

PROPOSTA DE TESTE INTERMÉDIO N.º 2

MATEMÁTICA A - 11.º ANO

"A Matemática é o alfabeto com o qual Deus escreveu o Universo." Galileu Galilei

GRUPO I – ITENS DE ESCOLHA MÚLTIPLA

1. Sejam α , β e θ três números reais tais que $\alpha + \beta = \frac{\pi}{2}$, $\alpha + \theta = \pi$ e tg $\alpha = 2$.

Qual é o valor de sen² $(\beta - 2\theta) + \cos^2(2\beta + \alpha)$?

A 0

 $\frac{2}{5}$

- 2. Na figura está representado num referencial o.n. xOy um círculo trigonométrico centrado na origem e uma circunferência centrada em A e que contém o ponto B.

Sabe-se que:

- o ponto C pertence ao eixo Oy e à circunferência de centro em A e que contém o ponto B;
- θ é a amplitude em radianos do ângulo AOB, com $\theta \in \left[-\frac{\pi}{2}, -\frac{\pi}{4}\right]$.

Qual é, em função de θ , a ordenada do ponto C?

B $-\sqrt{2\operatorname{sen}^2\theta-1}$

3. Considere as rectas $r \in s$ definidas por:

$$r:(x,y,z)=(2-2k,k,1+k), k \in \mathbb{R}$$
 e $s:-2x-4=2z-6 \land y=2$

$$s:-2x-4=2z-6 \land v=2$$

Qual é a amplitude do ângulo formado pelas rectas $r \in s$?

- **A** 30°

C 60°

D 150°

Exercício Extra: Mostre que as rectas r e s definem um plano e escreva uma equação que o defina.

4. Sejam \vec{u} e \vec{v} dois vectores não nulos tais que $\|\vec{u} + \vec{v}\| = \sqrt{10}$, $\|\vec{u}\| = k$, $\|\vec{v}\| = 2k - 1$ e $\vec{u} \perp \vec{v}$, com $k \in \mathbb{R}$. Então pode afirmar-se que:

- **A** $k = -1 \quad \forall k = \frac{9}{5}$ **B** $k = \frac{9}{5}$ **C** $k = \frac{9}{4}$

5. Considere as funções f e g de domínios $]-2,+\infty[$ e $\mathbb{R}\setminus\{1\}$, respectivamente. O gráfico da função f está parcialmente representado no referencial o.n. xOy da figura e a função g é definida por $g(x) = x - \frac{2}{x-1}$.

Considere as seguintes afirmações:

I.
$$D_{\frac{f}{g}} =]-2 + \infty [\setminus \{-1,1,2\}]$$

II.
$$(f+g)(3)=2$$

III.
$$(f \circ g)(-1) < 1$$

IV.
$$D_{g \circ f} =]-2,0$$

Quais são as afirmações verdadeiras?

- A I, III e IV
- II e III
- CleIV
- D Apenas I

Exercício Extra: Considere a função h, de domínio \mathbb{R} , definida por $h(x) = x^2 + 3x$. Determine o conjunto-solução das seguintes inequações:

- a) $(g \times h)(x) \ge 0$

GRUPO II – ITENS DE RESPOSTA ABERTA

1. Na figura está representado um trapézio isósceles [ABCD].

Sabe-se que:

•
$$\overline{DE} = k$$
 e $\overline{CD} = 2\overline{DE}$, com $k > 0$;

• α é a amplitude, em radianos, do ângulo CDA (ângulo externo), com $\alpha \in \left]\pi, \frac{3\pi}{2}\right[$.

1.1. Mostre que o perímetro do trapézio [ABCD] é dado em função de α por $p(\alpha) = 2k\left(2 + \frac{\cos \alpha - 1}{\sin \alpha}\right)$

1.2. Supondo que $tg(\alpha + \pi) = \frac{3}{4}$ e que o perímetro do trapézio [ABCD] é 20, qual é o valor de k?

1.3. Determine o valor de $\alpha \in \left]\pi, \frac{3\pi}{2}\right[$ de modo que a área do trapézio $\left[ABCD\right]$ seja igual a $k^2\left(2+\frac{\sqrt{3}}{3}\right)$.

1.4. Admita que sen $\alpha = -\frac{3\sqrt{13}}{13}$. Mostre que $\overrightarrow{DA} \cdot \overrightarrow{FD} = \frac{k^2}{3}$.

2. Determine os valores reais de *k* que verificam a condição:

$$6 \operatorname{sen} x = k^{2} \cos(x + \pi) - k \operatorname{sen} \left(x - \frac{\pi}{2}\right) \wedge x \in \left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$$

3. Na figura estão representadas, num referencial o.n. xOy, uma circunferência centrada no ponto C(2,-1) que contém os pontos A(-1,-2) e B e a recta r, mediatriz do segmento de recta [CB]. O ponto B também pertence ao eixo Ox.

3.1. Mostre que as coordenadas do ponto B são (5,0) e verifique que AB é um diâmetro da circunferência.

- **3.2.** Escreva a equação reduzida da recta r e indique a sua inclinação. (Apresente o resultado em graus, arredondado às decimas)
- **3.3.** Sejam P um ponto pertencente à recta r e D o ponto de coordenadas $\left(-2,4\right)$. Determine as coordenadas de P de modo que as rectas DP e BC sejam paralelas.
- **3.4.** Escreva uma condição que defina a região sombreada da figura, incluindo a fronteira, e mostre que a sua área é igual a $5\left(\frac{\pi}{3} \frac{\sqrt{3}}{4}\right)$.
- **4.** Na figura está representado num referencial o.n. Oxyz ou prisma não recto ABCDEFGH

Sabe-se que:

- a face [DCGH] está contida no plano yOz;
- as faces [ABCD] e [EFGH] são rectângulos e são paralelas;
- uma equação do plano ABC é y-5z=-1;
- uma equação vectorial da recta BH é:

$$(x, y, z) = (8, 6, -9) + k(-4, -2, 10), k \in \mathbb{R}$$

• uma condição que define a recta AG é $-\frac{x}{4} = \frac{y-7}{8} = \frac{z-12}{12}$

- **4.1.** Mostre que uma equação do plano $DBF \neq 13x-11y+3z=11$.
- **4.2.** Usando o produto escalar, escreva uma equação da superfície esférica de diâmetro [AH]. (Apresenta a equação na forma $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$, com $a,b,c,r \in \mathbb{R}$)
- **4.3.** Determine o volume do prisma [ABCDEFGH].

Sugestão: Comece por determinar uma condição que defina a recta perpendicular ao plano ABC que contém o ponto G.

- **4.4.** Seja P(x, y, z) um ponto do espaço e considere a condição definida por $(\overrightarrow{AP} \overrightarrow{AB}) \cdot (\overrightarrow{EG} + \overrightarrow{FB}) = 0$.
 - a) Usando exclusivamente cálculo vectorial, identifique, justificando, o lugar geométrico dos pontos P do espaço que satisfazem a condição dada.
 - b) Escreva uma equação cartesiana do lugar geométrico dos pontos P do espaço que satisfazem a condição dada.

5. Uma empresa de carpintaria produz roupeiros e cozinhas. Diariamente dispõe de pelo menos 150 horas de mão-deobra, sendo que a produção de um roupeiro necessita de duas horas de mão-de-obra e a produção de uma cozinha necessita de oito horas. Por razões logísticas, diariamente, o número de cozinhas produzidas não pode ser superior ao número de roupeiros e número total de roupeiros e cozinhas produzidos não pode ser superior a 90. Além disso, diariamente, a empresa só dispõe de material para construir no máximo 65 roupeiros.

A empresa lucra com cada roupeiro 200 euros e com cada cozinha 350 euros.

Supondo que toda a produção é escoada, quantos roupeiros e quantas cozinhas deve produzir a empresa para que o lucro diário seja máximo? Indique o valor desse lucro.

- **6.** Considere as funções f e g definidas por $f(x) = \frac{2x^3 + 6x^2 + 5x + 2}{x^2 + x 2}$ e $g(x) = 1 + \frac{1}{x 1}$.
 - **6.1.** Determine D_{f+g} e estude a função f+g quando à existência de assimptotas do seu gráfico. Caso existam, indica as suas equações.
 - **6.2.** Mostre que $(f+g)(x) = 2x+5+\frac{6}{x-1}$, $\forall x \in D_{f+g}$.
 - **6.3.** Sem recorrer à calculadora, resolva a inequação $2g(x) \ge x^2$. (Apresente o conjunto solução na forma de intervalo, ou união de intervalos)
 - **6.4.** Na figura estão representados num referencial o.n. xOy, parte do gráfico da função g e um trapézio $\begin{bmatrix} ABCD \end{bmatrix}$.

Sabe-se que:

Recorrendo exclusivamente a cálculos analíticos, determine os valores de a para os quais a área do trapézio $\begin{bmatrix} ABCD \end{bmatrix}$ é igual a $\frac{55}{8}$.

7. Na figura estão representados os rectângulos $\begin{bmatrix} ABCD \end{bmatrix}$ e $\begin{bmatrix} EFGH \end{bmatrix}$ e uma semi-circunferência centrada no ponto O e raio 2 inscrita no rectângulo $\begin{bmatrix} ABCD \end{bmatrix}$.

Sabe-se que:

- os pontos F e G pertencem à semi-circunferência;
- o ponto *F* desloca-se sobre o arco *BP*, nunca coincidindo com o ponto *B* nem com o ponto *P*.

- os pontos E, G e H acompanham o movimento do ponto F de modo que $\lceil EFGH \rceil$ é sempre um rectângulo;
- O é o ponto médio dos segmentos de reta $\begin{bmatrix} AB \end{bmatrix}$ e $\begin{bmatrix} EH \end{bmatrix}$.
- **7.1.** Seja x a amplitude, em radianos do ângulo EOF e considere nesta alínea que $x \in \left]0, \frac{\pi}{2}\right[$.

Recorrendo à calculadora, determine para que valores de x a área da região sombreada da figura é superior a 5. Explique como procedeu; na sua explicação deve reproduzir o(s) gráfico(s) obtido(s), bem como as coordenadas de alguns pontos relevantes. (Apresente os resultados arredondados às centésimas)

Sugestão: Comece por mostrar que a área da região sombreada da figura é dada por $8-8 \sin x \cos x$.

7.2. Considere agora a função f que para cada $x \in [0, \pi]$ faz corresponder a distância do ponto F ao ponto C. Em qual das opções seguintes pode estar representado o gráfico da função f?

В

С

D

Numa pequena composição, explique as razões que o levam a rejeitar os outros três gráficos. Apresente três razões, uma por cada gráfico rejeitado.

SOLUCIONÁRIO

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

Exercício Extra: x + y + z = 3

Exercício Extra:

 $\begin{bmatrix} -3,-1 \end{bmatrix} \cup \begin{bmatrix} 0,1 \end{bmatrix} \cup \begin{bmatrix} 2,+\infty \end{bmatrix}$

GRUPO II - ITENS DE RESPOSTA ABERTA

1.2.
$$k = 3$$

1.3.
$$\alpha = \frac{4\pi}{3}$$

2.
$$k \in [-2,3]$$

3.2
$$y = -3x + 10$$
; $\approx 108, 4^{\circ}$

3.3.
$$P\left(\frac{8}{5}, \frac{26}{5}\right)$$

3.4.
$$(x-2)^2 + (y+1)^2 \le 10$$
 \land $y \ge -3x + 10$ \land $y \le \frac{1}{3}x - \frac{5}{3}$

4.2.
$$(x-2)^2 + \left(y - \frac{1}{2}\right)^2 + \left(z - \frac{11}{2}\right)^2 = \frac{73}{2}$$

4.3.
$$V_{[ABCDEFGH]} = 208$$

4.4. a) Plano perpendicular a
$$\overrightarrow{EC}$$
 que contém o ponto B.

4.4. b)
$$2x - y + 5z = 9$$

A empresa deve produzir diariamente 45 roupeiros e 45 cozinhas tendo um lucro máximo de 24 750 euros.

6.1.
$$D_{f+g} = D_f \cap D_g = \mathbb{R} \setminus \{-2,1\}$$
; A.V.: $x = 1$; A.O.: $y = 2x + 5$

$$[-1,0] \cup]1,2]$$
 6.4. $a = 2 \lor a = \frac{23}{7}$

7.1.
$$8 - 8 \operatorname{sen} x \cos x > 5 \Leftrightarrow x \in \left] 0, a \right[\cup \left] b, \frac{\pi}{2} \right[, \operatorname{com} a \approx 0,42 \text{ e } b \approx 1,15 \right]$$

7.2. C