

PROBLEMA DA MOCHILA 0/1

Docente: Herbert Oliveira Rocha

Discentes: Eduardo Izidorio e Shelly Leal

Problema da Mochila 0/1

- É um problema clássico de otimização combinatória
- Consiste em selecionar um subconjunto de itens, cada um com um **peso** e um **valor**, de modo que o valor total seja **maximizado** sem que o peso total ultrapasse a capacidade máxima.

Na versão 0/1, cada item pode ser escolhido inteiro ou não escolhido — não é permitido fracionar.

Dado um conjunto de <u>n</u> itens com pesos e valores, e uma capacidade, o problema é:

$$egin{aligned} ext{Maximizar} & \sum_{i=1}^n v_i x_i \ ext{sujeito a} & \sum_{i=1}^n p_i x_i \leq C, \quad x_i \in \{0,1\} \end{aligned}$$

$$p_i$$
 = Pesos

$$x_i$$
 = Valores

Artigo "The Price-Elastic Knapsack Problem"

O artigo de Fukasawa, Naoum-Sawaya e Oliveira, introduz uma variação do Problema da Mochila denominada Price-Elastic Knapsack Problem (**PEKP**). Diferentemente da formulação clássica, no PEKP o peso e/ou o valor de cada item não são fixos, mas dependem de um parâmetro denominado preço.

Essa dependência cria relações não lineares na função objetivo e/ou nas restrições, tornando o problema mais complexo.

Artigo "The Price-Elastic Knapsack Problem"

Os autores formulam o PEKP como um problema de otimização não linear e investigam três casos específicos:

- Caso resolvível em tempo polinomial uma configuração simplificada da dependência entre preço e parâmetros do item que permite solução eficiente.
- Caso de peso afim do preço o peso varia linearmente com o preço. Esse caso resulta em um Quadratic Program (QP), de difícil resolução direta. Para contornar a dificuldade, o problema é decomposto em três Programações Inteiras Mistas (MIP) independentes, resolvidas separadamente.
- Caso de peso piecewise-linear também resulta em QP, tratado pela mesma estratégia de decomposição.

Nos experimentos computacionais, a decomposição em MIPs apresentou desempenho superior em relação à resolução direta dos QPs, especialmente em instâncias de maior porte.

Complexidade

O Problema da Mochila 0/1 é **NP-Completo**:

- Não existe algoritmo conhecido que resolva todas as instâncias em tempo polinomial.
- A complexidade cresce exponencialmente com <u>n</u>.
- Métodos exatos como **Backtracking e Programação Dinâmica** são viáveis para instâncias pequenas ou médias.

Algoritmos Implementados

Explora todas as combinações possíveis, usando poda quando o peso excede C.

- Complexidade: **O** (2ⁿ) no pior caso.
- Vantagem: encontra sempre a solução ótima.

Programação Dinâmica

Usa tabela dp [i] [c] representando o melhor valor com os primeiros \underline{i} itens e capacidade \underline{c} .

- Complexidade **O(n · C)**.
- Vantagem: eficiente para capacidades moderadas.

Pseudocódigo - Backtracking

```
Algoritmo 1: Mochila_Backtracking
Entrada: peso[1..n], valor[1..n], C
Saída: MelhorValor, MelhorEscolha[1..n]
1 MelhorValor ← 0
2 MelhorPeso ← 0
3 EscolhaAtual[1..n] ← 0
4 MelhorEscolha[1..n] ← 0
5 procedimento DFS(idx, pesoAtual, valorAtual):
    se pesoAtual > C então
                           // Poda por capacidade
      retornar
   fim-se
   se idx > n então
      se valorAtual > MelhorValor então
10
        MelhorValor ← valorAtual
11
12
        MelhorPeso ← pesoAtual
        MelhorEscolha ← cópia(EscolhaAtual)
13
      fim-se
14
15
      retornar
    fim-se
```

17


```
18 // Caso A: não pegar o item idx

19 EscolhaAtual[idx] ← 0

20 DFS(idx + 1, pesoAtual, valorAtual)

21

22 // Caso B: pegar o item idx

23 EscolhaAtual[idx] ← 1

24 DFS(idx + 1, pesoAtual + peso[idx], valorAtual + valor[idx])

25 // Programa principal

26 ler n, C e os vetores peso, valor

27 DFS(1, 0, 0)

28 retornar (MelhorValor, MelhorEscolha)
```


Pseudocódigo - Programação Dinâmica

```
Algoritmo 2: Mochila_DP_2D
Entrada: peso[1..n], valor[1..n], C
Saída: ValorÓtimo, Escolha[1..n]
1 criar matriz dp[0..n][0..C] inicializada com 0
3 para i ← 1 até n faça
    para c ← 0 até C faça
      naoPega ← dp[i-1][c]
      se peso[i] ≤ c então
       pega ← dp[i-1][c - peso[i]] + valor[i]
      senão
        pega ← -∞ // ou simplesmente naoPega
10
      fim-se
      dp[i][c] ← max(naoPega, pega)
    fim-para
13 fim-para
14
15 ValorÓtimo ← dp[n][C]
16 Escolha[1..n] ← 0
17 c ← C
```


Pseudocódigo - Programação Dinâmica

```
18 para i ← n até 1 passo -1 faça

19 se dp[i][c] ≠ dp[i-1][c] então // item i foi escolhido

20 Escolha[i] ← 1

21 c ← c - peso[i]

22 fim-se

23 fim-para

24

25 retornar (ValorÓtimo, Escolha)
```


Estudo de Caso -Missão Espacial

Item	Peso (kg)	Valor (pts)
Câmera alta resolução	20	40
Braço robótico	50	100
Analisador de solo	30	60
Detector de radiação	10	30
Fonte de energia extra	40	70

O objetivo é selecionar itens que maximizem o valor científico sem exceder 100 kg.

Algoritmo 1 - Mochila 0/1 com Backtracking (com poda de capacidade)

Entrada: Lista Itens[0..n-1] (cada item com peso e valor), número de itens n, capacidade máxima C. Saída: MelhorValor (valor ótimo), MelhorEscolha[0..n-1] (vetor binário indicando itens escolhidos).

- 1. MelhorValor ← 0
- 2. MelhorEscolha[0..n−1] \leftarrow 0
- 3. EscolhaAtual[0..n−1] \leftarrow 0
- 4. Definir função DFS(indice, pesoAtual, valorAtual)
 - 4.1. Se pesoAtual > C, retorne
 - 4.2. Se indice == n então
 - a) Se valorAtual > MelhorValor então

MelhorValor ← valorAtual

MelhorEscolha ← copia(EscolhaAtual)

- b) retorne
- 4.3. EscolhaAtual[indice] ← 0

Chamar DFS(indice+1, pesoAtual, valorAtual)

4.4. EscolhaAtual[indice] ← 1

Chamar DFS(indice+1, pesoAtual + Itens[indice].peso, valorAtual + Itens[indice].valor)

- 5. Chamar DFS(0, 0, 0)
- 6. Retornar (MelhorValor, MelhorEscolha)

Complexidade: Tempo O(2^n), Espaço O(n).

Algoritmo 2 – Mochila 0/1 com Programação Dinâmica (tabela 2D e reconstrução)

Entrada: Lista Itens[0..n-1] (cada item com peso e valor), número de itens n, capacidade máxima C. Saída: ValorTotal, PesoTotal, Escolha[0..n-1] (itens escolhidos).

- 1. Criar tabela dp[0..n][0..C] inicializada com 0
- 2. Para i ← 1 até n faça
 - 2.1. Para c ← 0 até C faça
 - a) naoPega \leftarrow dp[i-1][c]
 - b) Se Itens[i-1].peso ≤ c então

```
pega ← dp[i-1][c - ltens[i-1].peso] + ltens[i-1].valor
```

Senão

```
pega ← naoPega
```

- c) dp[i][c] ← max(naoPega, pega)
- 3. ValorTotal \leftarrow dp[n][C]
- 4. Inicializar Escolha[0..n−1] \leftarrow 0, PesoTotal \leftarrow 0, capacidadeRestante \leftarrow C
- 5. Para i ← n até 1 (decrescente) faça
 - 5.1. Se $dp[i][capacidadeRestante] \neq dp[i-1][capacidadeRestante] então$
 - a) Escolha[i-1] ← 1
 - b) PesoTotal ← PesoTotal + Itens[i-1].peso
 - c) capacidadeRestante ← capacidadeRestante − Itens[i−1].peso
- 6. Retornar (ValorTotal, PesoTotal, Escolha)

Complexidade: Tempo O(n \cdot C), Espaço O(n \cdot C) — pode ser reduzido para O(C) com vetor 1D.

Qual é a melhor solução?

Em termos de resultado, os dois chegam ao mesmo valor (porque ambos são métodos exatos para a Mochila 0/1).

Em termos de desempenho:

- Backtracking tem complexidade temporal exponencial O(2ⁿ⁾ e pode ficar muito lento para muitos itens.
- Programação Dinâmica tem complexidade temporal polinomial $O(n \cdot C)$ e é mais eficiente quando a capacidade não é muito grande, especialmente se quisermos rodar com muitos itens.

Existem várias soluções ótimas com 200 pontos e 100 kg, por exemplo:

(Braço 50,100) + (Analisador 30,60) + (Câmera 20,40) = 100 kg, 200 pts

(Braço 50,100) + (Fonte 40,70) + (Detector 10,30) = 100 kg, 200 pts

(Câmera 20,40) + (Analisador 30,60) + (Detector 10,30) + (Fonte 40,70) = 100 kg, 200 pts

O valor ótimo é o mesmo em ambos os métodos porque ambos são exatos; a combinação específica pode mudar conforme a ordem dos itens/empates na reconstrução.

Para instâncias maiores, PD tende a ser mais eficiente quando CCC é moderado; Backtracking é simples, mas exponencial.

Obrigado!

Link do repositório Github:

https://github.com/EhoKira/FinalProject DCC606 Problema da Mochila 8 RR 2025.git