Data analytics with Apache Spark

Mario Macías Lloret

http://macias.info

@MaciasUPC

http://github.com/mariomac

May 2016

Overview of the course

- 1. Introduction
- 2. Apache Spark's basic concepts
- 3. Spark SQL
- 4. Mllib

Objectives of this course

- 1. To get introduced in the Apache Spark architecture and software ecosystem
- 2. To learn the basics of some of its core components and libraries
- 3. Generally speaking, to expand the view about what kind of problems can be solved by means of Big Data frameworks and programming models

Structure of the course

- 3 basic topics are going to be presented
 - Basic architecture and core components
 - Spark SQL
 - Mllib
 - Because of time constraints, other topics won't be covered
 - Stream processing
 - Graph processing
- For each topic, a short introduction will be given, followed by handson exercises
 - · Learn by doing

Other resources

- Official Spark documentation
 - http://spark.apache.org/docs/latest/
- Books
 - Learning Spark
 - http://spark.apache.org/docs/latest/
 - •Introducción a Apache Spark
 - http://www.sparkbarcelona.es/

Overview of the course

- 1. Introduction
- 2. Apache Spark's basic concepts
- 3. Spark SQL
- 4. Mllib

What is Apache Spark

- Cluster computing framework
- Set of programming models and libraries
- Suited for data-intensive applications and Machine Learning problems
- 5 main components
 - Spark Core and RDDs
 - Spark SQL
 - Spark Streaming
 - Mllib
 - GraphX

Spark vs Hadoop

- Pros
 - In-memory processing allows speed-up up to 100x for some problems
 - Supports multiple storage backends
 - Cassandra, HDFS, SQL databases...
 - Multiple language binding
 - Scala (main), Python, Java, R, Clojure
 - Well documented and easy to learn (personal opinion)
- Cons
 - Not as mature as Hadoop ecosystem

Spark core architecture

Cluster mode overview

- Cluster Managers
 - Localhost (to do the exercises in this course)
 - Standalone (included in Spark)
 - Apache Mesos
 - Hadoop YARN
 - Amazon EC2, through scripts

Resilient Distributed Datasets (RDDs)

- Are the core concept of Spark
- Keep data partitioned across the cluster nodes
- Are fault-tolerant
- Support two groups of actions
 - Transformations
 - Operations
- Are lazily evaluated: transformations are started only when operations are requested

First Example

• Console interactive mode:

```
$ IPYTHON=1 pyspark
In [1]: (sc.parallelize([1,2,3,4,5,6,7])
...: .filter(lambda v : v%2 == 1)
...: .map(lambda v : v*2)
...: .sum())
Out[1]: 32
1,3,5,7
```

Creating RDDs

- RDDs can be obtained from SQL/NoSQL databases, Scala/Python/Java/R/Clojure data types, disk files...
- In the exercises of this course, we will only use:
 - Data types
 rdd = sc.parallelize([1,2,3,4,5,6,7])
 Disk files

rdd = sc.textFile("derby.log")

Common operations on RDDs

- reduce(function)
 - Aggregates all the elements from an RDD according to the function
- collect()
 - Returns all the elements from an RDD as a list/array
- count()
 - Returns the number of elements in the RDD
- first()
 - Return the first element from an RDD
- histogram(classes)
 - Returns an histogram of for the 'classes' list
- saveAsTextFile(fileName)
- take(n)
 - Returns a list with the 'n' first elements
- Statistical functions: mean(), variance(), stdev(), sum(), max(), min()...

RDD operations examples

```
In [3]: orig = sc.parallelize([34,1,345,12,1,45,7])
In [5]: import math
In [8]: math.sqrt(orig.reduce(lambda a,b: a*a+b*b))
Out[8]: 2.007092677359242e+20

In [9]: orig.count()
Out[9]: 7

In [10]: orig.first()
Out[10]: 34

In [11]: orig.histogram([0,10,100,1000])
Out[11]: ([0, 10, 100, 1000], [3, 3, 1])

In [12]: orig.mean()
Out[12]: 63.57142857142857
```

Common transformations on RDDs

- filter(function)
 - Returns a new RDD with the elements from the original that make the parameter function return 'true'
- map(function)
 - returns a new RDD as the result of individually applying the function over the elements on the original RDD
- distinct()
 - removes duplicates from original RDDs
- sortBy(function)
 - orders an RDD according to the chriteria specified in the function
- union(otherRDD)
 - Returns an RDD as a result of the union on the target RDD and the parameter
- intersection(otherRDD)
 - Analogue to union, for intertsections

RDD transformation examples

Key-value pair RDD

- A key-value pair RDD is a special type of RDD formed by tuples, where the first element of the tuple is a key and the second element is an iterable element
- Common transformations
 - groupBy(func)
 - From an ordinary RDD, returns a new KVP RDD grouping the result of applying the function to each of its members
 - keys
 - Returns a list of keys
 - values
 - Returns a list of values
 - groupByKey()
 - mapValues()
 - sortByKey()
- Common operations
 - reduceByKey()
 - countByKey() / countByValue()
 - collectAsMap()

KVP examples

Persisting RDDs

The next script may be inefficient

```
rdd1 = sc.parallelize([12,3,45,76,89,79])
rdd2 = sc.parallelize([345,3,23,12,54])
all = rdd1.union(rdd2).distinct()
print 'The collected elements are:'
print all.reduce(lambda a,b: str(a) +", " + str(b))
print "Max: %d " % all.max()
print "Min: %d " % all.min()
print "Average: %d " % all.mean()
print "Std Dev: %d " % all.stdev()
```

Persisting RDDs

 Persistence allows caching intermediate transformations to avoid recalculating them

```
rdd1 = sc.parallelize([12,3,45,76,89,79])
rdd2 = sc.parallelize([345,3,23,12,54])
all = rdd1.union(rdd2).distinct().persist()
print 'The collected elements are:'
print all.reduce(lambda a,b: str(a) +", " + str(b))
print "Max: %d " % all.max()
print "Min: %d " % all.min()
print "Average: %d " % all.mean()
print "Std Dev: %d " % all.stdev()
```

Hands-on: prominence calculator

https://github.com/mariomac/patc-spark/tree/master/exercises/1-intro