Claims 1-21 (cancelled).

22. **(currently amended)** A method for the antimicrobial treatment of a surface of a plastic, which comprises contacting said surface plastic with an antimicrobially effective amount of a 2,4-bis(alkylamino)pyrimidine of formula

$$R_{5} \longrightarrow N \longrightarrow N \longrightarrow R_{4}$$

$$R_{6} \longrightarrow R_{3}$$

wherein

 R_1 is C_1 - C_{12} alkyl or C_6 - C_{10} aryl;

R₂ is hydrogen or C₁-C₁₂alkyl; or R₄ and R₂ together form a radical of formula

R' and R" are each independently of the other hydrogen, C₄-C₆alkyl or C₄-C₆alkoxy;

R₃ and R₅ are each independently of the other hydrogen or C₁-C₂alkyl;

 R_4 is C_1 - C_{20} alkyl, unsubstituted phenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_1 - C_6 alkyl, di- C_1 - C_6 alkylamino- C_1 - C_6 alkyl, mono- C_1 - C_6 alkylamino- C_1 - C_6 alkyl, -(CH_2)₂-(O-(CH_2)₂)₁₋₄-OH or -(CH_2)₂-(O-(CH_2)₂)₁₋₄-OH2;

 R_6 is C_1 - C_{20} alkyl, C_6 - C_{10} aryl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_1 - C_6 alkyl, di- C_1 - C_6 alkylamino- C_1 - C_6 alkyl, -(CH_2)₂-(O-(CH_2)₂)₁₋₄-OH or -(CH_2)₂-(O-(CH_2)₂)₁₋₄- NH_2 ; or R_3 and R_4 and/or R_5 and R_6 together form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.

- 23. (previously presented) A method according to claim 22, wherein
- R_1 is C_1 - C_8 alkyl or phenyl.
- 24. (previously presented) A method according to claim 22, wherein
- R₂ is hydrogen or C₃-C₈alkyl.
- 25. (previously presented) A method according to claim 22, wherein

R₃ and R₅ are each independently of the other hydrogen or C₁-C₈alkyl.

26. (previously presented) A method according to claim 22, wherein

 R_4 is C_1 - C_{12} alkyl, unsubstituted phenyl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_2 - C_6 alkyl, di- C_1 - C_4 alkylamino- C_1 - C_1 - C_2 - C_1 - $C_$

 R_6 is C_1-C_{12} alkyl, C_6-C_{10} aryl, C_6-C_{10} aryl- C_1-C_6 alkyl, hydroxy- C_2-C_6 alkyl, di- C_1-C_4 alkylamino- C_1-C_4 alkyl, -(CH_2)₂-($O-(CH_2$)₂)_{1,2}-OH or -(CH_2)₂-($O-(CH_2$)₂)_{1,2}-NH₂.

27. (previously presented) A method according to claim 22, wherein

 R_1 is C_1 - C_8 alkyl or phenyl;

R₂ is hydrogen or hexyl; and

R₃ and R₅ are each independently of the other hydrogen or C₁-C₈alkyl;

R₄ is C₁-C₁₂alkyl, unsubstituted phenyl, C₆-C₁₀aryl-C₁-C₆alkyl, hydroxy-C₂-C₆alkyl,

di- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, mono- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, -(CH_2)₂-(O-(CH_2)₂)_{1,2}-OH or -(CH_2)₂-(O-(CH_2)₂)_{1,2}-NH₂; and

 R_6 is C_1 - C_{12} alkyl, C_6 - C_{10} aryl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_2 - C_6 alkyl, di- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, -(CH_2)₂-(O-(CH_2)₂)_{1,2}-OH or -(CH_2)₂-(O-(CH_2)₂-(O-(CH_2)₂-(O-(OH_2)₂-(O-(OH_2)₂-(OH_2)₂-(OH_2 -(OH_2 -(OH_2)₂-(OH_2 -(OH_2)₂-(OH_2 -(OH_2 -(OH_2)₂-(OH_2 -(OH_2 -(OH_2 -(OH_2)₂-(OH_2 -(OH_2 -

28. (cancelled)

29. (currently amended) A method according to claim 22, wherein

R₁ is C₁-C₄alkyl or phenyl;

 R_2 is hydrogen or hexyl; or R_4 and R_2 together form a radical of formula (1a) as defined in claim 22, wherein

R' is hydrogen, C₁-C₃alkyl-or-C₁-C₃alkoxy, and

R" is C₁-C₃alkyl or C₁-C₃alkoxy;

R₃ and R₅ are each independently of the other hydrogen or C₁-C₈alkyl;

holina

 R_6 is C_1 - C_{12} alkyl, C_6 - C_{10} aryl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_2 - C_6 alkyl, di- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, -(CH_2)₂-(O-(CH_2)₂)_{1,2}-OH or -(CH_2)₂-(O-(CH_2)₂)_{1,2}- NH_2 ; or R_3 and R_4 together, and R_5 and R_6 together, form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.

- 30. (previously presented) A method according to claim 22, wherein R_3 and R_5 , and R_4 and R_6 , have the same meanings.
- 31. (previously presented) A method according to claim 22, wherein the 2,4-bis(alkylamino)pyrimidine is of the formula

32-42. (cancelled)

ale de la constante de la cons

10/565,545 - 4 - RHM/1-22927/A/PCT