Scilab Textbook Companion for Oscillations and Waves by S. Prakesh¹

Created by
Praveen Kumar
B.Tech
Electrical Engineering
Uttarakhand Technical University
College Teacher
Naresh Kumar
Cross-Checked by
Chaya Ravindra

July 3, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Oscillations and Waves

Author: S. Prakesh

Publisher: Pragati Prakashan, Merrut

Edition: 5

Year: 2008

ISBN: 978-81-8398-422-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		5
1	Free Oscillations in One Dimension Simle Harmonic Oscillator	10
2	Damped Harmonic Oscillator	22
3	Forced Harmonic Oscillator and Resonance	29
4	Coupled Oscillator	33
5	Wave Motion and Speed of Waves in Gaes	34
7	Superposition of Harmonic Waves Interference Beats Stationary Waves Phase and Group Velocities	43
8	Vibrations of Strings and Membranes	51
9	Longitudinal Acoustic Waves in Air	59
10	Waves in SolidsWaves in Solids	66
11	Lissajous Figures	72
12	Dopplers Effect	7 4
13	Elementary Theory of Filters	82
14	Ultrasonics	84

15 Musical Sound and Acoustic of Bulidings	86
17 Electromagnetic Waves	88

List of Scilab Codes

Exa 1.1	frequency and time period	10
Exa 1.3	total energy	11
Exa 1.4	velocity and acceleration	11
Exa 1.5	velocity and acceleration	11
Exa 1.6	period	12
Exa 1.7	energy	12
Exa 1.8	period of motion	13
Exa 1.9	force constant period of oscillation amlitude and energy	13
Exa 1.10	velocity	14
Exa 1.11	frequency energy and velocity	15
Exa 1.12	rotational inertia	15
Exa 1.13	period	16
Exa 1.15	frequency and energy	16
Exa 1.16	distance binding energy and force constant	17
Exa 1.17	possible values of r and energy	17
Exa 1.19	frequency and moment of inertia	18
Exa 1.20	frequency and amlitude	19
Exa 1.21	frequency energy and velocity	19
Exa 1.22	frequency	20
Exa 1.23	force constant and work done	20
Exa 1.24	frequency	21
Exa 2.3	time damping force total distance	22
Exa 2.4	period	23
Exa 2.5	time period	23
Exa 2.6	relaxation time frequency energy and rate of loss	24
Exa 2.7	time and distance	25
Exa 2.8	time interval	25
Eva 2.9	time	26

Exa 2.10	logarithmic decrement	26
Exa 2.12	frequency	27
Exa 2.13	resistance	27
Exa 2.14	frequency and quality factor	27
Exa 3.1	amlitude and phase displacement	29
Exa 3.2	cosntant	30
Exa 3.3	reactance and impedance	30
Exa 3.4	current and capacitance	31
Exa 3.5	resonant frequency separation and sharpness	31
Exa 4.2	ratio of frequency	33
Exa 5.1	wavelength	34
Exa 5.2	frequency	34
Exa 5.3	velocity and direction	35
Exa 5.4	wave equation	35
Exa 5.5	path difference	36
Exa 5.6	wavelength	36
Exa 5.8	displacement velocity and acceleration	36
Exa 5.9	amplitude frequency velocity and wavelength	37
Exa 5.10	wave intensity	38
Exa 5.14	energy flux	38
Exa 5.15	energy	38
Exa 5.16	pressure amplitude energy density and energy flux	39
Exa 5.17	pressure	40
Exa 5.18	speed of sound	40
Exa 5.19	temperature	41
Exa 5.20	temperature	41
Exa 5.21	speed of sound in nitrogen	41
Exa 5.22	RMS velocity	42
Exa 7.1	ratio	43
Exa 7.2	intensity	44
Exa 7.3	wavelength and frequency	44
Exa 7.4	time interval	45
Exa 7.5	frequency	45
Exa 7.6	frequency	45
Exa 7.7	frequency	46
Exa 7.8	velocity	46
Exa 7.9	frequency	47
Exa 7.10	frequency	47

Exa 7.11	velocity
Exa 7.12	frequency
Exa 7.13	frequency
Exa 7.18	frequency wavelength velocity and amlitude 49
Exa 7.24	group velocity
Exa 7.25	group velocity
Exa 8.1	speed
Exa 8.2	tensile stress
Exa 8.3	tension
Exa 8.4	frequency
Exa 8.5	initial tension
Exa 8.6	speed stress and percentage change 53
Exa 8.7	frequency
Exa 8.8	frequency
Exa 8.9	tension
Exa 8.10	velocity
Exa 8.11	frequency
Exa 8.12	frequency
Exa 8.13	length
Exa 8.14	wavelength
Exa 8.15	FREQUENCY
Exa 8.16	frequency and relative amplitude
Exa 9.1	pressure amplitude energy density and energy lux 59
Exa 9.2	pressure
Exa 9.3	amplitude
Exa 9.4	velocity wavelength and amplitude 60
Exa 9.5	BULK MODULUS AMPLITUDE AND PRESSURE VARI-
	ATION
Exa 9.6	velocity
Exa 9.7	power
Exa 9.8	intensity level
Exa 9.9	frequency
Exa 9.10	length
Exa 9.11	fundamental frequency and length 64
Exa 9.12	wave equation frequency amplitude wavelength and dis-
	tance
Exa 9.13	length pressure amplitude
Exa 10.1	voungs modulus

Exa 10.2	wavelength and velocity 66
Exa 10.3	velocity and wavelength 67
Exa 10.4	youngs modulus 67
Exa 10.5	frequency
Exa 10.6	AREA
Exa 10.7	velocity
Exa 10.8	frequency
Exa 10.9	frequency
Exa 10.10	frequency
Exa 10.11	frequency
Exa 11.1	frequency
Exa 11.2	frequency
Exa 11.3	frequency
Exa 12.1	speed
Exa 12.2	frequency
Exa 12.3	frequency
Exa 12.4	wavelength
Exa 12.5	frequency
Exa 12.6	frequency
Exa 12.7	frequency
Exa 12.8	frequency
Exa 12.9	speed
Exa 12.10	frequency
Exa 12.11	frequency and distance
Exa 12.12	Doppler shift and velocity
Exa 12.13	velocity
Exa 12.14	speed
Exa 13.1	inductance and capacitance
Exa 13.2	inductance and capacitance
Exa 14.1	frequency
Exa 14.2	Length
Exa 14.3	thickness
Exa 14.4	capacitance
Exa 15.1	levels by which intensity will decrease
Exa 15.2	ratio of amplitudes
Exa 15.3	frequency
Exa 17.1	poynting vector
Exa 17.2	poynting vector 88

Exa 17.3	amplitudes of electric and magnetic field radiation	89
Exa 17.4	amplitudes of electric and magnetic field radiation	89
Exa 17.5	polarisation degree	90
Exa 17.6	frequency	90

Chapter 1

Free Oscillations in One Dimension Simle Harmonic Oscillator

Scilab code Exa 1.1 frequency and time period

```
//Example 1 // FREQUENCY AND TIME PERIOD
clc;
clc;
clear;
close;
format('v',6)
//ph=50*x^2+100 in joule/kg
m=10;//mass in kg
f=10^3/m;//joule/kg
w=sqrt(f);//oscillations
fr=w/(2*%pi);//oscillations/sec
tp=1/fr;//seconds
disp(fr, "frequency of oscillation is ,(oscillations/seconds)=")
disp(tp, "time period is,(seconds)=")
```

Scilab code Exa 1.3 total energy

```
//Example 3 // ENERGY
clc;
clear;
close;
ke=5;//joule
pe=5;//joule
rep=10;//joule
eo=rep+ke+pe;//joule
disp(eo,"energy of the oscillator is,(joule)=")
```

Scilab code Exa 1.4 velocity and acceleration

```
peroid , maximum velocity and
1 //Example 4 //
      acceleration
2 clc;
3 clear;
4 close;
5 a=3; //cm
6 b=4; //cm
7 A = sqrt(a^2+b^2); //cm
8 w=2; // sec^-1
9 T=(2*\%pi)/w;//seconds
10 um=w*A;//cm/s
11 am=w^2*A; //cm/s^2
12 disp(T, "time period is ,(seconds)=")
13 disp(um, "maximum velocity is, (cm/s)=")
14 disp(am, "maximum acceleration is, (cm/s^2)=")
```

Scilab code Exa 1.5 velocity and acceleration

```
1 //Example 5 // maximum velocity and acceleration
```

```
2 clc;
3 clear;
4 close;
5 A=5;//cm
6 T=31.4//seconds
7 w=(2*%pi)/T;//sec^-1
8 um=w*A;//cm/s
9 am=w^2*A;//cm/s^2
10 disp(um,"maximum velocity is,(cm/s)=")
11 disp(am,"maximum acceleration is,(cm/s^2)=")
```

Scilab code Exa 1.6 period

Scilab code Exa 1.7 energy

```
1 //Example 7 // ENERGY
2 clc;
3 clear;
```

```
4 close;
5 es=1;//joule
6 l=2;//metre
7 am=3;//cm
8 am1=5;//cm
9 e1=(am1^2/am^2)*es;//joules
10 l2=1;//meter
11 e2=(l/l2)*es;//joules
12 disp(e1,"energy in first case is,(joules)=")
13 disp(e2,"energy in second case is,(joules)=")
```

Scilab code Exa 1.8 period of motion

```
1 //Example 8 // Period of motion
2 clc;
3 clear;
4 close;
5 //given data :
6 x=0.16; // in m
7 m1=4; // in kg
8 g=9.8;
9 K=m1*g/x;
10 m=0.50; // in kg
11 T=2*%pi*sqrt(m/K); //
12 disp(T,"The period of motion ,T(seconds) = ")
13 // answer is wrong in textbook
```

Scilab code Exa 1.9 force constant period of oscillation ambitude and energy

```
1 //Example 9 //foce constant, displacement ,
            acceleration and energy
2 clc;
```

```
3 clear;
4 close;
5 //given data :
6 \text{ x1} = .10; // in m
7 F1=4; // in N
8 \text{ K=F1/x1};
9 x2=0.12; // in m
10 disp(K,"(a). The force constant, K(N/m) = ")
11 F = -K * x2;
12 \operatorname{disp}(F, "(b)). The force, F(N) = ")
13 m=1.6; // in kg
14 T=2*\%pi*sqrt(m/K);
15 \operatorname{disp}(T, "(c)). Period of pscillation, T(s) = ")
16 A = x2;
17 \operatorname{disp}(A, "(d)). Amplitude of motion, A(m) = ")
18 alfa=A*K/m;
19 disp(alfa,"(e). Maximum acceleration, alfa (m/s^2) = "
20 \text{ x=A/2; // in m}
21 \text{ w=} \text{sqrt}(\text{K/m});
22 \ v = w * sqrt(A^2 - x^2);
23 a=w^2*x;// in m/s^2
24 KE=(1/2)*m*v^2; // in J
25 PE=(1/2)*K*x^2; // in J
26 \text{ TE=KE+PE};
27 \operatorname{disp}(v,"(f) \text{ velocity is },(m/s)")
28 disp(a,"(f). acceleration, (m/s^2) = ")
29 disp(KE,"(f) Kinetic energy is (J)=")
30 disp(PE,"(f) Potential energy is ,(J)=")
31 disp(TE,"(g). Total energy of the oscillating system
      TE(J) = ")
32 // in textbook part f is inculded in the part e so
       their is the numbering error in parts
```

Scilab code Exa 1.10 velocity

```
1 //Example 10 // ENERGY
2 clc;
3 clear;
4 close;
5 t=8/3; //seconds
6 v=-10*%pi*sin((35*%pi)/6) //cm
7 disp(v,"velocity is,(cm)=")
```

Scilab code Exa 1.11 frequency energy and velocity

```
1 //Example 11 //
2 clc;
3 clear;
4 close;
5 //given data :
6 K1=3; // in N/m
7 K2=2; // in N/m
8 m = 0.050; // in kg
9 \text{ w=} \text{sqrt} ((K1+K2)/m);
10 n=w/(2*\%pi);
11 disp(n,"(i)). The frequency, n(oscillations/sec) = ")
12 A = 0.004; // in m
13 E=(1/2)*A^2*(K1+K2);
14 disp(E,"(ii). The energy, E(J) = ")
15 v = sqrt(2*E/m);
16 \operatorname{disp}(v,"(iii)). The velocity, v(m/s) = ")
```

Scilab code Exa 1.12 rotational inertia

```
1 //Example 12 // Rotational inertia
2 clc;
3 clear;
4 close;
```

```
5 //given data :
6 M=0.1; // in m
7 l=0.1; // in m
8 I1=M*l^2/12; // in kg-m^2
9 T1=2; // in s
10 T2=6; // in s
11 I2=(I1*T2^2)/T1^2;
12 disp(I2," Rotational inertia , I2(kg.m^2) = ")
```

Scilab code Exa 1.13 period

```
1 //Example 13 // Time period
2 clc;
3 clear;
4 close;
5 //given data :
6 M=4; // in kg
7 R=0.10; // in m
8 I=(2/5)*M*R^2; // in kg.m^2
9 C=4*10^-3; // in Nm/radian
10 T=2*%pi*sqrt(I/C);
11 disp(T, "Time period, T(s) = ")
12 // answer is wrong in textbook
```

Scilab code Exa 1.15 frequency and energy

```
1 //Example 15 // Energy
2 clc;
3 clear;
4 close;
5 //given data :
6 L=10*10^-3; // in H
7 C=20*10^-6; // in F
```

```
8 n=1/(2*%pi*sqrt(L*C));
9 V=10;//in V
10 U=(1/2)*C*V^2;
11 disp(n,"Frequency,n(cycles/s) = ")
12 disp(U,"Energy of oscillations,U(J) = ")
13 //answer of frequency is calculated wrong in textbook
```

Scilab code Exa 1.16 distance binding energy and force constant

```
1 //Example 16 // distance, binding energy and force
      constant
2 clc;
3 clear;
4 close;
5 disp ("equilibrium inter-nuclear distance
      correspondes to lowest potential enegy is ro= 2*
        ")
6 pet=0; //eV
7 peb=-4; //eV
8 be=pet-peb; //eV
9 x1 = -2; //eV
10 x2 = -4; //eV
11 V=x1-x2; //eV
12 e=1.6*10^-19; //electronic charge
13 x=0.5; // armstrong
14 K = ((2*V)/x^2); //eV/
15 k1=(K*e)/(10^-10)^2; //joule/m^2
16 disp(be, "binding energy is ,(eV)=")
17 disp(k1, "force constant is ,(newton/metre)=")
```

Scilab code Exa 1.17 possible values of r and energy

```
1 //Example 17 // possible values and energy
2 clc;
3 clear;
4 close;
5 r1=2; //from graph
6 r2=4.5; //units from graph
7 disp("possible values of r are "+string(r1)+" units
     and "+string(r2)+" units")
8 osc=1-(-2.5); //units
9 disp("maximum energy of oscillations for r=2 units
     is "+string(osc)+" units ")
10 osc1=0.5-(-1); // units
11 disp("maximum energy of oscillations for r=4.5 units
       is "+string(osc1)+" units ")
12 t=1; //from graph
13 v=0; //from graph
14 e=t+v; //
15 disp(e,"total energy is,(unit)=")
16 disp("at infinity V = "+string(v)+" therefore T = "+
     string(t)+" unit ")
```

Scilab code Exa 1.19 frequency and moment of inertia

```
1 //Example 19 // Frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 m1=10; // in g
7 m2=90; // in g
8 K=10^3; // in N/m
9 mu=m1*m2*10^-3/(m1+m2);
10 n=round(sqrt(K/mu)/(2*%pi));
11 disp(n," The frequency, n(oscillations/sec) = ")
12 x1=0; //
```

```
13 x2=10; //cm

14 xb=((m1*x1+m2*x2)/(m1+m2)); //cm

15 mo=(m1*10^-3)*(xb*10^-2)^2+(m2*10^-3)*(1*10^-2)^2; //

16 disp(mo, "moment of inertia is ,(kg-m^2)=")
```

Scilab code Exa 1.20 frequency and amlitude

```
1 //Example 20 // frequency and amplitude
2 clc;
3 clear;
4 close;
5 c=10^-4; /N-m
6 \text{ m1=9; } //\text{gm}
7 \text{ m} 2 = 1; //gm
8 mu = ((m1*m2)/(m1+m2))*10^-3; //kg
9 r = 20; //cm
10 I=mu*(r*10^-2)^2; //kg-m^2
11 fr=((1/(2*%pi))*sqrt(c/I));//vibrations/sec
12 disp(fr, "frequency of vibration is ,(vibrations/s)="
      )
13 e=10^-2;//joule
14 thmax=sqrt((2*e)/c);//radians
15 disp(thmax, "amplitude is, (radians)=")
```

Scilab code Exa 1.21 frequency energy and velocity

```
7  m2=2; //gm
8  mu=((m1*m2)/(m1+m2))*10^-3; //kg
9  fr=((1/(2*%pi))*sqrt(c/mu)); //vibrations/sec
10  disp(fr, "frequency of oscillations is ,(vibrations/s) )=")
11  td= 1+(1/3); //cm
12  e=((1/2)*c*(td*10^-2)^2); //joule
13  disp(e, "energy is ,(joule)=")
14  y=((1/2)*m2*10^-3)+((1/2)*(1/3)^2*m1*10^-3); //
15  v1=sqrt((e/y)); //m/sec
16  disp(v1, "maximum velocity of smaller mass is ,(m/seconds)=")
17  //velocity is calculated wrong in the book
```

Scilab code Exa 1.22 frequency

```
1 //Example 22 // frequency
2 clc;
3 clear;
4 close;
5 k=100; //N/m
6 m=100; //gm
7 n1=((1/(2*%pi))*sqrt(k/(m*10^-3))); //sec^-1
8 m1=100; //gm
9 m2=200; //gm
10 mu=((m1*m2)/(m1+m2))*10^-3; //kg
11 fr=((1/(2*%pi))*sqrt(k/mu)); //sec^-1
12 disp(n1, "in first case frequency is,(sec^-1)=")
13 disp(fr, "in second case frequency is,(sec^-1)=")
```

Scilab code Exa 1.23 force constant and work done

```
1 //Example 23 // force constant and work done
```

```
2 clc;
3 clear;
4 close;
5 m1=1; //assume
6 m2=19; //assume
7 mh=1.66*10^-27; //kg
8 mu=((m1*m2)/(m1+m2))*mh; //kg
9 w=7.55*10^14; //radians/sec
10 k=mu*(w)^2; //N/m
11 disp(k,"force constant is,(N/m)=")
12 x=0.5; //arngstrom
13 wh=((1/2)*k*(x*10^-10)^2); //joule
14 disp(wh,"work done is ,(joule)=")
```

Scilab code Exa 1.24 frequency

```
1 //Example 24 // frequency
2 clc;
3 clear;
4 close;
5 m1=1; //a.m.u
6 m2=35; //a.m.u
7 mu1=((m1*m2)/(m1+m2)); //a.m.u
8 m3=2; //
9 mu2=((m3*m2)/(m3+m2)); //a.m.u
10 n1=8.99*10^13; //cycle/sec
11 n2=(sqrt(mu1/mu2))*n1; //c/s
12 disp(n2," frequecy of vibrations is ,(c/s)=")
```

Chapter 2

Damped Harmonic Oscillator

Scilab code Exa 2.3 time damping force total distance

```
1 //Example 3 // relaxation time ,damping force ,time
      and total distance
2 clc;
3 clear;
4 close;
5 \text{ v=10}; //\text{cm/s}
6 vo=100; //cm/s
7 t=23; // sec
8 x = -(\log(v/vo))/t; //
9 t = (1/x) *1; // seconds
10 disp(round(t), "relaxation time is, (seconds)=")
11 m = 40; //gm
12 vx = 50; //cm/sec
13 fd = ((-x*m*10^-3*vx*10^-2)); //newton
14 disp(fd, "damping force is ,(newton)=")
15 tx=5*(log(10));//
16 disp(tx," time in which kinetic energy will reduce to
       1/10 \,\mathrm{th} of its value is ,(seconds)=")
17 xx=v*1; //
18 disp(xx, "distance travelled is, (m)=")
```

Scilab code Exa 2.4 period

```
1 //Example 4 // period
2 clc;
3 clear;
4 close;
5 //given data :
6 m=2;// in g
7 k=30;// in dynes/cm
8 b=5;// in dynes/cm-sec^-1
9 r=b/(2*m);
10 w0=sqrt(k/m);
11 T=2*%pi/sqrt(w0^2-r^2);
12 disp(T,"The time period,T(s) = ")
```

Scilab code Exa 2.5 time period

```
//Example 5 // time
clc;
clc;
clear;
close;
tr=50;//seconds
r=(1/(2*tr));//s^-1
t=1/r;//seconds
disp(t,"time in which amplitude falls to 1/e times
    the initial value is ,(seconds)=")
t2=tr;//
disp(t2,"time in which system falls to 1/e times the
    initial value is ,(seconds)=")
t3=2*(1/r);//
disp(t3,"time in which energy falls to 1/e^4 of the
    initial value is ,(seconds)=")
```

Scilab code Exa 2.6 relaxation time frequency energy and rate of loss

```
1 //Example 6 // relaxation time , frequency , energy ,
      time, rate and number of vibrations
2 clc;
3 clear;
4 close;
5 \text{ k=20; } / \text{N/m}
6 \text{ m=} 5 / \text{N-s/m}
7 wo=sqrt(k/m);//
8 \text{ v1=2}; //\text{m/s}
9 to=m/v1; //seconds
10 disp(to, "relaxation time is, (seconds)=")
11 w=wo*(1-(1/(2*wo*to))^2);//
12 lf=w/(2*\%pi); // vibration/s
13 disp(lf, "linear frequency is, (vibration/s)=")
14 a=1;//
15 e=((1/2)*m*a^2*wo^2); //joule
16 disp(e, "energy is ,(joule)=")
17 tm=v1*to; //seconds
18 disp(tm," time taken in fall of amlitude to 1/e value
       is ,(seconds)=")
19 disp(tm," time taken in fall of velocity amplitude to
       1/2 value is , (seconds)=")
20 tr=to; //
21 disp(tr,"time taken in fall of energy to 1/e value
      is (seconds)=")
22 eng=(1/2)*m*a*v1^2*(2/tm);/
23 disp("rate of loss of energy at t=0 seconds is "+
      string(eng)+" J/s and at any time is "+string(eng
      )+"e^-2*t/"+string(tm)+" J/s ")
24 rel=((eng*2*%pi)/wo);//J/s
25 disp("rate of loss of energy per cycle at t=0
      seconds is "+string(rel)+" J/s and at any time is
```

```
"+string(rel)+"e^-2*t/"+string(tm)+" J/s ")
26 nv=tm/((2*%pi)/wo);//
27 disp(nv,"number of vibratios made are,=")
```

Scilab code Exa 2.7 time and distance

```
1 //Example 7 // time and distance
2 clc;
3 clear;
4 close;
5 b=5; //N-s/m
6 v = 10; //m/s
7 to=b/v; // second
8 disp(to," time in which velocity falls to 1/e times
      the initial value is ,(second)=")
9 t2=b*to;//
10 disp(t2," time in which velocit falls to half the
      initial value is , (second)=")
11 disp("diatace traversed by the particle before the
      velocity falls to half the initial value is "+
     string(b) + **(1-e^-(\log)" + string((2*to)/to) + ")")
12 x=b; //m
13 disp(x," distance traversed by the particle it comes
     to rest is (m)=")
```

Scilab code Exa 2.8 time interval

```
1 //Example 8// time interval
2 clc;
3 clear;
4 close;
5 q=5*10^4; // quality factor
6 x=1/10; //
```

```
7 fr=300; //second^-1
8 to=q/(2*%pi*fr); //second
9 xm=((to*log(10))); //seconds
10 disp(xm,"time interval is,(seconds)=")
```

Scilab code Exa 2.9 time

```
1 //Example 9 // Time
2 clc;
3 clear;
4 close;
5 //given data :
6 n=240; // in sec^-1
7 w=2*%pi*n;
8 Q=2*10^3;
9 tau=Q/w;
10 t=4*tau;
11 disp(t, "Time, t(s) = ")
```

Scilab code Exa 2.10 logarithmic decrement

```
1 //Example 10 // Logarithmic decrement
2 clc;
3 clear;
4 close;
5 //given data :
6 a=100;
7 l1=20;// in cm
8 l2=2;// in cm
9 l=11/l2;
10 lamda=(1/100)*log(1);
11 disp(lamda," Logarithmic decrement, = ")
```

Scilab code Exa 2.12 frequency

```
1 //Example 12 // Frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 C=10^-6; // in F
7 L=0.2; // in H
8 R=800; // in ohm
9 Rm=2*sqrt(L/C);
10 n=sqrt((1/(L*C))-(R^2/(4*L^2)))/(2*%pi);
11 disp(n, "The frequency, n(cycles/s) = ")
```

Scilab code Exa 2.13 resistance

Scilab code Exa 2.14 frequency and quality factor

```
1 //Example 14 // Q factor
2 clc;
3 clear;
4 close;
5 //given data :
6 C=5*10^-6; // in F
7 L=2*10^-3; // in H
8 R=0.2; // in ohm
9 w=round(sqrt((1/(L*C))-(R^2/(4*L^2))));
10 f=w/(2*%pi);
11 Q=w*L/R;
12 disp(f, "frequency is ,(Hz)=")
13 disp(Q, "Quality factor, Q = ")
```

Chapter 3

Forced Harmonic Oscillator and Resonance

Scilab code Exa 3.1 amlitude and phase displacement

```
1 //Example 1 // Phase shift
2 clc;
3 clear;
4 close;
5 //given data :
6 F0=25; // in N
7 m = 1;
8 f0=F0/m;
9 K=1*10^3; // in N/m
10 w0=sqrt(K/m);
11 b=0.05; // in N-s/m
12 r=b/(2*m); // in s^-1
13 A=f0*10^3/sqrt(9*w0^4+(16*r^2*(w0)^2));
14 \operatorname{disp}(A, "The amplitude, A(mm) = ")
15 p=2*w0;
16 fi=atand(2*r*p/(w0^2-p^2));
17 disp("phase shift is "+string(fi)+" degree or "+
      string(fi*(%pi/180))+" radian")
18 //phase shift is converted wrong into radians
```

Scilab code Exa 3.2 cosntant

```
1 //Example 2 // A/Amax
2 clc;
3 clear;
4 close;
5 x1 = [0.99; 0.98; 0.97]; //
6 \text{ wt} = 50; //
7 wo=1; //assume
8 fo=1; //assume
9 \text{ for } i=1:3
       a(i) = ((fo/((wo^2)*((1-x1(i)^2)^2+((1/wt^2)*x1(i)
10
           ^2))^(1/2))));//
11
       am(i)=fo/((wo^2)*(1/wt^2)^(1/2));//
       z(i)=a(i)/am(i);//
12
       disp("for p/wo "+string(x1(i))+" value of A/Amax
13
            is "+string(z(i))+"")
14 end
```

Scilab code Exa 3.3 reactance and impedance

```
1 //Example 3 // Reactance and impedence
2 clc;
3 clear;
4 close;
5 //given data :
6 n=50;// in cycles
7 w=2*%pi*n;// in rad/sec
8 L=1/%pi;// in H
9 XL=w*L;
10 disp(XL, "The reactance, XL(ohm) = ")
```

```
11 R=100; // in ohm
12 Z=sqrt(R^2+XL^2);
13 disp(Z,"The impedence, Z(ohm) = ")
```

Scilab code Exa 3.4 current and capacitance

```
1 //Example 4 // Current and Capacity
2 clc;
3 clear;
4 close;
5 //given data :
6 E=110; // in V
7 R=10; // in ohm
8 L=1*10^-3; // in H
9 C=1*10^-6; // in F
10 n=10000; // in Hz
11 w=2*\%pi*n;
12 I=E/sqrt(R^2+((w*L)-(1/(w*C)))^2);
13 disp(I, "The current , I(A) = ")
14 L1=1/(w^2*C);
15 disp(L1, "The value of capacity, L1(F) = ")
16 // Capacitance is calculated wrong in the textbook
```

Scilab code Exa 3.5 resonant frequency separation and sharpness

```
1 //Example 5 // Resonent frequency and Separation
2 clc;
3 clear;
4 close;
5 //given data :
6 L=1*10^-3; // in H
7 C=0.1*10^-6; // in F
8 w0=1/sqrt(L*C);
```

```
9 disp(w0, "Resonant frequency, w0(rad/s) = ")
10 R=10; // in ohm
11 w2_w1=R/L;
12 disp(w2_w1, "the separation, (rad/s) = ")
13 S=w0/w2_w1;
14 disp(S, "The sharpness is = ")
```

Chapter 4

Coupled Oscillator

Scilab code Exa 4.2 ratio of frequency

```
1 //Example 2 // ratio of Frequency
2 clc;
3 clear;
4 close;
5 k=1; //assume
6 m1=16; //a.m.u
7 m2=12; //a.m.u
8 m3=m1; //
9 rt=((m2+2*m1)/m2)^(1/2); //
10 disp(rt, "ratio of frequency is,=")
```

Chapter 5

Wave Motion and Speed of Waves in Gaes

Scilab code Exa 5.1 wavelength

```
1 //Example 1 // wavelength
2 clc;
3 clear;
4 close;
5 //given data :
6 v=960; // in m/s
7 n=3600/60; // in per sec
8 lamda=v/n;
9 disp(lamda, "The wavelength, lamda(m) = ")
```

Scilab code Exa 5.2 frequency

```
1 //Example 2 // Frequency
2 clc;
3 clear;
4 close;
```

```
5 //given data :
6 c=3*10^8; // in m/s
7 lamda=300; // in m
8 n=c*10^-6/lamda;
9 disp(n,"The frequency, n(MHz) = ")
```

Scilab code Exa 5.3 velocity and direction

```
1 //Example 3 // velocity and direction
2 clc;
3 clear;
4 close;
5 //y=1.2*sin(3.5*t+0.5*x);//equation
6 w=3.5;//from equation
7 k=0.5;//from equation
8 v=w/k;//m/s
9 disp("wave velocity is "+string(v)+" m/s and direction of the wave is along negative X-axis")
```

Scilab code Exa 5.4 wave equation

```
1 //Example 4 //equation of wave propogation
2 clc;
3 clear;
4 close;
5 amp=0.02; //m
6 fr=110; //Hz
7 v=330; //m/s
8 w=2*%pi*fr; //s^-1
9 k=w/v; // constant
10 //y=a*sin(w*t-k*x); // refrence equation
11 disp("equation of wave is "+string(amp)+"*sin("+string(w)+"*t-"+string(k)+"*x)")
```

Scilab code Exa 5.5 path difference

```
//Example 5 //path difference
clc;
clear;
close;
v=360;//m/s
fr=500;//Hz
h=v/fr;//wavelength in metre
ang=60;//degree
angr=ang*(%pi/180);//radian
pth=(h)/(2*%pi);//metre
disp(pth,"path difference is ,(m)=")
```

Scilab code Exa 5.6 wavelength

```
1 //Example 6 //path difference
2 clc;
3 clear;
4 close;
5 pth=15; //cm
6 pd=(2*%pi)/3; //radians
7 h=(pth*2*%pi)/pd; //cm
8 disp(h," wavelength is ,(cm)=")
```

Scilab code Exa 5.8 displacement velocity and acceleration

```
1 //Example 8 //displacement ,particle velocity and acceleration
```

```
2 clc;
3 clear;
4 close;
5 //y=a*sin*((2*\%pi)/h)*(vt-x);//
6 v = 1000; //cm/s
7 n=25; // vibrations
8 h=v/n;/cm
9 a=3; //cm
10 t=2; //seconds
11 x1 = 200; /cm
12 y=3*sind(((2*360)/h)*(v*t-x1));//
13 v1=2*%pi*a*n; //cm/s
14 acc=0;//
15 disp(y, "displacement is, (cm)=")
16 disp(v1, "velocity is, (cm/s)=")
17 disp(acc, "acceleration is, (cm/s^2)=")
```

Scilab code Exa 5.9 amplitude frequency velocity and wavelength

```
1 //Example 9 //amplitude, frequency, velocity,
      wavelength and speed
2 clc;
3 clear;
4 close;
5 //y = 5 * \sin * (4t - 0.02x); //given
6 \quad a=5; //cm
7 h=(2*\%pi)/0.02;//
8 \text{ v=0.02*10000; } /\text{cm/s}
9 n=v/h; //cycles/seconds
10 disp(a, "amplitude is, (cm)=")
11 disp(n, "frequency is, (cycles/s)=")
12 disp(v, "velocity is (cm/s)=")
13 \operatorname{disp}(h, "wavelength is, (cm)=")
14 ma1x=a*4; //cm/s
15 disp(ma1x, "maximum speed is (cm/s)=")
```

Scilab code Exa 5.10 wave intensity

```
1 //Example 10 //wave intensity
2 clc;
3 clear;
4 close;
5 nt=1;//watt source
6 r=1;//n
7 is=(nt/(4*%pi*r^2));// joule/sec-m^2
8 disp(is,"intensity on the surface is ,(joule/sec-m^2)=")
```

Scilab code Exa 5.14 energy flux

```
1 //Example 14 // Energy flux
2 clc;
3 clear;
4 close;
5 //given data :
6 A=.10; // in m
7 w=4; // in per sec
8 k=0.1; // in per cm
9 p=1.25*10^3; // in kg/m^3
10 v=w*10^-2/k; // in m/s
11 n=w/(2*%pi);
12 Ef=2*%pi^2*n^2*A^2*p*v;
13 disp(Ef, "Energy flux of the wave, Ef(W/m^2) = ")
```

Scilab code Exa 5.15 energy

```
//Example 15 // Energy radiated and energy current
clc;
clear;
close;
//given data :
p=1.29;// in kg/m^3
a=.15*10^-2;// in m/s
n=76;// in Hz
E=2*%pi^2*n^2*a^2*p;
disp(E,"(a). Energy radiated,E(J/m^3) = ")
v=332;// in m/s
Ev=E*v;
disp(Ev,"(b). The energy current,Ev(W/s) = ")
// energy current is calculated wrong in the textbook
```

Scilab code Exa 5.16 pressure amplitude energy density and energy flux

```
1 //Example 16 // Pressure amplitude, Energy density
     and energy flux
2 clc;
3 clear;
4 close;
5 //given data :
6 a=10^-5; // in m
7 n=500; // in per sec
8 p=1.29; // in kg/m^3
9 v = 340; // in m/s
10 Pa=2*%pi*a*n*v*p;
11 disp(Pa,"(i). Pressure amplitude, Pa(N/m^2) = ")
12 Ed=2*%pi^2*a^2*n^2*p;
13 disp(Ed,"(ii)). Energy density, Ed(J/m^3) = ")
14 Ef=2*%pi^2*a^2*n^2*p*v;
15 disp(Ef,"(iii). The energy flux, Ef(J/m^2-s) = ")
```

Scilab code Exa 5.17 pressure

```
1 //Example 17 // Pressure
2 clc;
3 clear;
4 close;
5 //given data :
6 gama=1.4;
7 u=10^-3; // in m/s
8 v=340; // in m/s
9 P=10^5; // in N/m^2
10 p=gama*P*u/v;
11 disp(p,"The pressure,p(N/m^2) = ")
```

Scilab code Exa 5.18 speed of sound

```
1 //Example 18 //speed
2 clc;
3 clear;
4 close;
5 sa=332; //m/s
6 pa=16; //density of air
7 ph=1; //density of hydrogen
8 vn=sa*sqrt(pa/ph); //m/s
9 t1=0; //degree celsius
10 t2=546; //degree celsius
11 t1k=0+273; //kelvin
12 t2k=t2+273; //kelvin
13 v2=vn*sqrt(t2k/t1k); //m/s
14 disp(vn, "speed of sound in first case is ,(m/s)=")
15 disp(v2, "speed of sound in second case is ,(m/s)=")
```

Scilab code Exa 5.19 temperature

```
//Example 19 //temperature
clc;
clear;
close;
t1=0;//degree celsius
t1k=t1+273;//kelvin
rt=2;//
tk=rt^2*t1k;//Kelvin
t=tk-273;//degree celsius
disp(t,"temperature is ,(degree-celsius)=")
```

Scilab code Exa 5.20 temperature

```
//Example 20 //temperature
clc;
clear;
close;
trtd=16/14; //ratio of densities
tk=15+273; //degree celsius
x=(tk*rtd)-273; //degree celsius
disp(x,"temperature is ,(degree-celsius)=")
```

Scilab code Exa 5.21 speed of sound in nitrogen

```
1 //Example 21 //speed
2 clc;
3 clear;
```

```
4 close;
5 rt=4/1; //
6 ss=332; //m/s
7 rd=32/28; //ratio of densities
8 rt1=((1+(1/rt)*rd)/(1+(1/rt))); //
9 v1=ss*sqrt(rt1); //m/s
10 disp(v1, "speed of sound in nitrogen is, (m/s)=")
```

Scilab code Exa 5.22 RMS velocity

```
1 //Example 22 //speed
2 clc;
3 clear;
4 close;
5 gm=1.41;//
6 vs=330;//m/s
7 vrms=sqrt(3/gm)*vs;//m/s
8 disp(vrms, "root mean square velocity of molecules of a gas is ,(m/s)=")
```

Chapter 7

Superposition of Harmonic Waves Interference Beats Stationary Waves Phase and Group Velocities

Scilab code Exa 7.1 ratio

```
//Example 1 // ratio
clc;
clear;
close;
ri=9/16;//ratio of intensities
ra=sqrt(ri);//ratio of amplitude
al=1;//assume
a2=ra*a1;//
rim=(a1+a2)^2/(a1-a2)^2;//
disp("ratio of maximum intensity and minimum intensity in fringe system is "+string(rim)+":"+string(a1)+"")
```

Scilab code Exa 7.2 intensity

```
1 //Example 2 // intensity
2 clc;
3 clear;
4 close;
5 I=1; //assume
6 a1=1*I; //
7 a2=4*I;//
8 ph1=0; // degree
9 i1=(a1+a2)+a2*cosd(ph1); //
10 disp("intensity where phase difference is zero is "+
     string(i1)+"*I")
11 ph2=90; //degree
12 i2=(a1+a2)+a2*cosd(ph2);//
13 disp("intensity where phase difference is pi/2 is "+
     string(i2)+"*I")
14 ph3=180; //degree
15 i3=(a1+a2)+a2*cosd(ph3);//
16 disp("intensity where phase difference is pi is "+
     string(i3)+"*I")
```

Scilab code Exa 7.3 wavelength and frequency

```
1 //Example 3 // Wavelength and frequency
2 clc;
3 clear;
4 close;
5 //given data:
6 d=30;// in cm
7 lamda=2*d*10^-2;
8 v=330;// in m/s
9 disp(lamda, "The wavelength, (m) = ")
10 n=v/lamda;
11 disp(n, "The frequency, n(vibrations/s) = ")
```

Scilab code Exa 7.4 time interval

```
//Example 4 // number of beats and time interval
clc;
clear;
close;
n1=300;//Hz
n2=303;//Hz
fs=n2-n1;//
disp(bfs,"beat frequency per second is,=")
ti=1/bfs;//second
disp(ti,"time interval is,(second)=")
```

Scilab code Exa 7.5 frequency

```
1 //Example 5 // Frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 n1=256; // in Hz
7 x=4; // in beats per sec
8 n2a=n1+x;
9 n2b=n1-x;
10 disp(n2a, "The frequency, n2a(Hz) = ")
11 disp(n2b, "The frequency, n2b(Hz) = ")
```

Scilab code Exa 7.6 frequency

```
1 //Example 6 // Frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 nA=256; // in Hz
7 x=5; // in beats per sec
8 nB=nA+x;
9 disp(nB, "The frequency, nB(Hz) = ")
```

Scilab code Exa 7.7 frequency

```
1 //Example 7 // Frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 nB=512; // in Hz
7 x=5; // in beats per sec
8 nA=nB+x;
9 disp(nA, "The frequency of A, nA(Hz) = ")
```

Scilab code Exa 7.8 velocity

```
1 //Example 8 // Velocity of sound
2 clc;
3 clear;
4 close;
5 //given data :
6 lamda1=1; // in m
7 lamda2=1.01; // in m
8 a=10/3; // in beats/sec
9 v=a/((lamda2-lamda1)/(lamda1*lamda2));
```

```
10 disp(v, "The velocity of sound, v(m/s) = ")
```

Scilab code Exa 7.9 frequency

```
1 //Example 9 // Frequency
2 clc;
3 clear;
4 close;
5 n=273;//
6 b1=4;//beats per second
7 b2=b1-1;//
8 t1=15;//degree celsius
9 t2=10;//degree celsius
10 v1510=sqrt((n+t1)/(n+t2));//
11 n=((b2*v1510-b1)/(1-v1510));//
12 disp(n," frequency is ,(Hz)=")
```

Scilab code Exa 7.10 frequency

```
1 //Example 10 // Frequency
2 clc;
3 clear;
4 close
5 b1=10; // beats per second
6 f1=300; // Hz
7 b2=15; // beats per second
8 f2=325; // Hz
9 n1=f1-b1; // Hz
10 n2=f1+b1; // Hz
11 n3=f2-b2; // Hz
12 n4=f2+b2; // Hz
13 disp(n2," frequency is ,(Hz)=")
```

Scilab code Exa 7.11 velocity

```
1 //Example 11 // Velocity of sound
2 clc;
3 clear;
4 close;
5 //given data :
6 lamda1=5;// in m
7 lamda2=5.5;// in m
8 a=6;// beats/sec
9 v=a/((lamda2-lamda1)/(lamda1*lamda2));
10 disp(v, "The velocity of sound, v(m/s) = ")
```

Scilab code Exa 7.12 frequency

```
//Example 12 // Frequency
clc;
clear;
close
bl=5;//beats per second
fr=384;//Hz
fo=fr-b1;//Hz
disp(fo, "frequency is ,(Hz)=")
```

Scilab code Exa 7.13 frequency

```
1 //Example 13 // Frequency
2 clc;
3 clear;
```

```
4 close
5 b1=4; // beats per second
6 fr=256; // Hz
7 fo=fr+b1; // Hz
8 disp(fo, "frequency is ,(Hz)=")
```

Scilab code Exa 7.18 frequency wavelength velocity and amlitude

```
//Example 18 //Frequency, wavelength, velocity and
amplitude

clc;
clear;
close;
//given data :
a=6;// in cm
lamda=10;// in cm

T=1/10;// in sec
disp(lamda,"Wavelength of progressive wave,(cm) = ")
n=1/T;
disp(n,"Frequency of progressive wave,n(per sec)")
v=n*lamda;
disp(v,"The velocity,v(cm/s) = ")
disp(a,"The amplitude,a(cm) = ")
```

Scilab code Exa 7.24 group velocity

```
1 //Example 24 //Velocity
2 clc;
3 clear;
4 close;
5 //given data :
6 c=3*10^8; // in m/s
7 lamda1=4000; // in Angustrom
```

```
8 lamda2=5000; // in Aungustrom
9 mu1=1.540;
10 mu2=1.530;
11 vg=c*((mu1*lamda1)-(mu2*lamda2))/(mu1*mu2*(lamda1-lamda2));
12 disp(vg, "The velocity, vg(m/s) = ")
```

Scilab code Exa 7.25 group velocity

```
1 //Example 25 //Velocity
2 clc;
3 clear;
4 close;
5 //given data :
6 v=1.8*10^8; // in m/s
7 lamda=3.6*10^-7; // in m
8 dv_dlamda=3.8*10^13; // in per sec
9 vg=v-(lamda*dv_dlamda);
10 disp(vg,"The group velocity, vg(m/s) = ")
```

Chapter 8

Vibrations of Strings and Membranes

Scilab code Exa 8.1 speed

```
1 //Example 1 // Speed
2 clc;
3 clear;
4 close;
5 //given data :
6 m1=0.1; // in kg
7 g=9.81; // in m/s^2
8 T=m1*g; // N
9 A=10^-6; // in m^2
10 p=9.81*10^3; // in kg/m^3
11 m=A*p; // in kg/m
12 v=sqrt(T/m);
13 disp(v, "The speed of transverse waves, v(m/s) = ")
```

Scilab code Exa 8.2 tensile stress

```
1 //Example 2 // tensile stress
2 clc;
3 clear;
4 close;
5 //given data :
6 p=8000; // in kg/m^3
7 v=340; // in m/s
8 TbyA=v^2*p*10^-2;
9 disp(TbyA," Tensile stress, (N/m^2) = ")
```

Scilab code Exa 8.3 tension

```
1 //Example 3 // Tension
2 clc;
3 clear;
4 close;
5 //given data :
6 M=2*10^-3; // in kg
7 l=35*10^-2; // in m
8 n=500; // in Hz
9 m=M/l; // in kg/m
10 T=4*n^2*1^2*m;
11 disp(T, Tension, T(N) = ")
```

Scilab code Exa 8.4 frequency

```
1 //Example 4 // Frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 T=625; // in N
7 T1=100; // in N
```

```
8 l=1/2;
9 n=240;// in Hz
10 n1=1/1*(sqrt(T1/T))*n;
11 disp(n1,"The frequency, n1(Hz) = ")
```

Scilab code Exa 8.5 initial tension

```
//Example 5 // initial tension
clc;
clc;
clear;
close;
rt=2/3; // ratio
mi=5; // kg wt
M=((1/rt)^2)-1; //
mo=mi/M; // kg wt
disp(mo, "initial tension in string is ,(kg-wt)=")
```

Scilab code Exa 8.6 speed stress and percentage change

```
1 //Example 6// speed, stress and change in frequency
2 clc;
3 clear;
4 close;
5 n=175; //Hz
6 l=1.5; //m
7 v=2*n*l; //m/s
8 d=7.8*10^3; //kg/m^3
9 st=v^2*d; //N/m^2
10 per=3; //% increament
11 T=1; //assume
12 td=(1+per/100)*T; //
13 x=(((1/2)*(per/100))); //
14 td=x*100; //
```

```
15 disp(v,"velocity is (m/s)=")
16 disp(st,"stress is (N/m^2)=")
17 disp(td,"percentage change in frequency is (\%)=")
```

Scilab code Exa 8.7 frequency

```
1 //Example 7 // Frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 l=.50; // in m
7 m1=25; // in kg
8 m2=1.44*10^-3; // in kg
9 g=9.81; // in m/s^2
10 T=m1*g;
11 m=m2/l;
12 p=2;
13 n=(p/(2*1))*sqrt(T/m);
14 disp(n, "The frequency, n = ")
```

Scilab code Exa 8.8 frequency

```
1 //Example 8// frequency
2 clc;
3 clear;
4 close;
5 l1=90;//cm
6 d1=0.05;//cm
7 d2=0.0625;//cm
8 l2=60;//cm
9 n1=200;//Hz
10 n2=((l1*d1*n1)/(l2*d2));//Hz
```

```
11 disp(n2, "frequency is, (Hz)=")
```

Scilab code Exa 8.9 tension

```
1 //Example 9// tension
 2 clc;
3 clear;
4 close;
5 \text{ n21=3/2;} //
6 \text{ r21=3/4;} //
7 t1=2.048; //kg. wt
8 t2=(n21*r21)^2*t1; //kg weight
9 n31=9/4; //
10 r31=2/4;//
11 t3=(n31*r31)^2*t1; //kg-weight
12 n41=27/8;//
13 r41=1/4; //
14 t4=(n41*r41)^2*t1;//kg-weight
15 disp(t2, "tension (T2) is , (kg weight) = ")
16 \operatorname{disp}(t3," \operatorname{tension}(T3) \text{ is } (\operatorname{kg weight}) = ")
17 disp(t4,"tension (T4) is ,(kg weight)=")
```

Scilab code Exa 8.10 velocity

```
1 //Example 10// velocity
2 clc;
3 clear;
4 close;
5 l1=20;//cm
6 v1=600;//cm^-1
7 n1=v1/4;//
8 v1=2*n1*l1*10^-2;//m/sec
9 v2=sqrt(2)*v1;//m/s
```

Scilab code Exa 8.11 frequency

```
1 //Example 11// frequency
2 clc;
3 clear;
4 close;
5 nb=6;//beats
6 l1=20;//cm
7 l2=21;//cm
8 x=12/l1;//
9 n=(x*nb+nb)/(x-1);//
10 disp(n," frequency is ,(Hz)=")
```

Scilab code Exa 8.12 frequency

```
1 //Example 12// frequency
2 clc;
3 clear;
4 close;
5 nb=4;//beats
6 l1=70;//cm
7 l2=70-1;//cm
8 x=12/l1;//
9 n=(x*nb)/(1-x);//
10 disp(n, "frequency is ,(Hz)=")
```

Scilab code Exa 8.13 length

```
1 //Example 13// length
2 clc;
3 clear;
4 close;
5 n123=1/3/15; //
6 tl=105; //cm
7 l123=15/5/1; //
8 k=tl/21; //
9 l1=15*k; //cm
10 l2=5*k; //cm
11 la=k; //cm
12 disp(l1,"l1 length is ,(cm)=")
13 disp(l2,"l2 length is ,(cm)=")
14 disp(l3,"l3 length is ,(cm)=")
15 //length l2 is calculated wrong in the textbook
```

Scilab code Exa 8.14 wavelength

```
1 //Example 14// wave-length
2 clc;
3 clear;
4 close;
5 //y=ym*sin*2*%pi(nt-(x/h));//given
6 disp("wavelength is (%pi*ym)/2")
```

Scilab code Exa 8.15 FREQUENCY

```
1 //Example 15// frequency
2 clc;
3 clear;
4 close;
```

Scilab code Exa 8.16 frequency and relative amplitude

Chapter 9

Longitudinal Acoustic Waves in Air

Scilab code Exa 9.1 pressure amplitude energy density and energy lux

```
1 //Example 1 // Pressure amplitude, Energy density
      and Energy flux
2 clc;
3 clear;
4 close;
5 //given data :
6 A=1*10^-5; // in m
7 n=500; // in per sec
8 \text{ v} = 340; // \text{ in m/s}
9 p=1.29; // in kg/m<sup>3</sup>
10 Pa=2*\%pi*n*v*p*A;
11 disp(Pa, "Pressure amplitude, Pa(N/m^2) = ")
12 Ed=2*%pi^2*n^2*p*A^2;
13 disp(Ed, "Energy density, Ed(J/m^3) = ")
14 Ev = Ed * v;
15 disp(Ev, "Energy flux, Ev(J/m^2-s) = ")
```

Scilab code Exa 9.2 pressure

```
1 //Example 2// Pressure
2 clc;
3 clear;
4 close;
5 //given data :
6 gama=1.4;
7 u=10^-3; // in m/s
8 v=340; // in m/s
9 P=10^5; // in N/m^2
10 p=gama*P*u/v;
11 disp(p, "The pressure, p(N/m^2) = ")
```

Scilab code Exa 9.3 amplitude

```
1 //Example 3// The amplitude
2 clc;
3 clear;
4 close;
5 //given data :
6 n=350; // in Hz
7 v=330; // in m/s
8 p=1.293; // in kg/m^3
9 I=1*10^-6; // in W/m^2
10 A=sqrt(I/(2*%pi*n^2*p*v));
11 disp(A,"The amplitude of wave, A(m) = ")
```

Scilab code Exa 9.4 velocity wavelength and amplitude

```
1 //Example 4// Velocity, Amplitude of pressure and
    particle velocity amplitude
2 clc;
```

```
3 clear;
4 close;
5 //given data:
6 \text{ gama}=1.4;
7 P=1.013*10^5;
8 p1=1.29; // in kg/m<sup>3</sup>
9 A=2.5*10^-7; // in m
10 v=sqrt(gama*P/p1);
11 disp(v, "The velocity, v(m/s) = ")
12 n=1000; // in Hz
13 lamda=v/n;
14 disp(lamda, "Wavelength, lamda(m) = ")
15 p=p1*v*2*\%pi*n*A;
16 disp(p, "Amplitude of pressure, p(N/m^2) = ")
17 u=2*\%pi*n*A;
18 disp(u, "Particle velocity amplitude, u(m/s) = ")
```

Scilab code Exa 9.5 BULK MODULUS AMPLITUDE AND PRESSURE VARIATION

```
1 //Example 5// Amplitude
2 clc;
3 clear;
4 close;
5 //given data :
6 v=(1/3)*10^3; // in m/s
7 p=1.25; // in kg/m^3
8 E=v^2*p;
9 n=10^4; // in rad/sec
10 disp(E,"Bulk modulus of medium,E(N/m^2) = ")
11 I=10^-12; // in W/m^2
12 A=sqrt(I/(2*%pi^2*n^2*p*v));
13 disp(A,"Amplitude of wave,A(m) = ")
14 P=sqrt(2*I*p*v);
15 disp(P,"Pressure amplitude,P(N/m^2) = ")
```

Scilab code Exa 9.6 velocity

```
//Example 6// Root mean squre velocity
clc;
clear;
close;
//given data :
vs=330;// in m/s
gama=1.41;
c=round(sqrt(3/gama)*vs);
disp(c,"The root mean square velocity of modulus,c(m/s) = ")
```

Scilab code Exa 9.7 power

Scilab code Exa 9.8 intensity level

```
1 //Example 8// Acoustic intensity level
2 clc;
3 clear;
4 close;
5 //given data :
6 Pr=3; // in W
7 r=15; // in m
8 I=Pr/(4*%pi*r^2); // in W/m^2
9 I0=10^-12; // in W/m^2
10 L=round(10*log10(I/I0));
11 disp(L," Acoustic intensity level, L(dB) = ")
```

Scilab code Exa 9.9 frequency

```
1 //Example 9// frequency
2 clc;
3 clear;
4 close;
5 n2=200; // second^-1
6 121=2; //
7 f=121*n2; //
8 disp(f, "frequency is ,(second^-1)=")
```

Scilab code Exa 9.10 length

```
1 //Example 10// length
2 clc;
3 clear;
4 close;
5 l1=66;//cm
6 v=330;//m/s
```

```
7 nbs=5; //beats/sec

8 x=(2*(v-(nbs*2*11*10^-2))/(v*2*11*10^-2)); //

9 12=1/x; //cm

10 disp(12*100, "length is,(cm)=")
```

Scilab code Exa 9.11 fundamental frequency and length

```
1 //Example 11// length
2 clc;
3 clear;
4 close;
5 f=110;//Hz
6 v=330;//m/s
7 l=v/(2*f);//m
8 disp(f,"fundamental frequency is,(Hz)=")
9 disp(1,"length is ,(m)=")
```

Scilab code Exa 9.12 wave equation frequency amplitude wavelength and distance

```
11 disp(1/T, "frequency is ,(Hz)=")
12 disp(h, "wavelength is ,(cm)=")
13 db=h/2;//
14 disp(db, "distance between consecutive antinodes is ,(cm)=")
```

Scilab code Exa 9.13 length pressure amplitude

```
1 //Example 13// length, amlitude, pressure
2 clc;
3 clear;
4 close;
5 f = 440; //Hz
6 \text{ v} = 330; //m/s
7 1=((5*v)/(4*f))*100;/cm
8 \operatorname{disp}(1, "\operatorname{length}(L) \text{ is } , (\operatorname{cm}) = ")
9 ang=cos((2*%pi)/8);//
10 disp("maximum pressure variation is at node =
                                                           Po*
      +string(ang)+" and minimum at antinode =0")
11 pmax=0;//
12 pmin=0;//
13 disp("at antinode pressure variation is Pmax="+
      string(pmax)+" and Pmin= "+string(pmin)+"")
```

Chapter 10

Waves in Solids Waves in Solids

Scilab code Exa 10.1 youngs modulus

```
1 //Example 1 // Young's modulus of steel
2 clc;
3 clear;
4 close;
5 //given data :
6 p=7.8*10^3; // in kg/m^3
7 v=5200; // m/s
8 Y=p*v^2;
9 disp(Y,"Young modulus of steel,Y(N/m^2) = ")
```

Scilab code Exa 10.2 wavelength and velocity

```
1 //Example 2 // Velocity and wavelength
2 clc;
3 clear;
4 close;
5 //given data :
6 Y=8*10^10; // in N/m^2
```

```
7 p=5000; // in kg/m<sup>3</sup>
8 v=sqrt(Y/p);
9 disp(v,"(1). The velocity, v(m/s) = ")
10 f=400; // in vibration/sec
11 lamda=v/f;
12 disp(lamda,"(2). The wavelength,(m) = ")
```

Scilab code Exa 10.3 velocity and wavelength

```
1 //Example 3 // Velocity and wavelength
2 clc;
3 clear;
4 close;
5 //given data :
6 Y=7*10^10; // in N/m^2
7 p=2.8*10^3; // in kg/m^3
8 v=sqrt(Y/p);
9 disp(v,"(1). The velocity, v(m/s) = ")
10 f=500; // in vibration/sec
11 lamda=v/f;
12 disp(lamda,"(2). The wavelength,(m/s) = ")
```

Scilab code Exa 10.4 youngs modulus

```
1 //Example 4 // Young's modulus
2 clc;
3 clear;
4 close;
5 //given data :
6 l=3;// in m
7 n=600;// in Hz
8 p=8.3*10^3;// in kg/m^3
9 Y=p*n^2*(2*1)^2;
```

```
10 disp(Y, "Youngs modulus, Y(N/m^2) = ")
```

Scilab code Exa 10.5 frequency

```
1 //Example 5 // Frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 Y=2*10^11; // in N/m^2
7 p=8*10^3; // in kg/m^3
8 l=0.25; // in m
9 n=sqrt(Y/p)/(2*1);
10 disp(n, "The frequency, n(vibrations/s) = ")
```

Scilab code Exa 10.6 AREA

```
1 //Example 6 // Area of cross section
2 clc;
3 clear;
4 close;
5 //given data :
6 n1BYn2=20;
7 T=20*9.8; // in N
8 Y=19.6*10^10; // in N/m^2
9 alfa=n1BYn2^2*T/Y;
10 disp(alfa, "Area of cross section, alfa(m^2) = ")
```

Scilab code Exa 10.7 velocity

```
1 //Example 7 // Velocity and Young modulus
2 clc;
3 clear;
4 close;
5 //given data :
6 n=2600; // in Hz
7 l=1; // in m
8 p=7.8*10^3; // kg/m^3
9 v=2*n*1;
10 disp(v, "The velocity, v(m/s) = ")
11 Y=v^2*p;
12 disp(Y, "Youngs modulus, Y(N/m^2) = ")
```

Scilab code Exa 10.8 frequency

```
1 //Example 8 // Frequencies
2 clc;
3 clear;
4 close;
5 //given data :
6 Y=7.1*10^10; // in N/m^2
7 p=2700; // \text{in kg/m}^3
8 1=1.5; // in m
9 r1=1;
10 \text{ r2=3};
11 \text{ r3=5};
12 n1=(r1/(4*1))*sqrt(Y/p);
13 n2=(r2/(4*1))*sqrt(Y/p);
14 n3=(r3/(4*1))*sqrt(Y/p);
15 disp(n1, "frequency of first harmonic, n1(Hz) = ")
16 disp(n2, "frequency of first harmonic, n1(Hz) = ")
17 disp(n3, "frequency of first harmonic, n1(Hz) = ")
```

Scilab code Exa 10.9 frequency

```
1 //Example 9 // Frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 l=1.2; // in m
7 v=5150; // in m/s
8 d=0.006; // in m
9 k=d/sqrt(12);
10 v1=%pi*v*k*3.011^2/(8*1^2);
11 disp(v1,"The frequency, v1(Hz) = ")
```

Scilab code Exa 10.10 frequency

```
1 //Example 10 // Frequencies
2 clc;
3 clear;
4 close;
5 //given data :
6 1=2; // in m
7 v = 3560; // in m/s
8 r = 0.004; // in m
9 \text{ k=r/2};
10 v1 = \%pi * v * k * 3.011^2/(8 * 1^2);
11 disp(v1, "The frequency, v1(Hz) = ")
12 v2=\%pi*v*k*5^2/(8*1^2);
13 disp(v2, "The frequency of first overtone, v2(Hz) = ")
14 v3=\%pi*v*k*7^2/(8*1^2);
15 disp(v3, "The frequency of second overtone, v3(Hz) = "
      )
```

Scilab code Exa 10.11 frequency

```
1 //Example 11 // Frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 Y=7.1*10^10; // in N/m^2
7 p=2.7*10^3; // in kg/m^3
8 r=0.005; // in m
9 vu=sqrt(Y/p);
10 k=r/2;
11 v=vu/(2*%pi*k);
12 disp(v," The frequency, v(Hz) = ")
```

Lissajous Figures

Scilab code Exa 11.1 frequency

```
1 //Example 1// Frequencies
2 clc;
3 clear;
4 close;
5 //given data :
6 t=2;// in sec
7 n1=100;// in vibrations/sec
8 n2a=n1+(1/t);
9 n2b=n1-(1/t);
10 disp(n2a, "frequency, n2a= ")
11 disp(n2b, "frequency, n2b = ")
```

Scilab code Exa 11.2 frequency

```
1 //Example 2// Frequencies
2 clc;
3 clear;
4 close;
```

```
5 //given data :
6 t1=15; // in sec
7 t2=10; // in sec
8 n2=400; // in vibrations/sec
9 n1a=n2+(1/t1);
10 n1b=n2-(1/t1);
11 disp(n1a, "frequency, n1a(Hz) = ")
12 disp(n1b, "frequency, n1b(Hz) = ")
13 n_1a=n2+(1/t2);
14 n_1b=n2-(1/t2);
15 disp(n_1a, "frequency, n_1a(Hz) = ")
16 disp(n_1b, "frequency, n_1b(Hz) = ")
```

Scilab code Exa 11.3 frequency

```
1 //Example 3// Frequencies
2 clc;
3 clear;
4 close;
5 //given data :
6 t1=15; // in sec
7 t2=10;// in sec
8 n2=256;// in vibrations/sec
9 n1a=(2*n2)+(1/t1);
10 n1b = (2*n2) - (1/t1);
11 disp(n1a, "frequency, n1a(Hz) = ")
12 disp(n1b, "frequency, n1b(Hz) = ")
13 n_1a = (2*n2) + (1/t2);
14 n_1b = (2*n2) - (1/t2);
15 disp(n_1a, "frequency, n_1a(Hz) = ")
16 disp(n_1b, "frequency, n_1b(Hz) = ")
```

Dopplers Effect

Scilab code Exa 12.1 speed

```
1 //Example 1// Speed
2 clc;
3 clear;
4 close;
5 //given data :
6 vl=166; //m/s
7 v=(2*vl); //m/s
8 disp(v, "speed is ,(m/s)")
```

Scilab code Exa 12.2 frequency

```
1 //Example 2// frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 f1=90; //vibrations/second
7 f2=(1+(1/10))*f1; //vibrations/s
8 disp(f2," frequency is ,(vibrations/s)=")
```

Scilab code Exa 12.3 frequency

```
//Example 3// frequency
clc;
clear;
close;
//given data :
N=400;//hZ
V=340;//M/S
VS=60;//M/S
N2=((V/(V-VS))*N);//Hz
disp(round(N2), "frequency when engine is approaching to the listner is,(Hz)=")
N3=((V/(V+VS))*N);//Hz
disp(N3, "frequency when engine is moving away from the listner is,(Hz)=")
```

Scilab code Exa 12.4 wavelength

```
1 //Example 4//WAVELENGTH
2 clc;
3 clear;
4 close;
5 x=1/5;//
6 h=60;//cm
7 h1=((1-x)*h);//cm
8 h2=((1+x)*h);//cm
9 disp(h1,"wavelength of waves in north-direction is,(cm)=")
10 disp(h2,"wavelength of waves in south-direction is,(cm)=")
```

Scilab code Exa 12.5 frequency

```
1 //Example 5//frequency
2 clc;
3 clear;
4 close;
5 \text{ v} = 340; //m/s
6 n = 600; //Hz
7 vs=36; //\text{km h}^-1
8 vs1=vs*(1000/3600); //m/s
9 apf = ((v)/(v-vs1))*n; //Hz
10 vs2=54; //\text{km h}^-1
11 vs3=vs2*(1000/3600); //m/s
12 apf1=((v)/(v+vs3))*n;//Hz
13 disp("two apparent frequencies are "+string(apf)+"
      Hz and "+string(apf1)+" Hz")
14 df = apf - apf1; //Hz
15 disp(df," difference in frequencies is (Hz)=")
16 //second apparent frequency and difference is
      calculated wrong in the textbook
```

Scilab code Exa 12.6 frequency

```
1 //Example 6//frequency
2 clc;
3 clear;
4 close;
5 v=330; //m/s
6 n=500; //Hz
7 vs=30; //km h^-1
8 vs1=vs*(1000/3600); //m/s
9 n3=((v+vs1)/(v-vs1))*n; //Hz
```

```
10 disp(round(n3), "frequency when cars are approaching
    is ,(Hz)=")
11 n1=((v-vs1)/(v+vs1))*n;//Hz
12 disp(round(n1), "frequency when cars have crossed is
    ,(Hz)=")
```

Scilab code Exa 12.7 frequency

```
//Example 7//frequency
clc;
clear;
close;
v=330;//m/s
n=600;//Hz
vs=20;//m/s
apf=((v)/(v+vs))*n;//Hz
disp(round(apf), "frequency when source is moving away from the observer is ,(Hz)=")
apf1=((v)/(v-vs))*n;//Hz
disp(round(apf1), "frequency when siren reaching at the cliff is ,(Hz)=")
bf=apf1-apf;//Hz
disp(round(bf), "beat frequency is ,(Hz)=")
```

Scilab code Exa 12.8 frequency

```
1 //Example 8//frequency
2 clc;
3 clear;
4 close;
5 r=3;//m
6 w=10;//s^-1
7 vs=r*w;//m/s
```

```
8 A=6; //m
9 fd=5/%pi; //s^-1
10 vmax=A*2*%pi*fd; //m/s
11 v=330; //m/s
12 n=340; //Hz
13 nmax=((v+vmax)/(v-vs))*n; //Hz
14 nmin=((v-vmax)/(v+vs))*n; //Hz
15 disp(nmax, "maximum frequency is ,(Hz)=")
16 disp(nmin, "minimum frequency is ,(Hz)=")
```

Scilab code Exa 12.9 speed

```
1 //Example 9//speed
2 clc;
3 clear;
4 close;
5 n12=3;//
6 n=340;//Hz
7 v=340;//m/s
8 vs=((n12*v)/(2*n));//m/s
9 disp(vs,"speed is ,(m/s)=")
```

Scilab code Exa 12.10 frequency

```
1 //Example 10//frequency
2 clc;
3 clear;
4 close;
5 sa=1.5; //km
6 oa=1; //km
7 so=sqrt(oa^2+sa^2); //km
8 csd=sa/so; //
9 v=0.33; //km/s
```

```
10    n=400; //Hz
11    vlov=120*(1000/3600); //m/s
12    vs1=(1/30)*csd; //km/s
13    nd=((v)/(v-vs1))*n; // vibrations/sec
14    disp(round(nd), "apparent frequency is, (vibrations/second)=")
```

Scilab code Exa 12.11 frequency and distance

```
1 //Example 11//frequency
2 clc;
3 clear;
4 close;
5 v = 1200; //km/h
6 w = 40; //km/h
7 vs = 40; //km/h
8 n=580; //Hz
9 nd = ((v+vs)/((v+vs)-vs))*n; //Hz
10 disp(nd, "frequency of the whistle as heared by an
      observer on the hill is (Hz)=")
11 x = 29/30; //km
12 disp(x*1000, "distance is , (m)=")
13 ndd = ((v-w)+vs)/((v-w))*nd; //Hz
14 disp(ndd, "frequency heared by driver is, (Hz)=")
15 // distance is calculated wrong in the textbook
```

Scilab code Exa 12.12 Doppler shift and velocity

```
1 //Example 12//doppler shift and velocity
2 clc;
3 clear;
4 close;
5 h1=6010;//
```

```
6 h2=6000; //
7 ds=h1-h2; //
8 disp(ds, "doppler shift is ,( )=")
9 c=3*10^8; //m/s
10 v=((ds/h2)*c); //m/s
11 disp(v, "speed is ,(m/s)=")
```

Scilab code Exa 12.13 velocity

```
1 //Example 13//doppler shift and velocity
2 clc;
3 clear;
4 close;
5 h1=3737;//
6 h2=3700;//
7 ds=h1-h2;//
8 disp(ds,"doppler shift is ,( )=")
9 c=3*10^8;//m/s
10 v=((ds/h2)*c);//m/s
11 disp(v,"speed is ,(m/s)=")
12 //speed is calculated wrong in the textbook
```

Scilab code Exa 12.14 speed

```
1 //Example 14//speed
2 clc;
3 clear;
4 close;
5 dv=10^3;//Hz
6 v=5*10^9;//Hz
7 c=3*10^8;//m/s
8 v=((dv)/(2*v))*c;//m/s
9 disp(v,"velocity is ,(m/s)=")
```

Elementary Theory of Filters

Scilab code Exa 13.1 inductance and capacitance

```
1 //Example 1 // design loss pass constant K-filter
2 clc;
3 clear;
4 close;
5 k=600;//ohms
6 fc=2500;//Hz
7 l=(k/(%pi*fc));//H
8 c=((1/(%pi*fc*k)));//farad
9 disp(1*10^3,"inductance is ,(mH)=")
10 disp(c*10^6,"capacitance is ,(micro-F)=")
```

Scilab code Exa 13.2 inductance and capacitance

```
1 //Example 2 // T-type band pass filter
2 clc;
3 clear;
4 close;
5 //given data :
```

```
6 K=500; // in ohm
7 f1=4; // in kHz
8 f2=1; // in kHz
9 L1=K/(%pi*(f1-f2));
10 Ls=L1/2;
11 disp(Ls, "Inductance in each series arm, Ls(mH) = ")
12 C1=(f1-f2)*10^3/(4*%pi*K*f1*f2);
13 Cs=2*C1;
14 disp(Cs, "Capacity in each series arm, Cs(micro-F) = ")
15 L2=((f1-f2)*K)/(4*%pi*f1*f2);
16 disp(L2, "Shunt arm inductance, L2(mH) = ")
17 Csh=1*10^6/(%pi*(f1-f2)*10^3*K);
18 disp(Csh, "Capacity in shunt arm, Csh(micro-F) = ")
```

Ultrasonics

Scilab code Exa 14.1 frequency

```
1 //Example 1 // Fundamental frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 t=1.6*10^-3; // in m
7 lamda=2*t; // in m
8 v=5760; // in m/s
9 n1=v*10^-6/lamda;
10 disp(n1, "Fundamental frequency, n1(MHz) = ")
```

Scilab code Exa 14.2 Length

```
1 //Example 2 // distance
2 clc;
3 clear;
4 close;
5 //given data :
```

```
6 th=40; //cm

7 t1=30; //micro-seconds

8 t2=80; //micro seconds

9 x=((2*th*10^-2*t1*10^-6)/(2*t2*10^-6))*100; //cm

10 disp(x,"distance is ,(cm)=")
```

Scilab code Exa 14.3 thickness

```
1 //Example 3 // Thickness
2 clc;
3 clear;
4 close;
5 //given data :
6 v=5000; // in m/s
7 N=50000; // in Hz
8 t=v/(2*N);
9 disp(t, "Thickness of steel plate, t(m) = ")
```

Scilab code Exa 14.4 capacitance

```
1 //Example 4 // Capacitance
2 clc;
3 clear;
4 close;
5 //given data :
6 L=1; // in H
7 n=10^6; // in Hz
8 C=1*10^12/(4*%pi^2*n^2*L);
9 disp(C,"The capacitance, C(micro-F) = ")
```

Musical Sound and Acoustic of Bulidings

Scilab code Exa 15.1 levels by which intensity will decrease

```
//Example 1 // decibles
clc;
clc;
clear;
close;
//given data :
i1=4;//assume
i2=4*i1;//
dl=10*log10(i2/i1);//db
disp(dl,"decibles by which intensity level will decrease is ,(db)=")
```

Scilab code Exa 15.2 ratio of amplitudes

```
1 //Example 2 // ratio of amlitudes
2 clc;
3 clear;
```

```
4 close;
5 //given data:
6 l1=10;//db
7 l2=40;//db
8 dl=12-11;//db
9 x=(10^(dl/10));//
10 x1=sqrt(x);//
11 disp(x1,"ratio of amplitudes is ,=")
```

Scilab code Exa 15.3 frequency

```
1 //Example 3 // frequency
2 clc;
3 clear;
4 close;
5 //given data :
6 x=264; //key note
7 g=x*(3/2); //
8 disp(g,"frequency of note G is ,=")
9 cd1=x*2; //
10 disp(cd1,"frequency of note C is ,=")
```

Electromagnetic Waves

Scilab code Exa 17.1 poynting vector

```
1 //Example 1 // magnitude
2 clc;
3 clear;
4 close;
5 //given data :
6 R=7*10^8; // in m
7 P=3.8*10^26; // in Watt
8 S=P/(4*%pi*R^2);
9 disp(S,"Magnitude of poynting vector, S(W/m^2) = ")
```

Scilab code Exa 17.2 poynting vector

```
1 //Example 2 // Poynting vector
2 clc;
3 clear;
4 close;
5 //given data :
6 R=1.5*10^11; // in m
```

```
7 P=3.8*10^26; // in Watt

8 S=P/(4*%pi*R^2); // in W/m^2

9 Se=round(S*60/(4.2*10^4));

10 disp(Se, "Poynting vector, Se(cal/cm^2 -min) = ")
```

Scilab code Exa 17.3 amplitudes of electric and magnetic field radiation

```
1 //Example 3 // Amplitude and magnetic field
2 clc;
3 clear;
4 close;
5 //given data :
6 S=2; // in cal/cm<sup>2</sup>- min
7 EH=S*4.2*10^4/60; // joule/m^2 sec
8 \text{ mu0}=4*\%\text{pi}*10^-7;
9 epsilon0=8.85*10^-12;
10 EbyH=sqrt(mu0/epsilon0);
11 E=sqrt(EH*EbyH);
12 H=EH/E;
13 E0=E*sqrt(2);
14 H0=H*sqrt(2);
15 disp(E, "E is , (V/m)=")
16 \operatorname{disp}(H,"H \text{ is },(Amp-turn/m)=")
17 disp(E0, "Amplitude of electric fields of radiation,
      E0(V/m) = ")
18 disp(HO, "Magnetice field of radition, HO(Amp-turn/m)
       = ")
```

Scilab code Exa 17.4 amplitudes of electric and magnetic field radiation

```
1 //Example 4 // electric and magnetic field
2 clc;
3 clear;
```

```
4 close;
5 //given data :
6 r=2; // in m
7 mu0=4*%pi*10^-7;
8 epsilon0=8.85*10^-12;
9 EbyH=sqrt(mu0/epsilon0);
10 EH=1000/(4*r^2*%pi^2); // in W/m^2
11 E=sqrt(EH*EbyH);
12 H=(EH/E);
13 disp(E,"Intensities of electric, E(V/m) = ")
14 disp(H,"Magnetic field of radiation, H(Amp-turn/m) = ")
```

Scilab code Exa 17.5 polarisation degree

```
//Example 5 // Degree of polarization
clc;
clcar;
close;
//given data :
thetai=45;// in degree
n=1.5;/// index
thetar=asind(sind(thetai)/n);
Rl=sind(thetai-thetar)^2/sind(thetai+thetar)^2;
Rp=tand(thetai-thetar)^2/tand(thetai+thetar)^2;
P=((Rl-Rp)/(Rl+Rp))*100;
disp(D,"Degree of polarization,D(%) = ")
// answer is wrong in the textbook
```

Scilab code Exa 17.6 frequency

```
1 //Example 6 // Frequency
2 clc;
```

```
3 clear;
4 close;
5 //given data :
6 del=1;// in m
7 mu=4*%pi*10^-7;// in H/m
8 sigma=4;// in siemen/m
9 v=1*10^-3/(%pi*del^2*mu*sigma);
10 disp(v,"Frequency, v(kHz) = ")
```