Tema Modelos de Rendimiento

José Ranilla Pastor

ranilla@uniovi.es

http://lear.inforg.uniovi.es/CyP

ÍNDICE

- 1. Motivación
- 2. Métricas absolutas: Tiempo de ejecución
 - Definición
 - Partes fundamentales
- 3. Métricas Relativas
 - Incremento de Velocidad (SpeedUp)
 - Eficiencia
 - Coste
- 4. Un ejemplo

Presentación 2 Ranilla J. 2009

Motivación

 Disponer de herramientas que permitan evaluar las prestaciones de los algoritmos paralelos de forma fiable y precisa.

 Dispones de una herramienta que permita comparar el rendimiento de los algoritmos paralelos (y secuenciales).

 Modelo de computación paralelo adoptado: MIMD-MD basado en paso de mensajes. Parte de lo aquí expuesto es aplicable a otros modelos.

Enfoque muy básico.

Paso previo: Relativo a cómo medir

• El error máximo que se comete al estimar la duración de un evento pertenece al intervalo (-t, t), siendo t el periodo.

 Repetir los experimentos un número de veces adecuado controlando los posibles efectos colaterales (nan, excepciones, etc.) en los flops realizados.

Definición

- Tiempo transcurrido desde que el primer procesador inicia la ejecución del algoritmo hasta que el último la finaliza.
- Depende de varios factores: computación, comunicaciones, solapamientos, esperas, etc.

Presentación 5 Ranilla J. 2009

En fórmulas

$$T = T_{comp}^{j} + T_{comu}^{j} + T_{idle}^{j}$$

O bien

$$T = \frac{1}{p} \left(\sum_{i=1}^{p} T_{comp}^{i} + \sum_{i=1}^{p} T_{comu}^{i} + \sum_{i=1}^{p} T_{idle}^{i} \right)$$

Globalmente

$$T = T_{comp} + T_{comu} + T_{idle} - T_{solapamiento}$$

Algoritmos síncronos

$$T = T_{comp} + T_{comu} + T_{idle} - 0$$

Algoritmos asíncronos

$$T = max(T_{comp}, T_{comu}) + T_{idle}$$

$$\frac{T_{comp} + T_{comu}}{2} \le \max \left(T_{comp} + T_{comu}\right) \le T_{comp} + T_{comu}$$

Tiempo de Computación

• Es el tiempo que el algoritmo emplea realizando cálculos. Generalmente se expresa en *flops*.

Según el enfoque teórico/empírico

- Depende del tamaño del problema y se expresa en función de él, y del número de procesadores.
- Depende del número de tareas por procesador, de las características de los procesadores, de los subsistemas de memoria, etc.

No olvidar

■ Su comportamiento dinámico (efecto variable) por causas ajenas al algoritmo pero inherentes al sistema. ⇒

Presentación 9 Ranilla J. 2009

Presentación 10 Ranilla J. 2009

Tiempo de Comunicación

Tiempo que las tareas emplean en enviar/recibir.

Tipos

- Internas
- Externas

(usamos el mismo para ambos tipos de comunicaciones)

Modelos

- **PRAM**: poco realista.
- **LogP y LogGP**: complejos para este curso.
- α - β : el que usaremos.

Latencia y Ancho de Banda o α-β

- Parámetros
 - α Latencia de la red.
 - β coste por *word* (1 / ancho de banda).

Algunos valores experimentales

Entorno	α	β
T3E/MPI	6.7	0.003
IBM/MPI	7.6	0.004
Quadrics/MPI	7.3	0.005
Myrinet/MPI	7.2	0.006
Dolphin/MPI	7.8	0.005
GigE/MPI	5.9	0.009

 α en μ seg. β en μ seg. por Byte

Problemas del modelo α-β

- Conduce a estimaciones *poco finas* en:
 - Entornos heterogéneos.
 - En computadoras donde las comunicaciones internas están altamente optimizadas.
- Necesidad de que los valores de las constantes sean reales.

Algunas recomendaciones para el modelo α-β

- Constantes con efecto *variable* según el tipo de red, el tráfico, ...
- Disminuir los efectos de la constante de establecimiento. Un mensaje grande es más barato que muchos pequeños:

$$\alpha + n\beta \ll n(\alpha + \beta)$$

SpeedUp, Eficiencia

Problemas del Tiempo de ejecución

- Métrica Absoluta
- Depende, al menos, del tamaño del problema ⇒ Normalizar

Estas alternativas son/representan

- Métricas Relativas
- Estiman la efectividad con que los algoritmos usan los recursos

Permiten comparar algoritmos

Speedup, Eficiencia

Definición

■ El incremento de velocidad (o *Speedup*) de un algoritmo paralelo cuando se ejecuta sobre *p* procesadores es:

Representa la bondad del diseño paralelo

■ El incremento de velocidad (o *Speedup*) de un algoritmo paralelo cuando se ejecuta sobre *p* procesadores respecto al mejor algoritmo secuencial es:

Indica la eficacia (prestaciones) del algoritmo paralelo

Speedup, Eficiencia

Definición

■ La eficiencia de un algoritmo paralelo, respecto a sí mismo, es:

$$E(n;p) = \frac{S(n;p)}{p}$$

Siendo la eficiencia respecto al mejor algoritmo secuencial:

$$\mathbf{E}'(\mathbf{n};\mathbf{p}) = \frac{\mathbf{S}'(\mathbf{n};\mathbf{p})}{\mathbf{p}}$$

Evidentemente: $E'(n;p) \le E(n;p) \le 1$

Objetivo

- Algoritmos óptimos $E'(n;p) \in \theta(1)$
- Algoritmos eficientes $E'(n;p) \in \Omega(\frac{1}{\log n})$

Coste

Definición

Relación entre el tiempo de ejecución del secuencial óptimo y el tiempo de ejecución paralelo, multiplicado por el número de procesadores.

$$C(n;p) = \frac{T(n;1)}{T(n;p)}p$$

Propiedad

• Un algoritmo paralelo es de coste-óptimo, eficiencia máxima, si el tiempo para resolver un problema en una computadora paralela es proporcional al tiempo de resolución del mismo problema por el algoritmo secuencial óptimo.

Presentación 18

El problema

■ Dominio definido por una malla de **N*N*Z** puntos.

• Sea \mathbf{t}_{s} la constante que denota el coste computacional para actualizar cada punto de la malla en cada etapa.

Presentación 19 Ranilla J. 2009

El problema

 Descomposición y/o mapeado realizado: (N*N*Z)/P puntos por procesador.

Comunicaciones locales.

Presentación 20

El estudio del rendimiento

- Tiempo de computación
 - Desde la versión secuencial

$$T_{comp} = \frac{T_{Secuencial}}{P} = \frac{t_s(N \cdot N \cdot Z)}{P} = \frac{t_s(N^2 \cdot Z)}{P}$$

Observando un procesador arbitrario

$$T_{comp} = T_{comp}^{j} = \frac{t_{s}(N^{2} \cdot Z)}{P}$$

El estudio del rendimiento

- Tiempo de comunicación
 - Comunicaciones en un sólo plano; 2 por iteración.

■ El tamaño del mensaje es el número de puntos que posee cada procesador en sus fronteras, es decir, N*Z

$$T_{comu}^{j} = 2(\alpha + NZ\beta)$$

El estudio del rendimiento

- Tiempo de comunicación
 - Como todos los procesadores realizan las mismas operaciones de entrada/salida y, además, de forma simultanea:

$$T_{comu} = 2(\alpha + NZ\beta)$$

- Tiempo de inactividad
 - Todas las iteraciones son iguales.
 - Cada procesador es responsable de la misma carga de computación y comunicaciones.
 - Ejecución sincronizada con sus vecinos.

El estudio del rendimiento

• En resumen

$$T = \left[\frac{t_S(N^2Z)}{P}\right] + \left[2(\alpha + NZ\beta)\right] + 0$$

■ En el límite

$$\lim_{N\to\infty} T \cong \frac{N^2Z}{P}$$

Respecto al secuencial

$$\frac{T_{Secuencial}}{T_{Paralelo}} = \frac{N^2 Z}{N Z \frac{N}{P}} = P$$

El estudio del rendimiento

Speedup

$$S(N;p) = \frac{N^2Zt_s}{\frac{t_s(N^2Z)}{p} + 2(\alpha + NZ\beta)} = \frac{pN^2Zt_s}{N^2Zt_s + 2p(\alpha + NZ\beta)}$$

Eficiencia

$$E(N;p) = \frac{S(N;p)}{p} = \frac{N^2Zt_s}{N^2Zt_s + 2p(\alpha + NZ\beta)}$$

Coste

$$C(N;p) = S(N;p)p = \frac{p^2N^2Zt_s}{N^2Zt_s + 2p(\alpha + NZ\beta)}$$

El estudio del rendimiento

• $t_s=1E-8$, $\alpha=6.3E-5$, $\beta=1.1E-6$, Z=128, N=1024, $k \in [1, 512]$

Presentación 26 Ranilla J. 2009

El estudio del rendimiento

 \blacksquare Z=128, N=1024, p \in [1, 1024]

Presentación 27 Ranilla J. 2009

Función de sobrecarga

El estudio del rendimiento

• $N \in [512, 1E+07], Z=N, p \in [1, 1024]$

Presentación 28

Función de sobrecarga

El estudio del rendimiento

• $N \in [512, 1E+07], Z=N, p \in [1, 1024]$

Presentación 29