# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-201434

(43)Date of publication of application: 19.07.1994

(51)Int.CI.

G01F 23/14

(21)Application number: 04-348997

(71)Applicant: TOKAI RIKA CO LTD

(22)Date of filing:

(72)Inventor: KUMAGAI KATSUHIDE

**MIZUNO HIROMITSU** 

**IWASAKI YUKIO NAKANO YOSHIO** 

#### (54) VOLUME DETECTOR

#### (57)Abstract:

PURPOSE: To enhance accuracy in measurement with no effect of the volume of an object to be measured contained in a tank. CONSTITUTION: A speaker 3 causes variation of the volume in main and correction tanks 1, 2. A first microphone 4 detects pressure variation in the main tank 1 and delivers a signal to a first bandpass filter 8. A second microphone 5 detects pressure variation in the correction tank 2 and delivers a signal to a second bandpass filter 9. The first and second bandpass filters 8, 9 discriminate signal components having predetermined frequencies from the input signal. An operating circuit 15 detects the amplitude of signal component and measures the volume of an object to be measured contained in the main tank 1 based on the amplitude thus detected. A feedback correction circuit 17 drives the speaker 3 such that the signal component having a predetermined frequency, contained in the signal delivered from the second microphone 5, has a constant amplitude.

28.12.1992



## **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

{Date of registration}

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平6-201434

(43)公開日 平成6年(1994)7月19日

(51)Int.Cl.<sup>5</sup>

識別配号

庁内整理番号

FΙ

技術表示箇所

G01F 23/14

8201-2F

審査請求 未請求 請求項の数2 (全 6 頁)

(21)出願番号

特願平4-348997

(22)出願日

平成 4年(1992)12月28日

(71)出願人 000003551

株式会社東海理化電機製作所

愛知県丹羽郡大口町大字豊田字野田 1 番地

(72)発明者 熊谷 勝秀

愛知県丹羽郡大口町大字豊田字野田 1番地

株式会社東海理化電機製作所內

(72)発明者 水野 博光

愛知県丹羽郡大口町大字豊田字野田 1 番地

株式会社東海理化電機製作所内

(72)発明者 岩崎 幸雄

愛知県丹羽郡大口町大字豊田字野田 1 番地

株式会社東海理化電機製作所内

(74)代理人 弁理士 佐藤 強 (外1名)

最終頁に続く

# (54)【発明の名称】 体積検出装置

# (57)【要約】

【目的】 タンクに収納された被測定物の体積の影響を 受けることなく測定精度を向上する。

【構成】 スピーカ3はメインタンク1内及び補正タンク2内の体積を変動する。第1のマイクロホン4はメインタンク1内の圧力変動を検出して第1のバンドパスフィルタ8に出力する。第2のマイクロホン5は補正タンク2内の圧力変動を検出して第2のバンドパスフィルタ9に出力する。第1,第2のバンドパスフィルタ8,9は入力信号から所定周波数の信号成分を弁別する。演算回路15は信号成分の振幅を検出すると共に、その振幅値に基づいてメインタンク1内に収納された被測定物の体積を測定する。フィードバック補正回路17は、第2のマイクロホン5からの信号に含まれる所定周波数の信号成分の振幅値が一定となるようにスピーカ3を駆動する。



#### 【特許請求の範囲】

【請求項1】 メインタンク及び補正タンクの体積を変 化させる体積変化手段と、

1

この体積変化手段による前記メインタンクの圧力変動を 示す信号を出力する第1の圧力検知手段と、

前記体積変化手段による前記補正タンクの圧力変動を示 す信号を出力する第2の圧力検知手段と、

前記第1の圧力検知手段からの信号に含まれる所定周波 数の信号成分を弁別する第1の周波数弁別手段と、

前記第2の圧力検知手段からの信号に含まれる所定周波 10 数の信号成分を弁別する第2の周波数弁別手段と、

前記第1及び第2の周波数弁別手段により弁別された信 号成分の振幅を検出し、夫々の振幅値に基づいて前記メ インタンクに収納された被測定物の体積を算出する演算 手段と、

前記第2の圧力検知手段から出力される所定周波数の信 号成分の振幅を検出し、その振幅値が一定値となるよう に前記体積変化手段を制御する補正手段とを備えたこと を特徴とする体積検出装置。

【請求項2】 メインタンク及び補正タンクの体積を変 20 化させる体積変化手段と、

この体積変化手段による前記メインタンクの圧力変動を 示す信号を出力する第1の圧力検知手段と、

前記体積変化手段による前記補正タンクの圧力変動を示 す信号を出力する第2の圧力検知手段と、

前記第1の圧力検知手段からの信号に含まれる所定周波 数の信号成分を弁別する第1の周波数弁別手段と、

前記第2の圧力検知手段からの信号に含まれる所定周波 数の信号成分を弁別する第2の周波数弁別手段と、

前記第1及び第2の周波数弁別手段により弁別された信 30 号成分の振幅を検出し、夫々の振幅値に基づいて前記メ インタンクに収納された被測定物の体積を算出する演算 手段と、

前記第1の圧力検知手段から出力される所定周波数の信 号成分の振幅を検出し、その振幅値が小さくなる程、体 積変化が大きくなるように前記体積変化手段を制御する 補正手段とを備えたことを特徴とする体積検出装置。

# 【発明の詳細な説明】

## [0001]

【産業上の利用分野】本発明は、タンク内に収納された 40 被測定物の体積を体積変化を利用して検出する体積検出 装置に関する。

#### [0002]

【従来の技術】従来より、例えば車両用フューエルゲー ジとして、機械式のものが供されている。このものは、 センダ側として、フロート、アーム及び摺動抵抗部より 構成されており、フロートがフューエルの液面と共に上 下動することにより摺動抵抗部の抵抗値が変化し、その 変化をレシーバ側に出力するようになっている。

【0003】ところが、上述のような機械式のもので

は、車両の傾斜角或いはフューエルの残量によってフュ ーエルの検出誤差が大きいという欠点がある。

【0004】そこで、近年、機械式のものに代えて、電 気的にフューエルの残量を検出するものが考えられてい る。この種の残量検出装置として、特開平3-2000 19号公報に示すものがある。即ち、図3に示すよう に、被測定物を収納するメインタンク1には容積が小な る補正タンク2が連結状態で一体化されている。メイン タンク1と補正タンク2との間には体積変化手段たるス ピーカ3が配設されていると共に、メインタンク1側に は第1の圧力検知手段たる第1のマイクロホン4が設け られ、補正タンク2側には第2の圧力検知手段たる第2 のマイクロホン5が設けられている。スピーカ駆動回路 6は、発振回路7からの発振信号に基づいてスピーカ3 を所定の角周波数ω0 で駆動する。

【0005】第1のバンドパスフィルタ8は、第1のマ イクロホン4からの信号から角周波数ω0 の信号成分を 抽出する。第2のバンドパスフィルタ9は、第2のマイ クロホン5からの信号から角周波数ω0 のV1 倍した信 号成分を抽出する。第1の振幅検出器10は、第1のバ ンドパスフィルタ8からの出力に基づいて y P0 V0/ V2 (P0:メインタンク内の気体の圧力, V0:スピ ーカによる体積変化量, V2 :メインタンクの気体の体 積、y:気体の比熱比)を検出して出力する。第2の振 幅検出器11は、第2のバンドパスフィルタ9からの出 力に基づいて y P0 V0 を検出して出力する。割算器 1 2は、第2の振幅検出器11の出力yP0 V0 を第1の 振幅検出器 1 Oの出力 y PO VO / V2 で除算する。引 算器13は、割算器12によって算出されたメインタン ク1の空洞部分の体積V2をメインタンクの全体積VT から減算する。

【0006】次に上記構成によりメインタンク1に収納 された被測定物の体積を求める方法について説明する。 メインタンク1及び補正タンク2は剛体で、メインタン ク1及び補正タンク2の気圧の加圧或は減圧時にこれら は歪むことがないので、スピーカ3による体積変化率V 0 (t)と実際に発生する体積変化量V(t)とは等し い。

【0007】さて、スピーカが $V(t) = V0 \sin \omega 0$ t で駆動されると、第1のマイクロホン4によってメイ ンタンク1の圧力が検出される。そして、第1のマイク ロホン4からの出力は第1のバンドパスフィルタ8に入 力され、角周波数ω0 の信号成分を検出する。この第1 のバンドパスフィルタ8が抽出した角周波数ω0の信号 成分は第1の振幅検出器10によって信号成分に対応し た振幅値 y P0 V0 / V2 として出力される。また、第 2のマイクロホン5によって補正タンク2の圧力変動が 検出される。この第2のマイクロホン5からの出力は第 2のバンドパスフィルタ9に入力され、角周波数ω0 の 50 V1 倍した信号を抽出する。そして、第2のバンドパス

10

3

フィルタ9が抽出した角周波数 $\omega$ 0 のV1 倍した信号成分は第2の振幅検出器 11 によって信号成分に対応した振幅値  $\mu$  P0  $\nu$ 0 として出力される。

【0008】割算器12は、第1の振幅検出器10からの出力 y P0 V0 / V2 により第2の振幅検出器11からの出力 y P0 V0 を除算してメインタンク1の空洞部の体積V2 を算出する。そして、引算器13は、割算器12によって求められたV2をメインタンクの全体積VTより引いて被測定物の体積VLを求める。

#### [0009]

【発明が解決しようとする課題】しかしながら、上記従来構成のものの場合、スピーカ3による体積変化はメインタンク1に収納された被測定物の体積にかかわらず一定であるので、メインタンク1内の被測定物の体積によって第2のバンドパスフィルタ11により弁別された信号に含まれる所定周波数の信号成分の振幅値が変動して同一測定条件下では一定値である振幅値 y PO VO が変動し、このため測定精度が悪化してしまうという欠点がある。

【001.0】また、メインタンク1に収納された被測定 20 物の体積が少なくなったときは、スピーカ3による体積変化率が小さくなるので、第1のマイクロホン4からの信号の振幅が小さくなってS/N比が悪化し、この場合も測定精度が悪化してしまうという欠点がある。

【0011】本発明は上記事情に鑑みてなされたもので、その目的は、タンクに収納された被測定物の体積を圧力変動を利用して検出するものにおいて、タンクに収納された被測定物の体積の影響を受けることなく測定精度を向上することができる体積検出装置を提供することにある。 ③

#### [0012]

【課題を解決するための手段】本発明は、メインタンク 及び補正タンクの体積を変化させる体積変化手段を設 け、この体積変化手段による前記メインタンクの圧力変 動を示す信号を出力する第1の圧力検知手段を設け、前 記体積変化手段による前記補正タンクの圧力変動を示す 信号を出力する第2の圧力検知手段を設け、前記第1の 圧力検知手段からの信号に含まれる所定周波数の信号成 分を弁別する第1の周波数弁別手段を設け、前記第2の 圧力検知手段からの信号に含まれる所定周波数の信号成 40 分を弁別する第2の周波数弁別手段を設け、前記第1及 び第2の周波数弁別手段により弁別された信号成分の振 幅を検出し、夫々の振幅値に基づいて前記メインタンク に収納された被測定物の体積を算出する演算手段を設 け、前記第2の圧力検知手段から出力される所定周波数 の信号成分の振幅を検出し、その振幅値が一定値となる ように前記体積変化手段を制御する補正手段を設けたも のである。

【0013】また、前記第1の圧力検知手段から出力される所定周波数の信号成分の振幅を検出し、その振幅値 50

が小さくなる程、体積変化が大きくなるように前記体積 変化手段を制御する補正手段を設けるようにしてもよ い。

## [0014]

【作用】請求項1記載の体積検出装置によれば、体積変化手段によりメインタンク内及び補正タンク内の体積が変化されると、第1の圧力検知手段からメインタンク内の圧力を示す信号が出力されると共に、第2の圧力検知手段から補正タンク内の圧力を示す信号が出力される。

【0015】第1の圧力検知手段からの信号は第1の周波数弁別手段に与えられ、この第1の圧力検知手段により所定周波数の信号成分が弁別される。また、第2の圧力検知手段からの信号は第2の周波数弁別手段に与えられ、この第2の圧力検知手段により所定周波数の信号成分が弁別される。

【0016】そして、演算手段は、第1,第2の周波数 弁別手段から与えられた信号成分の振幅値を検出すると 共に、夫々の振幅値に基づいてメインタンクに収納され た被測定物の体積を演算する。

【0017】さて、メインタンクに収納された被測定物の体積が変動すると、それに伴って本来なら一定値である第2の圧力検知手段からの信号に含まれる所定周波数の信号成分の振幅が変動してしまうことがある。このとき、補正手段は、第2の圧力検知手段からの所定周波数の信号の振幅値が一定となるように補正手段を制御するので、演算手段による演算精度が低下してしまうことを防止できる。

【0018】請求項2記載の体積検出装置によれば、メインタンクに収納された被測定物の体積が少なくなると、第1の圧力検知手段からの信号に含まれる所定周波数の信号の振幅が小さくなる。すると、補正手段は、体積変化が大きくなるように体積変化手段を制御するので、演算手段による演算精度が低下してしまうことを防止することができる。

#### [0019]

【実施例】以下、本発明の第1実施例を図1を参照して説明するに、従来例を示す図3と同一部分には同一符号を付して説明を省略し、異なる部分についてのみ説明する。即ち、第1の圧力検知手段たる第1のマイクロホン4からの信号は第1のバンドパスフィルタ8に与えられている。第2の圧力検知手段たる第2のマイクロホン5からの信号は第2のバンドパスフィルタ9に与えられている。第1,第2のバンドパスフィルタ8,9は入力信号に含まれる所定周波数の信号成分を弁別する。第1のバンドパスフィルタ8により弁別された信号成分は増幅率がV1倍のアンプ14で増幅されてから演算手段たる演算回路15に与えられる。第2のバンドパスフィルタ9により弁別された信号成分は増福率が1倍のアンプ16で増幅されてから演算回路15に与えられる。

【0020】演算回路17はCPU、A/D変換器及び

メモリを主体として構成されており、交互に入力した信 号成分の振幅をA/D変換器によりデジタル値に変換し てメモリに記憶すると共に、メモリに記憶したデジタル 値に基づいて所定の演算を実行する。

【0021】補正手段たるフィードバック補正回路17 は、アンプ16からの信号に基づいてアッテネータ18 を調整する。アッテネータ18は、発振器19からの信 号の増幅率を調整してスピーカ3駆動用のパワーアンプ 20に出力する。

【0022】次に上記構成の作用について説明する。ス 10 ピーカ3が角周波数ω0 で振動すると、メインタンク1 内及び補正タンク2内の体積が変化する。すると、メイ ンタンク1内の空洞部及び補正タンク2内の圧力が変化 するので、その変化を示す信号が第1,第2のマイクロ ホン4, 5から出力される。

【0023】第1, 第2のバンドパスフィルタ8, 9は 入力信号に含まれる角周波数ω0 の信号成分を弁別す る。これにより、第1のバンドパスフィルタ8により弁 **別されて信号の振幅は y P0 V0 /V2 となり、第2の** バンドパスフィルタ9により弁別された信号の振幅は y 20 P0 V0 となる。

【0024】そして、演算回路15は、入力信号の振幅 をA/D変換器によりデジタル値 y PO VO, y PO V 0 / V2 に変換してメモリに順次記憶する。続いて、演 算回路15は、メモリに記憶した振幅値 y P0 V0 を y P0 V0 / V2 で除算することによりメインタンク 1 の 空洞部分の体積 V2 を求めると共に、メインタンク1の 全体積VT から体積V2 を引算することによりメインタ ンク1に収納された被測定物の体積VL を求める。

【0025】さて、補正タンク2内の体積は、メインタ 30 ンク1に収納された被測定物の体積の増減に応じて僅か ながら変動し、それに伴って第2のマイクロホン5から の信号に含まれる角周波数ω0 の信号成分の振幅が変動 する。このため、第2のバンドパスフィルタ9により弁 別された信号成分の振幅が変動して同一測定条件下では 一定値である振幅値 y P0 V0 が変動してしまう。

【0026】このとき、フィードバック補正回路17 は、アッテネータ18を調整してスピーカ3による体積 変化を増減することにより第2のマイクロホン5から出 力される角周波数ω0 の信号の振幅値がν P0 V0 とな 40 るように制御する。これにより、同一測定条件下ではメ インタンク1内に収納された被測定物の体積にかかわら ず第2のバンドパスフィルタ9により弁別された信号成 分の振幅 y P0 V0 が変動してしまうことを防止するこ とができる。

【0027】上記構成のものによれば、第2のマイクロ ホン5から出力される角周波数ω0の信号成分の振幅が 変動したときは、その振幅値が一定となるようにフィー ドバック補正回路17によりスピーカ3による体積変化 を調整するようにしたので、メインタンクに収納された 50 ンサを利用するようにしてもよい。

被測定物の体積にかかわらずスピーカによる体積変化が 常に一定の従来例のものと違って、メインタンク1に収 納された被測定物の体積変化の影響を防止して測定精度 を高めることができる。

【0028】図2は本発明の第2実施例を示しており、 第1実施例と同一部分に同一符号を付して説明を省略 し、異なる部分についてのみ説明する。この第2実施例 が第1実施例と異なる点は、補正手段たるフィードバッ ク補正回路21は、第1のマイクロホン4からの信号を 増幅するためのアンプ14からの信号の振幅値が小さく なる程、アッテネータ18を調整してスピーカ3による 体積変化が大きくなるように設定したことである。

【0029】また、第2のマイクロホン5からの信号を 増幅するためのアンプ16からの信号を受けるリミッタ 22を設け、そのリミッタ22により第2のマイクロホ ン5からの信号に含まれる角周波数ω0 の信号成分の振 幅値が設定値以上となったときはフィードバック補正量 (アッテネータ18の増幅率)を前記設定値の時の量以 上にしないようにした。

【0030】次に上記構成の作用について説明する。メ インタンク1に収納された被測定物の体積が少なくなっ たときは、メインタンク1内の空洞部の体積が大きくな るので、第1のマイクロホン4からの信号に含まれる角 周波数ω0 の信号成分の振幅値が小さくなる。このと き、フィードバック補正回路21はアッテネータ18を 調整してスピーカ3による体積変化が大きくなるように 制御するので、第1のマイクロホン4からの信号に含ま れる角周波数ω0 の信号成分の振幅値は大きくなる。

【0031】上記構成のものによれば、メインタンク1 内に収納された被測定物の体積が少なくなったときは、 それに応じてスピーカ3による体積変化を大きくするよ うにしたので、メインタンクに収納された被測定物の体 積にかかわらずスピーカによる体積変化が常に一定の従 来例のものと違って、S/N比を改善して測定精度を高 めることができる。

【0032】また、上述のようにフィードバック補正回 路21によりスピーカ3による体積変化が大きくなるよ うに制御された結果、第2のマイクロホン5からの信号 に含まれる角周波数ω0 の信号成分の振幅が過度に大き くなって第2のマイクロホン5の使用可能範囲(入力と 出力との関係が直線関係となっている範囲)から外れて しまった場合には、リミッタ22によりフィードバック 補正回路21の動作を停止するようにしたので、第2の マイクロホン5として入出力特性の優れた範囲で使用す ることになって測定を確実に行うことができる。

【0033】尚、上記各実施例では、体積変化手段とし てスピーカ3を利用したが、これに代えてピストン、ベ ローズ、ダイヤフラムを利用するようにしてもよい。ま た、第1、第2のマイクロホン4、5に代えて、圧力セ

## [0034]

【発明の効果】以上の説明から明らかなように、本発明 の体積検出装置によれば以下の効果を奏する。

【0035】請求項1記載の体積測定装置によれば、メインタンクに収納された被測定物の体積を、メインタンク及び補正タンクの体積を体積変化手段により変動させた状態でメインタンク及び補正タンクに設けられた第

1、第2の圧力検知手段から出力される所定周波数の信号成分を周波数弁別手段により弁別すると共に、その信号成分の振幅値に基づいて演算手段により測定するもの 10であって、第2の圧力検知手段から出力される所定周波数の信号成分の振幅値を検出し、その振幅値が所定値となるように体積変化手段を制御する補正手段を設け、メインタンクに収納された被測定物の体積変化にかかわらず演算誤差を少なくなるようにしたので、メインタンクに収納された被測定物の体積を圧力変動を利用して検出するものにおいて、タンクに収納された被測定物の体積にかかわらず測定精度を向上することができる。

【0036】また、請求項2記載の体積検出装置によれば、第1の圧力検知手段から出力される所定周波数の信 20 号成分の振幅を検出し、その振幅値が小さくなる程、体\*

\* 積変化が大きくなるように前記体積変化手段を制御する 補正手段を設け、メインタンクに収納された被測定物の 体積が少なくなったときは S / N 比を改善するようにし たので、請求項 1 記載の体積検出装置と同様に、メイン タンクに収納された被測定物の体積を圧力変動を利用し て検出するものにおいて、タンクに収納された被測定物 の体積の影響を受けることなく測定精度を向上すること ができる。

#### 【図面の簡単な説明】

【図1】本発明の第1実施例を示す全体の概略図

【図2】本発明の第2実施例を示す全体の概略図

【図3】従来例を示す全体の概略図

### 【符号の説明】

1はメインタンク、2は補正タンク、3はスピーカ(体 積変化手段)、4は第1のマイクロホン(第1の圧力検 知手段)、5は第2のマイクロホン(第2の圧力検知手 段)、8は第1のバンドパスフィルタ(第1の周波数弁 別手段)、9は第2のバンドパスフィルタ(第2の周波 数弁別手段)、15は演算回路(演算手段)、17はフィードバック補正回路(補正手段)、21はフィードバック補正回路(補正手段)である。

## 【図1】



[図2]



【図3】



フロントページの続き・

(72)発明者 中埜 喜夫

愛知県丹羽郡大口町大字豊田字野田 1 番地 株式会社東海理化電機製作所内