3: Vertical Cylinder

 $Gr_{i} = \frac{g\beta [T_{\nu} - T_{z}]L^{i}}{\sigma^{z}}$

For vertical cylinder:

- If S << D , use the correlations given for vertical flat plate. The condition is met when: $D/L \ge 35/Gr_0^{1/4}$
- If the D/L <35/Gr_L⁽ⁿ⁾, the flat plate results for the average heat transfer coefficient should be multiplied by a factor Figiven. below (transverse curvature plays a role):

$$F = 1.3 \left[(L/D) / Gr_n \right]^{127} + 1.0$$
Where: $Gr_n = \frac{\kappa \beta [T_n - T_n] D^n}{\nu^2}$

5: Inclined Flat Plate

- Por the surface of cooled plates $\{T_{\bullet} < T_{\bullet}\}$ and the $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$. Surface of heated plates ($T_{\nu} > T_{\nu}$) use the vertical flat plate correlations with g replaced by $g\cos\theta$. This approach is valid for $0 < \theta < 60$.
- For all other cases, look for specialized correlations/data Check Reference

For the top surface of cooled plates and the bottom surface...

ommon practice [1st approximation] (Incropera and DeWitt, 1994):

For Aiding (assisting) and Transverse Flows:

$$(Nu)_{mixed}^{n} = (Nu)_{forced}^{n} + (Nu)_{Natural}^{n}$$

Assisting flow over vertical plates n=3

Transverse flow over vertical plates n = 3.5

Transverse flow over cylinders or spheres

For Opposing Flows:

$$(Nu)_{mixed}^{n} = (Nu)_{forced}^{n} - (Nu)_{Natural}^{n}$$

n=3 Opposing flow over vertical plates

: Internal Mixed Convection in Pipes:

Works of Metais and Eckert; Martinelli, Brawn and Gauvin... Please see Figures 7-13 and 7.14 in J.P. Holman 2002, for summary of available correlations.

3: Horizontal Concentric Cylinders (Isothermal)

· Rate of heat transfer:

$$q = \frac{\left(T_i - T_o\right)}{\ln\left(D_o / D_i\right) / 2\pi k_{eff} L} \text{ And,}$$

$$Gr_{\delta} = \frac{g\beta \left[T_i - T_o\right] \delta^3}{v^2}; Ra_{\delta} = \Pr Gr_{\delta}$$
Where $\delta = r_o - r_i$

$$\frac{k_{eff}}{k_{\text{fluid}}} = 0.11 (Gr_{\delta} \text{ Pr})^{0.29} \quad \begin{array}{c} 6000 \le Gr_{\delta} \text{ Pr} \le 10^{6} \\ 1 \le \text{ Pr} \le 5000 \end{array}$$

$$\frac{k_{eff}}{k} = 0.40 (Gr_{\delta} \text{ Pr})^{0.20} \quad 10^{6} \le Gr_{\delta} \text{ Pr} \le 10^{8}$$

$$1 \le \text{Pr} \le 5000$$

f effective Hernal conductivity : Concentric Spheres (Isothermal)

 D_i, T_i

· Rate of heat transfer:

$$1.2 \times 10^2 \le Gr_{\delta} \Pr \le 1.1 \times 10^9$$

$$\frac{df}{dt} = 0.228 (Gr_{\delta} \text{ Pr})^{0.226} \qquad 0.7 \le \text{Pr} \le 4150$$

$$0.25 \le \delta/r_{\delta} \le 1.5$$

TizTo

MECH-375- Heat Trans C: Mixed Convection (Combined Forced and Natural Convection)

1: External Mixed Convection:

Figure 8-30 I Radiation heat transfer between simple two-body diffuse, gray surfaces. In all cases $F_{12} = 1.0$.

Small convex object in large enclosure

Infinite concentric cylinders

$$q = \frac{\sigma A_1 \left(T_1^4 - T_2^4 \right)}{1/\epsilon_1 + (1/\epsilon_2 - 1)(r_1/r_2)}$$
with $A_1/A_2 = r_1/r_2$; $r_1/L \to 0$

Infinite parallel planes

$$(q/A) = \frac{\sigma(T_1^4 - T_2^4)}{1/\epsilon_1 + 1/\epsilon_2 - 1}$$

with $A_1 = A_2$

Concentric spheres

$$q = \frac{\sigma A_1 \left(T_1^4 - T_2^4 \right)}{1/\epsilon_1 + (1/\epsilon_2 - 1)(r_1/r_2)^2}$$
for $A_1/A_2 = (r_1/r_2)^2$

Radiation Shields

Example 1: Two large parallel flat plates, with a thin-plate radiation shield in between them

$$A_1 = A_2 = A_3 = A \;\; ; \;\; F_{1-3} = F_{3-2} = 1$$

With no shield:
$$q_1^{Net Rad} = q_{1-2}^{Net Rad} = \frac{A\sigma(T_{1,abs}^4 - T_{2,abs}^4)}{[(1/\varepsilon_1) + (1/\varepsilon_2) - 1]}$$

Equivalent circuit with shield:

$$q_1^{Net\,Rad} = \frac{A\,\sigma\!\left(T_{1,abs}^4 - T_{2,abs}^4\right)}{\left[\left(\frac{1}{\varepsilon_1}\right) + \left(\frac{1}{\varepsilon_2}\right) + \left(\frac{1-\varepsilon_{3,L}}{\varepsilon_{3,L}}\right) + \left(\frac{1-\varepsilon_{3,R}}{\varepsilon_{3,R}}\right)\right]}$$

Example 2: Two long concentric cylindrical shells, with a thinwalled cylindrical radiation shield in between them

$$A_1 = 2\pi r_1 L$$
 ; $A_2 = 2\pi r_2 L$; $A_3 = 2\pi r_3 L$
 $F_{1-2} = 1$; $F_{1-3} = 1$; $F_{3-2} = 1$

$$q_{1-2}^{NetRad} = \frac{A_1 \sigma \left(T_{1,abs}^4 - T_{2,abs}^4\right)}{\left[\left(\frac{1}{\varepsilon_1}\right) + \left(\frac{1-\varepsilon_2}{\varepsilon_2}\right)\left(\frac{r_1}{r_2}\right)\right]}$$

With shield,

$$q_{1-2}^{Net\,Rad} = \frac{A_1\,\sigma\!\left(T_{1,abs}^4 - T_{2,abs}^4\right)}{\left[\left(\frac{1}{\varepsilon_1}\right) + \left(\frac{1-\varepsilon_{3,i}}{\varepsilon_{3,i}} + \frac{1-\varepsilon_{3,o}}{\varepsilon_{3,o}} + 1\right)\!\left(\frac{r_1}{r_3}\right) + \left(\frac{1-\varepsilon_2}{\varepsilon_2}\right)\!\left(\frac{r_1}{r_2}\right)\right]}$$

Example 3: Two large parallel flat plates with multiple thinwalled flat parallel-plate shields in between them

Assumptions:

- 1) $A_1 = A_2 = \dots = A$
- 2) All shape factors are equal to one $(F_{i-j} = 1)$
- 3) All surfaces have the same emissivity: ε

- Two end-plates, 1 and 2; N shields (thin, large, flat parallel plates)
- All surface radiation resistances = $(1 \varepsilon)/(A\varepsilon)$
- All space or geometrical radiation resistances = $1/(A_i F_{i-1}) = 1/A$
- There are (2N+2) surface radiation resistances
- There are (N+1) space radiation resistances

Therefore,

$$q_{1-2}^{Net \, Rad} = \frac{\sigma(T_{1,abs}^4 - T_{2,abs}^4)}{(2N+2)\left(\frac{1-\varepsilon}{A\varepsilon}\right) + (N+1)\left(\frac{1}{A}\right)} = \frac{A\sigma(T_{1,abs}^4 - T_{2,abs}^4)}{(N+1)\left(\frac{2}{\varepsilon} - 1\right)}$$

and

$$q_{1-2\atop \text{with no shields}}^{\text{Net Rad}} = \frac{A\sigma\left(T_{1,abs}^4 - T_{2,abs}^4\right)}{\left(\frac{2}{\varepsilon} - 1\right)}$$

Thus,
$$\left[q_{1-2}^{Net Rad} / q_{1-2}^{Net Rad}\right] = \left(\frac{1}{N+1}\right)$$

Random stuff:

Wisconsin Mathematics Formula Reference Sheet

Shape	Formulas for Area (A) and Circumference (C)			
Triangle	$A = \frac{1}{2}bh = \frac{1}{2} \times base \times height$			
Rectangle	$A = lw = length \times width$			
Trapezoid	$A = \frac{1}{2}(b_1 + b_2)h = \frac{1}{2} \times \text{sum of bases} \times \text{height}$			
Parallelogram	$A = bh = base \times height$			
Circle	$A=\pi r^2=\pi imes ext{square of radius}$ $C=2\pi r=2 imes\pi imes ext{radius}$			
Figure	Formulas for Volume (V) and Surface Area (SA)			
Rectangular Prism	$V = lwh = length \times width \times height$ $SA = 2lw + 2hw + 2lh$ $= 2(length \times width) + 2(height \times width) + 2(length \times height)$			
General Prisms	$V = Bh = $ area of base \times height $SA = $ sum of the areas of the faces			
Right Circular Cylinder	$V = Bh = $ area of base \times height $SA = 2B + Ch = (2 \times $ area of base) $+$ (circumference \times height)			
Right Pyramid	$V=rac{1}{3}Bh=rac{1}{3} imes$ area of base $ imes$ height $SA=B+rac{1}{2}P\ell$ = area of base $+$ ($rac{1}{2}$ $ imes$ perimeter of base $ imes$ slant height)			
Right Circular Cone	$V = \frac{1}{3}Bh = \frac{1}{3} \times \text{ area of base} \times \text{height}$ $SA = B + \frac{1}{2}C\ell = \text{ area of base} + (\frac{1}{2} \times \text{ circumference} \times \text{ slant height})$			
Sphere	$V = \frac{4}{3}\pi r^3 = \frac{4}{3} \times \pi \times \text{cube of radius}$ $SA = 4\pi r^2 = 4 \times \pi \times \text{square of radius}$			