Machine Learning

Logistic Regression

Linear Regression and Logistic Regression

- Logistic regression uses Sigmoid function to make probabilistic prediction. Probability P that a data point belongs to a class for a given value of x
- Probability value is between 0 and 1

Linear Regression and Logistic Regression

- As X increases, the probability value increases. As x tends to infinity, the probability becomes 1
- As value of X decreases, the probability decreases. As x tends to negative infinity, the probability becomes 0

Optimization function for Logistic Regression

Maximise Likelihood: $L = \prod P^{y_i} * (1-P)^{(1-y_i)}$

Maximise Likelihood => Maximize Log(Likelihood)

Maximise Log(Likelihood) = $\sum (y_i \log(P) + (1-y_i) \log(1-P))$

EXTRA SLIDE... Log Likelihood

 $Log(Likelihood) = \sum (y_i log(P) + (1-y_i) log(1-P))$

р	Ln(p)	Change in value		
0.000001	-16.1181	Smaller		
0.001	-6.9078			
0.1	-2.3026			
0.2	-1.6094			
0.3	-1.2040			
0.4	-0.9163			
0.5	-0.6931			
0.6	-0.5108			
0.7	-0.3567			
0.8	-0.2231			
0.9	-0.1054			
0.999	-0.0010			
0.9999999	-1E-07	Larger		

	Уi	p _i	LOG(pi)	y _i * log(p _i)	1-y _i	1-p _i	LOG(1-pi)	(1-yi) *LOG(1-pi)	Log Likelihood	
Case 1	1	Near 1	Larger	Larger	0	Near 0		0	Larger	
Case 2	1	Near 0	Smaller	Smaller	0	Near 1		0	Smaller	
Case 3	0	Near 0		0	1	Near 1	Larger	Larger	Larger	
Case 4	0	Near 1		0	1	Near 0	Smaller	Smaller	Smaller	

EXTRA SLIDE...Odds

$$P = \frac{1}{1 + e^{-(z)}}$$

$$1 - P = \frac{1}{1 + e^z}$$

$$\frac{P}{1-P} = e^Z$$

$$Odds = \frac{P}{1 - P} = e^z \qquad P = \frac{Odds}{1 + Odds}$$

$$Log(Odds) = z = (b_0 + b_1 * x_1 + ...)$$

EXTRA SLIDE... Log(Odds)

Another way to interpret logistic regression

$$\log \frac{p(x)}{1 - p(x)} = \beta_0 + x \cdot \beta$$

Odds of p
9:1
4:1
1.5:1
1:1
0.67:1
0.25:1
0.11:1

EXTRA SLIDE... Odds Ratio

Odds_{x1} =
$$e^{(b_0 + b_1 * x_1 + ...)}$$

Odds_{x1+1} =
$$e^{(b_0 + b_1 * (x_1 + 1) +)}$$

Odds ratio =
$$\frac{\text{Odds}_{x1+1}}{\text{Odds}_{x1}} = e^{b_1}$$

If b1 = 1.5, then for every unit increase in x1 (having all other Xs unchanged), the odds will increase $e^{1.5}$ times

What will be the case when b1 is negative?

Categorical Variables

- Nominal variables must be encoded using Dummy variables (with drop first = True).
- If a variable is Binary (e.g., Male / Female), then Label encoder (or pandas
 .categorical.codes) also achieves same effect as Dummy variables with drop first =
 True

Logistic Regression

Advantages -

- Probabilistic view used in the method is easy to understand
- The equation coefficients provide insight about impact of predictors on Target variable in terms of Odds Ratio
- Extended to multiple classes
- Resistant to overfitting

Disadvantages -

Underperforms where there are more complex relationships requiring non-linear boundaries

Confusion Matrix

		Predicted				
		Α	В	С		
	Α	15	0	0		
Actual	В	0	19	1		
4	C	0	0	15		

- Classification accuracy = correct predictions / total predictions
- Precision is the proportion of the predicted positive cases that were correct.
 - Precision of C = 15 / (15+1)
- Recall is the proportion of positive cases that were correctly identified
 - Recall for B = 19 / (19+1)
- F1 Score = 2*(Recall * Precision) / (Recall + Precision)

Confusion Matrix

Г					1				Pred	icted
			Predicted						Positive	Negative
			Negative	Positive	Accuracy =	<u>TP + TN</u> TP + TN + FP + FN	nal	Positive	TP	FN
	ual	Negative	TN	FP		IF T IN T IF T IN	Act	Negative	FP	TN
	Actı	Positive	FN	TP	$Recall = \frac{TP}{TP + FN}$ $Precision = \frac{TP}{TP + FP}$					

- True Positive (TP): Observation is positive, and is predicted to be positive.
- False Negative (FN): Observation is positive, but is predicted negative.
- True Negative (TN): Observation is negative, and is predicted to be negative.
- False Positive (FP): Observation is negative, but is predicted positive.
- Note that in binary classification, recall of the positive class is also known as "sensitivity"; and recall of the negative class is "specificity".
- High recall, low precision: This means that most of the positive examples are correctly recognized (low FN) but there are a lot of false positives.
- Low recall, high precision: This shows that we miss a lot of positive examples (high FN) but those we predict as positive are indeed positive (low FP)

Scaling

The default parameters of Logistic Regression in sklearn perform regularization.
 Hence scaling of independent variables must be performed for Logistic Regression

Thank you

- Prashant Koparkar