Nombre: Macias Pico Josselyn Stefany

Curso: Sexto "B"

Materia: Modelamiento y simulacion

Docente: Ing. Jorge Anibal Moya Delgado

1. Los datos siguientes representan el periodo en segundos, necesarios para trasmitir un mensaje:

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

datos = pd.read_excel('C:/Users/Villamar/Desktop/JOSS/SEXTOSEMESTRE/MODELAMIENTOS
datos
```

Out[1]:	segundos	
	0	5.60
	1	5.80
	2	12.80
	3	17.30
	4	21.10
	5	22.10
	6	23.80
	7	23.90
	8	25.80
	9	28.60
	10	29.20
	11	30.01
	12	35.20
	13	35.90
	14	36.40
	15	36.40
	16	36.40
	17	36.80
	18	38.70
	19	38.70
	20	39.20
	21	47.90
	22	48.10
	23	51.90
	24	56.40
	25	58.60
	26	58.60
	27	58.70
	28	59.30
	29	61.30

	segundos
30	63.60
31	65.30
32	66.10
33	67.30
34	70.90
35	71.30
36	71.30
37	72.50
38	76.40
39	76.70
40	77.40
41	78.70
42	82.70
43	83.90
44	88.90
45	89.50
46	89.50
47	93.40
48	93.50
49	94.80

58.6	89.5	35.2	36.4	58.7
71.3	38.7	61.3	59.3	93.4
94.8	47.9	56.4	22.1	48.1
67.3	25.8	65.3	30.01	72.5
70.9	5.8	88.9	76.4	17.3
66.1	77.4	23.9	23.8	36.8
36.4	5.6	93.5	36.4	76.7
39.2	83.9	78.7	51.9	63.6
58.6	89.5	12.8	28.6	82.7
71.3	38.7	21.1	35.9	29.2

2. Genere una tabla con el histograma de los datos con el intervalo, frecuencia observada, Frecuencia relativa, frecuencia acumulada.

a. Frecuencia Observada (Absoluta)

	dfc:	= datafi.v lases["Fi' lases	
Out[44]:		segundos	Fi
	0	5.60	1
	1	5.80	1
	2	12.80	1
	3	17.30	1
	4	17.80	1
	5	21.10	1
	6	22.10	1
	7	23.80	1
	8	23.90	1
	9	25.80	1
	10	28.60	1
	11	29.20	1
	12	30.01	1
	13	34.70	1
	14	35.20	1
	15	35.80	1
	16	35.90	1
	17	36.40	3
	18	36.80	1
	19	38.70	1
	20	39.20	1
	21	47.90	1
	22	48.10	1
	23	48.20	1
	24	51.90	1
	25	56.40	1
	26	58.60	1
	27	58.70	1
	28	59.30	1
	29	61.30	1
	30	63.60	1

	segundos	Fi
31	65.30	1
32	66.10	1
33	67.30	1
34	70.90	1
35	71.30	1
36	72.50	1
37	76.40	1
38	76.70	1
39	77.40	1
40	78.70	1
41	82.70	1
42	83.90	1
43	88.90	1
44	89.50	1
45	93.40	1
46	93.50	1
47	94.80	1

b. Frecuencia Relativa

```
In [6]: # OBTENER LOS DATOS UNICOS DE LA TABLA
lis = datos["segundos"].unique()
lis
dfclases=pd.DataFrame(lis,columns=["segundos"])
datafi=pd.crosstab(index=datos["segundos"], columns = "Fi")
li = datafi.values
dfclases["Fi"] = li
total = dfclases.sum(axis=0)
datahi = dfclases["Fi"]/total["Fi"] # aqui calculamos la frecuencia
datahi.values
# agregamos nueva columna de frecuencia relativa
dfclases["hi"] = datahi
dfclases
```

Out[6]:

•	segundos	Fi	hi
0	5.60	1	0.02
1	5.80	1	0.02
2	12.80	1	0.02
3	17.30	1	0.02
4	21.10	1	0.02
5	22.10	1	0.02
6	23.80	1	0.02
7	23.90	1	0.02
8	25.80	1	0.02
9	28.60	1	0.02
10	29.20	1	0.02
11	30.01	1	0.02
12	35.20	1	0.02
13	35.90	1	0.02
14	36.40	3	0.06
15	36.80	1	0.02
16	38.70	2	0.04
17	39.20	1	0.02
18	47.90	1	0.02
19	48.10	1	0.02
20	51.90	1	0.02
21	56.40	1	0.02
22	58.60	2	0.04
23	58.70	1	0.02
24	59.30	1	0.02
25	61.30	1	0.02
26	63.60	1	0.02

	segundos	Fi	hi
27	65.30	1	0.02
28	66.10	1	0.02
29	67.30	1	0.02
30	70.90	1	0.02
31	71.30	2	0.04
32	72.50	1	0.02
33	76.40	1	0.02
34	76.70	1	0.02
35	77.40	1	0.02
36	78.70	1	0.02
37	82.70	1	0.02
38	83.90	1	0.02
39	88.90	1	0.02
40	89.50	2	0.04
41	93.40	1	0.02
42	93.50	1	0.02
43	94.80	1	0.02

c. Frecuencia absoluta acumalada

```
In [21]: lis = datos["segundos"].sort_values(ascending=True).unique()
    dat = pd.DataFrame(lis, columns=["intervalo-clases"])
    datafi = pd.crosstab(index=datos["segundos"], columns = "frecuencia")
    li = datafi.values
    dat["frecuencia"] = li
    datahi = 100 * datafi["frecuencia"] / 50
    datahi = datahi.values
    Fi = dat["frecuencia"].values
    a = []
    b = 0
    for c in Fi:
        b = c + b
        a.append(b)
    dat["Frecuencia_absoluta_acomulada"] = a
    dat
```

Out[21]:	intervalo-clases

]:		intervalo-clases	frecuencia	Frecuencia_absoluta_acomulada
	0	5.60	1	1
	1	5.80	1	2
	2	12.80	1	3
	3	17.30	1	4
	4	21.10	1	5
	5	22.10	1	6
	6	23.80	1	7
	7	23.90	1	8
	8	25.80	1	9
	9	28.60	1	10
	10	29.20	1	11
	11	30.01	1	12
	12	35.20	1	13
	13	35.90	1	14
	14	36.40	3	17
	15	36.80	1	18
	16	38.70	2	20
	17	39.20	1	21
	18	47.90	1	22
	19	48.10	1	23
	20	51.90	1	24
	21	56.40	1	25
	22	58.60	2	27
	23	58.70	1	28
	24	59.30	1	29
	25	61.30	1	30

	intervalo-clases	frecuencia	Frecuencia_absoluta_acomulada
26	63.60	1	31
27	65.30	1	32
28	66.10	1	33
29	67.30	1	34
30	70.90	1	35
31	71.30	2	37
32	72.50	1	38
33	76.40	1	39
34	76.70	1	40
35	77.40	1	41
36	78.70	1	42
37	82.70	1	43
38	83.90	1	44
39	88.90	1	45
40	89.50	2	47
41	93.40	1	48
42	93.50	1	49
43	94.80	1	50

Tabla

```
In [22]: lis = datos["segundos"].sort_values(ascending=True).unique()
    dat = pd.DataFrame(lis, columns=["intervalo-clases"])
    datafi = pd.crosstab(index=datos["segundos"], columns = "frecuencia")
    li = datafi.values
    dat["frecuencia"] = li
    datahi = 100 * datafi["frecuencia"] / 50
    datahi = datahi.values
    dat["frecuencia_relativa"] = datahi
    Fi = dat["frecuencia"].values
    a = []
    b = 0
    for c in Fi:
        b = c + b
        a.append(b)
    dat["Frecuencia_absoluta_acomulada"] = a
    dat
```

	dat				
Out[22]:		intervalo-clases	frecuencia	frecuencia_relativa	Frecuencia_absoluta_acomulada
	0	5.60	1	2.0	1
	1	5.80	1	2.0	2
	2	12.80	1	2.0	3
	3	17.30	1	2.0	4
	4	21.10	1	2.0	5
	5	22.10	1	2.0	6
	6	23.80	1	2.0	7
	7	23.90	1	2.0	8
	8	25.80	1	2.0	9
	9	28.60	1	2.0	10
	10	29.20	1	2.0	11
	11	30.01	1	2.0	12
	12	35.20	1	2.0	13
	13	35.90	1	2.0	14
	14	36.40	3	6.0	17
	15	36.80	1	2.0	18
	16	38.70	2	4.0	20
	17	39.20	1	2.0	21
	18	47.90	1	2.0	22
	19	48.10	1	2.0	23
	20	51.90	1	2.0	24
	21	56.40	1	2.0	25
	22	58.60	2	4.0	27
	23	58.70	1	2.0	28
	24	59.30	1	2.0	29

	intervalo-clases	frecuencia	frecuencia_relativa	Frecuencia_absoluta_acomulada
25	61.30	1	2.0	30
26	63.60	1	2.0	31
27	65.30	1	2.0	32
28	66.10	1	2.0	33
29	67.30	1	2.0	34
30	70.90	1	2.0	35
31	71.30	2	4.0	37
32	72.50	1	2.0	38
33	76.40	1	2.0	39
34	76.70	1	2.0	40
35	77.40	1	2.0	41
36	78.70	1	2.0	42
37	82.70	1	2.0	43
38	83.90	1	2.0	44
39	88.90	1	2.0	45
40	89.50	2	4.0	47
41	93.40	1	2.0	48
42	93.50	1	2.0	49
43	94.80	1	2.0	50

3. Grafique la función fdp((frecuencia relativa) y FDA (frecuencia acumulada)

a. Histograma de la frecuencia relativa

```
In [23]: x=datos["segundos"]
    plt.figure(figsize=(10,5))
    plt.hist(x,bins=8,color='#20CA7D')
    plt. axvline(x. mean(),color='red',label='Media')
    plt. axvline(x. median(),color='blue',label='Mediana')
    plt. axvline(x. mode()[0],color='green',label='Moda')
    plt.xlabel('Total de periodos de los segundos')
    plt.ylabel('Frecuencia')
    plt.legend()
    plt.show()
```


b. Histograma de la frecuencia absoluta acomulada

```
In [24]: x=datos["segundos"]
    plt.figure(figsize=(10,5))
    plt.hist(x,bins=None,color='#F9778F')
    plt. axvline(x. mean(),color='red',label='Media')
    plt. axvline(x. median(),color='yellow',label='Mediana')
    plt. axvline(x. mode()[0],color='black',label='Moda')
    plt.xlabel('Total de periodo de los segundos ')
    plt.ylabel('Frecuencia')
    plt.legend()
    plt.show()
```


4. Estimar la media y la varianza .. etc.

a. Varianza

```
In [25]: print('La varianza de los segundos es: \n\n', datos. var())
    La varianza de los segundos es:
    segundos 637.068278
    dtype: float64
```

b. Mediana

```
In [26]: print('La mediana de los segundos es: \n\n', datos. median())
         La mediana de los segundos es:
          segundos
                      57.5
         dtype: float64
         c. Moda
In [27]: print('La moda de los datos de los segundos es: \n\n ', datos. mode())
         La moda de los datos de los segundos es:
              segundos
         0
                36.4
         d. Media Aritmetica
In [28]: print('La media aritmetica de los datos de los segundos es: \n\n ', datos. mean()
         La media aritmetica de los datos de los segundos es:
           segundos
                       53.0842
         dtype: float64
         e. Cuartiles
        print('-----')
In [29]:
         print('Los cuartiles de los datos de los segundos es: \n\n')
         datos.describe()
         Los cuartiles de los datos de los segundos es:
Out[29]:
               segundos
          count 50.000000
          mean 53.084200
            std 25.240212
           min
                5.600000
           25% 35.375000
           50% 57.500000
           75% 72.200000
           max 94.800000
```

f. Desviacion estandar

5. Genere 10 números aleatorios con los siguientes parámetros Xo=349, a= 347,c=47,M=120

```
In [51]: | n, m, a, x0, c = 10, 120, 347, 349, 47
        x = [1] * n
         r = [0.1] * n
         print (" Método de Congruencia Lineal ")
         print("-----")
         print ("n : ", n)
        print ("m : ", m)
        print ("a : ", a)
        print ("c : ", c)
         print ("Xo : ", x0 )
         for i in range(0, n):
            x[i] = ((a*x0)+c) % m
            x0 = x[i]
            r[i] = x0 / m
         # Guardamos Los datos en un dataframe
        d = {'Xn': x, 'ri': r }
         dfMCL = pd.DataFrame(data=d)
        dfMCL
         Método de Congruencia Lineal
              10
         m : 120
         a : 347
         c : 47
         Xo: 349
Out[51]:
```

	Xn	ri
0	70	0.583333
1	97	0.808333
2	106	0.883333
3	109	0.908333
4	70	0.583333
5	97	0.808333
6	106	0.883333
7	109	0.908333
8	70	0.583333
9	97	0.808333

6. Encuentre los valores de los segundos para los 10 números aleatorios generados y grafique los resultados de los 10 datos

a. Valores de lo segundos para los numeros generados

#	# ALEATORIO	FDA	TIEMPO DE
			SERVICIO
			SIMULADO
1	70	1	0.583333
2	97	0	0.808333
3	106	0	0.883333
4	109	0	0.908333
5	70	1	0.583333
6	97	0	0.808333
7	106	0	0.883333
8	109	0	0.908333
9	70	1	0.583333
10	97	0	0.808333

b. Grafica de los numeros aleatorios generados

```
In [39]: # Graficamos Los numeros generados
    plt.plot(r,marker='*')
    plt.title('Generador de Numeros Aleatorios ')
    plt.xlabel('Serie')
    plt.ylabel('Aleatorios')
```

Out[39]: Text(0, 0.5, 'Aleatorios')

7. Numero de binds

a. Valor mayor

```
In [41]: x = datos["segundos"]
    max_value = max(x)
    print('Valor mayor es --> ', max_value)

Valor mayor es --> 94.8
```

b. Valor menor

```
In [43]: x = datos["segundos"]
    min_value = min(x)
    print('Valor minimo es --> ', min_value)

Valor minimo es --> 5.6
```

b. Valor de R --> Valor de binds

```
In [65]: R = max_value - min_value
print(R)
89.2
```

c. Valores de K

- Menos de 50

```
In [45]: contador=0
    for i in range(datos. count(). values[0]):
        valor = datos.values[i][0]
        if(valor<=50):
            contador = contador +1
        proba_50 = contador +1
        proba_50 = contador/len(datos)
        print("Probabilidad de menos de 50" , proba_50, '%')</pre>
```

Probabilidad de menos de 50 0.46 %

- Entre 50 y 100

```
In [46]: contador=0
    for i in range(datos. count(). values[0]):
        valor = datos.values[i][0]
        if(valor>=50):
            if(valor<=100):
                 contador = contador +1
        proba_50_100 = contador +1
        proba_50_100 = contador/len(datos)
        print("Probabilidad entre 50 y 100" , proba_50_100, '%')</pre>
```

Probabilidad entre 50 y 100 0.54 %

- Entre 100 y 250

```
In [47]:
    contador=0
    for i in range(datos. count(). values[0]):
        valor = datos.values[i][0]
        if(valor>=100):
            if(valor<=250):
                  contador = contador +1
        proba_100_250 = contador +1
        proba_100_250 = contador/len(datos)
        print("Probabilidad entre 100 y 250" , proba_100_250, '%')</pre>
```

Probabilidad entre 100 y 250 0.0 %

- Mas de 250

```
In [48]: contador=0
    for i in range(datos. count(). values[0]):
        valor = datos.values[i][0]
        if(valor>250):
            contador = contador +1
        proba_250 = contador +1
        proba_250 = contador/len(datos)
        print("Probabilidad mayores de 250" , proba_250, '%')
```

Probabilidad mayores de 250 0.0 %

- Longitud

```
In [49]: #Longitud de la clase
    r=max(datos['segundos'])-min(datos['segundos'])
    long=len(datos)/r
    print('La longitud es ->',long)
```

La longitud es -> 0.5605381165919282

- Valores de los tiempos de servicio

```
In [50]: landa=15.9-0.1
    dfexp = dfMCL['ri']
    exp_x = dfexp.values*(-1/landa)*np.log(dfexp)
    dfMCL["FDA"] = exp_x
    dfMCL[:10]
```

Out[50]:

	Xn	ri	FDA
0	70	0.583333	0.019900
1	97	0.808333	0.010886
2	106	0.883333	0.006935
3	109	0.908333	0.005527
4	70	0.583333	0.019900
5	97	0.808333	0.010886
6	106	0.883333	0.006935
7	109	0.908333	0.005527
8	70	0.583333	0.019900
9	97	0.808333	0.010886

```
In [ ]:
```