Birth of a Transformer: A Memory Viewpoint

Centrale Supélec

Damien Bouet – Gabrielle Caillaud

Context and Objectives

- > Study decoder-only auto-regressive architecture (typical of GPT-like models [3])
- Analyse how global and contextual knowledge is learnt
- > Demonstrate how an associative memory is created within the weight matrices
- > Give some theoretical results on the gradients and the learning

Associative Memory

- \triangleright Simplified Attention block: W_{Key} , W_{Query} , W_{Value} , W_{Output}
- > It computes $x'_t = W_O W_V \sigma(x_{1:t}^T W x_t)$ avec $W = W_K^T W_Q$ (we use $W_Q = Id$)
- \blacktriangleright If key vector u and query vector v are orthogonal (almost the case in high dimension):

Then,
$$W = \sum_{i,j} \alpha_{i,j} v_j u_i^T$$
 and $v_j^T W u_i = \alpha_{i,j}$ which is the relevance of the (I, j) pair.

Simplified Transformer Setup

➤ We simplify the usual transformer architecture [2] to be able to have theoretical results

Theoretical Lemma

- 1. With the loss (CE): $L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,W_UWw_E(z))]$ The learnt matrix is: $\hat{W} = \alpha_0W_0 + \sum \alpha_{ij}w_U(j)w_E(i)^{\top}$
- Combination of the outer-products = associative memory
- 2. This associative memory can filter noise from the input
- It can result in perfect association accuracy, even with noise (ex: positional embedding or residual connection)

Discussion and Limitations

- Simplified transformer model don't match real architectures
- Only 2 layers here, GPT-2 has 12: potentially more complex behaviours that the associative memory described with 2 layers
- Real-life languages cannot be modeled by a bigram dataset
- > But the approach can still help to understand transformers

Simplified Dataset Setup

Synthetic bigram dataset:

- Data sampled from a base distribution (general knowledge)
- At each sequence, some predefined trigger tokens are always followed by some defined output tokens (sequence specific pattern, simulate local/prompt knowledge)

Example:

- We sample random letters based on English frequency rate (general knowledge)
- but every "a" is always followed by "p" (specific knowledge)

Experiments and Results

Accuracy evaluated using:

$$attention_scores = Q \cdot K^T$$

- wk0 : first layer
- wk0_64: first layer on 64 first tokens of the sequence
- wk1 : second layer
- wo1: output projection, block 2
- •acc_tot: accuracy on all predicted tokens
- acc_end : similar to acc_tot, but computed on longer sequences

With noise, acc_end lose 10%, even with long training
Lemma 2 not exact in practice

Original paper

Links

Our GitHub

References

- 1. Alberto Bietti et al., "Birth of a Transformer: A Memory Viewpoint".,2023, arXiv: 2306.00802 [stat.ML]
- 2. Ashish Vaswani et al., "Attention Is All You Need", 2023, arXiv: 1706.03762 [cs.CL]
- 3. Tom B. Brown et al., "Language Models are Few-Shot Learners", 2020, arXiv: 2005.14165