Possibility of the Heavy QCD Axion arXiv:1504.06084, 1602.07909

Hajime Fukuda (Kavli IPMU)

in collabolation with: C.W. Chiang, K. Harigaya, M. Ibe and T.T. Yanagida

May 26, 2016

Strong CP Problem

QCD should break CP symmetry

$$\theta = \theta_{YM} + \arg \det(Y_u Y_d)$$

However, the violation looks very small

$$|\theta| \lesssim 10^{-10}$$

$U(1)_{PQ}$ Symmetry

$$q_L \to e^{i\alpha} q_L, \ \theta \to \theta + 2T(R)\alpha$$

 U(1)_{PQ} must be broken at f_a and a pseudo NG Boson a appears

Weinberg 1978, Wilczek 1978

Their Original Model

- The VEVs of 2HDM break EW gauge group and U(1)_{PQ} simultaneously
- It's simple and minimal, but experimentally excluded

Which Direction?

- There are roughly two ways to achieve the PQ mechanism
 - Larger f_a , invisible axion
 - Heavier m_a , heavy axion

Axion Mass and Decay Constant

Axion Mass

$$m_a^2 \simeq \frac{m_q \Lambda^3}{f_a^2}$$

 Heavier m_a with sufficiently large f_a is hence difficult

Larger f_a isn't Easy, Either

Why does no higher dim. op. exist?

$$\Delta \mathcal{L} = c \frac{\phi^{5}}{M_{\text{Pl}}}$$

$$\Rightarrow \Delta\theta \simeq c \frac{f_a^3}{M_{\rm Pl} m_a^2} \gg 10^{-10},$$

even for the WW axion

Realizing a Heavy Axion

 (Rubakov, 1997) suggested a consistent way to achieve a heavy axion

Rubakov 1997; Berezhiani, Gianfagna and Giannotti 2000 Hook 2014, HF, Harigaya, Ibe and Yanagida 2015, Albaid, Dine and Draper 2015 (Gherghetta, Nagata and Shifman 2016)

How to Make an Axion Heavier?

Another gauge theory is needed

How to Make an Axion Heavier?

Another gauge theory is needed

Then how can we align the two θ s?

Copy of SM

$$\theta = \theta_{YM} + \left[arg \det(Y_u Y_d) \right]$$

- θ' must also have Yukawa sector
- Thus, we need a complete copy of SM
 - We assume \mathbb{Z}_2 parity, which is spontaneously broken

Our Model

Use of spontaneous \mathbb{Z}_2 breaking

Recall

$$m_a^2 \simeq \frac{m_q' \Lambda'^3}{f_a^2}$$

- We have to increase $m'_q \propto v'$ and Λ'
 - For Λ' , we introduce color charged particles and change their masses.

Cosmological Properties

- γ' is massless
 - The axion must decouple before QCD PT
- Seesaw mechanism in v' is forbidden
 - v's have large Dirac mass
 - No fine-tuning: $\sigma_{\mathbb{Z}_2} = \sigma_{B'-L'}^2/M_{\text{Pl}}$

Low Energy Spectrum

Axion a

$$m_a \gtrsim 400\,\mathrm{MeV}$$

Vector like quark ψ, ψ'

$$m_{\psi} = \frac{1}{\sqrt{2}} g f_a \gtrsim 900 \, \mathrm{GeV}$$

Dilaton s

$$m_s = \sqrt{2\lambda} f_a \gtrsim O(100) \, \text{GeV}$$

Low Energy Spectrum

Axion a

$$m_a \gtrsim 400\,\mathrm{MeV}$$

Vector like quark ψ, ψ'

$$m_{\psi} = \frac{1}{\sqrt{2}}gf_a \gtrsim 900 \,\mathrm{GeV}$$

Dilaton s

$$m_s = \sqrt{2\lambda} f_a \simeq 750 \, \text{GeV}??$$

Dilaton Decay

- Obviously, $\frac{s}{f_a}\partial a\partial a$ is the strongest Almost no $s\to 2\gamma^{(\prime)}$ decay
- Does it fail?

Dilaton Decay

- Obviously, $\frac{s}{f_a}\partial a\partial a$ is the strongest Almost no $s\to 2\gamma^{(\prime)}$ decay
- Does it fail? No!

Photons and Photon Jets

- ECAL can't count the number of γ
 - Use " $s \rightarrow 2a$, $a \rightarrow 2$ collinear γ " mode

Axion Decay

Lagrangian

$$\mathcal{L}_a = N_1 \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^{(\prime)} \tilde{G}^{(\prime)} + N_2 \frac{\alpha}{8\pi} \frac{a}{f_a} F^{(\prime)} \tilde{F}^{(\prime)}$$

- We need large BR
 - BR($s \to 4\gamma$) = BR($a \to 2\gamma$)²
- *a-G-G* coupling looks too strong

Is Large BR Possible?

Two possibility

- $m_a < 3m_\pi$, the threshold of $a \to 2g$
- Use the mixings with mesons

Mixings with Mesons

• The phase space suppresses $a \rightarrow 3\pi$

Summary

- The heavy axion is possible
- We need a complete copy of SM
- The diphoton excess can be explained as the dilaton using our model