ANALOGIAELEKTRONIIKKA Luku 4

PN-liitos

Diodin peruskytkennät jasovellukset

Zenerdiodi

Kuva 4.1. Piin kiderakenne

Kuva 4.2. Piin tai germaniumin sidosten periaatekuva

Kuva 4.3. Vedyn energiatasokaavio ja energiavyöt

Kuva 4.4. Eristeen, puolijohteen ja metallin energiavyökaaviot

metallin energiavyökaavio

Kuva 4.5. Itseisjohtavan p- ja n-tyyppisenpuolijohteen energiakaaviot

Kuva 4.6. p- ja n-tyyppisten puolijohteiden liitosjännitteen U_0 muodostuminen

Kuva 4.7. Piipuolijohteen enemmistövarauksenkuljettajien tiheys u_n lämpötilan käänteisarvon funktiona

Kuva 4.8. Galliumarsenidin ja piin energiavyökaaviot

Kuva 4.9. pn-liitos

Kuva 4.10. pn-liitoksen varausjakauma

Kuva 4.11. Ulkoinen vastajännite pn-liitoksessa

Kuva 4.12. Ulkoinen myötäjännite pn-liitoksessa

Kuva 4.13. Puolijohdediodi ja pn-liitoksen suunta

Kuva 4.14. Diodin virta-jännite-ominaiskäyrä

Kuva 4.15. Tavallisen diodin kapasitanssin riippuvuus jännitteestä

Kuva 4.16. Diodin ylimäärävarauksen jakautuminen

Kuva 4.17. Diodi ja muuttuva lähtöjännite e(t)

Kuva 4.18. Diodipiirin lähdejännite e(t), diodin jännite u(t) ja virta i(t)

Tehtävä 4.3.

Kuva 4.19. Kapasitanssidiodin kapasitanssi

Kuva 4.20. Tunnelidiodin ominaiskäyrä

Kuva 4.21. Schottky-liitos ja 2 energiatasopiirrosta

Kuva 4.22. Elektronien siirtyminen galliumarsenidin sivuminimiin

Kuva 4.23. Negatiivisen resistanssin muodostuminen GaAspuolijohteessa

Kuva 4.24. Tyristorin rakenne ja piirrosmerkki

Kuva 4.25. pnpn-kerrosten jakaminen kahdeksi transistoriksi

Kuva 4.26. Tyristorin ominaiskäyrästö

Kuva 4.27. SCS-tyristorin rakenne ja piirrosmerkki

Kuva 4.28. Triakin rakenne, piirrosmerkki ja ominaiskäyrä

Kuva 4.29. Puoliaaltotasasuuntaaja ja diodin yksinkertaistettu ominaiskäyrä

Kuva 4.30. Puoliaaltotasasuuntaajan lähtöjännite, kun jännitehäviö 0,7 V otetaan huomioon

Kuva 4.31. Puoliaaltotasasuuntaajan lähtöjännite, kun diodin oletetaan olevan ideaalinen

Kuva 4.32. Kaksidiodinen kokoaaltotasasuuntaaja

Kuva 4.33. Jännitteet kokoaaltotasasuuntauksessa

Kuva 4.34. Positiivinen puolijakso

Kuva 4.35. Negatiivinen puolijakso

Kuva 4.36. Tasasuuntaussilta

Kuva 4.37. Muuntajan vaihtojännitteet

Kuva 4.38. Siltakytkentä: positiivinen puolijakso

Kuva 4.39. Siltakytkentä: negatiivinen puolijakso

Kuva 4.40. Huipputasasuuntaaja

Kuva 4.41a. Amplitudiltaan 10 V:n jännite u on kytketty hetkellä t = 0

Kuva 4.41b. Kondensaattorin jännite u_c on 10 V hetken t = T/4 jälkeen

Kuva 4.42. Kuormitettu huipputasasuuntaaja

Kuva 4.43a vas. Kondensaattorin jännite ja diodin virta

Kuva 4.43a oik. Tasajännitteen keskiarvo

Kuva 4.43b vas. Tasajännite

Kuva 4.44. Tasolukko

Kuva 4.45. Diodin jännite tasolukossa

Kuva 4.46. Jännitteenkahdentaja

Kuva 4.46b. Jännitteenkahdentajan toiminta

Kuva 4.47. Leikkainpiirin ominaiskäyrä

Kuva 4.48. Kolmioaallon muuttuminen leikkainpiirissä

Kuva 4.49. Diodipiiri, jossa jännite u_{IN} saa erilaisia arvoja

Kuva 4.50. Diodi estosuunnassa

Kuva 4.51. Diodi päästösuunnassa

Kuva 4.52. Diodipiirin ominaiskäyrä

Kuva 4.53. Piiriin syötetty kolmiojännite

Kuva 4.54. Diodileikkain

Kuva 4.55. u_{IN} on hyvin negatiivinen: D_1 johtaa, D_2 on estosuuntainen

Kuva 4.56. $-5,7 \text{ V} < u_{IN} < 12,7 \text{ V}$: D₁ ja D₂ ovat estosuuntaisia

Kuva 4.57. $u_{IN} > 12,7 \text{ V: } D_1 \text{ on estosuuntainen, } D_2 \text{ johtaa}$

Kuva 4.58. Diodileikkaimen ominaiskäyrä

Kuva 4.59. Jännitelähteiden kytkentä yhteiseen kuormaan

Kuva 4.60. Diodin läpilyönti

Kuva 4.61. Zenerdiodin dynaaminen resistanssi

Kuva 4.62. Lämpötilakerroin zenerjännitteen funktiona

Kuva 4.63. Lämpötilakompensoitu zenerdiodi

Kuva 4.64. Zenerdiodin ominaiskäyrä

Kuva 4.65. Virran I_z ja jännitteen U_z positiiviset suunnat, kun zener on läpilyöntitilassa

Kuva 4.66. Zenerdiodin avulla toteutettu jännitteenvakavointipiiri

Esimerkki 4.7.

