Ejemplo comparación de resultados predictores in sillico

Cambio de estudio ADAM17 c.359T>C (chr2:9536700 T/C, COSV60397784 o NM_003183.6: c.359T>C)

Exón 3 e intrones adyacentes:

El cambio se encuentra en la última línea del exón 3 (la **t** en color granate).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice sites, direct strand	Donor splice sites, direct strand
pos 5'->3' phase strand confidence 5' exon intron 3' 312 1 + 0.82 CACGTGGTTG^GTTAGTATGG	pos 5'->3' phase strand confidence 5' exon intron 3' 312 1 + 0.86 CACGTGGCTG^GTTAGTATGG
Donor splice sites, complement strand	Donor splice sites, complement strand
pos 3'->5' pos 5'->3' phase strand confidence 5' exon intron 3' 196 296 2 - 0.35 TTGATGTCAG^GTATAATTTA	pos 3'->5' pos 5'->3' phase strand confidence 5' exon intron 3' 196 296 2 - 0.35 TTGATGTCAG^GTATAATTTA
Acceptor splice sites, direct strand	Acceptor splice sites, direct strand
pos 5'->3' phase strand confidence 5' intron exon 3' 21 - + 0.00 GTCGTTACAG^GAGATATATT 180 2 + 0.55 TTTTCTTCAG^GCATTTTAAA 207 2 + 0.19 TGACATCAAG^TACTGAACGT 235 0 + 0.07 AAATTTCAAG^GTCGTGGTGG 450 0 + 0.00 TTTCTTTGAG^GTATATAAGT Acceptor splice sites, complement strand	pos 5'->3' phase strand confidence 5' intron exon 3' 21 - + 0.00 GTCGTTACAG^GAGATATATT 180 2 + 0.51 TTTTCTTCAG^GCATTTTAAA 207 2 + 0.19 TGACATCAAG^TACTGAACGT 235 0 + 0.07 AAATTTCAAG^GTCGTGGTGG 450 0 + 0.00 TTTCTTTGAG^GTATATAAGT Acceptor splice sites, complement strand
No acceptor site predictions above threshold.	No acceptor site predictions above threshold.

La presencia de la mutación produce una alteración en el sitio *donor* predicho (en amarillo) para la secuencia WT, teniendo mayor confianza para la secuencia mutante. Sin embargo como este sitio ya se estaba utilizando en el *splicing*, la mutación no tendrá un efecto significativo en el mensajero resultante.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for wt:

Exo	Score	End	Start
gtg	0.63	319	305
ctt	0.85	458	444

Donor site predictions for mut:

Start	End	Score	Exon Intron
305	319	0.86	gtggctg gt tagtat
444	458	0.85	ctttgag gt atataa

Acceptor site predictions for wt:

Start	End	Score	Intron	Exon
1	41	0.95	ttagttcattt	gtcgttac ag gagatatattgctctaagta
160	200	0.85	tatgaatgcat	ttttcttc ag gcattttaaattatacctga
336	376	0.49	cccctgtgtct	ggtgtatt ag gtctccaaatctaacttgat
378	418	0.86	gcatattcttt	tctggtgc ag gatagtggggacggggtgtc

Acceptor site predictions for mut:

Start	End	Score	Intron	Exon
1	41	0.95	ttagttcatttgt	cgttac ag gagatatattgctctaagta
160	200	0.85	tatgaatgcattt	ttcttc ag gcattttaaattatacctga
336	376	0.49	cccctgtgtctgg	tgtatt ag gtctccaaatctaacttgat
378	418	0.86	gcatattctttc	tggtgc ag gatagtggggacggggtgtc

La presencia de la mutación produce una alteración en el sitio *donor* predicho (en amarillo) para la secuencia WT, teniendo mayor *score* para la secuencia mutante. Sin embargo como este sitio ya se estaba utilizando en el *splicing*, la mutación no tendrá un efecto significativo en el mensajero resultante.

Spliceman

cgtgg(t/c)tggtt ggttgg ggctgg 31388 83%	Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
	cgtgg(t/c)tggtt	ggttgg		21200	I X 1 7/A

Human Splicing Finder

New Donor splice site A	Activation of a cryptic Donor site. Potential alteration of splicing
-----------------------------	--

Algorithm/Matix	position	sequences	variation
MaxEnt Donor site	chr2:9536700	- REF : TTGGTTAGT - ALT : CTGGTTAGT	4.82 > 6.32 => 31.12%

SVM-BPfinder

seq_id	agez	ss_dist	bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr			
wt	40	49	ctgtaaaat	-0.472832092723	0.454545454545	11	10	21	-0.13720216
wt	40	31	tcttcactg	0.165684009896	0.423076923077	26	0	0	-1.0424639
mut	40	49	ctgtaaaat	-0.472832092723	0.454545454545	11	10	21	-0.13720216
mut	40	31	tcttcactg	0.165684009896	0.423076923077	26	0	0	-1.0424639

Variant Effect Predictor tool

ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	missense_variant, splice_region_variant	ADAM17	ENSG00000151694 Transcript	ENST00000310823.8	protein_coding	3/19	584	359	120	V/A	GTT/GCT	COSV60397784
ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	splice_region_variant, non_coding_transcript_exon_variant	ADAM17	ENSG00000151694 Transcript	ENST00000478059.1	retained_intron	3/5	528	-	-	-	-	COSV60397784
ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	missense_variant, splice_region_variant, NMD_transcript_variant	ADAM17	ENSG00000151694 Transcript	ENST00000618923.2	nonsense_mediated_decay	3/8	546	359	120	V/A	GTT/GCT	COSV60397784
ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	intron_variant, NMD_transcript_variant	ADAM17	ENSG00000151694 Transcript	ENST00000647610.1	nonsense_mediated_decay	-				-	-	COSV60397784
ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	splice_region_variant, non_coding_transcript_exon_variant	ADAM17	ENSG00000151694 Transcript	ENST00000647622.1	retained_intron	3/12	538	-	-	-	-	COSV60397784
ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	intron_variant, NMD_transcript_variant	ADAM17	ENSG00000151694 Transcript	ENST00000647979.1	nonsense_mediated_decay	-				-		COSV60397784
ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	missense_variant, splice_region_variant	ADAM17	ENSG00000151694 Transcript	ENST00000648002.1	protein_coding	2/4	248	248	83	V/A	GTT/GCT	COSV60397784
ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	splice_region_variant, non_coding_transcript_exon_variant	ADAM17	ENSG00000151694 Transcript	ENST00000648548.1	processed_transcript	4/20	566	-	-	-		COSV60397784
ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	splice_region_variant, non_coding_transcript_exon_variant	ADAM17	ENSG00000151694 Transcript	ENST00000648857.1	processed_transcript	3/19	404	-	-	-	-	COSV60397784
ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	splice region variant, 3 prime UTR variant, NMD_transcript_variant	ADAM17	ENSG00000151694 Transcript	ENST00000649227.1	nonsense_mediated_decay	3/19	483	-	-	-	-	COSV60397784
ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	splice_region_variant, non_coding_transcript_exon_variant	ADAM17	ENSG00000151694 Transcript	ENST00000649686.1	processed_transcript	2/15	149	-	-	-	-	COSV60397784
ENST00000310823.8:c.359T>C	2:9536700- 9536700	G	splice_region_variant, non_coding_transcript_exon_variant	ADAM17	ENSG00000151694 Transcript	ENST00000649972.1	retained_intron	4/13	597	-	-	-		COSV60397784
ENST00000310823.8:c.359T>C	<u>2:9536700-</u> <u>9536700</u>	G	splice region variant, 3 prime UTR variant, NMD transcript variant	ADAM17	ENSG00000151694 Transcript	ENST00000650116.1	nonsense_mediated_decay	3/19	357	-	-	-	-	COSV60397784
ENST00000310823.8:c.359T>C	<u>2:9536700-</u> <u>9536700</u>	G	splice_region_variant, non_coding_transcript_exon_variant	ADAM17	ENSG00000151694 Transcript	ENST00000650241.1	retained_intron	3/14	302	-	-	-	-	COSV60397784

ESEfinder

Se obtienen 4 resultados con puntuaciones positivas para las matrices 5' (290, 293, 297 y 301):

290 (-202)	TTCTTCACTGGACACGTGGTTGgttagtat	0.67910	290 TTCTTCACTGG	ACACGTGGTTGgttagtat -	-4.18170	290 TTCTTCACTGGACACGTGGTTGgt	ttagtat	0.13170	290 (-202) TTCTTCACTGGACACGTGGTTGgttagtat	-4.32780
293 (-199)	TTCACTGGACACGTGGTTGgttagtatgga	1.99570 (293 TTCACTGGACACGT	GGTTGgttagtatgga -16.15	293 (-199)	TTCACTGGACACGTGGTTGgttagtatgga	1.57140	293 (-199)	TTCACTGGACACGTGGTTGgttagtatgga -17.85770	
297 (-195)	CTGGACACGTGGTTGgttagtatggagctt	4.98040	297 -195) CTGGACACGTGGTT	gttagtatggagctt -11.96	297 190 (-195)	CTGGACACGTGGTTGgttagtatggagctt	5.08900	297 (-195)	CTGGACACGTGGTTGgttagtatggagctt -13.18810	
301 (-191)	ACACGTGGTTGgttagtatggagcttgttg	1.93890 (301 -191) ACACGTGGTTGgtt	agtatggagcttgttg -25.41	.470 301 (-191)	ACACGTGGTTGgttagtatggagcttgttg	1.83790	301 (-191)	ACACGTGGTTGgttagtatggagcttgttg -29.85810	

Cuando se comparan estas puntuaciones con las equivalentes en la secuencia mutante se observa que 290, 297 y 301 han aumentado sus puntuaciones mientras que 293 ha pasado tener puntuación negativa esto supone resultados contradictorios porque por un lado se estaría fortaleciendo un sitio *donor* mientras que por otro se estaría perdiendo:

290 (-202)	TTCTTCACTGGACACGTGGCTGgttagtat	0.62500	290 (-202)	TTCTTCACTGGACACGTGGCTGgttagtat	-3.81600) (-202	TTCTTCACTGGACACGTGGCTGgttagt	at 0.2989	0 (-20	90 TTCTTCACTGGACACGTGGCTGgttagtat	-3.99580
293 (-199)	TTCACTGGACACGTGGCTGgttagtatgga	-4.94040	293 (-199)	TTCACTGGACACGTGGCTGgttagtatgga	-16.62150	293 (-199)	TTCACTGGACACGTGGCTGgttagtatgga	-5.53870		TTCACTGGACACGTGGCTGgttagtatgga -18.	
297 (-195)	CTGGACACGTGGCTGgttagtatggagctt	7.13120	297 (-195)	CTGGACACGTGGCTGgttagtatggagctt	-10.37360	297 (-195)	CTGGACACGTGGCTGgttagtatggagctt	7.19090	297 (-195)	CTGGACACGTGGCTGgttagtatggagctt -11	.57440
301 (-191)	ACACGTGGCTGgttagtatggagcttgttg	2.42120	301 (-191)	ACACGTGGCTGgttagtatggagcttgttg	-25.40410	301 (-191)	ACACGTGGCTGgttagtatggagcttgttg	2.34010	301 (-191)	ACACGTGGCTGgttagtatggagcttgttg -29	78970

En cuanto a los ESE, se producen algunas alteraciones que pueden estar afectando al *splicing:*

303 (-189)	ACGTGGT	-1.29601	303 (-189) ACGTGGT -0.8	9232 (-189)	ACGTGGTT -3.94807	303 ACGTGGT -4.65494
304 (-188)	CGTGGTT	-2.15411	304 (-188) CGTGGTT -0.0	304 (-188)	CGTGGTTG -1.47062	304 (-188) CGTGGTT -4.58428
305 (-187)	GTGGTTG	-4.63609	305 (-187) GTGGTTG -3.8	305 2003 (-187)	GTGGTTGg -4.00999	305 (-187) GTGGTTG -3.09338
306 (-186)	TGGTTGg	-2.75623	306 (-186) TGGTTGg -1.6	306 9491 (-186)	TGGTTGgt -4.39112	306 (-186) TGGTTGg 0.26370
307 (-185)	GGTTGgt	-1.15368	307 (-185) GGTTGgt -1.3	307 6411 (-185)	GGTTGgtt 1.57873	307 (-185) GGTTGgt -5.36969
308 (-184)	GTTGgtt	-4.40672	308 (-184) GTTGgtt -3.6	308 9608 (-184)	GTTGgtta -0.53968	308 GTTGgtt -6.22243 (-184)
309 (-183)	TTGgtta	-5.28249	309 (-183) TTGgtta -3.5	309 9151 (-183)	TTGgttag -4.76274	309 (-183) TTGgtta -2.97078

303 (-189)	ACGTGGC	-3.14941	303 ACGTGGC -2.08902	303 ACGTGGCT -4.59251 (-189)	303 ACGTGGC -3.11584
304 (-188)	CGTGGCT	-2.61182	304 (-188) CGTGGCT -0.17241	304 (-188) CGTGGCTG 0.25839	304 (-188) CGTGGCT -2.86735
305 (-187)	GTGGCTG	-2.11236	305 GTGGCTG -2.00823	305 (-187) GTGGCTGg -3.25075	305 GTGGCTG -4.58464
306 (-186)	TGGCTGg	-1.29891	306 (-186) TGGCTGg -0.44015	306 (-186) TGGCTGgt -4.16028	306 (-186) TGGCTGg 2.64833
307 (-185)	GGCTGgt	1.15633	307 (-185) GGCTGgt 0.70475	307 (-185) GGCTGgtt 2.14766	307 (-185) GGCTGgt -6.71796
308 (-184)	GCTGgtt	-5.00965	308 (-184) GCTGgtt -3.94487	308 (-184) GCTGgtta -1.92809	308 (-184) GCTGgtt -5.91038
309 (-183)	CTGgtta	-2.33200	309 (-183) CTGgtta -0.48646	309 (-183) CTGgttag -4.74162	309 (-183) CTGgtta -3.32748

EX-SKIP

Seq	PESS	FAS-ESS hex2	FAS-ESS hex3	IIE	IIE	NI-ESS trusted	NI-ESS all	PESE	RESCUE -ESE	EIE	EIE	NI-ESE trusted	NI-ESE all	ESS	ESE	ESS/ESE
	(count)	(count)	(count)	(count)	(sum)	(count)	(sum)	(count)	(count)	(count)	(sum)	(count)	(sum)	(total)	(total)	(ratio)
wt	5	5	3	23	367.5158	28	-35.0508	8	10	45	493.3854	40	50.7204	64	103	0.62
mut	5	4	3	23	350.5170	26	-33.1891	8	10	45	493.3854	41	52.2456	61	104	0.59

Allele wt has a higher chance of exon skipping than allele mut.

HOT-SKIP

ttagttcatttgtcgttacaggagatatattgctctaagtacctaataagactttagttgtaacttgcatagtgtttattagttgtcatagtgtattattattatgtcaatgcttcttggctttttaagaaagtttaattatgtgaaaatgagacttaaaatttgtgtgcttagagtaaaatatgaatgcatttttcttcagGCATTTTAAATTATACCTGACATCAAGTACTGAACGTTTTTCACAAAATTTCAAGGTCGTGGTGGTGGTGGTGGTAAAAATGGCAGGACTTCTTCACTGGACACGTGGTTGgttagtatggagcttgttggtttgcccctgtgtctggtgtattaggtctccaaatctaacttgattgcatattcttttctggtgcaggatagtggggagggggtgcatagaagggcagggatcattctttgacttttctttgaggtataaagtttagaggcaggaacattctaatagaaggaaa