Uma Avaliação Precisa da Modelagem do Problema de Minimização de Troca de Ferramentas como o Problema do Caixeiro Viajante

Túlio Neme de Azevedo

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

August 24, 2017

Introdução

Tecnologia e produção

- O avanço tecnológico atual proporciona métodos computacionais para resolverem problemas nas industrias que utilizam máquinas flexíveis em sua linha de produção;
- ▶ Objetivo é torná-las eficientes ao otimizar a linha de produção.

Máquina Flexível

Características

Proporciona dinamismo à produção ao produzir diversos tipos de produtos não relacionados entre si:

- Comporta um número fixo de ferramentas instaladas;
- Diferentes conjuntos de ferramentas produzem diferentes tipos de produtos;
- ► Cada produto exige que um determinado conjunto de ferramentas esteja instalado no momento de sua produção.

Maquina Flexível

Ferramentas

- A capacidade da máquina é suficiente para suportar o conjunto de ferramentas necessárias para a fabricação de cada produto isoladamente;
- Porém não comporta todas as ferramentas instaladas simultaneamente.

Troca de Ferramentas

Durante o processamento das tarefas, trocas de ferramentas serão necessárias, devido a dois fatores:

- Não violar a capacidade da máquina;
- Produto subsequente seja processado.

Cada troca exige que a máquina seja desligada, interrompendo a linha de produção, o que acarreta em aumento de custo e ociosidade do setor.

Problema de Minimização de Troca de Ferramentas

Problema de Minimização de Troca de Ferramentas

Do inglês Minimization of Tool Switches Problem (MTSP):

- Determinar a sequência ótima de fabricação dos produtos;
- Cada produto é considerado uma tarefa a ser realizada por uma máquina flexível.

Objetivo

Otimizar a linha de produção da seguinte forma:

- Minimizar as trocas de ferramentas necessárias
 - Produção é interrompida minimamente;
 - Aumento da eficiência.

Componentes do problema

Subdivisão do problema

O problema é composto por dois problemas:

- Problema de carregamento de ferramentas:
 - Determinar o menor número de trocas de ferramentas para processar uma sequencia fixa de tarefas;
 - Método Keep Tool Neeeded Soonest (KTNS) o soluciona em tempo determinístico polinomial
 - As ferramentas que serão necessárias mais brevemente pelas tarefas ainda não processadas são mantidas na máquina.
- Problema de sequenciamento de tarefas:
 - Definir a ordem em que as tarefas serão processadas na máquina;
 - ▶ NP-Difícil (não se conhece algoritmo eficiente para sua solução).

Componentes do problema

MTSP considerado

O MTSP se apresenta de diferentes formas na literatura, sendo que este trabalho aborda o caso geral:

- O tempo de instalação é o mesmo para todas ferramentas;
- O tamanho e custo das ferramentas são uniformes
 - Não importa qual a posição em que as ferramentas serão instaladas.

Resumo

Proposta trabalho

Realizar uma análise crítica da modelagem amplamente adotada na literatura para a solução do MTSP, a que utiliza o Problema do Caixeiro Viajante:

- Utilizar o resolvedor exato Concorde, próprio para o PCV;
- Somente heurísticas foram utilizadas anteriormente.

Possibilidade de conferir a exatidão da modelagem.

Motivação

- ▶ Complexidade NP-Difícil;
- Modelagem frequentemente reportada na literatura, porém sem análise aprofundada sobre a qualidade das soluções:
 - Modelagem ou métodos definem a qualidade das soluções?

メロトメ御 とくきと くきとっき 三く

Fundamentação Teórica

O Problema de Minimização de Trocas de Ferramentas

Dado uma máquina flexível, com n tarefas, m ferramentas e que comporta até C ferramentas, temos a seguinte definição formal:

- ▶ Conjunto T de tarefas, $T = \{1, ..., n\}$;
- ▶ Conjunto F de ferramentas, $F = \{1, ..., m\}$;
- Subconjunto de ferramentas F_i ($F_i \in F$) necessárias para processar a tarefa i ($i \in T$).

Determinar a permutação ϕ dos elementos de T tal que o número de trocas de ferramentas, ao aplicar o KTNS, seja minimizado.

Instância

n = 5, m = 5 e C = 3.

Table: Exemplo de instância MTSP.

Tarefas	Ferramentas
1	2, 3, 5
2	1, 3
3	1, 4, 5
4	1, 2
5	2, 3, 4

Representação

- As linhas representam as ferramentas;
- ► As colunas representam as tarefas.

Table: Matriz binária Q.

Ferramentas\Tarefas		2	3	4	5
1	0	1	1	1	0
2	1	0	0	1	1
3	1	1	0	0	1
4	0	0	1	0	1
5	1	0	1	0	0

Table: Solução $\phi = [3,4,2,1,5]$ resulta em 7 trocas de ferramentas.

Tarefas	Ferramentas carregadas na máquina
3	1, 4, 5
4	1, 2, 5
2	1, 2, 3
1	2, 3, 5
5	2, 3, 4

- Três inserções iniciais (ferramentas 1,4,5);
- Uma troca entre a tarefa 3 e 4 (ferramenta 4 por 2);
- Uma troca entre a tarefa 4 e 2 (ferramenta 5 por 3);
- Uma troca entre a tarefa 2 e 1 (ferramenta 1 por 5); e
- 5 Uma troca entre a tarefa 1 e 5 (ferramenta 5 por 4).

A solução ϕ induz a matriz permutação R^{ϕ} :

- lacktriangle Colunas são as colunas de Q na ordem estabelecida por ϕ
 - Primeira coluna representa o estado inicial da máquina.
- As ferramentas, ao serem, inseridas estão sublinhadas.

Table: Matriz R^{ϕ} .

Ferramentas $\setminus \phi$	0	3	4	2	1	5
1	0	1	1	1	0	0
2	0	0	1	1	1	1
3	0	0	0	<u>1</u>	1	1
4	0	1	0	0	0	1
5	0	1	1	0	1	0

Avaliando uma solução

Avaliação

Os valores dos elementos r_{ij}^{ϕ} são definidos da seguinte forma:

$$r_{ij}^{\phi} = \begin{cases} 1, \text{ se durante a tarefa } j, \text{ a ferramenta } i \text{ estiver na máquina.} \\ 0, \text{ caso contrário.} \end{cases}$$

A avaliação de uma solução é dada por:

$$Z_{MTSP}^{\phi}(R) = \sum_{j \in T} \sum_{i \in F} r_{ij}^{\phi} (1 - r_{ij-1}^{\phi})$$
 (1)

Dada uma sequência de tarefas, calcula o número de inversões de 0 para 1, que representam a inserção de ferramentas na máquina.

Objetivo

Objetivo

Determinar a permutação $\phi \in \Phi$ das colunas da matriz Q que resulte no menor número de trocas de ferramentas.

lacktriangledown Φ é o conjunto de todas as permutações possíveis.

$$\min_{\phi \in \Phi} Z_{MTSP}^{\phi}(Q) \tag{2}$$

Literatura

Tang e Denardo (1988)

Primeiro relato na literatura sobre uma abordagem ao MTSP:

- Modelaram como o Problema do Caminho Hamiltoniano Mínimo;
- Grafo Completo
 - Vértices representam as tarefas;
 - Arestas indicam a possibilidade de sequenciamento de duas tarefas;
 - Pesos das arestas são limitantes inferiores para o número de troca de ferramentas entre duas tarefas específicas.

A principal contribuição deste trabalho foi a política ótima *Keep Tool Needed Soonest* (KTNS) para troca de ferramentas.

Literatura

Crama et al. (1994)

Inovaram a modelagem para o problema ao relacionar o MTSP com o Problema do Caixeiro Viajante (PCV):

- Heurísticas próprias do PCV foram aplicadas ao MTSP;
- Definiram a complexidade do problema.

Hertz et al. (1998)

Embutiram o KTNS em heurísticas existentes para o PCV.

Resumiram cinco definições formais para o cálculo do número de troca de ferramentas entre duas tarefas.

Literatura

Paiva e Carvalho (2017)

Propuseram o atual estado da arte para o problema: *Iterated Local Search* (ILS).

Encontraram todas as melhores soluções para os três principais conjuntos de instâncias do problema.

Visão geral

Diversas heurísticas foram propostas para tentar solucionar o problema. As principais são:

Busca Tabu, Branch-and-Bound, algoritmos Meméticos e Genéticos, modelos de Programação Linear, Biased Random Key Genetic Algorithm (BRKGA), entre outros.

Problema do Caixeiro Viajante

Definição

Dadas uma lista com n cidades e as respectivas distâncias entre elas, o objetivo é determinar uma rota com menor custo possível, passando uma vez por cada cidade.

Figure: Representação de uma instância do PCV.

Problema do Caixeiro Viajante

Exemplo

Table: Matriz W $n \times n$.

	0	1	2	3
0	-	54	38	79
1	54	-	76	46
2	38	76	-	71
3	79	46	71	-

Solução S = [0, 2, 1, 3, 0], custo 239:

- Distância da cidade 0 para 2: 38;
- Distância da cidade 2 para 1: 76 (acumulado = 114);
- Distância da cidade 1 para 3: 46 (acumulado = 160);
- ▶ Distância da cidade 3 para 0: 79 (acumulado = 239).

Problema do Caixeiro Viajante

Abordagens

Métodos Heurísticos:

▶ Desempenho diminui de acordo com o aumento de *n*.

Métodos Exatos:

Necessário muito tempo para soluções.

O resolvedor Concorde (Applegate et at. 2003)

- Atual estado da arte para o PCV;
- Resolveu todas as instâncias da TSPLIB;
 - Maior instância contem 85.900 cidades;
- Método exato.

O resolvedor Concorde

Características

A exatidão se deve a utilização do método de plano de cortes, que resolve os problemas utilizando técnicas de relaxação linear.

- Documentação incompleta e sem suporte oficial para sua utilização;
- Relatório técnico sobre a instalação e uso do resolvedor foi desenvolvido a partir deste trabalho.

O Problema de Minimização de Trocas de Ferramentas e o Problema do Caixeiro Viajante

Relacionando os problemas

No caso geral, não são equivalentes entre si, mas ambos podem ser modelados considerando um grafo completo.

Vértices:

- Para o PCV representa uma cidade;
- Para o MTSP representa uma tarefa.

Peso das arestas:

- Para o PCV representa a distância entre duas cidades;
- ▶ Para o MTSP representa o número de troca de ferramentas entre duas tarefas.

O Problema de Minimização de Trocas de Ferramentas e o Problema do Caixeiro Viajante

Como via de regra, os métodos utilizados para solucionar o MTSP utilizando o PCV como parte da solução são heurísticas.

Suas soluções degradadas por dois aspectos:

- Modelagem;
- ► Heurísticas.

Cálculo da distância entre duas tarefas

Hertz et al. 1998 apresentaram cinco definições para cálculo de distância entre duas tarefas.

As três primeiras definições consideram duas tarefas subsequentes i e j.

As demais consideram os conjuntos de ferramentas carregadas na máquina antes do processamento da tarefa i e depois do processamento da tarefa j.

24 / 34

Definição 1 (Crama et al. 1994)

Determina quantas ferramentas permanecerão na máquina ao trocar tarefa i por j.

$$d_{ij} = C - \mid F_i \cap F_j \mid \tag{3}$$

Definição 2 (Crama et al. 1994)

Considera a diferença simétrica entre os conjuntos F_i e F_j .

$$d_{ij} = \mid F_i \cup F_j \mid - \mid F_i \cap F_j \mid \tag{4}$$

Definição 3 (adaptada por Crama et al. 1994)

$$d_{ij} = \max\{0, |F_i \cup F_j| - C\}$$
 (5)

A maioria dos autores utiliza essa definição.

Definição 4 (Hertz et al. 1998)

Adota um critério de frequência para a permanência das ferramentas.

$$d_{ij} = \max\left\{0, \mid F_i \cup F_j \mid -\left[\theta \frac{\Lambda(ij)}{(n-2)\mid F_i \cup F_j \mid}\right]C\right\}$$
 (6)

Subtrai de $| F_i \cup F_j |$ uma quantidade [0, C] de ferramentas:

- Maior quando as ferramentas da união são utilizadas com frequência;
- Menor caso contrário.

Definição 4 (Hertz et al. 1998)

$$d_{ij} = \max\left\{0, \mid F_i \cup F_j \mid -\left[\theta \frac{\Lambda(ij)}{(n-2)\mid F_i \cup F_j \mid}\right]C\right\}$$
 (7)

- $\Lambda(ij) = \sum_{k \in F_i \cup F_j} \lambda_k(ij)$, representa o total das frequência de todas as ferramentas utilizadas para processar duas tarefas $i \in j$;
- $ightharpoonup \lambda_k(ij)$, indica o número de tarefas, excluindo-se as tarefas i e j, que requerem da ferramenta $k \in F_i \cup F_j$;
- Parâmetro $\theta \in [0, 1]$.

Túlio Azevedo (UFOP)

Definição 5 (Hertz et al. 1998)

- Primeira parte da equação proporciona maior peso a $|F_i \cup F_j|$ se a capacidade da máquina for menor;
- Segunda parte é no mínimo 1:
 - Maior caso as ferramentas da união forem utilizadas raramente;
 - Menor caso contrário.

$$d_{ij} = \left(\left[\frac{c+1}{c} \right] \mid F_i \cup F_j \mid - \mid F_i \cap F_j \mid \right) \left[\frac{(n-2) \mid F_i \cup F_j \mid}{\max\{\Lambda(ij), 0.5\}} \right] \tag{8}$$

De acordo com os autores, foi a definição que reportou os melhores resultados.

◆□▶ ◆圖▶ ◆불▶ ◆불▶ 의익○

Plano de atividades restantes

Atividades

- Implementação da modelagem;
- Realização de experimentos computacionais;
- Descrição dos experimentos;
- Análise dos experimentos;
- Conclusão da Monografia.

Conclusão

Considerações finais

A modelagem mais comumente encontrada na literatura não emprega exatidão em seus métodos.

Soluções são degradadas devido a dois fatores:

- Modelagem;
- Heurísticas.

Para a conclusão do trabalho, é proposta a invocação do resolvedor Concorde, utilizando como distância entre duas tarefas cada uma das cinco definições.

Assim será possível mensurar a qualidade da modelagem utilizada.

Referências

Applegate, D.; Cook, W. e Rohe, A. (2003). Chained lin-kernighan for large traveling salesmanproblems. INFORMS Journal on Computing, 15(1):82–92.

Crama, Y.; Kolen, A. W. J.; Oerlemans, A. G. e Spieksma, F. C. R. (1994). Minimizing thenumber of tool switches on a flexible machine. International Journal of Flexible Manufac-turing Systems, 6(1):33–54.

Hertz, A.; Laporte, G.; Mittaz, M. e Stecke, K. E. (1998). Heuristics for minimizing toolswitches when scheduling part types on a flexible machine.IIE transactions, 30(8):689–694.

Paiva, G. S. e Carvalho, M. A. M. (2017). Improved heuristic algorithms for the job sequencing and tool switching problem. Computers Operations Research, 88:208-219

Obrigado!