Contando submatrices

Contribución de Natalia Pérez y Laura Rivero

Descripción del problema

Próximamente se lanzará al mercado "SigMatriz", un nuevo juego apto para muchos participantes, diseñado por una empresa de sistemas en expansión. Sus reglas son sencillas:

- 1) Se visualizan por pantalla durante unos pocos segundos dos números A y B ($0 \le A \le B \le 2.560.000$)
- 2) Los números desaparecen y se muestra una matriz de $M \times N$ ($1 \le M \le 160$; $1 \le N \le 160$) en donde cada casilla contiene un número entero E ($0 \le E \le 100$).

El objetivo del juego es encontrar la cantidad de submatrices de cualquier tamaño $m \times n$ ($1 \le m \le M$; $1 \le n \le N$) donde la suma S de los números de cada casilla cumpla con $A \le S \le B$.

Compiten todos los participantes que se encuentren en línea y gana la partida aquel que logre hacer entrar primero al jurado un e-mail con la cantidad correcta.

La empresa de sistemas requiere de tu ayuda escribiendo la función:

sigmatriz(A, B, M, N,
P, Matriz, Respuestas,
Tiempo)

que retorne el número del participante ganador del juego o 0 en caso de no existir un ganador.

Sus parámetros son:

A: límite inferior de la suma ($0 \le A \le B$)

B : límite superior de la suma ($A \le B \le 2.560.000$)

M: cantidad de filas de la matriz ($1 \le M \le 160$)

N: cantidad de columnas de la matriz. ($1 \le N \le 160$)

Matriz: arreglo de tamaño **M** x **N** con la matriz inicial del juego.

P: cantidad de participantes del juego ($0 \le P \le 1000$)

Respuestas : arreglo de tamaño **P** con la cantidad de submatrices que contó cada participante.

Tiempo: arreglo de tamaño **P** que indica el orden en que se recibieron los e-mails con las respuestas.

Ejemplo

Si se presenta el siguiente caso:

A= 22; B=27; M= 4; N= 3; P=5;

Matriz:

15	5	8
22	4	1
5	7	2
1	11	6

Respuestas = 7;9;9;8;9

Tiempo= 2;4;3;1;5

La solución deberá ser 3;

Las submatrices que tuvieron que contabilizar se ilustran a continuación:

15	5	8	
22	4	1	
5	7	2	
1	11	6	

15	5	8
22	4	1
5	7	2
1	11	6

15	5	8
22	4	1
5	7	2
1	11	6

15	5	8
22	4	1
5	7	2
1	11	6

15	5	8
22	4	1
5	7	2
1	11	6

15	5	8
22	4	1
5	7	2
1	11	6

15	5	8
22	4	1
5	7	2
1	11	6

15	5	8
22	4	1
5	7	2
1	11	6

15	5	8
22	4	1
5	7	2
1	11	6

Detalles de implementación

En un único archivo, llamado sigmatriz.cpp, sigmatriz.c, o sigmatriz.pas. debes enviar una función que implemente la función descrita antes, usando los siguientes prototipos:

En C/C++ int sigmatriz(int A, int B, int M, int N, int P, int
Matriz[][160], int Respuestas[], int Tiempo[])

Debes incluir también un archivo de encabezamiento sigmatriz.h

Para programadores Pascal

En Pascal function sigmatriz(A, B, M, N, P : longint ;
 Matriz: array[1..160, 1..160] of longint; Respuestas, Tiempo array[0..999] of longint) : longint

Evaluador local

El evaluador local (programa para probar ejemplos propios) lee la entrada por stdin en el siguiente formato:

- Línea 1: A, B
- Línea 2: M, N, P
- Línea 3+i (0 ≤ i < M) N números separados por blanco indicando la iésima fila de la matriz.
- Línea 3+M: P números separados por blanco correspondientes a las Respuestas[j] (0 ≤ j < P)
- Línea 4+M: P números separados por blanco correspondientes a los Tiempo[j] (0 ≤ j < P)

El evaluador entrega el valor de la función por consola.

Para el caso del ejemplo la entrada sería:

22 27 4 3 5 15 5 8 22 4 1 5 7 2 1 11 6 7 9 9 8 9 2 4 3 1 5

Subtareas

- 28 puntos se asignarán a problemas en los cuales la entrada tenga M = 1.
- **22** puntos adicionales para aquellos problemas en donde se asegure que las submatrices que conforman la respuesta tengan n=1 y/o m=1.
- **50** puntos adicionales resolviendo el enunciado completo.

versión 2.2 hoja 2 de 2