

Healthcare system Design

Hossam Elwahsh hossam.e.elwahsh@gmail.com

CONTENTS

System Analysis	2
Requirements	2
Tasks Layout	
Calculations	
System Tick	3
Hyperperiod	
CPU Load	
Notes:	
SimSo Model	
SimSo Results	

System Analysis

Requirements

Required to design a healthcare system using RTOS, consisting of a touch LCD connected with UART, Blood pressure sensor, heart beat detector, temperature sensor and an alert siren.

Tasks Layout

Task	Display	Comm	Heartbeat	BPS	Temper.	Siren
Туре	Periodic	Periodic	Periodic	Periodic	Periodic	Sporadic (critical)
Periodicity (ms)	100	25	50	10	5	on evt.
Execution (ms)	1	2	1.5	3	2.5	1
Deadline (ms)	100	25	50	10	5	5
Priority (red: highest)	1	2	3	4	5	6

Calculations

System Tick

Rule: Systick > total tasks execution time

Total tasks (e) time =
$$1 + 2 + 1.5 + 3 + 2.5 + 1 = 11$$
 ms
∴ Systick = 12 ms

Hyperperiod

$$Hyperperiod = LCM(Pi) = LCM(5, 10, 25, 50, 100) = 100ms$$

CPU Load

$$\begin{aligned} \textit{CPU Load} &= \frac{\textit{Req}}{\textit{Capacity}} = \frac{\sum (e_i) \textit{ per period}}{\textit{Hyperperiod}} \\ &= \frac{1 + (2*4) + (1.5*2) + (3*10) + (2.5*20) + (1n_{\textit{siren}})}{100} \end{aligned}$$

$$= 92\% (+1n\%)_{siren\ task}$$

Notes:

The assistance of the SimSo model is necessary for predicting system schedulability, given the periodicity of the temperature sensor task (5ms) and its execution time (2.5ms). Manual handling of this task would overcrowd the timeline and complicate visualization. However, excluding this particular task, it becomes evident that the system is schedulable. By employing appropriate prioritization decisions, the system can effectively accommodate the temperature sensor task without compromising the deadlines of other tasks.

SimSo Model

SimSo Results

CPU Load

Response Time / deadlines assurance

Task	min	avg	max	std dev
Siren				
Temperature	2.500	2.500	2.500	0.000
BPS	8.000	8.000	8.000	0.000
Heartbeat	9.500	9.500	9.500	0.000
Comm	5.000	12.250	19.500	7.250
Display	38.500	38.500	38.500	0.000