Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to isotropic

R = distance to the center of radiation of the antenna

25.28	(dBm)
337.3	(mW)
7.77	(dBi)
5.984	(numeric)
20	(cm)
100	(%)
2437	(MHz)
1.000	(mW/cm^2)
0.40154	(mW/cm^2)
4.0154	(W/m^2)
3.96	(dB)
	337.3 7.77 5.984 20 100 2437 1.000 0.40154 4.0154

Sum power density of 2.4 GHz and 5.8 GHz : $0.40154+0.26530 = 0.66684 < 1 \text{ mW/cm}^2$