From Data To Discovery

We will start momentarily. In the meantime:

Class Starter (respond on pollev.com/tiasondjaja)

Suppose that a data frame called results stores the results of a 5k (3.1 mile) race as well as the gender and age group of the participating runners.

paration 8 remains			
AgeGroup	RaceTime		
40-59	28		
20-39	35		
40-59	19		
20-39	25		
:	:		
	40-59 20-39 40-59		

Suppose that you would like to create a new column called Pace, which consists of the number of minutes it took each runner to run one mile during this race.

Which R code would accomplish this task?

- A. results\$Pace <- 3.1 / RaceTime
- Pace <- results\$RaceTime / 3.1
- results\$Pace <- results\$RaceTime / 3.1
- None of the above

Open the Lesson 04 Jupyter Notebook

- Our NYU Classes site > Lessons > 4. Exploring Data (part 2); Click link
- No Jupyter Notebook for Lesson 5

Quick Concept Check

(respond on pollev.com/tiasondjaja)

Suppose that a data frame called results store the results of a 5k (3.1 mile) race as well as the gender and age group of the participating runners:

Gender	AgeGroup	RaceTime (minutes)
Female	40-59	28
Male	20-39	35
Male	40-59	19
Other	20-39	25

Suppose that you would like to find the average race time among runners of each gender.

Which of the following R commands would give you the answer?

- A. mean(filter(results, Gender == 'Female'))
- B. groupedresults <- filter(results, Gender == 'Female')
 mean(groupedresults\$RaceTime)</pre>
- C. groupedresults <- group_by(results)
 summarize(groupedresults, aveRaceTime = mean(RaceTime))</pre>
- D. None of the above works

Today's Plan

- Lesson02: Introduction to Jupyter Notebook and R
- ► Lesson03: Exploring Data
- ► Finish Lesson04: Exploring Data
- ► Start Lesson05: Visualizing data

Lesson 5: Visualizing Data

Goals and Key Ideas

- 1. Types of data visualizations
 - How to determine the right type of data visualization for a given type of variable.
- 2. Good and bad data visualizations
 - ▶ Bad data visualizations could mislead

- ► Help create a **visual summary** of data
- ► Help identify patterns in data
- ► Help **identify relationships** between variables

- ► Help create a **visual summary** of data
- Help identify patterns in data
- ► Help **identify relationships** between variables
- Help communicate or describe results of data analysis

- ► Help create a **visual summary** of data
- Help identify patterns in data
- ► Help **identify relationships** between variables
- ▶ Help communicate or describe results of data analysis

Bad data visualizations can **miscommunicate** or **misrepresent** information.

Breakout Activity: Types of Data Visualizations

Respond here: https://pollev.com/tiasondjaja

1. Bar Graphs

1. Bar Graphs

Two types:

- (the most important one) Describe the distribution of a categorical variable
- Describe the relationship between a categorical variable and a numerical variable

1. Bar Graphs

Two types:

- (the most important one) Describe the distribution of a categorical variable
- Describe the relationship between a categorical variable and a numerical variable
- 2. Histograms

1. Bar Graphs

Two types:

- (the most important one) Describe the distribution of a categorical variable
- Describe the relationship between a categorical variable and a numerical variable

2. Histograms

Describe the distribution of a numerical variable.

1. Bar Graphs

Two types:

- (the most important one) Describe the distribution of a categorical variable
- Describe the relationship between a categorical variable and a numerical variable
- Histograms
 Describe the distribution of a numerical variable.
- 3. Scatterplots

1. Bar Graphs

Two types:

- (the most important one) Describe the distribution of a categorical variable
- Describe the relationship between a categorical variable and a numerical variable

2. Histograms

Describe the distribution of a numerical variable.

3. Scatterplots

1. Bar Graphs

Two types:

- (the most important one) Describe the distribution of a categorical variable
- Describe the relationship between a categorical variable and a numerical variable
- 2. Histograms

Describe the **distribution** of a **numerical** variable.

3. Scatterplots

Describe the relationship between a **numerical** variable and another **numerical** variable.

4. Time Series

1. Bar Graphs

Two types:

- (the most important one) Describe the distribution of a categorical variable
- Describe the relationship between a categorical variable and a numerical variable
- 2. Histograms

Describe the distribution of a numerical variable.

3. Scatterplots

Describe the relationship between a **numerical** variable and another **numerical** variable.

4. Time Series

Describes how quantities change over time.

1. Bar Graphs

Two types:

- (the most important one) Describe the distribution of a categorical variable
- Describe the relationship between a categorical variable and a numerical variable
- 2. Histograms

Describe the distribution of a numerical variable.

3. Scatterplots

- Time Series
 Describes how quantities change over time.
- 5. Pie Charts

1. Bar Graphs

Two types:

- (the most important one) Describe the distribution of a categorical variable
- Describe the relationship between a categorical variable and a numerical variable
- 2. Histograms

Describe the distribution of a numerical variable.

3. Scatterplots

- Time Series
 Describes how quantities change over time.
- Pie Charts
 Describe the proportion of observations that belong to each category.

1. Bar Graphs

Two types:

- (the most important one) Describe the distribution of a categorical variable
- Describe the relationship between a categorical variable and a numerical variable
- 2. Histograms

Describe the **distribution** of a **numerical** variable.

3. Scatterplots

- Time Series
 Describes how quantities change over time.
- Pie Charts
 Describe the proportion of observations that belong to each category.
- 6. (and others!)

Examples of (good and bad) data visualizations

Handout

https://drive.google.com/file/d/1KLjLuK_ 5IzW2FyYR7Z10derewmsXL-LU/view?usp=sharing

Question & Task: Which of these examples are good data visualizations? Which are bad? Discuss!

Breakout Activity

https://docs.google.com/document/d/ 10nDovYYmeyFXPAgySrBQQgYpbnoWosXDrlDy7Q8sMCs/edit? usp=sharing

How Much Snow Before America Cancels School?

A map shows how many inches it takes before various regions call it off.

⊕ ⊖ by ERIC RANDALL . 2/3/2014, 11:10 a.m. Get a compelling long read and must-have lifestyle tips in your inbox every Sunday morning great with coffee! EMAIL ADDRESS SUBSCRIBE

WOMEN EXECUTIVE OFFICERS DISTRIBUTION - 2013 PROXY SEASON

Number of COVID-19 Cases in Russia from March 5 to March 31

Gun ownership by country

- Non-Hispanic White
- Hispanic
- Non-Hispanic Black

Cryptocurrencies Transaction Speeds Compared to Visa & Paypal

Data extracted on: December 12, 2011 (9:50:59 AM)

Labor Force Statistics from the Current Population Survey

Series Id: LNS14000000

Seasonally Adjusted Series title:

(Seas) Unemployment Rate

Labor force status: Unemployment rate
Type of data: Percent or rate
Age: 16 years and over

Partial list of image sources:

- https://qz.com/1872980/ how-bad-covid-19-data-visualizations-mislead-the-public/
- https://towardsdatascience.com/ stopping-covid-19-with-misleading-graphs-6812a61a57c9

▶ Use the appropriate type of graphs/charts (consistent with type of data)

- Use the appropriate type of graphs/charts (consistent with type of data)
- Clearly label and explain the axes

- Use the appropriate type of graphs/charts (consistent with type of data)
- Clearly label and explain the axes
- Axes should generally start from 0 and consistent in scale

- Use the appropriate type of graphs/charts (consistent with type of data)
- Clearly label and explain the axes
- Axes should generally start from 0 and consistent in scale
- Avoid pie charts or other shapes; use bar graphs

- Use the appropriate type of graphs/charts (consistent with type of data)
- Clearly label and explain the axes
- Axes should generally start from 0 and consistent in scale
- Avoid pie charts or other shapes; use bar graphs
- In bar charts and histograms, the area of each bar should be proportional to the quantity represented.

- Use the appropriate type of graphs/charts (consistent with type of data)
- Clearly label and explain the axes
- Axes should generally start from 0 and consistent in scale
- Avoid pie charts or other shapes; use bar graphs
- In bar charts and histograms, the area of each bar should be proportional to the quantity represented.
- ▶ When visualizing proportions or percentages, clearly state what the population is.