概率论与数理统计

(第六册)

学	院	专	业	
学	号	姓	名	任课教师

第11次作业

- 一. 填空题:
 - ξ的分布列为:

ξ	1	2	3	4
P	$\frac{1}{10}$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{3}{10}$

则 $E\xi =$ ____。

2. ξ 的分布列为:

ξ	-1	0	$\frac{1}{2}$	1	2
P	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	1/12	$\frac{1}{4}$

3. 设 X_1, X_2, X_3 是3个独立同分布的随机变量, $E(X_i) = \mu$, $D(X_i) = 8$,对于

 $\overline{X} = \frac{1}{3} \sum_{i=1}^{3} X_i$,则用切比雪夫不等式估计 $P\{|\overline{X} - \mu| < 4\} \ge$ ______.

- 二. 填空题:
 - 1. 若对任意的随机变量 ξ , $E\xi$ 存在 ,则 $E(E(E\xi))$ 等于 ()。
 - (A) . 0

- (B). ξ (C). $E\xi$ (D). $(E\xi)^2$
- 2. 现有10张奖券,其中8张为2元,2张为5元,某人从中随机地无放回地 抽取 3 张,则此人所得奖金的数学期望为

- (A) 6.5 (B) 12 (C) 7.8 (D) 9
- 3. 已知随机变量 X 满足 E(X) = 2 , D(X) = 4 , 则 $E(4X^2 3) = ($

- (A) 32 (B) 29 (C) 0 (D) 13

三. 计算题

- 1. 设随机变量 X 的概率密度为 $p(x) = \begin{cases} \frac{1}{\theta 1} x^{\frac{2 \theta}{\theta 1}}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$ 其中 $\theta > 1$, 求 EX 。
- 2. 设随机变量 ど的概率密度函数

$$p(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

求 $E\xi$, $E(2\xi+3)$, $E(\xi+e^{-2\xi})$ 和 $E(\max\{\xi,2\})$ 。

- 3. 一台机器由三大部件组成,在运转中各部件需要调整的概率分别为 0.1, 0.2 和 0.3。假设各部件的状态相互独立,用 ξ 表示同时需要调整的部件数,试 $求\xi$ 的数学期望。
- 设球的直径均匀分布在区间[a,b]内,求球的体积的平均值。
- 5. 六个元件装在 3 台仪器上,每台仪器装两个,元件的可靠性为 0.5。如果一 台仪器中至少有一个元件正常工作,不需要更换,若两个元件都不工作,则 要更换,每台仪器最多更换一次,记X为3台仪器需要更换元件的总次数, 求 EX
- 6. * 某种产品上的缺陷数 *E* 服从分布律

$$P(\xi = k) = \frac{1}{2^{k+1}}, \quad k = 0, 1, 2, \dots$$

求此种产品上的平均缺陷数。(* 高等数学 8 学分的学生可以不做)

第12次作业

一. 填空题

1. 设随机变量 ξ 的分布律为

ξ	-1	0	1
P	а	$\frac{1}{2}$	b

已知
$$D\xi = 0.5$$
,则 $a = _____$, $b = _____$ 。

2. 若随机变量 *X* 的分布律为 $P\{X = k\} = \frac{e^{-1}}{k!}, k = 0,1,2,\dots, 则$

$$E(X) = \underline{\hspace{1cm}}; \hspace{1cm} D(X) = \underline{\hspace{1cm}}_{\circ}$$

3. 事件在一次试验中发生次数 ξ 的方差一定不超过。

二、选择题

1. 设X是一随机变量, $E(X) = \mu$, $D(X) = \sigma^2$, $(\mu, \sigma > 0)$ 为常数),则对任意常数 C, 必有() 成立

A
$$E(X-C)^2 = E(X^2) - C^2$$
 B. $E(X-C)^2 = E(X-\mu)^2$

B.
$$E(X-C)^2 = E(X-\mu)^2$$

C.
$$E(X-C)^2 < E(X-\mu)^2$$

C.
$$E(X-C)^2 < E(X-\mu)^2$$
 D. $E(X-C)^2 \ge E(X-\mu)^2$

2. 抛一枚均匀硬币 100 次, 根据切比雪夫不等式可知, 出现正面的次数在 40~60 之间的概率 p 为()

A.
$$\geq 0.75$$

B.
$$\geq 0.95$$

C.
$$\leq 0.75$$

A.
$$\geq 0.75$$
 B. ≥ 0.95 C. ≤ 0.75 D. ≤ 0.25

3. 设 X 与 Y 是两个相互独立的随机变量 a,b 为实数,则下列等式不成立的是()

A.
$$E(aX + bY) = aE(X) + bE(Y)$$

B.
$$E(XY) = E(X)E(Y)$$

C.
$$E(aX^2+bY^2) = aE(X^2) + bE(Y^2)$$

D.
$$D(aX^2+bY^2) = aD(X^2) + bD(Y^2)$$

三、计算题

1. 设 ξ 的分布列为:

ξ	-1	0	$\frac{1}{2}$	1	2
P	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	1/12	$\frac{1}{4}$

求 $D\xi$ 和 $D(1-3\xi)$ 。

2. 某台机器由三大部件组成,在运转中各部件需要调整的概率分别为 0.1, 0.2 和 0.3。假设各部件的状态相互独立,用 ξ 表示同时需要调整的部件数,求 $D\xi$

3. 设随机变量
$$\xi$$
 具有概率密度 $p(x) = \begin{cases} x & 0 \le x \le 1 \\ 2-x & 1 < x \le 2, \text{ 计算 } D\xi \\ 0 & \text{其它} \end{cases}$

4. 设随机变量 ξ 仅在[a,b]取值,试证

$$a \le E\xi \le b$$
, $D\xi \le \left(\frac{b-a}{2}\right)^2$

5. 已知某种股票的价格是随机变量 ξ ,其平均值是 1 元,标准差是 0.1 元。求常数 a ,使得股价超过 1+a 元或低于 1-a 元的概率小于 10% 。(提示: 应用切比 雪夫不等式)。

6. 设随机变量 ξ 的概率分布为

$$P(\xi = x) = \left(\frac{a}{2}\right)^{|x|} (1-a)^{1-|x|}, \quad x = -1, 0, 1$$

其中 0<a<1。 试求: $D\xi$, $D|\xi|$