Machine Learning

Machine Learning Framework

Souhaib Ben Taieb

March 8, 2021

University of Mons

Table of contents

Supervised learning

Components of supervised learning

Probabilistic data model

Components of supervised learning (continued)

Optimal hypothesis and predictions

Table of contents

Supervised learning

Components of supervised learning

Probabilistic data model

Components of supervised learning (continued)

Optimal hypothesis and predictions

Learning from data

"Machine learning is a **scientific discipline** that explores the **construction and study of algorithms** that can **learn from <u>data</u>**."

- The essence of machine learning
 - A pattern exists
 - We cannot pin it down mathematically
 - We have data on it
- Learning examples
 - Spam Detection
 - Product Recommendation
 - Credit Card Fraud Detection
 - Medical Diagnosis

Table of contents

Supervised learning

Components of supervised learning

Probabilistic data model

Components of supervised learning (continued)

Optimal hypothesis and predictions

Components of supervised learning

The **input** variables¹ are typically denoted using the symbol X. If we observe p different variables, we write $X = (X_1, X_2, \dots, X_p)$. The inputs belong to an *input space* $\mathcal{X} \subseteq \mathbb{R}^p$.

The **output** variable² is typically denoted using the symbol Y. The output belongs to an *output space* \mathcal{Y} .

- Regression: $\mathcal{Y} \subseteq \mathbb{R}$
- ullet Binary classification: $\mathcal{Y}=\{-1,1\}$ or $\mathcal{Y}=\{0,1\}$
- ullet Multi-class classification (with K categories):

$$\mathcal{Y} = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_K\}$$

¹also called *predictors*, *independent variables*, *features*, *variables* or just *inputs*.

²also called the *response* or *dependent variable*.

Components of supervised learning

The **data**, also called *training set*, is a set of n input-output pairs

$$\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}\$$

= $\{(x_i, y_i)\}_{i=1}^n$,

where $x_i = (x_{i1}, \dots, x_{ip})$. Each pair, also called an *example* or a *data point*, belongs to the *data space* $\mathcal{X} \times \mathcal{Y}$.

Components of supervised learning

- ullet Left figure: $\mathcal{X}=\mathbb{R}$ (one-dimensional input) and $\mathcal{Y}\subseteq\mathbb{R}$
- Right figure: $\mathcal{X} = \mathbb{R}^2$ (two-dimensional input) and $\mathcal{Y} = \{\textit{RED}, \textit{GREEN}, \textit{BLUE}\}$

Table of contents

Supervised learning

Components of supervised learning

Probabilistic data model

Components of supervised learning (continued)

Optimal hypothesis and predictions

Probabilistic data model

We assume the data points are identically and independently distributed (i.i.d.) realizations from a fixed <u>unknown</u> data distribution $p_{X,Y}(x,y)$, which represents different sources of uncertainty.

The probability distribution $p_{X,Y}(x,y)$ can be factorized as

$$p_{X,Y}(x,y) = p_X(x)p_{Y|X}(y|x)$$

where

- the marginal distribution $p_X(x)$ models uncertainty in the sampling of the inputs.
- the conditional distribution $p_{Y|X}(y|x)$ describes a stochastic (non-deterministic) relation between inputs and output.

Probabilistic data model

In other words, for i = 1, 2, ..., n, we have

$$(x_i, y_i) \sim p_{X,Y},$$

or, equivalently,

$$x_i \sim p_X$$
 and $y_i|x_i \sim p_{Y|X}(\cdot|x_i)$.

Probabilistic data model

Source: https://tinyurl.com/19bdt531

The data distribution is often implicitly specified, i.e. $p_{X,Y}$ is not given explicitly.

In regression, the following (additive error) model is often considered:

$$y = f(x) + \varepsilon, \tag{1}$$

where

- $x \sim P_X$
- f is a fixed unknown function (e.g. $x \in \mathbb{R}$ and $f(x) = x^2$)
- \bullet ε is random noise, where
 - $\mathbb{E}[\varepsilon|x] = 0$
 - $Var(\varepsilon|x) = \sigma^2$, with $\sigma \in [0, \infty)$.

If $x \in \mathbb{R}^p$, and

- $f(x) = \beta_0 + \sum_{j=1}^p \beta_j x_j \ (\beta_j \in \mathbb{R})$
- $\varepsilon | x \sim \mathcal{N}(0, \sigma^2)$,

what is y|x?

If $x \in \mathbb{R}^p$, and

- $f(x) = \beta_0 + \sum_{j=1}^p \beta_j x_j \ (\beta_j \in \mathbb{R})$
- $\varepsilon | x \sim \mathcal{N}(0, \sigma^2)$,

what is y|x?

$$y|x \sim \mathcal{N}(f(x), \sigma^2)$$

The data model in (1) implies that the conditional distribution y|x depends on x only through the conditional mean. In fact, we have

- $\mathbb{E}[y|x] = f(x)$
- $Var[y|x] = \sigma^2$

Probabilistic data model - Classification

 X_2

Probabilistic data model - Classification

In classification, y is a discrete random variable (p(y|x)) is a conditional pmf). We cannot use the previous additive error model. The notion of "noise" is different.

Using Bayes' rule, we can write

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} \propto p(x|y)p(y) \stackrel{y \text{ uniform}}{\propto} p(x|y)$$

Let us consider K = 2 and p = 1.

$$p(x|y = -1)$$

$$p(x|y=+1)$$

Table of contents

Supervised learning

Components of supervised learning

Probabilistic data model

Components of supervised learning (continued)

Optimal hypothesis and predictions

Common goals and models in supervised learning

- **Prediction**: predict the output for new inputs.
- Inference (or explanation): which predictors are associated with the response? what is the relationship between the response and each predictor? ...

- **Discriminative models**: learn/estimate the underlying conditional distribution p(y|x) (or conditional expectation $\mathbb{E}_{y|x}[y|x]$).
- **Generative models**: learn/estimate the underlying joint distribution of output and inputs, p(x, y). In other words, learn both p(y|x) and p(x).

In prediction problems, we often want to produce the "best" prediction (value) for a given input x. Suppose the conditional distribution p(y|x) is **known**, which *value* should we use as output prediction for an input x?

In prediction problems, we often want to produce the "best" prediction (value) for a given input x. Suppose the conditional distribution p(y|x) is **known**, which *value* should we use as output prediction for an input x?

To do so, we need to <u>define "best"</u> by specifying a **loss function**

$$L: \mathcal{Y} \times \mathcal{Y} \to [0, \infty),$$

which is a (pointwise) measure of the error $L(y, \hat{y})$ we incur in when predicting \hat{y} in place of y. Some examples are

- $L(y, \hat{y}) = (y \hat{y})^2$ (square error loss)
- $L(y, \hat{y}) = |y \hat{y}|$ (absolute error loss)
- $L(y, \hat{y}) = \mathbb{1}\{y \neq \hat{y}\}$ (zero-one loss)
- ..

Given a loss function $L(\cdot,\cdot)$ and a hypothesis ("prediction function")

$$h: \mathcal{X} \to \mathcal{Y}$$
,

the **expected error** of h on a single data point x (or expected conditional risk) is given by

$$E(h,x) = \mathbb{E}_{y|x}[L(y,h(x))|x]$$
 (2)

$$= \mathbb{E}_{y \sim p(y|x)}[L(y, h(x))] \tag{3}$$

Given a loss function $L(\cdot,\cdot)$ and a hypothesis ("prediction function")

$$h: \mathcal{X} \to \mathcal{Y}$$
,

the **expected error** of h on a single data point x (or expected conditional risk) is given by

$$E(h,x) = \mathbb{E}_{y|x}[L(y,h(x))|x]$$
 (2)

$$= \mathbb{E}_{y \sim p(y|x)}[L(y, h(x))] \tag{3}$$

The (global) **expected error** (or expected risk) of h is given by

$$E(h) = \mathbb{E}_{x,y}[L(y,h(x))] \tag{4}$$

$$= \mathbb{E}_{x} \left[\mathbb{E}_{y|x} [L(y, h(x))|x] \right] \tag{5}$$

$$= \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{y \sim p(y|x)} \left[L(y, h(x)) \right] \right] \tag{6}$$

$$= \mathbb{E}_{x \sim p(x)} \left[E(h, x) \right] \tag{7}$$

We want to pick the "best" hypothesis $h: \mathcal{X} \to \mathcal{Y}$, where "best" is defined by the **loss function** L. In other words, we want to solve the following optimization problem:

$$h^* = \underset{h:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} E(h),$$

where E(h) is defined in (4).

Since $E(h) = \mathbb{E}_x[E(h,x)]$, it suffices to minimize the error pointwise, i.e. solve

$$h^*(x) = \underset{h:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} E(h, x),$$

for all $x \in \mathcal{X}$.

Table of contents

Supervised learning

Components of supervised learning

Probabilistic data model

Components of supervised learning (continued)

Optimal hypothesis and predictions

Optimal predictions in regression

In regression (with squared error loss), we want to solve

$$h^*(x) = \underset{h: \mathcal{X} \to \mathcal{V}}{\operatorname{argmin}} E(h, x) \tag{8}$$

$$= \underset{h:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \, \mathbb{E}_{y|x}[(y - h(x))^2 | x] \tag{9}$$

for all $x \in \mathcal{X}$.

Let z = h(x)., and let us solve (9) for a single input x. We want to minimize

$$E(h,x) = \mathbb{E}_{y|x}[(y-z)^2|x=x].$$

Optimal predictions in regression

The necessary condition for optimality is given by

$$\frac{\mathrm{d}E(h,x)}{\mathrm{d}z} = 0 \iff \frac{\mathrm{d}\mathbb{E}_{y|x}[(y-z)^2|x=x]}{\mathrm{d}z} = 0$$

$$\iff \mathbb{E}_{y|x}\left[\frac{\mathrm{d}(y-z)^2}{\mathrm{d}z}|x=x\right] = 0$$

$$\iff \mathbb{E}_{y|x}\left[-2(y-z)|x=x\right] = 0$$

$$\iff z = \mathbb{E}_{y|x}\left[y|x=x\right]$$

$$\iff h^*(x) = \mathbb{E}_{y|x}\left[y|x=x\right]$$

The sufficient condition for optimality (a minimum) is given by

$$\frac{\mathrm{d}^2 E(h,x)}{\mathrm{d} z^2} > 0 \iff 2 > 0.$$

Optimal predictions in regression

In regression, the optimal hypothesis is

$$h^*(x) = \mathbb{E}_{y|x}[y|x],$$

the conditional expectation, also known as the **regression** function.

In other words, when best is measured by expected squared error, the best prediction of y at any point x is the conditional expectation at x.

If
$$y=f(x)+\varepsilon$$
 with $\mathbb{E}[\varepsilon|x]=0$ and $Var(\varepsilon|x)=\sigma^2$, then we have
$$h^*(x)=f(x),$$

and

$$E(h,x) = \mathbb{E}_{y|x}[(y-h^*(x))^2|x] = \mathbb{E}_{y|x}[(y-f(x))^2|x] = \sigma^2,$$
 which is the smallest conditional risk in regression.

Optimal predictions in classification

Let us consider multi-class classification with K categories where $y \in C = \{C_1, \dots, C_K\}$.

With the zero-one loss, we want to solve

$$h^*(x) = \underset{h : \mathcal{X} \to \mathcal{V}}{\operatorname{argmin}} \ E(h, x) \tag{10}$$

$$= \underset{h:\mathcal{X} \to \mathcal{V}}{\operatorname{argmin}} \, \mathbb{E}_{y|x}[\mathbb{1}\{y \neq h(x)\}|x] \tag{11}$$

for all $x \in \mathcal{X}$.

Note that

$$\mathbb{E}_{y|x}[\mathbb{1}\{y \neq h(x)\}|x] = P(y \neq h(x)|x).$$

Let z = h(x)., and let us solve (11) for a single input x. We want to minimize

$$E(h, x) = \mathbb{E}_{y|x}[\mathbb{1}\{y \neq h(x)\}|x = x].$$

Optimal predictions in classification

We have

$$\mathbb{E}_{y|x}[\mathbb{1}\{y \neq z\} | x = x]$$

$$= \sum_{k=1}^{K} \mathbb{1}\{C_k \neq z\} P(y = C_k | x = x)$$

$$= \sum_{k:C_k \neq z} 1 \times P(y = C_k | x = x) + 0 \times P(y = z | x = x)$$

$$= \sum_{k:C_k \neq z} P(y = C_k | x = x)$$

$$= \sum_{k:C_k \neq z} P(y = C_k | x = x) + P(y = z | x = x) - P(y = z | x = x)$$

$$= \sum_{k=1}^{K} P(y = C_k | x = x) - P(y = z | x = x)$$

$$= 1 - P(y = z | x = x).$$

Optimal predictions in classification

This implies that

$$h^*(x) = \underset{z \in \mathcal{C}}{\operatorname{argmin}} \ \mathbb{E}_{y|x}[\mathbb{1}\{y \neq z\} | x = x]$$
$$= \underset{z \in \mathcal{C}}{\operatorname{argmin}} \ 1 - P(y = z | x = x)$$
$$= \underset{z \in \mathcal{C}}{\operatorname{argmax}} \ P(y = z | x = x).$$

Equivalently, we have that

$$h^*(x) = C_k$$
 if $P(y = C_k | x = x) = \max_{z \in \mathcal{C}} P(y = z | x = x)$.

The optimal classifier is called the **Bayes classifier**, which has the following error rate at *x*:

$$1 - \max_{k=1,...,K} P(y = C_k | x = x),$$

also called the **Bayes error rate**, which gives the lowest possible error rate that could be achieved if we knew P(y|x).