CMSC 471: Reasoning with Bayesian Belief Network

Chapters 12 & 13

KMA Solaiman – <u>ksolaima@umbc.edu</u>

Overview

- Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities
- Useful for many AI problems
 - Diagnosis
 - Expert systems
 - Planning
 - Learning

A graph G that represents a probability distribution over N random variables X_1, \dots, X_N

A graph G that represents a probability distribution over N random variables X_1, \dots, X_N

Graph G = (vertices V, edges E) Distribution $P(X_1, ..., X_N)$

A graph G that represents a probability distribution over random N variables $X_1, ..., X_N$

Graph G = (vertices V, edges E) Distribution $P(X_1, ..., X_N)$

Vertices ↔ random variables Edges show dependencies among random variables

A graph G that represents a probability distribution over N random variables $X_1, ..., X_N$

Graph G = (vertices V, edges E) Distribution $p(X_1, ..., X_N)$

Vertices ↔ random variables Edges show dependencies among random variables

Two main flavors: directed graphical models and undirected graphical models

A graph G that represents a probability distribution over N random variables $X_1, ..., X_N$

Graph G = (vertices V, edges E) Distribution $p(X_1, ..., X_N)$

Vertices ↔ random variables Edges show dependencies among random variables

Two main flavors: *directed* graphical models and *undirected* graphical models

Directed Graphical Models

A *directed* (acyclic) graph G=(V,E) that represents a probability distribution over random variables X_1, \dots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i

Directed Graphical Models

A *directed* (acyclic) graph G=(V,E) that represents a probability distribution over random variables X_1, \dots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i

Benefit: the independence properties are *transparent*

Directed Graphical Models

A directed (acyclic) graph G=(V,E) that represents a probability distribution over random variables X_1, \dots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i

A graph/joint distribution that follows this is a Bayesian network

BBN Definition

- AKA Bayesian Network, Bayes Net
- A graphical model (as a <u>DAG</u>) of probabilistic relationships among a set of random variables
- Nodes are variables, links represent direct influence of one variable on another
- Nodes have prior probabilities or conditional probability tables (CPTs)

History lesson: Judea Pearl

- UCLA CS professor
- Introduced <u>Bayesian</u>
 <u>networks</u> in the 1980s
- Pioneer of probabilistic approach to AI reasoning
- First to formalize causal modeling in empirical sciences
- Written many books on the topics, including the popular 2018 Book of Why

Why? Three (Four) kinds of reasoning

BBNs support three main kinds of reasoning:

- Predicting conditions given predispositions
- Diagnosing conditions given symptoms (and predisposing)
- Explaining a condition by one or more predispositions

To which we can add a fourth:

 Deciding on an action based on probabilities of the conditions

Recall Bayes Rule

$$P(H,E) = P(H | E)P(E) = P(E | H)P(H)$$

$$P(H|E) = \frac{P(E|H) * P(H)}{P(E)}$$
 $P(E|H) = \frac{P(H|E) * P(E)}{P(H)}$

Note symmetry: we can compute probability of a *hypothesis given its evidence* as well as probability of *evidence given hypothesis*

Simple Bayesian Network

 $C \in \{none, benign, malignant\}$

15

Simple Bayesian Network

Simple Bayesian Network

Prior probability of S

P(S=no)	0.80
P(S=light)	0.15
P(S=heavy)	0.05

$C \in \{none, benign, malignant\}$

Nodes with no in-links have prior probabilities

Conditional distribution of S and C

Nodes with in-links have joint probability distributions

Smoking=	no	light	heavy
C=none	0.96	0.88	0.60
C=benign	0.03	0.08	0.25
C=malignant	0.01	0.04	0.1517

Bayesian Networks: Directed Acyclic Graphs

Bayesian Networks: Directed Acyclic Graphs

$$p(x_1, x_2, x_3, ..., x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, x_4, x_5) = ???$$

Bayesian Networks: Directed Acyclic Graphs

$$p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_3)p(x_2|x_1, x_3)p(x_4|x_2, x_3)p(x_5|x_2, x_4)$$

Bayesian Networks: Directed Acyclic Graphs

$$p(x_1, x_2, x_3, ..., x_N) = \prod_i p(x_i \mid \pi(x_i))$$

exact inference in general DAGs is NP-hard inference in trees can be exact

Nodes represent variables

Does gender cause smoking?

 Influence might be a better term

Can we predict likelihood of **lung tumor** given values of other 6 variables?

- Model has 7 variables
- Complete joint probability distribution will have 7 dimensions!
- Too much data required ⊗
- BBN simplifies: a node has a CPT with data on itself & parents in graph

27

Independence & Conditional Independence in BBNs

Read these independence relationships right from the graph!

There are two common concepts that can help:

- 1. Markov blanket
- 2. D-separation (not covering)

X_i Markov blanket of a node x

Markov Blanket

The **Markov Blanket** of a node x_i the set of nodes needed to form the complete conditional for a variable x_i

is its parents, children, and

children's parents

X_i Markov blanket of a node x is its parents, children, and children's parents

Markov Blanket

The **Markov Blanket** of a node x_i the set of nodes needed to form the complete conditional for a variable x_i

=

Given its Markov blanket, a node is conditionally independent of all other nodes in the BN

Independence

Age and Gender are independent*.

$$P(A,G) = P(G) * P(A)$$

There is no path between them in the graph

$$P(A \mid G) = P(A)$$

 $P(G \mid A) = P(G)$

$$P(A,G) = P(G|A) P(A) = P(G)P(A)$$

$$P(A,G) = P(A|G) P(G) = P(A)P(G)$$

^{*} Not strictly true, but a reasonable approximation³¹

Conditional Independence

Cancer is independent of Age and Gender given Smoking

 $P(C \mid A,G,S) = P(C \mid S)$

If we know value of smoking, no need to know values of age or gender

Conditional Independence

Cancer is independent of Age and Gender given Smoking

- Instead of one big CPT with 4 variables, we have two smaller CPTs with 3 and 2 variables
- If all variables binary: 12 models (2³ +2²) rather than 16 (2⁴)

Conditional Independence: Naïve Bayes

Serum Calcium and Lung
Tumor are dependent

Serum Calcium is independent of Lung Tumor, given Cancer

$$P(L \mid SC,C) = P(L \mid C)$$

 $P(SC \mid L,C) = P(SC \mid C)$

Naïve Bayes assumption: evidence (e.g., symptoms) independent given disease; easy to combine evidence

34

Explaining Away

Exposure to Toxics and Smoking are independent

Exposure to Toxics is dependent on Smoking, given Cancer

P(E=heavy | C=malignant) > P(E=heavy | C=malignant, S=heavy)

- Explaining away: reasoning pattern where confirmation of one cause reduces need to invoke alternatives
- Essence of <u>Occam's Razor</u> (prefer hypothesis with fewest assumptions)
- Relies on independence of causes

Conditional Independence

BBN Construction

The knowledge acquisition process for a BBN involves three steps

KA1: Choosing appropriate variables

KA2: Deciding on the network structure

KA3: Obtaining data for the conditional probability tables

KA1: Choosing variables

- Variable values: integers, reals or enumerations
- Variable should have collectively exhaustive, mutually exclusive values

$$X_1 \lor X_2 \lor X_3 \lor X_4$$
$$\neg (X_i \land X_j) \quad i \neq j$$

They should be values, not probabilities

Heuristic: Knowable in Principle

Example of good variables

- Weather: {Sunny, Cloudy, Rain, Snow}
- Gasoline: Cents per gallon {0,1,2...}
- Temperature: $\{ \geq 100^\circ \text{ F, } < 100^\circ \text{ F} \}$
- User needs help on Excel Charts: {Yes, No}
- User's personality: {dominant, submissive}

KA2: Structuring

KA3: The Numbers

- For each variable we have a table of probability of its value for values of its parents
- For variables w/o parents, we have prior probabilities

 $S \in \{no, light, heavy\}$ $C \in \{none, benign, malignant\}$

smoking priors	
no	0.80
light	0.15
heavy	0.05

	smoking		
cancer	no	light	heavy
none	0.96	0.88	0.60
benign	0.03	0.08	0.25
malignant	0.01	0.04	0.15 50

Three (Four) kinds of reasoning

BBNs support three main kinds of reasoning:

- Predicting conditions given predispositions
- Diagnosing conditions given symptoms (and predisposing)
- Explaining a condition by one or more predispositions

To which we can add a fourth:

 Deciding on an action based on probabilities of the conditions

Fundamental Inference & Learning Question

 Compute posterior probability of a node given some other nodes

$$p(Q|x_1,...,x_i)$$

- Some techniques
 - MLE (maximum likelihood estimation)/MAP (maximum a posteriori)
 - Variable Elimination
 - (Loopy) Belief Propagation ((Loopy) BP)
 - Monte Carlo
 - Variational methods

— ...

Advanced topics

Predictive Inference

Predictive and diagnostic combined

Explaining away

 If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up

 If we then observe heavy smoking, the probability of exposure to toxics goes back down

Decision making

- A decision is a medical domain might be a choice of treatment (e.g., radiation or chemotherapy)
- Decisions should be made to maximize expected utility
- View decision making in terms of
 - Beliefs/Uncertainties
 - Alternatives/Decisions
 - Objectives/Utilities

Decision Problem

Should I have my party inside or outside?

Decision Making with BBNs

- Today's weather forecast might be either sunny, cloudy or rainy
- Should you take an umbrella when you leave?
- Your decision depends only on the forecast
 - The forecast "depends on" the actual weather
- Your satisfaction depends on your decision and the weather
 - Assign a utility to each of four situations: (rain|no rain) x (umbrella, no umbrella)

Decision Making with BBNs

- Extend BBN framework to include two new kinds of nodes: decision and utility
- Decision node computes the expected utility of a decision given its parent(s) (e.g., forecast) and a valuation
- Utility node computes utility value given its parents, e.g. a decision and weather
 - Assign utility to each situations: (rain|no rain) x (umbrella, no umbrella)
 - Utility value assigned to each is probably subjective

Fundamental Inference & Learning Question

 Compute posterior probability of a node given some other nodes

$$p(Q|x_1,...,x_i)$$

- Some techniques
 - MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered 2nd]
 - Variable Elimination [covered 1st]
 - (Loopy) Belief Propagation ((Loopy) BP)
 - Monte Carlo
 - Variational methods

— ...

Advanced topics

Variable Elimination

 Inference: Compute posterior probability of a node given some other nodes

$$p(Q|x_1,...,x_j)$$

- Variable elimination: An algorithm for exact inference
 - Uses dynamic programming
 - Not necessarily polynomial time!

Variable Elimination (High-level)

Goal:
$$p(Q|x_1,...,x_j)$$

(The word "factor" is used for each CPT.)

- 1. Pick one of the non-conditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Goal: P(Tampering | Smoke=true ∧ Report=true)

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Goal: P(Tampering | Smoke=true ∧ Report=true)

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0\left(Tampering ight)$
P(Fire)	$f_1 (Fire)$
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
$P(Smoke = yes \mid Fire)$	f_3 (Fire)
	$f_4\left(Alarm, Leaving ight)$
	$f_5 (Leaving)$

(The word "factor" is used for each CPT.)

- 1. Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 (Tampering)$
P(Fire)	$f_{1}\left(Fire ight)$
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
$P\left(Smoke = yes \mid Fire ight)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_{5}\left(Leaving ight)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Eliminate Fire

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 \left(Tampering ight)$
P(Fire)	$f_{1}\left(Fire ight)$
$P(Alarm \mid Tampering, Fire)$	$f_{2}\left(Tampering, Fire, Alarm ight)$
$P(Smoke = yes \mid Fire)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4 (Alarm, Leaving)$
$P(Report = yes \mid Leaving)$	$f_5 (Leaving)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

f1(Fire) f2(Tampering, Fire, Alarm) f3(Fire)

f6(Tampering, Alarm) =

$$= \sum_{u} f_1(\text{Fire} = u) f_2(T, F = u, A) f_3(F = u)$$

$$= \sum_{u} p(\text{Fire} = u) p(A \mid T, F = u) p(S = y \mid F = u)$$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 \left(Tampering ight)$
P(Fire)	$f_{1}\left(Fire ight)$
$P(Alarm \mid Tampering, Fire)$	$f_2 (Tampering, Fire, Alarm)$
$P(Smoke = yes \mid Fire)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4 (Alarm, Leaving)$
$P(Report = yes \mid Leaving)$	$f_{5}\left(Leaving ight)$

Goal: P(Tampering | Smoke=true ∧ Report=true) f6(Tampering, Alarm) =

$$= \sum_{u} p(\text{Fire} = u)p(A \mid T, F = u)p(S = y \mid F = u)$$

$$= p(\text{Fire} = y)p(A \mid T, F = y)p(S = y \mid F = y) + p(\text{Fire} = n)p(A \mid T, F = n)p(S = y \mid F = n)$$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 (Tampering)$
P(Fire)	$f_1(Fire)$
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
$P(Smoke = yes \mid Fire)$	f_3 (Fire)
$P(Leaving \mid Alarm)$	f_4 (Alarm, Leaving)
$P(Report = yes \mid Leaving)$	$ f_5\>(Leaving)$

Goal: P(Tampering | Smoke=true ∧ Report=true) f6(Tampering, Alarm) =

$$= \sum_{u} p(\text{Fire} = u)p(A \mid T, F = u)p(S = y \mid F = u)$$

	u		
	Tamp.	Alarm	f6
	Yes	Yes	$p(\text{Fire} = y)p(A = y \mid T = y, F = y)p(S = y \mid F = y) + p(\text{Fire} = n)p(A = y \mid T = y, F = n)p(S = y \mid F = n)$
7	Yes	No	
	No	No	
	No	Yes	•••

77

(The word "factor" is used for each CPT.)

- 1. Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 (Tampering)$
P(Fire)	$f_{1}\left(Fire ight)$
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
$P\left(Smoke = yes \mid Fire ight)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_{5}\left(Leaving ight)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Eliminate Alarm

(The word "factor" is used for each CPT.)

- 1. Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 (Tampering)$
P(Fire)	$f_1 (Fire)$
$P(Alarm \mid Tampering, Fire)$	$f_{2}\left(Tampering, Fire, Alarm ight)$
$P(Smoke = yes \mid Fire)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_{5}\left(Leaving ight)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

...other computations not shown---see the book...

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 \left(Tampering ight)$
P(Fire)	$f_{1}\left(Fire ight)$
$P(Alarm \mid Tampering, Fire)$	$ f_{2}\left(Tampering,Fire,Alarm ight) $
$P(Smoke = yes \mid Fire)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_5 (Leaving)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Normalize in order to compute p(Tampering)

We'll have a single factor f9(Tampering):

$$p(T=u) = \frac{f_9(T=u)}{\sum_v f_9(T=v)}$$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 \left(Tampering ight)$
P(Fire)	$f_{1}\left(Fire ight)$
$P(Alarm \mid Tampering, Fire)$	$ f_{2}\left(Tampering,Fire,Alarm ight) $
$P(Smoke = yes \mid Fire)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_5 (Leaving)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Normalize in order to compute p(Tampering)

We'll have a single factor f9(Tampering):

$$p(T = y) = \frac{f_9(T = y)}{f_9(T = y) + f_9(T = n)}$$

Learning Bayesian networks

- Given training set $D = \{x[1],...,x[M]\}$
- Find graph that best matches D
 - model selection
 - parameter estimation

Data D

Learning Bayesian Networks

- Describe a BN by specifying its (1) structure and (2) conditional probability tables (CPTs)
- Both can be learned from data, but
 - —learning structure much harder than learning parameters
 - -learning when some nodes are hidden, or with missing data harder still

• Four cases:

Structure Observability Method

Known Full Maximum Likelihood Estimation

Known Partial EM (or gradient ascent)

Unknown Full Search through model space

Unknown Partial EM + search through model

space

Variations on a theme

- Known structure, fully observable: only need to do parameter estimation
- Unknown structure, fully observable: do heuristic search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

Fundamental Inference Question

 Compute posterior probability of a node given some other nodes

$$p(Q|x_1,...,x_i)$$

- Some techniques
 - MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered 2nd]
 - Variable Elimination [covered 1st]
 - (Loopy) Belief Propagation ((Loopy) BP)
 - Monte Carlo
 - Variational methods

— ...

Advanced topics

Parameter estimation

- Assume known structure
- Goal: estimate BN parameters θ
 - entries in local probability models, P(X | Parents(X))
- A parameterization θ is good if it is likely to generate the observed data:

$$L(\theta: D) = P(D \mid \theta) = \prod_{m} P(x[m] \mid \theta)$$
i.i.d. samples

• Maximum Likelihood Estimation (MLE) Principle: Choose θ^* so as to maximize L

Parameter estimation II

- The likelihood decomposes according to the structure of the network
 - → we get a separate estimation task for each parameter
- The MLE (maximum likelihood estimate) solution for discrete data & RV values:
 - for each value x of a node X
 - and each instantiation u of Parents(X)

$$\theta_{x|u}^* = \frac{N(x,u)}{N(u)}$$
 sufficient statistics

- Just need to collect the counts for every combination of parents and children observed in the data
- MLE is equivalent to an assumption of a uniform prior over parameter values

Learning: Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data ${\mathcal X}$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(X; \phi)$
- Learning appropriate value(s) of ϕ allows you to GENERALIZE about $\mathcal X$

Learning: Maximum Likelihood Estimation (MLE)

Central to machine learning:

- Observe some data (X, Y)
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ , i.e., $f_{\theta}(X)$
 - Sometimes written $f(X; \theta)$

Learning Parameters for the Die Model

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

Learning Parameters for the Die Model

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

A: Develop a good model for what we observe

Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

$$p(2) = ?$$

$$p(4) = ?$$

$$p(5) = ?$$

$$p(6) = ?$$

Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

...what are "reasonable" estimates for p(w)?

$$p(1) = 2/9$$

$$p(2) = 1/9$$

$$p(3) = 1/9$$

$$p(4) = 3/9$$

$$p(5) = 1/9$$

maximum

likelihood

$$p(6) = 1/9$$

Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data ${\mathcal X}$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(X; \phi)$
- Learning appropriate value(s) of ϕ allows you to GENERALIZE about $\mathcal X$

How do we "learn appropriate value(s) of φ?"

Many different options: a common one is maximum likelihood estimation (MLE)

- Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, \dots, x_N\})$ is maximized
- Independence assumptions are very useful here!
- Logarithms are also useful!

Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data ${\mathcal X}$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(X; \phi)$
- MLE: Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, ..., x_N\})$ is maximized

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely

Maximum Likelihood

Estimation (MLE)

Core concept in intro statistics:

- Observe some data ${\mathcal X}$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(X; \phi)$
- MLE: Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, ..., x_N\})$ is maximized

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful probability distribution for x_i ?

- Normal? X
- Gamma? √
- Exponential? √
- Bernoulli? X
- Poisson? X

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful probability distribution for x_i ?

- Normal? X• Gamma? $\sqrt{p(X=x)} = \frac{x^{k-1}\exp(\frac{-k}{\theta})}{\theta^k\Gamma(k)}$
- Exponential?
- Bernoulli? X
- Poisson? X

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from q

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful/nice-to-compute-and-good-enough probability distribution for x_i ?

- Normal? $X \checkmark$ $\frac{1}{\sqrt{2\pi}\sigma} \exp(\frac{-(x-\mu)^2}{2\sigma^2})$
- Exponential? √?
- Bernoulli? X X
- Poisson? X X

Advanced topic

MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

$$x_i \sim \text{Normal}(\mu, \sigma^2)$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \text{Normal}_{\mu,\sigma^2}(x_i) =$$

Advanced topic

MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

$$x_i \sim \text{Normal}(\mu, \sigma^2)$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \text{Normal}_{\mu,\sigma^2}(x_i) =$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

$$x_i \sim \text{Normal}(\mu, \sigma^2)$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \text{Normal}_{\mu,\sigma^2}(x_i) =$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Q: How do we find μ , σ^2 ?

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

$$x_i \sim \text{Normal}(\mu, \sigma^2)$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \text{Normal}_{\mu,\sigma^2}(x_i) =$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Q: How do we find μ , σ^2 ?

A: Differentiate and find that

$$\hat{\mu} = \frac{\sum_{i} x_{i}}{N}$$

$$\sigma^{2} = \frac{\sum_{i} (x_{i} - \hat{\mu})^{2}}{N}$$

Learning: Maximum Likelihood Estimation (MLE)

Central to machine learning:

- Observe some data (X, Y)
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ , i.e., $f_{\theta}(X)$
 - Sometimes written $f(X; \theta)$

Maximum Likelihood Estimation (MLE)

Central to machine learning:

- Observe some data (X, Y)
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ , i.e., $f_{\theta}(X)$
 - Sometimes written $f(X; \theta)$
- Parameters are learned to minimize error (loss) €

Advanced topic

Maximum Likelihood Estimation (MLE)

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- $\mathcal{Y} = \{y_1, y_2, ..., y_N\}$ are closure results from the previous N storms
- Goal: learn θ such that f correctly predicts, as accurately as possible, if UMBC will close in the next storm:
 - y_{n+1}^* from x_{n+1}

- If we assume the output of f is a probability distribution on $\mathcal{Y}|\mathcal{X}...$
 - $f(\mathcal{X}) \to \{p(\text{yes}|\mathcal{X}), p(\text{no}|\mathcal{X})\}$
- Then re: θ , {predicting, explaining, generating} y means... what?

Maximum Likelihood Estimation (MLE)

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- $\mathcal{Y} = \{y_1, y_2, ..., y_N\}$ are closure results from the previous N storms
- Goal: learn θ such that f correctly predicts, as accurately as possible, if UMBC will close in the next storm:
 - y_{n+1}^* from x_{n+1}

- If we assume the output of f is a probability distribution on $\mathcal{Y}|\mathcal{X}...$
- Then re: θ, {predicting, explaining, generating}
 y means... what?

Maximum Likelihood Estimation (MLE)

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- $\mathcal{Y} = \{y_1, y_2, ..., y_N\}$ are closure results from the previous N storms
- Goal: learn θ such that f correctly predicts, as accurately as possible, if UMBC will close in the next storm:
 - y_{n+1}^* from x_{n+1}

- If we assume the output of f is a probability distribution on $\mathcal{Y}|\mathcal{X}...$
- Then re: θ , {predicting, explaining, generating} y means finding a value for θ that maximizes the probability of y given x

Maximum Likelihood Estimation (MLE)

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- $\mathcal{Y} = \{y_1, y_2, ..., y_N\}$ are closure results from the previous N storms
- Goal: learn θ such that f correctly predicts, as accurately as possible, if UMBC will close in the next storm:
 - y_{n+1}^* from x_{n+1}

- If we assume the output of f is a probability distribution on $\mathcal{Y}|\mathcal{X}...$
- Then re: θ , {predicting, explaining, generating} y means finding a value for θ that maximizes the probability of y given x, according to y
- To model \mathcal{X} : learn a distribution g, on \mathcal{X}

Extended examples of MLE

Advanced topic N. different

Learning Parameters for the Die Model: Maximum Likelihood (Math)

N different (independent) rolls

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$w_1 = 1$$

$$w_2 = 5$$

$$w_3 = 4$$

• •

Generative Story

for roll
$$i = 1$$
 to N :
 $w_i \sim \text{Cat}(\theta)$

Maximize Log-likelihood

$$\mathcal{L}(\theta) = \sum_{i} \log p_{\theta}(w_{i})$$
$$= \sum_{i} \log \theta_{w_{i}}$$

Learning Parameters for the Die Model: Maximum Likelihood (Math)

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{L}(\theta) = \sum_{i} \log \theta_{w_i} \text{ s.t.} \sum_{k=1}^{6} \theta_k = 1$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, right *now*, is not needed)

solve using Lagrange multipliers

Learning Parameters for the Die Model: Maximum Likelihood (Math)

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, right now, is not needed)

$$\frac{\partial \mathcal{F}(\theta)}{\partial \theta_k} = \sum_{i:w_i = k} \frac{1}{\theta_{w_i}} - \lambda \qquad \frac{\partial \mathcal{F}(\theta)}{\partial \lambda} = -\sum_{k=1}^6 \theta_k + 1$$

Learning Parameters for the Die Model: Maximum Likelihood (Math)

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, right now, is not needed)

$$\theta_k = \frac{\sum_{i:w_i=k} 1}{\lambda}$$
 optimal λ when $\sum_{k=1}^6 \theta_k = 1$

Learning Parameters for the Die Model: Maximum Likelihood (Math)

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, right now, is not needed)

$$\theta_k = \frac{\sum_{i:w_i=k} 1}{\sum_k \sum_{i:w_i=k} 1} = \frac{N_k}{N}$$
 optimal λ when $\sum_{k=1}^6 \theta_k = 1$

Example: Conditionally Rolling a Die

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

add complexity to better explain what we see

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$
$$= \prod_i p(w_i|z_i) p(z_i)$$

Example: Conditionally Rolling a Die

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

add complexity to better explain what we see

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$
$$= \prod_i p(w_i|z_i) p(z_i)$$

First flip a coin...

• • •

Example: Conditionally Rolling a Die

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

add **complexity** to better explain what we see

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$
$$= \prod p(w_i|z_i) p(z_i)$$

First flip a coin...

...then roll a different die depending on the coin flip

$$z_1 = 7$$

$$w_1 = 1$$

$$z_1 = T$$
 $w_1 = 1$ $z_2 = H$ $w_2 = 5$

Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$\downarrow^{add complexity to better}_{explain what we see}$$

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$

$$= \prod_i p(w_i|z_i) p(z_i)$$

If you observe the z_i values, this is easy!

Advanced topic

Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$
If you observe the z_i
values, this is easy!

First: Write the Generative Story

 λ = distribution over coin (z)

 $\gamma^{(H)}$ = distribution for die when coin comes up heads

 $\gamma^{(T)}$ = distribution for die when coin comes up tails for item i=1 to N:

 $z_i \sim \text{Bernoulli}(\lambda)$

$$w_i \sim \operatorname{Cat}(\gamma^{(z_i)})$$

Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the z_i values, this is easy!

First: Write the Generative Story

 $\lambda = \text{distribution over coin } (z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$

Second: Generative Story → Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$

Lagrange multiplier constraints

Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the z_i values, this is easy!

First: Write the Generative Story

 $\lambda = \text{distribution over coin } (z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$

Second: Generative Story → Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$
$$-\eta \left(\sum_{k=1}^{2} \lambda_k - 1\right) - \sum_{k=1}^{2} \delta_k \left(\sum_{j=1}^{6} \gamma_j^{(k)} - 1\right)$$

Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the z_i values, this is easy!

But if you don't observe the z_i values, this is not easy!

First: Write the Generative Story

 $\lambda = \text{distribution over coin } (z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$

Second: Generative Story → Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$
$$-\eta \left(\sum_{k=1}^{2} \lambda_k - 1\right) - \sum_{k=1}^{2} \delta_k \left(\sum_{j=1}^{6} \gamma_j^{(k)} - 1\right)$$

Model selection

Goal: Select the best network structure, given the data

Input:

- Training data
- Scoring function

Output:

A network that maximizes the score

Structure selection: Scoring

- Bayesian: prior over parameters and structure
 - get balance between model complexity and fit to data as a byproduct
 Marginal likelihood
- Score (G:D) = log P(G|D) α log [P(D|G) P(G)]
- Marginal likelihood just comes from our parameter estimates
- Prior on structure can be any measure we want; typically a function of the network complexity

Same key property: Decomposability

Score(structure) = \sum_{i} Score(family of X_{i})

Heuristic search

Exploiting decomposability Delete E Add E A Ascore(A se E-A Delete E To recompute scores, only need to re-score families that changed in the last move

Some software tools

- <u>Netica</u>: Windows app for working with Bayesian belief networks and influence diagrams
 - Commercial product, free for small networks
 - Includes graphical editor, compiler, inference engine, etc.
 - To run in OS X or Linus you need Wire or Crossover
- Hugin: free demo versions for Linux, Mac, and Windows are available
- BBN.ipynb based on an AIMA notebook

Same BBN model in Hugin app

See the 4-minute **HUGIN Tutorial** on YouTube

Python Code

See this <u>AIMA notebook</u> on colab showing how to construct this BBN Network in Python

Judea Pearl example

There's is a house with a burglar alarm that can be triggered by a burglary or earthquake. If it sounds, one or both neighbors John & Mary, might call the owner to say the alarm is sounding.

