6.1 Introduction

L'algèbre relationnelle est un support mathématique cohérent sur lequel repose le modèle relationnel. L'objet de cette section est d'aborder l'algèbre relationnelle dans le but de décrire les opérations qu'il est possible d'appliquer sur des relations pour produire de nouvelles relations. L'approche suivie est donc plus opérationnelle que mathématique.

On peut distinguer trois familles d'opérateurs relationnels :

Les opérateurs unaires (Sélection, Projection) : ce sont les opérateurs les plus simples, ils permettent de produire une nouvelle table à partir d'une autre table.

Les opérateurs binaires ensemblistes (Union, Intersection Différence) : ces opérateurs permettent de produire une nouvelle relation à partir de deux relations de même degré et de même domaine.

Les opérateurs binaires ou n-aires (Produit cartésien, Jointure, Division): ils permettent de produire une nouvelle table à partir de deux ou plusieurs autres tables.

Les notations ne sont pas standardisées en algèbre relationnelle. Ce cours utilise des notations courantes mais donc pas forcément universelles.

<u>6.2 Sélection</u>: (parfois appelée restriction) génère une relation regroupant exclusivement toutes les occurrences de la relation R qui satisfont l'expression logique E, on la note $\sigma_{(E)}R$.

Il s'agit d'une opération unaire essentielle dont la signature est : $\frac{\text{relation} \times \text{expression logique} \longrightarrow \text{relation}}{\text{En d'autres termes, la sélection permet de choisir}}$ des lignes dans le tableau. Le résultat de la sélection est donc une nouvelle relation qui a les mêmes attributs que R. Si R est vide (i.e. ne contient aucune occurrence), la relation qui résulte de la sélection est vide.

Numéro	Nom	Prénom		Numéro	Nom	Prénom			
5	Durand	Caroline		5	Durand	Caroline			
1	Germain	Stan		12	Dupont	Lisa			
12	Dupont	Lisa	sélection sur la relation <i>Personne</i> : $\sigma_{(A)}$						
3	Germain	Rose-Marie							

Tableau 6.1: Exemple de relation *Personne*

6.3 Projection : consiste à supprimer les attributs autres que A_1 , ... A_n d'une relation et à éliminer les n-uplets en double apparaissant dans la nouvelle relation ; on la note $\Pi_{(A1, ... An)}R$.

Il s'agit d'une opération unaire essentielle dont la signature est : <u>relation × liste d'attributs — relation</u>
En d'autres termes, la projection permet de choisir des colonnes dans le tableau. Si *R* est vide, la relation qui résulte de la projection est vide, mais pas forcément équivalente (elle contient généralement moins d'attributs).

Nom							
Durand							
Germain							
Dupont							

Tableau 6.2: Exemple de projection sur la relation *Personne* du tableau $\underline{6.1}$: $\Pi_{(Nom)}$ *Personne*

6.4 Union : L'union est une opération portant sur deux relations R_1 et R_2 ayant le même schéma et construisant une troisième relation constituée des n-uplets appartenant à chacune des deux relations R_1 et R_2 sans doublon, on la note $R_1 \cup R_2$.

Il s'agit une opération binaire ensembliste commutative essentielle dont la signature est : <u>relation \times relation</u> relation

Comme nous l'avons déjà dit, R_1 et R_2 doivent avoir les mêmes attributs et si une même occurrence existe dans R_1 et R_2 , elle n'apparaît qu'une seule fois dans le résultat de l'union. Le résultat de l'union est une nouvelle relation qui a les mêmes attributs que R_1 et R_2 . Si R_1 et R_2 sont vides, la relation qui résulte de l'union est vide. Si R_1 (respectivement R_2) est vide, la relation qui résulte de l'union est identique à R_2 (respectivement R_1).

Relation R ₁		Rela	ation R ₂		Relation R		
Nom	Prénom	Nom	Prénom	Nom	Prénom		
Durand	Caroline	Dupont	Lisa	Durand	Caroline		
Germain	Stan	Juny	Carole	Germain	Stan		
Dupont	Lisa	Fourt	Lisa	Dupont	Lisa		
Germain	Rose-Marie			Germain	Rose-Marie		
				Juny	Carole		
				Fourt	Lisa		

6.5 Intersection : est une opération portant sur deux relations R_1 et R_2 ayant le même schéma et construisant une troisième relation dont les n-uplets sont constitués de ceux appartenant aux deux relations, on la note $R_1 \cap R_2$.

Il s'agit une opération binaire ensembliste commutative dont la signature est : $\underline{\text{relation}} \times \underline{\text{relation}} \to \underline{\text{relat$

Relation R ₁		Rel	ation R ₂		Relation R	
Nom	Prénom	Nom	Prénom	Nom	Prénom	
Durand	Caroline	Dupont	Lisa	Durand	Caroline	
Germain	Stan	Juny	Carole	Dupont	Lisa	
Dupont	Lisa	Fourt	Lisa	Juny	Carole	
Germain	Rose-Marie	Durand	Caroline			
Juny	Carole					

Tableau 6.4: Exemple d'intersection : $R = R_1 \cap R_2$

6.6 Différence : La différence est une opération portant sur deux relations R_1 et R_2 ayant le même schéma et construisant une troisième relation dont les n-uplets sont constitués de ceux ne se trouvant que dans la relation R_1 ; on la note $R_1 - R_2$.

Il s'agit une opération binaire ensembliste non commutative essentielle dont la signature est : $\underline{relation} \times \underline{relation} \to \underline{relation}$

Comme nous l'avons déjà dit, R_1 et R_2 doivent avoir les mêmes attributs. Le résultat de la différence est une nouvelle relation qui a les mêmes attributs que R_1 et R_2 . Si R_1 est vide, la relation qui résulte de la différence est vide. Si R_2 est vide, la relation qui résulte de la différence est identique à R_1 .

Relation R ₁		Rela	ation R ₂	Relation R		
Nom	Prénom	Nom	Prénom	Nom	Prénom	
Durand	Caroline	Dupont	Lisa	Germain	Stan	
Germain	Stan	Juny	Carole	Germain	Rose-Marie	
Dupont	Lisa	Fourt	Lisa			
Germain	Rose-Marie	Durand	Caroline			
Juny	Carole					

Tableau 6.5: Exemple de différence : $R = R_1 - R_2$

6.7 Produit cartésien : Le produit cartésien est une opération portant sur deux relations R_1 et R_2 et qui construit une troisième relation regroupant exclusivement toutes les possibilités de combinaison des occurrences des relations R_1 et R_2 , on la note $R_1 \times R_2$.

Il s'agit une opération binaire commutative essentielle dont la signature est : $\underline{\text{relation}} \times \underline{\text{relation}} \longrightarrow \underline{\text{relat$

Relatio	on Amie	Relation (Relation Cadeau		Relation R					
Nom	Prénom	Article	Prix	Nom	Prénom	Article	Prix			
Fourt	Lisa	livre	45	Fourt	Lisa	livre	45			
Juny	Carole	poupée	25	Fourt	Lisa	poupée	25			
		montre	87	Fourt	Lisa	montre	87			
				Juny	Carole	livre	45			
				Juny	Carole	poupée	25			
				Juny	Carole	montre	87			

Tableau 6.6: Exemple de produit cartésien : $R = Amie \times Cadeau$

6.8 Jointure, theta-jointure, equi-jointure, jointure naturelle

Jointure: est une opération portant sur deux relations R_1 et R_2 qui construit une troisième relation regroupant exclusivement toutes les possibilités de combinaison des occurrences des relations R_1 et R_2 qui satisfont l'expression logique E. La jointure est notée R_1 E R_2 .

Il s'agit d'une opération binaire commutative dont la signature est : relation \times relation \times expression logique \rightarrow relation

Si R_1 ou R_2 ou les deux sont vides, la relation qui résulte de la jointure est vide.

En fait, la jointure n'est rien d'autre qu'un produit cartésien suivi d'une sélection : R_1 E $R_2 = \sigma_E (R_1 \times R_2)$

Rela	elation Famille Relation Cadeau					Relation R						
Nom	Prénom	Age	AgeC	Article	Prix	Nom	Prénom	Age	AgeC	Article	Prix	
Fourt	Lisa	6	99	Livre	30	Fourt	Lisa	6	99	livre	30	
Juny	Carole	42	6	poupée	60	Fourt	Lisa	6	20	baladeur	45	
Fidus	Laure	16	20	baladeur	45	Fourt	Lisa	6	10	déguisement	15	
			10	déguisement	15	Juny	Carole	42	99	livre	30	
						Fidus	Laure	16	99	livre	30	
						Fidus	Laure	16	20	baladeur	45	

Tableau 6.8 : Exemple de jointure : R = Famille $((Age \le AgeC) \land (Prix < 50))$ Cadeau

Theta-jointure : Une theta-jointure est une jointure dans laquelle l'expression logique E est une simple comparaison entre un attribut A_1 de la relation R_1 et un attribut A_2 de la relation R_2 . La theta-jointure est notée R_1 E R_2 .

 $\it Equi-jointure$: est une theta-jointure dans laquelle l'expression logique E est un test d'égalité entre un attribut A_1 de la relation R_1 et un attribut A_2 de la relation R_2 . L'equi-jointure est notée R_1 $A_{1,A2}$ R_2 .

Remarque : Il vaut mieux écrire R_1 $A_{1=A2}$ R_2 que R_1 $A_{1,A2}$ R_2 car cette dernière notation peut prêter à confusion avec une jointure naturelle explicite.

Jointure naturelle : Une jointure naturelle est une jointure dans laquelle l'expression logique E est un test d'égalité entre les attributs qui portent le même nom dans les relations R_1 et R_2 . Dans la relation construite, ces attributs ne sont pas dupliqués mais fusionnés en une seule colonne par couple d'attributs. La jointure naturelle est notée R_1 R_2 . On peut préciser explicitement les attributs communs à R_1 et R_2 sur lesquels porte la jointure :

$$R_1 \qquad A_1 \dots A_n R_2$$
.

Généralement, R_1 et R_2 n'ont qu'un attribut en commun. Dans ce cas, une jointure naturelle est équivalente à une *equi-jointure* dans laquelle l'attribut de R_1 et celui de R_2 sont justement les deux attributs qui portent le même nom.

Lorsque l'on désire effectuer une jointure naturelle entre R_1 et R_2 sur un attribut A_1 commun à R_1 et R_2 , il vaut mieux écrire R_1 A_1 A_2 que A_1 A_2 que A_1 A_2 que A_3 A_4 A_5 et A_4 possèdent deux attributs portant un nom

commun, A_1 et A_2 , R_1 at A_1 A_2 est bien une jointure naturelle sur l'attribut A_1 , mais A_1 A_2 est une jointure naturelle sur le couple d'attributs A_1 , A_2 , ce qui produit un résultat très différent !

Relation	Famille		Relation Cadeau				Relation R				
Nom	Prénom	Age		Age	Article	Prix	Nom	Prénom	Age	Article	Prix
Fourt	Lisa	6		40	livre	45	Fourt	Lisa	6	poupée	25
Juny	Carole	40		6	poupée	25	Juny	Carole	40	livre	45
Fidus	Laure	20		20	montre	87	Fidus	Laure	20	montre	87
Choupy	Emma	6					Choupy	Emma	6	poupée	25

Tableau: Exemple de jointure naturelle : *R* = *Famille*

Cadeau ou *R* = *Famille*

Age Cadeau

6.9 Division : est une opération portant sur deux relations R_1 et R_2 , telles que le schéma de R_2 est strictement inclus dans celui de R_1 , qui génère une troisième relation regroupant toutes les parties d'occurrences de la relation R_1 qui sont associées à toutes les occurrences de la relation R_2 ; on la note $R_1 \div R_2$.

Il s'agit d'une opération binaire non commutative dont la signature est : relation \rightarrow relation \rightarrow relation Autrement dit, la division de R_1 par R_2 ($R_1 \div R_2$) génère une relation qui regroupe tous les n-uplets qui, concaténés à chacun des n-uplets de R_2 , donne toujours un n-uplet de R_1 .

La relation R_2 ne peut pas être vide. Tous les attributs de R_2 doivent être présents dans R_1 et R_1 doit posséder au moins un attribut de plus que R_2 (inclusion stricte). Le résultat de la division est une nouvelle relation qui a tous les attributs de R_1 sans aucun de ceux de R_2 . Si R_1 est vide, la relation qui résulte de la division est vide.

Relation Ens	eignement	Relation Etudiant	Relation R				
Enseignant	Etudiant	Nom	Enseignant				
Germain	Dubois	Dubois	Germain				
Fidus	Pascal	Pascal	Fidus				
Robert	Dubois						
Germain	Pascal						
Fidus	Dubois						
Germain	Durand						
Robert	Durand						

Tableau: Exemple de division : $R = Enseignement \div Etudiant$. La relation R contient donc tous les enseignants de la relation Enseignement qui enseignent à tous les étudiants de la relation Enseignement qui enseignent à tous les étudiants de la relation Enseignement qui enseignent à tous les étudiants de la relation Enseignement qui enseignent à tous les étudiants de la relation Enseignement qui enseignement à tous les étudiants de la relation Enseignement qui enseignement à tous les étudiants de la relation Enseignement qui enseignement à tous les étudiants de la relation Enseignement qui enseignement à tous les étudiants de la relation Enseignement qui enseignement à tous les étudiants de la relation Enseignement qui enseignement à tous les étudiants de la relation Enseignement qui enseignement à tous les étudiants de la relation Enseignement qui enseignement à tous les étudiants de la relation Enseignement qui enseignement à tous les étudiants de la relation Enseignement qui enseignement à tous les étudiants de la relation Enseignement qui enseignement à tous les étudiants de la relation Enseignement qui enseignement de la relation Enseignement qui enseignement de la relation Enseignement de la relation