7/16/2020 t1

7/16/2020 t1

In [1]: !conda install -c anaconda lxml --yes
!conda install -c anaconda bs4 --yes

```
Collecting package metadata (current_repodata.json): done
Solving environment: done

## Package Plan ##

environment location: /home/jupyterlab/conda/envs/python

added / updated specs:
    - lxml
```

The following packages will be downloaded:

package	build		
ca-certificates-2020.6.24 certifi-2020.6.20 libxslt-1.1.33 lxml-4.5.1 openssl-1.1.1g	9 py36_0 h7d1a2b0_0 py36hefd8a0e_0 h7b6447c_0	133 KB 160 KB 577 KB 1.4 MB 3.8 MB	anaconda anaconda anaconda anaconda anaconda
	Total:	6.0 MB	

t1

The following NEW packages will be INSTALLED:

```
libxslt anaconda/linux-64::libxslt-1.1.33-h7d1a2b0_0 lxml anaconda/linux-64::lxml-4.5.1-py36hefd8a0e_0
```

The following packages will be UPDATED:

```
ca-certificates conda-forge::ca-certificates-2020.6.2~ --> anaconda::ca-certificates-2020.6.24-0
```

The following packages will be SUPERSEDED by a higher-priority channel:

```
certifi conda-forge::certifi-2020.6.20-py36h9\sim --> anaconda::certifi-2020.6.20-py36_0 openssl conda-forge::openssl-1.1.1g-h516909a_0 --> anaconda::openssl-1.1.1g-h7b6447c_0
```

Downloading and Extracting Packages

```
1xm1-4.5.1
         1.4 MB
               0%
openssl-1.1.1g
         | 3.8 MB
               0%
ca-certificates-2020 | 133 KB
               | ################ | 10
certifi-2020.6.20
         | 160 KB
               0%
               libxslt-1.1.33
         | 577 KB
0%
```

Preparing transaction: done Verifying transaction: done Executing transaction: done

Collecting package metadata (current_repodata.json): done

Solving environment: done

Package Plan

environment location: /home/jupyterlab/conda/envs/python

added / updated specs:

- bs4

The following packages will be downloaded:

package	build			
beautifulsoup4-4.9.1 bs4-4.9.1 soupsieve-2.0.1	py36_0 0 py_0	168 4 33	KB	anaconda anaconda anaconda
	Total·	204	KR	

t1

The following NEW packages will be INSTALLED:

beautifulsoup4 anaconda/linux-64::beautifulsoup4-4.9.1-py36 0

bs4 anaconda/noarch::bs4-4.9.1-0

soupsieve anaconda/noarch::soupsieve-2.0.1-py_0

Downloading and Extracting Packages

soupsieve-2.0.1 | 33 KB

0%

beautifulsoup4-4.9.1 | 168 KB

bs4-4.9.1 | 4 KB | ############# | 10

0%

Preparing transaction: done Verifying transaction: done Executing transaction: done

In []:

```
In [2]: from bs4 import BeautifulSoup
        import requests
        import pandas as pd
        import numpy as np
        # get html content
        response = requests.get("https://en.wikipedia.org/wiki/List_of_postal_codes_of
         Canada: M")
        soup = BeautifulSoup(response.text, 'lxml')
        #extract wikitable
        data = []
        columns = []
        table = soup.find(class ='wikitable')
        for index, tr in enumerate(table.find all('tr')):
            section = []
            for td in tr.find_all(['th','td']):
                 section.append(td.text.rstrip())
            #First row of data is the header
            if (index == 0):
                columns = section
            else:
                data.append(section)
        #convert list into Pandas DataFrame
        toronto_df = pd.DataFrame(data = data,columns = columns)
        assigned = toronto_df['Borough']!="Not assigned"
        assigned df = toronto df[assigned]
        assigned df.head()
```

t1

Out[2]:

Neighborhood	Borough	Postal Code	
Parkwoods	North York	МЗА	2
Victoria Village	North York	M4A	3
Regent Park, Harbourfront	Downtown Toronto	M5A	4
Lawrence Manor, Lawrence Heights	North York	M6A	5
Queen's Park, Ontario Provincial Government	Downtown Toronto	M7A	6

```
In [13]: #len(set(assigned_df['Postal Code']))
    assigned_df.shape
```

```
Out[13]: (103, 3)
```

7/16/2020

In [1]: !conda install -c conda-forge geocoder --yes

Collecting package metadata (current_repodata.json): done Solving environment: done

All requested packages already installed.

```
In [3]: import pandas as pd
import io
import requests
url="https://raw.githubusercontent.com/cs109/2014_data/master/countries.csv"
url="https://cocl.us/Geospatial_data"
s=requests.get(url).content
location_df=pd.read_csv(io.StringIO(s.decode('utf-8')))
location_df.head()
location_df.shape
```

t1

Out[3]: (103, 3)

Out[4]:

	Postal Code	Borough	Neighborhood	Latitude	Longitude
0	МЗА	North York	Parkwoods	43.753259	-79.329656
1	M4A	North York	Victoria Village	43.725882	-79.315572
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
3	M6A	North York	Lawrence Manor, Lawrence Heights	43.718518	-79.464763
4	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494

7/16/2020

```
In [32]: #Extract subset of Borough including word - Toronto
    print("extract Borough including word - Toronto")
    toronto_data = df_loc[df_loc['Borough'].str.contains('Toronto')].reset_index(d rop=True)
    toronto_data.head()
```

t1

extract Borough including word - Toronto

Out[32]:

	Postal Code	Borough	Neighborhood	Latitude	Longitude
0	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
1	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494
2	M5B	Downtown Toronto	Garden District, Ryerson	43.657162	-79.378937
3	M5C	Downtown Toronto	St. James Town	43.651494	-79.375418
4	M4E	East Toronto	The Beaches	43.676357	-79.293031

In [13]: !conda install -c conda-forge geopy --yes

Collecting package metadata (current_repodata.json): done Solving environment: done

All requested packages already installed.

```
In [31]: #get location latitude and longitude of Toronto
    from geopy.geocoders import Nominatim
        geolocator = Nominatim(user_agent="dnipro")
        location = geolocator.geocode("Toronto")
        print(location.address)
        print("get location latitude and longitude of toronto")
        print((location.latitude, location.longitude))
        latitude = location.latitude
        longitude = location.longitude
```

Toronto, Golden Horseshoe, Ontario, M5H 2N2, Canada get location latitude and longitude of toronto (43.6534817, -79.3839347)

7/16/2020

```
In [33]: #Create map of Toronto
         #visualize boroughs including word "Toronto" and how they cluster together
         import folium
         # create map of Toronto using latitude and longitude values
         map_toronto = folium.Map(location=[latitude, longitude], zoom_start=11)
         # add markers to map
         for lat, lng, label in zip(toronto_data['Latitude'], toronto_data['Longitude'
         ], toronto_data['Neighborhood']):
             label = folium.Popup(label, parse_html=True)
             folium.CircleMarker(
                  [lat, lng],
                  radius=5,
                 popup=label,
                 color='blue',
                 fill=True,
                 fill color='#3186cc',
                 fill_opacity=0.7,
                 parse_html=False).add_to(map_toronto)
         map_toronto
```

t1

Out[33]:

