

Engine ECU HIL simulation using Matlab-Simulink

Rupen Singla Nishit Jain Sandeep Mandal Dr. Tapan Sahoo

Maruti Suzuki India Ltd

Why Hardware-in loop (HIL) simulation

Hardware-in loop introduction and workflow

Typical HIL setup

Software components of HIL system

Matlab-Simulink Model and Results

- Emission norms, safety and customer convenience have been the driving factors of increasing electronic controller hardware and software complexity in the recent years.
- The increased complexity and sophisticated specifications demand rigorous and reliable testing to ensure error free product to the customer.
- The need for testing and validation of the controller software before proto vehicle is immense

Reduction in development cost

Open loop and closed loop verification

Simulation of variety of behaviors

Automated Testing Earlier detection of bugs and errors

Huge effort and time to test ECU functions

Challenges

Standardization

Complex modeling required

Hardware in Loop Simulation

Proto vehicle setup

Simulated vehicle setup

Simulated vehicle setup (HIL)

Signal Flows in real system and HIL system

Image Source: dSPACE Gmbh

Way of Life!

Software components of HIL system

- Real time system For simulation of sensors and observation of actuator signals (IO-Open loop test configuration)
- Dynamic Plant model (Closed Loop test configuration)

DIG_OUT, PWM_OUT DAC Crank, CAM Knock Resistive ADC Injection, Ignition

Matlab/Simulink to describe :

- The definition and configuration of the I/O
- The dynamic behavior of the plant

Simulink Model Architecture

Way of Life!

Engine-IO Model Architecture

Dynamic Vehicle Plant model

Tester Interface for Manual Closed Loop Testing

Major Outputs: Engine RPM, Vehicle speed, Indicated torque, Friction torque, Fuel injected, rail pressure, Intake manifold pressure

Simulation results compared with actual engine dyno data

Advantages of Hardware in loop

- ✓ Possible to simulate both Open loop and Closed loop tests
- ✓ Possible to simulate certain test cases that are not possible to simulate on proto vehicle
- ✓ Automated and regressive testing

Advantages of Matlab/Simulink in Hardware in loop

- ✓ Input output libraries of major simulator providers are available in Matlab/Simulink
- ✓ Customizable models from different suppliers can be integrated with ease
- ✓ Reusability and standardization for different simulators and systems

Thank You

Q&A