Computational Learning Theory

Machine Learning

Daniele Loiacono

Outline and References

- Outline
 - ▶ Basics [ML 7.1,7.2]
 - ▶ PAC-Learning [ML 7.3]
 - ▶ VC Dimension [ML 7.4]

- References
 - Machine Learning, Mitchell [ML]

What is computational learning theory about?

- ☐ It aims at studying the general laws of inductive learning, by modeling:
 - Complexity of hypothesis space
 - Bound on training samples
 - Bound on accuracy
 - Probability of successful learning
 - **>**
- ☐ This allows to answer questions like:
 - ► How many training samples does a learner need to **converge** (with some probability) to a **successful** (with some minimum accuracy) hypothesis?
 - ▶ What will be the performance of the learner on unseen data?
 - When a concept is learnable?
 - **>** . . .

(Let's Go Back to) The Big Picture

- \square A learner (L) wants to learn a *concept* (c) that maps the data in the input space (X) to a target (t)
- \Box Let assume that L found an hypothesis h^* with no errors on the training data
- $lue{}$ How many training samples of X are necessary to be sure that L actually learned the true concept, i.e., $h^* \equiv c$?

«No Free Lunch» Theorems

- Let $ACC_G(L)$ be the **generalization accuracy** of learner L, i.e., the accuracy of L on samples that are **not** in the training set
- \square Let \mathcal{F} be the set of all the possible concepts $y = f(\mathbf{x})$
- ☐ For any learner L and any possible training set:

$$\frac{1}{|\mathcal{F}|} \sum_{\mathcal{F}} Acc_G(L) = \frac{1}{2}$$

- ▶ **Proof Sketch**: for every concept f where $ACC_G(L) = 0.5 + \delta$, exists a concept f' where $ACC_G(L) = 0.5 \delta$: $\forall \mathbf{x} \in \mathcal{D}, f'(\mathbf{x}) = f(\mathbf{x}); \forall \mathbf{x} \notin \mathcal{D}, f'(\mathbf{x}) \neq f(\mathbf{x})$
- ▶ Corollary: for any two learners, L_1 and L_2 , if $\exists f$ where $ACC_G(L_1) > ACC_G(L_2)$ then $\exists f'$ where $ACC_G(L_2) > ACC_G(L_1)$

«No Free Lunch» Theorems

 \square Let $ACC_G(L)$ be the **generalization accuracy** of learner L, i.e., the accuracy of L on samples that are not in the training set ☐ Let ☐ For What does this mean in practice? There is no such thing as a winner-takes-all in ML! In ML we always operate under some assumptions! cept f' $\exists f' \text{ where } ACC_G(L_2) > ACC_G(L_1)$

Probably Learning an Approximately Correct Hypothesis

Basics

- Problem setting
 - ▶ Let *X* be the instance space
 - ▶ Let $H = \{h: X \to \{0,1\}\}$ be the hypothesis space of L
 - ▶ Let $C = \{c: X \rightarrow \{0,1\}\}$ be the set of all the possible target functions (concepts) we might want to learn
 - \blacktriangleright Let be \mathcal{D} be training data drawn from a stationary distribution P(X) and labeled (without noise) according to a concept c we want to learn
- \square A learner L outputs a hypothesis $h \in H$ such that

$$h^* = \underset{h \in H}{\operatorname{arg\,min}} \operatorname{error}_{train}(h)$$

$$H = \{h: X \to \{0,1\}\}$$

Labelled X

How do we compute the error?

■ We compute the error of a hypothesis as the probability of misclassifying a sample:

$$error_{\mathcal{D}}(h) = \Pr_{x \in \mathcal{D}}[h(x) \neq c(x)] = \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} I(h(x) \neq c(x))$$

 \mathcal{D} is the training data

 \square This is the training error! We are interested in the **true error** of h:

$$error_{true}(h) = \Pr_{x \sim P(X)}[h(x) \neq c(x)]$$

P(X) is the input space distribution

bufortunately we don't have access to P(X)...

Can we exploit the inductive bias?

- \square We say that h overfits the training data if $error_{trae} > error_{\mathcal{D}}$...
- ? \square ... but can we bound $error_{true}$ given $error_{\mathbb{D}}$?
 - ☐ Let assume...
 - $ightharpoonup error_{true}$ is the probability of making a mistake on a sample
 - ightharpoonup we can compute $error_{\mathcal{D}}$ that is the average error probability on \mathcal{D}
 - ▶ assuming a Bernœulli distribution for the error probability, the 95% CI is:

NOT CORRECT

Version Space (4)

 \square A hypothesis h is **consistent** with a training dataset \mathcal{D} of the concept c if and only if h(x) = c(x) for each training sample in \mathcal{D}

$$Consistent(h, \mathcal{D}) \stackrel{\text{def}}{=} \forall \langle x, c(x) \rangle \in \mathcal{D}, h(x) = c(x)$$

 \square The version space, $VS_{H,\mathcal{D}}$ with respect to hypothesis space H and labelled dataset \mathcal{D} , is the subset of hypotheses in H consistent with \mathcal{D}

$$VS_{h,\mathcal{D}} \stackrel{\text{def}}{=} \{h \in H| Consistent(h,\mathcal{D})\}$$

$$(A) \text{ The borner modes}$$

$$(B) \text{ No military an train data;}$$

$$(B) \text{ The borner modes}$$

$$(B) \text{ T$$

- ☐ From now on, we consider only consistent learners, that always output a consistent hypothesis, i.e., an hypothesis in $VS_{H,D}$, assuming it is not empty
- \square Can we bound the $error_{true}$ of a consistent learner?

Version Space (2)

Hypothesis space *H*

☐ If we wish to bound the $error_{true}$ of a consistent learner, we need to find a bound for all the hypotheses in $VS_{H,D}$

Bound for Consistent Learners — solution to our problem.

If the hypothesis space H is **finite** and \mathcal{D} is a sequence of $N \geq 1$ independent random examples of some target concept c, then for any $0 \le \varepsilon \le 1$, the probability that $VS_{H,\mathcal{D}}$ contains a hypothesis error greater then ε is less than $|H|e^{-\varepsilon N}$

$$Pr(\exists h \in H : error_{\mathcal{D}}(h) = 0 \land error_{true}(h) \ge \varepsilon) \le |H|e^{-\varepsilon N}$$

Proof

 $Pr((error_{\mathcal{D}}(h_1) = 0 \land error_{true}(h_1) \ge \varepsilon) \lor \cdots \lor (error_{\mathcal{D}}(h_{|VS_{H,\mathcal{D}}|}) = 0 \land error_{true}(h_{|VS_{H,\mathcal{D}}|}) \ge \varepsilon))$ the smaller the $\leq \sum Pr(error_{\mathcal{D}}(h) = 0 \land error_{true}(h) \geq \varepsilon)$ (Union bound) $h \in VS_{H,\mathcal{D}}$

$$\leq \sum_{h \in VS_{H,D}} Pr(error_{\mathcal{D}}(h) = 0 | error_{true}(h) \geq \varepsilon)$$
 (Bound using Bayes' rule)

$$\leq \sum_{h \in VS_{H,\mathcal{D}}} (1 - \varepsilon)^N$$
 (Bound on individual h)

$$\leq |H|(1-\varepsilon)^N \tag{|VS_{H,\mathcal{D}}| \leq |H|}$$

$$\leq |H|e^{-\varepsilon N}$$
 $(1 - \varepsilon \leq e^{-\varepsilon}, \text{ for } 0 \leq \varepsilon \leq 1)$

The larger BN,

What does it mean in practice?

lacktriangle Let say that δ is the probability to have $error_{true} > \varepsilon$ for a consistent hypotesis:

$$\mathbb{P}(\exists h \in H: \begin{cases} error_D(h) = 0 \\ error_{true}(h) \geqslant \mathcal{E} \end{cases}) \leq |H| e^{-\varepsilon N} \leq \delta \qquad \text{let's choose a level } \delta \dots \text{ we}$$

 \square We can bound N after setting ε and δ :

The nb of samples to have the proba bound
$$\delta$$
:
$$N \geq \frac{1}{\varepsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)$$

 \square We can bound ε after setting N and δ :

$$\varepsilon \geq \frac{1}{N} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right) \quad \text{if N is already fixed of we cannot change it.}$$

What does it mean in practice?

 \Box Let say that δ is the probability to have $error_{true} > \varepsilon$ for a consistent hypotesis:

$$|H|e^{-\varepsilon N} \le \delta$$

 \square We can bound N after setting ε and δ :

$$N \ge \frac{1}{\varepsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)$$

 $lue{}$ We can bound ε after setting N and δ :

Can be exponential in #features

$$\varepsilon \ge \frac{1}{N} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)$$

Example: Conjunction of up to N Boolean Literals

- Consider a classification problem
 - ▶ Instance space is $X = \langle x_1, x_2, x_3, x_4 \rangle$, where x_i is a boolean variable
 - Each hypothesis h is a rule like this:

 if $(x_1 = 1, x_2 =?, x_3 = 0, x_4 = 1)$ then y = 1, otherwise y = 0
- How many samples *N* are necessary to guarantee that, with a probability at least of 0.99, the error of a consistent hypothesis is not greater than 0.05?

- ☐ How does it scale with respect to the number of variables (M)?
 - $M=10 \rightarrow N \ge 312$
 - ► M=100 → N≥2290 ~ "only ?190".

Example: Decision Tree (depth=2) Similarly

- Consider a classification problem
 - ▶ Instance space is $X = \langle x_1, ..., x_M \rangle$, where x_i is a boolean variable

► Each hypothesis h is a rule is a decision trees of depth 2 using only two variables:

 \square How many samples N are necessary to guarantee that, with a probability at least of 0.99, the error of a consistent hypothesis is not greater than 0.05?

$$N \ge \frac{1}{\varepsilon} \left(\ln|H| + \ln\left(\frac{1}{\delta}\right) \right)$$

$$\frac{M(M-1)}{2} 16$$

Probably Learning an Approximately Correct Hypothesis

 \square Considering a class C of possible target concepts defined over an instance space X with an encoding lenght M, and a learner L using a hypothesis space H we define:

C is PAC-learnable by L using H if for all $c \in C$, for any distribution P(X), ε (such that $0 < \varepsilon < 1/2$), and δ (such that $0 < \delta < 1/2$), learner L will with a probability at least $(1 - \delta)$ output a hypotehsis $h \in H$ such that $error_{true}(h) \le \varepsilon$, in time that is polynomial in $1/\varepsilon$, $1/\delta$, M, and size(c).

- $lue{}$ So, PAC-learnability is only about computational complexity? What about the complexity with respect to the number of training samples N?
- A sufficient condition to prove PAC-learnability is proving that a learner L requires only a polynomial number of training examples, and processing per example is polynomial

 Complexity

 The bound on the family complexity

 Complexity

Agnostic Learning PB of previous bound: it requires consistent leaener (no unse on training set).

- □ So far, we assumed that $c \in H$, or at least that $VS_{H,D}$ is not empty, and the learner L will always output a hypothesis h such that $error_D(h) = 0$
- \square But in general (agnostic) leaner will output a hypothesis h such that $error_{\mathcal{D}}(h) > 0$
- \square Can we bound $error_{true}(h)$ given $error_{\mathcal{D}}(h)$?

If the hypothesis space H is **finite** and \mathcal{D} is a sequence of $N \geq 1$ i.i.d. examples of some target concept c, then for any $0 \leq \varepsilon \leq 1$, and for any learned hypothesis h, the probability that $error_{true}(h) - error_{\mathcal{D}}(h) > \varepsilon$ is less than $|H|e^{-2N\varepsilon^2}$

$$Pr(\exists h \in H : error_{true}(h) > \underbrace{error_{\mathcal{D}}(h) + \varepsilon}) \leq |H|e^{-2N\varepsilon^2}$$

Agnostic Learning - Proof

 \square Additive Hoeffding Bound: let $\hat{\theta}$ be the empirical mean of N i.i.d. Bernoulli random variables with mean θ :

$$Pr(\theta>\hat{\theta}+\varepsilon)\leq e^{-2N\varepsilon^2} \qquad \text{N iid B(0) RV}$$
 Thus wear .
 So for any single hypothesis h:

$$Pr(error_{true}(h) > error_{\mathcal{D}}(h) + \varepsilon) \le e^{-2N\varepsilon^2}$$

 \square As we want this to be true for all the hypothesis in H:

$$Pr(\exists h \in H : error_{true}(h) > error_{\mathcal{D}}(h) + \varepsilon) \leq |H|e^{-2N\varepsilon^2}$$

Bounds for Agnostic Learning

☐ Similarly to what done before, we can bound the sample complexity:

$$N \ge \frac{1}{2\varepsilon^2} \left(\ln|H| + \ln\left(\frac{1}{\delta}\right) \right)$$

We can also bound the true error of the hypotesis as:

$$error_{true}(h) \leq error_{\mathcal{D}}(h) + \sqrt{rac{\ln|H| + \lnrac{1}{\delta}}{2N}}$$
 what we wanted to do (a) the beginning!

■ We found the bias and variance decomposition we previously saw in the course!

UNFORTUNATELY, for usual problems, $|H| = +\infty$ } Example for linear regression.

Les we weed a new set of bounds, not using |H| (size of hypothesis space).

- Daniele Loiacono

Machine Learning – Daniele Loiacono

PAC-Learning with Infinite Hypotheses Spaces

☐ Previously we found this PAC-Learning bound for the number of samples:

$$N \ge \frac{1}{\varepsilon} \left(\ln|H| + \ln\left(\frac{1}{\delta}\right) \right)$$

- ☐ If |H| is infinite, what does this mean? What can we used instead of |H|?
- ☐ The answer is the largest subset of X for which |H| can guarantee a zero training error (regardless of the target function c)
- ☐ We call **VC dimension** the size of this subset

Intuition Behind Using VC Dimension

- \square Let assume that |X|=N, how big is |C|?
- \square Assuming $|H| = 2^N$, we can always find $h \in H$ with $error_{\mathcal{D}}(h) = 0$
- \square Does $error_{\mathcal{D}}(h)$ tells something more on the error on other samples in X?
- What happens instead if with H we can classify correctly no more than 2 training samples?

VC Dimension

- ☐ We define a **dichotomy** of a set S of instances as a partition of S into two disjoint subsets, i.e., labeling each instance in S as positive or negative
- We say that a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy
- ☐ The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H over instance space X, is the largest finite subset of X shattered by H

■ What about a linear classifier in 2D input space?

■ What about a linear classifier in 2D input space?

☐ What about a linear classifier in 2D input space?

■ What about a linear classifier in 2D input space?

- \square A linear classifier in a 2D input space has VC(H)=3
- <u>Prop</u>: □ We can prove that a linear classifier in M-D input space has VC(H)=M+1

VC Dimension

Krearly

282

- We define a dichotomy of a set S of instances as a partition of S into two disjoint subsets, i.e., labeling each instance in S as positive or negative
- We say that a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy
- □ The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H over instance space X, is the largest finite subset of X shattered by H
 - If an arbitrarily large set of X can be shattered by H, VC(H)= ∞
- - ▶ If VC(H) = d it means there are in H at least 2^d hypotheses to label d instances
 - ▶ Thus, $|H| \ge 2^d$

Sample Complexity based on VC-Dimension

□ How many randomly drawn examples suffice to guarantee that any hypothesis that perfectly fits the training data is probably $(1 - \delta)$ approximately (ε) correct?

$$N \ge \frac{1}{\varepsilon} \left(\ln|H| + \ln\left(\frac{1}{\delta}\right) \right)$$

New bound:
$$\begin{cases} N \geq \frac{1}{\varepsilon} \left(8VC(H) \log_2(13/\varepsilon) + 4 \log_2(2/\delta) \right) \\ \text{Shill "} \frac{1}{\xi} \end{cases}$$

Agnostic Learning: VC Bounds

 \square With probability at least $(1 - \delta)$ every $h \in H$ satisfies the following inequality:

$$error_{true}(h) \le error_{\mathcal{D}}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2N}}$$

$$error_{true}(h) \le error_{\mathcal{D}}(h) + \sqrt{\frac{VC(H)(\ln \frac{2N}{VC(H)} + 1) + \ln \frac{4}{\delta}}{N}}$$