Réseaux Avancés

Cours 6: routage statique et dynamique (RIPv1 et RIPv2)

Osman SALEM
Osman.salem@parisdescartes.fr
Maître de Conférences - HDR

Routeur

- Configuration
 - Hostnames
 - Router(config)#hostname R1
 - Banners
 - R1(config)#banner motd #

Enter Text message. End with the character

C'est un routeur surveillé.#

- Passwords
 - enable secret mot_de_passe: le mot de passe est stocké de manière cryptée
 - enable password mot_de_passe: le mot de passe est stocké en claire
- suppression du mot de passe
 - no enable password
 - no enable secret

Mode de configuration pour un routeur

- La numérotation des interfaces se fait de la façon suivante
 - Le premier chiffre indique le slot utilisé
 - Le deuxième chiffre indique le port utilisé
- Pour attribuer l'adresse ip 183.8.126.2 à l'interface ethernet 0

Configuration d'une interface série

Fast Ethernet Interface

Router(config)# hostname Anothername

Router(config)# interface fastethernet 0/0

Router(config-if)# ip address 190.100.11.1 255.255.255.0

Router(config-if)# no shutdown

Serial Interface (DCE) (no clock for DTE)

Router(config)# interface serial 0/0

Router(config-if)# ip address 190.100.10.2 255.255.255.0

Router(config-if)# clock rate 56000

Router(config-if)# no shutdown

Routeur: table de routage

- Routeur: examine l'@ IP destination et détermine le chemin
 - show ip route

Routage statique

- R1(config)#interface serial 0/0
- R1(config-if)#ip address 172.16.2.1 255.255.255.0
- R1(config-if)#clock rate 64000
- R1(config-if)#no shutdown
- R2(config)#interface fastethernet 0/0
- R2(config-if)#ip address 172.16.1.1 255.255.255.0
- R2(config-if)#no shutdown
- Au démarrage, la table de routage contient uniquement les interfaces directement connectées

Routage statique

- ip route : une route statique
- 172.16.1.0 : destination network address
- 255.255.255.0 : subnet mask of destination network
- 172.16.2.2 : serial 0/0/0 interface IP address on R2, which is the "next-hop" to this network

R1 static route to R2's LAN

Routage statique

- Suppression d'une route:
 - R1(config)#no ip route 192.168.2.0 255.255.255.0 172.16.2.2
- Lab 1: à réaliser!

Diagramme de topologie

Table d'adressage

Périphérique	Interface	Adresse IP	Masque de sous-réseau	Passerelle par défaut :
R1	Fa0/0	192.168.1.1	255.255.255.0	s/o
	\$0/0/0	192.168.2.1	255.255.255.0	s/o
R2	Fa0/0	192.168.3.1	255.255.255.0	s/o
	\$0/0/0	192.168.2.2	255.255.255.0	s/o
PC1	s/o	192.168.1.10	255.255.255.0	192.168.1.1
PC2	s/o	192.168.3.10	255.255.255.0	192.168.3.1

Passerelle par défaut

- Default Static Route
 - @IP de destination et masque sont à zéro
 - R1(conf)# ip route 0.0.0.0 0.0.0 82.110.171.96
 - R1(config)#ip route 0.0.0.0 0.0.0.0 [exit-interface | ip-address]
- La métrique : quantifie la qualité de la route
 - Plus la métrique est petite, meilleure est la route
 - Soit attribuée manuellement
 - Soit calculée par le protocole de routage utilisé
- Distance Administrative (préférence): plus cette valeur est petite, meilleur est la route. Valeurs par défaut:

Route connectée	0
Route statique	1
EIGRP	90
OSPF	110
RIPv2	120
Ext erne EIGRP	170

Choisir la meilleure route

- Le routeur choisira toujours la route la plus précise, celle qui a le masque de sous-réseau le plus grand
- Si plusieurs routes ont le même degré de précision (même adresse réseau et même masque), le routeur choisira celle qui a la plus petite distance administrative
- Si il a toujours le choix, c'est la route ayant la plus petite métrique qui l'emportera

Choisir la meilleure route

Default Administrative Distance

Directly Connected: 0
Static Route: 1
RIP: 120
IGRP: 100
EIGRP: 90
OSPF: 110

- 0 : degré de confiance maximal
- 255: pas de confiance

- Vecteur de distance
 - Envoi périodique des vecteurs de distance aux voisins
 - La distance est définie en termes de mesure, comme le nombre de sauts
 - Plus court chemin calculé de façon distribuée
 - Vision incomplète du réseau
- Etat des liens
 - Chaque routeur construit localement la topologie du réseau
 - Messages liés aux changements de connectivité des liens et les conditions de la qualité de service.
 - A partir de la topologie, chaque routeur calcule le meilleur chemin vers une destination
 - Vision complète du réseau

RIPv1: Algorithme de mise à jour

- Si entrée n'existe pas et < infini
 - Ajout avec bonne métrique et prochain routeur
 - Initialisation temporisation
- Si entrée présente et nouvelle < ancienne
 - Mise à jour métrique et prochain routeur
 - Réinitialisation temporisation
- Si entrée présente et routeur suivant = émetteur
 - Mise à jour de la métrique
 - Réinitialisation temporisation

RIPv2: Configuration 150.100.2.0/24 150.100.4.0/24 Kuala Lumpur (config) #router rip Kuala Lumpur (config-router) #version 2 Kuala Lumpur (config-router) #network 150.100.0.0 Bangkok (config-router) #version 2 Rangkok (config-router) #network 150.100.0.0

Commandes pour RIP

Router(config)# router rip Router(config-router)# timers basic 20 120 120 160

The *timers basic* command allows us to change the update (20), invalid (120), hold-down (120), and flush (240) timers. To return the timers back to their defaults:

Router(config-router)# no timers basic

RouterC(config)# router rip RouterC(config-router)# network 10.4.0.0 RouterC(config-router)# network 10.2.0.0 RouterC(config-router)# passive-interface s0

RouterC(config)# router rip RouterC(config-router)# network 10.4.0.0 RouterC(config-router)# network 10.2.0.0 RouterC(config-router)# passive-interface default RouterC(config-router)# no passive-interface e0

RIPv1: Algorithme de mise à jour

- Le vecteur de distance est envoyé :
 - Périodiquement (chaque) 30 secondes
 - Par déclenché: dès qu'une entrée est modifiée. Uniquement les entrées modifiées sont transmises
- Chaque message contient une entrée et une mesure
 - Valeur 16 correspond à l'infini
- Minuteur de temporisation
 - Invalid Timer: si aucune mise à jour n'a été reçue pour actualiser une route existante dans les 180 secondes (par défaut), la route est marquée comme non valide (valeur 16 attribuée à la mesure)
 - *Flush Timer*: la route est conservée dans la table de routage jusqu'à l'expiration du minuteur d'annulation (= 240 secondes)
 - Lorsque le délai du minuteur d'annulation expire, la route est supprimée de la table de routage

```
Temporisateurs RIP
R1#show ip protocols
Routing Protocol is "rip"
  Sending updates every 30 seconds, next due in 13 seconds
  Invalid after 180 seconds, hold down 180, flushed after 240
  <output omitted>
  Routing for Networks:
   10.0.0.0
  Routing Information Sources:
                               Last Update
   Gateway
                  Distance
   10.3.0.1
                       120
                               00:00:27
  Distance: (default is 120)
```


Mécanismes pour éviter les boucles

- 5 mécanismes dans RIP pour éviter les boucles:
 - Infini = 16
 - Empoisonnement inverse (Poison reverse)
 - Horizon coupé (Split horizon)
 - Mise à jour déclenché (Triggered update)
 - Temporisateur hors service ou de retient ou de mise hors service (Hold down timer)

Horizon partagé avec empoisonnement

 Il est utilisé pour marquer la route comme étant inaccessible dans une mise à jour de routage qui est envoyée à d'autres routeurs

R1 « empoisonne » la route avec une mesure « infinie ».

Réseau	Interface	Saut	Réseau	Interface	Saut	Réseau	Interface	Saut
10.1.0.0	Fa0/0	0	10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1	0
10.2.0.0	\$0/0/0	0	10.3.0.0	S0/0/1	0	10.4.0.0	Fa0/0	16
10.3.0.0	\$0/0/0	1	10.1.0.0	S0/0/0	1	10.2.0.0	\$0/0/1	1
10.4.0.0	S0/0/0	16	10.4.0.0	S0/0/1	16	10.1.0.0	S0/0/1	2

RIPv1: temporisateur

- Réseau unstable
 - Up & down
- Des boucles peuvent toujours se former
 - Avec les solutions: horizon partagé et empoisonnement
- Solution: utiliser un temporisateurs
 - Route marquée inaccessible pendant un "holddown timer (180s)"
 - Pour empêcher les mises à jour erronés
 - Ignorer les mises à jour erronés pendant ce temps
 - Sauf une mise à jours avec une métrique strictement plus petite (stop timer)

Classful & classless

- Classful routing protocols
 - Pas de transmission de Masque des sous réseaux dans les messages de mises-à-jour

Classful routing updates 172.16.3.0/24 R2 applies it's serial 0/0/0 /24 mask to the 172.16.1.0 routing update from R1 S0/0/0 /2 2 2 DCE 172.16.1.0/24 S0/0/0 /2 2 2 DCE 172.16.1.0/24 S0/0/0 /2 2 2 R3 applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 2 2 R3 applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 2 2 R3 applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 3 2 2 R3 applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 3 2 2 R3 applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 3 2 2 R3 applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 3 2 2 R3 applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 3 2 2 R4 Applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 3 2 2 R4 Applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 3 2 2 R4 Applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 3 2 2 R4 Applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 3 2 2 R5 Applies the classful/16 mask to the 172.16.0.0 routing update from R2 S0/0/0 /2 3 2 2 S0/0

Classful & classless

- Classful
 - RIPv1 et IGRP
- Classless
 - RIPv2, EIGRP, OSPF, IS-IS

RIPv1 Limitations

- RIPv1 a classful routing protocol
 - Le masque *n'est pas transmis* dans les messages de routage
 - Si les réseaux ne sont pas contigu, RIPv1 ne peut pas converger
 - Ne supporte pas l'adressage VLSM (CIDR)
 - Update transmis par diffusion

RIPv2

- La version RIP v2 présente les améliorations suivantes:
 - Possibilité de transmettre des informations supplémentaires (masque)
 - Mécanisme d'authentification visant à sécuriser la mise à jour de tables
 - Prise en charge des masques de sous-réseau de longueur variable (VLSM)
 - Mises à jour transmis par multicast

- Similarités avec la version 1 (RIP v1)
 - Utilisation de temporisateurs pour empêcher la formation des boucles
 - Utilisation du mécanisme split horizon ou split horizon avec l'empoisonement inverse
 - Utilisation de mises à jour déclenché (triggered updates)
 - Nombre de sauts maximum est 15

