Probabilistic graphical models, Assignment 3

Siddharth Bhat (20161105)

March 21st, 2020

6.8, Q1:

Monotonicity of VC dimension

Let $\mathcal{H}' \subseteq \mathcal{H}$. Show that $VCdim(\mathcal{H}') \leq VCdim(\mathcal{H})$.

Answer

Recall that the definition of VCdimis is that $VCdim(\mathcal{H})$ is the maximal size of a set $C \subseteq \mathcal{X}$ which can be *shattered* by \mathcal{H} .

Expanding the definition of shattering, we get that the $VCdim(\mathcal{H})$ is the maximal size of any set $C \subseteq X$ such that \mathcal{H} restricted to C is the set of all functions from C to $\{0, 1\}$.

Now, If $C \subseteq \mathcal{X}$ is shattered by $\mathcal{H}' \subseteq \mathcal{H}$, then this means that:

$$|\{f|_C: f \in H'\}| = 2^{|C|}$$

Since $\mathcal{H}' \subseteq \mathcal{H}$, we can replace \mathcal{H}' with \mathcal{H} in the above formula to arrive at:

$$|\{f|_C: f \in H\}| = 2^{|C|}$$

So, clearly, $VCdim(\mathcal{H}') \leq VCdim(\mathcal{H})$. However, there might be a set that is *larger* than C that can be shattered by \mathcal{H} . This lets us get the strict equality $VCdim(\mathcal{H}) < VCdim(\mathcal{H})$ in certain cases — that is, we *cannot* assert that $VCdim(\mathcal{H}) \leq VCdim(\mathcal{H}')$. For example, if we choose $\mathcal{H}' = \emptyset$ where \mathcal{H} is a hypothesis class with $VCdim(\mathcal{H}) = 1$. Then $VCdim(\emptyset) = 0 < 1 = VCdim(\mathcal{H})$.

6.8, Q2:

Given a finite domain \mathcal{X} , and a finite number $k \leq |\mathcal{X}|$ s, find and prove the VC dimension of:

A. Functions that assign 1 to exactly k elements of \mathcal{X}

$$\mathcal{H} \equiv \left\{ h \in \{0,1\}^X : |\{x : h(x) = 1\}| = k \right\}.$$

Solution

There are three cases which we will prove:

$$VCdim(\mathcal{H}) = \begin{cases} 0 & k = 0\\ 0 & k > 0, |\mathcal{X}| < 2k\\ k & k > 0, |\mathcal{X}| \ge 2k \end{cases}$$

Case 1. k = 0 When k = 0, we can express only a single function: $zero: \mathcal{X} \to \{0, 1\}; zero(_) = 0$. Hence, we can only represent the empty set. So, we can shatter no set that is larger than the empty set. Therefore, $VCdim(\mathcal{H}) = 0 \square$.

Case 2. $k > 0 \land |\mathcal{X}| < 2k$ If $k \neq 0$, Then let $S \subseteq \mathcal{X}$ such that S is shattered by \mathcal{H} . However, note that we must be able to express the function $f: S \to \{0,1\}$; $f(_) = 0$ using the hypothesis $h_S \in \mathcal{H}$. However, h_S must have $k \neq 0$ entries of 1, which f does not have. Therefore, h_S could not have shattered S. \square .

Case 3. $k > 0 \land |\mathcal{X}| \ge 2k$ Let us say we are trying to shatter $S \subseteq X, |S| = k$. In this case, for any given subset $T \subseteq S$, T will have at most k elements. We will create a numbering called $count: X/S \to \mathbb{N}$, which enumerates elements of X/S in some arbitrary order. Note that the image of count is guaranteed to have $at\ least\ k\ elements$ — this will be important for our correctness proof. We will now build a hypothesis $h_T: \mathcal{X} \to \{0,1\}$ which classifies this subset T correctly:

$$h_T(x) \equiv \begin{cases} 1 & x \in T \\ 1 & x \in X/S \land count(x) \le k - |T| \\ 0 & \text{otherwise} \end{cases}$$

This function h_T clearly assigns values correctly to elements $x \in S$. For elements outside of S, it arbitrarily marks k - |T| of them 1, to comply with the requirement that $h \in \mathcal{H}$ must have k 1s. For this to work out, we need to have enough elements in X/S. In the worst case when $T = \emptyset$, we will need $k - |\emptyset| = k$ elements in X/S.

B. Functions that assign 1 to at most k elements of \mathcal{X}

Solution

In this case, the VC dimension is $\max(|X|, k)$ since we can only represent subsets of size upto k. VC dimension is k.

6.8, Q3:

Let \mathcal{X} be the boolean hypercube $\{0,1\}^n$. We define parity to be:

$$h_I: \mathcal{X} \to \{0, 1\}; h_I((x_1, x_2, \dots, x_n)) \equiv \sum_{i \in I} (x_i) \mod 2$$

What is the VC dimensions of the set of all parity functions? That is,

$$\mathcal{H}_{parity,n} \equiv \{h_I : I \subseteq \{1, 2, \dots n\}\}$$

Solution

Once again, unwrapping the definition, our hypothesis class can compute the sum modulo 2 of all of the subsets of $\vec{x} \in \mathcal{X}$. We need to use this to find the largest set $C \subseteq \mathcal{X} \equiv \{0,1\}^n$ such that $|\mathcal{H}_C| = 2^{|C|}$.

We can interpret elements $(h \in H)$ as a vector $h_I \in \{0,1\}^n$, where h_I is a vector with 1's at each index $i \in I$, and 0 at other indexes. That is:

$$h_I \in \{0,1\}^n$$
 $h_I[i] \equiv \mathbb{1}[i \in I] = \begin{cases} 1 & i \in I \\ 0 & \text{otherwise} \end{cases}$

We can reinterpret the function $h_I(x)$ as $h^T x$ where we have a vector space over the galois field GF_2 , where \oplus denotes XOR (recall that addition mod 2 is XOR).

$$h_I(x) = \bigoplus_{i \in I} x_i = \bigoplus_{i=1}^n \mathbb{1}[i \in I] x_i = \bigoplus_{i=1}^n h_I[i] x[i] = h_I^T x$$

Now, we can reinterpret the question of finding the VC dimension as finding the largest collection of vectors $C \subseteq \mathcal{X} = \{0,1\}^n$ such that the function C_{act} has full image, where the function C_{act} is:

$$C_{act}: \mathcal{H} \to \{0,1\}^{|C|}$$

$$C_{act}: \{0,1\}^n \to \{0,1\}^{|C|}$$

$$C_{act}(h) \equiv (h(c_0), h(c_1), h(c_2), \dots h(c_n))$$

$$= (h^T c_0, h^T c_1, \dots, h^T c_n)$$

$$= h^T (c_0, c_1, \dots c_n)$$

If we regard $(c_0, c_1, c_2, \dots c_n) \subseteq \mathbb{R}^{n \times |C|}$ as a matrix, then we can see that C_{act} is a linear function.

Now, if the set C shatters \mathcal{H} , then:

- 1 The function C_{act} will produce every element in $\{0,1\}^{|C|}$
- 2 the function C_{act} will have full image.
- 3 This is only possible when the dimension of the domain is less than or equal to the dimension of the range.
- 4 the largest set that can be shattered is the largest matrix $C \subseteq R^{n \times |C|}$ such that the function C_{act} has full range.

- 5 Thus, $|C| \leq n$ for C_{act} to have full range.
- 6 We can achieve |C| = n by picking $C = I_{n \times n}$. In other words, the element c_i will be the ith row of the identity matrix. That is $c_i[j] = \mathbb{1}[i=j] = \begin{cases} 1 & \text{i} = \text{j} \\ 0 & \text{otherwise} \end{cases}$. Clearly, this C is shattered since the function C_{act} is the identity function which will produce every single output in $\{0,1\}^{|C|} = \{0,1\}^n = \{0,1\}^{|\mathcal{H}|}$.
- 7 |C| = n is the largest possible, since C_{act} is a function, and the size of its image is at most the size of the domain. Since the domain \mathcal{H} has 2^n elements, the image too can have at most 2^n elements, which it does when |C| = n, since $|\{0,1\}^{|C|}| = 2^{|C|}$.
- 7.5 |C| = n is the largest possible, since C_{act} is linear. For a linear function to be surjective, we need Dim(domain)Dim(range). Hence, $Dim(Domain) = Dim(\mathcal{H}) = n \geq Dim(range) = Dim(\{0,1\}^{|C|}) = c$. That is, $n \geq |C|$.

Hence, we conclude that $VCdim(\mathcal{H}) = n$.

6.8, Q5:

Let \mathcal{H}^d be the class of axis-aligned bounding boxes in \mathbb{R}^d . Show that the VC dimensions of \mathcal{H}^d is 2d.

Solution

Formally, we have

$$h_{\vec{l},\vec{r}}(\vec{p}) \equiv \begin{cases} 1 & l[i] \leq p[i] \leq r[i] \text{ for all } i \in \{1,2,\ldots,n\} \\ 0 & \text{otherwise} \end{cases} \qquad \mathcal{H}^d \equiv \left\{ h_{\vec{l},\vec{r}} : \mathbb{R}^d \to \{0,1\} \mid \forall \vec{l},\vec{r} \in \mathbb{R}^d \right\}$$

We claim that the set of points:

$$\begin{split} S &\equiv S^+ \cup S^- \\ S^+ &\equiv \{p[i] = 2; p[j \neq i] = 0 : i \in [d], p \in \mathbb{R}^d\} \\ S^- &\equiv \{p[i] = -2; p[j \neq i] = 0 : i \in [d], p \in \mathbb{R}^d\} \end{split}$$

shatters the hypothesis class \mathcal{H}^d .

 H^d shatters S: We first show that H^d restricted to S expresses all functions $S \to \{0,1\}$. Note that the set S has 2d points. We will consider the d subspaces, indexed by $i \in \{1, \dots\}$. We will build some notation for this consideration:

$$S[i, pos] \in S;$$
 $S[i, pos] \equiv p[i] = 2; p[j \neq i] = 0 : p \in \mathbb{R}^d$
 $S[i, neg] \in S;$ $S[i, neg] \equiv p[-i] = -2; p[j \neq i] = 0 : p \in \mathbb{R}^d$
 $S[i, :] \subseteq S;$ $S[i, :] \equiv \{S[i, pos] \cup S[i, neg]\}$

For all classifications $c: S \to \{0,1\}$, we will show how to build a hypothesis $BB_v \in \mathcal{H}^d$ such that $BB_c(s) = c(s) \forall s \in S$. For each subset S[i,:], we will build up a bounding box in $BB_c^i \in \mathcal{H}^d$. We will then show that the convex hull of all bounding boxes $conv(BB_c^1, \ldots, BB_c^n)$ is the BB_c we are looking for: $BB_c = conv(BB_c^1, \ldots, BB_c^n)$.

We first describe the BB_c^i :

$$BB_c^i: \mathcal{H}^d \equiv conv\bigg(c(S[i,neg])*S[i,neg]), c(S[i,pos])*S[i,pos]\bigg)$$

That is, we try to cover the points which have c(S[i]) = 1 with a convex hull. If a point is not covered, then we will use $0 \times \vec{p} = \vec{0}$. If a point is indeed covered, then we use $1 \times \vec{p} = \vec{p}$ (the point itself). We then take the convex hull of these. Thus, BB_v^i only contains those points in S[i,:] that need to be covered.

Claim 1: each BB_c^i classifies S[i,:] according to c immediate from construction.

Claim 2: The convex hull of correct classifiers of BB_v^i classifies S: Consider some point S[i, pos] (a similar argument will hold for S[i, neg]). We know from Claim 1 that BB_c^i correctly classifies S[i, pos]. The other classifiers BB_c^j cannot influence what happens in the i dimension, since they only attempt to cover the value 0 along dimension i. It is only BB_c^i that can "expand" the cover in dimension i to cover S[i, pos]. Hence, the full convex hull will indeed cover the points of interest.

 H^d cannot shatter 2d+1:

We are given a set $S \subseteq X.|S| = 2d + 1$ into $S[i, pos], S[i, neg], S[\star]$. We define:

$$\begin{split} S[i,pos] &\equiv \arg\max_{p \in S} p[i] \quad \text{(point with max. value in i dimension)} \\ S[i,neg] &\equiv \arg\min_{p \in S} p[i] \quad \text{(point with min. value in i dimension)} \\ S[\star] &\equiv s \in S, s \neq S[i,pos], s \neq S[i,neg] \text{ for all $i \in \{1,\dots,n\}$} \quad \text{(leftover point)} \end{split}$$

Note that $S[\star]$ will always exist, since there are 2d points that we get from all the S[i, pos], S[i, neg], while |S| = 2d + 1. We note that the points S[i, pos], S[i, neg] together form the vertices of a bounding box for S.

Now, let $f_S: S \to \{0,1\}$ be a classifier such that:

$$f: S \to \{0, 1\} f_S(s) \equiv \begin{cases} 1 & s = S[\star] \\ 0 & \text{otherwise} \end{cases}$$

Since our hypothesis class consists of bounding boxes, for any $h \in \mathcal{H}$, if the value of h on the vertices of the bounding box must be the same as the interior. However, $f_S(vertices) = 1$, while $f_S(interior) = 0$. Hence, such an f cannot be realised by any $h \in \mathcal{H}$.

Therefore, no set of size 2d + 1 can be shattered.

6.8, Q9:

Let \mathcal{H}_{si} (si for signed interval) be the class of signed intervals. That is: $\mathcal{H} \equiv \{h_{a,b,s} : a \leq b, s = \pm 1\}$ where

$$h_{a,b,s}(x) \equiv \begin{cases} s & a \le x \le b \\ -s & \text{otherwise} \end{cases}$$

Solution

We will first show that $VCdim(\mathcal{H}_{si})$ is 3 by exhaustive enumeration. We will then show a slicker method, by proving that if a hypothesis space \mathcal{H} has $VCdim(\mathcal{H}) = n$, then the VC dimension of the space that is $\mathcal{H}' \equiv \mathcal{H} \times 0$, 1 where the $\{0,1\}$ controls whether we should negate the output of $h \in \mathcal{H}$ will have $VCdim(\mathcal{H}') = \mathcal{H}+1$. Now, clearly the above hypothesis class H_{si} is $\mathcal{H}_{interval} \times 0$, 1. We know that $VCdim(H_{interval}) = 2$, and hence $VCdim(H_{si}) = 3$.

Exhaustive enumeration

Let us consider all possibilities for three points $\{1,3,5\}$. We will write down for each subset the classifier to be used, thereby showing that this set is shattered. For a subset, we will need to pick a classifier that has value +1 on elements $s \in S$, and has value -1 on elements $s' \notin S$.

$$\emptyset \mapsto h_{0,0,1}$$

$$\{1\} \mapsto h_{0,2,1} \quad \{3\} \mapsto h_{2,4,1} \quad \{5\} \mapsto h_{4,6,1}$$

$$\{1,3\} \mapsto h_{0,4,1} \quad \{3,5\} \mapsto h_{2,6,1} \quad \{1,5\} \mapsto h_{2,3,-1}$$

$$\{1,3,5\} \mapsto h_{0,6,1}$$

Hence, the set is shattered.

Consider any set of size 4. For concreteness, we pick the set $\{1,3,5,7\}$. Since we will only make use of the *ordering* of the elements, hence our argument will work for any set of size 4 (and higher). We claim that the subset $\{3,7\} \subseteq \{1,3,5,7\}$ cannot be classified by any hypothesis $h \in \mathcal{H}$ correctly. That is, no hypothesis $h \in \mathcal{H}$ can be such that h(1) = 1, h(3) = -1, h(5) = 1, h(7) = -1.

This is because every function $h_{a,b,s} \in H$ can change its value twice, when hopping from the boundary of being to the left of (a,b) to entering (a,b), and then again exiting (a,b) from the right:

$$h_{a,b,s}(x < a) = -s \mapsto h_{a,b,s}(a \le x \le b) = s \quad \text{change 1}$$

$$h_{a,b,s}(a \le x \le b) = s \mapsto h_{a,b,s}(x \ge b) = -s \quad \text{change 2}$$

However, in the case outlined above, to detect $\{3,7\}$, we would need to change sign three times: once from $1 \mapsto 3$, once again from $3 \mapsto 5$, and finally from $5 \mapsto 7$.

So, sets of size 4 cannot be shattered by \mathcal{H} . For even larger sets, we can concentrate what happens on any 4 elements and replicate the same argument.

Hence, $VCdim(\mathcal{H}) = 3$.