আদর্শ গ্যাস ও গ্যাসের গতিতত্ত্ব

গতিতত্ত্বের আনবিক মতবাদ ঃ

* আদর্শ গ্যাসের অণুগুলোর মধ্যে কোন আকর্ষন বা বিকর্ষন নাই।

* আদর্শ গ্যাসের অণুগুলো তাপীয় উত্তেজনার ফলে একস্থান হতে অন্যস্থানে ছুটে বেরায় বা একস্থানে থেকে কম্পিত হতে থাকে।

$$P_1V_1 = P_2V_2$$
 [T, n ছির] $\frac{P_1}{\rho_1} = \frac{P_2}{\rho_2}$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 ; $\rho_1 T_1 = \rho_2 T_2$ [P, η স্থিৱ]

আভোগাডো ৪
$$\frac{V_1}{n_1} = \frac{V_2}{n_2} [T, p]$$
 স্থির]

$$PV = nRT$$
; $PV = \frac{W}{M}RT$ এখানে, $m = \frac{W}{M} = \frac{$ ভর $(g)}{$ আনবিক ভর $(g/mol)} = \frac{$ ভর $(kg)}{$ আনবিক ভর (kg/mol)

যেমন, wO_2 এর জন্য, $n = \frac{wg}{32g/mol}$; PV = nRT

R = 0.0821 Latm mol⁻¹K⁻¹ ব্যবহার করলে,

P = atm, V = L এ নিতে হবে ইহাই সুবিধাজনক

 $R = 8.316 \text{ Jmol}^{-1} K^{-1}$ ব্যবহার করলে,

V = m³ নিতে হবে $P = Pa (Nm^{-2}),$

*সমন্বয় সূত্র :
$$\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}$$
 ; $\frac{P_1}{\rho_1T_1}=\frac{P_2}{\rho_2T_2}$; মোল সংখ্যা, $n=\frac{m}{M}=\frac{V}{V_{STP}}=\frac{X}{N_A}=\frac{PV}{RT}=SV$

 $* ext{STP}$ - তে গ্যাসের ভর , $M=
ho_{STP}V_{STP}$; $V_{STP}=22.4~Litre=22.4 imes10^{-3}m^3$

*আয়তন প্রসারণ গুনাংক ,
$$\gamma_P=rac{V_t-V_0}{V_0}$$
 ; $V_t=V_0(1+\gamma_P t)$; $\Delta V=\gamma_P V_0 \Delta t$; $P
ightarrow$ স্থির

$$*$$
 চাপ প্রসারণ গুনাংক , $\gamma_V=rac{P_t-P_0}{P_0}$; $P_t=P_0(1+\gamma_V t)$; $\Delta P=\gamma_V P_0 \Delta t$; $V
ightarrow$ ছির

যুন্তু ঃ
$$\rho = \frac{PM}{RT}$$
 ; R = .0821 Latm mol⁻¹K⁻¹ নিলে P = atm

M = g/mol [যেমন O_2 এর জন্য M = 32g/mol] তখন, δ = g/L

গড়মুক্তপথ
$$\lambda = \frac{1}{\sqrt{2m}\sigma^2}$$

N= প্রতি একক আয়তনে অনুর সংখ্যা , $\sigma=$ অনুর ব্যাস = দুটি পাশাপাশি অনুর মধ্যবর্তী দুরত্ব

N এর একক cm $^{-3}$ অথবা m $^{-3}$ সেক্ষেত্রে σ হবে যথাক্রমে cm অথবা m ।

গ্যাসের গতীয় সমীকরণঃ

$$PV = \frac{1}{3} \text{mnc}^2$$

গ্যাসের প্রতিটি অনুর ভর মোট অনুর সংখ্যা বর্গমূল গড় বর্গবেগ

$$P = \frac{1}{3} \frac{mn}{v} c^2$$

P =
$$\frac{1}{3} \rho c^2$$
◆ গ্যাসের গড় ঘনতৃ

গ্যাসের মোট গতিশক্তি ঃ $PV = \frac{1}{3} mnc^2 \Rightarrow PV = \frac{2}{3} \times \frac{1}{2} M = mn \longrightarrow n$ সংখ্যক অণুর ভর । $\Rightarrow PV = \frac{2}{3} \times E$; $E = \frac{3}{2} PV$

N mol গ্যাসের মোট গতিশক্তি = $\frac{3}{2}$ nRT = $\frac{3}{2}\frac{W}{M}$ RT ; 1 mol গ্যাসের মোট গতিশক্তি = $\frac{3}{2}$ RT

প্রতিটি গ্যাসের গড় গতিশক্তি = $\frac{3}{2} \frac{R}{N_A} T = \frac{3}{2} KT$

 $\frac{R}{N_A} = K = বোল্টজম্যান ধ্রুবক যেহেতু, E <math>lpha$ n এবং E lpha T তাই নিদিষ্ট তাপমাত্রায় নির্দিষ্ট মোলের সকল গ্যাসের গতিশক্তি একই।

বৰ্গমূল গড় বৰ্গবেগ ঃ
$$C = \sqrt{\frac{3RT}{M}}$$

* R = $8.316 \ J K^{-1} mol^{-1}$ ব্যবহার করতে হবে এবং M = Kg/mol এ নিতে হবে।

যেমন, O_2 এর জন্য M=32 g/mol = 32×10^{-3} Kg/mol তখন, $C=ms^{-1}$ হবে

চাপ ও ঘনত্ব দেয়া থাকলে, $C = \sqrt{\frac{3P}{\rho}}$ এক্ষেত্রে, $P = Nm^{-2}$; $\rho = kg/m^3$; $C = ms^{-1}$ হবে ।

*গড়বেগ:
$$\bar{c}=rac{c_1+c_2+c_3+\cdots +c_n}{n}$$
 , *গড় বর্গবেগ: $\bar{c}^2=rac{c_1^2+c_2^2+c_3^2+\cdots +c_n^2}{n}$

$$*$$
মূল গড় বর্গবেগ: $ar{c}_{rms} = \sqrt{rac{c_1^2 + c_2^2 + c_3^2 + \cdots + c_n^2}{n}}$

উদাহরণ: দশটি কণার বেগ যথাক্রমে $0.1,2,3,3,3,4,4,5,6 \ ms^{-1}$.

গড়বেগ:
$$\bar{c} = \frac{0+1+2+3+3+3+4+4+5+6}{10} = 3.1 ms^{-1}$$

গড় বর্গবেগ:
$$\bar{c}^2=rac{0^2+1^2+2^2+3^2+3^2+3^2+4^2+4^2+5^2+6^2}{10}=12.5m^2s^{-2}$$

মূল গড় বৰ্গবেগ: $ar{c}_{rms}$ = $\sqrt{12.5}=3.5ms^{-1}$

$$*$$
সর্বোক্তম সম্ভাব্য বেগ , $c_p=rac{3+3+3}{3}=3ms^{-1}$

*গড় মুক্তপথ (λ) একক আয়তনে সংঘর্ষের সংখ্যা (= অণুর সংখ্যা $=n\pi\sigma^2 l)$ এর ব্যাস্তানুপাতিক

$$\lambda = rac{1}{n\pi\sigma^2}\,;$$
 যখন একটি অণু গতিশাল

*সংঘর্ষের সংখ্যা = অণুর সংখ্যা $= n\pi\sigma^2 l$

*গড় মুক্তপথ $:\lambda=rac{m}{\pi
ho\sigma^2}\,;$ যখন ${
m m}$ একটি অণুর ভর এবং ${
m mn}$ একক আয়তনের ভর = গ্যাসের ঘনতৃ ho

$$*$$
গড় মুক্তপথ: $\lambda=rac{1}{\sqrt{2}n\pi\sigma^2}$; যখন সব অণু গতিশলি (উৎস:ম্যাক্সওয়েলের বেগ বন্টন সূত্র)

* এক বায়ুমণ্ডলীয় চাপে এবং সাধারণ তাপমাত্রায় বাতাসের একক আয়তনে অণুর সংখ্যা,

$$n = \frac{N_A}{V_{STP}} = \frac{6.023 \times 10^{23}}{22.4 \times 10^{-3}} = 2.7 \times 10^{25} m^3$$

stপ্রতি সেকেন্ডে সংঘটিত ধাক্কার সংখ্যা $=rac{ar{c}_{rms}}{\lambda}$

*অণুর গতিবেগের সাথে চাপ ও তাপমাত্রার সম্পর্ক :

$$*$$
মূল গড় বর্গবেগ: $ar{C}_{rms}=\sqrt{rac{3RT}{M}}=\sqrt{rac{3P}{P}}$; **গড়বগ,** $ar{C}=\sqrt{rac{8RT}{\pi M}}$

*প্রতিমোল গ্যাসের গতিশক্তি: $\mathrm{E}=\frac{1}{2}M\bar{c}^2=\frac{1}{2}mN\bar{c}^2=\frac{3}{2}PV=\frac{3}{2}RT$; n মোল গ্যাসের জন্য , $\mathrm{E}=\frac{3}{2}nRT$

$$st$$
প্রতিটি অণুর গড় গতিশক্তি , $\overline{
m E}=rac{
m E}{
m N_A}=rac{3}{2}\,{
m KT}=rac{1}{2}\,mar c^2$ \therefore $ar c_{rms}=\sqrt{rac{3{
m KT}}{m}}$,

(যেখন প্রত্যেক অণুর ভর $m=M imes m_{Hydrogen})$

*f স্বাধীনতায় মাত্রাসম্পন্ন কোন অনুর মোট জড়শক্তি $=rac{f}{2}\,\mathrm{KT}$

stপ্রতিটি অণুর স্বাধীনতার মাত্রার গড় শক্তির পরিমাণ , $\overline{\mathrm{E}}=rac{1}{2}\mathrm{KT}$

*কম্পনরত কণার জন্য: অর্ধেক হলো গতিশক্তি এবং অর্ধেক হলো স্থিতিশক্তি,

স্বাধীনতার মাত্রা পিছু মোট শক্তি= গতিশক্তি+ স্থিতিশক্তি = $\frac{1}{2}$ KT + $\frac{1}{2}$ KT = KT

stএক পারমানবিক গ্যাসের জন্য: একটি অণুর স্বাধীনতায় মাত্রা, f=3; একটি অনুর গড়শক্তি , $\overline{E}=rac{3}{2}$ KT

*দ্বি পারমানবিক গ্যাসের জন্য: একটি অণুর স্বাধীনতায় মাত্রা ,f=5 \therefore একটি অনুর গড়শক্তি , $\overline{E}=rac{5}{2}$ KT

*বাস্তব গ্যাসের জন্য: ভ্যান্ডার ওয়ালস্ এর সমীকরণ ঃ n mole গ্যাসের জন্য সমীকরনটি:

$$\left(P+rac{n^2a}{V^2}
ight)(V-nb)=nRT$$
, $b=rac{V_c}{2}$, V_c সংকট কোণ।

*বাস্তব গ্যাস স্বাভাবিক তাপমাত্রায় এবং চাপে আদর্শ গ্যাস সমীকরণ অনুসরন করে না।

*বাস্তব গ্যাস উচ্চ তাপমাত্রায় এবং নিম্লুচাপে আদর্শ গ্যাস সমীকরণ অনুসরন করে।

উদাহরণ: 16 g অক্রিজেন গ্যাসের জন্য ভ্যানডার ওয়ালস্ সমীকরনটি লিখ।

আমরা জানি, n mole গ্যাসের জন্য সমীকরনটি : $\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$,

$$n = \frac{16}{32} = \frac{1}{2} : \left(P + \frac{a}{4V^2}\right) \left(V - \frac{b}{2}\right) = \frac{1}{2} RT.$$

শিশিরাঙ্ক ঃ যে তাপমাত্রায় একটি আয়তনের বায়ু ভিতরের জলীয় বাষ্প দ্বারা সম্পৃক্ত হয়, সেই তাপমাত্রাকে শিশিরাঙ্ক বলে।

পরম আর্দ্রতাঃ কোন স্থানের একক আয়তনের বায়ুতে জলীয়বাম্পের ভরকে পরম আর্দ্রতা বলে।

আপেক্ষিক আর্দ্রতা ঃ কোন নির্দিষ্ট তাপমাত্রায় নির্দিষ্ট আয়তনের বায়ুতে জলীয় বাম্পের ভর এবং ঐ একই তাপমাত্রায় ঐ আয়তনের বায়ুকে সম্পৃক্ত করতে প্রয়োজনীয় জলীয় বাম্পের ভরের অনুপাতকে ঐ আপেক্ষিক আর্দ্রতা বলে।

সম্পৃক্ত বাষ্প ঃ কোন নির্দিষ্ট তাপমাত্রায় কোন আবদ্ধ স্থান যখন সর্বাধিক বাষ্প ধারণ করে তখন ঐ বাষ্পকে সম্পৃক্ত বাষ্প বলে।

অসম্পৃক্ত বাষ্প ঃ কোন নির্দিষ্ট তাপমাত্রায় কোন আবদ্ধ স্থান যখন সর্বাধিক ধারণ ক্ষমতা অপেক্ষা কম বাষ্প ধারণ করে তখন ঐ বাষ্পকে অসম্পৃক্ত বাষ্প বলে।

অতিপৃক্ত বাস্প ঃ কোন নির্দিষ্ট তাপমাত্রায় কোন আবদ্ধ স্থান যখন সর্বাধিক ধারণ ক্ষমতা অপেক্ষা বেশি বাষ্প ধারণ করে তখন ঐ বাষ্পকে **অতিপৃক্ত বাস্প** বলে।

আপেক্ষিক আর্দ্রতা ঃ

কোনো তাপমাত্রায় নির্দিষ্ট আয়তনের বায়ূতে উপস্থিত জলীয় বাম্পের ভর এবং একই তাপমাত্রায় ঐ আয়তনের বায়ুকে সম্পৃক্ত করতে প্রয়োজনীয় জলীয় বাম্পের ভরের অনুপাতকে ঐ স্থানের আপেক্ষিক আর্দ্রতা বলে। আপেক্ষিক আর্দ্রতা,

R =
 বায়ুর তাপমাত্রায় নির্দিষ্ট আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের ভর
 বায়ুর তাপমাত্রায় ঐ বায়ুকে সম্পৃক্ত করতে প্রয়োজনীয় জলীয় বাম্পের ভর
 যেহেতু, নির্দিষ্ট আয়তনের জলীয় বাম্পের ভর চাপের সমানুপাতিক,

R= বায়ুর তাপমাত্রায় ঐ স্থানে উপস্থিত জলীয় বাস্পের চাপ বায়ুর তাপমাত্রায় ঐ স্থানকে সম্পৃক্ত করতে প্রয়োজনীয় জলীয় বাস্পের চাপ

= শিশিরাঙ্কে সম্পৃক্ত জলীয় বাজ্পের চাপ বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাজ্পের চাপ

আপেক্ষিক আর্দ্রতাকে সাধারণত শতকরায় প্রকাশ করা হয়, R = $\frac{f}{F} \times 100\,\%$

 $f{
ightarrow}$ শিশিরাংকে সম্পৃক্তবাষ্প চাপ, $F{
ightarrow}$ বায়ুর তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ

গ্রেইসারের সূত্রের সাহায্যে শিশিরাঙ্ক নির্ণয় করা যায় এ সূত্রানুসারে, $t=t_1-G(t_1-t_2)$

এখানে, $G = t_1^0 C$ তাপমাত্রায় গ্লেইসারের উৎপাদক।

বা, শিশিরাংক, θ = $\theta_1-G(\theta_1-\theta_2)$, $\;\theta_1 \to \,$ শুষ্ক বাল্প তাপমাত্রা , $\;\theta_2 \to \,$ সিক্ত বাল্প তাপমাত্রা, $\;G \to \,$ গ্লেইসারের রাশি ।

Type -01: PV = nRT

EXAMPLE-01: আর্দশ উষ্ণতা ও চাপে $3\times10^{-3}~{
m m}^3$ গ্যাসের ভর ও ঘনত্ব কত ? বাষ্প ঘনত্ব 14.

সমাধান ៖ $PV = nRT \Rightarrow 1.10325 \times 10^5 \times 3 \times 10^{-3} = n \times 8.314 \times 273$: n = 0.134 mole

$$\therefore n = \frac{m}{M} = \frac{m}{2 \times d} \Rightarrow m = 2nd = 2 \times 0.134 \times 14 = 3.75g.$$

গ্যাসটির ঘনত্ব ,
$$ho=rac{m}{V}=rac{3.75 imes 10^{-3}}{3 imes 10^{-3}}=1.25~{
m ksm^{-3}}$$

 ${f EXAMPLE}$ -02: 77 cm পারদ চাপে ও 27^0 তাপমাত্রায় $40~{
m gm~O_2}$ গ্যাসের আয়তন কত ?

সমাধান ៖ PV = nRT
$$\Rightarrow$$
 V = $\frac{40}{32}$ $\times \frac{8.314 \times 300}{.77 \times 13.6 \times 103 \times 9.8}$ =0.0304 m³,

$$P = 77cm = .77 \times 13.6 \times 10^3 \times 9.8 \text{ Nm}^{-2}$$

$$n = \frac{40}{32}$$
 mole, $T = 27 + 273 = 300K$, $R = 8.314JK^{-1}$ mol⁻¹

অন্যভাবে,
$$PV = nRT \Rightarrow V = \frac{nRT}{P} = \frac{40}{32} \times \frac{0.0821 \times 300}{77/76} = 30.4L$$

R= 0.0821Latm
$$K^{-1}$$
mol⁻¹, P= $\frac{77}{76}$ atm.

 ${f EXAMPLE-03:}~20^0~{f C}$ তাপমাত্রায় ও $740{
m mmHg}$ চাপে $0.8429{
m g}$ একটি গ্যাস $400{
m mL}$ আয়তন দখল করে। গ্যাসাটি

আনবিক ভর কত ?

সমাধান ៖
$$PV = \frac{m}{M}RT \Rightarrow \frac{740}{760} \times 1.01325 \times 10^5 \times 400 \times 10^{-6} = \frac{0.8429}{M} \times 8.314 \times 293.15$$

 \therefore M = 51.98; এখানে,P = 740mmHg = $\frac{740}{760}$ atm. = $\frac{740}{760}$ × 1.01325 × 10⁵Pa ,W = 0.842g

$$V = 400 \ mL = 400 \times 10^{-3} L = 400 \times 10^{-3} \times 10^{-3} m^3 = 400 \times 10^{-6} m^3$$

EXAMPLE-04: একজন লোক একনিঃশ্বাসে $200~\mathrm{mL}$ বায়ু গ্রহন করে। বায়ুর তাপমাত্রা $27^0\mathrm{C}$ এবং সে সময়ে বাতাসের চাপ $750~\mathrm{mmHg}$ হলে লোকটি একেবারে কতটি গ্যসানু গ্রহন করে ?

সমাধান ៖ PV = nRT
$$\Rightarrow$$
 n = $\frac{750}{760} \times \frac{1 \times 10^5 \times 200 \times 10^{-6}}{8.314 \times 300} = 8.02 \times 10^{-3}$ mole

গ্যাসানুর সংখ্যা = n N_A = $4.91 imes 10^{21}$ ডঁ

 $EXAMPLE-05: 1\times10^{-2}m^3$ আয়তন বিশিষ্ট একটি সিলিভারে 300 K তাপমাত্রায় ও $2.5\times10^5~Nm^{-2}$ চাপে অক্সিজেন ভর্তি করে রাখা হয়েছে। একই তাপমাত্রায় কিছু অক্সিজেন ব্যবহার করার পর চাপ $1.3\times10^5~Nm^{-2}$ হলো। ব্যবহৃত অক্সিজেনের পরিমাণ কত?

SOLVE:
$$P_1V_1=n_1RT_1$$
 বা, $n_1=\frac{P_1V_1}{RT_1}=\frac{2.5\times10^5\times1\times10^{-2}}{8.314\times300}$ = 1.00233 mol আবার, $P_2V_2=n_2RT_2$ বা, $n_2=\frac{P_2V_2}{RT_2}=\frac{1.3\times10^5\times10^{-2}}{8.314\times300}$ = 0.52121 mol ; $\Delta n=n_1-n_2=0.48112$ mol বা, $\frac{m_1}{M}-\frac{m_2}{M}=.481$ বা, m_1 - $m_2=.481\times32\times10^3$

$$V_1=1\times 10^{-2} m^3$$
 ; $T_1=300~K$ $P_1=2.5\times 10^5 Nm^{-2}$ মোল সংখ্যা $=n_1$ গ্যাস ব্যবহারের পর আয়তন, $V_2=1\times 10^{-2}$ $T_2=300k$; $P_2=1.3\times 10^5 Nm^{-2}$ ষোল সংখ্যা $=n_2$

EXAMPLE-06: নিচের পাত্রে গ্যাসের মোট অণুর মধ্যে একটি ভর m। অণুটি u1 বেগে একবার দেয়ালে ধাক্কা খেয়ে ফিরে এলে ভরবেগের পরিবর্তণ কত ? স্বাভাবিক তাপমাত্রা ও চাপে এক ঘনমিটারে কতগুলো আদর্শ গ্যাসের অণু থাকতে পারে ?

SOLVE : এক ঘনমিটারে আদর্শ গ্যাসের অনুর সংখ্যা,
$$n=?$$
 আদিবেগ, $u=u_1$ শেষবেগ, $v=u_1$ শেষবেগ, $v=u_1$ আমরা জানি, $v=u_1$ আমরা

EXAMPLE-07: 250cm3 আয়তনের একটি বৈদ্যুতিক বাল্প 10⁻³mm চাপে 27°c তাপমাত্রায় তৈরী করা হয়েছিল। বাল্পটির অণুর সংখ্যা কত?

SOLVE:
$$V = 25 \text{cm}^3 = \frac{25}{100 \times 100 \times 100} = 25 \times 10^{-6} \text{m}^3$$
, $T = (27 + 273) = 300 \text{k}$

$$P = \frac{101325 \text{pa} \times 10^{-3} \text{mm}}{760 \text{mm}(\text{Hg})} = 133.32 \times 10^{-3} \text{pa}$$
, $R = 8.314 \text{ Jk}^{-1} \text{mol}^{-1} \text{ n} = ?$

$$Pv = nRT \text{ } \forall \text{n}, \text{n} = \frac{P \times V}{R \times T} = \frac{133.32 \times 10^{-3} \times 25 \times 10^{-6}}{8.314 \times 300} = 1.33 \times 10^{-9} \therefore \text{N} = \text{NA} \times \text{n} = 8.05 \times 10^{15}$$
 (Ans:)

$${f Type}$$
 -02: সমন্নয় সূত্র $rac{P_1V_1}{T_1}=rac{P_2V_2}{T_2}$

EXAMPLE-01: একটি সিলিভার 300 atm. চাপ সহ্য করতে পারে। ঐ সিলিভারটিতে 150 atm. ও 270 C -এ অক্রিজেন দ্বারা পূর্ণ করা হল। কত তাপমাত্রায় সিলিভারটি বিষ্পোরিত হবে ?

সমাধান ঃ
$$\frac{P_1}{T_1}=\frac{P_2}{T_2}\Rightarrow \frac{300}{T_1}=\frac{150}{300}\Rightarrow T_1=600K=327^0C$$

EXAMPLE-02: একটি সিলিভারে আদর্শ উষ্ণতা ও চাপে $13 \times 10^{-3}~\mathrm{m}^3$ গ্যাস ধারন করতে পারে। গ্যাসের তাপমাত্রা ও চাপ 127^0 ও 1.2×10^5 pa করা হলে সিলিন্ডার থেকে কি পরিমাপ গ্যাস বের হবে ? গ্যাসটির আনবিক ভর 44 gmol⁻¹ হলে কত ভর গ্যাস বেরিয়ে যাবে ?

সমাধান ঃ
$$rac{P_1V_1}{T_1}=rac{P_2V_2}{T_2}$$
 \Rightarrow $V_2=rac{P_1V_1T_2}{P_2T_1}=rac{1 imes10^5 imes13 imes10^{-3} imes400}{1.2 imes10^5 imes273}=15.873 imes10^{-3}~m^3$

∴ অতিরিক্ত $2.873 \times 10^{-3} \text{ m}^3$ গ্যাস বেরিয়ে যাবে \Box

যার মোল সংখ্যা,
$$n = \frac{P_2 V_2}{T_2} = \frac{1.2 \times 10^5 \times 2.873 \times 10^{-3}}{400} = 0.862$$
 mole.

এবং ভর , m= nM=0.862×44=37.928g

 $EXAMPLE-03: 17^{0}C$ তাপমাত্রায় ও 0.99~atm চাপে $0.58~L~H_{2}$ গ্যাস পানির উপর সংগ্রহ করা হল । সমান তাপমাত্রা ও চাপে এর আয়তন ও ভর নির্ণয় কর। $17^0\,\mathrm{C}$ তাপমাত্রায় জলীয় বাষ্প চাপ $0.019\,\mathrm{atm}$.

সমাধান ঃ
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \Rightarrow V_2 = 0.53L$$
, $P_1 = (0.99 - 0.019)$ atm $= 0.971$ atm

গ্যাস ভর, m =
$$\frac{0.53\times2.016}{22.4}$$
 = 0.0477 g

EXAMPLE-04: 0°C তাপমাত্রা ও 0.76m চাপের বাতাসের ঘনত্বের সাথে 20°C তাপমাত্রা ও 0.75m চাপের ঘনত্বের সাথে তুলনা করো।

$$\text{SOLVE}: \frac{P_1}{\rho_1 T_1} = \frac{P_2}{\rho_2 T_2} \Longrightarrow \frac{P_1}{\rho_2} = \frac{\rho_1 T_2}{\rho_2 T_2}$$

$$= \frac{0.76 \times 300}{0.75 \times 273} = \frac{304}{273} \therefore \rho_1 : \rho_2 = 304 : 273$$

$$P_1 = 0.76m$$
; $T_1 = 273k$

$$P_2 = 0.75m$$
; $T_2 = (273+27)k = 300k$

$$P_1=0.76 \mathrm{m}$$
 , $T_1=273 \mathrm{k}$ $P_2=0.75 \mathrm{m}$; $T_2=(273+27) \mathrm{k}$ =300 k $00^{\circ}\mathrm{c}$ ও $27^{\circ}\mathrm{c}$ তাপমাত্রায় ঘনত ρ_1 ও ρ_2 হলে, $=\frac{\mathrm{gig} \ln \pi}{\mathrm{ch}}$ ঘনত ρ_2 হলে ρ_2

EXAMPLE-05: একটি পাহাড়ের চূড়ায় তাপমাত্রা ও চাপ যথাক্রমে 7°Cও 70cm পারদ চাপ। পাহাড়টির পাদদেশে যদি তাপমাত্রা ও চাপ যথাক্রমে 27°C এবং 76cm পারদ চাপ হয় তবে পাহাড়টির চূড়ায় ও পাদদেশে বায়ুর ঘনত্বের অনুপাত বের কর।

SOLVE :
$$\frac{P_1}{\rho_1 T_1} = \frac{P_2}{\rho_2 T_2}$$
 বা, $\frac{\rho_1}{\rho_2} = \frac{P_1 T_2}{P_2 T_1}$ $= \frac{0.92 \times (101.325 \times 10^3) \text{Nm}^{-2} \times 300 \text{k}}{101.325 \times 10^3 \text{Nm}^{-2} \times 280 \text{k}}$ বা, $\frac{\rho_1}{\rho_2} = \frac{276}{280} = \frac{69}{70}$ \therefore ρ_1 : ρ_2 = 69 : 70 (Ans:)
$$P_2 = 76 \text{cm}$$
 পারদ চাপ = $\frac{70}{76} \times (101.325 \times 10^3) \text{Nm}^{-2}$ $= 0.92 \times (101.325 \times 10^3) \text{Nm}^{-2}$ $= 276 \text{cm}$ পারদ চাপ = $\frac{76}{76} \times (101.325 \times 10^3) \text{Nm}^{-2}$ $= 101.325 \times 10^3 \text{Nm}^{-2}$

$$T_1=7^{\circ}C=(7+273)K=280K$$
 $F_1=70cm$ পারদ চাপ $=\frac{70}{76}\times(101.325\times10^3)Nm^{-2}$
 $=0.92\times(101.325\times10^3)Nm^{-2}$
 $T_2=27^{\circ}C=(27+273)K=300K$
 $P_2=76cm$ পারদ চাপ $=\frac{76}{76}\times(101.325\times10^3)Nm^{-2}$
 $=101.325\times10^3Nm^{-2}$
পাহাড়ের চূড়ায় ও পাদদেশে ঘনতু যথাক্রমে ρ_1 ও ρ_2 ρ_1 : $\rho_2=?$

EXAMPLE-06: একটি সুষম প্রস্তুচ্ছেদের U আকৃতির দুই বাহুবিশিষ্ট নলের ভিতর পারদ রাখা আছে। ক্ষুদ্র বাহু শেষ প্রান্ত বন্ধ থাকায় গ্যাস আবদ্ধ আছে। চিত্রানুযায়ী পারদ লেভেলের পার্থক্য 20cm। গ্যাসের আয়তন সংকুচিত করে অর্ধেক করা হলে U টিউবের দুই প্রান্তে পারদ স্তম্ভের উচ্চতা কিরূপ হবে? (বায়ুমন্ডলে পারদের চাপ 76 (cm Hg)

P = 20 cm Hg + 76 cm Hg = 96 cm Hg; আদি আয়তন V_1 হলে, পরিবর্তিত আয়তন, $V_2 = \frac{V_1}{2}$ পারদ স্তম্ভের উচ্চতা = ?

SOLVE:
$$P_1V_1 = P_2V_2$$
 $\forall i$, $P_2 = P_1 \times \frac{V_1}{V_2} = 96 \times \frac{V_1}{\frac{V_1}{2}} = 192 \text{cm}$

∴ পারদ স্তম্ভের নতুন উচ্চতা = P2 – বায়ুমন্ডলীয় চাপ, = (192-76)cm = 116cm (Ans:) EXAMPLE-07: বায়ুমন্ডলীয় চাপে বাল্ব A তে O_2 এবং 1.5 বায়ুমন্ডলীয় চাপে B তে CO_2 গ্যাস আছে। হঠাৎ ট্যাপটি বন্ধ হলে A বাল্ব ও B বাল্ব এর আয়তন যথাক্রমে 20 লিটার ও 30 লিটার হয়। ট্যাপটি খুলে দিয়ে স্থির তাপমাত্রায় উভয় গ্যাসের মিশ্রন ঘটালে গ্যাসের চুড়ান্ত চাপ কত হবে?

SOLVE:
$$PV = P_1V_1 + P_2V_2$$
 $\therefore P = \frac{P_1V_1 + P_2V_2}{V}$

$$= \frac{1 \times 20 + 1.5 \times 30}{50} = 1.3 \text{ atm (Ans :)}$$

$$P_1 = 1 \text{ atm }; \quad V_1 = 20L$$

$$P_2 = 1.5 \text{ atm }; \quad V_2 = 30L$$

$$V = 20 + 30 = 50L; \quad P = ?$$

\mathbf{Type} -03: হুদের গভীরতা , $P_1V_1 = P_2V_2$

EXAMPLE-01: কোনো হ্রদের তলদেশ থেকে পৃষ্ঠে আসার ফলে একটি বাতাসের বুদবুদের ব্যাসার্ধ তিনগুন হয়ে যায়। ব্যারোমিটারে পারদস্তম্ভের উচ্চতা 75cm হলে হ্রদের গভীরতা কত? (পারদের ঘনতু 13596 kgm⁻³)

SOLVE: যেহেতু, বুদবুদের আয়তন এর ব্যাসার্ধের ঘনফলের সমানুপাতিক। তাই বুদবুদের ব্যাসার্ধ তিনগুন হলে এর আয়তন, $3^3=27$ গুণ হবে। আমরা জানি, $P_1V_1=P_2V_2\Longrightarrow (P_2+P)V_1=P_2\times 27V_1$ $\Longrightarrow P_2+P=27P\Longrightarrow h\rho g=26\ P_2$ $h=\frac{26\times 0.75\times 13596\times 9.8}{1000\times 9.8}=265.122m$ (Ans)

হেদের গভীরতা = h মিটার তলদেশে বুদবুদের আয়তন = V_1 উপরিতলে বুদবুদের আয়তন = V_2 = 27 V_1 P = 75cm = 0.75 × 13596 × 9.8 Nm $^{-2}$ h মিটার গভীরে পানির চাপ, P_1 = hfg তলদেশে চাপ, P_1 = পানির চাপ + বায়ুমন্ডলীয় চাপ = P_1 + P উপরিতলে চাপ, P_2 = বায়ুমন্ডলীয় চাপ P; h = ?

EXAMPLE-02: একটি হ্রেদের তলদেশ হতে একটি বায়ুর বুদ্বুদ্ হ্রেদের উপরিতলে আসার ফলে এর ব্যাস $\sqrt[3]{2}$ গুন বেড়ে যায়।

হ্রদের গভীরতা কত ?

সমাধান ៖
$$P_1V_1 = P_2V_2 \Rightarrow P_1 \times \frac{4}{3}\pi R^3 = (P_1 + h\rho g) \times \frac{4}{3}\pi r^3 \Rightarrow P_1 \times \left(\frac{R}{r}\right)^3 = P_1 + h\rho g$$

$$\Rightarrow 2P_1 = P_1 + h\rho g \Rightarrow h = \frac{P_1}{\rho g} = \frac{1.013 \times 10^5}{10^3 \times 9.8} = 10.34 \text{ m}$$

Practice:

০১. কোন হ্রাসের তলদেশ থেকে পানির উপরিতলে আসায় একটি বায়ু বুদবুদের ব্যাস দ্বিগুন হয়।হ্রাসের পুষ্ঠে বায়ুমণ্ডলের চাপ স্বাভাবিক বায়ুমণ্ডীয় চাপের সমান এবং হ্রদের পানির উষ্ণতা ধ্রুবক হলে হ্রদের গভীরতা কত ?Ans: 10.20 m

০২. $1.4 imes 10^{-5} \mathrm{m}^{-5}$ আয়তন বিশিষ্ট একটি বুদবুদ $34\mathrm{m}$ গভীর একটি হ্রুদের তলদেশ হতে হ্রুদের উপরিতলে উঠে এল। হ্রেদের তলদেশের তাপমাত্রা 280k এবং হ্রেদের উপর তলের তাপমাত্রা ও চাপ যথাক্রমে 300k **এবং** 750mm পারদ। হেদের উপরতলে বুদবুদের আয়তন কত হবে ? (পারদের ঘনত্ব $1.36 imes 10^3 kgm^{-3}$)

[উত্তর ঃ
$$6.5 imes 10^{-5} m^3$$
]

Type -04:
$$\Delta V = \gamma_P V_0 \Delta t$$
; $\Delta P = \gamma_V P_0 \Delta t$

EXAMPLE-01: স্থির চাপে $4 \times 10^{-3} m^3$ আয়তনের গ্যাসকে 0° C হতে 68.25° Cপর্যন্ত উত্তপ্ত করায় আয়তন

$$1 imes 10^{-3} m^3$$
বৃদ্ধি পেলে প্রমশূণ্য তাপমাত্রার মান বের কর ।

সমাধান ঃ
$$\Delta V = \gamma_P V_0 \Delta t \Rightarrow 1 \times 10^{-3} = \gamma_P \times 4 \times 10^{-3} \times 68.25$$
 $\therefore \gamma_P = 0.00366$ /°C

$$V_t = V_0(1 + \gamma_P t) \Rightarrow 0 = V_0 + V_0 \gamma_P t \Rightarrow t = -\frac{1}{0.00366} = -273$$
°C

Practice:

০১. স্থির আয়তনে $4 imes 10^5 Pa$ চাপে গ্যাসকে 0° C হতে 68.25° Cপর্যন্ত উত্তপ্ত করায় চাপ $1 imes 10^5 Pa$ বৃদ্ধি পেলে পরমশৃণ্য তাপমাত্রার মান বের কর । Ans: -273°C

Type -05: বেগ নির্ণয়

$$\bar{C}_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3P}{\rho}}$$
; $\bar{c}_{rms} = \sqrt{\frac{3KT}{m}}$, $\bar{E} = \frac{E}{N_A} = \frac{3}{2} \frac{R}{N_A} T = \frac{3}{2} KT = \frac{1}{2} m \bar{c}^2$, $E = \frac{3}{2} nRT$

$$\overline{C}=\sqrt{rac{8RT}{\pi M}}$$
 , f স্বাধীনতায় মাত্রাসম্পন্ন কোন অনুর মোট জড়াশক্তি $=rac{f}{2}\,KT$

EXAMPLE-01: একটি অক্সিজেন অনুর ভর $5.3 \times 10^{-26} \ kg$ হলে 100° C উষ্ণতায় ঐ অণুর মূল গড় বর্গবেগ নির্ণয় কর।

SOLVE: RT =
$$\frac{1}{3}$$
mNc² \Longrightarrow c² = $\frac{3RT}{mN}$ =

$$\frac{3\times8.31 \text{Jk}^{-1} \text{mol}^{-1} \times 373 \text{k}}{5.3\times10^{-26} \text{kg}\times6.023\times10^{23} \text{mol}^{-1}} \text{C} = 539.72 \text{ ms}^{-1} \text{ (Ans)}$$

SOLVE:
$$RT = \frac{1}{3} mNc^2 \Rightarrow c^2 = \frac{3RT}{mN} =$$

$$\frac{3 \times 8.31 J k^{-1} mol^{-1} \times 373 k}{5.3 \times 10^{-26} kg \times 6.023 \times 10^{23} mol^{-1}} C = 539.72 \text{ ms}^{-1} \text{ (Ans)}$$

$$m = 5.3 \times 10^{-26} kg$$

$$T = 100^{\circ} C = 100 + 273 = 373 K$$

$$N = 6.023 \times 10^{23} mol^{-1} \text{ ; } c = ?$$

EXAMPLE-02: স্বাভাবিক তাপমাত্রা ও চাপে N_2 -এর অনুগুলোর গড় বর্গবেগের বর্গমূল ও গড়বেগ কত বের কর।

সমাধান ঃ গড় বর্গবেগের বর্গমূল ,
$$\bar{C}_{rms}=\sqrt{rac{3\mathrm{RT}}{\mathrm{M}}}=\sqrt{rac{3 imes 8.314 imes 273}{28 imes 10^{-3}}}=493.14~\mathrm{ms^{-1}}$$

গড়বেগ ,
$$\overline{C}=\sqrt{\frac{8RT}{\pi M}}=\sqrt{\frac{8\times 8.314\times 273}{\pi\times 28\times 10^{-3}}}=454.34ms^{-1}$$

 $\mathbf{EXAMPLE} ext{-}\mathbf{03}$: 27^0 তাপমাত্রায় $14 \mathbf{g} \ \mathbf{N}_2$ গ্যাসের (i) মোট গতিশক্তি ও প্রতিটি অণুর গড় গতিশক্তি কত ?

(ii) স্বাধীনতার মাত্রা পিছু প্রতিটি অণুর গড়শক্তি কত ?

সমাধান ঃ মোট গতিশক্তি , E = $\frac{3}{2}nRT = \frac{3}{2} \times \frac{m}{M} \times R \times T = \frac{3}{2} \times \frac{14}{28} \times 8.314 \times (27 + 273) = 1.87$ J

প্রতিটি অণুর গড় গতিশক্তি ,
$$\overline{E}=\frac{E}{nN_A}=\frac{1.87}{\frac{14}{28}\times 6.023\times 10^{23}}=6.21\times 10^{-24}~\mathrm{J}$$

(ii) স্বাধীনতার মাত্রা পিছু প্রতিটি অণুর গড়শক্তি , $\overline{E}=\frac{f}{2}$ KT= $\frac{5}{2}\times 1.38\times 10^{-23}\times 300=1.035\times 10^{-20}~J$

EXAMPLE-04: STP তে একটি গ্যাসের ঘনত্ব $1.25~{
m gL^{-1}}$ । $100^0{
m C}$ তাপমাত্রায় গ্যাসটির rms বেগ কত ? $27^0{
m C}$ তাপমাত্রায় $700~{
m mm}$ Hg. চাপে গ্যাসটির rms বেগ কত তাপমাত্রায় ${
m CO_2}$ এর rms বেগের সমান হবে?

সমাধান ঃ
$$\bar{C}_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3 \times 8.314 \times 373}{1.25 \times 22.4 \times 10^{-3}}} = 476.42 \text{ms}^{-1}$$

$$\frac{T_1}{M_1} = \frac{T_2}{M_2} \Rightarrow T_2 = \frac{44}{1.25 \times 22.4} \times 300 = \frac{44}{28} \times 300 = 471.43 \text{ K} = 198.43^{\circ} \text{ C}$$

EXAMPLE-05: একটি পাত্রে $27^{0}\,C$ তাপমাত্রায় হিলিয়াম গ্যাস আছে । হিলিয়াম অণুর গড় গতিশক্তি এবং মূল গড় বর্গবেগ নির্ণয় কর । হিলিয়াম অণুর ভর $6.68 \times 10^{-27} kg$.

সমাধান ៖
$$\overline{E} = \frac{E}{N_A} = \frac{3}{2} KT = \frac{3}{2} \times 1.38 \times 10^{-23} \times 300 = 6.21 \times 10^{-21} J$$

$$\bar{c}_{rms} = \sqrt{\frac{3\text{KT}}{\text{m}}} = \sqrt{\frac{3\times1.38\times10^{-23}\times300}{6.68\times10^{-27}}} = 1.36\times10^3 \text{ms}^{-1}$$

EXAMPLE-06: 1Litre আয়তনের একটি পাত্রে 10^{25} সংখ্যক অক্সিজেন অণু আছে । যদি অক্সিজেন অণুর ভর $2.7 \times 10^{-25} g$ হয় এবং মূল গড় বর্গবেগ $4 \times 10^4 {
m cm s}^{-1}$ হয় তবে উক্ত গ্যাসের চাপ নির্ণয় কর।

সমাধান ঃ
$$\frac{1}{2}mN\bar{c}^2 = \frac{3}{2}PV \Rightarrow P = \frac{1}{3} \times 2.7 \times 10^{-28} \times 10^{25} \times (4 \times 10^4 \times 10^{-2})^2 \div 10^{-3}$$
$$= 1.44 \times 10^5 \text{Nm}^{-2}$$

EXAMPLE-07: একটি গ্যাসজারে 373 K তাপমাত্রায় অক্সিজেন গ্যাস আছে। অক্সিজেনের একটি অণুর ভর $5.3 \times 10^{-26} \ \mathrm{kg}$ । এর মূল গড় বর্গবেগ কত? গ্যাস ধ্রুবক $\mathrm{K} = 1.338 \times 10^{-20} \ \mathrm{Jkg^{-1}k^{-1}}$.

SOLVE: PV = KT
$$\Rightarrow \frac{1}{3}mNc^2 = KT$$
 : $c = \sqrt{\frac{3KT}{mN}}$ | T = 373 K | N = 1 | M = $5.3 \times 10^{-20} \times 373$ | $M = 5.3 \times 10^{-26} \text{ kg}$ | K = $1.338 \times 10^{-26} \text{ kg}$ | K = $1.338 \times 10^{-20} \text{ Jkg}^{-1}\text{k}^{-1}$; C = ?

EXAMPLE-08: কোন তাপমাত্রায় হাইড্রোজেনের মূল গড় বর্গবেগ সাধারণ চাপে ও তাপমাত্রায় মূল গড় বর্গবেগের দ্বিগুন হবে?

EXAMPLE-09: 500 cc আয়তনের একটি ফ্লাক্সে 5.5×10^{24} টি হাইড্রোজেনের অণু আছে। একটি অণুর ভর 3.32×10^{-24} g এবং তাদের গড় বর্গ বেগের বর্গমূল $300~\text{ms}^{-1}$ । গ্যাসটি ফ্লাক্সে কত চাপ প্রয়োগ করবে ? $\text{SOLVE: V = } 500~\text{cc} = 500~\text{cm}^3 = 500\times10^{-6}~\text{m}^3 \; ; \; n = 5.5\times10^{24} \; ;$ অণুর ভর $= 3.32\times10^{-24}\text{gm}$ $= 3.32\times10^{-27}\text{kg}$ \therefore n সংখ্যক অণুর ভর, m = $(5.5\times10^{24})\times(3.32\times110^{-27})~\text{kg} = 0.01826~\text{kg}$ গড় বর্গবেগের বর্গমূল, C = 300ms^{-1} ; প্রযুক্ত চাপ, p = ?

$$c = \sqrt{\frac{3P}{\rho}}$$
 ----- (1)

$$\rho = \frac{m}{v} = \frac{0.01826 kg}{500 \times 10^{-6} m^3} \; ; \; \rho = 36.52 kgm^{-3}$$

(1) নং সমীকরণ থেকে পাই,
$$P = \frac{\delta c^2}{3} = \frac{36.52 \text{ kgm}^{-3} \times (300 \text{ m}^{-1})^2}{3}$$
 $P = 1095600 \text{kgm}^{-1} \text{s}^{-2}$

$$\therefore$$
 P = 10.96×10⁵Pa (Nm⁻²) (Ans:)

Practice:

- ০১. স্থির উষ্ণতায় কত চাপ প্রয়োগ করলে একটি গ্যাসের আয়তন এর স্বাভাবিক চাপের আয়তনের ${f 4}$ গুন হবে ${f ?2.53} imes 10^4 Pa$
- ০২. স্থির তাপমাত্রায় $0.76~{\rm m}$ (পারদ) চাপে $50\times 10^{-6}{\rm m}^3$ হাইড্রোজেন গ্যাস রাখা আছে । চাপ বৃদ্ধির ফলে গ্যাসের আয়তন যদি $38\times 10^{-6}{\rm m}^3$ হয় তবে চাপ বৃদ্ধির পরিমাণ কত ? $0.24{\rm mHg}$
- ০৩. একটি পাম্পের সাহায্যে 6 লিটার আয়তনের একটি ট্যাঙ্কে 70 লিটার বাতাস ঢুকানো হল। এই প্রক্রিয়ায় তাপমাত্রার কোন পরিবর্তন হয় না। সমূদর বাতাসের আদি চাপ যদি $1 {
 m atm}$ হয় তবে ট্যাঙ্কের মধ্যে বাতাসের চূড়ান্ত চাপ কত $213.08 \times 10^5 Pa$
- o8. 27^{0} C তাপমাত্রার একটি গ্যাসকে স্থির চাপে উত্তপ্ত করে আয়তন দ্বিগুণ করা হল। গ্যাসের হুড়ান্ত তাপমাত্রা কত ?600K
- ০৫. স্থির চাপে $4 \times 10^{-3} {
 m m}^3$ আয়তনের কোন গাসকে 0^0 C হতে 68.25^0 C পর্যন্ত উত্তপ্ত করার ফলে এর আয়তন $1 \times 10^{-3} {
 m m}^3$ বৃদ্ধি পেলে পরমশূন্য তাপমাত্রার মান কত ?-273°C
- ০৬. $0.64\mathrm{m}$ পারদ স্তম্ভ চাপে এবং 39^0 C তাপমাত্রায় কোন গ্যাসের আয়তন $5.7 \times 10^{-4}\mathrm{m}^3$ । প্রমাণ চাপ ও তাপমাত্রায় গ্যাসের আয়তন কত 24.2×10^{-4} m^3
- ০৭. স্বাভাবিক তাপমাত্রায় ও চাপে (STP) এক মোল গ্যাসের আয়তন কত ?22.4L
- ০৮. একটি বেলুনকে $25^0\,\mathrm{C}$ তাপমাত্রায় এবং $75\mathrm{cm}$ (পারদ) চাপে $1000\,\mathrm{cm}^3$ হাইড্রোজেন দ্বারা পূর্ণ করা হল । এখন $10^0\,\mathrm{C}$ তাপমাত্রায় এবং $75\mathrm{cm}$ (পারদ) চাপে বেলুনটিকে উড়িয়ে দেওয়া হল । বেলুনের আয়তন কতটা বৃদ্ধি পাবে । $8.5 \times 10^{-3}\mathrm{m}^3$ ।
- ০৯. একটি সিলিভারে রক্ষিত অক্সিজেন গ্যাসের আয়তন $10^4~{
 m cm}^3$ তাপমাত্রা $300{
 m K}$ এবং চাপ $2.5 imes 10^5 {
 m Nm}^{-2}$ তাপমাত্রা স্থির রেখে কিছু অক্সিজেন বের করে নেয়ার পর চাপ কমে $1.3 imes 10^5 {
 m Nm}^{-2}$ হয় । ব্যবহৃত অক্সিজেনের ভর কত ? $15{
 m gm}$
- **১০.** 27^0 C তাপমাত্রায় এবং 40 atm চাপে একটি আদর্শ গ্যাসকে প্রসারিত হতে দেয়ায় এর নতুন আয়তন পূর্বের আয়তনের 13 গুন নতুন চাপ বায়ুমণ্ডলীয় চাপের সমান হল। গ্যাসটির নতুন তাপমাত্রা সেলসিয়াস স্কেলে কত ? -175.5°C
- ১১. 0^0 C তাপমাত্রায় বা স্বাভাবিক তাপমাত্রায় ও চাপে অক্সিজেনের অণুর মূল গড় বর্গবেগ নির্ণয় কর। (খ) 27^0 C তাপমাত্রায় এর মান কী হবে ? অক্সিজেনের ঘনত্ব = $1.43~{\rm kgm^{-3}}.Ans$: $461.18{\rm ms^{-1}}$, $483.28{\rm ms^{-1}}$
- ১২. আমরা শ্বাস প্রশ্বাসে 1.0 লিটার বায়ু সেবন করলে (i) মোট কতগুলো অণু সেবন করে থাকি ? () সাধারণ তাপমাায় $(27^0~{\rm C})$ ঐ অণুগুলোর গড় গতি শক্তি কত ছিল ? Ans: 2.7×10^{22} , $6.12 \times 10^{-21}{\rm J}$,
- ১৩. $20^{0}\,\mathrm{C}$ বাতাসের অক্সিজেন ও নাইট্রোজেন অণুর গড় বর্গ বেগ কত ? অক্সিজেনের আণবিক ভর 32 এবং নাইট্রোজেনের আণবিক ভর 28 । একটি হাইড্রোজেন পরমাণুর ভর $1.67\times 10^{-27}\mathrm{kg}$. Hints: $\bar{c}_{rms} = \sqrt{\frac{3\mathrm{KT}}{\mathrm{m}}} = 480\mathrm{ms}^{-1} \to 3$ অক্সিজেন

অক্সিজেনের অণুর ভর $m=M imes m_{Hydrogen}=32 imes 1.67 imes 10^{-27}{
m kg}=5.37 imes 10^{-28}~kg$

১৪. যদি আদর্শ চাপ ও তাপমাত্রায় হাইড্রোজেন গ্যাসের ঘনত্ব $0.09~{
m kgm^{-3}} (= 9 imes 10^{-5} {
m gm~cm^{-3}})$ হয় তবে আদর্শ তাপমাত্রা ও চাপে হাইড্রোজেনের অণুর মূল গড় বর্গবেগ কত ? $1837.6 {
m ms^{-1}}$

১৫. $27^0~{
m C}$ তাপমাত্রায় এক কিলোগ্রাম ভর অক্সিজেন অণুর মোট গতি শক্তি নির্ণয় কর । $3741 imes 10^3 {
m J}$

১৬. $27^{0}C$ তাপমাত্রায় প্রতি গ্রাম অণু হিলিয়াম গ্যাসের গতি শক্তি নিণর্য় কর ।3741J

$${f Type}$$
 -06: গড় মুক্তপথ, $\lambda=rac{1}{\sqrt{2}n\pi\sigma^2}$

EXAMPLE-01: অ্যাভোগেড্রোর সংখ্যা $6.06 \times 10^{26} \ \mathrm{kmol^{-1}}$ এবং হাইড্রোজেনের অনুর গড় মুক্তপথ স্বাভাবিক চাপ ও তাপমাত্রায় $2 \times 10^{-7} \mathrm{m}$ । হাইড্রোজেন অণুর কার্যকর ব্যাস নির্ণয় করো।

SOLVE: ম্যাক্সওয়েলের বেগ বন্টন সূত্র,

$$\lambda = \frac{1}{\sqrt{2}n\pi\pi^2} \Longrightarrow \sigma^2 = \frac{1}{\sqrt{2}n\pi\pi} : \sigma = \sqrt{\frac{1}{\sqrt{2}n\pi\lambda}}$$

$$= \sqrt{\frac{1}{\sqrt{2} \times 2.7 \times 10^{19} \times 3.14 \times 2 \times 10^{-7}}} = 2.042 \times 10^{-7} \text{cm (Ans)}$$

1 mol গ্যাসের আয়তন = 22400আ্যাভোগেড্রো সংখ্যা = $6.06 \times 10^{26} \text{kmol}^{-1}$ $\therefore 1 \text{cc}$ গ্যাসে অণুর সংখ্যা = $\frac{6.06 \times 10^{26}}{22400}$ = $2.7 \times 10^{22} \text{kmol}^{-1}$ = $2.7 \times 10^{19} \text{ mol}^{-1}$ $N = 2.7 \times 10^{19}$; $\lambda = 2 \times 10^{-7} \text{m}$; $\sigma = ?$

EXAMPLE-02: $0^{\circ}C$ তাপমাত্রায় ও এক বায়ুমন্ডলীয় চাপে বাতাসের অণুগুলোর গড় মুক্ত পথের মান বের কর। বাতাসের প্রতি ঘন সেন্টিমিটারে অণুর সংখ্যা $=3 \times 10^{19}$, প্রতিটি অণুর ব্যাস $=2 \times 10^{-8} {
m cm}$ সমাধান ঃ ম্যাক্সওয়েলের বেগ বন্টন সূত্র,

$$\lambda = \frac{1}{\sqrt{2}n\pi\sigma^2} = \frac{1}{\sqrt{2}\times3\times10^{19}\times\pi\times(2\times10^{-8})^2} = 1.88\times10^{-5} \text{cm}$$

ইহা আণবিক ব্যাসের প্রায় এক হাজার গুন।

EXAMPLE-03: কোনো গ্যাস অণুর ব্যাসার্ধ $1.2 \times 10^{-10} \mathrm{m}$ এবং গড় মুক্তপথ $2.6 \times 10^{-8} \mathrm{m}$ । উক্ত গ্যাসের এক ঘনমিটার আয়তনে অনুর সংখ্যা নির্ণয় কর। যদি অণুগুলোর মূল গড় বর্গবেগ 800ms⁻¹ হয়। তবে পরপর দুটি সংঘর্ষের মধ্যেকার সময়ের ব্যবধান নির্ণয় কর।

SOLVE: ম্যাক্সওয়েলের বেগ বন্টন সূত্র,

$$\lambda = \frac{1}{\sqrt{2}\pi n\sigma^2} \, n = \frac{1}{\sqrt{2}\pi\lambda\sigma^2} = \frac{1}{\sqrt{2}\times\pi\times2.6\times10^{-8}\times(2\times1.2\times10^{-10})^2} = 1.5\,\times\,10^{26} \text{m}^{-3}$$
 পরপর দুটি

সংঘর্ষের মধ্যবতী ব্যবধান =
$$\frac{\lambda}{C_{\rm rms}} = \frac{2.6 \times 10^{-8} \text{m}}{800 \text{ms}^1} = 3.25 \times 10^{-11} \text{s}$$
 (Ans:)

Type-07: আপেক্ষিক আর্দ্রতা, শিশিরাংক, গ্লেইসারের সূত্র

$$R = rac{f}{F} imes 100\%$$
 , শিশিরাংক, $\theta = \theta_1 - G(\theta_1 - \theta_2)$

EXAMPLE-01: তাপমাত্রা 20°C এবং আপেক্ষিক আর্দ্রতা 40% হলে প্রতি ঘনমিটার বায়ুতে কী পরিমানে জলীয় বাষ্প থাকে ? [20°C এ সম্পুক্ত জলীয় বাষ্পের ঘনত্ব 17.30 gm⁻³]

SOLVE :
$$R = \frac{\text{জলীয় বাস্পের ভর (নির্দিষ্ট তাপমাত্রায়)}}{\text{জলীয় বাস্পের ঘনতু (নির্দিষ্ট তাপমাত্রায়)}} \Longrightarrow R = \frac{m}{\delta}$$
 $R = 40\% = \frac{40}{100}$; $\rho = 17.30 \text{ gm}^{-3}$ $\Omega = \frac{40}{100} = \frac{m}{17.30} \Longrightarrow 100 \times m = 40 \times 17.3m = \frac{40 \times 17.3}{100}$ $\Omega = 6.92 \text{ g}$

R =
$$40\% = \frac{40}{100}$$
; $\rho = 17.30 \text{ gm}^{-3}$ প্রতি ঘনমিটারে জলীয় বাম্পের পরিমান m = ?

Note : Prove that, p ∞ m ∞ p [যেখানে k হল সমানুপাতিক ধ্রুবক]

EXAMPLE-02: কোনো একদিন বায়ুর তাপমাত্রা 30°C, চাপ 0.756m পারদ এবং আঃ আর্দ্রতা 60%। ঐ দিনের জলীয় বাম্পের ও শুষ্ক বায়ুর চাপ নির্ণয় কর। (30°C এ সম্পুক্ত জলীয় বাম্পের চাপ = 0.0316m পারদ)

SOLVE:
$$R = \frac{f}{F} \times 100\% \Longrightarrow \frac{60}{100} = \frac{f}{0.0316m} f = 0.01896m$$
(Ans:)

SOLVE :
$$R = \frac{f}{F} \times 100\% \Longrightarrow \frac{60}{100} = \frac{f}{0.0316m}$$
 f = 0.01896m (Ans:)

ভঙ্ক বায়ুর চাপ = $P - f = 0.756m - 0.01896m$
= 0.073704m পারদ (Ans:)

 $T_1 = 30^{\circ}c$
 $P = 0.756m$ (পারদ স্তম্ভের উচ্চতা) ; $R = 60\%$
 $T_1 = 30^{\circ}c$
 $T_2 = 30^{\circ}c$
 $T_3 = 30^{\circ}c$
 $T_4 = 30^{\circ}c$
 $T_4 = 30^{\circ}c$
 $T_5 = 0.0756m$ (পারদ স্তম্ভের উচ্চতা) ; $T_5 = 0.0756m$ (পারদ স্তমের চাপ স্ত

EXAMPLE-03: কোন একদিন বায়ুর তাপমাত্রা 26^{0} C এবং শিশিরাংক 20.4^{0} C ঐ দিনের আপেক্ষিক আর্দ্রতা নির্ণয় কর। 20^{0} C, 22^{0} C, এবং 26^{0} C এ সম্পৃক্ত বাষ্পচাপ, 17.54, 19.83 এবং 25.21 mmHg

সমাধান ៖ $22-20=2^0~{
m C}~$ তাপমাত্রা বৃদ্ধিতে সম্পৃক্ত জলীয় বাষ্প চাপের বৃদ্ধি $2.29~{
m mmHg}$

 $0.4^0\,\mathrm{C}$ তাপমাত্রায় বৃদ্ধিতে সম্পুক্ত জলীয় বাম্পের চাপের বৃদ্ধি $0.0458~\mathrm{mmHg}$

 20.4^{0} C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ = 17.54 + 0.0458 = 17.59 mmHg

আপেন্ফিক আর্দ্রতা , $R = \frac{f}{F} \times 100\% \ = \frac{17.59}{25.21} \times 100\% = 69.8\%$

EXAMPLE-04: কোন একদিন বায়ুর তাপমাত্রা $30^{0}C$, ঐ দিনে শুষ্ক ও সিক্তবাল্বের তাপমাত্রা ও $30^{0}C$ এবং 28^{0} C পেলে। ঐ দিনে ঐ স্থানের বায়ুর আপেক্ষিক আর্দ্রতা কত ?

 $30^0~{\rm C}$ তাপমাত্রায় গ্লেইসারের উৎপাদক $1.65~{\rm u}$ বং $26^0~{\rm C},\,28^0~{\rm C}$ ও $30^0~{\rm C}$ এ সম্পৃক্ত জলীয় বাম্পের চাপ যথাক্রমে

 25.25×10^{-3} m, 28.45×10^{-3} m, এবং 31.85×10^{-3} m Hg.

সমাধান ঃ শিশিরাংক $\theta = \theta_1 - G(\theta_1 - \theta_2) = 30 - 1.65 \times (30 - 28) = 26.7$ °C

 $30-28=2^{\circ}$ ে তাপমাত্রা বৃদ্ধিতে সম্পুক্ত জলীয় বাষ্প চাপের বৃদ্ধি = 31.85-28.45=3.4mmHg

 $0.7^{\circ}\mathrm{C}$ তাপমাত্রা বৃদ্ধিতে সম্পৃক্ত জলীয় বাষ্প চাপের বৃদ্ধি =1.19~mmHg

26.7°C তাপমাত্রায় সম্পুক্ত বাম্পচাপ= 25.25+1.19=26.44~mmHg

আপেক্ষিক আর্দ্রতা , R= $\frac{f}{F} \times 100\% = \frac{26.44}{31.85} \times 100\% = 83~\%$

EXAMPLE-05: কোনো স্থানে বাতাসের তাপমাত্রা 25° C এবং শিশিরাঙ্ক 16° C। 16° C, 24° C এবং 26° C তাপমাত্রায় সম্পৃক্ত জলীয় বাঙ্গের চাপ যথাক্রমে 16.3×10^{-3} m, 22.3×10^{-3} m এবং 25.1×10^{-3} m পারদ হলে ঐ স্থানের আপেক্ষিক আর্দ্রতা কত ?

 $SOLVE: R = rac{f}{F} imes 100\%$, $24^{\circ}C$ থেকে $26^{\circ}C$, অর্থাৎ $2^{\circ}C$ তাপমাত্রার পার্থক্যে সম্পৃক্ত জলীয় বাঙ্গের চাপের পার্থক্য $= (25.1-22.3) imes 10^{-3} m$ $= 2.8 imes 10^{-3} m$

 $f = 13.6 \times 10^{-3} \text{m}$ R = ?

 $::1^{0}$ C তাপমাত্রার পার্থক্যে সম্পৃক্ত জলীয় বাম্পের চাপের পার্থক্য

$$= \frac{2.8 \times 10^{-3} m}{2} = 1.4 \times 10^{-3} m$$
 $\therefore 25^{0} C$ তাপমাত্রার সম্পৃক্ত জলীয় বাম্পের চাপ

$$F = (22.3 \times 10^{-3} + 1.4 \times 10^{-3}) \text{m} = 23.7 \times 10^{-3} \text{m} \text{ R} = \frac{13.6 \times 10^{-3} \text{m}}{23.7 \times 10^{-3} \text{m}} \times 100\% = 57.38\%$$

EXAMPLE-06: শুষ্ক এবং আর্দ্র বাল্বের তাপমাত্রা 20°C এবং 12°C হলে শিশিরাংক এবং আপেক্ষিক আর্দ্রতা নির্ণয় কর। (20°C এ গ্রেইসারের উৎপাদক 1.79 এবং 20°c ও 5.68°C তাপমাত্রায় জলীয় বাল্পের সর্বোচ্চ চাপ যথাক্রমে 17.6 mm পারদ এবং 6.856 mm পারদ)

SOLVE : $t = t_1$ -G(t_1 - t_2) = 20-1.79 (20-12) =5.68°C(Ans:) শিশিরাংক 5.68°C এ বাষ্পচাপ, f = 6.856 mm পারদ বায়ুর তাপমাত্রা 20°Cএ বাষ্পচাপ, F = 17.6 mm পারদ

$$R = \frac{f}{F} \times 100\% = \frac{6.856}{17.6} \times 100\% = 38.955\% \text{ (Ans:)}$$

 $t_1=20^{\circ}c$; $t_2=12^{\circ}c$; G=1.79 $20^{\circ}C$ এ জলীয় বাষ্পচাপ = 17.6 mm পারদ $5.68^{\circ}C$ এ জলীয় বাষ্পচাপ = 6.856 mm পারদ t=? ; R=?

EXAMPLE-07: একটি ঘরের তাপমাত্রা 30^{0} C এবং আপেক্ষিক আর্দ্রতা 50%। ঐ সময়ে বাইরের তাপমাত্রা 10^{0} C ও আপেক্ষিক আর্দ্রতা 75%। যদি ঘরের একটি বাইরের জানালা খুলে দেয়া হয় তবে বায়ু কোন দিকে চলাচল করবে ? বায়ুতে উপস্থিত জলীয় বাম্পের কত অংশ ঘনীভূত হবে ? এবং বায়ুতে উপস্থিত জলীয় বাম্পের কত অংশ ঘারা বায়ু সম্পৃক্ত হবে ? $[30^{0}$ C ও 10^{0} C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পেচাপ $33.6~\mathrm{mmHg}$ ও $9.8~\mathrm{mmHg}$]

সমাধান 30° C তাপমাত্রায় বিদ্যমান জলীয় বাস্পের চাপ = $.5 \times 33.6 = 16.8 \text{ mmHg}$.

 $10^0\,\mathrm{C}$ তাপমাত্রায় বিদ্যমান জলীয় বাম্পের চাপ = $.75 \times 9.8 = 7.35\,\mathrm{mmHg}$.

জলীয় বাষ্প জানালা দিয়ে বাইর যাবে। ঘনীভূত জলীয় বাষ্প $=\frac{16.8-7.35}{16.8}=\frac{9}{16}$ অংশ

সম্পৃক্ত জলীয় বাষ্প $=\frac{7}{16}$ অংশ

EXAMPLE-08: একটি শীততাপ নিয়ন্ত্রক যন্ত্র 30^0 সেলসিয়াস তাপমাত্রায় 90% আপেক্ষিক আর্দ্রতাবিশিষ্ট বায়ুকে ঠাণ্ডা করে তাপমাত্রা 20^0 সেলসিয়াস করে। এতে আপেক্ষিক আর্দ্রতাহ্রাস পেয়ে 50% হল। ঐ যন্ত্র 1 ঘনমিটার বায়ু হতে কত গ্রাম জলীয় বাষ্প্র বের করে দিল? বায়ুর আয়তনের পরির্বতন উপেক্ষাণীয়। 30^0 সেলসিয়াস এবং 20^0 সেলসিয়াস তাপমাত্রায় সম্পুক্ত বাষ্পের ঘনতু যথাক্রমে 30 গ্রাম/ঘন মিটার এবং 17 গ্রাম/ ঘন মিটার।

সমাধান ঃ আমরা জানি, আপেক্ষিক আর্দ্রতা

$$R = rac{t^0 \; ext{ সেলসিয়াস তাপমাত্রায় নির্দিষ্ট আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের ভর}}{t^0 \; ext{ সেলসিয়াস তাপমাত্রায় ঐ আয়তনের বায়ুকে সম্প্রক করতে প্রয়োজনীয় জলীয় বাম্পের ভর$$

 30^0 সেলসিয়াস তাপমানায় আম্পক্ষিক অদিতা ${f P} = {f Q} {f \Omega} \%$ সেলসিয়াস তাপমানায় ${f 1}$ ঘনমিটার আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের ভর

 $\therefore 90\% = \frac{}{30^0}$ সেলসিয়াস তাপমাত্রায় 1 ঘনমিটার আয়তনের বায়কে সম্পক্ত করতে প্রয়োজনীয় জলীয় বাম্পের ভর

বা,
$$\frac{90}{100} = \frac{30^0$$
 সেলসিয়াস তাপমাত্রায় 1 ঘনমিটার আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের ভর

 $\therefore 30^0$ সেলসিয়াস তাপমাত্রায় 1 ঘনমিটার আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের ভর $=\frac{90}{100} \times 30 = 27$ গ্রাম

অনুরূপভাবে

 20^{0} সেলসিয়াস তাপমাত্রায় 1 ঘনমিটার আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের ভর

বা,
$$\frac{50}{100}=\frac{20^0$$
 সেলসিয়াস তাপমাত্রায় 1 ঘনমিটার আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের ভর 17

বা, 20^0 সেলসিয়াস তাপমাত্রায় 1 ঘনমিটার আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের ভর $=\frac{50\times17}{100}=8.5$ গ্রাম \therefore প্রতি ঘন মিটার বায়ু থেকে নিষ্ক্রান্ত জলীয় বাম্পের ভর =(27-8.5)=18.5 গ্রাম \mid

উত্তর ঃ নিদ্রান্ত জলীয় বাম্পের ভর 18.5 থাম।

EXAMPLE-09: 26° C তাপমাত্রায় আপেক্ষিক আর্দ্রতা 50 % বিশিষ্ট 5 ঘনমিটার বায়ু 14° C তাপমাত্রায় কত অতিরিক্ত জলীয় বাষ্প শোষণ করলে এর আপেক্ষিক আর্দ্রতা 70 % হবে ? $[26^{\circ}$ C ও 14° C তাপমাত্রায় প্রতি ঘনমিটার বায়ুর সম্পৃক্ত জলীয় বাষ্পের ভর যথাক্রামে 1.35×10^{-3} kg ও 1.23×10^{-3} kg].

সমাধান ខ m = $5(0.7 \times 1.23 \times 10^{-3} - 0.5 \times 1.35 \times 10^{-3}) = 9.3 \times 10^{-4} \text{kg}$,

$$P\alpha$$
 m , $P={
m Km}, \frac{m}{V}=\rho$ একক আয়তনে $({
m m}=
ho)$, $\frac{P_1}{P_1}=\frac{Km_1}{Km_2}=\frac{m_1}{m_2}=\frac{
ho_1}{
ho_2}$

$$R = \frac{m_1}{m_2} \times 100\% = \frac{\rho_1}{\rho_2} \times 100\%.$$

EXAMPLE-10: 5°C উষ্ণতা ও 20% আপেক্ষিক আর্দ্রতা বিশিষ্ট বায়ুকে একটি শীতাতপ নিয়ন্ত্রিত যন্ত্রের মধ্যে টেনে এনে একে 20°C উষ্ণতা এবং 50% আপেক্ষিক আর্দ্রতায় উন্নীত করা হলো। এরপ করতে 5°C উষ্ণতা বিশিষ্ট 1m³ বাতাসে কত গ্রাম পানিকে বাষ্পীভূত করতে হবে? [5°C উষ্ণতায় সম্পৃক্ত বাষ্পের ঘনত্ব = 6.8 g/m³, 20°C উষ্ণতায় = 17.39 g/m³ এবং বায়ুর চাপ 76 cm পারদ]

SOLVE : প্রাথমিক আর্দ্রতা 20% ; $20 = \frac{5^{\circ}\text{C}}{20}$ উষ্ণুতায় 1m^3 বায়ুতে উপস্থিত জলীয় বাম্পের ভর বা, 5°C উষ্ণুতায় 1m^3 বায়ুতে উপস্থিত জলীয় বাম্পের ভর বা, 5°C উষ্ণুতায় 1m^3 বায়ুতে উপস্থিত জলীয় বাম্পের ভর 1m^3 বায়ুতে উপস্থিত বাম্পের ভর 1m^3 বায়ুতে বাম্পের ভর 1m^3 বায়ুতে উপস্থিত বাম্পের ভর 1m^3 বায়ুতে বাম্পের ভর 1m^3 বাম্পের ভর 1m^3 বায়ুতে বাম্পের ভর 1m^3 বায়ুতে বাম্পের ভর 1m^3 বায়ুতে বাম্পের ভর 1m^3 বায়ুতে বাম্পের ভর $1\text$

 $R_1 = 20^{\%}$ $R_2 = 50\%$ $\rho_1 = 6.8 \text{ g/m}^3$ $\rho_2 = 17.39 \text{ g/m}^3$ কত পানি বাম্পীভূত
হবে ?

EXAMPLE-11: কোনো একদিন বায়ুর তাপমাত্রা 22°C এবং আপেক্ষিক আর্দ্রতা 60%। যদি ঐ স্থানের তাপমাত্রা হ্রাস পেয়ে 12°C হয় তবে বায়ুস্থিত জলীয় বাম্পের কত অংশ ঘনীভূত হবে? [12°C ও 22°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ যথাক্রমে 10.5×10⁻³m এবং 19.8×10⁻³m].

SOLVE: R = 60% =
$$\frac{60}{100}$$
 = $\frac{22^{\circ}\text{C}}{22^{\circ}\text{C}}$ এ বায়ুসহ জলীয় বাস্পের ভর

=
$$\frac{22^{\circ}\text{C}}{12^{\circ}\text{C}}$$
 এ বায়ুকে সম্পৃক্ত করতে প্রয়োজনীয় বাম্পের ভর $\times \frac{12^{\circ}\text{C}}{22^{\circ}\text{C}}$ এ বায়ুকে সম্পৃক্ত করতে প্রয়োজনীয় বাম্পের ভর

$$=rac{22^{\circ}\text{C}}{12^{\circ}\text{C}}$$
 এ বায়ুতে বিদ্যমান জলীয় বাম্পের ভর $imes rac{12^{\circ}\text{C}}{22^{\circ}\text{C}}$ এ সম্পৃক্ত জলীয় বাম্পের ভর $imes rac{22^{\circ}\text{C}}{22^{\circ}\text{C}}$ এ সম্পৃক্ত জলীয় বাম্পের ভর

$$= \frac{22^{\circ}\text{C u বায়ুতে বিদ্যমান জলীয় বাম্পের ভর}}{12^{\circ}\text{C u বায়ুকে সম্পৃক্ত করতে প্রয়োজনীয় জলীয় বাম্পের ভর} \times \frac{10.5 \times 10^{-3}\text{m}}{19.8 \times 10^{-3}\text{m}}$$

ধরি, 22°C এ বায়ুতে বিদ্যমান জলীয় বাস্পের ভর m kg.

$$\therefore 12^{\circ}\text{C}$$
 এ বায়ুকে সম্পৃক্ত রাখতে প্রয়োজনীয় বাম্পের ভর $= \frac{10.5 \times m}{0.6 \times 19.8} = 0.884 m$

∴ ঘনীভূত হবে, m -0.884m = 0.116m ∴ মোট বাম্পের 0.116m অংশ ঘনীভূত হবে। (Ans)

EXAMPLE-12: কোন স্থানের বায়ুর তাপমাত্রা 95°F ও শিশিরাক্ষ 77.90°F। 25° C, 26°C ও 35°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ যথাক্রমে 23.69 × 10⁻³m, 25.17× 10⁻³m ও 45.9 × 10⁻³m পারদ। বায়ুর আঃ আর্দ্রতা কত ?

SOLVE :
$$\frac{C}{5} = \frac{F-32}{9} ...95$$
°F এর ক্ষেত্রে, $\frac{C}{5} = \frac{95-32}{9} ... C = 35$ ° C

∴ 77.9°F এর ক্ষেত্রে, $\frac{C}{5} = \frac{77.9-32}{9}$ বা, C = 25.5° C সুতরাং, বায়ুর তাপমাত্রা 35° C ও শিশিরাঙ্ক 25.5° C

আমরা পাই, বায়ুর তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ, $F = 45.9 \times 10^{-3} m$ (Hg)

শিশিরাঙ্কে সম্পৃক্ত বাষ্পচাপ,
$$f = \left(\frac{25.17 + 23.69}{2}\right) \times 10^{-3} \text{m (Hg)} = 24.43 \times 10^{-3} \text{m (Hg)}$$

বের করতে হবে বায়ুর আঃ আর্দ্রতা, R = ?

R =
$$\frac{f}{F} \times 100\% = \frac{24.43 \times 10^{-3}}{45.9 \times 10^{-3}} \times 100\% = 53.22\% \text{ (Ans)}$$

EXAMPLE-13: একটি শুদ্ধ ও আর্দ্র বাল্ব থার্মোমিটারে। শুদ্ধ ও আর্দ্র বাল্বের তাপমাত্রা যথাক্রমে 25°C এবং 19°C। বায়ুর শিশিরাঙ্ক ও আর্পেফিক আর্দ্রতা নির্নয় কর। [25°C তাপমাত্রায় G এর মান 1.65, 15°C, 16°c ও 25°C তাপমাত্রায় সম্পুক্ত জলীয় বাম্পের চাপ যথাক্রমে 12.77×10⁻³m, 13.71×10⁻³m ও 23.7×10⁻³m]

SOLVE: $t_1 = 25$ °C; $t_2 = 19$ °C; 25°C তাপমাত্রায় G = 1.65

 15° C তাপমাত্রায় সম্পুক্ত জলীয় বাষ্পচাপ = $12.77 \times 10^{-3} m$

 16° C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ = $13.71 \times 10^{-3} m$

 25° C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ = $23.7 \times 10^{-3} m$

R = ?;
$$t = t_1 - G(t_1-t_2) = 25-1.65(25-19) = 25-9.9$$
; $t = 15.1$ °c (Ans:)

 15° C থেকে 16° C অর্থাৎ, 1° C তাপমাত্রায় চাপের পরিবর্তন = $(13.71 - 12.77) \times 10^{-3} m = 0.94 \times 10^{-3} m$

 $∴ 0.1^{\circ}$ C তাপমাত্রায় চাপের পরিবর্তন = $(0.94 \times 10^{-3} \times 0.1)$ m = 0.094×10^{-3} m

∴ শিশিরাঙ্কে সম্প্রক্ত বাষ্পচাপ, $f = (12.77 + 0.094) \times 10^{-3} m = 12.864 \times 10^{-3} m$

∴ বায়ুর সম্পৃক্ত বাষ্পচাপ, F = 23.7×10⁻³m ; R =
$$\frac{f}{F}$$
 × 100% = $\frac{12.864 \times 10^{-3}}{23.7 \times 10^{-3}}$ × 100%

 \therefore R = 54.28% (Ans:)

EXAMPLE-14: আগারগাঁও আবহাওয়া অফিসে আপেক্ষিক আর্দ্রতা পরিমাপ বিভাগের একটি তালিকায় নিম্ন্বর্ণিত কয়েকটি তথ্য লক্ষ্য করো। ঐ দিনের শিশিরাঙ্ক 7.6°C ও বায়ুর তাপমাত্রা 16°C হলে-

SOLVE: তাপমাত্রা °C জলীয় বাষ্পচাপ m পারদ

7°C 7.5×10⁻³m পারদ

8°C 8×10⁻³m পারদ

16°C 13.5×10⁻³m পারদ

আপেক্ষিক আর্দ্রতা কত হয়েছিল নির্ণয় করো। শিশিরাঙ্ক 7°C; তাপমাত্রা 16°C

 7° C, 8° C, 16° C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে 7.5×10^{-3} m, 8×10^{-3} m, 13.5×10^{-3} m Hg ; R = ?

 $f = [7.5+(8-7.5)\times0.6] \times 10^{-3} = 7.8 \times 10^{-3} \text{mHg}$

 $F = 13.5 \times 10^{-3} \text{mHg} [16^{\circ} \text{c}$ বায়ুর তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ]

R =
$$\frac{f}{F} \times 100\% = \frac{7.8 \times 10^{-3} \text{m}}{13.5 \times 10^{-3} \text{m}} \times 100\% = 57.7\%$$
 (Ans:)

EXAMPLE-15: একটি AC নিয়ন্ত্রণ যন্ত্র বাইরে থেকে $30^{\circ}c$ তাপমাত্রায় 90° আপেক্ষিক আর্দ্রতায় বায়ু ভেতরে টেনে $30^{\circ}c$ তাপমাত্রায় শীতল করে। বায়ুর আঃ আর্দ্রতাহ্রাস পেয়ে 50% হয়। যন্ত্রটি $1m^3$ বায়ু হতে কত পরিমান জলীয় বাষ্প্র বের করে দিবে?[$30^{\circ}c$ ও $20^{\circ}c$ এ ঘনত্ব $30gm^3$ এবং $17gm^3$]

$$\rho_1 = 30 \text{gm.m}^{-3}$$
; $\rho_2 = 17 \text{gm.m}^{-3}$

$$m2 = V \rho_2 R_2 = 1 \times 17 \times 0.5 = 8.5 gm$$

$$R_1 = 90\%$$
; $R_2 = 50\%$
V = $1m^3$; m = ?

Practice:

০১. প্রাথমিক আর্দ্রতা ৬০% অপরিবর্তিত অবস্থায় যদি বায়ুর তাপমাত্রা $20^{0}\,\mathrm{C}$ থেকে হ্রাস পেয়ে $5^{0}\,\mathrm{C}$ হয় তবে বায়ুর উপস্থিত জলীয় বাম্পের কত অংশ তরলীভূত হবে? ($5^{0}\,\mathrm{C}$ ও $20^{0}\,\mathrm{C}$ তাপমাত্রায় জলীয় বাম্পের চাপ যথাক্রমে $6.5\,\mathrm{mm}$ পারদ এবং $17.5\,\mathrm{mm}$ পারদ)

0.381 অংশ তরলীভূত হবে]

০২. একটি নির্দিষ্ট সময়ে শুষ্ক ও আর্দ্র বাল্প হাইগ্রোমিটারের দুটি থার্মোমিটারের তাপমাত্রায় যথাক্রমে $26^0~{\rm C}~$ ও $21^0~{\rm C}~$ ও সময়ের বায়ুর আপেক্ষিক আর্দ্রতা নির্ণয় কর। [$26^0~{\rm C}~$ ও $17.55^0~{\rm C}~$ তাপমাত্রা সম্পৃক্ত বাষ্পচাপ যথাক্রমে $25.1 \times 10^{-3} {\rm m}$ পারদ এবং $11 \times 10^{-3} {\rm m}$ পারদ, $26^0~{\rm C}~$ তাপমাত্রা G=1.69] ${\rm Ans}: 43.82\%$

০৩. নির্দিষ্ট কোন এক দিনের শিশিরাঙ্ক 8.5^0 এবং বায়ুর তাপমাত্রা $18.4^0\,\mathrm{C}$ । আপেক্ষিক আর্দ্রতা নির্ণয় কর। $(8^0\mathrm{C}, 9^0\mathrm{C}, 18^0\mathrm{C}, 19^0\,\mathrm{C})$ তাপমাত্রায় সর্বাধিক বাষ্পচাপ যথাক্রমে 8.04, 8.61, 15.46, এবং 15.46 এবং 16.46 সেন্টিমিটার পারদ)

Ans: 52.49%

০৪. কোন একদিন বায়ুর তাপমাত্রা 30° C, চাপ 0.756m পারদ এবং আপেক্ষিক আর্দ্রতা 60%। ঐ দিনের জলীয় বাম্পের ও শুদ্ধ বায়ুর চাপ নির্ণয় কর। [30° C এ সম্পৃক্ত জলীয় বাম্পের চাপ = 0.0316 m পারদ] \mathbf{Ans} : $\mathbf{0.01896mHg}$, $\mathbf{0.737mHg}$.