

Parallel Computing

Parallel Hardware: Basics

Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

J. Presper Eckert and John Mauchly

- 1st working electronic computer (1946)
- To reprogram it you need to re-arrange the cords
- 18,000 Vacuum tubes
- 1,800 instructions/sec
- 3,000 ft³

Electronic Numerical Integrator and Computer

Programming the ENIAC!

EDSAC 1 (1949)

http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/

- Von Neumann presented his idea of stored program concept.
- Maurice Wilkes built it.

1st stored program computer 650 instructions/sec 1,400 ft³

• After the vacuum tubes, transistors were invented (1947) \rightarrow Starting 2nd generations of computers

- UNIVAC (UNIversal Automatic Computer)
- Introduced in the 50s

- From transistors to integrated circuits(IC) \rightarrow Starting 3rd generation of computers
- One IC can host hundreds (then thousands, then millions then billions) of transistors → computers are getting smaller in size yet more powerful.

Intel 4004 Die Photo

Introduced in 1970

Firstmicroprocessor

2,250 transistors

12 mm²

108 KHz

Intel 8086 Die Scan

- 29,000 transistors
- 33 mm²
- 5 MHz
- Introduced in 1979
 - Basic architecture
 of the IA32 PC

Intel 80486 Die Scan

- 1,200,000 transistors
- 81 mm²
- 25 MHz
- Introduced in 1989
 - 1st pipelined implementation of IA32
 - 1st processor with on-chip cache

Pentium Die Photo

- 3,100,000 transistors
- 296 mm²
- 60 MHz
- Introduced in 1993
 - 1st superscalar implementation of IA32

Pentium 4

55,000,000 transistors 146 mm² 3 GHz Introduced in 2000

http://www.chip-architect.com

Pentium 4 (last single core)

IBM Power 10 (15-30 cores)

AMD Threaddripper (32 Cores)

Intel Xeon (28 cores)

Up to **64GB Unified memory**

16-core Neural

11 trillion operations per second

Industry-leading performance per watt

5 nm process

10-core

400GB/s Memory bandwidth

Source: Apple

Intel Alder Lake Architecture

Hybrid Architecture:

- P-cores
- E-cores

Source: Intel

How did the hardware evolve like that?

Let's look at different waves (generations of architectures)

First Generation (1970s)

Single Cycle Implementation

The Von Neumann Architecture

ALU: Arithmetic & Logic Unit

Second Generation (1980s)

- ·Number of stages increases with each generation
- •Minimum CPI (Cycles Per Instruction) = 1
- Reason of maximing CPI = 1: due to dependencies
 (i.e. an instruction must wait for the result of another)

Some Enhancements

Cache Memory

Virtual Memory

Multi-level caches

TLB

Third Generation (1990s)

- •Executing several instructions at the same time is called superscalar capability.
- •performance = several instructions per cycle (IPC)
- •Speculative Execution (prediction of branch direction) is introduced to make the best use of superscalar capability —> This can make some instructions execute out-of-order!!

Fourth Generation (2000s)

Double (or triple or ...) some resources in the pipeline to host several programs at the same time. This allows better use of the execution resources.

Some definitions before we proceed

An operating system "process"

- An instance of a computer program that is being executed.
- · Components of a process:
 - The executable machine language program
 - A block of memory
 - Descriptors of resources the OS has allocated to the process
 - Security information
 - Information about the state of the process

Multitasking

- Gives the illusion that a single processor system is running multiple programs simultaneously.
- Each process takes turns running → time slice
- After its time is up, it waits until it has a turn again.
- Few processes can run in parallel if the hardware is equipped with several cores.

Threading

- Threads are contained within processes.
- They allow programmers to divide their programs into (more or less) independent tasks.
- The hope is that when one thread blocks because it is waiting on a resource, another thread will have work to do and can run.

As you can see ...

We can have several processes, executed in a multitasking fashion, and each process can consist of several threads.

The Status-Quo

- We moved from single core to multicore to manycore:
 - for technological reasons, as we saw last lecture.
- Free lunch is over for software folks
 - The software will not become faster with every new generation of processors
- Not enough experience in parallel programming
 - Parallel programs of old days were restricted to some elite applications -> very few programmers
 - Now we need parallel programs for many different applications

How Did These Advances Happen?

The Multicore Software Triad

Conclusions

- The hardware evolution, driven by Moore's law, was geared toward two things:
 - Exploiting parallelism
 - Dealing with memory (latency, capacity)