Завдання для самостійної роботи(Критерій Пірсона)

- 1. На екзамені екзаменатор задає лише одне запитання студентові з однієї з трьох частин курсу. Аналіз питань заданих n = 120 студентам показав, що $m_1 = 43$ студенти одержали питання з І частини курсу, $m_2 = 52$ з ІІ частини курсу, $m_3 = 25$ з ІІ частини курсу. Чи можна прийняти гіпотезу про те, що студент має однакові шанси отримати питання з довільної частини курсу?
- 2. При 100 киданнях монети герб випав 63 рази. Перевірити, чи узгоджується це з гіпотезою про сталу ймовірність ½ випадання герба.
- 3. 5. У 900 киданнях грального кубика спостерігалося 140 випадань 6, 160- 5, 170-4, 150-3, 125-2, 155-1. Перевірити гіпотезу про правильність грального кубика (ймовірність випадання кожної грані рівна 1/6)
- 4. Проведено 100 дослідів, кожен складався з 10 випробувань, в кожному з яких імовірність р появи події А складала 0,3. В результаті отримано такий розподіл

\mathcal{X}_{i}	0	1	2	3	4	5
$ ilde{n}_{_i}$	2	10	27	32	23	6

Перевірити гіпотезу про біномний закон розподілу випадкової змінної.

5. Відділ технічного контролю перевірив 100 партій однакових виробів (в кожній партії 5 виробів) і отримав такий емпіричний розподіл (x_i - кількість нестандартних виробів в одній партії, \tilde{n}_i - кількість таких партій)

X_i	0	1	2	3	4	5
$ ilde{n}_{_i}$	9	15	20	35	15	6

Перевірити гіпотезу про те, що дана кількість нестандартних виробів підпорядковується біномному закону розподілу.

6. Через рівні проміжки часу в тонкому прошарку розчину золота реєструвалось число частинок золота, які потрапляли в поле зору мікроскопа. Результати спостережень наведені в наступній таблиці:

число частинок	0	1	2	3	4
частота	116	56	22	4	2

Перевірити, користуючись критерієм хі-квадрат, погодженість експериментальних даних з розподілом Пуассона, прийнявши рівень значущості $\alpha = 0.05$.

7. Аналіз митних декларацій 500 осіб, що перетинають кордон, встановлює таку залежність між числом \tilde{n}_i осіб і відсотком x_i не заявленої валюти:

X_i	0	1	2	3	4	5
\tilde{n}_i	255	100	80	30	25	10

Перевірити гіпотезу H_0 : відсоток не заявленої валюти однією особою при перетині кордону має розподіл Пуассона, якщо рівень значущості $\alpha = 0.05$.

8. З генеральної сукупності Х отримано вибірку обсягу 100:

$(x_{i-1},x_i]$	(2; 4]	(4; 6]	(6; 8]	(8; 10]	(10; 12]
n_i	24	16	17	22	21

Використовуючи критерій Пірсона, при рівні значущості 0,05 перевірити чи справджується гіпотеза про рівномірний розподіл генеральної сукупності.

9. Англійський математик Aitken подає наступний розподіл для показів годинників виставлених на вітрину

Години в інтервалах	[0, 1]	(1, 2]	(2, 3]	(3, 4]	(4, 5]	(5, 6]	(6, 7]	(7, 8]	(8, 9]	(9, 10]	(10, 11]	(11, 12]	Σ
Число годинників	77	81	95	86	97	90	74	70	77	82	84	87	1000

Перевірити гіпотезу H_0 : покази годинників рівномірно розподілені на інтервалі [0,12].

10. Дано вибірку, перевірити гіпотезу про експонентний закон розподілу генеральної сукупності, з якої отримали вибірку

(z_{i-1},z_i)	0-4	4-8	8-12	12-16	16-20	20-24
$ ilde{n}_i$	133	45	15	4	2	1

11. Перевірка 100 опорів дала відхилення від номіналу по 5 класах:

(z_{i-1}, z_i)	0,5-1,5	1,5-2,5	2,5-3,5	3,5-4,5	4,5-5,5
\tilde{n}_{i}	31	28	31	30	30

Перевірити H_0 : відхилення від номіналу підпорядковується експонентному закону розподілу.

12.Спостереження за відсотковим відношенням ринкових і номінальних цін 200 акцій на фондовому ринку дали такі результати

(z_{i-1}, z_i)	94-98	98-102	102-106	106-110	110-114
\tilde{n}_i	24	32	80	48	16

Для рівня значущості перевірити гіпотезу про нормальний закон розподілу випадкової величини.

13. Дано інтервальний статистичний розподіл у вигляді

(z_{i-1}, z_i)	80-90	90-100	100-110	110-120	120-130
\tilde{n}_{i}	2	14	60	20	4

Перевірити припущення, щогенеральна сукупністьмає нормальний закон розподілуN(106,7.6)

14. Вимірювання росту 100 дітей віком від 1 до 2 років дали такі результати:

(z_{i-1}, z_i)	75-79	79-83	83-87	87-91	91-95
$ ilde{n}_{i}$	15	35	20	18	12

Перевірити гіпотезу, що ріст дітей підпорядковується нормальному закону розподілу.