Modelos Epidemiológicos e Vacinação

Mauricio Oliveira Carneiro

Programa de Computação Científica - FIOCRUZ

8 de dezembro de 2004

Histórico

- Qualidade de vida X Doenças Infecciosas (60s)
- Câncer e doenças cardiovasculares com maior atenção
- Países em desenvolvimento → grande causa de mortalidade e sofrimento
- Evolução e adaptação do agente infeccioso

Emergência

- Doença de Lyme (1975)
- Doença do Legionário (1976)
- Síndrome do choque tóxico (1978)
- Hepatite C (1989)
- Hepatite E (1990)
- Hentavirose (1993)

Emergência

- Doença de Lyme (1975)
- Doença do Legionário (1976)
- Síndrome do choque tóxico (1978)
- Hepatite C (1989)
- Hepatite E (1990)
- Hentavirose (1993)
- HIV/AIDS (1981)

Reemergência

- Tuberculose
- Pneumonia
- Gonorréia
- Malária
- Dengue
- Febre Amarela

Permanentes

- Peste
- Cólera
- Febres Hemorrágicas
 - Boliviana
 - Ebola
 - Lassa
 - Marburg

Agentes Infecciosos

- Vírus
- Bactéria
- Protozoário
- Helminto

Novos Agentes Infecciosos

- Prions
 - Encefalopatia Espongiforme Bovina
 - Creutzfeldt-Jakob (humana)
 - Scrapie (ovelhas)

Novos Agentes Infecciosos

- Prions
 - Encefalopatia Espongiforme Bovina
 - Creutzfeldt-Jakob (humana)
 - Scrapie (ovelhas)
- Evolução humana
 - Degradação e ocupação de novas áreas
 - Tráfego global
 - Superaquecimento global

Importância da Modelagem Matemática

Modelos matemáticos se tornaram importantes ferramentas para analisar o espalhamento e o controle das doenças infecciosas. O modelo permite:

- clarificar suposições
- determinar variáveis e parâmetros
- determinar pontos críticos
- números específicos como R_0 , σ e R

Usando Modelos Matemáticos

Modelos são poderosas ferramentas úteis para testar teorias, estimar parâmetros quantitativamente, responder perguntas específicas e determinar sensibilidades a mudanças nos valores dos parâmetros.

- Entender as características da transmissão em comunidades
- Melhores estratégias para diminuir a transmissão
- Comparar, planejar implementar, avaliar e otimizar programas de controle, prevenção, terapia e detecção
- Contribui para o desenho e análise de vigilâncias
- Identificar padrões
- Fazer e estimar incertezas de previsões

Comparação entre os modelos

Modelos Compartimentais simulam com simplicidade as etapas de um processo de infecção/recuperação na população

Outros modelos recentes levam em consideração :

Comparação entre os modelos

Modelos Compartimentais simulam com simplicidade as etapas de um processo de infecção/recuperação na população

Outros modelos recentes levam em consideração :

- Imunidade passiva
- Perda gradual de imunidade adquirida (vacina/doença)
- Estágios de infecção
- Transmissão vertical
- Vetores
- Faixas etárias e média de idade de ataque da doença
- Grupos sexuais e sociais
- Espalhamento espacial
- Vacinação, Quarentena e Quimioterapia

Rótulos

М	Crianças com imunidade passiva
S	Sucetíveis
E	Pessoas expostas no período latente
1	Infectados
R	Pessoas recuperadas com imunidade
m, s, e, i, r	Frações da população das classes acima
β	Taxa de contato
$1/\lambda$	Período médio de imunidade passiva
$1/\epsilon$	Período médio de latência
$1/\gamma$	Período médio de infecção
R_0	Número básico de reprodução
σ	Número de contatos
R	Número de reposição

Variações do Modelo

- MSEIR, MSEIRS, SEIR, SEIRS, SIRS, SEI, SEIS, SI e SIS
- M e E usualmente omitidos

Variações do Modelo

- MSEIR, MSEIRS, SEIR, SEIRS, SIRS, SEI, SEIS, SI e SIS
- M e E usualmente omitidos
- Escolha dos compartimentos varia com a doença sendo modelada
- Determinação dos parâmetros de controle de fluxo em acordo com dados epidemiológicos

R₀ - Número básico de Reprodução

Número médio de infecções secundárias produzidas quando um indivíduo infectado é inserido em uma população completamente suscetível.

- Infecção só é iniciada se $R_0 > 1$ (vários modelos determinísticos)
- Determina quando uma infecção pode invadir e persistir em uma população

σ - Número de Contatos

Número médio de contatos **adequados** de um típico infectado durante seu período infeccioso

- Contato Adequado → Suficiente para transmitir
- sse Indivíduo contactado é um infectado

R - Número de Reposição

Número médio de infecções produzidas por um infectado típico durante todo seu período infeccioso.

- $R_0 = \sigma = R$ no instante da invasão
- $R_0 = \sigma$ para a maioria dos modelos
- R₀ definido para o início da invasão
- \bullet σ e R definidos para qualquer instante

Após a invasão o número de suscetíveis é menor que a população, portanto:

$$R_0 >= \sigma >= R \tag{1}$$

Determinando Funções para Cada Classe

- S(t) é o número total de suscetíveis no tempo t
- I(t) é o número total de suscetíveis no tempo t
- N é o número total (constante) de indivíduos na população

Determinando Funções para Cada Classe

- S(t) é o número total de suscetíveis no tempo t
- I(t) é o número total de suscetíveis no tempo t
- N é o número total (constante) de indivíduos na população
- ullet s(t)=S(t)/N e i(t)=I(t)/N são as frações da população

Incidência Horizontal Padrão

- Se β é a média de contatos adequados de uma pessoa por unidade de tempo
- Então $\beta I/N = \beta i \rightarrow$ número de contatos com infectados por unidade de tempo de um suscetível
- logo $(\beta I/N)S = \beta Nis \rightarrow$ número de novos casos por unidade de tempo devido aos S = Ns suscetíveis

Incidência Horizontal Padrão

- Se β é a média de contatos adequados de uma pessoa por unidade de tempo
- Então $\beta I/N = \beta i \rightarrow$ número de contatos com infectados por unidade de tempo de um suscetível
- logo $(\beta I/N)S = \beta Nis \rightarrow$ número de novos casos por unidade de tempo devido aos S = Ns suscetíveis
- Incidência horizontal padrão

Fluxos de Entrada e Saída

- Transmissão vertical → fração fixa de reçém-nascidos infectados
- transições de M, E e I com termos δM , ϵE e γI (EDOs)
- Tempo de espera para $\gamma I \to P(t) = e^{\gamma t}$
- Tempo de espera medio $1/\delta$, $1/\epsilon$ e $1/\gamma$
- $1/\delta$ Tempo médio de imunidade passiva (sarampo: 9 meses)
- ullet 1/ ϵ Tempo médio de latência (sarampo: 1-2 semanas)
- $1/\gamma$ Tempo médio de infecção (sarampo: 1 semana)

Problema de Valor Inicial

Usando a notação descrita até agora, o modelo epidêmico clássico SIR é dado pelo problema de valor inicial :

- S(t) + I(t) + R(t) = N
- $\sigma = \beta/\gamma$ taxa de contato β multiplicado pelo período médio de infecção $1/\gamma$
- $R = \sigma s_0$ produto do número de contatos σ e a fração inicial de suscetíveis

Frações de Indivíduos Dentro das Classes

Dividindo a equação 2 pela população total constante N, temos:

$$ds/dt = -\beta is$$
, $s(0) = s_0 >= 0$,
 $dI/dt = \beta is - \gamma i$, $i(0) = i_0 >= 0$, (3)

•
$$r(t) = s(t) + i(t)$$

Problema de Valor Inicial

Usando a notação descrita até agora, o modelo endêmico clássico SIR é dado pelo problema de valor inicial :

- S(t) + I(t) + R(t) = N
- Input: μN
- Output: μS , μI e μR
- ullet Tempo de vida médio é $1/\mu$

Frações de Indivíduos Dentro das Classes

Dividindo a equação 4 pela população total constante N, temos:

$$ds/dt = -\beta is + \mu - \mu s,$$
 $s(0) = s_0 >= 0,$ $di/dt = \beta IS/N - (\gamma + \mu)i,$ $i(0) = i_0 >= 0,$ (5)

- r(t) = s(t) + i(t)
- $\sigma = R_0$ para qualquer tempo t
- $R_0 = \sigma = \beta/(\gamma + \mu)$ taxa de contato β multiplicado pelo período médio de infecção ajustado pela mortalidade $1/(\gamma + \mu)$

R_0 Determina Invasão da Infecção

Se o número básico de reprodução $R_0 < 1$, então o progresso da infecção caminhará em direção a uma população sem doença em equilíbrio assintóticamente estável.

→ Infecção **não pode** invadir a população.

R₀ Determina Invasão da Infecção

Porém se $R_0 > 1$, então a situação onde a população estaria livre da doença se torna um ponto de equilíbrio instável com uma direção repulsiva para o quadrante si positivo, de modo que a doença **pode** invadir de maneira que qualquer caminho começando com um i_0 positivo pequeno se moverá para dentro do quadrante si onde a doença persiste. \rightarrow Infecção **pode** invadir a população.

Estimativas de σ e frações de imunidade gera (η)

Doença	Local	Α	L	σ	η	vac
Sarampo	Inglaterra, 1956-1959	4.8	70	15.6	0.94	99%
Catapora	Maryland, USA 1943	6.8	70	11.3	0.91	
Difteria	Virginia, USA 1934	11.0	70	7.4	0.86	
Caxumba	Maryland, USA 1943	9.9	70	8.1	0.88	
Rubéola	Inglaterra 1979	11.6	70	7.0	0.86	92%
Pólio	USA 1955	17.9	70	4.9	0.80	
Varíola	India	12	50	5.2	0.81	

Dados tirados de [Anderson, 1982], complementado com cálculos feitos pelo professor Herbert W Hethcote para os valores de η .

$$\sigma = 1 + L/A$$

