Telemarketing Campaign
Predictive Analysis for
Portuguese Banking Institution

The problem

Company

Portuguese Banking Institution

Context

- Firms spend massive amounts of money on marketing campaigns hoping to maximize the return on investment (ROI).
- Understanding the customers along is crucial for achieving an effective marketing strategy.
- Data analysis insights leads to an intelligent targeted marketing.

Problem statement

Not satisfying ROI

Through a telemarketing campaign, there is a need for a model that predicts whether a given customer will subscribe to a term deposit service offered by the bank.

Exploratory Data Analysis (EDA)

- Contains 20 features and a binary target variable. Available in the UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets/Bank+Marketing#.
 - 11 categorical variables including the response variable.
 - 10 Numeric Features
 - Imbalanced dataset
 - 41188 Data points


```
Column
                     Non-Null Count
                                     Dtype
                     41188 non-null
                                     int64
     age
     job
                     41188 non-null
                                     object
     marital
                     41188 non-null
                                     object
     education
                     41188 non-null
                                     object
     default
                     41188 non-null
                                     object
     housing
                     41188 non-null
                                     object
     loan
                     41188 non-null
                                     object
     contact
                     41188 non-null
                                     object
     month
                     41188 non-null
                                     object
     day of week
                     41188 non-null
                                     object
     duration
                     41188 non-null
                                     int64
                     41188 non-null
                                     int64
     campaign
     pdays
                     41188 non-null
                                     int64
     previous
                     41188 non-null
                                     int64
                                     object
     poutcome
                     41188 non-null
                     41188 non-null
                                     float64
     emp.var.rate
     cons.price.idx
                     41188 non-null
                                     float64
     cons.conf.idx
                     41188 non-null
                                     float64
     euribor3m
                     41188 non-null
                                     float64
     nr.employed
                     41188 non-null
                                     float64
                     41188 non-null object
dtypes: float64(5),
                    int64(5), object(11)
```

1. Categorical Features

- Correlation with the response variable using Cramer's V
- Highest Correlation
 - poutcome: outcome of the previous marketing campaign
 - Month
 - Job

	Feature	Cramers_V
0	poutcome	0.320448
1	month	0.274123
2	job	0.151955
3	contact	0.144612
4	default	0.099123
5	education	0.067183
6	marital	0.053976
7	day_of_week	0.023143
8	housing	0.009533
9	Ioan	0.000000

1. Categorical Features

- Correlation Analysis using Cramer's V
- The heatmap below shows a strong association between loan and house variables with Cramer's V = 0.71, and a moderate association between education and job V = 0.36.
- Also, a strong association between month and contact with V = 0.61.
- poutcome, Month, and Job have weak correlation with the response variable.

-02

poutcome

Notice: The "All" row and column from the calculated matrix is the sum of values in that row and column respectively. It possible to be not located at the very end because of sorting by subscription rate.

esponse	no	yes	All	within clas	s subscription per poutcome %	
poutcome						
success	479	894	1373	65.112891		65% of contacted proviously
failure	3647	605	4252	14.228598		65% of cantaccted previously subscribed subscribed again
All	36537	4639	41176	11.266272		- Castorista Castorista again
nonexistent	32411	3140	35551	8.832382		

Month

- May received most calls
- Mars has highest success rate

response	no	yes	All	within class subscription per month %
month				
mar	270	276	546	50.549451
dec	93	89	182	48.901099
sep	314	256	570	44.912281
oct	402	315	717	43.933054
apr	2092	539	2631	20.486507
All	36537	4639	41176	11.266272
aug	5521	655	6176	10.605570
jun	4759	559	5318	10.511470
nov	3684	416	4100	10.146341
jul	6521	648	7169	9.038918
may	12881	886	13767	6.435680

1332 124

8615 638 9253

323 3967

entrepreneur

blue-collar

1456

8.516484

8.142173

6.895061

- admins received most calls
- Students and retired has highest success rate

1. Numerical Features

1. Numerical Features

	age								
	count	mean	std	min	25%	50%	75%	max	
response									
no	36537.0	39.910994	9.897176	17.0	32.0	38.0	47.0	95.0	
yes	4639.0	40.912266	13.838838	17.0	31.0	37.0	50.0	98.0	

hank data grouphy//reconnect////age/11 describe//

- Age overlaps across both classes
- Outliers in both classes

emp.var.rate

- emp.var.rate feature refers to employment variation rate quarterly indicator
- 10 distinct values
- Most calls in positive var rate
- Subscription rate highest when emp.var.rate = -1.7

Correlation Analysis

Cramer's V

Pairwise Correlation between categorical variables

Assumes symmetrical relation

Pearson Correlation (r)

- Pairwise Correlation between numerical variables
- Assumes symmetrical relation

Predictive power Score (PPS)

- Pairwise Correlation between numerical and Categorical variables
- Asymmetrical relation

Predictive power Score (PPS)

PPS confirmed the correlation between most of the social and economic context attributes. Correlated features:

- 'euribor3m',
- 'cons.price.idx',
- 'cons.price.idx'
- 'emp.var.rate',
- 'nr.employed'
- Job is predictive of education
- From the table, only few features are weak predictor to the response

C	core (\PI	P 3)						Prodict	vo Pou	or Soor	v (DDS) matrix								
		1	0					0.04								0.44	•					
	age	'	0	0	0	0	0	0.01	0	0.03	0	0	0	0.12	0	0.11	0	0	0	0	0	0
	campaign	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	cons.conf.idx	0	0	1	1	0	0	0	0	0	0.53	0.81	0	0	0	0	0.32	0.58	0	0	0	0
	cons.price.idx	0.01	0.01	1	1	0.29	0	0.03	0	0.01	0.66	0.82	0	0.02	0	0	0.34	0.69	0	0.08	0.09	0.01
	contact	0	0	0.85	0.85	1	0	0	0.02	0	0.58	0.74	0	0	0	0	0.56	0.58	0	0	0	0
	day_of_week	0.01	0	0	0	0	1	0	0	0	0	0.6	0	0	0	0	0	0	0	0	0	0
	default	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	duration	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0.01
	education	0.05	0	0.03	0.03	0	0	0	0.03	1	0	0.05	0	0.35	0	0	0.01	0	0	0	0	0
		0	0	1	1	0.05	0	0	0	0	1	0.97	0	0	0	0	0.23	1	0	0.07	0.08	0
	emp.var.rate	U		Section 1													0.23					
	eunbor3m	0	0	0.99	0.99	0	0	0	0	0	0.96	1	0	0	0	0	0.18	0.97	0	0.05	0.05	0
	housing	0	0	0.04	0.04	0	0	0	0	0	0	0.01	1	0	0	0	0	0	0	0	0	0
	job	0.06	0	0.05	0.05	0.01	0	0.03	0.02	0.27	0	0.06	0	1	0	0.03	0.02	0.01	0	0	0	0
	loan	0	0	0	0	0	0	0	0	0	0	0	0.15	0		0	0	0	0	0	0	0
	marital	0.29	0	0.04	0.04	0	0	0	0.04	0	0.01	0.1	0	0.07	0	1	0	0.01	0	0	0	0
	month	0.01	0	1	1	0.07	0	0	0.01	0	0.42	0.83	0	0	0	0	1	0.43	0	0	0	0
	nr.employed	0	0	1	1	0	0	0	0	0	0.94	0.97	0	0	0	0	0.26	1	0	0.1	0.11	0
	pdays	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.32	0	0
	poutcome	0.02	0	0.07	0.07	0	0	0	0	0	0	0.07	0	0	0	0	0	0	0.25	1	0.78	0
	previous	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.69	1	0
		0.03	0	0.14	0.14	0	0	0	0.18	0	0.09	0.17	0	0	0	0	0.01	0.14	0.18	0.2	0.02	1
	response																					100
		age	campaign	ns.conf.idx	s price idx	confact	/_of_week	default	duration	education	np.var.rate	euribor3m	housing	g g	loan	marital	month	employed.	pdays	poutcome	previous	response

PPS of the response Feature ppscore poutcome 0.20 2 pdays 0.18 duration 0.18 euribor3m 0.17 nr.employed 0.14 6 cons.conf.idx 0.14 cons.price.idx 0.14 emp.var.rate 0.09 0.03 age 10 0.02 previous 11 month 0.01 12 marital 0.00 13 default 0.00 14 0.00 housing 15 campaign 0.00 16 job 0.00 day_of_week 0.00 18 contact 0.00 19 0.00 loan 20 education 0.00

Preprocessing

Preprocessing

- Label Encoder
- One Hot Encoder
- Train Test Split

Results

The new features are 61:

'job_management', 'job_unemployed', 'job_self-employed', 'job_other', 'job_entrepreneur', 'job_student', 'ma rital_married', 'marital_single', 'marital_divorced', 'marital_other', 'education_basic.4y', 'education_high.school', 'education_basic.6y', 'education_basic.9y', 'education_professional.course', 'education_other', 'education_university.degree', 'education_illiterate', 'default_no', 'default_yes', 'housing_no', 'housing_yes', 'loan_no', 'loan_yes', 'contact_telephone', 'contact_cellular', 'month_may', 'month_jun', 'month_jun', 'month_ot', 'month_

['age', 'job housemaid', 'job services', 'job admin.', 'job blue-collar', 'job technician', 'job retired',

n', 'day_of_week_tue', 'day_of_week_wed', 'day_of_week_thu', 'day_of_week_fri', 'duration', 'campaign', 'pda
ys', 'previous', 'poutcome_nonexistent', 'poutcome_failure', 'poutcome_success', 'emp_var_rate', 'cons_price
_idx', 'cons_conf_idx', 'euribor3m', 'nr_employed', 'response']

60 variables including the target after dropping duration.

 Oversampling using SMOTE, Synthetic Minority Oversampling Technique,

Modeling results and analysis

Modeling Method

Models

- Tested classification algorithms:
 - Logistic Regression
 - o Decision Tree
 - Random Forest
 - Light Gradient Boosting
 - XGboost

Hyperparameter Tuning

- Bayesian hyperparameter optimization, using Tree-structured Parzen Estimator Approach (TPE).
- Various objective functions applied.
- Recall_micro gave more balanced.

Business Objective Reflected

Models Comparison

Winning Model **Light Gradient Boosting Model** ROCAUC = 0.81Recall Weighted avg = 0.88

Igbm / recall_micro xgb / recall_micro

Decision Tree / recall micro

Random Forest / Recall Mic.

model / objective function Logistic Regression/ F1

precision

0.95

0.35

0.65 0.88

0.8

0.94

0.47

0.71

0.89

0.81

0.93

0.72

0.88

0.79

0.93

0.46

0.7

0.88

0.78

0.93

0.5

0.72

0.88

8.0

0.5

Not Subscribed 0

Subscribed 1

accuracy

macro avg

ROC AUC

accuracy

macro ava

ROC AUC

accuracy

macro ava

ROC AUC

accuracy

macro avg

ROC AUC

accuracy

macro ava

ROC AUC

weighted avg

weighted avg

Subscribed 1

Not Subscribed 0

recall

0.85

0.64

0.75

0.83

0.8

0.92

0.57

0.74

0.88

0.81

0.95

0.4

0.68

0.89

0.79

0.93

0.48

0.7

0.88

0.78

0.95

0.4

0.68

0.89

0.8

f1-score

0.9

0.46

0.68

0.85

0.8

0.93

0.51

0.72

0.88

0.81

0.94

0.45

0.69

0.88

0.79

0.93

0.47

0.7

0.88

0.78

0.94

0.45

0.69

0.88

0.8

support

10961

1392

0.83

12353

12353

10961

1392

0.88

12353

12353

10961 1392

0.81

0.89

12353

12353

10961

0.79

1392

0.88

12353

12353

10961

0.78

1392

0.89

12353

12353

0.8

0.8

Winning Model Details

XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree='0.675', eval_metric='aucpr',
gamma='0.073', gpu id=-1, importance type='gain',
interaction constraints='', learning rate=0.300000012,
max delta step=0, max depth=10, min child weight=1, missing=nan,
monotone constraints='()', n estimators=20, n jobs=4,
num parallel tree=1, random state=0, reg alpha=0, reg lambda=1,
scale_pos_weight=2, subsample=1, tree_method='exact',

validate parameters=1, verbosity=None)

Look as Interesting Business Features

Permutation Importance

Summary and conclusion

Business Perspective

- Without the model, the bank has 11.3% chance of randomly targeting those who are likely subscribe
- With Recall 0.57 on the subscribers class, Bank has 57% chance of targeting subscribers. ROI can be increased by 45.7% using the model
- The bank needs to invest more on collecting customers predictive features for more profitable predictive modeling

Technical Perspective

- The Light Gradient Boosting algorithm optimized for Recall Micro gave the best performance. ROC AUC = 0.81 and F1= 0.51 one minority class, (waited avg F1= 0.88).
- Optimizing the hyperparameters on the Recall Micro gave a better performance of most of the models applied on this imbalanced dataset.
- The SMOTE oversampling seemed to be helpful with this imbalanced dataset.
 Scores on the 30% split test set indicates that the model can be generalizable.