Statistical Inference Note

May 14, 2023

Notation

1. χ - sample space

2. X - random variable

3. $F_X(x)$ - cdf of X

4. $f_X(x)$ - pdf of X

5. $X = (X_1, \dots, X_n)$ - X is a random sample of size n

Chapter 5: Properties of a Random Sample

Definition 1 (Random Sample): The random variables X_1, \ldots, X_n are called a random sample of size n from the population f(x) if X_1, \ldots, X_n are mutually independent variables and the marginal pdf or pmf of each X_i is the same f(x). $\{X_i\}$ are called iid rv with pdf or pmf f(x).

Definition 2 (Statistics): Let X_1, \ldots, X_n be **a** random sample of size n from a population and let $T(x_1, \ldots, x_n)$ be a real-valued or vector-valued function whose domain includes the sample space of (X_1, \ldots, X_n) . Then the random variable or random vector $Y = T(X_1, \ldots, X_n)$ is called a **statistics**. The probability distribution of a statistic Y is called the sampling distribution of Y.

Definition 3 (Sample mean and variance)

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 (Sample mean)
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 (Sample variance)

 \bar{x}, s^2 denote to observed values of \overline{X}, S^2

Result 1 Let X_1, \ldots, X_n be a random sample from a population with mean μ and variance $\sigma^2 < \infty$. Then

- 1. $\mathbf{E}\bar{X} = \mu$
- 2. $Var \bar{X} = \frac{\sigma^2}{n}$
- 3. $ES^2 = \sigma^2$

Remark: The statistics \bar{X} is unbiased estimator of μ . S^2 is unbiased estimator of σ^2 due to the n-1 denominator. If we use n as denominator, $\mathbf{E}S^2$ would be $\frac{n-1}{n}\sigma^2$.

Chapter 7: Point Estimation

Motivation: we want to find a good estimator for θ or $\tau\theta$ using samples from a pdf $p(x|\theta)$ since θ yields knowledge of the entire population.

Definition 4 (Point Estimator) A point estimator is any function $W(X_1 ... X_n)$ of a sample; that is any statistic is a point estimator.

Remark: When a sample is taken, estimator is a function of the rv X_1, \ldots, X_n while an estimate is a function of realized values X_1, \ldots, X_n .

Method of Finding Estimator

Result 2 (Method of Moments) Let X_1, \ldots, X_n be a sample from population $f(x|\theta_1, \ldots, \theta_n)$. The method of moments estimators are found by equating the first k sample moments $(m_k = \frac{1}{n} \sum_{i=1}^n X_i^k)$ to the corresponding k population moments $(\mu'_k = EX^k)$

Example: Suppose X_1, \ldots, X_n are iid from $f(x|\theta, \sigma^2)$, we have sample moment $m_1 = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$, $m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$ and population moment $\mu'_1 = \mathbf{E}X = \theta$, $\mu'_2 = \mathbf{E}X^2 = \theta^2 + \sigma^2$.

Then we have

$$\theta = \bar{X}$$

$$\to \theta = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\theta^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

$$\to \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \theta^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2$$

0.1 Maximum Likelihood Estimator

Definition 5 (Likelihood function) If X_1, \ldots, X_n is an iid sample from a population $f(x|\theta_1, \ldots, \theta_n)$, the likelihood function is defined by

$$L(\theta|x) = L(\theta_1, \dots, \theta_k|x_1, \dots, x_n) = \prod_{i=1}^n f(x_i|\theta_1, \dots, \theta_k)$$

Definition 6 For each sample point x, let $\hat{\theta}(x)$ be a parameter value at which $L(\theta|x)$ attains its maximum as a function of θ with x held fixed. A maximum likelihood estimator(MLE) of the parameter θ based on a sample X is $\hat{\theta}(X)$

If the likelihood function is differentiable wrt θ_i , the candidate extrema are $\frac{\partial}{\partial \theta_i} L(\theta|x) = 0$ (Extrema can occur on boundary, we need to check those as well).

Remark: The drawbacks are:

- 1. The problem of actually finding the global maximum and verifying it.
- 2. Numerical sensitivity; how sensitive is the estimate to the change in data.