Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Индивидуальное задание № 2

по дисциплине "Математический анализ"

Вариант № 20

Выполнила: студентка гр. R3138

Нечаева А. А.

Преподаватель: $<\Phi \mathit{ИO}\ \mathit{\PiPE} \mathit{\PiO} \mathit{\square} \mathit{ABATE} \mathit{\square} \mathit{A}>$

1 Сходимость числовых рядов

Исследовать ряды на сходимость. Для знакопеременных рядов исследовать абсолютную и условную сходимость.

1.1 a

$$\sum_{n=1}^{\infty} \frac{(2n)!!}{n^{n+\frac{3}{2}}} \cdot \ln \frac{2^n + 1}{2^n} \tag{1}$$

- 1. Ряд знакопостоянный
- 2. Воспрользуемся признаком д'Аламбера в предельной форме

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(2n+2)!! \cdot \ln \frac{2^{n+1}+1}{2^{n+1}} \cdot n^{n+\frac{3}{2}}}{(2n)!! \cdot \ln \frac{2^{n}+1}{2^{n}} \cdot (n+1)^{n+1+\frac{3}{2}}} =$$

$$= \lim_{n \to \infty} \frac{(2n)!! \cdot (2n+2) \cdot \ln \left(1 + \frac{1}{2^{n}+1}\right) \cdot n^{n+\frac{3}{2}}}{(2n)!! \cdot (n+1) \cdot \ln \left(1 + \frac{1}{2^{n}}\right) \cdot (n+1)^{n+\frac{3}{2}}} = \lim_{n \to \infty} \frac{2 \cdot \frac{1}{2^{n+1}} \cdot n^{n+\frac{3}{2}}}{\frac{1}{2^{n}} \cdot (n+1)^{n+\frac{3}{2}}} =$$

$$= \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^{n+\frac{3}{2}} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)^{n+\frac{3}{2}} = \lim_{n \to \infty} \left(\left(1 - \frac{1}{n+1}\right)^{-(n+1)}\right)^{-\frac{n+\frac{3}{2}}{n+1}} =$$

$$= \frac{1}{e} < 1$$

Ответ: ряд сходится по признаку д'Аламбера

1.2 б

$$\sum_{n=1}^{\infty} \left(arctg \frac{n+1}{n^2} - ln \left(1 + tg \frac{1}{n} \right) \right)^2 \tag{2}$$

1. Ряд знакопостоянный

2. Воспрользуемся разложением функций в ряд Маклорена при $n \to \infty$

$$arctg\frac{n+1}{n^2} = \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^3}\right)$$
$$tg\frac{1}{n} = \frac{1}{n} + o\left(\frac{1}{n^3}\right)$$
$$ln\left(1 + \frac{1}{n} + o\left(\frac{1}{n^3}\right)\right) = \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^3}\right)$$

Тогда подставляя получаем:

$$\left(\frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^3}\right) - \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^3}\right)\right)\right)^2 = \left(\frac{3}{2n^2} + o\left(\frac{1}{n^3}\right)\right)^2 =$$

$$= \frac{9}{4n^4} + \frac{3}{n^2} \cdot o\left(\frac{1}{n^3}\right) + o\left(\frac{1}{n^6}\right) \quad (3)$$

В силу сходимости рядов $\frac{9}{4n^4}$, $\frac{3}{n^2} \cdot o\left(\frac{1}{n^3}\right)$ и $o\left(\frac{1}{n^6}\right)$ и согласно арифметическим свойствам рядов их сумма тоже сходится.

Ответ: ряд сходится