Introducing ranked retrieval

This unit and repetion

- Today: IR, VSM, mini intro to word embeddings
- Repetition of last unit: NLP Basics
 - Preprocessing: **tokenization** what is it?
 - Preprocessing: **stopword removal** what is it?
 - Preprocessing: lemmatization / stemming what is it?
 - NLTK included corpora, functions to make:
 collocations, frequency distributions, ...

Repetition - unit 1

- What is IR? What evaluation measures did we discuss?
- What is a term-document matrix? How to do Boolean queries on it?
- What is an inverted index?
 - Which runtime do basic (Boolean) queries have on an inverted index?
- What is a Biword-index? Why would we want to use it? Why not?

Repetition – unit 1

- What is a positional index?
- Which queries can we do with the positional index?

Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (≈0) or too many (1000s) results.
 - Query 1: "standard user dlink 650" \rightarrow 200,000 hits
 - Query 2: "standard user dlink 650 no card found" \rightarrow 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval models, the system returns an ordering over the (top) documents in the collection with respect to a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval models have normally been associated with free text queries and vice versa

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the **top** k (\approx **10**) results
 - We don't overwhelm the user

Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this

Introducing ranked retrieval

Scoring with the Jaccard coefficient

Take 1: Jaccard coefficient

- Simple starting point for ranking
- A commonly used measure of overlap of two sets A and B is the Jaccard coefficient
- jaccard(A,B) = $|A \cap B| / |A \cup B|$
- jaccard(A,A) = 1
- jaccard(A,B) = 0 if A \cap B = 0
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- Query: ides of march
- Document 1: caesar died in march
- Document 2: the long march
- Do Jaccard(q, d1) and Jaccard(q, d2) what are the results

Exercise in Class (?)

- Implement Jaccard coefficient for some dataset which is short and simple (eg. first 100 words of documents in gutenberg NLTK corpus)
- Can also be used for document similarity

Issues with Jaccard for scoring

- It doesn't consider term frequency (how many times a term occurs in a document)
 - Rare terms in a collection are more informative than frequent terms
 - Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length
 - Later in this lecture, we'll use $|A \cap B|/\sqrt{|A \cup B|}$... instead of $|A \cap B|/|A \cup B|$ (Jaccard) for length normalization (as used in cosine similarity (later))

Scoring with the Jaccard coefficient

Term frequency weighting

Recall: Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a *binary vector* $\in \{0,1\}^{|V|}$

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector in $\mathbb{N}^{|V|}$: a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors

- This is called the bag of words model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents
 - We will look at "recovering" positional information later on
 - For now: bag of words model

Term frequency tf

- The term frequency $\mathbf{tf}_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally (linearly) with term frequency.

NB: frequency = count in IR

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4$
- Score for a document-query pair: sum over terms t in both q and d, only for intersecting terms:
- score = $\sum_{t \in q \cap d} (1 + \log tf_{t,d})$
- The score is 0 if none of the query terms is present in the document.

Exercise TDM with log10-tf

For gutenberg corpus, create a TDM, with log-frequency weighting.
 (To make it faster, again use only the first 100 words per document).

Term frequency weighting

(Inverse) Document frequency weighting

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

Document frequency, continued

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- For frequent terms, we want positive weights for words like high, increase, and line
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df, is an inverse measure of the informativeness of t
- We define the idf (inverse document frequency) of tby $idf_t = log_{10} (N/df_t)$
 - We use $\log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

Will turn out the base of the log is immaterial.

idf example, suppose N = 1M

term	df _t	idf _t
calpurnia	1	→ 6
animal	100	?
sunday	1,000	?
fly	10,000	?
under	100,000	?
the	1,000,000	?

$$idf_t = log_{10} (N/df_t)$$

There is **one idf value for each** term t in a collection.

Effect of idf on ranking

- Question: Does idf have an effect on ranking for oneterm queries, like
 - iPhone

Effect of idf on ranking

- Question: Does idf have an effect on ranking for oneterm queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in a collection, counting multiple occurrences. Usually not used in IR, because:
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is a better search term (and should get a higher weight)?

(Inverse) Document frequency weighting

tf-idf weighting

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = (1 + \log tf_{t,d}) \times \log_{10}(N / df_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Final ranking of documents for a query

Score(
$$q, d$$
) = $\sum_{t=q \cap d} tf.idf_{t,d}$

Binary \rightarrow count \rightarrow weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Exercise

- Extend TDM from previous exercise to have tf-idf weights
- You can base your code on code9_tdm.py

Introduction to **Information Retrieval**

tf-idf weighting

Introduction to Information Retrieval

The Vector Space Model (VSM)

Documents as vectors

- Now we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Reason: We do this because we want to get away from the you're-either-in-or-out Boolean model
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

The Euclidean distance between a and \vec{d}_2 is large even though the distribution of terms in the query $\frac{\rightarrow}{q}$ and the distribution of terms in the document \overrightarrow{d}_2 are very similar.

Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

From angles to cosines

But how – and why – should we be computing cosines?

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the $\|x\|_2 = \sqrt{\sum_i x_i^2}$
- Dividing a vector by its L₂ norm makes it a unit
 (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

cosine(query,document)

Dot product
$$\cos(q,d) = \frac{q \cdot d}{|q|d|} = \frac{q}{|q|} \cdot \frac{d}{|d|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $\cos(\overrightarrow{q}, \overrightarrow{d})$ is the cosine similarity of \overrightarrow{q} and \overrightarrow{d} ... or, equivalently, the cosine of the angle between \overrightarrow{q} and \overrightarrow{d} .

Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(q_i d) = q \cdot d = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

(→ Length-normalize document vectors in advance!)

Cosine similarity illustrated

Cosine similarity amongst 3 documents

How similar are

the novels

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice, and

WH: Wuthering

Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting

After length normalization

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

```
cos(SaS,PaP) \approx
0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94
cos(SaS,WH) \approx 0.79
cos(PaP,WH) \approx 0.69
```

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Big exercise

- Implement the VSM (re-use TDM)
- Implement VSM normalization (with L2 norm)
- Implement cosine-ranked search

Introduction to Information Retrieval

The Vector Space Model (VSM)

Introduction to Information Retrieval

Calculating tf-idf cosine scores in an IR system

tf-idf weighting has many variants

Term frequency		Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df_t}}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- **SMART Notation:** denotes the combination in use in an engine, with the notation *ddd.qqq*, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc
- Document: logarithmic tf (l as first character), no idf and cosine normalization
- Query: logarithmic tf (I in leftmost column), idf (t in second column), cosine normalization ...

tf-idf example: Inc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term			Que	ery		Document				Prod	
	tf- raw	tf-wt	df	idf	wt	n'lize	tf-raw	tf-wt	wt	n'lize	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is *N*, the number of docs?

Doc length
$$=\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score =
$$0+0+0.27+0.53 = 0.8$$

Computing cosine scores

```
CosineScore(q)
     float Scores[N] = 0
  2 float Length[N]
  3 for each query term t
    do calculate w_{t,q} and fetch postings list for t
         for each pair(d, tf<sub>t,d</sub>) in postings list
         do Scores[d] += w_{t,d} \times w_{t,q}
  6
     Read the array Length
     for each d
  8
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
 10
```

Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Introduction to Information Retrieval

Calculating tf-idf cosine scores in an IR system

Introduction to **Information Retrieval**

Evaluating search engines

Measures for a search engine

- How fast does it index
 - Number of documents/hour
 - (Average document size)
- How fast does it search
 - Latency as a function of index size
- Expressiveness of query language
 - Ability to express complex information needs
 - Speed on complex queries
- Uncluttered UI
- Is it free?

Measures for a search engine

- All of the preceding criteria are measurable: we can quantify speed/size
 - we can make expressiveness precise
- The key measure: user happiness
 - What is this?
 - Speed of response/size of index are factors
 - But blindingly fast, useless answers won't make a user happy
- Need a way of quantifying user happiness with the results returned
 - Relevance of results to user's information need

Evaluating an IR system

- An information need is translated into a query
- Relevance is assessed relative to the information need not the query
- E.g., <u>Information need</u>: I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine.
- Query: wine red white heart attack effective
- You evaluate whether the doc addresses the information need, not whether it has these words

Evaluating ranked results

- Evaluation of a result set:
 - If we have
 - a benchmark document collection
 - a benchmark set of queries
 - assessor judgments of whether documents are relevant to queries

Then we can use Precision/Recall/F measure as before

- Evaluation of ranked results:
 - The system can return any number of results
 - By taking various numbers of the top returned documents (levels of recall), the evaluator can produce a precisionrecall curve

Recall/Precision

R P

- **1** R
- **2** N
- **3** N
- 4 R
- 5 R
- 6 N
- **7** R
- **8** N
- **9** N
- 10 N

Assume 10 rel docs in collection

Two current evaluation measures...

- Mean average precision (MAP)
 - AP: Average of the precision value obtained for the top k documents, each time a relevant doc is retrieved
 - Avoids interpolation, use of fixed recall levels
 - Does weight most accuracy of top returned results
 - MAP for set of queries is arithmetic average of APs
 - Macro-averaging: each query counts equally

Introduction to **Information Retrieval**

Evaluating search engines

Term-Term Matrices

- In IR systems we typically use Term-Document matrices
- But in many NLP applications we are interested in term-term co-occurrence matrices
- Co-occurrence can be measured in different ways, for example
 - Within a unit like a sentence or paragraph
 - Within a word window (left and/or right) of the target word – eg. a word window of 5
 - Q: when could a co-occurrence matrix be useful?

Co-occurrence matrix - Example

- 1. I enjoy flying.
- 2. I like NLP.
- 3. I like deep learning.

The resulting counts matrix will then be:

		I	like	enjoy	deep	learning	NLP	flying	
	I	0	2	1	0	0	0	0	0]
	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1	0
v	deep	0	1	0	0	1	0	0	0
Λ —	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
		0	0	0	0	1	1	1	0]

Co-occurrence Matrices

- Distributional hypothesis "a word is characterized by the company it keeps"
- Words are defined by their context (words)

A bottle of **tesgüino** is on the table Everybody likes **tesgüino Tesgüino** makes you drunk

We make **tesgüino** out of corn.

Co-occurrence Matrices

- These matrices are often input to further processing, eg. for word embeddings, SVD, etc.
- Weighting of the matrix:
 - Raw counts: but not best option
 - "the" and "of" are very frequent, but maybe not the most discriminative
 - PPMI (see next slide)
 - Goal: context is informative about the target word

Co-occurrence Matrices – PPMI

Starts from co-occurrence counts

PMI between two words: (Church & Hanks 1989)

Do words x and y co-occur more than if they were independent?

$$PMI(word_1, word_2) = \log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$

- PMI goes from neg. inf. to pos. inf.
- PPMI: we just set all negative values to 0.
 - Low counts are unreliable, and neg. relation hard to understand for humans

Co-occurrence Matrices

- Co-occ. matrices are sparse representations
- Next time we look at dense representations, like word embeddings

Mini Intro to Language Models and Word Embeddings

- What are language models?
- What are word embeddings?
 - Dense, floating point
 - Popular esp since word2vec (Mikolov et al, 2013)
 - Based on distributional hypothesis (Harris, 1957)
 - What does a vector look like, what are characteristics?
 - Trained on large corpora
 - Different training algorithms (GloVe, word2vec, ..)
 - Applications: many, eg. clustering, input to ML/DL, almost NLP task as representations of words

Homework - Background: Wikidata

- Wikidata, https://www.wikidata.org
- Structured data eg for Wikipedia for example to make it consistent over language versions
- Consists mainly of items, which are described in a Semantic Web-like format, with triples of subjectproperty-object
- https://www.wikidata.org/wiki/Q42
- https://www.wikidata.org/wiki/Property:P249