第六章 多元函数积分学及其应用

习 题 6.1

(A)

1. 当 f(M) = 1 时,积分 $\int_{\Omega} f(M) d\Omega$ 的值表示什么意义?

解 由积分的定义知: 当 f(M)=1 时,

$$\int_{(\Omega)} f(M) d\Omega = \lim_{k \to 0} \sum_{k=1}^{n} f(M_k) \Delta \Omega_k = \lim_{k \to 0} \sum_{k=1}^{n} \Delta \Omega_k = \Omega.$$

2. 积分 $\int_{(\Omega)} f(M) d\Omega$ 定义中所有($\Delta\Omega_{k}$)的直径的最大值 $d \rightarrow 0$ 能否用所有 $\Delta\Omega_{k}$ 的度量的最大值趋于零代替,为什么?

解 不能. 当 $\lambda = \max_{1 \le k \le n} \{\Delta \Omega_k | \to 0 \text{ 时, 不一定有 } d \to 0. \text{ 例如, 如}(\Omega) = (\sigma) \text{ 为 平面区域, $\lambda \to 0$, 则}(\Delta \sigma_k)$ 可以是一条曲线. 即使 f(M) 连续, 在($\Delta \sigma_k$)上 f(M) 的值可能相差很大. 则和式 $\sum_{k=1}^{n} f(M_k) \Delta \sigma_k$ 对于($\Delta \sigma_k$)上不同 的点 M_k 当 $\lambda \to 0$ 时极限可能不同而不存在.

(B)

1. 证明若 f(M) 在 (Ω) 上连续, (Ω) 是紧的且可度量, $f(M) \ge 0$,但 $f(M) \ne 0$,则 $\int_{\partial \Omega} f(M) d\Omega > 0$.

证明 由于 $f(M) \ge 0$, $f(M) \ne 0$,则 $\exists M_0 \in (\Omega)$,使 $f(M_0) > 0$. 又由于 f(M) 在紧的可度量的 (Ω) 上连续,则由连续函数的局部保号性知存在 M_0 的闭邻域 $\overline{U}(M_0) \subset (\Omega)$,使对 $\forall M \in \overline{U}(M_0)$,均有 f(M) > 0,则由积分的中值定理知 $\exists P$ $\in \overline{U}(M_0)$,使 $\int_{\overline{U}(M_0)} f(M) \, \mathrm{d}\Omega = f(P)\Omega_{M_0}$. 由于 f(P) > 0, Ω_{M_0} 为 $\overline{U}(M_0)$ 的几何度量值,故 $\int_{\overline{U}(M_0)} f(M) \, \mathrm{d}\Omega > 0$. 又由 $f(M) \ge 0$ ($M \in (\Omega)$),则 $\int_{(D)/\overline{U}(M_0)} f(M) \, \mathrm{d}\Omega \ge 0$,故由积分对区域的可加性知

$$\int_{(\Omega)} f(M) d\Omega = \int_{(\Omega)/\overline{U}(M_0)} f(M) d\Omega + \int_{\overline{U}(M_0)} f(M) d\Omega > 0.$$

2. 证明反常积分中值定理: 若 (Ω) 是紧的且可度量的连通集,f(M),g(M) 在 (Ω) 上连续,g(M)在 (Ω) 上不变号,则

$$\int_{(\Omega)} f(M)g(M) d\Omega = f(P) \int_{(\Omega)} g(M) d\Omega, \sharp \oplus P \in (\Omega).$$

证明 设在 (Ω) 上 $g(M) \ge 0$. 由于 (Ω) 是紧的可度量的连续集,而 f(M)在 (Ω) 上连续,则 f(M)在 (Ω) 上可取得最大值 A 及最小值 a. 即 $\forall M \in (\Omega)$, $a \le f(M) \le A$. 从而 $\forall M \in (\Omega)$, $ag(M) \le f(M)g(M) \le Ag(M)$. 由积分的性质 3 及性质 1,得

$$a \int_{(\Omega)} g(M) d\Omega \leq \int_{(\Omega)} f(M) g(M) d\Omega \leq A \int_{(\Omega)} g(M) d\Omega.$$

若 $\int_{(\Omega)} g(M) d\Omega > 0$,上式两边同除以 $\int_{(\Omega)} g(M) d\Omega$,得

$$a \leq \frac{\int_{(\Omega)} f(M) g(M) d\Omega}{\int_{(\Omega)} g(M) d\Omega} \leq A.$$

由连续函数的介值定理知,至少存在一点 P

$$f(P) = \frac{\int_{(\Omega)} f(M) g(M) d\Omega}{\int_{(\Omega)} g(M) d\Omega}, \text{EP}$$

$$\int_{(\Omega)} f(M) g(M) d\Omega = f(P) \int_{(\Omega)} g(M) d\Omega.$$

若 $\int_{(\Omega)} g(M) d\Omega = 0$,则由上题知 $g(M) \equiv 0$, $M \in (\Omega)$. 因此对 $\forall P \in (\Omega)$,恒有 $\int_{(\Omega)} f(M) g(M) d\Omega = f(P) \int_{(\Omega)} g(M) d\Omega = 0.$

习 颞 6.2

(A)

2. (3) 若积分域关于 y 轴对称,则: