Лекция 07.02.22

Note 1

b842c26df42d4d742d1fe251970c01d9

Пусть $\{(c3): W-$ линейное пространство, $V\subset W$. $\|$ Тогда V называется $\{(c2):$ линейным подпространством $\|$, если $\{(c1):$

- 1. $\forall v \in V, k \in \mathbb{R} \implies kv \in V$,
- $2. \ \forall v_1, v_2 \in V \implies v_1 + v_2 \in V.$

Note 2

baa489a3d13c4978866a82630be13e73

Пусть $\{(c2), W$ — линейное пространство, $V \subset W$. $\{(C1), T$ Тогда V — $\{(C1), T$ Тоже линейное пространство $\{(C1), T\}$

Note 3

3c2988d9ae174eb4aa377f43ebd61f74

Является ли прямая проходящая через начало координат подпространством в \mathbb{R}^n ?

Да, поскольку любая линейная комбинация векторов на прямой тоже лежит на этой прямой.

Note 4

18b402a364da457aaaf95095b9113dcd

Пусть $W=\mathbb{R}^n, A\sim m\times n.$ Является ли множество

$$V = \{x \in W \mid Ax = 0\}$$

линейным подпространством?

Да, поскольку $\forall u, v \in V$, $\alpha, \beta \in \mathbb{R}$ $A(\alpha u + \beta v) = 0$.

Note 5

a5081684e6014eeb8d4cd352f7dfd46b

Пусть V — подпространство R^n . Тогда всегда существует $A \in R^{m \times n}$ такая, что $\{(c1)\}$

$$V = \{x \in W \mid Ax = 0\}$$

}}

Пусть $W = \mathbb{R}^n$, $a_1, a_2, \dots a_n \in W$. Является ли

$$\mathcal{L}(a_1, a_2, \dots a_n)$$

подпространством в W?

Да, является, поскольку любая линейная комбинация линейных комбинаций $a_1, a_2, \dots a_n$ тоже является их линейной комбинацией.

Note 7

d633780bbade46968c2bcb66d05be478

Пусть $W=\mathbb{R}^n, \quad V_1,V_2\subset W$ — два линейных подпространства в W. Всегда ли $V_1\cap V_2$ — тоже линейное подпространство в W?

Да, всегда.

Note 8

9c714ab9fa4b457f993438ef25421061

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Всегда ли $V_1\cup V_2$ — тоже линейное подпространство в W?

Нет, не всегда.

Note 9

2b9216d113914ad98cbc81b055dc174b

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Тогда

$$\{ (c2:: V_1 + V_2) \} \stackrel{\text{def}}{=} \{ (c1:: \{v_1 + v_2 \mid v_1 \in V_1, \quad v_2 \in V_2 \}. \} \}$$

Note 10

cd25e86c13c141be80e3673edfece8d2

Пусть $W=\mathbb{R}^n, \quad V_1,V_2\subset W$ — два линейных подпространства в W. Тогда

$$\dim(V_1 + V_2) = \{\{\text{cli} \ \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2).\}\}$$

Пусть $W=\mathbb{R}^n,~V\subset W$ — линейное подпространство в $W,~e_1,e_2,\dots e_k$ — неда базис в V. Погда в W существует базис вида неда $e_1,e_2,\dots e_k,e_{k+1},\dots e_n$ н