1 Suites de fonctions

1.1

Etudier la convergence simple et uniforme des suites de fonctions suivantes :

- a) $\frac{x}{x+n}$ sur \mathbb{R}^+ ;
- b) $\frac{1}{1+n^2x^2}$ et $\frac{x}{1+n^2x^2}$. sur R;
- c) $\frac{1-x^n}{1+x^n}$ sur R;
- d) $f_n(x) = \sin(x) \exp(-nx) \operatorname{sur} \mathbf{R}^+$;
- e) $f_n(x) = x^2 \exp(-\sin(\frac{x}{n}))$ sur R;
- f) $f_n(x) = \frac{\sin(nx)}{n\sqrt{x}} \text{ sur }]0, +\infty[.$
- g) Etudier la suite de fonctions définies sur R pour $n \ge 1$ par $f_n(x) = \cos^n \frac{x}{\sqrt{n}}$.

1.2

Soit $f \in C_{2\pi}(\mathbf{R}, \mathbf{R})$. Etudier la suite de fonctions définie pour $n \ge 1$ par

$$F_n(x) = \frac{1}{n} \int_0^n f(x+t)f(t)dt.$$

Montrer que sa limite F est bornée et à pour norme sup. F(0).

1.3 Suite récurrente

On pose $f_0(t) = 0$, $f_{n+1}(t) = \sqrt{t + f_n(t)}$, pour $t \ge 0$.

- 1) déterminer la limite simple, ℓ , des fonctions f_n .
- 2) Y a-t-il convergence uniforme sur \mathbb{R}^+ ? 3) démontrer que : $\forall t > 0$, $|f_{n+1}(t) l(t)| \le \frac{|f_n(t) l(t)|}{2(t-1)(t)}$.
- 4) En déduire que la suite (f_n) converge uniformément sur tout intervalle $[a, +\infty[$, avec a > 0.

(Remarquer que $f_n - l$ est bornée pour $n \ge 1$)

1.4

Soit a dans R. On pose, pour x dans]-1,1[, $f_0(x)=x$ et $f_{n+1}(x)=a+\sin(f_n(x))$. Etudier la convergence de f_n et la régularité de la limite.

More compliances on many the former sections

2 Approximation

2.1

Soit $E = \mathbf{R}[X]$, $A \subset \mathbf{R}$, $A \neq \emptyset$. Trouver une condition nécessaire et suffisante pour que $P \mapsto \sup_{x \in A} |P(x)|$ soit une norme sur E. Cette condition étant supposée vérifiée, à quelle condition la forme linéaire $P \mapsto P(0)$ est-elle continue?

2.2 Weierstrass

a) On définit une suite de polynômes (P_n) par $P_o = 0$ et $\forall n$, $P_{n+1}(x) = P_n(X) + \frac{1}{2}(x - P_n^2)$. Montrer que la suite (P_n) converge uniformément sur [0,1] vers $x \mapsto \sqrt{x}$.

b) Montrer que l'application $x \to |x|$ est limite uniforme sur [-1,1] d'une suite de polynômes.

2.3

Montrer que Vect $(t\mapsto t^{2n}~;~n\in {\bf N})$ est dense dans $\mathcal{C}^0([0,1],{\bf R})$ muni de la norme uniforme.

2.4 Approximation par des fractions rationnelles

Weier

Soit $f \in C(\mathbf{R}, \mathbf{R})$ continue, ayant même limite finie l en $\pm \infty$. Montrer que f est limite uniforme sur \mathbf{R} de fractions rationnelles.

2.5 Moyenne

On désigne par E l'espace vectoriel des fonctions continues bornées de ${\bf R}$ vers ${\bf C}$, muni de la norme de la convergence uniforme. Soit F le sous-espace vectoriel de E constitué des fonctions f telles que $\frac{1}{T}\int_{-T}^T f(x)dx$ posséde une limite lorsque T tend vers $+\infty$. Montrer que F est fermé dans E.

2.6

Soient [a, b] un segment de \mathbb{R} , $f \in C([a, b], \mathbb{R})$.

a) On suppose f croissante. Montrer que f est limite uniforme sur [a,b] d'une suite de polynômes croissants.

b) On suppose f convexe. Montrer que f est limite uniforme sur [a,b] d'une suite de polynômes convexes.

On définit une suite de fonctions sur [0,1] par $f_0(x)=1$ et $f_{n+1}(x)=1+\int_0^x (f_n(t-t^2)dt)$. Etudier la convergence de f_n .

Soit $u_n(x) = (-1)^n \ln \left(1 + \frac{x}{n(1+x)}\right)$ et $f(x) = \sum_{n=1}^{\infty} u_n(x)$.

- 1) Montrer que la série f(x) converge simplement sur \mathbb{R}^+ .
- Majorer convenablement le reste de la série, et montrer qu'il y a convergence uniforme sur R+.
- 3) Y a-t-il convergence normale?

Etudier la somme de la série de fonctions $\sum_{p\geq 1} \frac{1}{\sinh(pz)}$: continuité, dérivabilité, équivalent en +∞; donner de plus un équivalent en 0.

3.3.1 (Centrale)

Soit $f(x) = \sum_{n=1}^{+\infty} n^x e^{-nx}$. Domaine de définition. Equivalent en 0. Courbe représentative de f.

3.3.2 Fonction définie par une série

Soit $g(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(x+n)}$.

- 1) Déterminer le domaine, D de définition de g et prouver que g est de classe
- 2) Montrer que la quantité : xg(x) g(x+1) est constante sur D.
- 3) Tracer la courbe représentative de g sur $]0, +\infty[$.
- 4) Donner un équivalent de g(x) en $+\infty$ et en 0^+ .
- 5) Montrer que, pour tout x > 0, $e.g(x) = \sum_{n=0}^{+\infty} \frac{1}{x(x+1)\cdots(x+n)}$.

3.4

Soit $f(x) = \sum x^n \frac{\sin(nx)}{n}$. Montrer que f est de classe C^1 sur]-1,1[, calculer f'(x) et montrer que $f(x) = \arctan(\frac{x \sin x}{1-x \cos x})$. En déduire les sommes des séries $\sum \frac{\sin(n)}{n}$ et $\sum \frac{(-1)^n \sin(n)}{n}$.

amidital

Domaine de convergence puis continuité de la somme de $\sum_{n=0}^{+\infty} \ln(1+x^{2n}+y^{2n})$.

amily to

forme me forme my good home

(1 1 A) (-2 m)