20250124 MATH 4302 Algebra II Assignment 1.
(1)
1) Proof: The number 1≤ Char(R)≤+∞ can be:
A. The number 1 B. A prime number $1 C. A composite number < c < +\infty D. The positive infinity +\infty$
C. A composite number (<<< > D. The positive infinity + 00
It suffices to disprove A and C.
For A, as R & mot the zero ming, O+ in R, so Char(R)+
For C, assume to the contrary that $Char(R) = C_1C_2$, where $C_1, C_2 \ge 2$. Then $C_1 \neq 0$, $C_2 \neq 0$, $C_1C_2 = 0$ in R , so R contains a zero divisor
$C_1, C_2 \ge 2$. Then $C_1 \ne 0$, $C_2 \ne 0$, $C_1 C_2 = 0$ in R , so R contains a zero divisor
2) Proof: We may divide our proof into two parts.
Field implies Integral Domain:
Torall monzero element of in the Monzero ring,
7 & azero divisor implies IseR\f03, 85=0.
Now for all teR (803, it cannot be 1, otherwise s=rst=0.
Hence, I fails to be aunit, and the converse suggests our result.
Finite Integral Domain implies Field:
For all monzero element of in the monzero ring,
as R is an integral domain, the translation map
f(s)=rs has an restriction on R1807, and Vst
effor, f(s)=f(t)=) r(s-t)=0=)s=t, so fix injective.
As RB finite, fB surjective, f(s)=1 husa solution, rBallnit, and RBafield.
r Baunit, and Risafield.
, , , , , , , , , , , , , , , , , , , ,

(7) For all principal ideals fo3军(a)人b)军尺, consider the irreducible factorizations.
$Q = C_1^{S_1} C_2^{S_2} \cdots C_k^{S_k} \qquad b = C_1^{t_1} C_2^{t_2} \cdots C_k^{t_k}$
Here, C1, C2,, Ck are pairwisely distinct irreducible elements. Define C= C1 max 85, t3 max 85, t2 max 85, tk3.
Define C= Cmax is, ti3 cmax is, tif max is, tki
This is a least common multiple of a, b
As c 33 a common multiple, <c> = <a>(1.</c>
As C is minimal, <c> 2<a>0</c>
(8) This proof is obtained from https://planetmath.org/equivalentdefinitionsforufd
We may divide our proof into two parts.
"of direction: Assume to the contrary that Ris mota unique factorization domain.
That is, for some XER, either X is mener a product of irreducibles, X = 0 or A can be written as affect products of irreducibles.
In both cases, 1x is never a product of primes, because otherwise the
productis always unique, and primes are irreducibles.
Consider the principal ideal <x>generated by x,</x>
and the set Tofall products of primes, here all units are included.
Note that T & a subset with the property ValbeR, abeRaeJandbeT,
The intersection <x> () \ must be empty.</x>
Consider the subset A= I I is an ideal of R: In T=03.
As <x> \in A, and each to tally ordered subset B of A husar upper bound</x>
UTEA, A contains a maximal element P. As 803 \(\alpha \), P \(\alpha \).

10) Note that Z and @[a] are unique factorization domains,
so Z[x] B a unique factorization domain.
Note that \mathbb{Z} and $\mathbb{G}[\chi]$ are unique factorization domains, so $\mathbb{Z}[\chi]$ \mathbb{S} a unique factorization domain. Factor $f(\chi) = 2\chi^2 + 2$, $g(\chi) = \chi^6 - 1$ into irreducibles:
$f(x) = 2(x^2+1), g(x) = (x-1)(x+1)(x^2+x+1)(x^2-x+1)$ As $f(x)$, $g(x)$ has mo common irreducible factor, Bagreotest common factor of them.
As f(x), g(x) has no common irreducible factor, Bagreotest
common factor of them.
V