BAMS1623 DISCRETE MATHEMATICS

Tutorial 3

- 1. Which of the following are statements?
 - i) Is 2 a positive number?
 - ii) $x^2 + x + 1 = 0$
 - iii) Study logic.
 - iv) There will be snow in January in Malaysia.
 - v) If stock prices fall, then I will lose money.
- 2. Give the negation of each of the following statements.
 - i) $\sim p \vee \sim q$
 - ii) $p \lor (q \land \sim r)$
 - iii) It will rain tomorrow or it will snow tomorrow.
 - iv) 2 is even or -3 is negative.
- 3. In each of the following, form the conjunction and the disjunction of p and q.
 - i) p: I will drive my car.

q: I will be late.

ii) p: NUM > 10

q: NUM ≤ 15

- 4. Find the truth value of each proposition if p and r are true and q is false.
 - i) $\sim p \land (q \lor r)$

ii) $p \wedge (\sim (q \vee \sim r))$

iii) $(r \land \neg q) \lor (p \lor r)$

- iv) $(q \wedge r) \wedge (p \vee \sim r)$
- 5. Let p: 9 > 6, q: 7 < 8, $r: 5 \le 5$, and $s: 10 \ge 7$. Write the following statements in terms of p, q, r, s, and logical connectives.
 - i) If 9 > 6, then $5 \le 5$.

- ii) Either $7 \ge 8$ or 10 < 7.
- iii) It is not true that 7 < 8 or $5 \le 5$.
- 6. Rewrite each statement below in "if then" form.
 - i) I am on time for lecture if I catch the 7 am bus.
 - ii) David studies hard or he fails the examination.
 - iii) The program is readable only if it is well structured.
 - iv) This door will not open unless a security code is entered.
 - v) 2x 5 = 11 implies x = 8.
 - vi) Having two 45° angles is a sufficient condition for this triangle to be a right triangle.
 - vii) Solving all tutorial's questions is a necessary condition for Alan to pass this subject.
 - viii) To be a citizen in this country, it is sufficient that you were born in this country.
 - ix) It is necessary to have a valid password to log on to the server.
- 7. Let p, q, and r be statements variables. Assuming that p is true, q is false, and r is true, find the truth value of each statement forms.
 - i) $p \wedge q \rightarrow r$

ii) $p \lor q \rightarrow \sim r$

iii) $p \land (q \rightarrow r)$

iv) $p \leftrightarrow q \vee r$

BAMS1623 DISCRETE MATHEMATICS

v)
$$(p \to q) \lor (q \to r)$$

- 8. State the converse, inverse, and contrapositive of each of the following implications.
 - i) If 2 + 2 = 4, then I am not the Queen of England
 - ii) If I am not President of the United States, then I will walk to work.
 - iii) If I am late, then I did not take the train to work.
 - iv) If I have time and I am not too tired, then I will go to the store.
 - v) If I have enough money, then I will buy a car and I will buy a house.
- 9. Construct truth tables to determine whether the given statement is a tautology, a contradiction, or a contingency.

i)
$$\sim p \wedge \sim q$$

iii)
$$p \rightarrow (\sim p \lor q)$$

v)
$$p \to (q \to p)$$

vii)
$$(q \land p) \lor (q \land \sim p)$$

ix)
$$p \to (q \land p)$$

xi)
$$(p \lor \sim q) \to (p \lor \sim r)$$

ii)
$$\sim (\sim p \leftrightarrow q)$$

iv)
$$(p \land \sim q) \rightarrow (\sim p \lor q)$$

vi)
$$q \rightarrow (q \rightarrow p)$$

viii)
$$(p \land q) \rightarrow p$$

$$(\sim p \land (q \lor \sim r))$$

xii)
$$((\sim p \land q) \land (q \lor r)) \land \sim q$$

10. Prove by constructing truth table for the following logical equivalences.

i)
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

ii)
$$(p \land q) \rightarrow r \equiv (p \rightarrow r) \lor (q \rightarrow r)$$