Planning Your Air Travel - a statistical analysis of airlines in U.S.

Introduction

Goal:

- 1-Rank American domestic airlines based on arrival delays
- 2- Effects and causes of delays

Scope:

- Timeframe: 1 year
- 8 most popular airlines

Datasets used:

- airplane delays
- airline ticket price
- daily weather
- sample survey

AIRLINE CODE	AIRLINE
AA	American Airlines
B6	JetBlue
DL	Delta
NK	Spirit Airlines
UA	United Airlines
US	US Airways
VX	Virgin Airlines
WN	Southwest Airlines

Compare Airlines by Expected Delay Time

Concepts: Mean, min, max, variance, quartiles, boxplot, histogram

Spread: View max, average, and distribution.

Spread: mean is skewed to the right due to max

Concepts: Sampling, population, confidence interval

Results of survey:

Simple random sample size =40

62.5% responded delay time between 20-40 minutes

Is our sample size good view of population?

- The normal approximation of X-bar is generally good if n>=30, according to Central Limit Theorem.
- Mean of x bar remains same for any sample size

95% confident that $62.5\% \pm 15\%$ of the population has delay time threshold of between 20-40 minutes. (using what method?)

Would need a sample of 90 people to have a tighter error of 10%, and 360 people for error 5%.

Midpoint of 20-40 minute range = 30 minutes

Concepts: PMF, Probability, test of hypothesis

Spirit Airlines is worst performer with highest percent of delayed flights, and highest mean delay time.

welch Two Sample t-test

data: DL30\$ARRIVAL_DELAY and NK30\$ARRIVAL_DELAY
t = 2.6403, df = 6819, p-value = 0.008302
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.003572 6.789731
sample estimates:
mean of x mean of y
88.18921 84.29256

H0: μ1-μ2=0 H1: μ1-μ2≠0

P-value less than 0.05 = reject the null hypothesis.

Significant difference between best and worst performer.

Correlation of Airline Delays to Price:

Concepts: Correlation coefficient, trendline

P value: 0.04

Pearson Coefficient : -0.728 Kendall Coefficient: 0.428 The relationships are dependent and statistically significant:

- p value is below 0.05
- · kendall coefficient is not near zero
- good linear relation since R value is more than 0.7
- Inversely proportional relation since R value is negative

Spotlight: Airline with Worst Delays

Concepts: Distribution, best fit

min: 1 max: 514

median: 21 mean: 40.31225

estimated sd: 52.85971

estimated skewness: 2.812434 estimated kurtosis: 14.23926

Positive kurtosis and positive skewness = values away from the mean occur more than those to the left of the mean.

Statistically equivalent to lognormal or gamma distributions

Best Fit

Criteria of best fit: highest loglikelihood, lowest AIC & BIC

loglik -1790.884 aic 3585.767 bic 3593.155

loglik -1834.278 aic 3672.556 bic 3679.943

Probabilities

Gamma Distribution

$$x \sim \gamma(\alpha, \beta)$$

 $mean = \alpha \times \beta$ $variance = \alpha \times \beta^2$
 $P(x > k) = 1 - pgamma(q = k, shape = \alpha, scale = \beta)$

The probability of a flight being delayed more than 30 minutes: 40.74% The probability of a being delayed more than 1 hour: 22.53%

Poisson Distribution

average rate of 19.36% delays per day X~p(x;19.36)

Probability of more than each % of flights being delayed over 30 mins per day:

^	% of Flights Delayed	Poisson Probability
1	5	9.998830e+01
2	10	9.848095e+01
3	15	8.077371e+01
4	20	3.842494e+01
5	25	8.592409e+00
6	30	8.926705e-01
7	35	4.571476e-02
8	40	1.237296e-03

Delay Reasons in Boston

By Number of Flights:

63 Spirit flights from Boston delayed over 30 mins

Venn Diagram of Delay Reasons

- System delay = 57 flights
- Airline delay= 27 flights
- Late Aircraft delay=14 flights
- Weather delay=4 flights

- System ∩ Airline = 25
- System ∩ Late Airplane =11
- System ∩ Weather = 3
- System ∩ Airline ∩ Late Aircraft = 6

Conditional Probabilities

A= event that flight delayed due to weather B= event that flight delayed due to system

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = 0.75$$

Concepts: Venn, conditional probability, proportion

By Delayed Hours:

80.6 hours of arrival delays in one year

Dates of weather delay	Temperature on that
	day (degree F)

January 1st	16
February 12 th	11
February 14 th	17
December 28th	28

Conclusions

- 1. Spirit Airlines has highest number of flights delayed
- 2. You get what you pay for: statistically negative linear correlation between ticket price and delays
- 3. Delay times follows a gamma distribution, with decreasing number of flights having each delay time
- 4. 41% probability of flight being delayed over 30 mins
- 5. 8.6% probability that one-fourth of the flights in a day will be delayed over 30 mins
- 6. 57% of all delayed flights are due to air system delay

QUESTIONS?

Student Claims Spirit Airlines Told Her to Flush Her Emotional Support Hamster Down the Toilet

REFERENCES

http://airlines.org/wp-content/uploads/2016/04/2016Survey.pdf

http://money.com/money/4695479/best-us-airlines-2017/ https://www.statista.com/statistics/540661/us-low-cost-carriers-average-ticket-price/

http://money.com/money/4695479/best-us-airlines-2017/

https://docs.google.com/forms/d/e/1FAIpQLSfu3DcENgb-i-R4ycEWbNclkATkIdaRBHJApI6mg_4KloelaA/viewform

 $\underline{https://www.kaggle.com/usdot/flight-delays\#flights.csv}$

https://www.kaggle.com/naveenpandianv/weather-data-boston-jul-2012-aug-2015