

 $\Box \quad \Phi_E (S_1) > -100 \text{ V.m}$ $\Box \quad \Phi_E (S_4) < 100 \text{ V.m}$

 $\begin{array}{l} \square \ \ \text{-900 V.m} < \Phi_E \ (S_1) < \text{-100 V.m} \\ \square \ \ \text{-200 V.m} < \Phi_E \ (S_3) < \text{+400 V.m} \\ \square \ \ \text{-100 V.m} < \Phi_E \ (S_2) < \text{+900 V.m} \end{array}$

Teoria da Eletricidade

Mestrado Integrado em Eng^a Eletrónica Industrial e Computadores 1º Teste de avaliação

duração – 2 horas 5/12/2012

n°			
1	h C.	h	
.n	+5a	+0	-5a
	. 54		-04
I		II	
-5q	+q	+5q	-q
•	•		•
111		IV	
forme. Prete	ende-se movime	ntar um <u>eletrão</u>	do ponto A até \vec{E}
encial V. O de as condições (+Q, -Q e onsiderando	condensador é d s: -2Q) e quatro que Q= 2x10 ⁻⁹		o da bateria e a S_1
	colocadas so o. Das seguir ondutor; tor é perpendo interior do is. forme. Prete cial do eletrã encial V. O o das condições (+Q, -Q e onsiderando	colocadas sobre um eixo. So o. Das seguintes opções, indi- -q +5q I -5q +q III condutor; ator é perpendicular à superfico interior do condutor; as. Iforme. Pretende-se moviment; as. cial do eletrão em B. cial do eletrão em A. cencial V. O condensador é de das condições:	indicadas todas as opções corretas que lhe Em cada questão existe sempre pelo menos colocadas sobre um eixo. Sobre esse eixo, e o. Das seguintes opções, indique a(s) verdada eq +5q +q

Problemas (16 val)

P1. (4,5 val) Considere a distribuição de cargas indicada na figura ($+Q=2x10^{-6}$ C e $-Q=-2x10^{-6}$ C), onde quatro cargas pontuais estão localizadas nos vértices de um quadrado de com lados de comprimento a = 1 cm. Determine:

- a) a força elétrica sobre a carga +Q, situada no vértice superior direito do quadrado, devido às outras 3 cargas.
- b) o vetor campo elétrico no ponto onde está situada essa carga.
- **c**) o trabalho realizado pelas forças elétricas para levar a carga +Q, situada no vértice superior direito do quadrado, do ponto onde se encontra até ao infinito.

P2. (4 val) A figura representa uma esfera condutora maciça, de raio a=2 cm, tem uma carga líquida Q=5 μC . Uma casca condutora esférica, de raio interno b=6 cm e raio externo c=8 cm, é concêntrica a essa esfera maciça e tem carga líquida q=-2 μC . Nestas condições, e considerando r, como sendo a distância do centro desta configuração de cargas, determine:

- a) a distribuição de carga pelas superfícies internas e externas da casca. Justifique.
- **b**) o campo elétrico para r = 1 cm e r = 9 cm;
- c) o potencial elétrico para r = 7 cm e para r = 9 cm;
- **P3.** (3 val) Quatro condensadores estão ligados conforme aparecem na figura. Calcule:
- a) a capacidade equivalente do conjunto de condensadores
- b) a diferença de potencial e a carga no condensador de 4 µF.

- **P4.** (4,5 val) A área das placas de um condensador de placas paralelas mede 2 cm². Quando as placas estão no vazio, o condensador é ligado a uma fonte de alimentação de 50 V e armazena uma carga de 8 nC.
- a) Calcule o valor da capacidade do condensador
- b) Determine a magnitude do campo elétrico entre as placas do condensador.

O condensador é desligado da fonte de alimentação e o espaço entre as placas é preenchido com nylon (κ =3.4; E_{max} =1.4 \times 10⁷ V/m).

- c) Calcule a diferença de potencial e a carga do condensador após a inserção do dielétrico.
- d) Calcule a diferença de potencial máxima que pode ser aplicada entre as placas sem que seja provocado o rompimento dielétrico.