

Определение 4.1. Множество $I = \{ \mathbf{x} \in \mathbb{R}^n : a_i \leqslant x_i \leqslant b_i, i = 1, ..., n, a_i, b_i \in \mathbb{R} \}$ называется n-мерным промежсутком или n-мерным парамлелепипедом.

Теорема 4.1. n-мерный параллелепипед I является компактом в \mathbb{R}^n .

Доказательство. Пусть задано открытое покрытие $S = \{S_{\lambda}\}, \ \lambda \in \Lambda$ множества I. Предположим, что I не является компактом в \mathbb{R}^n , то есть из S невозможно выделить конечное покрытие. Делим каждый из отрезков $[a_i,b_i],\ i=1,\ldots,n$ пополам. Тогда хотя бы один из полученных 2^n n—мерных промежутков не допускает конечного подпокрытия. Продолжим указанную процедуру деления отрезков пополам, получим систему вложенных n—мерных промежутков $I = I_1 \supset I_2 \supset I_3 \supset \ldots$, каждый из которых не допускает конечного подпокрытия.

При указанном делении отрезков $[a_i,b_i],\ i=1,\ldots,n$ для каждого из них получаем систему вложенных отрезков, длины которых стремятся к нулю. По лемме Коши-Кантора существует точка ξ_i , принадлежащая системе сложенных отрезков из $[a_i,b_i],\ i=1,\ldots,n$, причем $\xi_i\in[a_i,b_i]$. Тогда $\boldsymbol{\xi}=(\xi_1,\xi_2,\ldots,\xi_n)\in I$. Следовательно, $\exists\ S_{\lambda_0}:\ \boldsymbol{\xi}\in S_{\lambda_0}$. Так как S_{λ_0} – открытое множество в \mathbb{R}^n , то $\exists U(\boldsymbol{\xi},\delta):\ \boldsymbol{\xi}\in U(\boldsymbol{\xi},\delta)\subset S_{\lambda_0}$, следовательно существует такой номер \tilde{n} , что $\boldsymbol{\xi}\in I_{\tilde{n}}\subset U(\boldsymbol{\xi},\delta)\subset S_{\lambda_0}$, то есть $I_{\tilde{n}}$ допускает конечное подпокрытие (множество S_{λ_0}), что противоречит тому, что ни один из n-мерных промежутков $I=I_1\supset I_2\supset I_3\supset\ldots$ не допускает конечного подпокрытия.

Теорема 4.2. Пусть X – компакт в \mathbb{R}^n . Тогда

- 1. X замкнутое множество в \mathbb{R}^n ,
- 2. любое замкнутое подмножество множества X является компактом.

Доказательство.

1) Пусть X – компактное множество в \mathbb{R}^n . Покажем, что дополнение $\mathbb{R}^n \setminus X$ является открытым множеством множеством в \mathbb{R}^n .

Пусть $\mathbf{y} \in \mathbb{R}^n \setminus X$. Для $\forall \mathbf{x} \in X$ построим окрестность $U(\mathbf{x}; \delta x)$ и окрестность $V(\mathbf{y}, \delta x)$, где $\delta x < \frac{1}{2} \rho(\mathbf{x}, \mathbf{y})$ (рис.1). Имеем $U(\mathbf{x}; \delta x) \cap V(\mathbf{y}, \delta x) = \varnothing$.

Далее, $X \subset \bigcup_{\mathbf{x} \in X} U(\mathbf{x}; \delta x)$, система $\{U(\mathbf{x}; \delta x)\}$ является открытым покрытием множества X. Поскольку X – компакт в \mathbb{R}^n , то существует конечное подпокрытие $U(\mathbf{x}_i; \delta x_i)$, $\mathbf{x}_i \in X$, $i = 1, \ldots, n$, то есть $X \subset \bigcup_{\mathbf{x} \in X} U(\mathbf{x}_i; \delta x_i)$.

Рассмотрим множество

$$V = \bigcap_{i=1}^{n} \underbrace{U(\mathbf{y}; \delta x_i)}_{\text{открытое множество}}$$

Оно является окрестностью точки $\mathbf{y} \in \mathbb{R}^n \setminus X$. В силу построения имеем

$$V \cap \left(\bigcup_{i=1}^{n} U(\mathbf{y}; \delta x_i)\right) = \varnothing.$$

Следовательно, $V \cap X = \emptyset \Rightarrow y \in \mathbb{R}^n \setminus X$ вместе с окрестностью V, то есть $\mathbb{R}^n \setminus X$ – открытое множество, то есть X – замкнутое множество.

2) Пусть подмножество $X_1 \subset X$ является замкнутым множеством в \mathbb{R}^n . Тогда $\mathbb{R}^n \setminus X_1$ -открытое множество в \mathbb{R}^n . Пусть $S = \{S_\lambda\}$, $\lambda \in \Lambda$ является произвольным открытым покрытием множества X_1 . Тогда $S \cup (\mathbb{R}^n \setminus X_1)$ покрывает \mathbb{R}^n и, в частности, X_1 . Поскольку X – компакт в \mathbb{R}^n , то из системы $S \cup (\mathbb{R}^n \setminus X_1)$ можно можно выделить конечное подпокрытие X. Поскольку $X_1 \cap (\mathbb{R}^n \setminus X_1) = \emptyset$, то из системы S может быть выделено конечное подпокрытие множества X_1 , то есть X_1 – компакт в \mathbb{R}^n .

Рис. 1: Схема доказательства.

Теорема 4.3. Если X – компакт в \mathbb{R}^n , то X – ограниченное множество.

Доказательство. Рассмотрим для каждой фиксированной точкой $\mathbf{y} \in \mathbb{R}^n$ систему окрестностей $S = \{U(\mathbf{y}, n)\}, n \in \mathbb{N}$. Система S покрывает $X \subset \mathbb{R}^n$. Если допустить, что X является неограниченным множеством, то из S невозможно будет отделить конечное подпокрытие, следовательно X не будет являться компактом. Что является противоречием.

Теорема 4.4. Множество $X \subset \mathbb{R}^n$ является компактом в \mathbb{R}^n , то

- 1. X замкнутое множество в \mathbb{R}^n ;
- 2. X ограниченное множество в \mathbb{R}^n .

Доказательство. Выше доказано, что если X – компакт в \mathbb{R}^n , то справедливо 1) и 2). Пусть теперь X – ограничено и замкнуто в \mathbb{R}^n . Тогда существует n—мерный параллелепипед $I \supset X$. Поскольку I – компакт в \mathbb{R}^n и его подмножество X является замкнутым, то по теореме 4.2. множество X является компактом в \mathbb{R}^n .

Последовательности в \mathbb{R}^n и их сходимость

Определение 4.2. Функция $f: \mathbb{N} \to \mathbb{R}^n$ называется последовательностью в \mathbb{R}^n . Обозначается $\{\mathbf{x}_k\}$, где $\mathbf{x}_k = (x_k^1, x_k^2, \dots, x_k^n)$. Пусть $k_1 < k_2 < \dots$ – возрастающая последовательность натуральных чисел, тогда $\{\mathbf{x}_{km}\}$ называется подпоследовательности $\{\mathbf{x}_k\}$.

Определение 4.3. Точка $\mathbf{a} = (a^1, a^2, \dots, a^n) \in \mathbb{R}^n$ называется *пределом* последовательности $\{\mathbf{x}_k\}$, если $\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) \in \mathbb{N} : \; \forall k > N \; \rho(\mathbf{x}_k, \mathbf{a}) < \varepsilon.$

Теорема 4.5. Последовательность $\{\mathbf{x}_k\}$ сходится к $\mathbf{a} \in \mathbb{R}^n$ при $k \to \infty$ тогда и только тогда, когда имеет место покоординатная сходимость, то есть $\{x_k^i\}$ сходится $\{a^i\}$ при $k \to \infty$.

Доказательство.

1) Пусть $\{\mathbf{x}_k\}$ сходится к **a** при $k \to \infty$, то есть $\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) \in \mathbb{N} \; \forall k > N \; \rho(\mathbf{x}_k,\mathbf{a}) = \sqrt{(x_k^1 - a^1)^2 + (x_k^2 - a^2)^2 + \dots + (x_k^n - a^n)^2} < \varepsilon$.

Поскольку $\left|x_k^i - a^i\right| \leqslant \sqrt{\sum_{s=1}^n (x_k^s - a^s)} < \varepsilon$, $\forall k > N, \ \forall i = 1, \dots, n$, то последовательность $\{x_k^i\}$ сходится к a^i при $k \to \infty$. То есть имеет место покоординатная сходимость.

2) Пусть $\{x_k^i\}$ сходится к a^i при $k \to \infty$, $i = 1, \ldots, n$, то есть $\forall \varepsilon > 0 \; \exists \; N_i = N_i(\varepsilon) \in \mathbb{N} \; \forall k > N_i \; \Rightarrow \left|x_k^i - a^i\right| < \frac{\varepsilon}{\sqrt{n}}$. Положим $N = \max\{N_1, N_2, \ldots, N_n\}$. Тогда

$$ho(\mathbf{x}_k, \mathbf{a}) = \sqrt{(x_k^1 - a^1)^2 + (x_k^2 - a^2)^2 + \dots + (x_k^n - a^n)^2} < \sqrt{\frac{\varepsilon^2}{n}} n = \varepsilon, \ \forall k > n, \ \text{то есть}$$
 $\{\mathbf{x}_k\}$ сходится к \mathbf{a} при $k \to \infty$.

Теорема 4.6. Если последовательность $\{\mathbf{x}_k\}$ имеет предел, то он единственный. Доказательство. Допустим, что сходящаяся последовательность $\{\mathbf{x}_k\}$ имеет два предела \mathbf{a}_1 и \mathbf{a}_2 , то есть $\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) \in \mathbb{N} \; \forall k > N \; \rho(\mathbf{x}_k, \mathbf{a}_1) < \frac{\varepsilon}{2} \; \text{и} \; \rho(\mathbf{x}_k, \mathbf{a}_2) < \frac{\varepsilon}{2}.$ Далее,

$$\rho(\mathbf{a}_{1}, \mathbf{a}_{2}) = \|\mathbf{a}_{1} - \mathbf{a}_{2}\| = \|\mathbf{a}_{1} - \mathbf{x}_{k} + \mathbf{x}_{k} - \mathbf{a}_{2}\| \leqslant \|\mathbf{x}_{k} - \mathbf{a}_{1}\| + \|\mathbf{x}_{k} - \mathbf{a}_{2}\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\forall k > N, \text{ то есть } \rho(\mathbf{a}_{1}, \mathbf{a}_{2}) = \sqrt{(a_{1}^{1} - a_{2}^{1})^{2} + (a_{1}^{2} - a_{2}^{2})^{2} + \dots + (a_{1}^{n} - a_{2}^{n})^{2}} < \varepsilon \ \forall \varepsilon > 0 \Rightarrow a_{1}^{i} = a_{2}^{i}, \ \forall i = 1, \dots, n, \text{ то есть } \mathbf{a}_{1} = \mathbf{a}_{2}.$$

Определение 4.4. Последовательность $\{\mathbf{x}_k\}$ называется *ограниченной*, если $\exists M > 0 : \|\mathbf{x}_k\| \leq M, \ \forall k \in \mathbb{N}.$

Теорема 4.7. (**Больцано-Вейерштрасс**). Из любой ограниченной последовательности $\{\mathbf{x}_k\}$ можно выделить сходящуюся подпоследовательность.

Доказательство. Пусть $\{\mathbf{x}_k\}$ – заданная ограниченная последовательность. Поскольку $\left|x_k^i\right| \leqslant \sqrt{\sum_{i=1}^n (x_k^s)^2} \leqslant M, \ \forall k \in \mathbb{N}, \ \text{то, следовательно, последовательность} \ \{x_k^i\} \ \text{также}$ является ограниченной $\forall i=1,\ldots,n.$ По теореме Больцано-Вейерштрасса для числовых последовательностей $f: \mathbb{N} \to \mathbb{R}$ из этой последовательности можно выделить сходящуюся подпоследовательность $\{x_{km}^i\}.$

Рассмотрим последовательность $\{x_k^1\}$. Из неё выделим сходящуюся к a^1 при $k \to \infty$ подпоследовательность $\{x_{km}^1\}$. Тогда из $\{x_k^2\}$ можно выделить сходящуюся к a^2 при $k \to \infty$ подпоследовательность $\{x_{km}^2\}$ и так далее. В результате получим точку $\mathbf{a} = (a^1, a^2, \dots, a^n)$. Поскольку имеет место покоординатная сходимость, то по теореме 4.5. получаем, что выделенная подпоследовательность сходится к \mathbf{a} .

Определение 4.5. Последовательность $\{\mathbf{x}_k\}$ называется фундаментальной, если $\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) \in \mathbb{N} \; \forall k, s > N \; \rho(\mathbf{x}_k, \mathbf{x}_s) < \varepsilon.$

Теорема 4.8. (**Критерий Коши**). Последовательность $\{\mathbf{x}_k\}$ сходится тогда и только тогда, когда она является фундаментальной.

Доказательство. 1) Пусть $\{\mathbf{x}_k\}$ – фундаментальная последовательность $\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) \in \mathbb{N} \; \forall k, s > N \; \rho(\mathbf{x}_k, \mathbf{x}_s) < \varepsilon.$ Тогда $\left|x_k^i - x_s^i\right| \leqslant \rho(\mathbf{x}_k, \mathbf{x}_s) < \varepsilon, \; \forall k, s > N.$

Следовательно, последовательность $\{x_k^i\}$ является фундаментальной. Согласно критерию Коши о последовательностях $f:\mathbb{N}\to\mathbb{R}$ заключаем, что $\{x_k^i\}$ — сходящаяся последовательность $\forall i=1,\ldots,n,$ то есть имеет место покоординатная сходимость. Тогда по теореме 4.5. $\{\mathbf{x}_k\}$ сходится.

2) Пусть $\{\mathbf{x}_k\}$ сходится, то есть имеет место покоординатная сходимость, тогда $\{x_k^i\}$ — фундаментальная последовательность $\forall i=1,\ldots,n,$ то есть $\forall \varepsilon>0$ \exists $N_i=N_i(\varepsilon)\in\mathbb{N}$ $\forall k,s>N_i\Rightarrow \left|x_k^i-x_s^i\right|<\frac{\varepsilon}{\sqrt{n}}.$ Пусть $N=\max\{N_1,N_2,\ldots,N_n\}.$ Тогда $\|\mathbf{x}_k-\mathbf{x}_s\|=\rho(\mathbf{x}_k,\mathbf{x}_s)=\sqrt{(x_k^1-x_s^1)^2+(x_k^2-x_s^2)^2+\cdots+(x_k^n-x_s^n)^2}<\sqrt{\sum_{i=1}^n\frac{\varepsilon^2}{n}}=\varepsilon$ $\forall k,s>n,$ то есть $\{\mathbf{x}_k\}$ — фундаментальная последовательность.