BIOSTATISTICS 667 (Fall 2019) Homework 1

1. The table below gives summary statistics for lung function measurements in random samples from three groups of subjects; non-smokers, light smokers and heavy smokers. Let Y_{ij} denote the lung function measure for the j-th subject in the i-th group. Assume that the 63 observations are independent and $Y_{ij} \sim N(\mu_i, \sigma^2)$, $i = 1, 2, 3, j = 1, 2, \dots, n_i$.

\overline{i}	Group	n_i	Mean	SD
1	Non-smoker	21	3.78	1.79
2	Light smoker	21	3.23	1.86
3	Heavy smoker	21	2.59	1.82

Show your calculations. If you use a computer, simply state that and describe **briefly** what you did using common statistical language. Do **not** present any computer code. Note: The sample standard deviation (SD) above was computed using the formula with n-1 in the denominator.

- (a) Carry out an ANOVA test of the hypothesis that the lung function means (i.e. theoretical population means) in the three groups are all equal. State your hypothesis clearly. Show your calculations and provide the ANOVA table, the test statistic and any associated quantities, and compute the p-value.
- (b) Use least-squares to estimate parameters in the model

$$\mu_i = \alpha_1 + \alpha_2 i.$$

Provide the estimates $(\hat{\alpha}_1, \hat{\alpha}_2, \hat{\sigma}^2)$. Also provide standard error estimates for $\hat{\alpha}_1$ and $\hat{\alpha}_2$.

(c) Consider the model:

$$\mu_i = \beta_1 + \beta_2 i + \beta_3 i^2.$$

Test the hypothesis $H_0: (\beta_2, \beta_3) = (0, 0)$ against its complement. Report the test statistic and any associated quantities, and compute the p-value. (Note: H_0 states that both β_2 and β_3 are zero. It is sometimes written as $H_0: \beta_2 = \beta_3 = 0$).

2. Consider the usual simple regression model $E[Y_i] = \beta_1 + \beta_2 x_i$, with outcome vector $Y = (Y_1, Y_2, Y_3, Y_4)^{\top}$ and covariate x given as: $x_1 = 1, x_2 = 1, x_3 = 2, x_4 = 4$.

Do this problem entirely by hand using only a simple calculator. Do not use a computer and do not use matrix operations.

- (a) Express $\hat{\beta}_1$ explicitly as a linear function of Y. That is, write $\hat{\beta}_1$ explicitly as $\hat{\beta}_1 = a_1Y_1 + a_2Y_2 + a_3Y_3 + a_4Y_4$, giving the a_i 's numerical values (to 3 significant digits).
- (b) Compute the expected value of $\hat{\beta}_1$ if you were given the information: $E[Y_1] = E[Y_2] = 1$, $E[Y_3] = 2$, $E[Y_4] = 8$.
- (c) Suppose that Y_1, Y_2, Y_3, Y_4 are uncorrelated (i.e. $\operatorname{corr}(Y_i, Y_j) = 0, i \neq j$), and $\operatorname{var}(Y_1) = 1, \operatorname{var}(Y_2) = 2, \operatorname{var}(Y_3) = 4, \operatorname{var}(Y_4) = 5$. Compute the variance of $\hat{\beta}_1$.

- (d) Repeat the above parts for $\hat{\beta}_2$.
- (e) Using the linear representations above, compute $\text{cov}(\hat{\beta}_1, \hat{\beta}_2)$.
- (f) Define the *fitted values* $\hat{\mu}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$, and the residuals $R_i = Y_i \hat{\mu}_i$. Express $\hat{\mu}_3$ as a linear function of Y. Compute the expected value of $\hat{\mu}_3$.
- (g) Express R_3 as a linear function of Y. Compute $E[R_3]$, $var(R_3)$ and $E[R_3^2]$.