

PRODUCT BRIEF Self-Assembly Kit

Z80 Bus Monitor & Cycle Stepper User Manual

Please read carefully before power up!

Doc. Version 2013-10-28-1 Author: Mario Blunk

Firmware Version: V1.1 Hardware Version: V1.1

Table of Contents

1 Preface	3
2 Hardware	4
2.1 Z80-System Bus Connectors	6
2.2 PIO and Debug Connector	9
2.3 Switches and Push-Buttons	11
2.4 Display	12
2.5 CPU control LEDs	
2.6 JTAG / IEEE 1149.1	
2.7 Schematics and Assembly Drawings	14
2.8 Power Supply	14
3 Self Assembly Shipment Option	15
4 RoHS conformity	15
5 Useful Links	16
6 Disclaimer	17

1 Preface

With the objective of improving *System TRAIN-Z* toward a development system a bus monitor in connection with a cycle stepper circuitry was an immanent user demand. So a peripheral extension with these components has been designed. The whole unit, further on just referred to as *Bus Monitor*, fits on a single euro sized four-layer board (160 x 100 mm). See Photo 1. It is fully programmable via any hardware description language like Verilog or VHDL. The HDL-design presented here has been written in Verilog on the <u>Xilinx</u> System ISE.

System TRAIN-Z does not aim to compete with the powerful and sophisticated embedded computer systems of today.

Photo 1: Bus Monitor and Cycle Stepper

What is the *Bus Monitor* good for ?

- Single Step Z80 mnemonics execution (Please have the list-file handy.)
- Address, Data and Control signal Debugging
- PIO mode to control user specific hardware
- Level-Shifter from 5V Z80 world to 3,3V peripheral world
- Direct mounting on top of System TRAIN-Z via standoffs.

2 Hardware

PIO & DEBUG

Photo 2: Bus Monitor Top View

Drawing 1: Bus Monitor Block Schematic

2.1 Z80-System Bus Connectors

Drawing 2: pins of JP101 / JP102 and JP103 / JP104

All **5V-signals** of the system bus coming **from** the Z80 CPU are connected to **JP101** and **JP103**. JP101 holds the data bus D[7..0], JP103 holds the address bus A[15..0]. The control signals are distributed on both JP101 and JP103. Drawing 2 shows the their pins. If ribbon cables get plugged on both of them the result is a GND signal between two bus signals. Most suitable are IDE-ribbon cables used in many PCs (Photo 3 page 6). Table 1 on page 7 and Table 2 on page 8 give the signals connected to JP101 and JP103.

All **3,3V-signals** of the system bus going **to** the peripherals are connected to **JP102** and **JP104**.

If not noted otherwise, the DC input/output specifications of these pins are to be found in the XC95288XL datasheet at www.xilinx.com.

Note: All wires of the IDE-ribbon cables must be accessible.

Photo 3: 40 pin IDE connector

pin no.	signal	comments
2	D0	
4	D1	
6	D2	
8	D3	
10	D4	
12	D5	
14	D6	
16	D7	
18		reserved
20	/M1	
22	/MREQ	
24	/IOREQ	
26	/RD	
28	/WR	
30	/RFSH	
32	/HALT	
34	/WAIT	
36	/BUSREQ	
38	/BUSACK	
40	system clock CLK	
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39	GND	

Table 1: Z80 system bus signals connected to JP101 / JP102

pin no.	signal	comments
2	A0	
4	A1	
6	A2	
8	A3	
10	A4	
12	A5	
14	A6	
16	A7	
18	A8	
20	A9	
22	A10	
24	A11	
26	A12	
28	A13	
30	A14	
32	A15	
34	EXT IEI	
36	/INT	
38	/NMI	
40	/RESET	Open collector with 300 Ohms against 3,3V
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39	GND	

Table 2: Z80 system bus signals connected to JP103 / JP104

2.2 PIO and Debug Connector

The eight **3,3V PIO** channels are to be found at JP601. Further-on signals for debugging, schmitt-trigger in/outputs and /CPU_RESET are accessible there.

If not noted otherwise, the DC input/output specifications of these pins are to be found in the XC95288XL datasheet at www.xilinx.com.

Drawing 3: pins of JP601

signal	comments	
PIO0	10k Pull-Up-Resistor against 3,3V	
PIO1	10k Pull-Up-Resistor against 3,3V	
PIO2	10k Pull-Up-Resistor against 3,3V	
PIO3	10k Pull-Up-Resistor against 3,3V	
PIO4	10k Pull-Up-Resistor against 3,3V	
PIO5	10k Pull-Up-Resistor against 3,3V	
PIO6	10k Pull-Up-Resistor against 3,3V	
PIO7	10k Pull-Up-Resistor against 3,3V	
DEBUG0	10k Pull-Up-Resistor against 3,3V	
ST_IN0	Complies with specs of a CD4093 operated at 3,3V, 10k Pull-Up-Resistor against 3,3V	
ST_IN1	Complies with specs of a CD4093 operated at 3,3V, 10k Pull-Up-Resistor against 3,3V	
DEBUG1	10k Pull-Up-Resistor against 3,3V	
DEBUG2	10k Pull-Up-Resistor against 3,3V	
DEBUG3	10k Pull-Up-Resistor against 3,3V	
DEBUG4	10k Pull-Up-Resistor against 3,3V	
ST_OUT0	Complies with specs of a CD4093 operated at 3,3V	
ST_OUT1	Complies with specs of a CD4093 operated at 3,3V	
DEBUG5	10k Pull-Up-Resistor against 3,3V	
RSV_100	10k Pull-Up-Resistor against 3,3V	
/RESET	Open collector with 300 Ohms against 3,3V	
+3,3V	Output to operate user periphery	
GND		
no connection		
	PIO0 PIO1 PIO2 PIO3 PIO4 PIO5 PIO6 PIO7 DEBUG0 ST_IN0 ST_IN1 DEBUG1 DEBUG2 DEBUG3 DEBUG4 ST_OUT0 ST_OUT1 DEBUG5 RSV_100 /RESET +3,3V GND	

Table 3: PIO and Debug Signals at JP601

2.3 Switches and Push-Buttons

The operating mode of the Bus Monitor is to be set via the 8-fold DIL-Switch S602 / S4. Table 4 gives the operating modes available.

Switch #	state	Mode / Meaning
1	off	single step execution
1	on	CPU free run
2		Parallel to Push-Button S603 / S2
3	on	CPU Reset active
3	off	CPU Reset inactive
4		Parallel to signal DEBUG0
5		Parallel to signal DEBUG1
6		Parallel to signal DEBUG2
7	off	display shows PIO state
7	on	display shows bus address and data (in CPU free run or single step mode)
8		Parallel to signal RSV_GCK2

Table 4: DIL-Switch S602 / S4

Push-Button #	Mode / Meaning
S601 / S1	Reset CPU
S603 / S2	CPU next cycle (if single step execution selected (see Table 4)
S604 / S3	Temporarily CPU free run (if single step execution selected (see Table 4) as long as being pushed down

Table 5: Push-Buttons

2.4 Display

The Z80 Address and Data Bus or the PIO content may be displayed via the 6 digit LED displays DIS302, DIS301 (red) and DIS303 (green). In Bus Monitor mode the red displays show the current state of the address bus while the green display shows the data bus content.

Adr[15:8] or Adr[7:0] or Data[7:0] or I/O Adr. 52h I/O Adr. 51h I/O Adr. 50h

Photo 4: Display Readout on CPU Reset

In PIO mode there are three eight bit wide output registers at I/O addresses 50h through 52h. They can be written at by CPU OUT commands any time. If switch 7 of S602 / S4 is off, the register content is displayed (see Table 4). Reading from these locations via the CPU IN commands is also possible any time. DIS302 and DIS301 show the content of the I/O addresses 51h and 52h.

The output of the register at location 50h is of open-drain characteristic and is connected to JP601 (see Table 3 on page 10). The very bit of this register set to H may serve as input channel to read the status of the PIO signals at JP601. DIS303 (green) shows the content of that register.

As this is a self-assembly kit, the displays need to be soldered or plugged by the user.

2.5 CPU control LEDs

These green LEDs indicate High-Low transitions (or negative edges) occurring on the Z80 control signals. On edge detection the LED affected flashes for about 0,1 seconds. See Photo 2 on page 4. The meaning of the LEDs is self explaining.

Note: The status of the CPU REFRESH signal is not displayed via an LED.

2.6 JTAG / IEEE 1149.1

To program the CPLD the IEEE1149.1 signals are accessible via JP105 .SeeTable 6.

Drawing 4: pins of JP105

		1
Pin	Meaning	comments
1	TCK	
3	TMS	
5	TDI	default
7	TDO	
10	Vref	Required Xilinx Programming Cable
2, 4, 6, 8	GND	

Table 6: JTAG signals

NOTE: Some boundary scan masters may not require a reference voltage or may even get damaged if this voltage is provided by the *Bus Monitor*.

To disconnect the reference voltage provided by the Bus Monitor from JP105, please

remove the jumper from JP106.

2.7 Schematics and Assembly Drawings

As these drawings are updated from time to time they are not included in this document. Please find them at:

http://www.train-z.de/train-z/hw

2.8 Power Supply

The operating voltage of +3,3V into X101. Please refer to the assembly drawing for labeling of X101. The green LED D101 displays the presence of the operating voltage.

operating voltage	current consumption	comments
+3,3V	max. 400 mA	all LEDs on

Table 7: power consumption MMU

Warning:

The board does NOT provide any protection against overvoltage or wrong connecting of the power lines!

The tolerance of the +3,3V operating voltage must meet the specifications given in the Xilinx XC95288XL datasheet!

Beyond this limits malfunctions or damage of the board may occur.

3 Self Assembly Shipment Option

You may order just the bare boards of the Bus Monitor without any devices soldered on it.

4 RoHS conformity

The Bus Monitor board without the displays is RoHS compliant.

5 Useful Links

Debug your hardware with the Logic Scanner at

http://www.train-z.de/logic scanner/Logic Scanner UM.pdf

- A complete embedded Z80 system can be found at http://www.train-z.de/train-z
- The Free and Open Productivity
 Suite LibreOffice at http://www.libreoffice.org

- Z80 Verilog and VHDL Cores at http://opencores.org
- Z80 Application Notes at http://www.train-z.de/train-z/index.html
- EAGLE an affordable and very efficient schematics and layout tool at http://www.cadsoftusa.com/

6 Disclaimer

This manual is believed to be accurate and reliable. I do not assume responsibility for any errors which may appear in this document. I reserve the right to change devices or specifications detailed herein at any time without notice, and do not make any commitment to update the information contained herein. I do not assume responsibility for any design errors which may appear in the hardware nor in the software of this product nor for modifications made by the user. This product is not authorized for use as critical component in life support devices or systems.

Specifications	mentioned	in this manu	ual are subject	t to change w	vithout notice.

My Boss is a Jewish Carpenter

Blunk electronic / Oolder Mario Blunk / Buchfinkenweg 5 / 99097 Erfurt / Germany +49 (0) 176 2904 5855 / http://www.train-z.de
© 2013 Mario Blunk Printed in Germany