ML Ops CSP7040

Adapted from the slides shared by Dr. Joseph E. Gonzalez of UC Berkeley for the course CS294 at https://ucbrise.github.io/cs294-ai-sys-fa19/

Machine Learning Lifecycle

What is the **Machine Learning Lifecycle**?

Model Development

Data

Identifying potential sources of data

Joining data from multiple sources

Addressing missing values and outliers

Plotting trends to identify **anomalies**

Model Development

Data

Building informative features functions

Designing new **model** architectures

Tuning hyperparameters

Validating prediction accuracy

Model Development Technologies

Tra in in g Data

Data Collection

Cleaning & Visua liza tion

Training & Validation

Feature Eng. & Model Design

PYTÖRCH

TensorFlow

What is the output of Model Development

Reports & Dashboards

(insights ...)

Trained Model

Why is it a **Bad Idea** to directly produce **trained models** from **model development**?

With just a trained model we are unable to

- 1. retrain models with new data
- 2. track data and code for debugging
- 3. capture dependencies for deployment
- 4. audit training for **compliance** (e.g., GDPR)

What is the output of Model Development

Reports & Dashboards

(insights ...)

Trained Models

What is the output of Model Development

Reports & Dashboards

(insights ...)

Training Pipelines

Training Pipelines Capture the Code and Data Dependencies

Description of how to train the model from data sources

Software Engineering Analogy Training Pipelines

Training Pipelines

Code Trained Models

Binaries

What is the output of Model Development

Reports & Dashboards

(insights ...)

Training Pipelines

Model Development

Data

Scientist

Training

Training

Training models **at scale** on **live data**

Retraining on new data

Automatically **validate** prediction accuracy

Manage model versioning

Requires **minimal expertise** in machine learning

Training Technologies

Suggested readings

- Hidden Technical Debt in Machine Learning Systems
 - NeurlPS'15, widely cited
 - Provides an overview of the challenges from Google
- TFX: A TensorFlow-Based Production-Scale Machine Learning Platform
 - ☐ KDD'17, now part of https://www.tensorflow.org/tfx (sort of)
 - Googles solution to the challenges in the first paper
- Towards Unified Data and Lifecycle Management for Deep Learning
 - □ ICDE'17, <u>Video Demo</u>
 - An alternative database community solution

What to think about when reading

- How does the work differentiate between engineering and research challenges?
- What innovations in machine learning are needed?
- What are the key research challenges proposed and addressed?
- Are the proposed solutions too opinionated
 - Would they require top down mandates for adoption?
 - Would you use these systems?
 - Are they sufficiently flexible to support innovation

TFX: A TensorFlow-Based Production-Scale Machine Learning Platform

- Describes solutions to many of the problem outlined in the technical debt paper.
- Key Idea: Adapt best practices for software development to address machine learning lifecycle
 - empathetic to the reality of "machine learning developers"
- Contributions: actual system, interesting ideas around data and model validation, schema enforcement, and meaningful errors.

Hidden Technical Debt in Machine Learning Systems

- Technical Debt: long term development and maintenance costs incurred by expedient design decisions
- Key Idea: machine learning deployments often incur substantial technical debt (compared to traditional software)
- Contribution: this paper characterizes the forms of technical debt and alludes to possible compensating actions

Towards Unified Data and Lifecycle Management for Deep Learning

- Describes a system (ModelHub) for managing, querying, and manipulating models and their related metadata.
- Key Idea(?): Model lifecycle management combines code and data (parameters)

 a natural API would then combine version control commands with SQL-like querying.
- Solution: Combines a git-like client API with a SQL-like querying interface to enable basic actions and more complex queries.
 - Leverages optimizations to store model weights more efficiently.
 - □ (necessary?)

Related Systems Efforts

- Doing Machine Learning the Uber Way: Five Lessons From the First Three Years of Michelangelo
- Introducing FBLearner Flow: Facebook's AI backbone
- <u>KubeFlow</u>: Kubernetes Pipeline Orchestration Framework
- DeepBird: Twitters ML Deployment Framework
- Mlflow: A System to Accelerate the Machine Learning Lifecycle
- Data Engineering Bulletin on the Machine Learning Lifecycle
 - ☐ Full disclosure: I was the editor