2004 G2

Ezra Guerrero Alvarez

February 9, 2022

2004 G2

2004 G2

Let Γ be a circle and let d be a line such that Γ and d have no common points. Further, let AB be a diameter of the circle Γ ; assume that this diameter AB is perpendicular to the line d, and the point B is nearer to the line d than the point A. Let C be an arbitrary point on the circle Γ , different from the points A and B. Let D be the point of intersection of the lines AC and d. One of the two tangents from the point D to the circle Γ touches this circle Γ at a point E; hereby, we assume that the points B and E lie in the same halfplane with respect to the line AC. Denote by F the point of intersection of the lines BE and D. Let the line D intersect the circle D at a point D different from D.

Prove that the reflection of the point G in the line AB lies on the line CF.

We use directed angles mod 180°. Let M and E' be the intersections of $\overline{\rm AM}$ and $\overline{\rm AE}$ with d, respectively. Note that AEMF is cyclic with diameter $\overline{\rm AF}$. We have

$$\angle DEF = \angle DEB = \angle EAB = \angle EAM = \angle EFM = \angle EFD$$
,

so DE = DF. Since $\triangle FEE'$ is right, it follows D is the circumcenter of (FEE'). Now, note that the inversion with center A and radius $\sqrt{AC \cdot AD}$ sends Γ to d, implying $AG \cdot AF = AE \cdot AE'$ so $G \in (FEE')$. Therefore, DG = DE and \overline{DG} is tangent to Γ . By tangents,

$$-1 = (A, C; E, G) \stackrel{F}{=} (G, \overline{\mathrm{FC}} \cap \Gamma; B, A).$$

Since \overline{AB} is a diameter, it follows \overline{FC} passes through the reflection of G in line \overline{AB} , as desired.