Pumping Lemma

Teorem: L regular dil olsun. Dile bağlı olarak seçilen bir

 $n \ge 1$ için $|w| \ge n$ olacak şekilde bir $w \in L$ string'i vardır ve

$$w = xyz$$
,

y ≠e,

 $|xy| \le n$

olmak üzere yeniden yazılabilir. Her $i \ge 0$ için $xy^iz \in L$ olur.

İspat: L regular dil olduğundan deterministic finite automata M tarafından kabul edilir. M automata'nın n duruma sahip olduğunu varsayalım ve |w| = m, $m \ge n$ olsun.

M automata'nın ilk **m** adımı aşağıdaki gibidir;

$$(q_0, w_1w_2...w_m) \mid_{M} (q_1, w_2...w_m) \mid_{M} ... \mid_{M} (q_m, e)$$

EXERCISES

PL

Is the following regular or not. Why?

```
• L = \{ss^R : s \in \{a, b\}^*\}
```

- Is the following regular or not. Why?
- L = $\{ss^R : s \in \{a, b\}^*\}$

"Uzun" bir w seçmemiz gerekiyor, yani uzunluğu N'den büyük olan bir w seçmeliyiz. N'nin y'yi (pompalanabilir bölge) garanti ettiği gerçeğinin w'nin ilk N karakteri içinde gerçekleşmesi gerektiğini unutmayın $|xy| \le n$.

Y'nin ne olabileceğine dair birçok farklı olasılığı düşünmek zorunda kalmak istemiyorsak, uzun bir birinci bölge ile bir w seçmek yardımcı olacaktır. $\mathbf{w} = \mathbf{a}^{\mathbf{N}}\mathbf{b}\mathbf{b}\mathbf{a}^{\mathbf{N}}$ olsun.

B'lerden önceki bölgede y'nin bir veya daha fazla a'dan oluşması gerektiğini biliyoruz. Açıkça, fazladan a pompalarsak, artık L'de bir dizimiz olmayacak. Böylece, L'nin düzenli olmadığını söyleyebiliriz.

```
Teorem: L regular dil olsun. Dile bağlı olarak seçilen bir n \ge 1 için |w| \ge n olacak şekilde herhangi bir w \in L string'i vardır öyleki w = xyz, y \ne e, |xy| \le n olmak üzere yeniden yazılabilir. Her i \ge 0 için xy^iz \in L olur.
```

- Is the following regular or not. Why?
- L = $\{ss : s \in \{a, b\}^*\}$

- Is the following regular or not. Why?
- $L = \{ss : s \in \{a, b\}^*\}$

Her zaman olduğu gibi, yapmamız gereken iş uygun bir w dizisi seçmektir. Yeterince uzun birine ihtiyacımız var (yani, $|w| \ge n$). Ve bölgeler arasında kesin sınırları olan birine ihtiyacımız var. O halde $\mathbf{w} = \mathbf{a^Nba^Nb^I}$ yi seçelim. $|xy| \le n$ olduğundan, y'nin ilk a bölgesinde olması gerektiğini biliyoruz. Açıkça, herhangi bir ek a pompalarsak, w'nin iki yarısı artık eşit olmayacaktır.

Bu arada, w için başka diziler de seçebilirdik. Örneğin, w = baNbaN olsun. Ama sonra, y'nin ne olabileceğine dair ek seçenekler var (çünkü y, ilk b'yi içerebilir) ve bunların hepsi üzerinde çalışmamız gerekecek.

- Is the following regular or not. Why?
- L = {ww' : w ∈ {a, b}*}, where w' stands for w with each occurrence of a replaced by b, and vice versa.

- Is the following regular or not. Why?
- L = {ww' : w ∈ {a, b}*}, where w' stands for w with each occurrence of a replaced by b, and vice versa.

Bunu pumping lemmasını kullanarak kolayca kanıtlayabiliriz. **w** = **a**^N**b**^N olsun. |xy|≤n o|duğundan, y tüm a'ların bir dizisi olmalıdır. Dolayısıyla, pompaladığımızda (içeride veya dışarıda), w'nin ilk kısmını değiştiririz, ikinci kısmını değiştirmeyiz. Böylece elde edilen dize L'de değil.

• L = $\{xyx^R : x, y \in \Sigma^*\}$ is regular or not. Why?

• L = $\{xyx^R : x, y \in \Sigma + \}$ is regular or not. Why?

- L = $\{xyx^R : x, y \in \Sigma^*\}$ is regular or not. Why?
- We've already said that xx^R isn't regular. This looks a lot like that, but it differs in a key way. Lis the set of strings that can be described as some string x, followed by some string y (where x and y can be chosen completely independently), followed by the reverse of x. So, for example, it is clear that abcccccba \in L (assuming Σ ={a, b, c}). We let x = ab, y = ccccc, and x^R = ba. Now consider abbcccccaaa. You might think that this string is not in L. But it is. We let x = a, y = bbcccccaa, and x^R = a. What about acccb? This string too is in L. We let x = ε , y = acccb, and x^R = ε . Note the following things about our definition of L: (1) There is no restriction on the length of x. Thus we can let x = ε . (2)There is no restriction on the relationship of y to x. And (3) ε^R = ε . Thus L is in fact equal to Σ^* because we can take any string w in Σ^* and rewrite it as ε w ε , which is of the form xyx^R . Since Σ^* is regular, L must be regular.

• L = $\{xyx^R : x, y \in \Sigma + \}$ is regular or not. Why?

Pumping Lemma

• $L = \{w : w = w^R\}$ düzenli midir?

Pumping Lemma

• $L = \{w : w = w^R\}$ düzenli midir?

L düzenli değildir.

Pumping Lemma kullanarak ve

w = a^Nba^N örnek katarında deneyerek kolayca görebiliriz.

Ödev

Problemleri çözünüz 2.4.4, 2.4.5 (sayfa 90)