Module 02: Numerical Methods

Unit 15: Finite Volume Method: Higher Resolution Methods

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Dr. Anirban Dhar NPTEL Computational Hydraulics 1 /

Learning Objective

 To discretize conservation laws using Higher Resolution Methods.

Governing Equation

Conservative form (Guinot, 2010)

A form of one-dimensional scalar conservation law can be written as:

$$\frac{\partial \phi}{\partial t} + \frac{\partial \mathcal{F}_{\phi}}{\partial x} = S_{\phi} \tag{1}$$

where

 \mathcal{F}_{ϕ} = Flux function.

 S_{ϕ} = Source term.

Piecewise Reconstruction (LeVeque, 2002)

A piecewise linear from of cell average value ϕ_P^n can be used as

$$\tilde{\phi}^n(x,t^n) = \phi_P^n + \sigma_P^n(x - x_P) \quad \forall x \in [x_w, x_e)$$

Piecewise Reconstruction (LeVeque, 2002)

A piecewise linear from of cell average value ϕ_P^n can be used as

$$\tilde{\phi}^n(x,t^n) = \phi_P^n + \sigma_P^n(x - x_P) \quad \forall x \in [x_w, x_e)$$

Let us consider that the flux term can be written as,

$$\mathcal{F}_{\phi} = a\phi$$

where a is constant.

Piecewise Reconstruction (LeVeque, 2002)

A piecewise linear from of cell average value ϕ_P^n can be used as

$$\tilde{\phi}^n(x,t^n) = \phi_P^n + \sigma_P^n(x - x_P) \quad \forall x \in [x_w, x_e)$$

Let us consider that the flux term can be written as,

$$\mathcal{F}_{\phi} = a\phi$$

where a is constant. Solution for future time level can be written as

$$\tilde{\phi}(x,t^{n+1}) = \tilde{\phi}(x - a\Delta t, t^n)$$

Piecewise Reconstruction (LeVeque, 2002)

A piecewise linear from of cell average value ϕ_P^n can be used as

$$\tilde{\phi}^n(x,t^n) = \phi_P^n + \sigma_P^n(x - x_P) \quad \forall x \in [x_w, x_e)$$

Let us consider that the flux term can be written as,

$$\mathcal{F}_{\phi} = a\phi$$

where a is constant. Solution for future time level can be written as

$$\tilde{\phi}(x,t^{n+1}) = \tilde{\phi}(x - a\Delta t, t^n)$$

Numerical flux function can written as

$$\bar{\mathcal{F}}_{\phi}(x_e, t^n) = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \mathcal{F}_{\phi}(x_e, t) dt$$

$$\bar{\mathcal{F}}_{\phi}(x_w, t^n) = \frac{1}{\Delta t} \int_{1}^{t+\Delta t} \mathcal{F}_{\phi}(x_w, t) dt$$

a > 0

Numerical flux function for east face can be calculated as

$$\bar{\mathcal{F}}_{\phi}(x_e, t^n) = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \mathcal{F}_{\phi}(x_e, t) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a\tilde{\phi}(x_e, t) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a\tilde{\phi}(x_e - a(t - t^n), t^n) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a \left[\phi_P^n + \sigma_P^n(x_e - a(t - t^n) - x_P)\right] dt$$

$$= a\phi_P^n + \frac{a}{2}\sigma_P^n(\Delta x - a\Delta t)$$

a > 0

Numerical flux function for west face can be calculated as

$$\bar{\mathcal{F}}_{\phi}(x_w, t^n) = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \mathcal{F}_{\phi}(x_w, t) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a\tilde{\phi}(x_w, t) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a\tilde{\phi}(x_w - a(t - t^n), t^n) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a \left[\phi_W^n + \sigma_W^n(x_w - a(t - t^n) - x_W)\right] dt$$

$$= a\phi_W^n + \frac{a}{2}\sigma_W^n(\Delta x - a\Delta t)$$

Final form of the discretization using finite volume method can be written as

$$\phi_P^{n+1} = \phi_P^n - \frac{\Delta t}{\Delta x} \left[\bar{\mathcal{F}}_{\phi}(x_e, t^n) - \bar{\mathcal{F}}_{\phi}(x_w, t^n) \right]$$

Final form of the discretization using finite volume method can be written as

$$\phi_P^{n+1} = \phi_P^n - \frac{\Delta t}{\Delta x} \left[\bar{\mathcal{F}}_{\phi}(x_e, t^n) - \bar{\mathcal{F}}_{\phi}(x_w, t^n) \right]$$

$$\phi_P^{n+1} = \phi_P^n - \frac{\Delta t}{\Delta x} \left[\left(a \phi_P^n + \frac{a}{2} \sigma_P^n (\Delta x - a \Delta t) \right) - \left(a \phi_W^n + \frac{a}{2} \sigma_W^n (\Delta x - a \Delta t) \right) \right]$$

Final form of the discretization using finite volume method can be written as

$$\phi_P^{n+1} = \phi_P^n - \frac{\Delta t}{\Delta x} \left[\bar{\mathcal{F}}_{\phi}(x_e, t^n) - \bar{\mathcal{F}}_{\phi}(x_w, t^n) \right]$$

or,

$$\phi_P^{n+1} = \phi_P^n - \frac{\Delta t}{\Delta x} \left[\left(a \phi_P^n + \frac{a}{2} \sigma_P^n (\Delta x - a \Delta t) \right) - \left(a \phi_W^n + \frac{a}{2} \sigma_W^n (\Delta x - a \Delta t) \right) \right]$$

$$\phi_P^{n+1} = \phi_P^n - \frac{a\Delta t}{\Delta x} \left(\phi_P^n - \phi_W^n\right) - \frac{1}{2} \frac{a\Delta t}{\Delta x} (\Delta x - a\Delta t) (\sigma_P^n - \sigma_W^n)$$

a < 0

Numerical flux function for east face can be calculated as

$$\bar{\mathcal{F}}_{\phi}(x_e, t^n) = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \mathcal{F}_{\phi}(x_e, t) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a\tilde{\phi}(x_e, t) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a\tilde{\phi}(x_e - a(t - t^n), t^n) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a \left[\phi_E^n + \sigma_E^n(x_e - a(t - t^n) - x_E)\right] dt$$

$$= a\phi_E^n - \frac{a}{2}\sigma_E^n(\Delta x + a\Delta t)$$

a < 0

Numerical flux function for west face can be calculated as

$$\bar{\mathcal{F}}_{\phi}(x_w, t^n) = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \mathcal{F}_{\phi}(x_w, t) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a\tilde{\phi}(x_w, t) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a\tilde{\phi}(x_w - a(t - t^n), t^n) dt$$

$$= \frac{1}{\Delta t} \int_{t}^{t+\Delta t} a \left[\phi_P^n + \sigma_P^n(x_w - a(t - t^n) - x_P)\right] dt$$

$$= a\phi_P^n - \frac{a}{2}\sigma_P^n(\Delta x + a\Delta t)$$

Final form of the discretization using finite volume method can be written as

$$\phi_P^{n+1} = \phi_P^n - \frac{\Delta t}{\Delta x} \left[\bar{\mathcal{F}}_{\phi}(x_e, t^n) - \bar{\mathcal{F}}_{\phi}(x_w, t^n) \right]$$

a < 0

Final form of the discretization using finite volume method can be written as

$$\phi_P^{n+1} = \phi_P^n - \frac{\Delta t}{\Delta x} \left[\bar{\mathcal{F}}_{\phi}(x_e, t^n) - \bar{\mathcal{F}}_{\phi}(x_w, t^n) \right]$$

$$\phi_P^{n+1} = \phi_P^n - \frac{\Delta t}{\Delta x} \left[\left(a \phi_E^n - \frac{a}{2} \sigma_E^n (\Delta x + a \Delta t) \right) - \left(a \phi_P^n - \frac{a}{2} \sigma_P^n (\Delta x + a \Delta t) \right) \right]$$

a < 0

Final form of the discretization using finite volume method can be written as

$$\phi_P^{n+1} = \phi_P^n - \frac{\Delta t}{\Delta x} \left[\bar{\mathcal{F}}_{\phi}(x_e, t^n) - \bar{\mathcal{F}}_{\phi}(x_w, t^n) \right]$$

or,

$$\phi_P^{n+1} = \phi_P^n - \frac{\Delta t}{\Delta x} \left[\left(a \phi_E^n - \frac{a}{2} \sigma_E^n (\Delta x + a \Delta t) \right) - \left(a \phi_P^n - \frac{a}{2} \sigma_P^n (\Delta x + a \Delta t) \right) \right]$$

$$\phi_P^{n+1} = \phi_P^n - \frac{a\Delta t}{\Delta x} \left(\phi_E^n - \phi_P^n \right) - \frac{1}{2} \frac{a\Delta t}{\Delta x} (\Delta x + a\Delta t) (\sigma_E^n - \sigma_P^n)$$

Numerical Flux

Numerical flux values can be summarized as

$$\bar{\mathcal{F}}_{\phi}(x_e, t^n) = \begin{cases} a\phi_P^n + \frac{a}{2}\sigma_P^n(\Delta x - a\Delta t), & a > 0\\ a\phi_E^n - \frac{a}{2}\sigma_E^n(\Delta x + a\Delta t), & a < 0 \end{cases}$$

$$\bar{\mathcal{F}}_{\phi}(x_e, t^n) = a^+ \phi_P^n + a^- \phi_E^n + \frac{a^+}{2} \sigma_P^n (\Delta x - a\Delta t) - \frac{a^-}{2} \sigma_E^n (\Delta x + a\Delta t)$$
$$= a^+ \phi_P^n + a^- \phi_E^n + \frac{a^+}{2} \sigma_P^n (\Delta x - a\Delta t) - \frac{a^-}{2} \sigma_E^n (\Delta x + a\Delta t)$$

Numerical Flux

Numerical flux values can be summarized as

$$\bar{\mathcal{F}}_{\phi}(x_e, t^n) = \begin{cases} a\phi_P^n + \frac{a}{2}\sigma_P^n(\Delta x - a\Delta t), & a > 0\\ a\phi_E^n - \frac{a}{2}\sigma_E^n(\Delta x + a\Delta t), & a < 0 \end{cases}$$

$$\bar{\mathcal{F}}_{\phi}(x_{e}, t^{n}) = a^{+}\phi_{P}^{n} + a^{-}\phi_{E}^{n} + \frac{a^{+}}{2}\sigma_{P}^{n}(\Delta x - a\Delta t) - \frac{a^{-}}{2}\sigma_{E}^{n}(\Delta x + a\Delta t)$$

$$= a^{+}\phi_{P}^{n} + a^{-}\phi_{E}^{n} + \frac{a^{+}}{2}\sigma_{P}^{n}(\Delta x - a\Delta t) - \frac{a^{-}}{2}\sigma_{E}^{n}(\Delta x + a\Delta t)$$

$$\bar{\mathcal{F}}_{\phi}(x_{w}, t^{n}) = \begin{cases} a\phi_{W}^{n} + \frac{a}{2}\sigma_{W}^{n}(\Delta x - a\Delta t), & a > 0 \\ a\phi_{P}^{n} - \frac{a}{2}\sigma_{P}^{n}(\Delta x + a\Delta t), & a < 0 \end{cases}$$

Choice of Slopes

• Zero Slope: $\sigma_P^n = 0$ Godunov

Choice of Slopes

- Zero Slope: $\sigma_P^n = 0$ Godunov
- Centred Slope: $\sigma_P^n = \frac{\phi_E^n \phi_W^n}{2\Delta x}$ Fromm

Choice of Slopes

- Zero Slope: $\sigma_P^n = 0$ Godunov
- Centred Slope: $\sigma_P^n = \frac{\phi_E^n \phi_W^n}{2\Delta x}$ Fromm
- Upwind Slope: $\sigma_P^n = \frac{\phi_P^n \phi_W^n}{\Delta x}$ BeamWarming

Choice of Slopes

- Zero Slope: $\sigma_P^n = 0$ Godunov
- Centred Slope: $\sigma_P^n = \frac{\phi_E^n \phi_W^n}{2\Delta x}$ Fromm
- Upwind Slope: $\sigma_P^n = \frac{\phi_P^n \phi_W^n}{\Delta x}$ BeamWarming
- Downwind Slope: $\sigma_P^n = \frac{\phi_E^n \phi_P^n}{\Delta x}$ LaxWendroff

Choice of Slopes

- Zero Slope: $\sigma_P^n = 0$ Godunov
- Centred Slope: $\sigma_P^n = \frac{\phi_E^n \phi_W^n}{2\Delta x}$ Fromm
- Upwind Slope: $\sigma_P^n = \frac{\phi_P^n \phi_W^n}{\Delta x}$ BeamWarming
- Downwind Slope: $\sigma_P^n = \frac{\phi_E^n \phi_P^n}{\Delta x}$ LaxWendroff

 σ_P^n approximates the derivative $\phi_{,x}$ over the P^{th} cell.

Is there any limit for the Slope?

Is there any limit for the Slope?

Total variation of a function can be defined as

$$TV(\phi) = \sum_{\forall i} |\phi_i - \phi_{i-1}|$$

Is there any limit for the Slope?

Total variation of a function can be defined as

$$TV(\phi) = \sum_{\forall i} |\phi_i - \phi_{i-1}|$$

Total Variation Diminishing (TVD)

$$TV(\phi^{n+1}) \le TV(\phi^n)$$

Is there any limit for the Slope?

Total variation of a function can be defined as

$$TV(\phi) = \sum_{\forall i} |\phi_i - \phi_{i-1}|$$

Total Variation Diminishing (TVD)

$$TV(\phi^{n+1}) \le TV(\phi^n)$$

Monotonicity Preserving Method

lf

$$\phi_i^n \ge \phi_{i+1}^n, \quad \forall i$$

Is there any limit for the Slope?

Total variation of a function can be defined as

$$TV(\phi) = \sum_{\forall i} |\phi_i - \phi_{i-1}|$$

Total Variation Diminishing (TVD)

$$TV(\phi^{n+1}) \le TV(\phi^n)$$

Monotonicity Preserving Method

lf

$$\phi_i^n > \phi_{i+1}^n, \quad \forall i$$

then

$$\phi_i^{n+1} \ge \phi_{i+1}^{n+1}, \quad \forall i$$

Is there any limit for the Slope?

Total variation of a function can be defined as

$$TV(\phi) = \sum_{\forall i} |\phi_i - \phi_{i-1}|$$

Total Variation Diminishing (TVD)

$$TV(\phi^{n+1}) \le TV(\phi^n)$$

Monotonicity Preserving Method

lf

$$\phi_i^n > \phi_{i+1}^n, \quad \forall i$$

then

$$\phi_i^{n+1} \ge \phi_{i+1}^{n+1}, \quad \forall i$$

TVD is Monotonicity Preserving Method

Higher Resolution Methods Slope-Limiter

First Order Upwind

$$\sigma_P^n = 0$$

Higher Resolution Methods Slope-Limiter

First Order Upwind

$$\sigma_P^n = 0$$

Minmod

$$\sigma_P^n = minmod\left(\frac{\phi_P^n - \phi_W^n}{\Delta x}, \frac{\phi_E^n - \phi_P^n}{\Delta x}\right)$$

where

$$minmod(\alpha,\beta) = \begin{cases} \alpha & \text{if} \quad |\alpha| < |\beta| \quad \text{and} \quad \alpha\beta > 0 \\ \beta & \text{if} \quad |\beta| < |\alpha| \quad \text{and} \quad \alpha\beta > 0 \\ 0 & \text{if} \quad \alpha\beta \leq 0 \end{cases}$$

Higher Resolution Methods Slope-Limiter

Superbee Limiter

$$\sigma_P^n = maxmod(\sigma_P^{(1)}, \sigma_P^{(2)})$$

Higher Resolution Methods Slope-Limiter

Superbee Limiter

$$\sigma_P^n = maxmod(\sigma_P^{(1)}, \sigma_P^{(2)})$$

where

$$\sigma_P^{(1)} = minmod\left(\frac{\phi_E^n - \phi_P^n}{\Delta x}, 2\frac{\phi_P^n - \phi_W^n}{\Delta x}\right)$$

Higher Resolution Methods Slope-Limiter

Superbee Limiter

$$\sigma_P^n = maxmod(\sigma_P^{(1)}, \sigma_P^{(2)})$$

where

$$\sigma_P^{(1)} = minmod\left(\frac{\phi_E^n - \phi_P^n}{\Delta x}, 2\frac{\phi_P^n - \phi_W^n}{\Delta x}\right)$$

$$\sigma_P^{(2)} = minmod\left(2\frac{\phi_E^n - \phi_P^n}{\Delta x}, \frac{\phi_P^n - \phi_W^n}{\Delta x}\right)$$

Flux Limiter

$$\bar{\mathcal{F}}_{\phi}(x_e, t^n) = a^+ \phi_P^n + a^- \phi_E^n + \frac{a^+}{2} \sigma_P^n (\Delta x - a \Delta t) - \frac{a^-}{2} \sigma_E^n (\Delta x + a \Delta t)$$
$$= a^+ \phi_P^n + a^- \phi_E^n + \frac{1}{2} |a| \left(1 - \left| \frac{a \Delta t}{\Delta x} \right| \right) \Psi(\theta_e^n) (\phi_E^n - \phi_P^n)$$

$$\bar{\mathcal{F}}_{\phi}(x_e, t^n) = a^+ \phi_P^n + a^- \phi_E^n + \frac{a^+}{2} \sigma_P^n (\Delta x - a\Delta t) - \frac{a^-}{2} \sigma_E^n (\Delta x + a\Delta t)$$
$$= a^+ \phi_P^n + a^- \phi_E^n + \frac{1}{2} |a| \left(1 - \left| \frac{a\Delta t}{\Delta x} \right| \right) \Psi(\theta_e^n) (\phi_E^n - \phi_P^n)$$

where

$$\theta_e^n = \begin{cases} \frac{\phi_P^n - \phi_W^n}{\phi_E^n - \phi_P^n} & \text{for} \quad a \geq 0 \\ \frac{\phi_E^n - \phi_E^n}{\phi_E^n - \phi_P^n} & \text{for} \quad a \leq 0 \end{cases}$$

$$\bar{\mathcal{F}}_{\phi}(x_{w}, t^{n}) = a^{+}\phi_{W}^{n} + a^{-}\phi_{P}^{n} + \frac{a^{+}}{2}\sigma_{W}^{n}(\Delta x - a\Delta t) - \frac{a^{-}}{2}\sigma_{P}^{n}(\Delta x + a\Delta t)$$
$$= a^{+}\phi_{W}^{n} + a^{-}\phi_{P}^{n} + \frac{1}{2}|a|\left(1 - \left|\frac{a\Delta t}{\Delta x}\right|\right)\Psi(\theta_{w}^{n})(\phi_{P}^{n} - \phi_{W}^{n})$$

$$\bar{\mathcal{F}}_{\phi}(x_w, t^n) = a^+ \phi_W^n + a^- \phi_P^n + \frac{a^+}{2} \sigma_W^n (\Delta x - a \Delta t) - \frac{a^-}{2} \sigma_P^n (\Delta x + a \Delta t)$$
$$= a^+ \phi_W^n + a^- \phi_P^n + \frac{1}{2} |a| \left(1 - \left| \frac{a \Delta t}{\Delta x} \right| \right) \Psi(\theta_w^n) (\phi_P^n - \phi_W^n)$$

where

$$\theta_w^n = \begin{cases} \frac{\phi_W^n - \phi_{WW}^n}{\phi_P^n - \phi_W^n} & \text{for} \quad a \geq 0 \\ \frac{\phi_E^n - \phi_P^n}{\phi_P^n - \phi_W^n} & \text{for} \quad a \leq 0 \end{cases}$$

Linear Models

 $\bullet \ \ \mathsf{Upwind} \colon \ \Psi(\theta) = 0$

Linear Models

- Upwind: $\Psi(\theta) = 0$
- Lax-Wendroff: $\Psi(\theta) = 1$

Linear Models

- Upwind: $\Psi(\theta) = 0$
- Lax-Wendroff: $\Psi(\theta) = 1$
- Beam-Warming: $\Psi(\theta) = \theta$

Linear Models

- Upwind: $\Psi(\theta) = 0$
- Lax-Wendroff: $\Psi(\theta) = 1$
- Beam-Warming: $\Psi(\theta) = \theta$
- Fromm: $\Psi(\theta) = \frac{1}{2}(1+\theta)$

High-resolution Limiter Models

• minmod: $\Psi(\theta) = minmod(1, \theta)$

High-resolution Limiter Models

- minmod: $\Psi(\theta) = minmod(1, \theta)$
- superbee: $\Psi(\theta) = max(0, min(1, 2\theta), min(2, \theta))$

High-resolution Limiter Models

- minmod: $\Psi(\theta) = minmod(1, \theta)$
- superbee: $\Psi(\theta) = max(0, min(1, 2\theta), min(2, \theta))$
- MC: $\Psi(\theta) = max(0, min((1+\theta)/2, 2, 2\theta))$

High-resolution Limiter Models

- minmod: $\Psi(\theta) = minmod(1, \theta)$
- superbee: $\Psi(\theta) = max(0, min(1, 2\theta), min(2, \theta))$
- MC: $\Psi(\theta) = max(0, min((1+\theta)/2, 2, 2\theta))$
- van Leer: $\Psi(\theta) = \frac{\theta + |\theta|}{1 + |\theta|}$

Thank You

References

Guinot, V. (2010). Scalar Hyperbolic Conservation Laws in One Dimension of Space, pages 1–53. ISTE. LeVeque, R. J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge.