Ve203 Discrete Mathematics (Fall 2016)

Assignment 2: Natural Numbers and Induction

Date Due: 4:00 PM, Thursday, the 29th of September 2016

This assignment has a total of (25 Marks).

Exercise 2.1 2 + 2 = 4

Let $(\mathbb{N}, \text{succ})$ be a realization of the natural numbers with successor function succ. We define addition of the numbers 0 and 1 := succ(0) by setting

$$n+0 := n,$$
 $n+1 := \operatorname{succ}(n),$ $n \in \mathbb{N}.$

- i) Formulate an inductive definition for n+m, where $m,n\in\mathbb{N}$. (2 Marks)
- ii) Set $2 := \operatorname{succ}(1)$, $3 := \operatorname{succ}(2)$, $4 := \operatorname{succ}(3)$. Verify that¹

$$2 + 2 = 4$$
.

(2 Marks)

iii) Prove by induction that n+m=m+n for all $m,n\in\mathbb{N}$. (2 Marks)

Exercise 2.2 Straightforward Induction

Let (a_n) be the sequence defined by

$$a_1 = 1,$$
 $a_2 = 8$ and $a_n = a_{n-1} + 2a_{n-2},$ $n \ge 3.$

Prove that for all n > 0, $a_n = 3 \cdot 2^{n-1} + 2(-1)^n$.

(2 Marks)

Exercise 2.3 The Fifth Peano Axiom

Prove that the induction axiom implies the well-ordering principle.

(3 Marks)

Exercise 2.4 Is a direct induction approach always successful?

Try to prove by induction that for any real number x > -1 and any $n \in \mathbb{N}$, $(1+x)^n \ge nx$. If you encounter difficulties, modify your approach.

(2 Marks)

Exercise 2.5 Strong Induction

Use strong induction to show that every $n \in \mathbb{N} \setminus \{0\}$ can be written as a sum of distinct powers of 2, i.e., as a sum of a subset of integers $2^0 = 1$, $2^1 = 2$, $2^2 = 4$ etc.

(*Hint*: For the inductive step, separately consider the case where k+1 is even and where it is odd. When it is even, note that $(k+1)/2 \in \mathbb{N}$.)

(3 Marks)

Exercise 2.6 Structural Induction

Let $S \subset \mathbb{N}^2$ be defined by

- $(0,0) \in S$,
- $(a,b) \in S \Rightarrow (((a+2,b+3) \in S) \land ((a+3,b+2) \in S)).$

Use structural induction to show that $(a, b) \in S$ implies $5 \mid (a + b)$. (3 Marks)

¹The proof of 2+2=4 is due to the German philosopher and mathematician Gottfried Wilhelm Leibniz (1646–1716).

Exercise 2.7 Some easy practice of relation properties

Determine whether the relation R on the set of all integers is reflexive, symmetric and/or transitive, where $(x,y) \in R$ if and only if

i)
$$x + y = 0$$

iii)
$$xy = 0$$

iii)
$$xy = 0$$
 v) $x = \pm y$ vii) $xy \ge 0$

vii)
$$xy > 0$$

ii)
$$2 \mid (x-y)$$

ii)
$$2 \mid (x-y)$$
 iv) $x = 1$ or $y = 1$ vi) $x = 2y$ viii) $x = 1$

vi)
$$x = 2y$$

$$x = 1$$

(8 Marks)