Randomized Selection

Tufts University

Warm-up Question

What are the main steps of $\operatorname{Selection}$ algorithm?

Previously ...

- Randomized analysis is a fair way of expressing runtimes
 Worst possible input
 Average over random choices
- When analyzing a randomized algorithm:
 - 1. Define X(n) = runtime for worst case input of size n X_i = IRV for each possible random case
 - 2. Compute $E[X_i]$ and runtime c_i associated to that case
 - 3. Express X as combination of X_i s

 Often $X = \sum_i X_i c_i + \text{common operations}$
 - 4. Compute E[X] and use cheat of the week

Cheat of the day

$$\sum_{i=\left\lfloor\frac{n}{2}\right\rfloor}^{n-1}i\leq\frac{3}{8}n^2$$

SELECTION review

```
SELECTION(A,n,k)

if n \le 5, k = 1 or k = n solve by brute force

i \leftarrow \text{MoM} and recurse to pick an \text{index}(A, n)

pos \leftarrow \text{PARTITION}(A, n, i)

if pos = k return A[pos]

if pos > k return \text{SELECTION}(A[1, pos - 1], pos - 1, k)

else return \text{SELECTION}(A[pos + 1, n], n - pos, k - pos)
```

Can we simplify the algorithm?

Hint

Remember step 3?

Lemma

Regardless of how we pick index, the algorithm is always correct

Let's pick an index at random

Randomized SELECTION

```
RANDSELECTION(A,n,k)

if n \le 5, k = 1 or k = n solve by brute force

i \leftarrow \text{Random Number between 1 and } n

pos \leftarrow \text{PARTITION}(A, n, i)

if pos = k return A[pos]

if pos > k return Pandselection(A[1, pos - 1], pos - 1, k)

else return Pandselection(A[pos + 1, n], n - pos, k - pos)
```

Runtime of RANDSELECTION?

RANDSELECTION

```
If base case solve by brute force i \leftarrow \text{Random Number between 1 and } n pos \leftarrow \text{PARTITION}(A, n, i) recursively solve in correct portion
```

Let's analyze:

$$X_j = 1$$
 if $A[i]$ is j -th smallest number in array
If $X_j = 1$, runtime $c_j = \max\{R(j-1), R(n-j)\}$
Overall runtime $R(n) = \sum_j X_j c_j + \Theta(n)$

Math magic

```
\begin{split} E[R(n)] &= \\ &= E[\Theta(n) + \sum_{j=1}^{n} X_{j} \max\{R(j-1), R(n-j)\}] & \text{definition} \\ &= \Theta(n) + \sum_{j=1}^{n} E[X_{j} \max\{R(j-1), R(n-j)\}] & \text{LoE} \\ &= \Theta(n) + \sum_{j=1}^{n} E[X_{j}] E[\max\{R(j-1), R(n-j)\}] & \text{independent} \\ &= \Theta(n) + \frac{1}{n} \sum_{j=1}^{n} E[\max\{R(j-1), R(n-j)\}] & \text{algebra} \\ &= \Theta(n) + \frac{2}{n} \sum_{i=n/2}^{n-1} E[R(j)] & \text{double counting} \end{split}
```

Sounds familiar?

Math magic

$$E[R(n)] \le \Theta(n) + \frac{2}{n} \sum_{j=n/2}^{n-1} E[R(j)]$$

Claim: $E[R(n)] \le cn$

Proof by substitution

Base case: $E[R(1)] = d \le c \cdot 1 \rightarrow \text{ ok as long as } c \ge d$

Induction:

$$\begin{split} E[R(n)] &= \Theta(n) + \frac{2}{n} \sum_{j=n/2}^{n-1} E[R(j)] \\ &\leq d'n + \frac{2}{n} \sum_{j=n/2}^{n-1} cj & \text{(induction hypothesis)} \\ &\leq d'n + \frac{2c}{n} \sum_{j=n/2}^{n-1} j & \text{(algebra)} \\ &\leq d'n + \frac{2c}{n} (\frac{3}{8}n^2) & \text{(cheat of the day)} \\ &\leq d'n + \frac{3c}{4}n & \text{(algebra)} \\ &\leq cn & \text{(if } c \geq 4d') \end{split}$$

Discussion

- Randomized analysis is a powerful tool
 Does not improve runtime (just help analysis)
- ► Theoretically speaking, worst case is better than expected In practice expected ≈ worst-case Randomized algorithms are often easier to code

Additional Practice questions:

- Compare the formulas between QS and Rand Select What is different?

 One solves to $\Theta(n \log n)$ and other to $\Theta(n)$ Can you explain why?
- What other randomized algorithms do you know? Can you analyze them?

Block 1 topics

- Asymptotic notation
- Comparison-based sorting algorithms
 Other sorting algorithms
 Other sorting properties (in-place, stable, ...)
- Recurrences (identifying and expressing runtime)
- Solving recurrences (trees/substitution/master theorem)
- ⋆ SELECTION algorithm
- Sorting lower bound
- IRVs and Randomized algorithms
 Heaps

Items with ★ are of critical importance

Impressive!

Asymptotic notation

- * Understanding the concepts of big O, Ω , and Θ Juggle definitions to prove statements
- Given an algorithm, compute (ideally tight) bounds
 Justify why bounds apply
- Bounds always apply to worst-case runtime
 Capable of comparing bounds

Sorting algorithms

No need to know C++ code, just big picture overview

* Given a setting, choose fastest algorithm

Comparison-Based

INSERTIONSORT, MERGESORT, BUBBLESORT, HEAPSORT, and QUICKSORT

* Analyze new algorithms (i.e. NotSoEfficientSort)

Other algorithms

RADIXSORT, COUNTINGSORT

 \star Given strange setting, give values of k, ℓ and d

Math tools

Recurrences

- * Express runtime of recursive algorithm as recurrence
- Solve a recurrence using substitution and recursion tree
 Identify if master theorem applies (and apply if possible)

IRVs

Model a complex problem as a combination of simple IRVs
 Use linearity of expectation to juggle math

SELECTION algorithm

Know pseudocode of algorithm

- Understand relationship between all pieces
 Argue correctness
- * Understand recurrence for runtime
- Advocate for addition into MoMa

Sorting lower bound

- Understand it applies to unknown strategies
 Recognizing total number of outcomes
- Identifying number of branches
 Connect height of tree to runtime
- ⋆ Glueing all pieces together

Randomized algorithms

- * Given algorithm, identify simple event
- ★ Express overall runtime as combination of IRVs
- * Understand all components of final expression

Being able to juggle math

Expected = worst case input, average over random choices

About the exam

Will try to cover all topics

- Tight! Beware of time constraints!
- Spend time proportionate to points
- Light on memorization, focus on understanding

Remember golden rules

- Read how to write proofs
- Justify your answers
- Show that you know
- ▶ Make it easy for graders to give you full credit

Relax! It is only one exam

- How many courses at Tufts?
- How many exams before?
- Many more await after!

Exam Tips

Keep a mental map of tools

- Read question and analyze
- Identify: do I need sorting? IRVs?

Prioritize time by points

- Read how to write proofs
- Practice math for fluidity
- Topics will (most likely) not be repeated
- If you get stuck go to next question
- Look at it afterwards

Show that you know

- Say what you will do
- Justify your steps
- Good handwriting

Coming Soon

- Revisit Hashing, BST, AVL Can you prove that Hashing takes O(1) time?
- Augmented trees
 Let's make AVL trees even more powerful
- Dynamic Programming Recursion on steroids
- Amortized runtime
 Another way to average runtimes

This and much more in block 2 of the course!