Exercice 1: ★

Calculer la somme des séries de terme général u_n suivantes :

(a)
$$u_n = \frac{1}{n(n+1)}$$
, (b) $u_n = \frac{n^2+1}{n!}$, (c) $u_n = \ln\left(1 - \frac{1}{n^2}\right)$.

Exercice 2: ★★

Calculer $\sum_{n=0}^{+\infty} \operatorname{Arctan}\left(\frac{1}{1+n+n^2}\right)$.

Exercice 3: ★★

Déterminer la nature des séries de terme général u_n suivantes :

(a)
$$u_n = \frac{1! + 2! + \dots + n!}{(n+3)!}$$
, (b) $u_n = \frac{\ln(n)}{n^3}$

(c)
$$u_n = \frac{\ln(n)}{n^2}$$
 (d) $u_n = \frac{\ln(n)}{n}$

(e)
$$u_n = \frac{(-1)^n}{n^2}$$
 (f) $u_n = \sqrt[n]{n+1} - \sqrt[n]{n}$.

Exercice 4: ★

Déterminer la nature de la série de terme général

$$u_n = \left(\frac{1}{n}\right)^{1 + \frac{1}{n}}.$$

Exercice 5: ★★★

Nature de la série de terme général $u_n = \frac{1}{n^{\alpha}} \sum_{i=1}^{n} k^{\beta}$ où $(\alpha, \beta) \in \mathbb{R}^2$.

Exercice 6: ★★★

Nature de $\sum u_n$ avec $u_n = \ln \left(\frac{\sqrt{n} + (-1)^n}{\sqrt{n+a}} \right)$.

Exercice 7: ★★★

Soit (u_n) une suite de réels strictement positifs.

- (1) Pour tout n, on pose $v_n = \frac{u_n}{1+u_n}$. Montrer que les séries $\sum u_n$ et $\sum v_n$ sont de même nature. (2) Même question avec $v_n = \frac{u_n}{u_1+u_2+\cdots+u_n}$. Pour la divergence, on pourra étudier $\sum \ln(1-v_n)$.

Exercice 8: ★★★★

Convergence de la série de terme général $u_n = \int_{n^2}^{n^2+1} \frac{\sin^2(\pi x)}{x^{\alpha}} dx$.

Exercice 9: ★★★★

Soient (a_n) une suite positive et (u_n) la suite définie par $u_0 > 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + \frac{a_n}{u_n}$. Montrer que la suite (u_n) converge si et seulement si la série de terme général a_n converge.

Exercice 10: ★★★

Donner la nature des séries de terme général u_n :

1)
$$u_n = \frac{(-1)^n}{n^{\alpha} + (-1)^n}$$
 2) $u_n = \cos\left(\pi n^2 \ln\left(\frac{n-1}{n}\right)\right)$ 3) $u_n = \ln\left(1 + \frac{\sin(n\pi/3)}{n}\right)$.

Exercice 11: ★★★★

On note (k_n) la suite croissante des entiers naturels non nuls dont l'écriture décimale ne comporte pas de 9. Quelle est la nature de $\sum \frac{1}{k_n}$?

Exercice 12: ★★★★

(1) Donner un développement asymptotique à deux termes de

$$u_n = \sum_{p=2}^n \frac{\ln p}{p}$$

On pourra introduire la fonction $f: t \mapsto (\ln t)/t$.

(2) À l'aide de la constante d'Euler, calculer

$$\sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n}$$