Lecture 3

Detn 2.8: A ring R is called a discrete valuation ring CDVR) if it is a PID with excutly one non-zero prime ideal (recessarily maximal).

Lemma 2.9:(i) Let v be a discrete valuation on K. Then OK is a DVR.

(ii) Let R be a DVR. Then there exists a substitution v on K := From (R) s.t. $R = O_K$. Proof: (i) O_K is a PID by Lemma 2.6.

Let $07J \subseteq \Theta_K$ an ideal, then I = (x).

If $x = \pi^n u$ for π a uniformizer. Then

(x) is prime iff n=1 and $I=(\pi)=m$.

(ii) Let R be a DVR with maximal ideal m. Then $m = (\pi)$ some $\pi \in R$. By unique factorization of PID's, we may unite any $x \in R(0)$ uniquely as $\pi^n u$, $n \ge 0$, $u \in R^x$.

Then any $y \in K \setminus \{0\}$ can be written uniquely as $\pi^m u$, $u \in \mathbb{R}^{\times}$, $m \in \mathbb{Z}$.

Detine V(TMU)= m: easy to check 1/

is a valuation and $O_k = R$.

Examples: · Z(p), k [[t]] one DVR's (k fold). SThe p-adic numbers (p prime) Recall: Qp completion of Q w.v.t.1.1p

Ex Seet 1: Rp is a field.

I I p extends to \mathbb{Q}_p and the associated collection is descrete. $\longrightarrow \mathbb{Q}_p, |\cdot|_p)$ is a complete discretely valued jtell Definition 3:1: The may of p-adic integers \mathbb{Z}_p is the calculation ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\}$ thats: \mathbb{Z}_p is a DYR, next colean $p \mathbb{Z}_p$, non-zero ideals are given by $p^n \mathbb{Z}_p$.

Proposition 3 2: \mathbb{Z}_p is the closure of \mathbb{Z} inside \mathbb{O}_p .

In particular \mathbb{Z}_p is the completion of \mathbb{Z}_p w.v. . 1:1p3 Proof a Need to slow \mathbb{Z}_p device in \mathbb{Z}_p .

 \mathbb{Q} is dense in \mathbb{Q}_p . Since $\mathbb{Z}_p \subseteq \mathbb{Q}_p$ is open (closed balls are open), $\mathbb{Q}_p \cap \mathbb{Q}$ is dense in \mathbb{Z}_p .

 $\mathbb{Z}_{p} \cap \mathbb{Q} = \{ \text{sc} \mathbb{Q} \mid |\text{sc}_{p} \leq |\} = \{ \text{d} \in \mathbb{Q} \mid p \neq b \}$

= Z(p) isolication at (p).

Thus suffices to show I dense in I(p).

Let $g \in \mathbb{Z}_{(p)}$, $a,b \in \mathbb{Z}$, $p \nmid b$.

For $n \in \mathbb{N}$, choose $y_n \in \mathbb{Z}$ s.t. $by_n \equiv a \mod p^n$.

Then $y_n \to g$ as $n \to \infty$.

In particular part: \mathbb{Z}_p complete and \mathbb{Z}_p deno.

In rease limits

Let $(A_n)_{n=1}^{\infty}$ be a sequence of sets/groups/ (function nings together with homomorphisms $f:A_{n+1} \to A_n$. were.) The inverse limit of $(A_n)_{n=1}^{\infty}$ is the set/ group / ring $A_n + A_n \to A_n - A_n - A_n - A_n - A_n = \{(a_n) \in A_n \mid \Psi_n(a_{n+1}) = a_n\} \in \mathcal{J}_{A_n}$ $\lim_{n \to \infty} A_n = \{(a_n) \in A_n \mid \Psi_n(a_{n+1}) = a_n\} \in \mathcal{J}_{A_n}$

Fact: If An is a group/ring 4n, then tim An is a group/ring. Define group/ring operations componentings

Let $\theta_m : \lim_{n \to \infty} A_n \to A_m$ clende the natural projection. The inverse limit satisfies the following universal property.

Proposition 3.3: For any set / group / ring B together with homomorphisms $Y_n: B \rightarrow A_n$ such-their

B Ynt Ant Committee & n.

Then there exists a unique homomorphism

4: B -> Lim An s.t. D. oY = Yn.

Proof: Define $Y: B \to \prod_{n=1}^{\infty} A_n$ by $b \mapsto \prod_{n=1}^{\infty} Y_n(b)$.

Then Yn = Yno Yn+1 => Y(b) E &m An.

The map is clearly unique (determed by $Y_n = P_n \circ Y_{n+1}$) and is a homomorphism (of sets/groups/rings). \square Defn 3.4: Let $I \subseteq R$ be an ideal. The I-adic completion of R is the ring $\widehat{R} := \lim_{n \to \infty} R_n \cap R_n$

where $R/I^{n+1} \rightarrow R/I^n$ is the natural projection. Note there is a natural map $i: R \rightarrow \hat{R}$ by universal property (7 maps $R \rightarrow R/I^n$). We say R is I-adveally complete if i is cen is. Fact: R or $(i: R \rightarrow \hat{R}) = \bigcap_{n=1}^{\infty} I^n$.

Let $(K, |\cdot|)$ be a non-orchimedean valued field and $H \in O_K$ s.t. $|\Pi| < 1$.

Proposition 3.5: Assume K a complete w.r.t.1.1.

(i) Then $O_K = \lim_{n} O_K/\pi^n O_K$. LOK π adually $\int_{complete} (ii)$ Every $x \in O_K$ can be written uniquely as $2c = \frac{2}{5} O_{1}\pi^{i}$, $a_{i} \in A$, where A^{abk} is a set of coset representatives for $O_{1}K/\pi O_{1}K$. Moreover any power senes $\frac{2}{5} O_{1}\pi^{i}$, $a_{i} \in A$ converges.

Proof: (i) K complete + $0 \not\in \text{Uood} \Rightarrow 0 \not\in \text{supplete}$. $x \in \mathcal{I}_{n=1}^n \Pi^n O_K = 7 \lor (x) \not\ni n \lor (\pi) \quad \forall n \Rightarrow x = 0$ here $0_K \Rightarrow \lim_{n \to \infty} O_{K \pi n O_K}$ is injective.

Let $(x_n)_{n=1}^{\infty} \in \varprojlim \mathcal{O}_K/_{\Pi^n}\mathcal{O}_K}$ and for each n,

Let $y_n \in \mathcal{O}_K$ be a lifting of $x_n \in \mathcal{O}_K/_{\Pi^n}\mathcal{O}_K$.

Let v be the valuation on K normalized so that $v(\pi)=1$. Then $y_n-y_{n+1} \in \Pi^n \mathcal{O}_K$ so that $v(y_n-y_{n+1}) \geq n$. Thus $(y_n)_{n=1}^{\infty}$ is a Cauchy sequence in \mathcal{O}_K ; let $y_n - y \in \mathcal{O}_K$.

Then y maps to $(x_n)_{n=1}^{\infty}$ in $\varprojlim \mathcal{O}_K/_{\Pi^n}\mathcal{O}_K$.

Thus $\mathcal{O}_K \to \varprojlim \mathcal{O}_K/_{\Pi^n}\mathcal{O}_K$ is surjective.

(ti) & sheet

Warring: If (K,1:1) not discrotely valued, OK not ree. m-advally complete.

Coolley 36: K is as in part (ii) of Prop 3.5, then every $x \in K$ uniquely as $\stackrel{\circ}{=}_{n} \alpha_{i} \pi^{i}$, $\alpha_{i} \in A$ Lowerely, any such expression $\stackrel{\circ}{=}_{n} \alpha_{i} \pi^{i}$ defines an element of K.

Prof: Apply 3.5(ii) to π^{-n} or, where $\mathbb{Z} \subseteq \mathbb{C}$. $\pi^{-n} \times 60$ Corollary 3.7: (i) $\mathbb{Z}_p \cong \lim_{n \to \infty} \mathbb{Z}/p^n \mathbb{Z}$ (ii) Every element $x \in \mathbb{Q}_p$ can be written uniquely ας ξη α; ρί, α, ε (ο, ι,..., ρ-ι).

Proof: (i) It suffices by Prop. 3.5 to show that $\mathbb{Z}_p/p^n\mathbb{Z}_p\cong \mathbb{Z}/p^n\mathbb{Z}$.

Let fril- Zp/pnZp be the natural map.

We have $per(f_n) = (x \in \mathbb{Z} \mid |x|_p \leq p^{-n})$ = $p^n \mathbb{Z}$.

Thus I/pI - Ip/pID is injective.

Let z & Zp/p"Zp and c & Zp a lift.

Since I is dense in Ip, 3xEI s.t.

xec+pnZp = spen in Zp.

Then $f_n(x) = \bar{c}$

=) Z/pnZ -> Zp/pnZp is surjectio.

(ii) Follows directly from Prop. 3.5(ii) using $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{F}_p$.

Eq. $\frac{1}{1-p} = (t p t p^2 t p^3 + \dots \text{ in } \mathbb{Q} p$.

Remark: Prop 3.5 implies $\mathbb{F}_p((t))$ and \mathbb{Q}_p both in bijection with

 $\{(a_i)_{i=-\infty}^{\infty} \mid \alpha_i \in \{0,...,p-1\}, \alpha_i = 0 \text{ for } i=2-\infty\}$ -ing structures very different.