```
In [6]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from statsmodels.graphics.regressionplots import influence_plot
         import statsmodels.formula.api as smf
         import numpy as np
         #Read the data
In [7]:
         cars = pd.read_csv("Cars.csv")
         cars.head()
           HP
                   MPG VOL
                                     SP
                                             WT
Out[7]:
           49 53.700681
                          89 104.185353 28.762059
        0
           55 50.013401
                          92 105.461264 30.466833
           55 50.013401
                          92 105.461264 30.193597
           70 45.696322
                          92 113.461264 30.632114
           53 50.504232
                          92 104.461264 29.889149
In [8]: cars.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 81 entries, 0 to 80
        Data columns (total 5 columns):
             Column Non-Null Count Dtype
             HP
                                      int64
         0
                      81 non-null
         1
             MPG
                     81 non-null
                                      float64
             VOL
                     81 non-null
                                      int64
         2
             SP
                     81 non-null
                                      float64
         3
             WT
                      81 non-null
                                      float64
         dtypes: float64(3), int64(2)
        memory usage: 3.3 KB
In [9]: #check for missing values
         cars.isna().sum()
                0
Out[9]:
        MPG
                0
        VOL
                0
        SP
                0
        WT
                a
        dtype: int64
```

Correlation Matrix

```
In [10]: cars.corr()
```

Out[10]:		НР	MPG	VOL	SP	WT
	НР	1.000000	-0.725038	0.077459	0.973848	0.076513
	MPG	-0.725038	1.000000	-0.529057	-0.687125	-0.526759
	VOL	0.077459	-0.529057	1.000000	0.102170	0.999203
	SP	0.973848	-0.687125	0.102170	1.000000	0.102439
	WT	0.076513	-0.526759	0.999203	0.102439	1.000000

Scatterplot between variables along with histograms

```
In [11]: #Format the plot background and scatter plots for all the variables
    sns.set_style(style='darkgrid')
    sns.pairplot(cars)
```

Out[11]: <seaborn.axisgrid.PairGrid at 0x249bf3a9d00>

Preparing a model

```
#Build model
In [12]:
           import statsmodels.formula.api as smf
           model = smf.ols('MPG~WT+VOL+SP+HP',data=cars).fit()
In [13]:
           model.rsquared
           0.7705372737359844
Out[13]:
           model.summary()
In [14]:
                                OLS Regression Results
Out[14]:
                                         MPG
                                                                    0.771
               Dep. Variable:
                                                     R-squared:
                     Model:
                                         OLS
                                                 Adj. R-squared:
                                                                    0.758
                    Method:
                                                     F-statistic:
                                                                    63.80
                                 Least Squares
                       Date: Tue, 29 Nov 2022
                                               Prob (F-statistic): 1.54e-23
                       Time:
                                      13:08:50
                                                 Log-Likelihood:
                                                                  -233.96
           No. Observations:
                                           81
                                                           AIC:
                                                                    477.9
                Df Residuals:
                                           76
                                                            BIC:
                                                                    489.9
                  Df Model:
                                            4
            Covariance Type:
                                    nonrobust
                        coef std err
                                           t P>|t| [0.025 0.975]
           Intercept 30.6773
                              14.900
                                       2.059 0.043
                                                      1.001
                                                            60.354
                      0.4006
                               1.693
                                       0.237 0.814
                                                     -2.972
                                                             3.773
                WT
                VOL
                      -0.3361
                               0.569 -0.591 0.556
                                                     -1.469
                                                             0.796
                 SP
                      0.3956
                                       2.500 0.015
                               0.158
                                                      0.080
                                                             0.711
                 HP
                      -0.2054
                               0.039 -5.239 0.000
                                                     -0.284
                                                             -0.127
                 Omnibus: 10.780
                                     Durbin-Watson:
                                                         1.403
           Prob(Omnibus):
                             0.005 Jarque-Bera (JB):
                                                        11.722
                    Skew:
                             0.707
                                           Prob(JB):
                                                       0.00285
                  Kurtosis:
                             4.215
                                          Cond. No. 6.09e+03
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.09e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [15]: #Coefficients
model.params
```

```
Intercept
                     30.677336
Out[15]:
         WT
                      0.400574
         VOL
                      -0.336051
         SP
                      0.395627
         ΗP
                      -0.205444
         dtype: float64
In [16]: #t and p-Values
         print(model.tvalues, '\n', model.pvalues)
         Intercept
                      2.058841
                      0.236541
         VOL
                     -0.590970
         SP
                      2.499880
         ΗP
                     -5.238735
         dtype: float64
          Intercept 0.042936
                      0.813649
         VOL
                      0.556294
         SP
                      0.014579
                      0.000001
         dtype: float64
In [17]:
         #R squared values
         (model.rsquared,model.rsquared_adj)
         (0.7705372737359844, 0.7584602881431415)
Out[17]:
```

Simple Linear Regression Models

Out[19]: OLS Regression Results

Dep. Variable:	MPG	R-squared:	0.280
Model:	OLS	Adj. R-squared:	0.271
Method:	Least Squares	F-statistic:	30.71
Date:	Tue, 29 Nov 2022	Prob (F-statistic):	3.82e-07
Time:	13:08:53	Log-Likelihood:	-280.28
No. Observations:	81	AIC:	564.6
Df Residuals:	79	BIC:	569.4
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	55.8171	3.957	14.106	0.000	47.941	63.693
VOL	-0.2166	0.039	-5.541	0.000	-0.294	-0.139

 Omnibus:
 2.691
 Durbin-Watson:
 0.566

 Prob(Omnibus):
 0.260
 Jarque-Bera (JB):
 1.997

 Skew:
 -0.263
 Prob(JB):
 0.368

 Kurtosis:
 3.562
 Cond. No.
 462.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Out[21]: OLS Regression Results

Dep. Variable:	MPG	R-squared:	0.277
Model:	OLS	Adj. R-squared:	0.268
Method:	Least Squares	F-statistic:	30.34
Date:	Tue, 29 Nov 2022	Prob (F-statistic):	4.38e-07
Time:	13:08:54	Log-Likelihood:	-280.42
No. Observations:	81	AIC:	564.8
Df Residuals:	79	BIC:	569.6
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	55.2296	3.876	14.249	0.000	47.514	62.945
WT	-0.6420	0.117	-5.508	0.000	-0.874	-0.410

 Omnibus:
 2.735
 Durbin-Watson:
 0.555

 Prob(Omnibus):
 0.255
 Jarque-Bera (JB):
 2.045

 Skew:
 -0.263
 Prob(JB):
 0.360

 Kurtosis:
 3.573
 Cond. No.
 149.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [22]: ml_wv=smf.ols('MPG~WT+VOL',data = cars).fit()
         print(ml_wv.tvalues, '\n', ml_wv.pvalues)
         Intercept
                      12.545736
                       0.489876
         WT
                      -0.709604
         VOL
         dtype: float64
          Intercept
                       2.141975e-20
         WT
                      6.255966e-01
         VOL
                      4.800657e-01
         dtype: float64
In [23]: ml_wv.summary()
```

OLS Regression Results Out[23]: Dep. Variable: **MPG** R-squared: 0.282 Adj. R-squared: Model: **OLS** 0.264 Method: F-statistic: 15.33 **Least Squares Date:** Tue, 29 Nov 2022 **Prob (F-statistic):** 2.43e-06 Log-Likelihood: Time: 13:08:55 -280.16 No. Observations: 81 AIC: 566.3 **Df Residuals:** 78 BIC: 573.5 **Df Model:** 2 **Covariance Type:** nonrobust coef std err t P>|t| [0.025 0.975] **Intercept** 56.8847 4.534 12.546 0.000 47.858 65.912 1.4349 2.929 0.490 0.626 -4.397 7.266 VOL -0.6983 0.984 -0.710 0.480 -2.658 1.261 Omnibus: 2.405 **Durbin-Watson:** 0.591 0.300 **Jarque-Bera (JB):** 1.712 Prob(Omnibus): **Skew:** -0.251 **Prob(JB):** 0.425 Kurtosis: 3.506 Cond. No. 597.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Calculating VIF

```
In [24]: hp = smf.ols('HP~WT+VOL+SP',data = cars).fit().rsquared
         vif_hp1 = 1/(1 - hp)
In [25]:
         vif hp1
In [26]:
         19.926588974998563
Out[26]:
         rsq_hp = smf.ols('HP~WT+VOL+SP',data=cars).fit().rsquared
In [27]:
         vif_hp = 1/(1-rsq_hp) # 19
         rsq_wt = smf.ols('WT~HP+VOL+SP',data=cars).fit().rsquared
         vif_wt = 1/(1-rsq_wt) # 625
         rsq_vol = smf.ols('VOL~WT+SP+HP',data=cars).fit().rsquared
         vif vol = 1/(1-rsq vol) # 624
         rsq_sp = smf.ols('SP~WT+VOL+HP',data=cars).fit().rsquared
         vif_{sp} = 1/(1-rsq_{sp}) # 20
```

```
# Storing vif values in a data frame
d1 = {'Variables':['Hp','WT','VOL','SP'],'VIF':[vif_hp,vif_wt,vif_vol,vif_sp]}
Vif_frame = pd.DataFrame(d1)
Vif_frame
```

Out[27]:		Variables	VIF		
	0	Нр	19.926589		
	1	WT	639.533818		
	2	VOL	638.806084		
	3	SP	20.007639		

Residual Analysis

Test for Normality of Residuals (Q-Q Plot)

28]:		HP	MPG	VOL	SP	WT
	0	49	53.700681	89	104.185353	28.762059
	1	55	50.013401	92	105.461264	30.466833
	2	55	50.013401	92	105.461264	30.193597
	3	70	45.696322	92	113.461264	30.632114
	4	53	50.504232	92	104.461264	29.889149
	•••					
7	76	322	36.900000	50	169.598513	16.132947
7	77	238	19.197888	115	150.576579	37.923113
7	78	263	34.000000	50	151.598513	15.769625
7	79	295	19.833733	119	167.944460	39.423099
8	80	236	12.101263	107	139.840817	34.948615
8	1 rc	ows >	< 5 columns	S		

```
In [29]: cars.iloc[:,[0,2,3,4]]
```

```
HP VOL
                                         WT
Out[29]:
                                SP
               49
                     89 104.185353 28.762059
           1
               55
                     92 105.461264 30.466833
           2
               55
                     92 105.461264 30.193597
           3
               70
                     92 113.461264 30.632114
           4
               53
                     92 104.461264 29.889149
           •••
                ...
          76 322
                     50 169.598513 16.132947
                   115 150.576579 37.923113
          77 238
          78 263
                     50 151.598513 15.769625
          79 295
                   119 167.944460 39.423099
          80 236
                   107 139.840817 34.948615
```

81 rows × 4 columns

```
cars["MPG"]-model.predict(cars.iloc[:,[0,2,3,4]])
In [30]:
                10.258747
Out[30]:
          1
                 7.624608
          2
                 7.734060
          3
                 3.157963
          4
                 8.331584
                  . . .
          76
                15.617904
          77
                 1.298838
          78
                 7.863547
          79
                 7.517122
          80
                -3.458218
          Length: 81, dtype: float64
In [31]:
          model.resid
                10.258747
          0
Out[31]:
          1
                 7.624608
          2
                 7.734060
          3
                 3.157963
          4
                 8.331584
          76
                15.617904
          77
                 1.298838
          78
                 7.863547
          79
                 7.517122
          80
                -3.458218
          Length: 81, dtype: float64
In [32]:
          import statsmodels.api as sm
          qqplot=sm.qqplot(model.resid,line='q') # line = 45 to draw the diagnoal line
          plt.title("Normal Q-Q plot of residuals")
          plt.show()
```


Residual Plot for Homoscedasticity

Residual Vs Regressors

```
In [35]: fig = plt.figure(figsize=(15,8))
    fig = sm.graphics.plot_regress_exog(model, "VOL", fig=fig)
    plt.show()
    eval_env: 1
```

Regression Plots for VOL


```
In [36]: fig = plt.figure(figsize=(15,8))
    fig = sm.graphics.plot_regress_exog(model, "SP", fig=fig)
    plt.show()
```

eval_env: 1


```
In [37]: fig = plt.figure(figsize=(15,8))
    fig = sm.graphics.plot_regress_exog(model, "HP", fig=fig)
    plt.show()
```

eval_env: 1


```
In [38]: fig = plt.figure(figsize=(15,8))
    fig = sm.graphics.plot_regress_exog(model, "WT", fig=fig)
    plt.show()
```


Model Deletion Diagnostics

Detecting Influencers/Outliers

Cook's Distance

```
In [31]: model_influence = model.get_influence()
   (c, _) = model_influence.cooks_distance

In [32]: #Plot the influencers values using stem plot
   fig = plt.subplots(figsize=(20, 7))
   plt.stem(np.arange(len(cars)), np.round(c, 3))
```

```
In [33]: #index and value of influencer where c is more than .5
     (np.argmax(c),np.max(c))
```

Out[33]: (76, 1.0865193998179947)

plt.xlabel('Row index')

High Influence points

In [34]: from statsmodels.graphics.regressionplots import influence_plot
 influence_plot(model)
 plt.show()

From the above plot, it is evident that data point 70 and 76 are the influencers

In [36]:	cai	rs[c	ars.index	isin	([68, 74])]
Out[36]:		НР	MPG	VOL	. SF	, wt
	68	165	23.103172	123	133.312342	2 40.472042
	74	140	19.086341	129	121.864163	42.618698
In [37]:			he differe ead()	ences	in HP and	other var
			caa()			
Out[37]:		НР	MPG	VOL	SP	WT
Out[37]:		НР	• • • • • • • • • • • • • • • • • • • •	VOL 89		WT 28.762059
Out[37]:		HP 49	MPG	89		28.762059
Out[37]:	0	HP 49 55	MPG 53.700681	89 92	104.185353	28.762059 30.466833
Out[37]:	0	HP 49 55 55	MPG 53.700681 50.013401	89 92 92	104.185353 105.461264	28.762059 30.466833 30.193597

Improving the model

Out[41]:		HP	MPG	VOL	SP	WT
	0	49	53.700681	89	104.185353	28.762059
	1	55	50.013401	92	105.461264	30.466833
	2	55	50.013401	92	105.461264	30.193597
	3	70	45.696322	92	113.461264	30.632114
	4	53	50.504232	92	104.461264	29.889149
	74	322	36.900000	50	169.598513	16.132947
	75	238	19.197888	115	150.576579	37.923113
	76	263	34.000000	50	151.598513	15.769625
	77	295	19.833733	119	167.944460	39.423099
	78	236	12.101263	107	139.840817	34.948615

79 rows × 5 columns

Build Model

```
In [42]: #Exclude variable "WT" and generate R-Squared and AIC values
    final_ml_V= smf.ols('MPG~VOL+SP+HP',data = car1).fit()

In [43]: (final_ml_V.rsquared,final_ml_V.aic)
Out[43]: (0.7609747264109348, 465.0378229302144)

In [44]: #Exclude variable "VOL" and generate R-Squared and AIC values
    final_ml_W= smf.ols('MPG~WT+SP+HP',data = car1).fit()

In [45]: (final_ml_W.rsquared,final_ml_W.aic)
Out[45]: (0.7599704098655541, 465.36906316731984)
```

Comparing above R-Square and AIC values, model 'final_ml_V' has high R- square and low AIC value hence include variable 'VOL' so that multi collinearity problem would be resolved.

Cook's Distance

```
In [46]: model_influence_V = final_ml_V.get_influence()
  (c_V, _) = model_influence_V.cooks_distance

In [47]: fig= plt.subplots(figsize=(20,7))
  plt.stem(np.arange(len(car1)),np.round(c_V,3));
  plt.xlabel('Row index')
  plt.ylabel('Cooks Distance');
```

Out[48]: (74, 1.3577278867500056)

In [49]: #Drop 76 and 77 observations
 car2=car1.drop(car1.index[[74]],axis=0)

In [50]: car2

Out[50]:		HP	MPG	VOL	SP	WT
	0	49	53.700681	89	104.185353	28.762059
	1	55	50.013401	92	105.461264	30.466833
	2	55	50.013401	92	105.461264	30.193597
	3	70	45.696322	92	113.461264	30.632114
	4	53	50.504232	92	104.461264	29.889149
	•••					
	73	175	18.762837	129	132.864163	42.778219
	75	238	19.197888	115	150.576579	37.923113
	76	263	34.000000	50	151.598513	15.769625
	77	295	19.833733	119	167.944460	39.423099
	78	236	12.101263	107	139.840817	34.948615

78 rows × 5 columns

Out[53]:		HP	MPG	VOL	SP	WT
	0	49	53.700681	89	104.185353	28.762059
	1	55	50.013401	92	105.461264	30.466833
	2	55	50.013401	92	105.461264	30.193597
	3	70	45.696322	92	113.461264	30.632114
	4	53	50.504232	92	104.461264	29.889149
	•••					
	73	175	18.762837	129	132.864163	42.778219
	74	238	19.197888	115	150.576579	37.923113
	75	263	34.000000	50	151.598513	15.769625
	76	295	19.833733	119	167.944460	39.423099
	77	236	12.101263	107	139.840817	34.948615

78 rows × 5 columns

```
In [54]:
         #Build the model on the new data
         final_ml_V= smf.ols('MPG~VOL+SP+HP',data = car4).fit()
In [55]:
         #Again check for influencers
         model_influence_V = final_ml_V.get_influence()
         (c_V, _) = model_influence_V.cooks_distance
In [56]: fig= plt.subplots(figsize=(20,7))
         plt.stem(np.arange(len(car4)),np.round(c_V,3));
         plt.xlabel('Row index')
         plt.ylabel('Cooks Distance');
         #index of the data points where c is more than .5
In [57]:
         (np.argmax(c_V),np.max(c_V))
         (75, 0.9407391391291708)
Out[57]:
```

Since the value is <1, we can stop the diagnostic process and finalize the model

```
In [58]: #Check the accuracy of the mode
final_ml_V= smf.ols('MPG~VOL+SP+HP',data = car4).fit()
```

```
In [59]: (final_ml_V.rsquared,final_ml_V.aic)
Out[59]: (0.8128580840170883, 441.1019267870809)
```

Predicting for new data

```
In [60]:
          #New data for prediction
          new_data=pd.DataFrame({'HP':40,"VOL":95,"SP":102,"WT":35},index=[1])
          final_ml_V.predict(new_data)
In [61]:
               44.376113
Out[61]:
          dtype: float64
          final_ml_V.predict(cars_new.iloc[0:5,])
In [62]:
               44.245744
Out[62]:
          1
               42.918036
               42.918036
               42.662430
               42.977162
          dtype: float64
          pred_y = final_ml_V.predict(cars_new)
In [63]:
In [64]:
          pred_y
                44.245744
Out[64]:
          1
                42.918036
          2
                42.918036
          3
                42.662430
                42.977162
         76
               16.003514
          77
                16.228852
          78
                22.068019
          79
                9.691507
                13.970818
          80
          Length: 81, dtype: float64
          final ml V.summary()
In [65]:
```

Out[65]:

OLS Regression Results

Dep. Variable:	MPG	R-squared:	0.813
Model:	OLS	Adj. R-squared:	0.805
Method:	Least Squares	F-statistic:	107.1
Date:	Wed, 01 Dec 2021	Prob (F-statistic):	7.37e-27
Time:	08:23:44	Log-Likelihood:	-216.55
No. Observations:	78	AIC:	441.1
Df Residuals:	74	BIC:	450.5
Df Model:	3		

Covariance Type: nonrobust

Skew: 0.775

Kurtosis: 3.653

	coef	std err	t	P> t	[0.025	0.975]
Intercept	30.6697	13.155	2.331	0.022	4.458	56.881
VOL	-0.1675	0.022	-7.750	0.000	-0.211	-0.124
SP	0.3757	0.142	2.640	0.010	0.092	0.659
НР	-0.2174	0.036	-6.114	0.000	-0.288	-0.147
Omnibus: 9.478 Durbin-Wats			atson:	1.10	1	
Prob(Omnibus):		009 Jarque-Bera (JB):			9.19	1

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.0101

[2] The condition number is large, 5.76e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Prob(JB):

Cond. No. 5.76e+03

In []:	
In []:	
In []:	