Report of Assignment 3

黄采瑩 106072237

My circuit

Matrix A

KCL Functions

$$I_{1} = I_{2} + I_{3}$$

$$I_{3} = I_{4} + I_{5}$$

$$I_{5} = I_{6} + I_{7}$$

$$I_{7} = I_{8} + I_{9}$$

$$I_{9} = I_{10} + I_{11}$$

KVL Functions

$$3I_1 + 4I_2 = 20$$

$$4I_2 - I_3 - 2I_4 = 0$$

$$2I_4 - 5I_5 - I_6 = 0$$

$$I_6 - 2I_7 - 6I_8 = 0$$

$$6I_8 - 7I_9 - 3I_{10} = 0$$

$$3I_{10} - 2I_{11} = 13$$

Matrix b

 A^{-1}

Г 2.63	-5.74	4.53	-1.41	-2.91	2.46	-3.11	-2.43	-4.78	-2.43	–1.46 7
-1.97	4.31	-3.4	1.06	2.18	6.57	2.33	1.82	3.58	1.82	1.09
9.34	1.43	-1.13	3.51	7.28	-3.11	7.78	6.07	1.19	6.07	3.64
-8.61	7.9	-6.23	1.93	4	2.87	-7.18	3.34	6.56	3.34	2
-7.28	6.67	7.36	-2.29	-4.73	2.43	-6.07	-3.94	-7.75	-3.94	-2.37
-1.36	1.24	-4.93	1.53	3.17	4.53	-1.13	-7.36	5.19	2.64	1.58
1.43	-1.31	5.19	-1.3	-2.69	-4.77	1.19	7.75	-4.41	-2.24	-1.35
-7.04	6.45	-2.55	6.89	1.42	2.34	-5.86	-3.81	2.17	1.19	7.13
-7.28	6.67	-2.64	7.13	1.27	2.43	-6.07	-3.94	2.24	1.06	6.34
2.91	-2.67	1.06	-2.85	-1.07	-9.7	2.43	1.58	-8.98	-4.23	-5.36
L 4.37	-4	1.58	-4.28	-1.6	-1.46	3.64	2.37	-1.35	-6.34	-5.8 ^J

Х

Running time(seconds)

linalg.solve	mysolve_adj	mysove_cramer		
0:00:00.129178	0:38:46.532642	0:39:23.633191		

Relation between running time and size of matrix

Size of	linalg.det	mydet	linalg.solve	mysolve_adj	mysove_cramer	
matrix						
2x2	0:00:00.002966	0:00:00.000014	0:00:00.000088	0:00:00.000068	0:00:00.000139	
3x3	0:00:00.000042	0:00:00.000047	0:00:00.000080	0:00:00.000298	0:00:00.000311	
4x4	0:00:00.000541	0:00:00.000192	0:00:00.000044	0:00:00.001182	0:00:00.001240	
5x5	0:00:00.000033	0:00:00.000949	0:00:00.000078	0:00:00.005116	0:00:00.004563	
6x6	0:00:00.000052	0:00:00.005443	0:00:00.000087	0:00:00.043685	0:00:00.032542	
7x7	0:00:00.000071	0:00:00.037102	0:00:00.000080	0:00:00.346023	0:00:00.307476	

Conclusion

While computing determinant of A, the bigger the matrix is, the more time mydet required to generate the answer. On the other hand, linalg.det isn't doing the same as mydet, the time it took merely had a difference.

The bigger the matrix is, the longer running time of the answer required. Among all the way of calculation, numpy.linalg.solve is the fastest, then mysolve_adj, the slowest is mysolve_cramer.