CRPL-F85

Library, N. M. Blos.

SEP 26 19.1

Reference have not to be taken in

IONOSPHERIC DATA

ISSUED SEPTEMBER 1951

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C	7, 11, 21, 44
Ionospheric Storminess at Washington, D. C	7. 33
Radio Propagation Quality Figures	7. 34
Relative Sunspot Numbers	8, 35
Observations of the Solar Corona	8, 36
Observations of Solar Flares	9, 40
Indices of Geomagnetic Activity	10, 41
Sudden Ionosphere Disturbances	10, 42
Errata	10
Tables of Ionospheric Data	11
Graphs of Ionospheric Data	44
Index of Tables and Graphs of Ionospheric Data in CRPL-F85	74

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- . 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

L

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the grapus of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month	Predicted			Sunspot	Number		
	1951	1950	1949	1948	1947	1946	1945
December		86	108	114	126	85	38
Movember		87	112	115	124	83	36
October		90	114	116	119	81	23
September		91	115	117	121	79	22
August	5 7	96	111	123	122	77	20
July	60	101	108	125	116	73	
June	63	103	108	129	112	67	
May	68	102	108	130	109	67	
April	74	101	109	133	107	62	
March	78	103	111	133	105	51	
February	82	103	113	133	90	46	
January	85	105	112	130	88	42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 60 and figures 1 to 120 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia Canberra, Australia Hobart, Tasmania

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics:
Watheroo, Western Australia

University of Graz: Graz, Austria

Defence Research Board. Canada:

Baker Lake, Canada

Fort Chimo, Canada

Ottawa. Canada

Resolute Bay, Canada

St. John's, Newfoundland

Radio Wave Research Laboratories, National Taiman University, Taipeh, Formosa, China:

Formosa, China

The Royal Netherlands Meteorological Institute:
De Bilt. Holland

Icelandic Post & Telegraph Administration: Reykjavik, Iceland

All India Radio (Government of India), New Delhi, India:

Bombay, India

Delhi, India

Madras. India

Tiruchy (Tiruchirappalli), India

Indian Council of Scientific and Industrial Research, Radio Research Committee:

Calcutta, India

Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research: Rarotonga, Cook Is.

Norwegian Defense Research Establishment, Kjeller per Lillestrom, Norway:

Oslo, Forway

Tromso, Norway

United States Army Signal Corps:

Adak, Alaska

Okinawa I.

National Bureau of Standards (Central Radio Propagation Laboratory):

Anchorage, Alaska

Baton Rouge, Louisiana (Louisiana State University)

Boston, Massachusetts (Harvard University)

Fairbanks, Alaska

Guam I.

Maui, Hawaii

Narsarssuak, Greenland

Point Barrow, Alaska

Puerto Rico, W. I.

San Francisco, California (Stanford University)

Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 61 to 72 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D. C.

Table 73 presents ionosphere character figures for Washington, D. C., during August 1951, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

RADIO PROPAGATION QUALITY FIGURES

Table 74 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT. July 1951, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal

of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radic propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause. conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

RELATIVE SUNSPOT NUMBERS

Table 75 lists the daily provisional Zurich relative sunspot numbers, R_Z, as communicated by the Swiss Federal Observatory. The American sunspot numbers which in the past were included in this table are now being prepared on a slower schedule and therefore do not appear in this issue.

OBSERVATIONS OF THE SOLAR CORONA

Tables 76 through 78 give the observations of the solar corona during August 1951 obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 76 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 77 gives similarly the intensities of the first red (6374A) coronal line; and table 78, the intensities of the second red (6702A) coronal line; all observed at Climax in August 1951.

The following symbols are used in tables 76 through 78: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

OBSERVATIONS OF SOLAR FLARES

Table 79 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris), and the data are taken from the Paris-URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 80 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary mean 3-hourly K-indices, Kw; (2) preliminary international character-figures, C; (3) geomagnetic planetary three-hour-range indices, Kp; (4) magnetically selected quiet and disturbed days.

Kw is the arithmetic mean of the K-indices from all reporting observatories for each three hours of the Greenwich day, on a scale 0 (very quiet) to 9 (extremely disturbed). The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 to 9, expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5 + is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CRPL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles Kw, C and selected days. The Chairman of the Committee computes the planetary index.

SUDDEN IONOSPHERE DISTURBANCES

Tables 81 and 82 list respectively the sudden ionosphere disturbances observed at Ft. Belvoir, Virginia, August 1951, and at Lindau, Harz, Germany, July 1951.

ERRATA

- 1. CRPL-F84, p. 79, fig. 113: (M3000)F2 curve was plotted incorrectly.
- 2. CRPL-F84, p. 13. table 7, and p. 54, fig. 13: fEs and (M3000)F2 data were interchanged in both table and figure.

TABLES OF IONOSPHERIC DATA

Time h'F2 foF2 h'F1 foF1 h'E foE fES 00 280 4,2 01 280 3,8 02 300 3,3 03 300 3,0 04 300 2,8 05 300 2,7 06 270 4,0 240 — 120 2,0 07 330 4,7 230 3,7 110 2,5 3,5 08 370 5,0 220 4,2 110 2,9 4,0	Washington, D. C. (38.7°W, 77.1°W) Angust 1951										
01 280 3.8 2.3 02 300 3.3 03 300 3.0 04 300 2.8 05 300 2.7 06 270 4.0 240 — 120 2.0 07 330 4.7 230 3.7 110 2.5 3.5 08 370 5.0 220 4.2 110 2.9 4.0	(M3000)F2										
01 280 3.8 2.3 02 300 3.3 03 300 3.0 04 300 2.8 05 300 2.7 06 270 4.0 240 — 120 2.0 07 330 4.7 230 3.7 110 2.5 3.5 08 370 5.0 220 4.2 110 2.9 4.0	2.8										
02 300 3.3 03 300 3.0 04 300 2.8 05 300 2.7 06 270 4.0 240 — 120 2.0 07 330 4.7 230 3.7 110 2.5 3.5 08 370 5.0 220 4.2 110 2.9 4.0	2.8										
04 300 2.8 05 300 2.7 06 270 4.0 240 — 120 2.0 07 330 4.7 230 3.7 110 2.5 3.5 08 370 5.0 220 4.2 110 2.9 4.0	2.8										
04 300 2.8 05 300 2.7 06 270 4.0 240 — 120 2.0 07 330 4.7 230 3.7 110 2.5 3.5 08 370 5.0 220 4.2 110 2.9 4.0	2,8										
06 270 4.0 240 120 2.0 07 330 4.7 230 3.7 110 2.5 3.5 08 370 5.0 220 4.2 110 2.9 4.0	2.7										
06 270 4.0 240 120 2.0 07 330 4.7 230 3.7 110 2.5 3.5 08 370 5.0 220 4.2 110 2.9 4.0	(2.8)										
07 330 4.7 230 3.7 110 2.5 3.5 08 370 5.0 220 4.2 110 2.9 4.0	3.1										
08 370 5.0 220 4.2 110 2.9 4.0	3.0										
	2.9										
09. 360 5.5 200 4.4 100 3.1 3.7	2,8										
10 360 5.6 200 4.5 110 3.3	2.9										
11 400 5.8 200 4.7 110 3.4	2.8										
12 380 5.8 200 4.7 100 3.5	2.8										
13 400 5.9 210 4.7 100 3.4	2,8										
14 370 6.1 210 4.6 100 3.4	2.9										
15 370 6.0 220 4.5 100 3.2	2.8										
16 350 6.0 220 4.3 110 3.0	2,9										
17 310 6.0 230 4.0 110 2.8	2.9										
18 300 6.4 250 120 2.3 3.4	2.9										
19 250 7.0 3.0	3.0										
20 250 6.6 2.3	2.9										
21 250 5.8	2.9										
22 260 5.0	2,8										
22 260 5.0 23 280 4.4	2.8										

Time: 75.00%. Sweep: 1.0 Me to 25.0 Me in 15 seconds.

Tromso,	Norway	(69.7°).	19.0°E)	Table	3			July 1951
Time	p.1.	foF2	h'T1	foFl	h'E	foE	fBq	(M3000) F2
00								
01								
02								
03								
04								
05								
06								
07								
08	415	5.4	550	4.3	100	3.0	5.6	8.8
09	400	5.5	220	4.3	100	3.1	5.8	8.8
10	395	5.6	330	4.4	100	(3.1)	5.6	2.8
11	395	5.6	210	4.5	100	3.1	5.8	8.8
12	375	5.7	215	4.5	100	3.2	5.6	2.9
13	395	5.6	215	4.5	100	3.2	8.0	2.8
14	380	5.4	215	4.4	105	3.2	5.8	2.9
15	355	5.4	215	4.3	105	(3.0)		3.0
18	360	5.4	225	4.2	105	2.9	5.4	2.9
17	340	5.3	230	4.2	105	2.8	5.4	3.0
18	310	5.3	250	3.9	105	(2.6)	5.3	3.1
19	320	5.0	(260)		110	(2.4)	5.4	3.0
20	320	4.8			105		5.0	3.0
21	330	4.8			100		5.4	2.9
22	350	4.7			100		5.6	2.8
23	(310)	(4.7)			105		5.4	(8.8)

Time: 15,001. Sweep: 0.6 Me to 25.0 Mc in 5 minutes, automatic operation.

Ancho	rage, Ala	ska (61.	2 ⁰ B, 149	.90W)	<u> </u>			July 1951	
Time	h'F2	foF2	h'F1	foF1	h'E	fol	fEs	(M3000)F2	
00	310	3.8						2.8	
01	300	3.7					2.0	2.8	
03	320	3.8						2.8	
03	340	4.0	S90					2.8	
04	370	4.4	270	3.2	120	5.0		8.8	
05	400	4.5	250	3.4	110	2.3	2.3	2.7	
06	420	4.8	230	3.6	110	2.5		2.7	
07	430	4.9	210	3.9	110	2.8		2.7	
80	450	5.0	550	4.0	100	2.9		2.8	
09	450	5.0	210	4.2	110	3.0		2.6	
10	450	5,2	200	4.3	100	3.1		2.7	
11	460	5.1	210	4.4	100	3.1		2.7	
12	490	5.0	210	4.4	100	3.2		2.6	
13	490	5.0	210	4.4	100	3.2		8.8	
14	450	5.1	210	4.4	100	3.1		2.7	
15	440	5.2	220	4.3	100	3.1		8.8	
16	415	5.0	S S 0	4.2	110	2.9		2.8	
17	400	5.2	230	4.1	110	2.7		2.9	
18	350	5.3	240	3.8	110	2.4		2.9	
19	300	5.3	250		110	2.2		3.0	
30°	280	5.3	270				2.4	3.1	
21	370	5.2						3.1.	
55	- 380	4.4						3.0	
23	300	4.0						2.9	

Time: 150.0°W. Sweap: 1.0 Mo to 25.0 Mo in 15 seconds.

Point I		July 1951						
Time	h'F2	foF2	h ¹ F1	foFl	h1E	foE	fEs	(M3000)F2
00	290	4.5					7.7	3.1
01	300	4.7	240				8.2	3.0
02	310	4.7	280				7.6	3.0
03	310	4.4	260				5.4	3.0
04	370	4.4	\$60	3.5	110		4.5	3.0
05	4:20	4.6	250	3.7	100	2.4	4.2	2.7
06	440	4.7	230	3.8	100	2.6	4.4	2.7
07	470	4.7	230	3.9	100	3.1	4.6	2.6
08	470	4.8	230	4.0	100		4.9	2.6
09	480	4.9	\$50	4.2	100	3.2	4.8	2,6
10	500	4.8	\$50	4.2	100	3.3	4.5	2.6
11	480	4.8	210	4.2	100	3.4	4.0	2,6
12	500	4.7	210	4.3	100	3.4	3.2	2.6
13	460	4.8	210	4.3	100	3.4		2.7
14	440	4.9	210	4.3	100	3.2		2.7
15	430	5.1	220	4.3	100	3.2		2.7
16	390	5.3	230	4.2	100	3.2		2.8
17	380	5.3	230	4.2	100	3.0		2,9
18	390	5.1	220	4.0	100	2.9	3.0	2.8
19	380	4.7	240	3.8	100	2.8	3.0	2,9
20	320	4.5	260	3.8	310	2.6	4.3	3.0
21	330	4.6	280	3,5			4.9	3.0
22	300	4.6	250				4.8	3.0
23	310	4.6					7.6	3.0

Time: 150.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 ecconde.

Fairba	nke, Alas	ka (64.9	N. 147.	BoM)				July 1951
Time	P.LS	foF2	h'F1	foF1	h'E	foE	fla	(M3000)T2
00	420	(3.9)						(2,6)
01	440	(4.0)					5.2	(2.5)
02	460	(4.3)					5.1	(2.3)
03	(460)	(4.6)					5.3	(2.3)
04	500	(5.1)			~~~		4.6	(2.4)
0.5	480	(5.2)	340	(3.7)	-		4.2	2.4
06	500	(5,2)	300	3.8			4.5	(2.4)
07	540	(5.1)	(300)	(4.0)				2.3
80	560	(5.1)	(300)	(4.1)				2,3
09	550	5.2	280	(4.2)				2.3
10	560	(5,4)	280	(4.3)	-			(2.4)
11	570	(5.2)	280	(4.2)	140			(2.3)
12	560	5.4	(280)	(4.3)				2.3
13	590	(5.0)	280	(4.3)	130			(2.2)
14	540	(5.2)	(270)	4.2	140			(2.4)
15	540	(5,2)	(290)	4.2				(2.3)
16	530	(5.1)	(300)	(4.1)				(2.1)
17	490	(5.1)	300	(3.9)				(2.4)
18	470	(5,2)	320	3.6				(2.5)
19	(440)	(5,2)	320		~~~			(2.5)
20	370	(4.7)						(2.6)
21	380	(4.5)						(2.6)
22	400	(4.1)						(2.6)
23	370	(3.8)					3.8	

23 370 (3.8)

Time: 150.0°W.

Sweep: 1.0 Mo to 25.0 Mc in 15 eeconde.

			61.2°H.	45.4°W)				July 1951
Time	P.LS	foF2	h'F1	foFl	hIE	foB	fBa	(M3000)F2
00	(360)	(3,9)					4,4	(2.7)
01	(370)	(3.8)					4.4	(2.7)
02	380	(3.4)					4.0	(8.6)
03	(350)	(3.8)			(110)	-	4.0	(2.6)
04	(370)	(4.1)			(110)		4.2	(2.7)
0.5	360	(4.4)		-	(110)		4.4	(8.8)
06	320	(4.7)	290	4.0	(110)	(3.1)	4.2	2.8
07	380	4.9	260	4.0	(100)	(3.0)	3.7	8.8
80	440	5.0	260	4.2	100	(3.1)	3.5	(8.6)
09	470	5.2	250	4.2	110	(3.1)	3.3	8.6
10	480	5.1	240	4.3	110	(3.2)		8.6
11	460	5.1	240	4.3	110	(3.3)		8.6
12	500	5.2	240	4.3	(120)	(3.4)		2.4
13	470	5.3	240	4.4	(120)	(3.3)		2.6
14	470	5.4	240	4.4	110	(3.3)		2.6
15	500	5.4	250	4.3	110	(3.2)		2.5
18	450	5.2	260	4.2	110	(3.0)		2.6
17	420	(5.2)	280	4.2	110	(3.0)	3.7	2.7
18	380	5.1	300	4.0	120	(2.9)	4.8	2.8
19	(380)	(4.9)	300	3.7	(120)	(2.7)	4.8	(2.7)
20	340	(4.6)	310	(3, 2)	120	(2.5)	4.4	(2.8)
21	350	(4.5)			(120)		4.4	(2.8)
22	360	(4.2)				-	4.5	(2.7)
23	(340)	(4.1)					5.8	(2.7)

Time: 45.0°W. Sweep: 1.0 Mo to 25.0 Mc in 15 seconds.

Oelc, Norway (60,0°N, 11.0°E) Table 7

Delc.	forway (6)	0.0 N, 1	1.0 E)					July 1951
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEe	(M3000)F2
00	270	5.4						(2.9)
01	275	4.9						(2.8)
02	285	4.5					2.2	(2.8)
03	290	3.8	295				2.5	2.8
04	305	4.0	260	2.7		1.6	2.7	2.8
05	350	4.4	250	3.2	125	2.0	3.0	2.8
06	360	4.5	230	3.5	120	2.2	3.4	(2.8)
07	400	5.1	220	3.8	110	2.5	3.4	2.8
08	380	5.4	220	4.0	110	2.8	3.5	2.8
09	375	5.6	210	4.2	105	2.9	3.6	2.8
10	370	5.8	210	4.3	105	3.1	3.7	2.8
11	375	5.8	205	4.4	105	3.1	3.8	2.8
12	380	5.6	205	4.5	105	3.2	3.7	2.9
13	375	5.7	205	4.5	106	3.2	3.5	2.9
14	390	5.7	205	4.4	105	3.1	3.4	2.8
15	360	5.6	210	4.3	105	3.0	3.2	2.9
16	350	5.5	21C	4.1	105	2.8	3.3	2.9
17	350	5.6	550	4.1	110	2,7	3.3	3.0
18	310	5.6	240	3.8	116	2.5	3.3	3.0
19	290	5.8	250	3.4	120	2.2	3.3	3.0
20	270	5.6	250	2.9	135	1.8	3.0	3.0
21	265	5.8	270			E	1.7	3.0
22	255	6.0						(2.9)
23	275	5.6						2.9

Time: 16.0°E. Sweep: 1.3 Mc to 14.0 Mc in 8 minutes, automatic operation.

San Francieco, California (37.4°N. 122.2°W)

San Fr	ancleco,	Calliorn	July 1951					
Time	p.15	foF2	h'F1	foFl	h1E	foE	fEs	(M3000)F2
00	(300)	(4.6)					3.2	(2.7)
01	(300)	4.6					3.6	2.7
02	290	(4.4)					3.0	(2.7)
03	290	4.1					2.9	2.8
04	(290)	3.9					2.3	2.7
06	290	3.6				on street		2.8
06	370	4.5	240	3.5	(120)	2.3	3.3	2.8
07	380	5.0	230	3.9	110	2.7	3.7	2.8
08	420	5.4	220	4.3	13.0	3.0	4.2	2.7
09	390	(5.8)	220	(4.6)	13.0	(3.2)	4.6	(8.8)
10	410	6.2	210	(4.7)	110	3.4	4.4	2.7
11	420	6.2	200	(4.8)	(110)	(3.4)	4.1	2.7
12	440	6.2	210	(4.8)	(110)	(3,5)		2.6
13	400	6.4	220	(4.7)	110	(3.5)		2.7
14	380	6.3	220	(4.7)	(110)	(3.4)	3.7	2.7
16	380	6.2	220	(4.6)	(110)	(3.4)		2.8
16	350	6.6	230	4.4	110	(3.1)	3.5	2.8
17	340	6.3	240	4.2	110	2.9	4.0	2.9
18	300	6.1	240	3.8	120	2.5	4.3	3.0
19	270	6.3		-			3.6	3.0
20	250	6.8					3.7	3.0
21	(250)	6.4					4.7	3.0
22	(260)	5.4					4.0	2.9
23	(280)	5.0					3.8	2.8

Time: 120.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconde.

Okinaw		July 1951						
Time	h'F2	foF2	h'F1	foF1	h E	foE	fEa	(M3000)F2
00	300	7.2					4.2	2.8
01	270	7.6					4.4	2.9
02	260	6.8					3.9	2.9
03	270	5.9					3.2	2.9
04	270	(5.1)					3.1	(2.8)
05	270	5.1					3.2	2.9
06	250	6.0	240	~ ~ ~	120	2,1		3.1
07 ·	260	7.0	230		110	(2.7)	4.7	3.2
80	280	6.6	(230)		110	3.2	5.7	3.1
09	330	6.7	(230)	~~~	110	3.4	6.8	3.0
10	370	6.8	210	(5.0)	110	3.4	6.8	2.6
11	390	7.6	(230)	(5.0)	110	(3.5)	5.6	2.7
12	380	8.2	230	(5.0)	110	(3.6)	6.2	2.6
13	370	8.6	(230)	4.9	(110)	(3.6)	6.3	2.7
14	350	9.6	(230)	4.8	110	(3.6)	5.9	2.8
16	340	10.0	250	(4.8)	110	(3.5)	6.2	2.8
16	320	10.2	230	4.6	110	3.3	5.5	2.9
17	290	10.2	230		110	(2.9)	4.9	3.0
18	270	9.6	240		120	2.1	5.0	3.0
19	260	8.4					4.7	3.0
20	280	7.4					4.6	2.8
21	310	7.2					3.8	2.7
22	300	7.0					3.8	2.7
23	310	7.2					3.8	2.7

Time: 127.6°E.
Sweep: 1.0 Mc to 26.0 Mc in 15 seconds.

Adak, Alaska (51.9°N, 176.6°W) Table 8

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	?
00	280	(5.1)					2,8	(2.8)	_
01	280	(4.3)					2.4	(2.8)	
02	290	(3.9)					2.3	(2.7)	
03	300	3.6					2.2	2.7	
04	360	3.8	280	2.8	120		2.0	2.6	
05	400	4.5	260	3.3	110	2.1	2.4	2.6	
06	410	5.1	240	3.7	110	2.6	3.5	2.7	
07	410	5.2	230	4.0	110	2.8	4.0	2.6	
08	420	5.4	220	4.1	110	3.0	4.7	2.7	
09	430	5.4	220	4.3	110	******	4.8	2.7	
10	400	5.5	210	4.4	100	3.3	6.4	2.7	
11	400	5.4	210	4.4	100	3.3	5.0	2.8	
12	480	5.0	200	4.5	100	3.2	4.8	2.5	
13	460	5.3	200	4.4	100		4.4	2.6	
14	420	5.4	210	4.4	100	3,4	4.5	2.7	
15	400	5.4	220	4.3	100	3.3	4.0	2.7	
16	400	5.2	230	4.2	110		3.3	2.8	
17	350	5.2	230	4.1	110	2.7	3.3	2.9	
18	320	5.4	240		110	2.3	3.6	2.9	
19	290	5.6	260		120	-	3.8	2.9	
50	270	6.2					3.9	2.9	
21	270	6.3					3.9	2.8	
22	260	6.0					7 4	2 0	

270 260

270

21

23

Time: 180.0°W. Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

6.3

White Sands, New Mexico (32,3°H, 106,5°W)

July 1951

2.9 2.9 2.8 2.8 2.8

3.4 3.6

July 1951

MITT CO "	summe, ne	M MATTCO	(00.0 11,	100.5	a)			outh 1991
Time	h'F2	foF2	h'F1	foF1	hIE	foE	fBe	(M3000)F2
00	290	5.0					4.0	2.9
01	280	4.7					3.0	2.9
02	260	4.7					2.4	3.0
03	260	4.2					3.0	3.0
04	270	3.9					3.0	3.0
05	270	3.7				-	2.5	3.1
06	280	4.7	230	3.4	100	(2.0)	3.2	3.2
07	320	5.4	210	4.0	100	(2.6)	3.9	3.0
08	350	5.7	200	4.3	100	(3.1)	4.2	2.9
09	370	5.9	190	4.6	100	7.3	4.6	3.0
10	400	6.0	190	4.8	100	(3, 4)	5.2	2.8
11	400	6.3	190	4.8	100	3.5	4.4	2.8
12	360	6.8	190	4.8	100	3.6	4.3	2.8
13	370	7.0	200	4.8	100	3.6	4.1	2.8
14	340	7.4	200	4.7	100	3.5	4.0	2.9
15	320	7.2	200	4.6	100	3.4		3.0
16	340	6.8	210	4.5	100	3.2	3.5	2.9
17	300	6.6	220	4.2	100	2.9	3.8	3.1
18	280	6.6	220	3.6	100	2.4	3.7	3.1
19	250	6.9					3.1	3.1
30	230	6.9					3.0	3.1
21	230	6.1					3.2	3.1
22	240	5.5					3.1	3.0
23	260	5.0					3.4	2.9

Time: 105.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

waii (20 gow 150 cow) Table 12

Mani.	Hawali (2	0.8°N, 1	156.5°W)					July 1951
Time	h'F2	foF2	h'I'l	foF1	h ! E	fo≌	fEe	(M3000)F2
00	290	7.0					2.3	2,8
01	280	6.9					2.7	2.8
02	270	6.4					3.0	2.9
03	270	6.0					2.3	2.9
04	270	5.6					2.3	2.8
05	270	5.2					2.4	2.9
06	270	5.0			120	(1.5)	2.4	3.0
07	290	5.8	240		110	2.4	3.9	3.0
80	340	6.4	550	4.3	100	2.9	4.2	2.7
09	400	7.0	210	4.7	100	3.2	5.4	2.4
10	400	8.0	200	4.8	100	3.4	5.2	2.4
11	420	8.8	500	4.8	100	3.6	6.1	2.5
12	400	9.5	210	4.9	100	3.6	4.7	2.6
13	380	9.8	200	4.8	110	3.6	4.3	2.7
14	360	10.2	220	4.8	110	3.6	4.3	2.7
15	350	10.6	220	4.7	100	3.5	4.0	2.7
16	330	10.4	220	4.6	110	3.2	3.7	2.8
17	310	10.6	230	4.2	110	3.0	4.2	3.0
18	280	10.6	240	(3.7)	120	2.3	3.7	3.0
19	250	10.4					3.3	3.1
20	230	8.7					3.4	3.0
21	260	8.2					3.2	2.8
22	280	7.8					2.9	2.8
23	290	7.2					3.6	2.8

Time: 150.0°W. Sweep: 1.0 Mo to 25.0 Mc in 16 seconds.

Puerto	Rico, W.	I. (18.	5° N. 67.	Table 2°W)	13			July 1951
Time	h'I'z	foF2	h'F1	foF1	h'E	foE	f≌s	(M3000)#2
00	(280)	6.6						2.9
01	250	7.0						3.0
02	230	6.5						3.1
03	250	6.0						3.0
04	(250)	5.6						3.0
05	270	5.2						3.0
06	260	5.0						3.1
07	270	6.2	230		100	2.2	4.4	3.2
08	290	6.4	210	4.2	100	(2.8)	4.7	3,1
09	340	6.8	210	4.4	100	3.2	4.9	2.9
10	380	6.8	210	4.7	100	3.4	4.9	2.7
11	360	7.6	500	4.7	100	3.6	4.5	2.8
12	350	8.8	200	4.8	100	3.6	5.2	2.8
13	330	9.0	200	4.8	100	3.6	4.5	2.8
14	320	9.6	200	4.8	100	3,6	4.6	2.8
16	320	9.4	200	4.6	100	3.5		2.8
16	310	9.2	210	4.5	100	3,3		2.9
17	290	9.1	220	4.2	100	2.9	4.6	3.0
18	270	9.2	230		100	2.4	3.8	3.0
19	240	8.7					3.3	3.0
20	240	8.0					2.8	2.9
21	(260)	7.5					2.9	2.9
22	(270)	6.8					2.6	2.9
23	(280)	6.8						2.8

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

De Bil	t, Hollar	d (52.1°	W, 5.2°E	Table	10			June 1951
Time	h'F2	foF2	h'F1	foFl	h I E	foE	fEe	(M3000)IF2
OC	275	(>5.8)						2.8
01	290	5.2						2.8
02	275	5.1					2.4	2.8
03	290	5.0				E	2.7	2.8
04	300	5.0	250	3.1	115	2.0	3.4	2.9
05	306	6.6	230	3.8	100	2.4	3.8	2.9
06	315	6.0	225	4.2	100	2.7	4.6	2.9
07	320	6.4	210	4.4	100	3.1	4.4	3.0
08	320	6.6	210	4.6	100	3.3	4.6	3.0
09	305	6.8	210	4.8	100	3.4	4.8	3.0
10	305	6.8	205	4.7	100	3.5	4.6	3.1
11	310	6.7	200	4.8	100	3.5	4.7	3.0
12	345	6.6	200	4.9	100	3.6	4.3	3.0
13	350	6.6	200	4.8	100	3.5	4.3	3.0
14	320	6.4	200	4.6	100	3.5	3.7	2.9
15	320	6.4	210	4.7	100	3.4	4.2	2.9
16	305	6.6	210	4.5	100	3.2	3.9	3, 0
17	300	6.6	215	4.2	100	2.9	3.9	3.0
18	280	6.8	240	4.0	100	2.5	4.2	3.1
19	265	6.6			110	2.1	3.9	3.1
20	260	7.2				E	3.7	3.0
21	560	7.2					3.2	3.0
22	260	6.9						2.9
23	280	6.2						2.8

Time: 0.0°.
Sweep: 1.4 Mo to 16.0 Mc in 7 minutes, automatic operation.

200001	Massach	reerre (42.4 M,	71.2°W)				June 1951
Time	P.115	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	280	5.0					2,8	2.9
01	280	4.2					2.8	2.8
02	300	3.8					3.2	2.8
03	280	3.4						2.8
04	270	3.3					2.8	3.0
05	240	4.0			120	2.2	2.4	3.0
06	280	4.6	230	3.8	120	2.7	3.0	3.1
07	320	5.5	550	4.0	120	3.0	3,3	3.1
08	350	5.7	550	4.5	120	3.1	3.9	3.0
09	340	6.5	220	4.8	120	3.2	4.1	3.0
10	380	6.0	210	4.6	120	3.2	4.1	2.8
11	380	5.6	220	4.6	120	3.2	4.1	3.0
12	360	5.7	320	4.6	120	3.2	3.9	(2.9)
13	350	6.1	220	4.5	120	3.4	3.4	3.0
14	380	6.0	320	4.6	120	3.4	0.7	2.8
15	370	6.0	230	4.6	120	3,3		2.8
16	350	6.2	240	4.2	120	3.1		2.9
17	330	6.0	250	4.0	120	2.8	4.0	3.0
18	300	6.2	240		130	2.4	4.6	3.0
19	270	6.2			130	2.4		
20	270	6.0					3, 6	3.1
sı	\$60	5.7					3.5	3.0
22	280	5.8					2.8	3.0
23	280	6.5					3.5	2.9
	200	0.0					3.4	2.8

Time: 76.0°W. 8weep: 0.8 Mo to 15.0 Mc in 1 minute.

				Table	14			
Guam I	. (13.6°N,	144.9	E)					July 1951
Time	h'F2	fo52	h'F1	foFl	h'E	foE	fEe	(M3000)#2
00	330	5.8					1.8	2.7
01	320	5.0					1.5	2.8
02	300	4.8						2.8
03	310	4.6						2.8
04	280	4.6						2.9
05	240	4.2						3.2
06	250	4.8				-		3.3
07	250	7.0			120	2.2	3.0	3.2
08	280	7.2	230		120	(2.8)	3.8	3.1
09	(320)	7.5	220		120	3.1	3.8	2.7
10	360	7.9	550	4.7	110	3.3	3.1	2.6
11	380	8.4	220	4.8	110	3.6	4.0	2.4
12	400	9.0	210	4.8	110	(3.6)	3.7	2,5
13	400	9.6	(210)	4.8	110	3.6	3.6	2,6
14	390	9.9	220	4.9	(120)	3.5	4.5	2.6 .
15	380	3.0.2	220	4.8	120	3.4	5.4	2.5
16	360	10.2	230	4.6	120	3.2	5.6	2.5
17	(320)	10.8	240		120	2.8	5.0	2.6
18	260	10.8			120	2.2	4.5	2.6
19	280	10.6					4.0	2.8
20	290	9.8					3.0	2.8
21	300	8.8					2.0	2.8
22	320	8.1					2.0	2.7
23	320	6.5					2.6	2.6

Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 ecoonde.

		4 0		Table	16			
Graz,	Auetria	(47.1°H,	15.6°E)					June 1951
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEe	(M3000)#2
00								
01								
02								
03								
04	290	6.1					4.8	
05	260	5.7	245	3.6			4.2	
06	300	6.6	220	4.1	110	2.8	4.0	
07	300	6.7	210	4.5	100	3.0	5.0	
08	305	7.1	210	4.6	100	3.2	5.0	
09	300	7.3		4.9	100	3.4	5.3	
10	310	7.2		4.9	100	3.6	5.0	
11	310	7.8		6.0	100	3,6	5.4	
12	325	7.2	200	6.1	100	3.7	6.0	
13	330	7.0		5.0	(100)	(3.8)	5.0	
14	320	7.0		5.0	100	3.6	5.0	
15	310	7.2	200	4.9	100	3.4	4.6	
16	300	7.3	200	4.9	100	3.3	4.0	
17	300	7.0	220	4.2	105	3.0	5.0	
18	280	7.3				2.7	5.0	
19	260	7.7					4.5	
20	250	7.8					6.0	
21	260	7.4					5.4	
22								

7 Time: 15.0°E. Sweep: 2.5 Mo to 12.0 Mc in 2 minutes.

Baton 1	June 1951							
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEe	(M3000)F2
00	310	4.9					3,4	2.8
01	300	4.6					3.5	2,8
02	280	4.6					3.3	2,9
03	290	4.3					3.0	2.9
04	270	4.1					3.2	2.9
05	280	4.2					3.6	3.0
06	280	4.8	250		120	2,1	3.4	3.1
07	300	6.5	230	4.0	110	2.7	3.8	3.1
08	360	5.6	220	4.2	110	3.1	4.6	2,8
09	400	6.4	220	4.6	110	3.2	4.1	2.8
10	380	6.7	(210)	4.8	110	3.3	3.9	2.8
11	380	6.8		4.8	110	3.3	4.0	2.8
12	380	6.8	(240)	5.0	110		3.7	2.8
13	380	7.4	(250)	5.1	110	3.4	3.6	2.8
14	360	7.4	330	4.9	110	3.4		2.8
15	360	7.0	240	4.6	110	3.4		2.8
16	350	7.0	240	4.3	110	3.2	3.7	2.8
17	320	7.2	240	4.1	120	2.8	4.0	2.9
18	300	7.8	250	(3.6)	120	2.2	4.7	2.9
19	260	7.9	_				3.7	3.0
20	250	7.2					3.8	3.0
21	250	6.2					4.0	3.0
22	270	5.2					4.0	2.9
23	300	5.1					3.6	2.8

Time: 90.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Guam 1	Table 19 Ouan 1. (13.6°N, 144.9°S)									
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	ST(000EM)		
00	(360)	(5.C)					2.3	(2.7)		
01	(350)	(4.7)					2.4	(2.7)		
02	(350)	(4.6)						(3.0)		
03	(340)	(4.6)						(2.8)		
04	270	4.4						(3.0)		
05	250	3.9						3.3		
06	250	4.9						3.2		
07	240	6.8			120	2,4	3.2	3.1		
08	(260)	7.1	220		110	3.0	3.8	2.9		
09	(320)	7.6	220		(116)	(3.3)	4.1	2.6		
10	370	8.2	220	4.6	110			2.6		
11	380	8.7	(220)	4.8				2,5		
12	410	9.0	230	4.9	(110)			2.4		
13	410	9.4	(210)	4.7	(120)			2.5		
14	400	10.0	320	(4.6)	(120)	3.7	4.8	2.6		
15	380	19,5	(220)	(4.6)	(110)	(3.4)	4.0	2.6		
16	370	10.7	220	4.5	110	3.2		2.6		
17	(330)	11.6	240		120	(2.9)	4.8	2.7		
18	(860)	11.2					6.4	2.8		
19	270	10.5					4.4	2.8		
20	(300)	8.6					2.5	2.5		
21	(340)	7.8						(2.6)		
22	(380)	6.8						(2.6)		
23	(380)	(5.6)						(2.6)		

23 (380) (5.6)

Time: 150.0°E.

Sweep: 1.0 Mc to 25.0 Mc in 15 accords.

Time	h'T2	foF2	h'F1	foF1	h E	foE	fEs	(M3000) F2
00	320	5.0						2.8
01	310	5.0						8.5
02	300	5.0						2.8
03	320	4.9						2.8
04	320	4.7		-	130	2.0		2.9
06	340	4.8	300		130	2.0		2.8
06	400	4.9	290	3.7	120	2.3		3.8
07	480	5.0	280	3.9	120	2.8		2.8
08	610	4.9	270	4.0	210	2.2		2.6
09	550	4.9	260	4.1	120	3.4		2.6
10	520	6.0	260	4.2	110	3.4		2.6
11	560	5.0	260	4.3	3.10	3.5		2.6
12	650	6.2	270	4.3	310	3.5		2.7
13	490	6.5	270	4.4	110	3.4		3.6
14	480	6.0	250	4.2	110	3.2		2.7
15	460	8.0	260	4.3	110	3.2		2.8
16	430	5.8	260	4.2	110	3.0		2.7
17	410	5.6	280	4.1	120	2.3		(2.8)
18	400	6.8	280	3.9	120	2.8		8.5
19	350	5.8	280		130	2.4	4.8	2.8
20	330	5.6				-	6.0	2.8
21	320	5.2					7.0	2.8
22	31C	5.0					6.0	2.8
23	310	5.2					3.8	3.8

23 310 5.2 Time: 90.0°W. Sweep: 1.0 Mc to 35.0 Mc in 16 seconds.

St. 901	no's, New	1 ound 1 an	a (47.6°	n, 52.7	w,			May 1951
Time	h'F2	foF2	h'71	foF1	h'I	foE	fEs	(M3000)F2
00	300	4.1	6				2.7	2.7
01	300	3.8					2.7	2.8
02	290	3.6					3,1	2.8
03	300	3.0					3.5	2.8
04	280	3.3					2.5	3.0
05	270	4.2	250	3.4	110	2.3	3.6	3.1
06	300	4.6	240	3.7	100	2.7	4.1	3.0
07	340	6.0	230	4.0	100	3.0	5.0	3.0
08	350	6.4	220	4.3	100	3,2	5.0	2.9
09	360	6.6	220	4.5	100	3.3	6.0	2.9
10	400	5.8	220	4.6	100	3.4	6.0	2.8
11	390	6.3	220	4.7	100	3.4	6.0	2.8
12	380	6.2	310	4.7	100	3.6	5.0	2.8
13	370	6.4	550	4.7	100	3.5	5.0	2.8
14	370	6.6	230	4.6	100	3.4	4.8	2.8
16	370	6.7	230	4.5	100	3.2	5.0	2.8
16	330	7.3	240	4.3	100	3.0		2.8
17	320	7.2	250	3.8	110	2.6	4.0	2.8
18	280	7.6	260	3.2	110	2.2	3.0	2.9
19	260	7.2					2.0	2.9
20	260	6.5					1.6	3.8
21	270	6.6					1.5	3.8
22	280	5.2					1.5	3.8
23	290	4.6					1.3	8.8

Time: 60.0°W.
Sweep: 0.6 Mc to 20.0 Mc, automatic operation.

Resolu	Ecsolute Bay, Canada (74.7°N, 94.9°W)										
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEs	SE(000EM)			
CO	270	5.0						3.0			
Cl	270	4.8						3.0			
02	280	4.6	260					3.0			
63	280	4.8	250					3.0			
04	300	4.8	240	3.4				3.0			
05	320	4.9	240	3.4				3.0			
06	330	4.8	220	3.8		-		3.0			
07	390	5.0	220	3.8		-		3.0			
08	360	4.8	220	3.8	100			2.8			
09	360	6.2	220	3.9		er-direct		3.0			
10	360	5.4	220	3.9	110	3.2		3.0			
11	380	(5.4)	210	3.9		me-stream		3.0			
12	(380)	(5.4)	200	3.9		-		(2.9)			
1,3	(400)	(4.8)	220	4.0			,	(2.9)			
14	380	5.8	220	4.0	100	-		2.9			
15	(370)	5.0	220	4.0				(3.0)			
16	390	5.4	210	4.0		-		2.9			
17	360	5.3	220	3.9	-			3.9			
18	370	5.2	230	3.8				2.9			
19	340	5.0	230	3.8				3.0			
20	300	5.2	250					3.0			
21	280	5.2	250					3.0			
22	280	5.1	260					3.0			
23	280	5.0		-				3.0			

Time: 90.0°W. Sweep: 1.0 Mc to 26.0 Mc in 15 esconde.

Fort Cl	nimo. Cana	ada (58.	°N. 68.	30k)				May 1951
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)¥2
00	310	4.0					4.8	(2.5)
01	300	4.3					4.3	
02	320	3.8			120	2.2	4.0	(2.7)
03	320	3.6			100	2.4	4.0	8.8
04	320	3.9			100	2.8		3.7
06	320	4.3	300	3.9	100	3.3	3.0	3.0
06	380	4.7	260	4.0	100	3.5		2.8
07	500	4.7	260	4.2	100	3.6		2.6
08	400	4.9	240	4.3	100	3.5		2.8
09	440	5.0	230	4.3	100	3.4		2.7
10	440	6.0	240	4.5	100	3.6		2.6
11	420	5.4	230	4.5	100	3.5		2.6
12	430	5.7	230	4.5	100	3.6		2.6
13	400	5.7	230	4.4	100	3.5		2.6
14	420	5.7	550	4.4	100	3.3		2.5
16	400	5.9	230	4.3	100	3.2		2.6
16	380	5.7	250	4.2	100	3.0		2.7
17	350	6,5	260	4.0	100	3.0		2.7
18	330	5.3	280	3.8	100	3.0		2.7
19	300	5.1			100	2.8	6.0	2.7
50	300	4.8			120	2.2	5.0	* 2.8
21	280	4.6				-	5.2	(8.8)
23	300	4.0					5.0	(2.6)
23	280	3.8					4.7	(2.7)

23 280 3.8

Time: 75.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	24			
Ottawa,	Oanada	(45.4°N,	76.7°W)					May 1951
Time	h'F2	foF2	h'F1	foFl	h ! E	foE	fEe	(M3000)F2
00	300	3,9					3.0	2.8
01	300	3.7					1.9	2.7
02	300	3.2					2.0	2.7
03	300	2.9					1.8	2.8
04	300	3.0					1.9	2.8
06	270	3.9					2.3	3.0
08	280	4.4	240	3.8	110	2.7		3.0
07	320	4.6	230	4.0	110	2.9		3.0
08	390	5.1	220	4.2	110	3.0		2.9
09	430	5.2	220	4.4	110	3.4		2.8
10	400	5.6	210	4.5	100	3,6		2.8
11	420	5.6	210	4.8	100	3.6		2.8
12	420	5.6	200	4.8	100	3.8		3.7
13	420	5.6	220	4.8	100	3.8		2.7
14	400	6.0	220	4.8	100	3.8		2.8
15	380	6.0	230	4.6	100	3.5		8.8
16	360	6.3	230	4.4	100	3.3		2.8
17	340	6.7	230	4.0	110	3.0		2.8
18	300	7.0	250	3.8	110	2.7		3.8
19	270	8.9	250	-	120	2.0	2.3	2.9
20	260	6.6					3.0	2.9
21	260	6.9					1.8	2.9
33	280	6.0					1.8	2.8
23	290	4.4					1,8	2.8

Time: 76.0°W. Sweep: 1.0 Mo to 25.0 Mc in 15 ecoonds.

				Table	36			
Formos a	. China	(25.0°N,	121.0°E)					Иау 1961
Time	p.12	foF2	h'F1	foFl	h'E	foE	fBe	(N3000)15
00	295	9.4					5.8	3.0
01	280	9.0					4.6	3,2
02	260	7.8					4.3	3.4
03	250	6.4					4.4	3.4
04	270	6.0					3.7	3.3
05	270	5.6					3.6	3.4
06	260	6.4	225	4.0	120	2.9	3.5	3.5
07	260	7.3	220	4.2	120	3.2	4.9	3.1
08	280	7.9	230	4.6	120	3.5	5.2	3.4
09	310	8.6	240	4.8	120	3.5	5.4	3.2
10	320	9.6	230	5.2	120	4.3	5.6	3.0
11	335	11.2	220	5.2	120		6.4	2.9
12	325	12.1	230	6.3	110	4.2	4.8	3.0
13	320	12.8	240	6.9	120	4.3	4.9	5.2
14	320	13.5	240	5.8	120	4.1	5.6	3.1
15	320	13.6	240	6.7	120	3.8	6.6	3.2
16	300	13.7	240	6.5	120	3,5	6.4	3.3
17	280	13.5	240	4.6	120	3.3	6.0	3.3
18	260	12.6	230	4.0	120	3.0	4.8	3.4
19	250	12.0			120	3.1	4.6	3.4
20	280	10.5					5.4	3.1
21	280	9.8					4.4	3.1
22	295	8.9					4.6	3.0
23	320	9.0					4.9	2.8

23 320 9.0 4.9
Time: 120,00E.
Sweep: 2.3 Nc to 14.5 Mc in 15 minutes, manual operation.

				Table 2	27			
Wather	00. W. A	stralia	(30.3°S.	116.9°E)			Мау 1951
Time	p.ls	fo#2	h'Fl	foFl	h'E	foE	fEq	(M3000)12
00	270	3,6					3.1	2.9
01	270	3.7					3.1	2.9
02	270	3.8					3.1	2.9
03	260	4.0					2.9	2.9
04	250	4.0					2.8	3.0
05	240	3.7					3.0	3.0
06	240	3.2					2.8	3.0
07	230	6.2				1.9	2.5	3.4
08	230	7.0	550	3.2		2.5	3.2	3.5
09	250	8.0	230	4.0		2.9	3.1	3.4
10	260	8.6	230	4.3		3.1	3.3	3.3
11	270	8.9	230	4.5		3.2	3.4	3.3
12	360	8.8	230	4.5		3,2	3.7	3.2
13	270	8.6	230	4.5		3.3	3.6	3.2
14	270	9.1	230	4,3		3.2	3.5	3.3
15	260	8.9	230	4.0		3.0	3.2	3.3
16	240	8.5	230	3.2		2.5	3,2	3.3
17	220	7.6				1.8	3.1	3.4
18	220	6.0					3.0	3.2
19	230	4.6					2.8	3.1
20	240	3.9					2.8	3.1
21	260	3.7					2.8	3.0
22	260	3.6					2.6	2.9
27	200	7 6					2.0	2.3

23 270 3.6 2.8

Time: 120.0°E.

Sweep: 16.0 Mo to 0.5 Mc in 15 minutes, automatic operation.

Calcut	ta. India	(22.6°N.	88.4°E	Table	29.			April 1951
Time	p.12	foF2	h'F1	foFl	h'E	foE	fEc	(M3000)#2
00	(210)	(7.8)						(3.0)
01	(210)	(7.2)						
02								
03	(510)	(5,6)						(3.2)
04								
05								
06								
07								
80								
09								
10								
11								
12						4		
13								
14								
16								
16								
17	(270)	(12.6)				3.0		
18	(240)	(10.7)				2,6		
19	240	(10.6)						
20	(240)	(9.0)						
51	(200)	(8.8)						(3.2)
22	(320)	(8.6)						,
23	(240)	(8.4)						

Time: Local.

Puerto	Rico. W.	I. (18.	5°N. 67.2	Table (W)	26			Иау 1951
Time	P, LS	foF2	h'F1	foFl	h'E	foE	fEq	(M3000)F2
00	290	7.3						2.8
01	260	7.4						3.0
02	260	7.3						3.0
03	250	6.5						3.0
04	250	5.8					2.1	3.0
05	260	5.2						3.0
06	260	5.1			110	(1.6)	3.0	3,1
07	240	6.2	230		100	2.4	3.7	3.2
08	290	7.0	220	4.3	(100)	3.0	4.1	3.0
09	310	7.4	220	4.5	(100)	3.3	4.0	2.9
10	320	8.1	220	4.7	110	3.6		2.8
11	330	9.2	220	4.9	100	3.7		2.7
12	350	9.9	220	5.0	110	3.8	5.2	2,7
13	330	10.9	230	5.0	110	3.8	6.4	2.8
14	320	31.3	230	4.9	110	3.7	5.6	2.9
15	320	11.2	220	4.7	110	3,5	6.3	2,9
16	310	11.1	230	4.6	110	3,3	4.9	2.9
17	290	10.9	230	4.2	110	2.9	4.6	2.9
18	260	10.4	240		110	(2.1)	3,7	3.0
19	230	9.4					2.9	3.0
20	(250)	8.2					1.9	2.8
21	(280)	7.6					2.6	2.8
22	(300)	7.3					, -	2.8
23	290	7.3						2.7

Time: 60.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Fort Ci	himo, Can	ada (58.1	on, 69.	3°W)	28			Apřil 1951
Time	h'F2	foF2	h'F1	foFl	h'E	fol	fEs	(M3000)F2
00	310	(4.0)					4.4	
01	330	(4.6)					4.5	
02	330	(3.8)					4.4	
03	(360)	(3.0)			110	3.0	4.7	(2.8)
04	(400)				120	2.7	4.8	
05	(320)	(4.0)					4.9	
06	360	4.5					5.0	(3.0)
07	380	4.8	260		100	3.8		2.8
08	410	4.8	250	4.1	100	3.6		2.7
09	460	6.0	230	4.2	1.00	3.6		2.6
10	490	5.0	230	4.2	100	3.3		2.4
11	480	5.4	230	4.2	110	2.8		2.5
12	420	5.8	240	4.3	100	3.4		2.5
13	420	6.0	240	4.3	100	3.4		2.7
14	400	5.9	240	4.2	110	3.2		2.6
15	380	5,6	260	4.1	100	2.7		2.7
16	380	6.0	260	3.9	110	2.7		2.6
17	350	5.2	270		110	2.7		2.7
18	300	4.8			110	2.7	5.8	(2.9)
19	300	4.5					5.6	2.7
20	310	4.9					5.8	(2.6)
21	290	(4.9)			~ ~ ~		5.6	
22	300	5.0					6.0	(3.0)
23	300	3,8					6.0	(2.9)

23 300 3.8

Time: 75.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	30			
Baroto	nga I. (2	1.3°S, 1	59.8°W)					April 1951
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEe	(M3000)F2
00	250	6.6					2.6	3.0
01	260	6.2						2.9
02	270	6.3					2.5	2.9
03	260	5.4					2.3	3.0
04	280	5.1						2.9
06	290	5.0					2.8	2.9
06	280	6.4					3.8	3.0
07	250	8.6	250			2.1	3.0	3.2
08	250	10.4	240	5.0	110	2.7	3.6	3,3
09	250	13.0	230	4.9	110	3,2	4.0	3.2
10	250	13.2	220	5.0	110	3.4	4.1	3.2
11	250	12.2	240	6.1	110	3,5	4.4	3,2
12	270	11.4	250	5.8	110	3.6	4.5	3.2
13	290	12.5	240	5.9	110	3.6	4.5	3.0
14	290	12.6	250	5.5	110	3,5	4.6	3.0
16	260	13.2	250	5.2	110	3.3	4.5	3.1
16	260	11.3	240	5.5	110	3.0	4.4	3.1
17	250	10.8	250	5.5		2.4	4.6	3.0
18	250	10.3				(1.8)	4.0	3.1
19	250	9.0					4.0	3,1
20	250	7.7		-			3.5	3.0
21	270	7.2	-				3.2	2.9
22	260	7.3					2.8	3.0
23	260	7.3					2.8	3.0

23 | 260 7.3

Time: 157.6°W.

Sweep: 2.0 Mc to 16.0 Mc, manual operation.

D:1908	as, Austr	alla (27	.0-5, 15	3.U A)				April 1951
Time	F, LS	foF2	h'F1	foF1	h'E	foE	fEe	(M3000)F2
00	260	4.8						3.0
01	260	4.8					2.8	2.9
02	250	4.8						3.0
03	235	4.4						3.2
04	240	3.9						2.9
05	260	3.4						2.9
06	250	4.0				E		3.1
07	230	6.8			110	2.3		3.3
08	250	8.4	230	4.5	100	2.8	2.2	3.3
09	250	9.3	220	4.6	100	3.2	2.4	3.3
10	250	10.0	210	4.8	100	3.4	3.0	3.2
11	25 5	9.7	210	4.8	100	3.4	3,5	3.1
12	260	9.8	200	4.8	105	3.6	3.5	3.1
13	270	10.0	220	4.9	105	3.6		3.1
14	260	9.8	230	4.7	110	3.4		3.1
15	260	9.9	230	4.4	105	3.0	2.0	3.2
16	240	9.7		3.8	110	2.6	2.0	3.2
17	230	8.8			130		2.0	3,3
18	220	6.8					3.2	3.1
19	230	5.5					1.6	2.9
20	260	6.3						2.9
21	260	5.2						2.9
22	260	5.0						3.0
23	270	5.0						2.9

23 270 5.0

Time: 150,0°E.

Sweep: 1.0 Mc to 16.0 Mc in 1 minuts 65 seconds.

				Table	33			
Hobart,	Tasmani	a (42.8°	S. 147.4	°E)			A	pril 1951
Time	P, LS	foF2	h'F1	foF1	h E	foE	fEe	(M3000)F2
00	260	3,5						2.8
01	260	3.1						2.8
02	250	3.0					2.0	2.9
03	250	2.5						2.9
04	260	2.4					2.2	2.9
05	250	2.2					2.1	3.0
06	265	2.3						2.9
07	230	4.5			120	1.8	2.5	3.2
08	S30	6.8			100	2.5		3.2
09	215	6.4	205	4.3	90	2.9		3.1
10	250	6.8	200	4.4	90	3.1		3.1
11	275	7.5	200	4.5	90	3.2		3.1
12	260	7.6	200	4.6	90	3,3		3.0
13	250	9.0	200	4.6	90	3.3		3.0
14	250	8.5	200	4.4	90	3.2		3.1
15	230	8.5	205	4.4	90	3.0		3.1
16	220	8.1			90	2.5	2.7	3.1
17	220	8.0			100	2.0	2.8	3.1
18	210	6.5					3.2	3.1
19	215	5.6					2.5	3.0
20	225	4.6						2.9
21	240	4.3						2.8
22	250	4.2						2.9
23	250	3.6						2.9

Time: 150.00E.
Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Brisba	ne. Austr	alie (27	.5°S, 15	Jable 3.0°E)				March 1951
Time	h'F2	foF2	h'F1	foF1	h ' E	foE	fEs	\$T(000EM)
00	270	5.4					2.0	2.9
01	270	5.3					2.0	2.9
02	250	4.8					2.0	3.0
03	250	4.4					2.0	3.0
04	250	3.8					1.9	2.9
05	270	3.6					2.0	3.0
06	250	4.6				1.7		3.2
07	240	6.0	240		110	2.4	2.0	3.2
08	260	7.1	330	4.4	110	2.8	3.3	3.3
09	280	7.3	210	4.6	105	3.2	3.7	3.2
10	290	8.0	200	4.6	105	3.4	3.9	3.1
11	290	8.5	200	4.8	100	3.6	3.8	3.1
12	300	8.5	200	4.8	100	3.6	4.0	3.1
13	280	8.7	210	4.7	110	3.6	3.9	3.1
14	290	8.4	220	4.6	105	3.4	3,4	3.1
15	280	8.0	220	4.6	105	3.2	2.4	3.0
16	280	7.9	230	4.3	110	2.8	1.8	3.1
17	250	8.1	245		110	2.4		₹.2
18	240	8.0				E	1.9	3.2
19	520	6.7						3.1
20	(250)	6.8						8.8
21	(270)	6.8						8.8
22	280	5.6					1.8	2.8
23	280	5.5					2,0	2,8

Time: 150.0°E. Swcep: 1.0 Mc to 16.0 Mc in 1 minute 56 seconds.

Canber	A	pr il 1951						
Time	P.ES	foF2	h'F1	foFl	h ! E	foE	fEq	(M3000)F2
00	260	4.2					2.4	3,0
01	260	4.2					2.6	3.0
02	260	4.1					2,4	3.0
03	240	4.0					2.4	3.0
04	245	3.5					2.4	3.0

Time	P.LS	foF2	h'F1	foFl	h'E	foE	fEe	(M3000)F2
00	260	4.2					2.4	3.0
01	260	4.2					2.6	3.0
02	260	4.1					2.4	3.0
03	240	4.0					2.4	3.0
04	245	3.5					2.4	3.0
05	235	3.2					2.4	2.9
06	260	(3.0)					2.4	3.0
07	230	5.4	240		110	3.0	2.4	3.4
08	2 25	7.0	220	(4.0)	100	2.5		3.4
09	245	7.8	210	4.1	100	3.0		3,4
10	250	8.0	200	4.5	100	3.1		3.4
11	260	8.2	200	(4.6)	100	3.2		3.3
12	260	8.3	200	4.5	100	3.4		3.2
13	250	8.0	200	4.4	100	3.4		3.1
14	260	8.1	210	4.4	100	3.3		3.2
15	250	8.3	220	(4.0)	100	3.0	2.6	3.2
16	230	8.1	220		100	2.7	3.2	3.4
17	220	7.7			(110)	2.0	3.4	3.4
18	210	6.8					3.0	3.2
19	230	5.8					2.7	3.1
20	240	5.0					2.5	3.0
21	250	4.8					2.4	3.0
22	255	4.4					2.6	3.0
23	260	4.3					2.5	2.9

Time: 150.00E, Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

Calcutta, India (22.6°N, 88.4°E) March 1951

Time	h'F2	foF2	h'F1	foFl	h ! E	fol	TEe	(M3000)F2
00	180	9.0						3.2
01	180	8.6						
02	(180)	(7.2)						
03	(160)	(6.5)						(3.4)
04								
05	(180)	(4.5)						
06								
07	(210)	8.8				2.6	(2.6)	
08	(S10)	(9.0)				2.9		
09	(210)	(9.5)				3,2		(3.8)
10	(210)	(10.1)				3.6		
11	(210)	(12.0)				3.7		
12	(210)							
1.3	(210)	(12.6)				-		
14	(210)	12.9						
15	(310)	(13.1)				-		(3.1)
16	(210)	(13.1)				3.0		
17	210	(13.0)				2.8		4
18	(210)	(13.0)				2.4		(3.8)
19	(510)	12.3				2.5		
20	(210)	11.6						4
21	(210)	(10.0)						(3.2)
22	210	9.6						

23 200 9.5 Time: Local.

Table 36 Canberra, Australia (35.30S, 149.00E) March 1951

Time	P,12	foF2	h'F1	foFl	h1E	foE	fRe	(M3000)F2
00	270	4.8					3.3	2.9
01	260	4.6					3.0	3.0
02	250	4.4					2.6	3.0
03	250	4.2					2.6	3.0
04	250	3.6					2.8	3.0
05	250	3.4				E	8.5	2.9
06	250	3.5				E	2,2	3.1
07	230	5.1			110	2.2	2.9	3.3
08	270	6.1	225	(4.2)	100	2.7	3.5	3.3
09	310	6.3	210	4.4	100	3.0		3.2
10	300	6.6	205	4.5	100	3.2	4.3	3.2
11	290	7.0	190	4.5	100	3, 3	3.8	3.2
12	300	7.2	195	4.5	100	3.5	3,8	3.1
13	280	7.1	200	4.5	100	3.5	3.7	3.2
14	280	7.3	210	4.5	300	3.4	3.8	3.2
15	265	7.4	220	4.4	100	3.2	3.5	3.2
16	(280)	7.0	226		100	3.0		3.2
17	240	7.0	240	0 Miles	105	2.4	2.7	3.2
18	230	7.4				(1.8)	3.0	3.2
19	230	6.8					3.0	3.1
20	240	6.3					2.8	3.0
21	250	5.4					2.6	2.9
55	250	5.1					2.7	2.9
23	270	4.8					3.3	2,9

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

				Table	37			
Hobart	, Tasmani	a (42.8°	S, 147.4	(E)				March 1951
Time	P115	fol2	h'F1	foF1	h'E	fol	fEs	(M3000)F2
00	250	3.6						2.8
01	250	3.5						2.8
02	250	3.2					2.5	2.9
03	250	2.8					2.7	2.9
04	250	2.6					2.8	2.9
05	260	2.4					2.9	3.0
06	250	3.0				1.2	2.6	3.1
07	220	4.5			100	2.1	2.6	3,2
80	230	4.9	210	4.0	90	2.6	2.8	3.2
09	300	5.5	200	4.3	90	2.9	3.]	3.1
10	320	6.0	200	4.4	90	3.1	3.3	3.0
11	330	6.3	190	4.5	90	3,2		3.0
12	300	6.5	190	4.6	90	3.3		3.0
13	300	6.4	190	4.6	90	3.4		3.0
14	300	6.7	200	4.5	90	3.3		3.0
15	280	6.5	200	4.4	90	3.1		3.0
16	250	6.5	200	4.0	90	2.9		3.0
17	220	6.5	210	4.0	90	2.4		3.1
18	230	7.0			100	1.7	2.6	3.1
19	215	7.0					2.3	3.1
20	210	6.2					2.6	3.0
21	220	5.4						2.9
22	250	4.6						2.8
23	250	4.0						2.8

Time: 150.0°E.
Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Delhi,	India (2	3.6°H, 7	7.1°E)	Table	<u>39</u>		ruary 1951	
Time		foF2	h'F1	foF1	h'E	foE	fEe	(M3000)F2
00	300	(2.9)						3,4
01		(2.8)						
02	/							
03								
04	(300)	(2.8)						
05	290	3.2						
06	S 60	4.0						
07	250	5.8						
80	260	7.3						3.5
09	280	8.8						
10	280	9.5						
11	280	11.1						
12	280	12.0						3.6
13	280	12.2						
14	290	11.7						
15	280	10.9						
16	270	9.9						3.6
17	270	8.0						
18	270	6.6						
19	280	5.6						
50	290	4.8						3.0
21	290	3.9						- • •
23	2390	3,2						3.4
23	300	3.0	_					

23 1 300 3.0

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

*Avarage values; other columns, median values.

Вошбау	. India	(19.0°N,	73.0°E)	Table	41		February 1951		
Time		foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2	
00									
01	1								
02	İ								
03									
04									
05									
06									
07	270	6.2							
08	300	9.6						3.2	
09	330	10.0						-,-	
10	360	11.2							
11	390	11.9							
12	390	12.8						2.8	
13	390	12.8							
14	390	13.5							
15	390	13.2							
16	390	13.0						2.8	
17	360	12.3							
18	330	11.8							
19	330	10.8							
20	330	9.7						3.1	
21	300	8.7						,	
22	300	7.6						3.3	
23	300	7.6							

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Beight at 0.83 foF2.

**Average values; other columns, median values.

heyk ja	vik, Icel	and (64.1	°N. 21.	Bow)	38		Febr	uary 1951
Time	h'F2	foF2	h'F1	foF1	h ' E	foE	fEs	(M3000)F2
00	(380)	(3.8)					5.0	(8.6)
01		(3, 2)					4.6	
02		(3.6)					4.8	
03		(4.0)					4.8	
04	(340)	(2.3)					4.3	(2.6)
05	(310)	(2.8)					3.4	
06	(300)	(2.8)					2.9	(2.7)
07	(270)	(2.6)					2.4	(2.9)
80	290	3.3						8.9
09	260	4.5						3.1
10	260	5.0						3.1
13	260	5.6	250					3.1
12	270	5.8	240					3.1
13	280	6.0	250					3.0
14	270	6.0	240		120	2.2		3.1
15	260	5.5			120			3.1
16	250	5.6			(120)			3.1
17	260	5.1					2.6	2.9
18	260	(4.5)					4.4	(3.0)
19	(340)	3.6					4.6	2.6
20	(310)	(3.5)					4.5	(2.6)
21	(360)	(3.5)					5.2	(2.6)
22							5.1	
23							4.2	

Time: 15.0°W.
Sweep: 1.0 Mo to 25.0 Mc in 18 seconds.

	. Tadis	(22.6°N	00 40 1	Table	40		Fah	mary 1951
Calcut	ta, India	1 (20.0 11	, 00.4	·/			700	
Time	h'F2	foF2	h'Fl	foFl	h1E	foE	fBe	(M3000)F2
00	168	5.9						3.5
01	147	5.5						
02	147	4.9						
03	147	4.2						3.5
04	(189)	(3.8)						
05	(189)	(2.5)						
06	(210)	(2.4)				2.0		(3.2)
07	189	5.7				2.5		
80	178	8.8				2.7		
09	189	9.5				3.1		3.5
10	168	11.2				3.4		
11	168	11.4				3.6		
12	189	12.4				3.9		(3.3)
13	(189)	12.6				3.7		
14	(189)	(12.3)				3.5		
15	189	12.9				3,3		3,2
16	189	12.2				3.0		-
17	189	12.0				2.6		
18	189	12.0				2.4		(3.3)
19	189	11.2				2.0		
20	189	9.5				2.0		
21	189	8.9				, -		3.3
22	178	8.4						-
23	168	€.6						

Time: Local.

				Table	42			
Madras,	India	(13.0°N,	80.2°E)				Febr	uary 1951
Time	•	foF2	h'T1	foF1	h i E	foE	fEe	(M3000)F2
00		-						
01								
02								
03								
04								
05								
06								
07	360	7.1						
08	390	8.4						2.8
09	420	9.2						
10	420	9.4						
31	430	9.6						
12	420	3.0.0						2.5
13	450	10.4						
14	490	10.5						
15	460	11.4						
16	480	11.8						2.5
17	480	11.4						
18	480	10.9						
19	480	10.7						
20	420	10.1						2.6
21	420	(10.0)						
22	420	9.7						
23 1								

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
*Height at 0.83 foF2.
**average values; other columns, median values.

Tiruch	y, India	(10.8°N,	78.8°E)	Table	43		Feb	ruary 1951
Time		foF2	h'F1	foF1	h1E	foE	fEe	(M3000)F2
00								
C1	1							
02								
03								
04								
n 5								
06	380	4.9						
07	420	6.7						
08	450	8.5						2.6
09	480	9.2						
10	510	8.6						
11	510	8.6						
12	51C	9.2						2.4
13	540	9.7						
14	540	9.8						
15	540	10.6						
16	540	10.7						2.4
17	540	10.7						
18	540	10.5						
19	540	10.0						
20	510	9.8						2.1
21	480	9.5						
23	480	9.3						2.7

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
*Height at 0.63 foF2.
**Average values; other columns, median values.

Hobart,	Taemani	a (42.8°		February 1951				
Time	h'F2	foF2	h'F1	foF1	h ! E	fo≝	fEs	(M3000)12
00	250	4.6					2.7	2,9
01	250	4.0					3.4	3.0
02	250	3.5					3.6	3.0
03	250	3.1					3.6	2.9
04	250	8.8					3.2	3.0
05	260	2.7					3.1	3.0
06	240	3.8			110	2.0	3.0	3.2
07	215	4.6	210	4.0	90	2.4	3.2	3.2
08	305	5.4	200	4.2	90	2.9	4.8	3.1
09	300	6.0	300	4.5	90	3.2	4.7	3.1
10	300	6.5	200	4.6	90	3.3	5.2	3.1
11	300	6.7	200	4.7	90	3.5	5.0	3.1
15	300	6.8	200	4.8	90	3.5	6.5	3.0
13	310	7.0	200	4.9	90	3.5	6.0	3.0
14	300	7.0	500	4.7	90	3.5	4.2	3.0
15	300	6.9	200	4.6	90	3.4		3.0
16	295	7.0	200	4.4	90	3.1		3.1
17	270	6.7	200	4.0	90	2.8		3.1
18	240	6.8	200	3,5	90	2.4	3.2	3.2
19	225	7.0			110	1.7	3.5	3,2
2 0	230	6.7					4.1	3.1
21	230	6.0					4.0	3.0
22	250	5.4					3.6	2.9
							, -	

2.3 250 Time: 150.0°E.

Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 eeconds.

Delhi,	Table 47							uary 1951
lime	•	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	290	2.8						3,3
01	(290)	2.6						
cs								
03								
04	(310)	(2.4)						3.4
05	290	8.8						
06	280	3.2						
07	260	4.6						
08	250	5.7						3.6
09	250	7.0						
10	270	8.4						
11	280	9.0						
12	280	9.9						3.4
13	280	9.4						
14	280	8.9						
15	270	8.5						
16	240	7.5						3.6
17	250	6.5						-
18	260	5.2						
19	260	4.2						
20	270	3.8						3.5
21	280	3.0						
22	300	2.9						
23	300	2.9						

Time: Local.
Sweet: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
"Meight at 0.83 for2.
"Average values; other columne, median values."

Brisba	no, Auetr	alia (27	.5°S, 15	3.0°E)	-		Feb	ruary 1951
Time	P.LS	foF2	h'F1	foF1	h'E	foE	fEe	(M3000) F2
00	250	6.4					3.4	8.9
01	245	6.0					3.1	3.0
02	240	5.2					8.8	2.9
03	250	4.6					2.4	2.9
04	250	4.4					2.0	2.9
05	250	4.0						3.0
06	240	5.3	345	-	130	1.9	1.9	3,3
07	270	6.4	220	4.1	3.00	2.6	3.0	3.2
08	270	7.0	210	4.4	100		4.0	3.2
09	280	7.5	200	4.7	100	3.4	4.4	3.1
10	300	7.8	200	4.8	100	3,5	4.4	3.1
11	300	8.3	200	4.9	100	3.7	4.4	3.0
12	300	8.2	200	5.0	100	3.7	4.4	3.1
13	315	8.2	200	4.9	100	3.7	4.4	3.0
14	300	8.7	200	4.8	100	3.5	4.2	3.1
15	280	8.5	200	4.7	100	3.3	4.2	3.1
16	280	8.2	220	4.4	100	3.0	4.4	3.1
17	250	8.0	230	4.0	100	2.6	3.6	3.1
18	240	7.4					4.0	3.1
19	240	7.3					2.9	3.0
20	240	6.6					3.6	2.8
21	270	6.4					3.2	2.8
22	275	6.2					3,5	2.8
23	275	6,0					5.8	2.8

Time: 150.0°2. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 esconds.

Reykjat	Table 46 ykjavik, Iceland (64,1°F, 21.8°W) January 198		nuary 1951					
Time	h!F2	faF2	hIFI	foF1	h!E	foE	₹\$a	(MECOO) P

Time	P1ES	foF2	h'F1	foF1	h ! E	foE	fBs	(M3000)F2
00							5.2	
01	(380)	(3.6)					4.8	(2.6)
02	360	(4.2)					5.0	(2.6)
03	380	(4.2)					4.6	(2.6)
04	350	3.7					4.4	2.7
05	300	3.5					4.0	2.8
06	280	3.4					3.0	2.8
07	280	3.2						2.9
80	280	2.3						3.0
09	260	3.0						3.0
10	250	4.8						3.2
11	240	5.6		9	(110)			3.3
12	240	6.2						3.3
13	240	6.7			(120)			3.3
14	240	6.1			(140)			3.2
15	250	5.6			(120)			3.2
16	270	5.3			(120)		2.3	3.1
17	270	3.7					3.9	3.0
18	280	3.2					4.0	2.8
19	340	(3.8)					5.3	(8.8)
50	(320)	(4.3)					5.4	(2.6)
21	330	(4.2)					5.1	(8.9)
22	360	(4.0)					5.5	(8.8)
23	390	(3.8)					4.8	(2.6)

Time: 15.0°W. Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

				Table 48	
Calcutta.	India	(22,6°N.	88.4°E)		January 1951

Time	PIES	foF2	h'F1	foF1	h I E	foE	fBe	(M3000)F2
00	189	6.0						3.4
01	189	5.5						
SO	(178)	(4.8)						
03	(168)	(3.7)						(3,4)
04								
05	(158)	(3.4)						
06		(4.5)						
07	189	5.8						
98	169	8.6				2.8		
09	189	10.4				3.2		3.5
10	210	11.0				3.5		
11	210	11.0				3.7		
12	210	11.6				3.7		3.2
13	210	12.4				3.5		
14	210	12.0				3.4		
15	210	12.0				3.1		3.2
16	210	12.2				2.8		
17	210	11.8				2.5		
16	210	11.0				2.4		3.2
19	210	9.8				2.3		
20	210	9.2						
21	189	8.6						3.3
22	200	7.5						
23	510	7.5						

Time: Local.

Bombay	ombay, India (19.0°F, 73.0°E)				49		Janu	ary 1951
Time		foF2	h'Fl	foFl	h I E	foE	fEs	(M3000)12
OC								
01								
03								
03								
04								
05	ļ							
06		4.0						
07	270	6.2						3,3
08	300	9.0						3,0
09	300	9.4 10.6						
10	330 360	11.4						
11 12	360	12.1						2.8
13	360	12.4						
14	360	12.6						
15	360	12.5						
16	330	12.4						3.1
17	300	11.6						
18	300	11.0						
19	300	9.8						
50	300	8.5						3.2
21	270	8.3						
22	270	6.8						3.4
23	270	(5,2)						

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
"Height at 0.83 for2.
"Average values; other columne, median values.

Tiruchy, India (10.8°N, 78.8°E)

January 1951

Time	•	foF2	h'F1	foFl	h¹ E	foE	fEe	(M3000) IS
00								
01								
02								
03								
04								
06	1							
06	360	4.9						
07	360	6.3						
08	420	8.4						2.7
09	480	8.8						
10	500	8.4						
11	500	8.0						
12	540	8.1						2.4
13	540	8.8						
14	540	9.5						
15	540	10.2						
16	510	10.0						2.4
17	480	9.8						
18	480	9.5						
19	480	9.4						
20	440	8.5						2.6
21	390	8.2						
22	360	7.9						2.9
23								

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 6 minutes, manual operation.

"Height at 0.83 foF2.

"Average values; other columns, median values.

Canberra, Austrelia (35.3°S, 149.0°E)

January 1951

Time	h'F2	foF2	h'Il	foFl	h 1 E	foE	fEe	(M3000)F2
00	250	(6.1)					3.6	(2.9)
01	240	(5.6)					3.8	3.0
02	250	5.0					3,6	2.9
03	260	4.1					2.6	2.9
04	260	3.5					2.8	2.9
05	270	3.8				1.3	2.6	3.0
06	240	4.5	240			2.2	3.4	3.2
07	305	5.7	225	4.1		2.7	4.0	3.1
08	345	6.1	320	4.5		3.2	5.3	3.0
09	320	6.9	200	4.6		3.3	5.8	3.1
10	310	7.5	210	4.6		3.5	5.6	3.0
11	31.0	7.5	195	4.7		3.5	5.7	3.1
12	325	7.6	210	5.0		3.7	6.1	2.9
13	320	7.2	200	4.8		3.8	4.9	3.0
14	320	7.4	200	4.8		3.7	4.4	3.0
15	320	7.2	200	4.6		3.5	4.1	3.0
16	300	7.2	210	4.4		3.8		3.0
17	390	7.0	225	4.2		3.0		3.1
18	260	7.0	235			2.5	3.1	3.1
19	340	6.6				< 1.6	3.4	3.1
20	250	6.7				<1.5	3.8	2.9
21	270	6.6				1.0	3.2	2.8
22	275	6.9					3.9	2.9
23	280	6.5					3,8	2.9

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconde.

Madrae, India (13.0°N an 20 m) Table 50

Madras,	India (13.6°N,	80.2°E)				Jau	nuary 1951
Time		foF2	h'F1	foFl	h¹E	foE	fEe	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	360	7.1						
08	360	8.1						2.8
09	396	9.0						
10	420	9.2						
11	420	8.8						
12	450	9.0						2.6
13	480	9.2						
14	480	9.6						
15	480	9.8						
16	480	9.9						2.4
17	480	10.1						•
18	480	10.0						
19	450	9.5						
20	420	8.8						2.6
51	390	8.3						
22	390	8.0						
23								

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 6 minutes, manual operation.
*Height at 0.93 forz.

**Average valuee; other columns, median valuee.

Brisbane, suetralia (27.6°S, 153.0°E)

January 1951

Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEe	(M3000)F2
00	250	6.6					4.4	3.0
01	250	6.8					3.9	3.2
02	250	6.4					4.1	3.0
03	250	4.9					3.2	2.9
04	240	4.2					2.6	3.0
05	250	3.8				<1.5	2.8	3.1
06	240	5.3	240			2.5	3.5	3.2
07	310	5.9	220	4.4	100	2.8	4.6	3.1
08	300	6.2	210	4.4	100	3.2	4.6	3.0
09	300	7.6	200	4.6	100		6.4	2.9
10	320	8.5	200	4.8	100		6.0	2.9
13	320	8.5	200	4.8	100		6.0	2.9
12	325	8.7	200	5.0	100		6.0	2.9
13	310	8.7	300	4.9	100	3.8	4.4	2.9
14	300	8.6	205	4.7	100	3.6	4.8	3.0
15	290	8.4	205	4.7	100	3,4	4.4	3.0
16	285	7.8	210	4.4	100	3,2	4.3	3.1
17	260	7.4	230	4.0	100	2.8	4.1	3.1
18	240	7.0	240			<1.9	4.0	3.1
19	240	6.9					4.4	2.9
20	(280)	6.9					3.8	3.8
21	300	6.8					4.0	2.8
22	270	6.9					4.4	2.8
23	270	6,8					_4,4	2,9

Time: 150.0°E. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 eeconds.

Hobart, Tasmania (42.8°S, 147.4°E) January 1951

Time	h'F2	foF2	h'F1	foFl	h¹E	foE	fEe	(M3000)F2
OC	250	5.5					3.0	3.0
01	250	4.7					2.7	3.0
02	250	3.9					3.5	3.0
03	250	3.2					3.2	3.1
04	250	3.0					3.0	3.0
06	250	3.3			140	1.7	2.6	3.2
06	220	4.0			100	2.3	3,4	3.3
07	280	5.8	210	4.0	30	2.7	4.7	3.1
08	350	5.5	200	4.4	90	3.1	5.0	3.1
09	320	6.0	200	4.6	90	3.4	6.0	3.0
10	300	6.7	200	4.9	90	3.5	6.5	3.1
11	320	6.6	200	5.0	90	3.5	6.0	3.1
12	320	6.5	300	5.0	90	3.5	7.0	3.1
13	340	6.5	200	6.0	90	3.5	5.8	3.0
14	340	6.5	200	4.9	30	3.5	5.5	3.0
15	320	6.6	200	4.7	90	3.5	3.7	3.0
16	300	6.5	300	4.5	90	3.2		3.0
17	270	6.8	205	4.2	90	3.0	3.0	3.1
18	250	6.5	220	3.8	100	2.5	3.0	3.2
19	230	6.4			120	2.0	3.6	3.1
20	530-	6.5					4.5	3.1
21	240	6.6					4.0	3.0
22	250	6.1					4,5	2.9
23	250	5.6					4.0	2.9

Time: 150.0°E. Sweep: 1.0 Mo to 13.0 Mc in 1 minute 55 seconds.

Calcut	ta, India	(SS'60N'	88.4°E)				Dec	ember 1950
Time	P.125	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	180	6.2						3,3
Ul	189	6.0						-
02	190	5.2						
03	180	4.4						3,4
04	180	4.0						•
05	180	3.6						
06	189	5.8				2.1		3.4
07	210	8.2				2.6		- • -
ÇB	210	9.2				3.0		
05	210	9.6				3.2		3.2
10	169	10.5				3.5		
11	210	11.0				3.7		
12	210	11.6				3,9		3.0
13	220	11.0				3.5		
14	189	11.8				3.5		
15	189	11.8				5.8		3,3
16	189	11,2				2.8		0.0
17	189	33.0				2.5		
18	189	10.5				2.4		3.3
19	189	9.5				3.1		0,0
50	199	9.2				2.0		
21	189	8.8						3,3
22	200	8.2						-76 17
23	194	7,2						
Time:	Local.							

				Table	57			
Calcutt	a. India	(SS.6°N,	88.4°E)				Octo	ber 1950
Time	p.115	foT2	h'F1	foFl	h'E	foE	fEe	(M3000)F3
00	210	B.4						3,1
01	270	8.0						
02	270	7.7						
03	310	7.0						3.0
04	180	5.6						
05	240	5.8				1.8		
06	270	7.1				2,2		2,9
07	300	9.0				2.4		
90	300	9.8				3.4		
09	300	10.4				3.6		2,7
10	336	11.0				4.2		
11	360	11.0				4.6		
12	360	11.4				~~~		2.5
13								
14								
15								
16	(300)	11.0				3.4		
17	300	11.0				3.6		
18	300	10.2				4.2		2.8
19	270	10.1				4.6		
20	270	10.0						
21	270	9.9						2.8
22	(285)	(9.6)						
23	(270)	(9.4)						
Time:	Local.							

Calcutt	a, India	(22.6°N,	88.4°E)	Table	59		A	ngust 1950
Time	P1ES	foF2	h'Fl	foFl	hIE	foE	fle	(N3000)F2
00	300	8.5				1.4		2.9
01	240	7.6						
02	240	7.2						
03	210	6.5						2.9
04	210	5.2				1.4		
05	210	5.4				1.7		
05	240	5.8				2.0		2.9
07	270	7.8				2.5		
68	300	8.9				3.0		
09	300	9.8				3.5		2,7
10	315	10.4				3.8		
11	345	10.9				4.2		
12	3:30	11.0				4.5		2.7
13	360	11.0				4.5		
	345	11.0				4.6		
15	(360)	(11.0)						(2.5)
16	330	11.0				4.0		
17	300	11.0				3.5		
18	300	10.9				2.9		2.8
19	330	10.8				2.5		
20	(300)	(10.8)				2.4		
21	300	10.4				2.0		2.8
23	300	10.2				1.7		
23	300	9.2				1.5		

23	300	9.2	1.5
Mimer	Local.		

Calcut	tn, India	(22.6°M,	88.4°E)	Tabla	55		Nov	ember 1950
Time	h'F2	foF2	h'I'l	fo Fl	h'E	foZ	15-6	(Magoo) Na
20	270	6.0						3.0
01	240	5.0						
02	210	4.1						
03	195	3.9						3.5
04	210	3.7						
05	210	3.4						
06	240	5.5				2.5		3,3
07	270	8.5				2.8		
80	270	10.5				3.0		
09	270	11.0				3.9		3.1
10	300	31.2				4.0		
11	300	11.3				4.2		
12	360	11.4						2.5
13	360	11.5						-
14	330	11.3						
15	300	11.2						2.8
15	300	11.0				3.4		
17	300	10.8				3.0		
18	300	10.8				2.5		2.7
19	300	16.0				2,5		
20	300	9.8				, -		
21	300	9.5						2,8
22	270	8.5						
23	300	5.0						

Z3 300 Time: Local.

				Table	58			
Calcut	ta, India	(22.6°H,	88.4°E)				Septe	mber 1950
Pime	h'#2	foF2	h'F1	foFl	h I E	foJ	fBs	(M3000)F2
00	285	8.0						2,8
01	270	6.6						
02	240	5.7						
03	240	4.5						3.1
04	210	4.0						
05		(4.8)						
06		5.8						
07		(8.8)						
08	(300)	(9.2)				3.6		
09	(300)	10.0				3.8		2.8
10	(330)	(10.5)				4.2		-
11	330	(11.0)				4.5		
12		(11.5)						
13		(11.1)						
14		(11.0)						
15		(10.8)						and the same
16	(300)	11.0				3.4		
17	290	10.5				8.8		
18	270	10.8				2.6		2.8
19	300	10.5				2.1		
20	300	10.3				2.0		
51	300	9.5						2.8
22	ತಿನಿ೦	9.0						
23	270	8.4						

23 270 Time: Local.

				18018	60			
Caloutt	a, India	(SS' eoN'	88.4°E)					July 1950
Time	h'F2	foF2	h'F1	foFl	hIL	fol	fBs	(M3000)F3
00	270	9.0						2.8
01	240	8.7						
22	225	8.4						
03	240	7.8						3.0
04	210	7.5				1.5		
0.5	210	7.2				1.8		
06	240	7.8				2.3		3.0
07	270	8.7				2.7		
08	300	9.5				2.9		
09	300	10.0				3.3		1.8
10	330	10.5				3.5		
11	300	11.0				3.5		
12	330	11.0				3,5		2.6
13	(345)	(?1.0)						
14	(330)	(11.0)				-		
15	(360)	(11.0)				may sample		(8.5)
16	330	11.5				3.4		
17	300	11.0				3.0		
18	300	11.2				2.7		2,8
19	285	11.0				2.4		
20	300	10.8				2.0		
SJ	270	10.5				1.9		2.7
22	270	10.0				1.5		
23	270	9,6		-	-			

Timo: Local.

Form adopted June 1946

National Bureau of Standards

H. C.

McC. L.H.E.

 IABLE $\mathsf{6I}$ Central Radio Propagation Laboratory, National Bureou of Standards, Washington 25, D. C.

ONOSPHERIC DATA

August (Month)

Kart)

(Charocteristic)

Observed at

h F2

(340)

(260) A (3107 A)

0.4

ō

Day

Lot. 38.7° N , Long 77.1° W

Washington, D.C.

(380)

[[300] (020)

(300)

(300)

(300)

(020) (300)

М

Ø

2 70

(060)

(300)

(300)

(330)

(300)

(300) (080)

- 80

(060)

(350) x (400) x

(300) x (300) x 350

(050)

(340)

og BO

260 (270) (300)

[0000]

-220 A

(960)

(300)

8 09 P

__

Sweep_1.0 Mc to 25.0 Mc in 0.25 min

(360)

 \triangleleft

280 x (320)x 310

(330)

(330) x (330) x

260 K

(300)

0000 K (260) K

(300) x (300) x (290) x (320) x

(300)

(300)

V,

(300) A

(300)

 (320)

(300)

02.00

Ç0

280 280

edlan

N)

gunj

Monual [Automotic Ed

Form adopted June 1946

IONOSPHERIC DATA

Sweep 1,0 Mc 1025,0 Mc In 0.25 min

U. N. GOVERRAMENT PRINTING OFFICE, 1949 O - 702\$19

Manual

Automatic

But

TABLE 63
Central Radio Propagotion Laboratory, National Bureau of Standards, Washington 25, D.C.

Form adopted June 1946 Standards E.C

> National Bureau of McC., L.H.E.

> > IONOSPHERIC

1<u>3</u>21

August

foF2 Mc

Washington, D. C.

Observed at _

Scaled by:_ DATA

H.C. (4 c) 2 2330 200 ナンプ 4.4 N. H 3.6 6.3 30 by: McC., L.H.E. 177 2230 1587A 4.75 (40)? (3.8) \$ 450 4 82 5.0 24 6 7 29 43 4.3 (28) 8 オしり 8 6 4.9 4.9 ž 518 (4 9)3 5.8 2130 4.87 (42) \$ K(3.4)} 6.4 3 6:0 9.0 4.5 0.6 30 B(4.6) 5(4.9) 5.4.5 4 0 1× 2030 205 S.6 X S(+ 4) 4.9 9 9 1, 7.4 9.9 6 0 7 7.1 4 7 C 2 Calculated 4.7 K 19. P. 800 7.0 H 2 8.3 1930 X 00 5 5 2 2 265 65 17.4) 00 62 6.5 4 ام ج 5 2.0 7.4 38 62 8.1 69 72 76 50 7.9 1.6 26 è (6.0) 5 5 K (7918 4.7 6.0 1 (53) S 50 X 6.5 7.5 1830 6.0 (20) 2.6 2 20 7.9 000 4.9 00 7 9 9 9.0 2.8 20 m 4 9 K x6+ 4.9x 591 45K 50 X (7.2) 1730 という 58 6.1 7.6 19 7.0 6.9 9 6.0 4.9 6.0 73 6.0 99 68 2.8 6.7 26 3 0 4(2) × 6.3 4.8× 4 9 H 4.5 X 1630 5.7 X 1.4 0 9 49 0.9 6.5 4.0 20 0.0 0 0 20 1/8 6.2 0.0 0 0.9 2 2 7 1.9 1 20.0 7.0 5.0 m x+0 x 6.15 4.7 x 13.94 5.5 5.14 1530 6.9 0 % 00 0.9 72 7.7 6.6 5.00 0.7 200 59 m 10 77 50 50 79 5.9 7 7 20 500 00 50 m x sx × × × × 5.8 H 1 (5.2) 500 288 5. 8 K 1430 4 3 89 é 4.0 6.7 2 0.0 57 7.2 3.5 57 50 2.9 2.0 5:0 5.3 ξ 50 6.1 6.9 16 99 30 Mean Time <+3¢ 424 521 C4.78 <+5x < 45 % × x 8 4 1330 4.9 0 9 20 55 6.0 60 62 00: 0.9 3 · \ 20 54 5.0 9 9 7.5 de 7 6 56 9 20 7.0 39 U 6.24 16.5] 14 3 K < 4.29 × ×4.40 1230 Ź 53" 09 59 75°W 55 ر بد 0.9 41 200 53 50 6.8 36 6 9 0 50 6.1 0.9 89 28 U <+.5 G <+.4 G <+.4 G 45.09 7 × 3 × X+76 143 X 500 1130 45.0 56 5.7 0.9 2.0 64 20 4 6.1 5 09 e. 00 10 6.0 50 30 7 4> 6.8 0.0 13 5 577 H # 7 <438 ×4.38 H 0.9 409 (4.5K 24.4G 4.2 K 5.4 H (8 9) 500 5000 4+56 Z Z 1030 63 5 5.7 7 3 50 24 5.3 50 0.9 2 4 6.2 6.2 1 5:4 8 <++G 443G 4 + 2 1 + + × (7.0) <408 <4.28 14(+5) ウィナン 593 5.7 0930 6.3 04 5. 4 5.7 0.0 5.4 5.7 63 28 2.0 4 3 5 00 5 50 54 30 67 6.6 4 0 x 5 + +> 5+4> <4.3¢ 5.5 # 52 F 4.0 K <38K <+.2 G [54] 0.4 (3.9 G) (38 K 5.20 0830 2.0 4.8 0.0 5.4 5 5 24 4.9 5.9 57 5.5 87 6.9 5.9 31 304> 3.75 <3.6 € 357 H 8.4 <36G 0730 500 5.7 # 9.00 2.03 5.00 400 <(3.9) \$ X 2 6 3 (3.64 5.0 5.4 65 1.47 19 12 20 < 3.8 × 49 5 4 4.7 5 5.8 3 3. 2 0 9 (3.E)> 57V 4.54 474 2.9 K (3.3 G) (3.3) × 2.5 K X 3 3 7 5.03 3.0 K (3.8 K x 4.0 % 0630 475 T (40) 0.4 4.9 4.6 (38) 4.2 4.1 0.7 4.7 4.7 64 5.0 0 3 5.6 00 4.9 84 õ 29 K 3.5 5 2 4 (2.4) 3 707 3.75 (2.7)5 (3.5) } 0530 3.9 200 3.5 40 0 3.3 3.1 33 3 7 + 36 30 3.1 3.9 2.7 20 Ē (4.7) 5 (29) 5 (36) (2 6)3 0430 2.7.3 [2.8] F 4.2l , Long. 77.1°W 145 (2.0) 3 2.2 ~ 2 2 3.4 3,5 0 400 (3.5) 4 29 J J 2.9 23.33 4 30 (3.2) F 27 6 0330 296 28.8 [3.7] 3 3.2 1 (27)3 (3.0) (3.1) 8 A T SO T 7 K (26) SK (1.2) S (2,9) 3.4 20 x x 6 5 (2.6) 23 6,0 3.7 4 1.4 3 7 6 2.9 ζ, γ 2.9 90 2.7 30 2 2 20 (3.1) F Lot 38.7°N (2.5)K (4x) F 3.55 (4.0) 000 (2.7) 5 0230 (2.7) (46) 23 κ.) ρο 6 イツ 30 32 4.0 3.1 77 3.9 3.2 ~ 8.9 30 6 6, (29) (5.5) 2.3 4 (26) X (4.0)3 (3.1) X (3.4) (4.1) 0130 ري روز در 33 4.0 6 4.0 30 40 43 4:1 5 # 22 3.6 3.0 3.7 4.1 3.9 m γ 2.7 3 (5.9) (3.2) F H (8.4) 3.0 K (4.1)5 x.8 x 200 0030 4.25 (3.8)F (3.7) 4.5 2.00 0.4 4.7 ++ 3.9 5.0 7.3 لد 7.6 4.3 4.2 3.0 (4.0) g Median Caunt Doy 2 4 S 9 7 ω 0 0 2 $\overline{\omega}$ 4 5 9 7 8 <u>6</u> 20 2 22 23 24 2.5 26 27 28 29 30 -m

Mc to 25 0 Mc in 0.25 min Automatic (X) Manual Sweep 1.0

National Bureau of Standards McC., L.H.E., H.C.

E C

McC., L.H.E.

Scaled by:

TABLE 64 Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

IONOSPHERIC

August

Km

Washington, D.C.

Observed at

M. 92

200 22 2 Catculated by:_ 20 6 240 K 230 (260)5 230 K (260) K 230x 13401 260 K 210 (230)8 230 K 210x (200)K 2600 340 250 240 340 250 (220) A10# A10K 220K 220K 220 124018 220 [JA20]A (210)H 220 (250) & 220 190 K (220) K 200 K 1220 K 250 X 230 K 240 220 230 030 220 250 230 230 330 30 2.50 (220)A 230 7 230 H A110K 250 H 220 H (220)B 21014 910 220 220 250 310 230 220 310 230 220 [220m 210 310 230 240 220 230 9 220 H 1220 A 2,20 200 H 200× 200× 220× [220]X 230 220 230 H 200K 200K 200K 230K 200 (260th 220 220H 220 12401A MX 210E 250K 220K 12/01K 200K 200X 300K 220 200H 220H 0110 010 2000 220 [210] 210 220 220 H 220 210H 220 220 0110 210 200 200 200 210 210 220 230 300 200 230 H 200 260 5 3 220 220 2007 2104 400k 210 H 210 200 0770 220 230 210 220 220 210 220 210 330 200 4 (200)5 200 H 300 H 410H 220 H 230 K MX 180# [190]c 200 220 200 230 210 200 200 200 200 200 200 200 [180]4 1.70 200 0170 10 200 H (220) H0100 200 H 300 H 200K 200x 200K 190 M 210 210 H (200) A (220) (180)H 330 180% 170% 240K 220K 220 2018 200 200 200 200 400 H 1310 H 1804 (200) H 200x 12001A 200 200 220 (2.50)A 200 190H 190K 200K 180K 220K 190K 190x 200K 230K 200K 230K 1340 M 200 200F 210 230 200H 200 200 200H 190H 200 200 200 H 220 K 200 H 200 3,00 H 220 210 [200]A 200 300 200 330 200 210 200 M 200 H 220 = 210 H H061 400k 2104 (190) 4 210 200 200 30 0 230 K (220)H 190H 220H AK H000 [330]A (220)A 200 [20070 190H 210 230 220 200 220 220 220 220 200 200H (230) 230 39 60 260th 230 210K 220 H 220H 310x 2104 250 (200) 340 010 210 220 220 220 220 220 210 08 30 220K 230K 230K 2304 220K 230 H (220) H 220 330 220 220 230 230 230 220 230 230 340 220 230 250 210 Q 0 T 36 07 0 0 O. ₹ Э G 250 240 270 240 240 340 90 2.50 O 0 G G Ci 4 0 0.5 Lat 38.7° N , Lang 77.1°W 04 m) O 02 ö 00 Median Count 22 29 4 10 0 -3 14 9 6 2 2 24 25 26 27 28 30 Doy = 2 5 13 8 31

| 30 | 3/ 30 | 3¢ | Sweep 1.0 Mc to 25.0 Mc In 0.25 min Manual D Automatic IX TABLE 65 Central Rodio Prapagation Loboratory, National Bureau of Standards, Woshington 25, D.C.

Form adopted June 1946

National Bureau of Standards Mc C., L. H. E. H. C.

Scaled by: _

IONOSPHERIC DATA

August 1951

Mc (Unit)

(Characteristic) fo FI

Observed at

Day

4

2

9 7 ω 0 01 = 2 10 4 5 9 _ 00 0 20 22

23 24 25

2

56

27 28 59 30 3

0 М

Washington, D. C.

H.C. L.H.E. 22 Colculated by: McC., 2 20 6 3.0 1 'n <u>@</u> d 0 ∢ (3.8) 3.7 x (3,4) (4.0) 3.7 7. (4.0) (4.0) 4.3 4.2 4.2 4.0 4.0 4.0 4.0 3.6 1.7 3 7 4.3 K 3.9 % [4.4] 3.9 × 4.3 K 4.5 4.5 4.2 4.3 5.7 4.3 4.3 4.5 44 4.4 4.4 4.0 4.5 4.6 3. 42 4.0 4.07 4.3 4.3 4.2 3 9 4.1 [4.178] (4.6)4 4.5 4.7 4.5 4.4 4.4 [4.5] (4.4) 4.8 4.6 4.5 4.4 44 4.4 [877 (8%) 4.7 4.6 4.1 17 (4.7) 4.4 1.1 4.0 4.4 4.5 7.00 18 2 4.0 [4.6]8 4.3 K 4.6 (4.6) K 4.9 4.9 4.8 4.7 ξ 4.3 [4.1] K 4.5 4.5 (4.4) 4.7 4.9 4.5 4.2 0.0 4.7 4.5 4.7 4.9 49 4.6 4.6 4 Meon Time (6.0) S.1 N 4.5 K 4.3 X (4.7) 4.7 ξ 4.7 4.0 4.7 47 4.00 4.3 4.6 5.0 5.0 5.0 4.8 4.8 4.3 4.6 <u>m</u> 4.7 4.8 5.0 4.9 [4.8] 2.6 4.7 4.7 4.6 4.6 4.9 [43]K H 277 4.4 K (4.7) 4.7 4.6 4.6 75°W 6 4.5 4.9 4 5.0 43 4.03 5.0 4.7 4.7 4.7 (4,7) 5.0 5.7 4.7 4.8 2 4.8 4.7 5.0 5.0 4.6 4.6 4.5 4.6 42 x (4.3) x [4.6.1 [6.0] [4.1] M 4.8 4.7 4.9 4.6 (4.9) 49 49 4.3 4.8 4.9 4.9 4.7 4.7 4.0 4.7 5.95 4.5 17.17 4.3 4.7 4.6 = 4.6 4.6 4.6 4.03 K [4,6]A [4,4] 4(4.5) 14.6 X 4.1 x (4.2) (4,5) A (4,8) A 45 # [47]4 40 4.5 4.7 4.7 (4.5) (4.6) 4.9 4.7 4.9 4.7 4.5 4.4 4.4 4.2 4.5 4.7 4.4 4.5 n 0 4.7 4.4 4.7 (4.4)H (4.3) 3.6 4.03 K 4×0 € 4.5 4.4 4.7 44 4.4 4.5 44 4.5 4 4.1 4.4 4.4 4.3 4.3 60 46 4.6 4.7 4.3 17.1 m 4.6 4.0 4.2 (4.4) (4.3) 3.7 % (3.97 k 4.0 K (4.0) 1,37 101 4.4 4.37 3.9 4.7 4.2 (4.2) 4.3 4.0 (4.3) 3.6 9-4.5 00 4.2 08 3.9 4 4.3 ρο βο (3.2) 4 (3.7) (4.1) 3.7 S. 6 X 3.4 3.5 3.4 3.7 4.02 4.0 8 3.8 61 07 40 30 3.9 3.7 ∢ 0 Q Q (3.5) 90 0 0 0 0 0 a 90 0 0 0 3.7 0 0 0 Q 0.5 Lot 38.7° N . Long 77.1° W 04 03 02 0 00 edlan Count

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Monual

Automatic

Manual 2 6

Form adopted June 1946

National Bursou of Standards

J.

Scaled by: Mc C. , L. H.E

TABLE 66 Central Radio Propagation Loboratory, National Bureou of Standards, Washington 25, D.C.

IONOSPHERIC DATA

August (Month)

(Characteristic) (Unit)

Observed of Washington, D.C.

Sweep 1.0 Mc to 25.0 Mc In 0.25 min

Manuel [] Automotic [8]

Manuol

Automatic

Form adopted June 1946

(9																							_					_								27
	tion) H.C.	Colculated by: McC., L.H.E., H.C.	23																														-	_			
Direction of	(Institu	L.H.E	22											-																				_	_		
ā	McC. L.H.E.	McC.	21																																		
No + iono!	5	ted by:	20					-	-																												
Ī	Scaled by:	Calcula	61																															_	7		
			18	23	2	₹	2.4	2 5 F	(2 K) A	4	77	4.8	(26)5	2 2	× / ×	A. P A.	7	PQ	X	B	7	(7)	S. X.X.	× 1.5	2.0 K	2 6	3.0	7 4	2 6	2.0	1.9	4	2.0	18	2.5	77	
D. C.			17	2.8	8.8	₹	2.8	3.0	3.0	3.0	3.0	4.9	29	9.5	×08	X O.E.	4.7	۵	2.9×	00.4	Ţ	(25)B	2.57	2 5K	2 C K	2.6	2.6	2.6 K	(2.6)	3.6	2.5	2.5	2.6	2.8	3.	3.5	
Centrol Rodio Propagotian Loborotory, Nationol Bureau of Stondards, Washington 25, D.C.			16	0	3,	323	(2.8) 4	33	3 3	3230	3.2		(33)P	8.3	*	ì	[3.1]1	<	A. 7. K	L	4		(3 0)B	(29/P	287	2.9	3.0	3.0 K	3.0	2.9	2.9	3.0	3.0	3.0	_	27	
ds, Washi	~		15	[3 1] B	3.3	ξ	F	35	34	1 ~	3.4 F		35	g[+ E]	3.3 ×	7 (5.3)		マ	×	7	7	_	_	3.0 K	1 1	3.2 P	3.2	3.1 K	3.2	R	3.3	3.2	(32)B	3.1	3.2	**	
f Stondar	DATA	e	14	32 [3 4	7	28	36	3.5	367	1		5	3.5	(34)5	(34) x	7	₹	×	A	PR	£. 23	×		[3.2]K	34	3.4	33 K		[3.3] B		3.3	[33] [3.3	*	7.5	5 min
Bureau o		Mean Time	13	33	(35)4	₹	3.6 P	3.6 F	3.5	4	[3.7]3	(3.4) 7	5	3.6	[3.4]B (V	J	メーベ	3.c #	D	3.57	× Q	3.3 × [エル	. ,	[3.4] 5		3.47	3.4		(3 t) B	(3.4)7	3.4	*:	23	Mc in 0.5
National	IONOSPHERIC	75°W	12	(3 3) 4	3.5	(35)7	3.6 P	(36)	[3.3]4	4	3.7	3.6 7	lo		(3.5) X		tt.	4	BA	(3.7) #	4	357	× B	2 + 5			3 + 8 [34 K			l i	3.5	[34]7 (35	70	শ্ব	Sweep 1.0 Mc ta25.0 Mc in 0.25 min
borotory,	OSPI	75	=	33 /	ى ق ئ	[34]4		34P (4	(3.E)P		3.6P				35F	B	(3.E)		₹	[3.4.78	* PS	3.4] \$	×		3 3 B	3.3 K	3.4 P	3.5 H	(3.4) F	1 1		[34]B	3 4	7.7	M 0.1 d
gotian La	Ž O		01	(31)4	- 1	347 1	- 1	3.2	q	4	47		H	/				A	[3.4]]	3.2 [3.1		b.×	5.2 F					3.2		34	3.2	ρ. ¹ ε.λ	3.4 [1	25	Sweel
lio Propa			60	[29]4 1				[3.1]4	4	7	[3.1] A	3.4	A				317	A		(3.1) 7				3.0 K	1 1	(3.0) A	- 1	3.1 K	3.1 F		(3.1)A	3.7	[2.9]A	3.2	3.1	22	
ntrol Roc			90	2.7 6	200	8.8	30 1	30	w)	9.0	2.9 [[3]	3.0	(3.1)		=		O	3.C M		(2.814)	-	2.0 K	2.8 A	3.14	(2 7)A	29	47	3.0	(2 B)P		(29)4	(2.5)A	3.0	4 6 2	30	
Š			07	م. ح	25	s, s	2.6	26	2.6	2.7	(2.6)	1	7 + 2	2.5	SA	[2.4]X	2.5	25	A.5.K			4.4 P	23 K	XXX	×	2 3 K	[25]A	2 xx	4	25.		(25)F	2.2	(2 4)A	2 5	۶۲	
			90	2.0	Ą	(2.2)	2.2	₹	1.9	2.1	41	2.1	2.0	2.7	7	2.1 K	(4.1)#	4	20 K	1.9	1.8	11.9)	2.0 K	1.9 K	78 %	1.9 K	2.0 1	1.9 K	4	A		(19)7	T	(1.7) 5 1	0 ~	な	
ũ	5		0.5						_															-											+		
, d	1	M _o I	0.4						-																											1	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(Month) D. C.	, Lang 77.1°W	03			·			_																												
٥	Washington,	Lot 38.7°N	02																																1		
2	√ashir	Lot 36	ō																																		
LI C	tic)		00																																		
	(Characteris	Observe	Day	-	2	ю	4	2	9	7	80	თ	01	=	12	13	41	15	91	17	18	61	50	12	22	23	24	25	26	27	28	29	30	- FO	Median	Count	

Form adopted June 1946

National Bureau of Standards

 $\label{eq:total_total} TABLE \ 68$ Central Radio Propogotian Laboratory, Notional Bureau of Standards, Washington 25, D.v.

IONOSPHERIC DATA

1.00

Mc,Km August

(Characteristic) Observed at

Observed of	(3115)	Washington	on, D.C.							5								Scoled	Scoled by: MC C.		L.H.E.	H.C.	
		Lot 39.7°N		Mo1.77 gual,	>1						75°	2°W	Mean Time					Colculated	oted by:	ن	L.H.E	H.C.	
Doy				0.4	0.5	90	07	08	60	10	=	12	13	14 15	91	11	82	61	20	21	22	23	
-	Ш	E 35/	100 38 100	0 58 110	128/20	3.7,2038	038 110	401110	00/199	561110	6 5	0110	6	6 6	11.6	100 3.3/20	5 6	E	E	E	E	F	
2	3.8 110 40	9 110 E	Ш	F	29,20	12/20	035/20	39 110	6	6 5	2,20 7.	2/20		6 49	9120 4.2 1	130 # 2/30	9	2.8/20	33/10	Ш	لغا	Ш	
2	E	EE	621,10	0 3.3 /30		1 64130 5.7	011 2.5 0	011 4.4	5.3 110	5	55/20	6 76	764,10 4.7	120	50	120 68 120	1,2	32/20	2.9/20	41	E	i i	
4	E 2.4	# 110 E	E	4	30/20	9	40/30	58 120	64 520	G	13	0	9	20	110 41	120 6	34/30	35/20	L.	F	E	ш.	
S	E	E	Lij.	Ш	66/30	2.9/30	64 130	40/10	9	5.5 /20 #	47/20	ß	8.9	6.8 130 G	20	130 62/30	1.0	54.20	ш	3.3/20	E 2.7	120	
9	E	Ē	E	ш	E	30/30	36/20	57 120	64/20	5.8 110 6		36110	99 5	661/30 G	2 14	130 36120	0 90/20	101/10	6211105	8 110 3	1105	0//	
7	3.0 110 54	100 38	100 36 100	62 110	011 25	9	4/20	54110	5.3 110	8 011 69		48/110 70	701/10 7.3	2	120 6	9	01198	01108	501110	E	61,20 7.6	0// 9	
00	110	2 110 30 /	100 30,00	30/00	0(3.5) 30	Ŀ	39120	4.2 120	38 110	9	ij	6. 5	+1,20	6. 6	S	50/20	5.4.1,30	3	E	F	E	E	
Ø	38 110 38	38 /00/ E	M	М	Ш	E	E	39 110	(5)	0	0	ß		9 9	5	9	9	43,20	37 110 3	2,10 5	6,00 55	011	
0]	E 25	25/1026110	110 E	Ш	93/30	5	37,100	ß	9	b	5	S	5	6 6	0	9	9	36/20	E	E	5 2	281110	
=	25 100 27	7120 E		E	Ë	2.8 120	08/20	13 4/00	9	Ŋ	4.0/10	5	and the second	6 5.2/30	130 G	5	ß	43 110	39 110	i i	E	Li Li	
12	25/30 31	31 130 35 /	120 35 320 (00/83	O E	12.9,100	5	9	561,00	35 100	ß	G 54	54/100	(y	r.	9	3.7 110	3	F	24,00,27	7,00 2.7	001	
10	2.9 100	EE	85,110	J.	011 9.6 0	9	3.5/20	5	P	31,004	4 001 64	45,000	,5	6 6	5	S	54 110	38110	E	27 116 6	62/2021	100/	
14	22/00	E	Ē	1821	68/120	30/30	681,20 30,30 73/90	01/10.4	4.8 100	9	5	9	3.2 110 34	110 6	34,00	HOO/0 # 00	00/9#	37,10	3.7110	3	E	CU	
15	E	E E			E	65110	6511054100	U	3.0,00 33/00	33/100	0	30/00	C ##	4 4 1,00 45	100 4 0001	40/1004	5	E	E	E	E	M	
91	E 2.9	2.4 100 E	30/00	0 1.7 100	, E	y	Ŋ	Ġ	0		5	- 5	E	MG	5		01/8.96	42110	5 47110 2	2.3/00 3	2 0016	0000	
17	2.3,00 23	3 100 E	E	E	E	34 /30	G	44/20	48/110 3.7 110	3.7 110	00/94	5	01 00109	100/00 36 110	5 011	Ċ.	9	1.7 120	E 3	3.0 110	Ш	E	
8	100	50	100 6 2 100	0 4 8 50	,37,00	3 4 120	01164	#5 110	45110	110	4.9100 3	36/00		6 35,00	100 38100	00/98 00	036/100	33/2035	011	38 110 3	36/10 (2:	5/50	
6)	24,100 4.3	2.3/00/24/	100 3.0 100	O E	E	ß	35/110	35/10 53 110	20 110	G	B	9	9	5 5	9	B	ß	34110	29120	E.	E	E	
50	E	E	E.	М	М	S	P	621/00	b	- (b	Ġ	6	5	6 8	S	6	9	38 110	30/120	E	П	E	
21	EZ	5/40 E	-	E	LI]	ß	011/ 4.9	G	Ġ	6	9	5	6	6	ß	30/30	034/20	38/20	38 110 5	50/103	2110	F	
22	W	E	E	Ш	Ш	Ŋ	Ċ	90/120	00	P	£	9		B W	5	9	G	19130	23 120	F	E	E	
23	A	EE	23/130	OE	F	6	35/20	4.7 100	00/99	681005	5.0/00	6 80	8.01,20	6	7	4/30 6	56 1,00	3	E	L.	E	E	
24	E	EE	E		ш	S	4.91/10	9	9	9	B	6		6	4	9	37 /30	58120	2.6/20 3	35,20 3.2	011	50 110	
25 .	7.4 110 56	5.0	110 29 110	Б Б	E	Ġ	Ġ	3.7 120	Ŋ	b	5	بي	9	6 6	J.	ß	317,20	Li	E 3	6/20 3	9120 4	011/1.5 #	
56	E 3.0	30/20 4.5 /	011 99 011	0 40 130) E	3.0/30	3.5 120	9	P	Ŋ	5	Ŀ	Ь	6 6	3	9	5	E	E	E	Ħ	IJ.	
27	F	EEE	E	W	2.4/10		32/40	5	6	Ġ.	5	Ŀ	<u></u>	8.8 5	100	.5	3.4.1.30	21/20	FI	M	E	ш	
28	E	27	,00 E	7.6/20	, E	3.0/20	3.0/20 33/20	6	38/20	9	4	7,30	9	5 5	9	9	ß	E	E 4	4.8 110 50	0110	E	
53	F		F	W	F	B	P	7.3 1/30	37/120	Ġ	S	P	9	6 6	7	9	33/120	ul	3.2,110	E	E	F	
30			2.97,100		E	21/20	33/120	8.21/10	40/20	6.	4	2 110	9	G 90/10	110 G	8.2/20	6	1.7 120	E 3	011 8	E	E	
31	E 8.4	8.47,110 E	E	ul.	E	Ġ	3.2,1,30	P	ß	Ġ	P	Ġ	0 0	5	r. G	ن	34/20	30/20	3.7 120 6	4/20	E	W)	
		-																				Badict, 25	
Median	4	*	*	*	*	*	3.5	4.0	37	* *	* *	* *	*	* * *	*	*	34	3.0	2.3 *	* * *	*	*	
Count	31	31 31	31	31	31	31	31	30	31	31	30	31	29	2.9 30	31	3/	31	31	31	31	31	3/	
	* * MEDIAN	IN FES LESS	SS THAN	N MEDIAN	106	9 - BO	F.S.S.	-		Swpen	0 1 O	10 250	O Mc In 0 25	Control and Array Table	The second second		-	Bernaman Marine			-	and a second research consecution and a second seco	

** MEDIAN (ES LESS THAN MEDIAN 10E, OR LESS THAN LOWER FREQUENCY LIMIT OF RECORDER

Sweep 10 Mc to 25.0 Mc In 0.25 min Monuel

Automotic

R Standards H

of

National Bureau

Scaled by: Mc C., H.C.

69

Central Radio Prapagation Laboratory, National Bureau of Standords, Washington 25, D.C.

150

August

(M1500)F2

Washington, D.C.

Observed at

ONOSPHERIC DATA

29 L. H. 1.95 (1.9) 5 1.9 K (1.7)8 (1.9)F 1.9)51 1.9F 1.9 X (2.0) P/(2.0) S 1.95 1.95 8.1 1.9 23 6.1 61 6.1 30 5 1.92 J(1.1) 1.95 H(6.1) X0.6 1.9 K (1,0)3 1.9F Colculated by: McC., H.C. 2 O K 1.8 X 0.0 22 00. 6.1 6.1 6.1 00 6.1 6.1 6.1 6. 8.1 6.1 5 30 1.95 8(6.7) 2.0F (2.0) F 1.9 E 1.95 2.1X (1.6)x 1.9 % 1.9 (0.0) 2.0 3.0 6.1 2 6. 0 6.1 61 3 1.9 K A(6.1) 1.95 2,0 x 1.95 1.95 2.0x 7/6/7 20.0 2.0 2.0 3.0 3.0 20 6.1 6.1 6.1 61 6.1 2.1 2.0 6.1 6.1 18 × 6.7 8(1.1) 2.0X 1.98 2.0x 0.6 2.2 2.2 8.0 2.0 2.0 2.0 6.1 3.0 2.0 7. 2.0 3.0 6.1 8 6 6.1 6.1 1.1 3 d (8.7) 2.0 F 2.1 K 3.05 200 1.8 K x0.8 (1.9) 5 2.0F 1.9 N × 7.1 3.0x 2.0x (1.8)5 20 6.7 0.8 30 0.0 2.0 6.1 0.8 2.0 3.0 3.0 2.0 30 2. 31 6.1 6.1 8 3.05 1.7 K 1.8 X X (2.0)# 2.1K 1.7 K 1.7 K x 0.8 1.95 Y B 1.95 2.0 3.0 30 2.0 6. 0 20 6. 6:1 6.1 6.1 0 6.1 6. 1.9 _ 6.1 3 × 8.7 1.9K 1.9K 1.9K 1.7 8× 1.6) S , 6 X 3.0 8.0 2.0 0.8 2.0 2.0 6.1 7.8 80 2.0 5 6.1 6.1 6.1 1.8 6.1 30 1.9 6.1 9 00. 6.1 1.00 00. 6.1 3 H(L-7) F(7:1) (8.1) 1.7K GX G X PO.6)E ×0.8 2(81) É 2.0 6.7 6.1 2.0 2.0 2.0 2.0 0. 61 7:00 1.9 0 3.0 ß 9 6.1 39 00! 6.1 6.1 X MX GX 1.9K MK 1.91 Sweep 1.0 Mc to 25.0 Mc In 0.25 min 3.7 8.0 2.0 76.1) 0. 2.2 6.1 30 3. 00:1 6.1 4 1:8 6.1 2.0 6.1 6. 1.7 1.7 9. 6.1 6.1 Mean Time 1.5K CX 98.1 1.6 K 1.97 S X 1.64 X 46.1 3.0 8.0 2.0 08. 6.1 2.0 0.0 6.1 61 2.1 6.1 <u>m</u> 61 6.1 1.7 00: 1.00 8. 00. O GK GX (2.1) J S. CX S A 7.0 H 6.1 1.7 1.7 30 2.0 6.1 0,0 2.0 2.0 6.1 7.8 6.1 1.8 6.1 1.9 6.1 15°W 2 H 67 MX H(0,C) 1.9 F 1.9 F x U 1.97 2.00 1.9 20 6.1 6.1 6.1 2.0 = 1.8 00. 1.8 3. 1.7 6.1 1.9 1.7 D T P (2.2) H 1.9F 2.15 2.02 (1.7) F CX 2(8.1) 4(61) x O 1.9 6.1 83 2.0 2.0 0 6. 1.9 3.0 2. 2.0 2.0 00 3 3 r.h D (1.9)F (1.9) V X (1.9)J (2.0)V (2.0)3 × b (1.9) (2.1)H (2.0)H G R 6.1 7.4 3.0 2.3 0.00 2.0 0.0 3 2.0 3 2.0 3) 6./ 6.1 00 00. 0 P 6 () (2.0) PH 1.8 K S X 2.2 h H(6.1) (2.2)H G X C× (1.9)7 GK 2.4.2 2(6.1) 2.0 2.2 2.0 22 2.0 8 8.0 3. 1.9 30 08 2.1 7.1 P Ü B A.1 H 44.6 2.0 F (2.2)H S \$ x (2.0)5 (2.1)3 (2.0)3 2.0 F H(0.8) 2.0 K 2.2 K S X G A (2.1) (2.0)3 2.0 2.0 7.4 0.0 6:1 6.1 2.3 2.1 07 P B Ö 3.1 3 2.3K (2.1)3 2.0F 1.919 2. / x (2.0)5 x E. C 8.1.X 2.1 2.0 6.7 2.0 4.6 2.3 0.0 2.3 90 2.3 7.8 6.1 31 3.1 2.0 2.0 7.7 0 D (2.0)5 2.05 (1.7) 1.7 K (1.9)8 2(6.1) Z(1.8) F (2.0) 5 (2.1)5 (1.9)5 1.9 F (1.8) K (1.1)5 1.8 x (8.1) 7 X (1.7) & F (1.1) \$ 6.1 6.1 1.9 0.5 1. 2.0 6.1 0 3.0 00: (6.1) 6.1 6.1 1.9 6.1 18 1.8 F (2.0)5 2.0 F 1.95 (1.1)5 1.85 5(8.1) 71.8 5(8.1) 58.7 1.6 K (J.8)K 11.715 1.8 X E(8.1) 77.1° W 1.8)5 2(8.1) 0.0 04 2.0 6.1 00. j 1.8 6:1 1.8 1.8 29 1.95 1.8 / 1.95 787 587 1.95 S(1.5) 1.9 F (1.9) 5 2.0F 2.1× 2.0× 1.9× 1.9×5(1.9) × F× (1.9)x (1.9) 3 (1.9)5 ×× (1.9)E 2.0x (1.9) 7 (1.9) J Lat. 38.7°N , Long. 03 6.1 6.1 6.1 6.1 6.1 6.1 6.1 00: 27 T 1.85 2.0 F 2.0F J(8.1) 2.0 K 1.8 F (1.8) \$ 217 7 6.7 8 (6.1) 1.6)K (1.9) 7.93 1.8x (1.9) E 1.9 6.1 6.1 08. 00. 2.0 1.8 00 6.1 02 6.1 6.1 3 1.9 E 1.9 K 2.05 1.9F (1.9)5 (22) 3 6.15 1.9F 1.85 1.7E 2(6.1) 2(6.1) 1.9)F A.0. A 2.0 1.8 6.1 6.1 1:8 6.1 0 2.0 6:1 3.0 1.9 3/ 1.9) H 1.95 5 (0.5) 1.9 K 1.9 4 (1.9) \$ (6.7) 1.8 F 2(6.1) 5(6.1) (2.1) x 1.9.4 (1.9)3 2(8.1) 6.7 6.1 1.9 2.0 6.7 00 1.8 6.1 1.9 1.9 1.9 8. 1.9 3 Medlan Caunt Day 9 00 O 0 Ю 4 9 17 80 2 27 30 N 2 <u>ල</u> 20 26 28 29 22 23 24 25 3

Manual [] Automatic [3]

30

Form adopted June 1946

Central Radia Prapagation Labaratory, National Bureau of Standards, Washington 25, D.C.

ONOSPHERIC

150

August

(M 3000) F2

Washington, D.C.

Observed at __

00

Ď

30

00

0

2 5 4 5 9 17 8 6

DATA

Standards H.C. netitution of Scoled by Mc C., L. H.E Bureau National

H.C. (26)g (28X) 295 (29)5 29 (2.8) (82) 76 (2.8) 30 2 70 7 7.9 30 S LHE 282 27K (27)F 30 K (29)F 20 X (2.8) 5 30K X (30)3 (8.8) 30 - m 29 27 2 30 2.9 29 200 22 30 S (29)B 3.15 285 2 8 x (3.9 F Calculated by: Mc C. 305 30 (2.9) T (25) x x 6.5 290 3.0 3.0 3.0 2.0 7 2.9 79 2 31 C C √ 00 v× X X 200 30 8 30 30, 3.0 5.0 3.0 50 30 31 30 K (3.6)B 3. × × 00 31 3/X 30 × 3.0 29 2.9 0 m 30 0 (31) 2 30 30 2 32 3 30 3 80 30 30 3 6 31 (2.7)P 2.9 x 2.6 X 305 3.1 × NOX 27K 30 F 295 (27)5 30 (28) 30F 30 30 0 30 3.0 303 30 3 3.0 30 29 29 4 <u>®</u> 31 7 (30)F 3 - K 25x 30 K 3.05 20 290 R K 5. 5. 30 30 00 5 0 30 2.9 29 2 29 30 2.9 00 3 7 31 28 K 29 K 20 KB (2.5)3 28K 7 th X 3.0 30 3.0 30 3.0 5.6 200 5.0 7.9 3 29 30 79 200 9 31 30K (27)3 (2 C) H 13(42) (28)3 B 25 K κ G 30 24 3.0 3.0 30 30 (77) 30 200 29 2.9 C 00 29 29 2.0 25 200 200 m P 2.9 2 ξ × × 29# (8 2) R R X.9.X 2.5 K 3.0 30 3 20 32 5 5.5 3 30 32 23 4 29 5-U 6 × 2.00 30 30 00 N 73 00 74 クな 200 27 3 2.8 30 2 3.0 30 P 2 U B 29 P 2 6 X 30 % (31)# 30 # r P R G * ¥ Υ 3.0 3.0 30 30 200 2.6 30 3.0 2.9 7 32 2.9 200 77 12°W b 20 00 31 N 6 B S. ر ر 2.8 F 29F S X (30)3 30 33 ∠ U £ 00 3.0 3 200 7 30 4 00 b Ġ 32 70 = 6 29 F 3/5 (27)3 (32) (29) (26)4 28F 302 2.9 P K P S, K (27)8 3/5 3 30 30 32 3 / 3.0 30 30 7 26 6 0 Ġ b r P 3 X P (28)# R R S S (27) # (2.8)4 K K B (29)# (30) (30)3 35 # 32 30 30 30 N 30 30 3 30 30 35 28 b r 31 6 (28) J. 3.4 E 34 # Y U G K () X (3 DH γ × (29)3 K () (2.9) (32)" 32 (3.2) 2.8 32 32 2 00 20 32 32 30 29 3 30 30 Ü 08 b B (30)7 (32)" (30) 3 30 x 31 # P (31)3 (30)5 (31)5 30 30 34 34 29 30 7 G 34 0 b b Ġ 07 6 3 6 (30)5 (31)5 3.4 X 3/8 3 - E 30K 311 33 % 20 2 30 34 C 20 30 8 3.0 33 3 3 1 30 3.1 90 S 3 (28)r (3.0)5 2. EX 29x (27)K (30) 3 (26)5 (31)5 (28) (30)5 (30)5 (2 C) K(28) 5 30 30 (28) (2.8) (8.7) K(27) (20) 20 30 X(2.7) 0 2 2 3 (30)5 (28)5 (28)F (28) 5 s 27K 275 25 318 (27)5 30F 27 K 2.80 (26) F (26)5 (27)3 (26)2 (27)3 TT 77.1°W 00 N 0 K(27) 27 N 04 29 (29)E 288 (29)3 2.95 (2 B) 5 2.0 A K (2.8) I (29)5 (8 C) (31)5 Long . 27 2 CC CC cy CY 5 7 (2.7) 03 2 Kg ⋖ 27 2.9 K (8.8) 305 X(27) 5 (74) K (2 8) E 28KK(2.8) F 285 (27)3 (28) 5 200 (28)2 2 9 x 39 K(28)5 2.9 9 30 31 02 28 × (28)51 30 % していて (32)3 3 / K 20 X (25)5 275 (28) \$ (29)5 2.00 205 275 2.7 30 (27) 30 200 200 30 7 8 5 3 0 (29)5 (2.9)3 (28)F (29)3 27 X 285 (28)E 200 205 (30)5 (31)3 (44) 5 2 2.8 x 2.9 27

27

23 24 25

22

20 2 26

27 28 Sweep L.O. Mc to 25.0 Mc In 0.25 min

2.8

Medion Count

30

2

59

31

Monual | Automatic (3)

Form adopted June 1946

Central Radia Prapagatian Labaratary, Natianal Bureau af Standards, Washingtan 25, D.C. TABLE

IONOSPHERIC DATA

1921

August (Month)

(M 3000) F! (Characteristic Observed at __

75°W

= (36)4 3.7

0

60

08 3.7

07

90

05

0

03

02

ō

00

Day

Lat 38.7°N Lang 77.1°W

Washington, D.C.

7(9:0) (3.4)H

T I 3.70 (3.4)A

K ⋖

3.5 H

35

3.5

7 w S 3.6 رب س

40

3.7

5

3.5 æ.

3.5 3.6

3.4 3

Ø

3.7

3.6 H

13. 12. 2.0

a

Q

∢

3.7

3.6

3.4 H

3.4

<

3.5

(3.3)

9

œ

0

=

2 2 4

4 2

3.8 H 3.7 H

(3.4) 5 (3.8) 5

4.0 3.7

3.78

(3.6) "

3.0

3.7

V

T

40 34

-4

Bureau of Standards National

H.C 크 Calculated by: Mc C., L. H.E Scaled by: Mc C., L.H.E

22 2 20 <u>6</u> 36 3.64 × 3.5 ₹ ∢ Ø ∢ ∢ H(LE) 3.7 K 33 % 3.6 K (3.6)+ 3.4H 3.6 K (3.8) 3.41 3.6 53 3.6 P 3.78 (3.1)8 かられ 35 (4.1)\$ 3 5.3 3.7 5 47 3.6 3.6 ~ 1 3.7 3.7 ∢ 3.8 H 3.7H 3.7 * 3.40 SYK 3.6K 4°0 × 3.65 3.5 3.6 35 3.5 ر ا 3.3 3. 2.7 3.6 3.6 (J) 5.6 36 3.4 3.4 3.6 55 3.5 (3.6) 3.6 3.7 3.7 K (3.8)H A(2.5) 3.6 K 3.6× 3.7 11 3.5 # 3.54 H(3.5) H (4.0) H (3.6)H B 3.7* 3.6 × 3.54 3.6# 3.54 (3.5) 3.7 V 3.6 3,0 5.5 رم دم 3. S.S 300 3.5 R) N 34 3.7 2 £ ∢ ∢ ₩. \$2 \$7 3.7 H (3.7) s 3.6 × 3.7 # 3.8 K 3.7 K 3.6 # (3.9) 2 (3.6) 5 3.6 K 3.7 K Σ 455 3.6 # X M X ۵. Ð. ∞ رم. اک 3.5 3 3.5 3.7 H. 3.8 ري زم 3.6 4 *B* 3.7 5.7 3.5 3.6 3.6 3.5 ω Mean Time H(3.E) 3.7 H 3.7 K 3.7 H 3.9 K 3.6 ₦ (3.7)3 3.6 H 3.7 # 3.7 # 3 8 J V) 000 XX 3.8 35 3.2 3.6 3.6 36 ري دم 3.6 5.5 <u>m</u> 3.7 (3.7) A (3.8)5 30 ₩ 3.8 K 364 37 x 3.7 K 3.9 H ω × 3.7 K 3.8H 39 4 Σ W. 00 8 X 3.6 3.7# 3.6 ري. اري 3.6 3.7 3.6 3.7 3.9 4. 8 5.7 5.7 3.4 3.7 2

39H

(4.0)5

°.∞

3.9

K

aaa

5.7

404

(3.7)"

500

3.00

3.6

3.5

a

39 # (41) 8 3.8 K

3.42

3.4

×

× 3.7 H

3.7 ×

3.8 K 4.0 4

Q K 3.5 K Q K 3.5 K

40 X

3.7 x 3.7 %

12

22 23 24 25

3.68

3.6 4 (4.6) 7

3.6 K (3.C)P

3.6 4

91

_ 8 6 20

2

3.5H 3.0 H

3.6

3.6

3.64

5.7×

_1

3.6 H

J

⋖

K

3.7 K 3.7 %

3.9 K 3.8 K

3.7 ×

37 4 3.7 K

ころり %. ×××

0

3.4

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min

ı 3

3.6

3.6

3.

3.6

м, 1

3.7

3.7

3.00

3.7

3

ري رم

i

Median Caunt

<u>5</u>

404

40 H

3.8

3.7H

(3.9)4

4.04

3.6 H

3.5 E

3.6

a

aa

3.7

3.6 ₩

5 رما ش

3.7#

(y)

3.9 K

3.7 K

(3.7) \$

3.7.X

3,5 K

3.7

(3.7)

5

3

3.8

3.64

8

3.6 H 3.7 H (3.7)H

3.7 6.5

3,4

3.4

alalaa

26 27 29 30

28

P

å

27

28

79

29

29

20

38

78

19

31

Manual [] Autamatic [3]

Form adopted June 1944

3 2

 $TABLE \quad 72$ Centrol Rodia Propagatian Loborolary, National Bureau of Stondards, Washington 25, D.C.

IONOSPHERIC DATA

150

August (Month)

(M 1500)E (Charocteristic

Washington, D.C.

Observed at

Bureau of Standards National

Calculated by: Mc C., L.H.E. Scaled by: Mc C. L.H.E

H. C. E.C.

nstitution

75°W

22 2 20 6 (42)5 * 4 4 × 424 4 4 4.2 4.5 1.4 7 77 43 42 7 43 <u>∞</u> V m T P Þ E(0 H) (4.2)B X 1 7 X 404 424 4 27 42 + 1 + 43 4.3 4.7 4.0 1:4 * 3.0 2.4.0 1 + 7 4,3 # 3 7 9. _ PS (42)B (43)7 (4 4 PB (4.6) T 4/2 434 42 4.2 45 4.0 04 40 43 42 1:4 42 3.9 1.0 9 pa # 3 T T 4.4 K 4.3 K 4 x x 11/1 (42) 4.3 X(+.+) 4.7 67 42 45 2 + 4.2 04 7.7 2.4 7 43 42 7.7 77 Σ P 2 tO, Ţ Ţ Pa 9 Þ 100 (* 3)5 X X 4.1.4 42 15.4 4.2 4.2 4.2 42 S 1.4 4.0 4.2 4 B (2) 13 7 4 (1) P Mean Time (4×4) 434 X8 + 5 8(6€) (4.3)P 4.7 4 3 X 43 0 + 4 54 0 % 5 4.6 7 10 T 90 57 ₹ P U 437 42P 4,10 × co 43 x (43)P (43)P 1 (++) 1 E + 437 (* *) 42 4.3 Σ 7 7 7.7 42 7.8 7 3 4 P 2 T T T W P 18 7 4.1.4 4.3 7 427 417 (4 t) L (C) X x(2 +1) 43 1 4:1 P Z 5 = T T 40 ₹ M T 9 0 427 3 × 4 4 10 Z P T CE × T (4.3) X 4.2 4.2 43, X £ 7 436 7 9 5 7 4.3 1 4.9 43 43 e 47 0 T T + 2× 4.1 436 × 437 A(2.4) 4.1 1 44 45x 427 (45) (xx) 4 7 4 4.2 42 4.6 73 4 44 60 T 7 T T T T * 4 424 3.9 9/1 1 (45)K 1(++) 4 5 × 44 ¥ 1 7 4.57 427 43 (42) 43 45 1 1 1 * * (t () 4.5 43 オヤ t 2 40 4 98 U 45 Z, 437 Y (45)3 XIX 4.2 x 8/1 42 4.0 X 7 7 (4 3) 7 7 43 K 4.2 45 (4.5) 40 42 4.2 4.2 7 η η 0 # 7 7: 72 7 43 43 07 P T A (43)" 4 6 X 45X F(0 H) H(1 4) 424 500 407 5 (0 /1) 7.7 43 4.2 42 0 1 1 1 # T 90 FQ 7 T T T 2 05 Lat 38.7°N, Long 77.1°W 04 03 02 ō 00 Madion Count Day 4 N M 9 91 20 5 00 0 = 2 5 4 5 17 8 6 22 23 24 25 26 26 26 28 29 30 30 30 33

Sweep LQ Mc to 25.0 Mc tn 0.25 min

Manuel [3] Automotic [2]

Table 73

Ionospheric Storminess at Washington, D. C.

August 1951

Day	Ionospheric 00-12 GCT	character* 12-24 GCT	Principal Beginning GCT	storms End GCT	Geomagnetic 00-12 GCT	character** 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 6 17 8 9 10 1 12 13 14 5 6 17 8 19 0 1 2 2 2 2 2 5 6 7 8 9 0 3 1	312221212121411111344423422222	3322331223055134332656136331122	1200 0900 1000 0700	0200	342222322444134332555345543423	432433323343434343313343333433333333333

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.
----Dashes indicate continuing storm.

Table 74

Provisional Radio Propagation Quality Figures (Including Comparisons with CRPL Warnings and Forecasts) July 1951

Day	North Atlantic quality figure	CRPL* Warning	CRPL Forecasts (J-reports)	North Pacific quality figure	Geo- mag- netic ^K GH	
	Half day GCT (1) (2)	Half day GCT (1) (2)		Half day GCT (1) (2)	Half day GCT (1) (2)	
1 2 3 4 5	6 5 (2) (3) (3) (4) (4) 5 6 5	n n M n	Х	8 8 6 5 (4) 6 5 5 6 6	2 (4) (6) (4) (4) (5) (4) 3 3 2	Scales: Quality Figures (1)- Ussless (2)- Very poor (3)- Poor (4)- Poor to fair 5- Fair 6- Fair to good
6 7 8 9 1 0	6 5 7 6 8 7 6 6 7 6			6 6 5 7 7 7 7 7 7 7	3 3 2 3 2 3 3 3 3 2	7 - Good 8 - Very good 9 - Excellent Geomagnetic K _{Ch} - O to 9, 9 representing the greatest disturbance; K _{Ch} > 4 indicates significant disturbance, enclosed in () for emphasis.
11 12 13 14 15	7 6 8 6 8 7 7 6		X	6 6 7 7 8 5 7 7 9 7	2 2 2 3 2 2 2 2 2 (4)	Symbols: W Disturbed conditions expected U Unstable conditions expected
16 17 18 19 20	6 5 6 5 5 5 5 (4) 6 6	M	X	6 6 5 5 6 6	3 3 (4) (4) (4) (4) 3 3 3 2	N No disturbance expected X Probable disturbed date Scoring: H Storm (Q 4 4) hit
21 22 2 3 24 25	7 7 5 (4) (4) (4) 5 6 6 6	W U		7 7 6 6 6 5 7 6 7 5	(4) 1 (4) (4) (4) 3 3 2 2 3	(M) Storm severer than predicted M Storm missed G Good day forecast
26 27 28 29 30 31	(4) (4) (4) (4) (4) (4) 6 5 7 6 5 (3)	(U) U (W) U U	X X X	7 5 6 6 5 6 5 6 5 (4)	(4) (4) (4) 3 (5) (4) (4) 2 2 3 (5) (4)	O Overwarning Scoring by half day according to following table: Quality Figure 43 4 5 > 6 W H H O O U (M) H H O
Score: H (M) M G 0	st on TWW. Washi	Warning N.A. N.P. 14 6 1 0 4 0 40 44 3 12 ngton D C	Forecast N.A. N.P. 2 1 0 0 14 1 36 49 10 11	·		N M G G X H H O O

^{*}Broadcast on WNN, Washington, D. C. Times of warnings recorded to nearest half day as broadcast.

() broadcast for one-quarter day. Blanks signify N.

Table 75

Zürich Previsional Relative Sunspot Numbers

August 1951

Date	₿z*	Date	Rz*
1	64	17	54
2	71	18	49
3	55	19	66
4	57	20	67
5	73	21	54
6	74	23	62
7	83	23	38
8	102	24	42
9	121	25	24
10	132	26	8
11	121	27	6
12	113	28	8
13	82	29	24
14	66	30	15
15	62	31	40
16	58	Mean:	61.0

*Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

<u>Note:</u> The American sunspot numbers for August will appear in a later issue of this bulletin.

<u>Table 76a</u>

Coronal observations at Climax, Colorado (<u>5303A</u>), <u>east limb</u>

Sate				Deg	ree	s n	ort	h o	f t	he .	sol	ar	equ	ato	n.				Inc				Deg	ree	9 9	out	h o	ft	he	so.	lar	001	ato)I°			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
L9 51																																					
ig. 1.7	-		_	_	_	-	_	_	-	-	3	3	3	3	5	8	5	3	3	5	5	5	3	-	-	_	_	400	-	_	-	-	-	_	-	-	
5.8	_	_	-	_	_	_	_	-	3	3	5	5	5	8	10	10	8	5	5	8	12	15"	20	28	12	5	3	_	-	_	_	_	-	-	-	_	
6.9	-	-	-	_	-	_	_	-	3	3	3	3	3	3	5	3	3		-	3	5	10	8	8	5	3	3		-	-	-	-	-	-	-	-	
7.6		_	-	-	-	-	_	_	-	-	_	3	3	5	8	8	8	5	3	5	8	8	8	8	10	10	5	3	_	-	_	-	-	-	-	-	
8.8a	-	-	_	man.	-	-	_	-	-	-	3	3	5	8	lC	8	5	3	3	3	3	3	3	3	3	5	5	3	-	-	-	_		_	-	_	
9.6	-	-	_	-	_	-	-	-	_	_	-		3	3	5	5	3	3	-	-	-	43	_	_	407	-	400	-	_	_	-	_	-	-	_	_	
10.8	Х	X	X	X	_	_	_	_	_	-	_	-	2	2	3	3	2	2	2	2	2	-	-	_	_	-	***	-	-	_	-	-	-	-	_	-	
11.6	-	_	_	-	_	_	-	-	-	_	_	-	3	3	3	3	3	3	3	3	3	3	3	3	-	_	_	-	-	-	-	-		-	-	-	
12.7	-	_	-	-	-	_	-	***	_	-	-		_	8070	-	-	_	_	3	5	5	5	8	8	5	3	_	CHIM	_	-	_	-	-	-	-	en.	-
13.6	-	-	_	_	_	-	_	_	-	-	_	_	***	_	3	3	3	5	8	10	12	15	15	8	5	3	-	_	_	_	_	_	-	emin .	_	-	
14.7	-	-	_	_	***	_	-	_	-	_	-	-	***	-	_	_	3	3	3	3	5	5	8	8	3	3	3		_	-		-	-	-	-	_	
15.6	-	_	-	-	_	_	_	-	_	_	\rightarrow	_	_	_	\rightarrow	-	3	3	3	5	5	5	8	8	3	3	400	_	-	-	_	-	_	-	_	_	
16.6	-	-	-	_	_	-	_	_	_	_		_	_	_	_	3	3	3	15	5	5	5	3	3	3	3	400	_	-	-	-	-	-	_	_	-	
18.6	-	_	-	_	_	-	==>	_	_	_	140	-	_	-	3	3	5	5	5	5	3	3	3	-	_		-	_	-	-	-	-	-	-	-	400	
19.7	-	_	_	_	-	-	-		_	-	-	uno	_	-	3	5	10	8	5	5	5	3	-	_	_	_	_	1007	40	_	-	-	-	-	-	_	
22.9	-	_	-	_	-	_	-		3	3	3	3	5	8	8	8	8	5	5	5	3	3	3	_	_	-	-	-	_		_		-	_	_	-	
23.7	-	_	-	_	949	3	3	3	3	_	-	3	3	5	12	12	12	12	8	5	3	3	_	_	_	-	-	_	-	-	-	_	_	_	_	_	
25.6	-	_	_		_	_	_	_	3	3	3	5	8	8	8	12	12	15	12	3	3	3	3	3	3	cella	_	_	-	-	-	_	_	_	_	_	
26.6	-	_	2	3	3	3	3	2	3	3	3	3	3	8	10	10	12	12	12	8	5	3	3	3	3	3	-	_	-	-	-	_		_	_	_	,
29.9	X	X	X	5	5	3	3	3	3	5	8	10	10	12	15	18	18	20	15	15	12	12	15	12	5	3	3	X	X	X	X	X	X	X	X	X	
30.9	-	_	_	_	3	3	3	3	3	3	3	5	5	5	8		15	17	15		14	13	15	10	5	3	3	3	3	3	5	5	3	3.		-	,
31.6	-	-	_	-	-	2	2	3	3	3	5	5	5	5	8	12		12	12	15	15	20	17	15	8	5	2	_	150	2	2	3	3	2	_	_	,

Table 77a

Coronal observations at Climax, Colorado (6374A), east limb

Date				Deg	ree	a n	ort	h o	f t	the	so.	ar	egi	eto)],				00				Deg	ree	s s	out	h o	of t	he	sol	lar	egi	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10-	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Aug. 1.7	-	-	comp	-	-	_	-	-	\rightarrow	-	-	-	-	-	_	_	-	_	2	3	5	5	3	2	2	2	2	2	2	2	2	2		400		120	-
5.8	-	-	_	_	-	-	-	_	-	6.09	-	-	_		-	-	-	2.00	2	8	10	10	8	3	3	3	2	2	3	2	2	2	-	-	-	-	-
6.9	-	_	-		_	-	-	_	100	_	-	um	\rightarrow	_	_	_	-	4788	-	3	3	3	3	4	3	3	3	3	-	-	-	-		_	-	-	-
7.6	-	-	2	2	2	2	2	2	-	_	_	-	-	-	_	-	_	_	are.	2	3	8	5	2	3	3	2	2	2	2	2	2	2	2	2	2	2
8.8a	-	_	-	-	-	-	-		_	_	-	_	000	_	-,	798	_	2	2	2	5	5	8	3	2	2	2	3	3	3	3	3	2	2	2	2	2
9.6	-	***		_	-	-	_	_		_	-	420	04.7	-	-	-	_	-	2	2	2	2	2	2	_	-	\rightarrow	_	_	_	_	943	-	-	-	_	-
10.8	X	X	X	X	-	-	400	_	-	_	661	-	-	-	0.00	_	-	_	-	2	2	2	2	2	2	-	_	-	-	_	-	_	_	-		-	-
11.6	-		****	-	-	-	-	-	-	000	839	-	Childh	_	_	2	3	5	2	-	079	_	g-spa	_	_	_	-	-	-	_	-	-	_	-	-	-	-
12.7		-	_	_		-	_	-	_	_	-	_	_	-	_	2	3	5	3	12	3	_3	3	3	_	_	-	_	-	_	_	_	_	-	_	-	_
13.6	_	-	_	-	-	****	_		_	_	-	3	3	3	3	5	12	5	3	2	3	10	3	_5	3	2	3	2	2	2	2	2	2	2	2	2	2
14.7	-	_	-	-	-	****	400	-			-	_	_	_	2	2	2	2	2	3	3	10	12	10	3	2	2	2	-	-	_	-	_	_	_	-	-
15.6	-	-	-	-949	-	-	84/3	_	_	ска	-	2	2	2		2	3	3	2	8	5	5	8	14	3	3	3	_	_	-	-	-	-	-	-	-	_
16.6	-	-	-	-	-	-	-	449	-	1961	2	2	2	3	3	3	3	2	3	8	8	3	3	10	8	3	2	2	2	2	_	_	-	-	_	-	-
18.6		-	-	-	ma	-	_	_	140	-	2	2	3	3	2	3	2	3	3	2	5	5	2	_	_	_	_	_	_	_	4100	_	-	CER	-	***	_
19.7.	_	_	-	-	MCM.	_	-	-	_	-	-	-	_	-	2	5	3	3	2	13	3	3	3	2	2	3	2	2	daca	-	_	-	_	_	_	_	com
22.9	-	_	-	-	-	-	-	-	_		-	919	_		2	2	2	2	6	1 2	2	2	2	2	2	2	2	2	_	-	-	_	-	_	_	_	_
23.7	-	-	_	m-1		-	_	-	-	_	-	_	-	2	2	3	2	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
25.6	-	4148	-	-	-	-		-	CHE	460		140	LINE	_	3	3	5	8	3	3	2		_	_	-	-	-		-	-	_	-	_	_	_	-	_
26.6	-	_	_	_	-	-	_	-	_	_	-	_	-	2	2	3	3	10	5	3	2	2	2	2	_	_	-		-	_	_	-	_	_	_	-	_
.29.9	X	X	X	2	2	2	2	2	2	2	2	2	2	2	2	3		14	8	3	10	8	2	3	2	2	3	X	X	Х	X	X	X	X	X	X	X
30.9	2	2	2	2	2	2	5	2	2	2	2	3	3	2	2	8	12	3	12	3	3	8	8	3	2	2	2	3	ğ	3	2	3	3	3	3	3	3
31.6	3	3	3	3	3	3	2	2	2	2	2	2	2	3	2	3	5	3	5	2	3	5	g	2	2	2	2	2	5	4	3	3	3	3	3	3	3

Table 705

Coronal observations at Climax, Colorado (5303A), west limb

Table 77b

Coronal observations at Climax, Colorado (6374A), west limb

Date				Deg	ree	s s	out	h c	of t	he	sol	ar	eqι	iato	or				00														ato				
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	1	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Aug. 1.7	_	-	-	_	_	-	-	-	_	-	-	_	2	2	3	8	8	8	10	5	8	3	2	2	2	2	2	2	_	_	-	_	_	-	_	_	_
5.8	_	_	_	-	_	-	_	_	2	2	2	2	3	3	3	3	3	2	2	8	3	5	2	2	3	3	3	2	2	2	_	-	_	_	_	_	_
6.9	-	Х	Х	Х	Х	Х	X	X	Х	X	X	X	Х	Х	Х	Х	X	X	Х	X	X	X	Х	Х	X	X	X	X	X	Х	X	Х	Х	Х	Х	Х	_
7.6	2	2	2	2	2	2	-	-	_	_	-	_	_	_	2	5	14	8	5	3	5	3	2	_	_	_	-	_	-		_	_	_	_	_	_	_
8.8	2	X	X	Х	X	X	X	X	Х	Х	X	X	Х	X	X	X	X	Х	X	X	X	X	X	X	Χ	X	X	Х	Х	Х	X	X	X	Х	Х	Х	_
9.6	_	-	-	_	_	-	-	-	2	2	2	2	2	2	2	2	2	2	2	3	8	3	5	2	_	_	-	_	_	-	_	_	-	_	-	_	-
10.8	X	Х	X	Х	Х	Х	X	Х	X	Х	X	Х	Х	X	X	X	X	X	Х	X	X	X	X	Х	X	Х	X	Х	Х	X	X	X	Х	Х	X	Х	Х
11.6	_	-	_	-	_	-	_	_	_	_	-	_	_	_	-	_	_	-	2	3	3	3	3	2	-	_	-	_	_	-	_	_	_	_	-	-	-
12.7	-	-	-	_	_	-	_	-	_	_	_	-	-	-	_	-	_		-	10	13	5	5	5	_	_	-	-	_	_	_	_	-	_	_	_	-
13.6	2	-	-	_	_	-	_	_	2	2	3	2	2	-	_	-	_	-	2	17	10	5	5	2	-	_	-	_	_	-	-	_	-	-	-	_	-
14.7	_	-	-	_	_	_	_	-	_	_	3	3	3	3	2	2	2	3	3	3	8	2	5	_	_	_	_	_	_	-	_	-	-	-	-	-	_
15.6	-	-	-	_	_	_	_	_	_	_	-	_	2	2	5	3	2	3	3	3	3	5	2	5	_	-	_	-	-	-	-	_	-	-	_	_	-
16.6	-	_	_	_	_	_	_	-	-	_	2	2	2	2	3	5	5	8	5	5	3	3	3	3	_	-	_	_	-	_	_	-	-	_	_	-	_
18.6	-	_	_	_	_	_	_	_	_	_	_	_	-	2	2	3	5	2:	2	2	2	2	_	_	-	_	-	-	_	_	_	_	-	-	-	-	-
19.7.	_	X	X	X	X	X	X	Х	_	_	_	_	_	-	3	8	20	8	5	2	2	2	2	_	-	-	-	_	_	_	-	_	_	-	-	_	-
22.9	X	X	X	X	Х	Х	X	Х	Х	Х	X	X	X	2	2	2	2	3	3	2	2	2	2	2	_	_	_	_	_	_	_	-	_	_	_	_	-
23.7	2	_	_	_	_	_	_	_	_	-	2	2	2	2 2	2	2 2	2	2	2	2	2	2	_	_	-		-		-	_			-	_	_	_	-
25.6 26.6	_	_	_	_	-	-	-	-	_	_	-	_	3	12	15		25	2	3	3	2	3	3	3	_	_	_	_	_	_	_	-	-	_	_	_	-
29.9	X	~	~	_	-	_	₩.	- v	- v		7	_		2	5	10	10	2	2	۷	5	5	3	3	2		77				- v	- v		- v	-	-	-
30.9	3	•	Α.	_	2	2	2	2	ν.	Λ.	2	Α.	Υ.	y.	Y	Y	Y	2	1 3	Λ.	Λ.	Λ.	Δ.	ς.	Α	Λ.	v	Λ	V	Λ.	2	2	2	2	2	Λ.	7
31.6	3	2	2	3	3	3	3	3	3	3	2	2	5	2	2	2	2	15	18	2	2	2	2	2	5	2		3	3	3	3	5	2	2	2	3	3

<u>Tetlo 77c</u>

Coronal observations at Climax, Colorado (<u>6702A</u>), <u>east limb</u>

Date				Deg	ree	s r	ort	th c	of ·	the	80.	lar	eqı	19 to	œ				00				Dog	ree	8 8	out	h c	of t	he	30	lar	901	uato	n'			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35 .	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Aug. 1.7		emb	-	_	_	mp	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	860	-	_	_	-	-	_	_	_	_	_	_	-	-	_
5.8	_	-	_	-	_	60	_	-	640	-	-	-	-	-	-	-	2	2	2	2	2	3	3	3	3	2	2	2	-	_	_	_	_	-	_	-	***
6.9	-	-	-	-	. —	-	_	_	_	_	-	-	_	-	_	000	-	-	679	2	2	2	2	2	2	2	2	2	2	cre	110	_	_	979	_	q,m	-
7.6	-	-	_	_	_	-	-	-	-	_	_	-	-	-	_	_	-	CAL	-	-	2	2	2	2	2	2	2	_	_	-	_	_	-	_	_	-	_
8.8a	-	-	_	-	-	-	_	_	-	_	-	2	2	2	2	2	2	-	-	-	**	-	-		-	-	-	_	-	-	_	_	-	-	_	-	-
9.6	-	_	_		_	_	_	_	-	-	_	***	_	-	_	_	678	-	-	-	840	_	-	-	_	écep	-	_	-	_	-	607	_	-	-	-	-
10.8	X	Х	Х	Х	_	-	_	_	2	2	2	2	2	2	2	2	2	2	2	-	-	_	_	_	_	_	_	_	-	-	-	-	-	-	-	-	-
11.6	-	-	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	_	-	-	-	-	-	_
12.7	-	_	_	_	-	_	_	-	_	-	_		-	OH6	2	2	2	2	2	12	3	3	2	0	-	~	_	_	_	_	-	_	_	-	-	-	-
13.6	_	_	_	-	_	_	_	_	_	_	_	_	can-	_	-	_	-	2	2	2	2	٠.۷	2	2	2	2	2	2	_	_	_	_	_	-	_	_	_
14.7 15.6 16.6	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	2	2	Š	2	2	-	_	_	_	_	_	_	-	_	_	_	_	_
16.6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_
18.6	_	_	_	-	_	417	_	_	-	_	2	2	2	2	2	2	2	2	2	1	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
19.7	_	_	-	_		_	-	_	_	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	_	_	_		_	_	_	_	_	_	_
22.9	_	_	_	_	-	_	_	_	_	2	2	2	2	2	2	2	2	2	2	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
23.7	-	_	_	_	_	_	-	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	-	erm	_	-	_	-	_	-		_	_	_
25.6	-	-	_	-	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	_	-	_	_	_	_	_	_	***	_	_	_
23.7 25.6 26.6	-	_	_	-	_	_	_	_	2	2	2	2	2	2	3	3	3	3	2	2	2	2	2	esti	-	_	-	-	-	_	-	_	-	-	-	-	_
29.9	Х	Х	Х	2	2	2	2	2	2	2	3	3	3	3	5	5	5	5	3	2	2	2	2	2	2	2	2	Х	X	Х	Х	Х	X	X	Х	X	Х
30.9	-	-	-	-	-	_	-	_	2	2	2	2	2	2	2	3	4	5	5	14	3	3	3	3	2	2	2	2	-	-	-	-	-	-	-	-	-
31.6	-	-	-	-	_	-	-	-	2	2	2	2	2	2	2	3	4	4	3	3	3	3	5	3	3	2	2	2	-	-	-	_	-	-	_	-	_

Table 78b

Coronal observations at Climax, Colorado (6702A), west limb

Date				Deg	ree	S 9	out	h o	f t	he	sol	ar	eat	ato	r				00				Deg	ree	s n	ort!	1 01	f t!	1e	sol	ar	eat	ato	r		_	-
GCT	90	85														15	10	5	00	5	10												70		80	85	90
1951							-																														
Aug. 1.7	-	-	_	-	_	_	_	_	_	-	_	_	_	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5.8	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	_	_	_	_		_	_	_	_	_	_	_	_	_
6.9	-	Х	Х	Х	X	Х	Х	Х	X	Х	Х	Х	X	Х	Х	Х	Χ	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X	Υ	Υ	Х	Y	Y	_
7.6	-	_	-	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	2	2	2	2	_	_	_	_	_	_	-	_	-	_		_
8.8	-	Х	Х	Х	X	Х	Х	. х	Х	Х	X	Х	Х	X	Х	X	Х	Х	x	X	Х	X	Х	Х	Х	Х	Х	χ	χ	X	Х	Υ	Υ	Y	Y	Y	_
9.6	-	_	-	-	-	_	-	-	_	_	_	_	_	_	_	_	-	2.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	_		_	_	_
10.8	_	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	· X	Х	Х	Х	X	X	X	x	X	Y	x	Y	Y	7	Y	Y	Y
11.6	-	_	_	-	-	_	_	_	-	-	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	2	2	2	2		_		_
12.7	-	_	_	5	5	5	3	3	3	2	2	2	2	2	2	2	2	2	2	2	5	8	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_
13.6	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	2	2	3	5	5	5	5	5	3	3	3	2	2	2	2	2	_	_	_	_	_
14.7	_	_	-	_	_	_	_	-	-	_	_	_	_	-	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_
15.6	_	_	_	-	-	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_
16.6	_	_	_	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	_	_	
18.6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_	_	_	_	_
19.7.	_	Х	Х	Х	Х	Х	Х	Х	_	_	2	2	2	2	3	. 3	3	3	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_		
22.9	Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х	X	Х	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
23.7	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	-	-	_	_	_	_	_	_	-	_	_	-	_	_	_	_	_	_
25.6	_	_	_	_	_	_	_	_	2	2.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_	_	_	_	_	_
26.6	-	_	_	_	_	_	_	_	2	2	2	2	2	2	2	4	4	2	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_	-	-	_	_
29.9	X	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Χ	X	Х	Х	Х	Х	Х	Х	Х
30.9	_	_	_	_	_	_	_	-	_	_	_	_	-	-	_	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_	_	_	_	_	_
31.6	-	_	_	_	_	_	_	_	_	_	_	_	_	-	-	2	2	3	3	2	2	2	2	2	-	_	_	_	_	_	_	_	_	<u>.</u>	_	_	_
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																																					

Table 79

Solar Flares July 1951

SD Obser- ved	g g A A
Import- ance	4 4
Rela- tive Area of Waximum (Tenths)	4 03480 N 8000 N 00
Int. of Maxi- mum	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Time of Maxi- mum (GCT)	1632 1756 1752 1620 1429 2127 1425 1541 1641 1641
fosition ti- Long- de 1tude Diff eg) (Deg)	W70 E58 E42 W13 W27 W27 W72 W72 W61 E83 E20 W54
Lati- tude (Deg)	\$508 \$128 \$138 \$138 \$14 \$15 \$15 \$15
Area (Will) (of) (Visible) (Hemisph)	60 60 72 60 60 60 60 60 60 60 60 60 60 60 60 60
Dura- tion (Min)	25 25 25 25 25 25 25 25 25 25 25 25 25 2
Time Observed in-End- g ing T)	1140 1755 1755 1756 1430 1445 1445 1033 1033 1033 1033 1033 1033
Observation Observ	1623 1730 1750 1750 1420 1415 1505 1022 1022 1635 1700
Date 1951	July 2 10 10 10 10 11 11 11 12 13 14 16 17 18 18 18 18 18 18 18 18 18
Observa- tory	McMeth Sacramento Peak. " MoMath Sacramento Peak. " " " " " " " " " " " " " " " " " " "

Table 80

Indices of Geomagnetic Activity for July 1951

Preliminary values of mean K-indices, Kw, from 36 observatories;
Preliminary values of international character-figures, C;
Geomagnetic planetary three-hour-range indices, Kp;
Magnetically selected quiet and disturbed days

Gr. Day 1951	Values Kw	Sum C	Values Kp	S	Final Sel. Days
1 2 3 4 5	3.2 1.6 1.0 2.5 2.9 3.5 4.1 5.7 6.1 6.2 5.5 4.9 3.6 4.0 3.4 3.9 3.4 3.3 2.9 3.4 4.1 3.6 3.7 3.9 3.6 4.1 3.5 2.5 2.3 2.7 2.6 3.2 3.1 2.6 2.8 2.5 2.8 1.9 1.7 1.9	24.5 1.2 37.6 1.7 28.3 1.2 24.5 1.0 19.3 0.6	3+2-1+3- 3-3+5070 7+8-7-60 405-405- 404-3+4- 5-4+5-4+ 4050403- 2+3+304- 30303+3- 30202-20	450 Q 33- 280 21-	Five Quiet 10 12 13
6 7 8 9 10	1.4 1.9 2.0 2.3 2.8 3.1 2.5 2.2 1.6 1.6 1.8 1.4 1.5 2.7 2.2 2.9 2.6 1.7 1.2 1.5 1.4 2.0 2.4 3.0 3.4 3.5 2.0 2.0 2.3 3.3 3.3 2.0 2.6 1.7 2.3 1.7 1.6 1.6 2.5 1.6	18.2 0.7 15.7 0.4 15.8 0.5 21.8 0.8 15.6 0.4	2-20203- 3-302+3- 2-2-2-2- 1+302+3+ 3-2-102- 10203-4- 40402020 3-40402+ 302-3-20 2-2-3-2-	190	14 24
11 12 13 14 15	0.9 1.3 2.2 2.3 2.9 2.6 2.3 1.6 1.7 1.7 1.3 1.7 2.0 2.3 1.4 2.1 2.9 2.3 1.7 1.9 1.4 1.3 1.4 1.5 1.7 1.3 1.6 2.0 1.7 1.4 1.4 2.2 2.0 1.4 1.9 1.3 2.3 2.8 2.9 4.7	16.1 0.4 0.3 14.4 0.3 13.3 0.2 19.3 0.9	1-lo3-20 303-2+20 202-1+20 202+1+2+ 3+2+2-20 lole1+2- 2-1+2020 2-lol+2+ 201+201+ 2+303+6-	150 D 14+ 13+ 210	Five Dist. 2 3 26
16 17 18 19 20	2.8 3.3 1.7 3.6 4.1 3.8 3.2 2.4 2.7 2.3 3.5 4.0 3.2 3.6 3.4 2.5 2.6 3.1 3.2 3.2 3.9 4.0 2.9 2.9 1.7 1.9 2.6 3.1 2.0 2.7 2.6 1.7 2.8 2.6 2.2 2.2 2.6 2.0 1.2 1.4	24.9 1.0 25.2 1.1 25.8 1.1 18.3 0.6 17.0 0.6	3+4o2-4o 5o4+4-3o 3o3-4-5o 3+4o4+3o 3-3+4o4- 5-5o3+3+ 2-2o3o4- 2+3-3-1+ 3o3-3-2+ 3o2+1+2-	290 290 300 19+ 190	28 31 Ten Quiet
21 22 23 24 25	2.4 2.2 2.7 2.1 2.0 2.2 1.3 1.0 1.6 3.7 4.7 3.6 3.0 4.0 3.4 3.6 4.7 3.0 3.4 3.5 2.1 1.9 2.4 2.4 1.7 2.1 2.4 2.0 2.6 1.7 1.1 1.1 0.8 2.1 2.9 2.9 2.9 3.0 3.1 2.8	15.9 0.3 27.6 1.2 23.4 1.1 14.7 0.3 20.5 0.8	302+302+ 2-201+1- 2-4+6040 3+504-40 5+3+404+ 2+2-2+3- 2-2+302- 302-101+ 1-2-3+30 3-3+3+30	16+ 320 260 16- 210	7 8 10 11
26 27 28 29 30 31	2.9 4.0 4.1 3.8 3.7 4.7 2.4 3.9 4.2 3.0 3.2 3.2 2.0 2.4 2.4 3.3 3.8 4.4 3.5 4.1 3.2 4.1 4.2 3.1 2.9 3.4 2.8 3.1 2.7 2.6 2.4 2.2 2.2 2.0 1.8 2.9 2.8 2.7 3.3 3.4 3.3 4.0 3.8 3.7 4.5 4.7 4.1 4.4	29.5 1.3 23.7 1.1 30.4 1.3 22.1 0.7 21.1 0.8 32.5 1.4	3-50504+ 4+502+4+ 4+3+4040 1+3-204- 5-5+4-5- 4-505-4- 30403+3+ 3-3-2+2+ 202+2030 302+3+4- 4-505-4+ 5+605+50	330 25+ 35+ 24- 22- 39+	13 14 20 21 24
Mean	2.69 2.65 2.67 2.62 2.69 2.74 2.87 2.73	2.71 0.82			

Table 81

Sudden Ionosphere Disturbances Observed at Washington, D. C. August 1951

No sudden ionosphere disturbances observed.

Table 82

Sudden Ionosphere Disturbances Reported by Institut für Ionosphärenforschung,

as Observed at Lindau, Harz, Germany

1951 Day	GCT Beginning End	Location of transmitters	Relative intensity at minimum*	Other phenomena
July 4	1404 1416	München**, Lindau***	0.1	

*Ratio of received field intensity during SID to average field intensity before and after, for station Munchen, 6160 kilocycles, 400 kilometers distant.

**Station Munchen, 6160 kilocycles.

***Station Lindau, 1780 kilocycles, pulse, transmitter and receiver at Lindau.

Erratum on footnotes in a previous table from Lindau: In table 88 on page 52 of CRPL-F83, the reference symbols under the heading "Location of transmitters" for April items should be changed to conform with those for the May items.

Fig. III. CALCUTTA, INDIA

22.6°N, 88.4°E

NOVEMBER 1950

22.6°N, 88.4°E

JULY 1950

Index of Tables and Graphs of Ionospheric Data

in CRPL-185

Table pe	ege Figure page
Adak, Alaske	
July 1951 12	47
Anchorage, Alaska	
July 1951	46
Baker Lake, Canada May 1951	54
May 1951	24
June 1951	52
Bombay, India	7-
February 1951 17	64
Jamary 1951 19	68
Boston, Massachusetts	
June 1951	52
Brisbans, Australia	
April 1951	59 61
	65
	69
January 1951 19 Calcutta. India	09
April 1951	58
March 1951	60
February 1951	63
January 1951	67
December 1950 20	71
November 1950 20	71
October 1950 20	72
September 1950 20	72
August 1950 20	73
July 1950 20	73
Canberra, Australia	40
April 1951	59
March 1951	61
Jamary 1951	70
	51
June 1951) <u>.</u>
February 1951	63
Jamary 1951	67
Fairbanks, Alaska	
July 1951	45
Formosa, China	
May 1951 15	56
Fort Chimo, Canada	
May 1951	54
April 1951	57

Index (CRPL-F85, continued)

Table page	Figure page
Graz, Austria	40
June 1951	51
Guam I. July 1951	50
June 1951	53
Hobart, Tasmania	22
April 1951 16	60
March 1951	62
February 1951 18	66
January 1951 19	70
Madras, India	
February 1951 17	64
January 1951 19	68
Maui, Hawaii	
July 1951 12	49
Marsarssuak, Greenland	
July 1951 11	46
Okinawa I.	
July 1951 12	49
Oslo, Norway	4
July 1951 12	47
Ottawa, Canada	
May 1951 14 Point Barrow, Alaska	55
	Lele
July 1951 11 Puerto Rico, W. I.	whork
July 1951	50
May 1951	56
Barotonga I.)4
April 1951 15	58
Resolute Bay	
May 1951 14	53
Reykjavik, Iceland	
February 1951 17	62
January 1951 18	66
St. John's, Hewfoundland	
May 1951 14	55
San Francisco, California	
July 1951 12	48
Tiruchy, India	
February 1951 18	65
January 1951 19	69
Tromso, Horway	45
July 1951	40
Washington, D. C. August 1951	lala
August 1951 11 Watheroo, Western Australia	****
May 1951 15	57
White Sands, New Mexico)(
July 1951 12	48

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radic Propagation Laboratory upon request] Daily:

Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13() series.)

CRPL-F. Ionospheric Data.

*IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.
*IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.
IRPL-R. Nonscheduled reports:
R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

R5.

**R6.

Criteria for Ionospheric Storminess.

Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

An Automatic Instantaneous Indicator of Skip Distance and MUF. R7.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

**R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Characteristics.

**R12. Short Time Variations in Ionospheric Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.

**R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle. **R17. Japanese Ionospheric Data—1943.

- R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures-October 1943 Through May 1945.
- **R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

**R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

**R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

**R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

R26. The Ionosphere as a Measure of Solar Activity.

- R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots
- Grouped by Distance From Center of Disc.

 **R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

**R33. Ionospheric Data on File at IRPL. **R34. The Interpretation of Recorded Values of fEs.

R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL-T. Reports on tropospheric propagation:

T1. Radar operation and weather. (Superseded by JANP 101.)
T2. Radar coverage and weather. (Superseded by JANP 102.)

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC 14() Series. **Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

