Norms

Tuesday, July 7, 2020 16:28

Norm is a way to measure something I could be vectors, matrices, tensors, functions, etc.

This makes good sense for 0 $For <math>p = \infty \rightarrow it$ picks out the biggest element, so: $||v||_{\infty} = \max_{i=1}^{\infty} \{|v_i|\}$

For p=0 -> it gives the number of non-0 elements.

(useful in sparsity questions)

Violates the rule that ||cv|| = c||v||

Unit balls in different norms Consider R² - 2D space.

So it kind of swells out from diamond to circle to square as p increases.

1/2	
l	
2	
5	
P	•

Plot of $\|V\|_{p} = 1$ for $p = \frac{1}{2}$, 1, 2, 5, ∞ in \mathbb{R}^{2} .

 \rightarrow Why is p < 1 not giving us a good norm? Beoz a "true" norm has a convex unit ball || v|| ≤ 1

> Snorm For a PD symmetric matrix S and a vector V, $\|V\|_S = \sqrt{V^T S V}$ (related to the energy in vector V)

Shape of $V^TSV = 1$ (similar to the l^2 norms above?) Note: if S = I, this is just the l^2 norm! e.g. $S = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$, $V^TSV = \underbrace{2 \, v_1^2 + 3 \, v_2^2}_{\text{an ellipse}} = 1$ So this norm is kind of a variation of l'enorm

eg. problem: minimize ||x||p s.t.

Ax=b _____ ras called in optimization for p=1, it's the Basis Pursuit problem for P=2, it's kind of like the least problem.

2D example:

To get the intuition:

- Imagine a diamond growing out from the center. This diamond will hit (0,b) first among all points on the line.
- -> Imagine a circle growing out from the center. This circle will hit the l² winner first among all points.

Norms for matrices

1.
$$\|A\|_2 = \sigma_1(A) = \frac{\|Ax\|_2}{\|x\|_2}$$
 (the blow-up factor)

The max of this ratio over all re gives the $\|A\|_2$ norm of the matrix.

So:
$$\|A\|_2 = \max_{\alpha} \frac{\|A\alpha\|_2}{\|\alpha\|} = \sigma_1(A)$$

Winner $\Rightarrow x = v_1$ (the first right-singular vector)

Recall that $Av_k = \tau_k u_k$

2 > Similar to Av= λν eigenvalues, but these are singular values.

$$\frac{\|Ax\|_2}{\|x\|} = \frac{\|Ay_1\|}{\|y_1\|_{\Rightarrow = 1}} = \|\sigma_1u_1\| = \sigma_1$$

2.
$$\|A\|_{F} = \sqrt{\sum a_{ij}^{2}}$$
 (Frobenius norm)
 $= \sqrt{\sum \sigma_{i}^{2}}$
 $A = U \ge V^{T} = \sum \sigma_{i} u_{i} V_{i}^{T}$

$$\|A\|_{F}^{2} = \text{Trace}(AA^{T}) = \text{Trace}(U\Sigma V^{T}V \Sigma^{T}U^{T}) = \text{Trace}(U\Sigma \Sigma^{T}U^{T})$$

$$= \text{Trace}(\Sigma \Sigma^{T}UU^{T}) = \text{Trace}(\Sigma \Sigma^{T}) = \Sigma \sigma_{i}^{2}$$

$$L_{i} beoz Trace(AB) = \text{Trace}(BA)$$

= Trace ($\Sigma\Sigma'UU'$) = Trace ($\Sigma\Sigma'$) = $\Sigma \sigma_i^-$ L, bcoz Trace (AB) = Trace (BA)

3. $\|A\|_{N}$ (Nuclear norm, trace norm, etc) $= \Sigma \sigma_{i} \rightarrow \text{ls being Studied in deep-learning gradient descent}$ optimization (look at work by Srebro)