Mathe 1

Mitschrift

Fabian Damken

20. Oktober 2016

Inhaltsverzeichnis

1	Gru	ndbegr	iffe	3
	1.1	Aussag	gen	3
		1.1.1	Aussageformen	3
		1.1.2	Quantoren	3
		1.1.3	Aussagenlogische Verknüpfungen	4
	1.2	Menge	en	4
		1.2.1	Formalia	5
		1.2.2	de'Morganschen Regeln	5
		1.2.3	Kardinalität	5
		1.2.4	Operationen	5
		1.2.5	Obere/Untere Schranken	6
		1.2.6	Relationen	6
		1.2.7	Ordnungsrelationen	7
		1.2.8	Große Vereinigung/Schittmenge / Leere Menge	7
		1.2.9	Äquivalenzrelation	8
		1.2.10	Äquivalenzklassen	8
		1.2.11	Partitionen	G

1 Grundbegriffe

1.1 Aussagen

Beispiele:

- A_1 : 3 ist eine gerade Zahl.
- A_2 : Jede natürliche Zahl ist gerade.
- A_3 : 3 ist prim.

1.1.1 Aussageformen

Aussagen mit Variablen.

Beispiele:

- E_1 : x + 10 = 5
- E_2 : $x^2 >= 0$
- E_3 : n ist gerade.
- E_4 : $x^2 + y^2 = 1$

1.1.2 Quantoren

- $\forall x \in M : E(x)$ Für alle x in M gilt E(x) wobei E eine Aussageform darstellt.
- $\exists x \in M : E(x)$ Es existiert mindestens ein x in M für das gilt E(x) wobei E eine Aussageform darstellt.

Beispiele:

- $\forall x \in \mathbb{R} : x^2 >= 0$ (w)
- $\forall n \in \mathbb{N} : E_3(n)$ (f)
- $\exists n \in \mathbb{N} : E_3(n) (\mathbf{w})$

1.1.3 Aussagenlogische Verknüpfungen

- $A \wedge B$ Konjunktion (und)
- $A \vee B$ Disjunktion (oder)
- $A \implies B$ Implikation (aus A folgt B)
- $\neg A$ Negation (nicht)
- $A \iff B$ Äquivalenz (Gleichheit)

A	$\mid B \mid$	$\neg A$	$\neg B$	$A \wedge B$	$A \lor B$	$A \implies B ((\neg A) \vee B)$	$A \iff B$
W	W	f	f	W	W	W	W
W	f	f	w	f	W	f	f
f	w	W	f	f	w	W	f
f	f	W	w	f	f	W	f

Äquivalenz $A \iff B \equiv (A \implies B) \land (B \implies A)$

Kontraposition $A \implies B \iff (\neg B \implies \neg A)$

de Morgan'schen Regeln

- $\neg (A \lor B) \iff \neg A \land \neg B$
- $\neg (A \land B) \iff \neg A \lor \neg B$

Distributivgesetz

- $(A \lor B) \land C \iff (A \land C) \lor (B \land C)$
- $(A \land B) \lor C \iff (A \lor C) \land (B \lor C)$

1.2 Mengen

Beispiele:

- $\mathbb{N} = \{0; 1; ...; n; ...\}$
- $\mathbb{N} * = \{1; 2; ...; n; ...\} = \{n \in \mathbb{N} : n \neq 0\}$
- $\{x \in M : E(x)\}$ wobei E eine Aussagenform darstellt.
- $\bullet \ \{n \in \mathbb{N} : prim(x) \land n <= 6\} = \{2; 3; 5\}$

1.2.1 Formalia

- $A \subseteq B \equiv \forall x \in A : x \in B$
- $A = B \equiv (A \subseteq B) \land (B \subseteq A) \equiv \forall x \in M : (x \in A \implies x \in B) \land (x \in B \implies x \in A)$
- $\emptyset \equiv \{x \in A : x \neq x\} \ (x \neq x \equiv \neg x = x)$

1.2.2 de'Morganschen Regeln

• $(A \cup B)^{c} = A^{c} \cap B^{c}$

1.2.3 Kardinalität

Seien A und B endliche Mengen.

Anzahl der Elemente (Kardinalität): |A|

- $|A \cup B| = |A| + |B| |A \cap B|$
- $\bullet ||A \times B|| = |A| * |B|$

 $|A \cup B| = |A| + |B|$ wenn $A \cap B = \emptyset$

1.2.4 Operationen

 $M, N \in G$

- $\bullet \ M \cap N \equiv \{x \in M : x \in N\} \equiv \{x \in G : x \in M \wedge x \in N\}$
- $\bullet \ M \cup N \equiv \{x \in G : x \in M \vee x \in N\}$
- $\bullet \ M \setminus N \equiv \{x \in M : x \not \in N\} \equiv \{x \in M : \neg x \in N\}$
- $\bullet \ M^{\mathbf{c}} \equiv \{x \in G : x \not\in M\} \equiv \{x \in G : \neg x \in M\}$
- $M \times N \equiv \{(x,y) : x \in M, y \in N\}$ Kartesisches Produkt
- $A_1 \times ... \times A_n \equiv \{(x_1,...,x_n) : x_y \in A_1,...,x_n \in A_n\}$
- $P(M) = \{x : x \in M\}$
 - $-\emptyset \subseteq P(\emptyset) \subseteq P(P(\emptyset)) \subseteq \dots$
 - $-V_w \subset P^n(\emptyset) \ (n \in \mathbb{N})$
 - $-P(V_w) = V_l(w+1)$

1.2.5 Obere/Untere Schranken

Obere Schranken: $OS(Y) = \{x \in X : \forall y \in Y : x \ge y\}$

Untere Schranken: $US(Y) = \{x \in X : \forall y \in Y : x \leq y\}$

Supremum: Das kleinste Element von $OS(Y) \iff sup(Y)$.

Infimum: Das größte Element von $US(X) \iff inf(Y)$.

Beispiel

$$\mathbb{Q}^+ = \{ x \in \mathbb{Q} : 0 < x \}$$

Supremum: Nicht vorhanden.

Infimum: $US(\mathbb{Q}^+) = \{x \in \mathbb{Q} : x \le 0\} \implies inf(\mathbb{Q}^+) = 0$

1.2.6 Relationen

$$R \subseteq A_1 \times ... \times A_n$$

Relationen von identischen Mengen

$$A^n = A \times ... \times A \ (n \text{ mal})$$

Für n=2 kann die Infixnotation verwendet werden, das heißt $xRy \iff (x,y) \in R$.

Definition von kleiner-gleich

$$\leq = \{(n,m)\mathbb{N}^2 : n \leq m\}$$

Eigenschaften

Reflexivität $\forall x \in M : xRx$

Symmetrie $xRy \implies yRx$

Transivität $xRy \wedge yRz \implies xRz$

Antisymmetrie $xRy \wedge yRx \implies x = y$

- \bullet R ist eine Äquivalenz
relation \iff R reflexiv, transitiv und symmetrisch
- ullet R ist eine partitielle Ordnung \iff R reflexiv, transitiv, antisymmetrisch
- R ist total $\iff \forall xy \in M : xRy \vee yRx$

1.2.7 Ordnungsrelationen

Ordnungstypen

p.O. := partielle Ordnung

- Totale Ordnung: Jedes Element ist mit jedem anderen vergleichbar.
- Partielle Ordnung: Nicht jedes Element ist nicht mit jedem anderen vergleichbar.

Ordnungsäquivalenz

(x, R) p.O. $y \subseteq x \implies (y, R \cap (y \times x))$ p.O.

- $x \ge y \iff y \le x$
- $x > y \iff x \ge y \land x \ne y \iff x \ge y \land \neg(x = y)$
- $x < y \iff y > x$

Extreme

 (x, \leq) p.O. $y \subseteq x$

- $g \in X$ größtes Element von $X \iff \forall x \in X : x \leq g$
- $k \in X$ kleinstes Element von $X \iff \forall x \in X : x \ge k$

Größe Elemente sind immer eindeutig.

Beweis Die größten Elemente sind immer eindeutig. Seien g und g' die größten Elemente. $\implies g \leq g' \land g' \leq g \implies g = g$

q.e.d.

1.2.8 Große Vereinigung/Schittmenge / Leere Menge

Allgemein

Allgemein gilt für Teilmengen von Potenzmengen $Y\subseteq P(M)$:

- $sup(Y) = \bigcup Y = \bigcup_{A \in Y} A$
- $inf(Y) = \bigcap Y = \bigcap_{A \in Y} A$

Sonderfall

Für die leere Teilmenge der Potenzmenge $Y = \emptyset$, $Y \subseteq P(M)$ gilt:

- $OS(\emptyset) = US(\emptyset) = P(M)$
- $sup(Y) = \bigcup \emptyset = \emptyset$
- $inf(Y) = \bigcap \emptyset = M$

1.2.9 Äquivalenzrelation

Es gilt $a, b, c, k, l, n \in \mathbb{Z}$.

 $a \sim_n b$ genau dann wenn $\exists k \in \mathbb{Z} : a - b = k * n$

Beweis Symmetrie

$$a - b = k * n \implies b - a = (-k) * n$$

q.e.d.

Beweis Transitivität

$$a - b = k * n, b - c = l * n \implies a - c = (a - b) + (b - c) = k * n + l * n = (k + l) * n$$

q.e.d.

1.2.10 Äquivalenzklassen

Es gilt (X, R), $a \in X$.

- $a \in X$
- $\bullet \ \tilde{a} \coloneqq \{x \in X : a \sim x\}$
- $\tilde{a} \neq \emptyset$
- $\bullet \ \bigcup \tilde{a} = X$
- $\tilde{a} \neq \tilde{b} \implies \tilde{a} \cap \tilde{b} = \emptyset$

Beweis $\tilde{a} \neq \tilde{b} \implies \tilde{a} \cap \tilde{b} = \emptyset \equiv \tilde{a} \cap \tilde{b} \neq \emptyset \implies \tilde{a} = \tilde{b}$

Sei $c \in \tilde{a} \cap \tilde{b}$, das heißt cRa und cRb, also $a \sim b$ und somit $\tilde{a} = \tilde{b}$ und somit $\tilde{a} \neq \tilde{b} \implies \tilde{a} \cap \tilde{b} = \emptyset$.

q.e.d.

1.2.11 Partitionen

 $P \subseteq P(X)$ ist genau dann eine Partition, wenn:

- $\bigcup P = X$
- $\forall A \in P : A \neq \emptyset$
- $\forall S_1 S_2 \in P : S_1 \neq S_2 \implies S_1 \cap S_2 = \emptyset$