

Advanced algorithms and structures data

Approximate algorithms

- The basics
- MTSP 2-approximation algorithm
- Vertex Cover 2-approximation algorithm
- 0-1 knapsack FPTAS

Lecture based on:

Script "Advanced algorithms and data structures", 2022.

[WS11] DP Williamson, D. Shmoys, "The Design of Approximation Algorithms", 2011; subchapters 1.1.-1.3, 2.4, 3.1

Approximate algorithms?

• **=**?

NP-hard discrete problems

- We want to get the best possible solution in polynomial time
- Guarantees loss of performance
- Resource-quality tradeoff
- APX class (approximate)

Approximate algorithms?

- Common tools for the design of approximate algorithms
 - Greedy algorithms
 - Local search
 - Dynamic programming
 - Randomization
 - Quantization (rounding)
 - Basic
 - Adaptive
 - By accident
 - Convex optimization (eg LP)

α–approximate algorithm

- α–approximate optimization algorithm
 - Time polynomial
 - Solution zu the worst case within factor α from the optimum x^*
 - To maximizez ≥ · *, < 1
 - To minimize $\leq \cdot *$, > 1

PTAS

- Time polynomial approximation scheme
 - English polynomial-time approximation scheme (PTAS)
 - Family of algorithms } for every > 0 there is a such that:
 - To maximize (1 -a) proximate algorithm 1
 - To minimize (+ -approximate algorithm
- A recipe, a meta-algorithm for the construction of approximate algorithms
 - Parameter

PTAS

- A recipe, a meta-algorithm for the construction of approximate algorithms
 - Parameter

Polynomial with respect to the input problem, not necessarily with
 1/

FPTAS

• Even more restrictive!

- Time fully polynomial approximation scheme
 - English fully polynomial-time approximation scheme (FPTAS)
 - PTAS such that the execution time of each runtime bounded from above by the polynomial u1/

Approximate algorithms

Three key questions for every candidate

- 1. Correctness a feasible solution?
- 2. Efficiency polynomial time?
- 3. Quality strict guarantees on the distance from the optimum?

Examples of INAPPROPRIATE problems

 Non-approximable in polynomial time (unless P=NP)

The general problem of the traveling salesman

Maximum click

Maximum independent set

Examples of suitable problems

- The traveling salesman's metric problem
 - minimization

- The vertex cover problem
 - minimization

- 0-1 knapsack problem
 - maximization

Metric Salesman Problem (MTSP)

- TSP + triangle inequality in distances
- NP-hard problem

- 2-approximation (2-MST heuristic)
 - Naive Eulerization of MST
- 3/2-approximation (Christofides, 1976)
 - Eulerization of MST à la CPP
- (3/2)approximation (<u>Karlin et al., 2020</u>)
 - Christofides, random treeinstead of MST

Metric Salesman Problem (MTSP)

NP-hard problem

- The limit of approximability?
 - NP-hard to approximate with a factor < 123/122 (Karpinski et al. in 2013)

2-MST heuristics

```
Entrance: (, \times)
```

- 1. Find the MST in G, the weight **x** O(|V|2)
- 2. DFS tour of all edges twice, write vertices in sheet L, length of tour **2**x O(|V|)
- 3. Filter L keeping only the first occurrences of vertices (short connection) and store in FL, the length of the tour **z** O(| V|)

2-MST heuristics - an example

2. From the top a L = [a, b, c, e, d, e, c, b, a]3. FL = [a, b, c, e, d]

2-MST heuristics: analysis

• **Correctness**–FL contains each vertex once, and we interpret the ends as connected. A valid tour✓

• Efficiency–2-MST runs in polynomial time.

• Quality?

2-MST heuristics: quality

• **Lemma 12.3.**For the weight x of the MST, x≤z holds.

• **Lemma 12.4.**2-MST is a 2-approximation algorithm. ✓

$$\leq \leq 2$$

MST

Inequality triangle

The peak cover problem

• Given an undirected graph (,)and peak costs : $\rightarrow \mathbb{R}$

 Top coveris '⊆ such that for every edge in E one of the vertices in '

 The top cover of the minimum cost – 'such that the sum of costs in it is minimal

The peak cover problem

 The top cover of the minimum cost – 'such that the sum of costs in it is minimal

- A simple 2-approximation algorithm based on:
 - linear programming and
 - deterministic rounding of decimal numbers

The peak cover problem

Modeled as an integer linear program min

-incidence matrix

NP-hard, optimal *

The peak cover problem - relaxation

Continuous range

Efficient solution!

Optimum *, potentially decimal

Approximate algorithm -DetRoundLP

Entrance: =
$$(,)$$
, : $\rightarrow \mathbb{R}$

1. *= LP relaxation solution

$$2. = (*)$$

3. back
$$\neq \{ \in | = 1 \}$$

DetRoundLP: analysis

- Correctness–the sum of two variables on the edges at least
 - 1. There must be at least one ≥ 0.5
 - Rounding selects at least one incident vertex for each edge. Rolled top cover

 Efficiency
 –each step can be done in polynomial time (and solving LP)

DetRoundLP: quality

• **Lemma 12.2.** DetRoundLP is a 2-approximation algorithm.

DetRoundLP: quality

• **Lemma 12.2.** DetRoundLP is a 2-approximation algorithm.

- A strict upper limit?
 - There are instances of graphs for which DetRoundLP produces a solution twice worse than the optimum

Vertex cover – limits of approximability

• [WS11] $A\underline{k}$ o there is an α -approximate algorithm with $< - \approx$. ,then P=NP

 If the unique games conjecture is true, the upper bound becomes

0-1 knapsack

NP-hard problem

• Things = $\{1, ..., \}$, each size $\in \mathbb{N}$, and values $\in \mathbb{N}$

- Backpack capacity $\in \mathbb{N}$
- Find the subset of things that fit in the knapsack and have the maximum sum of values

0-1 Knapsack

- NP-hard problem
- Dealing with DP –pseudo-polynomial algorithm
 - () numeric parameter
- Unary encoding encoding with consecutive units
- Def. It's an algorithmpseudo-polynomialif performed in time to a polynomial input when the numeric part is encodedunary(rather than binary).

0-1 Knapsack

- If the numerical parameters are polynomial in *n*
 - Polynomial algorithm!!

- FPTAS aggregation of numerical parameters into compartments
 - lacktriangle The number of compartments depends polynomially on $m{n}$

0-1 Knapsack – new DP table!

- Table columns of things, rows of knapsack values
- Cell [,] ->the least necessary cost that realizes value using some of the first things.

- Change required for approximate algorithm
 - Check what happens when you try the same trick with the following slides over a regular (costs, things) table
- The value of the most valuable thing = max
- -max value that can be achieved by a knapsack with n things and N

0-1 Knapsack – DP algorithm!

DPKnapsackByValue

```
1. [:, 1] = +1
2. 0,1[=0] 1, 1 = min() 1, 1, 1) [
3. h = 2, ...,
1. [:,] = [:, -1]
2. h = ,...,
1. [,] = min() [, -1], [-, -1] + )
4. max(): , \leq } [
```

```
2( )
pseudo-
polynomial on
```

- works by N

0-1 Knapsack – approximation

- We must limit N by a polynomial in n
- Quantization of values to units

BucketizedDP for knapsack – parameter

3. Fix modified problem using DPKnapsackByValue

Example 0-1 knapsack FPTAS

• Solve the 8 capacity backpack problem with the following 5 things **0.25-approximate algorithm**

	1	2	3	4	5
С	2	4	8	16	20
wit	H	4	2	5	7

Example 0-1 knapsack FPTAS

0.25-approximate algorithm

$$\bullet$$
 = 0.75

$$\bullet = =0.75 \cdot 2 \quad 0 = 3$$

•
$$' = \begin{bmatrix} - \\ , \forall \in \end{bmatrix}$$
 $v' = [0,1,2,5,6]$

	1	2	3	4	5
С	2	4	8	16 2	2 0
with	11	4	2	5 7	

0-1 knapsack FPTAS: analysis

• **Correctness**–DP returns a solution that satisfies the capacity constraint✓

• **Efficiency**– is transformed into after scaling. Complexity of the interlinked DP is $(\frac{1}{3})$

Quality?

0-1 knapsack FPTAS: quality

• **Lemma 12.5.**The presented algorithm is FPTAS for 0-1 knapsack.✓

That is the solution is of value at least (1 −)from the optimal value

 Proof in script, based onto the method of construction of the size of the compartments

Conclusion

- For some problems we can find approximate algorithms
 - MTSP 2-approximate, 1.5-approximate
 - *NP-hard for* < —
 - Peak cover 2-approximate
 - NP-hard for < . , MAYBE even <
 - 0-1 knapsack FPTAS
 - A family of algorithms for everyone \in (,)
- For some problems we can't handle any
 - TSP, maximal clique and maximal anticlique

Conclusion

- We used the following techniques in the design of the algorithms
 - Quantization (rounding)
 - Adaptive input rounding knapsack
 - Basic output rounding top cover
 - Linear programming vertex cover
 - Dynamic programming knapsack
 - Greedy algorithms MTSP
 - Local search MTSP

