BINARY REGRESSION

The response voriable Yi is a binary r.v. (takes only 2 values).

This kind of setting can be found in various studies: the 2 states can represent, e.g.,

presence / absence, success/failure, asive/dead, ...

The date can be organized into 2 different forms:

1. UNGROUPED: the response vector is the output of each stanimized unit => E {0,1}

2. CROUPED: if for each combination of the covariates 1 observe several units, it is possible

to aggregate the date by summing the # of 1 and 0 for each combination.

(grouped date can be converted to the unprouped form)

Example: Beetle data. Study on the efficiety of a beetle poison for killing beetles

X: = (Cog) dox of poison

unprouped data: Tie f0,17 Yi = 50 if the i-th beetle is alike

dead / alive	o	1	•••	٥	0		1	•••	1		•	1	
ed (qor)	1.69	1.69	•••	1,69	1.72	Lu	1.72	.u	1.8	ß	1.88	1.89	

The experiment has been run on several beetles for every dox: I can count how many beetles are dead at alive for each level. I obtain the grouped data

# killed (1)	6	13	•••	60
# alive (o)	<i>5</i> 3	47	•••	0
log (dose)	1.69	1.724		1. 93

notice: The number of beetles for each level of hi need not be the same

For the ungrouped date, a reasonable model is the Bernoulli

Y ~ Bern(T)

- parameter space: $\pi \in [0,1]$ $\pi = P(Y=1)$ is a probability
- · support: y = {0,1}
- probability mass function $P(y \mid \pi) = P(Y = y) = \pi^y (4-\pi)^{4-y}$
- moments: $E[Y] = \pi$, $vor(Y) = \pi (\lambda \pi)$

For the grouped data, we would use a binomial (more about it cater).

- · BINARY REGRESSION: ASSUMPTIONS with ungrouped data
- 1. Yi ~ Bernoulli (Ti) independent i= 1,..., n

hence $\pi i = \mathbb{E}[Y_i] = \mathbb{P}(Y_i = 1), \quad \pi i \in [0,1]$

- 2 7 = Bxxxx + ... + Bxxp = 20 B
- 3. 9(Ti)= 7:

Remorks:

· LINK FUNCTION

GLHs model the HEAN of the distribution: here IE[Y:] = Ti, which is also IP(Y:=1).

 π : is a probability $\Rightarrow \pi$: e[0,1]. However, $\eta: \in \mathbb{R} \to q$ should be a function that maps $[0,1] \to \mathbb{R}$, invertible (and differentiable). For simplicity, it is usually assumed monotone increasing. Common choices one

- $g(\pi i) = \Theta g(\frac{\pi i}{1-\pi i})$ LOGISTIC function (hence the "Espishic repression": this is the cononical link)

 (inverse of the distribution function of the Espishic distribution)
- $q(\pi_i) = \Phi^{-1}(\pi_i)$ PROBIT Junction, where Φ is the distribution function of a Gaussian differ
- · VARIANCE

The Bernoulli distribution assumes $Von(Y_i) = \pi_i(1-\pi_i) = \mathbb{E}[Y_i](1-\mathbb{E}[Y_i])$. Hence, again, the random variables are not honoscedestic.