《计算机组成原理》作业2

2-2

答:

(1) [2015] 由 3 个 "1" 和 5 个 "0" 组成的 8 位二进制补码,能表示的最小整数是 A. -126 B. -125 C. -32 D. -3

答: B, 原因如下:

选项A-126D=1111 1110B 反码为1000 0001B 补码为1000 0010B 不符合要求 选项B-125D=1111 1101B 反码为1000 0010B 补码为1000 0011B 符合要求 选项C -32D=1010 0000B 反码为1101 1111B 补码为1110 0000B 不符合要求 选项D -3D=1000 0011B 反码为1111 1100B 补码为1111 1101B 不符合要求

(2) [2019] 考虑以下 C语言代码:

unsigned short usi=65535;

short si=usi;

执行上述程序段后, si 的值是。

A. -1 B. -32767 C. -32768 D. -65535

答: A, 原因如下:

si=usi=65535=FFFFH, 反码为1000 0000 0000 0000B, 真值为1000 0000 0000 0001B, 即-1D

(3)[20	12] 假定编译器规定 int 和 short 类型长度分别	为3	2位和16位, 执行下列 C语言语句:
unsigned short	$x=65530$; unsigned int $y=x$; 得到 y 的机器数为 _		
A.	0000 7FFAH	B.	0000 FFFAH
C	FFFF 7FFAH	D	FFFF FFFAH

答: B, 原因如下:

x=65530=1111 1111 1111 1010B=FFFAH y=x=0000 FFFAH

	(4)[2016]有如下	C 语言程序段:	short si=-32767;	unsigned short usi=si;	执行上述两条语句后,	usi
的值为	b					
	A32767	B.	32767	C. 32768	D. 32769	

答: D, 原因如下:

si=-32767=1111 1111 1111 1111B 补码为1000 0000 0000 0001B usi=si=1000 0000 0000 0001B=32768+1=32769

(5) [2011]float 型数据通常用 IEEE754 单精度浮点数格式表示。若编译器将 float 型变量 x 分配在一 个 32 位浮点寄存器 FR1 中, 且 x=-8.25, 则 FR1 的内容是 _____。

A. C104 0000H

B. C242 0000H

C. C184 0000H

D. C1C2 0000H

答: A, 原因如下:

 $x=-8.25D=-1000.01B=-1.00001*2^3$ 符号码 1 阶码 127+3=130=1000 0010B 尾数 000001B

(6) [2013] 某数采用 IEEE754 单精度浮点数格式表示为 C640 0000H,则该数的值是____。

A. -1.5×2^{13} B. -1.5×2^{12} C. -0.5×2^{13} D. -0.5×2^{12}

答: A, 原因如下:

符号码1 阶码1000 1100=140 尾码1 真值为-1.5*2~13

2 - 2

(7) [2012]float型(即 IEEE754 单精度浮点数格式)能表示的最大正整数是____。

A. $2^{126}-2^{103}$

B. $2^{127}-2^{104}$

C. $2^{127}-2^{103}$

D. 2¹²⁸-2¹⁰⁴

答: D, 原因如下:

阶码最大为254,尾码最大为1111 1111 1111 1111 1111 1111

最大正数为: 2^127 * (2-2^-23) =2^128-2^104

(8)[2018]IEEE754单精度浮点格式表示的数中,最小规格化正数是____。

- A. 1.0×2^{-126}
- B. 1.0×2^{-127}

C. 1.0×2^{-128}

D. 1.0×2^{-149}

答: A, 原因如下:

阶码最小为1, 尾码最小为0000 0000 0000 0000 0000 000

最小正数为: 1.0*2~-126

(9) [2014]float 型数据通常用 IEEE754 单精度浮点格式表示。假定两个 float 型变量 x 和 y 分别存放 在 32 位寄存器 f1 和 f2 中, 若 (f1)=CC90 0000H, (f2)=B0C0 0000H, 则 x 和 y 之间的关系为。

A. x < y且符号相同

C. x > y且符号相同

B. x < y且符号不同

D. x > y 且符号不同

答: A, 原因如下:

x,y符号相同,x<y

(10) [2010] 假定变量 *i*、*f*、*d* 的数据类型分别为 int、float、double (int 用补码表示, float 和 double 用 IEEE754 标准中的单精度和双精度浮点数据格式表示),已知 i=785,f=1.5678e3,d=1.5e100,若在 32 位计算机中执行下列关系表达式,则结果为真的是。

I. i=(int)(float)i II. f=(float)(int)f III. f=(float)(double)f IV. (d+f)-d=f

A. 仅 I、Ⅱ B. 仅 I、Ⅲ C. 仅 II、Ⅲ D. 仅 III、Ⅳ

答: B, 原因如下:

- 整数强制转为浮点数再强制转为整数,没有问题
- 浮点数强制转为整数再转为浮点数,会丢失消息 II
- 单精度浮点数转双精度浮点数再转回单精度浮点数,没有问题 III
- 双精度减单精度再加上双精度不一定等于单精度,有效位数不一样 IV

(11)[2013]用海明码对长度为8位的数据进行检错和纠错时,若能纠正一位错,则校验位数至少为

____0

A. 2

B. 3

C. 4

D. 5

答: C, 原因如下:

k+r<2^r, k=8, 即r=4

2.4 写出下列各数的原码、反码和补码。 0, -0, 0.10101, -0.10101, 0.11111, -0.11111, -0.10000, 0.10000

	原码	反码	补码
0	0. 000	0. 0 ·····00	0. 000
-0	1. 0 · · · · · 00	1. 1 ····· 11	0. 0 · · · · · 00
0. 10101	0. 10101	0. 10101	0. 10101
-0. 10101	1. 10101	1.01010	1. 01011
0. 11111	0. 11111	0. 11111	0. 11111
-0. 11111	1. 11111	1.00000	1. 00001
-0. 10000	1. 10000	1. 01111	1. 10000
0. 10000	0. 10000	0. 10000	0. 10000

2.5 已知数的补码表示形式,求数的真值。

 $[x]_{*}=0.10010$, $[x]_{*}=1.10010$, $[x]_{*}=1.11111$,

 $[x]_{\sharp h} = 1.00000$, $[x]_{\sharp h} = 0.10001$, $[x]_{\sharp h} = 1.00001$

补码	反码	真值
0. 10010	0. 10010	0. 10010
1. 10010	1. 01101	-0.01110
1. 11111	1. 00000	-0.00001
1. 00000	1. 11111	-1.00000
0. 10001	0. 10001	0. 10001
1. 00001	1. 11110	-0. 11111

2.6 C语言中允许无符号数和有符号整数之间的转换,下面是一段 C语言代码。

```
int x =-1;
unsigned u=2147483648;
printf ("x=%u=%d\n", x, x);
printf ("u=%u=%d\n", u, u);
给出在 32 位计算机中上述程序段的输出结果并分析原因。
```

```
x=4294967295=-1
u=2147483648=-2147483648
```

答: %u是无符号输出,%d是输出整型,计算机中整数以补码形式表示和存储。

x先由原码按位取反加1得到补码,输出‰时,补码被当做无符号数处理,即2³²⁻¹⁼⁴²⁹⁴⁹⁶⁷²⁹⁵

u直接存储1000 0000 0000 ··· 0000 (31个0), 当u被当做有符号数处理时, 其数值按位取反加1得到原码, 再转为真值。

- 2.7 分析下列几种情况下所能表示的数据范围分别是多少。
 - (1)16位无符号数;
 - (2)16位原码定点小数;
 - (3)16位补码定点小数;
 - (4)16位补码定点整数。

类型	能表示的数据范围
16位无符号数	0 ~ 65535
16位原码定点小数	-(1-2^15) ~ 1-2^15 (1.11···1 ~ 0.111···111)
16位补码定点小数	-1 ~ 1-2^15 (1.000···000 ~ 0.11···111)
16位补码定点整数	-2^15 ~ 2^15-1 (1000···00 ~ 011···111)

2.9 用 IEEE754 32 位单精度浮点数标准表示下列十进制数。

$$(1) -6\frac{5}{8};$$
 $(2) 3.1415927;$ $(3) 64000_{\circ}$

答

- (2) 3.1415927D=11.0010 0100 0011 1111 0110 1011 即 0100 0000 0100 1001 0000 1111 1101 1011 = 4049 0FDBH

2.10 求与单精度浮点数 43940000H 对应的十进制数。

答

2.13 设二进制浮点数的阶码为3位,尾数为7位。用模2补码写出它们所能表示的最大正数、最小正数、最大负数和最小负数,并将它们转换成十进制数。

答:

阶码为3位,-4 [~] 3 尾数为7位,1.000000 [~] 0.111111

	阶码	尾数	真值
最大正数	011	0. 111111	7.875 $(2^3 \times (1 - 2^{-6}))$
最小正数	100	0. 000001	2^{-10} $(2^{-4} \times 2^{-6})$
最大负数	100	1. 111111	$-2^{-10} (-2^{-4} \times 2^{-6})$
最小负数	011	1. 000000	$-8 (-2^{-3})$

2.16 由 6 个字符的 7 位 ASCII 字符排列,再加上水平和垂直偶校验位构成表 2.27 所示的行列结构(最后一列 HP 为水平奇偶校验位,最后一行 VP 为垂直奇偶校验位)。

表 2.27 ASCII 交叉校验

字符	7 位 ASCII 字符							
3	0	X_1	X_2	0	0	1	1	0
Y_1	1	0	0	1	0	0	X_3	1
+	X_4	1	0	1	0	1	1	0
Y2	0	1	X_5	X_6	1	1	1	1
D	1	0	0	X_7	1	0	X_8	0
=	0	X,	1	1	1	X ₁₀	1	1
VP	0	0	1	1	1	X ₁₁	1	X ₁₂

则 X_1 、 X_2 、 X_3 、 X_4 处的比特分别为 ____; X_5 、 X_6 、 X_7 、 X_8 处的比特分别为 ____; X_9 、 X_{10} 、 X_{11} 、 X_{12} 处的比特分别为 ____; Y_1 和 Y_2 处的字符分别为 ____ 和 ___。

答:

X1=1 X2=1 X3=1 X4=0 X5=1 X6=0 X7=0 X8=0 X9=1 X10=0 X11=1 X12=1 Y1= 'I' Y2= '7'

▶ 2.17 设 8 位有效信息为 01101110, 试写出它的海明校验码。给出过程,说明分组检测方式,并给出指错字及其逻辑表达式。如果接收方收到的有效信息变成 01101111,说明如何定位错误并纠正错误。

解: 1=4, n=12. H12 H11 H10 H9 H8 H7 H6 H5 H4 H3 H2 H1 D8. D7 D6 D5 P84 D4 D3 D2 P3 D1 P2 P1 P= D, D D2 D D4 D D5 DD7 = OD 1 D 1 D D D 1 = 1 B= D, DB DD4 DD6 DD D, DD = 0 01010101=0 R= B & D3 & D4 & D8= 101 & 100=1 P4= P5 00 P6 0 D D P8= 0010100=0. 接收到的海明码。0110011110101,置控数器 楼错 G1=P, 由 D, 由 D, 由 D, 由 D, = 1 由 1 由 1 由 1 由 0 由 1 = 1 G2=BDD, DBDD D4 DBDD = OD 10101010101=1 93= B D D2 D D3 DP4 DD8 = 0 G4= P4 & D5 & D6 & D7 (D8 = 0. G+G3G2G1=0011, 表示第3位出错,即D1位出错,D,位取及即可

▶ 2.18 设要采用 CRC 码传送数据信息 x=1001, 当生成多项式为 G(x)=1101 时,请写出它的循环冗余校验码。若接收方收到的数据信息为 x'=1101,说明如何定位错误并纠正错误。

厦

FH

學

XIAMEN

ADD:FUJIAN XIAMEN

UNIVERSITY

CABLE:0633 P.C:361005

答: 生成级武=1101, 1=3 000 CRC 33 = 100 011.

争数为011,即从右往左数第6位出错.推断取即可