Airline Sentiment Analysis

By Victoria Porter, Will Holbrook, Laura Cope, Lauren Cooper and Joel Wolinsky

Agenda

- Exploratory Analysis
- Preparing the Dataset
- Modelling Experiments
- Performance Analysis
- The Final Model
- Final Model Insights
- Teamwork
- Learning Outcomes
- Questions

Exploratory Analysis

Variable identification

Type of variable Data Type	Variable Category
Predictor Variable	idence ence - airline_sentiment - negativereason - airline - airline_sentiment_gold - negativereason_gold - User_timezone Numerical - tweet_id - airline_sentiment_confidence - negativereason_confidence - retweet_count

Sentiment

Airlines

→ Airlines and Sentiment, and respective Confidence

Reason for negative sentiment

Text

→ Text and Sentiment

Negative tweets

Sentiment Confidence

Creation datetime, Co-ords

→ Creation datetime and Sentiment

Positive

Neutral

Negative

→ Location and Sentiment, Timezone and Sentiment

Name

Retweet Count

Preparing the Dataset

Techniques used:

- Tokenization
- Removing stops words
- Stemming & Lemmatizing
- Removing Airline_sentiment_confidence < 0.6

Before - '@VirginAmerica it was amazing, and arrived an hour early. You're too good to me.'

After - 'virginamerica amaz arriv hour earli you good'

Baseline Model: Naïve Bayes

Model Type	Model Name	Training Time/s	Testing Time/s	Accuracy	RAM Used/GB
Baseline	Naïve Bayes	2.186	45.665	0.7668	0.16

Non-Neural Model: Support Vector Machine (SVM)

Model Type	Model Name	Training Time/s	Testing Time/s	Accuracy	RAM Used/GB
Non-Neural	SVM	234.618	9.553	0.7766	0.47 GB

Pretrained Model: MonkeyLearn Sentiment Analysis

- MonkeyLearn was one of the few fully off-the-shelf pretrained sentiment analysis models available for free.
- Benefits include a simple implementation, a quick runtime with no training needed.
- Drawbacks include little available information on the model itself: it is very much a black box. No details available on the model or training data. This could limit the model's ability to understand tweets as opposed for formal language
- Only 300 free queries allowed per month limited how much we could test the model

MonkeyLearn Results

- Mid-level accuracy, possibly overfit to training data or trained or formal English language writing. This teaches us that the training data used is very important, and some pre-trained sentiment analysis models may not be suitable for informal language.
- The model worked significantly better on the raw tweets as opposed to the cleaned data set. The confidence score on the raw data was also much higher.
- Next steps would involve a paid subscription which would likely come with more detail
 on the model and training data itself, and the ability to test more data.

Test Data Used (300 tweets each)	Accuracy	Average Confidence
Cleaned	0.563	0.7092
Raw	0.780	0.7740

The Final Model

Model Type	Model Name	Training Time/s	Testing Time/s	Accuracy
Baseline	Naïve Bayes	2.186	45.665	0.7668
Non-Neural	SVM	234.618	9.553	0.7766
Pre-trained	MonkeyLearn Sentiment Analysis	N/A	150.650	0.7800

Key Predictors

Accuracy: 0.7766393442622951							
Classification Report: precision recall f1-score support							
	pi ecision	recarr	11-30016	зиррог с			
0	0.89	0.83	0.86	1826			
1	0.56	0.68	0.62	611			
2	0.72	0.70	0.71	491			
accuracy			0.78	2928			
macro avg	0.72	0.74	0.73	2928			
weighted avg	0.79	0.78	0.78	2928			

Accuracy: 0.7776639344262295							
Classification Report:							
	precision	recall	f1-score	support			
ø	0.89	0.83	0.86	1826			
1	0.56	0.68	0.62	611			
2	0.72	0.70	0.71	491			
accuracy			0.78	2928			
macro avg	0.72	0.74	0.73	2928			
weighted avg	0.79	0.78	0.78	2928			
Confusion Matrix:							
[[1515 243 68]							
[130 418	63] VV	ith Li	meZo	ne			

65 82 344]]

```
Accuracy: 0.7766393442622951
Classification Report:
                        recall f1-score support
            precision
                 0.89
                          0.83
                                   0.86
                                            1826
                          0.68
                                   0.62
                                             611
                 0.72
                          0.70
                                   0.71
                                             491
                                   0.78
                                             2928
   accuracy
  macro avg
                 0.72
                          0.74
                                   0.73
                                             2928
weighted avg
                 0.79
                          0.78
                                   0.78
                                             2928
Confusion Matrix:
[[1512 242 72]
                    Tweet Time
  129 418 64]
   65 82 344]]
```

Accuracy: 0.7/59562841530054							
Classification Report:							
	precision	recall	f1-score	support			
0	0.89	0.83	0.86	1826			
1	0.56	0.68	0.62	611			
2	0.72	0.70	0.71	491			
accuracy			0.78	2928			
macro avg	0.72	0.74	0.73	2928			
weighted avg	0.79	0.78	0.78	2928			
	Classification 0 1 2 accuracy macro avg	Classification Report: precision 0 0.89 1 0.56 2 0.72 accuracy macro avg 0.72	precision recall 0 0.89 0.83 1 0.56 0.68 2 0.72 0.70 accuracy macro avg 0.72 0.74	Classification Report:			

With retweet

Confusion Matrix: [[1511 246 69]

[130 418 63] [66 82 343]]

Challenges

- Choosing which columns of the dataset to feed into the model and assessing how much of an impact they had (feature importance)
- Knowing how much to clean and prepare the data for processing
- Pre-Trained models for sentiment analysis are not easily accessible for free experimentation and keep their parameters hidden
- A problem beyond our control left us without a neural model, which we initially predicted to be our best performing model
- Our 'baseline' model (Naive Bayes) performed similarly to our other models but in a shorter time, meaning that these more complicated models may not actually be better

Sentiment Conclusion

Technical Next Steps

- Building a cloud model that classifies using our findings
- Balance and expand dataset

Business Next Steps

- 1035 of the tweet were related to Customer service
- 22% of those tweets mentioned time
- Quite a simple problem to fix

Teamwork

- Video calls 1-2 times a week and messaging in between helped delegate work and check up on progress.
- We split up to explore different areas of the project, sharing our results in Google Drive using Google Colab for our code.
- A setback towards the end of the project meant we did not have a completed Neural Network solution, but we were able to regroup quickly and reevaluate our approach to the project.
- Splitting up the project into stages and using an agile methodology allowed for smooth re-planning and adaptation.

Learning Outcomes

Data exploration is key to good results

Introduction to NLP

Learning Python

There is no one size fits all model

Impact of cleaning a dataset ML Evaluation Metrics

Power of visualisation

Questions?