Cosets!

Spencer Bagley

With many thanks to Matthew Macauley, http://www.math.clemson.edu/~macaule/

17 Feb 2025

Goals for today:

- 1. Define what cosets are
- 2. See some examples
- 3. Learn some properties of cosets
- 4. Prove Lagrange's theorem
- 5. Explore normal subgroups

Definition time!

Definition time! (soon)

Vibes-based explanation (not a definition)

Let $H \leq G$. A coset of H is a shifted copy of H somewhere else in G.

Example: consider $H = \langle f \rangle < D_4$.

(Of course, only one of these is actually a subgroup; the others don't contain the identity.) How do you shift to get from original H to each of these shifted copies?

Left cosets, and how to find them

To find the left coset xH in a Cayley graph, carry out the the following steps:

- 1. starting from the identity, follow a path to get to x ("shift by x")
- 2. from x, follow all "H-paths".

Definition time! (actually)

Definition

If H < G, then a left coset is a set

$$xH = \{xh \mid h \in H\},\$$

for some fixed $x \in G$ called the representative. Similarly, we can define a right coset as

$$Hx = \{hx \mid h \in H\}.$$

Left vs. right cosets

- The left coset rH in D_4 : first shift by r, then traverse all "H-paths".
- The right coset Hr in D_4 : first traverse all H-paths, then shift by r.

Let's look at the right cosets of $H = \langle f \rangle$ in D_4 .

Left vs. right cosets

- The **left coset** rH in D_4 : first go to r, then traverse all "H-paths".
- The right coset Hr in D_4 : first traverse all H-paths, then traverse the r-path.

$$rH = r\{1, f\} = \{r, rf\} = rf\{f, 1\} = rfH$$

$$rH = r\{1,f\} = \{r,rf\} = rf\{f,1\} = rfH \qquad \qquad Hr = \{1,f\}r = \{r,r^3f\} = \{f,1\}r^3f = Hr^3f$$

6 / 24

Because of our convention that arrows in a Cayley graph represent right multiplication:

- left cosets look like copies of the subgroup,
- right cosets are usually "scattered."

Key point

Left and right cosets are generally different.

Overview of left and right cosets of $\langle f \rangle$

Definition

Let $H \leq G$. Given $x \in G$, its left coset xH and right coset Hx are:

$$xH = \{xh \mid h \in H\}, \qquad Hx = \{hx \mid h \in H\}.$$

$$Hx = \{hx \mid h \in H\}$$

Your turn!

Your turn!

Find all the left and right cosets of a different subgroup, $N = \langle r \rangle$.

Reminder: finding left vs right cosets

- Left coset xN: first shift by x, then traverse all N-paths
- Right coset Nx: first traverse all N-paths, then shift by x

$$Nf = \{1, r, r^2, r^3\}f = \{f, rf, r^2f, r^3f\}$$

9 / 24

Observations?

■ There are multiple representatives for the same coset:

$$fN = (rf)N = (r^2f)N = (r^3f)N$$
, $Nf = N(rf) = N(r^2f) = N(r^3f)$.

■ For this subgroup, each left coset is a right coset. Such a subgroup is called normal.

Your turn!

Now try:

- The other cyclic subgroups of D_4
- $K = \langle r^2, f \rangle \leq D_4$

Observations?

- Cosets never overlap
- All the cosets are always the same size as the original subgroup
- Cosets always cover the whole group
- Any time there are just two cosets, each left coset is a right coset

Equality of sets vs. equality of elements

Caveat!

An equality of cosets xK = Kx as sets *does not* imply (or require) an equality of elements xk = kx.

rK and Kr are the same as sets, even though the elements occur in a different order.

Properties of cosets!

Basic properties of cosets

The following results are "visually clear" from the Cayley graphs, but let's now prove them:

Proposition

Each (left) coset can have multiple representatives: if $b \in aH$, then aH = bH.

Proof

Since $b \in aH$, we can write b = ah, for some $h \in H$. That is, $h = a^{-1}b$ and $a = bh^{-1}$.

To show that aH = bH, we need to verify both $aH \subseteq bH$ and $aH \supseteq bH$.

"⊆": Take $ah_1 \in aH$. We need to write it as bh_2 , for some $h_2 \in H$. By substitution,

$$ah_1 = (bh^{-1})h_1 = b(h^{-1}h_1) \in bH.$$

"⊇": Pick $bh_3 \in bH$. We need to write it as ah_4 for some $h_4 \in H$. By substitution,

$$bh_3=(ah)h_3=a(hh_3)\in aH.$$

Therefore, aH = bH, as claimed.

Corollary (boring but useful)

The equality xH = H holds if and only if $x \in H$. (And analogously, for Hx = H.)

Basic properties of cosets

Proposition

For any subgroup $H \leq G$, the (left) cosets of H partition the group G: every element $g \in G$ lives in exactly one coset of H.

Proof

We know that the element $g \in G$ lies in a (left) coset of H, namely gH. Uniqueness follows because if $g \in kH$, then gH = kH.

Proposition

All (left) cosets of H < G have the same size.

Proof

It suffices to show that |xH| = |H|, for any $x \in H$.

Define a map

$$\phi: H \longrightarrow xH$$
, $h \longmapsto xh$.

It is elementary to show that this is a bijection.

Lagrange's theorem!

Lagrange's theorem

Remark

For any subgroup $H \leq G$, the left cosets of H partition G into subsets of equal size.

The right cosets also partition G into subsets of equal size, but they may be different.

Let's compare these two partitions for the subgroup $H = \langle f \rangle$ of $G = D_4$.

Definition

The index of a subgroup H of G, written [G:H], is the number of distinct left (or equivalently, right) cosets of H in G.

Lagrange's theorem

If H is a subgroup of finite group G, then $|G| = [G:H] \cdot |H|$.

Funny historical aside

Guess who proved Lagrange's theorem. Not Lagrange!

- Lagrange, 1771: if a polynomial in n variables has its variables permuted in all n! ways, the number of different polynomials that are obtained is always a factor of n!.
 - What does this have to do with cosets?
 - Take $H \leq S_n$ to be the set of permutations that fix the polynomial. $n! = |S_n| = [S_n : H] \cdot |H|$.
 - The number of different polynomials is the number of cosets of H, aka the index $[S_n : \hat{H}]$.
 - \blacksquare So: true for special subgroups of S_n .
- Gauss, 1801: the special case of subgroups of $(\mathbb{Z}/p\mathbb{Z})^*$
- Cauchy, 1844: true for any subgroup $H < S_n$
- Jordan, 1861: true for any subgroup H of a permutation group
 - \blacksquare (so, now it's true for subgroups of subgroups of S_n)
- Cayley, 1854; every group is a permutation group

Importantly: Lagrange would not have had the words "index," "coset," "group."

The tower law

Proposition

Let G be a finite group and K < H < G be a chain of subgroups. Then

$$[G:K] = [G:H][H:K].$$

Here is a "proof by picture":

$$[G:H] = \#$$
 of cosets of H in G

[H:K] = # of cosets of K in H

$$[G:K]=\#$$
 of cosets of K in G

_	L	
_	Г	1

z ₁ K	z ₂ K	z ₃ K		z _n K
i	į		·	:
a ₁ K	a ₂ K	a ₃ K		a _n K
K	h _o K	h ₂ K		h_K

aН	a ₁ K	a ₂ K	a₃K	
Н	К	h ₂ K	h ₃ K	

Proof

By Lagrange's theorem,

$$[G:H][H:K] = \frac{|G|}{|H|} \cdot \frac{|H|}{|K|} = \frac{|G|}{|K|} = [G:K].$$

The tower law

Another way to visualize the tower law involves subgroup lattices.

It is often helpful to label the edge from H to K in a subgroup lattice with the index [H:K].

The tower law and subgroup lattices

For any two subgroups $K \le H$ of G, the index of K in H is just the *products of the edge labels* of any path from H to K.

Normal subgroups!

Normal subgroups and normalizers

Given a subgroup H of G, it is natural to ask the following question:

"How many left cosets of H are right cosets?"

Partition of G by the left cosets of H

Partition of G by the right cosets of H

- "Best case" scenario: all of them
- "Worst case" scenario: only H
- In general: somewhere between these two extremes

Definition

A subgroup H is a normal subgroup of G if gH = Hg for all $g \in G$. We write $H \subseteq G$.

The normalizer of H, denoted $N_G(H)$, is the set of elements $g \in G$ such that gH = Hg:

$$N_G(H) = \{ g \in G \mid gH = Hg \},\$$

i.e., the union of left cosets that are also right cosets.

Examples of normal sugroups

We've seen cases where we know a subgroup will be normal without having to check.

1. The subgroup H=G is always normal in G. The only left coset is also the only right coset:

$$eG = G = Ge$$

2. The subgroup $H = \{e\}$ is always normal. The left and right cosets are singleton sets:

$$gH = \{g\} = Hg.$$

- 3. Subgroups H of index 2 are normal. The two cosets (left or right) are H and G-H.
- 4. Subgroups of abelian groups are always normal, because for any $H \leq G$,

$$aH = \{ah \mid h \in H\} = \{ha \mid h \in H\} = Ha.$$

- 5. The center Z(G) is always normal, for the same reason as above.
- 6. Relatedly, any subgroup of Z(G) is always normal.

Normal subgroups in D_4

From our explorations, we found:

- $\langle r^2 \rangle \triangleleft D_4$ (because it is $Z(D_4)!$)

The end!