Interior Point Methods

V. Leclère (ENPC)

May 15th, 2020

Contents

- Recalls on convex differentiable optimization problems
- - Interior penalization
 - Duality
 - Interpretation through KKT condition

Interior Point Method

Convex differentiable optimization problem

Equality constrained optimization

We consider the following convex optimization problem

$$(\mathcal{P}) \quad \min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $Ax = b$

$$g_i(x) \le 0 \qquad \forall i \in [1, n_l]$$

where A is a $n_E \times n$ matrix, and all functions f and g_i are assumed convex, real valued and twice differentiable.

V. Leclère Interior Point Methods May 15th, 2020 2 / 34

Introducing the Lagrangian

$$(\mathcal{P}) \quad \min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $Ax = b$

$$g_i(x) \le 0 \qquad \forall i \in [1, n_I]$$

Barrier methods

is equivalent to

$$\min_{x \in \mathbb{R}^n} f(x) + \mathbb{I}_{\{0\}}(Ax - b) + \sum_{i=1}^{n_l} \mathbb{I}_{\mathbb{R}^-}(h_i(x))$$

which we rewrite

$$\min_{x \in \mathbb{R}^n} \quad f(x) + \sup_{\lambda \in \mathbb{R}^{n_E}} \lambda^{\top} (Ax - b) + \sum_{i=1}^{n_I} \sup_{\mu_i \geq 0} \mu_i h_i(x)$$

V. Leclère Interior Point Methods May 15th, 2020 3 / 34

Introducing the Lagrangian

$$(\mathcal{P}) \quad \min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $Ax = b$

$$g_i(x) \le 0 \qquad \forall i \in [1, n_I]$$

Barrier methods

is equivalent to

$$\min_{x\in\mathbb{R}^n} \quad f(x) + \mathbb{I}_{\{0\}}(Ax - b) + \sum_{i=1}^{n_l} \mathbb{I}_{\mathbb{R}^-}(h_i(x))$$

which we rewrite

$$\min_{\mathbf{x} \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^{n_E}, \mu \in \mathbb{R}^{n_I}_+} f(\mathbf{x}) + \lambda^\top (A\mathbf{x} - b) + \sum_{i=1}^{n_I} \mu_i h_i(\mathbf{x})$$

V. Leclère Interior Point Methods May 15th, 2020 3 / 34 Recalls

00000000

4 / 34

Introducing the Lagrangian

$$(\mathcal{P}) \quad \min_{x \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^{n_{\mathcal{E}}}, \mu \in \mathbb{R}^{n_I}_+} \quad \underbrace{f(x) + \lambda^\top (Ax - b) + \sum_{i=1}^{n_I} \mu_i h_i(x)}_{:=\mathcal{L}(x; \lambda, \mu)}$$

Barrier methods

$$(\mathcal{D}) \quad \sup_{\lambda \in \mathbb{R}^{n_{\mathcal{E}}}, \mu \in \mathbb{R}^{n_{\mathcal{I}}}_{+}} \min_{x \in \mathbb{R}^{n}} \quad f(x) + \lambda^{\top} (Ax - b) + \sum_{i=1}^{n_{\mathcal{I}}} \mu_{i} h_{i}(x)$$

$$\sup_{y} \inf_{x} \phi(x, y) \le \inf_{x} \sup_{y} \phi(x, y)$$

$$val(\mathcal{D}) \leq val(\mathcal{P})$$

V. Leclère Interior Point Methods May 15th, 2020

$$(\mathcal{P}) \quad \min_{x \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^{n_E}, \mu \in \mathbb{R}^{n_I}_+} \quad \underbrace{f(x) + \lambda^\top (Ax - b) + \sum_{i=1}^{n_I} \mu_i h_i(x)}_{:=\mathcal{L}(x; \lambda, \mu)}$$

Barrier methods

$$(\mathcal{D}) \quad \sup_{\lambda \in \mathbb{R}^{n_{\mathcal{E}}}, \mu \in \mathbb{R}^{n_{\mathcal{I}}}_{+}} \min_{x \in \mathbb{R}^{n}} \quad f(x) + \lambda^{\top} (Ax - b) + \sum_{i=1}^{n_{\mathcal{I}}} \mu_{i} h_{i}(x)$$

As for any function ϕ we always have

$$\sup_{y}\inf_{x}\phi(x,y)\leq\inf_{x}\sup_{y}\phi(x,y)$$

we have that (weak duality)

$$val(\mathcal{D}) \leq val(\mathcal{P}).$$

V. Leclère Interior Point Methods May 15th, 2020

Lower bounds from duality

Define the dual function

$$d(\lambda,\mu) := \inf_{x} \mathcal{L}(x;\lambda,\mu)$$

Then we have $val(\mathcal{D}) = \sup_{\lambda \in \mathbb{R}^{n_E}, \mu \in \mathbb{R}^{n_I}_+} d(\lambda, \mu)$.

Thus, we can compute a lower bound to $val(\mathcal{D}) \leq val(\mathcal{D})$ by choosing an any admissible dual points $\lambda \in \mathbb{R}^{n_E}$, $\mu \in \mathbb{R}^{n_I}_+$ and solving the unconstrained problem

$$d(\lambda,\mu) = \inf_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \lambda^{\top} (A\mathbf{x} - b) + \sum_{i=1}^{n_I} \mu_i h_i(\mathbf{x})$$

V. Leclère Interior Point Methods May 15th, 2020 5 / 34

Lower bounds from duality

Equality constrained optimization

Define the dual function

$$d(\lambda,\mu) := \inf_{\mathsf{x}} \mathcal{L}(\mathsf{x};\lambda,\mu)$$

Then we have $val(\mathcal{D}) = \sup_{\lambda \in \mathbb{R}^{n_E}, \mu \in \mathbb{R}^{n_I}} d(\lambda, \mu)$.

Thus, we can compute a lower bound to $val(\mathcal{D}) \leq val(\mathcal{P})$ by choosing an any admissible dual points $\lambda \in \mathbb{R}^{n_E}, \mu \in \mathbb{R}^{n_I}_+$ and solving the unconstrained problem

$$d(\lambda,\mu) = \inf_{x \in \mathbb{R}^n} f(x) + \lambda^{\top} (Ax - b) + \sum_{i=1}^{n_l} \mu_i h_i(x)$$

V. Leclère Interior Point Methods May 15th, 2020 5 / 34

Interior Point Method

Constraint qualification

Recall that, for a convex differentiable optimization problem, the constraints are qualified if *Slater's condition* is satisfied: there exists a strictly admissible feasable point

$$\exists x_0 \in \mathbb{R}^n$$
, $Ax_0 = b$, $\forall i \in [1, n_i], g_i(x_0) < 0$

V. Leclère Interior Point Methods May 15th, 2020 6 / 34

Saddle point

If (\mathcal{P}) is a convex optimization problem with qualified constraints, then

- $val(\mathcal{D}) = val(\mathcal{P})$
- any optimal solution x[‡] of (\mathcal{P}) is part of a saddle point $(x^{\sharp}; \lambda^{\sharp}, \mu^{\sharp})$ of \mathcal{L}
- $(\lambda^{\sharp}, \mu^{\sharp})$ is an optimal solution of (\mathcal{D})

Karush Kuhn Tucker conditions

If Slater's condition is satisfied, then x^{\sharp} is an optimal solution to (P) if and only if there exists optimal multipliers $\lambda^{\sharp} \in \mathbb{R}^{n_{E}}$ and $\mu^{\sharp} \in \mathbb{R}^{n_{I}}$ satisfying

$$\begin{cases} \nabla f(x^{\sharp}) + A^{\top} \lambda^{\sharp} + \sum_{i=1}^{n_{I}} \mu_{i}^{\sharp} \nabla g_{i}(x^{\sharp}) = 0 & \text{first order condition} \\ Ax^{\sharp} = b & \text{primal admissibility} \\ g(x^{\sharp}) \leq 0 & \text{dual admissibility} \\ \mu \geq 0 & \text{dual admissibility} \\ \mu_{i}g_{i}(x^{\sharp}) = 0, \quad \forall i \in \llbracket 1, n_{I} \rrbracket & \text{complementarity} \end{cases}$$

The three last conditions are sometimes compactly written

$$0 \ge g(x^{\sharp}) \perp \mu \ge 0$$

V. Leclère Interior Point Methods May 15th, 2020 8 / 34

Karush Kuhn Tucker conditions

If Slater's condition is satisfied, then x^{\sharp} is an optimal solution to (P) if and only if there exists optimal multipliers $\lambda^{\sharp} \in \mathbb{R}^{n_E}$ and $\mu^{\sharp} \in \mathbb{R}^{n_l}$ satisfying

$$\begin{cases} \nabla f(x^{\sharp}) + A^{\top} \lambda^{\sharp} + \sum_{i=1}^{n_{I}} \mu_{i}^{\sharp} \nabla g_{i}(x^{\sharp}) = 0 & \text{first order condition} \\ Ax^{\sharp} = b & \text{primal admissibility} \\ g(x^{\sharp}) \leq 0 & \text{dual admissibility} \\ \mu \geq 0 & \text{dual admissibility} \\ \mu_{i}g_{i}(x^{\sharp}) = 0, \quad \forall i \in \llbracket 1, n_{I} \rrbracket & \text{complementarity} \end{cases}$$

The three last conditions are sometimes compactly written

$$0 > g(x^{\sharp}) \perp \mu > 0$$

V. Leclère Interior Point Methods May 15th, 2020 8 / 34

Contents

- 1 Recalls on convex differentiable optimization problems
- 2 Equality constrained optimization
- Barrier methods
 - Interior penalization
 - Duality
 - Interpretation through KKT condition
- 4 Interior Point Method
- 5 Application to linear problem

Intuition for Newton's method: unconstrained case

Newton's method is an iterative optimization method that minimizes a quadratic approximation of the objective function at the current point x_k .

Consider the following unconstrained optimization problem:

$$\min_{x\in\mathbb{R}^n}f(x)$$

At x_k we have

$$f(x_k + d) = f(x_k) + \nabla f(x_k)^{\top} d + \frac{1}{2} d^{\top} \nabla^2 f(x_k) d + o(\|d\|^2)$$

And the direction d^k minimizing the quadratic approximation is given by

$$\nabla f(x_k) + \nabla^2 f(x_k) d_k = 0.$$

V. Leclère Interior Point Methods May 15th, 2020

Equality constrained optimization

Approximate the linearly constrained optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $Ax = b$

by

$$\min_{d \in \mathbb{R}^n} f(x_k) + \nabla f(x_k)^\top d + \frac{1}{2} d^\top \nabla^2 f(x_k) d$$
s.t. $A(x_k + d) = b$

Which is equivalent to solving (for admissible x_k)

$$\min_{d \in \mathbb{R}^n} \quad \nabla f(x_k)^\top d + \frac{1}{2} d^\top \nabla^2 f(x_k) d$$
s.t. $Ad = 0$

V. Leclère Interior Point Methods May 15th, 2020

Finding Newton's direction

$$\min_{d \in \mathbb{R}^n} \quad \nabla f(x_k)^\top d + \frac{1}{2} d^\top \nabla^2 f(x_k) d$$
s.t. $Ad = 0$

By KKT the optimal d_k is given by

$$\begin{cases} \nabla f(x_k) + \nabla^2 f(x_k) d_k + A^{\top} \lambda = 0 \\ A d_k = 0 \end{cases}$$

Or in a matricial form

$$\begin{pmatrix} \nabla^2 f(x_k) & A^\top \\ A & 0 \end{pmatrix} \begin{pmatrix} d_k \\ \lambda \end{pmatrix} = \begin{pmatrix} -\nabla f(x_k) \\ 0 \end{pmatrix}$$

V. Leclère Interior Point Methods May 15th, 2020 11/34

$$\min_{d \in \mathbb{R}^n} \quad \nabla f(x_k)^\top d + \frac{1}{2} d^\top \nabla^2 f(x_k) d$$
s.t. $Ad = 0$

By KKT the optimal d_k is given by

$$\begin{cases} \nabla f(x_k) + \nabla^2 f(x_k) d_k + A^{\top} \lambda = 0 \\ A d_k = 0 \end{cases}$$

Or in a matricial form

$$\begin{pmatrix} \nabla^2 f(x_k) & A^\top \\ A & 0 \end{pmatrix} \begin{pmatrix} d_k \\ \lambda \end{pmatrix} = \begin{pmatrix} -\nabla f(x_k) \\ 0 \end{pmatrix}$$

V. Leclère Interior Point Methods May 15th, 2020

Newton's algorithm: linearly constrained case

```
Data: Initial admissible point x_0
Result: quasi-optimal point
k = 0:
while |\nabla f(x_k)| \geq \varepsilon do
    Solve for d
```

$$\begin{pmatrix} \nabla^2 f(x_k) & A^\top \\ A & 0 \end{pmatrix} \begin{pmatrix} d \\ \lambda \end{pmatrix} = \begin{pmatrix} -\nabla f(x_k) \\ 0 \end{pmatrix}$$

Line-search for
$$\alpha \in [0,1]$$
 on $f(x_k + \alpha d)$
 $x_{k+1} = x_k + \alpha d$
 $k = k+1$

Algorithm 1: Newton's algorithm

V. Leclère Interior Point Methods May 15th, 2020 12 / 34

Contents

- 1 Recalls on convex differentiable optimization problems
- Equality constrained optimization
- Barrier methods
 - Interior penalization
 - Duality
 - Interpretation through KKT condition
- 4 Interior Point Method
- 5 Application to linear problem

Interior Point Method

Video explanation

A short video introduction to the content of this and the next section. https://www.youtube.com/watch?v=MsgpSl5JRbI

Constrained optimization problem

We now want to consider a convex differentiable optimization problem with equality and inequality constraints.

$$(\mathcal{P}_{\infty}) \qquad \min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $Ax = b$

$$g_i(x) \le 0 \qquad \forall i \in [1, n_i]$$

where all functions f and g_i are assumed convex, finite valued and twice differentiable.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \sum_{i=1}^{n_l} \mathbb{I}_{\mathbb{R}^-}(g_i(\mathbf{x}))$$

V. Leclère Interior Point Methods May 15th, 2020 14 / 34

Constrained optimization problem

We now want to consider a convex differentiable optimization problem with equality and inequality constraints.

$$(\mathcal{P}_{\infty}) \qquad \min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $Ax = b$

$$g_i(x) \le 0 \qquad \forall i \in [1, n_l]$$

where all functions f and g_i are assumed convex, finite valued and twice differentiable.

Which we rewrite

$$\min_{x \in \mathbb{R}^n} f(x) + \sum_{i=1}^{n_l} \mathbb{I}_{\mathbb{R}^-}(g_i(x))$$
s.t. $Ax = b$

V. Leclère Interior Point Methods May 15th, 2020

The negative log function

- The idea of barrier method is to replace the indicator function I_R- by a smooth function.
- We choose the function $z \mapsto -1/t \log(-z)$
- Note that they also take value $+\infty$ on \mathbb{R}^+

Illustration of barrier functions

Calculus

We define

$$\phi: x \mapsto -\sum_{i=1}^{n_l} \ln(-g_i(x))$$

- Thus we have $t\phi(x) \to \mathbb{I}_{\{g_i(x) < 0, \forall i \in [n_l]\}}$
- We have

$$\nabla \phi(x) =$$

$$\nabla^2 \phi(x) =$$

Calculus

We define

$$\phi: x \mapsto -\sum_{i=1}^{n_l} \ln(-g_i(x))$$

- Thus we have $t\phi(x) \to \mathbb{I}_{\{g_i(x) < 0, \forall i \in [n_l]\}}$
- We have

$$\nabla \phi(x) = \sum_{i=1}^{n_l} -\frac{1}{g_i(x)} \nabla g_i(x)$$

$$\nabla^2 \phi(x) =$$

V. Leclère

Calculus

We define

$$\phi: x \mapsto -\sum_{i=1}^{n_l} \ln(-g_i(x))$$

- Thus we have $t\phi(x) \to \mathbb{I}_{\{g_i(x) < 0, \forall i \in [n_l]\}}$
- We have

$$\nabla \phi(x) = \sum_{i=1}^{n_l} -\frac{1}{g_i(x)} \nabla g_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{n_l} \left[\frac{1}{g_i^2(x)} \nabla g_i(x) \nabla g_i(x)^\top - \frac{1}{g_i(x)} \nabla^2 g_i(x) \right]$$

V. Leclère Interior Point Methods May 15th, 2020

Penalized problem

We consider

$$(\mathcal{P}_{\infty}) \quad \min_{x \in \mathbb{R}^n} f(x)$$

s.t. $Ax = b$

with optimal solution x_t .

Penalized problem

We consider

$$(\mathcal{P}_t) \quad \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + t\phi(\mathbf{x})$$

s.t. $A\mathbf{x} = b$

with optimal solution x_t .

Penalized problem

We consider

$$(\mathcal{P}_t) \quad \min_{x \in \mathbb{R}^n} tf(x) + \phi(x)$$

s.t. $Ax = b$

with optimal solution x_t . Letting t goes to $+\infty$ get to solution of (\mathcal{P}) along the central path.

Penalized problem

We consider

$$(\mathcal{P}_t) \quad \min_{x \in \mathbb{R}^n} tf(x) + \phi(x)$$

s.t. $Ax = b$

with optimal solution x_t . Letting t goes to $+\infty$ get to solution of (\mathcal{P}) along the central path.

Characterizing central path

xt is solution of

$$(\mathcal{P}_t) \quad \min_{x \in \mathbb{R}^n} tf(x) + \phi(x)$$

s.t. $Ax = b$

if and only if, there exists $\lambda_t \in \mathbb{R}^{n_E}$, such that

V. Leclère Interior Point Methods May 15th, 2020 18 / 34

Characterizing central path

xt is solution of

$$(\mathcal{P}_t) \quad \min_{\mathbf{x} \in \mathbb{R}^n} tf(\mathbf{x}) + \phi(\mathbf{x})$$

s.t. $A\mathbf{x} = b$

if and only if, there exists $\lambda_t \in \mathbb{R}^{n_E}$, such that

$$\begin{cases} Ax_t = b \\ g_i(x_t) < 0 \\ t\nabla f(x_t) + \nabla \phi(x_t) + A^{\top} \lambda = 0 \end{cases} \forall i \in [n_I]$$

V. Leclère Interior Point Methods May 15th, 2020 18 / 34

$$\begin{cases} Ax_t = b \\ g(x_t) < 0 \\ t\nabla f(x_t) + \nabla \phi(x_t) + A^{\top} \lambda = 0 \end{cases}$$

If A = 0 it means that $\nabla f(x_t)$ is orthogonal to the level lines of ϕ

V. Leclère Interior Point Methods May 15th, 2020 19 / 34

Duality

Recall the original optimization problem

$$(\mathcal{P}_{\infty}) \qquad \min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $Ax = b$

$$g_i(x) \le 0 \qquad \forall i \in [1, n_I]$$

with Lagrangian

$$\mathcal{L}(x; \lambda, \mu) := f(x) + \lambda^{\top} (Ax - b) + \sum_{i=1}^{m} \mu_i g_i(x)$$

and dual function

$$d(\lambda,\mu):=\inf_{x\in\mathbb{R}^n}\mathcal{L}(x;\lambda,\mu).$$

For any admissible dual point $(\lambda, \mu) \in \mathbb{R}^{n_E} \times \mathbb{R}^{n_I}_+$, we have

$$d(\lambda,\mu) \leq val(\mathcal{P}_{\infty})$$

V. Leclère Interior Point Methods May 15th, 2020

Duality

Recall the original optimization problem

$$(\mathcal{P}_{\infty})$$
 $\min_{x \in \mathbb{R}^n} f(x)$
s.t. $Ax = b$
 $g_i(x) \le 0$ $\forall i \in [1, n_I]$

with Lagrangian

$$\mathcal{L}(x; \lambda, \mu) := f(x) + \lambda^{\top} (Ax - b) + \sum_{i=1}^{m} \mu_i g_i(x)$$

and dual function

$$d(\lambda,\mu):=\inf_{x\in\mathbb{R}^n}\mathcal{L}(x;\lambda,\mu).$$

For any admissible dual point $(\lambda, \mu) \in \mathbb{R}^{n_E} \times \mathbb{R}^{n_I}_+$, we have

$$d(\lambda, \mu) < val(\mathcal{P}_{\infty})$$

V. Leclère Interior Point Methods May 15th, 2020

Getting a lower bound

For given admissible dual point $(\lambda, \mu) \in \mathbb{R}^{n_E} \times \mathbb{R}^{n_I}_+$, a point $x^{\sharp}(\lambda, \mu)$ minimizing $\mathcal{L}(\cdot, \lambda, \mu)$, is characterized by first order conditions

$$\nabla f(x^{\sharp}(\lambda,\mu)) + A^{\top}\lambda + \sum_{i=1}^{n_I} \mu_I \nabla g_i(x^{\sharp}(\lambda,\mu)) = 0$$

which gives

$$d(\lambda,\mu) = \mathcal{L}(x^{\sharp}(\lambda,\mu);\lambda,\mu) \leq val(\mathcal{P}_{\infty})$$

Dual point on the central path

Now recall that x_t , solution of (\mathcal{P}_t) , is characterized by

$$\begin{cases} Ax_t = b, g(x_t) < 0 \\ t\nabla f(x_t) + \nabla \phi(x_t) + A^{\top} \lambda = 0 \end{cases}$$

And we have seen that

$$\nabla \phi(x) = \sum_{i=1}^{n_l} \frac{1}{-g_i(x)} g_i(x)$$

Thus,

$$abla f(x_t) + A^{ op} \lambda/t + \sum_{i=1}^{n_l} \underbrace{\frac{1}{-tg_i(x)}}_{(\mu_t)_i}
abla g_i(x) = 0$$

which means that $x_t = x^{\sharp}(\lambda/t, \mu_t)$.

Bounding the error

Let x_t be a primal point on the central path satisfying

$$t\nabla f(x_t) + \nabla \phi(x_t) + A^{\top} \lambda_t = 0$$

We define a dual point $(\mu_t)_i = \frac{1}{-tg_i(x_t)} > 0$. We have

$$d(\mu_t, \lambda_t/t) = \mathcal{L}(x_t, \mu_t, \lambda_t/t)$$

$$= f(x_t) + \frac{1}{t} \lambda_t^{\top} \underbrace{(Ax_t - b)}_{=0} + \sum_{i=1}^{n_l} \frac{1}{-tg_i(x_t)} g_i(x_t)$$

$$= f(x_t) - \frac{n_l}{t} \le val(\mathcal{P}_{\infty})$$

V. Leclère Interior Point Methods May 15th, 2020

Bounding the error

Let x_t be a primal point on the central path satisfying

$$t\nabla f(\mathbf{x}_t) + \nabla \phi(\mathbf{x}_t) + A^{\top} \lambda_t = 0$$

We define a dual point $(\mu_t)_i = \frac{1}{-tg_i(x_t)} > 0$. We have

$$d(\mu_t, \lambda_t/t) = \mathcal{L}(x_t, \mu_t, \lambda_t/t)$$

$$= f(x_t) + \frac{1}{t} \lambda_t^{\top} \underbrace{(Ax_t - b)}_{=0} + \sum_{i=1}^{n_l} \frac{1}{-tg_i(x_t)} g_i(x_t)$$

$$= f(x_t) - \frac{n_l}{t} \le val(\mathcal{P}_{\infty})$$

And in particular x_t is an n_I/t -optimal solution of (\mathcal{P}_{∞}) .

V. Leclère Interior Point Methods May 15th, 2020

Interior Point Method

Interpretation through KKT condition

A point x_t is on the central path iff it is admissible and there exists λ such that

$$\nabla f(x_t) + A^{\top} \lambda + \sum_{i=1}^{n_l} \underbrace{\frac{1}{-tg_i(x)}}_{(\mu_t)_i} \nabla g_i(x) = 0$$

which can be rewritten

$$\begin{cases} \nabla f(x) + A^{\top} \lambda + \sum_{i=1}^{n_i} \mu_i \nabla g_i(x) = 0 \\ Ax = b, g_i(x) \le 0 \\ \mu \ge 0 \\ -\mu_i g_i(x) = \frac{1}{t} \end{cases}$$

V. Leclère Interior Point Methods May 15th, 2020 24 / 34

Contents

- Recalls on convex differentiable optimization problems
- 2 Equality constrained optimization
- Barrier methods
 - Interior penalization
 - Duality
 - Interpretation through KKT condition
- 4 Interior Point Method
- 5 Application to linear problem

Taking a step back

- We saw that we can extend Newton's method to solve linearly constrained optimization problem.
- We saw that we can approximate inequality constraints through the use of logarithmic barrier $-1/t \sum_i \ln(-g_i(x))$.
- We proved that x_t is an n_I/t -optimal solution.
- The trade-off with t is : larger t means x_t closer to optimal solution x_{∞} but the approximate problem (\mathcal{P}_t) have worse conditionning.

Barrier method

```
Data: increase \rho > 1,
         error \varepsilon > 0, initial
Result: \varepsilon-optimal point
solve (\mathcal{P}_t) and set x = x_t;
while n_I/t \geq \varepsilon do
     increase t: t = \rho t
     centering step: solve
     (\mathcal{P}_t) starting at x;
     update : x = x_t
```


Barrier methods

Barrier method

```
Data: increase \rho > 1,
         error \varepsilon > 0, initial
Result: \varepsilon-optimal point
solve (\mathcal{P}_t) and set x = x_t;
while n_I/t \geq \varepsilon do
     increase t: t = \rho t
     centering step: solve
     (\mathcal{P}_t) starting at x;
     update : x = x_t
```

Question: why solve (\mathcal{P}_t) to optimality?

Solving (\mathcal{P}_t) with Newton's method

$$(\mathcal{P}_t) \quad \min_{\mathbf{x} \in \mathbb{R}^n} \quad tf(\mathbf{x}) + \phi(\mathbf{x})$$
s.t. $A\mathbf{x} = b$

is a linearly constrained optimization problem that can be solved by Newton's method.

More precisely we have $x_{k+1} = x_k + d_k$ with d_k a solution of

$$\begin{pmatrix} t\nabla^2 f(x_k) + \nabla^2 \phi(x_k) & A^\top \\ A & 0 \end{pmatrix} \begin{pmatrix} d_k \\ \lambda \end{pmatrix} = \begin{pmatrix} -t\nabla f(x_k) - \nabla \phi(x_k) \\ 0 \end{pmatrix}$$

V. Leclère Interior Point Methods May 15th, 2020 27 / 34

```
Data: increase \rho > 1, error \varepsilon > 0, initial t_0
initial strictly feasible point x<sub>0</sub>
k=0
for k \in \mathbb{N} do
                                                                                         // Outer step
      y_0 = x_k
      for \kappa \in [K] do
                                                                                         // Inner step
             solve for d:
                                                                  // Newton step for (\mathcal{P}_t)
                \begin{pmatrix} t_k \nabla^2 f(y_\kappa) + \nabla^2 \phi(y_\kappa) & A^\top \\ A & 0 \end{pmatrix} \begin{pmatrix} d \\ \lambda \end{pmatrix} = \begin{pmatrix} -t_k \nabla f(y_\kappa) - \nabla \phi(x_\kappa) \\ 0 \end{pmatrix}
              y_{\kappa+1} = y_{\kappa} + d
       t_{k+1} = \rho t_k
```

Algorithm 2: Path following algorithm

V. Leclère Interior Point Methods May 15th, 2020 28 / 34

V. Leclère Interior Point Methods May 15th, 2020 29 / 34

Video explanation

A longer presentation to watch at a later time https://www.youtube.com/watch?v=zm4mfr-QT1E

Contents

- - Interior penalization
 - Duality
 - Interpretation through KKT condition
- 6 Application to linear problem

Recalls

A linear problem - inequality form

We consider the following LP

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad c^{\top} \mathbf{x} \\
\text{s.t.} \quad \mathbf{a}_i^{\top} \mathbf{x} \le b_i \qquad \forall i \in [n_I]$$

Where $\mathbf{a}_{i}^{\top} = A[:, i]$ is the row of matrix A, such that the constraints can be written $Ax \leq b$. Thus, x_t is the solution of

V. Leclère Interior Point Methods May 15th, 2020 31 / 34

A linear problem - inequality form

We consider the following LP

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} & c^\top \mathbf{x} \\ & \text{s.t.} & a_i^\top \mathbf{x} \le b_i \end{aligned} \qquad \forall i \in [n_I]$$

Where $a_i^{\top} = A[:, i]$ is the row of matrix A, such that the constraints can be written $Ax \leq b$.

Thus, x_t is the solution of

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad tc^{\top} \mathbf{x} + \phi(\mathbf{x})$$

where

$$\phi(x) :=$$

V. Leclère Interior Point Methods May 15th, 2020

A linear problem - inequality form

We consider the following LP

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} & c^\top \mathbf{x} \\ & \text{s.t.} & a_i^\top \mathbf{x} \le b_i \end{aligned} \qquad \forall i \in [n_I]$$

Where $a_i^{\top} = A[:, i]$ is the row of matrix A, such that the constraints can be written $Ax \leq b$.

Thus, x_t is the solution of

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad tc^{\top}\mathbf{x} + \phi(\mathbf{x})$$

where

$$\phi(x) := -\sum_{i=1}^{n_l} \ln(a_i^\top x - b)$$

V. Leclère Interior Point Methods May 15th, 2020

$$\phi(x) = -\sum_{i=1}^{n_l} \ln(a_i^\top x - b)$$

$$\nabla \phi(\mathbf{x}) =$$

$$\nabla^2 \phi(x) =$$

V. Leclère Interior Point Methods May 15th, 2020 32 / 34

$$\phi(x) = -\sum_{i=1}^{n_l} \ln(a_i^\top x - b)$$
$$\nabla \phi(x) = \sum_{i=1}^{n_l} \frac{1}{b_i - a_i^\top x} a_i$$
$$\nabla^2 \phi(x) =$$

$$\phi(x) = -\sum_{i=1}^{n_l} \ln(a_i^\top x - b)$$

$$\nabla \phi(x) = \sum_{i=1}^{n_l} \frac{1}{b_i - a_i^\top x} a_i$$

$$\nabla^2 \phi(x) = \frac{1}{(b_i - a_i^\top x)^2} a_i a_i^\top$$

Calculus

$$\phi(x) = -\sum_{i=1}^{n_l} \ln(a_i^\top x - b)$$

$$\nabla \phi(x) = \sum_{i=1}^{n_l} \frac{1}{b_i - a_i^\top x} a_i$$

$$\nabla^2 \phi(x) = \frac{1}{(b_i - a_i^\top x)^2} a_i a_i^\top$$

This can be written in matrix form, using the vector $d \in \mathbb{R}^{n_l}$ defined by $d_i = \frac{1}{b_i - a_i^\top x}$

$$\nabla \phi(x) = \nabla^2 \phi(x) = \nabla^2 \phi(x) = 0$$

V. Leclère Interior Point Methods May 15th, 2020

$$\phi(x) = -\sum_{i=1}^{n_l} \ln(a_i^\top x - b)$$

$$\nabla \phi(x) = \sum_{i=1}^{n_l} \frac{1}{b_i - a_i^\top x} a_i$$

$$\nabla^2 \phi(x) = \frac{1}{(b_i - a_i^\top x)^2} a_i a_i^\top$$

This can be written in matrix form, using the vector $d \in \mathbb{R}^{n_l}$ defined by $d_i = \frac{1}{b_i - a_i^\top x}$

$$\nabla \phi(x) = A^{\top} d$$
$$\nabla^2 \phi(x) =$$

V. Leclère Interior Point Methods May 15th, 2020 32 / 34

$$\phi(x) = -\sum_{i=1}^{n_l} \ln(a_i^\top x - b)$$

$$\nabla \phi(x) = \sum_{i=1}^{n_l} \frac{1}{b_i - a_i^\top x} a_i$$

$$\nabla^2 \phi(x) = \frac{1}{(b_i - a_i^\top x)^2} a_i a_i^\top$$

This can be written in matrix form, using the vector $d \in \mathbb{R}^{n_l}$ defined by $d_i = \frac{1}{b_i - a_i^T \times}$

$$abla \phi(x) = A^{\top} d$$

$$abla^2 \phi(x) = A^{\top} diag(d)^2 A$$

V. Leclère Interior Point Methods May 15th, 2020 32 / 34

Starting from x, the Newton direction for (\mathcal{P}_t) is

$$dir_t(x) =$$

which, in algebraic form, yields

$$dir_t(x) =$$

with
$$d_i = 1/(b_i - a_i^\top x)$$
.

Starting from x, the Newton direction for (\mathcal{P}_t) is

$$dir_t(x) = -(\nabla^2 \phi(x))^{-1} (tc + \nabla \phi(x))$$

which, in algebraic form, yields

$$dir_t(x) =$$

with
$$d_i = 1/(b_i - a_i^\top x)$$
.

Starting from x, the Newton direction for (\mathcal{P}_t) is

$$dir_t(x) = -(\nabla^2 \phi(x))^{-1} (tc + \nabla \phi(x))$$

which, in algebraic form, yields

$$dir_t(x) = -[A^{\top} diag(d)^2 A]^{-1} (tc + A^{\top} d)$$

with
$$d_i = 1/(b_i - a_i^\top x)$$
.

Starting from x, the Newton direction for (\mathcal{P}_t) is

$$dir_t(x) = -(\nabla^2 \phi(x))^{-1} (tc + \nabla \phi(x))$$

which, in algebraic form, yields

$$dir_t(x) = -[A^{\top} diag(d)^2 A]^{-1} (tc + A^{\top} d)$$

with
$$d_i = 1/(b_i - a_i^\top x)$$
.

Theory tell us to use a step-size of 1 for Newton's method.

V. Leclère Interior Point Methods May 15th, 2020 33 / 34

Starting from x, the Newton direction for (\mathcal{P}_t) is

$$dir_t(x) = -(\nabla^2 \phi(x))^{-1} (tc + \nabla \phi(x))$$

which, in algebraic form, yields

$$dir_t(x) = -[A^{\top} diag(d)^2 A]^{-1} (tc + A^{\top} d)$$

with
$$d_i = 1/(b_i - a_i^\top x)$$
.

Theory tell us to use a step-size of 1 for Newton's method. Practice teach us to use a smaller step-size (or linear-search).

V. Leclère Interior Point Methods May 15th, 2020 33 / 34

```
Data: Initial admissible point x_0, initial penalization t_0 > 0;
parameter: \rho > 1, N_{in} \ge 1, N_{out} \ge 1;
Result: quasi-optimal point
x = x0. t = t_0:
for k = 1..N_{out} do
    for \kappa = 1..N_{in} do
         Compute d, with d_i = 1/(b_i - a_i/x);
         Solve for dir
                         A^{\top} \operatorname{diag}(d)^2 A \operatorname{dir} = -(tc + A^{\top} d)
           update x \leftarrow x + \text{dir};
     update t \leftarrow \rho t
```

Algorithm 3: Interior Point Method for LP

V. Leclère Interior Point Methods May 15th, 2020 34 / 34