PREDICTING THE EVOLUTION OF INTRASTATE CONFLICT: EVIDENCE FROM NIGERIA

Cassy Dorff, Max Gallop, and Shahryar Minhas April 27, 2017

Conflict Studies

Primary modes of analysis: Country-year || Dyad-year

Roughly a **third** of all intrastate conflict between 1989 and 2003 have been fought with multiple warring parties (UCDP/PRIO 2007).

What about the role of civilians in conflict?

Networks

Why a network perspective in conflict?

Preferential attachment

Reciprocity

Homophily

Stochastic Equivalence

Basic point here is that within systems actions between any pair of dyads can ripple through the system

Spatial Distribution of Conflict Pre Boko Haram

Spatial Distribution of Conflict Post Boko Haram

Civilian Mobilization/Victimization

Does civilian mobilization have any effect in conflict? What about civilian victimization?

Modelling Approach

$$\begin{aligned} y_{ij,t} &= g(\theta_{ij,t}) \\ \theta_{ij,t} &= \boldsymbol{\beta}_d^T \mathbf{X}_{ij,t} + \boldsymbol{\beta}_s^T \mathbf{X}_{i,t} + \boldsymbol{\beta}_r^T \mathbf{X}_{j,t} + \mathbf{e}_{ij,t} \\ \mathbf{e}_{ij,t} &= a_i + b_j + \epsilon_{ij} + \alpha(\mathbf{u}_i, \mathbf{v}_j) \text{, where} \\ \alpha(\mathbf{u}_i, \mathbf{v}_j) &= \mathbf{u}_i^T \mathbf{D} \mathbf{v}_j = \sum_{k \in K} d_k u_{ik} v_{jk} \\ \{(a_1, b_1), \dots, (a_n, b_n)\} \sim N(0, \Sigma_{ab}) \\ \{(\epsilon_{ij}, \epsilon_{ji}) : i \neq j\} \sim N(0, \Sigma_{\epsilon}), \text{ where} \\ \Sigma_{ab} &= \begin{pmatrix} \sigma_a^2 & \sigma_{ab} \\ \sigma_{ab} & \sigma_b^2 \end{pmatrix} \quad \Sigma_{\epsilon} = \sigma_{\epsilon}^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{aligned}$$

Parameter Estimates

Boko Haram's Entrance in Network

SRM Nodal Effects

LFM Multiplicative Effects

Out of Sample Cross-Validation

Out of Sample Forecast

