Docket No.: CL1610 US NA

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (previously presented): A hydrogel particle-forming apparatus comprising:

- (a) a housing having a wall and a cavity,
- (b) at least one inlet port in the wall of the housing for introducing a hydrogel-forming suspension into the housing cavity,
- at least a second inlet port in the housing for introducing a biocatalyst into the housing cavity,
- (d) at least one mixing device within the housing cavity for mixing the biocatalyst with the hydrogel-forming suspension,
- (e) an extrusion die immediately adjacent to the mixing device, the extrusion die having a face with one or a plurality of extrusion holes through which the biocatalyst-containing hydrogel-forming suspension can be extruded from the housing cavity, and
- (f) a cutting assembly comprising at least one cutting blade that cuts the biocatalyst-containing hydrogel-forming suspension into individual hydrogel particles when the suspension exits the extrusion holes as the cutting blade moves across each extrusion hole, wherein the cutting blade is in close proximity with the face of the extrusion die and moves in a linear, rotating, or reciprocating manner.

Claim 2 (previously presented): A hydrogel particle-forming system comprising:

- at least a first feed station for containing a hydrogel-forming suspension,
- (b) at least a second feed station for containing a biocatalyst,
- (c) the hydrogel particle-forming apparatus of Claim 1,
- (d) a first metering device having transfer lines connected to the first feed station and to the hydrogel particle-forming apparatus for receiving hydrogel-forming suspension from the first feed station and delivering it to the hydrogel particle-forming apparatus,

Ser. No. 10/643,254 Docket No.: CL1610 US NA

- (e) a second metering device having transfer lines connected to the second feed station and to the hydrogel particle-forming apparatus for receiving biocatalyst from the second feed station and delivering it to the hydrogel particle-forming apparatus, and
- (f) a quench station containing a quench fluid, wherein the hydrogel particle-forming apparatus is at least partially submerged in the quench fluid and the biocatalyst-containing hydrogel-forming suspension is extruded into the quench fluid from the hydrogel particle-forming apparatus to form hydrogel particles.

Claim 3 (previously presented): The system of Claim 2 wherein the first and second metering devices are volumetric metering pumps.

Claim 4 (original): The system of Claim 2 wherein the cutting assembly is rotatably mounted and further comprises a plurality of mixing blades for mixing the quench fluid as the cutting assembly rotates in the quench fluid.

Claim 5 (original): The system of Claim 2 further comprising at least one mixing device for mixing components before they are introduced into the hydrogel particle-forming apparatus.

Claim 6 (original): The system of Claim 5 wherein the mixing device is located in the feed station.

Claim 7 (original): The system of Claim 5 wherein the mixing device is located in a transfer line of the metering device.

Claim 8 (original): The system of Claim 2 wherein the quench station further comprises an inclined surface for collecting the hydrogel particles and at least one additional collection reservoir for collecting the quench fluid as the quench fluid exits the quench station, wherein the quench fluid is recycled back from the additional collection reservoir into the quench station after the hydrogel particles are collected on the inclined surface.

Docket No.: CL1610 US NA

Claim 9 (original): The system of Claim 2 further comprising at least one additional feed station for containing a quench fluid or an additive or both and a metering device having transfer lines connected to the additional feed station and to the hydrogel particle-forming apparatus for receiving the quench fluid or the additive from the additional feed station and delivering it to the hydrogel particle-forming apparatus.

Claim 10 (previously presented): The apparatus of Claim 1 further comprising a drive shaft contained within the housing cavity, wherein the drive shaft is rotatably mounted in the housing cavity.

Claim 11 (canceled)

Claim 12 (previously presented): The apparatus of Claim 10 wherein the mixing device within the housing cavity is driven by the drive shaft.

Claim 13 (canceled)

Claim 14 (previously presented): The apparatus of Claim 10 wherein the extrusion die contains a central opening and the drive shaft extends through the central opening of the extrusion die and wherein the cutting assembly is rotatably mounted on the drive shaft as it extends through the central opening.

Claim 15 (canceled)

Claim 16 (original): The apparatus of Claim 1 wherein the mixing device within the housing cavity is driven by a rotatably mounted drive shaft and the extrusion die contains a central opening through which the drive shaft extends and wherein the cutting assembly is rotatably mounted on the drive shaft where it extends through the central opening.

Claim 17 (canceled)

Docket No.: CL1610 US NA

Claim 18 (original): The apparatus of Claim 1 wherein the extrusion holes are uniformly spaced apart on the face of the extrusion die.

Claim 19 (canceled)

Claim 20 (original): The apparatus of Claim 1 wherein the extrusion holes are arranged in a circular array when the cutting assembly is rotatably mounted.

Claim 21 (original): The apparatus of Claim 1 wherein the extrusion holes have a generally circular cross-section.

Claim 22 (original): The apparatus of Claim 1 wherein the face of the extrusion die is treated with or is constructed from a material that has a high contact angle with the hydrogel-forming suspension, the material being selected from thermoplastic and thermoset polymers, mineral and glass reinforced polymers, ceramics, foams, minerals, oxides and metals.

Claim 23 (canceled)

Claim 24 (original): The apparatus of Claim 1 wherein the extrusion die is constructed from an insulating material selected from thermoplastic and thermoset polymers, mineral and glass reinforced polymers, ceramics, foams, minerals, oxides, and metals.

Claim 25 (canceled)

Claim 26 (original): The apparatus of Claim 1 wherein the cutting assembly is selected from pitched turbines and flat turbines.

Claim 27 (canceled)

Docket No.: CL1610 US NA

Claim 28 (previously presented): The apparatus of Claim 1 further comprising an internal pump within the housing cavity for moving the biocatalyst and hydrogel-forming suspension to the mixing device and to the extrusion die.

Claim 29 (previously presented): The apparatus of Claim 28 wherein the internal pump within the housing cavity is a centrifugal, screw or volumetric displacement pump.

Claim 30 (original): The apparatus of Claim 1 wherein the mixing device is selected from the group consisting of mechanical mixers and static mixers.

Claim 31 (currently amended): The <u>apparatus</u> system of Claim 16 wherein the mixing device is selected from the group consisting of mechanical mixers and static <u>mixers</u>.

Claim 32 (original): The apparatus of Claim 1 wherein the apparatus is heated by a heating device.

Claim 33 (original): The system of Claim 2 wherein at least one of the feed tank, the apparatus, the metering device, the quench station, or the system, independently, are heated by at least one heating device.

Claim 34 (original): The apparatus of Claim 32 wherein the heating device is selected from thermal mass heaters, traced systems, jacketed systems, and enclosures with circulating hot gases or liquids.

Claim 35 (original): The system of Claim 33 wherein the heating device is selected from thermal mass heaters, traced systems, jacketed systems, and enclosures with circulating hot gases or liquids.

Claims 36-38 (canceled)

Docket No.: CL1610 US NA

Claim 39 (previously presented): The system of Claim 2 wherein the biocatalyst is selected from the group consisting of whole cell suspensions, bacterial cells, fungi, algae, yeast cells, plant cells, animal cells, cellular organelles, purified or partially-purified enzyme preparations, and multi-enzyme complexes in appropriate buffer solutions.

Claim 40 (previously presented): A method for producing hydrogel particles, the method comprising the sequential steps of:

- (a) providing a first feed station containing a hydrogel-forming suspension,
- (b) providing a second feed station containing a biocatalyst,
- (c) metering the hydrogel-forming suspension and the biocatalyst by metering devices having transfer lines connected to the first and second feed stations and receiving hydrogel material and biocatalyst therefrom into the hydrogel particle-forming apparatus of Claim 1, the apparatus being at least partially submerged in a quench fluid;
- (d) mixing the biocatalyst and hydrogel-forming suspension and extruding the hydrogel-forming suspension through the hydrogel particle-forming apparatus into the quench fluid; and
- cutting the extruded hydrogel-forming suspension by the hydrogel particle-forming apparatus into individual hydrogel particles.

Claim 41 (canceled)

Claim 42 (previously presented): The method of Claim 40 wherein the biocatalyst is selected from the group consisting of whole cell suspensions, bacterial cells, fungi, algae, yeast cells, plant cells, animal cells, cellular organelles, purified or partially-purified enzyme preparations, and multi-enzyme complexes in appropriate buffer solutions.