Matemática Discreta I - 2020 - 2^{do} semestre

Práctico 8: Relaciones (2^{da} Parte).

Ref. Grimaldi $7.3 \ \mathrm{y} \ 7.4$

Relaciones de equivalencia

Ejercicio 1 A cada función $f: A \to B$ se le asocia la relación R_f en A definida por aR_fb si f(a) = f(b). Probar que R_f es una relación de equivalencia.

Ejercicio 2 Para cada $n \in \mathbb{Z}^+$ se define la relación \equiv_n en \mathbb{Z} , llamada congruencia módulo n, en la forma: $a \equiv_n b$ si a - b es divisible por n.

- a. Demuestre que $a \equiv_n b \iff a \vee b$ dan el mismo resto al ser divididos por n.
- **b**. Pruebe que \equiv_n es una relación de equivalencia.
- **c**. Describa el conjunto cociente \mathbb{Z}/\equiv_n cuando n=3,2,1.
- **d**. Pruebe que $|\mathbb{Z}/\equiv_n|$ tiene n elementos.

Ejercicio 3 Para cada $n \in \mathbb{N}$ sea R_n el número de relaciones de equivalencia diferentes que pueden definirse en un conjunto dado con n elementos. Para cada $n, i \in \mathbb{N}$ sea S(n, i) el número de Stirling del segundo tipo. Pruebe que:

- **a**. Para todo $n \in \mathbb{N}$ se cumple $R_{n+1} = C_0^n R_n + C_1^n R_{n-1} + \cdots + C_n^n R_0$.
- **b.** Para todo $n \in \mathbb{Z}^+$ se cumple, $R_n = S(n,1) + S(n,2) + \cdots + S(n,n)$.

Ejercicio 4 En cada uno de los siguientes casos, pruebe que R es una relación de equivalencia en A y describa el conjunto cociente A/R:

- **a**. $A = \mathbb{Z}$ y aRb si $a^2 = b^2$.
- **b**. (Parcial 2000) $A = \mathbb{Z}$ y aRb si a^2 y b^2 dan el mismo resto al dividirlos por 5.
- c. $A = \mathbb{Z} \text{ y } aRb \text{ si } mcd(a, 10) = mcd(b, 10).$
- **d**. $A = \mathbb{R}^2$ y vRw si existe $a \in \mathbb{R}$ no nulo tal que w = av.

Ejercicio 5 En cada caso hallar la cantidad de relaciones de equivalencia R en $\{0, 1, \dots, 7\}$ tales que:

1

- **a**. #[0] = 2 y #[1] = 4.
- **b**. #[0] < #[1] < #[2] y $(3,4) \in R$.

Relaciones de orden

Ejercicio 6 Sea $A = \{a, b, c\}$, calcular la cantidad de relaciones de orden que hay sobre A.

Ejercicio 7

- a. Halle el número de relaciones de equivalencia en $\{1, 2, 3, 4\}$ que contienen a la relación $\{(1, 2); (3, 4)\}$.
- b. Ídem para relaciones de orden.

Ejercicio 8 Sea $A = \{1, 2, ..., 100\}$. ¿Qué hay más, relaciones de equivalencia o de orden en A?

Ejercicio 9 Para ensamblar cierto producto hay que realizar las 11 tareas T_1, T_2, \ldots, T_{11} en el siguiente orden parcial cuyo diagrama de Hasse se muestra en la Figura 1 (a). Escriba una lista de instrucciones de

Figura 1:

modo tal que, al ejecutarlas según la lista, el resultado final sea el producto correctamente ensamblado.

Ejercicio 10 Un empleado de un centro de cómputos, tiene que ejecutar 10 programas P_0 , P_1 , ..., P_9 que, debido a las prioridades, están restringidos a las siguientes condiciones: $P_9 > P_7$, P_2 ; $P_7 > P_6$; $P_6 > P_4$; $P_2 > P_8$, P_5 ; $P_5 > P_3$, P_0 ; $P_8 > P_3$, P_4 ; P_3 , P_4 , $P_0 > P_1$; donde, por ejemplo, $P_i > P_j$ significa que el programa P_i debe realizarse antes que el programa P_j . Determine un orden de ejecución de estos programas de modo que se satisfagan las restricciones.

Ejercicio 11 ¿Cuáles de los diagramas de Hasse de la Figura 1 (b) representa un retículo?

Ejercicio 12 Demuestre que si A es un conjunto finito $y \le es$ un orden en A entonces A tiene algún elemento maximal y alguno minimal. Demuestre también que si (A, \le) es un retículo (látice) y A es finito entonces A tiene mínimo y máximo. ¿Es cierto alguno de estos resultado si A es infinito? (en caso afirmativo dé una demostración y en caso negativo un contraejemplo).

Ejercicio 13 Muestre que en un conjunto con 61 personas, o bien hay una sucesión de 13 personas cada una de las cuales desciende de la siguiente, o bien hay un grupo de 6 personas ninguna de las cuales es descendiente de alguna otra.

Ejercicio 14 Para cada uno de los órdenes (A, \leq) siguientes, dibuje el diagrama de Hasse y determine si se trata de un retículo:

- **a**. $A = \{1, 2, 3, 4, 12\}$ y \leq es el orden de divisibilidad ($x \leq y$ sii y es múltiplo de x).
- **b**. A es el conjunto de todos los subconjuntos de $\{1, 2, 3\}$ y \leq es la inclusión \subseteq .

Ejercicio 15 Sea A un conjunto y R una relación transitiva y reflexiva en A. Considere la relación en A definida por $S = R \cap R^{-1}$. Pruebe que S es una relación de equivalencia y que

$$[a]T[b]$$
 si aRb

define una relación de orden en el conjunto cociente A/S.

EJERCICIOS COMPLEMENTARIOS

Ejercicio 16 (Del 1^{er} parcial 2001)

Se considera el siguiente diagrama de Hasse correspondiente a un orden parcial R definido en el conjunto $A = \{a, b, c, d, e, f, g, h\}$. Indique cuáles de las siguientes afirmaciones es correcta:

- **a**. (A, R) es un retículo.
- **b**. El elemento a es un máximo; g y f son minimales.
- c. Existen exactamente 7 cadenas de cardinal 3, una de las cuales es $\{a, b, h\}$.

Ejercicio 17 (Examen 2001)

Sea R una relación binaria sobre un conjunto con 3 elementos, cuya matriz de 0s y 1s es:

$$\begin{pmatrix} 1 & 1 & 1 \\ x & 1 & y \\ z & w & 1 \end{pmatrix}$$

¿Cuáles de las siguientes afirmaciones es correcta?:

- a. R es una relación de equivalencia si y solo si x = y = z = w = 1.
- **b**. Si R es un retículo entonces $y + w \ge 1$.
- c. Para cualquier valor de x, y, z y w la relación R es necesariamente un orden parcial.

Ejercicio 18 Sea A el conjunto de naturales n mayores que 1 que dividen a 60. Sea R la relación en A definida por: aRb si a divide a b. ¿Es R es un orden parcial? ¿total? ¿retículo? Halle todos los elementos maximales y minimales de (A, R). ¿Cuál es el cardinal más grande de una cadena en (A, R)? ¿Y el de una anticadena? ¿Cuántas cadenas de largo 2 hay?