Vighnesh Iyer

October 6, 2017

Problem 1

Find y for the following normalized impedance on Smith Chart.

The straightforward procedure is to plot z_L on the impedance Smith Chart, and then look at what constant admittance and constant suspectance curves cross over the point in the admittance smith chart.

But, we can also plot z_L on the impedance smith chart, then rotate the point by π degrees along the constant SWR circle, and then read off the admittance by looking at the constant resistance and reactance curves.

I'm going to use the second technique; annotated charts aren't included in this document, but I'll compare the chart result I get to the exact calculation.

(a)
$$z_L = 1.4 + 2j$$

$$y_L = \frac{1}{z_L} = \frac{1}{\alpha + \beta j} = \frac{\alpha - \beta j}{\alpha^2 + \beta^2} = 0.234899 - 0.33557j$$

 $y_{L,chart} = 0.22 - 0.32j$

(b)
$$z_L = 0.5 + 0.9j$$

$$y_L = 0.471698 - 0.849j$$
$$y_{L,chart} = 0.45 - 0.85j$$

(c)
$$z_L = 1.6 - 0.3j$$

$$y_L = 0.60377 + 0.1132j$$
$$y_{L,chart} = 0.6 + 0.12j$$

Problem 2

Use the Smith Chart. Also use equations for lumped component matching to check.

(a) Match $Z_L = 70 + 100j\Omega$ to 50 Ohm with lumped components.

Let's clear up some things:

$$Z_C = \frac{1}{j\omega C} \qquad \qquad X_C = \Im Z_C = -\frac{1}{\omega C}$$

$$Z_L = j\omega L \qquad \qquad X_L = \Im Z_L = \omega L$$
 To find $C = \frac{1}{\omega X_c}$ To find $L = \frac{X_L}{\omega}$ where: $\omega = 2\pi f$

The load is complex, so we have to resonant out the load's complex impedance so only a real part is seen before solving using the L network method.

Now, the L-network will see a purely real 70Ω impedance with which we can use the regular matching equations.

$$R_S = 50$$

$$R_L = 70$$

$$R_{hi} = max(R_S, R_L) = 70$$

$$R_{lo} = min(R_S, R_L) = 50$$
 Boosting factor:
$$m = \frac{R_{hi}}{R_{lo}} = 1.4$$

$$Q = \sqrt{m-1} = 0.632$$
 Dropping resistance so,
$$X_p = \frac{R_L}{Q} = 110.76$$

$$X_p' = \frac{X_p}{1+Q^{-2}} = 31.613$$

$$X_s = -X_p' = -31.613$$

We arrive at the capacitor reactance of -79.15j and the inductor reactance of 110.76j. The circuit is simulated in ADS to match at 1 Ghz with component values C = 5.0344 pF, L = 17.6 nH, and $C_{res} = 1.59$ pF. S-parameter simulation verifies that the source and load are perfectly matched at 1 Ghz with $S_{21} = 0dB$.

The same calculation can be performed using the smith chart.

$$Z_{L,norm} = 1.4 + 2j$$

 $Z_{L,real} = 1.4$
 $X_p = (1/0.45)j \cdot 50 = 111.1j$
 $X_s = -0.62 \cdot 50 = -31j$

The values calculated using the Smith Chart are very close to the values from the equations.

(b) Match $Z_L = 70 + 100j\Omega$ to 50 Ohm using transmission lines.

This is the general procedure for parallel stub matching using a Smith Chart.

- (a) Find the load impedance and normalize it to the transmission line Z_0 (nominally 50Ω)
- (b) Plot the load impedance on the Smith Chart
- (c) Reflect the point across the origin so we have a new point representing the load admittance. The impedance Smith Chart is now an admittance chart.
- (d) Draw the constant SWR circle and move towards the generator until we intersect with the admittance = 1 circle
- (e) Note the angle in λ that we had to move across to get from the load admittance to the G=1 circle. This is the distance to move from the load towards the generator along the main tline before inserting the parallel stub.
- (f) Now, we are at a point where the normalized admittance can be written in the form 1+jB. We need to insert a short or open stub with an admittance in THIS location of 0-jB, so mark the point -jB on the Smith Chart.
- (g) To figure out the length of the stub, note that on this **admittance** chart, short is at the very right and open is at the very left. Now, move towards the short or open load and read off the angle swept in λ .

We follow the procedure:

$$l_{from,load,on-main-tline} = (0.5 - 0.4465) + 0.1845 = 0.238\lambda$$

 $l_{to,short,on-stub-tline} = 0.25 - 0.1715 = 0.0785\lambda$

Confirm with ADS simulation (at 1 Ghz):

(c) Match $Z_L = 160 - 30j\Omega$ to 100 Ohm using lumped circuits.

Assume a resonating inductor with reactance 30j to make the load purely real.

$$R_S=100$$

$$R_L=160$$

$$R_{hi}=max(R_S,R_L)=160$$

$$R_{lo}=min(R_S,R_L)=100$$
 Boosting factor:
$$m=\frac{R_{hi}}{R_{lo}}=1.6$$

$$Q=\sqrt{m-1}=0.775$$
 Dropping resistance so,
$$X_p=\frac{R_L}{Q}=206.452$$

$$X_p'=\frac{X_p}{1+Q^{-2}}=77.47$$

$$X_s=-X_p'=-77.47$$

We simulate in ADS with $L_{res} = 4.77$ nH, L = 32.858 nH, C = 2.05 pF. The simulation shows that these values give a perfect match at 1 Ghz. This match appears more broadband than the one in part a). The Smith Chart again gives very similar values.

(d) Match $Z_L = 160 - 30j\Omega$ to 100 Ohm using transmission lines.

Following same procedure:

$$Z_{L,norm} = 1.6 - 0.3j$$

 $l_{from,load,on-main-tline} = 0.146 - 0.0315 = 0.1145\lambda$
 $l_{to.short,on-stub-tline} = (0.25 - 0.0775) = 0.1725\lambda$

(e) Match $Z_L = 25 + 90j\Omega$ to 50 Ohm using lumped circuits. Assume a resonating capacitor with reactance -90j to make the load purely real.

$$R_S = 50$$

$$R_L = 25$$

$$R_{hi} = max(R_S, R_L) = 50$$

$$R_{lo} = min(R_S, R_L) = 25$$
 Boosting factor:
$$m = \frac{R_{hi}}{R_{lo}} = 2.0$$

$$Q = \sqrt{m-1} = 1.0$$
 Boosting resistance so,
$$X_s = Q \cdot R_L = 25$$

$$X_s' = X_s(1+Q^{-2}) = 50$$

$$X_p = -X_s' = -50$$

We simulate in ADS with $C_{res} = 1.768$ pF, C = 3.183 pF, L = 3.98 nH. The results confirm a perfect match at 1 Ghz.

(f) Match $Z_L = 25 + 90j\Omega$ to 50 Ohm using transmission lines.

Following same procedure:

$$Z_{L,norm} = 0.5 + 1.8j$$

$$l_{from,load,on-main-tline} = (0.5 - 0.4237) + 0.199 = 0.2753\lambda$$

$$l_{to,short,on-stub-tline} = (0.25 - 0.1933) = 0.0567\lambda$$

Problem 3

(a) Design a Π matching network between a 1000Ω load impedance and a 50Ω source impedance at 1 Ghz. The inductor and capacitor quality factors are 20. The target bandwidth for $|S_{11}| < -10$ dB is 5%. Calculate the insertion loss and verify your design using ADS. Check if $|S_{11}|^2 + |S_{21}|^2 = 1$ holds.

Let's first analyze an L-network to see if it can fit our design requirements.

$$Q_{cap} = Q_{ind} = 20$$

$$m = \frac{R_{hi}}{R_{lo}} = 20 \rightarrow Q = \sqrt{m - 1} \approx 4.359$$

$$Q_{total,L-network} = \frac{Q}{2} \approx 2.2$$

$$S_{11} \text{-}10 \text{ dB BW} \approx \frac{1}{3 \cdot Q_{total}} = 15\%$$

$$Insertion \text{ Loss} = \frac{1}{1 + \frac{Q}{Q_{cap}} + \frac{Q}{Q_{ind}}} = 0.694$$

The bandwidth of the L-network is too high and isn't selective enough for our requirements. The bandwidth is set (approximately) by the circuit Q and so we need to use a Π network so Q doesn't depend on m.

$$\frac{1}{3 \cdot Q_{tot}} \approx 0.05 \rightarrow Q_{tot} \ge 6$$

$$Q_1 = \sqrt{\frac{R_L}{R_i} - 1}$$

$$Q_2 = \sqrt{\frac{R_S}{R_i} - 1}$$

$$Q_{tot} = \frac{Q_1 + Q_2}{2}$$

$$R_i < 8.108$$

We find that the intermediate resistance should be less than 8.108 Ω to keep the bandwidth below 5%. We will design for $R_i = 5\Omega$.

Here are all the derived parameters:

	L-network 1	L-network 2
m	200	10
Q	14.11	3
$\overline{X_p}$	70.888	16.666
$\overline{X_s}$	70.534	15.0
C	2.245 pF	9.549 pF
L	11.2 nH	1.39 nH

assuming capacitors are placed in parallel and inductors in series. Q_{tot} is around 8.5.

Figure 1: Simulation with lossless components

We run a simulation and find that for lossless components, the bandwidth of S_{11} down to -10 dB is 39.7 Mhz, which is within our 50 Mhz design spec.

Figure 2: Simulation with finite Q

When adding finite Q components, the bandwidth isn't very different, but the insertion loss at 1 Ghz becomes significant. However the S_{11} -10dB bandwidth becomes infinite/zero since S_{11} never dips below -10dB. It is possible that the Q of these components isn't sufficient to achieve -10dB input selectivity. It's also possible that my design isn't optimized sufficiently.

In the finite Q simulation, the relationship $|S_{11}|^2 + |S_{21}|^2 = 1$ doesn't hold near the center frequency. This is due to the internal loss of the finite Q components.

(b) Design a matching network between a 1000Ω load impedance and a 50Ω source impedance at 1 Ghz. The inductor and capacitor quality factors are 20. The design goal is to achieve the lowest insertion loss. Calculate the insertion loss and verify your design using ADS.

IL =
$$\frac{1}{1 + \frac{N}{Q_u} \sqrt{(\frac{R_{hi}}{R_{lo}})^{1/N} - 1}}$$

We use this equation with our design variables to find the ideal value of N. We let $Q_u = Q_{cap}||Q_{ind} = 10$.

Insertion loss is minimized with 2 L-network stages. $IL_{max} = 0.729$.

$$R_{i,opt} = \sqrt{R_L R_S} = 223.6$$

 $Q_{i,opt} = \sqrt{(\frac{R_{hi}}{R_{lo}})^{1/N} - 1} = 1.863$

Now we can again go through the process of calculating actual component values.

	L-network 1	L-network 2
$\overline{X_p}$	536.66	120.0
X_s	416.66	93.168
\overline{C}	0.296 pF	1.326 pF
\overline{L}	66.3 nH	14.8 nH

Again assuming that capacitors are in shunt and inductors in series. Use these values and run a finite Q simulation.

The simulation confirms a low insertion loss of around -1.5 dB. This is about 4dB better than the Π network.