${
m DM} \,\, 11$ - À rendre le vendredi 8 décembre. MP2I PV

Exercice 1.

Soient E, F, G trois ensembles. On se donne trois applications

$$f: E \to F$$
, $g: F \to G$ et $h = g \circ f$.

- 1. Supposons que h est surjective et g injective. Montrer que f est surjective.
- 2. Supposons que h est injective et f surjective. Montrer que g est injective.

Exercice 2.

Soit (E, \preceq) un ensemble ordonné.

Pour une partie A de E, on note

- M_A l'ensemble des majorants de A dans E
- A^* l'ensemble des minorants de M_A dans E.

Démontrer les propriétés suivantes :

- 1. $\forall A \in \mathcal{P}(E) \quad A \subset A^*$.
- 2. $\forall (A, B) \in \mathcal{P}(E)^2 \quad A \subset B \Longrightarrow M_B \subset M_A$.
- 3. $\forall (A, B) \in \mathcal{P}(E)^2 \quad A \subset B \Longrightarrow A^* \subset B^*$.
- 4. $\forall A \in \mathcal{P}(E)$ $M_A = M_{A^*} \text{ et } A^* = (A^*)^*.$

Exercice 3.

Soit E un ensemble et A une partie de E.

Pour deux parties X et Y de E, on note $X \sim Y$ lorsque $X \cap A = Y \cap A$, ce qui définit sur $\mathcal{P}(E)$ une relation binaire.

- 1. Montrer que \sim est une relation d'équivalence.
- 2. (*) Pour $X \in \mathcal{P}(E)$, on note [X] la classe d'équivalence de X et $\mathcal{P}(E)/\sim$ l'ensemble des classes d'équivalences pour \sim .

Pour toute partie X de E, on note pose $\widetilde{f}([X]) = X \cap A$.

- (a) Expliquer pourquoi ce qui précède définit correctement une application \widetilde{f} de $\mathcal{P}(E)/\sim$ dans $\mathcal{P}(A)$.
- (b) Justifier que \widetilde{f} est une bijection de $\mathcal{P}(E)/\sim \text{vers } \mathcal{P}(A)$.