SUPPLEMENTARY MATERIAL

CHAPTER 7

7.6.3
$$\int (px+q)\sqrt{ax^2+bx+c} \ dx.$$

We choose constants A and B such that

$$px + q = A\left[\frac{d}{dx}(ax^2 + bx + c)\right] + B$$

= $A(2ax + b) + B$

Comparing the coefficients of x and the constant terms on both sides, we get

$$2aA = p \text{ and } Ab + B = q$$

Solving these equations, the values of A and B are obtained. Thus, the integral reduces to

$$A \int (2ax + b)\sqrt{ax^2 + bx + c} dx + B \int \sqrt{ax^2 + bx + c} dx$$

$$= AI_1 + BI_2$$
where
$$I_1 = \int (2ax + b)\sqrt{ax^2 + bx + c} dx$$

Put $ax^2 + bx + c = t$, then (2ax + b)dx = dt

So
$$I_1 = \frac{2}{3}(ax^2 + bx + c)^{\frac{3}{2}} + C_1$$

Similarly, $I_2 = \int \sqrt{ax^2 + bx + c} dx$

614 MATHEMATICS

is found, using the integral formulae discussed in [7.6.2, Page 328 of the textbook]. Thus $\int (px+q)\sqrt{ax^2+bx+c}\ dx$ is finally worked out.

Example 25 Find
$$\int x\sqrt{1+x-x^2} dx$$

Solution Following the procedure as indicated above, we write

$$x = A \left[\frac{d}{dx} (1 + x - x^2) \right] + B$$
$$= A (1 - 2x) + B$$

Equating the coefficients of x and constant terms on both sides,

We get
$$-2A = 1$$
 and $A + B = 0$

Solving these equations, we get $A = -\frac{1}{2}$ and $B = \frac{1}{2}$. Thus the integral reduces to

$$\int x\sqrt{1+x-x^2}\,dx = -\frac{1}{2}\int (1-2x)\sqrt{1+x-x^2}\,dx + \frac{1}{2}\int \sqrt{1+x-x^2}\,dx$$

$$= -\frac{1}{2}I_1 + \frac{1}{2}I_2 \tag{1}$$

Consider

$$I_1 = \int (1-2x)\sqrt{1+x-x^2} dx$$

Put
$$1 + x - x^2 = t$$
, then $(1 - 2x)dx = dt$

Thus
$$I_1 = \int (1-2x)\sqrt{1+x-x^2} dx = \int t^{\frac{1}{2}} dt = \frac{2}{3}t^{\frac{3}{2}} + C_1$$

= $\frac{2}{3}(1+x-x^2)^{\frac{3}{2}} + C_1$, where C_1 is some constant.

$$I_2 = \int \sqrt{1 + x - x^2} \, dx = \int \sqrt{\frac{5}{4} - \left(x - \frac{1}{2}\right)^2} \, dx$$

Put
$$x - \frac{1}{2} = t$$
. Then $dx = dt$

$$\begin{split} & I_2 = \int \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - t^2} \, dt \\ & = \frac{1}{2} t \sqrt{\frac{5}{4} - t^2} + \frac{1}{2} \cdot \frac{5}{4} \sin^{-1} \frac{2t}{\sqrt{5}} + C_2 \\ & = \frac{1}{2} \frac{(2x-1)}{2} \sqrt{\frac{5}{4} - (x - \frac{1}{2})^2} + \frac{5}{8} \sin^{-1} \left(\frac{2x-1}{\sqrt{5}}\right) + C_2 \\ & = \frac{1}{4} (2x-1) \sqrt{1 + x - x^2} + \frac{5}{8} \sin^{-1} \left(\frac{2x-1}{\sqrt{5}}\right) + C_2 \,, \end{split}$$

where C_2 is some constant.

Putting values of I_1 and I_2 in (1), we get

$$\int x\sqrt{1+x} - x^2 dx = -\frac{1}{3}(1+x-x^2)^{\frac{3}{2}} + \frac{1}{8}(2x-1)\sqrt{1+x-x^2} + \frac{5}{16}\sin^{-1}\left(\frac{2x-1}{\sqrt{5}}\right) + C,$$

where

$$C = -\frac{C_1 + C_2}{2}$$
 is another arbitrary constant.

Insert the following exercises at the end of EXERCISE 7.7 as follows:

12.
$$x\sqrt{x+x^2}$$
 13. $(x+1)\sqrt{2x^2+3}$ 14. $(x+3)\sqrt{3-4x-x^2}$

Answers

12.
$$\frac{1}{3}(x^2+x)^{\frac{3}{2}} - \frac{(2x+1)\sqrt{x^2+x}}{8} + \frac{1}{16}\log|x+\frac{1}{2}+\sqrt{x^2+x}| + C$$

13.
$$\frac{1}{6}(2x^2+3)^{\frac{3}{2}} + \frac{x}{2}\sqrt{2x^2+3} + \frac{3\sqrt{2}}{4}\log\left|x+\sqrt{x^2+\frac{3}{2}}\right| + C$$

14.
$$-\frac{1}{3}(3-4x-x^2)^{\frac{3}{2}} + \frac{7}{2}\sin^{-1}\left(\frac{x+2}{\sqrt{7}}\right) + \frac{(x+2)\sqrt{3-4x-x^2}}{2} + C$$

CHAPTER 10

10.7 Scalar Triple Product

Let \vec{a} , \vec{b} and \vec{c} be any three vectors. The scalar product of \vec{a} and $(\vec{b} \times \vec{c})$, i.e., $\vec{a} \cdot (\vec{b} \times \vec{c})$ is called the scalar triple product of \vec{a} , \vec{b} and \vec{c} in this order and is denoted by $[\vec{a}, \vec{b}, \vec{c}]$ (or $[\vec{a} \vec{b} \vec{c}]$). We thus have

2022-23

$$[\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$$

Observations

- 1. Since $(\vec{b} \times \vec{c})$ is a vector, $\vec{a} \cdot (\vec{b} \times \vec{c})$ is a scalar quantity, i.e. $[\vec{a}, \vec{b}, \vec{c}]$ is a scalar quantity.
- Geometrically, the magnitude of the scalar triple product is the volume of a parallelopiped formed by adjacent sides given by the three

vectors \vec{a} , \vec{b} and \vec{c} (Fig. 10.28). Indeed, the area of the parallelogram forming the base of the parallelopiped is $|\vec{b} \times \vec{c}|$. The height is the projection of \vec{a} along the normal to the plane containing \vec{b} and \vec{c} which is the magnitude of the component of \vec{a} in the direction of $|\vec{b} \times \vec{c}|$ i.e., $\frac{|\vec{a}.(\vec{b} \times \vec{c})|}{|(\vec{b} \times \vec{c})|}$. So the required

volume of the parallelopiped is $\frac{\left|\vec{a}.(\vec{b}\times\vec{c})\right|}{\left|(\vec{b}\times\vec{c})\right|}\left|\vec{b}\times\vec{c}\right| = \left|\vec{a}.(\vec{b}\times\vec{c})\right|,$

3. If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$, then

$$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= (b_2c_3 - b_3c_2) \hat{i} + (b_3c_1 - b_1c_3) \hat{j} + (b_1c_2 - b_2c_1) \hat{k}$$

and so

$$\vec{a}.(\vec{b}\times\vec{c}) = a_1(b_2c_3 - b_3c_2) + a_2(b_3c_1 - b_1c_3) + a_3(b_1c_2 - b_2c_1)$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

4. If \vec{a} , \vec{b} and \vec{c} be any three vectors, then

$$[\vec{a}, \vec{b}, \vec{c}] = [\vec{b}, \vec{c}, \vec{a}] = [\vec{c}, \vec{a}, \vec{b}]$$

(cyclic permutation of three vectors does not change the value of the scalar triple product).

Let
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j}_3 \hat{k}$.

618 MATHEMATICS

Then, just by observation above, we have

$$[\vec{a}, \vec{b}, \vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= a_1 (b_2c_3 - b_3c_2) + a_2 (b_3c_1 - b_1c_3) + a_3 (b_1c_2 - b_2c_1)$$

= $b_1 (a_3c_2 - a_2c_3) + b_2 (a_1c_3 - a_3c_1) + b_3 (a_2c_1 - a_1c_2)$

$$= \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \end{vmatrix}$$

$$= [\vec{b}, \vec{c}, \vec{a}]$$

Similarly, the reader may verify that

$$= [\vec{a}, \, \vec{b}, \vec{c}\,] = [\vec{a}, \, \vec{b}, \vec{c}\,]$$

Hence
$$[\vec{a}, \vec{b}, \vec{c}] = [\vec{b}, \vec{c}, \vec{a}] = [\vec{c}, \vec{a}, \vec{b}]$$

5. In scalar triple product $\vec{a}.(\vec{b}\times\vec{c})$, the dot and cross can be interchanged. Indeed,

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = [\vec{a}, \vec{b}, \vec{c}] = [\vec{b}, \vec{c}, \vec{a}] = [\vec{c}, \vec{a}, \vec{b}] = \vec{c} \cdot (\vec{a} \times \vec{b}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

6.
$$= [\vec{a}, \vec{b}, \vec{c}] = -[\vec{a}, \vec{c}, \vec{b}]. \text{ Indeed}$$

$$= [\vec{a}, \vec{b}, \vec{c}] = \vec{a}.(\vec{b} \times \vec{c})$$

$$= \vec{a}.(-\vec{c} \times \vec{b})$$

$$= -(\vec{a}.(\vec{c} \times \vec{b}))$$

$$= -[\vec{a}, \vec{c}, \vec{b}]$$

7.
$$[\vec{a}, \vec{a}, \vec{b}] = 0$$
 Indeed
$$[\vec{a}, \vec{a}, \vec{b}] = [\vec{a}, \vec{b}, \vec{a}]$$

$$= [\vec{b}, \vec{a}, \vec{a}]$$

$$= \vec{b} \cdot (\vec{a} \times \vec{a})$$

$$= \vec{b} \cdot \vec{0} = 0.$$
 (as $\vec{a} \times \vec{a} = \vec{0}$)

Note: The result in 7 above is true irrespective of the position of two equal vectors.

10.7.1 Coplanarity of Three Vectors

Theorem 1 Three vectors \vec{a} , \vec{b} and \vec{c} are coplanar if and only if $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$.

Proof Suppose first that the vectors \vec{a} , \vec{b} and \vec{c} are coplanar.

If \vec{b} and \vec{c} are parallel vectors, then, $\vec{b} \times \vec{c} = \vec{0}$ and so $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$.

If \vec{b} and \vec{c} are not parallel then, since \vec{a} , \vec{b} and \vec{c} are coplanar, $\vec{b} \times \vec{c}$ is perpendicular to \vec{a} .

So
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$$
.

Conversely, suppose that $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$. If \vec{a} and $\vec{b} \times \vec{c}$ are both non-zero, then we conclude that \vec{a} and $\vec{b} \times \vec{c}$ are perpendicular vectors. But $\vec{b} \times \vec{c}$ is perpendicular to both \vec{b} and \vec{c} . Therefore, \vec{a} and \vec{b} and \vec{c} must lie in the plane, i.e. they are coplanar. If $\vec{a} = 0$, then \vec{a} is coplanar with any two vectors, in particular with \vec{b} and \vec{c} . If $(\vec{b} \times \vec{c}) = 0$, then \vec{b} and \vec{c} are parallel vectors and so, \vec{a} , \vec{b} and \vec{c} are coplanar since any two vectors always lie in a plane determined by them and a vector which is parallel to any one of it also lies in that plane.

Note: Coplanarity of four points can be discussed using coplanarity of three vectors. Indeed, the four points A, B, C and D are coplanar if the vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are coplanar.

Example 26 Find $\vec{a} \cdot (\vec{b} \times \vec{c})$, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = \hat{i} + 2j + k$ and $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$.

Solution We have $\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix} = -10.$

Example 27 Show that the vectors

 $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{b} = 2\hat{i} + 3\hat{j} - 4\hat{k}$ and $\vec{c} = \hat{i} - 3\hat{j} + 5\hat{k}$ are coplanar.

Solution We have $\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix} = 0.$

Hence, in view of Theorem 1, \vec{a} , \vec{b} and \vec{c} are coplanar vectors.

Example 28 Find λ if the vectors

 $\vec{a} = \hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} - \hat{k}$ and $\vec{c} = \lambda\hat{i} + 7\hat{j} + 3\hat{k}$ are coplanar.

Solution Since \vec{a} , \vec{b} and \vec{c} are coplanar vectors, we have $[\vec{a}, \vec{b}, \vec{c}] = 0$, i.e.,

$$\begin{vmatrix} 1 & 3 & 1 \\ 2 & -1 & -1 \\ \lambda & 7 & 3 \end{vmatrix} = 0.$$

$$\Rightarrow 1(-3+7)-3(6+\lambda)+1(14+\lambda)=0$$

$$\Rightarrow \lambda = 0.$$

Example 29 Show that the four points A, B, C and D with position vectors $4\hat{i} + 5\hat{j} + \hat{k}, -(\hat{j} + \hat{k}), 3\hat{i} + 9\hat{j} + 4\hat{k}$ and $4(-\hat{i} + \hat{j} + \hat{k})$, respectively are coplanar.

Solution We know that the four points A, B, C and D are coplanar if the three vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are coplanar, i.e., if

$$[\overrightarrow{AB}, \overrightarrow{AC} \text{ and } \overrightarrow{AD}] = 0$$

Now
$$\overline{AB} = -(\hat{j} + \hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k}) = -4\hat{i} - 6\hat{j} - 2\hat{k})$$

$$\overline{AC} = (3\hat{i} + 9\hat{j} + 4\hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k}) = -\hat{i} + 4\hat{j} + 3\hat{k}$$
and $\overline{AD} = 4(-\hat{i} + \hat{j} + \hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k}) = -8\hat{i} - \hat{j} + 3\hat{k}$

Thus
$$[\overline{AB}, \overline{AC} \text{ and } \overline{AD}] = \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix} = 0.$$

Hence A, B, C and D are coplanar.

Example 30 Prove that $[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2 [\vec{a}, \vec{b}, \vec{c}]$. **Solution** We have

$$\begin{bmatrix} \vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a} \end{bmatrix} = (\vec{a} + \vec{b}) \cdot ((\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}))$$

$$= (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a})$$

$$= (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a}) \qquad (\text{as } \vec{c} \times \vec{c} = \vec{0})$$

$$= \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a}) + \vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{a}) + \vec{b} \cdot (\vec{c} \times \vec{a})$$

$$= \begin{bmatrix} \vec{a}, \vec{b}, \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{a}, \vec{b}, \vec{a} \end{bmatrix} + \begin{bmatrix} \vec{b}, \vec{b}, \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{b}, \vec{b}, \vec{a} \end{bmatrix} + \begin{bmatrix} \vec{b}, \vec{c}, \vec{a} \end{bmatrix}$$

$$= 2 \begin{bmatrix} \vec{a}, \vec{b}, \vec{c} \end{bmatrix} \qquad (\text{Why ?})$$

Example 31 Prove that $\left[\vec{a}, \vec{b}, \vec{c} + \vec{d}\right] = \left[\vec{a}, \vec{b}, \vec{c}\right] + \left[\vec{a}, \vec{b}, \vec{d}\right]$ **Solution** We have

$$\begin{split} \left[\vec{a}, \vec{b}, \vec{c} + \vec{d}\right] &= \vec{a} \cdot (\vec{b} \times (\vec{c} + \vec{d})) \\ &= \vec{a} \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{d}) \\ &= \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{d}) \\ &= \left[\vec{a}, \vec{b}, \vec{c}\right] + \left[\vec{a}, \vec{b}, \vec{d}\right]. \end{split}$$

Exercise 10.5

- 1. Find $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$ if $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} 3\hat{j} + \hat{k}$ and $\vec{c} = 3i + j 2\hat{k}$ (Ans. 24)
- 2. Show that the vectors $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$, $\vec{b} = -2\hat{i} + 3\hat{j} 4\hat{k}$ and $\vec{c} = \hat{i} 3\hat{j} + 5\hat{k}$ are coplanar.
- 3. Find λ if the vectors $\hat{i} \hat{j} + \hat{k}$, $3\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + \lambda\hat{j} 3\hat{k}$ are coplanar. (Ans. $\lambda = 15$)
- 4. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ Then
 - (a) If $c_1 = 1$ and $c_2 = 2$, find c_3 which makes \vec{a} , \vec{b} and \vec{c} coplanar (Ans. $c_3 = 2$)
 - (b) If $c_2 = -1$ and $c_3 = 1$, show that no value of c_1 can make \vec{a} , \vec{b} and \vec{c} coplanar.
- 5. Show that the four points with position vectors $4\hat{i} + 8\hat{j} + 12\hat{k}, 2\hat{i} + 4\hat{j} + 6\hat{k}, 3\hat{i} + 5\hat{j} + 4\hat{k}$ and $5\hat{i} + 8\hat{j} + 5\hat{k}$ are coplanar.
- 6. Find x such that the four points A (3, 2, 1) B (4, x, 5), C (4, 2, -2) and D (6, 5, -1) are coplanar. (Ans. x = 5)
- 7. Show that the vectors \vec{a} , \vec{b} and \vec{c} coplanar if $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are coplanar.