Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Катедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1.

Основи алгоритмізації»

«Дослідження складних циклічних алгоритмів» Варіант 18

Виконав студент ІП-11 Лесів Владислав Ігорович

Перевірив Мартинова О.П.

Лабораторна робота 5

Дослідження складних циклічних алгоритмів

Мета – дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант №18.

18. Ввести натуральні числа m та n. Як результат вивести усі натуральні числа, що менші за m, сума цифр яких дорівнює n.

Постановка задачі. Результатом розв'язку ϵ усі числа, які відповідають умовам задачі. Для визначення результату повинне бути задані натуральні числа m та n. Інших початкових даних для розв'язку не потрібно.

Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Натуральне число т	Цілий	m	Початкове дане
Натуральне число n	Цілий	n	Початкове дане
Змінна для операцій з числом,	Цілий	k	Проміжний
що перевіряється			результат
Сума цифр числа	Цілий	S	Проміжний
			результат
Змінна для послідовного	Цілий	i	Проміжний
перебору чисел			результат

Математичне формулювання задачі зводиться до знаходження цифр чисел, що перевіряються, шляхом виділення остачі від ділення на 10, перевірки рівности суми цих цифр і заданого натурального числа п. Якщо рівність виконується, виводимо число, що перевіряється.

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію перебору чисел та знаходження суми цифр поточного числа, що перевіряється.

Крок 3. Деталізуємо дію перевірки суми цифр числа на рівність із заданим значенням, як задано в умові задачі.

Псевдокод

крок 1

початок

введення m, n

перебір чисел та знаходження суми цифр поточного числа, що перевіряється перевірка суми цифр на рівність із заданим значенням

кінець

```
крок 2
```

кінець

```
початок

введення m, n

i:=1;

повторити

поки i!=m

k:=i;

s:=0;

повторити

поки k!=0

s:=s+(k%10);

k:=k//10;

все повторити

перевірка суми цифр на рівність із заданим значенням

i:=i+1;

все повторити
```

```
крок 3
```

початок

```
введення т, п
```

i:=1;

повторити

поки і!=т

k:=i;

s:=0;

повторити

поки к!=0

s := s + (k% 10);

k := k//10;

все повторити

якщо s==n

TO

виведення і

все якщо

i:=i+1;

все повторити

Блок-схема

Крок 1

Випробування алгоритму. Перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних.

Блок	Дія	
	Початок	
1	Введення т=3, n=2	
2	i:=1;	
3	і!=т (1!=3) – істина. Ітерація_1 №1:	
	k:=1; s:=0;	
4	k!=0 (1!=0) – істина. Ітерація_2 №1:	
	s:=1; k:=0;	
5	k!=0 (0!=0) – хиба.	
6	s==n (1==2) – хиба.	
7	i:=2;	
8	і!=т (2!=3) – істина. Ітерація_1 №2:	
	k:=2; s:=0;	
9	k!=0 (1!=0) – істина. Ітерація_2 №1:	
	s:=2; k:=0;	
10	k!=0 (0!=0) – хиба.	
11	s==n (2==2) – істина.	
	Виведення «2»	
12	i:=3;	
13	i!=m (3!=3) – хиба	
	Кінець	

Висновок. Отже, у цій роботі я вивчив особливості організації складних циклів. У результаті лабораторної роботи було розроблено математичну модель, що відповідає постановці задачі; псевдокод та блок-схеми, які пояснюють логіку алгоритму. Використовуючи два ітераційних цикли з передумовою, один з яких був вкладений у інший, перевіряючи задані умови, отримуємо коректний результат.