

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной Техники (BT)

ОТЧЁТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 1

«Проектирование счетчиков на базе D- и JK-триггеров»

по дисциплине

«Теория автоматов»

Выполнил студент группы	Туктаров Т.А
ИВБО-11-23	
Принял старший преподаватель	Боронников А.С
Лабораторная работа выполнена	«»2022 г.
«Зачтено»	« » 2022 г.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	
1 ПОСТАНОВКА ЗАДАЧИ	
2 ПОСТРОЕНИЕ СЧЕТЧИКА НА D-ТРИГГЕРАХ	
3 ПОСТРОЕНИЕ СЧЕТЧИКА НА ЈК-ТРИГГЕРАХ	
ЗАКЛЮЧЕНИЕ	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	

введение

Практическая работа посвящена проектированию схем счетчиков с заданным модулем и шагом на D- и JK-триггерах.

1 ПОСТАНОВКА ЗАДАЧИ

Построить счетчика по модулю 18 с шагом 2 в двух вариантах:

- 1. На D-триггерах, комбинационная часть схемы в базисе И-НЕ
- 2. На JK-триггерах, комбинационная часть схемы в базисе ИЛИ-НЕ Схемы должны быть минимизированы

2 ПОСТРОЕНИЕ СЧЕТЧИКА НА D-ТРИГГЕРАХ

Необходимо построить счетчик по модулю 19 с шагом 4 на D-триггерах. Работа счетчика представлена в Таблице 2.1.

Таблица 2.1 – Таблица состояний счетчика

		Q					Q'				
	Q4	Q3	Q2	Q1	Q0		Q'4	Q'3	Q'2	Q'1	Q'0
0	0	0	0	0	0	4	0	0	1	0	0
1	0	0	0	0	1	5	0	0	1	0	1
2	0	0	0	1	0	6	0	0	1	1	0
3	0	0	0	1	1	7	0	0	1	1	1
4	0	0	1	0	0	8	0	1	0	0	0
5	0	0	1	0	1	9	0	1	0	0	1
6	0	0	1	1	0	10	0	1	0	1	0
7	0	0	1	1	1	11	0	1	0	1	1
8	0	1	0	0	0	12	0	1	1	0	0
9	0	1	0	0	1	13	0	1	1	0	1
10	0	1	0	1	0	14	0	1	1	1	0
11	0	1	0	1	1	15	0	1	1	1	1
12	0	1	1	0	0	16	1	0	0	0	0
13	0	1	1	0	1	17	1	0	0	0	1
14	0	1	1	1	0	18	1	0	0	1	0
15	0	1	1	1	1	0	0	0	0	0	0
16	1	0	0	0	0	1	0	0	0	0	1
17	1	0	0	0	1	2	0	0	0	1	0
18	1	0	0	1	0	3	0	0	0	1	1

Так как D-триггер работает по принципу «что на входе, то и на выходе при положительном фронте синхросигнала», то таблица возбудимости триггера соответствует таблице переходов состояний счетчика.

Функции возбуждения D-триггеров будем рассчитывать с помощью МДНФ (так как по заданию необходимо, чтобы комбинационная часть схемы счетчика была построена в базисе «И-НЕ »).

Минимизации функций будут произведены с помощью карт Карно.

Расчет функции возбуждения триггера Q'4 представлен на рисунке 2.1

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	0	0	0	0	0	0	0	0
01	0	0	0	0	1	0	1	1
11	Х	X	X	X	Х	X	х	Х
10	0	0	X	0	Х	X	Х	Х

Рисунок 2.1 - Карта Карно для минимизации функции возбуждения триггера Q'4 Получим формулы:

$$Q_4' = Q_3 Q_2 \overline{Q_1} + Q_3 Q_2 \overline{Q_0}$$
$$Q_4' = \overline{\overline{Q_3 Q_2 \overline{Q_1}}} \& \overline{\overline{Q_3 Q_2 \overline{Q_0}}}$$

Расчет функции возбуждения триггера Q'3 представлен на рисунке 2.2

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	0	0	0	0	1	1	1	1
01	1	1	1	1	0	0	0	0
11	Х	Х	Х	X	Х	X	X	X
10	0	0	Х	0	Х	Х	Х	Х

Рисунок 2.2 - Карта Карно для минимизации функции возбуждения триггера Q'з Получим формулы:

$$Q_3' = Q_3 \overline{Q_2} + \overline{Q_3} Q_2$$
$$Q_3' = \overline{\overline{Q_3} \overline{Q_2}} \& \overline{\overline{Q_3} Q_2}$$

Расчет функции возбуждения триггера Q'_2 представлен на рисунке 2.3

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	1	1	1	1	0	0	0	0
01	1	1	1	1	0	0	0	0
11	Х	Х	X	X	X	Х	X	Х
10	0	0	X	0	X	Х	Х	Х

Рисунок 2.3 - Карта Карно для минимизации функции возбуждения триггера Q'2 Получим формулы:

$$Q_2' = \overline{Q_4 Q_2}$$

$$Q_2' = \overline{\overline{\overline{Q_4 Q_2}}}$$

Расчет функции возбуждения триггера Q'1 представлен на рисунке 2.4

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	0	0	1	1	1	1	0	0
01	0	0	1	1	1	0	0	0
11	Х	Х	Х	Х	х	Х	Х	Х
10	0	1	Х	1	Х	Х	Х	Х

Рисунок 2.4 - Карта Карно для минимизации функции возбуждения триггера Q'1 Получим формулы:

$$Q_1' = Q_4 Q_0 + Q_1 \overline{Q_0} + \overline{Q_2} Q_1 + \overline{Q_3} Q_1$$
$$Q_1' = \overline{\overline{Q_4 Q_0}} \& \overline{\overline{Q_1} \overline{Q_0}} \& \overline{\overline{Q_2} Q_1} \& \overline{\overline{Q_3} Q_1}$$

Расчет функции возбуждения триггера Q'_0 представлен на рисунке 2.5

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	0	1	1	0	0	1	1	0
01	0	1	1	0	0	0	1	0
11	Х	Х	Х	Х	Х	Х	Х	Х
10	1	0	Х	1	Х	Х	Х	Х

Рисунок 2.5 - Карта Карно для минимизации функции возбуждения триггера Q'0 Получим формулы:

$$\begin{aligned} Q_0' &= Q_4 \overline{Q_0} + \overline{Q_3} Q_2 Q_0 + \overline{Q_2} Q_1 Q_0 + \overline{Q_4} \overline{Q_1} Q_0 \\ Q_0' &= \overline{\overline{Q_4} \overline{Q_0}} \& \overline{\overline{Q_3}} \overline{Q_2} \overline{Q_0} \& \overline{\overline{Q_2}} \overline{Q_1} \overline{Q_0} \& \overline{\overline{Q_4} \overline{Q_1}} \overline{Q_0} \end{aligned}$$

Реализация схемы в среде Logisim представлена на Рисунке 2.6

Рисунок 2.6 – Схема счетчика на D-триггерах в базисе И-НЕ в Logisim

3 ПОСТРОЕНИЕ СЧЕТЧИКА НА ЈК-ТРИГГЕРАХ

Необходимо построить счетчик по модулю 19 с шагом 4 на D-триггерах. Таблица состояний счетчика и функций S_4 - S_0 сигналов возбуждения JK-триггеров имеет вид (Таблица 2.2):

Таблица 2.2 таблица состояний счетчика

1 00000	олица 2,2 таолица состоянии счетчика																				
			Q						Q'			S	4	S	3	S	2	S	1	S	0
	Q	Q	Q	Q	Q		Q'	Q'	Q'	Q'	Q'	J	K	J	K	J	K	J	K	J	K
	4	3	2	1	0		4	3	2	1	0										
0	0	0	0	0	0	4	0	0	1	0	0	0	X	0	X	1	X	0	X	0	X
1	0	0	0	0	1	5	0	0	1	0	1	0	X	0	X	1	X	0	X	X	0
2	0	0	0	1	0	6	0	0	1	1	0	0	X	0	X	1	X	X	0	0	X
3	0	0	0	1	1	7	0	0	1	1	1	0	X	0	X	1	X	X	0	X	0
4	0	0	1	0	0	8	0	1	0	0	0	0	X	1	X	X	1	0	X	0	X
5	0	0	1	0	1	9	0	1	0	0	1	0	X	1	X	X	1	0	X	X	0
6	0	0	1	1	0	10	0	1	0	1	0	0	X	1	X	X	1	X	0	0	X
7	0	0	1	1	1	11	0	1	0	1	1	0	X	1	X	X	1	X	0	X	0
8	0	1	0	0	0	12	0	1	1	0	0	0	X	X	0	1	X	0	X	0	X
9	0	1	0	0	1	13	0	1	1	0	1	0	X	X	0	1	X	0	X	X	0
10	0	1	0	1	0	14	0	1	1	1	0	0	X	X	0	1	X	X	0	0	X
11	0	1	0	1	1	15	0	1	1	1	1	0	X	X	0	1	X	X	0	X	0
12	0	1	1	0	0	16	1	0	0	0	0	1	X	X	1	X	1	0	X	0	X
13	0	1	1	0	1	17	1	0	0	0	1	1	X	X	1	X	1	0	X	X	0
14	0	1	1	1	0	18	1	0	0	1	0	1	X	X	1	X	1	X	0	0	X
15	0	1	1	1	1	0	0	0	0	0	0	0	X	X	1	X	1	X	1	X	1
16	1	0	0	0	0	1	0	0	0	0	1	X	1	0	X	0	X	0	X	1	X
17	1	0	0	0	1	2	0	0	0	1	0	X	1	0	X	0	X	1	X	X	1
18	1	0	0	1	0	3	0	0	0	1	1	X	1	0	X	0	X	X	0	1	X

Расчет функций возбуждения входов ЈК-триггеров будем рассчитывать с помощью МКНФ (так как по заданию необходимо, чтобы комбинационная часть схемы счетчика была построена в базисе «ИЛИ-НЕ»).

Минимизации функций будут произведены с помощью карт Карно.

Расчет функций возбуждения триггера S_4 представлены на рисунках 2.7-2.8.

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	0	0	0	0	0	0	0	0
01	0	0	0	0	1	0	1	1
11	Х	Х	Х	Х	Х	Х	Х	Х
10	Х	Х	Х	Х	Х	Х	Х	Х

Рисунок 2.7 – Карта Карно для минимизации функции возбуждения триггера S4(j) Получим формулы:

$$S_4(j) = (Q_2)(Q_3)(\overline{Q_1} + \overline{Q_0}) = \overline{(Q_2)(Q_3)(\overline{Q_1} + \overline{Q_0})} = \overline{\overline{Q_2} + \overline{Q_3} + \overline{(\overline{Q_1} + \overline{Q_0})}}$$

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	Χ	X	X	X	X	X	X	X
01	Χ	X	X	X	X	X	X	Х
11	X	X	X	X	X	X	X	Х
10	Х	1	X	1	X	X	Х	Х

Рисунок 2.8 – Карта Карно для минимизации функции возбуждения триггера $S_4(k)$ Получим формулу:

$$S_4(k) = 1$$

Расчет функций возбуждения триггера S_3 представлены на рисунках 2.9-2.10.

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	0	0	0	0	1	1	1	1
01	Х	X	X	Х	Х	X	X	Χ
11	Х	Х	Х	Х	х	X	X	Х
10	0	0	Х	0	х	X	X	X

Рисунок 2.9 – Карта Карно для минимизации функции возбуждения триггера S₃(j) Получим формулу:

$$S_3(j) = Q_2$$

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	X	Х	Х	Х	х	X	X	Х
01	0	0	0	0	1	1	1	1
11	Х	X	Х	Х	Х	X	X	Х
10	0	0	Х	0	Х	Х	X	Х

Рисунок 2.9 – Карта Карно для минимизации функции возбуждения триггера S₃(k) Получим формулу:

$$S_3(k) = Q_2$$

Расчет функций возбуждения триггера S_2 представлены на рисунках 2.11-2.12.

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	1	1	1	1	X	X	X	X
01	1	1	1	1	X	X	X	X
11	Х	Х	Х	Х	Х	Х	Х	Х
10	0	0	Х	0	Х	Х	Х	Х

Рисунок 2.11 – Карта Карно для минимизации функции возбуждения триггера $S_2(j)$ Получим формулу:

$$S_2(j) = \overline{Q_4}$$

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	X	X	X	X	1	1	1	1
01	Х	X	X	X	1	1	1	1
11	X	X	X	X	X	X	X	X
10	X	X	X	X	X	Х	X	Х

Рисунок 2.12 – Карта Карно для минимизации функции возбуждения триггера $S_2(k)$ Получим формулу:

$$S_2(k) = 1$$

Расчет функций возбуждения триггера S_1 представлены на рисунках 2.13-2.14.

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	0	0	Х	Х	Х	Х	0	0
01	0	0	Х	Х	Х	Х	0	0
11	Х	Х	Х	Х	Х	Х	Х	Х
10	0	1	х	Х	Х	X	х	Х

Рисунок 2.13 – Карта Карно для минимизации функции возбуждения триггера S₁(j) Получим формулу:

$$S_1(j) = (Q_0)(Q_4) = \overline{Q_0} + \overline{Q_4}$$
 $OOO OO1 O11 O10 110 111 101 100$
 $OO X X O O O O X X$
 $O1 X X O O O O O X X$
 $O1 X X X O O O O O X X$
 $O1 X X X O O O O O X X$
 $O1 X X X X O O O O O O O O$
 $OX X X O O O O O O O$
 $OX X X O O O O O O O O$
 $OX X O O O O O O O O$
 $OX O O O O O O O$
 $OX O O O O O O$
 $OX O O O O O O$
 $OX O O O O O$
 $OX O O O O$
 $OX O O O O$
 $OX O O O$
 $OX O O O$
 $OX O O O$
 $OX O$
 $OX O O$
 $OX O$

Рисунок 2.14 — Карта Карно для минимизации функции возбуждения триггера $S_1(k)$ Получим формулы:

$$S_1(k) = (Q_0)(Q_2)(Q_3) = \overline{\overline{Q_0} + \overline{Q_2} + \overline{Q_3}}$$

Расчет функций возбуждения триггера S_0 представлены на рисунках 2.15-2.16.

Q2Q1Q0 Q4Q3	000	001	011	010	110	111	101	100
00	0	Х	Х	0	0	Х	Х	0
01	0	Х	Х	0	0	Х	Х	0
11	Х	Х	Х	Х	Х	Х	Х	Х
10	1	Х	Х	1	X	X	X	X

Рисунок 2.15 – Карта Карно для минимизации функции возбуждения триггера $S_0(j)$ Получим формулу:

$$S_0(j) = (Q_4)$$
 $Q_{2Q_1Q_0} Q_{Q_4Q_3} Q_$

Рисунок 2.16 – Карта Карно для минимизации функции возбуждения триггера $S_0(k)$ Получим формулы:

$$S_0(k)=(Q_3+\overline{Q_2})(Q_2+\overline{Q_1})(Q_4+Q_1)=\overline{(\overline{Q_3}+\overline{Q_2})}+\overline{(\overline{Q_2}+\overline{Q_1})}+\overline{(\overline{Q_4}+\overline{Q_1})}$$
 Реализация схемы в среде Logisim представлена на Рисунке 2.3.

Рисунок 2.17 – Схема счетчика на JK-триггерах в базисе ИЛИ-НЕ в Logisim

ЗАКЛЮЧЕНИЕ

В ходе выполнения практической работы были восстановлены таблицы состояний счетчиков, построенных на D- и JK-триггерах. Была отрисована временная диаграмма работы счетчика. Также были минимизированы функции возбуждений триггеров методом карт Карно. Затем были построены схемы полученных формул в базисах И-НЕ и ИЛИ-НЕ в лабораторном комплексе Logisim и протестирована их работа. Тестирование подтвердило правильность работы схем.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. В.В. Лозовский Теория автоматов [Электронный ресурс]: Учебное пособие / В.В. Лозовский, Е.Н. Штрекер, А.С. Боронников, Л.В. Казанцева. — М., МИРЭА — Российский технологический университет, 2024. — 454 с.