

高等数学(上)

数学与统计学院 公共数学教学部

➡ 高等数学教学团队

第四节 无穷小量与无穷大量

- 1 无穷小量
- 2 无穷大量
- 3 无穷小量与无穷大量的关系
- 4 内容小结与思考题

了解:无穷大的概念

理解:无穷小量的概念,

掌握:无穷小量和极限的关系,

无穷大和无穷小之间的关系

知识目标•

→ 重难点

重点: 无穷小量、无穷大量的概念

难点: 无穷小量和极限的关系与性质

无穷大与无界的关系

一、无穷小量

1、无穷小量的概念

定义1 如果
$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = 0$$
,

则称函数 f(x)为当 $x \to x_0$ (或 $x \to \infty$)时的无穷小量,简称无穷小.

特别地,若数列 $\{x_n\}$ 满足 $\lim_{n\to\infty}x_n=0$,

则称 $\{x_n\}$ 为当 $n \to \infty$ 时的无穷小.

例如 1) $\lim_{x\to 2}(x-2)=0$,所以函数 x-2 为当 $x\to 2$ 时的无穷小.

2)
$$\lim_{x\to\infty}\frac{1}{x}=0$$
, 函数 $\frac{1}{x}$ 为 $x\to\infty$ 当时的无穷小.

3)
$$\left\{\frac{1}{n+1}\right\}$$
, $\left\{\frac{1}{3^n}\right\}$, $\left\{\frac{(-1)^n}{n}\right\}$ 都是 $n \to \infty$ 时的无穷小.

由函数(或数列)极限的精确定义,易得:

2、无穷小量的精确定义:

- (1) $\lim_{x \to x_0} f(x) = 0 \iff \forall \varepsilon > 0$, $\exists \delta > 0$, 使得当 $0 < |x x_0| < \delta$ 时,恒有 $|f(x)| < \varepsilon$.
- (2) $\lim_{x \to \infty} f(x) = 0 \iff \forall \varepsilon > 0$, $\exists X > 0$, 使得当 |x| > X 时,恒有 $|f(x)| < \varepsilon$.
- (3) $\lim_{n\to\infty} x_n = 0 \iff \forall \varepsilon > 0$, $\exists N (\in N^+)$,使得当n > N 时, 恒有 $|x_n| < \varepsilon$.

无穷小与无穷大

- 注: 1) 无穷小是变量,不能与很小很小的数混淆;
 - 2)零是可以作为无穷小的唯一的常数;
 - 3)函数是否为无穷小与自变量的变化过程密切相关.

如:
$$\lim_{x\to 0} x^2 = 0$$
,所以 $f(x) = x^2$ 当 $_{x\to 0}$ 时为无穷小; $\lim_{x\to 0} x^2 = 1$,所以当 $_{x\to 1}$ 时, $_{f(x)=x^2}$ 不是无穷小.

3、无穷小量的性质

(1) 无穷小量与函数极限的关系

定理1
$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = A \Leftrightarrow \lim_{\substack{x \to x_0 \\ (x \to \infty)}} [f(x) - A] = 0$$

证明: 以 $x \rightarrow x_0$ 为例

$$\Leftrightarrow \lim_{x \to x} [f(x) - A] = 0.$$

证毕.

□ 无穷小与无穷大

证毕.

定理2
$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = A \Leftrightarrow f(x) = A + \alpha(x)$$

其中 $\alpha(x)$ 当 $x \to x_0$ (或 $x \to \infty$)时为无穷小.

证明: 以 $x \rightarrow x_0$ 为例

$$\Leftrightarrow_{\alpha(x)=f(x)-A} \\ \iff \lim_{x \to x_0} \alpha(x) = 0 \Leftrightarrow f(x) = A + \alpha(x) \quad (\sharp + \lim_{x \to x_0} \alpha(x) = 0).$$

类似地可证明 $x\to\infty$ 时的情形.

注: 将一般极限问题转化为特殊极限问题(无穷小);

例1
$$\lim_{x\to\infty}\frac{1+x^3}{2x^3}=\frac{1}{2}$$

解: 因为
$$\frac{1+x^3}{2x^3} = \frac{1}{2} + \frac{1}{2x^3}$$
, 面 $\lim_{x \to \infty} \frac{1}{2x^3} = 0$, 所以 $\lim_{x \to \infty} \frac{1+x^3}{2x^3} = \frac{1}{2}$.

(2) 无穷小量的运算性质(仅以 $x \rightarrow x_0$ 为例证明)

定理3 两个无穷小量的和仍是无穷小量.

证: 设 α 及 β 是当 $x \rightarrow x_0$ 时的两个无穷小,而 $\gamma = \alpha + \beta$.

$$\forall \varepsilon > 0$$
,

无穷小与无穷大

取
$$\delta = \min\{\delta_1, \delta_2\}$$
, 则当 $0 < |x - x_0| < \delta$ 时,

$$|\alpha| < \frac{\varepsilon}{2}$$

$$\beta |< \mathcal{E}_{2}$$

从而
$$|\gamma| = |\alpha + \beta| \le |\alpha| + |\beta| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
.

即当
$$x \rightarrow x_0$$
 时, $\gamma = \alpha + \beta$ 是无穷小.

推论1 有限个无穷小量的和也是无穷小量.

无穷小与无穷大

定理4有界函数与无穷小量的乘积是无穷小量.

证:不妨设函数u 在 $U(x_0,\delta_1)$ 内有界,则 $\exists M>0,\delta_1>0$,

使得当 $0 < |x - x_0| < \delta_1$ 时,恒有 $|u| \le M$.

又设 α 是当 $x \rightarrow x_0$ 时的无穷小, 即 $\forall \varepsilon > 0$, $\exists \delta_2(\delta_2 < \delta_1) > 0$,

当 $0 < |x - x_0| < \delta_2$ 时, |u| < M 及 $|\alpha| < \frac{\varepsilon}{M}$ 同时成立.

从而 $|u \cdot \alpha| = |u| \cdot |\alpha| < M \cdot \frac{\varepsilon}{M} = \varepsilon$,

所以当 $x \to x_0$ 时, $u \cdot \alpha$ 是无穷小. 即 $\lim_{x \to x_0} u(x) \alpha(x) = 0$.

$$im u(x)\alpha(x) = 0.$$

推论2 常数与无穷小量的乘积是无穷小量.

推论3 有限个无穷小量的乘积是无穷小量.

注意: 两个无穷小量的商不一定是无穷小量.

如 x,2x, 当 $x \to 0$ 时都是无穷小,但 $\lim_{x\to 0} \frac{x}{2x} = \frac{1}{2}$.

利用定理4可以求一类特殊极限.

例2 求
$$\lim_{x\to\infty}\frac{\sin x}{x}$$

解 因为
$$\lim_{x\to\infty}\frac{1}{x}=0$$
, 而 $|\sin x|\leq 1$, 即 $\sin x$ 是有界函数,

由定理4可知, $\frac{1}{x}\sin x$ 是当 $x \to \infty$ 时的无穷小量.即

$$\lim_{x\to\infty}\frac{\sin x}{x}=0.$$

例3 求
$$\lim_{x\to 2} (x-2)\arctan\left[\frac{1}{2}\ln(x^2+2x)\right]$$

解 因为
$$\lim_{x\to 2} (x-2) = 0$$
,又 $\left| \arctan\left[\frac{1}{2}\ln(x^2+2x)\right] \right| \le \frac{\pi}{2}$,

即
$$\arctan\left[\frac{1}{2}\ln(x^2+2x)\right]$$
 是有界函数,因此

$$\lim_{x \to 2} (x - 2) \arctan\left[\frac{1}{2} \ln(x^2 + 2x)\right] = 0.$$

二、无穷大量

1、无穷大量的概念

定义2 如果
$$\lim_{\substack{x \to x_0 \\ \bar{y}x \to \infty}} f(x) = \infty$$
 ,

则称函数 f(x)为当 $x \to x_0$ (或 $x \to \infty$)时的无穷大量,简称无穷大.

特别地, 若数列 $\{x_n\}$ 满足 $\lim_{n\to\infty}x_n=\infty$,

则称 $\{x_n\}$ 为当 $n \to \infty$ 时的无穷大量.

特殊情形: 正无穷大,负无穷大. $\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = +\infty$, $\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = -\infty$

例如 1) $\lim(x-2) = \infty$,所以函数 x-2为 $x \to \infty$ 时的无穷大.

2) $\lim_{n} e^{\frac{1}{|x|}} = \infty$, 函数 $e^{\frac{1}{|x|}}$ 为 $x \to 0$ 时的无穷大.

3) $\ln n$, $\{3^n\}$, $\{3n^2+1\}$ 都是 $n\to\infty$ 时的无穷大.

由函数(或数列)极限的精确定义,易得:

2、无穷大量的精确定义:

- (1) $\lim_{x \to x_0} f(x) = \infty \iff M > 0$, $\exists \delta > 0$,使得当 $0 < |x x_0| < \delta$ 时, 恒有 |f(x)| > M.
- $(2)\lim_{x\to\infty} f(x) = \infty \iff M > 0$, $\exists X > 0$, 使得当 |x| > X 时, 恒有 |f(x)| > M.
- (3) $\lim_{n\to\infty} x_n = \infty \iff \forall M > 0$, $\exists N (\in N^+)$,使得当n > N 时, 恒有 $|x_n| > M$.

- ₹.
 - 注: 1) 无穷大是个变量,绝对值很大的常数不是无穷大.
 - 2) 说一个函数是无穷大,必须指明自变量的变化趋势.

例如:
$$\lim_{x \to \frac{\pi}{2}} \tan x = +\infty$$
,故 $\tan x \stackrel{\pi}{=} x \to \frac{\pi}{2}$ 时的无穷大;
$$\lim_{x \to 0} \frac{1}{\sin x} = \infty$$
,故 $\frac{1}{\sin x} \stackrel{\pi}{=} x \to 0$ 时的无穷大.

3) 无穷大与无界量是两个不同概念, 无穷大必是无界量, 但无界量未必是无穷大(见例5).

例4 证明
$$\lim_{x\to 1} \frac{1}{x-1} = \infty$$

证: 对
$$\forall M > 0$$
,要使 $\left| \frac{1}{x-1} \right| = \frac{1}{|x-1|} > M$,只要 $|x-1| < \frac{1}{M}$.

取
$$\delta = \frac{1}{M}$$
, 当 $0 < |x-1| < \delta$ 时,有 $\left| \frac{1}{x-1} \right| > M$,

故
$$\lim_{x\to 1} \frac{1}{x-1} = \infty$$
.

无穷小与无穷大

三、无穷小量与无穷大量的关系

定理5 (无穷大与无穷小的关系) 在自变量的同一变化 过程中,如果f(x)为无穷大量,则 $\frac{1}{f(x)}$ 为无穷小量;反之, 如果 f(x) 为无穷小量,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 为无穷大量.

(定理5:即在同一过程中,无穷大的倒数为无穷小; 恒不为零的无穷小的倒数为无穷大.)

证:设 $\lim_{x\to\infty} f(x) = \infty$, $\therefore \forall M > 0, \exists X > 0$, 使得当 |x| > X 时,恒有 |f(x)| > M,

取
$$M = \frac{1}{\varepsilon}$$
, $|f(x)| > M = \frac{1}{\varepsilon}$, 即 $\left| \frac{1}{f(x)} \right| < \varepsilon$, 故当 $x \to \infty$ 时, $\frac{1}{f(x)}$ 为无穷小.

反之, 设
$$\lim_{x\to\infty} f(x) = 0$$
, 则 $\forall M > 0$, 取 $\varepsilon = \frac{1}{M} > 0$, $\exists X > 0$,

使得当
$$|x| > X$$
 时,恒有 $|f(x)| < \varepsilon$,则 $|f(x)| < \varepsilon = \frac{1}{M}$,

由于
$$f(x) \neq 0$$
, 从而 $\left| \frac{1}{f(x)} \right| > M$. 所以,当 $x \to \infty$ 时 $\frac{M}{f(x)}$ 为无穷大.

(类似地可证明 $x \rightarrow x_0$ 时的情形.)

注: 因此无穷大问题都可归结为无穷小问题.

例5 证明函数 $f(x) = \frac{1}{x^2} \cos \frac{1}{\sqrt{x}}$ 无界,但不是 $x \to 0^+$ 时的无穷大量.

证明(1)先证明函数无界. 取
$$x_k = \frac{1}{(2k\pi)^2} (k \in z)$$
,

因此对任意M > 0, $\exists k_0, \exists k > k_0$ 时, $f(x_k) > M$

故函数 f(x) 无界.

(2) 再证函数不是 $x \to 0^+$ 时的无穷大.

取
$$x_k = \frac{1}{(2k\pi + \frac{\pi}{2})^2} (k \in \mathbb{Z}), \quad \stackrel{\text{red}}{=} k \to \infty \text{时}, x_k \to 0^+$$

此时
$$f(x_k) = 0$$
, 则 $\lim_{\substack{k \to \infty \\ x_k \to 0}} f(x_k) = 0$, 因此 $\lim_{x \to 0^+} f(x) \neq \infty$,

即函数 f(x)不是 $x \to 0^+$ 时的无穷大.

四、内容小结

- ▶ 主要内容: 两个定义; 两个定理.
- ▶ 几点注意:
 - (1)无穷小(大)是变量,不能与很小(大)的数混淆, 零是唯一的无穷小的数;
 - (2) 无穷小与无穷大是相对于过程而言的;
 - (3) 无界变量未必是无穷大.

思考题:

1、 试问函数 $f(x) = x \sin x$ 是无界函数吗?

当 $x \to 0$ 时, $f(x) = x \sin x$ 是无穷大吗? 说明理由.

【答: $f(x) = x \sin x$ 是无界函数,但不是 $x \to 0$ 时的无穷大量.】

$$2 \int_{x \to -\infty} \frac{\arctan x}{4 + e^{-x}}$$

【答:0】

没有任何题可以象无穷那样 深的 的情感,很知的情感,很少的情感,我是那样感觉,我们是不够不够,我们就不会不会,我们就不会不会,我们就不会不会,我们就不会,我们就会就会的我们,我们们就会就会不会。

——希尔伯特

