Termistorul. Determinarea valorii energiei benzii interzise.

Numar alocat: 96

Tabel date experimentale:

t (grade C)	R (Ω)	T [K]	1/T (K^-1)	InR (Ω)
30	3318	303.15	3.290E-03	8.107
40	1839	313.15	3.190E-03	7.517
50	1338	323.15	3.090E-03	7.199
60	1080	333.15	3.000E-03	6.985
70	667	343.15	2.910E-03	6.503
80	556	353.15	2.830E-03	6.321
90	453	363.15	2.750E-03	6.116
100	291	373.15	2.670E-03	5.673

1. Grafic R(t)

^{*}Nu am putut include conținutul întregului referat într-o singură pagină, întrucât acest lucru ar fi avut ca efect diminuarea claritații graficelor.*

Comparație cu altă dependentă cunoscută:

În graficul de mai sus rezistența scade exponențial cu temperatura spre deosebire de conductor, unde rezistența crește liniar cu temperatura.

2. $InR = C + \Delta E/2k_B * (1/T)$, unde C este constantă

panta experimentală: m= 3672.1 K;

pantă teoretică: $\Delta E/(2*k_B)$;

 $m = \Delta E/(2*k_B) => \Delta E = m*2*k_B => \Delta E = 3672.1*2*8.617*10^{-5} = 0.63284 eV = 63.284*10^{-2} eV$.