Research on Infinite series involving circular cotangent function and Fourier Series

Pratham Prasad India prasadpratham23@gmail.com October 17, 2024

Proof of Convergence

$$\sum_{n=1}^{\infty} \frac{\cot(\pi\sqrt{2}n)}{n^3}$$
 (Wolfram Alpha says diverges)

Now, let's prove it converges:

$$\left| \frac{\cot(\pi\sqrt{2}n)}{n^3} \right| = \frac{1}{n^3} \frac{\left| \cos(\pi\sqrt{2}n) \right|}{\left| \sin(\pi\sqrt{2}n) \right|}$$
$$\leq \frac{1}{n^3} \cdot \frac{1}{\left| \sin(\pi\sqrt{2}n) \right|} \quad \{ |\cos \theta| \leq 1 \}$$

Consider $\theta \in [0, \frac{\pi}{2}],$

$$\frac{d^2}{d\theta^2}\sin\theta = -\sin\theta \le 0 \quad \Rightarrow \sin\theta \text{ is concave on } [0, \frac{\pi}{2}]$$

$$\sin(\lambda \frac{\pi}{2} + (1 - \lambda)0) \ge \lambda \sin \frac{\pi}{2} + (1 - \lambda) \sin 0 = \lambda, \quad \lambda \in [0, 1]$$

Or,

$$\sin(\lambda \frac{\pi}{2}) \ge \lambda, \quad \lambda \in [0, 1]$$

Let $x = \frac{\lambda}{2}, x \in [0, \frac{1}{2}],$

$$\therefore \sin(\pi x) \ge 2x, \quad x \in [0, \frac{1}{2}]$$

$$\therefore |\sin(\pi\sqrt{2}n)| = |\sin(\pi(\sqrt{2}n - m))|, m \in \mathbb{Z}$$

Choosing m such that:

$$-\frac{1}{2} \le \sqrt{2}n - m \le \frac{1}{2} \quad \text{(Closest integer to } \sqrt{2}n\text{)}$$

$$|\sin(\pi(\sqrt{2}n - m))| \ge 2|\sqrt{2}n - m|$$

$$\therefore \frac{|\cot(\pi\sqrt{2}n)|}{n^3} \le \frac{1}{n^3} \cdot \frac{1}{|\sin(\pi(\sqrt{2}n))|} = \frac{1}{n^3} \cdot \frac{1}{|\sin(\pi(\sqrt{2}n - m))|}$$

$$\le \frac{1}{2n^3} \cdot \frac{1}{|\sqrt{2}n - m|} = \frac{1}{2n^4} \cdot \frac{1}{|\sqrt{2} - \frac{m}{n}|}$$

The last step is to employ Liouville theorem/equality: For irrational algebraic number x of degree d, there exists a constant C such that

$$\begin{split} \left| x - \frac{p}{q} \right| &\geq \frac{C}{q^d}, \quad \forall p, q \in \mathbb{Z}, q \neq 0 \\ & \therefore |\sqrt{2} - \frac{m}{n}| \geq \frac{C}{n^2} \Rightarrow \frac{1}{|\sqrt{2} - \frac{m}{n}|} \leq \frac{n^2}{C} \\ & \therefore \frac{|\cot(\pi \sqrt{2}n)|}{n^3} \leq \frac{n^2}{2n^4C} = \frac{1}{2n^2C} \\ & \sum_{n=1}^{\infty} \frac{1}{2Cn^2} \text{ converges to } \frac{\zeta(2)}{2C} = \frac{\pi^2}{12C} \\ & \therefore \sum_{n=1}^{\infty} \frac{\cot(\pi \sqrt{2}n)}{n^3} \text{ also converges (hence, proved its convergence)}. \end{split}$$

Using Fourier Series

By using Fourier series:

$$\cot(\alpha\theta) = \frac{\sin(\alpha\pi)}{\pi} \left[\frac{1}{\alpha} + 2\alpha \sum_{n=1}^{\infty} \frac{(-1)^n}{\alpha^2 - n^2} \cos(n\theta) \right], \quad \cos(n\pi) = (-1)^n$$

$$\Rightarrow \cot(\alpha\pi) = \frac{1}{\alpha\pi} + 2\alpha\pi \sum_{n=1}^{\infty} \frac{1}{(\alpha\pi)^2 - n^2\pi^2}$$

$$\Rightarrow \cot(x) = \frac{1}{x} + \sum_{n=1}^{\infty} \frac{2x}{x^2 - n^2\pi^2}$$

$$\Rightarrow \frac{1}{x} - \cot(x) = -\sum_{n=1}^{\infty} \frac{2x}{x^2 - n^2\pi^2}$$

$$\Rightarrow 1 - x\cot(x) = \sum_{n=1}^{\infty} \frac{2x^2}{n^2\pi^2} \left[\frac{1}{1 - \frac{x^2}{n^2\pi^2}} \right]$$

$$\Rightarrow 1 - x\cot(x) = \sum_{n=1}^{\infty} \frac{2x^2}{n^2\pi^2} \left[1 + \frac{x^2}{n^2\pi^2} + \frac{x^4}{n^4\pi^4} + \dots \right]$$

$$\Rightarrow \frac{x^2}{3} + \frac{x^4}{45} + \dots = \left[\frac{2x^2}{\pi^2} \zeta(2) + \frac{2x^4}{\pi^4} \zeta(4) + \dots \right]$$

Comparing coefficients of x^2 and x^4 ,

$$\zeta(2) = \frac{\pi^2}{6}, \quad \zeta(4) = \frac{\pi^4}{90}$$
$$\cot(\pi z) = \frac{1}{\pi z} + \frac{2z}{\pi} \sum_{n=1}^{\infty} \frac{1}{z^2 - n^2}$$

Finding The Sum

Define $f(\alpha) = \sum_{n=1}^{\infty} \frac{\cot(\alpha \pi n)}{n^3}$, Target sum $= f(\sqrt{2})$. Since $\cot((\alpha + 1)\pi n) = \cot(\alpha \pi n)$,

$$\therefore f(\alpha+1) = f(\alpha) = f(\alpha-1)$$

Thus,

$$f(\sqrt{2}+1) = f(\sqrt{2}) = f(\sqrt{2}-1)$$

Now.

$$f(\sqrt{2}+1) = \sum_{n=1}^{\infty} \frac{\cot((\sqrt{2}+1)\pi n)}{n^3} = \sum_{n=1}^{\infty} \frac{1}{(\sqrt{2}+1)\pi n^4} + \frac{2(\sqrt{2}+1)}{\pi} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{n^2((\sqrt{2}+1)^2 n^2 - k^2)}$$

$$= \sum_{n=1}^{\infty} \frac{1}{(\sqrt{2}+1)\pi n^4} + \frac{2(\sqrt{2}+1)}{\pi} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \left(-\frac{1}{k^2 n^2} + \frac{(\sqrt{2}+1)^2}{k^2((\sqrt{2}+1)^2 n^2 - k^2)} \right)$$

$$= \frac{\pi^3}{90(1+\sqrt{2})} + \frac{2(1+\sqrt{2})}{\pi} \left\{ -\zeta^2(2) \right\} + \frac{2(1+\sqrt{2})^3}{\pi} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{k^2((1+\sqrt{2})^2 n^2 - k^2)}$$

$$= \frac{\pi^3}{90(1+\sqrt{2})} - \frac{(\sqrt{2}+1)\pi^3}{18} - \frac{2(1+\sqrt{2})}{\pi} \sum_{k=1}^{\infty} \frac{1}{k^2} \sum_{n=1}^{\infty} \frac{1}{(\sqrt{2}-1)^2 k^2 - n^2}$$

$$= \frac{\pi^3}{90(1+\sqrt{2})} - \frac{(\sqrt{2}+1)\pi^3}{18} + \frac{2(1+\sqrt{2})}{2\pi(\sqrt{2}-1)^2} \sum_{k=1}^{\infty} \frac{1}{k^4} - \frac{\sqrt{2}+1}{\sqrt{2}-1} \sum_{k=1}^{\infty} \frac{\cot((\sqrt{2}-1)\pi k)}{k^3}$$

$$\therefore f(\sqrt{2}) = \frac{\pi^3}{90(\sqrt{2}+1)} - \frac{(\sqrt{2}+1)\pi^3}{18} + \frac{(\sqrt{2}+1)^3\pi^3}{90} - (\sqrt{2}+1)^2 f(\sqrt{2}-1)$$

$$\Rightarrow f(\sqrt{2}) \left\{ 1 + (\sqrt{2}+1)^2 \right\} = \frac{\pi^3(\sqrt{2}-1) - \pi^3(\sqrt{2}+1)^3 5 + \pi^3(\sqrt{2}+1)^3}{90}$$

Or,

$$\sum_{n=1}^{\infty} \frac{\cot(\pi\sqrt{2}n)}{n^3} = \frac{\pi^3\sqrt{2}}{360}$$

 $\therefore f(\sqrt{2}) = \frac{\pi^3 \sqrt{2}}{260}$

Thus, we found the required sum.

Done By Pratham Prasad.