## me215 The Test Fall 2020

| name     |  |  |  |
|----------|--|--|--|
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
| <br>cwid |  |  |  |

## ME215: Thermodynamics I The Test, 15-18 November 2020

35 Tasks - 305 points

Write your final answers on this problem sheet **AND** make sure your final answers are **clearly identified** in your work. Make sure you turn in **ALL** of your work sheets.

The **ONLY** resources you may use are your textbook, class notes, and me. Accessing your textbook is the only permitted use of the Internet or any other communication networks.

No Internet or communication allowed. Calculator is allowed.

## **RESOURCES**



The Louisiana Superdome has an interior volume of 125 million ft<sup>3</sup>, covered by a 440,000 ft<sup>2</sup> roof. On a particular day, the interior air pressure gave a manometer reading of 19 inches mercury. Local atmospheric pressure is 102 kPa.

| 1. | kg (10) Calculate the <b>mass of the air inside</b> , assuming an average temperature of 20 °C.                                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | kg (10) Calculate the <b>net force applied</b> to the roof by the interior/exterior air (do not account for the weight of the roof). Assume the roof is flat.                                  |
| 3. | (15) Describe open, closed, and isolated systems, respectively. Be sure to highlight the differences between<br>the three system types                                                         |
| _  |                                                                                                                                                                                                |
|    |                                                                                                                                                                                                |
| 4. | (5) Krypton ( $P_1$ = 2 MPa, $T_1$ = 600 K) is throttled to a pressure of $P_2$ = 1.2 MPa. Assuming ideal gas behavior, which of these statements describes the downstream temperature $T_2$ ? |
|    | (a) $T_2 < T_1$ (b) $T_2 = T_1$ (c) $T_2 > T_1$                                                                                                                                                |
| 5. | (5) A fluid is at its critical point. The temperature is lowered while the pressure is held constant. What is the phase of the fluid after the change (as in superheated vapor,                |

saturated mixture, etc)?

| A system process. | consists of a <b>saturate</b>                              | ed liquid/vapor mix                          | ture. Heat is removed fr                 | om the system in an <b>isothermal</b>    |  |  |  |
|-------------------|------------------------------------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------|--|--|--|
| 6                 | (5) The quali                                              | ty                                           |                                          |                                          |  |  |  |
|                   | (a) increases                                              | (b) decreases                                | (c) stays the same                       | (d) not enough information               |  |  |  |
| 7                 | (5) The temp                                               | erature                                      |                                          |                                          |  |  |  |
|                   | (a) increases                                              | (b) decreases                                | (c) stays the same                       | (d) not enough information               |  |  |  |
| 8                 | (5) The pressure                                           |                                              |                                          |                                          |  |  |  |
|                   | (a) increases                                              | (b) decreases                                | (c) stays the same                       | (d) not enough information               |  |  |  |
| 9                 | (5) The specific volume                                    |                                              |                                          |                                          |  |  |  |
|                   | (a) increases                                              | (b) decreases                                | (c) stays the same                       | (d) not enough information               |  |  |  |
| A system          | consists of a <b>saturate</b>                              | ed liquid/vapor mix                          | <b>ture</b> . Heat is <b>added</b> to th | ne system in an <b>isochoric</b> process |  |  |  |
| 10                | (5) The quali                                              | ty                                           |                                          |                                          |  |  |  |
|                   | (a) increases                                              | (b) decreases                                | (c) stays the same                       | (d) not enough information               |  |  |  |
| 11                | (5) The temperature                                        |                                              |                                          |                                          |  |  |  |
|                   | (a) increases                                              | (b) decreases                                | (c) stays the same                       | (d) not enough information               |  |  |  |
| 12                | (5) The pressure                                           |                                              |                                          |                                          |  |  |  |
|                   | (a) increases                                              | (b) decreases                                | (c) stays the same                       | (d) not enough information               |  |  |  |
| 13                | (5) The specific volume                                    |                                              |                                          |                                          |  |  |  |
|                   | (a) increases                                              | (b) decreases                                | (c) stays the same                       | (d) not enough information               |  |  |  |
|                   |                                                            |                                              |                                          |                                          |  |  |  |
| Given 10          | kg of ammonia at 0 °                                       | C, with a specific er                        | thalpy of 1261.97 kJ/kg                  |                                          |  |  |  |
| 14                | kg (10) Find                                               | kg (10) Find the <b>mass</b> of the ammonia. |                                          |                                          |  |  |  |
| 15                | m <sup>3</sup> (10) Find the <b>volume</b> of the ammonia. |                                              |                                          |                                          |  |  |  |
| 16.               | m <sup>3</sup> (10) Find                                   | d the <b>pressure</b> of th                  | e ammonia.                               |                                          |  |  |  |

A vessel contains 3 kg of  $H_2O$  at 100 bar, 600 °C. Heat is lost from the vessel until the temperature reaches 200 °C.

- 17. \_\_\_\_\_  $^{\circ}$ C (10) Find the H<sub>2</sub>O final temperature.
- 18. \_\_\_\_\_ kPa (10) Find the H<sub>2</sub>O final pressure.
- 19. \_\_\_\_\_ kJ<sub>in/out</sub> (10) Determine the **heat transfer**, with direction.
- 20. \_\_\_\_\_ kJ<sub>in/out</sub> (10) Determine the **work**, with direction.

.....



21. \_\_\_\_\_ kJ<sub>in/out</sub> (10) Determine the **net work** (and direction) of the cycle  $\overline{123451}$  depicted above.

.....



22. \_\_\_\_\_ kJ<sub>in/out</sub> (10) Determine the **net work** (and direction) of the cycle 1234561 depicted above.

## **LEAPS**

|                                                                      | 30 bar, 900 °C enters a well-insulated turbine and exits at 10 kPa and 93.9% quality. The mass flow million kg/hr, and the turbine entrance has a diameter of $63  \text{cm}$ . |  |  |  |  |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 23                                                                   | $^{\circ}$ C (10) At what <b>temperature</b> does the H <sub>2</sub> O exit the turbine.                                                                                        |  |  |  |  |  |
| 24                                                                   | GW (10) What is the turbine's <b>power</b> output?                                                                                                                              |  |  |  |  |  |
| 25 GW (10) At what <b>velocity</b> does the steam enter the turbine? |                                                                                                                                                                                 |  |  |  |  |  |
| A 10 kg ma<br>doubles.                                               | ss of saturated vapor water, initially at 200 °C, is heated in a rigid container until its pressure                                                                             |  |  |  |  |  |
| 26                                                                   | $^{\circ}$ C (10) What is the final <b>temperature</b> of the H <sub>2</sub> O?                                                                                                 |  |  |  |  |  |
| 27                                                                   | kPa (10) What is the final <b>pressure</b> of the $H_2O$ ?                                                                                                                      |  |  |  |  |  |
| 28                                                                   | kW (10) What is the <b>work</b> for this process?                                                                                                                               |  |  |  |  |  |
| 29                                                                   | kW (10) What is the <b>heat transfer</b> for this process?                                                                                                                      |  |  |  |  |  |
| 30                                                                   | $_{\rm mass}$ kg (10) What is the <b>final mass</b> of the $\rm H_2O$ ?                                                                                                         |  |  |  |  |  |
| A 10 kg ma                                                           | ss of saturated vapor water, initially at 3 bar, is heated in a frictionless piston/cylinder device until doubles.                                                              |  |  |  |  |  |
| 31                                                                   | $^{\circ}$ C (10) What is the final <b>temperature</b> of the H <sub>2</sub> O?                                                                                                 |  |  |  |  |  |
| 32                                                                   | kPa (10) What is the final <b>pressure</b> of the $H_2O$ ?                                                                                                                      |  |  |  |  |  |
| 33                                                                   | kW (10) What is the <b>work</b> for this process?                                                                                                                               |  |  |  |  |  |
| 34                                                                   | kW (10) What is the <b>heat transfer</b> for this process?                                                                                                                      |  |  |  |  |  |
| 35                                                                   | $_{\rm mass}$ kg (10) What is the <b>final mass</b> of the H <sub>2</sub> O?                                                                                                    |  |  |  |  |  |
|                                                                      |                                                                                                                                                                                 |  |  |  |  |  |

**CERULEAN**