An Optimization Layer for Distributed Matrix Computations

Jonah Brown Cohen, Tselil Schramm, and Ben Weitz

Motivation

- ▶ Big data companies like Facebook, Netlix, or Google perform large-scale distributed matrix computations
- Computations experience trade-offs in accuracy vs. time or money.

Figure: CAPTION HERE AAARGGHHHH

- Human operators manually tweak parameters and partitioning
- Humans are prone to error and costly to hire!
- ► Solution: Build an optimization layer to automatically tweak and manage these computations
- Learn to adjust parameters from past computations
 Incoming jobs come with budgets of time or accuracy that must be met

Objective

Create an optimizer that automatically picks algorithm parameters and the degree of data partitioning to meet budget specifications

Framework

- Optimizer interface to user: input data, methods to run, and time, error, and financial budgets
- Optimizer then interfaces with matrix algorithms implemented within a parallel framework (such as an algorithm wirtten in SparkR or methods from MLBase)
- All parameter selection hidden from user

Figure: Our optimizer provides an interface to the user, through which the user specifies the algorithm and a time, error, and monetary budget. The optimizer then calls down to the matrix computation framework with the appropriate

Optimizer Design

Our optimizer is:

- Architecture-independent
- Stores statistics from prior jobs on the architecture in question
 Parameters chosen based on statistics for the specific architecture
- Adaptive
- Stores statistics from previous jobs on instances with similar distribution
 Prediction of the optimal parameters improves as the optimizer learns
- Avoids Local Optima
- When one choice of parameters already encountered is slightly better, there
- is a risk of getting stuck at a local optimum
 In "explore mode" we choose the instance parameters randomly, with probability proportional to the relative suitability of the parameters

Figure: The control flow of our optimizer. The optimizer looks up relevant information in a database, then interacts with the distributed computation framework (in our current implementation, SparkR).

Implementation

▶ The matrix computation: Divide-Factor-Combine (DFC)

Figure: DFC is a distributed matrix factorization algorithm.

- ▶ The parallel computation framework: SparkR
- An interface for Spark in R
- ▶ Implemented DFC to be incorporated into SparkR
- Both randomized and deterministic projection methods
- ► Two different base factorization methods: APG and SGD

Evaluation

Tested on Synthetic and Real-world Data

Gaussian Random Matrices

Trained on eight random matrices and tested on a ninth

Figure: Plots of AIC and BIC Values against the Memory Parameter for a Dictionary Player with True Memory 2

- MovieLens 10M Dataset
- Partitioned dataset into 7 parts
- Trained on all but one partition and tested on the remainder

Figure: Plots of AIC and BIC Values against the Memory Parameter for a Dictionary Player with True Memory 2

Optimizer performs as well as manually setting the parameter!

Future Work

- Optimize over space of algorithms in addition to space of parameters
- Avoid RAM bottlenecks by distributing collect step
- Handle novel or different jobs

Acknowledgements

We would like to thank:

- Shivaram Venkataraman, Ameet Talwalkar, Prof. Anthony Joseph, and Prof. John Kubiatowicz
- ▶ UC Berkeley and the NSF for providing funds and resources.