${\bf Computer\ Architecture-Homework\ VII}$ 107 Fall semester, Chapter 10

10.25 Consider a reduced 7-bit IEEE floating-point format, with 3 bits for the exponent and 3 bits for the significand. List all 127 values

sign_bit=0⇒positive numbers	zero &	normal nonzero						infinity
	subnormal	2^{-2}	2^{-1}	2^{0}	2^1	2^2	2^3	& NaN
significand $\downarrow \setminus \text{exponent} \rightarrow$	000	001	010	011	100	101	110	111
$(1)_{10} = (1.000)_2 \Leftarrow 000$	0	0.25	0.5	1	2	4	8	∞
$(1.125)_{10} = (1.001)_2 \Leftarrow 001$	0.03125	0.28125	0.5625	1.125	2.25	4.5	9	NaN
$(1.25)_{10} = (1.010)_2 \Leftarrow 010$	0.0625	0.3125	0.625	1.25	2.5	5	10	
$(1.375)_{10} = (1.011)_2 \Leftarrow 011$	0.09375	0.34375	0.6875	1.375	2.75	5.5	11	
$(1.5)_{10} = (1.100)_2 \Leftarrow 100$	0.125	0.375	0.75	1.5	3	6	12	
$(1.625)_{10} = (1.101)_2 \Leftarrow 101$	0.15625	0.40625	0.8125	1.625	3.25	6.5	13	
$(1.75)_{10} = (1.110)_2 \Leftarrow 110$	0.1875	0.4375	0.875	1.75	3.5	7	14	
$(1.875)_{10} = (1.111)_2 \Leftarrow 111$	0.21875	0.46875	0.9375	1.875	3.75	7.5	15	
sign_bit=1⇒negative numbers	zero &	normal nonzero						infinity
	subnormal	2^{-2}	2^{-1}	2^{0}	2^1	2^{2}	2^{3}	& NaN
significand $\downarrow \setminus \text{exponent} \rightarrow$	000	001	010	011	100	101	110	111
$(1)_{10} = (1.000)_2 \Leftarrow 000$	-0	-0.25	-0.5	-1	-2	-4	-8	-∞
$(1.125)_{10} = (1.001)_2 \Leftarrow 001$	-0.03125	-0.28125	-0.5625	-1.125	-2.25	-4.5	-9	NaN
$(1.25)_{10} = (1.010)_2 \Leftarrow 010$	-0.0625	-0.3125	-0.625	-1.25	-2.5	-5	-10	
$(1.375)_{10} = (1.011)_2 \Leftarrow 011$	-0.09375	-0.34375	-0.6875	-1.375	-2.75	-5.5	-11	
$(1.5)_{10} = (1.100)_2 \Leftarrow 100$	-0.125	-0.375	-0.75	-1.5	-3	-6	-12	
$(1.625)_{10} = (1.101)_2 \Leftarrow 101$	-0.15625	-0.40625	-0.8125	-1.625	-3.25	-6.5	-13	
$(1.75)_{10} = (1.110)_2 \Leftarrow 110$	-0.1875	-0.4375	-0.875	-1.75	-3.5	-7	-14	
(=:-=)10 (=:===)2 : ====	-0.21875	-0.46875	-0.9375	-1.875	-3.75	-7.5	-15	1

sign_bit=0⇒positive numbers	zero &	normal nonzero						infinity
	subnormal	2^{-2}	2^{-1}	2^{0}	2^1	2^2	2^3	& NaN
significand $\downarrow \setminus \text{exponent} \rightarrow$	000	001	010	011	100	101	110	111
$(8/8)_{10} = (1.000)_2 \Leftarrow 000$	0	8/32	8/16	8/8	8/4	8/2	8	∞
$(9/8)_{10} = (1.001)_2 \Leftarrow 001$	1/32	9/32	9/16	9/8	9/4	9/2	9	
$(10/8)_{10} = (1.010)_2 \Leftarrow 010$	2/32	10/32	10/16	10/8	10/4	10/2	10	
$(11/8)_{10} = (1.011)_2 \Leftarrow 011$	3/32	11/32	11/16	11/8	11/4	11/2	11	
$(12/8)_{10} = (1.100)_2 \Leftarrow 100$	4/32	12/32	12/16	12/8	12/4	12/2	12	NaN
$(13/8)_{10} = (1.101)_2 \Leftarrow 101$	5/32	13/32	13/16	13/8	13/4	13/2	13	
$(14/8)_{10} = (1.110)_2 \Leftarrow 110$	6/32	14/32	14/16	14/8	14/4	14/2	14	
$(15/8)_{10} = (1.111)_2 \Leftarrow 111$	7/32	15/32	15/16	15/8	15/4	15/2	15	
sign_bit=1⇒negative numbers	zero &	normal nonzero						infinity
	subnormal	2^{-2}	2^{-1}	2^{0}	2^1	2^2	2^3	& NaN
significand $\downarrow \setminus$ exponent \rightarrow	000	001	010	011	100	101	110	111
$(8/8)_{10} = (1.000)_2 \Leftarrow 000$	-0	-8/32	-8/16	-8/8	-8/4	-8/2	-8	-∞
$(9/8)_{10} = (1.001)_2 \Leftarrow 001$	-1/32	-9/32	-9/16	-9/8	-9/4	-9/2	-9	
$(10/8)_{10} = (1.010)_2 \Leftarrow 010$	-2/32	-10/32	-10/16	-10/8	-10/4	-10/2	-10	
$(11/8)_{10} = (1.011)_2 \Leftarrow 011$	-3/32	-11/32	-11/16	-11/8	-11/4	-11/2	-11	
$(12/8)_{10} = (1.100)_2 \Leftarrow 100$	-4/32	-12/32	-12/16	-12/8	-12/4	-12/2	-12	NaN
$(13/8)_{10} = (1.101)_2 \Leftarrow 101$	-5/32	-13/32	-13/16	-13/8	-13/4	-13/2	-13	
$(14/8)_{10} = (1.110)_2 \Leftarrow 110$	-6/32	-14/32	-14/16	-14/8	-14/4	-14/2	-14	
$(15/8)_{10} = (1.111)_2 \Leftarrow 111$	-7/32	-15/32	-15/16	-15/8	-15/4	-15/2	-15	

- 10.22 Assume that the exponent e is constrained to lie in the range $0 \dots e \dots X$, with a bias of q, that the base is b, and that the significand is p digits in length.
 - (a) What are the largest and smallest positive values that can be written?
 - (b) What are the largest and smallest positive values that can be written as normalized floating-point numbers?

Sol:

Now a number is represented as $0.\underbrace{b_1b_2b_3b_4b_5b_6\cdots b_p}_{p \text{ digits significand}} \times b^{e-q}$, where b_i is the *i*-th digit of the significand.

- (a) The largest value is $(1-b^{-p}) \times b^{x-q}$ The smallest value is $b^{-p} \times b^{-q}$
- (b) The largest value is $(1-b^{-p}) \times b^{x-q}$ The smallest value is $b^{-1} \times b^{-q}$

$$\forall i \in \{1, \dots, p\}, b_i = b - 1$$

 $\forall i \in \{1, \dots, p - 1\}, b_i = 0; b_p = 1$

$$\forall i \in \{1, \dots, p\}, b_i = b - 1$$

 $\forall i \in \{2, \dots, p\}, b_i = 0; b_1 = 1$