Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANS
 - · addressing, ARP
 - Ethernet
 - switches
 - VLANS
- link virtualization: MPLS
- data center networking

a day in the life of a web request

Multiple access links, protocols

two types of "links":

- point-to-point
 - point-to-point link between Ethernet switch and host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - 802.11 wireless LAN, mobile networks (4G/5G), satellite

15

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed (or centralized) algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

An ideal multiple access protocol

given: multiple access channel (MAC) of capacity *R* bps *desiderate:*

- 1. when one node wants to transmit, it can send at rate *R*.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no single point of failure
 - no synchronization of clocks, slots
- 4. simple

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, ...)
 - allocate piece to node/user for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns
 - similar to round robin

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle

19

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have packet to send, frequency bands 2,5,6 idle

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes: "collision"
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - ALOHA, slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

20

Slotted ALOHA

assumptions:

- time is divided into equal-sized slots
 - slot: time to transmit 1 frame
 - all frames have the same size
 nodes are time-synchronized
 - nodes start to transmit only slot beginning
- if 2 or more nodes transmit in a slot, all nodes detect collision

operation:

- stop-and-wait
- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with probability p until success

Slotted ALOHA

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- collisions
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

23

24

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots

- suppose: Given N nodes, each node has many frames to send and transmits in every slot with probability p
 - probability that a given node has success in a slot
 - probability that *any* node has a success = $Np(1-p)^{N-1}$

Slotted ALOHA: efficiency (cont'd)

- slotted ALOHA's efficiency = probability that *any* node has a success
 - Given N and p, $f(p) = Np(1-p)^{N-1}$
- max efficiency: find p^* that maximizes f(p)
- for many nodes, take limit of $Np^*(1-p^*)^{N-1}$ as N goes to infinity:

$$\lim_{N \to \infty} f(p^*) = \lim_{N \to \infty} N \cdot \frac{1}{N} \cdot \left(1 - \frac{1}{N}\right)^{N-1} = \lim_{N \to \infty} \left(\frac{1}{1 + \frac{1}{N-1}}\right)^{N-1} = \frac{1}{e}$$

- slotted ALOHA's efficiency is at best 1/e = 37%
 - 37% of time is useful transmissions.

Pure ALOHA

- unslotted Aloha: simpler, no synchronization
 - when frame first arrives: transmit immediately
- collision probability increases with no synchronization:
 - frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

pure Aloha efficiency: 18%!

CSMA (carrier sense multiple access)

simple CSMA: listen before transmit:

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission
- •human analogy: don't interrupt others!

CSMA: collisions

- collisions can still occur if two nodes send frames around the same time
 - propagation delay means two nodes may not hear each other's juststarted transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

CSMA/CD

CSMA/CD: CSMA with collision detection

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection easy in wired, difficult with wireless
- •human analogy: the polite conversationalist

2

29

27

CSMA/CD

- CSMA/CS reduces the amount of time wasted in collisions
 - transmission aborted on collision detection

31

Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. NIC senses channel:

if idle: start frame transmission.

if busy: wait until channel idle, then transmit

- 3. If NIC transmits entire frame without collision, NIC is done with frame!
- 4. If NIC detects another transmission while sending: abort, send jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after m-th collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}. NIC waits K slot times, returns to Step 2. (1 slot = minimum frame size = 64 bytes for 10/100 Mbps or 512 bytes for 1Gbps)
 - more collisions: longer backoff interval

CSMA/CD efficiency

- t_{prop} \triangleq maximum propagation delay between 2 nodes in LAN
- $t_{trans} \triangleq \text{time to transmit max-size frame}$
- efficiency is (approximately)

$$\rho \doteqdot \frac{1}{1 + 5 \cdot \frac{t_{prop}}{t_{trans}}}$$

- ullet efficiency goes to 1 as t_{prop}/t_{trans} goes to 0
- CSMA/CD
 - better efficiency than ALOHA
 - · simple, cheap, decentralized

"Taking turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: 1/N bandwidth allocated even if only 1 active node!

random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

• look for best of both worlds!

32

"Taking turns" MAC protocols

polling:

- master node "invites" other nodes to transmit in turn
- typically used with "dumb" devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

"Taking turns" MAC protocols

token passing:

- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

35

36

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wired), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- taking turns
 - polling from central site, token passing
 - Bluetooth, FDDI, token ring