Случайные процессы: семинары

Бутаков И. Д.

2023

Содержание

Π	реди	исловие	2
	Исп	пользуемые обозначения	2
1	Осн	новные сведения	3
2	Bax	жные примеры случайных процессов	Ć
	2.1	Пуассоновский процесс	Ć
	2.2	Гауссовские процессы	13
		2.2.1 Винеровский процесс	15

Предисловие

Перед вами сборник всех семинаров по случайным процессам за авторством Бутакова И. Д. Автор выражает благодарность Останину Павлу Антоновичу и Широбокову Максиму Геннадьевичу за предоставленные материалы.

Используемые обозначения

```
«...по определению тогда и только тогда, когда ...»
             «...по определению равно ...»
             вероятностное пространство (\Omega — множество исходов, \mathcal{F} — \sigma-алгебра,
(\Omega, \mathcal{F}, \mathbb{P})
             \mathbb{P} — вероятностная мера).
             Борелевская \sigma-алгебра, определённая на множестве A (если A не указано,
\mathcal{B}(A), \mathcal{B}_A
             по умолчанию предполагается A = \mathbb{R}).
             индикаторная функция множества A.
   \mathbb{I}_A
   \mathbb{E} X
             математическое ожидание случайной величины X.
   \mathbb{D}X
             дисперсия случайной величины X.
    \mathring{X}
             «центрированная» случайная величина: \mathring{X} = X - \mathbb{E} X.
             распределение Бернулли с параметром р.
  Be(p)
 Bi(n, p)
             биномиальное распределение с параметрами n и p.
  Po(\lambda)
             распределение Пуассона с интенсивностью \lambda.
U(A), U_A
             равномерное распределение на множестве A.
 \text{Exp}(\lambda)
             показательное распределение с параметром \lambda (интенсивность).
\mathcal{N}(\mu, \sigma^2)
             нормальное распределение со средним \mu и дисперсией \sigma^2.
   C.K.
             сходимость в среднем квадратичном.
   п.н.
             сходимость почти наверное.
             сходимость по вероятности.
             сходимость по распределению.
             равенство почти наверное.
             равенство по распределению.
```

1 Основные сведения

Случайные процессы — математические объекты, построенные с использованием теории вероятностей для исследования и моделирования реальных явлений, растянутых во времени и имеющих стохастическую (случайную) природу.

Определение 1.1. Пусть задано вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ и множество $T \subseteq \mathbb{R}$. Функция $X \colon \Omega \times T \to \mathbb{R}$ называется случайным процессом, если $\forall t \in T$ функция $X(\cdot, t) \equiv X_t \colon \Omega \to \mathbb{R}$ измерима (то есть является случайной величиной).

Случайный процесс можно трактовать как семейство случайных величин, параметризованное $t \in T$. Параметр t обычно интерпретируется как время. Если T состоит из одного элемента, случайный процесс является обычной случайной величиной, если T конечно — случайным вектором. Если T счётно, говорят о случайном процессе с дискретным временем. Параметр ω , как и при описании случайных величин, часто опускается.

Определение 1.2. При фиксированном $t_0 \in T$ случайная величина X_{t_0} называется сечением случайного процесса X.

Определение 1.3. При фиксированном $\omega_0 \in \Omega$ функция $X(\omega_0, \cdot)$ называется реализацией (траекторией) случайного процесса X.

Также случайный процесс можно считать особой случайной величиной, принимающей значения в пространстве функций; при такой интерпретации, однако, отдельных усилий стоит определить, что такое вероятностное распределение на функциях. В рамках семинаров данный вопрос освещаться со всей полнотой и строгостью не будет, поэтому приведём из этой области лишь основные факты и определения, требующиеся для работы со случайными процессами.

Рассмотрим произвольный случайный процесс X. В силу единства вероятностного пространства, любой вектор вида $(X_{t_1}, \ldots, X_{t_n})$ (где $t_i \in T$) является случайным вектором.

Определение 1.4. Вероятностное распределение вектора вида $(X_{t_1}, \ldots, X_{t_n})$ называется конечномерным распределением случайного процесса X. Его функция распределения обозначается как $F_X(x_1, \ldots, x_n; t_1, \ldots, t_n)$.

Функции распределений векторов, составленных из сечений случайного процесса, обладают всеми известными вам свойствами функций распределений случайных векторов, а также ещё двумя дополнительными свойствами:

Утверждение 1.5. Функции конечномерных распределений случайного процесса X обладают следующими свойствами:

1. (условие симметрии) Для любой перестановки k_i выполнено равенство

$$F_X(x_1,\ldots,x_n;t_1,\ldots,t_n) = F_X(x_{k_1},\ldots,x_{k_n};t_{k_1},\ldots,t_{k_n})$$

2. (условие согласованности) Для любого индекса $k \in \{1, ..., n\}$ выполнено $\lim_{x_k \to +\infty} F_X(x_1, ..., x_n; t_1, ..., t_n) = F(x_1, ..., x_{k-1}, x_{k+1}, ..., x_n; t_1, ..., t_{k-1}, t_{k+1}, ..., t_n)$

Теорема 1.6 (Колмогорова). Пусть имеется семейство распределений случайных векторов, удовлетворяющее всем свойствам из утверждения 1.5. Тогда существует вероятностное пространство и заданный на нём случайный процесс, семейство конечномерных распределений которого совпадает с данным.

Таким образом, случайный процесс можно задавать семейством его конечномерных распределений. На данном этапе читателю должно стать понятно, как можно задавать вероятностное распределение на множестве функций (ответ — при помощи специальных семейств конечномерных распределений).

Задача 1.7. Пусть η — случайная величина с функцией распределения F_{η} . Найти все конечномерные распределения случайного процесса $X_t = \eta + t$.

Решение задачи 1.7. Одномерная функция распределения:

$$F_X(x;t) = \mathbb{P}\{\omega \in \Omega \mid X_t < x\} = \mathbb{P}\{\eta < x - t\} = F_{\eta}(x - t)$$

Конечномерная функция распределения:

$$F_X(x_1, \dots, x_n; t_1, \dots, t_n) = \mathbb{P} \bigcap_{i=1}^n \{ X_{t_i} < x_i \} = \mathbb{P} \bigcap_{i=1}^n \{ \eta < x_i - t_i \} =$$

$$= \mathbb{P} \left\{ \eta < \min_i \{ x_i - t_i \} \right\} = F_{\eta} \left(\min_i \{ x_i - t_i \} \right)$$

Задача 1.8. Пусть дана случайная величина $\eta \sim \mathrm{U}_{[0;1]}$. Определим случайный процесс $X_t = \mathbb{I}_{(-\infty;\eta]}(t)$. Найдите вид реализаций процесса, его одномерные и двумерные распределения.

Решение задачи 1.8. Реализация процесса — функция, равная единице при $t \leqslant \eta$ и нулю при $t > \eta$, см. рис. 1.1. Одномерная функция распределения:

$$F_X(x;t) = \mathbb{P}\{X_t < x\} = \mathbb{P}\{\mathbb{I}_{(-\infty;\eta]}(t) < x\} = \begin{cases} 0, & x \le 0 \\ \mathbb{P}\{\eta < t\}, & 0 < x \le 1, \\ 1, & x > 1 \end{cases}$$

где
$$\mathbb{P}\{\eta < t\} = F_{\eta}(t) = \begin{cases} 0, & t \leqslant 0 \\ t, & 0 < t \leqslant 1 \\ 1, & t > 1 \end{cases}$$

Двумерная функция распределения:

$$F_X(x_1, x_2; t_1, t_2) = \mathbb{P}\left(\{X_{t_1} < x_1\} \cap \{X_{t_2} < x_2\}\right)$$

Аналогично одномерной функции распределения,

- 1. Если $x_1 \leq 0$ или $x_2 \leq 0$, $F_X(x_1, x_2; t_1, t_2) = 0$.
- 2. Если $x_1 > 1$ и $x_2 > 1$, $F_X(x_1, x_2; t_1, t_2) = 1$.
- 3. Если $0 < x_1 \leqslant 1$ и $x_2 > 1$, $F_X(x_1, x_2; t_1, t_2) = F_X(x_1; t_1)$. Аналогично симметричный случай.
- 4. Если $0 < x_1, x_2 \le 1$,

$$F(x_1, x_2; t_1, t_2) = \mathbb{P}\left(\{\eta < t_1\} \cap \{\eta < t_2\}\right) = \mathbb{P}\left\{\eta < \min\{t_1, t_2\}\right\} = F_{\eta}\left(\min\{t_1, t_2\}\right)$$

Через семейства конечномерных распределений также вводится понятие hesaeucu-mocmu процессов.

Определение 1.9. Стохастические процессы X и Y, определённые на одних и тех жее Ω и T, называются независимыми в случае, если $\forall n \in \mathbb{N}$ и $\forall \{t_i\}_{i=1}^n \subseteq T$ векторы $(X_{t_1}, \ldots, X_{t_n})$ и $(Y_{t_1}, \ldots, Y_{t_n})$ независимы.

Рис. 1.1: График одной из реализаций случайного процесса из задачи 1.8.

Замечание 1.10. Определение 1.9 не изменится (не станет строго сильнее), если потребовать независимости любых векторов из сечений соответствующих процессов.

Доказательство. Рассмотрим $t_1,\ldots,t_n,s_1,\ldots,s_m\in T$. Если векторы

$$(X_{t_1},\ldots,X_{t_n},X_{s_1},\ldots,X_{s_m})$$
 и $(Y_{t_1},\ldots,Y_{t_n},Y_{s_1},\ldots,Y_{s_m})$

независимы, то независимы и векторы (X_{t_1},\ldots,X_{t_n}) и (Y_{s_1},\ldots,Y_{s_m}) .

Задавать процессы на вероятностных пространствах удобно также при помощи **выбо**рочного (вторичного) пространства.

Определение 1.11. Рассмотрим определённый на вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$ случайный процесс $X \colon \Omega \times T \to \mathbb{R}$. Пусть \mathcal{X} — пространство функций, содержащее в себе все траектории $X(\omega, \cdot)$ (но не обязательно только ux). Рассмотрим σ -алгебру, порождённую цилиндрическими множествами:

$$\mathcal{B}_{\mathcal{X}}^{T} = \sigma\left(\left\{x \in \mathcal{X} \mid x(t_1) \in B_1, \dots, x(t_n) \in B_n\right\}_{n \in \mathbb{N}, \left\{t_k\right\}_{k=1}^n \subseteq T, \left\{B_k\right\}_{k=1}^n \subseteq \mathcal{B}}\right)$$

Отображение $X(\omega,\,\cdot\,)$ определяет измеримое отображение (Ω,\mathcal{F}) в $(\mathcal{X},\mathcal{B}^T_{\mathcal{X}})$:

$$\forall B \in \mathcal{B}_{\mathcal{X}}^{T} \quad \{\omega \in \Omega \mid X(\omega, \cdot) \in B\} \in \mathcal{F}$$

На пространстве $(\mathcal{X}, \mathcal{B}_{\mathcal{X}}^T)$ вероятностную меру можно определить следующим образом:

$$\forall B \in \mathcal{B}_{\mathcal{X}}^{T} \quad \mathbb{P}_{X}B = \mathbb{P}\{\omega \in \Omega \mid X(\omega, \cdot) \in B\}$$

Вероятностное пространство $(\mathcal{X}, \mathcal{B}_{\mathcal{X}}^T, \mathbb{P}_X)$ называется выборочным (вторичным) пространством.

Задача 1.12. Рассмотрим вероятностное пространство $(\{0,1,2,3\},2^{\{0,1,2,3\}},\mathbb{P})$, где $\mathbb{P}: \mathbb{P}\{0\} = \ldots = \mathbb{P}\{3\} = \frac{1}{4}$, и случайный процесс $X(\omega,t) = \sin\left(t+\frac{\pi}{2}\omega\right),\ t\in T=[0;2\pi]$. Построить вторичное (выборочное) вероятностное пространство.

Решение задачи 1.12. Возьмём в качестве пространства функций $\mathcal{X} = \left\{ \sin(t), \sin\left(t + \frac{\pi}{2}\right), \sin\left(t + \pi\right) \right\}$ Тогда $\mathcal{B}_{\mathcal{X}}^T = 2^{\mathcal{X}}$, так как для любого подмножества \mathcal{X} можно подобрать цилиндрическое множество, с которым оно совпадает. Наконец,

$$\mathbb{P}_X: \quad \mathbb{P}_X \left\{ \sin(t) \right\} = \ldots = \mathbb{P}_X \left\{ \sin(t + 3\pi/2) \right\} = \frac{1}{4}$$

Существование различных случайных процессов с одними и теми же вероятностными свойствами приводит к желанию (а иногда и необходимости) в некотором смысле отождествлять процессы, у которых конечномерные распределения совпадают.

Определение 1.13. Пусть X и Y — два случайных процесса, определённые на одном u том же вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$ u множестве T. Данные процессы называются **стохастически эквивалентными** в случае равенства почти наверное ux реализаций в любой выбранный момент, то есть

$$\forall t \in T \quad \mathbb{P}\{\omega \in \Omega \mid X(\omega, t) = Y(\omega, t)\} = 1$$

В этом случае У называют модификацией процесса У (и наоборот).

Утверждение 1.14. Стохастически эквивалентные случайные процессы имеют одинаковое семейство конечномерных распределений.

Например, такое отождествление полезно для осмысленного определения непрерывного случайного процесса:

Определение 1.15. Случайный процесс называется непрерывным в случае, если существует его модификациея с непрерывными реализациями.

Задача 1.16. Пусть $\eta \sim U_{[0;1]}$. Определим случайный процесс $X_t = \mathbb{I}_{\{\eta\}}(t)$ (то есть $X_t = 1$ в том и только в том случае, когда $\eta = t$, и равен 0 иначе). Является ли X_t непрерывным процессом?

Решение задачи 1.16. Да, является. Процесс $Y_t \equiv 0$ является его модификацией.

При исследовании случайных процессов также бывает полезно рассматривать их моменты, дающие некоторое представление об усреднённом поведении процесса. В отличие от моментов случайных величин, любые моменты случайного процесса также зависят от времени.

Определение 1.17. Если $\forall t \in T$ существует и конечно $\mathbb{E} X_t$, то функция $m_X(t) = \mathbb{E} X_t$ определена и называется функцией среднего.

Аналогично вводятся функции любых других моментов случайной величины X_t . При работе со случайными процессами нас также будут интересовать моменты, «разнесённые во времени».

Определение 1.18. Если $\forall t_1, t_2 \in T$ существует и конечно $\mathbb{E} X_{t_1} X_{t_2}$, то функции $K_X(t_1, t_2) = \mathbb{E} X_{t_1} X_{t_2}$ и $R_X(t_1, t_2) = \mathbb{E} \mathring{X}_{t_1} \mathring{X}_{t_2}$ определены и называются, соответственно, ковариационной и корреляционной функциями.

Утверждение 1.19. Функции $K_X(t_1,t_2)$ и $R_X(t_1,t_2)$ одновременно либо определены, либо не определены, причём в первом случае функция $m_X(t)$ определена и $R_X(t_1,t_2) = K_X(t_1,t_2) - m_X(t_1)m_X(t_2)$.

Доказательство. Следует из свойств моментов.

Определение 1.20. Процесс, у которого существует ковариационная/корреляционная функция, называется \mathbb{L}_2 -процессом.

 $^{^{1}}$ Данные обозначения не являются общепринятыми, а также несколько контринтуитивны; при чтении сторонних источников будьте внимательны.

Задача 1.21. Найти корреляционную функцию случайного процесса из задачи 1.8.

Решение задачи 1.21. Для любого t_0 случайная величина X_{t_0} может принимать только два значения — 0 или 1; это бернуллиевская случайная величина. Найдём параметр её распределения:

$$\mathbb{P}{X_t = 1} = \mathbb{P}{t \leqslant \eta} = 1 - F_{\eta}(t)$$

Следовательно, $m_X(t) = \mathbb{E} X_t = 1 - F_n(t)$. Далее,

$$K_X(t_1, t_2) = \mathbb{E} X_{t_1} X_{t_2} = 1 \cdot \mathbb{P} \left(\{ X_{t_1} = 1 \} \cap \{ X_{t_2} = 1 \} \right) = \mathbb{P} \left(\{ t_1 \leqslant \eta \} \cap \{ t_2 \leqslant \eta \} \right) = 1 - F_{\eta} \left(\max\{ t_1, t_2 \} \right)$$

Наконец,

$$R_X(t_1, t_2) = 1 - F_{\eta} \left(\max\{t_1, t_2\} \right) - \left(1 - F_{\eta}(t_1) \right) \cdot \left(1 - F_{\eta}(t_2) \right) =$$

$$= F_{\eta}(t_1) + F_{\eta}(t_2) - F_{\eta}(t_1) \cdot F_{\eta}(t_2) - F_{\eta}(\max\{t_1, t_2\})$$

В частности, если $t_1, t_2 \in [0; 1]$,

$$R_X(t_1, t_2) = t_1 + t_2 - t_1 t_2 - \max\{t_1, t_2\} = \min\{t_1, t_2\} - t_1 t_2$$

Задача 1.22. Пусть $\xi \sim \mathcal{N}(0,1)$ и $\eta \sim U_{[-\pi;\pi]}$ — независимые случайные величины. Определим случайный процесс X следующим образом: $X_t = \xi \cdot \cos(t+\eta)$, где $t \in \mathbb{R}$. Найдите функцию среднего и корреляционную функцию процесса.

Решение задачи 1.22. Поскольку ξ и η независимы,

$$m_X(t) = \mathbb{E} X_t = \mathbb{E} \xi \cdot \mathbb{E} \cos(t + \eta) = 0 \cdot \ldots = 0$$

$$R_X(t_1, t_2) = K_X(t_1, t_2) - 0 = \mathbb{E} X_{t_1} X_{t_2} = \mathbb{E} \xi^2 \cdot \mathbb{E} \left(\cos(t_1 + \eta) \cdot \cos(t_2 + \eta) \right) = 1 \cdot \frac{1}{2} \mathbb{E} \left(\cos(t_1 - t_2) + \cos(t_1 + t_2 + 2\eta) \right) = \frac{1}{2} \cos(t_1 - t_2)$$

Задача 1.23. Пусть U, V и W — независимые в совокупности случайные величины. Известно, что U и V обладают нулевым матожиданием и дисперсией D, а W распределена с плотностью

$$\rho_W(w) = \frac{2\lambda}{\pi} \cdot \frac{\mathbb{I}_{[0;+\infty)}(w)}{\lambda^2 + w^2}, \quad \lambda > 0$$

Определим случайный процесс $X_t = U\cos(Wt) + V\sin(Wt)$. Вычислите функцию среднего и корреляционную функцию.

Решение задачи 1.23. Поскольку U, V и W независимы в совокупоности,

$$m_X(t) = \mathbb{E} X_t = \mathbb{E} U \cdot \mathbb{E} \cos(Wt) + \mathbb{E} V \cdot \mathbb{E} \sin(Wt) = 0 \cdot \ldots + 0 \cdot \ldots = 0$$

Корреляционную функцию удобно искать с помощью формулы полной вероятности в непрерывном случае:

$$R_X(t_1, t_2) = \mathbb{E}\left(\mathbb{E}(X_{t_1} X_{t_2} \mid W = w)\right) = \int_{\mathbb{R}} \underbrace{\mathbb{E}(X_{t_1} X_{t_2} \mid W = w)}_{\triangleq R_X(t_1, t_2 \mid w)} \cdot \rho_W(w) dw$$

В силу нулевого матожидания,

$$R_X(t_1, t_2) = \mathbb{E}\left(\left(U\cos(wt_1) + V\sin(wt_1)\right) \cdot \left(U\cos(wt_2) + V\sin(wt_2)\right)\right) =$$

$$= \mathbb{E}(U^2) \cdot \cos(wt_1)\cos(wt_2) + 2 \cdot \mathbb{E}\underbrace{U\mathbb{E}V}_{0} \cdot \dots + \mathbb{E}(V^2) \cdot \sin(wt_1)\sin(wt_2) = D\cos(w(t_1 - t_2))$$

Наконец,

$$R_X(t_1, t_2) = \int_0^{+\infty} D\cos(w(t_1 - t_2)) \cdot \frac{2\lambda}{\pi} \frac{1}{\lambda^2 + w^2} dw = De^{-\lambda|t_1 - t_2|}$$

Здесь использовалось значение интеграла Лапласа:

$$\int_{0}^{\infty} \frac{\cos(\alpha x)}{1+x^2} dx = \frac{\pi}{2} e^{-|\alpha|}$$

Определение 1.24. Функцией коэффициента корреляции называют функцию

$$r_X(t_1, t_2) = \frac{R_X(t_1, t_2)}{\sqrt{R_X(t_1, t_1) \cdot R_X(t_2, t_2)}} = \frac{\text{cov}(X_{t_1}, X_{t_2})}{\sqrt{\mathbb{D} X_{t_1} \mathbb{D} X_{t_2}}}$$

Данная функция, если определена, принимает значения от -1 до 1 и имеет смысл степени линейной связи сечений процесса, соответствующих выбранным моментам времени.

Задача 1.25. Найти функции коэффициента корреляции для процессов из задач 1.22 и 1.23.

Решение задачи 1.25.

• Задача 1.22:
$$r_X(t_1, t_2) = \frac{\frac{1}{2}\cos(t_1 - t_2)}{\sqrt{\frac{1}{2} \cdot \frac{1}{2}}} = \cos(t_1 - t_2).$$

Если взять два произвольных момента времени и начать сдвигать их друг к другу или друг от друга, будет наблюдаться периодическая корреляция и декорреляция соответствующих сечений.

• Задача 1.23:
$$r_X(t_1, t_2) = \frac{De^{-\lambda|t_1 - t_2|}}{\sqrt{De^{-\lambda \cdot 0} \cdot De^{-\lambda \cdot 0}}} = e^{-\lambda|t_1 - t_2|}.$$

Несмотря на схожесть процессов, в данном случае наблюдается корреляция, затухающая экспоненциально с ростом разницы между моментами времени, в которых взяты сечения.

Дело в том, что в первом процессе случайным был фазовый сдвиг, а потому реализации процесса «не расползались». Во втором же случае случайной является ещё и частота, и линейная связь между разными моментами времени быстро теряется (реализации «декогерируют»).

Из курса теории вероятностей вы должны помнить, что случайные величины удобно исследовать при помощи характеристической функции. Аналогичный объект можно ввести и для случайного процесса.

Определение 1.26. Характеристической функцией случайного процесса X называется функция $\varphi_X(t,s) = \varphi_{X_t}(s) \stackrel{\triangle}{=} \mathbb{E} \exp{(is \cdot X_t)}$, где $i^2 = -1$.

2 Важные примеры случайных процессов

В этом разделе речь пойдёт о нескольких процессах особого вида, наиболее часто встречающихся при исследовании реальных явлений. Зачастую такие процессы именные. На их примере мы продолжим практиковаться в решении задач, а также введём несколько новых теоретических понятий.

2.1 Пуассоновский процесс

Данный процесс встречается в реальной жизни довольно часто; он описывает поток случайных событий, которые регистрируются с некоторой постоянной «интенсивностью». Например, речь может идти о регистрации космических частиц, о кликах по ссылке, о запросах к серверу, о проезжающих по магистрали автомобилях.

Пуассоновский процесс можно неформально определить следующим образом: пусть ось времени разбита на бесконечно малые промежутки Δt . Тогда пуассоновский процесс ведёт себя следующим образом: в самом начале он равен нулю, и на каждом последующем шаге по времени может претерпеть скачок на +1 с вероятностью $\lambda \Delta t$. Параметр λ называется интенсивностью процесса и характеризует «скорость» потока событий. Дадим формальное определение:

Определение 2.1 (Явная конструкция пуассоновского процесса). Пусть $\xi_1, \ldots, \xi_k, \ldots \sim \text{Exp}(\lambda)$ и независимы в совокупности, $\tau_n = \xi_1 + \ldots + \xi_n$. Тогда процесс $K_t = \sup\{n \mid \tau_n \leqslant t\}$ называется пуассоновским процессом с интенсивностью λ .

Процесс K_t , построенный способом, указанным выше, называется **процессом восстановления**, **построенным по величинам** $\{\xi_k\}_{k\in\mathbb{N}}$, и отвечает следующей модели: в нулевой момент включается прибор, который работает время ξ_1 , после чего ломается. Одновременно с поломкой включается следующий прибор, который работает случайное время ξ_2 , и так далее. Величина K_t отражает количество приборов, введённых в эксплуатацию к моменту t.

Рис. 2.1: Пример пучка реализаций пуассоновского процесса с интенсивностью $\lambda = 2$.

Приведённая явная конструкция возвращает нас к неформальному определению, использующему дискретное время с шагом Δt . Можно заметить, что экспоненциальное распределение получается как предел вероятностного распределения случайной величины —

времени между соседними скачками — при $\Delta t \to +0$:

$$\mathbb{P}\{\xi_i \in [t; t+h)\} = \lim_{\Delta t \to +0} (1 - \lambda \Delta t)^{\frac{t}{\Delta t}} \cdot \left(\lambda \Delta t \cdot \frac{h}{\Delta t} + o(h)\right) = \lambda e^{-\lambda t} (h + o(h))$$

Пуассоновский процесс можно определить и иначе. Для этого введём понятие процесса с независимыми приращениями.

Определение 2.2. Случайный процесс X называется процессом с независимыми приращениями, если $\forall n \in \mathbb{N} \ \forall \{t_i\}_{i=1}^n \subseteq T$ случайные величины $X_{t_n} - X_{t_{n-1}}, \ldots, X_{t_2} - X_{t_1}, X_{t_1}$ независимы в совокупности.

Определение 2.3. Пуассоновским процессом с интенсивностью $\lambda > 0$ называется случайный процесс $K \colon \Omega \times [0; +\infty) \to \mathbb{N}$ такой, что

- 1. $K_0 \stackrel{\text{п.н.}}{=} 0$.
- $2. \ K- процесс \ c$ независимыми приращениями.
- 3. $K_t K_s \sim \text{Po}(\lambda \cdot (t-s)) \ (npu \ t > s \geqslant 0)$.

Теорема 2.4. Определения 2.1 и 2.3 эквивалентны.

Утверждение 2.5. Пуассоновский процесс обладает следующими свойствами:

- 1. Реализации пуассоновского процесса кусочно-постоянные неубывающие функции со значениями в N.
- 2. С вероятностью 1 все скачки пуассоновского процесса равны единице.
- 3. Время, когда произошёл n-ый скачёк (обозначим его τ_n) имеет $\Gamma(n,1/\lambda)$ -распределение:

$$\rho_{\tau_n}(t) = \frac{\lambda^n x^{n-1}}{(n-1)!} e^{-\lambda t} \cdot \mathbb{I}_{[0;+\infty)}(t)$$

- 4. Случайные величины $\{\tau_n \tau_{n-1}\}_{n \in \mathbb{N}}$ распределены экспоненциально с параметром λ и независимы.
- 5. Число событий за конечный период времени конечно с вероятностью 1.
- 6. Число событий $K_{t+h} K_t$ на промежутке (t; t+h] зависит лишь от длины промежутка $h: \mathbb{P}\{K_{t+h} K_t = k\} = p(h,k)$
- 7. Вероятность более чем одного скачка на полушнтервале (t;t+h] есть o(h), то есть $\lim_{h\to +0} \mathbb{P}\{K_{t+h}-K_t>1\}/h=0.$
- 8. Для коротких полуинтервалов (t;t+h] вероятность того, что на них произойдёт хотя бы один скачок, убывает линейно с уменьшением $h: \mathbb{P}\{K_{t+h} K_t > 0\} = 1 e^{-\lambda h} = \lambda h + o(h)$ при $h \to 0$.
- 9. Из определения распределения Пуассона:

$$\mathbb{P}\{K_t = k\} = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

Наконец, приведём ещё одно из альтернативных определений пуассоновского процесса:

Утверждение 2.6. Случайный процесс $K \colon \Omega \times T \to \mathbb{N}$ является пуассоновским тогда и только тогда, когда он удовлетворяет следующим свойствам:

- 1. (стационарность приращений) $\mathbb{P}\{K_{t+h} K_t = k\} = p(h,k)$
- 2. (отсутствие последействия) Приращения процесса независимы.
- 3. (ординарность) $\mathbb{P}\{K_{t+h} K_t > 1\} \in o(h)$

Утверждение 2.7. Пусть K — пуассоновский процесс с интенсивностью λ . Тогда $m_K(t) = \lambda t$, $R_K(t,s) = \lambda \cdot \min\{t,s\}$.

Доказательство. Так как $K_t \stackrel{\text{п.н.}}{=} K_t - K_0 \sim \text{Po}(\lambda t), \ m_K(t) = \mathbb{E} K_t = \lambda t$. Далее, в силу независимости приращений, при $t \geqslant s$ имеем $\text{cov}(K_t, K_s) = \text{cov}(K_t - K_s + K_s, K_s) = 0 + \text{cov}(K_s, K_s) = \lambda t$. Поэтому $R_k(t, s) = \lambda \cdot \min\{t, s\}$.

Задача 2.8. Поток прибывающих на железнодорожную станцию пассажиров моделируется пуассоновским процессом K с интенсивностью λ . В момент t=0 пассажиров нет, в момент $t=t_0$ прибывает первый поезд. Пусть η — суммарное время ожидания прибытия поезда всеми пассажирами на станции. Найти $\mathbb{E} \eta$.

Решение задачи 2.8.

$$\eta = \int_{0}^{t_0} K_t dt, \qquad \mathbb{E} \, \eta = \int_{\Omega} d\mathbb{P} \int_{0}^{t_0} K_t dt = \int_{0}^{t_0} dt \int_{\Omega} K_t d\mathbb{P} = \int_{0}^{t_0} m_K(t) dt = \int_{0}^{t_0} \lambda t dt = \frac{\lambda t_0^2}{2}$$

Задача 2.9. Пусть K_t — пуассоновский процесс с интенсивностью λ , а τ_1 — момент первого скачка. Найдите $\mathbb{P}\{\tau_1 \leqslant s \mid K_t = 1\}$ при 0 < s < t.

Решение задачи 2.9. Событие $\{\tau_1 \leqslant s\}$ означает, что первый скачок процесса произошёл не позже момента s. Если при этом $K_t=1$, то это означает, что $K_s=1$. Тогда

$$\mathbb{P}\{\tau_{1} \leqslant s \mid K_{t} = 1\} = \mathbb{P}\{K_{s} = 1 \mid K_{t} = 1\} = \frac{\mathbb{P}(\{K_{s} = 1\} \cap \{K_{t} = 1\})}{\mathbb{P}\{K_{t} = 1\}} = \frac{\mathbb{P}(\{K_{s} = 1\} \cap \{K_{t} - K_{s} = 0\})}{\mathbb{P}\{K_{t} = 1\}} = \frac{\frac{\lambda s}{1!}e^{-\lambda s} \cdot \frac{(\lambda(t-s))^{0}}{0!}e^{-\lambda(t-s)}}{\frac{\lambda t}{1!}e^{-\lambda t}} = \frac{s}{t}$$

Задача 2.10. Пусть K — пуассоновский процесс с интенсивностью λ , τ_3 — время третьего скачка процесса. Найти $\mathbb{P}\{\tau_3\leqslant 2\}$.

Решение задачи 2.10.

$$\mathbb{P}\{\tau_3 \leqslant 2\} = \mathbb{P}\{K_2 \geqslant 3\} = 1 - \mathbb{P}\{K_2 < 3\} = 1 - e^{-2\lambda} - \frac{2\lambda}{1!}e^{-2\lambda} - \frac{(2\lambda)^2}{2!}e^{-2\lambda}$$

Задача 2.11. Пусть $\eta \sim \mathrm{U}_{[0;1]}, \ K$ — пуассоновский процесс с интенсивностью λ , и η не зависит от K. Найти $\mathbb{P}\{K_{\eta}=K_{\eta+1}\}$.

Решение задачи 2.11. По формуле полной вероятности,

$$\mathbb{P}\{K_{\eta} = K_{\eta+1}\} = \int_{\mathbb{R}} \mathbb{P}\{\underbrace{K_{t+1} - K_{t}}_{\sim \text{Po}(1 \cdot \lambda)} = 0 \mid \eta = t\} \cdot \rho_{\eta}(t) \, dt = \int_{0}^{1} e^{-1 \cdot \lambda} \, dt = e^{-\lambda}$$

Пуассоновский процесс моделирует лишь поток некоторых событий. Иногда сами события также имеют сложную и/или случайную природу. Тогда требуется построить более продвинутую модель, наследующую от пуассоновского процесса только характер возникновения событий с течением времени. В качестве примера такой модели можно привести сложсный (составной) пуассоновский процесс. Данный процесс может возникнуть, например, при моделировании покупок в магазине: каждый покупатель будет появляться на кассе согласно пуассоновскому процессу, при этом закупаясь на некоторое случайное количество денег.

Определение 2.12. Рассмотрим пуассоновский процесс K и набор независимых (в совокупности с K) одинаково распределённых случайных величин $\{V_k\}_{k\in\mathbb{N}}$. Сложным пуас-

соновским процессом называется процесс
$$Q_t = \sum_{i=1}^{K_t} V_j$$
.

Это означает следующее: $Q_0 \stackrel{\text{п.н.}}{=} 0$, и в каждый момент, когда K испытывает скачок, к Q добавляется V_j .

Утверждение 2.13. Сложный пуассоновский процесс является процессом с независимыми приращениями.

Доказательство. Следует из независимости приращений K и независимости $\{V_j\}_{j\in\mathbb{N}}$ в совокупности с K_t .

Утверждение 2.14. Рассмотрим сложный пуассоновский процесс Q с интенсивностью λ , определённый по случайным величинам $\{V_j\}_{j\in\mathbb{N}}$. Пусть $\varphi_V(s)$ — характеристическая функция случайных величин V_j . Тогда характеристичекая функция процесса Q задаётся формулой

$$\varphi_{Q_t}(s) = e^{(\varphi_V(s)-1)\cdot\lambda t}$$

Доказательство.

$$\varphi_{Q_t}(s) = \sum_{k=0}^{\infty} \mathbb{E}\left(e^{is \cdot Q_t} \mid K_t = k\right) \mathbb{P}\{K_t = k\} = \sum_{k=0}^{\infty} \mathbb{E}\left(e^{is \cdot (V_1 + \dots + V_k)}\right) \cdot \frac{(\lambda t)^k}{k!} e^{-\lambda t} = \sum_{k=0}^{\infty} (\varphi_V(s))^k \cdot \frac{(\lambda t)^k}{k!} e^{-\lambda t} = e^{\varphi_V(s) \cdot \lambda t} \cdot e^{-\lambda t}$$

Следствие 2.15. Функция среднего и корреляционная функция сложного пуассоновского процесса имеют вид, соответственно,

$$m_Q(t) = \lambda t \cdot \mathbb{E} V, \qquad R_Q(t, s) = \lambda \min\{t, s\} \cdot \mathbb{E}(V^2)$$

12

Доказательство. По свойству характеристической функции,

$$\begin{split} m_Q(t) &= \mathbb{E} \, Q_t = -i \frac{\partial \varphi_{Q_t}(s)}{\partial s} \bigg|_{s=0} = -i \frac{\partial}{\partial s} \left(e^{(\varphi_V(s)-1) \cdot \lambda t} \right) \bigg|_{s=0} = \\ &= \lambda t \cdot \underbrace{\left(-i \frac{\partial \varphi_V(s)}{\partial s} \bigg|_{s=0} \right)}_{\mathbb{E} \, V} \cdot \underbrace{e^{(\varphi_V(0)-1) \cdot \lambda t}}_{e^0} = \lambda t \cdot \mathbb{E} \, V \end{split}$$

Пользуясь независимостью приращений и полагая $t \leqslant s$,

$$R_Q(t,s) = \mathbb{E} Q_t Q_s - m_Q(t) m_Q(s) = \mathbb{E} \left(Q_t (Q_s - Q_t) \right) + \mathbb{E} Q_t^2 - \lambda^2 t s \cdot (\mathbb{E} V)^2$$

$$\mathbb{E} \left(Q_t (Q_s - Q_t) \right) = \mathbb{E} Q_t \cdot \mathbb{E} (Q_s - Q_t) = \lambda t \cdot \mathbb{E} V \cdot \lambda (s - t) \cdot \mathbb{E} V = \lambda^2 t (s - t) \cdot (\mathbb{E} V)^2$$

$$\mathbb{E} (Q_t)^2 = (-i)^2 \frac{\partial^2}{\partial s^2} \left(e^{(\varphi_V(s) - 1) \cdot \lambda t} \right) \bigg|_{s = 0} = (\lambda t)^2 (\mathbb{E} V)^2 + \lambda t \cdot \mathbb{E} (V^2)$$

Собирая всё вместе, получаем

$$R_Q(t,s) = \lambda^2 \underbrace{\left[t(s-t) + t^2 - ts\right]}_{0} \cdot (\mathbb{E} V)^2 + \lambda t \cdot \mathbb{E}(V^2) = \lambda t \cdot \mathbb{E}(V^2)$$

В общем же случае $R_Q(t,s) = \lambda \min\{t,s\} \cdot \mathbb{E}(V^2)$.

Задача 2.16 (Прореживание пуассоновского процесса). Пусть K_t — пуассоновский процесс с интенсивностью λ , а случайные величины $\{V_j\}_{j\in\mathbb{N}}$ независимы и имеют распределение Бернулли с параметром p. Покажите, что Q_t — также пуассоновский процесс с интенсивностью $p\lambda$.

Решение задачи 2.16. Пуассоновский процесс также является сложным пуассоновским процессом с $V_i \equiv 1$. Тогда характеристическая функция пуассоновского процесса:

$$\varphi_{K_t}(s) = e^{\left(e^{is} - 1\right) \cdot \lambda t}$$

Характеристическая функция «прореженного» процесса Q:

$$\varphi_{Q_t}(s) = e^{\left(p e^{is} + (1-p) - 1\right) \cdot \lambda t} = e^{\left(e^{is} - 1\right) \cdot p\lambda t}$$

Имеем характеристическую функцию пуассоновского процесса с интенсивностью $p\lambda$. В общем случае этого недостаточно для того, чтобы утверждать, что процесс пуассоновский; нужно равенство характеристических функций всех конечномерных распределений. Но мы имеем дело с процессом с независимыми приращениями, поэтому характеристической функции сечения нам достаточно (это утверждение мы оставим без доказательства).

2.2 Гауссовские процессы

Гауссовские процессы могут возникать при исследовании броуновского движения, динамики цен акций, эволюции квантово-механических систем и стохастических космологических моделей. Также гауссовские процессы часто используется как «шумовая составляющая» других случайных процессов.

Определение 2.17. Случайный процесс, все векторы сечений которого являются гауссовскими, называется гауссовским случайным процессом.

Напомним, что гауссовские векторы обладают рядом полезных свойств: распределение гауссовского вектора полностью задаётся вектором среднего и матрицей ковариации, а нескоррелированность компонент полностью эквивалентна независимости. Аналогичные свойства можно доказать и для гауссовских процессов. Однако для этого требуется ввести следующее определение:

Определение 2.18. Функция $g(x,y)\colon X\times X\to\mathbb{C}$ называется симметричной неотрицательно определённой, если $\forall x,y\in X$ g(x,y)=g(y,x) и $\forall n\in\mathbb{N},\ \forall \{x_i\}_{i=1}^n,\{y_j\}_{j=1}^n\subseteq X$ матрица $(g(x_i,y_j))_{i,j=1}^n=G_{\{x_i\},\{y_j\}}$ неотрицательна определена как оператор над \mathbb{C}^n , то есть $\forall z\in\mathbb{C}^n$ $(z,G_{\{x_i\},\{y_i\}}z)\geqslant 0$.

Замечание 2.19. Если g(x,y) принимает только вещественные значения, в определении 2.18 можно рассматривать только $z \in \mathbb{R}^n$.

Утверждение 2.20. Пусть $m: T \to \mathbb{R}$ — произвольная функция, а $R: T \times T \to \mathbb{R}$ — симметричная и неотрицательно определённая функция. Тогда существует гауссовский процесс X такой, что $\mathbb{E} X_t = m(t)$, $\mathbb{E} \mathring{X}_s \mathring{X}_t = R(s,t)$.

В курсе теории вероятностей вы уже встречались с неотрицательно определёнными функциями. В частности, все характеристические функции случайных величин неотрицательно определены.

Утверждение 2.21. Пусть $\varphi_{\xi}(s)$ — характеристическая функция некоторой случайной величины ξ . Тогда функция $g(s,t) = \varphi_{\xi}(t-s)$ — симметричная и неотрицательно определённая.

Задача 2.22. Существует ли гауссовский процесс с корреляционной функцией $R(s,t) = e^{-|s-t|}$?

Решение задачи 2.22. Да, существует. Мы знаем, что $e^{-|t|}$ есть характеристическая функция распределения Коши. Поэтому это неотрицательно определённая функция. Значит, $R(s,t)=e^{-|s-t|}$ неотрицательно определена и симметрична. Пример реализаций процесса можно видеть на рис. 2.2.

Рис. 2.2: Пример пучка реализаций гауссовского процесса из задачи 2.22 (среднее взято за ноль).

Напомним также несколько фатов касательно гауссовских векторов, которые пригодятся при исследовании гауссовских процессов.

Утверждение 2.23. Пусть $\xi \sim \mathcal{N}(\mu, R)$ — гауссовский вектор размерности $n \in \mathbb{N}$. Пусть $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ — произвольные вещественные матрица и вектор. Тогда $(A\xi + b) \sim \mathcal{N}(A\mu + b, ARA^T)$ — также гауссовский вектор.

Теорема 2.24 (Формула Вика). Пусть дан гауссовский вектор $(\xi_1, \dots, \xi_n) \sim \mathcal{N}(0, R)$ с корреляционной матрицей $R = (R_{i,j})_{i,j=1}^n \in \mathbb{R}^{n \times n}$. Тогда

- 1. Если n нечётно, $\mathbb{E} \xi_1 \dots \xi_n = 0$.
- 2. Если п чётно,

$$\mathbb{E}\,\xi_1\ldots\xi_n=\sum R_{i_1,j_1}\ldots R_{i_n,j_n},$$

где сумма берется по всем неупорядоченным разбиениям множества $\{1,\ldots,n\}$ на n/2 неупорядоченных пар.

Пример 2.25. Пусть $\xi = (\xi_1, \xi_2, \xi_3, \xi_4) \sim \mathcal{N}(0, R)$. Тогда, согласно свойству гауссовского вектора и формуле Вика,

$$\mathbb{E}\,\xi_1\xi_2\xi_3=0,$$
 $\mathbb{E}\,\xi_1\xi_2\xi_3\xi_4=R_{12}R_{34}+R_{13}R_{24}+R_{14}R_{23}$

2.2.1 Винеровский процесс

Винеровский процесс описывает симметричное случайное блуждание, непрерывное во времени, и также имеет множество важных приложений. Данный процесс часто возникает в стохастических дифференциальных уравнениях, а также при построении других гауссовских процессов.

Рис. 2.3: Пример пучка реализаций винеровского процесса.

Неформально винеровский процесс можно определить, введя мелкую сетку дискретного времени с шагом Δt . Пусть процесс стартует из нуля и на каждом очередном шаге по времени делает скачок на некоторую случайную величину; математическое ожидание скачка пусть будет равно нулю, а дисперсия — Δt (это сделано для того, чтобы дисперсия

сечения процесса была равна прошедшему времени и, таким образом, не зависила от выбора Δt). Полученные случайные блуждания при $\Delta t \to +0$ и описываются винеровским процессом. Дадим формальное определение.

Определение 2.26. Винеровским процессом называется случайный процесс $W \colon \Omega \times [0;+\infty) \to \mathbb{R}$ такой, что

- 1. $W_0 \stackrel{\text{п.н.}}{=} 0$.
- $2. \ W-$ процесс с независимыми приращениями.
- 3. $W_t W_s \sim \mathcal{N}(0, |t s|)$.

Данное определение напомниает определение пуассоновского процесса; мы лишь изменили распределение приращений. Из определения следует, что винеровский процесс — гауссовский процесс. Как было упомянуто ранее, любой гауссовский процесс можно задать его функцией среднего и ковариационной функцией. Из этого следует второе, эквивалентное определение винеровского процесса:

Определение 2.27. Винеровским процессом называется гауссовский случайный процесс $W: \Omega \times [0; +\infty) \to \mathbb{R}$ такой, что $\mathbb{E} W_t = 0$, $\mathbb{E} \mathring{W_t} \mathring{W_s} = \min\{t, s\}$.

Наконец, дадим третье эквивалентное определение:

Определение 2.28. Винеровским процессом называется гауссовский случайный процесс $W: \Omega \times [0; +\infty) \to \mathbb{R}$ такой, что

- 1. $W_0 \stackrel{\text{п.н.}}{=} 0$.
- 2. $\mathbb{E} W_t = 0$.
- 3. $\mathbb{E}(W_t W_s)^2 = |t s|$.

Теорема 2.29. Определения 2.26, 2.27 и 2.28 эквивалентны.

Доказательство.

- $2.26 \to 2.27$: Из независимости приращений и их нормального распределения следует, что процесс гауссовский (любой вектор сечений получается линейным преобразованием из вектора приращений, который является гауссовским). Далее, при t > s имеем $\mathbb{E} W_t = \mathbb{E}(W_t W_0) = 0$, $\operatorname{cov}(W_t, W_s) = \operatorname{cov}(W_s + W_t W_s, W_s) = \mathbb{D} W_s = s = \min\{t, s\}$.
- $2.27 \to 2.28$: $\mathbb{E}(W_t W_s)^2 = \mathbb{E}W_t^2 2\mathbb{E}W_tW_s + \mathbb{E}W_s^2 = t 2\min\{t, s\} + s = |t s|$.
- $2.28 \to 2.26$: Поскольку процесс гауссовский, из пунктов 2 и 3 определения 2.28 следует, что $W_t W_s \sim \mathcal{N}(0, |t-s|)$. Прочитав доказательство в предыдущем пункте «в обратную сторону», получаем $\mathbb{E} \mathring{W}_t \mathring{W}_s = \min\{t,s\}$. Осталось показать независимость приращений.

Рассмотрим два произвольных последовательных приращения: $W_{t_4} - W_{t_3}$ и $W_{t_2} - W_{t_1}$ ($t_1 \leqslant t_2 \leqslant t_3 \leqslant t_4$). Они образуют двумерный гауссовский вектор (т.к. получены линейным преобразованием из вектора сечений). Приращения нескоррелированны:

$$cov(W_{t_4} - W_{t_3}, W_{t_2} - W_{t_1}) = \min\{t_4, t_2\} - \min\{t_3, t_2\} - \min\{t_4, t_1\} + \min\{t_3, t_1\} = t_2 - t_2 - t_1 + t_1 = 0$$

Поскольку любой вектор приращений процесса W гауссовский (см. рассуждение выше про линейное преобразование вектора сечений), а его матрица ковариации диагональная (т.к. любые попарные ковариации нулевые), из свойств гауссовского вектора получаем независимость.

Приведём без доказательства несколько полезных свойств винеровского процесса:

Утверждение 2.30.

- 1. Винеровский процесс имеет **стационарные приращения**, то есть процесс $Y_t = W_{t_0+t} W_{t_0}$ также винеровский для любого $t_0 \geqslant 0$.
- 2. Винеровский процесс является непрерывным процессом.
- 3. Траектории винеровского процесса возвратны: множество $\{t \mid W_t = 0\}$ с вероятностью 1 является неограниченным.
- 4. Выполнен закон повторного логарифма Леви: $\lim_{t\to +\infty} \frac{W_t}{\sqrt{2t\ln\ln t}}\stackrel{\text{п.н.}}{=} 1.$

В качестве упражнения приведём доказательства для следующих двух утверждений:

Утверждение 2.31. Винеровский процесс самоподобен с коэффициентом 1/2, то есть $Y_t = W_{ct}/\sqrt{c}$ — также винеровский процесс для любой константы c > 0.

Доказательство. Процесс Y_t является гауссовским, так как получен из гауссовского процесса линейным (относительно W_t) масштабированием по оси времени и оси значений. При этом

$$\mathbb{E} Y_t = \frac{1}{\sqrt{c}} \cdot 0 = 0, \qquad \mathbb{E} Y_t Y_s = \frac{1}{\sqrt{c} \cdot \sqrt{c}} \min\{ct, cs\} = \min\{t, s\},$$

что по определению означает, что Y_t — винеровский.

Утверждение 2.32. Винеровский процесс допускает «инверсию времени»: $Y_t = t \cdot W_{1/t} - m$ акже винеровский процесс.

Доказательство. Процесс Y_t является гауссовским, так как получен из гауссовского процесса линейным (относительно W_t) масштабированием по оси времени и оси значений. При этом

$$\mathbb{E} Y_t = t \cdot 0 = 0, \qquad \mathbb{E} Y_t Y_s = ts \cdot \min\{1/t, 1/s\} = \min\{t, s\},\$$

что по определению означает, что Y_t — винеровский.

Задача 2.33. Найдите корреляционную функцию процесса $X_t = W_t^2$.

Решение задачи 2.33. Пусть, без ограничения общности, t > s. Тогда

$$cov(W_t^2, W_s^2) = cov((W_t - W_s)^2 - 2W_tW_s - W_s^2, W_s^2) =$$

$$= cov((W_t - W_s)^2 + 2(W_t - W_s)W_s + W_s^2, W_s^2) = 0 + cov((W_t - W_s)W_s, W_s^2) + \mathbb{D}W_s^2$$

Поскольку $W_t - W_s$ и W_s независимы, $\mathbb{E}(W_t - W_s)W_s = 0$. Отсюда

$$cov((W_t - W_s)W_s, W_s^2) = \mathbb{E}(W_t - W_s)\underbrace{W_s(W_s^2 - \mathbb{E}W_s^2)}_{p(W_s)} = \mathbb{E}(W_t - W_s) \cdot \mathbb{E} p(W_s) = 0 \cdot \ldots = 0$$

Наконец,

$$\mathrm{cov}(W_t^2, W_s^2) = \mathbb{D} \, W_s^2 = \mathbb{E} \, W_s^4 - (\mathbb{E} \, W_s^2)^2 \stackrel{\mathrm{cb. \; Hopm.}}{=} 3s^2 - s^2 = 2s^2 = 2 \min\{t^2, s^2\}$$

Альтернативно, можно было применить формулу Вика:

$$\mathbb{E} W_t W_t W_s W_s = t \cdot s + \min\{t, s\} \cdot \min\{t, s\} + \min\{t, s\} \cdot \min\{t, s\} = ts + 2\min\{t^2, s^2\}$$

$$\mathbb{E} W_t^2 = t, \qquad \mathbb{E} W_s^2 = s$$

$$\operatorname{cov}((W_t - W_s) W_s, W_s^2) = ts + 2\min\{t^2, s^2\} - ts = 2\min\{t^2, s^2\}$$

Задача 2.34. Для винеровского процесса W и разбиения $T = \{a = t_0 < t_1 < \ldots < t_{n+1} = b\}$ отрезка [a;b] введём случайную величину $Z(T) = \sum_{k=0}^{n} (W_{t_{k+1}} - W_{t_k})^2$. Найдите предел в \mathbb{L}_2 (в среднем квадратичном) случайных величин Z(T) при устремлении мелкости разбиения d(T) к нулю.

Решение задачи 2.34. Напмним, что случайная величина η является пределом в среднем квадратичном последовательности случайных величин $\{\xi_n\}_{n\in\mathbb{N}}$, если $\mathbb{E}\,|\xi_n-\eta|^2 \underset{n\to\infty}{\longrightarrow} 0$. В нашем случае вместо $n\to\infty$ имеем $d(T)\to 0$.

Покажем, что искомым пределом является константная случайная величина — (b-a). Для этого заметим, что из независимости приращений и их распределения следует

$$\mathbb{E}\left(\sum_{k=0}^{n} (W_{t_{k+1}} - W_{t_k})^2\right) = \sum_{k=0}^{n} (t_{k+1} - t_k) = b - a$$

Таким образом, (b-a) есть ни что иное, как $\mathbb{E} Z(T)$. Тогда

$$\mathbb{E}\left(\sum_{k=0}^{n}(W_{t_{k+1}}-W_{t_k})^2-(b-a)\right)^2=\mathbb{D}\left(\sum_{k=0}^{n}(W_{t_{k+1}}-W_{t_k})^2\right)$$

В очередной раз воспользовавшись независимостью и нормальностью приращений, получаем

$$\mathbb{D}\left(\sum_{k=0}^{n}(W_{t_{k+1}}-W_{t_{k}})^{2}\right) = \sum_{k=0}^{n}\mathbb{D}(W_{t_{k+1}}-W_{t_{k}})^{2} = \sum_{k=0}^{n}\left(3(t_{k+1}-t_{k})^{2}-(t_{k+1}-t_{k})^{2}\right) = 2\sum_{k=0}^{n}(t_{k+1}-t_{k})^{2} \leqslant 2\cdot d(T)\cdot\sum_{k=0}^{n}(t_{k+1}-t_{k}) = 2\cdot d(T)\cdot(b-a)\underset{d(T)\to 0}{\longrightarrow}0$$

Теорема 2.35 (Башелье). Пусть W — винеровский процесс, t > 0. Случайная величина $M_t = \sup_{s \in [0;t]} W_s$ имеет такое же распределение, как и $|W_t|$.

Задача 2.36. Пусть W — винеровский процесс, y>0 и $\tau_y=\inf\{t\mid W_t=y\}$. Вычислить $\mathbb{E}\,\tau_y$.

Решение задачи 2.36. Воспользовавшись теоремой 2.35, найдём распределение τ_y :

$$\mathbb{P}\{\tau_{y} \geqslant t\} = \mathbb{P}\{M_{t} < y\} = \mathbb{P}\{W_{t} \in [-y; y]\} = F_{\mathcal{N}(0,t)}(y) - F_{\mathcal{N}(0,t)}(-y) = 2(F_{\mathcal{N}(0,t)}(y) - 1/2)$$

Заметим, что

$$\frac{\partial}{\partial t} F_{\mathcal{N}(0,t)}(y) = \frac{\partial}{\partial t} \int_{-\infty}^{y} \frac{e^{-\frac{x^2}{2t}}}{\sqrt{2\pi t}} dx = \frac{\partial}{\partial t} \int_{-\infty}^{y/\sqrt{t}} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx = -\frac{y}{2\sqrt{t^3}} \cdot \frac{e^{-y^2/2t}}{\sqrt{2\pi}}$$

Отсюда

$$\rho_{\tau_y}(t) = \frac{\partial}{\partial t} \mathbb{P}\{\tau_y < t\} = \frac{\partial}{\partial t} \left[1 - 2(F_{\mathcal{N}(0,t)}(y) - 1/2) \right] = \frac{y}{\sqrt{t^3}} \cdot \frac{e^{-y^2/2t}}{\sqrt{2\pi}}$$
$$\mathbb{E}\,\tau_y = \int_0^{+\infty} t \cdot \rho_{\tau_y}(t) \, dt = +\infty$$

Задача 2.37. Пусть W — винеровский процесс. Вычислить математическое ожидание процесса $X_t = \exp(W_t - t/2) - 1$ и доказать, что он имеет ортогональные приращения, то есть для $0 < t_1 < t_2 \leqslant t_3 < t_4$ справедливо $\mathbb{E}\left((X_{t_4} - X_{t_3})(X_{t_2} - X_{t_1})\right) = 0$.

Решение задачи 2.37. Величина e^{W_t} распределена логнормально с параметрами $(\mu, \sigma) = (0, t)$, а потому $\mathbb{E} \, e^{W_t} = e^{0 - t/2}$. Тогда $\mathbb{E} \, X_t = e^{t/2 - t/2} - 1 = 0$. Пусть $0 < t_1 < t_2 \leqslant t_3 < t_4$. В этом случае

$$\mathbb{E}\left(\left(e^{W_{t_4}-t_4/2}-e^{W_{t_3}-t_3/2}\right)\left(e^{W_{t_2}-t_2/2}-e^{W_{t_1}-t_1/2}\right)\right) = e^{-(t_2+t_4)/2}\mathbb{E}\left(e^{W_{t_2}+W_{t_4}}\right) - e^{-(t_1+t_4)/2}\mathbb{E}\left(e^{W_{t_1}+W_{t_4}}\right) - e^{-(t_2+t_3)/2}\mathbb{E}\left(e^{W_{t_2}+W_{t_3}}\right) + e^{-(t_1+t_3)/2}\mathbb{E}\left(e^{W_{t_1}+W_{t_3}}\right)$$

Рассмотрим произвольное слагаемое (например, первое). Пользуясь независимостью приращений,

$$\mathbb{E}\left(e^{W_{t_2}+W_{t_4}}\right) = \mathbb{E}\left(e^{2W_{t_2}+W_{t_4}-W_{t_2}}\right) = \mathbb{E}\left(e^{2W_{t_2}}\right)\mathbb{E}\left(e^{W_{t_4}-W_{t_2}}\right)$$

Аналогично, пользуясь свойством логнормального распределения, получаем

$$\mathbb{E}\left(e^{2W_{t_2}}\right)\mathbb{E}\left(e^{W_{t_4}-W_{t_2}}\right) = e^{4t_2/2} \cdot e^{(t_4-t_2)/2} \qquad \Longrightarrow \qquad e^{-(t_2+t_4)/2}\mathbb{E}\left(e^{W_{t_2}+W_{t_4}}\right) = e^{t_2}$$

Отсюда

$$\mathbb{E}\left((X_{t_4} - X_{t_3})(X_{t_2} - X_{t_1})\right) = e^{t_2} - e^{t_1} - e^{t_2} + e^{t_1} = 0$$