Tsunami

Clase Introductoria

¿Qué es un tsunami?

Ondas de gravedad del océano, que siguen a cualquier disturbio de la superficie libre, de escala grande y de corta duración (Van Dorm, 1965)

Generado por una perturbación geológica que impulsa y desplaza verticalmente una columna de agua.

Periodos que van de varios minutos hasta una hora, propagándose a gran velocidad en todas direcciones desde la zona de origen y cuyas olas al aproximarse a las costas pueden alcanzar alturas de grandes proporciones (Wiegel, 1970; Satake, 2002).

https://www.tsunami.noaa.gov/tsunami story.html

Catálogo de Tsunamis

Catálogo histórico de Tsunami en los océanos.

El color representa la intensidad del tsunami en la escala de Soloviev – Imamura

Eventos entre 1628 A.C. y 2004

Conceptos Básicos (ustedes ya conocen!)

A: Amplitud

H: Altura de la Ola

λ: Longitud de onda

T: Periodo

V: Velocidad de la Ola

Diferencias tsunami – ola común

Característica	Tsunami	Ola
Longitud de onda	10-1000 km	90 -300 m
Velocidad máxima	Alrededor de 900 km/hr	< 100 km/hr
Periodo	5 – 90 minutos	< 15 segundos
Amplitud: - Mar adentro - Costa	Pocos centímetros 1 – 35 m	< 13 m 6 m

Clasificación

- Locales, o a menos de una hora de tiempo de viaje desde su origen.
- Regionales, si el lugar de arribo en la costa está a no más de 1000 km o a menos de 12 horas de viaje.
- Remotos, a más de 1000 km. de distancia de la zona de generación o más de 12 horas de viaje.

TSUNAMI Origen, Clasificación y Física.

Grado de tsunami m	Altura de ola H (metros)	Descripción de los daños en la costa.
0	1 - 2	No produce daños.
1	2 - 5	Casas inundadas y botes destruidos son arrastrados.
2	5 - 10	Hombres, barcos y casas son barridos.
3	10 - 20	Daños extendidos a lo largo de 400 km de la costa.
4	> 30	Daños extendidos sobre más de 500 km a lo largo de la línea costera.

Escala de intensidad de Imamura (1949)

Escala de grados de tsunami según Lida (1963)

Grado de tsunami m	Energía (Erg.)	Máxima altura de inundación R (metros)
5.0	25.6×10^{23}	> 32
4.5	12.8×10^{23}	24 - 32
4.0	6.4×10^{23}	16 - 24
3.5	3.2×10^{23}	12 - 16
3.0	1.6×10^{23}	8 - 12
2.5	0.8×10^{23}	6 - 8
2.0	0.4×10^{23}	4 - 6
1.5	0.2×10^{23}	3 - 4
1.0	0.1×10^{23}	2 - 3
0.5	0.05×10^{23}	1.5 - 2
0.0	0.025×10^{23}	1 - 1.5
-0.5	0.0125×10^{23}	0.75 - 1
-1.0	0.006×10^{23}	0.50 - 0.75
-1.5	0.003×10^{23}	0.30 - 0.50
-2.0	0.0015×10^{23}	< 0.30

Imamura introduce (e lida mejora) el concepto de magnitud de tsunami:

$$m = \log_2 H_{max}$$

con H_{max} altura máxima de la ola en metros, observada desde la costa o medida por un mareógrafo.

Grado tsunami m	Altura de la ola H (metros)	Cota máxima de inundación R (metros)	Descripción de los daños
0	1 - 2	1 - 1.5	No produce daños.
1	2 - 5	2 - 3	Casas inundadas y botes destruidos son arrastrados.
2	5 - 10	4 - 6	Hombres, barcos y casas son barridos.
3	10 - 20	8 - 12	Daños extendidos a lo largo de 400 km de la costa.
4	> 30	16 - 24	Daños extendidos sobre más de 500 km a lo largo de la línea costera.

Escala de grados de tsunami según Imamura e Iida (1970, Wiegel)

Intensidad	Altura (m)	Descripción del Tsunami
I	0.5	Muy ligero. Olas débiles pueden ser perceptibles solo en mareógrafos.
II		Ligera. Olas observadas por personas que viven a lo largo de la costa. En costas muy planas las olas son generalmente observadas.
III	1	Algo grandes. Generalmente observadas. Inundaciones en costas de pendientes suaves. Arrastrados veleros ligeros fuera de la costa. Moderado daño a estructuras livianas situadas cerca de las costas.
IV	4	Grandes. Inundaciones de la costa de cierta profundidad. Ligero azote de objetos en tierra. Terraplenes y diques dañados ()
v		Muy grande. Inundación general de la costa a cierto nivel. Dañados muelles y otras estructuras pesadas cerca del mar. Destruidas ligeras estructuras. ()
≥VI	16	Desastroso. Destrucción parcial o completa de estructuras hechas por el hombre a cierta distancia de la costa. Inundación de costas a gran nivel de profundidad. Dañadas severamente grandes naves. ()

$$I = \frac{1}{2} + \log_2 H$$

con H altura promedio del tsunami en la costa más cercana.

Escala de intensidad de tsunami según Soloviev (1978)

Etapas de un tsunami

Generación

Propagación

Interacción

Generación: Tipos de fuente

Propagación: aguas someras

$$c = \sqrt{gd}$$

c: velocidad del tsunami (m/s)

g: aceleración de gravedad (m/s)

d: profundidad del agua (m)

Velocidades Típicas

Océano profundo

Profundidad: d = 4000 m.

(avión ~900 km/hr)

$$c = \sqrt{gd} = \sqrt{9.8 * 4000} \approx 200 \text{ m/s} \approx 700 \text{ km/hr}$$

Plataforma continental

Profundidad: d = 200 m.

(tren rápido ~200 km/hr)

$$c = \sqrt{gd} = \sqrt{9.8 * 200} \approx 44 \text{ m/s} \approx 160 \text{ km/hr}$$

Bahía

Profundidad: d = 20 m.

(velocidad de automóvil)

$$c = \sqrt{gd} = \sqrt{9.8 * 20} \approx 14 \text{ m/s} \approx 50 \text{ km/hr}$$

Interacción con la costa

Traspaso de energía por cambios geomorfológicos

Fórmula de Green

$$\frac{\eta_2}{\eta_1} = \left(\frac{h_1}{h_2}\right)^{1/4} \left(\frac{b_1}{b_2}\right)^{1/2}$$

η: Altura de tsunami

n: Profundidad del agua

o: Ancho de la bahía

Observaciones

- Instrumentos, tales como mareógrafos de radar y de fondo marino, boyas DART, GPS Tsunami – meter, entre otros.
- Paleotsunamis: tsunamis que han ocurrido antes de la existencia del registro histórico y de las observaciones instrumentales. Se basan en la identificación, recolección y datación de los depósitos de tsunamis encontrados en áreas costeras y su correlación con sedimentos similares encontrados en áreas locales, regionales o cuencas oceánicas.
- Documentos históricos.

Señal de tsunami

http://www.ioc-sealevelmonitoring.org/station.php?code=iqui

Registros

- Documentos históricos
- Paleotsunamis

Modelación:

Programa COMCOT v1.7

Archivos más importantes:

comcot.ctl >> archivo de control

comcot/comcot.exe → ejecutable

fault multi.ctl → fallas múltiples

landslide.ctl → condiciones iniciales y finales

ts_location.dat → ubicación de los mareógrafos virtuales

comcotv1 7.zip all_grids.f90 09-04-2009 Tipo: F90 Archivo 43.2 KB boundaries.f90 19-03-2009 28,3 KB 12-04-2009 1,51 MB 12-03-2009 COMCOT User Manual v1.7.pdf 549 KB 12-04-2009 18,8 KB 12-04-2009 1,08 MB 25-08-2015 comcot.f90 29,9 KB comcot2xyz.m Tipo: MATLAB Code 21-03-2009 2,16 KB 08-04-2009 data_proc.m Tipo: MATLAB Code 14,0 KB deform.f90 11-04-2009 Tipo: F90 Archivo 34,3 KB dislocation_calc_M0.m 23-02-2009 Tipo: MATLAB Code 694 bytes 23-02-2009 dislocation_calc_Mw.m 694 bytes 19-03-2009 dispersion.f90 62,0 KB fault_multi.ctl Tipo: Archivo CTL 19-03-2009 45,1 KB 19-03-2009 hotstart.f90 5,52 KB 39 objeto(s) Archivo Zip: 39 objeto(s), 1.59 MB

Ejemplo: terremoto del Maule

Parámetros:

Profundidad = 30 km

Largo = 429 km

Ancho = 146 km

Deslizamiento promedio = 8.1 m

Strike = 19°

Dip = 15°

Rake = 90°

Epicentro (lat,lon) = (-35.9095, 287.2670)

Mareógrafos Virtuales:

287.006531

-36.1745

286.731995

-37.084