REVIEW OF MARKOV CHAINS (Stationary Analysis)

Def: Let $\{X_n; n=0,1,2,...\}$ be a stochastic process on $(\Omega, \mathcal{F}, \mathbb{R})$ and let $\mathcal{F}_n = \sigma(X_0,...,X_n)$ be the natural filtration of the process. $\{X_n\}$ is called a Markov chain if for any borel set $B \in \mathcal{B}(\mathbb{R})$

$$P(X_{n+1} \in B | f_n) = P(X_{n+1} \in B | X_n)$$

= $P(X_{n+1} \in B | \sigma(X_n)).$

[Recall conditional probability is a random variable and it only depends on the conditioning o-algebra].

Physical interpretation: the future evolution of the process depends only on current state and it is independent of the past: memoryless.

Notation: the state space S is usually SCTR, but it can also be in several dimensions. To write the density of the state Xn+1 given the current state Xn we can use the notation:

 $P(X_{n+1} \in dx \mid f_n) = P(X_n, dx).$ and P(x, dx) is called the transition kernel.

 $\begin{array}{l} \underline{\text{Def}}: \text{A Markov Chain (MC) } \{X_n\} \text{ that takes values on a discrete} \\ \text{state space is called a discrete Markov Chain. That is, the N } X_n \in S, \\ \text{and wlog } S = \mathbb{Z}. \end{array}$

For a discrete MC the kernels can be described by matrices:

 $\underline{Def}: Let[X_n]$ be a MC on $(\Omega, \mathcal{F}, \mathbb{P})$. If the transition kernel is independent of n, that is: $\forall n, m \in \mathbb{N}$

$$\mathbb{P}(X_{n+1} \in B | \mathcal{F}_n) = \mathbb{P}(X_{m+1} \in B | \mathcal{F}_m)$$

then we say that $\{X_n\}$ is a (time) homogeneous Markov chain. Otherwise it is called non-homogeneous.

Classification of States

In this section we consider discrete, homogeneous MCs. Most examples use a finite state space \mathcal{S} .

Def: Let $\{X_n\}$ be a MC on $(\mathfrak{IZ}, \mathfrak{F}, \mathfrak{P})$ with state space $S \subset \mathbb{N}$. State j is said to be accessible from i if $p_{ij}^n > 0$ for some integer n. Notation: $i \to j$.

 $[P_{ij}^n = P(X_{ein} = j \mid X_{e} = i)]$ is the n-step transition probability].

 $\underline{\text{Def}}$: Two states $i, j \in S$ are said to communicate if $i \to j$ and $j \to i$. Notation: $i \longleftrightarrow j$.

If two states $i,j \in S$ do not communicate then it follows that either $P_{ij}^{n} = 0 \forall n \gg 0 \text{ or } P_{ji}^{n} = 0 \forall n \gg$

Theorem: Communication is an equivalence relationship. CLASSES

Proof:

(i). $p_{ii} = 1$ by definition (reflexive)

(ii). $i \leftrightarrow j \iff j \leftrightarrow i$ by definition (symmetric)

(iii). If $i \leftrightarrow j$ and $j \leftrightarrow k$ then $\exists n,m$ such that $P_{ij} > 0$ $P_{jk}^m > 0$. Use Chapman Kolmagorov equations:

Let z=min $(n: X_n=X_0)$ be the first return time to the initial state.

 $\underline{\underline{Def}}$. $f_i^{(n)}$ is the probability that the first return to state i happens at the n-th step or transition, that is:

$$f_i^{(n)} = \mathbb{P}(z=n \mid X_{o=i}).$$

Result:
$$f_i^{(1)} = P_{ii}$$
, and $P_{ii}^n = \sum_{k=0}^n f_i^{(k)} p_{ii}^{n-k}$, $n > 1$.

 \underline{Def} . $f_i = \mathbb{P}(\geq < \infty \mid X_{o=i})$ is the probability that the process eventually returns to the initial state i. It satisfies:

$$f_i = \sum_{n \geqslant i} \mathbb{P}(z=n \mid \underline{X}_0=i) = \sum_{n \geqslant i} f_i^{(n)} = \lim_{N \rightarrow \infty} \sum_{n=i}^{N} f_i^{(n)}$$

Def: A state ie S is called:

- recurrent if fi = 1.
- translent if $f_i < 1$.

Let i be a transient state, so fi < 1. In this case, given that the process visits state i, say $X_n = i$, the probability that it returns to i again is fi because of the Markov property. Therefore

Let M count the number of visits to state i, then:

$$M = \sum_{n=1}^{\infty} 1(X_{n=i})$$
 is a random variable $\sim Geom(fi)$.

Theorem: A state i is recurrent iff $\sum_{n=1}^{\infty} P_{ii}^{n} = +\infty$ and transient iff $\sum_{n=1}^{\infty} P_{ii}^{n} < \infty$. [Ross p. 206, TK p. 241 for proof].

Def: A recurrent state i such that $p_{ii} = 1$ is called an absorbing state.

Markov chain analysis \Rightarrow stationary analysis (recurrent classes)

Theorem: Recurrence is a class property.

<u>Pef</u>: The period of state i is the gcd of all integers $n \gg 1$ for which $P_{ii} > 0$. If $P_{ii} = 0 \ \forall n \Rightarrow i \ has period 0$.

Theorem: Periodicity is a class property.

 $\underline{\mathrm{Def}}$. A recurrent state $i \in S$ is called positive recurrent if $\underline{\mathrm{E}} [\underline{\mathrm{c}} [X_0 = i] K \infty]$

Remark: conditioning on each possible event $\{X_n=k\}$ kes $\}$ we have:

$$\mathbb{P}(X_{n+1}=j) = \sum_{i \in S} p_{ij} \mathbb{P}(X_n=i) \qquad (*)$$

Def: An aperiodic, recurrent state (class) is called ergodic.

Def: A stationary measure μ of a Markovchain satisfies:

$$\mu(A) = \int P(x,A) \mu(dx)$$
, $\forall A \in B(R)$.

If
$$S \in \mathbb{N} \Rightarrow$$

$$\mu(j) = \sum_{i \in S} p_{ij} \mu(i), \forall j \in S \quad \sum_{i \in S} \mu(i) = 1$$

called the "balance equation".

same distribution after one transition, but process is not constant.

In many examples of applications, cost functions of interest involve a long term running average. Example: calculating electricity costs per month, or wages paid to casual employees. This takes the form:

$$\lim_{N\to\infty} \mathbb{E}\left[\frac{1}{N}\sum_{n=1}^{N}g(X_n)\right]$$

for some "instantaneous" cost $g: S \rightarrow \mathbb{R}$. Therefore one must under. tand the "limitting" behaviour of Markov chains.

Result: Suppose that for any state $i \in S$, the following limit exists:

Then using (*), it follows that { μ i, ies} satisfy:

$$\mu_j = \sum_{i \in S} P_{ij} \mu_{i}$$

that is, [μ :] is a stationary measure for the Markov chain.

Remark: generally the converse is not true, that is a stationary measure may exist but not the limiting probabilities

Example. The simplest example is an alternating process (binary), where $p_{01} = p_{10} = 4$.

If Xo=0, then X2k=0 tkeN and X2k+1=1 tkeN, so that $P(X_n=0)$ alternates between 1 and $0 \Rightarrow$ there is no limit. However the measure $\mu(0) = \frac{1}{2} = \mu(1)$ satisfies the balance equation. [Discuss interpretation].

Troposition. Let [Xn] be a Markov chain on a countable statespace S and suppose that it has only one class (called "irreducible 'MC"). If the chain is ergodic then there is a unique stationary measure M(1) and

 $\lim_{n\to\infty} \mathbb{P}(X_{n=i}) = \mu(i), \ \forall i \in S.$

In particular, for ergodic HC and any cost function g such that $|\mathbb{E}_{\mu}(g)| < \infty$ (expectation w.r.t. μ) it follows that

$$\lim_{n\to\infty} \mathbb{E}[g(X_n)] = \sum_{i\in S} g(i)\mu(i)$$

$$= \lim_{N\to\infty} \mathbb{E}\left[\frac{1}{N}\sum_{n=1}^{N}g(X_n)\right].$$

Example (binary MC) Consider the following model: Po CO 12 Par The balance equations are:

$$\begin{aligned}
\mu_0 &= \mu_0 p_{00} + \mu_1 p_{10} \\
\mu_1 &= \mu_0 p_{01} + \mu_1 p_{11}
\end{aligned}$$

$$\begin{aligned}
\mu_0 &= \mu_0 p_{00} + \mu_1 p_{10} \\
\mu_0 &= \mu_1 p_{00}
\end{aligned}$$

$$\mu_0 &= \mu_1 p_{10} \\
\mu_0 &= \mu_1 p_{10}
\end{aligned}$$

$$\mu_0 &= \mu_1 p_{10} \\
\mu_0 &= \mu_1 p_{10}$$

$$\mu_0 &= \mu_1 p_{10}$$

$$\mu_0(1 + \frac{p_{10}}{p_{01}}) = \frac{p_{10}}{p_{01}}$$
 (solve linear system)

This provides the stationary measure (40,44) as functions of the bansition probabilities and can be casily evaluated.