Самолет ТУ-154

Рис.1 Общий вид.

Рис.2 Полётная область.

Рис.3 Аэродинамические характеристики самолета ТУ-154Б:

- а) зависимость коэффициента аэродинамической подъемной силы от угла атаки;
- б) поляры для различных конфигураций при убранном шасси и без учета влияния экрана земной поверхности:
- 1. $\delta_3 = 0^{\circ}, \ \delta_{\Pi p} = 0^{\circ};$
- 2. $\delta_3 = 45^{\circ}$, $\delta_{np}^{-} = 18,5^{\circ}$ с отклоненными на пробеге интерцепторами;
- 3. $\delta_3 = 28^{\circ}$, $\delta_{\pi p} = 18.5^{\circ}$;
- 4. $\delta_3 = 45^{\circ}$, $\delta_{\pi p} = 18.5^{\circ}$;
- 5. $\delta_3 = 0$, $\delta_{\text{пр}} = 0$ шасси выпущено.

 $\frac{}{0}$ $\frac{}{5}$ $\frac{}{10}$ $\frac{}{15}$ $\frac{}{20}$ $\frac{}{\alpha^{\circ}}$ Рис.4 Влияние числа M на зависимость $Cy = f(\alpha)$.

Рис.5 Влияние конфигурации самолета на аэродинамическое качество.

- 1. закрылки, предкрылки и шасси убраны;
- 2. δ_3 = 28°, $\delta_{\rm np}$ = 18,5° (полный выпуск), шасси убрано;
- 3. $\delta_3 = 28^\circ$, $\delta_{\rm np}^{-1} = 18,5^\circ$, шасси выпущено (взлетное положение);
- 4. $\delta_3 = 45^{\circ}$, $\delta_{\rm np} = 18,5^{\circ}$ (полный выпуск), шасси убрано;
- $5. \ \delta_3 = 45^{\circ}, \ \delta_{\rm np} = 18,5^{\circ}, \ {\rm maccu \ выпущено} \ ({\rm посадочноe \ положениe}).$

Рис.6 Поляры самолета для больших чисел М.

Рис. 7 Зависимость Ктах от числа М:

1 — по результатам контрольных испытаний; 2 — по результатам первого этапа государственных испытаний.

Таблица соответствия ручки управления двигателями δ_{cr} , количеству оборотов ротора компрессора n.

Режим	Угол	Частота вращения ротора компрессора	
	поворота	высокого давления	
	РУД, °	%	об/мин
Взлетный	114 + 2	$95,5 \pm 1$	7060
Номинальный	106 ± 1	$92,5 \pm 1$	6830
0,85 номинального	96 ± 1	90 ± 1	6640
0,7	86 ± 2	$86,5 \pm 1$	6410
0,6	80 + 2	84±1	6220
0,4	66 ± 2	$77,5\pm1$	5430
Малого газа	25 ±4	55,5-2,5	4100
Максимальной обратной тяги	$3\pm \frac{2}{3}$	$88\pm^{2}_{1,5}$	-

Рис.8 Зависимость тяги 1 двигателя от частоты вращения ротора: условия МСА, (а) — диапазон срабатывания клапанов перепуска воздуха за компрессором высокого давления (закрытие при n = 5500 об/мин, открытие при n = 5200 ... 5500 об/мин).

Рис. 9 Зависимость тяги двигателя P и удельного расхода топлива Cp от частоты вращения ротора и режима работы на высоте 11 км в стандартных условиях при числе M, равном 0.3, 0.6, 0.85.