Competition Results

Public leaderboard

Erica Chen		0.96961	1	9d
TNT		0.96961	12	6d
Haas Analytics	9 9 9	0.96408	48	6d
InsertName	999	0.96132	25	6d
Stats Bears	7 7	0.96132	16	5d

Private leaderboard

-	Erica Chen		0.96213	1	9d
_	JTNT		0.96094	12	6d
2	Stats Bears	999	0.95739	16	5d
▼ 1	Haas Analytics	999	0.95621	48	6d
<u>2</u>	OG Lytics		0.94911	18	6d

Competition mini presentations (2-4 slides) this Thursday

Midterm

- Will be handed back the Tuesday after Spring break (April 2nd)
- We'll go over answers that day
- Requests for re-grading will be made that same day

Final Projects

- Dataset "pitches" (1 slide) due 2 weeks from this Thursday (April 4th)
- A pitch can be made by a group or an individual
- Eventual final project groups must be between 3 and 6 people
- Your project idea must be approved by instructors
- Only datasets pitched on that day are eligible for final projects

Skip-grams "word2vec"

Data Mining & Analytics

Prof. Zach Pardos

INFO254/154: Spring '19

Skip-grams

- Simple neural networks
- Learn vector representations of words from a large corpus of text.
- Can be used to explore the relationship between words in vector space
 - Similar words
 - Analogous relationships (Big is to Bigger as Small is to ____)
- Supervised objective, which learns unsupervised (unlabeled) structure

"Deep learning" vs Feed-forward neural networks

What is considered a "Deep" model?

- Many layers
 - Non-linearity
- Deep representations
- Many time slices

Recurrent neural network

Skip-grams

- Are not deep
- Use representation learning (embedding)
- Are big data models

vector["KING"] - vector["MAN"] + vector["WOMAN"] ≈ vector["QUEEN"]

What concepts are involved in this arithmetic?

Similarity
$$\cos(a, b) = \frac{a \cdot b}{\|a\|_2 \|b\|_2}$$

vector["KING"] - vector["MAN"] + vector["WOMAN"] ≈ vector["QUEEN"]

Complete a relationship pair based on an example relationship

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

They complete analogies with about 60% accuracy (results as high as 74% with modified approaches)

Model	Semantic-Syntactic Word Relationship test set		MSR Word Relatedness
Architecture	Semantic Accuracy [%]	Syntactic Accuracy [%]	Test Set [20]
RNNLM	9	36	35
NNLM	23	53	47
CBOW	24	64	61
Skip-gram	55	59	56

PCA visualization of country and capital words

[switch to PPT]

They complete analogies with about 60% accuracy (results as high as 74% with modified approaches)

Model	Semantic-Syntactic Word Relationship test set		MSR Word Relatedness
Architecture	Semantic Accuracy [%]	Syntactic Accuracy [%]	Test Set [20]
RNNLM	9	36	35
NNLM	23	53	47
CBOW	24	64	61
Skip-gram	55	59	56

Multilayer Perceptron

Input size = 3 Output size = 2

0	1	0
---	---	---

$$W_{xh} =$$

0.6948	0.0344
0.3171	0.4387
0.9502	0.3816

h =

0.3171 0.4387

 $W_{ho} =$

$$O = h*W_{ho} = -0.1779$$

No bias, no squashing (activation) function

Multilayer Perceptron / Skip-gram

X =

0 1 0

W_{xh} =

0.6948	0.0344
0.3171	0.4387
0.9502	0.3816

h =

0.3171 0.4387

W_{ho} =

-0.52	0.20	3.01
1.22	-0.55	0.44

Input size = 3 Output size = 3

Multilayer Perceptron / Skip-gram

Input size = 3 Output size = 3

Word input one-hot

Consider a sentence: *Marry drives fast*

Marry

Skip-gram predicts the context of the input word

Multilayer Perceptron / Skip-gram

Input size = 3 Output size = 3

Continuous representation of word (embedding)

Marry

Wxh weights are the learned representations of the words in the vocabulary

Multilayer Perceptron / Skip-gram

Input size = 3 Output size = 3

Also a continuous representation of words (currently ignored)

Marry

Who weights are also learned representations of the words in the vocabulary

Multilayer Perceptron / Skip-gram

Input size = 3 Output size = 3

Activation: softmax

$$y_i = \frac{e^{z_i}}{\sum_{i \in Classes} e^{z_i}}$$

Marry

Loss: categorical cross-entropy

$$C = -\sum_{i \in Classes} t_i \log y_i$$

Alternative loss: binary cross-entropy for negative sampling variant

Multilayer Perceptron / Skip-gram

Input size = 3 Output size = 3

Skip-grams have a single word as input context words as output

Marry

Neural Networks: Abstractions

Hardware / Software optimization

Office Hours starts now (migrating to BWW 4232)

Model of the mind

