Projeto 3: Decaimento radioativo e números aleatórios

Pedro de Carvalho Braga Ilídio Silva - 9762595

Maio de 2017

1 Introdução

As aproximações para cálculo diferencial estão presentes em quase todo computador atualmente. Elas são indispensáveis para automatizar os processos de integração e derivação, pois oferecem, com a desvantagem da imprecisão, algoritmos simples para realizar tais operações. O vigente projeto busca explirar essas características, demonstrando como desenvolver métodos computacionais para a resolução de problemas no âmbito do cálculo numérico.

2 Derivada numérica

Neste programa, criou-se funções FORTRAN para calcular derivadas numéricas da função matemática $f(x) = e^{2x} \sin x$. Cada função FORTRAN levava dois argumentos: $x \in h$; e retornava o resultado de uma das fórmulas a seguir:

- Derivada frontal de 2 pontos: $f'_f(x) = \frac{f(x+h) f(x)}{h}$
- Derivada traseira de 2 pontos: $f_t'(x) = \frac{f(x) f(x-h)}{h}$
- Derivada simétrica de 3 pontos: $f_{3s}'(x) = \frac{f(x+h) f(x-h)}{2h}$
- Derivada simétrica de 5 pontos: $f_{5s}'(x) = \frac{-f(x+2h)+8f(x+h)-8f(x-h)+f(x-2h)}{12h}$
- Derivada segunda simétrica de 3 pontos: $f_{3s}''(x) = \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$
- Derivada segunda simétrica de 5 pontos: $f_{5s}''(x) = \frac{-f(x-2h)+16f(x-h)-30f(x)+16f(x+h)-f(x+2h)}{12h^2}$

Todos as variáveis deste programa foram criadas com dupla precisão. Organizou-se os valores retornados pelas funções criadas, para x = 1 e diferentes valores de h, nas tabelas 1 e 2.

$f_{3s}'(1)$
J 38 (-)
19445 18.732008654443330
36334 16.521534013575828
58158 16.451152435731835
67747 16.428615849080597
07903 16.427911468286993
50879 16.427686064994784
74687 16.427679021131070
37548 16.427676767096777
19071 16.427676696677551
44015 16.427676674091174
29096 16.427676673558267
05596 16.427676673202996
39760 16.427676673202996
44222 16.427676672314817
40858 16.427676658992141
10730 16.427676685637493

Table 1: Derivadas numéricas de f(x) no ponto x=1 por meio de diferentes aproximações em função do passo h.

Em seguida, por meio de métodos não computacionais, chegou-se à real fórmula para a derivada de f(x):

$$f'(x) = e^{2x}(2\sin x + \cos x)$$

e para sua derivada segunda:

$$f''(x) = e^{2x}(3\sin x + 4\cos x)$$

Criou-se, a partir dessas últimas duas fórmulas, funções em FORTRAN para calcular o real valor das derivadas de f(x), fazendo uso das funções nativas DEXP, DSIN e DCOS. Os valores reais das derivadas para x = 1 e diferentes valores de h

	21 (;)	011 (;)	24. (;)
h	$f_{5s}'(1)$	$f_{3s}''(1)$	$f_{5s}''(1)$
0.500000000000000000	16.701685316827678	35.612333956325536	35.079577038485837
0.100000000000000001	16.427925967929394	34.665748324789895	34.622942836424549
5.0000000000000003E-002	16.427691909783839	34.633209722947093	34.622363522332883
1.000000000000000E-002	16.427676697379990	34.622760882569992	34.622325192201018
5.000000000000001E-003	16.427676674689096	34.622434071636121	34.622325134658162
1.000000000000000E-003	16.427676673177757	34.622329487810077	34.622325130924857
5.000000000000001E-004	16.427676673176499	34.622326225530742	34.622325142249132
1.000000000000000E-004	16.427676673177828	34.622325184585634	34.622325199388605
5.0000000000000002E-005	16.427676673208914	34.622326339217580	34.622326812912732
1.0000000000000001E-005	16.427676673151183	34.622349431856485	34.622367935573564
4.9999999999996E-006	16.427676673439844	34.622331668288105	34.622355353045961
9.9999999999995E-007	16.427676673128982	34.621194799910882	34.621120785042571
4.9999999999998E-007	16.427676672758906	34.631852940947283	34.635701714099312
9.9999999999995E-008	16.427676672314817	34.905411894214929	35.068244604493280
4.99999999999998E-008	16.427676657511846	34.106051316484816	34.194869158454821
1.000000000000000E-008	16.427676700440465	26.645352591003753	23.684757858670004

Table 2: Derivadas numéricas de f(x) no ponto x=1 por meio de diferentes aproximações em função do passo h.

h	$f_f'(1)$	$f_t'(1)$	$f_{3s}'(1)$
0.500000000000000000	11.207415470347506	6.5987515078152654	2.3043319812661203
0.100000000000000001	1.8271447566381127	1.6394300758408757	9.3857340398617595E-002
5.0000000000000003E-002	0.88930600562830264	0.84235448051905237	2.3475762554625135E-002
1.000000000000000E-002	0.17405298031623673	0.17217462850946319	9.3917590338676860E-004
5.0000000000000001E-003	8.6790880288873495E-002	8.6321290069307111E-002	2.3479510978319240E-004
1.000000000000000E-003	1.7320556561479350E-002	1.7301772926330727E-002	9.3918175743112897E-006
5.0000000000000001E-004	8.6579295102424680E-003	8.6532336025229029E-003	2.3479538597825922E-006
1.000000000000000E-004	1.7312101787965162E-003	1.7310223396620472E-003	9.3919567234479473E-008
5.0000000000000002E-005	8.6558165882166804E-004	8.6553465813921093E-004	2.3500341228555044E-008
1.0000000000000001E-005	1.7311266112329804E-004	1.7311083319526688E-004	9.1396401558085927E-010
4.99999999999996E-006	8.6556210227684005E-005	8.6555448113756484E-005	3.8105696376078413E-010
9.9999999999995E-007	1.7310623185551322E-005	1.7310571614359560E-005	2.5785595880734036E-011
4.9999999999998E-007	8.6579890208327015E-006	8.6579374496409400E-006	2.5785595880734036E-011
9.9999999999995E-008	1.7444082018869267E-006	1.7461329875345655E-006	8.6239282381939120E-010
4.9999999999998E-008	8.3846621379279895E-007	8.6683635203144149E-007	1.4185069119321270E-008
1.000000000000000E-008	1.4568704642670127E-007	1.2076647948333630E-007	1.2460283471682487E-008

Table 3: Valor absoluto dos desvios em relação aos resultados exatos das derivadas numéricas de f(x) no ponto x = 1 obtidas por meio de diferentes aproximações em função do passo h.

foram comparados com os retornados pelas funções numéricas, sendo suas diferenças absolutas $|\epsilon|$ apresentadas pelas tabelas 3 e 4.

Observa-se inicialmente que, conforme se diminui h, a precisão da aproximação aumenta: os valores das duas primeiras tabelas tendem aos valores esperados para f'(1), 16.427676673177210, e f''(1), 34.622325130868994; ao passo que $|\epsilon|$ mostrase cada vez menor nas tabelas 3 e 4.

Contudo, após atingir máxima precisão em algum valor de h diferente em cada caso, vê-se que acuidade dos valores começa a se perder, fato que se torna claro pelo posterior aumento de $|\epsilon|$ nas duas últimas tabelas apresentadas. Os valores ótimos de h, que geraram menor desvio das aproximações, obtidos pela análise das tabelas criadas então são:

- f'_f e f'_t : Como o posterior aumento de $|\epsilon|$ após queda inicial não foi observado nesses casos, não é possível saber ao certo se o valor de h que gerou o mínimo desvio é, de fato, o valor ótimo. Operações com h menores devem ser realizadas para se determinar isso.
- f_{3s}' : 9.999999999995E-007 e 4.9999999999998E-007 geraram ambos o mesmo valor de $|\epsilon|$, o menor obtido.
- f'_{5s} : 1.0000000000000000E-003
- f_{3s}'' :1.0000000000000000E-004
- f_{5s}'' :1.00000000000000000E-003

O comportamento constatado de $|\epsilon|$ é facilmente observado ao plotar-se $\log 10|\epsilon|$ em função do $\log 10h$ (Gráfico 1). Percebese que quanto maior a ordem de aproximação, embora sejam atingidos valores mais baixos para o desvio, maior é o h ótimo (abscissa do ponto mínimo de cada série no gráfico 1). Isto se deve ao fato de que $|\epsilon|$ diminui com dependência maior de h

h	$f_{5s}'(1)$	$f_{3s}''(1)$	$f_{5s}''(1)$
0.500000000000000000	0.27400864365046829	0.99000882545654179	0.45725190761684331
0.100000000000000001	2.4929475218371522E-004	4.3423193920901326E-002	6.1770555555540341E-004
5.0000000000000003E-002	1.5236606628832305E-005	1.0884592078099331E-002	3.8391463888842736E-005
1.000000000000000E-002	2.4202780224413800E-008	4.3575170099785510E-004	6.1332023904014932E-008
5.0000000000000001E-003	1.5118857277229836E-009	1.0894076712730794E-004	3.7891680904067471E-009
1.000000000000000E-003	5.4711790653527714E-013	4.3569410834720657E-006	5.5862869885459077E-011
5.0000000000000001E-004	7.1054273576010019E-013	1.0946617479135057E-006	1.1380137721062056E-008
1.000000000000000E-004	6.1817218011128716E-013	5.3716640024958906E-008	6.8519611318151874E-008
5.0000000000000002E-005	3.1704416869615670E-011	1.2083485856351217E-006	1.6820437380715703E-006
1.0000000000000001E-005	2.6027180410892470E-011	2.4300987490732950E-005	4.2804704570187369E-005
4.99999999999996E-006	2.6263435870532703E-010	6.5374191109413005E-006	3.0222176967242831E-005
9.9999999999995E-007	4.8228088189716800E-011	1.1303309581123244E-003	1.2043458264230367E-003
4.9999999999998E-007	4.1830361396932858E-010	9.5278100782891784E-003	1.3376583230318317E-002
9.999999999995E-008	8.6239282381939120E-010	0.28308676334593486	0.44591947362428641
4.9999999999998E-008	1.5665364117012359E-008	0.51627381438417785	0.42745597241417244
1.000000000000000E-008	2.7263254764875455E-008	7.9769725398652405	10.937567272198990

Table 4: Valor absoluto dos desvios em relação aos resultados exatos das derivadas numéricas de f(x) no ponto x = 1 obtidas por meio de diferentes aproximações em função do passo h.

quanto maior for a ordem de aproximação. Desta forma, enquanto h diminui, as aproximações de ordem mais elevada mais rapidamente atingem um valor de $|\epsilon|$ não suportado pela precisão utilizada, divergindo.

Figure 1: $log_{10}|\epsilon|$ das derivadas numéricas de f(x) no ponto x=1, obtidas por meio de diferentes aproximações, em função de $log_{10}h$.

Foram calculados somente os coeficientes de regressão linear do erro associado às derivadas de 2 pontos, pois no caso das demais, os problemas associados à precisão (aumento inesperado de $|\epsilon|$) impediriam que se constatasse a real ordem das aproximações. Para ambos os casos em que isso foi possível, obteve-se valor próximo de 1 para os coeficientes, exatamente como esperado de uma aproximação de primeira ordem e como mostrado no gráfico.

3 Integração numérica

Foram elaboradas duas funções FORTRAN de precisão dupla, TRAP e SIMP, para aplicar, respectivamente os métodos do Trapézio

$$\int_{a}^{b} f(x)dx \approx h[0.5f(a) + f(a+h) + f(a+2h) + f(a+3h) + \dots + f(b-h) + 0.5f(b)]$$

e de Simpson

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3}[f(a) + 4f(a+h) + 2f(a+2h) + 4f(a+3h) + 2f(a+4h)... + f(b)]$$

para cálculo de integrais numéricas no intervalo [0,1] à função $f(x) = e^{2x} \cos x/4$.

```
REAL*8 FUNCTION F(X)
  REAL*8 X
  F = DEXP(2*X)*DCOS(X/4.D0)
  RETURN
END FUNCTION F
REAL*8 FUNCTION TRAP(H)
  REAL*8 H
  TRAP=0.
  DO I = 1, 1/H - 1
     TRAP = TRAP + F(I*H)
  END DO
  TRAP = H * (TRAP + 0.5D0 * (F(0.0D0) + F(1.D0)))
  RETURN
END FUNCTION TRAP
REAL*8 FUNCTION SIMP(H)
  REAL*8 H
  SIMP=0.
  DO I = 1, 1/H - 1
     SIMP = SIMP + (3+(-1)**(I+1)) *F(I*H)
  END DO
  SIMP = H/3.D0 * (SIMP + (F(0.0D0) + F(1.D0)))
  RETURN
END FUNCTION SIMP
```

Retornos para diferentes valores de h das funções acima foram comparados ao valor real da integral (3.14479185512583..., com número de casas correspondente aos 8 bytes disponíveis). Os valores absolutos para o desvio ($|\epsilon|$) são compilados pela tabela 5.

h	TRAP	SIMP
2^{-1}	2.43581649151307E-01	1.31481107485722E-02
2^{-2}	6.15554143340575E-02	8.80002728306905E-04
2^{-3}	1.54308320420377E-02	5.59712780314747E-05
2^{-4}	3.86034323131934E-03	3.51362774608787E-06
2^{-5}	9.65250690605046E-04	2.19843700133282E-07
2^{-6}	2.41322980663039E-04	1.37440157033097E-08
2^{-7}	6.03313894593782E-05	8.59058157942627E-10
2^{-8}	1.50828876330777E-05	5.36890532032430E-11
2^{-9}	3.77072442159231E-06	3.35509398041722E-12
2^{-10}	9.42681266380418E-07	2.09610107049229E-13
2^{-11}	2.35670328585513E-07	2.08721928629529E-14
2^{-12}	5.89175819243337E-08	2.22044604925031E-15
2^{-13}	1.47294012542431E-08	3.10862446895043E-15

Table 5: Integral numérica de f(x) no intervalo [0,1] por meio de duas diferentes aproximações como função da partição do intervalo h.

E plotou-se $log_{10}|\epsilon|$ versus $log_{10}h$ para avaliar o comportamento do desvio (Gráfico 2).

Figure 2: Integral numérica de f(x) no intervalo [0,1] por meio das aproximações do Trapézio (TRAP) e de Simpson (SIMP) como função da partição do intervalo h.

Para os valores de h utilizados, não se observou perda de precisão da aproximação pelo método dos trapézios à medida que h diminuia, de forma que o valor mínimo de h (2^{-13}) gerou o valor mínimo de $|\epsilon|$. Disto decorre que o não é possível afirmar que h será o valor ótimo da aproximação para todo h nas vigentes condições de precisão, já que valores menores de h não foram testados.

No que se refere ao segundo caso, a aproximação de Simpson, observa-se claramente pelo gráfico que o último valor contrapôs a tendência de descida dos demais pontos. A isto se atrbui a causa da falta de precisão necessária, de forma que o valor ótimo de h para as condições de precisão utilizadas foi 2^{-12} .

A regressão linear revelou ordem de convergência muito próxima de 2 para a aproximação dos Trapézios, de fato como esperado, e aproximadamente 3.735 para o método de Simpson, para o qual esperava-se obter 4. O desvio, como claramente visto pelo Gráfico 2, se deve à não acuidade do valor da aproximação em $h=2^{13}$, devido aos problemas de alocamento de memória insuficiente.

A correção das adversidades encontradas deve se basear na utilização de mais espaço de memória para as quantias com as quais se trabalhou (pelo menos 16 bytes em vez de 8) e a utilização de mais valores de h para determinar mais precisamente seu valor ótimo.