Fiche de synthèse : Fonctions Trigonométriques

Benjamin L'Huillier

1 Définitions fondamentales

Figure 1: Illustration du cercle trigonométrique avec un angle α

Definition 1.1: Cercle trigonométrique

Le cercle trigonométrique est le cercle de centre l'origine O du repère et de rayon 1. Il est utilisé pour définir les fonctions $\cos(\alpha)$ et $\sin(\alpha)$ à partir des coordonnées du point obtenu en parcourant le cercle d'un arc de longueur α dans le sens trigonométrique (sens inverse des aiguilles d'une montre).

Remarque 1.1: Trigonométrie dans un triangle rectangle

Dans un triangle rectangle, pour un angle aigu α :

$$\sin(\alpha) = \frac{\text{côt\'e oppos\'e}}{\text{hypot\'enuse}}, \quad \cos(\alpha) = \frac{\text{côt\'e adjacent}}{\text{hypot\'enuse}}$$

Definition 1.2: Définitions de $cos(\alpha)$ **et** $sin(\alpha)$

Soit un point M sur le cercle trigonométrique, défini par un angle orienté α (en radians), mesuré à partir de l'axe des abscisses dans le sens inverse des aiguilles d'une montre. Les coordonnées du point M sont :

$$M(\alpha) = (\cos(\alpha), \sin(\alpha))$$

Ainsi,

- $\cos(\alpha)$ correspond à l'abscisse du point M
- $\sin(\alpha)$ correspond à l'ordonnée du point M

2 Propriétés

Definition 2.1: Périodicité

Une fonction f est dite périodique s'il existe un réel T > 0 tel que pour tout x:

$$f(x+T) = f(x)$$

Definition 2.2: Parité

- Une fonction f est dite paire si f(-x) = f(x) pour tout x de son domaine.
- Une fonction f est dite *impaire* si f(-x) = -f(x) pour tout x de son domaine.

Remarque 2.1: Exemples de fonctions

- Fonctions paires : x^2 , $\cos(x)$
- Fonctions **impaires** : x^3 , $\sin(x)$
- Fonctions **périodiques** : sin(x), cos(x), tan(x) (si définie)

Propriété 2.1: Propriétés de cos et sin

- cos est une fonction $paire : \cos(-x) = \cos(x)$
- sin est une fonction *impaire*: $\sin(-x) = -\sin(x)$
- cos et sin sont toutes deux *périodiques* de période 2π

Remarque 2.2: Domaine et image

- Les fonctions sin et cos sont définies sur \mathbb{R} .
- Leur image est l'intervalle [-1, 1].

3 Valeurs remarquables

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

4 Identités trigonométriques classiques

Propriété 4.1: Relations trigonométriques fondamentales

- $\cos^2(x) + \sin^2(x) = 1$
- $cos(\pi x) = -cos(x)$, $sin(\pi x) = sin(x)$
- $\cos(\pi + x) = -\cos(x), \sin(\pi + x) = -\sin(x)$

5 Représentation graphique

Les courbes de $\sin(x)$ et $\cos(x)$ sont périodiques de période 2π , continues, oscillant entre -1 et 1.

- $\sin(x)$ passe par (0,0), atteint 1 en $\frac{\pi}{2}$, 0 en π , etc.
- $\cos(x)$ passe par (0,1), atteint 0 en $\frac{\pi}{2}$, -1 en π , etc.

6 Tableau de variations

Fonction	Minimum	Maximum
$\sin(x)$	-1	1
$\cos(x)$	-1	1

7 Dérivabilité

Remarque 7.1: Dérivées

Les fonctions sin et cos sont dérivables sur \mathbb{R} , avec :

$$\sin'(x) = \cos(x), \quad \cos'(x) = -\sin(x)$$

Fiche mémo: à retenir

- $\sin(x)$: impaire, périodique de période 2π , ordonnée sur le cercle.
- cos(x): paire, périodique de période 2π , abscisse sur le cercle.
- $\cos^2(x) + \sin^2(x) = 1$
- Valeurs remarquables : connaître $\sin(\alpha)$ et $\cos(\alpha)$ pour $\alpha \in \{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\}$
- Domaine : \mathbb{R}
- Image: [-1,1]