Towards Higher Universal Algebra in Type Theory HoTT Electronic Seminar Talks

Eric Finster

December 6, 2018

h-level 0 The Mathematics of Cantor

Sets and structured sets

- h-level 0 The Mathematics of Cantor
 - Sets and structured sets
- h-level 1 The Mathematics of Grothendieck
 - Groupoids and structured groupoids

- h-level 0 The Mathematics of Cantor
 - Sets and structured sets
- h-level 1 The Mathematics of Grothendieck
 - Groupoids and structured groupoids
 - In particular the theory of *categories*

- h-level 0 The Mathematics of Cantor
 - Sets and structured sets
- h-level 1 The Mathematics of Grothendieck
 - Groupoids and structured groupoids
 - In particular the theory of *categories*
- *h*-level ∞ "Higher" Mathematics
 - The study of structured homotopy types

- h-level 0 The Mathematics of Cantor
 - Sets and structured sets
- h-level 1 The Mathematics of Grothendieck
 - Groupoids and structured groupoids
 - In particular the theory of *categories*
- h-level ∞ "Higher" Mathematics
 - The study of structured *homotopy types*

Problem

How can we describe structures on homotopy types without recourse to a "strict" equality?

Solutions in some special cases are known:
 Voevodsky Contractibility, equivalences, ...

• Solutions in some special cases are known:

Voevodsky Contractibility, equivalences, ... Shulman ∞-idempotents

```
Voevodsky Contractibility, equivalences, ...
Shulman ∞-idempotents
Rijke ∞-equivalence relations
```

Solutions in some special cases are known:

```
Voevodsky Contractibility, equivalences, ...
Shulman ∞-idempotents
Rijke ∞-equivalence relations
```

• Long standing approach to the problem:

```
Voevodsky Contractibility, equivalences, ...
Shulman ∞-idempotents
Rijke ∞-equivalence relations
```

- Long standing approach to the problem:
 - Construct some notion of semi-simplicial type

```
Voevodsky Contractibility, equivalences, ... Shulman \infty-idempotents Rijke \infty-equivalence relations
```

- Long standing approach to the problem:
 - Construct some notion of semi-simplicial type
 - Use this to internalize the theory of $(\infty,1)$ -categories

```
Voevodsky Contractibility, equivalences, ... Shulman \infty-idempotents Rijke \infty-equivalence relations
```

- Long standing approach to the problem:
 - Construct some notion of semi-simplicial type
 - Use this to internalize the theory of $(\infty,1)$ -categories
 - ▶ Reduce other coherence problems to this case

```
Voevodsky Contractibility, equivalences, ... Shulman \infty-idempotents Rijke \infty-equivalence relations
```

- Long standing approach to the problem:
 - Construct some notion of semi-simplicial type
 - Use this to internalize the theory of $(\infty, 1)$ -categories
 - Reduce other coherence problems to this case
- There are many other kinds of higher structures:

```
Voevodsky Contractibility, equivalences, ... Shulman \infty-idempotents Rijke \infty-equivalence relations
```

- Long standing approach to the problem:
 - Construct some notion of semi-simplicial type
 - Use this to internalize the theory of $(\infty, 1)$ -categories
 - Reduce other coherence problems to this case
- There are many other kinds of higher structures:
 - \triangleright E_n -spaces, ring spectra, homotopy Lie algebras, ...

```
Voevodsky Contractibility, equivalences, ... Shulman \infty-idempotents Rijke \infty-equivalence relations
```

- Long standing approach to the problem:
 - Construct some notion of semi-simplicial type
 - Use this to internalize the theory of $(\infty, 1)$ -categories
 - Reduce other coherence problems to this case
- There are many other kinds of higher structures:
 - $ightharpoonup E_n$ -spaces, ring spectra, homotopy Lie algebras, ...
 - ▶ (∞, n) -categories, ∞ -double categories, ...

```
Voevodsky Contractibility, equivalences, ... Shulman \infty-idempotents Rijke \infty-equivalence relations
```

- Long standing approach to the problem:
 - Construct some notion of semi-simplicial type
 - Use this to internalize the theory of $(\infty, 1)$ -categories
 - Reduce other coherence problems to this case
- There are many other kinds of higher structures:
 - $ightharpoonup E_n$ -spaces, ring spectra, homotopy Lie algebras, ...
 - ▶ (∞, n) -categories, ∞ -double categories, ...
 - ► Even if these can be reduced to simplicial methods, will this be an efficient way to describe them?

```
Voevodsky Contractibility, equivalences, ... Shulman \infty-idempotents Rijke \infty-equivalence relations
```

- Long standing approach to the problem:
 - Construct some notion of semi-simplicial type
 - Use this to internalize the theory of $(\infty, 1)$ -categories
 - Reduce other coherence problems to this case
- There are many other kinds of higher structures:
 - $ightharpoonup E_n$ -spaces, ring spectra, homotopy Lie algebras, ...
 - ▶ (∞, n) -categories, ∞ -double categories, ...
 - ► Even if these can be reduced to simplicial methods, will this be an efficient way to describe them?
 - Can we describe a natural class of higher structures directly?

 Adapt Baez and Dolan's operadic method of describing coherent algebraic objects to type theory

- Adapt Baez and Dolan's operadic method of describing coherent algebraic objects to type theory
- Give an elementary definition of cartesian polynomial monad

- Adapt Baez and Dolan's operadic method of describing coherent algebraic objects to type theory
- Give an elementary definition of cartesian polynomial monad
- Special cases of this definition are
 - $(\infty,1)$ -operad

- Adapt Baez and Dolan's operadic method of describing coherent algebraic objects to type theory
- Give an elementary definition of cartesian polynomial monad
- Special cases of this definition are
 - $oldsymbol{0}$ $(\infty,1)$ -operad
 - $(\infty,1)$ -category

- Adapt Baez and Dolan's operadic method of describing coherent algebraic objects to type theory
- Give an elementary definition of cartesian polynomial monad
- Special cases of this definition are
 - $oldsymbol{0}$ $(\infty,1)$ -operad
 - $(\infty,1)$ -category

- Adapt Baez and Dolan's operadic method of describing coherent algebraic objects to type theory
- Give an elementary definition of cartesian polynomial monad
- Special cases of this definition are
 - $lacktriangledown(\infty,1)$ -operad
 - $(\infty,1)$ -category
- There is a corresponding elementary defintion of an algebra

- Adapt Baez and Dolan's operadic method of describing coherent algebraic objects to type theory
- Give an elementary definition of cartesian polynomial monad
- Special cases of this definition are
 - $oldsymbol{0}$ $(\infty,1)$ -operad
 - $(\infty,1)$ -category
- There is a corresponding elementary defintion of an algebra
- Special cases of this definition are
 - **1** A_{∞} -types, E_{∞} -types, etc

- Adapt Baez and Dolan's operadic method of describing coherent algebraic objects to type theory
- Give an elementary definition of cartesian polynomial monad
- Special cases of this definition are
 - $oldsymbol{0}$ $(\infty,1)$ -operad
 - $(\infty,1)$ -category
 - \odot ∞ -groupoid
- There is a corresponding elementary defintion of an algebra
- Special cases of this definition are
 - **1** A_{∞} -types, E_{∞} -types, etc
 - 2 Type-valued diagrams on $(\infty, 1)$ -categories

- Adapt Baez and Dolan's operadic method of describing coherent algebraic objects to type theory
- Give an elementary definition of cartesian polynomial monad
- Special cases of this definition are
 - $lacktriangledown(\infty,1)$ -operad
 - $(\infty,1)$ -category
- There is a corresponding elementary defintion of an algebra
- Special cases of this definition are
 - **1** A_{∞} -types, E_{∞} -types, etc
 - 2 Type-valued diagrams on $(\infty, 1)$ -categories
 - Orollary: simplicial types are definable in MLTT with coinduction.

Where are we in terms of formalization?

• The formalization of the definition of monad given here is complete.

```
https://github.com/ericfinster/higher-alg
```

- The formalization of the definition of monad given here is complete.

 https://github.com/ericfinster/higher-alg
- Hence so are any of the definitions which are special cases:
 ∞-operad, ∞-category, ∞-groupoid, ...

- The formalization of the definition of monad given here is complete.

 https://github.com/ericfinster/higher-alg
- Hence so are any of the definitions which are special cases: ∞ -operad, ∞ -category, ∞ -groupoid, ...
- The definition of algebra relies on a construction which is not yet completely formalized (though it is sketched ...)

- The formalization of the definition of monad given here is complete.

 https://github.com/ericfinster/higher-alg
- Hence so are any of the definitions which are special cases: ∞ -operad, ∞ -category, ∞ -groupoid, ...
- The definition of algebra relies on a construction which is not yet completely formalized (though it is sketched ...)
- Hence the complete definition of simplicial type is not yet finished.

- The formalization of the definition of monad given here is complete.
 https://github.com/ericfinster/higher-alg
- Hence so are any of the definitions which are special cases: ∞ -operad, ∞ -category, ∞ -groupoid, ...
- The definition of algebra relies on a construction which is not yet completely formalized (though it is sketched ...)
- Hence the complete definition of simplicial type is not yet finished.
- The "on paper" definition of algebra, however, is completely transparent. I do not expect any difficulties in finishing it other than the fact that it is somewhat long.

Polynomials as Multi-sorted Signatures

Definition

Fix a type I of sorts. A polynomial over I is the data of

Definition

Fix a type I of sorts. A polynomial over I is the data of

A family of operations

 $Op: I \rightarrow Type$

Definition

Fix a type I of sorts. A polynomial over I is the data of

A family of operations

$$Op: I \rightarrow Type$$

For each operation, a family of sorted parameters

 $\mathsf{Param}: \{i:I\}(f:\mathsf{Op}\,i) \to I \to \mathit{Type}$

Definition

Fix a type I of sorts. A polynomial over I is the data of

A family of operations

Op :
$$I \rightarrow Type$$

For each operation, a family of sorted parameters

$$\mathsf{Param}: \{i:I\}(f:\mathsf{Op}\,i) \to I \to \mathit{Type}$$

• For i:I, an element f: Op i represents an operation whose *output* sort is i.

Definition

Fix a type I of sorts. A polynomial over I is the data of

A family of operations

$$\mathsf{Op}:I o \mathit{Type}$$

For each operation, a family of sorted parameters

Param :
$$\{i:I\}(f:\mathsf{Op}\,i)\to I\to \mathit{Type}$$

- For i:I, an element $f:\operatorname{Op} i$ represents an operation whose *output* sort is i.
- For f: Op i and j: I, an element p: Param f j represents an input parameter of sort j.

Representations of Operations

 We can think of our polynomial as a collection of typed operation symbols, which we might denote, for example, by

Representations of Operations

 We can think of our polynomial as a collection of typed operation symbols, which we might denote, for example, by

We can depict such an operation graphically as a corolla:

Representations of Operations

 We can think of our polynomial as a collection of typed operation symbols, which we might denote, for example, by

We can depict such an operation graphically as a corolla:

 However, we specifically allow for higher homotopy both in the operations and the parameters

A polynomial P : Poly I generates an associated type of trees.

A polynomial P: Poly I generates an associated type of *trees*.

Definition

The inductive family Tr $P: I \rightarrow Type$ has constructors:

If :
$$(i:I) \rightarrow \operatorname{Tr} P i$$

 $\operatorname{nd}: \{i:I\} \rightarrow (f:\operatorname{Op} P i)$
 $\rightarrow (\phi:(j:J)(p:\operatorname{Param} f j) \rightarrow \operatorname{Tr} P j)$
 $\rightarrow \operatorname{Tr} P i$

A polynomial P: Poly I generates an associated type of *trees*.

Definition

The inductive family Tr $P: I \rightarrow Type$ has constructors:

If :
$$(i:I) \rightarrow \operatorname{Tr} P i$$

 $\operatorname{nd}: \{i:I\} \rightarrow (f:\operatorname{Op} P i)$
 $\rightarrow (\phi:(j:J)(p:\operatorname{Param} f j) \rightarrow \operatorname{Tr} P j)$
 $\rightarrow \operatorname{Tr} P i$

We can represent trees both geometrically

A polynomial P: Poly I generates an associated type of *trees*.

Definition

The inductive family Tr $P: I \rightarrow Type$ has constructors:

If :
$$(i:I) \rightarrow \operatorname{Tr} P i$$

 $\operatorname{nd}: \{i:I\} \rightarrow (f:\operatorname{Op} P i)$
 $\rightarrow (\phi:(j:J)(p:\operatorname{Param} f j) \rightarrow \operatorname{Tr} P j)$
 $\rightarrow \operatorname{Tr} P i$

We can represent trees both geometrically and algebraically

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

Leaf :
$$\{i : I\}(w : \mathsf{Tr}\ i) \to I \to \mathsf{Type}$$

Leaf (If i) $j :=$

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

Leaf :
$$\{i : I\}(w : \operatorname{Tr} i) \to I \to Type$$

Leaf (If i) $j := i = j$

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

Leaf :
$$\{i:I\}(w:\operatorname{Tr} i) \to I \to Type$$

Leaf $(\operatorname{If} i)j:=i=j$
Leaf $(\operatorname{nd}(f,\phi))j:=$

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

Leaf :
$$\{i:I\}(w:\operatorname{Tr} i) \to I \to \mathit{Type}$$

Leaf $(\operatorname{If} i)j:=i=j$
Leaf $(\operatorname{nd}(f,\phi))j:=\sum_{k:I}\sum_{p:\operatorname{Param} f k}$

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

Leaf :
$$\{i:I\}(w:\operatorname{Tr} i) \to I \to \mathit{Type}$$

Leaf $(\operatorname{If} i)j:=i=j$
Leaf $(\operatorname{nd}(f,\phi))j:=\sum_{k:I}\sum_{p:\operatorname{Param}\,f\,k}\operatorname{Leaf}(\phi\,k\,p)j$

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

Leaves

Leaf :
$$\{i:I\}(w:\operatorname{Tr} i) \to I \to \mathit{Type}$$

Leaf $(\operatorname{If} i)j:=i=j$
Leaf $(\operatorname{nd}(f,\phi))j:=\sum_{k:I}\sum_{p:\operatorname{Param}\,f\,k}\operatorname{Leaf}(\phi\,k\,p)j$

Nodes

Node :
$$\{i : I\}(w : \operatorname{Tr} i)(j : I) \to \operatorname{Op} j \to Type$$

Node (If i) $j g :=$

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

Leaves

Leaf :
$$\{i:I\}(w:\operatorname{Tr} i) \to I \to \mathit{Type}$$

Leaf $(\operatorname{If} i)j:=i=j$
Leaf $(\operatorname{nd}(f,\phi))j:=\sum_{k:I}\sum_{p:\operatorname{Param}\,f\,k}\operatorname{Leaf}(\phi\,k\,p)j$

Nodes

Node :
$$\{i:I\}(w:\operatorname{Tr}\ i)(j:I)\to\operatorname{Op}\ j\to \mathit{Type}$$

Node (If
$$i$$
) $jg := \bot$

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

Leaves

Leaf :
$$\{i:I\}(w:\operatorname{Tr} i) \to I \to \mathit{Type}$$

Leaf $(\operatorname{If} i)j:=i=j$
Leaf $(\operatorname{nd}(f,\phi))j:=\sum_{k:I}\sum_{p:\operatorname{Param}\,f\,k}\operatorname{Leaf}(\phi\,k\,p)j$

Nodes

Node : $\{i:I\}(w:\operatorname{Tr} i)(j:I) \to \operatorname{Op} j \to \mathit{Type}$

Node (If i) $jg := \bot$

 $\mathsf{Node}(\mathsf{nd}(f,\phi))jg :=$

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

Leaves

Leaf :
$$\{i:I\}(w:\operatorname{Tr} i) \to I \to \mathit{Type}$$

Leaf $(\operatorname{If} i)j:=i=j$
Leaf $(\operatorname{nd}(f,\phi))j:=\sum_{k:I}\sum_{p:\operatorname{Param}\,f\,k}\operatorname{Leaf}(\phi\,k\,p)j$

Nodes

Node : $\{i:I\}(w:\operatorname{Tr} i)(j:I) \to \operatorname{Op} j \to \mathit{Type}$

Node (If i) $jg := \bot$

Node $(nd(f, \phi))jg := (i, f) = (j, g)$

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

Leaves

Leaf :
$$\{i:I\}(w:\operatorname{Tr} i) \to I \to \mathit{Type}$$

Leaf $(\operatorname{If} i)j:=i=j$
Leaf $(\operatorname{nd}(f,\phi))j:=\sum_{k:I}\sum_{p:\operatorname{Param}\,f\,k}\operatorname{Leaf}(\phi\,k\,p)j$

Nodes

Node :
$$\{i:I\}(w:\operatorname{Tr} i)(j:I) \to \operatorname{Op} j \to \mathit{Type}$$

Node (If
$$i$$
) $j g := \bot$

$$\mathsf{Node} \, (\mathsf{nd} (f, \phi)) \, j \, g := (i, f) = (j, g) \sqcup \sum_{k: I} \sum_{p: \mathsf{Param} \, f \, k}$$

For a tree w: Tr Pi, we will need its *type of leaves* and *type of nodes*.

Leaves

Leaf :
$$\{i:I\}(w:\operatorname{Tr} i) \to I \to \mathit{Type}$$

Leaf $(\operatorname{If} i)j:=i=j$
Leaf $(\operatorname{nd}(f,\phi))j:=\sum_{k:I}\sum_{p:\operatorname{Param}\,f\,k}\operatorname{Leaf}(\phi\,k\,p)j$

Nodes

Node :
$$\{i:I\}(w:\operatorname{Tr} i)(j:I) \to \operatorname{Op} j \to \mathit{Type}$$

Node (If
$$i$$
) $jg := \bot$

$$\mathsf{Node}\,(\mathsf{nd}(f,\phi))\,j\,g:=(i,f)=(j,g)\,\sqcup\,\sum_{k:I}\,\sum_{p:\mathsf{Param}\,f\,k}\,\mathsf{Node}\,(\phi\,k\,p)\,j\,g$$

Definition

Let P: Poly I be a polynomial w: Tr Pi a tree and f: Op Pi an operation. A *frame* from w to f is a family of equivalences

Definition

Let P: Poly I be a polynomial w: Tr P i a tree and f: Op P i an operation. A *frame* from w to f is a family of equivalences

Definition

Let P: Poly I be a polynomial w: Tr P i a tree and f: Op P i an operation. A *frame* from w to f is a family of equivalences

Definition

Let P: Poly I be a polynomial w: Tr P i a tree and f: Op P i an operation. A *frame* from w to f is a family of equivalences

Definition

Let P: Poly I be a polynomial w: Tr P i a tree and f: Op P i an operation. A *frame* from w to f is a family of equivalences

Definition

Let P: Poly I be a polynomial w: Tr P i a tree and f: Op P i an operation. A *frame* from w to f is a family of equivalences

 $(j:I) o \mathsf{Leaf}\ w\ j \simeq \mathsf{Param}\ P\ f\ j$

Definition

Let P: Poly I be a polynomial w: Tr P i a tree and f: Op P i an operation. A *frame* from w to f is a family of equivalences

 $(j:I) o \mathsf{Leaf}\ w\ j \simeq \mathsf{Param}\ P\ f\ j$

Definition

A polynomial relation for P is a type family

 $R: \{i:I\}(f:\mathsf{Op}\ i)(w:\mathsf{Tr}\ i)(\alpha:\mathsf{Frame}\ w\ f) \to \mathit{Type}$

Definition

A polynomial relation for P is a type family

 $R: \{i: I\}(f: \mathsf{Op}\ i)(w: \mathsf{Tr}\ i)(\alpha: \mathsf{Frame}\ w\ f) \to \mathit{Type}$

Definition

A polynomial relation for P is a type family

$$R: \{i: I\}(f: \mathsf{Op}\ i)(w: \mathsf{Tr}\ i)(\alpha: \mathsf{Frame}\ w\ f) \to \mathit{Type}$$

Definition

A polynomial relation for P is a type family

$$R: \{i:I\}(f:\mathsf{Op}\ i)(w:\mathsf{Tr}\ i)(\alpha:\mathsf{Frame}\ w\ f) \to \mathit{Type}$$

Definition

A polynomial relation for P is a type family

$$R: \{i:I\}(f:\mathsf{Op}\ i)(w:\mathsf{Tr}\ i)(\alpha:\mathsf{Frame}\ w\ f) \to \mathit{Type}$$

The Slice of a Polynomial by a Relation

Definition

Let P: Poly I and let R be a relation on P. The *slice of* P *by* R, denoted P//R, is the polynomial with sorts ΣI Op defined as follows:

$$Op(P//M)(i, f) := \sum_{(w: Tr P i)} \sum_{(\alpha: Frame \ w \ f)} R f w \alpha$$

$$Param(P//M)(w, \alpha, r)(j, g) := Node \ w \ g$$

The Slice of a Polynomial by a Relation

Definition

Let P: Poly I and let R be a relation on P. The *slice of* P *by* R, denoted P//R, is the polynomial with sorts Σ I Op defined as follows:

$$\mathsf{Op}(P//M)(i,f) := \sum_{(w:\mathsf{Tr}\,P\,i)} \sum_{(\alpha:\mathsf{Frame}\,w\,f)} R\,f\,w\,\alpha$$

 $Param(P//M)(w, \alpha, r)(j, g) := Node w g$

 $\mathsf{flatten}: \{i:I\} \{f: \mathsf{Op}\, i\} \to \mathsf{Tr}\big(P//R\big)\big(i,f\big) \to \mathsf{Tr}\, P\, i$


```
flatten : \{i:I\}\{f:\operatorname{Op} i\} \to \operatorname{Tr}(P//R)(i,f) \to \operatorname{Tr} P i
flatten-frm : \{i:I\}\{f:\operatorname{Op} i\}(pd:\operatorname{Tr}(P//R)(i,f))
\to \operatorname{Frame}(\operatorname{flatten} pd) f
```



```
flatten : \{i:I\}\{f:\operatorname{Op} i\} \to \operatorname{Tr}(P//R)(i,f) \to \operatorname{Tr} P i
flatten-frm : \{i:I\}\{f:\operatorname{Op} i\}(pd:\operatorname{Tr}(P//R)(i,f))
\to \operatorname{Frame}(\operatorname{flatten} pd) f
```

bd-frm : $\{i : I\}\{f : Op i\}(pd : Tr(P//R)(i, f))$

 $\to (j:I)(g:\mathsf{Op}\, j) \to \mathsf{Leaf}(P//R)\, \mathsf{pd}\, g \simeq \mathsf{Node}\, P\, (\mathsf{flatten}\, \mathsf{pd})g$

Polynomial Magmas

Polynomials serve as our notion of higher signature. Following ideas from the categorical approach to universal algebra, we are going to encode the *relations* or *axioms* of our structure using a *monadic multiplication* on *P*.

Polynomial Magmas

Polynomials serve as our notion of higher signature. Following ideas from the categorical approach to universal algebra, we are going to encode the *relations* or *axioms* of our structure using a *monadic multiplication* on *P*.

Definition

Let P be a polynomial with sorts in I. A polynomial magma M over P is

- **1** A function $\mu: \{i: I\} \to \operatorname{Tr} P i \to \operatorname{Op} P i$
- **2** A function $\mu_{frm}: \{i:I\}(w:\operatorname{Tr} P i) \to \operatorname{Frame} w(\mu w)$

Polynomial Magmas

Polynomials serve as our notion of higher signature. Following ideas from the categorical approach to universal algebra, we are going to encode the *relations* or *axioms* of our structure using a *monadic multiplication* on *P*.

Definition

Let P be a polynomial with sorts in I. A polynomial magma M over P is

- **1** A function $\mu: \{i: I\} \to \operatorname{Tr} P i \to \operatorname{Op} P i$
- ② A function $\mu_{\mathit{frm}}: \{i:I\}(w:\mathsf{Tr}\,P\,i) \to \mathsf{Frame}\,w\,(\mu\,w)$

Notice that a magma M determines a polynomial relation on P by using the identity type:

 $MgmRel : PolyMagma P \rightarrow PolyRel P$

MgmRel $M f w \alpha := (\mu w, \mu_{frm} w) = (f, \alpha)$

Polynomial Magmas (cont'd)

Using the graphical notation we have developed, we can "picture" the multiplication $\boldsymbol{\mu}$ as follows:

Polynomial Magmas (cont'd)

Using the graphical notation we have developed, we can "picture" the multiplication μ as follows:

Polynomial Magmas (cont'd)

Using the graphical notation we have developed, we can "picture" the multiplication μ as follows:

In algebraic notation, this corresponds to the relation

$$k(h(g(x,y)),g(u,h(v)),w) = f(x,y,u,v,w)$$

Furthermore, we can now interpret a pasting diagram pd: Tr(P//M)(i, f) as a sequence of multiplications applied to subterms of flatten pd:

But: without further structure, there is simply no reason that this sequence of multiplications gives rise to the "obvious" relation

$$\mu(g, h, h, g, k) = f$$

Furthermore, we can now interpret a pasting diagram pd: Tr(P//M)(i, f) as a sequence of multiplications applied to subterms of flatten pd:

But: without further structure, there is simply no reason that this sequence of multiplications gives rise to the "obvious" relation

$$\mu(g, h, h, g, k) = f$$

Subdivision Invariance

Definition

Let P be a polynomial and R a relation on P. We say that R is subdivision invariant if we are given a function.

$$\Psi : \{i : I\}\{f : \operatorname{Op} P i\}(pd : \operatorname{Tr}(P//R)(i, f))$$

$$\to R f (\operatorname{flatten} pd) (\operatorname{flatten-frm} pd)$$

Subdivision Invariance

Definition

Let P be a polynomial and R a relation on P. We say that R is subdivision invariant if we are given a function.

$$\Psi : \{i : I\} \{f : \operatorname{Op} P i\} (pd : \operatorname{Tr}(P//R)(i, f))$$

$$\to R f (\operatorname{flatten} pd) (\operatorname{flatten-frm} pd)$$

We write SubInvar for the associated predicate on polynomial relations.

SubInvar : PolyRel
$$P o Type$$

SubInvar $R := \{i : I\}\{f : \operatorname{Op} P i\}(pd : \operatorname{Tr}(P//R)(i, f))$
 $\to R f$ (flatten pd) (flatten-frm pd)

Observation

Let P be a polynomial and R a relation on P. Given a witness Ψ that R is subdivision invariant, the slice polynomial P//R admits a magma structure given by

```
\mu(\operatorname{SlcMgm} R) pd := ((\operatorname{flatten} pd, \operatorname{flatten-frm} pd), \Psi pd)

\mu_{frm}(\operatorname{SlcMgm} R) pd := \operatorname{bd-frm} pd
```

Observation

Let P be a polynomial and R a relation on P. Given a witness Ψ that R is subdivision invariant, the slice polynomial P//R admits a magma structure given by

 $\mu(\operatorname{SlcMgm} R) \ pd := ((\operatorname{flatten} pd, \operatorname{flatten-frm} pd), \Psi \ pd)$ $\mu_{frm}(\operatorname{SlcMgm} R) \ pd := \operatorname{bd-frm} pd$

Observation

Let P be a polynomial and R a relation on P. Given a witness Ψ that R is subdivision invariant, the slice polynomial P//R admits a magma structure given by

```
\mu(\operatorname{SlcMgm} R) pd := ((\operatorname{flatten} pd, \operatorname{flatten-frm} pd), \Psi pd)

\mu_{frm}(\operatorname{SlcMgm} R) pd := \operatorname{bd-frm} pd
```


Observation

Let P be a polynomial and R a relation on P. Given a witness Ψ that R is subdivision invariant, the slice polynomial P//R admits a magma structure given by

 $\mu(\operatorname{SlcMgm} R) pd := ((\operatorname{flatten} pd, \operatorname{flatten-frm} pd), \Psi pd)$ $\mu_{frm}(\operatorname{SlcMgm} R) pd := \operatorname{bd-frm} pd$

$$\mu(m, n, k) = f$$

$$\mu(\mu(g,h),n,k)=f$$

$$\mu(\mu(g,h),\mu(h,g),k)=f$$

$$\mu(\mu(g,h),\mu(h,g),k)=f$$

$$\mu(\mu(g,h),\mu(h,g),k)=\mu(g,h,h,g,k)$$

$$\mu(\mu(g, h), \mu(h, g), k) = \mu(g, h, h, g, k)$$

$$\mu(\mu(g,h),\mu(h,g),k)=\mu(g,h,h,g,k)$$

$$\mu(\mu(g,h),\mu(h,g),k)=\mu(g,h,h,g,k)$$

$$\mu(\mu(g,h),\mu(h,g),k) = \mu(g,h,h,g,k)$$
$$\mu(g,h,o) = p$$

$$\mu(\mu(g, h), \mu(h, g), k) = \mu(g, h, h, g, k)$$

 $\mu(g, h, \mu(h, g, k)) = p$

$$\mu(\mu(g,h),\mu(h,g),k) = \mu(g,h,h,g,k)$$
$$\mu(g,h,\mu(h,g,k)) = p$$

$$\mu(\mu(g, h), \mu(h, g), k) = \mu(g, h, h, g, k)$$

 $\mu(g, h, \mu(h, g, k)) = \mu(g, h, h, g, k)$

Let us see why, if a magma is subdivision invariant, then it is associative.

$$\mu(\mu(g, h), \mu(h, g), k) = \mu(g, h, h, g, k)$$

 $\mu(g, h, \mu(h, g, k)) = \mu(g, h, h, g, k)$

Hence

$$\mu(\mu(g,h),\mu(h,g),k)=\mu(g,h,\mu(h,g,k))$$

Let P be a polynomial and M a magma on P.

Let P be a polynomial and M a magma on P.

Definition

A coherence structure for M consists of

Let P be a polynomial and M a magma on P.

Definition

A coherence structure for M consists of

① A proof Ψ : SubInvar M

Let P be a polynomial and M a magma on P.

Definition

A coherence structure for M consists of

- **①** A proof Ψ : SubInvar M
- ② Coninductively, a coherence structure on SlcMgm $M\Psi$

Let P be a polynomial and M a magma on P.

Definition

A coherence structure for M consists of

- A proof Ψ : SubInvar M
- ② Coninductively, a coherence structure on SlcMgm $M\Psi$

Definition

Let P be a polynomial and M a magma on P.

Definition

A coherence structure for M consists of

- A proof Ψ : SubInvar M
- ② Coninductively, a coherence structure on SlcMgm $M\Psi$

Definition

A polynomial monad consists of

A polynomial P : Poly I

Let P be a polynomial and M a magma on P.

Definition

A coherence structure for M consists of

- A proof Ψ : SubInvar M
- ② Coninductively, a coherence structure on SlcMgm $M\Psi$

Definition

- A polynomial P: Poly I
- A magma M : PolyMagma P

Let P be a polynomial and M a magma on P.

Definition

A coherence structure for M consists of

- A proof Ψ : SubInvar M
- ② Coninductively, a coherence structure on SlcMgm $M\Psi$

Definition

- A polynomial P : Poly I
- A magma M : PolyMagma P
- A coherence structure C for M

Let P be a polynomial and M a magma on P.

Definition

A coherence structure for M consists of

- A proof Ψ : SubInvar M
- ② Coninductively, a coherence structure on SlcMgm $M\Psi$

Definition

- A polynomial P : Poly I
- A magma M : PolyMagma P
- A coherence structure C for M
- A proof that M is univalent

• For an operation f : Op i we define

• For an operation f : Op i we define

$$\mathsf{Arity}\, f := \sum_{j:I} \mathsf{Param}\, f\, j$$

• For an operation f : Op i we define

$$\mathsf{Arity}\, f := \sum_{j:I} \mathsf{Param}\, f\, j$$

is-unary f := is-contr(Arity f)

• For an operation f : Op i we define

Arity
$$f := \sum_{j:I} \operatorname{Param} f j$$
 Unary Op $M := \sum_{i:I} \sum_{f:\operatorname{Op} i} \operatorname{is-unary} f$ is-unary $f := \operatorname{is-contr}(\operatorname{Arity} f)$

• For an operation f : Op i we define

Arity
$$f:=\sum_{j:I}\operatorname{Param} fj$$
 Unary Op $M:=\sum_{i:I}\sum_{f:\operatorname{Op} i}\operatorname{is-unary} f$ is-unary $f:=\operatorname{is-contr}(\operatorname{Arity} f)$ id $i:=\mu(\operatorname{If} i)$

• For an operation f : Op i we define

Arity
$$f:=\sum_{j:I}\operatorname{Param} fj$$
 Unary Op $M:=\sum_{i:I}\sum_{f:\operatorname{Op} i}\operatorname{is-unary} f$ is-unary $f:=\operatorname{is-contr}(\operatorname{Arity} f)$ id $i:=\mu(\operatorname{If} i)$

ullet One can easily check (using $\mu_{\it frm}$) that id i is unary.

• For an operation f : Op i we define

Arity
$$f := \sum_{j:I} \operatorname{Param} f j$$
 Unary Op $M := \sum_{i:I} \sum_{f:\operatorname{Op} i} \operatorname{is-unary} f$ is-unary $f := \operatorname{is-contr}(\operatorname{Arity} f)$ id $i := \mu(\operatorname{If} i)$

- One can easily check (using μ_{frm}) that id i is unary.
- We can think of a unary operation f : Op i as a "morphism"

$$f: j \to i$$

where j is the sort of its unique parameter.

• For an operation f : Op i we define

Arity
$$f := \sum_{j:I} \operatorname{Param} f j$$
 Unary Op $M := \sum_{i:I} \sum_{f:\operatorname{Op} i} \operatorname{is-unary} f$ is-unary $f := \operatorname{is-contr}(\operatorname{Arity} f)$ id $i := \mu(\operatorname{If} i)$

- One can easily check (using μ_{frm}) that id i is unary.
- We can think of a unary operation f: Op i as a "morphism"

$$f: j \rightarrow i$$

where j is the sort of its unique parameter.

 \bullet The multiplication μ can now be used to define a composition operation

$$_\circ _$$
: UnaryOp \times UnaryOp \to UnaryOp

Univalence for Monads (cont'd)

Definition

Let M be a polynomial monad. A unary operation $f: j \to i$ is said to be an isomorphism if satisfies the bi-inverse property:

is-iso
$$f := \sum_{g: i \to j} \sum_{h: i \to j} (f \circ g = \operatorname{id} i) \times (h \circ f = \operatorname{id} j)$$

Write Iso M for the space of isomorphisms in M.

Univalence for Monads (cont'd)

Definition

Let M be a polynomial monad. A unary operation $f: j \to i$ is said to be an isomorphism if satisfies the bi-inverse property:

is-iso
$$f := \sum_{g: i \to j} \sum_{h: i \to j} (f \circ g = \operatorname{id} i) \times (h \circ f = \operatorname{id} j)$$

Write Iso M for the space of isomorphisms in M.

It is routine to check that for i:I, the operation id i is an isomorphism in this sense. Hence we have

id-to-iso :
$$\{ij:I\} \rightarrow i = j \rightarrow \text{Iso } M$$

id-to-iso $\{i\}$ idp = id i

Univalence for Monads (cont'd)

Definition

Let M be a polynomial monad. A unary operation $f: j \to i$ is said to be an isomorphism if satisfies the bi-inverse property:

is-iso
$$f := \sum_{g: i \to j} \sum_{h: i \to j} (f \circ g = \operatorname{id} i) \times (h \circ f = \operatorname{id} j)$$

Write Iso M for the space of isomorphisms in M.

It is routine to check that for i:I, the operation id i is an isomorphism in this sense. Hence we have

id-to-iso :
$$\{ij:I\} \rightarrow i = j \rightarrow \text{Iso } M$$

id-to-iso $\{i\}$ idp = id i

Definition

M is said to be *univalent* if the above map is an equivalence.

• For a type X: Type let

is-finite
$$X:=\sum_{n\in\mathbb{N}}\|X\simeq\operatorname{\sf Fin} n\|_{-1}$$

• For a type X : Type let

is-finite
$$X := \sum_{n:\mathbb{N}} \|X \simeq \operatorname{Fin} n\|_{-1}$$

• For a type X : Type let

is-finite
$$X:=\sum_{n:\mathbb{N}}\|X\simeq\operatorname{\sf Fin} n\|_{-1}$$

is-∞-operad
$$M := \{i : I\}(f : Op i)$$
 → is-finite(Arity f)

• For a type X : Type let

is-finite
$$X:=\sum_{n:\mathbb{N}}\|X\simeq\operatorname{\sf Fin} n\|_{-1}$$

is-∞-operad
$$M := \{i : I\}(f : \operatorname{Op} i) \rightarrow \operatorname{is-finite}(\operatorname{Arity} f)$$

is-∞-category $M := \{i : I\}(f : \operatorname{Op} i) \rightarrow \operatorname{is-unary} f$

• For a type X : Type let

is-finite
$$X:=\sum_{n:\mathbb{N}}\|X\simeq\operatorname{\sf Fin} n\|_{-1}$$

is-∞-operad
$$M := \{i : I\}(f : \operatorname{Op} i) \to \operatorname{is-finite}(\operatorname{Arity} f)$$

is-∞-category $M := \{i : I\}(f : \operatorname{Op} i) \to \operatorname{is-unary} f$
is-∞-groupoid $M := \operatorname{is-\infty-category} M \times (f : \operatorname{Op} i) \to \operatorname{is-iso} f$

• For a type X : Type let

is-finite
$$X:=\sum_{n:\mathbb{N}}\|X\simeq\operatorname{\sf Fin} n\|_{-1}$$

• Let *M* be a polynomial monad. We define

is-
$$\infty$$
-operad $M := \{i : I\}(f : \operatorname{Op} i) \to \operatorname{is-finite}(\operatorname{Arity} f)$
is- ∞ -category $M := \{i : I\}(f : \operatorname{Op} i) \to \operatorname{is-unary} f$
is- ∞ -groupoid $M := \operatorname{is-}\infty$ -category $M \times (f : \operatorname{Op} i) \to \operatorname{is-iso} f$

More special cases are possible:

• For a type X : Type let

is-finite
$$X:=\sum_{n:\mathbb{N}}\|X\simeq\operatorname{\sf Fin} n\|_{-1}$$

is-
$$\infty$$
-operad $M := \{i : I\}(f : \operatorname{Op} i) \to \operatorname{is-finite}(\operatorname{Arity} f)$
is- ∞ -category $M := \{i : I\}(f : \operatorname{Op} i) \to \operatorname{is-unary} f$
is- ∞ -groupoid $M := \operatorname{is-}\infty$ -category $M \times (f : \operatorname{Op} i) \to \operatorname{is-iso} f$

- More special cases are possible:
 - A symmetric monoidal ∞-category is an ∞-operad with enough "universal" operations.

• For a type X : Type let

is-finite
$$X:=\sum_{n:\mathbb{N}}\|X\simeq\operatorname{\sf Fin} n\|_{-1}$$

is-
$$\infty$$
-operad $M := \{i : I\}(f : \operatorname{Op} i) \to \operatorname{is-finite}(\operatorname{Arity} f)$
is- ∞ -category $M := \{i : I\}(f : \operatorname{Op} i) \to \operatorname{is-unary} f$
is- ∞ -groupoid $M := \operatorname{is-}\infty$ -category $M \times (f : \operatorname{Op} i) \to \operatorname{is-iso} f$

- More special cases are possible:
 - A symmetric monoidal ∞-category is an ∞-operad with enough "universal" operations.
 - ▶ An A_{∞} -type is an ∞ -category for which the type I is *connected*

• For a type X : Type let

is-finite
$$X:=\sum_{n:\mathbb{N}}\|X\simeq\operatorname{\sf Fin} n\|_{-1}$$

is-
$$\infty$$
-operad $M := \{i : I\}(f : \operatorname{Op} i) \to \operatorname{is-finite}(\operatorname{Arity} f)$
is- ∞ -category $M := \{i : I\}(f : \operatorname{Op} i) \to \operatorname{is-unary} f$
is- ∞ -groupoid $M := \operatorname{is-}\infty$ -category $M \times (f : \operatorname{Op} i) \to \operatorname{is-iso} f$

- More special cases are possible:
 - A symmetric monoidal ∞-category is an ∞-operad with enough "universal" operations.
 - ▶ An A_{∞} -type is an ∞ -category for which the type I is *connected*
 - etc ...

• Finish the definition of simplicial type

- Finish the definition of simplicial type
- Conjecture:

 ∞ -groupoid \simeq *Type*

- Finish the definition of simplicial type
- Conjecture:

$$\infty$$
-groupoid \simeq *Type*

• Loop spaces are grouplike A_{∞} -types?

- Finish the definition of simplicial type
- Conjecture:

$$\infty$$
-groupoid \simeq *Type*

- Loop spaces are grouplike A_{∞} -types?
- Initial algebras and HIT's

- Finish the definition of simplicial type
- Conjecture:

$$\infty$$
-groupoid \simeq *Type*

- Loop spaces are grouplike A_{∞} -types?
- Initial algebras and HIT's
- Develop higher category theory

- Finish the definition of simplicial type
- Conjecture:

$$\infty$$
-groupoid \simeq *Type*

- Loop spaces are grouplike A_{∞} -types?
- Initial algebras and HIT's
- Develop higher category theory

Thanks!