## CS & IT ENGINEERING



**Finite Automata** 

**DPP 05 Discussion** 



Mallesham Devasane Sir





TOPICS TO BE COVERED

01 Question

02 Discussion



Design deterministic finite automata of set of all binary strings over  $\Sigma = \{0,1\}$ , where every binary string starting with 00100. How many minimum numbers of states required for above FA?





- B. 5
- <u>C.</u> 7
  - D. 4





How many states are required to design a minimal DFA for set of all binary strings over  $\Sigma = \{0, 1\}$  where every binary string on the string of the string



Which of the following is correct design of a minimal DFA for set of all strings over  $\Sigma = \{a, b\}$  where every string does not start with bb?



## Which of the following statement is/are correct?





DFA is possible for every regular language.

- B.
- DFA is also possible for some non-regular languages.
- C

DFA is possible for both finite language and regular infinite language.



There exist only 1 unique DFA for every regular language.



## How many states required to design a minimal DFA for L = {X ba |



 $X \in \{a, b\} *\}?$ 

[NAT]

$$(a+b)^{*}ba$$

$$min=ba$$

$$+2+1$$

$$=3 \text{ States}$$



## Number of final states required to design a minimal DFA for L =







