Tools & Models for Data Science Intro to Supervised Learning

Chris Jermaine & Risa Myers

Rice University

Machine Learning (Review)

- Predicting / classifying new data based on what we have learned from existing data
- Requires the training data to be representative of the data we want to predict / classify
- Tasks
 - 1. Choosing the model—choose family, complexity, hyperparameters
 - 2. Learning the model—"fit" model to data by adjusting parameters
 - 3. Validating the model—make sure model matches data
 - 4. Applying the model—use the model to explain past/present make predictions on future

"Supervised" Learning

- One of the most fundamental problems in data science
 - Given a bunch of (x_i, y_i) pairs
 - Where x_i is a feature vector for data i
 - \blacksquare And y_i is the label for x_i
 - Goal: learn how to predict value of y from x
 - Called "supervised" because have examples of correct labeling

Problem Examples

- From research done at Rice:
 - Given a text clinical note, label "breast cancer" or not
 - Given a document (email) in a court case, figure which subjects pertain
 - Given information about a patient surgery, predict death
 - Given head trauma patient info, predict intracranial pressure crisis
 - Given an set of surgical vital signs, label "good surgery" or not
 - Predict location and damage from a hurricane
 - Many others!

Two Most Common Examples of Supervised Learning

- Classification and regression
- Classification:
 - Outcome to predict is in $\{+1,-1\}$ ("yes" or "no"), ("True" or "False")
 - Ex: Given a text clinical note, label it as "breast cancer" or not
- Regression:
 - Outcome to predict is a real number
 - Ex: Given an ad, predict number of clickthrus per hour

What Models Are Used?

- Many!
 - We will cover a number of them
 - Simplest, most common: linear regression. From x_i , predict y_i as:

$$\sum_{j} x_{i,j} r_j$$

- Where $x_{i,i}$ is a matrix of rows of feature values, one for each data point
- $\langle r_1, r_2, ..., r_m \rangle$ are called regression coefficients
 - The relative magnitude of the regression coefficient tells you how important each feature is
- Other common ones: kNN, support vector machines

What do we Mean by Features?

Music

- Artist name
- Song duration
- Key
- Loudness
- Tempo
- Year
- ..

	artist					
songld	name	duration	key	loudness	tempo	year
SONHOTT12A8C13493C	Adam Ant	233	0	-9.013	119.293	1982
SOGNQWU12A8AE4868F	Eurythmics	207	0	-6.629	84.164	1985
SOZWHVZ12A6D4F90E7	U2	485	3	-7.614	134.083	2007
SOGOQGE12AB0182907	The Killers	284	4	-6.546	151.953	2008
SONCHNB12AB01849A2	Wade Ray	136	3	-9.713	171.527	2005

Labels

■ Some outcome / value / output pertaining to the data

			artist					
Familiarity	Familiarity ≥ 0.8	songld	name	duration	key	loudness	tempo	year
0.63	FALSE	SONHOTT12A8C13493C	Adam Ant	233	0	-9.013	119.293	1982
0.75	FALSE	SOGNQWU12A8AE4868F	Eurythmics	207	0	-6.629	84.164	1985
0.84	TRUE	SOZWHVZ12A6D4F90E7	U2	485	3	-7.614	134.083	2007
0.92	TRUE	SOGOQGE12AB0182907	The Killers	284	4	-6.546	151.953	2008
0.05	FALSE	SONCHNB12AB01849A2	Wade Ray	136	3	-9.713	171.527	2005

A Model to Predict Music Familiarity: Regression Coefficients

$$\sum_{j} x_{i,j} r_j$$

- Learn the regression coefficients
- 2 Use the model
 - 1 Plug in the value of each feature for each song
 - 2 Get a real valued output
 - Apply a function to convert it to a binary classification

Feature	Regression Coefficient
artist.hotttnesss	-25.5347
artist.mbtags_count	-0.18
bars_confidence	-0.3755
bars_start	0.0893
beats_confidence	0.407
beats_start	0.1196
duration	0.0047
end_of_fade_in	0.0261
key	-0.0076
key_confidence	0.3139
latitude	0.0022
longitude	0.0019
loudness	-0.1131
mode	-0.0399
mode_confidence	0.3354
release.id	0
song_hotttnesss	-1.6807
start_of_fade_out	-0.0043
tatums_confidence	0.7883
tatums_start	-0.2762
tempo	0.0015
terms_freq	0.0006
time_signature	-0.0579
time_signature_confidence	-0.203
year	0.0001
Intercept	13.7194

Measuring Classification Accuracy: TP, FP, FN, TN

- True Positive (TP) model predicts TRUE when label is TRUE
- False Positive (FP) model predicts TRUE when label is FALSE
- True Negative (TN) model predicts FALSE when label is FALSE
- False Negative (FN) model predicts FALSE when label is TRUE

Measuring Classification Accuracy: Confusion Matrix

■ Tabular representation of results

		Pred		
		Negative	Positive	
Actual	Negative	TN	FP	Total Negative
Actual	Positive	FN	TP	Total Positive
		Total Predicted	Total Predicted	
Т	otal	Negative	Positive	

Measuring Classification Accuracy: Confusion Matrix

■ Tabular representation of results

		Predi	cted	
		Negative	Positive	
Actual	Negative	8954	178	9132
	Positive	335	533	868
Total		9289	711	10000

Measuring Classification Accuracy: % Correct

■ Simplest: % correct

$$\frac{\text{TP} + \text{TN}}{\text{P} + \text{N}} = \frac{533 + 8954}{868 + 9132} = 0.95$$

? Pros and cons?

		Predicted		
		Negative	Positive	
Actual	Negative	8954	178	9132
	Positive	335	533	868
Total		9289	711	10000

Measuring Classification Accuracy: % Correct

- Simplest: % correct
 - Pros
 - Easy to interpret
 - Easy to compute
 - Easy to compare
 - Cons
 - Certain classes may be more important than others
 - E.g. Male breast cancer
 - Can achieve high accuracy just by saying "No"
 - In this case, better to find all the cases and some that aren't

Measuring Classification Accuracy: FP & FN

Predicted					Predi	atad			
		Negative	Positive					Positive	
	Negative	TN	FP	Total Negative			Negative		
Actual	Positive	FN	TP	Total Positive	Actual	Negative	8954	178	9132
	1 0311110	111		TOTAL T OSITIVO	Actual	Positive	335	533	868
		Total Predicted	Total Predicted		_		0000	711	10000
-	Total	Negative	Positive			Total	9289	711	10000
	rotai	riogativo	1 0011110						

■ False positive: % of those we say are "yes" that are not really "yes"

$$\frac{FP}{N} = \frac{FP}{FP + TN} = \frac{178}{8954 + 178} = 0.19$$

■ False negative: % of those we say are "no" that are not really "no"

$$\frac{FN}{P} = \frac{FN}{FN + TP} = \frac{335}{335 + 533} = 0.39$$

- Simple concept, easy to get wrong
- Male breast cancer: 50% FP rate is okay: 3 real cases + 3 extra cases
- Alert fatigue: 72 99% of alerts are not actual causes for alert ¹

¹Sendelbach S, Funk M. Alarm fatigue: a patient safety concern. AACN advanced critical care. 2013;24(4):378-86.

■ Recall (Sensitivity): % of those that are really "yes" that we say are "yes"

$$\frac{TP}{P} = \frac{TP}{TP + FN} = \frac{533}{533 + 335} = 0.61$$

■ Precision: % of those that we say are "yes" that are really "yes"

$$\frac{TP}{TP + FP} = \frac{533}{533 + 178} = 0.75$$

Image credit: https://en.wikipedia.org/wiki/Precision_and_recall#/media/File:
Precisionrecall.svg

2

		Predicted		
		Negative	Positive	
Actual	Negative	0	9132	9132
	Positive	0	868	868
Total		0	868	10000

TN	FP
FN	TP

? What is our Recall if we call all of the data points Positive?

$$\frac{TP}{TP + FN} =$$

		Predi	cted	
		Negative	Positive	
Actual	Negative	0	9132	9132
	Positive	0	868	868
Total		0	868	10000

TN	FP
FN	TP

■ What is our Recall if we call all of the data points Positive?

$$\frac{TP}{TP + FN} = \frac{868}{868 + 0} = 1$$

? What is our Precision if we call all of the data points Positive?

$$\frac{TP}{TP + FP} =$$

		Predicted		
		Negative	Positive	
Actual	Negative	0	9132	9132
	Positive	0	868	868
Total		0	868	10000

TN	FP
FN	TP

■ What is our Recall if we call all of the data points Positive?

$$\frac{TP}{TP + FN} = \frac{868}{868 + 0} = 1$$

■ What is our Precision if we call all of the data points Positive?

$$\frac{TP}{TP + FP} = \frac{868}{868 + 9132} = 0.09$$

- Recall and precision
 - Pros
 - More information than accuracy
 - Tolerance for TP and FN can be different, based on the situation
 - Cons
 - Can be confusing
 - There are two numbers (Precision and Recall) to compare

Measuring Classification Accuracy F1-score

- $\blacksquare F_1$
 - Puts recall and precision into single number

$$F_1 = \frac{2 \times \text{ precision} \times \text{ recall}}{\text{precision} + \text{ recall}}$$

- Ranges from 0 to 1
- 1 is best
- Also called the harmonic average of precision and recall

Digression: Mean Blood Pressure

- Blood Pressure has two components: Systolic and Diastolic
- Systolic 1st number; pressure when heart is beating
- Diastolic 2nd number; pressure when heart is resting
- Mean BP is NOT

$$\frac{Systolic + Diastolic}{2}$$

Instead it is

$$\frac{\text{Systolic} + 2 * \text{Diastolic}}{3}$$

Measuring Classification Accuracy: F-scores

 $\blacksquare F_1$

$$F_1 = \frac{2 \times \text{ precision } \times \text{ recall}}{\text{precision } + \text{ recall}}$$

- Pros
 - Reasonable way to combine precision and recall
- Cons
 - Somewhat arbitrary
 - Could use F₂, F₃, etc.

$$F_{\beta} = (1 + \beta^2) \times \frac{\text{precision} \times \text{recall}}{(\beta^2 \times \text{precision}) + \text{recall}}$$

Measuring Classification Accuracy: F-scores on Our Model

- $F_1 = 0.68$
- $F_2 = 0.64$
- $F_3 = 0.63$

AUC ROC

https://commons.wikimedia.org/wiki/File:Roccurves.png

- ROC = "Receiver operating characteristic"
- AUC = "Area under curve"
- Measure of how well the classes are separated
- Use for "tunable" classifiers (with cut-offs, like Logistic Regression)
- Gives single number ≤ 1.0
- Less than 0.5 means "actively bad"
- ? Often shown with the diagonal. Why?
- ? What does it mean if you have an AUC < 0.5?

Measuring Classification Accuracy: F-scores on Our Model

Drawing an ROC curve

Rank		1	2	3	4	5	6	7	8	9	10
Actual class		+	+	_	_	+	_	_	+	_	_
TP	0	1	2	2	2	3	3	3	4	4	4
FP	0	0	0	1	2	2	3	4	4	5	6
TN	6	6	6	5	4	4	3	2	2	1	0
FN	4	3	2	2	2	1	1	1	0	0	0
TPR	0	0.25	0.5	0.5	0.5	0.75	0.75	0.75	1	1	1
FPR	0	0	0	0.17	0.33	0.33	0.50	0.67	0.67	0.83	1

AUC ROC: Pros and Cons

https://commons.wikimedia.org/wiki/File:Roccurves.png

■ Pros

- Single number
- Well known
- Immune to classification threshold

Cons

Only works on binary classification

AUC ROC: Intuition

https://commons.wikimedia.org/wiki/File:Roccurves.png

- Requires us to have a numeric value for the results that are mapped to a binary value
- Depending on where we set the threshold, we get different results

AUC ROC

- Red = Negative cases
- Blue = Positive cases
- Start at the bottom (or top)
- Sweep up (down)
- Compute the TPR and FPR at each step
- Plot on ROC
- Compute AUC

Supervised Learning Methodology / Experimental Design

- Important to divide available data into
 - Training—used to learn model
 - Validation—used to see if model useful
 - Repeat these two, experimenting
 - Testing—used to evaluate useful models
- Don't touch testing until ready to eval
 - Evaluation on testing must be very last step!
 - ? Why?

Why Test Only Once?

Overfitting

- It's easy to build a model that exactly fits your data
- But doesn't work on new data
- Maybe the world has changed
 - Can't do much about this
- Overfitting
 - You don't want to engineer something that only works on your test data

How To Perform Testing

- One-off
 - Divide data into Training, Validation, Testing
 - Apply validated model(s), get results
 - ? What if you don't have a lot of data?

How To Perform Testing

- One-off
 - Divide data into Training, Validation, Testing
 - Apply validated model(s), get results
 - What if you don't have a lot of data?
 - You need to "reuse" you data

k-Fold Cross-Validation

■ Break data into *k* random subsets ("folds")

```
For i = 1 to k do:
   Train on all folds except i;
   Evaluate learned model on fold i;
Report average results;
```

- Benefits
 - Works for small test sets
 - k can be large
 - 10 is commonly used
 - Needed when the data set is not very large
 - and / or when there are many parameters

Other techniques for Generating Test Sets

- Bootstrap random sampling with replacement
- Jackknife resampling (Leave out one)

Bootstrap

- Random sampling with replacement
 - 1 Pick a sample size, n
 - 2 Choose *n* samples from the dataset, WITH replacement
 - 3 Train on the selected samples
 - 4 Test on the non-selected samples in the dataset
 - 5 Average the results

Norms

- \blacksquare *n* is typically chosen to be the size of the original dataset
- Repeat the process MANY times (at least 20 or 30, usually hundreds of times)
- Can also be used to estimate statistics such as a population mean

Bootstrap: Pros and Cons

Pros

- Works well with small datasets
- Can produce confidence intervals for this approach
- Non-parametric

Cons

- Sample sets are not all the same size
- Assumes data are independent
- Not repeatable (samples are different each time)

Jackknife

- Also know as Leave-one-out
- Sampling WITHOUT replacement
- Older method
 - 1 Pick a one sample
 - 2 Train on the remaining samples
 - 3 Test on the selected sample in the dataset
 - 4 Repeat for each sample
 - 5 Average the results
- Norms
 - Can also be used to estimate statistics such as a population mean

Jackknife: Pros and Cons

Pros

- Works well with small datasets
- Can produce confidence intervals for this approach
- Non-parametric
- Uses less computing resources

Cons

- Repeatable
- Assumes data are independent

How to Split Data?

- Random
- By time
- Representative of the data (think about Rice's College system)

Classification or Regression?

- Regression
- "Real" value (may be integral)
- Classification
- 1 of a limited number of classes
- ? How can we convert a regression problem to a classification problem?
- e.g. Familiarity of a song
- ? How can we make restrict a classification problem to a binary classification problem?
- E.g. How can we predict if someone is going to get an A, B, or C in this class into a binary classification problem?

Rare Class Problems

- Problem
 - Not enough examples to learn how to classify the rare class
- Approaches
 - Oversample the rare class (SMOTE)
 - Undersample the common class
 - Create new rare cases based on the minority class

Data Preparation

- Compute values using the Training set ONLY
- Apply the EXACT same transformation to the VALIDATION and TEST sets

Types of Data Preparation / Feature Engineering

Mean normalization - mean 0

$$x' = \frac{x - \text{average}(x)}{\max(x) - \min(x)}$$

■ Standardization - mean 0, std dev = 1

$$x' = \frac{x - \bar{x}}{\sigma}$$

■ Scaling - min -1, max 1

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Scale feature vector to unit length across the features

$$x' = \frac{x}{||x||}$$

Measuring Regression Accuracy

- View the list of prediction errors as a vector
- Can have many loss functions, corresponding to norms
- Given a vector of errors $\langle \varepsilon_1, \varepsilon_2, ..., \varepsilon_n \rangle$, l_p norm defined as:

$$\left(\sum_{i=1}^n |\varepsilon_i|^p\right)^{1/p}$$

- Common loss functions correspond to various norms:
 - *l*₁ corresponds to mean absolute error
 - \blacksquare l_2 to mean squared error/least squares
 - Most commonly used
 - Convex
 - Easy to compute
 - $lacktriangleq l_{\infty}$ corresponds to minimax

Feature Selection

- Lots of focus in supervised learning on models
 - Linear regression, SVM, kNN, etc.
- Almost always less important than feature engineering
 - That is, most simple models accept $x_i = \langle x_{i,1}, x_{i,2}, ..., x_{i,m} \rangle$
 - Do not accept your raw data!
 - How you "vectorize" is often the most important question!
- Let's consider feature engineering thru an example...

Web Page Link Feature Selection

- Web page link
 - Location
 - Font
 - Size
 - Color
 - ...
- vs. Deep learning
 - Use the raw data
 - E.g. Take a screen shot of the web page
 - Skip the feature engineering phase

Feature Selection Email

"Bag of Words"

- Might build a dictionary
 - That is, map from each of *m* unique words in corpus
 - To a number from $\{1...m\}$
 - Then, each email is a vector $\langle 1,0,2,1,0,0,... \rangle$
 - jth entry is num occurrences of word j
 - Latent Dirichlet Allocation (LDA) uses this approach

LDA - Latent Dirichlet Allocation

- Recall Lab Numpy Arrays
- LDA Topic modeling
 - Each document in a collection is represented as a mixture of topics
 - Each topic is represented as a mixture of words.

"Bag of Words"

- Might build a dictionary
 - That is, map from each of *m* unique words in corpus
 - To a number from $\{1...m\}$
 - Then, each email is a vector $\langle 1,0,2,1,0,0,... \rangle$
 - \blacksquare jth entry is num occurrences of word j
 - Latent Dirichlet Allocation (LDA) uses this approach
 - ? Are there issues with this approach?

"Bag of Words Issues"

- Sequence information is lost
 - Perhaps it's important to know which words appear early on
 - ... or at the end
- 2 Word importance is lost
- 3 Some words are equivalent, but look different

1. Preserving Sequence Information

- Use N-grams
- N consecutive items
- The cow jumped over the moon
- ? What are the 2-grams in this sentence?
- ? What are the 3-grams in this sentence?

N-Grams for Spam Detection

- Words in an email might not be suspicious
- Might be how they are put together
 - "great sorrow"
 - "heavy tears"
 - "financial institution"
- Idea: also include all 2-grams, 3-grams, 4-grams, etc. as features

N-gram Example

- The cow jumped over the moon
- 2-grams / bigrams
 - 1 The cow
 - 2 cow jumped
 - з jumped over
 - 4 over the
 - 5 the moon
 - ? Issues with N-grams?

- 3-grams / trigrams
 - 1 The cow jumped
 - 2 cow jumped over
 - 3 jumped over the
 - 4 over the moon

Issues with N-grams

- # of combinations explodes
- The data dimensionality can get to billions
- But the feature vector is typically sparse
- Again, recall the numpy array lab many entries in the matrix were zero

"Bag of Words Issues"

- Sequence information is lost
- 2 Word importance is lost
 - Some words are more significant than others
- 3 Some words are equivalent, but look different

2. Word importance is lost

- Eliminate "Stop Words"
 - Common words are often filtered out
 - ... a, an, the, is, with ...
- 2 TF-IDF

TF-IDF

- Term Frequency, Inverse Document Frequency
- Two components
 - 1 "Term Frequency" frequency of each word in the document

$$TF = \frac{\text{num occurs of word in doc}}{\text{num words in doc}}$$

2 "Inverse Document Frequency" - rareness of the word in the corpus

$$IDF = \log \frac{\text{num of docs}}{\text{num of docs having the word} + 1}$$

- ? Why "+1"?
- TD-IDF defined as $TF \times IDF$

TF-IDF Intuition

$$TF = \frac{\text{num occurs of word in doc}}{\text{num words in doc}}$$

$$IDF = \log \frac{\text{num of docs}}{\text{num of docs having the word} + 1}$$

$$TD - IDF = TF \times IDF$$

- Words that appear more often have a higher value
- Longer documents are expected to have more words, so we TF uses the number of words in the document
- Words that are rare should have a higher value

"Bag of Words Issues"

- Sequence information is lost
- 2 Word importance is lost
- 3 Some words are equivalent, but look different
 - Stemming reduce a word to its base
 - Remove punctuation?
 - Ignore capitalization?

Other Features for Spam Detection

- Country of sender
- Number of words in email
- Time of day sent
- Was the email sent previously? Does it include an email I sent?
- Recipient list disclosed? If not, indicative of spam
- Capitalization

Feature Engineering

- Applying domain knowledge to create useful features
- Examples
 - Spam email features (previous slide)
 - Predicting intracranial pressure crises: Time since last crisis
 - "Binning" values: Low / Medium / High
 - Time series features
 - Window
 - Min / Max / Mean / Median
 - Variance
 - Skew / Kurtosis

Feature Engineering: Don't Cheat!

- You can only use the information available at the prediction time
- Examples
 - Predicting Intracranial pressure crises: Whether or not the patient died

Feature Engineering: Avoid / Minimize Bias

■ If our examples of spam all come from certain countries, we are more likely to categorize ANY email from those countries as spam

Feature Selection

■ Finding the helpful features Why not use them all?

Feature Selection

- Finding the helpful features
- Why not use them all?
 - 1 To avoid overfitting2 To reduce complexity
 - To reduce complexity
 - 3 To enable faster training
 - To avoid having a sparse feature space where $n \ll p$ (Curse of dimensionality)

Techniques for Feature Selection

- 1 Embedded methods
 - 1 LASSO Regularization (last lecture)
- 2 Filter methods
 - 1 Statistical measures of relevance (e.g. Chi squared, information gain, correlation coefficient)
 - 2 Often univariate
- 3 Wrapper methods
 - Search problem
 - 2 Try different combinations of features
 - 3 Compare results
 - 4 Can be Greedy, Stochastic, Exhaustive, Forward, Backward

A4

- kNN classifier to classify text documents
- \blacksquare Most frequent label in the k nearest neighbors
- Using the L_2 norm
- Implemented in PySpark
- Data
 - "20 newsgroups" data set
 - Old-school blog
 - 19,997 documents
- Labels
 - 20 categories
 - Which newsgroup the document was posted in
 - ... comp.graphics, rec.autos, sci.space, ...

Questions?

- What do we know now that we didn't know before?
- How can we use what we learned today?