

We Claim:

- 1. A golf club comprising in combination a golf head and a golf shaft for providing a an
- 2 overall light weight golf club having a swingweight similar to a typical steel shafted golf
- 3 club, the light weight golf club comprising:
- a light weight golf shaft having a high swingweight comprising a primarily non-
- 5 metal golf shaft having a weighting plug selected from a plurality of
- weighting plugs, a handle portion, and an end opposite the handle portion,
- 7 and
- the golf head receiving the end.
- 1 2. The golf club of claim 1, wherein the weighting plug further comprises a variable
- 2 density plug.
- 1 3. The golf club of claim 1 wherein the plug material comprises carbon fiber reinforced
- 2 polycarbonate.
- 4. The golf club of claim 1 wherein the plug is one of a variety of plugs ranging in weight
- 2 by 50% relative to a minimum plug weight.
- 5. The golf club of claim 4 wherein the variety of plugs incorporate different density
- 2 materials from the group comprising: tungsten, copper, and iron; whereby a variety of
- weights is provided.

- 1 6. The golf club of claim 5 wherein a plug material is resinous and the different density
- 2 materials are added thereto.
- 7. The golf club of claim 1 wherein the plug is fixed in the end of the golf shaft opposite
- 2 the handle portion of the golf shaft to simultaneously provide weight and close a hole in
- 3 the end of the golf shaft.
- 1 8. The golf club of claim 1 wherein an increase in weight due to the plug provides a
- 2 balance point closer to said end, whereby the swingweight is increased.
- 9. The golf club of claim 1 wherein the plug and golf shaft form a one piece composite.
- 1 10. The golf club of claim 1 wherein the plug is configured to be detachably supported
- 2 on a mandrel; the golf shaft is formed of thin layers of prepreg composite material
- 3 windings which overlap and fix the plug to the golf shaft; and wherein the golf head is
- 4 from the group of materials comprising wood, metal, plastic, and composites.
- 1 11. A method of using a golf club that is lighter than a typical steel shafted golf club, the
- 2 lighter golf club having been weighted such that the lighter golf club swingweight is
- 3 similar to that of the typical steel shafted golf club, the method of using comprising
- 4 swinging the lighter golf club with similar forces to those applied when swinging the
- 5 steel shafted golf club; wherein a feeling of opposite forces on the hands of a user

- during acceleration of the lighter golf club is the same as the feeling that would be felt
- 7 when using the steel shafted golf club.
- 1 12. A light weight golf club with a high swingweight comprising:
- a golf shaft and a golf head;
- wherein the golf shaft is made light and to have the high swingweight by the
- 4 process of:
- 5 impregnating a resin with high density material,
- 6 molding the resin into a plug,
- 7 attaching the plug to the golf shaft;
- wherein the impregnated resin has a higher density than a non-impregnated
- 9 resin.
- 1 13. A light weight golf shaft having a high swingweight, the golf shaft comprising a
- weighting plug selected from a plurality of weighting plugs.
- 1 14. The golf shaft of claim 13 wherein the weighting plug comprises a variable density
- 2 plug.
- 1 15. The golf shaft of claim 13 wherein the plug material comprises carbon fiber
- 2 reinforced polycarbonate.
- 1 16. The golf shaft of claim 13 wherein the plug is one of a variety of plugs ranging in
- weight by 50% relative to a minimum plug weight.

- 1 17. The golf shaft of claim 16 wherein the variety of plugs incorporates different density
- 2 materials from the group comprising: tungsten, copper, and iron; whereby a variety of
- 3 weights is provided.
- 1 18. The golf shaft of claim 17 wherein a plug material is resinous and the different
- 2 density materials are added thereto.
- 1 19. The golf shaft of claim 13 wherein the plug is fixed in an end of the golf shaft
- 2 opposite a handle portion of the golf shaft to simultaneously provide weight and close a
- 3 hole in the end of the golf shaft.
- 1 20. The golf shaft of claim 13 wherein an increase in weight due to the plug provides a
- 2 balance point closer to said end, whereby the swingweight is increased.
- 1 21. The golf shaft of claim 13 wherein the plug and golf shaft form a one piece
- 2 composite.
- 1 22. The golf shaft of claim 13 wherein the plug is configured to be detachably supported
- 2 on a mandrel; and the golf shaft is formed of thin layers of prepreg composite material
- windings which overlap and fix the plug to the golf shaft.
- 1 23. A golf shaft with a high swingweight comprising:
- 2 a golf shaft;

3	wherein the golf shaft is made light and to have the high swingweight by the
4	process of:
5	impregnating a resin with high density material,
6	molding the resin into a plug,
7	attaching the plug to the golf shaft;
8	wherein the impregnated resin has a higher density than a non-impregnated
9	resin.
1	24. A method of making a light weight golf club for reducing the overall weight of the golf
2	club while providing a swingweight similar to that of a typical steel shafted golf club, the
3	method comprising the steps of:
4	(a) providing a light weight golf shaft with a weighting plug selected from a
5	plurality of weighting plugs, and
6	(b) attaching a golf head to the golf shaft.
1	25. The method of claim 24 and further comprising the step of weighting the plug.
1	26. The method of claim 24 comprising forming the plug and golf shaft into a one piece
2	composite member.
1	27. The method of claim 24 wherein making the light weight golf club comprises making
2	a light weight golf shaft with a swingweight of a typical steel golf shaft, the method
3	further comprising:

4	(a) forming the golf shaft of composite plastic materials of total mass less than				
5	100g,				
6	(b) positioning a balance point of the light weight golf shaft such that the force				
7	required for a particular swing acceleration is substantially equivalent to a				
8	force required for the same swing acceleration of the typical steel golf shaft				
9	having a total mass of over 100g.				
1	28. The method of claim 27 wherein the step of positioning further includes the step of				
2	selectively attaching a plug of a specific weight to the light weight golf shaft, said weight				
3	depending on a predetermined length of the golf club for enhancing playability of a set				
4	of golf clubs thus made.				
1	29. The method of claim 24 and further comprising the step of filling a hole in a tip end				
2	of the golf shaft simultaneously with the step of providing the weighting plug by filling the				
3	hole with the plug.				
1	30. The method of claim 24, the steps further comprising the step of selectively varying				
2	the weight of the plug by up to 50% relative to a minimum plug weight.				
1	31. The method of claim 24, the steps further comprising the step of selectively				
2	choosing the golf head and plug based on a selection of plugs varying in weight by 50%				
3	relative to a minimum plug weight.				

- 1 32. The method of claim 24 wherein the step of providing the light weight golf shaft
- 2 further comprises:
- 3 (a) forming the weighting plug,
- 4 (b) locating the balance point further from a handle portion of the light weight
- golf shaft by incorporating the plug as an integral part of an end of the light
- 6 weight golf shaft opposite the handle portion.
- 1 33. The method of claim 32 and further comprising the step of selectively locating the
- 2 balance point away from the handle portion of the composite golf shaft by selectively
- adding a dense material to the plug.
- 1 34. The method of claim 33 wherein the dense material is selected from the group of
- 2 different density materials comprising: tungsten, copper, and iron.
- 1 35. The method of claim 33 wherein the plug is formed of a moldable resin and further
- 2 including the step of adding the dense material to the resin.
- 1 36. The method of claim 35 wherein the dense material is selected from the group of
- 2 different density materials comprising: tungsten, copper, and iron.
- 1 37. The method of claim 32 comprising forming the plug and golf shaft into a one piece
- 2 composite member.

composite member.

2

1

2	(a) molding an end of the plug such that it can be removably supported on a
3	mandrel,
4	(b) mounting the plug on the mandrel,
5	(c) forming the golf shaft and fixing the golf shaft to the plug by rolling thin
6	layers of prepreg composite materials onto the mandrel and plug in a
7	predetermined order,
8	(d) wrapping the mandrel, composite materials, and plug with thin cellophane
9	or polypropylene,
10	(e) hardening and curing the golf shaft by heating, and
11	(f) removing the golf shaft with the plug from the mandrel;
12	wherein the composite layers form the golf shaft and wherein the plug is made integral
13	by the wrapping and curing steps.
1	39. A method of making a light weight golf shaft with a swingweight of a typical steel gol
2	shaft, the method comprising:
3	(a) providing a light weight golf shaft with a weighting plug selected from a
4	plurality of weighting plugs.
1	40. The method of claim 39 and further comprising the step of weighting the plug.
1	41. The method of claim 39 comprising forming the plug and golf shaft into a one piece

38. The method of claim 32 and further including the steps of:

1	42.	The	method	of	claim	39	comprising:
---	-----	-----	--------	----	-------	----	-------------

- 2 (a) forming the golf shaft of composite plastic materials of total mass less than 100g,
- (b) positioning a balance point of the light weight golf shaft such that the force required for a particular swing acceleration is substantially equivalent to a force required for the same swing acceleration of the typical steel golf shaft having a total mass of over 100g.
- 1 43. The method of claim 42 wherein the step of positioning further includes the step of selectively attaching a plug of a specific weight to the light weight golf shaft.
- 44. The method of claim 39 and further comprising the step of filling a hole in a tip end of the light weight golf shaft simultaneously with the step of providing the weighting plug
- 3 by filling the hole with the plug.
- 1 45. The method of claim 39, further comprising the step of selectively varying the weight
- of the plug by 50% relative to a minimum plug weight.
- 1. 46. The method of claim 39 wherein the step further comprises:
- 2 (a) forming the weighting plug,
- (b) locating the balance point further from a handle portion of the light weight
 golf shaft by incorporating the plug as an integral part of an end of the light
 weight golf shaft opposite the handle portion.

- 1 47. The method of claim 46 and further comprising the step of selectively locating the
- 2 balance point away from the handle portion of the composite golf shaft by selectively
- adding a dense material to the plug.
- 1 48. The method of claim 47 wherein the dense material is selected from the group of
- different density materials comprising: tungsten, copper, and iron.
- 1 49. The method of claim 47 wherein the plug is formed of a moldable resin and further
- 2 including the step of adding the dense material to the resin.
- 1 50. The method of claim 49 wherein the dense material is selected from the group of
- different density materials comprising: tungsten, copper, and iron.
- 1 51. The method of claim 46 comprising forming the plug and golf shaft into a one piece
- 2 composite member.
- 1 52. The method of claim 46 and further including the steps of:
- (a) molding an end of the plug such that it can be removably supported on a
- 3 mandrel,
- 4 (b) mounting the plug on the mandrel,
- 5 (c) forming the golf shaft and fixing the golf shaft to the plug by rolling thin
- layers of prepreg composite materials onto the mandrel and plug in a
- 7 predetermined order,

8	(d) wrapping the mandrel, composite materials, and plug with thin cellophane					
9	or polypropylene,					
10	(e) hardening and curing the golf shaft by heating, and					
11	(f) removing the golf shaft with the plug from the mandrel;					
12	wherein the composite layers form the golf shaft and wherein the plug is made integral					
13	by the wrapping and curing steps.					
1	53. A set of golf clubs wherein each club comprises a weighting plug selected from a					
2	plurality of weighting plugs having a variety of weights; whereby the set of golf clubs has					
3	enhanced playability.					
1	54. A set of golf shafts wherein each golf shaft comprises a weighting plug selected					
2	from a plurality of weighting plugs having a variety of weights; whereby a set of golf					
3	clubs made from said set of shafts has enhanced playability.					
1	55. Method of making a set of golf clubs comprising:					
2	(a) selecting weighting plugs from a plurality of weighting plugs having a					
3	variety of weights,					
4	(b) providing one of said weighting plugs on each golf club of the set;					
5	whereby the set of golf clubs has enhanced playability.					
1	56. Method of making a set of golf shafts comprising:					
2	(a) selecting weighting plugs from a plurality of weighting plugs having a					
3	variety of weights.					

- 4 (b) providing one of said weighting plugs on each golf shaft of the set;
- 5 whereby a set of golf clubs made from said set of golf shafts has enhanced playability.