Математическая логика и теория алгоритмов

Сергей Григорян

16 октября 2024 г.

Содержание

1	Лекция 6	•
2	Лекция 7	-

1 Лекция 6

Определение 1.1. Вывод - п-ть ϕ_1, \dots, ϕ_n , т. ч. $\forall i$:

- \bullet ϕ_i аксиома
- ϕ_i получается по правилам МР из $\phi_i, \phi_k, j < i, k < i.$ Это значит, что $\phi_k = \phi_j \to \phi_i$

Ф-ла **выводима** ($\vdash \phi$), если ϕ встреч-ся в нек-ром выводе.

Теорема 1.1. ϕ - тавтология \Rightarrow $(\vdash \phi)$

Пример.

$$(\neg A \lor B) \to (A \to B)$$

1)
$$\neg A \rightarrow (A \rightarrow B) \ aксиома \ 9$$

$$B o (A o B)$$
 - аксиома 9

3)
$$(\neg A \to (A \to B)) \to ((B \to (A \to B)) \to ((A \lor B) \to (A \to B)))$$

(B
$$\rightarrow$$
 (A \rightarrow B)) \rightarrow (($\neg A \lor B$) \rightarrow (A \rightarrow B)) - MP 1, 3

$$(\neg A \lor B) \to (A \to B)$$

Определение 1.2. Вывод из мн-ва посылок Γ - это п-ть $\phi_1, \phi_2, \dots, \phi_n$ при этом ϕ_i может быть либо аксиомой, либо эл-т Γ , либо получается по m. p.

<u>Лемма</u> 1.2 (О дедукции).

$$\Gamma \vdash A \to B \iff \Gamma \cup \{A\} \vdash B$$

Пример (Силлогизм).

$$\vdash (A \to B) \to ((B \to C) \to (A \to C)) \iff$$

$$\iff \{A \to B\} \vdash (B \to C) \to (A \to C)$$

$$\iff \{A \to B, B \to C\} \vdash (A \to C)$$

$$\iff \{A, A \to B, B \to C\} \vdash C$$

- 1) A посылка
- 2) $A \rightarrow B$ посылка
- 3) B no MP 1, 2
- 4) $B \to C$ посылка
- 5) C MP 3, 4

 $\begin{subarray}{ll} \mathcal{A} оказательство. <math>\begin{subarray}{ll} \Rightarrow \begin{subarray}{ll} Если вывели $A o B$, то из $\Gamma \cup \{A\}$ можно вывести B по MP \end{subarray}$

 \Leftarrow) Пусть $\Gamma \cup \{A\} \vdash B$. Тогда сущю вывод $\phi_1, \dots, \phi_n = B$ из $\Gamma \cup \{A\}$

Каждый ϕ_i - либо акс., либо $\in \Gamma$, либо = A, либо вывод-ся по MP. Мы докажем по инд-ции, что $\Gamma \vdash A \to \phi_i$:

- 1) ϕ_i akc.
 - 1) ϕ_i
 - 2) $\phi_i \to (A \to \phi_i)$ A1
 - 3) $A \rightarrow \phi_i$, MP 1, 2.
- 2) $\phi_i \in \Gamma$, аналогичен (1)
- 3) $\phi_i = A$. На прошлой лекции выводили $\vdash A \to A$ без Γ
- 4) ϕ_i по MP: $\exists j, k, < i$:

$$\phi_k = (\phi_j \to \phi_i)$$

По инд-ции: $\Gamma \vdash A \to \phi_j, \Gamma \vdash A \to \phi_k$, т. е. $\Gamma \vdash A \to (\phi_j \to \phi_i)$:

$$(A \to (\phi_j \to \phi_i)) \to ((A \to \phi_j) \to (A \to \phi_i))$$
 - A2
 $(A \to \phi_j) \to (A \to \phi_i)$ - MP
 $(A \to \phi_i)$ - MP

Пример.

$$\vdash (A \land B) \to (B \land A)$$
$$A \land B \vdash B \land A$$

1)
$$A \wedge B$$
 - посылка

2)
$$(A \wedge B) \rightarrow B - a\kappa c$$
. 4

4)
$$(A \wedge B) \rightarrow A$$
 - $a\kappa c.$ 3

6)
$$(B \rightarrow (A \rightarrow (B \land A)))$$
 - arc. 5

7)
$$A \rightarrow (B \wedge A) - MP 3, 6$$

8)
$$B \wedge A - MP 5$$
, 7

<u>Лемма</u> 1.3 (Правила введения и разбиения конъюнкции).

$$\Gamma \cup \{A \land B\} \vdash C$$

$$\iff \Gamma \cup \{A, B\} \vdash C$$

Также:

$$\Gamma \vdash A \land B \iff \begin{cases} \Gamma \vdash A \\ \Gamma \vdash B \end{cases}$$

Пример.

$$(A \to \neg A) \to \neg A$$

Вывод:

1-5)
$$A \rightarrow A$$

6)
$$(A \rightarrow A) \rightarrow ((A \rightarrow \neg A) \rightarrow \neg A)$$
 - A10

7)
$$(A \rightarrow \neg A) \rightarrow \neg A - MP 5.6$$

Пример.

$$\vdash A \to \neg \neg A$$

$$\iff A \vdash \neg \neg A$$

$$\vdash \neg A \to (A \to B) \iff$$

$$\neg A \vdash A \to B \iff \neg A, A \vdash B \iff A \vdash \neg A \to B$$

$$\vdash A \to (\neg A \to B)$$

$$A \vdash \neg \neg A$$

- 1) $A \rightarrow (\neg A \rightarrow B)$
- 2) A посылка
- 3) $\neg A \rightarrow B$, mp 2. 1
- 4) $A \rightarrow (\neg A \rightarrow \neg B)$
- 5) $\neg A \rightarrow \neg B$, MP 2, 4

6)
$$(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow \neg \neg A) - A10$$

7)
$$(\neg A \rightarrow \neg B) \rightarrow \neg \neg A - MP 3, 6$$

<u>Лемма</u> 1.4 (Правило рассуждения от противного).

$$\begin{array}{c|c} \Gamma, A \vdash B & \Gamma, A \vdash \neg B \\ \hline \Gamma \vdash \neg A & \end{array}$$

Доказательство.

$$\begin{cases} \Gamma, A \vdash B \iff \Gamma \vdash A \to B \\ \Gamma, A \vdash \neg B \iff \Gamma \vdash A \to \neg B \end{cases} \iff \Gamma \vdash \neg A, A10 + MP x2$$

Пример (Закон контрапозиции).

$$A o B, \neg B, \overline{A \vdash B}$$
 $A o B, \neg B, A, \vdash \neg B$ $A o B, \neg B, A, \vdash B$ $A o B, \neg B, A$ $A o B, A$

$$A o B, \neg B \vdash \neg A$$
 $A o B, \neg B \vdash \neg A$ $A o B, \neg B \vdash \neg A$

Пример (Закон Де Моргана).

$$\vdash (\neg A \lor \neg B) \to \neg (A \land B)$$

$$\iff (\neg A \lor \neg B) \vdash A \land B$$

1)
$$(A \wedge B) \rightarrow A - a\kappa c. 3$$

2)
$$\neg A \rightarrow \neg (A \land B)$$
 - закон контрапозиции.

3)
$$(A \wedge B) \rightarrow B$$
 - $a\kappa c.$ 4

4)
$$\neg B \rightarrow \neg (A \land B)$$
 - контрапозиция

5)
$$(\neg A \rightarrow \neg (A \land B)) \rightarrow ((\neg B \rightarrow \neg (A \land B)) \rightarrow ((\neg A \lor \neg B) \rightarrow \neg (A \land B)))$$

6) MP 2x

Лемма 1.5 (Правило контрапозиции).
$$\frac{\Gamma,A \vdash B}{\Gamma,\neg B \vdash \neg A}$$

Лемма **1.6** (Правило разбора случаев).
$$\frac{\Gamma, A \vdash C \qquad \qquad \Gamma, B \vdash C}{\Gamma, A \lor B \vdash C}$$

<u>Лемма</u> 1.7 (Правило исчерп. разбора случаев).

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash B} \qquad \frac{\Gamma, \neg A \vdash B}{\Gamma}$$

2 Лекция 7

Теорема 2.1 (О полноте ИВ). ϕ - тавтология $\Rightarrow \phi$ выводима

Правило исчерп. разбора случаев: Пусть Γ - нек-рое мн-во ф-ул, при это $\Gamma,A \vdash B$ и $\Gamma, \neg A \vdash B$

Тогда: $\Gamma \vdash B$

$$\begin{array}{c|c} \Gamma, A \vdash B & \Gamma, \neg A \vdash B \\ \hline \Gamma \vdash B & \end{array}$$

Обозначение.

$$p^{\varepsilon} = \begin{cases} p, \varepsilon = 1 \\ \neg p, \varepsilon = 0 \end{cases}$$

<u>Лемма</u> **2.2** (Основная). Пусть ϕ - ϕ -ла от n переменных $(\overline{p} = (p_1, \dots, p_n))$.

$$(a_1,\ldots,a_n) \in \{0,1\}^n, \phi(a_1,\ldots,a_n) = a \in \{0,1\}$$

Тогда:

$$p_1^{a_1}, p_2^{a_2}, \dots, p_n^{a_n} \vdash \phi^a$$

Рассм. переход:

ОСНОВНАЯ ЛЕММА ⇒ ТЕОРЕМА О ПОЛНОТЕ ИВ

$$\phi$$
 - тавтология \Rightarrow при всех (a_1,\ldots,a_n) $\phi(a_1,\ldots,a_n)=1 \underset{\Pi_0 \text{ nemme}}{\Longrightarrow} p_1^{a_1},\ldots,p_n^{a_n} \vdash \phi$

Пример. n = 3: le Picture

<u>Лемма</u> **2.3** (Базовая).

AND-ы:

$$A, B \vdash A \land B$$
$$\neg A, B \vdash \neg (A \land B)$$
$$A, \neg B \vdash \neg (A \land B)$$
$$\neg A, \neg B \vdash \neg (A \land B)$$

OR- $b\iota$:

$$A, B \vdash A \lor B$$
$$\neg A, B \vdash A \lor B$$
$$A, \neg B \vdash A \lor B$$
$$\neg A, \neg B \vdash \neg (A \lor B)$$

Implication-ы:

$$A, B \vdash A \rightarrow B$$

 $\neg A, B \vdash A \rightarrow B$

$$A, \neg B \vdash \neg (A \vdash B)$$
$$\neg A, \neg B \to A \to B$$

И ещё:

$$\neg A \vdash \neg A$$

$$A \vdash \neg(\neg A)$$

Док-во основной леммы. Инд-ция по построению ф-лы:

База) Переменная: $p_i^{a_i} \vdash p_i^{a_i}$

Переход) Пусть, например:

$$\phi = (\xi \wedge \eta)$$

$$\xi(a_1,\ldots,a_n)=a, \eta(a_1,\ldots,a_n)=b \Rightarrow \phi(a_1,\ldots,a_n)=a\cdot b$$

По предположению индукции:

$$p_1^{a_1}, p_2^{a_2}, \dots, p_n^{a_n} \vdash \xi^a \bowtie p_1^{a_1}, p_2^{a_2}, \dots, p_n^{a_n} \vdash \eta^b$$

По базовой лемме:

$$\xi^a, \eta^b \vdash \phi^{a \cdot b}$$

Запишем эти 3 вывода (подряд):

$$p_1^{a_1},\ldots,p_n^{a_n}\phi^{a\cdot b}$$

Другое док-во. Пусть Γ - мн-во пропозициональных ф-л.

Определение 2.1. Γ совместно, если при некот. значениях переменных все ф-лы из Γ истинны.

Определение 2.2. Γ - **противоречиво**, если для некот. ф-лы ϕ верно:

$$\begin{cases} \Gamma \vdash \phi \\ \Gamma \vdash \neg \phi \end{cases}$$

Теорема 2.4. Γ совместна $\stackrel{*}{\Longleftrightarrow}$ Γ непротиворечива.

Рассмотрим связь теоремы о совм. и непрот. с теор. о корр. и полн.:

Теорема 2.5 (О корректности).

$$\vdash \phi \Rightarrow \{ \neg \phi \}$$
 - противор. $\stackrel{*}{\Longrightarrow} \{ \neg \phi \}$ - несовм. $\Rightarrow \forall a, \neg \phi(a) = 0 \iff \phi(a) = 1 \Rightarrow \phi$ - тавтология

Теорема 2.6 (О полноте).

$$\phi \text{ - } maвтология \Rightarrow \{ \neg \phi \} \text{ - } necoвм. \overset{*}{\Rightarrow} \{ \neg \phi \} \text{ - } npomuвopeчиво} \Rightarrow \neg \neg \phi \vdash \phi$$

$$\frac{\neg \phi \vdash B}{\vdash \neg \neg \phi}$$

Доказательство. 1) Γ против. $\Rightarrow \Gamma$ несовм.

Теорема 2.7 (Обобщённая теорема о корректности). Если $\Gamma \vdash A$ и все ф-лы из Γ верны на (a_1, \ldots, a_n) , то и A верна на том же наборе.

Д-во: индукция по номеру ф-лы в выводе.

 Γ - совм. $\Rightarrow~$ Все ф-лы из Γ верны на нек-ром наборе.

$$\Gamma \vdash \phi \Rightarrow \phi$$
 верно на том же наборе

$$\Gamma \vdash \neg \phi \Rightarrow \neg \phi \Rightarrow -----||-----$$

Но ϕ и $\neg \phi$ не м. б. верны одновременно. Противор.

2) Γ непрот. $\Rightarrow \Gamma$ совм.

Пусть \triangle непрот. Будем говорить, что \triangle - полное, если для $\forall \phi$ верно $\triangle \vdash \phi$ или $\triangle \vdash \neg \phi$.

<u>Лемма</u> 2.8 (I). Γ непрот $\Rightarrow \Gamma \subset \triangle$ для некот. полного непрот. \triangle

<u>Лемма</u> 2.9 (II). \triangle полное, непрот. $\Rightarrow \triangle$ - совм.

Док-во леммы I для счётного мн-ва перемен. Если переменных сч. мн-во то и ф-лы тоже.

Пусть $\phi_1, \phi_2, \dots, \phi_n$ - все ф-лы.

Oпр. Γ_i по инд-ции:

$$\Gamma_0 = \Gamma, \Gamma_i = \begin{cases} \Gamma_{i-1} \cup \{ \ \phi_i \ \} \ , \ \text{- если это непрот.} \\ \Gamma_{i-1} \cup \{ \ \neg \phi_i \ \} \ \text{- иначе} \end{cases}$$

Утверждение 2.1. $Bce \Gamma_i$ - nenpom.

Доказательство.

$$\begin{cases} \Gamma_{i-1} \cup \{ \phi_i \} & \text{- прот. } \Rightarrow \Gamma_{i-1} \vdash \neg \phi_i \\ \Gamma \cup \{ \neg \phi_i \} & \text{- прот. } \Rightarrow \Gamma_{i-1} \vdash \neg \neg \phi_i \end{cases}$$

 $\Rightarrow \Gamma_{i-1}$ - прот. \Rightarrow пришли к противоречию.

 $\Gamma_0\subset\Gamma_1\subset\Gamma_2\subset\dots$ $\Delta=igcup_{i=0}^\infty\Gamma_i$ - тоже непрот.

Если \triangle прот., то прот. использ. кон. число ф-л из \triangle . Каждое δ_j лежит в Γ_{k_j} . Тогда прот. выв-ся из $\Gamma_{max\{k_j\}}$. Но все конечные Γ_i непрот.

 \mathcal{A} ок-во леммые II. \triangle - полн. \Rightarrow для перем. $p_i,$ $\triangle \vdash p_i \lor \triangle \vdash \neg p_i.$ Набор. значений:

$$p_i = \begin{cases} 1, \triangle \vdash p_i \\ 0, \triangle \vdash \neg p_i \end{cases} \tag{1}$$

Д-м, что ф-лы из \triangle верны на системе (1). Ф-ла - перем. \Rightarrow согл. опр. системы (1):

$$\phi = \neg \psi$$

Более общ утв.:

 $\begin{cases} \triangle \vdash \phi \Rightarrow \phi \text{ верна на системе (1)} \\ \triangle \not\vdash \phi \Rightarrow \phi \text{ - неверна на системе (1)} \end{cases}$