Ideenskizze für das IoT-Projekt

1. Allgemeine Informationen

Projektname: Kontrollpanel
Datum: 11.03.25 - 06.05.25

2. Projektbeschreibung

Kurzbeschreibung:

(Beschreibt in 3–5 Sätzen die Kernidee des Projekts. Welche Problemstellung wird gelöst? Welche Funktionalitäten sind geplant?)

Über Taster und eine Weboberfläche werden Steckdosen geschaltet. Mit zwei Sensoren werden die Raum und Leistungsdaten erfasst und später auf der Weboberfläche visualisiert. Zusätzlich zur Werboberfläche gibt es ein kleines Display, welches die Daten ebenfalls anzeigt und eine Datenbank in der die Daten abgelegt werden.

3. Anforderungen und Funktionalitäten

(Welche Funktionen soll das System haben? Was soll der Benutzer tun können?)

Sensorik

- Luftfeuchtigkeit
- Temperatur
- Energiebezug Steckdosen, aktuell und alltime

Aktoren-Steuerung

- Steckdosen
- ESP Hardreset

✓ Webinterface & Benutzerinteraktion

- Visualisierung Energiebezug
- Steckdosen einzeln oder als Gruppe schalten
- Button für ESP Hardreset

4. Benötigte Komponenten

4.1 Hardware

Komponente	Modell/Typ	Funktion
Mikrocontroller	ESP32-S3-DevKit-C	
Sensor 1	AHT20	Temperatur und Luftfeuchtigkeit
Sensor 2	Shelly plus 1PM	Energieüberwachung und 1 Schaltaktor
Aktor 1	SRD-03VDC SL C	10A Relais
Aktor 2	1,69" IPS Display	Visualisierung
Stromversorgung	Mean Well HDR-60-5	230V -> 5V Netzteil
	Siemens 5SU13566KK10	B10, 0.03A RCBO
Weitere Bauteile	Taster24V DC, NO	Einschalten des Displays und der Steckdosen
	Hutschiene	Montage Netzteil und RCBO
	Steckdosen Gira System/Standart 55	
	2er Steckdosenblende Gira System/Standart 55	
	Hohlwanddosen	Brandschutz
	Verschraubung M16	Zugentlastung
	Schuko Stecker	Verbindung Stromnetz
	Verbindungs und Kleinmaterial	

4.2 Software & Datenbank

Komponente	Technologie	Funktion
Microcontroller-Code	MicroPython	
Webinterface	INOGE-REG	Visualisierung und Usereingaben
Datenbank	MariaDB	

6. Zeitplanung (Meilensteine)

Datum	Aufgabe
KW 1	Detailplanung, Material beschaffen
KW 2	Hardware für Tests zusammenbauen, Ansteuerung Relais
KW 3	Mit MQTT-Broker und Node-Red verbinden, Shelly einbinden
KW 4	Taster, AHT und Display einbinden
KW 5	Node-Red Visualisierung und Buttons einbinden
KW 6	Logs implementieren, Datenbank verbinden
KW 7	Bug Fix und optimierung
KW 8	Dokumentation und

7. Offene Fragen & Herausforderungen

- Der Shelly Schaltaktor arbeitet nicht sauber als NC Kontakt
- Die Relais benötigen zu viel Energie vom ESP, wenn alle eingeschaltet sind
- Die Relais reagieren nicht sicher auf Zustandsänderungen

8. Fazit & Zielsetzung

- Das Panel soll mir nach Abschluss der Projektarbeit eine detaillierte Auskunft über den Energieverbrauch der angeschlossenen Geräte und die Umgebungsbedingungen im Raum geben.

Erweiterungen:

- Leuchttaster, die den Schaltzustand angeben
- Remote-Red Anbindung