

Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées Al Hoceima, Maroc

Mathématiques pour les Classes Préparatoires 1 et 2

-Cours d'Algèbre 3 et exercices-Algèbre linéaire, Algèbre Quadratique et Espaces Hermitiens

Mohamed ADDAM

Professeur de Mathématiques

École Nationale des Sciences Appliquées d'Al Hoceima
–ENSAH–

addam.mohamed@gmail.com m.addam@uae.ac.ma

©Mohamed ADDAM.

03 Novembre 2020

Table des matières

1	Réd	duction des endomorphismes et Éléments propres		
	1.1	Multiplication matricielle : Algorithmes		5
1.2 Réduction des endomorphis		Réduc	tion des endomorphismes et des martices carrées	6
		1.2.1	Valeurs propres, polynôme caractéristique et polynôme minimal	6
		1.2.2	Vecteurs propres et Sous-espace propres	8
		1.2.3	Matrices semblables	9
		1.2.4	Matrices diagonalisables : diagonalisation de matrices	10
		1.2.5	Trigonalisation des matrices, matrices triangularisables	11
		1.2.6	Réduction de Jordan	11
1.3		Spectre et rayon spectral d'une matrice, Matrice positive		13
		1.3.1	Spectre et rayon spectral d'une matrice	13
		1.3.2	Matrice positive et matrice définie positive	14
	1.4	Exerci	ces	14
2 R	Réso	Résolution de systèmes différentiels linéaires		
	2.1	Endomorphisme nilpotent et Matrice nilpotente		15
		2.1.1	Nilpotence et indice de nilpotence	15
		2.1.2	Nilpotence et base réduite	16
2.2 Exponentiel d'une matrice		Expon	entiel d'une matrice	16
	2.3	Systèn	ne d'équations différentielles	17
		2.3.1	Système homogènes	18
		2.3.2	Systèmes avec seconds membres	19
	2.4	Exerci	ces	19

4 TABLE DES MATIÈRES

Chapitre 1

Réduction des endomorphismes et Éléments propres

Dans ce chapitre, on suppose que \mathbb{K} est \mathbb{R} où \mathbb{C} .

1.1 Multiplication matricielle : Algorithmes

Soit \mathbb{K} un corps commutatif, soient $A=(a_{i,j})_{\substack{1\leq i\leq m\\1\leq j\leq n}}$ une matrice de type $m\times n$ et $B=(b_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$ une matrice de type $n\times p$.

Le produit $A \cdot B$ est la matrice C de type $m \times p$ dont les coefficients

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} = a_{i,1} b_{1,j} + a_{i,2} b_{1,2} + \ldots + a_{i,n} b_{n,j}, \quad 1 \le i \le m, \quad 1 \le j \le p.$$

Le coefficient $c_{i,j}$ est obtenu en faisant le produit de la $i^{\text{ème}}$ ligne de A par la $j^{\text{ème}}$ colonne de B.

Remarque 1.1.1 Lorsque p=1 alors la matrice B serait un vecteur de type $m \times 1$. Dans ce cas, le produit $A \cdot B$ serait un vecteur c de type $m \times 1$ dont les coefficients c_i sont donnés par

$$c_i = \sum_{j=1}^n a_{i,j} b_j = a_{i,1} b_1 + a_{i,2} b_2 + \ldots + a_{i,n} b_n, \quad 1 \le i \le m.$$

Remarque 1.1.2 1. Le produit matriciel n'est pas commutatif en général.

2. Le produit $A \cdot B$ peut être défini sans $B \cdot A$ le soit.

```
Pour chaque ligne i=1...m, faire pour chaque colonne j=1...p, faire Pour k=1...n, faire a[i,j]:=a[i,j]+a[i,k]*a[k,j] Fin pour k Fin pour j
```

Algorithme:

```
For i = 1..m,

For j = 1..p,

For k = 1..n,

a[i,j] := a[i,j] + a[i,k] * a[k,j]

End k

End j
```

1.2 Réduction des endomorphismes et des martices carrées

Dans cette partie, on désigne par E un espace vectoriel de dimension finie n sur un corps commutatif \mathbb{K} , par e l'endomorphisme identique de E, par $\mathcal{M}_n(\mathbb{K})$ l'anneau des matrices carrées d'ordre n à coefficients dans \mathbb{K} et par I la matrice unité. Soit f un endomorphisme de \mathbb{K}^n et A la matrice associée à f relativement à la base canonique de \mathbb{K}^n . On dit que la matrice A de $\mathcal{M}_n(\mathbb{K})$ est identifiée à l'endomorphisme f.

1.2.1 Valeurs propres, polynôme caractéristique et polynôme minimal

Définition 1.2.1 un nombre $\lambda \in \mathbb{K}$ est une **valeur propre** d'un endomorphisme u de E (resp. d'une matrice A de $\mathcal{M}_n(\mathbb{K})$) s'il existe un vecteur x non nul (resp. une matrice colone X non nulle) tel que

$$u(x) = \lambda . x$$
, $(resp. AX = \lambda X)$

ou encore si l'endomorphisme $u - \lambda e$ (resp. la matrice $A - \lambda I$) n'est pas inversible.

Exemple 1.2.1 1. Soit u un endomorphisme de \mathbb{R}^2 défini par

$$\begin{cases} u(x) = 2y, \\ u(y) = x \end{cases}$$

 $\sqrt{2}$ et $-\sqrt{2}$ sont les valeurs propres de u puisque $\det(u\pm\sqrt{2}e)=0$

2. Soit A une matrice de $\mathcal{M}_2(\mathbb{R})$ donnée par

$$A = \left(\begin{array}{cc} 2 & 0 \\ 0 & -3 \end{array}\right).$$

Les valeurs propres de A sont 2 et -3 car det(A - 2I) = 0 et det(A + 3I) = 0 puisque

$$A - 2I = \begin{pmatrix} 0 & 0 \\ 0 & -5 \end{pmatrix} \quad et \quad A + 3I = \begin{pmatrix} 5 & 0 \\ 0 & 0 \end{pmatrix}$$

Définition 1.2.2 Soit u un endomorphisme de E.

1. On appelle le **polynôme caractéristique** de u (resp. d'une matrice A de $\mathcal{M}_n(\mathbb{K})$ le polynôme suivant :

$$P(\lambda) = det(u - \lambda e), \quad (resp.P_A(\lambda) = det(A - \lambda I))$$

2. Les valeurs propres d'un endomorphisme u de E sont les racines du **polynôme caractéristique** de u (resp. de la matrice A de $\mathcal{M}_n(\mathbb{K})$

Exemple 1.2.2 1. Soit A une matrice de $\mathcal{M}_2(\mathbb{R})$ donnée par

$$A = \left(\begin{array}{cc} 2 & -4 \\ 1 & -3 \end{array}\right).$$

Le polynôme caractéristique de la matrice A est

$$P(\lambda) = \det \begin{pmatrix} 2 - \lambda & -4 \\ 1 & -3 - \lambda \end{pmatrix} = (2 - \lambda)(-3 - \lambda) + 4,$$
$$P(\lambda) = \lambda^2 + \lambda - 2.$$

Pour trouver les valeurs propres de la matrice A il suffit de résoudre l'équation

$$\lambda^2 + \lambda - 2 = 0.$$

2. Soit M une matrice de $\mathcal{M}_3(\mathbb{R})$ donnée par

$$M = \left(\begin{array}{ccc} 2 & -4 & 0 \\ 1 & -3 & 2 \\ 0 & 1 & 3 \end{array}\right).$$

Le polynôme caractéristique de la matrice M est

$$\begin{split} P_{M}(\lambda) &= \det \left(\begin{array}{ccc} 2 - \lambda & -4 & 0 \\ 1 & -3 - \lambda & 2 \\ 0 & 1 & 3 - \lambda \end{array} \right), \\ P_{M}(\lambda) &= (2 - \lambda) \left| \begin{array}{ccc} -3 - \lambda & 2 \\ 1 & 3 - \lambda \end{array} \right| + 4 \left| \begin{array}{ccc} 2 & 1 \\ 3 - \lambda & 0 \end{array} \right|, \\ P_{M}(\lambda) &= (2 - \lambda)[(-3 - \lambda)(3 - \lambda) - 2] + 4[-(3 - \lambda)], \end{split}$$

pour trouver les valeurs propres de la matrice M il suffit de résoudre l'équation

$$P_M(\lambda) = 0.$$

Remarque 1.2.1 Soit u un endomorphisme de E et U la matrice de u dans une base arbitraire de E alors on a

$$P(\lambda) = det(u - \lambda e) = det(U - \lambda I).$$

Théorème 1.2.1 (Cayley-Hamilton)

Soit u un endomorphisme de E et A une matrice de $\mathcal{M}_n(\mathbb{K})$.

- 1. Si le polynôme caractéristique P de u se décompose dans \mathbb{K} en facteurs du premier degré, alors P(u)=0.
- 2. Si le polynôme caractéristique Q de A se décompose dans \mathbb{K} en facteurs du premier degré, alors Q(A)=0.

Démonstration. En exercice.

Exemple 1.2.3 *Soit A une matrice de* $\mathcal{M}_2(\mathbb{R})$ *donnée par*

$$A = \left(\begin{array}{cc} 2 & -4 \\ 1 & -3 \end{array}\right).$$

Le polynôme caractéristique de la matrice A est $P(\lambda) = \lambda^2 + \lambda - 2$.

$$\begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix}^2 = \begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ -1 & 5 \end{pmatrix}.$$

$$\begin{pmatrix} 0 & 4 \\ -1 & 5 \end{pmatrix} + \begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix} + \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} 0 + 2 - 2 & 4 - 4 + 0 \\ -1 + 1 + 0 & 5 - 3 - 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Définition 1.2.3 Soit u un endomorphisme de E et A une matrice de $\mathcal{M}_n(\mathbb{K})$. On appelle **polynôme minimal** de u (resp. de A) un polynôme Q vérifiant :

- i) Q est de plus petit degré divisant le polynôme caractéristique P de u (resp. de A).
- ii) Q(u) = 0 (resp. Q(A) = 0).

Exemple 1.2.4 On considère une matrice A de $\mathcal{M}_3(\mathbb{K})$ dont le polynôme caractéristique

$$P(\lambda) = (\lambda - 2)^2(\lambda - 3).$$

Si (A-2I)(A-3I)=0, alors le polynôme minimale de A est $Q(\lambda)=(\lambda-2)(\lambda-3)$.

1.2.2 Vecteurs propres et Sous-espace propres

Définition 1.2.4 Soit u un endomorphisme d'un \mathbb{K} -e.v. E et A une matrice de $\mathcal{M}_n(\mathbb{K})$.

1. Si λ est une valeur propre de l'endomorphisme u, l'ensemble des solutions de l'équation

$$u(x) = \lambda x$$

est un sous-espace vectoriel \mathcal{H}_{λ} de E dit sous-espace propre associé à λ . Les éléments non nuls de \mathcal{H}_{λ} sont les vecteurs propres associés à λ .

Le sous-espace propre $\mathcal{H}_{\lambda} = \text{Ker}(u - \lambda e)$, le noyau de l'endomorphisme $(u - \lambda e)$ de E.

2. Si λ est une valeur propre de la matrice A, l'ensemble des solutions de l'équation

$$Mx = \lambda x$$

est un sous-espace vectoriel \mathcal{H}_{λ} de \mathbb{K}^n dit sous-espace propre associé à λ . Les éléments non nuls de \mathcal{H}_{λ} sont les vecteurs propres associés à λ .

Si f était l'endomorphisme associé à la matrice A alors $\mathcal{H}_{\lambda} = \operatorname{Ker}(f - \lambda e)$.

Exemple 1.2.5 *Soit A une matrice de* $\mathcal{M}_2(\mathbb{R})$ *donnée par*

$$A = \left(\begin{array}{cc} 2 & -4 \\ 1 & -3 \end{array}\right).$$

Le polynôme caractéristique de la matrice A est $P(\lambda)=\lambda^2+\lambda-2$. Les valeurs propres de A sont $\lambda_1=\frac{-1-3}{2}=-2$ et $\lambda_2=\frac{-1+3}{2}=1$.

$$\mathcal{H}_{\lambda_1} = \operatorname{Ker}(f + 2e)$$

$$\mathcal{H}_{\lambda_2} = \operatorname{Ker}(f - e)$$

ou f est l'endomorphisme associé à A défini par

$$\begin{cases} f(x) = 2x - 4y, \\ f(y) = x - 3y, \end{cases}$$

et e est l'endomorphisme unité.

Proposition 1.2.1 Soit u un endomorphisme d'un \mathbb{K} -e.v. E et A la matrice de $\mathcal{M}_n(\mathbb{K})$ associée à u.

- 1. Les valeurs propres de u sont les mêmes que celles de A.
- 2. Les vecteurs propres v_1, v_2, \ldots, v_k associés à des valeurs propres distinctes $\lambda_1, \lambda_2, \ldots, \lambda_k$ sont linéairement indépendants.
- 3. Si $\mathcal{H}_1 = \operatorname{Ker}(u \lambda_1 e)$, $\mathcal{H}_2 = \operatorname{Ker}(u \lambda_2 e)$, ..., $\mathcal{H}_k = \operatorname{Ker}(u \lambda_k e)$ sont respectivement les espaces propres associés à des valeurs propres distinctes $\lambda_1, \lambda_2, \ldots, \lambda_k$, alors la sommes $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \ldots + \mathcal{H}_k$ est une somme directe.
- 4. La réunion d'une base de \mathcal{H}_1 , d'une base de \mathcal{H}_2 ,..., d'une base de \mathcal{H}_k est une base de \mathcal{H} .

Démonstration. Laisser en exercice.

1.2.3 Matrices semblables

Définition 1.2.5 Deux matrices sont semblables si et seulement si elles constituent deux matrices représentatives du même endomorphisme dans deux bases (éventuellement) différentes. Autrement dit, on dit que deux matrices A et B sont semblables si et seeulement si il existe une matrice inversible P telle que

$$A = P^{-1}BP.$$

Exemple 1.2.6 Les matrices $A = \begin{pmatrix} 2 & 1 \\ -2 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} -2 & -2 \\ 5 & 4 \end{pmatrix}$ sont semblables. En effet, il existe une matrice inversible $P = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ et $P^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$. On a

$$P^{-1}AP = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ 5 & 4 \end{pmatrix}$$

Remarque 1.2.2 *On définit la relation binaire* R *suivante :*

 $A \mathcal{R} B \Leftrightarrow \exists P \text{ une matrice inversible telle que } A = P^{-1}BP.$

La relation \mathcal{R} est une relation d'équivalence sur l'ensemble des matrices $\mathcal{M}_n(\mathbb{K})$.

Proposition 1.2.2 Deux matrices semblables A et B de $\mathcal{M}_n(\mathbb{K})$ ont le même polynôme caractéristique.

Démonstration. Soient A et B deux matrices semblables de $\mathcal{M}_n(\mathbb{K})$, alors il existe une matrice inversible P telle que $A = P^{-1}BP$.

On a

$$A - \lambda I = P^{-1}BP - \lambda I = P^{-1}BP - \lambda P^{-1}P = P^{-1}(B - \lambda I)P$$

alors

$$\det(A - \lambda I) = \det(P^{-1}(B - \lambda I)P) = \det(P^{-1})\det(B - \lambda I)\det(P)$$

d'où

$$\det(A-\lambda I) = \det(B-\lambda I) \frac{\det(P)}{\det(P)} = \det(B-\lambda I).$$

Corollaire 1.2.1 Deux matrices semblables A et B de $\mathcal{M}_n(\mathbb{K})$ ont les mêmes valeurs propres.

1.2.4 Matrices diagonalisables : diagonalisation de matrices

Définition 1.2.6 Un endomorphisme $u \in \mathcal{L}(E)$ (resp. une matrice $A \in \mathbb{K}^{(n \times n)}$) est diagonalisable s'il existe une base de E (resp. de \mathbb{K}^n) dans laquelle la matrice de u (resp. la matrice $P^{-1}AP$ transformée de A) est diagonale.

Définition 1.2.7 Une matrice A de $\mathcal{M}_n(\mathbb{K})$ est dite diagonalisable si il existe une matrice inversible P de $\mathcal{M}_n(\mathbb{K})$ telle que

$$P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

où $\lambda_1, \ldots, \lambda_n$ sont les valeurs propres de A comptées avec leurs ordres de multiplicité.

Dans ce cas, chaque vecteur colonne w de la matrice P est un vecteur propre pour la matrice A, c'est-à-dire qu'il existe un scalaire λ sur la diagonale de D tel que $A.w = \lambda.w$.

Exemple 1.2.7 Les valeurs propres de la matrice

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

sont $\lambda_1 = 2$, $\lambda_2 = 1 + i$ *et* $\lambda_3 = 1 - i$.

Les veteurs propres associés à λ_1 , λ_2 et λ_3 sont respectivement

$$V_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad V_2 = \begin{pmatrix} i \\ -1 \\ 1 \end{pmatrix} \quad et \quad V_3 = \begin{pmatrix} -i \\ -1 \\ 1 \end{pmatrix}.$$

La matrice $P = (V_1|V_2|V_3)$ donnée par

$$P = \begin{pmatrix} 1 & i & -i \\ 1 & -1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \quad \Rightarrow \quad P^{-1} = \frac{1}{4} \begin{pmatrix} 0 & 2 & 2 \\ 1 & -2i & -1+i \\ 2i & -(1+i) & 1-i \end{pmatrix}.$$

paar un calcul simple, on trouve

$$P^{-1}AP = \frac{1}{4} \begin{pmatrix} 0 & 2 & 2 \\ 1 & -2i & -1+i \\ 2i & -(1+i) & 1-i \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & i & -i \\ 1 & -1 & -1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1+i & 0 \\ 0 & 0 & 1-i \end{pmatrix}.$$

Remarque 1.2.3 Diagonaliser une matrice carrée A, c'est trouver une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$.

Proposition 1.2.3 *Soit* $A \in \mathcal{M}_n(\mathbb{K})$. *La matrice* A *est diagonalisable si et seulement si*

$$\sum_{\lambda \in \operatorname{Sp}(A)} \dim(\mathcal{H}_{\lambda}) = n.$$

Théorème 1.2.2 Soit $u \in \mathcal{L}(E)$ et $A \in \mathbb{K}^{(n \times n)}$ une matrice.

- 1. u est diagonalisable si et seulement si il existe une base de l'espace E formée de vecteurs propres de u ou encore si et seulement si les sous-espaces propres de u engendre l'espace E.
- 2. A est diagonalisable si et seulement si il existe une base de l'espace \mathbb{K}^n formée de vecteurs propres de A ou encore si et seulement si les sous-espaces propres de A engendre l'espace \mathbb{K}^n .
- 3. Si le polynôme caractéristique P(x) (resp. $P_A(x)$ de u (resp. de A) admet n zéros distincts dans \mathbb{K} , alors l'endomorphisme u (resp. A) est diagonalisable.

1.2.5 Trigonalisation des matrices, matrices triangularisables

Définition 1.2.8 On appelle matrice triangulaire supérieure (resp. inférieure) une matrice dont tous les éléments situés strictement au-dessous (resp. stricte- ment au-dessus) de la diagonale principale sont nuls.

Remarque 1.2.4 Une matrice diagonale est à la fois triangulaire supérieure et triangulaire inférieure.

Définition 1.2.9 Un endomorphisme $u \in \mathcal{L}(E)$ (resp. une matrice $A \in \mathbb{K}^{(n \times n)}$) est **triangularisable** s'il existe une base de E (resp. de \mathbb{K}^n) dans laquelle la matrice de u (resp. la matrice $P^{-1}AP$ transformée de A) est triangulaire.

Définition 1.2.10 On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est **trigonalisable** si et seulement si il existe une matrice inversible $P \in \mathcal{M}_n(\mathbb{K})$ inversible tel que $P^{-1}AP$ soit triangulaire supérieure.

Théorème 1.2.3 *Toute matrice de* $\mathcal{M}_n(\mathbb{C})$ *est trigonalisable.*

1.2.6 Réduction de Jordan

Définition 1.2.11 On appelle bloc de Jordan une matrice de la forme

$$\begin{pmatrix} \lambda & 1 & 0 & \dots & \dots & 0 \\ 0 & \lambda & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \lambda & 1 \\ 0 & \dots & \dots & \dots & 0 & \lambda \end{pmatrix}$$

où λ est un réel quelconque. La diagonale principale contient des λ , on trouve des 1 au-dessus de cette diagonale, les autres éléments de la matrice sont nuls.

*Le bloc de Jordan de taille $n \geq 1$ et dont l'élément sur la diagonale principale est λ est noté $J_n(\lambda)$.

Exemple 1.2.8 1. $J_1(8) = 8$ est un bloc de Jordan de type 1×1 .

2.
$$J_4(3) = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$
 est un bloc de Jordan de type 4×4 .

3.
$$J_2(-2) = \begin{pmatrix} -2 & 1 \\ 0 & -2 \end{pmatrix}$$
 est un bloc de Jordan de type 2×2 .

Définition 1.2.12 On appelle matrice diagonale par blocs une matrice formée d'une diagonale de matrices carrées, non nécessairement de même taille. Les éléments non situés dans ces matrices sont nuls.

*On note diag $(A_1; A_2; \ldots; A_p)$ la matrice dont les blocs diagonaux sont A_1, A_2, \ldots, A_p .

Exemple 1.2.9 *1.*
$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 6 & 8 \end{pmatrix} = diag \left(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix} \right),$$

2.
$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & -1 & -2 \\ 0 & -3 & -4 & -5 \end{pmatrix} = diag \left((1), \begin{pmatrix} 3 & 2 & 1 \\ 0 & -1 & -2 \\ -3 & -4 & -5 \end{pmatrix} \right),$$

3.
$$C = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} = diag\left((3), \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right).$$

Définition 1.2.13 On appelle matrice de Jordan une matrice diagonale par blocs dont les blocs sont des blocs de Jordan.

Définition 1.2.14 Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle réduite de Jordan de A toute matrice de Jordan J telle qu'il existe $P \in \mathcal{M}_n(\mathbb{K})$ inversible telle que $A = PJP^{-1}$.

Théorème 1.2.4 (Réduction de Jordan)

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soient $\lambda_1, \lambda_2, \ldots, \lambda_3$ les valeurs propres de la matrice A. On note ν_i l'ordre de multiplicité de λ_i dans le polynôme caractéristique P_A de A.

*La matrice A admet une réduite de Jordan J et une seule (à l'ordre des blocs près).

Théorème 1.2.5 *Soit* $u \in \mathcal{L}(E)$ *et* $A \in \mathbb{K}^{(n \times n)}$ *une matrice.*

- 1. u est triangularisable si et seulement si le polynôme caractéristique P(x) de u se décompose dans $\mathbb K$ en facteurs du premier degré.
- 2. A est triangularisable si et seulement si le polynôme caractéristique $P_A(x)$ de A se décompose dans \mathbb{K} en facteurs du premier degré.

^{*}Tout bloc de la réduite de Jordan de A est de la forme $J_k(\lambda_i)$ où $\lambda_i \in Sp(A)$ et $1 \le k \le \nu_i$.

^{*}Sur la diagonale principale de la réduite de Jordan, on trouve les valeurs propres de A comptées avec leur multiplicité : λ_i apparaît ν_i fois.

3. Dans ce cas, il existe une base de E (resp. de \mathbb{K}^n) telle que la matrice de u dans cette base (resp. la matrice $P^{-1}AP$ transformée de A) a la forme de Jordan :

$$\begin{pmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & J_q \end{pmatrix}, \quad o\dot{u} \quad J_p = \begin{pmatrix} \lambda_p & 1 & \dots & 0 \\ 0 & \lambda_p & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & \lambda_p \end{pmatrix}$$

(Les λ_p sont les valeurs propres de u ou de A; plusieurs matrices J_p peuvent avoir la même valeurs λ_p dans la diagonale.)

Exercice 1.2.1 *Soit A la matrice donnée par*

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 4 & 1 & -2 \\ 2 & 1 & 2 & -1 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$

- 1. Montrer que A n'est pas diagonalisable.
- 2. Donner la réduite de Jordan de A.

1.3 Spectre et rayon spectral d'une matrice, Matrice positive

Spectre et rayon spectral d'une matrice 1.3.1

Soit $A=(a_{i,j})_{1\leq i,j\leq n}$ une matrice carrée. 1. La **trace** de A est $\operatorname{tr}(A)=\sum_{i=1}^n a_{i,i}$.

- 2. Les valeurs propres de A sont les n racines réelles ou complexes $(\lambda_i)_{1 \le i \le n}$ du polynôme caractéristique P de A. Le **spectre** de A, noté Sp(A) est l'ensemble de tous les valeurs propres de A:

$$Sp(A) = \{\lambda_i : 1 \le i \le n\}$$

3. La matrice A est **diagonale** si $a_{i,j} = 0$ pour $i \neq j$, on la note

$$A = \operatorname{diag}(a_{ii}) = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn}).$$

On rappelle les propriétés suivantes :

1.
$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$$
, $\operatorname{d\acute{e}t}(A) = \prod_{i=1}^{n} \lambda_i$.

- 2. tr(AB) = tr(BA), tr(A + B) = tr(A) + tr(B).
- 3. $d\acute{e}t(AB) = d\acute{e}t(BA) = d\acute{e}t(A)d\acute{e}t(B)$.

Définition 1.3.1 On appelle le rayon spectral de la matrice A, noté $\varrho(A)$, le nombre réel positif

$$\varrho(A) = \max\{|\lambda_i|: 1 \le i \le n\}$$

Définition 1.3.2 *Une matrice A est*

- 1. Symétrique si A est réelle et $A = A^T$:
- 2. hermitienne $si\ A = A^*$;
- 3. Orthogonale si A est réelle et $AA^T = A^TA = I$:
- 4. **Unitaire** $si AA^* = A^*A = I$;
- 5. Normale si $AA^* = A^*A$.

une matrice A est dite **singulière** si elle n'est pas inversible.

Propriété 1.3.1 Si A et B sont deux matrices inversibles, alors $(AB)^{-1} = B^{-1}A^{-1}$, $(A^T)^{-1} = (A^{-1})^T$, $(A^*)^{-1} = (A^{-1})^T$, $(A^*)^T$, (A $(A^{-1})^*$.

1.3.2 Matrice positive et matrice définie positive

Définition 1.3.3 Soit A une matrice

1. La matrice A est définie positive si

$$(Ax, x) > 0, \qquad \forall x \in E - \{0\}$$

2. La matrice A est positive où semi-définie positive si

$$(Ax, x) \ge 0, \quad \forall x \in E - \{0\}$$

Théorème 1.3.1 *Une matrice hermitienne* A *est définie positive (resp. positive), si et seulement si toutes ses valeurs propres sont* > 0 *(resp.* ≥ 0).

Démonstration. soit A une matrice hermitienne et $x \neq 0$ un vecteur dans E.

$$(Ax, x) = \lambda(x, x) = \lambda ||x||_E$$

1.4 Exercices

Exercice 1.4.1 Soit A une matrice de $\mathcal{M}_2(\mathbb{C})$. On suppose que la matrice A a une seule valeur propre double λ . 1. Montrer qu'on peut trouver une matrice B semblable à A égale à l'une des deux matrices suivantes :

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

2. Calculer B^n .

Exercice 1.4.2 Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$

- 1. Calculer le polynôme caractéristique de A. Montrer que f est trigonalisable sur \mathbb{R} .
- 2. L'endomorphisme f est-il diagonalisable sur \mathbb{R} ?
- 3. Trouver une base de \mathbb{R}^3 dans laquelle f est triangulaire supérieure.
- 4. Calculer $(A-2I_3)^2$. En déduire la valeur de A^n pour tout $n \in \mathbb{N}$.

Exercice 1.4.3 Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 2 & 0 \\ 3 & -2 & 0 \end{pmatrix}$

- 1. Calculer le polynôme caractéristique de A. Montrer que f est trigonalisable sur \mathbb{R} .
- 2. L'endomorphisme f est-il diagonalisable sur \mathbb{R} ?
- 3. Trouver une base de \mathbb{R}^3 dans laquelle f est triangulaire supérieure.
- 4. En déduire la valeur de A^n pour tout $n \in \mathbb{N}$.

Exercice 1.4.4 On considère la maatrice

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 4 & 1 & -2 \\ 2 & 1 & 2 & -1 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$

- 1. Déterminer les valeurs propres et les vecteurs propres de M.
- 2. La matrice M est-il diagonalisable sur \mathbb{R} ?
- 3. Déterminer une matrice inversible P telle que la matrice $J = P^{-1}MP$ soit de la forme de Jordan.
- 4. Calculer J^n et en déduire la valeur de M^n pour tout $n \in \mathbb{N}$.

Chapitre 2

Application de la réduction d'endomorphismes

2.1 Endomorphisme nilpotent et Matrice nilpotente

2.1.1 Nilpotence et indice de nilpotence

Définition 2.1.1 1. On dit qu'une matrice carrée A est nilpotente s'il existe un entier naturel p tel que A^p soit la matrice nulle. L'indice de nilpotence est alors le plus petit p tel que $A^p = 0$.

2. Les notions de matrice nilpotente et d'endomorphisme nilpotent sont très liées : Soient E un espace vectoriel de dimension finie, u un endomorphisme et A sa matrice dans une certaine base. "La matrice A est nilpotente si et seulement si l'endomorphisme est nilpotent, c'est-à-dire qu'il existe p tel que $u^p = 0$, ou u^p désigne $u \circ ... \circ u$ et 0 l'endomorphisme nul".

Exemple 2.1.1 1. On prend la matrice
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
. On a

$$A^2 = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right)^2 = \left(\begin{array}{cc} 0 & 0\\ 0 & 0 \end{array}\right),$$

D'où A est nilpotente d'indice de nilpotence p = 2.

2. Considérons un espace vectoriel réel de dimension 3 avec pour base $\mathcal{B}=(e_1,e_2,e_3)$. Considérons alors un endomorphisme u défini par sa représentation matricielle suivante dans la base \mathcal{B} :

$$u: \begin{pmatrix} 3 & 9 & -9 \\ 2 & 0 & 0 \\ 3 & 3 & -3 \end{pmatrix}$$

Si nous calculons la représentation matricielle de u^2 et de u^3 , on trouve :

$$u^{2}: \begin{pmatrix} 0 & 0 & 0 \\ 6 & 18 & -18 \\ 6 & 18 & -18 \end{pmatrix} \quad et \quad u^{3}: \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Puisque u^3 est l'endomorphisme nul u est bien nilpotent d'indice 3. Son indice est plus petit que la dimension de l'espace. Dans le cas général, l'indice d'un endomorphisme nilpotent est toujours inférieur ou égal à la dimension de l'espace.

15

2.1.2 Nilpotence et base réduite

Considérons alors le vecteur e_1 . Il est d'indice 2 et la famille $(e_1, u(e_1), u^2(e_1))$ est libre. Elle est libre et de cardinal égal à la dimension de l'espace vectoriel. Cette famille est donc une base. Dans cette base, la représentation matricielle de u prend alors la forme suivante :

$$\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

Là encore, ces propriétés sont génériques pour un endomorphisme nilpotent. Dans le cas général de dimension n, si x est un vecteur d'indice p alors p est inférieur ou égal à n et la famille $(x, u(x), ..., u^p(x))$ est une famille libre. De plus, il existe toujours une base $(e_1, e_2, ..., e_n)$, tel que $u(e_i)$ soit égal, soit à 0 soit à e_{i+1} , avec $u(e_n) = 0$. C'est la base réduite pour l'endomorphisme nilpotent.

2.2 Exponentiel d'une matrice

La fonction exponentielle est infiniment dérivable sur \mathbb{R} , alors au voisinage de 0, alors d'après le développement de Taylor on peut écrire

$$e^{t} = 1 + \sum_{n=1}^{+\infty} \frac{t^{n}}{n!} = 1 + \lim_{p \to +\infty} \sum_{n=1}^{p} \frac{t^{n}}{n!}.$$

Définition 2.2.1 *Soit* A *et* B *deux matrices de* $\mathcal{M}_n(\mathbb{K})$.

1. On appelle **exponentielle** de la matrice A, notée par $\exp(A)$, la formule suivante :

$$\exp(A) = I + \sum_{n=1}^{+\infty} \frac{A^n}{n!}.$$

Nous avons les propriétés suivantes :

- 2. Si AB = BA alors $\exp(A + B) = \exp(A) \exp(B) = \exp(B) \exp(A)$.
- 3. Si A est une matrice carrée quelconque, alors $\exp(-A) = (\exp(A))^{-1}$.
- 4. Si A est inversible d'inverse A^{-1} , alors $\exp(A^{-1}) = e(\exp(A))^{-1} = \exp(I_n A)$.

Exemple 2.2.1 1. On prend la matrice
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, alors on a $A^2 \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, alors

$$\exp(A) = \mathbf{I} + A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

2. Pour la matrice B suivante

$$B = \begin{pmatrix} 3 & 9 & -9 \\ 2 & 0 & 0 \\ 3 & 3 & -3 \end{pmatrix}, \quad on \ a \ B^2 = \begin{pmatrix} 0 & 0 & 0 \\ 6 & 18 & -18 \\ 6 & 18 & -18 \end{pmatrix} \quad et \quad B^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

alors on a

$$\exp(B) = I + B + \frac{1}{2}B^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 3 & 9 & -9 \\ 2 & 0 & 0 \\ 3 & 3 & -3 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 3 & 9 & -9 \\ 3 & 9 & -9 \end{pmatrix}$$
$$\exp(B) = \begin{pmatrix} 4 & 9 & -9 \\ 5 & 10 & -9 \\ 3 & 12 & -11 \end{pmatrix}.$$

Proposition 2.2.1 *Soit A une matrice de* $\mathcal{M}_n(\mathbb{K})$ *. Alors*

1. Si A est nilpotente d'indice de nilpotence p, alors

$$\exp(A) = I + \sum_{n=1}^{p-1} \frac{A^n}{n!}.$$

2. Si la seule valeur propre de A est 0, alors les puissance de A sont nulles à partir d'un certain rang n_0 :

$$A^n = 0$$
, dès que $n \ge n_0$.

Dans ce cas, on a

$$\exp(A) = I + \sum_{n=1}^{n_0} \frac{A^n}{n!}.$$

3. Si A a une seule valeur propre λ , alors nous pouvons écrire $A = \lambda I + B$ où B est une matrice dont la seule valeur propre est B. On a bien

$$\exp(A) = \exp(\lambda) \cdot \exp(B)$$

4. Si A est une matrice diagonale, c'est-à-dire que A s'écrit sous la forme

$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}, \quad alors \quad \exp(A) = \begin{pmatrix} e^{\lambda_1} & 0 & \dots & 0 \\ 0 & e^{\lambda_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & e^{\lambda_n} \end{pmatrix}.$$

5. Soit A une matrice diagonalisable, alors il existe une matrice inversible P de vecteurs propres telle que

$$A = PDP^{-1} = P \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} P^{-1} \text{ et } \exp(A) = P \begin{pmatrix} e^{\lambda_1} & 0 & \dots & 0 \\ 0 & e^{\lambda_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & e^{\lambda_n} \end{pmatrix} P^{-1}.$$

Démonstration. Exercice.

2.3 Système d'équations différentielles

Soit X une matrice colonne des fonctions, A une matrice de $\mathcal{M}_n(\mathbb{K})$ où \mathbb{K} (\mathbb{R} ou \mathbb{C}) et D un vecteur colonne. On suppose que les coefficients de A et D sont donnés.

On appelle un système différentiel linéaire à coefficients constants et d'inconnu X, l'équation linéaire que satisfait X au sens usuel des équations différentielles ordinaires :

$$\frac{dX(t)}{dt} = AX(t) + D(t), \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \tag{0.1}$$

où n est le nombre de fonctions à déterminer en résolvant le système différentiel (0.1).

2.3.1 Système homogènes

Le système différentiel homogène associé à l'équation (0.1) est

$$\frac{dX(t)}{dt} = AX(t) \tag{0.2}$$

La solution générale de l'équation (0.2) est définie par

$$X(t) = \exp(tA)X(0),$$

où, par définition:

$$\exp(tA) = I + \sum_{n=1}^{+\infty} \frac{t^n A^n}{n!}.$$

Par calcul, la matrice $\exp(tA)$ se simplifie en utilisant les propriétés de l'exponentielle d'une matrice. L'ensemble des solutions du système différentiel homogène (0.2) est un espace vectoriel sur $\mathbb C$ de dimension n. C'est un sous-espace de l'espace des fonctions à valeurs complexes.

Proposition 2.3.1 Soit A est une matrice carrée d'ordre n à coefficients dans \mathbb{K} (\mathbb{R} ou \mathbb{C}). Si $\lambda_1, \lambda_2, \ldots, \lambda_n$ sont les valeurs propres de la matrice A et V_1, V_2, \ldots, V_n les vecteurs associés respectivement aux valeurs propres $\lambda_1, \lambda_2, \ldots, \lambda_n$, alors la solution générale de l'équation homogène (0.2) s'écrit sous la forme :

$$X(t) = \sum_{i=1}^{n} \alpha_i \exp(\lambda_i t) V_i,$$

 $où \alpha_i \in \mathbb{K} \ (1 \leq i \leq n) \ sont \ des \ scalaires.$

Exemple 2.3.1 On considère le système différentiel suivant :

$$\begin{cases} x' = x + 2y, \\ y' = 2x + y, \end{cases}$$

on pose $X = \begin{pmatrix} x \\ y \end{pmatrix}$, alors

$$\frac{dX(t)}{dt} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} X(t)$$

alors

$$X(t) = \exp(tA)X(0),$$

où
$$A=\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 et $X(0)=\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ est donné.

La matrice A a deux valeurs propres distinctes -1 et 3, alors

$$X(t) = \alpha_1 \exp(-t)V_1 + \alpha_2 \exp(3t)V_2,$$

où $V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est le vecteur propre associé à -1 et $V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est le vecteur propre associé à 3.

$$\begin{cases} x(t) = \alpha_1 \exp(-t) + \alpha_2 \exp(3t), \\ y(t) = \alpha_1 \exp(-t) + \alpha_2 \exp(3t) \end{cases}$$

2.4. EXERCICES 19

2.3.2 Systèmes avec seconds membres

On reprend le système différentiel avec second membre donné par (0.1)

Proposition 2.3.2 La solution générale du système (0.1) est la somme d'une solution particulière de (0.1) et de la solution générale du système différentiel homogène (0.2).

Proposition 2.3.3 Si le second membre D est défini par :

$$D(t) = \exp(\omega t) D_0,$$

où D_0 est un vecteur à coefficients constants dans \mathbb{K} , alors il existe une solution particulière X(t) de la forme :

- 1. $X(t) = \exp(\omega t)X_0$, si ω n'est pas une valeur propre de A;
- 2. $X(t) = \exp(\omega t)(X_0 + tX_1)$, si ω est une valeur propre simple de A;
- 3. $X(t) = \exp(\omega t)(X_0 + tX_1 + t^2X_2)$, si ω est une valeur propre double de A;
- 4. $X(t) = \exp(\omega t) \sum_{i=0}^{n} t^{i} X_{i}$, si ω est une valeur propre, de multiplicité n, de A;

Remarque 2.3.1 Si on ne connaît pas à priori la forme de la solution particulière, on fera le changement d'inconnues :

$$X(t) = PY(t),$$

la matrice P étant choisie de manière que la matrice $P^{-1}AP$ du système transformé :

$$\frac{dY(t)}{dt} = P^{-1}APY(t) + P^{-1}D(t)$$

soit triangulaire ou, mieux encore, de la forme de Jordan. Cette partie sera bien aborder les années ulérieures avec plus de bagages d'algèbre et d'analyse.

2.4 Exercices

Exercice 2.4.1 Soit (S) le système différentiel linéaire sans second membre

$$(S): \left\{ \begin{array}{lcl} x'(t) & = & x(t) - \frac{1}{2} y(t) \\ y'(t) & = & 2 x(t) - y(t) \end{array} \right.$$

où x et y sont des fonctions dérivables de $\mathbb R$ dans $\mathbb R$. Soit $t \in \mathbb R \longmapsto X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \in \mathbb R^2$.

- 1. Écrire (S) sous la forme matricielle X'(t) = BX(t) où B est une matrice à déterminer. La matrice B est-elle inversible ?
- 2. Calculer B^2 et B^3 . Que peut-on déduire?
- 3. Calculer la matrice $A = \exp(tB)$ en fonction de t.
- 4. En déduire les expressions des fonctions $t \mapsto x(t)$ et $t \mapsto y(t)$ lorsque x(0) = 1 et y(0) = -1.

Exercice 2.4.2 Soit (S) le système différentiel linéaire sans second membre

$$(S): \begin{cases} x'(t) &= x(t) + 2 y(t) + z(t) \\ y'(t) &= 2 y(t) + 3z(t) \\ z'(t) &= 3z(t) \end{cases}$$

où x,y et z sont des fonctions dérivables sur \mathbb{R} . Soit $t\in\mathbb{R}\longmapsto X(t)=\begin{pmatrix} x(t)\\y(t)\\z(t)\end{pmatrix}\in\mathbb{R}^3.$

- 1. Écrire (S) sous la forme matricielle X'(t) = BX(t) où B est une matrice à déterminer. La matrice B est-elle inversible ? Qu'appelle-t-on ce type de matrice ?
- 2. Montrer que la matrice B s'écrit sous la forme D+N où D est une matrice diagonale à déterminer et N est une matrice nilpotente à déterminer.
 - *Déterminer l'indice de nilpotence de N.
- 3. En utilisant l'écriture B=D+N, montrer que $\exp(tB)=\exp(tD)\left(I_3+tN+\frac{1}{2}t^2N^2\right)$ pour tout $t\in\mathbb{R}$ où I_3 est la matrice identité de taille (3×3) .
- 4. Calculer les matrices $P = \exp(tD)$ et $Q = I_3 + tN + \frac{1}{2}t^2N^2$.
- 5. En déduire l'expression de la matrice $A = \exp(tB)$ en fonction de t.
- 6. En déduire les expressions des fonctions $t \mapsto x(t)$, $t \mapsto y(t)$ et $t \mapsto z(t)$ lorsque $x(0) = k_1$, $y(0) = k_2$ et $z(0) = k_3$.
 - *Déterminer les fonctions $t \mapsto x(t)$, $t \mapsto y(t)$ et $t \mapsto z(t)$ lorsque $k_1 = 1$, $k_2 = -1$ et $k_3 = 2$.

Exercice 2.4.3 On veut résoudre le système différentiel linéaire du premier ordre sans second membre suivant :

$$\left\{ \begin{array}{l} x'=x+y\\ y'=-x+2y+z\\ z'=x+z \end{array} \right.$$

On pose $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

1. Montrer qu'on peut écrire le système différentiel sous la forme :

$$X' = A.X$$

où A est une matrice à déterminer.

- 2. Montrer que le système est bien défini, puis trouver le polynôme caractéristique associé à A.
- 3. Trouver les valeurs propres λ_1 , λ_2 et λ_3 de la matrice A.
- 4. Trouver les vecteurs propres v_1 , v_2 et v_3 associés respectivement aux valeurs propres λ_1 , λ_2 et λ_3 .
- 5. Trouver la solution générale X(t), puis touver la solution X(t) satisfaisant la condition initiale $X(0) = \begin{pmatrix} \frac{1}{2} \\ \frac{2}{3} \end{pmatrix}$.
- 6. Trouver la solution $t \mapsto X(t)$ tel que $X(0) = \begin{pmatrix} 1 \\ j \\ j^2 \end{pmatrix}$ où $j = e^{i\frac{2\pi}{3}}$.

Pui, montrer que si M, N et P sont dans le plan complexe les images de x(t), y(t) et z(t), le traingle MNP est équilatéral.

2.4. EXERCICES 21

Exercice 2.4.4 Soit (S) le systeme differentiel lineaire avec second membre

$$(S): \begin{cases} x'(t) &= x(t) + 2y(t) + e^t \\ y'(t) &= -3x(t) - 3y(t) + z(t) - e^t \\ z'(t) &= 2x(t) + 2y(t) - z(t) + 2e^t \end{cases}$$

où x, y et z désignent des fonctions de \mathbb{R} dans \mathbb{R} .

- 1. Déterminer la solution générale, à valeurs réelles, du systeme linéaire homogène associé à (S).
- 2. Déterminer la solution particulière du système (S) pour les conditions initiales x(0) = 1, y(0) = -1 et z(0) = 1.
- 3. Déterminer la solution générale, à valeurs réelles, du système (S).

Exercice 2.4.5 Soit (S) le systeme differentiel lineaire avec second membre

$$(S): \begin{cases} x'(t) &= y(t) - z(t) \\ y'(t) &= -x(t) + z(t) \\ z'(t) &= x(t) - y(t) \end{cases}$$

où x, y et z sont des fonctions de $\mathbb R$ dans $\mathbb R$. On pose $t \in \mathbb R \longmapsto X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} \in \mathbb R^3$.

- 1. Ecrire le système différentiel linéaire (S) sous la forme X'(t) = A.X(t) où A est une matrice à déterminer.
- 2. Déterminer la solution générale, à valeurs réelles, du systeme linéaire (S).
- 3. Calculer la norme ||X(t)||. Que peut-en déduire?
- 4. Montrer que toutes les solutions du système (S) sont planes. Conclure.

Exercice 2.4.6 Soit a un paramètre réel. On considère les trois suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies sous la forme récurrente par $u_0=1$, $v_0=1$, $w_0=-1$ et pour tout $n\in\mathbb{N}$ par le système suivant

$$(S): \begin{cases} u_{n+1} = 3u_n - w_n \\ v_{n+1} = 2u_n + v_n + (1+a^2)w_n \\ w_{n+1} = -u_n + v_n + w_n \end{cases}$$

1. Déterminer la matrice A telle qu'on peut écrire le système (S) sous la forme matricielle

$$X_{n+1} = AX_n$$
 avec $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}, \forall n \in \mathbb{N}.$

- *Montrer par récurrence que $X_n = A^n X_0$, $\forall n \geq 0$.
- 2. Déterminer le polynôme caractéristique de A puis calculer ses valeurs propres.
- 3. Déterminer les vecteurs propres et les sous-espaces propres de A.
 *Trouver les réels a pour que la matrice A soit diagonalisable, en déduire le polynôme minimal.
 *Dans ce cas, proposer une base de vecteurs propres de A puis diagonaliser A.
- 4. Dans la suite de cet exercice, on se limite au cas "a = 0"
 - (a) Montrer que A n'est pas diagonalisable.
 - (b) Déterminer P une matrice de passage telle que $J = P^{-1}AP$ soit une matrice de Jordan. *Donner les cas possibles de la matrice de Jordan J.

- (c) Calculer P^{-1} , puis calculer A^n pour tout $n \ge 1$.
- (d) En déduire les expressions de u_n , v_n et w_n en fonction de n.

Exercice 2.4.7 I. On propose de résoudre le système différentiel linéaire du premier ordre sans second membre suivant :

(S)
$$\begin{cases} x'(t) = x(t) + y(t) \\ y'(t) = -x(t) + 2y(t) + z(t) \\ z'(t) = x(t) + z(t) \end{cases}$$

On pose
$$X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$
 et $X'(t) = \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix}$ la dérivée de $X(t)$ par rapport à t .

(a) Déterminer la matrice A telle qu'on peut écrire le système différentiel (\mathcal{S}) sous la forme :

$$X'(t) = AX(t).$$

- (b) Montrer que le système est bien défini, puis trouver le polynôme caractéristique associé à A.
- (c) Déterminer les valeurs propres λ_1 , λ_2 et λ_3 de la matrice A, puis déterminer les vecteurs propres v_1 , v_2 et v_3 associés respectivement aux valeurs propres λ_1 , λ_2 et λ_3 .
- (d) Déterminer les sous-espaces propres \mathcal{H}_1 , \mathcal{H}_2 et \mathcal{H}_3 associés respectivement aux valeurs propres λ_1 , λ_2 et λ_3 .
 - *Donner une interprétation géométrique des sous-espaces propres \mathcal{H}_1 , \mathcal{H}_2 et \mathcal{H}_3 .
- (e) Écrire l'expression générale d'une solution X(t) du système (S), puis trouver la solution $t \mapsto X(t)$ telle que x(0) = 1, y(0) = 1/2 et z(0) = 3.
- II. En utilisant la partie I), résoudre le système avec second membre suivant :

$$(\mathcal{E}) \begin{cases} x'(t) = x(t) + y(t) - e^{2t} \\ y'(t) = -x(t) + 2y(t) + z(t) + e^{2t} \\ z'(t) = x(t) + z(t) + e^{2t} \end{cases}$$

 $avec\ x(0) = 1,\ y(0) = 0\ et\ z(0) = 0.$ (Indication: trouver d'abord une solution particulière).

Exercice 2.4.8 Soient (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et f l'endomorphisme de \mathbb{R}^3 défini par

$$f(e_1) = 2e_1 + e_2 + e_3$$
, $f(e_2) = e_1 + 2e_2 + e_3$ et $f(e_3) = e_1 + e_2 + 2e_3$.

- 1. Déterminer la matrice A associée à f relativement à la base (e_1, e_2, e_3) . A est-elle inversible?
- 2. Déterminer Ker(f) et Im(f). Quel est le rang de f ? **Justifier**
- 3. Déterminer l'ensemble D des points fixes de f.
- 4. Déterminer le polynôme caractéristique de f, puis calculer ses valeurs propres. Donner l'ordre de multiplicité de ces valeurs propres.
- 5. Calculer les vecteurs propres de A, puis montrer qu'un des sous espaces propres de A est l'ensemble des points fixes de f.
- 6. Montrer que A est diagonalisable, puis trouver la matrice de passage P telle que $P^{-1}AP$ soit diagonale.
- 7. Calculer P^{-1} , puis calculer A^n pour tout $n \in \mathbb{N}^*$.

2.4. EXERCICES 23

8. On considère les trois suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies sous la forme récurrente par $u_0=1$, $v_0=1$, $w_0=-1$ et pour tout $n\in\mathbb{N}$ par le système suivant

$$(S): \begin{cases} u_{n+1} = 2u_n + v_n + w_n \\ v_{n+1} = u_n + 2v_n + w_n \\ w_{n+1} = u_n + v_n + 2w_n \end{cases}$$

- (a) Écrire le système (S) sous forme matricielle.
- (b) Déduire les expressions des suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ en fonction de n.

Exercice 2.4.9 On propose de résoudre le système différentiel linéaire du premier ordre sans second membre suivant :

$$(S) \begin{cases} x'(t) = x(t) - y(t) + 2z(t) + u(t) \\ y'(t) = 4y(t) + z(t) - 2u(t) \\ z'(t) = y(t) + 2z(t) - u(t) \\ u'(t) = 2y(t) + z(t) \end{cases}$$

On pose
$$X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \\ u(t) \end{pmatrix}$$
 et $X'(t) = \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \\ u'(t) \end{pmatrix}$ la dérivée de $X(t)$ par rapport à t .

1. Déterminer la matrice A telle qu'on peut écrire le système différentiel (S) sous la forme :

$$X'(t) = AX(t).$$

- 2. Déterminer le polynôme caractéristique associé à A, puis ses valeurs propres. La matrice A est-elle diagonalisable sur \mathbb{R} ? A est-elle diagonalisable sur \mathbb{C} ?
- 3. Déterminer les vecteurs propres de A et les sous-espaces propres.
- 4. Déterminer une base de vecteurs propres de A, puis diagonaliser A.
- 5. Écrire l'expression générale d'une solution X(t) du système (S), puis trouver la solution $t \mapsto X(t)$ telle que x(0) = 1, y(0) = -1, z(0) = 1 et u(0) = -1.