

2ND INTERNATIONAL PLANETARY PROBE WORKSHOP

CHARRING ABLATORS FOR PLANETARY FAMILY SYSTEM OF ADVANCED **EXPLORATION MISSIONS**

ISPT AEROCAPTURE PROJECT - NASA/MSFC

Speaker and PI:

William M. Congdon Ablatives Laboratory Applied Research Associates

Co-Investigator:

Donald M. Curry Thermal Engineering NASA Johnson space Center

ARA-15763-R-04-16

ADVANCED ABLATORS PROGRAM OBJECTIVES

FLIGHT-READY (TRL-6) ABLATIVE HEAT SHIELDS FOR DEEP-SPACE MISSIONS

DIVERSITY OF SELECTION FROM FAMILY-SYSTEM APPROACH

MINIMUM WEIGHT SYSTEMS WITH HIGH RELIABILITY

OPTIMIZED FORMULATIONS AND PROCESSING

FULLY-CHARACTERIZED PROPERTIES

LOW-COST MANUFACTURING

DEFINITION AND INTEGRATION OF CANDIDATE LIGHTWEIGHT STRUCTURES

TEST AND ANALYSIS DATABASE TO SUPPORT FLIGHT-VEHICLE ENGINEERING

RESULTS FROM PRODUCTION SCALE-UP STUDIES AND PRODUCTION-COST ANALYSES

ADVANCED ABLATORS FOR FOREBODY AND BACKSHELL HEATING

FAMILY SYSTEMS OF ABLATORS – KEY MATERIALS

Ablator	Density	Resin System	Fillers	Heating Range	EDL Location	Abbreviation
SRAM-14	14 lb/ft ³	Silicone	Silica / others	90 to 140 W/cm ²	Forebody	S14
SRAM-17	17 lb/ft ³	Silicone	Silica / others	110 to 120 W/cm ²	Forebody	S17
SRAM-20	20 lb/ft ³	Silicone	Silica / others	140 to 270 W/cm ²	Forebody	S20
SRAM-24	24 lb/ft ³	Silicone	Silica / others	180 to 350 W/cm ²	Forebody	S24
PhenCarb-20	20 lb/ft ³	Phenolic	Carbon / others	200 to 500 W/cm²-sec	Forebody	P20
PhenCarb-24	24 lb/ft ³	Phenolic	Carbon / others	300 to 700 W/cm²-sec	Forebody	P24
PhenCarb-28	28 lb/ft ³	Phenolic	Carbon / others	400 to 900 W/cm²-sec	Forebody	P28
PhenCarb-32	32 lb/ft ³	Phenolic	Carbon / others	500 to 1100 W/cm²-sec	Forebody	P32
PhenCarb-36	36 lb/ft ³	Phenolic	Carbon / others	600 to 1300 W/cm²-sec	Forebody	P36
Hyperlite-C	11 lb/ft ³	Silicone	Silica / others	10 to 40 W/cm ²	Afterbody	S11
Hyperlite-B	12 lb/ft ³	Silicone	Silica / others	30 to 70 W/cm ²	Afterbody	S12
Hyperlite-A	13 lb/ft ³	Silicone	Silica / others	40 to 100 W/cm ²	Afterbody	S13

ADVANCED ABLATORS MANUFACTURING METHODS

Strip-Collar Bonding Approach (SCBA)

SRAM-17 ARC-JET SAMPLES FROM DIFFERENT PROCESSING

SRAM-20 TPS 20 lb/ft 3 Candidate for Titan Mission (140 to 270 W/cm 2)

Robust Char Layer - Low Recession and Radiation Opacity from Carbon Loading

SRAM-20 Test Sample Performance at 245 W/cm² and 310 W/cm²

Iso-Q Sample Design 1.5-In. Thickness

SRAM-20 Test Sample Performance at 362 W/cm² and 411 W/cm²

SRAM-17 Ablator 17 lb/ft³ Candidate for MSL Mission (110 to 200 W/cm²)

Durable Char Layer - Low Recession and Radiation Opacity from Carbon Loading

SRAM-14 Ablator 14 lb/ft³ for MPF-Type Missions (90 to 140 W/cm²)

Very Lightweight Ablator with Excellent Thermal Insulation

PhenCarb-28 Ablator in Carbon H/C - IHF Test at 411 W/cm²

Iso-Q Sample Design 1.5-In. Thickness

Sample 3170 - 411 W/cm² for 40 sec

Recession 0.071 in.

Production Using ARA Lightweight Carbon-Phenolic Honeycomb

Recession 0.178 in.

ADVANCED ABLATORS CURRENT ARC-JET TEST PROGRAM

IN-SPACE PROPULSION

Series	Date	Heating Range	Samples	Status
IHF-1	Mar 03	Up to 153 W/cm²	32 Tested	Completed
IHF-2	Sep 03	Up to 182 W/cm ²	32 Tested	Completed
IHF-3	Mar 04	Up to 182 W/cm²	60 Tested	Completed
IHF-4	Aug 04	Up to 411 W/cm²	34 Tested	Completed
IHF-5	Sep 04	Up to 1200 W/cm ²	32 Ready	Future
ARMSEF-1	May 05	Up to 720 W/cm ²	70 Ready	Future

ADVANCED ABLATORS THERMAL RADIATION TEST PROGRAM

211 individual heliostats occupying 8.0-acre site. Each heliostat contains 25 mirrors of 16 ft² each. Can achieve test flux of 300 W/cm².

200-ft tower with additional 50 ft below surface. Occupies 1.0-acre site.

RESPONSE OF SRAM-20 TO THERMAL RADIATION AT $\sim 100 \text{ W/cm}^2$

ADVANCED ABLATORS MECHANICAL PROPERTIES TEST POGRAM

IN-SPACE PROPULSION

OVERVIEW OF ABLATOR TESTING PROGRAMS

ARC-JET TESTING AT NASA/ARC AND NASA/JSC

THERMAL RADIATION TESTING AT SOLAR TOWER

MECHANICAL PROPERTIES TESTING

THERMAL PROPERTIES TESTING

NDI AND REPAIR TESTING

ACCOUSTIC TESTING

SUMMARY DISCUSSION ADVANCED ABLATORS PROJECT

GOAL IS ADVANCED ABLATORS READY FOR FLIGHT BY 2006

EXTENSIVE ARC-JET TESTING OF MORE THAN 260 SAMPLES

60 THERMAL-RADIATION TESTS IN INTENSE SOLAR SPECTRUM

GENERATING LARGE MATERIAL-PROPERTIES DATABASE

THERMAL-RESPONSE MODELS IN ADVANCED DEVELOPMENT

ABLATORS SHOWING EXCELLENT PERFORMANCE FOR DIVERSE MISSIONS