

Department: Electronics and communication engineering

Lecturer: Dr. Fatma hossam

Course: ECE332 Electronic Tests and Measurements (2)

Sheet 1

1. For the inverting amplifier with a T feedback network in Fig.3, find the value of resistor R_3 which give an input resistance of 10 k Ω , a gain of -100, and $R_2 = R_4 = 100 \text{ k}\Omega$.

2. For the following circuit with resistance $Rf=200k\Omega$, $R1=20k\Omega$ and $R3=10k\Omega$, and input voltage $v_1=0.2v$ calculate v_2 and v_3

3. For the **difference amplifier**, If R1=R3=10 k Ω and R2=R4= 100 k Ω If V1 = 0.1 V and V2 = 0.3 V. calculate the voltage gain Av = (v_o/v_i) and output voltage v_o .

4. For the following op-amp circuit with Rf_1 =400k , Rf_2 =200k, R1=20k, R2=20k, R3=10k calculate output voltage v_0 .

5. Using ideal Op-Amps, **construct the circuit** for solving the three following linear equation, if Rf = R' $f = R = 100 \text{ k}\Omega$.

$$X + 2Y + 3Z = 6$$

$$2X + Y + 4Z = 7$$

$$4X + 3Y + Z = 8$$

- **6.** The **differentiator circuit** has value of $0.001\mu F$ for **C** and a value of $10k\Omega$ for **R**. The input signal of 10v **triangular waves** for 4ms time period. Calculate the output voltage waveform.
- 7. The integrator circuit has $1\mu F$ for C and a value of $100k\Omega$ for R. The input signal of 10v square wave for 2ms time period. Calculate the output voltage waveform.