

VISUALIZACIÓN DE DATOS

- ¿Por qué necesitamos visualizar datos?
- ¿Qué es la visualización de datos?
- ¿Qué es Matplotlib?
 - √ Tipos de gráficos (plots e imágenes)
 - ✓ El módulo pyplot para plots
 - ✓ El módulo image para imágenes

¿POR QUÉ NECESITAMOS VISUALIZAR DATOS?

El cerebro humano puede procesar información más fácilmente cuando esta viene en forma gráfica

La visualización de datos nos permite interpretar información rápidamente y jugar o ajustar diferentes variables para ver su efecto

¿QUÉ ES LA VISUALIZACIÓN DE DATOS?

La visualización de datos es la presentación de información de forma gráfica

¿QUÉ ES MATPLOTLIB?

- ✓ Es una librería especializada de Python que se utiliza para crear y manipular gráficos 2D
- ✓ Contiene varios módulos

EL MÓDULO IMAGE

EL MÓDULO IMAGE PARA IMÁGENES

```
import matplotlib.image as mpimg
import matplotlib.pyplot as plt

def cargar_imagen(ruta_imagen: str)-> list:
    imagen = mpimg.imread(ruta_imagen).tolist()
    return imagen

def visualizar_imagen(imagen: list)->None:
    plt.imshow(imagen)
    plt.show()
```

Con el módulo image se lee la

imagen y con el módulo pyplot se
visualiza

Resultado de ejecución

CARGA Y VISUALIZACIÓN DE IMÁGENES

```
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
img = mpimg.imread('tolstoy.jpg')
imgplot = plt.imshow(img)
```


Leo Tolstoy, Fotografía de Sergey Prokudin-Gorsky, 1908

MATRICES DE PIXELES

MEZCLA DE IMÁGENES EN BLANCO Y NEGRO

MEZCLA DE IMÁGENES EN BLANCO Y NEGRO

```
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
def combinar_imagenes(rojo, verde, azul):
    img_rojo = mpimg.imread(rojo)
    img verde = mpimg.imread(verde)
    img azul = mpimg.imread(azul)
    componente_rojo = img_rojo[:, :, 0]
    componente_verde = img_verde[:,:, 1]
    componente_azul = img_azul[:, :, 2]
    rgb = np.dstack((componente_rojo,componente_verde,componente_azul)) -
    return rgb
```


IMÁGENES EN MATPLOTLIB

- Matplotlib utiliza matrices de 3 dimensiones para representar las imágenes
- Las matrices son ndarrays de numpy
- Utiliza las operaciones de numpy:
 ¡Son mucho más eficientes!

https://matplotlib.org/

EL MÓDULO PYPLOT

EL MÓDULO PYPLOT PARA PLOTS

```
EjemploPlotSimple.py 
from matplotlib import pyplot as plt

#Armar el plot
plt.plot([1,2,3],[4,5,1])

#Mostrar el plot
plt.show()
```

Resultado de ejecución

Este es un ejemplo de un código básico para generar uno de los gráficos más sencillos

CONCEPTOS BÁSICOS

TIPOS DE GRÁFICAS – DIAGRAMA DE LÍNEAS

DIAGRAMA DE DISPERSIÓN - SCATTER PLOT

DIAGRAMA DE BARRAS

DIAGRAMA DE CAJA Y BIGOTES -BOXPLOT

GRÁFICOS 3D

VISUALIZACIONES CON MATPLOTLIB

import matplotlib.pyplot as plt

https://matplotlib.org/index.html

