Résumé du Chapitre 1 : Structure des systèmes téléinformatiques

1. Concepts de base

Un système téléinformatique relie plusieurs équipements distants par un réseau de communication. Les données, sous forme numérique, doivent être adaptées au support (codage, mémorisation, conversion).

2. Éléments d'un système

- ✔ ETTD : PC, serveurs, téléphones, tablettes, claviers, écrans.
- ✓ ETCD : cartes réseau (connexion), modems (conversion numérique

 → analogique).
- ✓ Interconnexion: multiplexeurs (partage statique), concentrateurs (partage dynamique), commutateurs (commutation), routeurs (routage optimal).
- ✓ Liaisons :
- Lignes privées (courtes distances).
- Lignes spécialisées (louées, longues distances).
- Lignes commutées (connexions ponctuelles).

3. Types de réseaux

- LAN : réseau local, rapide, câblé ou Wi-Fi.
- MAN : relie plusieurs LAN dans une zone urbaine.
- WAN : réseau mondial (Internet).
- WLAN: LAN sans fil (Wi-Fi).
- PAN : réseau personnel (Bluetooth).

4. Modes de transmission

- \Rightarrow Simplex : un seul sens (ex. clavier \rightarrow PC).
- → Half-duplex : les deux sens, mais alternativement.
- → Full-duplex : les deux sens en simultané.
- → Parallèle : plusieurs bits transmis en même temps (rapide, limité en distance).
- → Série : bits envoyés un par un (adapté longues distances).
- ⇒ Synchrone : émetteur et récepteur cadencés ensemble.
- → Asynchrone : caractères envoyés de manière irrégulière, délimités par START/STOP.

5. Critères de performance

- Débit binaire : nombre de bits/s (bps, kbps, Mbps, Gbps).
- Exemple : câble coaxial ≈ 100 Mbps/km, fibre optique ≈ 100 Gbps (voire Tbps en labo).
- Délai de transmission influencé par :
- Distance, vitesse de transmission, congestion réseau, protocoles.
- Facteurs : propagation, transmission, traitement, file d'attente, routage.
- Formule : Délai total = propagation + transmission + traitement + file d'attente + routage.

■ Réduction possible par fibre optique, gestion congestion, optimisation des routes.

6. Fonctionnement théorique d'un réseau

■ Physique : câbles, signaux, codage.

■ Accès au média : partage du support.

■ Routage : acheminement optimal des paquets.

■ Transport : correction d'erreurs, fiabilité.

■ Session : gestion du dialogue, reprise après coupure.

■ Présentation : codage, compression, chiffrement.

■ Application : services (mail, web, VoIP).

7. Couches et protocoles

■ Chaque couche fournit un service à la couche supérieure et utilise celle du dessous.

■ Entités : logiciels ou matériels exécutant les services.

■ SAP : points d'accès aux services.

■ Encapsulation : ajout d'en-têtes à chaque couche.

■ Protocoles: règles d'échange (format, erreurs, authentification).

■ Exemples : TCP/IP, HTTP, FTP, SMTP, SNMP.

8. Modèles de référence

- OSI (7 couches): Physique, Liaison, Réseau, Transport, Session, Présentation, Application.
- TCP/IP (4 couches): Application, Transport (TCP/UDP), Internet (IP), Réseau (accès physique).
- OSI = modèle théorique, TCP/IP = modèle pratique et utilisé.