Formulas given on IGCSE Physics Exam

A.C. NORMAN ACN.Norman@radley.org.uk

energy transferred = current × voltage × time
$$E = I \times V \times t$$
 pressure × volume = constant
$$p_1 \times V_1 = p_2 \times V_2$$

$$\frac{\text{pressure}}{\text{temperature}} = \text{constant} \qquad \qquad \frac{p_1}{T_1} = \frac{p_2}{T_2}$$
 frequency = $\frac{1}{\text{time period}}$
$$f = \frac{1}{T}$$
 power = $\frac{\text{work done}}{\text{time taken}}$
$$P = \frac{W}{t}$$
 orbital speed = $\frac{2\pi \times \text{orbital radius}}{\text{time period}}$
$$v = \frac{2 \times \pi \times r}{T}$$
 (final speed)² = (initial speed)²+(2×acceleration×distance moved)
$$v^2 = u^2 + (2 \times a \times s)$$

Triple

$$force = \frac{\text{change in momentum}}{\text{time taken}} \qquad F = \frac{(mv - mu)}{t}$$

change in thermal energy = $\Delta Q = m \times c \times \Delta T$ mass × specific heat capacity × change in temperature

$$\frac{\text{change in wavelength}}{\text{reference wavelength}} = \frac{\text{velocity of a galaxy}}{\text{speed of light}} \qquad \qquad \frac{(\lambda - \lambda_0)}{\lambda_0} = \frac{\Delta \lambda}{\lambda_0} = \frac{v}{c}$$

