Homework 2 - Topics in Topology

March 18, 2022

Please return before April 8, 2022.

- 1. Argue whether the following statements are true or false (that is, either prove or give a counterexample):
 - (a) Given a handle decomposition of some *n*-manifold, the number of 0-handles and the number of *n*-handles must always be equal to one.
 - (b) If $n \geq 2$, there are always exactly two different ways to attach a 1-handle to D^n .
 - (c) It is always possible to attach a 2-handle to any 3-manifold.
 - (d) In a handle decomposition of a closed, connected, oriented 3-manifold with one 0-handle and one 3-handle, the number of 1-handles must be equal to the number of 2-handles.
 - (e) In a handle decomposition of a closed, connected, oriented 4-manifold with one 0-handle and one 4-handle, the number of 1-handles must be equal to the number of 3-handles.
 - (f) Any closed, connected, oriented 3-manifold is the boundary of a closed, connected, oriented 4-manifold.
- 2. Give a topological space whose fundamental group is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/3$ (and show that this is indeed its fundamental group).
- 3. Let us write $T^2 := S^1 \times S^1$.
 - (a) Show that the surfaces $T^2 \# \mathbb{RP}^2$ and $\mathbb{RP}^2 \# \mathbb{RP}^2 \# \mathbb{RP}^2$ are diffeomorphic.
 - (b) Let $\Sigma_2 := T^2 \# T^2$ be the genus 2 surface, and let $\Sigma_2 = h_0 \cup (\bigcup_{i=1}^4 h_1^i) \cup h_2$ be its standard handle decomposition. Show that $\Sigma_2 int(h_2)$ is homotopy equivalent to a bouquet $S^1 \vee S^1 \vee S^1 \vee S^1$ of four 1-spheres.
 - (c) Show that the fundamental group of Σ_2 is given by

$$\pi_1(\Sigma_2) \cong \frac{F(x_1, x_2, x_3, x_4)}{\langle x_1 x_2 x_1^{-1} x_2^{-1} x_3 x_4 x_3^{-1} x_4^{-1} \rangle}.$$

What is the abelianisation of this group?

4. Show that the following planar Heegaard diagram represents the 3-manifold $S^1 \times S^2$:

5. Show that surgery along the following two framed links produces diffeomorphic manifolds.

6. Explicitly give two Kirby diagrams representing diffeomorphic closed 4-manifolds.