Deep Learning & Applied AI

Multi-layer perceptron and back-propagation

Emanuele Rodolà rodola@di.uniroma1.it

A glimpse into neural networks

In deep learning, we deal with highly parametrized models called deep neural networks:

The simplest example of a nonlinear parametric model:

$$f\circ f(\mathbf{x})$$

The simplest example of a nonlinear parametric model:

$$\underbrace{f}_{\text{linear}} \circ \underbrace{f}_{\text{linear}}(\mathbf{x})$$

The simplest example of a nonlinear parametric model:

$$\underbrace{f \circ f}_{\text{linear}}(\mathbf{x})$$

The simplest example of a nonlinear parametric model:

$$\sigma \circ f(\mathbf{x})$$

If σ is the logistic function, we have logistic regression.

The simplest example of a nonlinear parametric model:

$$\sigma \circ f(\mathbf{x})$$

If σ is the logistic function, we have logistic regression.

Consider multiple layers of logistic regression models:

$$\underbrace{(\sigma \circ f)}_{\text{layer}} \circ (\sigma \circ f) \circ \cdots \circ \underbrace{(\sigma \circ f)}_{\text{layer}} (\mathbf{x})$$

The simplest example of a nonlinear parametric model:

$$\sigma \circ f(\mathbf{x})$$

If σ is the logistic function, we have logistic regression.

Consider multiple layers of logistic regression models:

$$\mathsf{output} \leftarrow \underbrace{(\sigma \circ f)}_{\mathsf{layer}\ n} \circ (\sigma \circ f) \circ \cdots \circ \underbrace{(\sigma \circ f)}_{\mathsf{layer}\ 1} (\mathbf{x}) \leftarrow \mathsf{input}$$

The simplest example of a nonlinear parametric model:

$$\sigma \circ f(\mathbf{x})$$

If σ is the logistic function, we have logistic regression.

Consider multiple layers of logistic regression models:

$$\text{output} \leftarrow \underbrace{(\sigma \circ f)}_{\text{output layer}} \circ (\sigma \circ f) \circ \cdots \circ \underbrace{(\sigma \circ f)}_{\text{input layer}} (\mathbf{x}) \leftarrow \text{input}$$

The simplest example of a nonlinear parametric model:

$$\sigma \circ f(\mathbf{x})$$

If σ is the logistic function, we have logistic regression.

Consider multiple layers of logistic regression models:

$$\texttt{output} \leftarrow \underbrace{(\sigma \circ f)}_{\texttt{output layer}} \circ (\sigma \circ f) \circ \cdots \circ \underbrace{(\sigma \circ f)}_{\texttt{input layer}} (\mathbf{x}) \leftarrow \texttt{input}$$

More in general, consider other activation functions:

$$\sigma(x) = \frac{1}{1+e^{-x}} \qquad \sigma(x) = \max\{0,x\}$$
 continuous discontinuous gradient

We call the composition:

$$(\sigma \circ f) \circ (\sigma \circ f) \circ \cdots \circ (\sigma \circ f)(\mathbf{x})$$

a multi-layer perceptron (MLP) or deep feed-forward neural network.

We call the composition:

$$g_{\mathbf{\Theta}}(\mathbf{X}) = (\sigma \circ f_{\mathbf{\Theta}_n}) \circ (\sigma \circ f_{\mathbf{\Theta}_{n-1}}) \circ \cdots \circ (\sigma \circ f_{\mathbf{\Theta}_1})(\mathbf{X})$$

a multi-layer perceptron (MLP) or deep feed-forward neural network.

The weights of the MLP are scattered across the layers.

We call the composition:

$$g_{\mathbf{\Theta}}(\mathbf{x}) = (\sigma \circ f_{\mathbf{\Theta}_n}) \circ (\sigma \circ f_{\mathbf{\Theta}_{n-1}}) \circ \cdots \circ (\sigma \circ f_{\mathbf{\Theta}_1})(\mathbf{x})$$

a multi-layer perceptron (MLP) or deep feed-forward neural network.

The weights of the MLP are scattered across the layers.

Each layer outputs an intermediate hidden representation:

$$\mathbf{x}_{\ell+1} = \sigma_{\ell}(\mathbf{W}_{\ell}\mathbf{x}_{\ell} + \mathbf{b}_{\ell})$$

where we encode the weights in matrix \mathbf{W}_{ℓ} and bias $\mathbf{b}_{\ell}.$

We call the composition:

$$g_{\boldsymbol{\Theta}}(\mathbf{X}) = (\sigma \circ f_{\boldsymbol{\Theta}_n}) \circ (\sigma \circ f_{\boldsymbol{\Theta}_{n-1}}) \circ \cdots \circ (\sigma \circ f_{\boldsymbol{\Theta}_1})(\mathbf{X})$$

a multi-layer perceptron (MLP) or deep feed-forward neural network.

The weights of the MLP are scattered across the layers.

Each layer outputs an intermediate hidden representation:

$$\mathbf{x}_{\ell+1} = \sigma_{\ell}(\mathbf{W}_{\ell}\mathbf{x}_{\ell} + \mathbf{b}_{\ell})$$

where we encode the weights in matrix \mathbf{W}_{ℓ} and bias \mathbf{b}_{ℓ} .

The hidden representations are sometimes called the activations at layer $\ell+1$.

At each hidden layer we have:

$$\mathbf{x}_{\ell+1} = \sigma_\ell(\mathbf{W}_\ell \mathbf{x}_\ell {+} \mathbf{b}_\ell)$$

At each hidden layer we have:

$$\mathbf{x}_{\ell+1} = \sigma_{\ell}(\mathbf{W}_{\ell}\mathbf{x}_{\ell} + \mathbf{b}_{\ell})$$

Each row is called a hidden unit or neuron:

$$\mathbf{W}\mathbf{x} = \begin{pmatrix} -- & \text{neuron } -- \\ \vdots & & \\ -- & \text{neuron } -- \end{pmatrix} \begin{pmatrix} | \\ \mathbf{x} \\ | \end{pmatrix}$$

At each hidden layer we have:

$$\mathbf{x}_{\ell+1} = \sigma_{\ell}(\mathbf{W}_{\ell}\mathbf{x}_{\ell} + \mathbf{b}_{\ell})$$

Each row is called a hidden unit or neuron:

$$\mathbf{W}\mathbf{x} = \begin{pmatrix} -- \text{ neuron } -- \\ \vdots \\ -- \text{ neuron } -- \end{pmatrix} \begin{pmatrix} | \\ \mathbf{x} \\ | \end{pmatrix}$$

We have two interpretations:

① Each layer is a vector-to-vector function $\mathbb{R}^p \to \mathbb{R}^q$.

At each hidden layer we have:

$$\mathbf{x}_{\ell+1} = \sigma_{\ell}(\mathbf{W}_{\ell}\mathbf{x}_{\ell} + \mathbf{b}_{\ell})$$

Each row is called a hidden unit or neuron:

$$\mathbf{W}\mathbf{x} = \begin{pmatrix} -- \text{ neuron } -- \\ \vdots \\ -- \text{ neuron } -- \end{pmatrix} \begin{pmatrix} | \\ \mathbf{x} \\ | \end{pmatrix}$$

We have two interpretations:

- **①** Each layer is a vector-to-vector function $\mathbb{R}^p o \mathbb{R}^q$.
- **2** Each layer has q neurons acting in parallel. Each neuron acts as a scalar function $\mathbb{R}^p \to \mathbb{R}$.

$$\sigma(\mathbf{W}\mathbf{x}) = \sigma \circ \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ w_{m1} & w_{m2} & \cdots & w_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \sigma \circ \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$\sigma(\mathbf{W}\mathbf{x}) = \sigma \circ \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ w_{m1} & w_{m2} & \cdots & w_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \sigma \circ \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$\sigma(\mathbf{W}\mathbf{x}) = \sigma \circ \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ w_{m1} & w_{m2} & \cdots & w_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \sigma \circ \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$\sigma(\mathbf{W}\mathbf{x}) = \sigma \circ \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ w_{m1} & w_{m2} & \cdots & w_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \sigma \circ \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$\sigma(\mathbf{W}\mathbf{x}) = \sigma \circ \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ w_{m1} & w_{m2} & \cdots & w_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \sigma \circ \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

Output layer

The output layer determines the co-domain of the network:

$$\mathbf{y} = (\sigma \circ f) \circ (\sigma \circ f) \circ \cdots \circ (\sigma \circ f)(\mathbf{x})$$

Output layer

The output layer determines the co-domain of the network:

$$\mathbf{y} = (\sigma \circ f) \circ (\sigma \circ f) \circ \cdots \circ (\sigma \circ f)(\mathbf{x})$$

If σ is the logistic sigmoid, the entire network will map:

$$\mathbb{R}^p \to (0,1)^q$$

Output layer

The output layer determines the co-domain of the network:

$$\mathbf{y} = (\sigma \circ f) \circ (\sigma \circ f) \circ \cdots \circ (\sigma \circ f)(\mathbf{x})$$

If σ is the logistic sigmoid, the entire network will map:

$$\mathbb{R}^p \to (0,1)^q$$

It is common to have a linear layer at the output:

$$\mathbf{y} = f \circ (\sigma \circ f) \circ \cdots \circ (\sigma \circ f)(\mathbf{x})$$

which maps:

$$\mathbb{R}^p \to \mathbb{R}^q$$

Let's add a linear layer at the output:

$$\mathbf{y} = f \circ (\sigma \circ f) \circ \cdots \circ (\sigma \circ f)(\mathbf{x})$$

Let's add a linear layer at the output:

$$\mathbf{y} = f \circ \sigma(\cdots)(\mathbf{x})$$

Then, ${\bf y}$ is a combination of "ridge functions" $\sigma(\cdots)$.

Let's add a linear layer at the output:

$$\mathbf{y} = f \circ \sigma(\cdots)(\mathbf{x})$$

Then, **y** is a combination of "ridge functions" $\sigma(\cdots)$.

For a 2-layer network with activation $\sigma(x) = \max\{0, x\}$ (rectifier), we get a piecewise-linear function:

Let's add a linear layer at the output:

$$\mathbf{y} = f \circ \sigma(\cdots)(\mathbf{x})$$

Then, **y** is a combination of "ridge functions" $\sigma(\cdots)$.

For a 2-layer network with activation $\sigma(x) = \max\{0, x\}$ (rectifier), we get a piecewise-linear function:

The blue and red edges are produced by the first and second layer.

What class of functions can we represent with a MLP?

What class of functions can we represent with a MLP? If σ is sigmoidal, we have the following:

Universal Approximation Theorem For any compact set $\Omega \subset \mathbb{R}^p$, the space spanned by the functions $\phi(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ is dense in $\mathcal{C}(\Omega)$ for the uniform convergence.

What class of functions can we represent with a MLP? If σ is sigmoidal, we have the following:

Universal Approximation Theorem For any compact set $\Omega \subset \mathbb{R}^p$, the space spanned by the functions $\phi(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ is dense in $\mathcal{C}(\Omega)$ for the uniform convergence. Thus, for any continuous function f and any $\epsilon > 0$, there exists $g \in \mathbb{N}$ and weights s.t.:

$$|f(\mathbf{x}) - \sum_{k=1}^q u_k \phi(\mathbf{x})| \leq \epsilon \qquad \text{for all } \mathbf{x} \in \Omega$$

What class of functions can we represent with a MLP? If σ is sigmoidal, we have the following:

Universal Approximation Theorem For any compact set $\Omega \subset \mathbb{R}^p$, the space spanned by the functions $\phi(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ is dense in $\mathcal{C}(\Omega)$ for the uniform convergence. Thus, for any continuous function f and any $\epsilon > 0$, there exists $g \in \mathbb{N}$ and weights s.t.:

$$|f(\mathbf{x}) - \sum_{k=1}^q u_k \phi(\mathbf{x})| \leq \epsilon \qquad \text{for all } \mathbf{x} \in \Omega$$

The network in the theorem has just one hidden layer.

What class of functions can we represent with a MLP? If σ is sigmoidal, we have the following:

Universal Approximation Theorem For any compact set $\Omega \subset \mathbb{R}^p$, the space spanned by the functions $\phi(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ is dense in $\mathcal{C}(\Omega)$ for the uniform convergence. Thus, for any continuous function f and any $\epsilon > 0$, there exists $g \in \mathbb{N}$ and weights s.t.:

$$|f(\mathbf{x}) - \sum_{k=1}^q u_k \phi(\mathbf{x})| \le \epsilon$$
 for all $\mathbf{x} \in \Omega$

The network in the theorem has just one hidden layer.

For large enough q, the training error can be made arbitrarily small.

Cybenko, "Approximations by superpositions of sigmoidal functions", 1989

Training

Given a MLP with training pairs $\{\mathbf{x}_i, \mathbf{y}_i\}$:

$$g_{\Theta}(\mathbf{x}_i) = (\sigma \circ f_{\Theta_n}) \circ (\sigma \circ f_{\Theta_{n-1}}) \circ \cdots \circ (\sigma \circ f_{\Theta_1})(\mathbf{x}_i) = \mathbf{y}_i$$

Given a MLP with training pairs $\{\mathbf{x}_i, \mathbf{y}_i\}$:

$$g_{\boldsymbol{\Theta}}(\mathbf{x}_i) = (\sigma \circ f_{\boldsymbol{\Theta}_n}) \circ (\sigma \circ f_{\boldsymbol{\Theta}_{n-1}}) \circ \cdots \circ (\sigma \circ f_{\boldsymbol{\Theta}_1})(\mathbf{x}_i) = \mathbf{y}_i$$

Consider the MSE loss:

$$\ell_{\boldsymbol{\Theta}}(\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{1}{n} \sum_{i=1}^n \|\mathbf{y}_i - g_{\boldsymbol{\Theta}}(\mathbf{x}_i)\|_2^2$$

Solving for the weights Θ is referred to as training.

Given a MLP with training pairs $\{\mathbf{x}_i, \mathbf{y}_i\}$:

$$g_{\boldsymbol{\Theta}}(\mathbf{x}_i) = (\sigma \circ f_{\boldsymbol{\Theta}_n}) \circ (\sigma \circ f_{\boldsymbol{\Theta}_{n-1}}) \circ \cdots \circ (\sigma \circ f_{\boldsymbol{\Theta}_1})(\mathbf{x}_i) = \mathbf{y}_i$$

Consider the MSE loss:

$$\ell_{\boldsymbol{\Theta}}(\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{1}{n} \sum_{i=1}^n \|\mathbf{y}_i - g_{\boldsymbol{\Theta}}(\mathbf{x}_i)\|_2^2$$

Solving for the weights Θ is referred to as training.

The loss is not convex w.r.t. Θ

Given a MLP with training pairs $\{\mathbf{x}_i, \mathbf{y}_i\}$:

$$g_{\Theta}(\mathbf{x}_i) = (\sigma \circ f_{\Theta_n}) \circ (\sigma \circ f_{\Theta_{n-1}}) \circ \cdots \circ (\sigma \circ f_{\Theta_1})(\mathbf{x}_i) = \mathbf{y}_i$$

Consider the MSE loss:

$$\ell_{\boldsymbol{\Theta}}(\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{1}{n} \sum_{i=1}^n \|\mathbf{y}_i - g_{\boldsymbol{\Theta}}(\mathbf{x}_i)\|_2^2$$

Solving for the weights Θ is referred to as training.

The loss is not convex w.r.t. Θ

Only some special cases are convex:

One layer, no activation, MSE loss (⇒ linear regression).

Given a MLP with training pairs $\{\mathbf{x}_i, \mathbf{y}_i\}$:

$$g_{\Theta}(\mathbf{x}_i) = (\sigma \circ f_{\Theta_n}) \circ (\sigma \circ f_{\Theta_{n-1}}) \circ \cdots \circ (\sigma \circ f_{\Theta_1})(\mathbf{x}_i) = \mathbf{y}_i$$

Consider the MSE loss:

$$\ell_{\boldsymbol{\Theta}}(\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{1}{n} \sum_{i=1}^n \|\mathbf{y}_i - g_{\boldsymbol{\Theta}}(\mathbf{x}_i)\|_2^2$$

Solving for the weights Θ is referred to as training.

The loss is not convex w.r.t. Θ

Only some special cases are convex:

- ullet One layer, no activation, MSE loss (\Rightarrow linear regression).
- One layer, sigmoid activation, cross-entropy loss (⇒ logistic regression).

We train using gradient descent-like algorithms.

Bottleneck: Computation of gradients $\nabla \ell_{\Theta}$.

We train using gradient descent-like algorithms.

Bottleneck: Computation of gradients $\nabla \ell_{\Theta}$.

For the basic MSE, this means:

$$\nabla \ell_{\boldsymbol{\Theta}}(\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{1}{n} \sum_{i=1}^n \nabla_{\boldsymbol{\Theta}} \|\mathbf{y}_i - g_{\boldsymbol{\Theta}}(\mathbf{x}_i)\|_2^2$$

We train using gradient descent-like algorithms.

Bottleneck: Computation of gradients $\nabla \ell_{\Theta}$.

For the basic MSE, this means:

$$\nabla \ell_{\boldsymbol{\Theta}}(\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{1}{n} \sum_{i=1}^n \nabla_{\boldsymbol{\Theta}} \| (\mathbf{y}_i - (\sigma(f_{\boldsymbol{\Theta}_n}((\sigma(f_{\boldsymbol{\Theta}_{n-1}}(\cdots(\sigma(f_{\boldsymbol{\Theta}_n}(\mathbf{x}_i))\cdots)))))) \|_2^2$$

We train using gradient descent-like algorithms.

Bottleneck: Computation of gradients $\nabla \ell_{\Theta}$.

For the basic MSE, this means:

$$\nabla \ell_{\boldsymbol{\Theta}}(\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{1}{n} \sum_{i=1}^n \nabla_{\boldsymbol{\Theta}} \| (\mathbf{y}_i - (\sigma(f_{\boldsymbol{\Theta}_n}((\sigma(f_{\boldsymbol{\Theta}_{n-1}}(\cdots(\sigma(f_{\boldsymbol{\Theta}_n}(\mathbf{x}_i))\cdots)))))) \|_2^2$$

Computing the gradients by hand is infeasible.

We train using gradient descent-like algorithms.

Bottleneck: Computation of gradients $\nabla \ell_{\Theta}$.

For the basic MSE, this means:

$$\nabla \ell_{\boldsymbol{\Theta}}(\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{1}{n} \sum_{i=1}^n \nabla_{\boldsymbol{\Theta}} \| (\mathbf{y}_i - (\sigma(f_{\boldsymbol{\Theta}_n}((\sigma(f_{\boldsymbol{\Theta}_{n-1}}(\cdots(\sigma(f_{\boldsymbol{\Theta}_n}(\mathbf{x}_i))\cdots)))))) \|_2^2$$

- Computing the gradients by hand is infeasible.
- Finite differences need O(#weights) evaluations of ℓ_{Θ} .

We train using gradient descent-like algorithms.

Bottleneck: Computation of gradients $\nabla \ell_{\Theta}$.

For the basic MSE, this means:

$$\nabla \ell_{\boldsymbol{\Theta}}(\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{1}{n} \sum_{i=1}^n \nabla_{\boldsymbol{\Theta}} \| (\mathbf{y}_i - (\sigma(f_{\boldsymbol{\Theta}_n}((\sigma(f_{\boldsymbol{\Theta}_{n-1}}(\cdots(\sigma(f_{\boldsymbol{\Theta}_n}(\mathbf{x}_i))\cdots)))))) \|_2^2$$

- Computing the gradients by hand is infeasible.
- Finite differences need O(#weights) evaluations of ℓ_{Θ} .

We want to automatize this computational step efficiently.

Consider a generic function $f: \mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Consider a generic function $f: \mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

$$f(x) = \log x + \sqrt{\log x}$$

Consider a generic function $f: \mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

$$f(x) = \log x + \sqrt{\log x}$$

$$\overset{x}{\bullet} \overset{\log}{\to} \overset{y}{\circ}$$

Consider a generic function $f:\mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

$$f(x) = \log x + \sqrt{\log x}$$

$$\begin{array}{c}
x & \log y & \sqrt{z} \\
\bullet & \bullet & \bullet
\end{array}$$

Consider a generic function $f: \mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

$$f(x) = \log x + \sqrt{\log x}$$

Consider a generic function $f:\mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Example:

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} f = y + z$$

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{x^2} - \frac{\log^3(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

Consider a generic function $f:\mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Example:

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} f = y + z$$

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{x^2} - \frac{\log^3(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

Consider a generic function $f:\mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Example:

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} f = y + z$$

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{x^2} - \frac{\log^3(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

$$x \xrightarrow{x^2} y \xrightarrow{y+1} z$$

Consider a generic function $f: \mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Example:

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} \qquad f = y + z$$

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{x^2} - \frac{\log^3(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

$$\begin{array}{c}
x \\
x^2
\end{array}$$

$$\begin{array}{c}
y \\
\sqrt{y+1} \\
z
\end{array}$$

$$\begin{array}{c}
z \\
z
\end{array}$$

$$\begin{array}{c}
r = \log(x+z)
\end{array}$$

Consider a generic function $f:\mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Example:

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z}$$

$$f = y + z$$

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{x^2} - \frac{\log^3(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

Consider a generic function $f:\mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Example:

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z}$$

$$f(x) = y + z$$

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{x^2} - \frac{\log^3(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

Consider a generic function $f: \mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Example:

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} = f = y + z$$

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{x^2} - \frac{\log^3(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

Consider a generic function $f: \mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Example:

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} \qquad f = y + z$$

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{x^2} - \frac{\log^3(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

Consider a generic function $f: \mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Example:

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} \qquad f = y + z$$

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{x^2} - \frac{\log^3(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

Consider a generic function $f: \mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Example:

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} \qquad f = y + z$$

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{x^2} - \frac{\log^3(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

Consider a generic function $f: \mathbb{R} \to \mathbb{R}$.

A computational graph is a directed acyclic graph representing the computation of f(x) with intermediate variables.

Example:

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z}$$

$$f(x) = y + z$$

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{x^2} - \frac{\log^3(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$$

The evaluation of f(x) corresponds to a forward traversal of the graph:

The evaluation of f(x) corresponds to a forward traversal of the graph:

The graph is constructed programmaticaly, for example:

The evaluation of f(x) corresponds to a forward traversal of the graph:

The graph is constructed programmaticaly, for example:

For high-dimensional input/output, the graph may be more complex:

The computational graph gets big quickly.

Poplar visualization, see https://www.graphcore.ai/products/poplar

$$f(x) = \log x + \sqrt{\log x}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$\begin{array}{c}
x & \log y \\
\hline
\end{array}$$

$$\begin{array}{c}
z \\
\hline
\end{array}$$

$$f = y + z$$

$$\frac{\partial x}{\partial x} = 1$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z}$$

$$f = y + \sqrt{\log x}$$

$$\begin{aligned} \frac{\partial x}{\partial x} &= 1\\ \frac{\partial y}{\partial x} &= \frac{\partial y}{\partial x} \frac{\partial x}{\partial x} \end{aligned}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z}$$

$$f = y + y + y = 0$$

$$\frac{\partial x}{\partial x} = 1$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} \frac{\partial x}{\partial x} = \frac{\partial \log x}{\partial x} \frac{\partial x}{\partial x}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z}$$

$$f = y + \sqrt{1 + y}$$

$$\begin{split} \frac{\partial x}{\partial x} &= 1 \\ \frac{\partial y}{\partial x} &= \frac{\partial y}{\partial x} \frac{\partial x}{\partial x} = \frac{\partial \log x}{\partial x} \frac{\partial x}{\partial x} = \frac{1}{x} \frac{\partial x}{\partial x} \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z}$$

$$f = y + \sqrt{1 + y}$$

$$\begin{aligned} \frac{\partial x}{\partial x} &= 1\\ \frac{\partial y}{\partial x} &= \frac{\partial y}{\partial x} \frac{\partial x}{\partial x} = \frac{\partial \log x}{\partial x} \frac{\partial x}{\partial x} = \frac{1}{x} \frac{\partial x}{\partial x}\\ \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \end{aligned}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} \qquad f = y + 1$$

$$\begin{aligned} \frac{\partial x}{\partial x} &= 1\\ \frac{\partial y}{\partial x} &= \frac{\partial y}{\partial x} \frac{\partial x}{\partial x} = \frac{\partial \log x}{\partial x} \frac{\partial x}{\partial x} = \frac{1}{x} \frac{\partial x}{\partial x}\\ \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial \sqrt{y}}{\partial y} \frac{\partial y}{\partial x} \end{aligned}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} = f = y + 1$$

$$\begin{split} \frac{\partial x}{\partial x} &= 1 \\ \frac{\partial y}{\partial x} &= \frac{\partial y}{\partial x} \frac{\partial x}{\partial x} = \frac{\partial \log x}{\partial x} \frac{\partial x}{\partial x} = \frac{1}{x} \frac{\partial x}{\partial x} \\ \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial \sqrt{y}}{\partial y} \frac{\partial y}{\partial x} = \frac{1}{2\sqrt{y}} \frac{\partial y}{\partial x} \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} \qquad f = y + 1$$

$$\begin{split} \frac{\partial x}{\partial x} &= 1 \\ \frac{\partial y}{\partial x} &= \frac{\partial y}{\partial x} \frac{\partial x}{\partial x} = \frac{\partial \log x}{\partial x} \frac{\partial x}{\partial x} = \frac{1}{x} \frac{\partial x}{\partial x} \\ \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial \sqrt{y}}{\partial y} \frac{\partial y}{\partial x} = \frac{1}{2\sqrt{y}} \frac{\partial y}{\partial x} \\ \frac{\partial f}{\partial x} &= \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} f = y + 1$$

$$\begin{split} \frac{\partial x}{\partial x} &= 1 \\ \frac{\partial y}{\partial x} &= \frac{\partial y}{\partial x} \frac{\partial x}{\partial x} = \frac{\partial \log x}{\partial x} \frac{\partial x}{\partial x} = \frac{1}{x} \frac{\partial x}{\partial x} \\ \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial \sqrt{y}}{\partial y} \frac{\partial y}{\partial x} = \frac{1}{2\sqrt{y}} \frac{\partial y}{\partial x} \\ \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial x} \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} \qquad f = y + 1$$

$$\begin{split} \frac{\partial x}{\partial x} &= 1 \\ \frac{\partial y}{\partial x} &= \frac{\partial y}{\partial x} \frac{\partial x}{\partial x} = \frac{\partial \log x}{\partial x} \frac{\partial x}{\partial x} = \frac{1}{x} \frac{\partial x}{\partial x} \\ \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial \sqrt{y}}{\partial y} \frac{\partial y}{\partial x} = \frac{1}{2\sqrt{y}} \frac{\partial y}{\partial x} \\ \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial x} = \frac{\partial (y+z)}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial (y+z)}{\partial z} \frac{\partial z}{\partial x} \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} f = y + 1$$

$$\begin{split} \frac{\partial x}{\partial x} &= 1 \\ \frac{\partial y}{\partial x} &= \frac{\partial y}{\partial x} \frac{\partial x}{\partial x} = \frac{\partial \log x}{\partial x} \frac{\partial x}{\partial x} = \frac{1}{x} \frac{\partial x}{\partial x} \\ \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial \sqrt{y}}{\partial y} \frac{\partial y}{\partial x} = \frac{1}{2\sqrt{y}} \frac{\partial y}{\partial x} \\ \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial x} = \frac{\partial (y+z)}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial (y+z)}{\partial z} \frac{\partial z}{\partial x} = \frac{\partial y}{\partial x} + \frac{\partial z}{\partial x} \end{split}$$

$$f(x) = \log x + \sqrt{\log x} \qquad \quad \frac{\partial f}{\partial x} = \frac{1}{2\sqrt{y}} \frac{1}{x} + \frac{1}{x}$$

Assumption: Each partial derivative is a "primitive" accessible in closed form and can be computed on the fly.

$$f(x) = \log x + \sqrt{\log x} \qquad \quad \frac{\partial f}{\partial x} = \frac{1}{2\sqrt{y}}\frac{1}{x} + \frac{1}{x}$$

Assumption: Each partial derivative is a "primitive" accessible in closed form and can be computed on the fly.

cost of computing $\frac{\partial f}{\partial x}(x)$ = cost of computing f(x)

$$f(x) = \log x + \sqrt{\log x} \qquad \quad \frac{\partial f}{\partial x} = \frac{1}{2\sqrt{y}}\frac{1}{x} + \frac{1}{x}$$

Assumption: Each partial derivative is a "primitive" accessible in closed form and can be computed on the fly.

cost of computing
$$\frac{\partial f}{\partial x}(x)$$
 = cost of computing $f(x)$

However, if the input is high-dimensional, i.e. $f: \mathbb{R}^p \to \mathbb{R}$:

cost of computing
$$\nabla f(\mathbf{x}) = p \times \text{cost of computing } f(\mathbf{x})$$

since partial derivatives must be computed w.r.t. each input dimension.

Computes all the partial derivatives $\frac{\partial y}{\partial x}, \frac{\partial z}{\partial x}, \dots$ with respect to the input x.

Computes all the partial derivatives $\frac{\partial y}{\partial x}, \frac{\partial z}{\partial x}, \dots$ with respect to the input x.

Automatic differentiation \neq Symbolic differentiation (e.g. autograd) (e.g. Mathematica)

We accumulate values during code execution, to get numerical evaluations rather than expressions for the derivative.

Computes all the partial derivatives $\frac{\partial y}{\partial x}, \frac{\partial z}{\partial x}, \dots$ with respect to the input x.

Automatic differentiation
$$\neq$$
 Symbolic differentiation (e.g. autograd) (e.g. Mathematica)

We accumulate values during code execution, to get numerical evaluations rather than expressions for the derivative.

Reverse mode: compute all the partial derivatives $\frac{\partial f}{\partial z}, \ldots, \frac{\partial f}{\partial x}$ with respect to the inner nodes.

$$f(x) = \log x + \sqrt{\log x}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$\underbrace{\log \ y}_{\text{O}} \sqrt{z}$$

$$\frac{\partial f}{\partial f} = 1$$

$$f(x) = \log x + \sqrt{\log x}$$

$$\frac{\partial f}{\partial f} = 1$$

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x$$

$$f(x) = \log x + \sqrt{\log x}$$

$$\begin{split} \frac{\partial f}{\partial f} &= 1\\ \frac{\partial f}{\partial z} &= \frac{\partial f}{\partial f} \frac{\partial f}{\partial z}\\ \frac{\partial f}{\partial y} &= \\ \frac{\partial f}{\partial z} &= \\ \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z} f = y + 1$$

$$\begin{split} \frac{\partial f}{\partial f} &= 1 \\ \frac{\partial f}{\partial z} &= \frac{\partial f}{\partial f} \frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial z} \\ \frac{\partial f}{\partial y} &= \\ \frac{\partial f}{\partial r} &= \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x + \log y - z = 0$$

$$f(x) = y + 1$$

$$\begin{split} \frac{\partial f}{\partial f} &= 1 \\ \frac{\partial f}{\partial z} &= \frac{\partial f}{\partial f} \frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial z} = \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial y} &= \\ \frac{\partial f}{\partial x} &= \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$\sum_{x = 1}^{x} \log \frac{y}{x} \sqrt{z} \int_{0}^{z} f(x) dx = y + 1$$

$$\begin{split} \frac{\partial f}{\partial f} &= 1\\ \frac{\partial f}{\partial z} &= \frac{\partial f}{\partial f} \frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial z} = \frac{\partial f}{\partial f}\\ \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial f}{\partial y}\\ \frac{\partial f}{\partial x} &= \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$\sum_{0 \le x \le y} f(x) = y + y + y = 0$$

$$\begin{split} \frac{\partial f}{\partial f} &= 1 \\ \frac{\partial f}{\partial z} &= \frac{\partial f}{\partial f} \frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial z} = \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} \frac{\partial \sqrt{y}}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial y} \\ \frac{\partial f}{\partial x} &= \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x \log y \sqrt{z}$$

$$f = y + \sqrt{z}$$

$$\begin{split} \frac{\partial f}{\partial f} &= 1 \\ \frac{\partial f}{\partial z} &= \frac{\partial f}{\partial f} \frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial z} = \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} \frac{\partial \sqrt{y}}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial y} = \frac{\partial f}{\partial z} \frac{1}{2\sqrt{y}} + \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial x} &= \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x + \log y - z = f = y + 1$$

$$\begin{split} \frac{\partial f}{\partial f} &= 1 \\ \frac{\partial f}{\partial z} &= \frac{\partial f}{\partial f} \frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial z} = \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} \frac{\partial \sqrt{y}}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial y} = \frac{\partial f}{\partial z} \frac{1}{2\sqrt{y}} + \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x + \log y - z = f = y + f$$

$$\begin{split} \frac{\partial f}{\partial f} &= 1 \\ \frac{\partial f}{\partial z} &= \frac{\partial f}{\partial f} \frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial z} = \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} \frac{\partial \sqrt{y}}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial y} = \frac{\partial f}{\partial z} \frac{1}{2\sqrt{y}} + \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial f}{\partial y} \frac{\partial \log x}{\partial x} \end{split}$$

$$f(x) = \log x + \sqrt{\log x}$$

$$x + \log y - z = f = y + f$$

$$\begin{split} \frac{\partial f}{\partial f} &= 1 \\ \frac{\partial f}{\partial z} &= \frac{\partial f}{\partial f} \frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial z} = \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} \frac{\partial \sqrt{y}}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial y} = \frac{\partial f}{\partial z} \frac{1}{2\sqrt{y}} + \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial f}{\partial y} \frac{\partial \log x}{\partial x} = \frac{\partial f}{\partial y} \frac{1}{x} \end{split}$$

Before computing the derivatives, we must compute the values of the internal nodes first:

$$\begin{split} &\frac{\partial f}{\partial f}\!=\!1\\ &\frac{\partial f}{\partial z}\!=\!\frac{\partial f}{\partial f}\,\frac{\partial (y\!+\!z)}{\partial z}\!=\!\frac{\partial f}{\partial f}\\ &\frac{\partial f}{\partial y}\!=\!\frac{\partial f}{\partial z}\,\frac{\partial \sqrt{y}}{\partial y}\!+\!\frac{\partial f}{\partial f}\,\frac{\partial (y\!+\!z)}{\partial f}\!=\!\frac{\partial f}{\partial z}\,\frac{1}{2\sqrt{y}}\!+\!\frac{\partial f}{\partial f}\\ &\frac{\partial f}{\partial x}\!=\!\frac{\partial f}{\partial y}\,\frac{\partial \log x}{\partial x}\!=\!\frac{\partial f}{\partial y}\,\frac{1}{\mathbf{x}} \end{split}$$

Before computing the derivatives, we must compute the values of the internal nodes first:

$$\begin{split} \frac{\partial f}{\partial f} &= 1 \\ \frac{\partial f}{\partial z} &= \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial z} = \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial z} \frac{\partial \sqrt{y}}{\partial y} + \frac{\partial f}{\partial f} \frac{\partial (y+z)}{\partial f} = \frac{\partial f}{\partial z} \frac{1}{2\sqrt{\mathbf{y}}} + \frac{\partial f}{\partial f} \\ \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial y} \frac{\partial \log x}{\partial x} = \frac{\partial f}{\partial y} \frac{1}{\mathbf{x}} \end{split}$$

f 0 Forward pass to evaluate all the interior nodes y,z,\ldots

Remark: This is not forward-mode autodiff, since we are only computing function values.

Before computing the derivatives, we must compute the values of the internal nodes first:

$$\begin{split} &\frac{\partial f}{\partial f}\!=\!1\\ &\frac{\partial f}{\partial z}\!=\!\frac{\partial f}{\partial f}\frac{\partial (y\!+\!z)}{\partial z}\!=\!\frac{\partial f}{\partial f}\\ &\frac{\partial f}{\partial y}\!=\!\frac{\partial f}{\partial z}\frac{\partial \sqrt{y}}{\partial y}\!+\!\frac{\partial f}{\partial f}\frac{\partial (y\!+\!z)}{\partial f}\!=\!\frac{\partial f}{\partial z}\,\frac{1}{2\sqrt{\mathbf{y}}}\!+\!\frac{\partial f}{\partial f}\\ &\frac{\partial f}{\partial x}\!=\!\frac{\partial g}{\partial y}\frac{\partial \log x}{\partial x}\!=\!\frac{\partial f}{\partial y}\frac{1}{\mathbf{x}} \end{split}$$

f 0 Forward pass to evaluate all the interior nodes y,z,\ldots

$$\begin{array}{cccc}
x & y & z \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

Remark: This is not forward-mode autodiff, since we are only computing function values.

Backward pass to compute the derivatives.

$$\frac{\partial f}{\partial x}$$

When training NNs, we compute the gradient of a loss

$$\ell: \mathbb{R}^p \to \mathbb{R}$$

where $p\gg 1$ is the number of weights.

When training NNs, we compute the gradient of a loss

$$\ell: \mathbb{R}^p \to \mathbb{R}$$

where $p \gg 1$ is the number of weights.

Instead of simple derivatives we must compute gradients and Jacobians.

When training NNs, we compute the gradient of a loss

$$\ell: \mathbb{R}^p \to \mathbb{R}$$

where $p\gg 1$ is the number of weights.

Instead of simple derivatives we must compute gradients and Jacobians.

$$\ell = \epsilon(\sigma \circ f \circ \sigma \circ f \circ \dots \circ f)$$

 ϵ computes the actual scalar error for the loss.

When training NNs, we compute the gradient of a loss

$$\ell: \mathbb{R}^p \to \mathbb{R}$$

where $p\gg 1$ is the number of weights.

Instead of simple derivatives we must compute gradients and Jacobians.

$$\ell = \epsilon(f_{t-1} \circ f_{t-2} \circ \cdots \circ f_2 \circ f_1)$$

When training NNs, we compute the gradient of a loss

$$\ell: \mathbb{R}^p \to \mathbb{R}$$

where $p\gg 1$ is the number of weights.

Instead of simple derivatives we must compute gradients and Jacobians.

$$\ell = \epsilon(f_{t-1} \circ f_{t-2} \circ \cdots \circ f_2 \circ f_1)$$

Denote by \mathbf{J}_k the Jacobian at layer k.

• Forward-mode autodiff:

$$\nabla \ell = \mathbf{J}_{t-1}(\mathbf{J}_{t-2}(\cdots(\mathbf{J}_{3}(\mathbf{J}_{2}\mathbf{J}_{1}))))$$

When training NNs, we compute the gradient of a loss

$$\ell: \mathbb{R}^p \to \mathbb{R}$$

where $p \gg 1$ is the number of weights.

Instead of simple derivatives we must compute gradients and Jacobians.

$$\ell = \epsilon(f_{t-1} \circ f_{t-2} \circ \cdots \circ f_2 \circ f_1)$$

Denote by \mathbf{J}_k the Jacobian at layer k.

• Forward-mode autodiff:

$$\nabla \ell = \mathbf{J}_{t-1}(\mathbf{J}_{t-2}(\cdots(\mathbf{J}_3(\mathbf{J}_2\mathbf{J}_1))))$$

• Reverse-mode autodiff:

$$\nabla \ell = ((((\mathbf{J}_{t-1}\mathbf{J}_{t-2})\mathbf{J}_{t-3})\cdots)\mathbf{J}_2)\mathbf{J}_1$$

When training NNs, we compute the gradient of a loss

$$\ell: \mathbb{R}^{p} \to \mathbb{R}$$

where $p\gg 1$ is the number of weights.

Instead of simple derivatives we must compute gradients and Jacobians.

$$\ell = \epsilon(f_{t-1} \circ f_{t-2} \circ \cdots \circ f_2 \circ f_1)$$

Denote by \mathbf{J}_k the Jacobian at layer k.

Forward-mode autodiff:

$$\nabla \ell = \mathbf{J}_{t-1}(\mathbf{J}_{t-2}(\cdots(\mathbf{J}_3(\mathbf{J}_2\mathbf{J}_1)))) \qquad \text{\# ops:} \quad \frac{p}{p} \sum_{k=2}^{t-1} d_k d_{k+1}$$

• Reverse-mode autodiff:

$$\nabla \ell = ((((\mathbf{J}_{t-1}\mathbf{J}_{t-2})\mathbf{J}_{t-3})\cdots)\mathbf{J}_2)\mathbf{J}_1$$

When training NNs, we compute the gradient of a loss

$$\ell: \mathbb{R}^{p} \to \mathbb{R}^{1}$$

where $p\gg 1$ is the number of weights.

Instead of simple derivatives we must compute gradients and Jacobians.

$$\ell = \epsilon(f_{t-1} \circ f_{t-2} \circ \dots \circ f_2 \circ f_1)$$

Denote by \mathbf{J}_k the Jacobian at layer k.

• Forward-mode autodiff:

$$abla \ell = \mathbf{J}_{t-1}(\mathbf{J}_{t-2}(\cdots(\mathbf{J}_3(\mathbf{J}_2\mathbf{J}_1))))$$
 # ops: $p \sum_{k=2}^{t-1} d_k d_{k+1}$

• Reverse-mode autodiff:

$$\nabla \ell = ((((\mathbf{J}_{t-1}\mathbf{J}_{t-2})\mathbf{J}_{t-3})\cdots)\mathbf{J}_2)\mathbf{J}_1 \qquad \text{\# ops: } 1\sum_{k=1}^{t-2} d_k d_{k+1}$$

We call back-propagation the reverse mode automatic differentiation applied to deep neural networks. Evaluating $\nabla \ell$ with backprop is as fast as evaluating ℓ .

We call back-propagation the reverse mode automatic differentiation applied to deep neural networks. Evaluating $\nabla \ell$ with backprop is as fast as evaluating ℓ .

Back-propagation is not just the chain rule.

We call back-propagation the reverse mode automatic differentiation applied to deep neural networks. Evaluating $\nabla \ell$ with backprop is as fast as evaluating ℓ .

Back-propagation is not just the chain rule.

In fact, not even the costly forward mode is just the chain rule. There are intermediate variables. Backprop is a computational technique.

We call back-propagation the reverse mode automatic differentiation applied to deep neural networks. Evaluating $\nabla \ell$ with backprop is as fast as evaluating ℓ .

Back-propagation is not just the chain rule.

In fact, not even the costly forward mode is just the chain rule. There are intermediate variables. Backprop is a computational technique.

Backprop through computational graph of the loss

Backprop "through the network"

Suggested reading

Nice, accessible survey on automatic differentiation: https://arxiv.org/abs/1502.05767