Pseudocódigo y diagramas de flujo II

Fundamentos de Computación

Diego Caro
José Fernandez
Fernanda Kri

Terminología

entidad que almacena valores. Por Variables: ejemplo, números, vectores, etc.

2.
$$P = (C1 + C2 + C3 + C4)/4$$

Expresión Booleana: Chequea el valor de verdad de

alguna expresión que involucre alguna comparación

- **Condicionales:** Imprimir "Rechaza" Cambian el curso de
 - 5. Si no: //aprobar es lo mejor!

Comentario: Texto que no se ejecuta y sirve para que explicar pasos de un algoritmo

Imprimir "Aprueba" 6.

booleana.

ejecución de un

programa de acuerdo al

valor de una expresión

Operaciones de comparación

- Permiten verificar si variables cumplen algunas reglas básicas.
- Devuelven un valor booleano (Verdadero, Falso)

<	,>	, \leq , \geq : mayor, y mayor igual
=	= ,	≠ : igual, distinto

Sintáxis	Operador	Ejemplo	Resultado
a < b	menor que	2 < 5	
a ≤ b	menor o igual	2 ≤ 2	
a ≥ b	mayor o igual	2 ≥ 32	
a > b	mayor	0 > -1	
a == b	igual	1 == -1	
a ≠ b	distinto	1 ≠ -1	

Precedencia de operadores aritméticos

- Orden en el que se evalúa una expresión.
 - Si... igual que en álgebra
 - Por prioridad
 - Si dos prioridades son iguales, se evalúa de izquierda a derecha

Prioridad	1	1	1	1	2	2
Operador	()	*	/	%	+	-
	D) ivisić	ón		o ó mo	ódulo

Expresión	Resultado
2+3*7	
6-2*4	
(6-2)*4	
4*5%3	
(12*(-1))	
(10+1)%9	
6/2(1+2)	

¿Estas dos expresiones significan lo mismo?

$$z=2$$

Asignación: asignar el valor 2 a la variable z

$$z = 2$$

$$z == 2$$

Comparación: ¿el contenido de la variable z es igual a 2?

Traza: siguiendo variables

- Traza: tabla con el seguimiento de variables y operaciones de comparación para cada instrucción de pseudocódigo.
- Para qué: asegurar que tu pseudocódigo haga lo que debe.
- Ejemplo: intercambiar el contenido de dos variables.

Variables/Comparaciones

		а	b	t
1.	a = 2	2	_	_
2.	b = 9	2	9	_
3.	t = a	2	9	2
4.	a = b	9	9	2
5.	b = t	9	2	2

4.
$$a = 0$$

1.
$$n = 1$$

- 2. Mientras $n \leq 10$:
- $3. \quad t = 2n$
- 4. Imprimir t
- 5. n = n + 1

	n	n ≤ 10	t
n = 1	1	-	_
Mientras n ≤ 10	1	\ \	_
t = 2n	1	V	2
n = n+1	2	V	2
Mientras n ≤ 10	2	\ \	2
t = 2n	2	V	4
n = n+1	3	V	4
Mientras n ≤ 10	3	V	4
t = 2n	3	V	6
n = n+1	4	V	6
Mientras n ≤ 10	4	V	6
t = 2n	4	V	8
n = n+1	5	V	8
Mientras n ≤ 10	5	V	8
t = 2n	5	V	10
n = n+1	6	V	10
n = n + 1	10	V	18
Mientras n ≤ 10	10	V	18
t = 2n	10	V	10
n = n + 1	11	V	10
Mientras n ≤ 10	11	F	10

Expresiones booleanas

- En los condicionales también podemos agrupar más expresiones booleanas.
- Podemos usar and, or y not.
- Ejemplo: máximo de tres números
 - 1. Leer x, y, z
 - 2. Si $x = y \land x = z$:
 - 3. Imprimir "x, y, z son iguales"
 - 4. Si $x \ge y \land y > z$: // si x e y son iguales, asumiré que x es el mayor.
 - 5. Imprimir "x mayor"
 - 6. Si $y \ge x \land y > z$:
 - 7. Imprimir "y mayor"
 - 8. Si $z \ge x \land z > y$:
 - 9. Imprimir "z mayor"

a	$\Box \neg a$	a	b	$a \wedge b$	$a \lor b$
true	false	false	false	false	false
false	true	false	true	false	true
		true	false	false	true
		truo	truo	+ 1110	+ ruo

Ejercicio para ayudantía, hacer la traza para:

1.
$$x = 8$$
, $y=0$, $z=2$

2.
$$x = 8$$
, $y=8$ $z=8$

$$3. x=8, y=1, z=9$$

Ciclo Para

- Ciclo Para (o for en inglés) se utiliza para recorrer una secuencia de números enteros.
- Se indica el inicio y el fin (includo), y se asume que el siguiente elemento es el sucesor.
 - Notación: Para i=1 hasta n: genera la secuencia 1, 2, 3, ..., n (incluido n)
- Es equivalente al ciclo Mientras (o while en ingles) cuando tenemos un contador.

- 1. **Para** i=1 a 10:
- 2. t = 2i

Son Equivalentes

3. Imprimir t

- 1. i = 1
- 2. Mientras $i \leq 10$:
- 3. t = 2i
- 4. Imprimir t
- 5. i = i + 1

- 1. **Para** i=1 hasta 5:
- 2. Imprimir i*i

i	j*i
1	1
2	4
3	9
4	16
5	25

Condicionales y ciclos anidados

- Los condicionales y ciclos se pueden anidar.
- ¡Una condición/ciclo dentro de otra!

- 1. Leer *x*
- 2. Si $x \ge 0$:
- 3. $\mathbf{Si} x > 0$:
- 4. Imprimir "x es positivo"
- 5. **Si no**:
- 6. Imprimir "x es cero"
- 7. Si no:
- 8. Imprimir "x es negativo"

¿Qué hace este pseudocódigo?

- 1. **Para** i=1 hasta 12:
- 2. Para j = 1 hasta 12:
- 3. Imprimir i, j, i*j

Ejercicio para ayudantía, traducir este pseudocódigo a diagrama de flujo

Funciones

- Funciones: bloque de pseudocódigo que se puede llamar cuantas veces sea necesario.
 Permite encapsular algoritmos. El objetivo es reducir pseudocódigo cuando una acción se debe ejecutar varias veces.
- Tienen un nombre, una entrada y una salida.
- ¡Debes describir claramente qué es la entrada y qué es la salida!

Entrada

Nombre

Promedio(X):

// Entrada: \overline{X} es una lista de números $X_1, X_2, ..., X_N$

// Salida: promedio de los números en la lista X

- 1. Sea p = 0 una variable en los reales
- 2. Para i = 1 hasta N:
- 3. $p = p + X_i$
- 4. retornar p/N

Salida

- 1. Sea X una lista $X_1, X_2, ..., X_N, X_i \in \mathbb{R}$
- 2. Leer N números y dejarlos en la lista X
- 3. $z = \underline{\text{Promedio}(X)}$ Nombre de función que queremos usar
- 4. Imprimir "El promedio es", z

¿Cuán detallado debo ser?

Lo suficiente para que se comprenda de manera no ambigua lo que se quiere computar.

¿Hay alguna diferencia con Python?

Promedio(X):

```
// Entrada: X es una lista de números X_1, X_2, \ldots, X_N // Salida: promedio de los números en la lista X
```

- 1. Sea p = 0 una variable en los reales
- 2. **Para** i =1 **hasta** N:
- 3. $p = p + X_i$
- 4. retornar p/N
- 1. Sea X una lista $X_1, X_2, ..., X_N, X_i \in \mathbb{R}$
- 2. Leer N números y dejarlos en la lista X
- 3. z = Promedio(X)
- 4. Imprimir "El promedio es", z

```
1 def promedio(X):
2    N = len(X)
3    p = 0
4    for v in X:
5        p += v
6    return p/N
7
8 X = []
9 N = int(input('Ingrese tamaño lista: '))
10 for i in range(N):
11    y = int(input('Ingrese elemento: '))
12    X.append(y)
13 z = promedio(X)
14 print('El promedio es', z)
```

¿Hay alguna diferencia con Python?

Promedio(X):

```
// Entrada: X es una lista de números X_1, X_2, ..., X_N
```

// Salida: promedio de los números en la lista X

1.
$$p = \sum_{i=1}^{N} X_i$$

2. retornar p/N

- 1. Sea X una lista $X_1, X_2, ..., X_N, X_i \in \mathbb{R}$
- 2. Leer N números y dejarlos en la lista X
- 3. z = Promedio(X)
- 4. Imprimir "El promedio es", z

```
1 def promedio(X):
2   N = len(X)
3   p = sum(X)
4   return p/N
5
6 X = []
7 N = int(input('Ingrese tamaño lista: '))
8 for i in range(N):
9   y = int(input('Ingrese elemento: '))
10   X.append(y)
11 z = promedio(X)
12 print('El promedio es', z)
```

¿Hay alguna diferencia con C?

Promedio(X):

// Entrada: X es una lista de números $X_1, X_2, ..., X_N$

// Salida: promedio de los números en la lista X

$$1. \quad p = \sum_{i=1}^{N} X_i$$

2. retornar p/N

- 1. Sea X una lista $X_1, X_2, ..., X_N, X_i \in \mathbb{R}$
- 2. Leer N números y dejarlos en la lista X
- 3. z = Promedio(X)
- 4. Imprimir "El promedio es", z

```
1 #include <stdio.h>
 3 float promedio(float *A, int N) {
   int i;
 5 float p = 0;
  for (i = 0; i < N; i++) {
      p += A[i];
   return p/N;
10 }
12 int main() {
   float X[100];
   int N = 100;
   int i;
   float z;
18 for (i = 0; i < N; i++) {
      scanf("%f", &X[i]);
20
z = promedio(X, N);
   printf("El promedio es %f\n", z);
24 return ∅;
25 }
```

Actividad: calidad del transporte público

Entre menor es la variación de la duración de tu tiempo de viaje, **menos incertidumbre** tendrás sobre su duración.

Podrías planificar leer o estudiar Fundamentos de Computación :B

Día	Tiempo de viaje en minutos	
1	67	
2	45	
3	84	
S	19.553	

Día	Tiempo de viaje
Dia	en minutos
1	70
2	70
3	70
S	0

Actividad: Escribe el pseudocódigo y el diagrama de flujo para calcular la desviación estandar

$$s = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
Promedio

(reusa la función promedio de la slide 12)

Bibliografía

 Sedgewick, R., & Wayne, K. (2016). Computer science: An interdisciplinary approach. Addison-Wesley Professional. Chapter 1.3. Available at https://introcs.cs.princeton.edu/java/13flow/