

Calculations of atomic multiplets across the periodic table

Master's Thesis

14 October 2014 | Qian Zhang Prof. Dr. Erik Koch |
German Research School for Simulation Sciences RWTH Aachen University

Outline

- 1 Introduction
- 2 The one-electron problem
- 3 The many-electron problem (mean-field approximation)
- 4 Construction of multiplet states
- 5 Spin-orbit coupling
- 6 Conclusion

Introduction

Imagine our solar system...

(Image from NASA)

F = ma

Mercury: $\mathbf{r}_1(t)$

Venus: $\mathbf{r}_2(t)$

Earth: $\mathbf{r}_3(t)$

Mars: $\mathbf{r}_4(t)$

:

Analytical solution: 🗡

Numerical solution: ✓

14 October 2014 Qian Zhang Prof. Dr. Erik Koch

Slide 3

Introduction

Scaling down to 10^{-10} meters...

$$H\Psi = E\Psi$$

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Many-electron wave function

$$\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)$$

Analytical solution: X Numerical solution: X

Approximations!

(Image from Wikipedia)

One-electron problem

For N=1

$$\left[-\frac{1}{2}\nabla^2 + V(r)\right]\varphi = E\varphi$$

Separation of variables:

$$\varphi(r, \theta, \phi) = R(r)Y(\theta, \phi)$$

Angular part $Y(\theta, \phi)$ Easy, spherical harmonics Radial part R(r) Difficult, our task

14 October 2014 Qian Zhang Prof. Dr. Erik Koch Slide 5

One-electron problem

Angular equation

$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} = -I(I+1)Y$$

$$Spherical harmonics: Y_{Im}(\theta, \phi)$$

$$I = 0, 1, \dots \qquad m = -I, \dots, I$$

ember of the Helmholtz-Association

One-electron problem

Define $u(r) \equiv rR(r)$, radial equation

$$-\frac{1}{2}\frac{d^{2}u}{dr^{2}}+\left[V(r)+\frac{I(I+1)}{2r^{2}}\right]u=Eu$$

where V(r) = -Z/r

(a)
$$Z = 1$$

(b)
$$Z = 2$$

(c)
$$Z = 3$$

14 October 2014

Qian Zhang Prof. Dr. Erik Koch

Slide 7

Logarithmic grid

Construct a logarithmic grid, $0 < r_0 < \cdots < r_{n-1} < \infty$, where

$$r_i = \frac{1}{Z}e^{x_i}$$

and x is a uniformly distributed grid

$$r_{n-1}$$

$$x_i = x_0 + i\Delta x$$

Logarithmic grid

Rescale $\tilde{u} \equiv u/\sqrt{r}$, the transformed radial equation

$$-\frac{1}{2}\frac{d^{2}\tilde{u}}{dx^{2}}+\left[r^{2}V(r)+\frac{1}{2}\left(I+\frac{1}{2}\right)^{2}\right]\tilde{u}=r^{2}E\tilde{u}$$

14 October 2014 Qian Zhang Prof. Dr. Erik Koch

Slide 9

The shooting and matching methods

Numerov's method

$$\tilde{u}_{i\pm 1} = \frac{(2 - \frac{5\Delta x^2}{3} k_i^2) \tilde{u}_i - (1 + \frac{\Delta x^2}{6} k_{i\mp 1}^2) \tilde{u}_{i\mp 1}}{1 + \frac{\Delta x^2}{6} k_{i\pm 1}^2}$$

(a)
$$E = -0.6$$

(b)
$$E = -0.4$$

(c)
$$E = -0.5$$

Numerical and exact eigen-energy comparison

Elem	Orbital	Numerical	Exact	Abs Error	Rel Error
Н	1 <i>s</i>	-0.500000	-0.500000	0.000000	0.000000
С	1 <i>s</i>	-18.000002	-18.000000	0.000002	0.000000
	2 <i>s</i>	-4.499999	-4.500000	0.000001	0.000000
	2 <i>p</i>	-4.500001	-4.500000	0.000001	0.000000
Fe	1 <i>s</i>	-338.000032	-338.000000	0.000032	0.000000
	2 <i>s</i>	-84.499984	-84.500000	0.000016	0.000000
	2 <i>p</i>	-84.500012	-84.500000	0.000012	0.000000
	3 <i>s</i>	-37.555556	-37.555556	0.000000	0.000000
	3 <i>p</i>	-37.555556	-37.555556	0.000000	0.000000
	3 <i>d</i>	-37.555555	-37.555556	0.000001	0.000000
	4 <i>s</i>	-21.125000	-21.125000	0.000000	0.000000

One electron only!

14 October 2014 Qian Zhang Prof. Dr. Erik Koch

Slide 11

The many-electron problem

Many-electron Schrödinger equation

$$\left\{ \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right\} \Psi = E \Psi$$

Analytical solution: X

Numerical solution: X

We use self-consistent field (SCF) approximation

Member of the Helmholtz-Associ

The many-electron problem

Hartree ansatz

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \approx \varphi_1(\mathbf{r}_1)\varphi_2(\mathbf{r}_2)\dots\varphi_N(\mathbf{r}_N)$$

Mean-field approximation

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \underbrace{\sum_{i < j}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}}_{\text{Trouble maker}}$$

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \underbrace{V_{\text{Hartree}}(r)}_{\text{Hartree potential}}$$

14 October 2014 Qian Zhang Prof. Dr. Erik Koch Slide 13

Self-consistent iteration

Many-electron problem \rightarrow Many one-electron problems

Chicken or the egg problem!

ember of the Helmholtz-Associati

JavaScript demonstration

www.cond-mat.de/sims/multiplet

14 October 2014 Qian Zhang Prof. Dr. Erik Koch Slide 15

Comparison to NIST results

Elem	Orbital	My results	NIST results	Abs Error	Rel Error
Н	1 <i>s</i> ¹	-0.233471	-0.233471	0.000000	0.000000
С	1 <i>s</i> ²	-9.947725	-9.947718	0.000007	0.000001
	$2s^2$	-0.500866	-0.500866	0.000000	0.000000
	$2p^2$	-0.199186	-0.199186	0.000000	0.000000
Fe	1 <i>s</i> ²	-254.225334	-254.225505	0.000171	0.000001
	$2s^2$	-29.564863	-29.564860	0.000003	0.000000
	$2p^{6}$	-25.551762	-25.551766	0.000004	0.000000
	3 <i>s</i> ²	-3.360622	-3.360621	0.000001	0.000000
	$3p^{6}$	-2.187521	-2.187523	0.000002	0.000001
	3 <i>d</i> ⁶	-0.295047	-0.295049	0.000002	0.000007
	4 <i>s</i> ²	-0.197976	-0.197978	0.000002	0.000010

Many-electron, mean-field!

Open shell problem

Imagine the following problem:

14 October 2014 Qian Zhang Prof. Dr. Erik Koch Slide 17

Open shell problem

Which configuration has the highest energy?

Member of the Helmholtz-Association

Coulomb repulsion Hamiltonian

Revisit our trouble maker

$$H_U = \sum_{i < j}^N \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Second quantization

$$H_U = rac{1}{2} \sum_{lpha,eta,\gamma,\delta} U_{lphaeta\gamma\delta} c_lpha^\dagger c_eta^\dagger c_\gamma c_\delta$$

$$\alpha = \{\mathbf{n}_1, \, \mathbf{l}_1, \, \mathbf{m}_1, \, \sigma_1\}$$

$$\beta = \{ n_2, l_2, m_2, \sigma_2 \}$$

$$\gamma = \{ n_3, l_3, m_3, \sigma_3 \}$$

$$\delta = \{n_4, l_4, m_4, \sigma_4\}$$

14 October 2014 Qian Zhang Prof. Dr. Erik Koch Slide 19

Coulomb repulsion Hamiltonian

Coulomb repulsion matrix element

$$U_{\alpha\beta\gamma\delta} =$$

$$\delta_{\sigma_{1}\sigma_{4}}\delta_{\sigma_{2}\sigma_{3}}\int d^{3}r_{1}\int d^{3}r_{2}\,\overline{\varphi_{n_{1}l_{1}m_{1}}}(\mathbf{r}_{1})\overline{\varphi_{n_{2}l_{2}m_{2}}}(\mathbf{r}_{2})\frac{1}{|\mathbf{r}_{1}-\mathbf{r}_{2}|}\varphi_{n_{3}l_{3}m_{3}}(\mathbf{r}_{2})\varphi_{n_{4}l_{4}m_{4}}(\mathbf{r}_{1})$$

Multipole expansion

$$\frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} = \sum_{k=0}^{\infty} \underbrace{\frac{r_{<}^k}{r_{<}^{k+1}}}_{\text{Badial part}} \underbrace{\frac{4\pi}{2k+1} \sum_{\mu=-k}^{k} \underbrace{\overline{Y_{k\mu}}(\theta_1, \phi_1) Y_{k\mu}(\theta_2, \phi_2)}_{\text{Angular part}}}_{\text{Angular part}}$$

Coulomb repulsion Hamiltonian

The radial part

$$R^{(k)}(n_1l_1, n_2l_2, n_3l_3, n_4l_4) = \int_0^\infty dr_1 \int_0^\infty dr_2 \, \overline{u_{n_1l_1}}(r_1) \overline{u_{n_2l_2}}(r_2) \frac{r_<^k}{r_>^{k+1}} u_{n_3l_3}(r_2) u_{n_4l_4}(r_1)$$

The angular part

Slater-Condon parameters

$$A^{(k)}(I_1m_1, I_2m_2, I_3m_3, I_4m_4) =$$

$$\sum_{\mu=-k}^{k} \int_{0}^{2\pi} d\phi_{1} \int_{0}^{\pi} d\theta_{1} \sin \theta_{1} \overline{Y_{l_{1}m_{1}}}(\theta_{1},\phi_{1}) \overline{Y_{k\mu}}(\theta_{1},\phi_{1}) Y_{l_{4}m_{4}}(\theta_{1},\phi_{1})$$

$$\int_{0}^{2\pi} d\phi_2 \int_{0}^{\pi} d\theta_2 \sin \theta_2 \, \overline{Y_{l_2 m_2}}(\theta_2, \phi_2) Y_{k\mu}(\theta_2, \phi_2) Y_{l_3 m_3}(\theta_2, \phi_2)$$

Gaunt coefficients

14 October 2014 Qian Zhang Prof. Dr. Erik Koch

Slide 21

Setting up basis and Hamiltonian

Set up basis

110000⟩	101000 angle	100100 angle	100010 angle	100001⟩
011000⟩	010100⟩	010010⟩	010001⟩	001100⟩
$ 001010\rangle$	001001⟩	000110⟩	000101⟩	000011⟩

Setting up basis and Hamiltonian

Set up Hamiltonian

$$\langle i|\, H_U\, |j
angle = \langle i|\, rac{1}{2} \sum_{lpha,eta,\gamma,\delta} U_{lphaeta\gamma\delta} c_lpha^\dagger c_eta^\dagger c_\gamma c_\delta\, |j
angle$$

14 October 2014 Qian Zhang Prof. Dr. Erik Koch Slide 23

Construction of multiplet states

Commutation relations

$$[H_U, \mathbf{L}] = 0$$
 $[H_U, \mathbf{S}] = 0$

$$[H_U, L^2] = 0$$
 $[H_U, L_z] = 0$ $[H_U, S^2] = 0$ $[H_U, S_z] = 0$

We can represent an eigen-vector

$$|L, M_L, S, M_S\rangle$$

Commutation relations

$$[H_U, L_{\pm}] = 0$$
 $[H_U, S_{\pm}] = 0$

Starting from a leading vector, we can construct subsequent vectors by applying ladder operators.

 M_L - M_S table

			$M_{\mathcal{S}}$	
		-1	0	1
	2	0	1	0
	1	1	2	1
M_L	0	1	3	1
	-1	1	2	1
	-2	0	1	0

 $|1, 1, 1, 1\rangle$

14 October 2014 Qian Zhang Prof. Dr. Erik Koch

Slide 25

Construction of multiplet states

 M_L - M_S table

³**P**

 M_L - M_S table

		M_{S}		
		–1	0	1
	2	0	1	0
	1	0	1	0
M_L	0	0	2	0
	-1	0	1	0
	-2	0	1	0

 $|2, 2, 0, 0\rangle$

14 October 2014 Qian Zhang Prof. Dr. Erik Koch Slide 27

Construction of multiplet states

 M_L - M_S table

$$|2, 2, 0, 0\rangle$$

$$|2, 1, 0, 0\rangle$$

$$|2, 0, 0, 0\rangle$$

$$|2, -1, 0, 0\rangle$$

$$|2, -2, 0, 0\rangle$$

nber of the Helmholtz-Associat

 M_L - M_S table

		M_S		
		-1	0	1
	2	0	0	0
	1	0	0	0
M_L	0	0	1	0
	-1	0	0	0
	-2	0	0	0

 $|0, 0, 0, 0\rangle$

¹*S*

14 October 2014 Qian Zhang Prof. Dr. Erik Koch

Slide 29

Construction of multiplet states

Three groups of eigen-vectors

³ <i>P</i>	¹ D	¹ <i>S</i>
$ \begin{array}{ c c c c c c } \hline 1, & 1, 1, -1\rangle & 1, & 1, 1, & 0\rangle & 1, & 1, 1, & 1\rangle \\ 1, & 0, 1, -1\rangle & 1, & 0, 1, & 0\rangle & 1, & 0, 1, & 1\rangle \\ 1, -1, 1, -1\rangle & 1, -1, 1, & 0\rangle & 1, -1, 1, & 1\rangle \\ \hline \end{array} $	$ 2, 0, 0, 0\rangle$	

Multiplet term symbol

Jember of the Helmholtz-Associ

In summary, our 15 eigen-vectors:

14 October 2014 Qian Zhang Prof. Dr. Erik Koch Slide 31

Construction of multiplet states

In summary, our 15 eigen-vectors:

Eigen-energy of multiplet states

Eigen-vector

 $|\mathbf{v}_n\rangle$

Eigen-energy

 $E_n = \langle \mathbf{v}_n | H_U | \mathbf{v}_n \rangle$

Carbon atom p^2 orbital

¹S: 0.612081 (Hartree)

¹D: 0.529402 (Hartree)

³P: 0.474284 (Hartree)

14 October 2014 Qian Zhang Prof. Dr. Erik Koch

Slide 33

Eigen-energy of multiplet states

Energy splitting

ember of the Helmholtz-Associat

he Helmholtz-Association

JavaScript demonstration

www.cond-mat.de/sims/multiplet

14 October 2014 Qian Zhang Prof. Dr. Erik Koch Slide 35

Spin-orbit coupling

Our original Hamiltonian

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

A magnetic force?

Spin-orbit coupling

The Hamiltonian with spin-orbit effect

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \underbrace{\sum_{i=1}^{N} \xi(r_i) \ell_i \cdot \mathbf{s}_i}_{\text{Weak}}$$

where,

$$\xi(r) = \frac{1}{2c^2} \frac{1}{r} \frac{dV}{dr}$$

In atomic units

$$\emph{c} pprox 137.036~\mathrm{a_0/t_0}$$

14 October 2014 Qian Zhang Prof. Dr. Erik Koch

Slide 37

Spin-orbit coupling within multiplet terms

Clebsch-Grodan transformation

$$|L, M_L, S, M_S\rangle \rightarrow |L, S, J, M_J\rangle$$

Multiplet split

$$^{2S+1}L_J$$
 with $J=L+S,L+S-1,\ldots,|L-S|$ $^3P
ightarrow ^3P_2,^3P_1,^3P_0$

Eigen-energies

$$E_{SO} = A(nl, LS) \frac{1}{2} [J(J+1) - L(L+1) - S(S+1)]$$

Tember of the Helmholtz-Association

Spin-orbit coupling within multiplet terms

Spin-orbit coupling within entire shell

$$egin{aligned} H_{ extsf{SO}} &= \sum_{i=1}^N \xi(r_i) oldsymbol{\ell}_i \cdot \mathbf{s}_i &\longrightarrow & H_{ extsf{SO}} &= \sum_{lpha,eta} V_{lphaeta} oldsymbol{c}_lpha^\dagger oldsymbol{c}_eta \ &V_{lphaeta} &= \langle lpha ig| \, \xi(r) oldsymbol{\ell} \cdot \mathbf{s} \, ig| eta
angle \end{aligned}$$

Spin-orbit coupling within entire shell

Conclusion

- 1 We implemented Numerov's method with logarithmic grid to solve the one-electron problem and obtained very accurate solutions.
- We solved the many-electron problem using self-consistent field approximation.
- 3 Based on SCF calculation, we constructed atomic multiplet states, which are the many-electron eigen-states in atoms.
- Finally we introduced the spin-orbit coupling, where we see the spectral lines further split into finer structures.

14 October 2014 Qian Zhang Prof. Dr. Erik Koch Slide 43

Thank You!

Special thanks to:

- Prof. Dr. Erik Koch
- Dr. Hermann Ulm
- German Research School for Simulation Sciences
- Forschungszentrum Jülich GmbH

Imholtz-Association

Backup Materials

14 October 2014

Qian Zhang Prof. Dr. Erik Koch

Slide 45

Numerov's method

Finite difference

$$rac{d^2 ilde{u}}{dx^2} = rac{ ilde{u}_{i+1} - 2 ilde{u}_i + ilde{u}_{i-1}}{\Delta x^2} + \mathcal{O}(\Delta x^2)$$

Numerov's method

$$\frac{d^2\tilde{u}}{dx^2} = \frac{\tilde{u}_{i+1} - 2\tilde{u}_i + \tilde{u}_{i-1}}{\Delta x^2} - \frac{1}{12} \frac{\tilde{u}_{i+1}'' - 2\tilde{u}_i'' + \tilde{u}_{i-1}''}{\Delta x^2} \Delta x^2 + \mathcal{O}(\Delta x^4)$$

Use the original ODE

$$\tilde{u}_{i}^{"} = -2k_{i}^{2}\tilde{u}_{i}$$
 and $k_{i}^{2} \equiv r_{i}^{2}E - r_{i}^{2}V(r_{i}) - \frac{1}{2}(I + \frac{1}{2})^{2}$

3-point recursion!

$$\tilde{u}_{i\pm 1} = \frac{(2 - \frac{5\Delta x^2}{3}k_i^2)\tilde{u}_i - (1 + \frac{\Delta x^2}{6}k_{i\mp 1}^2)\tilde{u}_{i\mp 1}}{1 + \frac{\Delta x^2}{6}k_{i\pm 1}^2}$$

dember of the Helmholtz-Association

Slater-Condon parameters

$$R^{(k)}(n_1l_1,n_2l_2,n_3l_3,n_4l_4) = \int_0^\infty dr_1 \int_0^\infty dr_2 \, \overline{u_{n_1l_1}}(r_1) \overline{u_{n_2l_2}}(r_2) \frac{r_<^k}{r_>^{k+1}} u_{n_3l_3}(r_2) u_{n_4l_4}(r_1)$$

If $r_1 \leq r_2$,

$$r_{<}=r_{1}, \quad r_{>}=r_{2}$$

If $r_1 > r_2$,

$$r_{<} = r_{2}, \quad r_{>} = r_{1}$$

 $R^{(k)}(n_1l_1, n_2l_2, n_3l_3, n_4l_4) =$

$$\int_{0}^{\infty} dr_{1} \overline{u_{n_{1}l_{1}}}(r_{1}) u_{n_{4}l_{4}}(r_{1}) \left[\frac{1}{r_{1}^{k+1}} \int_{0}^{r_{1}} dr_{2} r_{2}^{k} \overline{u_{n_{2}l_{2}}}(r_{2}) u_{n_{3}l_{3}}(r_{2}) + r_{1}^{k} \int_{r_{1}}^{\infty} dr_{2} \frac{1}{r_{2}^{k+1}} \overline{u_{n_{2}l_{2}}}(r_{2}) u_{n_{3}l_{3}}(r_{2}) \right]$$

14 October 2014

Qian Zhang Prof. Dr. Erik Koch

Slide 47

Gaunt coefficients

$$A^{(k)}(I_1m_1,I_2m_2,I_3m_3,I_4m_4) =$$

$$\sum_{\mu=-k}^{k} \int_{0}^{2\pi} d\phi_{1} \int_{0}^{\pi} d\theta_{1} \sin \theta_{1} \overline{Y_{l_{1}m_{1}}}(\theta_{1}, \phi_{1}) \overline{Y_{k\mu}}(\theta_{1}, \phi_{1}) Y_{l_{4}m_{4}}(\theta_{1}, \phi_{1})$$

$$\int_{0}^{2\pi} d\phi_{2} \int_{0}^{\pi} d\theta_{2} \sin \theta_{2} \overline{Y_{l_{2}m_{2}}}(\theta_{2}, \phi_{2}) Y_{k\mu}(\theta_{2}, \phi_{2}) Y_{l_{3}m_{3}}(\theta_{2}, \phi_{2})$$

Gaunt coefficients

$$g_{m_1m_2}^{(k)} = \langle I_1 m_1 | k\mu | I_2 m_2 \rangle$$

Gaunt coefficients

Recursion relation

 $\langle I_1 m_1 | k\mu | I_2 m_2 \rangle =$

$$a\langle l_1+1, m_1 | k-1, \mu | l_2 m_2 \rangle + b\langle l_1-1, m_1 | k-1, \mu | l_2 m_2 \rangle + c\langle l_1 m_1 | k-2, \mu | l_2 m_2 \rangle$$

$$a = \sqrt{\frac{(2k+1)(2k-1)(l_1+m_1+1)(l_1-m_1+1)}{(k+\mu)(k-\mu)(2l_1+3)(2l_1+1)}}$$

$$b = \sqrt{\frac{(2k+1)(2k-1)(l_1+m_1)(l_1-m_1)}{(k+\mu)(k-\mu)(2l_1+1)(2l_1-1)}}$$

$$c = -\sqrt{\frac{(2k+1)(k+\mu-1)(k-\mu-1)}{(k+\mu)(k-\mu)(2k-3)}}$$

Base case

$$\langle I_1 m_1 | 00 | I_2 m_2 \rangle = \frac{1}{\sqrt{4\pi}} \delta_{I_1 I_2} \delta_{m_1 m_2}$$

14 October 2014 Qian Zhang Prof. Dr. Erik Koch

Slide 49

Ladder operator techniques

Ladder operators

$$L_{\pm} |Im\rangle = \alpha_{Im}^{\pm} |I, m \pm 1\rangle$$

$$\alpha_{Im}^{+} = \sqrt{(I+m+1)(I-m)}$$

$$\alpha_{Im}^{-} = \sqrt{(I+m)(I-m+1)}$$

Express eigen-vectors in terms of our 15 basis vectors

$$L_{-} = \sqrt{(1+1)(1-1+1)} + \sqrt{$$