Turing Machines

The Language Hierarchy

Languages accepted by Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 WW^R

Regular Languages

*a**

a*b*

A Turing Machine

Tape

Read-Write head

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each time step:

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Example:

Time 0

- 1. Reads a
- 2. Writes k
- 3. Moves Left

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Head starts at the leftmost position of the input string

States & Transitions

Example:

Time 1

$$q_1 \xrightarrow{a \to b, R} q_2$$

$$\begin{array}{ccc}
q_1 & a \rightarrow b, R \\
\hline
 & q_2
\end{array}$$

Example:

Time 1

$$\begin{array}{ccc}
 & a \rightarrow b, L \\
 & q_2
\end{array}$$

Example:

Time 1

$$\begin{array}{c|c}
q_1 & & & & & \\
\hline
 & & &$$

Determinism

Turing Machines are deterministic

Allowed $a \rightarrow b, R \qquad q_2$ $q_1 \qquad q_1$ $a \rightarrow d, L \qquad q_3$

Not Allowed

No lambda transitions allowed

Partial Transition Function

Example:

<u> Allowed:</u>

No transition for input symbol c

Halting

The machine *halts* if there are no possible transitions to follow

Example:

No possible transition

HALT!!!

Final States

· Final states have no outgoing transitions

In a final state the machine halts

Acceptance

Accept Input

If machine halts in a final state

Reject Input

If machine halts in a non-final state or

If machine enters an *infinite loop*

Turing Machine Example

A Turing machine that accepts the language:

aa*

Rejection Example

No possible Transition Halt & Reject

Infinite Loop Example

Another Turing machine for language aa^*

$$b \rightarrow b, L$$

$$a \rightarrow a, R$$

$$Q_0 \qquad \Diamond \rightarrow \Diamond, L$$

$$Q_1 \qquad Q_1$$

Because of the infinite loop:

The final state cannot be reached

The machine never halts

The input is not accepted

Another Turing Machine Example

Turing machine for the language $\{a^nb^n\}$

41

46

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Formal Definitions for Turing Machines

Transition Function

$$\begin{array}{ccc}
q_1 & a \rightarrow b, R \\
\hline
 & q_2
\end{array}$$

$$\delta(q_1,a) = (q_2,b,R)$$

Transition Function

$$\begin{array}{c|c}
\hline
q_1 & c \rightarrow d, L \\
\hline
\end{array}$$

$$\delta(q_1,c) = (q_2,d,L)$$

Turing Machine:

Configuration

Instantaneous description: $ca q_1 ba$

A Move: $q_2 xayb \succ x q_0 ayb$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation:
$$q_2 xayb \succ xxy q_1 b$$

Initial configuration: $q_0 w$

Input string

The Accepted Language

For any Turing Machine M

$$L(M) = \{w: q_0 \ w \succ x_1 \ q_f \ x_2\}$$
 Initial state Final state

Standard Turing Machine

The machine we described is the standard:

· Deterministic

· Infinite tape in both directions

·Tape is the input/output file