Sistem Temu Kembali Informasi dengan Metode Vector Space Model

Fatkhul Amin

Fakultas Teknologi Informasi, Universitas Stikubank, Semarang

Abstract

The information retrieval system (IRS) now provides document search results with abundant results of documents (high recall) and low accuracy (low precision). The objective of designing IRS with Vector Space Model (VSM) Method is to facilitate users to search Indonesian documents. IRS Software is designed to provide search results with the optimum number of documents (low recall) and accuracy (high precision) with VSM method that users may get fast and accurate results. VSM method provides a different credit for each document stored in a database which in turns to determine the document most similar to the query, where the documents with the highest credits are placed on the top of the search results. The evaluation of search results with IRS is conducted under recall and precision tests. This study fascinatingly creates a system which can preprocess (tokenizing, filtering, and stemming) within computation time of four minutes forty-one seconds. The system can search the documents and display them in the search results with an average computation time of 1.5 seconds, with an average recall of 0.19, and an average precision of 0.54. The system is equipped with a credit for each document, and the value is positioned on which a user may easily search the Indonesian text.

Keywords: IRS, Vector Space Model, Recall, Precision

1. Pendahuluan

Implementasi Vector Space Model (VSM) dapat digunakan pada berbagai bidang keilmuan seperti Computational Linguistics (Erk, 2010), Expert Systems, Medical (Lopez dan Rebeiro, 2010), Knowledge-Based Systems, Data and Knowledge Engineering (Mao, 2007). Solusi untuk mengatasi masalah sistem temu kembali informasi dengan hasil recall tinggi dan tingkat akurasi rendah adalah dengan membuat sistem temu kembali informasi menggunakan metode VSM. Metode VSM dipilih karena cara kerja model ini efisien, mudah dalam representasi dan dapat diimplementasikan pada document-matching.

Pencarian informasi saat ini dilakukan dengan menggunakan mesin pencari atau Sistem Temu Kembali Informasi (STKI), user menuliskan query dan mesin pencari akan menampilkan hasil pencarian. Mesin pencari yang sudah ada dan banyak digunakan saat ini memberikan hasil perolehan pencarian yang banyak (banyak dokumen yang terambil), sehingga diperlukan waktu untuk menentukan hasil pencarian yang relevan. Menentukan hasil yang relevan sesuai dengan keinginan user dengan jumlah hasil pencarian yang banyak akan menyulitkan user. Hal ini terjadi karena dokumen yang terambil oleh sistem jumlahnya banyak, sistem berkemungkinan maka pencarian menampilkan hasil yang tidak relevan. Banyaknya dokumen hasil pencarian ini membuat waktu yang dibutuhkan dalam pencarian menjadi lebih banyak dari yang diharapkan.

Perkembangan penelusuran informasi saat ini menghasilkan *recall* yang tinggi dan *precision* yang rendah. *Recall* yang tinggi diartikan bahwa dokumen yang dihasilkan dalam penelusuran dokumen adalah banyak, sedangkan *precision* rendah dapat diartikan bahwa dokumen yang diharapkan dapat ditemukan sedikit.

Penelitian ini bertujuan mendesain mesin pencari dengan metode *vector space model*, dan menguji kinerja

temu kembali menggunakan *recall* dan *precision*. Selanjutnya dibuat aplikasi dengan algoritma yang efektif dalam pencarian dokumen dengan metode *vector space model* pada dokumen teks berbahasa Indonesia, sehingga pengguna mudah mencari dokumen yang diinginkan.

2. Kerangka Teori

2.1. Sistem Temu Kembali Informasi

Sistem temu kembali informasi merupakan suatu sistem yang menemukan (retrieve) informasi yang sesuai dengan kebutuhan user dari kumpulan informasi secara otomatis. Prinsip kerja sistem temu kembali informasi jika ada sebuah kumpulan dokumen dan seorang user yang memformulasikan sebuah pertanyaan (request atau query). Jawaban dari pertanyaan tersebut adalah sekumpulan dokumen yang relevan dan membuang dokumen yang tidak relevan (Salton, 1989).

Sistem temu kembali informasi akan mengambil salah satu dari kemungkinan tersebut. Sistem temu kembali informasi dibagi dalam dua komponen utama yaitu sistem pengindeksan (indexing) menghasilkan basis data sistem dan temu kembali merupakan gabungan dari user interface dan look-up-table. Sistem temu kembali informasi didesain untuk menemukan dokumen atau informasi yang diperlukan oleh user.

Sistem Temu Kembali Informasi bertujuan untuk menjawab kebutuhan informasi *user* dengan sumber informasi yang tersedia dalam kondisi seperti sebagai berikut (Salton, 1989);

- a. Mempresentasikan sekumpulan ide dalam sebuah dokumen menggunakan sekumpulan konsep.
- b. Terdapat beberapa pengguna yang memerlukan ide, tapi tidak dapat mengidentifikasikan dan menemukannya dengan baik.
- c. Sistem temu kembali informasi bertujuan untuk mempertemukan ide yang dikemukakan oleh penulis

dalam dokumen dengan kebutuhan informasi pengguna yang dinyatakan dalam bentuk *key word query/*istilah penelusuran.

Fungsi utama sistem temu kembali informasi (Salton, 1989)

- a. Mengidentifikasi sumber informasi yang relevan dengan minat masyarakat pengguna yang ditargetkan
- b. Menganalisis isi sumber informasi (dokumen)
- c. Merepresentasikan isi sumber informasi dengan cara tertentu yang memungkinkan untuk dipertemukan dengan pertanyaan pengguna
- d. Merepresentasikan pertanyaan (*query*) *user* dengan cara tertentu yang memungkinkan untuk dipertemukan sumber informasi yang terdapat dalam basis data.
- e. Mempertemukan pernyataan pencarian dengan data yang tersimpan dalam basis data
- f. Menemu-kembalikan informasi yang relevan
- g. Menyempurnakan unjuk kerja sistem berdasarkan umpan balik yang diberikan oleh user.

2.2. Arsitektur Sistem Temu Kembali Informasi

Proses Sistem temu kembali informasi seperti pada Gambar 1 menggunakan arsitektur yang sederhana. Sebelum dilakukannya proses temu kembali diperlukan pendefinisian database. Selanjutnya mengikuti tahapan proses; Dokumen-dokumen yang akan digunakan, Operasi yang akan digunakan dalam pencarian, dan model pengolahan teks (Baeza, 1999).

Gambar 2. The Process of Retrieving Information

2.3 Tokenisasi

Tokenisasi merupakan proses pemisahan suatu rangkaian karakter berdasarkan karakter spasi, dan mungkin pada waktu yang bersamaan dilakukan juga proses penghapusan karakter tertentu, seperti tanda baca. Sebagai contoh, kata-kata "computer", "computing", dan "compute" semua berasal dari term yang sama yaitu "comput", tanpa pengetahuan sebelumnya dari morfologi bahasa Inggris. Token seringkali disebut sebagai istilah (term) atau kata, sebagai contoh sebuah token merupakan suatu urutan karakter dari dokumen tertentu yang dikelompokkan sebagai unit semantik yang berguna untuk diproses (Salton, 1989).

2.4 Filtering

Eliminasi *stopwords* memiliki banyak keuntungan, yaitu akan mengurangi *space* pada tabel *term index* hingga 40% atau lebih (Baeza, 1999). Proses *stopword removal* merupakan proses penghapusan *term* yang tidak memiliki arti atau tidak relevan. Proses ini dilakukan pada saat proses tokenisasi. Proses *Filtering* menggunakan daftar *stopword* yang digunakan oleh Tala (2003), yang merupakan *stopword* bahasa Indonesia yang berisi katakata seperti; ada, yang, ke, kepada, dan lain sebagainya

2.5 Stemming

Proses Stemming digunakan untuk mengubah term yang masih melekat dalam term tersebut awalan, sisipan, dan akhiran. Proses stemming dilakukan dengan cara menghilangkan semua imbuhan (affixes) baik yang terdiri dari awalan (prefixes), sisipan (infixes), akhiran (suffixes) dan confixes (kombinasi dari awalan dan akhiran) pada kata turunan. Stemming digunakan untuk mengganti bentuk dari suatu kata menjadi kata dasar dari kata tersebut yang sesuai dengan struktur morfologi bahasa Indonesia yang benar (Tala, 2003). Arsitektur proses stemming untuk bahasa Indonesia dapat dilihat pada Gambar 2.

Gambar 2. The basic design of a Porter stemmer for Bahasa Indonesia (Tala, 2003)

2.6 Inverted Index

Pada prinsipnya proses menemukan *records* adalah menjawab dari permintaan (*request*) informasi didasarkan pada kemiripan diantara *query* dan kumpulan *term* pada sistem (Salton, 1989). *Inverted file* atau *inverted index* merupakan mekanisme untuk pengindeksan kata dari koleksi teks yang digunakan untuk mempercepat proses pencarian. Elemen penting dalam struktur *inverted file* ada dua, yaitu: kata (*vocabulary*) dan kemunculan (*occurrences*

2.7 Vector Space Model

Vector Space Model (VSM) adalah metode untuk melihat tingkat kedekatan atau kesamaan (similarity) term dengan cara pembobotan term. Dokumen dipandang sebagi sebuah vektor yang memiliki magnitude (jarak) dan direction (arah). Pada Vector Space Model, sebuah istilah direpresentasikan dengan sebuah dimensi dari ruang vektor. Relevansi sebuah dokumen ke sebuah query didasarkan pada similaritas diantara vektor dokumen dan vektor query (Baeza, 1999).

VSM memberikan sebuah kerangka pencocokan parsial adalah mungkin. Hal ini dicapai dengan menetapkan bobot non-biner untuk istilah indeks dalam query dan dokumen. Bobot istilah yang akhirnya digunakan untuk menghitung tingkat kesamaan antara setiap dokumen yang tersimpan dalam sistem dan permintaan user. Dokumen yang terambil disortir dalam urutan yang memiliki kemiripan, model vektor memperhitungkan pertimbangan dokumen yang relevan dengan permintaan user. Hasilnya adalah himpunan dokumen yang terambil jauh lebih akurat (dalam arti sesuai dengan informasi yang dibutuhkan oleh *user*).

Sebuah dokumen dj dan sebuah *query* q direpresentasikan sebagai vektor t-dimensi seperti pada Gambar 3.

Gambar 3. The Cosines of θ is adopted as sim d_i, q

Dalam VSM koleksi dokumen direpresentasikan sebagai sebuah matrik *term* document (atau matrik *term frequency*). Setiap sel dalam matrik bersesuaian dengan bobot yang diberikan dari suatu *term* dalam dokumen yang ditentukan. Nilai nol berarti bahwa term tersebut tidak ada dalam dokumen. Gambar 4 menunjukkan matrik *term document* dengan n dokumen dan t *term*.

Gambar 4. Matrik term-document

Proses perhitungan VSM melalui tahapan perhitungan *term frequency (tf)* menggunakan persamaan (1)

$$tf = tf_{ij} \tag{1}$$

Dengan tf adalah term frequency, dan $tf_{i,j}$ adalah banyaknya kemunculan term t_i dalam dokumen d_j , Term frequency (tf) dihitung dengan menghitung banyaknya kemunculan term t_i dalam dokumen d_i .

Perhitungan *Inverse Document Frequency (idf)*, menggunakan persamaan (2)

$$idf_i = log \frac{N}{df_i} \tag{2}$$

Dengan idf_i adalah inverse document frequency, N adalah jumlah dokumen yang terambil oleh sistem, dan df_i adalah banyaknya dokumen dalam koleksi dimana term t_i muncul di dalamnya, maka Perhitungan idf_i digunakan untuk mengetahui banyaknya term yang dicari (df_i) yang muncul dalam dokumen lain yang ada pada database (korpus).

Perhitungan term frequency Inverse Document Frequency (tfidf), menggunakan persamaan (3)

$$W_{ij} = t f_i . log \left(\frac{N}{df_i}\right)$$
 (3)

Dengan W_{ij} adalah bobot dokumen, N adalah Jumlah dokumen yang terambil oleh system, $tf_{i,j}$ adalah banyaknya kemunculan term t_i pada dokumen dj, dan df_i adalah banyaknya dokumen dalam koleksi dimana term t_i muncul di dalamnya. Bobot dokumen (W_{ij}) dihitung untuk didapatkannya suatu bobot hasil perkalian atau kombinasi antara term frequency $(tf_{i,j})$ dan Inverse Document Frequency (df_i) .

Perhitungan Jarak *query* menggunakan persamaan (6) dan dokumen, menggunakan persamaan (5)

$$|q| = \sqrt{\sum_{j=1}^{t} (W_{i,q})^2}$$
 (4)

Dengan $|\mathbf{q}|$ adalah Jarak query, dan W_{iq} adalah bobot query dokumen ke-i, maka Jarak query (|q|) dihitung untuk didapatkan jarak query dari bobot query dokumen (W_{iq}) yang terambil oleh sistem. Jarak query bisa dihitung dengan persamaan akar jumlah kuadrat dari query.

$$|d_j| = \sqrt{\sum_{i=1}^t (W_{ij})^2}$$
 (5)

Dengan $|\mathbf{d}_j|$ adalah jarak dokumen, dan W_{ij} adalah bobot dokumen ke-i, maka Jarak dokumen $(|\mathbf{d}_j|)$ dihitung untuk didapatkan jarak *dokumen* dari bobot dokumen dokumen (W_{ij}) yang terambil oleh sistem. Jarak dokumen bisa dihitung dengan persamaan akar jumlah kuadrat dari dokumen.

Perhitungan pengukuran Similaritas *query document* (*inner product*), menggunakan persamaan (6)

$$sim(q,d_i) = \sum_{i=1}^t W_{iq} . W_{ij}$$
 (6)

Dengan W_{ij} adalah bobot term dalam dokumen, W_{iq} adalah bobot query, dan Sim (q, dj) adalah Similaritas antara *query* dan dokumen. Similaritas antara *query* dan

dokumen atau *inner product/Sim* (q, dj) digunakan untuk mendapatkan bobot dengan didasarkan pada bobot *term* dalam dokumen (W_{ij}) dan bobot query (W_{iq}) atau dengan cara menjumlah bobot q dikalikan dengan bobot dokumen.

Pengukuran *Cosine Similarity* (menghitung nilai kosinus sudut antara dua vector) menggunakan persamaan (7)

$$Sim(q, d_j) = \frac{q \cdot d_j}{|q| * |d_j|} = \frac{\sum_{i=1}^t W_{iq} \cdot W_{ij}}{\sqrt{\sum_{j=1}^t (W_{iq})^2} * \sqrt{\sum_{i=1}^t (W_{ij})^2}}$$
(7)

Similaritas antara *query* dan dokumen atau Sim(q,dj) berbanding lurus terhadap jumlah bobot query (q) dikali bobot dokumen (dj) dan berbanding terbalik terhadap akar jumlah kuadrat q (|q|) dikali akar jumlah kuadrat dokumen (|dj|). Perhitungan similaritas menghasilkan bobot dokumen yang mendekati nilai 1 atau menghasilkan bobot dokumen yang lebih besar dibandingkan dengan nilai yang dihasilkan dari perhitungan *inner product*.

2.8 Uji Recall dan Precision

Tujuan uji *Recall* dan *Precision* adalah untuk mendapatkan informasi hasil pencarian yang didapatkan oleh STKI. Hasil pencarian STKI bisa dinilai tingkat *recall* dan *precision* nya. *Precision* dapat dianggap sebagai ukuran ketepatan atau ketelitian, sedangkan *recall* adalah kesempurnaan. Nilai *precision* adalah proporsi dokumen yang terambil oleh sistem adalah relevan. Nilai *recall* adalah proporsi dokumen relevan yang terambil oleh sistem (Salton, 1989).

Nilai *recall* dan *precision* bernilai antara 0 sd 1. Sistem temu kembali informasi diharapkan untuk dapat memberikan nilai *recall* dan *precision* mendekati 1. Pengguna rata-rata ingin mencapai nilai *recall* tinggi dan *precision* tinggi, pada kenyataannya hal itu harus dikompromikan karena sulit dicapai (Salton, 1989).

$$R = \frac{Number\ of\ relevant\ items\ retrieved}{Total\ number\ of\ relevant\ items\ in\ collection} \tag{8}$$

Dengan R adalah recall, maka nilai R didapatkan dengan membandingkan Number of relevant items retrieved dengan Total number of relevant items in collection. Recall adalah dokumen yang terpanggil dari STKI sesuai dengan permintaan user yang mengikuti pola dari STKI. Nilai recall makin besar belum bisa dikatakan suatu STKI baik atau tidak.

$$P = \frac{Number\ of\ relevant\ items\ retrieved}{Total\ number\ of\ items\ retrieved} \tag{9}$$

Dengan *P* adalah *Precision*. maka nilai *P* didapatkan dengan membandingkan *Number of relevant items retrieved* dengan *Total number of items retrieved*. *Precision* adalah jumlah dokumen yang terpanggil dari *database* relevan setelah dinilai *user* dengan informasi yang dibutuhkan. Semakin besar nilai *precision* suatu STKI, maka STKI bisa dikatakan baik.

3. Metodologi

Metode yang digunakan pada penelitian STKI melalui beberapa tahapan dan kebutuhan *Hardware* maupun *Software*. STKI didesain metode pengembangan prototipe evolutionary. Sistem yang sesungguhnya dipandang sebagai evolusi dari versi awal yang terbatas menuju produk finalnya. Sistem selalu di evaluasi untuk didapatkan sistem yang paling baik. Model prototipe yang digunakan pada pengembangan STKI bisa dilihat pada gambar 1.

Gambar 5. Evolutionary Prototyping (Pressman, 2005)

STKI dengan menggunakan metode *VSM* dirancang untuk mendapatkan hasil pencarian dengan *precision* tinggi dan *recall* rendah. Metode VSM dipilih karena cara kerja model ini efisien, mudah dalam representasi dan dapat diimplementasikan pada *document-matching*.

4. Hasil dan Pembahasan

4.1 Kerangka dan deskripsi STKI

Proses Tokenisasi dilakukan dengan mekanisme jika dokumen pada korpus ditemukan spasi, maka *term* yang ada diantara spasi akan di *retrieved* (akan diambil oleh sistem) kemudian *term* ditempatkan dalam tabel tabelawal. Hasil proses berupa *term* asli (term yang masih memiliki imbuhan, tanda baca yang melekat, dan angka). Keunggulan proses ini waktu komputasi cepat.

Proses Filtering dilakukan dengan mekanisme jika term pada tabel tabelawal ditemukan tanda baca, huruf kapital, dan angka. Maka program akan menghilangkan (tanda baca dan angka) dan mengganti (huruf kapital menjadi huruf kecil), kemudian memeriksa term dengan stopwords. Hasil proses berupa term pilihan (tanpa tanda baca, tanpa huruf kapital, dan bukan termasuk stopwords). Keunggulan proses ini sistem mampu mereduksi tanda baca, angka, merubah term menjadi huruf kecil, dan memeriksa term stopwords dengan waktu komputasi yang cepat.

Proses *Stemming* dilakukan program dengan cara menghilangkan imbuhan yang terdapat pada term hasil *filtering*. Proses menghilangkan dilakukan dengan menghilangkan awalan, sisipan, dan akhiran. Hasil proses ini dimasukkan dalam tabel tabelfreq.

Proses Pembobotan dokumen dengan metode VSM dilakukan dalam proses pencarian dokumen. Program akan bekerja ketika *user* melakukan *query*, selanjutnya program akan memproses *query* tersebut dengan perhitungan-perhitungan *tf*, *idf*, *tfidf*, jarak *query* dan dokumen, similaritas dan *cosine similarity*

4.2 Proses STKI

Kumpulan abstrak diletakkan pada Tabel korpus (tabel 1), Selanjutany data pada tabel korpus digunakan dalam proses tokenisasi, *filtering*, dan *stemming*.

Tabel 1. Tabel korpus

id	judul	isi	dokumen
1	Pengujian teori static trade off dan pecking order	Pendanaan perusahaan mengikuti beberapa pola terte	m1
3	Tinjauan rencana pengembangan investasi jangka men	Dalam melakukan investasi umumnya perusahaan dihad	m2
2	Analisis hubungan antara audience characteristics	Product placement merupakan suatu hal yang tidak a	m3
4	Pengaruh penganggaran partisipatif terhadap kesenj	Penelitian ini bertujuan untuk mencari tahu dan me	a1
5	Pengaruh atribut-atribut dari program pembinaan lo	Penelitian ini membahas tentang pengaruh atribut-a	m4
6	Analisis capital structure dan hubungannya dengan	Skripsi ini secara keseluruhan ingin meneliti peng	a2
7	Uji interdependensi Bursa Saham Indonesia dengan B	Penelitian ini bertujuan untuk melihat adakah hubu	m5
8	Pengaruh persepsi nilai konsumen terhadap perilaku	Pertumbuhan bisnis ritel semakin meningkat dengan	m6
9	Pengaruh tingkat dan strategi diversifikasi terhad	Diversifikasi adalah perusahaan yang mengembangkan	m7
10	Peranan persepsi konsumen atas service brand dalam	Skripsi ini membahas tentang peranan dari persepsi	m8

Hasil *scanner term* pada korpus diletakkan pada tabel awal. Hasil *scanner term* yang ada pada tabel awal adalah 53.223 term dengan space 7,3 MB. Hasil *scanner file* pada proses tokenisasi bisa dilihat pada tabel 2.

Tabel 2. Implementasi proses tokenisasi pada tabel awal

judul	term	dokumen
Pengujian teori static trade off dan pecking order theory \dots	pendanaan	m1
Pengujian teori static trade off dan pecking order theory \dots	perusahaan	m1
Pengujian teori static trade off dan pecking order theory \dots	mengikuti	m1
Pengujian teori static trade off dan pecking order theory \dots	beberapa	m1
Pengujian teori static trade off dan pecking order theory \dots	pola	m1
Pengujian teori static trade off dan pecking order theory \dots	tertentu	m1
Pengujian teori static trade off dan pecking order theory \dots	dan	m1
Pengujian teori static trade off dan pecking order theory \dots	dapat	m1
Pengujian teori static trade off dan pecking order theory \dots	dijelaskan	m1
Pengujian teori static trade off dan pecking order theory \dots	dengan	m1
Pengujian teori static trade off dan pecking order theory \dots	teori	m1
Pengujian teori static trade off dan pecking order theory \dots	static	m1
Pengujian teori static trade off dan pecking order theory \dots	tradeoff	m1
Pengujian teori static trade off dan pecking order theory \dots	,	m1
Pengujian teori static trade off dan pecking order theory \dots	teori	m1
Pengujian teori static trade off dan pecking order theory \dots	pecking	m1

Hasil scanner *term* selanjutnya diletakkan pada tabel kedua. Hasil penscanneran term pada tabel kedua adalah 29.404 term dengan space 2,6 MB bisa dilihat pada Tabel 3.

Tabel 3. Implementasi proses tokenisasi pada tabel kedua

judul	term	dokumen
Pengujian teori static trade off dan pecking order theory \dots	pendanaan	m1
Pengujian teori static trade off dan pecking order theory \dots	perusahaan	m1
Pengujian teori static trade off dan pecking order theory \dots	mengikuti	m1
Pengujian teori static trade off dan pecking order theory \dots	pola	m1
Pengujian teori static trade off dan pecking order theory \dots	teori	m1
Pengujian teori static trade off dan pecking order theory \dots	static	m1
Pengujian teori static trade off dan pecking order theory \dots	tradeoff	m1
Pengujian teori static trade off dan pecking order theory \dots	teori	m1
Pengujian teori static trade off dan pecking order theory \dots	pecking	m1
Pengujian teori static trade off dan pecking order theory \dots	teori	m1
Pengujian teori static trade off dan pecking order theory \dots	signaling.	m1
Pengujian teori static trade off dan pecking order theory \dots	skripsi	m1
Pengujian teori static trade off dan pecking order theory \dots	bertujuan	m1
Pengujian teori static trade off dan pecking order theory \dots	teori	m1
Pengujian teori static trade off dan pecking order theory \dots	pendanaan	m1

Hasil dari proses *filtering* menjadikan jumlah *term* berkurang menjadi 17.930 dari jumlah *term* semula 29.404. Pengurangan ini membuat space yang dibutuhkan untuk

tabel term menjadi 2,6 MB. Hasil proses filtering selanjutnya dimasukkan dalam tabel freq (Tabel 4).

Tabel 4. Hasil proses filtering pada tabel frekuensi

judul	term
Pengaruh penganggaran partisipatif terhadap kesenjang	analisis
Pengaruh penganggaran partisipatif terhadap kesenjang	aruh
Pengaruh penganggaran partisipatif terhadap kesenjang	anggar
Pengaruh penganggaran partisipatif terhadap kesenjang	partisipatif
Pengaruh penganggaran partisipatif terhadap kesenjang	kesenjang
Pengaruh penganggaran partisipatif terhadap kesenjang	anggar
Pengaruh penganggaran partisipatif terhadap kesenjang	variabelvariabel
Pengaruh penganggaran partisipatif terhadap kesenjang	budaya
Pengaruh penganggaran partisipatif terhadap kesenjang	organisasi
Pengaruh penganggaran partisipatif terhadap kesenjang	variabel
Pengaruh penganggaran partisipatif terhadap kesenjang	poderasi.
Pengaruh penganggaran partisipatif terhadap kesenjang	kuantitatif
Pengaruh penganggaran partisipatif terhadap kesenjang	desain

Proses *stemming* menghasilkan kumpulan term berupa kata dasar hasil scanner *term* pada tabel kedua. Proses *stemming* didukung stopword tala yang digunakan untuk mengurangi term yang ada pada tabel kedua. Selanjutnya *term* hasil *stemming* di letakkan pada tabel freq (tabel 5). Jumlah *stopword removal* tala adalah 758 term dengan space 15,8 KB

Tabel 5. Tabel frekuensi

judul	term	freq	freqpangkat
Pengaruh penganggaran partisipatif terhadap kesenjang	analisis	35	1225
Pengaruh penganggaran partisipatif terhadap kesenjang	aruh	244	59536
Pengaruh penganggaran partisipatif terhadap kesenjang	anggar	3	9
Pengaruh penganggaran partisipatif terhadap kesenjang	partisipatif	3	9
Pengaruh penganggaran partisipatif terhadap kesenjang	kesenjang	6	36
Pengaruh penganggaran partisipatif terhadap kesenjang	anggar	11	121
Pengaruh penganggaran partisipatif terhadap kesenjang	variabelvariabel	3	9
Pengaruh penganggaran partisipatif terhadap kesenjang	budaya	10	100
Pengaruh penganggaran partisipatif terhadap kesenjang	organisasi	40	1600
Pengaruh penganggaran partisipatif terhadap kesenjang	variabel	265	70225
Pengaruh penganggaran partisipatif terhadap kesenjang	poderasi.	1	1
Pengaruh penganggaran partisipatif terhadap kesenjang	kuantitatif	14	196
Pengaruh penganggaran partisipatif terhadap kesenjang	desain	12	144

Selanjutnya dilakukan perhitungan VSM oleh sistem dan dibuat *inteface* (gambar 6) untuk user dan Contoh tampilan hasil pencarian keyword "modal investasi " (Gambar 7).

Gambar 6. Interface sistem temu kembali informasi

model investosi		
Dicari : modal invertari Indi Kata : 2		
Joda! Analisis pengaruh csedit rating terhadap keputusan struktur modal perusahaan-perusahaan di Indonesia pada periode 2002-2005	Sımlaritas Dokumen	
How do firms choose their capital structure?" Pertanyaan tersebut merupakan pertanyaan yang sampai saat isi tidak dapat dijawab dengan pasti. Berbagai macam peselitian telah menghasilkan beberapa faktor yang mempengaruki keputusan struktu modal. Dari berbagai macam		
Judal : Pengaruh infrastruktur terhadap konvergensi pertumbuhan ekonomi di Indonesia : analis data panel 1995-2005	Similarita Dokumer	
Penelitian izi memberikan bukti empiris terjadinya kosovergensi perhambuhan ekonomi antara provinsi di Indonesia. Model perhambuha neoklasik menyatakan bahwa dalam jangka panjang perekonomian akan mengalami kosovergensi, di mana perekonomian daerah misikin aka		
Judd : Pengaruh tahapan siklus hidup perusahaan terhadap relevansi nilai informasi laba dan arus kas	Similaritas Dokumen	
Penelitian ini merupakan repika dari penelitian Black (1998) dikombinankan dengan penelitian Sutanto dan Ekawati (2006). Penelitian ini bertujuan menguji keterkaitan antara tiklus hidup perurahaan dengan peningkatan tala informasi laba dan arus kas, dan menguji korelasi laba		

Gambar 7. Hasil pencarian keyword "modal investasi"

4.3 Uji Recall dan Precision

Studi kasus menggunakan STKI ini dilakukan dengan memasukkan *keyword* 1 *term* (ekonomi, modal), 2 *term* (produktivitas kerja, analisa pasar, modal investasi, ekonomi indonesia, bursa efek) dan 3 *term* (analisa pasar modal, bursa efek indonesia, bursa efek jakarta). Hasil pencarian selanjutnya dilakukan uji *recall* dan *precision* seperti terlihat pada Tabel 6.

Tabel 6. Hasil Pengujian Recall dan Precision

No	Query	Recall	Precision
1	Ekonomi	0,19	1
2	Modal	0,13	1
3	Produktivitas Kerja	0,01	0,09
4	Analisa Pasar	0,02	0,06
5	Modal Investasi	0,22	0,83
6	Ekonomi Indonesia	0,43	0,84
7	Bursa Efek	0,15	0,87
8	Analisa Pasar Modal	0,01	0,02
9	Bursa Efek Jakarta	0,12	0,64
10	Bursa Efek Indonesia	0,52	0,99

4.4 Pengujian program berdasarkan waktu

Waktu yang dibutuhkan dalam proses komputasi proses tokenisasi dengan jumlah dokumen 300 adalah 24 detik. Sedangkan waktu komputasi untuk proses *filtering* adalah 4 menit 17 detik. Jadi total waktu yang dibutuhkan dalam proses preprosesing dengan jumlah dokumen 300 adalah 4 menit 41 detik (perhitungan waktu komputasi dilakukan menggunakan *stopwatch*).

Proses pencarian term: 1 *term*, 2 *term* dan 3 *term* dengan menggunakan sistem temu kembali informasi (metode *vector space model*) membutuhkan waktu komputasi rata-rata 1,5 detik (perhitungan waktu komputasi dilakukan menggunakan *stopwatch*).

Waktu preposesing untuk scanner file dari tabelkedua menjadi tabelfrek dipilih dengan jumlah dokumen 300, hal ini dikarenakan ketika digunakan data sejumlah 400 dokumen, terjadi error karena waktu komputasi berlangsung lebih dari 10 menit,sementara waktu komputasi menggunakan pc ini adalah maksimal 10 menit.

5. Kesimpulan

Sistem Temu Kembali Informasi (STKI) dengan studi kasus menggunakan 300 dokumen abstraksi skripsi mahasiswa Fakultas Ekonomi Universitas Indonesia menghasilkan; STKI mampu melakukan tokenisasi (pemisahan term), filtering term (reduksi tanda baca, angka, dan stopwords) dan Stemming term (membuat kata dasar) dengan waktu komputasi 4 menit 41 detik.

STKI mampu melakukan pencarian dokumen teks bahasa Indonesia dan menampilkan hasil pencarian dokumen teks dengan disertai bobot tiap dokumen beserta letak dokumen dengan waktu komputasi rata-rata 1,5 detik.

Hasil Uji *recall* dan *precision* STKI menunjukkan hasil pencarian dokumen teks bahasa Indonesia memiliki ratarata *recall* = 0,19 dan rata-rata *precision* = 0,54.

STKI yang dibangun memiliki keunggulan mampu melakukan pencarian dokumen teks bahasa Indonesia dengan waktu komputasi rata-rata 1,5 detik dan hasil pencarian dengan nilai *precision* = 0,54 serta dilengkapi dengan bobot dan letak dokumen pada database.

Daftar Pustaka

Baeza R.Y., Neto R., 1999. Modern Information Retrieval, *Addison Wesley*-Pearson international edition, Boston. USA.

Erk, K., 2010. A flexible, corpus-driven model of regular and inverse selectional preferences. *Computational Linguistics*, 36 (4).

Lopez, C., Ribeiro, C., 2010. Using Local Precision to Compare Search Engines in Consumer Health Information Retrieval. SIGIR '10: Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval.

Mao, W., 2007. The phrase-based vector space model for automatic retrieval of free-text medical documents. Data & Knowledge Engineering, Volume 61 Issue 1.

Pressman, 2005. Software Engineering A Practicioners Approach

Tala, F.Z., 2003, A Study of Stemming Effects on Information Retrieval in bahasa Indonesia. *Master Thesis*, Institut for logic, Language and Computation Universiteit van Amsterdam The Netherlands.

Salton, G., 1989, Automatic Text Processing, The Transformation, Analysis, and Retrieval of information by computer. Addison – Wesly Publishing Company, Inc. USA.