Course Code	CS-531
Course Title	Advance Computer Architecture
(TCH LCH CrHr)	(3 0 3)
Contact Hours	3 hours per week
Pre-requisite	None
Recommended Texts	 Computer Organization and Architecture – Designing or Performance, 10th Edition, by Willian Stallings Computer Architecture – A Quantitative Approach, 5th Edition, by John L. Hennessy and David A. Patterson Structured Computer Organization, 5th Edition by Andrew S. Tanenbaum
Course Description	The course covers the topics of organization and architecture of computer systems hardware; instruction set architectures; addressing modes; register transfer notation; processor design and memory systems.
Course Objectives	 To enable students to understand the basic components of a computer system To enable students to understand the issues that are limiting the performance of processor, caches and memories To enable students to highlight architecture and organization parameters for processor performance To enable students to understand the cycle of instruction execution in the pipeline of a processor
Course Outline	 Basic Components of Computer Systems Underlining issues in multi-core and many-core systems Issues of a cache system and distributed cache system Different types of memories Processor performance improvement Instruction set architecture

Lecture Wise Distribution of the Contents

Lecture No.	Contents
L1-L3	Organization and Architecture
	Structure and Functions
L4-L6	History of Computers
	Evolution of Intel x86 Architecture
	Embedded Systems
	ARM Architecture

L6-L9	Designing for Performance
	Multicore, MICs and GPGPUs
	Amdahl's Law
	Little Law
	Basic measure of computer performance
L10-L12	Computer components
	Computer function
	Interconnection Structures
	Bus Interconnection
	Point-to-Point Interconnect
	PCI Express
L13-L15	Computer Memory System
	Cache Memory Principles
	Elements of cache Design
L16-L19	Mapping functions
	Replacement algorithms
	Pentium 4 cache organization
L19-L22	Semiconductor main memory
	Error Correction
L23-L25	DDR DRAM
	Flash Memory
	Newer Nonvolatile Solid-State Memory Technologies
L26-L29	Magnetic Disk
	RAID
	Solid State Drives
L30-L33	Optical Memory
	Magnetic Tape
	Machine instruction characteristics
L34-L36	Types of operands
	Types of operations
	Addressing modes
	Instruction format
L37-L39	Processor organization
	Register organization
	Instruction cycle
	Instruction pipelining
L40-L42	Instruction execution characteristics
	The use of large register file
	Compiler-based register optimization
	Reduced instruction set architecture
	RISC pipelining
	MIPS R4000
	SPARC

	RISC vs CISC controversy	
L43-L44	Instruction level parallelism	
	Design issues	
	Intel core microarchitecture	
	ARM Cortex-A8, Coretex-M3	
L45	Revision	