FCC REPORT

Applicant: Deliberant LLC

Address of Applicant: 138 Mountain Brook Dr Canton, GA 30115 United States

Equipment Under Test (EUT)

Product Name: Broadband Digital Transmission System

Model No.: APC Button, APC Button AF

FCC ID: UB8-APCBTTN2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2011

Date of sample receipt: 14 Dec.,2012

Date of Test: 18 Dec.,2012 to 14 Jan.,2013

Date of report issued: 16 Jan.,2013

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Jan.,2013	Original

Prepared by:	Lisa chon	Date:	16 Jan.,2013
	Report Clerk		
Reviewed by:	Winner Many	Date:	16 Jan.,2013
	Project Engineer		

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	
6	TEST RESULTS AND MEASUREMENT DATA	9
	6.1 ANTENNA REQUIREMENT: 6.2 CONDUCTED EMISSIONS. 6.3 CONDUCTED OUTPUT POWER. 6.4 OCCUPY BANDWIDTH. 6.5 POWER SPECTRAL DENSITY. 6.6 BAND EDGE. 6.6.1 Conducted Emission Method. 6.6.2 Radiated Emission Method. 6.7 SPURIOUS EMISSION 6.7.1 Conducted Emission Method. 6.7.2 Radiated Emission Method.	
7	TEST SETUP PHOTO	91
8	B FUT CONSTRUCTIONAL DETAILS	95

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 3 of 103

4 Test Summary

Test Item	Section in CFR 47	Result	
Antenna requirement	15.203/15.247 (c)	Pass	
AC Power Line Conducted Emission	15.207	Pass	
Conducted Peak Output Power	15.247 (b)(3)	Pass	
26/6dB Occupied Bandwidth	15.247 (a)(2)	Pass	
Power Spectral Density	15.247 (e)	Pass	
Band Edge	15.247(d)	Pass	
Spurious Emission	15.205/15.209	Pass	

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Deliberant LLC		
Address of Applicant:	138 Mountain Brook Dr Canton, GA 30115 United States		
Manufacturer/ Factory:	Deliberant LLC		
Address of Manufacturer /Factory:	138 Mountain Brook Dr Canton, GA 30115 United States		

5.2 General Description of E.U.T.

Product Name:	Broadband Digital Transmission System			
Model No.:	APC Button, APC Button AF			
0	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))			
Operation Frequency:	2422MHz~2452MHz (802.11n(H40))			
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)			
Channel numbers.	7 for 802.11n(H40)			
Channel separation:	5MHz			
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)			
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)			
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps			
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps 48Mbps,54Mbps			
Data speed (IEEE 802.11n):	Up to 300Mbps			
Antenna Type:	Integral Antenna			
Antenna gain:	3 dBi			
	Adapter for model APC Button			
	Model:GRT-180100			
	Input:100-240V AC,50/60Hz 0.27A			
AC adaptor :	Output:5V DC MAX700mA			
AC adapter :	Adapter for model APC Button AF			
	Model:GRT-480050			
	Input:100-240V AC,50/60Hz			
	Output:5V DC MAX500mA			
Remark:	The model APC Button and model APC Button AF have same RF electric circuit, IC, antenna type and antenna Gain etc, the only differences between them are adapter and power management circuits.			

Operation Frequency each of channel								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 103

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep two transmit chains of EUT in simultaneously transmitting with modulation.			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(H20)	6.5Mbps		
802.11n(H40)	13.5Mbps		

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 817957

China Certification & Inspection Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012

■ Industry Canada (IC)

The 3m Semi-anechoic chamber of China Certification & Inspection Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

5.5 Test Location

All tests were performed at:

China Certification & Inspection Services Co., Ltd.

Address: 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China

Tel: 0755-23118282 Fax: 0755-23116366

5.6 Other Information Requested by the Customer

None.

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 7 of 103

5.7 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2012	June 08 2013		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	June 04 2012	June 03 2013		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 30 2012	May 30 2013		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2012	Mar. 31 2013		
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2012	Mar. 31 2013		
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2012	Mar. 31 2013		
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2012	Mar. 31 2013		
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2012	Mar. 31 2013		
10	Amplifier(10kHz- 1.3GHz)	НР	8447D	CCIS0003	Apr. 01 2012	Mar. 31 2013		
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2012	June 08 2013		
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2012	Mar. 31 2013		
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2012	Mar. 29 2013		
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 29 2012	May. 28 2013		
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2012	Mar. 31 2013		
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2012	Aug. 11 2013		

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal. Due date (dd-mm-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2012	June 08 2013				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2012	May 25 2013				
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2012	Mar. 31 2013				
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2012	Mar. 31 2013				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 3 dBi.

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 9 of 103

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.4: 2003						
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	- (441)	Limit (c	dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithr						
Test procedure	The E.U.T and simulators a line impedance stabiliz 50ohm/50uH coupling im	ation network (L.I.S.N.) pedance for the meas). The provide a uring equipment.				
 The peripheral devices are also connected to the main p through a LISN that provides a 50ohm/50uH coupling im with 50ohm termination. (Please refers to the block diagratest setup and photographs). Both sides of A.C. line are checked for maximum conductions. 							
	re checked for maximum ind the maximum emis and all of the interface c USI C63.4: 2003 on cor	sion, the relative ables must be					
Test setup:							
Test setup:	Refere	ence Plane					
Test setup:	AUX Equipment Test table/Insulation pla Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization	U.T EMI Receiver	er — AC power				
	AUX Equipment Test table/Insulation pla Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	U.T EMI Receiver	er — AC power				
Test setup: Test Instruments:	AUX Equipment Test table/Insulation pla Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization	U.T EMI Receiver	er — AC power				
	AUX Equipment Test table/Insulation pla Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	U.T EMI Receiver	er — AC power				
Test Instruments:	AUX Equipment Test table/Insulation pla Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m Refer to section 5.7 for details	U.T EMI Receiver	er — AC power				

Measurement Data

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Jillia 310102

APC Button

Line:

Trace: 19 : CCIS Conducted Test Site : FCC PART15 B QP LISN LINE Site

Condition 303RF Job. no

EUT : Broadband Digital Transmission System

Model : APC Button
Test Mode : Wifi mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Winner

lest	Engineer:	Read	LISN	Cable		Limit	Over	
	Freq		Factor	Loss		Line		Remark
	MHz	dBu∀	dB	₫B	dBu∀	dBu∜	<u>dB</u>	
1	0.150	50.36	10.25	0.79	61.40	66.00	-4.60	QP
1 2 3 4 5 6 7 8 9	0.174	28.78	10.23	0.77	39.78	64.77	-24.99	Average
3	0.274	45.80	10.25	0.74	56.79	60.98	-4.19	QP
4	0.286	32.24	10.26	0.74	43.24	60.63	-17.39	Average
5	0.318	46.40	10.26	0.74	57.40	59.75	-2.35	QP
6	0.318	30.57	10.26	0.74	41.57	59.75	-18.18	Average
7	0.541	23.97	10.25	0.76	34.98	56.00	-21.02	Average
8	0.555	41.70	10.24	0.76	52.70	56.00	-3.30	QP
9	0.809	22.07	10.19	0.81	33.07	56.00	-22.93	Average
10	0.826	39.02	10.19	0.81	50.02	56.00	-5.98	QP
11	29.216	30.88	10.84	0.87	42.59	60.00	-17.41	QP
12	29, 216	27.00	10.84	0.87	38.71	60.00	-21.29	Average

Project No.: CCIS121200303RF

Neutral:

Site : CCIS Conducted Test Site
Condition : FCC PART15 B QP LISN NEUTRAL

Job. no : 303RF

EUT : Broadband Digital Transmission System

Model : APC Button Test Mode : Wifi mode Power Rating : AC 120V/60Hz

Environment: Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Winner

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	dB	dBu∀	dBu∜	dB	
1	0.162	48.51	10.26	0.78	59.55	65.34	-5.79	QP
2	0.174	29.13	10.25	0.77	40.15	54.77	-14.62	Average
3	0.277	45.50	10.24	0.74	56.48	60.90	-4.42	QP
2 3 4 5 6 7 8 9	0.277	30.21	10.24	0.74	41.19	50.90	-9.71	Average
5	0.327	46.19	10.25	0.74	57.18	59.53	-2.35	QP
6	0.327	30.65	10.25	0.74	41.64	49.53	-7.89	Average
7	0.549	40.94	10.25	0.76	51.95	56.00	-4.05	QP
8	0.573	22.64	10.23	0.76	33.63	46.00	-12.37	Average
9	0.796	38.24	10.17	0.80	49.21	56.00	-6.79	QP
10	3.310	20.36	10.28	0.90	31.54	46.00	-14.46	Average
11	29.216	31.46	10.83	0.87	43.16	60.00	-16.84	QP
12	29.216	26.38	10.83	0.87	38.08	50.00	-11.92	Average

Notes

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

APC Button AF

Line:

Trace: 7

: CCIS Conducted Test Site : FCC PART15 B QP LISN LINE Site Condition

Job. no : 303RF

: Broadband Digital Transmission System : APC Button AF EUT

Model Test Mode : Wifi mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Winner

est	rugiueer:	Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line		Remark
	MHz	dBu∀	<u>dB</u>	<u>ab</u>	dBu₹	—dBu∜	<u>ab</u>	
1	0.150	49.01	10.25	0.79	60.05	66.00	-5.95	QP
1 2 3 4 5 6 7 8 9	0.150	34.80	10.25	0.79	45.84	56.00	-10.16	Average
3	0.541	28.81	10.25	0.76	39.82	46.00	-6.18	Average
4	0.561	39.89	10.24	0.76	50.89	56.00	-5.11	QP
5	0.984	24.25	10.21	0.87	35.33	46.00	-10.67	Average
6	1.005	33.78	10.21	0.87	44.86	56.00	-11.14	QP
7	1.418	31.96	10.25	0.44	42.65	56.00	-13.35	QP
8	1.480	21.75	10.25	0.33	32.33	46.00	-13.67	Average
	23.140	28.13	10.47	0.89	39.49	60.00	-20.51	QP
10	23.140	25.89	10.47	0.89	37.25	50.00	-12.75	Average
11	29.216	29.24	10.84	0.87	40.95	60.00	-19.05	QP
12	29.216	27.24	10.84	0.87	38.95	50.00	-11.05	Average

Project No.: CCIS121200303RF

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 13 of 103

Neutral:

Site : CCIS Conducted Test Site
Condition : FCC PART15 B QP LISN NEUTRAL

Job. no : 303RF

EUT : Broadband Digital Transmission System
Model : APC Button AF

Model : APC Button AF Test Mode : Wifi mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Winner

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫₿	dB	dBu₹	dBu√	<u>dB</u>	
1	0.150	48.72	10.27	0.79	59.78	66.00	-6.22	QP
2	0.150	33.17	10.27	0.79	44.23	56.00	-11.77	Average
3	0.541	28.88	10.25	0.76	39.89	46.00	-6.11	Average
1 2 3 4 5 6 7 8 9 10	0.546	38.47	10.25	0.76	49.48	56.00	-6.52	QP
5	1.032	30.04	10.20	0.85	41.09	56.00	-14.91	QP
6	1.032	19.24	10.20	0.85	30.29	46.00	-15.71	Average
7	1.403	28.13	10.23	0.48	38.84	56.00	-17.16	QP
8	1.403	18.48	10.23	0.48	29.19	46.00	-16.81	Average
9	23.140	29.28	10.48	0.89	40.65	60.00	-19.35	QP
10	23.140	26.89	10.48	0.89	38.26	50.00	-11.74	Average
11	29.216	29.99	10.83	0.87	41.69	60.00	-18.31	QP
12	29.216	27.93	10.83	0.87	39.63	50.00	-10.37	Average

Notes:

1

- 4. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 5. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 6. Final Level = Receiver Read level + LISN Factor + Cable Loss

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Page 14 of 103

6.3 Conducted Output Power

Measurement Data

Mode	Test CH	Ant. Port	Conducted Output power (dBm)	Total power (dBm)	Limit (dBm)	Result
	Lowest	ANT 1	6.67	10.16	30	Pass
	Lowest	ANT 2	7.59	10.10	30	Fd55
802.11b	Middle	ANT 1	20.19	23.51	30	Pass
002.110	Middle	ANT 2	20.79	23.31	30	Pass
	l limb a a t	ANT 1	6.82	0.00	20	Daga
	Highest	ANT 2	7.15	9.99	30	Pass
802.11g	Laurant	ANT 1	13.37	40.54	20	Dana
	Lowest	ANT 2	13.62	16.51	30	Pass
	Middle	ANT 1	20.43	23.58	30	Pass
		ANT 2	20.70	23.30	30	Fd55
	Highest	ANT 1	12.18	16.57	30	Pass
		ANT 2	14.60			
	Lowest	ANT 1	9.53	40.05	20	Pass
	Lowest	ANT 2	10.31	12.95	30	Pass
802.11n	Middle	ANT 1	20.04	22.74	20	Daga
(H20)	Middle	ANT 2	21.32	23.74	30	Pass
	l limboot	ANT 1	9.95	40.45	20	Dana
	Highest	ANT 2	10.33	13.15	30	Pass
	Lowest	ANT 1	9.88	10.70	20	Door
	Lowest	ANT 2	11.41	13.72	30	Pass
802.11n	Middle	ANT 1	20.14	22.00	20	Door
(H40)	Middle	ANT 2	19.61	22.89	30	Pass
	Lliab set	ANT 1	9.73	12.42	20	Door
	Highest	ANT 2	11.02	13.43	30	Pass

Test plots as follow:

Page 17 of 103

Page 18 of 103

Page 19 of 103

Page 23 of 103

Page 24 of 103

6.4 Occupy Bandwidth

Measurement Data

ANT 1

		6dB Occupy			-	
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	11.64	15.84	16.50	35.28		
Middle	11.22	15.84	16.38	35.16	>500	Pass
Highest	11.16	15.84	16.44	35.04		

TI CYY		26dB Emission	z)		D	
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	18.18	18.66	19.62	37.56		
Middle	18.30	19.26	19.68	37.80	N/A	N/A
Highest	18.06	18.66	19.62	37.92		

ANT 2

The CVV		6dB Occupy	* · · · · · · · · · · · · · · · · · · ·	7 . 1.		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	11.64	15.84	16.44	35.28		
Middle	11.64	15.84	16.38	35.16	>500	Pass
Highest	11.64	15.84	16.38	35.16		

		26dB Emission	z)			
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	18.06	18.66	19.68	37.80		
Middle	18.36	19.86	19.98	37.92	N/A	N/A
Highest	18.12	18.66	19.62	37.80		

Test plots as follow:

Lowest channel

Middle channel

Highest channel

Highest channel

Highest channel

Highest channel

Data - 11 TAM 2012 05-00-20

Highest channel

Data - 11 TAN 2012 04-E0-10

Highest channel

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121200303RF

Page 33 of 103

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Highest channel

Highest channel

Lowest channel *BBM 100 kHz Marker 1 [T1] *YBM 300 kHz 7, 45 dBm *Att 20 dB SMT 5 ms 2, 438980000 GMz 10 Offert 0. dB Marker 1 [T1] -10 SMT 5 ms 2, 438980000 GMz -11 SM 36 dBm -12 4280000 GMz -12 4280000 GMz -13 SM 36 dBm -14 52 dBm -15 SM 37 SM -16 SM 37 SM -17 SM 37 SM -18 SM 3

Highest channel

Highest channel

Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Lowest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Measurement Data

Mode	Test CH	Ant. Port	PSD	Total PSD	Limit	Result
			(dBm)	(dBm)	(dBm)	
		Ant 1	-7.52			_
	Lowest	Ant 2	-5.76	-3.54	8	Pass
000 441		Ant 1	-3.42			_
802.11b	Middle	Ant 2	-1.80	0.48	8	Pass
		Ant 1	-6.86			_
	Highest	Ant 2	-5.36	-3.04	8	Pass
		Ant 1	-10.29			_
	Lowest	Ant 2	-8.74	-6.44	8	Pass
000.44	NAC JULI	Ant 1	1.51	4.70		D
802.11g	Middle	Ant 2	2.04	4.79	8	Pass
	122.1	Ant 1	-6.35			5
	Highest	Ant 2	-5.81	-3.06	8	Pass
	1	Ant 1	-10.65	0.04		D
	Lowest	Ant 2	-9.18	-6.84	8	Pass
802.11n	NA: al all a	Ant 1	1.69	4.05	0	Dava
(H20)	Middle	Ant 2	1.98	4.85	8	Pass
	I Pakaa	Ant 1	-6.12	0.00		D
	Highest	Ant 2	-5.20	-2.63	8	Pass
	Laurant	Ant 1	-12.92	0.00	0	Dava
	Lowest	Ant 2	-11.92	-9.38	8	Pass
802.11n	NA: al all a	Ant 1	-3.70	0.50		Dana
(H40)	Middle	Ant 2	-3.49	-0.58	8	Pass
	l limboot	Ant 1	-12.78	0.00		Dana
	Highest	Ant 2	-12.56	-9.66	8	Pass

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Page 45 of 103

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Highest channel

ANT 2

Lowest channel

Middle channel

Highest channel

Highest channel

Highest channel

Highest channel

6.6 Band Edge

6.6.1 **Conducted Emission Method**

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 , KDB558074 and KDB 662911						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Lowest channel

Highest channel

Lowest channel

Highest channel

Project No.: CCIS121200303RF

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4: 2003									
Test Frequency Range:	2.3GHz to 2.5GHz									
Test site:	Measurement D	Distance: 3m								
Receiver setup:										
	Frequency	Detector	RBW	VBW	Remark					
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value					
Limit:		Peak	IIVITZ	TUHZ	Average Value					
Liiiiit.	Freque	ency	Limit (dBuV/	/m @3m)	Remark					
	Above 1	_	54.0		Average Value					
			74.0		Peak Value e 0.8 meters above					
Test setup:	to determing to determing the EUT wantenna, wanten end to find the meters and to find the specified East the limit specified to did not have	ne the position was set 3 meter which was mour that height is var to determine to that and vertice measurement. The uspected emisten the antennal the rota table maximum readuceiver system and width with sion level of the ecified, then tene EUT would be to the ecified of the e	of the highests away from the on the to ied from one he maximum al polarizations ion, the EU a was turned the was turned from the EUT in peasing could be reported.	at radiation. the interfer op of a variation of a variation of the air of the	s 10dB lower than and the peak the emissions that					
Test Instruments:	Refer to section	5.7 for details								
Test mode:	Refer to section 5.3 for details The test was conducted at the worst of MIMO mode									
Test results:	Passed									

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 58 of 103

802.11b

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2390.00	27.95	27.58	3.81	0.00		59.34	74.00	-14.66	Horizontal	
2400.00	28.16	27.58	3.83	0.00		59.57	74.00	-14.43	Horizontal	
2390.00	25.64	27.58	3.81	0.00		57.03	74.00	-16.97	Vertical	
2400.00	26.16	27.58	3.83	0.00		57.57	74.00	-16.43	Vertical	

Test	channel:		Lowest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	I I Imit	Polarizatio n	
2390.00	12.66	27.58	3.81	0.00)	44.05	54.00	-9.95	Horizontal	
2400.00	13.76	27.58	3.83	0.00)	45.17	54.00	-8.83	Horizontal	
2390.00	13.64	27.58	3.81	0.00)	45.03	54.00	-8.97	Vertical	
2400.00	14.53	27.58	3.83	0.00)	45.94	54.00	-8.06	Vertical	

Test	channel:		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	i imir	Polarization	
2483.50	28.48	27.52	3.89	0.00		59.89	74.00	-14.11	Horizontal	
2500.00	22.31	27.55	3.90	0.00		53.76	74.00	-20.24	Horizontal	
2483.50	28.24	27.52	3.89	0.00		59.65	74.00	-14.35	Vertical	
2500.00	22.14	27.55	3.90	0.00		53.59	74.00	-20.41	Vertical	

Test	channel:		Highest			Level:		Ave	erage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m	I I imit	Polarization
2483.50	17.70	27.52	3.89	0.0)	49.11	54.00	-4.89	Horizontal
2500.00	15.32	27.55	3.90	0.0)	46.77	54.00	-7.23	Horizontal
2483.50	19.61	27.52	3.89	0.00		51.02	54.00	-2.98	Vertical
2500.00	17.33	27.55	3.90	0.0)	48.78	54.00	-5.22	Vertical

CCIS

Report No: CCIS12120030301

802.11g

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	i imit	Polarization	
2390.00	24.94	27.58	3.81	0.00		56.33	74.00	-17.67	Horizontal	
2400.00	26.42	27.58	3.83	0.00)	57.83	74.00	-16.17	Horizontal	
2390.00	27.51	27.58	3.81	0.00)	58.90	74.00	-15.10	Vertical	
2400.00	28.01	27.58	3.83	0.00)	59.42	74.00	-14.58	Vertical	

Tes	st channel:		Lowest		Level:		Ave	rage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
2390.00	13.25	27.58	3.81	0.00	44.64	54.00	-9.36	Horizontal
2400.00	14.24	27.58	3.83	0.00	45.65	54.00	-8.35	Horizontal
2390.00	15.34	27.58	3.81	0.00	46.73	54.00	-7.27	Vertical
2400.00	13.65	27.58	3.83	0.00	45.06	54.00	-8.94	Vertical

Test	channel:		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or .	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	Polarization	
2483.50	25.02	27.52	3.89	0.00)	56.43	74.00	-17.57	Horizontal	
2500.00	23.67	27.55	3.90	0.00)	55.12	74.00	-18.88	Horizontal	
2483.50	25.80	27.52	3.89	0.00		57.21	74.00	-16.79	Vertical	
2500.00	24.16	27.55	3.90	0.00)	55.61	74.00	-18.39	Vertical	

Test	channel:	innel: Highest				Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line	I I Imit	Polarization	
2483.50	13.03	27.52	3.89	0.0	C	44.44	54.00	-9.56	Horizontal	
2500.00	12.52	27.55	3.90	0.0	C	43.97	54.00	-10.03	Horizontal	
2483.50	13.56	27.52	3.89	0.0	C	44.97	54.00	-9.03	Vertical	
2500.00	12.64	27.55	3.90	0.0)	44.09	54.00	-9.91	Vertical	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

CCIS

Report No: CCIS12120030301

802.11n (H20)

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r	Level (dBuV/m)	Limit Line (dBuV/m)	I I Imit	Polarization	
2390.00	26.35	27.58	3.81	0.00)	57.74	74.00	-16.26	Horizontal	
2400.00	27.83	27.58	3.83	0.00)	59.24	74.00	-14.76	Horizontal	
2390.00	25.24	27.58	3.81	0.00)	56.63	74.00	-17.37	Vertical	
2400.00	26.33	27.58	3.83	0.00)	57.74	74.00	-16.26	Vertical	

Test	Test channel: Lowest				Level: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	13.26	27.58	3.81	0.00	44.65	54.00	-9.35	Horizontal
2400.00	14.03	27.58	3.83	0.00	45.44	54.00	-8.56	Horizontal
2390.00	13.62	27.58	3.81	0.00	45.01	54.00	-8.99	Vertical
2400.00	14.74	27.58	3.83	0.00	46.15	54.00	-7.85	Vertical

Test channel: Highest			Level: Peak				eak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	26.35	27.52	3.89	0.00)	57.76	74.00	-16.24	Horizontal
2500.00	25.12	27.55	3.90	0.00)	56.57	74.00	-17.43	Horizontal
2483.50	26.33	27.52	3.89	0.00)	57.74	74.00	-16.26	Vertical
2500.00	25.02	27.55	3.90	0.00)	56.47	74.00	-17.53	Vertical

Test	channel:		Highest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m	I I imit	Polarization	
2483.50	13.13	27.52	3.89	0.00		44.54	54.00	-9.46	Horizontal	
2500.00	12.36	27.55	3.90	0.0	0	43.81	54.00	-10.19	Horizontal	
2483.50	13.20	27.52	3.89	0.0	0	44.61	54.00	-9.39	Vertical	
2500.00	12.31	27.55	3.90	0.0	0	43.76	54.00	-10.24	Vertical	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n (H40)

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	I I Imit	Polarization	
2390.00	24.65	27.58	3.81	0.00		56.04	74.00	-17.96	Horizontal	
2400.00	25.71	27.58	3.83	0.00)	57.12	74.00	-16.88	Horizontal	
2390.00	25.31	27.58	3.81	0.00)	56.70	74.00	-17.30	Vertical	
2400.00	26.65	27.58	3.83	0.00)	58.06	74.00	-15.94	Vertical	

Test channel: Lowest				Level: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)		Polarization
2390.00	13.45	27.58	3.81	0.00	44.84	54.00	-9.16	Horizontal
2400.00	14.17	27.58	3.83	0.00	45.58	54.00	-8.42	Horizontal
2390.00	13.25	27.58	3.81	0.00	44.64	54.00	-9.36	Vertical
2400.00	14.18	27.58	3.83	0.00	45.59	54.00	-8.41	Vertical

Test	channel:		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2483.50	23.54	27.52	3.89	0.00)	54.95	74.00	-19.05	Horizontal	
2500.00	22.05	27.55	3.90	0.00)	53.50	74.00	-20.50	Horizontal	
2483.50	23.75	27.52	3.89	0.00)	55.16	74.00	-18.84	Vertical	
2500.00	22.62	27.55	3.90	0.00)	54.07	74.00	-19.93	Vertical	

Test	channel:	Highest			Level:			Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line	Limit	Polarization	
2483.50	12.35	27.52	3.89	0.00		43.76	54.00	-10.24	Horizontal	
2500.00	11.02	27.55	3.90	0.00)	42.47	54.00	-11.53	Horizontal	
2483.50	12.00	27.52	3.89	0.00		43.41	54.00	-10.59	Vertical	
2500.00	11.02	27.55	3.90	0.00)	42.47	54.00	-11.53	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 62 of 103

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003, KDB558074 and KDB 662911						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 63 of 103

ANT 1

Test mode: 802.11b

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

Test mode: 802.11g

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

Test mode: 802.11n(H20)

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

Test mode: 802.11n(H40)

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

ANT 2

Test mode: 802.11b

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

Test mode:	802.11g
------------	---------

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

Test mode: 802.11n(H20)

30MHz~25GHz

30MHz~25GHz

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 73 of 103

30MHz~25GHz

Test mode: 802.11n(H40)

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.4:2003								
Test Frequency Range:	30MHz to 25GH	lz							
Test site:	Measurement D	istance: 3m							
Receiver setup:									
·	Frequency Detector RBW VBW Remark								
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above IGI12	Peak	1MHz	10Hz	Average Value				
Limit:									
	Freque	ncy	Limit (dBuV/	m @3m)	Remark				
	30MHz-8		40.0		Quasi-peak Value				
	88MHz-21	6MHz	43.5	5	Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
	960MHz-	1GHz	54.0		Quasi-peak Value				
	Above 1	GHz	54.0		Average Value				
			74.0		Peak Value e 0.8 meters above				
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the make the maters and to find the material Boundary and the limit special based on the material and the material based on the materia	at a 3 meter cape the position of as set 3 meter hich was mour that height is varied to determine the antennal and vertice the asurement. The rota table maximum read ceiver system and width with sion level of the ecified, then tene EUT would be a 10dB margin i-peak or average as the position of the existence of	amber. The toof the highest is away from inted on the too ied from one ied from one ied from one ied from one ied awas imumal polarization, the EU awas turned ing. was set to P Maximum He EUT in peasing could be reported.	table was rost radiation. The interfer op of a variation are meter to for a value of the ons of the are to heights from 0 degreeak Detect old Mode. It was arranged to heights from 0 degreeak Detect old Mode. It was arranged to heights from 0 degreeak Detect old Mode. It was arranged to heights from 0 degreeak Detect old Mode. It was arranged to heights from 0 degreeak Detect old Mode. It was arranged to heights from 0 degreeak Detect old Mode. It was arranged to heights from 0 degreeak Detect old Mode.	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 76 of 103

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 77 of 103

Project No.: CCIS121200303RF

Below 1GHz

APC Button

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
38.35	50.73	13.15	1.18	27.10	37.96	40.00	-2.04	Vertical
47.66	51.28	13.39	1.27	28.06	37.88	40.00	-2.12	Vertical
58.61	53.43	12.79	1.37	29.09	38.50	40.00	-1.50	Vertical
71.58	58.47	8.39	1.56	30.14	38.28	40.00	-1.72	Vertical
88.65	55.51	11.47	2.00	30.08	38.90	43.50	-4.60	Vertical
240.83	57.50	12.09	2.82	29.64	42.77	46.00	-3.23	Vertical
52.21	49.28	13.16	1.29	28.50	35.23	40.00	-4.77	Horizontal
58.20	50.03	12.81	1.37	29.05	35.16	40.00	-4.84	Horizontal
93.77	50.14	12.58	2.02	30.08	34.66	43.50	-8.84	Horizontal
106.76	55.31	12.54	2.02	29.95	39.92	43.50	-3.58	Horizontal
143.33	57.00	8.22	2.44	29.33	38.33	43.50	-5.17	Horizontal
250.30	47.23	12.07	2.81	29.60	32.51	46.00	-13.49	Horizontal

APC Button AF

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
47.83	52.10	13.38	1.27	28.08	38.67	40.00	-1.33	Vertical
56.00	52.01	12.97	1.36	28.85	37.49	40.00	-2.51	Vertical
64.66	56.16	10.84	1.38	29.66	38.72	40.00	-1.28	Vertical
87.73	55.43	11.18	1.96	30.08	38.49	40.00	-1.51	Vertical
90.22	54.15	11.99	2.03	30.07	38.10	43.50	-5.40	Vertical
147.92	57.20	8.24	2.50	29.26	38.68	43.50	-4.82	Vertical
34.52	42.71	12.30	1.04	26.75	29.30	40.00	-10.70	Horizontal
56.00	43.85	12.97	1.36	28.85	29.33	40.00	-10.67	Horizontal
88.65	54.88	11.47	2.00	30.08	38.27	43.50	-5.23	Horizontal
147.92	57.26	8.24	2.50	29.26	38.74	43.50	-4.76	Horizontal
172.60	50.04	9.16	2.68	28.17	33.71	43.50	-9.79	Horizontal
250.30	44.95	12.07	2.81	29.60	30.23	43.50	-13.27	Horizontal

Above 1GHz

Test mode:	802.11b		Test channel:	Lowest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	35.26	31.79	5.34	24.07	48.32	74.00	-25.68	Vertical
7236.00	31.26	36.19	6.88	26.44	47.89	74.00	-26.11	Vertical
9648.00	24.36	38.07	8.96	25.36	46.03	74.00	-27.97	Vertical
12060.00	21.05	39.05	10.35	25.15	45.30	74.00	-28.70	Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	35.64	31.79	5.34	24.07	48.70	74.00	-25.30	Horizontal
7236.00	31.25	36.19	6.88	26.44	47.88	74.00	-26.12	Horizontal
9648.00	24.65	38.07	8.96	25.36	46.32	74.00	-27.68	Horizontal
12060.00	21.58	39.05	10.35	25.15	45.83	74.00	-28.17	Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal

Test mode:	802.11b		Test Lowest channel:		Remark:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	30.15	31.79	5.34	24.07	43.21	54.00	-10.79	Vertical
7236.00	26.35	36.19	6.88	26.44	42.98	54.00	-11.02	Vertical
9648.00	19.54	38.07	8.96	25.36	41.21	54.00	-12.79	Vertical
12060.00	16.33	39.05	10.35	25.15	40.58	54.00	-13.42	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	30.12	31.79	5.34	24.07	43.18	54.00	-10.82	Horizontal
7236.00	25.69	36.19	6.88	26.44	42.32	54.00	-11.68	Horizontal
9648.00	19.65	38.07	8.96	25.36	41.32	54.00	-12.68	Horizontal
12060.00	16.09	39.05	10.35	25.15	40.34	54.00	-13.66	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 79 of 103

Test mode:	802.11b		Test channel:	Middle		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	42.55	31.85	5.40	24.01	55.79	74.00	-18.21	Vertical
7311.00	31.25	36.37	6.90	26.58	47.94	74.00	-26.06	Vertical
9748.00	25.16	38.13	8.98	25.34	46.93	74.00	-27.07	Vertical
12185.00	21.36	38.92	10.38	25.04	45.62	74.00	-28.38	Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	42.33	31.85	5.40	24.01	55.57	74.00	-18.43	Horizontal
7311.00	31.29	36.37	6.90	26.58	47.98	74.00	-26.02	Horizontal
9748.00	24.55	38.13	8.98	25.34	46.32	74.00	-27.68	Horizontal
12185.00	21.33	38.92	10.38	25.04	45.59	74.00	-28.41	Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal

Test mode:	802.11b		Test	Middle		Remark:	Average	
			channel:					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.22	31.85	5.40	24.01	51.46	54.00	-2.54	Vertical
7311.00	25.64	36.37	6.90	26.58	42.33	54.00	-11.67	Vertical
9748.00	19.55	38.13	8.98	25.34	41.32	54.00	-12.68	Vertical
12185.00	16.35	38.92	10.38	25.04	40.61	54.00	-13.39	Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	38.21	31.85	5.40	24.01	51.45	54.00	-2.55	Horizontal
7311.00	25.64	36.37	6.90	26.58	42.33	54.00	-11.67	Horizontal
9748.00	19.64	38.13	8.98	25.34	41.41	54.00	-12.59	Horizontal
12185.00	15.38	38.92	10.38	25.04	39.64	54.00	-14.36	Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.111	b	Test channel:	Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.96	31.89	5.46	23.96	49.35	74.00	-24.65	Vertical
7386.00	31.54	36.49	6.93	26.79	48.17	74.00	-25.83	Vertical
9848.00	25.64	38.24	9.05	25.30	47.63	74.00	-26.37	Vertical
12310.00	22.36	38.83	10.41	24.90	46.70	74.00	-27.30	Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	35.66	31.89	5.46	23.96	49.05	74.00	-24.95	Horizontal
7386.00	32.09	36.49	6.93	26.79	48.72	74.00	-25.28	Horizontal
9848.00	25.66	38.24	9.05	25.30	47.65	74.00	-26.35	Horizontal
12310.00	21.34	38.83	10.41	24.90	45.68	74.00	-28.32	Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal

Test mode:	802.11b		Test	Highest		Remark:	Average	
			channel:					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	30.25	31.89	5.46	23.96	43.64	54.00	-10.36	Vertical
7386.00	25.64	36.49	6.93	26.79	42.27	54.00	-11.73	Vertical
9848.00	19.66	38.24	9.05	25.30	41.65	54.00	-12.35	Vertical
12310.00	16.35	38.83	10.41	24.90	40.69	54.00	-13.31	Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	29.66	31.89	5.46	23.96	43.05	54.00	-10.95	Horizontal
7386.00	26.33	36.49	6.93	26.79	42.96	54.00	-11.04	Horizontal
9848.00	19.65	38.24	9.05	25.30	41.64	54.00	-12.36	Horizontal
12310.00	16.54	38.83	10.41	24.90	40.88	54.00	-13.12	Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.11	g	Test channel:	Lowest		Remark:		Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	36.58	31.79	5.34	24.07	49.64	74.00	-24.36	Vertical
7236.00	31.21	36.19	6.88	26.44	47.84	74.00	-26.16	Vertical
9648.00	24.58	38.07	8.96	25.36	46.25	74.00	-27.75	Vertical
12060.00	21.56	39.05	10.35	25.15	45.81	74.00	-28.19	Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	35.87	31.79	5.34	24.07	48.93	74.00	-25.07	Horizontal
7236.00	30.87	36.19	6.88	26.44	47.50	74.00	-26.50	Horizontal
9648.00	24.68	38.07	8.96	25.36	46.35	74.00	-27.65	Horizontal
12060.00	21.46	39.05	10.35	25.15	45.71	74.00	-28.29	Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal

Test mode:	802.11	g	Test	Lowest		Remark:		Average
			channel:					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.54	31.79	5.34	24.07	42.60	54.00	-11.40	Vertical
7236.00	24.87	36.19	6.88	26.44	41.50	54.00	-12.50	Vertical
9648.00	18.24	38.07	8.96	25.36	39.91	54.00	-14.09	Vertical
12060.00	14.39	39.05	10.35	25.15	38.64	54.00	-15.36	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	29.78	31.79	5.34	24.07	42.84	54.00	-11.16	Horizontal
7236.00	24.66	36.19	6.88	26.44	41.29	54.00	-12.71	Horizontal
9648.00	18.79	38.07	8.96	25.36	40.46	54.00	-13.54	Horizontal
12060.00	15.64	39.05	10.35	25.15	39.89	54.00	-14.11	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Project No.: CCIS121200303RF

Test mode:	802.11	g	Test channel:	Middle		Remark:		Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	43.05	31.85	5.40	24.01	56.29	74.00	-17.71	Vertical
7311.00	32.65	36.37	6.90	26.58	49.34	74.00	-24.66	Vertical
9748.00	26.33	38.13	8.98	25.34	48.10	74.00	-25.90	Vertical
12185.00	21.37	38.92	10.38	25.04	45.63	74.00	-28.37	Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	42.58	31.85	5.40	24.01	55.82	74.00	-18.18	Horizontal
7311.00	32.54	36.37	6.90	26.58	49.23	74.00	-24.77	Horizontal
9748.00	26.54	38.13	8.98	25.34	48.31	74.00	-25.69	Horizontal
12185.00	22.54	38.92	10.38	25.04	46.80	74.00	-27.20	Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal

Test mode:	802.11	g	Test channel:	Middle		Remark:		Average
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.32	31.85	5.40	24.01	51.56	54.00	-2.44	Vertical
7311.00	25.64	36.37	6.90	26.58	42.33	54.00	-11.67	Vertical
9748.00	19.87	38.13	8.98	25.34	41.64	54.00	-12.36	Vertical
12185.00	16.22	38.92	10.38	25.04	40.48	54.00	-13.52	Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	37.79	31.85	5.40	24.01	51.03	54.00	-2.97	Horizontal
7311.00	25.64	36.37	6.90	26.58	42.33	54.00	-11.67	Horizontal
9748.00	19.65	38.13	8.98	25.34	41.42	54.00	-12.58	Horizontal
12185.00	15.64	38.92	10.38	25.04	39.90	54.00	-14.10	Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 83 of 103

Test mode:	802.11	g	Test channel:	Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.21	31.89	5.46	23.96	48.60	74.00	-25.40	Vertical
7386.00	29.45	36.49	6.93	26.79	46.08	74.00	-27.92	Vertical
9848.00	23.54	38.24	9.05	25.30	45.53	74.00	-28.47	Vertical
12310.00	19.87	38.83	10.41	24.90	44.21	74.00	-29.79	Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	36.21	31.89	5.46	23.96	49.60	74.00	-24.40	Horizontal
7386.00	30.87	36.49	6.93	26.79	47.50	74.00	-26.50	Horizontal
9848.00	24.54	38.24	9.05	25.30	46.53	74.00	-27.47	Horizontal
12310.00	20.14	38.83	10.41	24.90	44.48	74.00	-29.52	Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal

Test mode:	802.11	g	Test	Highest		Remark:	Average	
			channel:					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	30.14	31.89	5.46	23.96	43.53	54.00	-10.47	Vertical
7386.00	24.68	36.49	6.93	26.79	41.31	54.00	-12.69	Vertical
9848.00	18.64	38.24	9.05	25.30	40.63	54.00	-13.37	Vertical
12310.00	14.69	38.83	10.41	24.90	39.03	54.00	-14.97	Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	29.87	31.89	5.46	23.96	43.26	54.00	-10.74	Horizontal
7386.00	25.08	36.49	6.93	26.79	41.71	54.00	-12.29	Horizontal
9848.00	18.99	38.24	9.05	25.30	40.98	54.00	-13.02	Horizontal
12310.00	14.97	38.83	10.41	24.90	39.31	54.00	-14.69	Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Project No.: CCIS121200303RF

Test mode:	802.11	n(H20)	Test channel:	Lowest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/ m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	36.54	31.79	5.34	24.07	49.60	74.00	-24.40	Vertical
7236.00	31.22	36.19	6.88	26.44	47.85	74.00	-26.15	Vertical
9648.00	24.75	38.07	8.96	25.36	46.42	74.00	-27.58	Vertical
12060.00	21.54	39.05	10.35	25.15	45.79	74.00	-28.21	Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	35.63	31.79	5.34	24.07	48.69	74.00	-25.31	Horizontal
7236.00	30.54	36.19	6.88	26.44	47.17	74.00	-26.83	Horizontal
9648.00	24.65	38.07	8.96	25.36	46.32	74.00	-27.68	Horizontal
12060.00	21.33	39.05	10.35	25.15	45.58	74.00	-28.42	Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal

Test mode:	802.11	n(H20)	Test channel:	Lowest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	30.25	31.79	5.34	24.07	43.31	54.00	-10.69	Vertical
7236.00	24.57	36.19	6.88	26.44	41.20	54.00	-12.80	Vertical
9648.00	18.97	38.07	8.96	25.36	40.64	54.00	-13.36	Vertical
12060.00	14.66	39.05	10.35	25.15	38.91	54.00	-15.09	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	29.86	31.79	5.34	24.07	42.92	54.00	-11.08	Horizontal
7236.00	25.30	36.19	6.88	26.44	41.93	54.00	-12.07	Horizontal
9648.00	18.66	38.07	8.96	25.36	40.33	54.00	-13.67	Horizontal
12060.00	14.52	39.05	10.35	25.15	38.77	54.00	-15.23	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 85 of 103

Test mode:	802.11	n(H20)	Test channel:	Middle		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	42.66	31.85	5.40	24.01	55.90	74.00	-18.10	Vertical
7311.00	31.25	36.37	6.90	26.58	47.94	74.00	-26.06	Vertical
9748.00	24.51	38.13	8.98	25.34	46.28	74.00	-27.72	Vertical
12185.00	21.54	38.92	10.38	25.04	45.80	74.00	-28.20	Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	41.98	31.85	5.40	24.01	55.22	74.00	-18.78	Horizontal
7311.00	32.51	36.37	6.90	26.58	49.20	74.00	-24.80	Horizontal
9748.00	25.64	38.13	8.98	25.34	47.41	74.00	-26.59	Horizontal
12185.00	22.64	38.92	10.38	25.04	46.90	74.00	-27.10	Horizontal
14622.00	*				-	74.00		Horizontal
17059.00	*				-	74.00		Horizontal

Test mode:	802.11	n(H20)	Test channel:	Middle		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.64	31.85	5.40	24.01	51.88	54.00	-2.12	Vertical
7311.00	24.65	36.37	6.90	26.58	41.34	54.00	-12.66	Vertical
9748.00	18.20	38.13	8.98	25.34	39.97	54.00	-14.03	Vertical
12185.00	14.21	38.92	10.38	25.04	38.47	54.00	-15.53	Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	38.12	31.85	5.40	24.01	51.36	54.00	-2.64	Horizontal
7311.00	24.88	36.37	6.90	26.58	41.57	54.00	-12.43	Horizontal
9748.00	18.45	38.13	8.98	25.34	40.22	54.00	-13.78	Horizontal
12185.00	15.33	38.92	10.38	25.04	39.59	54.00	-14.41	Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.11n(H20)		Test channel:	Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	36.55	31.89	5.46	23.96	49.94	74.00	-24.06	Vertical
7386.00	31.25	36.49	6.93	26.79	47.88	74.00	-26.12	Vertical
9848.00	24.15	38.24	9.05	25.30	46.14	74.00	-27.86	Vertical
12310.00	21.25	38.83	10.41	24.90	45.59	74.00	-28.41	Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	37.54	31.89	5.46	23.96	50.93	74.00	-23.07	Horizontal
7386.00	31.56	36.49	6.93	26.79	48.19	74.00	-25.81	Horizontal
9848.00	25.64	38.24	9.05	25.30	47.63	74.00	-26.37	Horizontal
12310.00	22.30	38.83	10.41	24.90	46.64	74.00	-27.36	Horizontal
14772.00	*	-				74.00		Horizontal
17234.00	*	-				74.00		Horizontal

Test mode:	802.11n(H2	02.11n(H20)		Highest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	28.99	31.89	5.46	23.96	42.38	54.00	-11.62	Vertical
7386.00	24.87	36.49	6.93	26.79	41.50	54.00	-12.50	Vertical
9848.00	18.55	38.24	9.05	25.30	40.54	54.00	-13.46	Vertical
12310.00	15.02	38.83	10.41	24.90	39.36	54.00	-14.64	Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	28.97	31.89	5.46	23.96	42.36	54.00	-11.64	Horizontal
7386.00	25.07	36.49	6.93	26.79	41.70	54.00	-12.30	Horizontal
9848.00	18.60	38.24	9.05	25.30	40.59	54.00	-13.41	Horizontal
12310.00	14.78	38.83	10.41	24.90	39.12	54.00	-14.88	Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121200303RF

Test mode:	802.11	n(H40)	Test channel:	Lowest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	35.97	31.79	5.34	24.07	49.03	74.00	-24.97	Vertical
7266.00	31.54	36.19	6.88	26.44	48.17	74.00	-25.83	Vertical
9688.00	25.12	38.07	8.96	25.36	46.79	74.00	-27.21	Vertical
12110.00	20.46	39.05	10.35	25.15	44.71	74.00	-29.29	Vertical
14532.00	*					74.00		Vertical
16954.00	*					74.00		Vertical
4844.00	36.97	31.79	5.34	24.07	50.03	74.00	-23.97	Horizontal
7266.00	32.55	36.19	6.88	26.44	49.18	74.00	-24.82	Horizontal
9688.00	25.97	38.07	8.96	25.36	47.64	74.00	-26.36	Horizontal
12110.00	21.08	39.05	10.35	25.15	45.33	74.00	-28.67	Horizontal
14532.00	*				_	74.00		Horizontal
16954.00	*					74.00		Horizontal

Test mode:	802.11	n(H40)	Test channel:	Lowest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	30.25	31.79	5.34	24.07	43.31	54.00	-10.69	Vertical
7266.00	25.61	36.19	6.88	26.44	42.24	54.00	-11.76	Vertical
9688.00	19.78	38.07	8.96	25.36	41.45	54.00	-12.55	Vertical
12110.00	15.97	39.05	10.35	25.15	40.22	54.00	-13.78	Vertical
14532.00	*					54.00		Vertical
16954.00	*					54.00		Vertical
4844.00	30.12	31.79	5.34	24.07	43.18	54.00	-10.82	Horizontal
7266.00	25.64	36.19	6.88	26.44	42.27	54.00	-11.73	Horizontal
9688.00	20.15	38.07	8.96	25.36	41.82	54.00	-12.18	Horizontal
12110.00	16.54	39.05	10.35	25.15	40.79	54.00	-13.21	Horizontal
14532.00	*					54.00		Horizontal
16954.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.11	n(H40)	Test channel:	Middle	Middle			Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	41.26	31.85	5.40	24.01	54.50	74.00	-19.50	Vertical
7311.00	32.25	36.37	6.90	26.58	48.94	74.00	-25.06	Vertical
9748.00	24.97	38.13	8.98	25.34	46.74	74.00	-27.26	Vertical
12185.00	20.14	38.92	10.38	25.04	44.40	74.00	-29.60	Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	41.52	31.85	5.40	24.01	54.76	74.00	-19.24	Horizontal
7311.00	32.65	36.37	6.90	26.58	49.34	74.00	-24.66	Horizontal
9748.00	25.13	38.13	8.98	25.34	46.90	74.00	-27.10	Horizontal
12185.00	21.30	38.92	10.38	25.04	45.56	74.00	-28.44	Horizontal
14622.00	*					74.00	·	Horizontal
17059.00	*					74.00	·	Horizontal

Test mode:	802.11n(H40)		Test channel:	Middle		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.46	31.85	5.40	24.01	51.70	54.00	-2.30	Vertical
7311.00	24.69	36.37	6.90	26.58	41.38	54.00	-12.62	Vertical
9748.00	18.46	38.13	8.98	25.34	40.23	54.00	-13.77	Vertical
12185.00	14.25	38.92	10.38	25.04	38.51	54.00	-15.49	Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	38.16	31.85	5.40	24.01	51.40	54.00	-2.60	Horizontal
7311.00	25.66	36.37	6.90	26.58	42.35	54.00	-11.65	Horizontal
9748.00	19.46	38.13	8.98	25.34	41.23	54.00	-12.77	Horizontal
12185.00	16.33	38.92	10.38	25.04	40.59	54.00	-13.41	Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.11n(H40)		Test channel:	Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	35.69	31.89	5.46	23.96	49.08	74.00	-24.92	Vertical
7356.00	31.58	36.49	6.93	26.79	48.21	74.00	-25.79	Vertical
9808.00	24.98	38.24	9.05	25.30	46.97	74.00	-27.03	Vertical
12260.00	21.54	38.83	10.41	24.90	45.88	74.00	-28.12	Vertical
14712.00	*					74.00		Vertical
17164.00	*					74.00		Vertical
4904.00	36.87	31.89	5.46	23.96	50.26	74.00	-23.74	Horizontal
7356.00	32.65	36.49	6.93	26.79	49.28	74.00	-24.72	Horizontal
9808.00	25.67	38.24	9.05	25.30	47.66	74.00	-26.34	Horizontal
12260.00	21.98	38.83	10.41	24.90	46.32	74.00	-27.68	Horizontal
14712.00	*					74.00		Horizontal
17164.00	*					74.00		Horizontal

Test mode:	802.11n(H40)		Test	Highest		Remark:	Average	
			channel:		Γ			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	30.25	31.89	5.46	23.96	43.64	54.00	-10.36	Vertical
7356.00	25.64	36.49	6.93	26.79	42.27	54.00	-11.73	Vertical
9808.00	18.79	38.24	9.05	25.30	40.78	54.00	-13.22	Vertical
12260.00	14.97	38.83	10.41	24.90	39.31	54.00	-14.69	Vertical
14712.00	*					54.00		Vertical
17164.00	*					54.00		Vertical
4904.00	29.88	31.89	5.46	23.96	43.27	54.00	-10.73	Horizontal
7356.00	25.14	36.49	6.93	26.79	41.77	54.00	-12.23	Horizontal
9808.00	18.46	38.24	9.05	25.30	40.45	54.00	-13.55	Horizontal
12260.00	14.98	38.83	10.41	24.90	39.32	54.00	-14.68	Horizontal
14712.00	*					54.00		Horizontal
17164.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.