

UiO • Department of Mathematics
University of Oslo

Join of hexagons and Calabi-Yau threefolds

Public defence

Fredrik Meyer

November 8, 2017

Outline of the thesis

- Unsuccessful attempt to find new hyper-Kähler varieties.
- The topology of $C(dP_6)$.
- New Calabi-Yau varieties and potential mirror partners.

Calabi-Yau manifolds

Definition (Calabi-Yau variety)

A Calabi–Yau variety is a smooth projective scheme X/\mathbb{C} of dimension 3 satisfying:

$$\blacksquare H^0(X,\mathscr{O}_X) = H^3(X,\mathscr{O}_X) = k \text{ and } h^1(X,\mathscr{O}_X) = h^2(\mathscr{O}_X) = 0.$$

- The canonical sheaf is trivial: $\omega_X \simeq \mathscr{O}_X$.
- Easiest invariant are the Euler characteristic and the Hodge numbers.
- We always have $\chi = 2(h^{11} h^{12})$.

$$h^{00}$$
 h^{01}
 h^{10}
 h^{02}
 h^{11}
 h^{20}
 h^{03}
 h^{12}
 h^{21}
 h^{31}
 h^{23}
 h^{33}

Calabi-Yau manifolds

Definition (Calabi-Yau variety)

A Calabi–Yau variety is a smooth projective scheme X/\mathbb{C} of dimension 3 satisfying:

$$\blacksquare H^0(X,\mathscr{O}_X) = H^3(X,\mathscr{O}_X) = k \text{ and } h^1(X,\mathscr{O}_X) = h^2(\mathscr{O}_X) = 0.$$

- The canonical sheaf is trivial: $\omega_X \simeq \mathscr{O}_X$.
- Easiest invariant are the Euler characteristic and the Hodge numbers.
- We always have $\chi = 2(h^{11} h^{12}).$

Hodge numbers

■ The quintic $X = V(f) \subset \mathbb{P}^4$ is the canonical example of a Calabi–Yau. It has Hodge numbers $h^{11} = 1$ and $h^{12} = 101$.

Remark (Heuristic)

The number h^{12} is the dimension of the "space of parameters" of X. The following heuristic will give us the correct Hodge number:

- The space of degree 5 polynomials $H^0(\mathbb{P}^4, \mathscr{O}_{\mathbb{P}^4}(5))$ in \mathbb{P}^4 is $\binom{4+5}{5} = \binom{9}{4} = 126$ -dimensional. Hence $\mathbb{P}(H^0(\mathbb{P}^4, \mathscr{O}_{\mathbb{P}^4}(5)) = \mathbb{P}^{125}$.
- This is not unique, but we can act by PGL(5) to identify isomorphic quintics. We have $\dim PGL(5) = 25 1 = 24$.
- In total: 125 24 = 101, which is $h^{12}(X)$.

Mirror symmetry

- Calabi-Yau threefolds seem to "always" have "mirror partners".
- Mirror partner X° to X have "mirrored Hodge diamond".
- Hence $\chi(X^{\circ}) = -\chi(X)$.

			Χ			
			1			
		0		0		
	0		1		0	
1		101		101		1
	0		1		0	
		0		0		
			1			

Mirror symmetry

- Calabi-Yau threefolds seem to "always" have "mirror partners".
- Mirror partner X° to X have "mirrored Hodge diamond".
- Hence $\chi(X^{\circ}) = -\chi(X)$.

			Χ			
			1			
		0		0		
	0		1		0	
1		101		101		1
	0		1		0	
		0		0		
			1			

			X°			
			1			
		0		0		
	0		101		0	
1		1		1		1
	0		101		0	
		0		0		
			1			

- Suppose X has a natural degeneration X_0 with a finite automorphism group G.
- 2 Find a family $\pi: \mathscr{X} \to S$ on which G act, and such that the general fiber X_t have only isolated singularities.
- There might be a finite subgroup H of the big torus acting. A mirror candidate is then a crepant resolution of X_t/H .

- The general quintic degenerates to the singular scheme $V(x_0x_1x_2x_3x_4)$.
- **2** Find a family $\pi: \mathscr{X} \to S$ on which G act, and such that the general fiber X_t have only isolated singularities.
- There might be a finite subgroup H of the big torus acting. A mirror candidate is then a crepant resolution of X_t/H .

- The general quintic degenerates to the singular scheme $V(x_0x_1x_2x_3x_4)$.
- 2 The family defined by $f_t = x_0 x_1 x_2 x_3 x_4 + t \sum_{i=1}^5 x_i^5$ is S_5 -invariant.
- There might be a finite subgroup H of the big torus acting. A mirror candidate is then a crepant resolution of X_t/H .

- The general quintic degenerates to the singular scheme $V(x_0x_1x_2x_3x_4)$.
- 2 The family defined by $f_t = x_0 x_1 x_2 x_3 x_4 + t \sum_{i=1}^5 x_i^5$ is S_5 -invariant.
- There is an action of $H \triangleq (\mathbb{Z}/5)^5/(\mathbb{Z}/5)$ on X_t . Crepant resolutions of X_t/H exists, and is a mirror.

Sometimes the following method produces a mirror manifold of a Calabi–Yau X.

- The general quintic degenerates to the singular scheme $V(x_0x_1x_2x_3x_4)$.
- 2 The family defined by $f_t = x_0 x_1 x_2 x_3 x_4 + t \sum_{i=1}^5 x_i^5$ is S_5 -invariant.
- There is an action of $H \triangleq (\mathbb{Z}/5)^5/(\mathbb{Z}/5)$ on X_t . Crepant resolutions of X_t/H exists, and is a mirror.

We can use Roan's formula to compute the Euler characteristic.

Theorem (Roan's formula)

$$\chi(\widetilde{X_t/H}) = \frac{1}{|H|} \sum_{g,h \in H} \chi\left(X_t^g \cap X_t^h\right).$$

The cone over dP₆

- Let dP₆ ⊂ P⁶ be an anticanonically embedded del Pezzo surface of degree
 6. Let C(dP₆) be its affine cone in A⁷.
- The equations are

$$\begin{vmatrix} y & x_1 & x_2 \\ x_4 & y & x_3 \\ x_5 & x_6 & y \end{vmatrix} \le 1$$

The origin is an isolated singularity.

- There are two smoothing components.
- They come from perturbations of differents form of writing the equation.
- Can also write the equations as:

UiO : Department of Mathematics
University of Oslo

The two smoothing components

TODO: trengs denne?

Construction of a new Calabi–Yau: X_1

■ Let *E* be a vector space with basis e_1 , e_2 , e_3 . Consider

$$\mathbb{P}^{17} = \mathbb{P}(E \otimes E \oplus E \otimes E).$$

The elements are pairs of 3×3 matrices, equal up to scalar multiplication.

- Consider the set of pairs M of matrices (A, B) with rank 1 + 1.
- Intersect M with a generic $\mathbb{P}^{11} \subset \mathbb{P}^{17}$. Let $X_1 \stackrel{\Delta}{=} M \cap \mathbb{P}^{11}$.

Theorem

 X_1 is a smooth Calabi–Yau with Euler-characteristic -72.

Construction of a new Calabi–Yau: X_2

■ Let F be a vector space with basis f_1 , f_2 . Consider

$$\mathbb{P}^{15} = \mathbb{P}(F \otimes F \otimes F \oplus F \otimes F \otimes),$$

The elements are pairs of $2 \times 2 \times 2$ -tensors, equal up to scalar multiplication.

- Consider the set of pairs N of tensors (A, B) with rank 1 + 1.
- Intersect *N* with a generic $\mathbb{P}^{11} \subset \mathbb{P}^{15}$. Let $X_2 \stackrel{\Delta}{=} N \cap \mathbb{P}^{11}$.

Theorem

 X_2 is a smooth Calabi–Yau with Euler-characteristic –48.

Construction of a new Calabi–Yau: X_3

■ Let *E* and *F* be as before. Consider

$$\mathbb{P}^{16} = \mathbb{P}(E \otimes E \oplus F \otimes F \otimes).$$

- Consider the set of pairs W of tensors (A, B) with rank 1 + 1.
- Intersect W with a generic $\mathbb{P}^{11} \subset \mathbb{P}^{16}$. Let $X_3 \stackrel{\Delta}{=} W \cap \mathbb{P}^{11}$.

Theorem

X₃ is a smooth Calabi−Yau with Euler-characteristic −60.

Hodge number heuristics

Conjecture

 X_1 have Hodge numbers $h^{11} = 3$ and $h^{12} = 39$.

"Reason".

- We know the Euler characteristic, so it is enough to find h^{12} (= number of parameters).
- The Grassmannian of \mathbb{P}^{11} 's in \mathbb{P}^{17} is 72-dimensional.
- **3** We can act by automorphism from $\prod_{i=1}^4 GL(E)$.
- The subgroup $\{t_1t_2 = t_3t_4\} \subset (\mathbb{C}^*)^4 \subset \prod_{i=1}^4 \mathrm{GL}(E)$ acts trivially.
- 5 Hence $h^{12} = 72 (\dim \prod_{i=1}^4 GL(E) 3) = 72 33 = 39$.

Mirror candidates

Using the mirror Ansatz, we propose mirror candidates for X_1 and X_2 .

■ BB

UiO Department of Mathematics University of Oslo

