THE MINIMUM RANGE ASSIGNMENT PROBLEM ON LINEAR RADIO NETWORKS

A.CLEMENTI¹, A. FERREIRA², P. PENNA¹, S. PERENNES², R. SILVESTRI³

- 1 UNIVERSITY OF ROME "TOR VERGATA", MATH DEPARTMENT
- 2 135-CNRS-INRIA SOPHIA ANTIPOLIS, MASCOTTE PROJECT
- 3 UNIVERSITY OF L'AQUILA, PURE AND APPLIED MATHEMATICS DEPT.

THE PROBLEM

MULTI-HOP RADIO NETWORKS:

- ·NO INFRASTRUCTURE
- · ADJUSTABLE RANGES
- ·MULTI-HOP TRANSMISSION

GOAL: COMMUNICATION WITH MINIMAL ENERGY

· POWER ≈ RANGE × × ≥ 2 (IDEALLY X=2)

. MULTI-HOP ⇒ LESS ENERGY

$$3_1 \quad 3_2 \quad 3_3 \quad 3_m$$
1 HOP \Rightarrow OVERALL ENERGY = $(m-1)^2 + (m-2)^2 + \cdots = O(m^3)$

M-1 HOPS -> OVERALL ENERGY = M

MIN RANGE R-HOPS

INSTANCE: S={s1,.., 5n} < IRd

SOLUTION: RANGE: S → R[†] 5. T.

ALL-TO-ALL COMMUNICATION

WITHIN R HOPS

MEASURE: OVERALL POWER CONSUMPTION

 $\sum_{i=1}^{m} RANGE(S_i)^2$

MIN RANGE R-HOPS

INSTANCE: S={s1,.., 5, } < IRd

HERE d=1 (VEHICULAR TECHNOLOGY)

SOLUTION: RANGE: S → R[†] 5. T.

ALL-TO-ALL COMMUNICATION

WITHIN R HOPS

MEASURE: OVERALL POWER CONSUMPTION

E RANGE(Si)2

PREVIOUS WORKS

UNBOUNDED # HOPS:

1D 0(m4) TIME ALG. [K97]

2D NP-HARD [c39]

3D APX-HARD [C93]

BOUNDED # HOPS:

TIGHT BOUNDS ON THE ENERGY FOR SPECIAL CONFIGURATIONS

[K97] KIROUSIS ET AL, STACS 97 [C99, CØØ] CLEMENTI ETAL, APPROX99 STACS ØØ

PREVIOUS WORKS

UNBOUNDED # HOPS:

BOUNDED # HOPS:

TIGHT BOUNDS ON THE ENERGY FOR SPECIAL CONFIGURATIONS

[k97]
$$S_1$$
 S_2 S_3 S_m $\Theta(m^{Q(R)})$, $R \in O(1)$ $\Theta(m^2/R)$, $R \in IR(B_g m)$ $\Theta(m^2/R)$, $R \in IR(B_g m)$ $\Theta(m^{1+1/R})$, $R \in O(1)$

[K97] KIROUSIS ET AL, STACS 97 [C99, COD] CLEMENTI ETAL, APPROX99

PREVIOUS WORKS

UNBOUNDED # HOPS:

1D O(m4) TIME ALG. [K97]
2D NP-HARD [C99] ZAPX
3D APX-HARD [C99] [K97]

BOUNDED # HOPS:

TIGHT BOUNDS ON THE ENERGY FOR SPECIAL CONFIGURATIONS

②ALL-TO-ONE PROBLEM O(R·n³)-TIME

U

2-APX ALG FOR ANY R

②ALL-TO-ONE PROBLEM O(R·m³)-TIME

☐

2-APX ALG FOR ANY R

ANY CONFIGURATION!!!

②ALL-TO-ONE PROBLEM O(R·m³)-TIME

☐

2-APX ALG FOR ANY R

ANY CONFIGURATION!!!

@ OPT WITH BASES PROBLEM O(R. 13)-TIME

②ALL-TO-ONE PROBLEM O(R·n³)-TIME

3-ADV ALC EOD ANY P

2-ADV ALC EOD ANY P

2-APX ALG FOR ANY R

ANY CONFIGURATION!!!

@ OPT WITH BASES PROBLEM O(R. A.)-TIME

弁

(1+0(1))-APX ALG FOR WELL-SPREAD INSTANCES, R & O(1)

②ALL-TO-ONE PROBLEM O(R·n³)-TIME

2-APX ALG FOR ANY R

ANY CONFIGURATION!!!

@ OPT WITH BASES PROBLEM O(R. 13)-TIME

②ALL-TO-ONE PROBLEM O(R·n³)-TIME

J
ADV ALC FOR ANY P

2 ADV ALC FOR ANY P

3 ADV ALC FOR ANY P

4 ADV ALC FO

2-APX ALG FOR ANY R

ANY CONFIGURATION!!!

@ OPT WITH BASES PROBLEM O(R. A.)-TIME

弁

(1+0(1))-APX ALG FOR WELL-SPREAD INSTANCES, R & O(1)

3 MIN RANGE 2-HOPS IS IN P

1 FIX TWO DESTINATIONS:

1 FIX TWO DESTINATIONS:

@ ALL-TO-ONE: ONLY ONE DESTINATION

1 FIX TWO DESTINATIONS:

@ ALL-TO-ONE: ONLY ONE DESTINATION

V Si: Si R→ Sm

1 FIX TWO DESTINATIONS:

@ ALL-TO-ONE: ONLY ONE DESTINATION

1 FIX TWO DESTINATIONS:

@ ALL-TO-ONE: ONLY ONE DESTINATION

3 ALL-TO-ONE (SI) + ALL-TO-ONE (SM)

U

2-APX SOLUTION

B=DESTINATION -> ALL-TO-ONE (B)

B ... B

WELL-SPREAD APX ALG

WELL-SPREAD:

쓔

FOR CONSTANT R THE OPTIMUM CONTAINS MANY BASES

OPT-BASES < (1+o(1)). OPT

MIN RANGE 2-HOPS & P

IDEA: ONLY THREE OPTIMAL CONFIGURATIONS

MIN RANGE 2-HOPS & P

IDEA: ONLY THREE OPTIMAL CONFIGURATIONS

MIN RANGE 2-HOPS & P

IDEA: ONLY THREE OPTIMAL CONFIGURATIONS

OPEN PROBLEMS

· MIN RANGE R-HOPS ∈ P? (FOR R≥3)

· 2D MIN RANGE R-HOPS ∈ P ? (FOR R∈O(1), R∈O(logm),...)

NOTE: NP-HARD FOR RESIGNA),