DNA Sequencing and Data Analysis

Prof Noam Shomron Hadas Volkov

Lecture 10, January 6, 2023

DNA Sequencing and Data Analysis

Friday 8:45 AM to 11:15 AM Arazi-Ofer Building, C.LO3

<u>nshomron@gmail.com</u> <u>hadas.volkov@post.runi.ac.il</u>

DNA Sequencing and Data Analysis

Introduction to Third Generation Sequencing

Class	T:Al a	Contact/cosismonts	Activity, leasting
Class	Title	Content/assignments	Activity, location
1, 4.11	Introduction to Cells and DNA	Basic knowledge of biology	In the lecture hall, Noam
2, 11.11	DNA Sequencing past and present	Basic knowledge of molecular DNA	In the lecture hall, Noam
3, 18.11	Genomics technologies	DNA, RNA, technologies	In the lecture hall, Noam
4, 25.11	Introduction to Bioinformatics challenges in reading DNA	Focus on three methods: WES/WGS, RNA-seq, cell-free DNA	In the lecture hall, Noam
5, 2.12	Modern DNA Sequencing, 2nd wave File Formats, tools.	Analysis approaches for WES/WGS, RNA-seq, cell-free DNA	In the lecture hall, Hadas and Noam
6, 9.12	De novo Shotgun Assembly	The algorithms and methods behind the assembly problem	In computer class, Hadas and Noam
7, 16.12	Sequence Mapping and Alignment	The algorithms behind mapping and alignment, fast and heuristics	In computer class, Hadas and Noam
8, 23.12	Variant Calling and Somatic Variant Analysis	The bioinformatics behind discovery of novel mutations in cancer	In computer class, Hadas and Noam
9, 30.12	RNA-Seq	The bioinformatics behind RNA-Seq and Differential Gene Expression	In computer class, Hadas and Noam
10, 6.1	Nanopore data analysis introduction Practice molecular biology techniques	Pipetting, transferring small amounts of fluids, running a dry Nanopore experiment	In biology class, Meitar and Noam
11, 13.1	Nanopore DNA sequencing	Nanopore DNA sequencing, experimental run	In biology class, Meitar, Hadas, Assaf
12, 20.1	Nanopore data analysis	Nanopore DNA analysis, experimental run	In computer class, Hadas and Noam
13, 27.1	Nanopore data analysis and presentations	Groups present their results	In the lecture hall, Hadas and Noam

Lesson Goals

Be familiar with the main 3rd generation sequencing technologies:

- PacBio SMRT sequencing
- ONT sequencing
- 10X linked reads

Understand various applications of long and linked reads

- RNA-seq
- De novo assembly
- Structural variant calling

Know how to use Minimap2 for long read alignment

Be able to perform SV calling from long read data using Sniffles

What is 3rd Gen Sequencing

Sequencing technologies other than Illumina sequencing

Focus on producing long-distance information

- Long reads
- Linked reads

Developed or matured in the last decade

Actively being developed

Main technologies:

- Pacific Biosciences SMRT sequencing PacBio
- Oxford Nanopore Technology ONT
- 10X Genomics Chromium 10X

PacBio SMRT Sequencing

Single Molecule Real Time

No amplification step

Based on the ability to analyze very small volumes

Sequencing by synthesis

Sequel II

PacBio Library Prep

PacBio Sequencing

Properties of PacBio Sequencing

Read length

- Non-uniform
- Depends on selected insert size
- Usually 10-100kb

No paired-end option

One run can produce 4-5M reads - ~40Gb

Runs take several hours

Mostly uniform coverage - no GC-content bias

Raw reads error rate - ~10%

Dealing With High Error Rates

Working with 10% error rate is impractical

Option 1:

Polymerase Read —

CLR - continuous long read

Polymerase read length = sub-read length

Align CLRs to a reference genome and correct errors

Find the consensus of multiple molecules

Accuracy increases with sequencing depth

CLR Error Correction

Dealing With High Error Rates

Option 2:

CCS - circular consensus read

Also called **HiFi reads**

Polymerase read length > sub-read length

Align CCSs to one another and correct errors

Find the consensus of a single molecule

Accuracy >99%

Shorter reads (<20kb)

Accuracy CLR consensus Vs. CCS

Oxford Nanopore Sequencing (ONT)

Single molecule

Real time

Not SBS

Palm-sized machine

Properties of ONT Sequencing

Read length - theoretically unlimited

In practice depends on DNA fragmentation - can produce reads > 2Mb

Yield - depends on machine model - 50Gb to 10Tb

Accuracy - ~10% error

Comparing Technologies

	Illumina	PacBio CLR	PacBio CCS	ONT
Read length	150-250 bp	50 kb	30 kb	10-30 kb
Overall error rate	0.1 %	10-15 %	<1 %	<5 %
Mismatch	~ 100 %	37 %	4 %	41 %
InDel	~ 0 %	63 %	96 %	59 %
Cost	\$29/Gb	\$85/Gb		
Throughput	7 Gb/h	2.5 Gb/h		

10X Genomics

Not a long read technology

But provides long-range information through linked reads

Short reads originating from the same long molecule

Based on standard short read Illumina technology

Linked Reads

Reads with the same barcode likely come from the same gDNA fragment gDNA fragment size is usually 50-60kb

If ~x3 depth is used - we can produce "synthetic long reads"

Usually each molecule is sequenced at ~x0.2

We can still get useful long-range information

Non-trivial computational analysis is needed

Applications of 3rd Gen Sequencing

Transcriptomics

Genome assembly

Structural variation detection

RNA-Seq and Long Reads

Read length is usually larger than mRNA size

Full-length transcripts

No transcript assembly is needed

Easier to detect and quantify isoforms

10X for Single Cell RNA-Seq

GemCode[™] Technology for Single Cell Partitioning

Utilize an efficient droplet-based system to encapsulate up to 100-80,000+ cells in a single 10-minute run.

Single Cell Digital Gene Expression

Enable digital quantification of transcripts in every cell, for single cell digital gene expression analysis.

Long and Linked Reads in Genome Assembly

Many modern assemblers can work with 3rd generation reads

- Falcon PacBio reads
- Canu, SPAdes PacBio and ONT reads
- Supernova 10X reads

Most assemblers take a "hybrid" approach - long + short reads

Long/linked reads can help link contigs by bridging over difficult regions

Long reads can help solve long repeats

Different Assembly Strategies

Haplotype Phasing

Many interesting eukaryote genomes are diploid or polyploid

Still, most assemblies are haploid

Heterozygosity is "squished" into consensus sequences

A haplotype is a group of alleles arising from the same molecule

Splitting an assembly into haplotypes is called phasing

Structural Variant Detection

SVs are generally hard to detect with short reads

Many SVs are located in regions that are hard to sequence

SV detection is usually based on mapping reads to a reference

Long reads are useful because:

- They can cross long repeats
- They are not affected by GC-bias
- They can span large insertions

1. Tattini, L., D'Aurizio, R., & Magi, A. (2015). Detection of genomic structural variants from next-generation sequencing data. *Frontiers in bioengineering and biotechnology*, 3, 92.

How Do we Detect Variants

	Sequencing	Mapping	Variant calling
SNP	short reads	BWA	GATK
CV/	short reads	BWA	Manta
SV	long reads	Minimap2	Sniffles

Read Mapping With Minimap2

Minimap2 is a generic sequence mapping software

There are various mapping modes like:

- PacBio CLR to genome
- PacBio CCS to genome
- cDNA / PacBio Iso-Seq (transcripts) to genome
- ONT reads to genome
- PacBio reads to PacBio reads
- Short reads to genome (alternative to BWA)

Modes accounts for the specific biases of each technology

Input format is fasta/fastq

Output format is SAM or PAF

Sniffles applies various strategies to call SVs from long read data

It can detect insertions, deletions, duplications, inversions and translocations.

Input: aligned long reads in BAM format

Output: SV calls in VCF format

Sniffles workflow

Sedlazeck, Fritz J., et al. "Accurate detection of complex structural variations using single-molecule sequencing." Nature methods 15.6 (2018): 461-468.

Step 1 - estimate data parameters (from sub-sample)

Step 2 - filter low quality mappings

- MAPQ < 20
- MAPQ ratio < 2 or smaller than minimum observed in step 1
- Too many split events

Step 3 - 4

 Scan for regions deviating from the observed parameters and detect SVs

Merge SVs from multiple reads

Sniffles Output VCF

```
#CHROM POS
                                       FILTER INFO
                                                     FORMAT E coli W CCS vs K12.sort.bam
                                 QUAL
                                                     PRECISE; SVMETHOD=Snifflesv1.0.11; CHR2=Chromosome; END=4641652; ZMW
                                 <DUP>
                                              PASS
                          N
Chromosome
=45;STD quant start=0.000000;STD quant stop=0.213201;Kurtosis quant start=7.874286;Kurtosis quant stop=-2.083333;SVTYPE=DUP SUPT
YPE=SR;SVLEN=4641652;STRANDS=-+;RE=45;REF strand=0,0;AF=1
                                                     GT: DR: DV
                                 Chromosome
CAGAGTGAAGGACTGCGTAACAAGACTGATACCGTGGATGCGCGCATGCTGGCAGAGTTCTGTCGTCAGAAGCGCCCTGCAGCCTGGGAAGCGCCTCACCCGCTTGAACGCGCGTTGCGTGCCTGGT
GTCCGCCACCAGGCGCTGACAGATATGCACACGCAGGAACTGAATCGCACTGAAACGGCGCGGGAAGTCCAGAGACCGAGCATTGATGCTCACCTTCTGTGGCTTGAAGCAGAGCTGAAGCGT
AGAAGCAGATAAAAGACCTGACAGACGATGATCCGGATATGAAACACCGCAGGAAACTGCTGGAAAGCATCCCGGGTATCGGAGAGAAAACATCTGCGGTATTGCTGGCT
   TCGCCCATGCCAGACAGTTCGCCGCTTTTGGCGGTCTGACACCACGGCGTTATGAATCAGGTAGCAGTGTGAGAGGGGCGAGCCGGATGAGTAAGGCCGGACATGTGTCGCTTCGCAGGGCGT
GTATATGCCCGCAATGGTAGCCACCAGTAAGACTGAGTGGGGGACGGGCGTTCCGCGACCGGTCTGGCGGCTAATGGCAAGAAAGGAAAGGTGATTCTCGGCGCGCGATGATGCGCAAGCTGGCACAGGT
GGCGTATGAGTGCTGAAGTCAGGCGTGCCGTTCGATGCGTCACGGCATAATCCGTAGCGGCGTAAAAAATCGCGGAAGGGATGAAAAAAACAGCGCCTGACGGCGCTGTGTCCTGGCATGCTGCAATC
CGGGAAACCGACCAGGAAAAAACTTGCAGGCCATAACAGTA
                                              PASS
                                                     PRECISE:SVMETHOD=Snifflesv1.0.11:CHR2=Chromosome:END=6876;ZMW=40
;STD quant start=0.000000;STD quant stop=0.632456;Kurtosis quant start=2.078125;Kurtosis_quant_stop=-1.459504;SVTYPE=INS;SUPTYPE
=AL,SR;SVLEN=1280;STRANDS=+-;RE=40;REF strand=9,10;AF=0.677966 GT:DR:DV
                                                                  0/1:19:40
                          GGGATCACTCCCATAAGCGCTAACTTAAGGGTTGTGGTATTACGCCTGATATGATTTAACGTGCCGATGAA
GGGGATGTCATTACGTGAAGTCACTGCATGGGCTCAGCTCCATGACGTTGCAACATTATCTGACGTGGCTCTCCTGAAGCGGCTGCGGAATGCCGCCGACTGGTT
 TGCTGTACGCGCCGCAGTTACGGGTTGTACAAGCGGAAAGAGTTGCGTCTTGTCGATGGAACAGCAATCAGTGCGCCCGGGGGGCGGCAGCGCTGAATGGCGACTACATATGGGATATGATCCTCAT
ACCTGTCAGTTCACTGATTTTGAGCTAACCGACAGCAGAGACGCTGAACGGCTGGACCGATTTGCGCAAACGGCAGACGAGATACGCATTGCTGACCGGGGGATTCGGTTCGCGTCCCGAATGTATCCG
CTCACTTGCTTTTGGAGAAGCTGATTATATCGTCCGGGTTCACTGGCGAGGATTGCGCTGGTTAACTGCAGAAGGAATGCGCTTTGACATGATGGGTTTTCTGCGCGGGCTGGATTGCGGTAAGAACG
GTGAAACCACTGTAATGATAGGCAATTCAGGTAATAAAAAAGCCGGAGCTCCCTTTCCGGCACGTCTCATTGCCGTATCACTTCCTCCCGAAAAAGCATTAATCAGTAAAACCCGACTGCTCAGCGAG
AATCGTCGAAAAGGACGAGTAGTTCAGGCGGAAACGCTGGAAGCAGCGGGCCATGTGCTATTGCTAACATCATTACCGGAAGATGAATATTCAGCAGAGCAAGTGGCTGATTGTTACCGTCTGCGATG
GACAGCCTACAAAACGCAATTGAAGAACGCGAGGCATCGTCTTAACGAGGCACCGAGGCGTCGCATTCTTCAGATGGTTCAACCCTTAAGTTAGCGCTTAT
PRECISE;SVMETHOD=Snifflesv1.0.11;CHR2=Chromoso<del>me;END=1672</del>7;ZMW=30;STD_quant_start=0.000000;STD_quant_stop=0.000000;Kurtosis_quan
 _start=1.301541;Kurtosis_quant_stop=3.975309;SVTYPE=DEL;SUPTYPE=AL,SR;SVLEN=-1349;STRANDS=+-;RE=30;REF_strand=3,5;AF=0.789474
GT:DR:DV
             0/1:8:30
```

HYPE!

In recent years there have been lots of talk about long (an linked) reads

Many publications about data analysis and dedicated tools

Long reads are great! ... for some things

Constantly improving

Long reads have their own problems

There are strong commercial interests involved

Don't trust everything you read

Always read the "small letters" (usually supplementary materials)

Vast majority of sequencing is still done with short reads

One technology can't solve all problems in biology!