Khôlles de Mathématiques - Semaine 13

Hugo Vangilluwen, Ober George

28 décembre 2023

1 Théorème de composition des limites

Soient g une fonction définie sur $\mathcal{D}_g \subset \mathbb{R}$ et f une fonction définie sur $\mathcal{D}_f \subset \mathbb{R}$ telle que $f(\mathcal{D}_f) \subset \mathcal{D}_g$. Si f admet g admet une limite g en g en g admet g admet g comme limite en g.

Démonstration. Traitons le cas où $\ell \in \mathbb{R}$, $a \in \mathbb{R}$ et $b \in \mathbb{R}$.

Soit $\varepsilon \in \mathbb{R}^*_{\perp}$ fq.

Appliquons la définition de $g(y) \xrightarrow[y \to b]{} \ell$ pour cet ε :

$$\exists \eta_g \in \mathbb{R}_+^* : \forall y \in \mathcal{D}_g, |y - b| \leqslant \eta_g \implies |g(y) - \ell| \leqslant \varepsilon$$

Appliquons la définition de $f(x) \xrightarrow[x \to a]{} b$ pour cet η_g :

$$\exists \eta_f \in \mathbb{R}_+^* : \forall x \in \mathcal{D}_f, |x - a| \leqslant \eta_f \implies |f(x) - b| \leqslant \eta_g$$

Posons $\eta = \eta_f$.

Soit $x \in \mathcal{D}_{g \circ f}$ fq tq $|x - a| \leq \eta$. Or $f(\mathcal{D}_f) \subset \mathcal{D}_g$ donc $\mathcal{D}_{g \circ f} = \mathcal{D}_f$. Ainsi, $x \in \mathcal{D}_f$ et $|x - a| \leq \eta_f$ d'où $|f(x) - b| \leq \eta_g$ d'où $|g(f(x)) - \ell| \leq \varepsilon$. Donc

$$g \circ f \xrightarrow[x \to a]{} \ell$$

2 Théorème des valeurs intermédiaires

Soit une fonction continue $f : [a; b] \to \mathbb{R}$ avec $(a, b) \in \mathbb{R}^2$ et a < b.

Si $f(a)f(b) \leq 0$ alors $\exists c \in [a;b] : f(c) = 0$.

On rencontre aussi : $Si\ f(a)f(b) < 0\ alors\ \exists c \in]a; b[:f(c) = 0.$

Démonstration. La démonstration repose sur la technique de la dichotomie.

Soient a, b, f de tels objets. Procédons à la construction des suites $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}, (c_n)_{n \in \mathbb{N}}$.

Posons $a_0 = a$, $b_0 = b$ et $c_0 = \frac{a+b}{2}$ (le milieu du segment [a;b]). Nous avons, par hypothèse $f(a_0)f(b_0) \leq 0$.

Soit $n \in \mathbb{N}$ fq. Supposons les trois suites construites au rang n telles que $f(a_n)f(b_n) \leq 0$ et $c_n = \frac{a_n + b_n}{2}$ (milieu de $[a_n; b_n]$).

— Si
$$f(a_n)f(b_n) \le 0$$
, posons $\begin{vmatrix} a_{n+1} &= a_n \\ b_{n+1} &= c_n \\ c_{n+1} &= \frac{a_{n+1}+b_{n+1}}{2} \end{vmatrix}$

- Sinon
$$f(a_n)f(b_n) > 0$$
. Or $f(a_n)f(b_n) \le 0$, donc $f(a_n)^2 f(b_n) f(c_n) \le 0$. Donc $f(b_n)f(c_n) \le 0$.

Posons $\begin{vmatrix} a_{n+1} &= c_n \\ b_{n+1} &= b_n \\ c_{n+1} &= \frac{a_{n+1}+b_{n+1}}{2} \end{vmatrix}$

Ainsi, nous avons bien construits $a_{n+1}, b_{n+1}, c_{n+1}$ telles que $f(a_{n+1})f(b_{n+1}) \leq 0$ et $c_{n+1} = \frac{a_{n+1} + b_{n+1}}{2}$ (milieu de $[a_{n+1}; b_{n+1}]$).

Par récurrence immédiate, $(a_n)_{n\in\mathbb{N}}$ est croissante, $(b_n)_{n\in\mathbb{N}}$ est décroissante et $\forall n\in\mathbb{N}, b_n-a_n=\frac{b-a}{2^n}$ d'où $b_n-a_n\xrightarrow[n\to+\infty]{}0$. Donc les suites a et b sont adjacentes. D'après le théorème des suites adjacentes, elles convergent vers la même limite. Notons la c.

D'après le bonus de ce même théorème, $\forall n \in \mathbb{N}, a_n \leqslant c \leqslant b_n$ donc pour $n = 0, a \leqslant c \leqslant b$. Ainsi,

$$c \in [a; b]$$

Par ailleurs, $\forall n \in \mathbb{N}, f(a_n)f(b_n) \leq 0$. Par continuité de f sur [a;b] donc en c, $f(a_n) \xrightarrow[n \to +\infty]{} f(c)$ et $f(b_n) \xrightarrow[n \to +\infty]{} f(c)$. Par passage à limite dans l'inégalité,

$$f(c) \times f(c) \leqslant 0$$

Or $f(c)^2 \ge 0$, d'où $f(c)^2 = 0$. Ainsi,

$$f(c) = 0$$

Donc c est un point fixe.

3 Théorème de Weierstraß

L'image d'un segment par une fonction continue sur ce segment est un segment : soient $(a, b) \in \mathbb{R}^2$ tels que a < b et $f : [a, b] \to \mathbb{R}$. Si $f \in \mathcal{C}^0([a, b], \mathbb{R})$ alors $\exists (x_1, x_2) \in \mathbb{R}^2 : f([a, b]) = [f(x_1), f(x_2)]$

Démonstration. — Étape 1 Montrons que f([a,b]) est majoré.

Par l'absurde, supposons que f([a,b]) n'est pas majoré

Alors

$$\forall A \in \mathbb{R}, \exists x \in [a, b] : f(x) > A \tag{1}$$

Soit $n \in \mathbb{N}$ fq. Appliquons (??) pour $A \leftarrow n : \exists x \in [a,b] : f(x) > n$, et fixons un tel x que l'on note x_n Nous venons de créer la suite $(x_n)_{n \in \mathbb{N}} \in [a,b]^{\mathbb{N}}$ qui vérifie :

$$\forall n \in \mathbb{N}, f(x_n) \geqslant n \\ \lim_{n \to \infty} n = +\infty \end{cases} \} \underset{\text{th\'eor\`eme de divergence par minoration}}{\Longrightarrow} f(x_n) \xrightarrow[n \to +\infty]{} +\infty$$

 $(x_n)_{n\in\mathbb{N}}$ est bornée (à valeurs dans [a,b]) donc, selon le théorème de Bolzanno-Weierstraß:

 $\exists \ell \in \mathbb{R} : \exists \varphi : \mathbb{N} \to \mathbb{N} : \text{strict. croissante tel que } (x_{\varphi(n)})_{n \in \mathbb{N}} \text{ tend vers } \ell$

Donc, en passant à la limite : $\forall n \in \mathbb{N}, a \leqslant x_{\varphi(n)} \leqslant b \implies a \leqslant \ell \leqslant b \implies \ell \in [a,b]$ Par continuité de f sur [a,b], donc en ℓ , $(f(x_{\varphi(n)}))_{n \in \mathbb{N}}$ converge vers $f(\ell)$. Or

$$\left\{\begin{array}{l} (f(x_{\varphi(n)}))_{n\in\mathbb{N}} \text{ est une sous suite de } (f(x_n))_{n\in\mathbb{N}} \\ f(x_n) \xrightarrow[n \to +\infty]{} +\infty \end{array}\right.$$

donc $(f(x_{\varphi(n)}))_{n\in\mathbb{N}}$, tend vers $+\infty$, ce qui est absurde, donc f est majorée. On fait de même pour la minoration.

— Étape 2 : Montrons que f([a,b]) admet un pge et un ppe.

Montrons donc que f([a, b]) admet une borne sup, qui, puisque c'est une valeur atteinte, deviendra un max.

$$f([a,b])$$
 est
$$\begin{cases} & \text{une partie de } \mathbb{R} \\ & \text{non vide car contient } f(a) \\ & \text{majorée d'après l'étape 1} \end{cases}$$

f([a,b]) admet donc une borne supérieure σ .

Appliquons la caractérisation séquentielle de la borne supérieure :

$$\exists (y_n)_{n\in\mathbb{N}}, \in f([a,b])^{\mathbb{N}} : (y_n) \text{ converge vers } \sigma$$

$$\forall n \in \mathbb{N}, y_n \in f([a, b]) \implies \exists x_n \in [a, b] : f(x_n) = y_n$$

Fixons un tel x_n pour tout y_n . On a donc construit $(x_n)_{n\in\mathbb{N}}\in[a,b]^{\mathbb{N}}:f(x_n)\xrightarrow[n\to+\infty]{}\sigma$

De plus, (x_n) est bornée (à valeurs dans [a,b]) donc, selon le théorème de Bolzanno-Weierstraß:

$$\exists \ell \in \mathbb{R} : \exists \varphi : \mathbb{N} \to \mathbb{N} : \text{strict. croissante tel que } (x_{\varphi(n)})_{n \in \mathbb{N}} \text{ tend vers } \ell$$

Donc, en passant à la limite : $\forall n \in \mathbb{N}, a \leqslant x_{\varphi(n)} \leqslant b \implies a \leqslant \ell \leqslant b \implies \ell \in [a,b]$ Par continuité de f sur [a,b], donc en ℓ , $(f(x_{\varphi(n)}))_{n \in \mathbb{N}}$ converge vers $f(\ell)$. Or,

$$\begin{cases} (f(x_{\varphi(n)}))_{n\in\mathbb{N}} \text{ est une sous suite de } (f(x_n))_{n\in\mathbb{N}} \\ f(x_n) \xrightarrow[n \to +\infty]{} \sigma \end{cases}$$

Par unicité de la limite, $\sigma = f(\ell)$.

On montre de même qu'il existe $\ell' \in [a, b] : f(\ell') = \inf f([a, b])$

Ainsi,
$$f(\ell) = \max f([a, b])$$
 et $f(\ell') = \min f([a, b])$

— Étape 3: Montrons que $f([a,b]) = [f(\ell'), f(\ell)].$

Par la construction précédente, $\forall y \in f([a,b]), y \in [f(\ell'), f(\ell)].$

Ainsi, $f([a,b]) \subset [f(\ell'), f(\ell)].$

Réciproquement, l'image par la fonction continue f du segment [a,b] qui est un intervalle est un intervalle :

$$\left. \begin{array}{l} f([a,b]) \text{ est un intevalle} \\ f(\ell) \in f([a,b]) \\ f(\ell') \in f([a,b]) \end{array} \right\} \implies [f(\ell'),f(\ell)] \subset f([a,b])$$

D'où $[f(\ell'), f(\ell)] = f([a, b])$