

Subject Code <u>CAT-863</u>

Submitted By:

Name: Rajat

UID No:18mca8065

Branch/ Sec: MCA6A

Submitted To:

Faculty Name: Prof <u>Dr.Amanpreet Kaur</u>

PRACTICAL: -7

Write a program for support vector machine using jupyter notebook

In [2]:

import numpy as np import matplotlib.pyplot as plt import pandas as pd

In [3]:

df = pd.read_csv('data(1).csv') df.head(10)

Out[3]:

	լյ. 		
	grade1	grade2	label
0	34.623660	78.024693	0
1	30.286711	43.894998	0
2	35.847409	72.902198	0
3	60.182599	86.308552	1
4	79.032736	75.344376	1
5	45.083277	56.316372	0
6	61.106665	96.511426	1
7	75.024746	46.554014	1
8	76.098787	87.420570	1
9	84.432820	43.533393	1

In [4]:

```
from sklearn.model_selection import train_test_split
```

```
x=df[["grade1","grade2"]]
y=df["label"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.35,random_state=4)
```

In [5]:

print(x_train.shape)
print(y_train.shape)
x_train.head()
(65, 2)
(65,)

Out[5]:

	grade1	grade2
78	60.455556	42.508409
18	70.661510	92.927138
88	78.635424	96.647427
7	75.024746	46.554014
39	34.183640	75.237720

In [6]:

y_train.head()

Out[6]:

78 0

18 1

88 1

7 1

39 0

Name: label, dtype: int64

In [7]:

print(x_test.shape)
print(y_test.shape)
x_test.head()
(35, 2)
(35,)

Out[7]:

	grade1	grade2
20	67.372028	42.838438
10	95.861555	38.225278
96	42.261701	87.103851
16	69.070144	52.740470
63	30.058822	49.592974

In [8]:

y_test.head()

Out[8]:

20 0

10 0

96 1

16 1

63 0

Name: label, dtype: int64

In [10]:

from sklearn import svm

In [11]:

```
model = svm.SVC(gamma='scale')
In [12]:
model.fit(x_train,y_train)
Out[12]:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
In [14]:
score=model.score(x_test,y_test)
print("prediction accuracy : ",score,"%")
prediction accuracy: 0.8571428571428571 %
In [15]:
f=np.array([60.6,60.9]).reshape(1,-1)
print(f)
res=model.predict(f)
res
[[60.6 60.9]]
Out[15]:
array([0], dtype=int64)
In [16]:
yp = model.predict(x_test)
In [17]:
plt.plot(x_train['grade1'],y_train,'o',color='blue')
plt.plot(x_test['grade1'],yp,'.',color='r')
plt.legend(['training values','predicted values'])
```

Out[17]: <matplotlib.legend.Legend at 0x28c8b583a88>

