Community Identification among Video Social Platform Youtube

Network Science Analytics – Final Project

Florian BARRAL – Maria BOSCH – Rémi CANARD – Hugo FERNANDEZ – Clarice HAYRABEDIAN

Our Team

Florian BARRAL

Maria BOSCH

Clarice HAYRABEDIAN

Hugo FERNANDEZ

Rémi CANARD

- 1. Introduction and motivation What are we working on ?
- 2. Problem definition and Related work
- 3. Methodology
- 4. Evaluation
- 5. Conclusion

Introduction and Motivation

• Leading question: how to detect communities in social networks?

- Main applications:
 - Optimization of:

Increase global traffic

- 1. Introduction and motivation
- 2. Problem definition and Related work *Main goals and Challenges*
- 3. Methodology
- 4. Evaluation
- 5. Conclusion

Defining the problem

OBJECTIVE:

Detect communities in the graph that matches the Ground Truth Communities already present in the dataset

DATASET DESCRIPTION

- From a selection of communities containing at least 4 members
- We have a connected undirected graph containing:
 - More than 1.1 million nodes and almost 3 million edges
 - An average degree of 5.2 nodes

Main Challenges

 Reduce the computation time of the classic community detection algorithms given the huge size dataset

- Given the scarce literature and freely available code implementations or libraries:
 - difficulty to find algorithms to suit more than a specific dataset
 - difficulty to assess which scoring metrics are going to be best

Related Work

Andersen et al. (2006)

 In order to improve computation time in community detection, the latter can be done starting from a node and without analyzing the full graph

Yang and Leskovec (2012):

- They work shows that scoring functions such as the conductance score well capture the structure of ground-truth communities
- They explore detecting communities from a single seed node

- 1. Introduction and motivation
- 2. Problem definition and Related work
- 3. Methodology *How we address our problem*
- 4. Evaluation
- 5. Conclusion

Data Preparation

Graph studied:

Nodes: 1 134 890

Edges: 2 987 624

Classical algorithms applied to complete graph → Very high computational time

Smart algorithm exploring graph from a seed node

Original approach from a seed node

Discovering communities from a seed node ...

→ Automatic detection of the community of a node and its other members

Benefits of this approach:

- 1. No specific input data: no hyperparameters
- 2. <u>Scalability</u>: Computational time proportional to the size of the detected community (NOT the size of the network)

Original approach from a seed node

Personalized PageRank

- Start from a seed node
- random walk from the seed node
- ⇒ Rank the node

How does it work?

Conductance

- measure of the quality of the community
- Add node to a community and stop when conductance is in a local minima

- 1. Introduction and motivation
- 2. Problem definition and Related work
- 3. Methodology
- 4. Evaluation Assessing the results of our analysis
- 5. Conclusion

Model Evaluation

- Evaluating the community of the seed node detected and the real one
- With **F1 Scoring**: $FI = 2\frac{pr}{p+r} \text{ where } p = \frac{TP}{TP+FP}, \ r = \frac{TP}{TP+FN}$
- Examples of the evolution of the conductance of a seed node depending on the number of neighbors taken: we assess with ground truth the "communities" that emerge from each minimum

- 1. Introduction and motivation
- 2. Problem definition and Related work
- 3. Methodology
- 4. Evaluation
- 5. Conclusion What we learned from our study

Conclusion

- Reasonable computational time for communities detection from seed nodes
 - → impact for recommendation for big networks
- Work perspectives:
 - average different metrics (i.e. triad participation ratio)
 - combine with machine learning & reinforcement learning

THANK YOU!