

Práctico 9 – Desarrollo de Taylor.

Ejercicio de repaso

Calcular el límite cuando $x \to 0$:

a)
$$\frac{1 - \cos(x)}{x^2}$$

b)
$$\frac{(e^x - 1)\sin(x) - x^2}{x^3}$$

c)
$$\frac{\text{sen}(x^2) - x^2}{x^6}$$

$$d) \frac{1 - \cos(1 - \cos x)}{x^4}$$

Taylor en varias variables

- 1. Sean $g: \mathbb{R} \to \mathbb{R}$ y $h: \mathbb{R} \to \mathbb{R}$ definidas como $g(x) = e^x$ y h(x) = sen(x).
 - a) Hallar el polinomio de Taylor de orden 2 de g y h en x=0.
 - b) Considere ahora $f: \mathbb{R}^2 \to \mathbb{R}$ definida como f(x,y) = g(x)h(y)
 - c) Calcular df y df^2 de f en (0,0) y escribir el desarrollo de Taylor de orden 2 de f en (0,0).

Observar que T_2f en (0,0) puede obtenerse multiplicando los polinomios de Taylor de orden 2 de g y h, y luego removiendo los terminos de orden mayor a 2. Este procedimiento es válido para cualquier orden, cualquier par de funciones g y h, y pueden utilizarlo para realizar cálculos de manera más eficiente.

- 2. Sea $f(x,y) = e^{(sen(x)+y)}$ y g(x,y) = sen(x) + y
 - a) Calcular el desarrollo de Taylor de orden 3 de g en (0,0).
 - b) Calcular el desarrollo de Taylor de orden 3 de f en (0,0).

Observar que $T_3(f)$ puede obtenerse componiendo $T_3h \circ T_3g$ donde $h(x) = e^x$, y luego removiendo los terminos de orden mayor a 3. Este procedimiento es válido para cualquier orden, cualquier par de funciones f y g, y pueden utilizarlo para realizar cálculos de manera más eficiente.

3. Calcular los siguientes límites:

a)
$$\lim_{(x,y)\to(0,0)} \frac{xy - \sin(x)\sin(y)}{x^2 + y^2}$$

$$b) \lim_{(x,y)\to(0,0)} \frac{e^{x^2+y(y+1)}-(1+y+\frac{y^2}{2})}{x^2+y^2}$$

4. Hallar el polinomio de Taylor de grado 3 en (0,0) de las siguientes funciones:

(a)
$$f(x,y) = \arctan\left(\frac{y}{x^2 + 1}\right)$$
 (b) $f(x,y) = e^x \cos y$ (c) $f(x,y) = \log(xy + 1)$

5. Calcular el polinomio de Taylor de grado 3 de la función $f(x,y,z) = \frac{yz}{x}$ en el punto (1,0,0).

- 6. Desarrollar xyz^2 en potencias de x, y 1 y z + 1.
- 7. Calcular el polinomio de Taylor de grado n de las siguientes funciones:
 - a) $f(x,y,z) = e^{x+y+z}$, en el origen.
 - b) $f(x,y) = \sin(y)\cos(x)$, en el origen.
 - c) $f(x,y) = \frac{1}{xy}$, en el punto (1,1).
 - d) $f(x,y) = \frac{x}{y}$, en el punto (1,1)
- 8. El polinomio de Taylor de grado 3 de $f(x,y) = \sin(x+y^2) + e^{x^2}$ en un entorno de (0,0) es:
 - a) $1 + x + x^2 + y^2 + x^3$.
 - b) $x + x^2 + y^2 + x^3$.
 - c) $1 + x + x^2 + y^2 + x^3/3$.
 - d) $1 + x + x^2 + y^2 x^3/6$.
 - $e) x + x^2 + y^2 x^3/3.$
- 9. El polinomio de Taylor de grado 3 de $f(x,y) = \log(1+x+3y)$ en un entorno de (0,0) es:
 - a) $x + 3y (1/2)(x + 3y)^2 + (1/3)(x + 3y)^3$.
 - b) $x + 3y + (1/2)(x + 3y)^2 + (1/3)(x + 3y)^3$.
 - c) $x + 3y + (1/2)(x + 3y)^2 + (1/6)(x + 3y)^3$.
 - d) $x + 3y (1/2)(x + 3y)^2 + (1/6)(x + 3y)^3$.
 - e) $1 + x + 3y + (1/2)(x + 3y)^2 + (1/3)(x + 3y)^3$.

Ejercicios propuestos en evaluaciones anteriores

- 1. (Segundo parcial segundo semestre 2023) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida como $f(x,y) = e^{x^2+y} 1 y x^2$. Entonces el polinomio de Taylor de orden 3 de f en el punto (0,0) es:
 - (A) $\frac{1}{2}y^2 + \frac{1}{6}x^3$
 - (B) $2xy + \frac{1}{3}y^3$
 - (C) $\frac{1}{2}y^2 + x^2y + \frac{1}{6}y^3$
 - (D) $\frac{1}{2}xy$
 - (E) $\frac{1}{2}x^2 + y^2 2xy^2$
- 2. (**Segundo parcial segundo semestre 2022**) El polinomio de Taylor de orden 2 de $f(x,y) = \log(x^2 + y)$ en el punto (1,0) es:
 - (A) $p_2(x,y) = 1 + 2x y + \frac{x^2}{2} \frac{y^2}{2} + 3xy$
 - (B) $p_2(x,y) = -3 + 4x + 3y x^2 \frac{y^2}{2} 2xy$
 - (C) $p_2(x,y) = 2x + y \frac{x^2}{2} + y^2 2xy$

(D)
$$p_2(x,y) = 1 - 2x + y + x^2 + \frac{y^2}{2} + 2xy$$

(E)
$$p_2(x,y) = 2(x-1) + y + (x-1)^2 + y^2 + (x-1)y$$

3. (**Examen febrero 2022**) Sean $a, b, c, d, e, f \in \mathbb{R}$ tales que

$$\lim_{(x,y)\to(0,1)}\frac{xy+\ln(x^2+y)-(a+bx+cy+dx^2+ey^2+fxy)}{x^2+(y-1)^2}=0.$$

Entonces la suma a+b+c+d+e+f es igual a:

- (A) 2
- (B) 0
- (C) 1
- (D) -1
- (E) 3
- (F) -2

4. (Segundo parcial primer semestre 2019) Dado $D = \{(x,y) : x + 2y + 1 > 0\}$, considere $f : D \to \mathbb{R}$ tal que:

$$f(x,y) = x \ln(1 + x + 2y).$$

Sea $p:\mathbb{R}^2\to\mathbb{R}$ el polinomio de Taylor de f de orden 2 en un entorno de (0,0). Entonces:

- (A) p(2,1) = 8
- (B) p(2,1) = 16
- (C) p(2,1) = 6
- (D) p(2,1) = 12

Ejercicios complementarios

- 1. a) Calcular con un error menor que $3,2 \times 10^{-5}$ el valor de $\arctan(0,8)$.
 - b) Calcular con un error menor que 10^{-4} el valor de $\sqrt{5}.$
- 2. ¿Cuál es el menor número de términos que hay que tomar en el desarrollo de Taylor de e^x en x = 0, para obtener un polinomio que aproxime, con un error menor que 10^{-4} , a e^x en el intervalo [-1,1]?
- 3. Estimar el error de reemplazar $\frac{\cos(x)}{\cos(y)}$ por $1-\frac{1}{2}(x^2-y^2)$ para $|x|,|y|\leq\frac{\pi}{6}$