Tipping Point Sensitivity Analyses

Lucy D'Agostino McGowan

Wake Forest University

2021-09-01 (updated: 2022-07-23)

Recall: Propensity scores

Rosenbaum and Rubin showed in observational studies, conditioning on propensity scores can lead to unbiased estimates of the exposure effect

- 1 There are no unmeasured confounders
- Every subject has a nonzero probability of receiving either exposure

- 1 The exposure-outcome effect
- **The unmeasured counfounder-exposure effect**
- **3** The unmeasured confounder-outcome effect

What will tip our confidence bound to cross zero?

- 1 The exposure-outcome effect
- 2 The unmeasured counfounder-exposure effect
- 3 The unmeasured confounder-outcome effect

- 1 The exposure-outcome effect
- 2 The unmeasured counfounder-exposure effect
- 3 The unmeasured confounder-outcome effect

Tipping point

$$eta_{UO}(LB_{obs},\delta)$$

Tipping point

$$eta_{UO}(LB_{obs},\delta)$$

 β_{UO} : the unmeasured confounder-outcome effect

- 1 The exposure-outcome effect
- 2 The unmeasured counfounder-exposure effect
- 3 The unmeasured confounder-outcome effect

Tipping point

$$eta_{UO}(LB_{obs},\delta)$$

 LB_{obs} : limiting bound - the bound closest to the null

- 1 The exposure-outcome effect
- 2 The unmeasured counfounder-exposure effect
- 3 The unmeasured confounder-outcome effect

Tipping point

$$eta_{UO}(LB_{obs},\delta)$$

 δ : standardized mean difference of the unmeasured confounder between the exposed and unexposed groups

- 1 The exposure-outcome effect
- 2 The unmeasured counfounder-exposure effect
- 3 The unmeasured confounder-outcome effect

Tipping Point

$$eta_{UO}(LB_{obs},\delta) = rac{LB_{obs}}{\delta}$$

Tipping Point

$$\delta(LB_{obs},eta_{UO})=rac{LB_{obs}}{eta_{UO}}$$

tipr

Main function

tip_coef()

effect: observed exposure - outcome effect

- 1 The exposure-outcome effect
- 2 The unmeasured counfounder-exposure effect
- 3 The unmeasured confounder-outcome effect

Main function

tip_coef()

smd: scaled mean difference between the unmeasured confounder in the exposed and unexposed population

- 1 The exposure-outcome effect
- 2 The unmeasured counfounder-exposure effect
- 3 The unmeasured confounder-outcome effect

Main function

tip_coef()

outcome_association: association between the unmeasured confounder and outcome

- 1 The exposure-outcome effect
- 2 The unmeasured counfounder-exposure effect
- 3 The unmeasured confounder-outcome effect

Main function

tip_coef()

effect

smd

outcome_association

Main function

```
tip_coef()
```

specify one, it will estimate the other

d

smd

outcome_association

Example

Our causal effect estimate: 3.5 kg (95% CI 2.4 kg, 4.4 kg)

The observed effect (2.4, 4.4) WOULD be tipped by 1 unmeasured confounder with the following specifications:

estimated standardized mean difference between the unmeasured confounder in the exposed population and unexposed population: 0.3

estimated association between the unmeasured confounder and the outcome: 8

Your turn

1 Use the tip_coef() function to conduct a sensitivity analysis for the estimate from your previous exercises.