Lecture 30, Nov. 4

30.1 Definition. For $a, b \in \mathbb{Z}$, if $a \neq 0$ and $b \neq 0$ then lcm(a, b) is the smallest $m \in \mathbb{Z}^+$ such that $a \mid m$ and $b \mid m$, and lcm(a, 0) = lcm(0, a) = 0.

30.2 Theorem. Let $a, b \in \mathbb{Z}$. Write

$$a = \prod_{i=1}^{m} p_i^{k_i}$$

and

$$b = \prod_{i=1}^{m} p_i^{l_i}$$

then

$$gcd(a,b) = \prod_{i=1}^{m} p_o^{min(k_i,l_i)}$$

and

$$Icm(a,b) = \prod_{i=1}^{m} p_o^{max(k_i,l_i)}$$

and

$$gcd(a, b)Icm(a, b) = ab$$

Here ends Chapter 3: Factorization in \mathbb{Z}

Chapter 4: Integers Modulo *n*

Recall that, informally, $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ and we add and multiply by adding and multiplying in \mathbb{Z} then finding the remainder after dividing by n.

30.3 Definition (Partition). A partition of a set S is a set P of non-empty disjoint sets whose union is S, that is for all $A \in P$, $A \neq \emptyset$, for all $A, B \in P$, if $A \neq B$ then $A \cap B = \emptyset$ and

$$\bigcup P = \bigcup_{A \in P} A = S$$

or equivalently for all $A \in P$ we have $A \subseteq S$ and for all $a \in S$ we have $a \in A$ for some $A \in P$

- **30.4 Definition** (Equivalence Relation). A equivalence relation on a set S is a binary relation \sim on s such that
 - 1. Reflexivity: for all $a \in S$, $a \sim a$
 - 2. Symmetry: for all $a, b \in S$, if $a \sim b$ then $b \sim a$
 - 3. Transitivity: for all $a, b \in S$, if $a \sim b$ and $b \sim c$ then $a \sim c$

30.5 Definition (Equivalence Class). Given an equivalence relation \sim on a set S, for $a \in S$, the equivalence class of a (in S under \sim) is the set

$$[a] = \{x \in S \mid x \sim a\}$$

30.6 Theorem (Equivalence Classes Form a Partition). Let S be a set. Let \sim be an equivalence relation on S. Then

- 1. for all $a \in S$ we have $a \in [a]$
- 2. for all $a, b \in S$ we have $[a] = [b] \Leftrightarrow a \sim b \Leftrightarrow a \in [b] \Leftrightarrow b \in [a]$
- 3. for all $a, b \in S$, if $[a] \neq [b]$ then $[a] \cap [b] = \emptyset$

It follows that

$$P = \{ [a] \mid a \in S \}$$

is a partition of S

Proof. 1. for $a \in S$ we have $a \in [a]$ since $a \sim a$

- 2. Let $a, b \in S$. Suppose [a] = [b]. Then $a \in [a]$ and [a] = [b] so $a \in [b]$ so $a \sim b$. Note that $a \in [b] \Leftrightarrow a \sim b$. Suppose that $a \in [b]$ then $a \sim b$. If $x \in [a]$ then $x \sim a$, so we have $x \sim b$ and so $x \in [b]$. Conversely, if $x \in [b]$ so $x \sim b$ then we have $x \sim a$ and so $x \in [a]$. This shows that [a] = [b]
- 3. Let $a, b \in S$. Suppose $[a] \cap [b] \neq \emptyset$. Choose $c \in [a] \cap [b]$. Since $c \in [a]$ we have [c] = [a]. Since $c \in [b]$ we have [c] = [b]. Thus [a] = [c] = [b].

30.7 Definition (Quotient). When \sim is an equivalence relation on S, the partition $p = \{[a] \mid a \in S\}$ is called the quotient of S by \sim and is denoted by S/\sim . So we have

$$S/\sim=\{[a]\mid a\in S\}$$

30.8 Example. We construct \mathbb{Z} from \mathbb{N} using a quotient construction.

We define a relation \sim on $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ by defining $(a,b) \sim (c,d) \Leftrightarrow a+d=b+c$. We check that \sim is an equivalence relation. We define

$$\mathbb{Z} = \mathbb{N}^2 / \sim = \{ [(a, b)] \mid a \in \mathbb{N}, b \in \mathbb{N} \}$$

For $n \in \mathbb{N}$ we write

$$n = [(n,0)] = \{(n,0), (n+1,1), \dots\}$$
$$-n = [(0,n)] = \{(0,n), (1,n+1), \dots\}$$

and we consider \mathbb{N} to be a subset of Z when actually we have an injective map $\phi \colon \mathbb{N} \to \mathbb{Z}$ given by $\phi(n) = n = [(n,0)]$.

30.9 Example. We construct $\mathbb Q$ from $\mathbb Z$ as follows. we define \sim on $\mathbb Z \times (\mathbb Z \times \{0\})$ by $(a,b) \sim (c,d) \Leftrightarrow a+d=b+c$. Then $\mathbb Q = (\mathbb Z \times (\mathbb Z \times \{0\}))/\sim$