Project 2 - Team 3

Ellipse matching and performance assessment

- 1. Performance assessment of line segment detection
- 2. Ellipse matching
 - a. Image preprocessing + Data preparation
 - b. Ellipse classification
 - RandomForest
 - Boosting methods
 - Resnet
 - YOLO classification
 - c. Regression on bounding boxes
 - d. Regression on ellipses parameters
- 3. Performance assessment of the ellipse matching module
 - a. Ellipse classification
 - b. Bounding boxes regression
 - a. Ellipse parameters regression
- 4. Demo

1. Performance assessment of line segment detection

1. Performance assessment of line segment detection

- 1) Compute hough on empty image. Use value 155
- 2) Compute ground truth on empty image. Use value 100
- 3) Add both images together
- 4) Check each pixel for the stored value

1. Performance assessment of line segment detection

- Using the results, created a confusion matrix.
- In our case, the thicker the lines drawn, the worst our overall 'Good hits' ratio was.
- The computation time was not impacted significantly by the line thickness

2. Ellipse matching

2.a Image preprocessing + Dataset preparation

Importance of preprocessing

- SL algorithms: Learn the input-output relation
- They must be not erroneous and not noisy
- Otherwise, training phase is more difficult
- Here => Removal of the images without labels

Image processing tried

- Grayscale images
- Canny edge detection
- HED edge detection
- Binarization

2.a Image preprocessing + Dataset preparation

Classification

	Scikit-Learn methods	ResNet
<u>Input</u>	Resized/Reshaped grayscale images	Resized color images
Output	Number of ellipses	Number of ellipses

Regression

	<u>Parameters</u>	Bounding boxes
<u>Input</u>	Reshaped grayscale images	Color images
<u>Output</u>	xc,yc,MA,ma,θ	xmin,ymin,xmax,ymax

2.b Ellipse classification - RandomForest

Decision tree

- Simple but powerful estimator
- Easily interpretable

but...

Overfit very quickly on training set

Advantages:

- Easy to build
- Default parameters sufficient to have great performances

Ensemble methods

RandomForest

- Combine the predictions of several trees
- Add randomness to avoid overfitting

<u>Drawbacks:</u>

- Lots of hyperparameters to tune when improving the results (nb_estimators, max_depth, warm_start,...)
- Difficulties to classify images with 2 or 3 ellipses

2.b Ellipse classification - Boosting methods

Motivations:

- Focus on the hard-to-predict elements to increase the accuracy
- Put some emphasis on the few elements of class 2 and 3

Algorithms considered:

- Adaboost
- Gradient Descent Boosting
- XGBoost

2.b Ellipse classification - Boosting methods (Adaboost)

Adaboost

- Takes a lot of weak learners, barely better than random guessers
- Creates the next learner by taking the error the previous one made into account
 - > Focus on the hard cases
- Final vote amongst classifiers on the correct class

Results

- Results reaching 80 percent of accuracy for low amount of classifiers
- Higher amounts never finished
- Good results for common classes, misqualifies rare ones

2.b Ellipse classification - Boosting methods (Adaboost)

Advantages:

- Easy to build
- Default parameters sufficient to have great performances
- Less subject to overfitting

Drawbacks:

 Can be sensitive to noisy data and outliers.

2.b Ellipse classification - Boosting methods (Gradient Boosting)

Gradient Boosting

- Every new model is built in a way to reduce the global error
- Following a metric (loss)
- Greedy algorithm
- Tend to overfit if too much estimators

Results

- Results reaching 94% percent of accuracy for 600 classifiers, LR of 0.9
- Less populated classes fairly well evaluated
- 2nd best algorithm in this task

2.b Ellipse classification - Boosting methods (Gradient Boosting)

Advantages:

- Easy to build
- Default parameters sufficient to have great performances
- Should be on paper better than RF

Drawbacks:

- Training generally takes longer
- Prone to overfitting

2.b Ellipse classification - Boosting methods (XGBoost)

XGBoost

- Variant of Gradient boosting
- Great success in Kaggle competitions
- Especially suited for tabular or structured data

Results

- Results failed to breach through the 90% accuracy threshold
- LGBM

2.b Ellipse classification - Boosting methods (XGBoost)

Advantages:

- Parallel processing
- Run a cross-validation at each iteration

<u>Drawbacks:</u>

• Same as gradient descent

2.b Ellipse classification - ResNet

- Winner of the ImageNet challenge in 2015
- Solves the problem of the vanishing gradient in deep neural networks
- Use shortcuts between inputs and outputs of layers
- Allows huge networks (up to more than 100 layers)
- Especially suited for computer vision tasks

Advantages:

- Able to fit on very complex datasets
- Obtain the best performances from all the methods tested
- Easily built using keras' pre-built models

Drawbacks:

- Very high variance
- Difficulties to classify images with 2 or 3 ellipses
- May easily overfit

2.b Ellipse classification - YOLO

Using the YOLO algorithm (details on YOLO in the bounding box regression task), possibility to detect the number of ellipses on soccer images:

- 1. Perform bounding box regression on soccer images
- 2. Knowing the number of bounding box, immediately infer the number of ellipses

<u>Advantages:</u>

- Solves the problem of the multiple ellipses images (same accuracy on them than on other images)
- No additional effort required following regression

<u>Drawbacks:</u>

- Global accuracy smaller than other algorithms (~ 80%)
- Cannot be used for bounding box regression tasks

2.c Regression on bounding boxes

- No results with Tree based methods
- Good results with YOLO
 - Generate boxes for each tile
 - Compute class probability map
 - Combine information

2.c Regression on bounding boxes - Results

2.c Regression on bounding boxes - Results

2.d Regression on ellipse parameters

- Input: Reshaped grayscale image in a one-dimensional vector
- Output: 5 parameters of the ellipse, obtained with fitEllipse
- Use of RandomForestRegressor
- Tuning over number estimators and max_depth

2.d Regression on ellipse parameters - Results

2.d Regression on ellipse parameters

Tackle the angle problem

- Variation on the predicting models: RF, MLP, Boosting, were tested.
 - Poor improvements were observed on all tentatives
- Decided to train a full model solely for the angle regression
 - MLP, RF, Adaboost, XGBoost, LGBM, Gradient Descent and SVM were tested
 - Still not great, 40° error remains at least
 - Huge models of several thousand estimators haven't helped
 - Study of the evolution of accuracy with respect to size of training set
 - gets better, but price is too few testing elements

2.d Regression on ellipse parameters

Tackle the angle problem: Results

- Reduction of the error from 45 to 10°
- but results not trustworthy

3. Performance assessment of the ellipse matching module

3.a Ellipse classification

Main metric: accuracy

As images with 2 or 3 ellipses are minority classes, accuracy is not relevant for them, so those will be considered as a "detail"

<u>Algorithm</u>	<u>Accuracy</u>
ResNet	90% - 96%
RandomForest	~ 94%
Gradient boosting	~ 94%
Adaboost/XGBoost	80 < x < 90%

3.b Bounding boxes regression

Mean: 0.8097 Median 0.8689

3.c Ellipse parameters regression

5 metrics : one per parameter.

Average absolute error, in pixels or degrees. Together gives a good idea of how accurate the model is and gives insight on what parameters are the best and most badly qualified

Algorithm	Results for the angle
Gradient descent	50/10°
Random Forest	45°
Boosting	59°
MLP	56°

General results for the other parameters were, using Random Forests:

x: 4.57 y: 5.28

main axis: 5.4 minor axis: 7.26

4. Demo