INTEGRATED CIRCUITS

DATA SHEET

NE/SA/SE5532/5532A

Internally-compensated dual low noise operational amplifier

Product specification

1997 Sept 29

IC11 Data Handbook

Philips Semiconductors Product specification

Internally-compensated dual low noise operational amplifier

NE/SA/SE5532/5532A

DESCRIPTION

The 5532 is a dual high-performance low noise operational amplifier. Compared to most of the standard operational amplifiers, such as the 1458, it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high-quality and professional audio equipment, instrumentation and control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one. If very low noise is of prime importance, it is recommended that the 5532A version be used because it has guaranteed noise voltage specifications.

FEATURES

• Small-signal bandwidth: 10MHz

Output drive capability: 600Ω, 10V_{RMS}

Input noise voltage: 5nV / √Hz (typical)

• DC voltage gain: 50000

AC voltage gain: 2200 at 10kHz

Power bandwidth: 140kHz

Slew rate: 9V/μs

Large supply voltage range: ±3 to ±20V

Compensated for unity gain

PIN CONFIGURATIONS

Figure 1. Pin Configurations

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG#
8-Pin Plastic Dual In-Line Package (DIP)	0 to 70°C	NE5532N	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	−40°C to +85°C	SA5532N	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	−40°C to +85°C	SA5532AN	SOT97-1
8-Pin Ceramic Dual In-Line Package (CERDIP)	0 to 70°C	NE5532FE	0580A
8-Pin Plastic Dual In-Line Package (DIP)	0 to 70°C	NE5532AN	SOT97-1
8-Pin Ceramic Dual In-Line Package (CERDIP)	0 to 70°C	NE5532AF	0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)	-55°C to +125°C	SE5532FE	0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)	-55°C to +125°C	SE5532AF	0580A
8-Pin Small Outline Package (SO)	0 to 70°C	NE5532AD8	SOT96-1
8-Pin Small Outline Package (SO)	−40°C to 85°C	SA5532D8	SOT96-1
8-Pin Small Outline Package (SO)	−40°C to 85°C	SA5532AD8	SOT96-1
8-Pin Small Outline Package (SO)	-55°C to +125°C	SE5532AD8	SOT96-1
8-Pin Small Outline Package (SO)	0 to 70°C	NE5532D8	SOT96-1
8-Pin Small Outline Package (SO)	−40°C to 85°C	SA5532D8	SOT96-1
8-Pin Small Outline Package (SO)	−40°C to 85°C	SA5532AD8	SOT96-1
8-Pin Small Outline Package (SO)	-55°C to +125°C	SE5532D8	SOT96-1
16-Pin Plastic Small Outline Large (SOL) Package	0 to 70°C	NE5532D	SOT162-1
16-Pin Plastic Dual In-Line Package (DIP)	-55°C to +125°C	SE5532N	SOT38-4

Philips Semiconductors Product specification

Internally-compensated dual low noise operational amplifier

NE/SA/SE5532/5532A

EQUIVALENT SCHEMATIC (EACH AMPLIFIER)

Figure 2. Equivalent Schematic (Each Amplifier)

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _S	Supply voltage	±22	V
V _{IN}	Input voltage	±V _{SUPPLY}	V
V_{DIFF}	Differential input voltage ¹	±0.5	V
T _A	Operating temperature range SA5532/A NE5532/A SE5532/A	-40 to +85 0 to 70 -55 to +125	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
T _{STG}	Storage temperature	-65 to +150	°C
TJ	Junction temperature	150	°C
P _D	Maximum power dissipation, T _A =25°C (still-air) ² 8 D8 package 8 N package 8 FE package 16 D package	780 1200 1000 1200	mW mW mW mW
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C

NOTES:

- Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum current should be limited to ±10mA.
- Thermal resistances of the above packages are as follows:
 N package at 100°C/W

F package at 135°C/W D package at 105°C/W

D8 package at 160°C/W

1997 Sept 29

NE/SA/SE5532/5532A

DC ELECTRICAL CHARACTERISTICS

 $T_A=25$ °C $V_S=\pm15V$, unless otherwise specified. ^{1, 2, 3}

CVMDOL	DADAMETED	TEST CONDITIONS	SE/	5532/55	32A	NE/S	A/5532/5	5532A	LIAUT
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT
Vos	Offset voltage			0.5	2		0.5	4	mV
		Over temperature			3			5	mV
$\Delta V_{OS}/\Delta T$				5			5		μV/°C
Ios	Offset current				100		10	150	nA
		Over temperature			200	l		200	nA
ΔI _{OS} /ΔT				200			200		pA/°C
I_B	Input current			200	400		200	800	nA
		Over temperature			700	l		1000	nA
ΔI _B /ΔT				5			5		nA/°C
				8	10.5		8	16	mA
I _{CC}	Supply current								
		Over temperature			13				mA
V_{CM}	Common-mode input range		±12	±13		±12	±13		V
CMRR	Common-mode rejection ratio		80	100		70	100		dB
PSRR	Power supply rejection ratio			10	50		10	100	μV/V
		R _L ≥2kΩ, V _O =±10V	50	100		25	100		V/mV
A _{VOL}	Large-signal voltage gain	Over temperature	25			15			V/mV
AVOL	Large Signal Voltage gain	R _L ≥600Ω, V _O =±10V	40	50		15	50		V/mV
		Over temperature	20			10			V/mV
		R _L ≥600Ω	±12	±13		±12	±13		
		Over temperature	±10	±12		±10	±12		
V_{OUT}	Output swing	R _L ≥600Ω, V _S =±18V	±15	±16		±15	±16		V
001	3	Over temperature	±12	±14		±12	±14		
		R _L ≥2kΩ	±13	±13.5		±13	±13.5		
		Over temperature	±12	±12.5		±10	±12.5		
R _{IN}	Input resistance		30	300		30	300		kΩ
I _{SC}	Output short circuit current		10	38	60	10	38	60	mA

NOTES:

- 1. Diodes protect the inputs against overvoltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum current should be limited to ±10mA.
- 2. For operation at elevated temperature, derate packages based on the package thermal resistance.
- 3. Output may be shorted to ground at V_S=±15V, T_A=25°C Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded.

AC ELECTRICAL CHARACTERISTICS

 T_A =25°C V_S =±15V, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA	/SE5532/	/5532A	UNIT
STWIBUL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNII
R _{OUT}	Output resistance	A_V =30dB Closed-loop f=10kHz, R _L =600 Ω		0.3		Ω
	Overshoot	Voltage-follower V_{IN} =100m V_{P-P} C_L =100pF, R_L =600 Ω		10		%
A _V	Gain	f=10kHz		2.2		V/mV
GBW	Gain bandwidth product	C_L =100pF, R_L =600 Ω		10		MHz
SR	Slew rate			9		V/μs
	Power bandwidth	V_{OUT} =±10V V_{OUT} =±14V, R _L =600 Ω , V_{CC} =±18V		140 100		kHz kHz

NE/SA/SE5532/5532A

ELECTRICAL CHARACTERISTICS

 $T_A=25$ °C $V_S=\pm15V$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	N	E/SE553	32	NE/S	SA/SE55	32A	UNIT
STIMBUL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNII
V _{NOISE}	Input noise voltage	f _O =30Hz f _O =1kHz		8 5			8 5	12 6	nV/√ Hz nV/√ Hz
I _{NOISE}	Input noise current	f _O =30Hz f _O =1kHz		2.7 0.7			2.7 0.7		pA/√ Hz pA/√ Hz
	Channel separation	f=1kHz, R _S =5kΩ		110			110		dB

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Typical Performance Characteristics

Philips Semiconductors Product specification

Internally-compensated dual low noise operational amplifier

NE/SA/SE5532/5532A

TEST CIRCUITS

Figure 4. Test Circuits

NE/SA/SE5532/5532A

DIP8: plastic dual in-line package; 8 leads (300 mil)

SOT97-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.14	0.53 0.38	1.07 0.89	0.36 0.23	9.8 9.2	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	1.15
inches	0.17	0.020	0.13	0.068 0.045	0.021 0.015	0.042 0.035	0.014 0.009	0.39 0.36	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.045

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT97-1	050G01	MO-001AN			92-11-17 95-02-04

0580A 8-PIN (300 mils wide) CERAMIC DUAL IN-LINE (F) PACKAGE

1997 Sept 29 8

NE/SA/SE5532/5532A

SO8: plastic small outline package; 8 leads; body width 3.9mm

SOT96-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	5.0 4.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.0098 0.0039		0.01		0.0098 0.0075	0.20 0.19	0.16 0.15	0.050	0.24 0.23	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Notes

- 1. Plastic or metal protrusions of $0.15\ mm$ maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT96-1	076E03S	MS-012AA			92-11-17 95-02-04

1997 Sept 29

NE/SA/SE5532/5532A

SO16: plastic small outline package; 16 leads; body width 7.5 mm

SOT162-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	Α1	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Ø	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	10.5 10.1	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.41 0.40	0.30 0.29	0.050	0.42 0.39	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT162-1	075E03	MS-013AA			-92-11-17 95-01-24

NE/SA/SE5532/5532A

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

0 5 10 mm scale

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT38-4					□ •	92-11-17 95-01-14

Philips Semiconductors Product specification

Internally-compensated dual low noise operational amplifier

NE/SA/SE5532/5532A

DEFINITIONS					
Data Sheet Identification	Product Status	Definition			
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.			
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.			

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

print code Date of release: 04–96

Document order number: 9397 750 01699

Let's make things better.

Philips Semiconductors

