"Beating" Fitts' Law

Jaime Ruiz CS 349 July 22, 2009

Fitts' Law

- Published by Paul Fitts in 1954
- Most robust and highly adopted models of human movement.

Fitts' Law

$$MT = a + b \log_2 \left(\frac{A}{W} + 1\right)$$

- a and b are empirically defined constants
- A = Amplitude of movement (distance between start point and center of target)
- W = Constraining size of target

CS 349

Fitts' Law

$$MT = a + b \log_2 \left(\frac{A}{W} + 1\right)$$

- a and b are empiri
- A = Amplitude of r between start poir

 Also Known as Index of Difficulty (ID)

• W = Constraining size of target

CS 349

Figure 11. Survey of Fitts' law performance characteristics from six studies on user input devices.

Device	Study	Regression Coefficient ^a					
		Intercept, a (ms)	Slope, b (ms/bit)	IP(bits/s)	r	Errors (%)	Comments
Eye tracker ^b	Ware & Mikaelian (1987)	680	73	13.7		8.5	Hardware button
Foot pedal	Drury (1975)	187	85	11.8	.97	< 3.3	Experiment 2
Hand	Fitts (1954)	12.8	94.7	10.6	.98	1.8	Tapping, 1-oz stylus
Mouse	Card, English, & Burr (1978)	1030	96	10.4	.91	5	,
Eye trackerb	Ware & Mikaelian (1987)	790	97	10.3		22	On-screen button
Eye trackerb	Ware & Mikaelian (1987)	680	107	9.3	_	12	Dwell time
Helmet sight	Jagacinski & Monk (1985)	-268	1 9 9	5.0	.99	0	
Joystick	Jagacinski & Monk (1985)	-303	1 9 9	5.0	.99	0	Isometric; position contr
Joystick	Card, English, & Burr (1978)	990	220	4.5	.94	12	Isometric; velocity contro
Joystick	Kantowitz & Elvers (1988)	-328	297	3.4	.62	25	Isometric, position, high
Joystick	Kantowitz & Elvers (1988)	- 44 7	297	3.4	.76	25	Isometric, position, low
Trackball	Epps (1986)	282	347	2.9	.93	0	-
Mouse	Epps (1986)	108	392	2.6	.83	0	
Touchpad	Epps (1986)	181	434	2.3	.74	0	Absolute positioning
Joystick	Kantowitz & Elvers (1988)	-8 4 6	44 9	2.2	.84	25	Isometric, velocity, high
Joystick	Kantowitz & Elvers (1988)	-880	44 9	2.2	.85	25	Isometric, velocity, low
Touchpad	Epps (1986)	-194	609	1.6	.70	0	Relative positioning
Joystick	Epps (1986)	 58 7	861	1.2	.81	0	Isometric; velocity contro
Joystick	Epps (1986)	-560	919	1.1	.86	0	Displacement; velocity co

 $^{^{}a}MT = a + b ID$; IP = 1/b. $^{b}Data$ inferred from plot. $^{c}Provided$ for comparison purposes only.

• Calculate movement time given a=1030, b=96

CS 349

Calculate movement time given a=1030, b=96

• Calculate movement time given a=1030, b=96

Calculate movement time given a=1030, b=96

$$MT = 1030 + 96 \log_{2} \left(\frac{168}{24} + 1 \right)$$

 $MT = 1030 + 96 \log_{2} (8) = 1318 \text{ ms}$

Adaptations of Fitts' Law

Steering Law

$$MT = a + b \left(\frac{A}{W}\right)$$

W = height/width of tunnel

A = amplitude/distance

Is it possible to "Beat" Fitts' Law?

$$MT = a + b \log_2 \left(\frac{A}{W} + 1\right)$$

Is it possible to "Beat" Fitts' Law?

$$MT = a + b \log_2 \left(\frac{A}{W} + 1\right)$$

- Decrease distance to target
- Increase the width of target
- Or both

Drag & Pop (Baudisch et al. 2003)

Minimize distance by bringing target closer

Object Pointing (Guiard et al 2004)

Have mouse skip empty space

Bubble Cursors (Grossman and Balakrishnan 2005)

Video

Expanding Widgets

Predicting Endpoint

- Use laws of motion to try to predict endpoint
 - i.e. Minimum Jerk Law
- Initial algorithm
 - 40% correct
 - 40% +/- 1 target
 - 20% way off

Expanding Predictive Endpoint Cued Tablet Keyboard (EXPECT-K)

 The first virtual keyboard to incorporate endpoint prediction, target expansion and visual cues to speed text entry on Tablet PCs.

Visual Cues

- •Keys highlighted according to tetra-gram model representing adjacent letter frequencies.
- ■The four keys representing the most frequent tetra-grams are highlighted
- ■Tetra-gram model is updated continuously allowing the model to adjust to the individual's language usage.

Expanding Keys

- ■Expansion of the user's intended key is made possible by a realtime implementation of the Lank et al. endpoint prediction algorithm.
- ■The result from the endpoint predictor, in conjunction with the tetra-gram letter frequencies, is used to predict which key should be expanded.

VIDEO

Participate

- 30-60 minutes
- Some pay \$10
- Need lots of people between now and September.
- If interested sign the sheet being passed around or send an email to jgruiz@uwaterloo.ca