Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

In [1]:

```
# Dependencies and Setup
import pandas as pd

# File to Load (Remember to Change These)
school_data_to_load = "schools_complete.csv"
student_data_to_load = "students_complete.csv"

# Read School and Student Data File and store into Pandas DataFrames
school_data = pd.read_csv(school_data_to_load)
student_data = pd.read_csv(student_data_to_load)
# Combine the data into a single dataset.
school_dataComp = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"])
```

In [2]:

```
school_dataComp.head()
```

Out[2]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score	School ID	type	size	budget
0	0	Paul Bradley	М	9th	Huang High School	66	79	0	District	2917	1910635
1	1	Victor Smith	М	12th	Huang High School	94	61	0	District	2917	1910635
2	2	Kevin Rodriguez	М	12th	Huang High School	90	60	0	District	2917	1910635
3	3	Dr. Richard Scott	М	12th	Huang High School	67	58	0	District	2917	1910635
4	4	Bonnie Ray	F	9th	Huang High School	97	84	0	District	2917	1910635

localhost:8888/lab 1/28

District Summary

- · Calculate the total number of schools
- · Calculate the total number of students
- Calculate the total budget
- Calculate the average math score
- Calculate the average reading score
- Calculate the percentage of students with a passing math score (70 or greater)
- Calculate the percentage of students with a passing reading score (70 or greater)
- Calculate the percentage of students who passed math and reading (% Overall Passing)
- Create a dataframe to hold the above results
- Optional: give the displayed data cleaner formatting

localhost:8888/lab 2/28

In [3]:

```
total schools = len(school dataComp["school name"].unique())
total_students = school_dataComp["student_name"].count()
total budget = school data["budget"].sum()
avg math = school dataComp["math score"].mean()
avg reading = school dataComp["reading score"].mean()
passing math = [num for num in school dataComp["math score"] if num >= 70]
passing mathPerc = (len(passing math) / len(school dataComp["math score"])) * 100
passing reading = [num for num in school dataComp["reading score"] if num >= 70]
passing_readingPerc = (len(passing_reading) / len(school_dataComp["reading score"])) * 100
overallPass = student data[(student data["math score"] >= 70) & (student data["reading score"] >= 70)]
overallPassC = len(overallPass)
passingAvgPerc = overallPassC / total students *100
district summary = pd.DataFrame({"Total Schools": [total schools],
                                "Total Students": [total students],
                               "Total Budget": [total budget],
                               "Average Math Score": [avg math],
                                "Average Reading Score": [avg reading],
                                "% Passing Math": [passing mathPerc],
                                "% Passing Reading": [passing readingPerc],
                                "Overall Pass Rate": passingAvgPerc})
district summary["Total Students"] = district summary["Total Students"].map("{:,}".format)
district summary["Total Budget"] = district summary["Total Budget"].map("${:,.2f}".format)
district summary["% Passing Math"] = district summary["% Passing Math"].map("{:.2f}%".format)
district summary["% Passing Reading"] = district summary["% Passing Reading"].map("{:.2f}%".format)
district summary["Overall Pass Rate"] = district summary["Overall Pass Rate"].map("{:.2f}%".format)
district summary
```

Out[3]:

	Total Schools	Total Students	Total Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Pass Rate
0	15	39.170	\$24,649,428,00	78.985371	81.87784	74.98%	85.81%	65.17%

localhost;8888/lab 3/28

School Summary

- Create an overview table that summarizes key metrics about each school, including:
 - School Name
 - School Type
 - Total Students
 - Total School Budget
 - Per Student Budget
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - % Overall Passing (The percentage of students that passed math **and** reading.)
- Create a dataframe to hold the above results

localhost:8888/lab 4/28

In [4]:

```
school_type = school_data.set_index(["school_name"])["type"]
school_type
```

Out[4]:

school_name

Huang High School District Figueroa High School District Shelton High School Charter Hernandez High School District Griffin High School Charter Wilson High School Charter Cabrera High School Charter Bailey High School District Holden High School Charter Pena High School Charter Wright High School Charter Rodriguez High School District Johnson High School District Ford High School District Thomas High School Charter

Name: type, dtype: object

localhost:8888/lab 5/28

In [5]:

```
school_students = school_dataComp["school_name"].value_counts()
school_students
```

Out[5]:

Bailey High School	4976
Johnson High School	4761
Hernandez High School	4635
Rodriguez High School	3999
Figueroa High School	2949
Huang High School	2917
Ford High School	2739
Wilson High School	2283
Cabrera High School	1858
Wright High School	1800
Shelton High School	1761
Thomas High School	1635
Griffin High School	1468
Pena High School	962
Holden High School	427
<pre>Name: school_name, dtype:</pre>	int64

localhost:8888/lab 6/28

In [6]:

```
school_budget = school_data.groupby(["school_name"])["budget"].sum()
school_budget
```

Out[6]:

school_name Bailey High School 3124928 Cabrera High School 1081356 Figueroa High School 1884411 Ford High School 1763916 Griffin High School 917500 Hernandez High School 3022020 Holden High School 248087 Huang High School 1910635 Johnson High School 3094650 Pena High School 585858 Rodriguez High School 2547363 Shelton High School 1056600 Thomas High School 1043130 Wilson High School 1319574 Wright High School 1049400 Name: budget, dtype: int64

localhost:8888/lab 7/28

In [7]:

```
per_student_budget = school_budget / school_students
per_student_budget
```

Out[7]:

Bailey High School	628.0
Cabrera High School	582.0
Figueroa High School	639.0
Ford High School	644.0
Griffin High School	625.0
Hernandez High School	652.0
Holden High School	581.0
Huang High School	655.0
Johnson High School	650.0
Pena High School	609.0
Rodriguez High School	637.0
Shelton High School	600.0
Thomas High School	638.0
Wilson High School	578.0
Wright High School	583.0
dtype: float64	

localhost:8888/lab 8/28

In [8]:

```
school_math = school_dataComp.groupby(["school_name"])["math_score"].mean()
school_math
```

Out[8]:

school_name Bailey High School 77.048432 Cabrera High School 83.061895 Figueroa High School 76.711767 Ford High School 77.102592 Griffin High School 83.351499 Hernandez High School 77.289752 Holden High School 83.803279 Huang High School 76.629414 Johnson High School 77.072464 Pena High School 83.839917 Rodriguez High School 76.842711 Shelton High School 83.359455 Thomas High School 83.418349 Wilson High School 83.274201 Wright High School 83.682222 Name: math_score, dtype: float64

localhost:8888/lab 9/28

In [9]:

```
school_read = school_dataComp.groupby(["school_name"])["reading_score"].mean()
school_read
```

Out[9]:

school_name Bailey High School 81.033963 Cabrera High School 83.975780 Figueroa High School 81.158020 Ford High School 80.746258 Griffin High School 83.816757 Hernandez High School 80.934412 Holden High School 83.814988 Huang High School 81.182722 Johnson High School 80.966394 Pena High School 84.044699 Rodriguez High School 80.744686 Shelton High School 83.725724 Thomas High School 83.848930 Wilson High School 83.989488 Wright High School 83.955000 Name: reading_score, dtype: float64

localhost:8888/lab 10/28

In [10]:

```
mathpass_school = school_dataComp[(school_dataComp["math_score"] >= 70)]
school_mathpass_pct = mathpass_school.groupby(["school_name"])["student_name"].count() / school_students *100
school_mathpass_pct
```

Out[10]:

Bailey High School	66.680064
Cabrera High School	94.133477
Figueroa High School	65.988471
Ford High School	68.309602
Griffin High School	93.392371
Hernandez High School	66.752967
Holden High School	92.505855
Huang High School	65.683922
Johnson High School	66.057551
Pena High School	94.594595
Rodriguez High School	66.366592
Shelton High School	93.867121
Thomas High School	93.272171
Wilson High School	93.867718
Wright High School	93.333333
dtype: float64	

localhost:8888/lab 11/28

In [11]:

```
readpass_school = school_dataComp[(school_dataComp["reading_score"] >= 70)]
school_readpass_pct = readpass_school.groupby(["school_name"])["student_name"].count() / school_students * 100
school_readpass_pct
```

Out[11]:

Bailey High School	81.933280
Cabrera High School	97.039828
Figueroa High School	80.739234
Ford High School	79.299014
Griffin High School	97.138965
Hernandez High School	80.862999
Holden High School	96.252927
Huang High School	81.316421
Johnson High School	81.222432
Pena High School	95.945946
Rodriguez High School	80.220055
Shelton High School	95.854628
Thomas High School	97.308869
Wilson High School	96.539641
Wright High School	96.611111
dtype: float64	

localhost:8888/lab 12/28

In [12]:

```
school_overallPass = school_dataComp[(school_dataComp["math_score"] >= 70) & (school_dataComp["reading_score"] >= 70)]
school_overall_pass = school_overallPass.groupby(["school_name"])["student_name"].count() / school_students * 100
school_overall_pass
```

Out[12]:

Bailey High School	54.642283
Cabrera High School	91.334769
Figueroa High School	53.204476
Ford High School	54.289887
Griffin High School	90.599455
Hernandez High School	53.527508
Holden High School	89.227166
Huang High School	53.513884
Johnson High School	53.539172
Pena High School	90.540541
Rodriguez High School	52.988247
Shelton High School	89.892107
Thomas High School	90.948012
Wilson High School	90.582567
Wright High School	90.333333
dtype: float64	

localhost:8888/lab 13/28

In [13]:

```
school summary = pd.DataFrame({
    "School Type": school type,
    "Students": school students,
    "School Budget": school budget,
    "Budget per Student": per student budget,
    "Average Math Score": school math,
    "Average Reading Score": school read,
    "% Passing Math": school mathpass pct,
    "% Passing Reading": school readpass pct,
    "Overall Pass Rate": school overall pass
})
school summary = school summary[["School Type", "Students", "School Budget", "Budget per Student",
                                "Average Math Score", "Average Reading Score", "% Passing Math",
                                "% Passing Reading", "Overall Pass Rate"]]
school summary["School Budget"] = school summary["School Budget"].map("$\{:,.2f\}".format)
school summary["Budget per Student"] = school summary["Budget per Student"].map("${:,.2f}".format)
school summary["Average Math Score"] = school summary["Average Math Score"].map("{:.2f}".format)
school summary["Average Reading Score"] = school summary["Average Reading Score"].map("{:.2f}".format)
school summary["% Passing Math"] = school summary["% Passing Math"].map("{:.2f}%".format)
school_summary["% Passing Reading"] = school_summary["% Passing Reading"].map("{:.2f}%".format)
school summary["Overall Pass Rate"] = school summary["Overall Pass Rate"].map("{:.2f}%".format)
school summary
```

localhost:8888/lab 14/28

Out[13]:

	School Type	Students	School Budget	Budget per Student	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Pass Rate
Bailey High School	District	4976	\$3,124,928.00	\$628.00	77.05	81.03	66.68%	81.93%	54.64%
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.06	83.98	94.13%	97.04%	91.33%
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.71	81.16	65.99%	80.74%	53.20%
Ford High School	District	2739	\$1,763,916.00	\$644.00	77.10	80.75	68.31%	79.30%	54.29%
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.35	83.82	93.39%	97.14%	90.60%
Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.29	80.93	66.75%	80.86%	53.53%
Holden High School	Charter	427	\$248,087.00	\$581.00	83.80	83.81	92.51%	96.25%	89.23%
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.63	81.18	65.68%	81.32%	53.51%
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.07	80.97	66.06%	81.22%	53.54%
Pena High School	Charter	962	\$585,858.00	\$609.00	83.84	84.04	94.59%	95.95%	90.54%
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.84	80.74	66.37%	80.22%	52.99%
Shelton High School	Charter	1761	\$1,056,600.00	\$600.00	83.36	83.73	93.87%	95.85%	89.89%
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.42	83.85	93.27%	97.31%	90.95%
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.27	83.99	93.87%	96.54%	90.58%
Wright High School	Charter	1800	\$1,049,400.00	\$583.00	83.68	83.95	93.33%	96.61%	90.33%

localhost:8888/lab 15/28

Top Performing Schools (By % Overall Passing)

• Sort and display the top five performing schools by % overall passing.

In [14]:

```
top_schools = school_summary.sort_values("Overall Pass Rate", ascending=False)
top_schools.head()
```

Out[14]:

	School Type	Students	School Budget	Budget per Student	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Pass Rate
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.06	83.98	94.13%	97.04%	91.33%
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.42	83.85	93.27%	97.31%	90.95%
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.35	83.82	93.39%	97.14%	90.60%
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.27	83.99	93.87%	96.54%	90.58%
Pena High School	Charter	962	\$585,858.00	\$609.00	83.84	84.04	94.59%	95.95%	90.54%

Bottom Performing Schools (By % Overall Passing)

• Sort and display the five worst-performing schools by % overall passing.

localhost:8888/lab 16/28

PyCitySchools_starter

In [15]:

7/2/2020

```
bottom_schools = school_summary.sort_values("Overall Pass Rate")
bottom_schools.head()
```

Out[15]:

	School Type	Students	School Budget	Budget per Student	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Pass Rate
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.84	80.74	66.37%	80.22%	52.99%
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.71	81.16	65.99%	80.74%	53.20%
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.63	81.18	65.68%	81.32%	53.51%
Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.29	80.93	66.75%	80.86%	53.53%
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.07	80.97	66.06%	81.22%	53.54%

Math Scores by Grade

- Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school.
 - Create a pandas series for each grade. Hint: use a conditional statement.
 - Group each series by school
 - Combine the series into a dataframe
 - Optional: give the displayed data cleaner formatting

localhost:8888/lab 17/28

In [16]:

```
math9=student_data.loc[student_data["grade"] == "9th"].groupby(["school_name"])["math_score"].mean()
math10=student_data.loc[student_data["grade"] == "10th"].groupby(["school_name"])["math_score"].mean()
math11=student_data.loc[student_data["grade"] == "11th"].groupby(["school_name"])["math_score"].mean()
math12=student_data.loc[student_data["grade"] == "12th"].groupby(["school_name"])["math_score"].mean()

mathbygrade=pd.DataFrame({"9th":math9, "10th":math10, "11th":math11, "12th":math12})

mathbygrade["9th"] = mathbygrade["9th"].map("{:.2f}".format)
mathbygrade["10th"] = mathbygrade["10th"].map("{:.2f}".format)
mathbygrade["11th"] = mathbygrade["11th"].map("{:.2f}".format)
mathbygrade["12th"] = mathbygrade["12th"].map("{:.2f}".format)
mathbygrade
```

localhost:8888/lab 18/28

7/2/2020

Out[16]:

	9th	10th	11th	12th
school_name				
Bailey High School	77.08	77.00	77.52	76.49
Cabrera High School	83.09	83.15	82.77	83.28
Figueroa High School	76.40	76.54	76.88	77.15
Ford High School	77.36	77.67	76.92	76.18
Griffin High School	82.04	84.23	83.84	83.36
Hernandez High School	77.44	77.34	77.14	77.19
Holden High School	83.79	83.43	85.00	82.86
Huang High School	77.03	75.91	76.45	77.23
Johnson High School	77.19	76.69	77.49	76.86
Pena High School	83.63	83.37	84.33	84.12
Rodriguez High School	76.86	76.61	76.40	77.69
Shelton High School	83.42	82.92	83.38	83.78
Thomas High School	83.59	83.09	83.50	83.50
Wilson High School	83.09	83.72	83.20	83.04
Wright High School	83.26	84.01	83.84	83.64

Reading Score by Grade

• Perform the same operations as above for reading scores

localhost:8888/lab 19/28

In [17]:

```
read9=student_data.loc[student_data["grade"] == "9th"].groupby(["school_name"])["reading_score"].mean()
read10=student_data.loc[student_data["grade"] == "10th"].groupby(["school_name"])["reading_score"].mean()
read11=student_data.loc[student_data["grade"] == "11th"].groupby(["school_name"])["reading_score"].mean()
read12=student_data.loc[student_data["grade"] == "12th"].groupby(["school_name"])["reading_score"].mean()

readbygrade=pd.DataFrame({"9th":read9, "10th":read10, "11th":read11, "12th":read12})

readbygrade["9th"] = readbygrade["9th"].map("{:.2f}".format)
readbygrade["10th"] = readbygrade["10th"].map("{:.2f}".format)
readbygrade["11th"] = readbygrade["11th"].map("{:.2f}".format)
readbygrade["12th"] = readbygrade["12th"].map("{:.2f}".format)
readbygrade
```

localhost;8888/lab 20/28

Out[17]:

	9th	10th	11th	12th
school_name				
Bailey High School	81.30	80.91	80.95	80.91
Cabrera High School	83.68	84.25	83.79	84.29
Figueroa High School	81.20	81.41	80.64	81.38
Ford High School	80.63	81.26	80.40	80.66
Griffin High School	83.37	83.71	84.29	84.01
Hernandez High School	80.87	80.66	81.40	80.86
Holden High School	83.68	83.32	83.82	84.70
Huang High School	81.29	81.51	81.42	80.31
Johnson High School	81.26	80.77	80.62	81.23
Pena High School	83.81	83.61	84.34	84.59
Rodriguez High School	80.99	80.63	80.86	80.38
Shelton High School	84.12	83.44	84.37	82.78
Thomas High School	83.73	84.25	83.59	83.83
Wilson High School	83.94	84.02	83.76	84.32
Wright High School	83.83	83.81	84.16	84.07

Scores by School Spending

- Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following:
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - Overall Passing Rate (Average of the above two)

localhost:8888/lab 21/28

In [18]:

school_summary.head()

Out[18]:

	School Type	Students	School Budget	Budget per Student	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Pass Rate
Bailey High School	District	4976	\$3,124,928.00	\$628.00	77.05	81.03	66.68%	81.93%	54.64%
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.06	83.98	94.13%	97.04%	91.33%
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.71	81.16	65.99%	80.74%	53.20%
Ford High School	District	2739	\$1,763,916.00	\$644.00	77.10	80.75	68.31%	79.30%	54.29%
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.35	83.82	93.39%	97.14%	90.60%

localhost:8888/lab 22/28

In [48]:

```
bins = [0, 584.99, 629.99, 644.99, 675.99]
group names = ["<$584", "$585-629", "$630-644", "$645-675"]
school dataComp['spending bins'] = pd.cut(school dataComp['budget']/school dataComp['size'], bins, labels = group names)
bySpending = school dataComp.groupby("spending bins")
avgMath = bySpending["math score"].mean()
avgRead = bySpending["reading score"].mean()
passMath = school dataComp[school_dataComp["math_score"] >= 70].groupby("spending_bins")["Student ID"].count()/bySpending
["Student ID"].count()
passRead = school dataComp[school dataComp["reading score"] >= 70].groupby("spending bins")["Student ID"].count()/bySpend
ing["Student ID"].count()
overall = school dataComp[(school dataComp["reading score"] >= 70) & (school dataComp["math score"] >= 70)].groupby("spen
ding bins")["Student ID"].count()/bySpending["Student ID"].count()
scores byspend = pd.DataFrame({
    "Average Math Score": avgMath,
    "Average Reading Score": avgRead,
   "% Passing Math": passMath,
   "% Passing Reading": passRead,
    "Overall Passing Rate": overall
})
scores byspend.index.name = "Spending Ranges (Per Student)"
scores byspend = scores byspend.reindex(group names)
scores byspend["Average Math Score"] = scores byspend["Average Math Score"].map("{:.1f}".format)
scores byspend["Average Reading Score"] = scores byspend["Average Reading Score"].map("{:.1f}".format)
scores byspend["% Passing Math"] = scores byspend["% Passing Math"].map("{:.1%}".format)
scores byspend["% Passing Reading"] = scores byspend["% Passing Reading"].map("{:.1%}".format)
scores byspend["Overall Passing Rate"] = scores byspend["Overall Passing Rate"].map("{:.1%}".format)
scores_byspend
```

localhost:8888/lab 23/28

Out[48]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
Spending Ranges (Per Student)					
	83.4	84.0	93.7%	96.7%	90.6%
\$585-629	80.0	82.3	79.1%	88.5%	70.9%
\$630-644	77.8	81.3	70.6%	82.6%	58.8%
\$645-675	77.0	81.0	66.2%	81.1%	53.5%

• Perform the same operations as above, based on school size.

localhost:8888/lab 24/28

In [56]:

```
bins = [0, 999, 1999, 5000]
group names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"]
school dataComp[ "size bins"] = pd.cut(school dataComp["size"], bins, labels = group names)
bySize = school dataComp.groupby("size bins")
avgMath = bySize["math score"].mean()
avgRead = bySize["reading score"].mean()
passMath = school dataComp[school dataComp["math score"] >= 70].groupby("size bins")["Student ID"].count()/bySize["Studen
t ID"].count()
passread = school dataComp[school dataComp["reading score"] >= 70].groupby("size bins")["Student ID"].count()/bySize["Stu
dent ID"].count()
overall = school dataComp[(school dataComp["reading score"] >= 70) & (school dataComp["math score"] >= 70)].groupby("size
bins")["Student ID"].count()/bySize["Student ID"].count()
scores bysize = pd.DataFrame({
    "Average Math Score": avgMath,
    "Average Reading Score": avgRead,
   "% Passing Math": passMath,
   "% Passing Reading": passread,
    "Overall Passing Rate": overall
})
scores bysize.index.name = "Total Students"
scores bysize = scores bysize.reindex(group names)
scores bysize["Average Math Score"] = scores bysize["Average Math Score"].map("{:.1f}".format)
scores bysize["Average Reading Score"] = scores bysize["Average Reading Score"].map("{:.1f}".format)
scores bysize["% Passing Math"] = scores bysize["% Passing Math"].map("{:.1%}".format)
scores bysize["% Passing Reading"] = scores_bysize["% Passing Reading"].map("{:.1%}".format)
scores bysize["Overall Passing Rate"] = scores bysize["Overall Passing Rate"].map("{:.1%}".format)
scores_bysize
```

localhost:8888/lab 25/28

Out[56]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
Total Students					
Small (<1000)	83.8	84.0	94.0%	96.0%	90.1%
Medium (1000-2000)	83.4	83.9	93.6%	96.8%	90.6%
Large (2000-5000)	77.5	81.2	68.7%	82.1%	56.6%

Scores by School Type

• Perform the same operations as above, based on school type

localhost:8888/lab 26/28

In [78]:

```
byType = school dataComp.groupby("type")
avgMath = byType["math score"].mean()
avgRead = byType["reading score"].mean()
passMath = school dataComp[school dataComp["math score"] >= 70].groupby("type")["Student ID"].count()/byType["Student I
D"].count()
passRead = school dataComp[school dataComp["reading score"] >= 70].groupby("type")["Student ID"].count()/byType["Student
ID"].count()
overall = school dataComp[(school dataComp["reading score"] >= 70) & (school dataComp["math score"] >= 70)].groupby("typ
e")["Student ID"].count()/byType["Student ID"].count()
scores bytype = pd.DataFrame({
    "Average Math Score": avgMath,
   "Average Reading Score": avgRead,
   "% Passing Math": passMath,
    "% Passing Reading": passRead,
    "Overall Passing Rate": overall
})
scores bytype.index.name = "Type of School"
scores bytype["Average Math Score"] = scores bytype["Average Math Score"].map("{:..1f}".format)
scores bytype["Average Reading Score"] = scores bytype["Average Reading Score"].map("{:.1f}".format)
scores bytype["% Passing Math"] = scores bytype["% Passing Math"].map("{:.1%}".format)
scores bytype["% Passing Reading"] = scores bytype["% Passing Reading"].map("{:.1%}".format)
scores bytype["Overall Passing Rate"] = scores bytype["Overall Passing Rate"].map("{:.1%}".format)
scores bytype
```

Out[78]:

Average Math Score Average Reading Score % Passing Math % Passing Reading Overall Passing Rate

Type of School

Charter	83.4	83.9	93.7%	96.6%	90.6%
District	77.0	81.0	66.5%	80.9%	53.7%

localhost;8888/lab 27/28

In []:		

localhost:8888/lab 28/28