Methods Utilized in Response to the 3rd Annual Global Trajectory Optimization Competition

Team 2: Georgia Institute of Technology Atlanta, Georgia, USA Presented by Richard Otero

Team Members

Daniel Guggenheim School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, GA, USA

- Professor Ryan Russell
- Kristina Alemany *
- Nittin Arora
- Michael Grant
- Sachin Jain
- Gregory Lantoine *
- Richard Otero *
- Brandon Smith
- Benjamin Stahl
- Bradley Steinfeldt
- Grant Wells

^{*} attending workshop

SSDL

Georgia Tech

Competition Problem

- Objective function for competition: $J = \frac{m_f}{2000 \text{kg}} + 0.2 \left(\frac{\min_{j=1,3} (\text{stayTime}_j)}{10 \text{years}} \right)$
- Final score depends on
 - Maximizing the final mass
 - Maximizing the minimum time spent at any asteroid
- Problem domain
 - $57388 \text{ MJD} \leq \text{initial launch} \leq 61041 \text{ MJD}$
 - Minimum stay at asteroid is 60 days
 - The entire trip is to fall within 10 years
 - May use Earth flybys with a min perigee radius of 6871 km
 - Earth orbital elements at epoch provided
 - Gravitational parameters provided
- Constraints must be satisfied
 - Position to within 1000 km
 - Velocity to within 1 m/s

Overview of Solution Approach

Georgia Tech

Modified Initial Design Target

- Objective function for competition: $J = \frac{m_f}{2000 \text{ kg}} + 0.2 \left(\frac{\min_{j=1,3} \left(\text{stayTime}_j \right)}{10 \text{ years}} \right)$
- Final score depends on
 - Maximizing the final mass
 - Maximizing the minimum time spent at any asteroid
- The minimum time was not a factor to be considered during the initial search
 - Minimum stay time is 60 days
 - If minimum stay time was 1 year this would only lead to a 0.02 improvement to the objective function
 - Team, early on, decided to concentrate on finding minimum fuel solutions
- Modified objective function: $J = \frac{m_f}{2000 \text{kg}}$

SSDL Georgia

Ballistic Downselection

- Initially pruned the design space by solving the phase-free multirevolution ballistic orbit transfer problem
- Enumerated all possible combinations:
 - {Earth asteroid}
 - {asteroid asteroid}
 - {asteroid Earth flyby asteroid}
- Populate 2-D matrix with the best point to point ΔV
 - Method assumed either no or one flyby for each leg of the flight
 - This method could easily be utilized with other assumptions
- All possible ordered combinations were ranked based on sum of phase-free ΔV costs
 - {Earth asteroid1 asteroid2 asteroid3 Earth}
 - With and without intermediate flybys
 - Best several hundred combinations were kept

- Remaining combinations were again evaluated using the ballistic, multi-revolution assumption
- Phasing was now taken into account for each combination
 - Possible dates for launch and arrival at each leg were enumerated using a course time grid
 - Single intermediate Earth flybys were also considered
 - Each solution was again ranked by ballistic ΔV cost
 - ΔV leveraging Earth flybys were prepended and appended to solutions with short flight times
 - Best several thousand solutions were carried forward

Low-Thrust Trajectory Optimization

- MALTO (Mission Analysis Low Thrust Optimization) used as low-thrust trajectory optimization tool
 - Developed at JPL and used by JPL team in 1st GTOC competition
 - Employs a direct method that discretizes the trajectory into a series of impulsive maneuvers
 - SNOPT used as the optimization engine
 - Fortran-based
 - Used to optimize minimum fuel problem
- Automated the creation and running of MALTO cases
 - Generated example cases through GUI to understand and replicate the input file format
 - Wrote several scripts to automatically generate input files and then run each case in MALTO
 - Used GT computer cluster to run thousands of low-thrust cases

Low-Thrust Trajectory Optimization

- Passed the following information from ballistic downselect as an initial guess into MALTO:
 - Asteroid sequence (with intermediate Earth flybys where applicable)
 - Departure and arrival dates at each body
 - Departure and arrival V-infinity vectors
- Arrival and departure dates set to ± 300 days
 - Allowed MALTO optimizer to vary the dates to locate the minimum fuel solution
 - Constraints set on minimum stay time at each asteroid and maximum total flight time
- Field was narrowed to best three cases

SSDL Georgia

Generating Final Solution

- Our version of MALTO was not able to represent the problem domain exactly
 - Flybys were not allowed for user defined bodies
 - Uncertain how to change without source code access
 - Sun's gravitational parameter
 - Earth orbital elements at epoch
- The problem domain could be closely represented by the stock body for Earth
- Wrote our own low-thrust code
 - Used MALTO results as initial guesses
 - Refined trajectory for problem domain
 - Refined trajectory to accuracy required by competition

SSDL

Georgia Tech

Final Solution

- Best sequence (id numbers): E-49-E-37-85-E-E
- Best sequence (names):
 - Earth
 - 2000 SG344
 - Earth
 - 2004 QA22
 - 2006 BZ147
 - Earth Earth
- Launch Date: 60996.10 (MJD)
- Launch $V_{\infty} = 0.5 \text{ km/s}$
- Total flight time = 9.998641 years
- Performance Index = 0.863792
- Total thrust duration: various levels of thrust $(0.00000015 \le T \le 0.15 \text{ N})$ for full duration

(spacecraft trajectory in blue)

Trajectory Breakdown

- E-49:
 - Phase-free ballistic pair E-49 was the lowest of all initial leg ΔVs , without using a flyby
 - Known issue regarding prepended flybys
- 49-E-37:
 - Phase-free ballistic combo 49-E-37 ranked 3rd (0.76 km/s) out of ~20,000 possible pairs
 - Best ballistic combo was 0.67 km/s
 - That it appeared in our higher fidelity cases spoke well of the approximation
- **37-85**:
 - Phase-free ballistic pair ranked 24th (1.32 km/s) out of ~20,000 without a flyby
 - Best ballistic pair was 0.803 km/s

Trajectory Breakdown

Dep. Body	Arr. Body	Dep. Date (MJD)	Arr. Date (MJD)	Stay Time (days)	Dep. Mass (kg)	Arr. Mass (kg)	Dep. V∞ (km/s)	Arr. V∞ (km/s)	Flyby Periapsis (km)
Earth	49	60996.10	61959.50	165.250	2000	1964.529	0.5	0	N/A
49	Earth	62124.75	62775.94	0	1964.529	1947.182	0	1.996108	10227.48
Earth	37	62775.94	62985.01	60.000	1947.182	1913.354	1.996510	0	N/A
37	85	63045.01	63603.64	132.155	1913.354	1825.984	0	0	N/A
85	Earth	63735.80	64139.13	0	1825.984	1760.557	0	1.300676	51163.16
Earth	Earth	64139.13	64648.10	0	1760.557	1721.014	1.300000	0	N/A

Trajectory Plots

Comments on Solution

- Confident that we had found one of the best possible asteroid sequences based on our domain-spanning pruning procedure
- Recognized that our solution could potentially be improved by adding Earth flybys at the beginning of the trajectory
 - Ran out of time while debugging convergence problem with prepended Earth flybys
 - This step was the difference between finishing third and competing for first place:

GaTech (3rd place): E-49-E-37-85-E-E

JPL (2nd place): E-E-49-E-37-85-E-E

CNES (1st place): E-E-E-49-E-37-85-E-E

Lessons Learned

- Selecting the appropriate approximations were vital
 - Trimming based on orbital elements was not used
 - Ballistic approximation was fast enough to use a straight forward grid search
- Automation
 - Greatly improves the number of cases that can be considered
 - Efforts towards automating tools are often greatly rewarded
- Tool selection vs. tool generation
 - Tools that do not meet your exact needs can still be used for further screening
 - Source code availability offers great flexibility but robust software takes time
 - Tighter refinement of the problem can lower this robustness requirement

Acknowledgements

- Our thanks to the other presenters and to the hosting team
- We also especially wish to thank our team advisor Ryan Russell