import the libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import accuracy_score
from sklearn import svm
```

load the data

```
In [2]: data = pd.read_csv("/home/tamanna/Downloads/creditcard.csv")
    data
```

Out[2]:		Time	V1	V2	V3	V4	V5	V6	
-	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.792
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.23
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.59;
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	،0.02
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.57

284807 rows × 31 columns

data preprocessing

```
In [3]: data.head()
```

Out[3]:		Time	V1	V2	V3	V4	V5	V6	V7	
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	9.08!
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.24
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.37
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270

5 rows × 31 columns

In [4]: data.tail() Out[4]: Time V1 V2 V3 **V4 V5** V6 **284802** 172786.0 -11.881118 10.071785 -9.834783 -2.066656 -5.364473 -2.606837 -4.918 **284803** 172787.0 -0.055080 -0.732789 2.035030 -0.738589 0.868229 1.058415 0.024 284804 172788.0 1.919565 -0.301254 -3.249640 -0.557828 2.630515 3.031260 -0.296 284805 172788.0 -0.240440 0.530483 0.702510 0.689799 -0.377961 0.623708 -0.686 0.703337 -0.506271 -0.012546 **284806** 172792.0 -0.533413 -0.189733 -0.649617 1.57

5 rows × 31 columns

In [5]: # generating descriptive statistics
data.describe()

Out[5]:	Time		V1	V2	V3	V4	
	count	284807.000000	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	2.848
	mean	94813.859575	1.168375e-15	3.416908e-16	-1.379537e-15	2.074095e-15	9.604
	std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380
	min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137
	25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915
	50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433
	75 %	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119
	max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480

8 rows × 31 columns

```
In [6]: data.shape
```

Out[6]: (284807, 31)

In [7]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 284807 entries, 0 to 284806 Data columns (total 31 columns): Column Non-Null Count Dtype ----------0 284807 non-null float64 Time 1 V1 284807 non-null float64 2 ٧2 284807 non-null float64 3 ٧3 284807 non-null float64 4 ٧4 284807 non-null float64 5 ۷5 284807 non-null float64 6 ۷6 284807 non-null float64 7 ٧7 284807 non-null float64 8 8V 284807 non-null float64 9 ۷9 284807 non-null float64 10 V10 284807 non-null float64 11 V11 284807 non-null float64 12 V12 284807 non-null float64 13 V13 284807 non-null float64 14 V14 284807 non-null float64 15 V15 284807 non-null float64 V16 284807 non-null float64 16 17 V17 284807 non-null float64 18 V18 284807 non-null float64 19 V19 284807 non-null float64 20 V20 284807 non-null float64 21 V21 284807 non-null float64 22 V22 284807 non-null float64 23 V23 284807 non-null float64 24 V24 284807 non-null float64 25 V25 284807 non-null float64 284807 non-null float64 26 V26 27 V27 284807 non-null float64 28 V28 284807 non-null float64 29 Amount 284807 non-null float64 30 Class 284807 non-null int64 dtypes: float64(30), int64(1) memory usage: 67.4 MB

```
In [8]: data.isnull().sum()
```

```
Out[8]: Time
                    0
          ٧1
                    0
          ٧2
                    0
          ٧3
                    0
          ٧4
                    0
          ۷5
                    0
                    0
          ۷6
          ٧7
                    0
          ۷8
                    0
          ۷9
                    0
          V10
                    0
                    0
          V11
          V12
                    0
          V13
                    0
          V14
                    0
          V15
                    0
          V16
                    0
          V17
                    0
          V18
                    0
          V19
                    0
          V20
                    0
                    0
          V21
          V22
                    0
          V23
                    0
          V24
                    0
          V25
                    0
          V26
                    0
          V27
                    0
          V28
          Amount
          Class
                    0
          dtype: int64
 In [9]: data['Class'].value_counts()
 Out[9]: Class
               284315
          0
          1
                  492
          Name: count, dtype: int64
In [10]: data['Class'].value_counts().plot(kind = 'bar')
Out[10]: <AxesSubplot: xlabel='Class'>
```


we have a huge difference btwn fraud values or non fraud values means tha data is biased so we will split the target value into two categories and than take out a sample from that and concatenate that with the data having smaller values to make a new dataset so that we can reduce the biasedness in data

Out[15]:		Time	V1	V2	V3	V4	V5	V6	
	128226	78641.0	1.203948	0.131052	0.598463	0.562670	-0.616091	-0.810741	-0.1099
	81009	58756.0	-2.319104	-1.556175	1.757399	-1.275513	-0.685819	0.348512	-0.7544
	282522	170957.0	-2.759096	3.027481	-2.699052	-0.681087	-0.957376	-0.951570	-0.9850
	67993	52784.0	1.133615	-0.086691	1.261303	1.156702	-0.983421	0.003024	-0.721
	181361	124943.0	-0.585651	1.241902	-1.488338	-0.566437	1.278687	-0.879811	1.3419
	27839	34727.0	1.005408	-1.120883	0.431941	-0.741640	-0.933930	0.380253	-0.7914
	83089	59685.0	1.278922	-0.688400	0.306704	-0.877167	-0.773223	-0.112205	-0.6844
	24651	33314.0	1.317910	-1.101923	-0.663724	-1.761183	0.965597	3.552032	-1.5228
	198922	132714.0	-5.203447	-7.087964	-0.061621	0.667184	3.751602	-0.096922	-0.8349
	70904	54070.0	1.257282	-1.121529	-1.369897	-1.543310	1.415319	3.406259	-0.891

600 rows × 31 columns

In [16]:	<pre>new_data = pd.concat([non_fraud_sample,fraud], axis =0)</pre>									
In [17]:	new_data									
Out[17]:		Time	V1	V2	V3	V4	V5	V6		
	128226	78641.0	1.203948	0.131052	0.598463	0.562670	-0.616091	-0.810741	-0.1099	
	81009	58756.0	-2.319104	-1.556175	1.757399	-1.275513	-0.685819	0.348512	-0.7544	
	282522	170957.0	-2.759096	3.027481	-2.699052	-0.681087	-0.957376	-0.951570	-0.9850	
	67993	52784.0	1.133615	-0.086691	1.261303	1.156702	-0.983421	0.003024	-0.721	
	181361	124943.0	-0.585651	1.241902	-1.488338	-0.566437	1.278687	-0.879811	1.3419	
	279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.8828	
	280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413	
	280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234	
	281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.2080	
	281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.2230	

1092 rows × 31 columns

values of x and y

```
In [18]: x = \text{new data.drop}(['Class'], axis = 1)
In [19]: print(x)
                               ٧1
                                         ٧2
                                                   ٧3
                                                             ٧4
                                                                       ۷5
                                                                                 ۷6
                   Time
                78641.0 1.203948 0.131052 0.598463 0.562670 -0.616091 -0.810741
       128226
       81009
                58756.0 -2.319104 -1.556175 1.757399 -1.275513 -0.685819 0.348512
       282522 170957.0 -2.759096 3.027481 -2.699052 -0.681087 -0.957376 -0.951570
                52784.0 1.133615 -0.086691 1.261303 1.156702 -0.983421 0.003024
       67993
       181361 124943.0 -0.585651 1.241902 -1.488338 -0.566437 1.278687 -0.879811
                    . . .
                              . . .
                                        . . .
                                                  . . .
                                                            . . .
                                                                      . . .
       279863 169142.0 -1.927883 1.125653 -4.518331 1.749293 -1.566487 -2.010494
       280143 169347.0 1.378559 1.289381 -5.004247 1.411850 0.442581 -1.326536
       280149 169351.0 -0.676143 1.126366 -2.213700 0.468308 -1.120541 -0.003346
       281144 169966.0 -3.113832 0.585864 -5.399730 1.817092 -0.840618 -2.943548
       281674 170348.0 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695
                     ٧7
                               ٧8
                                         ۷9
                                                       V20
                                                                 V21
                                                                           V22 \
       128226 -0.109900 -0.011047 -0.067770
                                             ... -0.158679 -0.205060 -0.680799
       81009 -0.754404 0.950477 -0.814573
                                             ... 0.834504 0.320837 0.218636
       282522 -0.985091 2.241800 -0.126389
                                             ... 0.081408 -0.228730 -0.912153
       67993 -0.721792 0.273450 0.654784
                                             ... -0.195585 0.029428 0.164201
       181361 1.341948 -0.158087 0.133879
                                                  0.014966 0.144172
                                                                      0.802194
                                             . . .
       279863 -0.882850 0.697211 -2.064945
                                                  1.252967 0.778584 -0.319189
                                             ... 0.226138 0.370612 0.028234
       280143 -1.413170 0.248525 -1.127396
       280149 -2.234739 1.210158 -0.652250
                                             ... 0.247968 0.751826 0.834108
       281144 -2.208002 1.058733 -1.632333
                                             ... 0.306271 0.583276 -0.269209
       281674 0.223050 -0.068384 0.577829
                                             ... -0.017652 -0.164350 -0.295135
                    V23
                              V24
                                        V25
                                                  V26
                                                            V27
                                                                      V28 Amount
       128226 0.162836 0.501235 0.124477 0.068120 -0.039378 0.008476
                                                                             0.89
       81009
               0.180391 -0.298655 0.481468 -0.293975 0.154894 -0.127781
                                                                          199.73
       282522 0.401224 0.626090 -0.115280 0.121893 0.124390 0.049659
                                                                             9.03
               0.001280 \quad 0.308449 \quad 0.329003 \quad -0.413555 \quad 0.060083 \quad 0.025442
       67993
                                                                             1.00
       181361 -0.340436 -1.027089 -0.203774 -0.116839 0.144424 0.054446
                                                                            17.73
                                        . . .
       279863  0.639419 -0.294885  0.537503  0.788395  0.292680  0.147968
                                                                           390.00
       280143 -0.145640 -0.081049 0.521875 0.739467 0.389152 0.186637
                                                                             0.76
       280149 0.190944 0.032070 -0.739695 0.471111 0.385107 0.194361
                                                                            77.89
       281144 -0.456108 -0.183659 -0.328168 0.606116 0.884876 -0.253700
                                                                          245.00
       281674 -0.072173 -0.450261 0.313267 -0.289617 0.002988 -0.015309
                                                                            42.53
       [1092 rows x 30 columns]
In [20]: y = new data["Class"]
In [21]: print(y)
```

```
128226
          0
81009
          0
282522
          0
67993
          0
181361
          0
279863
          1
280143
          1
280149
          1
281144
          1
281674
Name: Class, Length: 1092, dtype: int64
```

splitting of data into training and testing sets

accuracy on training data

accuracy on testing data

```
In [28]: x test prediction = model.predict(x test)
         testing_data_accuracy = accuracy_score(x_test_prediction, y_test)
In [29]: |testing_data_accuracy
Out[29]: 0.9454545454545454
         svm classifier
In [30]: model2 = svm.SVC(kernel = "linear")
In [31]: model2.fit(x train, y train)
Out[31]: ▼
                   SVC
         SVC(kernel='linear')
In [32]: x_train_prediction =model2.predict(x_train)
In [33]: training data accuracy = accuracy score(x train prediction, y train)
In [34]: training data accuracy
Out[34]: 0.9042769857433809
In [35]: x test prediction = model2.predict(x test)
```

In [36]: testing data accuracy = accuracy score(x test prediction, y test)

Out[36]: 0.92727272727272

testing data accuracy