Due on Saturday, December 2, 2017 at 11:59 PM

Topics: SQL Queries Optimization, Transaction Management, Hash Indexes

Instructions:

- Complete Section 1 and submit
 - 1. 4-FirstLastName-Lab.txt (spool file for Part A)
 - 2. 4--FirstLastName-Lab_T1.txt (spool file for transaction 1 for Part B)
 - 3. 4--FirstLastName-Lab T2.txt (spool file for transaction 2 for Part B)
 - 4. 4-FirstLastName-Lab.pdf (explanation of spool files for Part A and B)
- Complete Section 2 and submit 4-FirstLastName.pdf

Section 1:

This section covers the practical implementation of a database schema. (50 points)

- Login in to the Linux Oracle server and access the database using sqlplus (refer to Oracle Linux Server Instructions)
- Display the SQL commands using: SET ECHO ON
- Create your homework submission log file using: SPOOL 4-FirstLastName-Lab.txt
- To terminate log file use: SPOOL OFF command

Using this schema that you have already created answer the questions that follow:

- The *team* table has a *team_id* primary key
- The *player* table has a *player id* primary key
- The arena table has an arena_id primary key
- The team_play_arena table has a (team_id, player_id, arena_id) composite primary key
- The team_play_arena table has a team_id foreign key column that references the team table
- The team_play_arena table has a player_id foreign key column that references the player table

Due on Saturday, December 2, 2017 at 11:59 PM

 The team_play_arena table has a arena_id foreign key column that references the arena table

Part A: Query Optimization

- To see execution plans for queries use: SET AUTOTRACE TRACEONLY EXPLAIN
 - 1. Run the following two queries:

(10 points) Looking at the explain plan for each query, which one is less efficient and why?

2. Run the following two queries:

```
Query 1: select a.aname, a.city
    from arena a, team_player_arena tpa, team t
    where tpa.team_id = t.team_id
    and tpa.arena_id = a.arena_id;

Query 2: select distinct a.aname, a.city
    from arena a, team_player_arena tpa, team t
    where tpa.team_id = t.team_id
    and tpa.arena_id = a.arena_id;
```

(10 points) Looking at the explain plan for each query, which query costs less and why?

To turn off explain plan for queries: SET AUTOTRACE OFF

Due on Saturday, December 2, 2017 at 11:59 PM

Part B: Transaction Processing

In this section, you will open TWO separate terminals:

- Login in to the Linux Oracle server and access the database using sqlplus in each of the two terminals
- Display the SQL commands using: SET ECHO ON for each of the two terminals
- To enable manual commit for changes: SET AUTOCOMMIT OFF for each of the two terminals
- Create transaction1 log file using in 1st terminal: SPOOL 4-FirstLastName-Lab_T1.txt
- Create transaction 2 log file using in 2nd terminal: SPOOL 4-FirstLastName-Lab_T2.txt
 - 1. Execute the following statements and observe:

	Terminal 1	Terminal 2
1	insert into team values (7, 'Lakers', 3, 'LA', 0);	
2		insert into team values (7, 'Knicks', 8, 'NY', 0);
3	commit;	
4		commit;

- a. (5 points) What happens after step 2 and why?
- b. (5 points) What happens after step 3 and why?

Due on Saturday, December 2, 2017 at 11:59 PM

2. Execute the following statements and observe:

	Terminal 1	Terminal 2
1	insert into team values(8, 'Knicks', 8, 'NY', 0);	
2		insert into team values (9, 'Heat', 12, 'MI', 0);
3	select * from team;	
4		select * from team;
5	commit;	
6		select * from team;
7		rollback;
8		select * from team;
9	select * from team;	
10	insert into team values (9, 'Celtics', 10, 'BN', 0);	
11		insert into arena values (8, 'Pepsi Center', 'Denver');
12	insert into arena values(9, 'Oracle Arena', 'Oakland');	
13		insert into team values (10, 'Pelicans', 15, 'NO', 0);
14	rollback;	
15	select * from team;	
16	select * from arena;	
17		select * from team;
18		select * from arena;
19		commit;
20		select * from team;
21		select * from arena;

- a. (10 points) What happens during steps 1 to 4 and why?
- b. (5 points) What happens at step 6 and why?
- c. (5 points) What happens after step 8 and why?
- d. (5 points) What happens after step 13 and why?
- e. (5 points) What happens after step 14 and why?
- g. (5 points) What happens after step 18 and why?
- f. (5 points) What happens after step 19 and why?

Due on Saturday, December 2, 2017 at 11:59 PM

Section 2:

This section covers query optimization and hash indexes (50 points).

1. Using the following Hash index, answer the questions that follow:

Show the resulting hash index after

- a. (5 points) Inserting data entry 22*
- b. (5 points) Inserting data entry 17*

Note: Use the results from the previous question as a starting point for the next question.

2. Using the following schema:

Suppliers(<u>sid</u>, sname, address) Parts(<u>pid</u>, pname, color) Catalog(<u>pid</u>, sid, cost, rating)

consider the following query:

SELECT s.sname, c.cost FROM suppliers s, parts p, catalog c WHERE p.pid = c.pid AND c.sid = s.sid AND c.rating < 5 AND c.cost > 15 AND p.name = 'screw driver'

- a) (10 pts) Draw a query tree using selection, projection and cross product $(\sigma \pi \times)$.
- b) (10 pts) Draw a query tree that optimizes the SQL query using pushing selections.

Due on Saturday, December 2, 2017 at 11:59 PM

- 3. Using two relations R and S, with the join condition $R_i = S_j$, and given the following information:
 - o M pages in R with pR tuples per page
 - o N pages in S with pS tuples per page
 - o R contains:
 - 2000 pages
 - 150 tuples per page
 - o S contains:
 - 1000 pages
 - 90 tuples per page
 - o Buffer size is 102 (inclusive of 2 additional buffers)
- a) (10 points) Compute the I/O cost for R and S using a block nested loop join.
- b) (10 points) Compute the I/O cost for R and S using a hash join.