TEORIA KATEGORII

SERIA 1: KATEGORIE I FUNKTORY

Problem 1. Pokazać, że $Rel \cong Rel^{op}$.

Problem 2. Niech A będzie zbiorem. Pokazać, że przyporządkowania Set \to Set zdefiniowane na obiektach i morfizmach jak poniżej są funktorami:

- $X \mapsto A \times X \text{ oraz } (f: X \to Y) \mapsto ((id \times f): A \times X \to A \times Y; (a, x) \mapsto (a, f(x))),$
- $X \mapsto A + X$ oraz

$$(f:X\to Y)\mapsto (id+f):A+X\to A+Y; x\mapsto \left\{\begin{array}{cc} f(x) & \text{ jeśli } x\in X,\\ x & \text{ jeśli } x\in A.\end{array}\right.$$

• $X \mapsto X^A$ oraz

$$f: X \to Y \quad \mapsto \quad f^A: X^A \to Y^A; \phi \mapsto f \circ \phi.$$

• $X \mapsto \mathcal{P}X \stackrel{def}{=} \{A \subseteq X\}$ oraz

$$(f: X \to Y) \mapsto \mathcal{P}(f): \mathcal{P}(X) \to \mathcal{P}(Y); A \mapsto f(A).$$

Problem 3. Pokazać, że kategoria Set nie jest izomorficzna z kategorią Set op .

1 września 2020