## ▼ Текстовое описание выбранного набора данных

Для данной лабораторной работы используется набор данных об ирисах. Датасет состит из следующих колонок:

- sepal length in cm длина чашелистика в см
- sepal width in cm ширина чашелистика в см
- petal length in cm длина лепестка в см
- petal width in cm ширина лестка в см

## Импорт бибилиотек

```
import numpy as np
import pandas as pd
from sklearn.datasets import *
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

## Загрузка данных

Преобразование наборов данных Scikit-learn в Pandas Dataframe

```
iris = load_iris()
type(iris)
    sklearn.utils.Bunch

for x in iris:
    print(x)

    data
    target
    frame
    target_names
    DESCR
    feature_names
    filename
    data_module

iris['target_names']
    array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
```

```
iris['feature_names']
    ['sepal length (cm)',
        'sepal width (cm)',
        'petal length (cm)',
        'petal width (cm)']

iris_frame = pd.DataFrame(iris.data)
```

Имена колонок создаваемой таблицы делаем такими же, как имена переменных в датасете:

```
iris_frame.columns = iris.feature_names
```

Добавляем столбец с целевой переменной:

```
iris_frame['target'] = iris.target
```

Добавляем столбец с названиями сортов для наглядности:

```
iris_frame['name'] = iris_frame.target.apply(lambda x : iris.target_names[x])
```

iris\_frame

|     | sepal length<br>(cm) | sepal width<br>(cm) | petal length<br>(cm) | petal width<br>(cm) | target | name      |
|-----|----------------------|---------------------|----------------------|---------------------|--------|-----------|
| 0   | 5.1                  | 3.5                 | 1.4                  | 0.2                 | 0      | setosa    |
| 1   | 4.9                  | 3.0                 | 1.4                  | 0.2                 | 0      | setosa    |
| 2   | 4.7                  | 3.2                 | 1.3                  | 0.2                 | 0      | setosa    |
| 3   | 4.6                  | 3.1                 | 1.5                  | 0.2                 | 0      | setosa    |
| 4   | 5.0                  | 3.6                 | 1.4                  | 0.2                 | 0      | setosa    |
|     |                      |                     |                      |                     |        |           |
| 145 | 6.7                  | 3.0                 | 5.2                  | 2.3                 | 2      | virginica |
| 146 | 6.3                  | 2.5                 | 5.0                  | 1.9                 | 2      | virginica |
| 147 | 6.5                  | 3.0                 | 5.2                  | 2.0                 | 2      | virginica |
| 148 | 6.2                  | 3.4                 | 5.4                  | 2.3                 | 2      | virginica |
| 149 | 5.9                  | 3.0                 | 5.1                  | 1.8                 | 2      | virginica |

150 rows × 6 columns

# ▼ 2) Основные характеристика датасета

#### Первые пять строк датасета:

iris\_frame.head()

|   | sepal length<br>(cm) | sepal width<br>(cm) | petal length<br>(cm) | petal width<br>(cm) | target | name   |
|---|----------------------|---------------------|----------------------|---------------------|--------|--------|
| 0 | 5.1                  | 3.5                 | 1.4                  | 0.2                 | 0      | setosa |
| 1 | 4.9                  | 3.0                 | 1.4                  | 0.2                 | 0      | setosa |
| 2 | 4.7                  | 3.2                 | 1.3                  | 0.2                 | 0      | setosa |
| 3 | 4.6                  | 3.1                 | 1.5                  | 0.2                 | 0      | setosa |
| 4 | 5.0                  | 3.6                 | 1.4                  | 0.2                 | 0      | setosa |

#### Размер датасета:

#### Количество строк:

```
total_count = iris_frame.shape[0]
print('Bcero cτροκ: {}'.format(total_count))

Bcero cτροκ: 150
```

#### Список колонок:

#### Список колонок с типами данных:

```
iris_frame.dtypes

sepal length (cm) float64
sepal width (cm) float64
petal length (cm) float64
petal width (cm) float64
target int64
name object
```

dtype: object

#### Проверим наличие пустых значений:

```
# Цикл по колонкам датасета

for col in iris_frame.columns:

# Количество пустых значений - все значения заполнены

temp_null_count = iris_frame[iris_frame[col].isnull()].shape[0]

print('{} - {}'.format(col, temp_null_count))

sepal length (cm) - 0

sepal width (cm) - 0

petal length (cm) - 0

petal width (cm) - 0

target - 0

name - 0
```

Основные статистические характеристки набора данных:

iris\_frame.describe()

|       | sepal length<br>(cm) | sepal width<br>(cm) | petal length<br>(cm) | petal width<br>(cm) | target     |
|-------|----------------------|---------------------|----------------------|---------------------|------------|
| count | 150.000000           | 150.000000          | 150.000000           | 150.000000          | 150.000000 |
| mean  | 5.843333             | 3.057333            | 3.758000             | 1.199333            | 1.000000   |
| std   | 0.828066             | 0.435866            | 1.765298             | 0.762238            | 0.819232   |
| min   | 4.300000             | 2.000000            | 1.000000             | 0.100000            | 0.000000   |
| 25%   | 5.100000             | 2.800000            | 1.600000             | 0.300000            | 0.000000   |
| 50%   | 5.800000             | 3.000000            | 4.350000             | 1.300000            | 1.000000   |
| 75%   | 6.400000             | 3.300000            | 5.100000             | 1.800000            | 2.000000   |
| max   | 7.900000             | 4.400000            | 6.900000             | 2.500000            | 2.000000   |

Определим уникальные значения для целевого признака:

```
iris_frame['target'].unique()
    array([0, 1, 2])
```

Целевой признак может принимать три значения.

# ▼ 3)Визуальное исследование датасета

#### Гистограмма

#### Распределение значений sepal length (cm) - длины чашелистика в см

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(iris_frame['sepal length (cm)'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84ed872790>



# Диаграмма рассеяния

Зависимость распределение длины чашелистика от сорта (целевого признака)

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='target', y='sepal length (cm)', data=iris_frame)
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84ed544990>



Зависимость petal length (cm) - длины лепестка от sepal length (cm) - длины чашелистика

fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='petal length (cm)', y='sepal length (cm)', data=iris\_frame)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84ed5e3ed0>



Можно увидеть, что зависимость этих двух характеристик очень похожа на линейную.

Посмотрим насколько на эту зависимость влияет целевой признак.

fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='petal length (cm)', y='sepal length (cm)', data=iris\_frame, hue

Легко прослеживается зависимость: при увелечении значений petal length (cm) и sepal length (cm) увеличивается значение целевого признака target.

| | • · · |

## 4) Информация о корреляции признаков

iris\_frame.corr()

|                      | sepal length<br>(cm) | sepal width<br>(cm) | petal length<br>(cm) | petal width<br>(cm) | target    |
|----------------------|----------------------|---------------------|----------------------|---------------------|-----------|
| sepal length<br>(cm) | 1.000000             | -0.117570           | 0.871754             | 0.817941            | 0.782561  |
| sepal width<br>(cm)  | -0.117570            | 1.000000            | -0.428440            | -0.366126           | -0.426658 |
| petal length<br>(cm) | 0.871754             | -0.428440           | 1.000000             | 0.962865            | 0.949035  |
| I                    | 0                    |                     |                      |                     | I         |

На основе полученной коррелирующей можно сделать следующие выводы:

- Целевой признак наиболее сильно коррелирует с длиной лепестка и с шириной лепестка. Эти признаки следуюет оставить в модели.
- Также целевой признак достаточно сильно коррелирует с длиной чашелистика. Этот признак следует также оставить.
- Слабая отрицательная корреляция у ширины чашелистика. Этот принак можно исключить из модели, чтобы не ухучшать её качество.
- Признаки длина и ширина лепестка имеют очень сильную корреляцию, поэтому один из них стоит убрать. Уберем Длину лепестка, потому что она меньше коррелирует с целевым признаком.

Построим "тепловую карту" headmap, которая показывает степень корреляции различными цветами.

```
fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(10,7)) fig.suptitle('Корреляционная матрица') sns.heatmap(iris_frame.corr(), cmap='PiYG', annot=True, fmt='.3f')
```

# <matplotlib.axes.\_subplots.AxesSubplot at 0x7f84ea70c950> Koppeляционная матрица



#### Треугольный вариант матрицы

```
fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(10,7))
fig.suptitle('Корреляционная матрица')
mask = np.zeros_like(iris_frame.corr(), dtype=np.bool)
# чтобы оставить нижнюю часть матрицы
# mask[np.triu_indices_from(mask)] = True
# чтобы оставить верхнюю часть матрицы
mask[np.tril_indices_from(mask)] = True
sns.heatmap(iris_frame.corr(), mask=mask, annot=True, fmt='.3f')
```

/usr/local/lib/python3.7/dist-packages/ipykernel\_launcher.py:3: DeprecationWarning: `Deprecated in NumPy 1.20; for more details and guidance: <a href="https://numpy.org/devdocs/re">https://numpy.org/devdocs/re</a> This is separate from the ipykernel package so we can avoid doing imports until <matplotlib.axes.\_subplots.AxesSubplot at 0x7f84ea4b7990>

#### Корреляционная матрица



• ×