# Advanced Methods in Biostatistics

STAT 438 Winter 2022 (1221)<sup>1</sup>

Cameron Roopnarine<sup>2</sup>

Yeying Zhu<sup>3</sup>

11th January 2022

¹Online Course until January 27<sup>th</sup>, 2022 ²™EXer

<sup>&</sup>lt;sup>3</sup>Instructor

# **Contents**

| 1 |     | oduction                        | 2  |
|---|-----|---------------------------------|----|
|   | 1.1 | Experimental Studies            | 3  |
|   |     | Observational Studies           | 3  |
|   |     | 1.2.1 Cross-sectional Studies   | 4  |
|   |     | 1.2.2 Cohort Studies            | 4  |
|   |     | 1.2.3 Case-control Studies      | 5  |
|   | 1.3 | Relative Risk                   | 5  |
|   | 1.4 | Excess Risk                     | 7  |
|   | 1.5 | Odds Ratio                      | 9  |
|   | 1.6 | Comments                        | 10 |
|   | 1.7 | Regression Models               | 10 |
|   |     | 1.7.1 Linear Model              | 11 |
|   |     | 1.7.2 Log-Linear Model          | 11 |
|   |     | 1.7.3 Probit Model              |    |
|   |     | 1.7.4 Logistic Regression Model | 11 |

# Chapter 1

# Introduction

WEEK 1
5th to 7th January

# **About this Course**

Three topics covered in this course:

- · Causal Inference.
- Missing Data.
- Measurement Error.

# **Basics in Biostatistics**

# Review:

- Experimental Studies vs. Observational Studies.
- Statistics of Interest.
- Using Regression Models.
- Association vs. Causation.

# **Research Questions**

Questions to ask when studying a disease:

- Which factors are associated with a given disease? These so-called <u>risk factors</u> are sometimes referred to as predictors, explanatory variables, covariates, independent variables, or exposure variables, etc.
- Which factors are associated with the duration of a given disease?
- Correlation (Association) does not imply causation.
- Ultimately, we want to ask: which factors cause the disease, or which factors determine the duration of the disease?

# **Types of Studies**

- Experimental studies.
- · Observational studies.

# 1.1 Experimental Studies

- In an experimental study, the investigator can manipulate the main (risk) factor of interest, while controlling for other factors.
- In a randomized experimental study, such as a clinical trial, eligible people are randomly assigned to one of two or more groups. One group receives the treatment (such as a new drug) while the control group receives nothing or an inactive placebo.
- Due to randomization, the investigator can control for both known and unknown factors, while investigating, typically, a treatment comparison.

#### **Randomization and Causal Inference:**

- Randomization is the perfect/golden design for causal inference.
- Random assignment of treatment (exposure) ensures balance across study arms with respect to observed and unobserved risk factors.
- Direct comparisons between treatment groups can be made.
- Any difference can be attributed to the causal effect of treatment.
- Randomization is not always feasible due to ethical/economic reasons.
- Even the treatment is randomized, the participant may not comply with the assigned treatment: compliance issue.

# 1.2 Observational Studies

- These studies are typically based on sampling populations with subsequent measurement of various factors
  of interest. In this setting, we cannot even take advantage of a naturally occurring experiment that changed
  risk factor status conveniently.
- It is sometimes useful to use these studies to look at the natural history of a disease, but any attempt to identify causality between a risk factor and outcome must be done with great caution.
- There is no experimental setting, as study participants typically self-reflect their exposure categories. Nevertheless, in large part due to ethics, such studies are most often to what we have access in Biostatistics.

# **Examples of Observational Studies**

1. - Risk factor: cigarette smoking.

- Outcome: bladder cancer.

2. - Risk factor: distance of home from hazardous waste site.

- Outcome: respiratory disease.

• Three most popular observational studies:

- 1. Cross-sectional studies.
- 2. Cohort studies.
- 3. Case-control studies.
- No control over which subjects have the exposure and which do not.
- Exposed and Unexposed groups may be quite different with respect to other subject characteristics.
- Differences in the outcome are not only due to the (risk) factor of interest, but also because of the masking effect of other covariates (confounders).

# **Confounding Issue**



# **Another Example of Confounding**



#### 1.2.1 Cross-sectional Studies

- Individuals are selected from the target population and their status with respect to the risk factor and the disease status is ascertained at the same time.
- The data represents a snapshot view of the relation between the risk factor and the event occurrence.
- Surveys are often cross-section in nature where associations are of interest and less priority is given to establishing causation.
- Advantage: cross-sectional studies are typically short.
- Disadvantage: a serious problem with such cross-sectional studies is the inability to determine whether the disease outcome or the risk factor occurred first, again this makes causal inferences more problematic or almost impossible.

#### 1.2.2 Cohort Studies

- Cohort studies typically include obtaining two groups from a pre-determined # of individuals, one possessing and the other not possessing a risk factor of interest. Subsequent counts of cases (and non-cases) of a disease of interest are then recorded.
- Much more often than not, cohort studies are prospective, but there are retrospective (or historical) cohort studies as well.

Table representing simple cohort study with sampling based on risk-factor status:

|                | Disease       |                |       |
|----------------|---------------|----------------|-------|
| Risk Factor    | Present $(D)$ | Absent $(D^c)$ | Total |
| Present (E)    | a             | b              | $n_1$ |
| Absent $(E^c)$ | c             | d              | $n_2$ |

- $a \sim \text{BIN}(n_1, \mathbb{P}(D \mid E))$ .
- $c \sim \text{BIN}(n_2, \mathbb{P}(D \mid E^c))$ .

# 1.2.3 Case-control Studies

- In case-control studies, the direction of sampling differs from that of cohort studies. Specifically, the investigator selects a pre-determined # of disease cases and non-cases (i.e., controls), then looks retrospectively to see the # of individuals with and without the risk factor in each group.
- Case-control studies are retrospective studies.

Table representing simple case-control study with sampling based on disease status:

|             | Disease |        |
|-------------|---------|--------|
| Risk Factor | Present | Absent |
| Present     | a       | b      |
| Absent      | c       | d      |
| Total       | $n_1$   | $n_2$  |

- $a \sim \text{BIN}(n_1, \mathbb{P}(E \mid D))$ .
- $b \sim \text{BIN}(n_2, \mathbb{P}(E \mid D^c))$ .

Week 2

10th to 14th January

# **Statistics of Interest**

- · Relative Risk.
- · Excess Risk.
- Odds Ratio.
- Others: such as attributable risk, hazard ratio.

# 1.3 Relative Risk

The **relative risk** (RR) of an outcome (e.g., disease) D associated with a binary risk factor E is:

$$RR = \frac{\mathbb{P}(D \mid E)}{\mathbb{P}(D \mid E^c)},$$

where  $0 \leq RR < \infty$ .

#### Remarks:

(1) The upper limit in practice typically will have a finite constraint. Noting that  $\mathbb{P}(D \mid E) \leq 1$ , we have

$$\mathrm{RR} \leq \frac{1}{\mathbb{P}(D \mid E^c)} < \infty,$$

assuming  $\mathbb{P}(D \mid E^c) \neq 0$ .

(2) If there exists absolutely no association between D and E, this results in RR = 1, that is, this will

happen when  $\mathbb{P}(D \mid E) = \mathbb{P}(D \mid E^c)$ .

- (3) If RR > 1, there is greater risk or probability of D when E is present versus absent.
- (4) If RR < 1, there is lower risk or probability of D when E is present versus absent.

#### **RR Calculation**

• Recall the table for a cohort study.

|                                 | Disease     |                                    |             |
|---------------------------------|-------------|------------------------------------|-------------|
| Risk Factor                     | Present (D) | Absent $(D^c)$                     | Total       |
| Present $(E)$<br>Absent $(E^c)$ | $a \\ c$    | $egin{array}{c} b \ d \end{array}$ | $n_1$ $n_2$ |

Then,

$$\widehat{RR} = \frac{a/(a+b)}{c/(c+d)} = \frac{a/n_1}{c/n_2}.$$

• To make inference, we have, approximately,

$$\mathsf{log}(\widehat{RR}) \sim \mathcal{N}\Big(\mathsf{log}(RR), \mathsf{Var}\big(\mathsf{log}(RR)\big)\Big),$$

where

$$\mathsf{Var} \big( \mathsf{log}(\mathsf{RR}) \big) \approx \frac{1}{a} - \frac{1}{a+b} + \frac{1}{c} - \frac{1}{c+d}.$$

• The (approximate) 95% confidence interval for log(RR) is

$$\log(\widehat{RR}) \pm 1.96 \sqrt{\widehat{\mathsf{Var}} \big( \log(\widehat{RR}) \big)}.$$

• The (approximate) 95% confidence interval for RR is:

$$\exp\Bigl\{\log(\widehat{\mathrm{RR}}) \pm 1.96\sqrt{\widehat{\mathsf{Var}}\bigl(\log(\widehat{\mathrm{RR}})\bigr)}\,\Bigr\}$$

For RR, we have

$$\mathsf{Var}\big(\mathsf{log}(\widehat{\mathsf{RR}})\big) \approx \frac{1}{a} - \frac{1}{a+b} + \frac{1}{c} - \frac{1}{c+d}.$$

**Proof**: Define  $\hat{p}_a = \frac{a}{n_1}$  and  $\hat{p}_c = \frac{c}{n_2}$ . Assuming the exposed and unexposed groups are independent, we have

$$\begin{split} \mathsf{Var} \big( \mathsf{log}(\widehat{\mathsf{RR}}) \big) &= \mathsf{Var} \big( \mathsf{log}(\hat{p}_a) - \mathsf{log}(\hat{p}_c) \big) \\ &= \mathsf{Var} \big( \mathsf{log}(\hat{p}_a) \big) - \mathsf{Var} \big( \mathsf{log}(\hat{p}_c) \big). \end{split}$$

Using, Taylor's approximation, we have

$$\begin{split} \log(\hat{p}_a) &\approx \log(p_a) + \frac{\mathrm{d}\log(p_a)}{\mathrm{d}p_a} (\hat{p}_a - p_a) \\ &= \log(p_a) + \frac{(\hat{p}_a - p_a)}{p_a}. \end{split}$$

Since  $a \sim BIN(n_1, p_a)$ ,

$$\begin{split} \mathsf{Var} \big( \mathsf{log}(\hat{p}_a) \big) &\approx \frac{\mathsf{Var}(\hat{p}_a)}{p_a^2} \\ &= \frac{\mathsf{Var} \Big( \frac{a}{n_1} \Big)}{p_a^2} \\ &= \frac{n_1 p_a (1 - p_a)}{n_1^2 p_a^2} \\ &= \frac{1 - p_a}{n_1 p_a}. \end{split}$$

Therefore,

$$\widehat{\mathsf{Var}}\big(\mathsf{log}(\hat{p}_a)\big) = \frac{1 - \hat{p}_a}{n_1 \hat{p}_a} = \frac{b}{a(a+b)}.$$

Similarly,

$$\widehat{\mathsf{Var}} \big( \mathsf{log}(\hat{p}_c) \big) = \frac{d}{c(c+d)}.$$

Therefore,

$$\begin{split} \widehat{\mathsf{Var}} \Big( \mathsf{log}(\widehat{\mathsf{RR}}) \Big) &= \frac{b}{a(a+b)} + \frac{d}{c(c+d)} \\ &= \frac{1}{a} - \frac{1}{a+b} + \frac{1}{c} - \frac{1}{c+d}. \end{split}$$

#### Remarks:

- (1) Relative risk (or sometimes called **risk ratio**) is a common measure of the disease-exposure association from cohort studies.
- (2) In general, the relative risk is *not* symmetric in the role of D and E, that is,

$$\frac{\mathbb{P}(D \mid E)}{\mathbb{P}(D \mid E^c)} \neq \frac{\mathbb{P}(E \mid D)}{\mathbb{P}(E \mid D^c)}.$$

# 1.4 Excess Risk

While RR is a relative measure of risk, it is sometimes of interest to look at absolute measures of risk. One such measure is *excess risk*.

The excess risk (ER) is:

$$ER = \mathbb{P}(D \mid E) - \mathbb{P}(D \mid E^c),$$

where  $-1 \le ER \le 1$ .

#### Remark:

- (1) ER = 0 means no excess risk (null value).
- (2) ER > 0 means greater risk of D for E versus  $E^c$ .
- (3) ER < 0 means lower risk of D for E versus  $E^c$ .

# **ER Calculation**

• Recall the table for a cohort study.

|                | Disease     |                |       |
|----------------|-------------|----------------|-------|
| Risk Factor    | Present (D) | Absent $(D^c)$ | Total |
| Present (E)    | a           | b              | $n_1$ |
| Absent $(E^c)$ | c           | a              | $n_2$ |

Then,

$$\widehat{\text{ER}} = \frac{a}{a+b} - \frac{c}{c+d} = \hat{p}_a - \hat{p}_c.$$

• To make inference, we have, approximately,

$$\widehat{ER} \sim \mathcal{N}(ER, Var(\widehat{ER})),$$

where

$$\operatorname{Var}(\widehat{\operatorname{ER}}) \approx \frac{ab}{(a+b)^3} + \frac{cd}{(c+d)^3}.$$

• The (approximate) 95% confidence interval for ER is:

$$\widehat{\rm ER} \pm 1.96 \sqrt{\widehat{\rm Var}\big(\widehat{\rm ER}\big)}.$$

For ER, we have

$$\mathsf{Var}(\widehat{\mathsf{ER}}) \approx \frac{ab}{(a+b)^3} + \frac{cd}{(c+d)^3}.$$

**Proof**: Define  $\hat{p}_a = \frac{a}{n_1}$  and  $\hat{p}_c = \frac{c}{n_2}$ . Note that  $a \sim \text{BIN}(n_1, p_a)$  and  $c \sim \text{BIN}(n_2, p_c)$ . Hence,

$$\begin{split} \operatorname{Var}(\widehat{\operatorname{ER}}) &= \operatorname{Var}(\hat{p}_a - \hat{p}_c) \\ &= \operatorname{Var}(\hat{p}_a) + \operatorname{Var}(\hat{p}_c) \\ &= \operatorname{Var}\left(\frac{a}{n_1}\right) + \operatorname{Var}\left(\frac{c}{n_2}\right) \\ &= \frac{p_a(1-p_a)}{n_1} + \frac{p_c(1-p_c)}{n_2}. \end{split}$$

Therefore,

$$\begin{split} \widehat{\mathsf{Var}}(\widehat{\mathsf{ER}}) &= \frac{\hat{p}_a(1-\hat{p}_a)}{n_1} + \frac{\hat{p}_c(1-\hat{p}_c)}{n_2} \\ &= \frac{ab}{(a+b)^3} + \frac{cd}{(c+d)^3}. \end{split}$$

# 1.5 Odds Ratio

The **odds** of disease for the exposed group is

$$\frac{\mathbb{P}(D \mid E)}{\mathbb{P}(D^c \mid E)} = \frac{\mathbb{P}(D \mid E)}{1 - \mathbb{P}(D \mid E)}.$$

The **odds** of disease for the *unexposed group* is

$$\frac{\mathbb{P}(D \mid E^c)}{\mathbb{P}(D^c \mid E^c)} = \frac{\mathbb{P}(D \mid E^c)}{1 - \mathbb{P}(D \mid E^c)}.$$

The odds ratio for measuring the association of disease with the exposed versus unexposed groups is

$$\mathrm{OR} = \frac{\mathbb{P}(D\mid E)/\mathbb{P}(D^c\mid E)}{\mathbb{P}(D\mid E^c)/\mathbb{P}(D^c\mid E^c)} = \frac{\mathbb{P}(D\mid E)/[1-\mathbb{P}(D\mid E)]}{\mathbb{P}(D\mid E^c)/[1-\mathbb{P}(D\mid E^c)]}.$$

#### Remarks:

- OR = 1 means no association between D and E.
- OR > 1 means greater odds of disease when E is present.
- OR < 1 means lower odds of disease when E is present.

#### **OR Calculation**

• For general study with binary disease and exposure (risk factor):

|                | Disease       |                |
|----------------|---------------|----------------|
| Risk Factor    | Present $(D)$ | Absent $(D^c)$ |
| Present (E)    | a             | b              |
| Absent $(E^c)$ | c             | d              |

Here,

$$\widehat{\mathrm{OR}} = \frac{\mathbb{P}(D \mid E) / \mathbb{P}(D^c \mid E)}{\mathbb{P}(D \mid E^c) / \mathbb{P}(D^c \mid E^c)} = \frac{\left(\frac{a}{a+b}\right) / \left(\frac{b}{a+b}\right)}{\left(\frac{c}{c+d}\right) / \left(\frac{d}{c+d}\right)} = \frac{ad}{bc}.$$

• To make inference, we have approximately,

$$\log(\widehat{OR}) \sim \mathcal{N}(\log(OR), \mathsf{Var}(\log(\widehat{OR}))),$$

where

$$\operatorname{Var}\left(\operatorname{log}(\widehat{\operatorname{OR}})\right) \approx \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}.$$

Remark: OR is symmetric in roles of D and E:

$$\frac{\mathbb{P}(E\mid D)/\,\mathbb{P}(E^c\mid D)}{\mathbb{P}(E\mid D^c)/\,\mathbb{P}(E^c\mid D^c)} = \frac{\left(\frac{a}{a+c}\right)/\left(\frac{c}{a+c}\right)}{\left(\frac{b}{b+d}\right)/\left(\frac{d}{b+d}\right)} = \frac{ad}{bc}.$$

Therefore, the OR for D associated with E is equal to the OR for E associated with D. It is this symmetry that makes OR a popular "risk" measure for case-control studies, where sampling is done on disease status, not risk factor status.

# 1.6 Comments

The various types of probabilities that may be of interest:

- Joint probabilities:  $\mathbb{P}(D, E)$ ,  $\mathbb{P}(D, E^c)$ ,  $\mathbb{P}(D^c, E)$ , and  $\mathbb{P}(D^c, E^c)$ .
- Marginal probabilities:  $\mathbb{P}(D)$ ,  $\mathbb{P}(E)$ ,  $\mathbb{P}(D^c)$ , and  $\mathbb{P}(E^c)$ .
- Conditional probabilities:  $\mathbb{P}(D \mid E)$ ,  $\mathbb{P}(D \mid E^c)$ ,  $\mathbb{P}(E \mid D)$ , and  $\mathbb{P}(E \mid D^c)$ .

# Cross-sectional Study:

• All the above probabilities can be estimated by the observed proportions if the sampling is simple random sampling.

#### **Cohort Study:**

- $\mathbb{P}(D \mid E)$ ,  $\mathbb{P}(D^c \mid E)$ ,  $\mathbb{P}(D \mid E^c)$ , and  $\mathbb{P}(D^c \mid E^c)$  can be estimated.
- Marginal probabilities  $\mathbb{P}(D)$ ,  $\mathbb{P}(E)$ , and joint probabilities such as  $\mathbb{P}(D,E)$  cannot be estimated.
- RR, ER, and OR can be estimated.

# Case-control Study:

- Only  $\mathbb{P}(E \mid D)$ ,  $\mathbb{P}(E^c \mid D)$ ,  $\mathbb{P}(E^c \mid D^c)$ , and  $\mathbb{P}(E \mid D^c)$  can be estimated.
- RR and ER cannot be estimated.
- OR can be estimated. Furthermore, RR  $\approx$  OR when the disease is rare.

If the disease is rare in a case-control study (i.e.,  $\mathbb{P}(D) \approx 0$ ), we have RR  $\approx$  OR.

**Proof**:

$$\begin{split} \text{OR} &= \frac{\mathbb{P}(D \mid E)/\mathbb{P}(D^c \mid E)}{\mathbb{P}(D \mid E^c)/\mathbb{P}(D^c \mid E^c)} \\ &= \frac{\mathbb{P}(D \mid E)}{\mathbb{P}(D \mid E^c)} \underbrace{\frac{\mathbb{P}(D^c \mid E^c)}{\mathbb{P}(D^c \mid E)}}_{\approx 1} \\ &\approx \frac{\mathbb{P}(D \mid E)}{\mathbb{P}(D \mid E^c)} \\ &= \text{RR}. \end{split}$$

# 1.7 Regression Models

- · Linear model.
- · Log-linear model.
- Probit model.
- Logistic regression model.

#### Notation:

- *X*: exposure variable of interest.
- *D*: disease status.
- $P_x$ :  $\mathbb{P}(D=1 \mid X=x)$ , that is, how the risk of disease changes according to the exposure variable.

# 1.7.1 Linear Model

$$P_x = \mathbb{P}(D = 1 \mid X = x) = \alpha + \beta x.$$

- $\alpha = P_{x=0}$ : the baseline risk.
- $\beta = P_{x+1} P_x$ : excess risk with 1 unit increase in exposure.

#### Drawbacks:

- (1) Possible to produce  $\hat{P}_x < 0$  or  $\hat{P}_x > 1$ .
- (2) Can't be directly applied to case-control data.

# 1.7.2 Log-Linear Model

$$\log(P_x) = \log(\mathbb{P}(D=1 \mid X=x)) = \alpha + \beta x.$$

- $\alpha = \log(P_{x=0})$ : the log baseline risk.
- $\beta$ : log relative risk associated with 1 unit increase in exposure.

#### Drawbacks:

- (1) Possible to produce  $\hat{P}_x > 1$ .
- (2) Can't be directly applied to case-control data.

# 1.7.3 Probit Model

$$P_x = \mathbb{P}(D = 1 \mid X = x) = \Phi(\alpha + \beta x),$$

where  $\Phi(u)$  is the cdf of a standard normal distribution.

- $\alpha = \Phi^{-1}(P_{x=0})$ .
- $\beta > 0$ : the risk increases as X increases.  $\beta < 0$ : the risk increases as X decreases.

#### Drawbacks:

- (1) There is no natural interpretation of  $\alpha$  and  $\alpha$  in terms of association.
- (2) Can't be directly applied to case-control data.

# 1.7.4 Logistic Regression Model

$$P_x = \mathbb{P}(D = 1 \mid X = x) = \frac{1}{1 + \exp\{-(\alpha + \beta x)\}}.$$

- $\alpha = \log \left( \frac{P_{x=0}}{1 P_{x=0}} \right)$ : the log odds of disease at baseline.
- $\beta$ : log odds ratio associated with 1 unit increase in exposure.

# Advantages:

- (1)  $0 < \hat{P}_x < 1$ .
- (2)  $\exp\{\beta\}$ : the odds ratio, which is symmetric with respect to D and E if both are binary.
- (3) Can be applied to case-control data.

# Remarks:

- (1) "Correlation does not imply causation."
- (2) Regression models tell us correlational/associational relationship between the exposure and the disease outcome
- (3) Conclusion: We need better tools to define causality
- (4) Solution: Potential outcomes framework (Chapter 2).