

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 3507596 A1

(51) Int. Cl. 4:
B 01 D 46/30
B 01 F 11/02
B 01 F 3/06

DE 3507596 A1

(21) Aktenzeichen: P 35 07 596.1
(22) Anmeldetag: 4. 3. 85
(23) Offenlegungstag: 4. 9. 86

(71) Anmelder:
Wehrle-Werk AG, 7830 Emmendingen, DE

(74) Vertreter:
Zimmermann, H., Dipl.-Ing.; Graf von Wengersky, A.,
Dipl.-Ing.; Kraus, J., Dipl.-Phys. Dr.rer.nat.,
Pat.-Anw., 8000 München

(72) Erfinder:
Sachs, Dieter, Dipl.-Ing., 7835 Teningen, DE

(54) Verfahren und Vorrichtung zur trockenen oder quasitrockenen Abscheidung gasförmiger Schadstoffe aus Abgasen, insbesondere Rauchgasen

Bei derartigen Verfahren werden die aus einer Feuerungsanlage (1) austretenden, schadstoffbeladenen Abgase in einer Reaktionsstrecke (2) mit einem Sorptionsmittel durchmischt, durch das die Schadstoffe gebunden werden, so daß sie in einer nachgeschalteten Trenneinrichtung (3) aus dem Abgas entfernt werden können. Wenngleich diese trockenen oder quasitrockenen Verfahren gegenüber naß arbeitenden Verfahren weniger aufwendig sind, haben sie den Nachteil geringerer Abscheidegrade und eines höheren Sorptionsmittelverbrauchs. Zur Verbesserung des Abscheidegrades und Herabsetzung des Sorptionsmittelverbrauchs wird in der Reaktionsstrecke (2) eine bessere Durchmischung zwischen Abgas und Sorptionsmittel herbeigeführt, indem Schallenergie (4) eingestrahlt wird (Fig. 1).

DE 3507596 A1

1

P a t e n t a n s p r ü c h e

1. Verfahren zur trockenen oder quasitrockenen
5 Abscheidung gasförmiger Schadstoffe aus Abgasen, insbe-
sondere Rauchgasen, bei dem das Abgas mit einem einer
Sorption der gasförmigen Schadstoffe dienenden Sorptions-
mittel durchmischt wird, das nach der Sorption des Schad-
stoffes von dem Abgas abgetrennt wird, dadurch gekenn-
zeichnet, daß in das Gemisch aus Abgas und Sorptions-
10 mittel Schallenergie eingestrahlt wird.
2. Verfahren nach Anspruch 1, dadurch gekenn-
zeichnet, daß die Schallfrequenz auf die Erzielung einer
15 maximalen Geschwindigkeitsdifferenz zwischen den Schad-
stoffmolekülen und den Sorptionsmittelteilchen abgestimmt
wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch ge-
kennzeichnet, daß die Schallfrequenz mit einer in der
20 Größenordnung der Sorptionszeit oder darunter liegenden
Periodendauer über einen bestimmten Frequenzbereich
periodisch durchgestimmt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3,
25 dadurch gekennzeichnet, daß eine Überlagerung aus
mehreren Schallfrequenzen eingestrahlt wird.
- 30 5. Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß die Frequenz der einge-
strahlten Schallenergie im Infraschallbereich liegt.
- 35 6. Vorrichtung zur Durchführung des Verfahrens
nach einem der Ansprüche 1 bis 5, mit einer von dem
Abgas und dem Sorptionsmittel durchströmten, einer
Durchmischung des Abgases und des Sorptionsmittels für
eine Sorption dienenden Reaktionsstrecke (2) und einer

1 an den Ausgang der Reaktionsstrecke (2) angeschlossenen
Trenneinrichtung (3) zur Abscheidung des schadstoffbe-
ladenen Sorptionsmittels, dadurch gekennzeichnet, daß
die Reaktionsstrecke (2) einen deren Volumen mit Schall-
5 energie bestrahlenden Schallgeber (4) aufweist.

7. Vorrichtung nach Anspruch 6, dadurch gekenn-
zeichnet, daß die Reaktionsstrecke (2) mit Schall-Leit-
flächen versehen ist.

10 8. Vorrichtung nach Anspruch 6 oder 7, dadurch
gekennzeichnet, daß die Reaktionsstrecke (2) im wesent-
lichen U-förmig mit vom U-Steg (8) aus sich senkrecht
nach oben erstreckenden U-Schenkeln (6,7) ausgebildet
15 ist, deren einem (6) am freien Ende (9) das schadstoff-
belastete Abgas zuführt und an deren anderem (7) am
freien Ende (10) die Trenneinrichtung (3) angeschlossen
ist, und daß der Schallgeber (4) im Bereich des U-Steges
(8) angeordnet ist.

20 9. Vorrichtung nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet, daß der Schallgeber (4) einen von
einem Gebläse angeregten Schallkopf und ein sich vom
Schallkopf aus erstreckendes Resonanzrohr aufweist, des-
25 sen dem Schallkopf abgewandtes offenes Ende mit dem Innen-
raum der Reaktionsstrecke (2) in Verbindung steht.

10. Vorrichtung nach einem der Ansprüche 6 bis 9,
dadurch gekennzeichnet, daß die Reaktionsstrecke (2) mit
mehreren Schallgebern (4) versehen ist.

30

35

LEINWEBER &
ZIMMERMANN
3507596

3

PATENTANWÄLTE
european patent attorneys

Dipl.-Ing. H. Leinweber (1930-76)
Dipl.-Ing. Heinz Zimmermann
Dipl.-Ing. A. Gf. v. Wengersky
Dipl.-Phys. Dr. Jürgen Kraus

Rosental 7, D-8000 München 2
2. Aufgang (Kustermann-Passage)
Telefon (089) 2 60 39 89
Telex 52 8191 lepat d
Teleg.-Adr. Leinpat München

den 4. März 1985

Unser Zeichen

krp

WEHRLE WERK AG, Bismarckstraße 1-11
D-7830 Emmendingen

Verfahren und Vorrichtung zur trockenen oder quasitrockenen Abscheidung gasförmiger Schadstoffe aus Abgasen, insbesondere Rauchgasen

Die Erfindung bezieht sich auf ein Verfahren zur trockenen oder quasitrockenen Abscheidung gasförmiger Schadstoffe aus Abgasen, insbesondere Rauchgasen, bei dem das Abgas mit einem einer Sorption der gasförmigen Schadstoffe dienenden Sorptionsmittel durchmischt wird, das nach der Sorption des Schadstoffes von dem Abgas abgetrennt wird, und auf eine Vorrichtung zur Durchführung dieses Verfahrens.

Es sind naß arbeitende Verfahren zur Reinigung von

ORIGINAL INSPECTED

1 Rauchgasen bekannt, bei denen eine Sorption von Schad-
gas-Molekülen, wie HF, HCl, SO₂ oder SO₃ unterhalb
des Taupunkts erfolgt. Derartige naß arbeitende Ver-
fahren zeichnen sich durch einen hohen Abscheidegrad
5 aus, wobei der Verbrauch an zugesetztem Sorptionsmittel,
wie beispielsweise kalkhaltige Stoffe, magnesiumhaltige
Stoffe, Ammoniak u.dgl. nur unwesentlich über den
stöchiometrischen Mengen liegt. Jedoch weisen diese
naß arbeitenden Verfahren die Nachteile einer Wasser-
10 sättigung der gereinigten Rauchgase auf, die eine Wie-
deraufheizung erfordern, sowie eines hohen Energie-
verbrauchs, teilweise noch ungelöster Korrosionsschwie-
rigkeiten und Probleme im Bereich der erforderlichen
Abwasserbehandlung.

15 Dagegen treten diese Nachteile bei trockenen
oder quasitrockenen Verfahren zur Abscheidung gas-
förmiger Schadstoffe aus Abgasen nicht auf, so daß
diese trockenen oder quasitrockenen Verfahren vor allem
20 zur Rauchgasreinigung im Bereich kleinerer und mittlerer
Anlagengrößen geeignet erscheinen. Allerdings sind be-
kannte Verfahren der eingangs genannten Art mit dem Nach-
teil verbunden, daß sie einen geringeren Abscheidegrad
25 und/oder einen höheren Verbrauch an Sorptionsmittel
aufweisen.

Diese bei den bekannten Verfahren zur trockenen
oder quasitrockenen Abscheidung auftretenden Schwie-
rigkeiten können aufgrund der Tatsache verstanden werden,
30 daß die chemische Sorption der Schadstoffe im Prinzip
in zwei Stufen abläuft. In der ersten Stufe erfolgt
eine Adsorption, d.h. eine Anlagerung der Moleküle des
gasförmigen Schadstoffes an die Moleküle des Sorptions-
mittels, während in der zweiten Stufe eine Absorption,
35 d.h. eine chemische Umwandlung zu Reaktionsmolekülen
stattfindet. Diese Vorgänge können sich sowohl in einer

1 Gas-Gas-Phase als auch in einer Gas-Feststoff-Phase vollziehen. Somit besteht eine der wichtigsten Voraussetzungen für die Erzielung eines hohen Abscheidegrades bei gleichzeitig möglichst geringen Mengen an Sorptionsmittel
5 darin, die schadstoffhaltigen Abgase und das Sorptionsmittel unter Vermeidung hoher Druckverluste möglichst gut zu vermischen und diese Vermischung während einer für den Sorptionsvorgang ausreichenden Zeit aufrechtzuerhalten.

10 Bei den bekannten Verfahren zur trockenen oder quasitrockenen Abscheidung der eingangs genannten Art wird diese Vermischung auf sehr unterschiedliche Arten herbeigeführt, wie beispielsweise durch den Einsatz
15 statischer Gasmischer, den Einsatz von Wirbelsenkenreaktoren, das Einsprühen wässriger Lösungen zur Erzielung der Vermischung durch Verdampfung u.dgl. Wegen ungünstiger Randbedingungen, wie eine schlechte Verteilung des Sorptionsmittels im Abgasstrom, Strähnenbildung,
20 ungenügend mit dem Sorptionsmittel durchsetzte Abgasteilströme, eine zu geringe Turbulenz der Strömungen u. dgl. bleiben jedoch die Ergebnisse der trockenen oder quasitrockenen Verfahren hinter den naß arbeitenden Verfahren bisher erheblich zurück.

25 Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur trockenen oder quasitrockenen Abscheidung gasförmiger Schadstoffe aus Abgasen der eingangs genannten Art dahingehend weiterzubilden, daß ein höherer Abscheidegrad und ein geringerer Verbrauch an Sorptionsmittel erzielt wird, sowie eine Vorrichtung zur Durchführung dieses Verfahrens anzugeben.
30

35 Erfundungsgemäß wird diese Aufgabe hinsichtlich des Verfahrens dadurch gelöst, daß in das Gemisch aus Abgas und Sorptionsmittel Schallenergie eingeschossen wird.

1 Durch die eingestrahlte Schallenergie werden
in dem Gemisch aus Abgas und Sorptionsmittel Druckwellen
hervorgerufen, die sowohl in der Gas-Gas-Phase sowie
auch in der Gas-Feststoff-Phase zwischen dem gasförmigen
5 Schadstoff und dem Sorptionsmittel zu einer sehr
intensiven Vermischung führen. Der Grund hierfür dürfte
in einer von dem eingestrahlten Schall hervorgerufenen
Relativgeschwindigkeit zwischen dem Sorptionsmittel und
den Schadstoffmolekülen zu sehen sein.

10 Mit Vorteil wird bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens die Schallfrequenz auf die Erzielung einer maximalen Geschwindigkeitsdifferenz zwischen den Schadstoffmolekülen und den Sorbitions-
15 mittelteilchen abgestimmt. Unter dieser Bedingung wird ein intensiver Reaktionskontakt zwischen dem Schadstoff und dem Sorbitionsmittel erreicht, was einer Optimierung des Abscheidegrades und der erforderlichen Sorbitions-
mittelmengen dienlich ist.

20 In einer anderen Variante des erfindungsgemäßen Verfahrens ist vorgesehen, daß die Schallfrequenz mit einer in der Größenordnung der Sorptionszeit oder darunter liegenden Periodendauer über einen bestimmten Frequenz-
25 bereich periodisch durchgestimmt wird. Hierdurch kann erreicht werden, daß das Gemisch aus schadstoffbeladenem Abgas und Sorbitionsmittel während der Sorptionszeit eine kontinuierliche Folge von Schalldruckzuständen durchläuft, so daß selbst bei einer Veränderung der übrigen Verfahrens-
30 parameter die Einstellung günstiger Durchmischungsbedingungen erwartet werden kann.

Andererseits kann in dieser Hinsicht aber auch vorgesehen sein, daß eine Überlagerung aus mehreren Schallfrequenzen eingestrahlt wird.
35

1 Eine besonders vorteilhafte Form der Ver-
fahrengührung zeichnet sich dadurch aus, daß die
Frequenz der eingestrahlten Schallenergie im Infra-
schallbereich liegt. Sofern die übrigen Verfahrens-
5 parameter eine derartige Frequenzwahl erlauben, wird
hierdurch auf besonders einfache Weise jede Lärmbeein-
trächtigung der Umgebung vermieden.

10 Eine Vorrichtung zur Durchführung des erfindungs-
gemäßen Verfahrens mit einer von dem Abgas und dem
Sorptionsmittel durchströmten, einer Durchmischung des
Abgases und des Sorptionsmittels für eine Sorption die-
nenden Reaktionsstrecke und einer an den Ausgang der
Reaktionsstrecke angeschlossenen Trenneinrichtung zur
15 Abscheidung des schadstoffbeladenen Sorptionsmittels
zeichnet sich erfindungsgemäß dadurch aus, daß die
Reaktionsstrecke einen deren Volumen mit Schallenergie
bestrahlenden Schallgeber aufweist.

20 Durch die von dem Schallgeber eingestrahlte
Schallenergie wird in der Reaktionsstrecke der erfin-
dungsgemäßen Vorrichtung die angestrebte intensive Ver-
mischung sowie die Aufrechterhaltung und ständige Er-
neuerung dieser Vermischung des gasförmigen Schadstoffs
25 mit dem Sorptionsmittel während deren Aufenthaltszeit
in der Reaktionsstrecke erreicht. Als vorteilhafte Neben-
wirkung wird durch die Schallenergie gleichzeitig die
Reaktionsstrecke frei von Verschmutzungen gehalten,
weil durch die Schallenergie eine Anlagerung an den
30 Wänden der Reaktionsstrecke verhindert wird. Eine der-
artige Reinigungswirkung der von einem Schallgeber ein-
gestrahlten Schallenergie ist bereits im Zusammenhang
mit der Reinigung von Heizflächen bei Heizkesseln bekannt.

35 Die erfindungsgemäße Vorrichtung weist außerdem

1 den Vorteil baulicher Einfachheit auf und eignet sich
auch zur nachträglichen Umrüstung herkömmlicher Vor-
richtungen, weil der Schallgeber ohne großen Aufwand
nachträglich in vorhandene Reaktionsstrecken eingebaut
5 werden kann.

Gemäß einem weiteren Gedanken der Erfindung kann
die Reaktionsstrecke mit Schall-Leitflächen versehen
sein. Zwar wird bei den in Betracht kommenden Schall-
10 frequenzen normalerweise das Volumen der Reaktions-
strecke bereits ohne derartige Schall-Leitflächen hin-
reichend gleichmäßig von den Schallwellen durchflutet,
doch kann es sich als vorteilhaft erweisen, zusätzlich
15 derartige Schall-Leitflächen vorzusehen, um die Schall-
druckverteilung innerhalb des Volumens der Reaktions-
strecke einer gewünschten Verteilung anzunähern, bei-
spielsweise um eine räumliche, d.h. in alle Richtungen
laufende Ausbreitung von Druckwellen weiter zu be-
günstigen.
20

Für eine wirkungsvolle Einstrahlung der Schall-
energie und auch in kontruktiver Hinsicht erweist es
sich als günstig, daß die Reaktionsstrecke im wesent-
lichen U-förmig mit vom U-Steg aus sich senkrecht nach
25 oben erstreckenden U-Schenkeln ausgebildet ist, deren
einem am freien Ende das schadstoffbelastete Abgas zu-
geführt und an deren anderem am freien Ende die Trenn-
einrichtung angeschlossen ist, und daß der Schallgeber
im Bereich des U-Steges angeordnet ist.

30 Als Schallgeber kann eine der üblichen Ein-
richtungen verwendet werden, wie sie für die Schall-
einstrahlung zur Reinigung der Heizflächen eines Heiz-
kessels schon bekannt sind. In diesem Zusammenhang
35 kann vorgesehen sein, daß der Schallgeber einen von
einem Gebläse angeregten Schallkopf und ein sich vom

1 Schallkopf aus erstreckendes Resonanzrohr aufweist,
dessen dem Schallkopf abgewandtes offenes Ende mit dem
Innenraum der Reaktionsstrecke in Verbindung steht.

5 Weitere Merkmale, Einzelheiten und Vorteile der
Erfindung ergeben sich aus der folgenden Beschreibung
und der Zeichnung, auf die bezüglich einer erfindungs-
wesentlichen Offenbarung aller im Text nicht erwähnten
Einzelheiten ausdrücklich hingewiesen wird. Hierin zei-
10 gen:

Fig. 1 ein Schema des Ablaufs eines Verfahrens
zur trockenen oder quasitrockenen Ab-
scheidung gasförmiger Schadstoffe aus
Abgasen, insbesondere Rauchgasen, und
15

Fig. 2 eine schematische Darstellung einer Vor-
richtung zur Durchführung des in Fig. 1
veranschaulichten Verfahrens.

20 Gemäß einem in Fig. 1 schematisch dargestellten
Ablauf eines Verfahrens zur trockenen oder quasitrocke-
nen Abscheidung gasförmiger Schadstoffe aus Abgasen ent-
stehen beispielsweise in einer Feuerungsanlage oder einer
25 verfahrenstechnischen Anlage 1 Rauchgase, die gasförmige
Schadstoffe, wie HF, HCl, SO₂, SO₃ u.dgl. enthalten. Die
Abgase aus der Feuerungsanlage 1 durchströmen eine durch
einen Block 2 schematisch dargestellte Reaktionsstrecke,
in der sie mit einem einer Sorption der in dem Abgas
30 enthaltenen gasförmigen Schadstoffe dienenden Sorptions-
mittel durchmischt werden. Dabei findet in der Reaktions-
strecke 2 auf trockenem oder quasitrockenem Wege die
adsorptive Anlagerung und anschließend die absorptive
Bindung der Schadstoffe an dem Sorptionsmittel statt.
35 Geeignete Sorptionsmittel sind bekanntermaßen beispiels-
weise kalkhaltige Stoffe, magnesiumhaltige Stoffe,
ammoniak- oder ammoniakabspaltende Stoffe und dgl.
Die Sorptionsmittel werden bei einstufigen Anlagen am
Anfang der Reaktionsstrecke, bei mehrstufigen Anlagen

- 1 an mehreren Stellen der Reaktionsstrecke in den Rauchgasstrom eingegeben und mit diesem beispielsweise durch Einsatz statischer Gasmischer, Wirbelsenkenreaktoren oder Einsprühen wässriger Lösungen zur Vermischung durch Verdampfung, vermischt. Der von den Abgasen durchströmten Reaktionsstrecke
- 5 2 ist eine durch einen Block 3 schematisch dargestellte Trenneinrichtung nachgeschaltet, in der das schadstoffbeladene Sorptionsmittel aus den in der Reaktionsstrecke 2 durch die Sorption gereinigten Abgasen abgetrennt wird, wodurch die Blöcke 2 und 3 kontinuierlich durchströmenden Abgase schließlich die Trenneinrichtung 3, wie
- 10 durch einen Pfeil 5 schematisch angedeutet, in gereinigter Form verlassen. Die Trenneinrichtung 3 kann beispielsweise durch eine Entstaubungsanlage gebildet sein. In dieser kann die Abtrennung beispielsweise durch Elektrofilter oder durch
- 15 Gewebefilter erfolgen. Bei der Anwendung von Gewebefiltern können auch in der Trenneinrichtung 3 noch adsorptive und absorptive Nachreaktionen stattfinden.

Zur Erzielung eines hohen Abscheidegrades und/oder eines sparsamen Sorptionsmittelbedarfs ist es erforderlich, in der Reaktionsstrecke 2 eine möglichst intensive Vermischung zwischen den Abgasen und dem Sorptionsmittel herbeizuführen. Zu diesem Zweck wird, wie in Fig. 1 durch einen Pfeil 4 schematisch angedeutet, in die Reaktionsstrecke 2 Schallenergie eingestrahlt, um das gesamte Volumen der Reaktionsstrecke mit Druckwellen zu beaufschlagen. Die durchmischungsfördernde Wirkung der eingestrahlten Schallenergie dürfte auf der Hervorrufung einer Differenzgeschwindigkeit zwischen den Teilchen des Sorptionsmittels und des Abgases beruhen. Daher besteht eine zweckmäßige Möglichkeit der Verfahrensführung darin, die Schallfrequenz der eingestrahlten Schallenergie derart einzustellen, daß zwischen den Schadstoffmolekülen und den Sorptionsmittelteilchen eine maximale Geschwindigkeitsdifferenz erzielt wird.

1 Alternativ kommt jedoch auch eine periodische
Durchstimmung der Schallfrequenz über einen bestimmten,
zweckmäßig gewählten Frequenzbereich in Betracht. Die
Periodendauer dieser Durchstimmung wird dabei in der
5 Größenordnung der Verweilzeit des Gemisches aus Abgasen
und Sorptionsmittel in der Reaktionsstrecke 2, also in
der Größenordnung der für den Sorptionsvorgang zur Ver-
fügung stehenden Zeit, oder darunter gewählt. Ebenso
ist es alternativ auch möglich, eine Überlagerung aus
10 mehreren Schallfrequenzen einzustrahlen.

Sofern es die anderen Verfahrensparameter er-
lauben, erweist sich der Infraschallbereich für die
Frequenz der eingestrahlten Schallenergie als besonders
15 vorteilhaft. Einerseits wird durch diese Frequenzwahl
eine Geräuschbelästigung der Umgebung vermieden. Anderer-
seits ist aber auch besonders wichtig, daß im Infra-
schallbereich der Reflexionsgrad besonders hoch ist,
so daß auch bei beliebig geformten Reaktionsstrecken
20 eine Schallbeaufschlagung des gesamten Volumens der
Reaktionsstrecke gewährleistet und die Ausbildung toter
Zonen vermieden ist.

Bei einer in Fig. 2 schematisch dargestellten
25 Vorrichtung zur Durchführung des Verfahrens ist die
zwischen der feuerungs- oder verfahrenstechnischen
Anlage 1 und der Trenneinrichtung 3 eingebaute Reak-
tionsstrecke 2 im wesentlichen U-förmig ausgebildet,
wobei sich die beiden U-Schenkel 6,7 von dem in bezug
30 auf die Trenneinrichtung 3 unten gelegenen U-Steg 8
vertikal nach oben erstrecken. Das obere freie Ende 9
des U-Schenkels 6 ist an den abgasführenden Ausgang
der feuerungs- oder verfahrenstechnischen Anlage 1
angeschlossen, während das obere freie Ende 10 des
35 anderen U-Schenkels 7 mit dem Eingang der Trenneinrich-
tung 3 verbunden ist. Wenngleich längs der Reaktions-
strecke 2 in Abhängigkeit von deren Abmessungen Volumen
allgemein mehrere Schallgeber 4 vorgesehen sein können.
wird im folgenden ein Ausführungsbeispiel mit nur einem

1 Schallgeber 4 abgehandelt.

Der der Schallenergieeinstrahlung dienende
5 Schallgeber 4 ist im Bereich des U-Steges 8 angeordnet.
Durch diese Anordnung wird das gesamte Volumen der Reak-
tionsstrecke 2 mit den ausgesendeten Druckwellen beauf-
schlagt. Sofern es sich als notwendig erweist, können
in der Reaktionsstrecke 2 außerdem Schall-Leitflächen
10 (nicht dargestellt) angeordnet sein, um durch Reflexion
der eingestrahlten Schallenergie möglicherweise auftreten-
de schalltote Räume ebenfalls mit Schallenergie zu be-
aufschlagen.

15 Für den Schallgeber 4 kommen beispielsweise die
für die Zwecke der Heizflächenreinigung von Feuerungs-
anlagen bekannten Schallgeber in Betracht, so daß deren
Ausbildung nicht im einzelnen dargestellt ist. Ein der-
artiger Schallgeber 4 weist beispielsweise einen von einem
20 Gebläse angeregten Schallkopf auf, von dem aus sich ein
Resonanzrohr erstreckt. Das dem Schallkopf abgewandte
offene Ende dieses Resonanzrohrs ist zumeist trichter-
förmig ausgebildet. Die Ankopplung des Schallgebers 4
an das Volumen der Reaktionsstrecke 2 kann dabei derart
25 erfolgen, daß das freie Ende des Resonanzrohrs entweder
geringfügig in die Reaktionsstrecke 2 hineinragt oder
mit einer Öffnung in der Wand der Reaktionsstrecke 2
bündig abschließt.

30

35

3507596

13

14

1

Bezugszeichenliste

Verfahren und Vorrichtung zur trockenen oder quasi-trockenen Abscheidung gasförmiger Schadstoffe aus Abgasen, insbesondere Rauchgasen

5

- 1 Feuerungsanlage
- 10 2 Reaktionsstrecke
- 3 Trenneinrichtung
- 4 Pfeil, Schallgeber
- 5 Pfeil
- 6,7 U-Schenkel
- 15 8 U-Steg
- 9 freies Ende
- 10 freies Ende

20

25

30

35

04-0000

3507596

- 14 -

Figur 2

3507596

- 15 -

Nummer:
Int. Cl.⁴:
Anmeldetag:
Offenlegungstag:

35 07 596
B 01 D 46/30
4. März 1985
4. September 1986

Figur 1