CALCUL LITTÉRAL ET ÉQUATIONS

1) Calculs d'expressions littérales

a) <u>Définition</u>: Une expression littérale est une expression contenant une ou plusieurs lettres qui remplacent n'importe quel nombre.

b) <u>Simplification d'écriture</u> : On peut supprimer le signe x lorsqu'il est précédé ou suivi d'une lettre ou d'une parenthèse.

Cas particuliers: $1 \times a = a \times 1 = a$ $a \times a = a^2$ $a \times a \times a = a^3$

Exemples: $A = 3 \times a \times 5 \times b \text{ s'écrit}$

 $A = 3 \times 5 \times a \times b$ On regroupe les nombres ensemble et les lettres ensemble.

 $A = 15 \times a \times b$ On calcule les termes numériques.

A = 15 a b On simplifie l'écriture.

B = 3 x (5 x – 4) s'écrit B = 3 (5 x – 4)

c) Pour calculer une expression littérale : on remplace les lettres par leurs valeurs.

<u>Exemple</u>: calculer la valeur de l'expression A = $5 x^2 + 2 x - 8$ pour x = 2.

 $A = 5 \times 2 \times 2 + 2 \times 2 - 8$

A = 20 + 4 - 8

A = 16

2) Développement et factorisation

a) <u>Développement</u>: Développer un produit, c'est transformer ce produit

en une somme ou une différence.

Exemple: Développer A = $3 \times (2 \times -5)$

 $A = 3 \times 2 \times -3 \times 5$

A = 6 x - 15

b) Factorisation : Factoriser une somme ou une différence, c'est transformer

cette somme ou cette différence en un produit.

<u>Exemple</u>: Factoriser B = 15 x - 25 y + 5

B = $5 \times 3 \times -5 \times 5 \times 5 \times 1$ 5 est un facteur commun.

 $B = 5 \times (3 \times -5 \times +1)$ On factorise par 5. $B = 5 (3 \times -5 \times +1)$ On simplifie l'écriture.

c) <u>Réduire une expression</u>: C'est regrouper les termes qui ont exactement les mêmes lettres ensemble.

<u>Exemple</u>: Réduire C = 3a - 2a a est un facteur commun.

C = (3 - 2) a On factorise par a. C = 1 a = a On simplifie l'écriture.

3) Equation

a) Tester une égalité:

On remplace les lettres identiques par une même valeur dans chaque membre de l'égalité. On regarde si on trouve la même réponse dans les 2 membres de l'égalité.

<u>Exemple</u>: L'égalité 10 x - 2 = 8 + 5 x est-elle vérifiée pour x = 2 puis pour x = 1?

On calcule A =
$$10 x - 2$$
 et B = $8 + 5 x$ pour $x = 1$.

$$A = 10 \times 1 - 2 = 10 - 2 = 8$$
.

$$B = 8 + 5 \times 1 = 8 + 5 = 13.$$

A \neq B. Donc l'égalité n'est pas vérifiée pour x = 1.

On calcule
$$A = 10 x - 2$$
 et $B = 8 + 5 x$ pour $x = 2$.

$$A = 10 \times 2 - 2 = 20 - 2 = 18.$$

$$B = 8 + 5 \times 2 = 18$$
.

A = B. Donc l'égalité est vérifiée pour x = 2.

b) Trouver un nombre manquant:

<u>Exemple</u>: Trouver la valeur de x qui vérifie l'égalité 2x + 1 = 4.

Cela signifie résoudre l'équation 2x + 1 = 4.

On calcule le terme avec la lettre : 2x = 4 - 1. Soit 2x = 3.

On calcule la lettre : $x = \frac{3}{2} = 1,5$

<u>Vérification</u>: On teste l'égalité pour x = 1,5.

On calcule A = 2x + 1 pour x = 1.5.

On obtient $A = 2 \times 1.5 + 1 = 3 + 1 = 4$.

Donc l'égalité est vérifiée.

On dit que x = 1.5 est solution de l'équation.