CS 228 : Logic in Computer Science

Krishna. S

The Proofs So Far

➤ So far, the "proof" we have seen is purely syntactic, no true/false meanings were attached

The Proofs So Far

- ➤ So far, the "proof" we have seen is purely syntactic, no true/false meanings were attached
- ▶ Intuitively, $p \rightarrow q \vdash \neg p \lor q$ makes sense because you think semantically. However, we never used any semantics so far.

The Proofs So Far

- So far, the "proof" we have seen is purely syntactic, no true/false meanings were attached
- ▶ Intuitively, $p \rightarrow q \vdash \neg p \lor q$ makes sense because you think semantically. However, we never used any semantics so far.
- Now we show that whatever can be proved makes sense semantically too.

▶ Each propositional variable is assigned values true/false. Truth tables for each of the operators $\lor, \land, \neg, \rightarrow$ to determine truth values of complex formulae.

- ▶ Each propositional variable is assigned values true/false. Truth tables for each of the operators ∨, ∧, ¬, → to determine truth values of complex formulae.
- $\varphi_1, \dots, \varphi_n \models \psi$ iff whenever $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ . \models is read as semantically entails

- ▶ Each propositional variable is assigned values true/false. Truth tables for each of the operators ∨, ∧, ¬, → to determine truth values of complex formulae.
- $\varphi_1, \dots, \varphi_n \models \psi$ iff whenever $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ . \models is read as semantically entails
- ▶ Two formulae φ and ψ are provably equivalent iff $\varphi \vdash \psi$ and $\psi \vdash \varphi$

- ▶ Each propositional variable is assigned values true/false. Truth tables for each of the operators ∨, ∧, ¬, → to determine truth values of complex formulae.
- $\varphi_1, \dots, \varphi_n \models \psi$ iff whenever $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ . \models is read as semantically entails
- ▶ Two formulae φ and ψ are provably equivalent iff $\varphi \vdash \psi$ and $\psi \vdash \varphi$
- ▶ Two formulae φ and ψ are semantically equivalent iff $\varphi \models \psi$ and $\psi \models \varphi$

Soundness of Propositional Logic

$$\varphi_1, \ldots, \varphi_n \vdash \psi \Rightarrow \varphi_1, \ldots, \varphi_n \models \psi$$

Whenever ψ can be proved from $\varphi_1, \dots, \varphi_n$, then ψ evaluates to true whenever $\varphi_1, \dots, \varphi_n$ evaluate to true

▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.
- Assume that whenever $\varphi_1, \dots, \varphi_n \vdash \psi$ using a proof of length $\leq k 1$, we have $\varphi_1, \dots, \varphi_n \models \psi$.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.
- Assume that whenever $\varphi_1, \dots, \varphi_n \vdash \psi$ using a proof of length $\leq k 1$, we have $\varphi_1, \dots, \varphi_n \models \psi$.
- Consider now a proof with k lines.

▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?

Soundness : Case $\wedge i$

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- ▶ Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- ▶ Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.
- ▶ We have the shorter proofs $\varphi_1, \ldots, \varphi_n \vdash \psi_1$ and $\varphi_1, \ldots, \varphi_n \vdash \psi_2$

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- ▶ Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.
- ▶ We have the shorter proofs $\varphi_1, \ldots, \varphi_n \vdash \psi_1$ and $\varphi_1, \ldots, \varphi_n \vdash \psi_2$
- ▶ By inductive hypothesis, we have $\varphi_1, \dots, \varphi_n \models \psi_1$ and $\varphi_1, \dots, \varphi_n \models \psi_2$. By semantics, we have $\varphi_1, \dots, \varphi_n \models \psi_1 \land \psi_2$.

▶ Assume ψ was obtained using \rightarrow i. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.

- ▶ Assume ψ was obtained using \rightarrow i. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .
- ▶ The line just after the box was ψ .

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .
- ▶ The line just after the box was ψ .
- ▶ Consider adding ψ_1 in the premises along with $\varphi_1, \ldots, \varphi_n$. Then we will get a proof $\varphi_1, \ldots, \varphi_n, \psi_1 \vdash \psi_2$, of length k-1. By inductive hypothesis, $\varphi_1, \ldots, \varphi_n, \psi_1 \models \psi_2$. By semantics, this is same as $\varphi_1, \ldots, \varphi_n \models \psi_1 \rightarrow \psi_2$

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .
- ▶ The line just after the box was ψ .
- ▶ Consider adding ψ_1 in the premises along with $\varphi_1, \ldots, \varphi_n$. Then we will get a proof $\varphi_1, \ldots, \varphi_n, \psi_1 \vdash \psi_2$, of length k-1. By inductive hypothesis, $\varphi_1, \ldots, \varphi_n, \psi_1 \models \psi_2$. By semantics, this is same as $\varphi_1, \ldots, \varphi_n \models \psi_1 \rightarrow \psi_2$
- ▶ The equivalence of $\varphi_1, \ldots, \varphi_n \vdash \psi_1 \rightarrow \psi_2$ and $\varphi_1, \ldots, \varphi_n, \psi_1 \vdash \psi_2$ gives the proof.

Soundness: Other cases

Completeness

$$\varphi_1, \ldots, \varphi_n \models \psi \Rightarrow \varphi_1, \ldots, \varphi_n \vdash \psi$$

Whenever $\varphi_1, \ldots, \varphi_n$ semantically entail ψ , then ψ can be proved from $\varphi_1, \ldots, \varphi_n$. The proof rules are complete

▶ Given $\varphi_1, \ldots, \varphi_n \models \psi$

- ▶ Given $\varphi_1, \ldots, \varphi_n \models \psi$
- ▶ Step 1: Show that $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$

- ▶ Given $\varphi_1, \ldots, \varphi_n \models \psi$
- ▶ Step 1: Show that $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$
- ▶ Step 2: Show that $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$

- ▶ Given $\varphi_1, \ldots, \varphi_n \models \psi$
- ▶ Step 1: Show that $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$
- ▶ Step 2: Show that $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$
- ▶ Step 3: Show that $\varphi_1, \ldots, \varphi_n \vdash \psi$

Assume $\varphi_1, \dots, \varphi_n \models \psi$. Whenever all of $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ .

- Assume $\varphi_1, \dots, \varphi_n \models \psi$. Whenever all of $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ .
- ▶ If $\not\models \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$, then ψ evaluates to false when all of $\varphi_1, \dots, \varphi_n$ evaluate to true, a contradiction.

- Assume $\varphi_1, \ldots, \varphi_n \models \psi$. Whenever all of $\varphi_1, \ldots, \varphi_n$ evaluate to true, so does ψ .
- ▶ If $\not\models \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$, then ψ evaluates to false when all of $\varphi_1, \dots, \varphi_n$ evaluate to true, a contradiction.
- ▶ Hence, $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots)).$

▶ Given $\models \psi$, show that $\vdash \psi$

- ▶ Given $\models \psi$, show that $\vdash \psi$
- Assume p_1, \ldots, p_n are the propositional variables in ψ . We know that all the 2^n assignments of values to p_1, \ldots, p_n make ψ true.

- ▶ Given $\models \psi$, show that $\vdash \psi$
- Assume p_1, \ldots, p_n are the propositional variables in ψ . We know that all the 2^n assignments of values to p_1, \ldots, p_n make ψ true.
- Using this insight, we have to give a proof of ψ .

Truth Table to Proof

Let φ be a formula with variables p_1, \ldots, p_n . Let \mathcal{T} be the truth table of φ , and let I be a line number in \mathcal{T} . Let \hat{p}_i represent p_i if p_i is assigned true in line I, and let it denote $\neg p_i$ if p_i is assigned false in line I. Then

- 1. $\hat{p}_1, \dots, \hat{p}_n \vdash \varphi$ if φ evaluates to true in line I
- 2. $\hat{p}_1, \dots, \hat{p}_n \vdash \neg \varphi$ if φ evaluates to false in line *I*