[ЦПМ, кружок по математике, 9 класс]

[2018–2019]

Попов Л., Соколов А., Трещев В.

группа: 9-3 08 октября 2018 г.

Теория чисел

Доказательство классических теорем

- 1. Дано простое число p и его некоторый ненулевой остаток a.
 - (а) Докажите, что существует и при том единственный остаток b, что $ab \equiv 1$ (такой остаток b называется обратным остатка a).
 - (b) Сопоставьте каждому остатку его обратный по модулю 17.
 - (с) Какие остатки совпадают со своими обратными остатками?
- (a) (**Теорема Вильсона**) Пусть p некоторое простое число. Докажите, что (p $1)! \equiv -1.$
 - (b) Докажите, что если $(n-1)! \equiv -1$, то число n- простое.
- Пусть a некоторое число, которое не делится на простое число p. **3**.
 - (a) Докажите, что в последовательности $0 \cdot a, 1 \cdot a, 2 \cdot a, \ldots, (p-1) \cdot a$ все числа дают разные остатки по модулю p.
 - **(b)** Докажите, что $(1 \cdot a) \cdot (2 \cdot a) \cdot ... \cdot ((p-1) \cdot a) \equiv (p-1)!.$
 - (с) (Малая теорема Ферма) Докажите, что $a^{p-1} \equiv 1$.

Применение классических теорем

- Докажите, что $300^{3000} 1$ делится на 1001. 1.
- В Москве каждую секунду один из жителей ест печеньку. Докажите, что если собрать 2. все печеньки, съеденные за 6 недель и одну секунду, то их можно разделить на 11 равных кучек.
- Пусть p и q различные простые числа. Докажите, что $p^q + q^p \equiv p + q$. 3.
- Докажите, что для любого простого p > 5 справедливо, что 4.
 - (а) число 111...11 делится на p;

о
$$111...11$$
 не делится на p

- (b) число $\underbrace{111...11}_{p}$ не делится на p.
- Пусть p простое число. Докажите, что $(p-k)! \cdot (k-1)! \equiv_{p} (-1)^{k}$. **5**.
- Найти все такие простые числа p, что число $5^{p^2}-1$ делится на p. 6.
- Пусть p простое число. Докажите, что (2p-1)! p делится на p^2 . 7.
- Пусть числа p и p+2 являются простыми числами-близнецами. Докажите, что справед-8. ливо $4((p-1)!+1)+p \equiv 0$.
- Докажите, что для любого простого p число $2^{2^p} 4$ делится на $2^p 1$. 9.