ALD Process for Top-Gating 2D Materials

ENGR241 PROJECT PROPOSAL

Project Members: Akash Levy, Jung-Soo Ko

Mentor: Michelle Rincon, Vijay Narasimhan, J Provine

Motivation

- Many research groups are studying 2D materials at Stanford
 - > Poplab (EE)
 - > Evan Reed group (MATSCI)
 - Saraswat group (EE)
 - More...

- For 2D FET devices, ALD is needed to produce high-quality gate dielectrics for CMOS integration which groups in Stanford want to develop
- Process flow involves metal buffer layer for adhesion and other tricks (plasma-enhanced) that are not currently documented anywhere for SNF members
- No optimization of the processes for high-quality TMD gate dielectrics that is essential in today's devices

Aim & Goals

- To develop and document process flow for ALD top-gating on transition metal dichalchogenides (TMDs), e.g. MoS₂, WSe₂
- Aiming for reliable and controlled growth of high-k materials
- Optimization of process parameters/conditions for best film quality/electrical properties
- Will make data available to lab members via wiki page

Process Flow Development

Parameter Optimization

Comprehensive Documentation

SNF Database

Process Flow

- Start with MoS₂ thin film wafers (pre-grown or exfoliated)
- Perform e-beam evaporation to deposit metal buffer layer
- ALD for high-k gate oxide
 - E-beam evaporation to deposit metal seed layer, then ALD (or)
 - ALD through Plasma-enhanced
- Patterning via photolithography
- Perform e-beam evaporation for metal top-gate contact

Sample Preparation (Seed Layer)

V_{GS} (V)

MoS₂

Sample Preparation (Thermal or Plasma)

Parameters to Optimize

- High-k metal oxide for buffer: Al, Zr, Hf, (Y, Ta = Q2 stretch goal)
- Buffer layer thickness
- Growth temperature
- Plasma-enhancement: yes or no
- Still need to determine exact wafer splits...
 - Will be based on initial testing and feedback from people in Poplab with tribal knowledge of the currently-used recipe
- Start with standard recipe then make modification

Characterization

- Autumn
 - AFM images for surface roughness after seeding
 - XPS for surface coverage after seeding
 - Auger Electron Spectroscopy
 - C-V Measurement with MOSCAP

- Winter
 - Typical MOSFET characterizations
 - > I-V curves
 - Gate breakdown voltages
 - Other materials (if time permits)

- Will use micromanipulator for characterization (which Akash is trained on)
- Imaging will be done with help of Jung-Soo's colleagues (TEM)
- More measurements can be done to examine the film quality through Raman, SEM, PL with help of Jung-Soo's colleagues

Tentative Timeline

Week	Description of Activities		
2	Jung-Soo: finishing up lab membership training Akash: tool shadowing/training for Fiji, AJA, spectrometry		
3	Both: tool shadowing/training for AFM, Auger, Fiji, AJA, spectrometry		
4	Both: tool shadowing/training for AFM, Auger, Fiji, AJA, spectrometry		
5	Finish up training, run initial experiments to determine wafer splits		
6	ALD/e-beam deposition under various settings		
7	Photolithographic patterning of microstructures, more ALD deposition		
8	Electrical characterization and imaging		
9	Adjust and continue		
10	Wrap up, documentation, database compilation, planning for next quarter		

Training Required

- Akash is a lab member and is qualified (through EE 312) on:
 - All photolithography equipment
 - Wet benches
 - Furnaces
 - Micromanipulator6000
- Jung-Soo will be a new lab member
- Both Akash and Jung-Soo need training on:
 - ALD equipment (Fiji)
 - E-beam evaporation (AJA)
 - AFM
 - XPS
 - Heidelberg
 - Auger Spectroscopy

Tentative Budget

Equipment Name	Training	Usage	Total\$
Fiji	3h→ 80X3X2=\$480	\$50/hX30h=\$1500	\$1980
SEM	6h→ 80X6X2=\$960	\$45X5h=\$225	\$1185
AFM	4h→ 80X4X2=\$640	\$20X5h=\$100	\$640
Si wafers	-	\$14X10 = \$140	\$140
AJA e-beam	1h→ 80X1X2=\$160	\$35X10 = \$350	\$510
Heidelberg	2h→ 80X2X2=\$320	\$35X2 = \$70	\$390
			\$4890

Recap of Deliverables

- Wiki page on optimized process flow for top-gating 2D materials
 - > Best conditions for each top-gate material will be specified
 - Optimal seed layer thickness for thin gate will be specified
 - Optimal thickness to protect TMDs from plasma will be specified
 - > Recipes will be made available to lab members on the equipment
- Electrical characterization data (raw and summarized) will be made available to lab members via database
 - > I-V curves
 - C-V curves
 - Gate breakdown voltage
- All imaging data taken will be made available to lab members in raw and summarized form
 - > AFM
 - > XPS
 - Auger Spectroscopy

Thank you!

QUESTIONS?

