MATH7049 – Assignment 4 Joel Thomas 44793203

1.

Given dynamics:

$$dx_t = \mu(x_t, t)dt + \sigma(x_t, t)dW_t$$

$$\Delta t = \frac{T}{N}, \qquad t_n = n\Delta t, \qquad n = 0,1,...,N$$

Note N refers to the number of intermediate time steps and $m=1,\ldots,M$ refer to the m-th Monte Carlo sample below. Discrete approximation for x_t from SDE:

$$x_{t_{n+1}}^{(m)} = x_{t_n}^{(m)} + \mu \left(x_{t_n}^{(m)}, t_n \right) \Delta t + \sigma \left(x_{t_n}^{(m)}, t_n \right) \Delta W_{t_n}^{(m)}$$

$$\Delta W_{t_n}^{(m)} = W_{t_{n+1}}^{(m)} - W_{t_n}^{(m)} \sim N(0, t_{n+1} - t_n) = N(0, \Delta t)$$

$$\therefore \Delta W_{t_n}^{(m)} = \sqrt{\Delta t} Z_{t_n}^{(m)}, \qquad Z_{t_n}^{(m)} \sim N(0,1), m = 1, \dots, M$$

$$\to x_{t_{n+1}}^{(m)} = x_{t_{n}}^{(m)} + \mu \left(x_{t_{n}}^{(m)}, t_{n} \right) \Delta t + \sigma \left(x_{t_{n}}^{(m)}, t_{n} \right) \sqrt{\Delta t} Z_{t_{n}}^{(m)}$$

Finally, can approximate $\int_0^T \left(x_t^{(m)}\right)^2 dt$ using composite trapezoidal rule:

$$\int_0^T \left(x_t^{(m)}\right)^2 dt \approx \left(\frac{1}{2}x_{t_0}^{(m)} + \sum\nolimits_{n=1}^{N-1} x_{t_n}^{(m)} + \frac{1}{2}x_{t_N}^{(m)}\right) \Delta t$$

Algori	Algorithm 1 to approximate price of financial instrument X using ordinary Monte Carlo with path simulation (Euler				
timestepping). Parameters x_0 , K , $\mu(x_t,t)$, $\sigma(x_t,t)$, T , M , N given.					
Step	Task				
1	$\det \Delta t = \frac{T}{N}$				
2	for $m = 1,, M$				
	{loop over all MC samples;				
3	for $n = 0, \dots, N-1$				
	$\{ ext{perform Euler timestepping on } extit{m-th sample;}$				
	compute				
	Draw $Z_n^{(m)} \sim N(0,1)$				
	$\hat{x}_{t_{n+1}}^{(m)} = \hat{x}_{t_n}^{(m)} + \mu(\hat{x}_{t_n}^{(m)}, t_n) \Delta t + \sigma(\hat{x}_{t_n}^{(m)}, t_n) \sqrt{\Delta t} Z_{t_n}^{(m)}$				
	end inner for				
4	compute and store				
	$\int_0^T \left(\hat{x}_t^{(m)}\right)^2 dt = \left(\frac{1}{2}\hat{x}_{t_0}^{(m)} + \sum_{n=1}^{N-1} \hat{x}_{t_n}^{(m)} + \frac{1}{2}\hat{x}_{t_N}^{(m)}\right) \Delta t$				
	$\{approximate \int_0^T ig(\widehat{x}_t^{(m)}ig)^2 dt;$				
	end outer for				
5	output $\hat{X}_M = \frac{1}{M} \sum_{m=1}^M \left(\int_0^T (\hat{x}_t^{(m)})^2 dt - K \right)^+$				
	{ordinary MC estimate;				

Table 1: Algorithm 1 to price financial instrument X

a)

Given dynamics:

$$dX_t = \kappa(\alpha - X_t)dt + \sigma dW_t$$

$$\Delta t = \frac{T_1}{N}, \qquad t_n = n\Delta t, \qquad n = 0, 1, ..., N$$

Use T_1 when calculating Δt because only need to simulate X_t up to time T_1 . Note N refers to the number of intermediate time steps and $m=1,\ldots,M$ refer to the m-th Monte Carlo sample below. Discrete approximation for X_t from SDE:

$$X_{t_{n+1}}^{(m)} = X_{t_n}^{(m)} + \kappa \left(\alpha - X_{t_n}^{(m)}\right) \Delta t + \sigma \Delta W_{t_n}^{(m)}$$

$$\Delta W_{t_n}^{(m)} = W_{t_{n+1}}^{(m)} - W_{t_n}^{(m)} \sim N(0, t_{n+1} - t_n) = N(0, \Delta t)$$

$$\div \Delta W_{t_n}^{(m)} = \sqrt{\Delta t} Z_{t_n}^{(m)}, \qquad Z_{t_n}^{(m)} {\sim} N(0,\!1), m = 1, \ldots, M$$

$$\rightarrow X_{t_{n+1}}^{(m)} = X_{t_n}^{(m)} + \kappa \left(\alpha - X_{t_n}^{(m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$$

After *N* intermediate steps:

$$S_{T_1}^{(m)} = e^{X_{T_1}^{(m)}} = e^{X_{t_N}^{(m)}}$$

Using (1):

$$F_{T_1}^{(m)} = e^{e^{-\kappa(T_2 - T_1)} \log(S_{T_1}^{(m)}) + (1 - e^{-\kappa(T_2 - T_1)})\alpha + \frac{\sigma^2}{4\kappa}(1 - e^{-2\kappa(T_2 - T_1)})}$$

$$\therefore Y_m = e^{-rT_1} \left(F_{T_1}^{(m)} - K_1 \right)^+$$

Full algorithm displayed in Table 2 on next page.

Algorithm 2 to approximate price $C(S_0, t_0)$ using ordinary Monte Carlo with path simulation (Euler timestepping). Parameters $S_0, K_1, r, \sigma, T_1, T_2, \kappa, \alpha, N$ given.				
Step	1, , , , 1, 2, , ,	Task		
1	$\operatorname{set} \Delta t = \frac{T_1}{N}, X_0 = \log(S_0)$			
2	estimate true <i>M</i> from pilot	computation		
3	for $m = 1, \dots, M$			
		{loop over all MC samples;}		
4	for $n = 0,, N - 1$			
		{perform Euler timestepping on <i>m</i> -th sample;}		
	compute			
		Draw $Z_n^{(m)} \sim N(0,1)$		
		$\hat{X}_{t_{n+1}}^{(m)} = \hat{X}_{t_n}^{(m)} + \kappa (\alpha - \hat{X}_{t_n}^{(m)}) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$		
	end inner for	7HT1 7H \ 7H 7		
5	compute			
		$\hat{S}_{T_1}^{(m)} = e^{\hat{X}_{tN}^{(m)}}$		
		$\hat{F}_{T_1}^{(m)} = e^{e^{-\kappa(T_2 - T_1)} \log(\hat{S}_{T_1}^{(m)}) + (1 - e^{-\kappa(T_2 - T_1)})\alpha + \frac{\sigma^2}{4\kappa}(1 - e^{-2\kappa(T_2 - T_1)})}$		
		{simulate forward price at time T_1 ;}		
	store			
		$Y_m = e^{-rT_1} (\hat{F}_{T_1}^{(m)} - K_1)^+$		
		{discounted payoff at time 0;}		
	end outer for			
6	output $\hat{C}_M = \frac{1}{M} \sum_{m=1}^{M} Y_m$			
	1/1	{ordinary MC estimate;}		

Table 2: Algorithm 2 to approximate $\mathcal{C}(S_0,t_0)$

b)

In order to estimate how large M should be, require:

$$\frac{\hat{\sigma}_M}{\sqrt{M}} \le 0.05$$

$$\to M = \left[\left(\frac{\hat{\sigma}_M}{0.05} \right)^2 \right]$$

This further requires we do a pilot computation, similar to as in Assignment 3, to get an initial estimate for $\hat{\sigma}_M$, the sample standard deviation of $Y \forall m = 1, ..., M$. In the code, M = 1e3 was chosen as the initial guess.

Price	Standard Error	Radius	Confidence Interval
1.632044	0.046765	0.091658	[1.540386, 1.723701]

Table 3: Results from implementing algorithm proposed in a) to estimate $\mathcal{C}(S_0,t_0)$

c)

Limit definitions of first (delta) and second (gamma) derivatives for an option:

$$\frac{\partial C}{\partial S} = \lim_{\Delta S \to 0} \frac{C(S + \Delta S, t) - C(S, t)}{\Delta S}$$

$$\frac{\partial^2 C}{\partial S^2} = \lim_{\Delta S \to 0} \frac{C(S + \Delta S, t) - 2C(S, t) + C(S - \Delta S, t)}{(\Delta S)^2}$$

In this question, we can approximate $\frac{\partial C}{\partial S}$ and $\frac{\partial^2 C}{\partial S^2}$ using $\Delta S=0.001$. We can do this via Euler timestepping for $C(S+\Delta S,t)$ and $C(S-\Delta S,t)$ in addition to C(S,t) as described in the modified algorithm 2 below. In order to estimate how large M should be again, repeat the same pilot computation from b).

2	estimate true M from pilot comput for $m=1,,M$ for $n=0,,N-1$ compute	Task $(S_0) , X_0^{(\Delta S)} = \log(S_0 + \Delta S) , X_0^{(-\Delta S)} = \log(S_0 - \Delta S)$ tation $\{ \text{loop over all MC samples} \}$ $\{ \text{perform Euler timestepping on } m\text{-th sample} \}$ $\hat{X}_{t_{n+1}}^{(m)} = \hat{X}_{t_n}^{(m)} + \kappa (\alpha - \hat{X}_{t_n}^{(m)}) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$ $\hat{X}_{t_{n+1}}^{(m)} = \hat{X}_{t_n}^{(\Delta S, m)} + \kappa (\alpha - \hat{X}_{t_n}^{(\Delta S, m)}) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$ $\hat{X}_{t_{n+1}}^{(-\Delta S, m)} = \hat{X}_{t_n}^{(-\Delta S, m)} + \kappa (\alpha - \hat{X}_{t_n}^{(-\Delta S, m)}) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$ $\hat{S}_{T_n}^{(m)} = e^{\hat{X}_{t_N}^{(m)}}$
2 3 4	estimate true M from pilot comput for $m=1,,M$ $ \text{for } n=0,,N-1 $ $ \text{compute} $	$\{\text{perform Euler timestepping on }m\text{-th samples}\}$ $\{\hat{X}_{t_{n+1}}^{(m)} = \hat{X}_{t_n}^{(m)} + \kappa (\alpha - \hat{X}_{t_n}^{(m)}) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$ $\hat{X}_{t_{n+1}}^{(m)} = \hat{X}_{t_n}^{(\Delta S, m)} + \kappa (\alpha - \hat{X}_{t_n}^{(\Delta S, m)}) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$ $\hat{X}_{t_{n+1}}^{(-\Delta S, m)} = \hat{X}_{t_n}^{(-\Delta S, m)} + \kappa (\alpha - \hat{X}_{t_n}^{(-\Delta S, m)}) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$
4	for $n=0,,N-1$ compute $ \hat{X}_{t_n} $ end inner for	$\{\text{perform Euler timestepping on }m\text{-th sample}\}$ $\hat{X}_{t_{n+1}}^{(m)} = \hat{X}_{t_n}^{(m)} + \kappa \left(\alpha - \hat{X}_{t_n}^{(m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$ $\hat{X}_{t_{n+1}}^{(m)} = \hat{X}_{t_n}^{(\Delta S, m)} + \kappa \left(\alpha - \hat{X}_{t_n}^{(\Delta S, m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$ $\hat{X}_{t_{n+1}}^{(-\Delta S, m)} = \hat{X}_{t_n}^{(-\Delta S, m)} + \kappa \left(\alpha - \hat{X}_{t_n}^{(-\Delta S, m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$
	compute $\hat{X}_{\hat{X}_{t_n}}$ end inner for	$\{\text{perform Euler timestepping on }m\text{-th sample}\}$ $\hat{X}_{t_{n+1}}^{(m)} = \hat{X}_{t_n}^{(m)} + \kappa \left(\alpha - \hat{X}_{t_n}^{(m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$ $\hat{X}_{t_{n+1}}^{(m)} = \hat{X}_{t_n}^{(\Delta S, m)} + \kappa \left(\alpha - \hat{X}_{t_n}^{(\Delta S, m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$ $\hat{X}_{t_{n+1}}^{(-\Delta S, m)} = \hat{X}_{t_n}^{(-\Delta S, m)} + \kappa \left(\alpha - \hat{X}_{t_n}^{(-\Delta S, m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$
	compute $\hat{X}_{\hat{X}_{t_n}}$ end inner for	$\begin{aligned} & \operatorname{Draw} Z_{n}^{(m)} \sim N(0,1) \\ \hat{X}_{t_{n+1}}^{(m)} &= \hat{X}_{t_{n}}^{(m)} + \kappa \left(\alpha - \hat{X}_{t_{n}}^{(m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_{n}}^{(m)} \\ \hat{x}_{t_{n+1}}^{(\Delta S,m)} &= \hat{X}_{t_{n}}^{(\Delta S,m)} + \kappa \left(\alpha - \hat{X}_{t_{n}}^{(\Delta S,m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_{n}}^{(m)} \\ \hat{x}_{t_{n+1}}^{(\Delta S,m)} &= \hat{X}_{t_{n}}^{(-\Delta S,m)} + \kappa \left(\alpha - \hat{X}_{t_{n}}^{(-\Delta S,m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_{n}}^{(m)} \end{aligned}$
5	$\hat{X}_{t_n}^{(-)}$ end inner for	$\begin{aligned} & \operatorname{Draw} Z_{n}^{(m)} \sim N(0,1) \\ \hat{X}_{t_{n+1}}^{(m)} &= \hat{X}_{t_{n}}^{(m)} + \kappa \left(\alpha - \hat{X}_{t_{n}}^{(m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_{n}}^{(m)} \\ \hat{x}_{t_{n+1}}^{(\Delta S,m)} &= \hat{X}_{t_{n}}^{(\Delta S,m)} + \kappa \left(\alpha - \hat{X}_{t_{n}}^{(\Delta S,m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_{n}}^{(m)} \\ \hat{x}_{t_{n+1}}^{(\Delta S,m)} &= \hat{X}_{t_{n}}^{(-\Delta S,m)} + \kappa \left(\alpha - \hat{X}_{t_{n}}^{(-\Delta S,m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_{n}}^{(m)} \end{aligned}$
5	end inner for	$\hat{X}_{t_{n+1}}^{(m)} = \hat{X}_{t_n}^{(m)} + \kappa (\alpha - \hat{X}_{t_n}^{(m)}) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$ $\hat{X}_{t_{n+1}}^{(\Delta S,m)} = \hat{X}_{t_n}^{(\Delta S,m)} + \kappa (\alpha - \hat{X}_{t_n}^{(\Delta S,m)}) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$ $\hat{X}_{t_{n+1}}^{(-\Delta S,m)} = \hat{X}_{t_n}^{(-\Delta S,m)} + \kappa (\alpha - \hat{X}_{t_n}^{(-\Delta S,m)}) \Delta t + \sigma \sqrt{\Delta t} Z_{t_n}^{(m)}$
5	end inner for	$\hat{X}_{t_{n+1}}^{(\Delta S,m)} = \hat{X}_{t_{n}}^{(\Delta S,m)} + \kappa \left(\alpha - \hat{X}_{t_{n}}^{(\Delta S,m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_{n}}^{(m)}$ $\hat{Z}_{t_{n}}^{(-\Delta S,m)} = \hat{X}_{t_{n}}^{(-\Delta S,m)} + \kappa \left(\alpha - \hat{X}_{t_{n}}^{(-\Delta S,m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_{n}}^{(m)}$
5	end inner for	$\hat{X}_{t_{n+1}}^{(\Delta S,m)} = \hat{X}_{t_{n}}^{(\Delta S,m)} + \kappa \left(\alpha - \hat{X}_{t_{n}}^{(\Delta S,m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_{n}}^{(m)}$ $\hat{Z}_{t_{n}}^{(-\Delta S,m)} = \hat{X}_{t_{n}}^{(-\Delta S,m)} + \kappa \left(\alpha - \hat{X}_{t_{n}}^{(-\Delta S,m)}\right) \Delta t + \sigma \sqrt{\Delta t} Z_{t_{n}}^{(m)}$
5	end inner for	
5	end inner for	
5		$\hat{c}^{(m)} = c^{\hat{X}_{t_N}^{(m)}}$
5	compute	$\hat{S}^{(m)} = \hat{S}^{(m)}_{t_N}$
		$C^{(n)} = a^{n} I_{N}$
		*1
	$\widehat{F}_{T_1}^{(m)}$:	$=e^{e^{-\kappa(T_2-T_1)}\log\left(\hat{S}_{T_1}^{(m)}\right)+\left(1-e^{-\kappa(T_2-T_1)}\right)\alpha+\frac{\sigma^2}{4\kappa}\left(1-e^{-2\kappa(T_2-T_1)}\right)}$
	-	$\hat{S}_{\scriptscriptstyle T}^{(\Delta S,m)}=e^{\hat{X}_{t_N}^{(\Delta S,m)}}$
	$\Leftrightarrow (\Lambda $	$= e^{e^{-\kappa(T_2 - T_1)} \log(\hat{S}_{T_1}^{(\Delta S, m)}) + (1 - e^{-\kappa(T_2 - T_1)})\alpha + \frac{\sigma^2}{4\kappa}(1 - e^{-2\kappa(T_2 - T_1)})}$
	$F_{T_1}^{(210),(10)}$	(4.2)
		$\hat{S}_{T_1}^{(-\Delta S,m)} = e^{\hat{X}_{t_N}^{(-\Delta S,m)}}$
	$\widehat{F}_{T}^{(-\Delta S,m)}$	$=e^{e^{-\kappa(T_2-T_1)}\log\left(\hat{S}_{T_1}^{(-\Delta S,m)}\right)+\left(1-e^{-\kappa(T_2-T_1)}\right)\alpha+\frac{\sigma^2}{4\kappa}\left(1-e^{-2\kappa(T_2-T_1)}\right)}$
	11	{simulate forward price at time $T_{f 1}$
	store	
		$Y_m = e^{-rT_1} (\hat{F}_{T_1}^{(m)} - K_1)^+$
		$Y_m^{(\Delta S)} = e^{-rT_1} \left(\hat{F}_{T_1}^{(\Delta S, m)} - K_1 \right)^+$
		$Y_m^{(-\Delta S)} = e^{-rT_1} (\hat{F}_{T_n}^{(-\Delta S,m)} - K_1)^+$
		{discounted payoff at time 0
		4.3
		$\frac{\partial \hat{C}_m}{\partial \hat{S}^{(m)}} = \frac{Y_m^{(\Delta S)} - Y_m}{\Delta S}$ $\frac{\partial^2 \hat{C}_m}{\partial (\hat{S}^{(m)})^2} = \frac{Y_m^{(\Delta S)} - 2Y_m + Y_m^{(-\Delta S)}}{(\Delta S)^2}$
		$\partial \hat{S}^{(m)} = \Delta S$
		$\frac{\partial^2 C_m}{\partial x^2} = \frac{Y_m^{(1)} - 2Y_m + Y_m^{(1)}}{\partial x^2}$
	end outer for	{approximate delta and gamma
	output	
	•	$\partial C = 1 \sum_{m} \partial \hat{C}_{m}$ $\partial^{2} C = 1 \sum_{m} \partial^{2} \hat{C}_{m}$
	$C_M - \overline{M} \sum_{m=1}^{\infty}$	Y_m , $\frac{\partial C}{\partial S} = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial \hat{C}_m}{\partial \hat{S}^{(m)}}$, $\frac{\partial^2 C}{\partial S^2} = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial^2 \hat{C}_m}{\partial (\hat{S}^{(m)})^2}$

Table 4: Modified algorithm 2 to approximate $C(S_0, t_0), \frac{\partial C}{\partial S}, \frac{\partial^2 C}{\partial S^2}$

Essentially, in table 4, for each MC replication, we simulate three different paths to time T_1 – one starting from S_0 , one starting from $S_0+0.001$ and one starting from $S_0-0.001$. Given these three different S_{T_1} , we can obtain three different forward prices and hence three different option prices - $C(S_0,t_0)$, $C(S_0+0.001,t_0)$ and $C(S_0-0.001,t_0)$. From this, we can approximate $\frac{\partial c}{\partial S}$ and $\frac{\partial^2 c}{\partial S^2}$ as required.

	Value	Standard Error	Radius	Confidence Interval
$C(S_0,t_0)$	1.604256	0.048693	0.095437	[1.508819, 1.699693]
$\frac{\partial C}{\partial S}$	0.271777	0.005560	0.010898	[0.260879, 0.282675]
$\frac{\partial^2 C}{\partial S^2}$	-0.003803	0.000078	0.000153	[-0.003956, -0.003651]

Table 5: Results from implementing algorithm proposed on previous page to estimate $C(S_0, t_0)$

3.

Let:

C =expected discounted payoff of an European option whose underlying has CEV dynamics.

Y = discounted payoff of an European option whose underlying has CEV dynamics.

 C^* = expected discounted payoff of an European option whose underlying has GBM dynamics.

 Y^* = discounted payoff of an European option whose underlying has GBM dynamics.

We can simulate the SDE (2) via Euler timestepping by discretising for S_t similar as in questions 1 and 2. For S^* , we can use the closed form solution of a standard GBM to directly calculate the time T price:

$$S_{t_{n+1}}^{(*,m)} = S_{t_n}^{(*,m)} e^{\left(r - \frac{(\sigma^*)^2}{2}\right) \Delta t + \sigma^* \sqrt{\Delta t} Z_{t_n}^{(m)}}$$

Manually calculated a few iterations:

$$\begin{split} S_{t_1}^{(*,m)} &= S_{t_0}^{(*,m)} e^{\left(r - \frac{(\sigma^*)^2}{2}\right) \Delta t + \sigma^* \sqrt{\Delta t} Z_{t_0}^{(m)}} \\ S_{t_1}^{(*,m)} &= S_0 e^{\left(r - \frac{(\sigma^*)^2}{2}\right) \Delta t + \sigma^* \sqrt{\Delta t} Z_{t_0}^{(m)}} \end{split}$$

$$\begin{split} S_{t_2}^{(*,m)} &= S_{t_1}^{(*,m)} e^{\left(r - \frac{(\sigma^*)^2}{2}\right) \Delta t + \sigma^* \sqrt{\Delta t} Z_{t_1}^{(m)}} \\ S_{t_2}^{(*,m)} &= S_0 e^{\left(r - \frac{(\sigma^*)^2}{2}\right) \Delta t + \sigma^* \sqrt{\Delta t} Z_{t_0}^{(m)}} \cdot e^{\left(r - \frac{(\sigma^*)^2}{2}\right) \Delta t + \sigma^* \sqrt{\Delta t} Z_{t_1}^{(m)}} \\ S_{t_2}^{(*,m)} &= S_0 e^{2\left(r - \frac{(\sigma^*)^2}{2}\right) \Delta t + \sigma^* \sqrt{\Delta t} \sum_{n=1}^2 Z_{t_n}^{(m)}} \end{split}$$

$$:: S_{t_N}^{(*,m)} = S_0 e^{N \left(r - \frac{(\sigma^*)^2}{2}\right) \Delta t + \sigma^* \sqrt{\Delta t} \sum_{n=0}^{N-1} Z_{t_n}^{(m)} }$$

In this way, we can directly simulate the final price $S_T^{(*,m)}$, using the N normal random draws for the m-th path, in a way that produces the correct distribution of $S_T^{(*,m)}$.

Algorithm 3 to approximate price $C(S_0, t_0)$ for underlying that has CEV dynamics using ordinary Monte Carlo with a control variate and with path simulation (Euler timestepping). Parameters $S_0, K, r, \sigma, T, \alpha, M, N$ given.

Step	Task				
1	set $\Delta t = \frac{T}{N}$, $\sigma^* = \sigma S_0^{\alpha - 1}$				
2	for $m = 1, \dots, M$				
		{loop over all MC samples;}			
3	for $n = 0,, N - 1$	(nonforma Fulantino attanzia a prosetta anni			
	compute	$\{ ext{perform Euler timestepping on }m ext{-th sample;}\}$			
	compute	Draw $Z_n^{(m)} \sim N(0,1)$			
		$\hat{S}_{t_{n+1}}^{(m)} = \hat{S}_{t_n}^{(m)} \left(1 + r\Delta t + \sigma \left(\hat{S}_{t_n}^{(m)} \right)^{\alpha - 1} \sqrt{\Delta t} Z_{t_n}^{(m)} \right)$			
		$\{$ simulate time T price of underlying with CEV dynamics; $\}$			
	end inner for				
4	Compute	$(\sigma^*)^2$ — $(\sigma^*)^2$			
		$S_{T}^{(*,m)} = S_{0}e^{N\left(r - \frac{(\sigma^{*})^{2}}{2}\right)\Delta t + \sigma^{*}\sqrt{\Delta t}\sum_{n=0}^{N-1}Z_{t_{n}}^{(m)}}$			
		{simulate time T price of underlying with GBM dynamics;}			
	store				
		$Y_m = e^{-rT} \left(K - \hat{S}_T^{(m)} \right)^+$			
		$Y_m^* = e^{-rT} (K - \hat{S}_T^{(*,m)})^+$			
		{discounted payoffs at time 0;}			
5	end outer for compute				
5	compute	$cov(Y,Y^*) \sigma_{V,V^*}$			
		$\hat{\beta} = \frac{cov(Y, Y^*)}{var(Y^*)} = \frac{\sigma_{Y,Y^*}}{\sigma_{Y}^{2*}}$			
		{optimal coefficient;}			
6	output:	1M			
		$\hat{C}_M = \frac{1}{M} \sum_{m=1}^{M} Y_m$			
		$m = 1$ {ordinary MC estimate;}			
		$\bar{Y}_M = \frac{1}{M} \sum_{m=1}^{M} Y_m$			
		$C^* = C^{BS}(S_0, K, T, R_{grow}, R_{disc}, \sigma) = C^{BS}(S_0, K, T, r, r, \sigma)$			
		$\bar{Y}_{M}^{*} = \frac{1}{M} \sum_{m=1}^{M} Y_{m}^{*}$			
		$\hat{C}_{M}^{cv,\hat{\beta}} = \bar{Y}_{M} + \beta (C^* - \bar{Y}_{M}^*)$			
		$\{MC \text{ estimate using a control variate;}\}$			

Table 6: Algorithm 3 to approximate $\mathcal{C}(S_0,t_0)$ using ordinary MC and MC with a control variate

	Value	Standard Error	Radius	Confidence Interval
\widehat{C}_{M}	3.275621	0.087117	0.170746	[3.104875, 3.446366]
$\widehat{C}_{M}^{cv,\widehat{eta}}$	3.286091	0.003679	0.007210	[3.278881, 3.293301]

Table 7: Results from implementing algorithm proposed above to estimate $\mathcal{C}(S_0,t_0)$

From lecture slides, we know that a control variate Y^* is a good choice for estimating $\hat{\mathcal{C}}_M^{cv,\widehat{\beta}}$ provided $cov(Y,Y^*) > \frac{1}{2}var(Y^*)$ i.e. Y^* and Y are highly correlated. A good choice here yields a large reduction in variance in the estimate of the true option price. From MATLAB, simply using the corr correlation function on Y,Y^* results in $corr(Y < Y^*) > 0.99$ on every instance that the code is run. Thus, this explains why we can be so much more confident in the estimate $\hat{\mathcal{C}}_M^{cv,\widehat{\beta}}$ (tighter confidence interval) than $\hat{\mathcal{C}}_M$ after using the control variate Monte Carlo technique.

a)

Finding $g_{S_T}(s)$:

$$g_{S_T}(s) = c \cdot h(s) f_{S_T}(s)$$

$$h(s) = e^{-rT}(s - K)^+$$

$$c = \frac{1}{\int_{R} h(s) f_{S_T}(s) ds}$$

where R= a region such that $h(s)\cdot f_{S_T}(s)>0$

$$\therefore g_{S_T}(s) = \frac{h(s)f_{S_T}(s)}{\int_R h(s)f_{S_T}(s)ds}$$

$$g_{S_T}(s) = \frac{e^{-rT}(s-K)^+ f_{S_T}(s)}{e^{-rT} \int_{P} (s-K)^+ f_{S_T}(s) ds}$$

$$g_{S_T}(s) = \frac{e^{-rT}(s-K)^+ f_{S_T}(s)}{C_0}, \qquad C_0 = C^{BS}(S_0, K, T, R_{grow} = r, R_{disc} = r, \sigma, call)$$

b)

$$\mathbb{E}_{g_{S_T}}[S_T] = \int_R s \cdot g_{S_T}(s) \ ds$$

where R= a region such that $s\cdot g_{S_T}(s)>0$. Substituting in the expression for $g_{S_T}(s)$ from a):

$$\mathbb{E}_{g_{S_T}}[S_T] = \int_{P} s \cdot \frac{e^{-rT}(s - K)^+ f_{S_T}(s)}{C_0} ds$$

$$\mathbb{E}_{g_{S_T}}[S_T] = \frac{1}{C_0} \cdot e^{-rT} \int_R s(s - K)^+ f_{S_T}(s) \, ds$$

$$\mathbb{E}_{g_{S_T}}[S_T] = \frac{1}{C_0} \cdot \mathbb{E}_{f_{S_T}}[e^{-rT}S_T(S_T - K)^+]$$

$$\mathbb{E}_{g_{S_T}}[S_T] = \frac{\tilde{C}_0}{C_0}, \qquad \tilde{C}_0 = C^{BS}(S_0, K, T, R_{grow} = r + \sigma^2, R_{disc} = 0, \sigma, call)$$

where the last line follows from the hint provided for the question.

c)

Modified BM:

$$W_t = W_t^* + \lambda t, \qquad \lambda > 0$$

$$\therefore dW_t = d(W_t^* + \lambda t) = dW_t^* + \lambda dt$$

Modified GBM:

$$dS_t = rS_t dt + \sigma S_t dW_t$$

$$dS_t = rS_t dt + \sigma S_t dW_t^* + \sigma \lambda S_t dt$$

$$dS_t = (r + \sigma \lambda)S_t dt + \sigma S_t dW_t^*$$

So we are essentially simulating another GBM that has changed drift but similar diffusion coefficients to the original GBM. The closed form solution for the original GBM is given by:

$$S_T = S_0 e^{\left(r - \frac{\sigma^2}{2}\right)T + \sigma W_T}, \qquad W_T \sim N(0, T)$$

$$W_T = \sqrt{T}Z$$
, $Z \sim N(0,1)$

$$\therefore S_T = S_0 e^{\left(r - \frac{\sigma^2}{2}\right)T + \sigma\sqrt{T}Z}$$

The closed form solution for the modified GBM is thus:

$$S_T = S_0 e^{\left(r + \sigma \lambda - \frac{\sigma^2}{2}\right)T + \sigma W_T} = S_0 e^{\left(r + \sigma \lambda - \frac{\sigma^2}{2}\right)T + \sigma \sqrt{T}Z}$$

Finding λ :

$$\mathbb{E}_{g_{S_T}}[S_T] = \mathbb{E}^*[S_T]$$

$$\mathbb{E}_{g_{S_T}}[S_T] = \mathbb{E}^* \left[S_0 e^{\left(r + \sigma \lambda - \frac{\sigma^2}{2}\right)T + \sigma \sqrt{T}Z} \right]$$

$$\mathbb{E}_{g_{S_T}}[S_T] = S_0 e^{\left(r + \sigma \lambda - \frac{\sigma^2}{2}\right)T} \mathbb{E}^* \left[e^{\sigma \sqrt{T}Z} \right]$$

Using the expression from b) for $\mathbb{E}_{q_{S_T}}[S_T]$ and evaluating the expectation of $e^{\sigma\sqrt{T}Z}$:

$$\rightarrow \frac{\tilde{C}_0}{C_0} = S_0 e^{\left(r + \sigma \lambda - \frac{\sigma^2}{2}\right)T} \int_{-\infty}^{\infty} e^{\sigma \sqrt{T}z} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

$$\frac{\tilde{C}_0}{C_0} = S_0 e^{\left(r + \sigma\lambda - \frac{\sigma^2}{2}\right)T} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2 - 2\sigma\sqrt{T}z}{2}} dz$$

Completing the square for z inside the exponential inside the integral:

$$\frac{\tilde{C}_0}{C_0} = S_0 e^{\left(r + \sigma\lambda - \frac{\sigma^2}{2}\right)T} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2 - 2\sigma\sqrt{T}z + \sigma^2T - \sigma^2T}{2}} dz$$

$$\frac{\tilde{C}_0}{C_0} = S_0 e^{\left(r + \sigma\lambda - \frac{\sigma^2}{2}\right)T} \cdot e^{\frac{\sigma^2 T}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(z - \sigma\sqrt{T}\right)}{2}} dz$$

Note that the expression inside the integral is just the PDF of a normal random variable $Z \sim N(\mu, \sigma^2) = N(\sigma\sqrt{T}, 1)$. Since we are calculating the CDF using the integral over the entire possible range, the area is simply equal to 1 i.e.:

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-\sigma\sqrt{T})}{2}} dz = 1$$

$$\therefore \frac{\tilde{C}_0}{C_0} = S_0 e^{\left(r + \sigma\lambda - \frac{\sigma^2}{2}\right)T + \frac{\sigma^2 T}{2}} \cdot 1$$

$$\frac{\tilde{C}_0}{C_0} = S_0 e^{(r+\sigma\lambda)T}$$

$$(r + \sigma \lambda)T = \ln\left(\frac{\tilde{C}_0}{S_0 \cdot C_0}\right)$$

$$\sigma \lambda = \frac{\ln \left(\frac{\tilde{C}_0}{S_0 C_0}\right)}{T} - r$$

$$\lambda = \frac{\ln\left(\frac{\tilde{C}_0}{S_0C_0}\right)}{T} - r$$

$$\therefore \lambda = \frac{\ln\left(\frac{\tilde{C}_0}{S_0C_0}\right) - rT}{\sigma T}$$

d)

Algorithm 4 to approximate price $C(S_0,t_0)$ using an importance sampling Monte Carlo algorithm. Parameters S_0,K,r,σ,T,M,N given.

$\mathbf{S}_0, \mathbf{\Lambda},$, K, Υ, σ, I, M, N given.				
Step	Task				
1	$\operatorname{set} C_0 = C^{BS}\big(S_0, K, T, R_{grow} = r, R_{disc} = r, \sigma, call\big), \tilde{C}_0 = C^{BS}\big(S_0, K, T, R_{grow} = r + \sigma^2, R_{disc} = 0, \sigma, call\big),$				
	$\lambda = \frac{\ln\left(\frac{\tilde{C}_0}{S_0C_0}\right) - rT}{\sigma T}$				
2	for $m = 1,, M$				
	{loop over all MC samples;}				
	compute				
	Draw $Z^{(m)}{\sim}N(0,1)$				
	$\hat{S}_{T}^{(m)} = S_0 e^{\left(r + \sigma\lambda - \frac{\sigma^2}{2}\right)T + \sigma\sqrt{T}Z^{(m)}}$				
	$\{\text{simulate time } T \text{ price of underlying directly using closed form solution to GBM};\}$				
	store				
	$Y_m = e^{-rT} (S_T^m - K)^+$				
	{discounted payoffs at time 0;}				
	end for				
5	output $\hat{C}_M^{is} = rac{1}{M} \sum_{m=1}^M Y_m$				
	{MC estimate using importance sampling;}				

Table 8: Algorithm 4 to approximate $\mathcal{C}(S_0,t_0)$ using an importance sampling MC algorithm

e)

Price	Standard Error	Radius	Confidence Interval
0.000109	0.000056	0.000109	[-0.000001, 0.000218]

Table 9: Results from implementing algorithm proposed in a) to estimate $\mathcal{C}(S_0,t_0)$

From table 9, it is evident that the MC estimate based on using importance sampling is very close to the true option price given by $C^{BS}(S_0,K,T,R_{grow}=r,R_{disc}=r,\sigma,call)=0.00010624$. The reason why the standard error is very small but non-zero is because the standard deviation of the estimate is non-zero. This is expected since from c), we are choosing λ such that the expectations of S_T under \mathbb{P}^* and g_{S_T} agree but not their distributions.