Name: Prachi Shedge

Roll No: 281050

Batch: A2

Assignment 6

Statement

In this assignment, we aim to:

- a) Implement Linear Regression using a suitable library function to predict month-wise temperatures.
- b) Evaluate the regression model's performance using MSE, MAE, and R-Square metrics.
- c) Visualize the regression model to analyze predictions.

Objective

- 1. Understand how to analyze structured temperature data using Python.
- 2. Apply regression techniques to forecast temperature trends.
- 3. Assess model effectiveness using statistical evaluation metrics.
- 4. Develop visualization techniques for performance analysis.

Resources Used

- **Software:** Visual Studio Code
- Libraries: Pandas, NumPy, Matplotlib, Scikit-learn

Introduction to Regression Analysis

Regression analysis is a fundamental machine learning technique used to predict continuous values. In this assignment, we apply **Linear Regression** to model and forecast month-wise temperature trends in India.

Key Concepts:

- **Linear Regression:** Establishes a linear relationship between independent and dependent variables.
- Model Evaluation: Uses MAE, MSE, RMSE, and R-squared to assess model accuracy.
- Data Visualization: Uses scatter plots and regression lines to analyze predictions.

Basic Functions Used

- 1. pd.read_csv() Loads data into a Pandas DataFrame.
- 2. drop(columns=[]) Removes unnecessary dataset columns.
- 3. train_test_split() Splits data into training and testing sets.
- 4. LinearRegression() Implements a linear regression model.
- 5. fit() Trains the model on training data.
- 6. predict() Predicts target values using input features.

- 7. mean_absolute_error() Computes MAE to evaluate prediction accuracy.
- 8. mean_squared_error() Calculates MSE and RMSE.
- 9. r2_score() Measures how well the model explains variance in data.
- 10. scatter() & plot() Visualizes regression results.

Methodology

1. Data Collection and Exploration

- The dataset consists of month-wise temperature records for India.
- The first step is loading and inspecting the dataset.

2. Feature Selection & Preprocessing

- Unnecessary columns (e.g., YEAR) are removed.
- Independent variables (X) and the target variable (y) are defined.

3. Model Training

- The dataset is split into 80% training and 20% testing data.
- A **Linear Regression model** is trained on the training set.

4. Model Evaluation

- Performance metrics MAE, MSE, RMSE, and R-squared are computed.
- Predicted values are compared with actual values.

5. Visualization

- Scatter plots illustrate regression performance.
- A regression line is plotted for reference.

Results & Observations

- The model successfully predicted month-wise temperature trends.
- Performance metrics indicated a reasonable level of accuracy with some error.
- Visualization techniques helped analyze model effectiveness.

Advantages of Regression Modeling

- 1. **Predictability:** Enables effective temperature forecasting.
- 2. **Simplicity:** Easy to implement and interpret.
- 3. **Data Insights:** Helps understand temperature variations.

Disadvantages

- 1. **Assumptions:** Assumes a linear relationship, which may not always hold.
- 2. **Accuracy Limitations:** Depends on data quality and relevant feature selection.

Conclusion

This assignment demonstrated the **application of Linear Regression** in predicting month-wise temperatures. The process involved **data preprocessing, model training, evaluation, and visualization**. The model provided useful insights into temperature trends, showcasing the significance of regression in data science applications.