	H2: Theoretische distributies	
2.1 inleiding: wat is waarschijnlijkheid		
2.1.1 wiskundige waarschijnlijkheid		
th: axioma's vd waarschijnlijkheid	zei Ω = w_1 , w_2 , een verzameling mogelijke resultaten, evenementen ve experiment > voor elk evenement w is P(w) de waarschijnlijkheid > hiervoor geldt:	
afleiding uit theorema	$P(\text{niet } E) = 1 - P(E),$ > dus P(E) \leq 1	
2.1.2 objectief- propensiteit		
propensiteit	= wanneer bepaalde evenementen een zelfde kans hebben om voor te komen, zullen de resultaten van een experiment reeksen produceren die hiermee overeenkomen	
functies en waarschijnlijkheidssymmetrie	bekijk een hoek θ die 'toevallig' kan zijn > waarschijnlijkheid dat $\theta \in [80^\circ, 90^\circ]$ is dezelfde als $\theta \in [10^\circ, 20^\circ]$ > waarschijnlijkheidssymmetrie Neem nu de cosinus van deze hoeken > $\cos(80^\circ, 90^\circ)$ is 4 keer groter dan $\cos(10^\circ, 20^\circ)$ > geen symmetrie in de cosinusfunctie	
2.1.3 empirische definitie	> geen symmetric in de cosmosionette	
def: waarschijnlijkheid	Een experiment wordt N keer uitgevoerd en een bepaald resultaat A wordt in M gevallen waargenomen > als N $\to\infty$ zal de verhouding M/N een bepaalde limiet toegaan die we definiëren als waarschijnlijkheid P(A) van A dus: $\lim_{N\to\infty} \frac{n_A}{N} \equiv P(A) \qquad \qquad (n_a = M)$	
def: ensemble/collectief	= verzameling van alle N gevallen	
eigenschappen van de definitie	 de waarschijnlijkheid van een evenement is geen eigenschap vh experiment is gemeenschappelijk eigenschap van experiment en ensemble experiment moet herhaalbaar kunnen zijn onder identieke omstandigheden en met verschillende mogelijke uitkomsten 	
2.1.4 subjectieve waarschijnlijkheid		
conditionele kans P(a b)	= de waarschijnlijkheid van a op voorwaarde dat b waar is	
th: theorema van Bayes	Er geldt: $p(a b)p(b) = p(a \underbrace{\bigcap}_{\text{en}} b) = p(b a)p(a)$ dus: $p(a b) = \frac{p(b a)p(a)}{p(b)}$	
th: kan op b uit a	$p(b) = p(b a)p(a) + p(b ar{a})[1-p(a)]$ > $a ext{ betekent}^2 \text{ "niet } a \text{"}.$	

Bayesiaanse statistiek > subjectieve waarsch.	De waarschijnlijkheid dat een theorie a juist is wordt bekeken als eeb subjectieve mate van geloof > kennen we a priori als p(a)	
	Nieuwe experimentele info b gaat de mate van geloof beïnvloeden > dankzij deze kennis wordt a posteriori de waarschijnlijkheid p(a b) aangepast	
	>> voor verschillende info b kan de a posteriori waarsch. anders zijn	
probleem Bayesiaanse statistiek	de initiële, a priori, mate van geloof p(a) is gebaseerd op gokwerk of intuïtie > onwetenschappelijk en onbetrouwbaar	
2.1.5 conclusies over waarschijnlijk	neid	
conc: waarschijnlijkheid	= de limiet ve frequentie, als objectief gegeven of subjectieve graad van vertrouwen > er is een verschil tss de 'frequentistische' en 'Bayesiaanse' statistiek > voornamelijk in de interpretatie	
	2.2 theoretische waarschijnlijkheid(sverdeling)	
2.2.1 de wet van de grote getallen		
def: toevallige variabele	= een functie X die met elke uitkomst w ve experiment een reëel getal x associeert	
def: discrete variabele	= een toevallige variabele waarvoor het aantal mogelijke waarden aftelbaar is	
def: parameter ve experiment	bekijk een experiment waarin we muntstukken opgooien	
	> het aantal muntstukken is een <i>parameter</i> vh experiment	
waarschijnlijkheidsverdeling	=verdeling van alle kansen op alle verschillende mogelijke uitkomsten ve experiment	
def: kans van een gebeurtenis	de kans $p_n(X)$ dat een gebeurtenis X zich voordoet wordt behaald door hetzelfde exp. n keer te herhalen en het aantal waarnemingen $f_n(X)$ vd gebeurtenis te bepalen	
	> dan: $p_n(X) = \frac{f_n(X)}{n}$	
th: wet van de grote getallen	naarmate de grootte n vd steekproef toeneemt, neigen de waargenomen freq. naar de theoretische waarschijnlijkheid voor n $\to\infty$	
def: empirische waarschijnlijkheid	= de limiet van kans naar de oneindigheid:	
	$P(X) = \lim_{n \to \infty} \frac{f_n(X)}{n}$	
2.2.2 continue variabele		
def: continue toevallige variabele	= toevallige variabele die een continuüm van waarden kan aannemen	
def: waarschijnlijkheidsdichtheid p.d.f	Voor een continue toevallige variabele X	
F	> de waarschijkheidsdichtheid = de niet-negatieve functie $f_x(x)$ waarvoor geldt in een willekeurig interval $[x_1,x_2]$:	
	$P(X \in [x_1; x_2]) = P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} f_X(x) dx$	
	of dus: $f_X(x) = \lim_{\delta x \to 0} \frac{P(x \le X \le x + \delta x)}{\delta x}$	
stelling: waarsch.dichth. over volledig interval 2.2.1	Definieer $f_X(x)$ zodat de toevallige variabele met zekerheid een waarde aanneemt tss $-\infty$ en $+\infty$:	
_ 	$P(-\infty < X < +\infty) = \int_{-\infty}^{+\infty} f_X(x) dx = 1$	

def: cumulatieve verdeling c.d.f	= de waarschijnlijkheid dat de continue variabele X een waarde aanneemt die kleiner of gelijk is aan een bepaald getal x		
	$F(x) = \int_{-\infty}^{x} f_X(\theta) d\theta$		
	> voor discrete variabelen kunnen we die definiëren als:		
	$F(x) = \sum_{x_i \le x} P(x_i)$		
def: kwantiel x_{α}	= de waarde van X waarvoor F(X=xα) = α met 0≤α≤1 > ie: inverse van de cumulatieve verdeling		
	$x_{\alpha} = F^{-1}(\alpha)$		
waarsch. via cdf	We kunnen de waarschijnlijkheid van een variabele berekenen via de cdf:		
	$P(x_1 \le X \le x_2) = P(x \le x_2) - P(x \le x_1) = F(x_2) - F(x_1)$		
2.2.3 momenten			
def: verwachtingswaarde	voor een discrete toevallige variabele X met waarsch.dichth. $P(X=x_i)$, $i=1,2,$		
	> is:		
	$\langle X \rangle = \sum_{i=1}^{\kappa} x_i P(x_i)$		
	voor een continue toev. var. X met waarsch.dichth. $f_X(x)$ is:		
	$\langle X \rangle = \int_{-\infty}^{+\infty} x f_X(x) dx$		
def: verwachtingswaarde ve functie	Voor een functie g(X) vd discrete var. X met waarsch.dichth. P(X) is dit:		
	$\langle g \rangle = \sum_{i=1}^{k} g(x_i) P(x_i)$		
	als deze var. continu is: $i=1$		
	$\langle g \rangle = \int_{-\infty}^{+\infty} g(x) f_X(x) dx$		
stelling: verw.waarde ve lin. functie	voor een lineaire functie g(X) = aX + b met a en b cte:		
2.2.3	$\langle g \rangle = a \langle X \rangle + b$		
stelling: som en product verw.w.	De verw.waarde ve som is de som vd verw.waarden=		
	$< f + g > = \sum (f(x) + g(x))P(x) = \sum f(x)P(x) + \sum g(x)P(x) = < f > + < g > $		
	> dit geldt niet voor het product:		
	$< f g > = \sum (f(x)g(x))P(x) \neq \sum f(x)P(x) \cdot \sum g(x)P(x) = < f > < g >$		
def: r-de moment	voor een toevallige variabele x is dit:		
	$\mu_r' = \langle X^r \rangle = \int_{-\infty}^{+\infty} X^r f(X) dX$		
def: r-de centrale moment	voor een toevallige variabele x is dit:		
	$\mu_r = \langle (X - \langle X \rangle)^r \rangle = \int_{-\infty}^{+\infty} (X - \langle X \rangle)^r f(X) dX$		
variantie	= 2de centrale moment:		
	$V(X) = \langle (X - \langle X \rangle)^2 \rangle = \int_{-\infty}^{+\infty} (X - \langle X \rangle)^2 f(X) dX = \langle X^2 \rangle - \langle X \rangle^2$		
	I		

def: momentgegenereerde functie	voor een toevallige variabele X is dit:	
	$M_X(t) = < e^{tX} > = \int_{-\infty}^{+\infty} e^{tX} f(X) dX$ met $t \in \mathbb{R}$	
stelling: afgeleide en mom.geg. ftie	Als deze bestaat is de n-de afleiding van $M_X(t)$ in t=0 het n-de moment:	
	$\mu_n' = \langle X^n \rangle = \left. \frac{d^n M_X(t)}{dt^n} \right _{t=0}$	
def: karakteristieke functie	voor een toevallige variabele, is dit de Fourier-transformatie vd waarsch.dichtheid: $\phi_X(t) = < e^{itX} > = \int_{-\infty}^{+\infty} e^{itX} f(X) dX$ met t $\in \mathbb{R}$ > als F(X) overal continu is dan geldt: $f_X(X) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \phi_X(t) e^{-iXt} dt$	
stelling: som van functies	Zei X en Y twee onafh. toevallige variabelen Zei $\phi_X(t)$ en $\phi_Y(t)$ hun karakteristieke functie $ > \text{de karakteristieke ftie van de som Z = X+Y:} $ $ \phi_{X+Y}(t) = \phi_X(t) \cdot \phi_Y(t) $	

2.2.4 functie van toevallige variabele

fıı	nctia	VΔ	variabe	حا	2/X	١
ıu	ncue	٧C	variabe	:10	al A	,

Zei X verdeeld is volgens waarsch.verdeling $f_X(X)$

> we kunnen nu de verdeling van een nieuwe toevallige variabele A=a(X) bekomen:

De waarschijnlijkheid voor $X \in [x,x+dx]$ is gelijk aan de waarschijnlijkheid voor de toevallige variabele $A \in [a,a+da]$

> in de formule:

$$g_A(a')da' = \int_{dS} f_X(x) \ dx$$

Waarbij de integraal uitgevoerd wordt over het infinitesimaal element dS > dS is het gebied in x tss a(x) = a' en a(x) = a'+da'

indien de functie a(x) geïnverteerd kan worden tot x(a) dan:

$$g_A(a)da = \left| \int_{x(a)}^{x(a+da)} f_X(x')dx' \right| = \int_{x(a)}^{x(a)+\left|\frac{dx}{da}\right|da} f_X(x')dx'$$

of nog

$$g_A(a) = f_X(x(a)) \left| \frac{dx}{da} \right|$$

def: parametrische familie $f(X; \vec{\theta})$

van waarschijnlijkheidsverdelingen of -dichtheiden ve toevallige variabele X > is dit een verzameling van verdelingen of dichtheden beschreven door een of meerdere parameters $\vec{\theta}$.

2.3 multi-dimensionale uitbreiding			
2.3.1 gezamenlijke waarschijnlijkhei	dsverdeling		
def: gezamenlijke waarsch.verd. f _{XY}	voor een toevallige variabele $\vec{X} = \{X, Y\}$, waarbij X en Y waarden aannemen in het gebied S is dit:		
	$f_{XY}(x,y)dxdy = \text{waarschijnlijkheid}((X \in [x,x+dx]) \cap (Y \in [y,y+dy]))$		
stelling: normalisatie f _{XY}	Vermits X en Y zeker een waarde moeten aannemen hebben we de normalisatie voorw.:		
	met S een gebied waarin f $_{ ext{XY}}$ bestaat $\int\int_S f_{XY}(x,y) dx dy$		
def: covariantie	Voor twee toevallige variabelen X en Y met gezamenlijke waarsch.dichth $f_{XY}(x,y)$ in h domein S is dit:		
	$\sigma_{XY} = \text{cov}(X, Y) = \iint_{(x,y) \in S} (x - \langle X \rangle)(y - \langle Y \rangle) f_{XY}(x, y) dx dy$		
	Dat kan vereenvoudigd worden tot :		
	$\sigma_{XY} = \langle XY \rangle - \langle X \rangle \langle Y \rangle$		
def: correlatie	tss twee toevallige variabelen X en Y is dit:		
	$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$ met $-1 \le \rho_{XY} \le 1$		
def: covariantie- en correlatiematrix			
	$\mathbf{V} = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1m} \\ \sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2m} \\ \vdots & & \ddots & \\ \sigma_{m1} & \sigma_{m2} & \cdots & \sigma_{m}^{2} \end{pmatrix} \qquad \rho = \begin{pmatrix} 1 & \rho_{12} & \cdots & \rho_{1m} \\ \rho_{21} & 1 & \cdots & \rho_{2m} \\ \vdots & & \ddots & \\ \rho_{m1} & \rho_{m2} & \cdots & 1 \end{pmatrix}$		
	> zijn mcm symmetrisch met diagonale elementen: $\sigma_{ii}=\sigma_i^2$ en alle $-1\leq ho_{ij}\leq 1$		
stelling: diagonale matrix	Indien X ^{->} een vector is van onafhankelijke toevallige variabelen > dan zijn de covariantie- en correlatiematrix diagonaal		
2.3.2 marginale waarschijnlijkheidsv	rerdeling		
def: marginale waarsch.verdeling	voor een continue waarschijnlijkheidsverdeling f _{XY} zijn dit f _X en f _Y waarvoor:		
	$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy$ $f_Y(y) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dx$		
	1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
stelling: onafhankelijke variabelen	Continue toevallige variabelen zijn onafhankelijk indien hun gezamenlijke verdeling het product is van de marginale verdelingen van X en Y		
	$f_{XY}(x,y) = f_X(x) f_Y(y) \qquad \forall (x,y) \in S$		
	> indien dit niet zo is zijn de variabelen afhankelijk		

2.3.3 conditionele waarschijnlijkhe	idsverdeling
def: conditionele waarschijnlijkheidsverdeling	voor een (continue) toevallige variabele X gegeven dat de variabele Y de waarde y aanneemt is dit: $g_X(x y) = \frac{f_{XY}(x,y)}{f_Y(y)} = \frac{f_{XY}(x,y)}{\int f(x',y)dx'}$
	> hetzelfde kan voor Y tov X gevonden worden:
	$h_Y(y x) = \frac{f_{XY}(x,y)}{f_X(x)} = \frac{f_{XY}(x,y)}{\int f(x,y')dy'}$
2.3.4 terugkeer van het Theorema	van Bayes
theorema van Bayes	combineer de definities voor marginale en conditionele:
	$g_X(x y)f_Y(y) = f_{XY}(x,y) = h_Y(y x)f_X(x)$
	> dus we kunnen vinden: $f_X(x)=\int_{-\infty}^{+\infty}g_X(x y)f_Y(y)dy$ $f_Y(y)=\int_{-\infty}^{+\infty}h_Y(y x)f_X(x)dx$
stelling: gezamenlijke waarsch.verd	We kunnen nu schrijven:
Stelling, Sezameningte waarss. a	$f_{XY}(x,y) = g_X(x y)f_Y(y)$
	$=h_Y(y x)f_X(x)$
2.3.5 functie van meerdere toevalli	ge variabelen
def: waarschijnlijkheidsverdeling	voor een functie $a(\vec{X})$ is deze gedefinieerd als:
f _A (a)	$f_A(a')d(a') = \int \cdots \int_{dS} f_{\vec{X}}(\vec{x})d\vec{x} $ (2.30)
	waarbij de integraal uitgevoerd wordt over het infinitesimale volume-element dS , gedefiniëerd als het gebied in $x_{(1)}, x_{(2)},, x_{(m)}$ -ruimte tussen de twee hyper-oppervlakken $a(x_{(1)}, x_{(2)},, x_{(m)}) = a'$ en $a(x_{(1)}, x_{(2)},, x_{(m)}) = a' + da'$.