$$\vec{\rho} = \mu \vec{v}$$
 $W_{i} = \frac{\mu \sigma^{i}}{2} = \frac{\rho^{2}}{2\mu}$

0 = ¿ ē . + · · · · · ·

Polerni Loord. sisku

$$\frac{1}{12} - \times \frac{1}{12} + 4 = \frac{1}{12} = \frac{1}{12} + \frac{1}{12} = \frac{$$

Lagranger formolizen

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{a}} = \frac{\partial L}{\partial \dot{a}} + (+ Q;)$$

$$Q_{i} = \sum_{j} \vec{F}_{j} \cdot \frac{\partial \vec{F}_{j}}{\partial g_{i}}$$

$$L = T - V$$

$$C_{i} = \sum_{j} \vec{F}_{i} \cdot \frac{\partial \vec{F}_{j}}{\partial g_{i}}$$

$$C_{i} = \sum_{j} \vec{F}_{i} \cdot \frac{\partial \vec{F}_{j}}{\partial g_{i}}$$

$$C_{i} = \sum_{j} \vec{F}_{i} \cdot \frac{\partial \vec{F}_{j}}{\partial g_{i}}$$

Nihanje
$$\omega_{\bullet} = \frac{\sqrt{}}{T}$$

$$\omega_{\bullet} = \frac{\sqrt{}}{T}$$

Orsita

$$V_{eff} = \frac{Pe^{\lambda}}{2\mu r^{2}} + V(r)$$

$$V_{eff} = \frac{Pe^{\lambda}}{2\mu r^{2}} + V(r) \qquad Pe = \frac{\partial L}{\partial \theta} = mr^{2} \dot{\theta}$$

$$H = T + V = \frac{1}{2} \left(\frac{1}{2} + \frac$$

Sipplier hat
$$\sigma(x) = \frac{d\sigma_{16+}}{dR}$$
 $\sigma(x) = \left| \frac{5 ds}{s, 0 d\theta} \right|$

Net - duit == + Pet (c)

Putherfordous siparja

$$V(r) \leftarrow \frac{d}{r}$$
 $d = \frac{e_4 e_1}{4\pi \epsilon_0}$

$$d>0 \qquad r(Q) = \frac{p}{4+\epsilon \cos Q} \qquad p = \frac{pq}{hA}$$

$$d>0 \qquad r(Q) = \frac{p}{4+\epsilon \cos Q} \qquad \epsilon = \sqrt{1+\frac{2\delta \epsilon}{hA}}$$

$$\frac{d\sigma}{dx} = \left(\frac{1}{4E}\right)^2 \frac{1}{\sin^4\theta h}$$

Taylorjeve vesk
$(\lambda \pm x)^m = \lambda \pm m \times \lambda \frac{m(m-a)}{2!} \times x$
(1 ± x) = 1 = 1 = 1 + \frac{m(n+a)}{2!} x^2
$2ir^{K} = x - \frac{3i}{x_2} + \frac{2i}{x_2}$
$cos x = x - \frac{si}{x_r} + \frac{4i}{x_r}$
tack = x + 3 x 3 + 23 x5
۶ ار د = د + ۲ ۲ + ۱۹
$ch \times = x + \frac{x^2}{2!} + \frac{x^4}{4!}$
e = 1 + 4 + 2 + 71
ابر (۱۴۲ و ۲ - چي + ۲ م

Odvod:

$$x^{n} = n \times n - 1$$

 $e^{x} = e^{x}$
 $\ln x^{1} = \frac{1}{x}$
 $\alpha^{1} = \alpha^{1} \ln \alpha$
 $\log \alpha^{1} = \frac{1}{x \ln \alpha}$
 $\log \alpha^{1} = \frac{1}{x \ln \alpha}$
 $\cot \alpha^{1} = \frac{1}{\cos^{2}x}$
 $\arctan \cos \alpha^{1} = \frac{1}{1 - n^{1}}$
 $\arctan \cos \alpha^{1} = \frac{1}{1 - n^{1}}$

Integral:

$$\int x^{n} = \frac{x}{n+1}$$
Sinh $x = \frac{e^{x} - x}{2}$

$$\int e^{x} = e^{x}$$
Cook $x = \frac{e^{x} + x}{2}$

$$\int \frac{1}{x} = \ln |x|$$
Sinh $x = \frac{e^{x} - x}{2}$

$$\int \frac{1}{x} = \ln |x|$$
Sinh $x = \frac{e^{x} - x}{2}$

$$\int \frac{1}{x} = \ln |x|$$
Sinh $x = \frac{e^{x} - x}{2}$
Cook $x = \frac{e^{x} - x}{2}$

$$\int \frac{1}{x} = \ln |x|$$
Sinh $x = \frac{e^{x} - x}{2}$
Cook $x = \frac{e^{x} - x}{2}$

$$\int \frac{1}{x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x}$$

$$\int \frac{1}{x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x}$$

$$\int \frac{1}{x} = \frac{1$$

Hi per bolis in facility

Sinh
$$x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Cosh $x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

tanh $x = \frac{e^x - e^{-x}}{e^{-x}}$

Sinh $x = cosh x$

Cosh $x = \frac{e^x - e^{-x}}{e^{-x}}$

Cosh $x = \frac{e^x - e^{-x}}{e^{-x}}$

Siny $x = \frac{e^x - e^{-x}}{e^{-x}}$

Cos $x = \frac{e^x - e^{-x}}{2i}$

The fact $x = x + x = x$

Tri go no metize

(0+ (T-x) = -(0+x

r (钅) = 🕋

 $\int_{0}^{1} (x + x) = \left(\frac{x}{x}\right)^{x} \sqrt{2\pi x}$

Sin
$$(\pi - x) = x$$
 $\sin(\frac{\pi}{2} + x) = \cos x$
cos $(\pi - x) = -\cos x$ $\cos(\frac{\pi}{2} + x) = \cos x$
 $\cot(\pi - x) = -\cot x$ $\cot(\frac{\pi}{2} + x) = \mp \cot x$

$$\begin{array}{ll}
\mathbb{D} & \text{funkcij}^{2} & \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \\
\mathbb{D}(a,b) &= & \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \\
\mathbb{D}(a,b) &= & \int_{a}^{a} \times^{a-a} (A-x)^{b-a} dx \\
\mathbb{D}(a,b) &= & \int_{a}^{\infty} \times^{a-a} (A+x)^{a+b} dx \\
\mathbb{D}(a,b) &= & 2 \int_{a}^{\pi/2} \cos^{2} a^{-a} \times \sin^{2} b^{-a} \times dx
\end{array}$$

Fizikalm enache

$$W_r = \frac{J\omega^2}{2}$$
 $\vec{M} = \vec{r} \times \vec{F}$
 $\vec{\Gamma} = \vec{\ell} = \vec{r} \times \vec{\rho} = J \cdot \vec{u}$

Skima $\vec{\Pi} = \vec{\Pi}^{\pi} + m \vec{r} \times \vec{u}$

Toga telesa

 $\Gamma(s)\Gamma(\lambda-s)=\frac{T\Gamma}{\sin(\pi s)}=B(s,\lambda-s)$ ocs $\epsilon\lambda$

Etherjene exactse (
$$v$$
 laster sisters)

 $Mx = \hat{L}_x = J_x \dot{\omega}_x' + \omega_y' \dot{\omega}_y^{(1)} (J_x - J_x)$
 $My = \hat{L}_y = J_y \dot{\omega}_y' + \omega_x' \dot{\omega}_y' (J_y - J_x)$
 $Mz = \hat{L}_y = J_z \dot{\omega}_z + \omega_z' \dot{\omega}_z' (J_y - J_x)$

Male uihauje

Posplo šem 6000. 2, ... , 2, 2 = 30+4

$$V = V_0 + \frac{1}{2} \frac{V_1}{A} = V_1 + \frac{1}{2} \frac{V_1}{A} = V_2 + \frac{1}{2} \frac{V_1}{A} = V_3 + \frac{1}{2} \frac{V_1}{A} = V_4 + \frac{1}{2$$

Solo in residen
$$\underline{Y}(t) = \sum_{n} \underline{\alpha}_{n} \left\{ \begin{array}{l} d_{n} e^{-i\omega_{n}t} & \omega_{n}^{-1} > 0 \\ b_{n} + c_{n}t & \omega_{n}^{-1} = 0 \end{array} \right. \quad \text{in } \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \left(= \begin{pmatrix} u_{n}^{1} & \dots & u_{n}^{-1} \\ \vdots & \ddots & \ddots & \vdots \\ \underline{A}^{T} \underline{Y} \underline{A} = \underline{V}^{1} \underbrace{A} \underbrace{A} = \underline{V}^{1} \underbrace{A} \underbrace{A$$

Limarus cle =0 o romanjo, razvijemo do kvodatuse clen.