Advanced Machine Learning Subsidary Notes

Lecture 4: Symmetry

Adam Prügel-Bennett

January 29, 2024

1 Keywords

• Inductive Bias, Symmetry, Invariance, Group theory

2 Main Points

2.1 Inductive Bias

- Learning machines are not universal approximators, but rather have a propensity to learn a specific set of rules
- This is known as their inductive bias
- We want to choose the learning machine so the inductive bias reflects the properties of the problem
- In almost all problems we use some smoothness property to select slowly varying functions

2.2 Invariances

- For many problems there are symmetries that you want your learning machine to respect
- For example in image classification we consider the class of an object to be invariant to its position in an image
- Learning machines whose outputs are invariant to translations have a much smaller set of functions to learn and therefore are much less likely to overfit
- CNNs are equivariant in that if we translate the input the the output will be translated in the same way
- Building classifies using layers of CNN builds in a lot of translational invariance
- Ideally we want a classifier system to also be scale and rotation invariant, although we don't know how to this well
- Sometimes we use pyramid systems where we rescale the image and run the same operations on all scales
- However, in my datasets the foreground object is rescaled to fill most of the image with smaller object treated as the background so scale invariance is not necessarily required
- Often we try to learn invariance by augmenting the training set by artificially transforming the image (e.g. by reflecting, cropping, shearing and rescaling an image)
- Data augmentation usually gives a very significant improvement in performance
- We can sometimes achieve invariance by suitably normalising our data. Again when done right this can give a significant improvement in performance

2.3 Group Theory

- The mathematical language of symmetry is group theory
- You should know group theory exists, but I'm not going to examine you on details of group theory
- This considers a set of objects (we can think of these as transformations)
- Together with a binary operation we can think of as composition
- That is if $a,b \in \mathcal{G}$ are two transformations the $a \cdot b$ can be interpreted as applying transformation b followed by transformation a
- For the set, G, and binary operation, " \cdot " to form a group they must satisfy four conditions
 - 1. Closure: if $a, b \in \mathcal{G}$ the $a \cdot b \in \mathcal{G}$
 - 2. Associativity: for all $a, b, c \in \mathcal{G}$, we have $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - 3. Existence of an identity element where $e \cdot a = a$
 - 4. Every element, $a \in \mathcal{G}$ has an inverse such that $a^{-1}a = e$
- (Group theory doesn't really care if the elements of the group are transformations, just that the axioms are satisfied)
- An example is the cyclic group C_2
 - We can think of this as tossing a coin with two actions
 - * flip the coin: *f*
 - * leave the coin alone: e
 - These form a group as
 - 1. Closure: $f \cdot e = f$, $f \cdot f = e$, $e, \cdot e = e$ and $e \cdot f = f$ (if you don't believe this get out a coin and try. The first identity is don't do anything then flip the coin is the same as just flipping the coin)
 - 2. Associatity; this follows automatically from the operation being a composition (we will see this in innerProduct lecture where we look at matrix multiplication). You can also check rather boringly, e,g, $(e\cdot f)\cdot f=f\cdot f=e$ while $e\cdot (f\cdot f)=e\cdot e=e$ thus $(e\cdot f)\cdot f=e\cdot (f\cdot f)$. You can try this for all triples
 - 3. *e* is clearly the identity
 - 4. $e^{-1}=e$ and $f^{-1}=f$
 - The cyclic group C_3 corresponds to the rotations of an equilateral triangle maps the triangle to itself. While C_n are the rotations that keep an n sided polygon with identical sides onto itself
 - The four group is a second group of size 4 (besides C_4) that can be thought of as describing the flipping around a vertical and horizontal axis a rectangle, or rotating it by 180 degress around its centre of mass. We can describe the group in terms of a multiplication table where the first row and first column corresponds to the elements a_i and the i^{th} row and j^{th} column corresponds to the multiplication $a_j \cdot a_i$

	е	V	h	r
е	е	V	h	r
v	v	e	r	h
h	h	r	e	V
r	r	h	v	e

* This is an "Abelian group" meaning that for any elements a,b we have $a \cdot b = b \cdot a$

- The group of permutations of n objects forms a group of size n! called the symmetric group S_n
 - * This is a group as the composition of a permutation is a permutation
 - * There is an identity (doing nothing)
 - * For every element there is an inverse permutation (which is a permutation)
 - * For n>2 (where $S_2=C_2$) the group is non-Abelian meaning that there are permutations p_i and p_j where $p_1\neq p_2$
 - * Despite this composing permutations is associative
 - * Permutations have a lot of structure and S_n is very well studied
- There exists groups with an infinite number of elements. The set of integers with the operation of addition form a group with identity, 0, and the inverse of n is -n
 - * You can think of these describing an infinite set of discrete shifts
 - * You first started studying this group when you first learn to count
- The set of rational numbers under addition also forms a group
- The reals under addition form a group describing any one dimensional translation
- The set of reals excluding 0 forms a group under multiplication with an identity 1 and where the inverse of x is 1/x
 - * These can be thought of as describing scale transformations
- Groups can be interpreted in different ways with their elements having different names (e.g.)one, two, three, \cdots or un, deux, trois, \cdots). The permutation of two elements has the same structure (is isomorphic to) flipping a coin. What counts is the structure of the multiplication time (up to re-ordering the elements)

2.3.1 Lie Groups

- When we consider continuous transformation in high dimensional space then we find a set of very interesting groups known as Lie groups
- These describe things like general translational invariance, rotational invariance, relativistic invariance
- The set on transformations can be represented as matrices, with the composition operator being matrix multiplication
- Different groups correspond to different sets of matrices.
- A well known group is the set of $n \times n$ orthogonal matrices O(n)
- By definition of orthogonal matrices $\mathbf{M}^{\mathsf{T}}\mathbf{M} = \mathbf{M} \mathbf{M}^{\mathsf{T}} = \mathbf{I}$
- · These correspond to rotations and reflections
- Note that, in general, $\det(\mathbf{M}^T) = \det(\mathbf{M})$ and $\det(\mathbf{A} \mathbf{B}) = \det(\mathbf{A}) \times \det \mathbf{B}$
- As a consequence $\det(\mathbf{M}^\mathsf{T}\mathbf{M}) = \det(\mathbf{I}) = 1$ so that $\det(\mathbf{M})^2 = 1$ or $\det(\mathbf{M}) = \pm 1$
- If $det(\mathbf{M}) = -1$ then the transformation involves a reflection
- The special orthogonal group, SO(n), corresponds to a subgroup of matrices in O(2) with $\det(\mathbf{M})=1$. These correspond to rotations only
- The group SO(2) corresponds to 2-d rotations where the elements of the group are matrices

$$\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$