

SOLUTION OF EXERCISESHEET 2

Exercise 2-1

If the one-time pad could be used twice with the same key and achieve perfect security, the following equation would be true:

$$Pr[M_1 = m_1 \land M_2 = m_2 | C_1 = c_1 \land C_2 = c_2] = Pr[M_1 = m_1 \land M_2 = m_2]$$

Let $c_1 = c_2, m_1 \neq m_2$

Then $Pr[M_1=m_1 \wedge M_2=m_2|C_1=c_1 \wedge C_2=c_2]=0$ due to the correctness.

But
$$Pr[M_1 = m_1 \land M_2 = m_2] = Pr[M_1 = m_1]Pr[M_2 = m_2] \neq 0$$

therefore

$$Pr[M_1 = m_1 \land M_2 = m_2 | C_1 = c_1 \land C_2 = c_2] \neq Pr[M_1 = m_1 \land M_2 = m_2]$$

Exercise 2-2

Decoded message:

ONE MUST ACKNOWLEDGE WITH CRYPTOGRAPHY NO AMOUNT OF VIOLENCE WILL EVER SOLVE A MATH PROBLEM

Using the XOR of both messages we can decode the second message if we know the first.

$$c1 \oplus c2 = (k \oplus m1) \oplus (k \oplus m2) = (k \oplus k) \oplus (m1 \oplus m2) = m1 \oplus m2$$

Since we know one message starts with "ONE MUST" and contains "WITH" we get the start of the other message "OF VIOLEN" by reversing the XOR operation:

$$(c1 \oplus c2) \oplus m1 = (m1 \oplus m2) \oplus m2 = m2$$

By guessing further letters from the context and finding the word "WITH" in one message we can decode the rest of the sentence.

Exercise 2-3

f and g are negligible functions and q be a positive polynomial.

- (a) Is e^{-x} negligible? For any polynomial x^c , choose N=c, then for all x>N holds: $e^{-x}<\frac{1}{x^c}$, because $e^x>x^c$ for all x>N=c. $\Rightarrow e^{-x}$ is negligible.
- (b) Is $\frac{1}{x^{2021}+1}$ negligible? For the polynomial x^{2022} there is no N, that for all x>N holds: $\frac{1}{x^{2021}+1}<\frac{1}{x^{2022}}$, because $x^{2021}+1$ is smaller than x^{2022} for x>1. $\Rightarrow \frac{1}{x^{2021}+1}$ is not negligible.
- (c) Is h(x) negligible, when h(x) is a positive function such that h(x) < f(x) for all x? For f(x) holds: $f(x) < \frac{1}{p(x)}$ (Definition 0.1).

Solution of Exercisesheet 2

Because of $h(x) < f(x) < \frac{1}{p(x)}$ for all x, h(x) is also negligible.

(d) Is
$$f(x)+g(x)$$
 negligible? $f(x)$ negligible $\Rightarrow f(x)<\frac{1}{p(x)}$ (Definition 0.1). $g(x)$ negligible $\Rightarrow g(x)<\frac{1}{p'(x)}$ (Definition 0.1).

$$\Rightarrow f(x) + g(x) < \frac{1}{p(x)} + \frac{1}{p'(x)}$$

$$= \frac{p'(x) + p(x)}{p(x) \cdot p'(x)}$$

$$= \frac{1}{\frac{p(x) \cdot p'(x)}{p'(x) + p(x)}}$$

Addition, multiplication and division of two polynomials results in another polynomial. p(x)and p'(x) can be any polynomials. Because of that the denominator $(\frac{p(x) \cdot p'(x)}{p'(x) + p(x)})$ can also be any polynomial.

 $\Rightarrow f(x) + g(x)$ is negligible.

(e) Is
$$f(x) \cdot q(x)$$
 negligible? $f(x)$ negligible $\Rightarrow f(x) < \frac{1}{p(x)}$ (Definition 0.1). $q(x)$ is a positive polynomial.

$$\Rightarrow f(x) < \frac{1}{p(x)} \qquad | \cdot q(x), q(x) positive$$

$$f(x) \cdot q(x) < \frac{q(x)}{p(x)}$$

$$f(x) \cdot q(x) < \frac{1}{\frac{p(x)}{q(x)}}$$

Division of two polynomials results in another polynomial. p(x) can be any polynomial. So the denominator $(\frac{p(x)}{q(x)})$ can also be any polynomial. $\Rightarrow f(x) \cdot q(x)$ is negligible.

(f) Is
$$\frac{f(x)}{g(x)}$$
 negligible? $f(x)$ negligible $\Rightarrow f(x) < \frac{1}{p(x)}$ (Definition 0.1). $g(x)$ negligible $\Rightarrow g(x) < \frac{1}{p'(x)}$ (Definition 0.1).

$$\Rightarrow \frac{f(x)}{g(x)} < \frac{\frac{1}{p(x)}}{\frac{1}{p'(x)}}$$
$$\frac{f(x)}{g(x)} < \frac{1}{\frac{p(x)}{p'(x)}}$$

SOLUTION OF EXERCISESHEET 2

Division of two polynomials results in another polynomial. p(x) and p'(x) can be any polynomials. So the denominator $(\frac{p(x)}{p'(x)})$ can also be any polynomial.

- $\Rightarrow \frac{f(x)}{g(x)}$ is negligible.
- (g) Is $2^{-1024} = \frac{1}{2^{1024}}$ negligible?

For the polynomial x^{1025} there is no N, that for all x>N holds: $\frac{1}{2^{1024}}<\frac{1}{x^{1025}}$, because 2^{1024} is always smaller than x^{1025} for all x>1. $\Rightarrow 2^{-1024}$ is not negligible.

(h) Is $(f(x))^{\frac{1}{q(x)}}$ negligible? $f(x)=e^{-x}$ is negligible (see (a)) q(x)=x is a positive polynomial for all x>0 $\Rightarrow (e^{-x})^{\frac{1}{x}}=e^{-1}=\frac{1}{e}$

For the polynomial x^2 there is no N, that for all x>N holds: $\frac{1}{e}<\frac{1}{x^2}$, because e is always smaller than x^2 for all $x\geq 2$. $\Rightarrow e^{-1}$ is not negligible. $\Rightarrow (f(x))^{\frac{1}{q(x)}}$ is not negligible.

(i) Is $x^{-\log\log\log x}$ negligible?

For any polynomial x^c , choose $N=e^{e^{e^c}}$, then for all x>N holds: $x^{-\log\log\log x}<\frac{1}{x^c}$, because $x^{\log\log\log x}>x^c$ and $\log\log\log x>c$ for all $x>N=e^{e^{e^c}}$. $\Rightarrow x^{-\log\log\log x}$ is negligible.

Exercise 2-4

In this experiment the adversary A recieves a random message m^* with its encryption c^* from the challenger using the secret key (a, b). Adversary A now generates two messages m_0 and m_1 of the same length that must be distinct from m^* .

Our challenger chooses one of them and encrypts them using the encryption scheme: $c = a \cdot m_b + b$

To crack the encryption the adversary A has information about c*, m* and c.

That means adversary A has to solve these equations:

$$c^* = a \cdot m^* + b$$

 $c = a \cdot m_b + b$

to get the secret key (a,b).

However since A is missing the information about m_b the system of equations is over-determined and not solvable.

This means A has to guess which message was encrypted and Pr [TTP - SEC = 1] $= \frac{1}{2}$

Exercise 2-5