Matematická logika. Výroková a predikátová logika, syntaxe, sémantika. Odvozovací systémy, formální důkazy. Korektnost a úplnost odvozovacích systémů. Gödelovy věty o neúplnosti.

1 VÝROKOVÁ A PREDIKÁTOVÁ LOGIKA

- Sylogizmy, Booleova algebra
- Matematická logika: Použitie formálnej logiky na vyjadrovanie sa o matematických štruktúrach.
- Výroková logika:
 - Výroková funkcia $F_i:[0,1]^n\to [0,1]$, valuácia: $v:Var\to [1,0]$, Systém $\mathcal{L}(F_0,\ldots,F_n)$ týpicky F_i sú napr. \land,\lor,\lnot,\ldots
 - Syntax: $\varphi = X \mid F_i(\varphi_1, ..., \varphi_m)$, sémantika je zjavná.
 - Formula je pravdivá/nepravdivá, splniteľná/nesplniteľná, tautológia, kontradikcia.
 - $-\varphi$ je tautologický dôsledok súboru $T, T \models \varphi$, keď všetky valuácie spĺňajúce všetky $\psi \in T$ spĺňajú aj φ . Ak T je prázdny, φ je tautológia a $\models \varphi$.
 - Systém \mathcal{L} je plnohodnotný ak pre ľubovoľnú výrokovú funkciu existuje ekvivalentná formula vygenerovateľná v \mathcal{L} .
 - Shefferovské spojky: Plnohodnotné sami o sebe (NAND, NOR).
 - Normálne tvary: CNF, DNF, literál, klauzula (disjunkcia), duálna klauzula (konjunkcia).

• Predikátová logika:

- Premenné x, y, ..., jazyk \mathcal{L} : funkčné symboly f_i , predikátové symboly P_i .
- Term: $t = x \mid f_i(t_1, ..., t_m)$, Formula: $\varphi = P_i(t_0, ..., t_1) \mid t_0 = t_1 \mid \varphi \to \varphi \mid \neg \varphi \mid \forall x. \varphi$ (Rovnosť je optional).
- voľný/viazaný výskyt, substituovateľnosť (nesmiem vyrobiť viazaný výskyt z voľného), uzavretosť (bez voľných výskytov), univerzálny uzáver.
- Realizácia \mathcal{M} jazyka \mathcal{L} : Univerzum M, realizácia funkčných symbolov $f_i: M^m \to M$ (funkcia), realizácia predikátov: $P_i \subseteq M^m$ (relácia), ohodnotenie $e: Var \to M$.
- Formula je pravdivá ($\mathcal{M} \models \varphi$) ak je pravdivá pri všetkých ohodnoteniach ($\mathcal{M} \models \varphi[e]$).
- Model formule je realizácia v ktorej je formula splnená.
- Teória T množina prvorádových formulí (prvky sú axiomy teórie), $\mathcal{M} \models T$ \mathcal{M} je modelom T, teda všetky axiómy sú pravdivé v \mathcal{M}
- Formula je sémantickým dôsledkom teórie $(T \models \varphi)$ ak φ je splnená vo všetkych modeloch teórie T.

2 Odvodzovacie systémy

- Odvodzovacý systém: Sada axiómov a (syntaktických) odvodzovacích pravidiel.
- Dôkaz: Postupnosť formulí taká že každá fomula je buď axióm alebo vznikne aplikáciou pravidla na nejaké (v postupnosti) menšie formule. Na konci postupnosti je dokazované tvrdenie.
- Dokázateľná z predpokladu/teórie $T-T \vdash \varphi$, dokázateľná $\vdash \varphi$ (bez predpokladov/teórie).
- Korektnosť: Čo je dokázateľné, je pravdivé: $T \vdash \varphi \implies T \models \varphi$.
- Úplnosť: Čo je pravdivé, je dokázateľné: $T \models \varphi \implies T \vdash \varphi$.
- Lukasiewicz: Odvodzovací systém pre výrokovú logiku:
 - $A1: A \rightarrow (B \rightarrow A)$
 - $A2: (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
 - $A3: (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$
 - MP (modus ponens): Z $(A \rightarrow B)$ a A odvod' B.
- Odvodzovací systém pre predikátovú logiky:
 - A1-3
 - A4 (špecifikácia): $\forall x.\varphi \rightarrow \varphi(x/t)$ (ak sa x dá substituovať za t)
 - A5 (distribúcia): $(\forall x.(\varphi \to \psi) \to (\varphi \to \forall x.\psi))$ (ak x nemá voľný výskyt v φ)
 - MP a GEN (generalizácia): Z φ odvoď $\forall x.\varphi$.
 - Rovnosť (optional): R1: x=x, R2: $(x=y \land P(x)) \rightarrow P(y)$, R3: $x=y \rightarrow f(x)=f(y)$ (pre všetky arity)
- Teoria je sporná, ak je v nej dokázateľná ľubovoľná formula.
- Veta o dedukcií (pre uzavreté a výrokové formule): Ak $T \vdash (\varphi \rightarrow \psi)$, potom $T \cup \{\varphi\} \vdash \psi$.
- Veta o kompaktnosť: Teória/súbor predpokladov T je má model/ je splniteľný iff každá konečná podteória/podsúbor má model/je splniteľný.
- Lövenheim-Skolem: Ak pre ľubovoľné n existuje model teórie s nosičom mohutnosti n, tak teória má aj model s nekonečným nosičom.

3 GÖDEL

- 1. veta: Existuje uzavretá formula ktorá je pravdivá v $\mathcal N$ ale nie je dokázateľná v PA.
- \bullet 2. vera: VPA (Alebo inej dosť silnej teórií) nie je dokázateľná formula CONSIS
- Tu PA je Peanova aritmetika, \mathcal{N} jazyk aritmetiky a CONSIS je formula, ktorá tvrdí že existuje nedokázateľná formula (a teda systém je bezsporný).