

Latent-Variable Models

Qinliang Su (苏勤亮)

Sun Yat-sen University

suqliang@mail.sysu.edu.cn

Outline

- Introduction of Latent-Variable Models
- Gaussian Latent-Variable Model
- Gaussian Mixture Model
- Examples of other LVMs

Unsupervised Probabilistic Modeling

 In supervised learning, both regression and classification can be understood as learning conditional probability distributions

In regression, the conditional pdf is assumed of the form

$$p(y|\mathbf{x};\mathbf{w}) = \mathcal{N}(y;\mathbf{w}^T\mathbf{x},\sigma^2)$$

> For classification, the conditional pdf is assumed of the form

$$p(y|\mathbf{x}) = (\sigma(\mathbf{x}\mathbf{w}))^{y} \cdot (1 - \sigma(\mathbf{x}\mathbf{w}))^{1-y}$$

$$p(\mathbf{y}|\mathbf{x}) = \prod_{k=1}^{K} [softmax_k(\mathbf{W}\mathbf{x})]^{y_k}$$

 Unsupervised learning can also be understood from the perspective of learning probability distributions. But it only concerns the distribution of *input data x*

• Modeling x is much difficult than modeling the label y. A naïve way is to restrict p(x; w) to the Gaussian form

$$p(\mathbf{x}; \mathbf{w}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

 \triangleright μ and Σ are optimized to describe the data points $\{x^{(n)}\}_{n=1}^{N}$ best

Obviously, the representational ability of the model is very limited

How does Latent Variables Arise?

- Reason 1: Building expressive models using the composition of simple models
 - Suppose there exists a simple categorical distribution $p(z) = Cat(K, \pi)$ and a Gaussian distribution $p(x) = \mathcal{N}(x|\mu, \sigma^2)$
 - By using them separately, only simple statistical relations can be modelled
 - But if we composite them as p(x,z) = p(x|z)p(z), the induced marginal distribution p(x) could be much more expressive

$$p(x) = \sum_{z} p(x|z)p(z) = \sum_{k=1}^{K} \pi_z \mathcal{N}(x|\mu_z, \sigma_z^2)$$

 $p(x) = \underbrace{ \begin{cases} p(x) \\ k=3 \end{cases}}_{K=3}$

Theoretically, it is able to represent any complex distribution

11/21/24

- Reason 2: hidden structures in the data
 - 1) Data with hidden cluster structure

$$z_n \sim Cat(K, \pi)$$

 $x_n \sim \mathcal{N}(x|\boldsymbol{\mu}_{z_n}, \boldsymbol{\Sigma}_{z_n})$

- Topic model for documents
- 3) Image Modeling

- In the examples above, the latent variables z often correspond to high-level features
- If the latent structure is respected, more interpretable models could be obtained

LVMs in General Form

LVMs: a probabilistic model with latent variables

$$p(\mathbf{x}, \mathbf{z})$$

- x is the random variable of interest
- z is the latent variable (nuisance variable)
- \triangleright Sometimes, there may exist multiple latent variables z_1, z_2, \cdots, z_K

$$p(\mathbf{x}, \mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_K)$$

• The probabilistic model w.r.t. the interested variable x is

$$p(\mathbf{x}) = \int_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$
 or $p(\mathbf{x}) = \int_{\mathbf{z}_1 \cdots \mathbf{z}_K} p(\mathbf{x}, \mathbf{z}_1, \cdots, \mathbf{z}_K) d\mathbf{z}_1 \cdots d\mathbf{z}_K$

Outline

- Introduction of Latent-Variable Models
- Gaussian Latent-Variable Model
- Gaussian Mixture Model
- Examples of other LVMs

 Assuming both of the prior and conditional pdfs are independent Gaussian

Prior distribution:
$$p(z) = \mathcal{N}(z; 0, I)$$

Likelihood function:
$$p(x|z) = \mathcal{N}(x; Wz + \mu, \sigma^2 I)$$

Actually, the model describes how data samples x are generated

$$z = [z_1, \dots, z_M] \& x = [x_1, \dots, x_D]$$

Training Objective

- Given the samples $\{x_n\}_{n=1}^N$, the question becomes how to train the model p(x, z) to make it able to describe the data best
- The model parameter W can be learned by maximizing the loglikelihood

$$\max_{\boldsymbol{W}} \sum_{n=1}^{N} \log p(\boldsymbol{x}_n)$$

In LVMs, what we have is the joint pdf

$$p(\mathbf{x}_n, \mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) p(\mathbf{z}_n)$$

= $\mathcal{N}(\mathbf{x}_n; \mathbf{W}\mathbf{z}_n + \boldsymbol{\mu}, \sigma^2 \mathbf{I}) \mathcal{N}(\mathbf{z}_n; \mathbf{0}, \mathbf{I}),$

But what we need is to optimize $p(x_n)$

Marginal Distribution p(x)

The most direct method is to compute the marginal pdf first

$$p(\mathbf{x}_n) = \int_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n) d\mathbf{z}_n$$

• Deriving the analytical expression for $p(x_n)$ is impossible in most scenarios due to existence of the integration

But for the Gaussian case, we can easily obtain it as

$$p(\mathbf{x}_n) = \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$$

A simple method to derive the marginal distribution

From the model

$$\mathcal{N}(\boldsymbol{x}_n; \boldsymbol{W}\boldsymbol{z}_n + \boldsymbol{\mu}, \sigma^2 \boldsymbol{I}) \mathcal{N}(\boldsymbol{z}_n; \boldsymbol{0}, \boldsymbol{I}),$$

the data point x_n can be understood as generated from

$$x_n = \mu + Wz_n + \epsilon_n$$

where $\mathbf{z}_n \sim \mathcal{N}(\mathbf{z}_n; \mathbf{0}, \mathbf{I})$ and $\boldsymbol{\epsilon}_n \sim \mathcal{N}(\mathbf{z}_n; \mathbf{0}, \sigma^2 \mathbf{I})$

• That is, data x_n can be understood as generated from z_n and ϵ_n as $x_n = \mu + W z_n + \epsilon_n$

Theorem: A linear combination of Gaussian random variables also follows a Gaussian distribution

• Therefore, x_n also follows a Gaussian distribution

How can a Gaussian distribution be determined?

→ Mean & Covariance

Mean & Covariance

Mean:
$$\mathbb{E}[x_n] = \mu + W\mathbb{E}[z_n] + \mathbb{E}[\epsilon_n] = \mu$$

Covariance:
$$\mathbb{E}[(x_n - \mu)(x_n - \mu)^T] = W\mathbb{E}[z_n z_n^T]W^T + \mathbb{E}[\epsilon_n \epsilon_n^T]$$

= $WW^T + \sigma^2 I$

• Thus, the marginal distribution of x_n is

$$p(\mathbf{x}_n) = \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$$

Training by Maximizing $\log p(x)$

• Given the training dataset $\{x_n\}_{n=1}^N$, to learn W, μ and σ^2 , what we need to do is to optimize the log-probability

$$\log p(\mathbf{x}_1, \cdots, \mathbf{x}_N)$$

• Due to $p(\mathbf{x}_n) = \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$, we have

$$\log p(\mathbf{x}_1, \cdots, \mathbf{x}_N) = \sum_{n=1}^N \log \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^T + \sigma^2 \mathbf{I})$$

It can be further written as

$$\log p(\mathbf{x}_1, \dots, \mathbf{x}_N) = -\frac{ND}{2} \log 2\pi - \frac{N}{2} \log \det(\mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$$
$$-\frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^T (\mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})^{-1} (\mathbf{x}_n - \boldsymbol{\mu})$$

• By setting $\frac{\partial \log p(x_1, \dots, x_N)}{\partial \mu} = 0$, we obtain

$$\mu = \frac{\sum_{n=1}^{N} x_n}{N}$$

• By denoting $\Sigma = WW^T + \sigma^2 I$, we have

$$\frac{\partial \ln \det(\mathbf{X})}{\partial \mathbf{X}} = (\mathbf{X}^{-1})^{T}$$
$$\frac{\partial \ln \operatorname{trace}(\mathbf{X}^{-1}\mathbf{B})}{\partial \mathbf{X}} = -(\mathbf{X}^{-1}\mathbf{B}\mathbf{X}^{-1})^{T}$$

$$\frac{\partial \log p(\mathbf{x}_1, \cdots, \mathbf{x}_N)}{\partial \mathbf{\Sigma}} = -\frac{N}{2} \mathbf{\Sigma}^{-1} + \frac{1}{2} \sum_{n=1}^{N} \mathbf{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_n) (\mathbf{x}_n - \boldsymbol{\mu}_n)^T \mathbf{\Sigma}^{-1}$$
$$= -\frac{N}{2} \mathbf{\Sigma}^{-1} + \frac{N}{2} \mathbf{\Sigma}^{-1} \mathbf{S} \mathbf{\Sigma}^{-1}$$

- \Rightarrow Thus, it can be derived that $\Sigma = S$
- When Σ is restricted to the form $\Sigma = WW^T + \sigma^2 I$, it can be derived that

$$W = U(\Lambda - \sigma^2 I)^{\frac{1}{2}}$$

- U consists of the top-M eigenvectors of S
- Λ is a diagonal matrix with the top-M eigenvalues of S

Relation to PCA

Comparing the expression

$$W = U(\Lambda - \sigma^2 I)^{\frac{1}{2}}$$

to the principle components of PCA, which are the matrix U, we can see that

W can be viewed as un-normalized principle components of data x_n , with the *i*-th component scaled by a coefficient $\sqrt{\lambda_i - \sigma^2}$

Gaussian latent-variable models are called *probabilistic PCA*

Outline

- Introduction of Latent-Variable Models
- Gaussian Latent-Variable Model
- Gaussian Mixture Model
- Examples of other LVMs

Gaussian Mixture Distributions

The distribution expression

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- K is the number of Gaussian distributions
- π_k is the weight of the *k*-th distribution with $\sum_{k=1}^K \pi_k = 1$
- μ_k and Σ_k are the mean vector and covariance matrix of the kth Gaussian distribution

 It is very difficult to model the green points by a Gaussian distribution

 But if we model it with the mixture of two Gaussian distributions, it looks much better

Representing Gaussian Mixture Distribution as LVM

For a latent-variable model p(x, z), if we set its conditional distribution p(x|z) and prior distribution p(z) as

$$p(\mathbf{x}|\mathbf{z} = \mathbf{1}_k) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
$$p(\mathbf{z} = \mathbf{1}_k) = \pi_k$$

- z can only be a one-hot vector, with $\mathbf{1}_k$ denoting the k-th element to be 1
- $p(\mathbf{z} = \mathbf{1}_k) = \pi_k$ actually denotes a categorical distribution, that is,

$$p(\mathbf{z}) = Cat(\mathbf{z}; \boldsymbol{\pi})$$

with
$$Cat(\mathbf{z} = \mathbf{1}_k; \boldsymbol{\pi}) = \pi_k$$
 and $\boldsymbol{\pi} = [\pi_1, \pi_2, \cdots, \pi_K]$

• Due to $p(x) = \sum_{z} p(x, z)$, we can easily see that

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

which is exactly the Gaussian mixture distribution

Gaussian mixture distributions can be equivalently represented by the latent-variable model

$$p(\mathbf{x}, \mathbf{z}) = \prod_{k=1}^{K} [\pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{z_k}$$

Training by Maximizing the Marginal

• Given a set of training data $\{x^{(n)}\}_{n=1}^N$, the goal is to learn the distribution parameters

$$\{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K \triangleq \boldsymbol{\theta}$$

The data points $x^{(n)}$ are assumed *i.i.d*, thus we can write the joint distribution as

$$p\big(\pmb{x}^{(1)},\cdots,\pmb{x}^{(N)}\big) = \prod_{n=1}^{N} \underbrace{\sum_{k=1}^{K} \pi_k \mathcal{N}\big(\pmb{x}^{(n)};\pmb{\mu}_k,\pmb{\Sigma}_k\big)}_{p(\pmb{x}^n)}$$
 form is not used

 For probabilistic models, the training objective is to maximize the loglikelihood function, that is,

$$\log p(\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(N)}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(n)}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Maximizing $\log p(x^{(1)}, \cdots, x^{(N)})$

• Substituting the expression of $\mathcal{N}ig(x^{(n)};oldsymbol{\mu}_k,oldsymbol{\Sigma}_kig)$ into it gives

$$\log p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)})$$

$$= \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}_k|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x}^{(n)} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}_k^{-1} (\mathbf{x}^{(n)} - \boldsymbol{\mu}_k) \right\} \right)$$

• To optimize it, we require the *derivatives* of $\log p(x^{(1)}, \cdots, x^{(N)})$ w.r.t. the model parameters $\{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$

How to Use the Learned Model?

• After learning the parameters $\{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$, that is, the distribution

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}; \; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

is known, we can use it to complete a lot of tasks

 Example: Given a testing data point x, can we use it to determine the probability that an x belongs to the k-th cluster?

$$p(\mathbf{x} \in k\text{-th cluster}) = \frac{\pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}$$

Can we explain the probability in a more principled way?

$$p(\mathbf{z} = \mathbf{1}_k | \mathbf{x}) = ?$$

$$p(\mathbf{z} = \mathbf{1}_k | \mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{z} = \mathbf{1}_k)}{p(\mathbf{x})}$$

$$= \frac{p(\mathbf{x}, \mathbf{z} = \mathbf{1}_k)}{\sum_{i=1}^K p(\mathbf{x}, \mathbf{1}_i)}$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}$$

Thus, in the latent-variable model, the posteriori $p(\mathbf{z}|\mathbf{x})$ indicates the probability that a data instance belongs to different clusters

27

Outline

- Introduction of Latent-Variable Models
- Gaussian Latent-Variable Model
- Gaussian Mixture Model
- Examples of other LVMs

Application: Hidden Markov Model

Hidden Markov Model (HMM)

- It is widely used in speech recognition, part-of-speech tagging, localization etc.
- Joint distribution

$$p(\mathbf{y}, \mathbf{x}) = p(y_1)p(x_1|y_1) \prod_{t=2}^{T} p(y_t|y_{t-1})p(x_t|y_t)$$

where $p(y_t|y_{t-1})$ is the transition probability; $p(x_t|y_t)$ is the emission probability

Application: Image Modeling

- Sigmoid belief networks (SBN)
 - $\rightarrow h_i^1 \sim Bernoulli(0.5)$
 - $\rightarrow h_j^2 \sim Bernoulli\left(\sigma([\mathbf{W}_1\mathbf{h}^1 + \mathbf{b}_1]_j)\right)$
 - $\succ x_k \sim Bernoulli(\sigma([\mathbf{W}_2 \mathbf{h}^2 + \mathbf{b}_2]_k))$

Observed data

Joint pdf: $p(x, h^2, h^1) = p(x|h^2)p(h^2|h^1)p(h^1)$

Original

Generating

In-painting

Application: Text Modeling

- Topic Model: Latent Dirichlet Allocation (LDA)
 - $\rightarrow \theta \sim Dir(\alpha)$: the distribution of different topics
 - $ho \varphi_k \sim Dir(\beta)$: the distribution of words for topic
 - $> z_n \sim Multinomial(\theta)$: the topic of n-th word
 - $\triangleright w_n \sim Multinomial(\varphi_{z_n})$: the *n*-th word

