Chapter 9 # 1a, 3, 7, 11, 12, 13

1a) Determine the common logarithm of the following numbers: 103, 50 and 0.707.

$$log_{10} 10^3 = 3$$
 $log_{10} 50 = 1.699$
 $log_{10} 0.707 = -0.151$

- 3) Determene:
 - a) $20 \log_{10} \frac{84}{6}$ using log rules and compare to $20 \log_{10} 14$ $20 \log_{10} \frac{84}{6} = 20 \log_{10} 84 - 20 \log_{10} 6 = 1.146 = 20 \log_{10} 14$ Same.
- 6) $10\log_{10} \frac{1}{250}$ using eg (9.7) and compare with $10\log_{10} 4 \times 10^{-3}$ $10\log_{10} \frac{1}{250} = -10\log_{10} 250 = -24 = 10\log_{10} 4 \times 10^{-3}$ same
- C) $log_{10}(40)(0.2)$ using eq (9.8) and compareto $log_{10}8$ $log_{10}(40)(0.2) = log_{10}(40) + log_{10}(0.1) = 0.903 = log_{10}8$ Same

I loput and output voltage measurements of $V_1 = 10mV$ and $V_0 = 25V$ are made. What is the voltage gain in decibels?

a) Determine the mathematical expression for the magnificale of the natio vo/vi. f = 1 = 1 = 1 = 2TT (1.2k)(0,06g1)

$$|A_{i}| = \frac{1}{\sqrt{1 + (1950/f)^{2}}}$$

	R	1200	ohms	
	С	6.80E-08	farads	
f (Hz)	w (rad/sec)	Vo/Vi	Vo/Vi dB	
100	628.3	0.05	-25.814	
1000	6283.2	0.46	-6.81618	
2000	12566.4	0.72	-2.90267	
5000	31415.9	0.93	-0.61515	
10000	62831.9	0.98	-0.16215	

- c) Determine the break frequency, fi (from before) = 1950 Hz.
- d) Sketch the asymptotes and locate the 3dB point, See plot.
- e) Shetch the frequency response for Volvi and compare to pesults in part (b). See plot.
- 12) a) For the retwork in problem 11, determine the mathematical expression for the angle by which vo leads vi.

a)
$$\theta = \tan^{-1} \frac{f_1}{f} = \tan^{-1} \left(\frac{1.95 \text{KHz}}{f} \right)$$

- b) determine the phase angle at f = 100, 1000, 2000, 5000, 10000, and plot the resulting curve for the frequency earny 100 10,000 Hz, Suplot.
- c) determine the break prequency, $f_1 = \frac{1}{2\pi RC} = 1950 H_Z$

d) Sketch the frequency response of to for the same frequency spectrum of part (B) and compare results. (use log axis for faxes).

First find 0=45° at f,= 1950Hz. The angle of vo goes to 45° a 1950Hz. At low frequency circuit is capacitive. Angle goes to 90°. At high freq: circuit is resistive. Angle goes to 0°. Sketch an approach to 90° at low freez and at high frez, use an expected shape for the curve noting that the largest (rightse) slope (steggest point) occurs in a rear f, The resulting curve should be quite close to the plot below.

	R C	1200 6.80E-08	ohms farads	f1	1.95E+03	Hz
f (Hz) 100 1000 2000 5000 10000	phase 87.06 62.86 44.28 21.31 11.04					

13/ a)What frequency is 1 octave above SKHz?

(double) 10KHz

b) What frequency is 1 decade below 10KHz?

("10th) = 1kHz

c) What frequency is 2 octaves below 20KHz?

(quarter) 5KHz (20KHz > 10KHz > 5KHz)

loctave loctave

d) What frequency is 2 decades above 1KHz?

1kHz => 10KHz => 100KHz

(10 X10)