Introduction aux réseaux Nouvelles architectures : niveau de

Sous la responsabilité du fournisseur

Introduction aux réseaux Quelques technologies actuelles : LAN,

Sommaire

- Caractéristiques des nœuds et liaisons
- Estimation de charge
- Identification des métriques
- Choix de technologies
- Plan de déploiement
- Optimisation
- Supervision
- Protection

Caractéristiques des nœuds et liaisons

Caractéristiques des nœuds

- · Capacité de traitement (processeur, mémoire, etc)
- · Capacité de stockage (disques, etc)
- Composants natifs (interfaces réseaux, sécurité, etc)
- · Système (capacité d'administration, sécurité, etc)
- Autonomie énergétique

Caractéristiques des nœuds et liaisons

Caractéristiques des liaisons

- · Débit, délai, taux de perte
- Mode d'exploitation (simplex, duplex, etc)
- · Niveau de qualité (taux de perte, etc)
- · Taux de connexion
- Taux d'activité

Débit vers un point/bout en bout

$$B(C,A)=MIN\{B1, B7, B9\}$$

Le débit est une métrique concave

Débit vers un point/bout en bout

Délai de bout en bout

D(C,A)=D1+D7+D9

Le délai est une métrique additive

Délai de bout en bout

Taux de perte de bout en bout

Taux de perte de bout en bout

Estimation de charge par calcul

Notion de taux de connexion

Dans un échange de données, on observe en moyenne N périodes d'activité par heure avec, pour chaque période, une durée moyenne de T secondes. Le taux de connexion E ou Tc est donné par la formule :

$$Tc = \frac{N \times T}{3600}$$

Tc s'exprime en Erlang 1

Tc = partie du temps pendant lequel le terminal est connecté : il est possible d'échanger des données => session établie

N : nombre de sessions à l'heure chargée (ex : entre 11h et 12 h). L'heure chargée est l'heure ou il y a le plus de trafic

T : durée moyenne de chaque session (en sec)

Estimation de charge par calcul

Notion de taux d'activité

C'est la durée réelle des échanges, en considérant qu'il existe au préalable une connexion d'établie.

La durée T d'une session est composée d'un certain nombre de temps élémentaires t_n:

$$T = \sum t_n$$

Le temps réellement utilisé t pour la transmission ne représente qu'une partie de la durée de la session (de t₂ à t₄ dans l'exemple ci-dessous):

$$t = \sum t_i \text{ avec } t_i \text{ = temps transmission}$$

Exemple:

Une session de réservation est composée de temps élémentaires:

t₁ = sortie de la requête client

t₂ = transmission de la requete
t₃ = traitement dans le systeme de reservation
t₄ = transmission de la reponse

t₅ = temps d'affichage de la réponse

t₆ = temps de lecture et de réflexion du client

Estimation de charge par calcul

Notion de taux d'activité

Le taux d'activité s'exprimera donc de la façon suivante:

$$Taux\ activit\'e\ = \frac{Temps\ de\ la\ transmission}{Duree\ session} = \frac{t}{T}$$

- ⇒ Le temps T est une donnée propre à l'application.
- ⇒ Le temps t peut être déterminé à partir de:
 - la longueur L du message à transmettre (en bits)
 - du débit D de la ligne (en bits/s)

Chaque session comporte en moyenne:

n transmissions ou consultations (messages ou groupes de messages émis et reçus)

s'effectuant sur un support de débit maximum D (en bps), le taux d'activité de la liaison est:

$$Ta = n \times \frac{L}{T \times D}$$

Estimation de charge par mesure

Outils d'analyse et d'estimation de charge :

- Ntop pour avoir les statistiques :
- apt-get update && apt-get install ntop
- ntop -i eth0 -w 3000 (-w précise le numéro de port)
- http://localhost:3000
- Wireshark ou tcpdump pour une analyse fine
- · Les outils classiques de supervision

Estimation de délai local

- Soit B la charge générée en un nœud
- Soit C la capacité (débit) de l'interface
- Soit t le temps de traitement du message par le nœud local

- Le délai local est donné par :
- D = t + (B / C)

Estimation du taux de perte local

 Le taux de perte local est donné par le taux d'erreur des technologies utilisées

	Data Rate	Time Dynamics	Bit Error rate	Cost
Twisted Pair	Medium	Low	Medium	Medium
Wireless	Medium	High	High	Low
Coax	Medium	Low	Low	Low
Fiber	High	Low	Very Low	High
Powerline	Low	High	High	Medium

Identification des métriques

Type d'application	Détails	Qualité de service requise	
Diffusion vidéo (télévision Internet, vidéo à la demande)	MPEG2, MPEG4	Débit : 64 kbit/s à 2 Mbit/s Délai, gigue : compensables par la mémoire tampon	
Diffusion audio (radio Internet)	MP3, AAC, OggVorbis	Débit : de 32 kbit/s à 256 kbit/s Délai, gigue : compensables par la mémoire tampon	
Téléphonie (VolP)	PCM-MIC, G.711	Débit : 6,4 kbit/s à 64 kbit/s Latence : 150 ms à 300 ms Gigue : 0 à 50 ms Pertes : < 0,1 %	
Vidéoconférence	Architecture H.323 Résolution vidéo (H.263) : de SUB-QCIF (128 × 96) à 16CIF (1 408 × 1 152)	Débit : 64 kbit/s à 1 920 kbit/s Délai : de l'ordre de 150 ms à 300 ms Gigue : 0 ms à 50 ms Pertes : < 0,1 %	
Session interactive SSH, telnet, VNC, T120		Débits variables Délai de l'ordre de 600 ms Pertes nulles	

Technologie	Génération	Débit Maximum		Latence
		Descendant	Montant	(ms)
GSM Circuit	2G	9,6 kbit/ <u>s</u>	9,6 kbit/ <u>s</u>	300
GPRS	2,5G	171,2 kbit/ <u>s</u>	171,2 kbit/s	300
EDGE	2,75G	384 kbit/ <u>s</u>	384 kbit/ <u>s</u>	300
UMTS	3G	2048 kbit/s	384 kbit/ <u>s</u>	250
HSPA	3,5G	14 Mbit/s	5,76 Mbit/s	70
HSPA+ DC MIMO 2x2	3,9 G	84 Mbit/s	11 Mbit/s	30
LTE (20 MHz)	4G	150 Mbit/s	50 Mbit/s	6,2
LTE-A (20 MHz MIMO)	4G	1 Gbit/s		

Choix des technologies

Selon les taux de connexion et d'activité

Exercice : estimation de métriques

Soit Mi la valeur d'une métrique sur l'arc i. Cette métrique peut être le débit, le délai ou le taux de perte.

Donnez une expression pour les valeurs favorables du:

- 1) débit de C à A (calculez pour M11 et M12 en GigabitEthernet et les autres M1 à M10 en FastEthernet)
- 2) du délai C à A (calculez pour des paquets moyens de 10 Mbits
- 3) du taux de perte de C à A
- 4) Comparez le taux de perte de C à A pour Ethernet sur paire torsadée et Ethernet sur fibre sachant qu'une liaison paire torsadée a en moyenne un taux d'erreur de 10⁻⁸ et une liaison fibre optique a un taux d'erreur de 10⁻⁹

Exercice 2: estimation TA et TC

- Une application de sauvegarde opère entre minuit et 3h du matin comme suit :
- - Vérification de la disponibilité d'une connexion au serveur
- - Création des 12 images de sauvegarde (720 Mbits) (8 min par image)
- - envoi image par image avec attente d'ACK (1 Mbit) après chaque envoi
- - Génération d'un rapport à la réception du dernier ACK (3 min)
- Fermeture de la connexion
- Calculer les TC et TA, puis le coût pour les deux technologies suivantes :
- - ATM (2 Mbps, coût connexion 2€, coût à la seconde 0,01 €)
- LTE (50 Mbps, coût connexion 0,30€, coût à la seconde 0,07€)
- Cas 1 : une seule demande de connexion au début et fermeture à la fin
- Cas 2 : une demande de connexion avant chaque envoi et fermeture

Plan de Grappe de seneurs déploiement Autresites Routeur MPLS Commutateur LTF Commutateur LT CommutateurLT CommutateurLT Point d'accès. Foin: d'apicès : Pont d'accès Commutateur/routeur Autres bâtiments 0000000 0000000 Routeur/firewall ADBL Internet

_ 13b/s

____ 100 Mb/S

Les trames circulant entre les éléments d'interconnexion actifs sont marquées (taggées) avec la nome 802 1 q

Optimisation

MOBILE WORKERS (Backup Labtops)

Steelhead Mobile

SECONDARY DATA CENTER (Recovery Location)

(clustered)

Steelhead Appliances

Optimisation

