Two dimensional Poisson equation Computational project No. 2

Ido Schaefer

February 12, 2013

1 Iterative smoothing

The iterative smoothing procedure is implemented in the function smooth.m.

The efficiency of the relaxation for several ω values is tested in the procedure test_smooth. The root mean square of the residual:

$$r_{rms} = \sqrt{\frac{\sum_{i,j} r_{i,j}^2}{(N-1)^2}} = \frac{|\mathbf{r}|}{(N-1)}$$
 (1)

is plotted Vs. the number of iterations (N-1) grid points in each dimension participate in the computational process). The procedure was employed for two N values: N=8 and N=16. The results are shown in Figs. 1, 2. It is shown that the relaxation is faster for the values $\omega=0.5$, $\omega=1$. The relaxation is faster for N=8, as expected.

Figure 1: r_{rms} Vs. the number of iterations for N=8, for several ω values.

The smoothing of the diagonal error function, $\epsilon(x,x) = \phi(x,x) - \phi(x,x)$, during the iterative process is demonstrated by the procedure **smth_diag**. The error function is plotted Vs. x for various iteration numbers in Fig. 3. It is evident from the figure that the shape of $\epsilon(x,x)$ is getting smoother with the propagation of the iterative process.

Figure 2: r_{rms} Vs. the number of iterations for N=16, for several ω values.

Figure 3: $\epsilon(x,x)$ Vs. x after various iteration numbers, from 0 to 5.

2 The multigrid method

The multigrid method is implemented in the procedure test_multigrid.m. The function multigrid.m performs a single V-cycle in a recursive process. In test_multigrid.m, the multigrid method is tested for N=16, $\omega=0.5$, and for 10 smoothing iterations in each call to smooth.m.

The error decay is presented Figs. 4, 5. We use two measures for the error — the residual, and the relative deviation from the numeric solution (as solved by MATLAB), defined as:

$$\epsilon_{rel} = \frac{|\phi - \bar{\phi}|}{|\phi|} \tag{2}$$

In Fig. 4, $\log_{10}(r_{rms})$ is plotted Vs. the number of V-cycles. In Fig. 5, $\log_{10}(\epsilon_{rel})$ is plotted Vs. the number of V-cycles. The error decay rate shows exponential behaviour.

In the procedure multg_omega.m the efficiency of the multigrid method is tested for several ω values. We use the same error measures as before. In Fig. 6, $\log_{10}(r_{rms})$ is

Figure 4: $\log_{10}(r_{rms})$ Vs. the number of V-cycles for $\omega=0.5$.

Figure 5: $\log_{10}(\epsilon_{rel})$ Vs. the number of V-cycles for $\omega = 0.5$.

plotted Vs. ω for the sampling points:

$$\omega = 0, 0.5, 1, 1.5, 2$$

In Fig. 7, $\log_{10}(\epsilon_{rel})$ is plotted Vs. ω in the same sampling points. It is shown that in the range of ω that has a relatively small reduction factor for high frequencies, the process is much more efficient.

Figure 6: $\log_{10}(r_{rms})$ after 20 V-cycles Vs. the ω value.

Figure 7: $\log_{10}(\epsilon_{rel})$ after 20 V-cycles Vs. the ω value.