3

Puissances d'exposant entier relatif

Galaxie spirale NGC 7331 dans Pégase

Les objets de l'Univers les plus
éloignés que l'on peut observer sont
situés à 1025 mêtres: ce sont des amas
de galaxies très brillantes créés au début
de l'Univers, il y a environ
de l'Univers, il y a environ
on peut obtenir des images sont des grosses
on peut obtenir des images sont de benzène
molécules, comme la molécule de benzène
de quelque 10-10 mètre.
Sans la notation scientifique, il serait bien
long d'écrire ces nombres...

Tu es certain que c'est la vraie règle? Le **gogol** vaut **10100**. Le moteur de recherche **Google** a repris la version anglaise de ce nom (googol), faisant ainsi allusion à sa **puissance** d'organisation des données sur le web.

Imaginez que vous doubliez
le nombre de grains de blé sur
les **64 GASES** successives
d'un échiquier en partant d'un grain.
Le nombre total de grains
(1 + 2 + 4 + ...) sera
environ égal à **2**⁶⁴, soit plus
que la récolte mondiale de blé!

en commencer

Dans chaque cas, une seule des trois réponses proposées est exacte. Laquelle ?

		Α	В	С
1	Le nombre 3 ⁴ est égal à :	3 × 4	$3 \times 3 \times 3 \times 3$	$4 \times 4 \times 4$
2	Le nombre (-4)0 est égal à :	1	– 1	0
3	Le nombre 2 ⁻¹ est :	un nombre négatif	l'opposé de 2	l'inverse de 2
4	$2^2 \times 2^3 =$	2 ⁵	2 ⁶	$2 \times 2 \times 2 \times 3$
5	$\frac{2^7}{2^5} =$	212	22	7 5
6	$(-3)^4$ est un nombre :	positif	négatif	On ne peut rien dire
7	$(-2)^7$ est un nombre :	positif	négatif	On ne peut rien dire
8	Soit n un entier tel que $n > 1$. L'écriture décimale de 10^n comporte :	10 zéros	n chiffres	n zéros
9	L'écriture décimale de 10 ⁻⁵ comporte :	4 zéros	5 zéros	6 zéros
10	$10^4 \times 10^{-7} \times 10^{-1} =$	10 ¹²	10-4	10 ²⁸
11	$\frac{10^2}{10^5}$ =	10-3	10 ³	10 ⁷
12	$(10^2)^{-3} =$	10 ⁻¹	-10 ⁶	10-6
13	Le nombre $467,3 \times 10^4$ a pour notation scientifique :	4,673 × 10 ⁴	4,673 × 10 ⁶	4,673 × 10 ²

Exercice 1 a. Recopier et compléter :

$$(3^2)^4 = 3^2 \times ... \times ... \times ... = ... \times ... \times ... \times ... \times ... \times ... \times ... = 3$$

b. En utilisant la méthode de la question a, écrire chacune des expressions suivantes sous la forme a^n où n est un entier relatif.

- $5^{-2} \times 5$ $\frac{3^2}{3^7}$ $\frac{(-5)^{-2}}{(-5)^{-7}}$ $(5^{-1})^3$ $(11^{-4})^{-2}$

Exercice 2 Écrire les expressions suivantes sous la forme 10^n où n est un entier relatif.

$$A = 10^7 \times 10^2 \times 10^{-1}$$

$$B = \frac{10^{-5} \times 10^3}{10^8}$$

$$C = (10^5)^{-2}$$

$$D = 10^3 \times 10^5 \times 10^0$$

$$E = \frac{10^{11} \times 10^{-4}}{10^2} \qquad F = 10 \times (10^{-3})^{-4}$$

$$F = 10 \times (10^{-3})^{-4}$$

Exercice 3 a. Parmi les nombres ci-dessous, quels sont ceux écrits en notation scientifique ?

$$A = 13 563$$

$$C = 1,72 \times 12,000 \times 10^{-2}$$

$$B = 0,0095$$
 $C = 1,72 \times 10^{-3}$ $D = 15,4 \times 10^{2}$ $E = 0,87 \times 10^{5}$

$$E = 0.87 \times 10^5$$

$$F = -2.85 \times 10^4$$

$$F = -2.85 \times 10^4$$
 $G = -12\ 000 \times 10^{-2}$ $H = 0.56 \times 10^{-7}$ $I = -1.8$.

$$H = 0.56 \times 10^{-7}$$

$$I = -1.8$$
.

Donner la notation scientifique des autres nombres.

Exercice 4 Soient A = 367.9×10^{12} et B = 0.0076×10^{16} .

Donner un ordre de grandeur de A et B, puis en déduire une comparaison de A et B.

Activités

Produit et quotient de deux puissances d'un même nombre

A Produit

Soit a un nombre non nul.

1 a. En utilisant la définition de la puissance d'un nombre, recopier et compléter :

•
$$a^3 \times a^2 = ... \times ... \times ... \times ... = a^{---}$$

•
$$a^{-4} \times a^7 = \frac{--- \times --- \times --- \times --- \times --- \times ---}{--- \times --- \times ---} = a^{---}$$

•
$$a^{-3} \times a^{-1} = \frac{1}{a^{---}} \times \frac{1}{a^{---}} = \frac{1}{a^{---}} = a^{---}$$

- **b.** Peut-on calculer rapidement $a^{1977} \times a^{-436}$ en utilisant la définition de la puissance d'un nombre? Pourquoi?
- Dans chacun des cas précédents, quelle est la relation entre les exposants de l'expression initiale et l'exposant du résultat final?
- De manière générale, n et p étant deux nombres entiers relatifs, le produit $a^n \times a^p$ est égal à une puissance de a. Quel est son exposant?

Applications

2. Calculer le plus rapidement possible les expressions suivantes :

$$A = 3^4 \times 3^{-7}$$

$$B = 2^{11} \times 2^{-5} \times 2^{3} \qquad C = 5^{364} \times 5^{763}$$

$$C = 5364 \times 5763$$

b. Réduire les expressions suivantes :

D =
$$(-x)^3 \times (-x)^2 \times (-x)^1$$
 E = $(-x)^0 \times (-x)^5$ F = $x^{-17} \times x^{80} \times x^{-63}$

$$F = (-x)^0 \times (-x)^5$$

$$E = w - 17 \times w80 \times w - 63$$

- **G.** À la calculatrice, calculer les nombres 3¹; 3²; 3³; 3⁴; 3⁵; 3⁶; 3⁷ et 3⁸. Que constate-t-on concernant les derniers chiffres de ces puissances ?
- Sans calculatrice, mais en utilisant la règle de calcul établie précédemment, donner le dernier chiffre de l'écriture décimale du nombre 3²⁷.

Quotient

- Soient a un nombre non nul et n et p deux entiers relatifs.
- On s'intéresse au quotient $\frac{a^n}{a^n}$

Applications

Calculer le plus rapidement possible :

$$A = \frac{7^{12}}{7^5}$$

$$B = \frac{2^0}{2^{-6}}$$

$$A = \frac{7^{12}}{7^5}$$
 $B = \frac{2^0}{2^{-6}}$ $C = \frac{(-3)^{-65}}{(-3)^{-98}}$

b. Réduire les expressions suivantes :

$$D = \frac{a^{-3}}{a^2}$$

$$E = \frac{a^4}{a^{-9}}$$

D =
$$\frac{a^{-3}}{a^2}$$
 E = $\frac{a^4}{a^{-9}}$ F = $\frac{a^{678} \times a^{-5}}{a^{-7}}$

Activité 2 Puissance d'une puissance d'un nombre

Soit a un nombre non nul.

🚺 ᇘ En utilisant la définition de la puissance d'un nombre, recopier et compléter :

•
$$(a^2)^4 = \dots \times \dots \times \dots = a^{--}$$

•
$$(a^{-3})^2 = ... \times ... = a^{---}$$

•
$$(a^2)^4 = \dots \times \dots \times \dots = a^{--}$$

• $(a^5)^{-2} = \frac{1}{(a^5)^{--}} = \frac{1}{a^{--}} \times \frac{1}{a^{--}} = \frac{1}{a^{--}} = a^{--}$
• $(a^{-3})^2 = \dots \times \dots = a^{--}$
• $(a^{-3})^{-1} = \frac{1}{a^{--}} = a^{--}$

$$\bullet (a^{-3})^{-1} = \frac{1}{a^{--}} = a^{--}$$

- **b.** Peut-on calculer rapidement $(a^{120})^{40}$ en utilisant la définition de la puissance d'un nombre ? Pourquoi?
- 🔼 Dans chacun des cas précédents, quelle est la relation entre les exposants de l'expression initiale et l'exposant du résultat final ?
- De manière générale, n et p étant deux nombres entiers relatifs, la puissance de puissance $(a^n)^p$ est égale à une puissance de a. Quel est son exposant?
- Applications
 - a. Calculer le plus rapidement possible :

$$A = (2^4)^5$$

$$B = (6^{-1})^7$$

$$C = (3^{45})^{-10}$$

b. Réduire les expressions suivantes :

$$D = (a^0)^{-3}$$

$$E = (a^{-3})^{-8}$$

$$F = (3-67)^{-20}$$

C. Quel est le dernier chiffre de l'écriture décimale de 7⁴? Écrire 24 sous la forme d'un produit de deux entiers, puis en déduire le dernier chiffre de 7²⁴.

Produit et quotient des puissances de deux nombres Activité 3 ayant le même exposant

A Produit

1 En participant à un concours de mathématiques, Maxime a dû résoudre le problème suivant : « Combien de zéros terminent l'écriture décimale du nombre 30²⁷ ? » Voici son raisonnement:

$$30^{27} = (3 \times 10) \times (3 \times 10) \times (3 \times 10) \times ... \times (3 \times 10),$$

$$27 \text{ fois}$$

3. Le raisonnement de Maxime est-il correct ?

b. Soient *a* et *b* des nombres non nuls, recopier et compléter :

- $a^3 \times b^3 = a \times ... \times b \times ... \times b \times ... \times b \times ... \times b \times ... = (a \times b) \times (... \times ...) \times (... \times ...) = (a \times b)^{---}$
- $a^{-2} \times b^{-2} = \frac{1}{2 2 \times 2 \times 2} \times \frac{1}{2 2 \times 2} = \frac{1}{(2 2 \times 2) \times (2 2 \times 2)} = \frac{1}{(2 2 \times 2)^{2 2}} = (a \times b)^{2 2}$
- **6.** De quel nombre obtient-on une puissance quand on effectue les produits $a^3 \times b^3$ et $a^{-2} \times b^{-2}$?
- d. De manière générale, n étant un nombre entier relatif, le produit $a^n \times b^n$ est égal à la puissance d'un nombre. De quel nombre s'agit-il et quel est son exposant?

Applications

Calculer le plus rapidement possible :

$$A = 2^4 \times 5^4$$

$$B = \left(\frac{1}{2}\right)^2 \times 2^2$$

$$C = 3^{-1} \times 5^{-1}$$

b. x et y sont des nombres non nuls. Réduire les expressions suivantes :

$$D = b^3 \times c^3$$

$$E = x^{-5} \times y^{-5}$$

Quotient

- Soient a et b deux nombres non nuls.
 - **a.** n étant un entier relatif, quelle relation a-t-on entre $\left(\frac{1}{h}\right)^n$ et $\frac{1}{h^n}$?
 - b. n étant un entier relatif, le quotient $\frac{a^n}{b^n}$ est égal à la puissance d'un nombre. En utilisant le résultat trouvé dans la guestion A(1), déterminer de quel nombre il s'agit et préciser son exposant.

Applications

 α , b, c et v sont des nombres non nuls. Écrire les expressions suivantes sous la forme d'une puissance d'un nombre :

$$A = \frac{5^7}{3^7}$$

A =
$$\frac{5^7}{3^7}$$
 B = $\frac{6^2}{3^2}$ C = $\frac{7 \cdot 2^{-1}}{2 \cdot 4^{-1}}$ D = $\frac{b^{-3}}{c^{-3}}$ E = $\frac{x^{24}}{v^{24}}$

$$D = \frac{b^{-3}}{c^{-3}}$$

$$E = \frac{x^{24}}{y^{24}}$$

5. Écrire le nombre 1,5⁴ sous la forme d'un quotient de deux entiers (on commencera par écrire 1,5 sous la forme d'un quotient de deux entiers, puis on en déduira l'écriture recherchée de 1,54).

De l'importance des parenthèses... Activité 4

Soit le nombre $A = 2^{2^n} + 1$.

- 1 Le professeur demande de calculer A pour n = 3. Rémi trouve 65 tandis que Jeanne a pour résultat 257.
 - a. Quel programme de calcul a effectué Rémi?
 - **b.** Quel programme de calcul a effectué Jeanne ?
 - C. Peut-on savoir quel élève a donné la réponse correcte ? Pourquoi?
- On appelle nombres de Fermat les nombres de la forme $2^{2^n} + 1$. Ils correspondent aux nombres $2^{(2^n)} + 1$. Calculer un de ces nombres pour n = 4 et n = 5.

