Foundations of Data Science & Analytics: **Decision Trees**

Ezgi Siir Kibris

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Tasks

Predictive Modeling

	Output
Classification:	Classes / Categories
Regression:	Continuous Values

Classification Techniques

Base Classifiers

- Decision Tree based Methods
- Rule-based Methods
- Instance-based Methods (Nearest-neighbor)
- Naïve Bayes
- Support Vector Machines
- Neural Networks and Deep Learning

Ensemble Classifiers

Boosting, Bagging, Random Forests

Decision Tree

categorical categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Decision Tree

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Test Data

			Defaulted Borrower
No	Married	80K	?

How to build a decision tree?

- Tree induction algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

Hunt's Algorithm

Let D_t be the set of training records that reach a node t.

General Procedure:

- If D_t only contains records that belong to the same class y_t, then t is a leaf node labeled as y_t
- If D_t contains records that belong to more than one class, use a feature to split the data into smaller subsets. Recursively apply the procedure to each subset.

How to split a node?

Multi-way split:

Use as many partitions as distinct values

Binary split:

- Divides values into two subsets
- Preserve order property among feature values

How to find the Best split?

Greedy approach:

Nodes with purer class distribution are preferred

Need a measure of node impurity:

C0: 5

C1: 5

High degree of impurity

C0: 9

C1: 1

Low degree of impurity

Measure of Node Impurity

• **Gini Index:**
$$Gini\ Index = 1 - \sum_{i=0}^{c-1} p_i(t)^2 \qquad \begin{array}{l} \text{Where } p_i(t) \text{ is the frequency} \\ \text{of class } i \text{ at node } t, \text{ and } c \text{ is} \\ \text{the total number of classes} \end{array}$$

• Entropy:
$$Entropy = -\sum_{i=0}^{c-1} p_i(t) log_2 p_i(t)$$

Misclassification Error:

Classification error = $1 - \max[p_i(t)]$

Defaulted = No(7,3)(a)

Before split:

$$P = Gini = 1 - ((7/10)^2 + (3/10)^2) = 0.42$$

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

If split on Home Owner:

$$egin{aligned} M(HO) &= (3/10) imes Gini(HO_{Yes}) \ &+ (7/10) imes Gini(HO_{No}) \ &= 0.3 imes (1 - ((3/3)^2 + (0/3)^2)) + 0.7 \ & imes (1 - ((4/7)^2 + (3/7)^2)) = 0.34 \end{aligned}$$

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

	ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
'	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

If split on Annual Income:

$$M(AI) = \min Gini(AI(X)) = Gini(AI(97.5K)) \ = 0.6 \times (1 - ((3/6)^2 + (3/6)^2)) + 0 = 0.30$$

	ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
l	4	Yes	Married	120K	No
J	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

If split on Annual Income:

No	No	No	Yes	Yes	Yes	No	No	No	No
<60K	<70K	<75K	<85K	<90K	<95K	<100K	<120K	<125K	<220K
0.42	0.40	0.375	0.34	0.417	0.40	0.30	0.34	0.375	0.40

	ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
l	4	Yes	Married	120K	No
J	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

If split on Marital Status:

$$M(MS) = \min Gini(MS(X)) = Gini(MS(Single \cup Divorced, Married)) \ = 0.6 imes (1 - ((3/6)^2 + (3/6)^2)) + 0 = 0.30$$

	ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
	1	Yes	Single	125K	No
	2	No	Married	100K	No
_	3	No	Single	70K	No
l	4	Yes	Married	120K	No
J	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

Best split:

$$Gain(HO) = P - M(HO) = 0.42 - 0.34 = 0.08$$

$$Gain(AI) = P - M(AI) = 0.42 - 0.30 = 0.12$$

$$Gain(AI) = P - M(AI) = 0.42 - 0.30 = 0.12 \ Gain(MS) = P - M(MS) = 0.42 - 0.30 = 0.12$$

How about split on **Marital Status?**

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
3	No	Single	70K	No
5	No	Divorced	95K	Yes
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
10	No	Single	90K	Yes

Stop until:

- All nodes are pure
- Or early stopping rule is met: Gain < threshold

Decision Tree Classifiers

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records (inference)
- Easy to interpret for small-sized trees
- Robust to noise (especially when methods avoiding overfitting are employed)
- Can easily handle redundant or irrelevant features (unless the features are interacting)

Disadvantages:

- Space of possible decision trees is exponentially large. Greedy approaches are often unable to find the best tree.
- Does not take into account interactions between features
- Each decision boundary involves only a single feature

Further Reading

https://scikit-learn.org/stable/modules/tree.html

```
from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
X, y = iris.data, iris.target
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, y)
```

tree.plot_tree(clf)

Decision tree trained on all the iris features

Assignment 7