Zusammenfassung - Investition und Finanzierung

Timo Bergerbusch 344408

15.11.2017

1 Entscheidungsregeln

- 1. Grenzrate der Substitution GRS = GRT Grenzrate der Transformation
 - Modellwelt Thema 1
 - benötigt differenzierbare Transformationsfunktion
 - Zwei-Zeitpunkt-Betrachtung
- 2. Grenzrendite = Kapitalmarktzins
 - benötigt differenzierbare Transformationsfunktion
 - Zwei-Zeitpunkt-Betrachtung
- 3. Maximierung des Kapitalwertes
 - Auch für Mehr-Perioden-Fall anwendbar
 - auch für nicht bel. teilbare Projekte
 - echt besser als die 2. Investitionsregel

2 Fachbegriffe

- Investitionsertragsfunktion F(I): Herleitung wie in Thema 1 Aufgabe 1 Verfügt über 3 Eigenschaften:
 - 1. F(0) = 0
 - 2. positiver Ertrag: F'(I) > 0 für I > 0
 - 3. abnehmender Grenznutzen (degressiv): F''(I) < 0 für I > 0
- Rendite: $\frac{\text{Ertrag} \cdot 100}{\text{Investition}} 1$
- Transformationsfunktion: $C_1 = F(W_0 C_0)$
- optimales Investitionsvolumen:

Kriterium: Steigung Transformationskurve -F'(I) = -(1+i) Steigung Kapitalmarktgerade

$$\max U(C_0; C_1)$$
 unter der NB $C_1 = F(W_0 - C_0)$

- 1. einsetzen von C_1
- 2. ableiten mittels $\frac{\partial U}{\partial C_0}$
- 3. lösen nach C_0
- Indifferenzkurve:

Def.: eine Kurve im $(C_0; C_1)$ -Diagramm für die ein Entscheider keinen unterschied zwischen dem C_0 Konsum jetzt oder dem C_1 Konsum in t_1 macht

- bei geg. Nutzenfunktion $\overline{U}=C_0^x\cdot C_1^y\Leftrightarrow C_1=\overline{U}^{\frac{1}{y}}\cdot C_0^{-\frac{x}{y}}$
- Kapitalwert κ :
 - für Zeiträume t_o,\ldots,t_n und Zinssatz i gilt $\kappa=\sum_{j=0}^n \frac{t_j}{(1+i)^j}$
 - bei geg. RBF(i;T): $\kappa=RBF(i;T)\cdot z-A_0$, gleichbleibende Einzahlung z, Anfangsauszahlung A_0
- Differenzinvestition: $\kappa^{A-B} = \kappa_A \kappa_B$
- Zahlungsreihe einer Differenzinvestition (A-B): Für alle $t \in T$ berechne $z_t^{(A)} z_t^{(B)}$ und anschließend den Kapitalwert
- Rentenbarwertaktor *RBF*:

Def.: Der RBF entspricht dem Kaptialwert einer gleichbleibenden Einzahlung von genau 1 GE in den Zeitpunkten t=1 bis t=T

- $RBF(i;T)=rac{(1+i)^T-1}{(1+i)^T\cdot i}$ für Zeitraum t bis T und Zinsfuß i
- Berechnung des konst. Zahlungsüberschusses pro Periode: $z=\frac{\kappa+A_0}{RBF(i:T)}$
- äquivalente Annuität:

Def.: Welche gleichbleibende Einzahlung von t=1 bis t=T bei einem Kalkulationszinsfuß i erforderlich ist um einen Kapitalwert κ von genau 1 GE zu generieren.

-
$$ANN(i;T) = \frac{1}{RBF(i;T)}$$

• Ertragswert η_0 :

Def.: Ertragswert η_0 entspricht dem Kapitalwert der Einzahlungsüberschüsse

$$- \eta_0 = \kappa - A_0 = RBF(i;T) \cdot z$$

3 Dynexite Aufgaben

Thema 1

Aufgabe 1

Vorgehen:

- 1. berechne Renditen R_1, \ldots, R_n
- 2. sortiere absteigend nach Renditen: $(I_{max}, I_{2max}, \dots, I_{least})$

- 3. füge ein: $(R_{max}/100 + 1) * I$ für $0 < I \le Investitionsvolumen_{max}$
- 4. füge ein: $E_m ax + (R_{2max}/100 + 1) \cdot I$ für

Investitionsvolumen_{max} $< I \le$ Investitionsvolumen_{max} + Investitionsvolumen_{2max}, etc

Aufgabe 2

Ang. es schließen sich Projekt X und Y aus und $R_X > R_Y$. Vorgehen:

- 1. Analog zu Aufgabe 1 Punkte 1 und 2
- 2. Führe die Programme mit max. Renditen durch.

!Wichtig! wenn $I_Y > I_X$: berechne $\frac{E_X}{R_Y/100+1} = x$.

 $x > I_Y$: nicht zu ändern

sonst: füge Zeile hinzu mit: $\sum_{i \in \text{durchgef. Proj.}} E_i + (\frac{I_Y}{100} + 1) * (I - \sum_{i \in \text{durchgef. Proj.}} I_i)$

Thema 2

Aufgabe 1

Berechne die Kaptialwerte $\kappa_0, \ldots, \kappa_n$ mit dieser Formel.

 $\kappa_i > 0$ durchführen

 $\kappa_i = 0$ indifferent

 $\kappa_i < 0$ nicht durchführen

Bei ausschließenden Projekten führe dasjenige aus, welches den höheren Kapitalwert hat und führe dies durch g.d.w. dessen $\kappa>0$

Aufgabe 2

Erster Teil analog zu Thema 2 Aufgabe 1.

Berechne danach die Zahlungsreihe einer geg. Differenzinvestition

Aufgabe 3

100% analog zu Thema 2 Aufgabe 2. Unterschiede sind nur die Werte (> 1000).