Matemáticas III

Grau em Robótica

Exemplos 8

Séries e resíduos

[Revisado: janeiro de 2021]

1 Sucessões e séries

- 1.1. Escreve os primeiros cinco termos das sucessões dadas.
 - a) $\{5i^n\}$.
 - b) $\{1 + e^{n\pi i}\}.$
- 1.2. Determina se as seguintes sucessões convergem ou divergem.
 - $a) \left\{ \frac{3ni+2}{n+ni} \right\}.$
 - $b) \left\{ \frac{(ni+2)^2}{n^2i} \right\}.$
 - $c) \left\{ \frac{n+i^n}{\sqrt{n}} \right\}.$
- 1.3. Determina se a sucessão $\left\{\frac{4n+3ni}{2n+i}\right\}$ converge a um número complexo L calculando $\lim_{n\to\infty} \operatorname{Re}(z_n)$ e $\lim_{n\to\infty} \operatorname{Im}(z_n)$.
- 1.4. Usa a sucessão de somas parciais para demonstrar que a série

$$\sum_{k=1}^{\infty} \left(\frac{1}{k+2i} - \frac{1}{k+1+2i} \right)$$

é convergente.

1.5. Determina se as seguintes séries geométricas são convergentes ou divergentes. Se forem convergentes, soma-as.

a)
$$\sum_{k=0}^{\infty} (1-i)^k$$
.

$$b) \sum_{k=1}^{\infty} \left(\frac{i}{2}\right)^k.$$

$$c) \sum_{k=0}^{\infty} 3\left(\frac{2}{1+2i}\right)^k.$$

1.6. Encontra o círculo e o raio de convergência das seguintes séries de potências.

a)
$$\sum_{k=0}^{\infty} \frac{1}{(1-2i)^{k+1}} (z-2i)^k$$
. c) $\sum_{k=0}^{\infty} (1+3i)^k (z-i)^k$.

c)
$$\sum_{k=0}^{\infty} (1+3i)^k (z-i)^k$$
.

b)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k2^k} (z-1-i)^k$$
. d) $\sum_{k=0}^{\infty} \frac{(z-4-3i)^k}{5^{2k}}$.

$$d) \sum_{k=0}^{\infty} \frac{(z-4-3i)^k}{5^{2k}}$$

Séries de Taylor e de Laurent

2.1. Expande as seguintes funções numa série de Maclaurin e calcula o raio de convergência de cada série.

$$a) \ f(z) = \frac{z}{1+z}.$$

$$b) f(z) = \frac{1}{(1+2z)^2}.$$

c)
$$f(z) = e^{-2z}$$
.

- 2.2. Expande a função $f(z) = \frac{1}{z}$ numa série de Taylor centrada no ponto $z_0 = 1$ e determina o seu ra \tilde{i} o de convergência.
- 2.3. Sem realizares a sua expansão, determina o raio de convergência da série de Taylor da função

2

$$f(z) = \frac{4+5z}{1+z^2},$$

centrada em $z_0 = 2 + 5i$.

2.4. Expande as seguinte funções numa série de Laurent válida para cada um dos domínios anulares indicados.

a)
$$f(z) = \frac{\cos z}{z}$$
; $0 < |z|$.

b)
$$f(z) = e^{\frac{-1}{z^2}}$$
; $0 < |z|$.

c)
$$f(z) = \frac{e^z}{z-1}$$
; $0 < |z-1|$.

Zeros e polos

- 3.1. Demonstra que $z_0=0$ é uma singularidade removível da função f(z)=0 $\frac{e^{2z}-1}{z}$ e indica o valor de f(0) de modo que f seja analítica em z=0.
- 3.2. Determina os zeros e a sua ordem para as seguintes funções.

a)
$$f(z) = (z + 2 - i)^2$$
.

b)
$$f(z) = z^4 + z^2$$
.

c)
$$f(z) = e^{2z} - e^z$$
.

3.3. Usa uma série de Maclaurin ou de Taylor para determinar a ordem dos zeros das seguintes funções.

a)
$$f(z) = z(1 - \cos z^2)$$
; $z_0 = 0$.

b)
$$f(z) = 1 - e^{z-1}$$
; $z_0 = 1$.

3.4. Determina a ordem dos polos das seguintes funções.

a)
$$f(z) = \frac{3z-1}{z^2+2z+5}$$
.

$$d) f(z) = \frac{1 - \cosh z}{z^4}.$$

a)
$$f(z) = \frac{3z - 1}{z^2 + 2z + 5}$$
.
b) $f(z) = \frac{1 + 4i}{(z + 2)(z + i)^4}$.
d) $f(z) = \frac{1 - \cosh z}{z^4}$.
e) $f(z) = \frac{1}{1 - e^z}$.

$$f(z) = \frac{1}{1 - e^z}$$

c)
$$f(z) = \cot z$$
.

4 Resíduos e teorema dos resíduos

4.1. Usa a série de Laurent para calcular os resíduos indicados.

a)
$$f(z) = \frac{2}{(z-1)(z+4)}$$
; Res $(f(z), 1)$.

b)
$$f(z) = \frac{4z-6}{z(2-z)}$$
; Res $(f(z), 0)$.

c)
$$f(z) = e^{-2/z^2}$$
; Res $(f(z), 0)$.

4.2. Usa as fórmulas dos resíduos para calculá-los nos polos das seguintes funções.

a)
$$f(z) = \frac{z}{z^2 + 16}$$
.

c)
$$f(z) = \frac{5z^2 - 4z + 3}{(z+1)(z+2)(z+3)}$$
.

$$b) \ f(z) = \frac{1}{z^4 + z^3 - 2z^2}.$$

d)
$$f(z) = \frac{\cos z}{z^2 (z - \pi)^3}$$
.

4.3. Usa o teorema dos resíduos de Cauchy para avaliar as seguintes integrais ao longo dos caminhos indicados.

a)
$$\oint_C \frac{1}{(z-1)(z+2)^2} dz$$
; A) $|z| = \frac{1}{2}$, B) $|z| = \frac{3}{2}$, C) $|z| = 3$.

b)
$$\oint_C z^3 e^{-1/z^2} dz$$
; A) $|z| = 5$, B) $|z + i| = 2$, C) $|z - 3| = 1$.

4.4. Usa o teorema dos resíduos de Cauchy para avaliar as seguintes integrais ao longo dos caminhos indicados.

a)
$$\oint_C \frac{1}{z^2 + 4z + 13} dz$$
; $|z - 3i| = 3$.

b)
$$\oint_C \frac{z}{z^4 - 1} dz; |z| = 2.$$

c)
$$\oint_C \frac{ze^z}{z^2 - 1} dz$$
; $|z| = 2$.

d)
$$\oint_C \cot \pi z \, dz$$
; C é o retângulo definido por $x=\frac{1}{2},\, x=\pi,\, y=-1,\, y=1.$

Cálculo de integrais reais

5.1. Avalia as seguintes integrais trigonométricas.

a)
$$\int_0^{2\pi} \frac{1}{1 + \frac{1}{2} \operatorname{sen} \theta} d\theta.$$

$$\int_0^{2\pi} \frac{\sin^2 \theta}{5 + 4\cos \theta} d\theta.$$

b)
$$\int_0^{2\pi} \frac{\cos \theta}{3 + \sin \theta} d\theta.$$

d)
$$\int_{0}^{2\pi} \frac{\cos 2\theta}{5 - 4\cos \theta} d\theta.$$

5.2. Avalia o valor principal de Cauchy das seguintes integrais impróprias.

$$a) \int_{-\infty}^{\infty} \frac{1}{x^2 - 2x + 2} dx.$$

$$e) \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} dx.$$

$$b) \int_{-\infty}^{\infty} \frac{1}{(x^2+4)^2} dx.$$

$$f) \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 1} dx.$$

c)
$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^3} dx$$
.

$$\int_0^\infty \frac{\cos 3x}{(x^2+1)^2} dx$$

d)
$$\int_{-\infty}^{\infty} \frac{2x^2 - 1}{x^4 + 5x^2 + 4} dx$$
.

h)
$$\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+1)(x^2+9)} dx$$
.

Usa um caminho indentado e os resíduos para demonstrares o seguinte resultado.

V.P.
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \pi.$$

Soluções

1.1 a)
$$5i, -5, -5i, 5, 5i$$
.

b)
$$0, 2, 0, 2, 0$$
.

1.2 a)
$$\frac{3}{2} + \frac{3}{2}i$$
.

c)
$$\infty$$
.

1.3
$$L = 2 + \frac{3}{2}i$$
.

1.4
$$L = \frac{1}{5} - \frac{2}{5}i$$
.

b) Convergente:
$$-\frac{1}{5} + \frac{2}{5}i$$
.

c) Convergente:
$$\frac{9}{5} - \frac{12}{5}i$$
.

1.6 a)
$$|z - 2i| = \sqrt{5}$$
; $R = \sqrt{5}$.

b)
$$|z - 1 - i| = 2$$
; $R = 2$.

c)
$$|z - i| = \frac{1}{\sqrt{10}}$$
; $R = \frac{1}{\sqrt{10}}$.

c)
$$|z - 4 - 3i| = 25$$
; $R = 25$.

2.1 a)
$$\sum_{k=1}^{\infty} (-1)^{k+1} z^k$$
; $R = 1$.

b)
$$\sum_{k=1}^{\infty} (-1)^{k-1} k(2z)^{k-1}$$
; $R = \frac{1}{2}$.

c)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} (2z)^k$$
; $R = \infty$.

2.2
$$\sum_{k=0}^{\infty} (-1)^k (z-1)^k$$
; $R=1$.

2.3
$$R = 2\sqrt{5}$$
.

2.4 a)
$$\frac{1}{z} - \frac{z}{2!} + \frac{z^3}{4!} - \dots$$

b)
$$1 - \frac{1}{z^2} + \frac{1}{2} \frac{1}{z^4} - \frac{1}{6} \frac{1}{z^6} + \dots$$

c)
$$\frac{e}{z-1} + e + \frac{e(z-1)}{2} + \frac{e(z-1)^2}{6} + \dots$$

3.1
$$a_{-k} = 0 \Rightarrow \text{singul. removivel. } f(z) = z + 2z + \frac{4}{3}z^2 + \dots \Rightarrow f(0) = 0.$$

3.2 a)
$$z_0 = -2 + i$$
 (segunda ordem).

b)
$$z_0 = i$$
 e $z_0 = -i$ (primeira ordem). $z_0 = 0$ (segunda ordem).

c)
$$z_0 = 2n\pi i, n \in \mathbb{Z}$$
 (primeira ordem).

3.3 a)
$$z_0 = 0$$
 (quinta ordem).

b)
$$z_0 = 0$$
 (primeira ordem).

3.4 a)
$$Z = -1 + 2i$$
 e $z = -1 - 2i$ (polos simples).

b)
$$z = -2$$
 (polo simples) e $z = -i$ (polo de quarta ordem).

c)
$$z = n\pi$$
, $n \in \mathbb{Z}$ (polos simples).

d)
$$z = 0$$
 (polo de segunda ordem).

e)
$$z = 2n\pi i, n \in \mathbb{Z}$$
 (polos simples).

4.1 a) Res
$$(f(z), 1) = \frac{2}{5}$$
.

b)
$$Res(f(z), 0) = -3.$$

c)
$$Res(f(z), 0) = 0$$

4.2 a)
$$\operatorname{Res}(f(z), 4i) = \frac{1}{2}, \operatorname{Res}(f(z), -4i) = \frac{1}{2}$$

b)
$$\operatorname{Res}(f(z), 1) = \frac{1}{3}$$
, $\operatorname{Res}(f(z), -2) = -\frac{1}{12}$, $\operatorname{Res}(f(z), 0) = -\frac{1}{4}$.

c)
$$\operatorname{Res}(f(z), -1) = 6$$
, $\operatorname{Res}(f(z), -2) = -31$, $\operatorname{Res}(f(z), -3) = 30$.

d)
$$\operatorname{Res}(f(z), 0) = -\frac{3}{\pi^4}, \operatorname{Res}(f(z), \pi) = \frac{\pi^2 - 6}{2\pi^4}.$$

4.3 Ver Figura 1.

a) A) 0. B)
$$\frac{2\pi}{9}i$$
. C) 0.

b) A)
$$\pi i$$
. B) πi . C) 0.

- 4.4 Ver Figura 2.
 - a) $\frac{\pi}{3}$.

c) $2\pi i \cosh 1$.

b) 0.

d) 6i.

- 5.1 Ver Figura 3.
 - a) $\frac{4\pi}{\sqrt{3}}$.

c) $\frac{\pi}{4}$.

b) 0.

d) $\frac{\pi}{6}$.

- 5.2 Ver Figura 4.
 - a) π .

e) $\frac{\pi}{e}$

b) $\frac{\pi}{16}$.

f) $\frac{\pi}{e}$.

c) $\frac{3\pi}{8}$.

g) $\frac{\pi}{e^3}$

d) $\frac{\pi}{2}$.

- h) $\frac{\pi}{8} \left(e^{-1} \frac{e^{-3}}{3} \right)$.
- 5.3 Demonstra-se usando o teorema de Cauchy–Goursat sobre o caminho indentado e tomando $R\to\infty$ e $r\to0$ (ver Figura 5).

Figura 1: Exemplo 4.3

Figura 2: Exemplo 4.4

Figura 3: Exemplo 5.1

Figura 4: Exemplo 5.2

Figura 5: Exemplo 5.3