

Machine Vision

Lecture 7: Projective Geometry

Why projective geometry?

- One of the main goals of machine vision is to make accurate measurements of 3d scene geometry using images
- However, when taking a picture of a 3d scene the geometry is distorted:
 - Parallel lines can intersect (vanishing points)
 - Points at infinity become finite, potentially crossing through the image (horizon)

- To implement any algorithms on the geometry of images we need to represent the geometry algebraically
- A point (x, y) is on a line (a, b, c), if the following equation holds

- To implement any algorithms on the geometry of images we need to represent the geometry algebraically
- A point (x, y) is on a line (a, b, c), if the following equation holds

$$ax + by + c = 0$$

• We can multiply the line parameters with any constant $\lambda \neq 0$ without changing the line equation

$$(\lambda a)x + (\lambda b)y + (\lambda c) = 0$$

• Therefore, (a, b, c) and $\lambda(a, b, c)$ represent the same line

• The line equation ax + by + c = 0 can be written more compactly as scalar product

$$\boldsymbol{l}^T\boldsymbol{x}=0$$

Of the two vectors

$$\mathbf{l} = (a, b, c)^T$$
$$\mathbf{x} = (x, y, 1)^T$$

- We already observed that $\lambda m{l}$ and $m{l}$ represent the same line
- Very similar we can also conclude that the point represented by $oldsymbol{x}$ is the same as the point represented by

$$\lambda \mathbf{x} = (\lambda x, \lambda y, \lambda)^T$$

 A 2d point in homogeneous coordinates is represented by a homogeneous 3-vector

$$\boldsymbol{x} = (x_1, x_2, x_3)^T$$

 A 2d line in homogeneous coordinates is also represented by a homogeneous 3-vector

$$\boldsymbol{l} = (l_1, l_2, l_3)^T$$

• A homogeneous vector $x \in \mathbb{P}^2$ is the equivalence class of vectors in $\mathbb{R}^3 - \{(0,0,0)^T\}$ under the equivalence relationship $x \equiv \lambda x$, i.e. multiplying a homogeneous vector with a non-zero constant does change the representation but not the geometric object

• A point in Euclidean coordinates $(x,y) \in \mathbb{R}^2$ is converted into a point in homogeneous coordinates by simply appending a "1" at the end

$$\boldsymbol{x} = (x, y, 1)$$

• A point in homogeneous coordinates $(x_1, x_2, x_3) \in \mathbb{P}^2$ is converted back into Euclidean coordinated by dividing by the last component

$$\boldsymbol{x} = \left(\frac{x_1}{x_3}, \frac{x_2}{x_3}, 1\right)$$

• Note, that not all homogeneous vectors can be transformed into Euclidean vectors ($x_3 = 0$)

Similar, a line in Euclidean angle-distance representation

$$x\cos\theta + y\sin\theta = d$$

• Is equivalent to

$$\mathbf{l} = (\cos \theta, \sin \theta, -d)$$

• And vice-versa the homogeneous line (l_1, l_2, l_3) can be converted back to angle-distance representation by dividing by the norm of the first two components (because $\cos^2 \theta + \sin^2 \theta = 1$)

$$\boldsymbol{l} = \left(\frac{l_1}{\sqrt{l_1^2 + l_2^2}}, \frac{l_2}{\sqrt{l_1^2 + l_2^2}}, \frac{l_3}{\sqrt{l_1^2 + l_2^2}}\right)$$

• Note again, that not all lines homogeneous lines can be transformed into Euclidean representation ($\mathbf{l} = (0,0,1)^T$)

Intersection of lines

• The point x is in the intersection of the two lines l_1 and l_2 if

$$\begin{aligned} \boldsymbol{l}_1^T \boldsymbol{x} &= 0\\ \boldsymbol{l}_2^T \boldsymbol{x} &= 0 \end{aligned}$$

We know that the triple products

$$\mathbf{l}_{1}^{T}(\mathbf{l}_{1} \times \mathbf{l}_{2}) = 0$$
$$\mathbf{l}_{2}^{T}(\mathbf{l}_{1} \times \mathbf{l}_{2}) = 0$$

 Therefore we can conclude that the intersection of two lines in homogeneous coordinates is simply the cross product

$$x = l_1 \times l_2$$

$$x=np.cross(11,12)$$

Duality

 The incidence relation between points and lines is symmetric, i.e.

$$\boldsymbol{l}^T\boldsymbol{x} = \boldsymbol{x}^T\boldsymbol{l} = 0$$

- Points and lines are dual entities in \mathbb{P}^2
- This duality means the that the line simultaneously going through two points can be calculated using the cross product again

$$l=x_1\times x_2$$

$$l=np.cross(x1,x2)$$

Points at infinity

What happens if we intersect two parallel lines?

$$\begin{pmatrix} \cos \theta \\ \sin \theta \\ -d_1 \end{pmatrix} \times \begin{pmatrix} \cos \theta \\ \sin \theta \\ -d_2 \end{pmatrix} = (\cos \theta - \sin \theta) \begin{pmatrix} d_1 - d_2 \\ d_2 - d_1 \\ 0 \end{pmatrix}$$

- The resulting point has $x_3 = 0$, i.e. there is no corresponding point in Euclidean space in this case
- We call these points ideal points or points at infinity

Line at infinity

 Now what happens if we calculate the line joining two of these points at infinity?

$$\begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \times \begin{pmatrix} y_1 \\ y_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}$$

- The resulting line is $l_{\infty} = (0,0,1)^T$, for which we already saw that there is no corresponding Euclidean representation
- We call $m{l}_{\infty}$ the **line at infinity** because all points at infinity are on this one line
- A big advantage of projective spaces is that elements at infinity (e.g. vanishing points, horizon) can be seamlessly represented

Geometric intuition

• All points not at infinity have $x_3 \neq 0$, therefore we can always normalise such homogeneous vectors so that the last component is $x_3 = 1$

• This means, Euclidean space can be visualised as the plane $x_3=1$ in the 3-d space into which \mathbb{P}^2 is embedded

 Euclidean points are intersections of lines with this plane

 Euclidean lines are intersections of planes with this plane

Normalisation

Projective entities are only defined up to scale, which means the expression

$$x = y$$

- can mean either of two things
 - It can be an assignment, i.e. the homogeneous vector \boldsymbol{x} is assigned the values of the homogeneous vector \boldsymbol{y}
 - It can be a test for equality, in which case it is short for $\exists \lambda \neq 0 : x = \lambda y$
- It is important to keep this in mind and not confuse equality of homogeneous entities with equality of the representation vectors

Normalisation

- If we want to make the representation vectors equal, we can normalise the representation
- Geometrically, a homogeneous entity $x=(x_e,x_h)$ can be considered as the line (excluding 0) connecting the origin with the representation vector in the embedding space
- We have already seen that dividing by the homogeneous component we can move the representation vector to the Euclidean plane $x_h = 1$ (Euclidean normalisation)
- We can also normalise the representation to the unit sphere by dividing by the length of the representation vector (Spherical normalisation)

Projective transformations

- A **homography** is an invertible mapping $h: \mathbb{P}^2 \to \mathbb{P}^2$ that preserves colinearity of points, i.e. if x_1, x_2, x_3 are on the same line, then so are the transformed points $h(x_1), h(x_2), h(x_3)$
- A homography can always be represented by a non-singular 3×3 matrix ${\it H}$ and applied to a homogeneous vector as matrix-vector product

$$x' = Hx$$

 Note, that this transformation (despite being a matrix-vector product) is not linear because it operates on homogeneous vectors

Machine Vision

- Because of the homogeneity, the equation can be multiplied by a non-zero factor, and all matrices $H \equiv \lambda H$ are again equivalent
- Therefore also H is a homogeneous matrix

Isometries

- Transformations that preserve Euclidean distances are called isometries
- Every isometry can be written as homogeneous equation (i.e. up to scale) as follows (with $\epsilon=\pm 1$ to allow for non-orientation preserving rotation matrices)

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \epsilon \cos \theta & -\sin \theta & t_x \\ \epsilon \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Or short

$$x' = \begin{pmatrix} R & t \\ \mathbf{0}^T & 1 \end{pmatrix} x = \begin{pmatrix} I_3 & t \\ \mathbf{0}^T & 1 \end{pmatrix} \begin{pmatrix} R & \mathbf{0} \\ \mathbf{0}^T & 1 \end{pmatrix} x$$

- Note, that unlike with regular linear algebra in Euclidean space we are able to <u>easily represent translation</u> in a matrix-vector product
- Also note, that we can concatenate these operations as matrix-matrix products of a rotation followed by a translation

Similarity transformations

- Transformations that preserve angles are called similarities
- They are isometries composed with an isotropic scaling, i.e. they do not only rotate and translate objects but also make them bigger or smaller
- They can be written as homogeneous equations

$$x' = \begin{pmatrix} sR & t \\ 0^T & 1 \end{pmatrix} x$$

• Similarity transformations preserve "shape", but not size

Affine transformations

- A non-singular linear transformation followed by a translation is called **affinity**
- They can be written as homogeneous equations

$$x' = \begin{pmatrix} A & t \\ \mathbf{0}^T & 1 \end{pmatrix} x$$

 To understand what this class of transformations does it is helpful to look at the singular value decomposition

$$A = UDV^{T} = (UV^{T})(VDV^{T}) = R[\theta] \left(R[-\phi] \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix} R[\phi] \right)$$

• Which means the shape is rotated by ϕ , "squeezed" along the axes by the singular values λ_1 and λ_2 , rotated back, and then finally rotated by θ

 Affinities preserve elements at infinity, i.e. parallel lines are mapped onto parallel lines, and ratios of areas

Projective transformations

The most generic homography is

$$x' = Hx = \begin{pmatrix} A & t \\ v^T & v \end{pmatrix} x = \begin{pmatrix} sR & t \\ \mathbf{0}^T & 1 \end{pmatrix} \begin{pmatrix} K & \mathbf{0} \\ \mathbf{0}^T & 1 \end{pmatrix} \begin{pmatrix} I & \mathbf{0} \\ v^T & v \end{pmatrix} x$$

- The projective distortion (v^T, v) will move elements from infinity into Euclidean space and vice versa
- It preserves incidence relations between points and lines and therefore co-linearity; it also preserves the **cross-ratio**, i.e. the ratio of ratios, of distances
- However, it might break the Euclidean topology, because parallel lines can now intersect

Projective transformations

- Two images of a planar surface are related by a homography
- Two rotated images are also related by a homography, because (as we will see later) in this case every pixel corresponds to a point on the plane at infinity

Example homography

Example homography

Estimating 2d homographies

- A 2d homography has 8 degrees of freedom, hence it is uniquely determined by 4 point correspondences between two images $(x_i' \leftrightarrow x_i)$
- For each of these correspondences the homogeneous equation $x_i' = Hx_i$ must hold
- However, it is only valid up to scale, i.e. the equality in a homogeneous equation only means that the two vectors are co-linear in \mathbb{R}^3
- We can test co-linearity in \mathbb{R}^3 using the cross product

$$\exists \lambda \neq 0 : x'_i = \lambda H x_i \Leftrightarrow x'_i \times H x_i = 0$$

Skew symmetric matrix

• The cross product $x \times y$ can also be expressed as matric-vector product S[x]y using the skew-symmetric matrix

$$S[x] = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}$$

Therefore we can rewrite the conditions as

$$S[x_i']Hx_i=0$$

Kronecker product

• The matrix H is in the middle of this equation $S[x_i']Hx_i = 0$

- To extract the *H* from the middle, the Kronecker-product is very useful
- It enables the re-writing a product of three matrices as follows (the symbol \otimes is NOT the convolution in this context):

$$vec[ABC] = (C^T \otimes A)vec[B]$$

Kronecker product

• The matrix H is in the middle of this equation $S[x_i']Hx_i = 0$

We can therefore rewrite it as follows

$$A_i vec[H] = (x_i^T \otimes S[x_i'])vec[H] = 0$$

• Note, that only two out of these three equations are linearly independent, so we can choose the first two rows of each A_i

The DLT algorithm

 We can now stack these equations for all four (or more) points and get the homogeneous equation system

$$A \ vec[H] = \begin{pmatrix} A_1 \\ \vdots \\ A_n \end{pmatrix} vec[H] = \mathbf{0}$$

 The solution is the null-space of the singular matrix A, which can be obtained as the singular vector corresponding to the smallest singular value

Application: Image Panoramas

Machine Vision

Points in 3d

- The concept of projective spaces can be transferred into higher dimensions
- A 3d $X \in \mathbb{P}^3$ in homogeneous coordinates is analogous to the 2d case a 4d vector

$$\boldsymbol{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix}$$

• Again, points with $X_4=0$ are at infinity, and for all other points Euclidean normalisation yields the 3d coordinate

$$(X,Y,Z) = \left(\frac{X_1}{X_4}, \frac{X_2}{X_4}, \frac{X_3}{X_4}\right)$$

Planes in 3d

- The dual entity to the 3d point is the plane
- A point X is on a plane A if

$$A^TX = 0$$

• Three points define a plane in 3d, which then has to be the null-space of the matrix of stacked point vectors

$$\begin{pmatrix} \boldsymbol{X}_{1}^{T} \\ \boldsymbol{X}_{2}^{T} \\ \boldsymbol{X}_{3}^{T} \end{pmatrix} \boldsymbol{A} = 0$$

- Because of duality the same is also true for the 3d point at the intersection of 3 planes
- The plane at infinity is $A_{\infty} = (0,0,0,1)^T$

Lines in 3d

- In 3d space there is another linear element, the line
- A line is the connection of two 3d points $\mathbf{X} = (\mathbf{X_0}, X_h)^T$ and $\mathbf{Y} = (\mathbf{Y_0}, Y_h)^T$
- To represent a 3d line we use a 6-vector with 4 degrees of freedom, i.e.
 2 constraints (Plücker coordinates)

$$L = \begin{pmatrix} L_h \\ L_0 \end{pmatrix} = \begin{pmatrix} X_h Y_0 - Y_h X_0 \\ X_0 \times Y_0 \end{pmatrix}$$

- This representation is homogeneous (1 constraint) and the two 3-vector components are orthogonal (${m L}_{m h}^T{m L}_{m 0}=0$; 2nd constraint)
- In accordance with the other definitions, lines at infinity are $oldsymbol{L_h} = oldsymbol{0}$

Homographies in 3d

• In analogy to the 2d case, a 3d homography is a non-singular homogeneous 4×4 matrix that transforms 3d points as

$$X' = HX$$

- While the 2d homography had 8 degrees of freedom ($H_{2d} \in \mathbb{P}^8$), the 3d homography has 15 degrees of freedom ($H_{3d} \in \mathbb{P}^{15}$)
- Again, a hierarchy of transformations can be defined with the most useful one the Euclidean motion in 3d space with 6dof (3 translation + 3 rotation parameters)

$$H = \begin{pmatrix} R & t \\ \mathbf{0}^T & 1 \end{pmatrix}$$

• And the 3d similarity (7dof), which adds an addition scalar scale parameter

$$\boldsymbol{H} = \begin{pmatrix} s\boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0}^T & 1 \end{pmatrix}$$

Rotations in 3d

• Rotations in 3d have 3 degrees of freedom, classically represented by the rotation angles (ω,ϕ,κ) around the three coordinate axis

$$R_1[\omega] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \omega & -\sin \omega \\ 0 & \sin \omega & \cos \omega \end{pmatrix}$$

$$R_2[\phi] = \begin{pmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{pmatrix}$$

$$R_3[\kappa] = \begin{pmatrix} \cos \kappa & -\sin \kappa & 0\\ \sin \kappa & \cos \kappa & 0\\ 0 & 0 & 1 \end{pmatrix}$$

- A full 3d rotation is then $R[\omega, \phi, \kappa] = R_3[\kappa]R_2[\phi]R_1[\omega]$
- Rotations in 3d are not commutative, therefore ordering matters
- Also the directions are not well standardised, so my advice with regards to this angle representation: Avoid at all cost!

Rotations in 3d

• A better representation uses the rotation axis ${m r}$ and the rotation angle ${m lpha}$

$$R[r, \alpha] = \cos \alpha I + (1 - \cos \alpha)D[r] + \sin \alpha S[r]$$

- Where S[r] is again the skew symmetric matrix defined earlier and $D[r] = rr^T$ is the outer product matrix
- Note that this definition requires the rotation axis to be spherically normalised, i.e. $r^T r = 1$

Quaternions

- A quaternion $q=(q_0,q_1,q_2,q_3)^T$ is a 4-vector comprising a real part q_0 and an imaginary part $q_i=(q_1,q_2,q_3)^T$
- As a mathematical concept it is a generalisation of complex numbers, but we only use it to represent rotations
- Due to the 3/1 split of components it is very related to homogeneous 3d points
- The quaternion rotation matrix is defined as

$$R[q] = \frac{1}{q^T q} \left(\left(q_0^2 - q_i^T q_i \right) I + 2D[q_i] + 2q_0 S[q_i] \right)$$

 Note the spherical normalisation, which mean we can consider rotation quaternions as homogeneous entities

Rodrigues representation

 If we want to work with 3 parameters instead of the homogeneous quaternion (4 parameters + 1 constraint) we can use the Rodrigues representation

$$\mathbf{m} = (a, b, c)$$

• which corresponds to the quaternion $q = \left(1, \frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$ and therefore defines the following rotation

$$R[m] = \frac{1}{4 + m^T m} \left((4 - m^T m)I + 2D[m] + 4S[m] \right)$$

Useful properties of rotations

A rotation matrix is always orthogonal

$$\mathbf{R}^T \mathbf{R} = \mathbf{R} \mathbf{R}^T = \mathbf{I}$$

• Or equivalent, if \mathbf{R} is the forward rotation then $\mathbf{R}^T = \mathbf{R}^{-1}$ is the backward rotation

 A small rotation can be approximated with the skewsymmetric matrix corresponding to the cross-product

$$R[r, d\alpha] \approx I + d\alpha S[r]$$

Projective mapping from 3d to 2d

- A camera performs a projective mapping of 3d points ${\it X}$ to 2d points ${\it x}$
- This can be represented by a homogeneous 4×3 projection matrix $\textbf{\textit{P}} \in \mathbb{P}^{11}$

$$x' = PX$$

 In theory the DLT algorithm can be used to determine this matrix from 3d-2d correspondences, using

$$(X^T \otimes S[x'])vec[P] = 0$$

Thank you for your attention!