

# Politechnika Wrocławska

# Sprawozdanie 6

Ćwiczenie 6.Akwizycja danych

DHT11 z wykorzystaniem łączności WiFi

Krzysztof Zalewa, Wiktor Wojnar<br/> 13.1.2025

## Spis treści

| 1 | Wstęp teoretyczny                                       | 2 |
|---|---------------------------------------------------------|---|
|   | 1.1 Charakterystyka i zasady działania systemu FreeRTOS | 2 |
|   | 1.2 Wątki w FreeRTOS                                    | 2 |
|   | 1.3 DHT11                                               | 3 |
|   | 1.3.1 Budowa                                            | 3 |
|   | 1.3.2 Zasady działania                                  | 3 |
| 2 | Zadanie laboratoryjne<br>2.1 Treść zadania              |   |
|   | 2.3 Kod programu                                        |   |
| 3 | Wnioski                                                 | 5 |
| 4 | Źródła                                                  | 5 |

## 1 Wstęp teoretyczny

#### 1.1 Charakterystyka i zasady działania systemu FreeRTOS

FreeRTOS jest systemem operacyjnym czasu rzeczywistego (ang. Real time operating system) dla systemów wbudowanych. FreeRTOS został zaprojektowany tak by kod źródłowy był prosty i krótki. Takie podejście pozwala na użycie go nawet na najmniejszych urządzeniach.

#### 1.2 Wątki w FreeRTOS



Rysunek 1: Wykonywanie wielu zadań[2]

W systemach takich jak Linux programy wykonywalne implementowane są przez jeden lub więcej wątków. W systemach RTOS wątki zwykle nazywane są zadaniami. Jedno rdzeniowe processory mogą wykonywać tylko jedną operacje w danym momencie. Jednakże poprzez szybkie przełączanie między wykonywanym zadaniem można zbliżyć się do wykonywania wielu zadań jednocześnie. Za wybór które zadanie powinno być wykonywane odpowiada planista (ang. scheduler).

#### 1.3 DHT11



Rysunek 2: Płytka DHT11[3]

#### 1.3.1 Budowa

DHT11 zawiera w sobie cyfrowy sensor temperatury i wilgoci. Według źródła 4. układ ten do pomiaru temperatury wykorzystuje układ NTC a do pomiaru wilgotności układ oporowy. Wykonywane pomiary są w zakresie:

- 1. Temperatura 0-50°C błąd  $\pm 2$ °C
- 2. Wilgotność 20-90% RH  $\pm 5\%$  RH

#### 1.3.2 Zasady działania

Pomiar wilgotności polega na pomiarze zmiany rezystancji w materiale pomiarowym. Jako że rezystancja zależy też od temperatury materiale to do urządzenia musi być dołączony układ pomiaru temperatury.

Pomiar temperatury tak samo jak w przypadku wilgotności polega na pomiarze rezystancji. Do wykonania takiego pomiaru używa się termistora (rezystora o rezystancji silnie zależnej od temperatury). Rezystor NTC ma ujemny współczynnik temperaturowy (wzrost temperatury powoduje zmniejszenie rezystancji)



Rysunek 3: Termistor NTC

# 2 Zadanie laboratoryjne

#### 2.1 Treść zadania

W ramach zadania laboratoryjnego należało skonfigurować układ ESP32 i uruchomić przykładowy program. Następnie należało zainstalować system FreeRTOS oraz uruchomić wątki (1-akwizycji pomiarów, 2-przetwarzania danych, 3-transmisji wyników). Na koniec należało rozbudować wątki 1 i 2 w stopniu uzgodnionym z prowadzącym.

### 2.2 Opis działania programu

#### 2.3 Kod programu

#include <iostream>
using namespace std;
int main(){
 cout<<"Hello World\n";
 return 0;</pre>

}

### 3 Wnioski

# 4 Źródła

- 1. http://www.embeddeddev.pl/kurs-freertos-wprowadzenie/
- 2. https://www.freertos.org/Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/01-RTOS-fundamentals
- $3. \ \mathtt{https://www.waveshare.com/wiki/DHT11\_Temperature-Humidity\_Sensor}$
- 4. http://wiki.sunfounder.cc/images/c/c7/DHT11\_datasheet.pdf
- $5. \ \mathtt{https://en.wikipedia.org/wiki/Hygrometer}$
- 6. https://pl.wikipedia.org/wiki/Termistor