

Imputation

Imputing data

Need to specify

- Imputation method
- Variable(s) to impute
- Variables used as predictor

Simputation's goal

Easy to experiment, robust enough for production.

Simputation interface

```
impute_<model>(data, imputed_variables ~ predictors, ...)
```

Imputing data with simputation

<model></model>	description
proxy	copy (transformation of) other variable(s)
median	(group-wise) median
rlm, lm, en	(robust) linear model, elasticnet regression
cart, rf	Classification And Regression Tree, RandomForest
em, mf	EM-alogithm (multivariate normal) missForest
knn	k nearest neighbours
shd, rhd	sequential, random, hot-deck
pmm	predictive mean matching
impute_model	use pre-trained model

Imputation of the mean

Adding a random residual

Adding a random residual with simputation

Example

```
impute_rlm(companies, other.rev ~ turnover
    , add_residual = "normal")
```

Commission

Options

- "none": (default)
- "normal"": from $N(0, \hat{\sigma})$
- "observed": from observed residuals

Chaining methods

Example

```
companies %>%
  impute_lm(turnover ~ staff + profit) %>%
  impute_lm(turnover ~ staff)
```


More on missing data and (s)imputation

Missing data

Reasons

- nonresponse, data loss
- Value is observed but deemed wrong and erased

Solutions

- Measure/observe again
- Ignore
- Take into account when estimating
- Impute

eurosi

Missing data mechanisms

Missing comletely at Random (MCAR)

Missingness is totally random.

Missing at Random (MAR)

Missingness probability can be modeled by other variables

Not Missing at Random (NMAR)

Missingness probability depends on missing value.

You can't tell the mechanism from the data

NMAR can look like MCAR

Given Y, X independent. Remove all $y \ge y^*$. Observer 'sees' no correlation between missingness and values of X: MAR.

NMAR can look like MAR

Given Y, X with Cov(Y, X) > 0. Remove all $y \ge y^*$. Observer 'sees' that higher X correlates with more missings in Y: MCAR.

Dealing with missing data mechanisms

Missing comletely at Random (MCAR)

Model-based imputation

Missing at Random (MAR)

Model-based imputation

Not Missing at Random (NMAR)

No real solution.

Imputation methodology

Model based

Estimate a value based on observed variables.

Donor-imputation

Copy a value from a record that you did observe.

The simputation package

Provide

- a uniform interface,
- with consistent behaviour,
- across commonly used methodologies

To facilitate

- experimentation
- configuration for production

The simputation package

An imputation prodedure is specified by

- 1 The variable to impute
- 2 An imputation model
- 3 Predictor variables

The simputation interface


```
impute_<model>(data
, <imputed vars> ~ <predictor vars>
, [options])

data

data

impute_<model>()

data'
```

Chaining methods


```
ret %>%
  impute_rlm(other.rev ~ turnover) %>%
  impute_rlm(other.rev ~ staff) %>% head(3)
```

```
##
     staff turnover other.rev total.rev staff.costs total.costs profit vat
## 1
        75
                  NA
                      64.88174
                                     1130
                                                    NA
                                                              18915
                                                                     20045
                                                                            NA
                                                                        63
                                                                            NA
## 2
                1607
                      17,25247
                                     1607
                                                   131
                                                               1544
## 3
        NΑ
               6886 -33,00000
                                     6919
                                                   324
                                                               6493
                                                                       426
                                                                            NΑ
```