FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Typografie a publikování – 2. projekt Sazba dokumentů a matematických výrazů

Úvod

V této úloze si vyzkoušíme sazbu titulní strany, matematických vzorců, prostředí a dalších textových struktur obvyklých pro technicky zaměřené texty (například rovnice (2) nebo Definice 2 na straně 1). Pro vytvoření těchto odkazů používáme příkazy \label, \ref a \pageref.

Na titulní straně je využito sázení nadpisu podle optického středu s využitím zlatého řezu. Tento postup byl probírán na přednášce. Dále je použito odřádkování se zadanou relativní velikostí 0.4em a 0.3em.

1 Matematický text

Nejprve se podíváme na sázení matematických symbolů a výrazů v plynulém textu včetně sazby definic a vět s využitím balíku amsthm. Rovněž použijeme poznámku pod čarou s použitím příkazu \footnote. Někdy je vhodné použít konstrukci \${}\$ nebo \mbox{}, která říká, že (matematický) text nemá být zalomen. V následující definici je nastavena mezera mezi jednotlivými položkami \item na 0.05em.

Definice 1. Turingův stroj *(TS) je definován jako šestice* tvaru $M = (Q, \Sigma, \Gamma, \delta, q_0, q_F)$, kde:

- Q je konečná množina vnitřních (řídicích) stavů,
- Σ je konečná množina symbolů nazývaná vstupní abeceda, $\Delta \notin \Sigma$,
- Γ je konečná množina symbolů, $\Sigma \subset \Gamma$, $\Delta \in \Gamma$, nazývaná pásková abeceda,
- $\delta: (Q \setminus \{q_F\}) \times \Gamma \to Q \times (\Gamma \cup \{L, R\})$, kde $L, R \notin \Gamma$, je parciální přechodová funkce, a
- $q_0 \in Q$ je počáteční stav a $q_f \in Q$ je koncový stav.

Symbol Δ značí tzv. *blank* (prázdný symbol), který se vyskytuje na místech pásky, která nebyla ještě použita.

Konfigurace pásky se skládá z nekonečného řetězce, který reprezentuje obsah pásky a pozice hlavy na tomto řetězci. Jedná se o prvek množiny $\{\gamma\Delta^\omega\mid\gamma\in\Gamma^*\}\times\mathbb{N}^1$. Konfiguraci pásky obvykle zapisujeme jako $\Delta xyz\underline{z}x\Delta$... (podtržení značí pozici hlavy). Konfigurace stroje je pak dána stavem řízení a konfigurací pásky. Formálně se jedná o prvek množiny $\{Q\times\gamma\Delta^\omega\mid\gamma\in\Gamma^*\}\times\mathbb{N}$.

1.1 Podsekce obsahující větu a odkaz

Definice 2. Řetězec w nad abecedou Σ je přijat TS M jestliže M při aktivaci z počáteční konfigurace pásky

 $\underline{\Delta}w\Delta...$ a počátečního stavu q_0 zastaví přechodem do koncového stavu q_F , tj. $(q_0, \Delta w\Delta^{\omega}, 0) \stackrel{*}{\underset{M}{\vdash}} (q_F, \gamma, n)$ pro nějaké $\gamma \in \Gamma^*a$ $n \in \mathbb{N}$.

Množinu $L(M) = \{w \mid w \text{ je přijat } TS M\} \subseteq \Sigma^* \text{ nazý-váme jazyk přijímaný TS } M.$

Nyní si vyzkoušíme sazbu vět a důkazů opět s použitím balíku amsthm.

Věta 1. Třída jazyků, které jsou přijímány TS, odpovídá rekurzivně vyčíslitelným jazykům.

Důkaz. V důkaze vyjdeme z Definice 1 a 2. □

2 Rovnice

Složitější matematické formulace sázíme mimo plynulý text. Lze umístit několik výrazů na jeden řádek, ale pak je třeba tyto vhodně oddělit, například příkazem \quad.

$$\sqrt[i]{x_i^3}$$
 kde x_i je i -té sudé číslo $y_i^{2\cdot y_i}
eq y_i^{y_i^{y_i}}$

V rovnici (1) jsou využity tři typy závorek s různou explicitně definovanou velikostí.

$$x = \left\{ \left([a+b] * c \right)^d \oplus 1 \right\} \tag{1}$$

$$y = \lim_{x \to \infty} \frac{\sin^2 x + \cos^2 x}{\frac{1}{\log_{10} x}} \tag{2}$$

V této větě vidíme, jak vypadá implicitní vysázení limity $\lim_{n \to \infty} f(n)$ v normálním odstavci textu. Podobně je to i s dalšími symboly jako $\sum_{i=1}^n 2^i$ či $\cap_{A \in \beta} A$.

V případě vzorců $\lim_{x\to\infty} f(n)$ a $\sum_{i=1}^n 2^i$ jsme si vynutili méně úspornou sazbu příkazem limits.

3 Matice

Pro sázení matic se velmi často používá prostředí array a závorky (\left, \right).

$$\left(\begin{array}{cc} a+b & \widehat{\xi+\omega} & \widehat{\pi} \\ \overrightarrow{\mathsf{a}} & \stackrel{\longleftrightarrow}{AC} & \beta \end{array}\right) = 1 \iff \mathbb{Q} = \mathcal{R}$$

Prostředí array lze úspěšně využít i jinde.

$$\left(\begin{array}{c} n \\ k \end{array}\right) = \left\{\begin{array}{cc} 0 & \text{pro } k < 0 \text{ nebo } k > n \\ \frac{n!}{k!(n-k)!} & \text{pro } 0 \leq k \leq n. \end{array}\right.$$

 $^{^1}$ Pro libovolnou abecedu Σ je Σ^ω množina všech nekonečných řetězců nad $\Sigma,$ tj. nekonečných posloupností symbolů ze $\Sigma.$