relación dualidad entre el análisis de componentes principales y el escalamiento multidimensional clásico donde las distancias son euclidianas. Formalmente, si μ_i y ξ_i son los valores propios y vectores propios del principal análisis de componentes, respectivamente, para i=1,2,...,n, y se denota por λ_i y v_i los valores propios y vectores propios del escalamiento multidimensional, respectivamente, para i=1,2,...,n. Entonces:

$$\mu_i = \lambda_i \quad \text{y} \quad \xi_i = X^t v_i$$

Solución:

Suponga que μ_i y ξ_i son los valores propios y vectores propios del ACP, respectivamente y λ_i y v_i los valores propios y vectores propios del escalamiento multidimensional, respectivamente, para i=1,2,...,n.

Hay que mostrar que $\mu_i = \lambda_i$ y $\xi_i = X^t v_i$.

Al realizar el ACP se define $R \in M_{mxm}$ tal que $R = X^t X$ como la matriz de correlaciones o bien el espacio de los individuos. A partir de esta matriz se procede a calcular los vectores propios ξ_i y valores propios μ_i . Es importante recalcar que por lo demostrado en clases la matriz R posee m-n valores propios nulos, por lo que se trabaja con los primeros n valores propios.

Por el lado del Escalamiento Multidmensional para recuperar los componentes principales se define $B = XX^t$ donde B es simétrica semidefinida positiva y de rango n entonces B tiene n valores propios no negativos y m-n valores propios iguales a cero.

Entonces, si v_i es un vector propio asociado a λ_i de la matriz B por definición se cumple que

$$Bv_i = \lambda_i v_i$$

$$\implies XX^t v_i = \lambda_i v_i$$

$$\implies (X^t X) X^t v_i = \lambda_i X^t v_i$$
(1)

Si ξ_i es un vector propio asociado a μ_i de la matriz R por definición se cumple que

$$R\xi_i = \mu_i \xi_i$$

$$\implies X^t X \xi_i = \mu_i \xi_i \tag{2}$$

Como los valores propios de X^tX son únicos se puede concluir de (1) y (2) que $\mu_i=\lambda_i$ y que $\xi_i=X^tv_i$