CHAPTER 3

Multiple Regression

3.5 Correlated Predictors

3.6 Testing Subsets of Predictors

3.5 Correlated Predictors:

When fitting multiple regression model, we often encounter predictor variables that are correlated with one another. We should not surprised because this is not a necessarily a bad thing, but it can lead to difficulty in fitting and interpreting the mode.

Example 1: (Porsche prices)

For dataset *Porscheprices.csv*.

- 1. Graph the scatterplot of the age vs. the mileage?
- 2. Calculate the correlation coefficient for part (1)?

Example 2: (Perch weight)

For dataset Perch.csv.

- 1. Graph the scatterplot of the length vs. the width?
- 2. Calculate the correlation coefficient for part (1)?

<.0001

Width

Multicollinearity:

We say that a set of predictors exhibits multicollinearity when one or more of the predictors is strongly correlated with some combination of the other predictors in the set.

Detecting Multicollinearity:

- How do we know when multicollinearity might be an issue with a set of predictors?
- The quick check is to examine the pairwise correlation between the predictors.
- The common procedure is Variance Inflation Factor (VIF).

Variance Inflation Factor (VIF):

For any predictor X_i in a model, the Variance Inflation Factor (VIF) is computed as

$$VIF_i = \frac{1}{1 - R_i^2}$$

Where R_i^2 is the coefficient of multiple determination for a model to predict X_i using other predictors in the model.

As rough rule, we suspect multicolinearity with predictors for which the VIF > 5, which is equivalent to $R_i^2 > 80\%$.

Example 3: (Porsche prices)

For dataset *Porscheprices.csv*. Run multiple regression analysis and find the VIF for each predictor. Check the multicollinearity.

```
proc reg data = PorschePrice;
model price = mileage age / vif;
run;
```

Parameter Estimates							
Variable	DF	Parameter Estimate		t Value	Pr > t	Variance Inflation	
Intercept	1	70.91916	2.48352	28.56	<.0001	0	
Mileage	1	-0.56134	0.11407	-4.92	<.0001	3.92150	
Age	1	-0.13023	0.45684	-0.29	0.7778	3.92150	

The VIF values for the age and the mileage are less than 5, so which indicates that the age is not strongly related to the mileage.

Example 4: (Perch weight)

For dataset *Perch.csv*. Check the multicollinearity.

```
proc reg data = Perch;
model Weight = Length Width / VIF;
run;
```

Parameter Estimates							
Variable	DF	Parameter Estimate		t Value	Pr > t	Variance Inflation	
Intercept	1	-578.75777	43.66725	-13.25	<.0001	0	
Length	1	14.30738	5.65880	2.53	0.0145	20.33948	
Width	1	113.49966	30.26474	3.75	0.0004	20.33948	

The VIF values for the Length and Age are greater than 5, so which indicates that there a strong relationship between the Length and Width.

What should we do if we detect multicollinearity in a set of predictors?

- 1. Drop some predictors.
- 2. Combine some predictors. (create a new variable with some formula)
- 3. Discount the individual coefficients and t-tests. (read pp. 134)

3.6 Testing Subset of Predictors:

The F-test (ANOVA) tests the effectiveness of all of the predictors in the model as a group.

$$H_0$$
: $\beta_1 = \beta_2 = \dots = \beta_k = 0$
 $vs \qquad H_1$: at least one $\beta_i \neq 0$

The individual t-tests for regression predictors allow us to check the importance of terms in the model one at time.

$$H_0: \beta_i = 0$$
 vs $H_1: \beta_i \neq 0$

> Could we test only a subset of the predictors?

Nested F-test:

To test a subset of predictors in a multiple regression model,

$$H_0: \beta_i = 0$$
 (for all predictors in the subset)

$$H_1: \beta_i \neq 0$$
 (at least one predictor in the subset)

Let the full model denote one with all *k* predictors and the reduced model be the nested model obtained by dropping the predictors that are being tested.

The test statistics is

$$F = \frac{\left(SSModel_{full} - SSModel_{reduced}\right) / \# \ predictors \ tested}{SSE_{full} / (n-k-1)}$$

The p-value is computed from an F-distribution with numerator degrees of freedom equal to the number of predictors being tested and denominator degrees of freedom equal to the error degrees of freedom for the full model.

Nested Model:

Nested means that one model is a subset of another.

Example:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon \tag{1}$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2 + \epsilon \tag{2}$$

Model 1 is nested in (within) Model 2 because model 2 contains all parameters in model 1.

Example 5: (Perch weight)

In lab 7, the complete second-order model (full model) was:

```
\widehat{Weight}
= 156.3 - 25.0 \ Length + 20.9 \ Width + 1.6 \ Length^2
+ 34.4 \ Width^2 - 9.8 \ Length. \ Width
```

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	156.34862	61.41521	2.55	0.0140	
Length	1	-25.00073	14.27289	-1.75	0.0860	
Width	1	20.97715	82.58767	0.25	0.8005	
Length2	1	1.57194	0.72439	2.17	0.0348	
Width2	1	34.40585	18.74550	1.84	0.0724	
LengthXWidth	1	-9.77630	7.14548	-1.37	0.1774	

Example 5: (Perch weight)

Let's test whether adding the two quadratic terms $(Length^2 \text{ and } Width^2)$ actual provides a substantial improvement over the interaction model.

We need to test this hypothesis

$$H_0: \beta_3 = \beta_4 = 0$$
 vs $H_1: \beta_3 \neq 0$ or $\beta_4 \neq 0$

proc reg data = Perchl;
model Weight = Length Width L2 W2 LW;
test L2, W2;
run;

Test 1 Results for Dependent Variable Weight						
Source	DF	Mean Square	F Value	Pr > F		
Numerator	2	4382.28185	2.36	0.1052		
Denominator	50	1860.00201				

Since p - value > 0.05, so we fail reject H_0 which means that the quadratic terms are not helpful to this model.

Reading Assignment

Read section 3.5, 3.6, and 3.8

