

Statistics Ex 7.2 Q3

Answer:

Let the assume mean be A = 4.

no.of branches (x_i) :	no. of plants (f_i) :	$d_i = x_i - A$	$f_i d_i$
2	49	$-x_i$ -2	-98
3	43	-1	-43
4	57	0	0
5	38	1	38
6	13	2	26
	$\sum f_i = 200$		$\sum f_i d_i = -77$

We know that mean, $\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$

Now, we have $N = \sum f_i = 200$, $\sum f_i d_i = -77$ and A = 4

Putting the values in the above formula, we get

$$\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$$

$$= 4 + \frac{1}{200} \times (-77)$$

$$= 4 - 0.385$$

$$= 3.615$$

$$\approx 3.62 \text{ (approximate)}$$

Hence, the mean number of branches per plant is approximately 3.62.

Statistics Ex 7.2 Q4

Answer:

Let the assume mean be A = 3.

no. of children (x_i) :	no. of families (f_i) :	$d_i = x_i - A$	$f_i d_i$
	no. of families (f_i) :	$= x_i - 3$	
0	10	-3	-30
1	21	-2	-42
2	55	-1	-55
3	42	0	0
4	15	1	15
5	7	2	14
	$\sum f_i = 150$		$\sum f_i d_i = -98$

We know that mean, $\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$

Now, we have
$$N=\sum f_i=150, \ \sum f_i d_i=-98 \, \mathrm{and} \, A=3$$

Putting the values above in formula, we get

$$\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$$
= $3 + \frac{1}{150} \times (-98)$
= $3 - 0.653$
= 2.347
 $\approx 2.35 \text{ (approximate)}$

Hence, the average number of children per family is 2.35.

******* END *******