一步一步解析H.264码流的NALU(SPS,PSS,IDR)获取宽高和帧率

```
分析H.264码流的工具
```

CodecVisa, StreamEye以及VM Analyzer

NALU是由NALU头和RBSP数据组成,而RBSP可能是SPS, PPS, Slice或SEI

而且SPS位于第一个NALU, PPS位于第二个NALU

另外值得说一下的就是MHeaders Info拷贝出来的数据当中"na"就是未定义的,也就是if条件没有覆盖 的情况。

pic_width_in_mbs_minus1 = 21

pic_height_in_mbs_minusl = 17 分別表示图像的変和高, 以宏块(16x16)为单位的值减1 因此, 实际的宽为 (21+1)*16 = 352

以上是针对宽高是16的整数倍的情况,当不是16整数倍时,frame_cropping_flag值为1,frame_mbs_only_flag为1,公式如下: // 宽高计算公式

height = (2 - sps>/frame_mbs_only_flag)* (sps>-pic_height_in_map_units_minus1+1) * 16); iffsps>/frame_cropping_flag)

unsigned int crop_unit_x;

unsigned int crop_unit_y;
if (0 == sps->chroma_format_ide) // monochrome

crop unit x = 1:

crop_unit_y = 2 - sps->frame_mbs_only_flag;

else if (1 == sps->chroma format idc) // 4:2:0

crop_unit_x = 2;

crop_unit_y = 2 * (2 - sps->frame_mbs_only_flag);

crop_unit_y = 2 - sps->frame_mbs_only_flag;

else // 3 == sps.chroma_format_idc // 4:4:4

crop_unit_y = 2 - sps->frame_mbs_only_flag;

}
width = crop_unit_x * (sps->frame_crop_left_offset + sps->frame_crop_right_offset);
height = crop_unit_y * (sps->frame_crop_top_offset + sps->frame_crop_bottom_offset);

ff_h264_decode_seq_parameter_set ff_h264_decode_picture_parameter_set https://cardinalpeak.com/blog/the-h-264

最好参考:H.264官方中文版.pdf7.3.2.1节对比查看

Parameter Name	Туре	Value	Comments
forbidden_zero_bit	u(1)	0	Despite being forbidden, it must be set to 0!
nal_ref_idc	u(2)	3	3 means it is "important" (this is an SPS)
nal_unit_type	u(5)	7	Indicates this is a sequence parameter set
profile_idc	u(8)	66	Baseline profile
constraint_set0_flag	u(1)	0	We're not going to honor constraints
constraint_set1_flag	u(1)	0	We're not going to honor constraints
constraint_set2_flag	u(1)	0	We're not going to honor constraints
constraint_set3_flag	u(1)	0	We're not going to honor constraints
reserved_zero_4bits	u(4)	0	Better set them to zero
level_idc	u(8)	10	Level 1, sec A.3.1
seq_parameter_set_id	ue(v)	0	We'll just use id 0.
log2_max_frame_num_minus4	ue(v)	0	Let's have as few frame numbers as possible
pic_order_cnt_type	ue(v)	0	Keep things simple
log2_max_pic_order_cnt_lsb_minus4	ue(v)	0	Fewer is better.
num_ref_frames	ue(v)	0	We will only send I slices
gaps_in_frame_num_value_allowed_flag	u(1)	0	We will have no gaps
pic_width_in_mbs_minus_1	ue(v)	7	SQCIF is 8 macroblocks wide
pic_height_in_map_units_minus_1	ue(v)	5	SQCIF is 6 macroblocks high
frame_mbs_only_flag	u(1)	1	We will not to field/frame encoding
direct_8x8_inference_flag	u(1)	0	Used for B slices. We will not send B slices
frame_cropping_flag	u(1)	0	We will not do frame cropping
vui_prameters_present_flag	u(1)	0	We will not send VUI data
rbsp_stop_one_bit	u(1)	1	Stop bit. I missed this at first and it caused me much trouble.
			l

skip_bits(&h->gb, 2);跳过两个位. 表现为GetBitContext.index后移两个位置。

- 当前SPS的帧的宽 = (sps_info.pic_width_in_mbs_minus1 + 1) * 16
 当前SPS的帧的高 = (sps_info.pic_height_in_map_units_minus1 + 1) * 16

extract the h.264 NAL units from the file using ffmpeg:

ffmpeg.exe -i Old Faithful.mp4 -vcodec copy -vbsf h264_mp4toannexb -an of.h264 获取帧率

hub.com/leixiaohua1020/simplest_librtmp_example/blob/master/simplest_librtmp_send264/sps_decode.h

fps=time_scale/(2*num_units_in_tick);

30/(2*1)=15fps : https://github.com/leixiaohua1020/h264_analysis

http://www.latelee.org/my-study/get-width-height-framerate-from-bitstream.html宽高计算公式

原文地址: https://www.cnblogs.com/elesos/p/7569363.html

```
推荐文章
 機存文章

(Query中部remove()、detach()和empty()的...

Bootstrap Timepicker

jQuery中hover(的部件表形

Robot Framework知)が明

Robot Framework环境搭建

selenium + python自动化处理时间控件
  VM安装Centos7
selenium使用报错 "seleniu
设计模式读中等此"单件模式(锁建型模式)
supersocketz观止传文件
一步一步架起MyBatis
windows平台下cmake+gtest工程调试
形入式Linux模块移图四部曲
一次模架的调记经历
阅读《大型网站技术探询》第五章、第六章心得
  阅读(大型网站技术架构)第四章心得
阅读(大型网站技术架构)第三章心得
```