Time: 30 mins + 5 (To upload!)

In-Class Quiz 4

1 Problem 1

Buses arrive at a certain stop according to a Poisson process with rate λ . If you take the bus from that stop then it takes a time R, measured from the time at which you enter the bus, to arrive home. If you walk from the bus stop, it takes a time W to arrive home. Suppose that your policy when arriving at the bus stop is to wait up to a time s, and if a bus has not yet arrived by that time then you walk home.

- 1. Compute the expected time from when you arrive at the bus stop until you reach home.
- 2. Show that if $W < \frac{1}{\lambda} + R$ then the expected time of part (a) is minimized by letting s = 0; if $W > \frac{1}{\lambda} + R$ then it is minimizes by letting $s = \infty$ (that is, you continue to wait for the bus); and when $W = \frac{1}{\lambda} + R$ all values of s give the same expected time.

2 Problem 2

A competition is started at time 0 for a group of n competitors. Each competitor is allowed to work until completing the contest. It is known that each competitor's time to complete the contest is exponentially distributed with density $f_X(x) = \lambda e^{-\lambda x}$; $x \ge 0$. The times $X_1, ..., X_n$ are IID.

- 1. Let Z be the time at which the last competitor finishes. Show that Z has a distribution function $F_Z(z)$ given by $[1 e^{-\lambda z}]^n$.
- 2. Let T_1 be the time at which the first competitor leaves. Show that the probability density of T_1 is given by $n\lambda e^{-n\lambda t}$. For each $i, 2 \le i \le n$, let T_i be the interval from the departure of the $i-1^{th}$ competitor to that of the i^{th} . Show that the density of each T_i is exponential and find the parameter of that exponential density. Explain why T_i is are independent.