Global QCQP Solver

Chuwen

May 3, 2021

SDP relaxations: Many-small-cone

Recall relaxation: Let $A=A^++A^-$ be symmetric where $A^-,A^+\succeq 0$, which allows Cholesky decomposition,

$$U^{+}(U^{+})^{T} = A^{+}$$

since U^+ may be low-rank, we can define z^+ accordingly,

$$(U^{+})^{T}x = z^{+}$$

$$x^{T}A^{+}x = ||z^{+}||^{2} = \sum_{i} (z^{+})_{i}^{2}$$

$$y_{i} = (z_{i}^{+})^{2}, \begin{bmatrix} 1 & z_{i}^{+} \\ z_{i}^{+} & y_{i} \end{bmatrix} \succeq 0, \forall i$$

$$(1)$$

Decompose "Matrices"

One way to do this is:

- Symmetrize: re-define $Q := \frac{Q+Q^T}{2}$, by the fact that $x^TQx = x^T(\frac{Q+Q^T}{2})x$
- ► Compute eigenvalue decomposition:

$$\mathit{Q} = \mathit{U}\Gamma\mathit{U}^T$$

- ▶ Partition columns of U by $I^+ \in \mathbb{R}^{n \times n}$, $I_{ii}^+ = 1$ if $\Gamma_i > 0$
- We define $U^+ = U \cdot \sqrt{(I^+) \cdot \Gamma}, \ U^- = U \cdot \sqrt{-(I^-) \cdot \Gamma}$
- ► We have:

$$Q = U^{+}(U^{+})^{T} - U^{-}(U^{-})^{T}$$

Many-Small-Cone: MSC

Maximize
$$(y^{+})^{T}e - (y^{-})^{T}e + q^{T}x$$

s.t. $\begin{bmatrix} y_{i}^{+} & z_{i}^{+} \\ z_{i}^{+} & 1 \end{bmatrix} \succeq 0, \begin{bmatrix} y_{i}^{-} & z_{i}^{-} \\ z_{i}^{-} & 1 \end{bmatrix} \succeq 0$ $\forall i$
 $(U^{+})^{T}x = z^{+} (U^{-})^{T}x = z^{-}$
 $\begin{bmatrix} Y_{j,i}^{+} & Z_{j,i}^{+} \\ Z_{j,i}^{+} & 1 \end{bmatrix} \succeq 0, \begin{bmatrix} Y_{j,i}^{-} & Z_{j,i}^{-} \\ Z_{j,i}^{-} & 1 \end{bmatrix} \succeq 0$ $\forall j, \forall i$
 $(U_{j}^{+})^{T}x = Z_{j}^{+}, (U_{j}^{-})^{T}x = Z_{j}^{-}$ $\forall j$
 $(Y_{j}^{+})^{T}e - (Y_{j}^{-})^{T}e + a_{j}^{T}x \leq , =, \geq) b_{j}$ $\forall j$

where $Q = U^+(U^+)^T - U^-(U^-)^T$, $A_j = U_j^+(U_j^+)^T - U_j^-(U_j^-)^T$, j = 1, ..., m

MSC: Implementation

- ightharpoonup Use sparsity, we need at most n nonzero variable z for the objective and each one of quadratic constraints.
- ► How to bound $y, Y_j, j = 1, ..., m$?
- ▶ Or bound $z, Z_j, j = 1, ..., m$ then use linearization (RLT) for cutting planes