

灵敏度分析 Sensitivity Analysis

引言

勤俭节约:对任何类型的一个问题,当某些因素发生 微小改变时,原有解决方案是否仍可用?怎样适当调整以 应对新情况?

变化中的规律: 不满足于解决一个给定问题,更希 望了解(最优)解决方案随各因素变化的规律。

一个 LP 问题, 当数据或结构发生变动时, 原最优解信息 能否有效利用而无需从头开始求解新问题?

$$\begin{cases} \min & z = c^T x \\ s.t. & Ax = b \end{cases}$$
 1. 维数不变,改变 A , b 2. 增加变量,增加约束 $x \ge 0$ 化 3. 删除变量,删除约束

1. 维数不变, 改变A, b, c

3. 删除变量, 删除约束

核心思想-单纯形表

Z	0	ζ_N^T	$C_B^T \overline{b}$
X_B	/	N	b

最优单纯形表中,某些数据只对表格的一部分有影响! c只影响第一行,b只影响最后一列

改变价值系数

$$\zeta_N^T = c_B^T B^{-1} N - c_N^T$$
$$z_0 = c_B^T B^{-1} b$$

Z	0	ζ_N^T	$C_B^T \overline{b}$
$X_{\mathcal{B}}$	/	N	b

c 及	生以	愛: c —	$\longrightarrow c'$
z	0	ζ_N^T	$c_B^T \overline{b}$
\mathcal{X}_{B}	I	$B^{-1}N$	\overline{b}
\overline{z}	0	$\zeta_N^{\prime T}$	$c_B^{\prime T} \overline{b}$
X_B	I	$B^{-1}N$	\overline{b}

①.
$$\bar{b} = B^{-1}b$$
 不受影响, 仍 ≥ 0

②. 计算
$$\zeta_N^{\prime T} = c_B^{\prime T} B^{-1} N - c_N^{\prime T}$$
, 若仍 ≤ 0 , 已得最优解

③. 否则,用单纯形法继续迭代 当仅有 c_N 发生改变时更简单

华华水水

改变右端向量

$$\zeta_N^T = c_B^T B^{-1} N - c_N^T$$
$$z_0 = c_B^T B^{-1} b$$

Z	0	ζ_N^T	$C_B^T \overline{b}$
$X_{\mathcal{B}}$	/	N	b

b 发	生改	\mathbb{Z} : b 一	→ b'
\mathcal{Z}	0	ζ_N^T	$c_B^T \overline{b}$
X_B	I	$B^{-1}N$	\overline{b}
\overline{z}	0	ζ_N^T	$c_B^T \overline{b'}$
\overline{x}_{B}	I	$B^{-1}N$	$\overline{b'}$

- ①. 检验数不受影响,仍≤0
- ②. 计算 $\overline{b}' = B^{-1}b'$,若仍非负, 已得最优解 解方程组By = b'
 - ③. 否则,用对偶单纯形法继续迭代

增加不等式约束

Z	0	ζ_N^T	$C_B^T \overline{b}$
X_B	/	N	b

Z	0	ζ_N^T	0	$C_B^T \overline{b}$
X_B	/	N	0	b
X_{m+1}	X	X	1	b_{m+1}

例子

例:线性规划问题

min $z = x_1 - 2x_2 + x_3$ s.t. $x_1 + x_2 + x_3 = 4$ $3x_1 - 2x_2 + x_4 = 6$ $x_j \ge 0, j = 1, 2, 3, 4$

最优单纯形表:

z	- 3	0	-3	0	- 8
x_2	1	1	1	0	4
X_4	5	0	2	1	14

最优解:

 $x*=(0, 4, 0, 14)^T$

新增约束:

$$x_1 + 3x_2 + 2x_3 \le 10$$

解:最优解不满足新约束,先化为等式

 $x_1 + 3x_2 + 2x_3 + x_5 = 10$

单纯形表增加一行一列:

\mathcal{Z}	-3	0	- 3	0	0	- 8
$\overline{x_2}$	1	1	1	0	0	4
\mathcal{X}_4	5	0	2	1	0	14
	1					

化为标准单纯形表:

	- 3						
$\overline{x_2}$	1	1	1	0	0	4	角 最
\mathcal{X}_4	1 5 -2*	0	2	1	0	14	大元
X_5	-2^*	0	-1	0	1	-2	4

例子

化为标准 单纯形表

	- 3					
$\overline{x_2}$	1	1	1	0	0	4
\mathcal{X}_4	5	0	2	1	0	14
x_1	-2	0	-1	0	1	-2

\boldsymbol{z}	0	0	-3/2	0	-3/2	-5
X_2	0	1	1/2	0	1/2	3
\mathcal{X}_4	0	0	-1/2	1	1/2 5/2 -1/2	9
x_1	1	0	1/2	0	-1/2	1

已得最优解!

大多数情况下,个别数 据发生变动时,用灵敏度分 析方法要简便一些。

	- 3						
\overline{x}_2	1	1	1	0	0	4	负最 大元
\mathcal{X}_4	5	0	2	1	0	14	大元

最小比列