ALG2 – 5. cvičení

1. Dokažte, že množina všech čtvercových matic typu n×n nad **Z** tvoří okruh vzhledem k maticovému sčítání a násobení.

Řešení:

Pozn. Ověřujeme vždy podmínky pro jednotlivé třídy matic, např. matic o velikosti 2×2, o velikosti 3×3, atd. Víme totiž, že nemůžeme čtvercové matice o různé velikosti sčítat ani násobit mezi sebou!

$(M_n, +, \cdot)$

Ověřujeme následující podmínky:

- (M_n, +) musí být abelovská grupa (uzavřenost vůči operaci +, jednotkový prvek, inverzní prvky, komutativita, asociativita).
- (M_n, \cdot) musí být **pologrupa** (uzavřenost vůči operaci, asociativita).
- musí platit distributivní zákony.

$(M_n, +)$

- je zjevně uzavřená vůči + (sčítáním dvou matic získáme vždy matici o stejném rozměru)
- jednotkovým prvkem je nulová matice o rozměru n×n
- asociativní je díky asociativitě sčítání celých čísel
- inverzní prvky existují (pro $x \in \mathbf{Z}$ je inverzním prvkem -x)
- komutativita vyplývá z komutativity sčítání celých čísel
- ⇒ abelovská grupa

(M_n, \cdot)

- je uzavřená vůči operaci ·, jelikož násobením dvou čtvercových matic
 vždy získáme čtvercovou matici o stejném rozměru
- je asociativní snadno lze ověřit vynásobením nějakých obecných čtvercových matic A, B, C, viz podrobnější důkaz níže:

Column J of (AB)C is equal to AB times column J of C. This is equal to the linear combination of i-th columns of (AB) with the i-th values in C_i.

$$((AB)C)_{j} = (AB)C_{j} = \begin{bmatrix} AB_{1} & \cdots & AB_{p} \end{bmatrix} \begin{bmatrix} c_{1j} \\ \vdots \\ c_{pj} \end{bmatrix} = c_{1j}AB_{1} + \cdots + c_{pj}AB_{p}$$

The j-th column of BC is equal BC_j, which is equal the linear column of the i-th columns of B with the i-th values in C_j :

$$(BC)_{j} = BC_{j} = c_{1j}B_{1} + \dots + c_{pj}B_{p}$$

The jth column of A(BC) is equal to the jth column of BC, (BC); times A.

$$(A(BC))_{i} = A(BC)_{j} = A(c_{1j}B_{1} + \dots + c_{pj}B_{p}) = c_{1}AB_{1} + \dots + c_{pj}AB_{p} = ((AB)C)_{i}$$

Since the j-th column of (AB)C is equal to the j-th column of A(BC), it follows that

$$(AB)C = A(BC)$$

- distributivní zákony zřejmě platí (opět můžete ověřit pro obecné množiny A, B, C jako v případě asociativity).
- \Rightarrow $(M_n, +, \cdot)$ je okruh.
- **2.** Nechť G je množina všech funkcí na (0, 1), + je operace sčítání funkcí a je operace skládání funkcí. Dokažte, že algebraická struktura (G, +, •) není okruh.

Řešení:

Naším úkolem je nalézt takové funkce, které nějakým způsobem porušují podmínky platící pro okruh.

Zvolíme funkce $f_1 = x^2$, $f_2 = f_3 = 1$.

Ověříme, zda platí distributivní zákon $f_1 \circ (f_2 + f_3) = f_1 \circ f_2 + f_1 \circ f_3$:

$$f_1 \circ (f_2 + f_3) = f_1(1+1) = (1+1)^2 = 4.$$

$$f_1 \circ f_2 + f_1 \circ f_3 = f_1(1) + f_1(1) = 1^2 + 1^2 = 2 \neq 4.$$

⇒ jsou porušeny distributivní zákony, skutečně se nejedná o okruh. Navíc vidíme, že skládáním funkcí se snadno dostaneme mimo interval (0, 1).

3. Doplňte níže uvedené tabulky tak, aby algebraická struktura $(A, +, \cdot)$ pro A = $\{a, b, c, d\}$ byl unitární okruh.

+	a	b	С	d
а	a	b	С	d
b	b	a	d	С
С	С	d	a	b
d	d	С	b	a

•	a	b	С	d
a	a	a	a	a
b	a	b	a	b
С	a	a	С	С
d	a	b	С	d

Řešení:

(A, +) musí být abelovská grupa, tzn. pro první tabulku musí platit:

- symetrie podél hlavní diagonály => doplníme c do 1. sloupce ve 3. řádku
- v každém řádku i sloupečku se vyskytuje každý prvek právě jednou => doplníme d do 1. řádku, do 1. sloupce ve 4. řádku, do 3. sloupce ve 2. řádku, c do 4. sloupce ve 2. řádku
- musí obsahovat jednotku (kopíruje sloupeček i řádek) => prvek a
- musí být zachována asociativita (není nutné ověřovat)
- každý prvek musí mít k sobě inverzní prvek => zde je každý prvek inverzní sám k sobě, můžeme doplnit prvek a po celé hlavní diagonále
- zbylé prvky doplníme snadno podle předchozích pravidel:

 (A, \cdot) musí být monoid, tedy pro druhou tabulku musí platit:

- nulou monoidu bude prvek a ("vynuluje" celý řádek i sloupeček, doplníme)
- musí obsahovat jednotku => d ("kopíruje" celý řádek i sloupeček, doplníme)

Poslední dva prvky nalezneme následovně:

Zajímá nás výsledek operace $b \cdot c$. Díky distributivním zákonům musí platit např. rovnost $b \cdot (b + c) = b \cdot b + b \cdot c$.

Z předchozí tabulky víme, že b + c = d. Zároveň b \cdot b = b, tedy b \cdot (b + c) = b \cdot d = b + b \cdot c.

Jelikož $b \cdot d = b$, musí platit, že $b = b + b \cdot c$, tedy $b \cdot c = a$.

Dále nás zajímá výsledek operace $c \cdot c$. Opět se nabízejí k využití distributivní zákony, konkrétně např. rovnost $c \cdot (b + c) = c \cdot b + c \cdot c$.

Jelikož
$$c \cdot b = a$$
 a zároveň $b + c = d$, pak $c \cdot (b + c) = c \cdot d = c$ a zároveň $c \cdot b + c \cdot c = a + c \cdot c$, tedy $c = a + c \cdot c = c$.

4. Ukažte, že ($\{a, b\}, +, \cdot$) je okruh. Je tento okruh i tělesem?

	+	a	b
7	a	a	b
1	b	b	a

•	a	b
a	a	a
b	a	b

Řešení:

Je struktura okruhem?

({a, b}, +) musí být abelovská grupa:

– z tabulky plyne uzavřenost, existence jednotkového prvku a, inverzní prvky, komutativita. Měli bychom ověřit ještě asociativitu pro všechny možné trojice prvků:

$$a+(a+b) = b = (a+a)+b$$

 $b+(a+b) = a = (b+a)+b$
 $a+(a+a) = a = (a+a)+a$
 $b+(b+b) = a = (b+b)+b$
 $a+(b+b) = a = (a+b)+b$
 $b+(b+a) = a = (b+b)+a$
 $a+(b+a) = b = (a+b)+a$
 $b+(a+a) = b = (b+a)+a$

⇒ jedná se o abelovskou grupu.

 $({a, b}, \cdot)$ musí být pologrupa:

z tabulky plyne uzavřenost vůči operaci, měli bychom ověřit asociativitu. Víme ovšem, že prvek a je agresivní vůči násobení, tzn. všechny výrazy, v nichž se vyskytuje a, jsou rovny a (ověřte).
 Dále platí b(b · b) = (b · b)b = b. Struktura je tedy asociativní vůči operaci ·.

Zbývá nám ověřit platnost distributivních zákonů. Jelikož operace · i + jsou komutativní, stačí nám ověřit pouze jeden z obou zákonů:

$$a(a+b) = a \cdot a + a \cdot b = a$$

$$b(b+b) = b \cdot b + b \cdot b = a$$

$$a(a+a) = a \cdot a + a \cdot a = a$$

 $a(b+b) = a \cdot b + a \cdot b = a$
 $b(a+a) = b \cdot a + b \cdot a = a$
 $b(a+b) = b \cdot a + b \cdot b = b$

 \Rightarrow Distributivita je zachována. Struktura ({a, b}, +, ·) je okruhem.

Aby byl okruh tělesem, musí být struktura ($\{a, b\} \setminus \{0\}, \cdot$) grupa. Jelikož nulou okruhu je prvek a, vlastnosti ověřujeme pro množinu $\{b\}$. Víme ovšem, že těleso tvoří vždy minimálně dvouprvková množina.

- ⇒ Okruh není tělesem.
- **5.** Nechť +, · jsou aritmetické operace na oboru **Z**. Určete, které z následujících množin tvoří okruhy vzhledem k těmto operacím:
 - a) $\{2k, k \in \mathbb{Z}\}$
 - b) $\{2k+1, k \in \mathbb{Z}\}$

Řešení:

 $\{2k, k \in \mathbf{Z}\}\$ je množina sudých celých čísel.

Je (2k, +) abelovská grupa?

- je uzavřená vůči + (součet dvou sudých čísel je vždy sudý)
- je asociativní díky asociativitě sčítání na Z
- jednotkový prvek je 0 (pro $x \in \mathbb{Z}$ platí x+0=x, 0+x=x)
- inverzním prvkem pro $x \in \mathbf{Z}$ je -x
- abelovská je díky komutativitě sčítání na **Z**
- ⇒ Ano, (2k, +) je abelovská grupa.

Je (2k, ⋅) pologrupa?

- Je uzavřená vůči · (násobek dvou sudých čísel je vždy sudý)
- asociativní je díky asociativitě násobení na **Z**
- \Rightarrow Ano, (2k, ·) je pologrupa.

Distributivní zákony jsou zachovány (vyplývá z vlastností sčítání a násobení celých čísel).

⇒ Jedná se o okruh.

 $\{2k+1, k \in \mathbf{Z}\}$ je množina všech lichých celých čísel.

Je (2k+1, +) abelovská grupa?

- není uzavřená vůči +, např. 3+1=4, 4 ovšem není liché číslo.

- také nemá jednotkový prvek, ...
- ⇒ Nejedná se o abelovskou grupu, tedy struktura nemůže být okruhem.
- **6.** Nalezněte takový okruh $(M, +, \cdot)$ a prvek $a \in M$, že $M \setminus \{a\}$ je podokruhem M.

Řešení:

Zvolit můžeme např. strukturu $(Z_2, \bigoplus, \bigotimes)$ jako okruh M, jako podokruh pak $(\mathbf{Z}_2 \setminus \{1\}, \bigoplus, \bigotimes)$.

Můžeme sestavit Cayleyho tabulky:

 $(\mathbf{Z}_2, \bigoplus, \otimes)$:

	(, 0 , 0)				
\oplus	0	1			
0	0	1			
1	1	0			

\otimes	0	1
0	0	0
1	0	1

 $(\mathbf{Z}_2 \setminus \{1\}, \bigoplus, \otimes)$:

(-2) (-	יוע יונ
\oplus	0
0	0

\otimes	0
0	0

Vidíme, že množina ($\mathbf{Z}_2 \setminus \{1\}$, \bigoplus , \otimes) splňuje vlastnosti okruhu a je skutečně podokruhem M. Jedná se o triviální podokruh, jelikož prvek 0 je nulou okruhu M.

7. Nechť P je podokruhem okruhu S a prvek $x \in P$ je netriviálním dělitelem nuly v S. Je nutně x dělitelem nuly i v P?

Řešení:

Nechť
$$S = (Z_6, \bigoplus, \bigotimes)$$
, $P = (\{0, 3\}, \bigoplus, \bigotimes)$, $x = 3$.
Sestavíme Cayleyho tabulky:

\otimes	<u>0</u>	1	2	<u>3</u>	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
<u>3</u>	0	3	0	3	0	3

4	0	4	2	0	4	2
5	0	5	4	3	2	1

 \Rightarrow Vidíme, že 3 je triviálním dělitelem 0 v Z₆, jelikož 3 \otimes 2 = 0, 3 \otimes 4 = 0,...

\otimes	0	3
0	0	0
3	0	3

 \Rightarrow 3 není triviálním dělitelem 0 v {0, 3}: 3 \otimes 3 = 3.

- 8}. Zjistěte, zda jsou tyto množiny:
- a) podokruhy **Z**₁₀ vzhledem k operacím ⊕, ⊗
- b) obory integrity

Vytvoříme Cayleyho tabulky pro D₁:

\oplus	0	5
0	0	5
5	5	0

 je uzavřená vůči ⊕, má jednotkový prvek 0, je asociativní díky asociativitě ⊕, obsahuje inverzní prvky (0 pro 0, 5 pro 5), je komutativní díky komutativitě ⊕

⇒ jedná se o abelovskou grupu.

\otimes	0	5
0	0	0
5	0	5

- je uzavřená, je asociativní díky asociativitě ⊗ => pologrupa
- distributivita je zachována (vyplývá z vlastností obou operací).
- \Rightarrow D₁ je okruh.

Je D_1 oborem integrity?

Okruh je komutativní díky komutativitě ⊗, jednotkou okruhu je 5, nemá žádné netriviální dělitele 0

 \Rightarrow D₁ je oborem integrity.

Vytvoříme Cayleyho tabulky pro D₂:

\oplus	0	2	4	6	8
0	0	2	4	6	8
2	2	4	6	8	0
4	4	6	8	0	2
6	6	8	0	2	4
8	8	0	2	4	6

- je uzavřená vůči ⊕, asociativní díky asociativitě ⊕, jednotkový prvek je 0, má inverzní prvky (0 a 0, 2 a 8, 4 a 6), je komutativní
- ⇒ jedná se o abelovskou grupu

\otimes	0	2	4	6	8
0	0	0	0	0	0
2	0	4	8	2	6
4	0	8	6	4	2
6	0	2	4	6	8
8	0	6	2	8	4

- je uzavřená vůči ⊗ i asociativní => jedná se o pologrupu
- distributivita je opět zachována
- \Rightarrow D₂ je okruh.

Je D₂ oborem integrity?

- neobsahuje netriviální dělitele 0, je komutativní, má jednotku (6).
- \Rightarrow D₂ je oborem integrity.
- **9.** Je dána neprázdná množina A. Na její potenční množině ExpA jsou definovány operace + a · následujícím způsobem:

$$X+Y = (X \setminus Y) \cup (Y \setminus X)$$
$$X \cdot Y = X \cap Y$$

Zjistěte, zda (ExpA, +, ·) je okruh. Pokud ano, co je nulou tohoto okruhu? Má nějaké dělitele nuly?

Řešení:

Zkusíme si vytvořit Cayleyovy tabulky operací např. pro množinu $A = \{a, b\}$, tzn. $ExpA = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Poté zobecníme získané poznatky.

+	Ø	{a}	{b}	{a, b}
Ø	Ø	{a}	{b}	{a, b}
{a}	{a}	Ø	{a, b}	{b}
{b}	{b}	{a, b}	Ø	{a}
{a, b}	{a, b}	{b}	{a}	Ø

- množina je zjevně uzavřená vůči operaci +
- je asociativní díky asociativitě operace U
- jednotkovým prvkem je Ø (kopíruje řádek i sloupec)
- obsahuje inverzní prvky: {a} pro {a}, {b} pro {b}, {a, b} pro {a, b}, Ø pro
 Ø každý prvek je inverzní sám k sobě.
- je komutativní (tabulka je symetrická podél hlavní diagonály)
- ⇒ jedná se o abelovskou grupu.

•	Ø	{a}	{b}	{a, b}
Ø	Ø	Ø	Ø	Ø
{a}	Ø	{a}	Ø	{a}
{b}	Ø	Ø	{b}	{b}
{a, b}	Ø	{a}	{b}	{a, b}

- množina je uzavřená vůči operaci · a je asociativní díky asociativitě operace ∩, tedy se jedná o pologrupu.
- ověříme distributivní zákony (opět stačí ověřit pouze jeden): $A(B+C) = A \cap ((B \setminus C) \cup (C \setminus B)) = (A \cap (B \setminus C)) \cup (A \cap (C \setminus B)) = ((A \cap B) \setminus (A \cap C)) \cup ((A \cap C) \setminus (A \cap B))$ $AB+AC = ((A \cap B) \setminus (A \cap C)) \cup ((A \cap C) \setminus (A \cap B))$
- ⇒ distributivita je zachována. Jedná se o okruh, jehož nulou je Ø.

Netriviální dělitelé nuly jsou všechny podmnožiny množiny ExpA krom A, jelikož pro libovolnou podmnožinu $X \subset A$ platí $X \cap (A \setminus X) = \emptyset$.

10. Na oboru **R** jsou definovány operace \bigoplus , \bigotimes pro a, b \in **R** jako:

$$a \oplus b = a+b+1$$

 $a \otimes b = a+b+ab$

Ověřte, zda $(\mathbf{R}, \oplus, \otimes)$ tvoří okruh.

Řešení:

Je (**R**, ⊕) abelovská grupa?

- je zjevně uzavřená vůči ⊕
- aby byla asociativní, musí platit (a \oplus b) \oplus c = a \oplus (b \oplus c): (a+b+1)+c+1 = a+(b+c+1)+1 = a+b+c+2 => asociativita platí
- jednotkový prvek bude -1, jelikož a \oplus -1 = a+(-1)+1=a.
- inverzní prvek vůči a bude -a-2: $a \oplus (-a-2) = a + (-a-2) + 1 = -1$
- komutativní je, jelikož a \oplus b=b \oplus a=a+b+1 = b+a+1
- \Rightarrow (**R**, \oplus) je abelovská grupa.

Je (\mathbf{R} , \otimes) pologrupa?

- je uzavřená vůči ⊗ (výsledkem bude opět reálné číslo)
- ověříme asociativitu, tzn. zda platí (a \otimes b) \otimes c = a \otimes (b \otimes c):
- $(a \otimes b) \otimes c = (a+b+ab)+c+(a+b+ab)c = a+b+ab+c+ac+bc+abc$
- $a \otimes (b \otimes c) = a+(b+c+bc)+a(b+c+bc) = a+b+c+bc+ab+ac+abc$
- \Rightarrow asociativita je zachována, (\mathbf{R} , \otimes) je tedy pologrupa.

Ověříme distributivní zákony (díky komutativitě obou operací stačí ověřit pouze jeden z nich):

$$a \otimes (b \oplus c) = a \otimes (b+c+1) = a+(b+c+1)+a(b+c+1)=a+b+c+1+ab+ac+a$$

 $a \otimes b \oplus a \otimes c = (a+b+ab) \oplus (a+c+ac) = a+b+ab+a+c+ac+1$

 \Rightarrow distributivita je zachována, $(R, \bigoplus, \bigotimes)$ je tedy skutečně okruh.