### Representation of Quivers

Chanelle Lee Student ID: 200646370 Supervisor: William Crawley-Boevey

December 9, 2014

## Contents

| 1 | Introduction                                            | 9 |
|---|---------------------------------------------------------|---|
| 2 | Homological Algebra 2.1 Chain Complexes                 | 4 |
| 3 | Representation of Quivers 3.1 Quivers and Path Algebras | 9 |

# Chapter 1

## Introduction

### Chapter 2

## Homological Algebra

#### 2.1 Chain Complexes

**Definition 2.1.1.** A chain complex  $C_{\bullet}$  consists of a sequence of  $\mathbb{R}$ -modules  $C_i$   $(i \in \mathbb{Z})$  and morphisms of the form,

$$\mathbf{C}: \qquad \dots \xrightarrow{\delta_3} C_2 \xrightarrow{\delta_2} C_1 \xrightarrow{\delta_1} C_0 \xrightarrow{\delta_0} C_{-1} \xrightarrow{\delta_{-1}} C_{-2} \xrightarrow{\delta_{-2}} \dots$$

such that  $\delta_{n-1}\delta_n=0$  for all n, i.e. the composition of any two consecutive maps is zero. The maps  $\delta_n$  are called the *differentials* of C.

**Remark 2.1.2.** It is convention that the map  $\delta_n$  starts at  $C_n$ .

**Example 2.1.3.** If we have a field K then we can create the following chain complex:

$$\mathbf{C}: \qquad \dots \to 0 \to K^2 \xrightarrow{\begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}} K^3 \xrightarrow{(0 \ 0 \ 1)} K \to 0 \to \dots$$

We can clearly see that the maps uphold the  $\delta^2=0$  condition as,

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix}.$$

**Example 2.1.4.** If we consider the sequence,

$$\dots \to 0 \to K \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} K^2 \xrightarrow{(1\ 0)} K \to 0 \to \dots$$

however,

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 \neq 0.$$

Hence,  $\delta^2 \neq 0$  and so the sequence is not a chain complex. However, if we change the second map slightly we obtain the chain complex,

$$\mathbf{C}: \qquad \dots \to 0 \to K \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} K^2 \xrightarrow{(0\ 1)} K \to 0 \to \dots$$

since,

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1 \neq 0.$$

**Definition 2.1.5.** If **C** is a chain complex then its *homology* is defined to be,

$$H_n(\mathbf{C}) = \frac{Ker(\delta_n : C_n \to C_{n-1})}{Im(\delta_{n+1} : C_{n+1} \to C_n)} = \frac{Z_n(\mathbf{C})}{B_n(\mathbf{C})}.$$

This becomes an  $\mathbb{R}$ -module and, since  $\delta^2$ , it follows that  $B_n(\mathbf{C}) \subseteq Z_n(\mathbf{C})$ .

The following Lemma is the solution to Exercise 6.1 in [3].

**Lemma 2.1.6.** If **C** is a chain complex with  $C_n = 0$  for some n then  $H_n(\mathbf{C}) = 0$ 

*Proof.* Well suppose we have such a chain complex,

$$\mathbf{C}: \qquad \ldots \to C_{n+1} \xrightarrow{\delta_{n+1}} 0 \xrightarrow{\delta_n} C_{n-1} \to \ldots$$

the the homology is,

$$H_n(\mathbf{C}) = \frac{Ker(\delta_n : 0 \to C_{n-1})}{Im(\delta_{n+1} : C_{n+1} \to 0)},$$

as the only element in  $C_n$  is the zero element, and so,  $H_n(\mathbf{C}) = 0$ , as required.

Examples 2.1.7 and 2.1.10 are taken from [1] and are included here because they are felt to be the clearest at demonstrating a chain complex and homology, however, the more general statement of the second example is presented as Proposition 2.1.8 because it is an interesting result.

**Example 2.1.7.** If we take a module M then we can make a chain complex;

$$\mathbf{C}: \ldots \to 0 \to M \to 0 \to \ldots$$

where M is at degree n. Then the homology will be:

$$H_i(\mathbf{C}) = \begin{cases} \frac{Ker(M \to 0)}{Im(0 \to M)} = M & i = n, \\ 0 & \text{otherwise.} \end{cases}$$

**Proposition 2.1.8.** If we have a module homomorphism between R-modules,  $f: M \to N$ , the we get the chain complex,

C: 
$$\dots \xrightarrow{deg} 0 \xrightarrow{n+2} M \xrightarrow{f} N \xrightarrow{n} 0 \xrightarrow{n-1} \dots$$

and the homology becomes,

$$H_i(\mathbf{C}) = \begin{cases} \frac{N}{Im(f)} = Coker(f) & i = n\\ Ker(f) & i = n+1\\ 0 & otherwise. \end{cases}$$

*Proof.* Firstly, at degree n we have that,

$$H_n(\mathbf{C}) = \frac{Ker(N \to 0)}{Im(M \xrightarrow{f} N)} = \frac{N}{Im(f)} = Coker(f).$$

Then at degree n+1 we have that,

$$H_{n+1}(\mathbf{C}) = \frac{Ker(M \xrightarrow{f} N)}{Im(0 \to M)} = Ker(f).$$

Finally, it is clear that everywhere else there is no homology.

Notation 2.1.9. Here,

$$Coker(f) = \frac{\text{Codomain of } f}{\text{Image of } f},$$

is the cokernel of the map f.

**Example 2.1.10.** We can have a chain complex of  $\mathbb{Z}$ -modules,

$$\mathbf{C}: \qquad \dots \to 0 \to \mathbb{Z} \xrightarrow{a} \mathbb{Z} \to 0 \to \dots$$

where the map a is right multiplication by some  $a \in \mathbb{Z}$ . The homology is,

$$H_i(\mathbf{C}) = \begin{cases} \frac{Ker(\mathbb{Z} \to 0)}{Im(\mathbb{Z} \to \mathbb{Z})} = \frac{\mathbb{Z}}{a\mathbb{Z}} & i = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Note that,

$$H_0(C) = \frac{\mathbb{Z}}{a\mathbb{Z}} = \frac{\text{Codomain of } f}{\text{Image of } f} = Coker(a).$$

Also,

$$H_1(C) = \frac{Ker(\mathbb{Z} \xrightarrow{a} \mathbb{Z})}{Im(0 \to \mathbb{Z})} = Ker(a) = 0,$$

because Ker(a) is empty.

**Definition 2.1.11.** • The elements of  $B_n(\mathbf{C})$  are called n-boundaries.

• The elements of  $Z_n(\mathbf{C})$  are called n-cycles.

**Remark 2.1.12.** If  $x \in Z_n(\mathbf{C})$  then its image in  $H_n(\mathbf{C})$  is usually written as [x].

**Definition 2.1.13.** A chain complex **C** is said to be:

- acyclic if  $H_n(\mathbf{C}) = 0$  for all n.
- bounded above if there exists some  $n \in \mathbb{N}$ ,  $C_k = 0$  for all k > n.
- bounded below if for some  $n \in \mathbb{N}$ ,  $C_k = 0$  for all k < n.
- bounded if it is bounded above and below.
- non-negative if  $C_n = 0$  for n < 0.

**Example 2.1.14.** All the chain complexes in the previous examples are bounded both above and below, however, neither is acyclic as they both have instances where the homology is non-zero. The chain complex in Example 2.1.10 is non-negative because  $C_n \neq 0$  only when n = 0, 1.

**Example 2.1.15.** If we take another look at the chain complex in Example 2.1.4,

$$\mathbf{C}: \qquad \dots \xrightarrow{\deg} \rightarrow 0 \rightarrow K \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} K_0^2 \xrightarrow{(0\ 1)} K \rightarrow 0 \rightarrow \dots$$

the homologies are,

$$H_{1}(\mathbf{C}) = \frac{Ker(K \xrightarrow{\left(\begin{array}{c} 1\\0\end{array}\right)} K^{2})}{Im(0 \to K)} \cong \frac{K}{K} \cong 0,$$

$$H_{0}(\mathbf{C}) = \frac{Ker(K^{2} \xrightarrow{\left(\begin{array}{c} 1\\0\end{array}\right)} K)}{Im(K \xrightarrow{\left(\begin{array}{c} 1\\0\end{array}\right)} K^{2})} \cong \frac{K}{K} \cong 0,$$

$$H_{-1}(\mathbf{C}) = \frac{Ker(K \to 0)}{Im(K^{2} \xrightarrow{\left(\begin{array}{c} 1\\0\end{array}\right)} K))} \cong \frac{K}{K} \cong 0.$$

Thus  $H_n(\mathbf{C}) = 0$  for all n and so  $\mathbf{C}$  is an acyclic chain complex. Later in the report, we will see that  $\mathbf{C}$  is in fact a short exact sequence.

Example 2.1.16. The chain complex,

$$\mathbf{C}: \qquad \dots \xrightarrow{3} \frac{\mathbb{Z}}{9\mathbb{Z}} \xrightarrow{3} \frac{\mathbb{Z}}{9\mathbb{Z}} \xrightarrow{3} \frac{\mathbb{Z}}{9\mathbb{Z}} \to \dots$$

where the differentials are the maps,

$$\delta_n: \frac{\mathbb{Z}}{9\mathbb{Z}} \to \frac{\mathbb{Z}}{9\mathbb{Z}}, z + 9\mathbb{Z} \mapsto 3z + 9\mathbb{Z},$$

is unbounded. It is also acyclic, since the homology is,

$$H_n(\mathbf{C}) = \frac{Ker(\delta_n : \frac{\mathbb{Z}}{9\mathbb{Z}} \to \frac{\mathbb{Z}}{9\mathbb{Z}})}{Im(\delta_n : \frac{\mathbb{Z}}{9\mathbb{Z}} \to \frac{\mathbb{Z}}{9\mathbb{Z}})} \cong \frac{\mathbb{Z}/3\mathbb{Z}}{\mathbb{Z}/3\mathbb{Z}} \cong 0,$$

for all n.

**Definition 2.1.17.** A cochain complex  $C^{\bullet}$  consists of a sequence of  $\mathbb{R}$ -modules  $C^{i}$   $(i \in \mathbb{Z})$  and morphisms of the form,

$$\mathbf{C}: \qquad \dots \xrightarrow{\delta^{-3}} C^{-2} \xrightarrow{\delta^{-2}} C^{-1} \xrightarrow{\delta^{-1}} C^0 \xrightarrow{\delta^0} C^1 \xrightarrow{\delta^1} C^2 \xrightarrow{\delta^2} \dots$$

such that  $\delta^{n-1}\delta^n=0$  for all n, i.e. the composition of any two consecutive maps is zero.

**Remark 2.1.18.** Chain and cochain complexes can be thought of as almost identical constructs with the only difference being thenumbering of the chain. The degree of a chain complex *decreases* from left to right, whereas, the degree of a cochain complex *increses* from left to right. So, we can compute one from the other by setting  $C^{-n} = C_n$ , or equivalently  $C^n = C_{-n}$ ; this is called *renumbering*.

**Definition 2.1.19.** If **C** is a cochain complex then its *cohomology* is defined to be,

$$H^n(\mathbf{C}) = \frac{Ker(\delta^n: C^n \to C^{n+1})}{Im(\delta^{n-1}: C^{n-1} \to C^n)} = \frac{Z^n(\mathbf{C})}{B^n(\mathbf{C})}.$$

- The elements of  $B_n(\mathbf{C})$  are called n-coboundaries
- The elements of  $Z_n(\mathbf{C})$  are called n-cocycles.

**Example 2.1.20.** We can renumber the chain complex in Example 2.1.10 to get the cochain complex,

$$\mathbf{C}: \qquad \dots \xrightarrow{\deg} \xrightarrow{-2} \xrightarrow{-2} \xrightarrow{a} \underset{0}{\mathbb{Z}} \xrightarrow{0} \xrightarrow{1} \dots$$

Its cohomology is,

$$H^{i}(\mathbf{C}) = \begin{cases} \frac{Ker(\mathbb{Z} \to 0)}{Im(\mathbb{Z} \to \mathbb{Z})} = \frac{\mathbb{Z}}{a\mathbb{Z}} & i = 0, \\ 0 & \text{otherwise.} \end{cases}$$

**Definition 2.1.21.** Let  $\mathbb{C}$  be a chain complex of left R-modules. If  $\mathbb{M}$  is a left R-module then  $Hom(\mathbb{C}, \mathbb{M})$  is the cochain complex where,

$$Hom(\mathbf{C}, M)^n = Hom(C_n, M),$$

and the differentials,

$$\delta^n: Hom(\mathbf{C}, M)^n \to Hom(C, M)^{n+1}$$

are induced by the differentials of  $\mathbb{C}$ ,  $\delta_n : C_{n+1} \to C_n$ . The cohomology of this cochain complex is denoted  $H^n(\mathbb{C}, M)$ .

The following example is a generalised version of one found in [1].

Example 2.1.22. Consider the acyclic chain complex,

$$\mathbf{C}: \qquad \dots \to 0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \xrightarrow{nat} \frac{\mathbb{Z}}{n\mathbb{Z}} \to \dots$$

$$\underset{\mathrm{deg}}{\text{deg}} \qquad \qquad 1 \qquad \qquad 0 \qquad \qquad \frac{\mathbb{Z}}{-1}$$

So applying  $Hom(-,\mathbb{Z})$  we gives the cochain complex,

$$\mathbf{C}': \qquad \ldots \to 0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \xrightarrow{nat} \frac{\mathbb{Z}}{n\mathbb{Z}} \to \ldots$$

$$\underset{\mathrm{deg}}{\operatorname{deg}} \qquad 1 \qquad 0 \qquad \xrightarrow{n} \frac{\mathbb{Z}}{n\mathbb{Z}} \to \ldots$$

which has cohomology,

$$H^{i}(\mathbf{C}', \mathbb{Z}) = \begin{cases} \frac{Ker(\mathbb{Z} \to 0)}{Im(\mathbb{Z} \xrightarrow{n} \mathbb{Z})} \cong \frac{\mathbb{Z}}{n\mathbb{Z}} & i = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Notice that despite the chain complex being acyclic, its cohomology induced by  $Hom(-,\mathbb{Z})$  is not zero everywhere.

### Chapter 3

## Representation of Quivers

#### 3.1 Quivers and Path Algebras

**Definition 3.1.1.** A *quiver* is defined as the tuple of sets and functions,  $\mathbf{Q} = (Q_0, Q_1, s, t : Q_1 \to Q_0)$  such that:

- $Q_0$  is the set of vertices, which we will set to be the finite set  $\{1, 2, \dots, n\}$ .
- $Q_1$  is the set of arrows, which we will also set to be finite.
- Functions s, t such that an arrow  $\rho \in Q_1$  starts at the vertex  $s(\rho) \in Q_0$  and terminates at the vertex  $t(\rho) \in Q_0$ , i.e.  $\rho : s(\rho) \to t(\rho)$ .

**Example 3.1.2.** A quiver  $Q = (Q_0, Q_1, s, t : Q_1 \to Q_0)$  where  $Q_0 = \{1, 2, 3, 4\}$ ,  $Q_1 = \{\alpha, \beta\}$ , and s, t are defined such that;

$$\begin{split} s:&Q_1\to Q_0,\quad \alpha\mapsto 1,\ \beta\mapsto 2,\ \gamma\mapsto 4\\ t:&Q_1\to Q_0,\quad \alpha\mapsto 2,\ \beta\mapsto 3,\ \gamma\mapsto 3, \end{split}$$

looks like,



**Definition 3.1.3.** A non-trivial path, p, in a quiver is a sequence of arrows  $\rho_1, \ldots, \rho_n$  which satisfies  $t(\rho_{i+1}) = s(\rho_i)$  for all  $1 \le i < n$ , i.e. the start of an arrow is where the previous arrow terminated. The starting and terminatinating vertex of a path p are denoted s(p) and t(p), respectively.

**Notation 3.1.4.** In this report the arrows in a path will be ordered the same way as the composition of functions, as in [2], however, be aware that other publications may order the arrows the opposite way.

**Definition 3.1.5.** The *trivial path* is the path which contains no arrows, i.e. it is a single vertex, and is denoted  $e_i$  where the vertex is i.

**Example 3.1.6.** The paths of the quiver in Example 3.1.2 are:

$$p_1 = e_1, \quad p_2 = e_2, \quad p_3 = e_3, \quad p_4 = e_4, \quad p_5 = \alpha, \quad p_6 = \beta, \quad p_7 = \gamma, \quad p_8 = \beta\alpha.$$

However,  $\gamma \beta \alpha$  is not a path because  $t(\gamma) = 3 \neq s(\beta) = 2$ .

**Definition 3.1.7.** A path algebra kQ is the k-alegbra which has the basis all the paths in Q, and the product of two paths p, q is defined as,

$$pq = \begin{cases} \text{obvious composition} & \text{if } t(q) = s(p), \\ 0 & \text{otherwise.} \end{cases}$$

This multiplication is assosciative.

**Example 3.1.8.** If we once again use the quiver Q from Example 3.1.2, then, from Example 3.1.6, we know the basis of the path algebra kQ will be,

$$\{e_1, e_2, e_3, e_4, \alpha, \beta, \gamma, \beta\alpha\}.$$

The product of  $\beta$  and  $\alpha$  is  $\beta\alpha$ , but the product of  $\alpha$  and  $\beta$  is zero, and the product of  $e_2$  and  $\alpha$  is just  $\alpha$ .

**Example 3.1.9.** If Q is the following quiver,

$$\mathbf{Q}:$$
  $\alpha \subset 1 \supset \beta$ 

forms the path algebra  $kQ \cong k[X,Y]$ , the free, assosciative algebra on two letters. In fact, if we have a quiver with a single vertex and n loops, then this can be associated with the free, assosciated algebra on n letters.

Example 3.1.10. If we have the quiver,

$$\mathbf{Q}:$$
  $1$   $\alpha$   $2$   $\beta$   $3$   $\gamma$   $4$ 

the the path algebra,  $kQ \cong UT_4(k)$  by the isomorphism,

$$\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 + \lambda_4 e_4 + \lambda_5 \alpha +$$

$$\lambda_6 \beta + \lambda_7 \gamma + \lambda_8 \beta \alpha + \lambda_9 \gamma \beta \alpha + \lambda_{10} \gamma \beta \mapsto \begin{pmatrix} \lambda_4 & \lambda_7 & \lambda_{10} & \lambda_9 \\ 0 & \lambda_3 & \lambda_6 & \lambda_8 \\ 0 & 0 & \lambda_2 & \lambda_5 \\ 0 & 0 & 0 & \lambda_1 \end{pmatrix}$$

Generally, a quiver of the form,

$$\mathbf{Q}': \qquad \overbrace{1} \qquad \stackrel{\alpha}{\longrightarrow} \underbrace{2} \qquad \stackrel{\beta}{\longrightarrow} \cdots \qquad \stackrel{\gamma}{\longrightarrow} \underbrace{\mathbf{n}}$$

induces a path alegbra  $kQ' \cong UT_n(k)$  for any n.

**Example 3.1.11.** In fact, we find that if Q is the same quiver as above in Example 3.1.10, then  $kQ \cong LT_4(k)$  as well, through the isomorphism,

$$\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 + \lambda_4 e_4 + \lambda_5 \alpha +$$

$$\lambda_6 \beta + \lambda_7 \gamma + \lambda_8 \beta \alpha + \lambda_9 \gamma \beta \alpha + \lambda_{10} \gamma \beta \mapsto \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ \lambda_5 & \lambda_2 & 0 & 0 \\ \lambda_8 & \lambda_6 & \lambda_3 & 0 \\ \lambda_9 & \lambda_{10} & \lambda_7 & \lambda_4 \end{pmatrix}.$$

Once again, this extends to the general case that,  $kQ' \cong LT_n(k)$ .

The following results about the idempotents of path alegebras are from [2], however, we have either given a proof or expanded upon the one given. For the following results we set A = kQ and the  $e_i$  are the trivial paths of Q.

**Lemma 3.1.12.** The  $e_i$  are orthogonal, idempotents in A, i.e.  $e_ie_i = e_i$  and  $e_ie_j = 0$  where  $i \neq j$ . Thus  $\sum_{i=1}^n e_i = 1_A$ .

*Proof.* Well, obviously,  $e_i e_j = 0$  when  $i \neq j$  because  $t(e_j) \neq s(e_i)$  because they are the trivial paths at different vertices, i and j. Similarly, if we have the product  $e_i e_i$  then the composition makes sense here because  $t(e_i) = s(e_i)$ , but the composition is just  $e_i$  because if we travel along the trivial path  $e_i$  twice, then this is just the same as travelling the trivial path.

If we have some path p of the quiver, then bear in mind that,

$$e_i p = \begin{cases} e_i p = p & \text{if } i = t(p), \\ 0 & \text{otherwise.} \end{cases}$$

Hence, the sum of the trivial paths acting on our path p becomes,

$$\left(\sum_{i=1}^{n} e_i\right) p = (e_1 + e_2 + \dots + e_n) p = e_i p = p = 1_A p,$$

because only one of the  $e_i$  in the sum will satisfy i=t(p) and all the rest will give zero. Similarly, we can show that  $p(\sum_{i=1}^n e_i) = p1_A$ .

**Lemma 3.1.13.** The bases of the spaces  $Ae_i$  and  $e_jA$  are the paths starting at i and the paths terminating at j, respectively. It then follows that the space  $e_jAe_i$  has as a basis the paths starting at i and the paths terminating at j.

Example 3.1.14. If we have the quiver,



the we can see that

# Bibliography

- [1] Crawley-Boevey, W. Cohomology and Central Simple Algebras. [Online-PDF file]. [Accessed October 2014]. Available from: http://www1.maths.leeds.ac.uk/pmtwc/cohom.pdf
- [2] Crawley-Boevey, W. Representation of Quivers. [Online-PDF file]. [Accessed October 2014]. Available from: http://www1.maths.leeds.ac.uk/pmtwc/quivlecs.pdf
- [3] Rotman, J. J. 2009. An Introduction to Homological Algebra 2nd ed. New York: Springer Science+Business Media.