

Fachrichtung Mathematik • Institut für Algebra • Prof. Dr. Ulrike Baumann

Mathematische Methoden für Informatiker INF-120 Sommersemester 2019

13. Übungsblatt für die Woche 08.07. - 14.07.2019

Funktionen zweier Veränderlicher

- Ü73 (a) Betrachtet wird die Funktion $f(x,y) = \frac{y}{2}e^{-x}, x \in \mathbb{R}$.
 - Bestimmen Sie die Höhenlinien von f als Kurven $\varphi(t) = (x(t), y(t))^T = (t, y(t))^T$.
 - Berechnen Sie den Gradienten $\nabla f(x,y)$ in einem beliebigen Punkt P(x,y)
 - Zeigen Sie, dass $\nabla f(x,y)$ senkrecht auf der durch diesen Punkt verlaufenden Höhenlinie steht.

(Tipp: Die Ableitung $\varphi'(t) = (x'(t), y'(t))$ ist Richtungsvektor an der Höhenlinie im Punkt P(x; y).)

(b) Gegeben ist die Funktion $f(x,y) = 10 - \sqrt{x^2 + y^2}$. (s. auch Übung 12).

Berechnen Sie den Gradienten $\nabla f(x,y)$, und prüfen Sie nach, dass $\nabla f(x,y)$ in jedem Punkt P(x;y) senkrecht auf der durch P(x;y) verlaufenden Höhenlinie steht. Verwenden Sie dazu Polarkoordinaten.

Ü74 Bestimmen Sie für die folgenden Funktionen

(i)
$$f(x,y) = \frac{y}{x+1} - e^{2x} + 2(y+1),$$
 (ii) $z = f(x,y) = x^2 - y^2$

- (1) das Taylorpolynom 2. Ordnung an der Stelle P(0;1),
- (2) die Gleichung der Tangentialebene an P(0;1).
- (3) Stellen Sie das Taylorpolynom 2. Ordnung aus (a) mit Hilfe des Gradienten und der Hessematrix an der Stelle P(0;1) dar.

Ü75 Die Gleichung $F(x,y) = e^y - y^2 - 1 + (x+y) \ln x = 0$ bestimmt implizit eine Funktion y = f(x). Berechnen Sie die Tangente an f im Punkt x = 1 durch implizites Differenzieren.

H76 Betrachtet wird die Funktion $f(x, y) = y^2 \sin(x + y)$.

- (a) Berechnen Sie den Gradienten und die Hessematrix der Funktion an einem beliebigen Punkt P(x;y).
- (b) Bestimmen Sie an der Stelle $P(0; \frac{\pi}{2})$ die Tangentialebene von f und und das Taylorpolynom 2. Ordnung.

H77 Betrachtet werden die Funktionen

(i)
$$f(x,y) = 4x^2 + y^2 - 3$$
, (ii) $f(x,y) = e^{x(y+1)}$.

Bestimmen Sie jeweils die Höhenlinien von f zu beliebiger fester Höhe c, und geben Sie diese als Kurve in geeigneter Parameterdarstellung $\varphi_c(t) = (x(t), y(t))^T$ an.

Zeigen Sie, dass der Gradient von f in jedem Punkt P(x;y) senkrecht auf der durch P(x;y) verlaufenden Höhenlinie steht.

H78 Durch $F(x,y) = \arctan\left(\frac{x-y}{1+xy}\right) - \frac{\pi}{4} + \ln(x^y) = 0$ ist implizit eine Funktion y = f(x) gegeben. Stellen Sie die Gleichung der Tangente von f(x) im Punkt $x_0 = 1$ auf.

Höhenlinien
f(x,y) = C Konst.
Gradient
$\nabla f(x,y) = \int f(x,y)$
$\nabla f + s, y) = \left(f_s(s, y) \right)$ $\left(f_y(s, y) \right)$
73)
(5) a) $f(x,y) = \frac{y}{2}e^{-x}$ • Höhen (inien $\frac{y}{2}e^{-x} = C \implies y = e^{x} - 2C$
• Höhen Cinien $\frac{4}{2}e^{-8} = C \rightarrow y = e^{8} - 2C$
Chindebane
y=0

o Gradion-E
$\nabla f(x,y) = \begin{pmatrix} -\frac{1}{2}e^{-x} \end{pmatrix}$
$\frac{1}{2}e^{-x}$
o Höhen Vinien in Parametordarstolling
y(t) = t $y(t) = 2ce^{t}$ $y(t) = (y(t))$
J. O, Z. Z. C.

Tangentenvektor: $\varphi'(t) = (3'16) = (1)$ $(y'(t)) = (2ce^{t})$
o ∇f and der Höhenlinien: $\nabla f(x(t), y(t)) = \left(-2 e^{t} e^{-t}\right)$
o Senkrecht? $=(-C)$ $\nabla f(x(t), y(t)) \cdot \varphi'(t)$ $=(-C)$
$= 1 \cdot (-c) + 2ce^{t} \cdot \frac{1}{2}e^{-t}$
= -C + C = 0
> Son krecht
b) f(x,y) = 10 - J=+y2
• Höhenlinien: Kreise $5^24y^2 = (10 - c)^2$
R=10-C
J-321 yr = R
5 tradient (18,9) - (544)
o Höhenlinien im Polar Koordinaten:
o Höhenlinien im Polar Koordinaten: $ \varphi(t) = (76(t)) = (R GS(t)) $ $ (Y(t)) = (RSin(t)) $
J(V) / (CSINIT)
o Tangenten vektor

P'(t) = (3(t)) = (-RSin(t)) $(3(t)) = (268(t))$
o ∇f and dor Hisharlinie:
o Senkrecht? $ \nabla f(x E), y(E) \cdot p'(E) = -Cus(E) \cdot (-Rsin(E)) + (-sin(E) \cdot Res(E)) $ $ = Rsin(Cust - Rsin(E)) = 0 $
=> Senkrecht Taylorpolynom 2 Ordnung an der Stelle P(x>, ys).
$f(x,y) \approx f(x_0,y_0) + f_x(x_0,y_0)(x_0-x_0) = f_x(x_0,y_0) + f_y(x_0,y_0)(y_0-y_0)$
$+\frac{1}{2!}(+f_{xx}(+,y_{3})(+,y_{3})^{2}+2+f_{xy}(+,y_{3},y_{3})(+,y_{3})(+,y_{3})(+,y_{3})(+,y_{3})^{2})$ $-f_{xx}(+,y_{3})(+,y$
$= \{t50, y_{s}\} + \sqrt{t}\{t50, y_{s}\} \left(x-x_{0}\right) + \frac{1}{2!} \left(x-x_{0}\right) \left(x_{0} + x_{0}\right) + \frac{1}{2!} \left(x-x_{0}\right) \left(x_{0} + x_{0}\right) + \frac{1}{2!} \left(x_{0} + x_{0}\right) + $

74) 1) $f(x,y) = \frac{y}{x+1} - e^{2x} + 2(y+1)$ $P(0,1)$
f(0,1) = 1-1+4=4
$f_{x}(x,y) = -y(x+y)^{-2} - 2e^{2x}$ $f_{x}(0,1) = -3$ $f_{y}(x,y) = \frac{1}{x+1} + 2$ $f_{y}(0,1) = 3$
$f_{xx}(x,y) = 2y(x+1)^{-3} - 4e^{2x}$ $f_{xx}(2,1) = -2$
$f_{\text{sy}} = f_{\text{yx}} = -(x_{1})^{-2}$ $f_{\text{sy}}(0,1) = -1$
$fyy = 0 \qquad fyy(2,1) = 0$
$\Rightarrow + x(x, y) = 4 + (-3)x + 3(y-1)$ $4 - 3x + 3y - 3$
$+\frac{1}{2!}((-2)x^{2}+(-2)x(y-1)+0)-x^{2}-xy+x$ $=-x^{2}-2x-xy+3y+1$
2) Tangential ebone $2 = t_1(x, y)$ 2 = 4 - 3x + 3(y - 1)
$3\times -3y+2=1$ Normale $\begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \end{pmatrix}$
3) $t_2(x,y) = 4 + {\binom{-3}{3}} {\binom{4}{y-1}} + \frac{1}{2} {\binom{4}{y-1}} {\binom{-2}{-1}} {\binom{4}{y-1}}$
(i) $f(x,y) = x^2 - y^2 = t_1(x,y)$ da $f(x,y)$ Polynom 2. Grades in x unel y
Tangential ebene $2y+2=1$ an $P(0,1)$

Impliziten Ditforenzieron.
$\mp (-3,y) = 0$
Satt: Worm $f_y(x_0, y_0) \neq 0 \Rightarrow y = f(x_0)$ existing von $f(x_0, y_0)$
in Uniferring Von (50, 95)
F(x, f(x)) => Hishenlinian von F dar Hishe D
$\frac{d}{dx}F(x,f(x)) = F_x(x,f(x))\frac{dx}{dx} + F_y(x,f(x)) \cdot f(x)$
$\Rightarrow f'(x) = -\frac{f_{x}(x, f_{x})}{f_{y}(x, f_{x})}$
75) $F(x, y) = e^{y} - y^{2} - 1 + (x + y) (nx) = 0$ F(x)
$-\frac{1}{4}(1) = -\frac{1}{4}(1, \frac{4(1)}{4(1)})$
$f(1, f(1)) = e^{y} - y_{1}^{2} + (1+y) \cdot (n(1)) = 0$
$\Rightarrow e^{y} = y^{2} + 1$ $\Rightarrow y = f(1) = 1$
f'(1)=-==-1
l l