- $U \subseteq \mathbb{R}^n$ ist offen, wenn $\forall \vec{x} \in U \exists \varepsilon > 0 : B(\vec{x}, \varepsilon) \subseteq U$
 - $\ B(\overrightarrow{x}, r) = \overrightarrow{x} \in \mathbb{R}^n : ||\overrightarrow{x} \overrightarrow{y}|| < r$
 - um jeden Punkt gibt es Platz
 - * Platz = Kugel mit gewissem Radius um Punkt herum

Stetigkeit für ...

- Ist $U \subset \mathbb{R}^n$ offen, $f: U - > \mathbb{R}$
 - f stetig in U, wenn
 - * Kriterien der [[Stetigkeit]] gelten
 - auch im mehrdimensionalen
 - z.B. $\forall \varepsilon > 0 \exists \delta > 0 \forall \vec{x} \in U : |\vec{x} \vec{x_0}| < \delta ==> |f(\vec{x}) f(\vec{x_0})| < \varepsilon$
 - f stetig auf U, wenn f in jedem Punkt von U stetig ist
 - Folgenkriterium
 - * f ist genau dann stetig in $\overrightarrow{x_0}$, wenn für jede Folge $\overrightarrow{x_n}$ mit Grenzwert $\overrightarrow{x_0}$ auch der Limes der Funktionswerte= $f(\overrightarrow{x_0})$ gilt

Grenzwerte für ...

- $\bullet \ \ A = \lim \overrightarrow{x} \to \overrightarrow{x_0} f(\overrightarrow{x_0}) = \lim x \to x_0 \lim y \to y_0 f(x,y) = \lim y \to y_0 \lim x \to x_0 f(x,y)$
 - Grenzwerte unterschiedlich <==> Grenzwert existiert nicht
 - Ableitungen der beiden iterierten Grenzwerte können existieren, ohne dass der Grenzwert existiert

Partielle Ableitung

- f: $U -> \mathbb{R}$ ist differenzierbar in x_0 , wenn f eine erste Näherung zulässt
 - $\ \exists l: \mathbb{R} - > \mathbb{R} \ \text{linear:} \ f(\overrightarrow{x}) = f(\overrightarrow{x_0}) + l(\overrightarrow{x} \overrightarrow{x_0}) + ||\overrightarrow{x} \overrightarrow{x_0}|| r(\overrightarrow{x}) \ \text{mit } \lim_{x \to x_0} r(\overrightarrow{x}) = 0$
- Vorgehensweise:
 - $f \ddot{u} r f(x,y)$
 - $-\frac{\partial f}{\partial x}$ = Ableitung von f(x,y) nach x jedoch ist y konstant
 - * bzw. wird angenommen
- partielle Ableitung kann existieren, obwohl f nicht differenzierbar
 - sind alle partielle Ableitungen stetig in $x_0 <==>$ differenzierbar
- Richtungsableitung
 - partielle Ableitung entlang einer Richtung möglich
 - entspricht Änderungsrate entlang des Vektor n
 - Richtung \neq Achsen/Variablen

 $- \frac{\partial f}{\partial \vec{n}} = l(\vec{n})$

 $\ast\,$ gilt wenn f
 in x_0 differenzierbar

Gradient von f

• Koordinaten der linearen Abbildung als Vektor

 $\bullet \ \ \tfrac{\partial f}{\partial \overrightarrow{n}} = < grad(f)(\overrightarrow{x_0}), \overrightarrow{n} >$

- Richtungsableitung = Skalarprodukt von Gradient und Richtungsvektor
- $< grad(f)(\overrightarrow{x_0}), \overrightarrow{n} >$
 - \ast Gradient von f
 zeigt in Richtung des größten Anstiegs
 - $\ast\,$ senkrecht zu Gradient findet keine Änderung statt
 - **♦** <..,..>=0

[[Differentialrechnung]]