Chapter 1

Introduction to microwave device/circuit CAD

SPECIFICITY OF RF/MICROWAVE FREQUENCIES

THE ELECTROMAGNETIC SPECTRUM

SPECIFICITY OF RF/MICROWAVE FREQUENCIES

Frequency		Wavelength	
1Hz	\rightarrow	300 000 000 m	Relation between f and λ ,
$300\mathrm{Hz}$	\rightarrow	1 000 000 m	highlighting the microwave bands
1 kHz	\rightarrow	300 000 m	
300 kHz	\rightarrow	1000 m	(formally from 300 MHz to 300 GHz)
1 MHz	\rightarrow	300 m	
3 MHz	\rightarrow	100 m	
10 MHz	\rightarrow	30 m Decameter ban	d
30 MHz	\rightarrow	10 m	
100 MHz	\rightarrow	3 m Meter Band	
300 MHz	\rightarrow	1m {	▲
1 GHz	\rightarrow	30 cm Decimeter Ban	.d T _₹
3 GHz	\rightarrow	10 cm	
10 GHz	\rightarrow	3 cm Centimeter Bar	nd
30 GHz	\rightarrow	1 cm	nd MICROWAVES
100 GHz	\rightarrow	3 mm Millimeter Bar	nd S
300 GHz	\rightarrow	1 mm	+

Frequency spectrum and standard bands

CCIR(Inter. Radio Consult. Comm.)

Band	Frequency Range	Band Designation	
2	30-300 Hz	ELF (extremely low frequency)	
3	0.3-3 kHz	SLF/VF (voice frequency)	
4	3-30 kHz	VLF (very low frequency)	
4 5	30-300 kHz	LF (low frequency)	
6	0.3-3 MHz	MF (medium frequency)	
7	3-30 MHz	HF (high frequency)	
8	30-300 MHz	VHF (very high frequency)	
9	0.3-3 GHz	UHF (ultra high frequency)	
10	3-30 GHz	SHF (super high frequency)	
11	30-300 GHz	EHF (extremely high frequency)	
14	0.3-3 THZ	Intrared tight	
13	3-30 THz	Infrared light	
14	30-300 THz	Infrared light	
1.5	0.3-3 PHz	Visible light	
16	3-30 PHz	Ultraviolet light	
17	30-300 PHz	X-rays	
18	0.3-3 EHz	Gamma rays	
19	3-30 EHz	Cosmic rays	

IEEE Standard

Band	Frequency Range, (GHz)		
HF	0.003-0.030		
VHF	0.030-0.300		
UHF	0.300-1.00		
L	1.00-2.00		
S	2.00-4.00		
C	4.00-8.00		
X	8.00-12.0		
Ku	12.0-18.0		
K	18.0-27.0		
Ka	27.0-40.0		
Millimeter	40.0-300.0		
Submillimeter	greater than 300		

New US Military Bands

(1)

Frequency Band	Frequency Range, (GHz		
A	0.10-0.25		
В	0.25-0.5		
C	0.5-1.0		
D	1.0-2.0		
E	2.0-3.0		
F	3.0-4.0		
G	4.0-6.0		
H	6.0-8.0		
I	8.0-10.0		
J	10.0-20.0		
K	20.0-40.0		
L	40.0-60.0		
M	60.0-100.0		
N	100.0-140.0		

RELATION BETWEEN WAVELENGTH AND PHYSICAL LENGTH

Low frequencies

- wavelengths >> wire length
- current (I) travels down wires easily for efficient power transmission
- measured voltage and current not dependent on position along wire

High frequencies

- wavelength ≈ or << length of transmission medium
- need transmission lines for efficient power transmission
- matching to characteristic impedance (Zo) is very important for low reflection and maximum power transfer
- measured envelope voltage dependent on position along line

Question: Why referencing to a characteristic impedance Z_o ?

Transmission line Zo

- Zo determines relationship between voltage and current waves
- Zo is a function of physical dimensions and ε_r
- Zo is usually a real impedance (e.g. 50 or 75 ohms)

(1)

Question : Why such particular values: 50 Ω or 75 Ω ?

Dr. M.C.E. Yagoub

RF/MICROWAVE TRANSMISSION LINES

Waveguides and planar lines are the most widely used transmission supports in the cm/mm bands.

MICROWAVE COMPUTER-AIDED DESIGN

Different aspects to consider in RF/microwave design:

- Theoretical/Technical issues

but also ...

ELEMENTS OF CIRCUIT THEORY

Fundamental concepts

In electronics, a fundamental concept is that *all* electronic circuits/systems are nonlinear.

Now, in <u>a specific</u> design, nonlinearities should be minimized or maximized?

Mixers: mixing is possible *only if* the circuit *exploits*

nonlinearities, and then, it is desirable to maximize them.

Small-signal amplifiers: nonlinearities degrade the system performance and then

should be **minimized**.

Small-signal??

ELEMENTS OF CIRCUIT THEORY

Fundamental concepts

From a general point of view, we could say that (from Wikipedia)

- *Small-signal modeling* is a common analysis method used to describe nonlinear devices in terms of linear equations.
- Large-signal modeling is a common analysis method used to describe nonlinear devices in terms of the underlying nonlinear equations

from the circuit design point of view, we can say that

- *Small signal*: A small-signal amplifier is a *linear circuit* in which the input or output signal strength does not affect the circuit's electrical properties.
- Large signal: Opposite of small signal. For instance, a small-signal amplifier can be designed easily using S-parameter while large-signal amplifier not.

while from the signal point of view, we have

- *Small signal*: small time-varying signals carried over a constant bias. The signal *is small* relative to the nonlinearity of the device.
- *Large signal*: large time-varying signals carried over a constant bias.

 The signal *is large* enough that the nonlinearity of the device cannot be ignored.

As for the concept of linear and nonlinear, we can read that (from Wikipedia)

• Linear circuit:

the output is a linear transform of the input.

Superposition principle can be applied.

• Nonlinear circuit:

does not satisfy the superposition principle.

Superposition?

SUPERPOSITION

Let the input of a given circuit be v_i and the output v_o

If the circuit is linear, the superposition theorem can be applied:

• for a given input	$v_{i1}(t)$,	the output will be	$v_{o1}(t)$
• for a given input	$v_{i2}(t)$,	the output will be	$v_{o2}(t)$
• for a given input	$v_{i1}(t) + v_{i2}(t),$	the output will be	$v_{o1}(t) + v_{o2}(t)$
• for a given input	$a^*v_{i1}(t) + b^*v_{i2}(t),$	the output will be	$a^*v_{o1}(t) + b^*v_{o2}(t)$

SUPERPOSITION APPLIED TO CIRCUIT THEORY

We can find any electrical quantity such as the current in any resistor, *through* finding the current due to each source individually while leaving out or *deactivating* the other sources.

If an input signal V_i imposes a small excursion around the DC point (Q point), the curve A_1B_1 is almost linear

$$V_o = G V_i$$

The input-output relationship for the nonlinear case will be

$$V_0 = AV_i + B V_i^2 + C V_i^3 + ...$$

Each mth term " $(V_i)^m$ " generates the harmonic mf_i of the fundamental input frequency f_i .

Commensurate and non-commensurate frequencies

If the output frequency of a given circuit is the combination of the harmonics of two input frequencies, such as

$$\omega_{output} = \omega_{m, n} = m * \omega_1 + n * \omega_2$$

with m, n = ... -2, -1, 0, 1, 2 ...

This output frequency (also noted $\omega_{m,n}$) is called the *mixing frequency* and its output voltage component is a *mixing product*.

The sum of the absolute values of m and n (i.e., |m| + |n|) is the order of the mixing product.

For the $\omega_{m,n}$ to be distinct, ω_1 and ω_2 must be **non-commensurate**. A pair of frequencies is said to be commensurate if their ratio is a <u>rational number</u>.

IF

the response of the circuit to N linear excitations is equal to the sum of their responses,

The circuit is linear

In other words, the response of a linear circuit includes only the frequencies present in the excitation waveforms.

A linear circuit does not generate new frequencies.

IF

the response of the circuit to N linear excitations includes the excitation frequencies as well as all possible combinations of them $(m * \omega_1 + n * \omega_2)$

The circuit is nonlinear

In other words, the response of a nonlinear circuit includes the frequencies present in the excitation waveforms and their harmonics.

A nonlinear circuit generates new frequencies.

Linear Versus Nonlinear Behaviour

Magnitude Variation with Frequency

 $F(t) = \sin \omega t + \frac{1}{3} \sin \frac{3}{3} \omega t + \frac{1}{5} \sin \frac{5}{3} \omega t$

Phase Variation with Frequency

 $F(t) = \sin \omega t + \frac{1}{3} \sin 3 \omega t + \frac{1}{5} \sin 5 \omega t$

REPRESENTATION OF A NONLINEAR CIRCUIT

The physical representation of a nonlinear system is in the time domain.

However, as a nonlinear behaviour generates harmonics, it is common to represent a nonlinear network in the frequency domain:

 $\downarrow \downarrow$

a multifrequency multi-port network where each kth port is related to the kth harmonic of the excitation input frequency f.

A current I_k and a voltage V_k present in port k are the Fourier coefficients of v(t) and i(t), respectively, for the harmonic " kf". A port "0" can be eventually added for the zero frequency (DC coefficients).

The multi-frequency multi-port network is **LINEAR** !!!

In the above time-domain circuit, the sign \nearrow refers to a nonlinear element.

Question:

Why it is important to have a linear multi-frequency

network in frequency domain?

Because:

- All circuit simulators are based on solving the voltage-current relationships in a circuit
- This implies solving relations like V = Z I

which ...

... are linear equations!!

What are scattering parameters?

The scattering parameters are fixed properties of the (linear) circuit, which describe how the energy couples between each pair of ports or transmission lines connected to the circuit. Formally, S-parameters can be defined for any collection of <u>linear</u> electronic components, whether or not the wave view of the power flow in the circuit is necessary.

Analogy with optics:

Why scattering parameters?

I - Impedance and admittance matrices are not defined for **all** circuits:

Series impedance: Using Z-parameters, serial impedance is defined as

$$Z_{11} = \frac{V_1}{I_1} \bigg|_{I_2 = 0}$$

 $Z_{11} = \frac{V_1}{I_1}\Big|_{I_1 = 0}$ But $I_2 = 0 \rightarrow I_1 = 0 \rightarrow Z_{11} = ????$

Parallel admittance: Using Y-parameters, parallel admittance is defined as

$$Y_{11} = \frac{I_1}{V_1} \bigg|_{V_1 = 0}$$

 $Y_{11} = \frac{I_1}{V_1}\Big|_{V_1 = 0}$ But $V_2 = 0 \rightarrow V_1 = 0 \rightarrow Y_{11} = ????$

The usual Z- or Y-parameters are not **universal**.

II.- In HF, both voltages and currents cannot be measured in a direct manner.

In high frequencies, the quantities that are directly measurable, by means of a small probe used to sample the relative field strength, are the standing wave ratio, location of a field minimum and power.

In fact, at high frequencies, we have a non-uniform distribution of the current along each branch and a non-uniform distribution of the voltage along each wire.

III.- Short and open circuits cannot be assured accurate in high frequencies

Therefore, designers have to use parameters that are linked to **power** and reflection-transmission coefficients

How to get the S-parameters?

Let us consider a generator (a voltage source E with an internal impedance Z equal to the characteristic impedance Z_o).

If this one-port circuit is loaded by an impedance Z_L , the complex current and voltage can be defined as

$$I = \frac{E}{Z_0 + Z_I} \qquad V = \frac{EZ_L}{Z_0 + Z_I}$$

For maximum transfer power (matching), the impedance load is equal to the complex conjugate of the generator internal impedance. Therefore, we get the **incident** quantities

$$I = I_i = \frac{E}{Z_o + Z_o^*}$$

$$V = V_i = \frac{EZ_o^*}{Z_o + Z_o^*}$$

How to get the S-parameters?

Similarly, we can define the reflection quantities as

$$V_r = V - V_i$$

$$V_r = \frac{Z_o}{Z_o^*} \frac{Z_L - Z_o^*}{Z_I + Z_o} \cdot V_i$$

$$I_r = \frac{Z_L - Z_o^*}{Z_L + Z_o^*} \cdot I_i$$

These expressions allow defining the voltage reflection coefficient Γ_V and the current coefficient reflection Γ_I

$$\Gamma_V = \frac{V_r}{V_i} = \frac{Z_o}{Z_o^*} \frac{Z_L - Z_o^*}{Z_L + Z_o}$$

$$\Gamma_I = \frac{I_r}{I_i} = \frac{Z_L - Z_o^*}{Z_L + Z_o}$$

 $I_r = I_i - I$

How to get the S-parameters?

If the characteristic impedance is Z_o , then

$$\Gamma = \Gamma_I = \Gamma_V = \frac{Z_L - Z_o}{Z_L + Z_o} = \frac{z_L - 1}{z_L + 1}$$

where z_L is the normalized impedance of Z_L .

From the above equations we have

$$V_r = Z_o I_r \qquad V_i = Z_o^* I_i$$

$$\rightarrow \qquad [\mathbf{V_r}] = [\mathbf{Z_o}][\mathbf{I_r}] \qquad [\mathbf{V_i}] = [\mathbf{Z_o^*}][\mathbf{I_i}]$$

How to get the S-parameters?

Thus, it is possible to define the vector [a] of input waves or « incident waves » as follows

$$\begin{bmatrix} a \end{bmatrix} = \left(\frac{\begin{bmatrix} \mathbf{Z_o} \end{bmatrix} + \begin{bmatrix} \mathbf{Z_o^*} \end{bmatrix}}{2} \right)^{\frac{1}{2}} \begin{bmatrix} \mathbf{I_i} \end{bmatrix} \longrightarrow \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \sqrt{R_{o1}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{R_{oN}} \end{bmatrix} \begin{bmatrix} I_{i1} \\ \vdots \\ I_{in} \end{bmatrix}$$

Similarly, we can define a vector [b] of output waves or « reflected waves » as

$$[\mathbf{b}] = \left(\frac{[\mathbf{Z}_{\mathbf{o}}] + [\mathbf{Z}_{\mathbf{o}}^*]}{2}\right)^{\frac{1}{2}} [\mathbf{I}_{\mathbf{r}}]$$

Finally, the scattering matrix [S] of the network should satisfy to

$$[b] = [S] [a]$$

Definitions

The *n* incoming wave complex amplitudes are usually designated by the *n* complex wave quantities a_n (n-vector [a]) and the *n* outgoing wave complex quantities b_n (n-vector [b])

$$\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} S_{11} & \cdots & S_{1n} \\ \vdots & \ddots & \vdots \\ S_{n1} & \cdots & S_{nn} \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

$$\stackrel{\mathbb{Z}_s}{=}$$

For a 2-port, we have

$$b_1 = S_{11} a_1 + S_{12} a_2$$

$$b_2 = S_{21} a_1 + S_{22} a_2$$

 $\left|S_{22}\right|^2$

SCATTERING PARAMETERS OR S-PARAMETERS

Relation with power

$$|a_1|^2$$
 Incident power on port 1 = Available power from the source

$$|a_2|^2$$
 Incident power on port 2 = Available power from the load

$$|b_2|^2$$
 Reflected power from port 1 = Available power from the source minus input power

$$|b_1|^2$$
 Reflected power from port 2 = Incident power to the load

$$|S_{11}|^2$$
 Power reflected from the network input

Incident power on the network input

$$|S_{21}|^2$$
 Power delivered to the load Power available from the source = Direct Power Gain

Incident power on the network output

$$|S_{12}|^2$$
 Power delivered to the source Power Gain

Physical meaning

If the network has no loss/no gain, the output power must equal the input power

$$|S_{11}|^2 + |S_{21}|^2 = 1$$

Let us consider a two-port network loaded by Z_1 and Z_2 respectively where the input and output port are matched by the characteristic impedances Z_{o1} and Z_{o2} respectively:

$$S_{11} = \frac{b_1}{a_1}\Big|_{a_2=0}$$
 $S_{12} = \frac{b_1}{a_2}\Big|_{a_1=0}$ $S_{21} = \frac{b_2}{a_1}\Big|_{a_2=0}$ $S_{22} = \frac{b_2}{a_2}\Big|_{a_1=0}$

 S_{11} is the input reflection coefficient when the output is matched : $Z_2 = Z_{02}$

 S_{22} is the output reflection coefficient when the input is matched : $Z_1 = Z_{o1}$

 S_{21} is the direct transmission coefficient from input to output when the output is matched.

 S_{12} is the inverse transmission coefficient from output to input when the input is matched.

Coming back to the definitions

Which kind of information can we get from this set of equations?

This system of equations is ... LINEAR !!!!!!!!!

So S-parameters are linear-based quantities.

They cannot model nonlinear behaviours !!!!!!!!!

For a 2-port, we have

$$b_1 = S_{11} a_1 + S_{12} a_2$$

$$b_2 = S_{21} a_1 + S_{22} a_2$$

Question: What to use instead of S-parameters?

X-parameters!

X-parameters are a generalization of S-parameters!

They help characterizing the amplitudes and phase of harmonics generated by nonlinear components under large input power levels.

X-parameters are also referred to as the parameters of the Poly-Harmonic Distortion (PHD) nonlinear behavioral model.

(1)

Thank you!

End of Chapter 1