Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Lösningar till finaltävlingen den 17 november 1984

- 1. Låt M vara C:s medelpunkt. Antag exempelvis $MA \geq MB$. Mittpunktsnormalen till sträckan AB skär då sträckan MA i en punkt P (som eventuellt kan vara punkten M). Tag cirkeln med medelpunkt P genom A och B. Då denna cirkel har medelpunkten på MA och går genom A måste den tangera den cirkel genom A som har medelpunkten i M och för övrigt ligga inom denna cirkel (eventuellt sammanfalla med den). Den ligger därför helt inom cirkeln C.
- 2. Antag att det inte finns någon delmängd av angiven typ med samma färg i alla hörnen. Rutnätet innehåller 3 långa 7-rutiga rader. Första raden måste innehålla minst 4 gula rutor eller minst 4 blå rutor, säg att den innehåller 4 gula rutor. Om de 4 korta 3-rutiga raderna genom dessa 4 gula rutor innehåller 3 eller fler ytterligare rutor med gul färg måste minst två av dessa ligga i samma långa rad i strid mot antagandet. Det finns därför 2 av dessa korta rader som har blå färg i båda de övriga raderna. Men detta strider också mot antagandet.
- 3. Den sökta olikheten är ekvivalent med

$$(b+1)(\ln(a+1) - \ln(b+1)) - b(\ln a - \ln b) \ge 0.$$

Låt b vara fixt och sätt vänstra ledet = f(a), där a betraktas som variabel.

$$f'(a) = \frac{a-b}{a(a+1)}.$$

Vi ser att f'(a) > 0 för a > b och f'(a) < 0 för a < b. Funktionen f har alltså minimum för a = b. Detta visar att $f(a) \ge f(b) = 0$.

4. Låt x_1, x_2 och y_1, y_2 vara nollställena till de båda andragradspolynomen. Då är

$$x_1 + x_2 = p$$
 $y_1 + y_2 = q$
 $x_1 x_2 = p$ $y_1 y_2 = q$

Antag $x_1 \le x_2, y_1 \le y_2$.

Om $x_1 = 1$ så är p = 1 + q och därmed p > q.

Om $x_1 = 2$ så är $q = 2x_2 \ge p$, med likhet endast om $x_2 = 2$.

Om $x_1 \ge 3$ så är $q \ge 3x_2 \ge 2x_2 + 3 \ge p + 3$.

Då motsvarande gäller för y_1, y_2 får vi följande möjligheter:

1) p > q. Då är $x_1 = 1$ och p = 1 + q. Härav följer att vi inte kan ha $y_1 = 1$ eller $y_2 \ge 3$. Alltså är $y_1 = 2$. Systemet

$$2 + y_2 = q$$
$$2y_2 = q + 1$$

ger
$$y_2 = 3$$
, $q = 5$. Alltså $p = 6$, $x_2 = 5$.

- 2) p < q. Detta behandlas analogt med ovanstående: p = 5, q = 6.
- 3) p=q. Av ovanstående diskussion följer att $x_1=x_2=2$ och likaså $y_1=y_2=2$. Vi får p=q=4.

5. **Metod 1**

Första ekvationen visar att $b^3 \le a^3$, $c^3 \le a^3$ och därmed $b \le a$, $c \le a$. Den andra ekvationen ger därför

$$a^2 \le 2(a+a+a) = 6a, \quad a \le 6.$$

Andra ekvationen visar att a måste vara ett jämnt tal. Vi skall alltså ha a=0,2,4,6 och $0 \le b \le a, 0 \le c \le a$. En genomgang av dessa möjligheter ger oss lösningarna:

$$(a,b,c) = (0,0,0), (4,4,0), (4,3,1),$$

 $(4,2,2), (4,1,3), (4,0,4)$

Metod 2

Skriv första ekvationen på formen

$$a^{3} - (b+c)^{3} = 3bc(a-b-c).$$

Man finner då faktorn a-b-c i båda leden. Detta ger två fall.

I. a = b + c. Andra ekvationen ger a = 4 med de heltalslösningar som angivits ovan.

II.
$$a^2 + a(b+c) + (b+c)^2 = 3bc$$
.
 $a^2 + a(b+c) + (b-c)^2 + bc = 0$.

Vänstra ledet är summan av termer som var och en är ≥ 0 . Alltså måste de alla vara likamed 0, och man finner den enda lösningen a=b=c=0.

6. Eftersom $3^8 = 6561$ måste $1 \le a_i \le 7$ för alla i. Uttryck talen i summan i basen 3. Talen 3_i skrivs då med en etta följd av a_i nollor. Den givna summan 6558 är talet 22222220 i basen 3. Den givna summan innebär alltså en addition av 14 ettor i olika positioner. Då siffersumman i summan är $2+2+\cdots+2=14$ kan inga "minnessiffror" förekomma. Man måste alltså ha exakt två ettor i vardera positionerna $3^1, 3^2, \ldots, 3^7$.

Variation

Då vi har 14 tal som vartdera har något värde $1, \ldots, 7$ räcker det att visa att vi inte kan ha 3 eller flera lika tal bland talen a_i . Antag det motsatta, att tre av talen a_i är lika. Vi ersätter då dessa med ett enda tal som är en enhet större. Detta minskar antalet tal men ändrar inte summan av talen 3^{a_i} . Efter eventuell upprepad reduktion uppnår vi att vi har högst två av vartdera talen $1, \ldots, 7$. (Detta gäller även talet 7 eftersom vi vid reduktionen aldrig kan få 3 sjuor då totala summan är mindre än 3^8 .) Vi har nu färre än 14 tal, högst två av vartdera talen $1, \ldots, 7$, varför summan av 3^{a_i} för dessa tal skulle bli mindre än

$$2\left(3^1 + 3^2 + \dots + 3^7\right) = 6558.$$

Detta visar att antagandet att 3 av talen var lika var felaktigt.

Lösningarna hämtade, med författarens tillstånd, ur:

Skolornas Matematiktävling Problem 1969 - 1990 med lösningar utarbetade av Olof Hanner