1

# An Automatic Face Attendance Checking System using Deep Facial Recognition Technique

Abstract—Nowadays, as computers are powerful enough for implementing complex algorithms, there are a numerous number of applications that people utilize computers to run. In which, facial recognition is one of the most active fields of applications. In fact, computers can not only automatically identify who a person is, but also operate 24/7, which a person cannot endure. This leads to the replacement of people by computers in some repetative and realtime applications.

In this work, we apply the facial recognition into an attendance checking system that uses faces of registered people to check their attendance. This system has a GUI in order to allow users interact with the system easily. The core of the system is a deep facial recognition technique, which has four stages (e.g., removing motion-blur frames, detecting faces, removing non-frontal-view faces, and recognizing). Particularly, in the recognition phase, we treat this stage as an open-set facial recognition problem, so the system is able to detect people who have not registered in the database before. Also, we boost performance of the system by utilizing hardware resources of user's computer. Although the system is designed to run with a low-resolution webcam, its performance is quite accurate on a private dataset.

Index Terms—Face Attendance Checking, Facial Recognition, Deep Learning

#### I. Introduction

# II. PROPOSED SYSTEM

## III. IMPLEMENTATION

- A. Motion-blur detection
- B. Face detection
- C. Frontal-view detection
- D. Face recognition
- E. Graphic User Interface
- F. Attendance management

### IV. EXPERIMENTAL RESULT

#### REFERENCES

- [1] X. Pan and S. Lyu, "Region duplication detection using image feature matching", IEEE Transactions on Information Forensics and Security, vol. 5, no.4, ISSN: 1556-6013, pp. 857-867, 2010.
- [2] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo and G.Serra, "A sift-based forensic method for copymove attack detection and transformation recovery", IEEE Transactions on Information Forensics and Security, vol. 6, no. 3, ISSN: 1556-6013, pp. 1099-1110, 2011.
- [3] P. Kakar, N. Sudha, "Exposing postprocessed copy-paste forgeries through transform-invariant feature", IEEE Transactions on Information Forensics and Security, vol. 7, no. 3, ISSN: 1556-6013, pp. 1018-1028, June 2012
- [4] S.-J. Ryu, M.-J. Lee and H.-K. Lee, "Detection of copy-rotate-move forgery using Zernike moments", Information Hiding Conference, Lecture Notes in Computer Science, vol. 6387, Springer, Heidelberg-Berlin, 2010, ISBN: 978-3-642-16434-7.
- [5] H.-J. Lin, C.-W. Wang and Y.-T. Kao, "Fast copy-move forgery detection", WSEAS Transactions on Signal Processing, vol. 5, no. 5, ISSN: 0031-3203, pp. 188-1975, 2009.

- [6] V. Christlein, C. Riess, J. Jordan and E. Angelopoulou, "An evaluation of popular copy-move forgery detection approaches", IEEE Transactions on Information Forensics and Security, vol. 7, no. 6, ISSN: 1556-6013, pp. 1841-1854, 2012.
- [7] T. L.-Tien, T. H.-Kha, L. P.-C.-Hoan, A. T.-Hong, N. Dey, M. Luong, "Combined Zernike Moment and Multiscale Analysis for Tamper Detection in Digital Images", Informatica (An International Journal of Computing and Informatics), vol.41, no.1, ISSN: 0350-5596, March 2017.
- [8] Z. Lin, J. He, X. Tang, K. Tang, "Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis", Pattern Recognition, vol. 42, no. 11, ISSN: 0031-3203, pp. 2492-2501, January 2009.
- [9] W. Wang, J. Dong, T. Tan, "Exploring DCT coefficient quantization effects for local tampering detection", IEEE Transactions on Information Forensics and Security, vol. 9, no. 10, ISSN: 1556-6013, pp. 1653-1666, October 2014.
- [10] L. Chen, T. Hsu, "Detecting recompression of JPEG images via periodicity analysis of compression artifacts for tampering detection", IEEE Transactions on Information Forensics and Security, vol. 6, no. 2, ISSN: 1556-6013, pp. 396-406, June 2011.
- [11] L. Thing, Y. Chen, C. Cheh, "An improved double compression detection method for JPEG image forensics", In IEEE International Symposium on Multimedia, pages 290-297, December 2012, ISBN: 978-1-4673-4370-1.
- [12] F. Zach, C. Riess, and E. Angelopoulou, "Automated image forgery detection through classification of JPEG ghosts", Pattern Recognition, 7476, pp. 185-194, January 2012.
- [13] T. Bianchi, A. Piva, "Image forgery localization via block-grained analysis of JPEG artifacts", IEEE Transactions on Information Forensics and Security, vol. 7, no. 3, ISSN: 1556-6013, pp. 1003-1017, June 2012.
- [14] C. Chang, C. Yu, C. Chang, "A forgery detection algorithm for exemplar-based inpainting images using multi-region relation", Journal Image and Vision Computing, vol. 31, no. 1, ISSN: 0262-8856, pp. 57-71, MA-USA, 2013.
- [15] J. Chen, X. Kang, Y. Liu and Z. J. Wang, "Median Filtering Forensics Based on Convolutional Neural Networks", IEEE Signal Processing Letters, vol. 22, no. 11, ISSN: 1070-9908, pp. 1849-1853, November 2015
- [16] B. Bayar, M. C. Stamm, "A Deep Learning Approach to Universal Image Manipulation Detection Using a New Convolutional Layer", Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5-10, New York-USA, 2016, ISBN: 978-1-4503-4290-2.
- [17] Rao Yuan, Ni Jiangqun, "A deep learning approach to detection of splicing and copy-move forgeries in images", IEEE International Workshop on Information Forensics and Security (WIFS), Abu Dhabi-United Arab Emirates, 2016, ISBN: 978-1-5090-1139-1.
- [18] J.Ouyang, Y.Liu, M.Liao, "Copy-Move Forgery Detection Based on Deep Learning", 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Shanghai-China, 2017, ISBN: 978-1-5386-1938-4.
- [19] Y. Zhang, J. Goh, L. Win, V. Thing, "Image Region Forgery Detection: A Deep Learning Approach", Proceedings of the Singapore Cyber-Security Conference, Singapore, 2016, ISBN: 978-1-61499-616-3.
- [20] J. Dong and W. Wang, "Casia tampering detection dataset", 2011.
- [21] A. Krizhevsky, I. Sutskever, G. Hinton, "Imagenet classification with deep convolutional neural networks", NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1, pp. 1097-1105, Nevada-USA, 2012, DOI: 10.1145/3065386.
- [22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting", The Journal of Machine Learning Research, vol. 15, no. 1, ISSN 1533-7928, pp. 1929-1958, January 2014.
- [23] Xavier Glorot, Yoshua Bengio, "Understanding the difficulty of training deep feedforward neural networks", Proceedings of the 13rd International Conference on Artificial Intelligence and Statistics, PMLR 9, pp. 249-256, Sardinia-Italy, http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf, 2010.

- [24] V. Nair, E. Hinton, "Rectified Linear Units Improve Restricted Boltz-mann Machines", Proceedings of the 27th International Conference on Machine Learning, pp. 807-814, Haifa-Israel, 2010, ISBN: 978-1-60558-907-7
- [25] B. Xu, N. Wang, T. Chen, M. Li, "Empirical Evaluation of Rectified Activations in Convolutional Network", https://arxiv.org/abs/1505.00853v2, 2015
- [26] K. He, X. Zhang, S. Ren, J. Sun "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", https://arxiv.org/abs/1502.01852v1, 2015.
- [27] P. Kingma, J. Ba, "Adam: A Method for Stochastic Optimization", 3rd International Conference for Learning Representations, San Diego-USA, https://arxiv.org/abs/1412.6980, 2015.
- [28] J. Goh and V. L. L. Thing, "A hybrid evolutionary algorithm for feature and ensemble selection in image tampering detection", International Journal of Electronic Security and Digital Forensics, vol. 7, no. 1, ISSN: 1751-911X, pp. 76-104, March 2015.
- [29] Z. He, W. Lu, W. Sun, J. Huang, "Digital image splicing detection based on Markov features in DCT and DWT domain", Pattern Recognition, vol. 45, no. 12, ISSN: 0031-3203, pp. 4292-4299, 2012.
- [30] A. Cohen, T. Tiplica, and A. Kobi, "Design of experiments and statistical process control using wavelets analysis", Control Engineering Practice, vol. 49, ISSN: 0967-0661, pp. 129-183, April 2016.