Feature-Based Dynamic Matching

Akshit Kumar

Joint work with Yilun Chen, Yash Kanoria and Wenxin Zhang

k: kandua

Home services platforms which provide ondemand services like cleaning, maintenance, etc.

k: kandua

Home services platforms which provide ondemand services like cleaning, maintenance, etc.

Salient Facets of these platforms...

k: kandua

Home services platforms which provide ondemand services like cleaning, maintenance, etc.

Salient Facets of these platforms...

 Have access to a pool of heterogeneous service providers which are differentiated by their features (eg. location, rating, hours of operation)

Home services platforms which provide ondemand services like cleaning, maintenance, etc.

Salient Facets of these platforms...

- Have access to a pool of heterogeneous service providers which are differentiated by their features (eg. location, rating, hours of operation)
- Customers arrive online and specify requests and service preferences (eg. location, time, price)

Home services platforms which provide ondemand services like cleaning, maintenance, etc.

Salient Facets of these platforms...

- Have access to a pool of heterogeneous service providers which are differentiated by their features (eg. location, rating, hours of operation)
- Customers arrive online and specify requests and service preferences (eg. location, time, price)
- Customers need to be matched in near real time to a service provider

Home services platforms which provide ondemand services like cleaning, maintenance, etc.

Salient Facets of these platforms...

- Have access to a pool of heterogeneous service providers which are differentiated by their features (eg. location, rating, hours of operation)
- Customers arrive online and specify requests and service preferences (eg. location, time, price)
- Customers need to be matched immediately and irrevocably to a service provider

Key Operational Challenge

How should centralized matching platforms match customers arriving over time to maximize overall quality of matches generated?

We study dynamic matching in two-sided markets with heterogeneous demand and supply

We study dynamic matching in two-sided markets with heterogeneous demand and supply

Motivated by applications, we assume a spatial structure on the type spaces and matching functions

We study dynamic matching in two-sided markets with heterogeneous demand and supply

Motivated by applications, we assume a spatial structure on the type spaces and matching functions

Myopic policies like Greedy are highly sub-optimal

We study dynamic matching in two-sided markets with heterogeneous demand and supply

Motivated by applications, we assume a spatial structure on the type spaces and matching functions

Myopic policies like Greedy are highly sub-optimal

We design a simple and near-optimal policy SOAR

We study dynamic matching in two-sided markets with heterogeneous demand and supply

Motivated by applications, we assume a spatial structure on the type spaces and matching functions

Myopic policies like Greedy are highly sub-optimal

We design a simple and near-optimal policy SOAR

Technical Idea: bridging online and offline matching

We study dynamic matching in two-sided markets with heterogeneous demand and supply

Motivated by applications, we assume a spatial structure on the type spaces and matching functions

Myopic policies like Greedy are highly sub-optimal

We design a simple and near-optimal policy SOAR

Technical Idea: bridging online and offline matching

Supply is represented by a **feature** vector in a d-dimensional space

Platform has n supply units drawn i.i.d from distribution Q

At time t, a demand unit with weight vector is drawn i.i.d from known P

Platform must irrevocably match a demand unit to supply unit

Platform must irrevocably match a demand unit to supply unit

The matching quality is measured by the dot product $\langle \hat{r}, \psi \rangle$

Both demand and supply leave upon matching

The process repeats for a total of n time steps

Objective

Platforms' Objective

maximize the expected average match quality

$$\max_{\pi} \frac{1}{n} \mathbb{E}\left[\sum_{k=1}^{n} \langle X_k, Y_{\pi(k)} \rangle\right]$$

equivalently, minimize the **regret** with respect to the fluid benchmark fluid benchmark is the optimal transport between the demand and supply distribution

Objective & Desiderata

Platforms' Objective

maximize the expected average match quality

$$\max_{\pi} \frac{1}{n} \mathbb{E}\left[\sum_{k=1}^{n} \langle X_k, Y_{\pi(k)} \rangle\right]$$

equivalently, minimize the **regret** with respect to the fluid benchmark fluid benchmark is the optimal transport between the demand and supply distribution

Algorithmic Desiderata

"simple" dynamic matching algorithms with o(1) (vanishing) regret

This Work

Dynamic two-sided matching with few types

Talluri & van Ryzin (2004); Vera & Banerjee (2021); Banerjee, Freund & Lykouris (2022)

This Work

Dynamic two-sided matching with few types

Talluri & van Ryzin (2004); Vera & Banerjee (2021); Banerjee, Freund & Lykouris (2022)

This Work

infinitely many types

Dynamic two-sided matching with few types

Talluri & van Ryzin (2004); Vera & Banerjee (2021); Banerjee, Freund & Lykouris (2022)

Dynamic stochastic matching with many types

Manshadi, Gharan & Saberi (2012)

This Work

infinitely many types

Dynamic two-sided matching with few types

Talluri & van Ryzin (2004); Vera & Banerjee (2021); Banerjee, Freund & Lykouris (2022)

Dynamic stochastic matching with many types

Manshadi, Gharan & Saberi (2012)

This Work

infinitely many types

spatial structure on type space

Dynamic two-sided matching with few types

Talluri & van Ryzin (2004); Vera & Banerjee (2021); Banerjee, Freund & Lykouris (2022)

Dynamic stochastic matching with many types

Manshadi, Gharan & Saberi (2012)

Static Spatial Matching and Empirical OT

Ajtai, Komlos & Tusnady (1984); Talagrand (1992,1994); Shor (1986, 1991); Ledoux (2019); Manole & Niles-Weed (2021)

This Work

infinitely many types

spatial structure on type space

Dynamic two-sided matching with few types

Talluri & van Ryzin (2004); Vera & Banerjee (2021); Banerjee, Freund & Lykouris (2022)

Dynamic stochastic matching with many types

Manshadi, Gharan & Saberi (2012)

Static Spatial Matching and Empirical OT

Ajtai, Komlos & Tusnady (1984); Talagrand (1992,1994); Shor (1986, 1991); Ledoux (2019); Manole & Niles-Weed (2021)

This Work

infinitely many types

spatial structure on type space

dynamic demand arrivals

Dynamic two-sided matching with few types

Talluri & van Ryzin (2004); Vera & Banerjee (2021); Banerjee, Freund & Lykouris (2022)

Dynamic stochastic matching with many types

Manshadi, Gharan & Saberi (2012)

Static Spatial Matching and Empirical OT

Ajtai, Komlos & Tusnady (1984); Talagrand (1992,1994); Shor (1986, 1991); Ledoux (2019); Manole & Niles-Weed (2021)

Dynamic Spatial Matching with identical supply and demand distributions

Gupta, Guruganesh, Peng & Wajc (2019); Besbes, Castro & Lobel (2022) Akbarpour, Alimohammad, Li & Saberi (2022); Kanoria (2022)

This Work

infinitely many types

spatial structure on type space

dynamic demand arrivals

Dynamic two-sided matching with few types

Talluri & van Ryzin (2004); Vera & Banerjee (2021); Banerjee, Freund & Lykouris (2022)

Dynamic stochastic matching with many types

Manshadi, Gharan & Saberi (2012)

Static Spatial Matching and Empirical OT

Ajtai, Komlos & Tusnady (1984); Talagrand (1992,1994); Shor (1986, 1991); Ledoux (2019); Manole & Niles-Weed (2021)

Dynamic Spatial Matching with identical supply and demand distributions

Gupta, Guruganesh, Peng & Wajc (2019); Besbes, Castro & Lobel (2022) Akbarpour, Alimohammad, Li & Saberi (2022); Kanoria (2022)

This Work

infinitely many types

spatial structure on type space

dynamic demand arrivals

different distributions

Dynamic two-sided matching with few types

Talluri & van Ryzin (2004); Vera & Banerjee (2021); Banerjee, Freund & Lykouris (2022)

Dynamic stochastic matching with many types

Manshadi, Gharan & Saberi (2012)

Static Spatial Matching and Empirical OT

Ajtai, Komlos & Tusnady (1984); Talagrand (1992,1994); Shor (1986, 1991); Ledoux (2019); Manole & Niles-Weed (2021)

Dynamic Spatial Matching with identical supply and demand distributions

Gupta, Guruganesh, Peng & Wajc (2019); Besbes, Castro & Lobel (2022) Akbarpour, Alimohammad, Li & Saberi (2022); **Kanoria (2022)**

Stochastic Assignment Problem in 1D

Derman, Lieberman & Ross (1972); Su & Zenios (2005); Chen, Wang, Zeevi & Zhou (2021)

This Work

infinitely many types

spatial structure on type space

dynamic demand arrivals

different distributions

Dynamic two-sided matching with few types

Talluri & van Ryzin (2004); Vera & Banerjee (2021); Banerjee, Freund & Lykouris (2022)

Dynamic stochastic matching with many types

Manshadi, Gharan & Saberi (2012)

Static Spatial Matching and Empirical OT

Ajtai, Komlos & Tusnady (1984); Talagrand (1992,1994); Shor (1986, 1991); Ledoux (2019); Manole & Niles-Weed (2021)

Dynamic Spatial Matching with identical supply and demand distributions

Gupta, Guruganesh, Peng & Wajc (2019); Besbes, Castro & Lobel (2022) Akbarpour, Alimohammad, Li & Saberi (2022); **Kanoria (2022)**

Stochastic Assignment Problem in 1D

Derman, Lieberman & Ross (1972); Su & Zenios (2005); Chen, Wang, Zeevi & Zhou (2021)

This Work

infinitely many types

spatial structure on type space

dynamic demand arrivals

different distributions

high dimensional features

Objectives & Desiderata

Platforms Objective

maximize the expected average match quality

$$\max_{\pi} \frac{1}{n} \mathbb{E}[\sum_{k=1}^{n} \langle X_k, Y_{\pi(k)} \rangle]$$

equivalently, minimize the **regret** with respect to the fluid benchmark **fluid benchmark** is the optimal transport between the demand and supply distribution

Algorithmic Desiderata

"simple" dynamic matching algorithms with o(1) (vanishing) regret

In A Nutshell

We study dynamic matching in two-sided markets with heterogeneous demand and supply

Motivated by applications, we assume a spatial structure on the type spaces and matching functions

Myopic policies like Greedy are highly sub-optimal

We design a simple and near-optimal policy SOAR

T: Technical Idea: bridging online and offline matching

Supply distribution is uniform over [0,0.5]

Demand distribution is uniform over [0.5,1]

Platform has *n* supply units drawn i.i.d from *Q*

Demand arrives, drawn i.i.d from distribution P

Greedy produces a random matching between demand and supply

Expected average matching quality of Greedy is 3/16 for any n

Greedy produces a random matching between demand and supply

Expected average matching quality of Greedy is 3/16 for any n

In the fluid limit, demand unit x is matched to supply unit x - 0.5 Value of the fluid benchmark is 5/24

Greedy produces a **random** matching between demand and supply Expected average matching quality of Greedy is 3/16 for any n

In the fluid limit, demand unit x is matched to supply unit x - 0.5 Value of the fluid benchmark is 5/24

Greedy is not forward-looking and hence results in nonvanishing regret

In A Nutshell

We study dynamic matching in two-sided markets with heterogeneous demand and supply

Motivated by applications, we assume a spatial structure on the type spaces and matching functions

Myopic policies like Greedy are highly sub-optimal

We design a simple and near-optimal policy SOAR

Technical Idea: bridging online and offline matching

demand unit arrives

a future demand scenario

demand unit arrives

a future demand scenario

a future demand scenario

Optimize

for the simulated scenario

a future demand scenario

Optimize

for the simulated scenario

compute the optimal weighted bipartite matching

a future demand scenario

Optimize

for the simulated scenario

compute the optimal weighted bipartite matching

a future demand scenario

Optimize

for the simulated scenario

Assign

based on the optimal matching

a future demand scenario

Optimize

for the simulated scenario

Assign

based on the optimal matching

Repeat

with the remaining supply

match quality function $\varphi(X,Y) = \langle X,Y \rangle$ demand distribution P and supply distribution Q

match quality function $\varphi(X,Y) = \langle X,Y \rangle$ demand distribution P and supply distribution Q

	P, Q are smooth	P, Q are arbitrary
SOAR	$\tilde{\mathcal{O}} (n^{-(\frac{2}{d} \wedge 1)})$	$\tilde{\mathcal{O}} (n^{-(\frac{2}{d} \wedge \frac{1}{2})})$

match quality function $\varphi(X,Y) = \langle X,Y \rangle$ demand distribution P and supply distribution Q

	P, Q are smooth	P, Q are arbitrary
SOAR	$\tilde{\mathcal{O}}(n^{-(\frac{2}{d}\wedge 1)})$	$\tilde{\mathcal{O}} (n^{-(\frac{2}{d} \wedge \frac{1}{2})})$
Fundamental Limit	$\widetilde{\Omega} (n^{-(\frac{2}{d}\wedge 1)})$	$\widetilde{\Omega} (n^{-(\frac{2}{d} \wedge \frac{1}{2})})$

In A Nutshell

We study dynamic matching in two-sided markets with heterogeneous demand and supply

Motivated by applications, we assume a spatial structure on the type spaces and matching functions

Myopic policies like Greedy are highly sub-optimal

We design a simple and near-optimal policy SOAR

Technical Idea: bridging online and offline matching

Let U_k^{off} denote the expected average matching quality when matching k demand and supply units drawn i.i.d from P and Q respectively.

Let $U_k^{\rm off}$ denote the expected average matching quality when matching k demand and supply units drawn i.i.d from P and Q respectively. Then the expected average matching quality under SOAR is given as

$$U_n^{\text{SOAR}} = \frac{1}{n} \sum_{k=1}^n U_k^{\text{off}}$$

Let U_k^{off} denote the expected average matching quality when matching k demand and supply units drawn i.i.d from P and Q respectively. Then the expected average matching quality under SOAR is given as

$$U_n^{\text{SOAR}} = \frac{1}{n} \sum_{k=1}^n U_k^{\text{off}}$$

Given n i.i.d supply units, each supply unit is equally likely to be matched to the incoming demand (before observing the location of the demand unit)

Let U_k^{off} denote the expected average matching quality when matching k demand and supply units drawn i.i.d from P and Q respectively. Then the expected average matching quality under SOAR is given as

$$U_n^{\text{SOAR}} = \frac{1}{n} \sum_{k=1}^n U_k^{\text{off}}$$

Given n i.i.d supply units, each supply unit is equally likely to be matched to the incoming demand (before observing the location of the demand unit)

Let U_k^{off} denote the expected average matching quality when matching k demand and supply units drawn i.i.d from P and Q respectively. Then the expected average matching quality under SOAR is given as

$$U_n^{\text{SOAR}} = \frac{1}{n} \sum_{k=1}^n U_k^{\text{off}}$$

Given n i.i.d supply units, each supply unit is equally likely to be matched to the incoming demand (before observing the location of the demand unit)

Expected matching quality of SOAR with n i.i.d supply units is U_n^{off}

Let U_k^{off} denote the expected average matching quality when matching k demand and supply units drawn i.i.d from P and Q respectively. Then the expected average matching quality under SOAR is given as

$$U_n^{\text{SOAR}} = \frac{1}{n} \sum_{k=1}^n U_k^{\text{off}}$$

Given n i.i.d supply units, each supply unit is equally likely to be matched to the incoming demand (before observing the location of the demand unit)

Expected matching quality of SOAR with n i.i.d supply units is U_n^{off}

The remaining n-1 supply units are i.i.d

Let $U_k^{\rm off}$ denote the expected average matching quality when matching k demand and supply units drawn i.i.d from P and Q respectively. Then the expected average matching quality under SOAR is given as

$$U_n^{\text{SOAR}} = \frac{1}{n} \sum_{k=1}^n U_k^{\text{off}}$$

Meta Theorem for Regret

Let U_k^{off} denote the expected average matching quality when matching k demand and supply units drawn i.i.d from P and Q respectively. Then the expected regret of SOAR is given as

Regret(SOAR) =
$$U^{\text{fluid}} - U^{\text{SOAR}}_n = \frac{1}{n} \sum_{k=1}^{n} (U^{\text{fluid}} - U^{\text{off}}_k)$$

Meta Theorem for Regret

Let U_k^{off} denote the expected average matching quality when matching k demand and supply units drawn i.i.d from P and Q respectively. Then the expected regret of SOAR is given as

Regret(SOAR) =
$$U_n^{\text{fluid}} - U_n^{\text{SOAR}} = \frac{1}{n} \sum_{k=1}^{n} (U_n^{\text{fluid}} - U_k^{\text{off}})$$

Well studied object in the empirical optimal transport literature

(e.g.; rate of convergence of empirical Wasserstein distance)

Meta Theorem for Regret

Let U_k^{off} denote the expected average matching quality when matching k demand and supply units drawn i.i.d from P and Q respectively. Then the expected regret of SOAR is given as

Regret(SOAR) =
$$U_n^{\text{fluid}} - U_n^{\text{SOAR}} = \frac{1}{n} \sum_{k=1}^{n} (U_n^{\text{fluid}} - U_k^{\text{off}})$$

Well studied object in the empirical optimal transport literature

(e.g.; rate of convergence of empirical Wasserstein distance)

	P, Q are smooth	P, Q are arbitrary
SOAR	$\tilde{\mathcal{O}}(n^{-(\frac{2}{d}\wedge 1)})$	$\tilde{\mathcal{O}} (n^{-(\frac{2}{d} \wedge \frac{1}{2})})$
Fundamental Limit	$\widetilde{\Omega} (n^{-(\frac{2}{d}\wedge 1)})$	$\widetilde{\Omega} (n^{-(\frac{2}{d} \wedge \frac{1}{2})})$

Extensions

- Our model can handle the case of scarce supply by utilizing dummy supply units
- Vanishing regret for dot product quality function with scarce supply and rejection cost
- Near-optimal guarantees for a general class of quality functions $\varphi(X,Y) = -||X-Y||^p$ (dot product is a special case with p=2)

	P, Q are uniform	P, Q are arbitrary
SOAR	$\tilde{\mathcal{O}}(n^{-(\frac{p}{d}\wedge 1)})$	$\tilde{\mathcal{O}} (n^{-(\frac{p}{d} \wedge \frac{1}{2})})$
Fundamental Limit	$\widetilde{\Omega} (n^{-(\frac{p}{d} \wedge 1)})$	$\widetilde{\Omega} (n^{-(\frac{p}{d}\wedge \frac{1}{2})})$

Resolves one of the open problems in Kanoria (2022)

Summary

No. of service providers n

Summary

No. of service providers n

Summary

https://ssrn.com/abstract=4451799

No. of service providers n

So long, and Thanks for all the fish

Appendix

match quality function $\varphi(X,Y) = \langle X,Y \rangle$ demand distribution P and supply distribution Q

	P, Q are smooth	P, Q are arbitrary
SOAR	$\tilde{\mathcal{O}}(n^{-(\frac{2}{d}\wedge 1)})$	$\tilde{\mathcal{O}} (n^{-(\frac{2}{d} \wedge \frac{1}{2})})$
Fundamental Limit	$\widetilde{\Omega} (n^{-(\frac{2}{d}\wedge 1)})$	$\widetilde{\Omega} \ (n^{-(\frac{2}{d} \wedge \frac{1}{2})})$

 $(NND)^2$ is a lower bound on regret and $NND \sim n^{-1/d}$ $(\langle X,Y \rangle \equiv -||X-Y||^2)$ d=1 matching constraints leads to a tighter lower bound for arbitrary distributions, a simple example implies that $1/\sqrt{n}$ is a lower bound $(1/\sqrt{n} \gg (NND)^2)$ for $d \le 3$