WEINAN WANG

1622 Waterford Dr., Edison, NJ 08817

Tel: 732-789-5103

E-mail: ww329@rutgers.edu

Website: https://weinanwang-ru.github.io/

EDUCATION

Rutgers, The State University of New Jersey, Ph.D. Candidate

01/2021 - Present

Electrical and Computer Engineering

G.P.A.: 4.0/4.0

Thesis Topic: Artificial Intelligence for Continuous Health Monitoring

Core courses: Supervised Machine Learning, Deep Learning, Machine Vision, Detection and Estimation

Theory, Convex Optimization

Rutgers, The State University of New Jersey, M.Sc.

09/2018 - 01/2021

Electrical and Computer Engineering

G.P.A.: 4.0/4.0

Thesis: Data-driven Methodologies for Cuff-less Blood Pressure Estimation

Core courses: Digital Signal and Filters, System Analysis, Data Structure and Algorithms, Software

Engineering

University of Electronic Science and Technology of China, *B.Sc.*

09/2015 - 06/2018

Mechanical Design and Automation

G.P.A.: 3.88/4.0

Core courses: Signals and Systems, Theoretical Mechanics, Mechanics of Materials, CAD/CAE Technology

EXPERIENCE

Research Assistant 09/2019 – Present

Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey **Supervisor:** Prof. Laleh Najafizadeh

End-to-end Deep Learning-Based Cuff-less Blood Pressure Estimation

- Developed and released *PulseDB*, the first multi-protocol cleaned dataset for benchmarking cuff-less BP estimation methods (available on https://github.com/pulselabteam/PulseDB)
- Developed novel automatic, fully data-driven AI-based blood pressure estimation methods requiring only photoplethysmogram (PPG) signal as input
- Developed methods to enable transfer learning of pre-trained deep convolutional networks for blood pressure estimation
- Developed methods for converting 1-D physiological signals into images
- Developed blood pressure estimation models via long-short-term-memory (LSTM) and various deep convolutional networks (CNN)

• Pulse Wave Velocity Model-Based Cuff-less Blood Pressure Estimation

- Developed robust blood pressure estimation methods requiring electrocardiogram (ECG) and photoplethysmogram (PPG) as inputs
- Developed and released GUI and API, named *PulseLab*, as the first comprehensive toolbox that enables users to analyze PPG and ECG signals and optimize the blood-pressure estimation models (available on https://github.com/pulselabteam/pulselab)
- Studied and utilized linear and non-linear regression, multiple linear regression, ridge regression, correlation analysis, Bland-Altman analysis, and signal quality index (SQI) assessment for feature-based physiological signal interpretation using machine learning methods

Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey **Courses:** Analog & Digital Electronics

PEER-REVIEWED JOURNAL & CONFERENCE PUBLICATIONS

- W. Wang, P. Mohseni, K. L. Kilgore and L. Najafizadeh, "PulseDB: A large, cleaned dataset based on MIMIC-III and VitalDB for benchmarking cuff-less blood pressure estimation methods," *Frontiers in Digital Health*, vol. 4, 2023.
- W. Wang and L. Najafizadeh, "Imaging physiological signals," 56th Asilomar Conference on Signals, Systems, and Computers, 2022, pp. 465–469. (invited)
- W. Wang, P. Mohseni, K. L. Kilgore and L. Najafizadeh, "Cuff-less blood pressure estimation from photoplethysmography via visibility graph and transfer learning," *IEEE Journal of Biomedical and Health Informatics*, vol. 26, no. 5, pp. 2075-2085, May 2022. (selected as feature article)
- W. Wang, F. Marefat, P. Mohseni, K. Kilgore and L. Najafizadeh, "The effects of filtering PPG signal on pulse arrival time-systolic blood pressure correlation," *44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, 2022, pp. 674–677.
- W. Wang, C. A. Delianides, D. B. Green, P. Mohseni, K. L. Kilgore, and L. Najafizadeh, "Systolic blood pressure estimation via photoplethysmography features-an animal study," *Optical Tomography and Spectroscopy*, 2022, Optica Publishing Group, p. JM3A. 6.
- W. Wang, P. Mohseni, K. Kilgore, and L. Najafizadeh, "Cuff-less blood pressure estimation via small convolutional neural networks," 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021, pp. 1031-1034.
- W. Wang, P. Mohseni, K. Kilgore, and L. Najafizadeh, "PulseLab: An integrated and expandable toolbox for pulse wave velocity-based blood pressure estimation," 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021, pp. 5654-5657.
- W. Wang, L. Zhu, F. Marefat, P. Mohseni, K. Kilgore, and L. Najafizadeh, "Photoplethysmography-based blood pressure estimation using deep learning," 54th Asilomar Conference on Signals, Systems, and Computers, 2020, pp. 945-949.

PATENT

 W. Wang and L. Najafizadeh, "Computer-based platforms and systems configured for blood pressure estimation from photoplethysmography via visibility graph and transfer learning and methods of use thereof", US20230148879A1

PROFESSIONAL SERVICES

Reviewer

IEEE Biomedical Circuits and Systems Conference (BIOCAS)
IEEE Engineering in Medicine & Biology Society Conference (EMBC)

2021 - 2023

2022 - 2023

SELECTED COURSE PROJECTS

 Convex Optimization: Experimental Comparisons of Convergence Robustness Between First Order Adaptive Learning Rate Optimizers

Spring 2021 - **Introduction to Deep Learning:** Implementation of AdaBoost on LeNet-5

Spring 2021

 Data Structure and Algorithms: Solving Printed Circuit Board (PCB) Routing Problem Using Lee's and Hadlock's Maze Routing Algorithm

Spring 2019

AWARDS

Rutgers ECE Teaching Assistant Award

May 2023 May 2022

- Rutgers ECE Student Development Award

December 2017 & 2018

People's Scholarship of China (Undergraduate, Annual, top 10%)

November 2016

National Scholarship of China (Undergraduate, Annual, top 5%)

TECHNICAL SKILLS

- MATLAB® (script & GUI orientated)
- Python (PyTorch, TensorFlow, scikit-learn, NumPy)
- C++
- AutoCAD[®]