Quantum Information Theory - 67749 Exercise 2, May 20, 2025

1 Submission Guidelines.

- Due date May 31, 2025.
- Make sure your submission is clear. Unreadable assignments will get zero score.
- Using any Generative AI tool is forbidden but not enforced. Yet, please keep in mind that we might call you for an interview about your assignment.

2 AEP.

Recall the converse part of the classical AEP lemma¹:

Lemma 2.1. Let P_X be a pmf on \mathcal{X} and let $\mathcal{B}^{(n)}$ be a set in \mathcal{X}^n of size at most $2^{n\alpha}$. Then for any $\varepsilon > 0$ and n large enough.

$$\Pr\left[X^n \in \mathcal{B}^{(n)}\right] = P_X^{\otimes n}\left(\mathcal{B}^{(n)}\right) \le \varepsilon + 2^{n(\alpha + \varepsilon - H(X))}$$

1. Rewrite the classical AEP using the density matrix notation, namely point out each entity defined in the above statement and link it to its analogy in the QAEP lemma. [Hint²]

3 Entropy.

3.1 Entropy Upper Bound.

Show that both the classical entropy and the von Neumann entropy are bounded from above by \log alphabet size . [Hint³]

$$0 \le S\left(\rho^A \middle\| \frac{I}{d}\right) = -S(\rho^A) - tr\left(\rho^A \log \frac{I}{d}\right)$$
$$= -S(\rho^A) - \log \frac{1}{d} \cdot tr(\rho^A) - tr(\rho^A \underbrace{\log I}_{=0}) = -S(\rho^A) + \log d,$$

where in the last equality we used the fact that $tr(\rho^A) = 1$ for any density matrix

3.2 Computing Entropy.

Compute the entropy of the following densitivy matrices.

- 1. Let V be a subset of 2^n . Denote by $|V\rangle$ the uniform superposition over V, defined as $|V\rangle = \sum_{v \in V} |v\rangle$ (up to normalization). Denote by ρ_V the uniform distribution over V, namely, sampling from ρ_V gives any element $v \in V$ with uniform probability. Compute the entropies of $|V\rangle$ and ρ_V .
- 2. Consider the fully entangled state $|\Omega\rangle = \sum_{x} |x,x\rangle$ (up to normalization) over the system $\mathcal{H}_A \otimes \mathcal{H}_B$. Compute the entropy S(A) and the conditional entropy S(A|B).

¹Taken from Prof. Ordentlich

²A good answer would be a single paragraph long.

³Use the non-negativity of the divergence.

4 Fidelity.

Compute the fidelity between ρ and σ in the following cases:

- 1. When ρ and σ commute.
- 2. When ρ is mixed and σ is pure.
- 3. When $\rho = \frac{1}{2}(I + X)$ and $\sigma = \alpha I + \beta Z$.

Remark 4.1. Observes that the normalization condition $\text{Tr}\rho = 1$ requires $\alpha = \gamma = 1$. Yet, for the sake of practice, we will keep the parametrization.

5 Coding Theorem.

Let ρ be the density matrix: $p |\beta_{00}\rangle \langle \beta_{00}| + \frac{1}{3}(1-p) \sum_{i\neq 00} |\beta_{ij}\rangle \langle \beta_{ij}|$.