

Description

The Power MOSFET is fabricated using the advanced planar VDMOS technology. The resulting device has low conduction resistance, superior switching performance and high avalanche energy.

Features

- ◆ Low R_{DS(on)}
- ◆ Low gate charge (typ. Q_g = 50.5 nC)
- 100% UIS tested
- ♦ RoHS compliant

Applications

- Power factor correction.
- Switched mode power supplies.

Product Summary

 $\begin{array}{lll} V_{DSS} & 500V \\ I_D & 20A \\ R_{DS(on),max} & 0.29\Omega \\ Q_{g,typ} & 50.5 \ nC \end{array}$

TO-220F Schematic

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	500	V
Continuous drain current (T _C = 25°C)	I _D	20	А
(T _C = 100°C)		12.5	A
Pulsed drain current 1)	I _{DM}	80	A
Gate-Source voltage	V _{GSS}	±30	V
Avalanche energy, single pulse 2)	Eas	1200	mJ
Power Dissipation (T _C = 25°C)	P _D	37.8	W
Operating junction and storage temperature range	T _J , T _{STG}	-55 to +150	°C
Continuous diode forward current	Is	20	A
Diode pulse current	I _{S,pulse}	80	A

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal resistance, Junction-to-case	ReJC	3.3	°C/W
Thermal resistance, Junction-to-ambient 3)	Reja	60	°C/W

Package Marking and Ordering Information

Device Device Package		Marking	Units/Tube		
VSM20N50-TF	TO-220F	VSM20N50-TF	50		

Electrical Characteristics T_c = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =0.25 mA	500	-	-	V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =0.25 mA	2	-	4	V
Drain cut-off current	I _{DSS}	V _{DS} =500 V, V _{GS} =0 V,				
		T _j = 25°C	-	-	1	μΑ
		T _j = 125°C	-		100	
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V	-	-	100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V	-	-	-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =10A	-	0.23	0.29	Ω
Dynamic characteristics	•			•	'	
Input capacitance	Ciss	V _{DS} = 25 V, V _{GS} = 0 V,	-	3078	-	
Output capacitance	Coss	f = 250kHz	-	263	-	pF
Reverse transfer capacitance	C _{rss}		-	19	-	
Turn-on delay time	t _{d(on)}	V _{DD} = 250 V, I _D = 10 A	-	22.7	-	
Rise time	t _r	$R_G = 5\Omega$, $V_{GS}=15$ V	-	16.4	-	ns
Turn-off delay time	t _{d(off)}	-	-	127	-	
Fall time	t _f		-	15.2	-	
Gate charge characteristics	-			1	1	
Gate to source charge	Qgs	V _{DD} =400 V, I _D =20 A,	-	12.7	-	
Gate to drain charge	Q _{gd}	V _{GS} =0 to 10 V	-	15.8	-	nC
Gate charge total	Qg		-	50.5	-	
Gate plateau voltage	V _{plateau}		-	5	-	V
Reverse diode characteristics	'		'	•		
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =10 A	-	-	1.3	V
Reverse recovery time	t _{rr}	V _R =250 V, I _F =20 A,	-	313.2	-	ns
Reverse recovery charge	Q _{rr}	dl₅/dt=100 A/µs	-	3.3	-	μC
Peak reverse recovery current	I _{rrm}]	-	20.8	-	А

Notes:

- 1. Pulse width limited by maximum junction temperature.
- 2. L=10mH, I_{AS} = 15.5A, Starting T_j = 25°C.
- 3. The value of R_{thJA} is measured by placing the device in a still air box which is one cubic foot.

Electrical Characteristics Diagrams

Figure 1. Typical Output Characteristics

Figure 3. On-Resistance Variation vs. Drain Current

Figure 5. Breakdown Voltage vs. Temperature

Figure 2. Transfer Characteristics

Figure 4. Threshold Voltage vs. Temperature

Figure 6. On-Resistance vs. Temperature

Figure 7. Drain current derating

Figure 9. Gate Charge Characteristics

Figure 11. Power Dissipation vs. Temperature

Figure 8. Capacitance Characteristics

Figure 10. Body Diode Transfer Characteristics

Figure 12: Safe Operating Area

Figure 13. Transient Thermal Impedance, Junction to Case,

Test Circuit & Waveforms

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveform

Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Diode Recovery Test Circuit & Waveform

