Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence

Peng Gao¹, Fei Shao², Xiaoyuan Liu¹, Xusheng Xiao², Zheng Qin³, Fengyuan Xu³, Prateek Mittal⁴, Sanjeev R. Kulkarni⁴, Dawn Song¹

¹University of California, Berkeley ²Case Western Reserve University ³Nanjing University ⁴Princeton University

Massive Data Breaches

opm.gov Heartland

Biggest Data Breaches of the 21st Century

Statistics (2020):

- Average total cost: 3.86 million
- Average time to identify: 207 days

Number of Users Affected

PII (personally identifiable information) lost, credit card fraud, financial loss, reputational damage, operational disruptions, legal ramifications...

Source: csooline.com, IBM Cost of a Data Breach Report 2020

Attack Behind the Data Breaches: Advanced Persistent Threat (APT)

Transparent Computing Through Ubiquitous System Auditing

- Ubiquitous system auditing
 - Monitor every host

- Monitor system activities through selective system calls
 - File access, process creation, network access
- System audit logs => system provenance graph
 - System entities: files, processes, network sockets
 - System event, <subject entity, action, object entity>
 - Global view

Cyber Threat Hunting via Querying System Audit Logs

Cyber threat hunting

- Limitations:
 - Manual query construction => labor-intensive
 - What to search for? => cold start

Threat Intelligence

- Threat intelligence: rich knowledge about threats
 - IOCs (Indicators of Compromise) and IOC relations
 - Malware signatures, malicious file/process names, IPs

The CozyDuke actor spearphishes a targeted victim with e-mails containing a link to a hacked website hosting a ZIP file. The victim clicks on the link and downloads the ZIP file. After being downloaded, the ZIP file self-extracts to Office Monkeys (Short Flash Movie).exe. This file in turn drops two executables: Monkeys.exe and player.exe. It first launches Monkeys.exe, a decoy playing a self-contained, very funny video of white-collar tie wearing chimpanzees working in a high rise office with a human colleague. It then launches player.exe, a CozyDuke dropper maintaining anti-detection techniques.

Threat Intelligence Report Snippet

Source: securelist.com

ThreatRaptor: Automated Threat Hunting Using Threat Intelligence

 A system for automated threat hunting using threat intelligence

https://youtu.be/SrcTDQwRF_M

Threat Behavior Extraction: Main Ideas

- Extracting IOCs and IOC relations
- Challenges:
 - Accuracy: massive nuances in security text
 - Efficiency: timely threat hunting
- Unsupervised, light-weight, accurate NLP pipeline
 - Regex rules for IOC extraction
 - IOC protection: replacing IOCs with a dummy word
 - Dependency-parsing-based IOC relation extraction
- Outperforming general information extraction approaches (Stanford Open IE, Open IE 5)

Query-Based Threat Hunting

- Leveraging our prior work
 - Gao et al. "AIQL: Enabling Efficient Attack Investigation from System Monitoring Data." USENIX ATC, 2018.
- Data collection & storage
 - PostgreSQL, Neo4j
- Threat Behavior Query Language (TBQL)
 - Declarative, expressive, easy to write
- Efficient query execution engine
 - Leveraging domain-specific optimizations

TBQL Event Pattern Syntax

- Global constraint
- Event: <subject, action, object>
 - <subject>: process
 - <object>: process, file, network socket
 - Attribute filter
 - Boolean operator: proc p["%chrome%" && pid=100 read || write file f["%profile%" && amount=10KB"]
- Event relationship
 - Temporal relationship
 - Attribute relationship
 - Graph dependency: shared entity
- Syntax sugar


```
at "mm/dd/yyyy" exe_name = "%cmd.exe"
agentid = host("sql_database_server")

proc p1 "%cmd.exe" start proc p2 "%osql.exe" as evt1

proc p3 "%sqlservr.exe" write file f1 "%backup1.dmp" as evt2

proc p4 "%sbblv.exe" ead file f1 as evt3 name = "%backup1.dmp"

proc p4 write ip i1 "x.x.x.x." as evt4 dst_ip = "x.x.x.x."

with evt1 before evt2, evt2 before evt3, evt3 before evt4

return distinct p1, p2, f1, p4, i1

p1.exe_name, p2.exe_name, p3.exe_name, f1.name, p4.exe_name, i1.dst_ip
```

Query-Based Threat Hunting: New Challenges & Solutions

- Query synthesis mechanism
- Challenge 1: an edge in threat behavior graph <=> a path of system events
 - New query language syntax: variable-length paths

```
proc p1 ~>[read] ip i1 as evt1
proc p2 ~>(2~5)[write] file f1 as evt2
```

- Challenge 2: imprecision in threat intelligence text
 - New query execution mode: fuzzy search
 - Based on inexact graph pattern matching

Conclusion

- ThreatRaptor: automated threat hunting using threat intelligence
 - Threat behavior extraction
 - Query-based threat hunting
 - Threat Behavior Query Language (TBQL)
 - Query synthesis

Q&A

Thanks!