IT-Security 1

Chapter 12: SPAM

Prof. Dr.-Ing. Ulrike Meyer WS 15/16

Chapter Overview

- What is Spam and how serious is it?
- Sources and Content of Spam
- Why Spam works in the first place
- Anti-Spam Mechanisms (non-exclusive)
 - Spam filters
 - Grey-listing
 - New protocols
 - Including authentication mechanisms in existing protocols
 - Increasing costs for spammers
 - Legal measures

What's Spam?

- Unsolicited commercial email or "junk email"
- SPAM stands for "SPiced hAM"
- The term originates from a Monty Python's Flying Circus scene
 - There the actors keep saying 'Spam, Spam, Spam and Spam' when reading options from a menu.
 - http://www.youtube.com/watch?v=cFrtpT1mKy8
- Today the spam-phenomenon has also spread to
 - Short messages
 - VoIP messages
 - **....**

How Much SPAM is there?

- Statistic shows spam/email gathered by Yale's IT-Services
- Numbers are in million emails (corresponds to 70-85% spam)

Symantec SPAM and Phishing Report 2012

May 2012

SPAM Statistics from Symantec Threat Report 1H 2013

Kaspersky Labs, SPAM Report 2014

Proportion of spam in email traffic in 2014, 2015: 54% in Nov.

How Much Does SPAM Cost?

- Ferris Research estimates the total cost of spam for 2009 to US \$130 billion
 - User productivity cost (deleting spam, looking for false positives, etc.):
 85%
 - Help desk cost (IT helping end users deal with spam): 10%
 - Spam control software/hardware/service (licensing fees, amortized capital costs, etc.): 5%

How Do Spammers Make Money?

- Direct Income
 - Act as marketing companies and obtain money for campaigns
- Web banner revenues
 - Get paid for every visit on a web page advertised in a spam mail
- Validation of contact information
 - Find valid email addresses and sell them
- Sell spam business models
 - Collect and sell information collected from responses to spam
- Scams
 - Phishing, gambling, dubious job offers, investment swindles
- Product selling
 - Spammers that sell the product they advertise

Why Spam Works

- SMTP does not require sender authentication or any authenticated routing information
 - Only the address of the receiver has to be correct
- In particular: from field can easily be manipulated to contain any email address
 - Spammers can thus easily hide their identity
- Spammer typically do not use their own ISP to send out spam
 - They try to connect to the destination email server directly or
 - Use open email relays
 - Use compromised client machines

Anti-Spam Methods

- Can be divided into
 - Pre-sent mechanisms
 - Increase spammers costs
 - Micropayments or digital stamps
 - Increase spammers risks
 - Legislation such as CAN-SPAM Act
 - Post-sent mechanisms
 - Content-based filtering
 - Source address-based
 - Filtering (blacklisting, whitelisting)
 - Authentication based on certificates and signatures
 - Challenge-response based mechanisms
 - New protocols

Increasing Spamming Costs

- Increasing Monetary Costs
 - Digital stamps and other micropayments
 - Require sender of an email to pay a small monetary amount for each email sent
 - Does not hurt regular users but mass-mailers
 - Problem: mailing-lists and other wanted bulk-mail
 - Using tokens
 - Same idea but non-monetary tokens
 - Using puzzles that require human interaction
 - Before an email is accepted the sender is required to solve a puzzle that requires human interaction
 - Problem: what about wanted automatically generated mail such as order confirmations?

Increase Spammers Risk

- Take legal measures and prosecute spammers
- May help to deter spammers
- Example of spam legislation
 - The US CAN-SPAM-Act
 - The European regulations
 - Both were created in 2003 and are effective since 2004

The CAN-SPAM Act of 2003 (1)

- Controlling the Assault of Non-Solicited Pornography And Marketing Act of 2003
- Defines commercial e-mail as
 - Email, the primary purpose of which is
 - commercial advertisement or promotion of a commercial product or service
- Allows for commercial e-mail to be sent to recipients only if
 - Information in header is not false or misleading
 - Subject headings are not deceptive
 - Return e-mail address is functional
 - Opt-out mechanism included
 - Enables recipients to indicate they do not wish to receive future commercial e-mail messages from that sender
 - Email must be clearly and conspicuously identified as an advertisement

The CAN-SPAM Act of 2003 (2)

- Sexually oriented commercial e-mail must include, in the subject heading, a "warning label"
- Violators may be sued by Federal Trade Commission, state attorneys, and ISPs (but not by individuals)
- Violators are subject to statutory damages of up to \$250 per e-mail, to a maximum of up to \$6 million
- Violators may be fined, or sentenced to up to 3, or five years in prison, or both, for
 - accessing someone else's computer without authorization and using it to send multiple commercial e-mail messages,
 - or materially falsifying header information in multiple commercial email messages
 - **...**

The CAN-SPAM ACT Does Not...

- ... Create a "Do Not Email registry" where consumers can place their e-mail addresses in a centralized database to indicate they do not want commercial e-mail
- ... Require that consumers "opt-in" before receiving commercial email
- ... Require commercial e-mail to include an identifier such as "ADV" in the subject line to indicate it is an advertisement

EU Directive 2003-13

- Article 13(1) of the Privacy and Electronic Communications Directive requires Member States to
 - Prohibit the sending of unsolicited commercial communications by
 - Email or other electronic messaging systems such as SMS and MMS
 - Unless prior consent of the receiver has been obtained (opt-in system)
 - Unless there is an existing customer relationship, in which case, the sender must provide an opt-out option
- Article 13(4) prohibits direct marketing messages by e-mail or SMS which
 - Conceal or disguise the identity of the sender
 - Do not include a valid address to which recipients can send a request to cease such messages
- The EU directive sets the broad policy, but each member nation must pass its own law as to how to implement it

Blacklisting

- Can be centralized or local
- Centralized blacklisting typically uses DNS
 - IP addresses of suspected spammers are entered in a centrally maintained database
 - Standard DNS lookups are used to query the database at the time of the SMTP connection
 - SMTP client connects to an SMTP server
 - Server checks SMTP client's IP address using a DNS lookup mechanism (blacklist check) to check if the client's address is on the blacklist
- Advantages
 - DNS lookups have low CPU overhead
 - Spam can be blocked before it arrives
- Disadvantages
 - Number of overall DNS lookups increases
 - Blacklist maintainer needs to be trusted

Whitelisting

- Is typically local
- Indicates a list of IP addresses of SMTP clients which are to be trusted
- Advantages
 - Emails coming from IP addresses on the whitelist can bypass further spam filters
- Disadvantages
 - Whitelists tend to be overly restrictive when used alone
 - If a spammer is able to send email from an IP address on the whitelist his spam may bypass further spam filters
- Whitelists are typically combined with other spam blocking techniques

Challenge / Response Mechanisms

- Advanced versions of whitelists
- Incoming messages from IP addresses not on the whitelist trigger an automated reply (challenge) to the sender
- Sender needs to prove that he is a real user and not an automated mailer
 - E.g. sender is required to click on a link in the challenge message
- Only after the proof is obtained the original email is delivered to the intended recipient
- Advantages
 - Help to protect against the large amount of false positives generated by whitelists
- Disadvantages
 - Potential deadlock if sender and receiver applies such a mechanism
 - Unclear how to deal with legitimate automated emails like order confirmations

Requiring Authentication

- Sender is required to authenticate to the receiver, otherwise his email is not accepted
- Mechanisms suggested are either based on simple IP address legitimacy checking, or based on certificates and digital signatures
- Digital signatures and certificates require a working public key infrastructure with trusted authorities
 - Signatures are generated and checked by mail servers rather than senders and receivers, public keys are distributed via DNS
 - Example for such a mechanism: Domain Key Identified Mail developed by IETF

Greylisting

- Very aggressive method of blocking Spam
- Based on the observation that Spammers typically do not try to resent messages as they do not know if the recipient addresses really exist
- When a client connects to an SMTP server that uses greylisting
 - Server records IP address of SMTP client, sender address, recipient address
 - Checks if entry for the record already exists
 - If yes, it accepts the message
 - If no it stores the record and returns a temporary reject message
 - Typically the mail agents of the sender reacts by trying to resent the message

Rule-based Filters

- Are content-based filters
- Were popular until 2002 when Bayesian filters became largely available
- Search each email message for patterns that indicate spam
 - E.g. specific words or phrases, large amounts of capital letters or exclamation marks
- Detection of specific patterns attributes an amount of points to an email message
- If the points gathered for an email message exceeds a certain threshold it is classified as spam
- Problems
 - Static rule sets can easily be defeated by spammers e.g. by misspelling words

Bayesian Spam Filters

- Originally introduced in 1998
- Work by analyzing the words inside an email to calculate the probability that it is spam
- Probability is based on
 - Those words that provide evidence that a message is spam
 - Those words that provide evidence that a message not spam
- Bayesian filters need to be trained with a set of email messages that are correctly classified into spam and "ham" (= legitimate email)
- Provided they receive ongoing training, Bayesian filters are constantly selfadapting
 - Can potentially also stop new spam
- Disadvantage
 - Bayesian filters required the entire message to be received before analysis can begin

How Bayesian Spam Filters Work (1)

- Require "priors", i.e. a priory probabilities, for a message being spam or ham
 - E.g. P(spam) = :80%, P(ham) = :20%
- Require "feature vectors" that describe certain properties of an email message
 - E.g. feature vector x may be a Boolean variable that is
 - 1 if message contains both the words "Viagra" and "buy"
 - 0 if message does not contain both "Viagra" and "buy"
- Requires estimates for the conditional probabilities
 - P(x|spam) and P(x|ham)
 - These can be computed, with the help of a training set of correctly classified email messages

How Bayesian Spam Filters Work (2)

- If a new message is received with feature vector x, then a decision for ham or spam depends on
 - P(ham|x) and P(spam|x)
- These probabilities can be computed with the help of Bayes' Theorem:

$$P(ham | x) = \frac{P(x | ham) P(ham)}{P(x)}$$

$$P(spam | x) = \frac{P(x | spam) P(spam)}{P(x)}$$

How Bayesian Filters Work (3)

Recall

$$P(ham|x) = \frac{P(x|ham) P(ham)}{P(x)}$$

$$P(spam|x) = \frac{P(x|spam) P(spam)}{P(x)}$$

- Decide for "spam" if P(spam|x) > P(ham|x)
- This is equivalent to
 P(x|spam) P(spam) > P(x|ham) P(ham)

or
$$\frac{P(x|spam)}{P(x|ham)} > \frac{P(ham)}{P(spam)}$$
 Decision Threshold

How Bayesian Filters Work (4)

- Up till now we considered false classification as spam as bad as false classification as ham
- However, this is generally not true
 - False classification of ham message as spam is much worse than receiving a spam message once in a while
- This can be captured with the help of a loss function

Goal: minimize the expected loss during decision

How Bayesian Filters Work (5)

Decision that minimizes the expected loss

$$L_{sh}P(spam|x) > L_{hs}P(ham|x)$$

Using Bayes Theorem again, we get

$$L_{sh}P(x|spam) P(spam) > L_{hs}P(x|ham) P(ham)$$

Or equivalently

$$\frac{P(x|spam)}{P(x|ham)} > \frac{L_{hs}P(ham)}{L_{sh}P(spam)}$$
 Decision Threshold taking loss into account

How Bayesian Filters Work (6)

- Naturally Bayesian spam filters do use many feature vectors \mathbf{x}_1 $\mathbf{x}_2...$
- The Naïve Bayes approach assumes that all of these feature vectors are independent such that

$$P(x_1,...,x_n|spam) = \Pi_i P(x_i|spam)$$

A decision for spam is therefore taken if

$$\prod_{i} \frac{P(x_i | spam)}{P(x_i | ham)} > \frac{L_{hs}P(ham)}{L_{sh}P(spam)}$$

31

Examples for Feature Vectors

- Standard Bayesian Spam Filters
 - Each word in the header, subject and body is a feature
- Token grab bag
 - A sliding window of five words is moved across the input text
 - All combinations of those five words are taken in an order-sensitive way as a feature
- Token Sequence Sensitive
 - Sliding window of five words moved across the text
 - All combinations of word deletions are applied
 - Each resulting combination of words is taken as feature

• • • • •

Further Reading and Resources

- Marcia S. Smith, "Spam": An Overview of Issues Concerning Commercial Electronic Mail, 2006
- W. Gansterer et al., "Anti-Spam-Methods State of the Art", 2005
- D. Cook et al., "Catching Spam Before it Arrives", 2006
- Domain key identified mail: http://www.dkim.org/ietf-dkim.htm provides a nice overview on the IETF work