Apprentissage supervisé

Exercice 1

On a observé les données suivantes : les features sont dans \mathbb{R}^2 et les labels sont dans {rouge, bleu}.

- 1. Donner les valeurs de l'erreur empirique associée à la perte 0/1 des classifieurs construits par
 - l'algorithme des 1-plus proche voisins (1-NN)
 - l'algorithme des 3-plus proche voisins (3-NN).
- 2. Où metteriez vous le premier "split" d'un arbre de décision ? (vous pouvez le dessiner sur la figure)
- 3. A partir de quelle profondeur a-t-on un arbre d'erreur empirique nulle?

Exercice 2

On considère le problème de régression avec une régularisation ridge :

$$\underset{w \in \mathbb{R}^d, c \in \mathbb{R}}{\operatorname{argmin}} \left(\frac{1}{n} \sum_{i=1}^n \left(y_i - (x_i^\top w_i + c) \right)^2 + \frac{\lambda}{2} \|w\|_2^2 \right)$$

avec, pour $1 \leq i \leq n$, $x_i \in \mathbb{R}^d$ le vecteur de prédicteurs, $y_i \in \mathbb{R}$ la réponse, $w \in \mathbb{R}^d$ le vecteur de poids du modèle et $c \in \mathbb{R}$ l'intercept. On note de plus

$$f_i(w,c) = \left(y_i - (x_i^\top w_i + c)\right)^2 + \frac{\lambda}{2} ||w||_2^2$$
 and $f(w,c) = \sum_{i=1}^n f_i(w,c)$.

1. On définit la matrice de design X comme

$$X = \begin{pmatrix} x_1^\top \\ \dots \\ x_n^\top \end{pmatrix}.$$

Récrire la fonction f à minimiser en fonction du vecteur de paramètre $\theta = (w, c)^{\top}$, du vecteur $Y = (y_1, \dots, y_n)^{\top}$ et de la matrice $[\mathbf{1}|X]$ où $\mathbf{1}$ est le vecteur contenant n fois la valeur 1 et $[\cdot|\cdot]$ est la concaténation.

- 2. Calculer le gradient de f(w,c) noté $\nabla f(w,c)$ par rapport au paramètre $\theta = (w,c)^{\top}$.
- 3. Dans la suite, on suppose qu'un petit nombre d'observations (x_i, y_i) sont des données aberrantes, dans le sens où y_i est loin de la valeur attendue. Au lieu d'avoir un intercept fixe $c \in \mathbb{R}$, on considère à présent un intercept par observation, c'est-à-dire $c_i \in \mathbb{R}$ pour $i = 1, \ldots, n$, ce qui donne lieu au problème de minimisation suivant :

$$\underset{w \in \mathbb{R}^d, c \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{i=1}^n f_i(w, c_i) + \gamma ||c||_1 \right\}$$

où $f_i(w,c)$ a la même forme que précédemment, $\gamma > 0$ est un paramètre de régularisation supplémentaire, et où $||c||_1$ est la norme ℓ_1 ($||c||_1 = \sum_{i=1}^n |c_i|$). Ecrire la matrice de design associée à ce nouveau problème à partir de X et Id_n , la matrice identité de taille $n \times n$. Quelle est sa dimension ?

- 4. Expliquer en quelques mots pourquoi on utilise la pénalisation ℓ_1 pour le paramètre c, ainsi que l'effet du paramètre de régularisation $\gamma > 0$.
- 5. Ecrire l'algorithme de descente de gradient proximal pour résoudre le problème d'optimisation.

Exercice 3

- 1. Compléter le graphique du réseau de neurone pour la classification binaire avec une couche cachée à 1 neurone et dont la fonction d'activation en sortie de la couche cachée est g (vous pouvez vous aider des slides 5 à 7 du cours 4). On notera
 - b^H le vecteur de bias de la couche cachée
 - W^H le vecteur des poids de la couche cachée.
- 2. Préciser les dimensions de $b^H,\,W^H,\,b^O,\,W^O$
- 3. Pour des valeurs fixées de $b^H,\,W^H,\,b^O,\,W^O,\,$ donnez la forme mathématique de $\hat{y}(x).$

On considère la perte logistique

$$\ell(y, \hat{y}(x)) = -y \log(\hat{y}(x)) - (1 - y) \log(1 - \hat{y}(x))$$

où y est le label observé et $x=(x_1,\ldots,x^d)^{\top}$. On suppose, pour simplifier, que $b^H=b^O=0$ et que g est la fonction sigmoïde. On veut calculer les gradients en W^H et W^O par back-propagation.

4. Calculer successivement les gradients

$$\nabla_{\hat{y}(x)}\ell(y,\hat{y}(x)), \nabla_{z}\circ\hat{y}(x), \nabla_{W}\circ z^{O}$$

en déduire l'expression de $\nabla_{WO}\ell(y,\hat{y}(x))$.

5. Vérifier votre calcul en remarquant que

$$\ell(y, \hat{y}(x)) = -y \log(\sigma(W^{O}h)) - (1 - y) \log(1 - \sigma(W^{O}h)).$$

- 6. Si $W^{O,(k)}$ est la valeur de W^O à l'itération k, quelle sera sa valeur à l'itération k+1 pour une descente gradient de pas η ?
- 7. Continuer avec

$$\nabla_h W^O, \nabla_{z^H} h, \nabla_{W^H} z^H$$

en déduire $\nabla_{W^H} \ell(y, \hat{y}(x))$.

 x_d

