Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 6

Methods for Solving Recurrences

Iteration method

Substitution method

Recursion tree method

Master method

Master method

"Cookbook" for solving recurrences of the form:

$$T(n)=aT\left(\frac{n}{b}\right)+f(n)$$

where, a > 0, b > 1, and f(n) > 0

Idea: compare f(n) with nlog a

- f(n) is asymptotically smaller or larger than $n^{\log_b a}$ by a polynomial factor n^{ϵ}
- f(n) is asymptotically equal with $n^{\log_b a} |g^k n| (k \ge 0)_3$

Master method

"Cookbook" for solving recurrences of the form:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

where, a > 0, b > 1, and f(n) > 0

Case 1: if
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some $\epsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

Case 2: if $f(n) = \Theta(n^{\log_b a} | g^k n)$, (for some $k \ge 0$) then:

$$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$

Case 3: if $f(n) = \Omega(n^{\log_b^{a+\epsilon}})$ for some $\epsilon > 0$, and if

 $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then:

regularity condition

$$T(n) = \Theta(f(n))$$

CS 477/677 - Lecture 6

Examples

$$T(n) = 3T(n/4) + nlgn$$

$$a = 3$$
, $b = 4$, $log_4 3 = 0.793$

Compare f(n) = nlgn with $n^{0.793}$

$$f(n) = \Omega(n^{\log_4 3 + \varepsilon})$$

Case 3: check regularity condition:

$$3(n/4)lg(n/4)(3/4)nlgn = c f(n), c=3/4$$

$$\Rightarrow$$
 T(n) = Θ (nlgn)

Examples

$$T(n) = 2T(n/2) + nlgn$$

$$a = 2, b = 2, \log_2 2 = 1$$

Compare f(n) = nlgn with n

$$\Rightarrow$$
 f(n) = $\Theta(nlg^1n) \Rightarrow$ Case 2

$$\Rightarrow$$
 T(n) = Θ (nlg²n)

Examples

$$T(n) = 2T(n/2) + n/lgn$$

$$a = 2, b = 2, log_2 2 = 1$$

- Compare f(n) = n/lgn with n
 - \Rightarrow f(n) = O(n) \Rightarrow seems like Case 1 applies
- f(n) must be polynomially smaller by a factor of n^{ϵ}
- In this case it is only smaller by a factor of Ign

The Sorting Problem

Input:

- A sequence of **n** numbers a_1, a_2, \ldots, a_n

Output:

– A permutation (reordering) a_1', a_2', \ldots, a_n' of the

input sequence such that $a_1' \leq a_2' \leq \cdots \leq a_n'$

Why Study Sorting Algorithms?

- There are a variety of situations that we can encounter
 - Do we have randomly ordered keys?
 - Are all keys distinct?
 - How large is the set of keys to be ordered?
 - Need guaranteed performance?
 - Does the algorithm sort in place?
 - Is the algorithm stable?
- Various algorithms are better suited to some of these situations

Stability

 A STABLE sort preserves relative order of records with equal keys

Sort file on first key:

Aaron	4	A	664-480-0023	097 Little	
Andrews	3	Α	874-088-1212	121 Whitman	
Battle	4	C	991-878-4944	308 Blair	
Chen	2	Α	884-232-5341	11 Dickinson	
Fox	1	Α	243-456-9091	101 Brown	
Furia	3	Α	766-093-9873	22 Brown	
Gazsi	4	В	665-303-0266	113 Walker	
Kanaga	3	В	898-122-9643	343 Forbes	
Rohde	3	Α	232-343-5555	115 Holder	
Quilici	uilici 1 C		343-987-5642	32 McCosh	

Sort file on second key:

Records with key value 3 are not in order on first key!!

Fox	1	A	243-456-9091	101 Brown
Quilici	1	O	343-987-5642	32 McCosh
Chen	2	A	884-232-5341	11 Dickinson
Kanaga	3	В	898-122-9643	343 Forbes
Andrews	3	A	874-088-1212	121 Whitman
Furia	3	Α	766-093-9873	22 Brown
Rohde	3	A	232-343-5555	115 Holder
Battle	4	С	991-878-4944	308 Blair
Gazsi	4	В	665-303-0266	113 Walker
Aaron	4	A	664-480-0023	097 Little

Insertion Sort

- Idea: like sorting a hand of playing cards
 - Start with an empty left hand and the cards facing down on the table
 - Remove one card at a time from the table, and insert it into the correct position in the left hand
 - compare it with each of the cards already in the hand, from right to left
 - The cards held in the left hand are sorted
 - these cards were originally the top cards of the pile on the table

Example

1	2	3	4	5	6
1	2	3	4	5	6

INSERTION-SORT

for
$$j \leftarrow 2$$
 to n

do key $\leftarrow A[j]$

| i \sim j \cdot key |
| lnsert $A[j]$ into the sorted sequence $A[1..j-1]$

i \sim j - 1

while i > 0 and $A[i]$ > key

do $A[i+1] \leftarrow A[i]$
 $i \leftarrow i-1$
 $A[i+1] \leftarrow key$

Insertion sort – sorts the elements in place

```
Alg.: INSERTION-SORT(A)
   for j \leftarrow 2 to n
            do key \leftarrow A[j]
                Insert A[j] into the sorted sequence A[1..j-1]
                i ← j - 1
                while i > 0 and A[i] > key
                    do A[i + 1] \leftarrow A[i]
                         i \leftarrow i - 1
                A[i + 1] \leftarrow key
```

Invariant: at the start of each iteration of the for loop, the elements in A[1..j-1] are in sorted order

Proving Loop Invariants

- Proving loop invariants works like induction
- Initialization (base case):
 - It is true prior to the first iteration of the loop
- Maintenance (inductive step):
 - If it is true before an iteration of the loop, it remains true before the next iteration

Termination:

 When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct

Initialization:

- Just before the first iteration, j = 2: the subarray A[1...j-1] = A[1], (the element originally in A[1]) – is sorted

Maintenance:

- the **while** inner loop moves A[j-1], A[j-2], A[j-3], and so on, by one position to the right until the proper position for **key** (which has the value that started out in A[j]) is found
- At that point, the value of key is placed into this position.

Termination:

- The outer for loop ends when $j = n + 1 \Rightarrow j-1 = n$
- Replace \mathbf{n} with $\mathbf{j-1}$ in the loop invariant:
 - the subarray A[1..n] consists of the elements originally in A[1..n], but in sorted order

The entire array is sorted!

Analysis of Insertion Sort

```
INSERTION-SORT(A)
                                                                             cost
                                                                                 times
   for j \leftarrow 2 to n
               do key \leftarrow A[i]
                                                                               C_1
                 Insert A[j] into the sorted seq. A[1..j-1]
                                                                                                n-
                     i \leftarrow i - 1
                                                                                            \sum_{j=2}^{n} r t_{-j}
                    while i > 0 and A[i] > key
                                                                                           \sum_{j=2}^{n} (t i i j - 1) i
                          do A[i + 1] \leftarrow A[i]
                                                                                           \sum_{i=2}^{n}(t\ddot{i}\ddot{i}j-1)\ddot{i}
                                i \leftarrow i - 1
                    A[i + 1] \leftarrow key
                                        CS 477/677 - Lecture 6
```

Best Case Analysis

- The array is already sorted "while i > 0 and A[i] > key"
 - $A[i] \le key$ upon the first time the **while** loop test is run (when i = j 1)
 - $-\dagger_{j}=1$

•
$$T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 (n - 1) + c_8 (n - 1) =$$

$$(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$

$$= an + b = \Theta(n)$$

Worst Case Analysis

- The array is reversely sorted "while i > 0 and A[i] > key"
 - Always A[i] > key in while loop test
 - Have to compare **key** with all elements to the left of the **j**-th position \Rightarrow compare with **j-1** elements \Rightarrow $t_i = j$

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \quad \text{and} \quad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$ian^2+bn+c$$

a quadratic function of n

•
$$T(n) = \Theta(n^2)$$

order of growth in n²

Comparisons and Exchanges in Insertion Sort

INSERTION-SORT(A) cost

for
$$j \leftarrow 2$$
 to n times

do key $\leftarrow A[j]$ c_1 n

Insert $A[j]$ into the sorted sequence $A[1 ... j \frac{1}{c_2^2}]$ n -

 $i \leftarrow j - 1$ $\approx n^2/2$ comparisons 1

while $i > 0$ and $A[i] > key$ 0 $\sum_{j=2}^{n} f_j - j$

do $A[i+1] \leftarrow A[i]$ 1 $\sum_{j=2}^{n} (t i \hat{b}_j j - 1) \hat{b}_j - j$
 $A[i+1] \leftarrow key$ 1

 $CS 477/677 - Lecture 6$ C_2 22

Insertion Sort - Summary

- Idea: like sorting a hand of playing cards
 - Start with an empty left hand and the cards facing down on the table.
 - Remove one card at a time from the table, and insert it into the correct position in the left hand
- Advantages
 - Good running time for "almost sorted" arrays
 Θ(n)
- Disadvantages
 - $-\Theta(n^2)$ running time in worst and average case
 - ≈n²/2 comparisons and n²/2 exchanges

Bubble Sort

- Idea:
 - Repeatedly pass through the array
 - Swaps adjacent elements that are out of order

 Easier to implement, but slower than Insertion sort

Example

Bubble Sort

```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j-1]

then exchange A[j] \Longleftrightarrow A[j-1]

i \longrightarrow A[j-1]

i \longrightarrow A[j-1]
```

Readings

- For this lecture
 - Section 4.5, 2.1, 2.2
 - Coming next
 - Section 2.3, 7.1, 7.2