Prøveeksamen MAT121 V22

Oppgave 1. La

$$A = \begin{bmatrix} 10 & -9 \\ 9 & 8 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 4 & 8 \\ 4 & 0 & 2 \\ 8 & 2 & 4 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 4 & 4 \\ 8 & 2 & 4 \\ 8 & 8 & 2 \end{bmatrix},$$

$$D = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}, \qquad E = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \end{bmatrix}.$$

Kryss av for de korrekte utsagnene om disse matrisene. Velg ett eller flere alternativer:

- \square A er symmetrisk
- \square Ber symmetrisk
- $\hfill \square$ Cer symmetrisk
- \square Der symmetrisk
- \square Eer symmetrisk
- \square D^TD er symmetrisk

Oppgave 2. Vi betrakter ligningssystemet

$$2x_1 + (k-1)x_2 = 1$$
$$8x_1 + k^2x_2 = 5,$$

der k er et reelt tall. For hvilke verdier av k er systemet inkonsistent? Velg ett alternativ:

- \square ingen k
- $\square k = 1$
- $\square k = -1$
- \square alle k
- $\square k = 2$
- $\Box \ k = 0$

Oppgave 3. La A, B, C være 3×3 -matriser med

$$det(A) = -1$$
, $det(B) = 48$ og $det(C) = 2$.

Hva er verdien av $\det(AB(2C)^{-1}A)$? Velg ett alternativ:

- \square ingen av de andre alternativene
- \square 3
- \Box 12
- \Box -48
- \square 32
- $\frac{3}{4}$

Oppgave 4. Vi betrakter ligningssystemet $A\mathbf{x} = \mathbf{b}$, der

$$A = \begin{bmatrix} 2 & 1 & 9 & 3 \\ 1 & 0 & 5 & 0 \\ 0 & 1 & -1 & 1 \\ 2 & -1 & 11 & -3 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ -1 \\ 2 \\ -4 \end{bmatrix}.$$

Hvilket av følgende utsagn er USANT? Velg ett alternativ:

- \square Systemet er konsistent.
- \square Systemet har uendelig mange løsninger.
- \square Løsningsmengden er et underrom av \mathbb{R}^4 .
- \Box $(x_1, x_2, x_3, x_4) = (-1, 2, 0, 0)$ er en løsning.
- \square Alle løsningene er på formen $(x_1,x_2,x_3,x_4)=(-1-5s,2+s,s,0),$ der $s\in\mathbb{R}.$

Oppgave 5. Vektoren
$$\mathbf{v} = \begin{bmatrix} 4 \\ 1 \\ -1 \end{bmatrix}$$
 er en egenvektor for matrisen $A = \begin{bmatrix} -7 & 24 & -16 \\ -2 & 7 & -4 \\ 2 & -6 & 5 \end{bmatrix}$.

Hva er den tilsvarende egenverdien? Velg ett alternativ:

- \Box -7
- \Box 7
- \Box 5
- \square 3
- \Box -1

 \Box ingen av de andre alternativene

Oppgave 6. La A være en 15×20 -matrise slik at løsningsrommet til $A\mathbf{x} = \mathbf{0}$ har en basis med 8 vektorer. Hva er da dimensjonen til $\operatorname{Col}(A)$ (søylerommet til A)? Velg ett alternativ:

- \square 8
- \Box 12
- \Box 15
- \square 20
- \Box 7

 \square ingen av de andre alternativene

Oppgave 7. La A være en 2×3 -matrise, og la $\mathbf{x} \in \mathbb{R}^3$. Hvilket av følgende utsagn er USANT? Velg ett alternativ:

- \square Løsningsmengden til ligningen $A\mathbf{x} = 0$ kan være en linje i \mathbb{R}^3 .
- \square Løsningsmengden til ligningen $A\mathbf{x} = 0$ kan være et plan \mathbb{R}^3 .
- \square Løsningsmengden til ligningen $A\mathbf{x} = 0$ er et underrom av \mathbb{R}^3 .
- \square Ligningen $A\mathbf{x} = 0$ har uendelig mange løsninger.
- \square Radrommet til A kan ha en basis bestående av 3 vektorer.

Oppgave 8. La H være underrommet av \mathbb{R}^4 utspent av vektorene

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 3 \\ -4 \\ 1 \\ -5 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 4 \\ -4 \\ 4 \\ -4 \end{bmatrix}.$$

Hva er dimensjonen til H? Velg ett alternativ:

- \square 0
- \Box 1
- \square 2
- \square 3
- \Box 4

 \Box ingen av de andre alternativene

Oppgave 9. La A være en 3×3 -matrise. Hvilken av følgende betingelser impliserer IKKE at A er inverterbar? Velg ett alternativ:

- \square A^T er inverterbar.
- \square Det finnes et positivt heltall k slik at $\det(A^k) \neq 0$.
- \square Det finnes en 3×3 -matrise B slik at AB = I.
- \square Ligningen $A\mathbf{x} = \mathbf{b}$ er konsistent for enhver $\mathbf{b} \in \mathbb{R}^3$.
- \square Det finnes lineært uavhengige $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^3$ slik at $A\mathbf{v}_i \neq \mathbf{0}$ for hver i.

Oppgave 10. La $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ og $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ være basiser for et vektorrom V. Anta at

$$\mathbf{a}_1 = \mathbf{b}_1 - 2\mathbf{b}_2, \quad \mathbf{a}_2 = -\mathbf{b}_2 + \mathbf{b}_3 \quad \text{og} \quad \mathbf{a}_3 = 4\mathbf{b}_1 + \mathbf{b}_2 - \mathbf{b}_3.$$

La videre

$$\mathbf{x} = 3\mathbf{a}_1 + 5\mathbf{a}_2 + \mathbf{a}_3.$$

Variabelskiftematrisen $\underset{\mathcal{B} \leftarrow \mathcal{A}}{\mathcal{P}}$ fra \mathcal{A} til \mathcal{B} , og koordinatvektoren $[\mathbf{x}]_{\mathcal{B}}$, er da gitt ved (velg ett alternativ)

$$\square \mathcal{P}_{\mathcal{B} \leftarrow \mathcal{A}} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & -1 & 1 \\ 4 & 1 & -1 \end{bmatrix}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$$

$$\square \mathcal{P}_{\mathcal{B} \leftarrow \mathcal{A}} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & -1 & 1 \\ 4 & 1 & -1 \end{bmatrix}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix}$$

$$\square \mathcal{P}_{\mathcal{B} \leftarrow \mathcal{A}} = \begin{bmatrix} 4 & 1 & 0 \\ -1 & 1 & -2 \\ 0 & 1 & -1 \end{bmatrix}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$$

$$\square \mathcal{P}_{\mathcal{B} \leftarrow \mathcal{A}} = \begin{bmatrix} 1 & 0 & 4 \\ -2 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$$

$$\Box \mathcal{P}_{\mathcal{B} \leftarrow \mathcal{A}} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 4 \\ -2 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 7 \\ -10 \\ 4 \end{bmatrix}$$

 \square ingen av de andre alternativene

Oppgave 11. La W være planet i \mathbb{R}^3 gitt ved ligningen $x_1 = x_2 + x_3$. La $\mathbf{b} = \begin{bmatrix} 6 \\ 2 \\ 7 \end{bmatrix}$.

Hvilken av følgende vektorer er den ortogonale projeksjonen av ${\bf b}$ på W? Velg ett alternativ:

- $\Box \begin{bmatrix} \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}$
- $\begin{bmatrix} 6 \\ 1 \\ 5 \end{bmatrix}$
- \Box $\begin{bmatrix} 7 \\ 7 \\ 0 \end{bmatrix}$
- $\square \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$
- $\begin{bmatrix}
 7 \\
 1 \\
 6
 \end{bmatrix}$
- \Box Ingen av de andre alternativene.

Oppgave 12. La \mathbb{P}_1 være vektorrommet av førstegradspolynomer. La $T\colon \mathbb{P}_1\to \mathbb{P}_1$ være den lineære avbildningen definert ved

$$T(1) = 1 + kt$$
 og $T(t) = 2 - t$,

der k er et reelt tall. For hvilken verdi av k er $\lambda=2$ en egenverdi for T? Velg ett alternativ:

- \square ingen k
- \square k=1
- $\square k = -1$
- \Box alle k

Langsvaroppgaver (svar må begrunnes og mellomregninger vises):

Oppgave 13. La
$$A = \begin{bmatrix} 3 & -2 & 2 \\ -2 & 3 & -2 \\ 2 & -2 & 3 \end{bmatrix}$$
.

- (a) Det oppgis at $\lambda=1$ er en egenverdi for A. Finn en basis for det tilsvarende egenrommet.
- (b) Bestem maksimumsverdien M av den kvadratiske formen

$$3x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 + 4x_1x_3 - 4x_2x_3$$

under føringen

$$x_1^2 + x_2^2 + x_3^2 = 1.$$

Finn videre et punkt (x_1, x_2, x_3) der denne maksimumsverdien antas.

Oppgave 14. Anta at V, W er vektorrom, $T: V \to W$ er en lineær avbildning og $\mathbf{v}_1, \dots, \mathbf{v}_p \in V$. Hvis $T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)$ er lineært uavhengige, må da $\mathbf{v}_1, \dots, \mathbf{v}_p$ være lineært uavhengige? Svaret må begrunnes (bevis eller moteksempel).