

List: Linked list

เมื่อเรียนจบแล้ว สิ่งที่นิสิตสามารถทำได้คือ (มี่าง ที่เก็บงาง กรุ <

- 1)สามารถแยกแยะระหว่าง list และ linked list ได้
- 2)เข้าใจการทำงานของ linked list
- 3)สามารถเขียนโปรแกรมทำการเก็บข้อมูลลงใน linked list ได้
- 4)สามารถเขียนโปรแกรมทำการลบข้อมูลลงใน linked list ได้
- 5)สามารถเขียนโปรแกรมทำการค้นหาข้อมูลลงใน linked list ได้
- 6)สามารถเขียนโปรแกรมทำการนับจำนวนข้อมูลลงใน linked list ได้
- 7)สามารถนำ linked list ไปใช้ในการปัญหาทางการโปรแกรมได้
- 8)ทราบ BigO ทุก Operation

2.3 The List * รายการ คือ ข้อมูลที่เรียงกัน

A General list of the form A_1 , A_2 , A_3 ,..., A_N

For any list except the empty list, we say that A_{i+1} follows (or succeeds) A_i (i<N) and that A_{i-1} precedes A_i (i>1). The first element of the list is A_1 , and the last element A_i in a list is A_N

2.3.1 List Operation

- ☐ insert ☐ printList
- ☐ remove
 ☐ makeEmpty
 - ☐ find

2.3.2 Array List

1) Insert

10	20	30	40	50
10	20	40	50	

- 1. สร้าง Array โดยคาดคะเนว่า list จะมีข้อมูลมากที่สุดกี่ค่า
- 2. กำหนดตัวแปร size คือจำนวนข้อมูล pos(position) คือตำแหน่งที่ ต้องการแทรก size = 6
- 3. การ insert จะทำโดยการหาตำแหน่งที่ต้องการแทรกข้อมูลก่อน เช่น ต้องการแทรก 35 ตำแหน่งที่จะแทรกคือ 3

- 4. จะแทรกได้จะต้องขยับเลื่อนข้อมูลด้านหลังทุกตัวไป 1 ค่า ในช่วง possize
- 5. ทำการแทรก


```
int main()
   int a[8]=\{10,20,30,40,50\}; 60;
   int newNumber,i,j,size,index;
   size=5;
                       best, bad, bade
   newNumber=35;
   for(i=0;i<size;i++) 0,h, n
       if(newNumber<a[i])</pre>
               index=i;
               break;
   cout << index;
```

- 1. สร้าง Array โดยคาดคะเนว่า list จะมีข้อมูลมากที่สุดกี่ค่า
- 2. กำหนดตัวแปร size คือจำนวน ข้อมูล pos(position) คือ ตำแหน่งที่ต้องการแทรก
- การ insert จะทำโดยการหา ตำแหน่งที่ต้องการแทรกข้อมูล ก่อน เช่น

ต้องการแทรก 35 ตำแหน่งที่ จะแทรกคือ 3 ซึ่งเก็บอยู่ใน ตัวแปร index


```
for(i=size-1;i>=index;i--)
     a[i+1]=a[i]; i = 5 \alpha [5]
   size++; i = 4 \alpha [4]
                  i=3 a [3]
a[index]=newNumber;
```

```
10 20 30 40 50 60
```

- 4. ต้องเลื่อน ตั้งแต่ตัวที่ 3 5 หรือ ์ ตั้งแต่ index ถึง size ไป ตำแหน่งที่ 4-6 ทุกตัวไป 1 ค่า ในช่วง pos-size
- ทำการแทรก

Delete

- 1. หาตำแหน่งที่ต้องการลบใส่ตัวแปร index
- 2. ขยับข้อมลตั้งแต่ลำดับ 4-6 คือ index+1 ถึง size 1 เลื่อนมาด้านหน้า
- 3. ลดขนาด size

03603212: Module1 – Introduction 8

<u>ภารบ้าน 2</u>

 จงเขียนโปรแกรมโดยใช้ Array ขนาด 10 ช่อง สร้างเป็น list โดยมีการทำงานตาม menu ดังนี้ ให้แยกการทำงานข้อ 1-3 ออกเป็นฟังก์ชัน

หมายเหตุ ให้ทดลอง insert 8 5 1 20 6 14 และลบ 8 20 1

```
=======Menu======
```

```
+ 1) Insert +
```

+ 4) Exit +

Please choose >

```
ถ้าเลือกข้อ 1
```

Enter: 8

Output = 8 จากนั้นกลับไปที่เมนู

ถ้าเลือกข้อ 1

Enter: 5

Output = 5 8 จากนั้นกลับไปที่เมนู

ถ้าเลือกข้อ 2

Delete: 8

Output = 5 จากนั้นกลับไปที่เมนู

03603212: Module1 – Introduction 9

ถ้าเลือกข้อ 3 สมมุติว่ามีข้อมูล 10 20 30 40 50 60 จะแสดงข้อมูลดังนี้

Print : 10 20 30 40 50 60

Print first half : 10 20 30

Print second half: 40 50 60

หรือ

Print : 1 22 23 47 50

Print first half : 1 22

Print second half: 23 47 50

Avoid the linear cost of insertion and deletion of array.

The linked list consists of a series of nodes, which are not necessary adjacent in memory. Each node contains the element and a link to a node containing its successor. We call this the next link. The last cell's next link points to NULL.

2.3.3 Linked List

Delete

ข้อแตกต่างระหว่าง Array list และ Linked list

1. การประกาศตัวแปร

Array list จะต้องประกาศตัวแปรก่อน จึงต้องคาดคะเนจำนวน ข้อมูลไว้ ว่า list จะมีจำนวนกี่ตัว

Linked list ไม่จำเป็นจะต้องประกาศตัวแปรก่อน สามารถสร้าง node ขณะที่ run โปรแกรมได้

2. การ insert และ delete

Array list ทำได้ยากกว่า เพราะโครงสร้างไม่เหมาะสม Linked list ทำได้ง่าย

ข้อแตกต่างระหว่าง Array list และ Linked list(ต่อ)

3. การเขียนโปรแกรม

Array list เขียนโปรแกรมโดยใช้การวน loop

Linked list เขียนโปรแกรมต้องใช้ pointer

1 การ Insert แยกกรณี

- 2. กรณีที่มีข้อมูล
 - insert หน้าสุด
 - insert ตรงกลาง
 - insert ท้าย

เมื่อรับ input x เข้ามาจะแยกความ แตกต่างอย่างไร


```
int menu()
{ int choose;
 cout << " 1) Insert list\n";
 cout << " 2) Delete list\n";
 cout << " 3) Print list\n";
 cout << " 4) Exit\n";
 cout << " Please choose > ";
 cin >> choose;
 return choose;
```


03603212 : Module2–List _{1. กรณีไม่มีข้อมูล}

NVLL

```
struct record *insert(struct record *head,int data)
    struct record *node,*p;
                                           head
     if ( head == NULL )
                                            2000
        head=new struct record;
                                  head
         head-> value = data; —
         head-> next = NULL;
                                    1024
                                    2000
     return head;
    * return pointer
                                         1024
```



```
struct record *insert(struct record *
1 { struct record *node,*p;
2 if (head == NULL)
3 { head=new struct record;
4 head-> value = data;
5 head-> next = NULL;
6 }

2. กรณีมีข้อมูลอยู่แล้ว
-Insert ด้านหน้า
head

1024

1024
```



```
7 else /**head !=NULL **/
                                      2. กรณีมีข้อมูลอยู่แล้ว
8 {
       node=new struct record;
                                      -Insert ด้านหน้า
       node-> value = data; 2
                                   สราว กล่อง
       if( data < head->value)
10
11
           node->next = head; 1024
                                                head
12
           head=node;
                            node
                   1050
13 }
                                                  1024
                              10<del>50</del>
14
                                                  2000
                             4000
15 return head;
  * return pointer
                                        1050
                                                       1024
```



```
struct record *insert(struct record *head,int data)
      struct record *node,*p;
                                      3. กรณีแทรกกลาง
                                           หรือท้าย
     if ( head == NULL )
         head=new struct record;
         head-> value = data;
         head-> next = NULL;
                head
                          1050
                           2000
                          1050
                                     1024
                                               1080
                                                        2015
```



```
7 else /**head !=NULL **/
                                  3. กรณีแทรกกลาง
8 {
      node=new struct record;
      node-> value = data;
      if( data < head->value)
10
11
            แทรกหน้า list กรณี 2 เรียนแล้ว ♥
12
13
                                   node
      else
                                   2040
             แทรกกลาง/ท้าย
                                             2040
                                   4000
```



```
1050 -> 1080 -> 1090 -> 9016
Head
          1024 tmp
 1024
           5000
2000
                 1050
                           1080
                                            1090
             1024
                       1050
                                 1080
                                                      2016
    Count
int
void print(struct record *head) 1024
     cout << "\nPrint Listed : \n";</pre>
                                        451015 90
     struct record *tmp; int count=0;
     tmp=head;
     while(tmp!=NULL) TTTTF
          cout << tmp->value << " "; , count ++;
          tmp=tmp->next;
```