理论课 9 § 4.3-4.3 泰勒级数

- 2020/10/29
- I 组织教学
 - 1、集中学生注意力;
 - 2、清查学生人数;
 - 3、维持课堂纪律;
- 互动提问
- II 复习导入及主要内容
 - 1、上次作业讲评;
 - 2、本次主要内容:
 - 3、重点:如何将解析函数展开成泰勒级数;解析函数的重要性质。
 - 4、难点: 泰勒级数的应用.
- III 教学内容及过程
- 一、 泰勒 (Taylor) 级数
- 1、解析函数的泰勒展开法

定理 9.28

设函数 f(z) 在圆域 $D:|z-z_0|< R$ 内解析, 则在 D 内 f(z) 可以展开成幂级数

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n,$$
 (39)

其中 $c_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{f^{(n)}(z_0)}{n!}, (n=0,1,2,\cdots), C$ 为任意圆周 $|z-z_0| = \rho < R$, 并且这个展开式是唯一的.

证 设 z 是 D 内任意一点, 在 D 内作一圆周 $C: |\zeta - z| = \rho < R$, 使得 $|z - z_0| < \rho$, 则由柯西积分公式, 得

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta. \tag{40}$$

因为 $|z-z_0| < \rho$, 即 $\left| \frac{z-z_0}{\zeta-z_0} \right| = q < 1$, 所以

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}}$$
$$= \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^n = \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}.$$

将此式代入(40)式, 由幂级数的性质, 得

$$f(z) = \frac{1}{2\pi i} \oint_{c} \left[f(\zeta) \sum_{n=0}^{\infty} \frac{(z-z_{0})^{n}}{(\zeta-z_{0})^{n+1}} \right] d\zeta$$

$$= \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{c} \frac{f(\zeta)}{(\zeta-z_{0})^{n+1}} d\zeta \right] (z-z_{0})^{n}$$

$$= \sum_{n=0}^{\infty} c_{n} (z-z_{0})^{n},$$
(41)

其中 $c_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta = \frac{f^{(n)}(z_0)}{n!}, (n = 0, 1, 2, \cdots).$

设 f(z) 在 D 内又可以展成 $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$,对式(42)求各阶导数,得 $f^{(n)}(z) = n!c_n + (n+1)!c_{n+1}(z-z_0) + \cdots$.

当 $z=z_0$ 时, 得 $f^{(n)}(z_0)=n!c_n$, 即 $c_n=\frac{f^{(n)}(z_0)}{n!}(n=0,1,2,\cdots)$, 这就是将函数 f(z) 在 z_0 的邻域内展开成收敛的幂级数时的系数公式.

同时, 可以证明 $f(z) = \sum_{i=1}^{n} C_n (z - z_0)^n$ 的展开式是唯一的.

应当指出, 若函数 f(z) 在 D 内有奇点, 则 f(z) 在 z_0 的泰勒 级数的收敛半径等于收敛圆的中心点 z_0 到 f(z) 的离 z_0 最近的一个奇点 α 之间的距离, 即 $R = |\alpha - z_0|$.

定理 9.29

函数在一点处的邻域内可以展成幂级数的充分必要条件是 函数在该邻域内解析.

共有 4 个等价的解析函数的概念刻画. 若函数 f(z) 在区域 D 内满足下列条件之一. 则它就是 D 内的一个解析函数:

- (1) f(z) 在 D 内处处可微;
- (2) f(z) = u(x,y) + iv(x,y) 的实部 u 与虚部 v 在 D 内可 微, 且它们的偏导函数满足柯西—黎曼条件 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y};$
- (3) f(z) 在 D 内连续, 且对 D 内任意一条逐段光滑的闭曲 线 C, 都有 $\oint_C f(z)dz = 0$:
- (4) 对于 D 内任意一点, 都存在一个邻域, f(z) 在这个邻域内能展开成幂级数.
- 2、 初等函数的泰勒展开式

1)
$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} + \dots = \sum_{i=1}^{\infty} \frac{z^n}{n!}, |z| < \infty$$

2)
$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots + (-1)^n \frac{z^{2n+1}}{(2n+1)!} + \dots, |z| < \infty$$

3)
$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \dots + (-1)^n \frac{z^{2n}}{(2n)!} + \dots, |z| < \infty$$

4)
$$\frac{1}{1 \mp z} = 1 \pm z + z^2 \pm z^3 + z^4 \pm \cdots, |z| < 1.$$

5)
$$\ln(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} + \dots + (-1)^n \frac{z^{n+1}}{n+1} + \dots, |z| < 1$$

6)
$$(1+z)^{\alpha} = 1 + \alpha z + \frac{\alpha(\alpha-1)}{2!} z^2 + \dots + \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!} z^n + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n)}{(n+1)!} z^{n+1} + \dots, |z| < 1 (\alpha 为复数).$$

3、代换法

例 9.1

将函数 $\frac{1}{(1+z)^2}$ 展开成 z 的幂级数.

解: 由于函数 $\frac{1}{(1+z)^2}$ 在单位圆周 |z|=1 上有一个奇点 z=-1, 而在 |z|<1 内处处解析, 所以它在 |z|<1 内可以展开成 z 的幂级数. 由

$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-z)^n = 1 - z + z^2 - \dots + (-1)^n z^n + \dots, |z| < 1.$$
(43)

把上面两边逐项求导,即

$$-\frac{1}{(1+z)^2} = -\sum_{n=1}^{\infty} n(-z)^{n-1}, |z| < 1.$$
 (44)

得到 $\frac{1}{(1+z)^2}$ 展开的幂级数

$$\frac{1}{(1+z)^2} = 1 - 2z + 3z^2 - 4z^3 + \dots + n(-1)^{n-1}z^{n-1} + \dots$$

$$= \sum_{n=1}^{\infty} n(-1)^{n-1}z^{n-1}, |z| < 1.$$
(45)

例 9.2

把函数 $f(z) = \frac{1}{(z+2)^2}$ 展开成 z-1 的幂级数, 并指 \heartsuit 出它的收敛半径.

上式右端展开. 以 $q(z) = \frac{z-1}{3}$ 代入 6) 中的 z, 再由

$$\frac{1}{1 + \frac{z-1}{3}} = \sum_{n=0}^{\infty} (-1)^n \left(\frac{z-1}{3}\right)^n,$$

逐项求导可得

$$-\frac{1}{3} \frac{1}{\left[1 + \frac{z-1}{3}\right]^2} = \sum_{n=1}^{\infty} (-1)^n \frac{n}{3} \left(\frac{z-1}{3}\right)^{n-1},$$

也即

$$\frac{1}{\left[1 + \frac{z-1}{3}\right]^2} = \sum_{n=1}^{\infty} (-1)^{n+1} n \left(\frac{z-1}{3}\right)^{n-1},$$

则得 f(z) 的表达式

$$f(z) = \frac{1}{9} \left[1 - 2\left(\frac{z-1}{3}\right) + \frac{2 \cdot 3}{2!} \left(\frac{z-1}{3}\right)^2 - \frac{2 \cdot 3 \cdot 4}{3!} \left(\frac{z-1}{3}\right)^3 + \cdots \right]$$
$$= \frac{1}{9} \left[1 - \frac{2}{3}(z-1) + \frac{1}{3}(z-1)^2 - \frac{4}{27}(z-1)^3 + \cdots \right], |z-1| < 3.$$

这就是所求的展开式, 它右端的幂级数的收敛半径为 3.

4、 用微分方程求系数

例 9.3

把 $e^{\frac{1}{1-z}}$ 在 z=0 点展开成幂级数.

解: 因为函数 $e^{\frac{1}{1-z}}$ 有一个奇点 z=1, 则 f(0)=e, 所以可以在 |z|<1 内展开成 z 的幂级数. 令 $f(z)=e^{\frac{1}{1-z}}$, 求导得 $f'(z)=e^{\frac{1}{1-z}}\cdot\frac{1}{(1-z)^2}=f(z)\cdot\frac{1}{(1-z)^2}$, 即 $(1-z)^2f'(z)-f(z)=0$.

把上面的微分方程逐次对变量 z 求导,得

$$(1-z)^2 f''(z) + (2z-3)f'(z) = 0,$$

$$(1-z)^2 f'''(z) + (4z-5)f''(z) + 2f'(z) = 0,$$

.....

由于 f(0) = e, 所以从上面各微分方程, 依次可求得

$$f'(0) = e, f''(0) = 3e, f'''(0) = 13e, \cdots$$

从而有 $e^{\frac{1}{1-z}}$ 的展开式

$$e^{\frac{1}{1-z}} = e\left(1+z+\frac{3}{2!}z^2+\frac{13}{3!}z^3+\cdots\right), |z|<1.$$

5、 乘法

例 9.4

把 $e^z \sin z$ 展开成 z 的幂级数.

解: $e^z = 1 + z + \frac{1}{2!}z^2 + \frac{1}{3!}z^3 + \cdots$, $\sin z = z - \frac{1}{3!}z^3 + \frac{1}{5!}z^5 - \cdots$

$$e^{z} \sin z = \left(1 + z + \frac{1}{2!}z^{2} + \frac{1}{3!}z^{3} + \cdots\right) \left(z - \frac{1}{3!}z^{3} + \frac{1}{5!}z^{5} - \cdots\right)$$
$$= z + z^{2} + \frac{1}{3}z^{3} + \cdots, |z| < \infty.$$

6、 待定系数法

例 9.5

将 tan z 展开成 z 的幂级数.

 $\begin{array}{lll}
\bullet & \tan z & -\\
\tan(-z) & =\\
2\tan z = \dots
\end{array}$

解: 因为 $\tan z$ 的展开中心在 z=0,最近的一个奇点是 $\frac{\pi}{2}$,所以我们可以在区域 $|z|<\frac{\pi}{2}$ 内,将 $\tan z$ 展开成 z 的幂级数.

设 $\tan z = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + a_4 z^4 + a_5 z^5 + \cdots$,而 $\tan(-z) = a_0 - a_1 z + a_2 z^2 - a_3 z^3 + a_4 z^4 - a_5 z^5 - \cdots$,因为 $\tan z$ 为奇函数, $\tan(-z) = -\tan z$,再比较上述两式 z的同次幂的系数,可得 $a_0 = 0, a_2 = 0, a_4 = 0, \cdots$ (或者使用 $2\tan z = 2a_1 z + 2a_3 z^3 + 2a_5 z^5 + \cdots$),所以

$$\tan z = a_1 z + a_3 z^3 + a_5 z^5 + a_7 z^7 + \cdots,$$

而

$$\sin z = \tan z \cdot \cos z = z - \frac{1}{3!}z^3 + \frac{1}{5!}z^5 - \frac{1}{7!}z^7 + \cdots$$

$$= (a_1 z + a_3 z^3 + a_5 z^5 + a_7 z^7 + \cdots) \cdot \left(1 - \frac{1}{2!}z^2 + \frac{1}{4!}z^4 - \frac{1}{6!}z^6 + \cdots\right),$$

教 案 纸

将上式的右端相乘, 再比较两端同次幂系数, 有

$$1 = a_{1},$$

$$-\frac{1}{3!} = -\frac{1}{2!}a_{1} + a_{3},$$

$$\frac{1}{5!} = \frac{1}{4!}a_{1} - \frac{1}{2!}a_{3} + a_{5},$$

$$\frac{1}{7!} = -\frac{1}{6!}a_{1} + \frac{1}{4!}a_{3} - \frac{1}{2!}a_{5} + a_{7},$$
...

解上述方程, 可得 $a_1=1, a_3=\frac{1}{3}, a_5=\frac{2}{15}, a_7=\frac{17}{315}, \cdots, |z|<\frac{\pi}{2}.$ 所以

$$\tan z = z + \frac{1}{3}z^3 + \frac{2}{15}z^5 + \frac{17}{315}z^7 + \dots, |z| < \frac{\pi}{2}.$$

例 9.6

求对数函数 ln(1+z) 在 z=0 处的泰勒展开式.

解: 我们知道, $\ln(1+z)$ 在从 -1 向左沿着负实轴剪开的平面内是解析的, 而 -1 是它的一个奇点, 所以它在 |z| < 1 内可以展开成 z 的幂级数 (图 63).

因为 $\ln'(1+z)=\frac{1}{1+z}$, 而幂级数 $\frac{1}{z+1}=\sum_{n=0}^{\infty}(-z)^n$, 其中 (|z|<1). 在展开式的收敛圆 |z|<1 内, 任取一条从 0 到 z 的积分路线 C, 把(43)式的两端沿积分路线 C 逐项积分,得

$$\int_{C} \frac{1}{1+z} dz = \int_{C} \sum_{n=0}^{\infty} (-z)^{n} dz$$

$$= \int_{C} dz - \int_{C} z dz + \dots + \int_{0}^{z} (-1)^{n} z^{n} dz + \dots,$$

图 63: ln(1+z) 的泰勒展开式

即

$$\ln(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \dots + (-1)^n \frac{z^{n+1}}{n+1} + \dots, |z| < 1.$$
(46)

例 9.7

求幂函数 $(1+z)^{\alpha}(\alpha$ 为复数) 的主值支:

$$f(z) = e^{\alpha \ln(1+z)}, f(0) = -1,$$

在 z=0 处的泰勒级数.

解: 设 $\phi(z)=\ln(1+z),\ 1+z=e^{\phi(z)}\Rightarrow\frac{1}{1+z}=e^{-\phi(z)},$ 所以 $f(z)=e^{\alpha\phi(z)}.$ 求导得

$$f'(z) = e^{\alpha\phi(z)}\alpha\phi'(z) = e^{\alpha\phi(z)}\frac{\alpha}{1+z} = \alpha e^{(\alpha-1)\phi(z)},$$

依次求导,得

$$f''(z) = \alpha(\alpha - 1)e^{(\alpha - 2)\phi(z)},$$

:

$$f^{(n)}(z) = \alpha(\alpha - 1) \cdots (\alpha - n + 1)e^{(\alpha - n)\phi(z)}$$
.

教 案 纸

令
$$z=0$$
, 则 $\phi(0)=0$, 由此得

$$f(0) = 1, f'(0) = \alpha, f''(0) = \alpha(\alpha - 1), \dots,$$

 $f^{(n)}(0) = \alpha(\alpha - 1) \dots (\alpha - n + 1).$

于是

$$(1+z)^{\alpha} = 1 + \alpha z + \frac{\alpha(\alpha-1)}{2}z^2 + \cdots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}z^n + \cdots, |z| < 1.$$

例 9.8

把函数 $\arctan z$ 展开成 z=0 的幂级数.

因为

$$\arctan z = \int_0^z \frac{dz}{1+z^2},$$

且

$$\frac{1}{1+z^2} = \sum_{n=0}^{\infty} (-z^2)^n = \sum_{n=0}^{\infty} (-1)^n \cdot (z^2)^n, |z| < 1$$

所以

$$\arctan z = \int_0^z \frac{dz}{1+z^2} = \int_0^z \sum_{n=0}^\infty (-1)^n \cdot (z^2)^n dz$$
$$= \sum_{n=0}^\infty (-1)^n \frac{z^{2n+1}}{2n+1}, |z| < 1.$$

例 9.9

把函数 $\cos^2 z$ 展开成幂级数.

解: 因为 $\cos^2 z = \frac{1}{2}(1 + \cos 2z)$,

$$\cos 2z = 1 - \frac{(2z)^2}{2!} + \frac{(2z)^4}{4!} - \frac{(2z)^6}{6!} + \cdots$$
$$= 1 - \frac{2^2 z^2}{2!} + \frac{2^4 z^4}{4!} - \frac{2^6 z^6}{6!} + \cdots, |z| < \infty.$$

所以

$$\cos^2 z = \frac{1}{2}(1 + \cos 2z) = 1 - \frac{2z^2}{2!} + \frac{2^3 z^4}{4!} - \frac{2^5 z^6}{6!} + \dots, |z| < \infty.$$

教 案 纸

例 9.10

将 $\frac{e^z}{1+z}$ 展开成麦克劳林级数.

解: 因为 $\frac{e^z}{1+z}$ 的唯一奇点为 z=-1, 所以收敛半径 R=1, 函数可在 |z|<1 内进行展开.

令 $f(z) = \frac{e^z}{1+z}$, 对 f(z) 求导得 $f'(z) = \frac{ze^z}{(1+z)^2} = \frac{z}{1+z} f(z)$, 即得如下的微分方程

$$(1+z)f'(z) - zf(z) = 0.$$

对微分方程逐次求导得:

$$(1+z)f''(z) + (1-z)f'(z) - f(z) = 0$$
$$(1+z)f'''(z) + (2-z)f''(z) - 2f'(z) = 0$$
$$\vdots$$

由 f(0) = 1, f'(0) = 0, f''(0) = 1, f'''(0) = -2, · · · , 所以 f(z) 的麦克劳林级数为

$$\frac{e^z}{1+z} = 1 + \frac{1}{2!}z^2 - \frac{2}{3!}z^3 + \cdots$$
$$= 1 + \frac{1}{2}z^2 - \frac{1}{3}z^3 + \cdots, |z| < 1.$$

例 9.11

把函数 $f(z) = \frac{1}{3z-2}$ 展开成 z 的幂级数.

解:

$$\frac{1}{3z-2} = -\frac{1}{2} \cdot \frac{1}{1 - \frac{3z}{2}} = -\frac{1}{2} \left[1 + \frac{3z}{2} + \left(\frac{3z}{2} \right)^2 + \dots + \left(\frac{3z}{2} \right)^n + \dots \right]$$

$$= -\frac{1}{2} - \frac{3z}{2^2} - \frac{3^2 z^2}{2^3} - \dots - \frac{3^n z^n}{2^{n+1}} - \dots$$

$$= -\sum_{n=0}^{\infty} \frac{3^n z^n}{2^{n+1}},$$

其中,幂级数收敛需要 $\left|\frac{3z}{2}\right| < 1$, 即 $|z| < \frac{2}{3}$.

例 9.12

将 $\frac{z}{(z+1)(z+2)}$ 在 $z_0 = 2$ 处作泰勒展开,给出表达式并 求收敛半径.

$$\frac{1}{z+1} = \frac{1}{(z-2)+3} = \frac{1}{3} \frac{1}{\frac{z-2}{3}+1}$$

$$= \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{z-2}{3}\right)^n, \left|\frac{z-2}{3}\right| < 1;$$

$$\frac{2}{z+2} = \frac{2}{(z-2)+4} = \frac{1}{2} \frac{1}{\frac{z-2}{4}+1}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z-2}{4}\right)^n, \left|\frac{z-2}{4}\right| < 1.$$

当 $\left|\frac{z-2}{3}\right|<1$ 且 $\left|\frac{z-2}{4}\right|<1$ 时, 收敛半径为 R=3 时, 泰勒展开式为

$$\frac{z}{(z+1)(+2)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z-2}{4}\right)^n - \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{z-2}{3}\right)^n.$$

IV 课堂小结

通过本课的学习, 应理解泰勒展开定理, 熟记五个基本函数的 泰勒展开式, 掌握将函数展开成泰勒级数的方法, 能比较熟练的 把一些解析函数展开成泰勒级数.

泰勒级数的四种方法:代微分待数

V 布置作业

1、教材习题四 P141: 6 1)、3); 8; 11 1)、2); 12 1)、2)、3)、4); 16; 19 1)、2)、3)、4).