Bindungsverhältnisse in Kristallen

I.1	Überblick I.1.1 I.1.2 I.1.3	Schema der Bindungstypen Elektronenkonfiguration der Elemente Eigenschaften & Konsequenzen der Bindung	
1.2	Van der Wa 1.2.1 1.2.2 1.2.3	lals Bindung, Edelgaskristalle Van-der-Waals-Wechselwirkung Lennard-Jones-Potential 3-dim. v.d.Waals-Kristall	Gruppe VIII
1.3	lonenkristal I.3.1 I.3.2	le Energiebilanz des Ionenpaares Bindungsenergie im Kristall	Verbindungen I-VII
1.4	I.4.1 I.4.2 I.4.3 Metallische	Elektronenpaarbindung Kovalente Bindung im Festkörper Teil-ionischer Charakter	besonders Gruppe IV und Verbindungen III-V, II-VI (auch teilw. I-VII)
1.6	I.5.1 I.5.2 Wasserst	sp-Metalle Übergangsmetalle offbrückenbindung	Gruppe I, II, III

Elektronische Bindungen im FK

Kovalent Germanium

Bindungstypen

Van der Waals-Bindung (Gr. VIII)

Dipol – Dipol (und alle anderen auch)

Metallbindung (Gr. I, II, III)

Periodic table – electron configuration

1A																	8A
1																1	2 He
H 1s1	2A											3A	4A	5A	6A	7A	1s ²
3	4										7	5	6	7	8	9	
Li	Be										7	В	Č	N	ŏ	F	10 Ne
2s1	2s ²										1	$2s^22p^1$	$2s^22p^2$				$2s^22p^6$
11	12										,	13	14	15	16	17	18
Na	Mg	25.000									12565	Al	Si	P	S	Cl	Ar
3s1	3s2	3B	4B	5B	6B	7B		— 8B —		1B	2B	$3s^23p^1$	$3s^23p^2$	$3s^23p^3$	$3s^23p^4$	$3s^23p^5$	$3s^23p^6$
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 4s ¹	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	4s2	$3d^{1}4s^{2}$	-	$3d^{3}4s^{2}$		$3d^54s^2$		$3d^{7}4s^{2}$	$3d^84s^2$	$3d^{10}4s^{1}$	$3d^{10}4s^2$	$4s^24p^1$	$4s^24p^2$	$4s^24p^3$	$4s^24p^4$	$4s^24p^5$	$4s^24p^6$
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
5s1	5s ²	$4d^{1}5s^{2}$	$4d^25s^2$	$4d^45s^1$	$4d^55s^1$		$4d^{7}5s^{1}$	$4d^85s^1$	$4d^{10}$	$4d^{10}5s^{1}$	$4d^{10}5s^2$	$5s^25p^1$	$5s^25p^2$	$5s^25p^3$	$5s^25p^4$	$5s^25p^5$	$5s^25p^6$
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
6s ¹	6s ²	$5d^{1}6s^{2}$	$5d^26s^2$	5d ³ 6s ²	5d ⁴ 6s ²	$5d^56s^2$	5d ⁶ 6s ²	$5d^{7}6s^{2}$	5d96s1	$5d^{10}6s^{1}$	$5d^{10}6s^2$	$6s^26p^1$	$6s^26p^2$	$6s^26p^3$	$6s^26p^4$	$6s^26p^5$	$6s^26p^6$
87	88	89	104	105	106	107	108	109	110	111	112		114		^{††} 116		**118
Fr 7s1	Ra	†Ac	Rf	Db	Sg 6d ⁴ 7s ²	Bh	Hs	Mt				Unknown		Unknown		Unknown	
781	7 <i>s</i> ²	$6d^{1}7s^{2}$	$6d^27s^2$	$6d^37s^2$	6d47s2												

8	59	60	61	62	63	64	65	66	67	68	69	70	71
6s ²	Pr 4f ³ 6s ²	Nd 4f ⁴ 6s ²	Pm 4f ⁵ 6s ²	Sm 4f ⁶ 6s ²	Eu 4f ⁷ 6s ²	$\frac{Gd}{4f^75d^16s^2}$	Tb 4f ⁹ 6s ²	$\frac{{ m Dy}}{4f^{10}6s^2}$	$\frac{\text{Ho}}{4f^{11}6s^2}$	Er 4f ¹² 6s ²	Tm 4f ¹³ 6s ²	Yb 4f ¹⁴ 6s ²	Lu $4f^{14}5d^{1}6s^{2}$
00 Ch	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
1	6 <i>s</i> ² 0 h	e Pr 6s ² 4f ³ 6s ² 0 91 h Pa	e Pr Nd 6s ² 4f ³ 6s ² 4f ⁴ 6s ² 0 91 92 h Pa U	e Pr Nd Pm 6s ² 4f ³ 6s ² 4f ⁴ 6s ² 4f ⁵ 6s ² 0 91 92 93 h Pa U Np	e Pr Nd Pm Sm $6s^2$ $4f^36s^2$ $4f^46s^2$ $4f^56s^2$ $4f^66s^2$ 0 91 92 93 94 h Pa U Np Pu	e Pr Nd Pm Sm Eu $6s^2$ $4f^36s^2$ $4f^46s^2$ $4f^56s^2$ $4f^66s^2$ $4f^76s^2$ 0 91 92 93 94 95 h Pa U Np Pu Am	e Pr Nd Pm Sm Eu Gd $6s^2$ $4f^36s^2$ $4f^46s^2$ $4f^56s^2$ $4f^66s^2$ $4f^76s^2$ $4f^75d^46s^2$ 0 91 92 93 94 95 96 h Pa U Np Pu Am Cm	e Pr Nd Pm Sm Eu Gd Tb $6s^2$ $4f^36s^2$ $4f^46s^2$ $4f^56s^2$ $4f^66s^2$ $4f^76s^2$ $4f^75d^46s^2$ $4f^96s^2$ 0 91 92 93 94 95 96 97 h Pa U Np Pu Am Cm Bk	e Pr Nd Pm Sm Eu Gd Tb Dy $6s^2$ $4f^36s^2$ $4f^46s^2$ $4f^56s^2$ $4f^66s^2$ $4f^66s^2$ $4f^75d^16s^2$ $4f^96s^2$ $4f^{40}6s^2$ 0 91 92 93 94 95 96 97 98 h Pa U Np Pu Am Cm Bk Cf	e Pr Nd Pm Sm Eu Gd Tb Dy Ho $6s^2$ $4f^36s^2$ $4f^46s^2$ $4f^56s^2$ $4f^66s^2$ $4f^66s^2$ $4f^76s^2$ $4f^75d^16s^2$ $4f^96s^2$ $4f^{10}6s^2$ $4f^{11}6s^2$ 0 91 92 93 94 95 96 97 98 99 h Pa U Np Pu Am Cm Bk Cf Es	e Pr Nd Pm Sm Eu Gd Tb Dy Ho Er $6s^2$ $4f^36s^2$ $4f^46s^2$ $4f^56s^2$ $4f^66s^2$ $4f^66s^2$ $4f^76s^2$ $4f^76s^2$ $4f^96s^2$ $4f^{10}6s^2$ $4f^{11}6s^2$ $4f^{12}6s^2$ 0 91 92 93 94 95 96 97 98 99 100 h Pa U Np Pu Am Cm Bk Cf Es Fm	e Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm $6s^2$ $4f^36s^2$ $4f^46s^2$ $4f^56s^2$ $4f^66s^2$ $4f^76s^2$ $4f^76s^2$ $4f^96s^2$ $4f^96s^2$ $4f^{10}6s^2$ $4f^{11}6s^2$ $4f^{12}6s^2$ $4f^{13}6s^2$ 0 91 92 93 94 95 96 97 98 99 100 101 h Pa U Np Pu Am Cm Bk Cf Es Fm Md	e Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb $6s^2$ $4f^36s^2$ $4f^46s^2$ $4f^56s^2$ $4f^66s^2$ $4f^76s^2$ $4f^76s^2$ $4f^96s^2$ $4f^{10}6s^2$ $4f^{10}6s^2$ $4f^{11}6s^2$ $4f^{12}6s^2$ $4f^{13}6s^2$ $4f^{14}6s^2$ $6s^2$

Elektronenkonfiguration der Elemente

```
geben leicht de webelements. Com
Gruppe 1
                                                                     Metalle
                                            (ii) in Verbindungen I-VII: Ionen (→ Isolatoren)
   Alkali:
              Na. K. Rb. Cs
Gruppe 2
             geben 2e^{-} (teilweise) ab \rightarrow (i) als Element:
                                                                     Metalle
   Erdalkali
             Be, Mg, Ca, Sr, Ba
                                            (ii) in Verbindungen II-VI: starker ionischer Anteil
                                                                                    (→HL)
Gruppe 3
              geben 1.3e^{-} (teilweise) ab \rightarrow (i) als Element:
                                                                     Metalle
              Al, Ga, In
                                            (ii) in Verbindungen III-V: ionischer Anteil (→HL)
Gruppe 4
              "Mitte" des Periodensystems (halbgefüllte Schale)
                                                                     kovalente Festkörper
                                         → Element-Kristalle
              C, Si, Ge
                                                                                    (→HL)
             nehmen 1··3e⁻ (teilweise) auf → (i) als Element: kovalent
Gruppe 5
                                            (ii) in Verbindungen III-V: ionischer Anteil (→HL)
             N, P, As, Sb
Gruppe 6
              nehmen 2e⁻ (teilweise) auf → (i) als Element: kovalent
                                            (ii) in Verbindungen II-VI: starker ionischer Anteil
  Chalcogene O, S, Se, Te
                                                                                    (→HL)
Gruppe 7
            nehmen 1e<sup>-</sup> auf
                                        → (i) als Element:
                                                                     kovalent
                                            (ii) in Verbindungen I-VII: lonen (→ Isolatoren)
   Halogene F, Cl, Br, I
Gruppe 8
            abgeschlossene Schale \rightarrow als Element: nur van der Waals (!)
              He, Ne, Ar, Kr, Xe, Rn. ansonsten chemisch inaktiv
  Edelgase
```

Bindung bestimmt physikalische Eigenschaften

Bindungsenergie Stabilität, Schmelztemperatur Polarität, lonizität wg. (partieller) Ladungsverschiebung steigende Polarität: IV → III-V → II-VI → I-VII elektronische Eigenschaften (Metall - Halbleiter - Isolator) I, II, III IV, III-V, II-VI I-VII, VIII optische Eigenschaften - metallische Reflexion (IR, VIS, N-UV) durch freie Elektronen für Gr. I, II, III Transparenz im UV Energielücke Teil-Transparenz / Färbung im VIS für III-V. II-VI Transparenz im VIS für I-VII MnTe ZnSe CdS Bandlücke ZnTe Alas CdSe ■ AlSb CdTe GaAs InP

Ge

GaSb

Si

Typische Bindungsenergien

Tabelle 6.1. Kristalle mit typischer Bindung

Nr.	Bindungstyp	Beispiele	Bindungsenergie	Dissoziation in
1	Ionenbindung	NaCl (2,8 A)	180 kcal/mol	Na+-Cl-
3	Kovalente Bindung	LiF (2,0 A) Diamant SiC	240 170 283	Li+-F- C-C
3	Metallische Bindung*	Na (4,28 Å) Fe (2,86 Å)	26 96	Si—C Na—Na Fe—Fe
	van der Waals-	W (3,15 Å)	210 1,8	W-W Ar-Ar
i .	Bindung Wasserstoffbrücken- bindung	CH ₄ H ₂ O HF	2,4 12 ** 7	CH ₄ CH ₄ H ₂ OH ₂ O HFHF

^{*} Alle drei Metalle kristallisieren im gleichen Typ (A2, kubisch raumzentriert), so daß neben den Bindungsenergien auch die angegebenen Gitterkonstanten vergleichbar sind.

** Der auf eine H-Brücke zurückzuführende Anteil ist etwa 5 kcal pro Mol H-Bindungen.

Bindungspotentiale

Abb. 6.4. Wechselwirkungspotential zweier Atome
(Ionen) im Abstand re bei
verschiedenen Bindungstypen. Schematisch, Nullpunkt im Potentialminimum

I.1	Überblick I.1.1 I.1.2 I.1.3	Schema der Bindungstypen Elektronenkonfiguration der Elemente Eigenschaften & Konsequenzen der Bindung	
1.2	Van der Wa I.2.1 I.2.2 I.2.3	aals Bindung, Edelgaskristalle Van-der-Waals-Wechselwirkung Lennard-Jones-Potential 3-dim. v.d.Waals-Kristall	Gruppe VIII
1.3	lonenkrista I.3.1 I.3.2	lle Energiebilanz des Ionenpaares Bindungsenergie im Kristall	Verbindungen I-VII
1.4	Kovalente 1.4.1 1.4.2 1.4.3	Elektronenpaarbindung	besonders Gruppe IV und Verbindungen III-V, II-VI (auch teilw. I-VII)
1.5	Metallische I.5.1 I.5.2	e Bindung sp-Metalle Übergangsmetalle	Gruppe I, II, III
1.6	Wassers	toffbrückenbindung	

Edelgaskristalle, van der Waals Bindung

Van der Waals-Wechselwirkung ist in allen Kristallen vorhanden!!

im Edelgaskristall: ausschließlich van der Waals-Wechselwirkung Elektronenkonfiguration der Atome: abgeschlossene Schalen

Bindung sehr schwach: $E_B = 20 \cdot \cdot \cdot 200 \text{ meV} / \text{Atom}$

d.h. nicht stabil bei Raumtemperatur

 $(E_{therm} = k_B \cdot T = 25 \text{meV bei } 300 \text{ K})$

Sublimationstemperatur: 5K ··· 80K.

Kristallisation in fcc- (oder hcp-) Struktur

Ausnahme: He keine Kristallisation beim Abkühlen.

Nur bei niedriger Temperatur <u>und</u> hohem Druck (z.B 4 K und 2000 bar): Kristallisation in hcp-Struktur

Van der Waals Wechselwirkung

- neutrale Atome A und B
- kein Überlapp der elektronischen Wellenfunktionen
- ABER: Ladungsfluktuation (Atom A)
 - => momentanes Dipolmoment p_A

→ E-Feld eines el. Dipols

$$\mathbf{E}_{\mathbf{A}}(\mathbf{r}) \propto \mathbf{p}_{\mathbf{A}} / r^3$$

Folgt aus klassischer (z.B. Demtröder) und QM Rechnung

→ induziertes Dipolmoment p_B (Atom B) wg. Polarisierbarkeit α

$$\mathbf{p}_{\mathrm{B}} = \alpha \, \mathbf{E}_{\mathrm{A}} \, \propto \, \alpha \, \mathbf{p}_{\mathrm{A}} \, / \, r^{3}$$

→ anziehende Dipol-Dipol-Wechselwirkung

$$U_{AB}(r) = -\mathbf{p}_{B} \mathbf{E}_{A} \propto \alpha \mathbf{p}_{A} \cdot \mathbf{p}_{A} / (r^{3} \cdot r^{3})$$

$$\propto -\alpha \mathbf{p}_{A}^{2} / r^{6}$$

- negatives Vorzeichen: anziehende WW
- Betrag des fluktuierenden Dipolmoments p_A nicht bekannt: Bruchteil von $e r_A$

Van der Waals-Potential (London-WW): $U(r) = -A / r^6$

Lennard-Jones Potential

mit abstoßender WW bei Überlapp der elektronischen Wellenfunktionen

Ursache: Pauli-Prinzip (Ausschließungsprinzip)

keine zwei Elektronen identisch wg. Spin = $\frac{1}{2}$ (Fermionen)

Überlapp nur möglich, wenn eines der Elektronen in höherer Schale oder Ladungswolken stark verzerrt werden, d.h. Energie-Aufwand (→ Abstoßung)

mögl. empirisches Potential: $U(r) \propto + B / r^{12}$ (manchmal auch: $U(r) \propto \lambda \exp(-r/\rho)$)

stärker *r*-abhängig als v.d.Waals-Pot.

→ für r < r₀: Netto-Abstoßung für r > r₀: Netto-Anziehung (v.d.Waals) r₀: Gleichgewichtsabstand

Gesamtpotential:

$$U(r) = -A/r^6 + B/r^{12}$$

Lennard-Jones-Potential (empirisch!) $U(r) = 4 \varepsilon \left[(\sigma / r)^{12} - (\sigma / r)^{6} \right]$

mit
$$A = 4 \varepsilon \sigma^6$$
 und $B = 4 \varepsilon \sigma^{12}$

- für $r = \sigma$: U = 0
- Gleichgewichtsabstand: r_0 = 1,122 σ
- Potentialtiefe: $U(r_0) = -\varepsilon$.

3D van der Waals Kristall

Gesamt-Bindungsenergie des Kristalls Utot:

Summe aller Atompaare
$$U_{tot} = \frac{1}{2} \sum_{i,j \neq i} U(r_{ij}) = \frac{N}{2} \, 4\varepsilon \left[\sum_{j} \left(\frac{\sigma}{p_{ij} R_{NN}} \right)^{12} - \sum_{j} \left(\frac{\sigma}{p_{ij} R_{NN}} \right)^{6} \right] \quad \frac{2 \text{Mischell Atom 7 and 7}}{\text{n\"{a}chsten Nachbarn (NN)}}$$

 $p_{ij} R_{NN} = Abstand$ zwischen Atom i und j

z.B. fcc: NN: p = 1

 $\ddot{u}NN$: p = √2

üüNN: p = √3

betrachte fcc-Gitter

12NN:
$$\sum_{j} \left(\frac{1}{p_{ij}}\right)^{12} = 12.131$$

$$\sum_{j} \left(\frac{1}{p_{ij}}\right)^{6} = 14.454$$
 d.h. wesentliche Beiträge zur

Abstoßung nur von NN!

Gleichgewichtsabstand R_o : aus $dU_{tot}/dr = 0$

$$\rightarrow R_0 = 1,09 \sigma \text{ für fcc} - \text{vdW} - \text{Kristalle}$$

Bindungsenergie: $U_{tot}(R_o) = -8.6 \cdot N \cdot \varepsilon$

vernachlässigt: kin. Energie der Atome (= quantenmechanische Korrektur) → Verringerung der Bindungsenergie

Maß für thermische Energie bei Temp. T: $k_B \cdot T = 0.083 \text{ meV/K} \cdot T$ (300 K ~ 25 meV).

I.2 Van der Waals-Bindung

- Dipol-Dipol Wechselwirkung
- Momentanes Dipolmoment aufgrund von Ladungsfluktuationen
- => Attraktiver Teil des Potentials
- kein Überlapp der elektronischen Wellenfunktionen (Pauli-Abstoßung)
- => Repulsiver Teil des Potentials

Lennard-Jones-Potential (empirisch!)

$$U(r) = 4 \varepsilon [(\sigma / r)^{12} - (\sigma / r)^{6}]$$

manchmal auch $U(r) \sim \lambda \exp(-r/\rho)$ für den repulsiven Teil

- fürr = σ : U = 0
- Gleichgewichtsabstand: $r_0 = 1,122 \sigma$
- Potentialtiefe: $U(r_0) = -\epsilon$.

Van der Waals WW ist in ALLEN Kristallen vorhanden, meist nicht dominant.

Ausnahme: Edelgaskristalle (dort ist kein anderer Bindungstyp vorhanden).

Bindung sehr schwach: $E_B = 20 \cdot \cdot \cdot 200 \text{ meV} / \text{Atom}$ (nicht stabil bei RT)

Kristallisation in dichtester Kugelpackung (fcc- oder hcp-Struktur)

I.1	Überblick		
	I.1.1 I.1.2 I.1.3	Schema der Bindungstypen Elektronenkonfiguration der Elemente Eigenschaften & Konsequenzen der Bindung	
IV.2	Van der W I.2.1 I.2.2 I.2.3	aals Bindung, Edelgaskristalle Van-der-Waals-Wechselwirkung Lennard-Jones-Potential 3-dim. v.d.Waals-Kristall	Gruppe VIII
1.3	Ionenkristall I.3.1 I.3.2	e Energiebilanz des Ionenpaares Bindungsenergie im Kristall	Verbindungen I-VII
1.4	Kovalente E 1.4.1 1.4.2 1.4.3	Bindung Elektronenpaarbindung Kovalente Bindung im Festkörper Teil-ionischer Charakter	besonders Gruppe IV und Verbindungen III-V, II-VI (auch teilw. I-VII)
I.5	Metallische I.5.1 I.5.2	Bindung sp-Metalle Übergangsmetalle	Gruppe I, II, III
1.6	Wassersto	offbrückenbindung	

I.3 Ionenkristalle

```
Gruppe VII + e⁻ → Edelgaskonfiguration
Gruppe I - e⁻ → "

I⁺-VII⁻ KristaII
```

Kristallstrukturen:

NaCl oder CsCl

↓ ↓ abhängig von Radienverhältnis

Modellannahmen:

- vollständige lonisation
- rein elektrostatische WW
 d.h. insbes. keine kovalente WW
 (gute Näherung, in Realität aber immer auch kovalenter Bindungsanteil !!)
- Kugelsymmetrische Ladungsverteilungen (Exp: Röntgen-Beugung)

Elektronendichte in NaCl(100)

Elektronendichte-Verteilung nicht mehr kugelfüörmig, sondern deformier

Energiebilanz eines Ionenpaares

Energiebilanz einer Na	CI-Bildung:	quantitativ:	E-Freisetz.
(i) Ionisation Na	E-Aufwand	$Na + 5,14 eV \rightarrow Na^+ + e^-$	- 5,14 eV
(ii) Ionisation CI	E-Freisetzung	Cl + e^{-} \rightarrow Cl + 3,71 eV	+ 3,71 eV
(iii) Bindung Na ⁺ an Cl ⁻	E-Freisetzung	Na^+ + $Cl^ \rightarrow$ $NaCl$ + 7,9 eV	+ 7,9 eV
	Bilanz:	Na + Cl → NaCl	+ 6,47 eV

<u>Fazit</u>: hohe Bindungsstabilität vgl. thermische Energie $k_BT = 25$ meV bei 300 K Photonen-Energie $h\nu = 1,5 \cdot \cdot \cdot 3$ eV in VIS

Energie im Ionenkristall:

- Anziehung der NN: 6 x (Abstand = a/2)
- Abstoßung der übernächsten Nachbarn 12 x, aber schwächer (Abstand = 2^{1/2} a/2)
- Anziehung der überübernächsten Nachbarn 8 x, aber noch schwächer (Abstand = 3^{1/2} a/2)

etc.

Bindungsenergie im Ionenkristall

Atompaare i,j:

potenzielle Energie:

Elektrostatische Anziehung (& Abstoßung)

van der Waals vernachlässigt, Beitrag nur etwa 1%

+ Abstoßung der "harten Kugeln" i,j

$$U_{ij} = \pm q^2/r_{ij}$$

 $U_{ij} = \pm q^2/r_{ij}$ (4 $\pi \epsilon_0$ vernachlässigt d.h. CGS-Einheiten)

$$U_{ij} = \lambda \exp(-r_{ij}/\rho)$$

gesamte pot. Energie des Atoms *i* :

$$U_{i} = \sum_{j \neq i} U_{ij} = \sum_{j \neq i} \left(\lambda \exp(-r_{ij}/\rho) \pm \frac{q^{2}}{r_{ij}} \right)$$

(N = Anzahl der Atompaare)

totale Bindungsenergie des Kristalls:
$$U_{tot} = N \cdot U_i = N \cdot \sum_{j \neq i} \left(\lambda \exp \left(-\frac{r_{ij}}{\rho} \right) \pm \frac{q^2}{r_{ij}} \right)$$

(vgl. Lennart-Jones:
$$U_{tot} = \frac{1}{2} \sum_{i,j \neq i} U(r_{ij}) = \frac{N}{2} \sum_{j \neq i} U(r_{ij})$$
 N = Anz. Atome)

berücksichtige Abstoßung nur bei NN und definiere p_{ii} so, dass $r_{ii} = p_{ii}R_{NN}$ (siehe Lennard-Jones Potential)

$$U_{i} = z \cdot \lambda \exp\left(-\frac{R_{NN}}{\rho}\right) - \frac{q^{2}}{R_{NN}} \sum_{j} \frac{\pm 1}{p_{ij}}$$

$$\uparrow$$
z: Anzahl NN
$$= 6 \text{ für NaCl}$$
Summation: alternierend +, -

≡ Madelung-Konstante α

Gesamt-Energie:

$$U_{tot} = N \cdot U_{i} = N \left[z \cdot \lambda \exp\left(-\frac{R_{NN}}{\rho}\right) - \frac{q^{2}}{R_{NN}} \cdot \alpha \right]$$

Madelung-Konstante α

1-dim: siehe z.B. Kittel, 3-dim: numerische Berechnung

Struktur	α
CsCl	1,762675
NaCl	1,747565
Zinkblende	1,6381

Gleichgewichtsabstand R_o :

Bedingung $dU_{tot}/dR_{NN} = 0$

$$\frac{dU_{tot}}{dR_{NN}}\Big|_{R_0} = -\frac{Nz\lambda}{\rho} \exp\left(-\frac{R_0}{\rho}\right) + \frac{N\alpha q^2}{R_0^2} = 0$$

$$z\lambda \exp\left(-\frac{R_0}{\rho}\right) = \frac{\alpha q^2 \rho}{R_0^2}$$

$$e\lambda \exp\left(-\frac{R_0}{\rho}\right) = \frac{\alpha q^2 \rho}{R_0^2}$$

Gesamt-Energie beim Gleichgewichts-
$$U_{tot} = -\frac{N\alpha q^2}{R_0}(1-\frac{\rho}{R_0})$$
 typisch: ρ / $R_0 \approx$ 0,1 Abstand:

Madelung-Energie

Bindungsenergie pro Atompaar: 5 ··· 8 eV

meiste (I-VII)-Verbindungen haben NaCl-Struktur, obwohl $\alpha_{CSCI} > \alpha_{NaCI}$ Ursache: in der CsCl-Struktur berühren sich die Anionen für $r_{Kation} / r_{Anion} < 0.73$ d.h. dann keine weitere R₀-Reduzierung möglich. Beweis: evtl. Ubungen

1.1	Überblick		
	I.1.1	Schema der Bindungstypen	
	1.1.2	Elektronenkonfiguration der Elemente	
	I.1.3	Eigenschaften & Konsequenzen der Bindung	
1.2	Van der Wa	aals Bindung, Edelgaskristalle	Gruppe VIII
	1.2.1	Van-der-Waals-Wechselwirkung	
	1.2.2	Lennard-Jones-Potential	
	1.2.3	3-dim. v.d.Waals-Kristall	
1.3	Ionenkrista	lle	Verbindungen I-VII
	1.3.1	Energiebilanz des Ionenpaares	
	1.3.2	Bindungsenergie im Kristall	
1.4	Kovalente	Bindung	besonders Gruppe IV
	1.4.1	Elektronenpaarbindung	und
	1.4.2	Kovalente Bindung im Festkörper	Verbindungen III-V, II-V
	1.4.3	Teil-ionischer Charakter	(auch teilw. I-VII)
1.5	Metallische	e Bindung	
	1.5.1	sp-Metalle	Gruppe I, II, III
	1.5.2	Übergangsmetalle	э. э.ррэ 1, 11, 111
1.6	Wasserst	toffbrückenbindung	
		one contained and	

I.4 Kovalente Bindung

I.4.1 Elektronenpaarbindung

- homöopolare Bindung der org. Chemie (C-C, O, N, H ...)
- hohe Bindungsenergie:
 mehrere eV (≈ ionische Bindung).

Einfachster Fall: H₂-Molekül: H – H siehe: Vorlesung Moderne Physik I

bei Annäherung der Atome:
 Überlapp der Elektronen

"Chemisches Bild":

- nach dem Pauli-Prinzip:
 Überlapp ungünstig
 bei parallelen Spins ↑↑
- bei antiparallelen Spins ↑↓:
 Überlapp erlaubt
 energetisch günstig
 weil gemeinsames e--Paar
 = "gefüllte Schale"

"Physikalisches Bild":

Molekülwellenfunktionen werden aus den atomaren Wellenfunktionen gebildet:

Molekülorbitale

LCAO = linear combination of atomic orbitals

$$\psi_{Mol.} = \sum_{i} c_{i} \varphi_{Atom}$$

$$\mathsf{Bsp.:} \quad \psi_{\mathit{H}_2} \propto \varphi_{\mathsf{ls},\mathit{A}\mathsf{1}} \pm \varphi_{\mathsf{ls},\mathit{A}\mathsf{2}}$$

"+": symmetrische (Orts-)Wellenfunktion
=> bindender Zustand

"–": anti-symmetrische (Orts-)Wellenfunktion => antibindender Zustand

Radiale Wellenfunktion der 4s und 3d Valenzelektronen in Nickel

Abb. 1.8. Die Amplitude der 3d_{zz}Wellenfunktion und der 4s-Wellenfunktion von Ni nach Walch u.
Goddard [1.4]. Die Radien (halbe
Distanzen) zu den nächsten, übernächsten und drittnächsten Nachbarn (r₁, r₂ und r₃) sind zum
Vergleich mit eingetragen

I.4.2 Kovalente Bindung im Festkörper

kovalent gebundene FK Gruppe IV: Diamant, Si, Ge

Gruppe-IV-Elemente: 4 fehlende Elektronen zur vollen Schale

Realisierung voller Schale durch Elektronenpaarbindungen mit 4 Nachbarn => 4 kovalente Bindungen

d.h. äquivalente Funktionen der 4 Valenzelektronen (VE)

ABER: im Atom sind die 4 VE nicht äquivalent: s²p²

notwendig:
"Umsortierung" der VE
= sp³-Hybridisierung

tetraedrisch
angeordnete
Orbitale
(Hybridisierung "kostet" 4 eV)

kovalente FK-Bindung:

Überlapp der Orbitale benachbarter Atome, sehr stark gerichtete tetraedrische Bindung

Raumfüllung gering: Diamant: 34% vgl. Kugelpackung (fcc, hcp): 74%.

I.4.2 Kovalente Bindung im Festkörper

kovalent gebundene FK Gruppe IV: Diamant, Si, Ge

Gruppe-IV-Elemente: 4 fehlende Elektronen zur vollen Schale

Realisierung voller Schale durch Elektronenpaarbindungen mit 4 Nachbarn

=> 4 kovalente Bindungen

sp³-Hybridisierung

=> tetraedrisch angeordnete Orbitale

kovalente FK-Bindung:

Überlapp der Orbitale benachbarter Atome, sehr stark gerichtete tetraedrische Bindung

sp³ Hybridisierung

(a) s, pz, py, and pz wave functions

(b) sp³ hybridized wave functions

sp³ Hybridisierung

$$\psi_1 = \frac{1}{2}(s + p_x + p_y + p_z),$$

$$\psi_2 = \frac{1}{2}(s + p_x - p_y - p_z),$$

$$\psi_3 = \frac{1}{2}(s - p_x + p_y - p_z),$$

$$\psi_4 = \frac{1}{2}(s - p_x - p_y + p_z).$$

Abb. 1.4. Die tetraedrische Konfiguration nächster Nachbarn in den Gittern von C, Si, Ge und α -Sn. Sie ist eine Folge der dadurch ermöglichten periodischen Anordnung im dreidimensionalen Raum und der Ausbildung von sp^3 -Hybrid Orbitalen aus den Wellenfunktionen s, p_x , p_y und p_z

sp² Hybridisierung

$$\psi_{1} = \frac{1}{\sqrt{3}} (s + \sqrt{2} p_{x}),$$

$$\psi_{2} = \frac{1}{\sqrt{3}} \left(s - \frac{1}{\sqrt{2}} p_{x} + \sqrt{\frac{3}{2}} p_{y} \right),$$

$$\psi_{3} = \frac{1}{\sqrt{3}} \left(s - \frac{1}{\sqrt{2}} p_{x} - \sqrt{\frac{3}{2}} p_{y} \right)$$

$$\downarrow_{2}$$

(a) sp² hybridized wave functions

(b) p, wave function

Beispiel für sp² Hybridisierung: Benzol

Fig. 5-28. Benzene molecular orbitals. (a) Localized σ-bonds; (b) unlocalized π-bonds.

IV.4.3 Teil-ionischer Charakter

gradueller Übergang von kovalenter zu ionischer Bindung

GaAs **ZnSe** KBr Ge IV III-V II-VI I-VII kovalent ionisch Zunahme des ionischen Anteils ionischer Anteil 0 0,32 0.63 0.95

Elektronegativität (nach Phillips)

= Trend zu e-Einfang

Variation des ionischen Anteils bei III-V und II-VI:

Trend innerhalb III-V und II-VI:

ionischer Anteil um so höher, je größer das "Kation" (Gr.III bzw. II), und je kleiner das "Anion" (Gr.V bzw VI).

gemeinsames Elektronenpaar zunehmend in "Anion"-Nähe

Grad des ionischen Charakters

Tabelle 3.8: Grad des ionischen Charakters der Bindung in binären Kristallen. Nach J.C. Philips, Bonds and Bands in Semiconductors, Academic Press, 1973, Kap. 2

Kristall	Grad des ioni- schen Charakters	Kristall	Grad des ioni- schen Charakters
Si	0,00		
SiC	0,18	GaAs	0,31
Ge	0,00	GaSb	0,26
ZnO	0,62	AgCl	0,86
ZnS	0,62	AgBr	0,85
ZnSe	0,63	AgI	0,77
ZnTe	0,61		•, • •
{		MgO	0,84
CdO .	0,79	MgS	0,79
CdS	0,69	MgSe	0,79
CdSe	0,70		0,17
CdTe	0,67	LiF	0,92
		NaCl	0,94
InP	0,42	RbF	0,96
InAs	0,36	-102	0,70
InSb	0,32		

rabelle 6: Grad des ionischen Charakters einer Bindung in zweiwertigen Kristallen. Nach J. C. Phillips, Phys. Rev. Letters 22, 705 (1969); Physics Today 23, Febr. 1970, S. 23

Kristall	Grad des ioni- schen Charakters	Kristáll	Grad des ioni- schen Charakters
Si	0,00		
SIC	0,18	CuCl	0,75
Ge	0,00	CuBr	0,74
ZnO	0,62	AgCl	0,86
ZnS	0,62	AgBr	0,85
ZnSe	0,63	AgI	0,77
ZnTe	0,61	MgO	0,84
CdO	0,79	MgS	0,79
CdS	0,69	MgSe	0,79
CdSe	0,70		0.00
CdTe	0,67	LiF NaCl	0,92 0,94
InP	0,44	RbF	0,96
InAs	0,35		tur estat leterati
InSb	0,32		
GaAs GaSb	0,32 0,26		

Man sieht NaCl als typischen Ionenkristall an, während SiC und GaAs ²¹) als weitgehend kovalent gelten. Atome mit fast aufgefüllten Schalen (Na, Cl) gehen im allgemeinen ionische Bindungen ein, die Atome in den Spalten III, IV und V des Periodensystems tendieren zur kovalenten Binddung (In, C, Ge, Si, As). Die Stärke der kovalenten Bindung wird in Tabelle 7 angegeben.

Bindungsenergien einiger monoatomarer kovalenter Festkörperkristalle

Tabelle 7: Bindungsenergien für eine einzelne kovalente Bindung zwischen gleichen Atomen. (Nach Pauling.)

H-H 4,5 104 P-P 2,2 C-C 3,6 83 O-O 1,4	Bin	dungsene	rgie	Bin	dungsen	ergie
C-C 3,6 83 0-0 1,4	Bindung	eV	kcal/Mol	Bindung	eV	kcal/Mol
C-C 3,6 83 O-O 1,4	H - H	4,5	104	P-P	2, 2	51
	C-C	3,6	83	0-0		33
51-51 1,0 42 Te-Te 1.4	Si - Si	1,8	42	Te - Te	1,4	33
Ge - Ge 1,6 38 Cl - Cl 2,5	Ge – Ge	1,6	38	C1 - C1		58

Elektronendichteverteilung

berechnete lokale Dichte der Bindungselektronen

Verschiebung des Dichtemaximums zum Anion hin ist Maß für Bindungspolarität

ZnSe → GaAs abnehmende Bindungspolarität.

kovalent symmetrische e-Dichte

l.1	Überblick		
	I.1.1	Schema der Bindungstypen	
	1.1.2	Elektronenkonfiguration der Elemente	
	I.1.3	Eigenschaften & Konsequenzen der Bindung	
1.2	Van der Waals Bindung, Edelgaskristalle		Gruppe VIII
	1.2.1	Van-der-Waals-Wechselwirkung	
	1.2.2	Lennard-Jones-Potential	
	1.2.3	3-dim. v.d.Waals-Kristall	
1.3	lonenkristalle		Verbindungen I-VII
	1.3.1	Energiebilanz des Ionenpaares	
	1.3.2	Bindungsenergie im Kristall	
1.4	Kovalente Bindung		besonders Gruppe IV
	1.4.1	Elektronenpaarbindung	und
	1.4.2		Verbindungen III-V, II-V
	1.4.3	Teil-ionischer Charakter	(auch teilw. I-VII)
1.5	Metallische Bindung		
	1.5.1	sp-Metalle	Gruppe I, II, III
	1.5.2	Übergangsmetalle	
1.6	Wassers		

I.5 Metallische Bindung

I.5.1 sp-Metalle

Gruppe 1: Alkali Li, Na, K, ...

Gruppe 2: Erdalkali Be, Mg, Ca, ..

Zn, Cd, Hg

Gruppe 3: Al, Ga, In, ..

- "freie" e- (1 bzw. 2 pro Atom), bilden "Elektronengas" => Ionenrümpfe in e--See eingebettet
- → elektrische Leitfähigkeit, optisch: metallische Reflexion
- Energetisch eigentlich nicht stabil, wenn kin. E. der e- berücksichtigt (klassisch)
- QM: e- im Metall bilden ein Energieband (FK 1b)
 - => Absenkung der Energie
 - => Stabilität
- relativ geringe
 Bindungsenergie: ≈ eV

- große Atomabstände im Gitter (zur Reduzierung der kin. Energie der e- und der Abstoßung zwischen Kernen)
- Gitter: bcc, fcc, hcp.
- Schmelzpkt.: < 300K bis > 1000 K

I.5.2 Übergangsmetalle

Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ag, Au, Pd, Pt,

- ebenfalls s- und p- Bindung = Elektronensee
- <u>zusätzlich</u> starke kovalente Bindung insbesondere durch d-Elektronen ("d-Metalle") = "Gerüst"
- höhere Bindungsenergien als s,p-Metalle: E_B ≥ 3 eV
- sehr starke Bindung z.B. für Wolfram $E_B = 8.6 \text{ eV}$

Schmelzpunkt: 3695K

d-Elektronen sehr wichtig für physikalische Eigenschaften

Magnetismus wegen teilweise gefüllter d-Schale: Netto-magnetisches Moment

Bsp. Ferromagnete Fe $T_{\text{curie}} = 1043 \text{ K}$

Co $T_{\text{Curie}} = 1388 \text{ K}$

Ni $T_{\text{Curie}} = 627 \text{ K}$

Optik: Farbeindruck z.B. Cu, Au

Ursache: Absorption in Teilbereich des VIS

durch Anregung von d-Elektronen

d.h. unvollständige Reflexion

l.1	Überblick		
	1.1.1	Schema der Bindungstypen	
	I.1.2	Elektronenkonfiguration der Elemente	
	I.1.3	Eigenschaften & Konsequenzen der Bindung	
1.2	Van der Waals Bindung, Edelgaskristalle		Gruppe VIII
	1.2.1	Van-der-Waals-Wechselwirkung	
	1.2.2	Lennard-Jones-Potential	
	1.2.3	3-dim. v.d.Waals-Kristall	
1.3	lonenkristalle		Verbindungen I-VII
	1.3.1	Energiebilanz des Ionenpaares	
	1.3.2	Bindungsenergie im Kristall	
1.4	Kovalente Bindung		besonders Gruppe IV
	1.4.1	Elektronenpaarbindung	und
	1.4.2		Verbindungen III-V, II-V
	1.4.3	Teil-ionischer Charakter	(auch teilw. I-VII)
I.5	Metallische Bindung		
	1.5.1	sp-Metalle	Gruppe I, II, III
	1.5.2	Übergangsmetalle	
1.6	Wassers	toffbrückenbindung	

IV.6 Wasserstoffbrückenbindung F-H-F, O-H-O, O-H-N etc.

Bindung zwischen 2 stark elektronegativen Atomen

starke Tendenz zum e-Einfang N, O, F
Elektroneg.-Wert: 3,0 3,5 4,0

- H-Atom kann 2 Bindungspartner haben, obwohl selbst nur einwertig
- Bindungsenergie gering: ≈ 0,1 eV / H-Atom
- Bindung hat ionischen Charakter
 → "nacktes" Proton

extrem wichtig in *Biologie*: z.B. Doppelhelix in DNA und mitverantwortlich für spezielle Eigenschaften des *Wassers* (neben Dipolmoment): in Eis H-Brücken zwischen O-Atomen → Tetraeder

Wasserstoffbrückenbindung in Wasser

"Vernetzung" der Wassermoleküle durch Wasserstoffbrückenbindungen:

Hohe Polarität des Wassers führt zur Ausbildung der Wasserstoffbrücken

H-Atom ist an ein O-Atom kovalent gebunden, zu dem anderen durch die Wasserstoffbrücke

=> Äquivalente Bindungspartner, Potentialverlauf mit "Doppelmulde", H-Atom (und damit der Bindungstyp) wechselt ständig zwischen den beiden O-Atomen

Doppelmuldenpotential ist charakteristisch für die Wasserstoffbrückenbindung. Die Eigenschaften des Wassers sind bei Weitem noch nicht endgültig erforscht.

Phasendiagramm von Eis

Hexagonales und kubisches Eis

Hexagonal ("normale" Phase)

Kubisch (metastabil bei T > 153 K)

DNA Röntgenstrukturanalyse

Nobelpreis für Medizin 1962

Francis Crick

Maurice Wilkins

Röntgenbeugungsbild DNA Natriumsalz

