ie400-project-q2

Data

option\years	2021	2022	2023	2024
1	0.26	0.0	0.26	0.0
2	0.12	0.12	0.12	0.12
3	0.19	0.19	0.0	0.0
4	0.0	0.27	0.27	0.0
5	0.0	0.39	0.0	0.0
6	0.0	0.0	0.28	0.0

option	duration		
1	2		
2	1		
3	3		
4	2		
5	3		
6	2		

 D_i = Duration of the option i

	max1	max2	max3
contribution	0.4	0.1	0.05

 c_k = bonus contribition ratio, $1 \leq k \leq 3$

Decision Varriables

```
x_{ij}= The amount invested to the option i at the end of year j x_{ij}~is~integer 1\leq i\leq 6 1\leq j\leq 5 shows year (2020+j)
```

 $max_1 =$ option that is most invested from 2021 to 2025 total.

 $max_2 = ext{option}$ that is second most invested from 2021 to 2025 total.

 $max_3 \, = {\sf option}$ that is third most invested from 2021 to 2025 total.

Constraints

$$max(\sum_{i=1}^{6} x_{i5} + \ 0.4*max_1 + 0.1*max_2 + 0.05*max_3)$$

s.t

$$\sum_{i=1}^6 x_{i1} = 14000$$

$$\sum_{i=1}^6 x_{i2} = 1.12 * x_{21}$$

$$\sum_{i=1}^{6} x_{i3} = 1.12 * x_{22} + 1.26 * x_{11}$$

$$\textstyle \sum_{i=1}^6 x_{i4} = 1.12*x_{23} + 1.19*x_{31} + 1.27*x_{42}$$

$$\textstyle \sum_{i=1}^6 x_{i4} = 1.12*x_{24} + 1.26*x_{13} + 1.19*x_{31} + 1.27*x_{42} + 1.39*x_{52} + 1.28*x_{63}$$

$$max_1>=\sum_{j=1}^5 x_{1j}$$

$$max_1>=\sum_{j=1}^5 x_{2j}$$

$$max_1>=\sum_{j=1}^5 x_{3j}$$

$$max_1>=\sum_{j=1}^5 x_{4j}$$

$$max_1>=\sum_{j=1}^5 x_{5j}$$

$$max_1 \geq max_2$$

$$max_2 \geq max_3$$