Lecture 2

Question: How may vounds do me need to elect a leader with probability 31-4 (for some fixed f e.g. f=106?

Let f > 1 and let $S_1, ..., S_n$ be independent copies of the same expenion and such that $\forall i \in \{1,...,n\} \ P_n[S_i] = p \ge 2$. Then $v \ge \frac{-(nf)}{(n(1-2))} \Rightarrow P_n[S_1 \cup S_2 \cup ... \cup S_n] \ 7 \ 1 - \frac{1}{4}$

Proof:

(1)
$$P_{h}[S_{1}uS_{2}u...uS_{h}] \geqslant 1 - \frac{1}{f} \iff 1 - (1-p)^{n} \geqslant 1 - \frac{1}{f} \implies 1 - \frac{1}{f} \implies$$

for example $f = 10^{7} \Rightarrow v = \frac{1 - \ln f}{\ln (1 - \lambda)} = 6 \quad \text{with} \quad p = 6 \geq 1 - \frac{1}{10^{2}}$ $f = 10^{6} \Rightarrow v = 16$

Condusion
#slots & [-(n+)] with p-b>1-1

Louveu bound

Question: What is the shoutest vector $\bar{p}_n = (p_1, -p_n)$ such that we can elect a leaden with $p_-b \ge 1 - \frac{1}{2}$?

Remounts:

D'without 1955 of genevality me can assume that 121 2 Pz 3 P3 3 ... 3 pk

2 in an optimal vector me have $\forall i \in \{1,2,...k\}$ pi $\geq \frac{\pi}{k}$

(3) Additionaly po=1, pn+1=u

Lemma 6 (With a hole inside @))

There is i \(\{ \(\text{O}_1 \)_1...k\\ \(\text{S} \) such that \(\frac{P_1}{P_{1+1}} \) \(\text{V} \) \(\text{V} \)

$$p_{0=1} p_{1} \cdots p_{i} \int_{\rho_{i} \cdot \rho_{i+1}}^{\rho_{i+1}} p_{\kappa+1} = \frac{1}{u}$$

$$n^{*} = \frac{1}{1 + 1}$$

Proof: Let us implicitly assure that $\forall i \in \{0,...k\}$ $\frac{p_i}{p_{i+1}} \leq u_{k+1}$

 $\frac{p_0}{p_1} \cdot \frac{p_1}{p_2} \cdot \dots \cdot \frac{p_n}{p_{n+1}} = \frac{p_0}{p_{n+1}} = \frac{1}{u} = u$ = u

Let $S_{p,n}$ denote an event that in one of K slots the leader was elected. Then for any vector \bar{p}_K there is $p^* \in \{2, ..., a\}$ such that $P_n[S_{p_n,n}*] \leq 1-(1-\frac{3e}{u\frac{1}{2(k+1)}})$ Proof:
for any \bar{p}_{K} there is i s.t. $\frac{p_{i}}{p_{i+1}} \ge \frac{1}{u_{K+1}}$ (Lernor 6)
we choose $u^* = \int_{\bar{p}_{i}} \frac{1}{p_{i+1}} dx$ $\frac{1}{u_{K+1}} \left(\frac{1}{u_{K+1}} + \frac{1}{u_{K+1}} \right) = \frac{1}{u_{K+1}} \left(\frac{1}{u_{K+1}} + \frac{1}{u_{K+1}} \right) = \frac{1}{u_{K+1}} \left(\frac{1}{u_{K+1}} + \frac{1}{u_{K+1}} \right) = \frac{1}{u_{K+1}} \left(\frac{1}{u_{K+1}} + \frac{1}{u_{K+1}} + \frac{1}{u_{K+1}} \right) = \frac{1}{u_{K+1}} \left(\frac{1}{u_{K+1}} + \frac{$ · we lunn that Pu[sprin*]=1- | (1-n*.p; (1-pi)))

. to show that $\forall i \in i1,...ki$ " $p_i(1-p_i)^{M^*-1} \leq \frac{3e}{42(M^*)}$

If h \(\left(\frac{\left(\left)}{2\left(\left(\left))}\) -1, \(\extit{f} > 1\) and \(\textit{h} + \extit{e}\) \(\frac{\left(\left(\left(\left(\left)))}{2\left(\left