第6章 数字系统

- 6.1 数字系统的基本概念
- 6.2 数据通路
- 6.3 由顶向下的设计方法
- 6.4 小型控制器的设计
- 6.5 数字系统设计实例

返回目录

6.1 数字系统的基本概念

- 6.1.1 一个数字系统实例
- 6.1.2 数字系统的基本模型
- 6.1.3 数字系统与逻辑功能部件的区别

6.1.1一个数字系统实例

止页

▶ 下页

4 返回

6.1.2 数字系统的基本模型

6.1.3 数字系统与逻辑功能部件的区别

1. 有没有控制部件是二者的重要区别4

数字系统通常由若干个逻辑功能部件组成,并由一个控制器统一指挥。

子系统一般就是一个逻辑功能部件,诸如加法器、乘法器、译码器、 寄存器堆、存储器等,它们都是典型的逻辑功能部件,可称为 逻辑子系统。逻辑功能部件一般不带有控制器。

2. 二者的设计方法不同🗨

数字系统级的设计和逻辑部件级的设计是沿不同途径进行的。

逻辑部件的设计采用自下而上的设计方法:

其设计是先按任务要求建立真值表或状态表,给出逻辑功能描述,然后 进行逻辑化简或状态化简,最后一举完成逻辑电路的设计。

数字系统的设计方法,是一个自上而下的设计方法,又称为由顶向下 的设计过程。

6.2 数据通路

- 6.2.1 总线结构
- 6.2.2 数据通路实例

6.2.1 总线结构

1. 总线的概念 4

总线:多个信息源分时传送数据流到多个目的地的传输通路。

数字系统中多采用双向总线。

双向总线:信息的源端和目的端是相对的,即可以实现信息的双向传送。

2. 总线的逻辑结构平

总线结构的逻辑实现可以采用:

多路选择器方式(单向总线)、三态门方式(双向总线)。

双向数据总线

2. 总线的逻辑结构 4

总线结构的逻辑实现可以采用:

多路选择器方式(单向总线)、三态门方式(双向总线)。

三态门构成的数据总线

6.2.2 数据通路实例

数字系统中,各个子系统通过数据总线联结形成的数据传送路径称为数据通路。

6.3 由顶向下的设计方法

- 6.3.1 数字系统的设计任务
- 6.3.2 算法状态机和算法流程图

6.3.1 数字系统的设计任务

数字系统的设计任务主要包括下列几部分:

- (1)对设计任务进行分析,根据课题任务,把所要设计的系统合理地划分成若干子系统,使其分别完成较小的任务。
- (2)设计系统控制器,以控制和协调各子系统的工作。
 - (3)对各子系统功能部件进行逻辑设计。

6.3.1 数字系统的设计任务

设计一个简单的8位二进制无符号数并行加法运算器,使之能完成两数相加并存放累加和的要求。

控制算法可修改为下列四步:

- (1) 寄存器C清零,取被加数至寄存器A;
- (2)将A中数据送寄存器B;
- (3)取加数至寄存器A;
- (4)将A与B中的数相加,结果存于B,进位信号送至寄存器C。

6.3.2 算法状态机和算法流程图

控制算法:控制器对被控对象的控制关系。

把控制算法分离出来就是明确这种控制关系。

算法状态机(简称ASM)本质上是一个有限状态机,主要用于同步系统。

ASM理论可以把非常复杂的控制器的控制过程用框图式的流程图--算法流程图表示出来,所以算法流程图又称为ASM流程图。

算法流程图由下列几种基本图形组成:

(1) 状态框。

- (2) 分支框。
- (3) 条件输出框。
- (4) 状态单元。

【例】将下图所示的米里机状态图转换成

ASM流程图。

【例】将下图所示的四状态机转换成ASM流程图。

6.4 小型控制器的设计

- 6.4.1 控制器的基本概念
- 6.4.2 计数器型控制器
- 6.4.3 多路选择器型控制器
- 6.4.4 定序型控制器

6.4.1 控制器的基本概念

本质上看,控制器是一种时序逻辑电路。

控制器设计的主要特点: 性能至上

不必过分追求状态最简,触发器的数量也不必一味追求最少。

控制器的类型:

小型控制器:其结构形式有<u>计数器型</u>、<u>多路选择器型</u>、<u>定序型</u>等 多种,适用于小型数字系统。

<u>微程序控制器</u>:将控制程序固化,通用性强,设计简单,结构规整,适用于大型复杂数字系统。

6.4.2 计数器型控制器

计数器本身有许多不同的状态,因而各种形式的计数器均可以改造为控制器。

当控制状态数较多时,为了节省触发器数目,宜采用编码方式组成状态。

计数器型控制器的一般框图如图6.12所示。

6.4.2 计数器型控制器

【例5】 图6.13(a)为某一控制器的算法流程图,请设计一个计数器型控制器。

	PS(现态	, ()		NS ()	欠态)
В	A	X	F	3 (D)	A(D)
0	0	0		1	0
0	0	1		1	1
0	1	X		0	0
1	0	X		0	0
1	1	X		0	0

(3) 写出触发器的次态激励函数表达式

根据状态转移表并利用 $NS=\Sigma PC \cdot C$ 公式,可得:

$$B(D) = \overline{B} \overline{A} \overline{X} + \overline{B} \overline{A} X = \overline{B} \overline{A}$$

$$A(D) = \overline{B} \overline{A} X$$

(4) 写出控制信号表达式

从ASM流程图看到: 控制命令 C1 发生在状态P; 控制命令 C2也发生在状态P, 但与输入X 有关。

$$C_1 =$$
 状态 $P = \overline{B} \overline{A}$

 C_2 = 状态P和 \overline{X} 的 "与" = $\overline{B}\overline{A}\overline{X}$

由于未指明 C_1 、 C_2 两个控制命令的用途,因此它们是电位控制信号。

(5) 画出控制器的具体电路图

将次态激励函数表达式和控制命令 C_1 、 C_2 表达式用于与门、非门实现

$$B(D) = \overline{B} \overline{A}$$

$$A(D) = \overline{B} \overline{A} X$$

$$C_1 = \overline{B} \overline{A}$$

$$C_2 = \overline{B} \overline{A} \overline{X}$$

【例6】 请设计图6.7中所示加法累加运算器的控制器,要求 采用计数器型控制器。

(3) 列出状态转移表

假设采用D 触发器,根据ASM流程图,得到状态转移表如下:

	PS(玖	l态)		NS(次态)	
В	A	状态名	状态名	B (D) A (D)	
0	0	a	b	0 1	
0	1	b	С	1 1	
1	1	С	d	1 0	
1	0	d	С	1 1	

(4) 写出次态激励函数表达式

利用 $NS=\Sigma PS \cdot C$ 公式 可得:

$$B(D) = \bar{B}A + BA + B\bar{A} = B + A$$

$$A(D) = \bar{B}\bar{A} + \bar{B}A + B\bar{A} = \bar{B} + \bar{A}$$

(5) 写出控制命令的逻辑表达式

根据ASM流程图,LDA信号在a状态和c状态出现,LDC信号在d状态出现,LDB信号在b状态和d状态出现,都是打入控制信号,需要用T₂节拍时间进行限制。其他控制信号为

电位信号:

$$\begin{split} & \text{LDA=} \left(\overline{\mathbf{B}} \ \overline{\mathbf{A}} + \mathbf{B} \, \mathbf{A} \right) \, \mathbf{T}_2 \\ & \text{LDB=} \left(\mathbf{B} \overline{\mathbf{A}} + \overline{\mathbf{B}} \mathbf{A} \right) \, \mathbf{T}_2 \! = \! \left(\mathbf{B} \oplus \mathbf{A} \right) \, \mathbf{T}_2 \\ & \text{LDC=} \, \mathbf{B} \overline{\mathbf{A}} \, \, \mathbf{T}_2 \end{split}$$

$$\overline{CLR} = \overline{B} \overline{A}$$

$$ADD = B\overline{A} + \overline{B}A = B \oplus A$$

(6) 画出控制器具体电路图

设计下列数字比较系统的计数器型控制器

6.4.3 多路选择器型控制器

特点:

采用MUX作为控制器状态触发器的次态激励函数的生成电路,不仅能使控制器的设计过程标准化,而且能使整个控制器电路清晰明确。

方法:

所有MUX输出端的组合就是控制器次态(NS)的编码。而MUX的输入端则是对应所有现态(PS)的状态转移条件。

【例 7】设计一个多路选择器MUX型控制器,实现图6.13 (a)的控制算法。

解:(1) 由ASM流程图,作出状态转移数据表

PS (现态)			NS (NS(次态)	
В	A	X	B (D)	A(D)	
0	0	0	1	0	
0	0	1	1	1	
0	1	Χ	0	0	
1	0	X	0	0	
1	1	X	0	0	

(2) 选择触发器和MUX

设电路选用两个D触发器FA和FB,对应的四选一MUX命名为MUXA和MUXB。MUXA的输出连接FA的D端,MUXB的输出连接FB的D端。触发器的输出QA、QB作为MUX的地址控制端。

Р	S(现态	;)	NS (次态)
В	A	X	B (D)	A(D)
0	0	0	1	0
0	0	1	1	1
0	1	Χ	0	0
1	0	X	0	0
1	1	Χ	0	0

(3) 写出MUXA和MUXB的输出端表达式:

根据状态转移表,将次态变量中真值为1的各项按转换 条件写出,而真值为0的各项则输入值为0。

现 态		次 态				
	编码	状态名	状态名	В	A	转换条件
0	(00)	Р	R	1	0	X
			Q	1	1	X
2	(10)	R	Р	0	0	0
3	(11)	Q	Р	0	0	0
1	(01)	ı	Р	0	0	0

$$\begin{aligned} & \text{MUXA} \ (0) = & \text{C}_{\text{A}} = & \text{X} & \text{MUXB} \ (0) = & \text{C}_{\text{B}} = & \overline{\text{X}} + & \text{X} = & 1 \\ & \text{MUXA} \ (2) = & \text{C}_{\text{A}} = & 0 & \text{MUXB} \ (2) = & \text{C}_{\text{B}} = & 0 \\ & \text{MUXA} \ (3) = & \text{C}_{\text{A}} = & 0 & \text{MUXB} \ (3) = & \text{C}_{\text{B}} = & 0 \\ & \text{MUXA} \ (1) = & \text{C}_{\text{A}} = & 0 & \text{MUXB} \ (1) = & \text{C}_{\text{B}} = & 0 \end{aligned}$$

(4) 写出控制命令的逻辑表达式

根据ASM流程图,控制命令 C_1 发生在状态 P_1 命令 C_2 也发生在状态 P_2 1 电与输入 \overline{X} 相与。

$$C_1 = \overline{B} \overline{A}$$
 $C_2 = \overline{B} \overline{A} \overline{X}$

(5) 画出控制器电路图

设计下列累加系统的多路选择器型控制器

设计下列数字比较系统的多路选择器型控制器

6.4.4 定序型控制器

定序型控制器的设计思想:

定序型控制器的基本思想是一对一法,即ASM流程图中有 多少个状态,则使用多少个触发器,并依赖一组最新的代码实 现状态转换。

【例9】有一个数字比较系统,它能对两个二进制数进行比较。操作过程如下:先把两个数存入寄存器R_A和R_B,然后进行比较,最后将大数移入寄存器R_A中。系统的方框图与ASM流程图如图6.18所示,请设计定序型控制器。

6.4.4 定序型控制器

解:

(1) 分析已知条件

该系统由控制器和执行部件两大部分组成,其中X为并行输入数据。A>B是比较结果指示信号(送往控制器)。控制器发出的三个控制命令是:

LDR_A--寄存器R_A打入控制信号

LDR_B--寄存器R_B打入控制信号

CAP--A数和B数送入比较器的使能控制信号

- (2) 用一对一法对ASM流程图6.19(a)的状态进行编码
- (3) 触发器命名为 Q_a 、 Q_b 、 Q_c 、 Q_d ,列出状态转移表。

表6.5 状态转移真值表

	PS (现态)				NS (转移条件 C		
Qa	Qb	Qc	Qd	Q _a (D)	Q _b (D)	Q _c (D)	Q _d (D)	
1	0	0	0	0	1	0	0	四个触发器初始化清 0
0	1	0	0	0	0	1	0	
0	0	1	0	0	0	0	1	
0	0	0	1	0	0	1	0	A> B
				0	1	0	0	A<=B

(4) 选用D触发器,按NS= Σ PS • C公式写出次态激励方程:

$$Q_{a}(D) = \overline{Q_{a} + Q_{b} + Q_{c} + Q_{d}}$$

$$Q_{b}(D) = Q_{a} + (\overline{A > B}) \cdot Q_{d}$$

$$Q_{c}(D) = Q_{b} + Q_{d} \cdot (A > B)$$

$$Q_{d}(D) = Q_{c}$$

(5) 由ASM流程图写出控制命令表达式

 $LDR_{B}=(Q_{a}+Q_{c}) \cdot T_{2}$; 脉冲控制信号

LDR_A=Q_b·T₂ ; 脉冲控制信号

CAP=Qd ; 电位控制信号

其中 LDR_B 和 LDR_A 是脉冲控制信号,需要用 T_2 节拍时间相与。

(6) 画出控制器的具体电路图

$$\begin{aligned} & \text{LDR}_{\text{B}} = (\text{Q}_{\text{a}} + \text{Q}_{\text{c}}) & \bullet & \text{T}_{2} \\ & \text{LDR}_{\text{A}} = \text{Q}_{\text{b}} & \bullet & \text{T}_{2} \\ & \text{CAP} = \text{Q}_{\text{d}} \end{aligned}$$

设计下列累加系统的定序型控制器

6.5 数字系统设计实例

- 6.5.1 由顶向下一子系统的划分
- 6.5.2 小型控制器的实现方案

导入

本章前面介绍的数字系统设计方法是一种<u>由顶向下</u>的方法,其过程大致 分为三步:

- ①确定初步方案;
- ②子系统划分,确定详细方案;
- ③选用子系统,完成具体设计。

下面通过药片装瓶控制数字系统设计实例,进一步体验数字系统的设计方法和过程,并取得实践经验。

6.5.1 由顶向下一子系统的划分

6.5.1 由顶向下一子系统的划分

药片装瓶控制数字系统ASM流程图

表 6.8 状态转移真值表

	PS			NS						
状态名	A	В	c	状态名	A(D)	B(D)	C(D)	转移条件		
S_0	0	.0	0	S_1	0	0	1			
S_1	0	0	1	S_2	0	1	0			
S_2	0	1	0	S_3	0	1	1			
S_3	0	1	1	S ₄	1	0	0			
S_4	1	0	0	S_5	1	0	1			
S_5	1	0	1	S_4	1	0	0	(A=B)=0		
S_5	1	0	1	S_6	, ,1-	1	0	(A=B)=1		
S_6	1	1	0	S_3	0 -	1	1	$C_{\text{out}} = 0$		
S ₆	1	1	0	S ₇	1	1	1, .	$C_{\text{out}} = 1$		

利用 $NS=\Sigma PC \cdot C$ 公式写出三个D触发器激励表达式:

$$A(D) = \overline{A}BC + A\overline{B} + AB\overline{C} \cdot C_{out}$$

$$B(D) = \overline{AB}C + \overline{A}B\overline{C} + A\overline{B}C(A=B)$$

$$C(D) = \overline{AC} + A\overline{BC} + AB$$

然后写出控制命令表达式如下:

$$LDA_1(\text{key}_1 \rightarrow R_A) = S_1 \cdot T_2 = \overline{ABC} \cdot T_2($$
脉冲)

$$LDA_2(key_2 \rightarrow R_A) = S_2 \cdot T_2 = \overline{A}B\overline{C} \cdot T_2(脉冲)$$

$$LDC=S_4 \cdot T_2 = A\overline{BC} \cdot T_1(脉冲)$$

