Graph Optimal Transport for Cross-Domain Alignment Challenge

Pingbang Hu

University of Illinois Urbana-Champaign

February 21, 2024

Table of Content

2/6

- Reactions and Challenge
- References

Contribution:

▶ Define graph optimal transport, a generalized notion for "optimal transport".

Strength:

- Good solution property.
 - The nature of the sparsity for the solution of transportation plan works pretty well.
 - ▶ Solve the current dense attention matrix problem.
- Extensive experiments.
 - ▶ The experiments indeed address several important tasks in CDA.

Framework Weakness:

- ► Topology: GOT assumes:
 - ▶ topological structures T between domains is close.
 - $ightharpoonup \mathcal{T}$ is artificially constructed: $e_{ii} = \mathbb{1}(\max(\cos(x_i, x_i) \tau, 0) > 0)$ (based on τ).
- **Complexity**: Hyperparameters: β , λ , $c(\cdot, \cdot)$, $L(\cdot, \cdot, \cdot, \cdot)$, τ , etc.

Remark

Overall, lots of artificial components in GOT.

Table of Content

- Reactions and Challenge
- References

References

[Che+] Liqun Chen et al. "Graph Optimal Transport for Cross-Domain Alignment". In: Proceedings of the 37th International Conference on Machine Learning. International Conference on Machine Learning. PMLR, pp. 1542-1553. URL: https://proceedings.mlr.press/v119/chen20e.html.

Pingbang Hu (UIUC) February 21, 2024