5.1 - Inference

Inference

- turning model output into human-readable transcriptions
- "greedy"/best path decoding
 - take the character with the highest probability at each timestep
 - fast, doesn't require information about text content
 - may output nonsense words

Inference

- beam search
 - consider N characters with highest probability at each timestep
 - identify sequence with highest combined probability
 - slower, may give better results than greedy search
- language models
 - feed the raw model output into a language model
 - LM has to be trained on suitable text beforehand!

HTR Model Output

Transcription

HTR Model Output

- identify max in each timestep (=column)
- retrieve corresponding characters
 - → jjo####nnnaattann####
- 3. collapse all repeated characters
 - → jo#natan#
- 4. remove all blanks #
 - \rightarrow jonatan

5.2 - Performance Metrics

Character and Word Error Rates

- normalised Levensthein distance between prediction and ground truth
 - at character-level
 - at word-level

$$ER = \frac{Insertions + Deletions + Substitutions}{GT Char/Word Count}$$

CER Example

$$CER = \frac{1 \text{ Insertion+2 Deletions + 4 Substitutions}}{23 \text{ GT Characters}} = \frac{7}{23} \approx 30.4\%$$

WER Example

optisk

teckenigenkänning

optisk

tegngjenkjenning

$$WER = \frac{0 \text{ Insertions} + 0 \text{ Deletions} + 1 \text{ Substitution}}{2 \text{ GT Words}} = \frac{1}{2} = 50\%$$

Hands-On Time!

Inference

Use your trained model (or the provided pre-trained checkpoint) to recognise the text lines in ibsen/test.

How well does your model work?

Are the automatic transcriptions (un)usable? Any mistakes that stand out? Other things that you noticed?

Feel free to also take a look at the performance for one or several of the splits in bonnevie.