Style transfer

A Neural Algorithm of Artistic Style [Gatys et al. 2015]

Medical imaging

3D imaging MRI, CT

Image guided surgery Grimson et al., MIT

Spatial and Intensity Resolution

Spatial resolution

- A measure of the smallest discernible detail in an image
- stated with line pairs per unit distance, dots (pixels) per unit distance, dots per inch (dpi)

Intensity resolution

- The smallest discernible change in intensity level
- stated with 8 bits, 12 bits, 16 bits, etc.

The Eye

- The human eye is a camera!
 - Iris colored annulus with radial muscles
 - Pupil the hole (aperture) whose size is controlled by the iris
 - What's the "film"? photoreceptor cells (rods and cones) in the retina

3-D Viewing Process

Projection

- General definition
 - Transform points in n-space to m-space(m<n)
- In computer graphics

Map viewing coordinates to 2D screen coordinates

Perspective Projection

Compute 2D coordinates from 3D coordinates with similar triangles

Perspective Projection

Compute 2D coordinates from 3D coordinates with similar triangles

Question 5

 In the following arrangement of pixels, what's the value of the chessboard distance between the circled two points?

0	0	0	0	0
0	0	1	(1)	0
0	1	1	0	0
0	1	0	0	0
0	0	0	0	0
0	0	0	0	0

Question 6

 In the following arrangement of pixels, what's the value of the city-block distance between the circled two points?

0	0	0	0	0
0	0	1	1	0
0	1	1	0	0
0	1	0	0	0
0	0	0	0	0
0	0	0	0	0

Mathematical Operations in DIP

Linear vs. Nonlinear Operation

H is said to be a linear operator;

H is said to be a **nonlinear operator** if it does not meet the above qualification.

Spatial Domain Process

Intensity transformation function

$$s = T(r)$$

a b

FIGURE 3.2

Intensity transformation functions.

- (a) Contraststretching function.
- (b) Thresholding function.

Image Negatives

Image negatives s = L - 1 - r

$$s = L - 1 - r$$

Log Transformations

Log Transformations $s = c \log(1+r)$

Example: Log Transformations

Power-Law (Gamma) Transformations

$$s = cr^{\gamma}/$$

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases). All curves were scaled to fit in the range shown.

Example: Gamma Transformations

Cathode ray tube (CRT) devices have an intensity-to-voltage response that is a power function, with exponents varying from approximately 1.8 to 2.5

$$s = r^{1/2.5}$$

Piecewise-Linear Transformations

Contrast Stretching

— Expands the range of intensity levels in an image so that it spans the full intensity range of the recording medium or display device.

Intensity-level Slicing

 Highlighting a specific range of intensities in an image often is of interest.

Bit-plane Slicing

FIGURE 3.13

Bit-plane representation of an 8-bit image.

Bit-plane Slicing

abc def ghi

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

Histogram Processing

Histogram $h(r_k) = n_k$

Normalized histogram
$$p(r_k) = \frac{n_k}{MN}$$

 n_k : the number of pixels in the image of size M × N with intensity r_k

Histogram Equalization

The intensity levels in an image may be viewed as random variables in the interval [0, L-1].

Let $p_r(r)$ and $p_s(s)$ denote the probability density function (PDF) of random variables r and s.

a b

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF, independently of the form of the PDF of the r's.

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-equalized images. Right column: histograms of the images in the center column.

Order-statistic (Nonlinear) Filters

- Nonlinear
- Based on ordering (ranking) the pixels contained in the filter mask
- Replacing the value of the center pixel with the value determined by the ranking result

E.g., median filter, max filter, min filter

USR? Effects?

Image Enhancement in Frequency Domain Little

Fundamentals

 Let R represent the entire spatial region occupied by an image. Image segmentation is a process that partitions R into n sub-regions, R₁, R₂, ..., R_n, such that

(a)
$$\bigcup_{i=1}^{n} R_i = R$$
.

- (b) R_i is a connected set. i = 1, 2, ..., n.
- (c) $R_i \cap R_j = \Phi$.
- (d) $Q(R_i) = \text{TRUE for } i = 1, 2, ..., n.$
- (e) $Q(R_i \cup R_j) = \text{FALSE for any adjacent regions}$ $R_i \text{ and } R_j$.

Definition of image segmentation

Detection of Isolated Points

· The Laplacian

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$= f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)$$

$$-4f(x, y)$$

$$g(x, y) = \begin{cases} 1 & \text{if } |R(x, y)| \ge T \\ 0 & \text{otherwise} \end{cases} R = \sum_{k=1}^{9} w_k z_k$$

FIGURE 10.4 (a) Point detection (Laplacian) mask. (b) X-ray image of turbine blade with a porosity. The porosity contains a single black pixel. (c) Result of convolving the mask with the image. (d) Result of using Eq. (10.2-8) showing a single point (the point was enlarged to make it easier to see). (Original image courtesy of X-TEK Systems, Ltd.)

bcd

Detecting Line in Specified Directions

FIGURE 10.6 Line detection masks. Angles are with respect to the axis system in Fig. 2.18(b).

 Let R₁, R₂, R₃, and R₄ denote the responses of the masks in Fig. 10.6. If, at a given point in the image, |R_k|>|R_j|, for all j≠k, that point is said to be more likely associated with a line in the direction of mask k.

Fage Detection

- Edges are pixels where the brightness function changes abruptly
- Edge models

<i>z</i> ₁	z_2	Z 3
Ζ4	Z ₅	z ₆
27	z ₈	Z 9

-1	0	0	-1
0	1	1	0

Roberts

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

ℓ Prewitt

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel

a						
b	c					
d	e					
f	g					

FIGURE 10.14

A 3×3 region of an image (the z's are intensity values) and various masks used to compute the gradient at the point labeled z_5 .

0	1	1	-1	-1	0
-1	0	1	-1	0	1
-1	-1	0	0	1	1

Prewitt

0	1	2	-2	-1	0
-1	0	1	-1	0	1
-2	-1	0	0	1	2

Sobel

a b c d

FIGURE 10.15

Prewitt and Sobel masks for detecting diagonal edges.

Image Classification pipeline

An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

```
Import numpy as np

class NearestNeighbor:
    def _init__(out);
    pass

def train(self, X, y):
        "" X is N x D where each row is an example, Y is 1-dimension of size N ""
    # the nearest neighbor classifier simply remembers all the training data
    self_Xtr = X
    anf_Ytr = X

def predict(self, X):
        "" X is N x D where each row is an example we wish to predict label for ""
    num test = X.shape[0]
    # lots make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self_ytr.dtype)

# loop over all fast rows
# south the loutput type matches the input type
# loop over all fast rows
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type astches the input type
# south the loutput type
# south the loutput
```

```
Import numpy as hp

class NearestNeighbor:
    def __init__(self):
    pass

def train(self, X, y):
    "" X is N x D where each row is an example. Y is 1-dimension of size N ""
    # fine concrete meighbor classifier simply remembers all the training data
    self.ytr = y

def predict(self, X):
    "" X is N x D where each row is an example we wish to predict label for ""
    num_test = X.shape(0)
    # lots same sore that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

# loap over all test rows

# for 1 in arange(num_test):
    # find the mearant training image to the ith test image
    # using the Li distance (sum or absolute value differences)
    distances = np.sum(np.abs(neif.ktr - X[i.i]), nxis = 1)
    min_index = np.argnin(distances) # get the index with smallest distance
    Ypred[1] = self.ytr(min_index] # predict the label of the mearest example
    return Ypred
```

Q: With N examples, how fast are training and prediction?

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
   """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for 1 in xrange(num test):
     # find the nearest training image to the 1'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

This is bad: we want classifiers that are fast at prediction; slow for training is ok

Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

/

Setting Hyperparameters

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that k ~= 7 works best for this data)

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Interpreting a Linear Classifier

$$f(x,W) = Wx + b$$

What is this thing doing?

Interpreting a Linear Classifier

$$f(x,W) = Wx + b$$

Example trained weights of a linear classifier trained on CIFAR-10:

Interpreting a Linear Classifier

Hard cases for a linear classifier

Convolution, feature map, pooling, FCN Bassies of Can (as taught in Class)

Here are concise notes on Image Enhancement in the Frequency Domain for a 6-mark question:

- 1. Fourier Transform:
 - Transforms a spatial image into its frequency domain representation.
 - · Used to process and enhance images by modifying their frequency components.
- 2. Filters in Frequency Domain:
 - Low-Pass Filters (LPF): Smoothens images by removing high-frequency components.
 - · Examples: Ideal LPF, Butterworth LPF, Gaussian LPF.
 - High-Pass Filters (HPF): Sharpens images by removing low-frequency components.
 - Examples: Ideal HPF, Butterworth HPF, Gaussian HPF.

3. Notch Filters:

- · Used to remove periodic noise by eliminating specific frequencies in the transform.
- 4. Selective Filters:
 - Bandreject Filters: Removes a range of frequencies.
 - · Bandpass Filters: Keeps only a specific frequency band.
- 5. Image Sharpening:
 - · Achieved by subtracting the lowfrequency components from the original image.
- 6. Applications:
 - · Used for noise removal, image smoothing, and sharpening.

Let me know if you'd like detailed explanations for any of these points.

