Electronic supplementary information

INFLUENCE OF DIVALENT METAL PROMOTERS ON THE Pt DISPERSION AND PERFORMANCE OF THE Pt/MFI PROPANE DEHYDROGENATION CATALYSTS

A. B. Ponomaryov,**a A. V. Smirnov,* M. V. Shostakovsky,* M. A. Kashkina,**a,b and E. V. Pisarenko*

^a Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, str. 1, Moscow, 119334 Russia
^b Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, str. 3, Moscow, 119991 Russia
^c Department of Cybernetics of Chemical Technological Processes, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow, 125047 Russia

Tables of contents

Experimental section	S2
Table S1. Chemical compositions of the catalyst samples derived from MFI-80 zeolite	S 4
Figure S1. XRD patterns of 0.5Pt-based samples derived from MFI-80 zeolite with and without	S5
Na, Mg, Cu	
Figure S2. Effect of divalent promoters on the propylene yield and selectivity to propylene in	S5
PDH reaction	
Table S2. Catalytic performance of some MPt catalysts for propane dehydrogenation reported	S 6
to date in comparison with the catalysts prepared in the present study	
References	S 7

Experimental section

Reagents and catalysts

MFI-type zeolite with the nominal SiO₂/Al₂O₃ molar ratio of 80 (Zeolyst Int.) was used in the H-form after calcination at 600 °C. AR-grade NaCl, CaCl₂·6H₂O, MgCl₂·6H₂O, ZnCl₂, MnCl₂·4H₂O, CoCl₂·6H₂O, CuCl₂·2H₂O, NiCl₂·6H₂O, SnCl₂·2H₂O, and H₂PtCl₆·6H₂O were used for the catalyst preparation. Propane (99.92%) was purchased from BK Group, Russia. The physicochemical properties of the initial zeolites are described in Ref. [1].

Preparation of the catalysts

All catalysts were prepared with the promoter/Pt atomic ratio of about 3 (Table S1).

Example of the (3Na)400w150(0.4Mn0.5Pt) catalyst preparation procedure (atomic ratio Mn/Pt = 2.8). An impregnating solution was prepared by dissolving 0.38 g of NaCl in 3 mL of distilled water. The resulting solution and 5 g of a zeolite powder were preheated separately in a water bath to 70 °C. The solution and zeolite were then mixed and held for 1 h under periodical stirring at 70 °C. The mixture was dried at 150 °C for 1 h and calcined in air in a muffle furnace at 400 °C. The powder obtained was mixed with 25 mL of distilled water using a magnetic stirrer at 80 °C for 0.5 h. The product was filtered off without additional washing and dried at 150 °C for 1 h. The sample (1.0 g) was further impregnated with a mixture of 0.015 g of MnCl₂·4H₂O, 0.32 g of H₂PtCl₆ solution (13.2 g Pt/L), and 0.28 g of water. After drying at 150 °C for 1 h, the sample was calcined again at 500 °C. The calcination involved heating at a rate of 10 °C/min to 500 °C and keeping at this temperature for 1 h.

Characterization of the catalysts

The quantitative elemental analysis was performed by energy dispersive X-ray fluorescence spectroscopy (ED-XRF) using a ThermoScientific ARL Perform'x instrument.

The phase composition of the samples was identified by powder X-ray diffraction analysis (XRD) on a TongDaTD-3700 diffractometer equipped with $CuK\alpha$ irradiation.

The Pt dispersion was measured by CO pulse chemisorption using a USGA-101 analyzer. About 200 mg of the sample was placed in a quartz microreactor 4 mm in inner diameter (ID). The sample was heated to 200 °C at a rate of 10 °C/min in a helium flow (10 mL/min) and held at 200 °C for 0.5 h. The gas flow was switched from He to H_2 , and the sample was heated in H_2 at 10 °C/min to 540 °C, followed by keeping at this temperature for another 30 min. The reactor was cooled in H_2 to 200 °C, purged with He at 200 °C for 0.5 h, and finally cooled to room temperature in a continuous He flow. For the chemisorption analysis, 0.25 mL pulses of carbon monoxide (CO) diluted to 9.7% in He were injected into a helium flow at 3-min intervals. This was continued until the chemisorption sites reached saturation. The CO concentration at the reactor outlet was monitored by a thermal conductivity detector (TCD). The amount of chemisorbed CO was derived from the TCD signal areas. The Pt dispersion was calculated by the equation:

$$D = \frac{V \cdot AW \cdot SF}{W \cdot 24400} \cdot 100\%,$$

where V is the volume of the adsorbed CO (mL); AW is the atomic weight of Pt (g/mol); SF is the stoichiometric factor (assumed to be equal to 1); and W is the Pt weight in the sample (g).

The catalytic tests were carried out in a 4-mm ID tubular quartz reactor at 540 °C, 0.1 MPa. The catalyst sample (0.05 g) was loaded into the reactor, heated in nitrogen to 300 °C at 15 mL/min, then in H_2 to 540 °C at 10 mL/min, and held at 540 °C for 0.5 h. The flow was then switched from H_2 to propane with a flow rate of 13 mL/min (WHSV=28 h⁻¹).

The PDH reaction was conducted using pure propane without hydrogen or an inert gas. The reaction products were analyzed online on a *Chromatec Crystal 5000* gas chromatograph equipped with a 25-m KCl-Al₂O₃ capillary column and a flame ionization detector (FID).

The propane conversion, reaction product selectivity, and product yields were determined as follows. Propane conversion:

$$X = \frac{\textit{mass of propane in the feed-mass of propane in the product}}{\textit{mass of propane in the feed}} \cdot 100\%;$$

Product selectivity:

$$S_i = \frac{\textit{mass of product i}}{\textit{mass of all products}} \cdot 100\%;$$

Product yield:

$$Y_i = S_i \cdot X/100$$

The specific activity was defined as moles of propylene produced by 1 mol of Pt atoms per second. The deactivation constants K_d were calculated using the following equation:

$$K_d * t = \ln(\frac{(1-X_f)/X_f}{(1-X_{in})/X_{in}}),$$

where t is the time on stream, X_{in} is the propane conversion after 1 h on stream, X_f is the propane conversion at the end of the experiment.

A higher deactivation constant indicates a faster loss of the catalyst activity.

The catalyst index of productivity (*IP*) was used as a benchmark for comparison [2], which was calculated using the following equation:

$$IP = \frac{SA}{K_d},$$

where SA is the specific activity expressed in s^{-1} , K_d is the deactivation constant expressed in h^{-1} .

Table S1. Chemical compositions of the catalyst samples derived from MFI-80 zeolite

	Sample	Ele	ment conte	M:Pt atomic ratio		
Promoter M	Name	Na	M	Pt	Cl	- M:Pt atomic ratio
no	(3Na)400w150(0.5Pt)	0.73	_	0.51	0.18	_
Ca	(3Na)400w150(0.3Ca0.5Pt)	0.68	0.29	0.55	0.42	2.60
Mg	(3Na)400w150(0.2Mg0.5Pt)	0.74	0.17	0.57	0.29	2.43
Mn	(3Na)400w150(0.4Mn0.5Pt)	0.65	0.42	0.53	0.26	2.82
Zn	(3Na)400w150(0.5Zn0.5Pt)	0.87	0.52	0.43	0.35	3.37
Co	(3Na)400w150(0.5Co0.5Pt)	0.94	0.52	0.51	0.28	3.37
Cu	(3Na)400w150(0.50Cu0.5Pt)	0.88	0.51	0.51	0.29	3.06
Ni	(3Na)400w150(0.5Ni0.5Pt)	0.81	0.43	0.52	0.32	2.70
Sn	(3Na)400w150(0.9Sn0.5Pt)	0.81	0.87	0.47	0.24	3.06

Figure S1. XRD patterns of 0.5Pt-based samples derived from MFI-80 zeolite with and without Na, Mg, Cu.

Figure S2. Effect of divalent promoters on the propylene yield and selectivity to propylene in PDH reaction. The reaction conditions: WHSV = $28 h^{-1}$, $540 \,^{\circ}$ C, $0.1 \,^{\circ}$ MPa.

Table S2. Catalytic performance of some MPt catalysts for propane dehydrogenation reported to date in comparison with the catalysts prepared in the present study

Catalyst	WHSV,	<i>T</i> , °C	C ₃ H ₆ yield, %	Feed composition	Pt, %	Time on stream, h	Specific activity, s ^{-1 a}	Deactivation constant, h ⁻	IP^b	Ref.
$Pt^0Zn^{\delta^+}\!/SiO_2$	75	550	30	$C_3H_8/Ar = 1/4$	3.05	30	0.96	0.027	35	[3]
K-PtSn@MFI-H2	27	600	68	$C_3H_8/N_2 = 1/3.3$	0.40	25	3.31	0.022	150	[4]
0.1Pt0.4CuK@S-1	5.4	550	40	$C_3H_8/N_2 = 1/3$	0.16	73	1.73	0.005	355	[5]
(3Na0.5Sn)w(0.25Pt)	28	570	35	pure C ₃ H ₈	0.24	8	5.30	0.013	404	[6]
(3Na)400w150(0.5Zn0.5Pt)			27		0.43		2.26	0.004	514	
(3Na)400w150(0.50Cu0.5Pt)			30		0.51		2.10	0.020	106	
(3Na)400w150(0.9Sn0.5Pt)			22		0.47		1.68	0.024	71	
(3Na)400w150(0.4Mn0.5Pt)			28		0.53		1.94	0.031	64	
(3Na)400w150(0.5Co0.5Pt)	28	540	29	pure C ₃ H ₈	0.51	8	2.04	0.043	47	This work
(3Na)400w150(0.2Mg0.5Pt)			28		0.57		1.77	0.038	47	WOIK
(3Na)400w150(0.5Ni0.5Pt)			27		0.52		2.08	0.048	44	
(3Na)400w150(0.3Ca0.5Pt)			28		0.55		1.84	0.047	39	
(3Na)400w150(0.5Pt)			24		0.51		1.72	0.062	28	

 $^{^{}a}$ specific activity is defined as the moles of $C_{3}H_{6}$ formation per Pt g-atom per second;

^b IP (index of productivity) is the specific activity/deactivation constant [7].

References

- 1. A. B. Ponomaryov, A. V. Smirnov, E. V. Pisarenko, M. V. Shostakovsky, *Microporous Mesoporous Mater.*, **2022**, *339*, 112010. DOI: 10.1016/j.micromeso.2022.112010
- 2. A. B. Ponomaryov, A. V. Smirnov, E. V. Pisarenko, M. V. Shostakovsky, *Appl. Catal.*, *A*, **2024**, *673*, 119588. DOI: 10.1016/j.apcata.2024.119588
- 3. L. Rochlitz, K. Searles, J. Alfke, D. Zemlyanov, O.V. Safonova, C. Copéret, *Chem. Sci.*, **2020**, *11*, 1549–1555. DOI: 10.1039/C9SC05599A
- L. Liu, M. Lopez-Haro, C. W. Lopes, S. Rojas-Buzo, P. Concepcion, R. Manzorro, L. Simonelli, A. Sattler, P. Serna, J. J. Calvino, A. Corma, *Nat. Catal.*, 2020, 3, 628–638. DOI: 10.1038/s41929-020-0472-7
- J. Zhou, Y. Zhang, H. Liu, C. Xiong, P. Hu, H. Wang, S. Chen, H. Ji, *Nano Res.*, 2023, 16, 6537–6543. DOI: 10.1007/s12274-022-5317-z
- 6. A. B. Ponomaryov, A. V. Smirnov, M. V. Shostakovsky, E. V. Pisarenko, A. G. Popov, M. A. Kashkina, *Pet. Chem.*, **2024**, *64*, 1147–1158. DOI: 10.1134/S096554412404008X
- 7. A. B. Ponomaryov, A. V. Smirnov, E. V. Pisarenko, M. V. Shostakovsky, *Appl. Catal.*, *A*, **2024**, *673*, 119588. DOI: 10.1016/j.apcata.2024.119588