Задание к зачёту

Часть І

Реализовать в виде программы следующий алгоритм.

Варианты.

1. Алгоритм описания многогранника $\mathfrak{X} = \text{conv}\{x^1, \dots, x^M\} \subset \mathbb{R}^3$ в виде полиэдра:

$$\mathfrak{X} = \bigcap_{k=1}^{K} \{ x \in \mathbb{R}^3 \colon (p^k, x) \leqslant a_k \}.$$

2. Алгоритм описания ограниченного полиэдра

$$\mathfrak{X} = \bigcap_{k=1}^{K} \{ x \in \mathbb{R}^3 \colon (p^k, x) \leqslant a_k \} \subset \mathbb{R}^3$$

в виде многогранника $\mathfrak{X} = \operatorname{conv}\{x^1, \dots, x^M\}$.

3. Алгоритм построения множества 0-управляемости $\mathfrak{X}(N)$ за произвольное число шагов $N \in \mathbb{N}$ для заданной системы управления

$$x(k+1) = Ax(k) + u(k),$$

 $x(0) = x_0, \ u(k) \in \mathcal{U} = \text{conv}\{u^1, \dots, u^M\},$
 $x(k), u(k) \in \mathbb{R}^2, \ k \in \mathbb{N} \cup \{0\}.$

- 4. Алгоритм определения принадлежности точки $x \in \mathbb{R}^4$ некоторому многограннику $\mathfrak{X} = \text{conv}\{x^1,\ldots,x^M\} \subset \mathbb{R}^4$.
- 5. Алгоритм последовательной внутренней полиэдральной аппроксимации шара $\mathcal{B}_1(0) \subset \mathbb{R}^3$ последовательностью многогранников $\{\mathcal{X}_k\}_{k=4}^{\infty}$, где $\mathcal{X}_k = \operatorname{conv}\{x^1,\ldots,x^k\}$, а каждая очередная вершина x^{k+1} определяется из условия:

$$x^{k+1} = \arg\min_{x \in \partial \mathcal{B}_1(0)} \mu(\mathcal{B}_1(0) \setminus \operatorname{conv}\{\mathcal{X}_k \cup x\}).$$

Первоначальное приближение \mathfrak{X}_4 является входным параметром алгоритма.

6. Алгоритм последовательной внешней полиэдральной аппроксимации шара $\mathcal{B}_1(0) \subset \mathbb{R}^3$ последовательностью полиэдров $\{\mathcal{X}_k\}_{k=4}^{\infty}$, где $\mathcal{X}_k = \bigcap_{i=1}^k \{x \in \mathbb{R}^3 \colon (p^i,x) \leqslant 1\}$, а каждая очередная гиперплоскость $\{x \in \mathbb{R}^3 \colon (p^{k+1},x) \leqslant 1\}$ определяется из условия:

$$p^{k+1} = \arg\min_{p \in \partial \mathcal{B}_1(0)} \mu(\mathcal{X}_k \cap \{x \in \mathbb{R}^3 : (p^{k+1}, x) \leqslant 1\} \setminus \mathcal{B}_1(0)).$$

Первоначальное приближение \mathfrak{X}_4 является входным параметрами алгоритма.

7. Алгоритм последовательной комбинированной полиэдральной аппроксимации шара $\mathfrak{B}_1(0) \subset \mathbb{R}^2$ последовательностью полиэдров $\{\mathfrak{X}_k\}_{k=3}^{\infty}$ и многогранников $\{\mathfrak{Y}_k\}_{k=3}^{\infty}$, где

$$\mathfrak{X}_k = \bigcap_{i=1}^k \{ x \in \mathbb{R}^3 \colon (x^i, x) \leqslant 1 \},$$

$$\mathcal{Y}_k = \operatorname{conv}\{x^1, \dots, x^k\},\$$

а каждая очередная точка x^{k+1} определяется из условия:

$$x^{k+1} = \arg\min_{x \in \partial \mathcal{B}_1(0)} \mu(\mathcal{X}_k \cap \{x \in \mathbb{R}^3 \colon (x^{k+1}, x) \leqslant 1\} \setminus \operatorname{conv}\{\mathcal{Y}_k \cup x\}).$$

Первоначальные приближения $\mathfrak{X}_3, \mathfrak{Y}_3$ являются входными параметрами алгоритма.

8. Алгоритм вычисления N_{min} для заданной системы управления

$$x(k+1) = Ax(k) + u(k),$$

 $x(0) = x_0, \ u(k) \in \mathcal{U} = \text{conv}\{b; -b\},$
 $x(k), u(k) \in \mathbb{R}^2, \ k \in \mathbb{N} \cup \{0\}.$

9. Алгоритм проверки, возможно ли представить заданный многогранник $\mathfrak{X} = \operatorname{conv}\{x^1,\dots,x^M\} \subset \mathbb{R}^3$ в виде алгебраической суммы некоторого многогранника $\mathfrak{Y} = \operatorname{conv}\{y^1,\dots,y^N\} \subset \mathbb{R}^3$ и отрезка $\operatorname{conv}\{b^1,b^2\} \subset \mathbb{R}^3$:

$$\mathfrak{X} = \mathfrak{Y} + \operatorname{conv}\{b^1, b^2\}.$$

- 10. Алгоритм построения $\operatorname{Ext} \operatorname{conv}\{x^1,\ldots,x^M\} \subset \mathbb{R}^3$.
- 11. Алгоритм построения $\operatorname{Ext}(\operatorname{conv}\{x^1,\dots,x^M\}+\operatorname{conv}\{y^1,\dots,y^N\})\subset\mathbb{R}^2.$
- 12. Алгоритм построения множеств $\mathfrak{X}(N-k,k)$ за произвольное число шагов $N\in\mathbb{N}$, для всех $k=\overline{1,N}$ для заданной 2-периодической нестационарной системы управления

$$x(k+1) = A(k)x(k) + u(k),$$

 $x(0) = x_0, \ u(k) \in \mathcal{U} = \text{conv}\{u^1, \dots, u^M\},$
 $x(k), u(k) \in \mathbb{R}^2, \ A(2k) = A_1, \ A(2k+1) = A_2, \ k \in \mathbb{N} \cup \{0\}.$

13. Алгоритм вычисления N_{min} для заданной 2-периодической нестационарной системы управления

$$x(k+1) = A(k)x(k) + u(k),$$

 $x(0) = x_0, \ u(k) \in \mathcal{U} = \text{conv}\{b; -b\},$
 $x(k), u(k) \in \mathbb{R}^2, \ A(2k) = A_1, \ A(2k+1) = A_2, \ k \in \mathbb{N} \cup \{0\}.$

14. Алгоритм построения дискретного аналога линейной непрерывной системы

$$\dot{y}(t) = Ay(t) + v(t),$$

 $y(0) = y_0,$
 $y(t), v(t) \in \mathbb{R}^4, \ t \in [0; +\infty).$

Предполагается, что управление релейно:

$$v(t) = v_k \in \mathcal{V}, \ t \in [k\Delta; (k+1)\Delta), \ k \in \mathbb{N} \cup \{0\}.$$

15. Алгоритм построения дискретного аналога линейной непрерывной системы

$$\dot{y}(t) = Ay(t) + v(t),$$

 $y(0) = y_0,$
 $y(t), v(t) \in \mathbb{R}^4, \ t \in [0; +\infty).$

Предполагается, что управление импульсно:

$$v(t) = v_k \delta(t - k\Delta), \ v_k \in \mathcal{V}, \ t \in [k\Delta; (k+1)\Delta), \ k \in \mathbb{N} \cup \{0\}.$$

Часть II

Пусть задана система управления (A, \mathcal{U}) :

$$x(k+1) = Ax(k) + u(k),$$

 $x(0) = x_0,$
 $u(k) \in \mathcal{U} = \mathcal{B}_1(0), \ k \in \mathbb{N} \cup \{0\}.$

В предположении, что $x_0 \in \partial \mathfrak{X}(N_{min})$, для заданных оператора системы $A \colon \mathbb{L} \to \mathbb{L}$ и пространства состояния L с помощью принципа максимума выполнить следующие задания:

- 1) построить операторы A^{-1} и A^* ;
- 2) для произвольного шага $N \in \mathbb{N}$ построить множество 0-управляемости $\mathfrak{X}(N)$;
- 3) определить начальное состояние сопряжённой системы $\psi(0)$;
- 4) построить траекторию сопряжённой системы $\{\psi(k)\}_{k=0}^{N_{min}-1}$;
- 5) построить оптимальное по быстродействию управлеие $\{u(k)\}_{k=0}^{N_{min}-1}$; 6) построить оптимальную по быстродействию траекторию $\{x^*(k)\}_{k=0}^{N_{min}}$;
- 7) для значения $N_{min} = 4$ подобрать конкретный вектор $x_0 \in \partial \mathfrak{X}(N_{min})$ и построить для него оптимальную по быстродействию траекторию;
 - 8) визуализировать пункт 6) графически.

Варианты.

1.
$$\mathbb{L} = l_2$$
, $Ax = (x_2, x_1, x_4, x_3, \ldots)$.
2. $\mathbb{L} = l_2$, $Ax = (x_3, x_2, x_1, x_6, x_5, x_4, \ldots)$.
3. $\mathbb{L} = l_2$, $Ax = (x_3, x_1, x_2, x_6, x_4, x_5, \ldots)$.
4. $\mathbb{L} = l_2$, $Ax = (x_2, x_3, x_1, x_5, x_6, x_4, \ldots)$.
5. $\mathbb{L} = l_2$, $Ax = (x_2, x_1, x_3, x_5, x_4, x_6, \ldots)$.
6. $\mathbb{L} = l_2$, $Ax = (x_1, x_3, x_2, x_4, x_6, x_5, \ldots)$.
7. $\mathbb{L} = C_2([0; 1])$, $(Ax)(t) = x(1 - t)$.
8. $\mathbb{L} = C_2([0; 1])$, $(Ax)(t) = -x(t)$.
9. $\mathbb{L} = C_2([0; 1])$, $(Ax)(t) = -x(1 - t)$.
10. $\mathbb{L} = C_2([0; 1])$, $(Ax)(t) = \frac{1}{2}x(1 - t)$.
11. $\mathbb{L} = L_2([0; 1])$, $(Ax)(t) = \frac{1}{2}x(1 - t)$.

12.
$$\mathbb{L} = L_2([0;1]),$$

$$(Ax)(t) = \begin{cases} x(t + \frac{2}{3}), & t \in [0; \frac{1}{3}), \\ -x(t - \frac{1}{3}), & t \in [\frac{1}{3}; \frac{2}{3}), \\ -x(t - \frac{1}{3}), & t \in [\frac{2}{3}; 1], \end{cases}$$

13.
$$\mathbb{L} = L_2([0;1]),$$

$$(Ax)(t) = \begin{cases} -x(t+\frac{2}{3}), & t \in [0; \frac{1}{3}), \\ x(t-\frac{1}{3}), & t \in [\frac{1}{3}; \frac{2}{3}), \\ -x(t-\frac{1}{3}), & t \in [\frac{2}{3}; 1], \end{cases}$$

14.
$$\mathbb{L} = L_2([0;1]),$$

$$(Ax)(t) = \begin{cases} -x(t+\frac{2}{3}), & t \in [0; \frac{1}{3}), \\ -x(t-\frac{1}{3}), & t \in [\frac{1}{3}; \frac{2}{3}), \\ x(t-\frac{1}{3}), & t \in [\frac{2}{3}; 1], \end{cases}$$

15.
$$\mathbb{L} = L_2([0;1]),$$

$$(Ax)(t) = \begin{cases} -x(t+\frac{2}{3}), & t \in [0; \frac{1}{3}), \\ -x(t-\frac{1}{3}), & t \in [\frac{1}{3}; \frac{2}{3}), \\ -x(t-\frac{1}{3}), & t \in [\frac{2}{3}; 1], \end{cases}$$

Часть II

Для заданных $\mathcal{U}_1,\mathcal{U}_2,\mathcal{U}_3\subset\mathbb{R}^2$ требуется построить графически множества:

- 1) U_1 ;
- 2) U_2 ;
- 3) U_3 ;
- 4) $U_1 + U_2$;
- 5) $U_1 + U_2 + U_3$.

Варианты.

1.
$$\mathcal{U}_{1} = \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 1 & 0 \\ 0 & 15 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{2} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 15 & 0 \\ 0 & 1 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{3} = \operatorname{conv} \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}.$$

2.
$$\mathcal{U}_{1} = \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 2 & 0 \\ 0 & 14 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{2} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 14 & 0 \\ 0 & 2 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{3} = \operatorname{conv} \left\{ \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}.$$

3.
$$\mathcal{U}_{1} = \left\{ x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 3 & 0 \\ 0 & 13 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{2} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \left\{ x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 13 & 0 \\ 0 & 3 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{3} = \operatorname{conv} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}.$$

4.
$$\mathcal{U}_{1} = \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 4 & 0 \\ 0 & 12 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{2} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 12 & 0 \\ 0 & 4 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{3} = \operatorname{conv} \left\{ \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}.$$

5.
$$\mathcal{U}_{1} = \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 5 & 0 \\ 0 & 11 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{2} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 11 & 0 \\ 0 & 5 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{3} = \operatorname{conv} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\}.$$

$$\begin{aligned} &6. \ \mathcal{U}_{1} = \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 6 & 0 \\ 0 & 10 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{2} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 10 & 0 \\ 0 & 6 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{3} = \operatorname{conv} \left\{\begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}. \\ &7. \ \mathcal{U}_{1} = \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 7 & 0 \\ 0 & 9 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{2} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 9 & 0 \\ 0 & 7 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{3} = \operatorname{conv} \left\{\begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}. \\ &8. \ \mathcal{U}_{1} = \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 9 & 0 \\ 0 & 5 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{2} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 9 & 0 \\ 0 & 5 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{3} = \operatorname{conv} \left\{\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}. \\ &9. \ \mathcal{U}_{1} = \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 9 & 0 \\ 0 & 7 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{2} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 7 & 0 \\ 0 & 9 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{3} = \operatorname{conv} \left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ -1 \end{pmatrix} \right\}. \\ &10. \ \mathcal{U}_{1} = \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 10 & 0 \\ 0 & 6 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{2} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 6 & 0 \\ 0 & 10 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{3} = \operatorname{conv} \left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}. \\ &11. \ \mathcal{U}_{1} = \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 11 & 0 \\ 0 & 5 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{2} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 5 & 0 \\ 0 & 11 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{3} = \operatorname{conv} \left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \end{pmatrix}\right\}. \\ &12. \ \mathcal{U}_{1} = \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 12 & 0 \\ 0 & 4 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{2} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \left\{x \in \mathbb{R}^{2} \colon x^{T} \begin{pmatrix} 4 & 0 \\ 0 & 12 \end{pmatrix} x \leqslant 1 \right\}, \\ &\mathcal{U}_{3} = \operatorname{conv} \left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \end{pmatrix} \right\}. \\ &\mathcal{U}_{3} = \operatorname{conv} \left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \end{pmatrix}\right\}. \\ &\mathcal{U}_{3} = \operatorname{conv} \left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix}$$

13.
$$\mathcal{U}_{1} = \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 13 & 0 \\ 0 & 3 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{2} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 3 & 0 \\ 0 & 13 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{3} = \operatorname{conv} \left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}.$$
14. $\mathcal{U}_{1} = \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 14 & 0 \\ 0 & 2 \end{pmatrix} x \leqslant 1 \right\},$

$$\mathcal{U}_{2} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 2 & 0 \\ 0 & 14 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{3} = \operatorname{conv} \left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right\}.$$
15. $\mathcal{U}_{1} = \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 15 & 0 \\ 0 & 1 \end{pmatrix} x \leqslant 1 \right\},$

$$\mathcal{U}_{2} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \left\{ x \in \mathbb{R}^{2} : x^{T} \begin{pmatrix} 1 & 0 \\ 0 & 15 \end{pmatrix} x \leqslant 1 \right\},$$

$$\mathcal{U}_{3} = \operatorname{conv} \left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}.$$