Measuring of Causal effects and Standardization

INFO/STSCI/ILRST 3900: Causal Inference

5 Sep 2023

Learning goals for today

At the end of class, you will be able to:

- 1. Describe different ways to quantitatively measure a causal effect
- 2. Estimate the average causal effect using data from a conditionally randomized experiment

Logistics

- ► Ch 1.3 and 2.3 in Hernan and Robins 2023
- ► Problem Set 1 due last Thursday

Exchangeability may not hold in every randomized experiment

- Age ≥ 55 receive vaccine with 2/3; more likely to get COVID if treated
- ► Age < 55 get vaccine with probability 1/2; less likely to get COVID if treated

Exchangeability may not hold in every randomized experiment

- ► Age ≥ 55 receive vaccine with 2/3; more likely to get COVID if treated
- ▶ Age < 55 get vaccine with probability 1/2; less likely to get COVID if treated
- ► Exchangeability does not hold in entire population
- ► Exchangeability holds within each sub-population
- ► Two separate experiments; both are exchangeable

- ▶ Marginal exchangeability: $Y^a \perp A$ for all a
- ▶ Conditional exchangeability: $Y^a \perp \!\!\! \perp A \mid L$ for all a The potential outcomes are independent of treatment conditional on L
- ► **Stratification**: We can directly estimate causal effect within each sub-population (or stratum)
- ► If the treatment effect varies across sub-population, we say there is **treatment effect heterogeneity**

- ▶ Marginal exchangeability: $Y^a \perp A$ for all a
- ► Conditional exchangeability: $Y^a \perp \!\!\! \perp A \mid L$ for all a The potential outcomes are independent of treatment conditional on L
- ► **Stratification**: We can directly estimate causal effect within each sub-population (or stratum)
- ► If the treatment effect varies across sub-population, we say there is **treatment effect heterogeneity**

- ▶ Marginal exchangeability: $Y^a \perp A$ for all a
- ▶ Conditional exchangeability: $Y^a \perp \!\!\! \perp A \mid L$ for all a The potential outcomes are independent of treatment conditional on L

- ▶ Marginal exchangeability: $Y^a \perp A$ for all a
- ▶ Conditional exchangeability: $Y^a \perp \!\!\! \perp A \mid L$ for all a The potential outcomes are independent of treatment conditional on L
- ▶ If you tell me $A_i = 1$, I learn something about $Y_i^{a=1}$, $Y_i^{a=0}$
- ▶ Suppose you first tell me someone's age, I learn something about $Y_i^{a=1}$, $Y_i^{a=0}$. Next you tell me $A_i = 1$, I don't learn anything new about $Y_i^{a=1}$, $Y_i^{a=0}$ (in addition to what I previously knew)

► **Stratification**: We can directly estimate causal effect within each sub-population (or stratum)

$$\mathsf{E}(Y \mid A = a, L = \ell) \stackrel{\mathsf{consis}}{=} \mathsf{E}(Y^a \mid A = a, L = \ell)$$

$$\stackrel{\mathsf{exchange}}{=} \mathsf{E}(Y^a \mid L = \ell)$$

► If the treatment effect varies across sub-population, we say there is **treatment effect heterogeneity**

$$E(Y^{a=1} \mid L = 55+) - E(Y^{a=0} \mid L = 55+)$$
 \neq
 $E(Y^{a=1} \mid L = < 55) - E(Y^{a=0} \mid L = < 55)$

- ► Can be useful in designing experiments
 - ▶ If $Y^{a=1}$ has higher variability in some sub-population, assign more units to treated group

- ► Can be useful in designing experiments
 - ▶ If $Y^{a=1}$ has higher variability in some sub-population, assign more units to treated group
- Most useful as an idealized experiment to target with observational analysis
- ► Marginal exchangeability is very unlikely in observational data
- Conditional exchangeability may be more reasonable

Excercise

Suppose we have data gathered by surveying individuals in Fall of 2021

- ▶ Whether the individual was vaccinated for Covid $A_i = 1$ if vaccinated, $A_i = 0$ if not vaccinated
- ▶ Whether the individual tested positive for Covid in 2021 $Y_i = 1$ if positive test, $Y_i = 0$ if no positive test
- What additional information could you gather about each individual to make conditional exchangeability might be plausible?

$$Y^{a=1}, Y^{a=0} \perp A \mid L$$

Measures of association/causation¹

- ► For binary outcomes $Pr(Y^a = 1) = E(Y^a)$
- ► Average Causal Effect $E(Y^{a=1}) E(Y^{a=0})$
- ► Also called average treatment effect and causal risk difference
- ▶ No average causal effect if ACE = 0

¹Ch 1.2 and 1.3 of Hernan and Robins

Measures of association/causation¹

- ► For binary outcomes $Pr(Y^a = 1) = E(Y^a)$
- ► Average Causal Effect $E(Y^{a=1}) E(Y^{a=0})$
- ► Also called average treatment effect and causal risk difference
- ▶ No average causal effect if ACE = 0
- ► Sharp null hypothesis: $Y_i^{a=1} = Y_i^{a=0} = 0$ for all i
- ► Sharp null hypothesis also means ACE = 0, but not the other way around!

¹Ch 1.2 and 1.3 of Hernan and Robins

Measures of association/causation²

► Causal Risk Ratio:

$$\frac{\mathsf{E}(Y^{a=1})}{\mathsf{E}(Y^{a=0})}$$

► Causal Odds Ratio:

$$\frac{Pr(Y^{a=1}=1)/Pr(Y^{a=1}=0)}{Pr(Y^{a=0}=1)/Pr(Y^{a=0}=0)}$$

²Ch 1.2 and 1.3 of Hernan and Robins

Measures of association/causation²

► Causal Risk Ratio:

$$\frac{\mathsf{E}(Y^{a=1})}{\mathsf{E}(Y^{a=0})}$$

► Causal Odds Ratio:

$$\frac{Pr(Y^{a=1}=1)/Pr(Y^{a=1}=0)}{Pr(Y^{a=0}=1)/Pr(Y^{a=0}=0)}$$

▶ No average causal effect if CRR = COR = 1

²Ch 1.2 and 1.3 of Hernan and Robins

Measures of association/causation³

- ► All measures will agree if $E(Y^{a=1}) = E(Y^{a=0})$
- ▶ If $E(Y^{a=1}) \neq E(Y^{a=0})$, the different measures may be easier/harder to interpret
- ► What is the ACE and CRR if
 - ightharpoonup E($Y^{a=1}$) = .5; E($Y^{a=0}$) = .25
 - ightharpoonup E($Y^{a=1}$) = .001; E($Y^{a=0}$) = .0005

³Ch 1.2 and 1.3 of Hernan and Robins

- ► Under conditional exchangeability, we can directly estimate the average causal effect for each sub-population
- ► **Standardization** allows us to estimate the ACE by combining estimates from each sub-population

- ► Under conditional exchangeability, we can directly estimate the average causal effect for each sub-population
- ► **Standardization** allows us to estimate the ACE by combining estimates from each sub-population
- ▶ For L = 0, 1

$$E(Y^{a}) = Pr(L = 1)E(Y^{a} | L = 1)$$

$$+ Pr(L = 0)E(Y^{a} | L = 0)$$

$$= Pr(L = 1)E(Y | L = 1, A = a)$$

$$+ Pr(L = 0)E(Y^{a} | L = 0, A = a)$$

- Under conditional exchangeability, we can directly estimate the average causal effect for each sub-population
- ► **Standardization** allows us to estimate the ACE by combining estimates from each sub-population
- ▶ For L = 0, 1

$$E(Y^{a}) = Pr(L = 1)E(Y^{a} | L = 1)$$

$$+ Pr(L = 0)E(Y^{a} | L = 0)$$

$$= Pr(L = 1)E(Y | L = 1, A = a)$$

$$+ Pr(L = 0)E(Y^{a} | L = 0, A = a)$$

► More generally,

$$Pr(Y^a) = \sum_{l} Pr(L=l)E(Y \mid L=l, A=a)$$

$$Pr(Y^a) = \sum_{I} E(Y \mid L = I, A = a) Pr(L = I)$$

Excercise

$$\mathsf{E}(Y^a) = \sum_{I} \mathsf{E}(Y \mid L = I, A = a) \mathsf{Pr}(L = I)$$

		L	Α	Υ
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	Α	Υ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

Excercise

		L	Α	Υ
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	Α	Υ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$\mathsf{E}(Y^a) = \mathsf{Pr}(L=1)\mathsf{E}(Y \mid L=1, A=a)$$
 $+ \mathsf{Pr}(L=0)\mathsf{E}(Y^a \mid L=0, A=a)$

Learning goals for today

At the end of class, you will be able to:

- 1. Describe different ways to quantitatively measure a causal effect
- 2. Estimate the average causal effect using data from a conditionally randomized experiment