Chapter 2.

Basic Structures: Sets and Functions

Part I: Sets and Set Operations

Gachon University Prof. Joohyung Lee Spring 2019

Introduction to Sets

- <u>Definition</u>: A set is an <u>unordered</u> collection of objects
 - An **object** in a set is called **element** or **members** of the set. A set is said to contain its elements.

```
a \in A "a is an element of the set A" a \notin A "a is not an element of the set A" A = \{a_1, a_2, ..., a_n\} "A contains..."
```

- Two ways to define sets (notations for sets)
 - i) to enumerate the elements (원소 나열법)

$$A = \{a_1, a_2, ..., a_n\}$$
 finite
 $A = \{a_1, a_2, ...\}$ infinite

ii) To specify condition with predicate (<u>set builder notation</u>, 조건 제시법)

$$A = \{x \mid P(x)\}\$$

 $A = \{x \in U \mid P(x)\}\$ U: universe(data type)

Basic Properties of Sets

- Sets are inherently *unordered*: (Order of elements is meaningless)
 - e.g., No matter what objects a, b, and c denote,
 - $\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.$
- All elements are distinct (unequal); multiple listings make no difference! (중복은 의미
 - If a = b, then $\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}$.
 - This set contains at most two elements!
- A set is either *finite* or *infinite* (*i.e.*, not *finite*, without end, unending).

Set Equality

- Definition
 - Two sets are equal if and only if they have the same elements
- In particular, it does not matter how the set is defined or denoted.
- Example : following sets are all the same
 - $-\{1, 2, 3\} = \{x \mid x \text{ is an positive integer less than } 4\}$
 - $-\{1, 2, 3\} = \{3, 2, 1\}$
 - $-\{1, 2, 3\} = \{1, 2, 2, 3, 3, 3\}$

Important Sets in Discrete Math

• Symbols for some "standard" infinite sets:

```
- N = \{0, 1, 2, 3, ...\} the set of natural numbers*.
```

$$- Z = {..., -2, -1, 0, 1, 2, ...}$$
 the set of **integers**.

$$-\mathbf{Z}^+ = \{1, 2, 3, ...\}$$
 (=N⁺) the set of **positive integers (natural numbers)**

$$-\mathbf{Q} = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z} \text{ and } q \neq 0\}$$
 the set of rational numbers.

Those sets are all *infinite* sets (*i.e.*, not *finite*, without end, unending sets).

^{*}In mathematics, there are two conventions for the set of natural numbers: it is either the set of positive integers {1,2,3,...} according to the traditional definition; or the set of non-negative integers {0,1,2,...} according to a definition first appearing in the nineteenth century.

Examples for Sets

```
    A = Ø "empty set/null set"
    A = {z} Note: z∈A, but z ≠ {z}
```

•
$$A = \{\{b, c\}, \{c, x, d\}\}$$

• A =
$$\{\{x, y\}\}\$$
 Note: $\{x, y\} \in A$, but $\{x, y\} \neq \{\{x, y\}\}$

•
$$A = \{x \mid P(x)\}$$
 "set of all x such that $P(x)$ "

•
$$A = \{x \mid x \in \mathbb{N} \land x > 7\} = \{8, 9, 10, ...\}$$

"set builder notation"

Special Sets

- The universal set U
 - the set of all objects under the consideration, i.e., the universe (domain) of discourse
- The empty set: {}, ∅ ("null", "the empty set")
 - is the unique set that contains no elements.
 - $-\varnothing = \{\} = \{x \mid \mathsf{False}\}$
 - Note: \emptyset ≠ $\{\emptyset\}$

Venn Diagrams

- A set can be visualized using **Venn Diagrams**:
 - V={ A, B, C }

Subset

- Definition: subset
 - The set A is said to be a subset of B if and only if every element of

A is also an element of B

- $\forall x(x \in A \rightarrow x \in B)$
- Example
 - $-\{1,2\}\subseteq\{1,2,3\}$
 - $-\{1, 2, 3\} \subseteq \{1, 2, 3\}$

- Theorem: the empty set is a subset of every set
 - For every set S,

$$\emptyset \subseteq S$$
 and $S \subseteq S$

Proper Subset ⊂ vs. ⊆

• **Definition**: proper subset

A **set A** is said to be a **proper subset** of B if and only if $A \subseteq B$ and $A \Rightarrow B$. We denote that A is a proper subset of B with the notation $A \subseteq B$.

Any set is a subset of itself, but not a proper subset. $S \subseteq S$

Superset

• "T is a superset of S" means $T \supseteq S$ (or $S \subseteq T$)

- $(S \subseteq T) \land (S \supseteq T) \Leftrightarrow S = T$
- $S \not\subseteq T$ means $\exists x (x \in S \land x \notin T)$

Sets are Objects, Too!

The objects that are elements of a set may themselves be sets.

```
• For example, let S = \{x \mid x \subseteq \{1, 2, 3\}\}
```

```
then S = { Ø,
{1}, {2}, {3},
{1,2}, {1,3}, {2,3},
{1,2,3} }
```

• Note that $1 \neq \{1\} \neq \{\{1\}\}\}$!!!!

Cardinality of Sets (Size of a Set)

Definition: |S|

Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|.

Examples:

```
- |\{1,2,3\}| = 3, |\{a,b\}| = 2,

- |\emptyset| = ?

D = \{x \in \mathbb{N} \mid x < 1000\} |D| = 1000

E = \{x \in \mathbb{N} \mid x > 1000\} E is infinite!
```

- If $|S| \in \mathbb{N}$, then we say S is *finite*.
- Otherwise, we say S is infinite.

Power Set

• Definition:

The power set P(S) or 2^{S} of a set S is the set of all subsets of S.

$$P(S) = \{x \mid x \subseteq S\}$$

- Examples:
 - $P({a,b}) = {\emptyset, {a}, {b}, {a,b}}.$
 - $P(\varnothing) = ? P(\{\varnothing\}) = ?$

Note: |A| = 0, $|P(A)| = |2^A| = 1$

- Sometimes P(S) is written 2^S.
- Note that for finite S, $|P(S)| = |2^S| = 2^{|S|}$.
- It turns out that |P(N)| > |N|.
 - There are different sizes of infinite sets!

The Power Set

- Cardinality of power sets:
- $|P(A)| = |2^A| = 2^{|A|}$
- Imagine each element in A has an "on/off" switch
- Each possible switch configuration in A corresponds to one element in 2^A

Α	1	2	3	4	5	6	7	8
X	X	X	X	X	X	X	X	X
У	y	y	у	У	y	y	у	у
Z	Z	Z	Z	Z	Z	Z	Z	Z

For 3 elements in A, there are
 2*2*2 = 8 elements in 2^A

Ordered n-tuples

- The ordered n-tuple $(a_1, a_2, a_3, ..., a_n)$ is an ordered collection of objects.
- Two ordered n-tuples (a₁, a₂, a₃, ..., a_n) and
 (b₁, b₂, b₃, ..., b_n) are equal if and only if they contain exactly the same elements in the same order, i.e. a_i = b_i for 1 ≤ i ≤ n.
- Example: Note $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.

Ordered Pair

- Ordered Pair: Any two elements enclosed by parentheses
- Example: (x, y)
- $(x, y) \neq (y, x)$

Cartesian Products

Definition:

For sets A, B, their Cartesian product
$$A \times B = \{(a, b) \mid a \in A \land b \in B \}.$$

- set of all ordered pair (a,b), where a∈A and b∈B.
- $E.g. \{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$

Examples:

- A deck of cards: {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} × {♠, ♥, ♦, ♣}
- A two-dimensional coordinate system : the Cartesian product $\mathbb{R} \times \mathbb{R}$ with \mathbb{R} denoting the real numbers

Cartesian Products

- Note that the Cartesian product is *not* commutative!!!: For non-empty sets A and B: $A \neq B \Leftrightarrow A \times B \neq B \times A$
 - $E.g. \{a,b\} \times \{1,2\} \neq \{1,2\} \times \{a,b\} = \{(1,a),(1,b),(2,a),(2,b)\}$
- Note that:
 - for finite sets A and B, $|A \times B| = |A| |B|$.
 - $A \times \emptyset = \emptyset$
 - $-\varnothing \times A = \varnothing$
 - $-A^2 = A \times A$
- The Cartesian product of two or more sets is defined as:
- $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ for } 1 \le i \le n\}$

$$-A^{n} = A \times A \times ... \times A$$

1.2 Set Operations

Union

Definition

- $A \cup B = \{ x \mid x \in A \lor x \in B \}$
- The set that contains those elements that are either in A or in B, or in both

• Example

 $-\{1,3,5\} \cup \{1,2,3\} = \{1,2,3,5\}$

Intersection

- Definition
 - $-A \cap B = \{x \mid x \in A \land x \in B\}$
 - The set containing those elements in both A and B
- $|A \cup B| = |A| + |B| |A \cap B|$
- Example
 - $-\{1, 3, 5\} \cap \{1, 2, 3\} = \{1, 3\}$

Disjoint

- Definition
 - Two sets are called disjoint if their intersection is the empty set
- Example
 - Let A = $\{1, 3, 5, 7\}$ and B = $\{2, 4, 6, 8\}$
 - Because A \cap B = \emptyset , A and B are disjoint

Difference

- Definition
 - $-A-B=\{x\mid x\in A\wedge x\not\in B\}$
 - The set containing those elements that are in A but not in B
- Example

$$-\{1, 3, 5\} - \{1, 2, 3\} = \{5\}$$

Complement

- Definition
 - $-\overline{A} = \{x \mid x \notin A\}$ or U A, where U is the universal set
- Example
 - Let A = {a, e, i, o, u} and U is the set of English alphabets
 - $-\overline{A} = \{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}$

Set Identities

Equivalence	Name		
$A \cup \emptyset = A, A \cap U = A$	Identity laws		
$A \cup U = U$, $A \cap \emptyset = \emptyset$	Domination laws		
$A \cup A = A$, $A \cap A = A$	Idempotent laws		
$\overline{(A)} = A$	Complementation law		
$A \cup B = B \cup A$, $A \cap B = B \cap A$	Commutative laws		
$A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws		
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), A \cup (B \cap C) = (A \cap B) \cup (A \cap C)$	Distributive laws		
$\overline{A \cup B} = \overline{A} \cap \overline{B}, \ \overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's laws		
$A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$	Absorption laws		
$A \cup \overline{A} = U$, $A \cap \overline{A} = \emptyset$	Negation laws		

(Table 1, p. 132)

Generalized Union

Union of a collection of sets

- The set that contains those elements that are members of at least one set in the collection

$$A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$$

- Example
 - $A={0, 2, 4, 6, 8}, B={0, 1, 2, 3, 4}, C={0, 3, 6, 9}$
 - $A \cup B \cup C = \{0, 1, 2, 3, 4, 6, 8, 9\}$

Generalized Intersection

- Intersection of a collection of sets
 - The set that contains those elements that are members of all the sets in the collection

_

$$A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{i=1}^n A_i$$

- Example
 - A={0, 2, 4, 6, 8}, B={0, 1, 2, 3, 4}, C={0, 3, 6, 9}
 - $A \cap B \cap C = \{0\}$

Example:

Representation of Sets with Bit Strings

- There are various ways to represent sets using a computer.
- One method for storing elements is to express each of these sets with bit strings where the *i*-th bit in the string is 1 if *i* is in the set and 0 otherwise.
- Example:
 - Suppose the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.
 - Express each of these sets:

```
{1, 3, 5, 7, 9}
{2, 4, 6, 8, 10}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
10 1010 1010.
01 0101 0101.
11 1111 1111.
```

(Cont.) Bit String Representation

• Example 20:

Use bit strings to find the union and intersection of the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9}.

– Solution:

```
11\ 11110\ 00000 \lor 10\ 1010\ 1010 = 11\ 11110\ 1010, \quad \{1, 2, 3, 4, 5, 7, 9\}.
11\ 11110\ 00000 \land 10\ 1010\ 1010 = 10\ 1010\ 00000, \quad \{1, 3, 5\}.
```

• Example 19:

What is the complements of $\{1, 3, 5, 7, 9\}$?

– Solution:

10 1010 1010. \rightarrow 01 0101 0101, {2, 4, 6, 8, 10}.

Acknowledgement

 Some slides are taken from lecture notes of Prof. Ok-ran Jeong at GCU and Marc Pomplun at UMB.