Genetic Example:

Problem: find X² over [0...31]

Data presentation: binary code

- Fixed population size: 4

- Evolution: roulette wheel selection, 1-point crossover, bitwise mutation

Run 1 one circle

Initialization			Selection		
Initial Population	Value x	Fitness $f(x) = x^2$	Probability	Expected Count	Actual Count
01101	13	169	0.14	0.58	1
11000	24	576	0.49	1.97	2
01000	8	64	0.06	0.22	0
10011	19	361	0.31	1.23	1
Max	576	Average	293		

Crossover						
Population after selection	Cross-over point	Offsprings	Value x	Fitness $f(x) = x^2$		
01101	4	01100	12	144		
11000		11001	25	625		
11000	2	11011	27	729		
01000		10000	16	256		
Max	729	Average	439			

Mutation with probability p_m						
Population after crossover	Offsprings	Value x	Fitness $f(x) = x^2$			
01100	01100	12	144			
11001	11101	29	841			
11011	01011	11	121			
10000	10000	16	256			
Max	841	Average	340			

Comment: Cross-over or mutation can both give better or worse offsprings but it give us a chance to find best elitism. Even in last mutation, our average population decrease and we obtain better result, it shows that loss of good population is possible and bigger population means lower chances to degenerate it.

Hamming Cliff problem

- Problem Statemetn: $\begin{cases} 256 x^2 \text{ if } x \leq 0 \\ 0 & \text{else} \end{cases} \text{ for } x = [-16,16]$
- Data presentation: $b_{-16} = 00000 \dots b_{15} = 11111$
- **Optimum point $b_0 = 10000$, second best $b_{-1} = 01111$
 - \circ Cross-over: cannot generate b_0 from good parent b_1
 - o Mutation: cannot flip all positions
- ** Neighbour:

$$\begin{array}{lll} b_{-16} = 00000 & f(-16) = 0 \\ b_8 = 11000 & f(8) = 0 \\ b_4 = 10100 & f(4) = 0 \\ b_2 = 10010 & f(2) = 0 \\ b_1 = 10001 & f(1) = 0 \end{array}$$

- o Neighbours have poor performance
- Problem solve by using new data presentation g(i) = b(i) or $b(\frac{i}{2})$ then g(i) and g(i+1) only differ 1 bit g(0) = 11000 and g(-1) = 01000

8-Queen problem

- Problem: place 8 queens on a chessboard such that no queen attacks any others

- Data presentation: State/Position is position of each queen in each column
 - o Ex: [46827135] represent a case in image above
- Fitness function: number of non-attacking queens (min=0, max=28)
 - o Higher value better result

Fitness Selection Pairs Cross-Over Mutation

- Cross-over: swap segment
- Mutation: invert random segment (choose segment and permutation), switch 2 random positions or change it

2 Support theorem and some example for this algorithm

Schema:

Definition: $s = s_1, s_2 \dots s_i \text{ with } s_i = 0,1 \text{ or } *$

- present a subset of D
- s contains $2^{l-o(s)}$ chromosomes. o(s) = number of defined bit and l is length of schema
- each chromosome belong to 2^i schemas

Schema Theorem

- provide estimate of number of schemas during evolution (selection, cross-over and mutation) to analyse how chromosomes vary in schema
- Definition:
 - Population P, size n, at time t, schema s.
 - m(s,t) = number of chromosomes of s in P at time t

Selection:

- probabilistic selection: $p(x) = \frac{f(x)}{\sum_{y \in P} f(y)}$
 - $\circ \quad \text{let } \overline{f}(t) = \frac{1}{n} \sum_{(y \in P)} f(y) \text{ and } \hat{u}(s,t) = \frac{1}{m(s,t)} \sum_{(x \in S \cap P)} f(x) \text{ (expect value of F over P and s)}$
 - $\quad \circ \quad p(x \in s) = \sum_{x \in s \cap P} p(x) = \sum_{x \in s \cap P} \frac{f(x)}{\sum_{y \in P} f(y)} = \frac{1}{\mathsf{n}\bar{f}(t)} \, \hat{u}(s,t) m(s,t) = \alpha$
- Assume that we choose only 1 best chromosome. Our current population is P_0
 - Expect value of number of chromosomes after 1 selection $E_1 = \sum_{k=0}^1 kp = 0(1-\alpha) + 1\alpha = \alpha$
 - $\circ\quad$ Expect value of number of chromosomes after n selections $\,E_n=nE_1=n\alpha\,$

 - \circ So if we have good schema, ratio $rac{\widehat{u}(s,t)}{ar{f}(t)}>1$ and then number of good chromosomes increases

Crossover:

- We only try applying 1 point crossover with probability p_c that means (1- p_c) population P_1 (after selection step) will be in P_2
 - o d(s) max distance between defined binary values
 - o suppose $x \in P$ belongs to schema s:

- if i (a cross-over point) is outside d(s): schema preserved
- if I is inside d(s): possible that both offspring are not in s. Schema can be destroyed.
- We will find numbers of survive chromosomes after cross-over
 - Probability that a chromosome of s does not produce a chromosome of s is $\frac{p_c d(x)}{l-1}$
 - E(number of chromosomes of s are destroyed) $\leq \frac{p_c d(x)}{l-1} m_1(s,t)$
 - Expect value of number of chromosomes of s after cross-over: $E\left(m_2(s,t)\right) = \left(1 \frac{p_c d(x)}{l-1}\right) m_1(s,t)$

Mutation:

- Each chromosome will be mutated with probability p_m
 - \circ Survival probability $s_m(s)=(1-p_m)^{o(s)}$ (probability that each bits should not be mulated)
 - Expect value of number of chromosomes of s in new population $E(m(s,t+1)) \ge m_2(s,t)(1-p_m)^{o(s)}$

Conclusion:

$$E(m(s,t+1)) \ge (1 - \frac{p_c d(x)}{l-1})(1 - p_m)^{o(s)} \frac{\hat{u}(s,t)}{\bar{f}(t)} \ m(s,t)$$

- $(1-\frac{p_c d(x)}{l-1})$ and $(1-p_m)^{o(s)}$ are less than 1, so quality of schema at beginning is quite important so that $\frac{\widehat{u}(s,t)}{\widehat{f}(t)}\gg 1$

The N³Argument

- Theorem: Under reasonable assumptions, random population of size N sample N³ schemas (100 chromo => 10^6 schemas)
- The proof: It is not very useful to understand this. You can look for it online
- Intuitive interpretation:
 - o Increase a population, we also sample more schema so that we have greater chances to meet "good" schema
 - o Since good schema is created during evolution, we have greater chance to get global maximum