sine basis 09

Statistics:

p-values adjusted for search volume

Classics of Court Fording												
set-level		cluster-level				peak-level					mm mm mm	
р	С	p_{FWE-c}	<i>g</i> corrFDR-c	orr E	$p_{ m uncorr}$	p_{FWE-c}	g corrFDR-co	<i>T</i> orr	(Z_{\equiv})	$p_{ m uncorr}$		
		1.000 1.000	0.807 0.807	11 8	0.346 0.424	1.000 1.000	0.999	2.94 2.93	2.92 2.92	0.002 0.002	26 -34	14 16 -74 -26
		1.000	0.807	8	0.424	1.000	0.999	2.92	2.91	0.002	44	-32 26
		1.000	0.807	9 14	0.395	1.000	0.999	2.92	2.90	0.002	-22 -2	-56 -2 -40 -26
		1.000 1.000	0.807 0.807	14 27	0.288 0.145	1.000	0.999	2.88	2.87	0.002	18 54	-86 34 -12 26
		1.000		_	0.534	1.000 1.000		2.63 2.86	2.62 2.85	0.004 0.002	48 60	-6 26 -52 32
		1.000 1.000	0.807 0.807	12 6	0.325 0.492	1.000 1.000	0.999 0.999	2.86 2.84	2.84 2.83	0.002 0.002	-34 16	-36 52 36 54
		1.000 1.000	0.807 0.807	11 4	0.346 0.582	1.000 1.000	0.999 0.999	2.81 2.80	2.80 2.79	0.003	-62 -38	-8 4 -20 -10
		1.000 1.000	0.807 0.807	8 8	$0.424 \\ 0.424$	1.000 1.000	0.999	2.80 2.80	2.79 2.79	0.003	-52 -24	-42 24 -34 36
		1.000 1.000	0.807 0.807	7 12	0.456 0.325	1.000 1.000	0.999	2.79 2.78	2.78 2.77	0.003	-20 48	-44 -38 -54 12
		1.000	0.807 0.807	4 11	0.582 0.346	1.000 1.000	0.999	2.78 2.77	2.77 2.76	0.003	-6 -36	-6 -30 38 18
		1.000	0.807	25 11	0.160 0.346	1.000	0.999	2.77 2.77	2.76 2.76	0.003	-32 42	-34 14 -70 -34
		1.000	0.807	7	0.456	1.000	0.999	2.76	2.75	0.003	46	-8 38