Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки: 09.03.01 Информатика и вычислительная техника Дисциплина «Основы профессиональной деятельности»

Лабораторная работа №6

По дисциплине

«Основы профессиональной деятельности»

Вариант: 3108

Выполнил Колмаков Дмитрий Владимирович, Группа Р3131

> Преподаватель Перцев Тимофей Сергеевич

Оглавление

Вадание	3
Ход работы	
Назначение программы	
ОДЗ	
Расположение данных в памяти	
Область представления	
Код программы на ассемблере	
Зывол	

Задание

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

- 1. Основная программа должн уменьшать на 2 содержимое X (ячейки памяти с адресом 015_{16}) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-1 осуществлять вывод результата вычисления функции F(X)=6X-4 на данное ВУ, а по нажатию кнопки готовности ВУ-3 выполнить операцию побитового 'ИЛИ' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

Ход работы

Назначение программы

- 1. Основная программа должна уменьшать на 2 содержимое X (ячейки памяти с адресом 015_{16}) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-1 осуществлять вывод результата вычисления функции F(X)=6X-4 на данное ВУ, а по нажатию кнопки готовности ВУ-3 выполнить операцию побитового 'ИЛИ' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

ОД3

$$-128 \le 6X - 4 \le 127$$
 $-124 \le 6X \le 131$
 $-20 \le X \le 21$
 $21 = 0000.0000.0001.0101 = 0x0015$
 $-20 = 1111.1111.1110.1100 = 0xFFEC$
Число $X \in [FFEC; 0015]$

Расположение данных в памяти

• Вектор прерываний: 0x000 - 0x00F

• Переменные: 0x015, 0x050 – 0x051

Обработчики прерываний: 0x020, 0x030 – 0x00B, 0x040 – 0x008

Основная программа: 0x050 – 0x078

Область представления

- X, MIN, MAX знаковое 16-ричное целое число;
- DR КВУ знаковое 8-ми разрядное целое число.

Код программы на ассемблере

```
ORG 0x000
                    ; инициализация векторов прерывания
V0: WORD $DEF, 0x180 ; вектор прерывания #0
V1: WORD $INT1, 0x180 ; вектор прерывания #1
V2: WORD $DEF, 0x180 ; вектор прерывания #2
V3: WORD $INT3, 0x180 ; вектор прерывания #3
V4: WORD $DEF, 0x180 ; вектор прерывания #4
V5: WORD $DEF, 0x180 ; вектор прерывания #5
V6: WORD $DEF, 0x180 ; вектор прерывания #6
V7: WORD $DEF, 0x180 ; вектор прерывания #7
ORG 0x015
X: WORD 0x0FFF; слово X
ORG 0x020
                ; стандартный прерывания
DEF: IRET
ORG 0x030
               ; обработчик прерывания 1
INT1: PUSH
                ; сохраняем АС
   HLT
   LD
             ; 2*X
             ; 2*2*X
   ADD X ; 2*2*X + X
   ADD X
   SUB #4 ; 6X - 4
             ; вывод на ву-1
   POP
   HLT
   IRET
             ; возврат из обработки прерывания
ORG 0x040
               ; обработчик прерывания 3
INT3: PUSH
               ; сохраняем АС
   HLT
        6
            ; ввод с ву-3
   OR
         Χ
            ; побитовое или с Х
        Χ
             ; сохраняем в Х
   OUT 6
             ; вывод на ВУ
   HLT
   POP
   IRET
             ; возврат из обработки прерывания
ORG 0x050
MIN: WORD 0xFFEC ; -20, минимальное значение
MAX: WORD 0x0015 ; -21, максимальное значение
CHECK:
               ; проверка Х на ОДЗ
CMP1: CMP MIN ; X >= минимального значения?
   BPL CMP2 ; да - переход к следующей проверке
   LD
         MIN ; нет - загружаем минимальное значение
```

```
CMP2: CMP MAX ; X < максимального значения?
    BMI RETURN ; да - возврат
         МАХ ; нет - загружаем максимальное значение
RETURN: RET
ORG 0x060
START: DI
               ; запрет прерываний
           ; загрузка векторов прерывания
    LD #0x9 ; разрешить прерывания и вектор #1
    OUT 0x3 ; (1|001) B MR BY-1
    LD #0xB ; разрешить прерывания и вектор #3
    OUT 0x7 ; (1|011) В MR ВУ-3
    EI ; разрешение прерываний
    JUMP PROG ; переход к основной программе
PROG: EI ; разрешение прерываний 
CLA ; очистка аккумулятора
PLOOP:
            ; запрет прерываний для атомарности операции
    CALL CHECK ; проверка на ОДЗ
          ; разрешение прерываний
    JUMP PLOOP ; спинлуп
```

Методика проверки

Проверка обработки прерываний:

- 1. Загрузить текст программы в БЭВМ.
- 2. Заменить NOP по нужному адресу на HLT.
- 3. Запустить программу в режиме РАБОТА.
- 4. Установить «Готовность ВУ-1».
- 5. Дождаться остановки.
- 6. Записать текущее значение X из памяти БЭВМ:
 - 1. Запомнить текущее состояние счетчика команд.
 - 2. Ввести в клавишный регистр значение 0х015
 - 3. Нажать «Ввод адреса».
 - 4. Нажать «Чтение».
 - 5. Записать значение регистра данных.
 - 6. Вернуть счетчик команд в исходное состояние.
- 7. Нажать «Продолжение».
- 8. Записать результат обработки прерывания полученное значение F(X) = 6X 4 из DR контроллера BУ-1.
- 9. Нажать «Продолжение».
- 10. Ввести в ВУ-3 произвольное число, записать его.
- 11. Установить «Готовность ВУ-3».
- 12. Дождаться остановки.
- 13. Записать текущее значение X из памяти БЭВМ:
 - 1. Запомнить текущее состояние счетчика команд.
 - 2. Ввести в клавишный регистр значение 0х015
 - 3. Нажать «Ввод адреса».
 - 4. Нажать «Чтение».
 - 5. Записать значение регистра данных.
 - 6. Вернуть счетчик команд в исходное состояние.
- 14. Нажать «Продолжение».
- 15. Записать результат обработки прерывания DR OR X из DR контроллера ВУ-3.
- 16. Рассчитать ожидаемое значение переменной X после обработки прерывания и сравнить.

Проверка основной программы:

- 1. Загрузить текст программы в БЭВМ.
- 2. Записать в переменную X максимальное по ОДЗ минимальное значение (-20)
- 3. Запустить программу в режиме остановки.
- 4. Пройти нужное количество шагов программы, убедиться, что при уменьшении X происходит сброс значения в минимальное по ОДЗ.

Прерывание ВУ-1			Прерывание ВУ-3			
AC (07)	Ожидание	DR	AC (07)	DR	Ожидание	Результат
	6X-4			КВУ-3	(DR OR X)	AC (07)
10 ₁₆ (16)	5C ₁₆ (92)	5C ₁₆ (-93)	01 ₁₆ (1)	7E ₁₆ (126)	7F ₁₆ (127)	$7F_{16}(127)$
FF ₁₆ (-1)	F6 ₁₆ (-10)	F6 ₁₆ (-10)	$01_{16}(1)$	02 ₁₆ (2)	03 ₁₆ (3)	03 ₁₆ (3)
20 ₁₆ (32)	7A ₁₆ (122)	7A ₁₆ (122)	$01_{16}(1)$	E0 ₁₆ (-32)	E1 ₁₆ (-33)	E1 ₁₆ (-33)

Вывод

В ходе выполнения лабораторной работы я изучил обмен данными с ВУ-1 и ВУ-3 в режиме прерываний, также изучил цикл прерывания и циклы исполнения новых команд, закрепил знания в написании программ на ассемблере БЭВМ.