

Bayesian Statistics and Data Analysis Lecture 8b

Måns Magnusson Department of Statistics, Uppsala University Thanks to Aki Vehtari, Aalto University

Section 1

Introduction

Bayesian decision theory

- Potential decisions d
 - or actions a
- Potential consequences x
 - x may be categorical, ordinal, real, scalar, vector, etc.
- Probability distributions of consequences given decisions p(x|d)
 - in decision making the decisions are controlled and thus p(d) does not exist
- Utility function U(x) maps consequences to real value
 - e.g. euro or expected lifetime
 - instead of utility sometimes cost or loss is defined
- Expected utility $E[U(x)|d] = \int U(x)p(x|d)dx$
- Choose decision d*, which maximizes the expected utility

$$d^* = \arg\max_d E[U(x)|d]$$

Example of decision making: 2 choices

- Helen is going to pick mushrooms in a forest, while she notices a paw print which could made by a dog or a wolf
- Helen measures that the length of the paw print is 14 cm and goes home to Google how big paws dogs and wolves have,

observed length has been marked with a horizontal line

• Likelihood of wolf is 0.92 (alternative being dog)

Example of decision making

- Helen assumes also that in her living area there are about one hundred times more free running dogs than wolves, that is a priori probability for wolf, before observation is 1%.
- Likelihood and posterior

Animal	Likelihood	Posterior probability
Wolf	0.92	0.10
Dog	0.08	0.90

• Posterior probability of wolf is 10%

Example of decision making

- Helen has to make decision whether to go pick mushrooms
- If she doesn't go to pick mushrooms utility is zero
- Helen assigns positive utility 1 for getting fresh mushrooms
- Helen assigns negative utility -1000 for a event that she goes to the forest and wolf attacks (for some reason Helen assumes that wolf will always attack)

	Animal	
Decision d	Wolf	Dog
Stay home	0	0
Go to the forest	-1000	1

Utility matrix U(x)

	Conditional utility
Action d	E[U(x) d]
Stay home	0
Go to the forest	-100+0.9

Utilities for different actions

Example of decision making

- Maximum likelihood decision would be to assume that there is a wolf
- Maximum posterior decision would be to assume that there is a dog
- Maximum utility decision is to stay home, even if it is more likely that the animal is dog
- Example illustrates that the uncertainties (probabilities) related to all consequences need to be carried on until final decision making

Example of decision making: several choices

- Prof. Gelman has a jar of quarters
 - he first drew a line on the side of the jar and then filled the jar up to the line, and so the number coins was not chosen beforehand
 - Prof. Gelman does not know the number of coins in the jar
 - Prof. Gelman gives the class a chance to win the coins if they guess the number of coins correctly (someone else has counted the coins without telling Gelman)
 - How should the students make the decision?

Challenges in decision making

- Actual utility functions are rarely linear
- What is the cost of human life?
- Multipel parties having different utilities

Multi-stage decision making (Section 9.3)

- 95 year old has a tumor that is malignant with 90% probability
- Based on statistics
 - expected lifetime is 34.8 months if no cancer
 - expected lifetime is 16.7 months if cancer and radiation therapy is used
 - expected lifetime is 20.3 months if cancer and surgery, but the probability of dying in surgery is 35% (for 95 year old)
 - expected lifetime is 5.6 months is cancer and no treatment
- Which treatment to choose?
 - quality adjusted life time
 - 1 month is subtracted for the time spent in treatments
- Quality adjusted life time
 - Radiothreapy: 0.9*16.7 + 0.1*34.8 1 = 17.5mo
 - Surgery: 0.35*0 + 0.65*(0.9*20.3 + 0.1*34.8 1) = 13.5mo
 - No treatment: 0.9*5.6 + 0.1*34.8 = 8.5mo
- See the book for continuation of the example with additional test for cancer

Design of experiment

- Which experiment would give most additional information
 - decide values x_{n+1} for the next experiment
 - which values of x_{n+1} would reduce the posterior uncertainty most
- Example
 - Imagine that in bioassay the posterior uncertainty of LD50 is too large
 - which dose should be used in the next experiment to reduce the variance of LD50 as much as possible?
 - this way less experiments need to be made (and less animals need to be killed)

- Design of experiment
- Used to optimize, for example,
 - machine learning / deep learning model structures, regularization, and learning algorithm parameters
 - material science
 - engines
 - drug testing
 - part of Bayesian inference for stochastic simulators

Model selection as decision problem

• Expected utility of using the model in the future