ЧИСЕЛЬНІ МЕТОДИ 43,44 ПЗ 2016-2017

Тема: Наближені методи розв'язування систем алгебраїчних рівнянь

Викладач: Васіна Л.С.

Індивідуальні завдання до лабораторної роботи №2 "Чисельні методи розв'язування СЛАР"

Завдання 1.

Дано систему 4-х лінійних рівнянь з 4-ма невідомими:
$$\begin{cases} (1+k)x_1+2x_2+3x_3-2x_4=6\\ 2x_1-kx_2-2x_3-3x_4=8(1-k)\\ 3x_1+2x_2-x_3-(2-k)x_4=4k \end{cases},$$

$$(2x_1-3x_2+2x_3+x_4=-8(1+3k))$$

де $k = 0,01 \cdot N, N$ – номер варіанта.

Необхідно:

- розв'язати систему методом Гаусса (за схемою єдиного ділення);
- розв'язати систему методом Гаусса, використовуючи програму обробки електронних таблиць Microsoft Excel (MS Excel);
- розв'язати систему матричним методом, використовуючи функції для роботи з матрицями MS Excel.

Завдання 2. Дано систему 3-х лінійних рівнянь з 3-ма невідомими: $\begin{cases} a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \end{cases}$. $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$

Необхідно:

- розв'язати систему методом Гаусса (за схемою єдиного ділення);
- перевірити виконання достатніх умов збіжності ітераційного процесу;
- здійснити п'ять кроків ітерацій Якобі та Гаусса-Зейделя і визначити для кожного методу значення $\max |x_i^{(5)} - x_i^{(4)}|$, i = 1, 2, 3. Результати обчислень подати у вигляді таблиці 8 та зробити порівняльний аналіз ітераційних методів;
- розв'язати систему матричним методом, використовуючи функції для роботи з матрицями MS Excel. Таблиця 8

№кроку	Наближення за ітерацією Якобі	$\left \max \left x_i^{(k+1)} - x_i^{(k)} \right \right $	Наближення за ітерацією Гауса-Зейделя	$\max \left x_i^{(k+1)} - x_i^{(k)} \right $
1	$oldsymbol{\mathcal{X}}_1^{(1)} \ oldsymbol{\mathcal{X}}_2^{(1)} \ oldsymbol{\mathcal{X}}_3^{(1)}$	$\max \left x_i^{(1)} - x_i^{(0)} \right $	$egin{array}{c} x_1^{_{(1)}} \ x_2^{_{(1)}} \ x_3^{_{(1)}} \end{array}$	$\max \left x_i^{(1)} - x_i^{(0)} \right $
2	$egin{array}{c} m{x}_1^{(2)} \ m{x}_2^{(2)} \ m{x}_3^{(2)} \end{array}$	$\max \left x_i^{(2)} - x_i^{(1)} \right $	$egin{array}{c} x_1^{(2)} \ x_2^{(2)} \ x_3^{(2)} \end{array}$	$\max \left x_i^{(2)} - x_i^{(1)} \right $
3	$egin{array}{c} x_1^{(3)} \ x_2^{(3)} \ x_3^{(3)} \end{array}$	$\max \left x_i^{(3)} - x_i^{(2)} \right $	$egin{array}{c} x_1^{(3)} \ x_2^{(3)} \ x_3^{(3)} \end{array}$	$\max \left x_i^{(3)} - x_i^{(2)} \right $

4	$egin{array}{c} m{x}_1^{(4)} \ m{x}_2^{(4)} \ m{x}_3^{(4)} \end{array}$	$\max \left x_i^{(4)} - x_i^{(3)} \right $	$oldsymbol{x}_{1}^{(4)} \ oldsymbol{x}_{2}^{(4)} \ oldsymbol{x}_{3}^{(4)}$	$\max \left x_i^{(4)} - x_i^{(3)} \right $
5	$egin{array}{c} m{\chi}_{1}^{(5)} \ m{\chi}_{2}^{(5)} \ m{\chi}_{3}^{(5)} \end{array}$	$\max \left x_i^{(5)} - x_i^{(4)} \right $	$oldsymbol{x}_{1}^{(5)} \ oldsymbol{x}_{2}^{(5)} \ oldsymbol{x}_{2}^{(5)} \ oldsymbol{x}_{3}^{(5)}$	$\max \left x_i^{(5)} - x_i^{(4)} \right $

Числові значення коефіцієнтів $a_{ij},\ i=1,2,3;\ j=1,2,3$ та вільних членів $b_i,\ i=1,2,3$ для виконання завдання 2 подано у таблиці 9.

Таблиця 9

№ вар.	a_{i1}	a_{i2}	a_{i3}	$b_{\scriptscriptstyle i}$	№ вар.	$\mathcal{a}_{\scriptscriptstyle i1}$	a_{i2}	a_{i3}	b_i
	3,90	1,25	-0,98	4,905		3,80	1,10	0,98	10,716
1	0,74	3,45	-0,84	6,031	15	0,75	2,96	0,92	11,023
	-0,65	1,18	2,38	10,134		0,60	1,20	3,20	13,900
	2,68	-0,68	0,48	3,868		2,40	1,10	0,60	7,680
2	-0,73	2,92	-0,39	4,329	16	0,98	2,60	1,20	11,354
	-0,58	-1,12	3,12	7,532		0,56	1,10	2,70	12,008
	2,50	-0,91	-0,32	0,287		2,50	1,05	0,75	8,170
3	-0,91	3,64	-0,48	5,418	17	0,95	2,60	0,85	10,195
	0,48	-0,98	2,14	5,908		0,68	1,05	2,15	10,284
	2,78	0,38	-0,43	3,261		2,60	1,10	0,70	8,260
4	-0,78	-3,14	-0,81	3,295	18	0,92	2,70	0,65	9,756
	-0,45	-0,86	2,48	6,072		0,48	0,88	1,98	9,072
	3,96	-0,78	-0,35	2,525		2,70	1,15	0,48	7,806
5	1,18	3,78	-0,87	7,301	19	0,86	2,60	0,32	8,382
	-0,96	-1,02	3,68	9,190		1,05	0,74	2,10	9,861
	3,48	1,12	-0,94	4,158		2,80	1,02	0,32	7,112
6	1,08	3,67	-0,87	6,908	20	0,96	2,40	0,46	8,480
	-1,21	-1,43	4,14	9,507		0,76	0,98	2,02	9,804
	2,75	1,12	-0,6	3,066	21	2,90	1,08	0,43	7,738
7	1,06	2,98	-0,86	5,328		0,82	2,50	0,64	9,114
	-1,18	-1,36	3,02	5,790		0,38	0,96	1,80	8,558
	3,45	0,78	-0,97	3,229		3,10	1,20	0,62	8,894
8	0,78	2,63	-0,89	4,026	22	1,12	2,60	0,85	10,416
	-0,97	-0,89	2,41	5,030		0,82	1,20	2,54	12,074
	3,21	0,81	-0,93	3,102		3,75	1,20	1,07	11,355
9	0,81	2,49	-0,94	3,571	23	0,89	3,5	1,52	13,245
	-0,93	-0,94	2,53	5,391		0,79	1,71	3,20	14,376
	3,67	0,68	-1,21	2,467		4,20	1,50	0,92	12,210
10	0,68	2,71	-0,96	3,825	24	1,32	4,50	1,20	15,030
	-1,21	-0,96	2,69	5,513		0,98	1,45	3,50	15,015
	3,78	0,67	-0,83	3,928		2,40	1,10	0,60	7,680
11	0,67	2,76	-0,69	4,871	25	0,98	2,60	1,20	11,354
	-0,83	-0,69	2,39	5,616		0,56	1,10	2,70	12,008
	4,05	-0,93	-0,41	2,096		2,50	1,05	0,75	8,170
12	-0,93	3,76	0,25	8,221	26	0,95	2,60	0,85	10,195
	-0,41	0,25	3,2	11,201		0,68	1,05	2,15	10,284
13	3,74	1,12	-1,03	4,207	27	2,60	1,10	0,70	8,260
13	1,12	2,43	-1,07	3,412	41	0,92	2,70	0,65	9,756

	-1,03	-1,07	2,7	5,547		0,48	0,88	1,98	9,072
14	3,91 0,88	0,88 2,77	-1,13 -0,98	3,543 4,173	28	3,78 1,18	-0,78 3,95	-0,35 -0,87	2,364
	-1,13	-0,98	2,14	4,599		-0,96	-1,02	3,21	7,402

Викладач: Васіна Л.С.

Завдання 3.

Використовуючи програми на мові TURBO PASCAL розв'язати методами Гаусса, простої ітерації Якобі та Гаусса-Зейделя з точністю $\varepsilon = 10^{-3}\,$ та $\varepsilon = 10^{-6}\,$ систему рівнянь завдання 2. Результати подати у вигляді таблиці 10:

Таблиця 10

	(Система 2			Система 2		
	$x_1 =$	Похибка	Кількість		$x_1 =$	Похибка	Кількість
Метод	$x_2 =$	$\varepsilon = 10^{-3}$	кроків	Метод	$x_2 =$	$\varepsilon = 10^{-6}$	кроків
Якобі	$x_3 = $			Якобі	-		
	λ_3 –				$x_3 =$		
Метод	$x_1 =$	Похибка	Кількість	Метод	$x_1 =$	Похибка	Кількість
Гаусса-	$x_2 =$	$\varepsilon = 10^{-3}$	кроків	Гаусса-	$x_2 =$	$\varepsilon = 10^{-6}$	кроків
Зейделя	$x_{3} =$			Зейделя	$x_3 =$		

Провести аналіз результатів.

Контрольний приклад та програми мовою TURBO PASCAL

Нехай СЛАР рівнянь має вигляд: $\begin{cases} 2,80x_1+1,02x_2+0,32x_3=7,112\\ 0,96x_1+2,40x_2+0,46x_3=8,480\\ 0,76x_1+0,98x_2+2,02x_3=9,804 \end{cases}$ Метод Гаусса:

Program Gaus;

const

m=3;

a:array [1..m,1..m+1] of real=

((2.80, 1.02, 0.32, 7.112),

(0.96, 2.40, 0.46, 8.480),

(0.76, 0.98, 2.02, 9.804));

var i,j,k,N:integer;

t:real;

x:array [1..m] of real;

begin

for k:=1 to m-1 do begin

for i:=k to m do begin

t:=a[i,k];

for j:=1 to m+1 do a[i,j]:=a[i,j]/t;

end;

for i:=k+1 to m do

for j:=1 to m+1 do a[i,j]:=a[i,j]-a[k,j];

end;

x[m]:=a[m,m+1]/a[m,m];

for i:=m-1 downto 1 do begin

x[i]:=a[i,m+1];

for j:=i+1 to m do

```
x[i] := x[i] - a[i,j] * x[j];
end;
writeln ('rozvazok:');
for i:=1 to m do writeln ('x[',i,']=',x[i]:8:6);
end.
Одержано:
x[1]=1,300000
x[2]=2,400000
x[3]=3,200000
Program SimpleIter;
const
m=3:
a:array [1..m,1..m+1] of real =
((2.80, 1.02, 0.32, 7.112),
(0.96, 2.40, 0.46, 8.480),
(0.76, 0.98, 2.02, 9.804));
var new,old,tmp:integer;
  i,j,k,N:integer;
   e,max,S:real;
     b:array [1..m,1..m+1] of real;
     x:array [1..m,1..2] of real;
begin
writeln ('e:');
readln (e);
writeln ('k:');
readln (k);
for i:=1 to m do
for j:=1 to m+1 do
if i < j then if j=m+1 then b[i,j]:=a[i,j]/a[i,i]
else b[i,j] := -a[i,j]/a[i,i]
else b[i,j]:=0;
old:=1; new:=2;
for i:=1 to m do x[i,old]:=b[i,m+1];
repeat
for i:=1 to m do begin
for j:=1 to m do S:=S+b[i,j]*x[j,old];
x[i,new]:=s+b[i,m+1];
end;
max:=abs(x[1,new]-x[1,old]);
for i:=2 to m do
if abs(x[i,old]-x[i,new])>max then
max:=abs(x[i,old]-x[i,new]);
tmp:=new; new:=old; old:=tmp;
N := N+1;
until (max<e) or (k=N);
writeln ('Zdisneno',N,'krokiv');
if k=N then writeln ('0')
else begin
writeln ('rozvazok');
for i:=1 to m do
writeln ('x[',i,']=',x[i,new]:8:6);
```

Метод Якобі:

```
writeln ('pohubka=',max:8:6);
end
end.
Одержано:
Здійснено 17 кроків
X[1]=1,300322
X[2]=2,400374
X[3]=3,200503
Похибка = 0,000805
                                            Метод Гаусса-Зейделя:
Program Zeidel;
const
m=3:
a:array [1..m,1..m+1] of real =
((2.80, 1.02, 0.32, 7.112),
(0.96, 2.40, 0.46, 8.480),
(0.76, 0.98, 2.02, 9.804));
var i,j,k,N:integer;
   e,max,S:real;
     b:array [1..m,1..m+1] of real;
     x:array [1..m] of real;
begin
writeln ('e:');
readln (e);
writeln ('k');
readln (k);
for i:=1 to m do
for j:=1 to m+1 do
if i < j then if j=m+1 then b[i,j]:=a[i,j]/a[i,i]
else b[i,j] := -a[i,j]/a[i,i]
else b[i,j]:=0;
for i:=1 to m do x[i]:=b[i,m+1];
repeat
max := 0;
for i:=1 to m do begin
S := 0;
for j:=1 to m do S:=S+b[i,j]*x[j];
if abs (x[i]-s-b[i,m+1])>max then
max:=abs(x[i]-s-b[i,m+1]);
x[i] := s + b[i, m+1];
end;
N := N + 1;
until (max<e)or (k=N);
writeln ('Zdisneno', N, 'krokiv');
if k=N then writeln ('0')
else begin;
writeln ('rozvazok');
for i:=1 to m do
writeln ('x[',i,']=',x[i]:8:6);
writeln ('pohubka=',max:8:6);
```

end

end.

Одержано: Здійснено 6 кроків

X[1]=1,300061

X[2]=2,400012 X[3]=3,199971 Похибка = 0,000579

	(Система 2			Система 2			
Метод	$x_1 = 1,300322$	Похибка	Кількість	Метод	$x_1 = 1,300000$	Похибка	Кількість	
Якобі	$x_2 = 2,400374$	$(\varepsilon = 10^{-3})$	кроків	Якобі	$x_2 = 2,400000$	$(\varepsilon = 10^{-6})$	кроків	
	$x_3 = 3,200503$	0.000005	17		$x_3 = 3,200000$	0.000001	31	
Метод	$x_1 = 1,300061$	Похибка	Кількість	Метод	$x_1 = 1,300000$	Похибка	Кількість	
Гаусса-	$x_2 = 2,400012$	$(\varepsilon = 10^{-3})$	кроків	Гаусса-	$x_2 = 2,400000$	$(\varepsilon = 10^{-6})$	кроків	
Зейделя	$x_3 = 3,199971$	0,000579	6	Зейделя	$x_3 = 3,200000$	0.000000	10	
	$\lambda_3 = 3,177771$		\mathbf{X}	2	$n_3 = 3,200000$			

Викладач: Васіна Л.С.