

Figure 1: Various synthetic pathways for the biosynthesis of DHA (docosahexaenoic acid)

Figure 2: Substrate specificity of the Δ5-elongase (SEQ ID NO: 53) with regard to different fatty acids

Figure 3: Reconstitution of DHA biosynthesis in yeast starting from 20:5 ω 3.

Figure 4: Reconstitution of DHA biosynthesis in yeast starting from 18:4 ω 3.

Figure 5: Fatty acid composition (in mol%) of transgenic yeasts which had been transformed with the vectors pYes3-OmELO3/pYes2-EgD4 or pYes3-OmELO3/pYes2-EgD4+pESCLeu-PtD5. The yeast cells were cultured in minimal medium without tryptophan and uracil/ and leucin in the presence of 250 µM 20:5^{Δ5,8,11,14,17} and 18:4^{Δ6,9,12,15}, respectively. The fatty acid methyl esters were obtained from cell sediments by acid methanolysis and analyzed via GLC. Each value represents the mean (n=4) ± standard deviation.

Fatty acids	pYes3-OmELO/pYes2-EgD4	pYes3-OmELO/pYes2-EgD4 EgD4 + pESCLeu-PtD5
	Feeding of 20:5 ^{Δ5,8,11,14,17}	Feeding of 18:4 ^{Δ6,9,12,15}
16:0	9.35 ± 1.61	7.35 ± 1.37
16:1 ^{Δ9}	14.70 ± 2.72	10.02 ± 1.81
18:0	5.11 ± 1.09	4.27 ± 1.21
18:1 ^{Δ9}	19.49 ± 3.01	10.81 ± 1.95
18:1 ^{Δ11}	18.93 ± 2.71	11.61 ± 1.48
18:4 ^{Δ6,9,12,15}	-	7.79 ± 1.29
20:1 ^{Δ11}	3.24 ± 0.41	1.56 ± 0.23
20:1 ^{Δ13}	11.13± 2.07	4.40 ± 0.78
20:4 ^{Δ8,11,14,17}	-	30.05 ± 3.16
20:5 ^{Δ5,8,11,14,17}	6.91± 1.10	3.72 ± 0.59
22:4 ^{Δ10,13,16,17}	-	5.71 ± 1.30
22:5 ^{Δ7,10,13,16,19}	8.77 ± 1.32	1.10 ± 0.27
22:6 ^{Δ4,7,10,13,16,19}	2.73 ± 0.39	0.58 ± 0.10

Figure 6: Feeding experiment for determining the functionality and substrate specificity with yeast strains

Figure 7: Elongation of eicosapentaenoic acid by OteElo1

Figure 8: Elongation of arachidonic acid by O_tElo1

Figure 9: Expression of TpELO1 in yeast

Figure 10: Expression of TpELO3 in yeast

Figure 11: Expression of Thraustochytrium $\Delta 5$ -elongase TL16/pYES2.1 in yeast

Figure 12: Desaturation of γ -linolenic acid (18:2 ω 6-fatty acid) to give α -linolenic acid (18:3 ω 3-fatty acid) by Pi-omega3Des.

Figure 13: Desaturation of γ -linolenic acid (18:2 ω 6-fatty acid) to give stearidonic acid (18:4 ω 3-fatty acid) by Pi-omega3Des.

Figure 14: Desaturation of C20:2 ω 6-fatty acid to give C20:3 ω 3-fatty acid by Pi-omega3Des.

Figure 15: Desaturation of C20:3 ω 6-fatty acid to give C20:4 ω 3-fatty acid by Pi-omega3Des.

Figure 16: Desaturation of arachidonic acid (C₂₀:4 ω6-fatty acid) to give eicosapentaenoic acid (C₂₀:5 ω3-fatty acid) by Pi-omega3Des.

Figure 17: Desaturation of docosatetraenoic acid (C22:4 ω 6-fatty acid) to give docosapentaenoic acid (C22:5 ω 3-fatty acid) by Pi-omega3Des.

Figure 18: Substrate specificity of Pi-omega3Des with regard to different fatty acids

Figure 19: Desaturation of phospholipid-bound arachidonic acid to give EPA by Pi-Omega3Des

Figure 20: Conversion of linoleic acid (arrow) to give γ -linolenic acid (γ -18:3) by Ot-Des6.1.

Absorption mAU

Figure 21: Conversion of linoleic acid and α -linolenic acid (A and C), and reconstitution of the ARA and EPA synthetic pathways, respectively, in yeast (B and D) in the presence of OtD6.1.

Figure 22: Expression of ELO(XI) in yeast

Absorption in mA

A) ELO (XI) without fatty acid feeding**B) ELO (XI) + 18:4Δ6,9,12,15 (250 μM)****C) ELO (XI) + 20:5 (500 μM)**

Retention time in min →

Figure 23:

Figure 24: Elongation of eicosapentaenoic acid by OtElo1 (B) and OtElo1.2 (D), respectively. The controls (A, C) do not show the elongation product (22:5 ω 3).

Figure 25: Elongation of arachidonic acid by OtElo1 (B) and OtElo1.2 (D), respectively. The controls (A, C) do not show the elongation product (22:4 ω 6).

Figure 26: Elongation of 20:5n-3 by the elongases At3g06470.

Absorption in mA

Figure 27: Substrate specificity of the Xenopus Elongase (A), Ciona Elongase (B) und Oncorhynchus Elongase (C)

Figure 28: Substrate specificity of the *Ostreococcus* $\Delta 5$ -elongase (A), the *Ostreococcus* $\Delta 6$ -elongase (B), the *Thalassiosira* $\Delta 5$ -elongase (C) and the *Thalassiosira* *Ostreococcus* $\Delta 6$ -elongase (D)

Figure 29: Expression of the *Phaeodactylum tricornutum* Δ6-elongase (PtELO6) in yeast. A) shows the elongation of the C_{18:3}^{Δ6,9,12} fatty acid and B) the elongation of the C_{18:3}^{Δ6,9,12,15} fatty acid

A)

B)

Figure 30: Figure 30 shows the substrate specificity of PtELO6 with regard to the substrates fed.

Figure 31: Gas-chromatographic analysis of the seed of a transgenic plant, transformed with pSUN-5G.

Figure 32: Gas-chromatographic analysis of the seed of a transgenic plant, transformed with pGPTV-D6Des(Pir)_D5Des(Tc)_D6Eo(PP)_12Des(Co)

Figure 33: DHA in transgenic seeds of *Brassica juncea*. The plants were transformed with the construct pSUN-8G.

