Advanced Time Series Analysis: Computer Exercise 2

Anders Launer Bæk (s160159)

11 Oktober 2017

Sparring partners:

- Anja Liljedahl Christensen (s162876)
- Marie Mørk (s112770)

Part 1

There are simulated n = 3000 where $\epsilon_t \sim \mathcal{N}(0, 1)$. ϵ_t is used as noise input for all simulations in part one.

The equation below shows the used parameters in the SETAR(2,1,1). Let us call eq. 1 and eq. 2 parameter set one (par_1) .

$$a_0 = [0.125, -0.125] \tag{1}$$

$$a_1 = [0.6, -0.4] \tag{2}$$

Simulation of the SETAR(2,1,1)

The Self-Exciting Threshold AR (SETAR) model is given by eq. 3.

$$X_{t} = a_{0}^{(J_{t})} + \sum_{i=1}^{k_{(J_{t})}} a_{i}^{(J_{t})} X_{t-i} + \epsilon^{(J_{t})}$$

$$\tag{3}$$

where J_t are regime processes. The complete model are defined in eq. 4.

$$X_{t} = \begin{cases} a_{0,1} + a_{1,1}X_{t-1} + \epsilon_{t} & for \quad X_{t-1} \leq 0 \\ a_{0,2} + a_{1,2}X_{t-1} + \epsilon_{t} & for \quad X_{t-1} > 0 \end{cases}$$

$$\tag{4}$$

The model X_t (eq. 4) has been simulated with par_1 . Its simulation is plotted in fig. ??.

Estimate the parameters using conditional least squares

```
Setar <- function(par, model) {
    #
    e_mean <- rep(NA, length(model))
#
    for (t in 2:length(model)) {
        if (model[t - 1] <= 0) {
            e_mean[t] <- par[1] + par[2] * model[t - 1]
        } else {
            e_mean[t] <- par[3] + par[4] * model[t - 1]
        }
    }
}</pre>
```


Figure 1: Two simulated SETAR(2,1,1) models using par_1 and par_2 .

```
#
return(e_mean)
}

RSSSetar <- function(par, model) {
    # conditional mean
    e_mean <- Setar(par, model)

    ## Calculate and return the residuals
    return((model - e_mean)^2)
}

PESetar <- function(par, model) {
    # conditional mean
    e_mean <- Setar(par, model)

    ## Calculate and return the objective function value
    return(sum((model - e_mean)^2, na.rm = TRUE))
}</pre>
```


Analyses of the residuals

Distribution of the residuals

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

$\mathbf{Q}\mathbf{Q}$ plot

Cumulative Periodogram

Part 2 $\label{eq:change_p 0.1} % \begin{subarray}{ll} \begin{subarray}$

N = 1:3000

N = 1:300

N = 1:30

N = 1001:1300

N = 1001:1030

