368 - Bengung und Interferenz

1.) Einleibung: Im ersten Teil des Versuchs 368 untersuchen wir die Beugung, aun

Einzelzealt in der Fraunhofer-Näherung, d.h. im Fernfeld. Dabei lernen

hir außerdem die verschiedenen Aspelde des Kohärenzbegriffs kennen.

Im zweiten Versuchsteil beobachten wir die Interferenzephänomene an einem

Transmissions gitter, das von einer Hy-Lampe beleuchtet wird. Ausch verschiedene

Hessungen solla die Gitterkonstante, das Austösungsvermögen und die Hellen
länge einer Spektrallinie bestimmt werden. V

A B B A Y X

Leglangementerschiled: $\Delta = \Delta_2 - \Delta_4 = \overline{BX} - \overline{BY} - A\overline{X} + \overline{AY}$ $\approx 2 d \sin \beta' \approx 2 d \beta' \approx \frac{2 d D}{2} \sqrt{2}$

- Ansdelnung der Lichtquelle entlang der optischen Achse:

368. B $\Lambda = CT$, $T = \frac{1}{2\pi \Delta V}$, Linienbreite N_a -D-Linie: $\Delta V = 10 \text{ MHz}$ \Rightarrow Lebens daner: $T = 1.59 \cdot 10^{-8} \text{ s}$ \Rightarrow Lange Wellenzug: $\Lambda = 4.77 \text{ m}$

3.) Theorie Voranssetzung für die Beobachtung von Bengung oder Interferenz ist koharentes Licht. Das heift, dass zwei miteinander interforierende Wellen dieselbe Frequenz und eine feste Phasenbeziehung Eveinander haben missen. Han unterscheidet räumliche und Zeitliche Kohärenz: Bedingung für die räumliche Kehärenz von Licht ist, dass die Ausdehmung der Libriquelle relativ Idein ist, da sonst Weglangen differenzan je nach Ort der Emission innerhalb der Libtquelle autsandiers, Wenn diese Weglangen ditterenson zu groß werden, so konnen sie zur teilescisen Auslöschung (destraktive Interferenz) der Grahlen noch vor dem Pengungsspalt führen. Hinter dem Spalt kann es passieren, dass durch eine zu breite Lichtquelle viele Beugungsbilder neheneinander entstehen und sich überlagem, sodass diese versulaviannen, bis solaliefila mar noch eine gleichmaftig angelendalete Flathe zu sehen ist: 8 Bei der zeitighen Koharenz berücksildigt man, dass Licht aus welen endlichen Wellenzingen besteht, deren Überlagerung einem Strahl bildet. And wenn alle Wellenzinge dieselbe Frequenz haben (vie annahernd bei einer konkreten Spelbrallivie einer Spelctrallampe), ist das Light milit automatisch koharent, da bei zeitlich unabhängigen Emissionsvorgangen der Photonen ihre Phasen beziehung strändig indirekt: ~ Minimum . — einzelne Wellenzüge unterschiedlicher Phase ~MM~W/MMM ~ Summe: Gesamtwelle Die Kohävenzlänge Le liegt in der Größenordnung der Wellenzuglänge 1. Im Versuch werden wir Bengung am Spall und Interferent am Gitter beabachten. Die Intensitätsverteilungen für beide Fälle im Fernfeld (Fraunhafer-Wäherung) Lauten:

F.				-	,					
_368d	,e	Δα	= 0,1 a	4						
	Ordinary in	1	2	3	4	5	6_	7	8	
griin {	Ableniung rechts ar Abienlung links al	44,5	39,0	33,5	28,1	22.6	17,0	11,5		
1	Abiculaing links at	55,4	60,9	66,4	74,9	77,4	82,9	88,5	and the same of th	
	Ablentung reitis ar Attentung tintes at	45,6	41,2	36,9	32,5	28,1	23,7	19,3	14.9	
	Alderlang times at	54,3	58,7	63,1	67,5	71,8	76,2	806	85.1	
	v									
368. f		· · · · · · · · · · · · · · · · · · ·				the state of the s				
	2. Ordnung:	b=	(39 ± /	1) con	9:	= (9,51	1) un		B= (4)	t 1) prom
	4. Ording:								B= /2=	
_0	5. Ordania ;			1) cm	1/	165			B = 1 ±	
	wed 7. waren w				UF.				,	
	1	4 44	<i>((((((((((</i>		<i>y</i>				·	
	770 TTT-TTT	•							70 W To The Table of the Language of the Control of	
Maria area de Saren de descuelado de decuelado de d			-	ridir 6 - MMS termine venera						
5.) Durt	Silvery and Associat	lling	The A Andrews (A A and a series are a second							

Teinbriels ware diese Messung theoretisch auf 0,01 mm genan möglich, da unsere Abbildung des Bengungsmusters jedoch leicht unscharf war, wählen wir einen Messfehler von 0,05 mm.

Aus der Intensitätsverteilung I(a) folgt als Bedingung für Minima Dsince = m x (368.C)

Tür kleine Winkel au bedeutet das dass auch die Positionen xm der Bengungsminima in der Beobachtungsebene linear von der Ordnung m abhängen und somit aquidistant sind.

Da das 0. Maximum auf der Skala bei etwa xo = 26,8 mm lag, erwarten wir also bei der Auftragung von x gegen m eine Gerade mit /y- Adasen abschanit xo.

Noo steht das in der Nexswarten?

Dieser Graph entspricht ziemlich genau unseren Erwartungen: Man erkennt eindeutig dem linearen Ensammenhang und der y-Adnsenabschwilt von x. = (26,87 ± 0,03) mm stimmt ebenfalls mit dem am Versuchsantbau abgelesenen Wort von 26,8 mm überein. gut Mithille der Steigung a = (0,48 ± 0,01) mm können wir nun die Wellenlänge & der Na-Law bestimmen. Aus unserer Skizze in 368. a lesen wir ab: tana = xm-xo-x sin run

Hit des Belingung für Beugungsminima gilt man: $\lambda = \frac{D \sin \alpha_m}{m} = \frac{D(x_m - x_0)}{m} = \frac{D}{m} \cdot \alpha$ Die Breite D= (0,1 ± 0,001) min war am Bengungsgealt angegeben, die Brenowsite $f = (16 \pm 1)$ cm an der Linse. Danit state il: $\lambda = (301 \pm 10)$ nm mic Gaußeiner Feller fortplanzung berechnest Dieses Ergebnis ist nicht plausivel, da Licht dieser Wellenlange im ultravioletten Bereich liegt und von uns trenschen nicht mehr gesehen werden kann. Lant der in der Praktikumsanleitung abgedruchten Tabelle zu den Spelstren der Spelstrallampen (Versuch 366) missté die gelbe Natrium-D-Linie bei 1 = 589 mm liegen, also oder die Hälfe/das Doppelle...
fast 300 mm culternt ion unserem Wert. Waran diese große Abweidnung zustande kovent, ist mir unklar. Vermutiich war der Antban nicht pertekt jusiert. Beispielsweise war i'm Abstand som Bengangsspalt zum Objektiv des Fernovius relativ groß. Ein anderer riglisher Grund konnte sein, dass die Kleinwinkelinaherung tand x sinix en milht genau genung war. Dan Einfluss beider besagster Fehrerqueilen wurdt ich jedoch eher

Deine Steigung ist um Fahtor 2 zu hlein. Ich habe dammals die Abstände der

Arring einschnissen. Ninima zu jeweils co. Amm gemessen und behomme des richtige Ergebnis.

Habt ihr filsch abgelesen ? Odw ist die Forme filst?

Lo hället ihr bemerken kannen sollen Variert man die Breite des Bolenchrungsspalles d. so stellt man fest, dass die Bengungsstreiten für Weines d scharfer und schmaler erscheinen. Allerdings werden sie auch dunkler, da weniger Libst durch den Spatt fällt. Für große Spattbreiten verstasiment das Bengingsmuster immer weiter, bis die rammlidae Konarenzbedingung nicht mehr erfüllt ist, man die Ausdehnung der Lichtqueile (Peleubtungspalt) also nicht mehr vernaultassigen hann. Die genane Spattbreite de bei der dies der in ist war schwierig en ermitteln, da der Ubergang hichend ist und speciel die beiden ersten Tinima noch velativ lange erhennbar waren, während das Master in höherer Ordinary Show beinghe collection westimiest war. Die Breite d. 183 Belowitingsspalls, bi der die Streiten verschwinden, massen wir folgendernaßen: Wir nehmen den Spatt ion der optischen Bank stellen ihn auf den Boden und beleuchten ihn mit der Tischlauspe. Hit einer Linse der Brenneite f = wan bilden wir den Spatt strat unt die hand ab. Bei lesten

	Abstand zwischen Spalt und Wand gibt es dabei zwei Linsenpositionen, in denen
	eine Scharte Abbildung entsteht. Wir wählen die jenige Position, bei der die Linse
	näher am Spalt steht, da dann das Bild B größer als der Gegenstand G ist
	(Abbildingsmaßstab $y = \frac{13}{6} = \frac{b}{g} > 1$). Dirch Messung ion Bild- und Gegenstandsweit
	50wie der Bildgröße B mit einem Lineal kinnen wir über
	$d_{i} = G = B \cdot \frac{9}{6}$
	die gesuchte Spall-breite do bestimmen.
	Mit g = (19 = 2) an, b = (19 = 2) an und B = (2 = 1) mm ergibit sich:
	$d_0 = (2 \pm 1) mm$
	Dummerweise inden wir den Spalt ungefahr im Abstand der viertachen Brennweit
	vor der Wand platziert, was mir erst im Nachhinein auftiel. In diesem Spezielfall
	gibt es namlish nur ein mögliche Linsenposition für eine scharte Abbildung, und zwar
	wenn b=g=2f. Der Abbildungsmaßstab ist hierbei offensichtlich 1 sodass das Bild
	des Spaltes genanso groß ist wie er selbst und der gewinschte Vergrößerungsettelet
	ausblieb. ou
*	Wir wellen noch die Beziehung do. $\beta = \lambda$ überprüfen. Dabei ist β die Halfte des
	Winkels, unter dem der Bengungsspalt von einem beliebigen Pankt im Beleuchtungsspalt
	erscheint. Der Abstand L Ewischen den Spalten entspricht etwa der Brennweik der
	Kollimatorlinse, da side der Belenchtungsspalt genan im Brempunkt des Kollimators Wind
	Mit der Breite D des Beleuchtungsspaltes gilt: $\beta \approx \frac{D}{2L} = \frac{(0.1 \pm 0.001) \text{mm}}{2 \left(160 \pm 10\right) \text{mm}} = \left(50 \pm 5\right) \cdot 10^{-5}$
	$\Rightarrow d_0 \cdot \beta = (1000 \pm 500)$ nm also Vehärenz nicht erfillt
	Die tatsächliche Wellenlänge von 589 nm liegt also noch im Tehlerbereit, der
	aber wegen der beschriebenen Ungenanigheiten sehr groß ist. oh
-	v - v
	49

Tür die Experimente aun optischen Gitter banen wir folgenden Aufban aut: Hg-Lampe & Sport | Odm Durch den Spatt in der 17:4e der Steala dringt kohārentes Light einer Hy-Lampe, das auf das Gitter trittet und dort gebeugt wird. Durch ein Fernrohr können smoll die Stala, als auch die Interferenzmaxima schart betrachtet werden, wenn das Gitter in das Minimum der Ablenleung gedreht wird. Da das Gilter genan im Mittel punkt der kreistörmig Jebogenen Skala liegt, entspricht die auf der Skala abgelesene Entferning in Metern genan dem Winkel der Ablendung im Bogenmaß. Weil aber der Spatt nicht exact in der Mitte der Skala (auf der 50°) liegt: messen wir für jede Bengungsordnung den Winkel auf beiden Seiten, bilden die Differenz und halbieren diese, um den genanen Ablenkivinkel Pen zu erhalten. Zunächst nehmen wir die Hesswerte für die grüne Linie im Hy- Spelchrum (1=546 07 mm) auf. Während dies für die ersten Ordnungen problemlos machbar ist, müssen wir bei höheren Ordnungen schon besser darant auten, auch tatsädnich die richtige Linie auszumessen, da ihre Intensität abnimmt und sich hier Linien verschiedener Ordnungen überlagern. Die wir im Theorie-Teil gesehen haben, gilt bei der Interferenz am Contrer fir die Hauptmaxima: sin of = m. Das Hiniman der Ablenting wird erreitit, Wenn das Gitter um am = Pin gedreht wird. Somit gilt $\sin\frac{p_n}{2} = \frac{m\lambda}{2g} \iff g = \frac{m\lambda}{2\sin\frac{p_n}{2}}$ und Wir leinnen mit der Vermessung von Pm die Gitterkonstante bestimmen Die folgende Tabelle zeigt unsere Werte für fin und die Gitterkonstanten die sich

Aa	araus ergeben:
	φ/rad Δφ/rad g/μm Δg/μm 0.0545 0.0007 10.02 0.13
	0.1095 0.0007 9.98 0.06
	0.1645 0.0007 9.97 0.04
	0.2190 0.0007 9.99 0.03
	0.2740 0.0007 10.00 0.03 0.3295 0.0007 9.99 0.02
	0.3850 0.0007 9.99 0.02
ė	
AL	5 Mittelwert berechnen wir: $g = (3.93 \pm 0.05) \mu m$
\mathcal{D}	ieser West ist durchans realistisch: Bengungsgitter mit Gitterkonstanten von Mum gen im Bereich des kechnisch Machbaren und sind typisch für Gitterspektrometer. V
1:-	as is Warish do ledied land land and find hail to Cilleral how also I
ue	gen in Dereich als tellinish placesarch and sind typish the Differspectionett.
	Jan im Bereich des technisch Machbaren und sind typisch für Gitterspektrometer. V immefor (do misst die Winhel der Maxima) Nun vermessen wir die blane Linie, dessen Willenlange wir bestimmen wollen Es gilt: \[2g \sin \frac{\
268 0	No remesser in die blane lies dasser billentaigne wir bestimmen waller Fo mit:
,500.6	To si I'm
) = 129 Sin = 1
	φ/rad Δφ/rad λ/nm Δλ/nm
	0.0435 0.0007 434.6 7.4
	0.0875 0.0007 437.0 4.1 0.1310 0.0007 436.0 3.1
	0.1750 0.0007 436.6 2.7
	0.2185 0.0007 435.7 2.5
	0.2625 0.0007 435.9 2.4
	0.3065 0.0007 435.8 2.3 0.3510 0.0007 436.1 2.3
	0.3310 0.0007 430.1 2.3
Λ	1. 10:11.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
	15 Mittelwert berechnen wir: $\lambda = (435, 9 \pm 3, 4)$ nm
Au	ns dem letzten Versuch 366 wissen wir, dass die blaue Hg-Linie eine Wellentränge in
λ	= 435, 83 nm hat. Unser Ergebnis passt also herverragend zum Literaturwert starte
	DAME - A de Par Man la de A a la des a constant
368. † J	Das Autosungsvermogen A als Dengungsgittes hangt nur von aur Ausani all ausgelluch:
4	eten Spalte N und der betrachteten Ordnung in ab:
	· · · · · · · · · · · · · · · · · · ·
1	
	inese personal water and trasper are process in the sections that the section of
	Um es autzulösen ist ein Anthosungsvermögen von mindestens
368. f J	Das Antlösungsvermögen A des Brugungszittes hängt nur von der Anzahl der ausgelend Leten Spalte N und der betrachteten Ordnung m ab: A = = = mN Diese Beziehung wollen wir am Beissiel des gelben Dubletts im Hg-Speletrum veritizieren Um es aufzulösen, ist ein Antlösungsvermögen von mindestens

.

A = 578,00 mm = 275,24

nötig. Ohne Modifizierung im Versuch saufban konnten wir die beiden gelben Linien in allen Bengungsordnungen getrennt sehen. Nun stellen wir unmittelbar vor das Gitter einen weiteren Spalt, mit dem wir die Anzahl N der ausgelenchteten Gittersbriche ver-kleinern. Das madnen wir für verschiedene Ordnungen m solange; bis die beiden Linien miteinander verschmelten. Die Spaltbreite d, bei der dies der Fall ist, bestimmen wir wieder mit der in Antgabe 368 c beschriebenen Methods.

Für die Spaltbreite da, bei der die Linien in zweiter Ordnang nicht mehr gebrenat werden können, finden wir:

d2 = (0,97 ± 0,27) mm

Fix die vierte und fünfte Ondung gehen wir analog wr:

d4 = (0,8 ± 0,4) mm

ds = (0,5 ± 0,5) mm

Insgesamt sind die Fehler für die Spaltbreiten recht hoch. Das liegt daram, dass es sehr sehwierig war genam en sagen, wann der Spalt schart auf der hand aligebildet wurde. Kleine Anderungen der Linsenposition anderten am Bild des Spaltes fast nichts, weshalb wir einen großengigen Tehler von dem auf Bild- und Gegenslandsweite gewählt haben. Für eine genauere Bestimmung der Spaltbreite ware es wehl sinn voller gewesen, mehrere

Abstandsmessingen durch zu führen und sillieflich den Mittelwert zu bilden.

Für die Anzald N der ausgeleichteten Striche gilt nun:

N= d

Danit finden wir:

 $A_1 = 200 \pm 50$, $A_2 = 300 \pm 150$, $A_5 = 230 \pm 230$

Unsere Weste liegen also in der richtigen Größenordnung, weisen aber aus den bereits genannten Gwünden einem großen Fehler auf, in Ordnung

Das Anthosungsvermögen in der sieleten Ordnung (wie in der Praktikumsanleitung gefordert)

komite nicht mehr bestimmt werden, denn bevor die beiden gelben Linien miteinander

verschmelzen konnten, waren sie trote maximal geöffnetem Belenchtungsspalt an der Skala

silven zu dankel, um sie noch erkennen zu können. Dasselle galt für die sechste

Ordnung, weshalb wir stattdessen das Auslösungsvermögen in der fühlten Ordnung unter- sucht haben.
368.9 Der Vorschlag, zwischen Lichtquelle und Spalt einen Kollinator zu platzieren, um die Rest- divergenz zu reduzieren, konnte nicht umgesetzt werden, da zwischen der Itz-Lampe und dem Spalt kein Platz für diese Konstruktion war. Was ist mit zwischen Tomobr Giller und
6.) Fazit Der Versuch 368 hat uns die Bengung am Spalt und am Giter spridation in Angen gehährt. Im ersten Versuchsteil haben wir die Bengung am Spalt vermessen und darams die Wellentänge der als Litatguelle benateten Natrium-Dampflampe bereihm Dass dabei mit 1 = 300 nm nur die Itätste der tatsächlichen Wellentänge heranskann, ich glowe nicht muss welch an der schlerhaften Justierung unseres Versuchsantbans gelegen haben. Im zweiten Versuchsteil aus Giüer kounten wir hingegen hossere Ergebnisse erzielen Die, Gilterkonstante des verwendeten Transmissionsgiltes wurde zu etwa 10 fum bestim Bei der Vermessung der blanen Quecksilber-Linic trasen wir mit 1 =\$135,923,41 nm fast exakt den Literaturwert. Nur die Bestimmung des Antlösungsvermögens war wied von Ungenanigkeiten geprägt, die eventuell durch mehrere Messreihen hätten verkleine werden können. Sehr schönes Protoholl, beim Einzelspalt habt ihr aber irgennen einen Fahler 20 bei der Bestimmung der Wellen länge verloren, des häbe euch austalen sollen.
Bestanden M.03.22