Numerical Methods Lesson 5

Dr. Jose Feliciano Benitez Universidad de Sonora

Dr. Benitez Homepage: <u>www.jfbenitez.science</u>

Course page: http://jfbenitez.ddns.net:8080/Courses/MetodosNumericos

Goals for this Lesson

- Joint p.d.f.'s
- Random variable correlations
- Covariance matrix
- Correlation coefficients
- Error propagation

Joint p.d.f.

- Consider two random variables x and y of the same experiment.
- The joint p.d.f. is the function describing the probability distribution in the x-y plane: f(x,y)
- The plot at the right is called a scatter plot of f(x,y) in which the **density** of the points is proportional to the value of f.

Joint p.d.f. of uncorrelated variables

- Suppose x and y are independent variables. Meaning the knowledge of x does not affect the distribution in y. This means x and y are uncorrelated.
- Assume the distribution in x is described by $f_x(x)$ and the distribution in y by $f_y(y)$, then the joint p.d.f. of x and y is given by :

$$f(x,y) = f_x(x) f_y(y)$$

meaning the two parts are factorized.

Correlated variables

• In general, there may be some degree of correlation between variables. The degree of correlation can have values between -1 and 1.

Covariance cov[x,y]

 The covariance of two random variables is denoted by Vxy or cov[x,y] is defined as:

$$V_{xy} = E[(x - \mu_x)(y - \mu_y)] = E[xy] - \mu_x \mu_y$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) dx dy - \mu_x \mu_y,$$

Where f(x,y) is the joint p.d.f., not necessarily factorizable if the variables are correlated.

Correlation coefficient $ho_{\scriptscriptstyle\mathsf{xy}}$

• The correlation coefficient ρ_{xy} is defined by:

$$\rho_{xy} = \frac{V_{xy}}{\sigma_x \sigma_y}$$

- where σ_x and σ_y are the standard deviations for x and y, defined by their corresponding marginal p.d.f.'s.
- The correlation coefficient has values between -1 and 1.

Examples

Fig. 1.9 Scatter plots of random variables x and y with (a) a positive correlation, $\rho = 0.75$, (b) a negative correlation, $\rho = -0.75$, (c) $\rho = 0.95$, and (d) $\rho = 0.25$. For all four cases the standard deviations of x and y are $\sigma_x = \sigma_y = 1$.

Coefficient for uncorrelated variables

- The correlation coefficient for uncorrelated variables is 0.
- Proof:

```
V_{xy} = E[xy] - \mu_x \mu_y
E[xy] = \iint xyf(x,y)dxdy
= \iint xf_x(x)dx * \iint yf_y(y)dy = E[x] * E[y] = \mu_x \mu_y
Because f(x,y) is factorizable.
```

Therefore V -0

Therefore: $V_{xy} = 0$

Error propagation

Covariance for a function of n random variables

- Suppose we have a function of n random variables $y(x_i)$ where i = 1,2,3,...,n
- The joint p.d.f. is $f(x_i)$, but may not be known.
- If we know the mean values μ_i and the covariance matrix V_{ij} , then E[y] and the variance σ_v^2 can be estimated.

$$y(\mathbf{x}) \approx y(\boldsymbol{\mu}) + \sum_{i=1}^{n} \left[\frac{\partial y}{\partial x_i} \right]_{\mathbf{x} = \boldsymbol{\mu}} (x_i - \mu_i).$$

The expectation value of y is to first order

$$E[y(\mathbf{x})] \approx y(\boldsymbol{\mu}),$$

Important result: Variance of y

$$E[y^{2}(\mathbf{x})] \approx y^{2}(\boldsymbol{\mu}) + 2y(\boldsymbol{\mu}) \cdot \sum_{i=1}^{n} \left[\frac{\partial y}{\partial x_{i}} \right]_{\mathbf{x} = \boldsymbol{\mu}} E[x_{i} - \mu_{i}]$$

$$+ E\left[\left(\sum_{i=1}^{n} \left[\frac{\partial y}{\partial x_{i}} \right]_{\mathbf{x} = \boldsymbol{\mu}} (x_{i} - \mu_{i}) \right) \left(\sum_{j=1}^{n} \left[\frac{\partial y}{\partial x_{j}} \right]_{\mathbf{x} = \boldsymbol{\mu}} (x_{j} - \mu_{j}) \right) \right]$$

$$= y^{2}(\boldsymbol{\mu}) + \sum_{i,j=1}^{n} \left[\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}} \right]_{\mathbf{x} = \boldsymbol{\mu}} V_{ij}, \qquad (1.52)$$

so that the variance $\sigma_y^2 = E[y^2] - (E[y])^2$ is given by

$$\sigma_y^2 \approx \sum_{i,j=1}^n \left[\frac{\partial y}{\partial x_i} \frac{\partial y}{\partial x_j} \right]_{\mathbf{x} = \boldsymbol{\mu}} V_{ij}. \tag{1.53}$$

For uncorrelated variables

For the case where the x_i are not correlated, i.e. $V_{ii} = \sigma_i^2$ and $V_{ij} = 0$ for $i \neq j$, equations (1.53) and (1.54) become

$$\sigma_y^2 \approx \sum_{i=1}^n \left[\frac{\partial y}{\partial x_i} \right]_{\mathbf{x} = \boldsymbol{\mu}}^2 \sigma_i^2 \tag{1.57}$$

Examples with two variables and possible correlation $(V_{12} \neq 0)$

• Example: $y = x_1 + x_2$

$$\sigma_y^2 = \sigma_1^2 + \sigma_2^2 + 2V_{12}$$

• Example: $y = x_1 * x_2$

$$\frac{\sigma_y^2}{y^2} = \frac{\sigma_1^2}{x_1^2} + \frac{\sigma_2^2}{x_2^2} + 2\frac{V_{12}}{x_1 x_2}$$

In this last formula y, x_1 , x_2 are the mean values.

Exercise

 Analyze the data: /home/DATA/MetodosNumericos/Lesson5.dat

Contains pairs of values: x y

- Graph the data as scatter plot. You can use a TGraph.
- Calculate:
 - mean values: mu_x and mu_y
 - standard deviations: sigma_x and sigma_y
 - Covariance: V_{xy}
 - correlation coefficient: rho_xy
- For z=x + y calculate mean value variance
- For z=x*y calculate mean and variance

For all above calculations *since you do not know the joint p.d.f.* you can approximate it as follows:

f(x,y) = 1/N for x,y = the values in the data file,

Here N is the total number of data pairs in the file.

The integrals in the formulas are evaluated by a discrete loop over the data pairs in the file.