Sztuczna Inteligencja i Inżynieria Wiedzy

Algorytmy Genetyczne - sprawozdanie

Krzysztof Ruczkowski

$22~\mathrm{marca}~2021$

Spis treści

Badania wpływu parametrów	3
Rozmiar populacji	 3
Cel badania	 3
Stałe parametry badania	 3
Wyniki i wykresy	 3
Wnioski	 5
Liczba pokoleń	 5
Cel badania	 6
Stałe parametry badania	 6
Wyniki i wykresy	 6
Wnioski	 7
Rozmiar turnieju	 8
Cel badania	 8
Stałe parametry badania	 8
Wyniki i wykresy	 8
Wnioski	 10
Operatory selekcji	 10
Cel badania	 10
Stałe parametry badania	 10
Wyniki i wykresy	 11
Wnioski	 12
Prawdopodobieństwo krzyżowania	12
Cel badania	 12
Stałe parametry badania	 13
Wyniki i wykresy	 13
Wnioski	 15
Prawdopodobieństwo mutacji	 16
Cel badania	 16
Stałe parametry badania	16
Wyniki i wykresy	 16
Wnioski	18

Porównanie algorytmu genetycznego z metodami "naiwnymi"	18
Podsumowanie	20

Badania wpływu parametrów

Pomijając badanie liczby pokoleń: Każde badanie jest uruchamiane 5 razy. Każde uruchomienie zwraca wynik najlepszego znalezionego osobnika. Wartość "best" to najlepszy wynik z tych 5 uruchomień, a "worst" to najgorszy. Wartość "avg" to średni wynik, a "std" to odchylenie standardowe wyników. Na wykresach oś X przedstawia badany parametr, a oś Y wartość wyniku / odchylenie.

Rozmiar populacji

Cel badania

Celem badania jest wybranie rozmiaru populacji, dla którego algorytm genetyczny daje najlepsze wyniki.

Stałe parametry badania

		Operator selekcji	P. krzyżo- wania	P. mutacji
1000	3	Turniej	0,1	0,8

Tabela 1: Stałe parametry badania

Rysunek 1: Badanie rozmiaru populacji - problem 1

Problem	Rozmiar	\mathbf{best}	\mathbf{worst}	avg	std
	populacji				
zad1	10	-328	-1034	-613,60	333,62
zad1	100	-328	-1039	$-745,\!20$	$335,\!94$
zad1	500	-342	-1031	-888,80	273,44
zad1	1000	-349	-1027	-883,80	$267,\!54$
zad1	2000	-343	-1028	-750,40	331,11
zad1	5000	-319	-1021	-873,60	277,34
zad1	10000	-319	-1027	-613,80	331,19
zad2	10	-424	-430	-425,20	2,40
zad2	100	-424	-430	$-427,\!00$	2,53
zad2	500	-424	-1036	$-548,\!20$	243,92
zad2	1000	-424	-430	$-425,\!20$	2,40
zad2	2000	-424	-450	$-429,\!20$	10,40
zad2	5000	-424	-1036	$-546,\!40$	244,80
zad2	10000	-424	-1036	-546,40	$244,\!80$
zad3	10	-2071	-3517	-2882,00	526,57
zad3	100	-2097	-4252	-2794,80	785,06
zad3	500	-1436	-3464	-2527,80	678, 10
zad3	1000	-2114	-3553	-2975,00	530,80
zad3	2000	-2042	-3530	-2779,80	$476,\!21$
zad3	5000	-1492	-3588	-2838,60	761,07
zad3	10000	-2100	-2819	-2392,60	$307,\!51$

Tabela 2: Badanie rozmiaru populacji

Rysunek 2: Badanie rozmiaru populacji - problem 2

Rysunek 3: Badanie rozmiaru populacji - problem 3

Zmiana rozmiaru populacji ma niewielki wpływ na problemy 1 i 2. Wybrany zostaje rozmiar populacji "500", ponieważ zwraca on najlepsze wyniki dla problemu 3.

Liczba pokoleń

Badanie polega na uruchomieniu algorytmu genetycznego i zapisanie najlepszego, najgorszego i średniego wyniku w populacji danej generacji, oraz odchylenie standardowe wyników populacji. Na wykresie oś X przedstawia numer generacji, a oś Y wartość wyniku / odchylenie.

Cel badania

Celem badania jest wybranie liczby pokoleń, po której algorytm genetyczny przestaje zwracać lepsze wyniki (lub robi to znacząco wolniej).

Stałe parametry badania

			-	Pr. krzyżo- wania	
500	1000	3	Turniei	0.1	0.8

Tabela 3: Stałe parametry badania

Rysunek 4: Badanie liczby pokoleń - problem 1

Rysunek 5: Badanie liczby pokoleń - problem 2

Rysunek 6: Badanie liczby pokoleń - problem 3

Rozwiązania dosyć szybko zbiegają do minimum. Wybrana zostaje liczba pokoleń "1500", ponieważ uznałem to za dobry kompromis pomiędzy czasem trwania badań a drobnymi korzyściami wyników dla problemu 3.

Rozmiar turnieju

Cel badania

Celem badania jest wybranie rozmiaru turnieju, dla którego algorytm genetyczny daje najlepsze wyniki.

Stałe parametry badania

Rozmiar cji	popula-	Liczba pokoleń	Pr. krzyżowania	Pr. mutacji	
	500	1500	0,1		0,8

Tabela 4: Stałe parametry badania

Problem	Rozmiar tur- nieju	best	worst	avg	std
zad1	1	-29318	-36382	-32366,20	2593,06
zad1	2	-348	-1754	-1052,60	444,99
zad1	3	-359	-1030	-894,00	267,50
zad1	5	-319	-1027	-466,60	280,31
zad1	10	-319	-1043	-751,20	$335,\!38$
zad1	20	-328	-1853	-780,80	599,69
zad1	100	-342	-1852	-939,80	558,65
zad2	1	-6128	-8437	-7273,80	783,57
zad2	2	-1036	-1036	-1036,00	0,00
zad2	3	-424	-1036	-546,40	244,80
zad2	5	-424	-424	-424,00	0,00
zad2	10	-424	-424	-424,00	0,00
zad2	20	-424	-1100	-694,40	$331,\!17$
zad2	100	-424	-1100	-559,20	$270,\!40$
zad3	1	-70506	-149770	-113927,40	28986,10
zad3	2	-2856	-13525	-6397,80	3713,59
zad3	3	-1520	-4249	-2595,00	924,15
zad3	5	-1426	-2800	-1993,80	493,99
zad3	10	-2845	-4241	-3787,60	$552,\!69$
zad3	20	-2146	-4334	-3255,20	874,21
zad3	100	-2787	-5536	-3860,20	939,94

Tabela 5: Badanie rozmiaru turnieju

Rysunek 7: Badanie rozmiaru turnieju - problem 1

 ${\bf Rysunek~8:~}$ Badanie rozmiaru turnieju - problem2

Rysunek 9: Badanie rozmiaru turnieju - problem 3

Wybrany zostaje rozmiar turnieju "3", ponieważ zwraca on najlepsze wyniki dla wszystkich problemów.

Operatory selekcji

Cel badania

Celem badania jest wybranie operatora selekcji, dla którego algorytm genetyczny daje najlepsze wyniki.

Stałe parametry badania

Rozmiar	\mathbf{Liczba}	Rozmiar	Pr. krzyżo-	Pr. mu-
popula-	pokoleń	turnieju	wania	tacji
cji				
500	1500	3	0,1	0,8

Tabela 6: Stałe parametry badania

Problem	Operator selekcji	best	worst	avg	std
zad1	Ruletka	-340	-1047	-635,20	330,02
zad1	Turniej	-341	-1833	-1052,40	472,79
2ad2 $2ad2$	Ruletka Turniej	-424 -424	-1036 -1036	-546,40 -547,60	244,80 244,21
zad3 zad3	Ruletka Turniej	-3486 -2018	-15613 -4351	-10802,60 -2947,60	5146,92 882,01

Tabela 7: Badanie operatorów selekcji

Rysunek 10: Badanie operatorów selekcji - problem 1

Rysunek 11: Badanie operatorów selekcji - problem 2

Rysunek 12: Badanie operatorów selekcji - problem 3

Wybór operatora nie ma znaczenia dla dwóch pierwszych problemów. Wybrany zostaje operator turnieju, ponieważ zwraca on najlepsze wyniki dla problemu 3.

Prawdopodobieństwo krzyżowania Cel badania

Celem badania jest wybranie prawdopodobieństwa krzyżowania, dla którego algorytm genetyczny daje najlepsze wyniki.

Stałe parametry badania

			Operator selekcji	
cji				
500	1500	3	Turniej	0,8

Tabela 8: Stałe parametry badania

Rysunek 13: Badanie prawdopodobieństwa krzyżowania - problem 1

Problem	Pr. krzyżo-	best	worst	avg	std
	wania				
zad1	0,01	-328	-1055	-895,60	284,28
zad1	0,05	-326	-1047	-486,20	281,10
zad1	0,1	-347	-1042	-510,40	267,20
zad1	0,2	-328	-1048	-493,60	$278,\!44$
zad1	0,3	-319	-349	-334,80	10,34
zad1	0,5	-328	-1024	-476,00	274,24
zad1	0,8	-320	-1027	-606,80	342,36
zad1	0,9	-319	-1042	-610,60	342,24
zad1	1	-328	-363	-343,60	14,92
-zad2	0,01	-424	-1036	-546,40	244,80
zad2	0,05	-424	-1036	-546,40	244,80
zad2	0,1	-424	-1036	-546,40	244,80
zad2	0,2	-424	-424	-424,00	0,00
zad2	0,3	-424	-1036	-546,40	244,80
zad2	0,5	-424	-436	-427,80	4,66
zad2	0,8	-430	-438	-432,00	3,03
zad2	0,9	-424	-430	-425,60	2,24
zad2	1	-424	-1036	-548,80	243,61
zad3	0,01	-2116	-5606	-3262,4	1283,987
zad3	0,05	-2714	-5665	-3365,6	1150,938
zad3	0,1	-2110	-4193	-2890,60	692,32
zad3	0,2	-706	-4305	-2399,80	$1160,\!28$
zad3	0,3	-1512	-4818	-3076,20	1079,32
zad3	0,5	-811	-2925	-1971,8	$674,\!2876$
zad3	0,8	-743	-2116	-1820,2	539,8316
zad3	0,9	-1443	-2727	-2044,8	$407,\!361$
zad3	1	-725	-2752	-1786,2	694,7628

Tabela 9: Badanie prawdopodobieństwa krzyżowania

Rysunek 14: Badanie prawdopodobieństwa krzyżowania - problem 2

Rysunek 15: Badanie prawdopodobieństwa krzyżowania - problem 3

Wybór prawdopodobieństwa krzyżowania nie ma znaczenia dla dwóch pierwszych problemów. Wybrane zostaje prawdopodobieństwo krzyżowania "0.2", ponieważ zwraca ono najlepsze wyniki dla problemu 3.

Prawdopodobieństwo mutacji

Cel badania

Celem badania jest wybranie prawdopodobieństwa mutacji, dla którego algorytm genetyczny daje najlepsze wyniki.

Stałe parametry badania

	Liczba pokoleń		-	Pr. krzyżo- wania
500	1500	3	Turniej	0,2

Tabela 10: Stałe parametry badania

Rysunek 16: Badanie prawdopodobieństwa mutacji - problem 1

Problem	Pr. cji	muta-	best	worst	avg	std
zad1		0,01	-1021	-2393	-1724,4	434,3214
zad1		0,05	-340	-1747	-1315,2	554,7603
zad1		0,1	-1025	-2527	-1479	599,7556
zad1		0,2	-340	-1814	-921	546,9965
zad1		0,3	-341	-1065	-898	279,1143
zad1		0,5	-347	-1120	-639,4	352,29
zad1		0,8	-319	-1046	-616,8	344,0834
zad1		0,9	-319	-1690	-739,8	542,7045
zad1		1	-348	-1726	-917	513,0902
zad2		0,01	-1100	-1692	-1219,6	236,2114
zad2		0,05	-1100	-1100	-1100	0
zad2		0,1	-424	-1100	-964,8	270,4
zad2		0,2	-424	-1100	-559,2	270,4
zad2		0,3	-424	-424	-424	0
zad2		0,5	-424	-424	-424	0
zad2		0,8	-424	-424	-424	0
zad2		0,9	-424	-1036	-913,6	244,8
zad2		1	-424	-1042	-793,6	299,3417
zad3		0,01	-2810	-9189	-5067	2269,493
zad3		0,05	-2833	-5655	-3951,2	$956,\!525$
zad3		0,1	-2122	-8460	-4458,4	2174,983
zad3		0,2	-3398	-7148	-5231,2	$1368,\!857$
zad3		0,3	-2215	-5677	-3717	1112,463
zad3		0,5	-2110	-3448	-2882,4	$496,\!1506$
zad3		0,8	-2116	-3494	-2920	519,8896
zad3		0,9	-1429	-4342	-3266,8	1234,406
zad3		1	-3528	-4194	-3929,4	316,8739

Tabela 11: Badanie prawdopodobieństwa mutacji

Rysunek 17: Badanie prawdopodobieństwa mutacji - problem 2

Rysunek 18: Badanie prawdopodobieństwa mutacji - problem 3

Wybrane zostaje prawdopodobieństwo mutacji "0.9", ponieważ zwraca ono najlepsze wyniki dla wszystkich problemów.

Porównanie algorytmu genetycznego z metodami "naiwnymi"

Przy porównaniu uruchomiono 10 razy algorytm ewolucyjny (po 1500 generacji), 15000 razy metoda losowa, oraz 30 razy metoda losowych mutacji (po 1500 generacji). Meto-

da losowych mutacji polega na wylosowaniu osobnika i wykonywaniu na nim losowych mutacji, co jakiś czas cofając się do najlepszego znalezionego rozwiązania.

			-	Pr. krzyżo- wania	
500	1500	3	Turniej	0,2	0,9

Tabela 12: Parametry algorytmu genetycznego

Instancja	Algorytm ewolucyjny $[10 \times 1500]$				Metoda losowa [15000]			
	\mathbf{best}	\mathbf{worst}	avg	std	\mathbf{best}	\mathbf{worst}	\mathbf{avg}	std
zad1	-341	-2527	-1110,6	742,775	-270894	-368663	-277311	10502,92
zad2	-424	-1036	-731,2	304,8071	-135953	-285244	-163922	12024,88
zad3	-2059	-4213	-2985,5	620,792	-478885	-686348	-510788	24221,65

Metoda losowych mutacji [30 x 1500]						
\mathbf{best}	\mathbf{worst}	avg	std			
-349442	-604234	-470676	57255,29			
-233683	-420265	-330202	$50262,\!56$			
-637791	-935288	-806516	79839,92			

Tabela 13: Porównanie algorytmu genetycznego z naiwnymi

Rysunek 19: Porównanie algorytmów - problem 1

Rysunek 20: Porównanie algorytmów - problem 2

Rysunek 21: Porównanie algorytmów - problem 3

Podsumowanie

Algorytm genetyczny pozwala na znaczące poprawy wyników dla danego problemu.

Rysunek 22: Najlepsze znalezione rozwiązanie do problemu 1

Rysunek 23: Najlepsze znalezione rozwiązanie do problemu 2

Rysunek 24: Najlepsze znalezione rozwiązanie do problemu