broblems for Week #2.

For each of the questions $P \in (0,1)$, $\lambda > 0$, q = 1-P, M = 1 are constants.

#1. Verify that each of the following are probability functions.

(a) $f(x) = p^{x} g^{1-x}, x = 0,1$ = 0, therwise (ow)

(b) $\int_{1}^{1} (x) = {m \choose x} p^{x} q^{m-x}, x = 0, 1, \dots, m$

(c) $f(x) = g^{x-1}p$, $x = 1, 2, \cdots$ = 0, ow

 $x = O_1/, \cdots$ (d) $f(x) = e^{-\lambda} \int_{x'}^{x}$

#2. Calculate the mean and the variance for each
of the distributions in #1.

#3(a) The probability generation function G is defined for rv's have ranges which are $\subseteq \{0,1,2,\cdots\}$.

If X is such a rv me will call it
If X is such a rv me will call it a counting rv. Its paf is
$\mathcal{L}(X)$
1 Auch that F(101)
For each of in #1 calculate the corresponding For each of in #1 calculate the corresponding pay (grobalility generating function).
tor each of the generating function).
(b) The moment generating function (mgf) of t is alefined as
(b) The moment generaling
is alexined as
$m(t) = E(e^{tX})$ (aludate
$E(e^{\pm X}) < \infty$. Calculate
for those to for which the
for those to for which $E(e^{\pm X}) < \infty$. Calculate the maj for each \mathbb{F} in \mathbb{F} !
$4(a)$ Show $X=0 \Rightarrow E(X)=0$.
(b) Show $X \leq Y \Rightarrow E(X) \leq E(Y)$
(c) Show E(X) < E(1X1)
$\frac{(C) \text{ Show } E(V,V) \leq E(V) + E(Y)}{ E(V,V) }$
(d) Show $E(X+Y) \leq E(X) + E(Y)$
5 (challenge) Let $0 \leq X \leq X \leq \dots + \text{suppose lim } X_n(s) = X(s),$ $\forall A \in S. \text{Show } E(X_m) \rightarrow E(X).$
$\forall A \in S.$ Show $E(X_m) \rightarrow E(X)$.