

Prépa Bac TANA

Vol. TS, No. 1, Avril 2025, pp. 6-10

SÉNÉGAL

Ensembles, construisons une Afrique industrialisée dans un environnement globalement sain

Composition du premier semestre

Inspection d'Académie: Thiès

Pays: Sénégal

Auteur (s) : IA de Thiès Niveau : Terminale S1

Discipline: Sciences Physiques

Durée: 4h

Ce document, publié par le CAFTANA est mis au service de la communauté scolaire

Exercice 1: (02 points)

Le paracétamol est un principe actif de formule semi-développée : $HO - C_6H_5 - NH - CO - CH_3$.

- 1.1. Retrouver les formules semi-développées de l'acide carboxylique et du composé azoté dont le paracétamol est issu. (0,5 pt)
- 1.2. Pourquoi utilise-t-on l'anhydride acétique plutôt que l'acide acétique pour la synthèse du paracétamol ? (0,25 pt)
- 1.3. Écrire l'équation –bilan correspondant en considérant que l'amine utilisé ne réagit pas avec l'acide formé au cours de la réaction. (0,25 pt)
- **1.4.** Le rendement de cette synthèse par rapport au paracétamol est égal à 80%. Déterminer la quantité de paraaminophénol nécessaire à la synthèse de 4 g de paracétamol, masse globale de principe actif contenue dans une boite de Doliprane pour enfant. (0,5 pt)
- **1.5.** Quelle réaction chimique parasite ou supplémentaire pourrait on prévoir entre le paraaminophénol et l'anhydride acétique ? (0,5 pt)

Exercice 2: (04 points)

On étudie la cinétique de la réaction d'oxydation des ions iodures (I^-) par les ions peroxodisulfate ($S_2O_8^{2-}$). L'équation-bilan de la réaction réalisée s'écrit :

$$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2.$$

Pour cela, on réalise un mélange noté S, à une date t = 0, à une température donnée, constitué d'un volume $V_1 = 200 \text{ cm}^3$ d'une solution d'iodure de potassium (K⁺ + I⁻) de concentration molaire $C_1 = 0.1 \text{ mol} \cdot \text{L}^{-1}$ et un volume $V_2 = 100 \text{ cm}^3$ d'une solution de peroxodisulfate de potassium (2K⁺ + S₂O₈²⁻) de concentration molaire $C_2 = 0.4 \text{ mol} \cdot \text{L}^{-1}$.

2.1. Retrouver l'équation bilan de la réaction d'oxydoréduction qui se produit à partir des demi-équations électroniques des couples correspondant : $S_2O_8^{2-}/SO_4^{2-}$ et I^2/I^- . (0,5 pt)

- **2.2.** Calculer les concentrations molaires initiales à t = 0 des ions Γ et $S_2O_8^{2-}$ dans la solution S notées respectivement $[\Gamma]_0$ et $[S_2O_8^{2-}]_0$. (0,5 pt)
- **2.3.** Pour déterminer la concentration molaire de I_2 formée notée $[I_2]$, dans S à un instant t donné, on prélève un volume $V_0 = 10$ mL de S que l'on place dans une fiole jaugée plongée automatiquement dans de l'eau glacée. Le diiode formé à cet instant est dosé par une solution de thiosulfate de sodium $(2Na^+ + S_2O_3^{2-})$ de concentration $C_3 = 0.01$ mol·L⁻¹. L'équation de la réaction support du dosage réalisé s'écrit :

$$S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-.$$

Les valeurs des volumes V_3 de thiosulfate utilisés à chaque instant pour atteindre l'équivalence sont consignées dans le tableau ci-dessous

t (min)	2	4	8	12	16	20	30	40
V_3 (mL)	10	18,4	29,2	36,4	41,6	46	54	58,8
$[I_2] (\times 10^{-3} \text{ mol} \cdot \text{L}^{-1})$								
t (min)	52	60	68	70	80			
V_3 (mL)	63,2	65	65,6	66,8	66,8			
$[I_2] (\times 10^{-3} \text{ mol} \cdot \text{L}^{-1})$								

- **2.3.1.** Pourquoi a-t-on plongé chaque prélèvement dans de l'eau glacée ? Préciser le nom de cette opération. (0,5 pt)
- **2.3.2.** Montrer que la concentration en I_2 dans chaque tube dosé à l'instant t peut s'écrire :

$$[I]_2 = \frac{10^{-3}}{2} V_3, V_3 \text{ en mL.}$$
 (0,5 pt)

2.3.3. Compléter le tableau ci-dessous.

- (0,5 pt)
- **2.3.4.** Tracer la courbe $[I_2] = f(t)$. Échelle: 1 cm pour 5 min; 1 cm pour 5×10^{-3} mol \cdot L⁻¹.
- **2.3.5.** Définir puis déterminer le temps de demi-réaction $t_{1/2}$.

- (0,5 p)
- **2.3.6.** Calculer les vitesses volumiques de formation de I_2 aux instants de dates $t_1 = 12$ min et $t_2 = 40$ min. (0,75 pt)

Exercice 3: (05 points)

Un solide de masse m, de petites dimensions, assimilable à un point matériel S est lâché sans vitesse initiale d'un point A d'une glissière (ABC) comprenant une portion circulaire BC de centre O et de rayon r (voir figure 1 ci-contre). Le déplacement s'effectue sans frottement et on néglige la résistance de l'air. Soit α l'angle que fait (OM) avec la verticale ascendante.

- **3.1.**Exprimer la vitesse v_M du solide en un point M en fonction de h, r, g et α . (0,5 pt)
- **3.2.** Déterminer l'expression de la réaction R de la piste sur le solide au point M en fonction de m, h, g, r et α .

(0,5 pt)

- **3.3.** En déduire en fonction de r et α_0 , la valeur minimale h_0 de h pour que le solide atteigne le point C. Calculer h_0 . (0,5 pt)
- **3.4.** Sachant que h est supérieur à h_0 , exprimer la valeur v_C de la vitesse \vec{v}_C du solide au point C en fonction de g, h, r, et α_0 . (0,5 pt)

- **3.5.** Le solide quitte la glissière en C.
- **3.5.1.** Établir les équations horaires du mouvement du solide à partir de C dans le plan rapporté au repère orthonormé $(O, \vec{\iota}, \vec{j})$. (0,5 pt)
- **3.5.2.** Établir l'équation de la trajectoire. (0,25 pt)
- **3.6.** On suppose que le solide passe par le point C' symétrique du point C par rapport à la verticale passant par O.
- **3.6.1.** Sans calcul, peut-on connaître la norme du vecteur vitesse du solide en C'? Justifier votre réponse. (0,25 pt)
- **3.6.2.** Exprimer en fonction de r et α_0 , la dénivellation h qu'il faut donner au point de départ A pour que le solide touche la cible en C'. (0,5 pt)
- **3.6.3.** Calculer *h*. (0,25 pt)
- **3.7.** Le point C' peut être atteint avec la même vitesse en C mais avec un autre angle β que fait \vec{v}_C avec l'axe (O; \vec{i}).
- **3.7.1.** Quel est la valeur de l'angle β .

(0.25 pt)

- **3.7.2.** Dessiner les deux trajectoires entre C et C' pour les deux angles permettant d'atteindre le point C' avec la même vitesse initiale qu'au point C et qualifier les (*indiquer le nom du tir correspondant*). (0,5 pt)
- 3.7.3. En se servant de l'expression de h, calculer la dénivellation h' qu'il faut donner au point de départ A pour que le solide touche la cible C' pour la valeur de l'angle β . (0,25 pt) 3.8. Calculer la distance entre les sommets S et S' des deux trajectoires correspondant aux deux angles précédents. (0,25 pt)

Données : $\alpha_0 = 60^{\circ}$; r = 2 m.

Exercice 4: (04 points)

On négligera l'action de l'air. On prendra $g = 10 \text{ m} \cdot \text{s}^{-2}$.

Soit une bille de masse m, de rayon r et de masse volumique ρ tombant, sans vitesse initiale, dans un fluide au repos de masse volumique ρ_0 . Dans le cas présent la loi de Stockes nous apprend que cette bille subit une force de frottement fluide $\vec{F}_{\rho} = -6\pi\eta r\vec{v}$ où \vec{v} est la vitesse instantanée de la bille et η le coefficient de viscosité dynamique du fluide considéré.

4.1. Quelle est l'unité du coefficient η dans le système international ? (0,25 pt)

4.2. On néglige la poussée d'Archimède due au fluide

4.2.1. Établir l'équation différentielle régissant le mouvement de la bille dans le fluide considéré. On l'écrira sous la forme :

$$\frac{dv}{dt} + \frac{1}{k}(v - k') = 0,$$

où *k* et *k*' sont deux constantes dont on précisera les expressions.

(0,75 pt)

4.2.2. Établir l'expression de k en fonction de r, ρ , η et la relation entre k et k'. **(0,5 pt) 4.2.3.** Vérifier que l'expression :

$$v(t) = C\left(1 - e^{-\frac{t}{\tau}}\right),\,$$

peut-être solution de l'équation différentielle établie au **4.2.1** moyennant les conditions sur les constantes C et τ que l'on déterminera. (0,5 pt)

4.3.On réalité la poussée d'Archimède due au fluide de masse volumique ρ_0 n'est pas négligeable

4.3.1. Montrer que la nouvelle équation différentielle s'écrit :

$$\frac{dv}{dt} + \frac{1}{k}(v - k'') = 0. {(0.5 pt)}$$

4.3.2. Montrer que la vitesse limite atteinte par la bille a pour expression :

$$v_l = \frac{2gr^2(\rho - \rho_0)}{9\eta}$$
. (0,5 pt)

4.4. Application numérique :

On considère une bille de polyéthylène de rayon r = 1 cm, de masse m = 4,1 g et de masse volumique $\rho = 980$ kg · m⁻³ en mouvement dans un tube contenant de l'huile de colza de masse volumique $\rho_0 = 920$ kg · m⁻³ et de coefficient de viscosité $\eta = 0,163$ S.I à 20°C.

4.4.1. Calculer numériquement la vitesse limite v_i et la constante de temps τ . (0,5 pt)

4.4.2. La vitesse instantanée de la bille dans un fluide visqueux en fonction du temps t s'exprime par la relation :

$$v(t) = v_l \left(1 - e^{-\frac{t}{\tau}} \right).$$

Calculer le temps au bout du quel $v = 0.99v_t$.

(0.5 pt)

Exercice 5: (04 points)

Données:

- $R_{\rm T}$: rayon de la Terre supposée sphérique et homogène : $R_{\rm T}$ = 6400 km;
- $M_{\rm T}$: masse de la Terre : $M_{\rm T} = 5.9 \times 10^{24}$ kg;
- T_0 : période de rotation de la terre autour de l'axe des pôles : T_0 = 86400s ;
- g_0 : intensité de la pesanteur au sol : $g_0 = 9.8 \text{ m} \cdot \text{s}^{-2}$;
- *K* : constante de gravitation universelle ;

Le nanosatellite GAINDESAT-1A, lancé le 16 août 2024 à 18H56 GMT depuis la base américaine de Vandenberg, en Californie (ouest du pays), a été placé sur orbite à h = 500 km de la Terre évoluant ainsi en orbite terrestre basse (fig.4 ci-contre). Sa principale mission consiste à récupérer les données des agences étatiques de météorologie et de mesure des niveaux d'eau enregistrés par des stations aux quatre coins du pays. GAINDESAT-1A a également pour mission de capturer des images satellites du Sénégal à l'aide d'une caméra embarquée. Ces images seront utilisées comme matière première pour de futurs développements. Elles seront prises dès que le satellite survolera le pays, à

raison de quatre fois par jour pendant six à sept minutes, et ce, pendant cinq ans. Il entre dans la catégorie des nanosatellites ou CubeSat ainsi nommée pour ses dimensions cubiques ($10 \text{ cm} \times 10 \text{ cm} \times 10 \text{ cm} - \text{à}$ peu près la taille d'un Rubik's Cub –) et qui pèse environ m = 1 kg. Le satellite GAINDESAT-1A se déplace sur une trajectoire circulaire, à la distance $r = R_T + h$ du centre de la Terre de masse M_T et de rayon R_T . Le mouvement d'un tel satellite de masse m de la terre est étudié dans un référentiel, considéré comme galiléen, constitué par le solide centre de la terre lié à trois axes deux a deux perpendiculaires et pointant chacun vers une étoile très éloigné.

5.1. Comment appelle-t-on un tel référentiel ?

- (0,25 pt)
- **5.2.** Énoncer la loi d'attraction des masses de Newton et donner l'expression vectorielle de la force exercée par la terre sur le satellite en fonction de K, m, h, R_T , M_T et \vec{u} (vecteur unitaire orienté du centre de la Terre vers le satellite). (0,75 pt)
- **5.3.** Montrer que le mouvement du satellite est circulaire uniforme. Exprimer sa vitesse ν en fonction g_0 , R_T et h. Faire l'application numérique. (0,75 pt)
- **5.4.** Le satellite GAINDESAT-1A est classé parmi les satellites a défilement, il fait chaque jour 15 fois le tour de la terre. Vérifier que cette information est conforme avec les données sur GAINDESAT-1A. (0,75 pt)
- **5.5.**Les orbites géostationnaires restent stationnaires par rapport à la surface de la Terre, offrant ainsi une couverture constante de la même zone terrestre. On suppose que le satellite GAINDESAT-1A évolue sur le plan équatorial. On se propose de déterminer l'énergie à fournir pour qu'il soit géostationnaire.
- **5.5.1.** Donner les caractéristiques d'un satellite géostationnaire. (0,5 pt)
- **5.5.2.** En déduire l'altitude h de GAINDESAT-1A en orbite géostationnaire. (0,5 pt)
- **5.5.3.** On admet que l'énergie potentielle de GAINDESAT-1A situé une orbite de rayon *r* est de la forme :

$$E_p = -mg_0 \frac{R_T^2}{r}$$

Calculer la valeur de l'énergie ΔE à fournir à GAINDESAT-1A sur son orbite terrestre basse pour qu'il soit définitivement géostationnaire. (0,5 pt)