Programação de Alto Desempenho: Relatório Atividade Threads

Felipe Geisler Xavier

Para cada implementação do algoritmo foi rodado o mesmo código 10 vezes com a mesma entrada. Todos os testes foram realizados na mesma máquina com as configurações de CPU: Intel(R) Core(TM) i5-8250U@ 1.60GHz; Memória: 8GB RAM; Disco: Western Digital 240GB.

O primeiro algoritmo desenvolvido visa realizar a busca de nomes em 10 diferentes arquivos contendo um nome por linha. O usuário inicia o programa com uma palavra como entrada e o algoritmo retorna todos nomes que contém essa palavra, o arquivo e linha encontrada.

Algoritmo Nomes

300

200

100

1 2 3 4 5 6 7 8 9 10

Run

Figura 1 - Gráfico comparação Algoritmo 1 sequencial e concorrente

Fonte: Autor (2022)

Tabela 1 - Valores por execução Algoritmo 1 sequencial e concorrente

Nº Execução	Thread (Mili)	Sequencial (Mili)
1	44	228
2	85	211

3	47	217
4	60	214
5	92	195
6	97	281
7	107	210
8	79	204
9	60	261
10	95	266

Fonte: Autor (2022)

O segundo algoritmo desenvolvido visa realizar o complemento de fitas de DNA. Como entrada do programa são disponibilizados 10 arquivos com a primeira parte da fita de DNA contendo 10.000 sequências em cada arquivo. A saída do programa esperado é a segunda parte da fita, DNA complementar, de cada linha do arquivo de entrada em um novo arquivo de saída. Após executar o código, os arquivos de saída podem ser encontrados no diretório *bin/dna/out*.

Figura 2 - Gráfico comparação Algoritmo 2 sequencial e concorrente

Fonte: Autor (2022)

Tabela 2 - Valores por execução Algoritmo 2 sequencial e concorrente

Nº Execução	Thread (Mili)	Sequencial (Mili)
1	326	1346
2	327	1619
3	332	1495
4	333	1598
5	371	1641
6	332	1627
7	319	1659
8	319	1509
9	356	1518
10	332	1522

Fonte: Autor (2022)