# Blockchain-based Federated Learning: privacy and incentive ECE6903J - Distributed Machine Learning Systems (Research project)

Hugo Vanhille, Pedro Hernández Rubio

Department of Automation

2022 年 12 月

### 目录

**Background** Motivation

Crowdsensing

Research

**Problems** 

The privacy-preserving of crowdsensing

The incentive mechanism of

crowdsensing

3 System architecture

Software application

4 Security issues: privacy Single point of failure

**6** Quality management: incentive

Mechanism design: multifactor

Mechanism design: issues 6 Conclusions

Application

Limitations

Further research



#### 第1节

### **Background**



### 第1节 **Background**

第1小节 **Motivation** 



#### **Motivation**

#### Goal

Applying ML to systems (blockchain-based models)

- Research line mainly targeted to blockchain technology (its application to systems)
- Research group in Department of Automation (PhD supervisors) has been recently working in blockchain-based models applied to trust management systems
- Specifically, applied to data-aggregation systems in the Internet of Things (IoT) field crowdsensing
- Could similar approach be applied for Federated Learning?





#### 第1节

### **Background**

第2小节 Crowdsensing



#### **Crowdsensing: definition**

- Crowdsensing: emerging paradigm of data aggregation paper1, having a key role in data-driven applications. Specially used for getting large ammounts of IoT sensing data, by using the individual intelligent sensing devices.
- Benefit: improved data collection efficiency and reduced costs effectively paper 2





2022 年 12 月

#### **Crowdsensing: issues**

 Managed and maintained centralized platforms suffer from the single point of failure



图: Topology of traditional FL





#### **Crowdsensing: issues**

① Encouraging workers by offering appropriate incentive mechanisms (monetary usually) → auction theory guarantees benefits for both requesters and workers paper 15 but only provide short-term incentives



图: Monetary reward



图: Worker reputation



图: Data quality



#### 第2节

#### Research



←□▶ ←□▶ ←□▶ ←□▶ □□ ♥ ♀♡

#### Research

第1小节 **Problems** 



### **Blockchain background**

Distributed ledger containing a time-stamped series of immutable blockchains, trustless, decentralized, proof-tampering and full traceability





第2节

#### Research

第2小节

The privacy-preserving of crowdsensing



### The privacy-preserving of crowdsensing

- FL provides an attractive structure (presented in (Kairouz et al.)) for decomposing the overall machine learning workflow into the approachable modular units we desire.
- FL provides a level of privacy to participating users through data minimization.





第2节

#### Research

第3小节

The incentive mechanism of crowdsensing



### The incentive mechanism of crowdsensing

- Main types of incentive mechanisms:
  - Monetary-based: distributing rewards.
  - 2 Reputation-based: reputation framework for worker selection (algorithms)
- Limitations
  - Relies on a central platform, vulnerable to target attacks
  - Single-attribute incentive mechanisms (multifactor incentive needed)





#### 第3节

### **System architecture**



#### 第3节

### **System architecture**

第1小节

**Software application** 



### **System architecture**





第4节

### **Security issues: privacy**



第4节

### **Security issues: privacy**

第 1 小节 Single point of failure



#### 第5节

### Quality management: incentive



第5节

#### Quality management: incentive

第1小节

Mechanism design: multifactor



- Based on three parameters:
  - Workers' bidding
  - 2 Reputation
  - 3 Recent data quality estimation
- Analytic Hierarchy Process (AHP) framework →(top-down)
  - 1 Objective level: winning workers
  - 2 Criteria level: parameters criteria
  - 3 Alternative level: workers available

#### Multifactor worker evaluation approach

$$\theta_i = \omega_1 B_i + \omega_2 R_i + \omega_3 Q_i$$

where  $\omega_i \geq 0$  and  $\sum_{\omega_i=1}^3 \omega_i = 1$ 





第5节

#### Quality management: incentive

第2小节

Mechanism design: issues



#### Mechanism design: issues

- How to select appropriate workers?
  - Proposal: decentralized architecture (blockchain technology) that lacks a single point of failure, and enhances privacy with asymmetric encryption and digital signature technology
- 2 How to distribute the rewards to the workers?

With the help of mechanism design theory article two important properties for the incentive mechanism are guaranteed:

- **Incentive quality (IC):** the truthful submission of sensing cost is the worker's optimal bidding strategy
- Individual rationality (IR): the reward must compensate for the worker's cost (non-negative)





#### 第6节

#### **Conclusions**



4□ > 4□ > 4□ > 4 ≥ > 4 ≥ > ≥ | = 9 < 0 27/35</p>

#### **Conclusions**

第1小节 **Application** 



#### Results

A consortium blockchain-based incentive model for crowdsensing system is proposed

- Benefits of consortium blockchain technology:
  - resistant to the single point of failure (system security)
  - · cooperative management (by requesters) reduces cost and enhances the flexibility of the system (selection criteria)
- Benefits of hybrid incentive mechanism:
  - encourages workers to contribute valuable data (and penalizes malicious ones)
  - ensures favorables short-term and long-term incentives for workers





#### **Conclusions**

第 2 小节 Limitations



#### Limitations

#### Further research:

- 1 Dynamic situation where evaluations attributes are changing
- Optimization of consensus protocol (better performance)
- § Further protection of worker privacy

#### Possible solutions

Application of ML techniques to blockchain-based system





第6节

#### **Conclusions**

第3小节

Further research



<u>~</u>

第丨部分

## 附录

参考文献



### 参考文献 |

[1] JIANG X, WANG H, CHEN Y, et al. MNN: A Universal and Efficient Inference Engine[EB/OL]. arXiv. 2020. https://arxiv.org/abs/2002.12418.



