主管 领导 审核 签字

哈尔滨工业大学(深圳)2020/2021 学年秋季学期

高等数学 A(期中)试题

题号	_	=	Ξ	四	五	六	七	八	九	+	总分
得分											
阅卷人											

注意行为规范

遵守考场纪律

一、选择题(每小题1分,共5小题,满分5分,每小题中给出的四个选 项中只有一个是符合题目要求的,把所选项的字母填在题后的括号内)

- 1. 己知函数 $z = \frac{e^x}{x v}$,则()
- (A) $\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} = 0$; (B) $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$; (C) $\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} = z$; (D) $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z$.
- 2. 欧拉方程 $x^2y'' 2xy' + 2y = 1(x > 0)$ 的通解为 ()
- (A) $y = C_1 e^x + C_2 e^{2x} + \frac{1}{2}$; (B) $y = C_1 x + C_2 e^x + \frac{1}{2}$; (B) $y = C_1 \ln x + C_2 (\ln x)^2 + \frac{1}{2}$; (D) $y = C_1 x + C_2 x^2 + \frac{1}{2}$.

(注: *C*₁, *C*, 为任意常数)

- 3. 已知函数 $f(x,y) = 3x^2 + 3y^2 x^3$, 则 ()
 - (A) (0,0)是极小值点, (2,0)不是极值点;
 - (B) (0,0)是极大值点, (2,0)不是极值点;
 - (C) (0,0)不是极值点, (2,0)是极小值点;
 - (D) (0,0)不是极值点, (2,0)是极大值点.
- 4. 平面 y+z=x-1 与曲面 $x-y^2+z^3=-1$ 的交线上点 $M_0(1,1,-1)$ 处的切线

(A)
$$\frac{x-1}{1} = \frac{y-1}{4} = \frac{z+1}{5}$$
; (B) $\frac{x-1}{5} = \frac{y-1}{-4} = \frac{z+1}{1}$;

(C) $\frac{x-1}{5} = \frac{y-1}{4} = \frac{z+1}{1}$; (D) $\frac{x+1}{4} = \frac{y+1}{-5} = \frac{z-1}{1}$. 5. 设 D_k 是圆域 $D = \{(x,y) | x^2 + y^2 \le 1\}$ 位于第k象限的部分,记 $I_k = \iint_{D_k} (y-x) dxdy(k=1,2,3,4)$,

则()

- (A) $I_1 > 0, I_2 = 0$; (B) $I_2 > 0, I_3 = 0$; (C) $I_3 > 0, I_4 = 0$; (D) $I_4 > 0, I_1 = 0$.
- 二、 (3 分) 求微分方程 $y'' + 5y' + 4y = (3-2x)e^{-x}$ 的通解.

五、 $(3 \, f)$ 设山坡的高度为 $z=5-x^2-2y^2$,一个登山者在山坡上点 $\left(-\frac{3}{2},-1,\frac{3}{4}\right)$ 处,在下

列情形下该向什么方向 $\vec{l} = a\vec{i} + b\vec{j}$ 移动? (1) 爬的最快 (即高度z增加的最快); (2) 在同一水平线上; (3) 以斜率1爬坡(即以倾角 45° 爬坡).

六、 (3 分) 求函数 f(x,y,z) = xy + 2yz 在约束条件 $x^2 + y^2 + z^2 = 10$ 下的最大值和最小值.

九、 (3 分) 设函数 $f(x,y) = |x+2y| \varphi(x,y)$,其中 $\varphi(x,y)$ 在点 (0,0) 处连续,且 $\varphi(0,0) = a$ (a 为常数),讨论函数 f(x,y) 在点 (0,0) 处偏导数的存在性以及函数 f(x,y) 在点 (0,0) 处的可微性.