${\it The} + {\it Construction}$

Saheb Mohapatra

June 15, 2024

Contents

1	Classifying space of a group	2
2	Some examples of classifying spaces	2
3	Acyclic maps	2
4	+ Construction	3
5	Results from topology	6

2 3 ACYCLIC MAPS

1 Classifying space of a group

Definition 1.0.1 (Classifing space of a group G). Any path-connected CW complex X such that $\pi_n(X) = 1, n > 1$ and $\pi_1(X) = G$.

Construction: Given a group G with presentation $\langle a_{\gamma}|b_{\delta} \rangle$, let $X = \bigvee_{\gamma} S^1$. b_{δ} are words in a_{γ} . Attach 2-cells to X via maps specified by these words to get the space X_1 . By Proposition 5.0.7 $\pi_1(X_1) = G$. Also, by construction, X_1 is a path-connected CW complex with cells of dimension at most 2. Now, for each element f in $\pi_2(X_1)$, i.e., f is the class of a map $S^2 \to X_1$ in $\pi_2(X_1)$, attach a 3-cell via this map to X_1 . Call the new space X_2 . By 5.0.8, $\pi_2(X_2) = 1$ and by Proposition 5.0.7, $\pi_1(X_2) = G$. Continue this process, but now with 4-cells attached to X_2 via maps representing elements of $\pi_3(X_2)$ and so on. Taking the direct limit, we have formed a path-connected CW complex BG such that $\pi_n(BG) = 1, \forall n > 1$ and $\pi_1(BG) = G$.

Uniqueness: If \tilde{X} is the universal cover of X, where X is some classifying space of G, then by Proposition 5.0.12, \tilde{X} is contractible and X is obtained by the usual action of $\pi_1(X)$ on \tilde{X} . Then, by Proposition 5.0.13 any two classifying spaces are homotopy equivalent and $G \mapsto BG$ is functorial.

2 Some examples of classifying spaces

- If $G = \{1\}$, then BG = *.
- If $G = \mathbb{Z}$, then $BG = S^1$.
- If $G = F_n$, the free group on n generators, $BG = \bigvee_{i=1}^n S^1$.
- If $G = \mathbb{Z}_2$, $BG = \mathbb{RP}^{\infty}$.

3 Acyclic maps

Definition 3.0.1 (Acyclic spaces). A topological space X such that $H_{\bullet}(X) = H_{\bullet}(*)$.

Definition 3.0.2 (Acyclic map). Assume X and Y are path-connected. Then, $f: X \to Y$ is called acyclic if the homotopy fibre H_f (which is unique upto homotopy equivalence here; see Definition 5.0.3) is an acyclic space.

Proposition 3.0.3 (Equivalent conditions for acyclic maps). *TFAE*:

- 1. $f: X \to Y$ is acyclic.
- 2. For Y, the universal cover of Y, in the following pullback diagram, f' induces isomorphism between $H_{\bullet}(X \times_Y \tilde{Y})$ and $H_{\bullet}(\tilde{Y})$.

$$\begin{array}{ccc} X \times_Y \tilde{Y} & \xrightarrow{f'} & \tilde{Y} \\ \downarrow & & \downarrow \\ X & \xrightarrow{f} & Y \end{array}$$

Proposition 3.0.4. If $f: X \to Y$ is acyclic, then it induces isomorphism at the homology level.

Proposition 3.0.5. If $f: X \to Y$ is acyclic, then $\pi_1(Y) \cong \frac{\pi_1(X)}{P}$, where P is some perfect (i.e., [P, P] = P) normal subgroup of $\pi_1(X)$.

Proof. As $\tilde{H}_{\bullet}(H_f) = 0$, $\pi_1(H_f)$ is perfect. From the long exact sequence in Proposition 5.0.4, $\pi_1(Y) \cong \frac{\pi_1(X)}{Ker(f_*)}$ where $Ker(f_*)$ is the image of the perfect group $\pi_1(H_f)$, hence is perfect.

Proposition 3.0.6. If $f: X \to Y$ is acyclic and X and Y are CW complexes. If f also induces isomorphism of fundamental groups, then f is a homotopy equivalence.

Proof. From the long exact sequence in Proposition 5.0.4, if we show, $\pi_n(H_f) = 1, \forall n$, then f induces isomorphism of all homotopy groups of X and Y. Now, by Proposition 5.0.5, f is a homotopy equivalence.

To show, $\pi_n(H_f) = 1, \forall n$, observe that again by Proposition 5.0.4, at n = 1 level, we have $\pi_1(H_f)$ is the image of the abelian group $\pi_2(Y)$, hence it is abelian. But it is also a perfect group, hence it is 1. $H_0(H_f) = 0$ implies $\pi_0(H_f) = 1$. By Proposition 5.0.6, $\pi_2(H_f) = 1$ and inducively $\pi_n(H_f) = 1. \forall n$. So, we are done.

Proposition 3.0.7 (Pullbacks and Acyclic maps). If f or g is a fibration (See 5.0.1), then f is acyclic iff f' is.

$$Y' \times_Y X \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \xrightarrow{g} Y$$

Proposition 3.0.8 (Pushouts and acyclic maps). If f_1 is a cofibration (See 5.0.9), then f_i is acyclic implies f'_i is acyclic.

$$X \xrightarrow{f_1} Y_1$$

$$f_0 \downarrow \qquad \qquad \downarrow f'_0$$

$$Y_0 \xrightarrow{f'_1} Y_0 \cup_X Y_1$$

4 + Construction

Definition 4.0.1 (+ Construction). Let P be a perfect normal subgroup of $\pi_1(X)$, where X is a based path connected CW complex. An acyclic map $f: X \to Y$ is called a + Construction on X (relative to P) if P is the kernel of $f_*: \pi_1(X) \to \pi_1(Y)$.

Existence of + Construction. First we prove it for a path connected CW complex X whose fundamental group is perfect. By Proposition 5.0.7, attaching 2-cells along all the elements of $\pi_1(X)$, we get a path connected CW complex W with $\pi_1(W) = 1$. We have the following long exact sequence of the pair (W, X) (also observing that $\pi_1(X)$ is perfect implies $H_1(X) = 0$).

$$\cdots \longrightarrow H_2(W) \longrightarrow H_2(W,X) \longrightarrow H_1(X) = 0$$

$$\uparrow \\ \pi_2(W)$$

Now, by excision, $H_2(W,X) \cong H_2(W/X) \cong H_2(\bigvee_{\lambda} S^2) \cong \bigoplus_{\lambda} H_2(S^2)$. Hence, let $\{1_{\lambda}\}$ be the generators of $H_2(\bigvee_{\lambda} S^2)$, which correspond to elements $\{b_{\lambda}\}$ in $H_2(W)$. By Proposition 5.0.6, pick elements $\beta_{\lambda} \in \pi_2(W)$ mapping to $b_{\lambda} \in H_2(W)$. Pick some representative of β_{λ} ; call it the same. So, $\beta_{\lambda} : S^2 \to W$. Attach 3-cells via these maps to get another CW complex Y.

Claim: $H_{\bullet}(Y,X)=0$

We have the following exact sequence of the triplet (Y, W, X). We will show that $H_3(Y, W) \to H_2(W, X)$ is an isomorphism. This clearly implies $H_i(Y, X) = 0$, for i = 2, 3.

$$0 = H_3(W, X) \longrightarrow H_3(Y, X) \longrightarrow H_3(Y, W) \longrightarrow H_2(W, X) \longrightarrow H_2(Y, X) \longrightarrow H_2(Y, W) = 0$$

Denote by $\phi_{\lambda}: D^3 \to Y$, the corresponding characteristic map associated with the attaching map $\beta_{\lambda}: S^2 \to W$. The following commutative diagram induces a commutative diagram for the corresponding homology groups of the triplets.

The above diagram of obvious maps induces the following by excision as (Y, W) is CW pair.

$$H_3(\bigvee_{\lambda} D^3, \bigvee_{\lambda} S^2) \xrightarrow{\cong} H_3(\bigvee_{\lambda} S^3)$$

$$\downarrow \qquad \qquad \downarrow \cong$$

$$H_3(Y, W) \xrightarrow{\cong} H_3(Y/W)$$

By the above diagram, we have an isomorphism in the left arrow in Diagram 1. We also have $H_2(\bigvee_{\lambda} S^2, *) \to H_2(W, X)$, sending 1_{λ} to $(\beta_{\lambda})_*(1_{\lambda}) = b_{\lambda}$ by Proposition 5.0.6. Hence, it is an isomorphism in Diagram 1. Also, from the homology long exact sequence of the triplet $(*, \bigvee_{\lambda} S^2, \bigvee_{\lambda} D^3)$ and the fact that $\bigvee_{\lambda} D^3$ is contractible we have the isomorphism in the top arrow in Diagram 1. So, in Diagram 1, we have isomorphism in the bottom arrow as well. Hence, as observed before, $H_i(Y, X) = 0$; i = 2, 3. It is also easy to see that $H_n(Y, X) = 0$ for all other n. So, we are done.

Now, we show $X \hookrightarrow Y$ is an acyclic map using Proposition 3.0.3. As Y is simply connected, it is its own universal cover. So, as in Proposition 3.0.3, we have the following diagram of pullback and the map induced at homology level.

Note that $X \times_Y Y = \{(x, x); x \in X\} \subset X \times Y$, clearly homeomorphic to X via the projection in the pullback diagram. Also, by the previous claim, $H_{\bullet}(Y, X) = 0 \implies H_n(X) \cong H_n(Y), \forall n$. So, by Proposition 3.0.3, the inclusion $X \hookrightarrow Y$ is an acyclic map. As by construction (Y, X) is CW pair, the inclusion is also a cofibration.

Now, for the general case, let $P \subset \pi_1(X)$, a perfect normal subgroup. Let X' be the cover of X with $\pi_1(X') = P$. Clearly, X' is also a path connected CW complex with P = [P, P]. Hence, by the previous construction, $\exists X' \hookrightarrow Y'$ where Y' is a simply connected CW complex and the inclusion is an acyclic cofibration. Now, by Proposition 3.0.8, in the following pushout diagram, we have $X \dashrightarrow X \cup_{X'} Y'$ an acyclic co-fibration.

$$X' \longleftrightarrow Y'$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{f^+} X \cup_{X'} Y'$$

Now, by Van Kampen's theorem, if $X^+ := X \cup_{X'} Y'$, then $\operatorname{Ker}(f^+) = P$ and by Proposition 3.0.5, $\pi_1(X^+) = \frac{\pi_1(X)}{P}$.

 $Uniqueness\ of\ +\ Construction.$

Lemma 4.0.2. Suppose $f: X \to Y$ is an acyclic cofibration and $g: X \to Z$ is any continuous map with $Ker(f_*) \subset Ker(g_*)$, where X, Y, Z are path-connected CW complexes. Then, there exists a map $h: Y \to Z$ such that $h \circ f = g$. Moreover, any two such maps are homotopic.

Proof of lemma

We first prove it for the case when g is the inclusion $i: X \to M_g$, the mapping cylinder, which we know is a cofibration. We have the following pushout diagram:

$$X \xrightarrow{f} Y$$

$$\downarrow i \qquad \qquad \downarrow i'$$

$$M_g \xrightarrow{f'} M_g \cup_X Y$$

By Proposition 3.0.8, f' is an acyclic cofibration. And by Van Kampen's theorem, $\operatorname{Ker}(f'_*) = \langle i_*(\operatorname{Ker}(f_*)) \rangle = 1$, as $\operatorname{Ker}(f_*) \subset \operatorname{Ker}(g_*)$ by hypothesis. So, by Proposition 3.0.4, f'_* is an isomorphism of fundamental groups. Also, it can be easily checked that $M_g \cup_X Y$ is a path-connected CW complex. So, by Proposition 3.0.6, f' is a homotopy equivalence. By Proposition 5.0.11, f' is

also a homotopy equivalence under X (See 5.0.10). Let h' be the its homotopy inverse under X, unique upto homotopy. $h:=h'\circ i':Y\to M_g$. Then, $h\circ f(x)=h'(f'((x,1)))=(x,1)=i(x)$, by Proposition 5.0.11.

Now, if $p: Y \to M_g$ such that $p \circ f = i$, then consider the following by universal property of pushouts.

So, $p = j \circ i'$ and $j \circ f' = Id$. Now, $f' \circ h' \approx Id \implies j \circ (f' \circ h') \approx j \implies h' \approx j$. So, $p \approx h$. Now, for the general case, we have the following commutative diagrams which can be easily checked:

Here, ϕ is the homotopy equivalence between M_g and Z as defined uniquely by the left diagram above by universal property of pushouts. The existence of h is from the previous discussion as $\operatorname{Ker}(f_*) \subset \operatorname{Ker}(g_*) = \operatorname{Ker}(\phi_* \circ i_*) = \operatorname{Ker}(i_*)$ as ϕ_* is an isomorphism. So, for any map l with $l \circ f = g$, $l = \phi \circ h$, where h is unique upto homotopy as seen before. $\phi \circ h$ is our required map which is unique upto homotopy.

Coming back to the uniqueness of + construction, it is clear from the lemma, that any two + constructions are homotopy equivalent [where in the definition we want the map $f: X \to X^+$ to also be a cofibration, which is also guaranteed by our explicit construction].

5 Results from topology

Definition 5.0.1 (Fibration). $f: X \to Y$, a continuous map between topological spaces is called a fibration if

- for any homotopy $F: Z \times I \to Y$ and
- for any map g' lifting F(-,0)

 $\exists F': Z \times I \to X \text{ lifting } F \text{ such that } F'(_, 0) = g'.$

Proposition 5.0.2 (Fibration long exact sequence). If $f: X \to Y$ is a fibration, we have this long exact sequence induced by $(f^{-1}(y_0), x_0) \hookrightarrow (X, x_0) \xrightarrow{f} (Y, y_0)$, where $f(x_0) = y_0$.

$$\cdots \longrightarrow \pi_n(f^{-1}(y_0), x_0) \longrightarrow \pi_n(X, x_0) \longrightarrow \pi_n(Y, y_0) \longrightarrow \cdots$$

Definition 5.0.3 (Homotopy fibre). Let $f: X \to Y$ be any continuous map with $f(x_0) = y_0$ $E_f := \{(a, \gamma) : a \in X, \gamma : I \to Y, \gamma(0) = f(a)\} \subset X \times Y^I$ where Y^I is given the compact-open topology. Let $\phi: E_f \to Y$ be the map $\phi(a, \gamma) = \gamma(1)$. It is a fibration.

Homotopy fibre of f with respect to $y_0 \in Y$ is defined to be $H_f := \phi^{-1}(y_0)$. It is unique upto homotopy equivalence if Y is path connected.

Proposition 5.0.4 (Homotopy fibre long exact sequence). It is true that $\psi: X \to E_f$ where $x \mapsto (x, \gamma_{f(x)})$ is an embedding of X in E_f to which E_f deformation retracts, where $\gamma_{f(x)}$ is the constant path at f(x). The same map restricted to $f^{-1}(y_0)$ is a homotopy equivalence between $f^{-1}(y_0)$ and H_f . We have the following:

$$\cdots \longrightarrow \pi_n(H_f, (x_0, \gamma_{y_0})) \xrightarrow{i_*} \pi_n(E_f, (x_0, \gamma_{y_0})) \xrightarrow{\phi_*} \pi_n(Y, y_0) \longrightarrow \cdots$$

$$\uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow Id$$

$$\pi_n(f^{-1}(y_0), x_0) \qquad \qquad \pi_n(X, x_0) \xrightarrow{f_*} \pi_n(Y, y_0)$$

Proposition 5.0.5 (Whitehead's theorem). If $f: X \to Y$, $f(x_0) = y_0$, where X and Y are path-connected CW complexes, and $f_*: \pi_n(X, x_0) \to \pi_n(Y, y_0)$ is an isomorphism, $\forall n$, then X is homotopy equivalent to Y, via f.

Proposition 5.0.6 (Hurewicz's theorem). Define $\phi: \pi_n(X, x_0) \to H_n(X)$ by $\phi([f]) := f_*(\alpha)$, where $f_*: H_n(S^n) \to H_n(X)$ and α is some fixed generator of $H_n(S^n)$. Then, for $n \geq 2$, if X is (n-1) connected (i.e., $\pi_j(X, x_0) = 1, \forall j < n$), then $\tilde{H}_j(X) = 0, \forall j < n$ and ϕ is an isomorphism.

Proposition 5.0.7 (Corollary of Van Kampen's theorem). If X is path connected and Y is obtained from X by attaching 2-cells along the loops based at x_0 , say ϕ_{α} , then $X \hookrightarrow Y$ induces a surjective map from $\pi_1(X, x_0)$ to $\pi_1(Y, x_0)$ and $\pi_1(Y, x_0) \cong \frac{\pi_1(X, x_0)}{\langle \phi_{\alpha} \rangle}$ And $\langle \phi_{\alpha} \rangle$ denotes the normal subgroup in $\pi_1(X, x_0)$ generated by the ϕ_{α} 's. But if Y is obtained by attaching cells of dimension greater than 2, $\pi_1(Y, x_0) \cong \pi_1(X, x_0)$.

Proposition 5.0.8. Corollary of cellular approximation theorem If (Y, X) is a CW pair based at $x_0 \in X$ where Y is obtained from X by attaching cells of dimension greater than n, then the inclusion induces isomorphisms of $\pi_j(Y, x_0) \cong \pi_j(X, x_0), j < n$ and a surjection for j = n.

Definition 5.0.9 (Cofibration). $f: X \to Y$, a continuous map between topological spaces is called a cofibration if

- for any homotopy $F: X \times I \to Z$ and
- for any map g' extending $F(_,0)$

 $\exists F': Y \times I \to Z \text{ extending } F \text{ such that } F'(_, 0) = q'.$

If (Y, X) is CW pair, the inclusion of X in Y is a cofibration.

Definition 5.0.10 (Homotopy under a space). With respect to the diagram below, $F: X \times I \to Y$ is a homotopy under A if $F(i(a), t) = j(t), \forall a, t$.

Proposition 5.0.11. *If* i *and* j *are cofibrations in the above diagram, and suppose* f *is a homotopy equivalence, then* $\exists g: Y \to X, g \circ j = i$ *and both* $g \circ f$ *and* $f \circ g$ *are homotopic to Id under* A.

Proposition 5.0.12 (Homotopy groups of a covering space). If $p: X \to Y$ is a cover, then $\pi_n(X) \cong \pi_n(Y), \forall n > 1$.

Proposition 5.0.13 (Uniqueness of classifying space). If G is a group and X_1, X_2 are contractible Hausdorff spaces on which G acts properly discontinuously, where $\frac{X_1}{G}, \frac{X_2}{G}$ are para-compact (a space in which every open cover has an open refinement that is locally finite; every CW complex is paracompact), then the quotient spaces are homotopy equivalent.

Proposition 5.0.14 (Functoriality of BG). The classifying space construction gives a functor B from the category of groups and group homomorphisms to the category of CW complexes and homotopy classes of continuous maps.