Hope to Skills

Lecture# 24

Irfan Malik, Dr. Sheraz Naseer

Agenda

- Limitations of simple Neural Network
- Convolutional Neural Networks (CNN)
- Basics for CNN
 - Images and features
 - Convolution
 - Pooling
- Quiz

Limitations of Simple Neural Networks

- Pixel Equality: Simple neural networks treat all pixels in an image equally, regardless of their spatial relationships or positions
- 2. **High Dimensionality:** Large sized Image have more pixels and model needs more weights to learn. 28x28=784, 256x256=65536
- 3. Limited Feature Extraction: Simple networks lack specialized layers to automatically extract relevant features from images, making it harder to identify complex structures
- 4. Large Computational Requirements: Larger no of weights requires more computational resources to train.

Convolutional Neural Networks (CNN)

CNNs are a type of Neural Networks inspired by how our brain processes visual information.

They're **specialized** for understanding **images**, making them powerful tools in image analysis, recognition, and more.

Brain to Al: Visual Cortex

Images in Computer

Features for Images

Images are full of important parts called **features**.

Features can be **edges**, **textures**, **shapes**, or even **faces**.

Convolution

Convolution is like a special way of looking at data. It's a **mathematical** operation that brings out **patterns**.

The filter slides over the image, one small piece at a time.

1	1	1	0	0				
0	1	1	1	0	2			
0	0	1	1	1	¥	1	0	
0	0	1	1	0	1	0	1	1
0	1	1	0	0		1	0	1

Convolution

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Filter as Magnifier

Vertical edge detection

1	0	-1
1	0	-1
1	0	-1
	3×3	

1				
0	30	30	0	
0	30	30	0	
0	30	30	0	
0	30	30	0	
1				

*

Convolution

output

input

Pooling

Pooling is like **summarizing information**, keeping what's **important**. It helps **reduce** the **dimensionality** while retaining **important information**. **Pooling = Downsizing + Information Summary**.

Types of Pooling

Feature Map

6	6	6	6
4	5	5	4
2	4	4	2
2	4	4	2

Max Pooling	Average Pooling	Sum Pooling

Types of Pooling

Feature Map

6	6	6	6
4	5	5	4
2	4	4	2
2	4	4	2

Advantages of Max Pooling:

Feature Retention: Keeps dominant features intact.

Translation Invariance: Recognizes features regardless of exact location.

Dimension Reduction: Reduces data size, providing efficiency.

CNN Architecture

CNN Architecture

