Figure

Table: Instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Table : Course

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

Table: Prereq

course_id	prereq_id
BIO-301	BIO-101
BIO-399	BIO-101
CS-190	CS-101
CS-315	CS-101
CS-319	CS-101
CS-347	CS-101
EE-181	PHY-101

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	<i>7</i> 5000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Table : Department

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

Table: Section

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	Α
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	Α
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	Α
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

Figure

Table: teaches

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

ID	name	salary	dept_name	building	budget
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
12121	Wu	90000	Finance	Painter	120000
15151	Mozart	40000	Music	Packard	80000
22222	Einstein	95000	Physics	Watson	70000
32343	El Said	60000	History	Painter	50000
33456	Gold	87000	Physics	Watson	70000
45565	Katz	75000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
76543	Singh	80000	Finance	Painter	120000
76766	Crick	72000	Biology	Watson	90000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000

Modeling

- A database can be modeled as:
 - -a collection of entities,
 - -relationship among entities.
- An **entity** is an object that exists and is distinguishable from other objects.
 - Example: specific person, company, event, plant
- Entities have **attributes**
 - -Example: people have *names* and *addresses*
- An **entity set** is a set of entities of the same type that share the same properties.
 - -Example: set of all persons, companies, trees, holidays

Entity Sets instructor and student

instructor_ID instructor_name

76766	Crick
45565	Katz
10101	Srinivasan
98345	Kim
76543	Singh
22222	Einstein

instructor

student-ID student_name

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

Attributes

- An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set.
 - -Example:

```
instructor = (ID, name, street, city, salary )
course= (course_id, title, credits)
```

- Domain the set of permitted values for each attribute
- Attribute types:
 - -Simple and composite attributes.
 - -Single-valued and multivalued attributes
 - Example: multivalued attribute: *phone_numbers*
 - -Derived attributes
 - Can be computed from other attributes
 - Example: age, given date_of_birth

Composite Attributes

- Single-valued and multi-valued attributes
 - -Attribute have a single value at a time.
 - -Multi valued attribute can have multiple value at a time for same instance.
 - E.g. phone-numbers
- *Derived* attributes
 - Can be computed from other attributes
 - E.g. age, given date of birth
 - -An attribute can take a null value. That is the value does not exist for an entity instance.
 - -Sometime null value consider as unknown value. Unknown value may be either missing or not known.

Relationship Sets

• A **relationship** is an association among several entities

Example:

```
44553 (Peltier) <u>advisor</u> 22222 (<u>Einstein</u>) 
student entityrelationship set instructor entity
```

• A **relationship set** is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

-Example:

 $(44553,22222) \in advisor$

Relationship Set advisor

Relationship Sets (Cont.)

- An attribute can also be property of a relationship set.
- For instance, the *advisor* relationship set between entity sets *instructor* and *student* may have the attribute *date* which tracks when the student started being associated with the advisor

- Relationship may also have attributes → called descriptive attributes.
- -E.g depositer has access-date
- -Relationship to specify the most recent date on DEFAULTWhich customer accessed his account.

- Custid, custname,
- 1 xxx
- Custid, roomno, date, nodays
 - 1 101 8-12-2019 3
- 1 201 8-12-2020 2

E-R Diagrams

- Rectangles represent entity sets.
- **Diamonds** represent relationship sets.
- Lines link attributes to entity sets and entity sets to relationship sets.
- **Ellipses** represent attributes
 - **Double ellipses** represent multivalued attributes.
 - Dashed ellipses denote derived attributes.
- **Underline** indicates primary key attributes (will study later)

Entity with Composite, Multivalued, and Derived Attributes

E-R Diagrams

Another Notation

- □ Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Attributes listed inside entity rectangle
- □ Underline indicates primary key attributes

Entity With Composite, Multivalued, and Derived Attributes

instructor \underline{ID} name first_name middle_initial last_name address street street_number street_name apt_number city state zip { phone_number } date_of_birth age()

Relationship Sets with Attributes

Roles

- Entity sets of a relationship need not be distinct
 - -Each occurrence of an entity set plays a "role" in the relationship
- The labels "course_id" and "prereq_id" are called **roles**.

Mapping Cardinality Constraints

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 - -One to one
 - -One to many
 - -Many to one
 - -Many to many

Mapping Cardinalities

One to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Mapping Cardinalities

Note: Some elements in A and B may not be mapped to any elements in the other set

One-to-One Relationship

- one-to-one relationship between an *instructor* and a *student*
 - an instructor is associated with at most one student via *advisor*
 - and a student is associated with at most one instructor via *advisor*

One-to-Many Relationship

- one-to-many relationship between an *instructor* and a *student*
 - an instructor is associated with several (including 0) students via *advisor*
 - -a student is associated with at most one instructor via advisor,

Many-to-One Relationships

- In a many-to-one relationship between an *instructor* and a *student*,
 - an instructor is associated with at most one student via *advisor*,
 - and a student is associated with several (including 0) instructors via *advisor*

Many-to-Many Relationship

- -An instructor is associated with several (possibly 0) students via *advisor*
- -A student is associated with several (possibly 0) instructors via *advisor*

Keys

- A **super key** of an entity set is a set of one or more attributes whose values uniquely determine each entity.
- A candidate key of an entity set is a minimal super key
 - *−ID* is candidate key of *instructor*
 - -course_id is candidate key of course
- Although several candidate keys may exist, one of the candidate keys is selected to be the **primary key**.

Keys for Relationship Sets

- The combination of primary keys of the participating entity sets forms a super key of a relationship set.
 - (*s_id*, *i_id*) is the super key of *advisor*
 - -NOTE: this means a pair of entity sets can have at most one relationship in a particular relationship set.
 - Example: if we wish to track multiple meeting dates between a student and her advisor, we cannot assume a relationship for each meeting. We can use a multivalued attribute though
 - Must consider the mapping cardinality of the relationship set when deciding what are the candidate keys
 - -Need to consider semantics of relationship set in selecting the *primary key* in case of more than one candidate key

Cardinality Constraints

-We express cardinality constraints by drawing either a directed line (→), signifying "one," or an undirected line (−), signifying "many," between the relationship set and the entity set.

• One-to-one relationship:

- -A student is associated with at most one *instructor* via the relationship *advisor*
- A *student* is associated with at most one *department* via *stud_dept*

Participation of an Entity Set in a Relationship Set

- □ **Total participation** (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set
 - □ E.g., participation of *section* in *sec_course* is total
 - every section must have an associated course
- Partial participation: some entities may not participate in any relationship in the relationship set
 - Example: participation of *instructor* in *advisor* is partial

Alternative Notation for Cardinality Limits

□ Cardinality limits can also express participation constraints

- Double line between the entity set "Student" and relationship set "Enrolled in" signifies total participation.
- It specifies that each student must be enrolled in at least one course.

- Single line between the entity set "Course" and relationship set "Enrolled in" signifies partial participation.
- It specifies that there might exist some courses for which no enrollments are made.

E-R Diagram with a Ternary Relationship (Degree of Relationship)

Participation of an Entity Set in a Relationship Set Total participation (indicated by double line): every entity in the entity set

Total participation (indicated by double line): every entity in the entity set participates in at least one relationship instance in the relationship set

E.g. participation of *loan* in *borrower* is total

every loan must have a customer associated to it via borrower

Partial participation: some entities may not participate in any relationship in the relationship set

E.g. participation of *customer* in *borrower* is partial

Alternative Notation for Cardinality Limits

- Cardinality limits can also express participation constraints.
- An edge between an entity set and relationship set can have an associated minimum and maximum cardinality.
- I.. h I is lower limit and h is higher limit.
- A minimum value 1 indicate a total participation of entity set into the relationship.
- in example each loan must have atleast one associated customer.
- Maximum /higher limit decide the cardinality of entity set. Like if both the side higher limt is 1 then it is one to one relationship

- Student enrolled in atleast one course. And can join more than one course So 1..*
- Some course dose not have any student enrolledment.

Keys

- -A *super key* of an entity set is a set of one or more attributes whose values uniquely determine each entity instance. E.g cust_no is superkey for customer.
- -Superkey may contains extra/more attributes.
- (e.g customer_name, cust_no)
- -(customer_name,cust_no,cust_address)
- -(cust_no,cust_address) are super keys

- A candidate key of an entity set is a minimal super key
 - *Customer-id* is candidate key of *customer*
 - *account-number* is candidate key of *account*
- -Although several candidate keys may exist, one of the candidate keys is selected to be the *primary key*.

- -E.g Employee have attribute ssn,emp_id,emp_name
- So superkeys will be
- $\{ssn\}$
- {emp_id}
- {ssn,emp_id}
- {emp_id,emp_name}
- {ssn,emp_name}
- {ssn,emp_id,emp_name}
- Candidate Key
 - {SSN}
 - {Emp_id}
- Primary key can be any of the one from candidate key. i.e ssn,emp_id can be a primary key

Keys for Relationship Sets

- -The combination of primary keys of the participating entity sets forms a super key of a relationship set.
 - (customer-id, account-number) is the super key of depositor(relationship)
 - (Stud_id,course_id)is super key of relationship set enrolled –in
 - NOTE: this means a pair of entity sets can have at most one relationship in a particular relationship set.

- -Must consider the mapping cardinality of the relationship set when deciding the what are the candidate keys
- -Need to consider semantics of relationship set in selecting the *primary key* in case of more than one candidate key

Weak Entity Sets

- An entity set that does not have a primary key is referred to as a **weak entity set**.
- The existence of a weak entity set depends on the existence of a identifying entity set
 - It must relate to the identifying entity set via a total, one-tomany relationship set from the identifying to the weak entity set
 - Identifying relationship depicted using a double diamond
- The **discriminator** (*or partial key*) of a weak entity set is the set of attributes that distinguishes among all the entities of a weak entity set.
- The primary key of a weak entity set is formed by the primary key of the strong entity set on which the weak entity set is existence dependent, plus the weak entity set's discriminator.

Weak Entity Sets (Cont.)

- We underline the discriminator of a weak entity set with a dashed line.
- We put the identifying relationship of a weak entity in a double diamond.
- Primary key for section (course_id, sec_id, semester, year)

Weak Entity Sets (Cont.)

- -Note: the primary key of the strong entity set is not explicitly stored with the weak entity set, since it is implicit in the identifying relationship.
- -If *course_id* were explicitly stored, *section* could be made a strong entity, but then the relationship between *section* and *course* would be duplicated by an implicit relationship defined by the attribute *course_id* common to *course* and *section*

Weak Entity Sets (Cont.)

-We depict a weak entity set by double

We depict a weak entity set by double rectangles.

- -underline the discriminator of a weak entity set with a dashed line.
- -payment-number discriminator of the payment entity set

• loan_number, pay_number

1

1 2

2 1 sdfssf

2

Weak Entity Sets (Cont.)

- -Loan is strong entity
- -Payment is weak entity. As every payment is is exists if loan is exists.
- -Payment number is discriminator so strong entity's primary key loan_number and payment_number both combinedly find the uniq instance
- -Payment entity have total participation has every loan have atleast minimum one payment installment.
- -The primary key of the strong entity set is not explicitly stored with the weak entity set, since it is implicit in the identifying relationship.

More Weak Entity Set Examples

- -Team is strong entity having team number.
- -Player is weak entity.
- -Without team player does not exists. [player does not play independently without team]

-Atleast minimum one player for play. So player to play-on is total participation

E-R Diagram for a University

Example

- Draw the ER diagram for following
 - -There are many librarian into the library
 - -Students can issue and returns the books.
 - -At the time of return the book fine is calculate.
 - -Librarian can mange the books and students

Redundancy of Schemas

- Many-to-one and one-to-many relationship sets that are total on the manyside can be represented by adding an extra attribute to the "many" side, containing the primary key of the "one" side
- □ Example: Instead of creating a schema for relationship set *inst_dept*, add an attribute *dept_name* to the schema arising from entity set *instructor*

Redundancy of Schemas (Cont.)

- For one-to-one relationship sets, either side can be chosen to act as the "many" side
 - That is, extra attribute can be added to either of the tables corresponding to the two entity sets

- Redundancy of Tables

 Many-to-one and one-to-many relationship sets that are total on the many-side can be represented by adding an extra attribute to the many side, containing the primary key of the one side
 - E.g.: Instead of creating a table for relationship *account*branch, add an attribute branch to the entity set account

Representing Relationship Sets as Tables

- A many-to-many relationship set is represented as a table with columns for the primary keys of the two participating entity sets, and any descriptive attributes of the relationship set.
- E.g.: table for relationship set *borrower*

customer-id	loan-number
019-28-3746	L-11
019-28-3746	L-23
244-66-8800	L-93
321-12-3123	L-17
335-57-7991	L-16
555-55-5555	L-14
677-89-9011	L-15
963-96-3963	L-17

• Example: schema for relationship set *advisor* $advisor = (\underline{s}\underline{id}, \underline{i}\underline{id})$

Composite and Multivalued Attributes

instructor

```
ID
name
  first_name
   middle_initial
   last_name
address
   street
     street_number
      street_name
     apt_number
   city
   state
   zip
{ phone_number }
date_of_birth
age()
```

 Composite attributes are flattened out by creating a separate attribute for each component attribute

```
    instructor(ID,
first_name, middle_initial, last_name,
street_number, street_name,
apt_number, city, state, zip_code,
date_of_birth)
```

Composite and Multivalued Attributes

- A multivalued attribute M of an entity E is represented by a separate schema EM
 - Schema EM has attributes corresponding to the primary key of E and an attribute corresponding to multivalued attribute M
 - Example: Multivalued attribute *phone_number* of *instructor* is represented by a schema:
 - inst_phone= (ID, phone number)
 - Each value of the multivalued attribute maps to a separate tuple of the relation on schema EM

Design Issues • Use of entity sets vs. attributes

 Use of phone as an entity allows extra information about phone numbers (plus multiple phone numbers)

Representing Weak Entity Sets

- A weak entity set becomes a table that includes a column for the primary key of the identifying strong entity set
- A strong entity set reduces to a schema with the same attributes student(<u>ID</u>, name, tot_cred)
- A weak entity set becomes a table that includes a column for the primary key of the identifying strong entity set section (course_id, sec_id, sec_id, <a href="mailto:sec_id, sec_id, <a href="mailto:sec_id, sec_id, <a href="mailto:sec_id, <a href="mailto:sec_id

No need to create table for the relationship

Extended ER Features

Extended E-R Features: Specialization

- Top-down design process; we designate subgroupings within an entity set that are distinctive from other entities in the set.
- These subgroupings become lower-level entity sets that have attributes or participate in relationships that do not apply to the higher-level entity set.
- Depicted by a *triangle* component labeled ISA (E.g., *instructor* "is a" *person*).
- Attribute inheritance a lower-level entity set inherits all the attributes and relationship participation of the higher-level entity set to which it is linked.

Specialization Example

Extended ER Features: Generalization

- A bottom-up design process combine a number of entity sets that share the same features into a higherlevel entity set.
- -Specialization and generalization are simple inversions of each other; they are represented in an E-R diagram in the same way.
- -The terms specialization and generalization are used interchangeably.