ДЗ №3 Кондратюк Александр Группа 3

Часть 1.

Задание 1.

Я выбрал следующие белки человека:

- 1. GBRP HUMAN
- 2. CIROP HUMAN
- 3. SOCS2 HUMAN
- 4. CLRN2 HUMAN
- 5. PPM1D HUMAN
- 6. GLYG2 HUMAN
- 7. FLRT2 HUMAN
- 8. CHSTA HUMAN
- 9. HAIR HUMAN
- 10. ANGL7 HUMAN

Также были найдены ортологи у шимпанзе(pan troglodytes)

Далее построим парные выравнивания, используя

https://www.ebi.ac.uk/Tools/psa/emboss_needle/

1)GBRP HUMAN

Ортолог - A0A2J8LXV6

2) CIROP HUMAN

Ортолог - A0A2I3SAV6

```
# # Aligned_sequences: 2
# 1: CIROP_HUMAN
# 2: A0A2I3SAV6_PANTR
# Matrix: EBLOSUM62
# Gap_penalty: 10.0
# Extend_penalty: 0.5
#
# Length: 788
# Identity: 778/788 (98.7%)
# Similarity: 781/788 (99.1%)
# Gaps: 2/788 (0.3%)
# Score: 4163.0
```

3) SOCS2_HUMAN

Ортолог - A0A6D2VVR1

```
# # Aligned_sequences: 2
# 1: SOCS2_HUMAN
# 2: A0A6D2VVR1_PANTR
# Matrix: EBLOSUM62
# Gap_penalty: 10.0
# Extend_penalty: 0.5
#
# Length: 198
# Identity: 197/198 (99.5%)
# Similarity: 198/198 (100.0%)
# Gaps: 0/198 ( 0.0%)
# Score: 1050.0
```

4) CLRN2_HUMAN

Ортолог - A0A2I3RH01

```
# # Aligned_sequences: 2
# 1: CLRN2_HUMAN
# 2: A0A2I3RH01_PANTR
# Matrix: EBLOSUM62
# Gap_penalty: 10.0
# Extend_penalty: 0.5
#
# Length: 232
# Identity: 228/232 (98.3%)
# Similarity: 230/232 (99.1%)
# Gaps: 0/232 (0.0%)
# Score: 1164.0
```

5) PPM1D_HUMAN

Ортолог - A0A2J8JD59

```
# # Aligned_sequences: 2
# 1: PPM1D_HUMAN
# 2: A0A2J8JD59_PANTR
# Matrix: EBLOSUM62
# Gap_penalty: 10.0
# Extend_penalty: 0.5
#
# Length: 607
# Identity: 422/607 (69.5%)
# Similarity: 422/607 (69.5%)
# Gaps: 179/607 (29.5%)
# Score: 2222.5
```

6) GLYG2 HUMAN

Ортолог - A0A2I3S1P4

7) FLRT2_HUMAN

Ортолог - A0A6D2WRA8

8) CHSTA_HUMAN

Oртолог - A0A6D2XWF8

9) HAIR HUMAN

Ортолог - A0A6D2W5E7

```
# # Aligned_sequences: 2
# 1: HAIR_HUMAN
# 2: A0A6D2W5E7_PANTR
# Matrix: EBLOSUM62
# Gap_penalty: 10.0
# Extend_penalty: 0.5
#
# Length: 1189
# Identity: 1117/1189 (93.9%)
# Similarity: 1121/1189 (94.3%)
# Gaps: 55/1189 (4.6%)
# Score: 6102.0
```

10) ANGL7 HUMAN

Ортолог - A0A6D2WJB5

Задание 2.

Оценим сходство геномов найдя среднее сходство для 100 нуклеотидных последовательностей длины 100 выбранных из генома случайно.

Возьмем с NCBI человеческий геном, и с помощью скрипта извлечем 100 случайных последовательностей и запишем их в файл.

Полученный файл загружаем в BLAST

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=Blast Search&BLAST SPEC=&LINK LOC=blasttab&LAST PAGE=blastx)

Полученный файл скачиваем в формате CSV и с помощью Excel находим Identity

⊿ 1 2 3	4	5	6	7	8	9	10	11	12
1 NW_01865 BS000047. 82.222	90	16	0	1	90	67267	67356	2.65e-17	91.5
2 NW_01865XM_0094381.053	95	17	1	6	100	7918	7825	3.22e-16	87.8
3 NW_01865XM_0094380.435	92	17	1	7	98	10177	10087	1.37e-14	82.4
4 NW_01865XM_0546781.053	95	17	1	6	100	7989	7896	3.22e-16	87.8
5 NW_01865XM_0546780.435	92	17	1	7	98	10248	10158	1.37e-14	82.4
6 NW_01865XM_5244681.053	95	17	1	6	100	7999	7906	3.22e-16	87.8
7 NW_01865XM_5244680.435	92	17	1	7	98	10258	10168	1.37e-14	82.4
8 NW_01865XM_0094381.053	95	17	1	6	100	7994	7901	3.22e-16	87.8
9 NW_01865XM_0094380.435	92	17	1	7	98	10253	10163	1.37e-14	82.4
10 NW_01865XM_0094381.053	95	17	1	6	100	8004	7911	3.22e-16	87.8
11 NW_01865XM_0094380.435	92	17	1	7	98	10263	10173	1.37e-14	82.4
12 NW_01865XR_00170781.053	95	17	1	6	100	1171	1264	3.22e-16	87.8
13 NW_0186 AC183296 81.053	95	17	1	6	100	162814	162907	3.22e-16	87.8
14 NW_0186 AC183296 80.435	92	17	1	7	98	160555	160645	1.37e-14	82.4
15 NW_0186 AC183296 75.294	85	19	2	7	90	61026	60943	2.32e-05	52.7
16 NW_0186 AC183296 72.619	84	23	0	7	90	94765	94682	2.83e-04	49.1
17 NW_01865 AC183540, 81.053	95	17	1	6	100	126487	126394	3.22e-16	87.8
18 NW_0186: XR_00853: 81.522	92	16	1	9	100	4252	4342	1.13e-15	86.9
19 NW_0186: XR_00853{81.522	92	16	1	9	100	4974	5064	1.13e-15	86.9
20 NW_0186: XM_52959 81.522	92	16	1	9	100	5758	5848	1.13e-15	86.9
21 NW_0186 AC193015 79.000	100	21	0	1	100	66236	66335	1.13e-15	86.9
22 NW_01865 AC212917, 80.851	94	17	1	7	100	80033	79941	1.13e-15	86.0
23 NW_0186 AC198441 79.787	94	19	0	7	100	110776	110869	3.93e-15	85.1
24 NW_0186 AC192724 85.333	75	10	1	25	99	142628	142701	1.37e-14	83.3
25 NW_01865 AC192855, 85.333	75	10	1	25	99	142289	142362	1.37e-14	83.3
26 NW_0186 AC192155 79.000	100	20	1	1	100	144654	144752	1.37e-14	83.3
27 NW_0186 CT841527. 85.333	75	10	1	25	99	83762	83689	1.37e-14	83.3
28 NW_0186 CT574568. 85.333	75	10	1	25	99	18931	18858	1.37e-14	83.3
29 NW_0186 AC200164 86.111	72	9	1	2	72	1485	1556	1.37e-14	82.4
30 NW_0186 CU467489 81.176	85	16	0	1	85	125024	125108	1.37e-14	82.4
31 NW_0186 AC148942 80.435	92	17	1	7	98	105901	105991	1.37e-14	82.4
32 NW_0186 AC148942 75.000	72	18	0	29	100	69155	69226	8.10e-05	50.0
33 NW_0186 AC186198 80.435	92	17	1	7	98	25645	25735	1.37e-14	82.4
34 NW_0186 AC182639 86.111	72	9	1	2	72	9826	9755	1.37e-14	82.4
35 NW_0186 CT737142. 81.176	85	16	0	1	85	10382	10466	1.37e-14	82.4
36 NW_0186 CT033850. 81.176	85	16	0	1	85	10371	10455	1.37e-14	82.4
37 NW_0186 AC213003 79.348	92	19	0	1	92	162704	162613	4.78e-14	81.5

Посчитаем среднее Identity:

R2C14	• : X	√ fx [=СРЗНАЧ(С	[-11])									
1 1	2	3	4	5	6	7	8	9	10	11	12	13	14
NW_01	865 BS000047,	82,222	90	16	0	1	90	67267	67356	2,65E-17	91,5		
NW_01	865 XM_00943	81,053	95	17	1	6	100	7918	7825	3,22E-16	87,8		81,4373
NW_01	865 XM_00943	80,435	92	17	1	7	98	10177	10087	1,37E-14	82,4		
NW_01	865 XM_05467	81,053	95	17	1	6	100	7989	7896	3,22E-16	87,8		
NW_01	865 XM_05467	80,435	92	17	1	7	98	10248	10158	1,37E-14	82,4		
NW_01	865 XM_52446	81,053	95	17	1	6	100	7999	7906	3,22E-16	87,8		
NW_01	865 XM_52446	80,435	92	17	1	7	98	10258	10168	1,37E-14	82,4		
	0511/44 00040	04.050	0.5	4.7		_	400	7004	7004	2 225 45	07.0		

Получаем Identity = 81,4373.

Часть 2.

Задание 1.

Вопрос 0. На ПЦР отправили загрязненный образец состоящий из 2х молекул ДНК исследуемого организма и 3х молекул ДНК загрязнения. Считая, что после каждого цикла число молекул удваивается. Определите, сколько % молекул будет принадлежать исследуемому организму после

- а) (0,25 балла) десяти циклов ПЦР
- **б)** (0,25 балла) сорока циклов ПЦ

a)
$$2*2^10 / 2*2^10 + 3 = 0.9985 = 99.85\%$$

Получаем, что в независимости от количества циклов, доля будет равна 40%.

Вопрос 1.

Я скачал файл под номером 35.

Делаем BLAST и скачиваем результат.

Произведем поиск для определения есть ли среди них кошка (Felis catus) или собака (Canis lupus familiaris или Canis familiaris).

Сделаем поиск кошки:

Видим, что для кошки найдено некоторое количество совпадений.

Теперь произведем поиск собаки

Для собаки тоже были найдены совпадения, но их количество гораздо больше, чем у кошки, также есть записи с identity 100%. Могу сделать вывол, что скорее всего загрязнение появилось по вине Иванова.

Вопрос 2.

Определим, к геному какого организма относится каждое чтение и найдем долю для каждого представленного вида.

Напишем небольшой код:

```
blast_results.json
🛵 main.py 🔀 📗
           f q2.py ×
                     fandom_sequences.fasta ×
      import json
       import matplotlib.pyplot as plt
      from collections import Counter
      with open('blast_results.json') as f:
          data = json.load(f)
      name_list = []
      for result in data['BlastOutput2']:
          try:
              hits = result['report']['results']['search']['hits']
              for hit in hits:
                   description = hit['description'][0]
                   sciname = description['sciname']
                   name_list.append(sciname)
          except:
               print("Results are empty")
      counts = Counter(name_list)
      total_count = len(name_list)
      for name, count in counts.items():
          percentage = (count / total_count) * 100
          print(f"{name}: {count} ({percentage:.2f}%)")
      names = list(counts.keys())
      counts = list(counts.values())
      plt.bar(names, counts)
      plt.xlabel('Opraнизмы')
      plt.ylabel('Количество')
      plt.title('Распределение организмов')
      plt.xticks(rotation=45)
      for i, count in enumerate(counts):
          percentage = (count / total_count) * 100
           plt.text(i, count, f"{percentage:.2f}%", ha='center', va='bottom')
      nlt.show()
```

Мы проходимся по json файлу и извлекаем все организмы из каждого результата. Затем подсчитываем количество элементов и их долю. (Файл со всеми прикреплю отдельно в формате .txt)

Вот часть результатов работы кода:

```
👘 main
    C:\anaconda3\envs\pythonProject18\python.exe C:/Users/АлександрКондратюк
   Lutra lutra: 15 (2.55%)
    Meles meles: 13 (2.21%)
   Orcinus orca: 7 (1.19%)
    Delphinus delphis: 8 (1.36%)
큠
   Lagenorhynchus albirostris: 6 (1.02%)
   Hyperoodon ampullatus: 7 (1.19%)
    Balaenoptera acutorostrata: 9 (1.53%)
    Canis lupus familiaris: 43 (7.31%)
    Canis lupus: 26 (4.42%)
    Felis catus: 3 (0.51%)
    Homo sapiens: 46 (7.82%)
    Gorilla gorilla: 1 (0.17%)
    Equus caballus: 2 (0.34%)
    Chryseobacterium gambrini: 1 (0.17%)
    Acrocera orbiculus: 1 (0.17%)
    Calamotropha paludella: 1 (0.17%)
    Chryseobacterium sp. ZHDP1: 1 (0.17%)
    Vanessa cardui: 1 (0.17%)
    Scaeva pyrastri: 1 (0.17%)
    Ursus americanus: 2 (0.34%)
    Ovis canadensis canadensis: 6 (1.02%)
    Pipistrellus pygmaeus: 7 (1.19%)
    Pipistrellus pipistrellus: 7 (1.19%)
    Danio rerio: 8 (1.36%)
    Bos mutus: 3 (0.51%)
    Bos taurus: 10 (1.70%)
    Bos gaurus x Bos taurus: 5 (0.85%)
    Campoletis raptor: 1 (0.17%)
    Callithrix jacchus: 2 (0.34%)
    Rangifer tarandus platyrhyncus: 6 (1.02%)
    Haliaeetus albicilla: 1 (0.17%)
    Equus quagga: 2 (0.34%)
    Equus asinus: 1 (0.17%)
    eukaryotic synthetic construct: 1 (0.17%)
    Canis lupus dingo: 7 (1.19%)
    Gulo gulo luscus: 1 (0.17%)
    Acomys russatus: 21 (3.57%)
    Orthosia gothica: 1 (0.17%)
    Barbus barbus: 1 (0.17%)
```

Ha 9-10.

Теперь чуть изменим код и сделаем топ 10 организмов

Чуть изменим код:

```
< 🚦 q2.py ×
                      🖆 random_sequences.fasta ×
                                             blast_results.json
🛵 main.py >
      import matplotlib.pyplot as plt
      from collections import Counter
          data = json.load(f)
      name_list = []
      for result in data['BlastOutput2']:
              for hit in hits:
                   description = hit['description'][0]
                   sciname = description['sciname']
                   name_list.append(sciname)
               print("Results are empty")
      counts = Counter(name_list)
      top_10 = counts.most_common(10)
      total_count = len(name_list)
      for name, count in top_10:
          percentage = (count / total_count) * 100
          print(f"{name}: {count} ({percentage:.2f}%)")
      names = [name for name, _ in top_10]
      counts = [count for _, count in top_10]
      plt.bar(names, counts)
      plt.xlabel('Opraнизмы')
      plt.ylabel('Количество')
      plt.title('Ton 10 oprahusmob')
      plt.xticks(rotation=45)
      for i, count in enumerate(counts):
           percentage = (count / total count) * 100
```

```
percentage = (count / total_count) * 100
plt.text(i, count, f"{percentage:.2f}%", ha='center', va='bottom')
plt.show()
```

Получаем результат:

```
Mus musculus: 123 (20.92%)
Homo sapiens: 46 (7.82%)
Canis lupus familiaris: 43 (7.31%)
Canis lupus: 26 (4.42%)
Acomys russatus: 21 (3.57%)
Lutra lutra: 15 (2.55%)
Chionomys nivalis: 15 (2.55%)
Meles meles: 13 (2.21%)
Bos taurus: 10 (1.70%)
Vulpes lagopus: 10 (1.70%)
```

Также получим таблицу:

(названия

немного поехали)

Задание 2. Фрагментация ДНК

Сначала напишем скрипт, который сделает нам нужный файл, и возьмем AGTATAGTTCAGTTGTTTTCCTGTGTGAAGTCTCTGTAGCATTGACTGAATGTATAAGG GGACGAAGAGACAGAAGCTTCCTAGCGTAAGAAACATACCA

```
| fragments.fasta | GRCh38_latest_genomic.fna | GRCh38_lat
```

Получаем файл fragments.fasta (прикреплю)

```
🕻 main.py × 🚦 fragments.fasta × 🚦 GRCh38_latest_genomic.fna × 🚦 q2.py × 🚦 random_sequences.fasta ×
                                                                                            blast_results.json
       >fragment_98
       >fragment_97
       >fragment_96
       >fragment_95
       >fragment_94
       >fragment_93
        >fragment_91
       >fragment 90
       >fragment_89
       >fragment_88
        >fragment_84
        >fragment_83
```

а) Делаем BLAST

Видим, что после 76 последовательности Blast перестает что-либо находить, а ее E-value = 0.038. Получается что при длине последовательности меньше 25, E-value становится больше 0.05.

б) Теперь ограничим поиск человеком и посмотрим что изменится

	DENTITY Programs search nacionale analysis a single
Enter Query	·
Enter accession	number(s), gi(s), or FASTA sequence(s) @ Clear Query subrange @
	From
Or, upload file	Выберите файл fragments.fasta
Job Title	
	Enter a descriptive title for your BLAST search 😯
Align two or m	nore sequences 🔞
Choose Sea	rch Sat
Database	Standard databases (nr etc.): rRNA/ITS databases Genomic + transcript databases Betacoronavirus
Dumbuse	Statitualiti databases (III etc.). Trivarii 3 databases C Genoniic + Italiscript databases C betacolonaviius
	Experimental databases Try experimental taxonomic nt databases
	For more info see What are taxonomic nt databases?
	Nucleotide collection (nr/nt)
Organism	
Optional	human (taxid:9606)
Exclude	
Optional	☐ Models (XM/XP) ☐ Uncultured/environmental sample sequences
Limit to Optional	Sequences from type material
Entrez Query	You Tibe Create custom database
Optional	Enter an Entrez query to limit search ?
D 0.1	
Program Sel	
Optimize for	Highly similar sequences (megablast) More dissimilar sequences (discontiguous megablast)
	Somewhat similar sequences (blastn)
	Choose a BLAST algorithm ?
BLAST	Search database Nucleotide collection (nr/nt) using Blastn (Optimize for somewhat similar sequences)
DEA31	Show results in a new window

Если запускать BLAST таким образом, то значение изменится и теперь Evalue становится больше 0.05 только при последовательности меньше 21.

Так как мы ограничиваем поиск человеком, уменьшается и количество возможный выравниваний, следовательно те последовательности который раньше имели e-value больше 0.05, теперь имеют меньше.

Ha 9-10: График lg(E) от n, где n длина фрагмента, а E-evalue лучшей находки:

График max_N от n, где n длина фрагмента, a max_N число результатов с identity равным identity лучшего результата.

Вручную посмотрел в таблице BLAST, везде max_N для каждой длины фрагмента будет 3(вот доказательство, таблицу также приложу blast76 называется)

					,		_	10			_
fragment_100	AC234137, 100.000	100	0	0	1	100	33114	33015	1.52e-41		181
fragment_100	AC087518. 100.000	100	0	0	1	100	54209	54308	1.52e-41		181
fragment_100	AC007991.100.000	100	0	0	1	100	145459	145558	1.52e-41		181
fragment_100	OX465371 76.000	100	24	0	1	100	8591020	8591119	5.66e-09	73.4	
fragment_100	OX457075 75.248	101	24	1	1	100	5990608	5990508	8.40e-07	67.1	
fragment_100	OX465347 74.000	100	26	0	1	100	4750203	4750104	2.93e-06	64.4	
fragment_100	OX459093 74.000	100	26	0	1	100	4239208	4239109	2.93e-06	64.4	
fragment_100	OW44338: 74.000	100	26	0	1	100	4342146	4342047	2.93e-06	64.4	
fragment_100	CP050577. 72.000	100	22	1	1	100	25728280	25728187	0.002	56.3	
fragment_100	CP050618. 72.000	100	22	1	1	100	25757685	25757592	0.002	56.3	
fragment_100	HG994398 72.000	100	22	1	1	100	34929245	34929338	0.002	56.3	
fragment_100	OX463242 73.626	91	21	1	1	91	85841548	85841635	0.002	55.4	
fragment_100	OX460411 72.000	100	28	0	1	100	16946232	16946133	0.002	55.4	
fragment_100	XR_00151475.000	76	19	0	6	81	445	370	0.019	52.7	
fragment_99	AC234137, 100.000	99	0	0	1	99	33114	33016	5.21e-41		179
fragment_99	AC087518. 100.000	99	0	0	1	99	54209	54307	5.21e-41		179
fragment_99	AC007991. 100.000	99	0	0	1	99	145459	145557	5.21e-41		179
fragment_99	OX465371 75.758	99	24	0	1	99	8591020	8591118	1.94e-08	71.6	
fragment_99	OX457075 75.000	100	24	1	1	99	5990608	5990509	2.89e-06	65.3	
fragment_99	OX465347 73.737	99	26	0	1	99	4750203	4750105	1.01e-05	62.6	
fragment_99	OX459093 73.737	99	26	0	1	99	4239208	4239110	1.01e-05	62.6	
fragment_99	OW44338: 73.737	99	26	0	1	99	4342146	4342048	1.01e-05	62.6	
fragment_99	OX463242 73.626	91	21	1	1	91	85841548	85841635	0.001	55.4	
fragment_99	CP050577. 71.717	99	22	1	1	99	25728280	25728188	0.005	54.5	
fragment_99	CP050618.71.717	99	22	1	1	99	25757685	25757593	0.005	54.5	
fragment_99	OX460411 72.165	97	27	0	1	97	16946232	16946136	0.005	54.5	
fragment_99	HG994398 71.717	99	22	1	1	99	34929245	34929337	0.005	54.5	
fragment_99	XR_00151475.000	76	19	0	6	81	445	370	0.018	52.7	
fragment_98	AC234137, 100.000	98	0	0	1	98	33114	33017	1.79e-40		178
fragment_98	AC087518. 100.000	98	0	0	1	98	54209	54306	1.79e-40		178
fragment_98	AC007991.100.000	98	0	0	1	98	145459	145556	1.79e-40		178
fragment_98	OX465371 75.510	98	24	0	1	98	8591020	8591117	6.68e-08	69.8	
fragment_98	OX457075 74.747	99	24	1	1	98	5990608	5990510	9.91e-06	63.5	
fragment_98	OX465347 73.469	98	26	0	1	98	4750203	4750106	3.46e-05	60.8	
fragment_98	OX459093 73.469	98	26	0	1	98	4239208	4239111	3.46e-05	60.8	
fragment_98	OW44338: 73.469	98	26	0	1	98	4342146	4342049	3.46e-05	60.8	
fragment_98	OX463242 73.626	91	21	1	1	91	85841548	85841635	0.001	55.4	

Значит график будет выглядеть так:

