Project 1. Transcriptome Assembly (Extra Tasks)

Indronil Bhattacharjee, Erica Flores

Task E1: Using STAR

E1.1 The STAR aligner was used to map the RNA-seq reads to the reference genome. The comparison of the results from STAR and HISAT2, in terms of the numbers or percentages of reads uniquely aligned to the reference genome is in the following -

Sample	STAR Reads	STAR Percentage	HISAT2 Reads	HISAT2 Percentage
Testis_Replicate_		96%	10343346	89%
$Testis_Replicate_$	_29018430	97%	8421960	90%
Ovary_Replicate	_116200742	98%	15183182	91%
Ovary_Replicate	_21354930	98%	10601218	91%

E1.2 STAR by default generated a tab-separated file ("SJ.out.tab") that contains all unique splicing junctions and the number of reads that cross each splicing junction.

Here is the R code to map the junctions to known genes if the start and end sites of a junction are entirely contained within a gene on the chromosome.

```
library(dplyr)

gtf_file <- "/kaggle/input/star-fruit-fly-ovary-and-testis-splicing-junctions/genes_only.g

# Create an empty data frame to store gene information
genes <- data.frame()

# Read the GTF file line by line</pre>
```

```
con <- file(gtf_file, "r")</pre>
while (length(line <- readLines(con, n = 1)) > 0) {
  if (!grepl("^#", line)) {
    fields <- unlist(strsplit(line, "\t"))</pre>
    if (fields[3] == "gene") {
      # Extract gene ID from the attributes field
      gene_id <- gsub(".*gene_id \"(.*?)\";.*", "\\1", fields[9])</pre>
      # Create a data frame with gene information
      gene_info <- data.frame(</pre>
        chromosome = fields[1],
        start = as.numeric(fields[4]),
        end = as.numeric(fields[5]),
        gene_id = gene_id
      # Append the gene_info to the genes data frame
      genes <- rbind(genes, gene_info)</pre>
  }
}
close(con)
```

Splice-gene mapping function

```
::: {.cell _kg_hide-output='true' execution='{"iopub.execute_input":"2023-10-18T22:16:35.553520Z","iopub.st 10-18T22:16:35.552121Z","iopub.status.idle":"2023-10-18T22:16:35.565042Z"}' trusted='true' vscode='{"languageId":"r"}' execution_count=166}
```

```
splice.gene.mapping <- function(sj_data){
    # Create an empty data frame to store the mapping of splice junctions to genes
    sj_to_gene_mapping <- data.frame(chromosome = sj_data$chromosome, start = sj_data$star

# Add a column to store the mapped gene IDs
    sj_to_gene_mapping$gene_id <- NA

suppressWarnings({
    # Iterate through each splice junction
    for (i in 1:nrow(sj_to_gene_mapping)) {
        # Find the gene that contains the splice junction
        gene_id <- genes$gene_id[genes$chromosome == sj_to_gene_mapping$chromosome[i] &</pre>
```

```
genes$start <= sj_to_gene_mapping$start[i] &</pre>
                                genes$end >= sj_to_gene_mapping$end[i]]
        # If a gene is found, add its ID to the sj_to_gene_mapping data frame
        if (length(gene_id) > 0) {
           sj_to_gene_mapping$gene_id[i] <- gene_id</pre>
           sj_to_gene_mapping$gene_id[i] <- NA
        }
      }})
      sj_to_gene_mapping_out <- sj_to_gene_mapping[!is.na(sj_to_gene_mapping$gene_id), ]
      return (sj_to_gene_mapping_out)
  }
:::
  sj_file <- "/kaggle/input/star-fruit-fly-ovary-and-testis-splicing-junctions/testis_replic
  # Read the SJ.out.tab file into a data frame
  sj_data <- read.table(sj_file, header = FALSE, sep = "\t")</pre>
  colnames(sj_data) <- c("chromosome", "start", "end", "strand", "intron_motif", "intron_ann</pre>
  sj_to_gene_mapping <- splice.gene.mapping(sj_data)</pre>
  head(sj_to_gene_mapping,10)
```

A data.frame: 10×5

	chromosome			$total_reads$	$\mathrm{gene_id}$
	<chr $>$	start < int >	end < int >	<int $>$	<chr $>$
1	2L	8117	8192	343	FBgn0031208
2	2L	8117	8228	29	FBgn0031208
3	2L	11345	11409	1	FBgn0002121
4	2L	11519	11778	1	FBgn0002121
5	2L	17213	19879	1	FBgn0002121
6	2L	22942	22997	5	FBgn0031209
7	2L	26965	27052	5	FBgn0051973
8	2L	34289	34557	11	FBgn0051973
9	2L	70550	70606	2	FBgn0067779
10	2L	72978	74902	4	FBgn0031213

```
sj_file <- "/kaggle/input/star-fruit-fly-ovary-and-testis-splicing-junctions/ovary_replica

# Read the SJ.out.tab file into a data frame
sj_data <- read.table(sj_file, header = FALSE, sep = "\t")
colnames(sj_data) <- c("chromosome", "start", "end", "strand", "intron_motif", "intron_and
sj_to_gene_mapping <- splice.gene.mapping(sj_data)
head(sj_to_gene_mapping,10)</pre>
```

A data.frame: 10×5

	chromosome <chr></chr>	start <int></int>	end <int></int>	total_reads <int></int>	gene_id <chr></chr>
1	2L	11345	11409	129	FBgn0002121
2	2L	11519	11778	50	FBgn0002121
3	2L	12222	12285	82	FBgn0002121
4	2L	12929	13519	27	FBgn0002121
5	2L	13493	13559	1	FBgn0002121
6	2L	13626	13682	52	FBgn0002121
7	2L	14875	14932	63	FBgn0002121
8	2L	15712	17052	19	FBgn0002121
9	2L	17208	18260	1	FBgn0002121
10	2L	17208	21065	1	FBgn0002121

 $\mathbf{E1.3}$ Top 5 splice junctions of high fold-change and low fold-change using the formula from Task 3.

```
library(tidyverse)
library(dplyr)
library(ggplot2)
```

Between Replicates 1

```
# Read the SJ.out.tab file into a data frame
testis_replicate1 <- read.table("/kaggle/input/star-fruit-fly-ovary-and-testis-splicing-jutestis_replicate2 <- read.table("/kaggle/input/star-fruit-fly-ovary-and-testis-splicing-jutestiy-replicate1 <- read.table("/kaggle/input/star-fruit-fly-ovary-and-testis-splicing-jutestry-replicate2 <- read.table("/kaggle/input/star-fruit-fly-ovary-and-testis-splicing-jutestry-replicate2 <- read.table("/kaggle/input/star-fruit-fly-ovary-and-testis-splicing-jutestry-replicate2 <- testis_replicate1 %>% semi_join(ovary_replicate1, by = c("V2", "V3"))
ovary_merged <- ovary_replicate1 %>% semi_join(testis_replicate1, by = c("V2", "V3"))
```

```
# Calculate the average transcript abundance for ovary and testis
avg_abundance_ovary <- ovary_merged[,7]+ovary_merged[,8]
avg_abundance_testis <- testis_merged[,7]+testis_merged[,8]

# Calculate the log fold change (r_g)
log_fold_change <- abs(log2((1 + avg_abundance_ovary) / (1 + avg_abundance_testis)))

testis_merged$log_fold_change <- log_fold_change[1:nrow(testis_merged)]
top_transcripts_testis_highest <- testis_merged %>% arrange(desc(log_fold_change)) %>% head
top_transcripts_testis_lowest <- testis_merged %>% arrange(log_fold_change) %>% head(5)

top_transcripts_testis_lowest
```

A data.frame: 5×10

	V1 <chr></chr>	V2 <int></int>	V3 <int></int>	V4 <int></int>	V5 <int></int>	V6 <int></int>	V7 <int></int>	V8 <int></int>	V9 <int></int>	log_fold_change <dbl></dbl>
1	3L	106398	57106399	191	3	1	21889	14	50	11.248982
2	2L	191833	39191833	912	2	1	4678	0	50	11.191985
3	3R	112408	13112408	652	2	1	18	2623	50	9.782452
4	2L	216282	10216296	662	2	1	1	0	25	9.523562
5	2L	186871	27186871	862	2	1	1	0	7	9.321928

A data.frame: 5×10

	V1 <chr></chr>	V2 <int></int>	V3 <int></int>	V4 <int></int>	V5 <int></int>	V6 <int></int>	V7 <int></int>	V8 <int></int>	V9 <int></int>	log_fold_change <dbl></dbl>
1	2L	123795	123855	2	2	1	4	0	31	0
2	2L	203892	203992	1	1	1	2	0	45	0
3	2L	547901	547977	2	2	1	3	0	29	0
4	2L	815422	815474	2	2	1	6	0	33	0
5	2L	852443	852498	2	2	1	14	0	45	0

```
ovary_rows_h <- ovary_merged[ovary_merged$V2 %in% top_transcripts_testis_highest$V2, ]
ovary_rows_l <- ovary_merged[ovary_merged$V2 %in% top_transcripts_testis_lowest$V2, ]</pre>
```

```
colnames(top_transcripts_testis_highest) <- c("chromosome", "start", "end", "strand", "int
data_highest <- splice.gene.mapping(top_transcripts_testis_highest)
data_highest</pre>
```

A data.frame: 5×5

	chromosom <chr></chr>	e start <int></int>	end <int></int>	total_reads <int></int>	gene_id <chr></chr>
1	3L	10639857	10639919	21903	FBgn0036091
2	$^{ m 2L}$	19183339	19183391	4678	FBgn0267726
3	3R	11240813	11240865	2641	FBgn0037888
4	2L	21628210	21629666	1	FBgn0022893
5	2L	18687127	18687186	1	FBgn0005617

```
colnames(top_transcripts_testis_lowest) <- c("chromosome", "start", "end", "strand", "intr
data_lowest <- splice.gene.mapping(top_transcripts_testis_lowest)
data_lowest
```

A data.frame: 5×5

	chromosome <chr></chr>	start <int></int>	end <int></int>	total_reads <int></int>	gene_id <chr></chr>
1	2L	123795	123855	4	FBgn0031228
2	2L	203892	203992	2	FBgn0031231
3	2L	547901	547977	3	FBgn0005660
4	2L	815422	815474	6	FBgn0031281
5	2L	852443	852498	14	FBgn0031287

```
logfold_change <- (top_transcripts_testis_lowest$logfold_change[top_transcripts_testi</pre>
                             top_transcripts_testis_lowest$start == merged_lowest$start[i]
                             top_transcripts_testis_lowest$end == merged_lowest$end[i]])
        merged_lowest$ovary_reads[i] <- ovary_reads
        merged_lowest$logfold_change[i] <- logfold_change
    }})
merged_highest <- data.frame(gene_id = data_highest$gene_id, chromosome = data_highest$chr</pre>
    suppressWarnings({
    # Iterate through each splice junction
    for (i in 1:nrow(merged_highest)) {
      # Find the gene that contains the splice junction
      ovary_reads <- (ovary_rows_h$V7[ovary_rows_h$V1 == merged_highest$chromosome[i] &
                             ovary_rows_h$V2 == merged_highest$start[i] &
                             ovary_rows_h$V3 == merged_highest$end[i]] +
                             ovary_rows_h$V8[ovary_rows_h$V1 == merged_highest$chromosome[i
                             ovary_rows_h$V2 == merged_highest$start[i] &
                             ovary_rows_h$V3 == merged_highest$end[i]])
     logfold_change <- (top_transcripts_testis_highest$logfold_change[top_transcripts_test</pre>
                             top_transcripts_testis_highest$start == merged_highest$start[i
                             top_transcripts_testis_highest$end == merged_highest$end[i]])
        merged_highest$ovary_reads[i] <- ovary_reads</pre>
        merged_highest$logfold_change[i] <- logfold_change</pre>
    }})
merged_highest
merged_lowest
```

A data.frame: 5×7

gene_id <chr></chr>	chromosom <chr></chr>	e start <int></int>	end <int></int>	testis_reads <int></int>	ovary_reads <dbl></dbl>	logfold_change <dbl></dbl>
FBgn003609 FBgn026772 FBgn003788	262L 883R	10639857 19183339 11240813	10639919 19183391 11240865	21903 4678 2641	8 1 2	11.248982 11.191985 9.782452
FBgn002289 FBgn000561		$21628210 \\ 18687127$	$21629666 \\ 18687186$	1 1	$1471 \\ 1279$	9.523562 9.321928

A data.frame: 5×7

gene_id <chr></chr>	chromosome <chr></chr>	start <int></int>	end <int></int>	testis_reads <int></int>	ovary_reads <dbl></dbl>	logfold_change <dbl></dbl>
FBgn0031228 FBgn0031233		123795 203892	123855 203992	4 2	4 2	0
FBgn0005660		547901	547977	3	3	0
FBgn0031283 FBgn0031283		815422 852443	815474 852498	6 14	6 14	0

Between Replicates 2

```
testis_merged <- testis_replicate2 %>% semi_join(ovary_replicate2, by = c("V2", "V3"))
ovary_merged <- ovary_replicate2 %>% semi_join(testis_replicate2, by = c("V2", "V3"))

# Calculate the average transcript abundance for ovary and testis
avg_abundance_ovary <- ovary_merged[,7]+ovary_merged[,8]
avg_abundance_testis <- testis_merged[,7]+testis_merged[,8]

# Calculate the log fold change (r_g)
log_fold_change <- abs(log2((1 + avg_abundance_ovary) / (1 + avg_abundance_testis)))

testis_merged$log_fold_change <- log_fold_change[1:nrow(testis_merged)]
top_transcripts_testis_highest <- testis_merged %>% arrange(desc(log_fold_change)) %>% head(5)

top_transcripts_testis_lowest <- testis_merged %>% arrange(log_fold_change) %>% head(5)
```

A data.frame: 5×10

	V1	V2	V3	V4	V5	V6	V7	V8	V9	log_fold_change
	<chr></chr>	<int $>$	<dbl></dbl>							
1	3L	106398	57106399	191	3	1	15126	5	50	10.184875
2	3L	213530	14213531	081	1	1	1996	3	50	9.965784
3	2L	191833	39191833	912	2	1	4758	2	50	9.632086
4	3L	910737	6 910761	8 2	2	1	2165	0	34	9.495855
5	3R	112256	50112257	021	1	1	455	1364	50	9.244760

A data.frame: 5×10

	V1 <chr></chr>	V2 <int></int>	V3 <int></int>	V4 <int></int>	V5 <int></int>	V6 <int></int>	V7 <int></int>	V8 <int></int>	V9 <int></int>	log_fold_change <dbl></dbl>
1	2L	119077	119133	2	2	1	1	0	49	0
2	2L	141341	141395	2	2	1	1	0	29	0
3	2L	186856	186909	1	1	1	1	0	21	0
4	2L	542347	542429	2	2	1	8	0	50	0
5	2L	542380	542429	2	2	1	1	0	17	0

```
ovary_rows_h <- ovary_merged[ovary_merged$V2 %in% top_transcripts_testis_highest$V2, ]
ovary_rows_l <- ovary_merged[ovary_merged$V2 %in% top_transcripts_testis_lowest$V2, ]</pre>
```

colnames(top_transcripts_testis_highest) <- c("chromosome", "start", "end", "strand", "int
data_highest <- splice.gene.mapping(top_transcripts_testis_highest)
data_highest</pre>

A data.frame: 5×5

	chromosome <chr></chr>	start <int></int>	end <int></int>	total_reads <int></int>	gene_id <chr></chr>
1	3L	10639857	10639919	15131	FBgn0036091
2	3L	21353014	21353108	1999	FBgn0052436
3	2L	19183339	19183391	4760	FBgn0267726
4	3L	9107376	9107618	2165	FBgn0011206
5	3R	11225650	11225702	1819	FBgn0037879

colnames(top_transcripts_testis_lowest) <- c("chromosome", "start", "end", "strand", "intr data_lowest <- splice.gene.mapping(top_transcripts_testis_lowest) data_lowest

A data.frame: 5×5

	chromosome <chr></chr>	start <int></int>	end <int></int>	$\begin{array}{l} total_reads \\ <\!\! int >\!\! \end{array}$	gene_id <chr></chr>
1	2L	119077	119133	1	FBgn0031228
2	2L	141341	141395	1	FBgn0031228
3	2L	186856	186909	1	FBgn0016977
4	2L	542347	542429	8	FBgn0010602
5	2L	542380	542429	1	${\rm FBgn0010602}$

```
merged_lowest_2 <- data_frame(gene_id = data_lowest$gene_id, chromosome = data_lowest$chromosome</pre>
    suppressWarnings({
    # Iterate through each splice junction
    for (i in 1:nrow(merged_lowest_2)) {
      # Find the gene that contains the splice junction
      ovary_reads <- (ovary_rows_1$V7[ovary_rows_1$V1 == merged_lowest_2$chromosome[i] &</pre>
                             ovary_rows_1$V2 == merged_lowest_2$start[i] &
                             ovary_rows_1$V3 == merged_lowest_2$end[i]] +
                             ovary_rows_1$V8[ovary_rows_1$V1 == merged_lowest_2$chromosome[
                             ovary_rows_1$V2 == merged_lowest_2$start[i] &
                             ovary_rows_1$V3 == merged_lowest_2$end[i]])
     logfold_change <- (top_transcripts_testis_lowest$logfold_change[top_transcripts_testi</pre>
                             top_transcripts_testis_lowest$start == merged_lowest_2$start[i
                             top_transcripts_testis_lowest$end == merged_lowest_2$end[i]])
        merged_lowest_2$ovary_reads[i] <- ovary_reads</pre>
        merged_lowest_2$logfold_change[i] <- logfold_change</pre>
    }})
merged_highest <- data.frame(gene_id = data_highest$gene_id, chromosome = data_highest$chr
    suppressWarnings({
    # Iterate through each splice junction
    for (i in 1:nrow(merged_highest)) {
      # Find the gene that contains the splice junction
      ovary_reads <- (ovary_rows_h$V7[ovary_rows_h$V1 == merged_highest$chromosome[i] &</pre>
                             ovary_rows_h$V2 == merged_highest$start[i] &
                             ovary_rows_h$V3 == merged_highest$end[i]] +
                             ovary_rows_h$V8[ovary_rows_h$V1 == merged_highest$chromosome[i
                             ovary_rows_h$V2 == merged_highest$start[i] &
                             ovary_rows_h$V3 == merged_highest$end[i]])
     logfold_change <- (top_transcripts_testis_highest$logfold_change[top_transcripts_test</pre>
                             top_transcripts_testis_highest$start == merged_highest$start[i
                             top_transcripts_testis_highest$end == merged_highest$end[i]])
        merged_highest$ovary_reads[i] <- ovary_reads</pre>
        merged_highest$logfold_change[i] <- logfold_change</pre>
    }})
merged_highest
```

merged_lowest_2

A data.frame: 5×7

gene_id <chr></chr>	chromosom <chr></chr>	e start <int></int>	end <int></int>	testis_reads <int></int>	ovary_reads <dbl></dbl>	logfold_change <dbl></dbl>
FBgn003609 FBgn005243 FBgn026772 FBgn001120 FBgn003787	63L 62L 63L	10639857 21353014 19183339 9107376 11225650	10639919 21353108 19183391 9107618 11225702	15131 1999 4760 2165 1819	12 1 5 2 2	10.184875 9.965784 9.632086 9.495855 9.244760

A data.frame: 5×7

gene_id <chr></chr>	chromoso: <chr></chr>	me start <int></int>	end <int></int>	testis_reads <int></int>	ovary_reads <dbl></dbl>	logfold_change <dbl></dbl>
FBgn00312	2282L	119077	119133	1	1	0
FBgn00312	2282L	141341	141395	1	1	0
FBgn00169	772L	186856	186909	1	1	0
FBgn00106	6022L	542347	542429	8	8	0
FBgn00106	6022L	542380	542429	1	1	0

It's not logically correct to consider splicing junctions as being alternatively spliced solely based on log fold change values. Log fold change measures the difference in gene expression between two conditions, in this case, between ovary and testis. While a high log fold change indicates a substantial difference in expression, it doesn't directly imply alternative splicing of the same gene.

Alternative splicing refers to the process by which different exons of a gene can be included or excluded in the final mRNA transcript, leading to the generation of multiple transcript isoforms from a single gene. To identify alternative splicing events, we have to look further at differences in the exon composition of transcripts or the presence of different splice junctions within the same gene.

CS509 - Extra Credit Task E2 Polyadenylation (50%) (Modified to Visualize Splice Junctions)

Indronil Bhattacharjee & Erica Flores

Introduction

Integrated Genomics Viewer (IGV) was used to visualize read coverage and splice junctions of RNA-seq reads from fruit fly ovary and testits. The bam and index files were uploaded into IGV, along with the reference genome for *Drosophila melanogaster*.

Below are the outputs from the R code from task E1, a summary of the highest fold-change and lowest-fold genes in terms of reads across splice junctions (Table 1 and Table 2).

Results Table 1 - Highest-fold change

gene_id	chromosome	start	end	testis_reads	ovary_reads	logfold_change
<chr></chr>	<chr></chr>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>
FBgn0036091	3L	10639857	10639919	21903	8	11.248982
FBgn0267726	2L	19183339	19183391	4678	1	11.191985
FBgn0037888	3R	11240813	11240865	2641	2	9.782452
FBgn0022893	2L	21628210	21629666	1	1471	9.523562
FBgn0005617	2L	18687127	18687186	1	1279	9.321928

Table 2 - Lowest-fold change

gene_id	chromosome	start	end	testis_reads	ovary_reads	logfold_change
<chr></chr>	<chr></chr>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>
FBgn0031228	2L	123795	123855	4	4	0
FBgn0031231	2L	203892	203992	2	2	0
FBgn0005660	2L	547901	547977	3	3	0
FBgn0031281	2L	815422	815474	6	6	0
FBgn0031287	2L	852443	852498	14	14	0

From here, we decided to focus on those with the highest fold change, and a table was created to summarize the gene ID with the corresponding transcript ID, as well as the biological function (Table 3).

Table 3. Transcripts Corresponding to Top Genes and Biological Function

		Highest
Gene	Transcript	Function
FBgn0036091	FBtr0076256	Involved in sexual reproduction. Located in extracellular space. Is expressed in spermatheca and testis. (Alliance, FBgn0036091)
FBgn0267726	FBtr0347276	The biological processes in which it is involved are not known BLAST Hit for <i>Drosophila mauritiana</i> male-specific sperm protein Mst84Dd
FBgn0037888	FBtr0082362	scpr-B involved_in multicellular organism reproduction Predicted to be located in extracellular region. Orthologous to human R3HDML (R3H domain containing like) and PI15 (peptidase inhibitor 15). (Alliance, FBgn0037888)
FBgn0022893	FBtr0100293	Decondensation factor 31 (Df31) encodes a histone binding protein involved in nucleosome assembly. [Date last reviewed: 2019-09-12] (FlyBase Gene Snapshot)
FBgn0005617	FBtr0081130	male-specific lethal 1 male-specific lethal 1 (msl-1) encodes a protein that is thought to form a scaffold to organize the full male-specific-lethal dosage compensation complex, which increases male X chromosome transcription approximately two-fold. msl-1 homozygous mutant males die as larvae, while females are viable. [Date last reviewed: 2019-03-14] (FlyBase Gene Snapshot)

For the visualization, only transcript replicate 1 was used for the testis and ovary. Images exported from the IGV viewer are only captured from what is visible in the window at the time, so only 1 replicate from each tissue was used. In the following images, the ovary transcript is on top, with the testis sample below that, and the reference genome at the bottom. Gray histogram bars indicate the read coverage and the arcs of color (red for the positive strand and blue for the negative strand) show splice junctions. The height and width of the arcs indicate the number of reads across the junction. For each sample below the splice junction arcs, there is a small proportion of the splice variants found visible, however, this is a large scrolling window and we were not able to capture all of the variants.

FBgn0036091-FBtr0076256

FBgn0267726-FBtr0347276

Fbgn0037888-FBtr0082362

FBgn0022893-FBtr0100293

FBgn0005617-FBtr0081130

Out of the top 5 highest fold-changes in splice junction reads, the top 3 highest genes were associated with male reproduction(FBgn0036091, FBgn0267726, FBgn0037888), while the other two were highest in females and associated with histone modification (FBgn0022893) or associated with transcription (FBgn0005617).

When FBgn0267726 was searched for in FlyBase, the annotation said 'The **biological processes** in which it is involved are not known' which made interpretation difficult. In order to determine what biological processes this transcript is involved in, the sequence was entered into NCBI BLAST (Basic Local Alignment Search Tool) which will determine if the sequence matches any other known sequences in the database. While most of the hits matched D. melanogaster as unknown matches again, there was a match between our sequence and another fly species, *Drosophila mauritiana* male-specific sperm protein Mst84Dd. Images below show the top hits from BLAST and the specific alignment of our query sequence and Mst8Dd. The match shows 92.82% identity match, an e value of 6e-166 and 100% coverage.

Top Blast Hits for FBgn0267726

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
✓	<u>Drosophila melanogaster uncharacterized protein, transcript variant B (CG46059), mRNA</u>	Drosophila mel	756	756	100%	0.0	100.00%	409	NM_001316400.1
✓	<u>Drosophila melanogaster uncharacterized protein, transcript variant C (CG46059), mRNA</u>	Drosophila mel	695	695	100%	0.0	96.92%	596	NM_001316401.1
☑	<u>Drosophila melanogaster uncharacterized protein, transcript variant A (CG46059), mRNA</u>	Drosophila mel	689	689	96%	0.0	97.78%	405	NM_001316399.1
✓	Drosophila melanogaster GH05530 full insert cDNA	Drosophila mel	682	682	95%	0.0	97.76%	424	<u>AY118741.1</u>
✓	PREDICTED: Drosophila mauritiana male-specific sperm protein Mst84Dd (LOC117148076), mRNA	Drosophila mau	597	597	100%	6e-166	92.82%	435	XM_033315287.1
✓	PREDICTED: Drosophila sechellia male-specific sperm protein Mst84Dd (LOC6614659), mRNA	Drosophila sec	590	590	96%	1e-163	93.33%	451	XM_002039050.2
	PREDICTED: Drosophila teissieri male-specific sperm protein Mst84Dd (LOC122612897), transcript var	Drosophila teis	468	468	99%	5e-127	87.50%	412	XM_043786768.1
✓	<u>Drosophila melanogaster isolate dmeA_05_F0 chromosome 2L</u>	Drosophila mel	455	758	100%	4e-123	100.00%	23513712	CP121943.1
☑	<u>Drosophila melanogaster isolate dmeA_01_M0 chromosome 2L</u>	Drosophila mel	455	758	100%	4e-123	100.00%	23513712	CP121931.1
	<u>Drosophila melanogaster isolate dmeA_05_F0 chromosome 2L</u>	Drosophila mel	455	758	100%	4e-123	100.00%	23513712	CP121937.1
☑	<u>Drosophila melanogaster isolate dmeA_05_M0 chromosome 2L</u>	Drosophila mel	455	758	100%	4e-123	100.00%	23513712	CP121949.1
$\overline{\mathbf{Z}}$	<u>Drosophila melanogaster isolate dmeA_15_F0 chromosome 2L</u>	Drosophila mel	455	753	100%	4e-123	100.00%	23513712	CP121960.1
	<u>Drosophila melanogaster isolate dmeA_15_M0 chromosome 2L</u>	Drosophila mel	455	758	100%	4e-123	100.00%	23513712	CP121972.1
✓	Drosophila melanogaster isolate dmeA_18_F0 chromosome 2L	Drosophila mel	455	758	100%	4e-123	100.00%	23513712	CP121995.1
✓	Drosophila melanogaster isolate dmeA_18_M0 chromosome 2L	Drosophila mel	455	758	100%	4e-123	100.00%	23513712	CP122001.1
$\overline{\mathbf{Z}}$	<u>Drosophila melanogaster isolate dmeA_18_F0 chromosome 2L</u>	Drosophila mel	455	758	100%	4e-123	100.00%	23513712	CP121984.1
V	Drosophila melanogaster isolate dmeE 27 M0 chromosome 2L	Drosophila mel	455	758	100%	4e-123	100.00%	23513712	CP122073.1

Alignment between "unknown" FBgn0267726 and *Drosophila mauritiana* male-specific sperm protein Mst84Dd

PREDICTED: Drosophila mauritiana male-specific sperm protein Mst84Dd (LOC117148076), mRNA

Sequence ID: XM_033315287.1 Length: 435 Number of Matches: 1

Range 1:	: 9 to	425 <u>Ge</u>	nBank Graph	nics		▼ <u>Next</u>	Match ▲ Pr	evious
Score			Expect	Identities	Gaps	Strand		
597 bits	(323)	6e-166	388/418(93%)	10/418(2%)	Plus/P	lus	
Query 1	1	CAAAATT	CGATGTGTTA	ACACCTTTGAAAATAGTTTG	TGTCTTACGTTTTCCGG	TACCTA	60	
Sbjct 9	9	ĊAAAATT	ĊĠĀŦĠŦĠŦŦĀ	ACACCTTTGGAAATAGTTTG	TGTCTTACGTTTTCCGG	TÁCCTÁ	68	
Query 6	61	TTTTGTT	GTTTCTAAGA	TCCTATTTCTGTAAATAGGC	C-AAATCTG0	CCTTT	111	
Sbjct 6	69	ttttgtt	GTTTCTAATA	TCCTATTTCTGTAAATAGGC	CGAATTCCATTTAGCTG	ccttt	128	
Query 1	112	TAGAAGG	AAATTAGGAT	ACCCTGAACGCTTTTCCCCA	AGACAAAATAAAATCATO	ATGTG	171	
Sbjct 1	129	TAGAAGG	AAATTAGCAT	ACCCTGAACACTTTT-CCCA	AGGCAAACTAAAATCAT	ÁTGTG	187	
Query 1	172	CTGCGGA	CCCTGTGGAC	CTCGCTGCTGCGATCCGTGC	GGCGGATGCTACAACTG	TGCGT	231	
Sbjct 1	188	TTGCGGA	CCCTGTGGAC	CTCGCTGCTGCGATCCCTGC	GGCGGATGCTACAACTG	TGCGT	247	
Query 2	232	GGAACTO	TGCTGTGTAC	CCTGCACCCCAGCCTACATC	CAGTGCTCATTTATGCCC	TGCGG	291	
Sbjct 2	248	GGAACT	tgctgtgtgc	CCTGCACCCCAGCCTACATC	CAGTGCTCCTTTATGCCC	TGCGG	307	
Query 2	292	ACCAAGA	GGCTGTTGCT	GAAGTGGGGATGTGCCAGGT	GCCGAAACACGTTCAACG	CATATT	351	
Sbjct 3	308	TCCAAGA	GGCTGTTGCT	GAAGTGGGAATAAGTCAGGT	GCCGAAACAAGTCCAACA	ATATT	367	
Query 3	352	GTACCTO	AAACACTCGT	AGATACCCAACATGTCCCAA	TAAACGAATTTTATAAAT	IGTT 4	109	
Sbjct 3	368	GTACCT	AAACACTCGT	AGATACACAACATGTCCCAA	TAAACGAATTTAATAAA	rgtt 4	25	

Related Information

Gene - associated gene details Genome Data Viewer - aligned genomic context

Discussion

Alternative splicing (AS) is a feature of metazoan genomes that allows for the production of a wide variety of transcripts from a single gene. These transcripts vary in their expression across tissues, as well as in a temporal dimension, and are critical to cell differentiation and regulation. Reproductive tissues (testis) and the brain, represent highly specialized organs that have been found to have high levels of AS across many species, including mammals (Naro et al 2021).

As spermatogenesis is a highly complex process and occurs throughout the lifetime of the fly, it requires constant regulation. Some studies have shown how important AS is to the genetic diversity of spermatozoa and subsequent embryonic viability (Song et al 2020). We actually saw one of these viability genes from our study, FBgn0005617, male-specific lethal 1 (msl-1) which is homozygous lethal in males (death at larval stage) but is viable in females.

References

Naro C, Cesari E, Sette C. Splicing regulation in brain and testis: common themes for highly specialized organs. Cell Cycle. 2021 Mar-Mar;20(5-6):480-489. doi: 10.1080/15384101.2021.1889187. Epub 2021 Feb 26. PMID: 33632061; PMCID: PMC8018374.

Song H, Wang L, Chen D, Li F. The Function of Pre-mRNA Alternative Splicing in Mammal Spermatogenesis. Int J Biol Sci. 2020 Jan 1;16(1):38-48. doi: 10.7150/ijbs.34422. PMID: 31892844; PMCID: PMC6930371.