

Deconstruir el modelado no eStan complicado

Una introducción a Stan

Iván Barberá

Datos

$$y = eta_0 + eta_x \ x \ + eta_z \ z \ + eta_v \ v$$

Modelos cuantitativos

Preguntas, hipótesis

Datos

McElreath 2020 Fig. 1.1 GLM

GAM

Support Vector Machines

LM

Gaussian Process

Random Forest Deep Neural Network

Modelos no lineales

K-Nearest
Neighbour

Datos hipótesis cuantitativos

Preguntas,

Modelos

(sin estimar)

Datos

(estimados)

Modelos

cuantitativos

(sin estimar)

Preguntas,

hipótesis

(estimados)

Preguntas, hipótesis Modelos
 cuantitativos

Datos

(sin estimar)

$$y=eta_0+eta_x\;x\;+eta_z\;z\;+eta_v\;v$$

$$y=0.3+1.1~x~+4~z~-2~v$$
 (estimados)

Preguntas,

Modelos hipótesis ── cuantitativos

Datos

(sin estimar)

Preguntas, ____ Modelos ____ Datos

$$y = eta_0 + eta_x \ x \ + eta_z \ z \ + eta_v \ v$$

Preguntas, —— Modelos —— Datos hipótesis —— cuantitativos

$$y=eta_0+eta_x~x~+eta_z~z~+eta_v~v$$
 $y=eta_0+eta_x~x~+eta_z~z~+f(v)$

Preguntas, Modelos
hipótesis cuantitativos Datos

y = f(x, z, v)

$$y=eta_0+eta_x~x~+eta_z~z~+eta_v~v$$
 $y=eta_0+eta_x~x~+eta_z~z~+f(v)$

$$y = eta_0 + eta_x \ x \ + eta_z \ z \ + eta_v \ v$$

 $y=eta_0+eta_x\;x\;+eta_z\;z\;+f(v)$

GAM

$$y=f(x,z,v)$$
 dnn

Modelos estadísticos

$$y = \beta_0 + \beta_x x + \beta_z z + \beta_v v$$

Modelos estadísticos

$$egin{aligned} y_i &\sim ext{Normal}(\mu_i, \sigma) \ \mu_i &= eta_0 + eta_x \ x_i \ + eta_z \ z_i \ + eta_v \ v_i \end{aligned}$$

Modelo genérico

$$y_i \sim \mathrm{\,D}_y(\mu_i,\phi_i)$$

Modelo genérico

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i,\phi_i) \ \mu_i &= & f(oldsymbol{x}_i,oldsymbol{ heta}_\mu) \end{aligned}$$

Modelo genérico

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i,\phi_i) \ \mu_i &= & f(oldsymbol{x}_i,oldsymbol{ heta}_\mu) \ \phi_i &= & f(oldsymbol{x}_i,oldsymbol{ heta}_\phi) \end{aligned}$$

Modelo lineal

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i, \phi_i) \ \mu_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\mu) \ \phi_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\phi) \end{aligned}$$

$$egin{aligned} y_i &\sim & ext{Normal}(\mu_i, \sigma) \ \mu_i &= & lpha + eta \, x_i \end{aligned}$$

Modelo lineal generalizado

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i, \phi_i) & y_i &\sim & \mathrm{Gamma}(\mu_i, \phi) \ \mu_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\mu) & \log(\mu_i) = & lpha + eta \, x_i \ \phi_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\phi) \end{aligned}$$

Modelo lineal generalizado

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i, \phi_i) & y_i &\sim & \mathrm{Bernoulli}(heta_i) \ \mu_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\mu) & \mathrm{logit}(heta_i) = & lpha + eta \, x_i \ \phi_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\phi) \end{aligned}$$

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Estimación del modelo

- Marco de inferencia
- Software flexible

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Estimación del modelo

- Marco de inferencia
- Software flexible

Inferencia estadística

Frecuentista

Bayesiana

probabilidad como frecue<u>ncia</u>

probabilidad representa incertidumbre

Frecuentista

probabilidad
como frecuencia

Estimadores puntuales y su distribución muestral

Bayesiana

probabilidad representa incertidumbre

Frecuentista

Bayesiana

probabilidad
como frecuencia

probabilidad representa incertidumbre

Estimadores puntuales y su distribución muestral Distribución de los parámetros dados los datos

Frecuentista

$$\hat{\theta} = \operatorname{argmax}_{\theta}[p(y|\theta)]$$

Frecuentista

$$\hat{ heta} = ext{argmax}_{ heta}[p(y| heta)]$$

Frecuentista

Bayesiana

$$\hat{ heta} = ext{argmax}_{ heta}[p(y| heta)]$$

 $p(\theta)$

Frecuentista

Bayesiana

$$\hat{ heta} = ext{argmax}_{ heta}[p(y| heta)]$$

$$p(heta|y) = rac{p(y| heta) \, p(heta)}{\int p(y| heta) \, p(heta) \, d heta}$$

Frecuentista

Bayesiana

$$\hat{ heta} = \mathrm{argmax}_{ heta}[p(y| heta)]$$

Likelihood

$$p(heta|y) = rac{\widehat{p(y| heta)}\,p(heta)}{\int p(y| heta)\,p(heta)\,d heta}$$

Frecuentista

Bayesiana

$$\hat{ heta} = \mathrm{argmax}_{ heta}[p(y| heta)]$$

Likelihood Previa $p(\theta|y) = \frac{p(y|\theta) p(\theta)}{\int p(y|\theta) p(\theta) d\theta}$ Posterior

Prob. marginal de los datos

Frecuentista

Bayesiana

$$\hat{ heta} = \mathrm{argmax}_{ heta}[p(y| heta)]$$

Likelihood

Previa

$$p(heta|y) \propto \widetilde{p(y| heta)} \, \widetilde{p(heta)}$$
 Posterior

en R

Likelihood prior posterior

Inferencia estadística en la práctica

Frecuentista

Bayesiana

- MLE
- Perfiles de likelihood
- Aproximación Normal

Inferencia estadística en la práctica

Frecuentista

- MLE
- Perfiles de likelihood
- Aproximación Normal

Bayesiana

- Muestreo de la posterior (MCMC, SMC)
- Aproximaciones determinísticas (Laplace, EM, VI, INLA)

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Estimación del modelo

- Marco de inferencia
- Software flexible

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Estimación del modelo

- Marco de inferencia
- Software flexible

Maximum likelihood

- bbmle
- maxLik
- likelihoodAsy
- stats4 (mle)
- stats (optim)
- GA

Distribución posterior

- BayesianTools
- INLA
- Nimble
- JAGS
- Stan
- PyMC
- Turing

Maximum likelihood

- bbmle
- maxLik
- likelihoodAsy
- stats4 (mle)
- stats (optim)
- GA

Distribución posterior

- BayesianTools
- INLA
- Nimble
- JAGS
- Stan
- PyMC
- Turing

Stan

MCMC: Hamiltonian Monte Carlo (HMC) No-U-Turn Sampler (NUTS)

Stan

- MCMC: Hamiltonian Monte Carlo (HMC) No-U-Turn Sampler (NUTS)
- Optimización (MAP o MLE)
- Laplace Approximation
- ADVI
- Pathfinder

Maximum likelihood

- bbmle
- maxLik
- likelihoodAsy
- stats4 (mle)
- stats (optim)
- GA

Distribución posterior

- BayesianTools
- INLA
- Nimble
- JAGS
- Stan
- PyMC
- Turing

Maximum likelihood

bbmle

- maxLik
- likelihoodAsy
- stats4 (mle)
- stats (optim)
- GA

Distribución posterior

- BayesianTools
- INLA
- Nimble
- JAGS
- Stan
- PyMC
- Turing

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Estimación del modelo

- Marco de inferencia
- Software flexible

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Deconstruir el modelado

Estimación del modelo

Freq vs. Bayes

Una introducción a Stan

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i,\phi_i) \ \mu_i &= & f(oldsymbol{x}_i,oldsymbol{ heta}_\mu) \ \phi_i &= & f(oldsymbol{x}_i,oldsymbol{ heta}_\phi) \end{aligned}$$

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i,\phi_i) \ \mu_i &= & f(oldsymbol{x}_i,oldsymbol{ heta}_\mu) \ \phi_i &= & f(oldsymbol{x}_i,oldsymbol{ heta}_\phi) \end{aligned}$$

$$oldsymbol{ heta}_{\mu} \sim \ \mathrm{D}_{\mu}(a,b) \ oldsymbol{ heta}_{\phi} \sim \ \mathrm{D}_{\phi}(c,d)$$

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i, \phi_i) & y_i \sim & \mathrm{Normal}(\mu_i, \sigma) \ \mu_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\mu) & \mu_i &= & lpha + eta \, x_i \ \phi_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\phi) \end{aligned}$$

$$egin{aligned} oldsymbol{lpha} & lpha \sim & ext{Normal}(0,1) \ oldsymbol{ heta}_{\mu} \sim & ext{D}_{\mu}(a,b) & eta \sim & ext{Normal}(0,1) \ oldsymbol{ heta}_{\phi} \sim & ext{D}_{\phi}(c,d) & oldsymbol{\sigma} \sim & ext{Half-Normal}(2) \end{aligned}$$

Caso de estudio:

comportamiento de ballenas en función del ataque por gaviotas

Datos

	A	В	С	D
1	t	grupo	y	X
2	1	1	0	0
3	2	1	0	0
4	3	1	0	0
5	4	1	0	0
6	5	1	0	0
7	6	1	0	0
8	7	1	0	0
9	8	1	0	0
10	9	1	0	0
11	10	1	0	0
12	11	1	1	0
13	12	1	1	0
14	1	2	0	0
15	2	2	0	0
16	3	2	0	0
17	4	2	0	0
18	5	2	0	0
19	6	2	0	0
20	7	2	0	0
21	8	2	0	1
22	9	2	0	1
23	10	2	0	0

Modelo 1

$$y_i \sim ext{Bernoulli}(heta) \ heta \sim ext{Unif}(0,1)$$

$$y = 0$$
: quieta $y = 1$: en movimiento

$$egin{aligned} y_i &\sim & ext{Bernoulli}(heta) & p(y| heta) \ heta &\sim & ext{Unif}(0,1) & p(heta) \end{aligned}$$

Modelo 1

Likelihood	$y_i \sim$	$\operatorname{Bernoulli}(heta)$	$p(y \theta)$
Previa	$\overline{ heta} \sim$	$\mathrm{Unif}(0,1)$	$p(\theta)$

Modelo 2

$$egin{aligned} y_i &\sim ext{Bernoulli}(heta_i) \ heta_i &= ext{logit}^{-1}(lpha+eta\,z_i) \ lpha &\sim ext{Normal}(0,5) \ eta &\sim ext{Normal}(0,2) \end{aligned}$$

Modelo 3
$$y_t \sim \operatorname{Bernoulli}(heta_t)$$
 $heta_t = \operatorname{logit}^{-1}(lpha + eta \, z_t)$ $z_t = z_{t-1}$ $+ \iota \, (1 - z_{t-1}) \, x_{t-1}$ $- \delta \, z_{t-1} \, (1 - x_{t-1})$ $lpha \sim \operatorname{Normal}(0, 5)$ $eta \sim \operatorname{Normal}(0, 2)$ $\iota \sim \operatorname{Unif}(0, 1)$ $\delta \sim \operatorname{Unif}(0, 1)$ $z_1 \sim \operatorname{Unif}(0, 1)$

R y Stan

Transition probabilities as a function of z (row to column)

Modelos ← Datos cuantitativos

(estimados)

(sin estimar)

Preguntas,

hipótesis

dancicacivos

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Deconstruir el modelado

Estimación del modelo

- Freq vs. Bayes
- bbmle vs. Stan

Una introducción a Stan

Stan User's Guide

Version 2.35

This is the official user's guide for <u>Stan</u>. It provides example models and programming techniques for coding statistical models in Stan.

- Part 1 gives Stan code and discussions for several important classes of models.
- Part 2 discusses various general Stan programming techniques that are not tied to any particular model.
- Part 3 introduces algorithms for calibration and model checking that require multiple runs of Stan.

mc-stan.org

Texts in Statistical Science

Statistical Rethinking

A Bayesian Course
with Examples in R and Stan
SECOND EDITION

Richard McElreath

Texts in Statistical Science

Bayesian Data Analysis

Third Edition

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin

Fin.

