SCC121 Fundamentals of Computer Science

Prof Corina Sas

School of Computing and Communications

Discrete Maths

WHAT

discrete objects

Discrete Maths

WHAT

discrete objects

WHY

- foundation for formal methods:
 - mathematical approaches to software and hardware
 - software engineering and software testing

Overview

- Sets
 - Defining sets
 - Set operations
 - Types of sets

Objectives

- Objectives
 - Understanding the basic ideas about sets
 - Facility with set operations

Sets

- Set a collection of objects/elements/members
 - in a set there are no duplicates
 - a set is unordered
- Conventions:
 - Set's name upper case (single) letter
 - Set's elements or members lower case (single) letters
- Example set:
 - $-A = \{1, 2, 3, 4, 5, 6, 7\}$
 - $-A = \{7, 6, 5, 4, 3, 2, 1\}$

Membership

- Set membership: "is an element of" or "belongs to"
- Set membership notation: symbol ∈ (from Greek letter ε)
- We write 1 is an element of set A: 1 ∈ A
 - 1 is an element/object/member of the set A
 - 1 belongs to the set A
 - $-A = \{1, 2, 3, 4, 5, 6, 7\}$

Membership

- Non membership: "is not an element of" or "does not belong to"
- Non membership notation: symbol ∉
- We write 1 is not an element of set B: 1 ∉ B
 - 1 does not belong to set B
 - $-B = \{2, 3, 4, 5, 6, 7\}$

Summary: Set Notations

Symbol	Symbol name	Meaning
{1, 2}	set	collection of elements
1∈ A	is an element of	set membership
3 ∉ A	is not an element of	non set membership

Geometric Figures

Geometric Figures: Rectangles

Is this a set?

 $R = \{r1, r2, r3, r4, r5, r6\}$ No duplicates: $R = \{r1, 1/1, r2, r3, r4, r5, r6\}$ Unordered: $R = \{r5, r3, r4, r2, r6, r1\}$ Belongs to: $r1 \in R$ (rectangle r1 belongs to Set R) c1 ∉ R (circle c1 is not in Set R)

Defining Sets

- Enumerating or listing all its members
 - writing down all the elements
 - finite, small sets: A = {1, 2, 3, 4, 5, 6, 7}
 - infinite sets impossible to enumerate!

Defining Sets

- Infinite or large sets cannot be enumerated.
- Providing a property that all its members must satisfy

Example:

- Example: A = {1, 2, 3, 4, 5, 6, 7,} and so on to infinity
- What property can define this set, or is shared by all its members?
- Every object x such that x is an integer and is greater than 0
- A = {x | x is an integer and x > 0}
- We read: A is the set of objects x such that x has property P
- Notation: {x | P(x)}

Defining Sets

- Properties can also be used for finite sets:
 - How can we define set $A = \{1, 2, 3, 4, 5, 6, 7\}$?
 - every object x such as x is an integer, greater than 0 and smaller than 8
 - $\{x \mid x \text{ is an integer and } 0 < x < 8\}$
 - every object x such that x is an integer and is greater than 0 and less than 8

Defining Rectangle Set

Listing all its members (enumeration)R = {r1, r2, r3, r4, r5, r6}

Property
 All the rectangles from the geometric figures drawn before.

R = {objects with the property of being geometric figures which are rectangles}

Set Operations

- Union
- Intersection
- Difference
- Cartesian product

Set Operations

- Union
- Intersection
- Difference
- Cartesian product

Set Operations: Union (∪)

Building a Union (∪)

No duplicates!

Union (∪) Result

Set Operations

UNION (written ∪)

- forms a new set from two sets consisting of all elements that are in EITHER of the original sets (or both)
- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Examples
 - If $A = \{1, 2, 3\}$ and $B = \{4, 5\}$
 - $A \cup B = \{1, 2, 3, 4, 5\}$
 - If $A = \{1, 2, 3\}$ and $B = \{1, 2, 4, 5\}$
 - $A \cup B = \{1, 2, 3, 4, 5\}$

Set Operations

- Union
- Intersection
- Difference
- Cartesian product

Set Operations: Intersection (∩)

Building an Intersection (∩)

Building an Intersection (∩)

Intersection (∩) Result

Set Operations: Intersection (∩)

How will the Union look like?

Set Operations

INTERSECTION (written __)

- forms a new set from two sets, consisting of all elements that are in BOTH of the original sets
- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Examples
 - If $A = \{1, 2, 3\}$ and $B = \{1, 2, 4, 5\}$
 - $A \cap B = \{1, 2\}$
 - If $A = \{1, 2, 3\}$ and $B = \{4, 5\}$
 - $-A \cap B = ?$

Set Operations

- Union
- Intersection
- Difference
- Cartesian product

Set Operations: Difference (-)

Set Operations: Difference (-)

Set Operations

DIFFERENCE (written –)

- forms a new set from two sets, consisting of all elements from the first set that are not in the second
- $A B = \{ x \mid x \in A \text{ and } x \notin B \}$
- Examples
 - If $A = \{1, 2, 3\}$ and $B = \{1, 2, 4, 5\}$
 - $A B = \{3\}$
 - If $A = \{1, 2, 3\}$ and $B = \{4, 5\}$
 - $-A-B=\{1, 2, 3\}$

Set Operations

- Union
- Intersection
- Difference
- Cartesian product

Cartesian Product

Ordered pair

- is a pair of objects, with an order associated with them Convention:
- If objects are represented by x and y, then we write the ordered pair as <x, y>

Equality

Two ordered pairs <a, b> and <c, d> are equal if and only if a = c and b = d.

Example of ordered pairs

• <1, 2> and <2, 1> are not equal.

Cartesian Product: A x R

- A= {a1, a2, a3, a4, a5, a6, a7}
- $R = \{r1, r2, r3, r4, r5, r6\}$

Rene Descartes

```
A x R = { <a1, r1>, <a1, r2>, <a1, r3>, <a1, r4>, <a1, r5>, <a1, r6>, <a2, r1>, <a2, r2>, <a2, r3>, <a2, r4>, <a2, r5>, <a2, r6>, <a3, r1>, <a3, r2>, <a3, r3>, <a3, r4>, <a3, r5>, <a3, r6>, <a4, r1>, <a4, r2>, <a4, r3>, <a4, r4>, <a4, r5>, <a4, r6>, <a5, r1>, <a5, r2>, <a5, r3>, <a6, r4>, <a6, r5>, <a6, r6>, <a6, r1>, <a6, r2>, <a6, r3>, <a6, r4>, <a6, r5>, <a6, r6>, <a7, r1>, <a7, r2>, <a7, r3>, <a7, r4>, <a7, r5>, <a7, r6> }
```

Cartesian product

Cartesian product of A and B

- The set of all ordered pairs <a, b>
 - where a is an element of A and b is an element of B
- written A x B.

Example:

```
A = \{1, 2, 3\} and B = \{a, b\}. Then
```

- $A \times B = \{<1, a>, <1, b>, <2, a>, <2, b>, <3, a>, <3, b>\}$
- $-B \times A = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle a, 3 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle b, 3 \rangle\}$

Compound Set Operations

Compound operations on sets

- Union, intersection, difference, Cartesian product are all equal in the order of precedence
- A ∩ B C does not make sense. Which operation is first?
- (A ∩ B) C makes sense
- always do anything in parentheses first

Example:
$$A = \{a1, a2, x, y\}, B = \{b1, x, y\}, C = \{y\}$$

$$(A \cap B) = \{x, y\}$$

 $(A \cap B) - C = \{x, y\} - \{y\} = \{x\}$

Let's playxercise!

- https://kahoot.it/
- Game Pin:
- Nickname: Student ID

Summary: Set Operations

Symbol	Symbol name	Meaning
$A \cup B$	union	objects that belong to set A or set B
$A \cap B$	intersection	objects that belong to set A and set B
A – B	difference	objects that belong to set A but not set B
AxB	Cartesian product	all ordered pairs with the first element from set A and the second from set B