

Money Time Relationship and Equivalence

Intersection of Simple and Compound Interest
 Concept of Equivalence
 Notation and Cash Flow Diagrams
 Interest Formula
 Multiple Interest Formula
 Nominal Interest Rates
 Effective Interest Rates

Example:

Loan of ₱1,000 with 10% interest over 3 years.

Concept of Equivalence

- ⇒ Economic equivalence is established when there is indifference between a future payment, or a series of future payments, and a present sum of money.
- ⇒ It includes the comparison of alternative options, or proposals, by reducing them to an equivalent basis, depending on:
 - interest rate
 - amounts of money involved
 - timing of the affected monetary receipts and/or expenditures
 - manner in which the interest, or profit on invested capital is paid and the initial capital is recovered

Concept of Equivalence

Illustrative Example

Consider a situation in which we borrow ₱8,000 and agree to repay it in four years at an interest rate of 10% per year.

Year	Amount Owed at Beginning of Year	Interest Accrued for Year	Total Money Owed at End of Year	Principal Payment	End-of-Year Payment (Cash Flow)		
Plan 1: At end of each year pay 2,000 principal plus interest due							
1	8,000	800	8,800	2,000	2,800		
2	6,000	600	6,600	2,000	2,600		
3	4,000	400	4,400	2,000	2,400		
4	2,000	200	2,200	2,000	2,200		
	20,000	2,000		8,000	10,000		
	(total interest)		(total amount repaid)				
Plan 2: Pay interest due at end of each year and principal at end of four years							
1	8,000	800	8,800	0	800		
2	8,000	800	8,800	0	800		
3	8,000	800	8,800	0	800		
4	8,000	800	8,800	8,000	8,800		
	32,000	3,200		8,000	11,200		
	(total interest)				(total amount repaid)		
Plan 3: Pay in four equal end-of-year payments							
1	8,000	800	8,800	1,724	2,524		
2	6,276	628	6,904	1,896	2,524		
3	4,380	438	4,818	2 <i>,</i> 086	2,524		
4	2,294	230	2,524	2,294	2,524		
	20,950	2,096		8,000	10,096		
		(total interest)			(total amount repaid)		
Plan 4: Pay principal and interest in one payment at end of four years							
1	8,000	800	8,800	0	0		
2	8,800	880	9,680	0	0		
3	9,680	968	10,648	0	0		
4	10,648	1,065	11,713	8,000	11,713		
	37,128	3,713		8,000	11,713		
		(total interest)			(total amount repaid)		

Notation and Cash Flow Diagrams

i = effective interest rate per interest period

N = number of compounding periods (e.g., years)

- P = present sum of money; the equivalent value of one or more cash flows at the present time reference point
- F = future sum of money; the equivalent value of one or more cash flows at a future time reference point
- A = end-of-period cash flows (or equivalent end-of-period values) in a uniform series continuing for a specified number of periods, starting at the end of the first period and continuing through the last period
- G = uniform gradient amounts used if cash flows increase by a constant amount in each period

Cash Flow Diagram Notation

- Time scale with progression of time moving from left to right; the numbers represent time periods (e.g. years, months, or quarters) and may be presented within a time interval or at the end of a time interval.
- Present expense (cash outflow) of ₱8,000 for lender

Cash Flow Diagrams Direction

- Upward arrow represents positive cash flow
 - Revenues from the sale of goods or services
 - Savings or cost reductions resulting from the success of your project
- Downward arrow represents expense or negative cash flows
 - Money invested in the project
 - Ongoing costs of doing the project

Cash Flow Diagram Notation

- Time scale with progression of time moving from left to right; the numbers represent time periods (e.g., years, months, or quarters) and may be presented within a time interval or at the end of a time interval.
- Present expense (cash outflow) of ₱8,000 for lender.
- 3 Annual income (cash inflow) of ₱ 2,524 for lender.

Notation and Cash Flow Diagrams

Cash Flow Diagram Notation

- Time scale with progression of time moving from left to right; the numbers represent time periods (e.g., years, months, or quarters) and may be presented within a time interval or at the end of a time interval.
- Present expense (cash outflow) of ₱8,000 for lender.
- 3 Annual income (cash inflow) of ₱ 2,524 for lender.
- 4 Interest rate of loan.

Example of Cash Flow Diagramming

Before evaluating the economic merits of a proposed investment, the XYZ Corporation insists that its engineers develop a cash flow diagram of the proposal. An investment of ₱400,000 can be made that will produce uniform annual revenue of ₱210,000 for five years and then have a market (recovery) value of ₱80,000 at the end of year five. Annual expenses will be ₱120,000 at the end of each year for operating and maintaining the project. Draw the cash flow diagram for the five-year life of the project. Use the corporation's viewpoint.

- relating present and future values of single cash flows
- ⇒ relating a uniform series (annuity) to present and future equivalent values
 - for discrete compounding and discrete cash flows
 - □ for deferred annuities (uniform series)
- equivalence calculations involving multiple interest
- ⇒ relating a uniform gradient of cash flows to annual and present equivalents
- relating a geometric sequence of cash flows to present and annual equivalents

- relating nominal and effective interest rates
- ⇒ relating to compounding more frequently than once a year
- relating to cash flows occurring less often than compounding periods
- for continuous compounding and discrete cash flows
- ⇒ for continuous compounding and continuous cash flows

Interest Formula – Future Worth

$$F = P(1+i)^N$$

where : F = future worth of money N = number of interest period

 $(1+i)^N$ = called the *single payment* compound amount factor; symbolized by (F/P, i%, N)

Hence

$$F = P(F/P, i\%, N)$$

Illustrative Examples of Future Worth

- Suppose you borrow ₱8,000 now, promising to repay the loan principal plus accumulated interest in four years at i = 10% / year. How much would you repay at the end of four years?
- 2. A firm borrows P1,000 at an interest of 10% per year for eight years. How much must it repay in a lump sum at the end of the eighth year?

Interest Formula – Future Worth

Solution to Example 1

Year	Amount Owed at the Beginning of Year	Interest Owed for Each Year	Amount Owed at End of Year	Total End-of- Year Payment
1	<i>P</i> = ₱ 8,000	iP = ₱ 800	<i>P</i> (1+ <i>i</i>) = ₱ 8,800	0
2	<i>P</i> (1+ <i>i</i>) = ₱ 8,800	<i>i</i> P(1+ i) = ₱ 880	$P(1+i)^2 = $ 9,680	0
3	$P(1+i)^2 = $ 9,680	$iP(1+i)^2 = 7968$	$P(1+i)^3 = $ $^{\circ}$ 10,648	0
4	$P(1+i)^3 = $ 10,648	$iP(1+i)^3 = $ 1,065	$P(1+i)^4 = $ $ 11,713$	F = ₱ 11,713

Solution to Example 2

Interest Formula – Present Worth

$$P = F(1+i)^{-N}$$

where : P = present worth of money N = number of interest period $(1+i)^{-N}$ = called the *single payment present*worth factor; symbolized by (P/F, i%, N)

Hence

$$P = F(P/F, i\%, N)$$

Illustrative Examples of Present Worth

- 1. Leo is thinking of purchasing a tract of land that will be worth ₱500,000 in six years. If the value of the land increases at 8% each year, how much should Leo be willing to pay now for this property?
- 2. A firm wishes to have ₱2,143.60 eight years from now. What amount should be deposited now to provide for it? Assume an interest rate of 10% per year.

Interest Formula – Present Worth

Solution to Example 1

$$P = F(1+i)^{-N}$$

$$P =$$
 $500,000(1+0.08)^{-6}$

P = ₱315,085

Solution to Example 2

$$P = F(P/F, 10\%, 8)$$

$$P = P2,143.60(1+0.10)^{-8}$$

P = ₱1,000.00

Annuity

➤ a series of uniform (equal) receipts, each of amount A, occurring at the end of each period for N periods with interest at i% per period

P - present equivalent

F - future equivalent

Finding future equivalent income (inflow) value given a series of uniform equal payments

$$F = A \left\lceil \frac{(1+i)^N - 1}{i} \right\rceil$$

Uniform series composed amount factor, functionally expressed as F = A(F/A, i%, N)

Finding present equivalent income (inflow) value given a series of uniform equal payments

$$P = A \left\lceil \frac{(1+i)^N - 1}{i(1+i)^N} \right\rceil$$

Uniform series preser worth factor, functionally expressed as P = A(P/A, i%, N)

Illustrative Example #1

Suppose you make 15 equal annual deposits of ₱1,000 each into a bank account having 5% interest per year. The first deposit will be made one year from this day. How much money can be withdrawn from this bank account immediately after the 15th deposit?

$$F = A(F/A, 5\%, 15)$$

$$= A \left[\frac{(1+i)^{N} - 1}{i} \right]$$

$$= 1000 \left[\frac{(1+0.05)^{15} - 1}{0.05} \right]$$

$$F = 21,578.60$$

Illustrative Example #2

If you are 20 years of age and started to save ₱1.00 each day for the rest of your life, will you become a millionaire? Assume that you can live up to the age of 60 and save it in a bank that gives an annual interest rate of 10%.

$$F = A(F/A, 10\%, 60)$$

$$= A \left[\frac{(1+i)^{N} - 1}{i} \right]$$

$$= 365 \left[\frac{(1+0.10)^{60} - 1}{0.10} \right]$$

$$F = 1.107.707$$

Interest Formula Annuity

Illustrative Example #3

If a certain machine undergoes a major overhaul now, its output can be increased by 20%. This means additional cash flow of ₱20,000 at the end of each year for five years. If *i*=15%, how much can we afford to invest to overhaul this machine?

$$P = A(P/A, 15\%, 5)$$

$$= A \left[\frac{(1+i)^{N} - 1}{i(1+i)^{N}} \right]$$

$$= 20,000 \left[\frac{(1+0.15)^{5} - 1}{0.15(1+0.15)^{5}} \right]$$

$$P = 67,043$$

Illustrative Example #4

Mark is retiring and wishes to distribute his ₱1,000,000 to his sons at the rate of ₱100,000/yr. If the ₱1,000,000 is deposited in a bank account that earns 6% interest/yr, how many years will it take to completely deplete the account?

Solution:

$$P = A \left\lceil \frac{(1+i)^N - 1}{i(1+i)^N} \right\rceil$$

Use trial and error.

$$\frac{(0.06 \times 1,000,000)}{100,000} = \left\lceil \frac{(1+0.06)^N - 1}{(1+0.06)^N} \right\rceil$$

Assume a starting value for N.

Assume that N = 10.

$$\left[\frac{(1+0.06)^N-1}{(1+0.06)^N}\right]=0.44$$

Increase the value of N. Try N = 16 years.

Decrease the value of N. Try N = 15 years.

$$\left[\frac{(1+0.06)^N-1}{(1+0.06)^N}\right]=0.58$$

Interest Formula Annuity

Thus, the value of *N* is between 15 to 16 years. Using interpolation, we get

N	Result		
15	0.58		
?	0.6		
16	0.61		

$$\frac{N-15}{0.60-0.58} = \frac{16-15}{0.61-0.58}$$
$$\frac{N-15}{0.02} = \frac{1}{0.03}$$
$$N = \left(\frac{1 \times 0.02}{0.03}\right) + 15$$
$$N = 15.67 \text{ years}$$

- Considered where a series of cash outflows occur over a number of years
- Considered when the value of the outflows is unique for each of a number (i.e. first three years)
- Considered when the value of outflows is the same for the last four years
- Used to find the following:
 - Present equivalent expenditure
 - □ Future equivalent expenditure
 - Annual equivalent expenditure

Illustrative Example:

The expected maintenance expenditures for a certain equipment over eight years amounts as follows: ₱100 for the first year, ₱200 for the 2nd, ₱500 for the 3rd, and ₱400 for each year onwards. Make a cash flow diagram representing the expenditures. If *i*=20% per year, find the following:

- a.) present equivalent expenditure (P₀)
- b.) future equivalent expenditure (F₈)
- c.) annual equivalent expenditure (A)

a. Find P_0 .

$$P_0 = F_1(P/F, 20\%, 1) + F_2(P/F, 20\%, 2) + F_3(P/F, 20\%, 3)$$

+ $A(P/A, 20\%, 5)(P/F, 20\%, 3)$
= $100(0.8333) + 200(0.6944) + 500(0.5787)$
+ $400(2.9900)(0.5787)$
= $83.33 + 138.88 + 289.35 + 692.26$
 $P_0 = 1,203.82$

b. Find F_8 .

$$F_8 = P_0(F/P, 20\%, 8)$$

$$= 1,203.82 \left[\frac{(1+0.20)^8}{0.20} \right]$$

$$= 1,203.82(4.2998)$$

$$F_8 = 5,176.19$$

c. Find A using P_0 .

$$A = P_0(A/P, 20\%, 8)$$

$$= \frac{1,203.82}{\left[\frac{(1+0.20)^8 - 1}{0.20(1+0.20)^8}\right]}$$

$$= \frac{1,203.82}{3.8371}$$

$$A = 313.73$$

Nominal Interest Rates

- - interest is quoted as an annual rate (r)
 called the nominal interest rate
 - to solve any problem, you must use a per period rate

$$(r/m) = i$$

where *m* is the number of compounding periods in a year

So:
$$F = P(1+i)^n$$

Becomes: $F = P(1+r/m)^n$

where *n* is the <u>number of periods</u> not the number of years.

Effective Interest Rates

- \Rightarrow Effective interest rate (i_{eff}) is the actual or exact rate of interest earned on the principal during one year.
- ⇒ This is usually expressed on annual basis.
- Converting nominal interest to effective interest rate:

$$i = (1 + r/N)^N - 1$$

where : i_{eff} = effective interest rate

r = nominal rate of interest

N = number of compounding period/yr

⇒ Effective interest rate is only equal to nominal rate of interest when compounding is on annual basis.

When *N*>1, *i*>*r*.

Effective Interest Rates

Illustrative Problem

A credit company charges at a rate of 1.375% per month on the unpaid balance of all accounts. The annual interest rate is 16.5%. What is the effective rate of interest per year being charged by the company?

$$i_{eff} = \left(1 + \frac{r}{N}\right)^{N} - 1$$

$$= \left(1 + \frac{0.165}{12}\right)^{12} - 1$$

$$= 0.1781$$
 $i_{eff} = 17.81\%/year$