RWorksheet_Porras4

Porras, Dorlyne Fate

2022-11-23

1. The table below shows the data about shoe size and height. Create a data frame.

##		${\tt Shoesize}$	Height	Gender
##	1	6.5	66.0	F
##	2	9.0	68.0	F
##	3	8.5	64.5	F
##	4	8.5	65.0	F
##	5	10.5	70.0	М
##	6	7.0	64.0	F
##	7	9.5	70.0	M
##	8	9.0	71.0	F
##	9	13.0	72.0	M
##	10	7.5	64.0	M
##	11	10.5	74.5	M
##	12	8.5	67.0	F
##	13	12.0	71.0	M
##	14	10.5	71.0	М
##	15	13.0	77.0	М
##	16	11.5	72.0	М
##	17	8.5	59.0	F
##	18	5.0	62.0	F
##	19	10.0	72.0	M
##	20	6.5	66.0	F
##	21	7.5	64.0	M
##	22	8.5	67.0	M
##	23	10.5	73.0	М
##	24	8.5	69.0	F
##	25	10.5	72.0	М

b. Find the mean of shoe size and height of the respondents. Copy the codes and results.

summary(data_frame)

```
##
       Shoesize
                                            Gender
                           Height
##
            : 5.000
                       Min.
                               :59.00
                                         Length:28
    1st Qu.: 8.500
##
                       1st Qu.:65.75
                                         Class : character
                       Median :69.50
##
    Median : 9.000
                                         Mode : character
            : 9.411
                               :68.57
##
   Mean
                       Mean
##
    3rd Qu.:10.500
                       3rd Qu.:71.25
##
    {\tt Max.}
            :13.000
                       Max.
                               :77.00
```

SHOESIZE: Mean: 9.411 HEIGHT: Mean: 68.57

c. Is there a relationship between shoe size and height? Why?

Yes, The Higher the height, the greater the shoesize.

2. Construct character vector months to a factor with factor() and assign the result to factor_months_vector. Print out factor_months_vector and assert that R prints out the factor levels below the actual values.

Consider data consisting of the names of months:

```
"March", "April", "January", "November", "January", "September", "October", "September", "November", "August", "January", "November", "November "November", "November "November", "November ", "November "November ", "November ",
```

```
[1] March
                  April
                             January
                                       November
                                                            September October
                                                 January
##
    [8] September November
                             August
                                                            November February
                                       January
                                                 November
## [15] May
                  August
                             July
                                       December
                                                 August
                                                            August
                                                                      September
## [22] November February
                             April
## 11 Levels: April August December February January July March May ... September
```

3. Then check the summary() of the months_vector and factor_months_vector. | Interpret the results of both vectors. Are they both equally useful in this case?

```
summary(Months)
```

```
## Length Class Mode
## 24 character character
```

summary(factor_Months)

```
##
       April
                  August
                           December
                                                                 July
                                                                           March
                                                                                         May
                                      February
                                                   January
##
                       4
##
                 October September
    November
##
            5
```

4. Create a vector and factor for the table below.

```
factor_data <- c(1,4,3)
new_order_data <- factor(factor_data,levels = c("East","West","North"))
print(new_order_data)
## [1] <NA> <NA> <NA>
## Levels: East West North
```

- 5. Enter the data below in Excel with file name = import_march.csv
- a. Import the excel file into the Environment Pane using read.table() function. Write the code.

```
dataTable <- read.table("/cloud/project/import_march.csv", header=TRUE, sep = ",")
dataTable</pre>
```

```
##
     Students Strategy.1 Strategy.2 Strategy3
## 1
         Male
                        8
                                   10
## 2
                        4
                                    8
                                               6
## 3
                        0
                                    6
                                               4
## 4
                        14
                                    4
                                              15
       Female
                                    2
## 5
                        10
                                              12
## 6
                        6
                                    0
                                               9
```

b. View the dataset. Write the code and its result.

dataTable <- read.csv("/cloud/project/import_march.csv")
dataTable</pre>

##		${\tt Students}$	Strategy.1	Strategy.2	Strategy3
##	1	Male	8	10	8
##	2		4	8	6
##	3		0	6	4
##	4	Female	14	4	15
##	5		10	2	12
##	6		6	0	9