Automatic Control

Hak-Tae Lee

Dynamics

Rotational Motion

Rotational Motion

Analogous to

$$\mathbf{F} = m\mathbf{a}$$

For rotation

$$\mathbf{M} = I\mathbf{\alpha}$$

(Comes from the conservation of angular momentum)

Satellite Attitude

$$I\ddot{\theta} = 2Fd$$

Moment-of-Inertia

- Mass "resistance to acceleration"
- Moment-of-inertia "resistance to rotational acceleration"

$$I = \int_{A} \left(x^2 + y^2\right) dm$$

Pendulum – Point Mass

$$I = \int_{A} (x^2 + y^2) dm = ml^2$$

$$\sum \mathbf{M} = T_c - mgl \sin \theta = I\ddot{\theta}$$
$$T_c - mgl \sin \theta = ml^2 \ddot{\theta}$$

$$ml^{2}\ddot{\theta} + mgl\sin\theta = T_{c}$$
$$\ddot{\theta} + \frac{g}{l}\sin\theta = \frac{T_{c}}{ml^{2}}$$

Linearize

For small angles

$$\sin \theta \approx \theta$$

• But how small?

$oldsymbol{ heta}$	$m{ heta}$ (Radians)	$\sin oldsymbol{ heta}$	Error, %
5	0.0873	0.0872	0.13
10	0.1745	0.1736	0.51
15	0.2618	0.2588	1.15
20	0.3491	0.3420	2.06
25	0.4363	0.4226	3.25
30	0.5236	0.5000	4.72

Linearized

$$\ddot{\theta} + \frac{g}{l}\theta = \frac{T_c}{ml^2}$$

Pendulum - Rod

$$\sum \mathbf{M} = T_c - mg\left(\frac{l}{2}\right)\sin\theta = I\ddot{\theta}$$

Moment-of-Inertia, Moment Arm

$$M = \int_0^l x \bullet g \rho dx = \rho g \int_0^l x dx = \frac{1}{2} \rho g l^2 = \rho g l \times \left(\frac{l}{2}\right) = mg \times \left(\frac{l}{2}\right)$$

$$I = \int_0^l x^2 dm = \int_0^l x^2 \rho dx = \rho \int_0^l x^2 dx = \frac{1}{3} \rho l^3 = \frac{1}{3} (\rho l) l^2 = \frac{1}{3} m l^2$$

A Two Mass System - Rotation

- Hard disk head control
 - Two rotating mass: motor and head
 - One spring: shaft

Rotational Spring and Damper

$$M_s = -k\theta$$

Spring, flexible shaft

$$M_d = -b\dot{\theta}$$

Bearing friction, viscous coupling

Equation of Motion

$$I_1 \ddot{\theta}_1 = M_c - b(\dot{\theta}_1 - \dot{\theta}_2) - k(\theta_1 - \theta_2) \qquad I_2 \ddot{\theta} = -b(\dot{\theta}_1 - \dot{\theta}_2)$$

$$I_2 \ddot{\theta} = -b(\dot{\theta}_2 - \dot{\theta}_1) - k(\theta_2 - \theta_1)$$