Relations between asymptotic and Fredholm representations*

V. M. Manuilov, A. S. Mishchenko

Abstract

We prove that for matrix algebras M_n there exists a monomorphism

$$(\prod_n M_n/\oplus_n M_n)\otimes C(S^1)\longrightarrow \mathcal{Q}$$

into the Calkin algebra which induces an isomorphism of the K_1 -groups. As a consequence we show that every vector bundle over a classifying space $B\pi$ which can be obtained from an asymptotic representation of a discrete group π can be obtained also from a representation of the group $\pi \times \mathbf{Z}$ into the Calkin algebra. We give also a generalization of the notion of Fredholm representation and show that asymptotic representations can be viewed as asymptotic Fredholm representations.

1 Asymptotic representations as representations into the Calkin algebra

Let π be a discrete finitely presented group, and let $F \subset \pi$ be a finite subset. Denote by U(n) the unitary group of dimension n and fix a number $\varepsilon > 0$.

Definition 1.1 A map $\sigma: \pi \longrightarrow U(n)$ is called an ε -almost representation with respect to F if $\sigma(g^{-1}) = \sigma(g)^{-1}$ holds for all $g \in \pi$ and if

$$\|\sigma\|_F = \sup\{\|\sigma(gh) - \sigma(g)\sigma(h)\| : g, h, gh \in F\} \le \varepsilon.$$

Let $\{n_k\}$ be a strictly increasing sequence of positive integers and let $\sigma = \{\sigma_k : \pi \longrightarrow U(n_k)\}$ be a sequence of ε_k -almost representations. We assume that the groups $U(n_k)$ are embedded into the groups $U(n_{k+1})$ in the standard way, so it makes possible to compare almost representations for different k. Then we can consider the maps $\sigma_k \oplus 1 : \pi \longrightarrow U(n_k) \oplus U(n_{k+1} - n_k) \longrightarrow U(n_{k+1})$, which we also denote by σ_k .

Definition 1.2 A sequence of ε_k -almost representations is called an asymptotic representation of the group π (with respect to the finite subset F and a sequence $\{n_k\}$) if the sequences ε_k and $\|\sigma_k(g) - \sigma_{k+1}(g)\| : g \in F \subset \pi$ tend to zero.

^{*}This research was partially supported by RFBR (grant No 96-01-00276) and by DFG.

It was shown in [7] that this definition is equivalent to the definition given in [3, 4]. It does not depend on the choice of the finite subset F when F is big enough and sets of generators and relations of the group π are finite.

Two asymptotic representations σ_0 and σ_1 are called homotopic if there exists a family of asymptotic representations $\sigma_t = \{\sigma_{t,k}\}$ such that the functions $\sigma_{t,k}(g)$ are continuous for all $g \in \pi$ and $\lim_{k \to \infty} \max_t \|\sigma_{t,k}\|_F = 0$. It can be easily seen that every asymptotic representation is homotopic to some asymptotic representation corresponding to a given sequence $\{n_k\}$.

It is well known that the asymptotic representations are exact representations in some more compound C^* -algebras [4, 5]. Remind this construction. Let M_n be the $n \times n$ matrix algebra. Consider the C^* -algebra $B = \prod_{k=1}^{\infty} M_{n_k}$ of norm-bounded sequences of matrices. We suppose that the sequence n_k is strictly increasing. Denote by B^+ the C^* -algebra B with adjoined unit. Both algebras B and B^+ contain a C^* -ideal $I = \bigoplus_{k=1}^{\infty} M_{n_k}$ of sequences of matrices with norms tending to zero.

Denote the corresponding quotient algebras by Q = B/I and $Q^+ = B^+/I$. Let $\bar{\alpha} : B^{(+)} \longrightarrow B^{(+)}$ be the right shift, $\bar{\alpha}(m_1, m_2, \ldots) = (0, m_1, m_2, \ldots), (m_i) \in B^{(+)}$. As $\bar{\alpha}(I) \subset I$, so the homomorphism $\bar{\alpha}$ induces the homomorphism $\alpha : Q^{(+)} \longrightarrow Q^{(+)}$. Let

$$Q_{\alpha}^{(+)} = \{ q \in Q^{(+)} : \alpha(q) = q \} \subset Q^{(+)}$$

be the α -invariant C^* -subalgebra. The adjoined unit gives the splittable short exact sequence

$$Q_{\alpha} \longrightarrow Q_{\alpha}^{+} \longrightarrow \mathbf{C}.$$
 (1.1)

Let $e = (e_k) \in B$ be the sequence of diagonal matrices having unities at the first place and zeroes at the other places, $e_k \in M_{n_k}$.

Lemma 1.3 The group $K_0(Q_{\alpha}^+)$ is isomorphic to $\mathbf{Z} \oplus \mathbf{Z}$ with generators [e] and [1]; $K_0(Q_{\alpha}) \cong \mathbf{Z}$ with generator [e]; $K_1(Q_{\alpha}) = K_1(Q_{\alpha}^+) = 0$.

Proof. Let $p \in M_r(Q_\alpha)$ be a projection and let $p' \in M_r(B)$ be a projection which is the lift of p. Then $p' = (p_k)$ is a sequence of projections. This sequence is α -invariant, hence the rank of p_k is constant beginning from some k. Therefore the projection p is a multiple of the projection e for big enough k. The case of the group $K_1(Q_\alpha)$ can be considered by the similar way.

Denote by Q the Calkin algebra.

Theorem 1.4 There exists a monomorphism

$$\psi: Q_{\alpha}^{+} \otimes C(S^{1}) \longrightarrow \mathcal{Q} \tag{1.2}$$

such that the induced homomorphism

$$\psi_*: K_1(Q_\alpha \otimes C(S^1)) \longrightarrow K_1(\mathcal{Q})$$
 (1.3)

is an isomorphism.

Proof. We start with defining the homomorphism (1.2). Let V_k be a n_k -dimensional Hilbert space where the algebra M_{n_k} acts, with a fixed basis $\{e_k^{(i)}\}$, $i \leq n_k$. Fix the embeddings

$$j_k: V_{k-1} \longrightarrow V_k,$$

mapping the vectors $e_{k-1}^{(i)}$ into $e_k^{(i)}$. Denote by W_{k-1} the orthogonal complements,

$$V_k = j_k(V_{k-1}) \oplus W_{k-1}.$$

For k = 1 let $W_0 = V_1$. Put

$$H_k = V_k \oplus (\oplus_m W_{k,m}); \quad W_{k,m} \cong W_k, \ m \in \mathbb{N}; \quad H = \oplus H_k$$

and define a homomorphism ψ of the C^* -algebra Q^+_{α} into the Calkin algebra \mathcal{Q} of the Hilbert space H. Let $q \in Q^+_{\alpha}$ and let $q' = (q_k) \in B^+$ be a lift of q. Denote by $(q_k)_{ij}$ the matrix elements of the matrix q_k . By definition the limits $\lim_{i\to\infty}(q_k)_{ii}$ exist and are equal to each other for all k. Denote the value of these limits by $\lambda(q)$. Define $\psi(q)$ as an operator on H which acts on the spaces V_k by multiplication by the matrices q_k , and on the spaces $W_{k,m}$ by multiplication by $\lambda(q)$. Such operator is defined up to compact operators, hence it gives an element $\psi(q) \in \mathcal{Q}$. Consider now the C^* -algebra $Q^+_{\alpha} \otimes C(S^1)$ of continuous Q^+_{α} -valued functions over a circle. The construction described above allows us to define a homomorphism $Q^+_{\alpha} \otimes C(S^1) \longrightarrow \mathcal{Q}$. Put $\psi(q \otimes 1_{C(S^1)}) = \psi(q)$. It remains now to define the image of the function $u = e^{2\pi i t}$ from $C(S^1)$. Define a Fredholm operator F (with zero index) on the Hilbert space H by the following conditions:

- i) F maps every subspace V_k (except V_1) onto the subspace $V_{k-1} \oplus W_{k-1,1}$ so that $F(e_k^{(i)}) = e_{k-1}^{(i)}$ for $i < n_{k-1}$;
- ii) F isomorphically maps the subspace V_1 onto $W_{0,1}$;
- iii) F isomorphically maps every subspace $W_{k,m}$ onto the subspace $W_{k,m+1}$.

Thus defined operator F commutes with the image $\psi(Q_{\alpha}^{+})$ modulo compacts, hence we get the needed homomorphism ψ if we put $\psi(1_{Q_{\alpha}^{+}} \otimes e^{2\pi it}) = F$.

Denote the basis vectors of the subspaces $W_{k,m}$ by $w_{k,m}^{(j)}$ with $n_{k-1}+1 \leq j \leq n_k$. Then we can represent the action of the operator F by the diagram

It remains to show that the homomorphism (1.3) is an isomorphism. As $K_1(Q_{\alpha}^+) = 0$, so by the Künneth formula we have

$$K_1(Q_\alpha^+ \otimes C(S^1)) \cong K_0(Q_\alpha^+) \otimes K^1(S^1).$$

Let $[u] \in K^1(S^1)$ be a generator. Then the group $K_1(Q_{\alpha}^+ \otimes C(S^1))$ is generated by two elements: $[e] \otimes [u]$ and $[1] \otimes [u]$. As

$$\psi(1 \otimes u) = F$$
 and ind $F = 0$,

so we obtain $\psi_*([1] \otimes [u]) = 0$. Compute $\psi_*([e] \otimes [u])$. By [2] one has

$$[e] \otimes [u] = [(1 - e) \otimes 1 + e \otimes u],$$

hence

$$\psi_*([e] \otimes [u]) = \psi_*([e] \otimes [u]) = \psi_*([(1-e) \otimes 1 + e \otimes u])
= [1 - \psi(e \otimes 1) + \psi(e \otimes u)] = [1 - \psi(e \otimes 1) + \psi(e \otimes 1)F].$$

The action of the operator

$$F' = 1 - \psi(e \otimes 1) + \psi(e \otimes 1)F$$

is given by the formula

$$F'(e_k^{(j)}) = \begin{cases} e_k^{(j)} & \text{for } j > 1, \\ e_{k-1}^{(j)} & \text{for } j = 1, k > 1, \\ 0 & \text{for } j = k = 1; \end{cases} \qquad F'(w_{k,m}^{(j)}) = w_{k,m}^{(j)},$$

so the image of F' coincides with the whole space H, and the kernel of F' is one-dimensional and is generated by the vector $e_1^{(1)}$. Therefore ind F'=1, hence the homomorphism ψ_* maps the generator of the group $K_1(Q_\alpha \otimes C(S^1)) \cong \mathbf{Z}$ into the generator of the group $K_1(Q)$.

Denote by $\mathcal{R}_a(\pi)$ the Grothendieck group of virtual asymptotic representations of the group π . Let $\widetilde{\mathcal{R}}_a(\pi)$ denote the kernel of the map

$$\mathcal{R}_a(\pi) \longrightarrow \mathcal{R}_a(e) \cong \mathbf{Z},$$

defined by the trivial representation (here e is the trivial group). Let $B\pi$ be the classifying space for the group π . Remember that a construction was defined in [7], which allows to obtain a vector bundle over $B\pi$ starting from an asymptotic representation. This construction gives a homomorphism

$$\phi: \widetilde{\mathcal{R}}_a(\pi) \longrightarrow K^0(B\pi) \tag{1.4}$$

which can be described as follows. Let $C^*[\pi]$ be the group C^* -algebra of the group π and let $\xi \in K^0_{C^*[\pi]}(B\pi)$ be the universal bundle. An asymptotic representation σ defines a homomorphism

$$\overline{\sigma}: C^*[\pi] \longrightarrow Q_{\alpha}^+,$$

which maps the universal bundle ξ into some element $\overline{\sigma}_*(\xi) \in K_{Q^+_{\alpha}}^0(B\pi)$. This homomorphism defines the homomorphism

$$\phi': \mathcal{R}_a(\pi) \longrightarrow K_{Q_\alpha^+}^0(B\pi).$$

It follows from the lemma 1.3, from the Künneth formula and from (1.1) that the lower line of the diagram

$$\begin{array}{cccc} \widetilde{\mathcal{R}}_a(\pi) & \longrightarrow & \mathcal{R}_a(\pi) & \longrightarrow & \mathcal{R}_a(e) \\ \downarrow & & \downarrow \phi' & & \downarrow \phi'_e \\ K^0_{Q_\alpha}(B\pi) & \longrightarrow & K^0_{Q_\alpha^+}(B\pi) & \longrightarrow & K^0_{\mathbf{C}}(B\pi) \end{array}$$

is exact, therefore the left vertical arrow is well-defined. As we have

$$K_{Q_{\alpha}}^{0}(B\pi) = K^{0}(B\pi) \otimes K_{0}(Q_{\alpha}) \cong K^{0}(B\pi),$$

so we can define ϕ to be this left vertical arrow after identifying $K_{Q_{\alpha}}^{0}(B\pi)$ with $K^{0}(B\pi)$. Notice that the image of the homomorphism ϕ'_{e} coincides with the subgroup in $K^{0}(B\pi)$ generated by the trivial representations.

As there exists a natural isomorphism

$$j: K_A^0(B\pi \times S^1 \times S^1) \xrightarrow{\sim} K_{A \otimes C(S^1)}^0(B\pi \times S^1)$$

for any C^* -algebra A, so multiplication by the Bott generator $\beta \in K^0(S^1 \times S^1)$ defines an inclusion

$$\overline{\beta}: K_A^0(B\pi) \xrightarrow{\otimes \beta} K_A^0(B\pi \times S^1 \times S^1) \xrightarrow{j} K_{A \otimes C(S^1)}^0(B\pi \times S^1) \\
= K_{A \otimes C(S^1)}^0(B(\pi \times \mathbf{Z})). \tag{1.5}$$

In the case $A = Q_{\alpha}$ we will write $\overline{\beta}$ instead of $\overline{\beta}_{Q_{\alpha}}$.

Now denote by $\mathcal{R}_{\mathcal{Q}}(\pi)$ the group of (virtual) representations of the group π into the Calkin algebra. It is easily seen that the homomorphism (1.4) allows us to define a homomorphism

$$\overline{\psi}: \mathcal{R}_a(\pi) \longrightarrow \mathcal{R}_{\mathcal{Q}}(\pi \times \mathbf{Z}) \tag{1.6}$$

given by the formula $\overline{\psi}(\overline{\sigma}) = \psi(\overline{\sigma} \otimes id)$ for $\overline{\sigma} \in \mathcal{R}_a(\pi)$ and

$$\overline{\sigma} \otimes id : C^*[\pi \times \mathbf{Z}] \cong C^*[\pi] \otimes C(S^1) \longrightarrow Q_{\alpha}^+ \otimes C(S^1).$$

Let $\eta \in K^0_{C^*[\pi \times \mathbf{Z}]}(B(\pi \times Z))$ be the universal bundle over $B(\pi \times \mathbf{Z})$. Then there exists also a homomorphism

$$f: \mathcal{R}_{\mathcal{Q}}(\pi \times \mathbf{Z}) \longrightarrow K_{\mathcal{Q}}^{0}(B(\pi \times \mathbf{Z}))$$
 (1.7)

defined as the image of η over $B(\pi \times \mathbf{Z})$ under the representations into the Calkin algebra. All these homomorphisms (1.3) - (1.6) can be represented by the diagram

$$\widetilde{\mathcal{R}}_{a}(\pi) \xrightarrow{\phi} K_{Q_{\alpha}}^{0}(B\pi) \xrightarrow{\overline{\beta}} K_{Q_{\alpha} \otimes C(S^{1})}^{0}(B\pi \times S^{1})$$

$$\downarrow \psi_{*} \qquad \qquad \downarrow \psi_{*}$$

$$\mathcal{R}_{a}(\pi) \xrightarrow{\overline{\psi}} \mathcal{R}_{\mathcal{Q}}(\pi \times \mathbf{Z}) \xrightarrow{f} K_{\mathcal{Q}}^{0}(B\pi \times S^{1}),$$
(1.8)

where the left vertical arrow is the inclusion.

Theorem 1.5 The diagram (1.8) is commutative.

Proof. Direct calculation. •

So now we have the homomorphism

$$\overline{\phi}: \widetilde{\mathcal{R}}_a(\pi) \longrightarrow K_{\mathcal{Q}}^0(B\pi \times S^1) \cong K^1(B\pi \times S^1). \tag{1.9}$$

Theorem 1.5 shows that every element of the group $K^0(B\pi)$ which can be obtained by an asymptotic representation of the fundamental group π can be obtained also by a representation of the group $\pi \times \mathbf{Z}$ into the Calkin algebra.

2 Asymptotic representations as Fredholm representations

Notice that the group $K_{\mathcal{O}}^0(B\pi \times S^1)$ can be decomposed into direct sum:

$$K_{\mathcal{Q}}^{0}(B\pi \times S^{1}) = K_{\mathcal{Q}}^{0}(B\pi) \oplus K_{\mathcal{Q}}^{0}(B\pi \wedge S^{1}) \cong K^{1}(B\pi) \oplus K^{0}(B\pi)$$

$$(2.1)$$

induced by an inclusion map $i: s_0 \longrightarrow S^1$, where $s_0 \in S^1$, and the image of the homomorphism $\overline{\phi}$ (1.9) lies only in the second summand of (2.1). Indeed, consider the composition of the map $\overline{\phi}$ with the map $i^*: K_{\mathcal{Q}}^0(B\pi \times S^1) \longrightarrow K_{\mathcal{Q}}^0(B\pi)$. But as the multiplication by the Bott generator is involved in the map $\overline{\phi}$, so its composition with i^* gives the zero map. Therefore the image of the group $\widetilde{\mathcal{R}}_a(\pi)$ lies in $K^0(B\pi)$ and hence defines a (virtual) vector bundle over $B\pi$.

On the other hand the image of the map (1.7) need not be contained in the second summand of (2.1). It would be so if the representation of the group $\pi \times \mathbf{Z}$ into the Calkin algebra would be a part of a Fredholm representation of the group π [6]. Using the notion of asymptotic representations we can now give a generalization of the Fredholm representations which would also ensure that the image of such representations would lie in the second summand of (2.1).

Let $\rho: \pi \times \mathbf{Z} \longrightarrow \mathcal{Q}$ be a representation into the Calkin algebra and let $F \subset \pi$ be a finite subset of π containing its generators. Denote by B(H) the algebra of bounded operators on a separable Hilbert space H. Let $q: B(H) \longrightarrow \mathcal{Q}$ be the canonical projection.

Definition 2.1 We call a map $\tau:\pi\longrightarrow B(H)$ an ε -trivialization for ρ if

- $i) \ \|\tau(gh) \tau(g)\tau(h)\| \le \varepsilon \text{ for any } g,h \in F \subset \pi,$
- ii) $q(\tau(g)) = \rho(g; 0)$ for any $g \in \pi$, $(g; 0) \in \pi \times \mathbf{Z}$.

Definition 2.2 Suppose that for every $\varepsilon > 0$ there exists an ε -trivialization τ_{ε} for ρ . Then the pair $(\tau_{\varepsilon}, \rho)$ is called an *asymptotic Fredholm representation*.

Let u be a generator of the group \mathbf{Z} . Notice that the image of the group π under ε -trivializations commutes with some Fredholm operator $F = \rho(0, u)$ modulo compacts. Denote the group of all asymptotic Fredholm representations by $\mathcal{R}_{aF}(\pi) \subset \mathcal{R}_{\mathcal{Q}}(\pi \times \mathbf{Z})$.

Proposition 2.3 The image of \mathcal{R}_{aF} under the map f (1.7) lies in the group $K^0(B\pi \wedge S^1)$.

Proof. It was described in the paper [7] how to construct a bundle over $B\pi$ with the fibers isomorphic to the Hilbert space H and with the structural group GL(H) starting from an almost representation τ_{ε} for small enough ε . To do so one should construct transition functions acting on the fibers ξ_x ,

$$T_q(x): \xi_x \longrightarrow \xi_{qx}$$

for $g \in \pi$, $x \in E\pi$. One should chose representatives $\{a_{\alpha}\}$ in each orbit of the set of vertices of $E\pi$ and define $T_g(a_{\alpha}) = \tau_{\varepsilon}(g)$. Take now an arbitrary vertex $b \in E\pi$. Then there exists such $h \in \pi$ that $b = h(a_{\alpha})$ and we should put $T_g(b) = \tau_{\varepsilon}(gh)\tau_{\varepsilon}^{-1}(h)$. Further these transition functions should be extended by linearity to all simplexes of $E\pi$. But obviously $q(T_g(b)) = q(\tau_{\varepsilon}(gh)\tau_{\varepsilon}^{-1}(h)) = q(\tau_{\varepsilon}(g))$, hence after we pass to quotients, the transition functions $q(T_g(x))$ would become constant and the bundle with the structural group being the invertibles of the Calkin algebra. But as any bundle with fibers H is trivial, so the quotient bundle with fibers isomorphic to the Calkin algebra is trivial too and the projection of $\varphi(\mathcal{R}_{aF})$ onto the first summand of $K_{\mathcal{O}}^0(B\pi)$ is equal to zero. \bullet

Remark. In the section 1 we have seen that an asymptotic representation $\sigma = (\sigma_n)$ defines a homomorphism $\rho : \pi \times \mathbf{Z} \longrightarrow GL(\mathcal{Q})$ into the group of invertibles of the Calkin algebra. But the same asymptotic representation gives ε -trivializations of ρ for any $\varepsilon > 0$. Indeed we can put

$$\tau_{\varepsilon_n}(g) = (1, 1, \dots, 1, \sigma_n(g), \sigma_{n+1}(g), \dots).$$

So asymptotic representations define asymptotic Fredholm representations and we have an inclusion $\mathcal{R}_a(\pi) \subset \mathcal{R}_{aF}(\pi)$.

3 Asymptotic representations and extensions

It was shown in [4] that using a quasi central approximate unity one can construct an aymptotic representation out of an extension of C^* -algebras. We study how this construction is related to asymptotic representations of the initial C^* -algebra.

Let A be a C^* -algebra such that there exists a homomorphism $q_A : A \longrightarrow \mathbb{C}$ of A into the complex numbers and let $F \subset A$ be a finite set of generators for A. We can repeat our definitions of asymptotic representations from the section 1 in the case of C^* -algebras instead of discrete groups. For smplicity sake we assume that dimension of an almost representation σ_n equals to n.

We consider a sequence of maps $\tilde{\sigma}_n: A \longrightarrow M_n$ where M_n acts on a finite-dimensional Hilbert space V_n . Take an infinite-dimensional Hilbert space $H_n \supset V_n$ and define a map $\sigma_n: A \longrightarrow B(H)$ by $\sigma_n(a) = \tilde{\sigma}_n(a) \oplus q_A(a)$ where $a \in A$ and $q_A(a)$ is a scalar on V_n^{\perp} . The

map $\sigma = \bigoplus_n \sigma_n$ gives an asymptotic representation of the C^* -algebra A if (after identifying all H_n) the norms $\|\sigma_{n+1}(a) - \sigma_n(a)\|$ tend to zero for $a \in F$.

Consider the C^* -algebra \mathcal{E} in the Hilbert space $\bigoplus_n H_n$ generated by $\sigma(a)$, $a \in A$ and by the translation operator F defined in the proof of the theorem 1.4. Then one has a short exact sequence

$$\bigoplus_n M_n \longrightarrow \mathcal{E} \longrightarrow A \otimes C(S^1). \tag{3.1}$$

We consider a discrete version of the construction of [4]. If $e_n \in \bigoplus_n M_n$ is a quasi central approximate unity [1] then the exact sequence (3.1) defines an asymptotic representation

$$\rho_n: A \otimes C(S^1) \otimes C_0(S^1) \xrightarrow{as} \bigoplus_n M_n \tag{3.2}$$

given by the formula

$$\rho_n(a \otimes g \otimes f) = (a \otimes g)' \cdot f(e_n),$$

where $(a \otimes g)' \in \mathcal{E}$ is a lift for $a \otimes g$. Denote by $K_n \subset \bigoplus_n H_n$ the subspace on which one has $e_n \neq 0$, $e_n \neq 1$. If K_n is finite-dimensional, $k(n) = \dim K_n$, then we can get a sequence of finite-dimensional almost representations

$$\overline{\rho}_n: A \otimes C(S^1) \otimes C_0(S^1) \stackrel{as}{\longrightarrow} \bigoplus_n M_{k(n)}$$

by the formula

$$\overline{\rho}_n(a \otimes g \otimes f) = P_n(a \otimes g)' P_n \cdot f(e_n),$$

where P_n is the projection onto K_n , $g \in C(S^1)$, $f \in C_0(S^1)$, f(0) = 0.

There exists also a well-known asymptotic representation $\beta = (\beta_m)$ of the commutative C^* -algebra $C(S^1 \times S^1)$ into the matrix algebra M_n given by

$$\beta_m(e^{2\pi ikx}e^{2\pi ily}) = T_m^k U_m^l, \qquad \beta_m : C(S^1) \otimes C(S^1) \xrightarrow{as} M_m,$$

where T_m and U_m are the m-dimensional Voiculescu matrices, T_m is a translation and U_m is a diagonal matrix [8]. This asymptotic representation realizes the Bott isomorphism.

The tensor product of $\tilde{\sigma}$ by β gives an asymptotic representation

$$\widetilde{\sigma}_n \otimes \beta_m : A \otimes C(S^1) \otimes C_0(S^1) \xrightarrow{as} M_{n \times m}.$$

Put $\hat{\sigma} = P_n \sigma_n P_n$

Theorem 3.1 There exists a quasi central approximate unity e_n for the exact sequence (3.1) and a sequence of numbers m(n) such that the asymptotic representations ρ_n (3.2) and $\widehat{\sigma}_n \otimes \beta_{m(n)}$ into the matrix algebra $M_{(n+m(n))\times m(n)}$ are equivalent. Moreover for $a \in F \subset A$, $e^{2\pi ix} \in C(S^1)$ and $f \in C_0(S^1)$ the norms

$$\|\rho_n(a\otimes e^{2\pi ix}\otimes f)-\widehat{\sigma}_n(a)\otimes\beta_{m(n)}(e^{2\pi ix}\otimes f)\|$$

tend to zero.

Proof. Define a sequence of integers m(n) so that the following conditions would be satisfied:

- i) $\max_{n \le k \le n + m(n)} \|\sigma_n(a) \sigma_{n+k}(a)\|$ tend to zero for any $a \in F \subset A$,
- ii) m(n) tends to infinity.

As we now assume that dim $V_n = n$, so dim $W_{k,l} = 1$. We denote the basis vectors of V_n by $v_n^{(j)}$, j = 1, ..., n and the vectors of the subspaces $W_{k,l}$ by $v_{k-l}^{(k)}$. In these denotations the shift operator F constructed in the section 1 acts by the simple formula $Fv_n^{(j)} = v_{n-1}^{(j)}$.

Put

$$a_{n,i}^{(j)} = \begin{cases} 1, & \text{for } -n \le i \le n, \\ \frac{m(n)-i+n}{m(n)}, & \text{for } n < i \le n+m(n) \text{ and } j \le n+m(n), \\ 0, & \text{otherwise} \end{cases}$$

and define the diagonal quasi central approximate unity e_n by the formula

$$e_n v_i^{(j)} = a_{n,i}^{(j)} v_i^{(j)}.$$

Notice that e_n exactly commutes with $\sigma_n(a)$ (which are diagonal too) and for any $f \in C_0(S^1)$, f(0) = 0, $f(e_n)$ almost commutes with F.

Obviously the norms

$$\|\rho_n(a\otimes e^{2\pi ix}\otimes f)-\overline{\rho}_n(a\otimes e^{2\pi ix}\otimes f)\|$$

tend to zero, so we may deal with finite-dimensional asymptotic representations $\overline{\rho}_n$ instead of ρ_n . Direct calculations shows that

$$\overline{\rho}_n(a \otimes e^{2\pi i x} \otimes f) = P_n a' F P_n f(e_n) = P_n(\bigoplus_{i=n+1}^{m(n)} \sigma_i)(a) P_n F P_n f(e_n) = \bigoplus_{i=n+1}^{m(n)} \widehat{\sigma}_i(a) F P_n f(e_n),$$

where $a' = \bigoplus_{i=1}^{\infty} \sigma_i(a) \in \mathcal{E}$ (resp. F) is a lift for a (resp. for $e^{2\pi ix}$), and $f(e_n)$ is the diagonal matrix with elements $\frac{m(n)-i+n}{m(n)}$ on the diagonal. It is easily seen that the norms

$$||P_nFP_nf(e_n) - T_{m(n)}f(e_n)||$$

tend to zero and that

$$T_{m(n)}f(e_n) = \beta_{m(n)}(e^{2\pi ix} \otimes f).$$

So it remains to notice that by our choice of the sequence m(n) the norms

$$\|(\bigoplus_{i=n+1}^{m(n)} \widehat{\sigma}_i)(a) - (\bigoplus_{i=n+1}^{m(n)} \widehat{\sigma}_n)(a)\|$$

tend to zero too. •

Remark. Unfortunately in the case of discrete group C^* -algebras we do not know if it is possible to construct a natural map from the group $\mathcal{R}_a(C^*(\pi) \otimes C(S^1) \otimes C_0(S^1))$ into $K^0(B\pi)$ which would extend the map (1.4) and close the diagram

$$\widetilde{\mathcal{R}}_a(\pi) \longrightarrow \mathcal{R}_a(C^*[\pi] \otimes C(S^1) \otimes C_0(S^1))$$

$$\swarrow ?$$

$$K^0(B\pi).$$

References

- [1] ARVESON W. Notes on extensions of C^* -algebras. Duke Math. J. 44 (1977), 329 355.
- [2] Connes A. An analogue of the Thom isomorphism for crossed products of a C^* -algebra by an action of **R**. Adv. in Math., **39** (1981), 31 55.
- [3] CONNES A., GROMOV M., MOSCOVICI H. Conjecture de Novikov et fibrés presque plats. C. R. Acad. Sci. Paris, série I, **310** (1990), 273 – 277.
- [4] Connes A., Higson N. Deformations, morphismes asymptotiques et K-theorie bivariante. C. R. Acad. Sci. Paris, série I, **311** (1990), 101 106.
- [5] LORING T.A., PEDERSEN G.K. Corona extendibility and asymptotic multiplicativity. K-Theory, 11 (1997), 83 – 102.
- [6] MISHCHENKO A.S. On Fredholm representations of discrete groups. Funktsion. Anal. i Pril., 9 (1975), No 2, 36 41.
- [7] MISHCHENKO A.S., NOOR MOHAMMAD. Asymptotical representations of discrete groups. Preprint.
- [8] Voiculescu D. Asymptotically commuting finite rank unitary operators without commuting approximants. *Acta Sci. Math.* (Szeged) **45** (1983), 429 431.

V. M. Manuilov
Dept. of Mechanics and Mathematics
Moscow State University
Moscow, 119899, RUSSIA
e-mail: manuilov@mech.math.msu.su

A. S. Mishchenko Dept. of Mechanics and Mathematics Moscow State University Moscow, 119899, RUSSIA e-mail: asmish@mech.math.msu.su