Árbol binario:

cada nodo x tiene a lo más dos hijos, uno izquierdo y otro derecho,
 ... que, si están, son raíces de los subárboles izquierdo y derecho de x

Árbol binario de búsqueda (ABB):

 la clave en un nodo x es mayor que cualquiera de las claves en el subárbol izquierdo de x

... y menor que cualquiera de las claves en el subárbol derecho de x

ABB balanceado (ABBB):

- cumple una propiedad adicional de balance
- p.ej., en un árbol AVL, para cualquier nodo del árbol, las alturas de los subárboles izquierdo y derecho pueden diferir a lo más en 1

Árbol 2-3:

- Nodo 2, con una clave y, si no es una hoja, exactamente 2 hijos
- Nodo 3, con dos claves distintas y ordenadas y, si no es una hoja, exactamente 3 hijos
- Todas las hojas estén a la misma profundidad
- La inserción siempre se hace —inicialmente— en una hoja
- Si un nodo está lleno (ya tiene dos claves) y debe recibir una tercera clave, entonces se hace subir la clave que habría quedado al medio —la clave mediana— al nodo padre -> SPLIT
- El árbol sólo aumenta de altura cuando la raíz está llena y recibe una clave desde un hijo

Los árboles 2-3 son balanceados ... pero

Las operaciones en un árbol 2-3, particularmente al insertar una nueva clave, tienen mucho *overhead*:

- durante el recorrido desde la raíz a la hoja, es posible que haya que hacer dos comparaciones en cada nodo (nodos 3)
- cuando se llega a la hoja, si es un nodo 2, hay que convertirlo en un nodo 3
- si es un nodo 3, hay que convertirlo en dos nodos 2 y hacer subir la clave mediana al nodo padre
- si el nodo padre es un nodo 2, hay que convertirlo en un nodo 3; si es un nodo 3, hay que aplicar recursivamente el paso anterior

¿Será posible representar un árbol 2-3 como un ABB?

Nos interesa conservar toda la información del 2-3

Nodo 2

Nodo 2 como un nodo en un ABB

Nodo 3

Nodo 3 como dos nodos en un ABB

Árbol 2-3 ...

Árbol 2-3 ... como ABB

El árbol resultante se conoce como **árbol rojo-negro**

Un árbol rojo-negro es un ABB que cumple cuatro propiedades:

- 1) Cada nodo es ya sea rojo o negro
- 2) La raíz del árbol es negra
- 3) Si un nodo es rojo, sus hijos deben ser negros
- 4) La cantidad de nodos **negros** camino a cada hoja debe ser la misma

Las hojas nulas se consideran como nodos negros

El árbol resultante se conoce como **árbol rojo-negro**

Un **árbol rojo-negro** es un ABB que cumple cuatro propiedades:

- 1) Cada nodo es ya sea rojo o negro
- 2) La raíz del árbol es negra
- 3) Si un nodo es **rojo**, sus hijos deben ser **negros**
- 4) La cantidad de nodos **negros** camino a cada hoja debe ser la misma

Las hojas nulas se consideran como nodos **negros**

Inserción en un árbol rojo-negro

Una inserción puede violar las propiedades del árbol rojo-negro (así como ocurre en un árbol AVL)

Debemos restaurarlas, usando rotaciones (como en un AVL) y cambios de color (en lugar de ajustar el balance del nodo)

Es más fácil de ver si nos fijamos en el árbol 2-3 equivalente

Equivalencia de árboles rojo-negro con los árboles 2-2/2-4

Bueno ... no todos los árboles rojonegro tienen un árbol 2-3 equivalente

... ¡pero sí tienen un árbol 2-4 equivalente!

un **árbol 2-4** puede tener nodos 2 y nodos 3 (al igual que un árbol 2-3)

... y además puede tener **nodos 4**:

- 3 claves
- si no es una hoja, entonces 4 hijos

Equivalencia de los árboles rojo-negro con los **árboles 2-4**

(Un paréntesis

Para estudiar para las pruebas, simplemente revisar las diapositivas usadas en clases está **muy lejos de ser suficiente**:

- estudiar los conceptos está bien
- ... pero también hay que hacer muchos ejercicios

Ejemplo de inserción:

si insertamos la clave Z, ¿a dónde va a parar, inicialmente?

Insertemos la Z en el árbol rojo-negro

El nodo se inserta rojo (para no quebrantar la propiedad 4)

... y en el árbol 2-4

Observamos que el "tío" del nodo insertado es negro

La configuración del nodo 4 "S V Z" nos sugiere qué hacer en el árbol rojo-negro

La sola rotación no es suficiente

2) Cambio de color a S y V ...

... también hay que cambiar colores

Si: insert "exterior"

Si: insert "exterior"

Si: tío "negro"

Si: insert "exterior"

Si: tío "negro"

rotación (abuelo z, padre z)

Si: insert "exterior"

Si: tío "negro"

rotación (abuelo z, padre z)

padre z <- negro

abuelo z <- rojo //original

Veamos otra inserción en el árbol original: la clave *U*

Insertemos la *U* en el rojo-negro

Nuevamente, el nodo recién insertado se pinta rojo

... y también en el 2-4

Nuevamente, el tío del nodo insertado es negro

La configuración del nodo "S U V" nos sugiere qué hacer en el árbol rojo-negro

1) Rotación en torno a *U-V*

Una rotación no basta

2) Segunda rotación, en torno a S-U

... hacemos una segunda rotación

3) Cambio de color de S y U

... y también cambiamos colores

Si: insert "interior"

Si: insert "interior"

Si: tío "negro"

Si: insert "interior"

Si: tío "negro"

rotación (padre u, u)

"¡ estamos en el mismo caso de Z!"

Si: insert "interior"

Si: tío "negro"

rotación (padre u, u)

rotación (abuelo u, u)

Caso U

Si: insert "interior"

Si: tío "negro"

rotación (padre u, u)

rotación (abuelo u, u)

u <- Negro

abuelo u <- rojo // original

Hagamos una tercera inserción en el árbol original: la clave *K*

Insertemos la K en el árbol rojo-negro

El nodo se inserta rojo

... y también en el árbol 2-4

El tío del nodo insertado es rojo

¿Qué pasa en el árbol 2-4 y cómo se refleja en el árbol rojo-negro?

1) Cambio de color

"Subimos" el problema de un nodo rojo con un hijo rojo

(en este caso) Volvemos a enfrentar el mismo problema: El tío del nodo con clave *J* es **rojo**

En el árbol 2-4 creamos una nueva raíz "arriba" de la que había

2) (recursivamente) Cambio de color

En el árbol rojo-negro, si la raíz se vuelve roja ...

3) La raíz es roja: se cambia a negro

... simplemente la pintamos de negro

¡Listo!

Si: tío "rojo"

El tío del nodo insertado es rojo

```
Si: tío "rojo"

padre k <- negro

tío k <- negro

abuelo k <- rojo

// Volver a analizar para

// abuelo de k
```



```
Si: tío "rojo" // ahora de j

padre j <- negro

tío j <- negro

abuelo j <- rojo

// Volver a analizar para

// abuelo de j
```



```
Si: tío "rojo" // ahora de m
```

```
padre j <- negro

tío j <- negro

abuelo j <- rojo

// Volver a analizar para

// abuelo de j</pre>
```

Raiz <- negro

Mientras padre actual es rojo

Si: tío actual es "rojo"

padre actual <- negro

tío actual <- negro

abuelo actual <- rojo

actual <- abuelo actual

Raiz <- negro

Inserción en árboles rojo-negros

Los nodos siempre se insertan rojos

Si su padre es rojo, hay dos casos según el color del tío:

- Si el tío es negro, tenemos el aumento de grado en el nodo del 2-4
 - Se soluciona con rotaciones y cambios de color. No genera más conflictos.
- Si el tío es rojo, tenemos el caso en que el nodo del 2-4 rebalsa
 - Se soluciona cambiando colores. Puede generar el mismo caso hacia arriba.

Inserción en árboles rojo-negros

```
Mientras padre actual es rojo
                                                                          // caso K
          Si: tío actual es "rojo"
                     padre actual <- negro
                     tío actual <- negro
                     abuelo actual <- rojo
                     actual <- abuelo actual
                     si actual es hijo "interior"
          Si no,
                                                                          //caso U
                                rotacion padre actual, actual
                                actual <- padre actual
                                                                          // caso Z
                     padre actual <- negro
                     abuelo actual <- rojo
                     rotacion abuelo actual, actual
```

Raiz <- negro

Insert 41

В

Insert 38

Insert 31

Insert 12

Ejercicio propuesto

Demuestra que la altura de un árbol rojo-negro con n nodos es $O(\log n)$