Lecture 23: Graph Data Structures

BT 3051 - Data Structures and Algorithms for Biology

Karthik Raman

Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras THE GRAPH ABSTRACT DATA TYPE

 A graph is a collection of vertices and edges: the abstraction can be modelled as a combination of three data types: Vertex, Edge, and Graph

Vertex

- Light-weight object that stores arbitrary items provided by a user
- ▶ Needs a method such as element() to identify the node/vertex

- Stores a pair of Vertex elements
- ▶ In addition, can support endpoints() and opposite(v) methods

 A graph is a collection of vertices and edges: the abstraction can be modelled as a combination of three data types: Vertex, Edge, and Graph

Vertex

- Light-weight object that stores arbitrary items provided by a user
- Needs a method such as element() to identify the node/vertex

- Stores a pair of Vertex elements
- ▶ In addition, can support endpoints() and opposite(v) methods

 A graph is a collection of vertices and edges: the abstraction can be modelled as a combination of three data types: Vertex, Edge, and Graph

Vertex

- Light-weight object that stores arbitrary items provided by a user
- Needs a method such as element() to identify the node/vertex

- Stores a pair of Vertex elements
- In addition, can support endpoints() and opposite(v) methods

 A graph is a collection of vertices and edges: the abstraction can be modelled as a combination of three data types: Vertex, Edge, and Graph

Vertex

- Light-weight object that stores arbitrary items provided by a user
- ▶ Needs a method such as element() to identify the node/vertex

- Stores a pair of Vertex elements
- In addition, can support endpoints() and opposite(v) methods

 A graph is a collection of vertices and edges: the abstraction can be modelled as a combination of three data types: Vertex, Edge, and Graph

Vertex

- Light-weight object that stores arbitrary items provided by a user
- ▶ Needs a method such as element() to identify the node/vertex

- Stores a pair of Vertex elements
- In addition, can support endpoints() and opposite(v) methods

```
Graph
 vertex_count ()
```

```
Graph
 vertex_count ()
 vertices ()
```

```
Graph
 vertex_count ()
 vertices ()
 edge_count ()
```

```
Graph
 vertex_count ()
 vertices ()
 edge_count ()
 ▶ edges ()
```

```
Graph
 vertex_count ()
 vertices ()
 edge_count ()
 ▶ edges ()
 get_edge (u,v)
```

```
Graph
 vertex_count ()
 vertices ()
 edge_count ()
 ▶ edges ()
 get_edge (u,v)
 ► degree (v, out=True)
```

```
Graph
 vertex_count ()
 vertices ()
 edge_count ()
 ▶ edges ()
 get_edge (u,v)
 ► degree (v, out=True)
 ▶ incident_edges (v, out=True)
```

Graph vertex_count () vertices () edge_count () ▶ edges () get_edge (u,v) ► degree (v, out=True) incident_edges (v, out=True) insert_vertex (v)

```
Graph
```

- vertex_count ()
 - vertices ()
 - edge_count ()
 - ▶ edges ()
- ▶ get_edge (u,v)
- ► degree (v, out=True)
- incident_edges (v, out=True)
- ▶ insert_vertex (v)
- ▶ insert_edge (u, v, x=None)
- remove_vertex (v)
- remove edge (e)

```
Graph
```

- vertex_count ()
 - vertices ()
 - edge_count ()
 - ▶ edges ()
- ▶ get_edge (u,v)
- ► degree (v, out=True)
- incident_edges (v, out=True)
- ▶ insert_vertex (v)
- ▶ insert_edge (u, v, x=None)
- remove_vertex (v)
- remove_edge (e)

Graph

- vertex_count ()
 - ▶ vertices ()
 - edge_count ()
 - ▶ edges ()
 - ▶ get_edge (u,v)
- ► degree (v, out=True)
- incident_edges (v, out=True)
- ▶ insert_vertex (v)
- ▶ insert_edge (u, v, x=None)
- ► remove_vertex (v)
- ► remove_edge (e)

Data Structures for Graphs

- ► Naïve representation
- ► We maintain an unordered list of all edges
- Minimally suffices, but
 - If there is no efficient way to locate a particular edge (u, v), or the set of all edges incident to a vertex v.
- convenient way to store a graph in a file

- ► Naïve representation
- We maintain an unordered list of all edges
- Minimally suffices, but
 - there is no efficient way to locate a particular edge (u, v), or the set of all edges incident to a vertex v
- convenient way to store a graph in a file

- ► Naïve representation
- We maintain an unordered list of all edges
- ► Minimally suffices, but
 - there is no efficient way to locate a particular edge (u, v), or
 - the set of all edges incident to a vertex u
- convenient way to store a graph in a file

- ► Naïve representation
- We maintain an unordered list of all edges
- ► Minimally suffices, but
 - ightharpoonup there is no efficient way to locate a particular edge (u, v), or
 - ightharpoonup the set of all edges incident to a vertex ν
- convenient way to store a graph in a file!

- ► Naïve representation
- We maintain an unordered list of all edges
- Minimally suffices, but
 - \blacktriangleright there is no efficient way to locate a particular edge (u, v), or
 - ightharpoonup the set of all edges incident to a vertex ν
- convenient way to store a graph in a file!

- ► Naïve representation
- We maintain an unordered list of all edges
- ► Minimally suffices, but
 - there is no efficient way to locate a particular edge (u, v), or
 - ightharpoonup the set of all edges incident to a vertex ν
- convenient way to store a graph in a file!

- Let's assume G(V, E), with |V| = n and |E| = m
- We can represent G using an $n \times n$ adjacency matrix **A**
- $ightharpoonup a_{ij} = 1 \text{ iff } (i,j) \in E, \text{ for } i,j \in V$
- ► How do we save space?
 - if the graph is undirected?
 if the graph is very sparse?

- Let's assume G(V, E), with |V| = n and |E| = m
- ▶ We can represent G using an $n \times n$ adjacency matrix **A**
- $ightharpoonup a_{ij} = 1 \text{ iff } (i,j) \in E, \text{ for } i,j \in V$
- ► How do we save space?

5/8

- Let's assume G(V, E), with |V| = n and |E| = m
- We can represent G using an $n \times n$ adjacency matrix **A**
- $a_{ij} = 1 \text{ iff } (i,j) \in E \text{, for } i,j \in V$
- ► How do we save space?
 - if the graph is undirected?

- Let's assume G(V, E), with |V| = n and |E| = m
- ▶ We can represent G using an $n \times n$ adjacency matrix **A**
- $a_{ij} = 1 \text{ iff } (i,j) \in E \text{, for } i,j \in V$
- ► How do we save space?
 - if the graph is undirected?
 - ▶ if the graph is very sparse?

- Let's assume G(V, E), with |V| = n and |E| = m
- ▶ We can represent G using an $n \times n$ adjacency matrix **A**
- $a_{ij} = 1 \text{ iff } (i,j) \in E \text{, for } i,j \in V$
- ► How do we save space?
 - if the graph is undirected?
 - ▶ if the graph is very sparse?

- Let's assume G(V, E), with |V| = n and |E| = m
- ▶ We can represent G using an $n \times n$ adjacency matrix **A**
- $a_{ij} = 1 \text{ iff } (i,j) \in E \text{, for } i,j \in V$
- ► How do we save space?
 - if the graph is undirected?
 - if the graph is very sparse?

Adjacency Lists

- ► For each vertex, we maintain a separate (linked) list containing those edges that are incident to the vertex
- smaller sets
- Allows us to more efficiently find all edges incident to a given vertex

- Secondary container of all edges incident on a vertex is organised as a map (dict), rather than a list, with adjacent vertex serving as key
- Allows for access to a specific edge (u, v) in O(1) expected times

Adjacency Lists

- ► For each vertex, we maintain a separate (linked) list containing those edges that are incident to the vertex
- Complete set of edges can be determined by taking the union of the smaller sets
- Allows us to more efficiently find all edges incident to a given vertex

- Secondary container of all edges incident on a vertex is organised as a map (dict), rather than a list, with adjacent vertex serving as key
- Allows for access to a specific edge (u, v) in O(1) expected times

Adjacency Lists

- ► For each vertex, we maintain a separate (linked) list containing those edges that are incident to the vertex
- Complete set of edges can be determined by taking the union of the smaller sets
- ► Allows us to more efficiently find all edges incident to a given vertex

- Secondary container of all edges incident on a vertex is organised as a map (dict), rather than a list, with adjacent vertex serving as key
- Allows for access to a specific edge (u, v) in O(1) expected time

Adjacency Lists

- ► For each vertex, we maintain a separate (linked) list containing those edges that are incident to the vertex
- Complete set of edges can be determined by taking the union of the smaller sets
- ► Allows us to more efficiently find all edges incident to a given vertex

- Secondary container of all edges incident on a vertex is organised as a map (dict), rather than a list, with adjacent vertex serving as key
- Allows for access to a specific edge (u, v) in O(1) expected time

Adjacency Lists

- ► For each vertex, we maintain a separate (linked) list containing those edges that are incident to the vertex
- Complete set of edges can be determined by taking the union of the smaller sets
- ► Allows us to more efficiently find all edges incident to a given vertex

- Secondary container of all edges incident on a vertex is organised as a map (dict), rather than a list, with adjacent vertex serving as key
- ▶ Allows for access to a specific edge (u, v) in O(1) expected time

Comparison of Graph Data Structures

Operation	Edge List	Adj. List	Adj. Map	Adj. Mat.
vertex_count()	O(1)	O(1)	O(1)	O(1)
edge_count()	O(1)	O(1)	O(1)	O(1)
<pre>vertices()</pre>	O(n)	O(n)	O(n)	O(n)
edges()	O(m)	O(m)	O(m)	O(m)
get_edge(u,v)	O(m)	$O(\min(d_u, d_v))$	O(1) exp.	0(1)
degree(v)	O(m)	O(1)	O(1)	O(n)
<pre>incident_edges(v)</pre>	O(m)	$O(d_{\nu})$	$O(d_{\nu})$	O(n)
<pre>insert_vertex(x)</pre>	O(1)	O(1)	0(1)	$O(n^2)$
remove_vertex(v)	O(m)	$O(d_{\nu})$	$O(d_{\nu})$	$O(n^2)$
<pre>insert_edge(u,v,x)</pre>	O(1)	O(1)	O(1) exp.	O(1)
remove_edge(e)	O(1)	O(1)	O(1) exp.	O(1)

GRAPH ALGORITHMS: OVERVIEW

- Shortest path problem
- Travelling salesperson problem
- Finding [strongly] connected components
- Graph isomorphism
- Vertex cover problem
- Minimum spanning tree problem
- Hamiltonian path problem
- Eulerian path problem
- k-shortest path problem
- Centrality measures

- Shortest path problem
- Travelling salesperson problem
- Finding [strongly] connected components
- Graph isomorphism
- Vertex cover problem
- Minimum spanning tree problem
- Hamiltonian path problem
- ► Eulerian path problem
- ► *k*-shortest path problem
- Centrality measures

- Shortest path problem
- Travelling salesperson problem
- Finding [strongly] connected components
- Graph isomorphism
- Vertex cover problem
- Minimum spanning tree problem
- Hamiltonian path problem
- Eulerian path problem
- ► *k*-shortest path problem
- Centrality measures

- Shortest path problem
- Travelling salesperson problem
- Finding [strongly] connected components
- Graph isomorphism
- Vertex cover problem
- Minimum spanning tree problem
- Hamiltonian path problem
- Eulerian path problem
- ► *k*-shortest path problem
- Centrality measures

- Shortest path problem
- Travelling salesperson problem
- Finding [strongly] connected components
- Graph isomorphism
- Vertex cover problem
- Minimum spanning tree problem
- Hamiltonian path problem
- Eulerian path problem
- ► *k*-shortest path problem
- Centrality measures

- Shortest path problem
- Travelling salesperson problem
- Finding [strongly] connected components
- Graph isomorphism
- Vertex cover problem
- Minimum spanning tree problem
- Hamiltonian path problem
- Eulerian path problem
- ► *k*-shortest path problem
- Centrality measures

- Shortest path problem
- Travelling salesperson problem
- Finding [strongly] connected components
- Graph isomorphism
- Vertex cover problem
- Minimum spanning tree problem
- Hamiltonian path problem
- Eulerian path problem
- ► *k*-shortest path problem
- Centrality measures

- Shortest path problem
- Travelling salesperson problem
- Finding [strongly] connected components
- Graph isomorphism
- Vertex cover problem
- Minimum spanning tree problem
- Hamiltonian path problem
- Eulerian path problem
- k-shortest path problem
- Centrality measures

- Shortest path problem
- Travelling salesperson problem
- Finding [strongly] connected components
- Graph isomorphism
- Vertex cover problem
- Minimum spanning tree problem
- Hamiltonian path problem
- Eulerian path problem
- ► *k*-shortest path problem
- Centrality measures

- Shortest path problem
- Travelling salesperson problem
- Finding [strongly] connected components
- Graph isomorphism
- Vertex cover problem
- Minimum spanning tree problem
- Hamiltonian path problem
- Eulerian path problem
- ► *k*-shortest path problem
- Centrality measures