Fonctions du 2nd degré

Définition

On appelle **fonction polynôme de degré 2** toute fonction f définie sur $\mathbb R$ par une expression de la forme :

$$f\left(x\right) = ax^2 + bx + c$$

où les coefficients **a**, **b** et **c** sont des réels donnés avec $a \neq 0$.

Remarque

Une fonction polynôme de degré 2 s'appelle également fonction **trinôme du second degré** ou par abus de langage "**trinôme**".

Exemples et contre-exemples

$$f(x) = 3x^2 - 7x + 3$$

lacktriangle Fonction du 2 $^{
m nd}$ degré avec a=3 , b=-7 et c=3

$$g\left(x
ight) =rac{1}{2}x^{2}-5x+rac{3}{5}$$

lacktriangle Fonction du 2 $^{
m nd}$ degré avec $a=rac{1}{2}$, b=-5 et $c=rac{3}{5}$

$$h\left(x\right) = 4 - 2x^2$$

lacktriangle Fonction du 2 $^{
m nd}$ degré avec a=-2 , b=0 et c=4

$$k\left(x\right) = \left(x - 4\right)\left(5 - 2x\right)$$

Fonction du 2nd degré car :

•
$$(x-4)(5-2x) = 5x - 2x^2 - 20 + 8x$$

Donc
$$k(x) = -2x^2 + 13x - 20 \Rightarrow a = -2$$
 , $b = 13$ et $c = -20$

$$m\left(x\right) =5x-3$$

▲ Fonction polynôme de degré 1 (fonction affine).

$$n\left(x\right) =5x^{4}-7x^{3}+3x-8$$

Fonction polynôme de degré 4.

Variations et représentation graphique

Exemple

Soit
$$f(x) = 2x^2 - 4x + 5$$
.

Pour représenter f dans un repère, nous pouvons calculer quelques valeurs de f(x).

•
$$f(-2) = 2 \times (-2)^2 - 4 \times (-2) + 5 = 21$$

•
$$f(-1) = 2 \times (-1)^2 - 4 \times (-1) + 5 = 11$$

•
$$f(0) = 2 \times (0)^2 - 4 \times (0) + 5 = 5$$

• . . .

\boldsymbol{x}	-2	-1	0	1	2	3	4
f(x)	21	11	5	3	5	11	21

La représentation graphique d'une fonction polynôme de degré 2 est une parabole.

Propriété: Minimum et maximum

Soit f une fonction polynôme de degré 2 définie par $f(x)=ax^2+bx+c$, avec a
eq 0.

- Si a>0, f admet un **minimum** pour $x=\dfrac{-b}{2a}$.
 - \circ Ce **minimum** est égal à $f\left(rac{-b}{2a}
 ight)$.
- Si a < 0, f admet un **maximum** pour $x = \frac{-b}{2a}$.
 - \circ Ce **maximum** est égal à $f\left(rac{-b}{2a}
 ight)$.

On appelle α la valeur $\left(\frac{-b}{2a}\right)$ et β la valeur $f\left(\frac{-b}{2a}\right)$.

$$lpha = rac{-b}{2a} \qquad eta = f\left(rac{-b}{2a}
ight)$$

Propriété

Variations de $ax^2 + bx + c$

Il existe un moyen pour se souvenir du résultat précedent

Méthode : Etudier les variations d'une fonction du 2^{nd} degré

Soit f définie sur $\mathbb R$ par $f\left(x
ight)=-x^2+4x-1$.

On a a=-1 , b=4 et c=-1.

$$lpha=rac{-b}{2a}=rac{-4}{2 imes(-1)}=2$$
 et $eta=f(lpha)=f(2)=-(2)^2+4 imes2-1=3$

Le sommet de la parabole est le point S(2;3).

a < 0 donc le tableau de variation de f est :

x	$+\infty$	2	$+\infty$
f(x)	$-\infty$	3	\star $-\infty$

Forme factorisée

Il se peut que le polynôme du 2^{nd} degré ne se présente pas sous la forme **developpée** mais sous une forme **factorisée** comme par exemple :

$$f(x) = (x-1)(x-2)$$

En effet:

$$egin{aligned} f(x) &= (x-1)(x-2) \ &= x^2 - 2x - 1x + 2 \ &= x^2 - 3x + 2 \qquad \Rightarrow a = 1 \ , \, b = -3 \ ext{et} \ c = 2 \end{aligned}$$

Définition

Soit f une fonction définie sur $\mathbb R$ tel que :

$$f(x) = a(x - x_1)(x - x_2)$$

f est la forme **factorisée** d'une fonction du $2^{
m nd}$ degré.

 x_1 et x_2 sont les **racines** de f

Remarque

les **racines** de f sont solutions de l'équation f(x)=0.

$$ullet f(x_1) = a(x_1 - x_1)(x_1 - x_2) = 0$$

•
$$f(x_2) = a(x_2 - x_1)(x_2 - x_2) = 0$$

Exemples

$$f(x) = 3(x-1)(x+2)$$

$$f(x) = 3(x-1)(x-(-2))$$

f est une fonction du 2 $^{
m nd}$ degré sous forme factorisée avec a=3 , $x_1=1$ et $x_2=-2$

$$f(x) = (2x - 6)(x - 12)$$

Pour faire apparaître la forme factorisée il faut modifier l'écriture de (2x-6)

$$(2x-6)=2(x-3)$$
 donc $f(x)=2(x-3)(x-12)$

f est une fonction du 2 $^{
m nd}$ degré avec a=2 , $x_1=3$ et $x_2=12$

$$f(x) = (3 - x)(2x + 1)$$

On a
$$(3-x)=-(x-3)$$
 et $(2x+1)=2\left(x+\frac{1}{2}\right)$

Donc
$$f(x)=-(x-3) imes 2\left(x+rac{1}{2}
ight)=-2(x-3)\left(x+rac{1}{2}
ight)$$

f est une fonction du 2 $^{
m nd}$ degré avec a=-2 , $x_1=3$ et $x_2=-rac{1}{2}$

Propriété : Racines de f(x)

Soit f une fonction définie sur $\mathbb R$ tel que $f(x)=ax^2+bx+c\;$ et $\;x_1$, $\;x_2\;$ les solutions de l'équation f(x)=0.

Alors la forme **factorisée** de f est : $f(x) = a(x-x_1)(x-x_2)$

Exemple

$$f(x) = 3(x-1)(x+2)$$

f est une fonction du 2 $^{
m nd}$ degré sous forme factorisée avec a=3 , $x_1=1$ et $x_2=-2.$

D'autre part,
$$f(x)=3\left(x^2+2x-1x-2\right)=3x^2+3x-6$$

Donc $x_1=1$ et $x_2=-2$ sont solutions de l'équation $3x^2+3x-6=0$

Résolution d'équations du 2nd degré

Résoudre une équation du 2nd degré, c'est résoudre une équation du type

$$ax^2 + bx + c = 0$$

Définition: Discriminant

On appelle **discriminant** du trinôme ax^2+bx+c , le nombre réel, noté Δ , égal à b^2-4ac .

$$\Delta = b^2 - 4ac$$

Propriété : Solutions de $ax^2+bx+c=0$

Soit Δ le discriminant du trinôme ax^2+bx+c .

- Si $\Delta < 0$: L'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle.
- ullet Si $\Delta=0$: L'équation $ax^2+bx+c=0$ a une unique solution : $ig|x_0=$

$$: \left| x_0 = rac{-b}{2a}
ight|$$

ullet Si $\Delta>0$: L'équation $ax^2+bx+c=0$ a deux solutions distinctes :

$$x_1=rac{-b-\sqrt{\Delta}}{2a} \qquad x_2=rac{-b+\sqrt{\Delta}}{2a}$$

Exemple

On cherche à résoudre $2x^2-x-6=0$

Calculons le discriminant :

$$a=2$$
 , $b=-1$ et $c=-6$ donc

$$\Delta = b^2 - 4ac = (-1)^2 - 4 \times 2 \times (-6) = 49 > 0$$

Comme $\Delta>0$, l'équation possède deux solutions distinctes :

$$x_1=rac{-b-\sqrt{\Delta}}{2a} \qquad x_2=rac{-b+\sqrt{\Delta}}{2a}$$

Calcul de x_1	Calcul de x_2
$egin{aligned} x_1 &= rac{-b-\sqrt{\Delta}}{2a} \ &= rac{-(-1)-\sqrt{49}}{2 imes 2} \ &= -rac{3}{2} \end{aligned}$	$egin{aligned} x_2 &= rac{-b+\sqrt{\Delta}}{2a} \ &= rac{-\left(-1 ight)+\sqrt{49}}{2 imes 2} \ &= 2 \end{aligned}$

Les solutions de l'équation $\ 2x^2-x-6=0\$ sont $S=\left\{-\frac{3}{2}\ ;\ 2\right\}$

Exemple

$$2x^2 - 3x + \frac{9}{8} = 0$$

Calculons le discriminant :

$$a=2$$
, $b=-3$ et $c=rac{9}{8}$ donc $\Delta=b^2-4ac=(-3)^2-4 imes2 imesrac{9}{8}=0$

Comme $\Delta=0$, l'équation possède une unique solution :

$$x_0 = -rac{b}{2a} = -rac{-3}{2 imes 2} = rac{3}{4}$$

Exemple

$$x^2 + 3x + 10 = 0$$

a=1, b=3 et c=10 donc

$$\Delta = b^2 - 4ac = 3^2 - 4 \times 1 \times 10 = -31$$

Comme $\Delta < 0$, l'équation ne possède pas de solution réelle.

Propriété

La somme S et le produit P des **racines** d'un polynôme du $2^{
m nd}$ degré de la forme $ax^2+bx+c=0$ sont donnés par :

$$S = -\frac{b}{a}$$
 $P = \frac{c}{a}$

Démonstration

Soit x_1 et x_2 les solutions de $x^2+bx+c=0$ alors

$$x_1=rac{-b-\sqrt{\Delta}}{2a} \qquad x_2=rac{-b+\sqrt{\Delta}}{2a}$$

Donc, la somme des **racines** est $S=x_1+x_2$:

$$S=x_1+x_2 \ =rac{-b-\sqrt{\Delta}}{2a}+rac{-b+\sqrt{\Delta}}{2a} \ =rac{(-b-\sqrt{\Delta})+(-b+\sqrt{\Delta})}{2a}=rac{-2b}{2a}=rac{-b}{a}$$

Le produit des **racines** est $P=x_1 imes x_2$:

$$P = x_1 imes x_2$$

$$= rac{-b - \sqrt{\Delta}}{2a} imes rac{-b + \sqrt{\Delta}}{2a} = rac{(-b - \sqrt{\Delta}) imes (-b + \sqrt{\Delta})}{2a imes 2a}$$

$$= rac{(-b)^2 + \left((-b) imes \sqrt{\Delta}\right) + \left(\left(-\sqrt{\Delta}\right) imes (-b)\right) + \left(\left(-\sqrt{\Delta}\right) imes \sqrt{\Delta}\right)}{4a^2}$$

$$= rac{b^2 - \Delta}{4a^2} = rac{b^2 - (b^2 - 4ac)}{4a^2} = rac{4ac}{4a^2} = rac{c}{a}$$

Propriété : Forme factorisée de ax^2+bx+c

Soit f une fonction polynôme de degré 2 définie sur par $f\left(x
ight)=ax^{2}+bx+c$.

- Si $\Delta=0$: Pour tout réel x, on a : $f\left(x
 ight)=a\left(x-x_{0}
 ight)^{2}$.
- Si $\Delta>0$: Pour tout réel x, on a : $f\left(x
 ight)=a\left(x-x_{1}
 ight)\left(x-x_{2}
 ight)$.

Remarque

Si $\Delta < 0$, il n'existe pas de forme factorisée de f.

Méthode: Factoriser un trinôme

Factoriser le trinôme suivant : $4x^2 + 19x - 5$

On cherche les racines du trinôme $4x^2+19x-5$

On a a=4 , b=19 et c=-5 donc

$$\Delta = 19^2 - 4 \times 4 \times (-5) = 441$$

Les racines du trinôme sont :

Calcul de x_1	Calcul de x_2
$x_1=rac{-19-\sqrt{441}}{2 imes 4} \ =-5$	$x_2=rac{-19+\sqrt{441}}{2 imes 4} \ =rac{1}{4}$

On a donc:

$$4x^2 + 19x - 5 = 4(x - (-5))\left(x - \frac{1}{4}\right)$$

$$= 4(x + 5)\left(x - \frac{1}{4}\right) = (x + 5)(4x - 1)$$

Une vérification à l'aide de la calculatrice n'est jamais inutile! On peut lire une valeur approchée des racines sur l'axe des abscisses.

Exemple

Factoriser le trinôme suivant : $9x^2-6x+1$

On cherche les racines du trinôme $9x^2-6x+1$ On a a=9 , b=-6 et c=1 donc $\Delta=(-6)^2-4\times 9\times (1)=0$ La racine du trinôme est : $x_0=\frac{-(-6)}{2\times 9}=\frac{1}{3}$ On a donc : $9x^2-6x+1=9\left(x-\frac{1}{3}\right)^2$

Propriété : Les différentes représentations possibles de f

En fonction du signe de a et de Δ , nous pouvons en déduire les représentations de f.

Pour a > 0

Pour a < 0

Forme canonique

Définition : Forme canonique

Toute fonction polynôme f de degré 2 définie sur $\mathbb R$ par $f(x)=ax^2+bx+c$ peut s'écrire sous la forme :

$$f(x) = a(x - \alpha)^2 + \beta$$

où α et β sont deux nombres réels.

Cette dernière écriture s'appelle la forme canonique de f.

Exemple

 $f(x)=2(x-1)^2+3$ est une fonction du 2 $^{
m nd}$ degré sous forme **canonique** avec a=2 , lpha=1 et eta=3.

En effet,

$$f(x) = 2(x-1)^2 + 3$$

$$= 2(x^2 - 2x + 1) + 3$$

$$= 2x^2 - 4x + 2 + 3 = 2x^2 - 4x + 5$$
 Donc $a = 2$, $b = -4$ et $c = 5$

Méthode : Déterminer la forme canonique d'une fonction du 2^{nd} degré

Soit la fonction f définie sur $\mathbb R$ par : $f(x)=2x^2-20x+10$. On veut exprimer la fonction f sous sa forme canonique.

$$egin{aligned} f\left(x
ight) &= 2x^2 - 20x + 10 \ &= 2\left[x^2 - 10x\right] + 10 \ &= 2\left[x^2 - 10x + 25 - 25\right] + 10 \ &= 2\left[\left(x - 5\right)^2 - 25\right] + 10 \ &= 2\left(x - 5\right)^2 - 50 + 10 \ &= 2\left(x - 5\right)^2 - 40 \end{aligned}$$

On a donc lpha=5 et eta=-40

 $f(x)=2\left(x-5
ight)^2-40$ est la forme **canonique** de f .

Démonstration

$$f(x) = ax^{2} + bx + c$$

$$= a\left[x^{2} + \frac{b}{a}x\right] + c$$

$$= a\left[x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - a\frac{b^2}{4a^2} + c$$

$$= a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$$

$$= a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$$

$$= a\left(x - \alpha\right)^2 + \beta$$

avec
$$lpha = -rac{b}{2a}$$
 et $eta = f(lpha) = -rac{b^2 - 4ac}{4a}$.

Remarque

Pour écrire un trinôme sous sa forme canonique, il est possible d'utiliser les deux dernières formules donnant α et β .

$$lpha = -rac{b}{2a} \qquad eta = f(lpha) = -rac{b^2 - 4ac}{4a}$$

Méthode : Déterminer la forme canonique d'une fonction du 2^{nd} degré

Soit la fonction f définie sur $\mathbb R$ par : $f\left(x
ight)=2x^2-20x+10$.

On veut exprimer la fonction f sous sa forme canonique.

On a a=2 , b=-20 et c=10 donc

$$lpha = -rac{b}{2a} \ = -rac{-20}{2 imes 2} = 5$$

Calculons β :

$$egin{aligned} eta &= f(lpha) \ &= 2 imes 5^2 - 20 imes 5 + 10 \ &= 50 - 100 + 10 = 40 \end{aligned}$$

On a donc lpha=5 et eta=-40 donc $f(x)=2\left(x-5
ight)^2-40$

Exemple

Soit la fonction f donnée sous sa forme canonique par : $f\left(x
ight)=2\left(x-1
ight)^{2}+3$

On a:

$$(x-1)^2 > 0$$

$$\Leftrightarrow 2(x-1)^2 > 0$$

$$\Leftrightarrow \ \ 2\left(x-1
ight)^{2}+3>3 \quad \Leftrightarrow \quad f(x)>3$$

Or
$$f(1) = 3$$
 donc $f(x) \ge f(1)$.

f admet donc un minimum en x=1. Ce minimum est égal à 3.

Propriété: Minimum et maximum

Soit f une fonction polynôme de degré 2 définie par $f(x) = a \left(x - lpha
ight)^2 + eta$

- Si a>0, f admet un minimum pour x=lpha. Ce minimum est égal à eta.
- ullet Si a<0, f admet un maximum pour x=lpha. Ce maximum est égal à eta.

Remarque

On peut retenir que f admet un maximum (ou un minimum) pour $x=-rac{b}{2a}$

Méthode : Déterminer les caractéristiques d'une parabole

Déterminons l'axe de symétrie et le sommet de la parabole d'équation

$$y = 2x^2 - 12x + 1$$

La parabole possède un axe de symétrie d'équation $x=-rac{b}{2a}$

$$x = -\frac{-12}{2 \times 2} = 3$$

La droite d'équation x=3 est donc axe de symétrie de la parabole.

Les coordonnées de son sommet sont

$$\left(-rac{b}{2a}\;;\;f\left(-rac{b}{2a}
ight)
ight)$$

Soit:

$$\left(3\;;2\times 3^2-12\times 3+1\right)=\left(3\;;\;-17\right)$$

Le point (3; -17) est le sommet de la parabole.

a=2>0, ce sommet correspond à un minimum.

Démonstration : Solutions de l'équation $ax^2+bx+c=0$

La fonction f définie sur $\mathbb R$ par $f\left(x
ight)=ax^2+bx+c$ peut s'écrire sous sa forme canonique :

$$f(x)=a\left(x-lpha
ight)^2+eta$$
 avec $lpha=-rac{b}{2a}$ et $eta=-rac{b^2-4ac}{4a}$.

Donc:

$$ax^2 + bx + c = 0$$
 peut s'écrire :

$$a\left(x+rac{b}{2a}
ight)^2-rac{b^2-4ac}{4a}=0$$
 $a\left(x+rac{b}{2a}
ight)^2-rac{\Delta}{4a}=0$ $a\left(x+rac{b}{2a}
ight)^2=rac{\Delta}{4a}$ $\left(x+rac{b}{2a}
ight)^2=rac{\Delta}{4a^2}$ $ext{car } a
eq 0$

• Si $\Delta < 0$:

Comme un carré ne peut être négatif $\left(\frac{\Delta}{4a^2}<0\right)$, l'équation $ax^2+bx+c=0$ n'a pas de solution.

• Si $\Delta=0$:

L'équation $ax^2+bx+c=0$ peut s'écrire : $\left(x+\frac{b}{2a}\right)^2=0$ L'équation n'a qu'une seule solution : $x=\frac{-b}{2a}$

ullet Si $\Delta>0$: L'équation $ax^2+bx+c=0$ est équivalente à :

Solution n°1	Solution n°2
$x+rac{b}{2a}=+\sqrt{rac{\Delta}{4a^2}}$	$x+rac{b}{2a}=-\sqrt{rac{\Delta}{4a^2}}$
$x=+\sqrt{\frac{\Delta}{4a^2}}-\frac{b}{2a}$	$x=-\sqrt{rac{\Delta}{4a^2}}-rac{b}{2a}$
$x=\frac{+\sqrt{\Delta}}{2a}-\frac{b}{2a}$	$x=rac{-\sqrt{\Delta}}{2a}-rac{b}{2a}$
$x = \frac{+\sqrt{\Delta} - b}{2a} = \frac{-b + \sqrt{\Delta}}{2a}$	$x = \frac{-\sqrt{\Delta} - b}{2a} = \frac{-b - \sqrt{\Delta}}{2a}$

L'équation a deux solutions distinctes :

$$x_1=rac{-b+\sqrt{\Delta}}{2a} \qquad x_2=rac{-b-\sqrt{\Delta}}{2a}$$