1 Week 1

1.1 Multiway paper

This week, I mainly worked on the Ahlswede's [2] paper. Here is a summary of what I did:

- The " \sqrt{n} trick" is described in [1]. The idea behind the section F's 3 step algorithm is also described in previous works of Ahlswede. I will take a look at the referenced article next week.
- I think the section B. can be described more intuitively as follows:
 - $-\Omega$ is the set of terminals which are basically the communication devices.
 - Γ is the set of messengers which can be viewd as a pair of transmitter and receiver. For each messenger γ , \mathcal{N}_{γ} is the set of messages that the transmitter and receiver communicate with.
 - For each terminal $\omega \in \Omega$, the set of transmitters on that terminal is denoted by \mathcal{A}_{ω} .
 - For each terminal $\omega \in \Omega$, the set of receiver on that terminal is denoted by \mathcal{B}_{ω} . there is a typo in the definition given in the paper, the last \mathcal{B}_{ω} should be changed to ω .
 - For each terminal $\omega \in \Omega$, the set of available feedback lines is denoted by Φ_{ω} . there is a typo here too, $\Phi_{\omega} \subset \Omega$ and not Γ .
 - The channel W is discrete and memoryless.

the given assumption can also be interpreted as follows

- $-\mathcal{A}_{\omega} \cap \mathcal{B}_{\omega} = \emptyset$: because otherwise, the transmitter and receiver would be placed on the same terminal which makes communication via channel unnecessary.
 - $\bigcup_{\omega \in \Omega} \mathcal{A}_{\omega} = \bigcup_{\omega \in \Omega} \mathcal{B}_{\omega} = \Gamma$: we can assume that each transmitter/receiver is placed only on one terminal.
- If $|\mathcal{X}_{\omega}| = |\mathcal{Y}_{\omega}| = 1$, then terminal can not transmit or receive any information.
- If $|\mathcal{X}_{\omega}|$ then the terminal can not send information, hence no transmitter should be placed on it. Similarly for receiving.
- I did not fully understand what is logic behind A_4 but I guess that is related to relay channels, since the relays do not send or decode data.
- $-\omega \in \Phi_{\omega}$ every terminal should know what it received.
- If $\gamma \in \mathcal{A}_{\omega} \cap \mathcal{B}_{\omega'}$, then the transmitter of γ is on ω and its receiver is on ω' . Then, all the information available at ω' is feedbacked to ω , i.e. $\Phi_{\omega'} \subset \Phi_{\omega}$.
- Passive decoders do not need to transmit anything.

• On section C:

- Randomized feedback is not explained, I dont see what makes them different than the stochastic feedback defined later.
- "concatentation of strategies" after equation (1.6) is ambiguous.
- Derivation of equation (1.8) might be something like the following, but I am not sure as the definition are not formal.

$$\mu(\mathcal{F}_{m+n}) = \max_{f^{n+m} \in \mathcal{F}_{n+m}} H(Y^{n+m}(f^{n+m}))$$

$$\geq \max_{f^{n+m} \in \mathcal{F}_n \times \mathcal{F}_m} H(Y^{n+m}(f^{n+m}))$$

$$= \max_{f^n \in \mathcal{F}_n} \max_{f^m \in \mathcal{F}_m} H(Y^n(f^n), Y^m(f^m))$$

$$= \max_{f^n \in \mathcal{F}_n} \max_{f^m \in \mathcal{F}_m} H(Y^n(f^n)) + H(Y^m(f^m))$$

$$= \mu(\mathcal{F}_n) + \mu(\mathcal{F}_m)$$

I used independence in the second and the third line.

- Given the above inequality, $\mu(\mathcal{F}_n) \geq n\mu(\mathcal{F}_1)$ and therefore

$$\mu((\mathcal{F}_n)_{n=1}^{\infty}) = \lim_{n \to \infty} \frac{1}{n\mu(\mathcal{F}_n)} \le \lim_{n \to \infty} \frac{1}{n^2\mu(\mathcal{F}_1)} = ?0$$

and since $\mu \geq 0$, then $\mu = 0$??!.

– I skimmed the remaining sections. I am not sure how the mystery number μ is related to the 3-step algorithm.

1.2 Randomized prime

I also worked on the randomized prime generation idea. Consider the following algorithm Instead of checking

```
Algorithm 1: Generating random primes input : n, t output: A uniform n-bit prime for i = 1 \rightarrow t do p \leftarrow \{0,1\}^n if p is prime then return p end end return \bot
```

that p is a prime, we can check if p passes the Miller-Rabin test or not, which is more efficient – running in $O(n^3)$ rather than in $O(2^n)$ for a simple primality test, or $\tilde{O}n^6$ for AKS primality test. By applying the Miller-Rabin test multiple times, the mathbbPability of error (a composite number passes the test) decreases rapidly. Moreover, by letting n to be large enough (an asymptotic formula can be derived from the Prime Number Theorem), we can be sure that π_K can be represented by n-bits, and therefore our analysis for the 3-step algorithms remains unchanged.

For the next week I am going to do a more thorough derivation of the above idea and implement it.

2 Week 2

Add the randomized prime generation and a testing python code to plot the error rate.

3 Week 3

3.1 The simulation code

3.1.1 Channel class

The channel class models a discrete memoryless channel. The ChannelFunc is a function that takes an input character – the characters are modeled as indicies—and returns an output character. This function might be randomized as well. In fact the channel's transition matrix W should be implemented in ChannelFunc and be given as input to the constructor. It was wiser to let indicies start from 0 and I will refactor the code.

The transmit method simply calls the ChaanelFunc f on the given symbol.

3.1.2 Identification class

```
typedef function < vector < chnl_input >* (uint64_t) > ID_EncodingFunction; //
typedef function<uint64_t (const vector<chnl_output> &)>
   ID_DecodingFunction; //decoder
typedef pair < ID_EncodingFunction* , ID_DecodingFunction* > ID_Code;
class IdentificationCode
private:
    uint64_t N; // number of messages N = \{1, 2, \ldots, N\}
    uint64_t n; // block length
    ID_EncodingFunction* encoder;
    ID_DecodingFunction* decoder;
    double first_error ;
    double second_error;
    bool valid_construction;
public:
    IdentificationCode(uint64_t N, uint64_t n);
    ~IdentificationCode();
    void constructID_Code(const Channel & C, function < ID_Code* (const</pre>
       Channel &,uint64_t,uint64_t)> construction_method);
    uint64_t getN();
    uint64_t getn();
    double getFirstKindError();
    double getSecondKindError();
    vector < chnl_input >* encode(uint64_t message);
    uint64_t decode(const vector<chnl_output> &received);
};
```

This class models an identification code for a given channel C. The construction of the codes is done by constructID_Code which takes a construction_method to do the job. The encoder is a function that takes a message and encodes to a block of channel's inpute character. The decoder returns the number of identified messages. Under a uniform distribution on messages, the second error rate – false identification – is equal to the number of identified messages divided by the number of messages N. I have not implemented the getFirstKindError and getSecondKindError yet.

There is a similar transmission class which is supposed to model transmission codes. I added this class because of the constructions in [1] and [6] that use transmission codes. However, I have only implemented the 3-step algorithm so far.

3.1.3 Codes class

```
ID_Code* NoiselessBSC_ID(const Channel &C, uint64_t N, uint64_t n); // the
   3 step coding scheme
For now it only implements the 3-step algorithm.
3.1.4 Simulate class

double simulate(Channel & C, uint64_t N, uint64_t n, function < ID_Code* (
   const Channel &, uint64_t, uint64_t) > construction_method);
```

```
/* randomly generate a messages from N= \{1,2,\ldots,N\} and transmit it over the given channel with the given code*/
```

It takes as input a Channel C and a identification code constructor construction_method then, it simulates the transmission of a message over channel. For now, it outputs the second error rate of the Identification code.

3.1.5 main

```
int main(int argv, char *argc[])
{
    Channel noiselessBSC = Channel(2, 2, new ChannelFunc([](chnl_input x)
                                                           { return x; }));
    file_address = (argv >= 2) ? argc[1] : "C:/Users/EmaduZinoghli/Desktop/
       Codes/IdentificationChannel/logs/log-default.txt";
    uint64_t N = (argv >= 3) ? atoi(argc[2]) : 10000;
    uint64_t n = (argv >= 4) ? atoi(argc[3]) : 0;
    uint64_t m = (argv >= 5) ? atoi(argc[4]) : 15;
    random\_seed = (argv >= 6) ? argc[5] : "";
    double avg_error = 0;
    for (uint64_t i = 0; i < 10; i++)</pre>
        avg_error += simulate(noiselessBSC, N, n, NoiselessBSC_ID);
    cout << avg_error / m;</pre>
    *getOutputStream() << "End" << endl;
    getOutputStream()->close();
    return 0;
}
```

The main method takes some optional inputs

- 1. Address of a file for logging.
- 2. The parameter N, the number messages.
- 3. The parameter n, the block size for 3-step algorithm is not important.
- 4. The parameter m, the number of simulations.
- 5. A random seed for initializing the random generator.

3.2 Random Prime Generation

The pseudocode of our prime generation algorithm is

Algorithm 2: pseudocode

```
input: positive integers m, s, k
output: A uniformly chosen odd prime less than or equal to m
for i = 1 \rightarrow s do
n \leftarrow \{3, 5, \dots, m\}
if Miller\_Rabin(n, k) is PRIME then
return n
end
end
return 23
```

Instead of returning \perp when all of the randomly chosen numbers are COMPOSITE, it returns 23. There-

fore, the probability of finding no prime number is

$$\mathbb{P} \{\bot\} = \mathbb{P} \{M_R(n_1, k) = \text{COMPOSITE}, \dots, M_R(n_s, k) = \text{COMPOSITE}\}$$

$$= \prod_{i=1}^{s} \mathbb{P} \{M_R(n_i, k) = \text{COMPOSITE}\}$$

$$= \prod_{i=1}^{s} \mathbb{P} \{n_i \text{ is composite}\}$$

$$= \prod_{i=1}^{s} (1 - \mathbb{P} \{n_i \text{ is prime}\})$$

$$\approx \prod_{i=1}^{s} \left(1 - \frac{1}{\ln m}\right)$$

$$= \left(1 - \frac{1}{\ln m}\right)^s$$

where we used the fact that $\frac{\pi(m)}{m} \approx \frac{1}{\ln m}$ asymptotically by prime number theorem [3]. From Theorem 31.39 of [4] and its following analysis, for moderate values of $s \approx 3$, the probability of error is negligible. That is, if the algorithm returns a number – not \perp – then it is most likely a prime. Then, the number of iteration to get a prime number is about

$$\mathbb{P}\left\{\bot\right\} \le \frac{1}{2}$$

$$\implies s \lg \left(1 - \frac{1}{\ln m}\right) \le -1$$

$$\implies s \ge \frac{-1}{\lg \left(1 - \frac{1}{\ln m}\right)}$$

$$\implies s \ge \frac{-\ln 2}{\ln \left(1 - \frac{1}{\ln m}\right)}$$

note that $\ln(1-\frac{1}{x}) \approx -\frac{1}{x}$ for large enough x

$$\implies s > \ln m \ln 2 = \ln^2 2 \lg m$$

which means that s is in the order of number of bits of m.

4 Week 4

Identification is a communication paradigm introduced by Ahlswede [1]. In identification schemes, in essence, the receiver wants to know whether a certain message has been send or not. This is in contrast to the Shannon's transmission paradigm where the receiver wants to know the content of the message.

More formally, the send and receiver both have the message set \mathcal{M} and the receiver is interested in message $m \in \mathcal{M}$. Ofcourse, when the sender knows m, he can send a bit to indicate that he intends to send m or not. We may then assume that sender does not know m.

This problem can be trivially addressed by transmission codes, the receiver decodes the received code to \hat{m} and then decides if $\hat{m} = m$. However, the Ahlswede's identification codes require exponentially shorter blocklength to identify the same number of messages. This improvement is achieved mainly by relaxing the condition that the decoding sets need be disjoint. By allowing the decoding sets to have slight overlap, Ahlswede [1] has shown that there exists coding schemes that can identify $2^{2^{nC}}$ messages where C is the Shannon capacity of the DMC channel.

There are two kinds of errors associated with an identification scheme. The first kind happens when the sender sends m but the receiver fails to identify it and hence misses the identification. The second kind happens when the sender send $m' \neq m$ and the receiver falsely identifies m instead.

Definition 1 (Identification code). An identification code $n, N, \lambda_1, \lambda_2$ for a DMC channel $W \setminus (\mathcal{X}^n | \mathcal{Y}^n)$ is a set $\{Q(\cdot|i), \mathcal{D}_i\}_{i \in [N]}$ where $Q(\cdot|i)$ is a distribution over \mathcal{X}^n to that encodes i – for deterministic encoder

 $Q(x_i|i) = 1$ for some $x_i \in \mathcal{X}^n$, and $\mathcal{D}_i \subset \mathcal{Y}$ is the decoding set of i. The first and second kind errors are bounded by λ_1 and λ_2 , respectively.

$$\sum_{x^n \in \mathcal{X}^n} Q(x^n|i) W^n(\mathcal{D}_i^c|x^n) \le \lambda_1$$
$$\sum_{x^n \in \mathcal{X}^n} Q(x^n|j) W^n(\mathcal{D}_i|x^n) \le \lambda_2$$

4.1 Prime Number Generator

Prime number generators are algorithms that generate primes (I guess:))) well technically the name is self-explanatory). There are multitude of PNG, each might be desirable given the requirements of the problem. Typically we may consider two types of PNG; prime sieves and primality tests. In a prime sieve we look for all primes in a given interval [m,n] where usually m=1. One of the simplest –but not the most efficient–sieves is the sieve of Eratosthenes. Prime sieves are not very efficient, even if there was no computation, just

```
Algorithm 3: sieve of Eratosthenes
```

```
input: positive integer n
output: All prime numbers less than or equal to n
create a bitset b of size n set initially to all true
b[1] = \text{false}
P = \emptyset
for i = 2, \dots, n do
    if b[i] is true then
P = P \cup \{i\}
    for j = 2i, \dots, \lfloor \frac{n}{i} \rfloor i do
b[j] = \text{false}
end
end
return P
```

outputing the primes less than n is of order $O(n/\ln n)$, which makes these algorithms sub-exponential in size of n.

However, in most application we look for some large primes and not all primes. One strategy to generate such primes is to pick a random number – perhaps from a desirable distribution– and then check whether that number is a prime. Therefore, we need an efficient primality test algorithm. There are determinstic and randomized polynomial time primality tests. However, currently the best determinstic algorithms are much slower than randomized ones – higher polynomial degree– and at the same time, the randomized algorithms can be made very accurate. As a result, for most applications a randomized test is used. A list of basic primality test algorithms can be found in [5].

4.2 3-Step Algorithm

In essence the 3-Step algorithm does the following:

- 1. The sender uniformly chooses two indicies k, l from [K], [K'] respectively.
- 2. Given any message $m \in [M]$, the sender send $\phi_l(\phi_k(m))$ to the receiver.

I think if we send π_k and π_l instead of the indicies can signficantly improve the efficiency of the receiver without compromising the rate. Note that, $\pi_k = O(k \ln k)$ – the constant term is relatively small $C \leq 30$ for all integers and $C \leq 15$ for $k \geq 200$. Therefore, the asymptotic transmission cost of this modified scheme is

$$n = \lceil \lg \pi_K \rceil + 2\lceil \lg \pi_{K'} \rceil \tag{1}$$

$$= O(\lg K + \lg \lg K) + O(\lg K' + \lg \lg K')$$
(2)

$$= O(\lg K) + O(\lg K') \sim \alpha [1 + o(1)] \lg \lg M \tag{3}$$

which is the same as before. The benefit of this modification is that the receiver does not need to compute π_k and π_l from k and l respectively – as far as I know only a prime sieve can do this reliably, however as explained above, the sieves are subexponential.

I also came up with a new error analysis which <u>I think</u> is better than the Ahlswede's. First consider the following lemmas

Lemma 1. For any $x \geq 2$,

$$\frac{1}{x} \sum_{p < x} \frac{1}{p} = \frac{\lg \lg x}{x} + O(\frac{1}{x}) \tag{4}$$

The approximate term can be expanded in terms of Mertens' constant.

Lemma 2. Let $m, m' \leftarrow [M]$ and $k \leftarrow [K]$ be a uniform random variable independent of m, m'. Then,

$$\mathbb{P}\left(\phi_k(m) = \phi_k(m') | m \neq m'\right) \le \frac{\lg \lg K}{K} + O(\frac{1}{K})$$

Proof. We easily have

$$\mathbb{P}(\phi_k(m) = \phi_k(m')|m \neq m') = \sum_{\hat{k}=1}^K \mathbb{P}\left(\phi_k(m) = \phi_k(m') \middle| m \neq m', k = \hat{k}\right) \mathbb{P}\left(k = \hat{k} \middle| m \neq m'\right)$$

$$= \frac{1}{K} \sum_{\hat{k}=1}^K \mathbb{P}\left(\phi_k(m) = \phi_k(m') \middle| m \neq m', k = \hat{k}\right)$$

$$\leq \frac{1}{K} \sum_{\hat{k}=1}^K \frac{1}{\pi_{\hat{k}}}$$

$$= \frac{\lg \lg K}{K} + O(\frac{1}{K})$$

Now by following the error analysis of Ahlswede we get

$$\mathbb{P}\left(\phi_l(\phi_k(m)) = \phi_l(\phi_k(m')) \middle| m \neq m'\right) \leq \frac{\lg \lg K}{K} + \frac{\lg \lg K'}{K'}$$

and we have

$$\frac{\lg\lg K}{K} = \frac{\lg\alpha + \lg\lg M}{(\lg M)^\alpha} \le \frac{1}{(\lg M)^{\alpha-1}}$$

I came up with this when I was working on the error analysis of our code, where we used the Miller-Rabin to generate prime. I am currently working on the distribution of the generate numbers and I will add it as soon as I become confident.

References

- [1] R. Ahlswede and G. Dueck. Identification via channels. *IEEE Transactions on Information Theory*, 35(1):15–29, 1989.
- [2] R. Ahlswede and B. Verboven. On identification via multiway channels with feedback. *IEEE Transactions on Information Theory*, 37(6):1519–1526, 1991.
- [3] Tom M. Apostol. Introduction to Analytic Number Theory. Springer New York, 1976.
- [4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms, Third Edition*. The MIT Press, 3rd edition, 2009.
- [5] Abhijit Das. Computational Number Theory. Chapman and Hall/CRC, 1st edition, 2013.
- [6] S. Verdu and V.K. Wei. Explicit construction of optimal constant-weight codes for identification via channels. *IEEE Transactions on Information Theory*, 39(1):30–36, 1993.