400 IDEAS FOR DESIGN

COMPUTER AND PULSE CIRCUITS (cont.)

RC Pair Safely Sets Initial State of Relay Driver	74
Delayed-Pulse Generator Uses Fewer Components	75
SCR Drives Cold Cathode Counter Tube	75
Simple Gates Provide Binary Scale-of-Ten Counter	76
Mercury Relay Makes Fast-Rise Pulse Generator	76
Blocking Oscillator-And Gate Produces Standard Output Pulse	77
Transistorized Voltage-Frequency Converter Operates Linearly	77
Delay-Line Discriminator Detects Sequences of Pulse	78
FM Preserves Pulse Polarity in Ultrasonic Delay Lines	78
Indicating Shift Register Uses Silicon-Controlled Rectifiers	78
Tunnel Diode Triggers Avalanche Pulse Generator	79
Fixed Interval Timer Gates Random Pulse Stream	79
Transistor Stage Yields Polarity-Controlled Output	80
SCR Charge-Discharge Circuit Samples Slow Rep-Rate Pulses	80
Variable-Width Pulse Generator Provides Fast Rise/Fall Times	81
Root Taker Using Biased Diode Networks	81
Gate Circuit Inhibits Pulses on Command	82
Two-Transistors, Feedback Produce Free-Running Pulser	82
Inverted Exclusive-OR Circuit Compares Binary Bits	80
Zener, Diode Bridge Forms Double-Ended Clipper	8
Circuit Squares DC Input Voltage	83
Cascode Circuit Compensates for Heater-Voltage Sensitivity	84
Simple Transistor Circuits Generate Phantastron Sweeps	84
Biased-On AC Amplifier Boosts Low-Level Pulses	8
TD, Current-Mode Switch Deliver Fast 1-w Pulse	8
Photoelectric Elements Help Analog Circuits Divide, Multiply	8
Extra Triode Unloads Analog Computer Signal Source	8'
Exclusive OR Circuit Uses Three Transistors	8
Differential 'Exclusive OR' Reduces Logic Modules	8
Majority-Logic Adder Cuts Component Needs	8
Diode Sets Flip-Flops for Initial State at Turn-On	8
Direct-Coupled Transistors Provide Simple Parity Check	9
Exclusive-OR Needs No Complement	9
Mousetrap Generator Builds a Better Pulse	9
Magnetic Tape Detects Sections of Rotating Wheel	9
Neon Driver Circuit Uses Low Voltage Transistor	9
Zener Diode Reduces Schmitt Trigger Hysteresis	9
Starter Circuit Guides Counter-Tube Beam	9
Simplified Pulse Circuit Has Low Output Impedance	9
Temperature Sensitive Resistors Are Low Cost Function Inverters	9
Modified NOR Circuit Automatically Presets Flip-Flop	9
Fast Squaring Circuit Preserves Phase Information	9
Tust oquaring official fresolves finase internation	
CONTROL CIRCUITS	
Quotient Circuit Substitutes for Difference Variable	97
Transistor Improves Response and Speed Regulation of DC Motor	97
Bridge Circuit Temperature Stabilizes Relay Operation	98
Filament Voltage Controls Thyratron Cut-Off	98
Diodes Allow Two-Wire Control of Limit-Switched Motor	98