

Baze podataka 1 Vežbe 2

- Algebra je formalni matematički sistem koji se sastoji od skupa objekata i operacija nad tim objektima
- Relaciona algebra je familija algebri sa dobro zasnovanom semantikom koja se koristi za modeliranje relacija (objekata) smeštenih u relacionoj bazi podataka i za definisanje upita nad njima
- Čini je skup algebarskih izraza za rad sa relacijama, a rezultati su takođe relacije

Ima ukupno 8 osnovnih operacija (5 elementarnih i 3 izvedene):

1. Elementarne

- Restrikcija
- Projekcija
- Proizvod
- Unija
- Razlika

2. Izvedene

- Presek
- (Prirodno) Spajanje
- Deljenje

simbol	naziv	Složenost	Broj operanada
σ	restrikcija	elementarna	unarna
π	projekcija	elementarna	unarna
U	unija	elementarna	binarna
/	razlika	elementarna	binarna
\cap	presek	izvedena	binarna
×	Dekartov proizvod	elementarna	binarna
><	spajanje	izvedena	binarna
÷	Deljenje	izvedena	binarna

- Definicija: iz polazne relacije po zadatom kriterijumu izdvaja podskup n-torki
 - Izbor n-torki koje zadovoljavuju određeni uslov
- Kriterijum je neki logički izraz koji je izračunljiv nad svakom n-torkom
- Dobijena relacija ima istu strukturu kao i polazna

• Relacija r

A	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

• $\sigma_{A=B \land D>5}(r)$

A	В	С	D
α	α	1	7
β	β	23	10

Restrikcija (σ)

μ

k	X	у
1	Α	2
2	В	4
3	С	6

k	X	у
2	В	4
3	С	6

k	X	у
1	Α	2
2	В	4
3	С	6

restrikcija:

$$y>2$$
 and $X<>'C'$

k	X	у
2	В	4

- Definicija: iz polazne relacije po zadatom skupu atributa formira se nova relacija kao skup n-torki nad tim atributima
- Zadati skup atributa mora biti podskup skupa atributa polazne relacije
- Vrednosti atributa u n-torkama nastale relacije odgovaraju onima u polaznoj relaciji

• Relacija r:

A
 B
 C

$$\alpha$$
 10
 1

 α
 20
 1

 β
 30
 1

 β
 40
 2

• π _{A,C} (r)

A	C		A	C
α	1		α	1
α	1	=	β	1
β	1		β	2
β	2			

k	X	у
1	Α	2
2	В	4
3	С	6
4	Α	2

projekcija na kolone **x** i **y**

X	у
Α	2
В	4
С	6

- Definicija: iz dve polazne relacije formira novu koja sadrži sve n-torke iz obe relacije
- Ova operacija nije moguća između bilo koje dve relacije, tj. mora biti zadovoljeno:
 - Šeme relacija moraju imati isti broj atributa
 - Atributi šema relacija redom odgovaraju po značenju i tipu (ne mora po nazivu)
- Navedeni uslovi se nazivaju: unijska kompatibilnost
- Svaka n-torka koja je prisutna u obe relacije pojavljuje se samo jednom u rezultantnoj

•Relacije r, s:

A	В	
α	1	
α	2	
β	1	
r		

 $\begin{array}{c|c}
A & B \\
\hline
\alpha & 2 \\
\beta & 3
\end{array}$

 $r \cup s$:

A	В
α	1
α	2
β	1
β	3

- Definicija: iz dve polazne relacije formira novu koja sadrži sve n-torke prve relacije koje se ne nalaze u drugoj
- Ova operacija je moguća samo između unijski kompatibilnih relacija.

	ŠIFRA#	PREZIME	IME	TEL.BROJ
Α	3244	Aksentijević	Petar	0710 334 952
	1772	Maksimović	Ilija	015 723 543
В	ŠIFRA#	PREZIME	IME	TEL.BROJ
D	3244	Aksentijević	Petar	0710 334 952
	2345	Petrović	Dara	023 47946
	ŠIFRA#	PREZIME	IME	TEL.BROJ
λ-B	1772	Maksimović	Ilija	015 723 543
	ŠIEDA "	DD = 711 45	13.45	TEL DOOL
	ŠIFRA#	PREZIME	IME	TEL.BROJ
8-A	2345	Petrović	Dara	023 47946

- Definicija: iz dve polazne relacije formira novu koja sadrži sve n-torke prve relacije koje se nalaze u drugoj relaciji
- Ova operacija je moguća samo između unijski kompatibilnih relacija.
- Presek je izvedena operacija, može se izvesti iz:

$$r \cap s = r - (r-s)$$

ŠIFRA#	PREZIME	IME	TEL.BROJ
3244	Aksentijević	Petar	0710 334 952
1772	Maksimović	Ilija	015 723 543

ŠIFRA#	PREZIME	IME	TEL.BROJ
3244	Aksentijević	Petar	0710 334 952
2345	Petrović	Dara	023 47946

 $A \cap B$

ŠIFRA#	PREZIME	IME	TEL.BROJ
3244	Aksentijević	Petar	0710 334 952

- Definicija: iz dve polazne relacije formira se nova sa n-torkama dobijenim tako što se svaka n-torka prve relacije spaja sa svakom iz druge
- Šema nastale relacije sadrži sve atribute polaznih relacija
- Označavanje: za puni naziv atributa se može koristiti relacija.atribut

Relacije r, s:

A	В		
α	1		
β	2		
r			

C	D	E
$\begin{bmatrix} \alpha \\ \beta \\ \beta \\ \gamma \end{bmatrix}$	10 10 20 10	a a b b

S

r x *s*:

A	В	C	D	Е
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

- Najsloženija operacija relacione algebre
- Operacija deljenja daje one vrednosti X u r koje u kombinaciji sa Y "pokrivaju" skup vrednosti zadat relacijom s
- Deljenje se ne može izvesti sa proizvoljnim tabelama
- Za A/B potrebno je da se svi atributi relacije B nalaze u relaciji A
- Npr: Moguće je deljenje za: a (X1,X2,...,Xn,Y1,Y2,...,Ym) b (Y1,Y2,...,Ym)

Deljenje (÷)

*			В	(divisor)	Result
k	×	9:	×	y.	k
10	1101	A	1101	Α	10
10	1201	В	1201	В	30
10	1301	B C	1301	C	200 00000
20	1201	В	23 27	·	
30	1101	A			
30	1201	В			
30	1301	B C			

Relacije r, s:

A	В	
$\begin{array}{c} \alpha \\ \alpha \\ \alpha \\ \beta \\ \gamma \\ \delta \\ \delta \\ \epsilon \end{array}$	1 2 3 1 1 1 3 4 6	
\in β	1 2	

$$r \div s$$
: A α β

r

Relacije r, s:

A	В	C	D	Е
α	а	α	а	1
α	а	γ	а	1
α	а		b	1
β	а	$\gamma \gamma$	а	1
β	а	γ	b	3
γ	а	γ	а	1
$\begin{bmatrix} \alpha \\ \alpha \\ \beta \\ \beta \\ \gamma \\ \gamma \\ \gamma \end{bmatrix}$	а	γ	b	1
γ	а	β	b	1

 D
 E

 a
 1

 b
 1

r

 $r \div s$:?

Uvodni primeri

• (MODEL STUDENTI) Operacijama relacione algebre dobiti relaciju koja sadrži spisak svih predmeta koje je položio bar jedan student.

$$\pi_{PREDMET}$$

$$\left| \sigma_{OCENA > 5}(PRIJAVE) \right|$$

• (MODEL STUDENTI) Operacijema relacione algebre dobiti relaciju koja sadrži brojeve indeksa svih studenta koji su upisani 2014. godine na profil RT.

$$\pi_{INDEKS,UPISAN}$$

$$\left| \sigma_{UPISAN=\ 2014\ AND\ SPROFIL="RT"} (STUDENTI) \right|$$

 (MODEL STUDENTI) Operacijama relacione algebre dobiti relaciju koja sadrži imena studenta koji dolaze iz Beograda.

$$\pi_{IME}$$

$$\left| \sigma_{MSTAN = "Beograd"}(STUDENTI) \right|$$

 (MODEL STUDENTI) Operacijama relacione algebre dobiti relaciju koja sadrži spisak studenta koji su bar jednom pali na ispitu iz Matematike 1.

$$\pi_{INDEKS,UPISAN}$$
 $\sigma_{PREDMET}$ ="Matematika 1" AND OCENA = 5 (PRIJAVE)

- (MODEL PROJEKTI) Operacijama relacione algebre dobiti relacije koje sadrže:
 - Spisak svih gradova u kojima firma ima organizacionu jedinicu ili izvodi projekat

 Spisak svih gradova u kojima se izvodi neki od projekata a to je ujedno i grad u kome firma ima organizacionu jedinicu.

 (MODEL PROJEKTI) Operacijama relacione algebre dobiti relaciju koja sadrži spisak svih gradova u kojima firma ima organizacionu jedinicu ali se u tim gradovima ne izvodi ni jedan od projekata firme

Data je relacija

LIGA(tim1, tim2, rezultat)

koja sadrži informacije o rezultatima odigranih utakmica u okviru jedne lige. Ako se zna da je svaki tim odigrao bar jednu utakmicu (bilo kao gost ili kao domaćin) operacijama relacione algebre napraviti relaciju koja sadrži popis utakmica koje nisu odigrane.

Rešenje:

Ideja je da definišemo relaciju koja sadrži sve moguće utakmice, a zatim da od nje oduzmemo one koje su odigrane.

Primer ekstenzije:

LIGA

tim1	tim2	rezultat
Crvena Zvezda	Partizan	0:0
Radnički KG	Crvena Zvezda	3:0
Radnički KG	Partizan	1:0

tim1	tim2	rezultat
Crvena Zvezda	Partizan	0:0
Radnički KG	Crvena Zvezda	3:0
Radnički KG	Partizan	1:0

I korak je definisanje relacije koja sadrži nazive svih klubova u ligi. :

Crvena Zvezda		
Radnički KG		
Radnički KG		
Partizan		
Crvena Zvezda		
Partizan		

 R_1

Il korak je definisanje relacije koja sadrži sve moguće utakmice:

tim	
Crvena Zvezd	a
Radnički KG	
Partizan	

tim1	tim2
Crvena Zvezda	Radnički KG
Crvena Zvezda	Partizan
Radnički KG	Crvena Zvezda
Radnički KG	Partizan
Partizan	Crvena Zvezda
Partizan	Radnički KG

tim1	tim2
Crvena Zvezda	Crvena Zvezda
Crvena Zvezda	Radnički KG
Crvena Zvezda	Partizan
Radnički KG	Crvena Zvezda
Radnički KG	Radnički KG
Radnički KG	Partizan
Partizan	Crvena Zvezda
Partizan	Radnički KG
Partizan	Partizan

III korak podrazumeva oduzimanje odigranih utakmica od svih mogućih:

 R_3

tim1	tim2
Crvena Zvezda	Radnički KG
Crvena Zvezda	Partizan
Radnički KG	Crvena Zvezda
Radnički KG	Partizan
Partizan	Crvena Zvezda
Partizan	Radnički KG

 R_4

tim1	tim2
Crvena Zvezda	Partizan
Radnički KG	Crvena Zvezda
Radnički KG	Partizan

 R_{5}

tim1	tim2
Crvena Zvezda	Radnički KG
Partizan	Crvena Zvezda
Partizan	Radnički KG