EXAMEN FINAL DU PREMIER SEMESTRE <u>Durée 1h30</u>

Nom:	Note/20
Prénom(s):	
Matricule :	
Section/Groupe:	
Exercice 1:(3pts)	
1- Donner la constitution du noyau et indiquer le nombre d'électrons des	s atomes et ions suivants:
$^{40}_{18}Ar$, $^{48}_{22}Ti$, $^{56}_{26}Fe^{3+}$ et $^{31}_{15}P^{3-}$	
⁴⁰ ₁₈ Ar :	
487i :	
$^{56}_{26}Fe^{3+}$:	
$^{31}_{15}P^{3-}$:	
2- Les nucléides ^{40}Ar et ^{38}Ar sont des isotopes de l'argon naturel (Ar) ^{40}Ar est de 99,600% et \mathbf{x}_2 celle de ^{38}Ar est de 0,063%. Existe <u>Justifier.</u>	
3- Si oui, donner son abondance relative x_3 et calculer sa masse atomique On donne les masses atomiques en uma : $m (Ar_{naturel}) = 39,947$ $m_2(^{38}Ar) = 37,963$.	
······································	

Exercice 2: (6,75 pts)

Soient les éléments du tableau périodique suivants : A, D, E et H, tel que :

- A⁺³ a la structure électronique du deuxième gaz rare.
- D appartient à la même période que 3Li et possède 7 électrons sur sa couche de valence.
- E est le deuxième alcalino-terreux.
- H comporte dans sa représentation de Lewis 3 électrons célibataires et un doublet libre d'électrons. Le nombre quantique principal de sa couche de valence est égal à 2.
- 1- Donner pour chacun des éléments A, D, E et H: la configuration électronique, le numéro atomique Z, le groupe ainsi que la période.

Elément	Configuration électronique	Z	Groupe	Période
A				
D				
E				
Н				

2- Quel est l'ion le plus stable que peut former chacun des éléments D, E et H? Justifier.

Elément	Ion stable
D	
E	
Н	

Donner les quatre nombres quantiques de l'électron de plus haute énergie de l'élément A.
- Attribuer, à chacun des éléments A , D , E et H , son électronégativité (eV) parmi les valeurs suivantes : 3,04 ; 3,98 ; 1,61 et 1,31. <u>Justifier</u> .

5- Quelle est la nature des liaisons A-D et D-E ? <u>Justifier</u> votre réponse.

Liaison	Nature de la liaison	
A-D		
D-E		

Exercice 3 (6,75 pts)

	s éléments 60 Cl ₂ , CO ₂ et	Cet $_{17}Cl$ se combinent avec l Cl_2O .	l'oxygène (80) pour former le	s composés suivants :
1-	Représenter le	es électrons de valence dans le	es cases quai	ntiques.	
17	Cl:				
2-	Compléter le	tableau ci-dessous:			
	Composé	Structure de Lewis	AX_mE_n	Hybridation (atome central)	Géométrie
	COCl ₂				
	CO_2				
	Cl ₂ O				
 3- Représenter les moments dipolaires des molécules COCl₂ et CO₂. Déduire laquelle des deux molécules est apolaire ? 4- Le moment dipolaire de la molécule Cl₂O est égal à 2,7 10⁻³⁰ C.m. La distance interatomique 					
	Cl-O est de 1	1,70 Å et l'angle de liaison θ de le sens de polarisation de la li	ans OCl ₂ est	de 110°.	1
b- Calculer le caractère ionique partiel de la liaison Cl-O. On donne : e = 1,6 10 -19 C.					
	c- Déduire la charge partielle portée par chaque atome.				