BAMS1623 DISCRETE MATHEMATICS

Tutorial 8

- 1. Let $A = \{1, 2, 3, 4\}$ and a relation R on A is $R = \{(1, 2), (1, 3), (2, 3), (3, 4)\}$. Find the reflexive closure and symmetric closure of R.
- 2. i) Let $A = \{1, 2, 3\}$ and let $R = \{(1, 1), (1, 2), (2, 3), (1, 3), (3, 1), (3, 2)\}$. Compute the matrix $\mathbf{M}_{R^{\infty}}$ of the transitive closure R by using the formula $\mathbf{M}_{R^{\infty}} = \mathbf{M}_{R} \vee (\mathbf{M}_{R})^{2}_{\Theta} \vee (\mathbf{M}_{R})^{3}_{\Theta}.$
 - ii) List the relation R^{∞} whose matrix was computed in part (i).
- 3. Let $A = \{1, 2, 3, 4\}$. For the relation R whose matrix is given, find the matrix of the transitive closure by using Warshall's algorithm.

i)
$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
ii)
$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
iii)
$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
iv)
$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4. Let $A = \{1, 2, 3, 4, 5\}$ and let R and S be the equivalence relations on A whose matrices are given. Compute the matrix of the smallest equivalence relation containing R and S, and list the elements of this relation.

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \mathbf{M}_{S} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- 5. Compute A/R, A/S, and the partition of A that corresponds to the equivalence relation found in Question 4.
- 6. Let $A = \{1, 2, 3, 4\}$ and let R and S be relations on A described by

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \ \mathbf{M}_{S} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Use Warshall's algorithm to compute the transitive closure of $R \cup S$.