Formelsammlung

für die HB3/9 Prüfung

Charpoan Kong HB9HJN

Inhaltsverzeichnis

1	•	nisches/Leistungs Dreieck & Wellenlänge	1		
	1.1	Spannung	1		
	1.2	Strom	1		
	1.3	Wiederstand	1		
	1.4	Leistung	1		
	1.5	Wellenlänge & Frequenz	1		
2	Widerstand & Leistung				
	2.1	Serieschaltung	2		
	2.2	Paralellschaltung	2		
	2.3	Leiterwiderderstand	2		
	2.4	Spannungsteiler	2		
	2.5	Wirkungsgrad	2		
3	Wed	chselstrom	3		
•	3.1		3		
	0.1	3.1.1 Sinus	3		
		3.1.2 Dreieck	3		
		3.1.3 Rechteck	3		
4	Kondensator				
	4.1	Kapazität	4		
	4.2	Serieschaltung	4		
	4.3	Paralellschaltung	4		
	4.4	τ /Zeitkonstante	4		
	4.5	Dreh-/Plattenkondensator	4		
	4.6	Kapazitiver Blindwiederstand	5		
	4.7	Verlustfaktor/Güte	5		
5	Spu	le	6		
-	-	Induktivität	6		
		Induktion- & Selbstinduktionspanning			

	5.3 5.4 5.5 5.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6 7
	5.7	Induktiver Blindwiederstand	7
6	6.1	e danz Serieschaltung	888
7	Tran 7.1	nsformator/Übertrager Spannungs-/Strom-/Windungs-/ Wiederstandsüberset-	9
	7.2	zung	9
8	8.1	Grenzfrequenz	. 0 L0
9	Dezi 9.1 9.2	Dezibel bei Leistug	. 1 l 1
10	10.1 10.2	Resonanzfrequenz	.2 12 12
11		Vorwiderstand	.3 13
12		7	. 4 L4

	12.2	R_1	14
	12.3	R_C	14
	12.4	I_C	15
	12.5	P_V	15
13	Оре	rationsverstärker	16
	•		16
			16
			17
14	Elek	tromagnetisches Feld	18
	14.1	Elektrische Feldstärke	18
			18
			18
	14.4	Strahlungsdichte Kuglestrahler	18
	14.5		18
			19
			19
			19
	14.7		19
	14.8		19
15	Ante	ennentechnik	20
	15.1	Dipol	20
			20
		15.1.2 Verkürzung	20
	15.2	Antennengewinn	20
		15.2.1 zum Dipol	20
		15.2.2 zum isotropen Strahler	21
			21
		15.2.4 ERIP	22
		15.2.5 Q-Match/ $\frac{\lambda}{4}$ - Trafo	22

16	Leit	ungen	23
	16.1	Wellenwiederstand	23
		16.1.1 Paralleldrahtleitung	23
		16.1.2 Koaxialleitung	23
	16.2	Verkürzungsfaktor	23
	16.3	Dämpfung	23
	16.4	Transformationsleitung	24
		16.4.1 Koaxialleitung	24
17	Sign	nale	25
	_	Effektivspannung	25
		17.1.1 Sinus	25
		17.1.2 Dreieck	25
		17.1.3 Rechteck	25
	17.2	Wellenlänge & Frequenz	25
		Bandbreite	25
		17.3.1 DSB	25
		17.3.2 SSB	26
		17.3.3 FM	26
		17.3.4 CW	26
		17.3.5 RTTY	26
	17.4		26
		Besselfunktion	26
		Peak Envelope Power	27
18	Mod	dulation - Demodulation	28
		Modulationsgrad	28
19	Fred	quenzaufbereitung	29
	19.1	Überlagerung	29
		$19.1.1 f_{osc} > f_e \dots \dots \dots \dots$	29
		$19.1.2 f_{osc} < f_e \dots \dots \dots \dots$	29
	19.2	Frequenz 3. Ordnung	29

20	Übe	rtragungstechnik	30
	20.1	Nquisttheorem	30
	20.2	Dynamik	30
	20.3	Baudrate	30
	20.4	FSK	30
		20.4.1 Bandbreite	30
	20.5	PSK	31
		20.5.1 Bandbreite	31
	20.6	Totales Verbindungssystem	31
21	Mes	stechnik	32
	21.1	Wheatstonsche Messbrücke	32
	21.2	Shunt	32
	21.3	SWR/VSWR	32
22		itetechnik	33
	22.1	Empfindlichkeit	33
23	EM\	/ und Sicherheit	34
	23.1	Windlast	34
	23.2	Biegemoment	34
		Sicherheitsabstand	34

1 Ohmisches/Leistungs Dreieck & Wellenlänge

1.1 Spannung

$$U = RI = \frac{P}{I} = \sqrt{PR}$$

1.2 Strom

$$I = \frac{P}{U} = \frac{U}{R} = \sqrt{\frac{P}{R}}$$

1.3 Wiederstand

$$R = \frac{U}{I} = \frac{P}{I^2} = \frac{U^2}{P}$$

1.4 Leistung

$$P = UI = \frac{U^2}{R} = RI^2$$

1.5 Wellenlänge & Frequenz

$$\lambda = \frac{c}{f}$$

$$c = \text{Lichtgeschwindugkeit} \approx 3*10^8$$

$$c = 2.99792458*10^8$$

$$f = \frac{c}{\lambda}$$

2 Widerstand & Leistung

2.1 Serieschaltung

$$R_{\Sigma} = \sum R_i$$

2.2 Paralellschaltung

$$R_{\sum} = \frac{1}{\sum \frac{1}{R_i}}$$

2.3 Leiterwiderderstand

$$R = \frac{\rho l}{A}$$
 $\rho = spezifischer Widerstand$

2.4 Spannungsteiler

$$U_x = R_x \frac{U}{R_{ges}}$$

2.5 Wirkungsgrad

$$\eta = \frac{P_{out}}{P_{in}}$$

$$P_{V} = Verlustleistung$$

$$P_{in} = P_{out} + P_{V}$$

3 Wechselstrom

3.1 Effektivspannung

3.1.1 Sinus

$$U_{eff} = \frac{\hat{\mathsf{U}}}{\sqrt{2}}$$

3.1.2 Dreieck

$$U_{eff} = \frac{\hat{\mathbf{U}}}{\sqrt{3}}$$

3.1.3 Rechteck

$$U_{eff} = \hat{\mathbf{U}}\sqrt{DutyCycle}$$

4 KONDENSATOR

4

4 Kondensator

4.1 Kapazität

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

$$\varepsilon_0 = Elektrische Feldkonstante$$

$$\varepsilon_r = Permittivit \ddot{a}t$$

$$\varepsilon_0 = 8.854187817 * 10^{-12}$$

4.2 Serieschaltung

$$C_{\sum} = \frac{1}{\sum \frac{1}{C_i}}$$

4.3 Paralellschaltung

$$C_{\sum} = \sum C_i$$

4.4 τ /Zeitkonstante

$$\tau = RC$$

$$\lim_{U \to 0\%/100\%} \Delta t = 5\tau$$

4.5 Dreh-/Plattenkondensator

$$C_p = \frac{f_u^2 \Delta C}{f_o^2 - f_u^2} - C_a \begin{tabular}{c} C_p = Paralellkapazität \\ C_a = Anfangskapazität \\ f_u = untere\ Frequenz \\ f_o = obere\ Frequenz \\ \Delta C = Kapazität\ des\ Drehko \\ \end{tabular}$$

4 KONDENSATOR

4.6 Kapazitiver Blindwiederstand

$$X_c = \frac{U}{I} = \frac{1}{\omega C} = \frac{1}{2\pi f C}$$

$$C = \frac{1}{\omega X_c} = \frac{1}{2\pi f X_c}$$

$$f = \frac{1}{2\pi X_c C}$$

$$I = \frac{U}{X_c}$$

4.7 Verlustfaktor/Güte

$$\tan \delta = \frac{I_R}{I_c} = \frac{X_c}{R_p}$$

$$Q = \frac{R_p}{X_c}$$

$$\begin{split} R_p &= paraleller \ Verlustwieder stand \\ I_R &= Strom \ durch \ R_v \\ I_C &= Strom \ durch \ Kondensator \end{split}$$

5

SPULE 6

5 Spule

5.1 Induktivität

$$L = \frac{\mu_0 \mu_r A N^2}{l} = A_L N^2$$
$$A_L = \frac{\mu_0 \mu_r A}{l}$$

 $\begin{array}{l} \mu_0 = Permeabilit \"{a}t \ im \ luftleeren \ Raum \\ \mu_r = Permeabilit \"{a}t \ des \ Kernmaterials \\ A_L = Wert \ vorgefertigter \ Kerne \end{array}$

5.2 Induktion- & Selbstinduktionspannung

$$U_{ind} = -L \frac{\Delta I}{\Delta t}$$
$$L = -U_{ind} \frac{\Delta t}{\Delta I}$$

5.3 Serieschaltung

$$L_{\sum} = \sum L_i$$

5.4 Paralellschaltung

$$L_{\sum} = \frac{1}{\sum \frac{1}{L_i}}$$

5.5 τ /Zeitkonstante

$$\tau = \frac{L}{R}$$

5 SPULE 7

5.6 Verlustfaktor/Güte

$$\tan \delta = \frac{I_R}{I_L} = \frac{R_s}{X_L}$$

$$R_s = \text{serielle Verlustwieder stand}$$

$$I_R = \text{Strom durch } R_v$$

$$I_L = \text{Strom durch Spule}$$

$$Q = \frac{X_L}{R_s}$$

5.7 Induktiver Blindwiederstand

$$X_{L} = \omega L = 2\pi f L$$

$$L = \frac{X_{L}}{\omega} = \frac{X_{L}}{2\pi f}$$

$$f = \frac{X_{L}}{2\pi L}$$

6 IMPEDANZ 8

6 Impedanz

6.1 Serieschaltung

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

6.2 Paralellschaltung

$$Z = \sqrt{\frac{1}{R}^2 + \left(\frac{1}{X_L} - \frac{1}{X_C}\right)^2}$$

7 Transformator/Übertrager

7.1 Spannungs-/Strom-/Windungs-/ Wiederstandsübersetzung

$$\ddot{u} = \frac{U_1}{U_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1} = \sqrt{\frac{Z_1}{Z_2}}$$

$$I_1 = I_2 \frac{U_2}{U_1} = I_2 \frac{N_2}{N_1} = I_2 \sqrt{\frac{Z_2}{Z_1}}$$

$$I_2 = I_1 \frac{U_1}{U_2} = I_1 \frac{N_1}{N_2} = I_1 \sqrt{\frac{Z_1}{Z_2}}$$

7.2 Stromdichte

$$S = \frac{I}{A}$$

RC-GLIED 10

8 RC-Glied

8.1 Grenzfrequenz

$$f_g = \frac{1}{2\pi RC}$$

$$C = \frac{1}{2\pi f_g R}$$

$$R = \frac{1}{2\pi f_g C}$$

8.2 Shape-Faktor

$$ShapeFaktor = \frac{Bandbreite\ bei\ 60db}{Bandbreite\ bei\ 6db}$$

9 DEZIBEL 11

9 Dezibel

9.1 Dezibel bei Leistug

$$\nu = 10 \log \left(\frac{P_{out}}{P_{in}} \right)$$

9.2 Dezibel bei Spannung

$$\nu = 20 \log \left(\frac{U_{out}}{U_{in}} \right)$$

10 LC-Schwingkreis

10.1 Resonanzfrequenz

$$f_{res} = \frac{1}{2\pi\sqrt{LC}} = \frac{f_{max} + f_{min}}{2}$$

$$L = \frac{1}{(2\pi f)^2 C}$$

$$C = \frac{1}{(2\pi f)^2 L}$$

10.2 Bandbreite

$$b = f_{max} - f_{min} = \frac{f_{res}}{Q}$$

10.3 Güte

$$Q = \frac{1}{R_s} * \sqrt{\frac{L}{C}} = \frac{f_{res}}{b} = \frac{R_p}{X_L} = \frac{X_L}{R_s}$$

$$b = \frac{R_s}{2\pi L}$$

$$R_s = serieller \ Verlustwiederstand$$

$$R_{res} = Resonanz \ Verlustwiederstand$$

$$R_p = paraleller \ Verlustwiederstand$$

$$R_p = paraleller \ Verlustwiederstand$$

$$R_{res} = \frac{2\pi f_{res} L}{C}$$

11 DIODE 13

11 Diode

11.1 Vorwiderstand

$$R = \frac{U_{cc} - U_F}{I_F}$$

11.2 Spannungsfestigkeit/Max. Spannung

$$U = U_{in} * \sqrt{2}_{oder\ anderer\ Faktor\ Spitzenspannung}$$

12 Transistor/FET

12.1 Stromverstärkungsfaktor

$$\beta = \frac{I_C}{I_B}$$

12.2 R_1

$$I_B = \frac{I_E}{\beta + 1}$$

$$I_{R_1} = 11 * I_B$$

$$U_{R_1} = U - U_{BE}$$

$$R_1 = \frac{U_{R_1}}{I_{R_1}}$$

12.3 *R*_C

$$I_B = \frac{I_2}{9}$$

$$I_C = I_B \beta$$

$$U_{R_C} = U - U_C$$

$$R_C = \frac{U_{R_C}}{I_c}$$

12.4 *I*_C

$$I_E = \frac{U_E}{R_E}$$

$$I_B = \frac{I_E}{\beta + 1}$$

$$I_C = I_B \beta$$

12.5 P_V

$$U_{R_C} = R_C I_C$$

 $U_{Transistor} = U - U_{R_C}$
 $P_{Verlust} = U_{Transistor} * I_C$

13 Operationsverstärker

13.1 Invertierender Verstärker

$$U_{out} = -U_{in} \frac{R_2}{R_1}$$

13.2 Nichtnyertierender Verstärker

$$U_{out} = 1 + \frac{R_2}{R_1}$$

13.3 Differenzialverstärker

$$\nu_{U1} = \frac{R_3}{R_1}$$

$$\nu_{U2} = \frac{1 + \frac{R_3}{R_1}}{1 + \frac{R_2}{R_4}}$$

$$U_{out} = U_{in2} * \nu_{U2} - U_{in1} * \nu_{U1}$$

14 Elektromagnetisches Feld

14.1 Elektrische Feldstärke

$$E = \frac{U}{d}$$

$$\frac{E_1}{E_2} = \frac{d_2}{d_1}$$

14.2 Magnetische Feldstärke

$$H = \frac{I}{d}$$

14.3 Magnetische Flussdichte

$$B = \mu_0 \mu_r H$$

$$\mu_0 = Permeabili at 4\pi * 10^{-7} \frac{Vs}{Am}$$

$$\mu_r = Permeabili at des Materials$$

14.4 Strahlungsdichte Kuglestrahler

$$S = \frac{P_{ERP}}{4\pi r^2}$$
 $P_{ERP} = Leistung \ isotroper \ Strahler$

14.5 Feldwellenwiederstand

$$Z_0 = \frac{E}{H} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi\Omega$$
 $Z_0 = Feldwellenwiederstand$

14.6 Ersatzfeldstärke

14.6.1 Allgemein

$$E = \frac{\sqrt{30\Omega P_{ERIP}}}{r}$$
$$E = \frac{1}{r} \sqrt{\frac{Z_0}{4\pi} P_{ERIP}}$$

 $P_{ERIP} = Leistung isotroper Strahler$

14.6.2 Dipol

$$E \approx 7 \frac{\sqrt{P}}{r}$$

14.7 Brauchbare Grenzfrequenz

$$MUF \approx \frac{f_k}{\sin \alpha}$$

 $\begin{aligned} MUF &= maximum \ usable \ frequency \\ f_k &= kritische \ Frequenz \end{aligned}$

14.8 Optimale Grenzfrequenz

$$f_{opt} \approx 0.85 \ MUF$$

 $MUF = maximum \ usable \ frequency$ $f_{opt} = optimale \ Frequenz$

15 Antennentechnik

15.1 **Dipol**

15.1.1 Länge

$$l = n \frac{\lambda}{2} \quad n \in \mathbb{N}$$

15.1.2 Verkürzung

$$l = k \frac{\lambda}{2}$$
 $n \in [0.93, 0.97]$

15.2 Antennengewinn

15.2.1 zum Dipol

$$G_D = \frac{P_V}{P_D}$$

$$g_d = 10 \log_{10} \left(\frac{P_V}{P_D}\right) dbd$$

$$g_d = 20 \log_{10} \left(\frac{E_V}{E_D}\right) dbd$$

15.2.2 zum isotropen Strahler

$$G_{i} = \frac{P_{V}}{P_{i}}$$

$$g_{i} = 10 \log_{10} \left(\frac{P_{V}}{P_{i}}\right) dbd$$

$$g_{i} = 20 \log_{10} \left(\frac{E_{V}}{E_{i}}\right) dbd$$

15.2.3 ERP

$$P_{ERP} = \frac{P_{ERIP}}{1.64}$$

$$P_{ERP} = G_D P_S$$

$$P_{ERP} = P_S 10 \frac{g_d}{10 db}$$

$$P_{ERP} = G_D (P_{Sender} - P_{Verlust})$$

15.2.4 ERIP

$$\begin{split} P_{ERIP} &= 1.64 \; P_{ERP} \\ P_{ERIP} &= G_i P_S \\ P_{ERIP} &= P_S \; 10 \, \overline{10 db} \\ P_{ERIP} &= G_i \; (P_{Sender} - P_{Verlust}) \end{split}$$

15.2.5 Q-Match/
$$\frac{\lambda}{4}$$
 - Trafo
$$Z_{Kabel} = \sqrt{Z_{Ant}Z_{Leitung}}$$

16 LEITUNGEN 23

16 Leitungen

16.1 Wellenwiederstand

$$Z_w = \sqrt{\frac{L'}{C'}}$$

16.1.1 Paralleldrahtleitung

$$Z_w = \frac{120\Omega}{\sqrt{\varepsilon_r}} \ln\left(\frac{2a}{d}\right)$$

16.1.2 Koaxialleitung

$$Z_w = \frac{60\Omega}{\sqrt{\varepsilon_r}} \ln\left(\frac{D}{d}\right)$$

16.2 Verkürzungsfaktor

$$\nu = \frac{1}{\sqrt{L'C'}}$$

$$k = \frac{\nu}{c}$$

$$k = \frac{1}{\sqrt{\varepsilon_r}}$$

16.3 Dämpfung

$$n = \sqrt{\frac{f_{hoch}}{f_{niedrig}}}$$

16 LEITUNGEN 24

16.4 Transformationsleitung

$$R_i = Z_w = Z_{ant}$$

$$Z = \sqrt{Z_1 Z_2}$$

$$l = (2n - 1) \frac{\lambda}{4} k$$

16.4.1 Koaxialleitung

$$Z = \frac{138\Omega}{\sqrt{\varepsilon_r}} \left(\frac{D}{d}\right)$$
$$D = d \cdot 10 \cdot \overline{138\Omega}$$

17 SIGNALE 25

17 Signale

17.1 Effektivspannung

17.1.1 Sinus

$$U_{eff} = \frac{\hat{\mathbf{U}}}{\sqrt{2}}$$

17.1.2 Dreieck

$$U_{eff} = \frac{\hat{\mathsf{U}}}{\sqrt{3}}$$

17.1.3 Rechteck

$$U_{eff} = \hat{\mathbf{U}}\sqrt{DutyCycle}$$

17.2 Wellenlänge & Frequenz

$$\lambda = \frac{c}{f}$$

$$f = \frac{c}{\lambda}$$

$$c = \text{Lichtgeschwindugkeit} \approx 3*10^8$$

$$c = 2.99792458*10^8$$

$$u = \sin(\omega t + \varphi)$$

17.3 Bandbreite

17.3.1 DSB

$$b_{AM} = 2f_{mod}$$

17 SIGNALE 26

17.3.2 SSB

$$b_{SSB} = f_{NFmax} - f_{NFmin}$$
$$b_{SSB} \approx f_{mod}$$

17.3.3 FM

$$b_{FM} = 2(\Delta f_T + f_{mod})$$

$$b_{FM} \approx 2 \Delta f_T \qquad f_{mod} \ll \Delta f_T$$

$$b_{FM} \approx 2 f_{mod} \qquad m < 0.5$$

17.3.4 CW

$$b_{CW} = \frac{5 * WPM}{1.2}$$

17.3.5 RTTY

$$b_{RTTY} = 2 \left(\frac{\Delta f}{2} + 1.6Bd \right)$$

17.4 Modulationsindex FM

$$m = \frac{\Delta f_t}{f_{mod}}$$

17.5 Besselfunktion

$$u = 0\sin(\omega_t t - m\cos(\omega_m t))$$

17 SIGNALE 27

17.6 Peak Envelope Power

$$PEP = PeakEnvelopePower \\ P_c = Carrier - Power(Trägerleistung) \\ m = Modulationsgrad bei AM$$

18 Modulation - Demodulation

18.1 Modulationsgrad

$$m = \frac{\hat{\mathsf{U}}_{mod}}{\hat{\mathsf{U}}_T}$$

19 Frequenzaufbereitung

19.1 Überlagerung

19.1.1 $f_{osc} > f_e$

$$f_z = \frac{f_{sp} - f_e}{2}$$
$$f_{osc} = f_e + f_z$$

$$\begin{split} f_e &= Eingangs frequenz \\ f_{osc} &= Ueberlagerungs frequenz \\ f_z &= Zwischen frequenz \\ f_{sp} &= Spiegel frequenz \end{split}$$

19.1.2
$$f_{osc} < f_e$$

$$f_z = f_e - f_{osc}$$
$$f_{sp} = f_e - 2f_z$$

$$\begin{split} f_e &= Eingangs frequenz \\ f_{osc} &= Ueberlagerungs frequenz \\ f_z &= Zwischen frequenz \\ f_{sp} &= Spiegel frequenz \end{split}$$

19.2 Frequenz 3.Ordnung

$$2f_1 - f_2 \wedge 2f_2 - f_1$$

20 Übertragungstechnik

20.1 Nquisttheorem

$$f_{abt} > 2f_{imax}$$

20.2 Dynamik

$$D = 20 \log \left(\frac{U_{max}}{U_{min}}\right) dB$$

20.3 Baudrate

$$\nu_u = \frac{1}{t_{1hit}} Bd$$

20.4 FSK

20.4.1 Bandbreite

$$b_{FSK} = 2(\Delta f_T + f_{mod})$$

$$b_{FSK} \approx 2 \left(\frac{\Delta F}{2} + 1.6 f_u \right)$$

20.5 PSK

20.5.1 Bandbreite

$$b_{PSK} = 2(\Delta f_T + f_{mod})$$

$$b_{PSK} = 2\frac{\nu_u}{2} = \nu_u$$

20.6 Totales Verbindungssystem

$$N = S \frac{S - 1}{2}$$

$$N = Strecken$$

 $S = Stationen$

21 MESSTECHNIK 32

21 Messtechnik

21.1 Wheatstonsche Messbrücke

$$R = \frac{R_4 R_1}{R_3}$$

21.2 Shunt

$$U = R_{Instr}I_{Instr} = R_{p}I_{P}$$
 $I_{p} = I_{Messbereich} - I_{Instrument}$
 $R_{p} = \frac{U}{I_{p}}$
 $R_{p} = \frac{R_{Instr}}{n-1}$
 $R_{s} = R_{Instr}(n-1)$

$$\begin{split} R_{Instr} &= Instrument widerstand \\ R_p &= Shunt widerstand \ parallel \\ R_s &= Shunt widerstand \ seriell \\ I_p &= Strom \ durch \ Shunt \\ I_{instr} &= Instrument enstrom \\ n &= Messbereich serweiterungs fraktor \end{split}$$

21.3 SWR/VSWR

$$\begin{split} s &= \frac{U_{max}}{U_{min}} = \frac{U_v + U_r}{U_v - U_r} = \frac{1 + |r|}{1 - |r|} = \frac{\sqrt{P_v} + \sqrt{P_r}}{\sqrt{P_v} - \sqrt{P_r}} \\ |r| &= \frac{U_r}{U_v} = \sqrt{\frac{P_r}{P_v}} = \frac{s - 1}{s + 1} & s = SWR/VSWR \\ z &= Wellenwiederstand (der Leitung) \\ R_2 &= Abschlusswiederstand \\ U_v &= hinlaufende Welle \\ U_r &= rcklaufende Welle \\ S &= \frac{Z}{R_2} & R_2 \leq Z \end{split}$$

22 Gerätetechnik

22.1 Empfindlichkeit

$$P_R = kT_0bF$$

$$U_R = \sqrt{kT_0bRF}$$

 $k = 1.38 * 10^{-23}$ (Boltzmann Konstante) $T_0 = Temperatur$ [K] b = Bandbreite [Hz] R = EingangswiederstandF = Rauschfaktor

 $P_R = Rauschleistung$ $U_R = Rauschspannung$

23 EMV und Sicherheit

23.1 Windlast

$$F_A = pA$$

$$p = Staudruck \left[\frac{N}{m^2}\right]$$

$$A = Wirckflche \left[m^2\right]$$

23.2 Biegemoment

$$M_A = \sum F_i l_i$$

23.3 Sicherheitsabstand

$$d = \frac{\sqrt{30\Omega P_{ERIP}}}{E}$$