Tutorial Problems

(b)
$$T_{\text{otal}} = \frac{8!}{2! \ 2!}$$

First & last no. are same:

① 1 1
$$\frac{6!}{2!}$$
 $\frac{6!+6!}{2} = 6!$

Ans =
$$\frac{8!}{4}$$
 - 6! = 6! [14-1] = 13 x 6!

$$\binom{n}{k} \in \mathbb{Z}$$
 and the result follows.

$$\begin{array}{ccc} & & & \\ \begin{pmatrix} n+1 \\ \gamma+1 \end{pmatrix} & = & \begin{pmatrix} n \\ \gamma+1 \end{pmatrix} & + \begin{pmatrix} n \\ \gamma \end{pmatrix} \end{array}$$

Pf: $S = \{1, 2, ..., n+1\}$. How many subsets of Size r+1 are there?

One way: $\begin{pmatrix} n+1 \\ \gamma+1 \end{pmatrix}$

Other way:

How many of these n+1-sized subsets have $1? \binom{n}{r}$ dust have $1? \binom{n}{r+1}$

One way: Directly Choose 2 from those nobjects. (LHS)
Otherway: Split nobjects into two groups of kobj. (A)
and n-kobjects (B).

Eithe 2 from A, D from B
$$\rightarrow$$
 $\binom{k}{2}$

1 from A, I from B \rightarrow $k(n-k)$

0 from A, 2 from B \rightarrow $\binom{n-k}{2}$

(e)
$$1 \leq k \leq p$$
 then $\binom{p}{k} \equiv 0 \pmod{p}$, p parime.

If p is not prime then we have a counterexample: $4f\binom{4}{2} = 6$

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = p \times \frac{(p-1)!}{k!(p-k)!} \in \mathbb{Z}$$

But $\binom{k!}{k}, p = 1, (p, (p-k)!) = 1 \Rightarrow (k! \cdot (p-k)!, p) = 1$

$$k! \times (p-k)! \mid p \times (p-1)!$$

$$\Rightarrow k! (p-k)! \mid (p-1)!$$

$$\Rightarrow p \mid \binom{p}{k}.$$

(f) $k \ge 2n$ - How many ways to distribute k severts to n children so that each child gets at least 2?

Children are distinct:

Chocolation are not! $x_1 + x_2 + \dots + x_n = k (x_i \in \mathbb{Z}_> x_i \ge 2) \rightarrow \text{Substitute } y_i = x_i - 2$ $x_1 + x_2 + \dots + x_n = k (x_i \in \mathbb{Z}_> x_i \ge 2) \rightarrow \text{Substitute } y_i = x_i - 2$ $x_1 + x_2 + \dots + x_n = k (x_i \in \mathbb{Z}_> x_i \ge 2) \rightarrow \text{Substitute } y_i = x_i - 2$

$$2 + 2 + \dots + 2 = n$$
 $2 = n$ $2 = n$

n balls to distribute into k boxes.

$$\binom{n+k-1}{k-1} = \frac{(n+k-1)!}{(k-1)!} \stackrel{?}{\leftarrow}$$

Reauangement of the ball of Sticks

not distinct distinct

Distributing balls into boxes

9

 $f: [n] \rightarrow [n]$ f = x act by one i for which f(i) = i.

n choius

or
$$x$$
 $(n-1)^{n-1}$

Which i to fix? The others not mapping to themselves.

