Part IA - Groups Definitions

Lectured by J. Goedecke

Michaelmas 2014

Examples of groups

Axioms for groups. Examples from geometry: symmetry groups of regular polygons, cube, tetrahedron. Permutations on a set; the symmetric group. Subgroups and homomorphisms. Symmetry groups as subgroups of general permutation groups. The Möbius group; cross-ratios, preservation of circles, the point at infinity. Conjugation. Fixed points of Möbius maps and iteration.

Lagranges theorem

Cosets. Lagranges theorem. Groups of small order (up to order 8). Quaternions. Fermat-Euler theorem from the group-theoretic point of view. [5]

Group actions

Group actions; orbits and stabilizers. Orbit-stabilizer theorem. Cayley's theorem (every group is isomorphic to a subgroup of a permutation group). Conjugacy classes. Cauchy's theorem. [4]

Quotient groups

Normal subgroups, quotient groups and the isomorphism theorem.

[4]

Matrix groups

The general and special linear groups; relation with the Möbius group. The orthogonal and special orthogonal groups. Proof (in \mathbb{R}^3) that every element of the orthogonal group is the product of reflections and every rotation in \mathbb{R}^3 has an axis. Basis change as an example of conjugation.

Permutations

Permutations, cycles and transpositions. The sign of a permutation. Conjugacy in S_n and in A_n . Simple groups; simplicity of A_5 . [4]

Contents

1	Grc	oups and homomorphisms	4		
	1.1	Groups	4		
	1.2	Homomorphisms	4		
	1.3	Cyclic groups	5		
	1.4	Dihedral groups	5		
	1.5	Direct products of groups	5		
2	Symmetric group I 6				
	2.1	Sign of permutations	6		
3	Lag	grange's Theorem	7		
	3.1	Small groups	7		
	3.2	Left and right cosets	7		
4	Quotient groups 8				
	4.1	Normal subgroups	8		
	4.2	Quotient groups	8		
	4.3	The Isomorphism Theorem	8		
5	Group actions 9				
	5.1	Group acting on sets	9		
	5.2	Orbits and Stabilizers	9		
	5.3	Important actions	9		
	5.4	Applications	10		
6	Symmetric groups II				
	6.1	Conjugacy classes in S_n	11		
	6.2	Conjugacy classes in A_n	11		
7	Qua	aternions	12		
8	Ma	trix groups	13		
	8.1	General and special linear groups	13		
	8.2		13		
	8.3	Orthogonal groups	13		
	8.4	Rotations and reflections in \mathbb{R}^2	13		
	8.5	Unitary groups	13		
9	More on regular polyhedra 14				
	9.1	Symmetries of the cube	14		
			14		
		9.1.2 All symmetries	14		
	9.2	Symmetries of the tetrahedron	14		
		9.2.1 Rotations	14		
		9.2.2 All symmetries	14		

10 Möbius group	15
10.1 Fixed points of Möbius maps	15
10.2 Permutation properties of Möbius maps	15
10.3 Cross-ratios	15
11 Projective line (non-examinable)	16

1 Groups and homomorphisms

1.1 Groups

Definition (Binary operation). A *(binary) operation* is a way of combining two elements to get a new element. Formally, it is a map $*: A \times A \rightarrow A$.

Definition (Group). A *group* is a set G with a binary operation * satisfying the following axioms:

- 0. (Closure) $\forall a, b \in G, a * b \in G$
- 1. (Identity) $\exists e \in G(\forall a \in G(a * e = e * a = a))$
- 2. (Inverse) $\forall a \in G(\exists a^{-1} \in G(a * a^{-1} = a^{-1} * a = e))$
- 3. (Associativity) $\forall a, b, c \in G((a * b) * c = (a * (b * c)))$

Definition (Abelian group). A group is abelian if it satisfies

4. (Commutativity) $\forall a, b \in G(a * b = b * a)$

Definition (Order of group). The *order* of the group, denoted as |G|, is the number of elements in G. A group is a finite group is the order is finite.

Definition (Subgroup). A subgroup $H \leq G$ is a subset $H \subseteq G$ such that H with the restricted operation * from G is also a group.

1.2 Homomorphisms

Definition (Function). Given 2 sets X, Y, a function $f: X \to Y$ sends each $x \in X$ to a particular $f(x) \in Y$. X is called the domain and Y is the co-domain.

Definition (Composition of functions). The *composition* of two functions is a function you get by applying one after another. In particular, if $f: X \to Y$ and $G: Y \to Z$, then $g \circ f: X \to Z$ with $g \circ f(x) = g(f(x))$.

Definition (Injective functions). A function f is *injective* if it hits everything at most once, i.e.

$$\forall x, y \in X(f(x) = f(y) \Rightarrow x = y)$$

Definition (Surjective functions). A function is *surjective* if it hits everything at least once, i.e.

$$\forall y \in Y(\exists x \in X(f(x) = y))$$

Definition (Bijective functions). A function is *bijective* if it is both injective and surjective. i.e. it hits everything exactly once. Note that a function has an inverse iff it is bijective.

Definition (Group homomorphism). Let (G,*) and (H, \times) be groups. A function $f: G \to H$ is a group homomorphism iff

$$\forall g_1, g_2 \in G : f(g_1) \times f(g_2) = f(g_1 * g_2),$$

i.e. they "preserve group properties"

Definition (Group isomorphism). *Isomorphisms* are bijective homomorphisms. 2 groups are *isomorphic* if there exists an isomorphism between them. We write $G \cong H$.

Definition (Image of homomorphism). If $f: G \to H$ is a homomorphism, then the *image* of f is

Im
$$f = f(G) = \{ f(g) : g \in G \}.$$

Definition (Kernel of homomorphism). The kernel of f, written as

$$\ker f = f^{-1}(\{e_H\}) = \{g \in G : f(g) = e_H\}.$$

1.3 Cyclic groups

Definition (Cyclic group C_n). A group G if cyclic if $\exists a \in G(\forall b \in G(\exists n \in \mathbb{Z}(b=a^n)))$, i.e. every element is some power of a. Such an a is called a generator of G.

Definition (Order of element). The *order* of an element a is the smallest integer n such that $a^n = e$. If k doesn't exist, a has infinite order. Write ord(a) for the order of a.

Definition (Exponent of group). The *exponent* of a group G is the smallest integer n such that $\forall a(a^n = e)$.

1.4 Dihedral groups

Definition (Dihedral groups D_{2n}). Dihedral groups are the symmetries of a regular n-gon. It contains n rotations (including the identity symmetry, i.e. rotation by 0°) and n reflections. All rotations are generated by $r = \frac{360^{\circ}}{n}$. r has order n. Any reflection has order 2.

Now consider any reflection s. Then r and s generate the whole group. We have

$$D_{2n} = \langle r, s | r^n = e = s^2, srs^{-1} = r^{-1} \rangle$$

= $\{e, r, r^2, \dots r^{n-1}, s, rs, r^2s, \dots r^{n-1}s\}$

Note that we have $sr = r^{-1}s$ and $sr^k = r^{-k}s = r^{n-k}s$.

1.5 Direct products of groups

Definition (Direct product of groups). Given two groups $(G_1, *_1)$ and $(G_2, *_2)$, we can define a set $G_1 \times G_2 = \{(g_1, g_2) : g_i \in G_i\}$ and an operation $(a_1, a_2) * (b_1, b_2) = (a_1 *_1 b_1, a_2 *_2 b_2)$. This forms a group.

2 Symmetric group I

Definition (Permutation). A permutation of X is a bijection from a set X to X itself. The set of all permutations on X is $\operatorname{Sym} X$.

Definition (Symmetric group S_n). If X is finite, say |X| = n (usually use $X = \{1, 2, \dots, n\}$), we write $\text{Sym } X = S_n$. The is THE symmetric group of degree n

Definition (k-cycles and transpositions). We call $(a_1 \ a_2 \ a_3 \cdots a_k)$ k-cycles. 2-cycles are called *transpositions*. Two cycles are *disjoint* if no number appears in both cycles.

Definition (Cycle type). Write a permutation $\sigma \in S_n$ in disjoint cycle notation. The *cycle type* is the list of cycle lengths. This is unique up to re-ordering. We often (but not always) leave out singleton cycles.

2.1 Sign of permutations

Definition (Sign of permutation). Viewing $\sigma \in S_n$ as a product of transpositions, $\sigma = \tau_1 \cdots \tau_l$, we call $\operatorname{sgn}(\sigma) = (-1)^l$. If $\operatorname{sgn}(\sigma) = 1$, we call σ an even permutation. If $\operatorname{sgn}(\sigma) = -1$, we call σ an odd permutation.

Definition (Alternating group A_n). The alternating group A_n is the kernel of sgn, i.e. the even permutations. Since A_n is a kernel of a group homomorphism, $A_n \leq S_n$.

3 Lagrange's Theorem

Definition (Cosets). Let $H \leq G$ and $a \in G$. Then the set $aH = \{ah : h \in H\}$ is a *left coset* of H and $Ha = \{ha : h \in H\}$ is a *right coset* of H.

Definition (Partition). Let X be a set, and $X_1, \dots X_n$ be subsets of X. The X_i are called a *partition* of X if $\bigcup X_i = X$ and $X_i \cap X_j = \emptyset$ for $i \neq j$. i.e. every element is in exactly one of X_i .

Definition (Index of a subgroup). The *index* of H in G (|G:H|) is the number of left cosets in G.

Definition (Equivalence relation). An equivalence relation \sim is a relation that is reflexive, symmetric and transitive. i.e.

- (i) Reflexive: $\forall x(x \sim x)$
- (ii) Symmetric: $\forall x, y (x \sim y \Rightarrow y \sim x)$
- (iii) Transitive $\forall x, y, z[(x \sim y) \land (y \sim z) \Rightarrow x \sim z]$

Definition (Equivalence class). Given an equivalence relation \sim on A, the equivalence class of a is

$$[a]_{\sim} = [a] = \{b \in A | a \sim b\}$$

Definition (Euler totient function). (Euler totient function) $\phi(n) = |U_n|$.

3.1 Small groups

3.2 Left and right cosets

4 Quotient groups

4.1 Normal subgroups

Definition (Normal subgroup). A subgroup K of G is a *normal subgroup* if $\forall a \in G (\forall k \in K(aka^{-1} \in K))$. We write $K \triangleleft G$. This is equivalent to:

- (i) $\forall a \in G(aK = Ka)$, i.e. left coset = right coset
- (ii) $\forall a \in G(aKa^{-1} = K \text{ (c.f. conjugacy classes)}$

4.2 Quotient groups

Definition (Quotient group). Given a group G and a normal subgroup K, the quotient group or factor group of G by K, written as G/K, is the set of (left) cosets of K in G under the operation aK * bK = (ab)K.

4.3 The Isomorphism Theorem

Definition (Simple group). A group is *simple* if it has no non-trivial proper normal subgroup, i.e. only $\{e\}$ and G are normal subgroups.

5 Group actions

5.1 Group acting on sets

Definition (Group action). Let X be a set and G be a group. An action of G on X is a function $\theta: G \times X \to X$ satisfying

- 0. $\forall g \in G, x \in X[\theta(g, x) \in X].$
- 1. $\forall x \in X[\theta(e, x) = x].$
- 2. $\forall g, h \in G, x \in X[\theta(g, \theta(h, x)) = \theta(gh, x)]$

i.e. given an element $g \in G$ and an $x \in X$, g "acts on" x to give an element $\theta(g,x) \in X$ (the two conditions ensure that the group properties of G are not destroyed)

Definition (Kernel of action). The *kernel* of an action G on X is the kernel of φ , i.e. all g such that $\theta_g = 1_X$.

Definition (Faithful action). An action is *faithful* if the kernel is just $\{e\}$.

5.2 Orbits and Stabilizers

Definition (Orbit of action). Given an action G on X, the *orbit* of an element $x \in X$ is

$$orb(x) = G(x) = \{ y \in X : \exists g \in G(g(x) = y) \}.$$

Intuitively, it is the elements that x can possibly get mapped to.

Definition (Stabilizer of action). The *stabilizer* of x is

$$stab(x) = G_x = \{ g \in G : g(x) = x \} \subseteq G.$$

Intuitively, it is the elements in G that do not change x.

Definition (Transitive action). An action G on X is transitive if $\forall x (\text{orb}(x) = X)$, i.e. you can reach any element from any element.

5.3 Important actions

Definition (Conjugation of element). The *conjugation* of $a \in G$ by $b \in G$ is given by $bab^{-1} \in G$.

Definition (Center of group). The *center* of G is the elements that commute with all other elements.

$$Z(g) = \{g \in G : \forall a(gag^{-1} = a)\} = \{g \in G : \forall a(ga = ag)\}.$$

It is sometimes written as C(G) instead of Z(G).

Definition (Conjugacy classes and centralizers). The *conjugacy classes* are the orbits of the conjugacy action.

$$\operatorname{ccl}(a) = \{ b \in G : \exists g \in g(gag^{-1} = b) \}.$$

The centralizers are the stabilizers of this action, i.e. elements that commute with a.

$$C_G(a) = \{g \in G : gag^{-1} = a\} = \{g \in G : ga = ag\}.$$

Definition (Normalizer of subgroup). The normalizer of a subgroup is the stabilizer of the (group) conjugation action.

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}.$$

5.4 Applications

6 Symmetric groups II

- 6.1 Conjugacy classes in S_n
- **6.2** Conjugacy classes in A_n

Definition (Splitting of conjugacy classes). When $|\operatorname{ccl}_{A_n}(\sigma)| = \frac{1}{2}|\operatorname{ccl}_{S_n}(\sigma)|$, we say that the conjugacy class of σ splits in A_n .

7 Quaternions

 ${\bf Definition}$ (Quaternions). The quaternions is the set of matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$$

which is a subgroup of $\mathrm{GL}_2(\mathbb{C})$.

8 Matrix groups

8.1 General and special linear groups

Definition (General linear group $GL_n(F)$).

$$\operatorname{GL}_n(F) = \{ A \in M_{n \times n}(F) : A \text{ is invertible} \}$$

is the general linear group.

Definition (Special linear group $SL_n(F)$). The special linear group $SL_n(F)$ is the kernel of the determinant, i.e.

$$SL_n(F) = \{ A \in \operatorname{GL}_n(F) : \det A = 1 \}.$$

8.2 Actions of $GL_n(\mathbb{C})$

8.3 Orthogonal groups

Definition (Orthogonal group O(n)). The orthogonal group is

$$O(n) = O_n = O_n(\mathbb{R}) = \{ A \in GL_n(\mathbb{R}) : A^T A = I \},$$

i.e. the group of orthogonal matrices.

Definition (Special orthogonal group SO(n)). The special orthogonal group is the kernel of det : $O(n) \to \{\pm 1\}$.

$$SO(n) = SO_n = SO_n(\mathbb{R}) = \{A \in O(n) : \det A = 1\}.$$

8.4 Rotations and reflections in \mathbb{R}^2

8.5 Unitary groups

Definition (Unitary group U(n)). The unitary group is $U(n) = U_n = \{A \in GL_n(\mathbb{C}) : A^{\dagger}A = I\}$.

Definition (Special unitary group SU(n)). The special unitary group $SU(n) = SU_n$ is the kernel of $\det U(n) \to S^1$.

9 More on regular polyhedra

- 9.1 Symmetries of the cube
- 9.1.1 Rotations
- 9.1.2 All symmetries
- 9.2 Symmetries of the tetrahedron
- 9.2.1 Rotations
- 9.2.2 All symmetries

10 Möbius group

Definition (Möbius map). A Möbius map is a map from $\mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ of the form

$$f(z) = \frac{az+b}{cz+d},$$

where $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$, with $f(-\frac{d}{c}) = \infty$ and $f(\infty) = \frac{a}{c}$ when $c \neq 0$. (if c = 0, then $f(\infty) = \infty$)

Definition (Projective general linear group $\operatorname{PGL}_2(\mathbb{C})$). (Non-examinable)The projective general linear group is

$$\operatorname{PGL}_2(\mathbb{C}) = \operatorname{GL}_2(\mathbb{C})/Z.$$

10.1 Fixed points of Möbius maps

Definition (Fixed point). A fixed point of f is a z such that f(z) = z.

10.2 Permutation properties of Möbius maps

Definition (Three-transitive action). An action of G on X is called *three-transitive* if the induced action on $\{(x_1, x_2, x_3) \in X^3 : x_i \text{ pairwise disjoint}\}$, given by $g(x_1, x_2, x_3) = (g(x_1), g(x_2), g(x_3))$, is transitive.

This means that for any two triples x_1, x_2, x_3 and y_1, y_2, y_3 of distinct elements of X, there exists $g \in G$ such that $g(x_i) = y_i$.

If this g is always unique, then the action is called *sharply three transitive*

10.3 Cross-ratios

Definition (Cross-ratios). Given four distinct points $z_1, z_2, z_3, z_4 \in \mathbb{C}_{\infty}$, their cross-ratio is $[z_1, z_2, z_3, z_4] = g(z_4)$, with g being the unique Möbius map that maps $z_1 \mapsto \infty, z_2 \mapsto 0, z_3 \mapsto 1$. So $[\infty, 0, 1, \lambda] = \lambda$ for any $\lambda \neq \infty, 0, 1$. We have

$$[z_1, z_2, z_3, z_4] = \frac{z_4 - z_2}{z_4 - z_1} \cdot \frac{z_3 - z_1}{z_3 - z_2}$$

(with special cases as above).

11 Projective line (non-examinable)