知能制御PBL 第1回RCR**中間報告**

2017年4月26日

西田研究室

13104042 烏谷崇大

14104043 桑野僚大

14104034 下松八重宏太

14104090 中尾真人

14104111 本田空

14104131 山崎達也

16104313 山下翔

1 目的

学部3年までに学習した制御理論や電気回路,情報工学の知識を使って,競技場内を自律的に走行するロボットカーの製作を行う.各研究室でチーム一丸となってプロジェクトを進行し,共同で課題を達成することの難しさや楽しさを学び,情報工学の知識を使って,競技場内を自律的に走行するロボットカーの製作を行う.各研究室でチーム一丸となってプロジェクトを進行し,共同で課題を達成することの難しさや楽しさを学び,エンジニアとして仕事を進めるための素養を身に付ける.

2 Robot Car Race(RCR)2017競技ルール

2.1 ルール概要

競技場には黄色のポールや、火災に見立てた複数の赤色のポールが設置されている.ポールに接触せず,できるだけ速やかに火災を鎮火させる消防ロボットカー(ロボカー)を作成する.

2.2 競技場詳細

競技場の全体図を図1に示し、以下に詳細を説明する.

- (1) 競技場は板張りの床であり,縦・横ともに 5400 [mm] である.
- (2) 競技場には黄色の固定ポールと赤色の火災ポールが設置されており,スタートからゴールまで,固定ポールには接触,火災ポールには衝突することなく通過しなければならない.
- (3) 火災ポールは青色の鎮火ポールに赤色の幕を被せたものであり、上部におもりなどを落としたり、幕を剥がしたりすることで、鎮火ポールに変化させる(このポールの製作も行うこと).
- (4) スタート後は右手に固定ポールを見ながら直進し,消火活動開始区間まで移動しなければならない. 消火活動開始区間に進入後は,右折し,火災ポールを発見し次第,消火にあたる.
- (5) すべての火災ポールを消火して,鎮火ポールに変化させたのち,ゴール地点で停止する.
- (6) 火災ポールの配置は競技ごとに異なる.また,鎮火ポールが存在することもある.
- (7) ポールは直径 80 [mm]・高さ 120 [mm] の中空パイプであり, 黄・赤・青の色が付けられている.

図 1: 2017 年度 RCR 走行コース

3 ロボットカーの概要

本年度の RCR での我々の設計コンセプトは,再現性の高い自律行動を可能にすることである,そのために,ロボットカーには比較的構造が単純な独立二輪機構を採用する.そして,赤・青・黄色ポールの色判別は,ロボット前方に取り付けた単眼カメラの映像を画像処理することで行う,また,PSD(Position Sensitive Detector) センサと赤外線近接センサを用いてポールとロボットの距離を測定することで,適切な軌道の周回とポールの消火を目指す.製作にあたっては,研究室のメンバーをハードウェア,ソフトウェアの担当に分けて進めることとする.

4 消火について

4.1 消火ポール

我々が用いる消火ポールは,以下のように製作する.

まず,塩化ビニル管に青い布を巻きつけて青いポールを作成する.次に,青いポールの上から赤い布を覆うことで赤いポールとする.

4.2 消火方法

用いるポールの構造より、赤い布を青いポールから取り除くことで消火とする.布を取り除く方法は、ロボットアームがポールの上から赤い布を中に押し込んで、青いポールにするというものである.

5 PSD センサの同定実験

前年度までに研究室で購入していた 2 種類の PSD センサについて , その PSD センサの精度を確かめるために同定実験を行った .

5.1 センサの仕様

前年度までに購入していた 2 種類の PSD センサの仕様を以下に示す.また,下記 2 つのセンサを便宜上,順に近距離センサ,長距離センサと呼ぶこととする.

【シャープ測距モジュール GP2Y0A21YK】

測距範囲: 10~80 [cm] 出力: アナログ電圧出力 寸法: 29.5 × 13 × 13.5 [mm]

電源: 4.5~5.5 [V]

【シャープ測距モジュール GP2Y0A02YK】

測距範囲: 20~150 [cm] 出力:アナログ電圧出力 寸法: 29.5 × 13 × 21.6 [mm]

電源: 4.5~5.5 [V]

5.2 実験装置

PSD センサの実験を行うため,図 2 のような実験装置を製作した.PSD センサは高さ 20 [mm] の位置にセンサの発光部が左,受光部が右になるように箱に水平に装着した.PSD センサを動作せるのには Arduino Uno を用い,Arduino IDE のシリアルモニタを用いて出力電圧を測定した.実験時のセンサと Arduino の配線を図 3 に,Arduino のプログラムを付録 A に示す.配線にはブレッドボードを用いた.また,ポールの代わりに,ポールと同じ形状のスプレー缶を用いた.

図 2: PSD 実験装置

5.3 実験方法

PSD センサの距離-出力電圧特性を測定するため以下の手順に従い実験を行った.

- (1) PSD センサの発光部・受光部の先端を距離 0 [cm] とし,近距離センサは 5 [cm] から 100 [cm] まで, 5 [cm] ずつスプレー缶を移動させ出力電圧を記録する.このとき,スプレー缶の中心は PSD センサの中心の正面にくるように置き測定する.
- (2) 先程と同様に , 遠距離センサは 5 [cm] から 170 [cm] まで , 5 [cm] ずつスプレー缶を移動させ出力電圧を記録する .

5.4 実験結果

縦軸を出力電圧,横軸を PSD センサ-スプレー缶間の距離とし,近距離センサの測定結果のグラフを図 4 に,長距離センサの測定結果のグラフを図 5 に示す.図 4 より,近距離センサは出力電圧が 40 [cm] までは滑らかに減少しており,40 [cm] からは大きな変化は見られない.それに対して図 5 より,長距離センサは即距範囲内では出力電圧が 80 [cm] までは滑らかに減少しており,80 [cm] からは値が上下しているが,大きな変化はないことがわかる.大きな変化がない所は,どれくらい距離があるか区別できないため,使用するべきではないと考えた.

よって,我々の考えるアルゴリズムに適当なセンサは, $80~[\mathrm{cm}]$ まで距離の区別ができる長距離センサである.

図 3: PSD センサの配線図

図 5: 長距離センサ

図 4: 近距離センサ

5.5 PSD センサの課題

今回の RCR において用いる PSD センサの課題として,実験により得られた測定値のデータにノイズが入ることが挙げられる.これを改善するためにフィルタをかけてノイズを除去することを考える.ここでは以下の 2 種類のフィルタについてその実用性を考察する.ただし,それらの検証実験は今後行うものとする.

5.5.1 平均値フィルタ

実測値の中で範囲を決めて、その平均値をとるフィルタのことである.ノイズの影響を小さくすることができるが、フィルタが長くなると応答性能が悪化する.

5.5.2 メディアンフィルタ (中間値フィルタ)

奇数個のデータの中間に位置する値をその位置のデータとして採用するフィルタのことである.スパイクノイズを取り除くのに適しているため,今回使用する PSD センサにはこちらのフィルタを用いることが適切であると考えられる.

6 ハードウェア

6.1 駆動系

今回の RCR では , 去年と同様のモータ , エンコーダ , 駆動輪を使用することにした . 以下にこれらの性能を示す . また , 自己位置推定が重要になってくるため , ロータリーエンコーダをギヤードモータにつけ

ずに、車軸に取り付けるようにした.モータの動力はギアを介してタイヤに伝える.これによって万が一ギヤがかみ合わなかったときにもタイヤの回転を読み取ることができる.本大会で採用した機構は独立二輪機構である.独立二輪機構は,四輪車のようにステアリング操作が必要なく,モータの出力を制御することで旋回することができ,また内輪差もないため,旋回を多く行うRCRでは有効である.ただし,独立二輪機構は直線安定性に劣るため,ロータリーエンコーダを用いてソフトウェアで制御していく.

【ギヤードモータ 3633K10】

最大回転数: 372 [rpm] (無負荷時,印加電圧 8.0[V])

定格電圧:24[V]

定格トルク: 0.5 [kgcm] (最大効率時)

【ロータリーエンコーダ RE30E-500-213-1】

インクリメンタル型

パルス / 回転:500

電源電圧:512[V] ギヤを介して, ギヤを介して,

【駆動輪】

直径 64 [mm]

厚み 24.5 [mm]

図 7: ギヤードモータ 3633K10

図 6: 駆動輪

図 8: ロータリーエンコーダ RE30E-500-213-1

6.2 車体の設計

 $3D\ CAD\ y$ フト Inventor を用いて設計したロボットカーの全体図を図 $9\ cap{1}$ に示す。設計の際に工夫した点は,センサの位置を対象物(ポール)をとらえやすい位置に置いたことである「対象物をとらえやすい位置」はまだ実際に試走してみないと分からないが,センサの高さはスペーサーのサイズを変えることで容易に修正することができるため,ロボカーが対象物をとらえるのに最適な位置を決めることができる.また,車体を八角形にすることにより,ロボカーがその場で旋回するときに不意にポールに衝突するのを防ぐことができる.階層の構成は,駆動系を一階,センサやバッテリー類など,あまり触ることのないものを二階,マイコンやアーム部分を三階に設置した.ロボカーの一階,二階,三階部分を図 10,図 11,図 12 120 110 111 112 121 113 121 113 113 114 115 11

図 9: ロボカー全体図

図 10: 一階部分

図 11: 二階部分

図 12: 三階部分

7 回路設計

設計した回路について選定の理由や仕様について以下に示す、また使用する部品の一覧を 7.1 に示す、

7.1 マイコンの選定

設計した回路を 15,16に示す、マイコンとして「Raspberry Pi3 Model B(以下 RPi)」と「Arduino uno R3(以下 Arduino)」を使用する、それぞれが、統合・画像処理・モータ制御、センサ処理、を行う、RPi では複雑な処理を行う上で、LinuxOS の支援を受けることができ有利である、さらに、処理速度が CPU 1.2[GHz]、メモリ 1[GB] と Arduino の 16[MHz]・32[KB] と比べても大きく優れている、これは、並列処理 や高速な画像処理に適している、このような理由から RPi を採用した。

また ,RPi はアナログ I/O ポートを持っておらず,アナログ電圧出力を行うセンサ類の処理が困難である.そこで,アナログ・ディジタル I/O ポートを持つ Arduino にセンサ類の処理を担わせることとした.

7.2 モータドライバ

モータドライバは「MD10C R3」13 を両輪駆動用として 2 つ使用し,TA7291P」をアーム用として使用する.各仕様を下に示す.[MD10C R3](駆動用)

● モータ電源電圧: DC 5[V] ~ 25[V]

● モータ最大電流: 13[A]

• ロジック用電源:モータ用より供給

• ロジック電圧: DC 5[V] or 3.3[V]

[TA7291P](アーム用)

● モータ電源電圧: DC 0[V] ~ 20[V]

● モータ最大電流: 1.0[A]

● ロジック電圧: DC 4.5[V] ~ 20[V]

図 13: MD10C R3

7.3 I^2C 通信

今回,我々のロボットには測距センサを始めとする複数のセンサが搭載されている.これらの殆どがアナログ出力であるが,Arduinoのアナログ I/O ポートは 6 つしかなく,要求を満たしていない.

そこで, I^2C 通信を用いることとする.これは, I^2C 通信がパーティライン構成が可能となっており、1 つのマスタで複数のスレーブデバイスと通信することが可能であるからである.概要を以下に示す.

- (1) マスタ側 (Arduino) とスレーブ側 (n 個のセンサ等) を明確に分け, 各スレーブに異なるアドレスを割り振る.
- (2) マスタ側が、Start Condition を出力し続いてアドレスと Read/Write 要求を出力する.
- (3) 全スレーブがこの時の SCL のクロックを元に SDA のデータを受信し、SSPADD レジスタに セットされたアドレスと一致したデバイスだけが、その後の送受信を 継続する.
- (4) 受信した側がデータを受信完了すると自動的に ACK ビットを返送し、同時に SSP 割込みを発生する.
- (5) これをマスタが Stop Condition を出力するまで続ける.

7.4 センサ仕様

続する.

7.4.1 赤外線測距センサ

測距センサは本体周囲に中距離用を 7 つ ,前方に近距離用を 3 つ搭載する .これは自律行動の際に ,周辺環境 ,特に各種ポールを把握するために用いる . センサの仕様については実験を行ったので 5 に示す . また ,各測距センサには信号のノイズを吸収し安定化させるために $0.1[\mu F]$ のセラミックコンデンサを接

7.4.2 3 軸加速度・ジャイロセンサモジュール

加速度センサは [x, y, z] 軸におけるロボットの加速度を測定するものである.

ジャイロセンサは [x, y, z] 軸まわりの各加速度を測定するものである.

我々はこれらをロボットの自己位置推定に用いる、特にジャイロセンサについては,ロボット本体の直進走行制御に使用する、詳細は??において説明する.

図 14: 3 軸加速度・ジャイロセンサモジュール

7.5 電源回路

電源回路は各回路図の左上に示している.

バッテリーはひとつしか搭載しないが, RPi と Arduino では定格電流値が異なるために同一の電源は使用できない. そこで, それぞれに降圧レギュレータとして DCDC コンバータを用いてバッテリーからの供給電源を分電することとした. 各仕様を下に示す.

【LR8697】(RPi・モータ用)

電源電圧: DC 6.0[V] ~ 42.0[V]]

出力電圧: DC 5.0[V] 出力電流: 2.5[A]

【BTD05-05S200D】(Arduino・センサ用)

電源電圧: 4.5~9.0[V] 出力電圧: 5.0[V] 出力電流: 2000[mA]

表 7.1: 回路用部品表

衣 7.1: 凹陷用部的衣									
タイプ	部品名	数	用途						
マイコン	Raspberry Pi3	1	統括・画像処理・モータ制御						
	Arduino uno R3	1	センサ類の処理						
DC モータ	AO-8014	2	駆動用						
	TAMIYA ミニモータ	1	アーム用						
モータドライバ	MD10C-R3	2	タイヤ用						
	TA7291P	1	アーム用						
赤外線測距センサ	GP2Y0A02YK	6	中距離センサ						
	GP2Y0E03	3	近距離センサ						
カメラモジュール	P5V04A	1	画像処理						
3軸加速度センサ	KXR94-2050	1	自己位置推定						
3 軸ジャイロセンサ	BGD20	1	自己位置推定						
DCDC コンバータ	LT8697	1	7.2[V] 5.0[v]2500[mA] 降圧レギュレータ						
	BTD05-05S200D	1	7.2[V] 5.0[V]2000[mA] 降圧レギュレータ						
コンデンサ	電解コンデンサ $47[\mu \mathrm{F}]$	2	電源安定化						
	セラミックコンデンサ $0.1[\mu { m F}]$	9	センサ信号安定化						
バッテリー	POWER MAX 4000 Ni-MH	1	電源バッテリー 7.2[V]4200[mAh]						

図 15: Raspberry Pi3 接続回路図

図 16: Arduino unoR3 接続回路図

8 ソフトウェア

8.1 自己位置推定

ロボカーの中心が点 (x_k,y_k) の位置にあるとし、時間 Δt 秒の間にロボカーが旋回中心の周りに $\Delta \theta$ だけ回転したとする.このときロボカーの中心から車輪までの距離を d , 左右の車輪とロボカーの中心が動いた距離をそれぞれ $\Delta L_R, \Delta L_L, \Delta L$ とすると

$$\Delta L_R = (\rho + d) \, \Delta \theta$$

$$\Delta L_L = (\rho - d) \, \Delta \theta$$

$$\Delta L = \rho \Delta \theta \tag{8.1}$$

となる.これより

$$\Delta L = \frac{\Delta L_R + \Delta L_L}{2}$$

$$\Delta \theta = \frac{\Delta L_R - \Delta L_L}{2}$$
(8.2)

が得られる.

図 17 より,オドメトリを用いた自己位置推定による位置の更新式は次のようになる.

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} & d \\ \theta_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \\ \theta_k \end{bmatrix} + \begin{bmatrix} \Delta L \cos\left(\theta_k + \frac{\Delta \theta}{2}\right) \\ \Delta L \sin\left(\theta_k + \frac{\Delta \theta}{2}\right) \\ \Delta \theta \end{bmatrix}$$
(8.3)

ここで, 式8.2より

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \\ z_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \\ z_k \end{bmatrix} + \begin{bmatrix} \frac{\cos(\theta_k) + \frac{\Delta\theta}{2}}{2} & \frac{\cos(\theta_k) + \frac{\Delta\theta}{2}}{2} \\ \frac{\sin(\theta_k) + \frac{\Delta\theta}{2}}{2} & \frac{\sin(\theta_k) + \frac{\Delta\theta}{2}}{2} \\ \frac{1}{2d} & -\frac{1}{2d} \end{bmatrix} \begin{bmatrix} \Delta L_R \\ \Delta L_L \end{bmatrix}$$
(8.4)

となる.

図 17: 自己位置推定

表 8.2: 物品リスト (引き継ぎ品)

メーカー	商品名	単価	数量	価格
TAMIYA	タミヤギヤードモータ	4860 円	2	9720 円
TAMIYA	ギヤードモータハブシャフトセット	540 円	1	9720円
TAMIYA	ミディアムナローレーシンググラジアルタイヤ	540 円	1	540 円
TAMIYA	ミディアムナロー 5 本スパークホイール	540 円	1	540円
TAMIYA	SP.106 7.2V コネクタ	270 円	2	540 円
RS コンポーネンツ株式会社	カメラモジュール	2740 円	1	2740 円
RS コンポーネンツ株式会社	Rasberry Pi 3 ケース	1080円	1	1080円
RS コンポーネンツ株式会社	Raspberry Pi 3 Model B	6200円	1	6200円
MISUMI	トグルスイッチ	80 円	2	160円
MISUMI	キャスターホイール	990円	1	990円
KHK	歯車 (モジュール 0.5 歯数 60)	1360円	4	5440円
KHK	プラスチックナット+連結スペーサーセット	100円	1	100円
秋月電子通商	3 軸加速度センサモジュール	850 円	1	850円
秋月電子通商	3 軸ジャイロセンサモジュール	750 円	1	750 円
Cytron	DC ブラシモータドライバ	2160円	2	4320 円
Powers	POWER MAX 4000 Ni-MH	4000円	2	8000円
シャープ株式会社	シャープ測距モジュール	400円	6	2400円
株式会社矢島製作所	ユニバーサル基盤	100円	2	200円
日本電産コパル電子	ロータリエンコーダ	7500円	2	15000円
Arduino Srl	Arduino UNO	3240 円	1	3240 円
TOSHIBA	microSDHC メモリーカード 8GB	1058円	1	1058 円
OptoSupply	スペーサー	45 円	4	180 円
GWS	サーボモータ	1000円	1	1000円
ルビコン株式会社	電解コンデンサ (47 µ F)	10円	2	20 円
			合計	65608円

表 8.3: RCR 新規購入品リスト

取引先	商品名	型番または商品コード	単価	数量	価格
Strawberry Linux	近距離センサモジュール	VL6180X	1296 円	3	3888 円
Strawberry Linux	降圧型 DC-DC コンバータ	LT8697	1404 円	1	1404 円
秋月電子通商	シャープ測距モジュール	GP2Y0E03	760 円	1	760 円
秋月電子通商	I2C バス用双方向レベル変換モジュール	PCA9306	150円	1	150円
misumi	15mm 角アルミフレーム	KHFS3-15	673 円	1	673 円
misumi	15mm 角アルミフレーム用四角ナット	HNSQ3-3	600円	1	600円
misumi	15mm 角アルミフレーム用ブラケット	HBLTBS3	75 円	20	1500円
misumi	小径玉軸受	FL686ZZ	440 円	4	1760円
misumi	イグリデュール G フランジ型軸受	GFM-0608-25	75 円	5	375 円
misumi	アルミ 角パイプ	HFHQ1515-1.5-500	200円	1	200円
秋月電子通商	モータドライバ	TA7291P	300円	1	300円
横山テクノ	アルミ 丸パイプ 6 × 1.0 × 400		310 円	1	310円
ヨドバシカメラ	ミニモータ低速ギアボックス	70189	716 円	1	716 円
				合計	11610円