

Arbore = graf neorientat conex și aciclic

- Arbore = graf neorientat conex şi aciclic
 - Arbori filogenetici ilustrează evoluții
 - Arbori de dependențe, de joc
 - Probleme de rutare
 - Arbori aleatorii
 - Arbori economici (cu costul minim)
 - Structuri de date...

Leme

 Orice arbore T cu n>1 are cel puţin două vârfuri terminale (de grad 1)

Leme

 Orice arbore T cu n>1 are cel puţin două vârfuri terminale (de grad 1)

Fie P un lanț elementar maxim în T

Leme

Orice arbore T cu n>1 are cel puţin două vârfuri terminale
 (de grad 1)

Fie P un lanț elementar maxim în T

Extremitățile lui P sunt vârfuri terminale, altfel:

Leme

Orice arbore T cu n>1 are cel puţin două vârfuri terminale
 (de grad 1)

Fie P un lanț elementar maxim în T

Extremitățile lui P sunt vârfuri terminale, altfel:

- putem extinde lanțul cu o muchie

sau

Leme

Orice arbore T cu n>1 are cel puţin două vârfuri terminale
 (de grad 1)

Fie P un lanț elementar maxim în T

Extremitățile lui P sunt vârfuri terminale, altfel:

- putem extinde lanțul cu o muchie

sau

- se închide un ciclu în T

Leme

2. Fie T un arbore cu n>1 vârfuri și v un vârf terminal în T. Atunci T – v este arbore.

Leme

2. Fie T un arbore cu n>1 vârfuri și v un vârf terminal în T. Atunci T – v este arbore.

Rezultă din definiția conexității + un vârf terminal nu poate fi vârf intern al unui lanț elementar

3. Un arbore cu n vârfuri are n−1 muchii.

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n Verificare - n=1

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n

 Fie T este un arbore cu n vârfuri. Fie v este vârf terminal în T (!există, lema 1)

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n

Fie T este un arbore cu n vârfuri. Fie v este vârf terminal în T (!există, lema 1); atunci T - v este arbore cu n-1 vârfuri (Lema 2) și

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n

Fie T este un arbore cu n vârfuri. Fie v este vârf terminal în T (!există, lema 1); atunci T - v este arbore cu n-1 vârfuri (Lema 2)
 |E(T-v)| = |E(T)|-1

Aplicăm ipoteza de inducție pentru T-v

3. Un arbore cu n vârfuri are n-1 muchii.

$$\Rightarrow |E(T-v)| = |V(T-v)|-1 = (n-1)-1 = n-2$$

Rezultă
$$|E(T)| = |E(T-v)| + 1 = n-1$$

Leme

4. Fie G un graf neorientat conex și C un ciclu in G.

Fie $e \in E(C)$ o muchie din ciclul C.

Atunci G-e este tot un graf conex.

Leme

4. Fie G un graf neorientat conex și C un ciclu in G.

Fie $e \in E(C)$ o muchie din ciclul C.

Atunci G-e este tot un graf conex.

Rezultă din definiția conexității + observația:

Leme

4. Fie G un graf neorientat conex și C un ciclu in G.

Fie $e \in E(C)$ o muchie din ciclul C.

Atunci G-e este tot un graf conex.

Rezultă din definiția conexității + observația:

dintr-un x-y lanţ în G care conţine muchia e se poate
 obţine un x-y lanţ în G-e înlocuind muchia e cu lanţul C-e.

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri. Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2.
- 3.
- 4
- 5
- 6.

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri.

Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal
- 3.
- 4
- 5
- 6.

prin eliminarea unei muchii din T se obține un graf care nu mai este conex

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri.

Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal
- 3. T este aciclic muchie-maximal
- 4
- 5
- 6.

prin eliminarea unei muchii din T se obține un graf care nu mai este conex

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri. Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal
- 3. T este aciclic muchie-maximal
- 4. T este conex și are n−1 muchii
- 5. T este aciclic și are n-1 muchii
- 6.

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri.

Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal
- 3. T este aciclic muchie-maximal
- 4. T este conex și are n-1 muchii
- 5. T este aciclic și are n-1 muchii
- 6. Între oricare două vârfuri din T există un unic lanț elementar.

Demonstrații echivalențe - Temă (seminar)

Exemplu 1: T este arbore (conex și aciclic) \Leftrightarrow

2: T este conex muchie-minimal

Demonstrații echivalențe - Temă (seminar)

Exemplu 1: T este arbore (conex și aciclic) \Leftrightarrow

2: T este conex muchie-minimal

1 => 2: Presupunem T este arbore.

Fie $e = xy \in E(T)$.

Arătăm că T- e nu este conex (deci T este conex muchie-minimal).

Demonstrații echivalențe - Temă (seminar)

Exemplu 1: T este arbore (conex și aciclic) \Leftrightarrow

2: T este conex muchie-minimal

1 => 2: Presupunem T este arbore.

Fie $e = xy \in E(T)$.

Arătăm că T- e nu este conex (deci T este conex muchie-minimal).

Presupunem prin absurd că T-e este conex.

Demonstrații echivalențe - Temă (seminar)

Exemplu 1: T este arbore (conex și aciclic) \Leftrightarrow

2: T este conex muchie-minimal

1=> 2: Presupunem T este arbore.

Fie $e = xy \in E(T)$.

Arătăm că T- e nu este conex (deci T este conex muchie-minimal).

Presupunem prin absurd că T-e este conex. Atunci există un lanț elementar P în T-e de la x la y (care unește extremitățile lui e).

Demonstrații echivalențe - Temă (seminar)

Exemplu 1: T este arbore (conex și aciclic) \Leftrightarrow

2: T este conex muchie-minimal

1=> 2: Presupunem T este arbore.

Fie $e = xy \in E(T)$.

Arătăm că T- e nu este conex (deci T este conex muchie-minimal).

Presupunem prin absurd că T-e este conex. Atunci există un lanț elementar P în T-e de la x la y (care unește extremitățile lui e).

Atunci lanțul

P + xy = [x P y; x] este ciclu în T, contradicție.

Demonstrații echivalențe - Temă (seminar)

Exemplu 1: T este arbore (conex și aciclic) \Leftrightarrow

2: T este conex muchie-minimal

2=> 1: Presupunem că T este conex muchie-minimal. Demonstrăm că T este aciclic.

Demonstrații echivalențe - Temă (seminar)

Exemplu 1: T este arbore (conex și aciclic) \Leftrightarrow

2: T este conex muchie-minimal

2=> 1: Presupunem că T este conex muchie-minimal.

Demonstrăm că T este aciclic.

Presupunem prin absurd că T conține cicluri.

Fie C un ciclu elementar în T.

Demonstrații echivalențe - Temă (seminar)

Exemplu 1: T este arbore (conex și aciclic) \Leftrightarrow

2: T este conex muchie-minimal

2=> 1: Presupunem că T este conex muchie-minimal.

Demonstrăm că T este aciclic.

Presupunem prin absurd că T conține cicluri.

Fie C un ciclu elementar în T.

Fie $e \in E(C)$.

Din Lema 4 rezultă că T – e este tot conex, contradicție (T este conex muchie-minimal).

Arbori parțiali ai unui graf

Arbori parțiali

Proprietate

Orice graf neorientat conex conține un arbore parțial (un graf parțial care este arbore).

Proprietate

Orice graf neorientat conex conține un arbore parțial

Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)

Proprietate

Orice graf neorientat conex conține un arbore parțial

Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)	
$T \leftarrow (V, \varnothing)$		

Proprietate

Orice graf neorientat conex conține un arbore parțial

. ,	
Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)
$T \leftarrow (V, \varnothing)$	
cat timp T nu este conex executa	
 alege e∈E(G) – E(T) care unește două componente conexe din T (nu formează cicluri cu muchiile din T) 	
• $E(T) \leftarrow E(T) \cup \{e\}$	
returneaza T	

Proprietate

Orice graf neorientat conex conține un arbore parțial

Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)
$T \leftarrow (V, \varnothing)$	
cat timp T nu este conex executa	
 alege e∈E(G) – E(T) care unește două componente conexe din T (nu formează cicluri cu muchiile din T) E(T) ← E(T) ∪ {e} returneaza T 	
În final T este conex și aciclic, deci arbore	

Proprietate

Orice graf neorientat conex conține un arbore parțial

Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)	
$T \leftarrow (V, \varnothing)$	$T \leftarrow (V, E)$	
cat timp T nu este conex executa	cat timp T conține cicluri executa	
 alege e∈E(G) – E(T) care unește două componente conexe din T (nu formează cicluri cu muchiile din T) E(T) ← E(T) ∪ {e} returneaza T 	 alege e∈E(T) o muchie dintr-un ciclu E(T) ← E(T) - {e} returneaza T	
În final T este conex și aciclic, deci arbore		

Proprietate

Orice graf neorientat conex conține un arbore parțial

. ,		
Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)	
$T \leftarrow (V, \varnothing)$	$T \leftarrow (V, E)$	
cat timp T nu este conex executa	cat timp T conține cicluri executa	
 alege e∈E(G) – E(T) care unește două componente conexe din T (nu formează cicluri cu muchiile din T) E(T) ← E(T) ∪ {e} 	 alege e∈E(T) o muchie dintr-un ciclu E(T) ← E(T) - {e} 	
returneaza T	returneaza T	
În final T este conex și aciclic, deci arbore	În final T este aciclic și conex (s-au eliminat doar muchii din ciclu), deci arbore	

Algoritmi de determinare a unui arbore parțial al unui graf conex

Algoritmi de determinare a unui arbore parțial al unui graf conex

Complexitate algoritm?

arborele asociat unei parcurgeri este arbore parțial ⇒ determinăm un arbore parțial printr-o <u>parcurgere</u>

- "Scheletul" grafului
- Transmiterea de mesaje în rețea astfel încât mesajul să ajungă o singură dată în fiecare vârf
- Conectare fără redundanță + cu cost minim

Aplicații

- Determinarea unui arbore parțial al unui graf conex
- Transmiterea unui mesaj în rețea: Între participanții la un curs s-au legat relații de prietenie și comunică și în afara cursului. Profesorul vrea să transmită un mesaj participanților și știe ce relații de prietenie s-au stabilit între ei. El vrea să contacteze cât mai puțini participanți, urmând ca aceștia să transmită mesajul între ei. Ajutați-l pe profesor să decidă cui trebuie să transmită inițial mesajul și să atașeze la mesaj o listă în care să arate fiecărui participant către ce prieteni trebuie să trimită mai departe mesajul, astfel încât mesajul să ajungă la fiecare participant la curs o singură dată.

Arbori parțiali de cost minim

Conectați pinii astfel încât să folosiți cât mai puțin cablu

- Legăm pini apropiați
- Nu închidem cicluri

conectare cu cost minim \Rightarrow evităm ciclurile

Deci trebuie să construim

graf conex + fără cicluri ⇒ arbore

cu suma costurilor muchiilor minimă

- ▶ G = (V, E) ponderat =
 - w : $E \to \mathbb{R}$ funcție **pondere** (**cost**)
- ightharpoonup notat G = (V, E, w)

- ▶ G = (V, E, w) graf ponderat
- ▶ Pentru A ⊆ E

$$w(A) = \sum_{e \in A} w(e)$$

- ▶ G = (V, E, w) graf ponderat
- ▶ Pentru A ⊆ E

$$\mathbf{w}(\mathbf{A}) = \sum_{\mathbf{e} \in \mathbf{A}} \mathbf{w}(\mathbf{e})$$

Pentru T subgraf al lui G

$$\mathbf{w}(\mathbf{T}) = \sum_{\mathbf{e} \in E(T)} \mathbf{w}(\mathbf{e})$$

Reprezentarea grafurilor ponderate

Reprezentarea grafurilor ponderate

Matrice de costuri (ponderi) $W = (w_{ij})_{i,j=1..n}$

$$w_{ij} = \begin{cases} 0, \text{ daca } i = j \\ w(i,j), \text{ daca } ij \in E \\ \infty, \text{ daca } ij \notin E \end{cases}$$

0	8	11	8
15	0	8	10
8	8	0	8
8	8	8	0

Reprezentarea grafurilor ponderate

- Matrice de costuri (ponderi)
- Liste de adiacență

1: 3 / 11

2: 1 / 15, 4 / 10

3: 4/8

4:

Reprezentarea grafurilor ponderate

- Matrice de costuri (ponderi)
- Liste de adiacență
- Liste de muchii/arce

A.p.c.m

- ▶ G = (V, E, w) conex ponderat
- Arbore parțial de cost minim al lui G = un arbore parțial T_{min} al lui G cu

```
w(T_{min}) = min \{ w(T) | T \text{ arbore partial al lui } G \}
```


A.p.c.m.

Imagine din

R. Sedgewick, K. Wayne - Algorithms, 4th edition, Pearson Education, 2011

Aplicații a.p.c.m.

- Construcția/renovarea unui sistem de căi ferate a.î.:
 - oricare două stații să fie conectate (prin căi renovate)
 - sistem economic (costul total minim)
- Proiectarea de reţele, circuite electronice
 - conectarea pinilor cu cost minim/ fără cicluri
- Clustering
- Subrutină în alți algoritmi (trasee hamiltoniene)
- **...**

Algoritmi de determinare a unui arbore parțial de cost minim

Arbori parțiali de cost minim

Cum determinăm un arbore parțial de cost minim al unui graf conex ponderat?

Idee: Prin adăugare succesivă de muchii, astfel încât mulțimea de muchii selectate

- să aibă costul cât mai mic
- să fie submulțime a mulțimii muchiilor unui arbore parțial de cost minim (apcm)

După ce criteriu selectăm muchiile?

După ce criteriu selectăm muchiile?

⇒ diverşi algoritmi

Imagine din

R. Sedgewick, K. Wayne - Algorithms, 4th edition, Pearson Education, 2011

Algoritmul lui Kruskal

Algoritmul lui Kruskal

La un pas este selectată o muchie de cost minim din G care nu formează cicluri cu muchiile deja selectate (care unește două componente conexe din graful deja construit)

O primă formă a algoritmului

- Iniţial T= (V; ∅)
- pentru i = 1, n−1
 - alege o muchie uv cu cost minim din G a.î. u,v sunt în componente conexe diferite (T+uv aciclic)
 - $E(T) = E(T) \cup \{uv\}$

 Iniţial: cele n vârfuri sunt izolate, fiecare formând o componentă conexă

La un pas:

Muchiile selectate formează o **pădure**

Este selectată o muchie de cost minim care unește doi arbori din pădurea curentă (două componente conexe)

Kruskal - Implementare

1. Cum reprezentăm graful în memorie?

- 2. Cum selectăm ușor o muchie:
 - de cost minim
 - care unește două componente (nu formează cicluri cu muchiile deja selectate)

Pentru a selecta ușor o muchie de cost minim cu proprietatea dorită ordonăm crescător muchiile după cost și considerăm muchiile în această ordine

Reprezentarea grafului ponderat

 Listă de muchii: memorăm pentru fiecare muchie extremitățile și costul

Cum testăm dacă muchia curentă unește două componente (⇔ nu formează cicluri cu muchiile deja selectate)?

Cum testăm dacă muchia curentă unește două componente (⇔ nu formează cicluri cu muchiile deja selectate)?

verificăm printr-o parcurgere dacă extremitățile muchiei sunt deja unite printr-un lanţ

Cum testăm dacă muchia curentă unește două componente (⇔ nu formează cicluri cu muchiile deja selectate)?

verificăm printr-o parcurgere dacă extremitățile muchiei sunt deja unite printr-un lanț

⇒ O(mn) – ineficient

Componentele sunt mulțimi disjuncte din V (partiție a lui V)

⇒ structuri pentru mulțimi disjuncte

Componentele sunt mulțimi disjuncte din V (partiție a lui V)

⇒ structuri pentru mulțimi disjuncte

asociem fiecărei componente un reprezentant

(o culoare)

- Operații necesare:
 - Initializare(u) –

• Reprez(u) -

Reuneste(u,v) -

- Operații necesare:
 - Initializare(u) creează o componentă cu un singur vârf, u
 - Reprez(u) returnează reprezentantul (culoarea)
 componentei care conține pe u
 - Reuneste(u,v) unește componenta care conține u cu cea care conține v

 O muchie uv uneşte două componente dacă și numai dacă

 O muchie uv uneşte două componente dacă și numai dacă

Reprez(u) ≠ Reprez(v)

```
sorteaza(E)
for(v=1;v<=n;v++)
    Initializare(v);</pre>
```

```
sorteaza(E)
for (v=1; v<=n; v++)
    Initializare(v);
nrmsel=0
for (uv \in E)
 if (Reprez (u) !=Reprez (v))
```

```
sorteaza(E)
for (v=1; v<=n; v++)
    Initializare(v);
nrmsel=0
for (uv \in E)
 if (Reprez (u) !=Reprez (v))
      E(T) = E(T) \cup \{uv\};
```

```
sorteaza(E)
for (v=1; v<=n; v++)
    Initializare(v);
nrmsel=0
for (uv \in E)
 if (Reprez (u) !=Reprez (v))
      E(T) = E(T) \cup \{uv\};
      Reuneste (u, v);
      nrmsel=nrmsel+1;
      if(nrmsel==n-1)
           STOP;
```

Complexitate

De câte ori se execută fiecare operație?

Complexitate

- Sortare \rightarrow O(m log m) = O(m log n)
- ? * Initializare
- ? * Reprez
- ? * Reuneste

Complexitate

- Sortare \rightarrow O(m log m) = O(m log n)
- n * Initializare
- 2m * Reprez
- (n-1) * Reuneste

Depinde de modalitatea de memorare a componentelor

Cum memorăm componentele + reprezentantul / culoarea componentei în care se află un vârf?

Varianta 1 - memorăm într-un vector pentru fiecare vârf reprezentantul/culoarea componentei din care face parte

r[u] = culoarea (reprezentantul) componentei care conține vârful u

r = [1, 2, 3, 2, 3, 2]

Initializare

Reprez

Reuneste

▶ Initializare – O(1)

```
void Initializare(int u) {
    r[u]=u;
}
```

Reprez

Reuneste

▶ Initializare – O(1)

```
void Initializare(int u) {
    r[u]=u;
}

Reprez - O(1)
   int Reprez(int u) {
    return r[u];
}
```

Reuneste

```
▶ Initializare – O(1)
     void Initializare(int u) {
         r[u]=u;
▶ Reprez – O(1)
     int Reprez(int u) {
          return r[u];
Reuneste – O(n)
                        void Reuneste(int u,int v)
                           r1 = Reprez(u); //r1=r[u]
                           r2 = Reprez(v); //r2=r[v]
                           for (k=1; k \le n; k++)
                             if(r[k]==r2)
                                r[k] = r1;
```

Complexitate

Varianta 1- dacă folosim vector de reprezentanți

```
• Sortare \rightarrow O(m log m) = O(m log n)
```

- n * Initializare -> O(n)
- 2m * Reprez -> O(m)
- (n-1) * Reuneste $-> O(n^2)$

 $O(m log n + n^2)$

- (4,6)
- (2,4)
- (2,6)
- (3,5)
- (3,6)
- (2,5)
- (1,3)
- (1,2)
- (5,6)

$$r = [1,2,3,4,5,6]$$

(4,6)
$$r(4) \neq r(6)$$

- (2,4)
- (2,6)
- (3,5)
- (3,6)
- (2,5)
- (1,3)
- (1,2)
- (5,6)

$$r = [1,2,3,4,5,6]$$

(4,6)Reuneste(4, 6)

(2,6)

(3,5)

(3,6)

(2,5)

(1,3)

(1,2)

(5,6)

$$r = [1,2,3,4,5,6]$$

$$(4,6) \quad r = [1,2,3,4,5,4]$$

- (2,4)
- (2,6)
- (3,5)
- (3,6)
- (2,5)
- (1,3)
- (1,2)
- (5,6)

Varianta 2 - Structuri pentru mulțimi disjuncte Union/Find

Varianta 2 - Structuri pentru mulţimi disjuncte Union/Find - arbori

- memorăm componentele conexe ca arbori, folosind vectorul tata;
- reprezentantul componentei va fi rădăcina arborelui

 Reuniunea a doi arbori ⇒ rădăcina unui arbore devine fiu al rădăcinii celuilalt arbore

 Reuniunea se va face în funcţie de înălţimea arborilor (reuniune ponderată)

⇒ arbori de înălțime logaritmică

 arborele cu înălţimea mai mică devine subarbore al rădăcinii celuilalt arbore

Detalii de implementare operații cu structuri Union/Find pentru mulțimi disjuncte:

- Initializare
- Reprez(u) ⇒ determinarea rădăcinii arborelui care conține u
- Reuneste(u,v) \Rightarrow reuniune ponderată

```
void Initializare(int u) {
    tata[u]=h[u]=0;
int Reprez(int u) {
    while(tata[u]!=0)
       u=tata[u];
    return u;
```

```
void Reuneste(int u,int v)
void Initializare(int u) {
    tata[u]=h[u]=0;
                             {
                                int ru,rv;
                                ru=Reprez(u);
int Reprez(int u) {
                                rv=Reprez(v);
    while(tata[u]!=0)
                                if (h[ru]>h[rv])
       u=tata[u];
    return u;
```

```
void Reuneste(int u,int v)
void Initializare(int u) {
    tata[u]=h[u]=0;
                             {
                                int ru,rv;
                                ru=Reprez(u);
int Reprez(int u) {
                                rv=Reprez(v);
    while (tata[u]!=0)
                                if (h[ru]>h[rv])
       u=tata[u];
                                   tata[rv]=ru;
                                else{
    return u;
                                   tata[ru]=rv;
```

```
void Reuneste(int u,int v)
void Initializare(int u) {
    tata[u]=h[u]=0;
                             {
                                int ru, rv;
                                ru=Reprez(u);
int Reprez(int u) {
                                rv=Reprez(v);
    while(tata[u]!=0)
                                if (h[ru]>h[rv])
       u=tata[u];
                                   tata[rv]=ru;
                                else{
    return u;
                                   tata[ru]=rv;
                                   if(h[ru]==h[rv])
                                       h[rv]=h[rv]+1;
```

Complexitate

Varianta 2 - dacă folosim arbori Union/Find

- Sortare \rightarrow O(m log m) = O(m log n)
- n * Initializare -> O(n)
- 2m * Reprez ->
- (n-1) * Reuneste ->

Complexitate

Varianta 2 - dacă folosim arbori Union/Find

- Sortare \rightarrow O(m log m) = O(m log n)
- n * Initializare -> O(n)
- 2m * Reprez −> O(m log n)
- (n-1) * Reuneste -> O(n log n)

Complexitate

Varianta 2 - dacă folosim arbori Union/Find

```
• Sortare \rightarrow O(m log m) = O(m log n)
```

- n * Initializare -> O(n)
- 2m * Reprez -> O(m log n)
- (n-1) * Reuneste -> O(n log n)

O(m log n)

Concluzii complexitate - O(m log n)