

Lecture 19: Decision Tree & Random Forest

COMP90049 Knowledge Technology

Sarah Erfani and Vinh Nguyen, CIS

Semester 2, 2017

Classification Example: Detecting Tax Fraud

Training data:

	Car	Car	co.	Cr
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Test data:

	Tid	Refund	Marital status	Taxable Income	Cheat
•	11	Yes	Married	125K	?

More Examples of Classification Task

- Classifying credit card transactions as legitimate or fraudulent
- Predicting tumor cells as benign or malignant
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil

Classification framework

Test Set

Decision Trees

- A flow-chart-like tree structure
- Internal node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution

Decision Trees

- A flow-chart-like tree structure
- Internal node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution

Advantages:

- Basic classification model
- Fast
- Scalable
- Interpretable

Disadvantage:

Not highest accuracy (Random Forest to the rescue)

Example of a Decision Tree: Tax Fraud Detection

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Another Example of Decision Tree for Tax Fraud Detection

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Decision Tree Classification Task

COMP90049 Knowledge Technology

Decision Tree Induction: Hunt's Algorithm

Let D_t be the set of training records that reach a node t

General Procedure:

- If D_t contains records that belong to more than one class, select an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.
- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t is an empty set, then t is a leaf node labeled by the default class, y_d (majority class in the data)

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example of Hunt's Algorithm

Refund

If D_t contains records that belong to more than one class, use an attribute to split the data into smaller subsets.

Recursively apply the procedure to each subset.

	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
/	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
4	Yes	Married	120K	No
7	Yes	Divorced	220K	No

Tid	Refund	Marital Status	Taxable Income	Cheat
2	No	Married	100K	No
3	No	Single	70K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Stopping Condition: Leaf Node

- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 (majority class in the data)

Decision Tree Model

One possible model

- Border line of between two neighbouring regions of different classes is known as decision boundary
- Decision boundary in decision trees is parallel to axes because test condition involves single attribute at-a-time

- Border line of between two neighbouring regions of different classes is known as decision boundary
- Decision boundary in decision trees is parallel to axes because test condition involves single attribute at-a-time

- Border line of between two neighbouring regions of different classes is known as decision boundary
- Decision boundary in decision trees is parallel to axes because test condition involves single attribute at-a-time

- Border line of between two neighbouring regions of different classes is known as decision boundary
- Decision boundary in decision trees is parallel to axes because test condition involves single attribute at-a-time

Hunt's algorithm: Intuition

- Recursively subdivide the training data into smaller subsets (sub-regions as axis-parallel rectangles)
- We would like each subset to be 'pure': label each rectangle with one class

Tree Induction Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

Tree Induction Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Which split should we choose?

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Tree Induction Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

How to Determine the Best Split – Example 1

Before Splitting: 6 records of class C0,
 6 records of class C1

Which test condition is the best?

How to Determine the Best Split – Example 2

How to Determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Measures of Node Impurity

- Misclassification Error
- Entropy
- Gini index

Node Impurity Based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- P(i|t): proportion of points in the i-th class
- Measures misclassification error made by a node.
 - Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Node Impurity Criteria Based on Entropy

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum (log n_c) when records are equally distributed among all classes implying least information, where n_c is the number of classes.
 - Minimum (0.0) when all records belong to one class, implying most information

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

C1	0
C2	6
Gini=0.000	

C1	1
C2	5
Gini=0.278	

CI	3
Gini=	

Examples for computing GINI

$$GINI(t) = 1 - \sum [p(j \mid t)]^2$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

How good is a Split?

- Compare the impurity of parent node (before splitting)
- With the impurity of the children nodes (after splitting)

$$\Delta = I(\text{parent}) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j),$$

- I(v_i): impurity measure of node v_i
- j: children node index
- N(v_j): number of data points in child node v_j
- N: number of data points in parent node
- The larger the gain, the better

How good is a Split?

For I(v) being the entropy function: Information gain

$$\Delta = I(\text{parent}) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j),$$

- Where I() is the entropy function H()
- Note: the information gain is equivalent to the mutual information between the class variable and the test attribute
- Thus splitting using the information gain is to choose the attribute with highest information shared with the class variable

MELBOURNE Splitting Based on Gain Ratio

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} \qquad SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO). Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of Information Gain

How to Determine the Best Split?

Before Splitting: 6 records of class 0, 6 records of class 1

Which test condition is the best?

- Compute the gain of all splits
- Choose the one with largest gain

How to Find the Best Split

Gain = M0 - M12 vs M0 - M34M: some impurity measure;

M12: weighted average of impurity

Determine When to Stop Splitting

- When a node is homogenous
- When the subsample size is smaller than a threshold

Determine When to Stop Splitting

- Remember: our goal is not to sub-divide the data perfectly
- Over-subdivision leads to a complicated decision boundary (over-fitting)

Decision Boundary Complexity

- A perfect decision boundary that models the training data perfectly?
- A good-enough decision boundary that likely generalizes to unseen test data?

Decision Tree Parameters

- Used to control the complexity of the tree
 - Total number of nodes
 - Tree depth
 - Minimum number of data points for a split
- How to set parameters? Cross-validation

Random Forest

- Random Forest: Community of Experts
 - Train multiple decision trees on random subsets of samples
 - Decision via majority voting

Random Forest

- Each tree is built on a random subset of records of the data: Tree bagging
- Each tree is built on a random subset of features of the data: Random subspace
- In practice: RFs are widely popular and readily implemented in many ML packages

(Weka, Scikit-learn, Matlab...)

References

This lecture was prepared using some material adapted from:

- https://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf
- CS059 Data Mining -- Slides
- http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap4 basic classification.ppt