Karol Cidyło

Zadanie 4 z listy 5.

Mamy dane dwa ciągi n - elementowe. Wykorzystując grę z adwersarzem mamy pokazać, że potrzeba **2n - 1** porównań, aby scalić te ciągi. Musimy tak 'złośliwie' konstruować ciągi dla adwersarza, aby było ich **2n** i każde porównanie algorytmu eliminowało maksymalnie jeden ciąg.

Scalanie możemy traktować jak np. część algorytmu sortowania przez scalanie, gdzie w końcowej fazie mamy dwa posortowane ciągi i chcemy połączyć je w jeden, również posortowany ciąg.

Weźmy zestaw wyjściowy(jest to ciąg posortowany rosnąco):

$$x_0 = a_1, b_1, a_2, b_2, a_3, a_3, ..., a_n, b_n$$

Mając ciąg x_0 wyprodukujemy $2\mathbf{n} - \mathbf{1}$ innych zestawów danych takich, że dla każdych kolejnych ciągów x_i będziemy zamieniać ze sobą elementy na pozycjach \mathbf{i} oraz $\mathbf{i} + \mathbf{1}$. To znaczy:

$$x_1 = b_1, a_1, a_2, b_2, a_3, a_3, ..., a_n, b_n$$
 do
$$x_{2n-1} = a_1, b_1, a_2, b_2, a_3, a_3, ..., b_n, a_n$$

Razem z naszym zestawem wyjściowym mamy 2n zestawów danych. Dopóki mamy dwa zestawy zgodne z powyższymi algorytm musi być kontynuowany. Odpowiadamy na pytania gracza tak jak dla zestawu wyjściowego.

Gracz zadaje pytania o stosunek a_i do b_j .

Lemat.

Jedno pytanie usuwa maksymalnie jeden zestaw.

Dowód lematu.

Weżmy pytanie o stusunek a_i do b_i .

1. **j** > **i** Adwersarz mówi, że a_i jest mniejsze od b_j . Nie wyklucza to żadnego zestawu danych z dostępnych. Jeśli j > i to w następnych zestawach nie zamienimy ze sobą elementów a_i oraz b_i , w zestawie wyjściowym kiedy i < j mamy spełnione $a_i < b_j$.

- 2. $\mathbf{i} > \mathbf{j} + \mathbf{1}$ Adwersarz mówi, że a_i jest większe od b_j . Nie wyklucza to żadnego zestawu. Każdy z dostępnych spełnia wymagania. Następne zestawy danych to przestawienie a_i z b_i oraz b_i z a_{i+1} , w zestawach odpowiednio x_{2i-1} oraz x_{2i} . \mathbf{i} oraz \mathbf{j} różnią się co najmniej o 2.
- 3. $\mathbf{i} = \mathbf{j}$ Adwersarz mówi, że a_i jest mniejsze od b_j . Wyklucza to przypadek, gdzie a_i jest większe od b_i czyli ciąg x_{2i-1} bo tam zamienialiśmy a_i z a_{i-1} miejscami. Wyklucza jeden zestaw.
- 4. $\mathbf{i} = \mathbf{j} + \mathbf{1}$ Adwersarz mówi, że a_i jest większe od b_j . Wyklucza to przypadek, gdzie a_i jest mniejsze od b_{i-1} czyli ciąg x_{2i-2} , tam zamienialiśmy a_{i-1} z a_i miejscami. Wyklucza jeden zestaw.

Każde zapytanie o a_i oraz b_j jest rozpatrywane w tym jednym z czterech przypadków. Otrzymujemy zatem, że każde zapytanie wyklucza maksymalnie jeden zestaw danych.

Na początku również : "wygenerowaliśmy" 2n zestawów. Wykorzystując lemat pokazujemy, że minimalnie potrzeba 2n-1 pytań(porównań) do otrzymania końcowego rezultatu z odpowiednim zestawem danych. Czyli do scalenia dwóch ciągów n-elementowych.