

EPC C1 Gen2 UHF RFID IC Fully-Passive Sensor Monitoring

Description

AS3211 is an EPCTM Class-1 Generation-2 compliant IC for UHF RFID applications. The chip offers advanced performance in sensor acquisition mode, due to an ultra-low power internal acquisition channel. It can be powered either by a battery or by the RF energy transmitted from a reader. In a Battery Assisted Passive (BAP) configuration, the AS3211 offers an increased reading range compared to passive RFID solutions.

AS3211 embeds 512 bits of low power non-volatile memory (EEPROM) that is organized in 4 banks as described in EPC Gen 2 standard. The chip supports the EPC data structure which is compliant with the EPC Global Tag Data Standards, Version 1.10, and is delivered with a Unique Identifier (UID) to ensure full traceability.

The chip embeds a temperature sensor and an acquisition channel including an amplifier and a 10-bit Analog to Digital Converter (ADC) for temperature monitoring. It supports a temperature range from -40°C to +125°C.

All features are available either in passive or BAP mode. Sensor data are available on demand by standard readers using a simple read command in the User memory as defined in the EPC protocol. There is no need for any custom command or pre-charge sequence. It is fully compliant with standard readers.

AS3211 also provides digital interface for advanced applications such as machine to machine communication. It is made by a standard slave SPI and offers programmability and functionality setup. It also allows to trig data acquisition through the internal digital interface. Both the RF interface and the SPI bus provide the same functions.

AS3211 ICs are available either packaged in a QFN24 package or as bare dies (for wirebonding or bumped).

1

Features

- ✓ EPC Gen2 compliant
- ✓ Fully passive
- √ 512-bit non-volatile memory (EEPROM)
- √ 48-bit manufacturer programmed IC Serial Number
- √ 192 bits for UII/EPC encoding
- √ 96 bits for User data
- ✓ Forward link data rates: 26.7 to 128 kbps assuming equiprobable data
- ✓ Return link data rates: 40 to 640 kbps with subcarrier modulated data rates of 0.625 to 320 kbps
- ✓ Integrated acquisition channel embedding an amplifier and an ADC for temperature monitoring
- ✓ Integrated temperature sensor with extended temperature range: -40°C to +125C
- ✓ Serial Peripheral Interface (SPI) Bus
- ✓ Battery assistance for increasing reading range
- √ 1.0V Regulated power supply available on IO

Applications

- ✓ Condition monitoring
- ✓ Supply chain management, tracking and tracing
- ✓ Cold chain monitoring

Revision History

Revision	Date	Comment
1.0	2022-11-09	Initial version
1.1	2023-02-10	p2: updated Features section (minor update)

Table of Content

Description	
Features	2
Applications	2
ApplicationsRevision History	3
Table of Content	4
Pin Description: QFN24 4mm x 4mm x 0.5mm (Top View)	5
Pin Description : Bare Die 1300µm x 1143µm (Top View)	
Typical Application	
Specification	
Absolute Maximum Ratings	
Operating Conditions	
Electrical Characteristics at 25°C	g
RF Characteristics @25°C	
Package information	
Bare Dies Information	
Bumps (DXF available on demand)	
Product Support	

Pin Description: QFN24 4mm x 4mm x 0.5mm (Top View)

Pin	Name	Type	I/O	Description		
1	NC	NA		Not Connected		
2	TEST_OUT	D	0	Digital output test pin		
3	NC	NA		Not Connected		
4	NC	NA		Not Connected		
5	RFIN	RF	ı	Antenna input		
6	RF_VSS	Α	I	For antenna connection only (RF ground)		
7	VBAT	Α		External Power Supply in BAP operation [1.8V;2.5V] (*)		
	VDAT		ı	Needs to be connected to RF_VSS in passive operation		
8	AVDD_REG	Α	0	1.0V Regulated Power Supply		
9	MOSI	D	I	1.8V SPI MOSI signal		
10	MISO	D	0	1.8V SPI MISO signal		
11	NCS	D	I	1.8V SPI Chip Select		
12	SCK	D	I	1.8V SPI Clock signal		
13	NC	NA		Not Connected		
14	NRESET	D	I	1.8V external reset for digital part in SPI mode		
15	CLK_EXT	D	I	External clock for digital part in SPI mode		
16	NC	NA		Not Connected		
17	VDD_SPI	Α	I	SPI 1.8V Power supply		
18	NC	NA		Not Connected		
19	NC	NA		Not Connected		
20	NC	NA		Not Connected		
21	NC	NA		Not Connected		
22	NC	NA		Not Connected		
23	NC	NA		Not Connected		
24	NC	NA		Not Connected		

A: Analog, D: Digital (*) For write operation in the NVM, the power supply needs to be higher than 2.2V.

Pin Description : Bare Die 1300μm x 1143μm (Top View)

Note:

On this view, the IO pads of the IC are on the top.

DXF files are available on request.

Typical Application

Temperature sensor in passive operation.

In passive mode, the needed energy is provided by the RF field. The external power supply pin VBAT needs to be connected to GND to avoid active mode to turn on. It is recommended (not mandatory) to connect VDD_SPI to GND too, to avoid any unwanted activation of the SPI mode. NRESET, CLK_EXT and the SPI inputs can be left floating (they are pulled down internally).

More information is available on request in the form of Application Notes. Some of them can be found on the following website: https://as321x.asygn.com/

Specification

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Tstorage	-50	150	°C
Voltage on all pads/pins (except GND)	Vpin	0	3.3	V
RF power into pad/pin RFIN	Pmax		15	dBm
Electrostatic discharge on all pads except RFIN	VESD	-1000	1000	V
Electrostatic discharge on RFIN	VESD_RF	-500	500	V

ESD are Human Body Model (HBM) values.

Stresses above these listed maximum ratings may cause permanent damages to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

Operating Conditions

Parameter	Symbol	Min.	Max.	Unit
Operating temperature	Toperating	-40	+125	°C
Max RF power at RFIN	Pmax_op		15	dBm
RF carrier frequency	Fcarrier	860	960	MHz

Electrical Characteristics at 25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit
Battery voltage for EEPROM read operation	Vread	0.9		3.3	V
Battery voltage for EEPROM power check, erase, and write operations	Vwrite	1.8		3.3	V
Average battery current in Sleep mode (No RF applied to the antenna)	Isleep		3.8		uA

RF Characteristics @25°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
	Zin_passive	Die form @ Pin=-10dBm				
		Fcarrier = 866MHz		7-j406		Ω
 		Fcarrier = 915MHz		8.5-j383		Ω
Input Impedance (*)		QFN24 @ Pin=-10dBm				
		Fcarrier = 866MHz		23-j213		Ω
		Fcarrier = 915MHz		30-j195		Ω
Write sensitivity in passive	Pwrite_passive			-12		dBm
Read sensitivity in passive	Pread_passive			-13		dBm
Read sensitivity in passive mode with internal temperature sensor	Pread_sensor			-13		dBm
Write sensitivity in BAP	Pwrite_bap	VBAT=2.2V		-16		dBm
Read sensitivity in BAP	Pread_bap	VBAT=2.2V		-16		dBm

^(*) Curves giving the impedance according to the carrier frequency can be provided on request.

Package information

Bare Dies Information

Bumps (DXF available on demand)

Main information concerning bumps are listed below:

Wafer Thickness : 254µmPads size: 70µm x 77µm

Passivation opening: 66μmx73μm
Bumps type: Accu bumps (Au)

- Bumps thickness: 45µm - Bumps diameter: 80µm

Note:

On this view, the IO pads and the bumps are on the top.

Product Support

www.asygn.com support@asygn.com