

ECE/ML/CS/ISYE 8803

Approximate Inference in Graphical Models

Module 7: Part C Metropolis-Hastings Sampling

Faramarz Fekri
Center for Signal and Information
Processing

Sampling Based Approximate Inference: So far

- Full particle methods
 - Forward sampling
 - Rejection sampling
 - Weighted likelihood sampling
 - Importance sampling
 - Markov chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hasting sampling \Leftarrow

- Distributional particles
 - Rao-Blackwellized particles

Read Chapter 12 of K&F

Metropolis-Hastings Sampling

- Instead of a fixed proposal Q(x) (as in Importance Sampling), what if we could use an adaptive proposal?
- Basic idea: We sample from a different distribution Q and then correct for the resulting error.
 - Unlike importance sampling, we do not want to keep track of importance weights as they decay exponentially with number of transitions.
 - Instead, we randomly choose whether to accept the proposed transition, with a probability that corrects for discrepancy between Q and the target distribution P

Metropolis-Hastings Sampling (II)

- Let our proposal distribution T^Q (from which we draw samples) be a transition model over our state space in Markov chain
 - For each state x, T^Q defines a distribution over possible successor states in $Val(\mathbf{X})$, from which we select randomly a candidate next state x'
- We can either accept the proposal and transition to the new state x', or reject it and stay at x.
 - For each states x, for transition to x', we have an acceptance probability $A(x \rightarrow x')$.
 - Actual transition model of the Markov chain is:

$$T(x \to x') = T^{\mathcal{Q}}(x \to x') A(x \to x') \qquad x \neq x'$$

$$T(x \to x) = T^{\mathcal{Q}}(x \to x) + \sum_{x \neq x'} T^{\mathcal{Q}}(x \to x') (1 - A(x \to x'))$$

Metropolis-Hastings (MH) Sampling (III)

• Using following acceptance probability (and the regularity assumption), the resulting chain T can be shown to have unique stationary π (x)= P(X)

$$A(x \to x') = \min \left[1, \frac{\pi(x')T^{\mathcal{Q}}(x' \to x)}{\pi(x)T^{\mathcal{Q}}(x \to x')} \right]$$

- The MH algorithm has a natural implementation in graphical models.
 - Each local transition model T_i is defined via an associated proposal distribution $T_i \circ i$, and the acceptance probability for chain has the form:

$$A(\mathbf{x}_{-i}, x_i \to \mathbf{x}_{-i}, x_i') = \min \left[1, \frac{P(\mathbf{x}_{-i}, x_i') T_i^{Q_i}(\mathbf{x}_{-i}, x_i' \to \mathbf{x}_{-i}, x_i)}{P(\mathbf{x}_{-i}, x_i) T_i^{Q_i}(\mathbf{x}_{-i}, x_i \to \mathbf{x}_{-i}, x_i')} \right]$$

Metropolis-Hastings (MH) Sampling (IV)

- The proposal distributions are usually fairly simple, so it is easy to compute their ratios.
 - In graphical models, the first ratio can also be computed easily:

$$\frac{P(\mathbf{x}_{-i}, x_i')}{P(\mathbf{x}_{-i}, x_i)} = \frac{P(x_i' | \mathbf{x}_{-i})}{P(x_i | \mathbf{x}_{-i})}$$

Like Gibbs sampling, x_{-i} can be reduced to Markov Blanket of x_{-i}

Metropolis-Hastings (MH) Sampling (V)

- $A(x \rightarrow x')$ is like a ratio of importance sampling weights
 - $P(\mathbf{x}_{-i}, \mathbf{x}') / T^{\mathbb{Q}}(\mathbf{x} \rightarrow \mathbf{x}')$ is the importance weight for \mathbf{x}'
 - $P(\mathbf{x}_{-i}, \mathbf{x}) / T^{Q}(\mathbf{x}' \rightarrow \mathbf{x})$ is the importance weight for \mathbf{x}
 - We divide the importance weight for x' by that of x
- Notice that we only need to compute the ratio rather than $P(x_{-i}, x')$ or $P(x_{-i}, x)$ separately.
- Let define $Q(x'|x) = TQ(x \rightarrow x')$ and $A(x'|x) = A(x \rightarrow x')$
- $A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$ ensures that, after sufficiently many draws, our samples will come from the true distribution P(x) we shall learn why later.

Metropolis-Hastings Pseudocode

- Initialize starting state $x^{(0)}$, set t = 0
- Burn-in: while samples have "not converged"
 - $\boldsymbol{x} = \boldsymbol{x}^{(t)}$
 - t = t + 1,
 - sample $x^* \sim Q(x^*|x)$ // draw from proposal
 - sample $u \sim \text{Uniform}(0,1) // \text{draw acceptance threshold}$

- if
$$u < A(x^* | x) = \min \left(1, \frac{P(x^*)Q(x | x^*)}{P(x)Q(x^* | x)} \right)$$

- $x^{(t)} = x^*$ // transition
 - else
- $x^{(t)} = x$ // stay in current state
- Take samples from P(x) =: Reset t=0, for t = 1:N

Function

Draw sample (x(t))

• $x(t+1) \leftarrow \text{Draw sample } (x(t))$

-Xing

Spring 2020

Example MH Sampling (I)

Example:

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

Initialize x⁽⁰⁾

• • •

-Xing

Example MH Sampling (II)

Example MH Sampling (III)

Example MH Sampling (IV)

The adaptive proposal Q(x'|x) allows us to sample both modes of P(x)!

Reversible Markov Chain

• Reversible (detailed balance): an MC (with state transition probability $T(x' \rightarrow x)$) is reversible if there exists a distribution $\pi(x)$ such that the detailed balance condition is satisfied:

$$\pi(X')T(X'\rightarrow X)=\pi(X)T(X\rightarrow X')$$

- Probabilities of $x' \rightarrow x$ and $x \rightarrow x'$ are different, but the joint of x and x' is the same, regardless of direction of transition.

Thm: Reversible Markov Chains always have a stationary distribution.

Proof:
$$\pi(x')T(x' \rightarrow x) = \pi(x)T(x \rightarrow x')$$

$$\sum_{X} \pi (X') T(X' \rightarrow X) = \sum_{X} \pi (X) T(X \rightarrow X')$$

$$\pi(x')\sum_{x}T(x'\rightarrow x)=\sum_{x}\pi(x)T(x\rightarrow x')$$

$$\pi(x') = \sum_{x} \pi(x) T(x \rightarrow x')$$

Which is the definition of a stationary distribution in MC.

Reversible Markov Chain (Thm)

Theorem: Reversible Markov Chains always have a stationary distribution.

Proof:

$$\pi(x')T(x' \to x) = \pi(x)T(x \to x')$$

$$\sum_{x} \pi(x') T(x' \to x) = \sum_{x} \pi(x) T(x \to x')$$

$$\pi(x')\sum_{x} T(x' \to x) = \sum_{x} \pi(x) T(x \to x')$$

$$\pi(x') = \sum_{x} \pi(x) T(x \to x')$$

· Which is the definition of a stationary distribution in MC.

How does Metropolis-Hastings work?

- Need to prove that MH satisfies detailed balance
 - Note that

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Hence: if
$$A(x'|x) \le 1$$
 then $\frac{P(x)Q(x'|x)}{P(x')Q(x|x')} \ge 1$ and thus $A(x|x') = 1$

• Suppose A(x'|x) < 1 and A(x|x') = 1. Then we have

$$A(x'|x) = \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}$$

$$P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x')$$

$$P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x')A(x|x')$$

- However, recall: $T(x \rightarrow x') = T^Q(x \rightarrow x')A(x \rightarrow x') = Q(x'|x)A(x'|x)$
- Therefore: $P(x)T(x \rightarrow x') = P(x')T(x' \rightarrow x)$
- This is the detailed balance condition of MC. Thus P(X) is stationary dist.

Remarks on MH

- P(x) is the true distribution of x.
- MH algorithm converges to a stationary distribution P(x) if

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- We have no guarantee as to when this convergence to P(x) occurs.
- The burn-in period represents the un-converged part of the Markov Chain - that's why we throw those samples away!
- Like Gibbs sampling, in MH we can resort to mixing time examination, and the plot of the complete log-likelihood vs. time as a way of deciding the convergence.
- MH works better than Gibbs but Gibbs is often the method of choice due to its simplicity.