V 1/1

Patent Number: JP6303196 A 19941028

OPTICAL TRANSMISSION SYSTEM

(JP06303196)

PURPOSE: To obtain an optical transmission system which is capable of determining both the setting conditions of the optical modulation degree for attaining a desired code error ratio and the number of frequency multiple channel and a technique setting the conditions automatically, in an optical transmission where a direct intensity modulation is performed by a frequency multiple dirigital single.

CONSTITUTION: In a transmission side, the signal source 10 of a frequency multiple digital signal, an adjusting part 11 adjusting an optical modulation degree, the number of frequency multiple channel or the both of them, and an optical transmission part 12 converting the signal into an optical signal and transmitting it to an optical reception part are provided. In a reception side, an optical reception part 13 and a detection part 14 detecting the instantaneous worst value of the distortion of a signal converted into an electrical signal and delivering the information to the transmission side are provided. Then in the reception side, the instantaneous worst value of the distortion of the reception signal is detected and the information is delivered to the transmission side. In the transmission side, the setting conditions of the optical modulation degree for attaining a desired code error ratio and the number of frequency multiple channel are determined based on the information, the conditions are realized in the adjusting part and they are outputted to the optical transmission part. COPYRIGHT: (C)1994.JPO

Inventor(s):

UCHIUMI KUNIAKI TANABE MANABU

TAKECHI HIDEAKI SASAI HIROYUKI

Patent Assignee:

MATSUSHITA ELECTRIC IND CO LTD

Orig. Patent Assignee: (A) MATSUSHITA

ELECTRIC IND CO LTD

FamPat family

JP6303196 A 19941028

[JP06303196] STG: Doc. Laid open to publ.

Inspec. AP: 1993JP-0085964

1993JP-0085

Priority Details:

1993JP-0085964 19930413

@QUESTEL-ORBIT

@Questel Orbit

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開平6-303196

(43)公開日 平成6年(1994)10月28日

(51) Int.Cl. ⁵ H 0 4 B	10/04 10/06 10/00	識別記号	庁内整理番号	FΙ							技術表示箇所	
			9372-5K 9372-5K 審査請求	Н	0 4 B	9/ 00			L B			
				未請求	請求項	(の数4	OL	(全	6	頁):	最終頁に続く	
(21)出顯番号		特顧平5-85964	(71)	(71)出願人 000005821 松下電器産業株式会社								
(22)出願日		平成5年(1993)4	大阪府門真市大字門真100 (72)発明者 内海 邦昭						006番	地		
							大阪府門真市大字門真1006番地 松下電器 産業株式会社内					
				(72)	発明者		-		門真 1	006番.	地 松下電器	
				(72)	発明者	武知 大阪府	秀明	大字門	¶真1	006番.	地 松下電器	
				(74)	代理人				1	(51 2 :	名) 最終頁に続く	

(54) 【発明の名称】 光伝送方式

(57)【要約】 (修正有)

【目的】 周波数多重ディジタル信号で直接強度変調する光伝送において、所望の符号数り率を達成するための光変調度および周波数多重チャンネル数の設定条件を決定できる光伝送方式および自動的に設定する手法を提供する。

【構成】 送信朝には周波数多重ディジタル信号の信号 源10 と光変調度または周波数多重ディジタル信号の信号 両者を調整する調整部11と近侵号に変換して光受信部 に送信する光送信部12とが設けられ、受信側には光受 信部13と戦気信号に変換された信号の歪の解時級悪値 を検出し、送信側にその情報を送る検出部14が設計 がいる。受信側において受信信号の歪の解時級悪値 検出し、その情報を送信側へ送る。送信側はその情報を もとに所望の符号数り率を達成するための光変調度およ び周波数多張チャンネル数の設定条件を決定し、調整部 でその条件を実現し光送信部へ出力する。

【特許請求の範囲】

1 【請求項1】 周波数多重ディジタル信号で半導体レーザ 光を直接強度変調して伝送する光伝送において、

所望の符号部り率を達成するための前記周波数多重ディ ジタル信号の光変調度および周波数多重チャンネル数の 設定条件を、

前記周波数多重ディジタル信号による歪の瞬時最悪値か ら決定することを特徴とする光伝送方式。

【請求項2】 間波数多重ディジタル信号の変調方式がπ /4シフトQPSK (4値位相変調) 信号であることを 10 特徴とする請求項1記載の光伝送方式。

【請求項3】 周波数多重ディジタル信号で半導体レーザ 光を直接強度変調して伝送する光伝送において、前記周 波数多重ディジタル信号による歪の瞬時最悪値を検出 し、前記歪の瞬時最悪値が所定の値以上となった場合、 警告を出すことを特徴とする光伝送方式。

【請求項4】 周波数多重ディジタル信号で半導体レーザ 光を直接強度変調して伝送する光伝送において、受信側 で前記届波数多重ディジタル信号による歪の瞬時最悪値 を検出し、送信側にその情報を送り、送信側においては 20 前記情報に応じて前記周波数多重ディジタル信号の光変 脚度または周波数多重チャンネル数または両者を調整す ることを特徴とする光伝送方式。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光CATVや携帯電話 信号光伝送システムに用いられるような間波数多重ディ ジタル信号を伝送する光伝送システムに関するものであ る。

[0002]

【従来の技術】 周波数多重信号の光伝送は、田辺他、 「80チャンネル AM-FDMTV信号光伝送装 置」、ナショナルテクニカルレポートVo1.36 N o. 6 Dec. 1990%, C. J. Chung a nd I. Jacobs, "TV channel c apacity of lightwave mult ichannel AM SCM systems a s limited by laser thresh old nonlinearity", in Opti cal Comminication Confere 40 nce, March 1992, pp. 18-19に示 されているように非常によい歪特性を有する。このよう な特徴により、ディジタル変調信号を含む周波数多重光 伝送システムにおいて、各チャンネルの信号の光変調度 の和が1以上となるような場合でも、I.M.I.Ha bbab, "Multichannel M-QAM For CATV Distribution", LE OS Summer Topical Meeting Digest, Wednesday, July 2

高品質な伝送が可能と考えられている。

【0003】ディジタル変調信号は、小さな搬送波対雑 音比(以下、CNRとする)でも高品質な伝送が可能で ある。したがって、光変調度を小さく設定して光伝送し Tt, J. G. Proakis "Digital C ommunications" Second Edi tion, McGraw-Hill Book Co mpany, pp. 234-285で与えられる所要の CNRと符号誤り率の関係におけるCNRが得られれ ば、伝送品質を確保できると考えられている。

2

[0 0 0 41

【発明が解決しようとする課題】一方、半導体レーザ (以下、LDとする) 光を周波数多重信号で直接強度変 調し、光伝送する場合の歪量はLDの特性により決ま る。特に、周波数多重信号のLD変調電流値がLDの関 値電流値以下になることによる波形クリッピングのため 瞬時的な歪が発生する。この波形クリッピングはLD光 を直接強度変調して信号を伝送する場合、多重信号の各 チャンネルの光変調度の和(以下、最大光変調度とす る) が1以上(以下、過変調と呼ぶ)となれば、原理的 に発生する現象であり、回避することはできない。この 波形クリッピングによる歪は、瞬時的なものであり、し たがって平均値で考えると符号誤り率に影響する値では ないが、瞬時的なものであるため、その符号誤り率への 影響は無視できないと考えられる。

【0005】このような歪については従来はほとんど考 慮されていなかったが、実験的には次のように観測され る。すなわち、図5は33チャンネルのπ/4シフトQ PSK信号を光伝送したときの符号誤り率特性である。

- 30 但し、符号誤り率を測定する1つのチャンネルを除く他 の32チャンネルは変調されていない正弦波である。縦 軸は符号誤り率、横軸は符号誤り率を測定する中央のチ ャンネルであるπ/4シフトQPSK信号の他の32チ ャンネルに対する相対的な光変調度(以下、QPSK相 対変調度とする) である。32チャンネルの光変調度は すべて等しく、その1チャンネル当りの光変調度mがパ ラメータである。QPSK相対変調度が0dBの時、3 3チャンネルすべてが等しい光変調度となる。
 - 【0006】各チャンネル配置は822、8~829、 2MHzで200kHz間隔で33チャンネルあり、そ の中央チャンネルのπ/4シフトQPSK信号の周波数 は826MHzである。正確にはπ/4シフト差動QP SK変調でルートナイキストフィルタ特性、ロールオフ 率 α = 0. 5 で 4 2 k b p s の 1 5 段の疑似ランダム信 号で変調されている。

【0007】図5からわかるように、1チャンネル当り の変調度mが4.2%より大きくなると、符号誤り率特 性が悪くなり、1 チャンネル当りの変調度mが大きくな ればなるほど特性が悪くなることがわかる。1チャンネ 9.1992 WB4 pp.21-22にあるように 50 ル当りの変調度mが約3.3%までは過変調とはならな (3.3%×32=1.06)、17ャンネル当りの変調度mが4.2%程度までは過変調が起きても確率的に小さくその影響がほとんど得与限り率特に変化を与えないが、それ以上では過変調の影響により、急激に符号限り率特性が労化している。この条件ではCNRは十分大きく、符号限り率特性の免化は過変調によるものであることは明かである。

3

【0008】狭帯域信号であるので、符号誤り率特性へ 主たる影響を与えるのはCNRとCTB(コンポジット トリプルピート) であり、通常はこれらを測定すること 10 によってアナログ的伝送特性を評価している。混変調歪 はCTBと同様の考え方で扱えるのでここでは歪はCT Bだけを考える。上記の符号誤り率を測定した実験系で のCNRとCTBの測定結果である光変調度特性を図6 に示す。縦軸はCNRとCTB、横軸は1チャンネル当 りの変調度mであり、この測定時は中央チャンネルのπ /4シフトQPSK信号は入力せず、このチャンネルの 周波数である826MHzでCNRとCTBを測定し た。ただし、両者ともスペクトラムアナライザを用いて 時間平均して測定した値である。先に示した図5からわ 20 かるように、過変調の影響がない場合は前記文献に示さ れた従来の理論でCNRと符号誤り率特性の関係を考え ることはできるが、過変調の影響が出始めると、変調度 mが大きくなるにしたがって符号誤り率特性は劣化し、 たとえば符号誤り率10%を達成するためのQPSK相 対変調度(以下、m (QPSK) とする)は、1チャン ネル当りの変調度mが4、2%から7、3%に増加する のにしたがって約-53dBから約-16dBに約37 dB劣化している。ところが図6に示したCTBはその ような大きな劣化は示していない。CNRにいたっては 30 当然のことながら変調度mが大きくなるにしたがって良 くなっている。

【009】上記のようにCNRとCTBから符号級り 率特性を推定することはできず、削配文献に示された従 来の理論でCNRと符号級り率特性の関係を考えること は遠変調の影響がある場合できない。したがって、符号 級り率測定装置を送信側と受信側に設置し、直接符号級 り率を測定する以外伝送性能を評価することができず、 また最適な光変調度や同波数多重チャンネル数を設定で きないという課題があった。

[0010] 本発明はこれらの職題を解決し、周波数多 重ディジタル信号で半導体レーザ光を直接強度変調して 低送する光伝送において、所述の符号誤り率を達成する ための前配局波数多重ディジタル信号の光変調度および 属波数多重テャンネル数の設定条件を過変調の場合も歪 の瞬時最悪値から決定できる光伝送方式および上記動作 を目動的に行う手法を提供することを目的とする。

[0011]

【課題を解決するための手段】送信側には周波数多重デ イジタル信号の信号額と、前記周波数多重ディジタル信 50 チャンネル数または両者を調整し光送信部に出力する。

号の光楽順度または局波教多選チャンネル教主たは両者 を調整する調整部と、前記調整部出力を光信号と変換し で光受信部に送信する光送信部とが設けられ、受信側に は光受信部と、光受信部で電気信号に変換された信号の 歪の調時限差値を使出し、送信側にその情報を送る検出 能が殴けられた構成とする。

[0012]

【作用】開放数多重ディジタル信号で半導体レーザ光を 直接強度変調して伝送する光伝送において、受信側にお いては受信した信号の歪の瞬時無悪値を検出し、その情 報を送信側へ送る。送信側においてはその情報をもとに 所望の符号裏の事を達成するための前配周数数多重ディ ジタル信号の光変調度および周波数多重チャンネル数の 設定条件を決定し、調整部でその条件を実現し光送信部 を実現する。これにより所望の符号誤り率特性で光伝送 を実現する。

[0013]接雲作製時においてLD等の性能に応じて 間波数多重ディジタル信号の光変調度および周波数多重 テャンネル数の設定条件を決定する際、スペクトラムア ナライザで光伝送後の歪の瞬時最悪値を測定し、所望の 符号額り率特性を実現できる値となるように決定すれば よい。

[0014]

【実施例】以下、本発明の実施例について図面を参照し ながら説明する。

【0015】図1は本発明の第1の実施例における光伝 送装置のプロック図を示すものである。

[0016] 図1において、10は周波数多重ディジタル信号の信号頭、11は前記周波数多重ディジタル信号の光楽調度または周波数多重ディンタル 居夫に迫賓を調整する調整部、12は前記調整部出力を光信号に変換して光受信部に進信する光送信部、13は光受信部、14比決受信部で電気信号に変換された信号の亚の瞬時最悪値を検出し、送信側にその情報を送る検出部、15は検知部出り、16は伝送出力である。

【0017】以上のように構成された本実施例の光伝送 装置について、以下その動作を説明する。

【0018】信号額10からの周波数多重ディジタル信 対は調整部11でその光楽調度または周波数多重チャン 40 ネル数または両者を調整され、光送信部12に入力す る、光送信部12で光信号に変換され、伝送後前記光信 号は光受信部13で電気信号に変換される。光受信部1 3の出力が本光伝送装置の伝送出力16である。検出部 14は伝送出力16における盃の瞬時最悪値を検出し、 その情報を検出部出力15として送信仰の調整部11に 送る。検出部出力15として送信仰の調整部11に 送る。検出部出力15の送信方法は光ファイバや同軸ケ 一ブル等伝送路に依存しない。調整部11は検出部出力 15に応じて所望の符号誤り率特性を達成すために、 周波数多量ディジタル信号や光変調度または刺波数多量 5 この光変調度および周波数多重チャンネル数の調整に関 する詳細を以下に示す。

【0019】図6にCNRとCTBの光変調度特性を示 したが、両者ともスペクトラムアナライザを用いて時間 平均して測定した値であるが、前記のようにこれらから 符号誤り率特性の劣化を推定することはできなかった。 これに対し、CTBの瞬時最悪値「CTB*oksrl の光 変調度特性の測定結果を図2に示す。瞬時最悪値とは今 回の測定ではアドバンテスト社製スペクトラムアナライ ザTR4172のマックスホールドモードで測定した値 10 であり、この時の測定条件はスパン100kHz、スイ ープ時間500ms、分解能3kHz、ビデオ帯域幅3 kHzで10分間の最悪値である。図2からわかるよう に1チャンネル当りの変調度mが4.2%から7.3% に増加するのにしたがってCTB瞬時最悪値は約-65 dBから約-28dBに約37dB劣化している。この 劣化量は前記の符号誤り率10%を達成するためのQP SK相対変調度m(QPSK)の劣化量に等しい。この m (QPSK) とCTB瞬時最悪値を共に図3に示す。 この図から両者がほとんど同じ劣化傾向を示しているこ 20 とがわかる。参考にこの両者の差を光変調度mに対して 図示すると、図4となる。このように両者の差は1チャ ンネル当りの変調度mが4.2%以上では12dB程度 でほとんど一定である。

【0020】以上述べたように、m (QPSK) とCT B瞬時最悪値とはほとんと一定の関係を有しているの で、CTB瞬時最悪値がある値となるようにすれば自動 的に符号誤り率特性が設定できることになる。たとえ ば、目標仕様として符号誤り率10-6をマージン20d Bで達成しようとすると、m (QPSK) が-20dB 30 となるようにすればよい。そのための光変調度mは図3 から約6.7%であることがわかる。同時にこの時のC TB瞬時最悪値は約-33dBとなることがわかる。し たがって、CTB瞬時最悪値を測定しながらその値が-33dBとなるように光変調度mを設定すれば、自動的 に光変調度mが6.7%となり、目標仕様が達成され る。この動作を自動的に行うのが図1の光伝送装置であ る。目標仕様を下回ったことを発見するだけでよいので あれば、検出部14はCTB瞬時最悪値をモニターして おき、目標仕様に対応するCTB瞬時最悪値より悪い値 40 を検出した場合、警報を出すようにすればよい。

【0021】 周波数多重信号の光変調度πと関波数多重 チャンネル数の平方根の積、これを総合変調度と呼ぶ が、これを一定にしておけばLDを変調する信号全体の 電流振幅分布は同じであるのでLDを変調する条件は同 じとなる。本実施例では光変調度mを調整する場合の数 値条件を示したが、総合変調度で考えれば、所望の符号 類り率特性を達成するために総合変調度を設定さればよ いことになる。つまり、光変調度mを変更する代わりに 関波数多重チャンネル数を変えてもよいことになる。た だし、開波数多重チャンネル数を変える場合、その平方 根で効くので光変調度に対して2乗の割合で変える必要 がある。

[0022] 未実施例においては検出部14を受信側に 設けて送信側に情報をフィードバックする構成とした が、検出部14を送信制に設け、光送信部12の光出力 の一部を取り出し、そこでの歪の瞬時最悪値を検出し、 その情報を調整部11へフィードバックする構成として もよい。

【0023】なお本実施例においては変調方式をQPS KとしたがQAM(直交振幅変調)等他のディジタル変 調信号に対しても有効である。 【0024】

【発明の効果】本発明によれば、周波数多重ディジタル 信号で半導体レーザ光を直接強度変調して伝送する光伝 送において、所望の符号銀り準を達成するための前記周 域数多重ディジタル信号の光差調度および期後数多重チャンネル数の設定条件を歪の瞬時最悪値から決定でき、

またその動作を自動的に実現でき、その実用的効果は大 きい。

【図面の簡単な説明】 【図1】本発明の第1の実施例における光伝送装置のを 示すプロック図

【図2】CTBの瞬時最悪値 [CTB*0*57] の光変調 の 度特性図

【図3】符号誤り率10-6を達成するためのQPSK相対変調度m(QPSK)とCTB瞬時最悪値[CTB TOREST]の光変調度特性図

【図4】QPSK相対変調度m(QPSK)とCTB瞬 時最悪値[CTBvosst]の差の光変調度特性図

【図5】符号誤り率特性図

【図6】CNRとCTBの光変調度特性図 【符号の説明】

10 周波数多重ディジタル信号の信号源

11 調整部 12 光送信部

L D DUMENTUR

13 光受信部 14 検出部

16 伝送出力

【図1】

フロントページの続き

(51) Int. Cl. 5 FΙ 技術表示箇所 識別記号 庁内整理番号 H 0 4 J 14/02

H04L 27/18

Z 9297-5K 9372-5K H 0 4 B 9/00 Е

(72)発明者 笹井 裕之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内