Recurrent Neural Networks

CMSC 473/673 - NATURAL LANGUAGE PROCESSING

Slides modified from Dr. Frank Ferraro

Learning Objectives

Define the basic cell architecture of an RNN

Backpropagate loss through an example RNN

Create a simple RNN with PyTorch

Review: Maxent Language Models

given some context... **W**_{i-3} W_{i-2} W_{i-1} compute beliefs about what is likely... $p(w_i|w_{i-3}, w_{i-2}, w_{i-1}) = \text{softmax}(\theta_{w_i} \cdot f(w_{i-3}, w_{i-2}, w_{i-1}))$ can we learn word-specific weights predict the next word (by type)?

 W_i

Review: Neural Language Models

given some context... **W**_{i-3} W_{i-2} W_{i-1} can we *learn* the feature function(s) for *just* the context? compute beliefs about what is likely... $p(w_i|w_{i-3}, w_{i-2}, w_{i-1}) = \text{softmax}(\theta_{w_i} \cdot f(w_{i-3}, w_{i-2}, w_{i-1}))$ can we learn word-specific weights predict the next word (by type)? W_i

4/1/2025

Review: Neural Language Models

given some context...

create/use
"distributed
representations"...

combine these representations...

compute beliefs about what is likely...

predict the next word

Review: Neural Language Models

Review: Maxent Language Models

Review: LM Comparison

COUNT-BASED

MAXENT

NEURAL

Class-specific

Class-based

Uses features

Class-based

Uses *embedded* features

Review: Network Types: Flat Input, Flat Output

1. Feed forward

Linearizable feature input
Bag-of-items classification/regression
Basic non-linear model

A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

Critical issue: the amount of information flow is fundamentally restricted!!!

A Recurrent Neural Language Model

The fluffy gray cat meowed very loudly

Critical issue: the amount of information flow is fundamentally restricted!!!

Allowing signal to flow from one hidden state to another could help solve this!

Review: Forward Propagation Example

Calculate <u>outputs</u> to the hidden layer (units h1 and h2):

How do we do this?

Use our activation function!

$$g(x) = \frac{1}{1 + e^{-x}}$$

What will be our *x*?

$$in_{h1} = -.3225$$

 $in_{h2} = -.3075$

For each layer:

- Calculate the weighted sum of inputs to each neuron unit
- Evaluate the activation function to determine the output of each neuron unit
- Use outputs as inputs for the next layer

b2

out_{h1} = g(in_{h1})
=
$$\frac{1}{1+e^{-in_{h1}}}$$

= $\frac{1}{1+e^{-(-.3275)}}$
= .4188

out_{h2} = g(in_{h2})
=
$$\frac{1}{1+e^{-in_{h2}}}$$

= $\frac{1}{1+e^{-(-.3075)}}$
= .4237

$$h_i = \sigma(Wh_{i-1} + Uw_i)$$

$$\widehat{w}_{i+1} = \operatorname{softmax}(Sh_i)$$

$$h_i = \sigma(Wh_{i-1} + Uw_i)$$

$$\widehat{w}_{i+1} = \operatorname{softmax}(Sh_i)$$

$$h_i = \sigma(Wh_{i-1} + Uw_i)$$

$$\widehat{w}_{i+1} = \operatorname{softmax}(Sh_i)$$

A Multi-Layer Simple Recurrent Neural Network Cell

How do you learn an RNN?

As with other approaches: Compute the loss and perform gradient descent

Loss: Cross-entropy, computed per output word

• Just as with prior LM approaches!

Defining the Objective

Review: Minimize Cross Entropy Loss

vector

Cross entropy:

How much \hat{y} differs from the true y

objective is convex (when f(x) is not learned)

Gradient Descent: Backpropagate the Error

Initialize model

Set t = 0

Pick a starting value θ_{t}

Until converged:

for example(s) sentence i:

- 1. Compute loss I on x_i I = model(x_i)
- 2. Get gradient $g_t = l'(x_i)$
- 3. Get scaling factor ρ_{t}
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

Core idea: Train the model to predict what the next word is via maximum likelihood (equivalently, minimizing crossentropy loss).

Gradient Descent: Backpropagate the Error

Initialize model

Set t = 0

Pick a starting value θ_t

Until converged:

for example(s) sentence i:

- 1. Compute loss I on x_i $I = model(x_i)$
- 2. Get gradient $g_t = l'(x_i)$
- 3. Get scaling factor ρ_{t}
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

Core idea: Train the model to predict what the next word is via maximum likelihood (equivalently, minimizing crossentropy loss).

This **loss** is the sum of the pertoken cross-entropy loss

log.2

Remember: These probabilities are *computed* as a function of the model parameters!

The

The

log.2 + log.12

word	prob.	word	prob.
The	.2	black	.2
gray	.01	wet	.12
blue	.001	blue	.001
fluffy	.0005	fluffy	.0005
wet	.0005	gray	.0005

word	prob.	word	prob.	word	prob.
The	.2	black	.2	black	.2
gray	.01	wet	.12	gray	.01
blue	.001	blue	.001	blue	.001
fluffy	.0005	fluffy	.0005	bald	.0005
wet	.0005	gray	.0005	wet	.0005

word	prob.	word	prob.	word	prob.	word	prob.
The	.2	black	.2	black	.2	dog	.2
gray	.01	wet	.12	gray	.01	cat	.19
blue	.001	blue	.001	blue	.001	blue	.001
fluffy	.0005	fluffy	.0005	bald	.0005	fluffy	.0005
wet	.0005	gray	.0005	wet	.0005	wet	.0005

word	prob.	word	prob.	word	prob.	word	prob.	word	prob
The	.2	black	.2	black	.2	dog	.2	meowed	.3
gray	.01	wet	.12	gray	.01	cat	.19	purred	.2
blue	.001	blue	.001	blue	.001	blue	.001	hissed	.1
fluffy	.0005	fluffy	.0005	bald	.0005	fluffy	.0005	fluffy	.001
wet	.0005	gray	.0005	wet	.0005	wet	.0005	wet	.001

word	prob.	word	prob.	word	prob.	word	prob.	word	prob	word	prob.
The	.2	black	.2	black	.2	dog	.2	meowed	.3	very	.2
gray	.01	wet	.12	gray	.01	cat	.19	purred	.2	lots	.1
blue	.001	blue	.001	blue	.001	blue	.001	hissed	.1	softly	. 1
fluffy	.0005	fluffy	.0005	bald	.0005	fluffy	.0005	fluffy	.001	fluffy	.0005
wet	.0005	gray	.0005	wet	.0005	wet	.0005	wet	.001	wet	.0005

(then negate, average)

 $\log .2 + \log .12 + \log .2 + \log .19 + \log .3 + \log .2 + \log .2 + \log .2$

wo	ord	prob.	word	prob.	word	prob.	word	prob.	word	prob	word	prob.	word	prob	word	prob.
The	е	.2	black	.2	black	.2	dog	.2	meowed	.3	very	.2	loudly	.2	EOS	.3
gra	ıy	.01	wet	.12	gray	.01	cat	.19	purred	.2	lots	.1	softly	.01	and	.1
blu	ie	.001	blue	.001	blue	.001	blue	.001	hissed	.1	softly	. 1	quiet	.001	blue	.001
flut	ffy	.0005	fluffy	.0005	bald	.0005	fluffy	.0005	fluffy	.001	fluffy	.0005	fluffy	.001	fluffy	.0005
we	t	.0005	gray	.0005	wet	.0005	wet	.0005	wet	.001	wet	.0005	wet	.001	wet	.0005
									***					•••		

Gradient Descent: Backpropagate the Error

Initialize model

Set t = 0

Pick a starting value θ_t

Until converged:

for example(s) sentence i:

- 1. Compute loss I on x_i $I = model(x_i)$
- 2. Get gradient $g_t = l'(x_i)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

Core idea: Train the model to predict what the next word is via maximum likelihood (equivalently, minimizing crossentropy loss).

This **loss** is the sum of the pertoken cross-entropy loss

(then negate, average)

Gradient Descent: Backpropagate the Error

Set t = 0

Pick a starting value θ_t Until converged:

for example(s) sentence i:

1. Compute loss I on x_i 2. Get gradient $g_t = I'(x_i)$ 3. Get scaling factor ρ_t 4. Set $\theta_{t+1} = \theta_t - \rho_t * g_t$ 5. Set t += 1

Think-pair-share: When would you want to use batches?

epoch: a single run over all training data

epoch

(mini-)batch: a run over a subset of the data

Flavors of Gradient Descent

"Online"

Set t = 0Pick a starting value θ_t Until converged:

for example i in full data:

- 1. Compute loss l on x_i
- 2. Get gradient $g_t = l'(x_i)$
- 3. Get scaling factor ρ_+
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

done

"Minibatch"

Set t = 0

Pick a starting value
$$\theta_t$$

Until converged:

get batch $B \subset full$ data

set $g_t = 0$

for example(s) i in B :

1. Compute loss I on x_i

2. Accumulate gradient

 $g_t += l'(x_i)$

done

Get scaling factor ρ_t

Set $\theta_{t+1} = \theta_t - \rho_t * g_t$

Set t += 1

"Batch"

Set t = 0
Pick a starting value
$$\theta_t$$
Until converged:

set $g_t = 0$
for example(s) i in full data:

1. Compute loss I on x_i
2. Accumulate gradient
 $g_t += l'(x_i)$
done
Get scaling factor ρ_t
Set $\theta_{t+1} = \theta_t - \rho_t * g_t$
Set t += 1

Why Is Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain rule for derivatives

Why Is Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain rule for derivatives

Vanishing gradients

Multiply the *same* matrices at *each* timestep → multiply *many* matrices in the gradients

Why Is Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain rule for derivatives

Vanishing gradients

Multiply the *same* matrices at *each* timestep → multiply *many* matrices in the gradients

One solution: clip the gradients to a max value

PyTorch RNN LMs

Pick Your Toolkit

PyTorch

Deeplearning4j Torch

MXNet

TensorFlow ...

Caffe

Keras

Comparisons:

https://en.wikipedia.org/wiki/Comparison of deep learning sof tware

```
import torch.nn as nn
import torch.nn.functional as F
class CharRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(CharRNN, self). init ()
        self.rnn = nn.RNN(input size, hidden size)
        self.h2o = nn.Linear(hidden size, output size)
        self.softmax = nn.LogSoftmax(dim=1)
                                                                                     W_{i+1}
    def forward(self, line tensor):
        rnn_out, hidden = self.rnn(line_tensor)
        output = self.h2o(hidden[0])
        output = self.softmax(output)
        return output
```

```
import torch.nn as nn
import torch.nn.functional as F
class CharRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(CharRNN, self). init ()
        self.rnn = nn.RNN(input size, hidden size)
        self.h2o = nn.Linear(hidden size, output size)
        self.softmax = nn.LogSoftmax(dim=1)
                                                                           W;
                                                                                     W_{i+1}
    def forward(self, line tensor):
        rnn_out, hidden = self.rnn(line_tensor)
        output = self.h2o(hidden[0])
        output = self.softmax(output)
        return output
```

```
import torch.nn as nn
import torch.nn.functional as F
class CharRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(CharRNN, self). init ()
        self.rnn = nn.RNN(input_size, hidden_size)
        self.h2o = nn.Linear(hidden size, output size)
        self.softmax = nn.LogSoftmax(dim=1)
    def forward(self, line tensor):
        rnn_out, hidden = self.rnn(line_tensor)
        output = self.h2o(hidden[0])
        output = self.softmax(output)
        return output
```


http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
import torch.nn as nn
import torch.nn.functional as F
class CharRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
         super(CharRNN, self). init ()
         self.rnn = nn.RNN(input size, hidden size)
         self.h2o = nn.Linear(hidden size, output size)
         self.softmax = nn.LogSoftmax(dim=1)
    def forward(self) SOFTMAX
         rnn_out, hidd
         output = self CLASS torch.nn.Softmax(dim=None) [SOURCE]
         output = self
                              Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output
                              Tensor lie in the range [0,1] and sum to 1.
         return output
                              Softmax is defined as:
```

4/1/2025

 $Softmax(x_i) = \frac{\exp(x_i)}{\sum_i \exp(x_i)}$

 W_{i-1}

```
import torch.nn as nn
import torch.nn.functional as F
class CharRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(CharRNN, self). init ()
        self.rnn = nn.RNN(input size, hidden size)
        self.h2o = nn.Linear(hidden size, output size)
        self.softmax = nn.LogSoftmax(dim=1)
    def forward(self, line tensor):
                                                                  encode
        rnn out, hidden = self.rnn(line tensor)
        output = self.h2o(hidden[0])
        output = self.softmax(output)
        return output
```

```
import torch.nn as nn
import torch.nn.functional as F
class CharRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(CharRNN, self). init ()
        self.rnn = nn.RNN(input size, hidden size)
        self.h2o = nn.Linear(hidden size, output size)
        self.softmax = nn.LogSoftmax(dim=1)
    def forward(self, line tensor):
        rnn_out, hidden = self.rnn(line_tensor)
        output = self.h2o(hidden[0])
                                                                  decode
        output = self.softmax(output)
        return output
```

Negative loglikelihood

and type of

optimizer

(we'll talk about this)

```
def train(rnn, training_data, n_epoch = 10, n_batch_size = 64, report_every = 50, learning_rate =
                    0.2, criterion = nn.NLLLoss()):
                        Learn on a batch of training_data for a specified number of iterations and reporting thresholds
                        # Keep track of losses for plotting
                        current loss = 0
                        all_losses = []
                        ron train()
Set learning rate
                        optimizer = torch.optim.SGD(rnn.parameters(), lr=learning_rate)
                        start = time.time()
                        print(f"training on data set with n = {len(training_data)}")
```

```
for iter in range(1, n_epoch + 1):
    rnn.zero_grad() # clear the gradients
    # create some minibatches
    # we cannot use dataloaders because each of our names is a different length
    batches = list(range(len(training_data)))
    random.shuffle(batches)
    batches = np.array_split(batches, len(batches) //n_batch_size )
    for idx, batch in enumerate(batches):
        batch_loss = 0
        for i in batch: #for each example in this batch
                                                                                get predictions
            (label_tensor, text_tensor, label, text) = training_data[i]
            output = rnn.forward(text_tensor)
            loss = criterion(output, label tensor)
            batch_loss += loss
        # optimize parameters
        batch_loss.backward()
        nn.utils.clip_grad_norm_(rnn.parameters(), 3)
        optimizer.step()
        optimizer.zero_grad()
        current_loss += batch_loss.item() / len(batch)
    all_losses.append(current_loss / len(batches) )
    if iter % report_every == 0:
        print(f" \iter \ (\fiter \ n \text{ epoch: 0\%\}): \t average batch loss = \int all losses[-1]\}")
    current_loss = 0
```


http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
for iter in range(1, n_epoch + 1):
    rnn.zero_grad() # clear the gradients
    # create some minibatches
    # we cannot use dataloaders because each of our names is a different length
    batches = list(range(len(training_data)))
    random.shuffle(batches)
    batches = np.array_split(batches, len(batches) //n_batch_size )
    for idx, batch in enumerate(batches):
        batch loss = 0
        for i in batch: #for each example in this batch
                                                                                get predictions
            (label_tensor, text_tensor, label, text) = training_data[i]
            output = rnn.forward(text tensor)
                                                                                eval predictions
            loss = criterion(output, label tensor)
            batch_loss += loss
        # optimize parameters
        batch_loss.backward()
        nn.utils.clip_grad_norm_(rnn.parameters(), 3)
        optimizer.step()
        optimizer.zero_grad()
        current_loss += batch_loss.item() / len(batch)
    all_losses.append(current_loss / len(batches) )
    if iter % report every == 0:
        print(f" \iter \ (\fiter \ n \text{ epoch: 0\%\}): \t average batch loss = \int all losses[-1]\}")
    current_loss = 0
```

$$L^{\text{xent}}(\hat{y}, y) = -\sum_{label\ k} \hat{y}[k] \log p(y = k|x)$$

Set t = 0

Pick a starting value θ_t Until converged:

for example(s) sentence i:

- 1. Compute loss I on x_i
- 2. Get gradient $g_t = I'(x_i)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
for iter in range(1, n_epoch + 1):
    rnn.zero_grad() # clear the gradients
    # create some minibatches
    # we cannot use dataloaders because each of our names is a different length
    batches = list(range(len(training_data)))
    random.shuffle(batches)
    batches = np.array_split(batches, len(batches) //n_batch_size )
    for idx, batch in enumerate(batches):
        batch loss = 0
        for i in batch: #for each example in this batch
                                                                               get predictions
            (label_tensor, text_tensor, label, text) = training_data[i]
            output = rnn.forward(text tensor)
                                                                               eval predictions
           loss = criterion(output, label tensor)
            batch_loss += loss
        batch_loss.backward()
                                                                            compute gradient
        nn.utils.clip_grad_norm_(rnn.parameters(), 3)
        optimizer.step()
        optimizer.zero_grad()
        current_loss += batch_loss.item() / len(batch)
    all_losses.append(current_loss / len(batches) )
    if iter % report every == 0:
        print(f" \iter \ (\fiter \ n \text{ epoch: 0\%\}): \t average batch loss = \int all losses[-1]\}")
    current_loss = 0
```

Set t = 0

Pick a starting value θ_t Until converged:

for example(s) sentence i:

- 1. Compute loss I on x.
- 2. Get gradient $g_t = I'(x_i)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{+1} = \theta_{+} \rho_{+} * g_{+}$
- 5. Set t += 1

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
for iter in range(1, n_epoch + 1):
    rnn.zero_grad() # clear the gradients
    # create some minibatches
    # we cannot use dataloaders because each of our names is a different length
    batches = list(range(len(training_data)))
    random.shuffle(batches)
    batches = np.array_split(batches, len(batches) //n_batch_size )
    for idx, batch in enumerate(batches):
        batch loss = 0
        for i in batch: #for each example in this batch
                                                                               get predictions
            (label_tensor, text_tensor, label, text) = training_data[i]
           output = rnn.forward(text tensor)
                                                                              eval predictions
           loss = criterion(output, label tensor)
            batch_loss += loss
       batch_loss.backward()
                                                                            compute gradient
       nn.utils.clip_grad_norm_(rnn.parameters(), 3)
       optimizer.step()
                                                                               perform SGD
       optimizer.zero grad()
        current_loss += batch_loss.item() / len(batch)
    all_losses.append(current_loss / len(batches) )
    if iter % report every == 0:
        print(f" \iter \ (\fiter \ n \text{ epoch: 0\%\}): \t average batch loss = \int all losses[-1]\}")
    current_loss = 0
```

Set t = 0
Pick a starting value θ_t
Until converged:
for example(s) sentence i:

- 1. Compute loss I on x_i
- 2. Get gradient $g_t = I'(x_i)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

Suggested Implementation Changes

```
import torch.nn as nn
import torch.nn.functional as F

class CharRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(CharRNN, self).__init__()

    self.rnn = nn.RNN(input_size, hidden_size)
    self.h2o = nn.Linear(hidden_size, output_size)
    self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, line_tensor):
        rnn_out, hidden = self.rnn(line_tensor)
        output = self.h2o(hidden[0])
        output = self.softmax(output)
```

PyTorch's
CrossEntropyLoss
does a softmax
and then takes
the log

```
def train(rnn, training_data,
0.2, criterion = mn.Ntttoss())

Learn on a batch of training_data for a specified number of iterations and reporting thresholds

"""

# Keep track of losses for plotting
current_loss = 0
all_losses = []
rnn.train()
optimizer = torch.optim.SGD(rnn.parameters(), lr=learning_rate)

start = time.time()
print(f"training on data set with n = {len(training_data)}")
```

return output

Another Solution: LSTMs/GRUs

Sequence-to-Sequence

nttps://colab.research.google.com/github/bentrevett/pytorch-seq2seq/blob/main/1%20-%20Sequence%20to%20Sequence%20Leaming%20with%20Neural%20Networks.ipynb#scrollTo=k6sRrL4wKsmi

Encoder


```
class EncoderRNN(nn.Module):
    def __init__(self, input_size, hidden_size, dropout_p=0.1):
        super(EncoderRNN, self).__init__()
        self.hidden_size = hidden_size

        self.embedding = nn.Embedding(input_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
        self.dropout = nn.Dropout(dropout_p)

def forward(self, input):
    embedded = self.dropout(self.embedding(input))
    output, hidden = self.gru(embedded)
    return output, hidden
```

https://pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html

Decoder

https://pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html

```
class DecoderRNN(nn.Module):
   def __init__(self, hidden_size, output_size):
        super(DecoderRNN, self).__init__()
        self.embedding = nn.Embedding(output_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
       self.out = nn.Linear(hidden_size, output_size)
   def forward(self, encoder_outputs, encoder_hidden, target_tensor=None):
        batch_size = encoder_outputs.size(0)
        decoder_input = torch.empty(batch_size, 1, dtype=torch.long,
device=device).fill_(SOS_token)
        decoder_hidden = encoder_hidden
        decoder_outputs = []
       for i in range(MAX_LENGTH):
            decoder_output, decoder_hidden = self.forward_step(decoder_input, decoder_hidden)
            decoder_outputs.append(decoder_output)
           if target_tensor is not None:
                # Teacher forcing: Feed the target as the next input
               decoder_input = target_tensor[:, i].unsqueeze(1) # Teacher forcing
            else:
                # Without teacher forcing: use its own predictions as the next input
               _, topi = decoder_output.topk(1)
               decoder_input = topi.squeeze(-1).detach() # detach from history as input
       decoder_outputs = torch.cat(decoder_outputs, dim=1)
       decoder_outputs = F.log_softmax(decoder_outputs, dim=-1)
       return decoder outputs, decoder hidden, None # We return 'None' for consistency in the
training loop
   def forward_step(self, input, hidden):
        output = self.embedding(input)
       output = F.relu(output)
       output, hidden = self.gru(output, hidden)
       output = self.out(output)
       return output, hidden
```

Seq2Seq Tutorial

You will need to download the data. You can run !wget https://download.pytorch.org/tutorial/data.zip !unzip data.zip

https://pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html

NLP From Scratch: Translation with a Sequence to Sequence Network and Attention

Created On: Mar 24, 2017 | Last Updated: Oct 21, 2024 | Last Verified: Nov 05, 2024

Author: Sean Robertson

This tutorials is part of a three-part series:

- . NLP From Scratch: Classifying Names with a Character-Level RNN
- NLP From Scratch: Generating Names with a Character-Level RNN
- NLP From Scratch: Translation with a Sequence to Sequence Network and Attention

This is the third and final tutorial on doing **NLP From Scratch**, where we write our own classes and functions to preprocess the data to do our NLP modeling tasks.