1 Алгоритм перевода гиперплоскостного описания многогранника в вершинное представление

Пусть дан набор гиперплоскостей, описывающий многогранник. Нормали смотрят наружу.

Этап 1. Найти какую-нибудь вершину многогранника.

Наивный перебор / симплекс-метод.

Этап 2. Найти оставшиеся вершины многогранника.

Создадим очередь вершин из которых мы ещё не строили рёбра. Инициализируем её вершиной найденной в первом этапе.

Пока очередь не пуста:

Берём очередную вершину z из очереди. Найдём набор \mathcal{H}_z гиперплоскостей проходящих через эту точку.

Перебираем всевозможные наборы из d-1 гиперплоскости.

Для каждого такого набора с помощью метода Γ -Ш построим направляющий вектор v. Если для любого вектора нормали n из набора \mathcal{H}_z $\langle v,n\rangle\leqslant 0$, то такой вектор задаёт прямую содержащую ребро, обозначим его v_* .

Найдём первую точку пересечения вектора v_* с гиперплоскостями из набора \mathcal{H}_z . Однако вектор v_* может «смотреть» наружу многогранника, поэтому заодно найдём и пересечение в другую сторону.

$$t_i \leftarrow A_i^{-1} \frac{b_i - A_i z}{v_* + z}; \quad j = \operatorname{argmin}_i(t_i | t_i > 0); \quad k = \operatorname{argmax}_i(t_i | t_i < 0)$$

Возможно, что одного из пересечений не будет, эту ситуацию нужно обработать отдельно.

Далее, подставляем найденные индексы в уравнение прямой и находим две точки. После чего обе подставляем в каждую гиперплоскость из \mathcal{H}_z и выбираем ту точку p_* , которая удовлетворяет всем неравенствам.

Запоминаем p_* как вершину многогранника и добавляем её в очередь.