

Applications of Integer Linear Programming (ILP): The CS Match (+ Ties and Stability)

Andreas Miller, Batmend Batsaikhan, Mary Blanchard, Cecilia Ehrlichman, Petrichor Park, Hugh Shanno

INTRODUCTION

- **❖ILP** is a type of optimization problem
- **❖ILP** Formulations consist of three components:
 - ❖ Variables must have integer solutions
 - Constraints inequality or equation that is linear
 - ❖Objective Function − either maximized or minimized
- ❖ Feasible Solution any solution that fits the constraints
- Optimal Solution: Feasible Solution that produces the largest/smallest output for Objective Function

ILP Formulation Example

Variables: x_1, x_2

Constraints: $2x_1 + x_2 \le 100$

$$x_1 + x_2 \le 80 \tag{2}$$

$$x_1 \le 40$$

 $x_1, x_2 \ge 0$

Objective (Maximize): $Z = 3x_1 + 2x_2$

Figure 1

Optimal Solution: $x_1 = 20, x_2 = 60$ *Found at point **A***

ACKNOWLEDGEMENTS

Layla Oesper, for assisting as our Comps advisor

Dave Musicant, for supplying metrics for data generation

BACKGROUND

- ❖ CS Match aims to help as many students as possible to register for a CS class for a term,
- ❖ CS Match is a stable matching problem and currently solved with Gale-Shapley algorithm
- > Students list preferred courses and vice versa
- ❖ We sought to reformulate the stable matching problem as an ILP problem
- ❖ We sought to compare the matching results between the CS Match and the ILP
- ❖ We sought to compare strict ranking with weights and introduce tied preferences in the ILP

CODE STRUCTURE

VALIDATING STABILITY

- ❖ Weakly stable No blocking pair exists in a matching
- ❖ Blocking pair − an unpaired student *s* and course *c* in a matching *M* where *s* is either unassigned or strictly prefers *c* to their assigned course in M and *c* is either not full or strictly prefers *s* to the least preferable student assigned to it in *M*
- ❖ Super-stable No blocking pair exists in a matching, where blocking pair is no longer strict (i.e. includes greater than <u>or equal</u> preferences)

ILP FORMULATION

Notation

 $(1, ..., n_1)$ ~ set of all students

 $(1, ..., n_2)$ ~ set of all courses

 k_i ~ capacity of a course j

 x_{ij} ~ binary variable for match between student i and course j

C(i) ~ set of courses wanted by student i

S(j) ~ set of students wanted by course j

 $C_j^{\leq}(i)$ ~ set of courses that student i ranks at the same level or better than course j

 $S_i^{\leq}(j)$ ~ set of students that course j ranks at the same level or better than student i

Math

Variables: x_{ij} $i = 1, ..., n_1; j \in C(i)$

Constraints:

(1) $\sum_{j \in C(i)} x_{ij} \le 1$ $i = 1, ..., n_1$

 $(2) \quad \sum_{i \in S(j)} x_{ij} \le k_j$

 $j = 1, ..., n_2$

(3) $k_j \left(1 - \sum_{q \in C_j^{\leq}(i)} x_{iq}\right) \leq \sum_{p \in S_i^{\leq}(j)} x_{pj}$

 $i=1,\dots,n_1;\,j\in C(i)$

(4) $x \in \{0,1\}$ $i = 1, ..., n_1; j \in C(i)$

Objective Function:

(5) $\max \sum_{i=1}^{n_1} \sum_{j \in C(i)} x_{ij}$

Intuition

- (1) Each student is matched with one course, if any
- (2) Each course does not exceed its capacity
- (3) Stability: if student *i* was not assigned to course *j* or any other course they rank at the same level or higher than *j*, then course *j* has filled its capacity with students it ranks at the same level or higher than *i*
- (4) Match between student and course pair either exists [x = 1] or doesn't [x = 0]
- (5) Maximize the number of students matched to a course

MATCHING WITH TIES

- ❖ Preferences located within the same tie are considered equal
- ❖The order in which ties are broken can result in stable matches of different sizes
- ❖ Tie density t_d (0 ≤ t_d ≤ 1) of the preference lists is the probability that some agent is tied to the agent next to it in a preference list
- As tie density increases, the average size of maximum stable matchings increases

Students' Preferences	Courses' Capacities and	Preferences
$S_1: C_1 C_3$	$C_1: \{2\}: S_1 S_2 S_3 S_4 S_5 S_6$	[CORE]
$S_2:C_1$	$C_2: \{2\}: S_1 S_2 S_3 S_4 S_5 S_6$	[CORE]
$S_3:C_1C_2$	$C_3: \{2\}: S_1 S_2 S_3 S_6 S_5 S_4$ [ELECTIVE]
$S_4:C_3$		
$S_5:(C_2 C_3)$	*entries in paratheses are tie	d
$S_6: C_1 C_3$		
Stable Metabings	Motoh	ing Sizo

Stable Matchings	Matching Size
$M_0 = \{(S_1, C_1), (S_2, C_1), (S_3, C_3), (S_5, C_2),$	5
(S_6, C_2)	
$M_1 = \{(S_1, C_1), (S_2, C_1), (S_3, C_3), (S_4, C_2), \}$	6
$(S_5, C_3), (S_6, C_2)$	

Figure 4

REFERENCES

- ❖ Delorme, M., García, S., Gondzio, J., Kalcsics, J., Manlove, D., & Pettersson, W. (2019). Mathematical models for stable matching problems with ties and incomplete lists, *European Journal of Operational Research*, 277(2), 426-441. https://doi.org/10.1016/j.ejor.2019.03.017.
- ❖ Irving, Robert W., et al. "The Hospitals/Residents Problem With Ties." Lecture Notes in Computer Science, 2000, pp. 259–71. https://doi.org/10.1007/3-540-44985-x_24.
- Kwanashie, Augustine, and David F. Manlove. "An Integer Programming Approach to the Hospitals/Residents Problem With Ties." Operations Research Proceedings, 2014, pp. 263–69. https://doi.org/10.1007/978-3-319-07001-8_36.
- Winston, W. L. (1996). Operations research: Applications and Algorithms. Brooks/Cole.