

AMENDMENTS TO THE CLAIMS

1. (Previously presented) A yellow dye-forming coupler represented by formula (I):

formula (I)

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R₁)-; R₁ is -(CH₂)₃O-R₁₀₁ in which R₁₀₁ is an alkyl group having 4 to 8 carbon atoms and R₂ represents a substituent; R₄ represents an alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

2. (Currently amended) The yellow dye-forming coupler as claimed in claim 1, wherein the yellow dye-forming coupler represented by formula (I) is a yellow dye-forming coupler represented by formula (IA):

BEST AVAILABLE COPY

formula (IA)

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R₁)-; R₁ R₁ is -(CH₂)₃O-R₁₀₁ in which R₁₀₁ is an alkyl group having 4 to 8 carbon atoms and R₂ represents a substituent; R₄₁ represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

3. (Previously presented) A yellow dye-forming coupler represented by formula (IB):

formula (IB)

wherein Q₁ represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N((CH₂)₃O-R₁₀₁)-; R₁₀₁ represents an alkyl group having 4 to 8 carbon atoms; R₂ represents a substituent; R₄₂ represents a primary alkyl group; m represents an

integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

4. (Previously presented) A silver halide color photographic light-sensitive material comprising at least one yellow dye-forming coupler represented by formula (I) in at least one layer provided on a support:

formula (I)

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R₁)-; R₁ is -(CH₂)₃O-R₁₀₁ in which R₁₀₁ is an alkyl group having 4 to 8 carbon atoms and R₂ represents a substituent; R₄ represents an alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

BEST AVAILABLE COPY

5. (Currently amended) The silver halide color photographic light-sensitive material as claimed in claim 4, wherein the yellow dye-forming coupler represented by formula (I) is a yellow dye-forming coupler represented by formula (IA):

formula (IA)

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R₁); -N=C-N(R₁)-; R₁ R₁ is -(CH₂)₃O-R₁₀₁ in which R₁₀₁ is an alkyl group having 4 to 8 carbon atoms and R₂ represents a substituent; R₄₁ represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

6. (Previously presented) The silver halide color photographic light-sensitive material as claimed in claim 5, wherein Q in formula (IA) is a group represented by -C(-R₁₁)=C(-R₁₂)-SO₂- or -C(-R₁₁)=C(-R₁₂)-CO-, in which R₁₁ and R₁₂ are groups that bond with each other to form a 5- to 7- membered ring together with -C=C-, or they each independently represents a hydrogen atom or a substituent.

BEST AVAILABLE COPY

7. (Currently amended) The silver halide color photographic light-sensitive material as claimed in claim 5, wherein the yellow dye-forming coupler represented by formula (IA) is a yellow dye-forming coupler represented by formula (IIA):

formula (IIA)

wherein $R_4 R_1$ is $-(CH_2)_3O-R_{101}$ in which R_{101} is an alkyl group having 4 to 8 carbon atoms and R_2 represents a substituent; R_{41} represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R_2 's may be the same or different, and the R_2 's may bond with each other to form a ring; R_3 represents a substituent; n represents an integer of 0 to 4; when n is 2 or more, the multiple R_3 's may be the same or different, and the R_3 's may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

8. (Currently amended) A silver halide color photographic light-sensitive material, comprising at least one yellow dye-forming coupler represented by formula (IB) in at least one layer provided on a support:

BEST AVAILABLE COPY

formula (IB)

wherein Q_1 represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the $-\text{N}=\text{C}-\text{N}((\text{CH}_2)_3\text{O}-\text{R}_{101})-$; $-\text{N}=\text{C}-\text{N}((\text{CH}_2)_3\text{O}-\text{R}_{101})-$; R_{101} represents an alkyl group having 4 to 8 carbon atoms; R_2 represents a substituent; R_{42} represents a primary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R_2 's may be the same or different, and the R_2 's may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

9. (Currently amended) The silver halide color photographic light-sensitive material as claimed in claim 8, wherein Q_1 in formula (IB) is a group represented by $-\text{C}(-\text{R}11)=\text{C}(-\text{R}12)-\text{SO}_2-$ or $-\text{C}(-\text{R}11)=\text{C}(-\text{R}12)-\text{CO}-$, in which $\text{R}11$ and $\text{R}12$ are groups that bond with each other to form a 5- to 7- membered ring together with $-\text{C}=\text{C}-$, or they each independently represent a hydrogen atom or a substituent.

BEST AVAILABLE COPY

10. (Previously presented) The silver halide color photographic light-sensitive material as claimed in claim 8, wherein the yellow dye-forming coupler represented by formula (IB) is a yellow dye-forming coupler represented by formula (IIB):

formula (IIB)

wherein R_{101} represents an alkyl group having 4 to 8 carbon atoms; R_2 represents a substituent; R_{42} represents a primary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R_2 's may be the same or different, and the R_2 's may bond with each other to form a ring; R_3 represents a substituent; n represents an integer of 0 to 4; when n is 2 or more, the multiple R_3 's may be the same or different, and the R_3 's may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

11. (Previously presented) The silver halide color photographic light-sensitive material as claimed in claim 8, wherein R_2 in formula (IB) represents a t-butyl group.

BEST AVAILABLE COPY

12. (Previously presented) The silver halide color photographic light-sensitive material as claimed in claim 4, wherein the amount of the yellow dye-forming coupler is 1×10^{-3} mole to 1 mole per mole of silver halide.

13. (Previously presented) The silver halide color photographic light-sensitive material as claimed in claim 4, wherein an emulsion of the layer containing the yellow dye-forming coupler represented by formula (I) is a silver halide emulsion having silver chloride content of 90 mol% or more.

14. (Previously presented) The silver halide color photographic light-sensitive material as claimed in claim 13, wherein the silver halide emulsion is doped with an iridium complex.

15. (Previously presented) The silver halide color photographic light-sensitive material as claimed in claim 4, wherein a hydrophilic colloid layer is provided between the support and a color-forming silver halide emulsion layer nearest to the support.

BEST AVAILABLE COPY