Ejercicio 3 (a)

Solución

Vector S de longitud n, donde:

- i ∈ [0, n] define una parte del proyecto.
 S[i] define el trabajador asociado a la parte i del proyecto.

Partes	1	Z	3	4
A	0.9	0.8	0,9	0.8
В	0.7	0.6	O. 8	0.7
C	O. 8	0.7	0.8	0.8
D	0.7	0.7	0.7	0.7

· n es el número de partes - y trabajadores -.

Restricciones

· No puede haber más de una persona con la misma parte asociada.

Hewústica

Escoger para cada parte, aquel trabajador i cuya probabilidad de exito sea mayor, aunque el trabajador sea elegido para otra parte (ignore la restricción).

Función de cota

Sea $S: [P_1, P_2, ..., P_n]$ una solución y $P: [P_1, P_2, ..., P_k]$ una solución parcial, con $n \le k$, se define f(P) como:

$$f(P) = g(P) \cdot h(P)$$
 donde:

9(P): probabilidad de exito general acumulada.

h(P): probabilidad de éxito suponiendo el máximo de cada trabajador libre

Durante el apartado (6) puede verse desarrollada.

Ejercicio 3 (b)

