# COL215 Digital Logic & System Design

Assignment 2



## Submitted by:

Dhairya Kuchhal Siddhant Agrawal (2024CS50396) (2024CS50469)

#### 1 Task

The objective of this lab was to design, simulate, and implement a Verilog module that displays decimal digits (0-9) on the seven-segment display of the Basys-3 FPGA board. The inputs are provided via the board's 10 slide switches (SWO - SW9), each corresponding to a specific digit. Only the rightmost display digit (ANO) is activated, while the other digits remain off. The module uses logic while implementing arrays to determine which segments (a-g) should be turned on for a given input.

### 2 Design Decisions

We kept a minimal design for correctness and clarity. Firstly, we only enabled the ANO in order to reduce redundancy and show anode control. This was done using using an active - low logic in array form.

```
AN = 4'b1110
```

Secondly, each input switch was mapped to represent the corresponding index of the array SWO — SW9 As per the problem statement we also implemented the priority logic by using the if-else statements making sure that the higher priority is allocated to state of higher-number switch. Display was initialised to an all-off state. Additionally in verilog, the seven-segment display on Basys-3 uses active-low control; a 0 turns a segment ON, a 1 turns it OFF. Finally, The segment outputs are generated in an always @(\*) block, ensuring instantaneous updates when the switch inputs change

```
always @(*) begin
           seg = 7'b11111111; // code excerpt
           if (sw[9]) seg = 7'b0010000;
3
           else if(sw[8]) seg = 7'b0000000;
           else if(sw[7]) seg = 7'b1111000;
           else if(sw[6]) seg = 7'b0000010;
           else if(sw[5]) seg = 7'b0010010;
           else if(sw[4]) seg = 7'b0011001;
           else if(sw[3]) seg = 7'b0110000;
           else if(sw[2]) seg = 7'b0100100;
10
           else if(sw[1]) seg = 7'b1111001;
11
           else if(sw[0]) seg = 7'b1000000;
12
           end
13
       endmodule
14
```

#### 2.1 Simulation using Testbench

We wrote a dedicated testbench module (seven\_tb.v) for simulation. Inputs were toggled at 10ns time intervals (Inertial delay) and showed each possible case of the switches lighting up. We also ended up using Used \$display to print a header and \$monitor to track real-time changes in sw, seg, and an. All this was done to verify the functionality in simulation before hardware implementation.

```
module seven_tb();
reg [9:0] sw;
```

```
wire [6:0] seg;
3
     wire [3:0] an;
4
     Seven_segment_display uut(
5
        .sw(sw),
6
        .seg(seg),
        .an(an)
     );
     initial begin
10
        $display("Time(ns)\tSwitches\tSegments\tAnodes");
11
        $monitor("%0t\t%b\t%b\t%b", $time, sw, seg, an);
12
13
       sw = 10'b0000000001;
       #10 sw = 10'b0000000010;
       #10 sw = 10'b0000000100;
16
       #10 sw = 10'b0000001000;
17
       #10 sw = 10'b0000010000;
18
       #10 sw = 10'b0000100000;
19
       #10 sw = 10'b0001000000;
20
       #10 sw = 10'b0010000000;
       #10 sw = 10'b0100000000;
22
       #10 sw = 10'b1000000000;
23
       #10 sw = 10'b0100010001;
24
       #20 sw = 10'b0000000000;
25
       $finish;
26
      end
27
   endmodule
```

#### 2.2 Mapping of Pins on Basys3

The constraint file (basys3.xdc) was edited to bind logical inputs and outputs to physical switches and the display segments in a user-friendly, simple left to right manner. The following table summarizes the mapping:

| Signal Type | Logical Name | FPGA Pin |  |
|-------------|--------------|----------|--|
| Input       | sw[0]        | V17      |  |
| Input       | sw[1]        | V16      |  |
| Input       | sw[2]        | W16      |  |
| Input       | sw[3]        | W17      |  |
| Input       | sw[4]        | W15      |  |
| Input       | sw[5]        | V15      |  |
| Input       | sw[6]        | W14      |  |
| Input       | sw[7]        | W13      |  |
| Input       | sw[8]        | V2       |  |
| Input       | sw[9]        | T3       |  |
| Output      | an[0]        | U2       |  |
| Output      | an[1]        | U4       |  |
| Output      | an[2]        | V4       |  |
| Output      | an[3]        | W4       |  |
| Output      | seg[0]       | W7       |  |
| Output      | seg[1]       | W6       |  |
| Output      | seg[2]       | U8       |  |
| Output      | seg[3]       | V8       |  |
| Output      | seg[5]       | U5       |  |
| Output      | seg[6]       | V5       |  |
| Output      | seg[6]       | U7       |  |

Table 1: Mapping of inputs and outputs on Basys 3 FPGA board

## 3 Synthesis Report

The following tables show the main resource counts. Other details are present in the synthesis report.

| Site Type             | Used | Fixed | Prohibited | Available | Util% |  |
|-----------------------|------|-------|------------|-----------|-------|--|
| Slice LUTs*           | 12   | 0     | 0          | 20800     | 0.06  |  |
| LUT as Logic          | 12   | 0     | 0          | 20800     | 0.06  |  |
| LUT as Memory         | 0    | 0     | j 0        | 9600      | 0.00  |  |
| Slice Registers       | 0    | 0     | 0          | 41600     | 0.00  |  |
| Register as Flip Flop | 0    | 0     | 0          | 41600     | 0.00  |  |
| Register as Latch     | 0    | 0     | 0          | 41600     | 0.00  |  |
| F7 Muxes              | 0    | 0     | 0          | 16300     | 0.00  |  |
| F8 Muxes              | 0    | 0     | 0          | 8150      | 0.00  |  |
| ·                     |      |       |            |           |       |  |

Figure 1: Flip-Flops and LUT  $\,$ 



Figure 2: DSP usage



Figure 3: BRAM usage

## 4 Simulation Snapshots

Figure shows the behavioural simulation results on running seven\_tb.v file



Figure 4: Simulation waveform showing the transitions of the array that controls the seven segment display outputs

## 5 Generated Schematics



Figure 5: Generated Schematic design

## 6 Conclusion

The designed module successfully displayed decimal digits on a single digit of the sevensegment display using switch inputs. The simulation matched hardware behavior, confirming correct .xdc mapping and logic implementation. This assignment reinforced understanding of:

- Array combinational logic design in Verilog
- Active-low seven-segment control
- Priority-based conditional statements
- FPGA pin mapping using .xdc files