UNIT - I - Matrix & Vector Space

Reference text books:

1. Linear Algebra and Its Applications: by David C. Lay https://math.berkeley.edu/~yonah/files/Linear%20Algebra.pdf

2. Linear Algebra: SCHAUM'S outlines

https://anujitspenjoymath.files.wordpress.com/2019/02/schaums-outline-series-lipschutz-seymour_-lipson-marc-schaums-outlines.-linear-algebra-2018-mcgraw-hill-education.pdf http://www.astronomia.edu.uy/progs/algebra/Linear Algebra, 4th Edition (2009)Lipschutz-Lipson.pdf

<u>UNEAR ALGEBRA:</u> Linear Algebra is the branch of mathematics concerning <u>linear</u> equations such as linear functions and their representations through matrices and vector spaces.

Applications of Linear Algebra:

Image processing (Image Representation as Tensors), Machine learning (Neural Network)

Cryptography, Data structures, Gamming Technology and many more.....

Linear algebra is made up of two basic elements: The Matrix and the Vector.

What is a Vector?

Vectors can be thought of as an array of numbers where the order of the numbers also matters.

<u>Vectors in \mathbb{R}^n :</u> The set of all *n*-tuples of real numbers, denoted by \mathbb{R}^n is called *n*-space. A particular *n*-tuple in \mathbb{R}^n , say $u = (a_1, a_2, a_3, \dots, a_n)$ is called a <u>point or vector.</u>

The following are vectors:

$$(2,-5), (7,9), (0,0,0), (3,4,5)$$

The first two vectors belong to \mathbb{R}^2 , whereas the last two belong to \mathbb{R}^3 . The third is the zero vector in \mathbb{R}^3 .

A matrix with only one column(row) is called a **column(row) vector**, or simply a **vector**.

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \begin{bmatrix} 3 \\ -4 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 5 \\ -6 \end{bmatrix}, \quad \begin{bmatrix} 1.5 \\ \frac{2}{3} \\ -15 \end{bmatrix}$$

Vector Addition and Scalar Multiplication

Consider two vectors u and v in \mathbb{R}^n , say

$$u = (a_1, a_2, \dots, a_n)$$
 and $v = (b_1, b_2, \dots, b_n)$

Their sum, written u + v, is the vector obtained by adding corresponding components from u and v. That is,

$$u + v = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

The scalar product or, simply, product, of the vector u by a real number k, written ku, is the vector obtained by multiplying each component of u by k. That is,

$$ku = k(a_1, a_2, \dots, a_n) = (ka_1, ka_2, \dots, ka_n)$$

Observe that u + v and ku are also vectors in \mathbb{R}^n . The sum of vectors with different numbers of components is not defined.

EXAMPLE

Let
$$u = (2, 4, -5)$$
 and $v = (1, -6, 9)$. Then

$$u + v = (2 + 1, 4 + (-6), -5 + 9) = (3, -2, 4)$$

$$7u = (7(2), 7(4), 7(-5)) = (14, 28, -35)$$

Three kinds of mathematical structures

In order of increasing number of kinds of components:

Groups: one kind of element, one operation

Fields: one kind of element, two operations ("addition" and "multiplication")

Vector spaces: two kinds of elements (vectors and scalars); scalars form a field, and

operations that apply to (vector, vector) pairs and to (vector, scalar) pairs

A <u>Group</u> G, sometimes denoted by $\{G, *\}$ is a set of elements with a binary operation, denoted by "*", that associates to each ordered pair (a, b) of elements in G an element (a * b) in G, such that the following axioms are obeyed:

Closure: If a and b belong to G, then a''*'' b is also in G.

Associative: a''*'(b''*''c) = (a''*''b)''*''c for all a, b, c in G.

Identity element: There is an element e in G such that a * e = e * a = a for all a in G.

Inverse element: For each a in G there is an element a' in G such that a * a' = a' * a = e.

A group is said to be **Abelian** if it satisfies the following additional condition:

Commutative: a * b = b * a for all a, b in G.

Examples:

- \mathbb{Z} , the set of integers, is an abelian group operation under addition.
- \mathbb{R} , the set of real numbers, is an abelian group operation under addition.
- $\mathbb{R} \{0\}$, the set of non-zero real numbers, is an abelian group operation under multiplication.

A non- empty set *F* is called a **Field**, if :

- *F* is an abelian group under addition
- $F \{0\}$ is an abelian group under multiplication.
- Right distributive law holds in F, i.e $a, b, c \in F$ then (a + b)c = ac + bc

Examples:

- $(\mathbb{R}, +, .)$ is a field
- $(\mathbb{Q}, +, .)$ is a field
- $(\mathbb{Z}, +, .)$ is **not a** field

VECTOR SPACE

A <u>vector space</u> is a <u>nonempty set</u> V of objects, called <u>vectors</u>, and a Field F of scalars, on which are defined two operations, called <u>addition</u> and <u>scalar multiplication</u>, subject to the <u>ten rules</u> listed below. These must hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars \mathbf{c} and \mathbf{d} .

- 1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V. (Closed under addition)
- 2. u + v = v + u.
- 3. (u + v) + w = u + (v + w)
- **4.** There is a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each \mathbf{u} in \mathbf{V} , there is a vector $-\mathbf{u}$ in \mathbf{V} such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- **6.** The scalar multiple of \mathbf{u} by \mathbf{c} , denoted by $\mathbf{c}\mathbf{u}$, is in V.
- 7. c(u + v) = cu + cv
- 8. (c + d)u = cu + du.
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. 1u = u.

Examples: The following are examples of vector spaces:

- 1. The set of all <u>real number</u> \mathbb{R} with the addition and scalar multiplication of real numbers.
- 2. The set of all vectors of dimension n written as \mathbb{R}^n associated with the addition and scalar multiplication as defined for $2\text{-d}(\mathbb{R}^2)$ and $3\text{-d}(\mathbb{R}^3)$ vectors for example.
- 3. The set of all polynomials $P_n(x) = \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n / a_i \in \mathbb{R}\}$ with real coefficients associated with the addition and scalar multiplication of polynomials.

[eg.
$$P_3(x) = \{a_0 + a_1x + a_2x^2 + a_3x^n / a_i \in \mathbb{R}\}$$
.
In this context, the θ vector is $0 + 0x + 0x^2 + 0x^3 = 0$]