

An experimental investigation of the around / between contrast

Adèle Hénot-Mortier (MIT), Steven Verheyen (EUR), Paul Égré & Benjamin Spector (CNRS, ENS-PSL, EHESS)

December 19, 2022

Amsterdam Colloquium 2022

- (1) a. Around 20 people came to the party.
 - b. Between 15 and 25 people came to the party.
- Both (1a) and (1b) convey uncertainty about an exact numerical value k. Yet (1a) is vague while (1b) isn't!
- [Egré et al., 2022]: for any fixed prior distribution over k, (1a) gives
 rise to a more "peaked" posterior distribution than (1b) does.

- (1) a. Around 20 people came to the party.
 - b. Between 15 and 25 people came to the party.
- Both (1a) and (1b) convey uncertainty about an exact numerical value k. Yet (1a) is vague while (1b) isn't!
- [Égré et al., 2022]: for any fixed prior distribution over k, (1a) gives rise to a more "**peaked**" posterior distribution than (1b) does.

- (1) a. Around 20 people came to the party.
 - b. Between 15 and 25 people came to the party.
- Both (1a) and (1b) convey **uncertainty** about an exact numerical value *k*. Yet (1a) is **vague** while (1b) isn't!
- [Égré et al., 2022]: for any fixed prior distribution over k, (1a) gives rise to a more "**peaked**" posterior distribution than (1b) does.

- (1) a. Around 20 people came to the party.
 - b. Between 15 and 25 people came to the party.
- Both (1a) and (1b) convey **uncertainty** about an exact numerical value *k*. Yet (1a) is **vague** while (1b) isn't!
- [Égré et al., 2022]: for any fixed prior distribution over k, (1a) gives rise to a more "**peaked**" posterior distribution than (1b) does.

- (1) a. Around 20 people came to the party.
 - b. Between 15 and 25 people came to the party.
- Both (1a) and (1b) convey **uncertainty** about an exact numerical value *k*. Yet (1a) is **vague** while (1b) isn't!
- [Egré et al., 2022]: for any fixed prior distribution over k, (1a) gives rise to a more "peaked" posterior distribution than (1b) does.

- Basic semantics: around and between denote intervals, but in the
 case of around the half-width of the interval is parametrized by a
 free variable i.
- A Bayesian listener L processing around n draws inferences about both i and k. An around n-update then redistributes more weight to values of k closer to n.

$$\mathcal{P}_{\mathcal{L}}[k \mid extbf{around n}] \propto \mathcal{P}_{\mathcal{L}}[k] \ \sum_{i=|n-k|}^n \mathcal{P}_{\mathcal{L}}[i]$$

$$\mathcal{P}_{\mathcal{L}}[k \mid \text{between x and y}] \propto \begin{cases} \mathcal{P}_{\mathcal{L}}[k] & \text{if} \quad k \in [x; y] \\ 0 & \text{if} \quad k \notin [x; y] \end{cases}$$

- Basic semantics: around and between denote intervals, but in the case of around the half-width of the interval is parametrized by a free variable i.
- A Bayesian listener L processing around n draws inferences about both i and k. An around n-update then redistributes more weight to values of k closer to n.

$$\mathcal{P}_{\mathcal{L}}[k \mid extbf{around n}] \propto \mathcal{P}_{\mathcal{L}}[k] \ \sum_{i=|n-k|}^n \mathcal{P}_{\mathcal{L}}[i]$$

$$\mathcal{P}_{\mathcal{L}}[k \mid \mathbf{between} \times \mathbf{and} \, \mathbf{y}] \propto \left\{ egin{array}{ll} \mathcal{P}_{\mathcal{L}}[k] & \text{if} & k \in [x;y] \\ 0 & \text{if} & k \notin [x;y] \end{array} \right.$$

- Basic semantics: around and between denote intervals, but in the case of around the half-width of the interval is parametrized by a free variable i.
- A Bayesian listener L processing around n draws inferences about both i and k. An around n-update then redistributes more weight to values of k closer to n.

$$\mathcal{P}_{\mathcal{L}}[k \mid extbf{around n}] \propto \mathcal{P}_{\mathcal{L}}[k] \sum_{i=|n-k|}^{n} \mathcal{P}_{\mathcal{L}}[i]$$

$$\mathcal{P}_{\mathcal{L}}[k \mid \mathbf{between} \ \mathbf{x} \ \mathbf{and} \ \mathbf{y}] \propto \left\{ egin{array}{ll} \mathcal{P}_{\mathcal{L}}[k] & \mathrm{if} & k \in [x;y] \\ 0 & \mathrm{if} & k \notin [x;y] \end{array} \right.$$

- Basic semantics: around and between denote intervals, but in the case of around the half-width of the interval is parametrized by a free variable i.
- A Bayesian listener L processing around n draws inferences about both i and k. An around n-update then redistributes more weight to values of k closer to n.

$$\mathcal{P}_{\mathcal{L}}[k \mid \mathbf{around} \mid \mathbf{n}] \propto \mathcal{P}_{\mathcal{L}}[k] \sum_{i=|n-k|}^{n} \mathcal{P}_{\mathcal{L}}[i]$$

$$\mathcal{P}_{\mathcal{L}}[k \mid \mathbf{between} \ \mathbf{x} \ \mathbf{and} \ \mathbf{y}] \propto \left\{ egin{array}{ll} \mathcal{P}_{\mathcal{L}}[k] & \mathrm{if} & k \in [x;y] \\ 0 & \mathrm{if} & k \notin [x;y] \end{array}
ight.$$

- Basic semantics: around and between denote intervals, but in the case of around the half-width of the interval is parametrized by a free variable i.
- A Bayesian listener L processing around n draws inferences about both i and k. An around n-update then redistributes more weight to values of k closer to n.

$$\mathcal{P}_{\mathcal{L}}[k \mid \mathbf{around} \mid \mathbf{n}] \propto \mathcal{P}_{\mathcal{L}}[k] \sum_{i=|n-k|}^{n} \mathcal{P}_{\mathcal{L}}[i]$$

$$\mathcal{P}_{\mathcal{L}}[k \mid \mathbf{between} \ \mathbf{x} \ \mathbf{and} \ \mathbf{y}] \propto \left\{ egin{array}{ll} \mathcal{P}_{\mathcal{L}}[k] & \mathrm{if} & k \in [x;y] \\ 0 & \mathrm{if} & k \notin [x;y] \end{array}
ight.$$

Prediction [Égré et al., 2022]

- Preregistered experiment conducted on 240 MTurk participants
 presented with matching around n (n=40, 50 or 60) and between
 x and y statements.
- Two tasks designed to elicit R_a and R_b:
 - Define a suitable interval of possible numerical values compatible with the expression (around or between);
 - Assign weights to the selected values according to how likely each value is to be the exact one.

- Preregistered experiment conducted on 240 MTurk participants
 presented with matching around n (n=40, 50 or 60) and between
 x and y statements.
- Two tasks designed to elicit R_a and R_b :
 - Define a suitable interval of possible numerical values compatible with the expression (around or between);
 - Assign weights to the selected values according to how likely each value is to be the exact one.

- Preregistered experiment conducted on 240 MTurk participants
 presented with matching around n (n=40, 50 or 60) and between
 x and y statements.
- Two tasks designed to elicit R_a and R_b :
 - Define a suitable interval of possible numerical values compatible with the expression (around or between);
 - Assign weights to the selected values according to how likely each value is to be the exact one.

- Preregistered experiment conducted on 240 MTurk participants
 presented with matching around n (n=40, 50 or 60) and between
 x and y statements.
- Two tasks designed to elicit R_a and R_b :
 - Define a suitable interval of possible numerical values compatible with the expression (around or between);
 - Assign weights to the selected values according to how likely each value is to be the exact one.

- Preregistered experiment conducted on 240 MTurk participants
 presented with matching around n (n=40, 50 or 60) and between
 x and y statements.
- Two tasks designed to elicit R_a and R_b :
 - Define a suitable interval of possible numerical values compatible with the expression (around or between);
 - Assign weights to the selected values according to how likely each value is to be the exact one.

Results

Curious about the results?

Come see our poster!

Results

Curious about the results?

Come see our poster!

Results

Curious about the results?

Come see our poster!

Selected references i

Bergen, L., Levy, R., and Goodman, N. (2016).

Pragmatic reasoning through semantic inference.

Semantics and Pragmatics.

Lassiter, D. and Goodman, N. D. (2013).

Context, scale structure, and statistics in the interpretation of positive-form adjectives.

SALT.

Qing, C. and Franke, M. (2015).

Gradable adjectives, vagueness, and optimal language use: A speaker-oriented model.

SALT.

Égré, P., Spector, B., Mortier, A., and Verheyen, S. (2022).

On the optimality of vagueness: "around", "between", and the gricean maxims.

L&P.