

FCC Test Report

FCC ID : VQK-F04G

Equipment: Mobile Phone

Model No. : F-04G

Brand Name : FUJITSU

Applicant : FUJITSU LIMITED

Address : 1-1, Kamikodanaka 4-chome, Nakahara-ku,

Kawasaki 211-8588, Japan

Standard : 47 CFR FCC Part 15.247

Received Date : Dec. 17, 2014

Tested Date : Mar. 08 ~ Mar. 12, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Ilac-MRA

Tap Testing Laboratory

Report No.: FR4D1701AD Report Version: Rev. 01 Page: 1 of 51

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	8
1.3	Test Setup Chart	8
1.4	The Equipment List	g
1.5	Test Standards	10
1.6	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Condition	11
2.2	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS	12
3.1	Conducted Emissions	12
3.2	Unwanted Emissions into Restricted Frequency Bands	17
3.3	Unwanted Emissions into Non-Restricted Frequency Bands	35
3.4	Conducted Output Power	40
3.5	Number of Hopping Frequency	42
3.6	20dB and Occupied Bandwidth	44
3.7	Channel Separation	46
3.8	Number of Dwell Time	48
4	TEST LABORATORY INFORMATION	51

Release Record

Report No.	Version	Description	Issued Date
FR4D1701AD	Rev. 01	Initial issue	Apr. 01, 2015

Report No.: FR4D1701AD Page: 3 of 51

Summary of Test Results

FCC Rules	Test Items	Measured	Result	
15.207	Conducted Emissions	[dBuV]: 0.567MHz 40.31 (Margin -5.69dB) - AV	Pass	
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 30.00MHz	Pass	
15.209	Radiated Effissions	34.49 (Margin -5.51dB) - PK	F a 5 5	
15.247(d) Band Edge		Meet the requirement of limit	Pass	
15.247(b)(1)	Conducted Output Power	Power [dBm]: 8.62	Pass	
15.247(a)(1)(iii)	Number of Hopping Channels	Meet the requirement of limit	Pass	
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass	
15.247(a)(1)(iii)	Dwell Time	Meet the requirement of limit	Pass	
15.203	Antenna Requirement	Meet the requirement of limit	Pass	

Report No.: FR4D1701AD Page: 4 of 51

1 General Description

1.1 Information

1.1.1 Product Details

Product Name	Mobile Phone
Brand Name FUJITSU	
Model Name F-04G	
IMEI Code	357241060024329 / 357241060024287
H/W Version v2.1.0	
S/W Version	R21.5e

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number	Data Rate		
2400-2483.5	BR V4.1	2402-2480	0-78 [79]	1 Mbps		
2400-2483.5	BR V4.1	2402-2480	0-78 [79]	2 Mbps		
2400-2483.5	BR V4.1	2402-2480	0-78 [79]	3 Mbps		

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: Bluetooth BR uses a GFSK.

Note 3: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK and 8DPSK.

1.1.3 Antenna Details

Туре	Type Gain (dBi)		Remark	
λ/4 Monopole	-6.48			

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	AC adapter: (normal output rating) 5.0Vdc, 1.8A (quick charge output rating) 9.0Vdc, 1.8A Battery: 3.75Vdc
-------------------	--

Report No.: FR4D1701AD Page: 5 of 51

1.1.5 Accessories

No.	Equipment	Description
Brand Name: Fujitsu Limited Model Name: F50 Input rating: (quick charge) 9.0Vdc, 1.5A Output rating: (quick charge) 9.0Vdc, 1.5A		Model Name: F50 Input rating: (quick charge) 9.0Vdc, 1.5A
2	Battery (Unremovable)	Brand Name: NTT Docomo Model Name: CA54310-0061 Power Rating: 3.75Vdc, 3120mAh, 12Wh

1.1.6 Channel List

Frequency band (MHz)				2400~2483.5			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

Report No.: FR4D1701AD Page: 6 of 51

1.1.7 Test Tool and Duty Cycle

Test Tool	QRCT, version 3.0.54.0
	4. 10 1, 10 10 10 10

1.1.8 Power Setting

Madulation Mada	Test Frequency (MHz)			
Modulation Mode	2402	2441	2480	
GFSK/1Mbps	9	9	9	
8DPSK/3Mbps	9	9	9	

Report No.: FR4D1701AD Page: 7 of 51

1.2 Local Support Equipment List

	Support Equipment List							
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)		
1	Adapter	NTT docomo	AC Adaptor 05					
2	Earphone	APPLE	MD827FE/A	6		1.2m non-shielded w/o core		

Note: Item 1 was provided by client.

1.3 Test Setup Chart

Report No.: FR4D1701AD Page: 8 of 51

1.4 The Equipment List

Test Item	RF Conducted							
Test Site	(TH01-WS)							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016			
Power Meter	Anritsu	ML2495A	1241002	Sep. 29, 2014	Sep. 28, 2015			
Power Sensor	Anritsu	MA2411B	1207366	Sep. 29, 2014	Sep. 28, 2015			
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA			
Note: Calibration Interval of instruments listed above is one year.								

Test Item	Radiated Emission										
Test Site	966 chamber 3 / (03CH03-WS)										
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until						
Spectrum Analyzer	Agilent	N9010A	MY53400091	Sep. 16, 2014	Sep. 15, 2015						
Receiver	Agilent	N9038A	MY53290044	Oct. 21, 2014	Oct. 20, 2015						
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-562	Jan. 19, 2015	Jan. 18, 2016						
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 03, 2015	Feb. 02, 2016						
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015						
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015						
Preamplifier	EMC	EMC02325	980187	Sep. 26, 2014	Sep. 25, 2015						
Preamplifier	Agilent	83017A	MY53270014	Sep. 17, 2014	Sep. 16, 2015						
Preamplifier	EMC	EMC184045B	980192	Aug. 26, 2014	Aug. 25, 2015						
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 09, 2015	Feb. 08, 2016						
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22601/4	Feb. 09, 2015	Feb. 08, 2016						
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 09, 2015	Feb. 08, 2016						
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Feb. 09, 2015	Feb. 08, 2016						
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Feb. 09, 2015	Feb. 08, 2016						
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Feb. 09, 2015	Feb. 08, 2016						
Measurement Software	AUDIX	e3	6.120210g	NA	NA						
Note: Calibration Int	erval of instruments lis	sted above is one year.									

Test Item	Conducted Emission								
Test Site	Conduction room 1 / (CO01-WS)								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
EMC Receiver	R&S	ESCS 30	100169	Oct. 17, 2014	Oct. 16, 2015				
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015				
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015				
Measurement Software	AUDIX	e3	6.120210k	NA	NA				
Note: Calibration Interval of instruments listed above is one year.									

Report No.: FR4D1701AD Page: 9 of 51

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 FCC Public notice DA 00-705 ANSI C63.10-2013

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty						
Parameters	Uncertainty					
Bandwidth	±34.134 Hz					
Conducted power	±0.808 dB					
Power density	±0.463 dB					
Conducted emission	±2.670 dB					
AC conducted emission	±2.92 dB					
Radiated emission ≤ 1GHz	±3.99 dB					
Radiated emission > 1GHz	±5.52 dB					

Report No.: FR4D1701AD Page: 10 of 51

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	18°C / 76%	Peter Lin
Radiated Emissions	03CH03-WS	20°C / 64-65%	Aska Huang
RF Conducted	TH01-WS	22°C / 65%	Brad Wu

➤ FCC site registration No.: 390588➤ IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
Conducted Emissions	GFSK	2441	1Mbps	1, 2
Radiated Emissions ≤ 1GHz	GFSK	2441	1Mbps	1, 2
Radiated Emissions > 1GHz	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	1
Conducted Output Power	GFSK л/4 QDPSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480 2402, 2441, 2480	1Mbps 2Mbps 3Mbps	1
Number of Hopping Channels	GFSK 8DPSK	2402~2480 2402~2480	1Mbps 3Mbps	1
Hopping Channel Separation	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	1
Dwell Time	GFSK 8DPSK	2441 2441	1Mbps 3Mbps	1

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.
- 2. The EUT had been tested by following test configurations for radiated emission below 1GHz.
 - 1) Configuration 1 : Adapter mode
 - 2) Configuration 2 : Cradle mode
- Adapter and cradle mode had been pretested for radiated emission above 1GHz and found that the adapter mode was the worst case and was selected for final test.

Report No.: FR4D1701AD Page: 11 of 51

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5 66 - 56 * 56 - 46 *							
0.5-5	56	46					
5-30	60	50					
Note 1: * Decreases with the logarithm of the frequency.							

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR4D1701AD Page: 12 of 51

3.1.4 Test Result of Conducted Emissions

Report No.: FR4D1701AD Page: 13 of 51

Modulation	GFSK		Test Freq. (N	IHz)	2441
Power Phase	Neutral		Test Configu	1	
80 Level (dBu	uV)				
70				CIS	SPR/CNS/VCCI-B
50				CISPF	R/CNS/VCCI-B AV
30				W 40 por service of the service of t	Philippy
10				11	
0 <mark> </mark> 0.150.2	0.5			5 10	20 30
Freq	n Level Limit	Freque Over Read	ency (MHz)		
MHz	Line z dBuV dBuV	Limit Level to	factor loss dB dB	Remark	
1 0.155 2 0.155 3* 0.567	42.50 65.52	-16.55 38.16 -23.02 41.69	0.73 0.08 0.73 0.08	Average QP	
4 0.567 5 0.779 6 0.779	7 43.40 56.00 9 29.03 46.00 9 33.22 56.00		0.18 0.13 0.18 0.13 0.23 0.15 0.23 0.15	Average QP Average QP	
7 2.513 8 2.513 9 2.962 10 2.962	35.76 56.00 31.70 46.00	-14.30 30.90	0.39 0.26 0.39 0.26 0.52 0.28 0.52 0.28	Average QP Average QP	
11 3.509 12 3.509			0.64 0.30 0.64 0.30	Average QP	

Report No.: FR4D1701AD Page: 14 of 51

Power PhaseLineTest Configuration2	Modulation	GFSK	Test Freq. (MHz)	2441
	Power Phase	Line	Test Configuration	2
80 Level (dBuV)	Level (dBu\	()		

	Freq	Level	Limit	Over	Read	LISN	cable	
			Line	Limit	Level	factor	loss	Remark
	MHz	dBu∀	dBuV	dB	dBu∀	dB	dB	
1	0.150	34.47	56.00	-21.53	33.47	0.92	0.08	Average
2	0.150	46.95	66.00	-19.05	45.95	0.92	0.08	QP
3*	0.552	39.52	46.00	-6.48	39.24	0.15	0.13	Average
4	0.552	42.85	56.00	-13.15	42.57	0.15	0.13	QP
5	2.155	27.01	46.00	-18.99	26.17	0.59	0.25	Average
6	2.155	33.27	56.00	-22.73	32.43	0.59	0.25	QP
7	2.993	29.12	46.00	-16.88	28.43	0.41	0.28	Average
8	2.993	34.74	56.00	-21.26	34.05	0.41	0.28	QP
9	3.528	29.86	46.00	-16.14	29.23	0.33	0.30	Average
10	3.528	36.64	56.00	-19.36	36.01	0.33	0.30	QP
11	4.224	26.24	46.00	-19.76	25.65	0.28	0.31	Average
12	4.224	34.68	56.00	-21.32	34.09	0.28	0.31	QP

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV)

Report No.: FR4D1701AD Page: 15 of 51

Modulation	GFSK Neutral			Test Freq. (MHz) Test Configuration				2441		
Power Phase										
80 <mark>Lev</mark>	el (dBu	V)								
70									CISPR/	CNS/VCCI-B
50			4					С	ISPR/CN	S/VCCI-B AV
30						51		My Water Manager and the Water Andrews and t	why produpp	[A _{thile}
20 10										"INPLANTATION OF THE PROPERTY
0 0.15	50.2		0.5			2		5	10	20 30
					Frequ	ency (MH				
	Freq MHz	Level dBuV	Limit Line dBuV	Over Limit dB	Read Level dBuV	LISN factor dB	cable loss dB	Remark		
1 _ 2	0.153 0.153	37.23 41.99	55.82 65.82	 -18.59 -23.83	36.33 41.09	0.82 0.82	0.08	 Average QP	_	
3* 4	0.567	40.31	46.00 56.00	-5.69 -11.07	40.00	0.18	0.13	Average QP		
5 6 7	2.261 2.261 3.041	25.49 35.86 33.21	56.00	-20.51 -20.14 -12.79	24.93 35.30 32.40	0.31 0.31 0.53	0.25 0.25 0.28	Average QP Average		
8 9 10	3.041 3.364 3.364	29.58 41.54	56.00	-16.42 -14.46	38.13 28.68 40.64	0.53 0.61 0.61	0.28 0.29 0.29	QP Average QP		
11 12	3.922 3.922	27.35 37.95		-18.65 -18.05	26.32 36.92	0.72 0.72	0.31	_		

Report No.: FR4D1701AD Page: 16 of 51

3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit									
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)						
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300						
0.490~1.705	24000/F(kHz)	33.8 - 23	30						
1.705~30.0	30	29	30						
30~88	100	40	3						
88~216	150	43.5	3						
216~960	200	46	3						
Above 960	500	54	3						

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.2.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

Radiated emission above 1GHz / Average value for harmonics

The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:

3.
$$20\log \text{ (Duty cycle)} = 20\log \frac{1\text{s} / 1600 * 5}{100 \text{ ms}} = -30.1 \text{dB}$$

4. Radiated emission above 1GHz / Average value for other emissions RBW=1MHz, VBW=1/T and Peak detector

Report No.: FR4D1701AD Page: 17 of 51

3.2.3 Test Setup

Report No.: FR4D1701AD Page: 18 of 51

3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AD Page: 19 of 51

Modulation	GFSK	Test Freq. (MHz)	2441
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	45.52	34.13	40.00	-5.87	46.96	-12.83	Peak		
2	103.72	22.81	43.50	-20.69	40.57	-17.76	Peak		
3	286.08	27.22	46.00	-18.78	40.42	-13.20	Peak		
4	394.72	34.52	46.00	-11.48	44.69	-10.17	Peak		
5	655.65	25.77	46.00	-20.23	30.65	-4.88	Peak		
6	780.78	34.41	46.00	-11.59	37.21	-2.80	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AD Page: 20 of 51

Modulation	GFSK	Test Freq. (MHz)	2441
Polarization	Horizontal	Test Configuration	2

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	46.49	25.38	40.00	-14.62	38.23	-12.85	Peak		
2	102.75	23.41	43.50	-20.09	41.34	-17.93	Peak		
3	256.01	20.55	46.00	-25.45	35.07	-14.52	Peak		
4	586.78	25.05	46.00	-20.95	31.12	-6.07	Peak		
5	781.75	30.57	46.00	-15.43	33.37	-2.80	Peak		
6	956.35	31.51	46.00	-14.49	31.18	0.33	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AD Page: 21 of 51

Modulation			G	FSK				Test	Fre	q. (MHz	<u>z</u>)		2441		
Polarization			Ve	ertical				Test	Cor	figurat	ion		2		
	90	Level	(dBuV/m)											
	80														
	70			-					\rightarrow			+			_
	60														
	•												FCC	CLAS	S-B
	50														
	40														
		23									6 I				
	30	ΗŤ						!	5						
	20		4												
	10														
	0	30 1	00.	200.	30	0. 40	00. 5	00.	600). 7 0	0.	800.	90	00.	1000
					-		Frequ								
			Freq	. Emi:	ssion	Limit	Margi	s - S	А	Factor	Ren	nark	Α	NT	Turn
					evel				ding				Н	igh	Table
			MHz	dB	uV/m	dBuV/r	n dB	dB	uV	dB			C	m	deg
1			30.	00 3	4.49	40.00	-5.51	47	.98	-13.49	Pea	ale.			
2			45.		1.45	40.00			. 28	-12.83					
3			61.		9.98		-10.02		.40	-14.42					
4			164.				-24.10			-13.85					
5			559.	62 2	4.89		-21.11		.69	-6.80) Pea	ak			
6			779.	81 3	4.23	46.00	-11.77	37	.04	-2.81	l Pea	ak			

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AD Page: 22 of 51

3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AD Page: 23 of 51

odulation	GFSK		Test Freq. (MHz)	24	2402		
olarization	Vertica	al		•			
on Leve	el (dBuV/m)						
30							
80				F	CC CLASS-B		
70							
60				FCC CI	ASS-B (AVG)		
50 2	4 6			FCCCL	A33-B (AVG)		
40							
30							
20							
10							
0 100	0 4000. 600	00. 8000. 10000. 120	00. 14000. 16000. 18000.	20000 00	000. 250		

	Freq. [mission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1500.00	35.47	54.00	-18.53	39.30	-3.83	Average		
2	1500.00	49.01	74.00	-24.99	52.84	-3.83	Peak		
3	2390.00	36.00	54.00	-18.00	37.22	-1.22	Average		
4	2390.00	49.21	74.00	-24.79	50.43	-1.22	Peak		
5	4804.00	17.87	54.00	-36.13	10.76	7.11	Average		
6	4804.00	47.97	74.00	-26.03	40.86	7.11	Peak		

Frequency (MHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AD Page: 24 of 51

Modulation			GI	FSK					Т	est	Fred	q. (M	Hz)		2	2441		
Polarization			Н	orizo	ntal				,									
	90	Level	(dBuV/m)															_
	80																	_
	70															FCC CL	ASS	- <u>B</u>
	60				6										FCC (CLASS-E	(AV	<u>G)</u>
	50		2	4	Ť								\rightarrow				+	
	40												_				_	_
	30																	
					5													
	20																	
	10																\top	
	0	1000	4000.	60	00. 8	000.	100		12000. requer			16000.	1800	00. 20	0000.	22000.	2	5000
			Freq.	Emi	issio	n Li	mit	Ma	rgin	5	Α .	Fact	tor	Ren	nark	ANT		Turn
]	level					rea	ding					Hig	h i	Tabl
			MHz	dE	BuV/m	dB	uV/r	n d	В	dB	uV	dE	В			cm		deg
	1		2483.5	0 3	36.42	54	.00	-17	.58	37	.31	-0.	.89	Ave	erage		_	
	2		2483.5	0 4	19.65	74	.00	-24	.35		.54		.89	Pea	ak		-	
	3		4882.6								.66		.77		erage		-	
	4		4882.6								.76		.77	Pea			-	
	5		7323.6		21.17 51.27					10	.18	10.	.99	Αve	erage ak		-	

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AD Page: 25 of 51

Report Version: Rev. 01

Modulation	GFSK	Test I	Freq. (MHz)	2441		
Polarization	Vertical					
90 Level (dBu	//m)					
90						

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	2483.50	36.37	54.00	-17.63	37.26	-0.89	Average		
2	2483.50	49.69	74.00	-24.31	50.58	-0.89	Peak		
3	4882.00	17.86	54.00	-36.14	11.09	6.77	Average		
4	4882.00	47.96	74.00	-26.04	41.19	6.77	Peak		
5	7323.00	21.41	54.00	-32.59	10.42	10.99	Average		
6	7323.00	51.51	74.00	-22.49	40.52	10.99	Peak		

*Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Page: 26 of 51 Report No.: FR4D1701AD

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AD Page: 27 of 51

2

3

4

5

6

Modulation		GFS	K		1	est Fred	լ. (MHz)		2480	
Polarization		Verti	ical		•					
	on Level	(dBuV/m)								
	80								FCC CLAS	c D
	70								FCC CLAS	3-6
	60		6					FCC	CLASS-B (A	VG)
	50	2 4	1 1							
	40	1								
	30		5							
	20	3								
	10									
	1000	4000.	6000. 80	00. 10000.		. 14000. 1 ncy (MHz)	6000. 1800	00. 20000.	22000.	25000
		Freq. [mission level	Limit M	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
:	1	2483.50	36.01	54.00 -1	17.99	36.90	-0.89	Average		

50.23

10.84

40.94

10.54

-0.89

6.46

6.46

11.27

11.27

Peak

Peak

Peak

Average

Average

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain

2483.50 49.34 74.00 -24.66

4960.00 17.30 54.00 -36.70

4960.00 47.40 74.00 -26.60

7440.00 21.81 54.00 -32.19 10.54 7440.00 51.91 74.00 -22.09 40.64

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AD Page: 28 of 51

3.2.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 8DPSK

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AD Page: 29 of 51

Modulation			8DPSk	(Test	Freq.	(MHz)	24	02	
Polarization			Vertica	I							
	Lev	el (dBuV	//m)								
	90 Level (d										
	00								F/	C CLAC	c n

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1500.00	35.47	54.00	-18.53	39.30	-3.83	Average		
2	1500.00	48.76	74.00	-25.24	52.59	-3.83	Peak		
3	2390.00	35.79	54.00	-18.21	37.01	-1.22	Average		
4	2390.00	49.35	74.00	-24.65	50.57	-1.22	Peak		
5	4804.00	17.55	54.00	-36.45	10.44	7.11	Average		
6	4804.00	47.65	74.00	-26.35	40.54	7.11	Peak		

*Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AD Page: 30 of 51

Modulation			8	8DPSK					Test Freq. (MHz)			244	2441		
Polarization		F	Horizontal												
	00	Level	(dBuV/n	n)											
	80												FC	C CLAS	S-B
	70														
	60														
			2			6						FCC	CLA	SS-B (A	VG)
	50	<u> </u>		4		П									
	40			_									_		
	30														
	20					5									
	20			ľ											
	10														
	0	1000	400	0.	5000.	800	00. 100			14000. 1 cy (MHz)	16000. 1800	00. 20000.	2200	00.	25000
			Г				122.				F+	Damanla		ANT	Turn
			Fre	4. E	missi leve		LIMIT	Marg		SA reading	Factor	Remark		ANI High	Table
			MH	Z		_	dBuV/ı	m dB		dBuV	dB			cm	deg
:	1		2483	.50	36.3	8	54.00	-17.6	2 -	37.27	-0.89	Averag	e		
	2				49.8			-24.1		50.70	-0.89	Peak			
	3		4882		17.0			-36.9		10.32	6.77	Averag	e		
	4		4882	.00	47.1	9	/4.00	-26.8	1	40.42	6.77	Peak			

10.99

10.99

Average

Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

7323.00 21.05 54.00 -32.95 10.06 7323.00 51.15 74.00 -22.85 40.16

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AD Page: 31 of 51

Modulation	8DPSK	Test Freq. (MHz)	2441			
Polarization	Vertical					
90 Level (dBi	ıV/m)					

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	2483.50	36.10	54.00	-17.90	36.99	-0.89	Average		
2	2483.50	49.24	74.00	-24.76	50.13	-0.89	Peak		
3	4882.00	17.52	54.00	-36.48	10.75	6.77	Average		
4	4882.00	47.62	74.00	-26.38	40.85	6.77	Peak		
5	7323.00	21.18	54.00	-32.82	10.19	10.99	Average		
6	7323.00	51.28	74.00	-22.72	40.29	10.99	Peak		

*Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AD Page: 32 of 51

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AD Page: 33 of 51

Modulation	8DPSK	Test Freq.	(MHz)	2480	
Polarization	Vertical				
90 Level (dBu	V/m)				
30					

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	2483.50	35.84	54.00	-18.16	36.73	-0.89	Average		
2	2483.50	49.20	74.00	-24.80	50.09	-0.89	Peak		
3	4960.00	17.15	54.00	-36.85	10.69	6.46	Average		
4	4960.00	47.25	74.00	-26.75	40.79	6.46	Peak		
5	7440.00	21.69	54.00	-32.31	10.42	11.27	Average		
6	7440.00	51.79	74.00	-22.21	40.52	11.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AD Page: 34 of 51

3.3 Unwanted Emissions into Non-Restricted Frequency Bands

3.3.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.3.2 Test Procedures

Reference Level Measurement

- Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.3.3 Test Setup

Report No.: FR4D1701AD Page: 35 of 51

3.3.4 Unwanted Emissions into Non-Restricted Frequency Bands

GFSK

Report No.: FR4D1701AD Page: 36 of 51

Report No.: FR4D1701AD Page: 37 of 51

8DPSK

Report No.: FR4D1701AD Page: 38 of 51

Report No.: FR4D1701AD Page: 39 of 51

3.4 Conducted Output Power

3.4.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

1 Watt For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.
0.125 Watt For all other frequency hopping systems in the 2400–2483.5 MHz band.
0.125 Watt For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

3.4.2 Test Procedures

- A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.4.3 Test Setup

Report No.: FR4D1701AD Page: 40 of 51

3.4.4 Test Result of Conducted Output Power

Modulation Mode	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (mW)
GFSK	2402	4.40	6.43	125
GFSK	2441	7.28	8.62	125
GFSK	2480	6.40	8.06	125
л/4 DQPSK	2402	3.33	5.22	125
л/4 DQPSK	2441	5.53	7.43	125
л/4 DQPSK	2480	5.02	7.01	125
8DPSK	2402	3.36	5.26	125
8DPSK	2441	5.73	7.58	125
8DPSK	2480	5.15	7.12	125

Modulation Mode	Freq. (MHz)	AV Output Power (mW)	AV Output Power (dBm)
GFSK	2402	4.03	6.05
GFSK	2441	6.68	8.25
GFSK	2480	5.94	7.74
л/4 DQPSK	2402	2.01	3.04
л/4 DQPSK	2441	3.44	5.37
л/4 DQPSK	2480	3.10	4.92
8DPSK	2402	2.02	3.06
8DPSK	2441	3.47	5.40
8DPSK	2480	3.13	4.95

Note: Average power is for reference only.

Report No.: FR4D1701AD Page: 41 of 51

3.5 Number of Hopping Frequency

3.5.1 Limit of Number of Hopping Frequency

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

3.5.2 Test Procedures

- 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.

3.5.3 Test Setup

Report No.: FR4D1701AD Page: 42 of 51

3.5.4 Test Result of Number of Hopping Frequency

Report No.: FR4D1701AD Page: 43 of 51

3.6 20dB and Occupied Bandwidth

3.6.1 Test Procedures

- Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.
- 4. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

3.6.2 Test Setup

Report No.: FR4D1701AD Page: 44 of 51

3.6.3 Test result of 20dB and Occupied Bandwidth

Modulation Mode	Freq. (MHz)	20dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
GFSK	2402	0.952	0.912
GFSK	2441	0.952	0.912
GFSK	2480	0.957	0.907
8DPSK	2402	1.296	1.181
8DPSK	2441	1.291	1.185
8DPSK	2480	1.291	1.190

Report No.: FR4D1701AD Page: 45 of 51

3.7 Channel Separation

3.7.1 Limit of Channel Separation

- Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
- Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.7.2 Test Procedures

- 1. Set RBW=100kHz, VBW=300kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit

3.7.3 Test Setup

Report No.: FR4D1701AD Page: 46 of 51

3.7.4 Test result of Channel Separation

Modulation Mode	Freq. (MHz)	Channel Separation (MHz)	20dB Bandwidth (MHz)	Minimum Limit (MHz)
GFSK	2402	1.003	0.952	0.635
GFSK	2441	1.003	0.952	0.635
GFSK	2480	1.003	0.957	0.638
8DPSK	2402	1.003	1.296	0.864
8DPSK	2441	1.003	1.291	0.861
8DPSK	2480	1.003	1.291	0.861

Report No.: FR4D1701AD Page: 47 of 51

3.8 Number of Dwell Time

3.8.1 Limit of Dwell time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.8.2 Test Procedures

- Set RBW=100kHz,VBW=300kHz,Sweep time = 500us(DH1),2ms(DH3),4ms(DH5), Detector=Peak, Span=0Hz,Trace max hold
- 2 Enable gating and trigger function of spectrum analyzer to measure burst on time.
- 3. The DH1 packet can cover a single time slot. A maximum length packet has duration of 1 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 1/1600 seconds, or 0.625ms. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- 4. The DH3 packet can cover up to 3 time slots. A maximum length packet has duration of 3 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 3/1600 seconds, or 1.875ms. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds

3.8.3 Test Setup

Report No.: FR4D1701AD Page: 48 of 51

3.8.4 Test Result of Dwell Time

Modulation Mode	Freq. (MHz)	Length of Transmission Time (msec)	Number of Transmission in a 31.6 (79 Hopping*0.4)	Result (s)	Limit (s)
GFSK-DH1	2441	0.41978	320	0.134	0.4
GFSK-DH3	2441	1.67457	160	0.268	0.4
GFSK-DH5	2441	2.92783	106.6	0.312	0.4
8DPSK-DH1	2441	0.41529	320	0.133	0.4
8DPSK-DH3	2441	1.68630	160	0.270	0.4
8DPSK-DH5	2441	2.94000	106.6	0.313	0.4

Report No.: FR4D1701AD Page: 49 of 51

Report No.: FR4D1701AD Page: 50 of 51

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR4D1701AD Page: 51 of 51