Trig Final (SLTN v627)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 5.4 radians. The radius is 48 meters. How long is the arc in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

L = 259.2 meters.

Question 2

Consider angles $\frac{9\pi}{4}$ and $\frac{-10\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{9\pi}{4}\right)$ and $\sin\left(\frac{-10\pi}{3}\right)$ by using a unit circle (provided separately).

Find $cos(9\pi/4)$

Find $sin(-10\pi/3)$

$$\sin(-10\pi/3) = \frac{\sqrt{3}}{2}$$

Question 3

If $\tan(\theta) = \frac{-24}{7}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$7^{2} + 24^{2} = C^{2}$$

$$C = \sqrt{7^{2} + 24^{2}}$$

$$C = 25$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\sin(\theta) = \frac{-24}{25}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 8.27 meters, a frequency of 3.84 Hz, and a midline at y = -2.01 meters. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -8.27\cos(2\pi 3.84t) - 2.01$$

or

$$y = -8.27\cos(7.68\pi t) - 2.01$$

or

$$y = -8.27\cos(24.13t) - 2.01$$