FORMULARIO FISICA GENERALE 2

CORRENTI

VELOCITÀ ELETTRONE DI CONDUZIONE $v=\sqrt{3KT/m}\approx 10^5 m/s$

VOLUME DI UNA MOLE: $V_{mol} = A/\rho$ (A= massa di una mole) ($\rho = densità del materiale$)

NUMERO DI ELETTRONI: $n = \frac{N_A \rho}{A}$ (N_A = NUMERO DI AVOGADRO)

CORRENTE ELETTRICA: $i = \frac{dq}{dt}$ (dq = quantità di carica)

CARICA NETTA: $q = \int i \ dt$

RESISTENZE:

$$R = \frac{V}{l}$$
; $R = \rho * \left(\frac{l}{s}\right)$; $R = \frac{1}{\sigma} * \frac{l}{s}$

RESISTENZE IN SERIE -> $R_{TOT}=R_1+\cdots+R_N$ RESISTENZE IN PARALLELO -> $\frac{1}{R_{TOT}}=\frac{1}{R_1}+\cdots+\frac{1}{R_N}$

INTENSITÀ:

$$I = \frac{|Q|}{\text{tempo}} \qquad I = n * S * V_d * |Q| \qquad I = \iint j * \hat{n} \, dS \quad I = j * S \qquad I = \frac{\Delta V}{R}$$

CONDUCIBILITÀ:

 $\sigma = \frac{1}{\rho}$ $\sigma = \frac{n*e^2*\tau}{m}$ (τ = intervallo di tempo medio tra gli urti)

VELOCITÀ DI DERIVA:

$$V_d = \frac{\sigma E}{Nq}$$

LEGGI DI KIRCHHOFF:

1^ LEGGE: nodi -> $\sum_k i_k = 0$ 2^ LEGGE: nodi -> $\sum_k i_k R_k = \sum_k V_k$

LEGGE DI OHM:

 $\Delta V = R * i$ $\vec{E} = \sigma * J$ (in forma locale)

DENSITÀ DI CORRENTE:

$$J = \frac{I}{S} \quad J = n * v_d * |Q| \quad J = \sigma * \vec{E} \qquad J = \frac{l}{S*R} * E \qquad \vec{J} = \frac{n*e^2*\tau}{m} * \vec{E}$$

FLUSSO DI J -> $\phi_j = \frac{dQ}{dt}$ $\phi_j = -\frac{dQ_{int}}{dt}$

DENSITÀ SUPERFICIALE DI CARICA:

$$\sigma = \frac{l}{S*R} \quad \rho = \frac{1}{\sigma} \quad \sigma = \frac{n*e^2*\tau}{m}$$

BATTERIE IN SCARICA -> $V=\varepsilon-I*r$ BATTERIE IN CARICA -> $V=\varepsilon+I*r$ F.E.M. $\varepsilon=V$ circuito aperto

ENERGIA DISSIPATA RESISTENZA: (EFFETTO JOULE)

$$P_R = V * I$$
 $P_R = I^2 * R$ $P_R = \frac{V^2}{R}$

BILANCIO ENERGETICO: $P_u = V * I$ (Energia spesa dalla batteria) $P_u = \varepsilon * I - I^2 * r$ (potenza di batteria che si scarica)

CIRCUITI RC:

dq = carica sul condensatore

carica di un condensatore:
$$i = \frac{dq}{dt}$$
 $(v_a - v_b) + (v_b - v_c) + (v_c - v_d) + (v_a - v_d) = 0$

$$(\varepsilon) + \left(-\frac{q}{c}\right) + (0) + (-i*R) = 0 \qquad \text{carica su un cond. che viene caricato: } q(t) = \varepsilon*C*(1-e^{-\frac{t}{RC}})$$

$$-\Delta U = \frac{1}{2} * \varepsilon^2 * C$$
 carica su un cond. che si scarica: $q(t) = Q_0 * e^{-\frac{t}{RC}}$

PROCESSO DI CARICA DI UN CONDENSATORE:

$$Q_0 = C\epsilon$$
 $V_C = \frac{Q_0}{C} = \epsilon$

PROCESSO DI SCARICA DI UN CONDENSATORE:

$$Q(t) = Q_0 e^{-\frac{t}{RC}}$$

GENERATORE IDEALE DI TENSIONE:

$$V = IR = \frac{\varepsilon}{R}R = \varepsilon$$

CONDUTTORI, CAPACITÀ E DIELETTRICI

CAPACITÀ DI UN CONDENSATORE:

capacità:
$$C = \frac{Q}{V}$$
 $C = \frac{\varepsilon_0 * A}{d}$ $C = K * C_0$

CONDENSATORI IN SERIE:

$$\frac{1}{C_{TOT}} = \frac{1}{C_1} + \dots + \frac{1}{C_N}$$

CONDENSATORI IN PARALLELO:

$$C_{TOT} = C_1 + \cdots + C_N$$

ENERGIA ELETTROSTATICA:

$$U=q*V(P)$$
 SISTEMA DI n CARICHE: $U=rac{1}{4\piarepsilon_0}*rac{1}{2}*\sum_{i,j=0}^N(q_i*q_j)/r_{ij}$

ENERGIA IMMAGAZZINATA DA UN CONDENSATORE:

$$U=Q^2/2C$$
 $U=CV^2/2$ $U=QV/C$

DENSITÀ DI ENERGIA ELETTROSRTATICA:

$$u = \frac{1}{2} * \varepsilon_0 * E_0^2$$
 Costante dielettrica relativa K: $k = \frac{V_0}{V}$

POTENZIALE ELETTROSTATICO

ENERGIA POTENZIALE ELETTRICA:

$$\int_a^b \vec{F} * d\vec{l} = q_0 \int_a^b \vec{E} * d\vec{l} = 0$$

LAVORO PER UNITÀ DI CARICA:

$$l_{a\to b} = \frac{L}{q} = \int_a^b \overrightarrow{E_0} * d\overrightarrow{l} \qquad \qquad l_{a\to b} = \frac{Q}{4\pi\varepsilon_0} * \left[\frac{1}{r_a} - \frac{1}{r_b}\right] \qquad \qquad l_{a\to b} = V_0(A) - V_0(B)$$

POTENZIALE DI UNA PARTICELLA DI PROVA NEL CAMPO DI UN NUMERO QUALSIASI DI CARICHE PUNTIFORMI:

F agente sulla particella di prova q0:

$$\vec{F} = q_0 * \vec{E} = q_0 (\vec{E_1} + \vec{E_2})$$

Lavoro di f quando q0 viene portata da A fino a B:

$$\int_{a}^{b} \vec{F} * d\vec{l} = \int_{a}^{b} q_{0}(\vec{E_{1}} + \vec{E_{2}}) * d\vec{l} = \left[\int_{a}^{b} \vec{E_{1}} * d\vec{l} + \int_{a}^{b} \vec{E_{2}} * d\vec{l}\right]$$

Caso di n cariche puntiformi

$$V = \frac{1}{4\pi\varepsilon_0} * \sum_{i=1}^{N} \frac{q_i}{r_i}$$

Energia potenziale carica di prova:

$$U = q_0 * V$$

POTENZIALE DI UNA PARTICELLA DI PROVA NEL CAMPO DI UNA DISTRIBUZIONE CONTINUA DI CARICA:

3D
$$V_0(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\tau} (\rho(x', y', z') d\tau') / |\vec{r} - \overrightarrow{r_1}|$$

2D
$$V_0(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\varepsilon} (\rho(x', y', z') dS') / |\vec{r} - \vec{r_1}|$$

1D
$$V_0(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\Delta} (\rho(x', y', z') dl') / |\vec{r} - \overrightarrow{r_1}|$$

POTENZIALE DI UN DIPOLO ELETTRICO:

$$\vec{p} = q * \vec{\delta}$$

$$V_0(P) = \frac{p * \cos \theta}{4\pi \varepsilon_0 r^2}$$

$$U = -p * E$$

MOMENTO TORCENTE:

$$\vec{\tau} = \vec{p} \, X \, \vec{E}$$

$$E = -gradV$$

METALLO (alla temperatura di 20° C)		
Argento	$1.6 \cdot 10^{-8} \Omega \cdot m$	
Rame	$1.7 \cdot 10^{-8} \Omega \cdot m$	
Alluminio	$2.8 \cdot 10^{-8} \Omega \cdot m$	
Ottone	$\sim 7 \cdot 10^{-8} \Omega \cdot m$	
Nichel	$7.8 \cdot 10^{-8} \Omega \cdot m$	
Ferro	$10 \cdot 10^{-8} \Omega \cdot m$	
Acciaio	$\sim 11 \cdot 10^{-8} \Omega \cdot m$	
Costantana	$49 \cdot 10^{-8} \Omega \cdot m$	
Nichelcromo	$100 \cdot 10^{-8} \Omega \cdot m$	

ISOLANTE		
Polietilene	$2 \cdot 10^{11} \Omega \cdot m$	
Vetro	$\sim 10^{12} \Omega \cdot m$	
Porcellana non vetrificata	$\sim 10^{12} \Omega \cdot m$	
Ebanite	$\sim 10^{13} \Omega \cdot m$	
Resina epossidica	$\sim 10^{15} \Omega \cdot m$	

TABELLA MULTIPLI

Exp	Prefisso	Simbolo
10 ¹	Deca-	Da-
10 ²	Etto-	h-
10 ³	Kilo-	k-
10 ⁶	Mega-	M-
10 ⁹	Giga-	G-
10 ¹²	Tera-	T-
10 ¹⁵	Peta-	P-
10^{18}	Exa-	E-
10 ²¹	Zetta-	Z-
10 ²⁴	Yotta-	Υ-

TABELLA SOTTOMULTIPLI

Exp	Prefisso	Simbolo
10 ⁻¹	Deci-	d-
10^{-2}	Centi-	C-
10^{-3}	Milli-	m-
10 ⁻⁶	Micro-	M-
10 ⁻⁹	Nano-	n-
10^{-12}	Pico-	p-
10^{-15}	Femto-	f-
10^{-18}	Atto-	a-
10^{-21}	Zepto-	Z-
10 ⁻²⁴	Yopto-	у-