Traffic at UMD

Group DC20004: Lifu Peng, Xinhua Tang, Junjun Liao, Pei-ju Lai

Agenda

- 1. Background
- 2. Visualization: Problem disclosure
- 3. Inferential model: Dynamic analysis
- 4. Predictive model
- 5. Suggestion & Conclusion

Background

 Discover and solve traffic imbalance on campus by analyzing data gathered from sensors in 5 locations

Set time interval from 15-min to 1-hour

Aggregate data to 5 locations instead of 10 sensors

Visualization: Problem disclosure

Time trend of traffic in 5 locations

pedestrians bicyclists

cars

Time trend of cars & buses' count in 5 locations

Inference Model: Dynamic analysis

Linear regression for 5 different modes of traffic.

The most explainable model.

By how much traffic changes in response to different factors?

Dataset: DOTS sensor dataset + NOAA weather dataset + School event schedule

Example: Car Count regression model

Car Count ~ Location + Hour + Weekend + Event + Wind Speed + Temperature +Rain

Coefficients:				- (1, 1)	
4 -0.00000000000000000000000000000000000		Std. Error			and the same
(Intercept)	-49.84789	7.68688		9.74e-11	***
locationmain entrance	78.89244	2.74699	28.720	< 2e-16	***
locationnorth entrance	-19.54983	2.74811		1.29e-12	***
locationsouth gate	124.71020	2.74781	45.385	< 2e-16	***
locationsouthwest entrance		2.75033		1.00e-05	***
Hour1	-5.22756	6.03471		0.386395	
Hour 2	-10.20816	6.13388		0.096130	
Hour 3	-14.46227	5.98367	-2.417	0.015686	¥
Hour4	-15.50453	6.12559	-2.531	0.011401	×
Hour 5	-8.34921	6.14712	-1.358	0.174451	
Hour 6	0.02007	6.13295	0.003	0.997389	
Hour7	77.24039	6.15015	12.559	< 2e-16	***
Hour 8	132.52521	6.18897	21.413	< 2e-16	***
Hour 9	160.01070	6.11688	26.159	< 2e-16	***
Hour10	164.55902	6.13204	26.836	< 2e-16	***
Hour11	152.97367	6.24768	24.485	< 2e-16	***
Hour12	168.50069	6.06749	27.771	< 2e-16	***
Hour13	171.90236	6.09706	28.194	< 2e-16	***
Hour14	176.07694	6.14877	28.636	< 2e-16	***
Hour15	185.36967	6.09794	30.399	< 2e-16	***
Hour16	199.87481	6.04358	33.072	< 2e-16	***
Hour17	210.95745	6.07120	34.747	< 2e-16	***
Hour18	149.94433	6.13080	24.458	< 2e-16	***
Hour19	87.27612	6.10809	14.289	< 2e-16	***
Hour 20	42.10717	6.18118	6.812	1.07e-11	***
Hour 21	21.62853	6,19516	3.491	0.000485	***
Hour 22	23.11566	6.19275	3.733	0.000192	***
Hour 23	5.93765	6.10316	0.973	0.330660	
weekend1	-31.84250	2,60212	-12.237	< 2e-16	***
event1	27.12786	3.72077		3.56e-13	***
wind_speed	-0.78627	0.17480		7.01e-06	***
TEMP	0.87715	0.10323	8.497	< 2e-16	***
rain	308.18129	142.35030		0.030439	×

Predictive Model: Random Forest

A 'forest' of regression trees that generates most accurate results.


```
call:
randomForest(formula = cars ~ event + location + Hour + Weekend +
                                                                        wind direction
+ cloud_height + humidity + wind_speed + TEMP,
                                                     data = data, importance = TRUE)
               Type of random forest: regression
                     Number of trees: 500
No. of variables tried at each split: 3
         Mean of squared residuals: 934.5604
                   % Var explained: 93.33
> importance(tree model car)
                %IncMSE IncNodePurity
                34.49676
                                627574
event
location
               405.47846
                              26456839
               253.43228
                              46698254
Hour
Weekend
                46.75356
                               1597450
wind direction 43.87919
                               1556599
cloud_height
                26.41015
                               1524617
humidity
                52.85724
                               4083473
wind_speed
                31.13049
                               2210868
TFMP
                53.98512
                               4406093
```

Dataset: DOTS sensor dataset + NOAA weather dataset + School event schedule

Predictive Model:

Say at 7 p.m. on a humid, warm, sunny weekday, one would expect:

40 cars exiting through South Gate within an hour.

Say at noon on dry, windy, freezing weekend which holds an grand event:

106 cars would be entering the main entrance within an hour.

```
> pred_df

1 2 3 4

main entrance 35.397179 62.71488 37.543235 105.85835
center campus 13.794380 28.06867 15.898354 49.13396
north entrance 8.507720 16.78706 7.845847 36.24345
south gate 39.675731 76.56405 42.217926 127.17667
```

southwest entrance 6.912103 13.28832 3.996842 27.82892

Suggestion

Suggestion

Conclusion

• Traffic is crowding on the east side of campus.

Bus schedule needs adjustment.

• It's possible to reduce on-campus cars and increase bicycle/scooter usage.

More data!

Conclusion

Problem Examination

Data Exploration

Time Trend

Inference

Predictive Model Construction

Policy formulation & Resource reallocation

However, there is still some restrictions...

If it is freezingly cold with piercing wind speed...

If there is a large event on a rainy day...

What else...?

What if.....

If it is very humid with unbearable high temperature...

If there is an extremely big rain at the rush hour...