Many-body interactions and classical symmetry-broken magnetism

Learning outcomes

- Understand the origin of magnetism
- Identify the classical ground state of simple interacting Hamiltonians
- Rationalize how magnetic states emerge from interacting fermionic Hamiltonians

Different kinds of Hamiltonians

Single particle Hamiltonians

$$H = \sum_{ij} t_{ij} c_i^{\dagger} c_j$$

Insulators, semiconductors, metals

Many-body Hamiltonian

$$H = \sum_{ijkl} V_{ijkl} c_i^{\dagger} c_j c_k^{\dagger} c_l$$

Classical and quantum magnets, charge density waves, superconductors

With second quantization, both cases can be treated on the same footing

Finite size effects in quantum systems

Let us consider a finite size fermionic system
$$H=\sum_{n=1,L}c_n^{\dagger}c_{n+1}+h.c.$$

$$H|\psi_{\alpha}\rangle = \epsilon_{\alpha}|\psi_{\alpha}\rangle$$

Finite size effects in quantum systems

Electronic interactions in quantum systems

Electronic interactions are responsible for symmetry breaking

Broken time-reversal symmetry

Classical magnets

$${f M}
ightarrow -{f M}$$

Broken crystal symmetry

Charge density wave

$${f r}
ightarrow {f r} + {f R}$$

Fundamentals of second quantization

Define operators that can create or destroy particles

$$oldsymbol{C_i}$$
 Annihilation operator, destroys a particle in site i

$$C_i^{\dagger}$$
 Creation operator, creates a particle in site i

The empty vacuum state
$$|\Omega\rangle$$
 is defined as

$$c_i|\Omega\rangle=0$$

The Hamiltonian is written in terms of creation and annihilation operators

$$H = c_0^{\dagger} c_1 + h.c.$$

Fundamentals of second quantization

Lets see some examples using the two-levels presented before

$$|\Omega
angle=|--
angle$$
 The "vacuum" state $c_0^\dagger |\Omega
angle=|--
angle$ One particle in level #0 $c_1^\dagger |\Omega
angle=|---
angle$ One particle in level #1 $c_1^\dagger |\Omega
angle=|----
angle$ Two particles in level #0 & #1

Fermionic quantum statistics in second quantization

Fermi-Dirac statistics for electrons

- → Wavefunctions are antisymmetric with respect to interchanging labels
- → There can only be 0 or 1 fermion per level

$$\{c_i^{\dagger}, c_j\} = c_i^{\dagger} c_j + c_j c_i^{\dagger} = \delta_{ij} \qquad \{c_i, c_j\} = 0$$

Anti-symmetric wavefunction

$$c_0^{\dagger} c_1^{\dagger} |\Omega\rangle = -c_1^{\dagger} c_0^{\dagger} |\Omega\rangle$$

At most one fermion per site

$$c_0^{\dagger} c_0^{\dagger} |\Omega\rangle = 0$$

Three types of many-body sites

Many-body interactions and emergent states

Some quantum states can be approximately described by mean field theories

$$H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} V_{ijkl} c_i^{\dagger} c_j c_k^{\dagger} c_l$$

Magnets

Hubbard interaction

$$H \sim c_{\uparrow,n}^{\dagger} c_{\uparrow,n} c_{\downarrow,n}^{\dagger} c_{\downarrow,n}$$

Charge density waves

$$\circ \bullet \circ \bullet \circ \bullet$$

$$\bullet$$
 \circ \bullet \circ \circ

Nearest-neighbor repulsion

$$\bullet \circ \bullet \circ \bullet \mid H \sim c_n^{\dagger} c_n c_{n+1}^{\dagger} c_{n+1}$$

Interactions and mean field

Free Hamiltonian Interactions
$$H = \sum_{ij} t_{ij} c_i^\dagger c_j + \sum_{ijkl} V_{ijkl} c_i^\dagger c_j c_k^\dagger c_l$$

What are these interactions coming from?

- Electrostatic (repulsive) interactions
- Mediated by other quasiparticles (phonons, magnons, plasmons,...)

The net effective interaction can be attractive or repulsive

Magnetism is promoted by repulsive interactions

A spinful interacting Hamiltonian

Free Hamiltonian

Interactions (Hubbard term)

$$H = \sum_{ij} t_{ij} [c_{i\uparrow}^{\dagger} c_{j\uparrow} + c_{i\downarrow}^{\dagger} c_{j\downarrow}] + \sum_{i} U c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow}$$

How can we solve this many-body Hamiltonian in an approximate way?

Is there an effective single particle Hamiltonian that describes the same ground state?

$$H_{MF} = \sum_{ij} t_{ij} \left[c_{i\uparrow}^{\dagger} c_{j\uparrow} + c_{i\downarrow}^{\dagger} c_{j\downarrow} \right] + \sum_{ijss'} \chi_{ijss'} c_{is}^{\dagger} c_{js'}$$

The mean-field approximation

Mean field: Approximate four fermions by two fermions times expectation values

Four fermions (not exactly solvable)

Two fermions (exactly solvable)

$$Uc_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\downarrow}c_{i\downarrow} \approx U\langle c_{i\uparrow}^{\dagger}c_{i\uparrow}\rangle c_{i\downarrow}^{\dagger}c_{i\downarrow} + \dots + h.c.$$

$$Uc_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\downarrow}c_{i\downarrow} \approx M\sigma_{ss'}^{z}c_{i,s}^{\dagger}c_{i,s'} + h.c.$$

For U>0 i.e. repulsive interactions

Magnetic order
$$M \sim \langle c_{i\uparrow}^\dagger c_{i\uparrow} \rangle - \langle c_{i\downarrow}^\dagger c_{i\downarrow} \rangle$$

The mean-field approximation

The non-collinear mean-field Hamiltonian

$$Uc_{n\uparrow}^{\dagger}c_{n\uparrow}c_{n\downarrow}^{\dagger}c_{n\downarrow} \approx M_n^{\alpha}\sigma_{ss'}^{\alpha}c_{n,s}^{\dagger}c_{n,s'} + h.c.$$

Non-collinear magnetic order

$$M_n^z \sim \langle c_{n\uparrow}^{\dagger} c_{n\uparrow} \rangle - \langle c_{n\downarrow}^{\dagger} c_{n\downarrow} \rangle$$

$$M_n^x \sim \langle c_{n\uparrow}^{\dagger} c_{n\downarrow} \rangle + \langle c_{n\downarrow}^{\dagger} c_{n\uparrow} \rangle$$

$$M_n^y \sim i \langle c_{n\uparrow}^{\dagger} c_{n\downarrow} \rangle - i \langle c_{n\downarrow}^{\dagger} c_{n\uparrow} \rangle$$

The mean-field approximation

The mean-field approximation is equivalent to finding a variational wavefunction of the form

$$|GS\rangle = \prod_{\alpha} \psi_{\alpha}^{\dagger} |\Omega\rangle$$

$$\psi_{\alpha}^{\dagger} = \sum_{n} \chi_{\alpha,n} c_{n}^{\dagger}$$

Such that it minimizes the expectation value of the energy

$$E = \langle GS|H|GS\rangle \qquad \qquad \frac{\delta E}{\delta \chi} = 0 \qquad \frac{\delta E}{\delta \langle c_i^{\dagger} c_j \rangle} = 0$$

This assumption, leads to a selfconsistent problem for the mean-field Hamiltonian

$$H_{(1)}^{MF} \rightarrow \langle c_i^{\dagger} c_j \rangle_{(1)} \rightarrow H_{(2)}^{MF} \rightarrow \langle c_i^{\dagger} c_j \rangle_{(2)} \rightarrow H_{(3)}^{MF} \rightarrow \dots$$

Solving the interacting model at the mean-field level in a 1D chain

We will take the interacting model and solve it at the mean field level

$$H = \sum_{ij} t_{ij} \left[c_{i\uparrow}^{\dagger} c_{j\uparrow} + c_{i\downarrow}^{\dagger} c_{j\downarrow} \right] + \sum_{i} U c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow} + \mu \sum_{i,s} c_{is}^{\dagger} c_{is}$$

Solving the interacting model at the mean-field level in a 1D chain

Let us do again a 1D, but now with 2 sites per unit cell and at half filling

$$H = t \sum_{s,n} c_{n,s}^{\dagger} c_{n+1,s} + h.c. + U \sum_{n} \left(c_{n,\uparrow}^{\dagger} c_{n,\uparrow} - \frac{1}{2} \right) \left(c_{n,\downarrow}^{\dagger} c_{n,\downarrow} - \frac{1}{2} \right)$$

Interaction-induced gap opening

$$H = t \sum_{s,n} c_{n,s}^{\dagger} c_{n+1,s} + h.c. + U \sum_{n} \left(c_{n,\uparrow}^{\dagger} c_{n,\uparrow} - \frac{1}{2} \right) \left(c_{n,\downarrow}^{\dagger} c_{n,\downarrow} - \frac{1}{2} \right)$$

Competing magnetic solutions

Let us now consider two selfconsistent solutions for the interacting model

Only once of them is the true ground state, but which one it is?

Competing magnetic solutions

Let us now compute the energy difference between the two configurations

For strong interactions, the AF configuration always has lower energy

The strongly localized limit and the Heisenberg model

From a weak magnet to the strongly localized limit

$$H = \sum_{ij} t_{ij} [c_{i\uparrow}^{\dagger} c_{j\uparrow} + c_{i\downarrow}^{\dagger} c_{j\downarrow}] + \sum_{i} U c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow}$$

For large interaction strength, the system develops a local quantized magnetic moment

Let us start with a Hubbard model dimer

$$H = t[c_{0\uparrow}^{\dagger}c_{1\uparrow} + c_{0\downarrow}^{\dagger}c_{1\downarrow}] + \sum_{i} Uc_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\downarrow}^{\dagger}c_{i\downarrow} + h.c.$$

Now in the limit

$$U\gg t$$

Levels

1

The full Hilbert space at half filling is

Let us start with a Hubbard model dimer

$$H = t[c_{0\uparrow}^{\dagger}c_{1\uparrow} + c_{0\downarrow}^{\dagger}c_{1\downarrow}] + \sum_{i} Uc_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\downarrow}c_{i\downarrow} + h.c.$$

The energies in the strongly localized limit are $\,U\gg t\,$

Let us start with a Hubbard model dimer

$$H = t[c_{0\uparrow}^{\dagger}c_{1\uparrow} + c_{0\downarrow}^{\dagger}c_{1\downarrow}] + \sum_{i} Uc_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\downarrow}^{\dagger}c_{i\downarrow} + h.c.$$

The low energy manifold is

Just one electron in each site for

 $U\gg t$

Local S=1/2 at each site

Effective Heisenberg model in the localized limit

$$\mathcal{H} = J\vec{S}_0 \cdot \vec{S}_1$$

We can compute J using second order perturbation theory

$$H = H_0 + V$$

$$H_0 = \sum_{i} U c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow}$$

"pristine" Hamiltonian (Hubbard)

$$V = t[c_{0\uparrow}^{\dagger}c_{1\uparrow} + c_{0\downarrow}^{\dagger}c_{1\downarrow}] + \text{h.c.}$$

"perturbation" Hamiltonian (hopping)

Effective Heisenberg model in the localized limit

$$\mathcal{H} = J\vec{S}_0 \cdot \vec{S}_1$$

We can compute J using second order perturbation theory

$$H = H_0 + V$$

Ground state

Virtual state

$$J \sim rac{t^2}{U}$$

The Heisenberg model

For a generic Hamiltonian in a generic lattice

$$H = \sum_{ij} t_{ij} [c_{i\uparrow}^{\dagger} c_{j\uparrow} + c_{i\downarrow}^{\dagger} c_{j\downarrow}] + \sum_{i} U c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow}$$

In the strongly correlated (half-filled) limit we obtain a Heisenberg model

$$\mathcal{H} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

$$J_{ij} \sim \frac{|t_{ij}|^2}{U}$$

The Heisenberg model

Non-Hubbard (multiorbital) models also yield effective Heisenberg models

$$\mathcal{H} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

In those generic cases, the exchange couplings can be positive or negative

$$J_{ij} > 0$$

Antiferromagnetic coupling

$$J_{ij} < 0$$

Ferromagnetic coupling

$$\mathcal{H} = \sum_{ij} J_{ij}^{lphaeta} S_i^{lpha} S_j^{eta}$$

The Heisenberg model

 $J_{ij} > 0$

Antiferromagnetic coupling

Ferromagnetic coupling

Classical ground states

Antiferromagnetism driven by superexchange

In the square lattice

In the honeycomb lattice

$$H = \sum_{ij,s} t_{ij} c_{i,s}^{\dagger} c_{j,s} + \sum_{i} U c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow} + h.c.$$

In bipartite lattices, the magnetization is collinear

Antiferromagnetism driven by superexchange

In the Kagome lattice

$$H = \sum_{ij,s} t_{ij} c_{i,s}^{\dagger} c_{j,s} + \sum_{i} U c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow} + h.c.$$

In the triangular lattice

Geometric frustration promotes non-collinear order at the mean-field level

Non-isotropic exchange coupling

In the presence of spin-orbit coupling, new terms can appear in the Hamiltonian

Antisymmetric exchange

$$(\mathbf{r}_{ik} \times \mathbf{r}_{kj}) \cdot \vec{S}_i \times \vec{S}_j$$

Promotes non-collinear order

Anisotropic exchange

$$S_i^z S_j^z$$

Promotes easy axis/plane

Kitaev interaction

Promotes frustration

Beyond local-interactions

Non-local interactions also lead to many-body correlated states

Let us take a spinless model with first neighbor repulsion

$$H = t \sum_{n} c_{n}^{\dagger} c_{n+1} + h.c. + V \sum_{n} \left(c_{n}^{\dagger} c_{n} - \frac{1}{2} \right) \left(c_{n+1}^{\dagger} c_{n+1} - \frac{1}{2} \right)$$

Two limits

$$V = 0$$

 $V \gg t$

Non-interacting limit

Featureless metal

Charge density wave

The impact of non-local interactions in the electronic spectra

$$H = \sum_{n} c_{n}^{\dagger} c_{n+1} + h.c. + V \sum_{n} \left(c_{n}^{\dagger} c_{n} - \frac{1}{2} \right) \left(c_{n+1}^{\dagger} c_{n+1} - \frac{1}{2} \right)$$

Interaction induced charge density wave

$$H = \sum_{n} c_{n}^{\dagger} c_{n+1} + h.c. + V \sum_{n} \left(c_{n}^{\dagger} c_{n} - \frac{1}{2} \right) \left(c_{n+1}^{\dagger} c_{n+1} - \frac{1}{2} \right)$$

The breakdown of mean-field

The limitations of mean-field theory

The true ground state of the Hubbard model in 1D does not break time-reversal symmetry

$$H = t \sum_{s,n} c_{n,s}^{\dagger} c_{n+1,s} + h.c. + U \sum_{n} \left(c_{n,\uparrow}^{\dagger} c_{n,\uparrow} - \frac{1}{2} \right) \left(c_{n,\downarrow}^{\dagger} c_{n,\downarrow} - \frac{1}{2} \right)$$

But the mean-field Hamiltonian by construction breaks time reversal symmetry

$$H = t \sum_{s,n} c_{n,s}^{\dagger} c_{n+1,s} + h.c. + \sum_{i} M_{i} \sigma_{s,s'}^{z} c_{i,s}^{\dagger} c_{i,s'}$$

What is the origin of this limitation, and how can we overcome it?

The Hubbard dimer

Let us consider a Hubbard dimer $H=tc_{1,s}^{\dagger}c_{2,s}+h.c.+U\sum_{n}\left(c_{n,\uparrow}^{\dagger}c_{n,\uparrow}-\frac{1}{2}\right)\left(c_{n,\downarrow}^{\dagger}c_{n,\downarrow}-\frac{1}{2}\right)$

The entangled ground state of the Heisenberg dimer

Let us now take the Hubbard dimer in the strongly interacting limit

$$H = tc_{1,s}^{\dagger}c_{2,s} + h.c. + U\sum_{n} \left(c_{n,\uparrow}^{\dagger}c_{n,\uparrow} - \frac{1}{2}\right) \left(c_{n,\downarrow}^{\dagger}c_{n,\downarrow} - \frac{1}{2}\right)$$

For $U\gg t$ we obtain the Heisenberg model

$$\mathcal{H} = J\vec{S}_1 \cdot \vec{S}_2$$

Mean field ground state

True ground state

$$\begin{aligned} |\Psi_1\rangle &= |\uparrow\downarrow\rangle \\ |\Psi_2\rangle &= |\downarrow\uparrow\rangle \end{aligned} \qquad |\Psi_S\rangle = \frac{1}{\sqrt{2}} \left(|\downarrow\uparrow\rangle - |\uparrow\downarrow\rangle \right)$$

Mean-field cannot describe a strongly localized limit featuring entanglement