X

Logistic Regression

5 questions

1.

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.2. This means (check all that apply):

- Our estimate for $P(y=0|x;\theta)$ is 0.2.
- Our estimate for $P(y=1|x;\theta)$ is 0.8.
- Our estimate for $P(y=1|x;\theta)$ is 0.2.
- Our estimate for $P(y=0|x;\theta)$ is 0.8.

2.

Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$.

x_1	<i>x</i> ₂	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- Adding polynomial features (e.g., instead using $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2) \ \) \ \text{could increase how well we can fit the training data}.$
- At the optimal value of heta (e.g., found by fminunc), we will have $J(heta) \geq 0$.

- Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2)$) would increase $J(\theta)$ because we are now summing over more terms.
- If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)}) > 1$.

3.

For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

- $\qquad \qquad \theta_j := \theta_j \alpha \, \tfrac{1}{m} \, \textstyle \sum_{i=1}^m \left(\tfrac{1}{1 + e^{-\theta^T x^{(i)}}} y^{(i)} \right) \! x_j^{(i)} \text{ (simultaneously update for all } j \text{)}.$
- $lackbox{lack} heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) y^{(i)}) x^{(i)}$ (simultaneously update for all j).
- $lacksquare heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) y^{(i)}
 ight) x_j^{(i)}$ (simultaneously update for all j).
- $oxed{egin{aligned} oldsymbol{ heta} & heta := heta lpha rac{1}{m} \sum_{i=1}^m \Big(heta^T x y^{(i)} \Big) x^{(i)} \,. \end{aligned}}$

4.

Which of the following statements are true? Check all that apply.

For logistic regression, sometimes gradient descent will converge to a local minimum the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).

- Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.
- The sigmoid function $g(z)=\frac{1}{1+e^{-z}}$ is never greater than one (> 1).
- The cost function $J(\theta)$ for logistic regression trained with $m \geq 1$ examples is always greater than or equal to zero.

5. Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=6, \theta_1=-1, \theta_2=0$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

O Figure:

Figure:

Figure

Submit Quiz

(https://accounts.coursera.org/i/zendesk/courserahelp?return_to=https://learner.coursera.help/hc)