

高等数值分析

病态线性方程组的求解

作者: 罗雁天

学号**:** 2018310742

日期: 2018年12月5日

目录

1	题目描述	2
2	Hilbert 矩阵 2-条件数和阶数的关系 2.1 使用 Matlab 自带的 cond() 函数进行计算	2 2 2
3	Gauss 消去法	2
4	Jacobi 矩阵迭代法	4
5	Gauss-Seidel 矩阵迭代法	5
6	SOR 迭代法	6
7	实验结果对比	7
8	实验结论	11

1 题目描述

理论分析表明,数值求解病态线性方程组很困难。考虑求解如下的线性方程组,Hx=b,其中 H 是 Hilbert 矩阵, $H=(h_{ij}),h_{ij}=\frac{1}{i+j-1},i,j=1,2,\cdots,n$ 。本次大作业从条件数、高斯消去法、Jacobi 迭代法、Gauss-Seidel 迭代法、SOR 迭代法等角度分析上述病态线性方程组并进行对比。

2 Hilbert 矩阵 2-条件数和阶数的关系

2.1 使用 Matlab 自带的 cond() 函数进行计算

由于 Matlab 自带了求 2-条件数的函数 cond(),因此我们首先采用此种方式讨论 Hilbert 矩阵 2-条件数和阶数的关系。

我们首先计算了几个低阶的条件数如表1所示。从表中我们可以看出,随着矩阵阶数 n 的增长,2-条件数增加幅度很快,因此我们采用对数坐标绘制 2-条件数和矩阵阶数 n 的关系曲线。

表 1: Hilbert 矩阵 2-条件数与阶数的关系表格

阶数 n	1	2	3	4	5
2-条件数	1.0000	19.2815	524.0568	15513.7387	476607.2502

取矩阵的阶数从 $1 \rightarrow 100$,在对数坐标下绘制 2-条件数和矩阵阶数 n 的关系曲线如图2.1所示。从图中我们可以看出,当阶数较低 (大约 $1 \rightarrow 13$) 时,对数化 2-条件数大约与阶数呈现线性关系,当阶数变高时,对数化的 2-条件数波动起来,不再增加,根据我们对 Hilbert 矩阵病态性的知识,图2.1中阶数较大时的曲线显然不正确,由此可以说明 Matlab 自带的 cond() 函数在矩阵阶数较高时计算的条件数误差较大。因此我们考虑另一种方法计算矩阵的条件数。

2.2 使用 2-条件数的定义进行计算

根据 2-条件数的定义 $cond_2(H) = ||H||_2||H^{-1}||_2$,Matlab 中有专门针对 Hilbert 矩阵逆矩阵的 函数 invhilb(),因此我们可以采用定义法来计算 Hilbert 矩阵的 2-条件数。同样在对数坐标下,绘制出此种方法计算出的 2-条件数和矩阵阶数的关系图如图2.2所示,从此图中可以看出,随着矩阵阶数的增加,对数化的 2-条件数近似与阶数呈现线性关系,符合我们对 Hilbert 矩阵病态性的理解。

我们将对数化的 2-条件数和矩阵阶数进行线性回归,得到拟合公式为: $cond2 = 10^{1.5257n-2.0758}$,相关系数 $r \approx 1$,拟合之后图像如图2.3所示。

3 Gauss 消去法

用 Gauss 消去法将 Hilbert 矩阵消成上三角矩阵,然后求解结果。我们将阶数 n=2,5,10,20,50,100 的误差列表如表2所示,从表中我们可以看出,随着矩阵阶数的增加,Gauss 消去法的误差上升较快,当阶数为 13 时,误差就已经达到了 3.0655,相对误差已经很大了,因此 Gauss 消去法不适和高阶 Hilbert 矩阵求解。我们绘制出 $n=1\to 100$ 时的 Gauss 消去法求解的相对误差曲线如图3.1所示。

图 2.1: 使用 cond() 函数计算的 2-条件数和矩阵阶数 n 在对数坐标下的曲线

图 2.2: 使用定义计算的 2-条件数和矩阵阶数 n 在对数坐标下的曲线

图 2.3: 使用定义计算的 2-条件数和矩阵阶数 n 在对数坐标下的曲线

表 2: Gauss 消去法相对误差与阶数关系表格

阶数 n	Gauss 消去法的相对误差
2	5.66104886700368e-16
5	1.55303820484067e-12
10	0.000223773106799740
20	23.5417423737487
50	240.055736859534
100	78.1201736046372

4 Jacobi 矩阵迭代法

设 H=D-L-U,其中 $D=diag(h_{11},h_{22},\cdots,h_{nn})$ 表示 Hilbert 矩阵 H 的对角线,L 表示 H 的左下角元素的相反数,是一个下三角矩阵,U 表示 H 的右上角元素的相反数,是一个上三角矩阵。因此,线性方程组 Hx=b 可以转换为 $x=B_Jx+f$,其中 $B_J=D^{-1}(L+U),f=D^{-1}b$,由此得到 Jacobi 迭代格式 $x^{(k+1)}=B_Jx^{(k)}+f$ 。由于此种迭代格式只有当矩阵 B_J 的谱半径小于 1时,迭代才是收敛的,因此,我们首先绘制出 Jacobi 迭代矩阵 B_J 的谱半径与阶数 n 的曲线图如图4.1所示,从图4.1(b)中可以看出,当阶数 n>2 时,Jacobi 迭代矩阵的谱半径就已经超过 1 了,因此当 n>2 时,Jacobi 迭代法不收敛。当 n=2 时,我们设置当两次迭代的变化小于 1e-6 时,停止迭代,此时,Jicobi 迭代相对误差为 3.18555931744235e-07,误差比 Gauss 消去法在 n=2 时的误差还要大,因此,Jacobi 迭代法不适合 Hilbert 矩阵线性方程组的求解。

图 3.1: Gauss 消去法相对误差与阶数关系曲线图

图 4.1: Jacobi 迭代矩阵谱半径图

5 Gauss-Seidel 矩阵迭代法

设 H=D-L-U,其中 $D=diag(h_{11},h_{22},\cdots,h_{nn})$ 表示 Hilbert 矩阵 H 的对角线,L 表示 H 的左下角元素的相反数,是一个下三角矩阵,U 表示 H 的右上角元素的相反数,是一个上三角矩阵。因此,线性方程组 Hx=b 可以转换为 $x=B_Gx+f$,其中 $B_G=(D+L)^{-1}U$, $f=(D+L)^{-1}b$ 。与 Jacobi 矩阵迭代法类似,只有当矩阵 B_G 的谱半径小于 1 时,迭代才是收敛的,因此我们绘制出 Gauss-Seidel 迭代矩阵 B_G 的谱半径示意图如图5.1所示,从图中我们可以看出,当阶数 $n\geq 13$ 时,

谱半径已经近似 =1 了,因此此时 Gauss-Seidel 迭代法收敛速度很慢了。由此可知,Gauss-Seidel 迭代法比 Jacobi 迭代法支持的 Hilbert 矩阵阶数高一点,但是仍然不能够用于高阶 Hilbert 矩阵线性方程组的求解。

图 5.1: Gauss-Seidel 迭代矩阵谱半径与阶数 n 的关系图

6 SOR 迭代法

设 H=D-L-U, 其中 $D=diag(h_{11},h_{22},\cdots,h_{nn})$ 表示 Hilbert 矩阵 H 的对角线,L 表示 H 的左下角元素的相反数,是一个下三角矩阵,U 表示 H 的右上角元素的相反数,是一个上三角矩阵。因此,线性方程组 Hx=b 可以转换为 $x=L_wx+f$,其中 $L_w=(D-wL)^{-1}((1-w)D+wU)$, $f=w*(D-wL)^{-1}b$ 。显然当 w=1 时,SOR 迭代法即为 Gauss-Seidel 迭代法,并且根据上课学到的知识,只有当 0 < w < 2 时,SOR 迭代法才收敛,对于不同的 w,SOR 迭代法的收敛速度也不同,因此我们首先寻找最优的 w 使得 SOR 迭代法的迭代矩阵 L_w 的谱半径最小,此时收敛速度最快。与 GS 迭代、Jacobi 迭代类似,我们首先绘制出 SOR 迭代法的迭代矩阵 L_w 的谱半径如图6.1所示,从图中以及实验结果我们可以得到,当阶数 n>28 时,谱半径 ρ 接近 1,因此此时 SOR 方法收敛很慢。由此可知,SOR 迭代法比 Jacobi 迭代法以及 Gauss-Seidel 迭代法支持的 Hilbert 矩阵阶数更高一点,但是对于阶数过高的 Hilbert 矩阵求解,SOR 迭代法仍然不可取。由于在图中不太容易直观的看出 GS 迭代法和 SOR 迭代法谱半径的不同,因此我们绘制出局部的图像进行对比,如图6.2所示,由此图可以看出,SOR 迭代法的谱半径要比 GS 谱半径小,收敛速度较快。

图 6.1: SOR 迭代矩阵谱半径与阶数 n 的关系图

图 6.2: GS 迭代矩阵和 SOR 迭代矩阵谱半径局部对比图

7 实验结果对比

在以上几节,我们讨论和分析了求解线性方程组的 4 种方法以及他们各自的性能,在此节我们将对其求出解得误差进行分析,我们设置阶数 n=2,5,10,20,50,100,来计算相对误差,其中迭代法采用的初值均为 0 向量。

首先我们求出 Jacobi 迭代法经过 100 次迭代之后的相对误差如表3所示,从中我们可以看出 Jacobi 迭代法对于 n>2 的 Hilbert 矩阵便已经不收敛了。

表 3: Jacobi 迭代法相对误差与阶数关系表格

农 9. 9acobi 公国公司的 医左马斯曼人尔农伯						
阶数 n	谱半径 $\rho(B_J)$	迭代次数	Jacobi 迭代法的相对误差			
2	0.866025403784439	100	5.66321656347846e-07			
5	3.44414219116595	100	6.18861899881230e + 53			
10	7.77981513192998	100	1.54832687372472e + 89			
20	16.4920989837926	100	6.66005666075554e + 121			
50	42.6768950976645	100	1.30642530458295e + 163			
100	86.3374902073534	100	5.21053762273348e + 193			

其次我们求出了 GS 迭代法的相对误差表,我们采用 $\frac{||x^{(k)}-x^{(k-1)}s||_2}{||x^{(k-1)}||_2}<1e-6$ 来停止迭代,定义最大的迭代次数为 20000,迭代结果如表4所示。

表 4: GS 迭代法相对误差与阶数关系表格

阶数 n	谱半径 $\rho(B_{GS})$	迭代次数	GS 迭代法的相对误差			
2	0.7500000000000000	45	2.02811359558980e-06			
5	0.999957671222958	7913	0.0138028658327348			
10	0.99999999997045	17853	0.00873261631894775			
20	1.000000000000000	20000	0.00873439429404305			
50	1.000000000000000	20000	0.00959066207416708			
100	1.000000000000000	20000	0.0101320928739749			

类似的,我们求出了 SOR 迭代法的误差表,我们依然采用 $\frac{||x^{(k)}-x^{(k-1)}||_{\infty}}{||x^{(k-1)}||_{\infty}} < 1e-6$ 来停止迭代,定义最大的迭代次数为 20000,迭代结果如表5所示。

表 5: SOR 迭代法相对误差与阶数关系表格

阶数 n	谱半径 $\rho(B_{GS})$	迭代次数	GS 迭代法的相对误差
2	0.3400000000000000	16	3.67239854881804e-08
5	0.999190149180609	9751	0.000542785068819967
10	0.999999999871931	12441	0.0381269338580335
20	1.000000000000000	5061	0.00712056341512206
50	1.000000000000000	15924	0.00553514159584128
100	1.000000000000000	9129	0.00599821418674224

从上述的结果中可以看出,Jacobi 迭代法对于 n>2 的 Hilbert 矩阵是不收敛的,相对误差越来越大,不能用于此病态线性方程组的求解。GaussSeidel 迭代法和 SOR 迭代法都是收敛的,相对误差并没有特别大。理论上,我们在 SOR 迭代法采用优化算法求出了最优松弛因子 w,所以其收敛速度应该要比 GS 法的收敛速度快,但是从表4和表5中 n=5 时却出现了相反的情况,究其原因,应该是我们设置的收敛条件 $\frac{||x^{(k)}-x^{(k-1)}||_{\infty}}{||x^{(k-1)}||_{\infty}} < 1e-6$ 太严格导致会出现迭代次数盲目增加的情况。

由于我们知道正确解为 $x^*=(1,1,\cdots,1)^T$,因此我们将收敛条件改为 $\frac{||x^{(k)}-x^*||_2}{||x^*||_2}<1e-2$,将 GS 迭代法和 SOR 迭代法的结果列表如表6所示,从这个表中我们便可以看出,SOR 法的收敛速度

	表 0. BOIL と MA A B と MA A A A B A B A B A B A B A B A B A B						
阶数 n	GS 法迭代次数	SOR 法迭代次数	GS 迭代法的相对误差	SOR 法相对误差			
2	16	8	0.00851756855749210	0.00360255839563727			
5	15527	6688	0.00999993017598135	0.00999579098530880			
10	15428	9170	0.00999959518767067	0.00998574409924582			
20	17301	1829	0.00999957638861157	0.00999716337976600			
50	16516	3509	0.00999978378907092	0.00999838890291187			
100	21622	4087	0.00999998104858494	0.00999876526546658			

表 6: SOR 迭代法与 GS 迭代法收敛速度对比

我们绘制出 n = 10, 50, 100 时,迭代过程中相对误差的变化情况如图7.1, 7.2, 7.3所示,从图中我们可以清楚的看出 SOR 迭代法比 GS 法先到 10^{-2} 的误差,因此,SOR 法收敛比 GS 法收敛快。

图 7.1: n=10 时迭代过程中相对误差的变化情况

此外,我们还绘制出了最优松弛因子关于阶数 n 的曲线如图7.4所示,从图中可以看出,阶数在 13 和 14 之间的突变是非常不合理的,考虑到我们在计算最优松弛因子时进行了 $(D-wL)^{-1}$ 操作,由此可能引起极大的误差,因此在图7.4中只有当阶数 n 较小时的曲线才是正确的。

综上所述,对于 Hilbert 矩阵构成的病态线性方程组, Gauss 消去法在阶数小于 10 时误差较小,可以求解,阶数较大时不能正确求解; Jacobi 迭代法由于当阶数 n>2 时不收敛,因此不能用于求解; Gauss-Seidel 迭代法和 SOR 迭代法可以用于求解此病态方程组,但是由于当阶数 n 较大时,收敛速度很慢,迭代次数很多,选取最优松弛因子的 SOR 迭代法比 Gauss-Seidel 迭代法收敛速度较快。

图 7.2: n=50 时迭代过程中相对误差的变化情况

图 7.3: n=100 时迭代过程中相对误差的变化情况

图 7.4: 最优松弛因子与阶数 n 的关系图

8 实验结论

Hilbert 矩阵的 2-条件数随着阶数 n 的增大而呈指数增长,因此高阶 Hilbert 矩阵的病态性是 毋庸置疑的,且阶数越高,解的误差应该越大,迭代法收敛速度应该越慢。但是实验结果中常常在 阶数 n 从 12 变为 13 时出现巨变,似乎与理论不符合。事实上,无论是 Gauss 消去、Gauss-Seidel 迭代还是 SOR 迭代,在阶数高时的求解步骤中就可能存在类似对病态矩阵求逆的操作,从而早成高阶下的很多实验结果本身就有很大误差。而阶数 12 恰好又是这个临界点,因此这种突变便可以理解了。寻找 Hilbert 矩阵 2-条件数和阶数 n 的关系时,一开始直接用 cond 函数也发现在 n=12 出现了突变,但用专门的 invhilb 函数时便能得到正确地结果,可见这种猜想是正确的。根据上述实验结果,发现对于 Hilbert 矩阵构成的病态线性方程组,Gauss 消去法无法准确求解。当矩阵的阶数不断增加时,解的相对误差也迅速增长。

用 Jacobi 迭代法求解 Hilbert 矩阵构成的病态线性方程,在阶数高于 2 时便不再收敛。Jacobi 迭代矩阵的谱半径随阶数 n 的增大呈现近似线性增长,因此 Jacobi 迭代法无法用于该病态方程组的求解。

Gauss-Seidel 法和 SOR 法的迭代矩阵的谱半径在阶数 n 不断增长得过程中趋近与 1,基于此不便于判断迭代法是否收敛。事实上,Hilbert 矩阵是对称正定阵。令 [-1,1] 上的 n 次多项式 $P(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$,则式8.1。其中 H_n 为 n 阶 Hilbert 矩阵,因此可以看出 H_n 是对称正定的。由于我们有定理8.1,所以 Gauss-Seidel 法和 SOR 法都是收敛的。但是由于在高阶(高于 5 阶)情况下,两者迭代矩阵的谱半径都非常接近于 1,导致收敛速度很慢。前面的实验结果已经提到,要达到 1e-2 的相对误差,G-S 法要迭代上万次,SOR 法也要迭代几千次。至于阶数从 5、10、20、50、100 变化过程中,收敛速度似乎波动稳定,原因也是矩阵本身的病态性导致迭代法

本身就是有较大误差的。事实上,收敛速度应该随着阶数增大而变慢。

$$\int_{-1}^{1} [P(x)]^{2} = [a_{0}, a_{1}, \cdots, a_{2}] H_{n} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{n} \end{bmatrix}$$
(8.1)

定理 8.1. 设 $A \in \mathbb{R}^{n \times n}$ 是对称正定矩阵,且 0 < w < 2,则 SOR 方法收敛。

综上所述,Jacobi 迭代法无法用于 Hilbert 矩阵构成的病态线性方程组的求解;对于低阶 (n=2 12) 情况,可以用有预处理的 Gauss 消去法求解,此时解的相对误差在可以接受的范围内,不采用迭代法的原因是收敛速度计算,慢复杂度比高斯消去要高;对于高阶 (n>12) 的情况,只有采用迭代法才能保证精度,但是收敛速度非常慢,迭代次数非常高,这也是病态线性方程组令人头疼的地方所在吧。