MATH 457 Honours Algebra 4*

Notes by

MARCEL K. GOH

23 April 2020

Note. These notes are rough and may skip over some details. Some proofs are either omitted or distilled to their main ideas.

1. Rings

A ring R is a set with operations + and \cdot such that

- i) (R, +) is an abelian group;
- ii) (R, \cdot) is a semigroup;
- iii) \cdot distributes over + on both sides:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 and $(a+b) \cdot c = a \cdot c + b \cdot c$

A semiring is the same as a ring except that condition (i) above becomes

i') (R, +) is a monoid with absorbing identity 0.

A ring is unital if (R, \cdot) has a unit 1. We always assume that $1 \neq 0$, since if 1 = 0 then $R = \{0\}$. Observe that in a unital ring, (R, +) is necessarily abelian. A ring is said to be *commutative* if (R, \cdot) is.

Even for commutative rings, there are many possible ring structures for $(R, +) = \mathbf{Z}^2$. For example we can take the Gaussian integers $\mathbf{Z}[i] = \{a + bi : a, b \in \mathbf{Z}\}$ or the Eisenstein integers $\mathbf{Z}[\omega] = \{a + b\omega : a, b \in \mathbf{Z}\}$ where

$$\omega = -\frac{1 + i\sqrt{3}}{2}.$$

In both cases the second binary operation is complex multiplication. Since i and ω are both solutions to equations of the form $x^2 + Bx + C = 0$, they are called *quadratic integers* and $\mathbf{Z}[i]$ and $\mathbf{Z}[\omega]$ are called *quadratic rings*.

The definition of a ring is meant to describe a class of **Z**-like objects, but many rings have properties different from the integers. For example, the ring $\mathbf{Z}[\sqrt{-5}]$ does not have Euclidean division. There are also many non-commutative rings such as the *Lipschitz quaternions*

$${a + bi + cj + dk : a, b, c, d \in \mathbf{Z}}$$

or the Hurwitz quaternions

$$\left\{ a + bi + cj + dk : a, b, c, d \in \mathbf{Z} \text{ or } a, b, c, d \in \mathbf{Z} + \frac{1}{2} \right\}.$$

If R is a ring, then a subgroup of (R, +) that is closed under multiplication is called a *subring*. If a ring is unital, then any unital subring will have the same unit. A *homomorphism* between two rings R and S is a map $f: R \to S$ that preserves both operations:

$$f(a+b) = f(a) + f(b)$$
 and $f(a \cdot b) = f(a) \cdot f(b)$

A homomorphism that preserves the units is called *unital*.

^{*} Course given by Prof. Mikaël Pichot at McGill University

An *ideal* in a ring R is a subgroup (I, +) such that

- i) $ab \in I$ for all $a \in R$, $b \in I$;
- ii) $ab \in I$ for all $b \in I$, $a \in R$.
- If (i) holds, I is called a *left ideal* and if (ii) holds, I is called a right ideal. Let $I \subseteq R$ be an ideal. One defines the *quotient ring* R/I as follows. Since (I, +) is a normal subgroup of (R, +), R/I is an abelian group. We associate $r \sim r'$ if $r r' \in I$. Then we can define multiplication in R/I as (a + I)(b + I) = ab + I. This is well-defined because I is an ideal and distributivity holds.

The isomorphism theorems for groups extend to rings as well.

Theorem A (First isomorphism theorem). Let $f: R \to S$ be a surjective ring homomorphism. Then f descends to a a ring homomorphism $f': R/I \to S$ that takes a+I to f(a), where I is the kernel of f.

Theorem B (Second isomorphism theorem). Let S be a subring and I and ideal in a ring R. Then S+I is a subring of R, I is an ideal in S+I, and the map $S \twoheadrightarrow (S+I)/I$ is a surjective ring homomorphism with kernel $S \cap I$.

Theorem C (Third isomorphism theorem). Let R be a ring and $I \subseteq J \subseteq R$ be ideals. Then $R/I \twoheadrightarrow R/J$ is a surjective ring homomorphism with kernel J/I.

Theorem D (Fourth isomorphism theorem). Let $f: R \rightarrow S$ be a surjective ring homomorphism. There is a bijection between the ideals in R containing ker f and the set of all ideals in S.

Note that the correspondence in Theorem D works with subrings as well, not just ideals.

An element r in a unital ring R is said to be *invertible* if there exists $s \in R$ such that rs = sr = 1. The set of invertible elements is denoted R^{\times} and this is a group under \times , called the *group of units*. A *field* is a ring in which every nonzero element is a unit. Non-commutative fields are called *division rings* or *skew fields* (the quaternions are an example of a skew field).

Let K be a field. The set K[x] of polynomials with coefficients in K is a ring. Then the set

$$K(x)=\{f/g:f,g\in K[x],g\neq 0\}$$

is a field, called the field of rational functions. The set K[[x]] is called the ring of formal series: possibly infinite sums $\sum_{n\geq 0} a_n x^n$. Addition is done pointwise and multiplication is convolution of power series. The map $K[x] \to K[[x]]$ is a homomorphism and some elements become invertible. For example, 1-x becomes invertible, since $1/(1-x) = \sum_{n\geq 0} x^n$. Not every element in K[[x]] is invertible, but one can invert the elements to get a new field K((x)): the set of sequences $K^{\mathbf{Z}}$ that are eventually zero when going to the left.

A zero-divisor is an element $r \in R$, $r \neq 0$ for which there exists $s \in R$ such that rs = 0. A ring is cancellative if rs = rs' implies that s = s'. Then we define an integral domain to be a unital, commutative, cancellative ring. Every integral domain embeds into a field, called the *field of fractions*. The construction is analogous to building the rational numbers from the integers.

Proposition Z. If R is a ring with unity, there exists a unique unital homomorphism $f: \mathbf{Z} \to R$. \blacksquare Proof. Since f(1) = 1, we have $f(n) = 1 + 1 + \dots + 1 \in R$. \blacksquare

The nonnegative integer n which generates ker f is called the *characteristic* of R. The image of f is called the *characteristic subring*. For example $\mathbf{Z}/n\mathbf{Z}$ has characteristic n.

Proposition P. The characteristic of an integral domain R is either 0 or a prime number.

An algebra over a commutative ring R is a ring A with a homomorphism $\eta: \mathbf{R} \to A$ whose image lies in the *centre* of A. Examples of algebras include rings of functions and matrices $M_n(R)$.

For a group G and a ring R, we can define the group ring G[R] as the set of all finitely supported functions from G to R. This forms a ring with addition (f+g)(s) = f(s) = g(s) and multiplication $(fg)(s) = \sum_{uv=s} f(u)g(u)$.

2. Ideals

Every element r in a unital ring R generates a *principal* ideal (r). More generally any subset $S \subseteq R$ does. The ideal (S) is the intersection of all ideals that contain S. If R is commutative, then (r) = rR = Rr. In \mathbb{Z} ,

the ideals are the of the form $(n) = n\mathbf{Z}$. Then $(n) \subseteq (m)$ if and only if $m \setminus n$ (this is true in any commutative ring). A ring R in which every ideal is principal is called a *principal ring* and if R is also an integral domain, we call it a *principal ideal domain* or PID.

Principal ideals determine their generators up to unit. If (r) = (s), then s = ar and r = bs together imply that both a and b are units. Elements r and s of a ring R are called associate if there exists a unit a such that r = as.

We can define three operations on ideals. Let $I, J \subseteq R$ be ideals.

- i) $I \cap J$ is an ideal.
- ii) $I + J = \{a + b : a \in I, b \in J\} = (I \cup J)$ is an ideal.
- iii) $IJ = \{ab : a \in I, b \in J\}$ is an ideal.

Lemma P. Let R be a commutative ring. Let I = (S) and J = (T) be two ideals. Then IJ = (ST).

In the ring of integers **Z**, we have (m)(n) = (mn), $(m) \cap (n) = (\operatorname{lcm}(m, n))$, and $(m) + (n) = (\operatorname{gcd}(m, n))$. When $I \subseteq J$ is an inclusion of ideals, one may think of it as a kind of divisibility $J \setminus I$. For example, $\operatorname{gcd}(m, n) \setminus \operatorname{lcm}(m, n) \setminus mn$.

Lemma D. If $I, J \subseteq R$ are ideals, then

$$IJ \subseteq I \cap J \subseteq I + J$$
.

The set of ideals forms a semiring where the two operations are I + J and IJ. The semiring in **Z** is **N** with the addition $m + n = \gcd(m, n)$ and ordinary multiplication.

For an ideal $I \subseteq R$, we define the radical of I to be the set

$$\sqrt{I} = \{ a \in R : a^n \in I \text{ for some } n \in \mathbf{N} \}.$$

This is an ideal and it has the property that $\sqrt{\sqrt{I}} = \sqrt{I}$. Furthermore, if $I \subseteq J$, then $\sqrt{I} \subseteq \sqrt{J}$.

An ideal $I \subseteq R$ is called maximal if it is proper and whenever $I \subseteq J \subseteq R$, then either J = I or J = R.

Lemma M. Let R be a unital ring. Then every proper ideal is included in a maximal ideal.

Proof. This is an application of Zorn's Lemma. Let I be a proper ideal and let X be the set of all proper ideals containing I, ordered by inclusion. Then this set is inductive (increasing union of ideals is an ideal) so there is a maximal element M.

Lemma F. Let R be unital and commutative. Then an ideal $I \subseteq R$ is maximal if and only if R/I is a field. *Proof.* This follows from the fourth isomorphism theorem.

Let R be a unital ring. An ideal I of R is *prime* if it is proper and for any ideals A, B of R, $AB \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$. The *spectrum* of R is the set of all prime ideals and it is denoted $\operatorname{Spec}(R)$. The *maximal spectrum* of R, denoted $\operatorname{Spec}_{\max}(R)$, is the set of all maximal ideals of R.

Maximal ideals are always prime (so $\operatorname{Spec}_{\max}(R) \subseteq \operatorname{Spec}(R)$), but not all prime ideals are maximal. For example, (0) is prime in **Z** but certainly not maximal. A ring is called *local* if it has a unique maximal ideal. A ring R is local if and only if $R \setminus R^{\times}$ is an ideal.

Lemma C. Let R be a unital commutative ring. Let $I \subseteq R$ be a proper ideal. Then I is prime if and only if $ab \in I$ implies that $a \in I$ or $b \in I$.

Lemma I. Let R be a unital commutative ring. Then $I \subseteq R$ is a prime ideal if and only if R/I is an integral domain. \blacksquare

Since all fields are integral domains, this proves that all maximal ideals are prime. We also have that a commutative ring R is an integral domain if and only if (0) is a prime ideal in R (if R is not commutative, then we say it is a *prime ring*). If R is a PID, then every nonzero prime ideal is maximal.

We can view elements in a commutative unital ring R as "functions" on the set $\operatorname{Spec}(R)$ of prime ideals. To $r \in R$ we identify a function f_r such that $f_r(P) = r \mod P \in R/P$. We have a bundle at every $P \in \operatorname{Spec}(R)$ and a fibre R/P which is an integral domain. The total space B(R) is the union of R/P over all prime ideals P. A section is a map $s : \operatorname{Spec}(R) \to B(R)$ such that $s(P) \in R/P$. $\Gamma(R)$ is the set of all sections and $\Gamma_{\max}(R)$ is its restriction to $\operatorname{Spec}_{\max}(R)$. Let $\pi : R \to \Gamma(R)$ map $r \mapsto f_r$ and $\pi_{\max} : R \to \Gamma_{\max}(R)$ take r to f_r , restricted to $\operatorname{Spec}_{\max}(R)$. We want to know when π and π_{\max} are faithful.

Proposition K. The kernel of π is the intersection of all prime ideals and the kernel of π_{max} is the intersection of all maximal ideals.

For a unital commutative ring R, we define the *nilradical* of R to be the intersection $Nil(R) = \bigcap P$ of all prime ideals P. The *Jacobean radical* is the intersection $Jac(R) = \bigcap M$ of all maximal ideals M. Since $Spec_{max}(R) \subseteq Spec(R)$, $Jac(R) \supseteq Nil(R)$. An element $r \neq 0$ in a ring R is called *nilpotent* if $r^n = 0$ for some n. It turns out that there is a connection between nilpotency and prime ideals.

Proposition N. Let R be unital and commutative. Then Nil(R) is the set of all nilpotent elements, i.e.

$$\sqrt{(0)} = \{r \in R : r^n = 0 \text{ for some } n \in \mathbf{N}\} = \bigcap_{P \in \operatorname{Spec}(R)} P.$$

Proof. To show that a nilpotent element r belongs to every prime ideal P, note that $r^n \in P$, so $r \cdot r^{n-1} \in P$ and we can iterate this until we get that $r \in P$. Conversely, if r is not nilpotent, we can let X be the set of ideals I such that r^n is not in I for any n. X is nonempty and inductive, so by Zorn's Lemma there is a maximal element and it can be shown that this ideal is prime.

Let R be a commutative ring and let $p \in R$ be a nonzero non-unit. Then p is said to be

- i) prime if $p \setminus ab$ implies that $p \setminus a$ or $p \setminus b$;
- ii) irreducible if p = ab implies a is a unit or b is a unit.

To find irreducible elements in a ring, may attempt the "bisection process". Let $r \in R$. If r is irreducible, we stop. If r is not irreducible, then $r = r_1 r_2$. If neither is irreducible, we continue by splitting r_1 and r_2 in the same way. This process may not terminate.

Proposition I. Let R be an integral domain. If an element $p \in R$ is prime, then it is irreducible.

Proof. Let $p \in R$ be a prime element. Assume that p = ab. This implies that $p \setminus a$ or $p \setminus b$. Say a = pc for some $c \in R$. Then p = ab = pcb and cb = 1. So b is a unit.

Note that the converse does not hold. For example, in the ring $\mathbf{Z}[\sqrt{-3}]$, we have $4 = (1+\sqrt{-3})(1-\sqrt{-3})$. The element 2 is irreducible, but it is not prime because 2 divides 4 but does not divide either of $(1+\sqrt{-3})$ and $(1-\sqrt{-3})$.

Proposition A. Let R be an integral domain. Let p be a nonzero element in R. Then p is prime if and only if (p) is prime and p is irreducible if and only if (p) is maximal among principal ideals.

This proposition implies that in a PID, irreducible elements are prime.

A ring R is a unique factorisation domain if every $r \in R$ can be expressed as a product $r = p_1 \cdots p_n$ of irreducible elements, which is unique up to the order of the p_i . The rings \mathbf{Z} , K[x], and K[x,y] are all examples of UFDs. Every PID is a UFD and in a UFD, all irreducible elements are prime.

Lemma S. In a PID, every chain of ideals stabilises.

Proof. $I = \bigcup_{n \geq 1} I_n$ is an ideal. Since R is a PID, I = (x) for some x and $x \in I_n$ for some n. This implies that $I = I_n$.

Lemma N. Let R be a unital ring. Then every increasing chain of ideals stabilises if and only if every ideal is finitely generated.

Proof. If $I=(x_1,x_2,\ldots)$ is not finitely generated, then $I_n=(x_1,\ldots,x_n)$ is an increasing chain of ideals that does not stabilise. Conversely, if every ideal is finitely generated, then let $I_1\subseteq I_2\subseteq \cdots$ be a chain of ideals and let $I=\bigcup_{n\geq 1}I_n$. There exist (x_1,\ldots,x_n) that generate I, so there exists a k such $x_i\in I_k$ for all i and we find that $I=I_k$.

A ring is called *Noetherian* if it the equivalent conditions from Lemma N hold.

For elements r and s of a ring, a greatest common divisor or gcd is an element d dividing both r and s such that if any d' divides both r and s, then d' divides d. An integral domain R is called a $B\acute{e}zout$ domain if (r) + (s) is principal for every $r, s \in R$ (of course, every PID is a Bézout domain) and it is called a GCD domain if any two $r, s \in R$ have a gcd. Every UFD is a GCD domain.

Lemma B. The following statements regarding Bézout domains are true.

- i) A ring R is Bézout if and only if every finitely generated ideal is principal.
- ii) A Bézout domain is a GCD.
- iii) If a ring is both Noetherian and a Bézout domain, then it is a PID.

3. Gaussian Integers

Recall from Section 1 that the Gaussian integers are the ring

$$\mathbf{Z}[i] = \{a + bi : a, b \in \mathbf{Z}\}.$$

We write N for the complex modulus, squared. So $N(z) = z\overline{z} = a^2 + b^2$. This is called the *norm* and it is a group homomorphism $\mathbf{C}^{\times} \to \mathbf{R}^{\times}$, since N(zz') = N(z)N(z'). N(z) = 0 implies that z = 0. The norm n takes $\mathbf{Z}[i]$ to \mathbf{N} . The kernel of N on \mathbf{C}^{\times} is the unit circle $\{z \in \mathbf{C} : |z| = 1\}$. Let ker N denote the kernel of N restricted to $\mathbf{Z}[i]$, i.e. $\{\pm 1, \pm i\}$. These are the units of $\mathbf{Z}[i]$.

The image of N is

$$Im(N) = \{n \in \mathbf{N} : n = a^2 + b^2 \text{ for some } a, b \in \mathbf{Z}\}.$$

This set is stable under product, since if n = N(z) and n' = N(z'), then nn' = N(zz'). Gauss was interested in studying the number of integer numbers less than a given n that can be expressed as a sum of two squares. We will return to this point later.

We say that a prime number *splits* if it is no longer prime in $\mathbf{Z}[i]$ and we say that it is *inert* otherwise.

Lemma S. Let p be a prime. Then p is a sum of two squares if and only if it splits in $\mathbf{Z}[i]$.

Proof. If $p = a^2 + b^2$ then p = (a + ib)(a - ib) and $N(a + ib)N(a - ib) = p^2$ implies that neither of these factors are units. So p is not prime in $\mathbf{Z}[i]$. Conversely, if $p = \alpha\beta$ in $\mathbf{Z}[i]$, then $N(\alpha) = N(\beta) = p$ means that p is the sum of two squares.

Lemma I. A prime p splits if and only if $p \equiv 1 \pmod{4}$.

Proof. If p splits, then by the previous lemma, $p=a^2+b^2$ and the sum of two squares is never 3 modulo 4. So if p is an odd prime it is congruent to 1 modulo 4. Conversely, assume that $p\equiv 1\pmod 4$. Then p=1+4n for some n and there exists $x\in \mathbb{Z}$ such that $x^2\equiv 1\pmod p$. (In fact, x=(2n)! works.) Then p divides $x^2+1=(x+i)(x-i)$. So p divides (x+1) or (x-i), so p divides i and is not inert.

All this talk of divisibility leads nicely into a discussion of Euclidean division. In **Z**, the goal of Euclidean division for integers a and b is to find a $q \in \mathbf{Z}$ such that a - bq is small, in some sense. The following proves a similar result in $\mathbf{Z}[i]$.

Proposition E. There is a Euclidean division in $\mathbf{Z}[i]$.

Proof. Let $a, b \in \mathbf{Z}[i]$, $b \neq 0$. We can divide them in \mathbf{C} to get z = a/b. Then there is a (not necessarily unique) $q \in \mathbf{Z}[i]$ that is of minimal distance to z. We have |z - q| < 1; in fact $|z - q| \leq \sqrt{2}/2 < 1$. So |a - bq| < |b|.

Let us now define this generally. An integral domain R is a Euclidean domain if there exists a function $N: R \to \mathbf{N}$ called the norm such that N(0) = 0 and for all $a, b \in R$, $b \neq 0$, either b divides a or there exists $q \in R$ such that N(a - bq) < N(b). Proposition E showed that Z[i] is a Euclidean domain with the complex norm, and other familiar examples include \mathbf{Z} with the absolute value function and K[x] with the degree of a polynomial as its norm. In general, the Euclidean division algorithm does not give a unique answer. Even in \mathbf{Z} , we can end up with q or -q as a quotient.

Proposition T. $\mathbf{Z}[\sqrt{-2}]$ is a Euclidean domain.

Proof. We repeat the same proof as for $\mathbb{Z}[i]$ except for the computation of |z-q|, which is now $\leq \sqrt{3}/2$.

Recall that $\mathbf{Z}[\sqrt{-3}]$ is not a Euclidean domain. It is not even a UFD, since $4 = 2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$. But $\mathbf{Z}[\sqrt{-3}] \subseteq \mathbf{Z}[\omega]$ and this is a Euclidean domain, with norm $N(a + b\omega) = a^2 - ab + b^2$. The units in $\mathbf{Z}[\omega]$ are the elements of norm 1: $\{\pm 1, \pm \omega, \pm \omega^2\}$ and we have unique factorisation up to units.

Proposition P. Every Euclidean domain is a PID (and consequently a UFD).

Proof. Let R be a Euclidean domain and $I \subseteq R$ an ideal. Let $b \neq 0$ be an element of I of minimal norm. If $a \in I$ then b divides a. Otherwise, there exists $q \in R$ such that N(a - bq) < N(b), contradicting the minimality of b's norm. So I is principal.

A corollary of this fact is that every ideal in $\mathbf{Z}[i]$ is principal.

4. Modules

For any set X, the set of symmetries $\operatorname{Sym}(X)$ is a group and an action of a group G on X is a group homomorphism $G \to \operatorname{Sym}(X)$. If X is a group, we can define the *ring of endomorphisms* $\operatorname{End}(X)$ as the set of group homomorphisms from X to X.

Lemma M. Let M be an abelian group. Then End(M) is a ring.

Proof. Addition is pointwise addition from M and multiplication is composition of maps.

Let R be a a unital commutative ring. A module M over R is a ring homomorphism $R \to \operatorname{End}(M)$. Explicitly, the list of axioms of a module are very similar to those of a vector space (in fact, if R is a field, then a module is a vector space). For $r, s \in R$ and $m, n \in M$, we have

- i) r(m+n) = rm + rn;
- ii) (r+s)m) = rm + sm;
- iii) (rs)m = r(sm);
- iv) 1m = m.

These axioms also work if R is not commutative; in this case, we call M a left R-module. The kernel of $R \to \operatorname{End}(M)$ is called the annihilator of M:

$$Ann(M) = \{r \in R : rm = 0 \text{ for all } m \in M\}$$

A module is said to be faithful if Ann(M) is trivial. If M is an R-module, then M is a faithful S-module where S = R/Ann(M).

Proposition I. Any ideal I in a ring R is a module over R.

Proof. For $a \in I$ and $r \in R$, we have $ra \in I$. The rest of the axioms follow.

Quotients R/I are also modules. When $R = \mathbf{Z}$, the action is determined by the group structure in M. For example,

$$2m = (1+1)m = 1m + 1m = m + m.$$

When R = K[x] for some field K, we have the following interesting lemma.

Lemma V. K[x]-modules are operators on vector spaces and vice versa.

Proof. Let M be a K[x]-module. The restriction of the K[x] action to K gives a K-module structure on M. This is a vector space. Furthermore, the indeterminate x also acts on M by taking $m \mapsto xm$. This gives a map $x: M \to M$ such that x(m+n) = x(m) and $x(rm) = (xr)m = (rx)m = r \cdot x(m)$. So x is a linear map.

Conversely, if V is a K-vector space, and $T:V\to V$ is a linear map, then V is a K[x]-module, because for any $p\in K[x]$, p(T) is a linear map on V.

Note that the module is not faithful, because K[x] has infinite dimension but $\operatorname{End}(V)$ has finite dimension when V has finite dimension. If G is a group, K[G] is the group ring and a K[G]-module is a linear representation of G.

A submodule M' of M is a subgroup that is stable under the action of the ring, i.e. for all $m, n \in M'$ and $r \in R$, $m + rn \in M'$. For example, ideals are submodules of R and if M is a submodule, we can define the quotient module M/M' with the action of R:

$$r(m+M') = rm + M'$$

If M and M' are modules, then $M \times M'$ is a module. If a module has no proper nontrivial submodules, then it is called simple.

An R-module map is a group homomorphism $f: M \to M'$ such that f(rm) = rf(m) for all $r \in R$ and $m \in M$. The kernel ker f is a submodule of M and the image of f is a submodule of M'. The isomorphism theorems for modules are exactly analogous to the ones given for rings in Section 1.

Lemma S (Schur's lemma). Let M be a simple module. Then $\operatorname{End}_R(M)$ is a skew field.

Proof. Let $f: M \to M'$ be a module map that is not identically zero. The kernel of f is a submodule of M, so since $f \neq 0$, ker $f = \{0\}$. Then the image of f is a submodule of M' since $f \neq 0$, Im f = M'. Hence f is an isomorphism.

If M is an R-module and $I \subseteq R$ is an ideal, then

$$IM = \left\{ \sum r_i m_i : r_i \in I, m_i \in M \right\} \subseteq M$$

is a submodule.

Theorem C (Chinese remainder theorem). Let I, J be ideals in a ring R. Let M be an R-module. Then the map

$$M \to M/IM \times M/JM$$

has kernel $IM \cap JM$.

If I+J=R then the map is surjective and $(I\cap J)M=IJM$. With n ideals such that $I_k+I_l=R$ for $k\neq l$, we have

$$M/(I_1\cdots I_n)M\cong M/I_1M\times\cdots\times M/I_nM.$$

Let M be an R-module. If $A \subseteq M$, then

$$(A) = \left\{ \sum r_i a_i : r_i \in R, a_i \in A \right\}$$

is the submodule of M generated by A. A module is finitely generated if it admits a finite generating set and cyclic (or singly generated) if it is generated by one element. If M=(a) is cyclic, then the map $R \to M$ that sends $r \mapsto ra$ is surjective with kernel Ann(M).

Lemma P. Let R be an integral domain. Then the nonzero principal ideals are isomorphic to R.

Proof. Let I=(a) be an ideal (so it is an R-module). If $r \in \text{Ann}(I)$ then r is a zero divisor. So $R \to I$ is an isomorphism.

A finitely generated R-module M is called *free* if it is isomorphic to R^n for some n. For example, if R is a field, every module (finite-dimensional vector space) is free. Equivalently, an R-module is free if there exists a basis, that is, a generating set A such that any $m \in M$ can be written in a unique way as a finite sum

$$m = \sum_{a \in A} r_a a.$$

The set A is called a free generating set and the cardinality of A is called the rank of M.

In a PID, every ideal is a free module (isomorphic to the ring itself). For any set A and ring R, we can let F_A be the set of all functions from A to R with finite support. This is a group under pointwise addition and r acts on F_A : $(rf)(a) = r \cdot f(a)$. A basis for F_A is the set $(\delta_a)_{a \in A}$ of delta functions, where $\delta_a(b) = 1$ if b = a and 0 otherwise.

Proposition U (Universal property of free modules). Let ϕ be a map from a set A to an R-module M. Then there is a unique extension of ϕ to a module map $\overline{\phi}: F_A \to M$.

Proof. Take any element $f \in F_A$ and express it as

$$f = \sum_{a \in A} r_a \delta_a$$

for some $r_a \in R$. Then let $\overline{\phi}$ be given by

$$\overline{\phi}(f) = \sum_{a \in A} r_a \phi(a). \quad \blacksquare$$

Proposition S. Let $N \hookrightarrow M \twoheadrightarrow F$ be a short exact sequence of modules (so $F \cong N/M$), where F is a free module. Then the sequence splits, i.e. $M \cong N \oplus F$.

Proof. We need to construct the section s of $\pi: M \to F$. Let A be a basis of F. Since π is surjective, for any $a \in A$ we can find $m_a \in M$ such that $\pi(m_a) = m$. This gives a map $s_*: A \to M$ and by the universal property there is a unique extension $s: F_A \to M$. We have $\pi \circ s = \operatorname{Id}$ on the basis and therefore everywhere on F. So s is a section of π . Let $F' = \operatorname{Im}(s) \subseteq M$. So $F' \cong F$ as R-modules. We claim that $M = N \oplus F'$ (viewing N as a submodule of M).

Firstly, $N \cap F' = \{0\}$, since if $m \in N \cap F'$, then $\pi(m) = 0$ and there exists $f \in F$ such that s(f) = m. But this implies that $f = \pi(s(f)) = \pi(m) = 0$, so m = 0. And M = N + F' because any $m \in M$ can be expressed as the sum of $(m - s \circ \pi(m)) + s \circ \pi(m)$.

The following theorem shows that the rank of a free module is well-defined.

Theorem R. If $R^n \cong R^m$ as R-modules, then n = m.

Proof. Since R is unital and commutative, it contains a maximal ideal M. Let K = R/M and consider the submodule $MR^n = \{s(x_1, \dots, x_n) \in R^n : s \in M, x_i \in R\}$. The quotient module is $K^n = (R/M)^n$ and a module isomorphism $R^n \cong R^m$ descends to a R-module isomorphism $K^n \cong K^m$. This map has kernel M and is a K-vector space isomorphism. So the dimension of the two vector spaces are the same and thus n = m.

Let M be a module over an integral domain R. The set of torsion elements

$$Tor(M) = \{ m \in M : rm = 0 \text{ for some } r \neq 0 \}$$

is a submodule of M. A module is called *torsion* if Tor(M) = M and *torsion-free* if $Tor(M) = \{0\}$. Note that R^n is torsion-free, since it has a basis $\{e_n\}$ and if $am = ra_1e_1 + \cdots + ra_ne_n = 0$, then $ra_i = 0$ for all i and m = 0.

Proposition T. For any module M over an integral domain R, M/Tor(M) is torsion-free.

Proof. Let $N = M/\operatorname{Tor}(M)$ and let $\overline{m} \in N$. Suppose there exists $r \neq 0$ such that $r\overline{m} = 0$. So $\overline{rm} = 0$ and $rm \in \operatorname{Tor}(M)$. Thus there exists $s \neq 0$ such that $(rs)\overline{m} = 0$. But $\overline{rs} \neq 0$ so m must be 0. Hence $\operatorname{Tor}(N) = \{0\}$.

Lemma G. A module M over an integral domain R is torsion if and only if it is generated by torsion elements.

Proof. The forward direction is clear. Conversely, suppose M=(A) and every element in A is torsion. Let $m=s_1a_1+\cdots+s_na_n\in M$ for some $s_i\in R$ and $a_i\in A$. Each a_i is a torsion element so there is r_i such that $r_ia_i=0$. Let $r=r_1\cdots r_n$. Then rm=0.

Proposition F. Let M be a finitely generated module over an integral domain R. There exists a free module $F \subseteq M$ such that M/F is torsion.

Proof. Let M = (A) where A is finite. Let $B \subseteq A$ be a maximal basis which generates a free module F of rank n = |B|. Let N be the quotient M/F. For every $a \in A \setminus B$, the module $(B \cup \{a\})$ is not free. So there exists $r \in R$, $r_b \in R$, not all zero, such that

$$ra + \sum_{b \in B} r_b b = 0.$$

Note that $r \neq 0$, otherwise B would not be a basis. But $ra = 0 \mod F$, so N is generated by torsion elements and by the previous lemma, N is torsion.

5. Modules Over PIDs

An R-module has properties very much like a vector space when R is a PID.

Proposition F. Let R be a PID. Then every submodule of a free module R^n is free of rank $k \leq n$.

Proof. We proceed by induction. When n=1, every ideal $I\subseteq R$ is free, isomorphic to R. Now assume the proposition is true for R^n . Let M be a submodule of R^{n+1} . Let $\pi:R^{n+1} \to R^n$ be the projection map on to the first n coordinates. So we have a short exact sequence

$$\ker(\pi_{|M}) \hookrightarrow M \twoheadrightarrow \pi(M).$$

But $\pi(M)$ is a submodule of R^n so, by the induction hypothesis, it is free and the sequence splits. Thus $M \cong \ker(\pi_{|M}) \oplus \pi(M)$ is free.

A module M over a unital ring R is called a *Noetherian module* if every submodule is finitely generated.

Propostion N. Let M be a left R-module. The following are equivalent:

- i) M is Noetherian.
- ii) M satisfies the ascending chain condition on left modules.
- iii) If \mathfrak{F} is a nonempty family of submodules, there exists a maximal element in \mathfrak{F} with respect to inclusion.

Proof. To show that (i) implies (ii), we let $N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$ be an increasing sequence of modules. We need to know there is an upper bound. Let $N = \bigcup_{i \ge 1} N_i$. Since N is finitely generated, there will be a first index i such that all the generators of N belong to N_i . Thus $N = N_i$ for some i.

We show that (ii) implies (iii) by contraposition. If (iii) fails, then there exists a family \mathfrak{F} of submodules for which there is no maximal element. Pick $N_1 \in \mathfrak{F}$. We can find N_2 such that N_1 is properly contained in N_2 . Continuing in this way, we are left with an increasing chain that does not stabilise.

Lastly, assume that (i) does not hold; i.e. there is a submodule N that is not finitely generated. Let $\{n_1, n_2, \ldots\}$ be an infinite countable subset of N such that, for every k, $N_k = (n_1, \ldots, n_k)$ is properly contained in $N_{k+1} = (n_1, \ldots, n_{k+1})$. Now $\mathfrak{F} = \{N_k\}$ is a family of submodules without a maximal element, so (iii) fails.

Proposition S. Let $N \hookrightarrow P \twoheadrightarrow Q$ be an exact sequence of modules. Then N and Q are Noetherian if and only if P is Noetherian.

Proof. Clearly N is Noetherian if P is. To show that Q is Noetherian, let $M \subseteq Q$ be a submodule. Then, by the fourth isomorphism theorem, M is the image of a submodule M' of P. Since M' is finitely generated, M is as well.

Conversely, assume that N and Q are Noetherian and let $M \subseteq P$ be a submodule. Let $\pi: P \twoheadrightarrow Q$ be the quotient map and consider the exact sequence $\ker(\pi_{|M}) \hookrightarrow M \twoheadrightarrow \pi(M)$. Let X be a finite generating set for $\ker(\pi_{|M})$ and Y be a finite set in M such that $\overline{Y} = \pi(Y)$ is a finite generating set of $\pi(M)$. Then for any $m \in M$, then there exist some r_x and r_y in R such that

$$m = \sum_{x \in X} r_x x + \sum_{y \in Y} r_y y$$

and $X \cup Y$ generates M.

Theorem R. The following are equivalent:

- i) R is a Noetherian ring.
- ii) The free module \mathbb{R}^n is Noetherian for every n.
- iii) Every finitely generated R-module is Noetherian.

A corollary of Theorem R is that every finitely generated module over a PID is Noetherian. For example, $R = K[x_1, \ldots, x_n]$ is Noetherian.

Lemma N. If R is a PID and M a torsion-free R-module, then M is free.

Proof. In general, we showed that there exists F free such that $F \hookrightarrow M \twoheadrightarrow T$, where T is torsion. Since M is Noetherian, we can choose a maximal F satisfying this property. We claim that M = F. Let $\pi : M \twoheadrightarrow T$ denote the quotient map and let $m \in M$. Since $\pi(m) \in T$ is a torsion element, there exists $r \in R$ such that $r\pi(m) = 0$. So $rm \in \ker \pi$ and $rm \in F$. Let $f_r : M \to M$ be the map that sends $m \mapsto rm$. This map is injective because M is torsion-free. Since $f_r(F) \subseteq F$ and $f_r(M) \subseteq F$, so the submodule $f_r(F, M)$ is contained in F. By Proposition F, $f_r(F, M)$ is free, so M is free.

Theorem T. Let M be a finitely generated module over a PID R. Then $M \cong R^n \oplus \text{Tor}(M)$.

Proof. Consider the exact sequence $Tor(M) \hookrightarrow M \twoheadrightarrow N$ where N is torsion-free. Since R is a PID, N is free and the sequence splits, giving us the desired direct sum decomposition.

The integer n given by Theorem T is called the *free rank* of a module. If two modules M and N are isomorphic, then their free ranks are equal and $\text{Tor}(M) \cong \text{Tor}(N)$. The following theorem is called the structure theorem for finitely generated modules over a PID.

Theorem S. Let R be a PID and let $F \cong R^n$ be a finitely generated free module. Let M be a finitely generated submodule of F. Then there exists a basis (e_1, \ldots, e_n) of F and elements $r_1, \ldots, r_m \in R$ such that (r_1e_1, \ldots, r_me_m) forms a basis of M:

$$F/M \cong R^{n-m} \oplus R/(r_1) \oplus \cdots \oplus R/(r_m)$$

The elements r_i are unique up to multiplication by a unit if we assume that r_i divides r_{i+1} .

The elements r_i in Theorem S are called the *invariant factors* of the module.

6. Fields and Polynomials

Because the kernel of a homomorphism is an ideal, then any nontrivial homomorphism $f: K \to R$ is injective when K is a field. If R = L is a field, then $K \subseteq L$ is a subfield and we call L an extension of K. We will often denote this by L/K. If L/K is a field extension then L is a vector space over K and the dimension $[L:k] = \dim_K L$ is called the degree of the extension. Every there is a basis (α_i) of L such that any element $l \in L$ can be expressed as $\lambda_1 \alpha_1 + \cdots + \lambda_n \alpha_n$ where $\lambda_i \in K$. If $K \subseteq L \subseteq M$ is a chain of extensions and (β_j) is a basis of M over L, then it can shown that $(\alpha_i \beta_j)$ is a basis of M over K. So [M:K] = [M:L][L:K].

A field is *prime* if it contains no proper nontrivial subfields. Any field K is an extension of a prime field that contains 1, 1 + 1, etc. as well as their inverses. If the characteristic of K is 0, then the prime field is \mathbb{Q} , and if the characteristic is a prime p, then the prime field is \mathbb{F}_p .

Lemma F. Let K be a field of characteristic p. The Frobenius map $x \mapsto x^p$ is a field homomorphism (so it is injective).

Proof. For any $x, y \in K$, we have $(x+y)^p = x^p + y^p$ (by the binomial theorem) and $(xy)^p = x^p y^p$.

Let L/K be an extension and $S \subseteq L$ be a set. Then K(S) is the subfield of L generated by S. The extension field is finitely generated if S is finite. If S consists of a single element α , then $L = K(\alpha)$ is called a *simple* extension and α is a *primitive element*. For $\alpha_1, \ldots, \alpha_n$, the extensions $K(\alpha_1, \ldots, \alpha_n)$ and $K(\alpha_1) \cdots (\alpha_n)$ are the same and the order in which the elements are adjoined does not matter.

If K is a field then K[x] is a PID. So for any irreducible polynomial $f \in K[x]$, (f) is maximal and L = K[x]/(f) is a field extension. This is called the Kronecker construction.

Lemma R. Every $f \in K[x]$ admits a root in a finite-degree extension.

Proof. We may assume that f is irreducible. It is of finite degree so L = K[x]/(f) is a finite degree extension and if $\alpha = x \mod f$, then $f(\alpha) = 0$ in L.

Kronecker's construction is universal in the following sense. Let L/K be an arbitrary extension and let $\alpha \in L$. Consider the map $\text{Ev}_{\alpha} : K[\alpha] \to L$ that takes a polynomial f to $f(\alpha)$. Since K[x] is a PID, the $\text{ker}(\text{Ev}_{\alpha})$ is principal and equals (f_{α}) for some polynomial $f_{\alpha} \in K[x]$. Because L is an integral domain, one

of two things may happen. The first is that f_{α} is an irreducible polynomial, in which case we say that α is algebraic. The second is that the kernel is trivial and in this case we call α transcendental.

When α is algebraic, the unique monic irreducible polynomial f_{α} such that $f_{\alpha}(\alpha) = 0$ is called the minimal polynomial of α and $K(\alpha) \subseteq L$ is obtained by the Kronecker construction

$$K(\alpha) \cong K[x]/(f_{\alpha}).$$

If α is transcendental, $\text{Ev}_{\alpha}: K[x] \hookrightarrow L$ is injective and it extends to the fraction field $K(x) \hookrightarrow L$ by taking $f/g \mapsto f(\alpha)/g(\alpha)$ (since $g(\alpha) \neq 0$ whenever $g \neq 0$). Liouville established the existence of transcendental numbers in 1844 by proving that

$$L = \sum_{n > 0} \frac{1}{10^{n!}}$$

is transcendental. We have $\mathbf{Q}(L) \cong \mathbf{Q}(x) \subseteq \mathbf{R}$. Other famous transcendental numbers are π and e.

An extension L/K is algebraic if every $\alpha \in L$ is algebraic over K and the following lemma proves some properties of algebraic extensions.

Lemma A. Assume that an extension L is generated by $\alpha_1, \ldots, \alpha_n$ over K. The following are equivalent:

- i) The elements $\alpha_1, \ldots, \alpha_n$ are algebraic over K.
- ii) The degree [L:K] is finite.
- iii) Every $\alpha \in L$ is algebraic over K.

Proof. Suppose (i) holds. We have

$$K \subseteq K(\alpha_1) \subseteq K(\alpha_1, \alpha_2) \subseteq \cdots \subseteq L$$

and since each α_i is algebraic over K, it is algebraic over $K(\alpha_1, \ldots, \alpha_{i-1})$, whence

$$[K(\alpha_1,\ldots,\alpha_i):K(\alpha,\ldots,\alpha_{i-1})]<\infty.$$

By the multiplicativity of the degree, $[L:K] \leq \infty$.

Suppose (iii) fails, i.e. some $\alpha \in L$ is not algebraic. Then $K(x) \cong K(\alpha) \hookrightarrow L$ is an injection into L, contradicting the fact that $[K(x):K] < \infty$. Thus (ii) implies (iii).

That (iii) implies (i) is obvious, so we are done.

To construct extensions of a field, we need to find irreducible polynomials. Over \mathbf{Q} , we can consider $x^n - p$ where p is a prime. Then $\mathbf{Q}(\sqrt[n]{p})$ is an extension of degree n over Q. A general check for irreducibility is given by the following criterion.

Theorem E (Eisenstein's criterion). Let R be an integral domain and let $f \in R[x]$ be a monic polynomial of degree n. If there exists a prime ideal \mathfrak{p} such that $f = x^n \mod \mathfrak{p}$ and $f(0) \notin \mathfrak{p}^2$, then f is irreducible.

Proof. Suppose, towards a contradiction, that f = ab is reducible. Then, we have $x^n = \overline{ab}$, where the bar indicates the polynomials modulo \mathfrak{p} . In particular, \overline{ab} has zero constant term. The ideal \mathfrak{p} is prime, so R/\mathfrak{p} is an integral domain, so both \overline{a} and \overline{b} have zero constant term modulo \mathfrak{p} , meaning that the constant terms of a and b both belong to \mathfrak{p} . This is a contradiction, since it is clear that the constant term of f belongs to \mathfrak{p}^2 .

We can use Eisenstein's criterion to show that cyclotomic polynomials of the form

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$$

for p prime are irreducible. The criterion does not immediately apply, but if we consider

$$\Phi_p(x+1) = x^{p-1} + px^{p-2} + \frac{p(p-1)}{2}x + p,$$

we find that Eisenstein's criterion applies, so $\Phi_p(x+1)$ is irreducible and this implies that $\Phi_p(x)$ is irreducible, since any factorisation for $\Phi_p(x)$ would give a factorisation for $\Phi_p(x+1)$ (replacing x with x+1).

There are other many other criteria for reducibility/irreducibility; we give two more famous ones.

Theorem C (Cohn's criterion). Suppose that p is prime and in some base b,

$$p = a_n b^n + \dots + a_1 b + a_0.$$

Then $f = a_n x^n + \cdots + a_1 x + a_0$ in $\mathbf{Z}[x]$.

Lemma G (Gauss' lemma). Let R be a UFD with fraction field K and let $f \in R[x]$ be a polynomial of degree n such that $gcd(a_n, \ldots, a_0) = 1$. If f is reducible in K[x], then f is reducible in R[x].

Gauss' lemma is often applied with $R = \mathbf{Z}$ and $K = \mathbf{Q}$.

7. Splitting Fields

We begin with a lemma regarding the interchangeability of the roots of a polynomial.

Lemma I. Let $f \in K[x]$ be a monic, irreducible polynomial and let L/K be an extension of the field K. If α, β are two roots of f in L, then there is a field isomorphism $K(\alpha) \cong K(\beta)$.

Proof. This follows from the universality of the Kronecker construction: $K(\alpha) \cong K[x]/(f) \cong K(\beta)$.

More generally, any field isomorphism $\phi: K \to L$ extends uniquely to a ring isomorphism $\overline{\phi}: K[x] \to L[x]$ defined by applying ϕ on the coefficients. Then $f \in K[x]$ is irreducible if and only if $\overline{\phi}(f)$ is irreducible. Let α be an arbitrary root of an irreducible polynomial $f \in K[x]$ and let β be an arbitrary root of $\overline{\phi}(f)$. Then there exists a unique field isomorphism $\phi^*: K(\alpha) \to L(\beta)$ that takes α to β and whose restriction to K is ϕ . A corollary of this fact is that if $f \in K[x]$ is irreducible, then all roots of f have the same multiplicity in an algebraic closure (this will be expanded on later).

A splitting field for a polynomial $f \in K[x]$ is an extension L/K such that

$$f = \prod_{i=1}^{n} (x - \alpha_i)$$

for $\alpha_i \in L$ and $L = K(\alpha_1, \dots, \alpha_n)$.

Proposition S. Every polynomial $f \in K[x]$ of degree n admits a splitting field of degree at most n!.

Proof. Let α_1 be an abstract root of f in $K(\alpha_1)$ obtained by the Kronecker construction. Then $f = (x - \alpha_1)f_1$ for some $f_1 \in K(\alpha_1)$. Let α_2 be a root of an irreducible factor of f_1 and extend the field to $K(\alpha_1, \alpha_2)$. This process happens at most n times, by which time we will have found a splitting field L of f. We have

$$K \subseteq K(\alpha_1) \subseteq K(\alpha_1, \alpha_2) \subseteq \cdots \subseteq L$$

and the degree of each f_i is n-i. So by multiplicity of the degrees we have $[L:K] \leq n!$.

For example, the polynomial $f=x^4-1$ has roots $\pm 1, \pm i$. When $K=\mathbf{Q}$, the abstract bound for the degree of the splitting field is 4!=24, but in fact $\mathbf{Q}(i)$ is a splitting field for f, of degree 2. More generally, when $f=x^n-1$, the roots are the nth roots of unity $1,\omega,\ldots,\omega^{n-1}\in\mathbf{C}$, where $\omega=e^{2ki\pi/n}$ for $i=0,\ldots,n-1$. The roots form a group isomorphic to $\mathbf{Z}/n\mathbf{Z}=\langle\omega\rangle$ and $K(\omega)$ is the splitting field of x^n-1 , since if one root is added, all of its powers come along for the ride. If n is prime, then the degree of this splitting field is n-1; in general, the degree is equal to $\varphi(n)$ where φ denotes Euler's totient function.

The following theorem shows that splitting fields are unique up to K-isomorphism.

Theorem K (Kronecker, 1887). Let $f \in K[x]$ be an irreducible polynomial. Let α and α' be two roots of f in two splitting fields L/K and L'/K respectively. Assume the existence of a map $\theta_0 \in \operatorname{Aut}(K)$ that fixes coefficients of f. Then there exists an isomorphism $\theta: L \to L'$ such that $\theta_{|K} = \theta_0$ and $\theta(\alpha) = \alpha'$.