Class 08 Mini Project

Natalie Ogg A91030809

NOTE: I somehow messed it up a bit in the beginning so I use diagnosis1 instead of diagnosis sometimes, but it's the same thing.

Today we are applying machine learning to breast cancer biopsy data from fine needle aspiration (FNA).

First I put the .csv file into the class08 file on my computer. Then I call it up and rename it:

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names = 1)
head(wisc.df)</pre>
```

	diagnosis radiu	g mean	texture mean	nerimeter mea	n area mea	n
040000	_			_		
842302	М	17.99	10.38	122.8	0 1001.	U
842517	M	20.57	17.77	132.9	0 1326.	0
84300903	M	19.69	21.25	130.0	0 1203.	0
84348301	M	11.42	20.38	77.5	8 386.	1
84358402	M	20.29	14.34	135.1	0 1297.	0
843786	M	12.45	15.70	82.5	7 477.	1
	smoothness_mean	compa	ctness_mean co	oncavity_mean	concave.po	ints_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean f:	ractal_	_dimension_mea	n radius_se t	exture_se	perimeter_se
842302	0.2419		0.0787	1.0950	0.9053	8.589
842517	0.1812		0.0566	0.5435	0.7339	3.398
84300903	0.2069		0.0599	0.7456	0.7869	4.585

84348301 0.2597		0.09744	0.4956	1.1560	3.445
84358402 0.1809		0.05883		0.7813	5.438
843786 0.2087		0.07613		0.8902	2.217
	nness_se compa				
	0.006399	0.04904	0.05373	-	0.01587
	0.005225	0.01308	0.01860		0.01340
	0.006150	0.04006	0.03832		0.02058
	0.009110	0.07458	0.05661		0.01867
	0.011490	0.02461	0.05688		0.01885
	0.007510	0.03345	0.03672		0.01137
	ractal_dimensi	on_se radi	ius_worst tex	ture_worst	
842302 0.03003	0.00	06193	25.38	17.33	
842517 0.01389	0.00	03532	24.99	23.41	
84300903 0.02250	0.00	04571	23.57	25.53	
84348301 0.05963	0.00	09208	14.91	26.50	
84358402 0.01756	0.00	05115	22.54	16.67	
843786 0.02165	0.00	05082	15.47	23.75	
perimeter_wor	st area_worst :	smoothness	s_worst compa	ctness_wors	st
842302 184.	2019.0		0.1622	0.665	56
842517 158.	30 1956.0		0.1238	0.186	36
84300903 152.	50 1709.0		0.1444	0.424	15
84348301 98.8	567.7		0.2098	0.866	33
84358402 152.3	20 1575.0		0.1374	0.205	50
843786 103.4	40 741.6		0.1791	0.524	19
concavity_wor	st concave.poi	nts_worst	symmetry_work	st	
842302 0.71	19	0.2654	0.46	01	
842517 0.24	16	0.1860	0.27	50	
84300903 0.45	04	0.2430	0.36		
84348301 0.68		0.2575	0.66		
84358402 0.40		0.1625	0.23		
843786 0.53		0.1741	0.39	85	
fractal_dimen	sion_worst				
842302	0.11890				
842517	0.08902				
84300903	0.08758				
84348301	0.17300				
84358402	0.07678				
843786	0.12440				

Now we want to omit the first column, which is the diagnosis.

wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>

	radius_mean	texture_mean	perimet	er_mean	area_mean	smoothn	ess_mean
842302	17.99	10.38	_	122.80	1001.0		0.11840
842517	20.57	17.77		132.90	1326.0		0.08474
84300903	19.69	21.25		130.00	1203.0		0.10960
84348301	11.42	20.38		77.58	386.1		0.14250
84358402	20.29	14.34		135.10	1297.0		0.10030
843786	12.45	15.70		82.57	477.1		0.12780
	compactness_	mean concavi	ty_mean (concave	points_me	an symme	try_mean
842302	0.2	27760	0.3001		0.147	10	0.2419
842517	0.0	7864	0.0869		0.070	17	0.1812
84300903	0.1	.5990	0.1974		0.127	90	0.2069
84348301	0.2	28390	0.2414		0.105	20	0.2597
84358402	0.1	.3280	0.1980		0.104	30	0.1809
843786	0.1	.7000	0.1578		0.080	89	0.2087
	fractal_dime	ension_mean ra	adius_se	texture	e_se perim	eter_se	area_se
842302		0.07871	1.0950	0.9	9053	8.589	153.40
842517		0.05667	0.5435	0.7	7339	3.398	74.08
84300903		0.05999	0.7456	0.7	7869	4.585	94.03
84348301		0.09744	0.4956	1.1	L560	3.445	27.23
84358402		0.05883	0.7572	0.7	7813	5.438	94.44
843786		0.07613	0.3345	0.8	3902	2.217	27.19
	smoothness_s	se compactnes:	s_se con	cavity_s	se concave	.points_	se
842302	0.00639	0.04	4904	0.0537	73	0.015	87
842517	0.00522	25 0.03	1308	0.0186	30	0.013	40
84300903	0.00615	0.04	4006	0.0383	32	0.020	58
84348301	0.00911	.0 0.0	7458	0.0566	31	0.018	67
84358402	0.01149	0.02	2461	0.0568	38	0.018	85
843786	0.00751	.0 0.0	3345	0.0367	72	0.011	37
	symmetry_se	fractal_dimen	nsion_se	radius	worst tex	ture_wor	st
842302	0.03003	(0.006193		25.38	17.	33
842517	0.01389	(0.003532		24.99	23.	41
84300903	0.02250	(0.004571		23.57	25.	53
84348301	0.05963	(0.009208		14.91	26.	50
84358402	0.01756	(0.005115		22.54	16.	67
843786	0.02165	(0.005082		15.47	23.	75
	perimeter_wo	rst area_wor			_		
842302	184	2019	.0	0.1	1622	0.	6656

842517	158.80	1956.0		0.1238	0.1866
84300903	152.50	1709.0		0.1444	0.4245
84348301	98.87	567.7		0.2098	0.8663
84358402	152.20	1575.0		0.1374	0.2050
843786	103.40	741.6		0.1791	0.5249
	concavity_worst	concave.poi	nts_worst	symmetry_worst	
842302	0.7119		0.2654	0.4601	
842517	0.2416		0.1860	0.2750	
84300903	0.4504		0.2430	0.3613	
84348301	0.6869		0.2575	0.6638	
84358402	0.4000		0.1625	0.2364	
843786	0.5355		0.1741	0.3985	
	fractal_dimension	on_worst			
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402		0.07678			
843786		0.12440			

We are saving the diagnosis column for later, as a factor.

```
diagnosis1 <- as.factor(wisc.df$diagnosis)</pre>
```

Exploring the data!

Q1. Number of observations:

```
nrow(wisc.data)
```

[1] 569

Q2. How many malignant?

Use table to measure number of each character in the set:

```
table(wisc.df$diagnosis)

B M
357 212
```

Other method, ask for sum where values equal M:

```
sum(wisc.df$diagnosis == "M")
[1] 212
```

Q3. How many variables/features in the data are suffixed with _mean? grep returns the positions of matching variable names:

```
grep("_mean$", colnames(wisc.data))
[1] 1 2 3 4 5 6 7 8 9 10
```

Assign that vector to mean_vars for mean variable, then use length.

```
mean_vars <- grep("_mean$", colnames(wisc.data))
length(mean_vars)</pre>
```

[1] 10

PCA

We need to scale our input data before PCA because the columns are measured in very different units with different means and variances. We set scale=TRUE argument to prcomp().

scale() sets means to 0 and standard deviations to 1.

```
wisc.pr <- prcomp( wisc.data, scale=TRUE )</pre>
  summary(wisc.pr)
Importance of components:
                                  PC2
                                          PC3
                                                  PC4
                                                          PC5
                                                                   PC6
                          PC1
                                                                           PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                            PC8
                                   PC9
                                          PC10
                                                 PC11
                                                          PC12
                                                                  PC13
                                                                          PC14
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Standard deviation
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 \ 0.9399 \ 0.95157 \ 0.9614 \ 0.97007 \ 0.97812 \ 0.98335
                           PC15
                                   PC16
                                           PC17
                                                   PC18
                                                            PC19
                                                                    PC20
                                                                           PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                          PC24
                                                  PC25
                           PC22
                                   PC23
                                                           PC26
                                                                   PC27
                                                                           PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

PC30

PC29

Proportion of Variance 0.00002 0.00000 Cumulative Proportion 1.00000 1.00000

0.02736 0.01153

0.4427 (from table above)

Standard deviation

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

3 PCs

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

7 PCs

Interpreting PCA results

biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

What stands out is everything! It is very difficult to understand because everything is dense and overlapping, with long names instead of just points.

Now we plot our PCA data and color by diagnosis:

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis1)
```


To add labels:

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis1, xlab = "PC1", ylab = "PC2")
```


We can see that the diagnoses are starkly separated on the plot, which is notable. The idea of PCA plots here is that more similar cells will be clustered. It's a method for compressing a lot of data into something that represents the essence of the data.

You can create a point to represent a cluster of data in the PCA, for example (from class) using the original data and the PCA data for all rows to get a value for each column.

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

With PC3, the points appear less clustered than in PC2, and the M and B diagnoses overlap more.

Create a data.frame for ggplot

```
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis1</pre>
```

Load the ggplot2 package

```
library(ggplot2)
```

Make a scatter plot:

```
ggplot(df) +
  aes(PC1, PC2, col=df$diagnosis) +
  geom_point()
```


Here we use SD squared to calculate the variance of each PCA component:

```
pr.var <- wisc.pr$sdev^2
head(pr.var)

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357</pre>
```

Variance explained by each principal component: pve

```
pve <- pr.var / sum(pr.var)</pre>
```

Plot variance explained for each principal component

```
plot(pve, xlab = "Principal Component",
    ylab = "Proportion of Variance Explained",
    ylim = c(0, 1), type = "o")
```


Alternative scree plot of the same data, note data driven y-axis

wisc.pr\$rotation[,1]

radius_mean	texture_mean	perimeter_mean
-0.21890244	-0.10372458	-0.22753729
area_mean	${\tt smoothness_mean}$	${\tt compactness_mean}$
-0.22099499	-0.14258969	-0.23928535
${\tt concavity_mean}$	concave.points_mean	$symmetry_mean$
-0.25840048	-0.26085376	-0.13816696
fractal_dimension_mean	radius_se	texture_se
-0.06436335	-0.20597878	-0.01742803
perimeter_se	area_se	smoothness_se
-0.21132592	-0.20286964	-0.01453145
compactness_se	concavity_se	concave.points_se
-0.17039345	-0.15358979	-0.18341740
symmetry_se	fractal_dimension_se	radius_worst
-0.04249842	-0.10256832	-0.22799663
texture_worst	perimeter_worst	area_worst
-0.10446933	-0.23663968	-0.22487053
smoothness_worst	compactness_worst	concavity_worst
-0.12795256	-0.21009588	-0.22876753
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
-0.25088597	-0.12290456	-0.13178394

Communicating PCA Results

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
This is just asking for the value of wisc.pr$rotation row concave.points_mean wisc.pr$rotation["concave.points_mean",1]
```

[1] -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

5. PCA 1-5 explain 80% of the variance.

```
pve

[1] 4.427203e-01 1.897118e-01 9.393163e-02 6.602135e-02 5.495768e-02 [6] 4.024522e-02 2.250734e-02 1.588724e-02 1.389649e-02 1.168978e-02 [11] 9.797190e-03 8.705379e-03 8.045250e-03 5.233657e-03 3.137832e-03 [16] 2.662093e-03 1.979968e-03 1.753959e-03 1.649253e-03 1.038647e-03 [21] 9.990965e-04 9.146468e-04 8.113613e-04 6.018336e-04 5.160424e-04 [26] 2.725880e-04 2.300155e-04 5.297793e-05 2.496010e-05 4.434827e-06 sum(pve[1:5])
```

Hierarchical Clustering

[1] 0.8473427

Scale the wisc.data data using the "scale()" function

```
data.scaled <- ____(wisc.data)
data.scaled <- scale(wisc.data)</pre>
```

Calculate the (Euclidean) distances between all pairs of observations in the new scaled dataset and assign the result to data.dist.

```
data.dist <- dist(data.scaled)</pre>
```

Create a hierarchical clustering model using complete linkage. Manually specify the method argument to hclust() and assign the results to wisc.hclust.

```
wisc.hclust <- hclust(data.dist, method = "complete")</pre>
```

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
I used h = 20

plot(wisc.hclust)
abline(h = 20, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Selecting number of clusters

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

The best match is k=4 because then the majority of the B and M diagnoses are separated into different rows (rows 1 and 3 above).

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
plot(hclust(data.dist, method = "complete"))
```


data.dist hclust (*, "complete")

plot(hclust(data.dist, method = "single"))

Cluster Dendrogram

data.dist hclust (*, "single")

```
plot(hclust(data.dist, method = "average"))
```


data.dist hclust (*, "average")

plot(hclust(data.dist, method = "ward.D2"))

data.dist hclust (*, "ward.D2")

I definitely prefer the "ward.D2" clustering. It presents the cleanest groupings, and is easiest to read.

Combining methods

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust<- hclust(d, method="ward.D2")
plot(wisc.pr.hclust)</pre>
```


d hclust (*, "ward.D2")

Generate 2 cluster groups from this helust at the height for the number of clusters we want, here it's 2.

```
grps <- cutree(wisc.pr.hclust, k=2)
table(grps)

grps
    1    2
203    366</pre>
```

Plotting with color from grps instead of the expert diagnosis from before, we see that we have a very similar result!

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=grps)
```


Let's compare them:

```
table(grps, diagnosis1)
```

diagnosis1 grps B M 1 24 179 2 333 33

Here we color by groups:

```
plot(wisc.pr$x[,1:2], col=grps)
```


Here we color by diagnosis:

```
plot(wisc.pr$x[,1:2], col=diagnosis1)
```


Changing the colors to match: (turn grps into a factor)

```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"

plot(wisc.pr$x[,1:2], col=g)</pre>
```


Q15. How well does the newly created model with four clusters separate out the two diagnoses?

THis model works fairly well because the majority of diagnoses are separated, but there are still some potential false positives and false negatives in each cluster.

```
w <- dist(wisc.pr$x[,1:7])
wisc.pr.hclust<- hclust(w, method="ward.D2")
plot(wisc.pr.hclust)</pre>
```


w hclust (*, "ward.D2")