

Using size increment data in age-structured stock assessment models

Acknowledgements

Megan Winton (CFF)
Rick Methot (NMFS)
Alex da Silva, Mark Maunder (IATTC)
Laura Lee (NCDENR)
Geoff Tuck (CSIRO)

Gavin Fay

gfay@umassd.edu

@gavin_fay

www.thefaylab.com

CAPAM growth workshop: Nov 2014

Take home messages:

- Be VERY careful when doing a Google image search for "size increments".
- Being internally consistent when treating our models and data is A Good Thing.
- Most of the machinery to include size increment data already exists.
- Worthwhile to understand when including additional types of data can be useful.

Size increment data from tag recaptures

- Models external to assessments
- Challenges for including in assessment models
- An Approach (with Synthesis in mind)
- Stock Synthesis modifications for implementation.

How have size increment data been used?

External from assessment model

- Estimate growth parameters e.g. Fabens (1965), Laslett et al. (2002)
- Used to corroborate assessment model estimates of growth

Internally in assessment model

- CASAL (multinomial size at recapture)
- Estimate size transition matrices
 [see Punt later for size-structured models]

Generally, growth increments have not been included among data used to fit age-structured stock assessment models.

CHALLENGES ARISE

Assumption of growth increment estimators

Assumption of growth increment estimators

Assumption of most age-structured stock assessment models

Assumption of most age-structured stock assessment models

Selectivity can also produce bias

Selectivity can also produce bias

Selectivity can also produce bias

Why fit these data internally?

- Consistency in assumptions associated with estimates.
- Account for biases (e.g. selectivity).
- Incorporate uncertainty associated with growth estimation in to estimates of stock status, reference points, etc.

Can we borrow from Size structured models?

Methods

- Fabens (1965) [and extensions]
 - Growth increment given time at liberty
 - Often model individual variation in one or more parameters.
- Laslett et al. (2002) [LEP]
 - Join distribution of sizes at release and recapture given time at liberty, integrate over age at release.
 - Individual variation in L_{infinity}
- Multinomial size at recapture
- Q: When is it OK to use the simple(r) methods?

LEP-ish in something like Stock Synthesis

$$p(L1, L2|\Delta t, \theta) = \int\limits_{a}^{b} f(L1, L2|\Delta t, a, \theta) p(a) da$$
Aires da Silva et al. 2014. Fish Res.

Need to obtain distribution for age at release. If condition on size at release, this is the conditional age at length!

Conditional age given size at release

Predicted size distribution for recaptures

Integrate across ages to compare to observations

Tagging in Stock Synthesis

- Tag releases assigned to 'tag groups'
 - Collection of tags all released at same time
 - Each group assigned same age at release
- Tag recaptures by group negative binomial
 - Multinomial tag recaptures by fleet/area
 - Why not extend this to length bin?(e.g. MAST, Taylor et al.)

Predicted size distribution for recaptures

Modifications to Stock Synthesis

- Likelihood for LEP 'easily' added.
- Creates inconsistency with approach used to model tag recaptures.
- Alternative is to model tag recapture numbers by expected size, rather than adding likelihood component.
- Solution? Define tag groups as releases by length.
- Opportunity to expand on tagging module, provide full functionality to tagging parameters.

Curse of longitudinal data....

• Still no correlation between length at release and length at recapture, except for age.

Possible solutions:

- Send in the Platoons?
- Estimate covariance in deviations from mean length? (cf Laslett et al.)

Next steps

- Get this working in a simple SCAA model, step to Stock Synthesis
- Identify case studies with unique properties; what situations do we want to evaluate these data for?
- Simulation testing to understand relative performance of applying different methods.
- What do we gain from including these data?
- Can we expand this to multiple observations of size increments for a single individual?
 e.g. otolith growth chronology

Take home messages:

- Be VERY careful when doing a Google image search for "size increments".
- Being internally consistent when treating our models and data is A Good Thing.
- Most of the machinery to include size increment data already exists.
- Still not perfect, but we're not all Thorson.
- Worthwhile to understand when including additional types of data can be useful.

Thank you!

github.com/gavinfay/CAPAMgrowth gfay@umassd.edu www.thefaylab.com @gavin_fay

Evaluating Tagging in Stock Synthesis

How does the assignment of ages to tag releases impact the performance of the assessment model?

spawning biomass

fix: assume fixed age of releases

1, 3, 5, 7: number of tag groups

lots: ages assigned individually

trawl available biomass