

计算机与操作系统第一讲 计算机系统概述

南京大学软件学院

教学材料

- *操作系统教程(第五版) 费翔林、骆斌,高等教育出版社,2014
- * 鼓励部分学有余力的同学自行阅 MINIX, LINIX, UNIX内核分析书籍
- *课程电子讲稿

课程学习目标

- * 明确计算机操作系统的作用与功能
- * 掌握操作系统实现的基本原理与方法
 - * 在微观上,掌握设计实现各个操作系统模块的方法、策略与算法
 - * 在宏观上,掌握操作系统的结构和设计 实现方法,进一步了解大型软件系统的 结构和设计实现方法
- * 掌握并发程序设计的基本方法

操作系统课程的教学原则

- *用系统的观点、全局的观点、整体的观点来看待操作系统的实现
- * 理解软硬件协同解决问题的方法
- *理解分而治之、分层实现在复杂软件系统实现中的重要作用
- * 用工程师的立场来看待操作系统的实现
- * 理解文化在操作系统实现中的重要作用

本主题教学目标

- 1. 了解计算机硬件与操作技术的发展
- 2. 掌握多道程序设计的概念
- 3. 掌握计算机系统的组成
- 4. 了解计算机体系结构与计算机总线、处理器、存储器、I/O设备以及I/O控制方式
- 5. 掌握计算机系统的层次结构

第一讲 计算机系统概述

- 1.1 计算机硬件与操作技术的发展
- 1.2 计算机系统的组成
- 1.3 计算机系统的层次结构

1.1 计算机硬件与操作技术的发展

- 1.1.1 第一代计算机与手工操作阶段
- 1.1.2 第二代计算机与简单批处理阶段
- 1.1.3 多道程序设计
- 1.1.4 第三代计算机与操作系统
- 1.1.5 计算机硬件与操作系统的新进展

计算机硬件的性能进展

*摩尔定律

Generation	Approximate Dates	Technology	Typical Speed (operations per second)
1	1946-1957	Vacuum tube	40,000
2	1958-1964	Transistor	200,000
3	1965–1971	Small and medium scale integration	1,000,000
4	1972-1977	Large scale integration	10,000,000
5	1978–1991	Very large scale integration	100,000,000
6	1991–	Ultra large scale integration	1,000,000,000

1.1.1 第一代计算机——手工操作阶段

- *1946年,世界上第一台电子数字计算机 ENIAC由美国宾夕法尼亚大学莫尔电工学 院制造,用于计算弹道
- *电子管计算机
- *无操作系统,串行执行程序
- *操作方式:开关表示,按钮控制,亮灯显示

计算机的手工操作方式

*开关表示, 按钮控制, 亮灯显示

开关置内存地址,按'装入地址'按钮 开关置机器指令,按'装入数据'按钮 开关置程序始址,按'运行'按钮

装入程序的引进

- * 装入程序(Loader)
 - *自动化执行程序装入,必要肘进行地址转换
 - *通常存放在ROM中

IO Routine的出现

- *在每一种外围设备上进行输入输出肘涉及一 系列繁琐细节,但每次的输入输出程序有很 大共性
- *输入输出例程:处理输入输出的通用子程序, 用于屏蔽输入输出细节,方便应用程序设计 者使用
- *驻留内存:独立于应用程序的内存区

汇编语言的出现

- *汇编语言:机器语言的符号化
- *汇编语言源程序:汇编语句的序列
- *汇编程序:第一个出现的计算机系统软件,用于把汇编语言源程序汇编成目标代码程序

- *高级语言编译器出现:FORTRAN/COBOL
- * 库程序与Linker的出现

引入汇编语言后的计算机控制

*汇编过程和程序执行

1.1.2 第二代计算机—简单批处理阶段

- *第二代计算机,晶体管技术的出现
 - *1954年,美国贝尔实验室研制成功第一台 晶体管计算机TRADIC,装有800个晶体管
 - *1956年,<u>肖克莱</u>、<u>巴丁</u>、<u>布拉顿</u>三人,因 发明晶体管同时茶获诺贝尔物理学奖
- *处理器性能呈数量级提高
- * 手工操作的低效率问题日益突出

简单批处理系统

- * 脱机批处理系统
 - *第一代计算机从纸带或卡片机成批输入作业到磁带
 - *第二代计算机从磁带成批的执行作业,并把输出结果保存到磁带
 - *第一代计算机成批的输出作业结果到打印机
- * 联机批处理系统

简单批处理系统的操作特征

- *成批控制程序的执行与输入输出
- *作业控制语言、作业控制卡、作业说明书
- *操作员与程序员的分离
- *资源管理程序和磁带文件系统的引入

管理程序

Interrupt Processing

Device Drivers

Job Sequencing

Control Language Interpreter

> User Program Area

Monitor

- *成批执行作业
- *控制程序执行
- *程序运行完毕后返回管理程序

Boundary

*管理程序常驻内存

管理程序的硬件要求

- * Memory protection
 - * do not allow the memory area containing the monitor to be altered
- * Timer
 - * prevents a job from monopolizing the system
- * Privileged instructions
 - * Certain instructions are designated privileged and can be executed only by the monitor
- * interrupts

1.1.3多道程序设计

- ■1958年, 美国德州仪器发明集成电路(IC), 将三种电子元件集成到一片小小的硅片上, 更多的元件集成到单一的半导体芯片上, 计算机变得更小, 功耗更低, 速度更快
- * 计算机硬件性能继续呈数量级提高,CPU速度与 I/O速度不匹配的矛盾日益突出
- *只有让多道程序同时进入内存争抢CPU运行可以 够使得CPU和外围设备充分并行,从而提高计算 机系统的使用效率

Multi-programming

单道算题工作

处理器利用率: $52/(78+52+20) \approx 35\%$

Multi-programming...

*两道程序同时工作

处理器利用率: $(52+42)/(78+52+20) \approx 63\%$

Multi-programming ...

甲、乙两道程序

- *独占计算机单道运行时均需1小时,其中占用CPU时间18分钟,CPU利用率为30%
- * 按多道程序设计方法同时运行, CPU利用率达50%, 由于要提供36分钟的CPU时间, 大约要运行72分钟。考虑到OS调度开销,实际花费的时间可能还要长些,如80分钟
- *就处理两道作业而言,提高效率33%
- *就单道作业而言,延长执行时间20分钟,即延长了33%的时间

多道程序设计及特点

- *多道程序设计是指让多个程序同时进入计算机的主存储器进行计算
- *多道程序设计的特点
 - * CPU与外部设备充分并行
 - * 外部设备之间充分并行
 - * 发挥CPU的使用效率
 - * 提高单位时间的算题量

多道程序系统的实现

- * 处理器的管理和调度
- * 主存储器的管理和调度
- * 其他资源的管理和调度

多道程序系统的实现要点

- *如何使用资源:调用操作系统提供的服务例程(如何 陷入操作系统)
- *如何复用CPU:调度程序(在CPU空闲时让其他程序 运行)
- *如何使CPU与I/O设备充分并行:通道(一种独立控制设备进行I/O的专用处理器)
- *如何让正在运行的程序让出CPU:中断(中断正在执行的程序,让操作系统处理突发事件)

1.1.4 操作系统的形成

- *通过程序来控制内存中多道程序的执行在理论上是可行的
 - *调度程序:引入调度功能
 - *程序切换和中断:占有CPU运行的程序可以被打断,且在以后适当时候能够被恢复运行
 - * 资源分配与保护
- *效率是导致管理程序不能全自动控制计算机 系统运行的根本原因
- *磁盘的出现:操作系统出现的基础

操作系统的正式确立

- * 批处理操作系统的出现
- *操作系统的形成给资源管理和操作自动化带来了革命性的变化:
 - *实现了计算机操作过程的自动化
 - * 资源管理水平有了很大提高
 - *提供虚存管理功能
 - * 支持批处理操作与分时操作
 - *文件管理功能有改进,数据库系统出现
 - * 多道程序设计趋于完善

分时操作与分时操作系统

- *多个联机用户通过终端(键盘/显示器)基于多道程序设计同时直接使用一台计算机进行独立计算
- *处理器等资源按照时间片轮转被各个用户分享
- *分別操作系统的特性:同別性、独立性、及別性、交互性
- *分时OS和批处理OS的区别:目标不同、适应作业的性质不同、资源使用率不同、作业控制方式不同

1.1.5 计算机硬件与操作系统的进一步发展

- * 伴随硬盘和集成电路计算机的出现,操作系统技术在1960年代迅猛发展并趋于成熟
- * 计算机硬件历经大规模集成电路、超大规模集成电路、特大规模集成电路,按照摩尔定律快速发展
- *从1980年代开始,计算机与操作系统向微型化、 并行化、网络化、嵌入式、移动化方向发展

1.2 计算机系统的组成

- 1.2.1 计算机体系结构与总线
- 1.2.2 处理器
- 1.2.3 存储器
- 1.2.4 外围设备
- 1.1.5 计算机软件

计算机系统的组成

- *计算机硬件
 - *处理器
 - *内存储器
 - *外围设备:输入设备、输出设备、存储设备、网络设备
- *计算机软件
 - * 系统软件:操作系统、语言处理程序、 数据库管理系统、支撑软件
 - *应用软件

1.2.1 计算机体系结构与总线

*主流结构:冯诺依曼结构

计算机总线

Figure 3.16 Bus Interconnection Scheme

传统与高性能的总线结构

(b) High-performance architecture

System bus

Serial

LAN

Video

Figure 3.18 Example Bus Configurations

实例: 南桥与北桥

服务器总线结构

(b) Typical server system

Figure 3.22 Example PCI Configurations

1.2.2 处理器

- 处理器
- · 奇存器
- 特权指令
- 处理器模式

并行处理器的体系结构

Processor organizations

并行处理器的体系结构

(c) MIMD (with shared memory)

CU = Control unit SISD = Single instruction,
IS = Instruction stream = single data stream
PU = Processing unit SIMD = Single instruction,
DS = Data stream = multiple data stream
MU = Memory unit MIMD = Multiple instruction,
LM = Local memory = multiple data stream

(b) SIMD (with distributed memory)

(d) MIMD (with distributed memory)

实例: CPU-GPU联合设计

1.2.3 存储器

容量更小、 速度更快、 价格更高 (单位字节)

容量更大、 速度更慢、 价格更低 (单位字节)

主存储器的Cache

CPU Level 1 (L1) cache (L2) cache (L3) cache Fast Slow fast

(b) Three-level cache organization

Figure 4.3 Cache and Main Memory

1.2.4 外围设备

- *设备类型
 - * 字符型设备
 - * 块存储设备
 - * 网络设备
- *设备控制方式
 - *轮询方式(程序直接控制方式)
 - * 中断驱动方式
 - * DMA分式
 - *通道方式

1.2.5 计算机软件

- * 系统软件
 - *操作系统
 - *语言处理程序

汇编程序、编译程序, 解释程序

- *数据库管理系统与专用文件系统
- *支撑软件

Linker, Debuger, Editor, ...

*应用软件

1.3 计算机系统的层次结构

*计算机系统视图 用户的视图 应用程序员的视图 应用 编译程序设计者的视图 语言处理 操作系统设计者的视图 操作系统 件

程序员的视图

软件开发的不同层次

- *计算机硬件系统:机器语言
- *操作系统之资源管理:机器语言+广义指令(扩充了硬件资源管理)
- *操作系统之文件系统:机器语言+系统调用(扩充了信息资源管理)
- *数据库管理系统:+数据库语言(扩充了功能更强的信息资源管理)
- *语言处理程序:面向问题的语言

计算机程序的执行过程

