Home Exercise 03

Viet-Hoa Nguyen

Martikelnummer: 2581721

20-00-0947 Deep Learning for Natural Language Processing

Technische Universität Darmstadt

11. May 2020

Problem 1: Backpropagation by hand

Color code: Preactivation, Activation, Error derivative

1. Forward pass

$$z_1 = X.T = \begin{bmatrix} -1 & 1 \end{bmatrix}. \begin{bmatrix} 0.19 & -0.92 \\ -0.42 & -0.28 \end{bmatrix} = \begin{bmatrix} -0.61 & 0.64 \end{bmatrix}$$

 $a_1 = relu(z_1) = \begin{bmatrix} 0 & 0.64 \end{bmatrix}$

$$z_2 = a_1.U = [-0.61 \quad 0.64]. \begin{bmatrix} 0.61 \\ -1.5 \end{bmatrix} = -0.96$$

 $a_2 = tanh(z_2) = -0.7443$

$$z_3 = a_2.V = -0.96.[1.5 -0.81 -0.24] = [-1.1164 0.6029 0.1786]$$

 $a_3 = sigmoid(z_3) = [0.7533 0.3537 0.4555]$

$$z_4 = a_3. W = \begin{bmatrix} 0,7533 & 0,3537 & 0,4555 \end{bmatrix}. \begin{bmatrix} -1,4 & -0,81 \\ -2,2 & -1,7 \\ -0,27 & -0,73 \end{bmatrix} = \begin{bmatrix} -1,9557 & -1,5439 \end{bmatrix}$$

 $a_4 = sigmoid(a_4) = [0.8761 \quad 0.824]$

2. Backpropagation

$$\frac{\partial E}{\partial y} = \begin{bmatrix} \frac{\partial E}{\partial y_1} \\ \frac{\partial E}{\partial y_2} \end{bmatrix} = \begin{bmatrix} 1,7521 \\ -0,3519 \end{bmatrix}; \quad \frac{\partial E}{\partial p} = \begin{bmatrix} -0,225 \\ -0,3318 \\ -0,0141 \end{bmatrix}; \quad \frac{\partial E}{\partial q} = [-0,0004]; \quad \frac{\partial E}{\partial r} = \begin{bmatrix} 0,0002 \\ -0,0004 \end{bmatrix}$$

Result:

$$\begin{split} \frac{\partial E}{\partial w_{1,1}} &= 1,7521.\,sig(-1,9557).\,(1-sig(-1,9557).0,7533\,=\,0,1433\\ \frac{\partial E}{\partial v_{1,3}} &= -0,0141.\,sig(0,1786).\,\big(1-sig(0,1786)\big).\,(-0,7443) = 0,0026\\ \frac{\partial E}{\partial t_{1,1}} &= 0 \end{split}$$

Problem 2: Sentiment Polarity in Movie Reviews

2.2 MLP in Tensorflow

Test result for baseline model with activation function in the order relu, tanh, sigmoid.

Average mse loss over all epoch: 0,47060

Accuracy: 44,58%

2.3 Hyperparameters optimization

A. Known from the previous exercise

Could not find parameters that beat the baseline in 2.2

B. New parameters:

Learning rate: 0.001	Loss: 0,3180
Epoch: 1000	Accuracy: 30,08%
Hidden Layer 1: 30 neurons	Hidden Layer 1: 10 neurons

Learning rate: 0.001	Loss: 17,64
Epoch: 50	Accuracy: 40,05%
Hidden Layer 1: 50 neurons	Hidden Layer 1: 50 neurons
With L2 alpha = 0,01	

Learning rate: 0.001	Loss: 0.47546
Epoch: 50	Accuracy: 44.93%
Hidden Layer 1: 50 neurons	Hidden Layer 1: 50 neurons
With Adagrad	MSE Loss

Learning rate: 0.001	Loss: 17,64
Epoch: 50	Accuracy: 43,08%
Hidden Layer 1: 50 neurons	Hidden Layer 1: 50 neurons
With Adam	MSE Loss

Learning rate: 0.001	Loss: 17,64
Epoch: 50	Accuracy: 40,05%
Hidden Layer 1: 50 neurons	Hidden Layer 1: 50 neurons
With L2 alpha = 0,01	MSE Loss

Learning rate: 0.001	Loss: 17,64
Epoch: 50	Accuracy: 43,38%
Hidden Layer 1: 50 neurons	Hidden Layer 1: 80 neurons
With Adagrad	MSE Loss