

Professor: Franz Beckenbauer da Silva

- Os circuitos digitais operam com fundamentos no sistema binário de numeração.
 - Desta forma é necessário entender à aritmética binária;
 - As operações aritméticas com binários podem ser feitas de forma similar à dos números decimais.

Adição

– Tabela de referência:

$$0 + 0 = 0$$
 transporte 0
 $0 + 1 = 1$ transporte 0
 $1 + 0 = 1$ transporte 0
 $1 + 1 = 0$ transporte 1

– Exemplo:

Complemento de 1 e de 2

- Complemento de 1
 - Basta inverter os bits
 - Ex.: 10101001

Complemento 1 = 01010110

- Complemento de 2
 - Basta inverter os bits e somar com 1
 - Ex.: 10101001

Complemento 2 = **01010110**

+<u>1</u> 11010111

Subtração

– Tabela de referência:

$$0 - 0 = 0$$
 empresta 0
 $0 - 1 = 1$ empresta 1
 $1 - 0 = 1$ empresta 0
 $1 - 1 = 0$ empresta 0

– Exemplo:

Complemento de 1 e de 2

- Subtração utilizando complemento de 2
 - Basta somar o primeiro operando ao complemento de 2 do segundo operando.

transporta 1

0 "+1" é desprezado e assim encerra-se a operação.

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA COMPLEMENTO 2 (continuação) RIO GRANDE DO NORTE

- Subtração utilizando complemento de 2
 - Quando o resultado for negativo:

significa que o resultado é negativo e deve-se fazer o complemento 2 de novo

Multiplicação

– Tabela de referência:

$$0 \times 0 = 0$$

 $0 \times 1 = 0$
 $1 \times 0 = 0$
 $1 \times 1 = 1$

– Exemplo:

- Não há tabela de referência;
 - a operação é feita de modo semelhante à divisão em decimais;
 - o valor do divisor deve ser igual ou menor que o do dividendo e, se for igual ou menor é escrito 1 no quociente. Esse valor é multiplicado pelo divisor e subtraído do dividendo, até atingir o valor zero, no caso da divisão exata.

- Exemplo 1:
 - 55/5 = 11
 - para confirmar faça a multiplicação do divisor pelo quociente.

- Exemplo 2:
 - 27/3 = 9
 - para confirmar faça a multiplicação do divisor pelo quociente.

- Exemplo 3:
 - divisão não exata;
 - 25/2 = 12,5
 - para confirmar faça a multiplicação do divisor pelo quociente.

- •A informação transmitida entre os diversos dispositivos digitais pode ser feita na forma serial ou paralela.
- •Esta informação binária é geralmente representada por tensões nas saídas de um circuito emissor, que estão conectadas nas entradas de um circuito receptor.

Transmissão serial e paralela

- Transmissão Serial
 - Um bit por vez;
 - Necessidade de apenas uma via de comunicação;
 - Menor custo;
 - Mais lenta;

• Exs.:USB, RS-232, Ethernet, e etc

Transmissão serial e paralela

- Transmissão Paralela
 - Envio simultâneo de vários bits por vez;
 - Necessidade de várias vias de comunicação;
 - Maior custo;
 - Mais rápida;

Exs: ATA, ISA, etc.

Circuitos Lógicos

 Circuitos lógicos ou circuitos digitais são circuitos eletrônicos que empregam a utilização de sinais elétricos em apenas dois níveis de corrente (ou tensão) para definir a representação de valores binários.

Circuitos Lógicos

 Baseiam seu funcionamento na lógica binária, onde as informações representam estados que funcionam em dois níveis distintos, sendo estes: ligado/desligado (on/off), alto/baixo (high/low), verdadeiro/falso (true/false) entre outros.

Circuitos Lógicos

- **COMBINACIONAL** a saída é função dos valores de entrada correntes; esses circuitos não tem capacidade de armazenamento.
- **SEQUENCIAL** a saída é função dos valores de entrada correntes e dos valores de entrada no instante anterior; é usada para a construção de circuitos de memória (chamados "flip-flops").

Instituto federal de Educação, ciência e tecnologia Circuitos Lógicos Combinacionais RIO GRANDE DO NORTE

•Um circuito lógico combinacional é todo circuito cuja saída depende única e exclusivamente da combinação das entradas.

Exemplo: comando com botão para escolher o

canal da TV.

Circuitos Lógicos Sequenciais

- •Um circuito lógico sequencial é aquele em que as saídas dependem das entradas atuais, mas também de valores anteriores por que passaram as saídas
- Exemplo: comando para escolher o canal da TV com botão para retornar ao canal anterior (botão return, pre-ch, etc..)

Funções e Portas Lógicas

- 1854 O matemático George Boole apresenta sistema matemático de análise lógica conhecido como álgebra de Boole;
- •1938 Utilização da álgebra de Boole por Claude Elwood Shannon em sistemas de telecomunicações, introduzindo nos estudos da eletrônica digital.

Variável Booleana

- Podem assumir apenas 2 valores: 0 e 1
- Exemplos:
 - Lâmpada: acesa (1) ou apagada (0)
 - Chave: fechada (1) ou aberta (0)
 - Verdadeiro (1) ou Falso(0)
- REPRESENTAÇÃO:
 - Expressão Lógica
 - Tabela Verdade
 - Símbolos (portas lógicas)

Função AND (E)

Função OR (OU)

Função NOT (NÃO)

Função NAND (NE, NÃO E)

Função NOR (NOU, NÃO OU)

Bloco Lógico XOR (OU EXCLUSIVO)

• Fornece 1 à saída quando as variáveis de entrada forem diferente entre si.

Tabela Verdade

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Expressão Lógica

$$S = \overline{A} \cdot B + A \cdot \overline{B}$$

Bloco Lógico XNOR (COINCIDÊNCIA)

 Fornece 1 à saída quando houver uma coincidência nas variáveis de entrada.

Tabela Verdade

Α	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Expressão Lógica

$$S = \overline{A} \cdot \overline{B} + A.B$$

Expressões Lógicas

• Exemplos:

Expressões Lógicas

• Exemplos:

$$S=(A+B).(C+D)$$

Expressões Lógicas

• Exemplos:

Tabela Verdade a partir de Expressões Booleanas

- 1) Montamos o quadro de possibilidades;
- 2) Montamos colunas para os vários membros da expressão;
- 3) Preenchemos as colunas com seus resultados;
- 4) Montamos uma coluna para o resultado final;
- 5) Preenchemos esta coluna com os resultados finais.

Tabela Verdade a partir de Expressões Booleanas

• Exemplo:

Α	В	С	A.B	С	S= A.B+C
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Resultado

Final

Exercícios

- 1) Construa a tabela verdade para as seguintes expressões:
 - A) S=A.B.C
 - B) S=(A+B).C
- 2) Desenhe o circuito lógico representado pelas expressões abaixo:
 - A) $S = (A.B) \cdot (B+C)$
 - B) S = (A.B + C.D)
- 3) Qual a representação da pela expressão booleana para o circuito lógico desenhado abaixo:

