MATH-UA 329: Homework 1

James Pagan, February 2023

Professor Güntürk

Contents

1	Problem 1	2
	1.1 Part (a)	2
	1.2 Part (b)	3
2	Problem 2	3
3	Problem 3	4
	3.1 Part (a)	4
	3.2 Part (b)	4
	3.3 Part (c)	5
4	Problem 4	6
5	Problem 5	6
	5.1 Part (a)	6
	5.2 Part (b)	7
6	Problem 6	8

1 Problem 1

1.1 Part (a)

Proof. Let $\langle \cdot, \cdot \rangle : V \times V \to V$ be an inner product over a vector space V. Then for all $\mathbf{v}, \mathbf{w} \in V$, we have

$$\|\mathbf{v} + \mathbf{w}\|^{2} = \langle \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} + \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle$$

$$= \|\mathbf{v}\|^{2} + 2 \langle \mathbf{v}, \mathbf{w} \rangle + \|\mathbf{w}\|^{2}.$$

We now demonstrate that the Triangle Inequality and Cauchy-Schwarz Inequality are equivalent. Suppose the Triangle Inequality holds; for all $\mathbf{v}, \mathbf{w} \in V$, we have

$$\|\mathbf{v}\|\|\mathbf{w}\| = \frac{(\|\mathbf{v}\| + \|\mathbf{w}\|)^2 - \|\mathbf{v}\|^2 - \|\mathbf{w}\|^2}{2}$$

$$\geq \frac{\|\mathbf{v} + \mathbf{w}\|^2 - \|\mathbf{v}\|^2 - \|\mathbf{w}\|^2}{2}$$

$$= \frac{(\|\mathbf{v}\|^2 + 2\langle \mathbf{v}, \mathbf{w} \rangle + \|\mathbf{w}\|^2) - \|\mathbf{v}\|^2 - \|\mathbf{w}\|^2}{2}$$

$$= \langle \mathbf{v}, \mathbf{w} \rangle.$$

Now, suppose the Cauchy-Schwarz Inequality; for all $\mathbf{v}, \mathbf{w} \in V$, we have

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}^2\| + 2\langle \mathbf{v}, \mathbf{w} \rangle + \|\mathbf{w}\|^2$$

$$\leq \|\mathbf{v}\|^2 + 2\|\mathbf{v}\| \|\mathbf{w}\| + \|\mathbf{w}\|^2$$

$$= (\|\mathbf{v}\| + \|\mathbf{w}\|)^2.$$

Taking the square root yields the Triangle Equality.

1.2 Part (b)

Proof. Suppose $\mathbf{z} = (z_1, \dots, z_n)$ and $\mathbf{w} \in (w_1, \dots, w_n)$ are vectors in \mathbb{C}^n and $c \in \mathbb{C}$. Then

$$||c\mathbf{z} - \mathbf{w}||^2 = \sum_{i=1}^n (cz_1 + w_1)^2 = c^2 \left(\sum_{i=1}^n z_i^2\right) + c \left(2\sum_{i=1}^n z_i w_i\right) + \left(\sum_{i=1}^n w_i^2\right)$$

is a quadratic which has at most one root. Its discriminant must be nonnegative:

$$0 \le \left(2\sum_{i=1}^n z_i w_i\right)^2 - 4\left(\sum_{i=1}^n z_i^2\right) \left(\sum_{i=1}^n w_i^2\right) = 4(\mathbf{z} \cdot \mathbf{w})^2 - 4\|\mathbf{z}\|^2 \|\mathbf{w}\|^2.$$

Diving by 4 and rearranging yields that $(\mathbf{z} \cdot \mathbf{w})^2 \leq ||\mathbf{z}||^2 ||\mathbf{w}||^2$; taking the square root yields the Cauchy-Schwarz Inequality in \mathbb{C}^n . This proof implies Cauchy-Schwarz in \mathbb{R}^n as well. \square

2 Problem 2

Proof. We must first unravel the notation of the expression $\frac{\omega_f(t)}{t}$. For all $\epsilon > 0$,

$$\lim_{t \to 0^+} \frac{\omega_f(t)}{t} = 0 \implies \exists \delta \text{ such that } 0 < t < \delta \text{ implies } \frac{\omega_f(t)}{t} < \epsilon$$

$$\implies \exists \delta \text{ such that } 0 < t < \delta \text{ implies } \frac{\sup_{|x_1 - x_2| \le t} |f(x_1), f(x_2)|}{t} \le \epsilon$$

$$\implies \exists \delta \text{ such that } 0 < |x_1 - x_2| \le t < \delta \text{ for } x_1, x_2 \in I \text{ implies }$$

$$\frac{|f(x_1) - f(x_2)|}{t} \le \epsilon.$$

Set $t = |x_1 - x_2|$. Then $\lim_{t \to 0^+} \frac{\omega_f(t)}{t} = 0$ implies the existence of δ such that

$$0 < |x_1 - x_2| < \delta \implies \left| \frac{f(x_1) - f(x_2)}{x_1 - x_2} \right| \le \epsilon.$$

We conclude that $\lim_{x_2 \to x_1} \frac{f(x_1) - f(x_2)}{x_1 - x_2} = f'(x_1) = 0$ for all $x_1 \in I$, so f is constant on I. \square

3 Problem 3

3.1 Part (a)

Proof. Let s be any point in S. For all $\epsilon > 0$, there exists $z \in Z$ such that

$$d(s,z)<\frac{\epsilon}{2}.$$

Since Z is dense in X: for all $\epsilon > 0$, there exists $x \in X$ corresponding to z such that

$$d(z,x) < \frac{\epsilon}{2}.$$

Then we deduce that

$$d(s,x) \leq d(s,z) + d(z,x) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

so S is dense in X.

3.2 Part (b)

Proof. We address each part separately:

Part (i): We must perform rather routine calculations to verify that $d_1 \times d_2$ is a metric:

- 1. **Positivity**: Since $(d_1 \times d_2)((x_1, x_2), (y_1, y_2))$ is a sum of two distances, it is nonnegative. Equality is obtained precisely when $d_1(x_1, y_1) = d_2(x_2, y_2) = 0$ that is, when $(x_1, x_2) = (y_1, y_2)$.
- 2. **Symmetry**: We have that

$$(d_1 \times d_2)((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$$

= $d_1(y_1, x_1) + d_2(y_2, x_2)$
= $(d_1 \times d_2)((y_1, y_2), (x_1, x_2)).$

3. Triangle Inequality: For all (x_1, x_2) , (y_1, y_2) , and (z_1, z_2) in $X_1 \times X_2$, observe that

$$(d_1 \times d_2) ((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$$

$$\leq d_1(x_1, z_1) + d_1(z_1, y_1) + d_2(x_2, z_2) + d_2(z_2, y_2)$$

$$= (d_1 \times d_2) ((x_1, x_2), (z_1, x_2))$$

$$+ (d_1 \times d_2) ((z_1, z_2), (y_1, y_2)),$$

which is the triangle inequality.

We conclude that $d_1 \times d_2$ is a metric of $X_1 \times X_2$.

Part (ii): Select $(z_1, z_2) \in Z_1 \times Z_2$ arbitrarily. For all $\epsilon > 0$, there exists $x_1 \in X_1$ and $x_2 \in X_2$ such that

$$d_1(x_1, z_1) < \frac{\epsilon}{2}$$
$$d_2(x_2, z_2) < \frac{\epsilon}{2}.$$

Considering the pair (x_1, x_2) , we deduce that

$$(d_1 \times d_2)((z_1, z_2), (x_1, x_2)) = d_1(z_1, x_1) + d_2(z_2, x_2) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

so $Z_1 \times Z_2$ is dense in $X_1 \times X_2$.

Part (iii): If X_1 and X_2 are separable, then there exist (at most) countable and dense subsets $Z_1 \subset X_1$ and $Z_2 \subset X_2$. Then the product $Z_1 \times Z_2$ is (at most) countable; the prior lemma establishes it is dense in $X_1 \times X_2$. We deduce that $X_1 \times X_2$ is separable.

3.3 Part (c)

Proof. Let X be a discrete metric space. We utilize the following claim:

Claim 1. Let $S \subset X$. Then S is dense in X if and only if S = X.

Proof. Suppose S is dense in X. Then for all $x \in X$, there exists $s \in S$ such that

$$d(x,s) < \frac{1}{2}.$$

Since the discrete metric is either 0 or 1, we find d(x, s) = 0 and x = s. Then $x \in S$, so S = X. The proof concludes by noting that S = X implies S is dense in X.

We use our claim in the following chain of equivalecies:

X is separable \iff there exists dense $S \subseteq X$ which is countable $\iff X$ is (at most) countable,

as desired. \Box

4 Problem 4

Proof. Suppose that (X,d) is a metric space. Then the following holds for all $x \in X$:

(X,d) is separable \iff X has a countable dense subset \iff There is $(x_n)_1^\infty \subseteq X$ which is dense in X \iff For every $x \in X$ and all $\epsilon > 0$, there is $x_m \in (x_n)_1^\infty$ such that $d(x_m,x) < \epsilon$ \iff For every $x \in X$, we have $\liminf_{n \to \infty} d(x_n,x) = 0$,

as required.

5 Problem 5

5.1 Part (a)

Proof. Suppose that S is a dense subset of $\ell^{\infty}(\mathbb{N})$. We will prove that D is uncountable.

Claim 2. $\{0,1\}^{\mathbb{N}}$ is an uncountable set to which $\ell^{\infty}(\mathbb{N})$ reduces to the discrete metric.

Proof. Cantor's diagonal argument implies that $\{0,1\}^{\mathbb{N}}$ is an uncountable set. Let $x=(x_1,x_2,\ldots)$ and $y=(y_1,y_2,\ldots)$ be sequences in $\{0,1\}^{\mathbb{N}}$. It is clear that $d_{\infty}(x,y)$ is 0 or 1; we have

$$d_{\infty}(x,y) = 0 \iff |x_i - y_i| = 0 \text{ for all } i \in \mathbb{N}$$

 $\iff x_i = y_i \text{ for all } i \in \mathbb{N}$
 $\iff x = y.$

Thus d_{∞} is the discrete metric on $\{0,1\}^{\mathbb{N}}$, which completes the proof of our claim.

Associate to each $x \in \{0,1\}^{\mathbb{N}}$ the following set:

$$I_x \stackrel{\text{def}}{=} \left\{ s \in S \mid d(x,s) < \frac{1}{2} \right\}.$$

Each I_x is infinite since x is a limit point of D. Observe that I_x and I_y for $x \neq y$ are disjoint. If we suppose otherwise, there would exist $s \in S$ such that $d(x,s) < \frac{1}{2}$ and $d(y,s) < \frac{1}{2}$, which yields the following contradiction:

$$1 = d(x,y) \le d(x,s) + d(s,y) < \frac{1}{2} + \frac{1}{2} = 1$$

By the Axiom of Choice, we may form a set I consisting of one element of I_x for each $x \in \{0,1\}^{\mathbb{N}}$. Observe that I and $\{0,1\}^{\mathbb{N}}$ are in bijection, so I is uncountable; then $I \subseteq D$, implies that D is uncountable.

We conclude that $\ell^{\infty}(\mathbb{N})$ is not separable. Once an uncountable subset reduced to the discrete metric is identified, **the argument above applies to any metric space** and will be reinvoked in Problem 6.

5.2 Part (b)

(Aside: We assume \mathbb{N} does not include 0; this choice is irrelevant to the proof)

Proof. We address each part separately:

Part (i): We define the family of sets $S_1 = (q_1, 0, 0, 0, \ldots)$, $S_2 = (q_1, q_2, 0, 0, \ldots)$, $S_3 = (q_1, q_2, q_3, 0, \ldots)$ so on for all $q_1, q_2, \ldots \in \mathbb{Q}$. Let $S_1 \cup S_2 \cup \cdots = S$; since each S_n is countable, S is countable.

Select $\{x_n\} = (x_1, x_2, \dots, x_m, 0, 0, \dots) \in c_{00}$ arbitrarily, where m is the largest integer such that x_m is nonzero. For all $\epsilon > 0$, there exist rationals q_1, \dots, q_m such that

$$|x_1 - q_1| < \epsilon$$

$$\vdots$$

$$|x_m - q_m| < \epsilon.$$

Set $\{q_n\} = (q_1, q_2, \dots, q_m, 0, 0, \dots)$. Then

$$d_{\infty}(\lbrace x_n\rbrace, \lbrace q_n\rbrace) = \max_{n \in \mathbb{Z}_{>0}} |q_n - s_n| < \epsilon,$$

Since $\{q_n\} \in S$, we deduce that S is dense in c_{00} and countable — so c_{00} is a separable metric space.

Part (ii): Select $\epsilon > 0$ and $\{x_n\} \in c_0$ arbitrarily. Since $\lim_{n \to \infty} x_n = 0$, there exists N such that

$$N \le n \implies |x_n| < \epsilon.$$

Now, define $\{y_n\} \in c_{00}$ such that $y_n = x_n$ if N > n and $y_n = 0$ if $N \le n$. Then

$$d_{\infty}(\lbrace x_n\rbrace, \lbrace y_n\rbrace) = \sup_{n \in \mathbb{Z}_{>0}} |q_n - s_n| \le \epsilon.$$

Thus c_{00} is dense in c_0 . Since density is transitive, we conclude that S is dense in c_0 , so c_0 is separable.

Part (iii): Let T be the set of eventually constant rational sequences, and select $\{x_n\} \in c$ arbitrarily with components (x_1, x_2, \ldots) and limit L. It is clear that T is countable.

Let $\epsilon > 0$ be arbitrary. Since $\{x_n\}$ converges and \mathbb{Q} is dense in \mathbb{R} , there exists an integer N and rationals $q_1, q_2, \ldots q_{N-1}$ such that

$$N \le n \implies |x_n - L| < \frac{\epsilon}{2} \tag{1}$$

$$j \in \{1, \dots, n-1\} \implies |x_j - q_j| < \epsilon.$$
 (2)

Let Q be a rational such that $|Q - L| < \frac{\epsilon}{2}$. Then define $\{q_n\}$ as the sequence in T with terms $(q_1, \ldots, q_{N-1}, Q, Q, Q, \ldots)$. We claim that $|x_j - q_j| < \epsilon$ for each $j \in \mathbb{Z}_{>0}$, as verified by examining two cases:

- 1. If $j \in \{1, ..., N-1\}$, then $|x_j q_j| < \epsilon$ by equation (2).
- 2. If $j \geq N$, then $|x_j q_j| = |x_j Q| \leq |x_j L| + |L Q| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

We deduce that $\sup_{j \in \mathbb{Z}_{>0}} (\{x_n\}, \{q_n\}) \leq \epsilon$. Thus T is dense in c, so c is separable.

6 Problem 6

Proof. We construct a mapping $\phi: \{0,1\}^{\mathbb{N}} \to \mathcal{BUC}(\mathbb{R})$ be defined recursively. For all $s = (s_1, s_2, \ldots) \in \{0,1\}^{\mathbb{N}}$, set $s_0 = 0$. Let $\phi_s(x)$ be zero for $x \leq 0$, and define ϕ_s on each interval (n-1,n] for $n \in \mathbb{Z}$ as follows:

$$\phi_s(x) = \begin{cases} 0 & \text{if } s_{n-1} = s_n = 0\\ x - (n-1) & \text{if } s_{n-1} = 0 \text{ and } s_n = 1\\ 1 & \text{if } s_{n-1} = s_n = 1\\ n - x & \text{if } s_{n-1} = 0 \text{ and } s_n = 1 \end{cases}$$

Two facts about ϕ_s follow: that $\phi_s(n) = s_n$ for each $n \in \mathbb{Z}_{>0}$ and that ϕ_s is continuous. Unless s is exclusively zeros or ones, ϕ_s has a maximum of 1 and a minimum of 0; the derivative of $\phi_s(x)$ for when $x \notin \mathbb{Z}_{\geq 0}$ is either -1, 0, or 1.

Claim 3. ϕ_s is Lipschitz continuous: $|\phi_s(x) - \phi_s(y)| \le |x - y|$.

Proof. If x < 0 or y < 0, the desired relation is trivial/ If $x, y \ge 0$, we have three cases to consider:

- 1. If $|x-y| \ge 1$, then the boundedness of ϕ_s implies $|\phi_s(x) \phi_s(y)| \le 1 \le |x-y|$.
- 2. If |x-y| < 1 and $\lfloor x \rfloor = \lfloor y \rfloor$, then ϕ is a linear function between x and y with slope ± 1 , so $|\phi_s(x) \phi_s(y)| = |x-y|$.

3. If |x-y| < 1 and $\lfloor x \rfloor \neq \lfloor y \rfloor$, then without loss of generality, let $x \in (n-1,n)$ and $y \in (n,n+1)$. There are precisely eight cases for the function ϕ_s on the interval [n-1,n+1]; in each case, it is trivial that $|f(x)-f(y)| \geq |x-y|$.

We conclude that $|\phi_s(x) - \phi_s(y)| \le |x - y|$, so ϕ_s is Lipschitz continuous.

Thus, ϕ_s is uniformly continuous, so $\phi_s \in \mathcal{BUC}(\mathbb{R})$ for each ϕ_s . From here, it is trivial that the supremum norm reduces $\phi(\{0,1\}^{\mathbb{N}})$ to the discrete metric. Then the proof in Problem 5, Part (a) applies here: we may construct the same open balls of radius $\frac{1}{2}$ and utilize the Axiom of Choice to deduce that all dense subsets of $\mathcal{BUC}(\mathbb{R})$ are uncountable.