### Отчёт по лабораторной работе

Лабораторная №4

Полина Витальевна Барабаш

## Содержание

| 1 | Цель работы                       | 4  |
|---|-----------------------------------|----|
| 2 | Выполнение работы                 | 5  |
| 3 | Выполнение самостоятельной работы | 10 |
| 4 | Выводы                            | 15 |

## Список иллюстраций

| 2.1 | Создание необходимого каталога                                        | 5  |
|-----|-----------------------------------------------------------------------|----|
| 2.2 | Переход в каталог                                                     | 5  |
| 2.3 | Создание файла и проверка его создания                                | 6  |
| 2.4 | Компиляция шаблона с помощью make                                     | 6  |
| 2.5 | Созданный объектный файл после компиляции текста программы            | 7  |
| 2.6 | Использование команды nasm -o obj.o -f elf -g -l list.lst hello.asm и |    |
|     | проверка создания файлов                                              | 7  |
| 2.7 | Создание исполняемого файла и проверка его создания                   | 8  |
| 2.8 | Создание исполняемого файла и проверка его создания                   | 8  |
| 2.9 | Выполнение исполняемого файла hello                                   | 9  |
| 3.1 | Копирование файла с другим названием                                  | 10 |
| 3.2 | Изменение текста программы в файле lab4.asm                           | 11 |
| 3.3 | Запуск программы lab4.asm                                             | 11 |
| 3.4 | Копирование файлов в другой каталог                                   | 12 |
| 3.5 | Компилирование отчёта в других форматах                               | 13 |
| 3.6 | Загрузка файлов на Github                                             | 13 |
| 3.7 | Загрузка файлов на Github                                             | 14 |

# 1 Цель работы

Освоение процедуры компиляции и сборки программ, написанных на ассемблере NASM.

#### 2 Выполнение работы

**Задание №1.** Создать каталог для работы с программами на языке ассемблера NASM: mkdir -p ~/work/arch-pc/lab04

Я создала каталог и проверила, что он создан (рис. 2.1).

Рис. 2.1: Создание необходимого каталога

Задание №2. Перейти в созданный каталог.

Я перешла в созданный каталог ~/work/arch-pc/lab04 с помощью cd (рис. 2.2).



Рис. 2.2: Переход в каталог

**Задание №3.** Создать текстовый файл с именем hello.asm.

Я создала текстовый файл с именем hellp.asm с помощью touch и проверила его создание с помощью ls (рис. 2.3).

```
pvbarabash@endless: ~/work/arch-pc/lab04 Q = - □ ×

pvbarabash@endless: ~/work/arch-pc/lab04$ touch hello.asm
pvbarabash@endless: ~/work/arch-pc/lab04$ ls
hello.asm
pvbarabash@endless: ~/work/arch-pc/lab04$
```

Рис. 2.3: Создание файла и проверка его создания

**Задание №4.** Открыть этот файл с помощью любого текстового редактора, например, gedit, и ввести в него необходимый текст.

Я открыла этот файл с помощью gedit и ввела необходимый текст (рис. 2.4).



Рис. 2.4: Компиляция шаблона с помощью make

**Задание №5.** Скомпилировать текст программы из файла hello.asm и проверить, что был создан объектный файл. Какое имя имеет объектный файл?

Я скомпилировала текст программы с помощью nasm -f elf hello.asm и проверила, что был создан файл **hello.o** в текущем каталоге с помощью ls (рис. 2.5).

Рис. 2.5: Созданный объектный файл после компиляции текста программы

**Задание №6.** Ввести команду nasm -o obj.o -f elf -g -l list.lst hello.asm, которая скомпилирует исходный файл hello.asm в obj.o (опция -о позволяет задать имя объектного файла, в данном случае obj.o), при этом формат выходного файла будет elf, и в него будут включены символы для отладки (опция -g), кроме того, будет создан файл листинга list.lst (опция -l). Проверить, что файлы были созданы.

Я ввела необходимую команду и проверила, что файлы list.lst и obj.o были созданы (рис. 2.6).

```
pvbarabash@endless: ~/work/arch-pc/lab04 \Q \equiv \equiv \x\
pvbarabash@endless: ~/work/arch-pc/lab04\(\chi\) nasm -o obj.o -f elf -g -l list.lst hel lo.asm
pvbarabash@endless: ~/work/arch-pc/lab04\(\chi\) ls
hello.asm hello.o list.lst obj.o
pvbarabash@endless: ~/work/arch-pc/lab04\(\chi\)
```

Рис. 2.6: Использование команды nasm -o obj.o -f elf -g -l list.lst hello.asm и проверка создания файлов

**Задание №7.** Передать объектный файл на обработку компоновщика. Проверить, что исполняемый файл hello был создан.

Я передала объектный файл с помощью команды ld -m elf\_i386 hello.o -o hello и проверила, что исполняемый файл hello был создан (рис. 2.7).



Рис. 2.7: Создание исполняемого файла и проверка его создания

**Задание №8.** Выполните следующую команду: ld -m elf\_i386 obj.o -o main Какое имя будет иметь исполняемый файл? Какое имя имеет объектный файл из которого собран этот исполняемый файл?

Исходя из текста команды, на обработку компоновщика передаётся объектный файл **obj.o**, а создан будет исполняемый файл с именем **main**.

Я выполнила предложенную команду и посмотрела, какой файл был создан, с помощью ls (рис. 2.8).

```
pvbarabash@endless: ~/work/arch-pc/lab04 \( \text{Q} \) \( \text{\end{arch-pc/lab04}} \( \text{Q} \) \( \text{\end{arch-pc/lab04}} \( \text{V} \) \( \text{V} \) \( \text{Pvbarabash@endless: ~/work/arch-pc/lab04} \( \text{V} \) \( \
```

Рис. 2.8: Создание исполняемого файла и проверка его создания

Действительно, исполняемый файл **main**.

**Задание №9.** Запустить на выполнение созданный исполняемый файл, находящийся в текущем каталоге.

С помощью команды ./hello я запустила на выполнение созданный исполняемый файл hello. На экран было выведено *Hello word!* (рис. 2.9).

Рис. 2.9: Выполнение исполняемого файла hello

#### 3 Выполнение самостоятельной работы

**Задание №1.** В каталоге ~/work/arch-pc/lab04 с помощью команды ср создайте копию файла hello.asm с именем lab4.asm

Я создала копию файла hello.asm с именем lab4.asm, введя ср hello.asm lab4.asm и проверила, что файл lab4.asm был создан (рис. 3.1).

```
pvbarabash@endless: ~/work/arch-pc/lab04 \Q \equiv \_\text{pvbarabash@endless: ~/work/arch-pc/lab04$} cp hello.asm lab4.asm pvbarabash@endless: ~/work/arch-pc/lab04$ ls hello hello.asm hello.o lab4.asm list.lst main obj.o pvbarabash@endless: ~/work/arch-pc/lab04$
```

Рис. 3.1: Копирование файла с другим названием

**Задание №2.** С помощью любого текстового редактора внесите изменения в текст программы в файле lab4.asm так, чтобы вместо *Hello world!* на экран выводилась строка с вашими фамилией и именем.

Я открыла файл lab4.asm с помощью gedit и изменила текст так, чтобы выводилась строка с моими фамилией и именем (рис. 3.2).



Рис. 3.2: Изменение текста программы в файле lab4.asm

**Задание №3.** Оттранслировать полученный текст программы lab4.asm в объектный файл. Выполните компоновку объектного файла и запустите получившийся исполняемый файл.

С помощью nasm -f elf lab4.asm я оттранслировала полученный текст программы lab4.asm в объектный файл. С помощью ld -m elf\_i386 lab4.o -o lab4 я выполнила компоновку объектного файла и с помощью ./lab4 я запустила получившийся исполняемый файл. В терминал действительно вывелись мои фамилия и имя *Барабаш Полина* (рис. 3.3).

Рис. 3.3: Запуск программы lab4.asm

**Задание №4.** Скопируйте файлы hello.asm и lab4.asm в Ваш локальный репозиторий в каталог ~/work/study/2023-2024/"Архитектура компьютера"/archpc/labs/lab04/. Загрузите файлы на Github.

С помощью команды ср я скопировала файлы hello.asm и lab4.asm в мой локальный репозиторий в каталог ~/work/study/2023-2024/"Архитектура компьютера"/arch-pc/labs/lab04/. И с помощью ls проверила, что оба файла скомированы в нужный каталог (рис. 3.4).

```
pvbarabash@endless: ~/work/arch-pc/lab04 Q = — — ×

pvbarabash@endless: ~/work/arch-pc/lab04$ cp *.asm ~/work/study/2023-2024/"Архите ктура компьютера"/arch-pc/labs/lab04/
pvbarabash@endless: ~/work/arch-pc/lab04$ ls ~/work/study/2023-2024/"Архитектура компьютера"/arch-pc/labs/lab04/
hello.asm lab4.asm presentation report
pvbarabash@endless: ~/work/arch-pc/lab04$
```

Рис. 3.4: Копирование файлов в другой каталог

Перед тем, как загружать файлы на Github, я перешла в каталог ~/work/study/2023-2024/"Архитектура компьютера"/arch-pc/labs/lab04/report с помощью команды cd и с помощью команды make скомпилировала отчёт также в форматах .docx и .pdf (рис. 3.5).



Рис. 3.5: Компилирование отчёта в других форматах

Поднявшись на одну папку вверх, я загрузила файлы на Github с помощью последовательного ввода следующих команд:

```
git add.
git commit -am 'feat(main): add files lab-4, lab4.asm, hello.asm'
git push
```

```
pvbarabash@endless: ~/work/study/2023-2024/Архитектура... Q = — — ×
pvbarabash@endless: ~/work/study/2023-2024/Архитектура компьютера/arch-pc/labs/la
b04$
pvbarabash@endless: ~/work/study/2023-2024/Архитектура компьютера/arch-pc/labs/la
b04$ git add .
pvbarabash@endless: ~/work/study/2023-2024/Архитектура компьютера/arch-pc/labs/la
b04$ git commit -am 'feat(main): add files lab-4, lab4.asm, hello.asm'
[master 7397785] feat(main): add files lab-4, lab4.asm, hello.asm
20 files changed, 207 insertions(+), 119 deletions(-)
create mode 100644 labs/lab04/hello.asm
create mode 100644 labs/lab04/lab4.asm
```

Рис. 3.6: Загрузка файлов на Github

```
pvbarabash@endless: ~/work/study/2023-2024/Архитектура...
                                                            Q
                                                                      _ _
 create mode 100644 labs/lab04/report/image/fig009.png
 create mode 100644 labs/lab04/report/image/fig010.png
 create mode 100644 labs/lab04/report/image/fig011.png
 create mode 100644 labs/lab04/report/image/fig012.png
 create mode 100644 labs/lab04/report/image/fig013.png
 create mode 100644 labs/lab04/report/image/fig014.png
 delete mode 100644 labs/lab04/report/image/placeimg 800 600 tech.jpg
 create mode 100644 labs/lab04/report/report.docx
 rewrite labs/lab04/report/report.md (76%)
 create mode 100644 labs/lab04/report/report.pdf
pvbarabash@endless:~/work/study/2023-2024/Архитектура компьютера/arch-pc/labs/la
b04$ git push
Перечисление объектов: 31, готово.
Подсчет объектов: 100% (31/31), готово.
При сжатии изменений используется до 4 потоков
Сжатие объектов: 100% (25/25), готово.
Запись объектов: 100% (25/25), 1.47 МиБ | 2.02 МиБ/с, готово.
Всего 25 (изменений 3), повторно использовано 0 (изменений 0), повторно использо
вано пакетов 0
remote: Resolving deltas: 100% (3/3), completed with 2 local objects.
To github.com:PBarabash/study 2023-2024 arh--pc.git
   3988f98..7397785 master -> master
pvbarabash@endless:~/work/study/2023-2024/Архитектура компьютера/arch-pc/labs/la
b04$
```

Рис. 3.7: Загрузка файлов на Github

#### 4 Выводы

Я освоила процедуры компиляции и сборки программ, написанных на ассемблере NASM. Познакомилась со структурой программы на языке NASM. Вспомнила синтаксис команды ср, как выгружать файлы в Github.