6053 Final Project

Group Members

- Willem Mirkovich (wjm9297)
- Alec Pippas (awp251)
- Sudhanshu Sali (ss17526)

Question

What is the influence of median income on the number of fast food restaurants in a region?

The hypothesis we want to test is that as median income (I) increases in Metropolitan Counties, there is an increase in the fast food restaurant count (F). Conversely, when the median income (I) increases in Micropolitan Counties, there is a decrease in the fast food restaurant count (F), which we think is similar to the food desert phenomenon in the US.

Data

Our data comes from a few different sources to create a simple table where we have a Core Based Statistical Area correlated with whether the area is metropolitan/micropolitan in addition to the number of fast food restaurants in the given area.

- Tigerline Core Based Statistical Area Boundaires w/ Micropolitan/Metropolitan classification for 2019
 - Source: https://www2.census.gov/geo/tiger/TIGER2019/CBSA/
- US Census Median Household Income Estimated for Core Based Statistical Areas 2019
 - Source: https://data.census.gov/table/ACSST1Y2019.S2503?q=United States&t=Financial Characteristics&g=010XX00US,\$3100000&y=2019
- US Fast Food Restaurant Locations Updated as of November, 2018
 - Source: https://hub.arcgis.com/datasets/UrbanObservatory::fast-food-restaurants/explore?layer=0&showTable=true

Notebook Setup

fig = plt.figure(figsize=figsize)

ax.add feature(LAND)

ax.set_title(title)

if title:

return fig, ax

ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())

```
In [40]: # imports
         import httpx
         import math
         import geopandas as gpd
         import pandas as pd
         import arviz as az
         import pymc as pm
         import matplotlib.pyplot as plt
         import numpy as np
         import cartopy.crs as ccrs
         import networkx as nx
         from cartopy.feature import LAND
         from shapely import bounds, Polygon
         from scipy import stats
         from os import path, mkdir
         az.rcParams["stats.hdi prob"] = 0.89
 In [2]: # utility functions
         def standardize(series):
             return (series - series.mean()) / series.std()
         def polygon_to_extent(polygon: Polygon):
             b = bounds(polygon)
             return [b[0], b[2], b[1], b[3]]
         def create_cartopy_plot(figsize=(12, 8), title=None):
```

Causal Model

The DAG explains the three variables:

- Treatment Variable: Median Income (I)
- Outcome Variable: Fast Food Restaurant Count (F)
- Primary Confounder: Metropolitan/ Micropolitan Status (M)


```
In [45]: G = nx.DiGraph()
G.add_edge('I', 'F')
G.add_edge('M', 'F')
G.add_edge('M', 'I')
fig, ax = plt.subplots(1, 1)
nx.draw_networkx(G, node_color='white', arrows=True, ax=ax)
```


Data Prep

To create the final dataset we are interested in for this project, we need to join the three separate data sources

- 1. Load geospatial US county data that has both the metropolitan/micropolitan flag as well as geospatial boundary of the county
- 2. Load median household income estimates for the given counties by name
- 3. Join the above two datasets by county name, only including counties where a median household income is available
- 4. Load the fast food restaurant location data, which provides latitude/longitude coordinates of where each restaurant exists
- 5. Join the fast food restaurant location data with our county table, via a geospatial join where a lat/lon is inside a county boundary
- 6. Group the final table by county name, where we aggregate by the count of fast food restaurants that are within a given county

```
In [3]:
        # Load CBSA geospatial information
        def get_cached_file(file_name: str, download_url: str, file_handler):
            temp_dir = './temp'
            if not path.exists(temp_dir):
                mkdir(temp_dir)
            file path = f'{temp dir}/{file name}'
            if not path.exists(file_path):
                resp = httpx.get(download url)
                if resp.status_code == 200:
                    with open(file_path, 'wb') as f:
                        f.write(resp.content)
                else:
                    resp.raise_for_status()
            return file_handler(file_path)
        # https://www2.census.gov/geo/tiger/TIGER2019/CBSA/
        area_gdf = get_cached_file('tl_2019_us_cbsa.zip', 'https://www2.census.gov/geo/tiger/TIGER2019/CBSA/tl_2019_us_
        area_gdf = area_gdf.rename(columns={
            'NAMELSAD': 'area_name',
            'LSAD': 'area flag'
        area_gdf = area_gdf[['area_name', 'area_flag', 'geometry']]
        area gdf
```

938 rows × 3 columns

Wisconsin Rapids-Marshfield, WI Micro Area

937

Out[3]:

M2 POLYGON ((-90.31566 44.51277, -90.31562 44.515...

Out[4]:		area_name	median_household_income_est
	1	United States	65712
	2	Aberdeen, WA Micro Area	61026
	3	Abilene, TX Metro Area	54808
	4	Adrian, MI Micro Area	53865
	5	Aguadilla-Isabela, PR Metro Area	16311
	515	York-Hanover, PA Metro Area	69172
	516	Youngstown-Warren-Boardman, OH-PA Metro Area	48558
	517	Yuba City, CA Metro Area	61307
	518	Yuma, AZ Metro Area	46419
	519	Zanesville, OH Micro Area	51844

519 rows × 2 columns

```
In [5]: # NOTE: inner join will drop any counties that do not have a median income estimate
    area_gdf = pd.merge(area_gdf, income_df, how='inner')
    area_gdf
```

[5]:		area_name	area_flag	geometry	median_household_income_est
	0	Athens-Clarke County, GA Metro Area	M1	POLYGON ((-83.53739 33.96591, -83.53184 33.968	50962
	1	Atlanta-Sandy Springs-Alpharetta, GA Metro Area	M1	POLYGON ((-85.33823 33.65312, -85.33842 33.654	71742
	2	Atlantic City-Hammonton, NJ Metro Area	M1	POLYGON ((-74.85675 39.42076, -74.85670 39.420	63389
	3	Auburn, NY Micro Area	M2	POLYGON ((-76.73797 42.96129, -76.73771 42.961	58665
	4	Auburn-Opelika, AL Metro Area	M1	POLYGON ((-85.29322 32.73073, -85.28826 32.730	53712
5	513	Wilmington, NC Metro Area	M1	POLYGON ((-78.02992 34.33177, -78.03074 34.331	57667
5	514	Wilson, NC Micro Area	M2	POLYGON ((-78.03802 35.78752, -78.03697 35.787	38830

518 rows × 4 columns

Winchester, VA-WV Metro Area

Winston-Salem, NC Metro Area

Wisconsin Rapids-Marshfield, WI Micro

515

516

517

In [6]: # plot of all areas with median income estimate
fig, ax = create_cartopy_plot(title='Plot of all Core Based Statistical Areas\nwith Median Household Income Data
ax.add_geometries(area_gdf.geometry, color='green', alpha=.5, crs=ccrs.PlateCarree())
ax.set_extent(polygon_to_extent(area_gdf.geometry.unary_union))

M1

Plot of all Core Based Statistical Areas with Median Household Income Data

POLYGON ((-78.50813 39.08863, -78.50853

POLYGON ((-80.45170 36.26150, -80.45170

POLYGON ((-90.31566 44.51277, -90.31562

44.515...

76583

52322

56278

In [7]: # Load fast food location data

NOTE: downloaded from source and saved to data directory as geojson
fast_food_gdf = gpd.read_file('data/fast_food_restaurants_20191107.geojson').set_crs(4326)
fast_food_gdf

Out[7]:		OBJECTID	ID	Letter	Address	City	State	Zip	Phone	Lat	Long_	Restaurant	geometry
	0	1	1	b	3601 N.W. 27th Avenue	Miami	FL	33142	(305) 638- 3838	25.8092	-80.2400	Burger King	POINT (-80.24000 25.80920)
	1	2	2	b	8995 N. W. 7th Avenue	Miami	FL	33150	(305) 754- 8453	25.8587	-80.2094	Burger King	POINT (-80.20940 25.85870)
	2 3 3		b	30390 South Dixie Highway	Homestead	FL	33030	(305) 247- 7181	25.4849	-80.4610	Burger King	POINT (-80.46100 25.48490)	
	3	4	4	b	7975 N. W. 27th Avenue	Miami	FL	33147	(305) 836- 8152	25.8471	-80.2415	Burger King	POINT (-80.24150 25.84710)
	4	5	5	b	9201 South Dixie Highway	Miami	FL	33156	(305) 666- 1130	25.6849	-80.3125	Burger King	POINT (-80.31250 25.68490)
						•••							
	49997	49998	49998	w	Uscd Q-076 Price Center	La Jolla	CA	92093	None	32.8789	-117.2310	Wendy's	POINT (-117.23100 32.87890)
	49998	49999	49999	w	Village At Wexford #278	Hilton Head Island	SC	29928	None	32.2162	-80.7098	Wendy's	POINT (-80.70980 32.21620)
	49999	50000	50000	w	W V Rt 7	Morgantown	WV	26505	None	39.6321	-79.9568	Wendy's	POINT (-79.95680 39.63210)
	50000	50001	50001	w	Westfall Town Ctr Rt 209	Matamoras	PA	18336	None	41.3709	-74.6981	Wendy's	POINT (-74.69810 41.37090)
	50001	50002	50002	w	Willowbrook Mall	Wayne	NJ	7470	None	40.8902	-74.2567	Wendy's	POINT (-74.25670 40.89020)

50002 rows × 12 columns

```
In [8]: # quick sanity check that geospatial join will work
    area = 'Oak Harbor, WA Micro Area'
    t = area_gdf[area_gdf.area_name == area].iloc[0]
    area_ff = fast_food_gdf[fast_food_gdf.geometry.within(t.geometry)]
    fig, ax = create_cartopy_plot(title=f'Fast Food Locations in {area}')

ax.add_geometries([t.geometry], color='green', alpha=.2, crs=ccrs.PlateCarree())
    ax.set_extent(polygon_to_extent(t.geometry))

restaurants = area_ff.Restaurant.unique()
    colors = np.random.choice(len(restaurants), len(restaurants), replace=False)
    cmap = plt.cm.get_cmap('plasma', len(colors))
    for (r, c) in zip(restaurants, colors):
        t = area_ff[area_ff.Restaurant == r]
        t.plot(ax=ax, markersize=1, color=cmap(c), label=f'{len(t)} {r}')

ax.legend()
```

/var/folders/l3/_57qjm850c7chfs8l26s8c500000gn/T/ipykernel_7843/708150327.py:12: MatplotlibDeprecationWarning: T
he get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplo
tlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
 cmap = plt.cm.get_cmap('plasma', len(colors))

Out[8]: <matplotlib.legend.Legend at 0x128adf190>

Fast Food Locations in Oak Harbor, WA Micro Area


```
In [9]: # geospatial join of fast food on all areas
final_gdf = area_gdf.sjoin(fast_food_gdf, how='inner', predicate='covers')
final_gdf
```

Out[9]:		area_name	area_flag	geometry	median_household_income_est	index_right	OBJECTID	ID	Letter	Address	Ci
	0	Athens- Clarke County, GA Metro Area	M1	POLYGON ((-83.53739 33.96591, -83.53184 33.968	50962	28613	28614	28614	m	2063 Experiment Station Rd	Watkinsvi
	0	Athens- Clarke County, GA Metro Area	M1	POLYGON ((-83.53739 33.96591, -83.53184 33.968	50962	44146	44147	44147	w	1011 Jordan Drive	Athe
	0	Athens- Clarke County, GA Metro Area	M1	POLYGON ((-83.53739 33.96591, -83.53184 33.968	50962	27760	27761	27761	m	1791 Epps Bridge Parkway	Athe
	0	Athens- Clarke County, GA Metro Area	M1	POLYGON ((-83.53739 33.96591, -83.53184 33.968	50962	45846	45847	45847	w	1980 Barnett Shoals Rd	Athe
	0	Athens- Clarke County, GA Metro Area	M1	POLYGON ((-83.53739 33.96591, -83.53184 33.968	50962	20675	20676	20676	k	2150 Barnett Shoals Rd	Athe
	517	Wisconsin Rapids- Marshfield, WI Micro Area	M2	POLYGON ((-90.31566 44.51277, -90.31562 44.515	56278	39552	39553	39553	t	1750 8th Street South	Wiscons Rapi
	517	Wisconsin Rapids- Marshfield, WI Micro Area	M2	POLYGON ((-90.31566 44.51277, -90.31562 44.515	56278	20155	20156	20156	k	1750 8th Street South	Wiscons Rapi
	517	Wisconsin Rapids- Marshfield, WI Micro Area	M2	POLYGON ((-90.31566 44.51277, -90.31562 44.515	56278	31992	31993	31993	m	400 Daly Ave	Wiscons Rapi
	517	Wisconsin Rapids- Marshfield, WI Micro Area	M2	POLYGON ((-90.31566 44.51277, -90.31562 44.515	56278	1607	1608	1608	b	940 Eighth Street South	Wiscons Rapi
	517	Wisconsin Rapids- Marshfield, WI Micro Area	M2	POLYGON ((-90.31566 44.51277, -90.31562 44.515	56278	48372	48373	48373	w	555 W. Grand Avenue	Wiscons Rapi

43709 rows × 16 columns

In [10]: # final groupby + aggregation to get restaurant count
 final_gdf = final_gdf.groupby(['area_name', 'area_flag', 'median_household_income_est', 'geometry'])['Address']
 final_gdf = final_gdf.rename(columns={'Address': 'restaurant_count'})
 final_gdf

	area_name	area_flag	median_household_income_est	geometry	restaurant_count
0	Aberdeen, WA Micro Area	M2	61026	POLYGON ((-124.30542 47.24464, -124.30637 47.2	10
1	Abilene, TX Metro Area	M1	54808	POLYGON ((-100.14654 32.52279, -100.14642 32.5	22
2	Adrian, MI Micro Area	M2	53865	POLYGON ((-84.36198 41.89876, -84.36198 41.898	17
3	Akron, OH Metro Area	M1	57158	POLYGON ((-81.39169 41.34827, -81.39164 41.348	146
4	Alamogordo, NM Micro Area	M2	39371	POLYGON ((-106.37642 32.91041, -106.37644 32.9	9
505	York-Hanover, PA Metro Area	M1	69172	POLYGON ((-77.05440 40.02321, -77.05441 40.023	58
506	Youngstown-Warren-Boardman, OH-PA Metro Area	M1	48558	POLYGON ((-81.00229 41.13419, -81.00232 41.145	110
507	Yuba City, CA Metro Area	M1	61307	POLYGON ((-121.62376 39.29562, -121.62339 39.2	23
508	Yuma, AZ Metro Area	M1	46419	POLYGON ((-114.76378 32.64340, -114.76342 32.6	33
				POLYGON ((-82.19479	
509 510 rd	Zanesville, OH Micro Area	M2	51844	40.02069, -82.19477 40.021	19
510 rc		ttom resta	aurant counts make sense	**	19
510 rc	ows × 5 columns nity check: make sure top/bot l_gdf.sort_values('restaurant	ttom resta c_count',	aurant counts make sense	40.02069, -82.19477 40.021	
510 rd # sa	ows × 5 columns nity check: make sure top/bot l_gdf.sort_values('restaurant	ttom resta c_count',	aurant counts make sense ascending= False).head(5)	40.02069, -82.19477 40.021	restaurant_count
510 rc # sa fina	ows × 5 columns nity check: make sure top/bot l_gdf.sort_values('restaurant area_name Los Angeles-Long Beach-Anaheim,	ctom resta ccount', area_flag	aurant counts make sense ascending=False).head(5) median_household_income_est	40.02069, -82.19477 40.021 geometry MULTIPOLYGON (((-118.12590 33.69715,	restaurant_count
# sa fina	nity check: make sure top/bot l_gdf.sort_values('restaurant area_name Los Angeles-Long Beach-Anaheim, CA Metro Area	ctom resta c_count', area_flag M1	murant counts make sense ascending=False).head(5) median_household_income_est	geometry MULTIPOLYGON (((-118.12590 33.69715, -118.1557 POLYGON ((-74.88982	restaurant_count 2116 1564
# sa fina 267	ows × 5 columns nity check: make sure top/bot l_gdf.sort_values('restaurant area_name Los Angeles-Long Beach-Anaheim,	ctom resta count', area_flag M1	median_household_income_est 77774	geometry MULTIPOLYGON (((-118.12590 33.69715, -118.1557 POLYGON ((-74.88982 40.78773, -74.88971 40.787 POLYGON ((-88.60224	restaurant_count 2116 1564 1315
# sa fina 267 325 82	nity check: make sure top/bot l_gdf.sort_values('restaurant area_name Los Angeles-Long Beach-Anaheim,	area_flag M1 M1	murant counts make sense ascending=False).head(5) median_household_income_est 77774 83160 75379	geometry MULTIPOLYGON (((-118.12590 33.69715, -118.1557 POLYGON ((-74.88982 40.78773, -74.88971 40.787 POLYGON ((-88.60224 41.63139, -88.61185 41.631 POLYGON ((-97.92164	restaurant_count 2116 1564 1315
# sa fina 267 325 82 108	nity check: make sure top/bot l_gdf.sort_values('restaurant area_name Los Angeles-Long Beach-Anaheim,	ctom resta c_count', area_flag M1 M1 M1 M1	median_household_income_est 77774 83160 75379 72265	geometry MULTIPOLYGON (((-118.12590 33.69715, -118.1557 POLYGON ((-74.88982 40.78773, -74.88971 40.787 POLYGON ((-88.60224 41.63139, -88.61185 41.631 POLYGON ((-97.92164 33.00128, -97.92153 33.008 POLYGON ((-95.80431	restaurant_count 2116 1564 1315
# sa fina 267 325 82 108	nity check: make sure top/bot l_gdf.sort_values('restaurant area_name Los Angeles-Long Beach-Anaheim,	ctom resta c_count', area_flag M1 M1 M1 M1 M1 C_count',	median_household_income_est 77774 83160 75379 72265 69193 ascending=True).head(5)	geometry MULTIPOLYGON (((-118.12590 33.69715, -118.1557 POLYGON ((-74.88982 40.78773, -74.88971 40.787 POLYGON ((-88.60224 41.63139, -88.61185 41.631 POLYGON ((-97.92164 33.00128, -97.92153 33.008 POLYGON ((-95.80431 30.24557, -95.80429 30.247	restaurant_count 2116 1564 1315 993
# sa fina 267 325 82 108	nity check: make sure top/bot l_gdf.sort_values('restaurant area_name Los Angeles-Long Beach-Anaheim,	ctom resta c_count', area_flag M1 M1 M1 M1 M1 C_count',	median_household_income_est 77774 83160 75379 72265 69193 ascending=True).head(5)	geometry MULTIPOLYGON (((-118.12590 33.69715, -118.1557 POLYGON ((-74.88982 40.78773, -74.88971 40.787 POLYGON ((-88.60224 41.63139, -88.61185 41.631 POLYGON ((-97.92164 33.00128, -97.92153 33.008 POLYGON ((-95.80431 30.24557, -95.80429 30.247	restaurant_count 2116 1564 1315 993 944

```
Port Angeles, WA Micro
                                                                                POLYGON ((-123.15163 47.86688,
362
                                    M2
                                                                 57126
                                                                                                                                 8
                                                                                               -123.15261 47.8...
                                                                                POLYGON ((-122.81343 47.30681,
      Shelton, WA Micro Area
                                    M2
                                                                  63983
                                                                                                                                 8
                                                                                               -122.81423 47.3...
                                                                                 POLYGON ((-76.73797 42.96129,
                                    M2
                                                                  58665
 26
       Auburn, NY Micro Area
                                                                                                                                 8
                                                                                              -76.73771 42.961...
                                                                                POLYGON ((-122.86272 48.26269,
       Oak Harbor, WA Micro
330
                                                                 72066
                                                                                                                                 8
                                    M2
                                                                                               -122.86273 48.2...
                       Area
```

```
In [13]: # save final table to csv
final_table = 'data/n_fast_food_by_cbsa.csv'
if not path.exists(final_table):
    final_gdf[['area_flag', 'median_household_income_est', 'restaurant_count']].to_csv(final_table, index=False)
```

Data Exploration

Out[10]

In [11]

Out[11]

In [12] Out[12]

```
})
df
```

ut[14]:		area_flag	median_income	ff_count
	0	M2	61026	10
	1	M1	54808	22
	2	M2	53865	17
	3	M1	57158	146
	4	M2	39371	9
	505	M1	69172	58
	506	M1	48558	110
	507	M1	61307	23
	508	M1	46419	33
	509	M2	51844	19

510 rows × 3 columns

```
In [15]: fig, ax = plt.subplots(1, 1)

temp = df[df.area_flag == 'M2']
ax.scatter(temp.median_income, temp.ff_count)
ax.set_title('median_income vs # fast food locations in micropolitan')
```

Out[15]: Text(0.5, 1.0, 'median income vs # fast food locations in micropolitan')


```
In [16]: fig, ax = plt.subplots(1, 1)

temp = df[df.area_flag == 'M1']
    ax.scatter(temp.median_income, temp.ff_count)
    ax.set_title('median_income vs # fast food locations in metropolitan')
```

Out[16]: Text(0.5, 1.0, 'median income vs # fast food locations in metropolitan')

median income vs # fast food locations in metropolitan 2000 - 1500 - 1000 - 10000 10000 120000

```
in [17]: fig, ax = plt.subplots(1, 1)

temp = df[df.area_flag == 'M1']
    ax.hist(temp.median_income)
    ax.set_title('median_income metropolitan')
```

Out[17]: Text(0.5, 1.0, 'median income metropolitan')


```
In [18]: fig, ax = plt.subplots(1, 1)
temp = df[df.area_flag == 'M2']
ax.hist(temp.median_income)
ax.set_title('median_income_micropolitan')
```



```
In [19]: df.area_flag.value_counts()
```

Out[19]: area_flag M1 384 M2 126

Name: count, dtype: int64

Prior Predictive Simulation

For our priors, we are pulling in the following assumptions

- Median income will follow a standard normal distribution, regardless of metropolitan/micropolitan, based on general knowledge of income in US
- There are more metropolitan areas collected vs micropolitan (3 1), as there is more population and better data for these regions
- Fast food restaurants will change depending on micro/metro. Due to food desserts in the US, we predict that micropolitan areas with lower income will have higher # of fast food locations, where as metro areas will follow a more standard increase. Both of these scenarios will be distributed in a Log Normal Distribution, where many of the areas will have standard number, and a few locations will have large number of restaurants

```
In [20]: # Median income prior
income_sim = pd.Series(stats.norm.rvs(size=400))
income_sim.hist()
```

Out[20]: <Axes: >


```
flag_sim = pd.Series(stats.bernoulli.rvs(p=.75, size=400))
flag_sim.hist()
```

```
Out[21]: <Axes: >
```



```
In [22]: # Metro Restaurant count

# NOTE: higher variance in micro areas
metro_food_sim = pd.Series(stats.lognorm(s=1, scale=math.exp(4.5)).rvs(size=400))
metro_food_sim.hist()
```

Out[22]: <Axes: >


```
In [23]: # Micro Restaurant count

# NOTE: lower variance in micro areas
metro_food_sim = pd.Series(stats.lognorm(s=1, scale=1).rvs(size=400))
metro_food_sim.hist()
```

Out[23]: <Axes: >

0	-	r o.	4.3	
0.0	-	1, 60	7,1	

	l_sim	M_sim	F_sim
0	0.392582	1	378.228001
1	-0.874223	1	18.854181
2	-0.249876	1	124.779541
3	1.492182	0	0.443221
4	-0.992319	1	29.691767
495	0.277314	1	31.821742
496	1.357498	1	156.230658
497	1.383930	1	8.853682
498	-1.286854	1	76.995388
499	-0.712602	1	37.087726

500 rows × 3 columns

```
In [25]: fig, ax = plt.subplots(1, 1)
```

```
temp = sim[sim.M_sim == 0]
ax.scatter(temp.I_sim, temp.F_sim)
ax.set_title('median income vs # fast food locations in micropolitan')
```

Out[25]: Text(0.5, 1.0, 'median income vs # fast food locations in micropolitan')

median income vs # fast food locations in micropolitan


```
In [26]: fig, ax = plt.subplots(1, 1)

temp = sim[sim.M_sim == 1]
   ax.scatter(temp.I_sim, temp.F_sim)
   ax.set_title('median income vs # fast food locations in metropolitan')
```

Out[26]: Text(0.5, 1.0, 'median income vs # fast food locations in metropolitan')


```
In [27]: # test statistical model on simulated data
with pm.Model() as simulated_model:
    sigma = pm.Exponential('sigma', 1, shape=2)

    beta = pm.Normal('beta', 0, .5, shape=2)
    alpha = pm.Normal('alpha', 0, .2, shape=2)

    mu = pm.Deterministic('mu', beta[sim.M_sim] * sim.I_sim + alpha[sim.M_sim])

    f = pm.LogNormal("f", mu=mu, sigma=sigma[sim.M_sim], observed=sim.F_sim)
    simulated_idata = pm.sample(idata_kwargs={"log_likelihood": True})

az.summary(simulated_idata, var_names='~mu', kind='all')
```

```
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [sigma, beta, alpha]
WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
Output()
```

Sampling 4 chains for 1_{000} tune and 1_{000} draw iterations ($4_{000} + 4_{000}$ draws total) took 59 seconds.

Out[27]:

	mean	sd	hdi_5.5%	hdi_94.5%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
alpha[0]	0.097	0.083	-0.039	0.226	0.001	0.001	5677.0	3445.0	1.0
alpha[1]	4.130	0.063	4.026	4.228	0.001	0.001	3658.0	3222.0	1.0
beta[0]	0.134	0.087	-0.008	0.268	0.001	0.001	4509.0	3246.0	1.0
beta[1]	-0.009	0.058	-0.106	0.078	0.001	0.001	6216.0	3550.0	1.0
sigma[0]	1.053	0.063	0.957	1.154	0.001	0.001	4769.0	3116.0	1.0
sigma[1]	1.104	0.047	1.030	1.177	0.001	0.001	3736.0	2962.0	1.0

Prior Predictive comments

While not perfect, the simulation does accurately capture how metropolitan areas will have a higher intercept for fast food restaurants, with positive slope associated with # of restaurants with increas in income.

Actual model/data will reveal if our assumptions were correct.

Model

We have tested 3 different models based on our assumptions on fast food locations per area:

- 1. LogNormal
- 2. Poisson
- 3. NegativeBinomial
- The LogNormal Model proved superior, demonstrating the best balance of complexity and predictive accuracy, making it ideal for our analysis. It effectively captured the variance and skewness in restaurant counts, using median income and area type as predictors.
- The Poisson and Negative Binomial Models were considered but showed less optimal performance. The Poisson model particularly suffered a bad fit as indicated by its high predictive information criteria scores and low effective model weight in cross-validation comparison.
- Model Comparison using LOO-CV (Leave-One-Out Cross-Validation) reinforced the LogNormal model's superiority, with it showing the highest log predictive density, indicating it is the most suitable for predicting new data without overfitting.

```
In [28]: df['I'] = standardize(df['median_income'])
    df['M'] = df.area_flag.apply(lambda el: (1 if el == 'M1' else 0))
    df['F'] = df.ff_count.copy()
    df
```

Out[28]:

	area_flag	median_income	ff_count	I	M	F
0	M2	61026	10	0.140965	0	10
1	M1	54808	22	-0.370166	1	22
2	M2	53865	17	-0.447682	0	17
3	M1	57158	146	-0.176992	1	146
4	M2	39371	9	-1.639115	0	9
505	M1	69172	58	0.810580	1	58
506	M1	48558	110	-0.883927	1	110
507	M1	61307	23	0.164063	1	23
508	M1	46419	33	-1.059757	1	33
509	M2	51844	19	-0.613812	0	19

510 rows × 6 columns

```
sigma = pm.Exponential('sigma', 1, shape=2)
     beta = pm.Normal('beta', 0, .5, shape=2)
     alpha = pm.Normal('alpha', 0, .2, shape=2)
     M = pm.MutableData("M", df.M)
     I = pm.MutableData("I", df.I)
     mu = pm.Deterministic('mu', beta[M] * I + alpha[M])
     f = pm.LogNormal("f", mu=mu, sigma=sigma[M], observed=df.F, shape=M.shape[0])
     lognormal idata = pm.sample(idata_kwargs={"log_likelihood": True})
 az.summary(lognormal idata, var names='~mu', kind='all')
/Users/willemmirkovich/.venv/6053-final-project-lyJDXofz-py3.11/lib/python3.11/site-packages/pymc/data.py:303: F
utureWarning: MutableData is deprecated. All Data variables are now mutable. Use Data instead.
 warnings.warn(
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [sigma, beta, alpha]
WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
Output()
```

Sampling 4 chains for 1_{000} tune and 1_{000} draw iterations ($4_{000} + 4_{000}$ draws total) took 56 seconds.

Out[29]:

	mean	sd	hdi_5.5%	hdi_94.5%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
alpha[0]	2.557	0.039	2.497	2.618	0.001	0.000	3212.0	3204.0	1.0
alpha[1]	3.671	0.053	3.587	3.754	0.001	0.001	3892.0	2906.0	1.0
beta[0]	-0.151	0.037	-0.210	-0.093	0.001	0.000	3574.0	3737.0	1.0
beta[1]	0.399	0.052	0.321	0.486	0.001	0.001	4382.0	3025.0	1.0
sigma[0]	0.374	0.025	0.336	0.413	0.000	0.000	3820.0	3178.0	1.0
sigma[1]	1.011	0.039	0.947	1.071	0.001	0.000	4026.0	2998.0	1.0

Sampling 4 chains for 1 000 tune and 1 000 draw iterations (4 000 + 4 000 draws total) took 54 seconds.

/Users/willemmirkovich/.venv/6053-final-project-lyJDXofz-py3.11/lib/python3.11/site-packages/arviz/utils.py:142: UserWarning: Items starting with ~: ['mu'] have not been found and will be ignored warnings.warn(

```
sd hdi_5.5% hdi_94.5% mcse_mean mcse_sd ess_bulk ess_tail r_hat
          mean
alpha[0] 2.660 0.028
                           2.615
                                       2.704
                                                      0.0
                                                                0.0
                                                                        3205.0
                                                                                 2895.0
                                                                                           1.0
                0.006
                           4.484
                                       4.502
                                                      0.0
                                                                0.0
                                                                        2911.0
                                                                                 3038.0
                                                                                           1.0
alpha[1] 4.494
 beta[0] -0.149
                0.027
                           -0.190
                                      -0.105
                                                      0.0
                                                                0.0
                                                                        2911.0
                                                                                 2715.0
                                                                                           1.0
                                       0.449
                           0.439
                                                      0.0
                                                                0.0
                                                                                 2952 0
                                                                                           1.0
```

```
3118.0
          beta[1] 0.444 0.003
In [32]: az.plot trace(poisson idata, figsize= (12, 8))
[<Axes: title={'center': 'beta'}>,
                 <Axes: title={'center': 'beta'}>]], dtype=object)
                               alpha
                                                                                           alpha
                                                                4.50
                                                                4.25
                                                                4.00
                                                                3.75
                                                                3.50
                                                                3.25
                                                                3.00
                                                                2.75
                                                                2.50
              2.75
                    3.00
                         3.25
                               3.50
                                     3.75
                                           4.00
                                                 4.25
                                                       4.50
                                                                             200
                                                                                       400
                                                                                                 600
                                                                                                           800
                                beta
                                                                                           beta
                                                                 0.4
                                                                 0.3
                                                                 0.2
                                                                 0.1
                                                                 0.0
                                                                -0.1
                                                                -0.2
             -0.2
                   -0.1
                          0.0
                                 0.1
                                       0.2
                                             0.3
                                                    0.4
                                                                             200
                                                                                       400
                                                                                                 600
                                                                                                           800
In [33]: with pm.Model() as negbinom model:
             beta = pm.Normal('beta', 0 , 0.01, shape=2)
             alpha = pm.Normal('alpha', mu=-1, sigma=1, shape=2)
             dispersion = pm.Gamma('dispersion', alpha=2, beta=0.1, shape=2)
             M = pm.MutableData("M", df.M)
             I = pm.MutableData("I", df.I)
             mu = pm.math.exp(alpha[M] + beta[M] * I)
             f = pm.NegativeBinomial('f', mu=mu, alpha=dispersion[M], observed=df.F, shape=M.shape[0])
             negbinom_idata = pm.sample(idata_kwargs={'log_likelihood': True})
```

az.summary(negbinom idata, var_names='~mu', kind='all')

```
/Users/willemmirkovich/.venv/6053-final-project-lyJDXofz-py3.11/lib/python3.11/site-packages/pymc/data.py:303: F
utureWarning: MutableData is deprecated. All Data variables are now mutable. Use Data instead.
    warnings.warn(
    Auto-assigning NUTS sampler...
    Initializing NUTS using jitter+adapt_diag...
    Multiprocess sampling (4 chains in 4 jobs)
    NUTS: [beta, alpha, dispersion]
    WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
    WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
    WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
    WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
    Output()
```

Sampling 4 chains for 1 000 tune and 1 000 draw iterations (4 000 + 4 000 draws total) took 55 seconds.

/Users/willemmirkovich/.venv/6053-final-project-lyJDXofz-py3.11/lib/python3.11/site-packages/arviz/utils.py:142: UserWarning: Items starting with ~: ['mu'] have not been found and will be ignored warnings.warn(

Out[33]:

	mean	sd	hdi_5.5%	hdi_94.5%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
alpha[0]	2.764	0.035	2.707	2.819	0.000	0.000	5812.0	3264.0	1.0
alpha[1]	4.656	0.056	4.562	4.739	0.001	0.001	5652.0	3446.0	1.0
beta[0]	-0.008	0.010	-0.023	0.008	0.000	0.000	6169.0	3302.0	1.0
beta[1]	0.020	0.010	0.005	0.036	0.000	0.000	4299.0	3389.0	1.0
dispersion[0]	12.306	2.740	7.744	16.034	0.035	0.027	7018.0	3286.0	1.0
dispersion[1]	0.851	0.054	0.766	0.939	0.001	0.001	5091.0	3202.0	1.0

```
In [34]: az.plot_trace(negbinom_idata, figsize= (12, 10))
```

<Axes: title={'center': 'dispersion'}>]], dtype=object)


```
In [35]:
    model_dict = {
        'lognormal': lognormal_idata,
        'poisson': poisson_idata,
        "negbinomial": negbinom_idata
}
compare_df_psis = az.compare(
        compare_dict=model_dict,
        ic="loo",
        scale="deviance"
)
compare_df_psis
```

/Users/willemmirkovich/.venv/6053-final-project-lyJDXofz-py3.11/lib/python3.11/site-packages/arviz/stats/stats.p y:789: UserWarning: Estimated shape parameter of Pareto distribution is greater than 0.7 for one or more samples . You should consider using a more robust model, this is because importance sampling is less likely to work well if the marginal posterior and LOO posterior are very different. This is more likely to happen with a non-robust model and highly influential observations.

warnings.warn(

Out[35]: warning rank elpd_loo p_loo elpd_diff weight se dse scale lognormal 4945.575878 5.823000 0.000000 1.000000e+00 82.508741 0.000000 False deviance negbinomial 5168.948757 7.045789 223.372879 1.121708e-11 86.906463 30.609808 False deviance 59094.179611 484.259575 54148.603734 7.580603e-13 9637.036837 9587.735108 poisson True deviance

```
in [36]: = az.plot compare(compare df psis)
```

lognormal - O ELPD Legion negbinomial - O poisson - O

40000

elpd loo (deviance)

Model comparison

Posterior Predictive Analysis

10000

20000

30000

1. Micropolitan Areas

• **Observation**: The graph shows a slight decrease in the predicted count of fast food restaurants as median income increases. The red line, representing the posterior mean, trends downward slightly amidst a wide confidence interval shaded in pink.

50000

60000

70000

• Interpretation: This indicates that in micropolitan areas, higher median incomes might be associated with a decrease in the number of fast-food restaurants, although the data points (blue dots) display considerable variability around the prediction.

2. Metropolitan Areas

- **Observation**: There is a clear upward trend in the predicted number of fast food restaurants as median income increases, illustrated by the green line. The confidence interval, shaded in green, widens at higher income levels, suggesting increased uncertainty in the predictions as income rises.
- Interpretation: This suggests that in metropolitan areas, higher median incomes are strongly associated with increases in the number of fast-food restaurants. The observed data points (blue dots) mostly cluster around the lower income levels but support the upward trend.

3. Insights:

- The contrasting trends between micropolitan and metropolitan areas align with the estimand, affirming that area type significantly modifies the impact of median income on fast food restaurant prevalence.
- The variability in both graphs, especially in the metropolitan data, underscores the influence of other unmodeled factors or inherent data variability that might affect restaurant counts.

```
In [37]: def plot_posterior_predictions(model, idata, title):
             fig, axs = plt.subplots(1, 2, figsize=(12, 5))
             args = zip(
                  ['Micropolitan', 'Metropolitan'],
                 [0. 1].
                 ['red', 'green']
             for arg in args:
                 t, f, ax, g = arg
                 ns = 100
                 I = df[df.M == f].I
                 I_seq = np.array(np.linspace(I.min(), I.max(), ns))
                 M_{seq} = np.array([f] * ns)
                 with model:
                     pm.set data({"M": M seq, "I": I seq})
                     f_pred = az.extract(
                              pm.sample_posterior_predictive(idata, var_names=["f"]),
                              group="posterior_predictive"
                 f pred mean = f pred.mean("sample")
                 obs = df[df.M == f]
                 az.plot hdi(I seq, f pred.T, color=g, fill kwargs={"alpha": 0.2}, ax=ax)
                 ax.plot(I_seq, f_pred_mean, label=f'{t} Posterior Mean', color=g)
                 ax.scatter(obs.I, obs.F, color='blue', alpha=.5, label=f'{t} observed')
                 ax.legend()
                 ax.set_xlabel("Median Income (Standardized)")
```

```
ax.set ylabel("Predicted Restaurant Count")
        ax.set_title("The Effect of Median Income on Fast Food Restaurants")
        fig.suptitle(title)
plot posterior predictions(lognormal model, lognormal idata, 'LogNormal')
None
```

```
Sampling: [f]
Output()
```

/Users/willemmirkovich/.venv/6053-final-project-lyJDXofz-py3.11/lib/python3.11/site-packages/arviz/plots/hdiplot .py:161: FutureWarning: hdi currently interprets 2d data as (draw, shape) but this will change in a future relea se to (chain, draw) for coherence with other functions hdi_data = hdi(y, hdi_prob=hdi_prob, circular=circular, multimodal=False, **hdi kwargs) Sampling: [f] Output()

/Users/willemmirkovich/.venv/6053-final-project-lyJDXofz-py3.11/lib/python3.11/site-packages/arviz/plots/hdiplot .py:161: FutureWarning: hdi currently interprets 2d data as (draw, shape) but this will change in a future relea se to (chain, draw) for coherence with other functions

hdi_data = hdi(y, hdi_prob=hdi_prob, circular=circular, multimodal=False, **hdi_kwargs)

LogNormal

The Effect of Median Income on Fast Food Restaurants The Effect of Median Income on Fast Food Restaurants

In [38]: plot posterior predictions(negbinom model, negbinom idata, 'Negative Binomial') None

Sampling: [f] Output()

/Users/willemmirkovich/.venv/6053-final-project-lyJDXofz-py3.11/lib/python3.11/site-packages/arviz/plots/hdiplot .py:161: FutureWarning: hdi currently interprets 2d data as (draw, shape) but this will change in a future relea se to (chain, draw) for coherence with other functions hdi_data = hdi(y, hdi_prob=hdi_prob, circular=circular, multimodal=False, **hdi_kwargs)

Sampling: [f]

Output()

/Users/willemmirkovich/.venv/6053-final-project-lyJDXofz-py3.11/lib/python3.11/site-packages/arviz/plots/hdiplot .py:161: FutureWarning: hdi currently interprets 2d data as (draw, shape) but this will change in a future relea se to (chain, draw) for coherence with other functions

hdi_data = hdi(y, hdi_prob=hdi_prob, circular=circular, multimodal=False, **hdi_kwargs)

Negative Binomial

In [39]: plot_posterior_predictions(poisson_model, poisson_idata, 'Poisson')
None

Sampling: [f]
Output()

/Users/willemmirkovich/.venv/6053-final-project-lyJDXofz-py3.11/lib/python3.11/site-packages/arviz/plots/hdiplot.py:161: FutureWarning: hdi currently interprets 2d data as (draw, shape) but this will change in a future release to (chain, draw) for coherence with other functions

hdi_data = hdi(y, hdi_prob=hdi_prob, circular=circular, multimodal=False, **hdi_kwargs)

Sampling: [f]

Output()

/Users/willemmirkovich/.venv/6053-final-project-lyJDXofz-py3.11/lib/python3.11/site-packages/arviz/plots/hdiplot .py:161: FutureWarning: hdi currently interprets 2d data as (draw, shape) but this will change in a future release to (chain, draw) for coherence with other functions

hdi_data = hdi(y, hdi_prob=hdi_prob, circular=circular, multimodal=False, **hdi_kwargs)

Final Discussion

The estimand can be observed by the posterior predictive simulation plots, especially the ones done using the LogNormal Model. The model effectively reflects the estimand positive relationship in metropolitan areas and a negative trend in micropolitan areas, which seems to suggest that fast food deserts do exist in lower income areas.

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js