Contents

Chapter 1. Foundations	2
Basic Category Theory	2
Categories	2
Functors	3
Subcategories	3
Limits	3
Chapter 2. The Fundamental Group	5
The Fundamental Grupoid	5
Construction of the fundamental Grupoid	5
The Fundamental Group	8
$\pi_1(\mathbb{S}^1)$	10
The Seifert-Van Kampen Theorem	12
Coproducts and Pushouts in Grp	12
The Seifert-Van Kampen Theorem and its Consequences	15
Chapter 3. Singular Homology	16
Construction of the Singular Homology Functor	16
Free Abelian Groups	16
Chain Complexes	17
The Homology Functor	20
First Properties of Singular Homolgy	21
The Homotopy Axiom	21
Applications	21
The Brouwer Fixed Point Theorem	21
Appendix A. Set Theory	22
1 Basic Concepts	22
Appendix Ribliography	23

CHAPTER 1

Foundations

Basic Category Theory

Categories. We use the first order theory of Neumann-Bernays-Gödel (BNG) as described in [Men15, p. 231].

Definition 1.1 (Category). A category & consists of

- A class ob(\mathcal{C}), called the **objects of** \mathcal{C} .
- A class $mor(\mathcal{C})$, called the morphisms of \mathcal{C} .
- Two functions dom: $mor(\mathcal{C}) \to ob(\mathcal{C})$ and $cod: mor(\mathcal{C}) \to ob(\mathcal{C})$, which assign to each morphism f in \mathcal{C} its **domain** and **codomain**, respectively.
- For each $X \in ob(\mathcal{C})$ a function $ob(\mathcal{C}) \to mor(\mathcal{C})$ which assigns a morphism id_X such that $dom id_X = cod id_X = X$.
- A function

$$\circ : \{ (g, f) \in \operatorname{mor}(\mathcal{C}) \times \operatorname{mor}(\mathcal{C}) : \operatorname{dom} g = \operatorname{cod} f \} \to \operatorname{mor}(\mathcal{C})$$
 (1)

mapping (g, f) to $g \circ f$, called **composition**, such that $dom(g \circ f) = dom f$ and $cod(g \circ f) = cod g$.

Subject to the following axioms:

• (Associativity Axiom) For all $f, g, h \in mor(\mathcal{C})$ with dom h = cod g and dom g = cod f, we have that

$$(h \circ g) \circ f = h \circ (g \circ f). \tag{2}$$

• (Unit Axiom) For all $f \in mor(\mathcal{C})$ with dom f = X and cod f = Y we have that

$$f = f \circ id_X = id_Y \circ f. \tag{3}$$

Remark 1.1. Let \mathcal{C} be a category. For $X, Y \in ob(\mathcal{C})$ we will abreviate

$$\mathcal{C}(X,Y) := \{ f \in \text{mor}(\mathcal{C}) : \text{dom } f = X \text{ and } \text{cod } f = Y \}.$$

Moreover, $f \in \mathcal{C}(X, Y)$ is depicted as

$$f: X \to Y.$$
 (4)

Example 1.1. Let * be a single, not nearer specified object. Consider as morphisms the class of all cardinal numbers and as composition cardinal addition. By [Hal12, pp. 112–113], cardinal addition is associative and \varnothing serves for the identity id_{*}.

Definition 1.2 (Locally Small, Hom-Set). A category \mathcal{C} is said to be **locally small** if for all $X, Y \in \mathcal{C}$, $\mathcal{C}(X, Y)$ is a set. If \mathcal{C} is locally small, $\mathcal{C}(X, Y)$ is called a **hom-set** for all $X, Y \in \mathcal{C}$.

Functors.

Definition 1.3 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F: \mathcal{C} \to \mathcal{D}$ is a pair of functions (F_1, F_2) , $F_1: ob(\mathcal{C}) \to ob(\mathcal{D})$, called the **object function** and $F_2: mor(\mathcal{C}) \to mor(\mathcal{D})$, called the **morphism function**, such that for every morphism $f: X \to Y$ we have that $F_2(f): F_1(X) \to F_1(Y)$ and (F_1, F_2) is subject to the following **compatibility conditions**:

- For all $X \in ob(\mathcal{C})$, $F_2(id_X) = id_{F_1(X)}$.
- For all $f \in \mathcal{C}(X,Y)$ and $g \in \mathcal{C}(Y,Z)$ we have that $F_2(g \circ f) = F_2(g) \circ F_2(f)$.

Remark 1.2. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. It is convenient to denote the components F_1 and F_2 also with F.

Subcategories.

Definition 1.4 (Subcategory). Let \mathcal{C} be a category. A subcategory S of \mathcal{C} consists of

- A subclass $ob(S) \subseteq ob(C)$.
- A subclass $mor(S) \subseteq mor(C)$.

Subject to the following conditions:

• For all $X \in \mathcal{S}$, $id_{\mathcal{S}} \in mor(\mathcal{S})$.

Example 1.2 (Top*). Define the objects of Top* to be the class of all tuple (X, p), where X is a topological space and $p \in X$. Moreover, given objects (X, p) and (Y, q) in Top*, define Top* $((X, p), (Y, q)) := \{ f \in \text{Top}(X, Y) : f(p) = q \}$. It is easy to check that Top* is a category, called the *category of pointed topological spaces*.

Limits.

Definition 1.5 (Diagram). Let C be a category and A a small category. A functor $A \to C$ is called a **diagram in C of shape A**.

Definition 1.6 (Cone and Limit). Let \mathcal{C} be a category and $D: A \to \mathcal{C}$ a diagram in \mathcal{C} of shape A. A cone on D is a tuple $(C, (f_{\alpha})_{\alpha \in A})$, where $C \in \mathcal{C}$ is an object, called the vertex of the cone, and a family of arrows in \mathcal{C}

$$\left(C \xrightarrow{f_{\alpha}} D(\alpha)\right)_{\alpha \in A}. \tag{5}$$

such that for all morphisms $f \in A$, $f : \alpha \to \beta$, the triangle

commutes. A (small) limit of D is a cone $(L, (\pi_{\alpha})_{\alpha \in A})$ with the property that for any other cone $(C, (f_{\alpha})_{\alpha \in A})$ there exists a unique morphism $\overline{f}: C \to L$ such that $\pi_{\alpha} \circ \overline{f} = f_{\alpha}$ holds for every $\alpha \in A$.

Remark 1.3. In the setting of definition 1.6, if $(L, (\pi_{\alpha})_{\alpha \in A})$ is a limit of D, we sometimes reffering to L only as the limit of D and we write

$$L = \lim_{\leftarrow A} D. \tag{6}$$

CHAPTER 2

The Fundamental Group

The Fundamental Grupoid

Construction of the fundamental Grupoid.

Lemma 2.1 (Gluing Lemma). Let $X, Y \in \text{ob}(\mathsf{Top})$, $(X_{\alpha})_{\alpha \in A}$ a finite closed cover of X and $(f_{\alpha})_{\alpha \in A}$ a finite family of maps $f_{\alpha} \in \mathsf{Top}(X_{\alpha}, Y)$ such that $f_{\alpha}|_{X_{\alpha} \cap X_{\beta}} = f_{\beta}|_{X_{\alpha} \cap X_{\beta}}$ for all $\alpha, \beta \in A$. Then there exists a unique $f \in \mathsf{Top}(X, Y)$ such that $f|_{X_{\alpha}} = f_{\alpha}$ for all $\alpha \in A$.

Proof. Let $x \in X$. Since $(X_{\alpha})_{\alpha \in A}$ is a cover of X, we find $\alpha \in A$ such that $x \in X_{\alpha}$. Define $f(x) := f_{\alpha}(x)$. This is well defined, since if $x \in X_{\alpha} \cap X_{\beta}$ for some $\beta \in A$, we have that $f(x) = f_{\beta}(x) = f_{\alpha}(x)$. Clearly $f|_{X_{\alpha}} = f_{\alpha}$ for all $\alpha \in A$ and β is unique. Let us show continuity. To this end, let $K \subseteq Y$ be closed. Then

$$f^{-1}(K) = X \cap f^{-1}(K)$$

$$= \bigcup_{\alpha \in A} X_{\alpha} \cap f^{-1}(K)$$

$$= \bigcup_{\alpha \in A} (X_{\alpha} \cap f^{-1}(K))$$

$$= \bigcup_{\alpha \in A} (X_{\alpha} \cap f_{\alpha}^{-1}(K)).$$

Since each f_{α} is continuous, $f_{\alpha}^{-1}(K)$ is closed in X_{α} for each $\alpha \in A$ and thus since X_{α} is closed, $f^{-1}(K)$ is closed as a finite union of closed sets.

Theorem 2.1. There is a functor Top \rightarrow Grpd.

Proof. The proof is divided into several steps. Let us denote Π : Top \rightarrow Grpd for the claimed functor.

Step 1: Definition of Π on objects. Let $X, Y \in \text{ob}(\mathsf{Top}), f, g \in \mathsf{Top}(X, Y)$ and $A \subseteq X$. A map $F \in \mathsf{Top}(X \times I, Y)$ is called a **homotopy from X to Y relative to A**, if

- F(x,0) = f(x), for all $x \in X$.
- F(x, 1) = g(x), for all $x \in X$.
- F(x,t) = f(x) = g(x), for all $x \in A$ and for all $t \in I$.

If there exists a homotopy between f and g relative to A we say that f and g are **homotopic** relative to A and write $f \simeq_A g$. If we want to emphasize the homotopy relative to A, we write $F: f \simeq_A g$.

Lemma 2.2. Let $X, Y \in \text{ob}(\mathsf{Top})$ and $A \subseteq X$. Then being homotopic relative to A is an equivalence relation on $\mathsf{Top}(X,Y)$.

Proof. Define a binary relation $R_A \subseteq \mathsf{Top}(X,Y) \times \mathsf{Top}(X,Y)$ by

$$fR_Ag$$
 : \Leftrightarrow $f \simeq_A g$.

Let $f \in \text{Top}(X, Y)$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := f(x)$$
.

Then clearly $F: f \simeq_A f$. Hence R_A is reflexive.

Let $g \in \text{Top}(X, Y)$ and assume that fR_Ag . Thus $G : f \simeq_A g$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := G(x, 1-t).$$

Then it is easy to check that $F: g \simeq_A f$ and so R_A is symmetric.

Finally, let $h \in \text{Top}(X, Y)$ and suppose that fR_Ag and gR_Ah . Hence $F_1: f \simeq_A g$ and $F_2: g \simeq_A h$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := \begin{cases} F_1(x,2t) & 0 \le t \le \frac{1}{2}, \\ F_2(x,2t-1) & \frac{1}{2} \le t \le 1. \end{cases}$$

Continuity of F follows by an application of the gluing lemma 2.1. Then it is easy to check that $F: f \simeq_A h$ and hence R_A is transitive.

Let $X \in \text{ob}(\mathsf{Top})$ and u a path in X from p to q. Define the **path class [u] of u** by $[u] := [u]_{R_{\mathcal{U}}}$. Define now

- ob $(\Pi(X)) := X$.
- $\Pi(X)(p,q) := \{[u] : u \text{ is a path from } p \text{ to } q\} \text{ for all } p,q \in X.$
- Let $p \in X$. Then define $\mathrm{id}_p \in \Pi(X)(p,p)$ by $\mathrm{id}_p := [c_p]$, where c_p is the constant path defined by $c_p(s) := p$ for all $s \in I$.
- And $\Pi(X)(q,r) \times \Pi(X)(p,q) \to \Pi(X)(p,r)$ by

$$([v],[u]) \mapsto [u * v]$$

Where $u * v \in \text{Top}(p, r)$ is the *concatenated path of u and v*, defined by

$$(u * v)(s) := \begin{cases} u(2s) & 0 \le t \le \frac{1}{2}, \\ v(2s-1) & \frac{1}{2} \le t \le 1 \end{cases}.$$

Continuity follows again from the gluing lemma 2.1 whereas well definedness follows from the next lemma.

Lemma 2.3. Suppose that $[u_1]$, $[u_2] \in \Pi(X)(p,q)$ and $[v_1]$, $[v_2] \in \Pi(X)(q,r)$ such that $[u_1] = [u_2]$ and $[v_1] = [v_2]$. Then $[u_1 * v_1] = [u_2 * v_2]$.

Proof. By assumption we have $G: u_1 \simeq_{\partial I} u_2$ and $H: v_1 \simeq_{\partial I} v_2$. Define $F \in \mathsf{Top}(I \times I, X)$ by

$$F(s,t) := \begin{cases} G(2s,t) & 0 \le s \le \frac{1}{2}, \\ H(2s-1,t) & \frac{1}{2} \le s \le 1. \end{cases}$$

Again, continuity follows from the gluing lemma 2.1 and it is easy to check that $F: u_1 * v_1 \simeq_{\partial I} u_2 * v_2$.

Let us now check that $\Pi(X)$ is indeed a category. Let $[u] \in \Pi(X)(p,q)$. We want to show that $u \simeq_{\partial I} c_p * u$. To this end, we consider figure 1a and conclude that a suitable homotopy is given by $F \in \text{Top}(I \times I, X)$ defined by

$$F(s,t) := \begin{cases} p & 0 \le 2s \le t, \\ u\left(\frac{2s-t}{2-t}\right) & t \le 2s \le 2. \end{cases}$$

Similarly, considering figure 1b leads to $F \in \text{Top}(I \times I, X)$ defined by

FIGURE 1. Visualization of the proof that $\Pi(X)$ is a grupoid object.

$$F(s,t) := \begin{cases} u\left(\frac{4s}{t+1}\right) & -1 \le 4s - 1 \le t, \\ v(4s - t - 1) & t \le 4s - 1 \le t + 1, \\ w\left(\frac{4s - t - 2}{4 - t - 2}\right) & t + 1 \le 4s - 1 \le 3. \end{cases}$$

Lastly, we check that $\Pi(X)$ is a grupoid. To this end, for a path u from p to q, define its **reverse path** \overline{u} by

$$\overline{u}(s) := u(1-s).$$

We claim that $u * \overline{u} \simeq_{\partial I} c_p$. From figure 1c we deduce that $F \in \text{Top}(I \times I, X)$ is given by

$$F(s,t) := \begin{cases} u(2s) & 0 \le 2s \le 1 - t, \\ u(1-t) & 1 - t \le 2s \le t + 1, \\ \overline{u}(2s-1) & t + 1 \le 2s \le 2. \end{cases}$$

Step 2: Definition of Π on morphisms. Let $f \in \text{Top}(X, Y)$. Then $\Pi(f)$ is a functor from $\Pi(X)$ to $\Pi(Y)$. Define $\Pi(f)$ as follows:

- Let $p \in \text{ob}(\Pi(X))$. Then define $\Pi(f)(p) := f(p) \in \text{ob}(\Pi(Y))$.
- Let $[u] \in \Pi(X)(p,q)$. Then define $\Pi(f)[u] := [f \circ u] \in$. We have to check that this definition is independent of the choice of the representative.

Lemma 2.4. Let u and v be paths from p to q in X and suppose that [u] = [v]. Then for any $f \in \text{Top}(X, Y)$ we also have that $[f \circ u] = [f \circ v]$.

Proof. Suppose that $H: u \simeq_{\partial I} v$. Define $F \in \text{Top}(I \times I, Y)$ by

$$F(s,t) := (f \circ F)(s,t).$$

Then $F: f \circ u \simeq_{\partial I} f \circ v$.

Checking that Π satisfies the functorial properties is left as an exercise.

Exercise 2.1. Check that $\Pi : \mathsf{Top} \to \mathsf{Grpd}$ is indeed a functor.

The Fundamental Group.

Lemma 2.5. Let \mathcal{G} be a locally small grupoid. Then for every $X \in \text{ob}(\mathcal{G})$, $\mathcal{G}(X, X)$ can be equipped with a group structure.

Proof. Since \mathcal{G} is locally small, $\mathcal{G}(X,X)$ is a set for every $X \in \text{ob}(\mathcal{G})$. Define a multiplication $\mathcal{G}(X,X) \times \mathcal{G}(X,X) \to \mathcal{G}(X,X)$ by $gh := h \circ g$. Clearly, this multiplication is associative. Moreover, the identity element is given by $\text{id}_X \in \mathcal{G}(X,X)$ and since every $g \in \mathcal{G}(X,X)$ is an isomorphism, the multiplicative inverse is given by the inverse in $\mathcal{G}(X,X)$.

Proposition 2.1. There is a functor $Top_* \to Grp$.

Proof. Define $\pi_1 : \mathsf{Top}_* \to \mathsf{Grp}$ on objects $(X, p) \in \mathsf{Top}_*$ by

$$\pi_1(X, p) := \Pi(X)(p, p).$$

By theorem 2.1 together with lemma 2.5, $\pi_1(X, p)$ is actually a group, called the **fundamental group of** X with basepoint p. On morphisms $f \in \text{Top}_*((X, p), (Y, q))$, define

$$\pi_1(f) := \Pi(f) : \Pi(X)(p, p) \to \Pi(Y)(q, q).$$

Let $[u], [v] \in \pi_1(X, p)$. Then

$$\pi_{1}([u][v]) = \Pi(f)([u][v])$$

$$= \Pi(f)[u * v]$$

$$= [f \circ (u * v)]$$

$$= [(f \circ u) * (f \circ v)]$$

$$= \Pi(f)[u]\Pi(f)[v]$$

$$= \pi_{1}(f)[u]\pi_{1}(f)[v].$$

Thus $\pi_1(f)$ is a morphism in Grp. Functoriality of π_1 immediately follows from the functoriality of Π .

Lemma 2.6. Let $X \in \text{ob}(\mathsf{Top})$, $p \in X$ and A be the path component of X containing p. Then $\pi_1(\iota)$, where $\iota : A \hookrightarrow X$ denotes the inclusion, is an isomorphism.

Proof. Suppose $[u] \in \ker \pi_1(\iota)$. Then $[\iota \circ u] = [c_p]$ and Hence $F : \iota \circ u \simeq_{\partial I} c_p$. Since $I \times I$ is path connected and $p \in F(I \times I)$, it follows that $F(I \times I) \subseteq A$ and thus $F : u \simeq_{\partial I} c_p$ in A and hence $[u] = [c_p]$. To see that $\pi_1(\iota)$ is surjective, just observe that $u(I) \subseteq A$ for $[u] \in \pi_1(X, p)$ since u(I) is path connected and $p \in u(I)$.

Lemma 2.7. Let $X \in ob(\mathsf{Top})$ be path connected and $p, q \in X$. Then

$$\pi_1(X, p) \cong \pi_1(X, q).$$

Proof. Since X is path connected we find a path v from p to q in X. Define a mapping $\Phi_v: \pi_1(X,p) \to \pi_1(X,q)$

$$\Phi_v[u] := [\overline{v} * u * v].$$

Clearly, Φ_v is invertible with inverse $\Phi_{\overline{v}}$. Moreover, for [u], $[w] \in \pi_1(X, p)$ we have that

$$\Phi_{v}([u][w]) = \Phi_{v}[u * w]
= [\overline{v} * u * w * v]
= [\overline{v} * u * v * \overline{v} * w * v]
= [\overline{v} * u * v] [\overline{v} * w * v]
= \Phi_{v}[u] \Phi_{v}[w].$$

 $\pi_1(\mathbb{S}^1)$.

Definition 2.1 (Exponential Quotient Map). *The mapping* $\varepsilon : \mathbb{R} \to \mathbb{S}^1$ *defined by*

$$\varepsilon(x) := e^{2\pi i x} \tag{7}$$

is called the exponential quotient map.

Proposition 2.2 (Lifting Property of the Circle). Let $n \in \mathbb{Z}$, $n \geq 0$, $X \subseteq \mathbb{R}^n$ compact and convex, $p \in X$, $f \in \mathsf{Top}_*((X, p), (\mathbb{S}^1, 1))$ and $m \in \mathbb{Z}$. Then there exists a unique map $\tilde{f} \in \mathsf{Top}_*((X, p), (\mathbb{R}, m))$, called the **lifting of** f, such that

$$(X, p) \xrightarrow{\tilde{f}} (\mathbb{S}^1, 1)$$

commutes.

Proof. We show first existence and then uniqueness.

Step 1: Existence. Since X is compact and f is continuous, f is uniformly continuous on X. Thus we find $\delta > 0$ such that |f(x) - f(y)| < 2, whenever $|x - y| < \delta$, i.e. f(x) and f(y) are not antipodal points. Moreover, since X is compact, X is bounded and hence we find $N \in \mathbb{N}$, such that $|x - y| < N\delta$ holds for all $x, y \in X$. Let $x \in X$. For $0 \le k \le N$, define $L_k : X \to X$ by

$$L_k(x) := \left(1 - \frac{k}{N}\right)p + \frac{k}{N}x.$$

Those are well defined functions since X is convex. Moreover, each L_k is continuous. Indeed, it is easy to check that L_k is Lipschitz. Also, for each $0 \le k < N$, $f(L_k(x))$ and $f(L_{k+1}(x))$ are not antipodal for all $x \in X$. Indeed, it is easy to check that $|L_k(x) - L_{k+1}(x)| < \delta$ holds for all $x \in X$. For $0 \le k < N$ define $g_k : X \to \mathbb{S}^1 \setminus \{-1\}$ by

$$g_k(x) := \frac{f(L_{k+1}(x))}{f(L_k(x))}.$$

Clearly g_k is well defined and continuous as a composition of continuous functions. Let $\text{Log}: \mathbb{S}^1 \setminus \{-1\} \to \mathbb{C}$ denote the principal branch of the logarithm. Define $\widetilde{f}: X \to \mathbb{R}$ by

$$\tilde{f}(x) := m + \frac{1}{2\pi i} \sum_{k=0}^{N-1} \text{Log}(g_k(x)).$$

Clearly, \tilde{f} is continuous and moreover we have that $\tilde{f} = m$ since $g_k(p) = 1$ for all $0 \le k < N$. Finally, for any $x \in X$ we have that

$$(\varepsilon \circ \widetilde{f})(x) = \varepsilon(m) \prod_{k=0}^{N-1} g_k(x) = \frac{f(L_N(x))}{f(L_0(x))} = \frac{f(x)}{f(p)} = f(x).$$

Step 2: Uniqueness. Suppose $\tilde{g} \in \text{Top}_*((X, p), (\mathbb{R}, m))$ is another such function. Define $\varphi \in \text{Top}_*((X, p), (\mathbb{R}, 0))$ by

$$\varphi(x) := \tilde{f}(x) - \tilde{g}(x).$$

Then clearly $\varepsilon \circ \varphi = 1$ and thus $\varphi(X) \subseteq \mathbb{Z}$. Since X is convex, X is connected and so $\varphi = 0$.

Corollary 2.1. Let $u, v \in \Omega(\mathbb{S}^1, 1)$ such that [u] = [v]. If $\widetilde{u}, \widetilde{v} : (I, 0) \to (\mathbb{R}, 0)$ are the liftings of u and v, respectively, then $[\widetilde{u}] = [\widetilde{v}]$.

Proof. Let $F: u \simeq_{\partial I} v$. By proposition 2.2, we find $\widetilde{F} \in \mathsf{Top}_* \big((I \times I, (0, 0)), (\mathbb{R}, 0) \big)$, such that $\varepsilon \circ \widetilde{F} = F$. We claim that $\widetilde{F}: \widetilde{u} \simeq_{\partial I} \widetilde{v}$. For $s \in I$ define $\widetilde{u}_0(s) := \widetilde{F}(s, 0)$. Then $\widetilde{u}_0(0) = \widetilde{F}(0, 0) = 0$ and since \widetilde{u}_0 is continuous we have that $\widetilde{u}_0 \in \mathsf{Top}_* \big((I, 0), (\mathbb{R}, 0) \big)$. Moreover

$$(\varepsilon \circ \widetilde{u}_0)(s) = \varepsilon (\widetilde{F}(s,0)) = F(s,0) = u(s)$$

for all $s \in I$ and thus \widetilde{u}_0 is a lifting of u. But by proposition 2.2, liftings are unique and thus $\widetilde{u}_0 = \widetilde{u}$. Next define $\widetilde{w}_0(t) := \widetilde{F}(0,t)$ for all $t \in I$. Then $\widetilde{w}_0(0) = \widetilde{F}(0,0) = 0$ and so $\widetilde{w}_0 \in \mathsf{Top}_* \big((I,0), (\mathbb{R},0) \big)$. Moreover

$$(\varepsilon \circ \widetilde{w}_0)(t) = \varepsilon \left(\widetilde{F}(0, t) \right) = F(0, t) = u(0) = v(0) = 1.$$

for all $t \in I$. Thus

$$(\mathbb{R},0)$$

$$\downarrow^{\varepsilon}$$

$$(I,0) \xrightarrow{c_1} (\mathbb{S}^1,1)$$

commutes. But also c_0 makes the above diagram commute. By uniqueness, $\widetilde{w}_0 = c_0$. Define $\widetilde{v}_0(s) := \widetilde{F}(s,1)$ for all $s \in I$. Then $\widetilde{v}_0(0) = \widetilde{F}(0,1) = \widetilde{w}_0(1) = 0$ and it is easy to check that \widetilde{v}_0 is a lift for v. Hence $\widetilde{v}_0 = \widetilde{v}$. Finally, define $\widetilde{w}_1(t) := \widetilde{F}(1,t)$ for all $t \in I$. Then $\widetilde{w}_1(0) = \widetilde{F}(1,0) = \widetilde{u}(1)$ and thus $\widetilde{w}_1 \in \operatorname{Top}_*(I,0), (\mathbb{R},\widetilde{u}(0))$. Moreover

$$(\varepsilon \circ \widetilde{w}_1)(t) = \varepsilon \left(\widetilde{F}(1,t) \right) = F(1,t) = v(1) = u(1) = 1$$

for all $t \in I$. By proposition 2.2, we have again that $\widetilde{w}_1 = c_{\widetilde{u}(1)}$. So $F : \widetilde{u} \simeq_{\partial I} \widetilde{v}$.

Definition 2.2 (Degree). Let $u \in \Omega(\mathbb{S}^1, 1)$. The **degree of u**, written deg u, is defined by deg $u := \tilde{u}(1)$, where \tilde{u} is the unique lift of u such that $\tilde{u}(0) = 0$.

Theorem 2.2 (Fundamental Group of the Circle). $\pi_1(\mathbb{S}^1) \cong \mathbb{Z}$.

Proof. Define deg : $\pi_1(\mathbb{S}^1, 1) \to \mathbb{Z}$ by deg $[u] := \deg u$. This is well defined by corollary 2.1, since if [u] = [v], then $[\widetilde{u}] = [\widetilde{v}]$ and in particular $\widetilde{u}(1) = \widetilde{v}(1)$. Step 1: deg \in Grp $(\pi_1(\mathbb{S}^1, 1), (\mathbb{Z}, +))$. Let $[u], [v] \in \pi_1(\mathbb{S}^1, 1)$ and $m := \deg [u]$,

 $n := \deg[v]$. Moreover, let \widetilde{u} and \widetilde{v} denote the unique liftings of u and v, respectively, such that $\widetilde{u}(0) = 0$ and $\widetilde{v}(0) = 0$. Define

$$\widetilde{w}(s) := \begin{cases} \widetilde{u}(2s) & 0 \le s \le \frac{1}{2}, \\ m + \widetilde{v}(2s - 1) & \frac{1}{2} \le s \le 1. \end{cases}$$

Clearly \widetilde{w} is continuous and $\widetilde{w}(0) = 0$. Hence $\widetilde{w} \in \mathsf{Top}_*((I,0),(\mathbb{R},0))$. Also we have that $\varepsilon \circ \widetilde{w} = u * v$ and thus \widetilde{w} is the lift of u * v. But $\widetilde{w}(1) = m + n$ and so

$$\deg([u][v]) = \deg[u * v] = \deg(u * v) = \tilde{w}(1) = m + n = \deg[u] + \deg[v].$$

Step 2: deg is injective. Suppose deg [u] = 0. Then $\tilde{u}(1) = 0$ and thus $\tilde{u} \in \Omega(\mathbb{R}, 0)$. Since \mathbb{R} is contractible, we have that $[\tilde{u}] = [c_0]$ and thus

$$[u] = [\varepsilon \circ \widetilde{u}] = \pi_1(\varepsilon) [\widetilde{u}] = \pi_1(\varepsilon) [c_0] = [c_1].$$

Thus ker(deg) is trivial.

Step 3: deg is surjective. Let $m \in \mathbb{Z}$. Then

$$\deg\left[\varepsilon^{m}\right] = \deg \varepsilon^{m} = \widetilde{\varepsilon^{m}}(1) = m.$$

The Seifert-Van Kampen Theorem

Coproducts and Pushouts in Grp.

Proposition 2.3 (Coproducts in Grp). Grp has all small coproducts.

Proof. Let $A \in \text{ob}(\mathsf{Set})$ and A be the small category defined as the discrete category with $\text{ob}(\mathsf{A}) := A$, i.e.

• • • • • • •

Let $D: A \to Grp$ be a functor. Hence we get a family $(G_{\alpha})_{\alpha \in A}$ in Grp, where $G_{\alpha} := D(\alpha)$ for all $\alpha \in A$. A **word** in $(G_{\alpha})_{\alpha \in A}$ is a finite sequence in $\coprod_{\alpha \in A} G_{\alpha}$. A word in $(G_{\alpha})_{\alpha \in A}$ will simply be written as (g_1, \ldots, g_n) , where $g_k \in G_{\alpha}$ for some $\alpha \in A$. The **empty word** is denoted by (). Let W denote the set of all words in $(G_{\alpha})_{\alpha \in A}$. On W define a multiplication by **concatenation**

$$(g_1, \ldots, g_n)(h_1, \ldots, h_m) := (g_1, \ldots, g_n, h_1, \ldots, h_m).$$

An *elementary reduction* is an operation of one of the following forms:

- $(g_1, \ldots, g_k, g_{k+1}, \ldots, g_n) \mapsto (g_1, \ldots, g_k g_{k+1}, \ldots, g_n)$, where $g_k, g_{k+1} \in G_\alpha$ for some $\alpha \in A$.
- $(g_1, \ldots, g_{k-1}, 1_{\alpha}, g_{k+1}, \ldots, g_n) \mapsto (g_1, \ldots, g_{k-1}, g_{k+1}, \ldots, g_n).$

Let \sim denote the equivalence relation on W generated by elementary reductions.

Lemma 2.8. W/\sim together with concatenation of representatives is an element of Grp.

Proof. Define

$$[(g_1,\ldots,g_n)][(h_1,\ldots,h_m)] := [(g_1,\ldots,g_n,h_1,\ldots,h_m)].$$

It is left to the reader to show that this is well defined and that \mathcal{W}/\sim is indeed a group. \square The group defined in lemma 2.8 will be denoted by $\bigstar_{\alpha\in A}G_{\alpha}$ and called the *free product of* $(G_{\alpha})_{\alpha\in A}$. Let us define a cocone on D. For this consider the inclusions $\iota_{\alpha}: G_{\alpha} \to \bigstar_{\alpha\in A}G_{\alpha}$ defined by

$$\iota_{\alpha}(g) := [(g)]$$

for all $\alpha \in A$. It is immediate from

$$\iota_{\alpha}(gh) = [(gh)] = [(g,h)] = [(g)][(h)] = \iota_{\alpha}(g)\iota_{\alpha}(h)$$

for $g, h \in G_{\alpha}$, that ι_{α} is a morphism of groups. Since there are only the identity morphisms in A, $(\bigstar_{\alpha \in A} G_{\alpha}, (\iota_{\alpha})_{\alpha \in A})$ is a cocone on D. Let us show that this is in fact a universal cocone. To this end, suppose that $(C, (\varphi_{\alpha})_{\alpha \in A})$ is another cocone on D. Define a mapping $\overline{f}: \bigstar_{\alpha \in A} G_{\alpha} \to C$ by

$$\overline{f}[(g_1,\ldots,g_n)] := \varphi_{\alpha_1}(g_1)\cdots\varphi_{\alpha_n}(g_n)$$

where $g_k \in G_{\alpha_k}$. Then \overline{f} is easily seen to be well defined since each φ_{α} is a morphism of groups. Moreover, if $g \in G_{\alpha}$, then

$$(\bar{f} \circ \iota_{\alpha})(g) = \bar{f}[(g)] = \varphi_{\alpha}(g)$$

for all $\alpha \in A$. Suppose that $f: \bigstar_{\alpha \in A} G_{\alpha} \to C$ is another homomorphism of groups such that $f \circ \iota_{\alpha} = \varphi_{\alpha}$ for all $\alpha \in A$. Then for $[(g_1, \ldots, g_n)] \in \bigstar_{\alpha \in A} G_{\alpha}$ we have

$$f [(g_1, \dots, g_n)] = f([(g_1)] \cdots [(g_n)])$$

$$= f [(g_1)] \cdots f [(g_n)]$$

$$= f (\iota_{\alpha_1}(g_1)) \cdots f (\iota_{\alpha_n}(g_n))$$

$$= \varphi_{\alpha_1}(g_1) \cdots \varphi_{\alpha_n}(g_n)$$

$$= \overline{f} [(g_1, \dots, g_n)].$$

Exercise 2.2. Check that W/\sim is indeed a group with the declared group structure and that \overline{f} is indeed well defined.

Proposition 2.4 (Pushouts in Grp). Grp has all pushouts.

Proof. Consider the diagram $D: A \rightarrow Grp$

and define N to be the normal subgroup of $H_1 * H_2$ generated by elements of the form $[(\varphi_1(g^{-1}), \varphi_2(g))]$ for $g \in G$. Let $K := (H_1 * H_2)/N$. Then

$$G \xrightarrow{\varphi_1} H_1$$

$$\varphi_2 \downarrow \qquad \qquad \downarrow \pi \circ \iota_1$$

$$H_2 \xrightarrow{\pi \circ \iota_2} K$$

commutes. Indeed, if $g \in G$, we have that $(\pi \circ \iota_1 \circ \varphi_1)(g) = [(\varphi_1(g))] N$ and similarly $(\pi \circ \iota_2 \circ \varphi_2)(g) = [(\varphi_2(g))] N$. Then

$$[(\varphi_1(g))]^{-1}[(\varphi_2(g))] = [(\varphi_1(g)^{-1})][(\varphi_2(g))] = [(\varphi_1(g^{-1}))][(\varphi_2(g))] \in N.$$

Suppose that we have another cocone on D:

$$G \xrightarrow{\varphi_1} H_1$$

$$\varphi_2 \downarrow \qquad \qquad \downarrow \psi_1$$

$$H_2 \xrightarrow{\psi_2} C$$

By proposition 2.3, there exists a unique morphism of groups $f: H_1 * H_2 \to C$ and we thus get the following diagram:

To show that $N \subseteq \ker f$ is left as an exercise. Hence by the factorization theorem (see [Gri07, p. 23]), f factors uniquely through π , i.e. there exists a unique morphism of groups $\overline{f}: K \to C$ such that $\overline{f} \circ \pi = f$.

Exercise 2.3. In the previous proposition, verify that $N \subseteq \ker f$.

Definition 2.3 (Amalgamated Free Product). The pushout of a diagram

$$G \xrightarrow{\varphi_1} H_1$$

$$\downarrow^{\varphi_2} \qquad \qquad H_2$$

in Grp is called the amalgamated free product of H_1 and H_2 along $(G, \varphi_1, \varphi_2)$, written $H_1 *_{(G, \varphi_1, \varphi_2)} H_2$.

The Seifert-Van Kampen Theorem and its Consequences.

Theorem 2.3 (Seifert-Van Kampen). Let $X \in \text{ob}(\mathsf{Top})$, (U, V) an open cover for X, such that U, V and $U \cap V$ are path connected. Moreover, let $p \in U \cap V$. Then

$$\pi_1(X, p) \cong \pi_1(U, p) *_{(\pi_1(U \cap V, p), \pi_1(\iota_U), \pi_1(\iota_V))} \pi_1(V, p), \tag{8}$$

where $\iota_U: U \cap V \hookrightarrow U$ and $\iota_V: U \cap V \hookrightarrow V$ denote inclusion.

CHAPTER 3

Singular Homology

Construction of the Singular Homology Functor

Free Abelian Groups.

Proposition 3.1. *The forgetful functor* U : AbGrp \rightarrow Set *admits a left adjoint.*

Proof. We have to construct a functor $F : \mathsf{Set} \to \mathsf{AbGrp}$. Let S be a set. Define

$$F(S) := \{ f \in \mathbb{Z}^S : \text{supp } f \text{ is finite} \}.$$

Equipped with pointwise addition, F(S) is an abelian group. There is a natural inclusion $\iota: S \hookrightarrow U\left(F(S)\right)$ sending $x \in S$ to the function taking the value one at x and zero else. Hence we may regard elements of F(S) as formal linear combinations $\sum_{x \in S} m_x x$, where $m_x \in \mathbb{Z}$ for all $x \in S$. Let $G \in \text{ob}(\mathsf{AbGrp})$ be an abelian group and $\varphi \in \mathsf{AbGrp}\left(F(S), G\right)$ a morphism of groups. Define $\overline{\varphi} \in \mathsf{Set}\left(S, U(G)\right)$ by $\overline{\varphi} := U(\varphi)$. Conversly, if we have $f \in \mathsf{Set}\left(S, U(G)\right)$, define $\overline{f} \in \mathsf{AbGrp}\left(F(S), G\right)$ by $\overline{f}\left(\sum_{x \in S} m_x x\right) := \sum_{x \in S} m_x f(x)$. This is well defined since all but finitely many m_x are zero and G is abelian. It is easy to check that \overline{f} is indeed a morphism of groups. Let $\varphi \in \mathsf{AbGrp}\left(F(S), G\right)$. Then

$$\begin{split} \overline{\overline{\varphi}} \left(\sum_{x \in S} m_x x \right) &= \sum_{x \in S} m_x \overline{\varphi}(x) \\ &= \sum_{x \in S} m_x U(\varphi)(x) \\ &= \sum_{x \in S} m_x \varphi(x) \\ &= \varphi \left(\sum_{x \in S} m_x x \right). \end{split}$$

And for $f \in Set(S, U(G))$ we have that

$$\overline{\overline{f}}(x) = U(\overline{f})(x) = \overline{f}(x) = f(x).$$

Hence $\overline{\overline{\varphi}} = \varphi$ and $\overline{\overline{f}} = f$ and so we have a bijection

$$\mathsf{AbGrp}\left(F(S),G\right) \cong \mathsf{Set}\left(S,U(G)\right).$$

The mapping $f \mapsto \overline{f}$ will be referred to as *extending by linearity*. To check naturality in S and G is left as an exercise.

Exercise 3.1. Check the naturality of the bijection in proposition 3.1. Also check that $F : Set \rightarrow AbGrp$ is indeed a functor. F is called the *free functor from* **Set** *to* **AbGrp**.

Definition 3.1 (Free Abelian Group). Let $F : Set \to AbGrp$ be the free functor. For any set S, we call F(S) the free group generated by S.

Chain Complexes.

Definition 3.2 (Chain Complex). A chain complex is a tuple $(C_{\bullet}, \partial_{\bullet})$ consisting of a sequence $(C_n)_{n \in \mathbb{Z}}$ in ob(AbGrp) and a sequence $(\partial_n)_{n \in \mathbb{Z}}$ in mor(AbGrp), called **boundary** operators, such that we have $\partial_n \in \mathsf{AbGrp}(C_n, C_{n-1})$ and $\partial_n \circ \partial_{n+1} = 0$ for all $n \in \mathbb{Z}$.

Definition 3.3 (Chain Maps). Let $(C_{\bullet}, \partial_{\bullet})$ and $(C'_{\bullet}, \partial'_{\bullet})$ be two chain complexes. A **chain** map $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ is a sequence $(f_n)_{n \in \mathbb{Z}}$ in mor(AbGrp) such that $f_n \in \mathsf{AbGrp}(C_n, C'_n)$ and the diagram

$$C_{n} \xrightarrow{\partial_{n}} C_{n-1}$$

$$f_{n} \downarrow \qquad \qquad \downarrow f_{n-1}$$

$$C'_{n} \xrightarrow{\partial'_{n}} C'_{n-1}$$

commutes for all $n \in \mathbb{Z}$.

Proposition 3.2. There is a category with objects chain complexes and morphisms chain maps.

Proof. Let $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ and $g_{\bullet}: C'_{\bullet} \to C''_{\bullet}$ be chain maps. Define a map $g_{\bullet} \circ f_{\bullet}$ by $g_n \circ f_n$ for each $n \in \mathbb{Z}$. This defines a chain map. Moreover, for each chain complex C_{\bullet} define $\mathrm{id}_{C_{\bullet}}$ by id_{C_n} for all $n \in \mathbb{Z}$. It is easy to check, that then \circ is associative and the identity laws hold.

Definition 3.4 (Comp). The category in 3.2 is called the **category of chain complexes** and we refer to it as Comp.

Theorem 3.1. There is a functor $Top \rightarrow Comp$.

Proof. The proof is divided into several steps. Let us denote C_{\bullet} : Top \rightarrow Comp for the claimed functor.

Step 1: Construction of a sequence of abelian groups. Let $v_0, \ldots, v_k \in \mathbb{R}^n$ for some $n, k \in \mathbb{N}$. We say that (v_0, \ldots, v_k) is **affinely independent** if $(v_1 - v_0, \ldots, v_k - v_0)$

is linearly independent. We define the *k-simplex spanned by* (v_0, \ldots, v_k) , written $[v_0, \ldots, v_k]$, to be

$$[v_0, \dots, v_k] := \left\{ \sum_{i=0}^k s_i v_i : s_i \ge 0 \text{ for all } i = 0, \dots, k \text{ and } \sum_{i=0}^k s_i = 1 \right\}.$$
 (9)

equipped with the subspace topology. Moreover, we define the *standard n-simplex* Δ^n to be the *n*-simplex spanned by (e_0, \ldots, e_n) where $(e_{i+1})_i$ is the standard basis of \mathbb{R}^{n+1} . Let $X \in \text{ob}(\mathsf{Top})$. Define a *singular n-simplex in* X to be a map $\sigma \in \mathsf{Top}(\Delta^n, X)$. Let $n \in \mathbb{Z}$. Define

$$C_n(X) := \begin{cases} F\left(\mathsf{Top}(\Delta^n, X)\right) & n \ge 0, \\ 0 & n < 0. \end{cases}$$
 (10)

We will call elements of $C_n(X)$ singular n-chains.

Step 2: Construction of boundary operators. Let $X \in \text{ob}(\mathsf{Top})$ and σ a singular n-simplex in X for $n \geq 1$. We define $\varphi_k^n : \Delta^{n-1} \to \Delta^n$, called the k-th face map, to be the unique affine map determined by the vertex map

$$\begin{array}{cccc} & \varphi_k^n \\ e_0 & \mapsto & e_0 \\ \vdots & & \vdots \\ e_{k-1} & \mapsto & e_{k-1} \\ e_k & \mapsto & e_{k+1} \\ \vdots & & \vdots \\ e_{n-1} & \mapsto & e_n. \end{array}$$

Explicitely, given $\sum_{i=0}^{n-1} s_i e_i \in \Delta^{n-1}$, we have that (see [Lee11, p. 152])

$$\varphi_k^n\left(\sum_{i=0}^{n-1} s_i e_i\right) = \sum_{i=0}^{n-1} s_i \varphi_k^n(e_i).$$

Define now

$$\partial \sigma := \sum_{k=0}^{n} (-1)^k \sigma \circ \varphi_k^n \in U\left(C_{n-1}(X)\right)$$
 (11)

to be the **boundary of** σ . Moreover, the **singular boundary operator** is defined to be $\overline{\partial_n}$ and $\partial_n := 0$ for $n \le 0$.

Step 3: $\partial_n \circ \partial_{n+1} = 0$ for all $n \in \mathbb{Z}$. It is enough to consider $n \ge 1$, since $\partial_n \circ \partial_{n+1} = 0$ holds trivially in the other cases. Let $X \in \text{ob}(\mathsf{Top})$ and $\sigma \in \mathsf{Top}(\Delta^{n+1}, X)$. Then we have

$$(\partial_n \circ \partial_{n+1})(\sigma) = \partial_n \left(\sum_{k=0}^{n+1} (-1)^k \sigma \circ \varphi_k^{n+1} \right)$$

$$\begin{split} &= \sum_{k=0}^{n+1} (-1)^k \partial_n \left(\sigma \circ \varphi_k^{n+1} \right) \\ &= \sum_{k=0}^{n+1} \sum_{j=0}^{n} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n \\ &= \sum_{0 \le k \le j \le n} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n + \sum_{0 \le j < k \le n+1} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n \\ &= \sum_{0 \le j \le k \le n} (-1)^{k+j} \sigma \circ \varphi_j^{n+1} \circ \varphi_k^n + \sum_{0 \le j < k \le n+1} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n \\ &= \sum_{0 \le j < k \le n+1} \left((-1)^{k+j-1} \sigma \circ \varphi_j^{n+1} \circ \varphi_{k-1}^n + (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n \right) \end{split}$$

Since $\varphi_j^{n+1} \circ \varphi_{k-1}^n = \varphi_k^{n+1} \circ \varphi_j^n$, it follows that

$$\partial_n \circ \partial_{n+1} = 0.$$

Indeed, consider the following chart of vertex maps:

Step 4: Construction of chain maps. Let $X, Y \in \text{ob}(\mathsf{Top})$ and $f \in \mathsf{Top}(X, Y)$. For $n \geq 0$, define $f_n^\# : \mathsf{Top}(\Delta^n, X) \to U\left(C_n(Y)\right)$ by $f^\# := f \circ \sigma$. Extending this map by linearity yields a homomorphism $f_n^\# : C_n(X) \to C_n(Y)$. Moreover, set $f_n^\# := 0$ for n < 0. Let $n \geq 1$ and $\sigma \in \mathsf{Top}(\Delta^n, X)$. Then on one hand we have

$$(f_{n-1}^{\#} \circ \partial_n)(\sigma) = f_{n-1}^{\#} \left(\sum_{k=0}^n (-1)^k \sigma \circ \varphi_k^n \right) = \sum_{k=0}^n (-1)^k f \circ \sigma \circ \varphi_k^n$$

and on the other

$$(\partial_n \circ f_n^{\#})(\sigma) = \partial_n (f \circ \sigma) = \sum_{k=0}^n (-1)^k f \circ \sigma \circ \varphi_k^n.$$

Checking, that C_{\bullet} is indeed a functor is left as an exercise.

Exercise 3.2. Show that C_{\bullet} : Top \rightarrow Comp is a functor.

The Homology Functor.

Proposition 3.3. For each $n \in \mathbb{Z}$ there exists a functor Comp \rightarrow AbGrp.

Proof. Let $(C_{\bullet}, \partial_{\bullet})$ be a chain complex. Let $x \in \text{im } \partial_{n+1}$. Hence there exists $y \in C_{n+1}$ such that $x = \partial_{n+1}y$. But then $\partial_n x = (\partial_n \circ \partial_{n+1})(y) = 0$ and thus im $\partial_{n+1} \subseteq \ker \partial_n$. Define

$$H_n(C_{\bullet}, \partial_{\bullet}) := \frac{\ker \partial_n}{\operatorname{im} \partial_{n+1}} \in \operatorname{ob}(\mathsf{AbGrp}).$$

Let $(C'_{\bullet}, \partial'_{\bullet})$ be a chain complex and $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ a chain map. Then $f_n(\ker \partial_n) \subseteq \ker \partial'_n$. Indeed, if $y \in f_n(\ker \partial_n)$, there exists $x \in \ker \partial_n$, such that $y = f_n(x)$. Since f_{\bullet} is a chain map, we thus have $\partial'_n y = (\partial'_n \circ f_n)(x) = (f_{n-1} \circ \partial_n)(x) = 0$. Moreover, we have that im $\partial_{n+1} \subseteq \ker \pi'_n \circ f_n$, where $\pi'_n : \ker \partial'_n \to H_n(C'_{\bullet}, \partial'_{\bullet})$ is the usual projection. Indeed, if $y \in \operatorname{im} \partial_{n+1}$, we find $x \in C_{n+1}$, such that $y = \partial_{n+1} x$. Since again f_{\bullet} is a chain map, we have that $f_n y = (f_n \circ \partial_{n+1})(x) = (\partial'_{n+1} \circ f_{n+1})(x) \in \operatorname{im} \partial'_{n+1} = \ker \pi'_n$. Hence $\pi'_n \circ f_n$ factors uniquely through $\pi_n : \ker \partial_n \to H_n(C_{\bullet}, \partial_{\bullet})$. Define $H_n(f_{\bullet})$ to be this map.

Remark 3.1. Let $(C_{\bullet}, \partial_{\bullet})$ be a chain complex and $n \in \mathbb{Z}$. Then we will write $\langle x \rangle$ for an element in $H_n(C_{\bullet}, \partial_{\bullet})$, the so-called *homology class*. Hence if $(C'_{\bullet}, \partial'_{\bullet})$ is another chain complex and $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ a chain map, then $H_n(f)\langle x \rangle = \langle f_n x \rangle$.

Definition 3.5 (Cycles and Boundaries). Let $(C_{\bullet}, \partial_{\bullet})$ be a chain complex and $n \in \mathbb{Z}$. Then elements of ker ∂_n are called **n-cycles** and elements of im ∂_{n+1} are called **n-boundaries**.

Definition 3.6 (Homology Functor). Let $n \in \mathbb{Z}$ and H_n : Comp \to AbGrp be the functor defined in proposition 3.3. We call H_n the **n-th homology functor**.

Definition 3.7 (Singular Homology Functor). *Let* $n \in \mathbb{Z}$. *The composition*

$$H_n \circ C_{\bullet} : \mathsf{Top} \to \mathsf{AbGrp}$$
 (12)

of the singular chain complex functor C_{\bullet} in theorem 3.1 and the n-th homology functor of proposition 3.3 is called the **singular homology functor**, written H_n^{sing} .

Remark 3.2. For notational purposes we will often refer to the functor H_n^{sing} simply as H_n .

First Properties of Singular Homolgy.

Proposition 3.4 (Zeroth Singular Homology Group). Let $X \in \text{ob}(\mathsf{Top})$ be non empty and path connected. Then $H_0(X) \cong \mathbb{Z}$.

Proof. Since $\partial_0: C_0 \to 0$, $\ker \partial_0 = C_0$. Moreover, a map in $\operatorname{Top}(\Delta^0, X)$ can be identified with a point in X and hence an element of C_0 can be written as $\sum_{x \in X} m_x x$. Define a mapping $\Phi: C_0 \to \mathbb{Z}$ by $\Phi\left(\sum_{x \in X} m_x x\right) := \sum_{x \in X} m_x$. This mapping is well defined since all but finitely many m_x are zero. It is also easy to check, that Φ is a morphism of groups and that Φ is surjective. We claim that $\ker \Phi = \operatorname{im} \partial_1$. Indeed, if $\sum_{x \in X} m_x x \in \ker \Phi$, then $\sum_{x \in X} m_x = 0$. Let $p \in X$. Since X is path connected, we find for each $x \in X$ a path u_x from p to x. Consider the singular 1-chain $\sum_{x \in X} m_x u'_x$. Then we have

$$\partial_1 \left(\sum_{x \in X} m_x u_x' \right) = \sum_{x \in X} m_x (u_x' \circ \varphi_0^1 - u_x' \circ \varphi_1^1) = \sum_{x \in X} m_x (x - p) = \sum_{x \in X} m_x x.$$

Hence $\sum_{x \in X} m_x x \in \text{im } \partial_1$. Conversly, it is enough to show the claim on basis elements $\sigma \in \text{Top}(\Delta^1, X)$. We have

$$\Phi(\partial_1 \sigma) = \Phi(\sigma \circ \varphi_0^1 - \sigma \circ \varphi_1^1) = \Phi\left(\sigma(e_1) - \sigma(e_0)\right) = 1 - 1 = 0.$$

Hence the first isomorphism theorem [Gri07, p. 23] implies that $H_0(X) \cong \mathbb{Z}$.

Proposition 3.5 (The Dimension Axiom). Let $* \in ob(\mathsf{Top})$ be a one point space. Then $H_n(*) = 0$ for all $n \in \mathbb{Z}$, n > 0.

The Homotopy Axiom

Theorem 3.2 (The Homotopy Axiom). Let $f, g \in \text{Top}(X, Y)$ be freely homotopic. Then $H_n(f) = H_n(g)$ for all $n \in \mathbb{Z}$.

Applications

The Brouwer Fixed Point Theorem.

Definition 3.8 (Retract). Let $X \in \text{ob}(\mathsf{Top})$ and $S \subseteq X$ a subspace. We say that S is a retract of X, if the inclusion $\iota: S \hookrightarrow X$ admits a retraction in Top .

Lemma 3.1. Let $n \in \mathbb{Z}$, $n \geq 1$. Then \mathbb{S}^n is not a retract of \mathbb{B}^{n+1} .

Proof.

Theorem 3.3 (Brouwer Fixed Point Theorem). *Let* $n \in \mathbb{Z}$, $n \ge 1$. *Then every mapping* $f \in \mathsf{Top}(\mathbb{B}^n, \mathbb{B}^n)$ *has a fixed point.*

Proof.

APPENDIX A

Set Theory

1. Basic Concepts

Problem A.1. Let $n \in \mathbb{N}$ and $a_{kj} \in \mathbb{C}$ for k = 0, ..., n + 1, j = 0, ..., n. Show that

$$\sum_{k=0}^{n+1} \sum_{j=0}^{n} a_{kj} = \sum_{0 \le k \le j \le n} a_{kj} + \sum_{0 \le j < k \le n+1} a_{kj}.$$

Bibliography

- [Gri07] Pierre Antoine Grillet. *Abstract Algebra*. Graduate Texts in Mathematics. Springer Science + Business Media, LLC, 2007.
- [Hal12] L.J. Halbeisen. *Combinatorial Set Theory: With a Gentle Introduction to Forcing*. Springer Monographs in Mathematics. Springer London, 2012.
- [Lee11] John M. Lee. *Introduction to Topological Manifolds*. Second Edition. Springer Science+Business Media, 2011.
- [Men15] E. Mendelson. *Introduction to Mathematical Logic*. Sixth Edition. Textbooks in Mathematics. CRC Press, 2015.