Formale Grundlagen der Informatik 3

Organisatorisches

Prof. Stefan Katzenbeisser

Security Engineering Group Technische Universität Darmstadt

skatzenbeisser@acm.org http://www.seceng.informatik.tu-darmstadt.de

Organisatorisches (1)

Veranstalter

- Stefan Katzenbeisser, S4|14, 4.3.25
- Christian Schlehuber, S4|14, 4.2.21

Sprechzeiten: nach Vereinbarung

Website der Veranstaltung:

http://www.seceng.informatik.tu-darmstadt.de/teaching/ws14-15/fgdi3/ (nur allgemeine Informationen)

Organisatorisches (2)

Moodle-Kurs:

https://moodle.informatik.tu-darmstadt.de/course/view.php?id=375

- Materialien (Folien, Übungsblätter)
- Nachrichten/Foren
- Labs (Aufgaben/Abgaben/Bewertungen)

Voraussetzungen für die Klausur:

• Erlangen der Studienleistung

Erlangen der Studienleistung:

- Mindestens 50% der Punkte aus den Labs nötig
- Bei über 80% Bonus von 0,3

Aufbau der Veranstaltung

Thema	# Vorlesungen	# Übungen	Lab
Organisation	1		
Einführung, Motivation	1		
Logic, CTL, LTL, Komplexität	3	1	
SPIN / Promela	3	2	X
CBMC	1	1	Χ
JML & KeY	4	2	X
Wiederholung	1		
	14	6	3

^{!!!} Der Inhalt der Vorlesung hat sich im Vergleich zum WS 13/14 geändert !!!

Übungen

- Erhältlich über Moodle Kurs
- Beginn ab Anfang November
- Übungsgruppen werden angeboten (Registrierung über Moodle!)
- Jede Übung erstreckt sich über zwei Wochen
 - Woche 1: Diskussion der Übungsaufgabe und Klärung von Fragen aus der Vorlesung
 - Woche 2: Vorstellung und Diskussion der Lösung der Übung
- Es sollte versucht werden die Übung selbst vor Veröffentlichung der Lösung zu lösen
- Übungen sind nicht verpflichtend, werden aber sehr empfohlen
- Einige Übungen erfordern die Nutzung von Tools
 - Laptop mitbringen (falls möglich)

Labs

- 3 Labs über das Semester verteilt
 - Veröffentlichung/Abgabe über Moodle Deadlines:
 - Lab 1: 18.11.2014 (00:01) / 01.12.2014 (23:59)
 - Lab 2: 16.12.2014 (00:01) / 12.01.2014 (23:59)
 - Lab 3: 20.01.2014 (00:01) / 02.02.2014 (23:59)
 - Mehr Informationen zur Abgabe sind in der Beschreibung der Labs enthalten
- Labs sind verpflichtend und werden korrigiert/bewertet
 - 50% der Punkte für Studienleistung erforderlich
 - >80% führt zu Notenbonus von 0,3
- Bearbeitung in Teams á 4 Personen
 - Team kann via Moodle registriert werden
 - Wer kein Team findet wird entsprechend zugeteilt
 - Registrierung ab 21.10.2014 möglich

Zeitplan (1)

14.10.2014	Organisatorisches [CS]
21.10.2014	Motivation für Modellierung und Model-Checking [SK]
28.10.2014	Einführung in CTL und Model-Checking [SK]
03.11.2014	Beginn des Übungsbetriebs
04.11.2014	Einführung in SPIN und PROMELA [CS]
11.11.2014	LTL, Syntax und Semantik [SK]
18.11.2014	SPIN (Theorie) [SK]
18.11.2014	Ausgabe Lab 1 (SPIN)
25.11.2014	Komplexität [SK]
01.12.2014	Deadline Lab 1
02.12.2014	Besprechung Lab 1 und Wiederholung [CS]
09.12.2014	Concurrency, Vertiefung SPIN, Safety, Lifeness [SK]
16.12.2014	CBMC [SK]
16.12.2014	Ausgabe Lab 2 (CBMC)
12.01.2014	Deadline Lab 2 [+2 Wochen wegen Feiertagen]

Zeitplan (2)

13.01.2015	JML [SK]
20.01.2015	Dynamic Logic / KeY [SK]
20.01.2015	Ausgabe Lab 3 (KeY)
27.01.2015	KeY Fortsetzung + Lab 2 Besprechung [SK/CS]
02.02.2015	Deadline Lab 3
03.02.2015	Loop Invariants [SK]
10.02.2015	Prüfungsvorbereitung, Wiederholung + Lab 3 Besprechung [SK/CS]
Tbd	Klausur

Nützliche Literatur

Clarke, Grumberg and Peled: **Model Checking**, MIT Press, 1999.

Ben-Ari: Principles of the Spin Model Checker, Springer, 2008.

www.springerlink.com/content/978-1-84628-769-5

(aus dem Uni-Netz frei abrufbar)

Huth and Ryan: Logic in Computer Science. Modelling and reasoning about systems, Cambridge University Press, 2000.

Beckert, Hähnle and Schmitt: **Verification of Object-Oriented Software: The KeY Approach**, Springer, 2006.

www.springer.com/computer/ai/book/978-3-540-68977-5 (aus dem Uni-Netz frei abrufbar)

Zur Vertiefung der Themen empfehlenswert, aber zum Bestehen nicht erforderlich!

Voraussetzungen

Wissen aus den folgenden Bereichen ist von Vorteil:

- FGdI I/II: Logik, Automatentheorie
- Nebenläufige Programmierung
- Generelle Programmierkenntnisse

Sollten auf einem der Gebiete noch keine Erfahrungen vorhanden sein:

- Keine Angst, alle Themen werden kurz eingeführt
- Einfach die Tutoren fragen

Benötigte Software

- Für die Bearbeitung der Übungen und Labs ist Software erforderlich
 - Anleitungen für die Installation via Moodle erhältlich
 - Bitte innerhalb der nächsten Woche installieren und anhand der Beispiele testen
 - Fragen zur Installation direkt über das Forum im Moodle stellen

Benötigte Software

SPIN:

http://spinroot.com/ (SPIN main page)

http://epispin.ewi.tudelft.nl/ (SPIN plugin by TU Delft)

http://abu.se.informatik.tu-darmstadt.de/sefm/spin/ (Online Tool)

CBMC:

http://www.cprover.org/cbmc/

JML/KeY:

http://www.key-project.org

http://www.key-project.org/~key/download/releases/2.2.3/

Bitte die Anleitungen zur Installation in Moodle beachten!

ToDo-Liste der heutigen Vorlesung

- In TUCaN für die Veranstaltung anmelden (falls noch nicht geschehen)
- Im Moodle Kurs der Veranstaltung anmelden https://moodle.informatik.tu-darmstadt.de/course/view.php?id=375
- Im Moodle für eine Übungsgruppe anmelden

Anmeldezeitraum: 14.10.14 – 16:15 bis 21.10.14 – 23:55

Zuteilung: 22.10.14 (vormittags)

Tauschbörse: 22.10.14 – 12:00 bis 29.10.14 – 12:00

- Eine Lab Gruppe mit 3 anderen Studenten bilden (Anmeldung via Moodle folgt in der kommenden Woche)
- SPIN, CBMC und KeY einrichten und testen
 - Anleitungen in Moodle beachten!

