Design of RNA-Seq and Result Interpretation

Sanzhen Liu

Department of Plant Pathology

Kansas State University

@K-State IGF RNA-Seq Workshop 2014

6/6/2014

Outline

Design of DE experiments and results

- Experimental design
- P-values and q-values

Other analyses

- Visualization
- GO term enrichment analysis

An RNA-Seq experiment

Q: If the gene expression of Gene 1 is associated with the treatment?

Fisher's Exact Test on Gene 1

2x2 Table for Gene 1

	Gene 1	Others
Control 1	C1	N1' – C1
TRT 1	T1	N2' – T1

A p-value for Gene 1

- Repeat on all the genes then perform multiple test correction
- p-values
- q-values

Setup the FDR cutoff and declare that the genes are significant if q-values < FDR

An RNA-Seq experiment – source of variance

We are interested in compare the proportions of read counts of each gene out of the total reads in Control 1 and TRT 1

For example, C1 out of N1' vs. T1 out of N2'

Let us not worry about the experimental design. First, can you think about what would cause different proportions of read counts of Gene 1 out of the total reads in Control 1 and TRT 1?

An RNA-Seq experiment – source of variance

Source of variance in RNA-Seq - sampling

 Sampling variance derived from the inherent nature of counting experiments

1,000 molecules of Gene 1 in 10⁹ total molecules

Randomly sample 10⁷

First sampling	6
Second sampling	13
Third sampling	8

Randomly sample 108

First sampling	107
Second sampling	93
Third sampling	97

Sequence depth (sampling number) matters.

Source of variance in RNA-Seq

Biological variance

Biological variance include biological variance of interest (related to treatment) and biological variance of no-interest

- Technical variance
- Random sampling variance stemming from the inherent nature of counting experiments

Fisher's Exact Test (FET)

Needs a better experimental design and analysis to distinguish different types of variance and estimate them.

Replication

Technical rep refers to the sequencing of multiple libraries derived from the same biological sample.

Biological rep from different biological samples.

- Use biological replication instead of technical replication unless you have your own particular interest.
- 2. More replicates increase the power to detect small treatment effect

Randomization and Unbiasedness

Randomization and unbiasedness should be considered during the whole experiment as much as possible.

Experimental Design

- Sequencing depth
 Increasing sequencing depth decreases sampling variance
- Biological replication

Reasonable number of biological replication helps accurately estimate variances to achieve reliable statistical inference.

Randomization and unbiasedness

To avoid confounding effect

Question I

My lab conducted an RNA-Seq experiment to identify the DEs between two biological groups to examine a treatment of great interest. Each group has five biological replicates. I told my graduate student to perform the experiment of each group separately (then I don't need to worry that the samples from two groups are messed up).

Is this a sound experimental design? Why?

Outline

Design of DE experiments and results

- Experimental design
- P-values and q-values

Other analyses

- Visualization
- GO term enrichment analysis

P-value histograms from real studies

If you perform an RNA-Seq experiment, which one would you like to obtain?

P-value distribution under the null hypothesis (e.g., no treatment effect)

When the null hypothesis is true, a P-value is distributed uniformly.

No matter how stringent the criteria are, you'll identify genes with very small p-values and the false discovery rate (FDR) is 100%.

P-value distribution under both the null and non-null hypotheses

Alternative hypothesis N=1000

Sequence of the sequence of the

When the null hypothesis is true, a P-value is distributed uniformly.

When the null hypothesis is false, the P-value distribution is skewed toward 0.

Cutoff: p=0.05 FDR=471/(471+989)=32%

Cutoff: p=0.01 FDR=102/(102+912)=10%

Multiple test correction – FDR method

FDR method (BH) to calculate qvalues/adjusted p-values/corrected pvalues*

q-values < 0.1 FDR 10%

P-values < 0.00009 DE=992 False DE=99

p-value	q-value
0.846	0.984
0.957	0.996
0.598	0.939
0.112	0.586
0.574	0.937
0.583	0.938
0.178	0.712
0.025	0.228
0.241	0.776
0.832	0.983
0.269	0.803
0.983	0.998
0.917	0.993
0.001	0.015
0.109	0.582
0.585	0.938
0.871	0.987
0.932	0.993
	•••

^{*} p.adjust in R, Journal of the Royal Statistical Society, Series B, 1995, 57:289–300

P-value histograms from real studies

Significant genes

		Group 1			Group 2			DE Result	
GeneID	Rep1	Rep2	Rep3	Rep1	Rep2	Rep3	Log2FC	p-vauel	q-value
1	2679	2360	2573	2563	3398	3012	-0.40	0.037	0.097
2	177	161	171	154	137	152	0.03	0.916	0.956
3	381	371	397	541	723	635	-0.89	2.42E-05	0.00017
4	990	1073	1236	850	672	859	0.30	0.130	0.256
5	0	0	0	0	0	0	NA	NA	NA
6	203	310	306	272	220	259	-0.07	0.811	0.892

Which genes can be called significant genes?

Arbitrary criteria

5% FDR, q-values < 0.05

10% FDR, q-values < 0.1

20% FDR, q-values < 0.2

5% FDR & (Log2FC > 1 or Log2FC < -1)

Question II

If we identify 500 differential expression (DE) genes using the 5% FDR to account for multiple tests. Which one below is a better description?

1. I am 95% confident that 500 genes are DE.

2. The 5% genes (25 genes) in the set are not true DE genes.

Outline

Design of DE experiments and results

- Experimental design
- P-values and q-values

Other analyses

- Visualization
- GO term enrichment analysis

Scatter plot

Gene	Control	Control
	rep1	rep2
1	2679	2360
2	177	161
3	381	371

Raw counts scatter plot

RPKM scatter plot

Pair-wise scatter plot

Principal Component Analysis (PCA)

PCA is a mathematical algorithm that reduces the dimensionality of the data while retaining most of the variation in the data set.

Could you use one sentence to summarize what you said in the last 30 minutes?

Feature/ variable	John	Mike	Jack	Justin
Weight (lb)	150	243	186	128
Height (cm)	171	190	178	175

Nature Biotech, 2008, 26:303-4

	(Contro	I	Tr	eatme	nt
GeneID	Rep1	Rep2	Rep3	Rep1	Rep2	Rep3
1	2679	2360	2573	2563	3398	3012
2	177	161	171	154	137	152
3	381	371	397	541	723	635
•••						
30000	990	1073	1236	850	672	859

Normalized and standardized data

PCA - full gene set

PCA Plot using different inputs

Standardization within genes

Raw counts	Standarded
3	-0.48
6	0.02
8	0.36
4	-0.31
6	0.02
9	0.52
5	-0.14

Mean = 5.8Range = 9 - 3 = 6

x' = (x-mean)/range

PCA - full gene set

PCA - full gene set, no standarization

PCA - sig gene set, , no standarization

Vocalno plot

		DE Resu	ılt
GeneID	Log2FC	p-value	-log10(pvalue)
1	-0.40	0.037	1.43
2	0.03	0.916	0.04
3	-0.89	2.42E-05	4.62
4	0.30	0.130	0.89
5	-0.36	0.140	0.85
6	-0.07	0.811	0.09
•••			

Volcano plot

MA plot

M (log ratios) and A (mean average)

GeneID	Mean RPKM	log mean	log2FC
1	0.51	-0.29	-0.40
2	1.25	0.10	0.03
3	3.52	0.55	-0.89
4	0.19	-0.72	0.30
5	2.34	0.37	-0.36
6	6.14	0.79	-0.07

Outline

Design of DE experiments and results

- Experimental design
- P-values and q-values

Other analyses

- Visualization
- GO term enrichment analysis

Gene ontology (GO)

An ontology is a representation of a body of knowledge, within a given domain. Ontologies usually consist of a set of classes or terms with relations that operate between them.

Three domains (roots)

Node: GO term (e.g., cell growth, GO:0016049, biological process)

Edge: term-term connection

Each GO term can be traced back to a root

GO enrichment test

Gene	GO accession
IZM2G001475	GO:0006519
IZM2G001475	GO:0016831

GRMZM2G001475	GO:0006519
GRMZM2G001475	GO:0016831
GRMZM2G001500	GO:0005524
GRMZM2G001500	GO:0006457
GRMZM2G001500	GO:0051082
GRMZM2G001508	GO:0003993
GRMZM2G001514	GO:0003677
GRMZM2G001514	GO:0004879
GRMZM2G001514	GO:0005634
GRMZM2G001514	GO:0006355

GRMZM2G001475	1
GRMZM2G002652	2
GRMZM2G006480	3
GRMZM5G868038	40

Gene	Significant?
GRMZM2G001475	no
GRMZM2G002652	no
GRMZM2G006480	yes
•••	
GRMZM5G868038	no

Question: Are the genes of this GO term enriched in the significant gene set?

Assumption: all genes are independent and equally likely to be selected as DEs.

2x2 Table for GO:0006519

Fisher's Exact Test: p-value = 2.518e-06

	GO:0006519	Others
Significant	5	210
Not significant	35	39416

Name Ontology Definition cellular amino acid metabolic process

Biological Process

The chemical reactions and pathways involving amino acids, carboxylic acids containing one or more amino groups, as carried out by individual cells.

Not all genes are equally likely to be selected as DEs.

Young MD, et al., (2010). Genome Biology, 11: R14.

GOSeq

- The likelihood of DE as a function of number of reads is quantified through fitting a monotonic function to "proportion of DE" versus "number of reads".
- 2. The function is incorporated into the enrichment statistical test

Gene	Significant?
GRMZM2G001475	no
GRMZM2G002652	no
GRMZM2G006480	yes
GRMZM5G868038	no

Read counts	Proportion
224	0.16
51	0.05
536	0.38
0	0

3. Weighted sampling to perform enrichment test

GO:0006519	# DE	
Obs (from the DE analysis)	5	
1 st weighted sampling	1	
2 nd weighted sampling	0	→ p-value
3 rd weighted sampling	2	p varac

Summary

- Biological replication and randomization need to be considered during the experimental design
- Multiple test correction is critical for any analyses with large number of statistical tests
- Use a proper approach for the GO enrichment test
- R is an excellent tool to visualize the data

My contact information

liu3zhen@ksu.edu

4022B Throckmorton Plant Sciences Center

Manhattan, KS 66506-5502

phone: 785-532-1379

twitter: liu3zhen