ALGEBRA AND COMPUTATION

Instructor: Amit Kumar Sinhababu and Sumanta Ghosh

SCRIBE: SOHAM CHATTERJEE

SOHAMCHATTERJEE999@GMAIL.COM Website: sohamch08.github.io

CHAPTER 2	Integer and Polynomial Addition	PAGE 3
CHAPTER 3	Integer and Polynomial Multiplication	Page 4
CHAPTER 4	Polynomial Evaluation	Page 5
4.1	Introduction	5
4.2	Single Point Evaluation 4.2.1 Horner's Method	6
4.3	Fast Multi-point Evaluation	6
CHAPTER 5	Polynomial Interpolation	PAGE 7
		1101/
CHAPTER 6	Bibliography	PAGE 8

_ Page 2_____

CHAPTER 1 Introduction

Introduction

Integer and Polynomial Addition

Integer and Polynomial Multiplication

Definition 3.1: Multiplication Time Function: M(n)

The function $M : \mathbb{N} \to \mathbb{R}_+$ for any commutative ring R[x] is called multiplication time function for if polynomials in R[x] of degree less than n can be multiplied using at most M(n) operations in R.

Similarly we can define the function M as above for multiplication time for \mathbb{Z} if two integers of length n bits can be multiplied using at most M(n) operations

Assumption 3.0.1. content...

Proof of Claim c: ontent... ■

Polynomial Evaluation

4.1 Introduction

We will consider the following situation: R is a commutative ring as always and $f \in R[x]$ where $\deg(f) = d$. We also have k points $u_0, \ldots, u_{k-1} \in R$. Now we want to discuss here the fast algorithms of finding out $(f(u_0), \ldots, f(u_{k-1}))$. So we basically want the evaluation map

$$\varphi: R[x]/\langle m \rangle \to R^n$$

$$f \to (f(u_0), \dots, f(u_{k-1}))$$

which is a ring homomorphism. If R is a field then R[x] is a vector space over R and the ϕ is an isomorphism. Formally we want to solve the following two problems with fast algorithms:

Problem 4.1: Single Point evaluation

Given $f \in R[x]$ with $\deg(f) = d$ and $\alpha \in R$ compute $f(\alpha)$

Problem 4.2: Multi-Point evaluation

Given $f \in R[x]$ with $\deg(f) = d$ and $u_0, \ldots, u_{n-1} \in R$ compute $f(u_0), \ldots, f(u_{n-1})$

4.2 Single Point Evaluation

4.2.1 Horner's Method

Theorem 4.2.1 Horner's Method

Given a polynomial $f(x) = \sum_{i=0}^{d} a_i x^i$ where $a_i \in R$ for all $i \in [n]$ and a point $\alpha \in R$ using only O(d) many additions and multiplications.

Proof: Consider the following algorithm:

Algorithm 1: Horner's Method

begin

Clearly we are using only d many additions and d many multiplications. So overall we need 2d = O(d) ring operations to evaluate the polynomial. The following lower bound results we obtain.

This is the minimal number of additions and multiplications for any algorithm to evaluate a polynomial.

Theorem 4.2.2 [OST13]

Any algorithm to evaluate an arbitrary degree d polynomial $f \in R[x]$ at any point $\alpha \in R$ must use at least n additions

Theorem 4.2.3 [Pan66]

Any algorithm to evaluate an arbitrary degree d polynomial $f \in R[x]$ at any point $\alpha \in R$ without initial conditioning of coefficients has at least n multiplications and at least n additions.

Theorem 4.2.4 [Pan66],[Mot55]

Any degree d real polynomial can be evaluated using $\left|\frac{d}{2}\right| + 2$ multiplications and d additions.

4.3 Fast Multi-point Evaluation

A trivial algorithm for using $O(d^2)$ ring operations is to apply Horner's Method for each point and since it takes O(d) operations for each point we can find the evaluations at all d points in $O(d^2)$ many ring operations. But we want to get close to linear operations. Since Horner's rules uses lowest number of ring operations doesn't mean for d points $O(d^2)$ is lowest. There is an fast algorithm to evaluate the polynomial at all d points using $O(M(d)\log d)$ operations.

Polynomial Interpolation

Bibliography

- [Mot55] T. S. Motzkin. Evaluation of polynomials and evaluation of rational functions. *Bulletin of the American Mathematical Society*, 61:163, 1955.
- [OST13] A. OSTROWSKI. On two problems in abstract algebra connected with horner's rule. In RICHARD von MISES, editor, *Studies in Mathematics and Mechanics*, pages 40–48. Academic Press, 2013.
- [Pan66] Victor Y. Pan. Methods of computing values of polynomials. Russian Mathematical Surveys, 21:105–136, 1966.