2.1 Le sac contient 3 + 4 + 5 = 12 objets.

Dire que l'on tire **simultanément** les objets signifie que l'on ne tient pas compte de l'ordre dans lequel ils sont tirés : on a donc affaire à une combinaison. Le nombre de cas possibles vaut donc $C_3^{12} = \frac{12!}{3! \, (12-3)!} = 220$.

1) Il faut choisir 3 objets parmi les 5 objets jaunes que contient le sac. Le nombre de cas favorables est $C_3^5 = 10$.

La probabilité recherchée est donc $\frac{C_3^5}{C_3^{12}} = \frac{10}{220} = \frac{1}{22} \approx 4,54 \%.$

- 2) Nombre de cas favorables : $C_1^3 \cdot C_1^4 \cdot C_1^5 = 3 \cdot 4 \cdot 5 = 60$ Probabilité recherchée : $\frac{C_1^3 \cdot C_1^4 \cdot C_1^5}{C_1^{12}} = \frac{60}{220} = \frac{3}{11} \approx 27,27 \%$
- 3) Dans le sac, il y a 3 objets rouges, donc 12-3=9 objets qui ne sont pas rouges.

Nombre de cas favorables : $C_3^9 = 84$

Probabilité recherchée : $\frac{C_3^9}{C_3^{12}} = \frac{84}{220} = \frac{21}{55} \approx 38{,}18~\%$

4) On tire toujours au moins un objet rouge, sauf si l'on ne tire aucun objet rouge.

Probabilité recherchée : 1 - $\frac{C_3^9}{C_3^{12}}$ = 1 - $\frac{21}{55}$ = $\frac{34}{55}$ \approx 61,82 %

5) On suit le même raisonnement qu'à la question précédente : on tire toujours au moins un objet bleu, sauf si l'on ne tire aucun objet bleu.

Probabilité recherchée : $1 - \frac{C_3^8}{C_3^{12}} = 1 - \frac{56}{220} = 1 - \frac{14}{55} = \frac{41}{55} \approx 74,55 \%$

6) On tire au plus un objet bleu si, ou bien on ne tire aucun objet bleu, ou bien on tire exactement un objet bleu.

Nombre de cas favorables : $C_0^4 \cdot C_3^8 + C_1^4 \cdot C_2^8 = 1 \cdot 56 + 4 \cdot 28 = 168$

Probabilité recherchée : $\frac{168}{220} = \frac{42}{55} \approx 76,36 \%$