Name :

Continuous Assessment Test (CAT)- I- September 2022

Programme	: B.Tech.		
		Semester	: Fall 2022-2023
Course Title	: Complex Variables and Linear Algebra	Code	: BMAT201L
Faculty		Slot	: A1+TA1+TAA1 : CH2022231001157, 60, 62, 64,67, 70, 72, 74, 76, 80, 82
	Dr. M. Dhivya, Dr. N. Durga, Dr. M. Prasannalakshmi, Dr. C. Rajivganthi, Dr. Ashish Kumar, Dr. Prosenjit, Dr. Ankit Kumar, Dr. Surath Ghosh, Dr. Sandip Saha, Dr. Kamalesh, Dr. P. Sushmitha, Dr. Amitkumar Rahul	Class Nbr	
Duration	: 1 ½ Hours	Max. Marks	. 50

Answer all the Questions (50 marks)

Q.No.	Question Description	Marks
1	Prove that the function $u = e^x(x \cos y - y \sin y)$ is harmonic. Also find a function v such that $f(z) = u + iv$ is analytic and express $f(z)$ in terms of z .	[10]
(E)	Show that the function $f(z) = \begin{cases} \frac{\overline{z}^2}{z}, & z \neq 0 \\ 0, z = 0 \end{cases}$ satisfies the Cauchy Riemann equations at origin but not analytic at $z = 0$.	[10] 2/2.
31	In a two-dimensional fluid flow, if $\psi(x, y) = x^2 - y^2 - 3x - 2y + 2xy$ can represent the stream function, find the velocity potential and complex potential.	[5]
A. L	a) Find the points for which the following function is not conformal $f(z) = z^2 + \frac{1}{z^2}$ b) Find the image of the circle $ z = 2$ under the transformation $w = (\sqrt{2} e^{\frac{i\pi}{4}})z$.	[5]
18.	Find the image of the wedge $ z \le \frac{1}{2}$, $\frac{-\pi}{8} < arg(z) < \frac{\pi}{8}$ under the mappings (i) $w = z^2$ and (ii) $w = iz$. Sketch the region of images.	[10]
6.	Determine the bilinear transformation which maps the points $z = 0, -i, 2i$ into the points $w = 5i$, ∞ , $\frac{-i}{3}$ respectively. List the invariant points of this transformation. Sketch the image of $ z - i < 1$ under the obtained transformation.	[10]

 $\Leftrightarrow \Leftrightarrow \Leftarrow$

w = i2 w = i(x+iy) = xi - y w = 2 y - iul = 1/2 y - y = 1/2 y + u' = 1/2 w = 2 w = 2 y + u' = 1/2 w = 3

Page 1 of 1