北京理工大学\_\_2016\_ - \_2017\_学年 第\_\_\_学期

# <u>2015 级 电路分析基础 A 课程试卷 A 卷</u>

| 开课学院:信息与  | 自电子学院   | 任课教师:   |     |                  |     |  |
|-----------|---------|---------|-----|------------------|-----|--|
| 试卷用途:□期中  | ☑期末     | □补考     |     |                  |     |  |
| 考试形式: □开卷 | □半开卷    | ☑闭卷     |     |                  |     |  |
| 考试日期:     | 2017年1月 | 9 日     |     | 所需时间: <u>120</u> | _分钟 |  |
| 考试允许带:    | 文具、计算器  | Į.<br>Ā | _入场 |                  |     |  |
| 班级:       | 学号:     |         |     | 姓名:              |     |  |

考生承诺:"我确认在次考试是完全通过自己的劳力完成的。"

考生签名: \_\_\_\_\_

| 题序 | _  |    | 三  | 四  | 五. | 六  | 七 | 八 | 九  | 总分 |
|----|----|----|----|----|----|----|---|---|----|----|
| 满分 | 10 | 14 | 16 | 10 | 10 | 10 | 9 | 9 | 12 |    |
| 得分 |    |    |    |    |    |    |   |   |    |    |

注意: 1. 试卷正面答题,背面草稿; 2. 试卷不允许拆开; 3. 分析计算题要写过程。

#### 一、(本题共10分,包含2个小题)

1.(4 分)若将图 1.1(a)所示电路等效变换为图 1.1(b)所示电路,试求电压  $U_{OC}$  和电阻  $R_0$ 。



2. (6 分) 电路如图 1.2 所示,(1) 求电流 I; (2) 求电流源的功率 P。



### 二、(本题共14分,包含2个小题)

1. (6分) 电路如图 2.1 所示,(1)求电路的转移电压比  $H=\frac{\dot{U}_{o}}{\dot{U}_{i}}$ ;(2)若图示电路中仅能改变电阻  $R_{L}$ 的参数,则  $R_{L}$ 的参数为何值时, $R_{L}$ 消耗的功率最大。



2. (8分) 电路如图 2.2 所示,已知  $U_S = 20V$ , $R_1 = 2\Omega$ , $R_2 = 3\Omega$ , $R_3 = 6\Omega$ ,L = 2H。 开关 S 合于 a 时,电路已处于稳态,t = 0 时将开关 S 合向 b,试求开关 S 合向 b 后的  $i_L(t)$  及  $u_L(t)$ 。



## 三、(本题共16分,包含2个小题)

1. (8分) 在图 3.1 所示的正弦交流稳态电路相量模型中,已知有效值  $I_1 = 10$ A,有效值  $U_1 = 100$ V,(1) 求有效值  $I_2$ ;(2) 求有效值  $I_0$ ;(3) 求有效值  $U_0$ 。



2. (8分) 电路如图 3.2 所示,已知  $u_s(t)$ =20cos(100t+30°)V,  $i_s(t)$ =5cos200tA, (1) 求电流 i(t) 和 i(t)的有效值 I; (2) 求电压 u(t); (3) 求电压源的瞬时功率 p(t)。



四、 $(10 \, \mathcal{A})$  电路如图 4 所示,(1) 求电流 I; (2) 求受控源的功率 P,并判断是吸收功率还是提供功率。



五、(10 分) 在图 5 所示的二阶电路中,已知  $u_S(t)=20\varepsilon(t)$ ,  $R=5\Omega$ ,电路的全响应为  $u_C(t)=(4e^{-t}-2e^{-4t})+20$  V,t>0。(1) 列出图示电路以  $u_C(t)$ 为变量的二阶微分方程; (2) 求电路中元件 L 和 C 的参数;(3) 计算阻尼电阻,判断电路处于欠阻尼、临界阻尼还是过阻尼情况。



六、(10 分) 如图 6 所示电路中有两组耦合电感,第一组耦合电感  $L_1$ =1.5H, $L_2$ =1H, $M_1$ =1H ,第二组耦合电感  $L_3$ =3H, $L_4$ =2H, $M_2$ =2H。已知两组耦合电感之间无互感存在,且已知 $U_S=60\sqrt{2}\cos 2t$  V, $R_1$ =4 $\Omega$ , $R_2$ = $R_3$ =8 $\Omega$ ,C=0.25F,试求电流  $i_1$  和  $i_2$ 。



七、(9分) 由理想运算放大器构成的电路如图 7 所示,已知:  $G_1$ =2S, $G_2$ =1S, $G_3$ =0.5S, $G_4$ =0.5S, $G_5$ =4S, $G_6$ =3S,试求  $U_0$ 与  $U_{i1}$ 、 $U_{i2}$ 之间的运算关系式。



八、 $(9\, \%)$  电路相量模型如图  $8\, \text{所示}$ ,(1) 当阻抗  $Z_L=4+j4\Omega$ 时,求电压相量 $\overset{\bullet}{U}_1$ 和电流相量 $\overset{\bullet}{I}_1$ ;(2) 若  $Z_L$ 可任意改变,则当  $Z_L$ 为何值时可获最大功率,并求此最大功率  $P_{\text{max}}$ 。



### 九、(本题共12分,包含2个小题)

1.  $(6\, \mathcal{G})$  已知三相电源线电压的有效值  $U_{AB}$ =380V,频率 f=50Hz,三角形联结的三相对称负载如图 9.1 所示,已知  $Z_1$ = $Z_2$ = $Z_3$ =Z, 三相负载吸收的总功率为 3600W,功率因数为 0.6 (感性)。(1) 求 Z; (2) 若要在不改变负载工作状况的条件下提高功率因数,应接入什么补偿元件?应如何连接?试画在图 9.1 中。(3) 欲使功率因数提高到 0.9 (感性),补偿元件的参数应为多少?



2. (6分)一阶动态电路如图 9.2 所示,已知当 L=2H,  $i_L(0)$ =0,  $i_s(t)$ =2 $\epsilon(t)$ A 时,零状态响应为  $u_R(t)$ =(2+0.25 $\epsilon^{-t}$ ) $\epsilon(t)$ V。若将电路中电流源改换成  $i_s(t)$ =4 $\epsilon(t)$ A,电感 L 改换成 C=1F 的电容,其余不变,试求改换后的零状态响应  $u_R(t)$ 。



图 9.2