

Ієрогліфи

Команда дослідників вивчає подібність між послідовностями ієрогліфів. Вони представляють кожен ієрогліф цілим невід'ємним числом. Щоб виконати своє дослідження, вони використовують наступні поняття про послідовності.

Для фіксованої послідовності A, послідовність S називається **підпослідовністю** A, тоді і тільки тоді, коли можна отримати S шляхом видалення деяких елементів (можливо жодного) з A.

У таблиці нижче наведено кілька прикладів підпослідовностей послідовності A=[3,2,1,2].

Послідовність	Як її можна отримати з ${\cal A}$
[3, 2, 1, 2]	Жоден елемент не видаляється.
[2, 1, 2]	[3 , 2, 1, 2]
[3, 2, 2]	[3, 2, 1 , 2]
[3, 2]	[3, 2 , 1 , 2] or [3, 2, 1 , 2]
[3]	[3, 2 , 1 , 2]
[]	[3 , 2 , 1 , 2]

3 іншого боку, [3,3] або [1,3] не є підпослідовностями A.

Розглянемо дві послідовності ієрогліфів A і B. Послідовність S називається **спільною підпослідовністю** A і B тоді і тільки тоді, коли S є підпослідовністю як A так і B. Крім того, ми говоримо, що послідовність U є **універсальною спільною підпослідовністю** A і B тоді і тільки тоді, коли виконуються такі дві умови:

- U є спільною підпослідовністю A і B.
- Кожна спільна підпослідовність A і B також є підпослідовністю U.

Можна показати, що будь-які дві послідовності A і B мають не більше однієї універсальної спільної підпослідовності.

Дослідники знайшли дві послідовності ієрогліфів A і B. Послідовність A складається з N ієрогліфів, а послідовність B складається з M ієрогліфів. Допоможіть дослідникам обчислити

універсальну спільну підпослідовність послідовностей A і B, або визначити, що такої послідовності не існує.

Деталі реалізації

Ви повинні реалізувати наступну функцію.

std::vector<int> ucs(std::vector<int> A, std::vector<int> B)

- A: масив довжини N, що описує першу послідовність.
- B: масив довжини M, що описує другу послідовність.
- Якщо існує універсальна спільна підпослідовність A і B, то функція повинна повернути масив, що містить цю послідовність. В іншому випадку функція має повернути [-1] (масив довжиною 1, єдиним елементом якого $\epsilon-1$).
- Ця функція викликається рівно один раз для кожного тесту.

Обмеження

- $1 \le N \le 100\,000$
- 1 < M < 100000
- ullet $0 \leq A[i] \leq 200\,000$ для кожного i такого, що $0 \leq i < N$
- $0 \leq B[j] \leq 200\,000$ для кожного j такого, що $0 \leq j < M$

Підзадачі

Підзадача	Балів	Додаткові обмеження
1	3	N=M; кожен з A і B складається з N різних цілих чисел від 0 до $N-1$ (включно)
2	15	Для будь-якого цілого k (кількість елементів A , що дорівнює k) плюс (кількість елементів B , що дорівнює k) не перевищує 3 .
3	10	$A[i] \leq 1$ для кожного i такого, що $0 \leq i < N$; $B[j] \leq 1$ для кожного j такого, що $0 \leq j < M$
4	16	Існує універсальна спільна підпослідовність A і B .
5	14	$N \leq 3000$; $M \leq 3000$
6	42	Без додаткових обмежень.

Приклади

Приклад 1

Розглянемо наступний виклик.

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

Тут спільні підпослідовності A і B такі: $[\]$, [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] і [0,1,0,2].

Оскільки [0,1,0,2] є спільною підпослідовністю A і B, і усі спільні підпослідовності A і B є підпослідовностями [0,1,0,2], функція має повернути [0,1,0,2].

Приклад 2

Розглянемо наступний виклик.

```
ucs([0, 0, 2], [1, 1])
```

Тут єдиною спільною підпослідовністю A і B є порожня послідовність $[\]$. З цього випливає, що функція повинна повертати порожній масив $[\]$.

Приклад 3

Розглянемо наступний виклик.

```
ucs([0, 1, 0], [1, 0, 1])
```

Тут спільні підпослідовності A і B $[\],[0],[1],[0,1]$ і [1,0]. Можна показати, що універсальної спільної підпослідовності не існує. Отже, функція має повернути [-1].

Приклад градера

Формат вхідних даних:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

Формат вихідних даних:

```
T
R[0] R[1] ... R[T-1]
```

Тут R — це масив, який повертає ucs, а T — його довжина.