Lecture 15 – Text Summarization

Overview

- 1. Summarization as Clustering/Optimization
 - a. Find words and sentences that best represent a document
 - b. Many approaches...
 - i. Centroid based (k-means)
 - ii. ILP
 - iii. ...
 - iv. These approaches are lightly supervised (need to provide a function that captures how well a piece of text is summarized)
- 2. Summarization using statistical techniques
 - a. Didn't really catch on
- 3. Easier problem sentence summarization
 - a. Summarization phenomena
 - i. Generalization: Russian Defense Minister → Russia
 - ii. Deletion (removing details)
 - iii. Paraphrase: for combatting → against
 - b. Types
 - i. Compressive (delete only)
 - ii. Extractive (deletion and reordering)
 - iii. Abstractive (any transformation)
- 4. What do humans do?
 - a. Mostly compression and extraction? (needs more studies)
- 5. What type of problem is summary?
 - a. Clustering
 - b. Neural
 - i. Supervised where do we get the data?
 - ii. Can only be done in some domains...where there is a lot of data.
 - iii. Data sources for sentence summarization
 - 1. Newspapers
 - a. Some papers are organized so that the first sentence is basically contains all the content of the article. So, the title is a summary of the first sentence of the article
 - iv. Data sources for document summarization
 - 1. Newspapers
 - a. Use story highlights feature of some newspapers
 - 2. Research articles
 - a. Abstract summarizes the article
 - v. One issue with these data sources is that they are naturally abstractive, but we want systems that are extractive

Neural Sentence Summarization

- Source document $x_1, ..., x_M$
- Target document $w_1, ..., w_N$
- Assume both from vocabulary V, generally $M \gg N$
- We want to learn the distribution *P*
- Compressive Model 1
 - o Encoder/Decoder

•
$$h_m^{\chi} \rightarrow RNN(h_{m-1}^{\chi}, \chi_m), h_n \rightarrow RNN(h_{n-1}, w_n)$$

- Context
 - $c_m = h_M^x$
- Large improvement over previous models
- o Surprisingly, it is not necessary to know things such as syntax
- Abstractive Model 2
 - o Same encoder, decoder, and context
- Model 3
 - Included attention mechanism
 - Take the dot product between the encoder hidden states and the current decoder hidden state, and take the softmax
 - The context vector is the weighted average of the encoder hidden states

Abstractive Summarization Beyond Translation

- RNN fix many issues related to length, but introduces new problems
- Issues
 - o Need a huge vocabulary, so it is computationally expensive
 - Summary should not repeat itself
 - o Hard to determine which parts of the original document are important
- Model 4
 - o We predict whether we should copy a word or generate a new word
- Model 5
 - o Method 1: Penalize model for attention to the same words too many times
 - o Method 2: Enforce during beam search at test time

Current Challenges

- How can we apply these models to other domains such as social media?
- There should be many good summaries.
- Convert data into a document