Operativni sistemi i Edge platforme za loT

Teodora Kocić, 1457

Sadržaj

IoT OS arhitektura i komponente Aplikacije razvijene nad IoT OS Literatura

loT OS arhitektura i komponente

Uloga IoT operativnih sistema je da obezbede funkcionalnosti koje su neophodne u efektivnom razvoju IoT rešenja. Operativni sistem kontroliše hardver i softver uređaja. Arhitektura IoT operativnih sistema biće detaljnije opisana kroz primere dva predstavnika IoT OS – ZephyrOS i MbedOS.

ZephyrOS i MbedOS

ZephyrOS

Sveobuhvatan, lightweight, kernel i pomoćni servisi

Prenosiv (portabilan) i siguran

Omogućava konekciju (BLE, Wi-Fi, Eternet, USB, kao i IoT protokoli)

Jednostavan za korišćenje (evidentiranje, praćenje, debug, shell, podrška za Windows/Linux/MacOS

MbedOS

Podržava niz uređaja i komponenti

Izvršenje softvera u realnom vremenu (RTOS)

Kod je otvorenog tipa (open source)

Jednostavan za korišćenje

Bezbedna komunikacija i obezbeđuje sigurnost hardvera

Veliki broj dostupnih drajvera i biblioteka

Arhitektura ZephyrOS-a

NAPREDNI OPERATIVNI SISTEMI

Arhitektura Zephyr operativnog sistema podeljena je u dva dela:

- OS deo jezgro (kernel) i servisi operativnog sistema
- Deo koji je namenjen korišćenju od strane korisnika aplikativni servisi

NAPREDNI OPERATIVNI SISTEMI 7

Mbed OS koristi sloj hardverske apstrakcije (HAL) kao podršku delovima mikrokontrolera koji se često susreću (tajmeri). Ova osnova olakšava pisanje aplikacija na osnovu zajedničkog API-a.

HAL je ulazna tačka prilikom dodele novih feature-a ili taget-a.

Struktura MbedOS-a obezbeđuje usklađivanje aplikacija i sistema za skladištenje podataka.

MbedOS implementira i sloj za odabir novih target-a i integraciju procesa pokretanja svakog podržanog lanca alata.

Aplikacije

Razvijene aplikacije u loT operativnim sistemima

ZephyrOS aplikacija

Build sistem ZephyrOS-a zasnovan je na CMake-u. Kada se pokrene build aplikacije vrši se kontrolisanje konfiguracije i kreiranje same te aplikacije, kao i build Zephyr-a, kompajlirajući ih u jednu binarnu datoteku. Aplikacija mora da ima sledeći sadržaj:

/app | CMakeLists.txt | prj.conf | src | main.c

Komponente aplikacije

CMakeList.txt

Datoteka koja specificira build sistemu gde da pronađe ostale aplikacione fajlove. Ovde se nalaze konfiguracioni fajlovi koji su vezani za određenu komponentu, kao i dodaci koji omogućavaju izvršenje i debagovanje kompajliranih binarnih fajlova na pravim ili virtuelnim hardverima.

Konfiguracioni fajlovi jezgra

Definiše vrednosti koje su specifične za samu aplikaciju (uglavnom je ovaj fajl imenovan **prj.conf**). Ove vrednosti se kombinuju kasnije sa specifikacijama za sami board sa kojim se radi kako bi se dobila konfiguracija jezgra.

Izvršni kod aplikacije

Najčešće postoji jedan (može se napisati i veći broj) aplikacioni fajl, napisan u C-u ili nekom asemblerskom jeziku.
Ovaj fajl (fajlovi) smešten je u pod-folderu **src**.

Izvršni kod aplikacije

- Aplikacija prikuplja podatke sa senzora za temperaturu, pritisak i relativnu vlažnost vazduha, kao i podatke o vrednostima x, y i z komponenti: linearnog ubrzanja sa dva akcelerometra (LSM6DSL i LSM303AGR), rotacionog ubrzanja izmerenih na žiroskopu (LSM6DSL) i vrednosti magnetnog polja očitanih sa magnetometra (LSM303AGR).
- Ukoliko se svi spoljni parametri (temperatura, pritisak i relativna vlažnost vazduha) nalaze u definisanim granicama štampaju se u konzoli numeričke vrednosti lineranog (ukoliko ubrzanje odgovara gravitacionoj konstanti između Španije i Norveške, gledano po vrednosti latituda), rotacionog ubrzanja, kao i vrednost magnetnog polja očitane sa senzora.

Pokretanje aplikacije i njeno izvršenje - ZephyrOS

 Da bi se aplikacija kreirala na željenom board-u (u demo aplikaciji koristi se ploča kompatibilna sa Arduino Nano 33 BLE Sens - nRF52 DK) treba izvršiti komandu:

west build -b nrf52dk app/src

 Nakon pozicioniranja u folder zephyr (nakon povlačenja čitavog projekta zephyrproject u okviru ovog foldera nalaze se pod-folderi zephyr, bootloader, modules i tools) potrebno je izvršiti komandu:

Rezultat izvršenja aplikacije na FIT IoT Lab-u

NAPREDNI OPERATIVNI SISTEMI 14

MbedOS aplikacija

Kod Mbed operativnog sistema aplikacija sadrži konfiguracioni fajl, komponente (kod demo aplikacije to su biblioteke vezane za sve senzore koji se koriste), može da sadrži i dodatne biblioteke koje su neophodne kako bi izvršni fajl mogao da se kreira i nakon toga pokrene. Pored konfiguracionih fajlova i biblioteka, aplikacija sadrži jedan json fajl u kojem su sadržani opisi komandi za kompajliranje i cpp fajl koji sadrži izvršni kod aplikacije.

Okruženja za pokretanje izvršnog fajla

Kod aplikacije se može izvršavati:

- a) Lokalno ukoliko postoji instalacija Mbed Studio-a ili korišćenjem Mbed CLI 1
- b) U cloud-u (Keil Studio Cloud) bira se projekat koji će se izvršavati i bira se board za koji se dati kod treba da kompajlira (kod demo aplikacije radi se o Nordic nRF52-DK ploči, kompatibilna sa Arduino Nano 33 BLE Sens). Nakon kompajliranja dobija se izvršna datoteka koja se može nakon povezivanja hardvera pokrenuti i njeno izvršenje se može debagovati i pratiti na taj način korak po korak. Pokretanje koda je moguće i korišćenjem virtualnog uređaja.

Izvršni kod aplikacije

U okviru ove aplikacije prate se vrednosti za x, y i z komponentu očitane sa senzora LSM303AGR i LSM6DSL. Prikazuju se orijentacije vektora linearnog i rotacionog ubrzanja očitanih sa akcelerometra i žiroskopa pomenutih senzora.

Ukoliko su podaci o orijentaciji dostupni dioda svetli, dok se istovremeno i podaci o vrednostima x, y i z komponente vektora linearnog i rotacionog ubrzanja, kao i ukupne vrednosti ovih fizičkih veličina očitane sa senzora se štampaju u konzoli.

```
LSM6DSL Event_Status_t status;
acc_gyro-spet_event_status(&status);
if (status.06DOrientationstatus) {
    /* Send 6D Orientation */
    send_orientation();

    double acc_value, gyro_value;
    acc_value = sensor_data_value(acc_axes[0], acc_axes[1], acc_axes[2]);
    gyro_value = sensor_data_value(gyro_axes[0], gyro_axes[1], gyro_axes[2]);

    printf("Measured values of linear acceleration's components: x = %i, y = %i, z = %i -> acc = %f\n", acc_axes[0], acc_axes[1], acc_axes[2], acc_printf("Measured values of rotational acceleration's components: x = %i, y = %i, z = %i -> gyro = %f\n", gyro_axes[0], gyro_axes[1], gyro_axes[1]

/* Led blinking. */
myled = 1;
wait[0.2);
myled = 0;
```

```
/* Enable LSM6DSL accelerometer and gyroscope*/
acc_gyro->enable_x();
acc_gyro->enable_g();

int32_t *acc_axes, *gyro_axes;
acc_gyro->get_x_axes(acc_axes);
acc_gyro->get_g_axes(gyro_axes);
/* Enable 6D Orientation. */
acc_gyro->enable_6d_orientation();
```

Kompajliranje MbedOS aplikacije i njeno izvršenje

 Nakon odabira ploče za koju će dati kod biti kompajliran, ukoliko nema grešaka u kodu pritiskom na prvu ikonicu u nizu započinje proces kompajliranja

 Ukoliko je uspešno završeno kompajliranje da bi se kod pokrenuo najpre se poveže virtualni ili fizički uređaj i ikonica za pokretanje (druga u nizu) postaje dostupna i klikom na nju ukoliko je kod ispravan počinje izvršenje istog

Literatura

- 1. https://www.zephyrproject.org/#
- 2. https://os.mbed.com/docs/mbed-os/v6.16/introduction/index.html