Li Ding

☐ liding256@gmail.com

♦ Mountain View, CA

https://liding.info

SUMMARY

My research focuses on aligning AI systems with human values and enable safe, self-directed agent learning in open-ended environments. I developed methods using reinforcement learning from human feedback (RLHF) to enhance the safety, creativity, and generalization of AI agents and large language models (LLMs).

EDUCATION

University of Massachusetts Amherst

Ph.D. in Computer Science

2020.9 - 2024.7

- Dissertation: "Optimization with intrinsic diversity: Towards generalizable, safe, and openended learning".
- Committee: Lee Spector (Chair), Scott Niekum, Subhransu Maji, Jeff Clune.

Massachusetts Institute of Technology

Graduate Study in EECS (non-degree)

2019.9 - 2020.1

University of Rochester

M.S. in Computational Science

2016.6 - 2017.5

• Advisor: Chenliang Xu

Google

Work

EXPERIENCE

Machine Learning Engineer

2024.7 - present

- Contributed to various Gemini post-training efforts, including performance optimization, model compatibility, and quality/safety evaluation.
- Led the development of Gemini models in PyTorch, optimizing it for efficient inference and fine-tuning on various hardware accelerators including next-generation chipsets.
- Developed novel methods for fine-tuning multimodal LLMs, focusing on unifying parameter-efficient fine-tuning (PEFT), quantization-aware training (QAT), and multi-task learning.
- Designed evaluation pipeline for multimodal LLMs involving quality and safety tests.

Massachusetts Institute of Technology

Research Engineer

2017.9 - 2020.6

- Developed novel methods in deep learning for video scene segmentation, led the development of the MIT DriveSeg dataset for autonomous driving scene segmentation.
- Developed a multi-task computer vision framework for joint face landmark detection and cognitive state assessment, improving both performance and efficiency.

SELECTED PUBLICATIONS GOOGLE SCHOLAR

- R. Boldi, <u>L. Ding</u>, L. Spector, and S. Niekum, "Pareto-optimal learning from preferences with hidden context," *preprint (under review)*, *arXiv:2406.15599*, 2024
 - POPL learns Pareto-optimal policies/rewards in RLHF, catering diverse group preferences without needing group labels, thus offers safe and fair alignment of RL agents and LLMs.
- L. Ding, J. Zhang, J. Clune, L. Spector, and J. Lehman, "Quality diversity through human feedback: Towards open-ended diversity-driven optimization," in *ICML & NeurIPS: ALOE* Workshop (Spotlight), 2024
 - QDHF learns diversity metrics from human feedback and optimizes exploration of novel solutions, enhancing task-solving of RL agents and creativity of generative models.

- L. Ding, E. Pantridge, and L. Spector, "Probabilistic lexicase selection," in *GECCO*, 2023
- <u>L. Ding</u>, J. Terwilliger, and *et al.*, "CLERA: A unified model for joint cognitive load and eye region analysis in the wild," *ACM Trans. Computer-Human Interaction (TOCHI)*, 2023
- <u>L. Ding</u> and L. Spector, "Optimizing neural networks with gradient lexicase selection," in *ICLR*, 2022
- <u>L. Ding</u> and L. Spector, "Evolutionary quantum architecture search for parametrized quantum circuits," in *GECCO Companion*, 2022
- L. Ding, J. Terwilliger, R. Sherony, B. Reimer, and L. Fridman, "Value of temporal dynamics information in driving scene segmentation," *IEEE Trans. Intelligent Vehicles (T-IV)*, 2021
- <u>L. Ding</u> and C. Xu, "Weakly-supervised action segmentation with iterative soft boundary assignment," in *CVPR*, 2018

INTERNSHIPS Google

Research Intern 2023.6 - 2023.9

• Developed a JAX optimizer for efficient neural architecture search of foundation models through knowledge distillation and meta-learning.

CarperAI

Student Researcher 2023.2 - 2023.6

• Proposed novel algorithms to enhance the creativity of generative models through RLHF, leading to more diverse and open-ended model behavior.

Meta

Research Scientist Intern 2022.5 - 2022.8

• Developed vision transformers architectures and transfer learning methods for AR/VR.

HONORS AND	Google Research Travel Scholarship (NeurIPS), Google.
AWARDS	SOAR (Supporting Open Access Research) Fund, UMass Amherst.
	4th Place (among 150 teams, top 3%), MIT Miniplaces Challenge.

2023 2019

Graduate School Scholarship (\$30,000), *University of Rochester*.

2016

2023

Meritorious Winner (top 5% worldwide), COMAP's Mathematical Contest In Modeling. 2015

TEACHING TA for MIT 6.S094: Deep Learning for Self-Driving Cars.

2018 - 2019 2018

TA for MIT 6.S099: Artificial General Intelligence. Co-instructor (w/ Tom Bertalan) for MIT Robocar Workshop.

2018

SERVICES

Reviewer for ICLR, NeurIPS, ICML, JMLR, CVPR, ICCV, ECCV, *etc*. Ph.D. Admissions Committee (UMass Amherst CICS).

2024

2020 - present

OPEN SOURCE

pyribs: an open-source library for diversity-driven optimization.

PROJECTS

• Contributed the code, demo, and tutorial for QDHF.

mit-deep-learning: MIT Deep Learning Open Courses (10k+ stars).

• Main contributor for tutorials and coding assignments.

MIT AI Podcast: now the Lex Fridman Podcast, 4M+ subscribers on Youtube.

• Helped find candidates and prepare interview materials in early episodes.

SKILLS Python, C++, PyTorch, JAX, Tensorflow, Git, LLM workflows (instruction-tuning, RLHF, PEFT, quantization).