CIRCUIT & ELECTRONIC LABORATORY 1

วัตถุประสงค์

- 1. ฝึกการอ่านค่าอุปกรณ์ (ตัวต้านทาน)
- 2. ฝึกการเขียนแบบและการวาง Layout วงจร
- 3. เข้าใจในหลักการการแบ่งแรงดัน (Voltage Divider) และการแบ่งกระแส(Current Divider) ใน

วงจรความต้านทาน

- 4. ฝึกการต่อวงจรแบบอนุกรม แบบขนาน และแบบผสม
- 5. ฝึกทักษะการดัด ตัดแต่งขาอุปกรณ์และการลงอุปกรณ์บอร์ดแบบไข่ปลา (Stripboard)
- 6. ฝึกการใช้คีมตัด คีมจับ การบัดกรี การถอดอุปกรณ์ที่บัดกรีแล้ว
- 7. ฝึกการใช้ Multi-meter

ทฤษฎีที่เกี่ยวข้อง

การอ่านค่าตัวต้านทานจากแถบสี่

Potentiometer

ตัวต้านทานปรับค่าได้หรือที่เราเรียกกันทั่วไปว่าโวลลุ่ม(volume) ที่เรียกเช่นนี้ก็เพราะว่าส่วนใหญ่พบเจอในเครื่อง ขยายเสียงแล้วเรียกกันจนติดปาก ความจริงมีให้เห็นกันมากมาย ไม่เฉพาะในเครื่องขยายเสียง เครื่องมือวัดก็ใช้กัน โทรทัศน์รุ่นเก่าๆ เครื่องคุมแสง สี เครื่องจ่ายไฟสำหรับห้องทดลอง เป็นต้น

ในท้องตลาดมีจำหน่ายอยู่ 3ชนิดใหญ่ๆคือ

แบบ A หรือแบบล็อก(Log) ค่าจะเปลี่ยนแปลงอย่างรวดเร็วในตอนปลาย

แบบ B หรือแบบลิเนียร์(Linear)ค่าจะเปลี่ยนแปลงแบบสม่ำเสมอแต่ต้นจนปลาย

แบบ **C** ชนิดนี้จะตรงข้ามกับแบบ **A** คือค่าจะเปลี่ยนแปลงอย่างรวดเร็วในตอนต้น

อุปกรณ์ที่ใช้ในการทดลอง

- 1. Stripboard
- 2. Digital Multi-meter
- 3. Power Supply
- 4. คีมจับ คีมตัด คัตเตอร์
- 5. อุปกรณ์ที่ใช้สำหรับการบัดกรี หัวแร้ง ตะกั่ว น้ำยาประสาน ที่ดูดตะกั่ว
- 6. Circuit Elements ที่ใช้แต่ละการทดลอง

<u>ตอนที่ 1</u> การต่อวงจรอนุกรม

ผลการทดลอง

ค่าความต้านทาน

R	แถบสี	Rจากแถบสี(Ω)	Rจากการวัด (Ω)	Error(%)
R ₁	แดง ม่วง เหลื่อง ทอง	27x10 ⁴ ±5%	27x10 ⁴	0
R ₂	น้ำตาล เทา เหลือง ทอง	18x10 ⁴ ±5%	18x10 ⁴	0
R ₃	น้ำตาล แดง เหลือง ทอง	12x10 ⁴ ±5%	12.38x10 ⁴	3.17
R _{ab}		57x10 ⁴ ±5%	57.38x10 ⁴	0.67

แรงดันไฟฟ้า

V	Vจากการคำนวณ(V)	Vจากการวัด(V)	Error(%)
V_1	2.84	2.78	-2.11
V ₂	1.89	1.86	-1.58
V ₃	1.26	1.28	1.59
V_{ab}	5.99	5.92	-1.17

กระแสไฟฟ้า

i	iจากการคำนวณ(μA)	iจากการวัด(μA)	Error(%)
i ₁	10.5	10.3	-1.90
i ₂	10.5	10.3	-1.90
i ₃	10.5	10.3	-1.90
i _{ab}	10.5	10.3	-1.90

กำลังไฟฟ้า

Р	Pจากการคำนวณ(μW)	Pจากการวัด(μW)	Error(%)
P ₁	29.9	28.6	-4.35
P ₂	19.8	19.2	-3.03
P ₃	13.2	13.2	0
P _{ab}	62.9	61.1	2.86

แสดงวิธีการคำนวณ

$$i_{ab} = i_1 = i_2 = i_3$$

$$\frac{V_{ab}}{R_{ab}} = \frac{V_1}{R_1} = \frac{V_2}{R_2} = \frac{V_3}{R_3}$$

V ทางทฤษฎี

$$V_1 = \frac{V_{ab}}{R_{ab}}(R_1) = \frac{6 V(27 \times 10^4 \Omega)}{57 \times 10^4 \Omega} = 2.84 V$$

$$V_2 = \frac{V_{ab}}{R_{ab}}(R_2) = \frac{6V(18 \times 10^4 \Omega)}{57 \times 10^4 \Omega} = 1.89 V$$

$$V_3 = \frac{V_{ab}}{R_{ab}}(R_3) = \frac{6V(12 \times 10^4 \Omega)}{57 \times 10^4 \Omega} = 1.26 V$$

ตัวอย่างการคำนวณหาค่า i และ P ทางทฤษฎี

$$i_1 = \frac{V_1}{R_1} = \frac{2.84 V}{27 \times 10^4 \Omega} = 10.5 \,\mu A$$

$$P_1 = \frac{{V_1}^2}{R_1} = \frac{(2.84 \, V)^2}{27 \times 10^4 \Omega} = 29.9 \, \mu W$$

ตัวอย่างการคำนวณหาค่า % Error ของ R

% Error
$$R_1 = \frac{Measure - True}{True} \times 100 = \frac{(27 \times 10^4 \Omega) - (27 \times 10^4 \Omega)}{(27 \times 10^4 \Omega)} \times 100 = 0\%$$

<u>ตอนที่ 2</u> การต่อวงจรขนาน

ผลการทดลอง

ความต้านทาน

R	แถบสี	Rจากแถบสี(Ω)	Rจากการวัด (Ω)	Error(%)
R ₁	เขียว น้ำเงิน แดง ทอง	5.6x10 ⁴ ±5%	5.57x10 ⁴	-0.53
R ₂	แดง เหลือง แดง ทอง	2.4x10 ⁴ ±5%	2.35x10 ⁴	-2.08
R ₃	เทา แดง แดง ทอง	8.2x10 ⁴ ±5%	8.15x10 ⁴	-0.61
R _{ab}		1.394x10 ⁴ ±5%	1.374x10 ⁴	-1.43

แรงดันไฟฟ้า

V	Vจากการคำนวณ(V)	Vจากการวัด(V)	Error(%)
V ₁	6.00	5.93	-1.16
V ₂	6.00	5.93	-1.16
V ₃	6.00	5.93	-1.16
V_{ab}	6.00	5.93	-1.16

กระแสไฟฟ้า

i	iจากการคำนวณ(mA)	iจากการวัด(mA)	Error(%)
i ₁	1.07	1.06	-0.93
i ₂	2.50	2.52	0.8
i ₃	0.73	0.73	0
i _{ab}	4.30	4.31	0.23

กำลังไฟฟ้า

Р	Pจากการคำนวณ(mW)	Pจากการวัด(mW)	Error(%)
P_1	6.43	6.31	-1.87
P ₂	15	15	0
P ₃	4.39	4.31	1.82
P_{ab}	25	25	0

แสดงวิธีการคำนวณ

V ทางทฤษฎี

$$V_s = V_1 = V_2 = V_3 = 6.00 V$$

ตัวอย่างการคำนวณหาค่า i และ P ทางทฤษฎี

$$i_1 = \frac{V_1}{R_1} = \frac{6.00 \, V}{5.6 \times 10^3 \Omega} = 1.07 \, mA$$

$$P_1 = \frac{{V_1}^2}{R_1} = \frac{(6.00 \, V)^2}{5.6 \times 10^3 \Omega} = 6.43 \, mW$$

ตัวอย่างการคำนวณหาค่า % Error ของ R

$$\% \ Error \ R_1 = \frac{\textit{Measure} - \textit{True}}{\textit{True}} \times 100 = \frac{(5.57 \times 10^3 \Omega) - (5.6 \times 10^3 \Omega)}{(5.6 \times 10^3 \Omega)} \times 100 = -0.53\%$$

<u>ตอนที่ 3</u> การต่อวงจรผสม

ผลการทดลอง

ค่าความต้านทาน

R	แถบสี	Rจากแถบสี (Ω)	Rจากการวัด (Ω)	Error(%)
R ₁	ส้ม ขาว ส้ม ทอง	39x10 ³ ±5%	38.7x10 ³	-0.77
R ₂	เขียว น้ำเงิน ส้ม ทอง	56x10 ³ ±5%	55.6x10 ³	-0.71
R ₃	แดง ม่วง ส้ม ทอง	27x10 ³ ±5%	27x10 ³	0
R ₄	ส้ม ดำ ส้ม ทอง	30x10 ³ ±5%	30.1x10 ³	0.33
R _{ab}		67.25x10 ³ ±5%	66.87x10 ³	-0.56

แรงดันไฟฟ้า

V	Vจากการคำนวณ(V)	V จากการวัด (V)	Error(%)
V_1	3.48	3.47	-0.29
V_2	2.52	2.52	0
V_3	1.26	1.24	-1.59
V_4	1.40	1.32	-5.71
V_{ab}	6.00	6.00	0

กระแสไฟฟ้า

i	iจากการคำนวณ(μA)	iจากการวัด(μA)	Error(%)
i ₁	89.2	89.7	0.56
i ₂	45	45.3	0.67
i ₃	46.6	45.3	-1.50
i ₄	46.6	43.3	-6.01
i _{ab}	4.30	4.31	0.56

กำลังไฟฟ้า

Р	Pจากการคำนวณ(μW)	Pจากการวัด(μW)	Error(%)
P_1	310	311	0.32
P ₂	113	114	0.88
P ₃	58.8	56.9	-3.23
P ₄	65.3	57.9	-11.33
P _{ab}	535	538	0.56

แสดงวิธีการคำนวณ

คำนวณหา Rab จะได้ว่า

$$R_{ab} = R_1 + [R_2 //(R_3 + R_4)]$$

$$R_{ab} = 39 \times 10^3 \Omega + \{56 \times 10^3 \Omega // [(27 \times 10^3 \Omega) + (30 \times 10^3 \Omega)]\}$$

$$R_{ab} = 39 \times 10^3 \Omega + [56 \times 10^3 \Omega // 57 \times 10^3 \Omega]$$

$$R_{ab} = 39 \times 10^3 \Omega + 28.25 \times 10^3 \Omega$$

$$R_{ab} = 67.25 \times 10^3 \Omega$$

คำนวณหาค่า **V**

จาก
$$i_{ab}=i_1$$

$$\frac{V_{ab}}{R_{ab}} = \frac{V_1}{R_1} , V_1 = \frac{(6 V)(39 \times 10^3 \Omega)}{67.25 \times 10^3 \Omega} = 3.48 V$$

จาก
$$i_t = i_{R_2//R_3 + R_4}$$

$$\frac{V_t}{R_t} = \frac{V_{R_2 l l R_3 + R_4}}{R_{R_2 l l R_3 + R_4}} , V_{R_2} = V_{R_2 l l R_3 + R_4} = V_{R_3 + R_4}$$

$$\therefore V_{R_2} = \frac{V_t}{R_t} (R_2 l l R_3 + R_4) = \frac{(6 V)(27 \times 10^3 \Omega)}{57 \times 10^3 \Omega} = 1.26 V$$

จาก
$$i_{R_3+R_4}=i_{R_3}$$

$$\frac{V_{R_3+R_4}}{R_{R_2+R_4}} = \frac{V_{R_3}}{R_3} , V_{R_2} = V_{R_2llR_3+R_4} = V_{R_3+R_4}$$

$$\therefore V_3 = \frac{V_2(R_3)}{R_3 + R_4} = \frac{(2.52 \, V)(27 \times 10^3 \,\Omega)}{57 \times 10^3 \,\Omega} = 1.26 \, V$$

ในทำนองเดียวกัน

$$V_4 = \frac{V_2(R_4)}{R_3 + R_4} = \frac{(2.52 \, V)(30 \times 10^3 \,\Omega)}{57 \times 10^3 \,\Omega} = 1.40 \, V$$

ตัวอย่างการคำนวณหาค่า i และ P ทางทฤษฎี

$$i_1 = \frac{V_1}{R_1} = \frac{3.48 \, V}{39 \times 10^3 \Omega} = 89.2 \, \mu A$$

$$P_1 = \frac{{V_1}^2}{R_1} = \frac{(3.48 \, V)^2}{39 \times 10^3 \Omega} = 310 \, \mu W$$

LAB 1 นายธิปก สรรพกิจ 56010611

<u>ตอนที่ 4</u> การต่อตัวต้านทานปรับค่าได้

ผลการทดลอง

ครั้งที่	$V_2(V)$	$V_1 = V_s - V_2(V)$	$R_1(k\Omega)$	$ heta_{R_1}(^{\circ})$
1	3.15	2.85	9.05	162.90
2	2.30	3.70	16.09	289.62
3	3.67	2.33	6.35	114.30
4	2.73	3.27	11.98	215.64

แสดงวิธีการคำนวณ

จาก
$$i_t=i_1$$

$$\frac{V_t}{R_1 + R_2} = \frac{V_1}{R_1}$$

$$R_1 V_t = R_1 V_1 + R_2 V_1$$

$$R_1 V_t - R_1 V_1 = R_2 V_1$$

$$R_1(V_t - V_1) = R_2 V_1$$

$$\begin{split} R_1 &= \frac{V_1}{(V_t - V_1)} R_2 = \frac{V_1}{V_2} R_2 \quad , V_1 + V_2 = V_t \\ & \therefore \text{ Posterior} \quad 1 \qquad R_1 = \frac{V_1}{(V_t - V_1)} R_2 = \frac{2.85 \ V}{3.15 \ V} (10 \ k\Omega) = 9.05 \ k\Omega \\ & \text{ Posterior} \quad 2 \qquad R_1 = \frac{V_1}{(V_t - V_1)} R_2 = \frac{3.70 \ V}{2.30 \ V} (10 \ k\Omega) = 16.09 \ k\Omega \\ & \text{ Posterior} \quad 3 \qquad R_1 = \frac{V_1}{(V_t - V_1)} R_2 = \frac{2.33 \ V}{3.67 \ V} (10 \ k\Omega) = 6.35 \ k\Omega \\ & \text{ Posterior} \quad 4 \qquad R_1 = \frac{V_1}{(V_t - V_1)} R_2 = \frac{3.27 \ V}{2.73 \ V} (10 \ k\Omega) = 11.98 \ k\Omega \end{split}$$

คำนวณหาค่า $heta_{R_1}$

จาก
$$R_{AB}=\left(\frac{\theta}{360}\right)R_{AC}$$
 , $R_{AC}=R_T=20~k\Omega$
$$\therefore \text{ ครั้งที่ 1} \qquad \theta_{R_1}=\frac{R_{AB}}{R_T}(360)=\frac{9.05~k\Omega}{20~k\Omega}(360)=162.9~\circ$$

$$\text{ ครั้งที่ 2} \qquad \theta_{R_1}=\frac{R_{AB}}{R_T}(360)=\frac{16.09~k\Omega}{20~k\Omega}(360)=289.62~\circ$$

$$\text{ ครั้งที่ 3} \qquad \theta_{R_1}=\frac{R_{AB}}{R_T}(360)=\frac{6.35~k\Omega}{20~k\Omega}(360)=114.30~\circ$$

สรุปผลการทดลอง

ตอนที่ 1 ในการต่อวงจรแบบอนุกรม กระแส I ที่ไหลผ่านในวงจรจะมีค่าเท่ากัน แต่แรงดัน V ที่ ตกคร่อมตัวต้านทาน R แต่ละตัวจะมีค่าไม่เท่ากัน ซึ่งขึ้นอยู่กับค่าของตัวต้านทานนั้นๆ ถ้าค่าความ ต้านทานมาก แรงดันที่ตกคร่อมตัวต้านทานตัวนั้นก็จะมากตาม แต่ถ้าค่าความต้านทานน้อย แรงดันที่ตก คร่อมตัวต้านทานตัวนั้นก็จะน้อยเช่นกัน ซึ่งเป็นไปตามกฏการแบ่งแรงดัน (Voltage Divider)

ตอนที่ 2 ในการต่อวงจรแบบขนานค่าแรงดัน V ของทั้งวงจรจะมีค่าเท่ากับค่า V ของตัว ต้านทาน R ในแต่ละตัว แต่ค่ากระแส I ที่ไหลผ่านตัวต้านทานแต่ละตัวจะมีค่าไม่เท่ากัน ซึ่งถ้าค่าความ ต้านทานมาก กระแสที่ไหลผ่านตัวต้านทานก็จะมากตาม แต่ถ้าค่าความต้านทานน้อย กระแสที่ไหลผ่าน ตัวต้านทานก็จะน้อยเช่นกัน ซึ่งเป็นไปตามกฎการแบ่งกระแส (Current Divider)

ตอนที่ **3** ในการต่อวงจรแบบผสม จะมีทั้งการแบ่งแรงดันและแบ่งกระแส ถ้าวงจรตัวต้านทานตัว ใดที่ต่ออนุกรมกันก็จะแบ่งแรงดันกัน เนื่องจากกระแส **I** ที่ไหลผ่านตัวต้านทานแต่ละตัวเท่ากัน ถ้าวงจรตัว ต้านทานตัวใดที่ต่อขนานกันก็จะแบ่งกระแสกัน เนื่องจากแรงดันตกคร่อมที่ตัวต้านทานแต่ละตัวเท่ากัน

ตอนที่ 4 ในการต่อวงจรตัวต้านทานอนุกรมกับตัวต้านทานแบบปรับค่าได้จะใช้หลักการแบ่ง แรงดันเหมือนการต่อวงจรอนุกรม แต่เราสามารถปรับค่าแรงดันที่ตกคร่อมตัวต้านทานปรับค่าได้ โดยการ หมุนตัวต้านทานแบบปรับค่าเพื่อเพิ่ม-ลดค่าความต้านทาน ซึ่งปรับได้ตั้งแต่ 0 จนถึงค่าความต้านทาน สูงสุดที่สามารถปรับได้ ซึ่งตัวต้านทานแบบปรับค่าในการทดลองสามารถปรับได้ $0-20\ k\Omega$