2021年11月28日

离散数学

吴天阳 2204210460

第六章

66. 解答. 方程组:

$$\begin{cases} x \oplus (c \otimes y) = a \\ (c \otimes x) \oplus y = b \end{cases} \tag{1}$$

对 (1) 进行变化:

$$x = a \oplus (-c \otimes y) \tag{3}$$

将(3)代入(2)中,得

$$(c \otimes (a \oplus (-c \otimes y))) \oplus y = b$$

$$c \otimes a \oplus c \otimes (-c \otimes y) \oplus y = b$$

$$c \otimes a \oplus (-c^2 \otimes y) \oplus y = b$$

$$(-c^2 \oplus 1) \otimes y = b \oplus (-c \otimes a)$$

当 c=1 时, a=b, 则 $x \oplus y=a$, 无唯一解。

当 c=-1 时,a=-b,则 $x\oplus (-y)=a$,无唯一解。

当 $c \neq \pm 1$ 时,则 $y = (b \oplus (-c \otimes a)) \otimes (-c^2 \oplus 1)^{-1}$,则有

$$x = a \oplus (-c \otimes (b \oplus (-c \otimes a)) \otimes (-c^2 \oplus 1)^{-1})$$

$$= a \oplus (-(b \otimes c \oplus (-c^2 \otimes a)) \otimes (-c^2 \oplus 1)^{-1})$$

$$= (a \oplus (-a \otimes c^2) \oplus (-b \otimes c) \oplus (c^2 \otimes a)) \otimes (-c^2 \oplus 1)^{-1}$$

$$= (a \oplus (-b \otimes c)) \otimes (-c^2 \oplus 1)^{-1}$$

故

$$\begin{cases} x = (a \oplus (-b \otimes c)) \otimes (-c^2 \oplus 1)^{-1} \\ y = (b \oplus (-c \otimes a)) \otimes (-c^2 \oplus 1)^{-1} \end{cases}$$

67. 解答. 不一定。设域为实数域,⟨ℝ,+,×⟩,取

$$R = \{$$
所有偶数 $\} = \{\cdots, -6, -4, -2, 0, 2, 4, 6, \cdots \}$

则 $\langle R, +, \times \rangle$ 构成环,所以 $\langle R, +\times \rangle$ 是 $\langle \mathbb{R}, +, \times \rangle$ 的子环,但 $1 \notin R$,所以 R 中没有幺元,故 R 不是整环。

- **68. 解答.** (1). 不是,因为 $-1 \notin X$,所以 $1 \in X$ 没有关于 \oplus 的逆元,故 $\langle X, +, \times \rangle$ 不是域。
- (2). 是,由上次作业 60.(5) 题知, $\langle X, +, \times \rangle$ 构成整环,则只需证明 $\forall a + b\sqrt{3} \in X$ 都有逆元即可,由于

$$(a + b\sqrt{3})\frac{(a - b\sqrt{3})}{a^2 - 3b^2} = 1$$
$$\frac{(a - b\sqrt{3})}{a^2 - 3b^2}(a + b\sqrt{3}) = 1$$

假设 $a^2 - 3b^2 = 0$,则 $\frac{a}{b} = \sqrt{3}$,由于 $a, b \in \mathbb{Q}$,则 $\sqrt{3}$ 是有理数,与 $\sqrt{3}$ 为无理数矛盾,所以 $\forall a, b \in \mathbb{Q}$, $a + b\sqrt{3}$ 都有逆元,故 $\langle X, +, \times \rangle$ 是域。

- (3). 不是,由于 $\sqrt[3]{5} \times \sqrt[3]{5} = \sqrt[3]{25} \notin X$,所以 $\langle X, +, \times \rangle$ 不是域。
- (4). 是,证明方式同本题的(2)。
- (5). 不是,因为 $a \neq kb$,所以 $1 \notin X$,则 X 无幺元,故 $\langle X, +, \times \rangle$ 不是域。

69.

证明. 由于:

- 1. $S_1 \subset F \perp S_2 \subset F$, $y \mid S_1 \cap S_2 \subset F$
- $2. \langle S_1, \oplus \rangle, \langle S_2, \oplus \rangle$ 为 Abel 群,则 $\langle S_1 \cap S_2, \oplus \rangle$ 为 Abel 群
- 3. $\langle S_1 \setminus \{0\}, \otimes \rangle$, $\langle S_2 \setminus \{0\}, \otimes \rangle$ 为 Abel 群,则 $\langle S_1 \cap S_2 \setminus \{0\}, \otimes \rangle$ 为 Abel 群
- $4. \otimes, \oplus$ 为域 F 中的运算,则满足分配律,所以 $S_1 \cap S_2$ 中的 \otimes 对 \oplus 运算满足分配律。

综上, $\langle S_1 \cap S_2, \oplus, \otimes \rangle$ 是 $\langle F, \oplus, \otimes \rangle$ 的子域。

70. 解答. 存在,取素多项式 $f(x)=1+x+x^2$ 为模数,可以构造出多项式模环 $\langle R,+,\times \rangle$, $R=\{0,1,x,1+x\},\; x\in \mathbb{Z}_2,\;$ 其中的 $+,\times$ 运算定义如下:

+	0	1	X	1+x
0	0	1	X	1+x
1	1	0	1+x	X
X	X	1+x	0	1
1+x	1+x	X	1	0

×	0	1	X	1+x
0	0	0	0	0
1	0	1	X	1+x
X	0	X	1+x	1
1+x	0	1+x	1	X