Compression Fundamentals

- Lossless compression
 - Information and entropy
 - Noiseless source coding theorem
 - Huffman code
- Lossy compression
 - Rate-distortion theory
 - Noisy source coding theorem
 - Quantization
 - Lloyd-Max quantizer

How does Compression Work?

- Exploit statistical redundancy
 - Take advantage of patterns in the signal
 - Describe frequently occurring events efficiently
 - Lossless coding: only statistical redundancy
- Introduce acceptable deviations
 - Omit information that the humans cannot perceive
 - Match the signal resolution (in space, time, amplitude) to the application
 - Lossy coding: exploit both visual <u>and</u> statistical redundancy

Lossless Compression in Lossy Compression Systems

 Almost every lossy compression system contains a lossless compression system

Lossy compression system

 We will discuss the basics of lossless compression first, then move on to lossy compression

Example: 20 Questions

- Alice thinks of an outcome (from a finite set), but does not disclose her selection.
- Bob asks a series of yes-no questions to uniquely determine the outcome chosen. The goal of the game is to ask as few questions as possible on average.
- Our goal: Design the best strategy for Bob.

Example: 20 Questions

 Observation: The collection of questions and answers yield a binary code for each outcome.

Which strategy (=code) is better?

Fixed Length Codes

- Average description length for K outcomes $l_{av} = \log_2 K$
- Optimum for equally likely outcomes
- Verify by modifying tree

Variable Length Codes

- If outcomes are NOT equally probable:
 - Use shorter descriptions for likely outcomes
 - Use longer descriptions for less likely outcomes
- Intuition:
 - Optimum balanced code trees, i.e., with equally likely outcomes, can be pruned to yield unbalanced trees with unequal probabilities.
 - The unbalanced code trees such obtained are also optimum.
 - Hence, an outcome of probability p should require about

$$\log_2\left(\frac{1}{p}\right)$$
 bits

Entropy of a Random Variable

Consider a discrete, finite-alphabet random variable X

$$\mathcal{A}_X = \{\alpha_0, \alpha_1, \dots, \alpha_{K-1}\}$$

$$f_X(x) = P(X = x) \quad \forall x \in \mathcal{A}_X$$

"Information" associated with the event X=x

$$h_X(x) = -\log_2 f_X(x)$$

"Entropy of X" is the expected value of that information

$$H(X) = E\{h_X(X)\} = -\sum_{x \in \mathcal{A}_X} f_X(x) \log_2 f_X(x)$$

Unit: bits

Information and Entropy: Properties

- Information $h_X(x) \ge 0$
- Information $h_X(x)$ strictly increases with decreasing probability $f_X(x)$
- Boundedness of entropy

$$0 \leq H(X) \leq \log_2\left(|\mathcal{A}_X|\right)$$
 equality if only one outcome can occur equally likely

Very likely and very unlikely events do not substantially change entropy

$$-p \log_2 p \to 0$$
 for $p \to 0$ or $p \to 1$

Example: Binary Random Variable

$$H(X) = -p \log_2 p - (1-p) \log_2 (1-p)$$

Entropy and Bit-Rate

- Consider IID random process $\{X_n\}$ (or "source") where each sample X_n (or "symbol") possesses identical entropy H(X)
- H(X) is called "entropy rate" of the random process.
- Noiseless Source Coding Theorem (Shannon, 1948):
 - The entropy H(X) is a lower bound for the average word length R of a decodable variable-length code for the symbols.
 - Conversely, the average word length R can approach H(X), if sufficiently large blocks of symbols are encoded jointly.
- Redundancy of a code: $\rho = R H(X) \ge 0$

Variable Length Codes

- Given IID random process $\{X_n\}$ with alphabet A_X and PMF $f_X(x)$
- Task: assign a distinct code word, c_x , to each element, $x \in A_x$, where c_x is a string of $||c_x||$ bits, such that each symbol x_n can be determined from a sequence of concatenated codewords c_x .
- Codes with the above property are said to be "uniquely decodable"
- Prefix codes
 - No code word is a prefix of any other codeword
 - Uniquely decodable, symbol by symbol, in natural order 0, 1, 2, . . . , n, . . .

Binary Trees and Prefix Codes

 Each binary tree can be converted into a prefix code by traversing the tree from root to leaves.

 Each prefix code corresponding to a binary tree meet McMillan condition with equality

$$\sum_{x \in \mathsf{A}_X} 2^{-\|c_x\|} = 1$$

Binary Trees and Prefix Codes

- Augmenting binary tree by two new nodes does not change McMillan sum.
- Pruning binary tree does not change McMillan sum.

 McMilllan sum for simplest binary tree

Instantaneous Variable Length Encoding without Redundancy

A code without redundancy, i.e.,

$$R = H(X)$$

requires all individual code word lengths

$$l_{\alpha_{k}} = -\log_{2} f_{X}(\alpha_{k})$$

 All probabilities would have to be binary fractions:

$$f_{x}(\alpha_{\nu}) = 2^{-l_{\alpha_{k}}}$$

Example

α_{i}	$P(\alpha_i)$	redundant code	optimum code
α_0	0.500	00	0
α_1	0.250	01	10
α_2	0.125	10	110
α_3	0.125	11	111

$$H(X) = 1.75$$
 bits
 $R = 1.75$ bits
 $\rho = 0$

Huffman Code

- Design algorithm for variable length codes proposed by Huffman (1952) always finds a code with minimum redundancy.
- Obtain code tree as follows:
 - 1 Pick the two symbols with lowest probabilities and merge them into a new auxiliary symbol.
 - 2 Calculate the probability of the auxiliary symbol.
 - 3 If more than one symbol remains, repeat steps 1 and 2 for the new auxiliary alphabet.
 - 4 Convert the code tree into a prefix code.

Example: Huffman Code

Redundancy of Prefix Code for General Distribution

- Huffman code redundancy 0 ≤ ρ < 1 bit/symbol</p>
- **Theorem:** For any distribution f_X , a prefix code may be found, whose rate R satisfies

$$H(X) \le R < H(X) + 1$$

- Proof:
 - Left hand inequality: Shannon's noiseless coding theorem
 - Right hand inequality:

Choose code word lengths
$$\|c_x\| = \lceil -\log_2 f_X(x) \rceil$$

Resulting rate $R = \sum_{x \in A_X} f_X(x) \lceil -\log_2 f_X(x) \rceil$
 $< \sum_{x \in A_X} f_X(x) (1 - \log_2 f_X(x))$
 $= H(X) + 1$

Lossy Compression

 Lower the bit-rate R by allowing some acceptable distortion D of the signal

Rate Distortion Theory

 Rate distortion theory calculates the minimum transmission bit-rate R for a required picture quality

 Results of rate distortion theory are obtained without consideration of a specific coding method

Distortion

- Symbol (signal, image . . .) x sent, \hat{x} received
- Single-letter distortion measure:

$$\rho(x, \hat{x}) \ge 0$$

$$\rho(x, \hat{x}) = 0 \text{ for } x = \hat{x}$$

Average distortion:

$$d(x,\hat{x}) = E\left\{\rho(x,\hat{x})\right\} = \sum_{x} \sum_{\hat{x}} f_{X,\hat{X}}(x,\hat{x}) \rho(x,\hat{x})$$

• Distortion criterion: $|d(x,\hat{x}) \leq D|$

$$d(x,\hat{x}) \leq D$$

Maximum permissible average distortion

Joint and Conditional Entropy

Consider two discrete finite-alphabet r.v. X and Y

$$H(X|Y) = E\left[-\log_2 f_{X|Y}(x,y)\right] = -\sum_{y} \sum_{x} f_{X,Y}(x,y)\log_2 f_{X|Y}(x,y)$$
$$= -\sum_{y} f_{Y}(y)\sum_{x} f_{X|Y}(x,y)\log_2 f_{X|Y}(x,y)$$

- Conditional entropy H(X|Y) is average additional information, if Y is already known
- Joint entropy: $H(X,Y) = E\left[-\log_2 f_{X,Y}(X,Y)\right]$ $= E\left[-\log_2\left(f_Y(y)f_{X|Y}(X,Y)\right)\right]$ $= E\left[-\log_2 f_Y(y)\right] + E\left[-\log_2 f_{X|Y}(X,Y)\right]$ = H(Y) + H(X|Y)

Mutual Information

- "Mutual information" is the average information that random variables X and Y convey about each other
 - Reduction in uncertainty about x, if y is observed
 - Reduction in uncertainty about y, if x is observed

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

$$= \sum_{x} \sum_{y} f_{X,Y}(x,y) \log_{2} \frac{f_{X,Y}(x,y)}{f_{X}(x)f_{Y}(y)}$$

Properties

$$0 \le I(X;Y) = I(Y;X)$$
$$I(X;Y) \le H(X)$$
$$I(X;Y) \le H(Y)$$

Rate Distortion Function

Definition:

$$R(D) = \inf_{f_{\hat{X}|X}: d(x,\hat{x}) \le D} \{I(X;\hat{X})\}$$

Shannon's Noisy Source Coding Theorem:

For a given maximum average distortion D, the rate distortion function R(D) is the (achievable) lower bound for the transmission bit-rate.

- R(D) is continuous, monotonically decreasing for R>0 and convex
- Equivalently use distortion-rate function D(R)

Extension to Continuous Random Variables

Differential entropy

$$h(X) = -E\left\{\log_2 f_X(X)\right\} = -\int_x f_X(x)\log_2 f_X(x)dx$$

Differential conditional entropy

$$h(X|Y) = -E\{\log_2 f_{X|Y}(X,Y)\} = -\iint_{x,y} f_{X,Y}(x,y)\log_2 f_{X|Y}(x,y)dxdy$$

Mutual information

$$|I(X;Y) = h(X) - h(X|Y) = h(Y) - h(Y|X)|$$

Rate distortion function:

$$R(D) = \inf_{f_{\hat{X}|X}: d(x,\hat{x}) \le D} \{I(X;\hat{X})\}$$

Shannon Lower Bound

It can be shown that $h(X - \hat{X} \mid \hat{X}) = h(X \mid \hat{X})$

Thus
$$R(D) = \inf_{d \le D} \{h(X) - h(X \mid \hat{X})\}$$
$$= h(X) - \sup_{d \le D} \{h(X \mid \hat{X})\}$$
$$= h(X) - \sup_{d \le D} \{h(X - \hat{X} \mid \hat{X})\}$$

- Ideally, the source coder would introduce errors $x \hat{x}$ that are statistically independent from the reconstructed signal \hat{x} (not always possible!).
- Shannon lower bound:

$$R(D) \ge h(X) - \sup_{d \le D} h(X - \hat{X})$$

Shannon Lower Bound

Mean squared error distortion measure: Gaussian PDF possesses largest entropy for given variance

$$|R(D) \ge h(X) - \sup_{d \le D} h(X - \hat{X})|$$
$$= h(X) - \frac{1}{2} \log_2 2\pi eD$$

Distortion reduction by 6 dB requires 1 bit/sample

R(D) Function for a Memoryless Gaussian Source and MSE Distortion

- Gaussian source, variance σ^2
- Mean squared error

$$d = E\{(X - \hat{X})^2\} \le D$$

- Rule of thumb: 6 dB

 1 bit
- R(D) for non-Gaussian sources with the same variance σ² is always below this Gaussian R(D) curve.

Quantization

Input-output characteristic of a scalar quantizer

Lloyd-Max Scalar Quantizer

• Problem: For a signal x with given PDF $f_X(x)$ find a quantizer with M representative levels such that

$$d = MSE = E\left[\left(X - \hat{X}\right)^{2}\right] \rightarrow \min.$$

Solution: Lloyd-Max quantizer

[Lloyd, 1957][Max, 1960]

- M-1 decision thresholds exactly half-way between representative levels.
- M representative levels in the centroid of the PDF between two successive decision thresholds.
- Necessary condition

$$t_{q} = \frac{1}{2} (\hat{x}_{q-1} + \hat{x}_{q}) \quad q = 1, 2, ..., M-1$$

$$\int_{0}^{t_{q+1}} x f_{X}(x) dx$$

$$\hat{x}_{q} = \frac{\int_{t_{q+1}}^{t_{q+1}} x f_{X}(x) dx}{\int_{t_{q}}^{t_{q+1}} f_{X}(x) dx}$$

Iterative Lloyd-Max Quantizer Design

- 1. Guess initial set of representative levels \hat{x}_q q = 0, 1, 2, ..., M-1
- Calculate decision thresholds

$$t_q = \frac{1}{2} (\hat{x}_{q-1} + \hat{x}_q) \quad q = 1, 2, ..., M - 1$$

3. Calculate new representative levels

$$\hat{x}_{q} = \frac{\int_{t_{q+1}}^{t_{q+1}} x \cdot f_{X}(x) dx}{\int_{t_{q}}^{t_{q+1}} f_{X}(x) dx} \qquad q = 0, 1, \dots, M-1$$

4. Repeat 2. and 3. until no further distortion reduction

Lloyd-Max Quantizer Properties

Zero-mean quantization error

$$E\left[\left(X - \hat{X}\right)\right] = 0$$

Quantization error and reconstruction decorrelated

$$E\left[\left(X-\hat{X}\right)\hat{X}\right]=0$$

Variance subtraction property

$$\sigma_{\hat{X}}^2 = \sigma_X^2 - E \left[\left(X - \hat{X} \right)^2 \right]$$

Equal MSE contributions

$$\begin{split} &\Pr\left\{t_{i} \leq X < t_{i+1}\right\} E\bigg[\Big(X - \hat{X}\Big)^{2} \left|t_{i} \leq X < t_{i+1}\right] \\ &= \Pr\left\{t_{j} \leq X < t_{j+1}\right\} E\bigg[\Big(X - \hat{X}\Big)^{2} \left|t_{j} \leq X < t_{j+1}\right.\bigg] \quad \text{ for all } i, . \end{split}$$

Deadzone Uniform Quantizer

