

Optimization and Decision Support Methodologies

Date: January 18, 2023 Exam – First Call Duration: 2h

Note: <u>Present all</u> the calculations you carry out, as well as any comments, justifications or conclusions you deem appropriate.

1. (expected quotation: 7.5 points = 2.5 + 2.5 + 2.5)

Consider the following single-objective linear programming problem:

Maximize
$$z = 2x_1 - x_2$$

subject to
 $x_1 + 2x_2 \ge 4$ (1)
 $3x_1 + x_2 \le 3$ (2)
 $x_1 \ge 0, x_2 \ge 0$

Assuming that x_3 and x_4 are the surplus and artificial variables of the functional constraint (1), and x_5 is the slack variable of the functional constraint (2), the *simplex* optimal tableau is:

	Ci	2	-1	0	-M	0	
ΧB	$c_{B} \setminus \mathbf{x_i}$	X 1	\mathbf{X}_{2}	X 3	X 4	X 5	b
X ₂	-1	0	1	-3/5	3/5	-1/5	9/5
X 1	2	1	0	1/5	-1/5	2/5	2/5
zj-cj		0	0	1	-1+M	1	-1

- a) For each of the following alterations in the initial problem, determine, performing a post-optimization study, what are the implications in the optimal solution presented (in the value of x*, in the value of z* and in the optimal basis), resulting from the variation:
 - i) Changing the coefficient of the variable x₁ in the objective function, from 2 to 3;
 - ii) Changing independent terms of the constraints from $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ to $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$.
- **b)** Determine, carrying out a <u>sensitivity analysis</u> study, for which **interval of b**₁ (independent term of the 1st constraint) the optimal basis presented above will remain optimal.

2. (expected quotation: 6.5 points = 5.0 + 1.5)

Now consider the following goal programming problem:

Minimize
$$Z = \left\{ d_3^+, d_4^-, d_5^- + d_5^+ \right\}$$

sujeito a
$$-x_1 + x_2 + d_1^- = 3 \qquad \qquad \textbf{(1)}$$

$$2x_1 + 3x_2 + d_2^- = 18 \qquad \textbf{(2)}$$

$$x_1 + 3x_2 + d_3^- - d_3^+ = 12 \qquad \textbf{(3)}$$

$$x_1 + 2x_2 + d_4^- - d_4^+ = 4 \qquad \textbf{(4)}$$

$$2x_1 + 3x_2 + d_5^- - d_5^+ = 24 \qquad \textbf{(5)}$$

$$x_1 \ge 0, \ x_2 \ge 0, \ d_i^- \ge 0, \ d_i^+ \ge 0 \ \ (i = 1, 2, 3, 4, 5)$$

- a) Solve this problem by the graphical method;
- b) Tell what was the intended objective for the goal with priority level 2 and if this was achieved or not. Justify your answer.

3. (expected quotation: 6.0 = 4.5 + 1.5)

Consider the following linear programming problem with two objective functions:

- **a)** Determine the (strictly and/or weakly) **efficient region** of this problem and highlight it on the graph above. Justify your answer.
- **b)** Obtain the **pay-off table** corresponding to this problem and identify the **ideal solution** and the **anti-ideal solution**.

Name: