

Please type a plus sign (+) inside this box →

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UTILITY**PATENT APPLICATION
TRANSMITTAL**

(Only for new nonprovisional applications under 37 C.F.R. § 1.53(b).)

Attorney Docket No. CISCO-1515

First Inventor or Application Identifier Brian Lo Bue, et al.

Title ACTIVE CALL CONTEXT RECONSTRUCTION...

Express Mail Label No. EL209953849US

APPLICATION ELEMENTS

See MPEP chapter 500 concerning utility patent application contents.

1. Fee Transmittal Form (e.g., PTO/SB/17)
(Submit an original and 2 duplicates for fee processing)

2. Specification [Total Pages 39]
(preferred arrangement set forth below)

- Descriptive title of the Invention
- Cross References to Related Applications
- Statement Regarding Fed sponsored R & D
- Reference to Microfiche Appendix
- Background of the Invention
- Brief Summary of the Invention
- Brief Description of the Drawings (if filed)
- Detailed Description
- Claim(s)
- Abstract of the Disclosure

3. Drawing(s) (35 U.S.C. 113) [Total Sheets 5]

4. Oath or Declaration [Total Pages 1]

- a. Newly executed (original or copy)
- b. Copy from a prior application (37 C.F.R. § 1.63(d))
(for continuation/divisional with Box 1b completed)
 - i. **DELETION OF INVENTOR(S)**
Signed statement attached deleting inventor(s) named in the prior application, see 37 C.F.R. §§ 1.63(d)(2) and 1.33(b).

NOTE FOR ITEMS 1-15: IN ORDER TO BE ENTITLED TO PAY SMALL ENTITY FEES, A SMALL ENTITY STATEMENT IS REQUIRED ON C.F.R. § 1.27, EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON ON C.F.R. § 1.27.

ADDRESS TO: Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

5. Microfiche Computer Program (Appendix)

6. Nucleotide and/or Amino Acid Sequence Submission
(if applicable, all necessary)

- a. Computer Readable Copy
- b. Paper Copy (identical to computer copy)
- c. Statement verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

7. Assignment Papers (cover sheet & document(s))

8. 37 C.F.R. § 3.73(b) Statement Power of (when there is an assignee) Attorney

9. English Translation Document (if applicable)

10. Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS Citations

11. Preliminary Amendment

12. Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)

13. Small Entity Statement(s) Statement filed in prior application, (PTO/SB/03-12)
Status still proper and desired

14. Certified Copy of Priority Document(s)
(if foreign priority is claimed)

15. Other: Transmittal Letter

16. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment:

Continuation Divisional Continuation-in-part (CIP) of prior application No: _____

Prior application information: Examiner _____ Group / Art Unit: _____

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 4b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS

Customer Number or Bar Code Label Insert Customer No. or Attach Bar code Label here! or Correspondence address below

Name	David B. Ritchie D'Alessandro & Ritchie				
Address	P.O. Box 640640				
City	San Jose	State	CA	Zip Code	95164-0640
Country	USA	Telephone	408-441-1100	Fax	408-441-8400

Name (Print/Type)	Gerhard W. Thielman	Registration No. (Attorney/Agent)	43,186
Signature		Date	Nov. 30, 1999

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:) Art Unit:
)
 Brian Lo Bue, Darrell Shively, and Larry) Examiner:
 Nadeau)
)
 Serial No. [Not yet assigned])
)
 Filed: November 30, 1999)
)
 For: ACTIVE CALL CONTEXT)
)
)
)
)
RECONSTRUCTION FOR PRIMARY/)
BACKUP RESOURCE MANAGER)
SERVERS)

CERTIFICATE OF MAILING

"Express Mail" mailing label no: EL209953849US

Date of Deposit: November 30, 1999

I hereby certify that this correspondence is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to:

Box Patent Application
 Assistant Commissioner for Patents
 Washington, D.C. 20231

Tara Hayden

TRANSMITTAL LETTER

Honorable Assistant Commissioner
 for Patents
 Box Patent Application
 Washington, D.C. 20231

Dear Sir:

Enclosed for filing please find the patent application for an invention entitled,
**"ACTIVE CALL CONTEXT RECONSTRUCTION FOR PRIMARY/BACKUP
 RESOURCE MANAGER SERVERS"**, filed on behalf of Cisco Technology, Inc.,
 assignee from inventors Brian Lo Bue, Darrell Shively, and Larry Nadeau, including

Utility Patent Application Transmittal, 19 pages of specification, 19 pages of claims, 5 sheets of drawing figures, and one page of Abstract.

The attorney's Docket Number is CISCO-1515.

Kindly address all communications regarding this application to:

David B. Ritchie
D'Alessandro & Ritchie
P.O. Box 640640
San Jose, CA 95164-0640
Telephone (408) 441-1100

No fee is being paid at this time.

Respectfully submitted,
D'ALESSANDRO & RITCHIE

Gerhard W. Thielman
Reg. No. 43,186

Dated: November 30, 1999

D'Alessandro & Ritchie
P.O. Box 640640
San Jose, CA 95164-0640
(408) 441-1100

This application is submitted in the name of Brian Lo Bue, Darrell Shively and Larry Nadeau, assignors to Cisco Technology, Inc., a California corporation.

5

SPECIFICATION

TITLE OF THE INVENTION

ACTIVE CALL CONTEXT RECONSTRUCTION FOR PRIMARY/BACKUP RESOURCE MANAGER SERVERS

10
11
12
13
14
15
16
17
18
19
20

FIELD OF THE INVENTION

The present invention relates to a method and apparatus to reconstruct an interrupted user's network connection from an updated data string held in storage by the network server.

15
16
17
18
19
20

BACKGROUND OF THE INVENTION

Computer networks have developed into an integral part of society and the economy. Network users obtain access from their host computer with dial-up capability to another computer with which to communicate through a variety of systems currently available. A user transmits a request or call from an access point across a medium to the remote site. The call will be identified by selected attributes in an access request data packet that may be used by the network accounting management. To facilitate access by authorized call-in users and network subscribers, a variety of network servers have been developed that may include computer hardware, software and/or firmware. These

servers are frequently designed to handle specific tasks within the network and operate with a dedicated database. A call-in user may thus be dependent on more than one server for continued access to the network, and if one server fails while others continue to operate, the user may nonetheless be disconnected from the network and be forced to 5 establish a new connection even though the network remains active.

The time consumed from repeated interruptions can lead to diminished productivity and severe frustration if critical data are denied or corrupted due to a recalcitrant server. Consequently, network administrators have sought to address this and other concerns by ensuring high reliability for servers and establishing backup 10 systems. However, a backup server without access to the call's status from the identification in the data packet may be unable to maintain a previously established call, resulting in the call being cut off. Consequently, aside from efforts to ensure high reliability of servers, the industry also requires a backup system with the ability to hand-off a call-in user's network connection from a server that has failed to a backup server 15 by ensuring that call identification information is received by a backup server in a timely fashion.

A connection from an access point to a network at a point of presence (PoP) may be maintained by an internet service provider (ISP) or a telephone company using communications media such as a public switched telephone network (PSTN), integrated 20 services digital network (ISDN), or a cable television system, using one of several available mechanisms or protocols. Such protocols include the decentralized Institute of Electrical & Electronic Engineers (IEEE) standard 802.3 called Ethernet™, the token ring IEEE standard 802.5 incorporating a special bit-pattern to control transmission order, the asynchronous digital subscriber line (ADSL) under the American National

Standards Institute (ANSI) T1.413 standard, the hybrid fiber coax (HFC) used by cable television providers, or others as is well known in the art. An access point may contain a variety of server types for particular functions. These types include the authentication, authorization and accounting (AAA) server, the network access server (NAS), the 5 resource pool manager server (RPMS), the home gateway router (HGR), the digital subscriber line aggregation multiplexer (DSLAM), along with many others well known in the art.

A call-in user seeking a connection to the network may place a call across telephone lines or other media to a NAS through a particular port of the NAS, such as a 10 modem port or ISDN port. The NAS answers the call, becoming coupled to the user, and sends the call type and dialed number information service (DNIS) information to the RPMS, which matches the combination to a call discrimination table and compares the network resources available to the session counts. Call types include speech, digital and others known in the art. The call is rejected if the call type–DNIS combination appears 15 in the call discrimination table. If the customer profile session limits exceed threshold values, the call may be rejected or assigned a busy signal. If the call is accepted, it is assigned to the NAS that answered it. A RPMS may provide resource management, dial services and call discrimination for a regional PoP or for a NAS connected to multiple ports.

20 A RPMS enables telephone companies and ISPs to count, control, manage and provide accounting data on shared resources for wholesale virtual private dial-up network (VPDN) and retail dial network services across one or more NAS stacks. By tracking threshold access limits, the RPMS verifies to the NAS that there exist sufficient network resources to enable a user calling in to become connected to the network

(provided that the user has authorization). An illustration of the logic used by a RPMS can be seen in the flow diagram 10 of FIG. 1. An input 12 containing call type–DNIS information is provided to a call discriminator query 14, which compares the information to a series of discriminators implemented as a call discrimination table. If the call matches 5 the table, it is unauthorized and the call is treated to rejection 16. If no match is found, the DNIS customer profile is queried 18, and if none is found, a default profile is queried 20. If no default match is found, the call may be rejected 22. If the DNIS customer profile exists after query 18, the connection threshold is queried 24, and if not reached, or if a default customer match is found in the default query 20, then the number of 10 resources is queried 26. If sufficient resources are available, the call may be answered 28, whereupon the VPDN group is verified 30.

If the call does not match the VPDN group, a first retail query is performed 32, and if refused, the call is rejected 34. If retail is accepted, the call is processed at retail cost 36. If the call matches the VPDN group, the domain name in the DNIS is queried 38. If 15 the domain name does not match, a second retail query is performed 40. If refused, the call is rejected 42, and if accepted the call is processed at retail cost 44. If the domain name query 38 matches, the session and overflow thresholds are queried 46. If the thresholds are exceeded, the call is rejected 48, and if not a tunnel is negotiated 50.

Returning to the maximum connections query 24, if the connection threshold has 20 been reached, the overflow availability is queried 52, and if exceeded, the call may be rejected 54. If availability exists, the availability of resources is queried 56. If the resources available queries 26 or 56 are negative, the call may be rejected 58. If resources are available, the call is answered 60, with continued procedures to the VPDN group verification query 30, and so forth.

The RPMS enables shared resources to be used across multiple NASes for various resource allocation schemes (performing session counting on a group level). For example, NAS resource groups may be combined with different modem services and call types (such as speech or digital) into resource data assignments. Resource groups may 5 be configured on the NAS and assigned by the RPMS based on customer requirements. The RPMS may use resource management protocol (RMP) software to communicate with the NAS. An illustration of this arrangement is illustrated in FIG. 2A, in which a NAS 62 is featured with RMP installed and connected to a RPMS 64 via a RMP interface 66. The call type–DNIS information transmitted to the RPMS 64 and the 10 approval or rejection response received by the NAS 30 are transferred through the RMP interface 66 using the RMP protocol 68.

The RPMS may be composed of a server platform with appropriate RMP software, along with a Distributed Session Manager (DSM) library installed and linked to the server platform. A RPMS may be a scalable performance architecture (SPARC) hardware platform equipped with DSM software and connected to a database in a memory device physically distinct from the RPMS. The DSM represents a linked library 15 to the RPMS to keep accounting data records for the RPMS, and it maintains session states across multiple servers. The database may hold the customer profiles, system configurations and other desired instrumentation.

20 A local AAA server may be used in a network architecture incorporating a RPMS for the purpose of tracking users that access the network through calling line identification (CLID) and for creating records of the accounting data related to such users from outside the data communications network. The RPMS may communicate with a local AAA server using an internet authentication protocol, such as Terminal

Access Controller Access Control System Plus (TACACS+) or Remote Access Dial-In User Service (RADIUS). In the absence of a local AAA server, the RPMS may provide only DNIS-based wholesale VPDN dial services under the domain name, and a remote AAA server may be used for user call tracking and management. When the call ends, the 5 record for billing purposes may be sent to a report manager server.

As calls are received, the primary RPMS checks session counts to perform session management. These local counts are sent to the backup RPMS for synchronization. When the session counts approach a session limit, the primary RPMS reverses the exchange to get the session count from the backup RPMS for each call, thereby 10 ensuring that an accurate session count is maintained and prevents more users from accessing the network than are permitted, a condition called “over-subscription”. However, this exchange may reduce performance when the customer profile approaches its session limit for resource allocation.

A client NAS may be configured with a list of RPMSes from which to attempt 15 contacting a server on the fail-over list. The message data may be exchanged between the NAS and the server by the RMP. If the NAS cannot reach the first server on the list, it tries to contact the next server, and so forth. In a typical configuration, the primary RPMS would be first on the list, and the backup RPMS would be the second on the list, with no third server listed. An illustration of this list’s use by multiple NASes is depicted 20 in FIG. 2B in which a wide area network (WAN) 70 is connected to a first RPMS labeled “A” 72, a second RPMS labeled “B” 74, both independent of each other, and a backup RPMS labeled “C” 76. A first NAS stack 78 with a first server list for RPMSes “A” and “C” is connected to RPMS “A” 72. A second NAS stack 80 with a second list for RPMSes “B” and “C” is connected to RPMS “B” 74. The NAS stacks 78 and 80 are

connected to their respective local RPMSes “A” 72 and “B” 74, respectively through RMP 82, and via the WAN 70 to RPMS “C” 76. If RPMS “A” 72 fails, the first list on the first NAS stack 78 would “roll over” or transfer resource management to RPMS “C” 76. Similarly, if RPMS “B” 74 fails, the second list on the NAS stack 80 would 5 likewise proceed to RPMS “C” 76. However, if the backup RPMS lacks the information for call reconstruction, current calls may be discontinued.

In the event that either the primary RPMS or its database is unreachable, the call may be interrupted while the NAS initiates a timing switch. If the call is not restored, the switch times out, causing the call to be dropped from the NAS and a busy signal sent to 10 the call-in user. Incorporation of a backup RPMS might initiate new user calls begun subsequent to the primary RPMS access failure, but absent a mechanism to restore the interrupted calls, the continuity of service for previous users would not be feasible. To avoid interruption of a call, the primary and backup servers must be in communication with each other and share information about a call’s context as it is updated, thereby 15 consuming valuable communication bandwidth.

SUMMARY OF THE INVENTION

A method and apparatus for network server recovery maintains an ongoing call
5 by reconstructing its call context from a server-state attribute (SSA) that is generated by
a first server, recorded in separate storage and retrieved by a second server in the event
that a connection to the first server is interrupted. The SSA encodes call data that can
be used to enable a server to maintain the call. The separate storage is preferably
associated with a network access server (NAS) that does not itself use the SSA.

10

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a flowchart illustrating the conventional RPMS logic for responding to a
5 call.

FIG. 2A is a diagram illustrating a conventional connection between a NAS and a
RPMS.

FIG. 2B is a diagram illustrating the maintenance of server lists in conjunction
with primary RPMS systems and a backup RPMS in accordance with the prior art.

10 FIG. 3 is a diagram illustrating a network having a primary RPMS and a backup
RPMS in accordance with a presently preferred embodiment of the present invention.

FIG. 4 is a diagram illustrating an example server-state attribute data string in
accordance with a presently preferred embodiment of the present invention.

15 FIG. 5 is a process flow diagram illustrating the reconstruction of a data string in
accordance with a presently preferred embodiment of the present invention.

FIG. 6 is a process flow diagram illustrating server failure response in accordance
with a presently preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Those of ordinary skill in the art will realize that the following description of the present invention is illustrative only and not in any way limiting. Other embodiments of 5 the invention will readily suggest themselves to such skilled persons having the benefit of the within disclosure.

In accordance with a presently preferred embodiment of the present invention, the components, process steps, and/or data structures may be implemented using various types of operating systems, computing platforms, computer programs, and/or general purpose machines. In addition, those of ordinary skill in the art will readily recognize 10 that devices of a less general purpose nature, such as hardwired devices, or the like, may also be used without departing from the scope and spirit of the inventive concepts disclosed herein.

The present invention relates to a method and apparatus to enable a backup server to reconstruct the context of an active call from a network call-in user connected 15 to the network server after the connection to the primary server and/or its database has been severed or interrupted. Simply stated, this context may be restored from an updated data string constructed by the primary server and held in storage by a memory associated with the network server. This memory may be a separate memory device 20 connected to and used by the network server, or may be a memory cache within the network server during its operation. In the within disclosure, the primary server may be represented by a local RPMS, the secondary server may be represented by a backup RPMS, and the network server may be represented by a NAS.

The data string may be constructed as a coded message from the primary server to the network server that the latter may store in associated memory but not need. This data string may include accounting information and may be updated periodically. When the network connection to the primary server has been unexpectedly severed from the 5 network user as in a server or database failure (either of which may be considered a local server failure for the purposes of this invention), the backup server may query the network server to provide the data string from its associated memory, reconstruct the relevant information for the active calls before the timing switch signals a time-out and disconnects the user from the network.

10 In accordance with an embodiment of the invention, a redundant backup server processes messages for a “call” that began its processing on a primary server. A single RPMS backup server may support multiple local RPMSes. The RPMS backup server may provide a backup configuration and backup counters in case the local RPMS server becomes unavailable. To avoid interruption of a call, the data string transfer from the 15 primary server to the backup server must occur in a manner transparent to the call-in user when a client NAS determines that the primary server is unreachable and switches or “rolls-over” to communicate with the backup server.

Since the NAS maintains data for each active call on its ports, an information packet constituting an “opaque” value may be stored that represents a “don’t care” 20 register with respect to the NAS, along with its own call data to make available to a server as needed. The opaque value, called the “server-state” attribute (SSA), contains context data that the server generates and updates for each active call, but may remain unused by the NAS. Since the service-state attribute may be produced from an aggregation of data elements in a specific sequence, this construction of the information

packet called the SSA may be described as an encoding or “deparsing” procedure. The SSA value may contain particular call data that the server assembles from its call attribute table to describe the call and may be sent back to a memory separate from the server with each response message to the NAS. In the preferred embodiment, that memory may 5 be associated with (that is, connected to) the NAS. The NAS updates its call attribute table to store the information packet referred to as the SSA. Hence, the SSA stored in the NAS acts as a tether to the information a backup server requires to continue processing a call without the need for another server to continuously exchange data with the backup server, thereby saving communication bandwidth.

10 When the NAS needs to communicate with the server concerning a particular active call, it may send the SSA along with the message, or it may provide the SSA if a server requests it. The contents of the SSA may be proprietary to the server and may be composed, in essence, of a condensed snapshot of the server’s active call data as the call moves through its states until the call is terminated. The data fields containing the call 15 data parameters may be separated by a particular character, such as commas, for delimiting fields. Other characters besides commas may be used as delimiters, as is trivially known to those with ordinary skill in the art.

If a server (such as a RPMS) receives a message from a memory storage such as a 20 NAS for an active call that the server lacks in its call attribute tables, that server can obtain the SSA from the NAS. The server can then parse the SSA to “reconstruct” the context of the call in its call attribute tables and subsequently provide a response to the NAS. An example of this circumstance might occur if the NAS rolls over to communicate with the backup server from a failed primary server. The backup server would query the NAS for the SSA of a call originated during the operation of the primary server. After

the call context reconstruction, the backup server provides the response to the NAS originally intended to be supplied by the primary server. The active call data continue to be available for billing and reports (such as for a local AAA server or in support of VPDN dial services), so that a meaningful call detail record may be generated when the call 5 closes. Session and resource counts may be maintained by the backup server and restored to the primary server when the primary server becomes available.

This procedure reduces network traffic and increases system efficiency since the primary server need not feed a separate message to the backup server for each change in call context. With the connection between the servers and the NAS already established, 10 the SSA may be embedded in messages that are being passed from the NAS and server for their normal business so the overhead of primary/backup communication, such as generating headers, opening connections, etc., may be completely eliminated. The NAS may be used as the instrument of storage for the server's call data in the event of a local server failure and only contains the latest data set for a call that is open. Otherwise, a 15 more elaborate scheme would have to be devised between the primary and backup servers to ensure that active call data are current (meaning updated regularly) and free of "zombie" sessions, meaning inactive calls without a termination message.

Both primary and secondary databases may hold the customer profiles and system configurations. A RPMS may utilize database replication to ensure that 20 databases running on geographically distributed primary RPMS installations contain the same customer profile information.

FIG. 3 illustrates an example configuration of a hypothetical redundant configuration incorporating the present invention. The network depicts an outside world 110 and the server group 112 sharing a telephone demarcation line 114. A call-in

user or customer 116 on an ISP may be connected through a PSTN 118 in the outside world 110 across the demarcation line 114 to a NAS 120 in the server group 112. The NAS 120 may be connected to an Ethernet 122 that accesses other servers. While only a single NAS 120 is depicted in FIG. 3, more than one NAS 120 can be accommodated 5 by the RPMS system in the server group 112. The primary or local RPMS 124 may be represented by a computer workstation 126 with a master DSM library 128, connected to the Ethernet 122 by means of a first port line 130. A primary database 132 may be dedicated to the primary or local RPMS 124 and be connected to the Ethernet 122 by a second port line 134. In this example configuration, only a single primary or local RPMS 10 124 is exhibited rather than several.

A secondary or backup RPMS 136 may be represented by a workstation 138 with a slave DSM library 140, connected to the Ethernet 122 by means of a third port line 142. A secondary database 144 may be dedicated to the secondary or backup RPMS 136 and be connected to the Ethernet 122 by a second port line 146.

If a primary or local RPMS 124 fails, loses its network connection 130 or is cut off from access to its master DSM library 128, the primary or local RPMS 124 will be isolated. With no information going in or out of the primary or local RPMS 124, the switch will timeout pending transactions. The administrator will need to re-establish connectivity for the ISP customer 116 in short order. In the meantime, the NAS 120 will 15 20 use the secondary or backup RPMS 136 for authorizations and accounting. When connectivity is restored, the secondary or backup RPMS 136 will attempt to recreate call information from the NAS 120 when requests for that call are received.

For example, the NAS 120 authorized a call with the primary or local RPMS 124 that then lost network connectivity. The NAS 120 will attempt to send accounting

updates to the primary or local RPMS 124 and fail, then roll over to the secondary or backup RPMS 136. If in the meantime the primary or local RPMS 124 comes back on line and the ISP customer 116 hangs up, the NAS 120 will send a resource-freed signal to the primary or local RPMS 124 which will then attempt to recreate the call context and
5 free the necessary counters.

In the event that the secondary or backup RPMS 136 fails, it cannot be updated on the current counts. During this period and until all calls are closed that were active at the time it went down, the counts may be underreported. While in this state, the potential for over-subscription exists. When the secondary or backup RPMS 136 is
10 brought back online, all counts from each primary or local RPMS 124 are transmitted to the secondary or backup RPMS 136 where they are aggregated to reflect counts for the entire network server group 112.

An example of a comma-delimited string representing the SSA can be seen in FIG. 4 in which the data from the string can be used to reconstruct the call information needed to maintain the connection through a RPMS. The example SSA and its syntax as an attribute/value pair in the NAS can be seen in the data string 150. The attribute/value pair may conform to TACACS+ or RADIUS or other such internet authentication protocol well known to those skilled in the art. The left segment may be the name 152 included in the attribute, which is depicted with an identifier prefix of
15 “Name “rm-server-state”” in this example, separated from the right segment by a delimiter 154 shown as an equal sign. The right segment is the value 156, which is further subdivided into alphanumeric parameters that may be called “tokens” and separated by commas 158.
20

The value 156 begins with a first DNIS address 160 represented by a seven-digit integer. The second entry is the call type 162, which here is identified as “speech” followed by the third entry of CLID 164 represented by a seven-digit integer. The fourth entry is the modem port 166 represented by a five-field colon-separated parameter. The fifth entry is the resource group name 168 depicted by a period. The sixth and seventh entries are the call count 170 and the overflow count 172, each represented by an integer. The eighth, ninth, tenth, eleventh and twelfth entries, each denoted by a period and separated by commas 158, represent the start time 174, reference number 176, service group name 178, modem-tx-speed 180 and modem-rx-speed 182, respectively. The thirteenth entry represents the VPDN group name 184.

The data contained in the SSA data string 150 include information that cannot be obtained from the NAS administration call-status request. Source code to read the call data into the SSA and reconstruct the call information from the contents of the SSA may be written in Java language, although other programming languages are readily available to persons having ordinary skill in the art. To construct the SSA data string 150, the call data may appended together, separating each segment or token by a delimiter character such as a comma 158. For reading the SSA data string 150, each token may be read sequentially as a character string with the end of the token being determined by the presence of a delimiter character. The character string thus read may be placed into a string buffer to be written onto its appropriate data-field.

When an interruption between the NAS and its primary server occurs, the backup server issues an active-call petition to the NAS for the SSA data string 150. Once received, the server-state reconstruction subroutine in the backup server parses the SSA data-string 150 into the appropriate data functionalities. The code may check for the

number of tokens in the data string to verify its completeness. The code may then sequentially place the character string of the token into a string buffer and write that character string from the string buffer to the corresponding data-field. This process may continue until each data-field has received an appropriate character string, whether read 5 from the SSA data string or assigned by a default mechanism.

Such a process is described in the process flow diagram of FIG. 5, in which the tokens comprising the SSA data string are sequentially read and written onto to appropriate data-fields that describe the call attributes. Upon receiving the SSA data string, the subroutine 186 in the code reads the data string at reference 188. Using the 10 delimiters as markers, the data string is separated into tokens at reference 190, with the number of tokens counted. The token number may be compared to the number expected n_{exp} as a read-error-detection tool at reference 192. If the number of tokens read is not equal to the number expected n_{exp} , the subroutine may halt for further instructions at reference 194. Assuming the two numbers are equal, a sequencing 15 “loop” may be initiated at reference 196 with an example starting value of zero for the loop index i . The loop is then sequenced in sequencer 198 with the character string in the token placed in the buffer at reference 200. The loop index i may then be compared to a task value n , for a series of tasks $n = 0, 1, 2, \dots, n_{exp}-1$ at reference 202 with the process branching or diverting accordingly to the appropriate data-assigning task that 20 corresponds to the value of the loop index ($i = n$). Once the task associated with the loop index equaling the task value ($i = n$) has been completed, the loop index may be incremented at reference 204, in this example by one ($i = i+1$), and the loop sequencing process continued to compare the loop index with the subsequent task value.

Each task to write the contents of the buffer to a data-field corresponds to a particular task value, and the process branches to the task when the loop index equals the corresponding task value. If the loop index equals zero ($i = 0$) the DNIS may be extracted from the buffer and written to the DNIS data-field at reference 206a. If the 5 loop index equals one ($i = 1$), the call type may be extracted from the buffer and written to the call type data-field at reference 206b. If the loop index equals two ($i = 2$), the CLID may be extracted from the buffer and written to the CLID data-field at reference 206c, and so forth shown as continuing steps 206d. If the loop index reaches one less than the number expected ($i = n_{exp}-1$), the VPDN may be extracted from the buffer and 10 written to the VPDN data-field at reference 206e. Once completed, the incremented loop index equals the number expected ($i = n_{exp}$) and the completed condition is assigned the logic value of TRUE at reference 208, whereas the default prior to this would be FALSE. Once the data-fields are completed, the attribute information for the call is available and the call may be resumed by the server at reference 210.

The overall process for a backup server responding to a local server failure is summarized in the process flow diagram of FIG. 6. The network roll-over process may begin with a call being received by the NAS from a user at reference 212. The call is processed by the primary server at reference 214, wherein the server's function is performed by a primary RPMS. The call attributes are coded in a SSA, which is created 20 and updated for characterizing the call at reference 216. This function is typically performed by the RPMS. The SSA may be included with each message sent to the NAS from the RPMS at reference 218. The NAS then receives and stores the SSA in memory at reference 220 for subsequent retrieval if needed.

A detector for alerting the NAS of a server failure may be employed at reference 222 to determine if the primary RPMS is still linked to the network. In the event that no failure has occurred, indicating that the primary RPMS is still functioning, the call continues to be processed by the primary RPMS at reference 214. However, if such a 5 failure has occurred, this condition may be detected at reference 224, and the NAS responds by sending a message to the secondary server, in this case a backup RPMS, to continue processing the call at reference 226. The backup RPMS checks its database to determine if the call attribute information is available at reference 228. If not, the backup RPMS requests the NAS to provide the SSA at reference 230. The NAS sends the SSA 10 to the backup RPMS at reference 232, and the backup RPMS then parses the SSA at reference 234 to obtain the latest call attribute information it requires. The backup RPMS then proceeds to process the call at reference 236. If the check by the backup RPMS for call attribute information determines the information's availability at reference 228, then the backup RPMS need not query the NAS and may proceed directly to 15 process the call at reference 236. The steps 216, 218 and 220 provided through the primary RPMS processing of the call at reference 214 may also be continued by the backup RPMS processing of the call at reference 236.

While embodiments and applications of the invention have been shown and described, it would be apparent to those of ordinary skill in the art having the benefit of 20 this disclosure, that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.

CLAIMS

What is claimed is:

1. A backup server for enabling a data communications network to recover from a local server failure, said data communications network including a network access server (NAS) for coupling a call placed from a call-in user to said data communications network and a failure detector for detecting said local server failure, said NAS having associated memory, said NAS connected to said network, said backup server comprising:
 - a server-state attribute (SSA) receiver responsive to the failure detector for receiving from the associated memory an information packet associated with the call upon an occurrence of the local server failure, wherein said information packet characterizes a plurality of SSA information data associated with the call placed to the NAS by the call-in user;
 - a memory reader for reading said information packet from said SSA receiver; and
 - a parser for reconstructing said plurality of SSA information data from said information packet from said memory reader, so that the backup server can recover the call to the data communications network.
2. A backup server according to claim 1 wherein said information packet consists of an attribute/value pair that can be parsed into a plurality of separate data entries.
3. A backup server according to claim 1 wherein said information packet further comprises a plurality of aggregated data elements from a call attribute table.

4. A backup server according to claim 3 wherein said plurality of aggregated data elements of said information packet are separated by said parser for reconstructing said plurality of SSA information data from said information packet.

5. 5. A backup server for enabling a data communications network to recover from a local server failure, said data communications network including a network access server (NAS) for coupling a call placed from a call-in user to said data communications network, said NAS having associated memory, said backup server comprising:

- a failure detector for detecting said local server failure;
- a server-state attribute (SSA) receiver responsive to said failure detector for receiving from the associated memory an information packet associated with the call upon an occurrence of the local server failure, wherein said information packet characterizes a plurality of SSA information data associated with the call placed to the NAS by the call-in user;
- a memory reader for reading said information packet from said SSA receiver; and
- a parser for reconstructing said plurality of SSA information data from said information packet from said memory reader, so that the backup server can recover the call to the data communications network.

6. A backup server according to claim 5 wherein said information packet consists of an attribute/value pair that can be parsed into a plurality of separate data entries.

7. A server backup mechanism according to claim 5 wherein said information packet further comprises a plurality of aggregated data elements from a call attribute table.

8. A backup server according to claim 7 wherein said plurality of aggregated data elements of said information packet are separated by said parser for reconstructing said plurality of SSA information data from said information packet.

5

9. A local server for enabling a data communications network to recover from a local server failure, said data communications network including a network access server (NAS) for coupling a call placed from a call-in user to said data communications network and a failure detector for determining if said local server failure has occurred, said NAS having an associated memory, said NAS connected to said network, said local server comprising:

an encoder for generating an information packet associated with the call, wherein said information packet characterizes a plurality of server-state attribute (SSA) information data associated with the call; and

a sender for transmitting said information packet associated with the call from said encoder to the associated memory.

10. A local server according to claim 9 wherein said information packet consists of an attribute/value pair that can be parsed into a plurality of separate data entries.

20

11. A local server according to claim 9 wherein said information packet further comprises a plurality of aggregated data elements from a call attribute table.

12. A local server according to claim 11 wherein said plurality of aggregated data elements of said information packet are separated by said parser for reconstructing said plurality of SSA information data from said information packet.

5 13. A server enabling a data communications network to recover from a local server failure, said data communications network including a network access server (NAS) for coupling a call placed from a call-in user to said data communications network and a failure detector for determining if said local server failure has occurred, said NAS having an associated memory, said NAS connected to the network, said server comprising:

10 an encoder for generating an information packet, wherein said information packet characterizes a plurality of server-state attribute (SSA) information data associated with the call;

15 a sender for transmitting said information packet from said encoder to the NAS to which the call is coupled for storing in the associated memory;

20 a receiver responsive to the failure detector for receiving from the associated memory an information packet associated with the call upon an occurrence of the local server failure, wherein said information packet characterizes a plurality of SSA information data associated with the call;

25 a memory reader for reading said information packet from said SSA receiver; and

30 a parser for reconstructing from said information packet associated with the call into a plurality of SSA information data so that the backup server can recover the call to the data communications network.

14. A server according to claim 13 wherein said information packet consists of an attribute/value pair that can be parsed into a plurality of separate data entries.

15. A server according to claim 13 wherein said information packet further comprises
5 a plurality of aggregated data elements from a call attribute table.

16. A server according to claim 15 wherein said plurality of aggregated data elements of said information packet are separated by said parser for reconstructing said plurality of SSA information data from said information packet.

10

17. A network access server (NAS) for enabling a data communications network to recover from a local server failure and for coupling a call placed from a call-in user to said data communications network, said data communications network including a local server for generating an information packet, wherein said information packet characterizes a plurality of server-state attribute (SSA) information data associated with said call, and a backup server for parsing said information packet to recover said plurality of SSA information data in the event that said local server failure occurs, said local server, said backup server and said NAS being connected to said network, said NAS comprising:

15

20 a receiver for receiving the information packet from the local server;
an associated memory for recording the information packet;
a memory writer for writing the information packet from said receiver to said associated memory;

25 a failure detector for determining if the local server failure has occurred;

a memory reader for reading the information packet from said associated memory;
and

a sender for transmitting the information packet from said memory reader to the
backup server if the local server failure has occurred.

5

18. A NAS according to claim 17 wherein said information packet consists of an
attribute/value pair that can be parsed into a plurality of separate data entries.

19. A NAS according to claim 17 wherein said information packet further comprises a
plurality of aggregated data elements from a call attribute table.

10 20. A server backup system for enabling a network to recover a call placed by a call-in user to said network from a server access failure, said network including a memory connected to said network and a failure detector connected to the network for determining whether said server access failure has occurred, said memory and said failure detector both associated with a network access server (NAS) that is connected to said network, said system comprising:

a server connected to the network for servicing the call;

an encoder for generating an information packet that characterizes a plurality of

20 server-state attribute (SSA) information data associated with the call;

a receiver responsive to the failure detector for reading said information packet from the memory associated with the NAS, said receiver associated with said server, said information packet in the memory upon an occurrence of the local server failure;
and

a parser for reconstructing said plurality of SSA information data from said information packet, and providing said plurality of SSA information data to said server, said parser associated with said server.

5 21. A server backup system according to claim 20 wherein said information packet consists of an attribute/value pair that can be parsed into a plurality of separate data entries.

22. A server backup system according to claim 20 wherein said information packet
10 further comprises a plurality of aggregated data elements from a call attribute table.

23. A server backup system according to claim 22 wherein said plurality of aggregated data elements of said information packet are separated by said parser for reconstructing said plurality of SSA information data from said information packet.

15 24. A server backup mechanism according to claim 20 wherein said server is a resource pool manager server (RPMS).

20 25. A server backup system for enabling a network to recover a call placed by a call-in user to said network from a server access failure, said network including a memory connected to said network, said memory associated with a network access server (NAS) that is connected to said network, said system comprising:
a server connected to the network for servicing the call;

an encoder for generating an information packet that characterizes a plurality of server-state attribute (SSA) information data associated with the call;

a sender for transmitting said information packet from said encoder to the memory associated with the NAS, said sender associated with said server;

5 a failure detector for determining whether the server access failure has occurred, said failure detector associated with said server;

a data-caller responsive to said failure detector for requesting said information packet from the memory associated with the NAS, said data-caller associated with said server;

10 a receiver responsive to said data-caller for reading said information packet from the memory, said receiver associated with said server, said information packet in the memory upon an occurrence of the local server failure; and

15 a parser for reconstructing said plurality of SSA information data from said information packet, and providing said plurality of SSA information data to said server, said parser associated with said server.

26. A server backup system according to claim 25 wherein said information packet consists of an attribute/value pair that can be parsed into a plurality of separate data entries.

20
27. A server backup system according to claim 25 wherein said information packet further comprises a plurality of aggregated data elements from a call attribute table.

28. A server backup system according to claim 27 wherein said plurality of aggregated data elements of said information packet are separated by said parser for reconstructing said plurality of SSA information data from said information packet.

5 29. A server backup system according to claim 25 wherein said server is a resource pool manager server (RPMS).

30. A server backup system for enabling a network to recover a call placed by a call-in user to said network from a server access failure, said network including a memory connected to said network and a failure detector connected to the network for determining whether said server access failure has occurred, said memory and said failure detector both associated with a network access server (NAS) that is connected to said network, said system comprising:

- a first server connected to the network for servicing the call;
- a second server connected to the network for servicing the call if the server access failure occurs;
- an encoder for generating an information packet, said encoder associated with said first server, wherein said information packet characterizes a plurality of server-state attribute (SSA) information data associated with the call, said information packet further comprising a plurality of aggregated data elements from a call attribute table;
- a sender for transmitting said information packet from said encoder to the memory associated with the NAS, said sender associated with said second server;
- a receiver responsive to the failure detector associated with the NAS for reading said information packet from the memory upon an occurrence of the local server

failure, said receiver associated with said second server, said information packet in the memory ; and

a parser for reconstructing said plurality of SSA information data from said information packet, and providing said plurality of SSA information data to said second server, said parser associated with said second server.

5

31. A server backup system according to claim 30 wherein said second server further includes:

10 a data-caller responsive to the failure detector for requesting said information packet from the memory associated with the NAS.

32. A server backup system according to claim 31 wherein said first server is a resource pool manager server (RPMS) and said second server is a backup RPMS.

15 33. A method performed by a backup server for enabling a network to recover a call placed by a call-in user to said network from a server access failure, said network including a local server, said backup server, a memory connected to said network, an information packet generator connected to said network for generating an information packet that characterizes a plurality of server-state attribute (SSA) information data

20 associated with the call placed by said call-in user to said network, and a failure detector connected to said network for determining whether said server access failure has occurred, said memory and said failure detector both associated with a network access server (NAS) that is connected to said network, said local server at least initially

connected to said network, said backup server connected to said network, said method comprising:

receiving the information packet from the memory associated with the NAS, said receiving being responsive to the failure detector when the server access failure

5 occurs; and

parsing the information packet to reconstruct said plurality of SSA information data for the call.

34. A method performed by the backup server according to claim 33 wherein the
10 backup server is responsive to the failure detector when the server access failure occurs,
said method further comprising:

petitioning to the NAS for the information packet after the NAS requests the plurality of SSA information data;

receiving the information packet from the memory; and

15 sending said plurality of SSA information data to the NAS after parsing the information packet is completed.

35. A method performed by the backup server according to claim 33 wherein said parsing the information packet further includes:

20 reading a value data string and subdividing said value data string into a plurality of data fields.

36. A method performed by a local server for enabling a network to recover a call placed by a call-in user to said network from a server access failure, said network

including a memory connected to said network, a failure detector connected to the network for determining whether said server access failure has occurred, said local server, and a backup server, said memory and said failure detector both associated with a network access server (NAS) that is connected to said network, said local server at least initially connected to said network, said backup server connected to said network, said NAS sending an information packet from said memory to said backup server in response to said failure detector, said backup server parsing the information packet to reconstruct said plurality of server-state attribute (SSA) information data for said call, said method comprising:

generating an information packet that characterizes the plurality of SSA information data associated with the call placed by the call-in user to the network; and sending the information packet to the NAS to be stored in the associated memory.

37. A method performed by the local server according to claim 36 wherein said generating an information packet further comprises:

encoding a plurality of aggregated data elements from a call attribute table representing said plurality of server-state attribute (SSA) information data; and delimiting information packet into an attribute data string and a value data string.

38. A method performed by a network access server (NAS) for enabling a network to recover a call placed by a call-in user to said network from a server access failure, said network including an associated memory connected to said network, a failure detector connected to the network for determining whether said server access failure has occurred, a local server, and a backup server, said associated memory and said failure

detector both associated with the NAS that is connected to said network, said local server at least initially connected to said network, said backup server connected to said network, said local server generating an information packet that characterizes a plurality of server-state attribute (SSA) information data associated with the call placed by said 5 call-in user to said network, said backup server parsing the information packet to reconstruct said plurality of SSA information data for said call, said method comprising:
receiving the information packet from the local server by a receiver;
recording the information packet in the associated memory;
writing the information packet from said receiver to the associated memory;
determining if the local server failure has occurred by the failure detector;
reading the information packet from the associated memory by a memory reader;
and
transmitting the information packet from the memory reader to the backup server if the local server failure has occurred.

10
15
16
17
18
19
20

39. A method performed by a server for enabling a network to recover a call placed by a call-in user to said network from a server access failure, said network including said server connected to said network, a memory connected to said network and a failure detector connected to the network for determining whether said server access failure has occurred, said memory and said failure detector both associated with a network 20 access server (NAS) that is connected to said network, said method comprising:
generating an information packet that characterizes a plurality of server-state attribute (SSA) information data for the call placed by the call-in user to the network;

sending the information packet to the NAS to be stored in the memory associated with the NAS;

receiving said information packet from the memory associated with the NAS, said receiving being responsive to the failure detector when the server access failure occurs; and

5 parsing said information packet to reconstruct said plurality of SSA information data for the call.

40. A method performed by the server according to claim 39 wherein the server is a
10 resource pool manager server (RPMS).

41. A method performed by the server according to claim 39 said server is responsive to the failure detector when the server access failure occurs, said method further comprising:

15 petitioning said information packet to the NAS after receiving a request from the
NAS for the plurality of SSA information data;

receiving said information packet from the memory; and

20 sending said plurality of SSA information data to the NAS after parsing said information packet is completed.

42. A method performed by the server according to claim 39 wherein said generating an information packet further comprises:

encoding a plurality of aggregated data elements from a call attribute table
representing said plurality of SSA information data; and

delimiting the information packet into an attribute data string and a value data string.

43. A method performed by the server according to claim 39 wherein said parsing
5 said information packet further includes:

reading a value data string and subdividing said value data string into a plurality of data fields.

44. A programmable storage device readable by a machine tangibly embodying a
10 program of instructions executable by the machine to perform method steps performed
by a backup server for enabling a network to recover a call placed by a call-in user to
said network from a server access failure, said network including a local server, said
backup server, memory connected to said network, an information packet generator
connected to said network for generating an information packet that characterizes a
15 plurality of server-state attribute (SSA) information data for said call placed by said call-
in user to said network, and a failure detector connected to said network for determining
whether said server access failure has occurred, said memory and said failure detector
both associated with a network access server (NAS) that is connected to said network,
said local server at least initially connected to said network, said backup server
20 connected to said network, said method comprising:

receiving the information packet from the memory associated with the NAS, said
receiving being responsive to the failure detector when the server access failure
occurs; and

parsing the information packet to reconstruct said plurality of SSA information data for the call.

45. A programmable storage device according to claim 44 wherein the backup server
5 is responsive to the failure detector when the server access failure occurs, said method
further comprising:

petitioning to the NAS for the information packet after the NAS requests the
plurality of SSA information data;

receiving the information packet from the memory to the backup server; and

10 sending the plurality of SSA information data to the NAS after parsing the
information packet is completed.

46. A programmable storage device according to claim 44 wherein said parsing the
information packet further includes:

reading a value data string and subdividing said value data string into a plurality of
data fields.

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
92

connected to said network, said local server at least initially connected to said network, said backup server connected to said network, said NAS sending an information packet from said memory to said backup server in response to said failure detector, said backup server parsing the information packet to reconstruct said plurality of server-state

5 attribute (SSA) information data for said call, said method comprising:

generating an information packet that characterizes the plurality of SSA information data for the call placed by the call-in user to the network; and sending the information packet to the NAS.

10 48. A programmable storage device according to claim 47 wherein said generating an information packet further comprises:

encoding a plurality of aggregated data elements from a call attribute table representing the plurality of SSA information data; and delimiting information packet into an attribute data string and a value data string.

15 49. A programmable storage device readable by a machine tangibly embodying a program of instructions executable by the machine to perform method steps performed by a network access server (NAS) for enabling a network to recover a call placed by a call-in user to said network from a server access failure, said network including an

20 associated memory connected to said network, a failure detector connected to the network for determining whether said server access failure has occurred, a local server, and a backup server, said associated memory and said failure detector both associated with the NAS that is connected to said network, said local server at least initially connected to said network, said backup server connected to said network, said local

server generating an information packet that characterizes a plurality of server-state attribute (SSA) information data associated with the call placed by said call-in user to said network, said backup server parsing the information packet to reconstruct said plurality of SSA information data for said call, said method comprising:

- 5 receiving the information packet from the local server by a receiver;
- recording the information packet in the associated memory;
- writing the information packet from said receiver to the associated memory;
- determining if the local server failure has occurred by the failure detector;
- reading the information packet from the associated memory by a memory reader;

10 and

- transmitting the information packet from the memory reader to the backup server if the local server failure has occurred.

50. A programmable storage device readable by a machine tangibly embodying a program of instructions executable by the machine to perform method steps by a server for enabling a network to recover a call placed by a call-in user to said network from a server access failure, said network including said server connected to said network, a memory connected to said network and a failure detector connected to the network for determining whether said server access failure has occurred, said memory and said failure
15 detector both associated with a network access server (NAS) that is connected to said network, said method comprising:

generating an information packet that characterizes a plurality of SSA information data for the call placed by the call-in user to the network;

sending the information packet to the NAS to be stored in the memory associated with the NAS;

receiving said information packet from the memory associated with the NAS, said receiving being responsive to the failure detector when the server access failure occurs; and

parsing said information packet by said server to reconstruct said plurality of SSA information data for the call.

51. A programmable storage device according to claim 50 said server is responsive to
10 the failure detector when the server access failure occurs, said method steps further comprising:

petitioning said information packet to the NAS after receiving a request from the NAS for said plurality of SSA information data;

receiving said information packet from the memory; and

15 sending said plurality of SSA information data to the NAS after parsing said information packet is completed.

ABSTRACT

A method and apparatus for network server recovery maintains an ongoing call by reconstructing its call context from a server-state attribute (SSA) that is generated by a first server, recorded in separate storage and retrieved by a second server in the event that a connection to the first server is interrupted. The SSA encodes call data that can be used to enable a server to maintain the call. The separate storage is preferably associated with a network access server (NAS) that does not itself use the SSA.

FIG. 1 (prior art)

(prior art)

FIG. 2A**FIG. 2B** (prior art)

FIG. 6