Analysis I/II – Aufgabensammlung (aus alten Basis-Prüfungen) ETH Zürich

Berücksichtige Prüfungen: HS15 / HS14 / FS14 i / FS14 ii / FS13 / HS12

Induktion	3
Komplexe Zahlen - Umrechnung	3
Grenzwert Bestimmung	3
Supremum / Infimum und Maximum / Minimum	4
Umkehrsatz	5
Konvergenz (mit teilweise Grenzwert Bestimmung) / Grenzfunktionen	5
Stetigkeit	6
Potenzreihen	7
Existenz einer Lösung (wahrscheinlich Piccard-Lindelöf) und Taylor-Polynom	8
Taylor-Polynom	8
Differential-Gleichungen	8
Differenzieren	9
Integrale Normale Berechnung (mit üblichen Methoden): Wegintegrale Integrale über Gebiete: Fläche von Gebieten: Oberflächenintegrale	10 10 11 13 14 16
Kritische Punkte / Extremalpunkte	16
Kurvendiskussion	18

Induktion

b) [3 Punkte] Beweisen Sie durch vollständige Induktion, dass für jedes $n \ge 1$ und $0 \le \epsilon \le 1$ gilt:

$$(1+\epsilon)^n \le 1 + (2^n - 1)\epsilon.$$
 (FS 13)

Komplexe Zahlen - Umrechnung

b) [3 Punkte] Schreiben Sie die komplexe Zahl

$$z = (2+i)e^{i\pi/2} + \frac{i-1}{2+i} \cdot e^{i\frac{3\pi}{2}}$$

in der Form z=x+iy, mit $x,y\in\mathbb{R}.$

(HS 15)

a) i) [2 Punkte] Schreiben Sie die komplexe Zahl

$$z = \frac{2i - 4}{1 + i} - \sqrt{2}e^{-i\pi/4}$$

in der Form z = x + iy mit $x, y \in \mathbb{R}$.

ii) [1 Punkt] Schreiben Sie die komplexe Zahl z=-2+2i in Polarform.

(HS14)

a) [2 Punkte] Schreiben Sie den folgenden Ausdruck in der Form $x+iy, x, y \in \mathbb{R}$.

$$\sqrt{\sqrt{3}i-1}$$
 (FS 14 i)

a) [2 Punkte] Schreiben Sie den folgenden Ausdruck in der Form x + iy, $x, y \in \mathbb{R}$.

$$\frac{2-i}{4+3i} \tag{FS 13}$$

Grenzwert Bestimmung

a) [3 Punkte] Bestimmen Sie den folgenden Grenzwert:

$$\lim_{x \to \infty} x^2 \left(1 - \cos \frac{1}{x} \right). \tag{HS 15}$$

b) [3 ${\it Punkte}]$ Bestimmen Sie den folgenden Grenzwert (falls vorhanden):

$$\lim_{x\to\pi/2}\tan(x)\cdot\left(x-\frac{\pi}{2}\right)^2. \tag{HS 14}$$

c) [2 Punkte] Bestimmen Sie den folgenden Grenzwert (falls vorhanden):

$$\lim_{x\to\infty} \frac{\ln(x) + x + 2}{e^{-x} + 3x + \sin x}.$$
 (FS 14 i)

a) [5 Punkte] Sei $a_{n+1}=\frac{1}{2}a_n+\sqrt{a_n}$ mit $a_0=1$ und $\mathbb{N}\ni n\geq 0$. Finden Sie den Grenzwert $\lim_{n\to\infty}a_n$.

Hinweis: Zeigen Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ monoton wachsend und beschränkt ist.

(FS 14 i)

2. a) [6 Punkte] Sei $a_n=\sqrt{2+a_{n-1}}$ mit $a_0=\sqrt{2}$ und $\mathbb{N}\ni n\geq 0$. Finden Sie den Grenzwert $\lim_{n\to\infty}a_n$.

 $\mathit{Hinweis}$: Zeigen Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ monoton wachsend und beschränkt ist.

(FS 14 ii)

× / /

b) [4 Punkte] Bestimmen Sie den folgenden Grenzwert (falls vorhanden):

$$\lim_{x\to 0}\frac{1}{x}\ln\left(\frac{e^x-1}{x}\right).$$

(FS 14 ii)

c) [3 Punkte] Bestimmen Sie den folgenden Grenzwert (falls vorhanden):

$$\lim_{x \to 0} \frac{\cos(x) - e^{x^2}}{x \sin x}.$$
 (FS 13)

2. Berechnen Sie die folgenden Grenzwerte:

a)

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 7} - \sqrt{(x+3)(x+6)} \right),\,$$

(2 Punkte)

b)

$$\lim_{x \to 0} \frac{\ln(1+2x) - 2\sin(x) + 2x^2}{4\ln(1+x) - \sin(4x) + 2x^2},$$

(2 Punkte)

c)

$$\lim_{x\to 1} \frac{x^p-1}{x^q-1}$$
, wobei p,q ganze strikt positive Zahlen bezeichnen.

(2 Punkte)

(HS 12)

Supremum / Infimum und Maximum / Minimum

 b) [2 Punkte] Bestimmen Sie Supremum, Infimum, Maximum und Minimum der Funktion

$$f(x) = \frac{1 + |\cos(x)|}{1 + x^4} \qquad \text{ für } x \in \mathbb{R},$$

falls diese existieren.

(FS 14 i)

3. Finden Sie das Maximum und das Minimum der Funktion $f:[-1,1] \to \mathbb{R}$ gegeben durch

$$f(x) = \left|x^2 - x\right| + \left|x\right|. \tag{2 Punkte} \label{eq:fx}$$

Umkehrsatz

c) [4
$$Punkte$$
] Berechnen Sie $(g^{-1})'(0)$ für $g(x):=\int_0^{2x}e^{t^2}dt.$ (HS 14)

Konvergenz (mit teilweise Grenzwert Bestimmung) / Grenzfunktionen

a) [5 Punkte] Die Folge $(d_n)_{n\in\mathbb{N}>0}$ ist rekursiv definiert durch

$$d_1 := 3$$
 $d_{n+1} := \sqrt{3d_n - 2}$.

Untersuchen Sie die Folge $(d_n)_{n\in\mathbb{N}>0}$ auf Konvergenz und bestimmen Sie den Grenzwert $\lim_{n\to\infty}d_n$ falls dieser existiert.

b) [2 Punkte] Untersuchen Sie die folgende Reihe auf Konvergenz

$$\sum_{n=1}^{\infty} \frac{1}{2^n - 3}.$$

c) [2 Punkte] Untersuchen Sie die folgende Reihe auf Konvergenz

$$\sum_{n=1}^{\infty} \frac{n^3}{(\log 3)^n}. \tag{HS 15}$$

2. a) [2 Punkte] Untersuchen Sie die Folge $(a_n)_{n\geq 1}$ mit

$$a_n = \arctan(n) \cdot \left(\frac{1}{e}\right)^n$$

auf Konvergenz.

b) [2 Punkte] Untersuchen Sie die folgende Reihe auf Konvergenz

$$\sum_{n=1}^{\infty} \frac{5^n + (-1)^n}{2^n 3^n}.$$

c) [4 Punkte] Zeigen Sie, dass die Funktionenfolge $f_n(x) := \sin(\frac{x}{n})$, $n \in \mathbb{N}$, auf dem Intervall $[0, 2\pi]$ gleichmässig gegen eine Grenzfunktion f konvergiert. Bestimmen Sie die Grenzfunktion f.

(HS 14)

b) [2 Punkte] Untersuchen Sie die folgende Reihe auf Konvergenz

$$\sum_{n=1}^{\infty} \frac{\sin(n)}{2^n}.$$
 (FS 14 ii)

- 2. a) [4 Punkte] Untersuchen Sie die Zahlenfolge $a_n = \frac{1 \sqrt{(1 + \frac{2}{n})(1 \frac{1}{n})}}{\frac{1}{n}}$ für $n \in \mathbb{N} \setminus \{0\}$. Ist sie beschränkt? Konvergiert sie? Wenn ja: Was ist der Grenzwert?
 - b) [4 Punkte] Untersuchen Sie die folgende Reihe auf Konvergenz:

$$\sum_{j=1}^{\infty} \frac{1 + (-1)^j}{2^{j+1} - j}$$
 (FS 13)

1. Zeigen Sie dass, die rekursiv definierte Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_1 := 1,$$
 $a_{n+1} := \sqrt{1 + a_n},$ $n \ge 1,$

konvergent ist. Bestimmen Sie den Grenzwert. Hinweis: Zeigen Sie zuerst, dass die Folge wächst und durch c=2 beschränkt ist.

Stetigkeit

$$\textbf{3. Sei } f_n(x) = \begin{cases} 1-2nx, & 0 \leq x \leq \frac{1}{2n}, \\ 0, & \frac{1}{2n} \leq x \leq 1-\frac{1}{2n}, \\ 1-2n+2nx, & 1-\frac{1}{2n} \leq x \leq 1. \end{cases} \text{ und } f_n(x+k) = f_n(x) \text{ für alle } x \in [0,1] \text{ und alle } k \in \mathbb{Z}$$

- a) [1 Punkte] Machen Sie eine Skizze von $f_n(x)$.
- b) [2 Punkte] Zeigen Sie für jedes $n \in \mathbb{N}$: $f_n(x)$ ist auf ganz \mathbb{R} gleichmässig stetig.
- c) [4 Punkte] Konvergiert die Funktionenfolge $(f_n(x))_{n\geq 0}$ punktweise auf \mathbb{R} ? Begründen Sie!

Falls ja, bestimmen Sie die Limesfunktion und untersuchen Sie, ob die Konvergenz gleichmässig ist.

(FS 14 i)

b) [4 Punkte] Zeigen Sie, dass die Folge $(f_n(x))_{n\in\mathbb{N}}$ punktweise, aber nicht gleichmässig gegen die Funktion $f(x)=\left\{\begin{array}{ll} \frac{1}{x^2+1},&x\neq 0,\\ 0,&x=0,\end{array}\right.$ konvergiert.

(FS 13)

- 3. Sei $f_n(x) = \frac{\sqrt[n]{x}}{x^2+1}$ für $x \ge 0$ und $n \in \mathbb{N}$.
 - a) [4 Punkte] Zeigen Sie: $f_n(x)$ ist für alle $n \in \mathbb{N}$ (fixiert) auf $[0, \infty)$ gleichmässig stetig.

Hinweis: Für n fix dürfen Sie verwenden, dass $|f_n'(x)|$ auf dem Intervall $[1,\infty)$ für $x\to\infty$ monoton fallend ist.

(FS 13)

Potenzreihen

c) [4 Punkte] Stellen Sie die Funktion

$$F:\mathbb{R}\to\mathbb{R}:x\mapsto \int_0^x \frac{\sin t}{t}\,dt$$

durch eine Potenzreihe in x dar.

(HS 15)

3. [8 Punkte] Die Funktionen $f,g:[0,1)\to\mathbb{R}$ seien gegeben durch

$$f(x) := \int_0^x \log(y+1)dy$$
 und $g(x) := 1 + \sum_{k=1}^\infty \frac{(-x)^{k+1}}{(k+1) \cdot k}$.

Zeigen Sie, dass eine Konstante $C \in \mathbb{R}$ existiert, so dass für alle $x \in [0,1)$ gilt:

$$f(x) + C = g(x)$$

und bestimmen Sie die Konstante C.

Hinweis: Taylor-Entwicklung.

(HS 14)

(Nicht sicher ob es wirklich eine Potenzreihen Aufgabe ist)

b) [2 Punkte] Für welche x konvergiert die Potenzreihe

$$\sum_{j=1}^{\infty} \left(\frac{j+2}{j} \right)^j x^j ?$$

Hinweis: Bestimmen Sie den Konvergenzradius und das Konvergenzverhalten am Rand.

(FS 14 i)

4. a) [5 Punkte] Zeigen Sie, dass die Funktion

$$f(x) = \int_0^x e^{-t^2} dt,$$

für $x \ge 0$, die konvergente Potenzreihendarstellung

$$f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)k!}$$

besitzt.

Hinweis: Betrachten Sie f'(x).

(FS 13)

Existenz einer Lösung (wahrscheinlich Piccard-Lindelöf) und Taylor-Polynom

3. Die Gleichung

$$\ln(x) = \frac{4(x-1)}{5} \tag{1}$$

besitzt die Lösung x = 1.

- a) [3 Punkte] Beweisen Sie die Existenz einer zweiten Lösung x_{\star} der Gleichung (1) im Bereich $(1,\infty)$.

 Hinweis: $\ln(1.2) > \frac{0.8}{5}$ und $\ln(1.6) < \frac{2.4}{5}$.
- b) [2 Punkte] Sei $g(x):=\ln(x)-\frac{4(x-1)}{5}$. Bestimmen Sie das Taylorpolynom zweiter Ordnung der Funktion g(x) um x=1.
- c) [3 Punkte] Mit Hilfe von b) geben Sie eine Approximation von x_{\star} .

(FS 14 ii)

Taylor-Polynom

b) [2 Punkte] Bestimmen Sie $T_3(x)$, das Taylorpolynom 3. Ordnung von f um den Punkt x=0, und rechnen Sie den Näherungswert $T_3(1)\approx f(1)$.

(FS 13)

4. Gegeben sei die Funktion

$$f(x) = e^x \sin x.$$

Berechnen Sie das Taylorpolynom fünfter Ordnung zum Entwicklungspunkt $x_0 = 0$.

(2 Punkte) (HS 12)

Differential-Gleichungen

4. a) [7 *Punkte*] Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y^{(3)} + 3y'' + 3y' + y = 27e^{2x}.$$

b) [3 Punkte] Bestimmen Sie die Lösung der Differentialgleichung

$$t \cdot y'(t) + 2y(t) = 2, \quad t > 0$$

mit der Anfangsbedingung y(1) = 0.

(HS 15)

 a) [7 Punkte] Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y'' + 3y' - 10y = 3 \cdot e^{2x}.$$

b) [3 Punkte] Lösen Sie die Differentialgleichung

$$y' = 2 + xy^2 + 2y^2 + x$$

mit der Anfangsbedingung y(0) = 0.

(HS 14)

6. [7 Punkte] Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y^{(3)} - 5y'' + 15y' - 11y = e^x.$$

(FS 14 i)

5. a) [7 Punkte] Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y'' - 10y' + 28y = 29xe^{-x}.$$

b) [4 Punkte] Bestimmen Sie die Lösung der Differentialgleichung

$$y' = 3 + 3y - x - xy,$$

welche die Anfangsbedingung y(0) = 1 erfüllt.

(FS 14 ii)

- 6. a) [5 Punkte] Für welche Werte des Parameters $a \in \mathbb{R}$ strebt die allgemeine Lösung y(x) der Differentialgleichung y'' + 2y' + ay = 0 unabhängig von den Anfangsbedingungen gegen 0 für $x \to \infty$?
 - b) [4 Punkte] Finden Sie eine homogene Differentialgleichung 2. Ordnung mit konstanten Koeffizienten, deren allgemeine Lösung $y(x) = e^{-x} + 2xe^{-x}$ ist. Was sind dann die Anfangsbedingungen bei x = 0?

(FS 13)

8. a) Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y''' + 5y'' - y' - 5y = 0.$$

(2 Punkte)

b) Die Differentialgleichung

$$f'' + 2qf' + (q+q^2)f = 0$$

enthält einen (reellen) Parameter q. Für welche Werte von qbleiben alle Lösungen für $x\to\infty$ beschränkt ?

 ${\bf Hinweis.}\ Sorg f\"{a}ltige\ Fallunterscheidung\ f\"{u}r\ Nullstellen\ des\ charakteristischen\ Polynoms\ !$

(5 Punkte)

(HS 12)

Differenzieren

c) [2 Punkte] Berechnen Sie die Ableitung von

$$g(x) = \int_1^{3x} \frac{\cosh(t)}{t^2} \, \mathrm{d}t.$$

(FS 14 ii)

Integrale

Normale Berechnung (mit üblichen Methoden):

3. Berechnen Sie die folgenden Integrale:

a)
$$[4 \ Punkte] \int (2x^3 + 2x) \log(x^2 + 1) dx.$$

b) [4
$$Punkte$$
] $\int \frac{x^2 - 4}{x^3 - 3x^2 - x + 3} dx$.

c)
$$[3 \ Punkte] \int_0^\infty \frac{x}{(1+x^2)^3} dx.$$

(HS 15)

4. Berechnen Sie die folgenden Integrale:

a)
$$[3 \ Punkte] \int e^{2x} \sin(3x) dx.$$

b) [4
$$Punkte$$
] $\int \frac{9x^3 - 3x + 1}{x^3 - x^2} dx$.

c)
$$[3 \ Punkte] \int \frac{\sin^2\left(\frac{1}{x}\right)}{x^2} dx.$$

(HS 14)

a) [2 **Punkte**] $\int_0^1 \sqrt{4-x^2} dx$.

b) [3 Punkte] $\int \frac{x^2-9}{x^3+2x^2-5x-6}dx$. Hinweis: x=-1 ist eine Nullstelle des Polynoms x^3+2x^2-5x-6 . Ausklammern!

(FS 14 i)

4. Berechnen Sie:

a) [3 **Punkte**]
$$\int_0^1 \ln(x)(x^2 - 1) dx$$
.

b)
$$[4 Punkte] \int \frac{\cos y}{\sin^2 y + \sin y - 6} dy.$$

c) [3 Punkte]
$$\int \frac{dx}{e^x + e^{-x}}$$
.

(FS 14 ii)

5. Berechnen Sie:

- a) [2 **Punkte**] $\int_{1}^{2} \frac{\sqrt{1+\ln x}}{x} dx$.
- b) $[3 Punkte] \int \cos(x) \cosh(x) dx$.
- c) [3 Punkte] $\int \frac{x^2 x + 2}{x^3 x^2 + x 1} dx$.

(FS 13)

7. Bestimmen Sie den Wert folgender Integrale

a)

$$\int_0^2 x^2 \ln(1+x^3) \, dx,$$

(2 Punkte)

b)

$$\int_0^{2\pi} e^{-x} \sin(2x) \, dx,$$

(2 Punkte) (HS 12)

Wegintegrale

7. Gegeben sei das Vektorfeld

$$v:\mathbb{R}^2\to\mathbb{R}^2,\quad v(x,y)=(6+2xy,3y^2+\alpha x^2).$$

- a) [4 Punkte] Für welche Werte von $\alpha \in \mathbb{R}$ ist v ein konservatives Vektorfeld?
- b) [5 Punkte]Berechnen Sie mit dem in Teilaufgabe a) errechneten Wert von α das Wegintegral

$$\int_{\gamma} v \, ds,$$

entlang der Kurve

$$\gamma: (0, \pi) \to \mathbb{R}^2, \quad \gamma(t) = (\cos t, \sin t).$$

(Falls Sie Teilaufgabe a) nicht lösen konnten, verwenden Sie das konservative Vektorfeld $v(x,y)=(2xy+y^2,x^2+2xy)$.)

(HS 15)

8. [10 Punkte] Berechnen Sie das Wegintegral

$$\int_{\widetilde{c}} v \cdot d\bar{s}$$

entlang des eingezeichneten Wegs γ (vom Anfangspunkt Abis zum Endpunkt E) für das Vektorfeld

$$v(x,y) := \left(\begin{array}{c} x^3 - xy \\ -y^3 + x^2 \end{array} \right).$$

(HS 14)

8. [10 Punkte] Berechnen Sie das Wegintegral

$$\int_{\gamma} v \cdot d\vec{s}$$

entlang des eingezeichneten Wegs γ (vom Anfangspunkt A bis zum Endpunkt E) für das Vektorfeld

$$v(x,y) = \left(\begin{array}{c} xy^2 + x^3 \\ -y \end{array}\right).$$

(FS 14 ii)

(unterscheidt sich nur im Vektorfeld von der oberen Aufgabe)

Integrale über Gebiete:

5. a) [5 Punkte] Berechnen Sie das Integral

$$\iint\limits_{D} \frac{4}{9} y^2 \, dx \, dy$$

über dem Gebiet $D:=\{(x,y)\in\mathbb{R}^2\,|\,y\leq x+6,\,x\leq -y^2\}.$

(HS 15)

6. a) [7Punkte] Integrieren Sie die Funktion $f(x,y)=\frac{1}{x}$ über den geschlossenen Bereich, der in der Figur mit Ω bezeichnet ist.

(HS 14)

c) [3 Punkte] Integrieren Sie die Funktion

$$f(x,y) = |x|\sqrt{x^2 + y^2}$$

über den in der Figur schraffierten Bereich Ω .

(FS 14 i)

6. a) [7 $\it Punkte$] Integrieren Sie die Funktion f(x,y)=y über den in der Figur schraffierten Bereich Ω .

(FS 14 ii)

Fläche von Gebieten:

b) [5 Punkte] Berechnen Sie die Fläche des Gebiets

$$\Omega := \{(x,y) \in \mathbb{R}^2 \, | \, (x-2)^2 - 1 \le y \le 0 \}$$

unter Verwendung des Satzes von Green.

(HS 15)

b) [3 Punkte] Die Kurve γ ist in Polarkoordinaten gegeben durch die Gleichung

$$r=2\cdot \sqrt{\cos(2\theta)} \quad \text{für} \quad \theta\in[0,\frac{\pi}{4}]\cup[\frac{3\pi}{4},\frac{5\pi}{4}]\cup[\frac{7\pi}{4},2\pi].$$

Berechnen Sie die durch γ eingeschlossene Fläche F.

(HS 14)

b) [3 Punkte] Sei die Kurve γ in Polarkoordinaten gegeben durch die Gleichung $r=\cos(2\vartheta)$ mit $\vartheta\in[0,2\pi]$. Die unterstehende Figur zeigt γ in einem kartesischen Koordinatensystem. Berechnen Sie die eingeschlossene Fläche.

(FS 14 ii)

Oberflächenintegrale

8. [7 *Punkte*] Berechnen Sie das Oberflächenintegral $\iint_M \vec{F} \cdot d\vec{M}$, wobei $\vec{F}(x,y,z)=(\frac{x^2}{2},-xy,x^2+3z^2-3)$ und M die Mantelfläche des Kegels

bezeichnet. Wir wählen die Orientierung der Fläche so, dass der dazugehörige Normalvektor nach Aussen zeigt.

(FS 14 i)

8. [6 Punkte] Berechnen Sie das Oberflächenintegral $\iint_S F \cdot dS$, wobei $F(x,y,z) = (x(1-z),x^2z-y,\frac{z^3}{3})$ ist und S die Oberfläche (Mantelfläche, Boden und Deckel) des Zylinders $x^2+y^2=1,-1\leq z\leq 1$ bezeichnet.

(FS 13)

Kritische Punkte / Extremalpunkte

6. Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei gegeben durch

$$f(x,y) := x^2 + 2xy - 4x - 2y.$$

a) [6 Punkte]Bestimmen Sie sowohl den grössten als auch den kleinsten Wert, den die Funktion f auf dem Viereck

$$D := \{(x, y) \in \mathbb{R}^2 \mid 0 < x < 2, 0 < y < 2\}$$

annimmt.

b) [2Punkte]Bestimmen Sie die Gleichung der Tangentialebene Σ zur Fläche

$$S := \{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y)\}$$

im Punkt Q := (1, 1, f(1, 1)).

(HS 15)

7. Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei gegeben durch

$$f(x,y) := 2x^2 + \frac{1}{3}y^3 + \frac{5}{4}y^2 - \frac{3}{2}y - \frac{5}{48}.$$

- a) [6 Punkte] Bestimmen Sie die kritischen Punkte der Funktion f und untersuchen Sie, ob es sich dabei um Minima, Maxima oder Sattelpunkte handelt.
- b) [2Punkte]Bestimmen Sie die Gleichung der Tangentialebene Σ zur Fläche

$$S := \{(x, y, z) \in \mathbb{R}^3 \, | \, z = f(x, y) \}$$

im Punkt $P := (0, \frac{1}{2}, f(0, \frac{1}{2})).$

(HS14)

- 7. Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) := \frac{(x-1)^2}{2} + \cos(y)$.
 - a) [4 Punkte] Finden Sie die kritischen Punkte von f(x) und entscheiden Sie, ob es sich dabei um Minima, Maxima oder Sattelpunkte handelt.
 - b) [7 *Punkte*] Bestimmen Sie die globalen Extrema der Funktion auf dem Bereich *B* der untenstehenden Figur.

Bemerkung: $\cos(1) = 0.54030...$

(FS 14 i)

- 7. Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) := 5 \frac{2}{3\sqrt{3}} x(x^2 1) y^2$.
 - a) [6 Punkte] Finden Sie die kritischen Punkte von f(x) und entscheiden Sie, ob es sich dabei um Minima, Maxima oder Sattelpunkte handelt.

Sei S die Fläche des Graphen von f, d.h.

$$S = \{(x, y, z) \in \mathbb{R}^3 | z = f(x, y) \}.$$

b) [2 Punkte] Bestimmen Sie die Tangentialebene Σ zur Fläche S im Punkt $P = \left(\frac{1}{\sqrt{3}}, 0, f\left(\frac{1}{\sqrt{3}}, 0\right)\right)$.

(FS 14 ii)

7. [8 Punkte] Bestimmen Sie die globalen Extrema der Funktion $f(x,y,z):=xy-\frac{z}{2}$ auf der Kugeloberfläche mit Zentrum im Ursprung und mit Radius 1.

(FS 13)

Kurvendiskussion

6. Diskutieren Sie die Funktion

$$f(x) = \frac{1}{2}\log(1+e^{2x}) + \arctan(e^x)$$

im Hinblick auf Extrema, Wendepunkte, und ihr Verhalten für $x \to \pm \infty$.