UPAAA. 2025

Trigonometry

Mathematics

Lecture - 04

By - Ritik Sir

ODICS to be covered

Homework Discussion

Trigonometric Identities

(Part-1)

#Q. If A and B are acute angles such that
$$\tan A = \frac{1}{2}$$

$$tan(A + B) = \frac{tanA + tanB}{1 - tanAtanB}$$
, find A + B.

an A =
$$\frac{1}{2}$$
, tan B = $\frac{1}{3}$ and

#Q. If
$$\tan^2 45^\circ - \cos^2 30^\circ = x \sin 45^\circ \cos 45^\circ$$
, then $x =$

$$\frac{u \cdot 3}{q} = \frac{x}{2}$$

$$\frac{1}{2} = \frac{x}{2}$$

#Q. If $\sqrt{3} \tan \theta = 1$, then find the value of $\sin^2 \theta - \cos^2 \theta$.

$$B=33x$$

$$= \frac{1}{4} - \frac{3}{4}$$

$$= \frac{1}{4} - \frac{3}{4}$$

Topic: T Rations for some specific angles S2152 52152 #Q. If $\sin \theta - \cos \theta = 0$, then the value of $(\sin^4 \theta + \cos^4 \theta)$ is

$$\frac{\text{Siho}}{\text{coso}} = 1$$

#Q. In a $\triangle ABC$, if $\angle B = 90^{\circ}$, BC = 5 cm, AC – AB = 1 cm. Then the value of $\frac{1 + \sin C}{1 + \cos C}$ is

- $\frac{18}{25}$
- $\frac{36}{31}$
- $\frac{c}{18}$

$$Cosc = B = BC$$

H = AC

$$(1+x)^2 = (x)^2 + (s)^2$$

XID

#Q. In an acute angled triangle ABC, if sin(A + B - C) = 1/2 and

 $cos(B + C - A) = \frac{1}{\sqrt{2}}$. Then measure of angle B is

- Sin(A+B-c)=1 COS(B+C-A)=1

- - 45°
- 75°
- 62.5°

- Sin (A+B-C) = Sin30 On comp'

 A+B-C=30
 - COS (B+C-A) = COSUS On comp

3/3/0/29/1

Q
$$AC=9$$
Sings= AB
AC=9
AC=9

#Q. In figure, lengths of sides BC and AB are respectively

- 12 cm, $3\sqrt{3}$ cm
- Sinso=

COSSO=

 $3 \text{ cm}, 3\sqrt{3} \text{ cm}$

 $12 \text{ cm}, 6\sqrt{3} \text{ cm}$

 $18 \text{ cm}, 9\sqrt{3} \text{ cm}$

- sing=

#Q. In figure, the value of DE is

- $\sqrt{4}$ 5 $\sqrt{2}$ units
- B 10 units
- \bigcirc $10\sqrt{2}$ units
- \bigcirc 15 $\sqrt{2}$ units

Topic: Trigonometric ratios of some specific angles

	T. ratios	0°	30°	45°	60°	90°
05050	Sin θ	0	7	7	J3 ≥	1
	cos θ	1	23	25 7	7	0
	tanθ	0	73	1	J3	n.d.
	cosec θ					
	sec θ					
	cot θ					

[Board Term -I, 2015]

- (i) The value of $\sin \theta$ increases from 0 to 1 and $\cos 0$ decreases from 1 to 0, when $0 \le \theta \le 90^{\circ}$.
- (ii) Division by 0 is not allowed, hence 1/0 is an indeterminate (not defined) value.
- (iii) In the case of tan θ , the value increases from 0 to ∞ , where $0 < \theta \le 90^{\circ}$.
- (vi) In the case of cot θ , the values decreases from ∞ to 0, where $0 \le \theta \le 90^{\circ}$.
- (v) IN the case of cosec θ , the values decreases from ∞ to 1, where $0 \le \theta \le 90^{\circ}$.
- (vi) In the case of sec θ , the values increases from 1 to ∞ , where $0 \le \theta \le 90^{\circ}$.

Realporcal Publish.

Quotiont .

COND = COKO

Poof:

Topic: Trigonometric Identities

#Q. Express the ratios cos A, tan A and sec A in terms of sin A.

$$CosA = 1 - sinA$$

> cosA -> sinA

Topic: Trigonometric Identities

#Q. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Sech

CosiA -> sinA -> coseeA-> costA

Section Jona -> cotta

Lan A CottA.

Jana Costa Jana Sera

Topic: Trigonometric Identities

#Q. Write all the other trigonometric ratios of $\angle A$ in terms of sec A.

Coff) Suf

CotA CoseA

Seio = 1+Jano

(D) stand -> (Osco

(b) coto > suo

(y) Cosus (v)

DPP abhinahi banegi...

Wait Raxo---

Aage aana Vali clossess hi--.

