Uncertainty-dependent learning bias in value-based decision making

- Kitti Bán^{1,2}, Eszter Tóth-Fáber^{3,4,} Martin Lages^{1,*}, Andrea Kóbor^{2,*}
- 4 1) School of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- 5 2) Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- 6 3) Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- 7 4) Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and
- 8 Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- 9 *: Shared senior authorship: these authors contributed equally to this work.
- 10 Correspondence: Kitti Ban, ban.kitti@ttk.hu

11 Abstract

12 Do we preferentially learn from positive rather than negative decision outcomes? 13 Previous studies indicated that such bias characterises learning during simple reward 14 learning tasks. However, no research has yet confirmed whether learning bias is also 15 present during sequential decision making under uncertainty. To fill this gap, we 16 utilised a complex yet ecologically valid paradigm, the Balloon Analogue Risk Task 17 (BART), which measures risk-taking propensity under uncertainty in everyday decision 18 making. Comparing learning from positive and negative outcomes in the BART has 19 been made possible by the Scaled Target Learning model, which characterises both 20 risk-taking propensity and sensitivity to wins and losses. For the first time, we applied 21 this model to a modified BART paradigm with different levels of perceived 22 uncertainty. Crucially, our analyses revealed learning bias during high levels of 23 uncertainty, under which condition bias was negatively tied to task performance. 24 Furthermore, increased sensitivity to wins compared to losses was linked to more 25 risk-seeking behaviour across all conditions, suggesting that learning bias could 26 mediate risky behaviour. Overall, our results contribute to a more accurate 27 characterisation of reward learning behaviour and suggest that learning bias arises 28 when the level of perceived uncertainty surges.

29 *Key words*: Balloon Analogue Risk Task; Bayesian modelling; reinforcement learning; 30 reward; risk

Introduction

31

32 Despite abundant evidence exists in support of differential learning from positive and 33 negative decision outcomes, the exact behavioural processes linked to such 34 differential learning, including the potential modulatory role of uncertainty, are yet 35 unclear.

36 Optimism bias, whereby people overestimate the probability of positive future events 37 and underestimate the probability of negative future events, has been demonstrated 38 in different walks of life (Kuzmanovic & Rigoux, 2017; Sharot et al., 2011; 2012; 39 Shepherd et al., 2013; Weinstein, 1980) and is considered to originate from an 40 asymmetry in belief updating. Evidence from simple instrumental learning tasks with 41 (den Ouden et al., 2013; Palminteri et al., 2017) and without reversals (Frank et al., 42 2007; Lefebvre et al., 2017; Niv et al., 2012) demonstrated that this asymmetry also 43 characterises basic reinforcement learning, as indicated by higher positive compared 44 to negative learning rates. Additionally, a recent study by Palminteri (2023) revealed 45 learning bias to be present in 9 different two-armed bandit tasks with binary 46 probabilistic outcomes and feedback, further suggesting that learning bias is a 47 universal phenomenon in reinforcement learning. Harada (2020) also revealed such a 48 learning bias in the Iowa Gambling Task, a more complex and ecologically valid 49 paradigm compared to the more abstract instrumental learning tasks used in the 50 above studies. However, this bias disappeared with the introduction of dynamic, 51 trial-wise learning rates in their reinforcement learning model (Harada, 2020).

To our knowledge, no studies yet reported whether this positivity bias in learning also exists during sequential decision making under uncertainty. To fill this gap, we utilised the Balloon Analogue Risk Task (BART; Lejuez et al., 2002), a popular and intuitive paradigm that measures risk-taking propensity by emulating an uncertain decision context with probabilistic rewards. In each experimental trial, participants are presented with a sequence of virtual balloons and have to repeatedly decide whether to take a risk by "pumping up" the balloon and potentially burst the balloon or collect

59 the already accumulated sum. Each successful pump increases the amount of reward 60 in the temporary bank but also the probability of a balloon to burst. A trial ends 61 either by a balloon burst, in which case the temporary bank gets emptied and 62 participants lose their earnings from the trial, or if participants choose to collect and 63 transfer their earnings from the temporary to a permanent bank. The goal for 64 participants is to maximise the reward earned by the end of the experiment. A major 65 advantage of the BART lies in its external validity; the adjusted score (mean number 66 of pumps for unexploded balloons) has been repeatedly associated with real life 67 risk-taking behaviours such as smoking or substance use (Aklin et al., 2005; Lejuez et 68 al., 2003; Wallsten et al., 2005).

69 Until recently, there was no model to reliably estimate differential learning rates in 70 the BART. The Bayesian Sequential Risk-Taking (BSR) model (Pleskac, 2008), originally 71 referred to as "model 3" by Wallsten and colleagues (2005), has been the most 72 prominent model for the BART. Although the original, four-parameter BSR model 73 incorporates learning, its parameters representing initial belief and updating of 74 subjective burst probability were found to be unreliable estimates (Pleskac, 2008; van 75 Ravenzwaaij et al., 2011). This led to a simplification of the model, dubbed BSR-2, 76 with only two parameters indexing the decision maker's risk-taking propensity and 77 behavioural consistency. Although these two parameters can be recovered reliably, 78 the BSR-2 (and the original BSR model) makes two simplifying assumptions that limit 79 its applicability to a variety of BART paradigms. First, it presumes that burst 80 probabilities are constant across all steps of balloon inflation, suggesting that the 81 model may not generalise well to paradigms with gradually increasing burst 82 probabilities across pumps. Second, participants are assumed to be informed about 83 burst probability, which is incompatible with both real life decision making and most 84 studies where participants are expected to learn through trial and error. As a final 85 drawback, whilst the risk-taking propensity parameter in the BSR model showed good 86 external validity against real-life risk-taking measures, it provided little information 87 about risk-taking propensity beyond that of the adjusted score, which is significantly 88 easier to derive (Wallsten et al., 2005).

89 To capture differential learning in the BART, Zhou and colleagues (2021) developed 90 the hierarchical Scaled Target Learning (STL) model, which characterises both 91 participants' risk-taking propensity and the extent to which they learn from past 92 experiences. The model encompasses four parameters, which estimate participants' 93 target number of pumps, behavioural consistency, and the degree to which they 94 adjust their target number of pumps in response to positive and negative feedback. 95 The extension of STL, the Scaled Target Learning model with Decay (STL-D), includes 96 an additional decay parameter that estimates how fast participants' adjustments of 97 their target number of pumps decay across trials.

98 Zhou and colleagues found both their models to have satisfactory parameter recovery 99 and predictive accuracy, with STL-D outperforming STL in most data sets. 100 Furthermore, STL and STL-D's parameter estimate for the target number of pumps 101 and behavioural consistency showed improved external validity compared to the 102 adjusted BART score and the corresponding parameters in the BSR and BSR-2 models, 103 suggesting an improved ability to capture individual differences in risk-taking 104 propensity. Crucially, both learning parameters in the STL(-D) showed good external 105 validity, implying that they adequately characterise learning from one trial to the 106 next. When comparing the STL(-D) against the BSR and BSR-2 models, the former 107 outperformed both models in terms of parameter recovery, predictive accuracy, and 108 external validity. With improved model performance compared to the prominent BSR 109 models, STL(-D) seems a promising tool for improving our understanding of the 110 complex psychological processes underlying the BART, including both risk-taking 111 propensity and differential learning.

112 Current study

In this study, we fit hierarchical STL and STL-D models to a modified version of the BART paradigm to investigate the degree to which learning bias characterises sequential decision making under different levels of uncertainty. Each participant completed three phases of the BART, characterised by different levels of burst probabilities leading to variable levels of perceived uncertainty across observers. To

increase ecological validity, burst probabilities exponentially increased across pumps, mirroring real balloons that are more likely to explode with more and more inflation. First, all participants completed a baseline phase, characterised by an intermediate level of balloon burst probability function, followed by a lucky or an unlucky phase. The lucky phase had a more moderate and the unlucky phase had a steeper increase in their respective balloon burst probability functions compared to the baseline phase. To measure potential order effects that may have confounded behaviour, the order of the lucky and unlucky phases was counterbalanced across participants.

126 Since human participants flexibly adapt their decision making under different levels 127 of risk and uncertainty in the BART (Kóbor et al., 2023), we did not expect significant 128 differences in participants' risk-taking propensity or learning between the order in 129 which each phase was completed. Given the well-established phenomenon whereby 130 learning rates surge with increasing levels of environmental uncertainty (Behrens et 131 al., 2007; Browning et al., 2015; Palminteri et al., 2017), we expected the learning 132 rates in the unlucky phase to exceed those in the lucky condition. Crucially, evidence 133 for this effect would provide further support that the learning parameters in STL(-D) 134 accurately capture learning in the BART, which was the motivation for developing 135 these models. To the best of our knowledge, our study is the first application of these 136 models to a modified BART paradigm.

137 In line with results indicating a learning bias in instrumental learning tasks (den 138 Ouden et al., 2013; Frank et al., 2007; Harada, 2020; Lefebvre et al., 2017; Niv et al., 139 2012; Palminteri, 2023; Palminteri et al., 2017), we expected that a learning bias 140 would also characterise behaviour in the BART. Additionally, we were also interested 141 in how learning bias is related to risk-taking propensity and performance, i.e., the 142 amount of points earned during the experiment. Given that increased learning from 143 positive compared to negative outcomes has been associated with overestimating the 144 value of the riskier decision alternative (Niv et al., 2012), we hypothesised that the 145 magnitude of learning rate bias would be positively associated with risk-taking 146 propensity. However, results regarding the relationship between learning rate bias and 147 performance have been mixed. Whilst Harada (2020) found a negative association

148 between these measures, Lefebvre and colleagues (2017) reported no difference in 149 performance between participants with and without a learning bias. At the same 150 time, Palminteri et al. (2017) reported a negative association between learning bias 151 and performance only following reversals in reward contingencies but not during a 152 stable period of a two-armed bandit task. By investigating how learning bias is linked 153 to performance under different levels of uncertainty, we aim to clarify the conditions 154 under which learning bias affects performance.

155 Method

156 Participants

157 A total of N=50 student participants (age: M=21.3 years, SD=2.5 years) took part in 158 the experiment, who were recruited from university courses (for a priori power 159 analysis, see the supplementary methods & results section). Participants were 160 randomly assigned to either of the order conditions (Order 1: 6 males, 19 females, 161 Order 2: 4 males, 21 females, Order 1: M = 21.6 years, SD = 2.8 years, Order 2: M = 21 162 years, SD = 2.2 years). All participants had normal or corrected-to-normal vision, 163 reported no existing psychiatric or neurological conditions, and were not taking 164 psychoactive medication at the time of the experiment. Before enrollment in the 165 study, all participants provided written informed consent. The experiment was approved by the United Ethical Review Committee for Research in Psychology (EPKEB) 167 in Hungary, and was conducted in accordance with the Declaration of Helsinki. 168 Participants received course credits in exchange for participation as well as a 169 supermarket voucher. Whilst participants were told that the value of this voucher 170 would vary between 1000-2000 HUF (the equivalent of €2.5 - €5) depending on their 171 performance in the task, all participants received a voucher worth 2000 HUF at the 172 end of the study. All participants were retained in all of our analyses.

173 Stimuli and task

We utilised a modified version of the Balloon Analogue Risk Task (BART; Fein & Chang, 175 2008; Kóbor et al., 2015; 2023) to explore whether a learning bias characterises 176 behaviour during sequential decision making under uncertainty. The BART was first 177 proposed by Lejuez and colleges (2002) and has since been established as a widely 178 used and well-validated measure of risk-taking propensity (Aklin et al., 2005; Lejuez et al., 2003). The modified version of the task allowed for shorter trial lengths, which 180 kept the duration of the experiment within a reasonable time range. Furthermore, 181 the implementation of incremental potential reward values allowed for a more

accurate assessment of individual differences in risk-taking propensity (Éltető et al., 183 2019). The task was implemented in Presentation (Version 21.1, Neurobehavioral Systems, Inc., Berkeley, CA) and responses were recorded via a Cedrus RB-540 response device (Cedrus Corporation, San Pedro, CA).

During the task, participants had to repeatedly decide whether to continue ("pump") 187 or stop inflating a virtual balloon that could either increase in size or explode 188 following each inflation step. Successful balloon pumps increased the size of the 189 balloon as well as the reward, but also the likelihood of a balloon burst. Participants 190 used two response keys of the response device to indicate their decision to further 191 pump a balloon or finish the trial and collect their accumulated score from the trial 192 (cash-out). A balloon inflation could result in two outcomes; the balloon would 193 increase in size together with the accumulated score (positive feedback) or the 194 balloon would burst (negative feedback). In case participants decided to stop inflating 195 the balloon, their score earnt in the trial would be transferred to a virtual permanent 196 bank. If a balloon burst ended the trial, the accumulated score in that trial was lost 197 without a decrease in the participant's score in the permanent bank. Participants 198 were instructed to maximise their total score in the task, reflected by the 199 accumulated score in their virtual permanent bank.

During the task, participants could continuously see their accumulated score in the current trial, which was displayed in the middle of the balloon. The accumulated score in the permanent bank, the score collected in the previous trial, and the response key options for inflating the balloon and collecting the accumulated score were also displayed throughout the experiment. The feedback of a balloon burst was represented by a fragmented balloon and the cash-out screen informed participants about the score they earnt in the trial (Fig.1). Each feedback screen was presented for 3000 ms and participants' responses were not limited in time.

208 Participants completed a total of 270 trials in the experiment, divided into three 209 90-trial phases, each characterised by different balloon burst probabilities. The

baseline phase was characterised by an intermediate level of balloon burst probability, which probability increased in the unlucky phase and decreased in the lucky phase. Each participant started the task with a baseline phase, after which half of the participants first completed the lucky phase followed by the unlucky phase (Order 1) or continued with the unlucky phase and finished the task with the lucky phase (Order 2). In the baseline and lucky phases, the maximum number of balloon inflation steps was 20, whilst this was limited to 10 in the unlucky phase.

Figure 1. An example trial of the modified BART. Participants had to repeatedly decide whether to continue inflating a virtual balloon, which could either increase in size or explode, or stop inflating and cash out their accumulated score from the trial. Each inflation step increased the balloon's size and the reward as well as the likelihood of a balloon burst (Eq.1). Participants could see their score accumulated in the current trial in the balloon and had no time limit to respond.

217

The balloon would not explode following the first two inflations in any of the phases, after which point the probability of balloon burst increased. The burst probabilities for each inflation steps were determined according to

$$P(e_k) = 0, \qquad \text{if } p_k \leq 2, \text{ in all phases}$$

$$P(e_k) = \frac{1}{21 - p_i}, \qquad \text{if } 3 \leq p_k \leq 19 \text{ in the baseline phase}$$

$$P(e_k) = \frac{1}{31 - p_i}, \qquad \text{if } 3 \leq p_k \leq 19, \text{ in the lucky phase}$$

$$P(e_k) = \frac{1}{11 - p_i}, \qquad \text{if } 3 \leq p_k \leq 9 \text{ in the unlucky phase}$$

$$P(e_k) = \frac{1}{11 - p_i}, \qquad \text{if } 3 \leq p_k \leq 9 \text{ in the unlucky phase}$$

$$P(e_k) = 1, \qquad \text{if } p_k = 20 \text{ in the baseline and lucky phases}$$

$$P(e_k) = 1, if p_k = 10 in the unlucky phase, (1)$$

where $P(e_k)$ is the probability that the balloon explodes on the kth inflation step, and $npump_k$ represents the pump (i.e., inflation) number within trial k. Thus, the balloon would explode on the 20th pump in the baseline and lucky phases and on the 10th pump in the unlucky phase (Fig.2). As a result of the distinct burst probabilities in the different phases of the experiment, the optimal number of pumps differed in each phase. For baseline balloons, it was most advantageous to inflate the balloon 13 times, whilst the highest expected return was associated with 19 and 6 pumps in the lucky and unlucky phases, respectively (for more details, see the Supplementary Methods in Kóbor et al., 2023). Participants were naïve regarding the burst probabilities in the experiment, including the zero probability of balloon burst in the first two inflation opportunities. Participants were also unaware that burst probabilities would change during the experiment, and the beginning of a new phase was not signalled to participants.

Figure 2. Experimental design a, Illustration of the balloon burst probabilities in each phase of the experiment. Balloon bursts were disabled for the first two balloon pumps in each phase, after which burst probability was controlled by a separate truncated power function for each phase (Eq.1). The balloon was certain to explode on the 20th pump in the baseline and lucky phases and on the 10th pump in the lucky phase. b, Representation of the two experimental groups. In both groups, participants first completed 90 trials of baseline balloons. After these, participants in Order 1 faced 90 lucky balloons, followed by 90 unlucky balloons. Order 2 counterbalanced the order of the lucky and unlucky balloons; baseline balloons were succeeded by a set of 90 unlucky balloons, then a set of 90 lucky balloons.

246

For each successful balloon inflation within trial k, the number of points participants 258 earned equaled the latest pump number $npump_k$. Thus, participants could gain one 259 point for the first successful balloon inflation, two for the second successful inflation 260 (with an accumulated score of 3 in the trial), three for the third successful inflation 261 (with an accumulated score of 6 in the trial), and so on. Participants' overall score 262 was calculated as the sum of points earned in each trial of the experiment.

Participants could freely decide whether to inflate the balloon or collect their accumulated score in 80 trials in each phase. In the remaining 10 trials of each phase, participants were instructed to either inflate the balloon to a predetermined point or until it exploded. These forced-choice trials were included in the experiment to guide participants towards the optimal number of pumps in each phase, and were presented

268 in the same predetermined trial positions to all participants in order to control for across-participant variance.

270 Procedure

During recruitment, participants took part in a neuropsychological assessment in order to evaluate potential factors that could alter their performance in the BART, including impulsivity, depression, or anxiety. Selected participants took part in two separate experimental sessions. On the first day, participants were asked about any existing medical conditions and medication regimens, their consumption of cognitive performance enhancing drugs, and their motor skills and alertness levels were evaluated. Participants' emotional affect and cognitive performance such as executive functions and working memory were also evaluated. These measurements were collected to pursue hypotheses not explored in this work.

280 On the second day, participants were questioned about factors that could affect their 281 cognitive performance such as sleep quality, mood, alertness, and whether they 282 consumed cognitive performance enhancing drugs. Additionally, participants' 283 emotional affect was also evaluated. Before beginning the BART, participants had the 284 chance to practise the task with the experimenter, which included six forced-choice 285 balloon trials. During the main task, participants could take predetermined short 286 breaks every 20-25 trials, and there was an additional larger break halfway through 287 the experiment. The BART was followed by a short verbal interview to assess 288 participants' strategies throughout the task and the degree to which they had 289 awareness of the presence of the different phases in the experiment. These results 290 are not described in this study. During the task, continuous electroencephalogram 291 (EEG) data were also recorded. As the analysis of electrophysiological data is outside 292 the scope of this study, details on the recording and analysis of the EEG data are 293 omitted. Altogether, the second experimental session took approximately 2-2.5 hours.

294 Computational modelling

The Scaled Target Learning (STL) model (Zhou et al., 2021) characterises learning in the BART through adjustments in participants' number of pumps; positive feedback increases, whilst negative feedback decreases the number of pumps. This kind of learning originates from The Law of Effect (Thorndike, 1898), according to which people are prone to repeat choices that have resulted in desirable outcomes and tend to scale down choices that have led to undesirable outcomes. Therefore, STL predicts that participants would increase their target number of pumps following the collection of a reward, and reduce their target number of pumps following an unwanted balloon burst. Crucially, STL implements separate learning rates for wins (wwin) and losses (vloss) to account for the distinct degrees of sensitivity to rewards and punishments (Cazé & van der Meer, 2013; Corr, 2004; Frank et al., 2007; Gray, 1975; Lefebvre et al., 2017; Niv et al., 2011; Sharot et al., 2011) and the differential neural mechanisms that implement approach and avoidance learning (Daw et al., 2002; Fouragnan et al., 2015; O'Doherty et al., 2001; Schultz, 2016; Palminteri & Pessiglione, 2017; Seymour et al., 2007).

310 STL does not assume that an intrinsic risk-taking propensity guides behaviour in the 311 BART. Instead, it assumes that participants begin the task with a target number of 312 pumps (ω_k) in mind and adapt this value after each trial according to

313
$$\omega_k = \omega_{k-1} \times (1 + vwin \cdot \frac{npump_{k-1}}{nmax}),$$
 if participant collects in trial k-1

314
$$\omega_k = \omega_{k-1} \times (1 - vloss \cdot (1 - \frac{npump_{k-1}}{nmax}))$$
, if balloon explodes in trial k-1 (2)

315 with vwin, vloss > 0. In STL, ω_k is scaled by the design parameter nmax, representing 316 the maximum pump number possible in each trial, so that the value of ω_k falls 317 between 0 and 1. This was implemented in order to account for two phenomena 318 observed in the BART. First, participants tend to increase their pumps following a win 319 with a larger compared to a smaller reward value. Second, participants tend to pump

more following a loss with a higher compared to a lower reward that could have been obtained (Schmitz et al., 2016; Zhou et al., 2021). Thus, adjustments after a win $\frac{npump_k}{nmax}$ imply a larger increase in ω_k after a larger collection in the previous trial $(\frac{npump_{k-1}}{nmax})$, whilst adjustments after a loss $(vloss \cdot (1 - \frac{npump_k}{nmax}))$ imply a smaller reduction in ω_k following a loss with a larger potential reward $(\frac{npump_{k-1}}{nmax})$. Additionally, as the amounts of reward collected or lost due to a balloon burst are scaled by nmax, model estimates across various experimental designs of the BART (i.e., different burst probabilities) can be directly compared (Zhou et al., 2021).

328 STL further assumes that human behaviour entails a degree of randomness; 329 participants' decisions are probabilistic and are not solely based on their target 330 number of pumps ω_k , but are also determined by participants' behavioural 331 consistency β which influences the degree to which participants behave rationally. 332 Thus, the probability that participants will pump on trial k for a given pump 333 opportunity l (= 1, 2, ...) is given by

$$P_{kl}^{pump} = \frac{1}{1+e^{\beta \cdot (l-\omega_k)}}, \qquad (3)$$

with $\beta \geq 0$. Thus, l increases with more pumps on trial k, and the probability that participants will further pump declines until l reaches the target number of pumps ω_k , when the probability of pumping equals chance. Since participants with higher β rely more on their target number of pumps ω_k , behavioural consistency β can be understood as participants' prior evaluation of options (Wallsten et al., 2005).

340 The Scaled Target Learning with Decay (STL-D) model builds on STL by including an 341 additional decay parameter α , which reflects how fast adjustments in ω_k decay across 342 trials. STL-D characterises decay as a linear function according to

$$\omega_k = \omega_{k-1} \times (1 + \frac{vwin \cdot \frac{npump_{k-1}}{nmax}}{1 + \alpha \times (k-1)}), \qquad if participant collects in trial k-1$$

344
$$\omega_k = \omega_{k-1} \times (1 - \frac{vloss \times (1 - \frac{npump_{k-1}}{nmax})}{1 + \alpha \times (k-1)})$$
, if balloon explodes in trial k-1 (4)

with vwin, vloss, $\alpha > 0$. Similarly to STL, STL-D assumes that participants adjust their target number of pumps as a function of past outcomes. However, the degree of adjustment decreases across trials k and is reflected by the decay parameter α . STL-D assume the same choice process, given by Eq.3, whereby ω_k controls the probability of pumping P_{kl}^{pump} given each pumping opportunity l. Thus, whilst STL has four free parameters reflecting participants' target number of pumps ω_k , behavioural consistency β , and learning rates following wins and losses (vwin and vvic), STL-D has a fifth free parameter α reflecting decay.

353 Model fitting, comparison, and parameter validity checks

We implemented hierarchical Bayesian analysis (Gelman et al., 2013; Zhou et al., 355 2021) to estimate individual and group-level parameters for the STL and STL-D models, whereby individual-level parameters were drawn from normally-distributed group-level distributions with weakly informative priors. Analysis was performed in the *Rstan* package (version 2.17.2; Stan Development Team, 2019) in R (version 3.3.3; R Core Team, 2019) and utilised a Hamiltonian No U-Turn sampler (NUTS) to derive the joint posterior distribution of parameters. For each model, we generated 5000 samples after discarding the first 1000 observations as burn-in.

We fit both the STL and STL-D model to each of the three phases within each order, resulting in 6 separate fits in total (Order 1 baseline, Order 2 baseline, Order 1 lucky, Order 2 lucky, Order 1 unlucky, Order 2 unlucky) for each model. We used the 80 free-choice trials within each phase as we considered the inclusion of the forced-choice trials in the model conceptually problematic as participants had to carry out external instructions in these trials. Nevertheless, when the models were implemented utilising all 90 trials of each phase, changes in the resulting parameter setting estimates and model fits were negligible. We monitored model convergence by

370 calculating the \widehat{R} statistic (Gelman & Rubin, 1992) to compare within- and 371 between-chain variance across four chains of each model. All model parameters 372 successfully converged with \widehat{R} <1.01 at the group level. Estimated levels of the decay 373 parameter α fell within the recommended range between 0 and 0.1 (Zhou et al., 374 2021) for the STL-D model. Values of α above this range have been associated with 375 reduced recovery of the learning parameters vwin and vloss.

We evaluated the predictive accuracy of our models by comparing the leave-one-out information criterion (*LOOIC*; Vehtari et al., 2017). This measure of leave-one-out cross-validation estimates the out-of-sample predictive accuracy of Bayesian models, with lower *LOOIC* values representing improved predictive accuracy. It is considered more accurate compared to other information criteria such as the *Akaike Information (AIC*; Akaike, 1978) or the *Deviance Information Criterion (DIC*; Spiegehalter et al., 2002). We computed *LOOIC* via the *loo* R package (Vehtari et al., 2017). This comparison revealed that STL-D fit our data slightly better (Table 1), with lower *LOOIC* values for 4 out of the 6 phases. Consequently, we used the parameter estimates from STL-D for further analyses.

Table 1. Model comparison. Leave-one-out information criterion (LOOIC) for the STL and STL-D models in the different experimental conditions. Lower LOOIC values illustrate a better model fit. The last column shows the difference between the LOOIC values associated with each model, i.e., Δ LOOIC = LOOIC(STL) - LOOIC(STL-D). Thus, positive Δ LOOIC values indicate an improved model fit for STL-D compared to STL, whereas negative values illustrate a better model fit for STL compared to STL-D.

Order	Phase	STL	STL-D	ΔLΟΟΙC
Order 1	Baseline	5600	5621	-21
	Lucky	6776	6753	23
	Unlucky	4561	4530	31
Order 2	Baseline	5447	5423	24
	Lucky	6936	6944	-8
	Unlucky	4303	4240	63

392 Secondary analyses

393 To analyse the effect of phase and order manipulations, we utilised *lm()* in R (version 394 3.3.3; R Core Team, 2019) to perform a two-way analysis of variance (ANOVA) on each 395 of the individual-level STL-D parameter estimates. Although directly comparing 396 group-level parameter estimates in a Bayesian framework (see above) would be 397 preferred, this would considerably increase the complexity of our computations. 398 Consequently, we carried out secondary analyses on the individual-level parameters to 399 make the comparisons and their interpretation more straightforward. We 400 baseline-corrected each parameter by subtracting the baseline value from the 401 corresponding parameter estimates from the lucky and unlucky conditions. We utilised 402 Bonferroni-correction to reduce the likelihood of Type I errors in our statistical 403 testing. Consequently, we divided the original *p* value of .05 by the number of tests 404 carried out (5, one for each STL-D parameter) and evaluated effects against an 405 adjusted *p*-value of .01.

406 As we found no learning rate difference across corresponding phases across the two 407 order conditions, we combined parameter estimates phase-wise in all subsequent 408 analyses. To examine whether a learning rate bias is present in our data, we 409 quantified learning rate bias by normalising the learning rate difference (Niv et al., 410 2012; Palminteri et al., 2017) for each participant and phase according to

$$bias = \frac{vwin - vloss}{vwin + vloss}.$$
 (5)

412 Finally, we examined how individual-level learning bias was linked to risk-taking 413 propensity and performance. We used the adjusted score (mean number of pumps 414 across unexploded balloons) and the total number of points earned by each 415 participant as a proxy for risk-taking propensity and performance, respectively. We 416 used across-participant Pearson's correlations to evaluate the degree of association 417 across these variables separately for each experimental phase. In line with the 418 findings by Niv and colleagues (2012), we hypothesised that there would be a positive 419 link between learning bias and risk-taking propensity (Fig.6b). Due to the mixed 420 results regarding the association between learning rate bias and performance 421 (Lefebvre et al., 2017; Palminteri et al., 2017; Harada, 2020), these significance 422 tests were undirected (Fig.6c).

Results

424 Adjusted Score and Performance

To evaluate behaviour across the different experimental phases, we calculated each participant's adjusted score (i.e., the mean number of balloon inflations on unexploded balloons) and the total points earned. There were no significant differences in either of these measures between corresponding phases across the two orders (p > .05 for all two-tailed t-tests). Consequently, we aggregated data across the two orders to examine behavioural differences across conditions.

431 As Figure 3a shows, the adjusted score was significantly higher in the lucky compared 432 to both the baseline (t(98) = -2.79, p = .006, 95% CI = [0.37, 2.20]) and unlucky (t(98) = 433, 14.43, p < .001, 95% CI = [4.90, 6.47]) conditions. As expected, the adjusted score 434 was significantly higher in the baseline compared to the unlucky condition (t(98) = 435, 15.14) p < .001, 95% CI = [3.82, 4.98]). Figure 3b illustrates that participants achieved 436 a significantly higher number of points in the lucky than in the baseline (t(98) = -7.25, 437 p < .001, 95% CI = [3.82, 4.98]) or unlucky (t(98) = 23.22, p < .001, 95% CI = [897.13, 438 1573.47]) conditions, with significantly more points earned in the baseline compared 439 to the unlucky phase (t(98) = 17.51 p < .001, 95% CI = [1403.47, 1665.73]).

Figure 3. Adjusted score and earnings. a, Adjusted score in each condition, aggregated across the two experimental orders. The adjusted score was calculated for each participant separately for trials in which the balloon did not burst. b, Points earnt by each participant across the different experimental conditions. We aggregated data by phase across the two experimental orders.

446 Modelling results

We implemented Hierarchical Bayesian Analyses (Gelman et al., 2013; Zhou et al., 448 2021) to estimate individual and group-level parameters of the STL and STL-D model separately for each experimental phase of each order group, resulting in six independent runs per model. The two models produced similar parameter estimates and model fits for each run. However, as Table 1 shows, STL-D slightly outperformed STL, with lower leave-one-out information criterion (LOOIC; Vehtari et al., 2017; Zhou et al., 2021) values for 4 out of the 6 phases. Consequently, we utilised the parameter estimates from STL-D for further analyses. Posterior distributions of all group-level STL-D parameters, broken down by phase and order type, are displayed in Figure 4.

Figure 4. Posterior distributions of STL-D parameter estimates. Group-level posterior distributions are shown in three rows for each phase and in five columns for each parameter. The red and blue lines indicate posterior distributions for Order 1 and Order 2, respectively.

461 Phase and order effects

462 To evaluate potential differences across the experimental phases and orders, we 463 performed a 2 x 2 mixed ANOVA on each of the mean individual parameter estimates 464 from the STL-D model. We baseline-corrected parameter estimates from the lucky and 465 unlucky phases by subtracting their corresponding baseline value. The 466 baseline-corrected, individual parameter estimates, broken down by phase and order, 467 are depicted in Fig.5. Each effect was evaluated against the Bonferroni-corrected 468 p-value of .01. For the parameter estimating participants' target level of pumps ω_k , 469 we found a main effect of phase (F(1,48) = 75.75, p < .001). We did not find a main

470 effect of order (F(1,48) = 1.81, p = .18) or an interaction effect (F(1,48) = .05, p = .471.82). For the parameter β , reflecting participants' behavioural consistency, we 472 identified a main effect of both phase (F(1,48) = .55.62, p < .001) and order (F(1,48) = .4738.67, p = .004), without a significant interaction (F(1,48) = .48, p = .49). Please note 474 that both ω_k and β are scaled by the maximum possible number of pumps nmax for 475 each phase, which differed in the lucky and unlucky phases. Whilst comparison within 476 the STL(-D) model is possible across conditions with different maximum burst points, 477 large nmax differences may distort results.

478 We found a similar pattern for how learning from wins and losses, captured by the 479 parameters vwin and vloss, respectively, changed throughout the task. Specifically, 480 there was a main effect of phase for both vwin (F(1,48) = 44.21, p < .001) and vloss 481 (F(1,48) = 21.32, p < .001), without a significant main effect of order for either vwin 482 (F(1,48) = 1.76, p = .19) or vloss (F(1,48) = 1.85, p = .18). The interaction effect was 483 not significant for either vloss (F(1,48) = 5.83, p = .018) or vwin (F(1,48) = .45, p = .484.51) at an adjusted significance level of p = .01. Similarly to the learning parameters, 485 an equivalent ANOVA on the decay parameter α revealed a significant main effect of 486 phase (F(1,48) = 14.76, p < .001), without a significant effect of order (F(1,48) = .84, 487 p = .84) or a significant interaction effect (F(1,48) = .56, p = .46). Larger values for 489 the learning parameters in the unlucky compared to lucky phase provide evidence for 489 the external validity of these parameters as higher levels of environmental volatility, 490 as introduced by the unlucky phase, have been associated with increased learning 491 rates (Behrens et al., 2007; Browning et al., 2015).

Figure 5. Phase and order effects. Individual parameter estimates for the target 494 number of pumps ω_k (a), behavioural consistency β (b), learning from wins vwin (c) 495 and losses vloss (d), and decay (e) from the Scaled Target Learning Model with Decay 496 (STL-D) are shown separately for each phase (lucky and unlucky) and order (Order 1, 497 Order 2). All parameters were baseline-corrected by subtracting the parameter 498 estimates linked to the baseline phase from the corresponding parameter estimates 499 from the lucky and unlucky conditions.

500 Learning bias

We utilised both individual- and group-level (see Supplementary section) analyses to determine whether learning bias is present in the BART under varying levels of uncertainty. First, we carried out one-tailed, undirected t-tests assessing whether the participant-wise normalised learning rate difference (Eq.5) is significantly different from zero in each phase of the experiment (Fig.6a). When evaluated against an adjusted p-value of .017, we found that the normalised learning bias was significantly higher than zero in the baseline (M = .25, SD = .21, t(49) = 8.30, p < .001, 95% CI = [.19, .31]) and unlucky (M = .28, SD = .31, t(49) = 6.40, p < .001, 95% CI = [.19, .36]) phases, but not in the lucky phase (M = .07, SD = .24, t(49) = 2.07, p = .04, 95% CI = [.1002, .14]).

To examine the link between learning bias and risk-taking propensity as well as performance, we established Pearson correlations across participants. To measure risk-taking propensity, we utilised the adjusted score, i.e., the mean number of pumps in trials with unexploded balloons. We quantified participants' performance as the number of points earned in each phase. We correlated the participant-specific adjusted score and the number of points earned with individual-level estimates of the normalised learning rate difference (learning rate bias, Eq.5) in each phase.

As shown in Fig.6b, we found that the magnitude of the learning bias was positively associated with the adjusted score in all phases (Fig.6b; baseline: r(48) = .53, p < .50 .001, lucky: r(48) = .35, p = .01, unlucky: r(48) = .47, p < .001). In line with previous results (Niv et al., 2012), this suggests that participants with larger learning bias can be characterised by increased risk-taking propensity. Additionally, performance significantly and negatively correlated with learning bias in the unlucky phase (r(48) = .51, p < .001), whilst this association was not significant in the baseline (r(48) = .21, p = .14) and lucky (r(48) = .11, p = .43) phases (Fig.6c).

Figure 6. Learning bias, risk-taking propensity, and performance. a,
Participant-wise normalised learning rate difference is shown for each phase.
One-way t-tests revealed a significant bias in the baseline and unlucky phases, but not in the lucky phase. Significance was evaluated against the Bonferroni-corrected
p-value, adjusted by the number of tests carried out. Across-participant Pearson's correlation between individual-level normalised learning bias (Eq.5) and risk-taking propensity (b) as well as performance (c) in each phase of the experiment. Risk-taking propensity was quantified as the adjusted score, i.e. mean number of pumps on unexploded balloons. Performance was measured by the total number of points earned in each phase. The Pearson's correlation coefficient and its corresponding p-value are shown on the top right of each graph. Data were aggregated across corresponding phases of Orders 1 and 2.

Discussion

539

We provide evidence for learning bias in sequential decision making under uncertainty, which appears to be dependent on increased levels of perceived uncertainty. Moreover, learning bias was negatively associated with performance only under the highest level of uncertainty, further implying the important modulatory role uncertainty. Additionally, learning bias and risk-taking propensity were positively associated in all conditions, implying that the degree of learning bias may universally shape risk-taking preferences. To our knowledge, this study constitutes the first application of the STL and STL-D models since their original development (Zhou et al., with both models appearing to accurately capture both risk-taking propensity and the learning process in a modified version of the BART.

550 Learning bias

551 The presence of learning rate bias under increased uncertainty is consistent with 552 previous studies reporting learning bias during instrumental learning (den Ouden et 553 al., 2013; Frank et al., 2007; Lefebvre et al., 2017; Niv et al., 2012; Palminteri, 2023; 554 Palminteri et al., 2017). Whilst Harada (2020) found learning bias in the lowa 555 Gambling Task, a similar paradigm to the BART compared to two-armed bandit tasks, 556 when estimating static learning rates, this bias disappeared with the introduction of 557 time-varying learning rates in their Q-learning model. Although STL-D does not 558 estimate learning rates for each trial, it models learning as a non-stationary, decaying 559 process with linearly decreasing learning rates across trials. Consequently, our results 560 provide evidence that learning bias is not merely a by-product of static learning rates. 561 Overall, results from both the current and previous (den Ouden et al., 2013; Frank et 562 al., 2007; Harada, 2020; Lefebvre et al., 2017; Niv et al., 2012; Palminteri, 2023; 563 Palminteri et al., 2017) studies indicate that learning bias is a universal phenomenon 564 in human reward learning.

565 Both our Bayesian analyses at the group-level (Supplementary Fig.1) and our 566 frequentist analyses at the individual-level (Fig.6) implicated learning bias in the 567 unlucky but not in the lucky condition. The two lines of analyses diverged when it 568 comes to the baseline phase; the individual-level analysis suggested that learning bias 569 was present in this phase, whilst the group-level analysis could not credibly confirm 570 this. It is worth noting that group-level comparison is inherently more conservative as 571 it reflects the behaviour of an entire group, including participants with both low and 572 high bias. At the same time, although drawn from a population distribution, 573 participant-specific parameters can accommodate individual differences in behaviour. 574 As such, individual-level analyses may be more accurate in capturing participants' 575 underlying behaviour, implying that learning bias was indeed present in the baseline 576 phase.

Despite learning bias appearing as a robust phenomenon across different instrumental learning tasks, its purpose and behavioural implications have remained elusive. Palminteri et al. (2017) and Palminteri's (2023) meta-analysis showed that learning bias in two-armed bandit tasks arises from a confirmation bias, rather than a positivity bias. In other words, participants seemed to preferentially learn from positive outcomes because the outcome confirms their choice strategy, not on the grounds that they are positively valenced. However, these studies utilised cognitive models with static learning rates, which may not be perfectly suited to account for the stationary reward contingencies of the task. As current BART models do not allow for the differentiation of confirmation or valence-induced bias, meaningful assessment awaits the development of further paradigms and cognitive models.

In line with the account that reinforcement learning is inherently related to risk-sensitivity (Niv et al., 2012), our results indicate a consistent positive association between the adjusted score, used to index risk-taking propensity (Aklin et al., 2005; Lejuez et al., 2003; Wallsten et al., 2005), and learning bias across all experimental conditions (Fig.6b). At the same time, both learning rates showed a negative relationship with the adjusted score (Supplementary Fig.2). These results are consistent with previous findings (Niv et al., 2002; 2012) and can be explained within

596 reinforcement learning theory. Specifically, higher learning rates cause more 596 fluctuation in estimated value and therefore lead to more risk-aversion. If positive 597 feedback increases stimulus value more than negative feedback decreases it, then 598 stimulus value will be higher than the mean nominal outcome, leading to increased 599 risk-seeking. Consequently, biassed learning towards positive outcomes leads to an 600 overestimation of values, resulting in a higher target number of pumps, as borne out 601 by our results. Our results also indicated that compared to *vwin*, *vloss* is more 602 consistently and more strongly linked to risk-taking propensity. If learning bias indeed 603 arises from reduced negative feedback processing (Lefebvre et al., 2017), it is 604 plausible that the inverse relationship between *vloss* and risk-aversion on the one 605 hand, and learning bias and risk-aversion on the other hand, represent the same 606 cognitive process. Thus, although our study provides evidence that learning bias may 607 underlie risky behaviour, future research should confirm whether this association 608 exists beyond the increased risk-aversion resulting from reduced negative outcome 609 processing.

Our results also confirm previously reported associations between reward learning and performance. First, we found that increased learning from positive and negative feedback (except in the unlucky phase) was associated with lower performance across the different experimental phases (Supplementary Fig.3). This is consistent with the notion that a slower integration of outcomes is necessary for the generalisation of probabilistic reward values (Frank et al., 2007). We speculate that increased learning from negative feedback did not remain maladaptive in the unlucky phase as the change in reward contingencies in this condition was indicated by balloon bursts, requiring adaptation that is primarily based on negative feedback.

Additionally, we found that learning bias was only significantly related to performance in the unlucky phase (Fig.6c), where increased bias was associated with reduced performance. This reflects the contradictory results across previous studies whereby learning bias was found to be maladaptive by Harada (2020) but not by Lefebvre and colleagues (2017). Our results exhibit a strikingly similar pattern to those by Palminteri and colleagues (2017) in that higher learning bias was only found to be

Palminteri and colleagues also showed that this decreased ability to flexibly adapt to flexibly adapt to changing, uncertain environments results from confirmation bias, whereby participants showed increased perseveration despite obtaining new information from negative feedback. Simulations by Caze and van der Meer (2013) also suggested that the (mal)adaptiveness of learning bias (either in favour of positive or negative feedback processing) depends on environmental attributes such as the rate of reward. Considering these results, it is likely that both the presence and maladaptiveness of learning bias is contingent on environmental features (i.e., uncertainty), perhaps as a means to flexibly adjust one's exploration-exploitation strategy (Harada, 2020). Nevertheless, even if undue optimism has a net negative impact on learning, it may still be a "self-serving" feature of human cognition that promotes self-esteem and confidence, both of which are related to positive life outcomes (Carver et al., 2010; self-serving et al., 1980).

639 Computational Modelling of the BART

our study was made possible due to the recent development of STL and STL-D models by Zhou and colleagues (2021). We successfully applied both models to a modified, BART paradigm with varying levels of burst probability functions (i.e., uncertainty) across conditions. These models were originally developed to reliably and meaningfully characterise learning during sequential decisions. Crucially, the model distinguishes learning from positive and negative feedback by estimating differential learning rates to account for the distinct sensitivity to rewards and punishments (Cazé van der Meer, 2013; Corr, 2004; Frank et al., 2007; Gray, 1975; Lefebvre et al., 2017; Niv et al., 2011; Sharot et al., 2011) and the separate neural processes facilitating approach and avoidance learning (Daw et al., 2002; Fouragnan et al., 2015; O'Doherty et al., 2001; Schultz, 2016; Palminteri & Pessiglione, 2017; Seymour 651 et al., 2007).

652 Indeed, the differential learning rates estimated by STL-D reflected the change in 653 response to manipulations of environmental uncertainty in accordance with the well-established phenomenon that learning rates increase under heightened levels of uncertainty (Behrens et al., 2007; Browning et al., 2015; Palminteri et al., 2017). Both Zhou and colleagues' (2021) and our results imply that STL(-D) reliably and meaningfully characterises learning in the BART. This is a major improvement compared to the prominent BSR (Wallsten et al., 2005) and BSR-2 (Pleskac, 2008; van Ravenzwaaij et al., 2011) models as the former cannot reliably recover its learning parameter (Pleskac, 2008; van Ravenzwaaij et al., 2011) and the latter does not take learning into account. Unlike the BSR models, STL(-D) can be applied to paradigms with gradually increasing burst probabilities and does not require participants to be aware of the underlying burst probabilities, and can be consequently applied to a greater variety of experimental paradigms.

665 Consistent with Zhou and colleagues' (2021) findings, the STL model appears to be 666 improved on by its extension, STL-D, implying that in contrast to assuming constant 667 learning, a linearly decaying learning process better characterises behaviour in the 668 BART. These results parallel other findings in the reinforcement learning literature 669 that indicate improved model fit for Q-learning models including decay (Geana et al., 670 2022; Radulescu et al., 2016; Yechiam & Busemeyer, 2005). The decay parameter in 671 STL-D indicates how fast adjustments in pumping behaviour decline with experience 672 (Eq.4). That is, higher decay reflects a larger weight of past experiences as 673 participants change their pumping behaviour the most in the beginning of the 674 experiment and adjust their behaviour progressively less across trials. Indeed, given 675 that reward contingencies changed with the introduction of a new experimental phase 676 and each phase is modelled separately, it is adaptive to integrate feedback 677 information over a longer period of time to avoid behaviour being overly influenced 678 by the most recent outcomes throughout the experiment (Frank et al., 2007). 679 Accordingly, the higher decay in the unlucky compared to the lucky phase suggests 680 increased emphasis on learning in the beginning of the phase. Considering that higher 681 decay is adaptive with the introduction of a larger change in reward contingencies 682 (i.e., in the unlucky phase), the decay parameter in STL-D appears to constitute a 683 meaningful addition to modelling the learning process in the BART.

10 In line with our initial expectation that humans flexibly adapt their decision making in 10 feet response to the level of environmental uncertainty (Kóbor et al., 2023), we did not 10 find significant differences in the STL-D parameters reflecting participants' target 10 feet level of pumps, learning rates, or decay across the two orders. Whilst we observed a 10 feet level of pumps, learning rates, or decay across the two orders. Whilst we observed a 10 feet level of pumps in the lucky phase of Order 1 (Fig.6b), which questions the 10 feet level of pumps in the unlucky compared to the lucky phase. 10 feet level of pumps in the unlucky compared to the lucky phase. 10 feet level of pumps in the unlucky compared to the lucky phase. 11 feet level of pumps, which differed across the two conditions. 12 Despite 13 feet level participants pumped less in the unlucky compared to the lucky phase, the lower 14 participants pumped less in the unlucky phase generated higher parameter estimates 15 for the target number of pumps and behavioural consistency.

697 This counter-intuitive conclusion likely stems from modifications to the original BART 698 paradigm (Lejuez et al., 2002; Wallsten et al., 2005), which had a substantially higher 699 maximum burst point as well as constant burst probabilities across balloons. In fact, 700 STL and STL-D are applicable to paradigms with gradually increasing burst 701 probabilities and meaningful comparison across conditions with different maximum 702 burst probabilities (Zhou et al., 2021). However, it appears that simultaneous 703 adjustments in these aspects of the task, including large differences in maximum 704 burst points across conditions, may result in a biassed comparison across conditions or 705 experiments. To reliably compare participants' behavioural consistency and target 706 number of pumps, future studies should implement similar maximum burst points 707 across conditions or utilise cognitive models without a scaling property.

To lt is also worth bearing in mind that the current version of the BART included forced roop choice trials to guide participants towards the optimising number of pumps in each phase. This manipulation was systematic; all participants followed the same instructions in the same trials throughout the experiment. Reassuringly, modelling roolly free choice or both free and forced-choice trials resulted in similar STL(-D) parameters estimates, suggesting that the inclusion of forced-choice trials did not

714 obscure our results. Nevertheless, it would be reassuring to see converging results 715 from other BART studies.

716 The neural basis of learning bias

717 Similarly to learning (Niv et al., 2012; Schultz, 1997; 2016; Frank et al., 2004; 2007; 718 2009), learning bias has been associated with dopaminergic and frontal cortical 719 structures. Specifically, Lefebvre and colleagues (2107) found that higher bias was 720 linked to increased reward prediction error signalling in the ventral striatum and 721 ventromedial prefrontal cortex (vmPFC). Additionally, Sojitra et al. (2018) revealed 722 that a polymorphism in the DARP-23 dopaminergic gene was associated with learning 723 imbalance. Similarly, van den Bos et al. (2012) reported that the age-related 724 reduction in negative feedback processing was related to increased connectivity 725 between the striatum and medial prefrontal cortex. As in reward learning, 726 frontal-subcortical connectivity (Moutsiana et al., 2015) as well as activity in the 727 striatum and vmPFC (Kuzmanovic et al., 2016) were found to underlie the optimism 728 bias in belief updating.

729 Given the high degree of similarity between cortical structures of a late reward 730 learning system (Fouragnan et al., 2015; 2018) and those underlying 731 dopamine-mediated reward learning (O'Doherty et al., 2001; Schultz et al., 1997; 732 2016) and optimism bias (Sharot et al., 2011; 2012), it is possible that the late system 733 or interaction patterns across the early and late systems (Fouragnan et al., 2015) 734 mediates learning bias. The latter possibility is further substantiated by the mounting 735 evidence indicating prominent structures of the early system, such as the anterior 736 cingulate cortex (ACC) or the thalamus (Fouragnan et al., 2015), in regulating reward 737 learning (Behrens et al., 2007; Chakroun et al. 2020; Yu & Dayan, 2005; 2009). 738 Accordingly, Sharot and colleagues (2007) indicated the ACC, which has strong 739 reciprocal connections with the noradrenergic locus coeruleus (Briand et al., 2007; 740 Joshi & Gold, 2020), in meditating the optimism bias in belief updating. Similarly, the 741 thalamus, which was found to moderate the interaction between and early and late 742 systems (Fouragnan et al., 2015) and plays a crucial role in avoidance learning (Kerns et al., 2004; Minamimoto et al., 2005; Seifert et al., 2011), has also been implicated in the processing of optimism bias (Kuzmanic et al., 2016). Moreover, recent work from our lab (Ban, 2024) suggests that the early system is linked to uncertainty processing as well as the locus-coeruleus noradrenergic system (LC-NA), which implies the potential modulatory role of these networks in partly generating learning bias. Even though we collected EEG data during the experiment, the paradigm was not originally designed for exploring the neural signatures of learning bias. As such, future research is needed to clarify how learning bias may be linked to neurotransmitter networks or structures of the early and late systems.

752 Conclusion

753 We provide evidence for a maladaptive learning bias in sequential decision making 754 that is contingent on increased levels of uncertainty. Additionally, we found a 755 consistent positive association between the degree of learning bias and risk-taking 756 propensity, implying that the relative difference in learning from desirable and 757 undesirable outcomes may generally guide risky behaviour. Future studies 758 investigating the neural underpinnings of learning bias could investigate how reward 759 learning is implemented in human frontal-subcortical networks and may be modulated 760 by different neurotransmitter systems. Given the compromised reward learning 761 processes associated with various neuropathological conditions (e.g., depression and 762 anxiety disorders, Parkinson's disease, etc.) and the popularity of the BART in clinical 763 research, learning bias could be investigated as an easy-to-derive measure for 764 quantifying the severity of dysfunction.

Supplementary methods & results

766 Sample size calculations

765

767 To test whether a learning bias (calculated as the normalised difference in differential 768 learning rates; Eq.5) characterises behaviour in the BART, we planned to carry out 769 undirected t-tests for each phase. We conducted an a priori power analysis in G*Power 770 (version, ref) for sample size estimation. Our effect size was determined to be .5 771 based on a calculation including a null hypothesis mean of 0, an alternative 772 hypothesis mean of .2, and a standard deviation of .4. We selected a conservative 773 value of .2 for the difference in learning bias means, which was previously indicated 774 to lie near .4 (Palminteri et al., 2017). Given the lack of existing results indicating the 775 standard deviation of normalised learning rate bias in a full sample of participants, 776 we opted to estimate our effect size based on the conservative estimate of SD = .4. 777 With a significance criterion of α = .05 and power = .9, the minimum sample size 778 required for our determined effect size was N = 44. Our obtained sample size of N = 779 50 should thus be appropriate for testing our central hypothesis.

780 Bayesian analysis of learning bias

To confirm our results regarding the presence of learning bias in each experimental condition (Fig.6a), we compared group-level estimates of *vwin* and *vloss* from STL-D within the Bayesian framework. Specifically, we calculated the 95% highest density intervals (HDIs) to assess the group-level difference in learning rates, quantified by subtracting the group-level estimates of *vloss* from the group-level estimates of *vwin*. We considered the difference in the group-level learning rates to be credible if the 95% HDIs did not contain zero (Kruschke, 2014). We carried out this analysis separately for each experimental phase. We found the learning rate difference to be credible in the unlucky (95% HDI = [.01, .15], M = .07, SD = 0.04), but not in the baseline (95% HDI = [-.01, .09], M = .04, SD = 0.03) or lucky (95% HDI = [-.03, .04], M = .04, SD = 0.05) phases (Supplementary Figure 1). These results further indicate that

792 the presence of learning bias is contingent on the level of uncertainty in the BART, 793 with bias emerging under the condition with the highest level of uncertainty.

795 Supplementary Figure 1. Bayesian analysis of learning rate bias. Distribution for the 796 difference in the group-level estimates of *vwin* and *vloss* is shown for the baseline (a), 797 lucky (b), and unlucky (c) phases. The horizontal line within each distribution 798 represents the 95% HDI. The difference in learning rates was credible in the unlucky 799 (the vertical dotted line at 0 does not cross the bar reflecting the 95% HDI), but not in 800 the baseline or lucky phase.

794

801 Learning rates and risk-taking propensity

802 To evaluate the degree of association between individual-level learning rates vwin as 803 well as vloss and risk-taking propensity, we employed across-participant Pearson's 804 correlations. We utilised the adjusted score (mean number of pumps across 805 unexploded balloons) as a proxy for risk-taking propensity. As Supplementary Figure 2 806 shows, the adjusted score significantly and negatively correlated with vloss in all 807 phases (baseline: r(48) = -.64, p < .001, lucky: r(48) = -.47, p < .001, unlucky: r(48) 808 = -.66, p < .001). Similarly, we found a significant negative correlation between the 809 adjusted score and vwin in the baseline (r(48) = -.36, p = .01) and lucky (r(48) = -.28, 810 p = .045) phases, but not in the unlucky phase (r(48) = -.22, p = .11). These results 811 are consistent with previous findings that indicated a negative association between 812 risk-taking propensity and learning rates (Niv et al., 2012; Palminteri et al., 2017), 813 suggesting that elevated learning rates are linked to more risk-averse behaviour.

815 Supplementary Figure 2. Learning rates and risk-taking propensity.

814

816 Across-participant Pearson's correlation between individual-level parameter estimates 817 for learning from wins *vwin* (a) as well as learning from losses *vloss* (b) from the STL-D 818 model and the adjusted score are shown separately for each phase of the experiment. 819 The Pearson's correlation coefficient and its corresponding *p*-value are shown on the 820 top right of each graph. Data were aggregated across corresponding phases of Orders 821 1 and 2.

822 Learning rates and performance

837

823 To examine how learning rates vwin as well as vloss are linked to performance in each 824 experimental phase, we utilised across-participant Pearson's correlations. We used 825 the number of points earned in each experimental phase as a proxy for performance. 826 As Supplementary Figure 3 depicts, we found a negative link between performance 827 and vwin in all conditions (baseline: r(48) = -.49, p < .001, lucky: r(48) = -.34, p = .002, unlucky: r(48) = -.41, p = .003). Similarly, performance and vloss were 829 negatively correlated in the baseline (r(48) = -.55, p < .001) and lucky (r(48) = -.37, p = .003). The negative correlation was not significant in the unlucky phase (r(48) = .01) phases, whilst this association was not significant in the unlucky phase implies that 832 the more weight participants attributed to recent feedback, the more they 833 overestimated environmental fluctuations, which in turn resulted in worse 834 performance. On the other hand, in the unlucky phase, it is adaptive to learn 835 predominantly from negative feedback, which explains the lack of a negative 836 association between performance and vloss.

Supplementary Figure 3. Learning rates and performance. Across-participant Pearson's correlation between points earned and individual-level parameter estimates for learning from wins *vwin* (a) as well as learning from losses *vloss* (b) from the STL-D model are shown separately for each phase of the experiment. The Pearson's correlation coefficient and its corresponding *p*-value are shown on the top right of each graph. Data were aggregated across corresponding phases of Orders 1 and 2.

References

```
844
```

874

845 Akaike, H. (1978). A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical Mathematics, 30(1), 9-14. doi:10.1007/BF02480194 846 847 Aklin, W. M., Lejuez, C. W., Zvolensky, M. J., Kahler, C. W., & Gwadz, M. (2005). Evaluation of behavioral measures of risk taking propensity with inner city 848 adolescents. Behav Res Ther, 43(2), 215-228. 849 doi:10.1016/j.brat.2003.12.007 850 851 Ban, K. (2024). On the computational and neural characterisation of reward learning behaviour. (PhD thesis). University of Glasgow, Enlighten theses. Retrieved 852 from https://theses.gla.ac.uk/id/eprint/84313 853 854 Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the value of information in an uncertain world. Nat Neurosci, 10(9), 855 1214-1221. doi:10.1038/nn1954 856 857 Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the value of information in an uncertain world. Nat Neurosci, 10(9), 858 1214-1221, doi:10.1038/nn1954 859 860 Briand, L. A., Gritton, H., Howe, W. M., Young, D. A., & Sarter, M. (2007). Modulators in concert for cognition: modulator interactions in the prefrontal cortex. 861 Prog Neurobiol, 83(2), 69-91. doi:10.1016/j.pneurobio.2007.06.007 862 863 Browning, M., Behrens, T. E., Jocham, G., O'Reillly, J. X., & Bishop, S. J. (2015). Anxious Individuals Have Difficulty Learning the Causal Statistics of Aversive 864 Environments. Biological Psychiatry, 77(9), 47s-48s. Retrieved from <Go to 865 ISI>://WOS:000352207500123 866 867 Carver, C. S., Scheier, M. F., & Segerstrom, S. C. (2010). Optimism. Clinical Psychology Review, 30(7), 879-889. doi:10.1016/j.cpr.2010.01.006 868 869 Cazé, R. D., & van der Meer, M. A. A. (2013). Adaptive properties of differential learning rates for positive and negative outcomes. Biological Cybernetics, 870 107(6), 711-719. doi:10.1007/s00422-013-0571-5 871 872 Chakroun, K., Mathar, D., Wiehler, A., Ganzer, F., & Peters, J. (2020). Dopaminergic modulation of the exploration/exploitation trade-off in human 873 decision-making. Elife, 9. doi:10.7554/eLife.51260

- 875 Corr, P. J. (2004). Reinforcement sensitivity theory and personality. Neurosci Biobehav 876 Rev, 28(3), 317-332. doi:10.1016/j.neubiorev.2004.01.005
- 877 Daw, N. D., Kakade, S., & Dayan, P. (2002). Opponent interactions between serotonin
- and dopamine. Neural Networks, 15(4-6), 603-616. doi:Pii
- 879 S0893-6080(02)00052-7. doi 10.1016/S0893-6080(02)00052-7
- 880 den Ouden, Hanneke E. M., Daw, Nathaniel D., Fernandez, G., Elshout, Joris A.,
- Rijpkema, M., Hoogman, M., . . . Cools, R. (2013). Dissociable Effects of
- Dopamine and Serotonin on Reversal Learning. Neuron (Cambridge, Mass.),
- 80(4), 1090-1100. doi:10.1016/j.neuron.2013.08.030
- 884 Éltető, N., Janacsek, K., Kóbor, A., Takács, A., Tóth-Fáber, E., & Németh, D. (2019).
- Do adolescents take more risks? Not when facing a novel uncertain
- situation. Cognitive Development, 50, 105-117.
- doi:10.1016/j.cogdev.2019.03.002
- 888 Fein, G., & Chang, M. (2008). Smaller feedback ERN amplitudes during the BART are
- associated with a greater family history density of alcohol problems in
- treatment-naive alcoholics. Drug and Alcohol Dependence, 92(1-3),
- 891 141-148. doi:10.1016/j.drugalcdep.2007.07.017
- 892 Fouragnan, E., Retzler, C., Mullinger, K., & Philiastides, M. G. (2015). Two
- spatiotemporally distinct value systems shape reward-based learning in the
- human brain. Nat Commun, 6, 8107. doi:10.1038/ncomms9107
- 895 Fouragnan, E., Retzler, C., Mullinger, K., & Philiastides, M. G. (2015). Two
- spatiotemporally distinct value systems shape reward-based learning in the
- human brain. Nat Commun, 6, 8107. doi:10.1038/ncomms9107
- 898 Fouragnan, E., Retzler, C., & Philiastides, M. G. (2018). Separate neural
- representations of prediction error valence and surprise: Evidence from an
- 900 fMRI meta-analysis. Hum Brain Mapp, 39(7), 2887-2906.
- 901 doi:10.1002/hbm.24047
- 902 Frank, M. J., Doll, B. B., Oas-Terpstra, J., & Moreno, F. (2009). Prefrontal and striatal
- dopaminergic genes predict individual differences in exploration and
- exploitation. Nat Neurosci, 12(8), 1062-1068. doi:10.1038/nn.2342
- 905 Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007).
- Genetic triple dissociation reveals multiple roles for dopamine in
- reinforcement learning. Proceedings of the National Academy of Sciences of

- the United States of America, 104(41), 16311-16316.
- 909 doi:10.1073/pnas.0706111104
- 910 Frank, M. J., Seeberger, L. C., & O'Reilly, R. C. (2004). By carrot or by stick: Cognitive
- reinforcement learning in Parkinsonism. Science, 306(5703), 1940-1943.
- 912 doi:10.1126/science.1102941
- 913 Geana, A., Barch, D. M., Gold, J. M., Carter, C. S., MacDonald, A. W., Ragland, J. D., .
- . . Frank, M. J. (2022). Using Computational Modeling to Capture
- Schizophrenia-Specific Reinforcement Learning Differences and Their
- Implications on Patient Classification. Biological Psychiatry-Cognitive
- Neuroscience and Neuroimaging, 7(10), 1035-1046.
- 918 doi:10.1016/j.bpsc.2021.03.017
- 919 Gelman, A. (2013). Bayesian data analysis (Third ed.). Boca Raton, Florida: CRC Press.
- 920 Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple 921 Sequences. Statistical science, 7(4), 457-472. doi:10.1214/ss/1177011136
- 922 Gray, J. A. (1975). Elements of a two-process theory of learning. London: Academic Press.
- Harada, T. (2020). Learning From Success or Failure? Positivity Biases Revisited.
 Frontiers in psychology, 11. doi:ARTN 162710.3389/fpsyg.2020.01627
- 926 Joshi, S., & Gold, J. I. (2020). Pupil Size as a Window on Neural Substrates of Cognition. Trends Cogn Sci, 24(6), 466-480. doi:10.1016/j.tics.2020.03.005
- 928 Kerns, J. G., Cohen, J. D., MacDonald, A. W., 3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023-1026. doi:10.1126/science.1089910
- 931 Kóbor, A., Takács, A., Janacsek, K., Németh, D., Honbolygó, F., & Csépe, V. (2015).
- Different strategies underlying uncertain decision making: higher executive
- performance is associated with enhanced feedback-related negativity.
- 934 Psychophysiology, 52(3), 367-377. doi:10.1111/psyp.12331
- 935 Kóbor, A., Tóth-Fáber, E., Kardos, Z., Takács, Á., Éltető, N., Janacsek, K., . . .
- Nemeth, D. (2023). Deterministic and probabilistic regularities underlying
- risky choices are acquired in a changing decision context. Scientific
- reports, 13(1), 1127-1127. doi:10.1038/s41598-023-27642-z
- 939 Kruschke, J. K. (2014). Doing Bayesian data analysis: a tutorial with R, JAGS, and 940 Stan. Amsterdam: Academic Press.

- 941 Kuzmanovic, B., Jefferson, A., & Vogeley, K. (2016). The role of the neural reward
- circuitry in self-referential optimistic belief updates. Neuroimage, 133,
- 943 151-162. doi:10.1016/j.neuroimage.2016.02.014
- 944 Kuzmanovic, B., & Rigoux, L. (2017). Valence-Dependent Belief Updating:
- Computational Validation. Frontiers in psychology, 8, 1087-1087.
- 946 doi:10.3389/fpsyg.2017.01087
- 947 Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S., & Palminteri, S.
- 948 (2017). Behavioural and neural characterization of optimistic reinforcement
- learning. Nature Human Behaviour, 1(4). doi:ARTN
- 950 006710.1038/s41562-017-0067
- 951 Lejuez, C. W., Aklin, W. M., Jones, H. A., Richards, J. B., Strong, D. R., Kahler, C. W.,
- E Read, J. P. (2003). The Balloon Analogue Risk Task (BART) differentiates
- smokers and nonsmokers. Exp Clin Psychopharmacol, 11(1), 26-33.
- 954 doi:10.1037//1064-1297.11.1.26
- 955 Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, G. L.,
- 956 . . . Brown, R. A. (2002). Evaluation of a Behavioral Measure of Risk Taking:
- The Balloon Analogue Risk Task (BART). Journal of experimental psychology.
- 958 Applied, 8(2), 75-84. doi:10.1037/1076-898X.8.2.75
- 959 Minamimoto, T., Hori, Y., & Kimura, M. (2005). Complementary process to response
- bias in the centromedian nucleus of the thalamus. Science, 308(5729),
- 961 1798-1801. doi:10.1126/science.1109154
- 962 Moutsiana, C., Charpentier, C. J., Garrett, N., Cohen, M. X., & Sharot, T. (2015).
- Human Frontal-Subcortical Circuit and Asymmetric Belief Updating, Journal
- of Neuroscience, 35(42), 14077-14085. doi:10.1523/Jneurosci.1120-15.2015
- 965 Niv, Y., Edlund, J. A., Dayan, P., & O'Doherty, J. P. (2012). Neural prediction errors
- reveal a risk-sensitive reinforcement-learning process in the human brain.
- The Journal of neuroscience, 32(2), 551-562.
- 968 doi:10.1523/JNEUROSCI.5498-10.2012
- 969 Niv, Y., Joel, D., Meilijson, I., & Ruppin, E. (2002). Evolution of reinforcement learning
- in uncertain environments: A simple explanation for complex foraging
- behaviors. Adaptive Behavior, 10(1), 5-24. doi:Doi
- 972 10.1177/10597123020101001

- 973 O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001).
- Abstract reward and punishment representations in the human orbitofrontal
- ortex. Nature neuroscience, 4(1), 95. doi:10.1038/82959
- 976 Palminteri, S. (2023). Choice-Confirmation Bias and Gradual Perseveration in Human
- 977 Reinforcement Learning. Behavioral Neuroscience, 137(1), 78-88.
- 978 doi:10.1037/bne0000541
- 979 Palminteri, S., Lefebvre, G., Kilford, E. J., & Blakemore, S.-J. (2017). Confirmation
- bias in human reinforcement learning: Evidence from counterfactual
- feedback processing. PLoS computational biology, 13(8),
- 982 e1005684-e1005684. doi:10.1371/journal.pcbi.1005684
- 983 Palminteri, S., & Pessiglione, M. (2017). Opponent Brain Systems for Reward and
- Punishment Learning: Causal Evidence From Drug and Lesion Studies in
- Humans. Decision Neuroscience: An Integrative Perspective, 291-303.
- 986 doi:10.1016/B978-0-12-805308-9.00023-3
- 987 Pleskac, T. J. (2008). Decision Making and Learning While Taking Sequential Risks.
- Journal of experimental psychology. Learning, memory, and cognition,
- 989 34(1), 167-185. doi:10.1037/0278-7393.34.1.167
- 990 Radulescu, A., Daniel, R., & Niv, Y. (2016). The Effects of Aging on the Interaction
- Between Reinforcement Learning and Attention. Psychology and Aging,
- 992 31(7), 747-757. doi:10.1037/pag0000112
- 993 R Core Team. (2021). "R: A language and environment for statistical computing." R
- Foundation for Statistical Computing, Vienna, Astria.
- 995 https://R-project.org/.
- 996 Schmitz, F., Manske, K., Preckel, F., & Wilhelm, O. (2016). The Multiple Faces of
- Risk-Taking Scoring Alternatives for the Balloon-Analogue Risk Task.
- European Journal of Psychological Assessment, 32(1), 17-38.
- 999 doi:10.1027/1015-5759/a000335
- 1000 Schultz, W. (2016). Dopamine reward prediction-error signalling: a two-component
- response. Nature Reviews Neuroscience, 17(3), 183-195.
- doi:10.1038/nrn.2015.26
- 1003 Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and
- reward. Science, 275(5306), 1593-1599. doi:10.1126/science.275.5306.1593

- 1005 Seifert, S., von Cramon, D. Y., Imperati, D., Tittgemeyer, M., & Ullsperger, M. (2011).
- Thalamocingulate interactions in performance monitoring. J Neurosci,
- 31(9), 3375-3383. doi:10.1523/JNEUROSCI.6242-10.2011
- 1008 Seymour, B., Daw, N., Dayan, P., Singer, T., & Dolan, R. (2007). Differential Encoding
- of Losses and Gains in the Human Striatum. The Journal of neuroscience,
- 27(18), 4826-4831. doi:10.1523/JNEUROSCI.0400-07.2007
- 1011 Sharot, T., Guitart-Masip, M., Korn, Christoph W., Chowdhury, R., & Dolan, Raymond
- J. (2012). How Dopamine Enhances an Optimism Bias in Humans. Current
- biology, 22(16), 1477-1481. doi:10.1016/j.cub.2012.05.053
- 1014 Sharot, T., Korn, C. W., & Dolan, R. J. (2011). How unrealistic optimism is maintained
- in the face of reality. Nature neuroscience, 14(11), 1475-U1156.
- doi:10.1038/nn.2949
- 1017 Sharot, T., Riccardi, A. M., Raio, C. M., & Phelps, E. A. (2007). Neural mechanisms
- mediating optimism bias. Nature, 450(7166), 102-+.
- doi:10.1038/nature06280
- 1020 Shepperd, J. A., Klein, W. M. P., Waters, E. A., & Weinstein, N. D. (2013). Taking Stock
- of Unrealistic Optimism. Perspectives on Psychological Science, 8(4),
- 395-411. doi:10.1177/1745691613485247
- 1023 Smith, R., Taylor, S., Stewart, J. L., Guinjoan, S. M., Ironside, M., Kirlic, N., . . .
- Paulus, M. P. (2022). Slower Learning Rates from Negative Outcomes in
- Substance Use Disorder over a 1-Year Period and Their Potential Predictive
- Utility. Computational psychiatry, 6(1), 117. doi:10.5334/cpsy.85
- 1027 Sojitra, R. B., Lerner, I., Petok, J. R., & Gluck, M. A. (2018). Age affects
- reinforcement learning through dopamine-based learning imbalance and
- high decision noise-not through Parkinsonian mechanisms. *Neurobiology of*
- Aging, 68, 102-113. doi:10.1016/j.neurobiolaging.2018.04.006
- 1031 Spiegelhalter, D. J., Best, N. G., Carlin, B. R., & van der Linde, A. (2002). Bayesian
- measures of model complexity and fit. Journal of the Royal Statistical
- Society Series B-Statistical Methodology, 64, 583-616. doi:Doi
- 10.1111/1467-9868.00353
- 1035 Stan Developmental Team. (2019). "RStan: the R interface to Stan." R package
- version 2.17.5, https://mc-stan.org/.
- 1037 Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: an introduction (Second
- ed.). Cambridge, Massachusetts: The MIT Press.

Associative Processes in Animals. Psychological Review, 5(5), 551-553. 1040 doi:10.1037/h0067373 1041 1042 van den Bos, W., Cohen, M. X., Kahnt, T., & Crone, E. A. (2012). Striatum-Medial Prefrontal Cortex Connectivity Predicts Developmental Changes in 1043 Reinforcement Learning. Cerebral Cortex, 22(6), 1247-1255. 1044 doi:10.1093/cercor/bhr198 1045 1046 van Ravenzwaaij, D., Dutilh, G., & Wagenmakers, E.-J. (2011). Cognitive model decomposition of the BART: Assessment and application. Journal of 1047 mathematical psychology, 55(1), 94-105. doi:10.1016/j.jmp.2010.08.010 1048 1049 Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1050 1413-1432. doi:10.1007/s11222-016-9696-4 1051 1052 Wallsten, T. S., Pleskac, T. J., & Lejuez, C. W. (2005). Modeling Behavior in a Clinically Diagnostic Sequential Risk-Taking Task. Psychological Review, 1053 112(4), 862-880. doi:10.1037/0033-295X.112.4.862 1054 1055 Weinstein, N. D. (1980). Unrealistic Optimism About Future Life Events. Journal of Personality and Social Psychology, 39(5), 806-820. doi:Doi 1056 10.1037/0022-3514.39.5.806 1057 1058 Yechiam, E., & Busemeyer, J. R. (2005). Comparison of basic assumptions embedded in learning models for experience-based decision making. Psychonomic 1059 Bulletin & Review, 12(3), 387-402. doi:Doi 10.3758/Bf03193783 1060 1061 Yechiam, E., Busemeyer, J. R., Stout, J. C., & Bechara, A. (2005). Research Article:

1039 Thorndike, E. L. (1898). Review of: Animal Intelligence: An Experimental Study of the

1065 Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681-692. doi:10.1016/j.neuron.2005.04.026

16(12), 973-978. doi:10.1111/j.1467-9280.2005.01646.x

1062

1063

1064

Using Cognitive Models to Map Relations Between Neuropsychological

Disorders and Human Decision-Making Deficits. Psychological science,

Thou, R., Myung, J. I., & Pitt, M. A. (2021). The scaled target learning model:

Revisiting learning in the balloon analogue risk task. Cognitive psychology,

128, 101407-101407. doi:10.1016/j.cogpsych.2021.101407