Atelier 1

Données spatiales : les basiques

Journée d'études sur les données spatiales Pavillon Indochine, Jardin d'Agronomie Tropicale, Paris

Pascale Champalaune (PSE, ENS-PSL)

1^{er} décembre 2023

Introduction

Objectif(s) de cet atelier

- Introduction sur les notions de base
 - → Différents types de données spatiales
 - → Projection
 - → Temps d'échange
- · QGIS en clique-bouton
 - + un petit peu de PyQGIS pour automatiser
- Même si en progressant, on passe souvent à un autre logiciel,
 QGIS toujours utile : outil de visualisation et de familiarisation
- Disclaimer : je ne suis pas experte !

Plan

Introduction

Données vecteur

Données raster

Systèmes de coordonnées

Exemples de manipulation / Échange

Données vecteur

- Shapefile : format pour stocker la localisation géographique et les informations associées
- Format principal : .shp et ses fichiers associés
 - · Nécessaires : .shx et .dbf
 - · Recommandé: .prj
 - · Parfois: .cpg, .xml, et d'autres...
- Trois types : Polygones, Lignes, Points
- Quelques limitations au .shp , d'autres formats existent
 (.geojson , .gpkg ...)

Exemple: Villes européennes

- Aires urbaines fonctionnelles (FUA, Functional Urban Areas)
- Données téléchargeables ici : Eurostat
 - · Points (point central de l'agglomération)
 - · Polygones
- · Disponibles en plusieurs projections

Plan

Introduction

Données vecteur

Données raster

Systèmes de coordonnées

Exemples de manipulation / Échange

Données raster

- Raster : fonctionne comme une image
 - ⇒ L'information est stockée dans des cellules qui s'apparentent à des pixels, et contiennent chacune une valeur
- Résolution en général exprimée en degrés Combien fait un degré
- Formats les plus communs :
 - · GeoTIFF: .tif
 - NetCDF: .nc
 - · ASCII: .asc

Exemple : Données cartographiées de pollution de l'air

- Rasters de concentration en particules fines (PM_{2.5}) dérivées de données satellitaires de l'Atmospheric Composition Analysis Group
- Données téléchargeables ici : PEurostat
 - · Raster de résolution 0.01° × 0.01°
- Disponibles en format ASCII et NetCDF

Plan

Introduction

Données vecteur

Données raster

Systèmes de coordonnées

Exemples de manipulation / Échange

Qu'est-ce-qu'un système de coordonnées ?

- SCR = Système de coordonnées de référence ou CRS = Coordinate Reference System
- Système de coordonnées géographiques : latitude-longitude

 ≠ systèmes de projection sur un plan
- Le plus connu des systèmes géographiques :
 Système géodésique mondial, WGS-84
- · Côté projection, on a une infinité de possibilités!

Systèmes de projection

- Principal problème : la Terre est ronde
 - → Comment traduire les coordonnées d'un globe en coordonnées sur un plan ?
- Trois propriétés principales des systèmes de projection
 - → Conservation des aires (équivalente)
 - → Conservation des **formes** (conforme)
 - → Équidistance sur les méridiens
 - ...mais impossible de satisfaire les trois propriétés (ou les 2 premières) simultanément
- Choix potentiellement important en termes de visualisation

Globe et indicatrice de Tissot

Exemple de projection : Mercator (1569)

Exemple de projection : Mercator (1569)

Exemple de projection : Mercator (1569)

Exemple de projection : Mollweide (1805)

Exemples de projection : Equal Earth (2018)

Exemples de projection : Lambert 93

WGS-84, Mercator et Pseudo-Mercator

- Parfois, pas de projection, surtout si fichiers globaux
- Fichiers donnés en WGS-84, un CRS géographique, mais pas un CRS de projection
 - → QGIS utilise la projection "plate carrée" pour afficher la carte vor
 - → Pas un problème si pas de visualisation
- Piège: Web Mercator ≠ Mercator
 - → Web Mercator (WGS-84/Pseudo-Mercator) : utilisé par Google Maps (mobile), OpenStreetMap...
 - → Visible seulement en zoomant 👀

WGS-84, Mercator et Pseudo-Mercator

- Parfois, pas de projection, surtout si fichiers globaux
- Fichiers donnés en WGS-84, un CRS géographique, mais pas un CRS de projection
 - → QGIS utilise la projection "plate carrée" pour afficher la carte vor
 - → Pas un problème si pas de visualisation
- Piège: Web Mercator ≠ Mercator
 - → Web Mercator (WGS-84/Pseudo-Mercator) : utilisé par Google Maps (mobile), OpenStreetMap...
 - → Visible seulement en zoomant Carte

SCR en pratique

- → Utilisation du code EPSG (European Petroleum Survey Group)
- → Toujours s'assurer que les couches utilisées utilisent le **même** système de projection
 - · QGIS

```
Shapefiles: native:reprojectlayer
```

Rasters: gdal:warpreproject

· Y compris sur R

```
Shapefiles: shp <- sf::st_transform(shp, "EPSG:4326")</pre>
```

Rasters: crs(raster) <- "EPSG:4326"

Plan

Introduction

Données vecteur

Données raster

Systèmes de coordonnées

Exemples de manipulation / Échange

Merci de votre participation!

pascale.champalaune@psemail.eu

Qu'est-ce qu'un degré?

1 degré pprox 111 km à l'équateur

- · Peu importe la latitude, toujours environ la même hauteur de pixel
- Mais plus on s'éloigne de l'équateur, plus la largeur du pixel est faible (plus la résolution paraît fine)
- Pour un raster d'une résolution de 1 degré par 1 degré, en Île-de-France, on a des pixels d'environ 60 km de largeur et 111 km de hauteur.

Projection Plate Carrée (cylindrique équidistante)

Mercator (gauche) vs. Web Mercator (droite)

(ceci n'est pas une erreur)

Mercator vs. Web Mercator (zoom)

