Package 'OptSig'

October 12, 2022

	00000112, 2022
Туре	Package
Title	Optimal Level of Significance for Regression and Other Statistical Tests
Versi	on 2.2
Impo	orts pwr
Date	2022-06-29
Auth	or Jae H. Kim <jaekim8080@gmail.com></jaekim8080@gmail.com>
Main	tainer Jae H. Kim <jaekim8080@gmail.com></jaekim8080@gmail.com>
Desc	ription The optimal level of significance is calculated based on a decision-theoretic approach. The optimal level is chosen so that the expected loss from hypothesis testing is minimized. A range of statistical tests are covered, including the test for the population mean, population proportion, and a linear restriction in a multiple regression model. The details are covered in Kim and Choi (2020) <doi:10.1111 abac.12172="">, and Kim (2021) <doi:10.1080 00031305.2020.1750484=""></doi:10.1080></doi:10.1111>
Licer	nse GPL-2
Need	sCompilation no
	sitory CRAN
•	Publication 2022-07-03 12:30:14 UTC
Dute	Tubication 2022 07 03 12.30.11 0 10
R to	opics documented:
	OptSig-package 2 data1 4 Opt.sig.norm.test 5 Opt.sig.t.test 6 OptSig.2p 8 OptSig.2p2n 9 OptSig.anova 11 OptSig.Boot 12 OptSig.BootWeight 14

 OptSig.Chisq
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 <t

2 OptSig-package

OptS:	ig-package	Optimal Tests	Level	of Sign	iificance for	Regression and	Other Statistica	ıl
Index								29
	R.OLS							
	Power.F							
	Power.Chisq							
	OptSig.Weight							23
	OptSig.t2n							22
	OptSig.r							20
	OptSig.p							19

Description

The optimal level of significance is calculated based on a decision-theoretic approach. The optimal level is chosen so that the expected loss from hypothesis testing is minimized. A range of statistical tests are covered, including the test for the population mean, population proportion, and a linear restriction in a multiple regression model. The details are covered in Kim and Choi (2020) <doi:10.1111/abac.12172>, and Kim (2021) <doi:10.1080/00031305.2020.1750484>.

Details

The DESCRIPTION file:

Package: OptSig Type: Package

Title: Optimal Level of Significance for Regression and Other Statistical Tests

Version: 2.2 Imports: pwr Date: 2022-06-29

Author: Jae H. Kim <jaekim8080@gmail.com> Maintainer: Jae H. Kim <jaekim8080@gmail.com>

Description: The optimal level of significance is calculated based on a decision-theoretic approach. The optimal level is cho

License: GPL-2

Index of help topics:

Opt.sig.norm.test	Optimal significance level calculation for the
	mean of a normal distribution (known variance)
Opt.sig.t.test	Optimal significance level calculation for
	t-tests of means (one sample, two samples and
	paired samples)
OptSig-package	Optimal Level of Significance for Regression
	and Other Statistical Tests
OptSig.2p	Optimal significance level calculation for the

OptSig-package 3

OptSig.2p2n	test for two proportions (same sample sizes) Optimal significance level calculation for the test for two proportions (different sample sizes)
OptSig.Boot	Optimal Significance Level for the F-test using the bootstrap
OptSig.BootWeight	Weighted Optimal Significance Level for the F-test based on the bootstrap
OptSig.Chisq	Optimal Significance Level for a Chi-square test
OptSig.F	Optimal Significance Level for an F-test
OptSig.Weight	Weighted Optimal Significance Level for the F-test based on the assumption of normality in the error term
OptSig.anova	Optimal significance level calculation for balanced one-way analysis of variance tests
OptSig.p	Optimal significance level calculation for proportion tests (one sample)
OptSig.r	Optimal significance level calculation for correlation test
OptSig.t2n	Optimal significance level calculation for two samples (different sizes) t-tests of means
Power.Chisq	Function to calculate the power of a Chi-square test
Power.F	Function to calculate the power of an F-test
R.OLS	Restricted OLS estimation and F-test
data1	Data for the U.S. production function

The package accompanies the paper: Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach. Abacus. Wiley.

estimation

It oprovides functions for the optimal level of significance for the test for linear restiction in a regeression model.

Other basic statistical tests, including those for population mean and proportion, are also covered using the functions from the pwr package.

Author(s)

Jae H. Kim <jaekim8080@gmail.com>

Maintainer: Jae H. Kim <jaekim8080@gmail.com>

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.

4 data1

Stephane Champely (2017). pwr: Basic Functions for Power Analysis. R package version 1.2-1. https://CRAN.R-project.org/package=pwr

See Also

Leamer, E. 1978, Specification Searches: Ad Hoc Inference with Nonexperimental Data, Wiley, New York.

Kim, JH and Ji, P. 2015, Significance Testing in Empirical Finance: A Critical Review and Assessment, Journal of Empirical Finance 34, 1-14. <DOI:http://dx.doi.org/10.1016/j.jempfin.2015.08.006>

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

Examples

```
data(data1)
y=data1$lnoutput; x=cbind(data1$lncapital,data1$lnlabor)
# Restriction matrices to test for constant returns to scale
Rmat=matrix(c(0,1,1),nrow=1); rvec=matrix(0.94,nrow=1)
# Model Estimation and F-test
M=R.OLS(y,x,Rmat,rvec)

# Degrees of Freedom and estimate of non-centrality parameter
K=ncol(x)+1; T=length(y)
df1=nrow(Rmat);df2=T-K; NCP=M$ncp

# Optimal level of Significance: Under Normality
OptSig.F(df1,df2,ncp=NCP,p=0.5,k=1, Figure=TRUE)
```

data1

Data for the U.S. production function estimation

Description

US production, captal, labour in natrual logs for the year 2005

Usage

```
data("data1")
```

Format

A data frame with 51 observations on the following 3 variables.

lnoutput natrual log of output
lnlabor natrual log of labor
lncapital natrual log of capital

Opt.sig.norm.test 5

Details

The data contains 51 observations for 50 US states and Washington DC

Source

Gujarati, D. 2015, Econometrics by Example, Second edition, Palgrave.

References

See Section 2.2 of Gujarari (2015)

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach, Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172

Examples

```
data(data1)
```

Opt.sig.norm.test	Optimal significance level calculation for the mean of a normal distribution (known variance)
	button (known variance)

Description

Computes the optimal significance level for the mean of a normal distribution (known variance)

Usage

```
Opt.sig.norm.test(ncp=NULL,d=NULL,n=NULL,p=0.5,k=1,alternative="two.sided",Figure=TRUE)
```

Arguments

ncp	Non-centrality parameter
d	Effect size, Cohen's d
n	Sample size
р	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less"
Figure	show graph if TRUE (default); No graph if FALSE

Details

```
Refer to Kim and Choi (2020) for the details of k and p Either ncp or d value should be given. In a general term, if X \sim N(mu,sigma^2); let H0:mu = mu0; and H1:mu = mu1; ncp = sqrt(n)(mu1-mu0)/sigma d = (mu1-mu0)/sigma: Cohen's d
```

Opt.sig.t.test

Value

alpha.opt Optimal level of significance

beta.opt Type II error probability at the optimal level

Note

Also refer to the manual for the pwr package

The black curve in the figure is the line of enlightened judgement: see Kim and Choi (2019). The red dot inticates the optimal significance level that minimizes the expected loss: (alpha.opt,beta.opt). The blue horizontal line indicates the case of alpha = 0.05 as a reference point.

Author(s)

Jae H. Kim (using a function from the pwr package)

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.

Stephane Champely (2017). pwr: Basic Functions for Power Analysis. R package version 1.2-1. https://CRAN.R-project.org/package=pwr

See Also

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

Examples

```
Opt.sig.norm.test(d=0.2,n=60,alternative="two.sided")
```

Opt.sig.t.test Optimal significance level calculation for t-tests of means (one sample, two samples and paired samples)

Description

Computes the optimal significance level for the test for t-tests of means

Usage

Opt.sig.t.test 7

Arguments

ncp	Non-centrality parameter
d	Effect size
n	Sample size
р	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
type	Type of t test: one- two- or paired-sample
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided'

Figure show graph if TRUE (default); No graph if FALSE

(default), "greater" or "less"

Details

Refer to Kim and Choi (2020) for the details of k and p

Either ncp or d value should be given, with the value of n.

In a general term, if $X \sim N(mu,sigma^2)$; let H0:mu = mu0; and H1:mu = mu1;

ncp = sqrt(n)(mu1-mu0)/sigma d = (mu1-mu0)/sigma: Cohen's d

Value

alpha.opt Optimal level of significance

beta.opt Type II error probability at the optimal level

Note

Also refer to the manual for the pwr package

The black curve in the figure is the line of enlightened judgement: see Kim and Choi (2020). The red dot inticates the optimal significance level that minimizes the expected loss: (alpha.opt,beta.opt). The blue horizontal line indicates the case of alpha = 0.05 as a reference point.

Author(s)

Jae H. Kim (using a function from the pwr package)

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.

Stephane Champely (2017). pwr: Basic Functions for Power Analysis. R package version 1.2-1. https://CRAN.R-project.org/package=pwr

OptSig.2p

See Also

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.

Examples

```
Opt.sig.t.test(d=0.2,n=60,type="one.sample",alternative="two.sided")
```

OptSig.2p	Optimal significance level calculation for the test for two proportions (same sample sizes)

Description

Computes the optimal significance level for the test for two proportions

Usage

```
OptSig.2p(ncp=NULL,h=NULL,p=0.5,k=1,alternative="two.sided",Figure=TRUE)
```

Arguments

ncp	Non-centrality parameter
h	Effect size, Cohen's h
n	Number of observations (per sample)
р	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less"
Figure	show graph if TRUE (default); No graph if FALSE

Details

```
Refer to Kim and Choi (2020) for the details of k and p Either ncp or h value should be specified. For h, refer to Cohen (1988) or Champely (2017) In a general term, if X \sim N(mu,sigma^2); let H0:mu = mu0; and H1:mu = mu1; ncp = sqrt(n)(mu1-mu0)/sigma
```

Value

alpha.opt	Optimal level of significance
beta.opt	Type II error probability at the optimal level

OptSig.2p2n

Note

Also refer to the manual for the pwr package,

The black curve in the figure is the line of enlightened judgement: see Kim and Choi (2020). The red dot inticates the optimal significance level that minimizes the expected loss: (alpha.opt,beta.opt). The blue horizontal line indicates the case of alpha = 0.05 as a reference point.

Author(s)

Jae H. Kim (using a function from the pwr package)

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.

Stephane Champely (2017). pwr: Basic Functions for Power Analysis. R package version 1.2-1. https://CRAN.R-project.org/package=pwr

See Also

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484>

Examples

```
OptSig.2p(h=0.2,n=60,alternative="two.sided")
```

OptSig.2p2n Optimal significance level calculation for the test for two proportions (different sample sizes)

Description

Computes the optimal significance level for the test for two proportions

Usage

```
OptSig.2p2n(ncp=NULL,h=NULL,n1=NULL,n2=NULL,p=0.5,k=1,alternative="two.sided",Figure=TRUE)
```

OptSig.2p2n

Arguments

ncp	Non-centrality parameter
h	Effect size, Cohen's h
n1	Number of observations (1st sample)
n2	Number of observations (2nd sample)
р	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less"
Figure	show graph if TRUE (default); No graph if FALSE

Details

Refer to Kim and Choi (2020) for the details of k and p

Either ncp or h value should be specified.

For h, refer to Cohen (1988) or Chapmely (2017)

Assume $X \sim N(mu, sigma^2)$; and let H0:mu = mu0; and H1:mu = mu1;

ncp = sqrt(n)(mu1-mu0)/sigma

Value

alpha.opt Optimal level of significance

beta.opt Type II error probability at the optimal level

Note

Also refer to the manual for the pwr package

The black curve in the figure is the line of enlightened judgement: see Kim and Choi (2020). The red dot inticates the optimal significance level that minimizes the expected loss: (alpha.opt,beta.opt). The blue horizontal line indicates the case of alpha = 0.05 as a reference point.

Author(s)

Jae H. Kim (using a function from the pwr package)

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.

Stephane Champely (2017). pwr: Basic Functions for Power Analysis. R package version 1.2-1. https://CRAN.R-project.org/package=pwr

OptSig.anova 11

See Also

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.

Examples

```
OptSig.2p2n(h=0.30,n1=80,n2=245,alternative="greater")
```

OptSig.anova	Optimal significance level calculation for balanced one-way analysis of variance tests
--------------	--

Description

Computes the optimal significance level for the test for balanced one-way analysis of variance tests

Usage

```
OptSig.anova(K = NULL, n = NULL, f = NULL, p = 0.5, k = 1, Figure = TRUE)
```

Arguments

K	Number of groups
n	Number of observations (per group)
f	Effect size
р	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
Figure	show graph if TRUE (default); No graph if FALSE

Details

Refer to Kim and Choi (2020) for the details of k and p For the value of f, refer to Cohen (1988) or Champely (2017)

Value

alpha.opt	Optimal level of significance
beta.opt	Type II error probability at the optimal level

Note

Also refer to the manual for the pwr package

The black curve in the figure is the line of enlightened judgement: see Kim and Choi (2020). The red dot inticates the optimal significance level that minimizes the expected loss: (alpha.opt,beta.opt). The blue horizontal line indicates the case of alpha = 0.05 as a reference point.

12 OptSig.Boot

Author(s)

Jae H. Kim (using a function from the pwr package)

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.

Stephane Champely (2017). pwr: Basic Functions for Power Analysis. R package version 1.2-1. https://CRAN.R-project.org/package=pwr

See Also

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

Examples

```
OptSig.anova(f=0.28,K=4,n=20)
```

OptSig.Boot

Optimal Significance Level for the F-test using the bootstrap

Description

The function calculates the optimal level of significance for the F-test

The bootstrap can be conducted using either iid resampling or wild bootstrap.

Usage

```
OptSig.Boot(y,x,Rmat,rvec,p=0.5,k=1,nboot=3000,wild=FALSE,Figure=TRUE)
```

Arguments

У	a matrix of dependent variable, T by 1
X	a matrix of K independent variable, T by K
Rmat	a matrix for J restrictions, J by (K+1)
rvec	a vector for restrictions, J by 1
р	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
nboot	the number of bootstrap iterations, the default is 3000
wild	if TRUE, wild bootsrap is conducted; if FALSE (default), bootstrap is based on iid residual resampling
Figure	show graph if TRUE (default). No graph otherwise
k nboot wild	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$ the number of bootstrap iterations, the default is 3000 if TRUE, wild bootsrap is conducted; if FALSE (default), bootstrap is based on iid residual resampling

OptSig.Boot 13

Details

See Kim and Choi (2020)

Value

alpha.opt Optimal level of significance
crit.opt Critical value at the optimal level

beta.opt Type II error probability at the optimal level

Note

Applicable to a linear regression model

The black curve in the figure plots the denity under H0; The blue curve in the figure plots the denity under H1.

Author(s)

Jae H. Kim

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach, Abacus, Wiley. https://doi.org/10.1111/abac.12172

See Also

Leamer, E. 1978, Specification Searches: Ad Hoc Inference with Nonexperimental Data, Wiley, New York.

Kim, JH and Ji, P. 2015, Significance Testing in Empirical Finance: A Critical Review and Assessment, Journal of Empirical Finance 34, 1-14. <DOI:http://dx.doi.org/10.1016/j.jempfin.2015.08.006>

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.

```
data(data1)
# Define Y and X
y=data1$lnoutput; x=cbind(data1$lncapital,data1$lnlabor)
# Restriction matrices to test for constant returns to scale
Rmat=matrix(c(0,1,1),nrow=1); rvec=matrix(0.94,nrow=1)
OptSig.Boot(y,x,Rmat,rvec,p=0.5,k=1,nboot=1000,Figure=TRUE)
```

14 OptSig.BootWeight

OptSig.BootWeight	Weighted Optimal Significance Level for the F-test based on the boot- strap
-------------------	--

Description

The function calculates the weighted optimal level of significance for the F-test

The weights are obtained from the bootstrap distribution of the non-centrality parameter estimates

Usage

```
OptSig.BootWeight(y,x,Rmat,rvec,p=0.5,k=1,nboot=3000,wild=FALSE,Figure=TRUE)
```

Arguments

У	a matrix of dependent variable, T by 1
x	a matrix of K independent variable, T by K
Rmat	a matrix for J restrictions, J by (K+1)
rvec	a vector for restrictions, J by 1
р	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
nboot	the number of bootstrap iterations, the default is 3000
wild	if TRUE, wild bootsrap is conducted (default); if FALSE, bootstrap is based on iid resampling
Figure	show graph if TRUE . No graph if FALSE (default)

Details

The bootstrap can be conducted using either iid resampling or wild bootstrap.

Value

alpha.opt	Optimal level of significance
crit.opt	Critical value at the optimal level

Note

Applicable to a linear regression model

Author(s)

Jae H. Kim

OptSig.Chisq 15

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach. Abacus, Wiley. https://doi.org/10.1111/abac.12172

See Also

Leamer, E. 1978, Specification Searches: Ad Hoc Inference with Nonexperimental Data, Wiley, New York.

Kim, JH and Ji, P. 2015, Significance Testing in Empirical Finance: A Critical Review and Assessment, Journal of Empirical Finance 34, 1-14. <DOI:http://dx.doi.org/10.1016/j.jempfin.2015.08.006>

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

Examples

```
data(data1)
# Define Y and X
y=data1$lnoutput; x=cbind(data1$lncapital,data1$lnlabor)
# Restriction matrices to test for constant returns to scale
Rmat=matrix(c(0,1,1),nrow=1); rvec=matrix(0.94,nrow=1)
OptSig.Boot(y,x,Rmat,rvec,p=0.5,k=1,nboot=1000,Figure=TRUE)
```

OptSig.Chisq

Optimal Significance Level for a Chi-square test

Description

The function calculates the optimal level of significance for a Ch-square test

Usage

```
OptSig.Chisq(w=NULL, N=NULL, ncp=NULL, df, p = 0.5, k = 1, Figure = TRUE)
```

Arguments

W	Effect size, Cohen's w
N	Total number of observations
ncp	a value of the non-centality paramter
df	the degrees of freedom
р	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
Figure	show graph if TRUE (default); No graph if FALSE

16 OptSig.Chisq

Details

See Kim and Choi (2020)

Value

alpha.opt Optimal level of significance
crit.opt Critical value at the optimal level
beta.opt Type II error probability at the optimal level

Note

Applicable to any Chi-square test Either ncp or w (with N) should be given.

The black curve in the figure is the line of enlightened judgement: see Kim and Choi (2020). The red dot inticates the optimal significance level that minimizes the expected loss: (alpha.opt,beta.opt). The blue horizontal line indicates the case of alpha = 0.05 as a reference point.

Author(s)

Jae. H Kim

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172>

See Also

Leamer, E. 1978, Specification Searches: Ad Hoc Inference with Nonexperimental Data, Wiley, New York.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.

Kim, JH and Ji, P. 2015, Significance Testing in Empirical Finance: A Critical Review and Assessment, Journal of Empirical Finance 34, 1-14. <DOI:http://dx.doi.org/10.1016/j.jempfin.2015.08.006>

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

```
# Optimal level of Significance for the Breusch-Pagan test: Chi-square version
data(data1)  # call the data: Table 2.1 of Gujarati (2015)

# Extract Y and X
y=data1$lnoutput; x=cbind(data1$lncapital,data1$lnlabor)

# Restriction matrices for the slope coefficents sum to 1
Rmat=matrix(c(0,1,1),nrow=1); rvec=matrix(1,nrow=1)

# Model Estimation
```

OptSig.F

OptSig.F

Optimal Significance Level for an F-test

Description

The function calculates the optimal level of significance for an F-test

Usage

```
OptSig.F(df1, df2, ncp, p = 0.5, k = 1, Figure = TRUE)
```

Arguments

df1	the first degrees of freedom for the F-distribution
df2	the second degrees of freedom for the F-distribution
ncp	a value of of the non-centality paramter
p	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
Figure	show graph if TRUE (default); No graph if FALSE

Details

See Kim and Choi (2020)

Value

alpha.opt	Optimal level of significance
crit.opt	Critical value at the optimal level
beta.opt	Type II error probability at the optimal level

18 OptSig.F

Note

Applicable to any F-test, following F-distribution

The black curve in the figure is the line of enlightened judgement: see Kim and Choi (2020). The red dot inticates the optimal significance level that minimizes the expected loss: (alpha.opt,beta.opt). The blue horizontal line indicates the case of alpha = 0.05 as a reference point.

Author(s)

Jae. H Kim

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172

See Also

Leamer, E. 1978, Specification Searches: Ad Hoc Inference with Nonexperimental Data, Wiley, New York.

Kim, JH and Ji, P. 2015, Significance Testing in Empirical Finance: A Critical Review and Assessment, Journal of Empirical Finance 34, 1-14. <DOI:http://dx.doi.org/10.1016/j.jempfin.2015.08.006>

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.

```
data(data1)
# Define Y and X
y=data1$lnoutput; x=cbind(data1$lncapital,data1$lnlabor)
# Restriction matrices to test for constant returns to scale
Rmat=matrix(c(0,1,1),nrow=1); rvec=matrix(0.94,nrow=1)
# Model Estimation and F-test
M=R.OLS(y,x,Rmat,rvec)

# Degrees of Freedom and estimate of non-centrality parameter
K=ncol(x)+1; T=length(y)
df1=nrow(Rmat);df2=T-K; NCP=M$ncp

# Optimal level of Significance: Under Normality
OptSig.F(df1,df2,ncp=NCP,p=0.5,k=1, Figure=TRUE)
```

OptSig.p

	OptSig.p	Optimal significance level calculation for proportion tests (one sample)
--	----------	--

Description

Computes the optimal significance level for proportion tests (one sample)

Usage

```
OptSig.p(ncp=NULL,h=NULL,n=NULL,p=0.5,k=1,alternative="two.sided",Figure=TRUE)
```

Arguments

ncp	Non-centraity parameter
h	Effect size, Cohen's h
n	Number of observations (per sample)
р	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less"
Figure	show graph if TRUE (default); No graph if FALSE

Details

```
Refer to Kim and Choi (2020) for the details of k and p Either ncp or h value should be given For h, refer to Cohen (1988) or Chapmely (2017) In a general term, if X \sim N(mu,sigma^2); let H0:mu = mu0; and H1:mu = mu1; ncp = sqrt(n)(mu1-mu0)/sigma
```

Value

alpha.opt Optimal level of significance
beta.opt Type II error probability at the optimal level

Note

Also refer to the manual for the pwr package

The black curve in the figure is the line of enlightened judgement: see Kim and Choi (2020). The red dot inticates the optimal significance level that minimizes the expected loss: (alpha.opt,beta.opt). The blue horizontal line indicates the case of alpha = 0.05 as a reference point.

OptSig.r

Author(s)

Jae H. Kim (using a function from the pwr package)

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.

Stephane Champely (2017). pwr: Basic Functions for Power Analysis. R package version 1.2-1. https://CRAN.R-project.org/package=pwr

See Also

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

Examples

```
OptSig.p(h=0.2,n=60,alternative="two.sided")
```

OptSig.r

Optimal significance level calculation for correlation test

Description

Computes the optimal significance level for the correlation test

Usage

```
OptSig.r(r=NULL, n=NULL, p=0.5, k=1, alternative="two.sided", Figure=TRUE)
```

Arguments

r	Linear correlation coefficient
n	sample size
р	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II error, $k = L2/L1$, default is $k = 1$
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less"
Figure	show graph if TRUE (default); No graph if FALSE

OptSig.r 21

Details

```
Refer to Kim and Choi (2020) for the details of k and p
In a general term, if X \sim N(mu,sigma^2); let H0:mu = mu0; and H1:mu = mu1; ncp = sqrt(n)(mu1-mu0)/sigma
```

Value

alpha.opt Optimal level of significance

beta.opt Type II error probability at the optimal level

Note

Also refer to the manual for the pwr package

The black curve in the figure is the line of enlightened judgement: see Kim and Choi (2020). The red dot inticates the optimal significance level that minimizes the expected loss: (alpha.opt,beta.opt). The blue horizontal line indicates the case of alpha = 0.05 as a reference point.

Author(s)

Jae H. Kim (using a function from the pwr package)

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172>

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.

Stephane Champely (2017). pwr: Basic Functions for Power Analysis. R package version 1.2-1. https://CRAN.R-project.org/package=pwr

See Also

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

```
OptSig.r(r=0.2,n=60,alternative="two.sided")
```

OptSig.t2n

OptSig.t2n	Optimal significance level calculation for two samples (different sizes) t-tests of means

Description

Computes the optimal significance level for two samples (different sizes) t-tests of means

Usage

```
OptSig.t2n(ncp=NULL,d=NULL,n1=NULL,n2=NULL,p=0.5,k=1,alternative="two.sided",Figure=TRUE)
```

Arguments

ncp	Non-centrality parameter
d	Effect size
n1	umber of observations in the first sample
n2	umber of observations in the second sample
p	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less"
Figure	show graph if TRUE (default); No graph if FALSE

Details

```
Refer to Kim and Choi (2020) for the details of k and p Either ncp or d value should be specified. In a general term, if X \sim N(mu,sigma^2); let H0:mu = mu0; and H1:mu = mu1; ncp = sqrt(n)(mu1-mu0)/sigma d = (mu1-mu0)/sigma: Cohen's d
```

Value

alpha.opt	Optimal level of significance
beta.opt	Type II error probability at the optimal level

Note

Also refer to the manual for the pwr package

The black curve in the figure is the line of enlightened judgement: see Kim and Choi (2020). The red dot inticates the optimal significance level that minimizes the expected loss: (alpha.opt,beta.opt). The blue horizontal line indicates the case of alpha = 0.05 as a reference point.

OptSig. Weight 23

Author(s)

Jae H. Kim (using a function from the pwr package)

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. https://doi.org/10.1111/abac.12172

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.

Stephane Champely (2017). pwr: Basic Functions for Power Analysis. R package version 1.2-1. https://CRAN.R-project.org/package=pwr

See Also

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

Examples

```
OptSig.t2n(d=0.6,n1=90,n2=60,alternative="greater")
```

OptSig.Weight	Weighted Optimal Significance Level for the F-test based on the assumption of normality in the error term

Description

The function calculates the weighted optimal level of significance for the F-test

The weights are obtained from a folded-normal distribution with mean m and staradrd deviation delta

Usage

```
OptSig.Weight(df1, df2, m, delta = 2, p = 0.5, k = 1, Figure = TRUE)
```

Arguments

df1	the first degrees of freedom for the F-distribution
df2	the second degrees of freedom for the F-distribution
m a value of of the non-centality paramter, the mean of the folded-normal tion	
delta	standard deviation of the folded-normal distribution
р	prior probability for H0, default is $p = 0.5$
k	relative loss from Type I and II errors, $k = L2/L1$, default is $k = 1$
Figure	show graph if TRUE (default); No graph if FALSE

24 OptSig. Weight

Details

See Kim and Choi (2020)

Value

alpha.opt Optimal level of significance
crit.opt Critical value at the optimal level

Note

The figure shows the folded-normal distribution

Author(s)

Jae H. Kim

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach, Abacus, Wiley. https://doi.org/10.1111/abac.12172

See Also

Leamer, E. 1978, Specification Searches: Ad Hoc Inference with Nonexperimental Data, Wiley, New York.

Kim, JH and Ji, P. 2015, Significance Testing in Empirical Finance: A Critical Review and Assessment, Journal of Empirical Finance 34, 1-14. <DOI:http://dx.doi.org/10.1016/j.jempfin.2015.08.006>

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

```
data(data1)
# Define Y and X
y=data1$lnoutput; x=cbind(data1$lncapital,data1$lnlabor)
# Restriction matrices to test for constant returns to scale
Rmat=matrix(c(0,1,1),nrow=1); rvec=matrix(0.94,nrow=1)
# Model Estimation and F-test
M=R.OLS(y,x,Rmat,rvec)

# Degrees of Freedom and estimate of non-centrality parameter
K=ncol(x)+1; T=length(y)
df1=nrow(Rmat);df2=T-K; NCP=M$ncp

OptSig.Weight(df1,df2,m=NCP,delta=3,p=0.5,k=1,Figure=TRUE)
```

Power.Chisq 25

	Power.Chisq	Function to calculate the power of a Chi-square test	
--	-------------	--	--

Description

This function calculates the power of a Chi-square test, given the value of non-centrality parameter

Usage

```
Power.Chisq(df, ncp, alpha, Figure = TRUE)
```

Arguments

df degree of freedom

ncp a value of of the non-centality paramter

alpha the level of significance

Figure show graph if TRUE (default); No graph if FALSE

Details

See Kim and Choi (2020)

Value

Power of the test

Critical value at alpha level of significance

Note

See Application Section and Appendix of Kim and Choi (2017)

Author(s)

Jae H. Kim

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach, Abacus, Wiley. https://doi.org/10.1111/abac.12172

See Also

Leamer, E. 1978, Specification Searches: Ad Hoc Inference with Nonexperimental Data, Wiley, New York.

Kim, JH and Ji, P. 2015, Significance Testing in Empirical Finance: A Critical Review and Assessment, Journal of Empirical Finance 34, 1-14. <DOI:http://dx.doi.org/10.1016/j.jempfin.2015.08.006> Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

26 Power.F

Examples

Power.Chisq(df=5,ncp=5,alpha=0.05,Figure=TRUE)

Power.F

Function to calculate the power of an F-test

Description

This function calculates the power of an F-test, given the value of non-centrality parameter

Usage

```
Power.F(df1, df2, ncp, alpha, Figure = TRUE)
```

Arguments

df1 the first degrees of freedom for the F-distribution
df2 the second degrees of freedom for the F-distribution

ncp a value of of the non-centality paramter

alpha the level of significance

Figure show graph if TRUE (default); No graph if FALSE

Details

See Kim and Choi (2020)

Value

Power of the test

Crit.val Critical value at alpha level of significance

Note

See Application Section and Appendix of Kim and Choi (2020)

Author(s)

Jae H. Kim

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach, Abacus, Wiley. https://doi.org/10.1111/abac.12172

R.OLS 27

See Also

Leamer, E. 1978, Specification Searches: Ad Hoc Inference with Nonexperimental Data, Wiley, New York.

Kim, JH and Ji, P. 2015, Significance Testing in Empirical Finance: A Critical Review and Assessment, Journal of Empirical Finance 34, 1-14. <DOI:http://dx.doi.org/10.1016/j.jempfin.2015.08.006>

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

Examples

```
data(data1)
# Define Y and X
y=data1$lnoutput; x=cbind(data1$lncapital,data1$lnlabor)
# Restriction matrices to test for constant returns to scale
Rmat=matrix(c(0,1,1),nrow=1); rvec=matrix(0.94,nrow=1)
# Model Estimation and F-test
M=R.OLS(y,x,Rmat,rvec)
# Degrees of Freedom and estimate of non-centrality parameter
K=ncol(x)+1; T=length(y)
df1=nrow(Rmat);df2=T-K; NCP=M$ncp
Power.F(df1,df2,ncp=NCP,alpha=0.20747,Figure=TRUE)
```

R.OLS

Restricted OLS estimation and F-test

Description

Function to calcuate the Restricted (under H0) OLS Estimators and F-test statistic

Usage

```
R.OLS(y, x, Rmat, rvec)
```

Arguments

```
y a matrix of dependent variable, T by 1
x a matrix of K independent variable, T by K
Rmat a matrix for J restrictions, J by (K+1)
rvec a vector for restrictions, J by 1
```

Details

Rmat and rvec are the matrices for the linear restrictions, which a user should supply.

Refer to an econometrics textbook for details.

28 R.OLS

Value

coef matrix of estimated coefficients, (K+1) by 2, under H1 and H0

RSq R-square values under H1 and H0, 2 by 1 resid residual vector under H1 and H0, T by 2

F. stat F-statistic and p-value

ncp non-centrality parameter, estimated by replaining unknowns using OLS esti-

mates

Note

The function automatically adds an intercept, so the user need not include a vector of ones in x matrix.

Author(s)

Jae H. Kim

References

Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach, Abacus, Wiley. https://doi.org/10.1111/abac.12172

See Also

Leamer, E. 1978, Specification Searches: Ad Hoc Inference with Nonexperimental Data, Wiley, New York.

Kim, JH and Ji, P. 2015, Significance Testing in Empirical Finance: A Critical Review and Assessment, Journal of Empirical Finance 34, 1-14. <DOI:http://dx.doi.org/10.1016/j.jempfin.2015.08.006>

Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. https://doi.org/10.1080/00031305.2020.1750484.>

```
data(data1)
# Define Y and X
y=data1$lnoutput; x=cbind(data1$lncapital,data1$lnlabor)
# Restriction matrices to test for constant returns to scale
Rmat=matrix(c(0,1,1),nrow=1); rvec=matrix(1,nrow=1)
# Model Estimation and F-test
M=R.OLS(y,x,Rmat,rvec)
```

Index

```
* datasets
                                                    Power.Chisq, 25
    data1,4
                                                    Power.F, 26
* htest
                                                    R.OLS, 27
    Opt.sig.norm.test, 5
    Opt.sig.t.test, 6
    OptSig.2p, 8
    OptSig.2p2n,9
    OptSig.anova, 11
    OptSig.Boot, 12
    OptSig.BootWeight, 14
    OptSig.Chisq, 15
    OptSig.F, 17
    OptSig.p, 19
    OptSig.r, 20
    OptSig.t2n, 22
    OptSig.Weight, 23
    Power.Chisq, 25
    Power.F, 26
    R.OLS, 27
* package
    OptSig-package, 2
data1,4
Opt.sig.norm.test, 5
Opt.sig.t.test, 6
OptSig (OptSig-package), 2
OptSig-package, 2
OptSig.2p, 8
OptSig.2p2n,9
OptSig.anova, 11
OptSig.Boot, 12
{\tt OptSig.BootWeight, 14}
OptSig.Chisq, 15
OptSig.F, 17
OptSig.p, 19
\texttt{OptSig.r}, \textcolor{red}{\textbf{20}}
OptSig.t2n, 22
OptSig.Weight, 23
```