AMENDMENTS TO THE CLAIMS:

The following listing of claims replaces all prior versions and listings of claims in the application. Please amend claims 4, 6, 13, 18, 22, 27, 31, and 36, as follows:

Claims 1-3 (Canceled).

4. (Currently Amended) An etching method for exposing a layer of Cu by etching a layer of SiN_x on the layer of Cu with an etching gas constituted of C, H, and F, and O₂, the O₂ suppressing oxidation of the layer of Cu while the etching of the layer of SiN_x occurs wherein;

said gas constituted of C, H, and F is CHF₃, and the O₂ suppresses oxidation of the layer of Cu exposed by the etching of the layer of SiN_x.

Claim 5 (Canceled).

6. (Currently Amended) An etching method for exposing a layer of Cu by etching a layer of SiN_x on the layer of Cu, the method, wherein;

a step in which a processing gas containing a gas constituted of C, H, and F, and O_2 is raised to plasma and an SiN_X layer on a Cu layer is etched using a photoresist layer having a specific pattern formed therein, thereby exposing said Cu layer; and

a step in which H₂ is introduced into said processing chamber and an H₂ plasma process is implemented on said Cu layer that has become exposed by raising the H₂ to plasma, wherein implementing the H₂ plasma process on the Cu layer that has become exposed removes C atoms and F atoms introduced into the Cu layer that has become

exposed during etching while removing C atoms and F atoms introduced into the Cu layer that has been exposed during etching.

- 7. (Previously Presented) An etching method according to claim 6, wherein; said gas constituted of C, H and F is CH₂F₂.
- 8. (Previously Presented) An etching method according to claim 6, wherein; said gas constituted of C, H and F is CH₃F.
- 9. (Previously Presented) An etching method according to claim 6, wherein; said gas constituted of C, H and F is CHF₃.
- 10. (Previously Presented) An etching method according to claim 6, wherein; an inert gas is added into said processing gas.
- 11. (Previously Presented) An etching method according to claim 6, wherein; said photoresist layer is removed during an ashing step, and wherein said etching step, said ashing step, and said H₂ plasma process are implemented inside a single processing chamber.
- 12. (Previously Presented) An etching method according to claim 6, wherein; a step implemented after said etching step and before said H₂ plasma processing step, in which said photoresist layer is ashed.

13. (Currently Amended) A method for etching an SiN_x layer on a Cu layer of a workpiece placed inside a processing chamber, the method comprising:

introducing a processing gas comprising C, H, and F, and O_2 into a processing chamber, the O_2 suppressing injection of C atoms and F atoms of the processing gas into an exposed portion of the Cu layer while the SiN_x layer is etched; and

raising the processing gas introduced into the processing chamber to plasma to etch the SiN_x layer such that a portion of the Cu layer is exposed, wherein introducing the O₂ into the processing chamber suppresses injection of C atoms and F atoms of the processing gas into the exposed portion of the Cu layer.

- 14. (Previously Presented) The method of claim 13, wherein processing gas is CH_2F_2 .
- 15. (Previously Presented) The method of claim 13, wherein the processing gas is CH₃F.
- 16. (Previously Presented) The method of claim 13, wherein the processing gas is CHF₃.
- 17. (Previously Presented) The method of claim 13, further comprising introducing an inert gas into the processing chamber.
- 18. (Currently Amended) The method of claim 13, further comprising treating the exposed portion of the Cu layer with H₂ plasma by introducing H₂ into the

U.S. Application No.: 10/030,656
Applicants: Masaaki HAGIHARA et al.

Attorney Docket No.: 07553.0029-00000

processing chamber after etching and raising the H₂ to plasma such that the exposed portion of the Cu layer is exposed to the H₂ plasma, wherein and exposing the exposed portion of the Cu layer to the H₂ plasma removes removing C atoms and F atoms introduced into the exposed portion of the Cu layer during etching.

- 19. (Previously Presented) The method of claim 18, wherein etching the SiN_x layer comprises providing a photoresist layer having a specific pattern on the SiN_x layer; and the method further comprises ashing the photoresist layer after etching the SiN_x layer and before treating the exposed portion of the Cu layer with H_2 plasma.
- 20. (Previously Presented) The method of claim 19, wherein the etching, the ashing, and the treating of the exposed portion of the Cu layer with H₂ plasma are implemented inside a single processing chamber.
- 21. (Previously Presented) The method of claim 19, further comprising setting the workpiece to a temperature less than or equal to 100° C during the ashing step.
- 22. (Currently Amended) A method for etching an SiN_x layer on a Cu layer of a workpiece placed inside a processing chamber, the method comprising:

introducing a processing gas comprising C, H, and F, and O_2 into a processing chamber, the O_2 suppressing oxidation of an exposed portion of the Cu layer while the SiN_x layer is etched; and

raising the processing gas introduced into the processing chamber to plasma to etch the SiN_x layer such that a portion of the Cu layer is exposed, wherein introducing

U.S. Application No.: 10/030,656
Applicants: Masaaki HAGIHARA et al.

Attorney Docket No.: 07553.0029-00000

the O₂ into the processing chamber suppresses exidation of the exposed portion of the Cu layer.

- 23. (Previously Presented) The method of claim 22, wherein processing gas is CH₂F₂.
- 24. (Previously Presented) The method of claim 22, wherein the processing gas is CH₃F.
- 25. (Previously Presented) The method of claim 22, wherein the processing gas is CHF₃.
- 26. (Previously Presented) The method of claim 22, further comprising introducing an inert gas into the processing chamber.
- 27. (Currently Amended) The method of claim 22, further comprising treating the exposed portion of the Cu layer by introducing H₂ into the processing chamber after etching and raising the H₂ to plasma such that the exposed portion of the Cu layer is exposed to the H₂ plasma, wherein exposing the exposed portion of the Cu layer to the H₂ plasma removes removing C atoms and F atoms introduced into the exposed portion of the Cu layer during etching.
- 28. (Previously Presented) The method of claim 27, wherein etching the SiN_x layer comprises providing a photoresist layer having a specific pattern on the SiN_x layer;

and the method further comprises ashing the photoresist layer after etching the SiN_x layer and before treating the exposed portion of the Cu layer with H₂ plasma.

- 29. (Previously Presented) The method of claim 28, wherein the etching, the ashing, and the treating of the exposed portion of the Cu layer with H₂ plasma are implemented inside a single processing chamber.
- 30. (Previously Presented) The method of claim 28, further comprising setting the workpiece to a temperature less than or equal to 100° C during the ashing step.
- 31. (Currently Amended) A method for etching an SiN_x layer on a Cu layer of a workpiece placed inside a processing chamber, the method comprising:

introducing a processing gas comprising C, H, and F, and O₂ into a processing chamber, the O₂ suppressing oxidation of an exposed portion of the Cu layer and suppressing injection of C atoms and F atoms of the processing gas into the exposed portion of the Cu layer while the SiN_x layer is etched; and

raising the processing gas introduced into the processing chamber to plasma to etch the SiN_x layer such that a portion of the Cu layer is exposed, wherein introducing the O_2 into the processing chamber suppresses exidation of the exposed portion of the Cu layer and suppresses injection of C atoms and F atoms of the processing gas into the exposed portion of the Cu layer.

32. (Previously Presented) The method of claim 31, wherein processing gas is CH_2F_2 .

U.S. Application No.: 10/030,656 Applicants: Masaaki HAGIHARA et al.

Attorney Docket No.: 07553.0029-00000

33. (Previously Presented) The method of claim 31, wherein the processing gas

is CH₃F.

34. (Previously Presented) The method of claim 31, wherein the processing gas

is CHF₃.

35. (Previously Presented) The method of claim 31, further comprising

introducing an inert gas into the processing chamber.

36. (Currently Amended) The method of claim 31, further comprising treating

the exposed portion of the Cu layer by introducing H₂ into the processing chamber after

etching and raising the H₂ to plasma such that the exposed portion of the Cu layer is

exposed to the H₂ plasma, wherein exposing the exposed portion of the Cu layer to the

H₂ plasma removes removing C atoms and F atoms introduced into the exposed portion

of the Cu layer during etching.

37. (Previously Presented) The method of claim 36, wherein etching the SiN_x

layer comprises providing a photoresist layer having a specific pattern on the SiN_x layer;

and the method further comprises ashing the photoresist layer after etching the SiN_x

layer and before treating the exposed portion of the Cu layer with H₂ plasma.

-8-

38. (Previously Presented) The method of claim 37, wherein the etching, the ashing, and the treating of the exposed portion of the Cu layer with H_2 plasma are implemented inside a single processing chamber.

39. (Previously Presented) The method of claim 37, further comprising setting the workpiece to a temperature less than or equal to 100° C during the ashing step.