题目	时间限制 ms	内存限制 mb	代码名	输入	输出
抉择	1000	128	choose	choose.in	choose.out
游戏	1000	128	fandre	fandre.in	fandre.out
分组	1000	128	group	group.in	group.out
糖果	1000	128	candy	candy.in	candy.out

1 抉择

【题目描述】

小明在马路边,捡到一元钱。正当他想把一元钱交给警察叔叔时,他突然发现,这一元钱是有魔法的!假设当前这个钱的面值为x,每次施展魔法时,它要么变成x+1元,要么变成2x元。小明想花n元给自己买糖吃,并且他只想有n元,不想获得更多钱——钱就是痛苦的源泉!他想知道,从一元变到n元,最少施展几次魔法?

【输入格式】

输入第一行包含一个整数 $\mathsf{T}(T <= 100)$, 表示有 T 组测试数据。

接下来有T行,每行包含一个正整数n,代表小明最终想获得的钱数。

【输出格式】

输出 T 行,对于每组测试数据,都输出一行一个整数表示小明最少需要施展的魔法次数。若小明无论如何也不能将钱数变为 n 元,则输出 -1。

【输入样例】

2

2

3

【输出样例】

1 2

【数据范围】

对于 40% 的数据,满足 1 <= n <= 1000 对于 100% 的数据,满足 1 <= n <= 10^16

【提示】

样例表示总共有两组测试数据,分别为 2 和 3。对于 n=2 的情况,小明可以施展一次第二种魔法,使得钱数乘二,变为 1*2=2,即至少需要一次魔法. 对于 n=3 的情况,小明可以施展一次第二种魔法,使得钱数乘二,再施展一次第一种魔法,使得钱数 +1,即 1*2+1=3,至少需要两次魔法。

2 游戏

【题目背景】

芙兰朵露是一个很可爱的女孩子

【题目描述】

芙兰朵露感到很无聊,可是她又找不到人和她一起玩,于是她发动符卡变出了个分身和她一起玩一个叫做「ラウンド」的游戏。

芙兰朵露先给个小伙伴都编上了号,编号0从n-1到,围坐成一圈。

她又按照顺时针方向给 n 个位置编号,从 0 到 n-1。最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推。

游戏规则如下:每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置上的小伙伴走到第 m+1 号位置,……,依此类推,第 n-m 号位置上的小伙伴走到第 0 号位置,第 n-m+1 号位置上的小伙伴走到第 1 号位置,……,第 n-1 号位置上的小伙伴顺时针走到第 m-1 号位置。

芙兰朵露太无聊了,她有很多很多时间,于是她打算玩上 10^k 轮。

她还想知道,如果自己被编号为x,那么最后她会走到第几号位置。

如果你答对了, 芙兰朵露会请你吃麦当劳!

【输入格式】

共1行,包含个整数n, m, k, x,每两个整数之间用一个空格隔开。

【输出格式】

一个整数,表示 10^k 轮后芙兰朵露所在位置的编号

【输入样例】

10 3 4 5

【输出样例】

5

【数据范围】

对于 30% 的数据: $0 \le k \le 7$ 对于 80% 的数据: $0 \le k \le 10^7$ 对于 100% 的数据: $1 \le n \le 10^6, 0 \le m \le n, 1 \le x \le n, 0 < k < 10^9$

3 分组

【题目描述】

公元 2500 年,人类通过发展人工智能,造出空间跳跃穿梭机。人类联盟决定派大元帅小明带领部下乘坐穿梭机 去探索爱琴海星座的 α 星系,小明的手下有 n 名士兵和 m 名将军,每一位士兵都有一个战斗值 ai,他决定将士 兵分成 m 组由 m 个将军统领,为了士兵之间配合更加默契,在同一组中的士兵必须是由若干名相邻的士兵组 成,如果某一组中的士兵战斗值之和过大,就会有发生战争的危险,所以小明想要 m 组士兵中战斗力之和最大值 sum 尽量的小,求最小的 sum 的值。

【输入格式】

第一行输入两个正整数 \mathbf{n} , \mathbf{m} 表示士兵数和将军数 第二行 \mathbf{n} 个整数,表示每一位士兵的战斗力。

【输出格式】

输出共一行,表示 sum。

【输入样例】

5 3 4 2 4 5 1

【输出样例】

6

【数据范围】

数据点编号	n	m	ai
1	≤10	≤n	< 10^9
2	≤10	≤n	< 10^9
3	≤1000	≤n	< 10^9
4	≤1000	≤n	< 10^9
5	≤200,000	≤n	< 10^9
6	≤200,000	≤n	< 10^9
7	≤200,000	≤n	< 10^9
8	≤200,000	≤n	< 10^9
9	≤200,000	≤n	< 10^9
10	≤200,000	≤n	< 10^9

4 糖果

【题目描述】

小米是一只可爱的松鼠,她的家在一棵树上,树上有 N 个房间,分别编号为 1~N,用 N-1 条道路连接(也就是说,所有房间之间都互相可以到达,并且没有环)。小米在每一个房间都放置了一台糖果制造机,糖果制造机有两种,一种可以制造苹果味的糖果,一种可以制造草莓味的糖果。小米的 M 个朋友经常前来拜访他。在朋友 i 拜访之时,小米会与他的朋友沿着从房间 Ai 到房间 Bi 之间的唯一路径行走参观小米的家(可能有 Ai=Bi)。除此之外,他们还可以品尝他们经过的路径上任意一台糖果制造机制造的糖果。由于小米的朋友们大多数比较古怪,他们对糖果有着极强的偏好。他的有些朋友只吃苹果味的糖果,其余的只吃草莓味的糖果。任何小米的朋友只有在他们参观时能吃到他们偏好的糖果才会高兴。

请求出每个朋友在拜访过后是否会高兴。

【输入格式】

输入的第一行包含两个整数 N 和 M。

第二行包含一个长为 N 的字符串。如果第 i 个房间中放置的是苹果味的糖果制造机,则字符串中第 i 个字符为 G,如果第 i 个房间中放置的是草莓味的糖果制造机则为 H。以下 N-1 行,每行包含两个不同的整数 X 和 Y(1 \le X,Y \le N),表示房间 X 与 Y 之间有一条道路。以下 M 行,每行包含整数 Ai,Bi,以及一个字符 Ci。A i 和 Bi 表示朋友 i 拜访时行走的路径的端点,Ci 是 G 或 H 之一,表示第 i 个朋友喜欢苹果味的糖果或是草莓味的糖果。

【输出格式】

输出一个长为 M 的二进制字符串。如果第 i 个朋友会感到高兴,则字符串的第 i 个字符为 1,否则为 0。

【输入样例】

```
5 5
HHGHG
1 2
2 3
2 4
1 5
1 4 H
1 4 G
1 3 G
1 3 H
5 5 H
```

【输出样例】

10110

【数据范围】

- 对于 50% 的数据, $N\leqslant 10^3, M\leqslant 10^3$
- 对于 100% 的数据, $N\leqslant 10^5, M\leqslant 10^5$