Name: Name:
Question 1 (2 point)
Give the molar concentration for each solution:
0.345 g of Mg(NO ₃) ₂ are dissolved to make 150 ml of solution 0.345 g Mg(NO ₃) ₂ l Mol Mg(NO ₃) ₂ = 0.00 ± 326 Mg (NO ₃) ₃ = 0.0155 Mg 0.241 g of CH ₃ COOH are dissolved to make 125 ml of solution 0.241 g CH ₃ COOH l Mol CH ₃ COOH = 0.0321 Mg Question 2 (1 point)
A student needs to make $100.00ml$ of a solution with $\left[\mathrm{Na_2SO_4}\right] = 0.025M$ by diluting a stock solution with $\left[\mathrm{Na_2SO_4}\right] = 0.334M$. How many ml of the stock solution should they use?
$C_1V_1 = C_2V_2$ $0.334 \text{M} \cdot V_1 = 0.025 \text{M} \cdot 100.00 \text{ml} \rightarrow V_1 = 7.5 \text{ ml}$
Question 3 (2 points) Consider the <i>unbalanced</i> reaction: $\int_{-\infty}^{\infty} Pb(NO_3)_2(aq) + \int_{-\infty}^{\infty} KCl(aq) \longrightarrow \int_{-\infty}^{\infty} PbCl_2(s) + \int_{-\infty}^{\infty} KNO_3(aq)$ o How many ml of $0.283 \ M$ Pb $(NO_3)_2$ solution are required to react with $75.00 \ ml$ of $0.167 \ M$ KCl?
75.00 ml K(l 0.167 moles K(l) 1 mole Pb(ND)2 1 L Pb(ND)2 = 22.1 ml 12 K(l 2 moles K(l 0.283 moles Pb(ND)2) = 22.1 ml
\circ How many g of PbCl ₂ will be produced?
o How many g of PbCl ₂ will be produced? 75.00 ml K(l) 12 0.167 ml K(l) 1 mol PbCl ₂ 2 78.11 g PbCl ₂ = 1.74 g PbCl ₂ 1000 ml 12 K(l) 2 moles K(l) 1 mol PbCl ₂
\circ What is the final $\left[\mathrm{NO_3^-}\right]$?
Use [kt] as a proxy and account for dilution Vinal = 97.1 ml
C, V, = C2 V2 0.167 M= 45.00 ml = C2-97-1 ml -> G= 0.129 M

Quiz 5.3 – Molar Concentration