# Introduction to Computer Architecture Chapter 4

### **Pipelined Datapath and Control**

### **Hyungmin Cho**

### **RISC-V Pipelined Datapath**



### **Dividing Pipeline Stages**

Need to synchronize multiple datapaths



(Almost) impossible to do it with combinational circuits only



Arrive in 200ps interval...

#### After 100ps...



#### After 200ps...



#### After 300ps...



Instructions in stage 2 do not match!

#### After 400ps...



#### After 500ps...



#### After 600ps...



#### Until 200ps...



- Do not start stage2 yet...
- Wait until datapath2 also completes

#### From 200ps...



- Drive stage2 (i.e., give input data to stage2)

#### After 200ps... until 400ps



- Stage1 produces new output for Instruction2
- However, we still need to drive stage2 with Instruction1

#### After 200ps... until 400ps



Between stages, we need a "barrier" that remembers the previous instruction and hold the next instruction

### **Using Registers**

Need registers (flip-flops) between stages



### **Pipeline Registers**



### **Pipeline Register Details**



# IF stage



# **ID** stage



# **EX** stage



### **MEM** stage



### **WB** stage



### ID / WB stage











### **Control Signals?**



### **Control Signals in Pipeline**



Control signals derived from the opcode @ ID stage

# **Pipelined Control**



### **Pipelined Control**

