108061217 鍾永桓

1.

-149.27	-147.63	-118.23	81.87
		-150.64 -140.55	
-52.38	-18.63	-10.74	-1.00
-194.49 -61.90 -18.37	-153.10 -37.70 -22.72	-133.62 -45.11 -1.00	0.00
49.57	-5.33	4.57	0.00
45.36	-34.70	4.31	-1.00
-33.56	-9.50	4.60 -2.60	-3.82 -2.14
48.49	-7.41	4.14	-2.11

2. q_values 大致上是合理的,由這張圖可以看出只要踩進 swamp,也就是最上面一行時,向下的 action 的 q_value 最大,因為踩在 swamp 會使 reward 大幅下降,所以應該學習的結果應該會偏向離開 swamp,故向下的 q_value 最大,至於中間那行,q_value 最大的可能是向右或向下,仍算合理,會選擇向右的原因在於希望可以快速達到 terminal state,因為每多一個 action,reward 便會下降,而 q_value 會偏向向下的原因在於,policy 在選擇行動時有一定機率隨機選擇,所以導致在中間那行有非常高的踩進 swamp 的風險,所以為了躲避 swamp,也可能會學習到向下來遠離 swamp,而最下面一行除了最右邊的一格外 q_value 都是向右最大,主要是因為學習到的結果會偏好於向 terminal state 接近但又同時盡可能遠離 swamp,因此在向右有最高的 q_value。

3.

	1	2	3	4
1	-78.95	48.06	-39.03	-28.74
2	-37.19	-20.14	-14.52	0.0
3	-20.67	-6.86	-3.0	-1.38

由此圖來看 state_value 由收斂至合理的值,在最上面一行因為位於 swamp,做出任何行動有很高機率仍在 swamp,因此 state_value 最低,而 第二行雖然不在 swamp 上,而且離 terminal state 最為接近,但因為相比於 最下面一行離 swamp 過於接近,很容易因為策略的隨機選擇而落入 swamp,所以 state_value 仍較第三行更為低,而這三行當中都是越往右 state_value 越高,因為越來越接近 terminal state。