名点 (スタは)ですないのはからなりれている。 → Yanagraph Jan33...? 7 2. (x'44(2')) 常徽分方程式。解弦y(2) = 4/4/21 初期值问题. dy = f(x, y(x)), o<x, y(0)=yo. 爱多解,存在定理(数的后解が存在了るか) D = [xo-A, xo+A] × [yo-AB, yo+B]. ? Tim ·f: Dで連続 , lfl = 34. f: Lipshitz | f(x,y) - f(x,z) | = 3 k (y-21 ないない 第2度以にかての発い連絡性 ⇒ [X-76] = min (A, H, K) で解は存在17時一. Lipshitz連続 → 連続、が成立 ×. 解がるを73かどかのかっていないのにますする3=マも Navier- Stokes eq. 天気子服 ※ 解かはませいけない方科式の他にもたけん. dny = f(x,y, ..., y") ~解引=112. <= \(\frac{d \(\frac{\pi_{u-1}}{d \(\tau} \)}{\frac{d \(\pi_{u-1} \)}{d \(\tau} \)} = \(\frac{f}{(7.9, \(\pi_{u}, \ldots, \ldots, \ldots, \ldots)}{\frac{d \(\pi_{u-1} \)}{d \(\pi_{u} \)}} \) というして、一階と見って解けなよい dy = 2, Tosiave Boylon. 方防城谷 → 中吸收 3月1217. $cf: \frac{d^2\chi}{\sqrt{4^2}} = f(\chi)$ 一門,布徵多方汪式王

··一投法 × 及投法 azn= 大工人分けらり3 数值解法

段汪 $\frac{dy}{dx} = f(x, y(x))$

- Antest y(x) +> y(x+h)

L無限12計算度では現れない、---

y(0) - y(h) asticx

真n解y(x) x区别(7. 近似解z Yu=y(nh) (n=0.1,-) Etc. Yuri-yu = f (Tu, Yu). Tu=Nh.

「陽的 Euler 法, with 13.

= lim y(x) - y (x-h) = f(x, y(x))

Yuri- Yu = foxuri, Yuri)

…「陰的 Euler法」

13421) dy = siny ED Jun - yu = sin yun

fry) = Yuer - Yu - sin Yuer - 0 解《频!

近似个红方门

ーフマアンプラ 17 こクリフもよい

どろりを選ぶかが大事

「陽的」「陰的」、日子?

陽的: Yun pi 陽に、見れていてすでまる.

· 陰的: Yun が方程式の解 217 厚的に、det. 241713.

- Newton 沒 (非独形方程式 a 解法) () z p 义要 上 f i2 : a 形 x 考 £ 7 · 3.

陰的 127.

文·一般= dy = f(xy) xxxxx、建立,非镍形方程式 1=.

→ Jacobian a 逆行列をである必要. (コスト大). イトレデオフ.

·他口:台形則.

ひに使わずいして とりおより=4) ひて

· (多段法:行《前::.)「近似度」(精度).

今、他に Yu=Y(NA) と17=とき、1スラフで入る誤差12.

: 127.7、進むと、0(か)、誤差が入る。 局所誤差

どうで、我国で的性件をするなかい ラフに考えるて... 1引起を又を[0,×)で解くことに17. 区间をから到 (山= ※) すると、メ=×までに7=33 浅を12. 〇(h)×凡=〇(h) 大戏該意 - このことを、「陽的 Euler 注 17 1以入心式をいう」. * おもより小又くしてこせに、どれていい、速まで、誤差が小エイなるか、 ie. 次数の市、方が良い (いにトレードわに注意) 及拉 dy = lim y(xth)-y(x-h) = f(x,y(x)) yu+1 - yu-1 = f(πu, yu) (n=1,2,...) ... [+ ξ.]), 7. 中点则12. (Yu-1, Yu) -> Yun1 2-3 形了。 => 11日 并所注意 以...和期值. · y1: 出光/ -= = +113根的了花的3

No. Date • (6	Wall.	Min eye	Mr.	95 ·	
·陽的王	culer : Z	FF . 17413	in fil		halvey En	
Yu-	h - 44	= 2 Yu .	yun =	= (1+)	(L) / 4	
· · · · · · · · · · · · · · · · · · ·	[Yuri	= (1+2	y		7.	
	[Yu]	co: the		75. 1	1+21=1 pix	圣十份。
)=-10		,	安定领域	_ M	うて。まれば	
×t	R ALL		Begiven	134	λ=-10 ?=>?=\ h<=	£ £3.
		40	h = +/p1/1<	≥3× 2	(公式的新人轮回的	ikz.)
一个	Euler			, KV	1.4人图文字	
· · · · · · / /		//,			134 24 24	
				e) Co	14 X P 15 .	
	11		Α.	h>0;	公式12安处.	
					AC.	
(-) Yu	~ yy =	λyu+1 ←) Yu+1 = -	1-hx	Yu	
ANKE SAX	1. 陰 1	的技术	1 - fix	≤		····· (
			= 1 -		10 - 74	
	親於	1. M. Car. 31				

■ 常微分方程式の数値解法

初期値 y(0) が与えられているとして、初期値問題:

$$\frac{\mathrm{d}}{\mathrm{d}x}y(x) = f(x,y), \qquad x > 0$$

を考える. 「格子」 $\{x_n\}_{n=0}^\infty$, 「近似解」 $y_n\simeq y(x_n)$ $(n=0,1,2,\ldots)$ とおく. 以下では簡単のため, 「格子幅」 $x_{n+1}-x_n=h$ は一定とする.

[一段法]

- 陽的 Euler 法 (1次): $\frac{y_{n+1}-y_n}{h}=f(x_n,y_n)$.
- 陰的 Euler 法 (1次): $\frac{y_{n+1}-y_n}{h}=f(x_{n+1},y_{n+1}).$
- 台形則(2次): $\frac{y_{n+1}-y_n}{h}=\frac{f(x_{n+1},y_{n+1})+f(x_n,y_n)}{2}$. 上午2回 计分3必要.
- (標準的な 4 次) Runge-Kutta 法: $\frac{y_{n+1}-y_n}{h}=\frac{1}{6}k_1+\frac{1}{3}k_2+\frac{1}{3}k_3+\frac{1}{6}k_4$. ただし、 $k_1=f(x_n,y_n), k_2=f(x_n+\frac{h}{2},y_n+\frac{h}{2}k_1), k_3=f(x_n+\frac{h}{2},y_n+\frac{h}{2}k_2), k_4=f(x_n+h,y_n+hk_3)$.

[多段法] ここでは $f_n = f(x_n, y_n)$ と略記する.

- 中点則 (2次): $\frac{y_{n+1}-y_{n-1}}{2h}=f_n$.
- 陽的 Adams 法:

- 1次:陽的 Euler 法と一致.

$$-2x: \frac{y_{n+1}-y_n}{h} = \frac{3}{2}f_n - \frac{1}{2}f_{n-1}.$$

$$-3 \, \mathcal{K} : \frac{y_{n+1} - y_n}{h} = \frac{23}{12} f_n - \frac{16}{12} f_{n-1} + \frac{5}{12} f_{n-2}.$$

- 陰的 Adams 法:
 - 1次:陰的 Euler 法と一致.
 - 2次:台形則と一致.
 - $-3 \, \mathcal{Z} : \frac{y_{n+1} y_n}{h} = \frac{5}{12} f_{n+1} + \frac{8}{12} f_n \frac{1}{12} f_{n-1}.$

『数値解析入門 [増補版]』山本哲朗、サイエンス社より:中点則の不安定現象

図 10.4 y' = -2y, y(0) = 1 に対する中点公式

"Numerical Methods for Ordinary Differential Equations" (Butcher, Wiley) より:各種公式の安定領域(それぞれ線の内側が安定)

Marin可能 → 外形化 → A & check → どの解放が設めるえ。

カにんをかけて 安定教が文に入るか アル的 Fulerでといるこれでかけなくにても 安定教が大にいならず、

本门2 片的件打.片的心少.