Случайные величины. Закон больших чисел

Определение 1. Пусть Ω — конечное вероятностное пространство. Числовая функция $\xi:\Omega\to\mathbb{R}$ называется случайной величиной.

Определение 2. Пусть случайная величина ξ принимает значения x_1, x_2, \ldots, x_m с вероятностями p_1, p_2, \ldots, p_m соответственно (т. е. вероятность события " $\xi = x_i$ " равна p_i). Тогда число $M\xi = \sum_{k=1}^m x_k p_k$ называется математическим ожиданием случайной величины ξ . Математическое ожидание равно среднему значению величины ξ .

Число $D(\xi) = M(\xi - M\xi)^2$ называется $\partial ucnepcue\check{u}$ случайной величины ξ . Дисперсия характеризует уклонение случайной величины от ее среднего значения.

- 3адача 14. Человек, имеющий n ключей, хочет отпереть свою дверь, испытывая ключи независимо один от другого в случайном порядке. Найдите математическое ожидание и дисперсию числа испытаний, если неподошедшие ключи
- а) не исключаются из дальнейших испытаний; б) если они исключаются.
- **Задача 15. а)** Докажите, что для любых случайных величин ξ и η выполнено равенство $M(\xi + \eta) = M\xi + M\eta$. **б)** Докажите, что $D\xi = M\xi^2 (M\xi)^2$
- **Задача 16.** В расписании движения автобусов на остановке «Университет» написано, что средний интервал движения автобуса №57 равен 35 минут, а средний интервал движения автобуса №661 равен 20 минут. Сколько времени в среднем нужно ждать один из этих автобусов?

Определение 3. Пусть случайные величины ξ и η принимают значения x_1, x_2, \ldots, x_m и y_1, y_2, \ldots, y_n соответственно. Если для любых $1 \leqslant i \leqslant m$ и $1 \leqslant j \leqslant n$ выполнено равенство $P(\{\xi = x_i\} \cap \{\eta = y_i\}) = P(\{\xi = x_i\}) \cdot P(\{\eta = y_i\})$, то случайные величины ξ и η называются независимыми.

Задача 17. Пусть ξ и η — независимые случайные величины. Докажите:

- а) $M(\xi \eta) = M \xi M \eta$. Верно ли это равенство для зависимых случайных величин?
- **б**) $D(\xi + \eta) = D\xi + D\eta$. Верно ли это равенство для зависимых случайных величин?

Задача 18. (*Неравенство Чебышева*) Докажите, что для любого положительного α выполнено соотношение $P\{|\xi-M\xi|\geqslant \alpha\}\leqslant \frac{D\xi}{\sigma^2}$.

Задача 19. Схемой Бернулли называется последовательность n независимых испытаний с двумя возможными исходами — "успех" и "неудача", причем вероятность успеха в каждом испытании равна p. Обозначим μ_n случайную величину, равную числу успехов при n испытаниях в схеме Бернулли.

- а) Найдите $M\mu_n$, $D\mu_n$.
- **б)** (Закон больших чисел для схемы Бернулли) Докажите, что для любого $\alpha>0$ выполнено: $\lim_{n\to\infty} P\{|\frac{\mu_n-M\mu_n}{n}|<\alpha\}=1$. Последнее утверждение означает, что при увеличении числа испытаний частота выпадения успехов стремится к вероятности p.

Задача 20. Рассмотрим схему Бернулли с вероятностью успеха, равной 1/2 (например, n-кратное подбрасывание монеты). Пусть α и β — положительные числа. Обозначим через $P_n(\alpha, \beta)$ вероятность того, что при n испытаниях число успехов заключено между $n/2 - \alpha \sqrt{n}$ и $n/2 + \beta \sqrt{n}$. Найдите предел $P_n(\alpha, \beta)$ при $n \to \infty$.

14 a	14 6	15 a	15 6	16	17 a	17 б	18	19 a	19 б	20

Случайные блуждания

Задача 21. Предположим, что мы находимся в целочисленной точке горизонтальной прямой и каждую секунду сдвигаемся с вероятностью 1/2 на 1 вправо или влево.

- а) Найдите число способов попасть из начала координат в точку с координатой x через t секунд ($t \ge x \ge 0$).
- **б)** (Принцип отражения) Докажите, что число способов попасть через t секунд из точки x > 0 в точку y>0, не проходя через начало координат, равно числу способов попасть через t секунд из точки -x в точку y.
- в) Найдите число способов попасть из начала координат в точку x>0 через t секунд, не проходя при этом второй раз через начало координат.
- \mathbf{r}) Найдите число способов двигаться из начала координат t секунд, не проходя при этом второй раз через начало координат.

Задача 22. Пусть в начальный момент времени мы находимся в начале координат.

- а) Найдите вероятность u_{2t} возвращения в начало координат через 2t секунд.
- **б)** Обозначим f_{2t} вероятность первого возвращения в начало координат через 2t секунд. Докажите, что $f_{2t} = u_{2t-2} - u_{2t}.$
- в) Докажите, что случайное блуждание на прямой возвратно, т. е. что выйдя из начала координат, мы вернемся в него с вероятностью 1.
- г) Докажите, что выйдя из начала координат, мы с вероятностью 1 достигнем каждой целочисленной точки.

Задача 23. Аналогично предыдущему определяется случайное блуждание на плоскости и в пространстве. В каждую секунду производится сдвиг на 1 в направлении, параллельном одной из координатных осей. Вероятности сдвига по всем направлениям равны 1/4 в случае плоскости и 1/6 в случае пространства. Также обозначим u_{2t} и f_{2t} соответственно вероятности возвращения и первого возвращения в начало координат через 2t секунд.

- а) Найдите u_{2t} в случае блуждания на плоскости и в пространстве.
- **б)** Докажите, что $u_{2t} = \sum_{k=1}^{t} f_{2k} u_{2t-2k}$.
- в)* Докажите, что в случае блуждания на плоскости ряд $\sum_{t=0}^{\infty} u_{2t}$ расходится и блуждание возвратно. г)* Докажите, что при блуждании в пространстве ряд $\sum_{t=0}^{\infty} u_{2t}$ сходится и вероятность возврата строго меньше 1. Дополнительные задачи

Задача 24. Двое бросают монету — один 10 раз, другой — 11. Какова вероятность того, что у второго орлов выпало больше, чем у первого?

Задача 25. (3ada*ча о баллотировке*) Предположим, что на выборах кандидат P набрал p голосов, а кандидат Q набрал q голосов, причем p > q. Найдите вероятность того, что при последовательном подсчете голосов P все время был впереди Q.

Задача 26*. Каждый из n пассажиров купил по билету на n-местный самолет. Первой зашла сумасшедшая старушка и уселась на случайное место. Далее, каждый вновь пришедший занимает свое место, если оно свободно; в противном случае он занимает случайное место. Какова вероятность того, что последний пассажир займет свое место?

Задача 27. Датчик случайных чисел может выдавать конечное число чисел, каждое число — с определенной вероятностью. Скажем, что один датчик круче другого, если с вероятностью большей 1/2 выданное им число больше числа, выданного другим датчиком. Можно ли изготовить 3 датчика A, B и C так, чтобы Aбыл круче B, B был круче C, а C был круче A?

Задача 28*. (Выбор невесты) Царь желает выбрать самую красивую невесту из 100 претенденток. Процедура выбора невесты состоит в следующем: претендентки в случайном порядке приходят к царю, и в момент прихода очередной претендентки царь может объявить ее своей невестой (царь заранее не знаком с претендентками, но легко упорядочивает девушек по красоте). Докажите, что царь может выбрать самую красивую с вероятностью, большей 1/3.

Задача 29*. В жевачку вложен с вероятностью 1/n один из n вкладышей. Какое количество жевачек нужно в среднем купить, чтобы собрать полную коллекцию вкладышей?

21 a	21 6	21 B	21 г	22 a	22 б	22 B	22 Г	23 a	23 6	23 B	23 Г	24	25	26	27	28	29