

计算机科学技术学院

实验报告

2022 - 2023 学年 第 一 学期

专业: __智能科学与技术____

班 级: _ 智能3班

学 号: 2019202216

姓 名: 李坤璘

课程名称: __计算机组成原理

指导教师: 尹卓

实验项目名称: 整机实验(一)单累加器 日期: 2022.11.28

实验环境: 仿真软件

实验目的:

利用仿真软件的资源,自行开发出一台可实际运行的计算机。

实验要求:

- (1)运算器:采用单累加器多寄存器结构(开关 KA、KB、KC、KR 分別置左、右、右、下)。
- (2) 指令系统:多于 16 条指令,外设和内存统一编址、统一操作指令。
- (3) 内存寻址方式:立即数寻址、直接寻址、寄存器直接寻址、寄存器间接寻址。
- (4) 微程序设计微操作信号发生器。

实验内容:

一、整机实验的题目要求

- (1)运算器:采用单累加器多寄存器结构(开关 KA、KB、KC、KR 分別置左、右、右、下)。
- (2) 指令系统:多于 16 条指令,外设和内存统一编址、统一操作指令。
- (3) 内存寻址方式:立即数寻址、直接寻址、寄存器直接寻址、寄存器间接寻址。
- (4) 微程序设计微操作信号发生器。

二、整机的逻辑图

三、指令系统编码和指令执行的过程

指令助	指令功能	指令编码	节拍	微操作	控制信号	控制信号有效性
记符		17161514131211				
取值微指			T0	(PC) → IAB	PCO, B1	0,0
\$				→OAB	RC, B2, B3, CI	0, 0, 0, 1, 0
				$(M) \rightarrow ODB \rightarrow$, GI	1, ↓
				IDB→IR1	P+1, CK	0
				(PC)+1→PC	MLD	↑, 0
				(MD) → MPC	CC, GC	
				接数		
				(A) →ACT		
ADD A, Ri	(A)+(Ri)	000000Ri	T1	(ACT)+(Ri)	RR, A, B	0, I1, I0
	→A			→BUF→IDB	Cn', M, S3, S	1, 0, 1, 0, 0, 1
				→A	2, S1, S0	0, 1, 1, †
				置 CY	OB, XO, X1, CA	1, 1, ↑
<u> </u>					SA, SB, CP	
ADD A, Ri	(A)-(Ri)	000001Ri	T1	(ACT)-(Ri)	RR, A, B	0, I1, I0
	→A			→BUF→IDB	Cn', M, S3, S	0, 0, 0, 1, 1, 0
				→A	2, S1, S0	0, 1, 1, †
				置 CY	OB, XO, X1, CA	1, 1, ↑
					SA, SB, CP	
MOV	(I2I1I0(Ri	001000Ri	T1	(Ri) →BUF	RR, A, B, OB, C	0, I1, I0, 0, ↑
A, @Ri)) →A			→IDB→IR2	L	1, 1, 1, 0, 1, 0
					Cn', M, S3, S	
					2, S1, S0	
			T2	(IR1 IR2)	0I,B1	0, 0,
				→IAB→OAB	RC,	0, 0, 0, 1, 1, ↑
				$(M) \rightarrow ODB \rightarrow$	B2, B3, X0, X1	
				IDB→A	, CA	
MOV A,	(Ri)→A	010000Ri	T1	(Ri) →BUF	RR, A, B	0, I1, I0
Ri				→IDB→A	Cn', M, S3, S	1, 1, 1, 0, 1, 0
					2, S1, S0	0, 1, 1, ↑
					OB, XO, X1, CA	
MOV Ri,A	A→(Ri)	010001Ri	T1	(ACT) →	Cn', M, S3, S	1, 0, 0, 0, 0, 0
				BUF→IDB→	2, S1, S0	0, 0, 11, 10
				Ri	OB, WR, A, B	
MOV	data→A	011000001, data	T1	(PC) → IAB	PCO, B1	0, 0,
A,#data				→OAB	RC, B2, B3, X0	0, 0, 0, 1, 1, ↑
				$(M) \rightarrow ODB \rightarrow$, X1, CA	
				IDB→A		1, ↓
				(PC)+1→PC	P+1, CK	
MOV	data→Ri	011001 Ri,data	T1	$(PC) \rightarrow IAB$	PCO, B1	0, 0,
Ri,#data				→0AB	RC, B2, B3, WR	0, 0, 0, 11, 10
				$(M) \rightarrow ODB \rightarrow$, A, B	

				IDB→Ri		1, ↓
				(PC)+1→PC	P+1, CK	1, *
15.4	(11)	1000	m.1			
LD A	(addr)→A	1000	T1	$(PC) \rightarrow IAB$	PCO, B1	0, 0,
addr		a10a9a8, a7 [~] a0		→OAB	RC, B2, B3, CL	0, 0, 0, 1
				$(M) \rightarrow ODB \rightarrow$		
				IDB→IR2	P+1, CK	1, ↓
				(PC)+1→PC		
			T2	(IR1 IR2)	OI, B1	0, 0,
				→IAB→OAB	RC,	0, 0, 0, 1, 1, 1
				$(\mathtt{M}) \to \mathtt{ODB} \to$	B2, B3, X0, X1	
				IDB→A	, CA	
STA addr	A→(addr)	10100 a10 a9 a8,	T1	(PC) → IAB	PCO, B1	0, 0,
		a7~a0		→OAB	RC, B2, B3, CL	0, 0, 0, 1
				$(M) \rightarrow ODB \rightarrow$		
				IDB→IR2	P+1, CK	1, ↓
				(PC)+1→PC		
			T2	(IR1 IR2)	OI,B1	0, 0,
				→IAB→OAB	RC,	0, 0, 0
				$(M) \rightarrow ODB \rightarrow$	B2, B3, CL	1, ↓
				IDB→IR2	P+1, CK	
				(PC)+1→PC		
RLC A	C, A 左环移	11000000	T1	CY, (A) 左环	XO, X1, CA	0, 1, ↑
	一位			移一位	SA, SB, CP	0, 1, ↑
RRC A	C, A 右环移	11000100	T1	CY, (A) 右	X0, X1, CA	1, 0, †
	一位			环移一位	SA, SB, CP	1, 0, †
JZ addr		111000 a9 a8	T1	(PC) → IAB	PC0, B1	0, 0,
JC addr		a7~a0		→OAB	RC, B2, B3, CL	0, 0, 0, 1
JAO addr	久仕	111010 a9 a8		$(M) \rightarrow ODB \rightarrow$		
JMP addr	$\operatorname{addr} \overset{\$^{\scriptsize{\scriptsize{\text{\tiny Φ}}}}}{\longrightarrow} \operatorname{PC}$	a7~a0		IDB→IR2	P+1, CK	1, ↓
		11110 0 a9 a8		(PC)+1→PC		
		a7~a0	T2	(IR1 IR2)	0I	0
		111110 a9 a8		→ IAB	LP	1
		a7~a0		IAB		
				条件成立 → PC		
HALT	置 O RUN	11111111	T1	置 O RUN	DR, RCP	0, ↑

四、微指令格式和指令微程序

24 位微码对应关系: M23-M0 (24 位微指令码)

	M23	M22	M21	M20	M19	M18	M17	M16	M15	M14	M13	M12
有效 电平	*	*	*	*	*	*	*	*	0	1	1	*
	S3	S2	S1	S0	/Cn	М	X1	X0	OI	CL'	CP'	/
	M11	M10	M9	M8	M7	M6	M5	M4	М3	M2	M1	M0
有效 电平	0	0	0	0	0	1	0	0	0	0	0	1
	CG	ОТ	LP'	ОВ	GI	P+1	DR	MLD	WC'	RC'	RR'	WR'

指令微程序:

指令助记符	位	23 22 21	19 18 17	15 14 13	11 10 9 8	7 6 5 4	3 2 1 0	
		20	16	12				
	信号	S3 S2	Cn' M	OI CL'	CG OT	GI P+1 DR	WC' RC'	伪指令码
		S1 S0	X1 X0	CP'/	LP' OB	MLD	RR WR'	(十六进
	有效电平	****	****	011*	0000	0100	0001	制)
	微地址							
取值伪指令	000Н	0000	0000	1000	0111	0110	1010	00876A
	001							
	002							
ADD A, Ri	003	1001	1011	1010	1110	1011	1100	9BAEBC
	004	0000	0000	1000	0111	0110	1010	00876A
	005							
	006							
SUB A, Ri	007	0110	0011	1000	1110	1011	1100	638EBC
	008	0000	0000	1000	0111	0110	1010	00876A
	009							
	00A							
MOV A,@Ri	00B	1010	1100	1100	1110	1011	1100	ACCEBC
	00C	0000	0011	0000	1111	1011	1010	030FBA
	00D	0000	0000	1000	0111	0110	1010	00876A
	00E							
	00F							
	010							
	011							
	012							
MOV A, Ri	013	1010	1111	1000	1110	1011	1100	AF8EBC
	014	0000	0000	1000	0111	0110	1010	00876A
	015							
	016							
MOV Ri, A	017	0000	1000	1000	1110	1011	1111	088EBF
	018	0000	0000	1000	0111	0110	1010	00876A

	019							
	01A							
MOV A,#data	01B	0000	0011	1000	1111	1111	1010	038FFA
	01C	0000	0000	1000	0111	0110	1010	00876A
	01D							
	01E							
NOV	01F	0000	0000	1000	1111	1111	1011	038FFA
Ri,#data								
	020	0000	0000	1000	0111	0110	1010	00876A
	021							
	022							
LDA addr	023	0000	0000	1100	1111	1111	1010	00CFEA
	024	0000	0011	0000	1111	1011	1010	030FBA
	025	0000	0000	1000	0111	0110	1010	00876A
	026							
LDA addr	027	0000	0000	1100	1111	1111	1010	00CFEA
	028	0000	0011	0000	1111	1011	1010	030FBA
	029	0000	0000	1000	0111	0110	1010	00876A
	02A							
STA addr	02B	0000	0000	1100	1111	1111	1010	00CFFA
	02C	0000	1000	0000	1110	1011	0110	080EB6
	02D	0000	0000	1000	0111	0110	1010	00876A
	02E							
STA addr	02F	0000	0000	1100	1111	1111	1010	00CFFA
	030	0000	1000	0000	1110	1011	0110	080EB6
	031	0000	0000	1000	0111	0110	1010	00876A
	032							
RLC A	033	0000	0010	1010	1111	1011	1110	02AFBE
	034	0000	0000	1000	0111	0110	1010	00876A
	035							
	036							
RRC A	037	0000	0001	1010	1111	1011	1110	01AFBE
	038	0000	0000	1000	0111	0110	1010	00876A
	039							
	03A							
JZ addr	03B	0000	0000	1100	1111	1111	1010	00CFFA
JC addr	03C	0000	0000	0000	1101	1011	1110	000DBE
JAO addr	03D	0000	0000	1000	0111	0110	1010	00876A
JMP addr	03E							
HALT	03F	0000	0000	1000	1111	1001	1110	008F9E
	040	0000	0000	1000	0111	0110	1010	00876A

五、确定微程序入口地址形成方法

以指令操作码(8 位)为核心,扩展成 11 位的微程序地址即 $MD10^{\sim}MD0$. 如果指令系统仅 8 条指令,IR1 的 I7. I6. I5 为指令操作码,每条指令执行不超过 4 拍,即微指令可由多至 4 条微指令构成:

全部微程序首地址如下:

指令操作码 171615	微程序首址 MDIO~MDO
000	003H
0 0 1	007H
010	00BH
011	00FH
100	013H
101	017H
110	OIBH
111	01FH

六、.ABL 内容

右侧对连线具体情况进行了描述,便于进行快速的引脚定位,所有内容如下:

I/O 外设
KA < IAB0
PA < IAB1
IDB7 < 74125_Y2
IDB0 < 74125_Y1
IDB6~IDB1 <
BUS
/B1 < RF
B2 < 7400_2_Y2
/B3 < RF
REG 74670
/WR < 7400_1_Y2
/RR < 7432_Y1
A < I0
B < I1
A 74198
X0 < M16
X1 < M17
CA < /φ
SR < CY
SL < CY
ACT 74377
CC < /φ
/CG < M11
TMP 74373
CT < +5V

/OT < M10
ALU 74181
S3 < M23
S2 < M22
S1 < M21
S0 < M20
M < M18
/Cn < M19
BUF
/OB < M8
进位 CY
P2 < A7
P1 < A0
P0 < CY
SA < M16
SB < M17
CP < 7400_1_Y4
IR1 IR2
/GI < M7
CI < /φ
CL < 7400_1_Y3
/OI < M15
PC 74163
P+1 < M6
/CLR < +5V
LP < 74153_2Y

CK < φ
/PCO < 74153_1Y
读写
/RC < 7432_Y4
/WC < 7432_Y3
MPG
/MCLR < RO
MCLK < PO
/MLD < M4
MP+1 < +5V
/MIG < GND
R-P 启停
/DR < M5
微程序地址
MD9 < GND
MD8 < GND
MD7 < GND
MD6 < GND
MD5 < I7
MD4 < I6
MD3 < I5
MD2 < I2
MD1 < +5V
MD0 < +5V
LED 灯

---7400_1---

 $7400_1_A2 < -- \phi$

7400_1_B2 <-- M0

7400_1_A3 <-- φ

7400_1_B3 <-- M14

 $7400_1_A4 < -- \phi$

7400_1_B4 <-- M13

---7400_2---

7400_2_A2 <-- 7400_2_Y3

7400_2_B2 <-- 7400_2_Y4

7400_2_A3 <-- M2

7400_2_B3 <-- M2

7400_2_A4 <-- IAB10

7400_2_B4 <-- IAB2

---7432---

 $7432_A1 < --/\phi$

7432_B1 <-- M1

7432_A2 <-- 7400_2_Y4

7432_B2 <-- M2

 $7432_A3 < --/\phi$

7432_B3 <-- M3

 $7432_A4 < --/\phi$

7432 B4 <-- M2

---74125---

74125_A1 <-- KB

74125_C1 <-- 7432_Y2

74125_A2 <-- PB

74125 C2 <-- 7432 Y2

---74153---

74153_1D0 <--- +5V

74153_1D1 <--- +5V

74153_1D2 <--- +5V

74153_1D3 <--- +5V

74153_1G <-- M6

74153_2D0 <-- ZD

74153_2D1 <-- CY

74153_2D2 <-- A0

74153_2D3 <--- +5V

74153_2G <-- M9

74153_A <-- I3

74153_B <-- I4

---74157---

CY --> SR

CY --> SL

 $CY \rightarrow P0$

 $CY --> 74153_2D1$

A0 - P1

A0 --> 74153_2D2

A7 --> P2

ZD --> 74153_2D0

PO --> MCLK

MICP -->

 $KB --> 74125_A1$

PB --> 74125_A2

RO --> /MCLR

RF --> /B1

RF --> /B3

M23 --> S3

M22 --> S2

M21 --> S1

M20 --> S0

M19 --> /Cn

M18 --> M

M17 - X1

 $M17 \rightarrow SB$

M16 --> X0

 $M16 \longrightarrow SA$

M15 --> /OI

 $M14 --> 7400_1_B3$

 $M13 --> 7400_1_B4$

M12 -->

M11 --> /CG

M10 --> /OT

M9 --> 74153_2G

 $M8 \longrightarrow OB$

 $M7 \longrightarrow /GI$

M6 --> P+1

 $M6 \longrightarrow 74153_1G$

M5 --> /DR

M4 --> /MLD

M3 --> 7432_B3

 $M2 \longrightarrow 7400_2A3$

M2 --> 7400_2_B3

 $M2 --> 7432_B2$

 $M2 --> 7432_B4$

M1 --> 7432_B1

 $M0 \longrightarrow 7400_1_B2$

I7 --> MD5

I6 --> MD4

I5 --> MD3

I4 --> 74153_B

I3 --> 74153_A

I2 --> MD2

I1 \rightarrow B

I0 --> A

IAB10 --> 7400_2_A4

IAB2 --> 7400_2_B4

IAB1 --> PA

IAB0 --> KA

 $\phi --> 7400_1_A2$

 $\phi --> 7400_1_A3$

 $\phi --> 7400_1_A4$

 $\phi \longrightarrow CK$

 $/\phi --> 7432_A1$

 $/\phi --> 7432_A3$

 $/\phi --> 7432_A4$

 $/\phi$ --> CI

 $/\phi \longrightarrow CA$

 $/\phi$ --> CC

+5V --> MD1

+5V --> MD0

 $+5V --> 74153_1D0$

+5V --> 74153_1D1

+5V --> 74153_1D2

 $+5V --> 74153_1D3$

+5V --> 74153 2D3

$$+5V \rightarrow /CLR$$

$$+5V --> MP+1$$

$$7432_{Y1} --> /RR$$

七、BIT.DEF 内容

S3 S2 S1 S0 /CN M X1 X0 OI CL CP NONE

CG OT LP OB GI P+1 DR MLD WC RC RR WR

八、INS.DEF 内容

?2
-HALT
1
11111111
-ADD
4
A,Ri
000000Ri
-SUB
4
A,Ri
000001Ri
-MOV
-MOV 5
5
5 A,@RI
5 A,@RI
5 A,@RI 001000RI
5 A,@RI 001000RI -MOV
5 A,@RI 001000RI -MOV 4
5 A,@RI 001000RI -MOV 4 A,RI
5 A,@RI 001000RI -MOV 4 A,RI
5 A,@RI 001000RI -MOV 4 A,RI 010000RI
5 A,@RI 001000RI -MOV 4 A,RI 010000RI -MOV

-MOV 2 A,#DATA 01100000 DATA -MOV 2 RI,#DATA 011001RI DATA -LDA 3 ADDR 10000AAA A7~A0 -STA 3 ADDR 10100AAA A7~A0 -RLC 4 A 11000000

4 A 11000000 -RRC A

11000100

-JZ

3

ADDR

111000AA

A7~A0

-JC

3

ADDR

111010AA

A7~A0

-JAO

3

ADDR

111100AA

A7~A0

-JMP

3

ADDR

111110AA

A7~A0

九、MOP.MID 内容

详细文本如下:
;000H~002H
-00876A
-
-
;ADD A,RI
;003H~006H
-9BAEBC
-00876A
-
-
;SUB A,RI
;007H~00AH
-638EBC
-00876A
-
-
;MOV A,@RI
;00BH~012H
-ACCEBC
-030FBA
-000876A
-
-
-

;013H~016H -AF8EBC -00876A ;MOV RI,A ;017H~01AH -088EBF -00876A ; MOV A #DATA ;01BH~01EH -038FFA -00876A ;MOV RI,#DATA ;01FH~022H -008FFB -00876A ;LDA ADDR ;023H~026H

;MOV A,RI

00CEF4	
-00CFFA	
-030FBA	
-00876A	
-	
;LDA ADDR	
;027H~02AH	
-00CFFA	
-030FBA	
-00876A	
-	
;STA ADDR	
;02BH~02EH	
-00CFFA	
-080EB6	
-00876A	
-	
;STA ADDR	
;02FH~032H	
-00CFFA	
-080EB6	
-00876A	
-	
;RLC A	
;033H~036H	
-02AFBE	
-00876A	
	-00876A - :LDA ADDR :027H~02AH -00CFFA -030FBA -00876A - :STA ADDR :02BH~02EH -00CFFA -080EB6 -00876A - :STA ADDR :02FH~032H -00CFFA -080EB6 -00876A - :RLC A :033H~036H -02AFBE

-

_

;RRC A

;037H~03AH

-01AFBE

-00876A

-

_

;JZ ADDR

-00CFFA

;JC ADDR

-000DBE

;JAO ADDR

-00876A

;JMP ADDR

;HALT

;03FH~040H

-008F9E

-00876A

十、调试单条指令过程

调试基本步骤如下:

①读取 mop 文件到控存

②编写.asm 文件(以调试存取及停机指令为例)

ORG 005

LDA 002

STA 00A

HALT

END

③.asm 文件导入编译工具,生成.obj 文件

④读入.obj 文件, 随后运行

eah.net – \square \times

1.调试存取及停机指令:

先在 002 内存单元中写入 55, 然后跳到 005 地址下单步运行程序, 过程显示如下:

OAB	ODB				
005	80		_	\checkmark	
006	02	1	000	00	^
006	02		001	00	
002	55		002	55	
002	33		003	00	
007	A0		004	00	
			005	80	
800	0A	4	006	02	
00.4			007	ΑO	
00A	55		.008	0A	
009	FF		009	FF	
			A00	55	
7FF	FF		OOR	loo	

结果是(00A)=55

2.调试加法右移指令

先在 002 单元中写入 55, 在 003 单元中写入 A9, 到 00B 起始地址单拍运行如下:

OAB ODB

00B 80

00C 02

002 55 取出 002 单元中的 55

00D 44

7FF 55

结果是(015)=7F

3.调试减法左移指令

直接调至入口地址 016, 单步执行程序如下:

OAB ODB

016 80

```
017
       02
002
       55
018
       44
7FF
       55
019
       80
01A
       03
003
       A9
01B
       04
7FF
       54
              A9-55=54
              左移
01C
       C0
7FF
       FF
01D
       A0
01E
       20
              存入 020 为 A8
020
       A8
01F
       FF
                    01D A0
                    01E 20
7FF
       FF
                    O1F FF
                    020
结果为(020)=A8
```


4.程序跳转指令

单步调试如下:

OAB	ODE	3
030	84	
031	04	;此时先键入 0 来表示 KB 为 0,而后键入一个字符,然后继续
404	FF	
032	F0	
033	30	
030	FF	
034	84	
035	01	
401	00	
036	A4	
037	02	
402	00	;打印机会转一下,打印刚才键入的一个字符
038	84	
039	94	
404	FF	
03A	44	
7FF	7F	清空
03B	00	
7FF	7F	•
03C	E8	
03D	38	-1- □ □ 3
038	FF	
03E	F8	.,-9876543210 + 1 E
03F	30	V UI
030	FF	
030	84	;返回程序首执行

编	00H	01H	02H	03H	04H	05H	06H	07H	08H	09H	0AH	0BH	0CH	0DH	0EH	0FH
码																
左	0	1	2	3	4	5	6	7	8	9	-	,		#	0	1加
轮																换
字																行
符																
中	G	K	_	Р	D	?	М	d	+	_	空	R		Α	空	换
间											格				格	行
轮																
字																
符																
右	+	×	÷	<>	*	S	Τ	М	С	=	空	_	%	Е	+	×加
轮											格					换
字																行
符																

十一、应用程序.ASM 内容

1、调试存取及停机指令

ORG 005

LDA 002

STA 00A

HALT

END

;功能:测试取数与存数及停机指令

;结果应为(00A)=55 (002 单元的内容测试前载入55H)

2、调试加法右移指令

ORG 00B

LDA 002

MOV R0,A

LDA 003

ADD A,R0

RRC A

STA 015

HALT

END

:功能:测试 SUB、RLC 指令

;结果应为(020)=A8 (002 单元的内容测试前载入55H,003 单元的内容测试前载入A9H)

3、调试减法左移指令

ORG 016

LDA 002

MOV R0,A

LDA 003

SUB A,R0

RLC A

STA 020

HALT

END

;功能:测试 MOV、ADD、RRC 指令

;结果应为 (020) =A8 (002 单元的内容测试前载入 55H,003 单元的内容测试前载入 A9H)

4、程序调转指令

ORG 030

LDA 404 ;读询问口

JAO 030 ;KB=0? 若 KB!=0 则跳到 030 继续读询问口

LDA 401 ;KB=0, 读键值

STA 402 ;402 为打印机端口,打印该字符

LDA 404 ;读询问口

MOV RO,A ;读询问口后,A中存储 PB的状态,将A中的值送到 RO

ADD A,R0 ;(A)+(R0)->A 若 PB=1 则 1+1=0 CY=1 若 PB=0 则 0+0=0 CY=0

JC 038 ;若 CY=1,则跳到 038 继续读询问口

JMP 030 ;返回程序起始位置继续运行

END

;功能:测试键盘读入及打印机输出

;结果应为打印机能打印出从键盘读入的字符

十二、实验的步骤与遇到的问题及解决方法

- 1.控存文件一开始没写对,导致在做实验时单步调试总会出错,实验结果与预想值有偏差,通过一步步核验最后发现问题及时更改控存文件。
- 2.连线时未看清连线文件说明,导致有几条线连接错误造成实验结果出错,及时与同学沟通交流发现问题所在,重新更改连线。
- 3.打印机打印字符时一开始对编码 0FH 的左轮右轮中间轮的字符没搞明白,后与同学交流以及自己的不断尝试搞明白。

十三、思考及体会

- ①完成整机一实验,我对计算机的各个模块部件之间的关系理解的更加清晰,对上学期的组成原理中的指令系统及微程序的相关知识也有了更深的认识
- ②通过编写不同的文件了解其在整机实验中的功能,也学会了如何使用打印机来进行打印字符,能区分左轮,右轮,中间轮,也学会了如何单拍运行查看指令等操作。
- ③使用单步调试的过程还有有些生疏,毕竟涉及到硬件模拟操作是个人的弱项,课下还是要多加练习为实验二做准备。

实验项目名称:	整机实验(题目三)	日期:	2022.12.15
大小小小 口 10 101:	電机 大洲 (欧日二)	LI 757];	2022.12.13

实 验 环 境: 模拟软件

实验目的:

利用仿真软件的资源,自行开发出一台可实际运行的计算机。

实验要求:

给出几个整机实验题, 自主选取研制一台具有相关性能的实验计算机

实验内容:

一、整机实验的题目要求

题目三: 研制一台性能如下的实验计算机

- (1) 不带外部设备。
- (2) 运算器采用单累加器多通用寄存器结构。
- (3) 操作数寻址方式有: 直接地址寻址、立即数寻址、寄存器直接寻址
- (4) 指令系统由如下 8 条指令组成:

指令编码		114 V BF 7-1 44	指令功能		
第一字节	第二字节	指令助记符			
17 16 15 14 13 12 11 10	1 2 7	7			
0 00 00 x Ri		ADD A,Ri	$(A) + (Ri) \rightarrow A$		
0 00 01 x Ri	7.7	MOV Ri, A	(A) →Ri		
0 00 10xxx	*	SRC A	(A) 带进位 C 右环移一位		
0 00 11 x x x	d7 ~ d0	MOV A,#data	data→A		
0 01 000a9a8	a7 ~ a0	LDA addr	(addr) →A		
0 01 010a9a8	a7 ~ a0	STA addr	(A) →addr		
0 01 100a9a8	a7 ~ a0	JC addr	若 CY=1 则 addr→PC, 否则 PC 加 1		
0 01 110 a9 a8	a7 ~ a0	JMP addr	addr→PC		

(5) 能执行双字节加法程序

二、整机的逻辑图

开关位置选择:

开关	KA	KB	KC	KR
位置	左	右	右	下

三、指令系统编码和指令执行的过程

指令助记符	指令编码 I7-I0	执行流程
取指微指令		(PC)->IAB->OAB
		(M)->ODB->IDB->IR1
		(PC)+1->PC
		(MD)->MPC 接数
		(A) ->ACT
ADD A, RI	000000Ri	(ACT)+(Ri)->BUF->IDB->A
		置 CY
MOV RI, A	000010Ri	(ACT)->BUF->IDB->RI
SRC A	00010000	CY, (A) 右环移一位
MOV A, #DATA	00011000	(PC)->IAB->OAB
	DATA	(M)->ODB->IDB->A
		(PC)+1->PC
LDA ADDR	001000a9a8,	(PC)->IAB->OAB
	a7-a0	(M)->ODB->IDB->IR2
		(PC)+1->PC
		(IR1, IR2)->IAB->OAB, (M)->ODB->IDB-
		>A
STA ADDR	001010a9a8	(PC)->IAB->OAB

	a7-a0	(M) ->ODB->IDB->IR2 (PC)+1->PC (IR1, IR2)->IAB->OAB, (ACT)->BUF->ID B->ODB
JC ADDR	0011000a9a8 a7-a0	(PC)->IAB->OAB (M)->ODB->IDB->IR2 (PC)+1->PC (IR1, IR2)->IAB IAB->(PC)(条件成立)
JMP ADDR	001110a9a8 a7-a0	(PC)->IAB->OAB (M)->ODB->IDB->IR2 (PC)+1->PC (IR1, IR2)->IAB IAB->(PC)(条件成立)

四、微指令格式和指令微程序

24 位微码对应关系: M23-M0(24 位微指令码)

<u>- : 上 次 1 / 1 / 1 / 1 </u>	-> •> • •		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• /							
	M23	M22	M21	M20	M19	M18	M17	M16	M15	M14	M13	M12
有效电平	*	*	*	*	*	*	*	*	0	1	1	*
	S3	S2	S1	S0	/Cn	M	X1	XO	OI	CL'	CP'	/
	M11	M10	M9	M8	M7	M6	M5	M4	М3	M2	M1	MO
有效电平	0	0	0	0	0	1	0	0	0	0	0	1
	CG	TO	LP'	OB	GI	P+1	DR	MLD	WC'	RC'	RR'	WR'

指令助记符	微地址(十六进制)	微指令码(十六进制)
取指微指令	000	00876A
	001	
	002	
ADD A, RI	003	9BAEBC
	004	00876A
	005	
	006	
MOV RI, A	007	088EBF
	008	00876A
	009	
	00A	
SRC A	00B	01AFBE
	00C	00876A
	00D	
	00E	
MOV A, #DATA	00F	038FFA
	010	00876A

	011	
	012	
LDA ADDR	013	OOCFFA
	014	030FBA
	015	00876A
	016	
STA ADDR	017	OOCFFA
	018	080EB6
	019	00876A
	01A	
JC ADDE	01B	OOCFFA
	01C	000DBE
	01D	00876A
	01E	
JMP ADDR	01F	OOCFFA
	020	000DBE
	021	00876A
	022	

五、确定微程序入口地址形成方法

指令系统有 8 条微指令,选取 3 个指令操作码为核心,根据指令系统编码,可选取 IR1 的 I5,I4,I3 指令操作码为微程序入口地址的形成信号,其中 MD5~MD10 均接 0, MD0、MD1 均接 1, MD4 接 I5, MD3 接 I4, MD2 接 I3,如下图所示

指令操作码	微程序首址
151413	MD10~MD0
000	003H
001	007Н
010	00BH
011	00FH
100	013Н
101	017H
110	01BH
111	01FH

六、.ABL 内容

由于实验二大部分是在实验一的基础上实现的,因此下面只呈现与其不同的连线:

---微程序地址---

MD9 <-- GND

MD8 <-- GND

MD7 <-- GND

MD6 <-- GND

MD5 <-- GND

MD4 <-- I5

MD3 <-- I4

MD2 <-- I3

MD1 <-- +5V

MD0 <-- +5V

---74153---

74153 1D0 <-- +5V

74153 1D1 <-- +5V

```
74153_1D2 <--- +5V
```

七、BIT.DEF 内容

S3 S2 S1 S0 /CN M X1 X0 OI CL CP NONE CG OT LP OB GI P+1 DR MLD WC RC RR WR

八、INS.DEF 内容

?2

-ADD

4

A,Ri

000000Ri

-MOV

4

Ri,A

000010Ri

-SRC

4

A

00010000

-MOV

2 A,#DATA 00011000 D7~D0 -LDA 3 ADDR 001000A9A8 A7~A0 -STA 3 **ADDR** 001010A9A8 A7~A0 -JC 3 ADDR 001100A9A8 A7~A0 -JMP 3 ADDR 001110A9A8 A7~A0

九、**MOP.MID** 内容 ;取址微指令 -00876A

_

;ADD A,Ri

-9BAEBC

-00876A

-

;SUB A Ri

-638EBC

-00876A

-

-

;MOV A,@Ri

-ACCEBC

-030FBA

-00876A

_

_

_

_

-

;MOV A Ri

-AF8EBC

-00876A

;MOV Ri A -088EBF -00876A ;MOV A ,#data -038FFA -00876A ;MOV RI #data -008FFB -00876A ;LDA addr -00CFFA -030FBA -00876A ;LDA addr -00CFFA

-030FBA -00876A

_

;STA addr

-00CFFA

-080EB6

-00876A

-

;STA addr

-00CFFA

-080EB6

-00876A

-

;RLC A

-02AFBE

-00876A

-

-

;RRC A

-01AFBE

-00876A

-

-

;JZ Addr

-00CFFA

;JC addr

-000DBE

- ;JA0 addr
- -00876A
- ;JMP addr

-

- ;HALT
- -008F9E
- -00876A

十、调试单条指令过程

调试基本步骤如下:

①读取 mop 文件到控存

②编写.asm 文件

ORG 050

LDA 001 ;X 的低位->A

MOV R0,A ;(A)->R0

LDA 002 ;Y 的低位->A

ADD A,R0 ;X 低位+Y 低位->A 有进位置 CY=1, 无进位置 CY=0

JC CARRY ;有无进位?有进位则跳到 CARRY,无进位则顺序执行

;无进位

STA 005 ;(A)->005,X 与 Y 的低位相加和送至 005

LDA 003 ;X 的高位->A

MOV R0,A ;(A)->R0

LDA 004 ;Y 的高位->A

ADD A,R0 ;X 的高位+Y 的高位->A

STA 006 ;(A)->006,X 与 Y 的高位相加结果送至 006

;有进位

CARRY:

STA 005 ;(A)->005,X 与 Y 的低位相加和送至 005

LDA 003 ;X 的高位->A

MOV R0,A ;(A)->R0

LDA 004 ;Y 的高位->A

ADD A,R0 ;X 的高位+Y 的高位->A

MOV R0,A ;(A)->R0

MOV A,#1 ;1->A

ADD A,R0 ;X 与 Y 的高位相加和再加上来自低位相加的进位 1

STA 006 ;(A)->006, X 与 Y 的高位相加结果送至 006

;功能: 实现双字节加法

;结果 X=34BE,Y=EE7F,运行程序后 005 中存储低位相加和 3D,006 存储高位相加和加低位进位 23

③.asm 文件导入编译工具, 生成.obj 文件

④读入.obj 文件, 随后运行

地址	指令	指令编码	
050.	LDA 001	20	;(001)=BE->A
051		01	
052	MOV R0,A	08	(A)=BE->R0
053	LDA 002	20	;(002)=7F->A
054		02	
055	ADD A,R0	00.	;BE+7F=3D->A 有进位 CY=1
056	JC	30	;JC 判断 CY 是否为 1
057		62	;CY=1 跳转到 062
062	STA 005	28.	; (A)=3D->005
063		05	
064	LDA 003	20.	;(003)=34->A
065		03	
066	MOV R0,A	08.	(A)=34->R0
067	LDA 004	20	;(004)=EE->A
068		04	
069	ADD A,R0	00	;34+EE=22->A
06A	MOV R0,A	08	;(A)=22->R0
06B.	MOV A,#1	18	;1->A
06C.		01	
06D.	ADD A,R0	00	;22+1=23->A 加上来自低位相加的进位
06E.	STA 006	28	; (A)=23->006
06F		06	

单拍运行按 STEP 键显示如下:

P9 P8 P7 P6 P5

(OAB 信息) (ODB 信息)

0.0.1. B.E. ;输入 X 的低位->001

0.0.2. 7.F. ;输入Y的低位->002

0.0.3. 3.4. ;输入 X 的高位->003

0.0.4. E.E. ;输入Y的高位->004

0. 0.	;运行前设置(005)=0
0. 0.	;运行前设置(006)=0
;键	入首址 050
2. 0.	;(001)=BE->A
0. 1	
B. E.	
0. 8.	;(A)=BE->R0
B. E.	
2. 0.	;(002)=7F->A
0. 2.	
7. F.	
0. 0.	;BE+7F=3D->A 有进位 CY=1
3. D.	
3. 0.	;JC 判断 CY 是否为 1
6. 2.	;CY=1 跳转到 062
2. 8.	; (A)=3D->005
0. 5.	
3. D.	
2. 0.	;(003)=34->A
0. 3.	
3. 4.	
0. 8.	;(A)=34->R0
3. 4.	
2. 0.	;(004)=EE->A
0. 4.	
E. E.	
0. 0.	;34+EE=22->A
2. 2.	
0. 8.	;(A)=22->R0
2. 2.	
1. 8.	;1->A
	0. 0. ;键 2. 0. 0. 1 B. E. 0. 8. B. E. 2. 0. 0. 2. 7. F. 0. 0. 3. D. 3. 0. 6. 2. 2. 8. 0. 5. 3. D. 2. 0. 0. 3. 3. 4. 0. 8. 3. 4. 2. 0. 0. 4. E. E. 0. 0. 2. 2. 0. 8. 2. 2.

- 0. 6. C. 0. 1.
- 0. 6. D. 0. 0. 0. ;22+1=23->A 加上来自低位相加的进位
- 7FF 2. 3.
- 0. 6. E. 2. 8. ; (A)=23->006
- 0. 6. F. 0. 6.
- 0. 0. 6. 2. 3.

;程序结束

- 0.0.5. 3.D. ;输入 005 查看该内存单元的内容
- 0.0.6. 2.3. ;输入 006 查看该内存单元的内容

软件结果如下:

实验结果正确。

十一、应用程序.ASM 内容

ORG 050

LDA 001 ;X 的低位->A

MOV R0,A ;(A)->R0

LDA 002 ;Y 的低位->A

ADD A,R0 ;X 低位+Y 低位->A 有进位置 CY=1, 无进位置 CY=0

JC CARRY ;有无进位?有进位则跳到 CARRY,无进位则顺序执行

;无进位

STA 005 ;(A)->005,X 与 Y 的低位相加和送至 005

LDA 003 ;X 的高位->A

MOV R0,A ;(A)->R0

LDA 004 ;Y 的高位->A

ADD A,R0 ;X 的高位+Y 的高位->A

STA 006 ;(A)->006,X 与 Y 的高位相加结果送至 006

;有进位

CARRY:

STA 005 ;(A)->005,X 与 Y 的低位相加和送至 005

LDA 003 ;X 的高位->A

MOV R0,A ;(A)->R0

LDA 004 ;Y 的高位->A

ADD A,R0 ;X 的高位+Y 的高位->A

MOV R0,A ;(A)->R0

MOV A,#1 ;1->A

ADD A,R0 ;X 与 Y 的高位相加和再加上来自低位相加的进位 1

STA 006 ;(A)->006, X 与 Y 的高位相加结果送至 006

;功能: 实现双字节加法

;结果 X=34BE,Y=EE7F,运行程序后 005 中存储低位相加和 3D,006 存储高位相加和加低位进位 23

十二、实验的步骤与遇到的问题及解决方法

1.遇到了实验一相同的问题,即控存文件一开始没写对,导致在做实验时单步调试总会出错,实验结果与预想值有偏差,通过一步步核验最后发现问题及时更改控存文件。

2.连线时未看清连线文件说明,导致有几条线连接错误造成实验结果出错,也是因为自己眼高手低了在实验一基础上改错了,及时与同学沟通交流发现问题所在,重新更改连线。

十三、思考及体会

通过整机二的实验,对整机实验的操作步骤更加熟悉,有了整机一的基础,对文件的编写和程序调试也变得容易,对双字节加法的机器计算过程更加清楚。

实验结束了,但是学习还没有结束,这次实验发现自己对计算机组成原理的知识已经生疏了许多,毕竟是考研科目也要涉及到的,课下借着实验的热乎劲头将微指令重新复习一下。