Université Sultan Moulay Slimane Faculté des Sciences et Techniques Béni-Mellal Département d'Informatique

Contrôle en Algorithme et Programmation MIPC (Section B) Durée 2h 30 mn

Soit la structure de donnée suivante qui permet de représenter un nœud d'un arbre binaire d'entiers :

```
typedef struct elt_arbre {
   int info;
   struct elt_arbre *sag;
   struct elt_arbre *sad;
} Noeud;
```

et soit une **file dynamique** dont les données sont des pointeurs de type **Nœud**. Donner les structures de données à utiliser pour représenter cette file et les variables pour avoir le bon contrôle sous la forme d'un enregistrement appelé **Var_File**.

- 2- Donner les fonctions **initialiser**, **ajouter** et **retirer** pour manipuler la file dynamique. Les trois fonctions doivent être paramétrées par une variable de type **struct Var_File**.
- 3- Notre objectif est de rendre un arbre binaire en un arbre binaire ordonné. Pour réaliser cet objectif, on a besoin de parcourir notre arbre en largeur. Ecrire cette fonction **parcourir_largeur** et essayer qu'elle stocke les adresses des nœuds visités dans un tableau.
- 4- Ecrire la fonction **preparer_noeud** qui retourne l'adresse de l'espace de mémoire d'allouer pour un nouveau nœud d'un arbre et qui place une valeur entière dans ce nœud.
- 5- Donner la fonction ajouter_noeud qui ajoute un nœud dans un arbre binaire ordonné.
- 6- Ecrire la fonction **Nbre_noeuds** qui permet de compter le nombre de nœuds de votre nouvel arbre.
- 7- Ecrire maintenant la fonction **rendre_ab_abo** qui permet de rendre un arbre binaire en un arbre binaire ordonné.
- 8- Ecrire la fonction qui permet d'en déduire le minimum et le maximum de l'arbre binaire ordonné.