## Regression

A skin-deep dive (oxymoron intended) by @abulyomon



## Agenda

Simple Linear Regression

Exercise

Multiple Linear Regression

Exercise

Logistic Regression

Exercise

#### Where am I?

By now, you should be able to:

- Obtain and clean data.
- Conduct Exploratory Data Analysis as well as some visualization.

This session is your first step into explaining some cross-sectional data.



#### Disclaimer

- This session does not teach Python.
- Although it is necessary to understand the math behind modeling, we will not go through details. We will give recipes:



### **Context & Terminology**

Sheet 1/2



Default

STD \*



**Open Source** 

...

### **Linear Regression**

A regression model approximates the relation between the dependant and independant variables:

$$Y = f(X_1, X_2, ..., X_i) + \varepsilon$$

when Y is continuous quantitative and the relation is <u>linearizable</u>:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_i X_i + \varepsilon$$



## Linearity

Linear

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

Not linear

$$Y = \beta_0 + \rho \beta_I X_I + \varepsilon$$



## **Ordinary Least Squares Estimation**





#### **Notes on OLS**

#### **OLS Assumes:**

- 1. Linearity
- 2. Random sampling
- 3. Error terms are normally distributed
- 4. Error terms have constant variance (homoskedasticity)
- 5. Error terms are independent (autocorrelation?)

There is another estimation method called Maximum Likelihood Estimation. In the case of Linear Regression, MLE yields OLS findings!



## **Practice**

File: AlWaseet.csv

Problem definition: What is the relation between car mileage and car price?

## **Model Interpretation + Inference**

#### Coefficients

R<sup>2</sup>: Predictive power based on correlation

= Explained Variation/ TotalVariation

*p*-value: Statistical significance

#### **OLS Regression Results**

| Dep. Variable:    | PRICE            | R-squared:          | 0.010   |
|-------------------|------------------|---------------------|---------|
| Model:            | OLS              | Adj. R-squared:     | -0.004  |
| Method:           | Least Squares    | F-statistic:        | 0.7127  |
| Date:             | Sat, 19 Dec 2015 | Prob (F-statistic): | 0.401   |
| Time:             | 19:37:36         | Log-Likelihood:     | -803.09 |
| No. Observations: | 72               | AIC:                | 1610.   |
| Df Residuals:     | 70               | BIC:                | 1615.   |
| Df Model:         | 1                |                     |         |
| Covariance Type:  | nonrobust        |                     |         |

|           | coef      | std err  | t      | P> t  | [95.0% Conf. Int.] |
|-----------|-----------|----------|--------|-------|--------------------|
| Intercept | 2.498e+04 | 3892.261 | 6.417  | 0.000 | 1.72e+04 3.27e+04  |
| MILEAGE   | -0.0476   | 0.056    | -0.844 | 0.401 | -0.160 0.065       |



# 107

#### **BREAK TIME**



\*\*\*

## **Multiple Linear Regression**

Where is the nice graph?

Problem of collinearity

 $R^2$ : Curse of Dimensionality



## **Practice**

File: AlWaseet.csv

Can we build a better model for price with more predictors?

## **More inference + Model Comparison**

 $R_a^2$ : Adjusted

*F*-test: tests the null hypothesis that coefficients are zero!

AIC: Information Criteria

*BIC*: Information Criteria with severe penalty to (*i*)



#### **Goodness-of-fit: Visual Checks**

plt.show()

Normal probability plot of residuals ->

Scatter plot of residuals vs predictor variables

Scatter plot of residuals vs fitted values

```
import statsmodels.graphics.gofplots as gof
import scipy.stats as stats

gof.qqplot(fitted_model.resid, stats.t, fit=True, line='45')

plt.show()

###

plt.hist(fitted_model.resid_pearson)
```



### Your HW, should you choose to accept it

Is the origin of the car significant in determining its price?

Are Korean made cars particularly different when it comes to price?

How do we handle categorical variables?



# 107

#### **BREAK TIME**



\*\*\*

## **Logistic Regression**

We have expressed earlier that a regression model approximates the relation between the dependant and independant variables:

$$Y = f(X_1, X_2, ..., X_i) + \varepsilon$$

when Y is binary:

$$ln(\pi/1-\pi) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_i X_i$$

where  $\pi = P(Y=1|X_l=x_l, ..., X_i=x_i)$  and  $(\pi/1-\pi)$  is referred is to as the "odds."



## Let's demystify that cryptic slide!

Suppose Y, the dependant variable was "CHASSIS" which signifies if a car was damaged, denoted by: "1" if damaged, and "0" if not. One way to model this may be:

$$ln(o) = \beta_0 + \beta_1 PRICE + \beta_2 MILEAGE + \beta_3 AGE$$

The odds of a car of price p, mileage m, and age  $\alpha$  being damaged would be:

$$o = e^{\beta_0 + \beta_1 p + \beta_2 m + \beta_3 a}$$



## **Practice**

File: AlWaseet.csv

Can we guess the smashed car?

### **Predictive Accuracy**

in-sample -> goodness-of-fit

Guard against overfitting

out-of-sample -> cross-validation



#### Next?

#### Further reading

- Regression Analysis by Example, Chatterjee & Hadi
- Logistic Regression using SAS, Allison

#### Contact me:

- @abulyomon
- abulyomon@gmail.com

