# Generative Al

#### Generative vs Discriminative Models

generative models: predict joint probability P(Y, X) (what allows to create new data samples) or directly generate new data samples

or just  $P(X) \rightarrow$  unsupervised (or self-supervised) learning

discriminative models: predict conditional probability (or probability distribution for regression) P(Y|X) or directly output (label for classification, real value for regression)

task of generative models more difficult: model full data distribution rather than merely find patterns in inputs to distinguish outputs

discriminative model



generative model



source

#### Data Generation

generative models can be used for discriminative tasks (although potentially inferior to direct discriminative methods)

but generative methods do more than discriminative ones: model full data distribution

→ allows generation of new data samples (can be images, text, video, audio, code like SQL or Python, proteins, materials, time series, structured data, ...)

large (auto-regressive) language models examples of generative models

### Deep Learning for Generative Al

Depending on the application, there are currently two dominant approaches for generative AI:

text generation: LLMs

• image synthesis: diffusion models (usually conditioned on text by transformers)

note the difference between image synthesis and multimodal understanding in LLMs

### Image Synthesis

idea: generate new images as variations of training data

condition generation on text prompts: text-to-image

trade-off between diversity and fidelity

SOTA: (guided) diffusion models

example: DALL-E 2



# Different Models Types for Image Synthesis



→ generalization: flow matching

# Generative Adversarial Networks (GAN)

two neural networks playing a zero-sum game:

- the generator network G generating new (fake) samples
- the discriminator network D trying to distinguish between real and fake samples

indirect training via D: G not trained directly to minimize reconstruction error of real samples, but to fool D  $\rightarrow$  self-supervised approach



common loss for generator and discriminator:

$$L(x_i) = E_{x \sim p_r(x)}[\ln D(x_i)] + E_{x \sim p_g(x)}[\ln(1 - D(x_i))]$$

G trying to minimize

D trying to maximize

#### Side Note: Autoencoder

(deep) encoder network
(deep) decoder network
learned together by
minimizing differences
between original input and
reconstructed input
(expressed as losses)

compressed intermediate representation: dimensionality reduction



source

up-sampling, for example,

by transposed convolutions

# Variational Autoencoder (VAE)

goal: generation of variations of input data rather than compressed representation

→ learn variational distribution instead of identity function

to be precise: parametrized variational distribution of latent encoding variables z

prior (simple distribution, in usual VAE:

Gaussian):  $p_{\theta}(\mathbf{z})$ 

posterior: 
$$p_{\theta}(\mathbf{z}|\mathbf{x}) = \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})}{\int p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})d\mathbf{z}}$$

 $p_{\theta}(x)$ : mixture of Gaussians

Input Encoder Space Decoder Output

from wikipedia

Variational Bayesian Method

### Gaussian Approximation

good approximation:

Posterior and approximation

 $q(z|\mathbf{x}^*, \boldsymbol{\theta})$ 

Latent variable, z

learn mean and variance of multivariate Gaussian with diagonal covariance structure

 $Pr(z|\mathbf{x}^*, \boldsymbol{\phi})$ 



#### Diffusion

training: distort training data by successively adding random noise, then learn to reverse this process (denoising)

generation: sample random noise and run through the learned denoising process



advantages: easy to train, produce high-quality/realistic samples

can be interpreted as special case of hierarchical VAE (one latent variable generates another) with fixed encoder and latent space of same size as the data

→ more sophisticated latent space than just Gaussian mixture in VAE

### Text-to-Image

plenty of applications: DALL-E, Stable Diffusion, ImageGen, Midjourney, ...

rather "translations"

also text-to-speech (<u>VALL-E</u>, <u>Speech T5</u>, ...) (and speech recognition, e.g., <u>Whisper</u>), text-to-video (<u>Make-A-Video</u>, <u>Lumiere</u>, <u>Sora</u>, ...) → dynamics/physics understanding/simulation

web app for Stable
Diffusion: DreamStudio



inpainting example (GLIDE):



"zebras roaming in the field"

source

prompt

### Assignments

- text classification: <u>Kaggle Disaster Tweets</u>
   (prompt engineering or fine-tune a <u>Transformers</u> model)
- local LLM assistant with RAG: be creative;)
  (options: chat with pdf/website using <a href="langchain/llamaindex">langchain/llamaindex</a>, <a href="Ollama">Ollama</a> for coding with CodeLlama or image understanding with Llava)