Verification of Control Sequences within OpenBuildingControl

Michael Wetter Simulation Research Group

September 10, 2019

Lawrence Berkeley National Laboratory

Presentation Contents

- Verification
 - What do we verify?
 - How do we verify?

What do we verify?

How should we verify?

Red points indicate which signals to verify against a CDL generated response.

Reuse of control sequence to verify correct implementation

How do we verify?

Requirements

From http://obc.lbl.gov/specification/requirements.html#commissioning-and-functional-verification-tool:

- 1. The CDL tool shall import verification tests expressed in CDL, and a list of control points that are used for monitoring and active functional testing.
- 2. The commissioning and functional verification tool shall be able to read data from, and send data to, BACnet, possibly using a middleware such as VOLTTRON or the BCVTB, or read archived data.
- 3. It shall be possible to run the tool in batch mode as part of a real-time application that continuously monitors the functional verification tests.
- The commissioning and functional verification tool shall work on Windows, Linux Ubuntu and Mac OS X.

Implementation

Are time series between simulated and implemented control within a certain error band?

Detailed principles

- L1-norm based comparison
- Trajectory comparison (as opposed to point-to-point): handles time events & different time scales

Optional: Generate sequence charts

 T_{Max}

temperature

 T_{Min} - 1.1 K (= T_{Min} - 2 F)

set point for cooling coil

0 0.25 0.5 0.75 1

cooling loop signal

 T_{SetZon}

set point for heating coil,

0.5

heating loop signal

and for economizer

TCoo [degC]

Verification test with a measured control response - Sequence specification

We validated a **trended output** of a control sequence that defines the **cooling coil valve** position.

The cooling coil valve sequence is a part of the ALC EIKON control logic implemented in building 33 at LBNL.

CDL specification

ALC EIKON specification

Verification test with a measured control response - Conducting the verification

Verification test with a measured control response -

Verification test with a measured control response - using *funnel* software to compare cooling valve control signal y

What is next?

- Determine how close tolerance should be based on larger control sequence.
- Facilitate mapping of actual, trended control sequences with model to reduce setup time.

Further information and discussions

Further information at

- https://obc.lbl.gov
- Michael Wetter, Antoine Gautier, Milica Grahovac, Jianjun Hu.
 Verification of Control Sequences within OpenBuildingControl.
 Proc. of the 14th IBPSA Conference, Rome, Italy, September 2019.

