Logical and Theoretical Foundation of CS

Dependable Systems Group D. Nowotka, P. Fleischmann

Example solution for Series #4

Christian-Albrechts-Universität zu Kiel

Technische Fakultät

Exercise 1 You get for each correct answer 1 point, but you will lose 1 point for an incorrect answer		0 Points
a) If $\Psi \subset \Phi$ is satisfiable and $\varphi \in \Phi$ is satisfiable then $\Psi \cup \{\varphi\}$ is satisfiable.	\bigcirc true	\bigotimes false
b) If $\Psi \models \varphi$ for $\Psi \subset \Phi$ and $\varphi \in \Phi$, and $\psi \in \Phi$ is satisfiable then $\Psi \setminus \{\psi\} \models \varphi$.	○ true	\bigotimes false
c) W.l.o.g. stands for with loss of generality.) true	\bigotimes false
d) For proving by contradiction, we suppose the opposite of our claim, and deduce a contradiction.	⊗ true) false
e) If \mathcal{T}_{φ} is closed then φ is falsifiable.	⊗ true) false
f) For proving the correctness of an algorithm, it suffices to prove that the algorithm terminates.	n	\bigotimes false
g) A completed tableau is called closed, if at least one leaf is closed.	○ true	\bigotimes false
h) A formula is in negation normal form if \neg is the only logical operator used.) true	\boxtimes false
i) A set of literals is satisfiable if it does not contain a complementary pair of literals.	⊗ true	○ false
j) $\{p, \neg q\}$ for $p, q \in A$ is a complementary pair of literals.) true	\bigotimes false
Exercise 2 Give the following definitions and notations:		5 Points
a) Satisfiability of $\varphi \in \Phi$. b) Decision procedure for $\Psi \subseteq \Phi$. c) $T \subseteq \Phi$ theory. d) Axiomatisiable theory. e) Literal.		(1P) (1P) (1P) (1P)
Solution: a) φ is satisfiable iff $\hat{\beta}(\varphi) = \text{true}$ for some interpretation β b) An algorithm A is a decision procedure for $\Psi \subseteq \Phi$ if for all $\varphi \in \Phi$ it returns true c) A theory is an under logical equivalence closed subset of Φ . d) A theory T is axiomatisable iff there exists $A \subseteq \Phi$ with $T = \{\varphi \mid A \models \varphi\}$ e) A literal is an atom or the negation of an atom.	$\text{iff }\varphi\in\Psi.$	(1P) (1P) (1P) (1P) (1P)
 Exercise 3 a) Justify, why ¬ is necessary (implicit or explicit) in each set of operators S such that expressive power as Φ. b) Let Ψ ⊂ Φ, ψ ∈ Φ. Prove that if Ψ is satisfiable and ψ is valid then Ψ ∪ {ψ} is satisfiable c) Let Ψ ⊂ Φ and ψ, φ ∈ Φ. Prove that, if Ψ ⊨ φ then Ψ ∪ {ψ} ⊨ φ. d) Apply the algorithm for constructing a semantic tableau on (p ∨ q) → (s ∧ ¬p). 	at Φ_S has	5 Points the same (2P) (4P) (4P) (4.5P)

Return till: November 11th, 2019, 12:00 pm Winter Semester 2019/20

Solution:

form it:

- a) \neg is implicitely contained in \uparrow and \downarrow and false (as negation of true. (0.5P)Thus the set of operators *S* need to be a subset of $\{\land, \lor, \rightarrow, \leftrightarrow\}$. (0.5P)This implies that we have to model $\neg p$ only with true and these four operators. (0.5P)By the definition of $\hat{\beta}$ none of these operators is able to swap the truth value. (0.5P) b) Let Ψ be satisfiable and ψ be valid. (1P) Since Ψ is satisfiable there exists an interpretation $\beta: A \to \mathcal{T}$ such that $\hat{\beta}(\varphi) = \text{true}$ for all $\varphi \in \Psi$. (0.5P) Since ψ is valid we have $\hat{\beta}_1(\psi) = \text{true for all interpretations } \beta$. (0.5P)For proving that $\Psi \cup \{\psi\}$ is satisfiable we have to find an interpretation β_2 with $\beta_2(\varphi) = \beta_2(\psi) = \beta_2(\psi)$ true for all $\varphi \in \Psi$. (0.5P) Set $\beta_2 = \beta$. (0.5P)By definition $\hat{\beta}(\varphi) = \text{true for all } \varphi \in \Psi$. (0.5P) Since ψ is evaluated to true under all interpretations, we get especially $\hat{\beta}_2(\psi) = \text{true}$. (0.5P)This concludes the proof. c) Assume $\Psi \models \varphi$. (0.5P) We have to prove $\Psi \cup \{\psi\} \models \varphi$. (0.5P)This is by definition that we have to prove that each model β of $\Psi \cup \{\psi\}$ is also a model of φ . (0.5P)Thus let β be a model of $\Psi \cup \{\psi\}$. (0.5P)By the definition of model, we get $\hat{\beta}(\chi) = \text{true}$ for all $\chi \in \Psi$ and $\hat{\beta}(\psi) = \text{true}$. (0.5P) By the first part we get that β is a model of π . (0.5P) By the assumption we get that β is a model of φ . (0.5P)This proves $\Psi \cup \{\psi\} \models \varphi$. (0.5P)d) Since the algorithm is only applicable to formulae in negation normal form, we have firstly to trans-
 - (0.5

$$(p \lor q) \to (s \land \neg p) \equiv \neg (p \lor q) \lor (s \land \neg p)$$
$$\equiv (\neg p \land \neg q) \lor (s \land \neg p).$$

(1P

Step 4: Since no complementary pairs of literals occur the formula is satisfiable.

(3P)