This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Fig. 1

Fig. 2

Fig. 3

		GO-1	kD	< 10 ⁵	2.5×10^{-7}	2.3 x 10 ⁻⁸	
	Evacast	mAb 5 µg/ml GO-1		MCL 17 MCO 31	MCY 18	MCR 21	
	6/12	MCL 17 MCO31 MCY 18 MCR21	Nais (mm) 0.25 Nais (mm) 0.25 MCL 17 MCL 17	MCO 31 MCY 18 MCR 21	8.0 8.0 Neils (mm) 8.0 8.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peptide MCL 17 MCO 31 MCY 18 MCR 21 1.5 0.08 NGR 80 1.5 NGR 80 1.5 NGR 80 0.35	MCL 17 MCD 31 MCY 18 MCR 21 MCR 21 MCR 21 MCR 21 MCR 30 MCR 31 MC
% Acrylicacid/KGray	9/30		8.0 Nails (mm) 6.0 (mm) 7.0 (m		8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	Peptide MCL 17 MCO 31 MCY 18 MCR 21 1.5 0.8 0.00 Nails (mm)	MCL 17 MCO 31 MCY 18 MCR 21 MCR 21 MCR 21 MOR 31 MO
	12/50	Peptide MCL 17 MCO 31 MCY 18 MCR 21	1 5 0 8 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MCO 31 MCY 18 MCR 21	8.0 8.0 0.0 Milki (mn)	Peptide MCU 17 MCO 31 MCY 18 MCR 21 1.5 0.8 0.8 0.15 Nails (mm) 0.25	Peptide MCU 17 MCO 31 MCY 18 MCR 21 1.5 0.8 Nails (mm) Nails (mm)
		1000 µg/ml peptide		200 µg/ml peptide		40 µg/ml peptide	8 µg/ml peptide

Fig. 4a

Fig. 4b

TITLE: PIXEL ARRAYS , Inventor: Wouter et. al. Serial No.: 10/642,553

Docket No.: 2183-6064US

5/17

Fig. 4c

Fig. 4d

Fig. 5a

Fig. 5b

Fig. 5c

8/17

12345678901C\$ABCDEFGHIJK-Solid Support 12345678901C\$BCDEFGHIJKL-Solid Support 12345678901C\$CDEFGHIJKLM-Solid Support ... and so on

23456789012C\$ABCDEFGHIJK-Solid Support 23456789012C\$BCDEFGHIJKL-Solid Support 23456789012C\$CDEFGHIJKLM-Solid Support ... and so on

or

C12345678901\$ABCDEFGHIJK-Solid Support C12345678901\$BCDEFGHIJKL-Solid Support C12345678901\$CDEFGHIJKLM-Solid Support ... and so on.

C23456789012\$ABCDEFGHIJK-Solid Support C23456789012\$BCDEFGHIJKL-Solid Support C23456789012\$CDEFGHIJKLM-Solid Support ... and so on.

Fig. 6A

9/17

Filenaam: FSH-AB-BrAc Aantal sequenties: 192

- same	Joquanii Ju
1)	APDVQDCPECTL
2)	PDVQDCPECTLQ
3)	DVQDCPECTLQE
4)	VQDCPECTLQEN
5)	ODCPECTLOENP
6)	DCPECTLQENPF.
7)	CPECTLQENPFF
8)	PECTLOENPFFS
9)	ECTLQENPFFSQ
10)	CTLQENPFFSQP
11)	TLOENPFFSQPG
12)	LOENPFFSQPGA
13)	QENPFFSQPGAP
14)	ENPFFSQPGAPI
15)	NPFFSQPGAPIL
16)	PFFSQPGAPILQ
17)	FFSQPGAPILQC
18)	FSQPGAPILQCM
19)	SOPGAPILOCMG
20)	QPGAPILQCMGC
21)	PGAPILOCMGCC
22)	GAPILOCMGCCF
23)	APILOCMGCCFS
24)	PILOCMGCCFSR
25)	ILOCMGCCFSRA
26)	LOCMGCCFSRAY
27)	QCMGCCFSRAYP
28)	CMGCCFSRAYPT
29)	MGCCFSRAYPTP
30)	GCCFSRAYPTPL
31)	CCFSRAYPTPLR
32)	CFSRAYPTPLRS
33)	FSRAYPTPLRSK
34)	SRAYPTPLRSKK
35)	RAYPTPLRSKKT
36)	AYPTPLRSKKTM
37)	YPTPLRSKKTML
38)	PTPLRSKKTMLV
39)	TPLRSKKTMLVQ
40)	PLRSKKTMLVQK
41)	Lrskktmlvokn
42)	rskktmlvoknv
43)	skktmlvoknvt
44)	KKTMLVQKNVTS
45)	KTMLVQKNVTSE
46)	TMLVQKNVTSES
47)	MLVQKNVTSEST
48)	LVQKNVTSESTC
49)	VQKNVTSESTCC
50)	QKNVTSESTCCV
51)	KNVTSESTCCVA
52)	NVTSESTCCVAK
53)	VTSESTCCVAKS
54)	TSESTCCVAKSY
55)	SESTCCVAKSYN
56)	ESTCCVAKSYNR
57)	STCCVAKSYNRV
EOL	market to the country fire

58)

TCCVARSYNRVT

59) CCVAKSYNRVTV 60) CVAKSYNRVTVM 61) VAKSYNRVTVMG 62) AKSYNRVTVMGG 63) KSYNRVTVMGGF 64) SYNRVTVMGGFK 65) YNRVTVMGGFKV 66) NRVTVMGGFKVE 67) RVTVMGGFKVEN 68) VTVMGGFKVENH 69) TVMGGFKVENHT 70) **VMGGFKVENHTA** 71) MGGFKVENHTAC 72) GGFKVENHTACH 73) **GFKVENHTACHC** 74) **FKVENHTACHCS** 75) KVENHTACHCST 76) VENHTACHESTE 77) ENHTACHCSTCY 78) NHTACHCSTCYY 79) HTACHCSTCYYH 80) TACHCSTCYYHK 81) ACHCSTCYYHKS

1	Ó	/1	7
---	---	----	---

		•	
82)	NSCELTNITIAI	143	RVPGCAHHADSL
83)	SCELTNITIALE	144	VPGCAHRADSLY
84)	CELTNITIALEK	145	PGCAHHADSLYT
85)	ELTNITIAIEKE	146	GCAHHADSLYTY
86)	LTNITIAIEKEE	147	CAHHADSLYTYP
87)	TNITIAIEREEC	148	AHHADSLYTYPV
88)	NITIAIEKEECR	149	HHADSLYTYPVA
89)	ITIAIEKEECRF	150	HADSLYTYPVAT
90)	TIAIEKEECRFC	151) Adslytypvatq
91)	IAIEKEECRFCI	152) DSLYTYPVATQC
92)	AIEKEECRFCIS	153	
93)	IEKEECRFCISI	154	
94)	EKEECRFCISIN	155	
95)	KEECRFCISINT	156	
96)	EECRFCISINTT	157	
97)	ECRFCISINTTW	159	
98)	Crfcisinttwc	159	_
99)	RPCISINTTWCA	160	
100}	FCISINTTWCAG	161	
101)	CISINTTWCAGY	162	
102}	ISINTTWCAGYC	163	•
103)	SINTTWCAGYCY	164	
104)	INTTWCAGYCYT	165	
105)	NTTWCAGYCYTR	166	
106)	TTWCAGYCYTRD	167	
107)	TWCAGYCYTRDL	168	
108)	WCAGYCYTRDLV	169	
109)	CAGYCYTRDLVY AGYCYTRDLVYK	170 171	
110)	GYCYTRDLVYKD	172	
111) 112)	YCYTRDLVYKDP	173	
113)	CYTRDLVYKDPA	174	
114)	YTRDLVYKDPAR	175	
115)	TRDLVYKDPARP	176	•
116)	RDLVYKDPARPK	177	
117)	DLVYKDPARPKI	178	
118)	LVYKDPARPKIQ	179	
119)	VYKDPARPKIOK		
120)	YKDPARPKIOKT	191) GPSYCSFGEMICE
121)	KDPARPKIOKTC		
122)	DPARPKIQKTCT		
123)	PARPKIQKTCTF		
124)	ARPKIQKTCTFK		
125)	RPKIQKTCTFKE		
126)	PKIOKTCTFKEL		
127)	KIQKTCTFKELV		
128)	IQKTCTFKELVY		
129)	QKTCTFKELVYE		
130)	KTCTFKELVYET		
131)	TCTFKELVYETV		
132)	CTFRELVYETVR		
133)	TFKELVYETVRV		
134)	FKELVYETVRVP		
135)	KELVYETVRVPG		
136)	ELVYETVRVPGC		
137)	LVYETVRVPGCA		
138)	VYETVRVPGCAH		
139)	YETVRVPGCAHH		
140)	etvrvpgcahha Tvrvpgcahhad		
141) 142)	VRVPGCAHHADS		
144)	AVALOCMUNATO		

Filenaam: fshacys Filenaam: fshbcys Aantal sequenties: 82 Aantal sequenties: 101

1)	APDVQDCPECTC	58)	CTCCVAKSYNRV	83)	NSCELTNITIAC	140)	CYETVRVPGCAH
2)	CPDVQDCPECTL	59}	CCVAKSYNRVTC	84)	CSCELTNITIAI	:141)	ETVRVPGCAHHC
3)	DVQDCPECTLQC	60)	CCVAKSYNRVTV	85)	CELTNITIALEC	142)	CTVRVPGCAHHA
4)	CVQDCPECTLQE	61)	VAKSYNRVTVMC	B6)	CELTNITIAIEK	143)	VRVPGCAHHADC
5)	QDCPECTLQENC	62)	CARSYNRVIVMG	B7)	LTNITIAIEKEC	144)	CRVPGCAHHADS
6)	CDCPECTLQENP	63)	KSYNRVTVMGGC	88)	CTNITIAIEKEE	145)	VPGCAHHADSLC
7)	CPECTLQENPFC	64)	CSYNRVIVMGGE	89)	NITIAIEKEECC	146)	CPGCAHHADSLY
8)	CPECTLQENPFF	65)	YNRVTVMGGFKC	90)	CITIALEKEECR	147)	GCAHHADSLYTC
9)	ECTLQENPFFSC	66)	CNRVTVMGGFKV	91)	TIAIEKEECRFC	148)	CCAHHADSLYTY
10)	CCTLQENPFFSQ	67)	RVTVMGGFKVEC	92)	CIAIEKEECRFC	149)	AHHADSLYTYPC
11)	TLQENPFFSQPC	68)	CVTVMGGFKVEN	93)	AIEKEECRFCIC	150)	CHHADSLYTYPV
12)	CLOENPFFSQPG	69)	TVMGGFKVENHC	94)	CIEKEECRFCIS	151)	HADSLYTYPVAC
13)	QENPFFSQPGAC	70)	CVMGGFKVENHT	95)	EKEECRFCISIC	152)	CADSLYTYPVAT
14)	CENPFFSQPGAP	71)	MGGFKVENHTAC	96)	CKEECRFCISIN	153)	DSLYTYPVATQC
15)	NPFFSQPGAPIC	72)	CGGFKVENHTAC	97)	EECRFCISINTC	154)	CSLYTYPVATQC
16)	CPFFSQPGAPIL	73)	GFKVENHTACHC	98)	CECRFCISINTT	155)	LYTYPVATQCHC
17)	FFSQPGAPILQC	74)	CFKVENHTACHC	99)	CRECISINTIWO	156)	CYTYPVATQCHC
18)	CFSQPGAPILQC	75)	KVENHTACHCSC	100)	CRECISINTIWC	157)	TYPVATQCHCGC
19)	SOPBAPILOCMC	76)	CVENHTACHCST	101)	FCISINTTWCAC	158)	CYPVATQCHCGK
20)	COPGAPILOCMG	77)	ENHTACHCSTCC	102)	CCISINTTWCAG	159)	PVATQCHCGKCC
21)	PGAPILOCMGCC	78)	CNHTACHCSTCY	103)	ISINTTWCAGYC	160)	CVATQCHCGRCD
22)	CGAPILOCMGCC	79)	HTACHCSTCYYC	104)	CSINTTWCAGYC	161)	ATOCHCGKCDSC
23)	APILOCMGCCFC	80)	CTACHCSTCYYH	105)	INTTWCAGYCYC	162)	CTOCHCGKCDSD
24)	CPILOCMGCCFS	81)	ACHCSTCYYHKC	106)	CNTTWCAGYCYT	163)	QCHCGKCDSDSC
25)	ILQCMGCCFSRC	82)	CCHCSTCYYHKS	107)	TTWCAGYCYTRC	164)	CCHCGKCDSDST
26)	CLOCMGCCFSRA	•		108)	CTWCAGYCYTRD	165)	HCGKCDSDSTDC
27)	QCMGCCFSRAYC			109)	WCAGYCYTRDLC	166)	CCGKCDSDSTDC
28)	CCMGCCFSRAYP			110)	CCAGYCYTRDLV	167)	GKCDSDSTDCTC
29)	MGCCFSRAYPTC			111)	AGYCYTRDLVYC	168)	CKCDSDSTDCTV
.30)	CGCCFSRAYPTP			112)	CGYCYTRDLVYK	169)	CDSDSTDCTVRC
31)	CCFSRAYPTPLC			113)	YCYTRDLVYKDC	170)	CDSDSTDCTVRG
32)	CCFSRAYPTPLR			114)	CCYTRDLVYKDP	171)	SDSTDCTVRGLC
.33)	FSRAYPTPLRSC			115)	YTRDLVYKDPAC	172)	CDSTDCTVRGLG
34)	CSRAYPTPLRSK			116)	CTRDLVYKDPAR	173)	STDCTVRGLGPC
35)	RAYPTPLRSKKC			117)	RDLVYKDPARPC	174)	CTDCTVRGLGPS
36)	CAYPTPLRSKKT			118)	CDLVYKDPARPK	175)	DCTVRGLGPSYC
37)	YPTPLRSKKTMC			119)	LVYKDPARPKIC	176)	CCTVRGLGPSYC
38)	CPTPLRSKKTML			120)	CVYKDPARPKIQ	177)	TVRGLGPSYCSC
39)	TPLRSKKTMLVC			121)	YKDPARPKIQKC	178)	CVRGLGPSYCSF
40)	CPLRSKKTMLVQ			122)	CKDPARPKIQKT	179)	RGLGPSYCSFGC
41)	LRSKKTMLVQKC			123)	DPARPHIQHTCC	180)	CGLGPSYCSFGE
42)	CRSKKTMLVQKN			124)	CPARPKIQKTCT	181)	LGPSYCSFGEMC
43)	SKKTMLVQKNVC			125)	ARPKIQKTCTFC	182)	CGPSYCSFGEMK
44)	CKKTMLVQKNVT			126)	CRPKIQKTCTFK	183)	PSYCSFGEMKEC
45)	KTMLVQKNVTSC			127)	PKIQKTCTFKEC		
46)	CTMLVQKNVTSE			128)	CKIQKTCTFKEL		•
47)	MLVQKNVTSESC			129)	IQKTCTFKELVC		
48)	CLVQKNVTSEST			130)	COKTCTFKELVY		
49)	VOKNVTSESTCC			131)	KTCTFKELVYEC		
50)	CORNVISESTCC			132)	CTCTFKELVYET		
51)	KNVTSESTCCVC			133)	CTFKELVYETVC		
52)	CNVTSESTCCVA			134)	CTFKELVYETVR		
53)	VTSESTCCVARC			135)	FKELVYETVRVC		
54)	CTSESTCCVAKS			136)	CKELVYETVRVP		
55)	SESTCCVARSYC			137)	ELVYETVRVPGC		
56)	CESTCCVAKSYN			138)	CLVYETVRVPGC		
57)	STCCVAKSYNRC			139)	VYETVRVPGCAC		

Matrix-scan mAb-01 (5 ug/ml)

Fig. 6D

Solid Support-C\$12345678901C\$NOPQRSTUVWXYC\$BCDEFGHIJKLM Solid Support-C\$23456789012C\$OPQRSTUVWXYZC\$CDEFGHIJKLMN Solid Support-C\$34567890123C\$PQRSTUVWXYZAC\$DEFGHIJKLMNO ... and so on.

Fig. 7A

Fig. 7B

KTATFKELVYETC CTATFKELVYETV ATFKELVYETVRC CTFKELVYETVRV FKELVYETVRVPG CKELVYETVRVPGAC CLVYETVRVPGAA VYETVRVPGAAHC CYETVRVPGAAHH	ETVRVPGAAHHAC CTVRVPGAAHHAD VRVPGAAHHADSC CRVPGAAHHADSL VPGAAHHADSLYT GAAHHADSLYT GAAHHADSLYTYC CAAHHADSLYTYC CAHHADSLYTYP CHHADSLYTYP	HADSLYTYPVATC CADSLYTYPVATQ DSLYTYPVATQAH CSLYTYPVATQAHAC CYTYPVATQAHAG TYPVATQAHAGKC CYPVATQAHAGKA CYPVATQAHAGKA CYPVATQAHAGKA TYPVATQAHAGKADC CVATQAHAGKADS
1 CE 4 CO C C C C C C C C C C C C C C C C C	2 2 2 2 4 2 9 2 5 2 5 2 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5	3 3 3 8 4 8 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0 9 VYETVRVPGAAHC 1 2 3 4 5 6 7 8 9 10 11 12 13 15 15 18 19 25 26 27 28 29 30 31 32 33 34 18 36	1 3 VRVPGAAHHADSC 1 2 3 4 5 8 7 8 9 10 11 ■ 13 ■ 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	3 6 VYETVRVPGC 1 2 3 4 5 6 7 8 9 10 11 12 13 13 15 15 11 12 25 26 27 28 29 30 31 32 33 34 11 36
0 8 CLVYETVRVPGAA 1 2 3 4 5 6 7 8 9 11/12 13 15 15 11/12 25 26 27 28 29 30 31 32 33 34 36	1 2 CTVRVPGAAHHAD 1 2 3 4 5 6 7 8 9 11 12 13 15 15 11 12 25 26 27 28 29 30 31 32 33 34 36	3 5 ADSLYTYPVATQC 1 2 3 4 6 6 1 1 1 2 1 3 1 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 7 ELVYETVRVPGAC 1 2 3 4 5 6 7 8 9 11 12 13 15 15 11 12 13 25 26 27 28 29 30 31 32 33 34 36	1 1 ETVRVPGAAHHAC 1 2 3 4 5 6 7 8 9 10 11 12 13 15 15 11 12 25 26 27 28 29 30 31 32 33 34 11 36	2 2 CADSLYTYPVATQ 1 2 3 4 5
6 CKELVYETVRVPG 1 2 3 4 5 6 7 8 9 10 11 12 13 13 15 16 17 15 26 27 28 29 30 31 32 33 34 38	0 CYETVRVPGAAHH 1 2 3 4 5 6 7 8 9 10 11 12 13 8 15 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 HADSLYTYPVATC 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CAHAGKADSDSTD ADSLYTYPVATQC VYETVRVPGC

38 38 38 88

CTOAHAGKADSDS **QAHAGKADSDSTC**

15/17

1	2	3	. 4	5	6	
7	8	9	10	11	12	
13		15	16	17		
				23	24	
25	26	27	28	29	30	
			34		36	

Fig. 7D

16/17

% Acrylicacid/KGray

Fig. 8

Fig. 9

