ESIstream

The Efficient Serial Interface

PACKAGE ESISTREAM XILINX XCKU060-FFVA1517-1-C

Getting started with ADA-SDEV-KIT2

01/02/2022

Purpose of this document

Explain how to use the Python API of the ESItream package developped for ADA-SDEV-KIT2 FPGA carrier board.

Materials:

- Alpha-data <u>ADA-SDEV-KIT2</u>
- <u>EV12AQ600-FMC-EVM</u> or a loopback board (XM107 or equivalent)
- XM105 Debug Board.
- USB to UART FTDI cable : <u>FTDI TTL-232RG-VREG1V8-WE</u>

UART, write

The design embeds a UART slave which uses the following configuration:

Baud rate: 115200

Data Bits: 8

No parity

The UART frames layer protocol defined here allows to perform read and write operations on the registers listed in the register map (see user guide or vhdl sources).

Register Write operation:

The UART master must send the data in the order described on the figure below to be able to write a register.

Firstly, the master send the 15-bit register address and then the 32-bit data word.

- The most significant bit of the first transmitted byte (bit 7) must be set to 0 for write operation.
- The bits 6 down to 0 of the first transmitted byte contain the bit 14 down to 8 of the register address.
- The second byte contains the bit 7 down to 0 of the register address.
- The third byte contains the bit 31 down to 24 of the register data.
- The fourth byte contains the bit 23 down to 16 of the register data.
- The fifth byte contains the bit 15 down to 8 of the register data.
- The sixth byte contains the bit 7 down to 0 of the register data.

Finally, the master read the acknowledgment word to check that the communication has been done correctly. The acknowledgment word is a single byte of value 0xAC (172 is the decimal value).

UART, read

The design embeds a UART slave which uses the following configuration:

Baud rate: 115200

Data Bits: 8

No parity

The UART frames layer protocol defined here allows to perform read and write operations on the registers listed in the register map (see user guide or vhdl sources).

Register Read Operation

The UART master must send the data in the order described on the figure below to be able to read a register value. Firstly, the master send the 15-bit register address.

- The most significant bit of the first transmitted byte (bit 7) must be set to 1 for read operation.
- The bits 6 down to 0 of the first transmitted byte contain the bit 14 down to 8 of the register address.
- The second byte contains the bit 7 down to 0 of the register address.

Then, the master read the data and the acknowledgment word to check that the communication has been done correctly. The acknowledgment word is a single byte of value 0xAC (172 is the decimal value).

- The third byte contains the bit 31 down to 24 of the register data.
- The fourth byte contains the bit 23 down to 16 of the register data.
- The fifth byte contains the bit 15 down to 8 of the register data.
- The sixth byte contains the bit 7 down to 0 of the register data.

UART, FPGA PL architecture block diagram

Package project: vivado rx ev12aq60x

UART

☐ Orange wire: Spare 8 UART TX

☐ Yellow wire: Spare 9 UART RX

☐ Black wire: GND

Colour	Name	Туре	Description
Black	GND	GND	Device ground supply pin.
Brown	CTS#	Input	Clear to Send Control input / Handshake signal.
Red	VCC	Output or input	Power Supply Output except for the TTL-232RG-VIP-WE where this is an input and power is supplied by the application interface logic.
Orange	TXD	Output	Transmit Asynchronous Data output.
Yellow	RXD	Input	Receive Asynchronous Data input.
Green	RTS#	Output	Request To Send Control Output / Handshake signal.

FTDI TTL-232RG-VREG1V8-WE

Package project: vivado_rx_xm107 UART using XM105 debug board

FTDI TTL-232RG-VREG1V8-WE

Colour	Name	Туре	Description
Black	GND	GND	Device ground supply pin.
Brown	CTS#	Input	Clear to Send Control input / Handshake signal.
Red	VCC	Output or input	Power Supply Output except for the TTL-232RG-VIP-WE where this is an input and power is supplied by the application interface logic.
Orange	TXD	Output	Transmit Asynchronous Data output.
Yellow	RXD	Input	Receive Asynchronous Data input.
Green	RTS#	Output	Request To Send Control Output / Handshake signal.

Package project: vivado_rx_xm107 UART using XM105 debug board

to force VADJ to 1.8V on FMC1 (J1)

JTAG to program FPGA-

USB / UART FTDI cable

Jumper for

JTAG chain loopback of

TDI to TDO through FMC1 (J1)

After FPGA bitstream is loaded
DS1 LED should be ON indicating UART is ready

Alpha-data ADA-SDEV-KIT2 Hardware setup procedure

Ц	Connect alpha-data config FMC board on alpha-data base board FMC J2
	☐ Connect micro USB cable to sysmon connector J3
	☐ Connect Xilinx platform cable USB II JTAG cable to J2
	Connect EV12AQ600-FMC-EVM board or XM107 board on alpha-data base board FMC+ J3
	☐ Connect UART FTDI cable on EV12.
	☐ Check power switch is OFF
	☐ Connect power cable +12V/5A.
	Check alpha-data base board switch SW3 is OFF
	Connect CX650M power supply connector on alpha-data base board connector J5
	☐ Switch ON CX650M rear panel power button.
	☐ Check alpha-data base board D2 and D1 leds are respectively RED and GREEN.
	☐ If yes, switch ON SW3.
	☐ Else if, D2 and D1 are OFF there is probably a short somewhere. Do not switch ON SW3, contact support.

Alpha-data ADA-SDEV-KIT2 Hardware setup procedure

- ☐ Open Vivado hardware manager and program the FPGA.
- ☐ Switch ON EV12AQ600-FMC-EVM board else if XM107 board, nothing to do.

Python setup

- ☐ Go to package directory /python/api/
- ☐ Open a cmd prompt:
 - ☐ Launch python scripts:
 - > python get_status.py
 - > python hw_config.py
 - > python ev12aq600_external_pll_6250.py
 - > python link_config.py
- ☐ Refresh FPGA in Vivado hardware manager to use Vivado Integrated Logic Analyzer.

