

Resistive Network Analysis Methods – Nodal and Mesh

1.0 INTRODUCTION

Electric circuit analysis is the process of finding voltages across and currents through every component element in the network. Relatively simple resistive circuits can be analyzed by directly applying Kirchhoff's laws in combination with Ohm's law, as was done in the previous laboratory exercise. However, as the circuits become structurally more complicated and involve increasingly more component elements, this direct method becomes onerous. To aid in the analysis of such complex circuits, two powerful circuit analysis techniques – *nodal* analysis and *mesh* analysis – are commonly used.

Nodal analysis is a method of determining the voltage at the nodes in a circuit with respect to a "reference" node, using Kirchhoff's Current Law (KCL). Mesh analysis is a method that is used to solve for the current through any component element in a planar circuit, using Kirchhoff's Voltage Law (KVL). Either method used yields the same results; the choice often depends on a personal preference or on the intuitiveness of the analysis method better suited for a particular structural configuration of the circuit elements in a network.

As noted above, *nodal* analysis requires selecting a circuit node as the "*reference*". The *reference* node is commonly referred to as "*ground*" since it is assumed to have, or be at, **zero** potential. A *reference* node is indicated by any of the three symbols in **Figure 1.0**.

The symbol in **Figure 1.0a** can be used to indicate a "common ground" reference node. When the potential of the earth is used as a reference, this common ground symbol can be interchanged with the symbol of an "earth ground" in **Figure 1.0b**. For most circuits, the symbol in **Figure 1.0b** often gets used to denote a common "ground" reference node even when not connected to the earth's potential. The type of ground in **Figure 1.0c** is referred to as a "chassis ground" and is used in devices where the case, enclosure, or chassis acts as the reference point for all circuits in the device.

Although *theoretically* the choice of a reference node for a circuit is <u>arbitrary</u>, *practically* the choice for the reference node is often obvious. For example, the node with the most *branches* is usually a good choice. For more practical circuits, the node that represents the **negative terminal** of an input power source to which most circuit branches connect is often an intuitive "*ground*" reference point to use. All *unreferenced* node voltages in a circuit are then defined in an absolute sense with respect to this "*ground*" reference node.

References: (i) Course Textbook: "Fundamentals of Electric Circuits" by C. K. Alexander and M. N. O. Sadiku; and (ii) "Electric Circuits" by J. W. Nilsson and S. A. Riedel

2.0 OBJECTIVES

- To understand the concept of circuit *reference* node.
- To experimentally verify *nodal* and *mesh* analysis techniques on a D.C. resistive circuit.

3.0 Required LAB EQUIPMENT & PARTS

- Digital Multimeter (DMM) and Power Supply
- ELE202 Lab Kit: various components, breadboard, wires and jumpers.

4.0 PRE-LAB: ASSIGNMENT

(a) Circuit Reference Node

(i) For the circuit shown in **Figure 2.0a**, the input D.C. source voltage, $\mathbf{E} = 15 \, \mathbf{V}$ and node "d" is selected as the *reference node* connected to the circuit ground, $\mathbf{V_d} = 0 \, \mathbf{V_c}$ Calculate the current, \mathbf{I} and the voltage at node "a" (= $\mathbf{V_a}$), node "b" (= $\mathbf{V_b}$), and node "c" (= $\mathbf{V_c}$) with respect to the ground *reference node*. From these node voltages, calculate the resistor voltages, $\mathbf{V_{ab}}$, $\mathbf{V_{bc}}$, and $\mathbf{V_{cd}}$ across resistors $\mathbf{R_1}$, $\mathbf{R_2}$ and $\mathbf{R_3}$, respectively. Record all the results in **Table 2.0**.

-Lab workspace	

- (ii) Construct the circuit of **Figure 2.0a** in MultiSIM. With node "d" as the *reference node*, measure the current, **I**, the node voltages V_a , V_b and V_c , and the voltages across R_1 (= V_{ab}), R_2 (= V_{bc}), and R_3 (= V_{cd}), respectively. Record all the results in **Table 2.0**.
 - Copy and paste a screenshot showing one MultiSIM readings on the circuit. Include the MultiSIM circuit file (.ms14) in your Pre-Lab submission.
 - All screenshots should show your name printed on the center-top of the MultiSIM screen and the timestamp at the bottom-lower corner.

- (iii) Relocate the circuit ground reference node at node "c" as shown in Figure 2.0b, thereby making $V_c = 0V$. Then repeat above steps (i) and (ii) but with calculations/measurements of node voltages V_a , V_b and V_d with respect to reference node "c"; and circuit element voltages across R_1 (= V_{ab}), R_2 (= V_{bc}), and R_3 (= V_{cd}) as before.
- (iv) Comment on the results in **Table 2.0** obtained for both cases (when reference point at "d" and reference point at "c"). State clearly which one of the currents, node voltages, or element voltages have changed or remain unchanged; and explain why.

Figure 2.0a: Circuit reference node at "d"

Figure 2.0b: Circuit reference node at "c"

		Using <i>Reference</i> Node "d"	Using Reference Node "c"
I	Theoretical value =>		
(mA)	MultiSIM value =>		
V _a	Theoretical value =>		
(Volts)	MultiSIM value =>		
$V_{\mathbf{b}}$	Theoretical value =>		
(Volts)	MultiSIM value =>		
V_c	Theoretical value =>		0
(Volts)	MultiSIM value =>		0
V_d	Theoretical value =>	0	
(Volts)	MultiSIM value =>	0	
$ m V_{ab}$	Theoretical value =>		
(Volts)	MultiSIM value =>		
V _{bc}	Theoretical value =>		
(Volts)	MultiSIM value =>		
$ m V_{cd}$	Theoretical value =>		
(Volts)	MultiSIM value =>		

Table 2.0: Theoretical and MultiSIM results of the Figure 2.0 circuits

(b) Nodal and Mesh Analysis

Consider the circuits in **Figure 3.0**, and assume input power supply, $\mathbf{E} = 15\mathbf{V}$.

(i) Nodal Analysis: Select node "d" as a ground reference node as shown in Figure 3.0a. Using the nodal analysis technique, calculate the node voltages V_a , V_b and V_c . Using theses calculated node voltages, determine the value of the branch current, I_X and the branch voltage, V_X . Record all your results in **Table 3.0.**

Pre-Lab work.	space		
<u> </u>		 	

(ii) Mesh Analysis: Using the mesh analysis technique on the circuit shown in Figure 3.0b, calculate the mesh currents I_A , I_B and I_C ; and determine the branch currents, I_1 , I_2 , I_3 and I_X ; and the branch voltage, V_X . Record all your results in **Table 3.0**.

Pre-Lab workspace

- (iii) Construct the circuit of **Figure 3.0** in MultiSIM. Set the input D.C. source, **E** to **15V**, and node "d" as the *ground reference* node. Measure the branch currents I_1 , I_2 , I_3 and I_X , the branch voltage, V_X and the node voltages, V_a , V_b and V_c . Use the measured branch currents to determine the values of the mesh currents I_A , I_B and I_C . Record all your results in **Table 3.0**.
 - Copy and paste a screenshot showing one MultiSIM readings on the circuit. Include the MultiSIM circuit file (.ms14) in your Pre-Lab submission.
 - All screenshots should show your name printed on the center-top of the MultiSIM screen

Compare these MutliSIM simulation results in **Table 3.0** with the calculated theoretical values for the node voltages, mesh currents, branch current I_X , and branch voltage V_X . State if the *Nodal* and *Mesh* analysis methods yield the same results for the branch current, I_X and the branch voltage, V_X . Why?

Pre-Lab workspace	

Figure 3.0a: Circuit for Nodal Analysis

Figure 3.0b: Circuit for Mesh Analysis

		Nodal	Mesh
		Analysis	Analysis
V _a	Theoretical value =>		
(Volts)	MultiSIM value =>		
V _b	Theoretical value =>		
(Volts)	MultiSIM value =>		
V _c	Theoretical value =>		
(Volts)	MultiSIM value =>		
I_A	Theoretical value =>		
(mA)	MultiSIM derived =>		
$\mathbf{I}_{\mathbf{B}}$	Theoretical value =>		
(mA)	MultiSIM derived =>		
$\mathbf{I}_{\mathbf{C}}$	Theoretical value =>		
(mA)	MultiSIM derived =>		
$\mathbf{I}_{\mathbf{X}}$	Theoretical value =>		
(mA)	MultiSIM value =>		
$\mathbf{V}_{\mathbf{X}}$	Theoretical value =>		
(Volts)	MultiSIM value =>		
I_1	Theoretical value =>		
(mA)	MultiSIM value =>		
I_2	Theoretical value =>		
(mA)	MultiSIM value =>		
I ₃	Theoretical value =>		
(mA)	MultiSIM value =>		

 Table 3.0: Theoretical and MultiSIM results of the Figure 3.0 circuits

5.0 IN-LAB Experiment: IMPEMENTATION & MEASUREMENTS

(a) Circuit Reference Node

- 1. Implement the circuit in **Figure 2.0a** on your breadboard using the resistor values as shown. Set the input D.C. source, **E** = **15V** on the power-supply and select node "**d**" as a *reference* node to which "COM" terminal of the DMM in the Voltmeter setting is connected to allow for direct measurement of the *unreferenced* voltage nodes.
- 2. With the "-" (or the reference) terminal of the DMM Voltmeter connected to the selected reference node, directly measure the voltages at nodes "a", "b", "c" and "d" (i.e. V_a , V_b , V_c and V_d , respectively). Use the DMM Voltmeter to directly measure the voltage across resistors, R_1 (= V_{ab}), R_2 (= V_{bc}) and R_3 (= V_{cd}). Measure the current, I using the DMM set up as an Ammeter. From the above measured node voltages (V_a , V_b , V_c and V_d), calculate the voltages V_{ab} , V_{bc} and V_{cd} . Record all your results in the below Table 4.0.
- 3. Relocate the circuit reference ground at node "c" shown in Figure 2.0b. Repeat steps 1 and 2 above.
- **4.** Turn OFF the Power Supply.

		Using <i>Reference</i> Node "d"	Using <i>Reference</i> Node "c"
I (mA)	Measured value =>		
V _a (Volts)	Measured value =>		
V _b (Volts)	Measured value =>		
V _c (Volts)	Measured value =>		0
V _d (Volts)	Measured value =>	0	
V_{ab}	Measured value =>		
(Volts)	Calculated value =>		
V _{bc}	Measured value =>		
(Volts)	Calculated value =>		
$ m V_{cd}$	Measured value =>		
(Volts)	MultiSIM value =>		

Table 4.0: Experimental results of the Figure 2.0 circuits

(b) Nodal and Mesh Analysis

- 1. Implement the circuit in **Figure 3.0** on your breadboard using the resistor values as shown. Set the input D.C. source, $\mathbf{E} = 15\mathbf{V}$ on the power-supply.
- 2. Nodal Analysis: Refer to the circuit of Figure 3.0a. Use node "d" as the ground reference node, and measure the node voltages V_a , V_b and V_c with respect to this reference ground. Then measure the branch voltage, V_x across resistor, R_3 and the branch current, I_x through resistor, R_2 .
- 3. Mesh Analysis: Measure the branch currents I_1 , I_2 , I_3 and I_X , and then use these measured branch currents to determine the values of the mesh currents, I_A , I_B and I_C and the branch voltage, V_X . Record all your results in below **Table 5.0**.
- **4.** Turn OFF the Power Supply

		<i>Nodal</i> Analysis	<i>Mesh</i> Analysis
V _a (Volts)	Measured value =>		j
V _b (Volts)	Measured value =>		
V _c (Volts)	Measured value =>		
I _A (mA)	Calculated value =>		
I _B (mA)	Calculated value =>		
I _C (mA)	Calculated value =>		
I _X (mA)	Measured value =>		
V _X (Volts)	Measured value =>		
I ₁ (mA)	Measured value =>		
I ₂ (mA)	Measured value =>		
I ₃ (mA)	Measured value =>		

Table 5.0: Experimental results of the Figure 3.0 circuits

6.0 POST-LAB: OBSERVATIONS AND ANALYSIS OF RESULTS

- 1. From observing the results in **Table 4.0** of "Circuit Reference Node" experiment for both cases (when reference point at "d" and reference point at "c"):
 - **a.** State clearly which one of the currents, node voltages, or resistor voltages have changed or remain unchanged, and explain why. How do these experimental results compare to your Pre-Lab results in **Table 2.0**?
 - **b.** Which of the two *reference points* would be your preferred choice? Explain.
 - **c.** List, and comment on, the possible causes for any discrepancies from what you would expect theoretically or from the simulations?

workspace	

- 2. For the "Nodal and Mesh Analysis" experiment, compare your results in Table 5.0 with the theoretical values and MultiSIM simulation measurements in Table 3.0, and explain.
 - **a.** Specifically, did the *Nodal* and *Mesh* analysis methods yield the same results for the branch current, I_X and the branch voltage, V_X ? Why?
 - **b.** Do your results in **Table 3.0** and **Table 5.0** verify the *Nodal* and *Mesh* analysis techniques? Explain.
 - **c.** List, and comment on, the possible causes for any discrepancies from what you would expect theoretically or from the simulations?

workspace	 	
nonapace		

7.0 LAB REPORT REQUIREMENTS & GUIDELINES

Lab reporting is to be completed and submitted separately as **Part I** and **Part II**, noted below:

Part I (Pre-Lab Work) => represents 40% of the pre-assigned Lab weight.

Pre-Lab Work (assignment) of **Section 4.0** that includes handwritten calculations, MultiSIM results, and analysis is to be completed and <u>submitted **prior to the start** of your scheduled lab</u>. The grading is commensurate with completeness and accuracy of your handwritten calculations, analysis and MultiSIM simulation circuits/plots.

Note the following requirements for the document submission for Part I:

- A completed and signed "COVER PAGE Part I" has to be included with your submission, a copy of which is available on D2L. The report will not be graded if the signed cover page is not included.
- Your completed handwritten pages of **Section 4.0** should be scanned (via a scanner or phone images), together with the required MultiSIM images. **Note:** MultiSIM results must be generated using the Department's licensed version of MultiSIM, and the captured screenshots should show your name (at the center-top) and the timestamp (at the bottom-right corner of your screen).
- Collate and create a .pdf or .docx file of the above, and upload it via D2L any time prior to the start of your scheduled lab. Upload instructions are provided on D2L.

Zero marks will be assigned for the entire lab if this Part I is not submitted prior to your scheduled lab.

Part II (In-Lab Work and Post-Lab Work) => represents 60% of the pre-assigned Lab weight.

In-Lab Work (Section 5.0) and Post-Lab Work (Section 6.0) that include in-lab results, handwritten analysis and observations are to be completed and submitted by 11.59 p.m. of the same day as your scheduled lab. The grading is commensurate with: - completeness, correctness and collection of all experimental results (data and waveforms); merits of observation of the correlations between the experimental and pre-lab assignment results; and reasonableness of the answers to questions posed.

Note the following requirements for the document submission for Part II:

- A completed and signed "COVER PAGE **Part II**" has to be included with your submission, a copy of which is available on D2L. The report will not be graded if the signed cover page is not included.
- Scan your completed pages of **Section 5.0** and **Section 6.0** (via a scanner or phone images), together with any required In-Lab Oscilloscope screen-shot images.
- Collate and create a .pdf or .docx file of the above, and upload it via D2L by 11.59 p.m. on the same day your lab is scheduled. <u>Late submissions will not be graded</u>.