

Homework 11

Directions: Answer the following questions. You are encouraged to work together, join the discussion sessions, use discord, and ask me questions!

- 1. Let A be some subset of a space X with topology τ . We say that x is a **cluster point** or **limit point** of A if for every open set U containing $x, U \cap A \setminus \{x\} \neq \emptyset$. We denote the set of all cluster points of A by A'. We denote the closure of A to be $\overline{A} = A \cup A'$.
 - a) Show by example that A' need not be a subset of A.
 - b) Suppose $\{a_n\}$ is a sequence of points such that for all $n, a_n \in A$ and $\{a_n\}$ converges to x. Prove that $x \in \overline{A}$.

Hint: If $x \in A$, we're done. So suppose $x \notin A$, and show $x \in A'$.

c) Suppose we know that X is a metric space with τ a metric topology given by some metric d. Suppose $x \in \overline{A}$. Prove there exists a sequence of points in A that converges to x.

Hint: If $x \in A$ the constant sequence $a_n = x$ works. So suppose $x \in A' \setminus A$, and use the fact that we have a metric to construct a sequence of points in A converging to x.

Remark: If we have that X is metric space, parts (b) and (c) form an if and only if statement commonly referred to as **The Sequence Lemma**.

- 2. We say as topological space X is Hausdorff if given any $x, y \in X$ with $x \neq y$, there exists open sets U and V such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$.
 - a) Show by example that not every space is a Hausdorff space.
 - b) Prove every metric space is Hausdorff.

Remark: The reverse implication is not true, a Hausdorff space need not be a metric space. It's above the scope of our crash course, but \mathbb{R}_l can be shown to be Hausdorff and not metrizable (i.e., no metric can be defined on it).

c) Prove that limits are unique in Hausdorff spaces. That is, if X is a Hausdorff space, $\{x_n\}$ a sequence in X, $x_n \to y$ and $x_n \to z$, then y = z.

Hint: Suppose $y \neq z$, then using the definition of Hausdorff will lead to a contradiction.