GIT AND DIOPHANTINE APPROXIMATION

MARCO MACULAN - JUSSIEU

1. GIT I - QUOTIENTS OF AFFINE ALGEBRAIC VARIETIES

Goal of Mumford-Hilbert: Construct moduli spaces by constructing "quotients" of algebraic varieties by algebraic groups.

Notation: $k = \bar{k}$.

Example 1.1. *G* an algebraic group acting on *X*, algebraic variety. One can ask if the quotient is an algebraic variety. In general the answer is NO. As an example one can consider $G = \mathbb{C}^*$ acting on $\mathbb{C}^2 = X$ by t*(x,y) = (tx,ty). Then (0,0) is a fixed point and lies in every orbit. In particular $X/G = \{0\} \cup \mathbb{P}^1(\mathbb{C})$ and $0 \in \overline{\{p\}}$ for all $p \in \mathbb{P}^1(\mathbb{C})$: so the quotient is not an algebraic variety since it is not separated.

1.1. **The affine case.** G = k-reductive group acting on the affine algebraic variety $X = \operatorname{Spec} A$, with A = k[x].

Theorem 1.2. $A^G = \{ f \in A : f(g.x) = f(x) \forall g \in G \}$ is a finitely generated k-algebra Moreover, denoted by $Y = \operatorname{Spec} A^G$ and by $\pi : X \to Y$ the morphism associated to $A^G \subset A$ the following hold:

- (1) π is G-invariant and surjective.
- (2) $\pi(x) = \pi(x')$ iff $\overline{G.x} \cap \overline{G.x'} \neq \emptyset$.
- (3) $F \subset X$ is G-stable closed subset then $\pi(F) \subset Y$ is closed.
- (4) $\pi^*: \mathcal{O}_Y \to (\pi_* \mathcal{O}_X)^G$ is an isomorphism, where the map is given for every $V \subset Y$ $H^0(V, (\pi_* \mathcal{O}_X)^G) = H^0(\pi^{-1}(V), \mathcal{O}_X)^G.$

(5) For every G-invariant map
$$f: X \to Z$$
 there exists a unique $\tilde{f}: Y \to Z$ such that

$$X \xrightarrow{f} Z \qquad \qquad \downarrow \exists ! \tilde{f} \qquad \qquad \Upsilon$$

- (6) $V \subset Y$ iff $\pi^{-1}(V) \subset X$ open.
- (7) $\overline{G.x}$ contains exactly one closed point.

Remark 1.3. $GL_n \supset G$ is reductive if there is no normal connected unipotent subgroup different from the identity. If $\operatorname{char} k = 0$, this is equivalent to say that for every algebraic representation V there exists a unique G-equivariant projection $R: V \to V^G$. If $k = \mathbb{C}$ this is equivalent to $G(\mathbb{C})$ contains a Zariski dense compact subgroup. Over \mathbb{C} , if K is the dense compact subgroup, one gets

$$R(v) = \int_{\mathcal{K}} g * v d\mu(v)$$

where μ is the Haar measure. The examples (that are going to appear in this course) are GL_n (where $K = U_n$) and SL_n (where $K = SU_n$).

Example 1.4. Let G be a reductive group acting algebraically on \mathbb{C}^n , i.e. there is an algebraic map $G \to GL_n$, and let X be an algebraic variety in \mathbb{C}^n which is G-stable. Then G.x contains a unique closed orbit and one defines $Y = X/\sim$ where

$$x \sim x'$$
 iff $\overline{G.x}$ and $\overline{G.x'}$ contain the same closed orbit

There is a quotient map $\pi: X \to Y$ and the topology is the quotient topology, i.e. $V \subset Y$ open if and only of $\pi^{-1}(V) \subset X$.

Theorem 1.5. In these settings, Theorem 1.2 implies that Y is a complex affine algebraic variety with coordinate ring $\mathbb{C}[x]^G$.

Example 1.6. Actions of \mathbb{C}^* on \mathbb{C}^2 :

- (1) t * (x,y) = (tx,ty). Then $\mathbb{C}[x,y]^{\mathbb{C}^*} = \mathbb{C}$ which means $Y = \{pt\}$.
- (2) t*(x,y) = (tx,y). The invariants are $\mathbb{C}[x,y]^{\mathbb{C}^*} = \mathbb{C}[y]$ and so $Y = \mathbb{C}$ and $\pi: \mathbb{C} \to Y$ is the second projection.
- (3) $t*(x,y)=(t^{-1}x,ty)$. The invariants are $\mathbb{C}[x,y]^{\mathbb{C}^*}=\mathbb{C}[xy]$ and so $Y=\mathbb{C}$ but $\pi:\mathbb{C}\to Y$ is given by $(x,y)\mapsto xy$.

Exercise 1.7. Find an action of \mathbb{C}^* to \mathbb{C}^3 such that π is NOT open.

One can ask why restrict to reductive groups. The reason is that otherwise some of the results of the previous Theorems may fail. As an example consider SL_2 acting on \mathbb{P}^1 . If one takes

$$B = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$

this is the stabilizer of (1:0). Then the quotient G/B is isomorphic to \mathbb{P}^1 which is not affine! The reason is that B is not reductive because it contains a unipotent normal subgroup namely

$$\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$$

1.2. **Linear Algebra Revisited.** Take V to be the k vector space of dimesion n, $X = \operatorname{End}_k(V)$ and $G = \operatorname{GL}(V)$ acting on X by conjugation.

Lemma 1.8. *Let* $\phi \in X$, then $\phi_{ss} \in \overline{G.\phi}$.

Proof. In some basis we can write ϕ as an upper triangular matrix (a_{ij}) with $a_{ij} = 0$ if i > j. Consider $\lambda : G_m \to GL(V)$ defined as

$$\lambda(t) = \begin{pmatrix} t^n & 0 & 0 & 0 \\ 0 & t^{n-1} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & t \end{pmatrix}$$

then

$$\lambda(t)\phi\lambda(t)^{-1} = diag(a_{11},\ldots,a_{nn}) + (t^{j-1}a_{ij})$$

so it tends to $diag(a_{11},...,a_{nn})$ for $t \to 0$ which belongs to $\overline{G.\phi}$.

Corollary 1.9. *G.* ϕ *is closed if and only if* ϕ *is semi-simple (i.e. diagonal)*

So now we want to compute the invariants $\mathbb{C}[\operatorname{End}(V)]^{\operatorname{GL}(V)}$. Since $\phi \in \operatorname{End}(V)$ we have the characterist polynomials

$$P_{\phi}(T) = T^{n} - a_{1}(\phi)T^{n-1} + \dots + (-1)^{n}a_{n}(\phi)$$

where a_i are GL(V)-invariant polynomials.

Definition 1.10. Define

$$p: End(V) \rightarrow \mathbb{A}^n$$

sending $\phi \mapsto (a_1(\phi), \dots, a_n(\phi))$.

Theorem 1.11. (\mathbb{A}^n, p) satisfies proper (5) of Theorem 1.2, i.e. is the categorical quotient of X by G.

Corollary 1.12. $\mathbb{C}[\operatorname{End}(V)]^{\operatorname{GL}(V)} = \mathbb{C}[a_1,\ldots,a_n].$

Proof. Define $\epsilon : \mathbb{A}^n \to \operatorname{End}(V)$ as

$$\epsilon(b_1,\ldots,b_n) = egin{pmatrix} &0&&b_1\ \hline 1&&&b_2\ &\ddots&&dots\ &&1&b_n \end{pmatrix}$$
 ,

whose characteristic polynomial is

$$P_{\epsilon(b)}(T) = T^n - b_1 T^{n-1} + \dots + (-1)^n b_n,$$

Then one has $p \circ \epsilon = \mathrm{id}_{\mathbb{A}^n}$, i.e ϵ is a section of $p : \mathrm{End}(V) \to \mathbb{A}^n$.

In order to verify property (5) of Theorem 1.2 we start with

$$f: \operatorname{End}(V) \to Z$$

which is $\operatorname{GL}(V) = G$ -invariant. Is enough to take $\tilde{f} := f \circ \epsilon$. We have to show that

$$f(\phi) = \tilde{f}(p(\phi))$$
 for every $\phi \in X$.

But $\tilde{f}(p(\phi)) = f \circ \epsilon \circ p(\phi)$. In general $\epsilon(p(\phi)) \neq \phi$, nevertheless they have the same characteristic polynomial. Therefore they have the same eigenvalues and so they have the same semisimple part up to conjugation. In particular this implies that

$$\overline{G.p} \cap \overline{G.\epsilon(p(\phi))} \neq \emptyset.$$

By *G*-invariance
$$f(\phi) = f(\epsilon(p(\phi)))$$
.