

Extracción de características en series de tiempo

Dr. Gaddiel Desirena López

Contenido

Características globales

Intervalos

Shapelets

Diccionario de patrones

Extracción de características en series de tiempo

Series de tiempo

- La dinámica de un proceso o fenómeno se puede capturar como un conjunto de mediciones repetidas.
- Las series de tiempo son un tipo de datos para comprender la dinámica en los sistemas del mundo real.
 - se muestrean en un período de muestreo constante,
 - o periodo de muestreo variable.

La representación de muestreo constante permite que otros tipos de datos secuenciales se representen de la misma manera

- Espectros de frecuencia,
- Oraciones en un libro,
- Forma de objetos, etc.

Extracción de características en series de tiempo

- Variable ordenada
 - medidas de su tendencia,
 - distribución,
 - entropía
- Serie de tiempo
 - entropía espectral,
 - tendencia.
 - estacionalidad.
 - autocorrelación,
 - parámetro óptimo de transformación de Box-Cox,
 - componentes de Fourier.

Características globales

Series de tiempo

- ► Medidas simples
 - la media es dispersa o con alta concentración de valores,
 - presencia de valores atípicos,
 - la distribución se aproxima a la Gaussiana, entre otros.
- Características temporales
 - qué tan relacionada es la serie consigo misma,
 - qué tan ruidosa es la serie de tiempo,
 - periodicidad,
 - cómo cambian las propiedades estadísticas a lo largo del tiempo (estacionariedad),
 - transformada discreta de Fourier,
 - entropía. Como medida de complejidad o predicibilidad de la serie.

Características globales

Métrica de estacionalidad:

$$StatAv(\tau) = \frac{std(\{\bar{x}_{1,w}, \bar{x}_{w+1,2w}, \dots, \bar{x}_{(m-1)w+1,mw}\})}{std(x)}$$

donde la desviación estándar se toma a través del conjunto de medias calculadas en m ventanas no superpuestas de la serie de tiempo, cada una de longitud w.

Autocorrelación:

$$C(\tau) = \langle x_t x_{t+\tau} \rangle = \frac{1}{\sigma_x^2 (N-\tau)} \sum_{i=1}^{N-\tau} (x_t - \bar{x}) (x_{t+\tau} - \bar{x}),$$

donde $\tau=t_2-t_1$ es el intervalo de tiempo de interés.

Intervalos

- Motivación
 - clasificación de series de tiempo.
 - buscan aprender la ubicación de subsecuencias discriminatorias y las características que separan diferentes clases.
- Objetivo
 - Obtención de características
 - Media
 - Desviación estándar
 - ► Tendencia (pendiente)

Intervalos

media:

$$\bar{x}(t_1, t_2) = \frac{1}{t_2 - t_1 + 1} \sum_{i=t_1}^{t_2} x_i,$$

varianza muestreada:

$$\sigma_x^2(t_1, t_2) = \frac{1}{t_2 - t_1} \sum_{i=t_1}^{t_2} (x_i - \bar{x}(t_1, t_2))^2,$$

donde \bar{x} es la media de la serie de tiempo x en el intervalo $[t_1,t_2].$

pendiente: calculada a partir de una línea de regresión de mínimos cuadrados a través del intervalo

Intervalos

Esta información se utiliza para comprender qué propiedades de series de tiempo impulsan una clasificación exitosa en cada momento. El proceso es:

- 1. Muestreo aleatorio de intervalos.
- 2. Usar un clasificador para cada uno de ellos.
- 3. Evaluar la contribución de cada característica en el modelo.

Otro trabajo ha utilizado matrices de covarianza característica-característica para capturar propiedades de subsecuencia para la clasificación.

Shapelets

- Consiste en encontrar subsecuencias con alta predecibilidad.
- ► El método consiste en:
 - Definir una subsecuencia de intervalo aleatorio. Será la shapelet candidata.
 - Comparar las distancias entre la shapelet y las serie de tiempo discretizada.
 - La subsecuencia que genere menor error será la shaplet.

$$s = \min d(s, x)$$

$$d(a, b) = \sqrt{2(1 - C(a, b))}$$

$$C(a, b) = \frac{\sum_{i=1}^{m} ab - m\mu_a\mu_b}{m\sigma_a\sigma_b}$$

Shapelets

- Consiste en encontrar subsecuencias con alta predecibilidad.
- El método consiste en:
 - Definir una subsecuencia de intervalo aleatorio. Será la shapelet candidata.
 - Comparar las distancias entre la shapelet y las serie de tiempo discretizada.
 - La subsecuencia que genere menor error será la shaplet.

$$\begin{array}{rcl} s & = & \min d(s,x) \\ d(a,b) & = & \sqrt{2(1-C(a,b))} \end{array}$$

$$C(a,b) = \min_{0 \le l \le n-m} \frac{\sum_{i=1}^{m} a_i b_{i+l} - m\mu_a \mu_b}{m\sigma_a \sigma_b}$$

Diccionario de patrones

- ▶ Resume el numero de repeticiones encontradas a lo largo de la serie de tiempo.
- Encontrar estos patrones discriminativos y luego caracterizar cada serie de tiempo por la frecuencia de cada patrón, proporciona información útil sobre el peso que representa de cada shapelet.