УЛК 576.895.132

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ СПЕЦИФИЧНОСТИ PORROCAECUM ENSICAUDATUM (ZEDER, 1800)

В. А. Йыгис

Зоологический институт АН СССР, Ленинград

Проведены опыты по заражению птиц разных отрядов (воробьиные, утиные, ржанкообразные и др.) инвазионными личинками Porrocaecum ensicaudatum. Нематоды, попавшие в несвойственного им хозяина, через некоторое время гибнут. Половой зрелости P. ensicaudatum достигает у птиц 2 семейств (дроздовые, скворцы) отряда воробьиных.

Круг хозяев Porrocaecum ensicaudatum, по литературным данным (Cram, 1927; Мозговой, 1953; Yamaguti, 1961, и др.), охватывает птиц различных отрядов — воробьиных, уток, ржанковых, чаек и др. Однако наш фаунистический материал из Прибалтики показал более узкую специфичность этого паразита. Половозрелые особи $P.\ ensicaudatum$ были встречены только у некоторых представителей отряда воробьиных — у скворца и дроздов. У других видов воробьиных, различных ржанковых и чаек были обнаружены лишь их личинки. Опыты с близким видом -Porrocaecum semiteres (Zeder, 1800) — показали, что личинки его могут жить некоторое время и в несвойственном для него хозяине, но не достигают в нем половой зрелости (Йыгис, 1967). Поэтому литературные сведения о таком обширном круге хозяев P. ensicaudatum необходимо было проверить экспериментально. С этой целью было проведено искусственное заражение личинками $P.\ ensicaudatum$ птиц разных отрядов обыкновенных скворцов, домашних уток, обыкновенных чаек, ржанковых и др. Птицы до и во время опытов содержались в условиях, исключающих их естественное заражение личинками Porrocaecum.

Инвазионные личинки для опытов были получены у естественно зараженных дождевых червей — Lumbricus terrestris L., собранных на территории биостанции (пос. Рыбачий Калининградской обл.) из почвы под фруктовыми деревьями, вблизи которых висели скворечники. Из обследованных здесь 280 особей L. terrestris 252 (90%) оказались зараженными инвазионными личинками P. ensicaudatum. Личинки в дождевых червях были обнаружены уже в апреле. Это свидетельствует о том, что они перезимовывают в промежуточном хозяине. Интенсивность заражения дождевых червей достигала от 1 до 96 экземпляров, средняя интенсивность —9. Личинки Porrocaecum находились в вентральном кровеносном, а также в поперечных сосудах, в основном в передней части тела дождевых червей.

Инвазионные личинки P. ensicaudatum имеют двойную кутикулу; их длина 3.2-3.5, ширина на уровне желудочка 0.08-0.09 мм. Нервное кольцо расположено на расстоянии 0.16 мм от переднего конца тела. Длина пищевода 0.37-0.43, желудочка -0.09-0.10, кишечного отростка -0.02 мм. Анальное отверстие находится на расстоянии 0.11-0.14 мм от заднего конца тела.

Опыты с обыкновенными скворцами — Sturnus vulgaris L. В опытах были использованы 6 скворцов. Птиц через определенные сроки зара-

жали повторно. При каждом заражении птице скармливали 50 личинок. Всего было проведено 13 опытов со следующими сроками развития нематод: 4 часа; 2, 3, 4, 5, 7 и 10 дней; 2, 3, 4, 5, 6 и 8 недель.

В течение первых 4 час. все скормленные скворцу инвазионные личинки P. ensicaudatum (III стадия) ¹ проникли под кутикулу мышечного желудка. На 2-й день личинки сбрасывают старую кутикулу и мигрируют из-под кутикулы мышечного желудка в слизистую стенки двенадцатиперстной кишки. В этом возрасте у нематод начинается формирование гонад, ранее представленных только группой клеток. В двенадцатиперстной кишке формируется личинка IV стадии. На 14-й день, перед сбрасыванием старой кутикулы, личинки IV стадии достигают 8 мм длины тела и 0.23-0.33 мм ширины на уровне желудочка. Длина желудочка 0.19-0.28, кишечного отростка — 0.06 мм. У самцов видны спикулы, у самок — вагина. В стенке двенадцатиперстной кишки происходит и формирование V стадии.

Примерно через месяц после заражения нематоды V стадии, обладающие двойной кутикулой, переходят из стенки двенадцатиперстной кишки в просвет тонкой кишки. Здесь заканчиваются рост и развитие червей, происходят оплодотворение самок, формирование и откладка яиц. Первые зрелые яйца у нематод обнаруживались через 2 месяца после заражения. К этому времени черви еще не сбросили старой кутикулы и имели следующие размеры: самцы — длина тела 26-29, ширина на уровне желудочка 0.56-0.59 мм; длина желудочка 0.36-0.50, кишечного отростка — 0.09-0.11, спикул — 0.59-0.67 мм; самки — длина тела 35-44, ширина на уровне желудочка 0.70 мм, длина желудочка 0.41-0.44, кишечного отростка — 0.13 мм. Вульва находится на расстоянии 0.17-0.19 мм от переднего конца тела. Возможно, что длительный срок созревания этих нематод в опыте обусловлен большей интенсивностью заражения, чем это обычно встречается в природе.

По мере усложнения процессов органогенеза выживаемость у нематод снижается. Так, с развитием половой системы число развивающихся личинок постепенно уменьшается и половой зрелости достигают только 8-12% всех скормленных скворцу нематод. Возможно, что при более слабой интенсивности заражения процент гибели личинок на этих стадиях бывает меньше. По нашим фаунистическим данным, средняя интенсивность заражения птиц личинками P. ensicaudatum — 6 экземпляров, а среднее число зрелых особей этого вида у одной птицы -4, т. е. 66.6%от числа личинок. В опытах птицам было скормлено по 50 личинок, что значительно больше средней интенсивности заражения птиц личинками P. ensicaudatum в природе, а взрослой стадии достиг гораздо меньший процент от скормленных личинок (8-12%). В природе у единичных птиц личинки Porrocaecum исчислялись несколькими десятками, максимально 89 экземпляров, а максимальное число зрелых особей у одной птицы было значительно меньше — 14, 20 и 29. По-видимому, в случаях высокой интенсивности заражения биологическое равновесие между паразитом и хозяином обеспечивается более сильной реакцией хозяина и естественным отбором личинок в период формирования у них половой системы, когда для развития червей требуются наиболее специфические условия среды.

Необходимо отметить, что заражение скворцов личинками *P. ensicaudatum* не вызывает у хозяина невосприимчивости в отношении повторного заражения этим паразитом (см. таблицу).

Опыты с домашними утками — Anas platyrhyncha L. dom. В опытах участвовало 7 утят в возрасте от 9 дней до 3 месяцев. Каждому из них было скормлено от 42 до 100 личинок. Птиц вскрывали через разные промежутки времени после заражения (4.5 час., 20.5 час., 1, 2.5, 3.5, 5

¹ В предыдущей статье по *Porrocaecum* (Йыгис, 1967) мы называли стадии, согласно терминологии Оше (Osche, 1958). В данной работе мы рассматриваем стадии, как принято у большинства советских гельминтологов (переходом нематод из одной стадии в другую считается момент отслаивания старой кутикулы).

Выживаемость нематод при повторных заражениях скворцов личинками $P.\ ensicaudatum$

Условия заражения	Скворцы			
	1-й	2-й	3-й	4-й
Число личинок, введенных при I зара-				
жении	50	45	50	50
Интервал между I и II заражениями (в днях)	6.8	6	14	14
жении	50	50	50	50
(в днях)	7	10	28	35
ния	45 (90)	12 (27)	15 (30)	4 (8)
(в днях)	4 часа	4	14	21
жения Интервал между II и III заражениями	50 (100)	38 (76)	21 (42)	16 (32)
(в днях)	-	_	11	16
ражении	_	·	50	50
(в днях)	_	-) ()	3	5
Число червей, полученных от III за- ражения		<u> </u>	36 (72)	40 (80)

Примечание. Цифры в скобках — проценты.

и 6 дней). Оказалось, что P. ensicaudatum в организме домашних уток развиваться не может. По-видимому, среда желудка этих птиц губительна для личинок P. ensicaudatum. Большинство их теряет способность проникать под кутикулу мышечного желудка и гибнет. Через 4.5 часа после заражения из 50 скормленных утке личинок в ее пищеварительном тракте были обнаружены 32 живые личинки, из которых только 13 были найдены под кутикулой мышечного желудка, у границы его с железистым желудком. Из остальных живых личинок 12 находились в просвете железистого желудка и 7 — в просвете кишечника. Последние прошли мышечный желудок, не проникая под его кутикулу, и дальнейшее их развитие оказалось невозможным. Кроме того, 5 личинок были найдены мертвыми: 3 — в просвете мышечного желудка и 2 — в задней части тонкой кишки. Даже те немногие инвазионные личинки, которым удается проникнуть под кутикулу мышечного желудка, не могут продолжать развитие и погибают, как правило, еще до сбрасывания старой кутикулы. Через 20.5 час. после заражения из 42 скормленных утке личинок были найдены только 9 мертвых, из них 5 — под кутикулой желудка и 4 — в просвете кишечника. При вскрытии 2- и 3-месячных уток соответственно через 2.5 и 5 дней после заражения из скормленных им 50 и 100 личинок не было обнаружено ни одной. Молодой 9-дневный утенок оказался также невосприимчивым к P. ensicaudatum, как и утки старшего возраста: через 6 дней после заражения из 47 скормленных ему личинок не было обнаружено ни одной.

Интересно отметить, что в невосприимчивой к P. ensicaudatum домашней утке паразитирует близкий вид — P. crassum (Deslongchamps, 1824), промежуточным хозяином которого служат тоже дождевые черви (Мозговой, 1952). Это показывает, что неспособность P. ensicaudatum развиваться в утках обусловлена не экологическими причинами (состав пищи), а физиологическими особенностями организма этой птицы и приспособленностью паразита к другим условиям среды.

Опыты с обыкновенными чайками — Larus ridibundus. L. Для опытов было отловлено 12 птенцов чаек. Их возраст к моменту заражения до-

стигал от 12 дней до 3 месяцев. После первого заражения некоторых чаек через определенный срок заражали повторно. Всего проведено 16 опытов со следующими сроками развития нематод: 4 часа; 1, 1.5 (2 опыта), 2, 2.5 (2 опыта), 3.5, 4, 7 (2 опыта) дней; 3, 4, 8, 10 (2 опыта) недель. Больmoe число личинок P. ensicaudatum, скормленных чайкам, оказалось неспособным проникнуть под кутикулу мышечного желудка. При вскрытии чайки через 4 часа после заражения из 50 скормленных ей личинок только 22 были под кутикулой мышечного желудка, 7 личинок находились еще в железистом желудке, а 9 — уже в кишечнике. Последние, как и выведенные из кишечника 12 личинок, т. е. всего 40.2% из всех скормленных, не смогли проникнуть под кутикулу мышечного желудка и продолжить дальнейшее развитие. У чаек личинки P. ensicaudatum часто гибнут в процессе проникновения через кутикулу желудка. В 7 опытах из 9, при которых вообще были обнаружены еще живые нематоды или их разлагающиеся остатки, черви были найдены в толще кутикулы желудка, причем чаще всего уже мертвыми. У молодых чаек в возрасте 2-3 недель интенсивность заражения и сроки выживания нематод были немного больше, чем у чаек в возрасте 1.5—3.5 месяцев. Но уже через 2-3.5 дня в толще кутикулы чаек этих возрастов были найдены только остатки погибших червей. Через неделю после заражения у птиц не обнаружилось и остатков личинок. Эти результаты показывают, что чайки не могут служить хозяевами для $P.\ ensicaudatum$. Небольшое число инвазионных личинок этого вида в организме чаек может лишь сбрасывать старую кутикулу, но дальнейшего развития их не происходит.

Опыты с ржанковыми — Charadriidae. Из представителей этого семейства в опытах было использовано 4 экземпляра птиц: кулик-фифи — $Tringa\ glareola\ L.,\$ чибис — $Vanellus\ vanellus\ (L.),\$ чернозоби $\hat{\kappa}$ — $Calidris\ alpina\ (L.)$ и бекас — $Gallinago\ gallinago\ (L.)$.

Чернозобику было скормлено 50 личинок P. ensicaudatum. При вскрытии птицы через 15.5 час. после заражения из них было обнаружено 18 личинок: 15 (30.0%) — под кутикулой мышечного желудка и 3 в просвете желудка.

Бекас погиб через 2 дня после заражения. Из 86 скормленных ему личинок было найдено 17:6 личинок (7.0%) — под кутикулой мышечного

желудка и 11 — в просвете кишечника.

Чибис был заражен дважды; в первый день ему было скормлено 30 и во второй — 24 личинки. При вскрытии через 6 дней после второго заражения у него было обнаружено 9 личинок: 6 (11.1%) — под кутикулой мышечного желудка и 3 — в просвете тонкой кишки. В толще кутикулы желудка были найдены еще остатки 5 погибших личинок.

Кулик-фифи жил после заражения 8 дней. При вскрытии из 50 скормленных ему личинок было найдено 3. Из них 2 (4.0%) имели правильную для своего возраста локализацию — в стенке двенадцатиперстной кишки, а одна находилась в просвете тонкой кишки. Кроме того, в стенке двенадцатиперстной кишки и просвете кишечника были найдены 2 мертвые личинки.

Рассмотренные опыты, как и наши фаунистические материалы, говорят о том, что ржанковые, как правило, не могут служить хозяином для P. ensicaudatum. Однако организм ржанковых для личинок этого паразита оказывается более подходящей средой, чем организм уток и чаек. Если в утках через 5 дней, а в чайках через 2-3.5 дня все скормленные личинки уже погибли, то у фифи 3 из 50 личинок оказались живыми даже через 8 дней после заражения, причем 2 из них имели правильную для своего возраста локализацию (стенка двенадцатиперстной кишки). Как эти, так и ранее рассмотренные опыты (Иыгис, 1967) по заражению скворцов личинками специфичного для ржанковых паразита — P. semiteres — свидетельствуют о том, что среда пищеварительного тракта скворца более близка к таковой ржанковых, чем чаек и уток. Хотя ржанковые и чайки относятся к одному и тому же отряду ржанкообразных, они существенно различаются своей пищевой специализацией.

Опыты с вертишейкой — Jynx torquilla L. и деревенской ласточкой — Hirundo rustica L. В природе эти птицы обычно не питаются дождевыми червями — промежуточными хозяевами P. ensicaudatum. Вертишейке было скормлено 30 инвазионных личинок этого паразита. Через 2.5 дня после заражения в ней было найдено 26 личинок: 5 — под кутикулой мышечного желудка, 1 — в стенке двенадпатиперстной кишки и 20 — в просвете тонкой кишки. Личинки, не проникшие под кутикулу мышечного желудка и находившиеся в просвете кишечника, не могут продолжать дальнейшее развитие и в скором времени выводятся из птицы. Правильную для своего возраста локализацию и возможность дальнейшего развития имели только 6 личинок (20.0%). Эти результаты сходны с полученными в опытах с чайками: через 2.5 дня у последних только 16—20% из скормленных им личинок P. ensicaudatum продолжали развитие.

Деревенской ласточке (птенец) было скормлено 30 инвазионных личинок P. ensicaudatum. Через 2.5 дня после заражения в ней была обнаружена 21 личинка: 6 (20.0%) — под кутикулой мышечного желудка и 15 — в просвете тонкой кишки. В толще кутикулы мышечного желудка были найдены еще 2 мертвые личинки. У ласточки через 2.5 дня процент развивающихся личинок оказался таким же низким (20.0), как в тот же срок у птиц других отрядов — вертишейки (20.0%) и чаек (23.0%). По-видимому, эта птица не может служить потенциальным хозяином для P. ensicaudatum. Между тем ласточка относится к отряду воробьиных, как и

свойственные для P. ensicaudatum хозяева — скворец и дрозды.

Таким образом, экспериментальное исследование, как и наш фаунистический материал, показало приспособленность P. ensicaudatum к относительно узкому кругу окончательных хозяев. Из подопытных птиц нематоды достигали половой зрелости только у скворца. По нашим фаунистическим материалам, хозяевами P. ensicaudatum служат еще дрозды. Следовательно, круг окончательных хозяев этого паразита охватывает лишь птиц двух семейств одного отряда.

Левин (Levin, 1961) считает, что кроме дроздов и скворца хозяевами P. ensicaudatum могут быть еще куры, так как ему удалось заразить этим паразитом однодневных цыплят. К сожалению, автор не указывает процента заражения цыплят и выживаемости в них нематод. Однако его сообщение в том, что через 28 дней после заражения в стенке кишечника цыпленка была найдена толька одна мертвая самка, а при вскрытиях через больший промежуток времени в цыплятах не оказалось ни одного червя, ставят под сомнение вывод о возможности паразитирования половозрелых P. ensicaudatum в курах.

Опыты показали, что личинки *Porrocaecum*, попадая в несвойственного им хозяина, могут находиться в нем некоторое время, но гибнут, не достигая половой зрелости. Поэтому хозяевами нематод нельзя считать всех тех животных, в которых встречаются только личинки червей; настоящими окончательными хозяевами становятся только те из них, в которых нематоды способны достигать половой зрелости и продуцировать яйца.

Степень специфичности у видов *Porrocaecum* на разных этапах их оптогенеза неодинакова. На личиночной фазе три близких вида — *P. crassum*, *P. ensicaudatum* и *P. semiteres* — имеют одинаковых промежуточных хозяев — одни и те же виды дождевых червей. На взрослой фазе, когда у этих червей формируется половая система, они приурочены к разным отрядам окончательных хозяев — птиц. Анализ литературных данных показывает то же в отношении большинства других паразитических нематод — степень специфичности этих червей сужается по мере усложнения процессов органогенеза. Проведенное исследование подтверждает, что у нематод также проявляется закономерность, установленная ранее Дубининой (1953, 1966) для других паразитических червей, — наиболее узкоспецифичной оказывается та фаза жизненного цикла, на которой организм паразита претерпевает наиболее сложные процессы морфогенеза.

Литература

Дубинина М. Н. 1953. Специфичность у ремнецов на разных фазах их жизненного цикла. Паразитол. сб. Зоол. инст. АН СССР, 15: 234—251. Дубинина М. Н. 1966. Ремнецы (Cestoda: Ligulidae) фауны СССР. Изд. «Наука». М.—Л.: 1—261.

Йыгис В. А. 1967. Цикл развития Porrocaecum semiteres (Zeder, 1800) (Nematoda : Ascaridata). Паразитол., 1 (3): 213—218.

Мозговой А. А. 1952. Биология Porrocaecum crassum — нематоды водоплавающих птиц. Тр. Гельминтол. лаб. АН СССР, 6:114—125.
Мозговой А. А. 1953. Аскаридаты животных и человека и вызываемые ими заболевания. Основы нематодологии, 2 (2). Изд. АН СССР, М.: 1—616. С г а m E. B. 1927. Bird parasites of the nematode suborders Strongylata, Ascaridata and Spirurata. Bull. U. S. Nat. Mus., 140: 1—465.

Levin N. L. 1961. Life history studies on Porrocaecum ensicaudatum (Nematoda), an avian nematode. I. Experimental observations in the chicken. J. Parasitol.,

47 (1): 38-46.

Osche G. 1958. Beiträge zur Morphologie, Ökologie und Phylogenie der Ascaridoidea (Nematoda). Z. Parasitenk., 18: 479-572.

Yamaguti S. 1961. Systema helminthum, 3. The nematodes of vertebrates, 1. N. Y.—London: 1-679.

EXPERIMENTAL STUDY OF THE SPECIFICITY OF PORROCAECUM ENSICAUDATUM (ZEDER, 1800) (ASCARIDATA)

V. Jogis

SUMMARY

Experiments were carried out on the invasion of birds (Passeriformis, Anseriformes, Charadriformes, etc.) with infective larvae of Porrocaecum ensicaudatum. After penetrating an unusual host nematodes die within a certain period of time. P. ensicaudatum reaches sexual maturity only in birds of two families (Turdidae, Sturnidae) of the order Passeriformes.