Stratasystems pocketRULER

Link to site for animation

Alec Fredriksson

Shannon Lai Simond Liu

Wilson Lam

Background

- Problem:
 - Rulers are not compact measuring devices
 - Tape measures are limited to measuring straight lines
- Wanted a compact device that measures curves and complex geometries for long distances (at least a foot)
- Concept was inspired by a tool called a surveyor's wheel
 - Used for measuring distances on the scale of hundreds of feet

The Product: pocketRULER

Design Iterations: Overview

Max distance: Height:

4 feet 4.5 inches 1 foot 3.2 inches 5 feet 3.9 inches

Cycle 1

Cycle 2

Cycle 3

Design Changes: Cycle 1 to Cycle 2

Shafts are not center

Shifted printing

Print 1

Lessons Learned from Cycle 1

- MakerBot has trouble handling prints that take up most of the working surface
- Need to increase tolerances

Changes from Cycle 1 to Cycle 2

- Removed large gear (measured up to 4 feet)
- Can only measure up to 1 foot

Design Changes: Cycle 2 to Cycle 3

Print 2

Lessons Learned from Cycle 2

 MakerBot is capable of printing functional gears

Changes from Cycle 2 to Cycle 3

- Added Geneva Gear to increase functionality up to 5 feet
- Ergonomic contours

Final Design

Geneva Gear

- Purpose of Geneva gear
 - Moves in intervals, unlike a traditional gear, thus smaller size
 - Easier for MakerBot to print
 - Did not need feet indicator to displayed in between feet
- Increased measurement capability from 4 feet to 5 feet from Cycle 1 Design, while decreasing size 15%

Final Print Results

- Printed well
- Correct tolerances

Geneva Gear Analysis

Determine Geneva wheel radius b a = drive crank radius n = driven slot quantity

p = drive pin diameter t = allowed clearance

C = center distance = $a / \sin(180 / n)$ b = Geneva wheel radius = $\sqrt{c^2 - a^2}$ s = slot center length = (a + b) - c

W = slot width = D + T

y = stop arc radius = a - (p 1.5)

Z = stop disc radius = y - t

V = clearance arc = bz / a

Determine drive crank radius a

b= Geneva wheel radius

n = driven slot quantity

p = drive pin diameter

t = allowed clearance

C = center distance = b / cos(180 / n)

 $a = \text{drive crank radius} = \sqrt{c^2 \cdot b^2}$

S = slot center length = (a + b) - c

W = slot width = p + t

 $y = \text{stop arc radius} = \alpha - (p 1.5)$

Z = stop disc radius = y - t

V = clearance arc = bz / a

Our Numbers

	Define (youself)	Geneva wheel radius b	Calculation
a: drive crank radius	0.55	c: center distance	0.936
n: driven slot quantity	5	b: Geneva wheel r	0.757
p: drive pin diameter	0.25	S: slot center lengh	0.371
t: allowed clearance	0.025	w: slot width	0.275
		y: stop arc radius	0.175
Geneva shaft diameter	0.4	z: stop disc radus	0.150
		v: clearance arc	0.206

*inches

FEA on Wheel

- There are 3 main print orientation:
 - Up-Right (shown)
 - Edge-Up
 - Face-Up

- 3.35 kg (7.39lb) → 33 N
- FEA Tested at:
 - 10.2 kg (22 lb) > 100 N
- Maximum Load
 - 60 lb

Functionality

- Can measure up to 5 feet
- Accurate to within 1% (only 1/8" deviation when measuring 1 foot)
- Meets our objective of being able to accurately measure lines and curves

Complexity and Difficulty

- 2 different types of mechanisms
 - Spur gear
 - Geneva gear
- 8 separate parts
 - 2 housings
 - 2 indicators
 - 1 intermediate support wall
 - 2 spur gears
 - 1 Geneva gear
- Tight tolerances needed for gear to mesh properly

Aesthetics

- Housing has ergonomic contours to better fit the user's hand
- Large radius fillets are used to make housing edges more comfortable
- Product name is embossed on housing

Future Improvements

- Reduce size of product
 - The gears limited the minimum size we could make our product.
 They needed to be printed large enough such that their teeth were well defined
 - By gaining access to a machine with tighter tolerances, it should be possible to reduce the size of our product by 50%
 - Possibility of using two Geneva gears
- Increase accuracy from 1% to 0.05%
- Increase maximum length device can measure
- Reset mechanism to go to back to o feet

Questions?

Special thanks to

- Professor Li
- Injoo Hwang