ECEN325 Ref Sheet

© Josh Wright April 4, 2017

Metric Prefixes			O	O
peta	Р	10^{15}	1 000 000 000	000 000
tera	Т	10^{12}	1 000 000	000 000
giga	G	10^{9}	1 000	000 000
mega	Μ	10^{6}	1	000 000
kilo	k	10^{3}		1 000
hecto	h	10^{2}		100
deca	da	10^{1}		10
one		10^{0}	1	
deci	d	10^{-1}	0.1	
centi	c	10^{-2}	0.01	
milli	m	10^{-3}	0.001	
micro	μ	10^{-6}	0.000 001	
nano	n	10^{-9}	0.000 000 001	
pico	p	10^{-12}	0.000 000 000	001
femto	f	10^{-15}	0.000 000 000	000 001

Ohm's Law V = IR, $I = \frac{V}{R}$, $R = \frac{V}{I}$ Complex Numbers

- $\bullet z^{n} = (re^{i\theta}) = r^{n}e^{in\theta}$
- $\bullet \, \frac{1}{i} = -i$
- $\sqrt[n]{z} = \sqrt[n]{r}e^{\frac{\theta}{n} + \frac{2k\pi}{n}}$ for $n \in N^*$ (ints ≥ 0)
- $\bullet e^{j\theta} = \cos(\theta) + i\sin(\theta)$
- $\bullet e^{-j\theta} = \cos(\theta) j\sin(\theta)$
- $\bullet \cos(\theta) = \frac{1}{2} (e^{j\theta} + e^{-j\theta})$ $\bullet \sin(\theta) = \frac{1}{2j} (e^{j\theta} e^{-j\theta})$
- normalized: $sinc(t) = \frac{\sin(\pi t)}{\pi t}$
- $\bullet \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$
- $\angle \frac{a}{b} = \angle a \angle b$ **Trig**

- $\bullet \cos^2(a) + \sin^2(a) = 1$
- $\cos(2a) = \cos^2(a) \sin^2(a) = 2\cos^2(a) 1 = 1 2\sin^2(a)$
- $\bullet \sin(2a) = 2\sin(a)\cos(a)$
- $\cos^2(a) = \frac{1}{2}(1 + \cos(2a))$
- $\bullet \sin^2(a) = \frac{1}{2}(1 \cos(2a))$

Bode Plots

- \bullet magnitude is plotted in dB: $|T(\bar{j}\omega)|_{dB} = 20\log_{10}|T(j\omega)|$
- starts on y-axis at DC offset with slope 0
- just add together the bode plots of each individual pole, zero, and the DC offset
- poles always slope down, zeros slope up (applies for both magnitude and phase)
- dec=decade, e.g. from 10^0 to 10^1
- magnitude:
- *Pole/Zero at origin:

constant slope $\pm 20db/dec$ for all ω ; 0dB at

- $\omega = 10^0 = 1$
- *Pole/Zero at ω_0 :
- 0 for $\omega < \omega_0$ slope $\pm 20 \frac{db}{dec}$ after
- *Constant C: constant line at $20 \log_{10}(|C|)$

- *Pole at origin: constant $-\frac{\pi}{2}$ or -90° *Zero at origin: constant $+\frac{\pi}{2}$ or $+90^{\circ}$
- *Pole/Zero at ω_0 :
 - 0 for $\omega < \frac{\omega_0}{10}$

- slope linearly ($\pm 45^{\circ}/dec$) until $10\omega_0$ 0 slope for $\omega > 10\omega_0$
- *Constant C: no effect (0 for all ω)
- Prof wants us to actually show the -3dB drop curve, not just a straight intersection

Op Amp Equations

- general form: $T(s) = \frac{K_0}{1 + \frac{s}{\omega_0}}$
 - $*T(0) = K_0$: DC offset. For these simple ones, it's equal to ideal response
- $*\omega_0 = \frac{\omega_t}{1 + R_2/R_1}$
- inverting op amp: * ideal: $T(s) = \frac{V_o}{V_i} = -\frac{R_2}{R_1}$

* non-ideal:
$$T(s) = \frac{V_o}{V_i} = \frac{-R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{-R_2/R_1}{1 + \frac{s}{\sqrt{\frac{\omega_t}{1 + R_2/R_1}}}} = \frac{-R_2/R_1}{1 + \frac{s}{\omega_0}}$$

- non-inverting op-amp:
- *ideal: $T(s) = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$

*non-ideal:
$$T(s) = \frac{V_o}{V_i} = \frac{1 + R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{1 + R_2/R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2/R_1})}} = \frac{1 + R_2/R_1}{1 + \frac{s}{(\omega_0)}}$$

Diodes

- ideal:
 - $*I_D(V_D < 0) = 0$
 - $*I_D(V_D \ge 0) = \infty$
- constant drop model: (just the ideal model shifted right by 0.7V)
- $*I_D(V_D < 0.7) = 0$
- $*I_D(V_D \ge 0.7) = \infty$
- exponential model: $I_D = I_S(e^{\frac{v_D}{nV_T}} 1)$
- $*I_S = 10^{-12}$ A (saturation current)
- $*V_T = 25 \text{mV}$
- small signal resistance: $R_d = \frac{nV_T}{I_D}$
- $*I_D$: average (DC) current through diode (due to forward bias)
- bridge rectifier shape: square/diamond with all the diodes point toward the + end of the output (away from ground)

current goes \rightarrow from cathode (-) to anode (+)

Design an (unregulated) AC adapter

- V_S : AC voltage input
- *standard AC voltage is $110\sqrt{2}V \approx 155.563V$
- V_{S2} : output of transformer (still AC)
- V_p : peak DC output

• V_r : peak-to-peak ripple voltage (maximum variation) *often given as a small percentage of V_p

• $V_p = V_{S2}$ – (diode voltage) *diode voltage = 0.7V for single wave rectifier or center-tapped transformer

* diode voltage = 1.4V for full-wave rectifier

*(corresponds to how many diodes you need)

• turns ratio = $n = \frac{V_S}{V_{S2}}$

- *if the transformer is center-tapped, each sub-coil only gets half of V_{S2} ; so use $n = \frac{1}{2} \frac{\overline{V_S}}{V_{S2}}$
- apparent load resistance: $R_L = \frac{V}{I}$

• ripple voltage: $V_r = V_p \frac{T}{R_L C}$

- *T: period of ripple (half of frequency of AC input)
- *f: actual ripple frequency (double for full-wave rectifier)

*C: filter cap size

- Peak Inverse Voltage: minimum reverse bias breakdown voltage of the diodes
- *center-tapped transformer, two diodes: $PIV = 2\hat{V}_{S2} - 0.7$
- * bridge rectifier topology (two-terminal transformer): $PIV = V_{S2} - 0.7V$
- avg diode current: $I_{Davg} = I_L \left(1 + \pi \sqrt{\frac{2}{V_r}}\right)$
- max diode current: $I_{Dmax} = I_L \left(1 + 2\pi \sqrt{\frac{2}{V_r}}\right)$ * only difference is $\pi \to 2\pi$

Transistors

• $V_T = 25 \text{mV}$ at room temperature (according to textbook and prof),

 $V_T = 26 \text{mV}$ at room temperature (according to lab)

- β : a physical constant of the transistor. Usually about
- $I_B + I_C = I_E$, $I_C = \beta I_B$, $I_E = (1 + \beta)I_B$ $\alpha = \frac{\beta}{1+\beta}$, $I_C = \alpha I_E$
- $\bullet I_C = I_S(e^{\frac{V_{BE}}{nV_T}}),$
- AC (assumes correct DC bias): $g_m = \frac{1}{r_e} = \frac{I_C}{V_T}$

Current Mirror

- Q1 has the base shorted to collector, Q2 does not
- $R_{bias} = R_{ref}$: the current that is mirrored

 $\bullet I_{ref} = (V_{CC} - 0.7)/R_{ref}$

- R_{load} has the same current through it as R_{ref} does * that is, $I_{ref} = I_{load}$
- you can chain together multiple transistors (Q3,Q4...) all off of the same Q1 and they will all get the same current
- *In this case, each Q2,Q3... output is considered separate from each other in both DC and AC analysis
- only applies when transistors are matched! (we assume they are)

Transistor circuits by inspection

• this all assumes that the transistor is properly DC biased

• three types of amplifier circuits: common emitter, common base, common collector

*CE, CB, CC

- *the "common" pin is the one that is neither AC input nor output
- intrinsic gain: gain directly from the input pin of the transistor to the output, ignoring any source resistance or such things whatever

* when you chain multiple amplifiers together, this is the one you use

• when you're driving a finite-impedance load (a load other than open circuit), you have to consider R_o as $R_o||R_L$

*this will change the gain, which is why it's often helpful to put a CC buffer at the end of an amplifier

- R_i : input impedance: impedance as seen from the input *includes the transistor, does not include R_s
- $\bullet g_m = \frac{I_C}{V_T}$ $r_{\pi} = \frac{beta}{g_m}$ $r_e = \frac{V_T}{I_E} = \frac{\alpha}{g_m} \approx \frac{1}{g_m}$ $r_o = \frac{V_A}{I_C} \approx \infty$

• CE: Common Emitter

- *input: base; output: collector *intrinsic gain: $\frac{V_o}{V_b} = -\alpha \frac{R_C}{r_e + R_E} \approx -\frac{R_C}{r_e + R_E}$ * $R_i = (\beta + 1)(r_e + R_E)$ * $R_o = R_C$ *if you have a R_L then you have to put that in parallel with R_C when calculating $\frac{V_o}{V_c}$
- CB: Common Base $*\frac{V_o}{V_b} = \alpha \frac{R_C}{R_i} \approx \frac{R_C}{R_i}$
- $*R_i = r_e + \frac{R_B}{\beta + 1}$

- $*R_o = R_C$ CC: Common Collector
- *gain ≈ 1 because it's a buffer

- $* \frac{V_o}{V_b} = \frac{R_E}{r_e + R_E}$ $* R_i = (\beta + 1)(r_e + R_E)$ $* R_o = R_E || r_e = \frac{R_E * r_e}{R_E + r_e}$