48 第 3章 点の変換

3.4 線形変換の固有値と固有ベクトル

定義 **3.24.** 線形変換 f_M に対し,

$$f_M(\vec{v}) = \lambda \, \vec{v} \tag{3.12}$$

を満たすスカラー λ を f_M の固有値とよび,ベクトル \vec{v} (ただし, $\vec{v} \neq \vec{0}$)を固有値 λ に関する f_M の固有ベクトルとよぶ.

例 3.25. 行列
$$M = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 4 & -2 \\ -1 & 1 & 1 \end{pmatrix}$$
 に対し、

$$M\begin{pmatrix}1\\1\\0\end{pmatrix}=\begin{pmatrix}3\\3\\0\end{pmatrix}=3\begin{pmatrix}1\\1\\0\end{pmatrix}, \quad M\begin{pmatrix}1\\0\\1\end{pmatrix}=\begin{pmatrix}-1\\-3\\0\end{pmatrix}\neq\lambda\begin{pmatrix}1\\0\\1\end{pmatrix}$$

であるから, $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ は固有値 3 に関する固有ベクトルであり, $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ は f_M の固有ベクトルではない

固有値・固有ベクトルの性質と求め方

次に、定義式 (3.12) から固有値・固有ベクトルの性質を導く。 λ が f_M の固有値で、零ベクトルでないベクトル \vec{v} が λ に関する f_M の固有ベクトルであるとは、

$$M\vec{v} = \lambda \, \vec{v} \tag{3.13}$$

を満たすことに他ならない. この式は次のように式変形することができる;

$$M\vec{v} = \lambda \vec{v} \iff \lambda \vec{v} - M\vec{v} = \vec{0}$$

 $\iff (\lambda I_n - M)\vec{v} = \vec{0}.$

この式が意味することは、「 \vec{v} は連立 1 次方程式 $(\lambda I_n - M)\vec{x} = \vec{0}$ の非自明解* 12 である」とうことである。一方、

$$(\lambda I_n - M)\vec{x} = \vec{0}$$
 は非自明解をもつ \iff 行列 $(\lambda I_n - M)$ は正則ではない $\iff \det(\lambda I_n - M) = 0$

であるから、「 f_M の固有値 λ は $\det(\lambda I_n - M) = 0$ を満たす数である」ことがわかる。 以上のことから、次の事実が成り立つ。

^{*12} 斉次連立方程式 $A\vec{x}=\vec{0}$ は $\vec{x}=\vec{0}$ を解として持つ.これを自明解という.自明解でない解(つまり $\vec{0}$ 以外の解)を非自明解という.

定理 **3.26.** 正方行列 M によって定まる線形変換 f_M について、以下のことが成り立つ.

- (1) λ が f_M の固有値であるための必要十分条件は $\det(\lambda I_n M) = 0$ が成り立つことである.
- (2) 固有値 λ に関する f_M の固有ベクトルは,斉次連立方程式 $(\lambda I_n M)\vec{x} = \vec{0}$ の非自明解である.
- (1) は「固有値とは t に関する方程式 $\det(t\,I_n-M)=0$ の解である」ことを述べてる.一般に,n 次正方行列 M に対し, $\det(t\,I_n-M)$ は t に関する n 次多項式である.これを M の固有多項式という.

線形変換の固有値・固有ベクトルは以下の手順で求めることができる.

線形変換 f_M の固有値,固有ベクトルの求め方 -

- (1) 行列 M の固有多項式 $\det(tI_n M)$ を求める.
- (2) 方程式 $\det(tI_n-M)=0$ の解 $t=\lambda$ を求める(この解が f_M の固有値である).
- (3) (2) で求めた各 λ に対し,斉次連立方程式 $(\lambda I_n M)\vec{x} = \vec{0}$ の非自明解 $\vec{x} = \vec{v}$ を求める(この解 \vec{v} が固有値 λ に関する f_M の固有ベクトルである).

例 3.27. 行列 $M=\left(egin{array}{cc} 4 & -1 \\ 2 & 1 \end{array}\right)$ によって定まる \mathbb{R}^2 の線形変換 f_M の固有値,固有ベクトルを求めなさい.

解. Mの固有多項式を求める;

$$\det(tI_2 - M) = \det\begin{pmatrix} t - 4 & 1\\ -2 & t - 1 \end{pmatrix}$$
$$= (t - 4)(t - 1) - 1 \times (-2)$$
$$= t^2 - 5t + 6 = (t - 2)(t - 3).$$

よって、 $\det(tI_2-M)=0$ の解は 2 と 3 であり、これが f_M の固有値である。 $\lambda=2$ のとき:

$$(2I_2 - M) = \begin{pmatrix} -2 & 1 \\ -2 & 1 \end{pmatrix} \xrightarrow{\text{fisake}} \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix}.$$

したがって, $\vec{u}_{(2)}=c_1\left(\begin{array}{c}1\\2\end{array}\right)$ は固有値 2 に関する f_M の固有ベクトルである(ただし, $c_1\neq 0$ は任意の実数).

 $\lambda = 3 \mathcal{O} \mathcal{E}$;

$$(3I_2-M)=\left(egin{array}{cc} -1 & 1 \ -2 & 2 \end{array}
ight) \xrightarrow[75pt]{75mm} \left(egin{array}{cc} -1 & 1 \ 0 & 0 \end{array}
ight).$$

50 第3章 点の変換

したがって, $\vec{u}_{(3)}=c_2\left(egin{array}{c}1\\1\end{array}\right)$ は固有値 3 に関する f_M の固有ベクトルである(ただし, $c_2\neq 0$ は任意の実数).

例 3.27 の結果から,線形変換 f_M は, $\left(egin{array}{c}1\\2\end{array}
ight)$ 方向には 2 倍の拡大変換として作用し,

 $\left(\begin{array}{c} 1 \\ 1 \end{array} \right)$ 方向には 3 倍の拡大変換として作用することがわかる.

行列の対角化

2 次正方行列 M が異なる固有値 λ_1,λ_2 を持つとする. λ_i に関する固有ベクトルを \vec{v}_i (i=1,2) とし、このベクトルを列ベクトルとする行列を P とする. つまり、 $P=\begin{pmatrix} \vec{v}_1 & \vec{v}_2 \end{pmatrix}$. このとき、 $M\vec{v}_i=\lambda_i\vec{v}_i$ より、

$$\begin{split} MP = & M \left(\begin{array}{ccc} \vec{v}_1 & \vec{v}_2 \end{array} \right) = \left(\begin{array}{ccc} M\vec{v}_1 & M\vec{v}_2 \end{array} \right) = \left(\begin{array}{ccc} \lambda_1\vec{v}_1 & \lambda_2\vec{v}_2 \end{array} \right) \\ = & \left(\begin{array}{ccc} \vec{v}_1 & \vec{v}_2 \end{array} \right) \left(\begin{array}{ccc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right) = P \left(\begin{array}{ccc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right) \end{split}$$

であるから,

$$P^{-1}MP = \left(\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array}\right)$$

となる.

n 次正方行列 M に対し, $P^{-1}MP$ が対角行列となる正則行列 P が存在するとき,M は対角化可能であるという.上の議論から,P は M の固有ベクトルを列ベクトルとする行列であり,対角行列 $P^{-1}MP$ の対角成分は M の固有値であることがわかる.特に,M が対称行列のときは,直交行列 P によって対角化することができる.

例 3.28. 行列
$$M=\left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right)$$
 を直交行列によって対角しなさい.

解.M の固有値は 3 と -1,固有ベクトルはそれぞれ $c_1\begin{pmatrix} 1\\1 \end{pmatrix}$, $c_2\begin{pmatrix} -1\\1 \end{pmatrix}$ (ただし, c_1,c_2 は任意の実数)である. $P^{-1}MP$ が対角行列となるような P は,M の固有ベクトルを列ベクトルとする行列であるが, $c_1\begin{pmatrix} 1\\1 \end{pmatrix}$ と $c_2\begin{pmatrix} -1\\1 \end{pmatrix}$ は任意の c_1,c_2 に対して直交しているので,ノルムが 1 となるように c_1,c_2 を定めれば,それを並べてできる行列は直交行列となる.例えば, $c_1=c_2=\frac{1}{\sqrt{2}}$ とし, $P=\begin{pmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}} \end{pmatrix}$ とおくと,P は直交行列で,さらに $P^{-1}MP=\begin{pmatrix} 3&0\\0&-1 \end{pmatrix}$ となる.

この例の結果から,
$$M=P\left(\begin{array}{cc} 3 & 0 \\ 0 & -1 \end{array}\right)P^{-1}$$
となる. P は角度 $\frac{\pi}{4}$ の回転変換を与え

る行列で、その逆行列 P^{-1} も回転変換を与える。また、対角行列は拡大・縮小変換を与えることから、対称行列 M が定義する線形変換は、回転変換と拡大・縮小変換の合成として表せることがわかる。

一般に2次正方行列が定義する線形変換は、拡大・縮小変換、せん断、回転、鏡映*¹³の有限個の合成として表すことができる(ただし、表し方は一意的ではない)。

例 **3.29**. 例 3.27 の行列 M を拡大・縮小変換,せん断,回転(または鏡映)を与える行列の有限個の積として表しなさい。

解.例 3.27 の結果から,線形変換 f_M の固有値は 2 と 3,固有ベクトルはそれぞれ $\vec{v}_1=c_1\begin{pmatrix}1\\2\end{pmatrix}$, $\vec{v}_2=c_2\begin{pmatrix}1\\1\end{pmatrix}$ である.したがって, $P=\begin{pmatrix}\vec{v}_1&\vec{v}_2\end{pmatrix}$ とおくと, $P^{-1}MP=\begin{pmatrix}2&0\\0&3\end{pmatrix}$, すなわち $M=P\begin{pmatrix}2&0\\0&3\end{pmatrix}$ P^{-1} となるが, c_1,c_2 をどのような値にしようと,P は直交行列にはなり得ない.そこで, $P\begin{pmatrix}1&a\\0&1\end{pmatrix}$ が直交行列になるような c_1,c_2,a が存在するか考察する.ここで,

$$P\left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} \vec{v}_1 & \vec{v}_2 \end{array}\right) \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} \vec{v}_1 & a\vec{v}_1 + \vec{v}_2 \end{array}\right)$$

であるから, これが直交行列となるための条件は

$$\|\vec{v}_1\| = 1, \qquad \langle \vec{v}_1, a\vec{v}_1 + \vec{v}_2 \rangle = 0, \qquad \|a\vec{v}_1 + \vec{v}_2\| = 1$$

である。この方程式を解くと, $\vec{v}_1=\frac{1}{\sqrt{5}}\begin{pmatrix}1\\2\end{pmatrix}$, $\vec{v}_2=\sqrt{5}\begin{pmatrix}1\\1\end{pmatrix}$, a=-3 となることがわかる。以上のことから, $P=\begin{pmatrix}\frac{1}{\sqrt{5}}&\sqrt{5}\\\frac{2}{\sqrt{5}}&\sqrt{5}\end{pmatrix}$, とすると, $M=P\begin{pmatrix}2&0\\0&3\end{pmatrix}P^{-1}$ となり,かつ $P\begin{pmatrix}1&-3\\0&1\end{pmatrix}=\begin{pmatrix}\frac{1}{\sqrt{5}}&\frac{2}{\sqrt{5}}\\\frac{2}{\sqrt{5}}&-\frac{1}{\sqrt{5}}\end{pmatrix}$ は直交行列となる。したがって,

$$M = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix}$$

を得る。これは、M によって定まる線形変換は 5 つの鏡映、せん断、拡大・縮小変換の合成として表せることを意味する。

^{*13} 鏡映変換を与える行列の列(または行)を入れ替えた行列は回転変換を与える。したがって、任意の 2 次 正方行列は拡大・縮小変換、せん断、回転を与える行列の有限個の積として表すことができる。