Anomaly Detection

Alexey Zaytsev
Associate professor, Lab Head

Lecture plan

- Intro to Anomaly detection
- Unsupervised approaches for Anomaly detection. General idea
- Autoencoders for Anomaly detection
- GAN-based Anomaly detection
- Anomaly detection for Time Series

Problem statement

The problem is to find objects that anomalous given training data.

It is ill-specified: small number of labels, no labels, ambiguous labels.

Normal data

Image Type	No Cat	Cat not on approach	Cat on approach	Cat with prey
Count of Images	6,542	9,504	6,689	260
Example				

Problem examples are numerous

Fraud detection

Failure detection for an airplane

Intrusion detection 🔐

Earthquake prediction 💥

Problem examples

Fraud detection 🧺

Failure detection for an airplane

Intrusion detection

Earthquake prediction 💥

Typical challenges:

- Requires problem-specific knowledge => new problem new approach
- Hard to identify something we don't see
- Bunch of various problem statements => how to define what is anomaly?

Anomaly type taxonomy

Normal data

Image Type	No Cat	Cat not on approach	Cat on approach	Cat with prey
Count of Images	6,542	9,504	6,689	260
Example				

Point Anomaly

Group Anomaly

Contextual Anomaly

In 2019

He is mad! We should avoid him. (anomaly)

In 2020

He takes care of himself and others. Well done! (normal)

Different taxonomies

By problem statement: By method: Anomaly detection Supervised Novelty detection Unsupervised Semi-supervised Anomaly Detection anomalies By data: Structured data Sequential data Unstructured data

Semi-structured data

Taxonomy by type of anomalies

Novelty detection

We have never seen the objects of this class

Anomaly detection

Outliers, can be already in the sample

Well-defined anomaly assumption – a more formal approach

WDAD [Tom Dietterich]: the anomalies are drawn from a well-defined probability distribution

Example: repeated instances of known machine failures

The WDAD assumption is often risky:

- adversarial situations: fraud, insider threats, cyber security
- diverse set of potential causes, novel device failure modes
- user's notion of "anomaly" changes with time.

Example: anomaly is an "interesting point"

https://images.prismic.io/sketchplanations/54100eae-1fee-40b7-b3d7-c0b9e309da1c_SP+711+-+Looking+under+the+lamppost.png?auto=compress,format

Skoltech

Supervised Anomaly detection is an imbalanced classification

Weights for classes

Proved not to be helpful in most cases

Specific models e.g. SMOTEboost, DeepSMOTE

Specific metrics

Resampling methods

- Undersampling
- Oversampling/data generation: SMOTE, etc.
- Generative models

How to choose which method to use? How to choose a resampling parameter?

Classic pipeline for anomaly detection

- 1. Construct an anomaly score s(x) using data x
- 2. Signal about anomaly if the anomaly score is greater than a threshold τ

The threshold selection τ is a separate problem, as we often have only positive examples

Anomaly detection with a keen eye

Anomaly detection with a keen eye

Formal interpretation: low density corresponds to outliers

Anomaly detection for a single feature

Histogram: a step-wise density estimation

Parametric approach: the curve is the recovered density for data p(x) from a parametric family Example: Gaussian density $N(\mu, \sigma^2)$

High density:

Kernel density estimation

Estimate the density p(x) for a low input dimension easily

A kernel method is a key:

$$\hat{p}(x) = \frac{1}{n} \sum_{i} k(x - x_i),$$

$$k(x - x') = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{|x - x'|^2}{2\sigma^2}\right)$$

We can vary kernel width σ to maximize the fit quality. Out of scope of today's lecture, theoretical results exist

https://ekamperi.github.io/math/2020/12/08/kernel-densityestimation.html

https://github.com/fbeilstein/machine_learning/blob/mast er/lecture 15 kernel density estimation.ipynb

Anomaly detection using a pair of features

Points are real data

The color intensity corresponds to an estimated density value

LODA anomaly detector

- 1. Build *M* random linear projections
- 2. Estimate density for each projection $\hat{p}_i(x)$, i = 1, ..., M
- 3. Mean density for all projections

$$S(x) = -\frac{1}{M} \sum_{i=1}^{M} \log \hat{p}_i(x)$$

Get mean «surprise» $\mathbb{E} S(x)$

Representations from Neural Networks

- $g_{\theta}(x)$ is a neural network backbone
- e_i is the mean embedding for i-th class

Utilize representations for anomaly detection

A DUQ architecture: the input is mapped to the feature space, where it is assigned to the closest centroid. The distance to this centroid is uncertainty.

- High anomaly score
- Low anomaly score
- Training data

Source: Van Amersfoort, Joost, et al. "Uncertainty estimation using a single deep deterministic neural network." *ICML*, 2020.

Top recommendations from the three studies

- Isolation based methods: iForest and iNNE [8]
- All known weaknesses of iForest are overcome by iNNE, with higher time cost; but still has significantly lower time cost than kNN.
- Nearest neighbour-based methods: aNNE and kNN
- Clustered anomalies: ABOD & LOF
- iNNE [5] can do well in detecting clustered anomalies.
- Kernel Mahalanobis [6]: The key weakness is the time cost
- Among the compared methods, <u>iForest and iNNE have the</u> <u>highest detection accuracy and also have the lowest time</u> cost.

[6] Hoffmann, H. (2007). Kernel PCA for Novelty Detection, Pattern Recognition, 40(3), 863–874.

[8] Bandaragoda, T. R., Ting, K. M., Albrecht, D., Liu F. T., Wells, J. R. (2018). Isolation-based Anomaly Detection using Nearest Neighbour Ensembles. Computational Intelligence. Doi:10.1111/coin.12156.

Skolkovo Institute of Science and Technol

Models based on ensembles of decision trees

• Isolation forest **iForest**

Isolation Nearest Neighbours
 Ensembles INNE

Isolation tree

- We draw random split until a node is separated
- We calculate average path length
- It is the normality score

Isolation forest

- A collection of isolation trees (iTrees)
- Each iTree isolates every instance from the rest of the instances in a given sample
- Anomalies are 'few and different'
 - More susceptible to isolation
 - Shorter average path

$$Score(x) = \frac{1}{t} \sum_{i=1}^{t} \ell_i(x)$$

where $\ell_i(x)$ is the path length of x traversed in tree i

 $https://federation.edu.au/__data/assets/pdf_file/001\\ 1/443666/ICDM2018-Tutorial-Final.pdf$

[Liu et al ICDM 2008]

INNE approach

Let $D \subset \Re^d$ be a given data set, and let ||a - b|| denote the Euclidean distance between a and b, where $a, b \in \Re^d$.

Let $\mathcal{S} \subset D$ be a subsample of size ψ selected randomly without replacement from a dataset $D \subset \mathbb{R}^d$; and η_x be the nearest neighbour of x.

Definition 1: A hypersphere B(c) centred at c with radius $\tau(c) = ||c - \eta_c||$, is defined to be $\{x : ||x - c|| < \tau(c)\}$, where $x \in \mathbb{R}^d$ and $c, \eta_c \in \mathcal{S}$.

Definition 2: Isolation score for $x \in \mathbb{R}^d$ based on S is defined as follows:

$$I(x) = \begin{cases} 1 - \frac{\tau(\eta_{cnn(x)})}{\tau(cnn(x))}, & \text{if } x \in \bigcup_{c \in \mathcal{S}} B(c) \\ 1, & \text{otherwise} \end{cases}$$

where $cnn(x) = \underset{c \in \mathcal{S}}{\arg \min} \{ \tau(c) : x \in B(c) \}.$

Definition 3: iNNE has a set of t sets of hyperspheres, generated from t subsamples S_i , defined as follows:

$$\left\{ \left\{ B(c) : c \in \mathcal{S}_i \right\} : i = 1, \dots, t \right\}$$

The final anomaly score is the mean value of subsample anomaly scores

https://federation.edu.au/__data/assets/pdf_file/001 1/443666/ICDM2018-Tutorial-Final.pdf

Skolkovo Institute of Science and Technolog

Numerical example

- X_a has the maximum anomaly score
- X_b has a lower anomaly score
- X_c has the lowest anomaly score

Skolkovo Institute of Science and Technology

Classic approach revisited

- A sample $D = \{\mathbf{x}_i\}_{i=1}^n$ is given, each $\mathbf{x} \in \mathbb{R}^d$.
- Construct models

$$\hat{x}_1 = f_1(x_2, x_3, \dots, x_d),$$

$$\dots$$

$$\hat{x}_d = f_d(x_1, x_2, \dots, x_{d-1}).$$

• We have d anomaly scores for $\mathbf{x} = \{x_1, x_2, \dots, x_d\}$:

$$s_i(\mathbf{x}) = |\hat{x}_i - x_i|, i = \overline{1, d}.$$

Autoencoder anomaly detection. General approach

Unsupervised anomaly detection. General approach

- A sample $D = \{\mathbf{x}_i\}_{i=1}^n$ is given, each $\mathbf{x} \in \mathbb{R}^d$.
- Construct encoder and decoder model

$$\mathbf{z}_i = e(\mathbf{x}_i),$$

 $\mathbf{x}_i \approx \hat{\mathbf{x}}_i = d(\mathbf{z}_i) = d(e(\mathbf{x}_i)).$

• We have an anomaly score $s(\mathbf{x})$ for any \mathbf{x} :

$$s(\mathbf{x}) = \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|.$$

 $z\sim p(z)$ Encoder Decoder $q_{\phi}(z|x)$ $p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})$ Training data $z \sim p(z)$ **Detecting anomalies**

Encoder, decoder examples: PCA, Autoencoder

Autoencoder. General idea

Train such that features can be used to reconstruct original data

 \boldsymbol{x}

Reconstructed data

Encoder: 4-layer conv **Decoder**: 4-layer upconv

↑ out data

Input data

Slides were adapted from lecture by Fei-Fei Li & Justin Johnson & Serena Yeung

Reconstructed

input data

Features

Input data

Variational Autoencoder

Maximize likelihood of original input being We maximize the likelihood lower reconstructed bound \hat{x} Sample x|z from $x|z \sim \mathcal{N}(\mu_{x|z}, \Sigma_{x|z})$ $\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$ $\Sigma_{x|z}$ $\mu_{x|z}$ Decoder network $p_{\theta}(x|z)$ Sample z from $z|x\sim \mathcal{N}(\mu_{z|x},\Sigma_{z|x})$ Make approximate $\Sigma_{z|x}$ posterior distribution $\mu_{z|x}$ **Encoder network** close to prior $q_{\phi}(z|x)$ \boldsymbol{x} **Input Data**

Adversarial Autoencoder

Discriminator

Taxonomy of autoencoders

Just autoencoder

Sometimes we need just nonlinear PCA The latent space may not be continuous or allow easy interpolation.

Variational autoencoder

If you want precise control over your latent representations and what you would like them to represent, then choose VAE. Sometimes, precise modeling can capture better representations

Adversarial autoencoder

ΑE

VAE

Generative Adversarial Network

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game!

Generative Adversarial Network: formulas

Minimax objective function:

Discriminator outputs likelihood in (0,1) of real image

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
 Discriminator output for for real data x generated fake data G(z)

- Discriminator with parameters θ_d wants to **maximize objective** such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- Generator with parameters θ_g wants to **minimize objective** such that D(G(z)) is close to 1: the discriminator is fooled into thinking generated G(z) is real

GAN: example for novelty detection

The model is trained using images of penguins

- If we use noisy inliers and pass them to "autoencoder" R
 NN, we get enhanced images as the output
- If we use outlier sample instead, the output of R is distorted

0.91

 $\mathcal{D}(\mathcal{R}(X))$

0.85

M. Sabokrou et al. *Adversarially Learned One-Class Classifier for Novelty Detection*, CVPR, 2018

0.10

0.25

GAN: example for novelty detection

anomaly score

https://arxiv.org/abs/1802.09088

Internal architectures

Autoencoder generator

Discriminator gives anomaly score

GAN: example for novelty detection

Anomaly score with state-of-the-art performance:

$$OCC_1(X) = \begin{cases} Target Class & \text{if } \mathcal{D}(X) > \tau, \\ Novelty (Outlier) & \text{otherwise,} \end{cases}$$
PCA, VAE, AAE

Anomaly score that utilizes encoder-decoder

$$OCC_2(X) = \begin{cases} Target Class & \text{if } \mathcal{D}(\mathcal{R}(X)) > \tau, \\ Novelty (Outlier) & \text{otherwise.} \end{cases}$$

Model quality

	CoP [32]	REAPER [22]	OutlierPursuit [50]	LRR [24]	DPCP [45]	R-graph [52]	Ours $\mathcal{D}(X)$	Ours $\mathcal{D}(\mathcal{R}(X))$
AUC	0.905	0.816	0.837	0.907	0.783	0.948	0.932	0.942
F_1	0.880	0.808	0.823	0.893	0.785	0.914	0.916	0.928
AUC	0.676	0.796	0.788	0.479	0.798	0.929	0.930	0.938
F_1	0.718	0.784	0.779	0.671	0.777	0.880	0.902	0.913
AUC	0.487	0.657	0.629	0.337	0.676	0.913	0.913	0.923
F_1	0.672	0.716	0.711	0.667	0.715	0.858	0.890	0.905

Adversarial autoencoders help

- Construct anomaly score s(x) using data
- Signal about anomaly if anomaly score is greater than some threshold t

https://papers.nips.cc/paper/7915-generative-probabilistic-novelty-detection-with-adversarial-autoencoders.pdf

Anomaly detection for sequential data: healthcare insurance

Anomaly detection for sequential data: healthcare insurance

Anomaly and novelty for Time Series

Problems:

- 1. SotA techniques of anomaly detection are rarely used for classic time series
- Available solutions don't take into account the statistical nature of Time Series

Proposed solution:

- To develop a loss function for GAN-based anomaly detection for time series
- To take into account requirements of statistical change point detection models: low number of false alarms and small detection delay
- To develop new resampling techniques by learning data distribution

Li D. et al. MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks // arXiv:1901.04997. – 2019.

Change detection in semi-structured data

The change-point detection (CPD) model signals about time of change in the data distribution

Semi-structured data – sequences of semi-structured data (images, texts)

Goal: minimize Detection Delay & minimize number of False Alarms

Problems: Can't apply classic method for semistructured data

A sequence of MNIST images is an example of semistructured data

Change detection in semi-structured data

Proposed solution:

- 1. Develop a data embedding procedure
- 2. End2end methods based on statistical tests or detection outliers in embedded space unsupervised anomaly detection
- 3. Develop new loss function for direct minimization of the problem specific metrics

A sequence of MNIST images is an example of semistructured data

Our end2end approach

We concentrate on typical quality metrics for change-point detection: delay detection and mean time to False alarm.

We optimize lower bounds for these metrics:

- p_k is the model's change point probability at moment k,
- T hyperparameter that restricts the length of the considered sequence.

$$Loss_{detection_delay} = \sum_{t=\theta}^{T} (t - \theta) p_t \prod_{k=\theta}^{t-1} (1 - p_k) + (T+1) \prod_{k=\theta}^{T} (1 - p_k),$$

$$Loss_{FP_delay} = 1 - \sum_{t=0}^{\theta} (t - \theta) p_t \prod_{k=0}^{\theta} (1 - p_k)$$

Results

Dataset: sequences with images from MNIST. There are sequences with (e.g. from 1 to 7) and without (e.g. from 1 to 1) change point.

We compare LSTM and fully connected neural network (FNN) architectures, as well as binary cross entropy loss (BCELoss) and our proposed loss.

LSTM with proposed loss function has a better Pareto frontier with respect to the mean detection delay and the mean false positive delay.

References

Change point detection (CPD). Basic knowledge and main statistical approaches:

- Shiryaev A. N. Stochastic disorder problems. Springer International Publishing, 2019.
- Romanenkova E. et al. Real-Time Data-Driven Detection of the Rock-Type Alteration During a Directional Drilling //IEEE Geoscience and Remote Sensing Letters. 2019.

Supervised CPD:

- Malhotra P. et al. Long short term memory networks for anomaly detection in time series //ESANN proceedings, 2015.
- Hundman K. et al. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding //Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. – 2018

Factors to consider when choosing an Anomaly Detector

- Few parameters
 - parameter-free the best
 - easy to tune; not too sensitive to parameter setting
- Fast runtime: can scale up to large datasets and high dimensional datasets
- Low space complexity
- Known behaviours under different data properties
- Can deal with different types of anomalies
- Its ability to deal with high dimensional problems
- Understand the nature of anomalies and the best match algorithm

https://federation.edu.au/__data/assets/pdf_file/0011/443666/ICDM2018-Tutorial-Final.pdf

Skolkovo Institute of Science and Technolog

Take-home messages

- Anomaly detection is a challenging problem
- Often problem-specific knowledge helps

- Common approaches are embedding-based and Isolation forest
- There are some time-series specific approaches: the problem is close to the change point detection problem

More references?

- Overview of anomaly detection for tabular data https://www.youtube.com/watch?v=12Xq9OLdQwQ
- A collection of awesome anomaly detection papers https://awesomeopensource.com/project/hoya012/awesome-anomaly-detection
- A collection of awesome anomaly detection resources https://github.com/yzhao062/anomaly-detection-resources
- Link-based list of anomaly detection methods https://github.com/zhuyiche/awesome-anomaly-detection

