Problema 805

Si la recta d'Euler és paral·lela al costat \overline{BC} del triangle \overrightarrow{ABC} , els angles B i C satisfan que $tgB \cdot tgC = 3$.

Coxeter, H.S.M. (1961, 1969): Introduction to Geometry. Second Edition, (pag 18)

Solució de Ricard Peiró:

La recta d'Euler passa pel baricentre G, l'ortocentre H i el circumcentre O.

El baricentre està entre l'ortocentre i el circumcentre i a doble distància de l'ortocentre que del circumcentre.

recta d'Euler

Siga AH l'altura sobre la base \overline{BC} que talla la base en el punt D.

Per ser la recta d'Euler paral·lela al costat \overline{BC} AH és perpendicular a la recta d'Euler.

Siga M el punt mig del costat $\overline{\mathrm{BC}}$

Per la propietat del baricentre

$$\overline{AG} = 2 \cdot \overline{GM}$$
.

Siga K el punt mig del segment \overline{AG} .

Siga L el punt mig del segment \overline{HG} .

KL és paral·lela mitjana del triangle $\stackrel{\scriptscriptstyle \Delta}{\mathsf{AHG}}$.

$$\overline{KL} = \frac{1}{2}\overline{AH}$$
.

Siga P la projecció de K sobre l'altura AD.

$$\overline{AK} = \overline{KG} = \overline{GM}$$
.

Aleshores,
$$\overline{AP} = \overline{PH} = \overline{PD}$$
.

Siga
$$x = \overline{BD}$$
. Siga $\overline{HD} = y$

$$\angle$$
HBC = 90°-C , \angle BHD = C .

$$tgB = \frac{\overline{AD}}{\overline{BD}} = \frac{3y}{x} .$$

$$tgC = \frac{\overline{BD}}{\overline{HD}} = \frac{x}{y} \ .$$

$$tgB \cdot tgC = \frac{3y}{x} \frac{x}{y} = 3.$$

