SOLUTION TD D'OPTIQUE GEOMETRIQUE

Filières : LEESM, LEESI Série N° : 3

EXERCICE 1:

- 1. Le dioptre est concave car SC < 0.
 - Le dioptre est convergent puisque C est dans le milieu le plus réfringent.
- 2. La relation de conjugaison relative à ce dioptre sphérique est :

$$\frac{n_1}{\overline{SA}} - \frac{n_2}{\overline{SA'}} = \frac{n_1 - n_2}{\overline{SC}}$$

- **3.** Les distances focales :
 - **a.** Distance focale objet $\overline{SF}: A \rightarrow F$ et $A' \rightarrow \infty$

$$\frac{n_1}{\overline{SF}} - \frac{n_2}{\infty} = \frac{n_1 - n_2}{\overline{SC}}$$

$$\overline{SF} = \frac{n_1}{\frac{n_1 - n_2}{\overline{SC}}} = \frac{\frac{4}{3}}{\frac{4}{3} - 1} \overline{SC} = 4 \times \overline{SC} = -12cm$$

b. Distance focale image $\overline{SF'}: A \rightarrow \infty$ et $A' \rightarrow F'$

$$\frac{n_1}{\infty} - \frac{n_2}{\overline{SF'}} = \frac{n_1 - n_2}{\overline{SC}}$$

$$\overline{SF'} = \frac{n_2}{\frac{n_2 - n_1}{\overline{SC}}} = \frac{1}{1 - \frac{4}{3}} \overline{SC} = -3 \times \overline{SC} = 9cm$$

4. La vergence V:

On a :
$$\overline{SF'} = \frac{n_2}{V}$$
, $\overline{SF} = \frac{n_1}{V}$ et $V = \frac{n_2 - n_1}{\overline{SC}}$

Donc:
$$V = \frac{n_2}{\overline{SF'}} = \frac{1}{9.10^{-2}} = 11,118 = 11,11 \text{ m}^{-1}$$

5. L'objet AB perpendiculaire à l'axe optique en A à une distance de $\overline{SA} = -10cm$ et de hauteur $\overline{AB} = 2cm$

a. la position de l'image $\overline{A'B'}$:

$$\frac{n_1}{\overline{SA}} - \frac{n_2}{\overline{SA'}} = \frac{n_1 - n_2}{\overline{SC}} \iff \overline{SA'} = \frac{n_2}{\frac{n_2 - n_1}{\overline{SC}} + \frac{n_1}{\overline{SA}}} = \frac{1}{\frac{1 - \frac{4}{3}}{-3cm} + \frac{4}{\frac{3}{-10cm}}} = -45cm$$

b. le grandissement et la hauteur de l'image $\overline{A'B'}$:

$$\psi = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{SA'}}{\overline{SA}} = \frac{-45 \text{ cm}}{-10 \text{ cm}} = 4,5$$

$$\psi = \frac{\overline{A'B'}}{\overline{AB}} = > \overline{A'B'} = \overline{AB}. \quad \gamma = 4,5.2 \text{ cm} = 9 \text{ cm}$$

c. la nature de l'image $\overline{A'B'}$

l'image $\overline{A'B'}$ est virtuelle, droite et plus grande que l'objet \overline{AB} .

d. Construction géométrique :

6. objet AB perpendiculaire à l'axe optique en A à une distance de $\overline{SA} = 10cm$ (*c-à-d que l'objet est virtuel*) et de hauteur $\overline{AB} = 2cm$

a. la position de l'image $\overline{A'B'}$:

$$\frac{n_1}{\overline{SA}} - \frac{n_2}{\overline{SA'}} = \frac{n_1 - n_2}{\overline{SC}} \iff \overline{SA'} = \frac{n_2}{\frac{n_2 - n_1}{\overline{SC}} + \frac{n_1}{\overline{SA}}} = \frac{1}{\frac{1 - \frac{4}{3}}{-3cm} + \frac{4}{\frac{3}{10cm}}} = \frac{45}{11}cm \cong 4,1cm$$

b. le grandissement et la hauteur de l'image $\overline{A'B'}$:

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{SA'}}{\overline{SA}} = \frac{4.1 \text{ cm}}{10 \text{ cm}} = 0,41$$

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = > \overline{A'B'} = \overline{AB}. \gamma = 0,41.2 \text{ cm} = 0,82 \text{ cm}$$

c. la nature de l'image $\overline{A'B'}$

l'image $\overline{A'B'}$ est réelle, droite et plus petite que l'objet \overline{AB} .

d. Construction géométrique :

EXERCICE 2:

- **1.** Représenter le trajet d'un rayon lumineux monochromatique parallèle à l'axe optique et traversant le système optique dans les deux cas suivants :
 - a. Cas 1: $n_3 > n_2 > n_1$

b. Cas $2: n_2 > n_3 > n_1$

2. Le but de cette question est de connaître la position de l'image de ce point au travers de cette Association de dioptres. A_1 , A_2 , A' sont respectivement les images de A relatives au dioptre D_1 , D_1+D_2 , $D_1+D_2+D_3$:

a. La relation de conjugaison relative au dioptre D_1 et exprimer la position de l'image A_1 :

la relation de conjugaison D₁:

$$n_1 \xrightarrow{D_1} n_2$$

$$A \longrightarrow A_1$$

$$\frac{n_2}{S_1 A_1} = \frac{n_1}{S_1 A} \implies \overline{S_1 A_1} = \frac{n_2}{n_1} \overline{S_1 A}$$

b. La relation de conjugaison relative au dioptre D₂:

4 la relation de conjugaison D₂:

$$n_2 \xrightarrow{D_2} n_3$$

$$A_1 \longrightarrow A_2$$

$$\frac{n_3}{\overline{S_2 A_2}} - \frac{n_2}{\overline{S_2 A_1}} = \frac{n_3 - n_2}{\overline{S_2 C_2}} = \frac{n_3 - n_2}{R}$$

c. La relation de de conjugaison relative au dioptre D_3 et exprimer la position de l'image A' $(\overline{S_3A'})$ en fonction de $A_2(\overline{S_3A_2})$:

♣ la relation de conjugaison D₃:

$$n_3 \xrightarrow{D_3} n_1$$

$$A_2 \longrightarrow A'$$

$$\frac{n_3}{\overline{S_3 A_2}} = \frac{n_1}{\overline{S_3 A'}} \implies \overline{S_3 A'} = \frac{n_1}{n_3} \overline{S_3 A_2}$$

d. La position de l'image $A'(\overline{S_3A'})$ est

On a:
$$\overline{S_3A'} = \frac{n_1}{n_3} \overline{S_3A_2}$$

Donc,

$$\overline{S_3 A'} = \frac{n_1}{n_3} [\overline{S_3 S_2} + \overline{S_2 A_2}] = \frac{n_1}{n_3} \left[\overline{S_3 S_2} + n_3 \left(\frac{n_3 - n_2}{\overline{S_2 C_2}} + \frac{n_2}{\overline{S_2 A_1}} \right)^{-1} \right]$$

$$\Rightarrow \overline{S_3 A'} = \frac{n_1}{n_3} \overline{S_3 S_2} + n_1 \left(\frac{n_3 - n_2}{\overline{S_2 C_2}} + \frac{n_2}{\overline{S_2 S_1} + \overline{S_1 A_1}} \right)^{-1}$$

$$\Rightarrow \overline{S_3 A'} = \frac{n_1}{n_3} \overline{S_3 S_2} + n_1 \left(\frac{n_3 - n_2}{\overline{S_2 C_2}} + \frac{n_2 n_1}{\overline{n_1 S_2 S_1} + n_1 \overline{S_1 A_1}} \right)^{-1}$$

D'où:
$$\overline{S_3A'} = \frac{n_1}{n_3} \overline{S_3S_2} + n_1 \left[\frac{n_3 - n_2}{\overline{S_2C_2}} + \frac{n_2n_1}{n_1 \overline{S_2S_1} + n_2 \overline{S_1A}} \right]^{-1}$$

3. On se place dans le cas où $n_3 = n_2 = n$ et $n_1 = 1$ (air) et $\overline{S_1 S_3} = e$.

a. le trajet d'un rayon lumineux monochromatique issu de A traversant le système optique et ayant une inclinaison $\alpha = 30^{\circ}$ c par rapport à l'axe optique :

b. l'angle formé entre le rayon émergeant de D_3 et l'axe optique est θ :

Point I: $n_1 \sin \alpha = n \sin r$ **Point I1:** $n \sin r = n_1 \sin \theta$

Donc: $n_1 \sin \alpha = n_1 \sin \theta$ $\Rightarrow \sin \theta = \sin \alpha \Rightarrow \theta = \alpha = 30^{\circ}c$

c. $\overline{S_3A'}$ en fonction de $\overline{S_1A}$, e et n :

$$\overline{S_3 A'} = \frac{1}{n} \overline{S_3 S_2} + \left(\frac{n}{\overline{S_2 S_1} + n \overline{S_1 A}}\right)^{-1}$$

$$\overline{S_3 A'} = \frac{\overline{S_3 S_2}}{n} + \frac{\overline{S_2 S_1}}{n} + \overline{S_1 A} = \overline{S_1 A} - \frac{e}{n}$$

d. La distance $\overline{AA'}$ en fonction de e et n :

$$\overline{AA'} = \overline{AS_1} + \overline{S_1S_3} + \overline{S_3A'} = e\left(1 - \frac{1}{n}\right)$$

e. La nature de l'image A' de l'objet A

A' est une image virtuelle car $\overline{AA'} < \overline{AS_1}$

f. Application numérique : n = 4/3 et e = 4 cm.

$$\overline{AA'} = 4.10^{-2} \left(1 - \frac{3}{4} \right) = 10^{-2} m$$

EXERCICE 3:

 $n=3/2,\,d$ 'épaisseur et placé dans l'air d'indice 1. On posera :

$$R = \overline{S_1 C_1} = \overline{S_1 S_2} = e = \frac{\overline{S_1 C_2}}{2}$$

1. Les formules de conjugaison de position et de grandissement du 1^{er} dioptre D₁ (S₁, C₁) avec origine au centre pour le couple de points (A, A₁).

$$(AB;1) \xrightarrow{D_1(S_1,C_1)} (A_1B_1;n)$$

$$\frac{1}{\overline{C_1A_1}} - \frac{n}{\overline{C_1A}} = \frac{1-n}{\overline{C_1S_1}} = \frac{n-1}{R} \qquad \text{et} \qquad \gamma_1 = \frac{\overline{C_1A_1}}{\overline{C_1A}}$$

2. Les foyers objet F_1 et image F_1' et ses distances focales objet f_1 et image f_1' :

4 Positions des foyers F_1 et F_1' :

$$A \equiv F_1 \to A_1 \grave{a} l' \infty \qquad \Rightarrow \qquad \overline{C_1 F_1} = \frac{nR}{1-n}$$

$$AN : \overline{C_1 F_1} = -3R = -30 \ cm$$

$$A \grave{a} l' \infty \qquad \to A_1 \equiv F_1' \Rightarrow \qquad \overline{C_1 F_1'} = \frac{R}{n-1}$$

$$AN : \overline{C_1 F_1'} = 2R = 20 \ cm$$

4 Les distances focales f_1 et f_1' :

$$f_1 = \overline{S_1 F_1} = \overline{S_1 C_1} = \overline{C_1 F_1} = \overline{S_1 S_2} = \overline{C_1 F_1} = R + \frac{nR}{1 - n} = \frac{R}{1 - n}$$

$$\Rightarrow \qquad f_1 = \frac{R}{1 - n} \qquad \text{AN} : f_1 = -2R = -20cm$$

$$f_1' = \overline{S_1 F_1'} = \overline{S_1 C_1} = \overline{C_1 F_1'} = \overline{S_1 S_2} = \overline{C_1 F_1'} = R + \frac{R}{n-1} = \frac{nR}{n-1}$$

$$\Rightarrow \qquad f_1' = \frac{nR}{n-1} \qquad \text{AN} : f_1' = 3R = 30cm$$

3. Les formules de conjugaison de position et de grandissement du $2^{\text{ème}}$ dioptre D_2 (S_2 , C_2) avec origine au sommet pour le couple de points (A_1 , A').

$$(A_1B_1;n) \xrightarrow{D_2(S_2,C_2)} (A'B';1)$$

$$\frac{1}{\overline{S_2 A_1}} - \frac{n}{\overline{S_2 A'}} = \frac{1-n}{\overline{S_2 C_2}} = \frac{n-1}{2R}$$
 et $\gamma_2 = \frac{n}{1} \frac{\overline{S_2 A'}}{\overline{S_2 A_1}}$

4. Les foyers objet F_2 et image F_2' et ses distances focales objet f_2 et image f_2'

4 Positions des foyers F_2 et F_2' :

$$A_{1} \equiv F_{2} \rightarrow A' \text{à } l' \infty \qquad \Rightarrow \qquad \overline{S_{2}F_{2}} = \frac{2nR}{n-1}$$

$$AN: \overline{S_{2}F_{2}} = 6R = 60 \text{ } cm$$

$$A_{1} \text{ à } l' \infty \rightarrow A' \equiv F'_{2} \qquad \Rightarrow \qquad \overline{S_{2}F'_{2}} = \frac{2R}{1-n}$$

$$AN: \overline{S_{2}F'_{2}} = -4R = -40 \text{ } cm$$

4 Les distances focales f_2 et f_2' :

$$f_2 = \overline{S_2 F_2}$$

$$\Rightarrow f_2 = \frac{2nR}{n-1} \qquad \text{AN} : f_2 = 60cm$$

$$f'_2 = \overline{S_2 F'_2}$$

$$\Rightarrow f'_2 = \frac{2R}{1-n} \qquad \text{AN} : f'_2 = -40cm$$

5. Les formules de conjugaison de position et de grandissement du système (S) :

Formule de conjugaison du système :

On a:

$$\underline{\mathbf{D}_1:} \ \frac{1}{\overline{C_1 A_1}} - \frac{n}{\overline{C_1 A_1}} = \frac{1-n}{\overline{C_1 S_1}} = \frac{n-1}{R} \ \acute{e}q(1) \ \text{et} \ \underline{\mathbf{D}_2:} \ \frac{1}{\overline{S_2 A_1}} - \frac{n}{\overline{S_2 A'}} = \frac{1-n}{\overline{S_2 C_2}} = \frac{n-1}{2R} \acute{e}q(2)$$

Or
$$C_1 \equiv S_2$$
 donc $\acute{e}q(1) \iff \frac{1}{\overline{S_2A_1}} - \frac{n}{\overline{S_2A}} = \frac{n-1}{R} \acute{e}q(3)$

$$\implies n * (3) - (2) \iff \frac{1}{\overline{S_2 A'}} - \frac{n^2}{\overline{S_2 A}} = \frac{n(n-1)}{R} - \frac{n-1}{2R} = \frac{(n-1)(2n-1)}{2R} = \frac{1}{2R}$$

Donc la formule de conjugaison du système est :

$$\frac{1}{\overline{S_2 A'}} - \frac{n^2}{\overline{S_2 A}} = \frac{(n-1)(2n-1)}{2R}$$

Le grandissement du système :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{A'B'}}{\overline{A_1B_1}} \frac{\overline{A_1B_1}}{\overline{AB}} = \gamma_1 \gamma_2 = \frac{\overline{C_1A_1}}{\overline{C_1A}} \frac{n}{1} \frac{S_2 A'}{\overline{S_2A_1}} = n \frac{S_2 A'}{\overline{S_2A}}$$

 $(\operatorname{car} C_1 \equiv S_2 \rightarrow \overline{C_1 A_1} = \overline{S_2 A_1})$

$$\Rightarrow \qquad \qquad \gamma = n \frac{\overline{S_2 A'}}{\overline{S_2 A}}$$

6. Position des foyers objet F et image F' du système :

$$\frac{1}{\overline{S_2A'}} - \frac{n^2}{\overline{S_2A}} = \frac{(n-1)(2n-1)}{2R}$$

4 Foyer objet F:

$$A \equiv F \to A' \grave{a} l' \infty$$
 \Rightarrow $\frac{1}{\infty} - \frac{n^2}{\overline{S_2 F}} = \frac{(n-1)(2n-1)}{2R} = \frac{1}{2R}$

$$\Rightarrow \quad \overline{S_2F} = -2n^2R \qquad \text{AN}: \ \overline{S_2F} = -45 \ cm$$

$$A \stackrel{.}{a} l' \infty \rightarrow A' \equiv F'$$

$$\Rightarrow \frac{1}{\overline{S_2 F'}} - \frac{n^2}{\infty} = \frac{(n-1)(2n-1)}{2R} = \frac{1}{2R}$$

$$\Rightarrow \overline{S_2 F'} = 2R \qquad \text{AN}: \overline{S_2 F'} = 20 \text{ cm}$$

7. Position du centre optique O du système :

On a:
$$\frac{\overline{OS_1}}{\overline{OS_2}} = \frac{\overline{S_1C_1}}{\overline{S_2C_2}} = \frac{R}{2R} = \frac{1}{2} \implies 2\overline{OS_1} = \overline{OS_2}$$

Or $\overline{S_1S_2} = R = \overline{OS_2} - \overline{OS_1} = 2\overline{OS_1} - \overline{OS_1} = \overline{OS_1}$
 $\Rightarrow \overline{OS_1} = R \qquad \text{AN} : \overline{OS_1} - 10 \text{ cm et } \overline{OS_2} = -20 \text{ cm}$

8. Position des points principaux \mathbf{H} et \mathbf{H}' du système :

Position des points principaux
$$\mathbf{H}$$
 et \mathbf{H} du système :
 \mathbf{H} et \mathbf{H}' sont tel que : $\mathbf{H} \xrightarrow{Système} \mathbf{H}' / \gamma = 1$

$$\frac{1}{\overline{S_2H'}} - \frac{n^2}{\overline{S_2H}} = \frac{(n-1)(2n-1)}{2R} = \frac{1}{2R}$$

$$\gamma = n\frac{\overline{S_2H'}}{\overline{S_2H'}} = 1 \implies \overline{S_2H} = n\overline{S_2H'}$$

$$\Rightarrow \frac{1}{\overline{S_2H'}} - \frac{n^2}{n\overline{S_2H'}} = \frac{1}{2R} \implies \frac{1}{\overline{S_2H'}} - \frac{n}{\overline{S_2H'}} = \frac{1}{2R}$$

$$\Rightarrow \overline{S_2H'} = 2R(1-n) \text{ et } \overline{S_2H} = 2nR(1-n)$$

$$AN : \overline{S_2H'} = -10 \text{ cm} \text{ et } \overline{S_2H} = -15 \text{ cm}$$

9. Les distances focales objet f et image f ' du système, donner sa nature ?

Méthode 1:

$$f = \overline{HF} = \overline{HS_2} + \overline{S_2F} \implies f = \overline{S_2F} - \overline{S_2H}$$

$$AN: f = -30 cm$$

$$f' = \overline{H'F'} = \overline{H'S_2} + \overline{S_2F'} \implies f' = \overline{S_2F'} - \overline{S_2H'}$$

$$AN: f' = 30 cm$$

Méthode 2:

$$V = \frac{1}{f'} = \frac{n-1}{R} + \frac{1-n}{2R} - \frac{R(n-1)}{nR} \frac{(1-n)}{2R} = \frac{1}{2R} - \frac{1}{4R} + \frac{1}{12R} = \frac{1}{3R}$$

$$\Rightarrow f' = 3R = 30 \text{ cm}$$
 et $f = -f' = -30 \text{ cm}$

La nature du système :On a f' = 30 cm > 0 ==> Système convergent.