UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2022/2Prova da área I

1-4	5	6	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

	(x,y,z) or (x,y,z) but fully (x,y,z)
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$ec{ abla}\left(fg ight)=fec{ abla}g+gec{ abla}f$
5.	$\vec{ abla}\cdot\left(f\vec{F} ight)=\left(\vec{ abla}f ight)\cdot\vec{F}+f\left(\vec{ abla}\cdot\vec{F} ight)$
6.	$\vec{ abla} imes \left(f \vec{F} ight) = \vec{ abla} f imes \vec{F} + f \vec{ abla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	
14.	$\vec{\nabla}\varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torção e aceleração:		
Nome	Fórmula	
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}''(t)\ }$	
Vetor binormal	$ec{B} = rac{ec{r}'(t) imes ec{r}''(t)}{\ ec{r}'(t) imes ec{r}''(t)\ }$	
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{d\vec{T}}{\frac{dt}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$	
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$	
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{rac{ds}{dt}} ight\ $	
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$	
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$	

Equações de Frenet-Serret:

$$\frac{d\vec{T}}{ds} = \kappa \vec{N}$$

$$\frac{d\vec{N}}{ds} = -\kappa \vec{T} + \tau \vec{B}$$

$$\frac{d\vec{B}}{ds} = -\tau \vec{N}$$

$$\vec{r}(t) = \frac{3at}{1+t^3}\vec{i} + \frac{3at^2}{1+t^3}\vec{j}, \quad -\infty < t < \infty.$$

 Vamos considerar apenas a porção da curva com domínio $-\frac{1}{2} < t < \infty$ e a=1, conforme esboço ao lado. Marque a resposta correta para cada coluna.

Tangente unitário em t=0:

 $\left(\right) \frac{1}{\sqrt{2}} \left(-\vec{i} + \vec{j} \right)$ () Nenhuma das anteriores

Dos pontos do plano xy listados, marque o de maior curvatura:

Dos pontos do plano xy listados, marque o de menor curvatura:

• Questão 2 (0.5 ponto cada item) Considere a trajetória de uma partícula com aceleração tangencial constante igual 2 ao longo da curva parametrizada por

$$\vec{r}(t) = \frac{t^2}{2} \vec{i} + \frac{t^3}{3} \vec{j} + t \vec{k}, \quad -0 \le t \le 1.$$

Sabendo que a velocidade escalar em t=0 é zero, marque a resposta correta para cada coluna. Dica: a parametização dada não reflete a cinética do problema, apenas a geometria da curva.

Curvatura em t=1

Torção em
$$t=1$$

Curvatura em
$$t = 1$$

() $\frac{\sqrt{2}}{3}$

() $\frac{\sqrt{6}}{3}$

() $\frac{\sqrt{6}}{3}$

() $\frac{\sqrt{6}}{3}$

() $\frac{1}{3\sqrt{3}}$

() $\frac{1}{3}$

() $\frac{1}{3}$

 $(\)\ \sqrt{2}$ () $\sqrt{2}$

Aceleração normal em t=1

• Questão 3 (0.5 ponto cada item) Considere o campo vetorial $\vec{F} = ze^x\vec{i} - e^x\vec{j} + x \operatorname{sen}(z)\vec{k}$ e a curva C fechada no plano xy formada pelos lados do quadrado $x = \pm 1$ e $y = \pm 1$, orientada no sentido anti-horário. Marque a resposta correta para cada coluna.

$ abla imes F \ egin{pmatrix} ec{F} \cdot dec{r} \ \end{matrix} \ \end{matrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
() 0	
$() ze^{x}\vec{i} + x\cos(z)\vec{k}$	
$() (e^x - \operatorname{sen}(z))\vec{i} - e^x \vec{k}$	
() $2e-1$	
() $e^x \vec{i} + (e^x - \cos(z))\vec{j} - 2\sin(z)\vec{k}$ () $2(1-e)$	
() $-e^x\vec{k}$	e)

• Questão 4 (0.5 ponto cada item) Considere o campo vetorial $\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$, a curva $C: y = x^2, -1 \le x \le 2$, orientada no sentido (-1,1) até (2,4) e a superfície S dada por $z = 1 - x^2 - y^2$, acima do plano xy, orientada no sentido positivo do eixo z. Marque a resposta correta para cada coluna.

$\int_C \vec{F} \cdot d\vec{r}$	$\iint_S ec{F} \cdot ec{n} ds$
J_C () 7	() 0
() 9	$(\)\ rac{\pi}{2}$
() 13	() π
() 17	$(\)\ \frac{3\pi}{2}$
() 18	$()2\pi$
	→

- Questão 5 (2.0 pontos) Considere o campo vetorial $\vec{F} = (3yz^2 + z + 1)\vec{i} + 3xz^2\vec{j} + (6xyz + x)\vec{k}$ e a curva C dada por $\vec{r}(t) = e^{t-1}\vec{i} + (t^2 + 2t)\vec{j} + t^4\vec{k}$, $0 \le t \le 1$. Responda os itens abaixo.
 - a) (0.5 ponto) Mostre que \vec{F} é um campo conservativo.
 - b) (0.5 ponto) Calcule o potencial de \vec{F} , isto é, o campo escalar φ tal que $\vec{F}=\vec{\nabla}\varphi$.
 - c) (1.0 ponto) Calcule a integral de linha $\int_C \vec{F} \cdot d\vec{r}.$

- Questão 6 (2.0 pontos) Considere S a superfície orientada para fora que contorna o sólido V limitado superiormente pelo plano z=1 e inferiormente pela superfície $z=\sqrt{x^2+y^2},~0\leq z\leq 1$ e o campo $\vec{F}=x\vec{i}+y\vec{j}+z^2\vec{k}$.
 - a) (1.0 ponto) Calcule o valor de $\iint_S \vec{F} \cdot \vec{n} dS$ usando integração direta.
 - b) (1.0 ponto) Calcule o valor de $\iint_S \vec{F} \cdot \vec{n} dS$ usando o teorema da divergência.