

Customer Data Analysis and Predictive Modelling

Conducted by

Nazila Fazeli: M.Sc. Artificial Intelligence

Our process

GOALS

Predict Total Spending: Build a model to predict customer spending.

Predict Campaign Responses: Identify customers likely to respond positively to marketing campaigns.

Customer Segmentation: Divide customers into meaningful clusters based on behaviours.

Visualization: Develop Dashboards to visualize insights and support strategic decisions.

Dataset Overview

• Data Summary:

- Name: Customer Personality Analysis
- Rows: 2,240 » 1,946 (after cleaning).
- Variables: 27.
- Dataset Categories:
- 01

Demographic Variables:

- ID: Unique customer identifier.
- Year_Birth: Year of birth.
- Education: Education level.
- Marital_Status: Marital status.
- Income: Yearly income.
- Kidhome: Number of children.
- Teenhome: Number of teenagers.
- Dt_Customer: Date of enrollment in the program.
- Recency: Days since last purchase.

02

03

04

05

Purchase Behavior Variables:

• Spending on product categories: MntWines, MntFruits, MntMeatProducts, etc.

Marketing Interaction Variables:

• Responses to campaigns: AcceptedCmp1 to AcceptedCmp5, Response.

Channel Engagement Variables:

- Purchases through channels: NumWebPurchases, NumCatalogPurchases, NumStorePurchases.
- Visits: NumWebVisitsMonth.

Other Variables:

• Complain: Customer complaints.

Data Cleaning

Removed rows with missing Income.

Identified and removed outliers (e.g., invalid Year_Birth, extreme Income).

Applied Z-Score and IQR for final outlier removal, choosing Z-Score for better retention of data.

Data Preparation

Feature Engineering

Created new variables:

- Age (from Year_Birth)
- Total Spend
- Family Size
- Total Accepted Campaigns
- Education Level
- Relationship Status

Linear Regression: Objective

Predicting Total Spending

Used Log Total Spend for better accuracy.

Linear Regression: Correlation Analysis

Analysed correlations among independent variables, confirmed that higher correlations did not impact model accuracy, allowing inclusion of correlated variables.

Income	0.74	*** 0.72	0.72	0.7
	MotiVinus	*** 0.64		
		MetMeetProducts	0.74	*** 0.57
			NumCatalogPurchases	*** 0.6
0 00:000000 0 00:0000000 0 00:00000000 0 00:00000000	0 000000000000000000000000000000000000	00 0000 (m) 0000000000000000000000000000		NumStorePurchases

Linear Regression: Feature Selection

Used Stepwise selection and trial-and-error to find the best combination of independent variables with high R2. Settled on nine variables for optimal performance.

Number of Variables	Explanatory Variables	R^2 Model	
8	Income + Kidhome + Teenhome + MntWines + MntGoldProds + NumDealsPurchases + NumWebPurchases + NumStorePurchases	91%	
9	Income + Kidhome + Teenhome + MntWines + MntMeatProducts + MntGoldProds+ NumDealsPurchases + NumWebPurchases + NumStorePurchases	91.6%	
10	Income + Kidhome + Teenhome + MntWines + MntMeatProducts + MntGoldProds+ NumDealsPurchases + NumWebPurchases + NumCatalogPurchases + NumStorePurchases	91.8%	
12	Income + Kidhome + Teenhome + Dt_Customer + MntWines + MntMeatProducts + MntFishProducts + MntGoldProds + NumDealsPurchases + NumWebPurchases + NumCatalogPurchases + NumStorePurchases	92.1%	

Linear Regression: Evaluation

Displayed R2 values and performance results for Train and Test data, showing high accuracy (above 90%) in predicting **Total Spend**

Number of Variables	Explanatory Variables	R^2 Model	R^2 Train Model	R^2 Test
9	Income + Kidhome + Teenhome + MntWines + MntMeatProducts + MntGoldProds + NumDealsPurchases + NumWebPurchases + NumStorePurchases	91.6%	91.7%	90.9%

Logistic Regression

Attempted to model customer complaints but found insufficient data.

Created a model to predict Response to the latest campaign with good Sensitivity and Specificity.(Using 10 Variables)

Customer Segmentation

Low Spenders: Minimal activity or churn risks.

Moderate Spenders: Average engagement.

Data Visualization in Tableau

• Created various sheets for demographic and behavioral analysis:

Age, Income, Total Spend, Product Purchases, Marital Status, etc., to explore customer trends.

Conclusion

Main Findings:

- High-income customers are the main drivers of total spend across product categories.
- Linear Regression effectively predicted total spending with high accuracy (R² > 90%).
- Logistic Regression:
 - Results for predicting campaign responses were **not optimal**, as the model struggled with limited variability in campaign responses.
 - Further tuning or additional data may improve its performance.

• Clustering:

Successfully identified **three customer segments**, providing actionable insights for targeted marketing.