Tutorial No.1

Based on Limit and continuity

Evaluate the following

1)
$$\lim_{(x,y)\to(0,0)} \frac{x^3-y^3}{x-y}$$

Ans:0

2)
$$\lim_{(x,y)\to(2,0)} \frac{x\sin y}{x^2+1}$$

Ans: 0

3)
$$\lim_{(x,y)\to(0,0)} \frac{x-y+2\sqrt{x}-2\sqrt{y}}{\sqrt{x}-\sqrt{y}}$$

Ans: 2

Determine the existence of following limits

4)
$$\lim_{(x,y)\to(0,0)} \frac{x^3y^3}{x^6+y^6}$$

Ans: Does not exist

5)
$$\lim_{(x,y)\to(0,0)} \frac{y^2 - x^2}{x^2 + y^2}$$

Ans: Does not exist

6) Is the following function continuous

i)
$$f(x,y) = \frac{2xy}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$
= 0 $(x,y) = (0,0)$

Ans: Discontinuous

ii)
$$f(x,y) = \frac{y}{\sqrt{x^2 + y^2}}$$
 $if(x,y) \neq (0,0)$
= 0 $(x,y) = (0,0)$

Ans: Discontinuous

iii)v)
$$f(x,y) = \frac{x^3 - y^3}{x - y}$$
 if $(x,y) \neq (0,0)$
= 0 $(x,y) = (0,0)$

Ans: continuous

iv)
$$f(x, y) = \frac{xy}{x^2 + y^2}$$
 if $(x, y) \neq (0, 0)$
= 0 $(x, y) = (0, 0)$

Ans: Discontinuous

Tutorial 2

Based on Partial Differentiation

- 1. If $z = e^{3x^2 + 4y}$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 2. If $z = y \sin(xy)$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 3. If $f(x,y) = x^2 + 3xy + y 1$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point (4,-5).
- 4. If $f(x, y, z) = x \sin(y + 3z)$, find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$.
- 5. If resistors r_1, r_2 and r_3 ohms are connected in parallel to make an r ohm resistor, the value of r can be found from the equation $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$. Find the value of rate of change of r in the direction of r_2 when $r_1 = 30, r_2 = 45$ and $r_3 = 90$ ohms.
- 6. In a study of frost penetration it was found that the temperature T at time t (measured in days) at a depth x (measured in meters) can be modeled by the function $T(x,t) = T_0 + T_1 e^{-\lambda x} \sin(\omega t \lambda x)$ where $\omega = \frac{2\pi}{365}$ and λ is a positive constant.
 - a) Find $\frac{\partial T}{\partial x}$. What is its physical significance?
 - b) Find $\frac{\partial T}{\partial t}$. What is its physical significance?
- 7. The temperature at a point (x, y) on a flat metal plate is given by $T(x, y) = \frac{60}{1 + x^2 + y^2}$ where T is measured in ${}^{0}C$ and x, y in meters. Find the rate of change of temperature with respect to distance at the point (2,1) in the x-direction and the y-direction.
- 8. The wind-chill index is modeled by the function $W = 13.12 + 0.6215T 11.37v^{0.16} + 0.3965Tv^{0.16}$ where T is temperature in ${}^{0}C$ and v is the

wind speed (km/h). When $T = -15 \,^{\circ}C$ and $v = 30 \, km / h$ by how much would you expect the apparent temperature W to drop if the actual temperature decreases by $1 \,^{\circ}C$ what if the wind speed increases by $1 \, km/h$?

- 9. Find all second order derivatives of $z = x^2y^2 xy^4 + x^3y xy$.
- 10. Find all second order derivatives of $z = e^{3x^2+4y}$.

11. If
$$\log(x^2 + y^2) = u$$
, Prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.

12. If
$$z = \frac{x^2 + y^2}{(x + y)}$$
, prove that $\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$.

13. If
$$u = 3(ax + by + cz)^2 - (x^2 + y^2 + z^2)$$
 and $a^2 + b^2 + c^2 = 1$ then prove that
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$$

14. If
$$z = \tan(y + ax) + (y - ax)^{\frac{3}{2}}$$
 then prove that $\frac{\partial^2 z}{\partial x^2} = a^2 \frac{\partial^2 z}{\partial y^2}$.

15. If
$$u = \log(\tan x + \tan y + \tan z)$$
, prove that $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$.

16. If
$$u = \log(x^3 + y^3 - x^2y - xy^2)$$
 then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$.

17. If $u = Ae^{-gx} \sin(nt - gx)$ where A, g, n, a are constants satisfies the equation

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$$
 then, show that $ag = \sqrt{\frac{n}{2}}$.

18. If
$$\frac{1}{u^2} = x^2 + y^2 + z^2$$
 then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 2u$.

19. If
$$u = e^{r^2}$$
, $r^2 = x^2 + y^2 + z^2$ then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 4r^2e^{r^2} + 6e^{r^2}$

20. If
$$u = \sin r$$
, $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\sin r + \frac{1}{r}\cos r$.

Tutorial No.3

Based on Taylor's Series, Maxima, minima and saddle points & Method of Lagrange multipliers

- 1. Expand $f(x, y) = x^3 + y^3 + xy^2$ in powers of (x-1) and (y-2) using Taylor's series.
- 2. Obtain the expansion of e^{xy} in powers of (x-1) and (y-1).
- 3. Find Taylor's expansion of x^y about (1,1).
- 4. Expand $f(x, y) = e^{x+y}$ in powers of x and y.
- 5. Find the maximum and minimum values of $x^3 + 3xy^2 3x^2 3y^2 + 4$.

[Ans: Max=4 at (0, 0), Min=0 at (2, 0), saddle points are (1, 1) & (1, -1)]

6. Find all stationary values of $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.

[Ans: Min=108 at (6, 0), Max=108 at (4, 0) and saddle points are (5, 1) & (5, -1)]

- 7. Show that the minimum value of $u = xy + a^3 \left(\frac{1}{x} + \frac{1}{y}\right)$ is $3a^2$.
- 8. A rectangular box with open top has volume V. Find the dimensions of the box requiring least material. [Ans: x=y=2z]
- 9. Find the maximum and minimum values of the function f(x,y) = 3x + 4y on the circle $x^2 + y^2 = 1$ using the method of Lagrange's Multiplier.

[Ans: Min= -5 and Max=5]

- 10. Find the maximum and minimum distances of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$. [Ans: Min=12 and Max=14]
- 11. Find a point on the plane x + 2y + 3z = 13 nearest to the point (1, 1, 1) using the method of Lagrange multipliers. [Ans: 3/2, 2, 5/2]
- 12. If the temperature T at any point (x, y, z) on the surface of the sphere $x^2 + y^2 + z^2 = 1$ is

 $T = 400xyz^2$, find the highest temperature.