Maß- und Integrationstheorie

3. Hausaufgabenblatt

Abgabe bis Freitag, 15. Mai, 18:00 Uhr

Aufgabe 1: 2 Punkte

Seien (Ω, \mathfrak{A}) und (Ω', \mathfrak{A}') zwei messbare Räume und sei $f \colon \Omega \to \Omega'$ eine Abbildung. Zeige die folgenden Aussagen:

- i) Falls $\mathfrak{E}, \mathfrak{E}'$ zwei σ -Algebren auf Ω bzw. Ω' sind mit $\mathfrak{A} \subset \mathfrak{E}$ und $\mathfrak{E}' \subset \mathfrak{A}'$ und falls f $(\mathfrak{A}, \mathfrak{A}')$ -messbar ist, so ist f auch $(\mathfrak{E}, \mathfrak{E}')$ -messbar.
- ii) Sei Ω_0' eine Teilmenge von Ω' mit $f(\Omega) \subset \Omega_0'$. Dann ist die Abbildung f genau dann $(\mathfrak{A}, \mathfrak{A}')$ -messbar, wenn sie $(\mathfrak{A}, \mathfrak{A}'|_{\Omega_0'})$ -messbar ist (als Abbildung mit Werten in Ω_0'). Hierbei bezeichnet

$$\mathfrak{A}'|_{\Omega_0'} = \left\{ A \cap \Omega_0' \mid A \in \mathfrak{A}' \right\}$$

die Spur- σ -Algebra auf Ω'_0 .

Aufgabe 2: 4 Punkte

Sei (Ω, \mathfrak{A}) ein messbarer Raum und sei (X, d) ein metrischer Raum. Mit $\mathfrak{B}(X)$ bezeichnen wir die Borel- σ -Algebra über X, das heißt, die von den in X offenen (bzw. abgeschlossenen) Mengen erzeugte σ -Algebra. Seien $f, f_n \colon \Omega \to X, n \in \mathbb{N}$, Abbildungen, wobei f der punktweise Grenzwert der Folge (f_n) ist, also

$$\lim_{n \to \infty} f_n(\omega) = f(\omega)$$

für alle $\omega \in \Omega$. Zeige, dass die $(\mathfrak{A}, \mathfrak{B}(X))$ -Messbarkeit der Abbildungen $f_n, n \in \mathbb{N}$, die $(\mathfrak{A}, \mathfrak{B}(X))$ -Messbarkeit von f impliziert.

Hinweis: Zeige, dass für jede abgeschlossene Menge $A \subset X$ die Darstellung

$$f^{-1}(A) = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \bigcap_{j=k}^{\infty} f_j^{-1}(U_n)$$

mit $U_n := \{x \in X \mid d(x, A) < \frac{1}{n}\}$ gilt.

Aufgabe 3: 4 Punkte

Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und sei $f: \Omega \to \overline{\mathbb{R}}$ eine $(\mathfrak{A}, \overline{\mathfrak{B}})$ -messbare, μ -integrierbare Abbildung. Zeige, dass zu jedem $\varepsilon > 0$ ein $\delta > 0$ existiert, so dass für alle $A \in \mathfrak{A}$ mit $\mu(A) < \delta$ die Abschätzung

$$\left| \int_{A} f d\mu \right| < \varepsilon$$

gilt.

Hinweis: Zeige die Aussage zunächst für beschränkte Abbildungen.