Brain somatic mosaicism in schizophrenia

Genomic Imprinting in the Human Brain Links to Aging, Gender, and Schizophrenia

Attila Gulyás-Kovács

Chess Lab

- Introduction
 - Imprinting and parental bias
 - Our study: motivation & design

- Results & Discussion
 - Predictors of parental bias
 - Outlook

Genomic imprints during development

Introduction

Results & Discussion

Plasschaert & Bartolomei 2014 Development.

Parental bias and placental development

Renfree et al 2012 Philos Trans R Soc Lond B

Smits et al 2008 Nat Genet

Sister disorders, neuropsychiatric functions

Peters 2014 Nat Rev Genet.

Angelman syndrome

Boy with a Puppet

Prader-Willi syndrome

Sister disorders, neuropsychiatric functions

Peters 2014 Nat Rev Genet.

genetic architecture of schizophrenia

Nature Reviews | Genetics Sullivan 2012 Nat Rev Genet.

The imprinted brain theory

Crespi & Badcock 2008 Behav Brain Sci.

Explaining variation of parental bias: age

Potential for Conflict

Ubeda 2012 Evolution

Perez et al 2015 el ife

Our research study

data/project Common Mind Consortium questions imprinted genes in the human brain

- variation of parental bias across genes and individuals
- regulators: age, gender, genotype (ancestry)
- psychiatric disorders (SCZ, AFF)

participants Ifat Keydar, Eva Xia, Menachem Fromer, Doug Ruderfer, Ravi Sachinanandam, Andrew Chess

The Common Mind data

- Introduction
 - Imprinting and parental bias
 - Our study: motivation & design

- Results & Discussion
 - Predictors of parental bias
 - Outlook

Calling imprinted genes

Explaining variation of parental bias with predictors

- Y_g from read count ratio
- X based on predictor(s)
- $\bullet \ \mathcal{H}_0 : no \ dependence$

Explaining variation of parental bias with predictors

- Y_g from read count ratio
- X based on predictor(s)
- \mathcal{H}_0 : no dependence $\Leftrightarrow \beta_{\mathcal{E}} = 0$

$$Y_g = X\beta_g + \epsilon_g$$

Explaining variation of parental bias with predictors

- Y_ε from read count ratio
- X based on predictor(s)
- \mathcal{H}_0 : no dependence $\Leftrightarrow \beta_{\varepsilon} = 0$

$$Y_g = X\beta_g + \epsilon_g$$

predictor	levels
Age	
Gender	Female, Male
Dx	AFF, Control, SCZ
Ancestry.1-5	
Institution	MSSM, Penn, Pitt
PMI	
RIN	
RNA_batch	0, A, B, C, D, E, F, G, H

Estimating β and testing for \mathcal{H}_0 : $\beta = 0$

designed experiment

-		•	
y	$x_{\cdot 1}$	$x_{\cdot 2}$	$x_{\cdot 3}$
y_1	-1	-1	-1
y_2	-1	-1	1
y_3	-1	1	-1
y_4	-1	1	1
y_5	1	-1	-1
y_6	1	-1	1
y_7	1	1	-1
y_8	1	1	1
	\wedge	\wedge	\wedge
	$\langle X_1 \rangle$	$\langle X_2 \rangle$	$\langle X_3 \rangle$
		\vee	\sim
		$\langle v \rangle$	Ì
	β_1	β_2	β_3
			a

observational study

			5
y	$x_{\cdot 1}$	$x_{\cdot 2}$	$x_{\cdot 3}$
y_1	x_{11}	x_{12}	x_{13}
÷	:	:	:
y_m	x_{m1}	x_{m2}	x_{m3}
	X_1	X_2	X_3
		Y	
	β_1	β_2	β_3
			g

The Common Mind data

Consequence: poor identifiability

Consequence: ANOVA is inconclusive

The main results

biological effects

model: wnlm.Q

The main results

biological effects

model: wnlm.Q

agreement between models

p-values for \mathcal{H}_0 : no dependence

Affected genes (\mathcal{H}_0 rejected)

Gene	Gene type	Chr	Coefficient	Known phenotype
ZDBF2	protein coding	2	Age, Ancestry.1	
NAP1L5	protein coding	4	GenderMale	
PEG10	protein coding	7	DxSCZ	
MEST	protein coding	7	DxSCZ	Silver-Russell syndrome
KCNK9	protein coding	8	Age	Birk-Barel mental retardation dysmorphism syndrome
INPP5F	protein coding	10	Age	cell motility; endocytic recycling
KCNQ10T1	antisense	11	GenderMale	Beckwith-Wiedemann syn.; Isol. hemihyperplasia
MEG3	lincRNA	14	GenderMale	Mat/pat 14q32.2 hypermeth/microdel syndrome
RP11-909M7.3	lincRNA	14	DxSCZ	
AL132709.5	miRNA	14	Ancestry.1	
MAGEL2	protein coding	15	Age	Prader-Willi syn.; Schaaf-Yang syn.; Arthrogryposis
NDN	protein coding	15	GenderMale	Prader-Willi syndrome
PWRN1	lincRNA	15	Ancestry.1	Prader-Willi syndrome
UBE3A	protein coding	15	DxSCZ	Prader-Willi syn.; Angelman syn.; circadian rhythm
PEG3	protein coding	19	GenderMale	

Comparison to overall expression analysis*

Summary of results

- ullet $0 \approx 1\%$ of genes imprinted in the human brain
- age, gender and genetics regulate parental bias
- bias of some genes is linked to schizophrenia
- our statistical models have limitations

Improving and extending statistical approach

present: "flat"

proposed: hierarch.

- more power
 - borrowing of strength
 - shared parameters
- more realism
 - interactions
- more answers
 - tissue specificity
 - DNA methylation

Improving and extending statistical approach

proposed: hierarch.

- more power
 - borrowing of strength
 - shared parameters
- more realism
 - interactions
- more answers
 - tissue specificity
 - DNA methylation

Thank you

Chess lab

- Andy Chess
- Chaggai Rosenbluh
- Eva Xia
- Mehaa Bajaj

