Trig Final (SLTN v641)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 2.5 radians. The radius is 40 meters. How long is the arc in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

L = 100 meters.

Question 2

Consider angles $\frac{13\pi}{6}$ and $\frac{-13\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{13\pi}{6}\right)$ and $\cos\left(\frac{-13\pi}{4}\right)$ by using a unit circle (provided separately).

$$\sin(13\pi/6) = \frac{1}{2}$$

Find $cos(-13\pi/4)$

$$\cos(-13\pi/4) = \frac{-\sqrt{2}}{2}$$

Question 3

If $\tan(\theta) = \frac{-15}{8}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$8^{2} + 15^{2} = C^{2}$$

$$C = \sqrt{8^{2} + 15^{2}}$$

$$C = 17$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\sin(\theta) = \frac{-15}{17}$$

Question 4

A mass-spring system oscillates vertically with a frequency of 8.46 Hz, an amplitude of 3.52 meters, and a midline at y = -6.1 meters. At t = 0, the mass is at the maximum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 3.52\cos(2\pi 8.46t) - 6.1$$

or

$$y = 3.52\cos(16.92\pi t) - 6.1$$

or

$$y = 3.52\cos(53.16t) - 6.1$$