32, 41, 43, 44, 45, 3, 6

3.32

- 1. Show that *R* is symmetric iff $R^{-1} \subseteq R$.
- 2. Show that *R* is transitive iff $R \circ R \subseteq R$.
- 1. (\Rightarrow) If R is symmetric then: $xRy \Rightarrow yRx$. This means that $\langle x,y \rangle \in R$ and $\langle y,x \rangle \in R$, so if $\langle x,y \rangle \in R^{-1}$, then $\langle y,x \rangle \in R$ and $\langle x,y \rangle \in R$. (\Leftarrow) If $R^{-1} \subseteq R$, then if $\langle x,y \rangle \in R^{-1}$ then $\langle x,y \rangle \in R$. Additionally, because $R^{-1} = R$, $\langle y,x \rangle \in R$, so xRy and yRx meaning R is symmetric.
- 2. (\Rightarrow) If R is transitive then $\forall x, y, z (xRy \& yRz \Rightarrow xRz)$ so, if $\langle x, z \rangle \in R \circ R$ then $\exists y (\langle x, y \rangle \in R \& \langle y, z \rangle \in R)$, or xRy & yRz. By definition of transitivity, we have xRz, or $\langle x, z \rangle \in R$. (\Leftarrow) If $R \circ R \subseteq R$ then $(t \in R \circ R) \Rightarrow (t \in R)$. Take $\langle x, y \rangle \& \langle y, z \rangle \in R$. Then $\langle x, z \rangle \in R \circ R$ by composition which means $\langle x, z \rangle \in R$ which means $xRy \& yRz \Rightarrow xRz$.

3.41 Let \mathbb{R} be the set of real numbers and define the relation Q on $\mathbb{R} \times \mathbb{R}$ by $\langle u, v \rangle Q \langle x, y \rangle$ iff u + y = x + v.

- 1. Show that *Q* is an equivalence relation on $\mathbb{R} \times \mathbb{R}$.
- 2. Is there a function $G: \mathbb{R} \times \mathbb{R}/Q \to \mathbb{R} \times \mathbb{R}/Q$ satisfying the equation

$$G([\langle x, y \rangle]_{Q}) = [\langle x + 2y, y + 2x \rangle]_{Q}$$
?

- 1. We must show three things:
 - (a) Reflexive: $\langle u, v \rangle Q \langle u, v \rangle$. This is true if and only if u + v = u + v which is true.
 - (b) Symmetric: $\langle u, v \rangle Q \langle x, y \rangle \Rightarrow \langle x, y \rangle Q \langle u, v \rangle$. From the left side we have that u + y = x + v which means that x + v = u + y or $\langle x, y \rangle Q \langle u, v \rangle$.
 - (c) Transitive: Assume $\langle u, v \rangle Q\langle x, y \rangle$ and $\langle x, y \rangle Q\langle n, m \rangle$. Then u + y = x + v and x + m = n + y. Therefore we have that u + m = n + v or: $\langle u, v \rangle Q\langle n, m \rangle$ which affirms transitivity.

-

2. By Theorem 3Q in the book, this function exists if and only if the function $F: \langle x,y \rangle \mapsto \langle x+2y,y+2x \rangle$ respects relation Q. If $\langle u,v \rangle Q \langle x,y \rangle$ then:

$$u + y = x + v$$

$$\iff 2u + v + 2y + x = 2x + y + u + 2v$$

$$\iff (u + 2v) + (y + 2x) = (x + 2y) + (v + 2u)$$

$$\iff F(\langle u, v \rangle)QF(\langle x, y \rangle)$$

Therefore F respects Q so G exists.

3.43 Assume that R is a linear ordering on a set A. Show that R^{-1} is also a linear ordering on A.

- 1. Transitive: If xRy and yRz then xRz. By the definition of the inverse we have that $zR^{-1}y$ and $yR^{-1}x$ and because xRz, we have that $zR^{-1}x$ so it is transitive.
- 2. Trichotomy: $\forall x,y \in A(\text{either } xRy,x=y,yRx)$. Given this, it follows that either $yR^{-1}x$, x=y, or $xR^{-1}y$. Therefore R^{-1} satisfies the trichotomy as well.

3.44 Assumer that < is a linear ordering on a set A. Assume that $f: A \to A$ and that f has the property that whenever x < y, then f(x) < f(y). Show that f is one-to-one and that whenever f(x) < f(y), then x < y.

- 1. One-to-one: Assume that f(x) = f(y). Then we have that $f(x) \not< f(y)$ and $f(y) \not< f(x)$ which means that neither x < y or y < x. Because of the trichotomy of linear orderings we have that x = y so f is one-to-one.
- 2. If we have that f(x) < f(y) then either x < y, which is what we want. x = y which is impossible because then f(x) = f(y) which contradicts the hypothesis. Finally we could have that y < x but this would imply that f(y) < f(x) which also contradicts the hypothesis.

3.45 Assume that $<_{\scriptscriptstyle A}$ and $<_{\scriptscriptstyle B}$ are linear ordering on A and B respectively. Define the binary relation $<_{\scriptscriptstyle L}$ on the Cartesian product $A \times B$ by:

$$\langle a_1, b_1 \rangle <_{\scriptscriptstyle L} \langle a_2, b_2 \rangle$$
 iff either $a_1 <_{\scriptscriptstyle A} a_2$ or $(a_1 = a_2 \& b_1 <_{\scriptscriptstyle B} b_2)$

Show that $<_{\scriptscriptstyle L}$ is a linear ordering on $A \times B$.

1. Transitive: Assume that $\langle a_1,b_1\rangle <_{\scriptscriptstyle L} \langle a_2,b_2\rangle$ and $\langle a_2,b_2\rangle <_{\scriptscriptstyle L} \langle a_3,b_3\rangle$. Then if $a_1=a_2 \& a_2<_{\scriptscriptstyle A} a_3$ or $a_1<_{\scriptscriptstyle A} a_2 \& a_2=a_3$. In any of these, we have that $a_1<_{\scriptscriptstyle A} a_3$ which confirms transitivity. By the assumptions the only other option for the a variables is that $a_1=a_2=a_3$. If this is the case then we have that $b_1<_{\scriptscriptstyle B} b_2<_{\scriptscriptstyle B} b_3$ in which case $b_1<_{\scriptscriptstyle B} b_3$ which also confirms transitivity.

2. Trichotomy: If $t = \langle a_1, b_1 \rangle \& u = \langle a_2, b_2 \rangle \in A \times B$ then we have trichotomy of the a's under $<_{\scriptscriptstyle A}$. If $a_1 <_{\scriptscriptstyle A} a_2$ then $t <_{\scriptscriptstyle L} u$. If $a_2 <_{\scriptscriptstyle A} a_1$ then $u <_{\scriptscriptstyle L} t$. If $a_1 = a_2$ then we have the trichotomy of the b's under $<_{\scriptscriptstyle B}$. In this case if $b_1 <_{\scriptscriptstyle B} b_2$ then $t <_{\scriptscriptstyle L} u$. If $b_2 <_{\scriptscriptstyle B} b_1$ then $u <_{\scriptscriptstyle L} t$. Finally if $b_1 = b_2$ then t = u. And out trichotomy of $<_{\scriptscriptstyle L}$ is complete.

4.3

- 1. Show that if a is a transitive set, then $\mathcal{P}a$ is also a transitive set.
- 2. Show that if $\mathcal{P}a$ is a transitive set, then a is also a transitive set.
- 1. If a is a transitive set then $x \in t \in a \Rightarrow x \in a$. Suppose we have a $y \in u \in \mathscr{P}a$. Then $y \in u \subseteq a$. Since $u \subseteq a$, $y \in a$. Becuase a is transitive, it follows that $y \subseteq a$ which implies that $y \in \mathscr{P}a$. Hence, $\mathscr{P}a$ is transitive.
- 2. If $\mathscr{P}a$ is transitive then $x \in t \in \mathscr{P}a \Rightarrow x \in \mathscr{P}a$. Since $t \in \mathscr{P}a$, $t \subseteq a$ so x is in a. But since x is also in $\mathscr{P}a$, it follows that a is transitive. ($x \in a \Rightarrow x \subseteq a$).

4.6 Prove that converse to Theorem 4E: If $\bigcup (a^+) = a$, then a is a transitive set.

 $\bigcup (a^+) = \bigcup (a \cup \{a\}) = \bigcup a \cup \bigcup \{a\} = \bigcup a \cup a = a$. By the definition of binary union, If $x \in \bigcup a$ then $x \in \bigcup a \cup a = a$ so $x \in a$ which implies $\bigcup a \subseteq a$ so a is transitive.