МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский национальный исследовательский университет ИТМО Мегафакультет трансляционных информационных технологий

Факультет информационных технологий и программирования

Домашнее задание №2. Программирование цикличных алгоритмов

По дисциплине «Аппаратное обеспечение вычислительных систем» Вариант № 5

Выполнил студент группы №М3112

Тимофеев Вячеслав

Проверила

Шевчик

Санкт-Петербург 2024

Задание:

Напишите комплекс программ, состоящий из программы и подпрограммы и обеспечивающий подсчет количества требуемых элементов массива данных. Программа должна выявлять требуемые элементы, а их подсчет должен производиться в подпрограмме.

Вариант №5: Положительные элементы из 0000, 0707, ВАСЕ, 0000, АЕ01;

1. Текст исходной программы:

Адрес	Код команды	Мнемоника	Комментарии
00C	000D		For (i) указатель на элемент массива. Каждый проход ++
00D	0000		Элемент массива
00E	0707		Элемент массива
00F	BACE		Элемент массива
010	0000		Элемент массива
011	AE01		Элемент массива
012	-	-	-
013	0000		результат
014	F200	CLA	Очистка А
015	480C	ADD (00C)	Косвенно добавляем ячейку 00С в аккумулятор
016	B01B	BEQ 01B	Если A=0 то переходим в 01B (0 не положительное)
017	F100		
018	F100		
019	F100		
01A	901E	BPL 01E	Case число положительное идем в 01E (она 0 считает за положительное)
01B	0040	ISZ 040	++ к счетчику обработанных элементов (013)
01C	C014	BR 014	Безусловный переход на ячейку 014
01D	F000	HLT	
01E	202A	JSR 03A	Подпрограмма
01F	0040	ISZ 040	
020	C014	BR 014	Безусловный переход на ячейку 014
021	F000	HLT	Выключение ЭВМ
022	0000		
03A	0000		Ячейка хранения СК
03B	F200	CLA	Очистка аккумулятора

03C	F800	INC	Инкремент А
03D	4013	ADD 013	Добавляем значение ячейки 012 в А
03E	3013	MOV 013	Перемещаем значение А в ячейку 012
03F	C83A	BR (03A)	Безусловный переход на ячейку 02А
040	FFFB		Счетчик количества элементов массива (5)

Таблица трассировки:

таолица трассировки.									
Адресс	Код	СК	PA	PK	РД	A	C	Адрес	Новый код
01E	202A	002B	002A	202B	001F	0000	0		
02B	0000	002D	0000	0000	0010	0000	0	000	0010
02D	0000	002F	0000	0000	0011	0000	0	000	0011
02F	0000	0031	0000	0000	0012	0000	0	000	0012
031	0000	0033	0000	0000	0013	0000	0	000	0013
033	0000	0035	0000	0000	0014		0	000	0014
035	0000	0037	0000	0000	0015	0000	H	000	0015
037	0000	0039	0000	0000	0016	0000	0	000	0016
039	0000	003B	0000	0000	0017	0000	0	000	0017
03B	F200	003C		F200	F200		0		
03C	F800	003D	003C	F800	F800	=	0		
03D	4013	003E	0013	4013	0001	0002	0		
03E	3013	003F	0013	3013	0002		=	013	0002
03F	C83A	0000	003A	C83A	0000		0	017	Eioi
000	0017	0001	0017	0017	F101		0	017	F101
001	0001	0003	0001	0001	0002	0002	0	001	0002
003	0000	0005	0000	0000	0018	0002	0	000	0018
003	0000	0007	0000	0000	0019		0	000	0019 001A
009	0000	0009	0000	0000	001A	=	0	000	001A 001B
00B	0000	000D	0000	0000	001B	0002	0	000	001B
00D	0000	000F	0000	0000	001D		0	000	001D
OOF		0010	02CF		0000	\vdash	0	000	OOID
010	0000	0012	0000	0000	001E		0	000	001E
012	0000	0014	0000	0000	001E	0002	0	000	001E
014	F200	0015	0014	F200	F200	=	0	000	0011
015	480C	0016	0013	480C	0002		0	00C	0014
016	B01B	0017	0016	B01B		=	0	000	
017	F101	0018	0017	F101	F101		0		
018	F100	0019	0018	F100	F100	=	0		
019	F100	001A	0019	F100	F100	=	0		
01A	901E	001E	001A	901E	901E	0002	0		
01E	202A	002B	002A	202B	001F	0002	0		
02B	0000	002D	0000	0000	0020	0002	0	000	0020
02D	0000	002F	0000	0000	0021	0002	0	000	0021
02F	0000	0031	0000	0000	0022	0002	0	000	0022
031	0000	0033	0000	0000	0023	0002	0	000	0023
033	0000	0035	0000	0000	0024	0002	0	000	0024
035	0000	0037	0000	0000	0025	0002	0	000	0025
037	0000	0039	0000	0000	0026	0002	0	000	0026
039	0000	003B	0000	0000	0027	0002	0	000	0027
03B	F200	003C	003B	F200	F200	0000	0		
03C	F800	003D	003C	F800	F800	=	0		
03D	4013	003E	0013	4013	0002		0		
03E	3013	003F	0013	3013	0003	=	H	013	0003
03F	C83A	0000	003A	C83A	0000		0		0001
000	0027	0002	0027	0027	0001	0003	0	027	0001
002	0000	0004	0000	0000	0028		0	000	0028
004	0000	0006	0000	0000	0029	=	0	000	0029
006	0000	0008	0000	0000	002A	0003	0		002A
008 00A	0001	000A	0001	0001	0003 002B	0003	0	000	0003 002B
00C	0014		0014			0003	H		F201
00D	0000		0000			0003	=		002C
00F	BACF	0010	=	BACF	0000	0003	=	000	0020
010	0000		0000			0003	=	000	002D
012	0000	0014		0000	002E	0003	=		002E
014	F201	0014	0014	F201	F201	0000	=	300	
015	480C	0016	0014	480C	F201	F201	=	00C	0015
016	B01B	0017	0014	B01B	B01B		=		
017	F101	0018	0017	F101	F101	F201	=		
018	F100	0019	0018	F100		F201	=		
019	F100	001A		F100	F100	F201	=		
01A	901E		001A			F201	=		
01B	0040	001D		0040	0001	F201	=	040	0001
01D	F000		001D		=	F201			

Дополнительное задание от А.О.Прядкина: Написать бинарный поиск

Реализовывал следующий алгоритм:

Код

Текст программы:

Адрес	Код команды	Мнемоника	Комментарии
001	005		
002	007		
003	010		
004	013		
005	017		Элементы массива
006	020		
007	025		
008	030		
009	040		
00A	047		
00D	0000		Key
00E	0000		Result
00F	FFFF		(-1 если кеу нет в массиве)
010	FFFF		Указатель 1
011	000A		Указатель г
012	0000		
013	0000		
		•••	
01A	F200	CLA	Вывод результата

01B	4011	ADD 011	
01C	300E	MOV 00E	
01D	F000	HLT	
029	F100	NOP	
02A	F200	CLA	
02B	4010	ADD 010	
02C	F800	INC	While $l + 1 < r$
02D	6011	SUB 011	
02E	A03A	BMI 03A	
02F	F200	CLA	
030	4811	ADD (011)	
031	600D	SUB 00D	
032	B01A	BEQ 01A	Case цикл while завершен, элемент найден
033	F200	CLA	
034	400F	ADD 00F	Case цикл while завершен, элемент не найден
035	300E	MOV 00E	
036	F000	HLT	
•••	•••		
039	F100	NOP	
03A	F200	CLA	
03B	4011	ADD 011	
03C	4010	ADD 010	Вычисление т
03D	F300	CLC	
03E	F700	ROR	
03F	F300	CLC	
040	3013	MOV 013	
041	F200	CLA	
042	4813	ADD (013)	
043	600D	SUB 00D	If a[m] < key
044	A04A	BMI 04A	
045	F200	CLA	
046	4013	ADD 013	r=m
047	3011	MOV 011	
048	C02A	BR 02A	

049	F100	NOP	
04A	F200	CLA	
04B	4013	ADD 013	l=m
04C	3010	MOV 010	
04D	C02A	BR 02A	Следующая итерация цикла while

Вывод: В ходе лабораторной работы были изучены и применены цикличные алгоритмы. Понимание различных видов циклов и их оптимизация позволили успешно решить поставленные задачи. Полученные навыки значительно улучшат дальнейшее программирование и работу с алгоритмами.