Geometria simplética

Além do material do curso, uso bastante Lee, Intro. to Smooth Manifolds, e Tong, Lectures on Classical Mechanics.

1 Aula 1

1.1 Origem da geometria simplética

- Formulação da geométrica da mecânica (séc XIX).
- Versão moderna, 1960-70.
- Diferentes descripções da mecânica clásica:
 - Newtoniano: F = ma, ecuação diferencial ordinária de segunda ordem.
 - Lagrangiano: princípio gravitacional (Eq. E-L). Following Tong, these equations are:
 - Hamiltoniano.

1.2 Formalismo hamiltoniano (simplificado)

This happened in the 1880's (according to Tong).

- Espaço de base $\mathbb{R}^2 = \{(p,q)\}$ (conjunto de estados)
- Função Hamiltoniana $H \in C^{\infty}(\mathbb{R}^{2m})$.
- Campo Hamiltoniano: $X_H \in \mathfrak{X}(\mathbb{R}^{2n})$.

$$X_{H} = \begin{pmatrix} \frac{\partial H}{\partial p_{i}} \\ -\frac{\partial H}{\partial q_{i}} \end{pmatrix} = \begin{pmatrix} 0 & | Id_{n} \\ -Id_{n} & 0 \end{pmatrix}$$

Which coincides with Lee's formula

$$\begin{split} \dot{x}^i(t) &= \frac{\partial H}{\partial y^i}(x(t),y(t)),\\ \dot{y}^i(t) &= -\frac{\partial H}{\partial x^i}(x(t),y(t)) \end{split}$$

where Lee defined the *Hamiltonian vector field* as the *analogue of the gradient with respect to the symplectic form*, that is, satisfying $\omega(X_H,Y)=dH(Y)$ for any vector field Y.

Also look at Tong's formulation:

$$\begin{split} \dot{p}_i &= -\frac{\partial H}{\partial q_i} \\ \dot{q}_i &= \frac{\partial H}{\partial p_i} \\ -\frac{\partial L}{\partial t} &= \frac{\partial H}{\partial t} \end{split}$$

where L is the Lagrangian and the Hamiltonian function H is obtained as the Legendre transform of the Langrangian. Tong shows how the Hamiltonian formalism allows to replace the \mathfrak{n} 2nd order differential equations by $2\mathfrak{n}$ 1st order differential equations for q_i and p_i .

In practice, for solving problems, this isn't particularly helful. But, as we shall see, conceptually it's very useful!

At least for me, it looks like a first insight on why symplectic geometry lives on even-dimensional spaces.

1.3 Evolução temporal (equações de Hamilton)

Curvas integrais

$$c(t) = (q_{\mathfrak{i}}(t), p_{\mathfrak{i}}(t))$$

de X_H, ie.

$$c'(t) = X_H(c(t)) \iff \begin{cases} \dot{q}_{\mathfrak{i}} &= \frac{\partial H}{\partial p_{\mathfrak{i}}} \\ \dot{p}_{\mathfrak{i}} &= \frac{\partial H}{\partial q_{\mathfrak{i}}} \end{cases}$$

que são as *Equações de Hamilton* (de novo).

Exemplo. Partícula de massa m em $\mathbb{R}^3 = \{q_1, q_2, q_3\}$ sujeita a campo de força conservativa

$$F = -\nabla V, \quad V \in C^{\infty}(\mathbb{R}^3)$$

$$q(t) = (q_1, q_2, q_3)$$

Equação de Newton:

$$\label{eq:mapping} m\ddot{q} = \partial V(q) \iff m\ddot{q}_{\mathfrak{i}} = \frac{\partial V}{\partial q_{\mathfrak{i}}}(q) \text{,} \qquad \mathfrak{i} = 1,2,3.$$

Ponto de vista Hamiltoniano:

- Espaçode fase $\mathbb{R}^5 = \{(q_i, p_i)\}.$
- Hamiltoniano: $H(p,q) = \frac{1}{2m} \sum_i p_i^2 + V(q)$
- Equações de Hamilton

$$\begin{cases} \dot{q}_{i} = p_{i}/m \iff p_{i} = m\dot{q}_{i} \\ \dot{p}_{i} = -\frac{\partial V}{\partial q_{i}} \end{cases}$$

$$H \in C^{\infty}(\mathbb{R}^{2n}) \longrightarrow \nabla H \xrightarrow{-J_0 \nabla H} X_H$$

where $J_0 = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$. So it looks like another way of obtaining (defining?) the Hamiltonian vector field is to take the gradient of H and then applying J_0 . So it would be nice to see eventually that this is the same as Lee's definition of "symplectic gradient" so to say.

Compondo ∇H e X_H : taxa de variação de H ao longo dos fluxos. Mas: o que é a composição de dois campos vetoriais? Tal vez é a derivada exterior de H, dH em lugar do gradiente de H.

• Fluxo gradiente

$$\begin{split} c'(t) &= \nabla H(c(t)) \\ \frac{d}{dt} H(c(t)) &= \langle \nabla H(c(t)), c'(t) \rangle = \| \nabla H(c(t)) \|^2 \end{split}$$

 ∇ H aponta na direção que H variação.

• Fluxo hamiltoniano

$$\begin{split} c'(t) &= X_H(c(t)) \\ \frac{d}{dt} H(c(t)) &= \langle \nabla H(c(t)), c'(t) \rangle \\ &= \langle \nabla H(c(t)), -J_0 \nabla H(c(t)) \rangle \\ &= 0 \end{split}$$

?, $H \in C^{\infty}(\mathbb{R}^{2n})$, $H \rightsquigarrow dH \in \Omega^{1}(\mathbb{R}^{2n})$.

• *Gradiente*. $\nabla H(x) \in T_x \mathbb{R}^{2n} = \mathbb{R}^{2n}$ é único.

$$g_0(\nabla H(x), \cdot) = \langle \nabla H(x), \cdot \rangle = dH(x)$$

onde q₀ é a métrica Euclidiana. De outra forma,

$$g_0^{\flat}: \mathbb{R}^{2n} \xrightarrow{\sim} (\mathbb{R}^{2n})^*$$
$$u \mapsto g_0(u, \cdot)$$

assim,

$$\nabla H(x) \stackrel{\sim}{\to} dH(x).$$

Analogamente, $X_H(x) \in \mathbb{R}^{2n}$ é único tal que?

$$\Omega_0(X_H(x), \cdot) = dH(x), \qquad \Omega_0(u, v) = -dJ_0V,$$

ou:

$$\Omega_0^{\flat}: \mathbb{R}^{2n} \xrightarrow{\sim} (\mathbb{R}^{2n})^*$$
$$X_{\mathsf{H}}(x) \longleftrightarrow d\mathsf{H}(x)$$

Observação. Note que Ω_q define uma 2-forma (c...?) em $\mathbb{R}^{2n} = \{(q_i, p_i)\}$.

$$\omega_0 = \sum_{i=1}^n dq_i \wedge dp_i \in \Omega_2(\mathbb{R}^{2n}),$$

 X_H é único tal que $i_{X_H}\omega_0=dH$. So this was Lee's definition $\ddot{\smile}$.

Definição (temporária). Uma *variedade simplética* é (M, ω) , $\omega \in \Omega^2(M)$ localmente isomorfa a $(\mathbb{R}^{2n}, \sum_i dq_i \wedge dp_i)$.

[Dessenho mostrando que o pullback da carta coordenada leva ω em $\sum_i dq_i \wedge dp_i$.

Teorema (de Darboux, em Lee). Let (M, ω) be a 2n-dimensional symplectic manifold. For any $p \in M$ there are smooth coordinates $(x^1, \ldots, x^n, y^1, \ldots, y^n)$ centered at p in which ω has the coordinate representation $\omega = \sum_{i=1}^n dx^i \wedge dy^i$.

And Lee does a proof using the theory of time-dependant flows.

1.4 Álgebra linear simplética

V espaço vetorial real, $\Omega: V \times V \to \mathbb{R}$ forma bilinea ansimétrica, i.e. $\Omega \in \Lambda^2 V^*$.

Definição. Ω é não degenerada se $\Omega(\mathfrak{u}, \mathfrak{v}) = 0 \forall \mathfrak{v} \iff \mathfrak{u} = 0$.

Following Lee, this can also be stated as: for each nonzero $v \in V$ there exists $w \in V$ such that $\omega(v,w) \neq 0$; and it is equivalent to the linear map $v \mapsto \omega(v,\cdot) \in V^*$ being invertible, and also that in terms of some (hence every) basis, the matrix (ω_{ij}) representing ω is nonsingular.

Ou seja, se

$$\ker \Omega := \{ u \in V | \Omega(u, v) = 0 \ \forall v \}$$

então Ω é não degenerada se e somente se $ker(\Omega) = \{0\}$.

 $\Omega \in \Lambda^2 V^*$ é não degenerada é chamada simplética. (V,Ω) é um *espaço vectorial simplético*.

Observação.

1. $\{e_1,..,e_n\}$ base de V, Ω é representado por uma matriz antisimétrica

$$A = (A_{ij}), \qquad A_{ij} = \Omega(e_i, e_j), \qquad \Omega(u, v) = u^t A, v.$$

2. Ω é não degenerada se e somente se $det(A) \neq 0$.

Note que

$$\det A = \det A^t = \det(-A) = (-1)^{\dim V} \det(A)$$

implica que
$$\det A \neq 0 \implies m = \dim V = 2n$$

3. $\Omega \in \Lambda^2 V^*$. Defina

$$\Omega^{\flat}: V \longrightarrow V^*$$
$$u \longmapsto \Omega(u, \cdot)$$

note que $\ker \Omega = \ker(\Omega^{\flat})$, assim Ω é não degenerada se e somente se Ω^{\flat} é isomorfismo.

2 Aula 2

2.1 Subespaços de evs

Sejam (V, Ω) evs e $V \subseteq V$ subespaço.

Definição.

$$W^{\Omega} := \{ \mathbf{u} \in |\Omega(\mathbf{u}, w) = 0 \ \forall w \in W \}$$

Considere a restrição de Ω à W:

$$i: W \hookrightarrow V$$
 $i^*\Omega(\Omega|_W \in \Lambda_2 W^*$

então

$$\ker(\Omega|_{W}) = \{ w \in W | \Omega(w, w') = 0 \ \forall w' \in W \} = W \cap W^{\Omega}$$

Casos de interesse:

- *Isotrópico*: $W \subseteq W^{\Omega}$ ($\iff \Omega|_W \equiv 0$).
- Coisotrópico: $W^{\Omega} \subseteq W$.
- Lagrangiano: $W = W^{\Omega}$.
- *Simplético*: $W \cap W^{\Omega} = \{0\}$ ($\Omega|_W$ é não degenerado (=simplético)).

Lema. $\dim W + \dim W^{\Omega} = \dim V$.

Demostração.

$$\begin{split} \Omega^1: V &\stackrel{\sim}{\to} V^* \\ \mathfrak{u} &\longmapsto \Omega(\mathfrak{u}, \cdot) \end{split}$$

Note que $W^{\Omega} \mapsto \operatorname{Ann}(W)$, assim

$$\dim W + \dim \operatorname{Ann}(W)' = \dim V$$

Observação.

- $W \subseteq V$ subespaço simplético se e somente se $V = W \oplus W^{\Omega}$.
- W isotrópico \implies dim $W \leqslant \frac{\dim V}{2}$.
- W coisotrópico \implies dim $W \geqslant \frac{\dim V}{2}$.
- W Lagrangiano se dim $W = \frac{\dim V}{2}$.

De fato, W é Lagrangiano se e somente se W é isotrópico e dim $W = \frac{\dim V}{2}$.

Exercício.

- $(W^{\Omega})^{\Omega} = \Omega$ (W isotrópico se e somente se W^{Ω}).
- $(W_1 \cap W_2)^{\Omega} = W_1^{\Omega} + W_2^{\Omega}$.

Exemplo.

- Subespaços de dimensão 1 são isotrópicos (subespaços de codimensão 1 são coisotrópicos).
- $V = V \oplus W^*$, onde V tem a forma Ω_{can} ? e W e W^* são Lagrangianos.
- \mathbb{R}^{2n} , $\{e_1, \dots, e_n, f_1, \dots, f_n\}$ base simplética, então span $\{e_i, f_i\}$ é simplético, e span $\{e_1, \dots, e_k\}$ é isotrópico (se k = n é Lagrangiano).
- (V_1,Ω_1) e (V_2,Ω_2) evs's, $T:V_1\to V_2$ isometría linear, $graf(T):=\{(\mathfrak{u},T\mathfrak{u}):\mathfrak{u}\in V_1\}\subseteq V_1\times V_2$. T é simplectomorfismo se e somente se graf(T) é um subespaço Lagrangiano em $V_1\times V_2$.
- $\bullet \ dim \, graf(T) = dim \, V_1 = \tfrac{1}{2} \, dim (V_1 \times V_2).$
- $\bullet \ \Omega_{V_1 \times \bar{V_2}}\big((u,\mathsf{T} u),(\nu,\mathsf{T} \nu)\big) = \Omega\big(u,\nu\big) \underbrace{\Omega_2(\mathsf{T} u,\mathsf{T} \nu)}_{=\mathsf{T} * \Omega_2(u,\nu)} (=0 \iff \Omega_1 = \mathsf{T}^*\Omega_2).$

Teorema (Existência das bases simpléticas). Para cualquer (V, Ω) evs existe uma base simplética.

Demostração. Seja $e_1 ∈ V \setminus \{0\}$. Como Ω é não degenerada, existe $f_1 ∈ V$ tal que $\Omega(e_1, f_1) = 1$. Considere $W_1 = \text{span}\{e_1, f_1\}$. Então $\Omega|_{W_1}$ é não degenerado (ie. W_1 é simplético), o que acontece se e somente se $V = W_1 \oplus W_1^{\Omega}$. Assim, existem $e_2 ≠ 0$ in W_1^{Ω} e $f_2 ∈ W_1^{\Omega}$ tal que $\Omega(e_2, f_2) = 1$, etc. . . $(V = W_1 \oplus W_2 \oplus ... \oplus W_n)$. O conjunto $\{e_1, ..., e_n, f_1, ..., f_n\}$ é uma base simplética. \square

Exercício. V ev de dimensão 2n e $\Omega \in \Lambda^2 V^*$ é não degenerada se e somente se $\Omega^n = \Omega \wedge \ldots \wedge \Omega \in \Lambda^{2n} V^* \neq 0$.

2.2 Equivalência entre ev's simpléticos

 (V,Ω) e (V',Ω') são *equivalentes* se existe um *simplectomorfismo* linear $\phi:V\stackrel{\sim}{\to}V'$ (isometría linear) tal que

$$\phi^*\Omega'=\Omega\in\Lambda^2V^*$$

onde

$$\varphi^*\Omega'(\mathfrak{u},\mathfrak{v}) = \Omega'(\varphi(\mathfrak{u}),\varphi(\mathfrak{v}).$$

Dado (V, Ω) evs, definimos

$$Sp(V) := \{T \in GL(V) | T^*\Omega = \Omega\}$$

Exemplo.

1. $V = \mathbb{R}^{2n}$, $\Omega_0(\mathfrak{u}, \mathfrak{v}) = -\mathfrak{u}^T J_0 \mathfrak{v}$ onde $J_0 = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$, com base canônica $\{e_1, \dots, e_n, f_1, \dots, f_n\}$. Temos

$$\begin{cases} \Omega_0(e_i, e_j) = 0\\ \Omega_0(e_i, f_j) = \delta_{ij}\\ \Omega_0(f_i, f_j) = 0 \end{cases}$$
 (1)

Definição. Uma base de (V, Ω) satisfazendo eq. (1) é chamada *base simplética*.

Following Lee, Example. 22.2, the condition may be that $\Omega = \sum_{i=1}^n \alpha^i \wedge \beta^i$ where α^i and β^i are just the dual basis covectors of the base $\{A_1,\ldots,A_n,B_1,\ldots,B_n\}$ of V.

Observação. Escolher/Achar uma base simplética é equivalente à escolher/achar um simplectomorfismo

$$(V,\Omega) \stackrel{\sim}{\to} (\mathbb{R}^{2n},\Omega_0)$$

2. W espaço vetorial sobre \mathbb{R} , sejam $V=W\oplus W^*$, $w,w\in W$ e $\alpha,\alpha\in W^*$

$$\Omega_2((w,\alpha),(w',\alpha')) := \alpha'(w) - \alpha(w')$$

é não degenerada e anti-simétrica. Assim,

$$(W \oplus W^*, \Omega_?)$$

é um espaço vetorial simplético.

Observação. Se $\{e_1, \dots, e_n\}$ é uma base simplética de W e $\{f_1, \dots f_n\}$ é a base dual de W^* , então

$$(W \oplus W^*, \Omega_? \cong (\mathbb{R}^{2n}, \Omega_0).$$

Note que ainda que dado

$$A: W \xrightarrow{\sim} W$$

automorfismo?,

$$\mathsf{T}_\mathsf{A} := \begin{pmatrix} \mathsf{A} & \mathsf{0} \\ \mathsf{0} & (\mathsf{A}^*)^{-1} \end{pmatrix} : \mathsf{W} \oplus \mathsf{W}^* \to \mathsf{W} \oplus \mathsf{W}^*$$

é simplectomorfismo, $(T_A = A \oplus (A^*)^{-1})$.

Moral: $GL(W) \hookrightarrow Sp(W \oplus W^*)$

$$EV \xrightarrow{\text{funtor}} EVS$$

$$A \circlearrowleft W \longmapsto W \oplus W^* \circlearrowleft \mathsf{T}_A$$

3. V ev sobre \mathbb{C} , $dim_{\mathbb{C}}=n$, com produto interno hermitiano

$$h: V \times V \rightarrow \mathbb{C}$$

i.e. satisfazendo

- (a) $h(u, \lambda v) = \lambda h(u, v) \ \forall \lambda \in \mathbb{C}$,
- (b) $h(u,v) = \overline{h(v,w)}$,
- (c) $h(u,u) > 0 \forall u \neq 0$,

pode ser escrito como

$$h(u,v) = g(u,v) + i\Omega(u,v)$$

Agora considere V como espaço vetorial sobre \mathbb{R} (de dimensão 2n).

Exercício.

- g é produto interno positivo definido.
- Ω é antisimétrica, não degenerada (simplética).
- Ache uma base de V (dica: extensão de base ortonormal de h...)
- $U(\mathfrak{n}) \subset SP(V, \Omega)$.
- 4. Produto direto: (V_1, Ω_1) , (V_2, Ω_2) espaços vetoriais.

Tem a forma simplética é o pullback:

$$\Omega := \pi_1^* \Omega_1 + \pi_2^* \Omega_2$$

ou seja,

$$\Omega((u_1, u_2), (v_1, v_2)) := \Omega_1(u_1, v_1) + \Omega_2(u_2, v_2),$$

que é não degenerado e antsimétrico também.

Notação: se (V, Ω) é um espaço vetorial simplético, denotamos por $(V, -\Omega) := \bar{V}$, que também é um evs.

- 3 Aula 3
- 4 Aula 4
- 5 Aula 5

Lembranza da última aula:

- 1. Definição de variedade simplética.
- 2. Pelo menos dois exemplos.
- 3. Forma de volume/orientabilidade.
- 4. Campos simpléticos/campos hamiltonianos.
- 5. Obstrução cohomológica de para estrutura simplética.

Hoje: Fibrados cotangentes.

Seja Q uma variedade e M := T*Q o fibrado cotangente.

Lembrando Se Q é uma variedade, $x \in Q$. O *espaço tangente* em x são derivações ou clases de equivalencia de curvas... base local do espa ço tangente ∂_{x_i} ... base dual disso é base do espaço cotangente nesse ponto... o fibrado cotangente $\bigsqcup_{x \in Q} \mathsf{T}_x^* Q$ é variedade suave.

O fibrado cotangente possui uma 1-forma tautológica definida assim:

Definição. $\alpha \in \Omega^1(M)$, onde $M := T^*Q$, dada por

$$\alpha_p(X) = p(\pi_*(X))$$

ou seja, como X é tangente ao fibrado cotangente, ele está anclado a algum covetor, assim a gente pode evaluar ele no covector. Também pode ser pensado como o pullback de um covector em Q baixo a projeção cotangente usual.

Em coordenadas locais $(x_1, ...,$

Exercício.

1. A 1-forma tautológica $\alpha \in \Omega^1(T^*Q)$ é a única 1-forma satisfazendo

$$\forall \mu \in \Omega^1(Q), \qquad \mu^*\alpha = \mu$$

onde pensamos a μ do lado izquerdo como um mapa $\mu: Q \to T^*Q$, ie. uma seç ão do fibrado cotangente, e do lado direito simplesmente como uma 1-corma em Q.

Definição. $M = T^*Q$, $\alpha \in \Omega^1(M)$ então a *forma simplética canónica* de T^*Q é

$$\omega_{can} = -d\alpha$$

Observação.

- $d\omega_{can} = -d^2\alpha = 0$.
- Formalmente $\omega = \sum_{i=1}^{n} dx_i \wedge d\xi_i$

Assim, temos uma variedade simplética canónica associada a toda variedade, (T^*Q, ω_{can}) .

Observação.

• Dado $B \in \Omega^2(Q)$ com dB = 0, a forma

$$\omega_B \omega_{can} + \pi^* B$$

é simplética e o termo π^*B se chama de *magnético*.

• Se Q é Riemanniana com métrica g temos o mapa induzido

$$g^{\sharp}: TQ \longrightarrow T^*Q$$

 $u \longmapsto g(u, \cdot)$

Assim, o pullback the ω_{can} é uma forma simplética em TQ.

Al ém disso, a métrica nos fornece de uma função Hamiltoniana dada por $H \in C^{\infty}(TQ)$, $H(\nu) = \frac{1}{2}g(\nu,\nu) = \frac{1}{2}\|\nu\|^2$.

Veremos que o fluxo Hamiltoniano de H em (TQ, ω) é fluxo geodésico em Q.

Tem dois generalizações naturais:

- $\bar{\mathsf{H}}(\nu)=\frac{1}{2}g(u,\nu)+V(x)$ com $V\in C^\infty(Q)$, mecânica clásica.
- $H(v) = \frac{1}{2}g(v,v)$ com respeito a ω_B .

Pergunta (Projeto?). Existência de órbitas periódicas em níveis de energia?

Definição. O *levantamiento cotangente* de um difeomorfismo (na mesma direção do difeomorfismo) é $\varphi: Q_1 \xrightarrow{\sim} Q_2$ é $\hat{\varphi} = ((T\varphi)^*)^{-1}$.

Pergunta. Preserva a forma canónica?

Proposicição. Sim. $\hat{\varphi}: T^*Q_1 \to T^*Q_2$ satisfaz $\hat{\varphi}^*\alpha_2 = \alpha_1$ onde α_i é a forma tautológica, para i = 1, 2. Isso implica que $\hat{\varphi}^*\omega_2 = \omega_1$.

Isso implica que temos um funtor $Q \leadsto T^*Q$ que se chama de *funtor cotagente* e permite levar problemas de geometria diferencial para a geometria simpl ética.

Demostração.

$$\begin{array}{ccc} T^*Q_1 & \stackrel{\phi}{\longrightarrow} & T^*Q_2 \\ \downarrow^{\pi_1} & & \downarrow^{\pi_2} \\ Q_1 & \stackrel{\phi}{\longrightarrow} & Q_2 \end{array}$$

A clave dessa prova é que o diagrama commuta, assim pode se-trocar um termo $\pi_2 \circ \hat{\phi}$ por $\phi \circ \pi_1$.

O funtor que produzimos $Dif(Q) \hookrightarrow Simp(T^*Q \text{ não e fiel (surjetivo), ie. existem simplectomorfismos no fibrado cotangente que não vem de difeomorfismos na variedade.$

Observação. Dada uma 1-forma $A \in \Omega^1$. Pode se-produzir um mapa no cotangente simplesmente trasladando por A:

$$T_A: T^*Q \longrightarrow T^*Q$$

 $(x, \xi) \longmapsto (x, \xi + A_x)$

que não pode ser um levantamento porque se projecta na identidade!

Exercício. T_A é um simplectomofrismo \iff dA = 0.

Mas, como sabemos quais simplectomorfismos no cotangente são sim levantamentos de difeomorfismos na variedade?

Exercício. Seja $F: T^*Q \to T^*Q$ um simplectomorfismo. Quando $F = \hat{\phi}$ é levantamento de algum $\phi: Q \xrightarrow{\sim} Q$. Pois, isso acontece \iff F preserva a forma tautológica, ie. $F^*\alpha = \alpha$.

Observação. Levantamento cotangente de campos de vetores. Começa com um campo $X \in \mathfrak{X}(Q)$, integra para obter um fluxo ϕ_t , que é uma família de difeomorfismos na variedada, você sabe levantar isso com o funtor obtendo outro fluxo (porque levantamento de fluxo é fluxo) $\hat{\phi}_t$, e diferenciando obtém $\hat{X} \in \mathfrak{X}(T^*Q)$.

Observação. Para cualquer fibrado vetorial $E \to M$, podemos ver a seções $\Gamma(E)$ como um subconjunto das fun ções suaves na variedade $C^\infty(E)$ —são as funções lineares nas fibras. Aí tem um modo natural de definir para cualquer campo vetorial $X \in \Gamma(TQ) \subseteq C^\infty(T^*Q)$ uma função, $H_X(p) = p(X_{\pi(p)} = \alpha(\hat{X})$.

Proposicição. $\hat{X} = \text{campo Hamiltoniano de } H_X$.

6 Aula 6

Hoje: Colchete de Poisson, Darboux.

6.1 Colchete de Poisson

M variedade, $\omega \in \Omega^2(M)$ não degenerada (quase-simplética). Podemos fazer

$$w^{\flat}: TM \longrightarrow T^*M$$

 $x \longmapsto i_X \omega$

So that

$$f\in C^\infty(M) \leftrightsquigarrow X_f\in \mathfrak{X}(M)$$

e

$$i_{X_f}\omega = df$$
.

Definição. f, $g \in C^{\infty}(M)$.

$$\{\cdot,\cdot\}: C^{\infty}(M) \times C^{\infty}(M) \longrightarrow C^{\infty}(M)$$
$$\{f,g\} = \omega(X_g,X_f) = dg(X_f) = \mathcal{L}_{X_f}g = -\mathcal{L}_{X_g}f$$

Proposicição (Exercício). $d\omega = 0 \iff \{\cdot, \cdot\}$ satisfaz identidade de Jacobi. $\implies (M, \omega)$ simplética, $\{\cdot, \cdot\}$ é colchete de Lie em $C^{\infty}(M)$ e isso se chama de um *colchete de Poisson em* (M, ω) .

Exercício. $\{f, gh\} = \{f, g\}h + \{f, h\}g$.

Exemplo. \mathbb{R}^{2n} .

Definição. $f, g \in C^{\infty}(M)$ estão em *involução* se $\{f, g\} = 0$. ie. X_g é tangente aos níveis f = const (e vice versa).

Observação. Nesse caso, a derivada de g ao longo das curvas integrais de X_f é zero.

Motivação (M, ω) simplética, $H \in C^{\infty}(M)$ queremos integrar X_H (ie. resolver $c'(t) = X_H(c(t))$). Suponha que existe $f \in C^{\infty}(M)$ com $\{f, H\} = 0$, chamada *integral primeira*. ie. f é constante ao longo do fluxo Hamiltoniano.

No século XIX, quando Poisson vivia, a ideia era que se temos um número sufieiente de integrais primeiras "independentes", podemos "integrar" X_H. (Aqui "integrar" significa dar uma solução a equação diferencial do fluxo Hamiltoniano).

Em 1810, Poisson deu a fórmula

$$\{f,g\} = \sum_{i,j} \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i}.$$

Teorema (Poisson). $\{f, H\} = 0 = \{g, H\} \implies \{\{f, g\}, H\} = 0.$

Teorema (Jacobi).

$$\{H, \{f, g\}\} + \{g, \{H, f\}\} + \{f, \{g, H\}\} = 0$$

1880 Lie usou essa identidade no seu trabalho de transformações (álgebras de Lie).

Versão moderna (sec. XX) de integrabilidade Veremos adiante...

Teorema (Arnold-Liouville). (M, ω) de dimensão 2n e seu Hamiltoniano $H = f_1$ que é a primeira de uma sequencia de $n = \dim M/2$ funções independentes (as derivadas são linearmente independentes) $f_2, \ldots, f_n \in C^\infty(M)$ tais que $\{f_i, f_j\} = 0$ e que (f_1, \ldots, f_n) : $M \to \mathbb{R}^n$ é uma submersão. Então

$$N=\{(f_1,\ldots,f_n)=cte\}\cong \mathbb{T}^n$$

se compacto e conexo. Além disso, a dinâmica de X_H em \mathbb{T}^n é quase periódica (=é um fluxo linear no toro, que pode ser racional ou irracional).

Observação (Projeto?). Qué acontece com essa dinâmica no toro se perturbamos o sistema? O problema de dois corpos é completamente integravel. Por exemplo, a dinâmica da Terra e o Sol pode se-resolver, mas o problema adicionando a Lua é o problema de 3 corpos, que ninguém sabe cómo resolver. Aqui a Lua é uma perturbação.

Teorema KAM, quanto mais irracional é o fluxo, mais robusto é o toro, mais inestável.

Em fim, tudo isso para motivar os colchetes de Poisson.

6.2 Teorema de Darboux

 (M, ω) variedade simplética com o colchete $\{\cdot, \cdot\}$.

Observação.

1. ω está completamente determinada por $\{\cdot,\cdot\}$, ie. se duas estruturas simpléticas dão lugar ao mesmo colchete de Poisson, elas são iguais.Por que?

$$\omega^{\sharp}: T^*M \longrightarrow TM$$

está dada em cada ponto por

$$(\omega^{\sharp})_{ij} = \{x_i, x_j\}$$

por definição.

2. A estrutura simplética canónica $\omega_0=\sum_i dp_i\wedge dp_i$ em \mathbb{R}^{2n} está determinada (é a única tal que) por

$$\{q_i,q_j\} = 0 = \{p_i,p_j\}, \qquad \{p_i,q_j\} = \delta_{ij}.$$

É como se tivesse uma base simplética boa em todos os pontos...

Teorema (Darboux). (M, ω) simplética, ent...åo ao redor de todo ponto $x \in M$ existem coordenadas locais $(q_1, \ldots, q_n, p_1, \ldots, p_n)$ tais que $\omega = \sum_{i=1}^n dq_i \wedge dp_i$, ou, equivalentemente vale

$$\{q_i,q_j\}=0=\{p_i,p_j\},\qquad \{p_i,q_j\}=\delta_{ij}.$$

Tem um lema que va a provar essencialmente tudo.

Lema (Primeiro paso da indução). Ao redor de qualquer ponto $x \in M$ existem coordenadas $(q, p, y_1, ..., y_{2n-2}$ tais que

$$1 = \{p,q\}, \quad \{p,y_j\} = 0 = \{q,y_j\}, \qquad \{y_i,y_j\} = \phi_{ij}(y).$$

Ou seja, a matriz da forma é

$$\begin{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} & 0 & 0 & \dots & 0 \\ 0 & & & & \\ 0 & & & A(y) & & \\ 0 & & & & \end{pmatrix}$$

ou seja, temos uma expresão

$$\omega = dq \wedge dp + \omega_N$$

onde ω_N é dada por A(y) e é simplética.

*Demostração do Lema***Paso 1** Seja p uma função tal que $X_p(x) \neq 0$. Pelo teorema de fluxo tabular (retificação) existe uma função q tal que $X_p = \frac{\partial}{\partial q}$, de modo que $\{p,q\} = dq(X_p) = 1$ e $dp(X_q) = -1$.

Paso 2 Enão X_p e X_q são linearmente independentes, pois $1 = \{p, q\} = \omega(X_p, X_q) \neq 0$, o que aconteceria por antisimetria se são linearmente dependentes. Além disso, comutam, pois

$$\begin{bmatrix} X_p, X_q \end{bmatrix} \stackrel{\text{aula pasada?}}{=} X_{\{p,q\}=1} = 0.$$

Agora usamos a generalização do teorema do fluxo abular: se X_1,\ldots,X_k são campos linearmente independentes e que comutam, então existem coordenadas (x_1,\ldots,x_n) dais que $X_i=\frac{\partial}{\partial x_i}$. (Teo. função inversa.) Assim, existem coordenadas locais y_1,\ldots,y_{2n} tais que

$$X_q = \frac{\partial}{\partial y_{2n-1}} \qquad X_p = \frac{\partial}{\partial y_{2n}}.$$

Logo

$$dy_i(X_a) = 0 = dy_i(X_p)$$

para
$$j = 1, ..., 2n - 2$$
.

Paso 3 As diferenciais

$$dq, dp, dy_1, ..., dy_{2n-2}$$

são linearmente independentes, pois se

$$adq + bdp + \sum_{i} c_{ij}y_i = 0$$

pois as y_i já são LI, e avaliando em X_i obtemos $\alpha=0$, e no X_q que b=0.

Temos um sistema de coordenadas $(q, p, y_1, \dots, y_{2n-2})$ ao redor de x tal que as condições do teorema salvo a última se cumplem. Agora veamos que $\{y_i, y_j\}$ não depende de p, q.

Paso 4 Só lembrar que

$$X_q = -\frac{\partial}{\partial p}, \qquad X_q = \frac{\partial}{\partial q}$$

assim

$$\frac{\partial}{\partial p}\{y_i,y_j\} = -\{q,\{y_i,y_j\}\} = 0$$

onde a segunda igualdade é jacobi. Fim.

Demostração do Teo. Darboux. Segue do lema por indução

Definição. Uma estrutura de Poissom em uma variedade M é

$$\{\cdot,\cdot\}:C^{\infty}(M)\times C^{\infty}(M)\longrightarrow C^{\infty}(M)$$

 \mathbb{R} -bilinear, antisimétrica, Jacobi e Leibniz, ie. $\{f,gh\} = \{f,g\}h + \{f,h\}g$.

Exemplo.

 $\bullet \ (M,\omega) \ simpl \ \text{\'etica com} \ \{f,g\} = \omega(X_g,X_f).$