

Theoretische Informatik

Logik

Resolutionskalkül

Aussagenkalkül - Resolutionskalkül

- Aussagenkalkül unhandlich, schwer mechanisierbar.
- Lösungen:
 - » Einfache Formeln nur in KNF (Konjunktive Normalform)
 - » Weniger Axiome notwendig durch Mengendarstellung (Klauseln)
 - Statt komplexe Gesamt-Formel (KNF) direkt abzuleiten, wird aus Axiomen und
 G ein Widerspruch abgeleitet.
- Bemerkung
 - » Durch KNF ist die Menge der Formeln beschränkt auf die Operatoren: ¬, ∧, ∨.
 - » Menge der Regeln: Resolutionsregel (Disjunktion unsere Regel 6)

Aussagenkalkül - Resolutionskalkül

Regel Res (Resolutionsregel)

Regel Res in

Mengenschreibweise

Aussagenkalkül – Resolutionskalkül - Beispiel mit Max Reise

- 1. Wenn ich genug Geld gespart habe, kaufe ich mir ein Auto.
- 2. Wenn ich nicht genug Geld gespart habe, kaufe ich mir ein Fahrrad.
- 3. Wenn ich ein Auto kaufe, fahre ich nach Spanien in Urlaub.
- 4. Wenn ich ein Fahrrad kaufe, bleibe ich im Urlaub in Karlsruhe.
- 5. Ich habe im Vorjahr kein gespartes Geld verbraucht.
- 6. In diesem Jahr habe ich keine anderen Ausgaben.
- 7. Es stimmt nicht, daß ich nicht genug Geld gespart habe und weder im Vorjahr gespartes Geld verbraucht habe noch in diesem Jahr andere Ausgaben habe.

G := XY hat genug Geld gespart

A := XY kauft ein Auto

F := XY kauft ein Fahrrad

S := XY fährt nach Spanien in Urlaub

K := XY bleibt im Urlaub in Karlsruhe

V := XY hat im Vorjahr gespartes Geld verbraucht

D := XY hat in diesem Jahr andere Ausgaben

B1	wenn G, dann A	$G \Rightarrow A$
B2	wenn (nicht G), dann F	$G \Rightarrow A$ $\neg G \Rightarrow F$ $A \Rightarrow S$ $F \Rightarrow K$
B3	wenn A, dann S	$A \Rightarrow S$
B4	wenn F, dann K	$F \Rightarrow K$
B5	nicht V	$\neg V$
B6	nicht D	$\neg D$
B7	nicht ((nicht G) und (nicht V und nicht D))	$\neg(\neg G \land (\neg V \land \neg D))$

B1	wenn G, dann A	$G \Rightarrow A$
B2	wenn (nicht G), dann F	$\neg G \Rightarrow F$
ВЗ	wenn A, dann S	$A \Rightarrow S$
B4	wenn F, dann K	$G \Rightarrow A$ $\neg G \Rightarrow F$ $A \Rightarrow S$ $F \Rightarrow K$ $\neg V$
B5	nicht V	$\neg V$
B6	nicht D	$\neg D$
B7	nicht ((nicht G) und (nicht V und nicht D))	$\neg(\neg G \land (\neg V \land \neg D))$

- B1) $\{\neg G, A\}$ B2) $\{G, F\}$
- B3) {¬A, S}
- B4) $\{\neg F, K\}$
- B5) {¬V}
- B6) {¬D}
- B7) {D, V, D}

Goal {¬S}

Goal

B1	wenn G, dann A	$G \Rightarrow A$
B2	wenn (nicht G), dann F	$\neg G \Rightarrow F$
ВЗ	wenn A, dann S	$A \Rightarrow S$
B4	wenn F, dann K	$G \Rightarrow A$ $\neg G \Rightarrow F$ $A \Rightarrow S$ $F \Rightarrow K$
B5	nicht V	$\neg V$
B6	nicht D	$\neg D$
B7	nicht ((nicht G) und (nicht V und nicht D))	$\neg(\neg G \land (\neg V \land \neg D))$

 $\{\neg S\}$

Widersruch. Also ist S wahr

		B1 B2 B3	wenn G, da wenn (nich wenn A, da	t G), dann F		$G \Rightarrow A$ $\neg G \Rightarrow F$ $A \Rightarrow S$
Logik		B4	wenn F, dann K			$F \Rightarrow K$
		B5	nicht V			$\neg V$
		B6	nicht D			$\neg D$
		B7	nicht ((nich	t G) und (nicht V u	ind nicht D))	$\neg(\neg G \land (\neg V \land \neg D))$
B1)	$\{\neg G, A\}$					
B2)	$\{G, F\}$		Res 1)	B7,B5:	$\{G, D\}$	
B3)	$\{\neg A, S\}$		Res 2)	Res1, B6:	{G}	
B4)	{¬F, K}		Res 3)	Res2, B1:	{A}	
B5)	$\{\neg V\}$		Res 4)	Res3, B3:	{S}	
B6)	$\{\neg D\}$		1100 1)	11000, 20.	(0)	
B7)	$\{G, V, D\}$				40	
			Res 5)	Res4, Goal:	{}	
Goal	{¬S}					
			Widersruch. Also ist S wahr			

Aus (B1, ... Bn) $\land \neg S \leftrightarrow 0$ folgt $S \leftrightarrow 1$

Aussagenkalkül – Resolutionskalkül – Beispiel Inspektor Craig

- Formalisieren Sie folgende Behauptungen und stellen Sie über Umformungen/Normalform die Lösung fest.
- Ein Fall von Inspektor Craig (nach Smullyan):
 - Wenn A schuldig und B unschuldig ist, so ist C schuldig.
 - 2. C arbeitet niemals allein.
 - 3. A arbeitet niemals mit C.
 - Niemand außer A, B und C war beteiligt, und mindestens einer von Ihnen ist schuldig.

Aussagenkalkül – Resolutionskalkül – Beispiel Inspektor Craig

- 1. Wenn A schuldig und B unschuldig ist, so ist C schuldig.
- 2. C arbeitet niemals allein.
- 3. A arbeitet niemals mit C.
- 4. Niemand außer A, B und C war beteiligt, und mindestens einer von Ihnen ist schuldig.

Formalisierung

» aus (1):
$$A \land \neg B \rightarrow C$$
 (1')

» aus (2)
$$C \rightarrow A \vee B$$
 (2')

» aus (3):
$$A \rightarrow \neg C$$
 (3')

» aus (4):
$$A \lor B \lor C$$
 (4')

Umformung

aus (1'):
$$\neg (A \land \neg B) \lor C$$

 $\leftrightarrow \neg A \lor B \lor C$ (1")

aus (2'):
$$\neg C \lor A \lor B$$
 (2")

aus (3'):
$$\neg A \lor \neg C$$
 (3")

Aussagenkalkül – Resolutionskalkül – Beispiel Inspektor Craig

"Axiome"

$$\rightarrow A \lor B \lor C$$

$$\rightarrow$$
 C \vee A \vee B

$$\rightarrow A \lor \neg C$$

$$\rightarrow$$
 A \vee B \vee C

"Mengenschreibweise"

$$\{\neg A, B, C\}$$

$$\{A, B, \neg C\}$$

$$\{\neg A, \neg C\}$$

$$\{A, B, C\}$$

Aussagenkalkül – Resolutionskalkül – Beispiel Inspektor Craig

- Ist B schuldig?
- Goal: {¬ B }
- Ableitungen
 - I. (1) und Goal: $\{\neg A, C\}$
 - II. I, (3)
- $\{ \neg A \}$

III. II, (2)

- { B, ¬ C }
- IV. (2) und Goal:
- { A, ¬ C }

∨. II und IV:

{¬ C }

∨I. II und (4):

{ B, C }

VII. V und VI:

- { B }
- VIII. VII und Goal:
- { }
- → Widerspruch

Erfolg! B ist schuldig

- (1) {¬A, B, C}
- (2) $\{A, B, \neg C\}$
- (3) $\{ \neg A, \neg C \}$
- (4) {A, B, C}

Aussagenkalkül – Resolutionskalkül – Beispiel Inspektor Craig

- Ist A schuldig?
- Goal: {¬ A }
- Ableitungen
 - I. (2) und Goal: $\{\neg C, B\}$
 - II. I, (1) $\{ \neg A, B \}$
 - III. II, (2) $\{B, \neg C\}$
 - IV. (4) und Goal: { B, C }
 - \lor . III und IV: { B }
 - $\forall I.$ IV und (3): $\{\neg A\}$
 - VII. Keine Ergebnis, also keine { } → kein Widerspruch

Kein Erfolg

 $(1) \{ \neg A, B, C \}$

(2) $\{A, B, \neg C\}$

 $(3) \{ \neg A, \neg C \}$

(4) {A, B, C}

Aussagenkalkül - Beispiel

- Aufgabe: Nimmt er heute den aufblasbaren Walfisch mit?
 - » Im Flugzeug hören Sie folgende Geschichte
 - » Person A: Ich habe dabei mein Qietsch-Entchen, mein U-Boot, meinen aufblasbaren Walfisch und meinen Massageschwamm.
 - » Person B: Und mit all den Sachen steigst Du in die Badewanne?
 - » Person A: Nein, natürlich nicht. Ich habe meine Präferenzen.
 Wenn mein Entchen schwimmt, dann ist das U-Boot nicht mit drin.
 Wenn ich das Entchen nicht mitnehme, dann ist sicher mein aufblasbarer Walfisch drin.
 Ist das Entchen im Wasser und das U-Boot nicht, ist der Massageschwamm drin.
 Heute Abend nehme ich meinen Massageschwamm nicht mit in die Wanne
 - » Formalisieren Sie die Aussagen!
 - » Nimmt er heute den aufblasbaren Walfisch mit? (Lösung mit Aussagenkalkül/ Resolutionskalkül)