Name:- Siddhesh S. Chindarkar Roll No:- 228622

Practical No.1 Substitution Cipher Techniques-1

<u>Aim:</u> Write a program to implement the following substitution cipher technique.

i) Ceaser cipher

Code:-

```
def encryption(pt, key):
  list1="abcdefghijklmnopgrstuvwxyz"
  en="
  for i in pt.lower():
    k=(list1.index(i)+key)%26
    en+=list1[k]
  print("Ceaser cipher --> Encrypted Text= ", en)
def decryption(pt, key):
  list1="abcdefghijklmnopgrstuvwxyz"
  en="
  for i in pt.lower():
    k=(list1.index(i)-key)%26
    en+=list1[k]
  print("Ceaser cipher --> Decrypted Text= ", en)
pt=input("Enter the plainText= ")
key=int(input("Key: "))
encryption(pt,key)
pt=input("Enter the plainText= ")
key=int(input("Key: "))
```

decryption(pt,key)

Output:-

```
File Edit Shell Debug Options Window Help

Python 3.10.0 (tags/v3.10.0:b494f59, Oct 4 2021, 19:00:18) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.

>>>

= RESTART: C:/Users/Siddhesh Chindarkar/OneDrive/Documents/TY Notes/Practicals/INS/Practical1_Ceaser-Cipher.py
Enter the plainText= helloworld
Key: 3
Ceaser cipher --> Encrypted Text= khoorzruog
Enter the plainText= khoorzruog
Key: 3
Ceaser cipher --> Decrypted Text= helloworld

>>>> |
```

ii) Monoalphabetic cipher

Code:-

```
def mono_encrypt(pt):
    a1="abcdefghijklmnopqrstuvwxyz"
    key="defghijklmnopqrstuvwxyzabc"
    en="

for j in pt.lower():
    for i in a1:
        if i==j:
            en+=key[a1.index(i)]
    print("MonoAlphabatic Encrypted text: ",en)

def mono_decrypt(pt):
    a1="abcdefghijklmnopqrstuvwxyz"
    key="defghijklmnopqrstuvwxyzabc"
    de="
    for j in pt.lower():
```

```
for i in a1:
    if i==j:
        de+=a1[key.index(i)]
    print("MonoAlphabatic Decrypted text: ",de)

pt=input("Enter the plainText: ")
mono_encrypt(pt)
pt=input("Enter the plainText: ")
mono_decrypt(pt)
```

```
File Edit Shell Debug Options Window Help

Python 3.10.0 (tags/v3.10.0:b494f59, Oct 4 2021, 19:00:18) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.

= RESTART: C:\Users\Siddhesh Chindarkar\OneDrive\Documents\TY Notes\Practicals\INS\Practical1_Mono-Alphabetic-Cipher.py
Enter the plainText: universal
MonoAlphabatic Encrypted text: xqlyhuvdo
Enter the plainText: xqlyhuvdo
MonoAlphabatic Decrypted text: universal

>>>>
```

Name:- Siddhesh S. Chindarkar Roll No:- 228622

Practical No.2 Substitution Cipher Techiques-2

<u>Aim:</u> Write a program to implement the following substitution cipher technique.

i)Vernam Cipher

Code:-

```
def ver(pt,key):
  pt=pt.replace("","")
  al='abcdefghijklmnopqrstuvwxyz'
  en="
  de="
  i=0
  j=0
  n=0
  a=[]
  b=[]
  for x in range(0,len(pt)):
    a.append(0)
    b.append(0)
  for I1 in pt.lower():
    a[i]=al.index(l1)
    i+=1
  for I2 in key.lower():
    b[j]=al.index(l2)
    j+=1
  for k in range(0,len(pt)):
    s1=(a[k]+b[k])%26
    en+=al[s1]
  print("Encrypted text is:",en)
```

Name: - Siddhesh S. Chindarkar Roll No: - 228622

```
for k in range(0,len(pt)):

n=n+1

s2=al.index(en[k])-al.index(key[n-1])

de=de+al[s2%26]

print("Decryptrd text:",de)

pt=input("Enter plaintext:")

key=input("Enter a key of same no of letters as that of plain text:")

ver(pt,key)
```

Output:-

ii) Playfair Cipher

Code:-

```
from itertools import product

from re import findall

array= ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']

def datalist_normal(key):

key=key.replace(" ","")

key=key.lower()

list1=list()

for i in range(len(key)):

char=key[i]
```

```
if char not in list1:
       if char=='i':
         list1.append('j')
       else:
         list1.append(char)
  for i in range(len(array)):
    char=array[i]
    if char not in list1:
       if char=='i':
         list1.append('j')
       else:
         list1.append(char)
  return list1
def matrix(list1):
  m=[]
  index=0
  for i in range(5):
    a=[]
    for j in range(5):
       a.append(list1[index])
       index=index+1
    m.append(a)
  print("matrix:")
  for i in range(5):
    for j in range(5):
       print(m[i][j],end=" ")
    print()
  return m
def plain(text):
```

```
text=text.replace(" ","")
  p=list()
  for i in range(len(text)):
    char=text[i]
    if char=='i':
       p.append('j')
    else:
       p.append(char)
  for i in range(0,len(p),2):
    if i<len(p)-1:
       if p[i] == p[i+1]:
         p.insert(i+1,"x")
    if len(p)%2!=0:
       p.append("x")
  return p
def enc(p, m):
  encr=""
  for i in range(0,len(p),2):
    print(p[i],":",p[i+1])
    for j in range(5):
       for k in range(5):
         if p[i] == m[j][k]:
            a=j
            b=k
    for j in range(5):
       for k in range(5):
         if p[i+1] == m[j][k]:
           c=j
            d=k
```

```
if a==c and b!=d:
      encr+=(m[a][(b+1)%5])
      encr+=(m[c][(d+1)\%5])
    elif b==d and a!=c:
      encr+=(m[(a+1)\%5][b])
      encr+=(m[(c+1)\%5][d])
    else:
      encr+=(m[a][d])
      encr+=(m[c][b])
  return encr
def dec(p, m):
  decr=""
  for i in range(0,len(p),2):
    print(p[i],":",p[i+1])
    for j in range(5):
      for k in range(5):
         if p[i] == m[j][k]:
           a=j
           b=k
    for j in range(5):
      for k in range(5):
         if p[i+1] == m[j][k]:
           c=j
           d=k
    if a==c and b!=d:
      decr+=(m[a][(b-1)\%5])
      decr+=(m[c][(d-1)\%5])
    elif b==d and a!=c:
       decr+=(m[(a-1)\%5][b])
```

```
decr+=(m[(c-1)\%5][d])
    else:
      decr+=(m[a][d])
       decr+=(m[c][b])
  return decr
key=input("Enter key:")
text=input("Enter text:")
#creating datalist
list1=datalist_normal(key)
print("Datalist:",list1)
#creating matrix
matrix1=matrix(list1)
#creating plaintext list and adding dummy letters
plaintext=plain(text)
print("Plaintext:",plaintext)
#Creating pairs
#pair(plaintext)
#encrption
encrypt=enc(plaintext, matrix1)
print("Encryped:",encrypt)
#decryption
decrypt=dec(encrypt, matrix1)
print("Decrypted:",decrypt)
```

Output:-

```
lDLE Shell 3.10.0
File Edit Shell Debug Options Window Help
   Python 3.10.0 (tags/v3.10.0:b494f59, Oct 4 2021, 19:00:18) [MSC v.1929 64 bit (
   AMD64)] on win32
   Type "help", "copyright", "credits" or "license()" for more information.
   = RESTART: C:\Users\Siddhesh Chindarkar\OneDrive\Documents\TY Notes\Practicals\I
   NS\Practical2_Playfair-Cipher.py
   Enter key: 3
   Enter text:helloworld
   Datalist: ['3', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
   matrix:
   3 a b c d
   efghj
   k 1 m n o
   pqrst
   Plaintext: ['h', 'e', 'l', 'x', 'l', 'o', 'w', 'o', 'r', 'l', 'd', 'x']
   1:0
   W : 0
   r : 1
   d: x
   Encryped: jfnvmkymqmcy
   j : f
   n: v
   y : m
   Decrypted: helxloworldx
```

ii)Vigenere Cipher

Code:-

```
import math
l="abcdefghijklmnopqrstuvwxyz"
pt=input("Enter plain text:")
pt=pt.replace("","")
lenk=int(input("Enter length of key:"))
k=[]
for i in range(0,lenk):
    v=int(input("Enter key"+str(i+1)+":"))
    k.append(v)
en=""
de=""
n=0
```

Name: - Siddhesh S. Chindarkar Roll No: - 228622

```
for i in range(0,len(pt)):
  if(n<len(k)):
    n=n+1
  if(n>=len(k)):
    n=0
  ind=l.index(pt[i])+k[n-1]
  en=en+l[ind%26]
n=0
print("\nEncrypted text:",en)
for i in range(0,len(pt)):
  if(n<len(k)):
    n=n+1
  if(n>=len(k)):
    n=0
  ind=l.index(en[i])-k[n-1]
  de=de+l[ind%26]
print("\nDecrypted text:",de)
```

```
File Edit Shell Debug Options Window Help

Python 3.10.0 (tags/v3.10.0:b494f59, Oct 4 2021, 19:00:18) [MSC v.1929 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

= RESTART: C:\Users\Siddhesh Chindarkar\OneDrive\Documents\TY Notes\Practicals\I NS\Practical2_Vigenere-Cipher.py
Enter plain text:ring
Enter length of key:3
Enter key1:2
Enter key2:1
Enter key3:3

Encrypted text: tjqi

Decrypted text: ring
```

Practical No.3 Transposition Cipher Techniques

<u>Aim:</u> Write Programs to implement the following transposition cipher techniques:-

i)Simple Columnar Technique

Code:-

```
def plainText(text,key):
  text=text.lower()
  text=text.replace(" ","")
  for i in range(len(text)):
    if len(text)%len(key)!=0:
       text+="x"
  return text
def keyList(key):
  list1=list()
  for i in range(len(key)):
    list1.append(key[i])
  return list1
#Encryption Starts here!!!!
def matrix_encrypt(text,list1):
  m=[]
  index=0
  for i in range(len(text)//len(list1)):
    a=[]
    for j in range(len(list1)):
       if index<len(text):</pre>
         a.append(text[index])
         index=index+1
    m.append(a)
```

```
print("matrix:")
  for i in range(len(text)//len(list1)):
    for j in range(len(list1)):
       print(m[i][j],end=" ")
    print()
  return m
def encrypt(m, list1,list2, text):
  en=""
  row=(len(text)//len(list1))
  for k in range(len(list1)):
    num=list1.index(min(list2))
    list2.remove(min(list2))
    for i in range(row):
      for j in range(len(list1)):
         #print(m[i])
         #print(num)
         en+=m[i][num]
         break
  print(" ")
  print("Cipher Text: ",en)
  return en
def encryptionAlgo(text, key):
  plain_text=plainText(text,key)
  key_list1=keyList(key)
  key_list2=keyList(key)
  print(plain_text)
  print(key_list1)
  m_plain=matrix_encrypt(plain_text,key_list1)
  cipher=encrypt(m_plain,key_list1, key_list2, plain_text)
```

```
return cipher
#Decryption Starts here!!!!
def keyList(key):
  list1=list()
  for i in range(len(key)):
    list1.append(key[i])
  return list1
def matrix_list(cipher, list1):
  a=[]
  matrix_list=list()
  var=len(cipher)//len(list1)
  index=0
  for i in range(len(list1)):
    if index<len(list1):
       letter=list1[i]
       letter=int(letter)
       num=(letter*var)-var
       for j in range(num,num+var):
         a.append(cipher[j])
    else:
       break
  print("list of matrix characters: ",a)
  return a
def matrix_decrypt(mat_list,list1):
  m=[]
  index=0
  for i in range(len(list1)):
    a=[]
    for j in range(len(mat_list)//len(list1)):
```

```
if index<len(mat_list):</pre>
         a.append(mat_list[index])
         index=index+1
    m.append(a)
  print("columnwise groups of matrix characters: ",m)
  print("matrix:")
  for i in range(len(mat list)//len(list1)):#
    for j in range(len(list1)):#
       print(m[j][i],end=" ")
    print()
  return m
def decryption(m,mat_list,list1):
  de=""
  for i in range(len(mat_list)//len(list1)):#
    for j in range(len(list1)):#
      de+=m[j][i]
  print(" ")
  print("Plain text: ",de)
  return de
def decryptionAlgo(cipher, key):
  list1=keyList(key)
  mat_list=matrix_list(cipher, list1)
  m=matrix_decrypt(mat_list,list1)
  plain=decryption(m,mat_list,list1)
  return plain
text=input("Enter plain text:")
key=input("Enter key:")
print("encryption goes here!!!")
print(" ")
```

```
cipher=encryptionAlgo(text, key)
print(" ")
print("decryption goes here!!!")
print(" ")
plain=decryptionAlgo(cipher, key)
```

Output:-

```
File Edit Shell Debug Options Window Help

Python 3.10.0 (tags/v3.10.0:b494f59, Oct 4 2021, 19:00:18) [MSC v.1929 64 bit ( AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.

>>>

= RESTART: C:\Users\Siddhesh Chindarkar\OneDrive\Documents\TY Notes\Practicals\I NS\Practical3 Columnar-Cipher.py
Enter plain text:helloworld
Enter key:132
encryption goes here!!!

helloworldxx
['1', '3', '2']
matrix:
h e l
l o w
o r l
d x x

Cipher Text: hlodlwlxeorx
decryption goes here!!!

list of matrix characters: ['h', 'l', 'o', 'd', 'e', 'o', 'r', 'x', 'l', 'w', 'l', 'x'], 'z'], ['l', 'w', 'l', 'x']]
matrix:
h e l
l o w
o r l
d x x

Plain text: helloworldxx
```

ii)Railfence Technique

Code:-

```
def rf(pt):
    pt=pt.replace("","")
    u=""
    l=""
    en=""
    de=""
    j=len(pt)//2
```

Name:- Siddhesh S. Chindarkar Roll No:- 228622

```
for i in range(0,len(pt)):
    if(i%2==0):
       u+=pt[i]
    else:
      I+=pt[i]
  en=u+l
  print("encryption text is:",en)
  if(len(pt)\%2==0):
    for i in range(0,j):
       de+=u[i]
       de+=I[i]
    print("decryption text is;",de)
  else:
    for i in range(0,j):
       de+=u[i]
       de+=I[i]
    de+=u[-l]
    print("decryption text is:",de)
pt=input("enter some plaintext")
rf(pt)
```

```
File Edit Shell Debug Options Window Help

Python 3.10.0 (tags/v3.10.0:b494f59, Oct 4 2021, AMD64)] on win32

Type "help", "copyright", "credits" or "license()

= RESTART: C:\Users\Siddhesh Chindarkar\OneDrive\
NS\Practical3_Railfence-Cipher.py
enter some plaintexthelloworld
encryption text is: hloolelwrd
decryption text is; helloworld

>>>>
```

Practical No.4

<u>Aim:</u> Write program to encrypt and decrypt strings using - DES Algorithm.

i) DES Algorithm

Code:-

```
#DES
from pyDes import*
data=input("Enter data:")
k=des("Descrypt",CBC,"\0\0\0\0\0\0\0\0\n,pad=None,padmode=PAD_PKCS5)
d=k.encrypt(data)
print("Encrypted:%r"%d)
print("Decrypted:%r"%k.decrypt(d))
```

Output:-

```
File Edit Shell Debug Options Window Help

Python 3.10.5 (tags/v3.10.5:f377153, Jun 6 2022, 16:14:13) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.

>>> = RESTART: C:\Users\Siddhesh Chindarkar\OneDrive\Documents\TY Notes\Practicals\I NS\Practical4 DES_Algorithm.py
Enter data:Siddhesh
Encrypted:b'l\x8d\xbe\x92\xc0\xebt\xad\xaa}\x14\x8a\x97\xe2\x855'
Decrypted:b'Siddhesh'

>>> |
```

ii) AES Algorithm

Code:-

#AES

import pyaes

aes=pyaes.AESModeOfOperationCTR(b'DESCRYPTDESCRYPT')

```
plaintext=input("enter text:")
ct=aes.encrypt(plaintext)
print(ct)
aes=pyaes.AESModeOfOperationCTR(b'DESCRYPTDESCRYPT')
plaintext=aes.decrypt(ct)
print(plaintext)
```

```
File Edit Shell Debug Options Window Help

Python 3.10.5 (tags/v3.10.5:f377153, Jun 6 2022, 16:14:13) [MSC v.1929 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>>> = RESTART: C:\Users\Siddhesh Chindarkar\OneDrive\Documents\TY Notes\Practicals\I NS\Practical4 AES_Algorithm.py enter text:helloworld b'8\x15\n.\xfd)^\xd0h\x1c' b'helloworld'

>>> |
```

Practical No.5

<u>Aim:</u> Write a program to implement RSA algorithm to perform encryption / decryption of a given string.

Code:-

```
def gcd(m,n):
  if m<n:
    (m,n)=(n,m)
  if(m%n)==0:
    return n
  else:
    return(gcd(n,m%n))#Recursion taking place
def rsaAlgo(p,q):
  print("p=",p,"q=",q)
  n=p*q
  fin=(p-1)*(q-1)
  for i in range(1,fin):
    if gcd(i,fin)==1:
      e=i
      d=i
  print("d=",d)
  #Encryption
  print("Enter Message such that Message<",n)</pre>
  message=int(input(""))
  enc=message**e%n
```

```
print("enc=",enc)
  #Decryption
  print("Enter c such that c<",n)</pre>
  cipher=int(input(""))
  dec=cipher**d%n
  print("dec=",dec)
def primeNum(n):
  if n>1:
    for i in range(2,n):
      if n%i==0:
        print("Invalid")
        n=int(input("Enter a Prime Number"))
    else:
      print("Valid")
  else:
    print()
  return n
p=int(input("Enter A Prime Number:"))
p1=primeNum(p)
q=int(input("Enter Another Prime Number:"))
q1=primeNum(q)
rsaAlgo(p1,q1)
```

```
IDLE Shell 3.10.5
                                                                                    File Edit Shell Debug Options Window Help
   Python 3.10.5 (tags/v3.10.5:f377153, Jun 6 2022, 16:14:13) [MSC v.1929 64 bit (
   AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
    = RESTART: C:\Users\Siddhesh Chindarkar\OneDrive\Documents\TY Notes\Practicals\I
   NS\Practical5_RSA_Algorithm.py
Enter A Prime Number:2
    Valid
    Enter Another Prime Number: 3
   Valid
   p= 2 q= 3
    d= 1
   Enter Message such that Message< 6
    enc= 5
   Enter c such that c< 6
    dec= 1
>>>
```

Name:- Siddhesh S. Chindarkar Roll No:- 228622

Practical No.6 Diffie-Hellman Key Exchange

Aim:- Write a program to implement the Diffie-Hellman Key Agreement algorithm to generate symmetric keys.

Code:-

```
#Diffie Hellman Key Exchange
from math import sqrt
# Returns True if n is prime
def isPrime( n):
  # Corner cases
  if (n <= 1):
     return False
  if (n<= 3):
     return True
  if (n \% 2 == 0 \text{ or } n \% 3 == 0):
     return False
  i = 5
  while(i * i \leq n):
     if (n \% i == 0 \text{ or } n \% (i + 2) == 0):
       return False
     i = i + 6
  return True
def power(x,y,p):
  res = 1 # Initialize result
```

```
x = x \% p # Update x if it is more
  # than or equal to p
  while (y > 0):
  # If y is odd, multiply x with result
    if (y & 1):
       res = (res * x) % p
       y = y >> 1
       x = (x * x) % p
  return res
# Utility function to store prime # factors of a number
def findPrimefactors(s, n) :
  while(n%2==0):
    # Print the number of 2s that divide n while (n \% 2 == 0):
    s.add(2)
    n = n // 2
    # n must be odd at this po. So we can # skip one element (Note i = i + 2)
  for i in range(3, int(sqrt(n)), 2):
    # While i divides n, print i and divide n
    while (n \% i == 0):
       s.add(i)
       n = n // i
  if (n > 2):
     s.add(n)
```

Name:- Siddhesh S. Chindarkar Roll No:- 228622

```
# Function to find smallest primitive # root of n
def findPrimitive( n):
  s = set()
  # Check if n is prime or not
  if (isPrime(n) == False):
     return -1
  # Find value of Euler Totient function
  # of n. Since n is a prime number, the # value of Euler Totient function is n-1 # as there are
n-1 relatively prime numbers.
  phi = n - 1
  # Find prime factors of phi and store in a set
  findPrimefactors(s, phi)
  # Check for every number from 2 to phi
  for r in range(2, phi + 1):
    # Iterate through all prime factors of phi. # and check if we found a power with value 1
    flag = False
    for it in s:
       if (pow(r, phi // it,n) == 1):
         flag = True
         break
       # If there was no power with value 1.
     if (flag == False):
       return r
```

```
# If no primitive root found
  return r
#generating public key of user A,B
def pua(xa,a,q):
  if xa<q:
    ya=(a**xa)%q
    return ya
  else:
    print("xa should be < ", q)</pre>
    #key generation
def keyGen(x,y,q):
  k=(y^**x)%q
  return k
q = int(input("Enter prime number:"))
a=findPrimitive(q)
xa=int(input("Enter private key of user A (<q):"))
xb=int(input("Enter private key of user B (<q):"))
ya=pua(xa,a,q)
yb=pua(xb,a,q)
ka=keyGen(xa,yb,q)
kb=keyGen(xb,ya,q)
print("Smallest primitive root of", q, "is", a)
print("ya=",ya)
```

```
print("yb=",yb)
print("ka=",ka)
print("kb=",kb)
```

```
IDLE Shell 3.10.5
                                                                              File Edit Shell Debug Options Window Help
   Python 3.10.5 (tags/v3.10.5:f377153, Jun 6 2022, 16:14:13) [MSC v.1929 64 bit (
   AMD64)] on win32
   Type "help", "copyright", "credits" or "license()" for more information.
   = RESTART: C:\Users\Siddhesh Chindarkar\OneDrive\Documents\TY Notes\Practicals\I
   NS\Practical6_Diffie-Hellman_key_exchange.py
   Enter prime number:19
   Enter private key of user A (<q) : 3
   Enter private key of user B (<q): 4
   Smallest primitive root of 19 is 2
   ya= 8
   yb= 16
   ka= 11
kb= 11
>>>
```

Practical No.7

<u>Aim:</u> Write a program to implement the MD5 algorithm compute the message digest.

Code:-

```
#MD5
import hashlib
def file_check(filename):
  hash1=hashlib.md5()
  with open(filename, 'rb') as open_file:
    content=open_file.read()
    hash1.update(content)
  print(hash1.hexdigest())
def pass_check(pw):
  hash1=hashlib.md5(pw.encode('utf-8'))
  print ("Your md5 password is",hash1.hexdigest())
print("__MD5__")
print("1.File_check \n 2.Password_Check")
choice=int(input("Please Enter your choice:"))
if (choice ==1):
  print("File Check")
  fn='hello.txt'
  file_check(fn)
elif(choice==2):
  print("Password check")
  pw=input("Enter a password")
```

```
pass_check(pw)
else:
    print("Wrong choice")
```

```
iDLE Shell 3.10.5
                                                                             File Edit Shell Debug Options Window Help
   Python 3.10.5 (tags/v3.10.5:f377153, Jun 6 2022, 16:14:13) [MSC v.1929 64 bit (
   AMD64)] on win32
   Type "help", "copyright", "credits" or "license()" for more information.
    = RESTART: C:/Users/Siddhesh Chindarkar/OneDrive/Documents/TY Notes/Practicals/I
   NS/Practical7_MD5_Algorithm.py
     MD5
   1. File check
    2.Password_Check
   Please Enter your choice:1
   File Check
   d17a46dd263ba6c31e0fcada8e2aad52
   = RESTART: C:/Users/Siddhesh Chindarkar/OneDrive/Documents/TY Notes/Practicals/I
   NS/Practical7_MD5_Algorithm.py
     MD5
   1. File check
    2.Password Check
   Please Enter your choice:2
   Password check
   Enter a password101001011
   Your md5 password is d17a46dd263ba6c31e0fcada8e2aad52
>>>
```

Name:- Siddhesh S. Chindarkar Roll No:- 228622

Practical No.8

<u>Aim:-</u> Write a program to calculate HMAC-SHA1 Signature & HMAC-SHA512 Signature.

i) HMAC-SHA1 Signature

Code:-

```
import hashlib
def sha(m):
    m=m.encode("utf8")
    hash1=hashlib.sha1(m)
    print("SHA-1 signature of Your Message is:",hash1.hexdigest())
pt=input("Enter a Message:")
sha(pt)
```

Output:-

```
File Edit Shell 3.10.5 — X

File Edit Shell Debug Options Window Help

Python 3.10.5 (tags/v3.10.5:f377153, Jun 6 2022, 16:14:13) [MSC v.1929 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>> = RESTART: C:/Users/Siddhesh Chindarkar/OneDrive/Documents/TY Notes/Practicals/INS/Practical8_SHA1_Algorithm.py
Enter a Message:message
SHA-1 signature of Your Message is: 6f9b9af3cd6e8b8a73c2cdced37fe9f59226e27d
```

ii) HMAC-SHA512 Signature

Code:-

```
import hashlib

def sha(m):
    m=m.encode("utf-8")
    hash512=hashlib.sha512(m)
    print("SHA-512 signature of ur mag is:",hash512.hexdigest())
pt=input("Enter a mag:")
sha(pt)
```

Roll No:- 228622

```
File Edit Shell Debug Options Window Help

Python 3.10.5 (tags/v3.10.5:f377153, Jun 6 2022, 16:14:13) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.

PESTART: C:/Users/Siddhesh Chindarkar/OneDrive/Documents/TY Notes/Practicals/INS/Practicals_SHA512_Algorithm.py
Enter a mag:siddhesh
SHA-512 signature of ur mag is: e7a897310c0f15960d3cb051fcb89133061e030d2e3fe150bd3d8de77784344b5277c92c6beeccf3d0f8669ae097fd37eb14ab1ca14300042c68949dbe2f8ecc
```

Roll No:- 228622

Practical No.9

Aim: Configure Windows Firewall to block:-

- i) A port
- ii) An Program
- iii) A website
- i) A port

Steps:-

1. Open control panel.

2.Go to firewall in search box.

Roll No:- 228622

3.In the windows firewall, Click on advanced setting and then click on Inbound Rule.

4.Go to new Rule in RHS.

Roll No:- 228622

5.Go to the port and then set TCP and set Specific local ports which you want to block Eg.80.

6.Click next till the last dialog box appears.

Roll No:- 228622

7.Click Finish.

ii) An Program

Steps:-

1. Open control panel.

Roll No:- 228622

2.Go to firewall in search box.

3.In the windows firewall, Click on advanced setting and then click on Outbound Rule.

4.Go to new Rule in RHS.

5.Go to programs then browse the files which you want to block.

Roll No:- 228622

6.Click on Next.

7.Click on Next.

Roll No:- 228622

8. Click on Finish.

iii) A website

Steps:-

1.Open control panel.

Roll No:- 228622

2.Go to firewall in search box.

3.In the windows firewall, Click on advanced setting and then click on Outbound Rule.

Roll No:- 228622

4.Go to new Rule in RHS.

5.Go to All Programs.

Roll No:- 228622

6. Select Any and enter IP address.

7.Click on Next.

Roll No:- 228622

8. Click on Finish.

Roll No:- 228622

Practical no: 10(ssl)

Aim: - Write a program to implement ssl.

```
import socket
import ssl
hostname='www.python.org'
context=ssl.create_default_context()
```

```
with socket.create_connection((hostname,443))as sock:
    with context.wrap_socket(sock,server_hostname=hostname)as s_sock:
    print(s_sock.version())
```

```
TLSV1.3

Pile Edit Shell Debug Options Window Help

Python 3.10.5 (tags/v3.10.5:f377153, Jun 6 2022, 16:14:13) [MSC v.1929 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

***TUSV1.3

***TUSV1.3

***TUSV1.3

***TUSV1.3

***TUSV1.3

***TUSV1.3

***TUSV1.3
```