1.7 Arguments using or?

We write $(\phi \vee \psi)$ for 'Either ϕ or ψ or both'. The symbol 'V' is read as 'or'. For example, $(x = 0 \vee x > 0)$ says

Either x=0 or x is greater than 0 or both.

In this case (as often), the 'or both' doesn't arrise and can be ignored. The whole statement is equivalent to 'x>0'.

SEQUENT RULE (YI)

If at least one of $(T \vdash \phi)$ and $(T \vdash \psi)$ is a correct sequent, then the sequent $(T \vdash (\phi \lor \psi))$ is correct.

NATURAL DEDUCTION RULE (YI) derivation with conclusion &, then is a derivation of $(\phi \vee \psi)$. Its undischarged assumptions are those of D. Similarly, if is a derivation with conclusion 4, then is a derivation with conclusion (\$\psi\psi). Its undischarged assumptions are those of D.

Example 1.7.1 We prove the sequent $H(T(T(\phi \vee (T\phi))))$. (7(\$V(1\$))) (7E) $\frac{1}{(\neg \phi)} \frac{(\neg I)}{(\forall V(\neg \phi))} \frac{(\nabla I)}{(\neg (\phi V(\neg \phi)))} \frac{(\neg E)}{(\neg E)}$ (1.24) (7(7(ØY(7Ø))))

Scanné avec CamScanner

Example 1.7.1 - bis In this example, we prove a contradiction from the regation of the conclusion, and then finish with (RAA).

Scanné avec CamScanner

RULE (YE) NATURAL DEDUCTION Given derivations D, D' and $(\phi \vee \psi)$, χ we have a derivation Its undischarged assumptions are those of D, those of D' except possibly of, and those of D" except possibly of. SEQUENT RULE (YE)

If ($\Gamma \cup \{\emptyset\} \vdash X$) and ($\Delta \cup \{\emptyset\} \vdash X$) are

correct sequents, then the sequent

($\Gamma \cup \Delta \cup \{(\emptyset \lor \Psi)\} \vdash X$)

is correct.