7.6 省队训练模拟赛

rqgao2014

July 5, 2018

题目名称	小 Y 的有向图	树上路径	危险国度
输入文件	cheat.in	path.in	danger.in
输出文件	cheat.out	path.out	danger.out
时间限制	1s	3s	1s
内存限制	512MB	512MB	512MB
下发文件	有	无	有
题目类型	传统	传统	传统
有无 spj	无	无	无
编译开关	-O2 -std=c++11	-O2 -std=c++11	-O2 -std=c++11

注意: 评测时的栈空间大小不做单独限制, 但使用的总空间大小不能超过内存限制。

Problem A. 小 Y 的有向图 (cheat.c/cpp/pas)

Input file: cheat.in
Output file: cheat.out
Time limit: 1 seconds

Memory limit: 512 megabytes

给定一张 n 个点 m 点的弱连通的有向无环图。已知小 Y 在上面画下了若干条从 1 到 n 的有向路 径,并记录下了每条边的经过次数。

由于数据庞大,小Y在记录若干边时出现了疏忽,可能数多了,也可能数少了,于是他决定偷偷修改这些经过次数,使得存在一组这样的有向路径。每次修改他可以花费一定时间将一条边上的次数加一或减一。试求他最少花费多少时间完成修改。

Input

第一行三个整数 n, m,表示点数、边数。

接下来 m 行,每行两个整数 u,v,c,w 表示一条从 u 到 v 的有向边与记录下的经过次数及修改花费。

Output

输出一行,表示最小总花费。

Examples

cheat.in	cheat.out
4 3	109
1 2 9 5	
2 3 1 11	
3 4 12 7	
详见下发文件 ex_cheat2.in	详见下发文件 ex_cheat2.ans

Notes

对于 20% 的数据,满足整张图构成一条链。

对于 100% 的数据,满足 $2 \le n \le 200, 1 \le m \le 500, u < v, 1 \le c, w \le 10^7$ 。

Problem B. 树上路径 (path.c/cpp/pas)

Input file: path.in
Output file: path.out
Time limit: 3 seconds

Memory limit: 512 megabytes

给定一棵 n 个点的树,要求支持一下两种操作:

- 1 u v a b: 在删去原有边 (u, v), 加入新边 (a, b), 保证操作后整张图还是一棵树。
- 2uv: 求从 u 到 v 经过每个点不超过 2 次的不同路径条数(初始在 u 及最后到达 v 均计算入经过次数)。两个路径被认为是不同的,当且仅当其经过点的序列不同。

Input

第一行两个整数 n 和 m,表示点数和操作数。

接下来 n-1 行,每行两个整数 u,v,表示初始时树上的一条边。

最后m行,每行第一个正整数表示操作编号opt。如果操作opt = 1则接下来输入四个正整数u, v, a, b,否则输入两个正整数u, v,含义均见题面。

Output

对于每个2操作,输出答案对998244353取模后的结果。

Examples

path.in	path.out
6 8	10
5 2	9
2 4	6
6 2	11
3 1	10
5 3	
2 5 4	
2 1 5	
1 2 4 4 1	
1 5 3 4 6	
2 2 5	
1 3 1 3 4	
2 5 4	
2 1 6	

Notes

对于 20% 的数据,满足 $n, m \le 4000$

另有 20% 的数据,没有 1 操作。

另有 30% 的数据,整张图在任意时刻都构成一条链。

对于 100% 的数据,满足 $2 \le n, m \le 10^5$ 。

数据有梯度。

Problem C. 危险的星球 (danger.c/cpp/pas)

Input file: danger.in
Output file: danger.out
Time limit: 1 seconds

Memory limit: 512 megabytes

遥远的星球具有特殊的形状,可以看成是一个 $n \times m$ 的环形网格纸,每个格子代表一个城市。初始时城市 (i,j) 里有 $a_{i,j}$ 个士兵。

最近有一辆自爆卡车空降在了城市 (0,0),并开始在星球上搞破坏。当出现在城市 (x,y) 时,它有 p_r 的概率走向 $(x,(y+1) \bmod m)$, p_d 的概率走向 $((x+1) \bmod n,y)$,还有 p_b 的概率会发生爆炸。每当 这辆自爆卡车开进一个城市时,他会压死城市内的一个士兵,且其在降落在 (0,0) 时也会压死一个(如果城内已经没有士兵就不会压死士兵了);而如果它在一个城市爆炸后,它就会杀死该城市内所有的士兵并且其不再继续行动。

求这辆自爆卡车期望会杀死多少士兵。

Input

第一行共六个整数 n,m,x_r,y_r,x_d,y_d ,表示星球的长、宽及概率参数,其中 $p_r=\frac{x_r}{y_r}$, $p_d=\frac{x_d}{y_d}$, $p_b=1-p_r-p_d$,保证 $p_r,p_d,p_b>0$ 。

接下来 n 行,每行 m 个整数 $a_{i,j}$,表示第 i 行的第 j 列对应的城市中的士兵数。

Output

输出一行一个整数表示答案在模 998244353 意义下的数值。即设答案化为最简分式后的形式为 $\frac{P}{Q}$,其中 P 和 Q 的互质。输出整数 X 使得 $Q\cdot X\equiv P(\bmod{998244353})$ 且 $0\leq X<998244353$ 。可以证明这样的整数 X 是唯一的。

Examples

danger.in	danger.out
2 2 1 3 1 3	142606338
1 1	
1 0	
1 6 49123541 334754628 3249594	144249675
80352704	
9 10 3 5 2 8	
4 4 16506517 741460285 11285344	968151253
970308252	
5 4 3 3	
0 4 2 2	
6 7 8 4	
8 3 6 6	
详见下发文件 ex_danger4.in	详见下发文件 ex_danger4.ans

样例解释: 对于第一个样例,首先自爆卡车会压死 (0,0) 处的士兵。无论下一步向右还是向下走,一定能压死一个士兵,即有 $\frac{2}{3}$ 的概率压死至少 2 个士兵。然后可以把网格纸看成 $\frac{00}{01}$ (最初在 (0,0)),可以算出有 $\frac{2}{7}$ 的概率走到 1 的位置上。故期望压死 $1+\frac{2}{3}+\frac{4}{21}=\frac{13}{7}$ 个士兵。

Notes

对于所有数据,满足 $1 \le n, m \le 200$, $0 < x_r < y_r < 998244353$, $0 < x_d < y_d < 998244353$, $a_{i,j} \le 10^9$

子任务 1[11 分]: $nm \le 6, a_{i,j} \le 1$ 。

子任务 2[19 分]: $nm \le 16, a_{i,j} \le 1$ 。

子任务 3[12 分]: $a_{i,j} = 2 \cdot [i = 0 \land j = 0]$ 。

子任务 $4[15 \ 分]: n=1$ 。

子任务 $5[13 \ 分]: n, m \leq 30$ 。

子任务 $6[11 \ \%]: n, m \le 60$ 。

子任务 7[19 分]: 无特殊限制。