Contents

0.1. Prerequisites	. 2
1. Divisibility in rings	. 2
1.1. Every ED is a PID	. 2
1.2. Every PID is a UFD	. 2
2. Finite field extensions	. 3
2.1. Fields generated by elements	. 4
2.2. Norm and trace	
2.3. Characteristic polynomials	. 5
3. Algebraic number fields and algebraic integers	. 6
3.1. Algebraic numbers	. 6
3.2. Algebraic integers	. 7
3.3. Quadratic fields and their integers	. 7
4. Units in quadratic rings	. 8
4.1. Proof of the main theorem	
4.2. Computing fundamental units	. 9
4.3. Pell's equation and norm equations	10
5. Discriminants and integral bases	
5.1. Discriminant of an <i>n</i> -tuple	
5.2. Full lattices and integral bases	12
5.3. When is $R = \mathbb{Z}[\theta]$?	13
6. Unique factorisation of ideals	14
6.1. The norm of an ideal	15
6.2. Ideals are invertible	15
6.3. Arithmetic with ideals	
7. Splitting of primes and the Kummer-Dedekind theorem	16
7.1. Properties of the ideal norm	16
7.2. The Kummer-Dedekind theorem	
8. The ideal class group	18
8.1. Finiteness of the class group	19
8.2. The Minkowski bound	19
9. Diophantine applications	22
9.1. Mordell equations	22
9.2. Generalised Pell equations	24

0.1. Prerequisites

Definition. $I \subset R$ is **prime ideal** if $\forall a, b \in R, ab \in I \Longrightarrow a \in I \lor b \in I$.

Definition. Ideal I is **maximal** if $I \neq R$ and there is no ideal $J \subset R$ such that $I \subset J$.

Example.

- $p \in \mathbb{Z}$ is prime iff $\langle p \rangle = p\mathbb{Z}$ is prime ideal.
- $\langle 0 \rangle$ is prime ideal iff R is integral domain.

Lemma. If I is maximal ideal, then it is prime.

Proposition. For commutative ring R, ideal I:

- $I \subset R$ is prime ideal iff R/I is an integral domain.
- I is maximal iff R/I is field.

Proposition. Let R be PID and $a \in R$ irreducible. Then $\langle a \rangle = \langle a \rangle_R$ is maximal.

Theorem. Let F be field, $f(x) \in F[x]$ irreducible. Then $F[x]/\langle f(x) \rangle$ is a field and a vector space over F with basis $B = \{1, \overline{x}, ..., \overline{x}^{n-1}\}$ where $n = \deg(f)$. That is, every element in $F[x]/\langle f(x) \rangle$ can be uniquely written as linear combination

$$\overline{a_0 + a_1 x + \dots + a_{n-1} x^{n-1}}, \quad a_i \in F$$

1. Divisibility in rings

1.1. Every ED is a PID

Definition. Let R integral domain. $\varphi: R - \{0\} \to \mathbb{N}_0$ is **Euclidean function** (norm) on R if:

- $\forall x, y \in R \{0\}, \varphi(x) \le \varphi(xy)$.
- $\forall x \in R, y \in R \{0\}, \exists q, r \in R : x = qy + r \text{ with either } r = 0 \text{ or } \varphi(r) < \varphi(y).$

R is **Euclidean domain (ED)** if Euclidean function is defined on it.

Example.

- \mathbb{Z} is ED with $\varphi(n) = |n|$.
- F[x] is ED for field F with $\varphi(f) = \deg(f)$.

Lemma. $\mathbb{Z}[-\sqrt{2}]$ is ED with Euclidean function

$$\varphi(a+b\sqrt{-2})=N(a+b\sqrt{-2})\coloneqq a^2+2b^2$$

Proposition. Every ED is a PID.

1.2. Every PID is a UFD

Definition. Integral domain R is unique factorisation domain (UFD) if every non-zero non-unit in R can be written uniquely (up to order of factors and multiplication by units) as product of irreducible elements in R.

Example. Let $R = \{f(x) \in \mathbb{Q}[x] : f(0) \in \mathbb{Z}\}$. Its units are ± 1 . Any factorisation of $x \in R$ must be of the form f(x)g(x) where deg f = 1, deg g = 0, so x = (ax + b)c, $a \in \mathbb{Q}$, $b, c \in \mathbb{Z}$. We have bc = 0 and ac = 1 hence $x = \frac{x}{c} \cdot c$. So x is not irreducible if $c \neq 0$

 ± 1 . Also, any factorisation of $\frac{x}{c}$ in R is of the form $\frac{x}{c} = \frac{x}{cd} \cdot d$, $d \in \mathbb{Z}$, $d \neq 0$. Again, neither factor is a unit when $d \neq \pm 1$. So $x = \frac{x}{c} \cdot c = \frac{x}{cd} \cdot d \cdot c = \cdots$ can never be decomposed into irreducibles (the first factor is never irreducible).

Lemma. Let R be PID. Then every irreducible element is prime in R.

Theorem. Every PID is a UFD.

Example. $\mathbb{Z}[\sqrt{-2}]$ is ED so by the above theorem it is a UFD. Let $x, y \in \mathbb{Z}$ such that $y^2 + 2 = x^3$.

- y must be odd, since if $y = 2a, a \in \mathbb{Z}$ then $x = 2b, b \in \mathbb{Z}$ but then $2a^2 + 1 = 4b^3$.
- $y \pm \sqrt{-2}$ are relatively prime: if $a + b\sqrt{-2}$ divides both, then it divides their difference $2\sqrt{-2}$, so norm $a^2 + 2b^2 \mid N(2\sqrt{-2}) = 8$. Only possible case is $a = \pm 1, b = 0$ so $a + b\sqrt{-2}$ is unit. Other cases $a = 0, b = \pm 1, a = \pm 2, b = 0$ and $a = 0, b = \pm 2$ are impossible since y not even.
- If $a + b\sqrt{-2}$ is unit, $\exists x, y \in \mathbb{Z} : (a + b\sqrt{-2})(x + y\sqrt{-2}) = 1$. If $b \neq 0$ then $(-a^2 2b^2)y = 1 \Longrightarrow b = 0$: contradiction. If b = 0, $a = \pm 1$. So only units in $\mathbb{Z}[\sqrt{-2}]$ are ± 1 .

2. Finite field extensions

Definition. Let F, L fields. If $F \subseteq L$ and F and L share the same operations then F is a **subfield** of L and L is **field extension** of F (denoted L/F). L is vector space over F:

- $0 \in L$ (zero vector).
- $u, v \in L \Longrightarrow u + v \in L$ (additivity).
- $a \in F, u \in L \Longrightarrow au \in L$ (scalar multiplication).

Definition. Let L/F field extension. **Degree** of L over F is dimension of L as vector space over F:

$$[L:F]\coloneqq \dim_F(L)$$

If [L:F] finite, L/F is finite field extension.

Example. $\mathbb{Q}(\sqrt{-2}) = \{a + b\sqrt{-2} : a, b \in \mathbb{Q}\}$ is isomorphic as a vector space to \mathbb{Q}^2 so is 2-dimensional vector space over \mathbb{Q} . Isomorphism is $a + b\sqrt{-2} \longleftrightarrow (a, b)$. Standard basis $\{e_1, e_2\}$ in \mathbb{Q}^2 corresponds to the basis $\{1, \sqrt{-2}\}$ in $\mathbb{Q}(\sqrt{-2})$. $[\mathbb{Q}(\sqrt{-2}) : \mathbb{Q}] = 2$.

Example. $[\mathbb{C}:\mathbb{R}]=2$ (a basis is $\{1,i\}$). $[\mathbb{R}:\mathbb{Q}]$ is not finite, due to the existence of transcendental numbers (if α transcendental, then $\{1,\alpha,\alpha^2,...\}$ is linearly independent).

Definition. Let L/F field extension. $\alpha \in L$ is algebraic over F if

$$\exists 0 \neq f(x) \in F[x] : f(\alpha) = 0$$

If all elements in L are algebraic, then L/F is algebraic field extension.

Example. $i \in \mathbb{C}$ is algebraic over \mathbb{R} since i is root of $x^2 + 1$. \mathbb{C}/\mathbb{R} is algebraic since z = a + bi is root of $(x - z)(x - \overline{z}) = x^2 - 2ax + a^2 + b^2$.

Proposition. If L/F is finite field extension then it is algebraic.

Definition. Let L/F field extension, $\alpha \in L$ algebraic over F. Minimal polynomial $p_{\alpha}(x) = p_{\alpha,F}(x)$ of α over F is the monic polynomial f of smallest degree such that $f(\alpha) = 0$. Degree of α over F is $\deg(p_{\alpha})$.

Proposition. $p_{\alpha}(x)$ is unique and irreducible. Also, if $f(x) \in F[x]$ is monic, irreducible and $f(\alpha) = 0$, then $f = p_{\alpha}$.

Example.

- $p_{i,\mathbb{R}}(x) = p_{i,\mathbb{O}}(x) = x^2 + 1, p_{i,\mathbb{O}(i)}(x) = x i.$
- Let $\alpha = \sqrt[7]{5}$. $f(x) = x^7 5$ is minimal polynomial of α over \mathbb{Q} by above proposition, as it is irreducible by Eisenstein's criterion with p = 5.
- Let $\alpha = e^{2\pi i/p}$, p prime. α is algebraic as root of $x^p 1$ which isn't irreducible as $x^p 1 = (x 1)\Phi(x)$ where $\Phi(x) = (x^{p-1} + \cdots + 1)$. $\Phi(\alpha) = 0$ since $\alpha \neq 1$, $\Phi(x)$ is monic and $\Phi(x + 1) = ((x + 1)^p 1)/x$ irreducible by Eisenstein's criterion with p = p, hence $\Phi(x)$ irreducible. So $p_{\alpha}(x) = \Phi(x)$.

2.1. Fields generated by elements

Definition. Let L/F field extension, $\alpha \in L$. The field generated by α over F is the smallest subfield of L containing F and α :

$$F(\alpha) := \bigcap_{\substack{K \text{ field,} \\ F \subseteq K \subseteq L, \\ \alpha \subseteq K}} K$$

Generally, $F(\alpha_1, ..., \alpha_n)$ is smallest field extension of F containing $\alpha_1, ..., \alpha_n$.

• We have $F(\alpha_1, ..., \alpha_n) = F(\alpha_1) \cdot \cdot \cdot (\alpha_n)$ (show $F(\alpha, \beta) \subseteq F(\alpha)(\beta)$ and $F(\alpha)(\beta) \subseteq F(\alpha, \beta)$ by minimality and use induction).

Definition. $F[\alpha] = \{\sum_{i=0}^n a_i \alpha^i : a_i \in F, n \in \mathbb{N}\} = \{f(\alpha) : f(x) \in F[x]\}.$

Lemma. Let L/F field extension, $\alpha \in L$ algebraic over F. Then $F[\alpha]$ is field, hence $F(\alpha) = F[\alpha]$.

Lemma. Let α algebraic over F. Then $[F(\alpha):F]=\deg(p_{\alpha})$.

Definition. Let K/F and L/K field extensions, then $F \subseteq K \subseteq L$ is **tower of** fields.

Theorem (Tower theorem). Let $F \subseteq K \subseteq L$ tower of fields. Then

$$[L:F] = [L:K] \cdot [K:F]$$

Example. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Show $[L : \mathbb{Q}] = 4$.

- Let $K = \mathbb{Q}(\sqrt{2})$. Let $\sqrt{3} = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$ so $3 = a^2 + 2b^2 + 2ab\sqrt{2}$. So $0 \in \{a, b\}$, otherwise $\sqrt{2} \in \mathbb{Q}$. But if a = 0, then $\sqrt{6} = 2b \in \mathbb{Q}$, if b = 0 then $\sqrt{3} = a \in \mathbb{Q}$: contradiction. So $x^2 3$ has no roots in K so is irreducible over K so $p_{\sqrt{3},K}(x) = x^2 3$.
- So [L:K]=2 so by the tower theorem, $[L:\mathbb{Q}]=[L:K]\cdot [K:\mathbb{Q}]=4$.

2.2. Norm and trace

• Let L/F finite field extension, n = [L:F]. For any $\alpha \in L$, there is F-linear map

$$\hat{\alpha}: L \longrightarrow L, \quad x \mapsto \alpha x$$

• With basis $\{\alpha_1, ..., \alpha_n\}$ of L over F, let $T_{\alpha} = T_{\alpha, L/F} \in M_n(F)$ be the corresponding matrix of the linear map α with respect to the basis $\{\alpha_i\}$:

$$\begin{split} \hat{\alpha}(\alpha_1) &= \alpha \alpha_1 = a_{1,1} \alpha_1 + \dots + a_{1,n} \alpha_n, \\ &\vdots \\ \hat{\alpha}(\alpha_n) &= \alpha \alpha_n = a_{n,1} \alpha_1 + \dots + \alpha_{n,n} \alpha_n \end{split}$$

with $a_{i,j} \in F$, $T_{\alpha} = (a_{i,j})$, so α is eigenvalue of T_{α} :

$$\alpha \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = T_\alpha \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Definition. Norm of α is

$$N_{L/F}(\alpha)\coloneqq \det(T_\alpha)$$

Definition. Trace of α is

$$\operatorname{tr}_{L/F}(\alpha)\coloneqq\operatorname{tr}(T_\alpha)$$

Remark. Norm and trace are independent of choice of basis so are well-defined (uniquely determined by α).

Example. Let $L = \mathbb{Q}(\sqrt{m})$, $m \in \mathbb{Z}$ non-square, let $\alpha = a + b\sqrt{m} \in L$. Fix basis $\{1, \sqrt{m}\}$. Now

$$\begin{split} \hat{\alpha}(1) &= \alpha \cdot 1 = a + b\sqrt{m}, \\ \hat{\alpha}\left(\sqrt{m}\right) &= \alpha\sqrt{m} = bm + a\sqrt{m}, \\ T_{\alpha} &= \begin{bmatrix} a & b \\ bm & a \end{bmatrix} \end{split}$$

So $N_{L/F}(\alpha) = a^2 - b^2 m$, $\operatorname{tr}_{L/F}(\alpha) = 2a$.

Lemma. The map $L \to M_n(F)$ given by $\alpha \mapsto T_\alpha$ is injective ring homomorphism. So if $f(x) \in F[x]$,

$$T_{f(\alpha)}=f(T_\alpha)$$

 $(f(T_\alpha)$ is a polynomial in $T_\alpha,$ not f applied to each entry).

Proposition. Let L/F finite field extension. $\forall \alpha, \beta \in L$,

- $\bullet \ \ N_{L/F}(\alpha)=0 \Longleftrightarrow \alpha=0.$
- $\bullet \ \ N_{L/F}(\alpha\beta) = N_{L/F}(\alpha) N_{L/F}(\beta).$
- $\bullet \ \ \forall a \in F, N_{L/F}(a) = a^{[L:F]} \ \text{and} \ \operatorname{tr}_{L/F}(a) = [L:F]a.$
- $\forall a, b \in F, \operatorname{tr}_{L/F}(a\alpha + b\beta) = a \operatorname{tr}_{L/F}(\alpha) + b \operatorname{tr}_{L/F}(\beta)$ (so $\operatorname{tr}_{L/F}$ is F-linear map).

2.3. Characteristic polynomials

• Let $A \in M_n(F)$, then characteristic polynomial is $\chi_A(x) = \det(xI - A) \in F[x]$ and is monic, $\deg(\chi_A) = n$. If $\chi_A(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$ then $\det(A) = (-1)^n \det(0 - x^i)$

- $A) = (-1)^n \chi_A(0) = (-1)^n c_0 \text{ and } \operatorname{tr}(A) = -c_{n-1}, \text{ since if } \alpha_1, ..., \alpha_n \text{ are eigenvalues of } A \text{ (in some field extension of } F), \text{ then } \operatorname{tr}(A) = \alpha_1 + \cdots + \alpha_n, \ \chi_A(x) = (x \alpha_1) \cdots (x \alpha_n) = x^n (\alpha_1 + \cdots + \alpha_n) x^{n-1} + \cdots.$
- For finite extension L/F, n=[L:F], $\alpha\in L$, characteristic polynomial $\chi_{\alpha}(x)=\chi_{\alpha,L/F}(x)$ is characteristic polynomial of T_{α} . So $N_{L/F}(\alpha)=(-1)^nc_0$, $\operatorname{tr}_{L/F}(\alpha)=-c_{n-1}$. By the Cayley-Hamilton theorem, $\chi_{\alpha}(T_{\alpha})=0$ so $T_{\chi_{\alpha}(\alpha)}=\chi_{\alpha}(T_{\alpha})=0$, where $\chi_{\alpha}(x)=x^n+c_{n-1}x^{n-1}+\cdots+c_0$. Since $\alpha\to T_{\alpha}$ is injective, $\chi_{\alpha}(\alpha)=0$.

Lemma. Let L/F finite extension, $\alpha \in L$ with $L = F(\alpha)$. Then $\chi_{\alpha}(x) = p_{\alpha}(x)$.

Proposition. Let $F \subseteq F(\alpha) \subseteq L$, let $m = [L : F(\alpha)]$. Then $\chi_{\alpha}(x) = p_{\alpha}(x)^{m}$.

Corollary. Let $L/F,\ \alpha\in L,\ m=[L:F(\alpha)],\ p_{\alpha}(x)=x^d+a_{d-1}x^{d-1}+\cdots+a_0,\ a_i\in F.$ Then

$$N_{L/F}(\alpha) = \left(-1\right)^{md} a_0^m, \quad \operatorname{tr}_{L/F}(\alpha) = -m a_{d-1}$$

3. Algebraic number fields and algebraic integers

3.1. Algebraic numbers

Definition. $\alpha \in \mathbb{C}$ is algebraic number if algebraic over \mathbb{Q} .

Definition. K is (algebraic) number field if $\mathbb{Q} \subseteq K \subseteq \mathbb{C}$ and $[K : \mathbb{Q}] < \infty$.

• Every element of an algebraic number field is an algebraic number.

Example. Let $\theta = \sqrt{2} + \sqrt{3}$, then $\mathbb{Q}(\theta) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ but also $\theta^3 = 11\sqrt{2} + 9\sqrt{3}$ so

$$\sqrt{2} = \frac{\theta^3 - 9\theta}{2}, \quad \sqrt{3} = \frac{-\theta^3 + 11\theta}{2}$$

so $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\theta)$ hence $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\theta)$.

Theorem (Simple extension theorem). Every number field K has form $K = \mathbb{Q}(\theta)$ for some $\theta \in K$.

- Set of all algebraic numbers (union of all number fields) is denoted $\overline{\mathbb{Q}}$ and is a field, since if $\alpha \neq 0$ algebraic over \mathbb{Q} , $[\mathbb{Q}(\alpha):\mathbb{Q}] = \deg(p_{\alpha}) < \infty$ so $\mathbb{Q}(\alpha)/\mathbb{Q}$ algebraic, so $-\alpha, \alpha^{-1} \in \mathbb{Q}(\alpha)$ algebraic, so $\alpha^{-1}, -\alpha \in \overline{\mathbb{Q}}$, and if $\alpha, \beta \in \overline{\mathbb{Q}}$ then $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\alpha)(\beta)$ is finite extension of \mathbb{Q} by tower theorem so $\alpha + \beta$, $\alpha\beta \in \mathbb{Q}(\alpha, \beta)$ so are algebraic.
- $[\overline{\mathbb{Q}}:\mathbb{Q}] = \infty$ since if $[\overline{\mathbb{Q}}:\mathbb{Q}] = d \in \mathbb{N}$ then every algebraic number would have degree $\leq d$, but $\sqrt[d+1]{2}$ has degree d+1 since it is a root of $x^{d+1}-2$ which is irreducible by Eisenstein's criterion with p=2.

Definition. Let $\alpha \in \overline{\mathbb{Q}}$. Conjugates of α are roots of $p_{\alpha}(x)$ in \mathbb{C} . Example.

- Conjugate of $a + bi \in \mathbb{Q}(i)$ is a bi.
- Conjugate of $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ is $a b\sqrt{2}$.

• Conjugates of θ do not always lie in $\mathbb{Q}(\theta)$, e.g. for $\theta = \sqrt[3]{2}$, $p_{\theta}(x) = x^3 - 2$ has two non-real roots not in $\mathbb{Q}(\theta) \subset \mathbb{R}$.

Notation. When base field is \mathbb{Q} , N_K and tr_K denote $N_{K/\mathbb{Q}}$ and $\operatorname{tr}_{K/\mathbb{Q}}$.

Lemma. Let K/\mathbb{Q} number field, $\alpha \in K$, $\alpha_1, ..., \alpha_n$ conjugates of α . Then

$$N_K(\alpha) = (\alpha_1 \cdot \cdot \cdot \alpha_n)^{[K:\mathbb{Q}(\alpha)]}, \quad \operatorname{tr}_K(\alpha) = (\alpha_1 + \cdot \cdot \cdot + \alpha_n)[K:\mathbb{Q}(\alpha)]$$

3.2. Algebraic integers

Definition. $\alpha \in \overline{\mathbb{Q}}$ is algebraic integer if it is root of a monic polynomial in $\mathbb{Z}[x]$. The set of algebraic integers is denoted $\overline{\mathbb{Z}}$. If K/\mathbb{Q} is number field, set of algebraic integers in K is denoted \mathcal{O}_K , $\alpha \in \mathcal{O}_K$ is called **integer** in K.

Example. $i, (1+\sqrt{3})/2 \in \mathbb{Z}$ since they are roots of x^2+1 and x^2-x+1 respectively.

Theorem. Let $\alpha \in \overline{\mathbb{Q}}$. The following are equivalent:

- $\alpha \in \overline{\mathbb{Z}}$.
- $\begin{array}{ll} \bullet & p_{\alpha}(x) \in \mathbb{Z}[x]. \\ \bullet & \mathbb{Z}[\alpha] = \{\sum_{i=0}^{d-1} a_i \alpha^i : a_i \in \mathbb{Z}\} \text{ where } d = \deg(p_{\alpha}). \end{array}$
- There exists non-trivial finitely generated abelian additive subgroup $G \subset \mathbb{C}$ such that

$$\alpha G \subseteq G$$
 i.e. $\forall g \in G, \alpha g \in G$

(αg is complex multiplication).

Remark.

- For third statement, generally we have $\mathbb{Z}[\alpha] = \{f(\alpha) : f(x) \in \mathbb{Z}[x]\}$ and in this case, $\mathbb{Z}[\alpha] = \{ f(\alpha) : f(x) \in \mathbb{Z}[x], \deg(f) < d \}.$
- Fourth statement means that

$$G = \{a_1\gamma_1 + \dots + a_r\gamma_r : a_i \in \mathbb{Z}\} = \gamma_1\mathbb{Z} + \dots + \gamma_r\mathbb{Z} = \langle \gamma_1, ..., \gamma_r \rangle_{\mathbb{Z}}$$

G is typically $\mathbb{Z}[\alpha]$. E.g. if $\alpha = \sqrt{2}$, $\mathbb{Z}[\sqrt{2}]$ is generated by $1, \sqrt{2}$ and $\sqrt{2} \cdot \mathbb{Z}[\sqrt{2}] \subseteq$ $\mathbb{Z}[\sqrt{2}].$

Proposition. $\overline{\mathbb{Z}}$ is a ring. Also, for every number field $K,\,\mathcal{O}_K$ is a ring.

Lemma. Let $\alpha \in \overline{\mathbb{Z}}$. For every number field K with $\alpha \in K$,

$$N_K(\alpha) \in \mathbb{Z}, \quad \operatorname{tr}_K(\alpha) \in \mathbb{Z}$$

Lemma. Let K number field. Then

$$K = \left\{ \frac{\alpha}{m} : \alpha \in \mathcal{O}_K, m \in \mathbb{Z}, m \neq 0 \right\}$$

Lemma. Let $\alpha \in \overline{\mathbb{Z}}$, K number field, $\alpha \in K$. Then

$$\alpha \in \mathcal{O}_K^{\times} \Longleftrightarrow N_K(\alpha) = \pm 1$$

3.3. Quadratic fields and their integers

Definition. $d \in \mathbb{Z}$ is squarefree if $d \notin \{0,1\}$ and there is no prime p such that $p^2 \mid d$.

Definition. $K = \mathbb{Q}(\sqrt{d})$ is a quadratic field if d is squarefree. If d > 0 then it is real quadratic. If d < 0 it is imaginary quadratic.

Proposition. Let K/\mathbb{Q} have degree 2. Then $K = \mathbb{Q}(\sqrt{d})$ for some squarefree $d \in \mathbb{Z}$.

Lemma. Let $K = \mathbb{Q}(\sqrt{d}), d \equiv 1 \pmod{4}$. Then

$$\mathbb{Z}[\frac{1+\sqrt{d}}{2}] = \left\{ \frac{r+s\sqrt{d}}{2} : r, s \in \mathbb{Z}, r \equiv s \pmod{2} \right\}$$

Theorem. Let $K = \mathbb{Q}(\sqrt{d})$ quadratic field, then

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \not\equiv 1 \pmod{4} \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

4. Units in quadratic rings

Notation. In this section, let $K = \mathbb{Q}(\sqrt{d})$ be quadratic number field, $d \in \mathbb{Z} - \{0\}$, |d| is not a square. Let $\mathcal{O}_d = \mathcal{O}_K$. Let $\overline{a + b\sqrt{d}} = a - b\sqrt{d}$. The map $x \to \overline{x}$ is a \mathbb{Q} automorphism from K to K.

Definition. S is quadratic number ring of K if $S = \mathcal{O}_d$ or $S = \mathbb{Z}[\sqrt{d}]$.

• We have

$$\alpha \in S^{\times} \Longrightarrow \exists x \in S: \alpha x = 1 \Longrightarrow N_K(\alpha)N_K(x) = 1 \Longrightarrow N_K(\alpha) = \pm 1$$

and for $\alpha \in S - \mathbb{Z}$, since $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$ and so $[K : \mathbb{Q}(\alpha)] = 1$ by the Tower Theorem,

$$N_K(\alpha)=\pm 1 \Longrightarrow \alpha\overline{\alpha}=\pm 1 \Longrightarrow \alpha \in S^\times$$

So
$$\alpha \in S^{\times} \iff N_K(\alpha) = \pm 1$$
.

Theorem. To determine the group of units for imaginary quadratic fields:

- For d < -1, $\mathbb{Z}[\sqrt{d}]^{\times} = \{\pm 1\}$.
- $\mathcal{O}_{-1}^{\times} = \mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}.$

• For $d \equiv 1 \pmod{4}$ and d < -3, $\mathbb{Z}[\frac{1+\sqrt{d}}{2}]^{\times} = \{\pm 1\}$. • $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]^{\times} = \{\pm 1, \pm \omega, \pm \omega^2\}$ where $\omega = \frac{1+\sqrt{-3}}{2} = e^{\pi i/3}$.

Theorem (Main theorem). Let d > 1, d non-square, S be quadratic number ring of $K = \mathbb{Q}(\sqrt{d})$ (i.e. $S = \mathcal{O}_d$ or $S = \mathbb{Z}[\sqrt{d}]$). Then

- S has a smallest unit u > 1 (smaller than all units except 1).
- $S^{\times} = \{ \pm u^r : r \in \mathbb{Z} \} = \langle -1, u \rangle.$

Definition. The smallest unit u > 1 above is the fundamental unit of S (or of K, in the case $S = \mathcal{O}_d$).

4.1. Proof of the main theorem

Remark. If $\alpha = a + b\sqrt{d}$ is unit in $\mathbb{Z}[\sqrt{d}]$, a, b > 0, then $N_K(\alpha) = \alpha \overline{\alpha} = \pm 1$, so

$$|\overline{\alpha}| = |a - b\sqrt{d}| = \frac{|N_K(\alpha)|}{|\alpha|} = \frac{1}{|\alpha|} < \frac{1}{b\sqrt{d}} < \frac{1}{b}$$

Define

$$A = \left\{\alpha = a + b\sqrt{d} : a, b \in \mathbb{N}_0, |\overline{\alpha}| < \frac{1}{b}\right\}$$

Lemma. $|A| = \infty$.

Lemma. If $\alpha \in A$, then $|N_K(\alpha)| < 1 + 2\sqrt{d}$.

Lemma. $\exists \alpha = a + b\sqrt{d}, \alpha' = a' + b'\sqrt{d} \in A : \alpha > \alpha', |N_K(\alpha)| = |N_K(\alpha')| =: n \text{ and }$ $\alpha \equiv \alpha' \pmod{n}, \quad b \equiv b' \pmod{n}$

Lemma. There exists a unit u in $\mathbb{Z}[\sqrt{d}]$ such that u > 1.

Lemma. Let $0 \neq \alpha = a + b\sqrt{d} \in \mathbb{Q}(\sqrt{d})$. Then $\alpha > \sqrt{|N_K(\alpha)|}$ iff a, b > 0.

4.2. Computing fundamental units

Theorem. Let d > 1 non-square.

- If $S = \mathbb{Z}[\sqrt{d}]$ and $a + b\sqrt{d} \in S^{\times}$, a, b > 0 such that b is minimal, then $a + b\sqrt{d}$ is the fundamental unit in S.
- If $S = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ (so $d \equiv 1 \pmod{4}$), then $\frac{1+\sqrt{5}}{2}$ is the fundamental unit in \mathcal{O}_5 . If d > 5 and $\frac{s+t\sqrt{d}}{2} \in \mathcal{O}_d^{\times}$ with s, t > 0 such that t is minimal, then $\frac{s+t\sqrt{d}}{2}$ is the fundamental unit in \mathcal{O}_d .

Remark. Both $u = \frac{1+\sqrt{5}}{2}$ and $u^2 = \frac{3+\sqrt{5}}{2}$ have t minimal (equal to 1), which is why a separate case is needed for d = 5.

Example.

- $1+\sqrt{2}$ is fundamental unit in $\mathbb{Z}[\sqrt{2}]=\mathcal{O}_2$, since $N_K\left(1+\sqrt{2}\right)=-1$ so is a unit, and here b = 1, so is minimal (as b > 0).
- $2+\sqrt{5}$ is the fundamental unit in $\mathbb{Z}[\sqrt{5}]$ (since b=1 is minimal) but is not the fundamental unit in \mathcal{O}_5 .

Example. Find fundamental unit in \mathcal{O}_7 . $7 \not\equiv 1 \pmod{4}$ so $\mathcal{O}_7 = \mathbb{Z}[\sqrt{7}]$. $a + b\sqrt{7}$ is a unit iff $a^2 - 7b^2 = \pm 1$. Also, by the above theorem, it is the fundamental unit if a, b > 0 and b is minimal. We use trial and error: for each b = 1, 2, ..., check whether $7b^2 \pm 1$ is a square

b	$7b^2 - 1$	$7b^2 + 1$	a^2
1	6	8	_
2	27	29	_
3	62	64	$64 = 8^2$

So the unit with minimal b such that a, b > 0 is $8 + 3\sqrt{7}$, so is the fundamental unit.

4.3. Pell's equation and norm equations

Definition. **Pell's equation** is $x^2 - dy^2 = 1$ for nonsquare d, where solutions are $x, y \in \mathbb{Z}$. Since LHS is norm of $x + y\sqrt{d}$, solutions are given by $x + y\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ with norm 1.

Example. Consider $x^2 - 2y^2 = \pm 1$. Fundamental unit in $\mathbb{Z}[\sqrt{2}]$ is $u = 1 + \sqrt{2}$, with norm -1. So if $x + y\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ is such that $N_{\mathbb{Z}(\sqrt{2})}(x + y\sqrt{2}) = 1$, then $x + y\sqrt{2}$ is an even power of u. Thus elements of norm ± 1 are

$$\pm u^{2n}$$
 (RHS = 1), $\pm u^{2n+1}$ (RHS = -1)

To extract solutions x, y, note that if $x + y\sqrt{2} = \pm u^r$, then $x - y\sqrt{2} = \pm \overline{u}^r$, hence

$$x = \pm \frac{u^r + \overline{u}^r}{2}, \quad y = \pm \frac{u^r - \overline{u}^r}{2\sqrt{2}}$$

Solutions when RHS = 1 are given by even r, solutions when RHS = -1 are given by odd r.

Example. Consider $x^2 - 75y^2 = 1$. $75 = 3 \cdot 5^2$ is not square-free, so rewrite as

$$x^2 - 3z^2 = 1$$

where z = 5y. Fundamental unit in $\mathbb{Z}[\sqrt{3}]$ is $u = 2 + \sqrt{3}$ of norm 1 so solutions are

$$x = \pm \frac{u^n + \overline{u}^n}{2}, \quad z = \pm \frac{u^n - \overline{u}^n}{2\sqrt{3}}, \quad n \in \mathbb{Z}$$

To get solution for (x, y), we need $5 \mid z$ (which doesn't always hold). Note that

$$u^2 = 7 + 4\sqrt{3} \notin \mathbb{Z}[\sqrt{75}] = \mathbb{Z}[5\sqrt{3}], \quad u^3 = 26 + 3\sqrt{75} \in \mathbb{Z}[\sqrt{75}]$$

Thus when n=2, (x,z) is not solution, but is when n=3, and hence when n=3k for $k \in \mathbb{Z}$:

$$x = \pm \frac{u^{3k} + \overline{u}^{3k}}{2}, \quad y = \pm \frac{u^{3k} - \overline{u}^{3k}}{5 \cdot 2\sqrt{3}}, \quad k \in \mathbb{Z}$$

 u^{3k+1} and u^{3k+2} never give solutions, since if $u^{3k+1} \in \mathbb{Z}[\sqrt{75}]$, then $u \in \mathbb{Z}[\sqrt{75}]$ (since $u^{-3k} \in \mathbb{Z}[\sqrt{75}]$). Similarly, if $u^{3k+2} \in \mathbb{Z}[\sqrt{75}]$, then $u^2 \in \mathbb{Z}[\sqrt{75}]$: contradiction. Note $\mathbb{Z}[\sqrt{75}] \subset \mathbb{Z}[\sqrt{3}]$ and any unit in $\mathbb{Z}[\sqrt{75}]$ is unit in $\mathbb{Z}[\sqrt{3}]$, so is $\pm u^r$ for some $r \in \mathbb{Z}$. So by taking powers of u, eventually we find the fundamental unit in $\mathbb{Z}[\sqrt{75}]$ (as it will be smallest unit > 1 assuming we increment powers from 1).

5. Discriminants and integral bases

5.1. Discriminant of an n-tuple

Definition. Let K number field of degree n. **Discriminant** of $\gamma = (\gamma_1, ..., \gamma_n) \in K^n$ is

$$\Delta_K(\gamma) := \det(Q(\gamma))$$

where $Q(\gamma) = (\operatorname{tr}_K(\gamma_i \gamma_j))_{1 \le i, j \le n} \in M_n(\mathbb{Q}).$

Example. Let $K = \mathbb{Q}(\sqrt{d})$, $d \neq 1$ squarefree.

$$\begin{split} \gamma &= (1, \sqrt{d}) \Longrightarrow Q(\gamma) = \begin{bmatrix} 2 & 0 \\ 0 & 2d \end{bmatrix} \Longrightarrow \Delta_K(\gamma) = 4d \\ \gamma &= (1, \frac{1+\sqrt{d}}{2}) \Longrightarrow Q(\gamma) = \begin{bmatrix} 2 & 1 \\ 1 & \frac{1+d}{2} \end{bmatrix} \Longrightarrow \Delta_K(\gamma) = d \end{split}$$

Proposition.

- $\Delta_K(\gamma) \in \mathbb{Q}$ and if every $\gamma_i \in \mathcal{O}_K$, then $\Delta_K(\gamma) \in \mathbb{Z}$.
- Let $M \in M_n(\mathbb{Q})$, then $\Delta_K(M\gamma) = \det(M)^2 \Delta_K(\gamma)$.
- $\Delta_K(\gamma)$ is invariant under permutations of $\gamma_1, ..., \gamma_n$.

Lemma. Let $\theta_1, ..., \theta_n \in \mathbb{C}$, let

$$D = \begin{bmatrix} 1 & \theta_1 & \dots & \theta_1^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_n & \dots & \theta_n^{n-1} \end{bmatrix}$$

then

$$\det(D) = (-1)^{\binom{n}{2}} \prod_{1 \leq r < s \leq n} (\theta_r - \theta_s)$$

Theorem. Let $K = \mathbb{Q}(\theta)$ be number field. Let $\theta_1, ..., \theta_n$ be roots of $p_{\theta}(x)$, let $\gamma = (1, ..., \theta^{n-1})$. Then

$$\Delta_K(\gamma) = \prod_{1 \leq i < j \leq n} (\theta_i - \theta_j)^2 = (-1)^{\binom{n}{2}} \prod_{i=1}^n p_{\theta}'(\theta_i) = (-1)^{\binom{n}{2}} N_K(p_{\theta}'(\theta))$$

Example.

• Let $K = \mathbb{Q}(\sqrt{d})$, d square-free, $\theta = \frac{1+\sqrt{d}}{2}$, then

$$\Delta_K((1,\theta)) = \left(\frac{1+\sqrt{d}}{2} - \frac{1-\sqrt{d}}{2}\right)^2 = d$$

• Let $\theta = \sqrt{d}$, so $p_{\theta}(x) = x^2 - d$, $p'_{\theta}(x) = 2x$, so

$$\Delta_K(1,\theta) = (-1)^{\binom{2}{2}} N_K(2\theta) = -4 N_k(\theta) = 4d$$

• Let $\theta = \sqrt[3]{d}$, so $p_{\theta}(x) = x^3 - d$, $p'_{\theta}(x) = 3x^2$ so

$$\Delta_K(1, \theta, \theta^2) = (-1)^{\binom{3}{2}} N_K(3\theta^2) = -27d^2$$

• Let θ be root of $p_{\theta}(x) = x^3 - x + 2$, so $p'_{\theta}(x) = 3x^2 - 1$.

$$\Delta_K(1, \theta, \theta^2) = (-1)^{\binom{3}{2}} N_K(3\theta^2 - 1)$$

Now $\theta^3 = \theta - 2$ so

$$N_K(3\theta^2-1) = \frac{N_K(2)N_K(\theta-3)}{N_K(\theta)} = \frac{8}{2}N_K(3-\theta) = 4(3-\theta_1)(3-\theta_2)(3-\theta_3) = 4p_\theta(3) = 104$$

so $\Delta_K(1,\theta,\theta^2) = -104$. Note: in general, this method doesn't work, and generally we have to compute matrix T_{θ} and $\det(f(T_{\theta}))$. As a generalisation,

$$N_{\mathbb{Q}(\theta)}(a-b\theta)=b^np_{\theta}(a/b)$$

Lemma.

- Roots $\theta_1, ..., \theta_n$ of $p_{\theta}(x)$ are distinct.
- $\begin{array}{ll} \bullet & \forall f(x) \in \mathbb{Q}[x], \operatorname{tr}_K(f(\theta)) = \sum_{i=1}^n f(\theta_i). \\ \bullet & \forall f(x) \in \mathbb{Q}[x], N_K(f(\theta)) = \prod_{i=1}^n f(\theta_i). \end{array}$

Proposition. Let $K = \mathbb{Q}(\theta)$ number field. Then $\Delta_K(\gamma) \neq 0$ iff γ is \mathbb{Q} -basis of K.

5.2. Full lattices and integral bases

Definition. Let A subgroup of \mathbb{Q} -vector space V. A is **full lattice** in V if there are $\gamma_1, ..., \gamma_n \in V$ such that

- $\{\gamma_1, ..., \gamma_n\}$ is basis for V.
- $A=\{a_1\gamma_i+\cdots+a_n\gamma_n:a_i\in\mathbb{Z}\}$ (i.e. $\gamma_1,...,\gamma_n$ generate A as a group). Note $a_1, ..., a_n$ are uniquely determined for each $a \in A$.

 $\{\gamma_1, ..., \gamma_n\}$ is **generating basis** for A.

Example. Let $K = \mathbb{Q}(\theta)$, $\theta \in \mathcal{O}_K$, $[K : \mathbb{Q}] = n$, then $\mathbb{Z}[\theta]$ has generating basis $\{1,...,\theta^{n-1}\}$ and is full lattice in K.

Example. \mathbb{Z} , $\mathbb{Z}[\sqrt{2}/2]$ are not full lattices in $\mathbb{Q}(\sqrt{2})$.

Proposition. Let K number field. Every non-zero ideal $I \subseteq \mathcal{O}_K$ is full lattice in K.

Definition. Generating basis for \mathcal{O}_K is **integral basis** for K.

Example. Let $K = \mathbb{Q}(\sqrt{d})$, then an integral basis for K is $\{1, \sqrt{d}\}$ if $d \not\equiv 1 \mod 4$, $\{1, (1+\sqrt{d})/2\}$ if $d \equiv 1 \mod 4$.

Theorem. If V is Q-vector space, $\dim(V) = n$, and $B \subset A \subset V$, A and B full lattices, $\{\beta_1,...,\beta_n\}$ is generating basis for $B, \{\alpha_1,...,\alpha_n\}$ is generating basis for A, where $\beta = M\alpha$, $M \in M_n(\mathbb{Z})$, then

- $|A/B| = |\det(M)|$ (in particular, A/B is finite)
- If V = K is number field, these satisfy index-discriminant formula: $\Delta_K(B) =$ $|A/B|^2 \Delta_K(A)$.

(Note M exists since α is generating basis for A so spans B over \mathbb{Z}).

Lemma. If $A \subset K$ is full lattice and $\{\gamma_1, ..., \gamma_n\}$, $\{\delta_1, ..., \delta_n\}$ are generating bases for A, then $\Delta_K(\gamma_1,...,\gamma_n) = \Delta_K(\delta_1,...,\delta_n)$. We define discriminant of A to be $\Delta_K(A) =$ $\Delta_K(\gamma_1,...,\gamma_n)$ for any generating basis $\{\gamma_1,...,\gamma_n\}$.

Definition. **Disciminant** of number field K is

$$\Delta_K = \Delta_K(\mathcal{O}_K) = \Delta_K(\gamma_1,...,\gamma_n)$$

for any integral basis $\{\gamma_1, ..., \gamma_n\}$.

5.3. When is $R = \mathbb{Z}[\theta]$?

Proposition. If $S \subseteq \mathcal{O}_K$ is full lattice in $K = \mathbb{Q}(\theta)$, $\{\gamma_1, ..., \gamma_n\}$ is generating basis for S, and p prime, $p \mid |\mathcal{O}_K/S|$, then

- $p^2 \mid \Delta_K(S)$
- There exists $\alpha=m_1\gamma_1+\cdots+m_n\gamma_n\in S,\,m_i\in\mathbb{Z},$ such that $\alpha/p\in\mathcal{O}_K-S$ and

$$\begin{cases} 0 \leq |m_i| < p/2 \text{ if } p \text{ is odd} \\ m_i \in \{0,1\} & \text{if } p = 2 \end{cases}$$

Example. If $K = \mathbb{Q}(\sqrt{d})$,

$$\Delta_K = \begin{cases} 4d \text{ if } d \not\equiv 1 \bmod 4\\ d \text{ if } d \equiv 1 \bmod 4 \end{cases}$$

Example. Let θ be root of $x^3 + 4x + 1$, $K = \mathbb{Q}(\theta)$. We have $\mathbb{Z}[\theta] \subseteq \mathcal{O}_K$ and $\Delta_K(\mathbb{Z}[\theta]) = \Delta_K(1, \theta, \theta^2) = 281 = |\mathcal{O}_K/\mathbb{Z}[\theta]|^2 \Delta_K(\mathcal{O}_K)$. As 281 is squarefree, $|\mathcal{O}_K/\mathbb{Z}[\theta]| = 1$ so $\mathcal{O}_K = \mathbb{Z}[\theta]$.

Example. Let $K = \mathbb{Q}(\theta)$, $\theta = \sqrt[3]{5}$. let $R = \mathcal{O}_K$, $S = \mathbb{Z}[\theta]$. $\Delta_K(S) = -3^3 \cdot 5^2$. If p prime and $p \mid |R/S|$, then $p \in \{3,5\}$ and there is $\alpha = a + b\theta + c\theta^2$ such that $\alpha/p \in R - S$, |a|, |b|, |c| < p/2. Note $\alpha \neq 0$, as otherwise $\alpha \in S$.

• If $5 \mid |R/S|$, then $|a|, |b|, |c| \in \{0, 1, 2\}$. Then $\operatorname{tr}_{K/\mathbb{Q}}(\alpha/5) = 3a/5 \in \mathbb{Z}$ so $5 \mid a$ so a = 0. $\theta \alpha/5 = c + (b\theta^2)/5 \in \mathcal{O}_K$ so $(b\theta^2)/5 \in \mathcal{O}_K$ so

$$N_K((b\theta^2)/5) = \frac{N_K(b)N_K(\theta)^2}{N_K(5)} = \frac{b^3}{5} \in \mathbb{Z}$$

so $5 \mid b$, so b = 0. Finally,

$$N_K\left(\frac{\alpha}{5}\right) = N_K\left(\frac{c\theta^2}{5}\right) = \frac{c^3(-5)^2}{5^3} = \frac{c^3}{5} \in \mathbb{Z} \Longrightarrow c = 0$$

Contradiction.

• If $3 \mid |R/S|$, then $|a|, |b|, |c| \in \{0, 1\}$ and can assume $a \ge 0$ (by possibly multiplying by -1). Then

$$N_K\!\left(\frac{a+b\theta+c\theta^2}{3}\right)\in\mathbb{Z}\Longrightarrow a^3+5b^3+25c^3-15abc\equiv 0(\operatorname{mod}3^3)$$

If a=0, then $5b^3+25c^3\equiv 2b+c\equiv 0 \pmod 3$ (as $b,c\in\{0,1,-1\}$), so if b=0, then $c\equiv 0 \pmod 3 \implies c=0$: contradiction. So b=1 (by possibly multiplying by -1) hence c=1. But then

$$N_K(\alpha/3) = N_K \left(\frac{\theta + \theta^2}{3}\right) = \frac{N_K(\theta)N_K(1+\theta)}{3^3} = \frac{5\cdot 6}{27} \notin \mathbb{Z}$$

Contradiction. If a = 1, then

$$1 + 5b^3 + 25c^3 \equiv 1 + 2b + c \equiv 0 \pmod{3}$$

which also leads to a contradiction.

• So $5 \nmid |R/S|$, $3 \nmid |R/S|$, so |R/S| = 1, so $\mathbb{Z}[\theta] = \mathcal{O}_K$.

6. Unique factorisation of ideals

Definition. **Product** of ideals $I, J \subseteq R$ is

$$IJ \coloneqq \left\{ \sum_{i=1}^k x_i y_i : k \in \mathbb{N}, x_i \in I, y_i \in J \right\}$$

If $I = \langle a_1, ..., a_m \rangle$, $J = (b_1, ..., b_n)$ then

$$IJ = \langle a_i b_j \mid i \in [m], j \in [n] \rangle$$

Definition. I divides $J, I \mid J$, if there is ideal K such that IK = J.

Note. to divide is to contain: $I \mid J \Longrightarrow J \subseteq I$.

Example. Let $R = \mathbb{Z}[\sqrt{-6}]$, $I = \langle 5, 1 + 3\sqrt{-6} \rangle$, $J = \langle 5, 1 - 3\sqrt{-6} \rangle$, then

$$IJ = \langle 25, 5(1+3\sqrt{-6}), 5(1-3\sqrt{-6}), 55 \rangle \subseteq \langle 5 \rangle$$

But also $5 = 55 - 2 \cdot 25 \in I$, $\langle 5 \rangle \subseteq IJ$, so $IJ = \langle 5 \rangle$.

Lemma. Let I, J ideals, P prime ideal. Then

$$IJ \subset P \iff (I \subset P \lor J \subset P)$$

Example. $\langle 5, 1+3\sqrt{-6} \rangle \subset \mathbb{Z}[\sqrt{-6}]$ is prime: define $\varphi : \mathbb{Z}[\sqrt{-6}] \to \mathbb{F}_5$, $\varphi(a+b\sqrt{-6})=a-2b$. φ is surjective homomorphism. Also, $5, 1+3\sqrt{-6} \in \ker(\varphi)$, and

$$a + b\sqrt{-6} \in \ker(\varphi) \Longrightarrow b \equiv 3a \bmod 5$$
$$\Longrightarrow (a + b\sqrt{-6}) - a(1 + 3\sqrt{-6}) = (b - 3a)\sqrt{-6} \in \langle 5 \rangle$$

so $\ker(\varphi) = (5, 1 + 3\sqrt{-6})$. So by first isomorphism theorem, $R/\langle 5, 1 + \sqrt{-6} \rangle \cong \mathbb{F}_5$ which is field, so $\langle 5, 3 + \sqrt{-6} \rangle$ is maximal, so prime.

Definition. Let K number field, $R = \mathcal{O}_K$. **Fractional ideal** of R is subset of K of the form

$$\lambda I = \{\lambda x : x \in I\}$$

where $\langle 0 \rangle \neq I \subseteq R$ and $\lambda \in K^{\times}$. If I = R, λI is **principal fractional ideal**. Set of fractional ideals in R is denoted $\mathcal{I}(R)$, set of principal fractional ideals is denoted $\mathcal{P}(R)$. Multiplication of fractional ideals is defined similarly to that of ideals.

Example.

- $\frac{n}{m}\mathbb{Z}$ is fractional ideal in \mathbb{Q} for all $m, n \in \mathbb{Z} \{0\}$.
- Every non-zero ideal is fractional ideal (take $\lambda = 1$).
- If λI is fractional ideal, then $\lambda^{-1}\lambda I = I$ is ideal.

Definition. A fractional ideal A is **invertible** if there is fractional ideal B such that $AB = \mathcal{O}_K$. B is the **inverse** of A. The invertible fractional ideals form a group.

Example. In $\mathbb{Z}[\sqrt{-6}] = \mathcal{O}_K$, $\langle 5, 1 + 3\sqrt{-6} \rangle \langle 5, 1 - 3\sqrt{-6} \rangle = \langle 5 \rangle$ so

$$\langle 5, 1 + 3\sqrt{-6} \rangle \cdot \frac{1}{5} \langle 5, 1 - 3\sqrt{-6} \rangle = \mathcal{O}_K$$

so inverse of $\langle 5, 1 + 3\sqrt{-6} \rangle$ is $\frac{1}{5}\langle 5, 1 - 3\sqrt{-6} \rangle$.

6.1. The norm of an ideal

Definition. Let $\langle 0 \rangle \neq I$ ideal of \mathcal{O}_K . Norm of I is

$$N(I) \coloneqq |\mathcal{O}_K/I|$$

We have $N(I) \in \mathbb{N}$, N(R) = 1, and $I \subsetneq J \Longrightarrow N(I) > N(J)$ (in fact, N(I) = N(J) |J/I|).

Proposition. Every non-zero prime ideal in \mathcal{O}_K is maximal.

Lemma. Every nonzero ideal in \mathcal{O}_K contains product of one or more non-zero prime ideals.

6.2. Ideals are invertible

Theorem. Every non-zero prime ideal in \mathcal{O}_K is invertible.

Lemma. If λI is fractional ideal and $\lambda I \subseteq \mathcal{O}_K$, then λI is ideal in \mathcal{O}_K .

Lemma. Let $J \subseteq I$ ideals in \mathcal{O}_K with I invertible. Then

- $I^{-1}J$ is ideal in \mathcal{O}_K and so $I \mid J$.
- $J \subseteq I^{-1}J$ with equality iff I = R.

Theorem. Let $I \subseteq \mathcal{O}_K$ be non-zero ideal. Then I is unique (up to reordering) product of prime ideals.

Definition. A ring where every proper non-zero ideal can be uniquely factorised into prime ideals is a **Dedekind domain**. So rings of integers are Dedekind domains.

 $\begin{array}{l} \textbf{Example}. \ \ \text{In} \ \mathbb{Z}[\sqrt{-6}], \ (1+3\sqrt{-6})(1-3\sqrt{-6}) = 55 = 5 \cdot 11. \ P_5 = \langle 5, 1+3\sqrt{-6} \rangle \ \text{and} \\ \overline{P_5} = \langle 5, 1-3\sqrt{-6} \rangle \ \text{are prime, as are} \ P_{11} = \langle 11, 1+3\sqrt{-6} \rangle \ \text{and} \ \overline{P_{11}} = \langle 11, 1-\sqrt{-6} \rangle. \\ P_5\overline{P_5} = \langle 5 \rangle, \ P_{11}\overline{P_{11}} = \langle 11 \rangle, \ P_5P_{11} = \langle 1+3\sqrt{-6} \rangle, \ \overline{P_5} \ \overline{P_{11}} = \langle 1-3\sqrt{-6} \rangle \ \text{so} \end{array}$

$$(P_5P_{11})(\overline{P_5}\ \overline{P_{11}}) = (P_5\overline{P_5})(P_{11}\overline{P_{11}})$$

Corollary. Let $R = \mathcal{O}_K$.

- Every fractional ideal (and hence every nonzero ideal) in R is invertible.
- $\mathcal{I}(R)$ is abelian group under multiplication, with identity element R.

Corollary (to divide is to contain and to contain is to divide). $I \mid J \iff J \subseteq I$.

Theorem. If \mathcal{O}_K is UFD, then it is also PID.

6.3. Arithmetic with ideals

Definition. Let I, J be non-zero ideals of R,

$$I = P_1^{a_1} \cdots P_r^{a_r},$$
$$J = P_1^{b_1} \cdots P_r^{b_r}$$

with $P_1,...,P_r$ distinct prime ideals of R and $a_i,b_i\geq 0$. gcd and lcm of I and J are

$$\begin{split} \gcd(I,J) &:= P_1^{\min\{a_1,b_1\}} \cdots P_r^{\min\{a_r,b_r\}}, \\ &\text{lcm}(I,J) := P_1^{\max\{a_1,b_1\}} \cdots P_r^{\max\{a_r,b_r\}} \end{split}$$

Definition. I and J are coprime if $gcd(I, J) = \langle 1 \rangle = R$.

Proposition.

- For $m, n \in \mathbb{Z}$, $\gcd(\langle m \rangle_{\mathbb{Z}}, \langle n \rangle_{\mathbb{Z}}) = \langle \gcd(m, n) \rangle_{\mathbb{Z}}$ and $\operatorname{lcm}(\langle m \rangle_{\mathbb{Z}}, \langle n \rangle_{\mathbb{Z}}) = \langle \operatorname{lcm}(m, n) \rangle_{\mathbb{Z}}$.
- gcd(I, J) divides I and J, and if any K divides I and J, then $K \mid gcd(I, J)$.
- $I, J \mid \text{lcm}(I, J)$ and for any ideal K, if $I, J \mid K$ then $\text{lcm}(I, J) \mid K$.

Proposition.

- In any ring, the smallest ideal containing ideals I and J is I+J. So if $I=\langle a_1,...,a_n\rangle$ and $J=(b_1,...,b_m)$ then smallest ideal containing I and J is $\langle a_1,...,a_n,b_1,...,b_m\rangle$.
- In any ring, the largest ideal contained in both I and J is $I \cap J$.

Proposition. If I and J are non-zero ideals in \mathcal{O}_K then

$$\gcd(I,J) = I + J, \quad \operatorname{lcm}(I,J) = I \cap J$$

Theorem (Chinese remainder theorem for ideals). Let $I_1, ..., I_k$ be pairwise coprime ideals of \mathcal{O}_K , then there is an isomorphism

$$R/(I_1 \cdots I_k) \to R/I_1 \times \cdots \times R/I_k,$$
$$x + (I_1 \cdots I_k) \mapsto (x + I_1, \dots, x + I_k)$$

7. Splitting of primes and the Kummer-Dedekind theorem

7.1. Properties of the ideal norm

Lemma. For every non-zero ideal I of \mathcal{O}_K , $N(I) \in I$, hence $I \cap \mathbb{Z} \neq \langle 0 \rangle$.

Notation. For $0 \neq \alpha \in \mathcal{O}_K$, define $N(\alpha) \coloneqq N(\langle \alpha \rangle_{\mathcal{O}_K})$.

 $\mathbf{Lemma}. \ \ \forall 0 \neq \alpha \in \mathcal{O}_K, \, N(\alpha) = |N_K(\alpha)|.$

Lemma. Ideal norm is multiplicative: for any non-zero ideals I, J in \mathcal{O}_K ,

$$N(IJ) = N(I)N(J)$$

7.2. The Kummer-Dedekind theorem

Definition. If $p \in \mathbb{Z}$ prime, and $\langle p \rangle_{O_K} = P_1^{e_1} \cdots P_r^{e_r}$ then $P_1, ..., P_r$ are the prime ideals **lying above** p. Equivalently, P **lies above** p if $P \cap \mathbb{Z} = \langle p \rangle_{\mathbb{Z}}$.

Remark. If $P \subset \mathcal{O}_K$ nonzero prime ideal, then $N(P) \in P \cap \mathbb{Z}$ so $P \cap \mathbb{Z} \neq \langle 0 \rangle$. But $P \cap \mathbb{Z}$ is prime ideal of \mathbb{Z} so $P \cap \mathbb{Z} = \langle p \rangle_{\mathbb{Z}}$ for some prime $p \in \mathbb{Z}$. Hence $p \in P$, $\langle p \rangle_{\mathcal{O}_K} \subseteq P$ so $P \mid \langle p \rangle_{\mathcal{O}_K}$. Hence every P lies over some prime p.

Lemma. Prime ideal P of \mathcal{O}_K lies above p iff $N(P) = p^r$ for some $1 \le r \le n = [K : \mathbb{Q}]$.

Theorem (Kummer Dedekind). Let p prime. Suppose $\mathcal{O}_K = \mathbb{Z}[\theta]$ for some $\theta \in \mathcal{O}_K$ with minimal polynomial p_{θ} . Let $\overline{f}(x)$ be reduction of $f(x) \in \mathbb{Z}[x] \mod p$, so $\overline{f}(x) \in \mathbb{F}_p[x]$. Let

$$\overline{p_{\theta}}(x) = \overline{f_1}(x)^{e_1} \cdots \overline{f_r}(x)^{e_r}$$

be factorisation of $\overline{p_{\theta}}$ where $\overline{f_i}$ are distinct, monic, irreducible. For each i, let $f_i(x) \in \mathbb{Z}[x]$ be monic polynomial whose reduction mod p is $\overline{f_i}(x)$. Let $P_i = (p, f_i(\theta))_{\mathcal{O}_K}$. Then P_i are distinct prime ideals, $N(P_i) = p^{\deg(f_i)}$ and

$$\langle p \rangle_{\mathcal{O}_{\mathcal{K}}} = P_1^{e_1} \cdots P_r^{e_r}$$

Theorem (Strong Kummer-Dedekind). Let $K = \mathbb{Q}(\theta)$, $\theta \in R = \mathcal{O}_K$, $p \nmid |R/\mathbb{Z}[\theta]|$ then $\langle p \rangle_R$ can be factorised by considering $\overline{p_\theta}(x) \in \mathbb{F}_p[x]$ as in usual Kummer-Dedekind when $|R/\mathbb{Z}[\theta]| = 1$.

Example. Let $K=\mathbb{Q}(\sqrt{6})$, so $\mathcal{O}_K=\mathbb{Z}[\sqrt{6}]$. $p_{\theta}(x)=x^2-6$ factorises modulo small primes as:

$$\begin{array}{ll} \overline{x^2-6}=x^2 & \text{in } \mathbb{F}_2[x] \\ \hline \overline{x^2-6}=x^2 & \text{in } \mathbb{F}_3[x] \\ \hline \overline{x^2-6}=x^2-1=(x-1)(x+1) & \text{in } \mathbb{F}_5[x] \\ \hline \overline{x^2-6} & \text{irreducible} & \text{in } \mathbb{F}_7[x] \\ \hline \overline{x^2-6} & \text{irreducible} & \text{in } \mathbb{F}_{11}[x] \\ \hline \end{array}$$

Since 6 is not square mod 7 or 11. By Kummer-Dedekind,

$$\begin{split} \left<2\right>_{\mathcal{O}_K} &= \left<2,\sqrt{6}\right>^2, \quad \left<3\right>_{\mathcal{O}_K} = \left<3,\sqrt{6}\right>^2, \\ \left<5\right>_{\mathcal{O}_K} &= \left<5,\sqrt{6}+1\right>\left<5,\sqrt{6}-1\right>, \\ \left<7\right>_{\mathcal{O}_K} &= \left<7,\sqrt{6}^2-6\right> = \left<7,0\right> = \left<7\right>, \\ \left<11\right>_{\mathcal{O}_K} &= \left<11,\sqrt{6}^2-6\right> = \left<11,0\right> = \left<11\right> \end{split}$$

Definition. When K is quadratic, Kummer-Dedekind implies there are 3 mutually exclusive possibilities for prime $p \in \mathbb{Z}$:

- If $\langle p \rangle_{\mathcal{O}_K}$ is prime ideal, p is **inert**.
- If $\langle p \rangle_{\mathcal{O}_K}^{\mathcal{O}_K} = P^2$ for prime ideal P, then p ramifies (or is ramified) (otherwise, it is unramified).

• If $\langle p \rangle_{\mathcal{O}_K} = P_1 P_2$ for distinct prime ideals P_1, P_2 , then p splits (or is split).

Remark. If K/\mathbb{Q} is quadratic, $K = \mathbb{Q}(\sqrt{d})$, then Kummer-Dedekind always applies since $R = \mathbb{Z}[\theta]$ for some $\theta \in K$.

Notation. Let K quadratic extension. If $I \subseteq \mathcal{O}_K$ ideal, let $\overline{I} = \{\overline{x} : x \in I\}$ where $a + b\sqrt{d} = a - b\sqrt{d}$. We have I prime iff \overline{I} prime and $N(\overline{I}) = N(I)$.

Lemma. Let K quadratic number field, $p \in \mathbb{Z}$ prime, P non-zero prime ideal in \mathcal{O}_K lying above p. Then \overline{P} is prime ideal lying above p and:

- If p inert, then $P = \overline{P}$ and $N(P) = p^2$.
- If p ramifies, then $P = \overline{P}$ and N(P) = p.
- If p splits, then $\langle p \rangle_{\mathcal{O}_K} = P\overline{P}, \, P \neq \overline{P} \text{ and } N(P) = N(\overline{P}) = p.$

In all cases, $P\overline{P} = \langle N(P) \rangle_{\mathcal{O}_K}$.

Example. Let $\theta^3 + 3\theta - 1 = 0$, $K = \mathbb{Q}(\theta)$. We have $\mathcal{O}_K = \mathbb{Z}[\theta]$. To factorise $\langle 5 \rangle_{\mathcal{O}_K}$ and $\langle 11 \rangle_{\mathcal{O}_K}$: -1 and 2 are roots of $x^3 + 3x - 1 \mod 5$, so we get $x^3 + 3x - 1 \equiv (x + 1)(x + 2)^2 \mod 5$. So by Kummer-Dedekind,

$$\langle 5 \rangle_{\mathcal{O}_K} = \langle 5, \theta + 1 \rangle \langle 5, \theta + 2 \rangle^2$$

Only root in $\overline{p_{\theta}}$ in \mathbb{F}_{11} is -4, so $\overline{p_{\theta}}(x) = (x+4)(x^2-4x+8) \mod 11$ and $x^2-4x+8 = (x-2)^2+4$ is irreducible as -4 is not square mod 11. So by Kummer-Dedekind,

$$\langle 11 \rangle_{\mathcal{O}_{K}} = \langle 11, \theta + 4 \rangle \langle 11, \theta^{2} - 4\theta + 8 \rangle$$

To factorise $\langle 2\theta - 3 \rangle_{\mathcal{O}_{\kappa}}$:

$$N_K(2\theta-3) = -N_K(2)N_K\bigg(\frac{3}{2}-\theta\bigg) = -8\cdot p_\theta\bigg(\frac{3}{2}\bigg) = -8\bigg(\frac{27}{8}+\frac{9}{2}-1\bigg) = -55$$

So $\langle 2\theta - 3 \rangle = P_5 P_{11}$ where $N(P_5) = 5$, $N(P_{11}) = 11$, P_5, P_{11} prime. So $P_5 \mid \langle 5 \rangle$, so $P_5 = \langle 5, \theta + 1 \rangle$ or $\langle 5, \theta + 2 \rangle$. Now $2\theta - 3 = 2(\theta + 1) - 5 \in \langle 5, \theta + 1 \rangle$, so $\langle 5, \theta + 1 \rangle \mid \langle 2\theta - 3 \rangle$, hence $P_5 = \langle 5, \theta + 1 \rangle$. Now $P_{11} \mid \langle 11 \rangle$ so $P_{11} = \langle 11, \theta + 4 \rangle$ or $\langle 11, \theta^2 - 4\theta + 8 \rangle$. But by Kummer-Dedekind, the latter has norm 11^2 which is a contradiction (since $11^2 \nmid N(\langle 2\theta - 3 \rangle) = 55$). So $P_{11} = \langle 11, \theta + 4 \rangle$.

8. The ideal class group

Notation. Let $R = \mathcal{O}_K$ for number field K.

Definition. (Ideal) class group of R (or of K) is $\mathrm{Cl}(R) \coloneqq \mathcal{I}(R)/\mathcal{P}(R)$. For fractional ideal $I \in \mathcal{I}(R)$, let $[I] = I \cdot \mathcal{P}(R) = \left\{ \left\langle \lambda \right\rangle_R I : \lambda \in K^\times \right\} = \left\{ \lambda I : \lambda \in K^\times \right\}$ denote class of I in $\mathrm{Cl}(R)$.

Proposition.

- [I] = e iff $I \in \mathcal{P}(R)$ iff I is principal.
- [I] = [J] iff $I = \langle \lambda \rangle_{R} J$ for some $\lambda \in K^{\times}$ iff $\alpha I = \beta J$ for some $\alpha, \beta \in R \{0\}$.
- $[I] \cdot [J] = IJ \cdot \mathcal{P}(R) = [IJ].$
- $[I]^{-1} = [I^{-1}].$

Proposition. Cl(R) is the trivial group (Cl(R) = e) iff R is a UFD iff R is a PID.

Remark. If
$$\langle \alpha \rangle_R = PQ$$
 then $e = [\langle \alpha \rangle_R] = [PQ] = [P][Q]$ so $[P] = [Q]^{-1}$.

Proposition. If K is quadratic number field, I, J ideals, then $[\overline{I}] = [I]^{-1}$ and $I\overline{J}$ is principal iff [I] = [J].

Example.

• Let $K=\mathbb{Q}(\sqrt{-29})$ so $\mathcal{O}_K=\mathbb{Z}[\sqrt{-29}]=R.$ $p_{\sqrt{-29}}(x)=x^2+29$ so by Kummer-Dedekind and Lemma 7.2.12.

$$\begin{split} \left\langle 2\right\rangle _{R}&=P_{2}^{2},\quad P_{2}=\left\langle 2,1+\sqrt{-29}\right\rangle _{R},\quad N(P_{2})=2,\\ \left\langle 3\right\rangle _{R}&=P_{3}\overline{P_{3}},\quad P_{3}=\left\langle 3,1-\sqrt{-29}\right\rangle _{R},\quad N(P_{3})=3,\\ \left\langle 5\right\rangle _{R}&=P_{5}\overline{P_{5}},\quad P_{5}=\left\langle 5,1-\sqrt{-29}\right\rangle _{R},\quad N(P_{5})=5 \end{split}$$

- If P_2 were principal, then $P_2 = \langle a + b\sqrt{-29} \rangle$ but $N(P_2) = 2 = a^2 + 29b^2$:
- contradiction. So $[P_2] \neq e$ but $[P_2]^2 = e$ as $P_2^2 = \langle 2 \rangle_R$ is principal.

 Similarly, P_5 is not principal, but also P_5^2 is not principal, as if it was, then $P_5^2 = \langle 2 \rangle_R$ $\langle a+b\sqrt{-29}\rangle$ so $25=a^2+29b^2\Longrightarrow a=\pm 5$, but then $P_5^2=\langle 5\rangle=P_5\overline{P_5}$, but $P_5\neq 0$ $\overline{P_5}$.
- But $N(3+2\sqrt{-29})=5^3$, so $\langle 3+2\sqrt{-29}\rangle_R \mid (5^3)_R$ by Lemma 7.1.1, so $\langle 3+2\sqrt{-29}\rangle = P_5^a \overline{P_5}^{3-a}$; but $5 \nmid 3+2\sqrt{-29}$, so we can't have $P_5 \overline{P_5} \mid \langle 3+2\sqrt{-29}\rangle$. So $\langle 3+2\sqrt{-29}\rangle = P_5^3$ or $\overline{P_5}^3$, and $3+2\sqrt{-29} \in P_5$ so $\langle 3+2\sqrt{-29}\rangle = P_5^3$, hence $[P_5]^3 = e$, so $[P_5]$ has order 3.
- Again, $[P_3] \neq e$. As $N(1+\sqrt{-29})=30$, $\langle 1+\sqrt{-29}\rangle \mid \langle 30\rangle = \langle 2\rangle\langle 3\rangle\langle 5\rangle$, so we see $\langle 1 + \sqrt{-29} \rangle = P_2 \overline{P_3 P_5}$, hence $e = [P_2][P_3]^{-1}[P_5]^{-1}$ and so $[P_3] = [P_2][P_5]^{-1}$. Since product of two elements of coprime orders m, n in abelian group has order mn, we have

$$\operatorname{ord}([P_3]) = \operatorname{ord}([P_2][\overline{P_5}]) = 2 \cdot 3 = 6$$

Also, $[P_3]^2 = [\overline{P_5}]^2 = [P_5]$ so $[P_3]^3 = [P_2]$ and $[P_3]^4 = [P_5]^{-1}$. Hence Cl(R) contains a cyclic subgroup of order 6 generated by $[P_3]$.

8.1. Finiteness of the class group

Lemma. Let C > 0, then there are finitely many ideals of R of norm $\leq C$.

Lemma. For any number field K, there is $C_K \in \mathbb{N}$ such that for any nonzero ideal $J \subseteq R$,

$$\exists 0 \neq s \in J : N(s) \leq C_K \cdot N(J)$$

Corollary. Let $\underline{c} \in Cl(R)$, then there is ideal $I \subseteq R$ with $[I] = \underline{c}$ and $N(I) \leq C_K$.

Theorem. Let K number field, $R = \mathcal{O}_K$, then $\mathrm{Cl}(R)$ is finite.

Definition. Class number of K is $h_K := |Cl(R)|$.

8.2. The Minkowski bound

Theorem (Minkowski bound). If $K = \mathbb{Q}(\theta)$ and p_{θ} has s real roots, 2t complex roots, n := s + 2t, then for every $\underline{c} \in Cl(R)$, we can find a (non-fractional) ideal I with $[I] = \underline{c}$ and

$$N(I) \leq B_K \coloneqq \left(\frac{4}{\pi}\right)^t \frac{n!}{n^n} \sqrt{|\Delta_K|}$$

i.e. we can take $C_K = B_K$.

Example. Let $K = \mathbb{Q}(\sqrt{-29})$, so $R = \mathbb{Z}[\sqrt{-29}]$, then every ideal class has representative of norm $\leq (4/\pi)\sqrt{29} < 7$ so of norm 1, 2, ..., 6, so is product of $P_2, P_3, \overline{P_3}, P_5, \overline{P_5}$, so $\mathrm{Cl}(R) = \langle [P_3] \rangle$ is cyclic of order 6.

Example. Let $K = \mathbb{Q}(\sqrt{-19})$, so $R = \mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{-19}}{2}]$, $\Delta_K = -19$, then

$$B_K = \left(\frac{4}{\pi}\right) \frac{2!}{2^2} \sqrt{19} = \frac{2\sqrt{19}}{\pi} < 3$$

So every element in $\mathrm{Cl}(\mathcal{O}_K)$ is represented by an ideal of norm 1 or 2. Let N(I)=2, then I is prime and $I\mid \langle 2\rangle_R$. But minimal polynomial of $\frac{1+\sqrt{-19}}{2}$ is x^2-x+5 and $x^2-x+4=x^2+x+1$ irreducible in $\mathbb{F}_2[x]$ so 2 is inert in R, hence $I=\langle 2\rangle_R$ and $N\left(\langle 2\rangle_R\right)=4$: contradiction. So $\mathrm{Cl}(\mathcal{O}_K)=\{e\}$, i.e. \mathcal{O}_K is PID, and in particular a UFD. Note that it is not an ED though.

Example. Let $K = \mathbb{Q}(\sqrt{-14})$, so $R = \mathcal{O}_K = \mathbb{Z}[\sqrt{-14}]$. $\Delta_K = 4 \cdot -14 = -56$, so

$$B_K = \left(\frac{4}{\pi}\right)^1 \frac{2!}{2^2} \sqrt{56} = \frac{4\sqrt{14}}{\pi} < 5$$

In general, $\operatorname{Cl}(\mathcal{O}_K)$ is generated by classes of prime ideals of norm $\leq B_K$. By Kummer-Dedekind, $(2)_R = \left(2, \sqrt{-14}\right)^2 = P_2^2$ and $(3)_R = \left(3, \sqrt{-14} - 1\right)(3, \sqrt{-14} + 1)$. Hence if N(I) = 4, then $I \mid (2)_R^2 = P_2^4$ so $I = P_2^2 = (2)_R$. So as a set,

$$\operatorname{Cl}(R) = \left\{e, [P_2], [P_3], \left[\overline{P_3}\right] = [P_3]^{-1}, \left[P_2^2\right] = e\right\}$$

The norm of a principal ideal is $N\left(\langle a+b\sqrt{-14}\rangle\right)=a^2+14b^2\neq 2,3,6$ hence $P_2,P_3,\overline{P_3},P_2P_3,P_2\overline{P_3}$ are not principal. We have $[P_2][\overline{P_3}]\neq e\Longrightarrow [P_2]\neq [P_3]$, similarly $[P_2]\neq [\overline{P_3}]$. We have $[P_3]\neq [\overline{P_3}]$, since otherwise $[P_3]^2=e$, so P_3^2 is principal and so $P_3^2=\langle 3\rangle$ but then $P_3=\overline{P_3}$. Thus $e,[P_2],[P_3],[\overline{P_3}]$ are distinct, so $|\operatorname{Cl}(R)|=4$, so $\operatorname{Cl}(R)\cong \mathbb{Z}/2\times \mathbb{Z}/2$ or $\mathbb{Z}/4$. But $[P_3]^2\neq e$ so $[P_3]$ has order 4, hence $\operatorname{Cl}(R)\cong \mathbb{Z}/4$ is generated by $[P_3]$. Note $[\overline{P_3}]^2$ and $[P_2]$ have order 2, so $[\overline{P_3}]^2=[P_2]$, so $[P_2P_3^2]=e$, hence $P_2P_3^2$ is principal and there exists element in \mathcal{O}_K of norm $2\cdot 3^2=18$.

Example. Let $K = \mathbb{Q}(\sqrt{79})$. Prove that $\mathrm{Cl}(R) \cong \mathbb{Z}/3$.

• $79 \not\equiv 1 \pmod{4}$ so $\Delta_K = 4 \cdot 79$ so by the Minkowski bound, any element in $\mathrm{Cl}(R)$ contains an ideal of norm at most

$$B_K = \left(\frac{4}{\pi}\right)^0 \frac{2!}{2^2} \sqrt{|\Delta_K|} = \sqrt{79} \in (8,9)$$

Hence Cl(R) is generated by the ideal classes of prime ideals dividing 2, 3, 5 and 7. By Kummer-Dedekind,

p	$x^2-79\in \mathbb{F}_p[x]$	$\left\langle p\right angle _{R}$	norm of prime ideals above p
2	$x^2 - 1 = (x+1)^2$	P_2^2	2
3	$x^2 - 1 = (x+1)(x-1)$	$P_3\overline{P_3}$	3
5	$x^2 - 4 = (x+2)(x-2)$	$P_5\overline{P_5}$	5
7	$x^2 - 9 = (x+3)(x-3)$	$P_7\overline{P_7}$	7

Thus Cl(R), as a set, is

$$\begin{split} \mathrm{Cl}(R) &= \left\{ e, [P_2], [P_3], [P_5], [P_7], [P_2]^2 = e, [P_2]^3 = [P_2], [P_2P_3] \right\} \\ &\quad \cup \left\{ \left[\overline{P_3} \right], \left[\overline{P_5} \right], \left[\overline{P_7} \right], \left[P_2 \overline{P_3} \right] \right\} \end{split}$$

(since the ideals representing these classes have norm ≤ 8). Computing norms of some principal ideals $\langle a + \sqrt{79} \rangle$, letting a increase up to $\sqrt{79} \approx 9$ to find minimal value and other small values of the norm:

a	$N(\langle a + \sqrt{79} \rangle_R) = a^2 - 79 $
0	79
1	$2 \cdot 3 \cdot 13$
2	$3 \cdot 5^2$
3	$2 \cdot 5 \cdot 7$
4	$3^2 \cdot 7$
5	$2\cdot 3^3$
6	43
7	$2 \cdot 3 \cdot 5$
8	$3\cdot 5$
9	2
10	$3 \cdot 7$

- So $N(\langle 9+\sqrt{79}\rangle)=2\Longrightarrow \langle 7+\sqrt{79}\rangle=P_2$ so $[P_2]=e$. $N(\langle 8+\sqrt{79}\rangle)=3\cdot 5$ so $[P_3][P_5]=e$ (\Leftrightarrow $[\overline{P_3}][\overline{P_5}]=e$) or $[P_3][\overline{P_5}]=e$ (\Leftrightarrow $[\overline{P_3}][P_5] = e$). In both cases,

$$\left\{[P_5],\left[\overline{P_5}\right]\right\} = \left\{[P_3],\left[\overline{P_3}\right]\right\}$$

• Similarly, since $N(\langle 10 + \sqrt{79} \rangle) = 3 \cdot 7$, we have

$$\left\{[P_7],\left[\overline{P_7}\right]\right\}=\left\{[P_3],\left[\overline{P_3}\right]\right\}$$

- Thus $\mathrm{Cl}(R)$ is generated by $[P_3]$ and as a set, $\mathrm{Cl}(R) = \{e, [P_3], [P_3]^{-1}\}.$
- Since $N(\langle 5 + \sqrt{79} \rangle) = 2 \cdot 27$, we have

$$\langle 5+\sqrt{79}\rangle = P_2 P_3^a \overline{P_3}^{3-a} \quad \text{for some } a \in \{0,1,2,3\}$$

- If $a \in \{1,2\}$, then $P_3\overline{P_3} = \langle 3 \rangle_R \mid \langle 5+\sqrt{79} \rangle$: contradiction, since $3 \nmid 5+\sqrt{79}$. So WLOG assume a=3 (if a=0, swap P_3 and $\overline{P_3}$. So $\langle 5+\sqrt{79} \rangle = P_2P_3^3$, hence $e=[P_3]^3$, so $[P_3]$ has order 1 or 3.
- Assume that $P_3 = \langle \alpha \rangle_R$, then

$$P_2 P_3^3 = \langle 9 + \sqrt{79} \rangle \langle \alpha^3 \rangle = \langle 5 + \sqrt{79} \rangle$$

and so

$$\alpha^3 = \frac{5 + \sqrt{79}}{9 + \sqrt{79}} u = \left(-17 + 2\sqrt{79}\right) u$$
 for some $u \in R^{\times}$

- For any $a \in R^{\times}$, $\langle \pm a\alpha \rangle_R = \langle \alpha \rangle_R$ and $(\pm a\alpha)^3 = (-17 + 2\sqrt{79})u(\pm a)^3$. So without changing P_3 , we can rescale α by a unit and so rescale u by a unit cube.
- The fundamental unit of R (by trial and error) is $v = 80 + 9\sqrt{79}$. By Theorem 4.4,

$$R^{\times}/\langle \pm v^3 \rangle \cong \mathbb{Z}/3$$

(consider the map $R^{\times} \to \mathbb{Z}/3$, $\pm v^r = r \mod 3$ and use FIT). Thus, up to multiplication by unit cubes, there are only three possible units $1, v, v^2$ (can take v^{-1} instead of v^2). So we can choose α such that u is 1, v or v^{-1} .

• So α^3 is one of

$$-17 + 2\sqrt{79}, \quad (-17 + 2\sqrt{79})v = 62 + 7\sqrt{79}, \quad (-17 + 2\sqrt{79})v^{-1} = -2782 + 313\sqrt{79}$$

- Let $\alpha = a + b\sqrt{79}$, $a, b \in \mathbb{Z}$, then $\alpha^3 = a(a^2 + 3 \cdot 79b^2) + b(3a^2 + 79b^2)\sqrt{79}$. We have $3 = N(P_3) = |N(\alpha)| = |a^2 79b^2|$ so $a, b \neq 0$ so coefficient in $\sqrt{79}$ in α^3 satisfies $|b(3a^2 + 79b^2)| \ge 3 + 79 = 82$, hence $\alpha^3 = -2782 + 313\sqrt{79}$. So $b(3a^2 + 79b^2) = 313$ which is prime, hence b = 1 and so $a^2 = 78$: contradiction.
- So P_3 is not principal so has order 3, so $Cl(R) \cong \mathbb{Z}/3$.

9. Diophantine applications

9.1. Mordell equations

Definition. A Mordell equation is of the form $x^2 + d = y^3$, $d \in \mathbb{Z}$, with solutions $x, y \in \mathbb{Z}$ sought.

Example. Find all solutions to the Mordell equation $y^3 = x^2 + 5$.

• Let $K = \mathbb{Q}(\sqrt{-5})$, then $R = \mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$. By the Minkowski bound, every element in $\mathrm{Cl}(R)$ has representative ideal of norm at most

$$\left(\frac{4}{\pi}\right)\sqrt{5} < 3$$

so as a set, $\mathrm{Cl}(R)=\{e,[P_2]\}$ where $P_2=\langle 2,1+\sqrt{-5}\rangle$ by Kummer-Dedekind.

• P_2 is not principal as $a^2 + 5b^2 = 2$ has no solutions, hence $Cl(R) \cong \mathbb{Z}/2$.

- Let $\langle \alpha \rangle = \langle x + \sqrt{-5} \rangle$, so $\langle \overline{\alpha} \rangle = \langle x \sqrt{-5} \rangle$. If a prime ideal P divides $\langle \alpha \rangle$ and $\langle \overline{\alpha} \rangle$, then $P \mid \langle \alpha \overline{\alpha} \rangle = \langle 2\sqrt{-5} \rangle = \langle 2 \rangle_R \langle \sqrt{-5} \rangle_R = P_2^2 P_5$. 2 and 5 ramify, so $P_2 = \overline{P_2}$ and $\overline{P_5} = P_5$.
- Hence

$$\begin{split} \left\langle \alpha \right\rangle &= P_2^a P_5^b Q_1^{r_1} \cdots Q_n^{r_n}, \\ \left\langle \overline{\alpha} \right\rangle_R &= P_2^a P_5^b \overline{Q_1}^{r_1} \cdots \overline{Q_n}^{r_n} \end{split}$$

where $a, b, r_i \geq 0$, all $Q_i, \overline{Q_i}$ are distinct and different from P_2, P_5 .

• Then

$$\langle y \rangle^3 = \langle y^3 \rangle = \langle \alpha \overline{\alpha} \rangle = \langle \alpha \rangle \langle \overline{\alpha} \rangle = P_2^{2a} P_5^{2b} \Big(Q_1 \overline{Q_1} \Big)^{r_1} \cdots \Big(Q_n \overline{Q_n} \Big)^{r_n}$$

By uniqueness of prime ideal factorisation, all exponents in RHS are divisible by 3, so let $I=P_2^{a/3}P_5^{b/3}Q_1^{r_1/3}\cdots Q_n^{r_n/3}$, so that $I^3=\left<\alpha\right>_R$.

- Since $h_K = 2$, the square of any fractional ideal of R is principal, so $(I^{-1})^2$ is principal, hence $I = I^3(I^{-1})^2 = \alpha(I^{-1})^2$ is principal, so let $I = \langle \beta \rangle_R$, for $\beta = s + t\sqrt{-5} \in R$.
- Now $\langle \beta^3 \rangle = I^3 = \langle \alpha \rangle$ so $\beta^3 = u\alpha$ for some $u \in R^{\times}$. But only units in R are ± 1 . Since $I = \langle -\beta \rangle$, can assume that $\beta^3 = \alpha$. Then

$$s^3 + 3st^2(-5) + (3s^2t + t^3(-5))\sqrt{-5} = x + \sqrt{-5}$$

• So $s^3 - 15st^2 = x$, $3s^2t - 5t^3 = 1$. Hence $t = \pm 1$, and both possibilities yield no integer solutions to the second equation, so $x^2 + 5 = y^3$ has no integer solutions.

Example. Let $K = \mathbb{Q}(\sqrt{-31})$, it can be shown with Minkowski bound that $h_K = 3$ so $\mathrm{Cl}(R) = \langle [P_2] \rangle \cong \mathbb{Z}/3$ where $P_2 = \langle 2, \left(1 + \sqrt{-31}\right)/2 \rangle$. Show that

$$x^2 + 31 = y^3$$

has no solutions $x, y \in \mathbb{Z}$.

- Assume x, y is a solution. $31 \nmid x$, as otherwise $31^2 \mid (y^3 x^2) = 31$ (since 31 is prime): contradiction.
- x is odd and y is even:
 - ► If x even, y is odd and $y^3 \equiv 31 \equiv -1 \mod 4$ so $y \equiv -1 \mod 4$. Now $x^2 + 4 = y^3 27 = (y 3)(y^2 + 3y + 9)$.
 - $y^2 + 3y + 9 \equiv -1 \mod 4$. Hence $y^2 + 3y + 9$ is divisible by prime $p \equiv 3 \mod 4$ (since product two numbers of form 4n + 1 is also of this form). So $x^2 + 4 \equiv 0 \mod p$. Hence $(x/2)^2 \equiv -1 \mod p$ so $(x/2)^{p-1} \equiv (-1)^{\frac{p-1}{2}} \equiv -1$ as $p \equiv 3 \mod 4$ which contradicts Fermat's little theorem. Hence x is odd so y is even.
- Now $(x + \sqrt{-31})(x \sqrt{-31}) = y^3$. x is odd, so $\alpha := (x + \sqrt{-31})/2 \in R$. Let y = 2z, $z \in \mathbb{Z}$, then $\alpha \overline{\alpha} = 2z^3$ and $\langle \alpha \rangle \langle \overline{\alpha} \rangle = \langle 2 \rangle \langle z \rangle^3$.
- If $P \mid \langle \alpha \rangle, \langle \overline{\alpha} \rangle$, then $\alpha, \overline{\alpha} \in P$, so $\sqrt{-31} = \alpha \overline{\alpha} \in P$, hence $P = \langle \sqrt{-31} \rangle$ (this is prime since norm is 31, a prime).
- But then $x = \alpha + \overline{\alpha} \in P \cap \mathbb{Z} = \langle 31 \rangle_{\mathbb{Z}}$, but $31 \nmid x$, so we have a contradiction. So $\langle \alpha \rangle$, $\langle \overline{\alpha} \rangle$ are coprime ideals.

- WLOG, $\langle \alpha \rangle = P_2^a Q_1^{r_1} \cdots Q_n^{r_n}$ and $\langle \overline{\alpha} \rangle = \overline{P_2}^a \overline{Q_1}^{r_1} \cdots \overline{Q_n}^{r_n}$ with P_2 , $\overline{P_2}$, all Q_i , $\overline{Q_i}$ distinct.
- Then $\langle \alpha \rangle \langle \overline{\alpha} \rangle = \langle 2 \rangle^a \left(Q_1 \overline{Q_1} \right)^{r_1} \cdots \left(Q_n \overline{Q_n} \right)^{r_n} = \langle 2 \rangle \langle z \rangle^3$.
- Hence $a \equiv 1 \mod 3$ and for all i, $3 \mid r_i$. So $\langle \alpha \rangle = P_2 I^3$ for some ideal I.
- Now $[\langle \alpha \rangle] = e$ and $[I^3] = [I]^3 = e$ as $h_K = 3$. Hence $[P_2] = e$ so P_2 is principal.
- So $P_2 = \langle (u + v\sqrt{-31})/2 \rangle, \ u, v \in \mathbb{Z}, \ u \equiv v \bmod 2.$
- Then $2 = N(P_2) = (u^2 + 31v^2)/4$ hence $8 = u^2 + 31v^2$: contradiction.

9.2. Generalised Pell equations

Definition. A generalised Pell equation is of the form

$$x^2 - dy^2 = n, \quad n \in \mathbb{Z}, d \in \mathbb{N}$$
 square-free

i.e. determine whether n is a norm from $\mathbb{Z}[\sqrt{d}]$.

Definition. Let $K = \mathbb{Q}(\sqrt{14})$. Solve $x^2 - 14y^2 = \pm 5$. We can assume $R = \mathbb{Z}[\sqrt{14}]$ is PID and so a UFD (can be proven using Minkowski bound by showing $h_K = 1$).

- By trial and error, fundamental unit is $u = 15 + 4\sqrt{14}$ and $N(u) = 15^2 14 \cdot 16 = 1$.
- We have $N(3-\sqrt{14})=-5$ so $\langle 5\rangle=\langle 3+\sqrt{14}\rangle\langle 3-\sqrt{14}\rangle$ by Kummer-Dedekind.
- Now $\langle x + y\sqrt{14}\rangle\langle x y\sqrt{14}\rangle = \langle 3 + \sqrt{14}\rangle\langle 3 \sqrt{14}\rangle$. The ideals on the LHS are conjugate, and ideals on RHS are prime so $\langle x + y\sqrt{14}\rangle = \langle 3 \pm \sqrt{14}\rangle$.
- Hence $x + y\sqrt{14} = \pm (15 + 4\sqrt{14})^n (3 \pm \sqrt{14})$ for some $n \in \mathbb{Z}$ and $x y\sqrt{14} = \pm (15 4\sqrt{14})^n (3 \mp \sqrt{14})$ which gives all solutions $x, y \in \mathbb{Z}$.
- Note: $N(x + y\sqrt{14}) = x^2 14y^2 = N(u)^n N(3 \pm \sqrt{14}) = 1^n \cdot -5 = -5$ so all solutions must have -5 on RHS.

Example. Solve $x^2 - 79y^2 = \pm 15$ for $x, y \in \mathbb{Z}$.

- Let $K=\mathbb{Q}(\sqrt{79})$, so $R=\mathcal{O}_K=\mathbb{Z}[\sqrt{79}].$ We have that $\mathrm{Cl}(R)\cong\mathbb{Z}/3,$ generated by $[P_3].$
- $x^2-79\equiv (x+1)(x-1) \bmod 3$ so $\langle 3\rangle_R=P_3\overline{P_3}=\langle 3,1+\sqrt{79}\rangle\langle 3,1-\sqrt{79}\rangle$ by Kummer-Dedekind.
- $x^2-79\equiv (x+2)(x-2) \bmod 5$ so $\langle 5\rangle_R=P_5\overline{P_5}=\langle 2+\sqrt{79}\rangle\langle 2-\sqrt{79}\rangle$ by Kummer-Dedekind.
- We have $\langle x+y\sqrt{79}\rangle\langle x-\sqrt{79}\rangle = \langle 15\rangle_R = P_3\overline{P_3}P_5\overline{P_5}$. Since $\overline{\langle x+y\sqrt{79}\rangle} = \langle x-y\sqrt{79}\rangle$, we have $x\pm y\sqrt{79}=P_3P_5$ or $P_3\overline{P_5}$.
- Note $8^2 79 = -15$, thus $\langle 8 + \sqrt{79} \rangle = \overline{P_3 P_5}$ as $8 + \sqrt{79} = 9 (1 \sqrt{79}) = 10 (2 \sqrt{79})$. Hence $[\overline{P_3}][\overline{P_5}] = e$ so $[P_5] = [P_3]^{-1} \neq [P_3]$.
- So P_3P_5 is principal and $P_3\overline{P_5}$ isn't. Hence $\langle x\pm y\sqrt{79}\rangle=P_3P_5=\langle 8-\sqrt{79}\rangle$.
- Therefore, $x \pm y\sqrt{79} = \pm u^n(8-\sqrt{79})$ where $u = 80 + 9\sqrt{79}$ is fundamental unit in $R, n \in \mathbb{Z}$ and this gives all solutions to $x, y \in \mathbb{Z}$.
- Since N(u) = 1, $x^2 79y^2 = N(LHS) = N(8 \sqrt{79}) = -15$ so the only solutions are for -15, there are none for 15.