Question (taken from previous final exam)

A smooth of a set of points in two-dimensional space is required. You decide to use kernel smoothing with a kernel of the form $K(t) = e^{-2|t|}$ for all t.

(a) Using the kernel you specified in (a) and the following data, determine the smooth at x = 6. Use a bandwidth of 1.

x	у	
3	1	
5	2	
7	4	
8	6	
9	12	

(b) As an alternative method of smoothing you decide to use local averaging with a window width of 4. That is, when determining the smooth at x = 6 you average all y-values falling between x = 4 and x = 8. Specify a kernel function and bandwidth that would lead to the same smoothed values as the local averaging method described here.

not specified what bernel it is.

If box bernel: by default ne

have a cut-off |t| = 0.5

Solution:

4-9
1

x	У	$\frac{x_i^{X} - x_j}{b}$	$K\left(\frac{x_i-x_j}{b}\right)$
3	1	3	2.4788*10 ⁻³
5	2	1	0.13534
7	4	-1	0.13534
8	6	-2	0.01832
9	12	-3	2.4788*10 ⁻³

Sum of kernel values in final column of the above table is 0.29394.

Hence smooth at
$$x = 6$$
 is

$$\frac{1}{0.29394} \Big[2.4788 * 10^{-3} + 2(0.1354) + 4(0.1354) + 6(0.1832) + 12(2.4788 * 10^{-3}) \Big]$$

= 3.2460

(a) Any uniform kernel that covers the range $\left[-\frac{2}{b}, \frac{2}{b}\right]$ where any bandwidth parameter, b, is possible.