南京大学数学系试卷 (A 卷)

2018/20	019	学年第一	一学期	考试形	式_/	卷	课程名称_	数学分析
班级			学号_				姓名	
考试时间2019.1.13			3	任课教师 梅加强等 考试成绩				
				I		ı		
	题号		\equiv	三	四	五	总分	
	得分						-	

- 一. 简答题. (每题 15 分, 共 30 分)
- (1) 请完整地叙述 Newton-Leibniz 公式, 并谈谈你对它的认识和体会.

(2) 请完整地叙述 Lagrange 中值定理, 并举一例以展现其应用.

- 二. 计算题. (每题 8 分, 共 40 分)
- (1) 求函数 $f(x) = x^{2018}e^{-x}$ 在 \mathbb{R} 中的极值; (2) 求积分 $\int_a^b (x-a) \left[x \frac{a+b}{2} \right]^2 (b-x) \, \mathrm{d}x$; (3) 求积分 $\int_0^{\pi/2} \frac{\mathrm{d}x}{2 + \cos x}$; (4) 求极限 $\lim_{x \to 0} \frac{x^2 \ln^2(1+x)}{x \sin^2 x}$; (5) 利用高阶导数的 Leibniz 公式求 $\ln^2(1+x)$ 的 Maclaurin 展开 (即原点处的 Taylor 展开).

三. 综合题. (每题 10 分, 共 20 分) (1) 证明: 当 $x \ge 0$ 时, $\sin^2 x - x^2 + \frac{1}{3}x^4 \ge 0$.

(2) 记 $f(x) = \int_0^x \ln(t + \sqrt{1 + t^2}) dt$, 求 f 的显式表达式, 并证明它是凸函数.

四. 证明题. (每题 5 分, 共 10 分)

(1) 设
$$f$$
 在 $[0,\infty)$ 中二阶可导,且 $|f''| \le |f|$. 如果 $f(0) = f'(0) = 0$,证明 $f \equiv 0$.
(2) 设 $\alpha \ge 1$. 证明 $\frac{1}{\alpha + 1/2} < \int_0^1 e^t (1-t)^\alpha dt < \frac{1}{\alpha}$.

五. 附加题 (10 分): 设 f 在 $(0,\infty)$ 中二阶可导. 如果 $\lim_{x\to\infty} \frac{f(x)}{x} = \beta \in \mathbb{R}$, 且 f''(x) = O(1/x) $(x\to\infty)$, 则 $\lim_{x\to\infty} f'(x) = \beta$.