Package 'metaVAR'

July 5, 2024

July 3, 2024
Title Multivariate Meta-Analysis of Vector Autoregressive Model Coefficients
Version 0.9.1
Description Estimates the mean vector and covariance matrix of the multivariate meta-analysis of vector autoregressive model coefficients.
<pre>URL https://github.com/jeksterslab/metaVAR,</pre>
https://jeksterslab.github.io/metaVAR/
<pre>BugReports https://github.com/jeksterslab/metaVAR/issues</pre>
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
Depends R (>= 3.5.0), OpenMx
Imports numDeriv, Matrix, fitDTVARMx
Remotes jeksterslab/fitDTVARMx
Suggests knitr, rmarkdown, testthat, simStateSpace
RoxygenNote 7.3.2
NeedsCompilation no
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>
Contents
coef.metavarmeta
Meta
MetaVAR
summary.metavarmeta
vcov.metavarmeta
Index 7

2 Meta

coef.metavarmeta

Estimated Parameter Method for an Object of Class metavarmeta

Description

Estimated Parameter Method for an Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
coef(object, ...)
```

Arguments

```
object an object of class metavarmeta.
... further arguments.
```

Value

Returns a vector of the mean estimated parameters.

Author(s)

Ivan Jacob Agaloos Pesigan

Meta

Fit Multivariate Meta-Analysis

Description

This function estimates the mean and covariance matrix of a vector of coefficients using the estimated coefficients and sampling variance-covariance matrix from each individual.

Usage

```
Meta(
   y,
   v,
   mu_start = NULL,
   mu_lbound = NULL,
   mu_ubound = NULL,
   sigma_l_start = NULL,
   sigma_l_lbound = NULL,
   sigma_l_ubound = NULL,
   try = 1000,
   ncores = NULL
)
```

MetaVAR 3

Arguments

У	A list. Each element of the list is a numeric vector of estimated coefficients.
V	A list. Each element of the list is a sampling variance-covariance matrix of y.
mu_start	Numeric vector. Optional vector of starting values for mu.
mu_lbound	Numeric vector. Optional vector of lower bound values for mu.
mu_ubound	Numeric vector. Optional vector of upper bound values for mu.
sigma_l_start	Numeric matrix. Optional matrix of starting values for t(chol(sigma)).
${\tt sigma_l_lbound}$	Numeric matrix. Optional matrix of lower bound values for $t(chol(sigma))$.
${\tt sigma_l_ubound}$	Numeric matrix. Optional matrix of upper bound values for $t(chol(sigma))$.
try	Positive integer. Number of extra tries for OpenMx::mxTryHard().

Details

ncores

For $i=\{1,\cdots,n\}$, the objective function used to estimate the mean μ and covariance matrix Σ of the random coefficients \mathbf{y}_i is given by

Positive integer. Number of cores to use.

$$\ell\left(\boldsymbol{\mu},\boldsymbol{\Sigma}\mid\mathbf{y}_{i},\mathbb{V}\left(\mathbf{y}_{i}\right)\right)=-\frac{1}{2}\left[q\log\left(2\pi\right)+\log\left(\left|\mathbb{V}\left(\mathbf{y}_{i}\right)-\boldsymbol{\Sigma}\right|\right)+\left(\mathbf{y}_{i}-\boldsymbol{\mu}\right)'\left(\mathbb{V}\left(\mathbf{y}_{i}\right)-\boldsymbol{\Sigma}\right)^{-1}\left(\mathbf{y}_{i}-\boldsymbol{\mu}\right)\right]$$

where q is the number of unique elements in μ and Σ , and $\mathbb{V}(\mathbf{y}_i)$ is the sampling variance-covariance matrix of \mathbf{y}_i .

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Meta-Analysis of VAR Functions: MetaVAR()

MetaVAR Fit Multivariate Meta-Analysis	
--	--

Description

This function estimates the mean and covariance matrix of a vector of coefficients using the estimated coefficients and sampling variance-covariance matrix from each individual.

4 MetaVAR

Usage

```
MetaVAR(
  object,
  mu_start = NULL,
  mu_lbound = NULL,
  sigma_l_start = NULL,
  sigma_l_lbound = NULL,
  sigma_l_ubound = NULL,
  psi = FALSE,
  theta = FALSE,
  try = 1000,
  ncores = NULL
)
```

Arguments

object Ou	utput of the fitDTVARMx::FitDTVARIDMx() function.
mu_start Nu	umeric vector. Optional vector of starting values for mu.
mu_lbound Nu	umeric vector. Optional vector of lower bound values for mu.
mu_ubound Nu	umeric vector. Optional vector of upper bound values for mu.
sigma_l_start Nu	umeric matrix. Optional matrix of starting values for t(chol(sigma)).
sigma_l_lbound Nu	umeric matrix. Optional matrix of lower bound values for t(chol(sigma)).
sigma_l_ubound Nu	umeric matrix. Optional matrix of upper bound values for t(chol(sigma)).
	ogical. If psi = TRUE, include estimates of the psi matrix. If psi = FALSE, aclude estimates of the psi matrix.
	ogical. If theta = TRUE, include estimates of the theta matrix if available. If neta = FALSE, exclude estimates of the theta matrix.
try Pos	ositive integer. Number of extra tries for OpenMx::mxTryHard().
ncores Pos	ositive integer. Number of cores to use.

Details

For $i=\{1,\cdots,n\}$, the objective function used to estimate the mean μ and covariance matrix Σ of the random coefficients \mathbf{y}_i is given by

$$\ell\left(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathbf{y}_{i}, \mathbb{V}\left(\mathbf{y}_{i}\right)\right) = -\frac{1}{2}\left[q\log\left(2\pi\right) + \log\left(\left|\mathbb{V}\left(\mathbf{y}_{i}\right) - \boldsymbol{\Sigma}\right|\right) + \left(\mathbf{y}_{i} - \boldsymbol{\mu}\right)'\left(\mathbb{V}\left(\mathbf{y}_{i}\right) - \boldsymbol{\Sigma}\right)^{-1}\left(\mathbf{y}_{i} - \boldsymbol{\mu}\right)\right]$$

where q is the number of unique elements in μ and Σ , and $\mathbb{V}(\mathbf{y}_i)$ is the sampling variance-covariance matrix of \mathbf{y}_i .

Author(s)

Ivan Jacob Agaloos Pesigan

print.metavarmeta 5

See Also

Other Meta-Analysis of VAR Functions: Meta()

print.metavarmeta

Print Method for Object of Class metavarmeta

Description

Print Method for Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
print(x, alpha = 0.05, digits = 4, ...)
```

Arguments

x an object of class metavarmeta. alpha Numeric vector. Significance level α . digits Integer indicating the number of decimal places to display.

... further arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

summary.metavarmeta

Summary Method for Object of Class metavarmeta

Description

Summary Method for Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
summary(object, alpha = 0.05, digits = 4, ...)
```

Arguments

object an object of class metavarmeta. alpha Numeric vector. Significance level α .

digits Integer indicating the number of decimal places to display.

... further arguments.

6 vcov.metavarmeta

Author(s)

Ivan Jacob Agaloos Pesigan

Description

Variance-Covariance Matrix Method for an Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
vcov(object, ...)
```

Arguments

object an object of class metavarmeta. ... further arguments.

Value

Returns the variance-covariance matrix of the estimated parameters.

Author(s)

Ivan Jacob Agaloos Pesigan

Index

```
* Meta-Analysis of VAR Functions
    Meta, 2
    MetaVAR, 3
* metaVAR
    Meta, 2
    MetaVAR, 3
* meta
    Meta, 2
    MetaVAR, 3
* methods
    coef.metavarmeta, 2
    print.metavarmeta, 5
    summary.metavarmeta, 5
    \verb|vcov.metavarmeta|, 6
coef.metavarmeta, 2
fitDTVARMx::FitDTVARIDMx(), 4
Meta, 2, 5
MetaVAR, 3, 3
OpenMx::mxTryHard(), 3, 4
print.metavarmeta, 5
summary.metavarmeta, 5
vcov.metavarmeta, 6
```