Class08

Ani A16647613

Mini Project: Unsupervised Learning with PCA and Clustering

Before we get stuck into project work we will have a quick look at Read the data from lab 7:

```
url2 <- "https://tinyurl.com/expression-CSV"</pre>
  rna.data <- read.csv(url2, row.names=1)</pre>
  head(rna.data)
       wt1 wt2 wt3 wt4 wt5 ko1 ko2 ko3 ko4 ko5
gene1 439 458
               408 429 420 90 88 86 90
gene2 219 200
                204 210 187 427 423 434 433 426
gene3 1006 989 1030 1017 973 252 237 238 226 210
gene4
      783 792
                829
                    856 760 849 856 835 885 894
                204 244 225 277 305 272 270 279
gene5
       181 249
gene6
      460 502 491 491 493 612 594 577 618 638
     Q. How many genes are in this dataset?
  nrow(rna.data)
[1] 100
##Run PCA
  pca <- prcomp(t(rna.data), scale= TRUE)</pre>
  plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab= "PC2")
```


summary(pca)

Importance of components:

PC4 PC5 PC1 PC2 PC3 PC6 PC7 Standard deviation 9.6237 1.5198 1.05787 1.05203 0.88062 0.82545 0.80111 Proportion of Variance 0.9262 0.0231 0.01119 0.01107 0.00775 0.00681 0.00642 Cumulative Proportion 0.9262 0.9493 0.96045 0.97152 0.97928 0.98609 0.99251 PC8 PC9 PC10 Standard deviation 0.62065 0.60342 3.457e-15 Proportion of Variance 0.00385 0.00364 0.000e+00 Cumulative Proportion 0.99636 1.00000 1.000e+00

pca\$x

```
PC1
                 PC2
                           PC3
                                     PC4
                                              PC5
                                                        PC6
wt1 -9.697374 1.5233313 -0.2753567
                               0.7322391 -0.6749398
                                                  1.1823860
wt2 -9.138950 0.3748504 1.0867958 -1.9461655
                                         0.7571209 -0.4369228
wt3 -9.054263 -0.9855163 0.4152966
                               1.4166028 0.5835918 0.6937236
wt4 -8.731483 -0.7468371
                      wt5 -9.006312 -0.2945307 -1.8498101 -0.4303812 0.8666124 -0.2496025
```

```
ko1 8.846999 2.2345475 -0.1462750 -1.1544333 -0.6947862 0.7128021
ko2 9.213885 -3.2607503 0.2287292 -0.7658122 -0.4922849 0.9170241
ko3 9.458412 -0.2636283 -1.5778183 0.2433549 0.3654124 -0.5837724
ko4 8.883412 0.6339701 1.5205064 0.7760158 1.2158376 -0.1446094
ko5 9.225673 0.7845635 0.0103574 0.9017667 -0.3860869 -0.8186668
           PC7
                      PC8
                                 PC9
                                            PC10
wt1 -0.24446614 1.03519396 0.07010231 3.073930e-15
wt2 -0.03275370 0.26622249 0.72780448 1.963707e-15
wt3 -0.03578383 -1.05851494 0.52979799 2.893519e-15
wt4 -0.52795595 -0.20995085 -0.50325679 2.872702e-15
wt5 0.83227047 -0.05891489 -0.81258430 1.693090e-15
ko1 -0.07864392 -0.94652648 -0.24613776 4.052314e-15
ko2 0.30945771 0.33231138 -0.08786782 3.268219e-15
ko3 -1.43723425 0.14495188 0.56617746 2.636780e-15
ko5 1.56584821 0.19140827 0.62950330 3.379241e-15
  # We have 5 wt and 5 ko samples
  mycols <- c(rep("blue",5), rep("red", 5))</pre>
  mycols
 [1] "blue" "blue" "blue" "blue" "red" "red" "red" "red"
  plot(pca$x[,1], pca$x[,2], xlab="PCA1", ylab="PCA2", col=mycols)
```


Examination of genes that contribute to the first PC the most:

```
head(sort(abs(pca$rotation[,1]), decreasing = T))

gene100 gene66 gene45 gene68 gene98 gene60
0.1038708 0.1038455 0.1038402 0.1038395 0.1038372 0.1038055
```

Analysis of Breast Cancer FNA data (fine needle aspirations)

```
fna.data <- "WisconsinCancer.csv"
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean
842302	M	17.99	10.38	122.80	1001.0
842517	M	20.57	17.77	132.90	1326.0
84300903	M	19.69	21.25	130.00	1203.0
84348301	M	11.42	20.38	77.58	386.1
84358402	M	20.29	14.34	135.10	1297.0

843786	М	12.45	15.70	82.57	477.1	
	smoothness_mea	n compactnes	ss_mean con	cavity_mean o	concave.poi	nts_mean
842302	0.1184	0 (0.27760	0.3001		0.14710
842517	0.0847	4 (0.07864	0.0869		0.07017
84300903	0.1096	0 (0.15990	0.1974		0.12790
84348301	0.1425	0 (0.28390	0.2414		0.10520
84358402	0.1003	0 (0.13280	0.1980		0.10430
843786	0.1278	0 (0.17000	0.1578		0.08089
	symmetry_mean	fractal_dime	ension_mean	radius_se te	exture_se po	erimeter_se
842302	0.2419		0.07871	1.0950	0.9053	8.589
842517	0.1812		0.05667	0.5435	0.7339	3.398
84300903	0.2069		0.05999	0.7456	0.7869	4.585
84348301	0.2597		0.09744	0.4956	1.1560	3.445
84358402	0.1809		0.05883	0.7572	0.7813	5.438
843786	0.2087		0.07613	0.3345	0.8902	2.217
	area_se smooth	ness_se comp	pactness_se	concavity_se	concave.p	oints_se
842302	153.40	.006399	0.04904	0.05373	3	0.01587
842517	74.08	.005225	0.01308	0.01860)	0.01340
84300903	94.03	.006150	0.04006	0.03832	2	0.02058
84348301	27.23	.009110	0.07458	0.05661	L	0.01867
84358402	94.44	.011490	0.02461	0.05688	3	0.01885
843786	27.19	.007510	0.03345	0.03672	2	0.01137
	symmetry_se fr	actal_dimens	sion_se rad	ius_worst tex	ture_worst	
842302	0.03003	0	.006193	25.38	17.33	
842517	0.01389	0	.003532	24.99	23.41	
84300903	0.02250	0	.004571	23.57	25.53	
84348301	0.05963	0	.009208	14.91	26.50	
84358402	0.01756	0	.005115	22.54	16.67	
843786	0.02165	0	.005082	15.47	23.75	
	perimeter_wors	t area_worst	t smoothnes	s_worst compa	actness_work	st
842302	184.6	0 2019.0)	0.1622	0.66	56
842517	158.8	0 1956.0)	0.1238	0.18	66
84300903	152.5	0 1709.0)	0.1444	0.42	45
84348301	98.8	7 567.7	7	0.2098	0.86	63
84358402	152.2	0 1575.0)	0.1374	0.20	50
843786	103.4	0 741.6	3	0.1791	0.52	49
	concavity_wors	t concave.po	oints_worst	symmetry_wor	rst	
842302	0.711	9	0.2654	0.46	801	
842517	0.241	6	0.1860	0.27	' 50	
84300903	0.450	4	0.2430	0.36	313	
84348301	0.686	9	0.2575	0.66	38	
84358402	0.400	0	0.1625	0.23	364	
843786	0.535	5	0.1741	0.39	985	


```
diagnosis <- as.factor(wisc.df$diagnosis)</pre>
```

Now I want to make sure I remove that column from my dataset for analysis:

```
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

	radius_mean to	exture_mean	perimete	er_mean	area_mean	smoothr	ness_mean
842302	17.99	10.38	_	122.80	1001.0		0.11840
842517	20.57	17.77		132.90	1326.0		0.08474
84300903	19.69	21.25		130.00	1203.0		0.10960
84348301	11.42	20.38		77.58	386.1		0.14250
84358402	20.29	14.34		135.10	1297.0		0.10030
843786	12.45	15.70		82.57	477.1		0.12780
	compactness_me	ean concavi	ty_mean o	concave.	points_mea	an symme	etry_mean
842302	0.27	760	0.3001		0.147	10	0.2419
842517	0.078	364	0.0869		0.070	17	0.1812
84300903	0.159	990	0.1974		0.1279	90	0.2069
84348301	0.283	390	0.2414		0.105	20	0.2597
84358402	0.13	280	0.1980		0.1043	30	0.1809
843786	0.170	000	0.1578		0.0808	39	0.2087
	fractal_dimens	sion_mean ra	adius_se	texture	e_se perime	eter_se	area_se
842302		0.07871	1.0950	0.9	053	8.589	153.40
842517		0.05667	0.5435	0.7	'339	3.398	74.08
84300903		0.05999	0.7456	0.7	'869	4.585	94.03
84348301		0.09744	0.4956	1.1	.560	3.445	27.23
84358402		0.05883	0.7572	0.7	'813	5.438	94.44
843786		0.07613	0.3345	0.8	3902	2.217	27.19
	smoothness_se	compactness	s_se cond	cavity_s	se concave	.points_	se
842302	0.006399	0.0	4904	0.0537	' 3	0.015	587
842517	0.005225	0.0	1308	0.0186	80	0.013	340
84300903	0.006150	0.0	4006	0.0383	32	0.020)58
84348301	0.009110	0.0	7458	0.0566	31	0.018	367
84358402	0.011490	0.0	2461	0.0568	38	0.018	385

843786	0.007510	0.03345	0.03672	0.01137
	symmetry_se frac	ctal_dimension_se	${\tt radius_worst}$	texture_worst
842302	0.03003	0.006193	25.38	17.33
842517	0.01389	0.003532	24.99	23.41
84300903	0.02250	0.004571	23.57	25.53
84348301	0.05963	0.009208	14.91	26.50
84358402	0.01756	0.005115	22.54	16.67
843786	0.02165	0.005082	15.47	23.75
	${\tt perimeter_worst}$	area_worst smooth	nness_worst co	ompactness_worst
842302	184.60	2019.0	0.1622	0.6656
842517	158.80	1956.0	0.1238	0.1866
84300903	152.50	1709.0	0.1444	0.4245
84348301	98.87	567.7	0.2098	0.8663
84358402	152.20	1575.0	0.1374	0.2050
843786	103.40	741.6	0.1791	0.5249
	<pre>concavity_worst</pre>	concave.points_wo	orst symmetry	_worst
842302	0.7119	0.2	2654 (0.4601
842517	0.2416	0.1	1860 (0.2750
84300903	0.4504			0.3613
84348301	0.6869			0.6638
84358402	0.4000	0.1	1625 (0.2364
843786	0.5355		1741 (0.3985
	fractal_dimension	on_worst		
842302		0.11890		
842517		0.08902		
84300903		0.08758		
84348301		0.17300		
84358402		0.07678		
843786		0.12440		

nrow(wisc.df)

[1] 569

Q1. How many observations are in the dataset?

ncol(wisc.df)

[1] 31

Q2. How many observations have the malignant diagnosis?

```
table( wisc.df$diagnosis )
 В
      М
357 212
212 malignant diagnoses.
    Q3. How many variables/features in the data are suffixed with _mean?
  colnames(wisc.data)
 [1] "radius_mean"
                                "texture_mean"
 [3] "perimeter_mean"
                                "area_mean"
 [5] "smoothness_mean"
                                "compactness_mean"
 [7] "concavity_mean"
                                "concave.points_mean"
 [9] "symmetry_mean"
                                "fractal_dimension_mean"
[11] "radius_se"
                                "texture_se"
[13] "perimeter_se"
                                "area_se"
[15] "smoothness_se"
                                "compactness_se"
[17] "concavity_se"
                                "concave.points_se"
[19] "symmetry_se"
                                "fractal_dimension_se"
[21] "radius_worst"
                                "texture worst"
[23] "perimeter_worst"
                                "area_worst"
[25] "smoothness_worst"
                                "compactness_worst"
[27] "concavity_worst"
                                "concave.points_worst"
[29] "symmetry_worst"
                                "fractal_dimension_worst"
  grep("_mean", colnames(wisc.data), value=T)
 [1] "radius_mean"
                               "texture_mean"
                                                         "perimeter_mean"
 [4] "area_mean"
                               "smoothness_mean"
                                                         "compactness_mean"
 [7] "concavity_mean"
                               "concave.points_mean"
                                                         "symmetry_mean"
[10] "fractal_dimension_mean"
  grep("_mean", colnames(wisc.data))
 [1] 1 2 3 4 5 6 7 8 9 10
```

```
length(grep("_mean", colnames(wisc.data)))
```

[1] 10

Principal Component Analyis

Here we will use prcomp() on the wisc.data object - the one without the diagnosis column.

First, we have decided whether to use the scale= TRUE argument when we run prcomp()

We can look at the means and sd of each column. If they are similar then we are all good to go. If not we should use scale=TRUE.

colMeans(wisc.data)

radius_mean	texture_mean	perimeter_mean
1.412729e+01	1.928965e+01	9.196903e+01
area_mean	${\tt smoothness_mean}$	compactness_mean
6.548891e+02	9.636028e-02	1.043410e-01
concavity_mean	concave.points_mean	$symmetry_mean$
8.879932e-02	4.891915e-02	1.811619e-01
fractal_dimension_mean	radius_se	texture_se
6.279761e-02	4.051721e-01	1.216853e+00
perimeter_se	area_se	smoothness_se
2.866059e+00	4.033708e+01	7.040979e-03
compactness_se	concavity_se	concave.points_se
2.547814e-02	3.189372e-02	1.179614e-02
symmetry_se	fractal_dimension_se	radius_worst
2.054230e-02	3.794904e-03	1.626919e+01
texture_worst	perimeter_worst	area_worst
2.567722e+01	1.072612e+02	8.805831e+02
smoothness_worst	compactness_worst	concavity_worst
1.323686e-01	2.542650e-01	2.721885e-01
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
1.146062e-01	2.900756e-01	8.394582e-02

apply(wisc.data,2,sd)

```
radius_mean
                                   texture_mean
                                                          perimeter_mean
          3.524049e+00
                                   4.301036e+00
                                                             2.429898e+01
             area mean
                                smoothness_mean
                                                        compactness_mean
          3.519141e+02
                                                             5.281276e-02
                                   1.406413e-02
        concavity mean
                            concave.points mean
                                                            symmetry mean
          7.971981e-02
                                   3.880284e-02
                                                             2.741428e-02
fractal dimension mean
                                      radius se
                                                               texture se
          7.060363e-03
                                   2.773127e-01
                                                             5.516484e-01
          perimeter_se
                                                            smoothness se
                                         area_se
          2.021855e+00
                                   4.549101e+01
                                                             3.002518e-03
        compactness_se
                                   concavity_se
                                                       concave.points_se
                                                             6.170285e-03
          1.790818e-02
                                   3.018606e-02
                                                             radius_worst
           symmetry_se
                           fractal_dimension_se
          8.266372e-03
                                   2.646071e-03
                                                             4.833242e+00
         texture_worst
                                perimeter_worst
                                                               area_worst
                                                             5.693570e+02
          6.146258e+00
                                   3.360254e+01
      {\tt smoothness\_worst}
                              compactness_worst
                                                          concavity_worst
          2.283243e-02
                                   1.573365e-01
                                                             2.086243e-01
                                 symmetry_worst fractal_dimension_worst
  concave.points_worst
          6.573234e-02
                                   6.186747e-02
                                                             1.806127e-02
```

These are very different so we should scale=TRUE.

```
wisc.pr <- prcomp(wisc.data, scale = TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC5
                          PC1
                                 PC2
                                         PC3
                                                  PC4
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                      0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                                                   PC18
                                                           PC19
                                                                   PC20
                          PC15
                                  PC16
                                          PC17
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Standard deviation
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

44.27%

Q5. How many PCs are required to describe at least 70% of the original variance in the data?

3 PCs

Q6. How many PCs are required to describe at least 90% of the original variance in the data?

7 PCs

Plotting the PCA results

We need to make our own plot

```
wisc.pr$x[, 1]
```

```
# black is benign, red is malignant
library(ggplot2)

pc <- as.data.frame(wisc.pr$x)

ggplot(pc) +
aes(PC1, PC2, color=diagnosis) +
geom_point()</pre>
```


#shows clearer distinction between diagnoses

Communicating PCA results

Q9. For the first PC, what is the component of the loading vector (ie. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean", 1]
```

[1] -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
tbl <- summary(wisc.pr)
which(tbl$importance[3,] > 0.8)[1]
```

PC5

5

Hierarchial clustering

The main function for the Hierarchial clustering is called hclust(), it takes a distance matrix as input.

```
d <- dist(scale(wisc.data))
wisc.hclust <- hclust(d)
plot(wisc.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "complete")

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=18, col="red")
```

Cluster Dendrogram

d hclust (*, "complete")

Come back here later to see how our cluster grps correspond to M or B groups.

```
ggplot(pc) +
aes(PC1, PC2, color=diagnosis) +
geom_point()
```


Combining methods

Here we will be clusting on our PCA results instead of the original data.

In other words, we will cluster using wisc.pr\$x - our new better variables or PCs, we can choose as many/few as we like.

```
d.pc <- dist(wisc.pr$x[, 1:3])
wisc.pr.hclust <- hclust(d.pc, method="ward.D2")
plot(wisc.pr.hclust)
abline(h=80, col="red")</pre>
```

Cluster Dendrogram

d.pc hclust (*, "ward.D2")

We can use table() function to make a cross-table and a count-table.

```
table(diagnosis)

diagnosis
B M
357 212

table(grps, diagnosis)

diagnosis
grps B M
```

```
1 24 1792 333 33
```

Based on these groupings, we can determine that the results for group 1 with 24 benign diagnoses and group 2 with 33 malignant diagnoses were false positives. The majority diagnoses from group 1 for malignant and group 2 from benign are considered accurate results. This tool is useful for distinguishing the differences within the groups from the clusters and analyze their diagnoses, which can help validate the diagnoses' accuracy.

Prediction

```
url <- "https://tinyurl.com/new-samples-CSV"
  new <- read.csv(url)</pre>
  npc <- predict(wisc.pr, newdata=new)</pre>
  npc
                                                       PC5
           PC1
                      PC2
                                 PC3
                                             PC4
                                                                   PC6
                                                                               PC7
     2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                        0.8193031
            PC8
                       PC9
                                                      PC12
                                 PC10
                                            PC11
                                                                 PC13
                                                                          PC14
 \hbox{\tt [1,]} \ -0.2307350 \ 0.1029569 \ -0.9272861 \ 0.3411457 \ \ 0.375921 \ 0.1610764 \ 1.187882 
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                      PC16
                                  PC17
                                               PC18
                                                            PC19
                                                                       PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
           PC21
                       PC22
                                  PC23
                                              PC24
                                                           PC25
                                                                        PC26
[1,] 0.1228233 0.09358453 0.08347651 0.1223396
                                                    0.02124121
                                                                 0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
                                        PC29
             PC27
                          PC28
                                                     PC30
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
  plot(wisc.pr$x[,1:2], col=diagnosis)
  points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
  text(npc[,1], npc[,2], c(1,2), col="white")
```


Q18. Which of these new patients should we prioritize for a followup based on your results?

Patient 2