Foglio 7 esercizio 2

Voglio prima di tutto dimostrare che G sia un sottogruppo, prima però serve un osservazione : Se G è un gruppo ogni elemento $ax + c \in G$ ha un inverso, ed esso è : $(ax + c)^{-1} = \frac{x - c}{a}$. Verifico che G sia un sottogruppo di tutte le bigezioni in \mathbb{R} :

$$(a'x + c') \circ (a''x + c'')^{-1} = (a'x + c') \circ (\frac{x - c''}{a''}) = a'(\frac{x - c''}{a''}) + c' = \frac{a'x - c''a'}{a''} + c$$
 (1)

$$= \left(\frac{a'x}{a''} - \frac{a'c''}{a''}\right) + c' = \left(x\frac{a'}{a''} - \frac{a'c''}{a''}\right) + c' = x\left(\frac{a'}{a''} - \frac{a'c''}{a''}\right) + c' \in G \tag{2}$$

quindi G è un sottogruppo, e dimostro che non è commutativo :

$$\begin{cases} (a'x+c') \circ (a''x+c'') = a'(a''x+c'') + c' \\ (a''x+c'') \circ (a'x+c') = a''(a'x+c') + c'' \end{cases} \implies (a'x+c') \circ (a''x+c'') \neq (a''x+c'') \circ (a'x+c')$$
(3)

Considero adesso un sottogruppo particolare di G, ossia $T = \{f_{1,c}, c \in \mathbb{R}\} = \{x + c, c \in \mathbb{R}\},$ dimostro che è un sottogruppo :

$$(x+c')\circ(x+c'')^{-1} = (x+c')\circ(x-c'') = (x-c'') + c' = x + (c'-c'') \in T$$
(4)

Inoltre definisco le classi laterali sinistre di T, ossia : $gT = \{g \circ t, g \in G, t \in T\}$ che sono tutte le funzioni del tipo :

$$g = ax + c \implies gT = \{(ax + c) \circ (x + c'), (ax + c) \circ (x + c''), (ax + c) \circ (x + c''')...\}$$
 (5)

Le classi laterali destre di T, ossia : $Tg = \{t \circ g, g \in G, t \in T\}$ che sono tutte le funzioni del tipo :

$$g = ax + c \implies gT = \{(x + c') \circ (ax + c), (x + c'') \circ (ax + c), (x + c''') \circ (ax + c)...\}$$
 (6)

Adesso noto che:

$$\begin{cases} (x+c') \circ (ax+c) = ax+c+c' \\ (ax+c) \circ (x+c') = ax+c+ac' \end{cases}$$
 (7)

(dimostrazione omessa) Noto che le classi laterali destre e sinistre sono le stesse, quindi T è un sottogruppo normale, e posso definire il gruppo di tutte le classi laterali, ossia il gruppo quoziente G/T, con l'operazione $gT * hT = (g \circ h)T$.

Adesso, definisco un'applicazione suriettiva $\varphi: G \to \mathbb{R} \setminus \{0\}$, tale che :

$$\varphi(ax+c) = a \tag{8}$$

E definisco il suo nucleo

$$Ker\varphi = \{ax + c | \varphi(ax + c) = 1 \iff a = 1\} = \{x + c, c \in \mathbb{R}\}$$

$$(9)$$

Osservazione fondamentale : Noto che $Ker\varphi = T!$ Definisco π la proiezione canonica :

$$\pi(ax+c) = (ax+c)T\tag{10}$$

Noto che per il teorema fondamentale di omomorfismo di gruppi, esiste un **unico isomorfismo** $F: G/Ker\varphi \to \mathbb{R}\setminus\{0\}$ tale che $\varphi = \pi \circ F$, essendo $Ker\varphi = T$, so che G/T è isomorfo a $\mathbb{R}\setminus\{0\}$.