YAP470 TabNet: Attentive Interpretable Tabular Learning

Mustafa Mert Sandal & Murat Gencer

Terimler

- Tabular data
- DNN(Deep Neural Network)
- Decision Tree

TABNET

• Tabnet tabular data için yeni bir DNN mimarisidir.

AVANTAJLARI

- Önişleme adımları yok.
- Gradient Descent tabanlı eğitim
- Sequential Attention
- Yerel yorumlanabilirlik
- Genel yorumlanabilirlik.
- İyileştirme

Predicted output (whether the income level >\$50k)

Unsupervised pre-training

Age	Cap. gain	Education	Occupation	Gender	Relationship
53	200000	?	Exec-managerial	F	Wife
19	0	?	Farming-fishing	M	?
?	5000	Doctorate	Prof-specialty	М	Husband
25	?	?	Handlers-cleaners	F	Wife
59	300000	Bachelors	?	?	Husband
33	0	Bachelors	?	E	?
?	0	High-school	Armed-Forces	?	Husband

Age	Cap. gain	Education	Occupation	Gender	Relationship
		Masters			02
		High-school			Unmarried
43					
	0	High-school		F	
			Exec-managerial	М	
			Adm-clerical		Wife
39				М	

Feature Selection

TabNet Model Architecture

(d)

$$\mathbf{M}[\mathbf{i}] = \operatorname{sparsemax}(\mathbf{P}[\mathbf{i} - \mathbf{1}] \cdot \mathbf{h}_i(\mathbf{a}[\mathbf{i} - \mathbf{1}]))$$

Factor

Feature transformer

 $\mathbf{d_{out}} = \sum_{i=1}^{N_{steps}} \mathrm{ReLU}(\mathbf{d[i]})$

 $[\mathbf{d}[\mathbf{i}], \mathbf{a}[\mathbf{i}]] = \mathbf{f}_i(\mathbf{M}[\mathbf{i}] \cdot \mathbf{f}), \text{ where } \mathbf{d}[\mathbf{i}] \in \Re^{B \times N_d} \text{ and } \mathbf{a}[\mathbf{i}] \in \Re^{B \times N_a}$

Encoded representation Step 1 Step 2 Feature Feature transformer transformer Reconstructed features

 $\mathbf{S} \in \{0,1\}^{B \times D}$. The TabNet encoder inputs $(\mathbf{1} - \mathbf{S}) \cdot \hat{\mathbf{f}}$ and the decoder outputs the reconstructed features, $\mathbf{S} \cdot \hat{\mathbf{f}}$. We initialize $\mathbf{P}[\mathbf{0}] = (\mathbf{1} - \mathbf{S})$ in encoder so that the model emphasizes merely on the known features, and the decoder's last FC layer is multiplied with \mathbf{S} to output the unknown features.

Deneyler

- TabNet, regression ve classification için inceleniyor.
- Sayısal sütunlar preprocessing olmadan kullanılıyor.
- Standard Classification (softmax cross entropy) ve Regression (MSE) loss fonksiyonları kullanılıyor.
- Alıntı yapılan tüm deneyler için, orijinal çalışma ile aynı train, validation ve test verileri kullanılıyor.

Instance-wise Feature Selection

- Özellikle küçük veri kümelerinde yüksek performans için çok önemlidir.
- 10k train örneğinden oluşan 6 tablo veri seti ele alınıyor.

Model	Test AUC					
Model	Syn1	Syn2	Syn3	Syn4	Syn5	Syn6
No selection	$.578 \pm .004$	$.789 \pm .003$	$.854 \pm .004$	$.558 \pm .021$	$.662 \pm .013$	$.692 \pm .015$
Tree	$.574 \pm .101$	$.872 \pm .003$	$.899 \pm .001$	$.684 \pm .017$	$.741 \pm .004$	$.771 \pm .031$
Lasso-regularized	$.498 \pm .006$	$.555 \pm .061$	$.886 \pm .003$	$.512 \pm .031$	$.691 \pm .024$	$.727 \pm .025$
L2X	$.498 \pm .005$	$.823 \pm .029$	$.862 \pm .009$	$.678 \pm .024$	$.709 \pm .008$	$.827 \pm .017$
INVASE	$.690 \pm .006$	$.877 \pm .003$	$.902 \pm .003$	$\textbf{.787} \pm \textbf{.004}$	$.784 \pm .005$	$.877 \pm .003$
Global	$.686 \pm .005$	$.873 \pm .003$	$.900 \pm .003$	$.774 \pm .006$	$.784 \pm .005$	$.858 \pm .004$
TabNet	$.682 \pm .005$	$.892 \pm .004$	$.897 \pm .003$	$.776 \pm .017$	$\textbf{.789} \pm \textbf{.009}$	$.878 \pm .004$

Gerçek Dünya Veri Kümelerinde Performans

- Forest Cover Type
- Poker Hand
- Sarcos
- Rossman Store Sales

Forest Cover Type (Orman Örtüsü Tipi)

• Amaç: Orman örtüsü türünün kartografik değişkenlerden sınıflandırılması.

Model	Test accuracy (%)
XGBoost	89.34
LightGBM	89.28
CatBoost	85.14
AutoML Tables	94.95
TabNet	96.99

Poker Hand (Poker Eli)

• Amaç: Kartların sıra ve renklerine göre poker elini sınıflandırmak.

Model	Test accuracy (%)		
DT	50.0		
MLP	50.0		
Deep neural DT	65.1		
XGBoost	71.1		
LightGBM	70.0		
CatBoost	66.6		
TabNet	99.2		
Rule-based	100.0		

Sarcos

• Amaç: Antropomorfik bir robot kolunun ters dinamiklerini açıklamak.

Model	Test MSE	Model size
Random forest	2.39	16.7K
Stochastic DT	2.11	28K
MLP	2.13	0.14M
Adaptive neural tree	1.23	0.60M
Gradient boosted tree	1.44	0.99M
TabNet-S	1.25	6.3K
TabNet-M	0.28	0.59M
TabNet-L	0.14	1.75M

Rossman Store Sales (Rossman Mağaza Satışları)

• Amaç: Statik ve zamanla değişen özelliklerden mağaza satışlarını tahmin etmektir.

Model	Test MSE		
MLP	512.62		
XGBoost	490.83		
LightGBM	504.76		
CatBoost	489.75		
TabNet	485.12		

Yorumlanabilirlik

- Sentetik Veri Kümeleri
- Gerçek Dünya Veri Kümeleri

Sentetik Veri Kümeleri

Model	Test AUC					
Model	Syn1	Syn2	Syn3	Syn4	Syn5	Syn6
No selection	$.578 \pm .004$	$.789 \pm .003$	$.854 \pm .004$	$.558 \pm .021$	$.662 \pm .013$	$.692 \pm .015$
Tree	$.574 \pm .101$	$.872 \pm .003$	$.899 \pm .001$	$.684 \pm .017$	$.741 \pm .004$	$.771 \pm .031$
Lasso-regularized	$.498 \pm .006$	$.555 \pm .061$	$.886 \pm .003$	$.512 \pm .031$	$.691 \pm .024$	$.727 \pm .025$
L2X	$.498 \pm .005$	$.823 \pm .029$	$.862 \pm .009$	$.678 \pm .024$	$.709 \pm .008$	$.827 \pm .017$
INVASE	$.690 \pm .006$	$.877 \pm .003$	$.902 \pm .003$	$\textbf{.787} \pm \textbf{.004}$	$.784 \pm .005$	$.877 \pm .003$
Global	$.686 \pm .005$	$.873 \pm .003$	$.900 \pm .003$	$.774 \pm .006$	$.784 \pm .005$	$.858 \pm .004$
TabNet	$.682 \pm .005$	$.892 \pm .004$	$.897 \pm .003$	$.776 \pm .017$	$.789 \pm .009$	$\textbf{.878} \pm \textbf{.004}$

Gerçek Dünya Veri Kümeleri

- Mantar yenilebilirlik tahmini yapılmaktadır.
- Kokunun en ayırt edici özellik olduğu bilinmektedir.
- Yalnızca koku ile %98.5 test doğruluğu elde edilebilir.

Self-Supervised Learning (Kendi Kendini Denetleyen Öğrenme)

Training	Test accuracy (%)			
dataset size	Supervised	With pre-training		
1k	57.47 ± 1.78	$\textbf{61.37} \pm \textbf{0.88}$		
10k	66.66 ± 0.88	68.06 ± 0.39		
100k	72.92 ± 0.21	73.19 ± 0.15		

Sonuç

- Tablolu öğrenme için yeni bir derin öğrenme mimarisi TabNet öğretiliyor.
- Instance-wise feature selection, en göze çarpan özellikler için kullanıldığından verimli öğrenme sağlıyor ve ayrıca selection mask'lerin görselleştirilmesi sayesinde daha yorumlanabilir bir hal alıyor.
- TabNet'in tabular veri kümelerinde önceki çalışmalardan daha iyi performans gösterdiği örnekleniyor.
- Son olarak, hızlı adaptasyon ve iyileştirilmiş performans için unsupervised pre-training'in önemli faydaları gösteriliyor.

Kaynakça

- TabNet: Attentive Interpretable Tabular Learning
- https://towardsdatascience.com/tabnet-e1b979907694
- https://towardsdatascience.com/e2e-the-every-purpose-ml-method-5d4f20dafee4
- https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/