Equation of a Circle from 3 Points (2 dimensions)

Written by Paul Bourke January 1990

See also: Sphere from 4 points

This note describes a technique for determining the attributes of a circle (centre and radius) given three points P_1 , P_2 , and P_3 on a plane.

Calculating Centre

Two lines can be formed through 2 pairs of the three points, the first passes through the first two points P_1 and P_2 . Line b passes through the next two points P_2 and P_3 .

The equation of these two lines is

$$y_a = m_a (x - x_1) + y_1$$
 and $y_b = m_b (x - x_2) + y_2$

where m is the slope of the line given by

$$m_a = \frac{y_2 - y_1}{x_2 - x_1}$$
 and $m_b = \frac{y_3 - y_2}{x_3 - x_2}$

The centre of the circle is the intersection of the two lines perpendicular to and passing through the midpoints of the lines P_1P_2 and P_2 P_3 . The perpendicular of a line with slope m has slope -1/m, thus equations of the lines perpendicular to lines a and b and passing through the midpoints of P_1P_2 and P_2P_3 are

$$\begin{aligned} y'_{a} &= -\frac{1}{m_{a}} \left(x - \frac{x_{1} + x_{2}}{2} \right) + \frac{y_{1} + y_{2}}{2} \\ y'_{b} &= -\frac{1}{m_{b}} \left(x - \frac{x_{2} + x_{3}}{2} \right) + \frac{y_{2} + y_{3}}{2} \end{aligned}$$

These two lines intersect at the centre, solving for x gives

$$\mathbb{X} = \frac{m_{\text{a}}m_{\text{b}}(y_1 - y_3) + m_{\text{b}}(x_1 + x_2) - m_{\text{a}}(x_2 + x_3)}{2(m_{\text{b}} - m_{\text{a}})}$$

Calculate the y value of the centre by substituting the x value into one of the equations of the perpendiculars. Alternatively one can also rearrange the equations of the perpendiculars and solve for y.

Radius

The radius is easy, for example the point P_1 lies on the circle and we know the centre....

Notes:

- The denominator (mb ma) is only zero when the lines are parallel in which case they must be coincident and thus no circle results.
- If either line is vertical then the corresponding slope is infinite. This can be solved by simply rearranging the order of the points so that vertical lines do not occur.

Source Code

C++ code implemented as MFC (MS Foundation Class) supplied by Jae Hun Ryu. <u>Circle.cpp</u>, <u>Circle.h</u>.