# 数字电路与数字系统 第七章作业

191220080 马英硕

[7.4]



图7-5 S-R锁存器
(a) 用或非门设计的电路 (b) 功能表

# 输入波形:



输出波形: (假设最初, Q=0, QN=1)



[7.6]



图7-34 具有使能端的T触发器的可能电路 (a) 使用D触发器 (b) 使用J-K触发器

下面用 T 触发器构造:



# [7.8]

理论上由于 74x74 正边沿触发式 D 触发器只在 CLK 信号上升沿时触发,输出值可能会改变,而 S-R 锁存器的控制信号是一个恒定值,需要一直为 1,所以这是不可能的。

## [7.12]

分析图X7-12中的时钟同步状态机。写出激励方程、激励/转移表以及状态/输出表(状态Q1Q2=00~11使用状态名A~D)。



## 1、激励方程:

$$D1 = Q1' + Q2$$

$$D2 = X \cdot Q2'$$

## 2、状态方程:

D 触发器特征方程:  $Q^* = D$ 

$$Q1^* = Q1' + Q2$$

$$Q2^* = X \cdot Q2'$$

## 3、输出方程:

$$Z = Q1 + Q2'$$

## 4、激励/转移表

| Χ | Q1 | Q2 | <i>Q</i> 1* | Q2* | Z |
|---|----|----|-------------|-----|---|
| 0 | 0  | 0  | 1           | 0   | 1 |
| 0 | 0  | 1  | 1           | 0   | 0 |
| 0 | 1  | 0  | 0           | 0   | 1 |
| 0 | 1  | 1  | 1           | 0   | 1 |
| 1 | 0  | 0  | 1           | 1   | 1 |
| 1 | 0  | 1  | 1           | 0   | 0 |
| 1 | 1  | 0  | 0           | 1   | 1 |
| 1 | 1  | 1  | 1           | 0   | 1 |

# 5、得到状态/输出表

| 状态名         | S    | >         | (         |  |
|-------------|------|-----------|-----------|--|
| <b>小心</b> 石 | S    | 0         | 1         |  |
| А           | 00   | 10 (C), 1 | 11 (D), 1 |  |
| В           | 01   | 10 (C), 0 | 10 (C), 0 |  |
| С           | 10   | 00 (A), 1 | 01 (B), 1 |  |
| D           | 11   | 10 (C), 1 | 10 (C), 1 |  |
|             | Q1Q2 | Q1*Q2*, Z |           |  |

[7.15]

表7-9 "1" 计数器的状态和输出表

| 含义          | •  |    | <b>&gt;</b> | (Y |    | - |
|-------------|----|----|-------------|----|----|---|
| B X         | S  | 00 | 01          | 11 | 10 | 2 |
| 没有接收到1(模4)  | 50 | SO | S1          | S2 | S1 | 1 |
| 接收到1个1 (模4) | S1 | S1 | S2          | S3 | S2 | 0 |
| 接收到2个1(模4)  | S2 | S2 | S3          | S0 | S3 | 0 |
| 接收到3个1(模4)  | S3 | S3 | S0          | S1 | S0 | 0 |
| 接收到3个1(模4)  | S3 | S3 | \$0<br>S*   | S1 | S0 | - |



# [7.18]

分析图X7-18中的时钟同步状态机,写出激励方程、激励/转移表以及状态/输出表(状态Q2Q1Q0=000-111使用状态名 $A\sim H$ )。



# 1、激励方程

$$D0 = Q1$$

$$D1 = Q2$$

D2 = (Q2 + Q1)' xor (Q1 xor Q0), 经卡诺图化简可得:

$$D2 = Q2'Q0' + Q2Q1Q0' + Q2Q1'Q0$$

## 2、状态方程:

$$Q0^* = Q1$$

$$Q1^* = Q2$$

$$Q2^* = Q2'Q0' + Q2Q1Q0' + Q2Q1'Q0$$

## 3、激励/转移表

| 状态名 | Q2 | Q1 | Q0 | <i>Q</i> 2* | $Q1^*$ | $Q0^*$ |
|-----|----|----|----|-------------|--------|--------|
| А   | 0  | 0  | 0  | 1           | 0      | 0      |
| В   | 0  | 0  | 1  | 0           | 0      | 0      |
| С   | 0  | 1  | 0  | 1           | 0      | 1      |
| D   | 0  | 1  | 1  | 0           | 0      | 1      |
| Е   | 1  | 0  | 0  | 0           | 1      | 0      |
| F   | 1  | 0  | 1  | 1           | 1      | 0      |
| G   | 1  | 1  | 0  | 1           | 1      | 1      |
| Н   | 1  | 1  | 1  | 0           | 1      | 1      |

## 4、状态/输出表

| 状态名 | S      | <i>S</i> *     |
|-----|--------|----------------|
| А   | 000    | 100 (E)        |
| В   | 001    | 000 (A)        |
| С   | 010    | 101 (F)        |
| D   | 011    | 001 (B)        |
| E   | 100    | 010 (C)        |
| F   | 101    | 110 (G)        |
| G   | 110    | 111 (H)        |
| Н   | 111    | 011 (D)        |
|     | Q2Q1Q0 | $Q2^*Q1^*Q0^*$ |

# [7.19]

分析图X7-19中的时钟同步状态机,写出激励方程、激励/转移表以及状态/输出表(状态Q1Q2Q3=000~111使用状态名A~H)。



# 1、激励方程

$$D1 = X$$

$$D2 = Q3' \cdot (Q1 + Y)$$

$$D3 = Q1' + ((Y \cdot Q2')')' = Q1' + Y \cdot Q2'$$

# 2、状态方程:

$$Q1^* = X$$
  
 $Q2^* = Q3' \cdot (Q1 + Y)$   
 $Q3^* = Q1' + Y \cdot Q2'$ 

# 3、激励/转移表

| Χ | Υ | Q1 | Q2 | Q3 | <i>Q</i> 1* | <i>Q</i> 2* | Q3* |
|---|---|----|----|----|-------------|-------------|-----|
| 0 | 0 | 0  | 0  | 0  | 0           | 0           | 1   |
| 0 | 0 | 0  | 0  | 1  | 0           | 0           | 1   |
| 0 | 0 | 0  | 1  | 0  | 0           | 0           | 1   |
| 0 | 0 | 0  | 1  | 1  | 0           | 0           | 1   |
| 0 | 0 | 1  | 0  | 0  | 0           | 1           | 0   |
| 0 | 0 | 1  | 0  | 1  | 0           | 0           | 0   |
| 0 | 0 | 1  | 1  | 0  | 0           | 1           | 0   |
| 0 | 0 | 1  | 1  | 1  | 0           | 0           | 0   |
| 0 | 1 | 0  | 0  | 0  | 0           | 1           | 1   |
| 0 | 1 | 0  | 0  | 1  | 0           | 0           | 1   |
| 0 | 1 | 0  | 1  | 0  | 0           | 1           | 1   |
| 0 | 1 | 0  | 1  | 1  | 0           | 0           | 1   |
| 0 | 1 | 1  | 0  | 0  | 0           | 1           | 1   |
| 0 | 1 | 1  | 0  | 1  | 0           | 0           | 1   |
| 0 | 1 | 1  | 1  | 0  | 0           | 1           | 0   |
| 0 | 1 | 1  | 1  | 1  | 0           | 0           | 0   |
| 1 | 0 | 0  | 0  | 0  | 1           | 0           | 1   |
| 1 | 0 | 0  | 0  | 1  | 1           | 0           | 1   |
| 1 | 0 | 0  | 1  | 0  | 1           | 0           | 1   |
| 1 | 0 | 0  | 1  | 1  | 1           | 0           | 1   |
| 1 | 0 | 1  | 0  | 0  | 1           | 1           | 0   |
| 1 | 0 | 1  | 0  | 1  | 1           | 0           | 0   |
| 1 | 0 | 1  | 1  | 0  | 1           | 1           | 0   |

| 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |

## 4、状态/输出表

| 11. <del>1. 1. 1.</del> | C      |           | X      | Y      |        |
|-------------------------|--------|-----------|--------|--------|--------|
| │ 状态名<br>│              | S      | 00        | 01     | 10     | 11     |
| А                       | 000    | 001(B)    | 011(D) | 101(F) | 111(H) |
| В                       | 001    | 001(B)    | 001(B) | 101(F) | 101(F) |
| С                       | 010    | 001(B)    | 011(D) | 101(F) | 111(H) |
| D                       | 011    | 001(B)    | 001(B) | 101(F) | 101(F) |
| Е                       | 100    | 010(C)    | 011(D) | 110(G) | 111(H) |
| F                       | 101    | 000(A)    | 001(B) | 100(E) | 101(F) |
| G                       | 110    | 010(C)    | 010(C) | 110(G) | 110(G) |
| Н                       | 111    | 000(A)    | 000(A) | 100(E) | 100(E) |
|                         | Q1Q2Q3 | Q1*Q2*Q3* |        |        |        |

# [7.20]

分析图X7-20中的时钟同步状态机。写出激励方程、激励/转移表以及状态/输出表(状态Q1Q2=00~11使用状态名A~D)。



# 1、激励方程

$$D1 = Y$$

$$D2 = X'YQ1$$

2、状态方程 & 输出方程:

$$Q1^* = Y$$

$$Q2^* = X'YQ1$$

$$Z = X'Q2'$$

# 3、激励/转移表

| Χ | Υ | Q1 | Q2 | <i>Q</i> 1* | Q2* | Z |
|---|---|----|----|-------------|-----|---|
| 0 | 0 | 0  | 0  | 0           | 0   | 1 |
| 0 | 0 | 0  | 1  | 0           | 0   | 0 |
| 0 | 0 | 1  | 0  | 0           | 0   | 1 |
| 0 | 0 | 1  | 1  | 0           | 0   | 0 |
| 0 | 1 | 0  | 0  | 1           | 0   | 1 |
| 0 | 1 | 0  | 1  | 1           | 0   | 0 |
| 0 | 1 | 1  | 0  | 1           | 1   | 1 |
| 0 | 1 | 1  | 1  | 1           | 1   | 0 |
| 1 | 0 | 0  | 0  | 0           | 0   | 0 |
| 1 | 0 | 0  | 1  | 0           | 0   | 0 |
| 1 | 0 | 1  | 0  | 0           | 0   | 0 |
| 1 | 0 | 1  | 1  | 0           | 0   | 0 |
| 1 | 1 | 0  | 0  | 1           | 0   | 0 |
| 1 | 1 | 0  | 1  | 1           | 0   | 0 |
| 1 | 1 | 1  | 0  | 1           | 0   | 0 |
| 1 | 1 | 1  | 1  | 1           | 0   | 0 |

# 4、状态/输出表

| <b>小大</b> 夕 | S    | XY       |          |          |          |  |
|-------------|------|----------|----------|----------|----------|--|
| │ 状态名<br>│  | 3    | 00       | 01       | 10       | 11       |  |
| А           | 00   | 00(A), 1 | 10(C), 1 | 00(A), 0 | 10(C), 0 |  |
| В           | 01   | 00(A), 0 | 10(C), 0 | 00(A), 0 | 10(C), 0 |  |
| С           | 10   | 00(A), 1 | 11(D), 1 | 00(A), 0 | 10(C), 0 |  |
| D           | 11   | 00(A), 0 | 11(D), 0 | 00(A), 0 | 10(C), 0 |  |
|             | Q1Q2 | Q1*Q2*,Z |          |          |          |  |

[7.43]

假设用带有高态有效的C输入D触发器来设计结构如图7-35所示的时钟同步状态机。要使下一状态 正常,下面的时间参数之间应该满足什么关系?

 $t_{\rm Fmin}, t_{\rm Fmax}$ 下一状态逻辑的最小和最大传播延迟。

t<sub>CQmin</sub>, t<sub>CQmax</sub> D锁存器从时钟触发到产生输出的最小和最大延迟。

D锁存器从输入数据到产生输出的最小和最大延迟。  $t_{\rm DQmin}, t_{\rm DQmax}$ 

 $t_{\rm setup}, t_{\rm hold}$ D锁存器的建立和保持时间。  $t_{\rm H},\,t_{\rm L}$ 

时钟的高电平和低电平持续时间。





图7-35 时钟同步状态机结构 (Mealy机)

① 时钟信号激励存储器(D锁存器)时,要使运转稳定,应该尽量维持时钟高低电平持续时间维持在一个比较长的水平。从激励到产生输出,最大延迟

$$t_{1max} = t_{CQmax} + t_{DQmax}$$

② 时钟周期:

$$t_{Cycle} = t_H + t_L$$

- ③ 理论上,应该有:
  - a)  $t_{DQmax} > t_{CQmax} > t_{setup}$ ,因为只有时钟上升沿时 D 锁存器才能输入数据;
  - b)  $t_{Cycle} = t_H + t_L > t_{setup} + t_{hold}$ , 应该确保 D 锁存器能完成一次锁存;
  - c)  $t_H + t_L = t_{Cycle} > t_{1max} + t_{Fmax} = t_{CQmax} + t_{DQmax} + t_{Fmax}$  应该同时确保时钟和输入有效,且下一状态逻辑一定能传到 D 触发器。

#### [7.44]

#### 首先定义如下状态:

SR: INIT=1; 此时 Z=0。

SA1: INIT=0 且 X 连续 1 个时钟触发沿为 0; 此时 Z=0。 SA2: INIT=0 且 X 连续 2 个时钟触发沿为 0; 此时 Z=1。 SB1: INIT=0 且 X 连续 1 个时钟触发沿为 1; 此时 Z=0。 SB2: INIT=0 且 X 连续 1 个时钟触发沿为 1; 此时 Z=1。



## [7.46]

用D触发器设计一个时钟同步状态机,它的状态/输出表如表X7-46所示。使用2个状态变量(Q1和Q2),状态赋值为A=00,B=01,C=11,D=10。

|   |   | X | z |
|---|---|---|---|
| S | 0 | 1 | - |
| Α | В | D | 0 |
| В | С | В | 0 |
| С | В | Α | 1 |
| D | В | С | 0 |

## 解:

| 状态名         | S    | >         | <     |
|-------------|------|-----------|-------|
| <b>小</b> 心石 | 3    | 0         | 1     |
| A           | 00   | 01, 0     | 10, 0 |
| В           | 01   | 11, 0     | 01, 0 |
| С           | 11   | 01, 1     | 00, 1 |
| D           | 10   | 01, 0     | 11, 0 |
|             | Q1Q2 | Q1*Q2*, Z |       |

$$Q1^* = Q1'Q2'X + Q1'Q2X' + Q1Q2'X = Q1'Q2X' + Q2'X$$
  
 $Q2^* = X' + Q1'Q2X + Q1Q2'X = X' + Q1'Q2 + Q1Q2'$ 

D 触发器特征方程:  $Q^* = D$ 

$$D1^* = Q1'Q2'X + Q1'Q2X' + Q1Q2'X = Q1'Q2X' + Q2'X$$
  

$$D2^* = X' + Q1'Q2X + Q1Q2'X = X' + Q1'Q2 + Q1Q2'$$

一共4个状态,选择2个D触发器。

所以设计电路如下:



表7-5 例子问题的状态和输出表

用表7-6中的最简状态赋值和D触发器,写出状态表7-5的新转移表,并推导出最小成本激励和输出方程。将这里得到的激励和输出逻辑的成本(用1个两级的"与一或"电路实现)与7.4.4节方框中的方程进行比较。

| s    |     |     | AB  |     |   |
|------|-----|-----|-----|-----|---|
|      | 00  | 01  | 11  | 10  | Z |
| INIT | A0  | AO  | A1  | A1  | 0 |
| A0   | OK0 | ОКО | A1  | A1  | 0 |
| A1   | A0  | AO  | OK1 | OK1 | 0 |
| OK0  | OK0 | ОКО | OK1 | A1  | 1 |
| OK1  | A0  | OK0 | OK1 | OK1 | 1 |
|      |     |     | S*  |     | 2 |

表7-6 表7-5中状态机的可能状态赋值

| 状态名  | <b>赋值</b> |          |           |            |  |  |  |
|------|-----------|----------|-----------|------------|--|--|--|
|      | 最简单的Q1~Q3 | 分解的Q1~Q3 | 单热点的Q1~Q5 | 准单热点的Q1~Q4 |  |  |  |
| INIT | 000       | 000      | 00001     | 0000       |  |  |  |
| A0   | 001       | 100      | 00010     | 0001       |  |  |  |
| A1   | 010       | 101      | 00100     | 0010       |  |  |  |
| OK0  | 011       | 110      | 01000     | 0100       |  |  |  |
| OK1  | 100       | 111      | 10000     | 1000       |  |  |  |

?? 这个最简状态赋值原来是"最简单的 Q1~Q3"

OK.....

那么状态转移表如下:

| 状态名  | S      |           | Z   |     |     |   |
|------|--------|-----------|-----|-----|-----|---|
|      |        | 00        | 01  | 11  | 10  | ۷ |
| INIT | 000    | 001       | 001 | 010 | 010 | 0 |
| A0   | 001    | 011       | 011 | 010 | 010 | 0 |
| A1   | 010    | 001       | 001 | 100 | 100 | 0 |
| ОК0  | 011    | 011       | 011 | 100 | 010 | 1 |
| OK1  | 100    | 001       | 011 | 100 | 100 | 1 |
|      | Q1Q2Q3 | Q1*Q2*Q3* |     |     |     |   |

我们考虑未用状态为无关项(最小成本法),未用状态3个,无关项一共有12个,则:

$$Q1^* = AB(Q1 + Q2) + AB'(Q1'Q2Q3' + Q1)$$

经过卡诺图化简 (在草稿纸上完成了), 融合 D 触发器的特征方程, 得

$$D1^* = Q1^* = AQ3'(Q1 + Q2) + ABQ2Q3$$

Q2\*的直接表达式就不写出了, 在纸上卡诺图化简得:

$$D2^* = Q2^* = Q1'Q2'A + Q2'Q3 + Q3A' + Q3B' + Q1Q3'A'B$$

同理.

$$D3^* = Q3^* = A'$$
  
 $Z = Q1 + Q2Q3$ 

无关状态 101, 110, 111 可能会引起 Z 的错误。输入为 00 次态分别为 011, 011, 011, 系 统可以自启动。只要修正电路,得Z=Q1'Q2Q3+Q1Q2'Q3'

#### 最小成本解法

如果要推导最小成本激励方程,那么未用状态的下一状态项就应标为"无关"项。由 此得到的激励方程比以前的激励方程要简单些:

D1 = 1  
D2 = Q1 
$$\cdot$$
 Q3'  $\cdot$  A'+Q3  $\cdot$  A+Q2  $\cdot$  B  
D3 = A

在最小成本输出函数中,对应于未用状态的Z值也为"无关"项。于是,这就导致输出函数更加简单,Z=Q2。(有"无关项"的图形法化简的内容在DDPPonline的Min.2节中。)

这个方框内的方程一共需要 2 个 2 输入与门, 1 个 3 输入与门和 1 个 3 输入或门; 上面的方程:

$$D1^* = Q1^* = AQ1Q3' + AQ2Q3' + ABQ2Q3$$

$$D2^* = Q2^* = Q1'Q2'A + Q2'Q3 + Q3A' + Q3B' + Q1Q3'A'B$$

$$D3^* = Q3^* = A'$$

$$Z = Q1'Q2Q3 + Q1Q2'Q3'$$

一共需要  $3 \land 2$  输入与门, $5 \land 3$  输入与门, $2 \land 4$  输入与门, $1 \land 2$  输入或门, $1 \land 3$  输入或门, $1 \land 5$  输入或门。**成本差距比较大**。

[7.48]

用"准单热点"状态赋值法重做练习题7.47。

#### 状态转移表如下:

| VOC-14-12-WAR 1 - |          |              |      |      |      |   |
|-------------------|----------|--------------|------|------|------|---|
| 状态名               | S        |              | 7    |      |      |   |
|                   | 3        | 00           | 01   | 11   | 10   | Z |
| INIT              | 0000     | 0001         | 0001 | 0010 | 0010 | 0 |
| A0                | 0001     | 0100         | 0100 | 0010 | 0010 | 0 |
| A1                | 0010     | 0001         | 0001 | 1000 | 1000 | 0 |
| ОКО               | 0100     | 0100         | 0100 | 1000 | 0010 | 1 |
| OK1               | 1000     | 0001         | 0100 | 1000 | 1000 | 1 |
|                   | Q1Q2Q3Q4 | Q1*Q2*Q3*Q4* |      |      |      |   |

我们考虑未用状态为无关项(最小成本法), 未用状态 11 个, 无关项一共有 44 个, 则:

$$D1^* = Q1^* = (Q1 + Q2 + Q3)AB + (Q1 + Q3)AB' = Q1A + Q3A + Q2AB$$

$$D2^* = Q2^* = (Q1 + Q2 + Q4)A'B + (Q2 + Q4)A'B' = Q1A'B + Q2A' + Q4A'$$

$$D3^* = Q3^* = Q1'Q2'Q3'A + Q2AB'$$

$$D4^* = Q4^* = Q1'Q2'Q4'A' + Q1A'B'$$

$$Z = Q1 + Q2$$

无关状态可能会引起 Z 的错误。修正电路,得Z = Q1'Q2Q3'Q4' + Q1Q2'Q3'Q4'

#### 最小成本解法

如果要推导最小成本激励方程,那么未用状态的下一状态项就应标为"无关"项。由 此得到的激励方程比以前的激励方程要简单些:

D1 = 1  
D2 = Q1 
$$\cdot$$
 Q3'  $\cdot$  A'+Q3  $\cdot$  A+Q2  $\cdot$  B  
D3 = A

在最小成本输出函数中,对应于未用状态的Z值也为"无关"项。于是,这就导致输出函数更加简单,Z=Q2。(有"无关项"的图形法化简的内容在DDPPonline的Min.2节中。)

这个方框内的方程一共需要 2 个 2 输入与门, 1 个 3 输入与门和 1 个 3 输入或门; 上面的方程里:

$$D1^* = Q1^* = (Q1 + Q2 + Q3)AB + (Q1 + Q3)AB' = Q1A + Q3A + Q2AB$$

$$D2^* = Q2^* = (Q1 + Q2 + Q4)A'B + (Q2 + Q4)A'B' = Q1A'B + Q2A' + Q4A'$$

$$D3^* = Q3^* = Q1'Q2'Q3'A + Q2AB'$$

$$D4^* = Q4^* = Q1'Q2'Q4'A' + Q1A'B'$$

$$Z = Q1'Q2Q3'Q4' + Q1Q2'Q3'Q4'$$

一共需要4个2输入与门,4个3输入与门,4个4输入与门,2个3输入或门,3个2输入或门。

## [7.54]

重新设计表7-11中的组合锁,按照格雷码的顺序对编码状态进行赋值( $A\sim H=000,001,011,010,110,111,100$ )。将这里得到的"与-或"形式的激励方程的成本,与课本中推得的方程进行比较。

表7-11 组合锁的状态和输出表

表7-12 组合锁的转移/激励表

| 含 义        | s | ×      |        | Q1Q2Q3 | x         |           |
|------------|---|--------|--------|--------|-----------|-----------|
|            |   | 0      | 1      | Q1Q2Q3 | 0         | 1         |
| 起始         | Α | B,01   | A,00   | 000    | 001,01    | 000,00    |
| 接收到0       | В | B,00   | C,01   | 001    | 001,00    | 010,01    |
| 接收到01      | С | B,00   | D,01   | 010    | 001,00    | 011,01    |
| 接收到011     | D | E,01   | A,00   | 011    | 100,01    | 000,00    |
| 接收到0110    | E | B,00   | F,01   | 100    | 001,00    | 101,01    |
| 接收到01101   | F | B,00   | G,01   | 101    | 001,00    | 110,01    |
| 接收到011011  | G | E,00   | H,01   | 110    | 100,00    | 111,01    |
| 接收到0110111 | н | B,11   | A,00   | 111    | 001,11    | 000,00    |
|            |   | S*,UNL | K HINT |        | Q1*Q2*Q3* | UNLK HINT |

#### 转移/激励表如下:

| 状态名 | S      | X                    |         |  |  |
|-----|--------|----------------------|---------|--|--|
|     | 3      | 0                    | 1       |  |  |
| А   | 000    | 001, 01              | 000, 00 |  |  |
| В   | 001    | 001, 00              | 011, 01 |  |  |
| С   | 011    | 001, 00              | 010, 01 |  |  |
| D   | 010    | 110, 01              | 000, 00 |  |  |
| Е   | 110    | 001, 00              | 111, 01 |  |  |
| F   | 111    | 001, 00              | 101, 01 |  |  |
| G   | 101    | 110, 00              | 100, 01 |  |  |
| Н   | 100    | 001, 11              | 000, 00 |  |  |
|     | Q1Q2Q3 | Q1*Q2*Q3*, UNLK HINT |         |  |  |

 $D1^* = Q1^* = Q1'Q2Q3'X' + Q1Q2'Q3 + Q1Q2X$   $D2^* = Q2^* = Q1'Q3X + Q1'Q2Q3'X' + Q1Q2Q3'X + Q1Q2'Q3X'$   $D3^* = Q3^* = Q1Q2 + Q1'Q2'Q3 + Q2'Q3'X' + Q1'Q3X'$ 

激励方程一共需要1个2输入与门,6个3输入与门,4个4输入与门,1个3输入或门,2个4输入或门。总共是1个2输入门,7个3输入门,6个4输入门。

#### 课本上表 7-11 组合锁的特征方程:

 $D1 = Q1 \cdot Q2' \cdot X + Q1' \cdot Q2 \cdot Q3 \cdot X' + Q1 \cdot Q2 \cdot Q3'$ 

 $D2 = Q2' \cdot Q3 \cdot X + Q2 \cdot Q3' \cdot X$ 

 $D3 = Q1 \cdot Q2' \cdot Q3' + Q1 \cdot Q3 \cdot X' + Q2' \cdot X' + Q3' \cdot Q1' \cdot X' + Q2 \cdot Q3' \cdot X$ 

一共需要1个2输入与门,8个3输入与门,1个4输入与门,1个2输入或门,1个3输入或门,1个5输入或门。总共是2个2输入门,9个3输入门,1个4输入门,1个5输入门。

成本类似。