← Word and sentence embeddings

Quiz, 5 questions

1	
point	

1.

Compute a second-order co-occurrence between the words 'These' and 'So' (the cosine similarity between their first-order co-occurrence vectors). Use the toy corpus:

These are the wrong sort of bees. Quite the wrong sort. So I should think they would make the wrong sort of honey.

- Let's define a context of a word as three words to the left and three words to the right from the target word, occurred within the same sentence (if there are any).
- Forthe first-order co-occurrence, let's consider pPMI values (the formula was given on slide 5 of the first video).

Hint: in this question you actually do not need to compute anything... And the answer would be the same for any type of first-order co-occurrence.

- O -
- $\frac{1}{\sqrt{2}}$

2 points

2.

Choose correct statements about Singular Value Decomposition (SVD), an important notion from the linear algebra. Feel free to consult any additional resource like wiki if needed.

- Singular values of a rectangular matrix are its eigenvalues.
- Squares of singular values of a matrix X are eigenvalues of X^TX (or XX^T).
- Truncated SVD is the best rank \$k\$ approximation of the original matrix in terms of Frobenius norm.
- Singular values can be negative.
- Any rectangular matrix with real entries has a singular value decomposition.
- Singular values decomposition is not unique (for example, the zero matrix can be decomposed in infinitely many ways).

1 point

3

Find the objective function of the skip-gram negative sampling (SGNS) model.

- $igg(\sum_{u \in W} \sum_{v \in C} f(n_{uv}) \left(\left\langle \phi_u, heta_v
 ight
 angle + b_u + b_v' \log n_{uv}
 ight)^2$
- $iggl[iggl] \sum_{u \in W} \sum_{v \in C} \left(n_{uv} \log \sigma(\langle \phi_u, heta_v
 angle) + k \mathbb{E}_{ar{v}} \log \sigma(-\langle \phi_u, heta_{ar{v}}
 angle)
 ight)$
- $igg(\sum_{u \in W} \sum_{v \in C} (n_{uv} \langle \phi_u, heta_v
 angle k \mathbb{E}_{ar{v}} \langle \phi_u, heta_{ar{v}}
 angle)$
- $\sum_{u \in W} \sum_{v \in C} n_{uv} \frac{\exp\langle \phi_u, \theta_v \rangle}{\sum_{\bar{u} \in W} \exp\langle \phi_{\bar{u}}, \theta_v \rangle}$

1		\leftarrow	Word and sentence embeddings		
point			Quiz, 5 questions		
4. How are	wo	ord embe	eddings usually evaluated (qualitatively or quantitively)?		
	By the interpretability of the components of the vectors.				
By the amount of positive components of word vectors.					
	By Spearman's correlation (or similar rank correlation measure) with human judgements on word similarity task.				
By the accuracy of analogy prediction (using some pre-defined dataset of 4-word analogies).					
	Ву с	omparii	ng maximal lengths of word vectors (the more is the length, the better is the model).		
1 point 5. Choose 1	the	correct	statements.		
For word similarity tasks, count-based methods perform on par with predictive methods.					
Word2vec works fine for word analogies, but there are many concerns with word similarities.					
	Repi	resenta	tions of word or character n-grams may improve the quality of the model.		
	Skip	o-gram n	negative sampling (SGNS) model is too hard to train, and it is often approximated with softmax.		
I, Jiadai Zhao , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code					
Submit Quiz					

 \bigcirc \vdash