12/PRTS

明細書

DT04 Rec'd PCT/PT0 2 9 JUL 2004

糖鎖合成酵素

技術分野

背景技術

シアル酸は、たとえば細胞-細胞間伝達、細胞基質相互作用、細胞接着などの重要な生理作用を司る物質である。発生、分化の過程に特異的な、あるいは臓器特異的なシアル酸含有糖鎖の存在が知られている。シアル酸は糖タンパク質および糖脂質の糖鎖部分の末端位置に存在しており、これらの部位へのシアル酸の導入は、酵素的に CMP-Sia からの転移によってなされる。

このシアル酸の酵素的導入(シアル酸転移)を担う酵素は、シアル酸転移酵素 (sialyltransferase)と呼ばれるグリコシルトランスフェラーゼ類である。ほ乳類 では現在までに 18 種類のシアル酸転移酵素の存在が知られているが、これらはシ

アル酸の転移様式から 4 つのファミリーに大別される(Tsuji, S. (1996) *J.* Biochem. 120, 1-13)。すなわち、 α 2,3 の結合様式でガラクトースにシアル酸 を転移する α2,3-シアル酸転移酵素(ST3Gal-ファミリー)、α2,6 の結合様式でガ ラクトースにシアル酸を転移する α 2, 6-シアル酸転移酵素(ST6Ga1-ファミリー)、 α2,6の結合様式でN-アセチルガラクトサミンにシアル酸を転移する GalNAc α 2,6-シアル酸転移酵素(ST6GalNAc-ファミリー)、およびα2,8 の結合様式でシア ル酸にシアル酸を転移する α 2, 8-シアル酸転移酵素 (ST8Sia-ファミリー)である。 このうちα2,8-シアル酸転移酵素については現在までに 5 種類の酵素(ST8Sia I-V)について cDNA クローニングが行われており、その酵素学的諸性質も明らかに なっている (Yamamoto, A. et al. (1996) J. Neurochem. 66, 26-34; Kojima, N. et al. (1995) FEBS Lett. 360, 1-4; Yoshida, Y. et al. (1995) J. Biol. Chem. 270, 14628-14633; Yoshida, Y. et al. (1995) J. Biochem. 118, 658-664; Kono, M. et al. (1996) J. Biol. Chem. 271, 29366-29371)。ST8Sia I はガングリオ シドの GD3 合成酵素であり、ST8Sia V は同じくガングリオシドの GD1c, GT1a, GQ1b, GT3 などを合成する酵素である。ST8Sia II, IV は神経細胞接着分子(NCAM) のN型糖鎖上にポリシアル酸を合成する酵素である。ST8Sia III は糖タンパク質 のN型糖鎖および糖脂質に見いだされる Siaα2,3Galβ1,4GlcNAc 構造にシアル 酸を転移する酵素である。これらの酵素はいずれも糖脂質あるいはN型糖鎖を好 ましい基質としており、O型糖鎖に対する活性は、NCAM の一つのアイソフォーム に見いだされるO型糖鎖上にST8Sia II, IV がオリゴシアル酸/ポリシアル酸を合 成する例と、脂肪細胞特異的糖タンパク質 AdipoQ の〇型糖鎖に ST8SiaIII が作用 する例が報告されているだけである (Suzuki, M. et al. (2000) Glycobiology 10, 1113;及び Sato C, et al. (2001) J. Biol. Chem. 276, 28849-28856)。すなわ ち今までに報告されてきている α2,8-シアル酸転移酵素は、通常O型糖鎖を好ま しい基質としてはおらず、これを好ましい基質とする α 2,8-シアル酸転移酵素の 存在は知られていなかった。

また、β-ガラクトシド α 2,6-シアル酸転移酵素については現在までに 1 種類の

酵素(ST6Gal I)についてのみ cDNA クローニングが行われており、その酵素学的 諸性質も明らかになっている(Hamamoto, T. and Tsuji, S. (2001)ST6Gal-I in Handbook of Glycosyltransferases and Related Genes (Taniguchi, N. et al. Eds.) pp295-300)。ST6Gal I は糖タンパク質、オリゴ糖またはガングリオシドなどの末端糖鎖部分に Gal β 1, 4GlcNAc 構造をもつものに対して活性を示すが、Gal β 1, 4GlcNAc 構造のほかにラクトース(Gal β 1, 4Glc) や場合によっては Gal β 1, 3GlcNAc 構造でも基質にすることができる基質特異性の広い酵素である。基質特異性が広いということは、例えば ST6Gal I を利用した機能性オリゴ糖などの合成の際に、原材料に不純物が混入していると、それらも基質となって副産物が生じてしまう可能性が考えられる。従ってこの問題を解決するためには、基質特異性に関してより選択性の高い酵素が要求される。しかし現在までに β -ガラクトシド α 2, δ -シアル酸転移酵素活性をもち、基質特異性に関してより選択性の高い哺乳動物由来の酵素は知られていなかった。

発明の開示

上記した通り、今までに知られている α 2, 8-シアル酸転移酵素は 5 種類存在するが、これらはいずれもN型糖鎖をもつ糖タンパク質またはガングリオシドなどの糖脂質を主な基質とし、O型糖鎖をもつ糖タンパク質に対しては活性を全く示さないか、限定的な活性を示すだけであった。本発明の第一の目的は、O型糖鎖に対し高い活性を示す新規なO-glycan α 2, 8-シアル酸転移酵素を提供することである。また、本発明は、O-glycan α 2, 8-シアル酸転移酵素をコードする cDNAをクローニングし、該O-glycan α 2, 8-シアル酸転移酵素をコードする DNA 配列および該酵素のアミノ酸配列を提供することを目的とする。さらに本発明は、上記のO-glycan α 2, 8-シアル酸転移酵素の構造のうち、活性に係わる部分を大量に蛋白として発現させることを目的とする。

さらにまた上記した通り、哺乳動物で今までに知られている β -ガラクトシド α 2,6-シアル酸転移酵素は1種類(ST6Gal I)だけである。これは糖タンパク質、

オリゴ糖またはガングリオシドなどの末端糖鎖部分に $Gal \beta 1$, 4GlcNAc 構造をもつものに対して活性を示すが、 $Gal \beta 1$, 4GlcNAc 構造のほかにラクトース($Gal \beta 1$, 4Glc)や場合によっては $Gal \beta 1$, 3GlcNAc 構造でも基質にすることができる基質特異性の広い酵素である。本発明の第二の目的は、この基質特異性が広いという問題点を解決し、オリゴ糖上の $Gal \beta 1$, 4GlcNAc 構造に対してより選択性の高い基質特異性を示す新規 β - ガラクトシド $\alpha 2$, 6 - シアル酸転移酵素および該酵素をコードするDNA を提供することである。

本発明者は、上記の課題を解決すべく鋭意努力し、マウス脳及び心臓の各 cDNA ライブラリーをスクリーニングし、またマウス腎臓由来 cDNA を鋳型とした PCR を行うことにより、O-glycan α2.8-シアル酸転移酵素をコードする cDNA をクロ ーニングすることに成功した。さらに、本発明者は、ヒトシアル酸転移酵素 ST6Gal I のアミノ酸配列を用いて、これと相同性を示す新規シアル酸転移酵素をコード しているクローンを expressed sequence tag (dbEST)のデータベースで検索し、 GenBank™ accession Nos. BE613250, BE612797, BF038052 の各 EST クローンを取 得した。またそれらの塩基配列情報を利用して、dbEST とヒトゲノムの High throughput genomic sequence のデータベースを検索し、関連 EST クローンとゲ ノム遺伝子の塩基配列情報を取得した。以上の塩基配列情報をもとにポリメラー ゼ連鎖反応法 (PCR)用のプライマーを作製し、ヒト大腸由来 cDNA を鋳型として PCR を行い、得られた増幅断片と入手 EST クローン由来の DNA 断片を連結するこ とによって翻訳領域全長を含むクローンを取得した。そして、該クローンにより コードされるタンパク質がβ -ガラクトシドα 2 , 6 -シアル酸転移酵素活性を 有していることを確認した。本発明はこれらの知見に基づいて完成したものであ る。

即ち、本発明によれば、以下の基質特異性および基質選択性を有することを特徴とする、 $O-glycan \alpha 2,8-シアル酸転移酵素が提供される。$

基質特異性:末端に $Sia \alpha 2,3(6)$ Gal (ここで、Sia はシアル酸を示し、Gal はガラクトースを示す) 構造をもつ糖を基質とする;

基質選択性:糖脂質およびN型糖鎖よりも優先的にO型糖鎖に対してシアル酸を取り込ませる:

好ましくは、本発明により、下記の何れかのアミノ酸配列を有するO-glycan α 2.8-シアル酸転移酵素が提供される。

(1) 配列表の配列番号1または3に記載のアミノ酸配列;又は

7

(2)配列表の配列番号 1 または 3 に記載のアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、O-glycan α 2, 8-シアル酸転移を触媒する活性を有するアミノ酸配列:

本発明の別の側面によれば、上記した本発明のO-glycan α 2, 8-シアル酸転移酵素のアミノ酸配列をコードするO-glycan α 2, 8-シアル酸転移酵素遺伝子が提供される。

好ましくは、本発明により、下記の何れかの塩基配列を有するO-glycan α 2, 8-シアル酸転移酵素が提供される。

- (1)配列表の配列番号2に記載の塩基配列中の塩基番号77番目から1270 番目で特定される塩基配列:
- (2)配列表の配列番号2に記載の塩基配列中の塩基番号77番目から1270番目で特定される塩基配列において1から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、O-glycan α2,8-シアル酸転移を触媒する活性を有する蛋白質をコードする塩基配列:
- (3) 配列表の配列番号4に記載の塩基配列中の塩基番号92番目から1285 番目で特定される塩基配列;
- (4) 配列表の配列番号4に記載の塩基配列中の塩基番号92番目から1285番目で特定される塩基配列において1から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、O-glycan α 2,8-シアル酸転移を触媒する活性を有する蛋白質をコードする塩基配列:

本発明のさらに別の側面によれば、上記した本発明のO-glycan α 2,8-シアル酸転移酵素遺伝子を含む組み換えベクター(好ましくは、発現ベクター);上記

した組み換えベクターにより形質転換された形質転換体;並びに上記した形質転換体を培養し培養物から本発明の酵素を採取することを特徴とする本発明の酵素の製造方法が提供される。

本発明のさらに別の側面によれば、下記の何れかのアミノ酸配列を有するO $-glycan \alpha 2,8$ -シアル酸転移酵素活性ドメインから成る蛋白質が提供される。

- (1)配列表の配列番号1に記載のアミノ酸配列のアミノ酸番号26~398から成るアミノ酸配列:
- (2)配列表の配列番号1に記載のアミノ酸配列のアミノ酸番号26~398から成るアミノ酸配列において1から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、O-glycan α 2,8-シアル酸転移を触媒する活性を有するアミノ酸配列:
- (3)配列表の配列番号3に記載のアミノ酸配列のアミノ酸番号68~398から成るアミノ酸配列;又は
- (4) 配列表の配列番号 3 に記載のアミノ酸配列のアミノ酸番号 6 $8 \sim 3$ 9 8 から成るアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、O-glycan α 2, 8-シアル酸転移を触媒する活性を有するアミノ酸配列:

本発明のさらに別の側面によれば、本発明のO-glycan α 2,8-シアル酸転移酵素の活性ドメインであるポリペプチド部分とシグナルペプチドとを含む細胞外分泌型の蛋白であって、O-glycan α 2,8-シアル酸転移を触媒する活性を有する蛋白質が提供される。

本発明のさらに別の側面によれば、上記した本発明の細胞外分泌型の蛋白質をコードする遺伝子が提供される。

本発明のさらに別の側面によれば、上記した本発明の細胞外分泌型の蛋白質を コードする遺伝子を含む組み換えベクター(好ましくは、発現ベクター);上記 した組み換えベクターにより形質転換された形質転換体;並びに上記した形質転 換体を培養し培養物から本発明の酵素を採取することを特徴とする本発明の蛋白 質の製造方法が提供される。

本発明のさらに別の側面によれば、以下の作用および基質特異性を有することを特徴とする、 β - ガラクトシド α 2, δ - シアル酸転移酵素が提供される。

(1) 作用;

末端にガラクトース β 1, 4Nーアセチルグルコサミン構造をもつ糖鎖のガラクトース部分に α 2, 6の結合様式でシアル酸を転移する。

(2) 基質特異性;

末端にガラクトース β 1,4N-アセチルグルコサミン構造をもつ糖鎖を基質とし、ラクトース、及び末端にガラクトース β 1,3N-アセチルグルコサミン構造をもつ糖鎖を基質としない。

本発明のさらに別の側面によれば、下記の何れかのアミノ酸配列を有する β - ガラクトシド α 2, 6 - シアル酸転移酵素が提供される。

- (1) 配列表の配列番号5または7に記載のアミノ酸配列;又は
- (2) 配列表の配列番号 5 または 7 に記載のアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、 β ーガラクトシド α 2 , 6 ーシアル酸転移を触媒する活性を有するアミノ酸配列:

本発明のさらに別の側面によれば、上記した本発明の β ーガラクトシド α 2, 6 ーシアル酸転移酵素のアミノ酸配列をコードする β ーガラクトシド α 2, 6 ーシアル酸転移酵素遺伝子が提供される。

本発明のさらに別の態様によれば、下記の何れかの塩基配列を有する β - ガラクトシド α 2, 6 - シアル酸転移酵素遺伝子が提供される。

- (1)配列表の配列番号6に記載の塩基配列中の塩基番号176番目から176 2番目で特定される塩基配列;
- (2) 配列表の配列番号 6 に記載の塩基配列中の塩基番号 1 7 6 番目から 1 7 6 2 番目で特定される塩基配列において 1 から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、 β ガラクトシド α 2 1 6 シアル酸転移を触媒する活性を有する蛋白質をコードする塩基配列:

- (3) 配列表の配列番号8に記載の塩基配列中の塩基番号3番目から1574番目で特定される塩基配列:又は
- (4) 配列表の配列番号 8 に記載の塩基配列中の塩基番号 3 番目から 1 5 7 4 番目で特定される塩基配列において 1 から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、 β ガラクトシド α 2 , 6 シアル酸転移を触媒する活性を有する蛋白質をコードする塩基配列:

本発明のさらに別の側面によれば、本発明の β ーガラクトシド α 2, 6 ーシアル酸転移酵素遺伝子を含む組み換えベクターが提供される。

本発明の組み換えベクターは、好ましくは、発現ベクターである。

本発明のさらに別の側面によれば、本発明の組み換えベクターにより形質転換された形質転換体が提供される。

本発明のさらに別の側面によれば、本発明の形質転換体を培養し培養物から本発明の酵素を採取することを特徴とする、本発明の酵素の製造方法が提供される。

本発明のさらに別の側面によれば、下記の何れかのアミノ酸配列を有する β - ガラクトシド α 2, 6 - シアル酸転移酵素活性ドメインから成る蛋白質が提供される。

- (1)配列表の配列番号5に記載のアミノ酸配列のアミノ酸番号33~529から成るアミノ酸配列;
- (2) 配列表の配列番号 5 に記載のアミノ酸配列のアミノ酸番号 $3\sim529$ から成るアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、 β ーガラクトシド α 2 , 6 ーシアル酸転移を触媒する活性を有するアミノ酸配列:
- (3)配列表の配列番号7に記載のアミノ酸配列のアミノ酸番号31~524から成るアミノ酸配列;又は
- (4) 配列表の配列番号 7 に記載のアミノ酸配列のアミノ酸番号 $3 \ 1 \sim 5 \ 2 \ 4$ から成るアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、 β ガラクトシド α 2 , 6 シアル酸転移を触媒

する活性を有するアミノ酸配列:

本発明のさらに別の側面によれば、本発明の β ーガラクトシド α 2, 6 ーシアル酸転移酵素の活性ドメインであるポリペプチド部分とシグナルペプチドとを含む細胞外分泌型の蛋白であって、 β ーガラクトシド α 2, 6 ーシアル酸転移を触媒する活性を有する蛋白質が提供される。

本発明のさらに別の態様によれば、上記した本発明の蛋白質をコードする遺伝子が提供される。

本発明のさらに別の態様によれば、上記した本発明の遺伝子を含む組み換えべクターが提供される。

本発明の組み換えベクターは、好ましくは、発現ベクターである。

本発明のさらに別の態様によれば、本発明の組み換えベクターにより形質転換された形質転換体が提供される。

本発明のさらに別の態様によれば、本発明の形質転換体を培養し培養物から本 発明の蛋白質を採取することを特徴とする、本発明の蛋白質の製造方法が提供さ れる。

図面の簡単な説明

図1は、マウスおよびヒトのST8Sia VI cDNA の塩基配列と予測アミノ酸配列を示す。膜貫通ドメインは下線、シアリルモチーフ L は二重線、シアリルモチーフ S は破線で示してある。シアリルモチーフ VS で保存されているヒスチジンとグルタミン酸は四角で囲ってある。N 型糖鎖が結合すると予想されるアスパラギンには上線を付してある。A, マウス ST8Sia VI。 B, ヒト ST8Sia VI。

図2は、アミノ酸配列の比較を示す。

Aは、マウスシアル酸転移酵素 ST8Sia I, ST8Sia V, ST8Sia VI のアミノ酸配列の比較を示す。各シアル酸転移酵素間で保存されているアミノ酸は四角で囲ってある。シアリルモチーフ L は二重線で、シアリルモチーフ S は破線で示してあ

る。シアリルモチーフ VS で保存されているヒスチジンとグルタミン酸にはアスタリスクを付してある。

Bは、マウス(m)およびヒト(h)の ST8Sia VI のアミノ酸配列の比較を示す。両 酵素間で保存されているアミノ酸は四角で囲ってある。

図3は、結合特異性の解析を示す。

Aは、マウス ST8Sia VI の分泌型組み換えタンパク質 PA-mST8Sia VI により GM3 を [14 C]-NeuAc でシアル化し、それを α 2, 3-, α 2, 6-結合特異的なシアリダーゼ (NANase II)、 α 2, 3-, α 2, 6-, α 2, 8-, α 2, 9-結合特異的シアリダーゼ (NANase III) で処理した反応産物を HPTLC で展開 (展開溶媒はクロロホルム: メタノール: 0.02% CaCl₂=55:45:10) した結果 (上段)、およびヒト ST8Sia VI の分泌型組み 換えタンパク質 PA-hST8Sia VI により 3'-sialyllactose を [14 C]-NeuAc でシアル 化し、それを NANase II、NANase III で処理した反応産物を HPTLC で展開 (展開溶媒は 1-プロパノール: アンモニア水: 水=6:1:2.5) した結果 (下段)を示す。

Bは、GM3 を PA-mST8Sia VI によりシアル化した反応産物の TLC 免疫染色の結果を示す。レーン 1, GD3 (1 μ g); レーン 2, GM3 (1 μ g); レーン 3, 反応産物。 抗 GD3 モノクローナル抗体 KM641 および Peroxidase-conjugated anti-mouse IgG + IgM (H+L)で反応させた後、ECL で発色した。

図4は、ST8Sia III または ST8Sia VI によって[¹⁴C]-NeuAc を取り込ませた Fetuin を N-glycanase で処理した結果を示す。[¹⁴C]-NeuAc を取り込ませた Fetuin を N-glycanase で処理し、SDS-PAGE で解析後、BAS2000 ラジオイメージアナライザーで可視化した。

図 5 は、COS-7 細胞においてマウス ST8Sia~VI 全長 cDNA を過剰発現させたときの影響を示す。

Aは、抗 NeuAca2, 8NeuAca2, 3Gal 抗体 S2-566 を用いて TLC 免疫染色を行った結果を示す。レーン 1, GD3 標準物質 $(0.5\,\mu\,\mathrm{g})$; レーン 2, GQ1b 標準物質 $(0.5\,\mu\,\mathrm{g})$; レーン 3, コントロールの COS-7 細胞 $(30\,\mathrm{mg})$ から抽出した酸性糖脂質画分; レーン 4, マウス全長 ST8Sia VI 発現ベクターpRc/CMV-ST8Sia VI を導入した COS-7

細胞(30 mg)から抽出した酸性糖脂質画分。

Bは、COS-7 細胞または pRc/CMV-ST8Sia VI を導入した COS-7 細胞からミクロソーム画分を調製し、SDS-PAGE に供した後($45\mu g/\nu - \nu$)、PVDF 膜に転写して S2-566 抗体を用いてウエスタンブロットを行った結果を示す。レーン 1, コントロールの COS-7 細胞から調製したミクロソーム画分; レーン 2, pRc/CMV-ST8Sia VI を導入した COS-7 細胞から調製したミクロソーム画分; レーン 3, コントロールの COS-7 細胞から調製したミクロソーム画分; レーン 3, コントロールの COS-7 細胞から調製したミクロソーム画分を N-グリカナーゼ処理したもの; レーン 4, pRc/CMV-ST8Sia VI を導入した COS-7 細胞から調製したミクロソーム画分を N-グリカナーゼ処理したもの。ST8Sia VI cDNA の導入により生じた S2-566 抗体に認識されるバンドの主なものについては、アスタリスクを付してある。

図6は、マウスおよびヒトのST8Sia VI遺伝子の発現様式を示す。

Aは、マウス各種臓器より調製した poly(A)+ RNA (約2 μ g/レーン)を用いてマウス ST8Sia VI 遺伝子の発現様式をノーザン解析した結果を示す。

Bは、Multiple Tissue cDNA Panel (Clontech)を用いてPCR法によりヒトST8Sia VI 遺伝子の発現様式を解析した結果を示す。ヒト ST8Sia VI 特異的プライマーとして、5'-CCAGTGTCCCAGCCTTTTGT-3'(図 1B の塩基番号 608-627 に相当)(配列番号 17)および 5'-TGAGTGGGGAAGCTTTGGTC-3'(図 1B の塩基番号 1407-1426 の相補鎖に相当)(配列番号 18)を用いた(PCR 増幅断片の大きさは 819 bp)。

図7は、ヒトST6Gal II cDNA の塩基配列と予測アミノ酸配列、およびその疎水性分布図を示す。

Aは、ヒトST6Gal II cDNA の塩基配列と予測アミノ酸配列を示す。膜貫通ドメインは下線、シアリルモチーフ L は二重線、シアリルモチーフ S は破線で示してある。シアリルモチーフ VS で保存されているヒスチジンとグルタミン酸は四角で囲ってある。N 型糖鎖が結合すると予想されるアスパラギンには上線を付してある。

Bは、ヒト ST6Gal II の疎水性分布図を示す。N 末端側の大きな疎水性領域は 膜貫通ドメインと予測される。 図8は、マウス ST6Gal II cDNA の塩基配列と予測アミノ酸配列、およびその疎水性分布図を示す。

Aは、マウス ST6Gal II cDNA の塩基配列と予測アミノ酸配列を示す。膜貫通ドメインは下線、シアリルモチーフ L は二重線、シアリルモチーフ S は破線で示してある。シアリルモチーフ VS で保存されているヒスチジンとグルタミン酸は四角で囲ってある。 M 型糖鎖が結合すると予想されるアスパラギンには上線を付してある。

Bは、マウス ST6Gal II の疎水性分布図を示す。N 末端側の大きな疎水性領域は膜貫通ドメインと予測される。

図9は、アミノ酸配列の比較を示す。

Aは、ヒトシアル酸転移酵素 ST6Gal I と ST6Gal II のアミノ酸配列の比較を示す。両シアル酸転移酵素間で保存されているアミノ酸は四角で囲ってある。シアリルモチーフ L は二重線で、シアリルモチーフ S は破線で示してある。シアリルモチーフ VS で保存されているヒスチジンとグルタミン酸にはアスタリスクを付してある。

Bは、ヒト(h)およびマウス(m)の ST6Gal II のアミノ酸配列の比較を示す。両酵素間で保存されているアミノ酸は四角で囲ってある。

図10は、オリゴ糖に対する活性を示す。様々なオリゴ糖を基質(10 μ g/レーン)として酵素反応を行い、その反応産物を HPTLC で解析(展開溶媒は 1-プロパノール:アンモニア水:水=6:1:2.5) した結果を示す。

図11は、結合特異性の解析を示す。

Aは、ヒトST6Gal I(上段)、ヒトST6Gal II(中段)、およびマウス ST6Gal II(下段)を用いて Gal β 1, 4GlcNAc を [14 C] –NeuAc でシアル化し(レーン 1)、それを α 2, 3-結合特異的シアリダーゼ (NANase I, レーン 2)、 α 2, 3-, α 2, 6-結合特異的シアリダーゼ (NANase II, レーン 3)で処理した反応産物を HPTLC で展開 (展開溶媒は 1-プロパノール:アンモニア水:水=6:1:2.5)した結果を示す。

Bは、ヒトST6Gal I (上段)、ヒトST6Gal II (中段)、およびマウス ST6Gal

II(下段)を用いて $Gal \beta 1$, 4GlcNAc を $[^{14}C]$ -NeuAc でシアル化し(レーン 1)、 それを β -ガラクトシダーゼで処理した反応産物(レーン 2)、およびコントロールとして $Gal \beta 1$, 4GlcNAc を β -ガラクトシダーゼで処理した後に酵素反応を行った試料(レーン 3)を HPTLC で展開(展開溶媒は 1-プロパノール: アンモニア水: 水=6:1:2.5)した結果を示す。レーン 2 のバンドがブロードなのは、 β -ガラクトシダーゼ溶液中に含まれている高濃度の硫酸アンモニウムの影響による。

図12は、ヒトST6Gal I, ST6Gal II およびマウス ST6Gal II 遺伝子の発現パターンの解析を示す。ヒト ST6Gal I, ST6Gal II 特異的プライマーとヒト組織(A) またはヒト腫瘍細胞(B)の Multiple tissue cDNA panel (Clontech)を用い、両遺伝子の発現パターンを PCR 法で解析した。PCR は 94 度 1 分、50 度 1 分、72 度 1 分 30 秒を 1 サイクルとし、Glyceraldehyde 3-phosphate dehydrogenase (G3PDH) 遺伝子については 25 サイクル、ヒト ST6Gal I, ST6Gal II 遺伝子については 40 サイクル行って、反応産物をアガロースゲル電気泳動で解析した。Sk. muscle, skeletal muscle; P. bl. leukocyte, peripheral blood leukocyte。Cは、マウス ST6Gal II の発現パターンを、マウス ST6Gal II 特異的プライマーとマウス組織の Multiple tissue cDNA panel (Clontech)を用い、PCR 法で解析した結果を示す。

発明を実施するための最良の形態

以下、本発明の実施態様及び実施方法について詳細に説明する。

(1) 本発明の酵素及び蛋白質

本発明のO-glycan α2,8-シアル酸転移酵素は、以下の基質特異性および基質 選択性を有することを特徴とする。

基質特異性:末端に $Sia \alpha 2, 3(6)$ Gal (ここで、Sia はシアル酸を示し、Gal はガラクトースを示す) 構造をもつ糖を基質とする:

基質選択性:糖脂質およびN型糖鎖よりも優先的にO型糖鎖に対してシアル酸を取り込ませる:

上記した基質特異性及び基質選択性は、本明細書に記載した実施例で取得されたマウスおよびヒト由来のO-glycan α 2,8-シアル酸転移酵素について実証された性質である。本発明のO-glycan α 2,8-シアル酸転移酵素の由来はマウスおよびヒト由来のものに限定されるものではなく、同型のO-glycan α 2,8-シアル酸転移酵素が他の哺乳類の組織に存在し、かつ、それらのO-glycan α 2,8-シアル酸転移酵素が互いに高度の相同性を有していることは当業者に容易に理解される。

このようなO-glycan α 2, 8-シアル酸転移酵素は、上記した基質特異性及び基質選択性を有することを特徴とするものであり、すべて本発明の範囲に属するものである。

このような酵素としては、哺乳類組織由来の天然型酵素やその変異体、または以下の実施例で作製したようなO-glycan α 2,8-シアル酸転移を触媒し、遺伝子組み換え技術により製造された細胞外分泌型蛋白質などを挙げることができるが、これらはいずれも本発明の範囲に包含されるものである。

本発明のO-glycan α 2, 8-シアル酸転移酵素の一例としては、下記の何れかのアミノ酸配列を有するO-glycan α 2, 8-シアル酸転移酵素が挙げられる。

- (1) 配列表の配列番号1または3に記載のアミノ酸配列;又は
- (2)配列表の配列番号 1 または 3 に記載のアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、O-glycan α 2,8-シアル酸転移を触媒する活性を有するアミノ酸配列:

さらに、本発明のO-glycan α 2,8-シアル酸転移酵素の活性ドメイン、あるいはそのアミノ酸配列の一部を改変又は修飾して得られるO-glycan α 2,8-シアル酸転移酵素活性を有する蛋白質は全て本発明の範囲に包含されることを理解すべきである。このような活性ドメインの好ましい例としては、配列表の配列番号1に記載したアミノ酸配列の26~398または配列番号3に記載したアミノ酸配列の68~398により特定されるO-glycan α 2,8-シアル酸転移酵素の活性ドメインを挙げることができる。また、配列表の配列番号1または配列番号3に記

載したアミノ酸配列の $26\sim100$ 前後までの配列はステムと呼ばれる領域なので活性には必ずしも必須ではないと考えられる。従って、配列表の配列番号1または配列番号3に記載したアミノ酸配列の $101\sim398$ の領域をO-glycan α 2,8-シアル酸転移酵素の活性ドメインとして使用してもよい。

即ち、本発明によれば、下記の何れかのアミノ酸配列を有するO-glycan α 2, 8-シアル酸転移酵素活性ドメインから成る蛋白質が提供される。

- (1)配列表の配列番号1に記載のアミノ酸配列のアミノ酸番号26~398から成るアミノ酸配列;
- (2)配列表の配列番号 1 に記載のアミノ酸配列のアミノ酸番号 2 6 \sim 3 9 8 から成るアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、O-glycan α 2, 8-シアル酸転移を触媒する活性を有するアミノ酸配列:
- (3)配列表の配列番号3に記載のアミノ酸配列のアミノ酸番号68~398から成るアミノ酸配列;又は
- (4) 配列表の配列番号 3 に記載のアミノ酸配列のアミノ酸番号 6 $8\sim3$ 9 8 から成るアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、O-glycan α 2, 8-シアル酸転移を触媒する活性を有するアミノ酸配列:

一方、本発明の β - ガラクトシド α 2, 6 - シアル酸転移酵素は、以下の作用 および基質特異性を有することを特徴とする。

(1) 作用;

末端にガラクトース β 1, 4Nーアセチルグルコサミン構造をもつ糖鎖のガラクトース部分に α 2, 6の結合様式でシアル酸を転移する。

(2) 基質特異性;

末端にガラクトース β 1,4N-アセチルグルコサミン構造をもつ糖鎖を基質とし、ラクトース、及び末端にガラクトース β 1,3N-アセチルグルコサミン構造をもつ糖鎖を基質としない。

上記した作用及び基質特異性性は、本明細書に記載した実施例で取得されたヒトおよびマウス由来の β – ガラクトシド α 2, 6 – シアル酸転移酵素について実証された性質である。本発明の β – ガラクトシド α 2, 6 – シアル酸転移酵素の由来はヒトまたはマウス由来のものに限定されるものではなく、同型の β – ガラクトシド α 2, 6 – シアル酸転移酵素が他の哺乳類の組織に存在し、かつ、それらの β – ガラクトシド α 2, 6 – シアル酸転移酵素が互いに高度の相同性を有していることは当業者に容易に理解される。

このような β - ガラクトシド α 2, 6 - シアル酸転移酵素は、上記した作用および基質特異性を有することを特徴とするものであり、すべて本発明の範囲に属するものである。

このような酵素としては、哺乳類組織由来の天然型酵素やその変異体、または β - ガラクトシド α 2, 6 - シアル酸転移を触媒し、遺伝子組み換え技術により 製造された細胞外分泌型蛋白質などを挙げることができるが、これらはいずれも 本発明の範囲に包含されるものである。

本発明の β – ガラクトシド α 2, 6 – シアル酸転移酵素の一例としては、下記の何れかのアミノ酸配列を有する β – ガラクトシド α 2, 6 – シアル酸転移酵素が挙げられる。

- (1) 配列表の配列番号5または7に記載のアミノ酸配列;又は
- (2) 配列表の配列番号 5 または 7 に記載のアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、 β ガラクトシド α 2 , 6 シアル酸転移を触媒する活性を有するアミノ酸配列:

さらに、本発明の β ーガラクトシド α 2, 6 ーシアル酸転移酵素の活性ドメイン、あるいはそのアミノ酸配列の一部を改変又は修飾して得られる β ーガラクトシド α 2, 6 ーシアル酸転移酵素活性を有する蛋白質は全て本発明の範囲に包含されることを理解すべきである。このような活性ドメインの好ましい例としては、配列表の配列番号 5 に記載したアミノ酸配列の 3 3 ~ 5 2 9 により特定される β ーガラクトシド α 2, 6 ーシアル酸転移酵素の活性ドメインを挙げることができ

同様に、活性ドメインの好ましい例としては、配列表の配列番号 7 に記載した アミノ酸配列の $31\sim524$ により特定される $\beta-$ ガラクトシド α 2, 6- シアル酸転移酵素の活性ドメインを挙げることができる。また、配列表の配列番号 7 に記載したアミノ酸配列の $31\sim200$ 前後までの配列はステムと呼ばれる領域 なので活性には必ずしも必須ではないと考えられる。従って、配列表の配列番号 7 に記載したアミノ酸配列の $201\sim524$ の領域を $\beta-$ ガラクトシド α 2, 6 ーシアル酸転移酵素の活性ドメインとして使用してもよい。

即ち、本発明によれば、下記の何れかのアミノ酸配列を有する β - ガラクトシド α 2, 6 - シアル酸転移酵素活性ドメインから成る蛋白質が提供される。

本発明のさらに別の側面によれば、下記の何れかのアミノ酸配列を有する β - ガラクトシド α 2, 6 - シアル酸転移酵素活性ドメインから成る蛋白質が提供される。

- (1)配列表の配列番号5に記載のアミノ酸配列のアミノ酸番号33~529から成るアミノ酸配列:
- (2) 配列表の配列番号 5 に記載のアミノ酸配列のアミノ酸番号 $3\sim5$ 2 9 から成るアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、 β ガラクトシド α 2 , 6 シアル酸転移を触媒する活性を有するアミノ酸配列:
- (3)配列表の配列番号7に記載のアミノ酸配列のアミノ酸番号31~524から成るアミノ酸配列;又は
- (4)配列表の配列番号7に記載のアミノ酸配列のアミノ酸番号31~524から成るアミノ酸配列において1から数個のアミノ酸の欠失、置換及び/又は付加

を有するアミノ酸配列を有し、 $\beta-$ ガラクトシド α 2, 6-シアル酸転移を触媒する活性を有するアミノ酸配列:

本明細書で言う「1から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列」における「1から数個」の範囲は特には限定されないが、例えば、1から20個、好ましくは1から10個、より好ましくは1から7個、さらに好ましくは1から5個、特に好ましくは1から3個程度を意味する。

本発明の酵素又は蛋白質の取得方法については特に制限はなく、化学合成により合成した蛋白質でもよいし、遺伝子組み換え技術により作製した組み換え蛋白質でもよい。

組み換え蛋白質を作製する場合には、先ず当該蛋白質をコードするDNAを入手することが必要である。本明細書の配列表の配列番号1から8に記載したアミノ酸配列および塩基配列の情報を利用することにより適当なプライマーを設計し、それらを用いて適当なcDNAライブラリーを鋳型にしてPCRを行うことにより、本発明の酵素をコードするDNAを取得することができる。

また、本発明の酵素をコードするDNAの一部の断片を上記したPCRにより得た場合には、作製したDNA断片を順番に遺伝子組み換え技術により連結することにより、所望の酵素をコードするDNAを得ることができる。このDNAを適当な発現系に導入することにより、本発明の酵素を産生することができる。発

現系での発現については本明細書中後記する。

さらに、本発明のO-glycan α 2,8-シアル酸転移酵素または β -ガラクトシド α 2,6-シアル酸転移酵素の活性ドメインであるポリペプチド部分とシグナルペプチドとを含む細胞外分泌型の蛋白であって、O-glycan α 2,8-シアル酸転移または β -ガラクトシド α 2,6-シアル酸転移を触媒する活性を有する蛋白質も本発明に含まれる。

本発明のO-glycan α 2,8-シアル酸転移酵素および β -ガラクトシド α 2,6 ーシアル酸転移酵素は、発現後に細胞内に留まり、細胞外に分泌されない場合がある。また、細胞内濃度が一定以上になると、酵素の発現量が低下するという可能性がある。上記のO-glycan α 2,8-シアル酸転移酵素のO-glycan α 2,8-シアル酸転移酵素のO-glycan α 2,8-シアル酸転移酵素の β -ガラクトシド α 2,6-シアル酸転移酵素の β -ガラクトシド α 2,6-シアル酸転移酵素の β -ガラクトシド α 2,6-シアル酸転移酵素の活性を維持し、かつ発現時に細胞から分泌される可溶性形態の蛋白を製造することができる。このような蛋白としては、本発明のO-glycan α 2,8-シアル酸転移酵素または β -ガラクトシド α 2,6-シアル酸転移酵素の活性に関与するO-glycan α 2,8-シアル酸転移酵素の活性に関与するO-glycan α 2,8-シアル酸転移酵素または β -ガラクトシド α 2,6-シアル酸転移酵素または β -ガラクトシド α 2,6-シアル酸転移を触媒する蛋白質を挙げることができる。例えば、マウス免疫グロブリン IgM のシグナルペプチドや、プロテインAとの融合蛋白は本発明の分泌型蛋白の好ましい態様である。

これまでにクローニングされたシアル酸転移酵素は、他のグリコシルトランスフェラーゼと同様のドメイン構造を有している。すなわち、 NH_2 末端の短い細胞質中尾部、疎水性のシグナルアンカードメイン、蛋白分解感受性を有するステム (stem)領域、及び COOH-末端の大きな活性ドメインを有する (Paulson, J. C. and Colley, K. J., *J. Biol. Chem.*, 264, 17615–17618, 1989)。本発明の O-glycan α 2, 8-シアル酸転移酵素または β - ガラクトシド α 2, δ - シアル酸転移酵素の

経膜ドメインの位置を調べるためには、カイト及びドゥーリトル(Kyte, J. and Doolittle, R.F., J. Mol. Biol., 157, 105-132, 1982)の方法に従って作成した 疎水性分布図を利用することができる。また、活性ドメイン部分の推定には、各種のフラグメントを導入した組換えプラスミドを作成して利用することができる。このような方法の一例は、例えば PCT/JP94/02182 号の明細書に詳細に記載されているが、経膜ドメインの位置の確認や活性ドメイン部分の推定方法は、この方法に限定されることはない。

O-glycan α 2,8-シアル酸転移酵素または β -ガラクトシド α 2,6-シアル 酸転移酵素の活性ドメインであるポリペプチド部分とシグナルペプチドとを含む 細胞外分泌型の蛋白の製造のためには、例えばシグナルペプチドとして免疫グロ ブリンシグナルペプチド配列を用い、O-glycan α2,8-シアル酸転移酵素または βーガラクトシドα2,6ーシアル酸転移酵素の活性ドメインに対応する配列を 該シグナルペプチドにインフレーム融合させればよい。このような方法としては、 例えば、ジョブリンの方法(Jobling, S.A. and Gehrke, L., *Nature*(Lond.), 325, 622-625, 1987) を利用することができる。また、本明細書の実施例に詳細に説明 されているように、マウス免疫グロブリン IgM のシグナルペプチドやプロテイン Aとの融合蛋白を製造してもよい。もっとも、シグナルペプチドの種類やシグナ ルペプチドと活性ドメインの結合方法、または可溶化の方法は上記方法に限定さ れることはなく、当業者は、O-glycan α2,8-シアル酸転移酵素またはβーガラ クトシドα2,6-シアル酸転移酵素の活性ドメインであるポリペプチド部分を 適宜選択することができるし、それらを利用可能な任意のシグナルペプチドと適 宜の方法により結合することにより細胞外分泌型の蛋白を製造することができ る。

(2) 本発明の遺伝子

本発明によれば、本発明のO-glycan α 2, 8-シアル酸転移酵素のアミノ酸配列をコードする遺伝子、並びに β - ガラクトシド α 2, 6 - シアル酸転移酵素のア

ミノ酸配列をコードする遺伝子が提供される。

本発明のO-glycan α 2, 8-シアル酸転移酵素のアミノ酸配列をコードする遺伝子の具体例としては、下記の何れかの塩基配列を有する遺伝子が挙げられる。

- (1)配列表の配列番号2に記載の塩基配列中の塩基番号77番目から1270 番目で特定される塩基配列;
- (2) 配列表の配列番号 2 に記載の塩基配列中の塩基番号 7 7番目から 1 2 7 0 番目で特定される塩基配列において 1 から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、O-glycan α 2, 8-シアル酸転移を触媒する活性を有する蛋白質をコードする塩基配列:
- (3)配列表の配列番号4に記載の塩基配列中の塩基番号92番目から1285 番目で特定される塩基配列;
- (4) 配列表の配列番号 4 に記載の塩基配列中の塩基番号 9 2番目から 1 2 8 5 番目で特定される塩基配列において 1 から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、O-glycan α 2, 8-シアル酸転移を触媒する活性を有する蛋白質をコードする塩基配列:

本発明の β - ガラクトシド α 2, 6 - シアル酸転移酵素のアミノ酸配列をコードする遺伝子の具体例としては、下記の何れかの塩基配列を有する遺伝子が挙げられる。

- (1)配列表の配列番号6に記載の塩基配列中の塩基番号176番目から176 2番目で特定される塩基配列;
- (3)配列表の配列番号8に記載の塩基配列中の塩基番号3番目から1574番目で特定される塩基配列;又は
- (4) 配列表の配列番号8に記載の塩基配列中の塩基番号3番目から1574番

目で特定される塩基配列において 1 から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、 β - ガラクトシド α 2 , 6 - シアル酸転移を触媒する活性を有する蛋白質をコードする塩基配列 :

本明細書で言う「1から数個の塩基の欠失、置換及び/又は付加を有する塩基配列」における「1から数個」の範囲は特には限定されないが、例えば、1から 60個、好ましくは1から 300個、より好ましくは1から 200個、さらに好ましくは1から 100個、さらに好ましくは1から 50個、特に好ましくは1から 30個程度を意味する。

さらに、本発明のO-glycan α 2,8-シアル酸転移酵素または β -ガラクトシド α 2,6-シアル酸転移酵素の活性ドメインから成る蛋白質、並びに該活性ドメインであるポリペプチド部分とシグナルペプチドとを含む細胞外分泌型の蛋白であって、O-glycan α 2,8-シアル酸転移または β -ガラクトシド α 2,6-シアル酸転移を触媒する活性を有する蛋白質をコードする遺伝子も本発明の範囲に属する。

本発明の遺伝子の取得方法は上述した通りである。

また、所定の核酸配列に所望の変異を導入する方法は当業者に公知である。例えば、部位特異的変異誘発法、縮重オリゴヌクレオチドを用いるPCR、核酸を含む細胞の変異誘発剤又は放射線への露出等の公知の技術を適宜使用することによって、変異を有するDNAを構築することができる。このような公知の技術は、例えば、Molecular Cloning: A laboratory Mannual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989、並びに Current Protocols in Molecular Biology, Supplement 1~38, John Wiley & Sons (1987-1997)に記載されている。

<u>(3)本発明の組み換えべクター</u>

本発明の遺伝子は適当なベクター中に挿入して使用することができる。本発明で用いるベクターの種類は特に限定されず、例えば、自立的に複製するベクター

(例えばプラスミド等)でもよいし、あるいは、宿主細胞に導入された際に宿主 細胞のゲノムに組み込まれ、組み込まれた染色体と共に複製されるものであって もよい。

好ましくは、本発明で用いるベクターは発現ベクターである。発現ベクターに おいて本発明の遺伝子は、転写に必要な要素(例えば、プロモーター等)が機能 的に連結されている。プロモータは宿主細胞において転写活性を示すDNA配列 であり、宿主の種類に応じて適宜選択することができる。

細菌細胞で作動可能なプロモータとしては、バチルス・ステアロテルモフィルス・マルトジェニック・アミラーゼ遺伝子 (Bacillus stearothermophilus maltogenic amylase gene)、バチルス・リケニホルミス α アミラーゼ遺伝子 (Bacillus licheniformis alpha-amylase gene)、バチルス・アミロリケファチエンス・BAN アミラーゼ遺伝子 (Bacillus amyloliquefaciens BAN amylase gene)、バチルス・サブチリス・アルカリプロテアーゼ遺伝子 (Bacillus Subtilis alkaline protease gene)もしくはバチルス・プミルス・キシロシダーゼ遺伝子 (Bacillus pumilus xylosldase gene)のプロモータ、またはファージ・ラムダの P_R 若しくは P_L プロモータ、大腸菌の lac、trp 若しくは tac プロモータなどが挙げられる。

哺乳動物細胞で作動可能なプロモータの例としては、SV40プロモータ、MT-1 (メタロチオネイン遺伝子) プロモータ、またはアデノウイルス2主後期プロモータなどがある。昆虫細胞で作動可能なプロモータの例としては、ポリヘドリンプロモータ、P10プロモータ、オートグラファ・カリホルニカ・ポリヘドロシス塩基性タンパクプロモータ、バキュウロウイルス即時型初期遺伝子1プロモータ、またはバキュウロウイルス39K遅延型初期遺伝子プロモータ等がある。酵母宿主細胞で作動可能なプロモータの例としては、酵母解糖系遺伝子由来のプロモータ、アルコールデヒドロゲナーゼ遺伝子プロモータ、TPI1プロモータ、ADH2-4c プロモータなどが挙げられる。

糸状菌細胞で作動可能なプロモータの例としては、ADH3プロモータまたは

tpiAプロモータなどがある。

また、本発明のDNAは必要に応じて、例えばヒト成長ホルモンターミネータまたは真菌宿主についてはTPI1ターミネータ若しくはADH3ターミネータのような適切なターミネータに機能的に結合されてもよい。本発明の組み換えベクターは更に、ポリアデニレーションシグナル(例えばSV40またはアデノウイルス5E1b領域由来のもの)、転写エンハンサ配列(例えばSV40エンハンサ)および翻訳エンハンサ配列(例えばアデノウイルス VA RNA をコードするもの)のような要素を有していてもよい。

本発明の組み換えベクターは更に、該ベクターが宿主細胞内で複製することを可能にするDNA配列を具備してもよく、その一例としてはSV40複製起点(宿主細胞が哺乳類細胞のとき)が挙げられる。

本発明の組み換えベクターはさらに選択マーカーを含有してもよい。選択マーカーとしては、例えば、ジヒドロ葉酸レダクターゼ(DHFR)またはシゾサッカロマイセス・ポンベTPI遺伝子等のようなその補体が宿主細胞に欠けている遺伝子、または例えばアンピシリン、カナマイシン、テトラサイクリン、クロラムフェニコール、ネオマイシン若しくはヒグロマイシンのような薬剤耐性遺伝子を挙げることができる。

本発明のDNA、プロモータ、および所望によりターミネータおよび/または 分泌シグナル配列をそれぞれ連結し、これらを適切なベクターに挿入する方法は 当業者に周知である。

<u>(4)本発明の形質転換体及びそれを用いた蛋白質の製造</u>

本発明のDNA又は組み換えベクターを適当な宿主に導入することによって形質転換体を作製することができる。

本発明のDNAまたは組み換えベクターを導入される宿主細胞は、本発明のDNA構築物を発現できれば任意の細胞でよく、細菌、酵母、真菌および高等真核細胞等が挙げられる。

細菌細胞の例としては、バチルスまたはストレプトマイセス等のグラム陽性菌 又は大腸菌等のグラム陰性菌が挙げられる。これら細菌の形質転換は、プロトプ ラスト法、または公知の方法でコンピテント細胞を用いることにより行えばよい。

哺乳類細胞の例としては、HEK293細胞、HeLa細胞、COS細胞、BHK細胞、CHL細胞またはCHO細胞等が挙げられる。哺乳類細胞を形質転換し、該細胞に導入されたDNA配列を発現させる方法も公知であり、例えば、エレクトロポーレーション法、リン酸カルシウム法、リポフェクション法等を用いることができる。

酵母細胞の例としては、サッカロマイセスまたはシゾサッカロマイセスに属する細胞が挙げられ、例えば、サッカロマイセス・セレビシエ (Saccharomyces cerevislae)またはサッカロマイセス・クルイベリ (Saccharomyces kluyveri)等が挙げられる。酵母宿主への組み換えベクターの導入方法としては、例えば、エレクトロポレーション法、スフェロブラスト法、酢酸リチウム法等を挙げることができる。

他の真菌細胞の例は、糸状菌、例えばアスペルギルス、ニューロスポラ、フザリウム、またはトリコデルマに属する細胞である。宿主細胞として糸状菌を用いる場合、DNA構築物を宿主染色体に組み込んで組換え宿主細胞を得ることにより形質転換を行うことができる。DNA構築物の宿主染色体への組み込みは、公知の方法に従い、例えば相同組換えまたは異種組換えにより行うことができる。

昆虫細胞を宿主として用いる場合には、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、蛋白質を発現させることができる(例えば、Baculovirus Expression Vectors, A Laboratory Manual;及びカレント・プロトコールズ・イン・モレキュラー・バイオロジー、Bio/Technology, 6, 47(1988)等に記載)。

バキュロウイルスとしては、例えば、ヨトウガ科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス

(Autographa californica nuclear polyhedrosis virus)等を用いることができる。 昆虫細胞としては、Spodoptera frugiperda の卵巣細胞であるSf9、Sf2 1〔バキュロウイルス・エクスプレッション・ベクターズ、ア・ラボラトリー・ マニュアル、ダブリュー・エイチ・フリーマン・アンド・カンパニー(W. H. Freeman and Company)、ニューヨーク(New York)、(1992)〕、Trichoplusia ni の卵巣細胞であるHiFive(インビトロジェン社製)等を用いることができる。

組換えウイルスを調製するための、昆虫細胞への組換え遺伝子導入ベクターと 上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法又は リポフェクション法等を挙げることができる。

上記の形質転換体は、導入されたDNA構築物の発現を可能にする条件下で適切な栄養培地中で培養する。形質転換体の培養物から、本発明の酵素を単離精製するには、通常の蛋白質の単離、精製法を用いればよい。

例えば、本発明の酵素が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液に懸濁後、超音波破砕機等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の蛋白質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)セファロース等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。

以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。

実施例

実施例1: O-glycan α2,8-シアル酸転移酵素

本発明の具体例に用いた試薬、試料類は以下の通りである。Fetuin, asialofetuin, bovine submaxillary mucin (BSM), α 1-acid glycoprotein, ovomucoid, lactosyl ceramide (LacCer), GM3, GM1a, GD1a, GD1b, GT1b, CMP-NeuAc, 6'-sialyllactose, 3'-sialyl-N-acetyllactosamine, Triton CF-54 は Sigma 社から購入した。3'-sialyllactose, 6'-sialyl-N-acetyllactosamine は Calbiochem 社から購入した。N-アセチルノイラミン酸 (NeuAc), GM4, Gal, N-アセチルガラクトサミン(GalNAc)は和光純薬から購入した。GD3 は雪印乳業から 購入した。GQ1b は Alexis Biochemicals 社から購入した。CMP-[14C]-NeuAc(12.0 GBq/mmol)は Amersham Pharmacia Biotech 社から購入した。シアリダーゼ(NANase II, III)はGlyko Inc社から購入した。N-glycanase(Glycopeptidase F)は宝酒 造から購入した。[α-32P]dCTPは NEN 社から購入した。ヒト Multiple tissue cDNA panel はClontech 社から購入した。GM1b,およびその positional analog である GSC-68, 2, 3-sialylparagloboside (2, 3-SPG), 2, 6-sialylparagloboside (2,6-SPG)は木曽真教授(岐阜大学農学部)から、NeuAc α 2,3Gal, NeuAc α 2,6Gal は石田秀樹博士(野口研究所)から寄贈されたものを使用した。抗 GD3 モノクロ ーナル抗体 KM641 は協和発酵、設楽研也、花井陳雄両博士から寄贈されたものを 使用した。また抗 NeuAc α 2, 8NeuAc α 2, 3Gal 抗体 S2-566 は生化学工業より購入し た。Peroxidase-conjugated AffiniPure goat anti-mouse IgG+IgM(H+L)は Jackson Immno Research 社から購入した。BSM, α1-acid glycoprotein, ovomucoid の脱シ アル化 (アシアロ) 糖タンパク質は、これらを 0.02N HC1 中 80 度、1 時間で処理 することにより調製した。

マウスシアル酸転移酵素 ST8Sia V のアミノ酸配列を用いて、これと相同性を示す新規シアル酸転移酵素をコードしているクローンを National Center for Biotechnology Information の expressed sequence tag (dbEST)のデータベースで検索したところ、GenBank™ accession Nos. BE633149, BE686184, BF730564 の各クローンが得られた。これらの塩基配列情報をもとに 2 種類の合成 DNA,

5'-CTTTTCTGGAGAACTAAAGG-3'(図1Aの塩基番号1001-1020に相当)(配列番号9), 5'-AATTGCAGTTTGAGGATTCC-3'(図1Aの塩基番号1232-1251の相補鎖に相当)(配 列番号10)を作製し、Israel の方法に従い(Israel, D. I. (1993) Nucleic Acids Res. 21, 2627-2631)、ポリメラーゼ連鎖反応法(PCR)を利用してマウス脳および 心臓の各 cDNA ライブラリーをスクリーニングしたところ、新規シアル酸転移酵素 の一部をコードしているクローンがそれぞれのcDNAライブラリーから1個ずつ得 られた。全長クローンを得るため、さらに 2 種類の合成 DNA, 5'-TGGCTCAGGATGAGATCGGG-3'(図1Aの塩基番号68-87に相当)(配列番号11), 5'-TACTAGCGCTCCCTGTGATTGG-3'(図1Aの塩基番号725-746の相補鎖に相当)(配 列番号12)を作製し、マウス腎臓由来 cDNA を鋳型として PCR 法により両合成 DNA 間部分の DNA を増幅した。この増幅断片とマウス脳 cDNA ライブラリーから得 られたクローンを連結することにより、全長クローンを得た。この cDNA は 398 アミノ酸からなる予測分子量 45,399 の II 型膜タンパク質をコードする単一の翻 訳領域を有していた。またそのアミノ酸配列にはシアル酸転移酵素に保存されて いるシアリルモチーフが存在していた。本タンパク質は既知マウスシアル酸転移 酵素の中では ST8Sia I, V とそれぞれアミノ酸配列レベルで 42.0%, 38.3%の相同 性を示した(図2A)。なお以下に示すようにこのタンパク質はα2,8-シアル酸転 移酵素活性を有していたことから、これを本発明の 0-glycan α2, 8-シアル酸転移 酵素 ST8Sia VI と命名した。

一方、他の哺乳動物においてもこれと同様の酵素が存在するのかを調べるため、マウス ST8Sia VI の配列情報を利用して、上記と同様にデータベースを検索したところ、ヒトやラットにも同様の酵素が存在することが確認できた。図1 Bにヒトの ST8Sia VI の配列情報を示す。マウスとヒトの ST8Sia VI ではアミノ酸配列レベルで82.4%の相同性を示した(図2B)。

つぎに ST8Sia VI の酵素学的諸性質を調べるため、分泌型タンパク質の製造を行った。まずマウス ST8Sia VI について、それぞれ *Xho*I サイトを含む 2 種類の合成 DNA, 5'-TGCTCTCGAGCCCAGCCGACGCGCCTGCCC-3'(図1Aの塩基番号 141-170 に

相当)(配列番号 1 3),5'-TATTCTCGAGCTAAGAAACGTTAAGCCGTT-3'(図 1 A の塩基番号 1263-1293 の相補鎖に相当)(配列番号 1 4)を用い、クローニングした全長 cDNA を鋳型として PCR 法により、マウス ST8Sia VI の活性ドメインをコードする DNA 断片を増幅した。これを XhoI で切断後、哺乳動物発現ベクターpcDSA の XhoI サイトに挿入した。この発現ベクターを pcDSA-mST8Sia VI と命名した。

またヒト ST8Sia VI については、まず Human Tumor Multiple Tissue cDNA Panels (Clontech)の Colon adenocarcinoma CX-1 由来 cDNA を鋳型として、2 種類の合成 DNA, 5'-CAATTGACATATCTGAATGAGAAGTCGCTC-3' (図1 Bの塩基番号 293-315 に相当)(配列番号15),5'-TACTAACATCTCCTGTGGTTGG-3' (図1 Bの塩基番号 740-761の相補鎖に相当) (配列番号16)を用いて PCR 法により増幅した DNA 断片、および2種類の合成 DNA,5'-CCAGTGTCCCAGCCTTTTGT-3' (図1 Bの塩基番号 608-627に相当) (配列番号17),5'-TGAGTGGGGAAGCTTTGGTC-3' (図1 Bの塩基番号 1407-1426の相補鎖に相当)(配列番号18)を用いて PCR 法により増幅した DNA 断片を、両増幅 DNA 断片が共通に有する EcoRI サイトを利用して連結し、ヒトST8Sia VI の活性ドメインをコードする DNA 断片を得た。これをクローニングベクターpBluescript II SK(+)の EcoRV サイトに挿入した後、MunI と XhoI で切り出し、この切り出し断片を pcDSA の EcoRI-XhoI サイトに挿入したものを、発現ベクターpcDSA-hST8Sia VI と命名した。

pcDSA-mST8Sia VI および pcDSA-hST8Sia VI は、それぞれマウス免疫グロブリン IgM のシグナルペプチドと Staphylococcus aureus protein A, およびマウスまたはヒト ST8Sia VI の活性ドメイン(マウス ST8Sia VI ではアミノ酸番号 26-398、ヒト ST8Sia VI ではアミノ酸番号 68-398)からなる分泌型融合タンパク質をコードする。

各発現ベクターとリポフェクトアミン(Invitrogen)を用いて COS-7 細胞でその一過性発現を行った(Kojima, N. et al. (1995) FEBS Lett. 360, 1-4)。ここでそれぞれの発現ベクターを導入した細胞から細胞外に分泌された本発明のタンパク質を $PA-mST8Sia\ VI\ (マウス)および\ PA-hST8Sia\ VI\ (ヒト)と命名した。$

PA-mST8Sia VI、PA-hST8Sia VI は IgG-Sepharose(Amersham Pharmacia Biotech 社)に吸着させて培地より回収した。シアル酸転移酵素活性はLee らの方法に準じ て以下のように行った(Lee, Y.-C. et al. (1999) J. Biol. Chem. 274, 11958-11967)。50 mM MES バッファー(pH 6.0), 1 mM MgCl₂, 1 mM CaCl₂, 0.5% Triton CF-54, 100 μM CMP-[14C]-NeuAc, 糖鎖(糖脂質の場合は 0.5 mg/ml, 糖タンパク質、 オリゴ糖は1 mg/ml になるように添加)、およびPA-mST8Sia VI またはPA-hST8Sia VI 懸濁液を含む反応液(10 μ1)を 37 度で 3-20 時間インキュベートし、その後、 糖脂質については C-18 カラム(Sep-Pak Vac 100 mg; Waters 社)を用いて精製し たものを試料として、オリゴ糖、糖タンパク質については反応産物をそのまま試 料として解析を行った。オリゴ糖、糖脂質はシリカゲル 60HPTLC プレート (Merck 社)にスポットし、エタノール:ピリジン:n-ブタノール:水:酢酸=100:10:10:30:3 の展開溶媒(オリゴ糖用)、または 1-プロパノール:アンモニア水:水=6:1:2.5 の展開溶媒(オリゴ糖用)、またはクロロホルム:メタノール:0.02% CaCl₂=55:45:10 の展開溶媒(糖脂質用)で展開した。糖タンパク質の場合は SDS-ポリアクリルアミドゲル電気泳動によって解析を行った。これらの放射活性を BAS2000 ラジオイメージアナライザー (フジフィルム) で可視化し、定量した。

表1にPA-mST8Sia VI、PA-hST8Sia VI の基質特異性を示す。

表 1 ST8Sia VI の受容体基質特異性

糖タンパク質、単糖、オリゴ糖の場合は 1 mg/ml になるようにした。 相対活性は Fetuin の取り込み値 PA-mST8Sia VI は 2.06 pmol/h/(ml 酵 素液)、PA-hST8Sia VI は 0.204 pmol/h/(ml 酵素液))を 100 として計算した。 R は N型糖鎖の残りの糖鎖部分を意味する。ND:測定せず。 PA-mST8Sia VI および PA-hST8Sia VI を用いて様々な受容体基質に対する特異性を検討した。各基質の濃度は、糖脂質の場合は 0.5 mg/ml に、

	Representative structures of carbohydrates	Relative rate (%)	rate (%)
		Mouse ST&Sia VI	Human ST8Sia VI
Glycoproteins			
Fetuin	NeuAca2,3Galß1,3GalNAc-O-Ser/Thr	100	100
	NeuAcα2,3Galβ1,3(NeuAcα2,6)GalNAc-O-Ser/Thr	201	3
	NeuAcα2,6(3)Galβ1,4GlcNAc-R		
Asialofetuin		C	c
\alpha 1-Acid glycoprotein	NeuAca2,6(3)GalB1,4GlcNAc-R	o	o
Asialo- \alpha 1-Acid glycoprotein		o :	>
BSM	NeuAca2.6GaINAc-O-Ser/Thr	376	2
31	GlcNAcβ1,3(NeuAcα2,6)GalNAc-O-Ser/Thr	6/6	7.47
Asialo-BSM		c	¢
Ovomucoid	Neu Acct 2 3Galf1 4GlcN Ac-R	o (o ç
Acionmonooloia		7.0	12.3
Asiai OOYOIIII COIU		0	0
Glycolipids			
Lactosylceramide	GalB1,4GlcB1-Cer		· CE
GM4	New Acry 3 Galft-Cer	> °.	ON !
GM3	Non-Acceptant of the Color of t	1.0	QN ON
CINID	Neurocuz, 30 dip 1, 40 icp1 - Cer	13.0	1.6
GMIa	Galβ1,3GalNAcβ1,4(NeuAcα2,3)Galβ1,4G1cβ1-Cer	0	ND
GDla	NeuAcα2,3Galβ1,3GalNAcβ1,4(NeuAca2,3)Galβ1,4Glcβ1-Cer	0.9	~
GD3	NeuAca2,8NeuAca2,3Gaiß1,4Glcß1-Cer	2:5	0.4
GDIb	Gall 1 3Gall A c/81 4 (Nan A c/2) 2 Nan A c/2 2 2/2 181 4/2 102	>	>
(T.)	Value of the solution of the s	0	QN ON
100	NeuAcαz, 8Galp1, 3GalNAcβ1, 4(NeuAcα2, 8NeuAcα2, 3)Galβ1, 4Glcβ1-Cer	1.1	2.2
GQID GGIT	NeuAcα2,8NeuAcα2,8Galβ1,3GalNAcβ1,4(NeuAcα2,8NeuAcα2,3)Galβ1,4Glcβ1-Cer	0	0
GMIb	NeuAcα2,3Galβ1,3GalNAcβ1,4Galβ1,4Glcβ1-Cer	1.0	CZ
GSC-68	NeuAcα2,6Galβ1,3GalNAcβ1,4Galβ1,4Glcβ1-Cer	2.6	É
2,3-SPG	NeuAcα2,3Galβ1,4GlcNAcβ1,3Galβ1,4Glcβ1-Cer	3.5	í Ž
2,6-SPG	NeuAcα2,6Galβ1,4GlcNAcβ1,3Galβ1,4Glcβ1-Cer	0.98	2

3'-Sialyllactose NeuAca2, 6'-Sialyllactose NeuAca2, 3'-Sialyl-Nacetyllactosamine NeuAca2	1 000 00 101.401.		
Sialyllactose Neu-A	Actuz, 3 Galp 1, 4 Gile	609	009
Sialvl-N-acetyllactosamine Neu	Aca2.6Gal81.4Glc	3 10	7.01
Sign of the School of the School		61.3	10./
The transformation of the	Acα2,3Galβ1,4GicNAc	411	CZ.
6'- Sialyl-N-acetyllactosamine NeuAcα2,	Acα2,6Galβ1,4GlcNAc	88.7	
3'-Sialylgalactose Neu A	Neu Aco 2 3 Gal	13.0	2 4
		15.9	N N
o -Statyigatactose NeuA	NeuAca2,6Gal	2.0	CIN
N-Acetylneuraminic acid Neu Ac) ·	2
		>	N N
Calactose		C	CZ
N-Acetyloglactocamine GalNAc	♦		2 !

PA-mST8Sia VI は GM4, GM3, GD1a, GT1b, GM1b, GSC-68, 2,3-SPG, 2,6-SPG など、非還元末端に NeuAc α 2,3(6) Ga1-という構造をもつ糖脂質に対して活性を示した。このうち GM3 を基質とした場合、その反応産物は α 2,3-, α 2,6-結合で結合しているシアル酸を特異的に切断するシアリダーゼ (NANase II) では導入シアル酸が切断されなかったが、 α 2,3-, α 2,6-, α 2,8-, α 2,9-結合で結合しているシアル酸を特異的に切断するシアリダーゼ (NANase III) では、導入シアル酸が切断された(図3A)。またこの反応産物は抗 GD3 モノクローナル抗体 KM641 を用いた TLC 免疫染色 (Saito, M. et al. (2000) Biochim. Biophys. Acta 1523, 230-235) によって α 2,8 結合を介してシアル酸が導入された GD3 であることが確認されたことから (図3B)、PA-mST8Sia VI はシアル酸を α 2,8-の結合様式で転移することが明らかになった。

一方、糖タンパク質を基質とした場合(表 1)、PA-mST8Sia VI は 0 型糖鎖のみを含有する BSM に対して最も高い活性を示した。0 型糖鎖、N 型糖鎖を含有する Fetuin、N 型糖鎖のみを含有する Ovomucoid に対しても活性を示したが、Ovomucoid に対する活性は 0 型糖鎖を含むタンパク質に比べると低かった。なお、PA-mST8Sia VI はアシアロ糖タンパク質に対しては全く活性を示さなかった。また単糖およびオリゴ糖を基質とした実験により(表 1)、PA-mST8Sia VI が基質として認識する最小糖鎖単位は NeuAc α 2, 3(6) Gal であることが明らかになった。

Fetuin を基質としたとき、PA-mST8Sia VI によってあらたに導入されたシアル酸の大部分は0型糖鎖に取り込まれていることがN-glycanase 処理によって明らかになった(図4)。すなわち PA-mST8Sia VI を用いて Fetuin を [14 C]-NeuAc でシアル化し、これをN型糖鎖をペプチド部分から遊離するN-glycanase で処理すると、大部分(82.7%)の放射能活性はこの Fetuin に保持されたままであった。このことは PA-mST8Sia VI によって導入されたシアル酸の大部分は0型糖鎖に取り込まれたことを示す。一方、N型糖鎖を受容体基質とするマウス ST8Sia III を用いて同様の実験を行ったところ、放射活性は完全に消失した。

さらに PA-mST8Sia VI の基質特異性および選択性を明らかにするため、BSM と

GM3 に対する Km 値、Vmax 値を求めた。BSM に対しては Km 値=0.03 mM, Vmax 値=23.8 pmol/h/(ml 酵素液)で、Vmax/Km 値は 793 であった。一方、GM3 に対しては Km 値=0.5 mM, Vmax 値=0.67pmol/h/(ml 酵素液)で、Vmax/Km 値は 1.34 であった。以上の結果は、PA-mST8Sia VI にとって O 型糖鎖が糖脂質や N 型糖鎖よりはるかに好ましい基質であることを示している。

上記の酵素学的諸性質については、活性値に多少の差はあるものの PA-hST8Sia VI についても当てはまることから(表 1、図 3 A、図 4)、各種動物由来の ST8Sia VI が従来の α 2, 8-シアル酸転移酵素とは異なる基質特異性を有することが示されたといえる。

またマウス ST8Sia VI については、その全長クローンの細胞内における酵素活性についても調べた(図5)。マウス ST8Sia VI の全長をコードする領域を含む 1.4 kb の Not I-ApaI 断片を、発現ベクターpRc/CMV の Not I-ApaI サイトに挿入したものを pRc/CMV-ST8Sia VI と命名し、これをリポフェクトアミンを用いて cCOS-7 細胞に導入した。この細胞よりガングリオシドを抽出し、NeuAc a 2, 8NeuAc a 2, 3Ga I 構造を認識するモノクローナル抗体 cS2-566を用いて TLC 免疫染色を行ったところ (図 c A)、cPRc/CMV-ST8Sia VI 導入細胞において有意に NeuAc c 2, 8NeuAc c 2, 3Ga I 構造を有するガングリオシド量が増加していたことが明らかになった。また細胞内の糖タンパク質についても、cPRc/CMV-ST8Sia VI 導入細胞では cP 型糖鎖上に新たに NeuAc c 2, 8NeuAc c 2, 3Ga I 構造が形成されていた(図 c B)。以上の結果は、マウス ST8Sia VI が生体内において c 2, 8-シアル酸転移酵素として機能していることを示している。

なお、マウスST8Sia VI は腎臓、心臓、脾臓などで主に発現しているが(図 6 A)、 ヒト ST8Sia VI は胎盤や胎児の各種臓器、および各種腫瘍細胞などにおいて主に 発現している(図 6 B)。

実施例2:βーガラクトシドα2,6ーシアル酸転移酵素

本発明の具体例に用いた試薬、試料類は以下の通りである。Fetuin,

asialofetuin, bovine submaxillary mucin (BSM), α 1-acid glycoprotein, ovomucoid, lactosyl ceramide (LacCer), GA1, GM3, GM1a, Gal β 1, 3GalNAc, Gal β 1, 3GlcNAc, Gal β 1, 4GlcNAc, Triton CF-54, β -ガラクトシダーゼ (牛精巣由来) は Sigma 社から購入した。Paragloboside, ラクトースは和光純薬から購入した。CMP-[14C]-NeuAc (12.0 GBq/mmol)は Amersham Pharmacia Biotech 社から購入した。Lacto-N-tetraose, Lacto-N-neotetraose, シアリダーゼ (NANase I, II)は Glyko Inc 社から購入した。 $[\alpha^{-32}P]$ dCTPは NEN 社から購入した。ヒトおよびマウス Multiple tissue cDNA panelは Clontech 社から購入した。BSM, α 1-acid glycoprotein, ovomucoid の脱シアル化(アシアロ)糖タンパク質は、これらを0.02N HC1中80度、1時間で処理することにより調製した。

ヒトシアル酸転移酵素 ST6Gal I のアミノ酸配列を用いて、これと相同性を示す 新規シアル酸転移酵素をコードしているクローンを National Center for Biotechnology Information の expressed sequence tag (dbEST)のデータベース で検索したところ、GenBank™ accession Nos. BE613250, BE612797, BF038052の 各 EST クローンが得られた。これらについては I. M. A. G. E. Consortium より 該当クローンを入手した。またそれらの塩基配列情報を利用して、さらに dbEST とヒトゲノムの High throughput genomic sequence のデータベースを検索したと ころ、関連 EST クローンとゲノム遺伝子の塩基配列情報が得られた(Accession Nos. H94068, AA514734, BF839115, AA210926, AA385852, H94143, BF351512(以 (ゲノム配列))。以上の塩基配列情報をもとにポ 上 EST クローン), AC016994 リメラーゼ連鎖反応法(PCR)用のプライマーを作製し、ヒト大腸由来 cDNA を鋳型 として PCR を行い、ここで得られた増幅断片と入手 EST クローン由来の DNA 断片 を連結することによって翻訳領域全長を含むクローンを得た(図7A)。この cDNA は529 アミノ酸からなる予測分子量60,157のII型膜タンパク質をコードする単 一の翻訳領域を有していた。なお膜貫通ドメインは疎水性分布図によりアミノ酸 番号 12-30 の領域に存在することが予測された(図7B)。本タンパク質のアミ ノ酸配列にはシアル酸転移酵素に保存されているシアリルモチーフが存在してい

た。また本タンパク質は既知ヒトシアル酸転移酵素の中では ST6Gal I とアミノ酸レベルで最も高い相同性 (48.9%) を示したが (図 9 A)、他のファミリーのシアル酸転移酵素とは 21-36%程度の相同性を示したに過ぎなかった。なお以下に示すようにこのタンパク質は β - ガラクトシド α 2, 6-シアル酸転移酵素活性を有していたことから、これを本発明の β - ガラクトシド α 2, 6-シアル酸転移酵素 ST6Gal II と命名した。またヒト ST6Gal II には、splicing variant と考えられるシアリルモチーフ S の途中から配列が異なる short form のクローンも存在していた (図 7 A)。

一方、他の哺乳動物においてもこれと同様の酵素が存在するのかを調べるため、 ヒト ST6Gal II の配列情報を利用して、上記と同様にデータベースを検索したと ころ、マウスにも同様の酵素が存在することが確認できた。そこでマウスのクロ ーンについてもクローニングを行うことにした。マウス 14 日目胎児由来 cDNA を 鋳型として、2種類の合成 DNA,5'-GACAATGGGGATGAGTTTTTTACATCCCAG-3'(図8A の塩基番号 321-350 に相当)(配列番号19), 5'-CGATTTCCTCCCCCAAGGAGGAGTTCAGG-3'(図8Aの塩基番号864-893の相補鎖に相 (配列番号20) を用いて PCR 法により増幅した DNA 断片、および2種類の 当) 合成 DNA, 5'-ACGTTGGACGGCAGAGAGGCGCCCTTCTCG-3'(図8Aの塩基番号 774-803 に相当)(配列番号21),5'-ACCTTATTGCACATCAGTTCCCAAGAGTTC-3'(図8Aの 塩基番号 1582-1611 の相補鎖に相当)(配列番号 2 2)を用いて PCR 法により増 幅したDNA 断片を、両増幅DNA 断片が共通に有する KpnI サイトを利用して連結し、 さらにこれに 2 種類の合成 DNA、5'-CAATGAAACCACACTTGAAGCAATGGCGAC-3'(図 8 A の塩基番号 1-30 に相当)(配列番号23), 5'-CGCAACAAAAAATAGCTATCTTCCTCGGG-3'(図8Aの塩基番号 381-410 の相補鎖に 相当) (配列番号24) を用いて PCR 法により増幅した DNA 断片を、両 DNA 断片 が共通に有する Aor51HI サイトを利用して連結して、マウス ST6Gal II の全長を コードする DNA 断片を得、クローニングベクターpBluescript II SK(+)に挿入し た。図8Aにマウスの ST6Gal II の配列情報を示す。マウス ST6Gal II は 524 ア

ミノ酸からなり、ヒト ST6Gal II より 5 アミノ酸ほどステム領域に相当する部分が短かった。なお本タンパク質の膜貫通ドメインは、疎水性分布図によりアミノ酸番号 12-30 の領域に存在することが予測された(図8B)。ヒトとマウスのST6Gal II ではアミノ酸配列レベルで 77.1%の相同性を示した(図9B)。

つぎに ST6Gal II の酵素学的諸性質を調べるため、分泌型タンパク質の製造を行った。まずヒト ST6Gal II について、XhoI サイトを含む合成 DNA, 5'-TCATCTACCTCGAGCAACCCCGCTG-3'(図7Aの塩基番号 255-284 に相当)(配列番号 25)を用いて膜貫通ドメイン直下流に XhoI サイトを導入し、これとpBluescript II SK(+)由来の XhoI サイトを用いて ST6Gal II のステム領域と活性ドメインをコードする XhoI 断片を調製した。これを哺乳動物発現ベクターpcDSAの XhoI サイトに挿入した。この発現ベクターを pcDSA-hST6Gal II と命名した。またマウス ST6Gal II については、上記クローニングの際に用いた合成 DNA, 5'-CAATGAAACCACACTTGAAGCAATGGCGAC-3'(図8Aの塩基番号 1-30 に相当)(配列番号 23)のかわりに、MunI サイトを含む合成 DNA, 5'-CATCCAATTGACCAACAGCAATCCTGCGGC-3'(図8Aの塩基番号 83-112 に相当)(配列番号 26)を用いてマウス ST6Gal II のステム領域と活性ドメインをコードする MunI-XhoI 断片を調製した。これを pcDSAの EcoRI-XhoI サイトに挿入したものを、発現ベクターpcDSA-mST6Gal II と命名した。

pcDSA-hST6Gal II および pcDSA-mST6Gal II は、それぞれマウス免疫グロブリン IgM のシグナルペプチドと *Staphylococcus aureus* protein A, およびマウスまたはヒト ST6Gal II の活性ドメイン(ヒト ST6Gal II ではアミノ酸番号 33-529、マウス ST6Gal II ではアミノ酸番号 31-524)からなる分泌型融合タンパク質をコードする。

各発現ベクターとリポフェクトアミン(Invitrogen)を用いて COS-7 細胞でその一過性発現を行った(Kojima, N. et al. (1995) FEBS Lett. 360, 1-4)。ここでそれぞれの発現ベクターを導入した細胞から細胞外に分泌された本発明のタンパク質を PA-hST6Gal II(ヒト)および PA-mST6Gal II (マウス)と命名した。

PA-hST6Gal II、PA-mST6Gal IIは IgG-Sepharose(Amersham Pharmacia Biotech 社)に吸着させて培地より回収した。シアル酸転移酵素活性は Lee らの方法に準じて以下のように行った (Lee, Y.-C. et al. (1999) J. Biol. Chem. 274, 11958-11967)。50 mM MES バッファー (pH 6.0),1 mM MgCl₂,1 mM CaCl₂,0.5% Triton CF-54,100 μ M CMP-[1 4 C]-NeuAc,基質糖鎖(糖脂質の場合は 0.5 mg/ml,糖タンパク質、オリゴ糖は1 mg/ml になるように添加)、および PA-hST6Gal II または PA-mST6Gal II 懸濁液を含む反応液 (10 μ 1)を 37 度で 3-20 時間インキュベートし、その後、糖脂質については C-18 カラム (Sep-Pak Vac 100 mg;Waters 社)を用いて精製したものを試料として、オリゴ糖、糖タンパク質については反応産物をそのまま試料として解析を行った。オリゴ糖、糖脂質はシリカゲル 60HPTLC プレート (Merck 社)にスポットし、1-プロパノール:アンモニア水:水=6:1:2.5の展開溶媒(オリゴ糖用)またはクロロホルム:メタノール:0.02% CaCl₂=55:45:10の展開溶媒(糖脂質用)で展開した。糖タンパク質の場合は SDS-ポリアクリルアミドゲル電気泳動によって解析を行った。これらの放射活性を BAS2000 ラジオイメージアナライザー(フジフィルム)で可視化し、定量した。

表 2 に PA-hST6Gal II、PA-mST6Gal II の基質特異性を示す。

表2。

ST6Gal II の基質特異性

PA-hST6Gal II および PA-mST6Gal II を用いて様々な基質に対する特異性を検討した。各基質の濃度は、糖脂質の場合は 0.5 mg/ml に、糖タンパク質、単糖、 オリゴ糖の場合は 1 mg/ml になるようにした。 相対活性は Galβ1,4GlcNAc の取り込み値を 100 として計算した。 Rは N型糖鎖の残りの糖鎖部分を意味する。

Acceptors	Representative structures of carbohydrates		Relative rate (%)	
•		Mouse STAGal II	Human STKGal II	Human ertegal 1
Oligosaccharides			77 175 187 17	T IBON T
Type II	Gall 1,4GlcNAc	100*	100**	100**
Type I	Galß1,3GlcNAc	0	<u> </u>	4.2
Type III	Galß1,3GalNAc	0	· C	_
Lactose	Galβ1,4Glc	; O	· C	× ×
Lacto-N-tetraose	Galß1,3GlcNAcß1,3Galß1,4Glc	0	o o	31.1
Lacto-N-neotetraose	Galβ1,4GlcNAcβ1,3Galβ1,4Glc	128.8	86.2	101.6
Cifcopiotesita				
Fetuin	NeuAcα2,3Galβ1,3GalNAc-O-Ser/Thr	0	0	13.0
	NeuAcα2,3Galβ1,3(NeuAcα2,6)GalNAc-O-Ser/Thr			
	NeuAca2,6(3)Galþ1,4GlcNAc-R			
Asialofetuin		21.0	3.9	0.50
BSM	NeuAcα2,6GalNAc-O-Ser/Thr	0	6	0
	GlcNAcβ1,3(NeuAcα2,6)GalNAc-O-Ser/Thr		,)
Asialo-BSM		0	C	c
Ovomucoid	NeuAcα2,3Galβ1,4GlcNAc-R	o	o	0 6
Asialoovomucoid		· c	o	7.01
α1-Acid glycoprotein	NeuAcα2,6(3)Galβ1,4GlcNAc-R	0.75	1.2	37.1
Asialo- α1-Acid glycoprotein		12.3	1.2	93.0
Glycolipids			<u> </u>	
Lactosylceramide	Galβ1,4Glcβ1-Cer	0		0
GA1	Galb1,3GalNAcb1,4Galb1,4Glcb1-Cer	0	o C	o C
GMla	Galb1,3GalNAcB1,4(NeuAca2,3)GalB1,4GlcB1-Cer	0	· C	o
GM3	NeuAcα2,3Galβ1,4Glcβ1-Cer	0	, O	o
Paragloboside	Galβ1,4GlcNAcβ1,3Galβ1,4Glcβ1-Cer	0	0	0.3
				!

*, 2.74 pmol/h/ml medium. **, 1.03 pmol/h/ml medium. ***, 8.14 pmol/h/ml medium. NeuAc, N-acetylneuraminic acid. Cer, ceramide.

両酵素ともオリゴ糖に対しては、非還元末端に $Gal \beta 1$, 4GlcNAc 構造をもつものに対してのみ活性を示した(図 1 0)。またこの構造を持つと考えられる糖タンパク質に対しても弱い活性を示した。一方、糖脂質については、調べた範囲内では両酵素の基質となるものはなかった。また比較のためにヒト ST6Gal I のオリゴ糖に対する活性を調べたところ、 $Gal \beta 1$, 4GlcNAc 構造をもつオリゴ糖のほかに、Lactose や Lacto-N-tetraose などに対しても活性を示した(図 1 0)。また ST6Gal I は糖タンパク質や糖脂質に対しても広い活性を示した(図 1 0)。以上のことはST6Gal II が ST6Gal I よりも基質特異性に関してより選択性が強いことを意味する。なおヒト ST6Gal II の Splicing Variant である Short form のタンパク質については、酵素活性が認められなかった(図 <math>1 0)。

PA-hST6Gal II および PA-mST6Gal II により Gal β 1, 4GlcNAc にシアル酸を転移した場合、その反応産物の導入シアル酸は ST6Gal I の場合と同様に α 2, 3-結合で結合しているシアル酸を特異的に切断するシアリダーゼ (NANase I) では切断されなかったが、 α 2, 3-, α 2, 6-結合で結合しているシアル酸を特異的に切断するシアリダーゼ (NANase II) では切断された (図 1 1 A)。またこの反応産物は TLC において 6'-sialyl-N-acetyllactosamine と同じ移動度を示したこと、さらにガラクトシダーゼ処理では TLC において移動度に変化が認められなかったことから (図 1 1 B)、 α 2, 6 結合を介してガラクトースにシアル酸が導入された6'-sialyl-N-acetyllactosamine であると考えられた。以上により ST6Gal II はシアル酸を α 2, 6-の結合様式でガラクトースに転移することが明らかになった。なおその特に好ましい基質としては、非還元末端に Gal β 1, 4GlcNAc 構造をもつオリゴ糖と考えられた。

またヒトST6Gal I, ST6Gal II の様々な組織における発現パターンを、ST6Gal I 特異的プライマー (5'-TTATGATTCACACCAACCTGAAG-3'(配列番号 2 7) および 5'-CTTTGTACTTGTTCATGCTTAGG-3'(配列番号 2 8)、PCR 増幅断片の大きさは 372 bp) と ST6Gal II 特異的プライマー (5'-AGACGTCATTTTGGTGGCCTGGG-3'(図 7 Aの塩基番号 1264-1286 に相当) (配列番号 2 9) および 5'-TTAAGAGTGTGGAATGACTGG-3'

(図7Aの塩基番号 1745-1765 に相当)(配列番号30)、PCR 増幅断片の大きさは502 bp)を用いて PCR 法で調べた(図12A)。ヒト ST6Gal I はほとんどの組織で発現していたが、ST6Gal II は小腸、大腸、胎児脳を除く組織での発現は非常に低いか、全く認められなかった。さらにヒト ST6Gal I は各種腫瘍細胞で発現していたが、ST6Gal II の発現は検出できなかった(図12B)。またマウス ST6Gal II の発現は検出できなかった(図12B)。またマウス ST6Gal II の発現様式について、マウス ST6Gal II 特異的プライマー (5'-CAATGAAACCACACTTGAAGCAATGGCGAC-3'(図8Aの塩基番号1-30に相当)(配列番号23) および 5'-CGCAACAAAAAAATAGCTATCTTCCTCGGG-3'(図8Aの塩基番号 381-410の相補鎖に相当)(配列番号24)、PCR 増幅断片の大きさは410 bp)を用いて同様に調べたところ、脳および胎生期でその発現が認められたが、その他の組織での発現は非常に低いか、全く認められなかった(図12C)。以上の結果はST6Gal IとST6Gal IIが生体内で異なる役割を果たしていることを示唆する。

産業上の利用の可能性

本発明により新規酵素としてO-glycan α 2, 8-シアル酸転移酵素、および該酵素の活性部分を有し細胞外に分泌される新規蛋白質が提供される。本発明の酵素および蛋白質は、O-glycan α 2, 8-シアル酸転移酵素活性を有するので、例えば、蛋白にヒト型の糖鎖を導入する試薬として有用である。また、本発明のO-glycan α 2, 8-シアル酸転移酵素は、ヒトに特異的な糖鎖を欠く遺伝性疾患の治療のための医薬として有用である。さらに、本発明のO-glycan α 2, 8-シアル酸転移酵素は、癌転移抑制、ウイルス感染防止、炎症反応抑制、神経組織賦活作用を目的とする医薬としても用いることが可能である。さらにまた、本発明のO-glycan α 2, 8-シアル酸転移酵素は、薬剤等にシアル酸を付加することにより生理作用を増加させるための研究用試薬などとして有用である。

 活性を有するので、 $Gal \beta 1$, 4GlcNAc 構造をもつオリゴ糖などのガラクトース上に $\alpha 2$, 6 の結合様式でシアル酸をより選択的に導入することが可能になった。本発 明の β - ガラクトシド $\alpha 2$, 6 - シアル酸転移酵素 ST6Gal II は、本酵素が合成する 特異的な糖鎖を欠く遺伝性疾患の治療薬として、また癌転移抑制、ウイルス感染 抑防止、炎症反応抑制、神経細胞賦活効果を有する薬剤として、あるいは糖鎖に シアル酸を付加することにより生理作用を増加させたり、糖鎖分解酵素の分解活性を阻害する研究用試薬などとして有用である。

請求の範囲

1. 以下の基質特異性および基質選択性を有することを特徴とする、O $-glycan \alpha 2, 8$ -シアル酸転移酵素。

基質特異性:末端に $Sia \alpha 2$, 3(6) Gal (ここで、Sia はシアル酸を示し、Gal はガラクトースを示す) 構造をもつ糖を基質とする;

基質選択性:糖脂質およびN型糖鎖よりも優先的にO型糖鎖に対してシアル酸を取り込ませる:

- 2. 下記の何れかのアミノ酸配列を有するO-glycan α 2, 8-シアル酸転移酵素。
 - (1) 配列表の配列番号1または3に記載のアミノ酸配列:又は
- (2) 配列表の配列番号1または3に記載のアミノ酸配列において1から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、O-glycan α 2,8-シアル酸転移を触媒する活性を有するアミノ酸配列:
- 3. 請求項 2 に記載のO-glycan α 2, 8-シアル酸転移酵素のアミノ酸配列を コードするO-glycan α 2, 8-シアル酸転移酵素遺伝子。
- 4. 下記の何れかの塩基配列を有する請求項3に記載のO-glycan α2,8-シアル酸転移酵素。
- (1)配列表の配列番号2に記載の塩基配列中の塩基番号77番目から1270 番目で特定される塩基配列;
- (2) 配列表の配列番号 2 に記載の塩基配列中の塩基番号 7 7番目から 1 2 7 0 番目で特定される塩基配列において 1 から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、O-glycan α 2, 8-シアル酸転移を触媒する活性を有する蛋白質をコードする塩基配列:
- (3) 配列表の配列番号4に記載の塩基配列中の塩基番号92番目から1285 番目で特定される塩基配列:
 - (4) 配列表の配列番号4に記載の塩基配列中の塩基番号92番目から1285

番目で特定される塩基配列において 1 から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、O-glycan α 2, 8-シアル酸転移を触媒する活性を有する蛋白質をコードする塩基配列:

- 5. 請求項3または4に記載のO-glycan α 2,8-シアル酸転移酵素遺伝子を含む組み換えベクター。
 - 6. 発現ベクターである、請求項5に記載の組み換えベクター。
- 7. 請求項5または6に記載の組み換えベクターにより形質転換された形質転換体。
- 8. 請求項7に記載の形質転換体を培養し培養物から請求項1または2に記載の酵素を採取することを特徴とする、請求項1または2に記載の酵素の製造方法。
- 9. 下記の何れかのアミノ酸配列を有するO-glycan α 2, 8-シアル酸転移酵素活性ドメインから成る蛋白質。
- (1)配列表の配列番号1に記載のアミノ酸配列のアミノ酸番号26~398から成るアミノ酸配列;
- (2) 配列表の配列番号1に記載のアミノ酸配列のアミノ酸番号26~398から成るアミノ酸配列において1から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、 $O-glycan \alpha 2,8-シアル酸転移を触媒する活性を有するアミノ酸配列:$
- (3)配列表の配列番号3に記載のアミノ酸配列のアミノ酸番号68~398から成るアミノ酸配列;又は
- (4) 配列表の配列番号 3 に記載のアミノ酸配列のアミノ酸番号 6 $8 \sim 3$ 9 8 から成るアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、O-glycan α 2, 8-シアル酸転移を触媒する活性を有するアミノ酸配列:
- 10. 請求項1または2に記載のO-glycan α2,8-シアル酸転移酵素の活性 ドメインであるポリペプチド部分とシグナルペプチドとを含む細胞外分泌型の蛋

白であって、O-glycan α 2,8-シアル酸転移を触媒する活性を有する蛋白質。

- 11. 請求項9又は10に記載の蛋白質をコードする遺伝子。
- 12. 請求項11に記載の遺伝子を含む組み換えベクター。
- 13. 発現ベクターである、請求項12に記載の組み換えベクター。
- 14. 請求項12または13に記載の組み換えベクターにより形質転換された形質転換体。
- 15. 請求項14に記載の形質転換体を培養し培養物から請求項9または1 0に記載の蛋白質を採取することを特徴とする、請求項9または10に記載の蛋白質の製造方法。
- 16. 以下の作用および基質特異性を有することを特徴とする、 β ガラクトシド α 2, 6 シアル酸転移酵素。

(1) 作用;

末端にガラクトース β 1, 4Nーアセチルグルコサミン構造をもつ糖鎖のガラクトース部分に α 2, 6の結合様式でシアル酸を転移する。

(2) 基質特異性;

末端にガラクトース β 1,4N-アセチルグルコサミン構造をもつ糖鎖を基質とし、ラクトース、及び末端にガラクトース β 1,3N-アセチルグルコサミン構造をもつ糖鎖を基質としない。

- 17. 下記の何れかのアミノ酸配列を有する β ガラクトシド α 2, 6 シアル酸転移酵素。
 - (1)配列表の配列番号5または7に記載のアミノ酸配列;又は
- (2) 配列表の配列番号 5 または 7 に記載のアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列を有し、 β ガラクトシド α 2 , 6 シアル酸転移を触媒する活性を有するアミノ酸配列:
- 18. 請求項17に記載の β ガラクトシド α 2, 6 シアル酸転移酵素のアミノ酸配列をコードする β ガラクトシド α 2, 6 シアル酸転移酵素遺伝子。
 - 19. 下記の何れかの塩基配列を有する請求項18に記載のβーガラクトシ

- ドα2,6-シアル酸転移酵素遺伝子。
- (1)配列表の配列番号6に記載の塩基配列中の塩基番号176番目から176 2番目で特定される塩基配列;
- (2)配列表の配列番号6に記載の塩基配列中の塩基番号176番目から176 2番目で特定される塩基配列において1から数個の塩基の欠失、置換及び/又は 付加を有する塩基配列を有し、 β – ガラクトシド α 2, 6 – シアル酸転移を触媒 する活性を有する蛋白質をコードする塩基配列:
- (3) 配列表の配列番号8に記載の塩基配列中の塩基番号3番目から1574番目で特定される塩基配列;又は
- 20. 請求項18または19に記載の β -ガラクトシド α 2, 6-シアル酸 転移酵素遺伝子を含む組み換えベクター。
 - 21. 発現ベクターである、請求項20に記載の組み換えベクター。
- 22. 請求項20または21に記載の組み換えベクターにより形質転換された形質転換体。
- 23. 請求項22に記載の形質転換体を培養し培養物から請求項16または17に記載の酵素を採取することを特徴とする、請求項16たは17に記載の酵素の製造方法。
- (1)配列表の配列番号5に記載のアミノ酸配列のアミノ酸番号33~529から成るアミノ酸配列;
- (2)配列表の配列番号5に記載のアミノ酸配列のアミノ酸番号33~529から成るアミノ酸配列において1から数個のアミノ酸の欠失、置換及び/又は付加

を有するアミノ酸配列を有し、 β - ガラクトシド α 2, 6 - シアル酸転移を触媒 する活性を有するアミノ酸配列:

- (3)配列表の配列番号7に記載のアミノ酸配列のアミノ酸番号31~524から成るアミノ酸配列;又は
- 25. 請求項16または17に記載の β -ガラクトシド α 2,6-シアル酸 転移酵素の活性ドメインであるポリペプチド部分とシグナルペプチドとを含む細胞外分泌型の蛋白であって、 β -ガラクトシド α 2,6-シアル酸転移を触媒する活性を有する蛋白質。
 - 26. 請求項24又は25に記載の蛋白質をコードする遺伝子。
 - 27. 請求項26に記載の遺伝子を含む組み換えベクター。
 - 28. 発現ベクターである、請求項27に記載の組み換えベクター。
- 29. 請求項27または28に記載の組み換えベクターにより形質転換された形質転換体。
- 30. 請求項29に記載の形質転換体を培養し培養物から請求項24または25に記載の蛋白質を採取することを特徴とする、請求項24または25に記載の蛋白質の製造方法。

要約書

本発明によれば、新規な基質特異性および基質選択性を有するO-glycan α 2,8-シアル酸転移酵素、並びに、新規な作用および基質特異性を有する β -ガラクトシド α 2,6-シアル酸転移酵素が提供される。本発明のシアル酸転移酵素は、癌転移抑制、ウイルス感染防止、炎症反応抑制、神経組織賦活作用を目的とする医薬として用いることが可能である。

Α		
$\overline{}$	Mouse	STRSia

100 M R S G G T L 200 300 75 400 RQAEEYDNF RAKLASCCDAIQDF 142 600 700 208 TTCGTCTTCAGGTGTAACCTCCCCCAATCACAGGGAGCGCTAGTAAAGATGTTGGAAGCAAAACAAATCTTGTGACTGTCAATCCCAGCATTATAACCC 800 R C N L P P I T G S A S K D V G S K T N L V T V N P S 242 900 1000 308 1100 V T A Y R L S T G L M I A S V A V E L C E N V K L Y G GATTCTGGCCTTTCTCTAAGACTATCGAAGACACCCCACTCAGTCACCACTACTATGATAACATGTTACCTAAGCATGGTTTCCACCAGATGCCTAAAGAF \mathbb{F} \mathbb{W} \mathbb{P} \mathbb{F} \mathbb{S} \mathbb{K} \mathbb{T} \mathbb{I} \mathbb{E} \mathbb{D} \mathbb{T} \mathbb{F} \mathbb{E} \mathbb{F} $\mathbb{F$ 1200 375 ATACAGCCAAATGCTCCAGCTCCATATGAGAGGAGTCCTCAAACTGCAATTCAGCAAATGTGAAACGGCTTAACGTTTCTTAGAAGGAGAATAATTTCAG
Y S O M L O L H M R G I L K L O F S K C E T A * 1300 1500

B Human ST8Sia VI

100 200 ${\tt TGGAGGAAAGCAGGGAGGCCACCCACGGCACCCCGCAGCGCTGAGGACGCTCCGGAGGCCGGGGACCGCGGTACCGCGCGCCACT\underline{A}CCACCATATCT\\$ 300 TPAALRTLRSPATAV 400 103 CTTCAGATTATCACAGATATACAGAGTTGTCCATGGAAACGGCAAGCAGAAGAATATGCAAATTTTAGAGCCAAACTTGCTTCCTGCTGTGATGCTGTTC 500 L Q I I T D I Q S C P W K R Q A E E Y A N F R A K L A S C C D A 137 600 TATGTTTCCAGTGTCCCAGCCTTTTGTGGACTACCCTTATAATCAGTGTGCAGTGGTCGGAAATGGGGGGAATTCTG<u>A</u>ATAAGTCTCTCTGTGGAACTGAA M F P V S Q P F V D <u>Y P Y N Q C A V V G N G G I L N K S L C G T E</u> 700 203 ATAGATAAATCCGACTTCGTTTTTAGGTGTAACCTACCCCCAACCACGGGGGTGTTAGTAAAGATGTTGGCAGTAAAACAAATCTTGTGACTATAAATC 800 S D F V F R C N L P P T T G D V S K D V G S K T N L 900 LKYGNLKEKKALFLEDIATYGDAP ATTTTCCTTCAGGGCCAACACGGGTACCTCTTTCAAAGTATACTACACGCTCGAAGAGTCTAAAGCAAGACAAAAGGTTCTATTTTTCCATCCCAAGTAC 1000 LEESKARQK ĸ v 303 $\tt CTGAAAGATCTGGCCCTTTTCTGGAGAACTAAAGGTGTGACTGCATACCGCTTGTCCACCGGCTTGATCACAAGTGTTGCAGTGGAACTGTGTAAAA$ 1100 K D L A L F W R T K G V T A Y R L S T G L M I T S V A V E L C K N 337 ATGTGAAGCTGTATGGATTCTGGCCCTTCTCTAAAACTGTAGAAGACATACCTGTCAGCCATCACTATTATGACAACAAGCTACCTAAAACATGGTTT 1200 VKLYGFWPFSKTVEDIP V S HHYYDNKLPKHG 370 1300 398 1400

Α			
ST8Sia I	1	Ms-FCG-FAITHTSFG-FM-AMIARK-F-PF-T-RLPVGR	31
ST8Sia V	1	MRYADESANEDLLGNRTLLFIFTCAFAIVTLLQQILYSMSYIKF-GFQFGWQRGIQQENW	59
ST8Sia VI	1	MRSGGI-LEALIGSLMULLLLRMLWCPADAPAESRLLMEGSEEDLTSGTS	48
ST8Sia I	32	SAIC-VVVLCWLY-IFEV-YE-UPNEKEIVQG-VIAQRTA	66
ST8Sia V	60	TGUFNDSDSPTEQNITGSSGRWFEFYREELEFNSTECLELRGEIJEVKVISMVKQSEIFE	119
ST8Sia VI	49	AAI-KTLWSPTTPVPRTRNGTWLD-EMTTQITEKCKDUQYSLNSUSNMTRRYSEDDYU-Q	105
ST8Sia I	67	-Wrt-nQTS-ASLFBRQMEDCCIPAHLEAMIKMNSEMGKSIWYDGELLYSFTII	117
ST8Sia V	120	RWKSLQIQKWAMGASEASLEKSTISRCQNAPNFLFTTQKNTPVETNIRYEVESSGLYHII	179
ST8Sia VI	106	TITNIQRQEWNRQBEEYDNFEAKIASCCDAIQDEVVSQNNTPVGTNMSYEVESKKHIFIR	165
ST8Sia I	118	NSTYSLFEQATE-FQLELKKCAVVGNGGILKMSGQARQIDEPNFVMRCNLPFLGSEYTRD	176
ST8Sia V	180	QEIFKMFFKEMFYYRSQFKKCAVVGNGGILKNSGCGKETNSADFVFRCNLPPISGTYTTD	239
ST8Sia VI	166	ENIHHMFFVSQHFVDYHYNQCAVVGNGGILNKGTCGAEIDKSDFVFRCNLPPITGSASKU	225
ST8Sia I	177	VGSKTQLVTANPSIIRQRFENI-LWSRKKFVDNMKIMNHSYIYMPAF3MKTGTEFGLRVY	235
ST8Sia V	240	VQBKTDVVTVNPSIIIDRHKLEKW-BRFFFSVLQRYENASVLLPAFYNVRNTLVSFRVK	·298
ST8Sia VI	226	VGSKTNLVTVNPSIITLKYQNIKE-KKAQELEDISTYGDAFILLPAF3YRANTGISEKVY	284
ST8Sia I ST8Sia V ST8Sia VI	236 299 285	CTTMESKWEGKATEEHEWATHUFTEMELKGANAKHISLGIELASVYTGECEEARIEGEM AWIDHEOSEGEAALEGATERA TRANSCHATEERANGERAKGANAKHISLGIELASVYTOTE TATERAKWEGKATEERAKERAKGANAKETERAKTANAKTATERAKATERA	295 358 344
ST8Sia I ST8Sia V ST8Sia VI	359	PFGVNMCGIPISHHYYDNVLFFSGYHAMFEEFLGLWYLHKIQALHMGLDFCEEPSPQPTS AFPMNPSGFFJTHHYYDNVKPKFGFHAMFSEIFTFIRMHSRGILHVHTGTG-NCC PFGKTIEDTELSHHYYDNMLPKHGFHCMEKEYSGMIQLHMRGIUKLGFSKCETA * *	355 412 398
В			
mST8Sia VI	1	MRSGGTUFALIGSUMLLLLEMLWCPADAHARSHUUMEGSREDTSGTSAAIKTUWSHTIP	60
hST8Sia VI	1	MRPGGAULAULASULLLLLEULWCPADAHGHAHIUVEESREATHGTFAAURTURSHATA	60
mST8Sia VI	61	VPFTRNSTYLDERTTCLTEKCHDLQYSLNGLSNKTRRYSEDDYLCTLTNICRCPWNRQAE	120
hST8Sia VI	61	VPFATNSTYLNEUSLCLTEKCKNLQYGLESFSNKTKGYSENDYLCILTDLCSCPWKRQAE	120
mST8Sia VI	121	EYDNFRAKLASCCDAIODFVVSQNNTPVGTNMSYEVESKKHIPIRENIFHMFPVSQPFVI	180
hST8Sia VI	121	EYANFRAKLASCCDAVONFVVSQNNTPVGTNMSYEVESKKEIPIKKNIFHMFPVSQPFVI	180
mST8Sia VI	181	YPYNQCAVVGNGGILNKSLCGAEIDKSDFVFRCNLPFITGSASKDVGSKTNLVTVNPSII	240
hST8Sia VI	181	YPYNQCAVVGNGGILNKSLCGTEIDKSDFVFRCNLPFTTGDVSKDVGSKTNLVTINPSII	240
mST8Sia VI	241	TLKYONLKEKKAOFLEDISTYGDAFLLLPAFGYRANTGISFKVYOTIKESKMRQKVLFFH	300
hST8Sia VI	241	TLKYONLKEKKALFLEDIATYGDAFFFLPAFGFRANTGISFKVYYTLEESKARQKVLFFH	300
mST8Sia VI	301	FRYLRHLALFWRTKGVTAYRLSTGLMIASVAVELGENVKLYGFWPFSKTIEDTELSHHYY	360
hST8Sia VI	301	EKYLKDLALFWRTKGVTAYRLSTGLMITSVAVELGKNVKLYGFWPFSKTVEDIEVSHHYY	360
mST8Sia VI	361	DNMLPKHGFHQMPKEYSCMLQLHMRGILKLQFSKCETA	398
hST8Sia VI	361	DNKLPKHGFHQMPKEYSCILQLHMKGILKLQFSKCEVA	398

N-Glycanase treatment

Markey Comment of the Comment of the

Α

Human ST6Gal II

ggcgccgggactccctcctggccgccacagcctgtgcgcattcctgcattcctgccgccgccgggacccgagccccggaggtgtccaggcgcggtgc caggogggtactgtgcaggttcattctgccacccatctgcattaagacacaaggtgctgaccgcagagacctgccatgaaaccacacttgaagcaatgga 200 300 400 75 500 109 aagagtttttttcatcccaggtggggagaaaatctcaaagtgctttctacccggaggatgacgactacttttttgctgctggtcagccagggtggcacag E F F S S Q V G R K S Q S A F Y P E D D D Y F F A A G O P G W H S 600 142 700 **17**5 aggcaccggaggcagaggaaggagccacgtgttggaggagggcgacgacggcgacaggctgtactcctccatgtccagggccttcctgtaccggctctgga R H R R Q R R S H V L E E G D D G D R L Y S S M S R A F L Y R L W K 800 209 aggggaacgtetettecaaaatgetgaaceegegeetgeagaaggegatgaaggattacetgacegecaacaageaeggggtgegetteegegggaageg G $\overline{ ext{N}}$ $\cdot ext{V}$ S S K M L $ext{N}$ P R L Q K A M K D Y L T A N K H G V R F R G K R 900 242 1000 tggcggcgcctggtgcccgcgtgcccctgagccagctgcaccccggggcctgcgcagctgcgctgtcgtcatgtctgcaggcgcaatcctcaactcttw R R L V P A V P L S Q L H \underline{P} R G L R S C A V V M S A G A I L \overline{N} S S cottgggcgaggaaatagattctcatgatgcggttttgagatttaactctgctcctacacgtggttatgagaaagatgttgggaataaaaccaccatacg LGEEIDSHDAVLRFNSAPTRGYEKDVGNKTTIR 1400 1500 catcatgatgtccatgtgcagagaggtgcacgtgtatgaatatacccatccgtgcggcagacggagctgtgcactaccacgagctgtactacgacgca_I_M_M_S_M_C_R_E_V_H_V_Y_E_Y_I_P_S_V R Q T E L C H Y H E L Y Y D A 1600 gcctgcaccctcggggcgtaccaccactactctatgagaagctcctggtgcagcgcctgaacatgggcacgcagggggatttgcatcgcaagggcaagg A C T L G A Y $\overline{\mathbb{H}}$ P L L Y $\overline{\mathbb{E}}$ K L L V Q R L N M G T Q G D L H R K G K V 1700 tggttettcetggetteeaggeggtgeactgeeetgeaccaagteeagteatteeacactettaaaaagggtttettgggaatcaatgtgcaataaggta V L P G F O A V H C P A P S P V I P H S * 1800 Short form 1500 442

В

Α

Mouse ST6Gal II

100 M K P H L K Q W R Q R M L F G I F V W G L L F L A I F I Y F T N 200 100 ATCAGGCCCCAAATGGCTTTGACAATGGGGATGAGTTTTTTACATCCCAGGTTGGGAGGAAATCACAAAGCGCTTTCTATCCCGAGGAAGATAGCTATTT Q A P N G F D N G D E F F T S Q V G R K S Q S A F Y P E E D S Y F 400 500 TSWRSGP 166 K Q K L L H P R R G S L P E E A Y D S D M L S A S 200 700 233 $\tt GCGGGGTCGGCGTGAAGCTACACGTACAGGGCCGGAGCTGCTGTGAGATGCGCAGACGTGTGCGCACGTTGGACGCCAGAGAGGCGCCCCTTC$ 800 RGRREATRTGPELLCEMRRRVRVRTLD 900 300 ${\tt TCCTGAACTCCTCCTTGGGGGGGGGGAAATCGATTCTCATGATGCAGTTTTGAGATTTAACTCTGCCCCTACCCGTGGCTACGAGAAAGATGTCGGAAATAA$ 1000 D A V L R F N S A P T R G Y E K D V G 333 ${\tt AACCACAGTACGCATCATTAATTCTCAGATTCTGGCCAACCCCAGCCATCACTTCATTGACAGTGCTTATATAAAGATGTTATCCTGGTAGCCTGGGAT}$ 1100 SALYKD 1200 ${\tt CATTITACATICITCACCCCAAGITCATATGGCAGCTTTGGGACATTATCCAGGAGAATACAAGGGAGAAGATACAGCCCAACCCATCTTCTGGTTT}$ YILHPKFIWQLWDIIQENTREKIQPNPPSSGP 1400 I G I L I M M S M C K E V H V Y E Y I P S V R Q T E L C H 1500 500 524 TGCAATAAGGT 1611

Α			
ST6Gal I ST6Gal II	1 1	11 11 Applying a 1 10 to the Market Angered	54 60
ST6Gal I . ST6Gal II	55 61	AMGSDSQSVSSSSTQDPHRGRQTLGSLRGLAKAKPEASINGAAHEPSPPGGLDARQALPRAHPAGSFHAGPGDLQKWAQSQDGFEHKEFFSSQVGRKS	92 120
ST6Gal I ST6Gal II	93 121	QSAFYPEDDDYFFAAGQPGWHSHTQGTLGFPSPGEPGPREGAFPAAQVQRRRVKKRHRRQ	92 180
ST6Gal I ST6Gal II	93 181	FQVWNKDSSSKNLIPRLQKIWKNVISMNKYKVSYKS RRSHVLEEGDDGDRLYSSMSRAFLYRLWKGNVSSKMLNPRLOKAMKDVITANKHGWRFRG	128 240
ST6Gal I ST6Gal II	129 241	PGPGIKFSAEAIRCHURDHVNYSMVEVIDFPFNTSEWEGYLPKESIRTKAGPWGRCAV K-REAGLERAQULOQUESRARVITLDGIIEAPESALGWRRLVBAVPL-SQLHERGLRSCAV	186 298
ST6Gal I ST6Gal II	187 299	VSSAGSLKSSQLGREIDDHDAVLRFNGAPTANFQQDVGTKTTIRLMNSQLVI-TEKRFLK VMSAGAILNSSLGEEIDSHDAVLRFNSAPTRGYEKDVGNKTTIRIINSOILINPSHHDID	245 358
ST6Gal I ST6Gal II	246 359	DSLYNEGILIVWDFSVYHSDIPKWYQNPDYNFFNNYKTYRKLHPNQPFYILKFQMPWELW SSLYKDVILVAWDFAPYSANLNLWYKKPDYNLETPYIQHRQRNPNOPFYIIHEKFIWQLW	305 418
ST6Gal I ST6Gal II	306 419	DILDEISPEELQPNPPSSGMLGILIMMTLODQVDIVEFLPSKRKNDVOVVVQKFFOSACT DIIDENTKEKLOPNPPSSGFIGILLMMSMCREMHVVEYIPSVRONELOHVHELYYDAACT	365 478
ST6Gal I ST6Gal II	366 479	MSAYHPLLYEKULVKHLNQGTDEDIYLLGKATLPGFRTIHO LGAYHPLLYEKULVQRLMMGTQGDLHRKGKVVLPGEQAVHQPAPSPVIPHS	406 529
В			
B hST6Gal II mST6Gal II	, 1 , 1	MKPHLKQWRQRMLFGIFAWGLLFULIFIYFTDSNPAERVPSSLSFLETRRLLFVQGKQRA MKPHLKQWRQRMLFGIFVWGLLFUALFIYFTNSNPAARMPSSFSFLESRGLLFLQGKQRV	60 60
hST6Gal II		MKPHLKOWRORMLFGIFAWGLLFULIFIYFTDENPAERVPSSLEFLETRRLLEVOGKORA MKPHLKOWRORMLFGIFVWGLLFUAIFIYFTNENPAARMPSSFEFLESKGULELQGKORV IMGAAHEPSPEGGLDARQAOPRAHFAGSFHAGPGDLOKWAOSQDGFEH-KEFFSEOVGRK IMGALQEPSLERSLDASKVULDSHPENPFHPWPGDPOKWDOAPNGFDNGDEFFTSOVGRK	
hST6Gal II mST6Gal II hST6Gal II	' 1 61	MKPHLKQWRQRMLFGIFVWGLLFLALFIYFTNSNPAAFMPSSFSFLESRGLLFLDGKQRV IMGAAHEPSPFGGLDARQADPRAHFAGSFHAGFGDLDKWADSODGFEH-KEFFSSOVGRN	60 119
hST6Gal II mST6Gal II hST6Gal II mST6Gal II	61 61 120	MKPHLKQWRQRMLFGIFVWGLLFLAIFIYFTNSNPAAFMPSSFSFLESEGLLELDGKQRV IMGAAHEPSPFGGLDARQADPRAHFAGSFHAGPGDLDKWADSQDGFEH-KEFFSSQVGRK IMGALQEPSLFRSLDASKVLLDSHFENPFHPWPGDPDKWDDAPNGFDNGDEFFTSQVGRK SQSAFYPEDDDVFFFAAGDFGWHSHTDGTLGFFSPGEPGPREGAFFAAOVORRRVNKRFIRR	119 120 179
hST6Gal II mST6Gal II hST6Gal II mST6Gal II mST6Gal II mST6Gal II	1 61 61 120 121	MKPHLKQWRQRMLFGIFVWGLLFLAIFIYFTNSNPAAFMPSSFSFLESKGLLELDGKQRV IMGAAHEPSPFGGLDARQAIPRAHFAGSFHAGPGDLOKWADSQDGFEH-KEFFSSQVGRK IMGALQEPSLFRSLDASKVLLDSHFENPFHPWPGDPDKWDDAPNGFDNGDEFFTSQVGRK EQSAFYPEDDDVFFFAAGQFGWHSFTZGTFGFFSPGEPGPREGAFFAAQVQRRRVRKRFRR SQSAFYPEEDSVFFVADQPELYHHRQGALELPSPGETSWRSGFVQPKQ-KLLH QRRSHVLEEGDFGFRYSSMSRAFLYRLWKGNVSSKMLNPRLQKAMKDMLTANKHGVRF-	119 120 179 172 238
hST6Gal II mST6Gal II mST6Gal II mST6Gal II mST6Gal II mST6Gal II mST6Gal II mST6Gal II	1 61 61 120 121 180 173	MKPHLKQWRQRMLFGIFVWGLLFLAIFIYFTNSNPAARMPSSFSFLESKGLLELDGKQRV IMGAAHEPSPFGGLDARQADPRAHFAGSFHAGPGDLDKWADSQDGFEH-KEFFSSQVGRK IMGALQEPSLFRSLDASKVLLDSHFENPFHPWPGDPDKWDDAPNGFDNGDEFFTSQVGRK SQSAFYPEDDDVFFFAAGDFGWHSFTTDGTTGFFSPGEPGPREGAFFAAQVQRRRVRKRFRR SQSAFYPEEDSYFFIVADDPELYHHRDGALELPSPGETSWRSGFVQPKQ-KLLH QRRSHVLEEGDDGDRLYSSMSRAFLYRLWKGNVSSKMLNPRLQKAMKDMLTANKHGVRF- PRRGSLPEEAYDSDMLSASMSRAFLYRLWKGAVSSKMLNPRLQKAMRYWMSFNKHGVRFR -RGKREAGLSRAQLLQQLFISRARVRTLDGTEAPFSALGWRRLVFAVPLSQLHPRGLRSCA	119 120 179 172 238 232
hST6Gal II mST6Gal II	1 61 61 120 121 180 173 239 233	MKPHLKQWRQRMLFGIFVWGLLFLAIFIYFTNSNPAARMPSSFSFLESKGLLELDGKQRV IMGAAHEPSPFGGLDARQAIPRAHFAGSFHAGPGDLOKWADSQDGFEH-KEFFSSQVGRK IMGALQEPSLFRSLDASKVLLDSHFENPFHPWPGDP2KWDQAPNGFDNGDEFFTSQVGRK EQSAFYPEDDDYFFFAAGQFGWHSFTTQTTGFFSPGEPGPREGAFFAAQVQRRRVRKRFRR SQSAFYPEEDSYFFVADQPELYHHRQGALELPSPGETSWRSGFVQPKQ-KLLH QRRSHVLEEGDGGDRLYSSMSRAFLYRLWKGNVSSKMLNPRLQKAMKDMLTANKHGVRF- PRRGSLPEEAYDSDMLSASMSRAFLYRLWKGNVSSKMLNPRLQKAMKDMLTANKHGVRFR -RGKREAGLSRAQLLQQLRSRARVRTLDGTEAPFSALGWRRLVFAVPLSQLHPRGLRSCA RRGRREATRTGPELLCEMRRRVRVRTLDGREAPFSGLGWRPLVFGVPLSQLHPRGLSSCA VVMSAGAILNSSLGEEIDSHDAVLRFNSAPTRGYEKDVGNKTTIRIINSQILTNPSHFT	119 120 179 172 238 232 297 292
hST6Gal II mST6Gal II	1 61 61 120 121 180 173 239 233 298 293	MKPHLKQWRQRMLFGIFVWGLLFLAIFIYFTNSNPAAFMPSSFSFLESKGLLELQGKQRV IMGAAHEPSPFGGLDARQAIPRAHFAGSFHAGFGDLQKWADSQDGFEH-KEFFSSQVGRK IMGALQEPSLFRSLDASKVULDSHFENPFHPWPGDPQKWDQAPNGFDNGDEFFTSQVGRK SQSAFYPEDDDVFFFAAGQPGWHSHTQGTLGFPSPGEPGPREGAFFAAQVQRRRVKKRHRR SQSAFYPEEDSYFFIVADQPELYHHRQGALELPSPGETSWRSGFVQPKQ-KLLH QRRSHVLEEGDDGDRLYSSMSRAFLYRLWKGNVSSKMLNPRLQKAMKDVLTANKHGVRF- PRRGSLPEEAYDSUMLSASMSRAFLYRLWKGAVSSKMLNPRLQKAMRYYMSFNKHGVRFR -RGKREAGLSRAQLLQQLRSRARVRTLDGTEAPFSALGWRRLVFAVPLSQLHPRGLRSCA RRGREATRTGPELLCEMRRRVRVRTLDGREAPFSGLGWRPLVFGVPLSQLHPRGLSSCA VVMSAGAILNSSLGEEIDSHDAVLRFNSAPTRGYEKDVGNKTTIRIINSQILTNPSHHFI VVMSAGAILNSSLGEEIDSHDAVLRFNSAPTRGYEKDVGNKTTIVRIINSQILTNPSHHFI DSSLYKDVILVAWDPAPYSANLNLWYKKPDYNLFTPYIQHRQRNFNQPFYILHPKFIWQU	119 120 179 172 238 232 297 292 357 352 417

Sept 2 and

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.