Билет 38. Понятие рёберной двусвязности. Отношение эквивалентности.

Def. Две вершины реберно двусвязны, если между ними существуют два пути без общих ребер.

Нетрудно показать, что отношение реберной двусвязности является отношением эквивалентности. Действительно, рефлексивность и симметричность очевидны из определения.

Докажем транзитивность $a \sim b, b \sim c \Rightarrow a \sim c$:

Доказательство. Рассмотрим два пути из c в b. Найдём их места первого пересечения с циклом $a \to b \to a$, получили вершины x и y. Тогда есть рёберно не пересекающиеся пути $a \to x \to c, \ a \to y \to c.$

В этом случае введем понятие ниже.

Def. Компонентами рёберной двусвязности графа называют его подграфы, множества вершин которых — классы эквивалентности рёберной двусвязности, а множества рёбер — множества ребер из соответствующих классов эквивалентности.

Def. Мост — ребро, при удалении которого число компонент связности увеличивается.

Билет 39. Выделение компонент рёберной двусвязности в неориентированном графе. Древесность графа со сжатыми компонентами рёберной двусвязности.

Теорема. Заметим, что если удалить из графа все мосты, то компоненты связности в полученном графе будут соответствовать компонентам реберной двусвязности в исходном.

Доказательство. 1) Если на пути между какими-то двумя вершинами в исходном графе есть мост, то их придется отнести к разным компонентам реберной двусвязности (иначе между ними есть два пути без общих ребер, но тогда между ними есть путь, который не проходит через наш мост, а отсюда следует, что наш мост не является мостом).

2) Рассмотрим древесное ребро (v; to). То есть такое, что в процессе обхода графа алгоритмом dfs вершина v является родителем вершины to (в первый раз, когда мы увидели to). Если ребро (v; to) не является мостом, то v и to реберно двусвязны.

Докажем это. Т.к. ребро не является мостом, то верно следующее неравенство: $ret[to] \le tin[v]$. То есть мы можем прыгнуть из поддерева to в v или куда-то выше. Тогда между

v и to есть два реберно непересекающихся пути. (Один – $v \to to$, второй – спустимся в поддерево to, совершим прыжок в v или его предка, потом спустимся в v)

A, значит, все компоненты связности в полученном графе являются компонентами реберной двусвязности в исходном.

Как следствие этой теоремы получаем эквивалентное определение моста:

 ${f Def.}\ {f Moct}-{f pe6po},\ {f coeдиняющеe}\ {f двe}\ {f компоненты}\ {f pe6ephoй}\ {f двусвязности}.$

Теорема. Если сжать все комоненты реберной двусвязности, то получится граф без циклов. А если граф изначально связен, то это дерево.

Доказательство. Пусть между компонентам реберной двусвязности есть простой цикл. Тогда можно построить и цикл, проходящий по вершинам исходного графа и содержащий ребра взятого нами цикла.

Но тогда все эти вершины лежат в одной компоненте реберной двусвязности. Получаем противоречие. $\hfill \Box$