Brain Image Segmentation

Kalpesh Patil (130040019) Yash Bhalgat (13D070014)

Background and Motivation

Problem Statement

To segment raw noisy MR image of brain into 3 segments (gray matter, white matter and cerebrospinal fluid) using **Expectation Maximization** (EM) algorithm which relies on Gaussian Mixture Model (GMM) for pixel intensities and assumes Markov Random Field (MRF) prior on pixel values

Background and Motivation

Human brain can be mainly divided into three major segments

- 1. White matter
- 2. Gray matter
- 3. Cerebrospinal fluid

Brain Image Histogram

Algorithm

GMM

$$p(x) = \sum_{k=1}^{K} w_k G(x; \mu_k, C_k)$$

Probability as sum of Gaussians In our case K = 3

Maximizing likelihood of parameters

$$\max_{\theta} L(\theta|y) = \max_{\theta} \sum_{n=1}^{N} log(\sum_{k=1}^{K} w_k G(x; \mu_k, C_k))$$

Expectation Maximization

```
Step 1: E-step
Q(\theta; \theta^i) = E_{P(z|y,\theta^i)}[logP(z,y|\theta)]
Step 2: M-step
\theta^{i+1} = argmax \ Q(\theta; \theta^i)
y = \{y_n\} Observed data
z = \{z_n\} class labels (hidden variables)
```

Expectation Maximization Contd..

Membership of yn to the class k

$$\gamma_{nk}^{i} = P(z_{n} = k | y_{n}, \theta^{i})$$

$$= \frac{G(y_{n} | \mu_{k}^{i}, C_{k}^{i}) w_{k}}{\sum_{k=1}^{K} G(y_{n} | \mu_{k}^{i}, C_{k}^{i}) w_{k}}$$

Parameter updates

$$\mu_{k}^{i+1} = \frac{\sum_{j} \gamma_{nk}^{i} y_{n}}{\sum_{j} \gamma_{nk}^{i}} \qquad C_{k}^{i+1} = \frac{\sum_{j} \gamma_{nk}^{i} (y_{n} - \mu_{k}^{i}) (y_{n} - \mu_{k}^{i})^{-1}}{\sum_{j} \gamma_{nk}^{i}}$$

GMM + EM Segmentation

 Problem: It doesn't enforce spatial smoothness constraint for segmentation of the image. It will directly predict the ML estimator

• **Solution:** Use MRF (Markov Random Fleld) prior on label images which enforces smoothness constraint and gives MAP estimate

Markov Random Field (MRF)

Markovianity:

Pixel value is conditionally independent of values at non-neighboring pixels if values at neighboring pixels are given

$$P(X_i | X_{S-\{i\}}) = P(X_i | X_{N_i})$$

Homogeneous Markov Random field

Probability Xi given its neighbors is independent of location of Xi, i.e. independent of i

MRF + GMM + EM

```
MAP segmentation

max P(Z|y,\theta)

Z

Z = \{z_l \ (label \ of \ y_l)\}

Z = \{y_n \ (observed \ input)\}
```

Instead of finding the update on entire dataset, we will try to to maximize it at every point conditioned on its neighbours (ICM algorithm).

MRF + GMM + EM

After calculation and an approximation in E-step, we obtain

$$Q(\theta;\theta^i) = \sum_{n=1}^N \sum_{k=1}^K P(z_n = k \mid x_{N_n}^{MAP}, y, \theta^i) log P(y^n \mid z_n = k, \theta)$$

Membership values

$$\gamma_{nk} = \frac{G(y_n | \mu_k, \sigma_k) P(z_n = k | z_{N_n}^{MAP})}{\sum_{k=1}^{K} G(y_n | \mu_k, \sigma_k) P(z_n = k | z_{N_n}^{MAP})}$$

MRF + GMM + EM

By Hammersley-Clifford theorem, an MRF can equivalently be characterized by a Gibbs distribution. Hence we have following potential function

$$P(z_n|z_{N_n}) = \frac{exp(-\sum_{a \in A_n}^{\cdot} V_a(z_a))}{\sum_{a \in A_n}^{\cdot} V_a(z_a)}$$

We used 4 neighborhood in image and define V(L1,L2) = 0 if L1 = L2else V(L1,L2) = beta

Here beta is a tunable parameter which determines strength of the prior

Algorithm

- Preprocess raw input image to remove bias field etc.
- Initialize parameters (means, covariances etc)
- E-step
 - Compute MAP label image, given parameters
 - Evaluate memborship
- M step
 - Update covariances and means
- Repeat E and M step until convergence
- Output memberships (soft, spatially smooth)

Simulation

Corrupted Image of brain

Raw corrupted input image

An MR image of the brain is taken as an input to the system

Initial Guess of Labels using question 1

After Preprocessing

- Bias field is removed.
- Initial parameters (means and class labels) are computed by using Fuzzy C-Means (FCM) segmentation
- This image is passed to the EM algorithm

Optimal label image Beta=0.8

Output Image

- It can be clearly seen that segmented image is smooth compared to input image and classes can be distinguished unambiguously
- The trade off between smooth vs representative of data is made through a tuning parameter beta, which determine the strength of the prior

Individual Class Images

Class 1 Cerebrospinal fluid

Class 2 Grey Matter

Class 3
White Matter

RGB Representation of 3 Classes

Before GMM + MRF segmentation

After GMM + MRF segmentation

References

[1] Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. *IEEE transactions on medical imaging*, 20(1), 45-57.

[2] Shah, S. A., & Chauhan, N. C. (2015). An Automated Approach for Segmentation of Brain MR Images using Gaussian Mixture Model based Hidden Markov Random Field with Expectation Maximization. *Journal of Biomedical Engineering and Medical Imaging*, 2(4), 57.

Thanks!