BLATT 2

PAMELA FLEISCHMANN & DANIEL SCHMIDT

Aufgabe 1. a) $\neg = (a1, c4)$ ist in \mathcal{T}_1 nicht beweisbar. b) $\neg do(a0)$ ist in \mathcal{T}_2 nicht beweisbar.

ad a) Annahme: $\mathcal{T}_1 \vdash \neg = (a1, c4)$. Dann existiert eine Ableitung für

 $\neg = (a1, c4)$ also für $(\exists X)(\exists Y) \neg (= (a1, c4))$ und somit für $\neg (\forall X)(\forall Y) (=$ (X,Y)

(1)

$$\neg(\forall X)(\forall Y)(=(X,Y)) = ^{1} \neg(\forall X)(\forall Y)((=(X,Y)) \land (=(Y,X)))$$

$$\Rightarrow^{2} \neg(\forall X)(\forall Y)((=(X,Y)) \land (=(Y,X)) \Rightarrow (=(X,X)))$$

$$\Rightarrow \neg, \vdash \neg = (a1,a1)$$

Dies ist ein Wiederspruch, somit ist die Aussage nicht beweisbar. Anmerkungen:

- (1) Ableitbar (Symmetrie)
- (2) Ableitbar (Reflexivität)

ad b) Annahme: $\mathcal{T}_2 \vdash \neg do(a0)$

(2)
$$\mathcal{T}_2 \vdash \neg do(a0) \Rightarrow \mathcal{T}_2 \vdash \neg(\forall X) do(X)$$
$$\Rightarrow (\forall X)(V_{i \in [m]} = (X_i c_i) \lor \neg do(X))$$
$$\Rightarrow (\forall X)(do(X) \Rightarrow V_{i \in [m]} = (X_i c_i))$$

Aufgabe 2. Gegeben seien zum Schema die Integritätsbedingungen

 $f_1: (\exists X)(\exists Z)(\text{akte}(X, \text{offen}, Z))$

 $f_2: (\forall X_1)(\forall X_2)(\forall Y)(\text{ltdermittler}(X_1,Y) \land \text{ltdermittler}(X_2,Y) \Rightarrow$ $=(X_1,X_2)$

 $f_3: (\forall X)(\forall Y)(\operatorname{ermittler}(X,Y) \Rightarrow \neg \operatorname{ltdermittler}(X,X))$

 $f_4: (\forall X_1)(\forall Z)(\exists X_2)(\operatorname{akte}(X_1, \operatorname{offen}, Z) \Rightarrow \operatorname{ermittler}(X_2, Z) \land$ bearbeitet (X_2, X_1)

- a) Geben Sie für f_1, \ldots, f_4 natürlichsprachliche Formulierungen an.
- b) (\mathcal{R}, I, IB) ist erlaubt.
- c) f_1 und f_2 sind Sätze der durch \mathcal{R} und I gegeben Theorie.

ad a) Die Formel f_1 ist natürlichsprachlich "Für jede offene Akte existiert ein Ermittler und eine erforderliche Abteilung.". Mit der zweiten Formel wird sichergestellt, dass jeder Ermittler nur einen leitenden Ermittler hat (gäbe es zwei, müssten diese identisch sein). f_3 natürlichsprachlich formuliert gibt an, dass kein Ermittler leitender Ermittler von sich selbst sein kann. Die letzte Integritätsbedingung gibt schließlich an, dass für jede offene Akte mit dem Fall X_1 und der erforderlichen Stelle Z, ein Ermittler X_2 existiert, der in Z arbetiet und X_1 bearbeitet.

ad b) Um zu zeigen, dass (\mathcal{R}, I, IB) erlaubt ist, muss gezeigt werden, dass $\models_I f_i$ für $i \in [4]$ gilt. Sei ϱ eine Belegung. Dann gilt

$$\models_{I,\varrho} (\exists X)(\exists Z)(\operatorname{akte}(X,\operatorname{offen},Z))$$

$$\operatorname{gdw} \models_{I,\varrho} \neg(\forall X)(\neg(\exists Z)(\operatorname{akte}(X,\operatorname{offen},Z)))$$

$$\operatorname{gdw} \not\models_{I,\varrho} (\forall X)(\neg(\exists Z)(\operatorname{akte}(X,\operatorname{offen},Z))).$$

Sei ϱ_1 eine Belegung, die sich von ϱ höchstens in der Belegung von X unterscheidet. Damit folgt

$$\models_{I,\varrho} f_1$$

$$\operatorname{gdw} \not\models_{I,\varrho_1} \neg (\exists Z)(\operatorname{akte}(X,\operatorname{offen},Z))$$

$$\operatorname{gdw} \not\models_{I,\varrho_1} (\forall Z) \neg (\operatorname{akte}(X,\operatorname{offen},Z)).$$

Sei ϱ_2 eine Belegung, die sich von ϱ_1 höchstens in der Belegung von Z unterscheidet. Damit folgt

$$\models_{I,\varrho} f_1$$

$$\operatorname{gdw} \not\models_{I,\varrho_2} \neg(\operatorname{akte}(X,\operatorname{offen},Z))$$

$$\operatorname{gdw} \neg \models_{I,\varrho_2} (||X||_{I,\varrho_2},||\operatorname{offen}||_{I,\varrho_2},||Z||_{I,\varrho_2}) \not\in \operatorname{ext}(\operatorname{akte})$$

$$\operatorname{gdw} \models_{I,\varrho_2} (||X||_{I,\varrho_2},\operatorname{offen},||Z||_{I,\varrho_2}) \not\in \operatorname{ext}(\operatorname{akte}).$$

Mit $\varrho_2(X)$ = Einbruch und $\varrho_2(Z)$ = Pathologie gilt die Behauptung.

Weiter gilt mit der Belegung ϱ_3 , die sich von ϱ höchstens in der Belegung von X_1 unterscheidet

$$\models_{I,\varrho} (\forall X_1)(\forall X_2)(\forall Y)(\text{ltdermittler}(X_1,Y) \land \text{ltdermittler}(X_2,Y)$$

$$\Rightarrow = (X_1,X_2))$$

$$\text{gdw} \models_{I,\varrho_3} (\forall X_2)(\forall Y)(\text{ltdermittler}(X_1,Y) \land \text{ltdermittler}(X_2,Y)$$

$$\Rightarrow = (X_1,X_2)).$$

Sei ϱ_4 eine Belegung, die sich von ϱ_3 höchstens in der Belegung von X_2 unterscheidet und ϱ_5 eine, die sich von ϱ_4 höchstens in der Belegung

BLATT 2 3

von Y unterscheidet. Dann gilt

```
\begin{aligned}
&\models_{I,\varrho} f_2 \\
&\text{gdw} \models_{I,\varrho_4} (\forall Y)(\text{ltdermittler}(X_1,Y) \land \text{ltdermittler}(X_2,Y) \\
&\Rightarrow= (X_1,X_2)) \\
&\text{gdw} \models_{I,\varrho_5} (\text{ltdermittler}(X_1,Y) \land \text{ltdermittler}(X_2,Y) \Rightarrow= (X_1,X_2)) \\
&\text{gdw} \models_{I,\varrho_5} (\neg \text{ltdermittler}(X_1,Y) \lor \neg \text{ltdermittler}(X_2,Y) \lor = (X_1,X_2)) \\
&\text{gdw} \models_{I,\varrho_5} \neg \text{ltdermittler}(X_1,Y) \text{ oder } \neg \models_{I,\varrho_5} \text{ltdermittler}(X_2,Y) \\
&\text{oder } \models_{I,\varrho_5} = (X_1,X_2)) \\
&\text{gdw} \not\models_{I,\varrho_5} \text{ltdermittler}(X_1,Y) \text{ oder } \not\models_{I,\varrho_5} \text{ltdermittler}(X_2,Y) \\
&\text{oder } \models_{I,\varrho_5} (X_1,X_2) \\
&\text{gdw}(||X_1||_{I,\varrho_5},||Y||_{I,\varrho_5}) \not\in \text{ext}(\text{ltdermittler}) \\
&\text{oder } (||X_2||_{I,\varrho_5},||Y||_{I,\varrho_5}) \not\in \text{ext}(\text{ltdermittler}) \\
&\text{oder } (||X_1||_{I,\varrho_5},||Y||_{I,\varrho_5}) \not\in \text{ext}(\text{ltdermittler}) \\
&\text{oder } (||X_2||_{I,\varrho_5},||Y||_{I,\varrho_5}) \not\in \text{ext}(\text{ltdermittler}) \\
&\text{oder } ||X_1||_{I,\varrho_5} = ||X_2||_{I,\varrho_5})
\end{aligned}
```

Mit $\varrho_5(X_1)$ = Skinner, $\varrho_5(Y)$ = Black ist das erste Disjunkt wahr und damit ist I Modell von f_2 .

Sei nun ϱ_6 eine Belegung, die sich von ϱ höchstens in der Belegung von X unterscheidet und ϱ_7 eine Belegung, die sich höchstens in der Belegung von Y unterscheidet. Dann gilt

```
\models_{I,\varrho} (\forall X)(\forall Y)(\operatorname{ermittler}(X,Y) \Rightarrow \neg \operatorname{ltdermittler}(X,X))
\operatorname{gdw} \models_{I,\varrho_{6}} (\forall Y)(\operatorname{ermittler}(X,Y) \Rightarrow \neg \operatorname{ltdermittler}(X,X))
\operatorname{gdw} \models_{I,\varrho_{7}} (\operatorname{ermittler}(X,Y) \Rightarrow \neg \operatorname{ltdermittler}(X,X))
\operatorname{gdw} \models_{I,\varrho_{7}} (\neg \operatorname{ermittler}(X,Y) \vee \neg \operatorname{ltdermittler}(X,X))
\operatorname{gdw} \models_{I,\varrho_{7}} \neg \operatorname{ermittler}(X,Y) \text{ oder } \models_{I,\varrho_{7}} \neg \operatorname{ltdermittler}(X,X)
\operatorname{gdw} \not\models_{I,\varrho_{7}} \operatorname{ermittler}(X,Y) \text{ oder } \not\models_{I,\varrho_{7}} \operatorname{ltdermittler}(X,X)
\operatorname{gdw}(||X||_{I,\varrho_{7}}, ||Y||_{I,\varrho_{7}}) \not\in \operatorname{ext}(\operatorname{ermittler})
\operatorname{oder} (||X||_{I,\varrho_{7}}, ||X||_{I,\varrho_{7}}) \not\in \operatorname{ext}(\operatorname{ltdermittler}).
```

Mit $\varrho_7(X)$ = Black und $\varrho_7(Y)$ = Pathologie ist das erste Disjunkt waht und die Behauptung bewiesen.

Sei nun ϱ_8 eine Belegung, die sich von ϱ höchstens in der Belegung von X_1 unterscheidet und ϱ_9 eine Belegung, die sich höchstens in der

Belegung von Z unterscheidet. Dann gilt

$$\models_{I,\varrho} (\forall X_1)(\forall Z)(\exists X_2)(\operatorname{akte}(X_1, \operatorname{offen}, Z) \Rightarrow \operatorname{ermittler}(X_2, Z) \\ \wedge \operatorname{bearbeitet}(X_2, X_1)) \\ \operatorname{gdw} \models_{I,\varrho_8} (\forall Z)(\exists X_2)(\operatorname{akte}(X_1, \operatorname{offen}, Z) \Rightarrow \operatorname{ermittler}(X_2, Z) \\ \wedge \operatorname{bearbeitet}(X_2, X_1)) \\ \operatorname{gdw} \models_{I,\varrho_9} (\exists X_2)(\operatorname{akte}(X_1, \operatorname{offen}, Z) \Rightarrow \operatorname{ermittler}(X_2, Z) \\ \wedge \operatorname{bearbeitet}(X_2, X_1)) \\ \operatorname{gdw} \not\models_{I,\varrho_9} (\forall X_2) \neg (\operatorname{akte}(X_1, \operatorname{offen}, Z) \Rightarrow \operatorname{ermittler}(X_2, Z) \\ \wedge \operatorname{bearbeitet}(X_2, X_1)).$$

Sei weiter ϱ_{10} eine Belegung, die sich von ϱ_{9} höchstens in der Belegung von ϱ_{9} unterscheidet. Damit folgt

$$\models_{I,\varrho} f_4$$

$$\operatorname{gdw} \not\models_{I,\varrho_{10}} \neg(\operatorname{akte}(X_1,\operatorname{offen},Z) \Rightarrow \operatorname{ermittler}(X_2,Z)$$

$$\wedge \operatorname{bearbeitet}(X_2,X_1))$$

$$\operatorname{gdw} \not\models_{I,\varrho_{10}} (\operatorname{akte}(X_1,\operatorname{offen},Z) \wedge (\neg \operatorname{ermittler}(X_2,Z)$$

$$\vee \neg \operatorname{bearbeitet}(X_2,X_1)))$$

$$\operatorname{gdw} \not\models_{I,\varrho_{10}} \operatorname{akte}(X_1,\operatorname{offen},Z) \text{ und } \not\models_{I,\varrho_{10}} (\neg \operatorname{ermittler}(X_2,Z)$$

$$\vee \neg \operatorname{bearbeitet}(X_2,X_1)))$$

$$\operatorname{gdw} \not\models_{I,\varrho_{10}} \operatorname{akte}(X_1,\operatorname{offen},Z) \text{ und } (\not\models_{I,\varrho_{10}} \neg \operatorname{ermittler}(X_2,Z)$$

$$\operatorname{oder} \neg \models_{I,\varrho_{10}} \neg \operatorname{bearbeitet}(X_2,X_1)))$$

$$\operatorname{gdw}(||X_1||_{I,\varrho_{10}},||\operatorname{offen}||_{I,\varrho_{10}},||Z||_{I,\varrho_{10}}) \not\in \operatorname{ext}(\operatorname{akte})$$

$$\operatorname{und} ((||X_2||_{I,\varrho_{10}},||Z||_{I,\varrho_{10}}) \in \operatorname{ext}(\operatorname{bearbeitet})).$$

Sei $\varrho_{10}(X_2) = \text{Black}, \varrho_{10}(Z) = \text{Sonderermittler}$. Für jede Belegung von X_1 ist f_4 wahr.

ad c) Mit den Axiomen aus der Vorlesung gilt

$$\mathcal{T} \vdash \text{akte}(\text{Einbruch}, \text{offen}, \text{Pathologie}).$$

Wird zweimal die Partikularisierungsregel (Oberschelp) angewendet, so gilt

$$\mathcal{T} \vdash (\exists X)(\exists Z)(\text{akte}(X, \text{offen}, Z)).$$

Gehe nun davon aus, dass $\mathcal{T} \vdash \operatorname{le}(X_1, Y)$ und $\mathcal{T} \vdash \operatorname{le}(X_2, Y)$ gilt. Mit Oberschelp ist nun $\mathcal{T} \vdash (X_1, X_2)$ zu zeigen. Es gilt mit den Axiomen der Vorlesung

$$\mathcal{T} \vdash \operatorname{le}(X_1, Y) \land (\operatorname{Name}(\operatorname{Mulder}) \lor \operatorname{Name}(\operatorname{Skully}))$$
$$\land = (Y, name) \land = (X_1, \operatorname{Skinner}) \land \operatorname{le}(X_2, Y) \land = (X_2, \operatorname{Skinner}).$$

BLATT 2 5

Mit der Transitivität und Kommutativität von = folgt $\mathcal{T} \vdash = (X_1, X_2)$. Mit der Konjunktionsregel und der Generalisierungsregel folgt die Behauptung.

Aufgabe 3. Formulieren Sie folgende Integritätsbedingungen im DRC:

- a) Es muss eine Vorlesung geben, die keine Voraussetzung benötigt.
- b) Keine Vorlesung darf sich selbst als Voraussetzung haben.
- c) Jede Vorlesung wird nur von einem Dozenten gehalten.
- d) In STUDENT ist Wohnsitz mehrwertig abhängig von Student.
- e) Mindestens eine der Vorlesungen InfI, InfII und InfIII muss angeboten werden.

ad a)
$$(\exists v)(\exists d)(ANGEBOT(v, d) \land (\forall v')(\forall c)(VORAUSSETZUNG(v', c) \Rightarrow v \neq v')$$

ad b) Diese Anfrage ist nicht für beliebige Zustände konkret formulierbar, da die tranistive Hülle einer binären Relation in PL1-Logik nicht ausdrückbar ist. Hierzu würde man eine Anfragesprache benötigen die Rekursion zulässt.

ad c)
$$(\forall v)(\forall d_1)(\forall d_2)(ANGEBOT(v, d_1) \land ANGEBOT(v, d_2) \Rightarrow d_1 = d_2)$$

ad d)
$$(\forall s)(\forall w_1, w_2)(\forall f_1, f_2)(\text{STUDENT}(s, w_1, f_1) \land \text{STUDENT}(s, w_2, f_2) \Rightarrow (\exists w)(\exists f)(\text{STUDENT}(s, w, f) \land w = w_2 \land f = f_1)$$

ad e)
$$(\exists v)(\exists d)(\text{ANGEBOT}(v,d) \land (v = INFI \lor v = INFII))$$