

circuitMaps Quine-Mccluskey

Tiago Leite Brito

método de desenvolvimento - BscScrum

MAPA ESTRATÉGICO

Data: 11/11/17 Release/sprint: 0/0 Revisão: 00

CircuitMaps - software para estudo de mapas de Karnaugh e QMC

VISÃO	material didático interativo sobre mapas de Karnaugh para estudantes de técnicas digitais em um ambiente online.										
MISSÃO	desenvolver uma ferramenta para solução de mapas de Karnaugh prezando pelo desempenho e usabilidade.										
TEMAS	algoritmos interface entradas e saídas extras									troc	
ESTRATÉGICOS	aı	gonunos			IIILEITACE	5	enu	auas e s	CYII 42		
ÉPICOS	pesquisa	implementação	tabela de	entrada	entrada	interface	importar	importar	exportar	montar	máguina
ESTRATÉGICOS	(sem comparação)	(dinâmico)	cobertura	com mapa	com tabela	com usuário	mapa	tabela	resultado	circuito	de estados
RESULTADOS	melhor desempenho	poder trabalhar com o máximo de		poder informar		•	poder importar um mapa	poder importar uma tabela	gerar um resultado que	gerar o circuito	implementar análise de
ESTRATÉGICOS	desempenno	variáveis possível				o processo de inserção de dados			possa ser baixado		
LJINAILUICOJ					e analisar	e passo a passo			ou impresso		moore

COMPROMETIMENTO - CORAGEM - FOCO - TRANSPARÊNCIA - RESPEITO

product backlog

código anterior

ab/cde	000		001		01	1		01	0		11	0		11	1		10	1		10	0	
00	0 \	0	x v	. 1	1	~	3	0	~	2	0	~	6	1	~	7	0	~	5	0	~	4
01	1 \	8	x ~	, 9	Х	~	11	0	~	10	0	~	14	0	~	15	0	~	13	0	~	12
11	0 \	, 24	0 ~	, 25	0	~	27	0	~	26	0	~	30	0	~	31	0	~	29	0	~	28
10	1 \	, 16	1 ~	. 17	Х	~	19	0	~	18	Х	~	22	0	~	23	1	~	21	1	~	20
Submi	it	Mod	elo	M	ode	lo1		M	ode	lo2		М	ode	lo3		М	ode	elo4	+	М	ode	lo5
coluna	0	colu	ına1		С	olu	na	2					col	lun	a 3							
													5									
00001 01000 10000	(8)	0_0 _00 010 100 10_	_1 (1 01 (1 01 (1 0_ (8 0_ (1 00 (1	,9) ,17 3,9) 6,1 6,2	7) 1	00_0	_1 _1 _1 0_	(1, (1, (1,	3,1 ,9,3 ,17, 5,1	7,1 3,11 ,3,1 7,2	(9) (1) (19) (1)	21)	6									
00011 01001 10001 10100	(9) (17)	0_0 _00 010 100 10_	11 (3 11 (3 _1 (9 _1 (1	,11, ,19 ,11, 7,1 7,2) 9) 1)																	
00111 01011 10011 10101 10110	(11) (19) (21)																					

algoritmo Quine-Mccluskey

implicantes primos:

0_00_ (0,1,8,9) 000 (0,1,16,17)

______(0,1,10,11)

0_0_1 (1,3,9,11) _00_1 (1,3,17,19) 10 0 (16,17,20,21) implicantes primos essenciais:

000 (0,1,16,17) 101__ (20,21,22,23)

0__11 (3,7,11,15) _0_11 (3,7,19,23) 10__1 (17,19,21,23) 101__ (20,21,22,23)

tabela de cobertura

	0	3	7	8	15	16	17	20	21	23
0_00_ (0,1,8,9)	Х			Х						
000 (0,1,16,17)	Х					х	Х			
0_0_1 (1,3,9,11)		Х								
_00_1 (1,3,17,19)		Х					х			
10_0_ (16,17,20,21)						х	х	х	х	
011 (3,7,11,15)		Х	Х		Х					
_0_11 (3,7,19,23)		Х	Х							х
101 (17,19,21,23)							х		х	х
101 (20,21,22,23)								Х	Х	х

Resposta: $\bar{A}\bar{C}\bar{D} + \bar{A}DE + \bar{B}\bar{C}\bar{D} + A\bar{B}C$

proposta de algoritmo alternativo

prever comparação

comparação reversa

toróide 4D

banco de dados

hash(pos) = resposta

análise de leitura do mapa de karnaugh

número **impar** de variáveis dobra a tabela para a **direita**, número **par** de variáveis dobra a tabela para **baixo**

16

100

1000

proposta alternativa - prever comparação

```
var g0 = 0;
var g1 = [1,2,4,8,16,32,64,128];
var a2 =
[3,5,6,9,10,12,17,18,20,24,33,34,36,40,48,65,66,68,72,80,
96,129,130,132,136,144,160,192];
var g3 =
[7,11,13,14,19,21,22,25,26,28,35,37,38,41,42,44,49,50,
52,56,67,69,70,73,74,76,81,82,84,88,97,98,100,104,112,131,1
33,134,137,138,140,145,146,148,152,161,162,168,176,193,19
4,196,200,208,212,224];
var g4 =
[15,23,27,29,30,39,43,45,46,51,53,54,57,58,60,71,75,77,
78,83,85,86,89,90,92,99,101,102,105,106,108,113,114,116,12
0,135,139,141,142,147,149,150,153,154,156,163,165,166,169
.170,172,177,178,180,184,195,197,198,201,202,204,208,210.
212,216,225,226,228,232,240];
function coluna(v) {
                              qrupo1 = 1
  //grupo0
  if (mapa[0] == 1 || mapa[0] == "x") {
    var tex = document.guerySelector("#c0g0");
    tex.innerHTML = "(0)";
  //grupo1
                              qrupo1 = n
  var texto = "";
  for (let i = 0; i < v; i++) {
    var temp = parseInt(g1[i]);
    if ((mapa[temp] == 1) || (mapa[temp] == "x")) {
       texto = texto+"("+temp+")<br>";
    var tex = document.guerySelector("#c0g1");
    tex.innerHTML = texto;
```

```
//grupo2
var v2 = ((v-1)*v)/2;
texto = "":
for (let i = 0; i < v2; i++) {
  var temp = parseInt(g2[i]);
  if ((mapa[temp] == 1) || (mapa[temp] == "x")) {
     texto = texto+"("+temp+")<br>":
  var tex = document.querySelector("#c0g2");
  tex.innerHTML = texto:
//grupo3
                                  grupo3 = \sum_{n=1}^{n} (n-2)(n-1)
var v3 = 0;
for (let i = 0; i < v; i++) {
  v3 = v3 + (((v-1)*v)/2);
texto = "";
for (let i = 0; i < v3; i++) {
  var temp = parseInt(g3[i]);
  if ((mapa[temp] == 1) || (mapa[temp] == "x")) 
     texto = texto+"("+temp+")<br>";
  var tex = document.querySelector("#c0g3");
  tex.innerHTML = texto:
```

proposta alternativa - prever comparação

```
var coluna0 = [ ["0"],
                                                                                           var col0 = [[1,2,1],
             ["1","10","100","1000","10000"],
                                                                                                     [1,3,3,1],
             ["11","101","110","1001","1010","1100","10001","10010","10100","11000"],
                                                                                                     [1,4,6,4,1],
             ["111","1011","1101","1110","10011","10101","10110","11001","11001","11010","1100"],
                                                                                                     [1,5,10,10,5,1]];
             ["1111","10111","11011","11101","11100"],
             ["11111"]];
                                                                                           var col1 = [[2,2],
[3,6,3],
                                                                                                     [4,12,12,4],
              [" 11","1 1","11 "],
                                                                                                     [5,20,30,20,5]];
                                                                                           var col2 = [[],
[3,3],
                                                                                                     [6,12,6],
                                                                                                     [10,30,30,10]];
var coluna3 = [ []
                                                                                           var col3 = [[],
                                                                                                     [4,4],
var coluna4 = [ [],
                                                                                                     [10,20,10]];
                                                                                           var col4 = [[],
```

análise da tabela de comparações número de grupos = nVar + 1 número de colunas = nVar

[5,5]];

tabela de cobertura

abcd	125678910	
_ 0 0 _	• • •	0,1,8,9
$-0 \ 0$	• •	0,2,8,10
$-\frac{1}{0}$ 1	• • •	1,5,9,13
$-\frac{1}{1}$ 1	• •	5,7,13,15
$\overline{0}$ $\overline{1}$ 0	• •	2,6
0 1 1 _	• •	6,7
	2222221	

arrays de objetos

```
>> resultado
← ▼ [...]
   ▶ 0: Object { coluna: 0, grupo: [...] }
    ▶ 1: Object { coluna: 1, grupo: [...] }
    ▼ 2: {...}
        coluna: 2
      ▼ grupo: [...]
       ▶ 0: Arrav [ {...} ]
       ▶ 2: Array [ {...}, {...}, {...}, ... ]
         ▶ 0: Object { binario: "1 11", implicante: 1, posicao: "19 27 23 31" }
         ▶ 1: Object { binario: "1_1_1", implicante: 2, posicao: "21 29 23 31" }
         ▶ 2: Object { binario: "1_11_", implicante: 1, posicao: "22 30 23 31" }
        ▶ 3: Object { binario: "11_1", implicante: 1, posicao: "25 29 27 31" }
         ▶ 4: Object { binario: "111__", implicante: 1, posicao: "28 30 29 31" }
          length: 5
         proto__: Array []
       ▶ 4: Array []
       ▶ 5: Arrav [1
         length: 6
       proto : Array []
       proto : Object { ... }
                                                  >> cobertura2
    ▶ 3: Object { coluna: 3, grupo: [...] }
    ▶ 4: Object { coluna: 4, grupo: [...] }
                                                  ← ▼ [...]
     length: 5
                                                      ▶ 0: Object { binario: "_0000", posicao: "0 16", validos: [...] }
    proto : Array []
                                                      ▶ 1: Object { binario: "0_0_0", posicao: "0 8 2 10", validos: [...] }
                                                      ▶ 2: Object { binario: "0_10", posicao: "2 10 6 14", validos: [...] }
                                                      3: Object { binario: "01__0", posicao: "8 12 10 14", validos: [...] }
                                                      ▶ 4: Object { binario: "10_0_", posicao: "16 20 17 21", validos: [...] }
                                                      5: Object { binario: "_01_1", posicao: "5 21 7 23", validos: [...] }
                                                      ▶ 6: Object { binario: "__101", posicao: "5 21 13 29", validos: [...] }
                                                      ▶ 7: Object { binario: "_011_", posicao: "6 22 7 23", validos: [...] }
                                                      8: Object { binario: "__110", posicao: "6 22 14 30", validos: [...] }
                                                      ▶ 9: Object { binario: "_110_", posicao: "12 28 13 29", validos: [...] }
                                                      ▶ 10: Object { binario: "_11_0", posicao: "12 28 14 30", validos: [...] }
                                                      11: Object { binario: "1___1", posicao: "17 25 21 29 19 27 23 31", validos: [...] }
                                                      ▶ 12: Object { binario: "1_1__", posicao: "20 28 22 30 21 29 23 31", validos: [...] }
                                                        length: 13
                                                      proto_: Array []
```


evolução

