I2C AM2320 & LCD Control

Embedded System 2561, KU CSC

Adapted by Sorayut Glomglome

I2C

- •12C เป็นโปรโตคอลสื่อสารอนุกรม ประกอบด้วยขาสัญญาณ
 - •SDA: สัญญาณข้อมูล
 - •SCL: สัญญาณนาฬิกา
 - https://www.youtube.com/watch?v=6lAkYpmA1DQ

STM32F411 I2C

- I²C Master features:
 - Clock generation
 - Start and Stop generation

Mode selection

The interface can operate in one of the four following modes:

- Slave transmitter
- Slave receiver
- Master transmitter
- Master receiver

By default, it operates in slave mode. The interface automatically switches from slave to master, after it generates a START condition and from master to slave, if an arbitration loss or a Stop generation occurs, allowing multimaster capability.

- I²C Slave features:
 - Programmable I²C Address detection
 - Dual Addressing Capability to acknowledge 2 slave addresses
 - Stop bit detection
- Supports different communication speeds:
 - Standard Speed (up to 100 kHz)
 - Fast Speed (up to 400 kHz)
 - The I2C bus frequency can be increased up to 1 MHz. For more details about the complete solution, please contact your local ST sales representative

STM32F411 I2C

- I²C Master features:
 - Clock generation
 - Start and Stop generation

- I²C Slave features:
 - Programmable I²C Address detection
 - Dual Addressing Capability to acknowledge 2 slave addresses
 - Stop bit detection

Figure 161. I²C block diagram

1. SMBA is an optional signal in SMBus mode. This signal is not applicable if SMBus is disabled.

_								ilate iulicti		9						-	
		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/I2S1S PI2/ I2S2/SPI3/ I2S3	SPI2/I2S2/ SPI3/ I2S3/SPI4/ I2S4/SPI5/ I2S5	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_F\$		SDIO			
	PA0	-	TIM2_CH1/ TIM2_ETR	TIM5_CH1	-	-	-	-	USART2_ CTS	-	-	-	-	-	-	-	EVENT OUT
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	SPI4_MOSI /I2S4_SD	-	USART2_ RTS	-	-	-	-	-	-	-	EVENT OUT
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1	-	I2S2_CKIN	-	USART2_ TX	-	-	-	-	-	-	-	EVENT OUT
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	I2S2_MCK	-	USART2_ RX	-	-	-	-	-	-	-	EVENT OUT
	PA4	-	-	-	-	-	SPI1_NSS/I 2S1_WS	SPI3_NSS/I2 S3_WS	USART2_ CK	-	-	-	-	-	-	-	EVENT OUT
	PA5	-	TIM2_CH1/ TIM2_ETR	-	-	-	SPI1_SCK/I 2S1_CK	-	-	-	-	-	-	-	-	-	EVENT OUT
	PA6	-	TIM1_BKIN	TIM3_CH1	-	-	SPI1_MISO	I2S2_MCK	-	-	-	-	-	SDIO_ CMD	-	-	EVENT OUT
tΑ	PA7	-	TIM1_CH1N	TIM3_CH2	-	-	SPI1_MOSI /I2S1_SD	-	-	-	-	-	-	-	-	-	EVENT OUT
Port	PA8	MCO_1	TIM1_CH1	-	-	I2C3_ SCL	-	-	USART1_ CK	-	-	USB_FS_ SOF	-	SDIO_ D1	-	-	EVENT OUT
	PA9	-	TIM1_CH2	-	-	I2C3_ SMBA	-	-	USART1_ TX	-	-	USB_FS_ VBUS	-	SDIO_ D2	-	-	EVENT OUT
	PA10	-	TIM1_CH3	-	-	-	-	SPI5_MOSI/I 2S5_SD	USART1_ RX	-	-	USB_FS_ ID	-	-	-	-	EVENT OUT
	PA11	-	TIM1_CH4	-	-	-	-	SPI4_MISO	USART1_ CTS	USART6_ TX	-	USB_FS_ DM	-	-	-	-	EVENT OUT
	PA12	-	TIM1_ETR	-	-	-	-	SPI5_MISO	USART1_ RTS	USART6_ RX	-	USB_FS_ DP	-	-	-	-	EVENT OUT
	PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PA14	JTCK- SWCLK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PA15	JTDI	TIM2_CH1/ TIM2_ETR	-	-	-	SPI1_NSS/I 2S1_WS	SPI3_NSS/I2 S3_WS	USART1_ TX	-	-	-	-	-	-	-	EVENT OUT

Table 9. Alternate function mapping (continued)

				1							<u> </u>			<u> </u>			
		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	12C1/I2C2/ 12C3	SPI1/I2S1S PI2/ I2S2/SPI3/ I2S3	SPI2/I2S2/ SPI3/ I2S3/SPI4/ I2S4/SPI5/ I2S5	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_F \$		SDIO			
	PB0	-	TIM1_CH2N	TIM3_CH3	-	-	-	SPI5_SCK /I2S5_CK		-	-	-	-	-	-	-	EVENT OUT
	PB1	-	TIM1_CH3N	TIM3_CH4	-	-	-	SPI5_NSS /I2S5_WS		-	-	-	-	-	-	-	EVENT OUT
·	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB3	JTDO- SWO	TIM2_CH2	-	-	-	SPI1_SCK/I 2S1_CK	SPI3_SCK /I2S3_CK	USART1_ RX	-	I2C2_SDA	-	-	-	-	-	EVENT OUT
	PB4	JTRST		TIM3_CH1	-	-	SPI1_MISO	SPI3_MISO	I2S3ext_S D	-	I2C3_SDA			SDIO_ D0	-	-	EVENT OUT
	PB5	-	-	TIM3_CH2	-	I2C1_SMB Ā	SPI1_MOSI /I2S1_SD	SPI3_MOSI/ I2S3_SD		-	-	-	-	SDIO_ D3	-	-	EVENT OUT
	PB6	-	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_ TX	-	-	-	-		-	-	EVENT OUT
Port B	PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_ RX	-	-	-	-	SDIO_ D0	-	-	EVENT OUT
Por	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	SPI5_MOSI/ I2S5_SD	-	-	I2C3_SDA	-	-	SDIO_ D4	-	-	EVENT OUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS/I 2S2_WS	-	-	-	I2C2_SDA	-	-	SDIO_ D5	-	-	EVENT OUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK/I 2S2_CK	I2S3_MCK	-	-	-	-	-	SDIO_ D7	-	-	EVENT OUT
	PB11	-	TIM2_CH4	-	-	I2C2_SDA	I2S2_CKIN	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB12	-	TIM1_BKIN	-	-	I2C2_SMB Ā	SPI2_NSS/I 2S2_WS	SPI4_NSS /I2S4_WS	SPI3_SCK /I2S3_CK	-	-	-	-	-	-	-	EVENT OUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK/I 2S2_CK	SPI4_SCK/ I2S4_CK	-	-	-	-	-	-	-	-	EVENT OUT
	PB14	-	TIM1_CH2N	-	-	-	SPI2_MISO	I2S2ext_SD	-	-	-	-	-	SDIO_ D6	-	-	EVENT OUT
	PB15	RTC_50H z	TIM1_CH3N	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	_	SDIO_ CK	-	-	EVENT OUT

Table 9. Alternate function mapping (continued)

		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
ı	Port	SYS_AF	ТІМ1/ТІМ2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/I2S1S PI2/ I2S2/SPI3/ I2S3	SPI2/I2S2/ SPI3/ I2S3/SPI4/ I2S4/SPI5/ I2S5	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_F\$		SDIO			
	PC0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC2	-	-	-	-	-	SPI2_MISO	I2S2ext_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PC3	-	-	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC4	-	-	-	-	-		-	-	-	-	-	-	-	-	-	EVENT OUT
	PC5	-	-	-	-	-		-	-	-	-	-	-	-	-	-	EVENT OUT
	PC6	-	-	TIM3_CH1	-	-	I2S2_MCK	-	-	USART6_ TX	-	-	-	SDIO_ D6	-	-	EVENT OUT
Port C	PC7	-	-	TIM3_CH2	-	-	SPI2_SCK/I 2S2_CK	I2S3_MCK	-	USART6_ RX	-	-	-	SDIO_ D7	-	-	EVENT OUT
	PC8	-	-	TIM3_CH3	-	-	-	-	-	USART6_ CK	-	-	-	SDIO_ D0	-	-	EVENT OUT
	PC9	MCO_2	-	TIM3_CH4	-	I2C3_SDA	I2S2_CKIN	-	-		-	-	-	SDIO_ D1	-	-	EVENT OUT
	PC10	-	-	-	-	-	-	SPI3_SCK/I2 S3_CK	-	-	-	-	-	SDIO_ D2	-	-	EVENT OUT
	PC11	-	-	-	-	-	I2S3ext_SD	SPI3_MISO	-	-	-	-	-	SDIO_ D3	-	-	EVENT OUT
	PC12	-	-	-	-	-	-	SPI3_MOSI/I 2S3_SD	-	-	-	-	-	SDIO_ CK	-	-	EVENT OUT
	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ī	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
, †	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

AOSONG

Digital Temperature and Humidity Sensor AM2320 Product Manual

Product Features:

- Ultra-small size
- Super cost-effective
- Ultra-low voltage operation
- Excellent long-term stability
- Standard I2C and single-bus output

For more information, please visit: www. aosong .com

AM2320

- <u>Digital</u> Temperature & Humidity Sensor
- Standard I2C and single-bus output (1Wire)
- CRC checksum

Table 4: AM2320 pin assignment

Pin	Name	Description
1	VDD	Power supply(3.1-5.5V)
2	SDA	Serial data, bidirectional port
3	GND	Ground
4	SCL	Serial clock input port (single bus ground)

Sensor performance: Relative Humidity

Table 1: AM2320 relative humidity performance table

parameter	condition	mi	typ	max	unit
		n			
resolution			0.1		%RH
Range		0		99.9	%RH
Accuracy	25 ℃		±3		%RH
Repeatability			±0.1		%RH
Interchangeability		Con	npletely in	terchan	geable
Response time	1/e(63%)		<5		S
Sluggish			±0.3		%RH
Drift	Typical		<0.5		%RH
	values				/yr

Figure 2: 25 ℃ relative humidity of maximum error AM2320

Sensor performance : Temperature

Table 2: AM2320 relative temperature performance table

parameter	condition	min	typ	max	unit
resolution			0.1		$^{\circ}$
resolution			16		bit
Accuracy			±0.5		\mathbb{C}
Range		-40		80	\mathbb{S}
Repeatability			±0.2		$^{\circ}\!\mathbb{C}$
Interchangeability					
Response time	1/e(63%)		<5		S
Drift			±0.1		°C/yr

Figure 3: The maximum error of the temperature sensor

AM2320 Wiring

Figure 5: I 2 C typical configuration

Data Packet Format

© Communication data (information frame) format

Data formats:

Data length:

I ² C data+W/R	Function Code	Data Area	CRC
1byte	1 byte	N-byte	16-bit CRC (cyclic redundancy code)

0

Table 7:C Mod Bus part of the function code

Function Code	Definitions	Operation (binary)
0x03	Reading Register Data	Read one or more data registers
0x10 Write Multiple Registers		Multiple sets of binary data to write multiple registers

AM2320 Registers

Table 8: AM2320 Data Register Table

				20 Data Register Table	-		
Register information	Address	Register information	Address	Register information	Address	Register information	Address
High humidity	ligh humidity 0x00 Model High		0x08	Users register a high	0x10	Retention	0x18
Low humidity	0x01	Model Low	0x09	Users register a low	0x11	Retention	0x19
High temperature	0x02	The version number	0x0A	Users register 2 high	0x12	Retention	0x1A
Low temperature	temperature 0x03 Device ID (24-31) Bit	0x0B	Users register 2 low	0x13	Retention	0x1B	
Retention	0x04	Device ID (24-31) Bit	0x0C	Retention	0x14	Retention	0x1C
Retention	0x05	Device ID (24-31) Bit	0x0D	Retention	0x15	Retention	0x1D
Retention	Retention 0x06 Device ID (24-31) Bit		0x0E	Retention	0x16	Retention	0x1E
Retention	Retention 0x07 Status Register		0x0F	Retention	0x17	Retention	0x1F

Sending Command to AM2320 to Read Data

1. Function code "03": Read registers multiplexed sensor

The host sends reading frame format:

START + (I² C address + W) + function code (0x03) + start address + number of registers

Host read return data:

+ STOP

 $START + (I^2C \text{ address} + R) + \text{sequential read sensor data returned} + STOP$

Sensor response frame format:

Function code (0x03) + number + data +CRC^[1]

For example: Host sequential read sensor data: the starting address for the register data of four sensors 0x00.

Sensor data register address and data:

Register Address	Register Address Register data		Register Address	Register data	Data Description	
0x00	0x01	High humidity	0x02	0x00	High temperature	
0x01	0XF4	Low humidity	0x03	0xFA	Low temperature	

Host message format sent:

The host sends	Byte count	Transmitting information	Remarks			
Sensor address 1		0xB8	Sensor C address (0xB8) + W (0)			
Function Code	1	0x03	Read register			
Starting address	1	0x00	Register start address is 0x00			
Number of registers	1	0x04	Read the number of register			

AM2320 Respond with Data

Slave response	Byte count	Transmitting information	Remarks
Function Code	1	0x03	Read register
Returns the number of bytes	1	0x04	Returns 4 of 4 byte register
Register 1	1	0x01	Address for the content of 0x00 (high humidity bytes)
Register 2	1	0XF4	Address for the content of 0x01 (low humidity bytes)
Register 3	1	0x00	Address for the content of 0x01 (low humidity bytes)
Register 4	1	0XFA	Address for the content 0x03 (temperature low byte)
CRC code	2	31A5	Sensors calculate the CRC code returned, low byte first;

Humidity: $01F4 = 1 \times 256 + 15 \times 16 + 4 = 500 = \text{humidity} = 500 \div 10 = 50.0\% RH$;

Temperature: 00FA= $15 \times 16+10 = 250 => temperature = 250 \div 10 = 25.0$ °C

Timing Diagram: Step 1 Wake Sensor

the starting signal + 0xB8 + wait (> 800us) + stop

Timing Diagram: Step 2 Send Read Command

- •The host sends commands to: START + 0xB8 (SLA)
 - + 0x03 (function code) + 0x00 (starting address)
 - +0x04 (register length) + STOP

Timing Diagram: Step 3 Receive Sensor Data

Host read back the data as follows:

- 0x03 (Function Code) + 0x04 (data length) +
 0x03 (high humidity) + 0x39 (low humidity) +
 0x01 (high temperature) + 0x15 (low temperature) +
 0xE1 (CRC checksum low byte) + 0xFE (CRC checksum high byte)
- Therefore: $0339H = 825_{10} => \text{humidity} = 825 \div 10 = 82.5\% \text{ RH}$ • Therefore: $0339H = 825_{10} => \text{humidity} = 825 \div 10 = 82.5\% \text{ RH}$ • $0115H = 277_{10} => \text{temperature} = 277 \div 10 = 27.7 \text{ °C}$

Setting STM32Cube for I2C (AM2320)

12C HAL Lib

Polling mode IO operation

- Transmit in master mode an amount of data in blocking mode using HAL I2C Master Transmit()
- Receive in master mode an amount of data in blocking mode using HAL_I2C_Master_Receive()
- Transmit in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Transmit()
- Receive in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Receive()

Interrupt mode IO operation

- Transmit in master mode an amount of data in non blocking mode using HAL_I2C_Master_Transmit_IT()
- At transmission end of transfer HAL_I2C_MasterTxCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2C_MasterTxCpltCallback
- Receive in master mode an amount of data in non blocking mode using HAL_I2C_Master_Receive_IT()
- At reception end of transfer HAL_I2C_MasterRxCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback
- Transmit in slave mode an amount of data in non blocking mode using HAL_I2C_Slave_Transmit_IT()
- At transmission end of transfer HAL_I2C_SlaveTxCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback
- Receive in slave mode an amount of data in non blocking mode using HAL_I2C_Slave_Receive_IT()
- At reception end of transfer HAL_I2C_SlaveRxCpltCallback is executed and user can add his own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback
- In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can add his own code by customization of function pointer HAL_I2C_ErrorCallback
- Abort a master I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT()
- End of abort process, HAL_I2C_AbortCpltCallback() is executed and user can add his own code by customization of function pointer HAL_I2C_AbortCpltCallback()

Declaration main.c

```
40 #include "main.h"
41 #include "stm32f4xx hal.h"
42
43 /* USER CODE BEGIN Includes */
44 #include "AM2320.h"
45 #include "string.h"
46 /* USER CODE END Includes */
48 /* Private variables -----
49 I2C HandleTypeDef hi2cl;
51 UART HandleTypeDef huart2;
53 /* USER CODE BEGIN PV */
54 /* Private variables -----
55 float h=30.0,t=40.0;
56 uint8 t step = 0;
57 HAL StatusTypeDef status;
58 /* USER CODE END PV */
59
60 /* Private function prototypes -----
61 void SystemClock Config(void);
62 static void MX GPIO Init(void);
63 static void MX USART2 UART Init(void);
64 static void MX I2Cl Init(void);
65
66 /* USER CODE BEGIN PFP */
67 /* Private function prototypes ------
68 uintl6_t CRCl6_2(uint8_t *, uint8_t );
69 /* USER CODE END PFP */
70
```

Declare local variables

Setting before while loop

```
/* Initialize all configured peripherals */
105
106
       MX GPIO Init();
107
       MX USART2 UART Init();
       MX I2Cl Init();
108
       /* USER CODE BEGIN 2 */
109
110
111
112
         sprintf(str, "\n\rAM2320 I2C DEMO Starting . . .\n\r");
         //while( HAL UART GET FLAG(&huart2, UART FLAG TC) == RESET) {}
113
         HAL UART Transmit(&huart2, (uint8 t*) str, strlen(str),200);
114
115
         cmdBuffer[0] = 0x03;
116
         cmdBuffer[1] = 0x00;
117
118
         cmdBuffer[2] = 0x04;
119
       /* USER CODE END 2 */
120
121
```

```
while (1)
126
127
128
129
       /* USER CODE END WHILE */
130
131
       /* USER CODE BEGIN 3 */
132
        //Send Temp & Humid via UART2
133
         sprintf(str, "Temperature = %4.1f\tHumidity = %4.1f\n\r", t, h);
134
135
         while ( HAL UART GET FLAG(&huart2, UART FLAG TC) == RESET) {}
         HAL UART Transmit(&huart2, (uint8 t*) str, strlen(str),200);
136
137
         HAL Delay(5000); //>3000 ms
138
139
         HAL GPIO TogglePin(GPIOA, GPIO PIN 5);
140
141
         //Wake up sensor
         HAL I2C Master Transmit(&hi2cl, 0x5c<<1, cmdBuffer, 3, 200);
142
         //Send reading command
143
144
         HAL I2C Master Transmit(&hi2cl, 0x5c<<1, cmdBuffer, 3, 200);
145
146
         HAL Delay(1);
147
148
         //Receive sensor data
149
         HAL I2C Master Receive(&hi2cl, 0x5c<<1, dataBuffer, 8, 200);
150
         uintl6 t Rcrc = dataBuffer[7] << 8;
151
         Rcrc += dataBuffer[6];
152
153
         if (Rcrc == CRC16 2(dataBuffer, 6)) {
154
         uint16 t temperature = ((dataBuffer[4] & 0x7F) << 8) + dataBuffer[5];</pre>
          t = temperature / 10.0;
155
           t = (((dataBuffer[4] \& 0x80) >> 7) == 1) ? (t * (-1)) : t ; // the temperature can be negative
156
157
158
           uintl6 t humidity = (dataBuffer[2] << 8) + dataBuffer[3];</pre>
           h = humiditv / 10.0;
159
160
161
       /* USER CODE END 3 */
162
```

While loop

HAL_I2C_Master_Transmit

HAL_I2C_Master_Transmit

Function name HAL_StatusTypeDef HAL_I2C_Master_Transmit

(I2C_HandleTypeDef * hi2c, uint16_t DevAddress, uint8_t *

pData, uint16 t Size, uint32 t Timeout)

Function description

Transmits in master mode an amount of data in blocking mode.

Parameters

- hi2c: Pointer to a I2C_HandleTypeDef structure that contains the configuration information for the specified I2C.
- DevAddress: Target device address: The device 7 bits address value in datasheet must be shift at right before call interface
- pData: Pointer to data buffer
- Size: Amount of data to be sent
- Timeout: Timeout duration

Return values

HAL: status

HAL I2C Master Receive

HAL_I2C_Master_Receive

Function name HAL_StatusTypeDef HAL_I2C_Master_Receive

(I2C_HandleTypeDef * hi2c, uint16_t DevAddress, uint8_t *

pData, uint16_t Size, uint32_t Timeout)

Function description

Receives in master mode an amount of data in blocking mode.

Parameters

 hi2c: Pointer to a I2C_HandleTypeDef structure that contains the configuration information for the specified I2C.

 DevAddress: Target device address: The device 7 bits address value in datasheet must be shift at right before call interface

pData: Pointer to data buffer

Size: Amount of data to be sent

Timeout: Timeout duration

Return values

HAL: status

CRC Checksum

```
291 /* USER CODE BEGIN 4 */
    uintl6_t CRCl6_2(uint8_t *ptr, uint8_t length)
293 - {
294
        uintl6 t crc = 0xFFFF;
295
          uint8 t s = 0x00;
296
297
      while(length--) {
         crc ^= *ptr++;
298
299 🗀
         for(s = 0; s < 8; s++) {
300 白
            if((crc & 0x01) != 0) {
301
              crc >>= 1;
302
              crc ^= 0xA001;
303 -
             } else crc >>= 1;
304
305 -
306
          return crc;
307 -1
308 /* USER CODE END 4 */
```

Show result in Tera Term via UART2

```
Tera Term - [disconnected] VT

File Edit Setup Control Window Help

AM2320 I2C DEMO Starting . .

Temperature = 40.0 Humidity = 30.0

Temperature = 26.9 Humidity = 56.2

Temperature = 26.9 Humidity = 65.1

Temperature = 26.9 Humidity = 65.2

Temperature = 26.9 Humidity = 65.2

Temperature = 26.9 Humidity = 65.1

Temperature = 26.9 Humidity = 65.1

Temperature = 26.9 Humidity = 65.1
```

12C LCD

- Character LCD
 - 16x2 characters
 - Parallel Connection
 - HD44780U LCD Controller
- •I/O Expander
 - 12C
 - PCF8574

LCD

Control Select)

```
Ground)

(U+ logic
(Contrast
(Register
(Register
(Redister
(data bit
(data bit)))))
```

81289258 81289258

```
VSS (Ground)
                             POWER
VDD (V+ logic)
   (Contrast Control V)
                           I CONTRAST
RS (Register Select)
R/W (Réad/Write)
                             REGISTER CONTROL
   (Enable)
   (data bit 4)
   (data bit 5)
                             DATA CTRL (4 bits)
D6 (data bit 6)
D7 (data bit 7)
LED+ (Backlight V+)
LED- (Backlight Ground)
                             LED POWER
```

HD44780 EagleCad part by Adafruit Industries.

LCD Schematic

HD44780U LCD Controller

Open Datasheet

Setting STM32Cube for I2C

การเชื่อมต่อกับ I2C ของ LCD กับ STM32

I2C LCD	STM32
GND	GND
Vcc	5V
SDA	PB8 (D14, I2C1_SDA)
SCL	PB9 (D15, I2C1_SCL)

คง Jumper : Backlight ติด

ถอด Jumper : Backlight ดับ

เพิ่ม i2c-lcd.c เข้าไปใน Project

- •คลิกขวาที่โฟลเดอร์ Application/User
- แลือก Add Existing Files
- ●เลือกไฟล์ i2c-lcd.c
- ●กด Add

เพิ่ม Path สำหรับ i2c-lcd.h

- เมนู Project ->Options for Target
- •ทำขั้นตอน 1-4
- •เลือกโฟลเดอร์ที่บรรจุ ไฟล์ i2c-lcd.h

i2c-lcd.c

```
#include "i2c-lcd.h"
extern I2C_HandleTypeDef hi2c1;

//#define SLAVE_ADDRESS_LCD 0x3F<<1
#define SLAVE_ADDRESS_LCD 0x27<<1</pre>
```

```
i2c-lcd.c

lcd_init (void)

lcd_send_cmd (char cmd)

lcd_send_data (char data)

lcd_send_string (char *str)
```

```
void lcd_send_cmd (char cmd)
{
    char data_u, data_l;
    uint8_t data_t[4];
    data_u = (cmd&0xf0);
    data_l = ((cmd<<4)&0xf0);
    data_l = ((cmd<<4)&0xf0);
    data_t[0] = data_u|0x0C; //en=1, rs=0
    data_t[1] = data_u|0x08; //en=0, rs=0
    data_t[2] = data_l|0x0C; //en=1, rs=0
    data_t[3] = data_l|0x08; //en=0, rs=0
    HAL_I2C_Master_Transmit (&hi2c1, SLAVE_ADDRESS_LCD, (uint8_t *) data_t, 4, 100);
}</pre>
```

เพิ่ม Code ก่อนเข้า while loop

```
/* Private includes -----
/* USER CODE BEGIN Includes */
#include "i2c-lcd.h"
#include <string.h>
#include <stdio.h>
/* USER CODE END Includes */
```

```
/* Initialize all configured peripherals */
MX GPIO Init();
MX I2C1 Init();
MX USART2 UART Init();
/* USER CODE BEGIN 2 */
I2C1 ADDR Chk();
lcd init ();
HAL Delay(500);
lcd send cmd (0x01); // clear the display
HAL Delay (500);
lcd send string ("HELLO WORLD !!");
HAL Delay (500);
lcd send cmd (0x01); // clear the display
HAL Delay (500);
/* USER CODE END 2 */
```

while loop code

```
112
       while (1)
113
114
115
       /* USER CODE END WHILE */
116
117
       /* USER CODE BEGIN 3 */
118
         lcd send cmd (0x80); // cursor goes to line:1 col:1
119
120
         lcd send string ("subscribe"); //display string
121
122
         lcd send cmd (0xc0); // cursor goes line:2 col:1
123
124
         lcd send string ("to this channel"); //diaplay string
125
126
         HAL Delay (2000); // wait for 2 sec
127
128
         lcd send cmd (0x01); // clear the display
129
130
         HAL GPIO TogglePin(GPIOA, GPIO PIN 5);
131
132
         HAL Delay (1000);
133
134
135
         //Display Line 1
136
         for(int i=0; i<=15; i++)
137
138
           lcd send cmd (0x80+i);
           lcd send string ("1");
139
140
           HAL Delay(200);
141
142
```

```
144
         //Display Line 2
145
         for(int i=0; i<=15; i++)
146
147
148
           lcd send cmd (0xc0+i);
149
           lcd send string ("2");
150
           HAL Delay(200);
151
152
153
154
         lcd send cmd (0x01); // clear the display
155
         HAL Delay(500);
156
157
         lcd send cmd (0xc0+0xd);
         lcd send string ("XYZ");
158
159
         HAL Delay(500);
160
161
         //Shift Left
162
         lcd send cmd (0x18);
163
         HAL Delay(500);
164
165
         //Shift Left
166
         1cd send cmd (0x18);
167
         HAL Delay(500);
168
169
         //Shift Left
170
         lcd send cmd (0x18);
         HAL Delay(500);
171
172
173
         //Shift Right
174
         lcd send cmd (0x1c);
175
         HAL Delay(500);
176
177
         //Shift Right
178
         lcd send cmd (0xlc);
179
         HAL Delay(500);
180
181
         //Shift Right
         lcd send cmd (0xlc);
182
183
         HAL Delay(500);
184
185
```

Scan Addresses

main.c

```
Address 0x23 is not found.
Address 0x24 is not found.
Address 0x25 is not found.
Address 0x26 is not found.
====> Address 0x27 is found. <====
Address 0x28 is not found.
Address 0x29 is not found.
Address 0x2A is not found.
Address 0x2B is not found.
```

```
void I2C1 ADDR Chk(void)
 uint8 t testAddr;
 uint8 t testData;
 char str[30];
 for (testAddr=0; testAddr<=127; testAddr++)</pre>
   if ( HAL OK == HAL I2C Master Transmit(&hi2c1, testAddr<<1, &testData, 1, 200))</pre>
     sprintf(str, "====> Address 0x%02X is found. <====\r\n", testAddr);
     HAL UART Transmit(&huart2, (uint8 t *) str, strlen(str), 300);
   } else {
     sprintf(str, "Address 0x%02X is not found.\r\n", testAddr);
     HAL UART Transmit(&huart2, (uint8 t *) str, strlen(str), 300);
   //if slave device is quite slow use HAL Delay
   //HAL Delay(200);
```