简介

KSL297是一种短距离收发芯片,采用GFSK调制。芯片集成了RF收发通道,GFSK调制解调器和数据链路。用户只需对收/发通道进行简单的设置,即可进行通信。在Auto Transceive模式下,芯片可根据应答信息自动判断数据放送/接收是否成功,从而进行重发,丢包,继续发送和等待等操作,简化了用户程序。

特点

- 2.4GHZ ISM 带宽
- 码率: 2Mbps/1MBbps
- 极低的功耗(常温): 发射电流:
 - 14.8mA (P₀=0dBm) 接收电

流: 17.5mA 关断电流: 2.5uA

待机电流: 0.9mA

- 1.9~3.6V供电
- Auto Transceive数据包自动重传
- 数据包自动处理•
- 6个数据通道
- ± 60ppm 16MHz 的时钟输入
- 5V耐压
- 20-pin 3x3mm QFN 封装

器件特征

器件名称	封装形式	工作温度
KSL29	QFN20	-40∼85°C

应用范围

- 无线鼠标/机键盘
- 无线PC外设
- 无线游戏手柄
- 有源RFID
- 玩具
- · 远程消费类电子设备RF终

端 功能框图

图1 功能框图

引脚定义

图 2 引出端排列

引出端号	符号	名称	引出端号	符号	名称
1	CEcs	芯片片选信号	11	$V_{\mathtt{PA}}$	放大器电源输出
2	SPIcs	SPI 片选信号	12	ANT1	天线端口1
3	SPIsck	SPI 时钟信号	13	ANT2	天线端口 2
4	SPI _{SDAI}	SPI 数据输入信号	14	GND	地
5	SPI_{SDAO}	SPI 数据输出信号	15	V_{cc}	电源输入
6	IRQ	中断信号,低电平有效	16	$\mathrm{IN}_{\mathtt{REF}}$	参考电流输入
7	V_{cc}	电源输入	17	GND	地
8	GND	地	18	V_{cc}	电源输入
9	OUTosc	晶振输出	19	$V_{\scriptscriptstyle DD}$	数字电源输出
10	INosc	晶振输入	20	GND	地

最大绝对额定值

(所有电压以GND为参考)

参数	最小值	最大值	单位
电源电压最大值	-0.3	3.6	$^{\circ}$
贮存温度	-65	150	$^{\circ}$
结温		175	$^{\circ}$
引线耐焊接温度		300	$^{\circ}$

2.2 电特性

2.1.1 主要电特性参数

特性	符号	条件(除另有规定外, VCC =3.3(1±5%)V, T _A =25℃, INOSC输		极限值	_	单位
	, ,	入 信号频率: 16(1±6×10−5)MHz,	最小	典型	最大	, ,
掉电模式电流*	$I_{ ext{CC-PD}}$			2.5		uA
空闲模式-I 电流	$I_{ ext{CC-STD}}$			42		uA
空闲模式-II 电流	$I_{ ext{cc-std}}$			0.8		mA
发射模式电流*	$I^{\text{cc-tx}}$	输出功率 P =OdBm		14.8		mA
接收模式电流*	$I_{\text{CC-Rx}}$			17.5		mA
可用带宽	${ m f}_{ m op}$		2400		2483	MHz
锁相环跳频间隔	$f_{ t PLL-res}$		1		83	MHz
码率	Rgfsk		1		2	Mbps
频道间隔	fchannel-2m		1		2	MHz
最大输出功率	Ро-мах		9			dBm
输出功率范围	Porc			18		dBm
最大接收幅度	Rx_{max}	第9类伪随机码输入,误码率<0.1%			3	dBm
接收灵敏度@2Mbps	Rxsens2m	第9类伪随机码输入,误码率<0.1%		-86		dBm
接收灵敏度@1Mbps	Rx _{sens1M}	第9类伪随机码输入,误码率<0.1%		-89		dBm

2.2.2 输出功率与功耗

发射功耗	条件(除另有规定外, VCC 发射功耗 -3 3(1+5%)V T-25℃ INOSC 输			单位		
<i>2</i> 	ス別切札 =3.3(1±5%)V, T _A =25℃, INOSC 输 ► 入 信号频率: 16(1±6×10-5)MHz,				最大	, ,
	输出功率 F	Po = 9dBm	_	31. 4		mA
	输出功率 F	Po = 4.5dBm		18. 6		mA
$I_{ ext{CC-Tx}}$	输出功率 F	Po = OdBm		14.8		mA
	1113 111 /4 /	Po = −2dBm		12. 0		mA
	输出功率 F	$P_{O} = -9dBm$		10. 2		mA

2.2.3 邻道抑制

特性	符号	条件(除另有规定外, VCC =3.3(1±5%)V, T _A =25℃, INOSC输		极限值		单位
.,_	.,	=3.3(1±5%)V, T _A =25℃,INOSC 输 入 信号频率:16(1±6×10-5)MHz,	最小	典型	最大	, ,

同信道抑制	C/I _{CO*}	第9类伪随机码输入,误码率<0.1%, -60dBm输入,2Mbs码率	7	dB
第一邻道抑制	C/I _{1st}	第9类伪随机码输入,误码率<0.1%,-60dBm输入,2Mbs码率	3	dB
第二邻道抑制	C/I _{ND}	第9类伪随机码输入,误码率<0.1%, -60dBm输入,2Mbs码率	-12	dB
第三邻道抑制	C/I _{RD}	第9类伪随机码输入,误码率<0.1%, -60dBm输入,2Mbs码率	-22	dB

功能说明

KSL297 是一种短距离收发芯片, 芯片集成了 RF 收发通道, 调制/解调器和数据链路. 用户 只需要外接一个 MCU 和极少的电阻电容即进行点对点通信和组建通信网络.

1. RF

KSL297 RF 接收电路集成了 I/Q 下混频器,頻率合成器 LNA,带通滤波器和 Limter。 RF 接收电路采用低中频/零中频方案,将 $2400^{\sim}2525$ MHz 的 RF 已调信号变频到 2 ± 0.16 MHz 或

2±0.32MHz 的中频信号。

RF 发射电路集成了 VCO, DA 和 PA。RF 发射电路将 2Mbps 的数据信号控制 VCO 产生 2400~2525MHz 的 RF 已调信号,经过 PA 放大,然后放射到大气中。

2. 基带 基带电路包括GFSK全数字调制/解调电路,数据链路,SPI接口电路和内部寄存器。 GFSK

全数字调制电路将数字基带将数字电平转换成VCO控制电平幅度值控制码。解调电路将2±0.16 MHz或2±0.32MHz的中频信号进过数字信号处理转换成数字基带信号。数据链路完成判断对数据包的处理,根据数据包的内容判断数据链路的下一步动作。SPI接口电路完成与MCU的数据通信。内部寄存器应用于存储RF电路,数据链路控制码。

4. SPI电路

SPI如下图时序所示,由SPI命令和数据构成,详见表-。当发送SPI命令前8位时,SPI 电路会输出STATUS寄存器的8位bits。

图3 SPI写时序

图4 SPI读时序

命令名称	命令字 (二进制)	数据字节	操作
R_REGISTER	000A AAAA	1 to 5 低字节在前	读命令寄存器和状态寄存器 AAAAA=5bit 寄存器地址
W_REGISTER	001A AAAA	1 to 5 低字节在前	写命令寄存器和状态寄存器 AAAAA=5bit 寄存器地址 仅在 power_down 和 standby 模式写可 执行
R_RX_PAYLOAD	0110 0001	1 to 32 低字节在前	读接收数据,读操作通常由第 0 字节 开始。读完过后数据将被从 FIFO 中删 除。Rx 模式可用
W_TX_PAYLOAD	1010 0000	1 to 32 低字节在前	写发射数据,写操作通常由 0 字节开始。 Tx 模式中可用
FLUSH_TX	1110 0001	0	清 Tx_FIF0,Tx 模式中可用
FLUSH_RX	1110 0010	0	清 Rx_FIF0, Rx 模式中可用。在回传 应答时不可执行, 否则会使应答数据 不完整
REUSE_TX_PL	1110 0011	0	用在 PTX 模式芯片 重用最后传送的数据。当 CE 为高时数 据将被一直重复使用。重用 Tx 数据在 W_REGISTER, FLUSH_TX 命令执行后可 用。 数据传输时该命令不能被执行
ACTIVATE	0101 0000	1	用命令后跟数据 0x73,将激活以下功能 • R_RX_PL_WID • W_ACK_PAYLOAD • W_TX_PAYLOAD_NOACK 再次使用该命令后跟同样数据,将关 闭上述功能。该命令仅在 power_down 和 standby 模式写可执行。
R_RX_PL_WID	0110 0000		读 Rx_FIFO 最顶部 RX-payload 数据宽度
W_ACK_PAYLOAD	1010 1PPP	1 to 32 低字节在前	Rx 模式可用写 PIPE PPP(PPP的值从 000 到 101)响应 ACK 时同时回传的数据。最多可设置 3 个 ACK 数据包。同 PIPE 的数据将以先进先出的原则发送。 写操作通常从 0 字节开始。
W_TX_PAYLOAD_NO	1011 0000	1 to 32	Tx 模式中可用

ACK		低字节在前	使用该命令发送数据将使 AUTOACK 不可用
NOP	1111 1111	0	无操作。可用于读状态寄存器

5. 数据链路

5.1 状态图 数据链路完成判断对数据包的处理,根据数据包的内容判断数据链路的下一步动作。数

据链路总共有个状态构成。其状态转换如下图所示:

图5 数据链路状态转换图

1) Power Down Mode

在 Power Down 模式下,芯片处于低功耗模式(数字 LDO 出于低功耗状态,RF 电源出于关断状态)。可以通过 SPI 命令修改 CONFIG 寄存器 PWR_UP 位为 1,使芯片处于 Power Down Mode。在 Power Down 模式下,用户可以配置控制寄存器、Tx FIFO 和 Rx FIFO。

2) Standby Modes

在芯片上电之后,通过修改CONFIG寄存器PWR_UP位为0, 使芯片首先进入Standby-I模式。如果CE=0且PWR UP=0,那么数据链路从其他状态跳转到Standby-I。芯片为PTX,CE=1,

PWR UP=0且TX FIF0为空,数据链路从其他状态跳转到Standby-II;芯片为PTX,CE=1, PWR UP=0且TX FIF0为非空,数据链路从Standby-II跳转到TX Mode。

3) RX Mode

CE=1, PWR UP=0且PRIM RX=1,数据链路从Standby-I 跳转到RX Mode。当芯片接收到数 据以后,将数据装入RX FIFO; 若TX FIFO为满或Pid和CRC与上次传送的pid和CRC相同,则丢 弃该数据包。

4) TX Mode

CE=1, PWR UP=0, PRIM RX=0且TX FIF0为非空,数据链路跳入TX Mode。发送完毕后, 判断TX FIFO为空,数据链路跳转到Standby-II, 否则保持TX Mode。

5.2 Auto Transceive

1) 工作原理

当ARC非O, RX ADDR PO = TX ADDR且ERX PO=1, PTX进入Auto Transceive模式; 当 ERX Px=1且ENAA Px=1, PRX进入Auto Transceive模式。

在Auto Transceive模式下, PTX的数据链路发送完数据以后, 会等待与之通信的PRX发 送应答信息。在规定的时间内(由ARD控制),PTX没有收到数据包,则重发数据且ARC CNT 自动加1(重新发送一个新数据包时, ARC CNT自动清零)。ARC CNT= ARC时, PTX产生中 断, PLOS CNT自动加1。当PLOS CNT=OXF时, PTX进入RX Mode, 探测是否有载波。如有载波, CD位置高,用户需要更换RF频道,否则继续发送数据。此外,当mcu发送一个不需要应答的数 据包时, PTX无需等待信号(EN_DYN_ACK=1).

在Auto Transceive模式下,PRX接收完一个数据包后需发送一个应答信号。该应答信号 可以带负载(EN ACK PAY=1, EN DPL=1, ENAA Px=1), 也可空载。

2) PTX工作状态转换图

8

3) PRX工作状态

图8 PRX工作状态转换图

4) 动态字节传输

在Auto Transceive模式下,自需要将PRX的EN_DPL=1且DPL_Px=1,PTX即可发送动态字节的数据,否则PTX发送数据字节数必须等于RX PW Px。

5)组网

一个PRX含有6接收通道,只要将合理设置PTX和PRX的地址即可组建一个通信网络节点。

图9 网络节点结构示意图

5.3 内部寄存器

内部寄存器由RX FIFO, TX FIFO和控制码寄存器组成。

1) FIF0

FIF0用于寄存发射和接收的数据,RX FIF0和TX FIF0各由独立的2级32字节的FIF0 组成。TX FIF0用于寄存需要发射的数据,RX FIF0用于寄存接收的数据。

在普通模式下,TX FIF0按先进先出的顺序缓存和发送待发送的数据包,TX FIF0缓存满后在数据发送或清空前将丢弃后输入的待发送数据包。RX FIF0按先进先出的顺序缓存和输出接收到的数据包,若RX FIF0缓存满后在数据被读取或清空前将丢弃后收到的数据包。

通过配置寄存器1D[4:3]=112可以使用长数据模式,即将RX FIF0和TX FIF0分别合并为1级64字节的FIF0。在该模式下,TX FIF0可以缓存一个待发送的数据包,TX FIF0缓存满后在数据发送或清空前将丢弃后输入的待发送数据包。RX FIF0可以缓存一个接收到的数据包,若RX FIF0缓存满后在数据被读取或清空前将丢弃后收到的数据包。

图10 FIF0结构示意图

2) 控制码寄存器

地址	存储器	BIT	默认值	读写	说明
00	CONFIG				工作寄存器
	Reserved				
	MASK_RX_DR	6	0	R/W	接收数据成功的中断上报使能位 1:中断不反映到 IRQ pin 0:RX_DR 中断反映到 IRQ pin
	MASK_TX_DS	5	0	R/W	发送数据成功的中断上报使能位 1: 中断不反映到 IRQ pin 0: TX_DS 中断反映到 IRQ pin
	MASK_MAX_RT	4	0	R/W	达到最大传输次数的中断上报使 能位 1:中断不反映到 IRQ pin 0: MAX_RT 中断反映到 IRQ pin
	EN_CRC	3	1	R/W	CRC 使能位 1: CRC 使能,2byte 0: CRC 不使能,并且不判 CRC 校验
	N/A	2	0	R/W	保留
	PWR_UP	1	0	R/W	芯片使能位 1: POWER_UP 0: POWER_DOWN
	PRIM_RX	0	0	R/W	RX/TX 控制 1: PRX 0: PTX
01	EN_AA				自动应答使能
	Reserved	7:6	00	R/W	Only 00 allowed
	ENAA_P5	5	0	R/W	使能 pipe5 自动应答
	ENAA_P4	4	0	R/W	使能 pipe4 自动应答
	ENAA_P3	3	0	R/W	使能 pipe3 自动应答

200		Na.			
	ENAA_P2	2	0	R/W	使能 pipe2 自动应答
	ENAA_P1	1	0	R/W	使能 pipe1 自动应答
	ENAA_P0	0	0	R/W	使能 pipe0 自动应答
02	EN_RXADDR				RX 地址使能
	Reserved	7:6	00	R/W	Only 00 allowed
	ERX_P5	5	0	R/W	使能 data pipe 5
	ERX_P4	4	0	R/W	使能 data pipe 4
	ERX_P3	3	0	R/W	使能 data pipe 3
	ERX_P2	2	0	R/W	使能 data pipe 2
	ERX_P1	1	1	R/W	使能 data pipe 1
	ERX_P0	0	1	R/W	使能 data pipe 0
03	SETUP_AW				地址宽度设置
	Reserved	7:2	00	R/W	Only 000000 allowed
					RX/TX 地址宽度
					00:无效
					01: 3 字节
	AW	1:0	11	R/W	10: 4 字节
					11:5 字节
					如果地址宽度设置低于5字节,
					接收地址将使用低字节
04	SETUP_RETR				自动重传设置
					自动重传延时
					0000 :250μs
	ARD	7:4	0000	R/W	0001 :500μs
	THO	7.1	0000	10 11	0010 :750μs
					1111, 4000
					1111: 4000μs 自动重传的传输次数设置
					0000: 普通通信模式
	ARC	3:0	0011	R/W	0001: 增强型模式 1 次传输
	TIKC	3.0	0011	10/ 11	0001. 項短至模式 1 次模糊
					1111: 增强型模式 15 次传输
05	RF_CH				通信频道设置
	Reserved	7	0	R/W	Only 0 allowed
		6.0	0000010		设置使用频道为
	RF_CH	6:0	0000010	R/W	Channel=RF_CH + 2400
06	RF_SETUP				通信通道配置
					RSSI 使能位
	RSSI_EN	7	0	R/W	1: RSSI 使能
					0: RSSI 不使能
	Reserved	6	0	R/W	Only 0 allowed
					RSSI 数据选择方式
	RSSI_SEL	5	0	R/W	1: 采样信号数据经过滤波器
					0: 采样信号数据不经过滤波器
	Reserved	4	0	R/W	Only 0 allowed
	DE DD	2	1	D/W	数据速率
	RF_DR	3	1	R/W	0: 1Mbps 1: 2Mbps
	RF_PWR	2:1	11	R/W	1: 2Mbps
	VL_L M K	2.1	11	IX/ W	以且 M' 制山切竿

	Ke Shilian(Shenzhen) Elec	tronics CO.,	LID	NOL	297 似功和 GF3N 収及
			(推荐值 10)		00: -10dBm 01: 0dBm 10: 8dBm 11: 最大输出功率 10dBm
	LNA_HCURR	0	1	R/W	设置 LNA 高电流使能 1: 高电流 0: 低电流
07	STATUS				状态寄存器
	Reserved	7	0	R/W	Only 0 allowed
	RX_DR	6	0	R/W	RX FIFO 接收数据中断, 在新数据被接收到达RX FIFO 时 产生中断。 写 1 清中断
	TX_DS	5	0	R/W	TX FIFO 发送数据中断, 在数据发送完成后产生中断。 当 使能 AUTO_ACK 时,仅在收 到 ACK 信号后才会将该位置高。 写 1 清中断
	MAX_RT	4	0	R/W	达到最大传输次数产生中断。 写 1 清中断 如果产生该中断, 必须清该中断 后可继续进行通 信
	RX_P_NO	3:1	111	R	可从 RX_FIFO 读取的 pipe 号 000-101: pipe 号 110: Not Used 111: RX_FIFO 空
	TX_FULL	0	0	R	TX FIFO 满标志 1: TX FIFO 满 0: TX FIFO 未满可用
08	OBSERVE_TX				传输状态寄存器
	PLOS_CNT	7:4	0	R	丢包计数器 该计数器达到最大值 15 时将停止计数,直到复位,未复位该值时可继续进行通信。 该计数器 在写 RF_CH 时被复位
	ARC_CNT	3:0	0	R	增强型通信的重传次数计数器。 与 ARC 寄存器配合使用。每次达 到重传次数限制值时,会视为丢 包,并将 PLOS_CNT 加 1。 当 新数据写入 TX FIFO 时该计数 器复位。 重传次数=传输次数 - 1
09	DATAOUT	7:0	00000000	R	数据读取寄存器 bit7:0 的输出为接收机实时给出的 4 位 RSSI 数据+数据包同步时的接收机 4 位 RSSI 数据
0A	RX_ADDR_P0	39:0	0xE7E7E 7E7E7	R/W	data pipe 0 的接收地址,最长 5 字节。(由低字开始写。地址长 度由 SETUP_AW 定义)

		Vā.			- 144,7410 124,84		
ОВ	RX_ADDR_P1	39:0	0xC2C2C 2C2C2	R/W	data pipe 1 的接收地址,最长:字节。(由低字开始写。地址长度由 SETUP_AW 定义)		
0C	RX_ADDR_P2	7:0	0xC3	R/W	data pipe 2 的接收地址,仅最低位, 高位等于 RX_ADDR_P1[39:8]		
0D	RX_ADDR_P3	7:0	0xC4	R/W	data pipe 3 的接收地址,仅最低位, 高位等于 RX_ADDR_P1[39:8]		
0E	RX_ADDR_P4	7:0	0xC5	R/W	data pipe 4 的接收地址,仅最低位, 高位等于 RX_ADDR_P1[39:8]		
0F	RX_ADDR_P5	7:0	0xC6	R/W	data pipe 5 的接收地址,仅最低位, 高位等于 RX_ADDR_P1[39:8]		
10	TX_ADDR	39:0	0xE7E7E 7E7E7	R/W	发送端地址。(由低字开始写) 只能在配置为 PTX 模式的芯片中使用,需要设置 RX_ADDR_P 等于该地址以便在增强型通信构式下的接收自动应答。		
11	RX_PW_P0				data pipe 0 中的 RX payload 的数 据长度		
	Reserved	7	0	R/W	Only 0 allowed		
	RX_PW_P0	6:0	0000000	R/W	data pipe 0 中的 RX payload 的数 据长度(1 到 64 字节) 0: 该 Pipe 未用 1 = 1 byte 64 = 64bytes		
12	RX_PW_P1				data pipe 1 中的 RX payload 的数 据长度		
	Reserved	7	0	R/W	Only 0 allowed		
	RX_PW_P1	6:0	0000000	R/W	data pipe 1 中的 RX payload 的数 据长度(1 到 64 字节) 0: 该 Pipe 未用 1 = 1 byte 64 = 64 bytes		
13	RX_PW_P2				data pipe 2 中的 RX payload 的数 据长度		
	Reserved	7	0	R/W	Only 0 allowed		
	RX_PW_P2	6:0	0000000	R/W	data pipe 2 中的 RX payload 的数 据长度(1 到 64 字节) 0: 该 Pipe 未用 1 = 1 byte 64 = 64 bytes		
14	RX_PW_P3				data pipe 3 中的 RX payload 的数 据长度		
	Reserved	7	0	R/W	Only 0 allowed		

		2/3		TOPEO IN STATE OF OTT IN			
	RX_PW_P3	6:0	0000000	R/W	data pipe 3 中的 RX payload 的数据长度(1 到 64 字节) 0: 该 Pipe 未用 1 = 1 byte 64 = 64 bytes		
15	RX_PW_P4				data pipe 4 中的 RX payload 的数据长度		
	Reserved	7	0	R/W	Only 0 allowed		
	RX_PW_P4	6:0	0000000	R/W	data pipe 4 中的 RX payload 的数据长度(1 到 64 字节) 0: 该 Pipe 未用 1 = 1 byte 64 = 64 bytes		
16	RX_PW_P5				data pipe 5 中的 RX payload 的数 据长度		
	Reserved	7	0	R/W	Only 0 allowed		
	RX_PW_P5	6:0	0000000	R/W	data pipe 5 中的 RX payload 的数 据长度(1 到 64 字节) 0: 该 Pipe 未用 1 = 1 byte 64 = 64 bytes		
17	FIFO_STATUS				FIFO 状态寄存器		
	Analog_data	7	0	R/W	Bit9		
	TX_REUSE	6	0	R	当为高时重传上一次发送中最后一帧传送的数据,当CE引脚为高时进行重传。TX_REUSE是由SPI命令REUSE_TX_PL配置的,并且由SPI命令W_TX_PAYLOAD或FLUSH TX进行复位操作。在增强型模式MAX_RT时,该位为1,且REUSE_TX_PL失效。		
	TX_FULL	5	0	R	TX FIFO 满标志位 1: TX FIFO 满 0: TX FIFO 可用		
	TX_EMPTY	4	1	R	TX FIFO 空标志位 1: TX FIFO 空 0: TX FIFO 有数据		
	Analog_data	3:2	00	R/W	Bit8:7		
	RX_FULL	1	0	R	RX FIFO 满标志位 1: RX FIFO 满 0: RX FIFO 可用		
	RX_EMPTY	0	1	R	RX FIFO 空标志位 1: RX FIFO 空. 0: RX FIFO 有数据		
N/A	ACK_PLD	255: 0	X	W	通过 SPI 写入, ACK 相应数据的 pipe 号由 SPI 命令写入。只在 RX 模式下有效		

		Vid					
N/A	TX_PLD	255: 0	X	W	通过 SPI 写入 TX 数据,数据被存放在 2 级 32 字节或 1 级 64 字节 FIFO 中只在 TX 模式使用		
N/A	RX_PLD	255: 0	X	R	通过 SPI 命令读出 RX 数据,数据被存放在 2 级 32 字节或 1 级 64 字节 FIFO 中,所有 RX PIPE 共享同一个 FIFO		
19	DEMOD_CAL	39:0		R/W	解调器参数		
1C	DYNPD				动态 PAYLOAD 长度使能		
	Reserved	7:6	0	R/W	Only 00 allowed		
	DPL_P5	5	0	R/W	使能 PIPE 5 动态 PAYLOAD 长度 (需要 EN_DPL 和 ENAA_P5)		
	DPL_P4	4	0	R/W	使能 PIPE 4 动态 PAYLOAD 长度 (需要 EN_DPL 和 ENAA_P4)		
	DPL_P3	3	0	R/W	使能 PIPE 3 动态 PAYLOAD 长度 (需要 EN_DPL 和 ENAA_P3)		
	DPL_P2	2	0	R/W	使能 PIPE 2 动态 PAYLOAD 长度 (需要 EN_DPL 和 ENAA_P2)		
	DPL_P1	1	0	R/W	使能 PIPE 1 动态 PAYLOAD 长度 (需要 EN_DPL 和 ENAA_P1)		
	DPL_P0	0	0	R/W	使能 PIPE 0 动态 PAYLOAD 长度 (需要 EN_DPL 和 ENAA_P0)		
1D	FEATURE				特征寄存器		
	Reserved	7:5	0	R/W	Only 000 allowed		
	DATA_LEN_SEL	4:3	00		数据长度选择 11: 64byte(512bit)模式 00: 32byte(256bit)模式		
	EN_DPL	2	0	R/W	使能动态 PAYLOAD 长度		
	EN_ACK_PAY	1	0	R/W	使能带 payload 的 ACK		
	EN_DYN_ACK	0	0	R/W	使能 W_TX_PAYLOAD_NOACK 命 令		
1E	RF_CAL	55:0		R/W	射频参数		
1F	BB_CAL	39:0		R/W	基带参数		
N/A	RSSI_OUT	7:0		R	RSSI 数据读取		
	RSSI_CURR	7:4	0000		接收机实时给出的 4 位 RSSI 数据 0~9 的数越大表示接收到的信号越大,这里的信号可能是干扰信号		
	RSSI_SYNC	3:0	0000		接收机数据包同步时给出的 4 位 RSSI 数据 0~9 的数越大表示接收 到的信号越大,这里的信号是帧 头同步上后的锁存值		

典型应用电路

图11 应用电路

封装外形

注: 1) 为引出端识别标志区。

单位为毫米

尺寸符号	数值			尺寸符号	数值		
	最小	公称	最大		最小	公称	最大
A			0.80	b	0.15		0. 25
D			3. 10	е		0.40	
Е			3. 10	L	0.35		0. 45
Z			0. 675				

图12 封装尺寸

注意事项

本器件为静电敏感器件,在运输和使用中须使用防静电措施。

存储条件要求

- 1、产品在密封包装中储存:在温度小于30℃ 且湿度小于90%时,可达12个月。
- 2、包装袋被打开后,元器件将被回流焊制程或其他的高温制程所采用时必须符合:
- a)在72小时内且工厂环境为小于30℃≤60%RH完成;
- b) 保存在 10%RH 环境下;
- c)使用前进行 125℃, 24h 烘烤去除内部水汽。