Основы комбинаторики и теории чисел

Сергей Григорян

3 октября 2024 г.

Содержание

1		ция 4 Бинарные отношения	,
2	Лек	ция 5	,
	2.1	Отношения эквивалентности (\sim)	-
	2.2	Отношение порядка (<)	(

1 Лекция 4

Обозначение. $\{0,1\}^{\mathbb{N}}$ - это

- 1) Мн-во подмножеств $A \subset \mathbb{N}$
- 2) Мн-во ф-ций $f: \mathbb{N} \to \{0,1\}$
- 3) Mh-bo $A \leftrightarrow f_A \colon N \to \{\,0,1\,\}$

$$f_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$$

Замечание. Бесконечная двоичная дробь:

$$\underline{a_1 a_2 \dots a_n} 01111 \dots = \underline{a_1 a_2 \dots a_n} 10000 \dots$$

Задача 1.1. Показать:

$$[0,1] \cong \{0,1\}^{\mathbb{N}} \setminus \{\text{посл-ти } c \ 1 \text{ в периоде} \}$$

Доказательство. Конструктивно: Picture

Теорема 1.1. A - беск., B - сч. $\Rightarrow A \cup B \cong A$

Следствие.

$$[0,1] \cong \{0,1\}^{\mathbb{N}}$$

Лемма 1.2. В любом бесконечном мн-ве есть счётное подмн-во

Доказательство. A - беск. мн-во

$$a_0 \in A, a_1 \in A \setminus \{a_0\}, \dots$$

 $a_{n+1}\in A\backslash$ { a_0,a_1,\ldots,a_n } A - беск., сл-но на каждом шаге возможен выбор нового эл-та

Теперь докажем теорему:

Доказательство. A - беск. $\Rightarrow C \subset A, C$ - счётно

$$\begin{cases} C \cong \mathbb{N} \\ B \cong \mathbb{N} \end{cases} \Rightarrow C \cup B \cong \mathbb{N} \cong C$$

$$A \cup B = (A \backslash C) \cup C \cup B \cong (A \backslash C) \cup C \cong A$$

Теорема 1.3 (Кантора). [0,1] - несчётен (или: $\{0,1\}^{\mathbb{N}}$ несчётно)

Доказательство. Пусть { 0, 1 } $^{\mathbb{N}}$ - счётно, тогда α_i - i-ая бинарная последовательность:

$$\begin{array}{c|cccc} \alpha_0 & \underline{00000} \dots \\ \alpha_1 & \underline{11}111 \dots \\ \alpha_2 & \underline{010}11 \dots \\ \vdots & \vdots & \vdots \\ \end{array}$$

Воспользуемся диагональным методом Кантора:. Возьмём диагональную п-ть:

$$d_i = \alpha_i^i, d = 010...$$

 $d_i' = 1 - \alpha_i^i, d' = 101...$

Если $d'=\alpha_k^k$, то $d_k^k=d_k^{k\prime}=1-\alpha_k^k$, что невозможно \Rightarrow противоречие. \square

Теорема 1.4 (Общая теорема Кантора). $\forall A:\,A \ensuremath{\,{\approx}\,} 2^A$

Доказательство. Пусть $\phi:A o 2^A$ - биекция

 $\phi(x)$ - подмн-во A

Корректен ли вопрос о том, что $x \in \phi(x)$?

Pacm. $M = \{ x \mid x \notin \phi(x) \}$

Т. к. ϕ - биекция \Rightarrow сущ. $m=\phi^{-1}(M)$. Т. е. $\phi(m)=M$

Рассм. 2 случая:

1) $m \in M \Rightarrow m \in \phi(m) \Rightarrow x \notin \phi(x) - \text{ложно при } x = m \Rightarrow m \notin M$

2)
$$m\not\in M\Rightarrow m\not\in\phi(m)\Rightarrow x\not\in\phi(x)\text{ - истино, при }x=m\Rightarrow m\in M$$

Получаем противоречие.

Определение 1.1. \boldsymbol{A} континуально, если $\boldsymbol{A}\cong \{\ 0,1\ \}^{\mathbb{N}}$

Теорема 1.5. A - континуально $\Rightarrow A^2$ - континуально

Пример.

$$[0,1] \cong [0,1]^2$$

Следствие.

$$(\{\,0,1\,\}^\mathbb{N})^2=\{\,0,1\,\}^\mathbb{N}$$
 $(\alpha,\beta)\leftrightarrow\gamma=\alpha_0\beta_0\alpha_1\beta_1\alpha_2\beta_2\ldots$ $[0,1]\cong\mathbb{R}\Rightarrow\mathbb{R}$ - континуально

По индукции:

$$\mathbb{R}^k \cong \mathbb{R}$$

Верно и $\mathbb{R}^{\mathbb{N}} \cong \mathbb{R}$

Доказательство. Док-во конструктивно ИЛИ:

$$\mathbb{R}^{\mathbb{N}} \cong (\mathbb{R}^{\mathbb{N}})^{\mathbb{N}} \cong 2^{\mathbb{N} \times \mathbb{N}} \cong \mathbb{R}$$

1.1 Бинарные отношения

Определение 1.2. Отношение - любое $R \in A \times A$

Обозначение. Отношение R между a и b:

- 1) (a, b) = R
- 2) R(a, b)
- 3) aRb

Различные виды отношений:

1) Рефлексивные: $\forall a: aRa$

Пример. =,
$$\leq$$
, \subset , \cong , \sqsubset

- 2) Антирефлексивные: $\forall a: \neg (aRa)$ Пример. $<, \in, ||$
- 3) Симметричные: $\forall a, \forall b (aRb \rightarrow bRa)$ Пример. \cong , $||,=,\equiv_k$
- 4) Антисимметричные: $\forall a, \forall b ((aRb \land bRa) \rightarrow a = b)$ Пример. $\leq, <, >, \sqsubset, \sqsubset, \subset$
- 5) Транзитивность:

$$\forall a, b, c((aRb \land bRc) \rightarrow aRc)$$

Пример. $=, \cong, \equiv_k, \leq, \subset, \sqsubset$

6) Антитранзитивность:

$$\forall a, b, c((aRb \land bRc) \rightarrow \neg (aRc))$$

 $|a - b| = 1 \text{ (Ha } \mathbb{R})$

7) Полнота: $\forall a, b(aRb \lor bRa)$ Пример. \leq, \cong (теор. Цермело)

Наборы св-в:

1) Отнош. эквивалентности: рефлексивность, симметричность, транзитивность.

2) Отношение нестрогого частичного порядка, рефлексивность, антисимметричность, транзитивность:

Пример.
$$\subset$$
, \leq , \vdots , \sqsubset , ...

- 3) Отнош. строгого част. п-ка: антирефл., антисимметричность, транзитивность
- 4) Отнош. лин. порядка: нестрогий частичный порядок + полнота
- 5) Препорядки: рефлексивность, транзитивность
- 6) Полные предпорядки: полнота + транзитивность

2 Лекция 5

2.1 Отношения эквивалентности (~)

Определение 2.1. Отношение эквив. - отношение с св-вами:

- 1) Рефлексивность: $x \sim x$
- 2) Симметричность: $x \sim y \Rightarrow y \sim x$
- 3) Транзит.: $x \sim y, y \sim z \Rightarrow x \sim z$

Определение 2.2. Класс эквив.: $K_x = \{ y \mid y \sim x \}$

Теорема 2.1 (О разбиении на классы эквив.). Если задано отн. экв. \sim на \overline{A} , то \overline{A} можно представить как:

$$A = \bigsqcup_{i \in I} A_i,$$

т. ч.:

- 1) Каждая A_i K_x для некот. x
- $2) \quad i \neq j \Rightarrow A_i \cap A_j = \emptyset$
- 3) $y, z \in A_i \Rightarrow y \sim z$
- $4) \quad y \in A_i, z \in A_j, i \neq j \Rightarrow y \nsim z$

Доказательство. Рассм. всевозм. мн-ва, явл-ся классами эквив-ти. Докажем выполн. св-в для них. Для этого докажем леммы I-IV

<u>Лемма</u> 2.2 (I). $x \in K_x$

Доказательство.

$$x \sim x \Rightarrow x \in \{ y \mid y \sim x \} \Rightarrow x \in K_x$$

Следствие.

$$\bigsqcup_{x \in A} K_x = A$$

Лемма 2.3 (II).

$$y \in K_{r}, z \in K_{r} \Rightarrow y \sim z$$

Доказательство.

$$\begin{cases} y \in K_x \Rightarrow y \sim x \\ z \in K_x \Rightarrow x \sim z \text{ - симметричность} \end{cases} \Rightarrow y \sim z \text{ - транзитивность}$$

Лемма 2.4 (III).

$$K_x \neq K_t \Rightarrow K_x \cap K_t = \emptyset$$

Доказательство. Докажем контрапозицию:

$$K_{x} \cap K_{t} \ni w \Rightarrow K_{x} = K_{t}$$

$$\Rightarrow \begin{cases} w \sim x \\ w \sim t \end{cases} \Rightarrow \begin{cases} w \sim x \\ t \sim w \end{cases} \Rightarrow t \sim x$$

Если $y \in K_t \Rightarrow y \sim t \Rightarrow y \sim x \Rightarrow y \in K_x$, т. е. $K_t \subset K_x$. Аналогично, получаем $K_x \subset K_t \Rightarrow K_x = K_t$

<u>Лемма</u> 2.5 (IV).

$$K_x \neq K_t, y \in K_x, z \in K_t \Rightarrow y \nsim z$$

Доказательство.

$$\begin{cases} y \in K_x \Rightarrow x \sim y \\ y \in K_t \Rightarrow z \sim t \end{cases}$$

Из $y \sim z$, то, по транзитивности, $x \sim t \Rightarrow K_x = K_t!!!$. Т. к. это противоречие, то $y \nsim z$

Определение 2.3. Фактормножество $A/_{\sim}$ - мн-во классов эквив.

Теорема 2.6. Если ~ - отн. эквив. на A, то сущ. B и $f:A\to B$, т. ч.:

$$x \sim y \iff f(x) = f(y)$$

Доказательство.

$$B = A/_{\sim}$$
$$f(x) = K_{x}$$

2.2 Отношение порядка (≤)

Определение 2.4. Отношение порядка - отношение со св-вами:

- Нестрогий порядок ≤:
 - 1) Рефлекивность: $x \le x$
 - 2) Ahtucumm.: $x \le y \land y \le x \Rightarrow x = y$
 - 3) Транзтивность: $x \le y \land y \le z \rightarrow x \le z$
 - 4) (Для линейных порядков) Полнота: ($x \le y \lor y \le x$)
- Строгий порядок <:
 - 1) Антирефлексивность: $\neg(x < x)$
 - 2) Антисимметричность: $\neg (x < y \land y < x)$
 - 3) Транзитивность: $(x < y \land y < z) \rightarrow x < z$
 - 4) (Для линейных порядков) Трихотомичность:

$$x < y \lor y < x \lor x = y$$

Пример. 1) Стандартный числовой порядок в $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.

2) : на \mathbb{N} (в том числе включая 0)

$$x : y \iff \exists z : x = y \cdot z$$

- 3) \subset на 2^A
- 4) \sqsubset , \sqsupset , (substring) Ha $\{0,1\}^n$
- 5) Асимптот. порядок на ф-циях f < g, если $\exists N \forall n > N$: f(n) < g(n)
- 6) Пор-ки на \mathbb{R}^2 :
 - а) Лексикографический:

$$(x_1, y_1) \le (x_2, y_2) \iff \begin{bmatrix} x_1 < x_2 \\ x_1 = x_2 \land y_1 \le y_2 \end{bmatrix}$$

b) Покоординатный:

$$(x_1, y_1) \le (x_2, y_2) \iff \begin{cases} x_1 \le x_2 \\ y_1 \le y_2 \end{cases}$$

Диаграмма Хассе: граф на пл-ти, т. ч. вершины, соед. рёрбрами, не находятся на одном уровне (Picture)

Paccm.: $(\{0,1,...,9\}, \vdots)$

 $x \le y \iff$ Есть восходящий путь из x в y

Определение 2.5. Наибольший эл-т - Больше всех

$$x$$
 - наиб. $\iff \forall y : y \le x$

Определение 2.6. Макс. эл-т - больше него нет

$$x$$
 - Make. $\iff \neg \exists y : y > x$

Для лин. порядка - это одно и то же

Для част. порядка - может быть разное, т. е.:

$$\forall y (y \le x \lor y$$
 не сравним с $x)$

- макс. эл-т для част. порядка.

Наименьший и минимальный - аналогично.

В конечном непустом мн-ве всегда есть макс. и мин.

В конечном мн-ве единственный макс. является наибольшим.

Для беск. мн-в всё, что выше, конечно неверно. (picture)

Определение 2.7. Упорядоченное мн-во - пара из мн-ва и порядка на нём.

<u>Обозначение</u>. Пишут так: (A, \leq_A) , сокращённо УМ

Операции над УМ:

1) Сложение:

$$(A, \leq_A) + (B, \leq_B) = (C, \leq_C)$$

$$C = A \sqcup B$$

$$x \leq y \iff \begin{bmatrix} x, y \in A : x \leq_A y \\ x, y \in B : x \leq_B y \\ x \in A, y \in B \end{bmatrix}$$

При этом оно:

- Ассоциативно: A + (B + C) = (A + B) + C
- Некоммутативно: $A + B \neq B + A$
- 2) Умножение:

$$(A, \leq_A) \cdot (B, \leq_B) = (C, \leq_C)$$

$$C = A \times B$$

$$(a_1, b_1) \leq_C (a_2, b_2) \iff \begin{bmatrix} b_1 <_B b_2 \\ b_1 = b_2, a_1 \leq_A a_2 \end{bmatrix}$$