Comunicações por Computador Trabalho Prático 1: Protocolos da Camada de Transporte

Ana Rita Peixoto, Leonardo Marreiros, and Luís Pinto

University of Minho, Department of Informatics, 4710-057 Braga, Portugal e-mail: {a89612,a89537,a89506}@alunos.uminho.pt

Questão 1. Inclua no relatório uma tabela em que identifique, para cada comando executado, qual o protocolo de aplicação, o protocolo de transporte, porta de atendimento e overhead de transporte, como ilustrado no exemplo seguinte:

Comando Usado (Aplicação)	Protocolo de Aplicação	Protocolo de transporte	Porta de atendimento	Overhead de transporte em bytes
Ping	-	-	-	-
traceroute	TRACEROUTE	UDP	33446	8
telnet	TELNET	TCP	23	20
ftp	FTP	TCP	21	20
Tftp	TFTP	UDP	69	8
browser/http	HTTP	TCP	80	20
Nslookup	DNS	UDP	53	8
ssh	SSH	TCP	22	20

41 11.695607585	10.0.2.15	216.58.215.142	ICMP	> Frame 44: 100 bytes on wire (800 bits), 100 bytes captured (800 bits)
42 11.713705981	216.58.215.142	10.0.2.15	ICMP	> Linux cooked capture v1
43 12.697592506	10.0.2.15	216.58.215.142	ICMP	Internet Protocol Version 4, Src: 216.58.215.142, Dst: 10.0.2.15
44 12.715121334	216.58.215.142	10.0.2.15	ICMP	0100 = Version: 4
45 13.699355072	10.0.2.15	216.58.215.142	ICMP	0101 = Header Length: 20 bytes (5)
46 13.716240184	216.58.215.142	10.0.2.15	ICMP	> Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
47 14.701383941	10.0.2.15	216.58.215.142	ICMP	Total Length: 84
48 14.718332256	216.58.215.142	10.0.2.15	ICMP	Identification: 0x09e6 (2534)
49 15.702225809	10.0.2.15	216.58.215.142	ICMP	> Flags: 0x00
50 15.719138536	216.58.215.142	10.0.2.15	ICMP	Fragment Offset: 0
51 16.704999227	10.0.2.15	216.58.215.142	ICMP	Time to Live: 59
52 16.722781170	216.58.215.142	10.0.2.15	ICMP	Protocol: ICMP (1)
53 17.706672951	10.0.2.15	216.58.215.142	ICMP	Header Checksum: 0xb9eb [validation disabled]
54 17.723777725	216.58.215.142	10.0.2.15	ICMP	[Header checksum status: Unverified]
55 18.708763545	10.0.2.15	216.58.215.142	ICMP	Source Address: 216.58.215.142
56 18.726635093	216.58.215.142	10.0.2.15	ICMP	Destination Address: 10.0.2.15
57 19.709730840	10.0.2.15	216.58.215.142	ICMP	> Internet Control Message Protocol

Fig. 1: Ping

Fig. 2: TRACEROUTE

Fig. 3: TELNET

8 2.381939875	127.0.0.1	127.0.0.53	DNS	
9 2.381953197	127.0.0.1	127.0.0.53	DNS	> Frame 14: 56 bytes on wire (448 bits), 56 bytes captured (448
10 2.382055992	127.0.0.53	127.0.0.1	DNS	> Linux cooked capture v1
11 2.382101406	127.0.0.53	127.0.0.1	DNS	> Internet Protocol Version 4, Src: 10.0.2.15, Dst: 193.136.9.1
12 2.382148371	10.0.2.15	193.136.9.183	TCP	 Transmission Control Protocol, Src Port: 56890, Dst Port: 21,
13 2.398882192	193.136.9.183	10.0.2.15	TCP	Source Port: 56890
14 2.398907981	10.0.2.15	193.136.9.183	TCP	Destination Port: 21
15 2.432665125	193.136.9.183	10.0.2.15	FTP	[Stream index: 1]
16 2.432691694	10.0.2.15	193.136.9.183	TCP	[TCP Segment Len: 0]
17 3.749529263	10.0.2.15	193.136.9.183	FTP	Sequence Number: 1 (relative sequence number)
18 3.749765398	193.136.9.183	10.0.2.15	TCP	Sequence Number (raw): 3732364892
19 3.766630527	193.136.9.183	10.0.2.15	FTP	[Next Sequence Number: 1 (relative sequence number)]
20 3.766646282	10.0.2.15	193.136.9.183	TCP	Acknowledgment Number: 1 (relative ack number)
21 4.953755897	10.0.2.15	13.225.242.11	TCP	Acknowledgment number (raw): 134400002
22 / 95/002768	13 225 242 11	10 0 2 15	TCP	0101 = Header Length: 20 bytes (5)

Fig. 4: FTP

App	ly a display filter <ctrl-></ctrl->			· · · -		
No.	Time	Source	Destination	Protocol	Lengi	> Frame 7: 88 bytes on wire (704 bits), 88 bytes captured (704 bit
	1 0.000000000	127.0.0.1	127.0.0.53	DNS		> Linux cooked capture v1
	2 0.000013184	127.0.0.1	127.0.0.53	DNS		> Internet Protocol Version 4, Src: 10.0.2.15, Dst: 193.136.9.183
	3 0.000157962	10.0.2.15	192.168.1.1	DNS		∨ User Datagram Protocol, Src Port: 53600, Dst Port: 69
	4 0.000216591	127.0.0.53	127.0.0.1	DNS		Source Port: 53600
	5 0.051395808	192.168.1.1	10.0.2.15	DNS		Destination Port: 69
	6 0.051562663	127.0.0.53	127.0.0.1	DNS		Length: 52
Г	7 0.062226650	10.0.2.15	193.136.9.183	TFTP		Checksum: 0xd793 [unverified]
	8 7.314336965	10.0.2.15	193.136.9.183	TFTP		[Checksum Status: Unverified]
	9 12.406550264	PcsCompu_bc:d0:ca		ARP		[Stream index: 2]
	10 12.406750213	RealtekU_12:35:02		ARP		> [Timestamps]
	11 14.322994409	10.0.2.15	193.136.9.183	TFTP		UDP payload (44 bytes)
	12 21.505246269	10.0.2.15	193.136.9.183	TFTP		> Trivial File Transfer Protocol
L	13 28.533155794	10.0.2.15	193.136.9.183	TFTP		

Fig. 5: TFTP

Time	Source	Destination	Protocol	Length Info	Internet Protocol Version 4, Src: 10.0.2.15, Dst: 34.107.221.1
1 0.000000000	10.0.2.15	216.58.211.227	TCP	56 46962 - 80 [AC	▼ Transmission Control Protocol, Src Port: 32836, Dst Port: 80,
2 0.000094876	10.0.2.15	216.58.211.227	TCP	56 46960 → 80 [AC	Source Port: 32836
3 0.000120006	10.0.2.15	216.58.211.227	TCP	56 46958 → 80 [AC	Destination Port: 80
4 0.000475618	216.58.211.227	10.0.2.15	TCP	62 [TCP ACKed uns	[Stream index: 3]
5 0.000483949	216.58.211.227	10.0.2.15	TCP	62 TCP ACKed uns	[TCP Segment Len: 296]
6 0.000485269	216.58.211.227	10.0.2.15	TCP	62 TCP ACKed uns	Sequence number: 1 (relative sequence number)
7 0.727303196	127.0.0.1	127.0.0.53	DNS	97 Standard query	[Next sequence number: 297 (relative sequence number)]
8 0.727322777	127.0.0.1	127.0.0.53	DNS	97 Standard query	Acknowledgment number: 1 (relative ack number)
9 0.727531883	10.0.2.15	34.107.221.82	HTTP	352 GET /success.t.	0101 = Header Length: 20 bytes (5)
10 0.727598918	10.0.2.15	192.168.1.254	DNS	86 Standard query	▶ Flags: 0x018 (PSH, ACK)
11 0.727650784	10.0.2.15	192.168.1.254	DNS	86 Standard query	Window size value: 30016
12 0.728078101	34.107.221.82	10.0.2.15	TCP	62 80 → 32836 [AC	[Calculated window size: 30016]
13 0.732142745	192.168.1.254	10.0.2.15	DNS	102 Standard query	[Window size scaling factor: -1 (unknown)]
14 0.732324863	127.0.0.53	127.0.0.1	DNS	113 Standard query	Checksum: 0x0d0f [unverified]
15 0.746019961	192.168.1.254	10.0.2.15	DNS	209 Standard query	[Checksum Status: Unverified]
16 0.746293400	127.0.0.53	127.0.0.1	DNS	220 Standard query	Urgent pointer: 0
17 0.755377170	34.107.221.82	10.0.2.15	HTTP	276 HTTP/1.1 200 0	▶ [SEQ/ACK analysis]
18 0.755401446	10.0.2.15	34.107.221.82	TCP	56 32836 → 80 [AC	▶ [Timestamps]
19 0.756572990	127.0.0.1	127.0.0.53	DNS	84 Standard query	TCP payload (296 bytes)
20 0.756589091	127.0.0.1	127.0.0.53	DNS	84 Standard query	▶ Hypertext Transfer Protocol
24 0 756742402	407 0 0 F2	407 0 0 4	DMC	422 Chandard avaria	

Fig. 6: HTTP

8 1.842707444 10.0.2.15 1 9 7.566282863 127.0.0.1	193.136.9.183	TCP TCP	> Frame 11: 75 bytes on wire (600 bits), 75 bytes capt
9 7.566282863 127.0.0.1		TCP	Ename 11: 75 butes on wine (600 bits) 75 butes cant
	127.0.0.1		
10 7 566305674 ••1		UDP	> Linux cooked capture v1
10 7.3003030741	::1	UDP	> Internet Protocol Version 4, Src: 127.0.0.1, Dst: 12
11 7.566328917 127.0.0.1	127.0.0.53	DNS	∨ User Datagram Protocol, Src Port: 58848, Dst Port: 5
12 7.566521467 127.0.0.53	127.0.0.1	DNS	Source Port: 58848
13 7.566718320 127.0.0.1	127.0.0.53	DNS	Destination Port: 53
14 7.566846544 10.0.2.15	192.168.1.1	DNS	Length: 39
15 7.582407382 192.168.1.1	10.0.2.15	DNS	Checksum: 0xfe6e [unverified]
16 7.582596549 127.0.0.53	127.0.0.1	DNS	[Checksum Status: Unverified]
			[Stream index: 2]
			> [Timestamps]
			UDP payload (31 bytes)
			Domain Name System (query)

Fig. 7: NSLOOKUP

	Apply a display filter <ctrl-></ctrl->							inux cooked capture v1
N	o. Time	Source	Destination	Protocol	Length			nternet Protocol Version 4, Src: 10.0.2.15, Dst: 193.136.9.1
	1 0.000000000	127.0.0.1	127.0.0.53	DNS			v Tr	ransmission Control Protocol, Src Port: 41644, Dst Port: 22,
	2 0.000013016	127.0.0.1	127.0.0.53	DNS				Source Port: 41644
	3 0.000200254	10.0.2.15	192.168.1.1	DNS				Destination Port: 22
	4 0.000255922	127.0.0.53	127.0.0.1	DNS				[Stream index: 0]
	5 0.047564977	192.168.1.1	10.0.2.15	DNS	3			[TCP Segment Len: 41]
	6 0.047750824	127.0.0.53	127.0.0.1	DNS	1			Sequence Number: 1 (relative sequence number)
Г	7 0.047877171	10.0.2.15	193.136.9.183	TCP				Sequence Number (raw): 273885562
- 11	8 0.064785481	193.136.9.183	10.0.2.15	TCP				[Next Sequence Number: 42 (relative sequence number)]
	9 0.064831207	10.0.2.15	193.136.9.183	TCP				Acknowledgment Number: 1 (relative ack number)
	10 0.065136499	10.0.2.15	193.136.9.183	SSHv2				Acknowledgment number (raw): 86400002
	11 0.065310272	193.136.9.183	10.0.2.15	TCP				0101 = Header Length: 20 bytes (5)
	12 0.118170614	193.136.9.183	10.0.2.15	SSHv2			>	Flags: 0x018 (PSH, ACK)
	13 0.118186210	10.0.2.15	193.136.9.183	TCP				Window: 29200
	14 0.118528780	10.0.2.15	193.136.9.183	SSHv2	14			[Calculated window size: 29200]

Fig. 8: SSH

Questão 2. Uma representação num diagrama temporal das transferências da file1 por FTP e TFTP respetivamente. Se for caso disso, identifique as fases de estabelecimento de conexão, transferência de dados e fim de conexão. Identifica também claramente os tipos de segmentos trocados e os números de sequência usados quer nos dados como nas confirmações. ((Nota: a transferência por FTP envolve mais que uma conexão FTP, nomeadamente uma de controlo [ftp] e outra de dados [ftp-data]. Faça o diagrama apenas para a conexão de transferência de dados do ficheiro mais pequeno))

	tcp.stream eq 3											
No	. Time	Source	Destination	Protocol	Length Info							
	718 2011.1109421	. 10.1.1.1	10.4.4.1	TCP	74 20 → 54855 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=2321818725 TSecr=0 WS=128							
	719 2011.1128244	. 10.4.4.1	10.1.1.1	TCP	74 54855 → 20 [SYN, ACK] Seq=0 Ack=1 Win=28960 Len=0 MSS=1460 SACK_PERM=1 TSval=329056797 TSecr=2321818725 WS=128							
	720 2011.1129929	. 10.1.1.1	10.4.4.1	TCP	66 20 → 54855 [ACK] Seq=1 Ack=1 Win=29312 Len=0 TSval=2321818730 TSecr=329056797							
	722 2011.1135096	. 10.1.1.1	10.4.4.1	FTP-DA	192 FTP Data: 126 bytes (PORT) (LIST)							
	723 2011.1135131	. 10.1.1.1	10.4.4.1	TCP	66 20 - 54855 [FIN, ACK] Seq=127 Ack=1 Win=29312 Len=0 TSval=2321818730 TSecr=329056797							
	724 2011.1137546		10.1.1.1	TCP	66 54855 → 20 [ACK] Seq=1 Ack=127 Win=29056 Len=0 TSval=329056799 TSecr=2321818730							
1	725 2011.1137553		10.1.1.1	TCP	66 54855 → 20 [FIN, ACK] Seq=1 Ack=128 Win=29056 Len=0 TSval=329056799 TSecr=2321818730							
L	726 2011.1139559	. 10.1.1.1	10.4.4.1		66 20 → 54855 [ACK] Seg=128 Ack=2 Win=29312 Len=0 TSval=2321818730 TSecr=329056799							

Fig. 9: FTP

Fig. 10: Diagrama temporal das transferências do file1 por FTP

25 107.011916037 10.4.4.1	10.1.1.1	TFTP	56 Read Request, File: file1, Transfer type: octet
26 107.013641685 10.1.1.1	10.4.4.1	TFTP	46 Data Packet, Block: 1 (last)
27 107.013834105 10.4.4.1	10.1.1.1	TFTP	46 Acknowledgement, Block: 1

Fig. 11: TFTP

Fig. 12: Diagrama temporal das transferências do file1 por TFTP

- **Questão 3.** Com base nas experiências realizadas, distinga e compare sucintamente as quatro aplicações de transferência de ficheiros que usou nos seguintes pontos (i) uso da camada de transporte; (ii) eficiência na transferência; (iii) complexidade; (iv) segurança;
- **SFTP** Utiliza o protocolo TCP na camada de transporte.É um protocolo eficiente, na medida em que é possível transferir rapidamente vários ficheiros. Trata-se de uma versão segura do protocolo FTP, recorrendo a técnicas de encriptação e requer autenticação entre utilizador e servidor. Corre por cima do protocolo SSH, que fornece segurança e autenticação.
- **FTP** Utiliza o protocolo TCP na camada de transporte. Trata-se de um protocolo eficiente na transferência de grandes ficheiros, tanto para o uso do CPU do host como no uso da largura de banda da rede. Embora seja o protocolo de transferência de ficheiros mais comum em TCP/IP, é também o mais complexo e dificel de programar. Não é um protocolo seguro dado que não utiliza encriptação. Desta forma, os dados que os utilizadores usam para autenticação ficam vulneráveis e suscetiveis a ataques.
- **TFTP** Utiliza o protocolo UDP na camada de transporte. Desenhado para ser um mecanismo simples e leve para trocas de ficheiros, usa capacidade minima e tem menor overhead tornando-se assim mais eficiente. Em termos de complexidade, é uma alternativa mais simples do protocolo FTP e é igualmente inseguro. Não utiliza encriptação e permite que os dados da autenticação e os próprios dados transferidos circulem de forma clara pela rede.
- **HTTP** Utiliza o protocolo TCP na camada de transporte. É mais eficiente a transferir ficheiros de pequenas dimensões, ao contrário do protocolo FTP. Não utiliza métodos de encriptação nem há garantias de privacidade (qualquer pessoa pode ver/alterar o conteúdo). Trata-se de um protocolo pouco complexo.

Questão 4. As características das ligações de rede têm uma enorme influência nos níveis de Transporte e de Aplicação. Discuta, relacionando a resposta com as experiências realizadas, as influências das situações de perda ou duplicação de pacotes IP no desempenho global de Aplicações fiáveis (se possível, relacionando com alguns dos mecanismos de transporte envolvidos).

```
(487/Laptopl.conf# ping =c 20 10.1.1.1 / tee file-ping-output
ping; file-ping-output: Temporary Failure in name resolution
(pl.conf# ping =c 20 10.1.1.1 / tee file-ping-output
ping; file-ping-output: Temporary Failure in name resolution
(487/Laptopl.conf# ping =c 20 10.1.1.1 / tee file-ping-output
PING 10.1.1.1 (10.1.1.1) 56(84) bytes of data.
84 bytes from 10.1.1.1; icmp_seq=2 ttl=61 time=2.17 ms
84 bytes from 10.1.1.1; icmp_seq=2 ttl=61 time=2.17 ms
84 bytes from 10.1.1.1; icmp_seq=2 ttl=61 time=2.17 ms
84 bytes from 10.1.1.1; icmp_seq=2 ttl=61 time=15.0 ms
84 bytes from 10.1.1.1; icmp_seq=5 ttl=61 time=17.5 ms
84 bytes from 10.1.1.1; icmp_seq=5 ttl=61 time=17.5 ms
84 bytes from 10.1.1.1; icmp_seq=6 ttl=61 time=17.5 ms
84 bytes from 10.1.1.1; icmp_seq=8 ttl=61 time=5.25 ms
84 bytes from 10.1.1.1; icmp_seq=10 ttl=61 time=5.28 ms
84 bytes from 10.1.1.1; icmp_seq=10 ttl=61 time=1.2,8 ms
84 bytes from 10.1.1.1; icmp_seq=12 ttl=61 time=1.60 ms
84 bytes from 10.1.1.1; icmp_seq=12 ttl=61 time=6.0 ms
84 bytes from 10.1.1.1; icmp_seq=20 ttl=61 time=6.0 ms
84 bytes from 10.1.1.1; icmp_seq=20 ttl=61 time=6.0 ms
85 bytes from 10.1.1.1; icmp_seq=20 ttl=61 time=6.0 ms
86 bytes from 10.1.1.1; icmp_seq=20 ttl=61 time=6.0 ms
87 bytes from 10.1.1.1; icmp_seq=20 ttl=61 time=6.0 ms
88 bytes from 10.1.1.1; icmp_seq=61 bytes from
```

```
<
```

(a) Ping - Laptop1

(b) Ping - Corvo

Fig. 13: Resultado do comando ping ao Server1 em diferentes clientes

```
Link 1.0 Gbps, 100 microsec (green)
Link 100 Mbps, 5 milisec, loss=5%, dup=10% (cyan)
```

Fig. 14: Ligações

Observando as figuras Fig.13(a) e Fig.13(b) podemos verificar que, enquanto que no *Laptop1* houve 0% *packet loss* e nenhum pacote duplicado, no *Corvo* houve 5% *packet loss* e 2 pacotes duplicados (10%). A maior parte das vezes, isto acontece devido a problemas ao nível da ligação de rede, ora, como podemos verificar na topologia usada (Fig. 14), o *Laptop1* está conetado à rede *Backbone* por uma ligação de 1.0 Gbps enquanto que o *Corvo* está conetado por uma ligação de 100Mbps com 5% loss e 10% dup que vão exatamente ao encontro dos valores encontrados na Fig.13(b).

Quanto aos protocolos de transporte existem dois principais: TCP e UDP que tratam deste problema. O TCP é um protocolo orientado à conexão (connection-oriented protocol), envia Delivery Acknowledgements, re-transmissão no caso de erros, deteção fácil de erros... Os pacotes são enviados na ordem certa, usam um handshake protocol como SYN, SYN-ACK, ACK. Além disso, TCP é de confiança pois garante a entrega de informação no destino. No entanto, este protocolo atrasa a transmissão quando a rede está congestionada e a sua substituição por outro protocolo não é fácil.

Em contrapartida, o UDP é um protocolo sem conexão (connectionless protocol), é suportado em aplicações com uso intensivo de largura de banda que toleram a perda de pacotes, tem menos delay que o TCP, os pacotes não são enviados numa ordem fixa, cada pacote é independente, existe verificação de erros mas pacotes errados são descartados. A entrega de informação não é garantida no protocolo UDP. Como desvantagens, no UDP um pacote pode não ser entregue ou entregue fora de ordem e pacotes não são retransmitidos em caso de colisões.

Conclusão

Com este trabalho prático conseguimos consolidar os temas abordados nas aulas teóricas relativamente à camada de transporte. Em relação aos protocolos de transporte, foi possível ficar a conhecer mais acerca do funcionamento do TCP e UDP. Além disso, conseguimos aprofundar os conhecimentos e clarificar conceitos em relação aos serviços de transferência de ficheiros, tais como SFTP, FTP, TFTP e HTTP. Por fim, foi também explorada e testada a conectividade e caraterísticas das ligações.