# Reconstruction from Modulo Measurements

Viraj Shah and Chinmay Hegde

ECpE Department, Iowa State University

## 1 Measurement Model

We consider the problem of recovery of a signal from its modulo measurements obtained through compressive sensing. Simply put, we aim to recover  $\mathbf{x}^* \in \mathbb{R}^n$  from the modulo measurements  $y_i = \text{mod}\left(\langle \mathbf{a_i} \cdot \mathbf{x}^* \rangle, R\right)$  for  $i = \{1, 2, ..., m\}$ , where mod is modulo operation with respect to R. Typically, m < n. For simplicity, we assume that the modulo function operates only within two periods, one on the either side of the origin, as shown in the Fig. 1. We construct  $\mathbf{A} = [\mathbf{a_1} \ \mathbf{a_2} \ ... \ \mathbf{a_m}]^T$  with i.i.d. Gaussian entries. The primary assumption in our model is that the natural signal  $\mathbf{x}^*$  is s-sparse in a chosen basis.



Figure 1: Modified modulo function for the given problem

We can write the modified equation for the modulo operation under consideration as:

$$f(t) = \mod(t, R) = t + \left(\frac{1 - \operatorname{sgn}(t)}{2}\right) R,$$

where sgn(t) is a signum function.

For the measurement model of the given problem, We define the corrected linear measurements as:

$$y_{c,i} = \langle \mathbf{a_i} \cdot \mathbf{x}^* \rangle.$$

We also define the bin-index  $p_i^*$  as,

$$p_i^* = \frac{1 - \operatorname{sgn}(\langle \mathbf{a_i} \cdot \mathbf{x}^* \rangle)}{2}.$$

Thus,

$$y_i = \langle \mathbf{a_i} \cdot \mathbf{x}^* \rangle + p_i^* R = y_{c,i} + p_i^* R.$$

It is evident that if we can recover  $\mathbf{p}^*$  successfully, we can calculate the correct compressed measurements  $\langle \mathbf{a_i} \cdot \mathbf{x}^* \rangle$  and use them to reconstruct  $\mathbf{x}^*$  with any sparse recovery algorithm such as CoSaMP.

## 2 Reconstruction Algorithm

In this section, we describe our AltMin based approach to recover  $\mathbf{x}^*$  and  $\mathbf{p}^*$ , given  $\mathbf{y}$ ,  $\mathbf{A}$ , s, R. We call our algorithm MoRAM - Modulo Reconstruction using Alternative Minimization. Our approach comprises of two steps: (i) estimate initialization step, and (ii) Descent step through alternative minimization.

#### 2.1 Initialization

Similar to many non-convex techniques, MoRAM also requires an initial estimate  $\mathbf{x}^0$  that is close to the true signal  $\mathbf{x}^*$ . The basic idea is to calculate the significant indices (or the support of  $\mathbf{x}^*$ ,  $S = support(\mathbf{x}^*)$ ) using the suitable biased estimators, and then calculate the initial estimate using a first order biased estimator M only for those significant indices contained in the support of  $\mathbf{x}^*$ . This initialization procedure is quite simple, and requires the tuning of only one parameter, the sparsity (s).

For support estimation, we use measurements  $y_i$  to construct a biased estimator L, for which the marginal  $L_{jj}$  corresponding to the  $j^{th}$  element is given by:

$$L_{jj} = \frac{1}{m} \sum_{i=1}^{m} y_i^2 a_{ij}^2$$
, for  $j \in 1, ..., n$ .

Note that the expectation  $\mathbb{E}[\mathbf{L}]$  is given by,

$$\mathbb{E}[L_{jj}] = 4x_j^{*2} + 2R^2(1 - c_1) - 2R\|\mathbf{x}^*\|c_2 \quad \text{ where, } c_1, c_2 \in \mathbb{R}$$

indicating that a clear separation exists for values of expectation for  $j \in S$  and  $j \in S^c$ , because  $x_j$  is zero for  $j \in S^c$  and non-zero otherwise. Therefore, we can form the approximation of the support,  $\widehat{S}$  by collecting the indices of the higher magnitude elements of  $\mathbb{E}[L]$ . With the support known, we can throw away the columns of  $\mathbf{A}$  corresponding to  $j \in S^c$  for the next steps. This would make the computation faster.

Next step is to obtain the initial estimate using the first order estimator M, defined as:

$$M_{jj} = \frac{1}{m} \sum_{i=1}^{m} y_i a_{ij}, \text{ for } j \in S.$$

To calculate  $x^0$ , we use the fact that

$$\mathbb{E}[\mathbf{M}] = \left(1 - \sqrt{\frac{2}{\pi}} \frac{R}{2}\right) \mathbf{x}^*.$$

Given enough number of samples, the sample mean of the above estimator lie very close to the expectation value. Thus, we can calculate the initial estimate  $\mathbf{x}^0$  as:

$$\mathbf{x_j^0} = \begin{cases} \frac{1}{m} \sum_{i=1, j \in S}^{m} y_i a_{ij} &, & \text{if } j \in S \\ 0, & j \in S^c. \end{cases}$$
 (1)

However, it should be noted that the quality of the initial estimate is a direct function of the number of measurements (m).

#### **Algorithm 1 MORAM**

```
Inputs: \mathbf{y}, \mathbf{A}, s, R
Output: \widehat{x}
m, n \leftarrow \operatorname{size}(\mathbf{A})
s_p \leftarrow 0.1 \cdot m
Initialization
\mathbf{x^0} \leftarrow \operatorname{Oracle}(\mathbf{y}, \mathbf{A})
Alternative Minimization
for l = 0 : \mathbf{N} do
\mathbf{p^t} \leftarrow \frac{\mathbf{1} - \operatorname{sgn}(\langle \mathbf{A} \cdot \mathbf{x^t} \rangle)}{2}
\mathbf{x^{t+1}} \leftarrow \operatorname{arg} \min_{[\mathbf{x} \ \mathbf{d}]^T \in \mathcal{M}_{s+s_p}} \| \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{d} \end{bmatrix} - \mathbf{y} \|_2^2 = \operatorname{CoSaMP}(\frac{1}{\sqrt{m}} \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}, \frac{1}{\sqrt{m}} \mathbf{y}, s + s_p, [\mathbf{x^t} \ \mathbf{p^t}]^T)
end for
```

## 2.2 Alternative Minimization

Using Eq. 1, we calculate the initial estimate of the signal  $\mathbf{x}^0$  which is relatively close to the true vector  $\mathbf{x}^*$ . Starting with  $\mathbf{x}^0$ , we calculate the estimates  $\mathbf{p}$  and  $\mathbf{x}$  in alternating fashion to converge to the original signal  $\mathbf{x}^*$ . At each iteration of our Alternative Minimization, we use the current estimate of the signal  $\mathbf{x}^t$  to get the value of the bin-index vector  $\mathbf{p}^t$  as following:

$$\mathbf{p^t} = \frac{1 - \operatorname{sgn}(\langle \mathbf{A} \cdot \mathbf{x^t} \rangle)}{2}.$$
 (2)

Given  $\mathbf{x}^0$  is close to  $\mathbf{x}^*$ ,  $\mathbf{p}^0$  would also be close to  $\mathbf{p}^*$ . Ideal way is to calculate the correct compressed measurements  $\mathbf{y}_c^t$  using  $\mathbf{p}^t$ , and use  $\mathbf{y}_c$  with CoSaMP to calculate the next estimate  $\mathbf{x}_{t+1}$ . Thus,

$$\mathbf{y_c^t} = \langle \mathbf{A} \mathbf{x_t} \rangle = \mathbf{y} - \mathbf{p^t} R,$$

$$\mathbf{x^{t+1}} = \underset{\mathbf{x} \in \mathcal{M}_s}{\operatorname{arg min}} \| \mathbf{A} \mathbf{x} - \mathbf{y_c^t} \|_2^2,$$

$$\implies \mathbf{x^{t+1}} = \operatorname{CoSaMP}(\frac{1}{\sqrt{m}} \mathbf{A}, \frac{1}{\sqrt{m}} \mathbf{y_c^t}, s, \mathbf{x_t}).$$
(3)

However, it should be noted that even the small error  $\mathbf{d} = \mathbf{p^t} - \mathbf{p^*}$  would reflect heavily in the calculation of  $\mathbf{y_c^t}$ , as each incorrect bin-index would add a noise of the magnitude R in  $\mathbf{y_c^t}$ . Experiments suggest that the CoSaMP is not robust enough to cope up with such large errors in  $\mathbf{y_c^t}$ . To tackle this issue, we augmented the sparse recovery problem using the fact that the nature of error  $\mathbf{d_p^t}$  is sparse; and each erroneous element of  $\mathbf{p}$  adds a noise of the magnitude R in  $\mathbf{y_c^t}$ . We take the sparsity of  $\mathbf{d^t}$  to be  $s_p = 0.1 \times m$ , suggesting that at most the 10% of the total elements are classified with wrong bin-indices.

The augmented optimization problem becomes,

$$\mathbf{x^{t+1}} = \underset{[\mathbf{x} \ \mathbf{d}]^T \in \mathcal{M}_{s+s_p}}{\operatorname{arg \, min}} \| \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{d} \end{bmatrix} - \mathbf{y} \|_2^2,$$

$$\implies \mathbf{x^{t+1}} = \operatorname{CoSaMP}(\frac{1}{\sqrt{m}} \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}, \frac{1}{\sqrt{m}} \mathbf{y}, s + s_p, [\mathbf{x^t} \ \mathbf{p^t}]^T). \tag{4}$$

We call the step in Eq. 4 a Robust CoSaMP.

We repeat the steps of bin index calculation (as in Eq. 2) and sparse recovery (as in Eq. 3 or Eq. 4) alternatively for N iterations. While the sparse recovery with robust CoSaMP (Eq. 4) improves the reconstruction performance for large values of R by making the sparse recovery step less susceptible to the errors, CoSaMP can also used in its original form (as in Eq. 3) for lower values of R.



Figure 2

Thus, we can have two variants of the MoRAM algorithm: (i)MoRAM with CoSaMP, and (ii) MoRAM with robust CoSaMP.

### 2.3 Experiments

#### 2.3.1 Analyzing sensitivity towards the initial estimate

For this experiment, we use a synthetic signal generated randomly with n=1000 and s=20. Our aim is to analyze the sensitivity of our algorithm towards the initial estimate  $\mathbf{x^0}$ . For that, we compute the initial estimate  $\mathbf{x^0}$  by adding a Gaussian noise to the original signal. In Fig. 2, we plot the variation of the relative reconstruction error  $(\frac{\|\mathbf{x^*} - \mathbf{x^N}\|}{\|\mathbf{x^*}\|})$  with the relative error in initial estimate  $(\frac{\|\mathbf{x^*} - \mathbf{x^0}\|}{\|\mathbf{x^*}\|})$ . We plot the similar curves for different values of number of measurements m.

#### 2.3.2 Performance of our algorithm for signal reconstruction

We perform experiments on a synthetic signal generated randomly with n=1000 and s=5. We compute the initial estimate  $\mathbf{x^0}$  using first order estimator method described in 2.1. we plot the variation of the relative reconstruction error  $(\frac{\|\mathbf{x}^* - \mathbf{x}^{\mathbf{N}}\|}{\|\mathbf{x}^*\|})$  with number of measurements m for both the variants of sparse recovery algorithm as described in 2.2.

It is important to note that unlike the absolute value function, the modulo function described in Fig. 1 is not scale-invariant. The modulo function works over the quantities  $y_{c,i} = \langle \mathbf{a_i} \cdot \mathbf{x}^* \rangle, i = 1,...,m$ ; and it is defined over the parameter R; thus depending on the magnitudes of  $y_{c,i}$  and R relative to each other, the behavior of the measurement model and the reconstruction algorithm would be altered. For instance, if the value of R is too small compared to the range of the  $y_{c,i}$ , the modulo operation would hardly have any effect on the measurements, leaving  $\mathbf{y_c} \approx \mathbf{y}$ . To

| <b>Fixed:</b> $R = 1, n = 1000, s = 5$ |                          |                        |                        |
|----------------------------------------|--------------------------|------------------------|------------------------|
| CoSaMP                                 |                          | robust CoSaMP          |                        |
| $  \mathbf{x}^*   = 1$                 | $\ \mathbf{x}^*\  = 0.5$ | $  \mathbf{x}^*   = 1$ | $\ \mathbf{x}^*\  = 4$ |
| Figure 3                               | Figure 4                 | Figure 5               | Figure 6               |

Table 1: The Results

Relative reconstruction error vs number of measurements; for CoSaMP with  $||\mathbf{x}^*|| = 1$ 



Figure 3

analyze such variations, we fix the R=1 in our experiments, while varying the signal strength to vary the magnitudes of  $y_{c,i}$ . We measure the signal strength by the norm of the original signal ( $\|\mathbf{x}^*\|=1$ ).

Another important factor affecting the reconstruction is the quality of the initial estimate  $(\mathbf{x}^0)$  obtained through first order estimation. As described in 2.1, the quality of the initial estimate is a direct function of number of measurements (m). As we set m higher, the initial estimate  $\mathbf{x}^0$  would move closer to the original signal  $\mathbf{x}^*$ . For our experiments, we consider two ranges of m:  $m \in [100, 1000]$  and  $m \in [1000, 10000]$ .

In the Table 1, we provide experimental results for each of the combination above.



0.2

Number of measurements (m)

Figure 4

0.2

0.1

650

Number of measurements (m)



Figure 6



Figure 5