Monte Carlo: symulacja procesu Wienera, wyznaczanie współczynnika dyfuzji, symulacja procesu dyfuzji i absorpcji

Filip Brodacz

17 kwietnia 2025

1 Wstęp teoretyczny

Celem niniejszych symulacji jest numeryczne modelowanie zjawiska dyfuzji w dwóch wariantach: w układzie otwartym (proces Wienera) oraz w układzie zamkniętym z absorpcją. W obu przypadkach ruch cząstek opisywany jest jako proces stochastyczny, a ich ewolucja w czasie pozwala na wyznaczenie charakterystyk takich jak współczynniki dyfuzji czy liczba aktywnych cząstek.

1.1 Dyfuzja w układzie otwartym (proces Wienera)

Podstawą teoretyczną procesu jest jednowymiarowe równanie dyfuzji:

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

gdzie u(x,t) to gęstość cząstek, a D to współczynnik dyfuzji. Dla warunku początkowego w postaci źródła punktowego:

$$u(x = x_0, t = 0) = \delta(x - x_0)$$

rozwiazaniem równania jest funkcja Gaussa:

$$u(x,t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp\left(-\frac{(x-x_0)^2}{2\sigma_t^2}\right), \quad \sigma_t = \sqrt{2Dt}$$

Proces ten można zasymulować, aktualizując położenia cząstek zgodnie z rozkładem normalnym:

$$X_i(t + \Delta t) = X_i(t) + \Delta X, \quad \Delta X \sim \mathcal{N}(0, \sigma_{\Delta t}), \quad \sigma_{\Delta t} = \sqrt{2D\Delta t}$$

oraz analogicznie dla współrzednej y. Dla dużej liczby cząstek można wyznaczyć współczynniki dyfuzji:

$$D_{xx}(t) = \frac{\langle x^2(t) \rangle - \langle x(t) \rangle^2}{2t}, \quad D_{yy}(t) = \frac{\langle y^2(t) \rangle - \langle y(t) \rangle^2}{2t}$$

$$D_{xy}(t) = \frac{\langle x(t)y(t)\rangle - \langle x(t)\rangle\langle y(t)\rangle}{2t}$$

W celu ograniczenia fluktuacji wartości tych współczynników można wykonać uśrednienie w przedziale czasowym $[t_A, t_B]$:

$$\langle D_{\alpha\beta} \rangle = \frac{1}{N_t} \sum_{k=1}^{N_t} D_{\alpha\beta}(t_k)$$

1.2 Dyfuzja z absorpcją w układzie zamkniętym

W drugim zadaniu rozważamy cząstki poruszające się w ograniczonym geometrycznie obszarze kołowym (promień R_r), ze źródłem cząstek znajdującym się w jego wnętrzu. Nowe cząstki dodawane są z wydajnością:

$$\omega = \frac{\Delta n}{\Delta t}$$

Ruch cząstki opisywany jest tak jak poprzednio, natomiast jej trajektoria może zakończyć się w przypadku przecięcia przez obszar absorbenta – innego koła o promieniu R_a .

Jeśli czastka uderzy w brzeg głównego obszaru, odbija się zgodnie z zasada:

kat padania = kat odbicia

Symulacja pozwala na wyznaczenie liczby aktywnych cząstek n(t) w czasie oraz analizę wpływu parametrów ω i R_a na stan stacjonarny tego układu.

Dzięki analizie n(t) oraz wizualizacji rozkładu cząstek w różnych chwilach czasowych możliwe jest zrozumienie dynamiki układów dyfuzyjnych z ograniczonymi warunkami brzegowymi i procesami absorpcji.

2 Wyniki

2.1 Zależność D_{ii} od czasu symulacji

Na rysunku przedstawiono zależność współczynnika dyfuzji D_{ii} od czasu symulacji dla układu otwartego (proces Wienera). Ruch cząstek modelowany był jako suma niezależnych przyrostów Δx i Δy , losowanych z rozkładu normalnego o zerowej średniej i wariancji proporcjonalnej do Δt . W rezultacie obserwujemy, że dla rosnącej liczby cząstek wartości D_{xx} i D_{yy} stabilizują się wokół wartości 1.0, natomiast D_{xy} fluktuuje wokół zera, co potwierdza brak korelacji między składowymi ruchu w kierunku x i y.

Wartości D_{xx} oraz D_{yy} wykazują zbliżony przebieg, co sugeruje izotropowość procesu dyfuzji, przy założeniu, że układ nie wprowadza preferencyjnych kierunków ruchu dla cząstek.

2.2 Zależność n(t) dla różnych parametrów

Na wykresach przedstawiono zależność liczby aktywnych cząstek n(t) w czasie dla różnych ustawień parametrów absorpcji R_a oraz wydajności dodawania nowych cząstek ω . Dla większych wartości R_a , cząstki szybciej opuszczają obszar główny, co skutkuje mniejszą liczba aktywnych cząstek w czasie. Z kolei wyższa wydajność dodawania nowych cząstek prowadzi do wzrostu liczby aktywnych cząstek w dłuższym okresie.

2.3 Wizualizacja rozkładu cząstek

Wizualizacja rozkładu cząstek w różnych chwilach czasowych pozwala na zaobserwowanie, jak zmienia się struktura układu w czasie. W przypadku układu otwartego cząstki rozprzestrzeniają się równomiernie w przestrzeni, co jest typowe dla procesu Wienera. W układzie zamkniętym z absorpcją rozkład cząstek jest bardziej skoncentrowany w części bliższej źródłu w początkowej części symulacji by pod koniec wyrównać ich rozkład w przestrzeni.

Animacja ruchu cząstek dla k = 2 w układzie otwartym

Animacja ruchu cząstek dla k=3 w układzie otwartym

Animacja ruchu cząstek dla k = 4 w układzie otwartym

Animacja ruchu czastek dla k = 5 w układzie otwartym

Animacja ruchu cząstek dla $\omega=10~R_a=0.1$ w układzie zamkniętym

Animacja ruchu cząstek dla $\omega=50~R_a=0.1$ w układzie zamkniętym

Animacja ruchu cząstek dla $\omega=100~R_a=0.1~{\rm w}$ układzie zamkniętym

Animacja ruchu cząstek dla $\omega=10~R_a=0.5$ w układzie zamkniętym

Animacja ruchu cząstek dla $\omega=50~R_a=0.5$ w układzie zamkniętym

Animacja ruchu cząstek dla $\omega = 100 R_a = 0.5$ w układzie zamkniętym

3 Podsumowanie

W pracy przeprowadzono symulacje procesów dyfuzji przy użyciu metody Monte Carlo, rozważając dwa przypadki: proces Wienera w układzie otwartym oraz dyfuzję z absorpcją w układzie zamkniętym. W przypadku pierwszym, uzyskano stabilne wartości współczynników dyfuzji D_{xx} i D_{yy} , potwierdzając izotropowość procesu. W drugim przypadku, zależność liczby aktywnych cząstek n(t) od czasu została zbadana dla różnych parametrów, takich jak promień absorbenta R_a oraz wydajność dodawania nowych cząstek ω . Wyniki pokazały, że zwiększenie wartości R_a prowadzi do szybszego usuwania cząstek z układu, podczas gdy wyższa wartość ω powoduje wzrost liczby aktywnych cząstek w czasie. Dodatkowo, wizualizacje rozkładu cząstek w różnych chwilach czasowych umożliwiły lepsze zrozumienie dynamiki procesów dyfuzyjnych w obydwu układach.