國立臺南大學資訊工程學系 軟式計算作業

作業二: Genetic Algorithm

班級: 資工四

姓名: 蘇慧芸

學號 : S10659033

指導老師:朱明毅老師

中華民國 110年04月23日

目錄

一、	· 簡介及目標描述	.3
	(一) 簡介	.3
	(二) 作業目標	.3
	(三) 演算法流程	.4
二、	程式設計環境架構	5
	(一) 程式語言	5
	(二) 程式開發工具	5
	(三) 相關套件使用	.5
	(四) 電腦硬體	.5
三、	程式碼相關參數及說明	.6
	(一) 染色體編碼方式	.6
	(二) 相關參數使用	.6
	(三) 程式介面說明	.6
四、	實驗結果及討論	.7
	(一) 基本設置	.7
	(二) 探討相關參數設置	.7
五、	· 結論	9

一、 簡介及目標描述

(一) 簡介

使用 GA 演算法找出上圖神經網路的權重值(weights),使得輸出結果為 X1 XOR X2

訓練資料:(1,1:0),(1,0:1),(0,1:1),(0,0:0)

適應度值:訓練資料誤差的總和 (請註明 L1 或 L2)

(二) 作業目標

- 1. 需說明
 - (1)染色體(chromosome)編碼方式
 - (2)所使用的 Crossover 和 Mutation 運算元(Operator)的種類、數目、運作方式和所有使用的參數
- 2. 需記錄並圖式每次迭代(搜尋)過程中,每一代的最佳適應度值(fitness value)
- 3. 依據 GA 找出的權重值,測試輸入為(0.8, 0.7)、(0.8, 0.2)與(0.2, 0.3)時,神經網路的輸出值為何?
- 4. 其它認為需要的記錄或說明事項

(三) 演算法流程

二、 程式設計環境架構

(一) 程式語言

JavaScript

(二) 程式開發工具

Notepad++

(三) 相關套件使用

Chart.js(2.8.0)

Jquery.min.js(1.7.1)

(四) 電腦硬體

處理器:Intel core i7-8565U

記憶體:8GB

硬碟:512GB SSD

作業系統: Windows 10 家用版 (64 位元)

三、程式碼相關參數及說明

(一) 染色體編碼方式

一個染色體包含 81 個基因,每九個基因為一組,代表一個 weight。九個基因裡第一個為正 負號,第二到第六個將轉成二進制(可表示範圍-32~+32),第七至第九個為小數點,分別乘上 1/2、 1/4、1/8。

(二) 相關參數使用

變數名稱	說明	變數名稱	說明
populationnum	染色體數量	totalloss	輪盤法計算
loss[][]	放置基因以及 loss	minloss	紀錄歷代最好的 loss
temploss[][]	暫存基因以及 loss	minploss	記錄每代最佳 loss
weight	將 loss 計算成 weight	minlossarray	用來畫圖表
bestweight	存放最好的 weight	train	訓練資料
a1 \ a2 \ a3	神經元	epochs	迭代次數

(三) 程式介面說明

主要分為四個部分,第一部分為訓練參數及方法選擇,第二為每一代的最低 LOSS 圖表,第三則為記錄最低的 LOSS,最後一個部分為測試階段,輸入 X、Y 查看輸出。

四、實驗結果及討論

(一) 基本設置

迭代次數設置 50,其餘設置如下圖所示,停止條件設置為當 loss 低於 0.001 時即停止操作,如未 到達則等到迭代次數超過時停止。

(二) 探討相關參數設置

訓練資料: $\{0,0,0\}$ 、 $\{0,1,1\}$ 、 $\{1,0,1\}$ 、 $\{1,1,0\}$

固定參數如下:

• 迭代次數:100

• 族群數量:500

實驗調整以上參數來作探討,因為 weight 為隨機設置(-32~+32),因此以下為抽樣 30 次做平均所得到的結果(紀錄到達最低 LOSS 所花的次數):

1.族群數量

族群數量越多則越快找到最佳解。

族群數量	次數
100	50.98
200	48.18
300	42.12
400	35.62
500	30.64

2.選擇方法

參數:

- 1. 迭代次數=>100
- 2. 族群數量=>500
- 3. 突變率=>0.02

競爭式選擇方法相對於輪盤法高,我認為是在於競爭式中是兩兩選擇最好的,選到好的染色體的機率較高,但相比輪盤法會是機率方式,不見得會選到最好的染色體。

選擇方法	交配方法	次數
輪盤法選擇	單點交配	31.6
無盈 么选择	雙點交配	31.84
競爭式選擇	單點交配	29.56
加于 式选择	雙點交配	26.98

3.突變率

參數:

- 1. 迭代次數=>100
- 2. 族群數量=>500
- 3. 選擇方法=>競爭式選擇
- 4. 交配方法=>雙點交配

突變率越高不見得次數就會降低,但能使演算法盡快找出最佳解,而避免陷入區域解之中。

突變率	次數
0.05	23.18
0.10	27.66
0.15	22.98
0.20	27.48
0.25	27.1

五、結論

輸入	輸出
0.8 \ 0.7	0.00038005703647262657
0.8 \ 0.2	0.9018523732437443
0.2 \ 0.3	0.00038090443334665917

跟上次 PSO 的方法比較,雖然兩者都能找到最佳解,但相比起來基因演算法能更快到達預計的最低 LOSS,雖然不是透過 PSO 逐漸收斂的方法,但透過 Crossover 以及 mutation 的方式確實有效,當 Crossover 趨於穩定時,mutation 可以用來突變,增添變化,較不容易陷於區域解中。