

Seminar Moderne Optik

Laser Verstärkung

Struktur

- 1.Grundlagen
- 2.Problem
- 3.Methoden
- 4. Chirped pulse amplification
 - a)Theorie
 - b)Umsetzung
- 5. Anwendung

Grundlagen

- Light amplification by stimulated emission of radiation
- Kohärent
- parallel

Grundlagen Aufbau

- Aktives Medium
- Optische Pumpe
- Resonator

https://commons.wikimedia.org/w/index.php?curid=8 544739

Grundlagen Power

Metrik	Einheit
Leistung	W oder J/s
Energie	J
Leistungsdichte	W/cm ²
Energie Dichte	J/cm ²
Puls Energie	J

Problem

- Laser verstärken wie?
 - Q-switching
 - Mode-locking
 - CPA

Laser Spectroscopy , Demtröder 2003, S. 676

Q-switching

- 1. Populationsinversion
- 2. Resonatorverluste
- 3. Maximum
- 4. Q-switch
- 5. Laserimpuls

https://www.natu re.com/articles/55 0458a

Mode Locking

- 1. Laser oszilliert in vielen unabhängigen Moden
- 2. Phasen werden gekoppelt
- Kohärente Superposition der Modenamplituden
- Leistung proportinal zu N²

By Davidjessop - Own work, CC BY-SA 4.0, https://commons.wikimedia.o rg/w/index.php?curid=479811

Chirped Pulse Amplification

- 1. Laserpuls wird gestreckt
- 2. Verstärkt
- 3. Gestaucht

Nobel Media AB. Photo: A. Mahmoud

Nobel Media AB. Photo: A.

Petawatt, Femtosekunden Pulse

Alternative zum Glasphaserkabel

Anwendung

- Nichtlineare Optik (höhere harmonische)
- Multiphoton Ionisation
- Anregung mehrere geladenen Ionen
- Generation von hoch Temperatur Plasma

Seminar Moderne Optik

Worauf noch eingehen: Produktion kurze Pulse(fs) Spiegel für kurze Pulse