Sprint Review 12.08.19-04.09.19

erstellt von Oleg Nekhayenko

- Input Data: Reuters-21578 Evaluationskorpus für Dokumentenklassifikation (Mod-Apte split)
- 10788 Newsartikel in 90 Newskategorien

- Jedem Newsartikel von 1 bis 15 Kategorien (label) zugewiesen ->
 Multilabel Classification
- Aufgabe: Newskategorien aus dem Test data vorherzusagen

Aufgabenbereich 1a,b- Supervised Learning

Klassifikatoren:

- K-Nearest-Neighbor (KNN) und Support Vector Classifier (SVC)
- automatisierte Suche nach den best passenden Parametern und Cross Validation (CVGridSearch)

Ergebnisse:

Klassifikator	Subset accuracy über alle Kategorien
KNN	0.4442
SVC	0.8182

Aufgabenbereich 1a, b- Supervised Learning

Macro average quality numbers*

Klassifikator	Recall	Precision	F1
KNN	0.2881	0.5801	0.3552
SVC	0.4282	0.6714	0.4980

SVC F1 14% 1

Micro average quality numbers**

Klassifikator	Recall	Precision	F1
KNN	0.4367	0.4962	0.4646
SVC	0.8128	0.9395	0.8715

SVC F1 41%

Aufgabenbereich 1a, b- Supervised Learning

CVGridsearch optimale Parameter(CV=3):

KNN CVGridsearch	Beste Parameter
neighbors': [1, 3, 5]	1
metric':['euclidean', 'manhattan']	euclidean
weights':['uniform','distance']}	uniform
SVC CVGridsearch	
C': [1, 10, 100, 1000]	10
gamma': [10, 1, 0.1, 0.01, 0.001, 0.0001]	0.1
kernel': ['rbf']	rbf

Aufgabenbereich 1a, b- Supervised Learning

Möglichkeiten zur Verbesserung der Text-Klassifizierung:

- 1. N-gram statt Wort beim Tfidf Vectorizer -> Accuracy steigen
- 2. CVRandomized search nach Parametern
- 3. Lemmatization statt Stemming
- 4. Vollständigere Stoppwortliste
- 5. Andere Klassifikatoren einsetzen
- 6. Nutzung von default Tfidf Vectorizer preprocessing statt eigene Funktion

- Input Data: Reuters-21578 Evaluationskorpus für Dokumentenklassifikation (Mod-Apte split)
- Aufgabe: optimale Anzahl an Cluster-Themenbereichen im Korpus bestimmen
- Annahme: von 4 bis 20 Themenbereiche im Reuters Korpus
- Überprüfung der Annahme durch eigene Implementierung von Clustering-Algorithmus
- Keine genaue Festlegung von Anzahl der Themenbereiche aufgrund von "noisy text data"

Implementierung von Clustering-Algorithmus:

- Einlesen von Reuters raw text Dataset
- Data preprocessing
 - Erstellen von List of Strings. Satz=String
 - Entfernen von leeren Strings und \n
- Initialisierung von "BERT-as-service" client
 - Auswahl von pretrained Bert Model uncased_L-12_H-768_A-12 und Parameter
 - Übergabe von preprocessed text an Bert as service

Initialisierung von K-Means Clustering mit mit n_clusters in range von (4,20)

Festlegung vom optimalen K nach dem Elbow Method

X- Anzahl der Cluster

Y-Summe der quadrierten Abstände der Samples zu ihrem nächstgelegenen Clusterzentrum (Inertia)

Möglichkeiten zur Verbesserung der Implementierung:

- 1. Data Preprocessing
- 2. Fine tuning der Parameter von Bert Client
- 3. Andere Methoden zur Festlegung von optimalen K
- 4. Anderer Cluster Algorithmus