Национальный исследовательский университет «МЭИ»

Кафедра релейной защиты и автоматизации энергосистем

Лабораторная работа № 3 «ПОСТРОЕНИЕ БАЗЫ ЗНАНИЙ ОБ ОБЪЕКТЕ, ПРАВИЛ И ПРИМЕНЕНИЕ ЛОГИЧЕСКОГО ВЫВОДА. SWRL – язык описания правил»

Выполнил:	Ким С.В.
	Копысов А.А.
Группа:	Э-13м-22
Проверил:	Нухулов С.М.

СОДЕРЖАНИЕ РАБОТЫ

Работа содержит:

- 1. Анализ правил выбора функций РЗА для оборудования подстанции.
- 2. Проектирование и описание OWL-классов, их свойств и ограничений.
 - 3. Написание правил выбора функций РЗА на языке SWRL.
- 4. Отображение модели подстанции в OWL, применение правил и отображение результатов.

Работа включает:

- 1. Экспериментальную работу в лаборатории.
- 2. Составление исполнительного отчета.

Работа выполняется на компьютерах в среде разработки IntelliJ IDEA.

ЗАДАНИЕ НА РАБОТУ В ЛАБОРАТОРИИ

1. Проанализировать следующие правила выбора функций РЗА для объектов подстанции:

Трансформаторы		
дзт	Применяется два комплекта ДЗТ для трансформатора мощностью от	
	160 МВА и напряжением от 35 до 220 кВ, который работает без	
	параллельно работающего трансформатора.	
	Применяется один комплект ДЗТ для трансформатора мощностью	
	до 160 МВА и напряжением от 35 до 220 кВ, который работает без	
	параллельно работающего трансформатора.	
	Применяется один комплект ДЗТ для трансформатора мощностью от	
	4 MBA до 160 MBA и напряжением от 35 до 220 кВ	
Защита от	Применяется один комплект для трехобмоточных трансформаторов	
перегрузки	мощностью от 4 МВА	
МТЗ ВН	Применяется один комплект для трехобмоточных трансформаторов	
	с напряжением ВН от 110 до 220 кВ	
дз, тнзнп	Применяется один комплект для автотрансформаторов с	
	напряжением ВН от 220 кВ	
ТЗНП	Применяется один комплект для трехобмоточного трансформатора с	
	напряжением ВН от 110 до 220 кВ	
Ошиновка		
ДЗО	Применяется один комплект для ошиновки при наличии	
	токоограничивающего реактора на сторонах НН или СН	
Выключатели		
MT3 c	Пругустината одну комплект на ресу врему в существения	
комбинированным	Применяются один комплект для всех вводных выключателей напряжением от 6 до 35 кВ	
ПОН, ЗМН	напряжением от о до 33 кв	

MT3, ABP	Применяется один комплект для всех секционных выключателей от 6 до 35 кВ		
АУВ	Применяется один комплект для всех вводных и секционных выключателей напряжением от 6 до 35 кВ		
MT3, TO, 3O33	Применяются один комплект для всех выключателей фидеров напряжением от 6 до 35 кВ		
ДЗ	Применяется один комплект для всех выключателей фидеров напряжением 35 кВ		
ЛЭП			
TO, MT3	Применяется один комплект для ЛЭП от 110 кВ с односторонним питанием		
дзл, дз, тнзнп	Применятся один комплект для ЛЭП от 110 до 220 кВ с двусторонним питанием		
АПВ	Применяется один комплект для воздушных линий электропередач напряжением от 110 кВ		

- 2. Спроектировать OWL классы, свойства и ограничения достаточные для возможности применения правил для автоматического синтеза функций РЗА для объектов подстанции.
- 3. Создать документ OWL, содержащий описание OWL классов, их свойств и ограничений.
- 4. Написать правила для автоматического синтеза функций РЗА для объектов подстанции в SWRL.
- 5. Написать и применить алгоритм отображения модели подстанции в OWL, применить правила и отобразить результаты применения правил.

ВЫПОЛНЕНИЕ РАБОТЫ

OWL (англ. Web Ontology Language)

OWL – язык описания онтологий для семантической паутины. Язык OWL позволяет описывать классы и отношения между ними, присущие веб-**OWL** документам И приложениям. основан на более ранних языках OIL и DAML+OIL и настояшее время В является рекомендованным консорциумом Всемирной паутины.

В основе языка — представление действительности в модели данных «объект — свойство». ОWL пригоден для описания не только веб-страниц, но и любых объектов действительности. Каждому элементу описания в этом языке (в том числе свойствам, связывающим объекты) ставится в соответствие URI.

SWRL (англ. Semantic Web Rule Language)

SWRL – это язык правил для семантической сети, сочетающий язык OWL-DL и язык RuleML (язык разметки правил (унарный / двоичный журнал данных)).

По сравнению с DLP (программами логики описания), еще одним относительно недавним предложением сообщества семантической паутины, позволяющим интегрировать правила и OWL, SWRL использует диаметрально противоположный подход к интеграции. DLP – это пересечение логики Horn и OWL, а SWRL – это (примерно) объединение двух. Для DLP полученный язык представляет собой описательную логику необычной формы и не очень выразительную. Напротив, SWRL сохраняет силу OWL DL, но за счет разрешимости и конкретных реализаций.

Программная реализация

Тело программы:

```
public static void main(String[] args) {
   OntModel ontModel = createModel();
   Map<StationObject, List<Protection>> protections = createMap();
```

```
Map<OntClass, List<OntClass>> createdClasses = createClasses(ontModel, protections);
    List<Map<String, ? extends OntProperty>> createdProperties = createProperties(ontModel,
protections);
    Map<List<Individual>, List<Individual>> createdIndividuals =
createIndividuals(createdClasses);
    setProperty(createdProperties, createdIndividuals);
    try {
        OutputStream outputStream = new FileOutputStream("src/test/resources/ontology.owl");
        ontModel.write(outputStream, "RDF/XML-ABBREV");
        outputStream.close();
    } catch (IOException e) {
        throw new RuntimeException(e);
}
       Создание объектов:
private static Map<StationObject, List<Protection>> createMap() {
    return Map.of(
            new StationObject("Трансформатор",
                    List.of(
                            "power",
                            "voltage",
                            "mode",
                            "winding",
                            "protection"
                    List.of("have")
            ),
            List.of(
                    new Protection("ДЗТ", List.of("installed_in")),
                    new Protection("Защита_от_перегрузки", List.of("installed_in")),
                    new Protection("MT3_BH", List.of("installed_in")),
                    new Protection("ДЗ,_ТНЗНП", List.of("installed_in")),
                    new Protection("T3HΠ", List.of("installed_in"))
            ),
```

), List.of(

),

), List.of(

List.of("have")

new StationObject("Выключатель",

List.of("have")

List.of(

"lineVoltage",
"protection"

"breakerVoltage"<mark>,</mark> "protection"

new Protection("ДЗЛ", List.of("installed_in")),
new Protection("ДЗ", List.of("installed_in")),
new Protection("ТЗНП", List.of("installed_in")),

new Protection("MT3", List.of("installed_in"))

new Protection("MT3_C_NOH", List.of("installed_in")),
new Protection("MT3", List.of("installed_in")),
new Protection("ABP", List.of("installed_in")),
new Protection("T0", List.of("installed_in")),
new Protection("3033", List.of("installed_in")),

```
new Protection("Д3", List.of("installed_in"))
);
}
```

Работа с Protégé

На выходе программы мы получаем файл ontology.owl Запустив ПО Protégé, открываем полученный файл

При настройке вывода запустим окно графического отображения OntoGraf:

В окне Entities отображаются все параметры, присущие рассматриваемому объекту:

Описание сущностей рассматриваемых объектов описаны в таблице.

Трансформаторы		
winding	Число обмоток	
mode	Характеристика обмоток	
voltage	Номинальное напряжение, кВ	
protection	Наличие защиты	
Выключатели		
breakerVoltage	Номинальное напряжение, кВ	
protection	Наличие защиты	
леп		
lineVoltage	Номинальное напряжение, кВ	
protection	Наличие защиты	

вывод

В результате лабораторной работы была создана онтологическая модель данных в предметной области «Релейная защита и автоматика» подстанции: трансформаторы, выключатели и линии электропередач. Полученная модель имеет возможность быть провизуализированной в программном обеспечении Protégé. Данная визуализация представляет собой интерактивные навигационные связи заданных объектов с сущностями, полученными с помощью семантических правил SWRL.