Lin_Algorithms

Frances Lin
June 2021

Algorithm 1: Simulations of a HPP

Input λ , t_{max}

- 1. Initialize t, t_{vector}
- 2. while $(t \leq t_{max})$
- 3. Generate $u \sim U(0,1)$
- 4. Set t = t + w where $w = -log(u)/\lambda \sim exp(\lambda^* = \lambda)$
- 5. if $(t \leq t_{max})$
- 6. | Add $t_{vector} = c(t_{vector}, t)$
- 7. else
- 8. | **return** $\{t_k\}_{k=0,1,...}$

Algorithm 2: Simulations of a Hawkes Process via Thinning Algorithm

Imput μ , α , β , λ , t_{max}

- 1. Simulate a HPP using Algorithm 1
- 2. Create a $\lambda(t)$ function where the function $= \mu + \sum_{i:T_i < t} \alpha e^{-\beta x}$
- 3. Set λ^* = apply the $\lambda(t)$ function to the HPP
- 4. Generate $u \sim U(0,1)$
- 5. if $(u < min(\frac{\lambda^*}{\lambda}, 1))$ where the accepting probability $= min(\lambda^*/\lambda, 1)$
- 6. | Accept the points
- 7. else
- 8. | "Thin" or reject the points and **return** $\{t_k\}_{k=0,1,...}$