Exercises of Data Mining

Li Yihai¹, Zhang Chao², and Shang Chenyang³

 $^{123} Institute\ of\ Mathematical\ Sciences\ From\ ShanXi\ University$

November 9, 2018

Contents

1	\mathbf{Pre}	liminary Work	2
	1.1	Data Matrix	2
	1.2	Definition	2
2	Solı	ution	3
	2.1	Question 1	3
		2.1.1 Solution of Question 1	3
	2.2		4
		2.2.1 Solution of Question 2	4
	2.3	Question 3	5
		2.3.1 Solution of Question 3	5
	2.4	Question 4	7
		2.4.1 Solution of Question 4	7
	2.5	Question 5	8
		2.5.1 Solution of Question 5	8

1 Preliminary Work

1.1 Data Matrix

Assume we observing children who have an allergic reaction to,say,tomato,apple,orange,cheese or milk. These observations are presented in data matrix as following table 1.

Table 1 : Data Matrix					
Child	Tomato	Apple	Orange	Cheese	Milk
Anna	1	1	0	1	1
Aina	1	1	1	0	0
Naima	1	1	1	1	1
Rauha	0	1	1	0	1
Kai	0	1	0	1	1
Kille	1	1	0	0	1
Lempi	0	1	1	1	1
Ville	1	0	0	0	0
Ulle	1	1	0	1	1
Dulle	1	0	1	0	0
Dof	1	0	1	0	1
Kinge	0	1	1	0	1
Laade	0	1	0	1	1
Koff	1	1	0	0	1
Olvi	0	1	1	1	1

1.2 Definition

Definition 1.1. Atomic (Open) Formulas Child x is allergic to milk and Child y is allergic to cheese, write shorter Milk(x) and Cheese(y).

Definition 1.2. Unary Predicates Mikk(-),Cheese(-),Tomato(-),Orange(-)and Apple(-) are unary predicates of our observational language and x,y,z,\cdots are variables.

Definition 1.3. Boolean Attributes Given the 0/1- data matrix, each pair of formulas called (also Boolean attributes) ϕ,ψ determines a four-fold frequency table of the form:

Table 2: Four-fold Frequency

	ψ	$\neg \psi$	
ϕ	a	b	a + b = r $c + d = s$
$\neg \phi$	\mathbf{c}	\mathbf{c}	
	a + c = k	b + d = l	$\mid m \mid$

where m is the amount of rows in the data matrix, and

- a is the number of objects satisfying both ϕ and ψ .
- \bullet b is the number of objects satisfying both ϕ but not $\psi.$

- c is the number of objects not satisfying ϕ but ψ .
- \bullet d is the number of objects not satisfying ϕ nor $\psi.$

The truth value $v(\phi \sim \psi) = \text{TRUE}, \text{FALSE}$ is based on this table.

Definition 1.4. Several Possibilities of \sim :

- $\Rightarrow_{p,\text{Base}}$, where Base $\in \mathbb{N}, 0 , <math>p$ rational: $\phi(x) \Rightarrow_{p,\text{Base}} \psi(x)$. Read: $\phi(x)$ implies $\psi(x)$ with confidence p and support Base.
- Given a data matrix M, $v(\phi(x) \Rightarrow_{p, \text{Base}} \psi(x)) = \text{TURE}$, iff $\frac{a}{a+b} \ge p$ and a > Base.
- \equiv_p , where $0 , In any Model <math>M,v((\phi(x) \equiv_p \psi(x))) = \text{TRUE}$ iff (a+d)/p(a+b+c+d) except for a case $(a+d)=0,b+c \ne 0$; then $v((\phi(x) \equiv_p \psi(x))) = \text{FAUSE}$.
- The exact truth definition of these quantifiers is the following

$$v((\phi(x) \sim_p \psi(x))) = \text{FAUSE}, \text{iff} \frac{a}{a+b} \ge \frac{(1+p)(a+c)}{(a+b+c+d)}, a \ge \text{Base} \qquad (1)$$

2 Solution

2.1 Question 1

In first exercise, we are asked to construct the four-fold frequency table for $\phi = \text{Milk}(x) \land \neg \text{ Cheese}(x), \psi = \text{Apple}(x) \lor \text{Orange}(x)$.

2.1.1 Solution of Question 1

From the question, ϕ represents a student who is allergic to milk and is not allergic to cheese, and ψ represents an allergy to apple or an allergy to orange. We import the data in to LISp_Miner, set Founded Implication p=1.000 and Base= 5,Antecedent= ϕ =Milk(x) \land ¬ Cheese(x).Succedent ψ =Apple(x) \lor Orange(x), based on the above relationship analysis, the when we get result in Figure 1 follow.

Table 3: Four-fold Frequency Table for Question 1

	$\mid \psi$	$\neg \psi$	
ϕ	5	0	5
$\neg \phi$	9	1	10
	14	1	15

This figure has meanings: with the 100% Confidence, we have conclusions below:

- 5 is the number of children satisfying both ϕ and ψ : There are five students who are allergic to milk but not to cheese, while have an allergy to apples or oranges or both.
- 0 is the number of child satisfying ϕ but not ψ : There is no body satisfying the conditions.

Figure 1: Hypotheses 1 From LISp_miner

- 9 is the number of children not satisfying ϕ but satisfying ψ : There are nine students who have allergic to apples or oranges or both, then when one of them is allergic to milk he is not allergic to cheese.
- 1 is the number of child not satisfying ϕ nor ψ : There is one students who has no allergy to apples or oranges, then when he is allergic to milk he is not allergic to cheese.

2.2 Question 2

In second exercise, we are asked to construct the four-fold frequency table for $\phi = \text{Apple}(x), \psi = \text{Cheese}(x)$

2.2.1 Solution of Question 2

From the question, ϕ represents a student who is allergic to apple, and ψ represents an allergy to cheese. We import the data in to LISp_Miner, set Founded Implication p=1.000 and Base= 5, based on the above relationship analysis, the when we get result in figure 2 follow.Antecedent= ϕ =Apple(x), Succedent = ψ =Cheese(x).

This figure has meanings:with the 100% Confidence, we have conclusions below: \bullet 7 is the number of children satisfying both ϕ and ψ : There are seven students who has no allergy to apples and cheese.

Figure 2: Conclusion From Lisp_miner

- 5 is the number of children satisfying ϕ but not ψ : There five students who has no allergy to cheese but is allergic to apples.
- 0 is the number of child not satisfying ϕ but satisfying ψ : There is nobody allergy satisfying the conditions.
- 3 is the number of children not satisfying ϕ nor ψ : There are three students not allergic to apples or cheese.

Table 4: Four-fold Frequency for Question 2

	$\mid \psi$	$\neg \psi$	
ϕ $\neg \phi$	$ \begin{array}{ c c } 7 \\ 0 \\ 7 \end{array} $	5 3 8	12 3 15

2.3 Question 3

What is the truth value of $Apple(x) \Rightarrow_{0.7,4} Cheese(x)$?

2.3.1 Solution of Question 3

Assign Founded Implications to 0.70 and Base to 4.0 using LISp_Miner.

According to the hypotheses, we analyze the relationship between apple and cheese. We can get the result as the figure 3 showing, which mean there is no hypotheses is true.

Figure 3: Hypotheses 3 From LISp_Miner

The analysis to results points that: assuming the people who are allergic to apples and cheese are a while people who are allergic to apples but not to cheese are b, we can get the conclusion that there are no hypotheses output from $\frac{a}{a+b} \geq 0.7$ and $a \geq 4$, also meaning

$$v(\text{Apple}(x) \Rightarrow_{0.7,4} \text{Cheese}(x)) = \text{FAUSE}.$$
 (2)

Assign Founded Implications to minimum available value 0.01 and Base as same as above, using LISp_Miner. We can get the maximum value of $p_{max} = 0.583$ which make hypotheses true and the result as the figure 4 showing the range of p is (0, 0.583].

Figure 4: Hypotheses 3 $p = p_{max}$

Sign $f(x)_{0.7,4} = v(\text{Apple}(x) \Rightarrow_{0.7,4} \text{Cheese}(x)) = \text{FAUSE}$, then we have

$$f(x)_{0.7,4} = \begin{cases} \text{TRUE} & 0 (3)$$

2.4 Question 4

What is the truth value of $Apple(x) \equiv_{0.6} Cheese(x)$?

2.4.1 Solution of Question 4

According to the question, we use LISp_Miner to do Basic Equivalence Quantifiers Analysis, and as sign Founded Equivalence Quantifiers to 0.600. and according to the four-fold frequency table about Apple (x) and Cheese(x) built by third question which is table 4, in which we know a=7,b=5,c=0,d=3, we can calculate the p end up to the result by formula 4 below

$$\frac{a+d}{a+b+c+d} \ge p \tag{4}$$

Thus $p \in [0, \frac{2}{3}]$, also mean $v(\text{Apple}(x) \equiv_{0.6} \text{Cheese}(x)) = \text{TRUE.Alsp show in figure 5 below.}$

Figure 5: $v(\text{Apple}(x) \equiv_{0.6} \text{Cheese}(x)) = \text{TRUE}$

2.5 Question 5

Define p such that $v((\mathrm{Apple}(x) \sim_p \mathrm{Cheese}(x)) = \mathtt{TURE}$.

2.5.1 Solution of Question 5

According to the four-fold frequency table about Apple(x) and Cheese(x) built by third question, in which we know a=7,b=5,c=0,d=3, we can calculate the above average quantifiers end up to the result by formula

$$\frac{a}{a+b} \ge \frac{(1+p)(a+c)}{a+b+c+d}, a \ge \text{Base}$$
 (5)

Thus $v(\text{Apple}(x) \equiv_p \text{Cheese}(x)) = \text{TRUE}$ while $p \in (0, 0.250]$.

Figure 6: Hypotheses 5 p = 0.200 Confidence= 0.250