Método del gradiente y regresión lineal

Set de datos para casas I

Set de datos para casas I

Predecir un valor real utilizando los datos disponibles

Set de datos para casas II

Tamaño en ${\sf cm}^2$	Precio en 1000es de
2014	460
1416	232
1534	178

Notación:

- **m** = Número de puntos de datos
- x's = variable de entrada
- y's = variable de salida
- $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$ = la i-esima dupla de puntos de data

Hipótesis I

Hipótesis II

Como representamos h?

Hipótesis II

Como representamos h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x \tag{1}$$

Regresión lineal de una variable

 \bullet θ_0 y θ_1 son los parámetros del modelo

Hipótesis II

Como representamos h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x \tag{1}$$

Regresión lineal de una variable

 \bullet θ_0 y θ_1 son los parámetros del modelo

Parámetros θ

¿Como encuentro los parámetros del modelo?

- Idea:
 - Elegir θ₀ y θ₁ tal que h_θ(x) este cercano a los valores y del set de datos (x, y)

Parámetros θ

¿Como encuentro los parámetros del modelo?

- ▶ Idea:
 - Elegir θ₀ y θ₁ tal que h_θ(x) este cercano a los valores y del set de datos (x, y)
- Se debe minimizar $(h_0 y)^2$ usando θ_0, θ_1 como parametros

$$\min_{\theta_0,\theta_1} \left[\frac{1}{2m} \sum_{i=1}^{m} ((h_0(x^{(i)}) - y^{(i)})^2 \right]$$
 (2)

Función de costo

Es conveniente escribir la función a minimizar como una función de costo

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} ((h_0(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2$$
 (3)

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1) \tag{4}$$

• $J(\theta_0, \theta_1) =$ Función de costo, también conocida como función de error cuadrada

Resumen

- Hipótesis
 - $h_{\theta}(x) = \theta_0 + \theta_1 x$
- Parametros
 - θ_0, θ_1
- Función de costo:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m ((h_0(x^{(i)}) - y^{(i)})^2$$

- Meta:
 - $\blacktriangleright \quad \mathsf{min}_{\theta_0,\theta_1} \, \textit{J}(\theta_0,\theta_1)$

Visualizando la función de costo l

Visualizando la función de costo II

Método del gradiente

Método del gradiente 10/16

Punto de partida

Tenemos una función:

$$J(\theta_0, \theta_1) \tag{5}$$

y queremos minimizarla con respecto a los parámetros heta

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1) \tag{6}$$

Estrategia:

- Elegir θ_0, θ_1 iniciales
- **The Proof of School Proof of**

Método del gradiente 11/16

Descenso a lo largo del gradiente

Método del gradiente 12/16

Algoritmo

Repita hasta convergencia
$$\{\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)\}$$
 (Para $j = 0, 1$) (7)

El signo := significa asignación $\alpha \textit{eslarazndeaprendizaje}$ Se actualiza θ_0 y θ_1 SIMULTANEAMENTE

Método del gradiente 13/16

El gradiente l

Para poder utilizar el algoritmo que se acaba de mostrar es necesario conocer:

$$\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1) \tag{8}$$

Si se calculan las derivadas de J con respecto a θ_0 y θ_1 se obtiene que:

$$\frac{\partial}{\partial \theta_0} = \frac{1}{m} \sum_{i=1}^{m} (h_0(x^{(i)}) - y^{(i)}) \tag{9}$$

$$\frac{\partial}{\partial \theta_1} = \frac{1}{m} \sum_{i=1}^{m} (h_0(x^{(i)}) - y^{(i)}) x^{(1)}$$
 (10)

Método del gradiente 14/16

El gradiente II

Las ecuaciones para poder minimizar la función de costos son entonces:

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_0(x^{(i)}) - y^{(i)})$$
(11)

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_0(x^{(i)}) - y^{(i)}) x^{(1)}$$
(12)

Estos dos cálculos se repiten hasta que J converge a un mínimo.

Método del gradiente 15/16

Vectorización de la ecuaciones

Muchas veces es conveniente escribir las ecuaciones en forma matricial. Por ejemplo la hipótesis:

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \mathbf{x}_1 = \theta^T \mathbf{x} \tag{13}$$

$$\mathbf{x} = (x_0, x_1) = (1, x_1) \tag{14}$$

Método del gradiente 16/16