The group G is isomorphic to the group labelled by [36,1] in the Small Groups library. Ordinary character table of $G\cong C9:C4$:

10	a = 2a	9a	4a	18a	9b	4b	18 <i>b</i>	18c	9c	6a	$\overline{3a}$
$\chi_1 \mid 1$. 1	1	1	1	1	1	1	1	1	1	1
$\chi_2 \mid 1$. 1	1	-1	1	1	-1	1	1	1	1	1
$\chi_3 \mid 1$	-1	1	-E(4)	-1	1	E(4)	-1	-1	1	-1	1
$_{4} \mid 1$	-1	1	E(4)	-1	1	-E(4)	-1	-1	1	-1	1
$\chi_5 \mid 2$	-2	-1	0	1	-1	0	1	1	-1	-2	2
$\binom{6}{2}$	2	-1	0	-1	-1	0	-1	-1	-1	2	2
$_{7}$ 2	2	$E(9)^2 + E(9)^7$	0	$E(9)^2 + E(9)^7$	$E(9)^4 + E(9)^5$	0	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	-1	-1
$\binom{1}{8}$ 2	2	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	0	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	0	$E(9)^2 + E(9)^7$	$E(9)^4 + E(9)^5$	$E(9)^4 + E(9)^5$	-1	-1
$_{(9}$ 2	2	$E(9)^4 + E(9)^5$	0	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	0	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	$E(9)^2 + E(9)^7$	-1	-1
$\chi_{10} \mid 2$	-2	$E(9)^2 + E(9)^7$	0	$-E(9)^2 - E(9)^7$	$E(9)^4 + E(9)^5$	0	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	1	-1
$\langle 11 \mid 2 \rangle$	-2	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	0	$E(9)^{2} + E(9)^{4} + E(9)^{5} + E(9)^{7}$	$E(9)^2 + E(9)^7$	0	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	$E(9)^4 + E(9)^5$	1	-1
$\chi_{12} \mid 2$	-2	$E(9)^4 + E(9)^5$	0	$-E(9)^4 - E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	0	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$E(9)^2 + E(9)^7$	1	-1

Trivial source character table of $G \cong C9 : C4$ at p = 3:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Normalisers N_i		N_1			N_2			N_3				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	p-subgroups of G up to conjugacy in G			P_1			P_2			P_3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Representatives $n_j \in N_i$	1 <i>a</i>	4a	2a	4b	1a	4a	2a	4b	1a	4a	2a	4b
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}}$	9	1	9	1	0	0	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-1	9	-1	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$	9	-E(4)	-9	E(4)	0	0	0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot$	$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} $	9	E(4)	-9	-E(4)	0	0	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	3	1	3	1	3	1	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-1	3	-1	3	-1	3	-1	0	0	0	0
			E(4)	-3	-E(4)	3	E(4)	-3	-E(4)	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \\ 1 & E(4) & -1 & -E(4) \end{vmatrix} $	$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-E(4)	-3	E(4)	3	-E(4)	-3	E(4)	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \end{vmatrix} \begin{vmatrix} 1 & E(4) & -1 & -E(4) \end{vmatrix} \begin{vmatrix} 1 & E(4) & -1 & -E(4) \end{vmatrix} \begin{vmatrix} 1 & E(4) & -1 & -E(4) \end{vmatrix} \begin{vmatrix} 1 & E(4) & -1 & -E(4) \end{vmatrix} $	$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1
	$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
$\begin{bmatrix} 1 & y_0 + 0 & y_0 + 1 & F(A) & 1 & F$	$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \end{vmatrix} 1 - E(4) - -$	$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,5,13)(2,8,18)(3,10,21)(4,12,23)(6,15,26)(7,17,28)(9,20,30)(11,22,31)(14,25,33)(16,27,34)(19,29,35)(24,32,36)]) \cong C3$ $P_3 = Group([(1,5,13)(2,8,18)(3,10,21)(4,12,23)(6,15,26)(7,17,28)(9,20,30)(11,22,31)(14,25,33)(16,27,34)(19,29,35)(24,32,36)]) \cong C3$ $P_3 = Group([(1,5,13)(2,8,18)(3,10,21)(4,12,23)(6,15,26)(7,17,28)(9,20,30)(11,22,31)(14,25,33)(16,27,34)(19,29,35)(24,32,36)]) \cong C3$

 $N_1 = Group([(1,2,3,6)(4,27,9,32)(5,18,10,26)(7,29,14,22)(8,21,15,13)(11,17,19,25)(12,36)(24,27,9,32)(5,18,10,26)(7,29,14,22)(8,21,15,13)(11,17,19,25)(12,16,20,24)(23,34,30,36)(28,35,33,31),\\ (1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(14,25,33)(16,27,34)(19,29,35)(24,32,36)]) \cong C9: C43(3,13,13)(14,17,19,25)(12,16,20,24)(23,34,30,36)(28,35,33,31),\\ (1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(14,25,33)(16,27,34)(19,29,35)(24,32,36)]) \cong C9: C43(3,13,13)(14,17,19,25)(12,16,20)(13,21)(14,25,33)(14,25,$ $N_3 = Group([(1,22,12,5,31,23,13,11,4)(2,27,17,8,34,28,18,16,7)(3,29,20,10,35,30,21,19,9)(6,32,25,15,36,33,26,24,14),(1,5,13)(2,8,18)(3,10,21)(4,12,23)(6,15,26)(7,17,28)(9,20,30)(11,22,31)(14,25,33)(16,27,34)(19,29,35)(24,32,36),(1,2,3,6)(4,27,9,32)(5,18,10,26)(7,29,14,22)(8,21,15,13)(11,17,19,25)(12,16,20,24)(23,34,30,36)(28,35,33,31)]) \cong C9: C4$