

## planetmath.org

Math for the people, by the people.

## elementary matrix operations as rank preserving operations

 ${\bf Canonical\ name} \quad {\bf Elementary Matrix Operations As Rank Preserving Operations}$ 

Date of creation 2013-03-22 19:22:57 Last modified on 2013-03-22 19:22:57

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 18

Author CWoo (3771)
Entry type Definition
Classification msc 15-01
Classification msc 15A33
Classification msc 15A03

Let M be a matrix over a division ring D. An elementary operation on M is any one of the eight operations below:

- 1. exchanging two rows
- 2. exchanging two columns
- 3. adding one row to another
- 4. adding one column to another
- 5. right multiplying a non-zero scalar to a row
- 6. left multiplying a non-zero scalar to a row
- 7. right multiplying a non-zero scalar to a column
- 8. left multiplying a non-zero scalar to a column

We want to determine the effects of these operations on the various ranks of M. To facilitate this discussion, let  $M=(a_{ij})$  be an  $n\times m$  matrix and  $M'=(b_{ij})$  be the matrix after an application of one of the operations above to M. In addition, let  $v_i=(a_{i1},\cdots,v_{im})$  be the i-th row of M, and  $w_i=(b_{i1},\cdots,b_{im})$  be the i-th row of M'. In other words,

$$M = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix} \xrightarrow{\text{elementary operation}} \begin{pmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nm} \end{pmatrix} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = M'$$

Finally, let d be the left row rank of M.

**Proposition 1.** Row and column exchanges preserve all ranks of M.

*Proof.* Clearly, exchanging two rows of M do not change the subspace generated by the rows of M, and therefore d is preserved.

As exchanging rows do not affect d, let us assume that rows have been exchanged so that the first d rows of M are left linearly independent.

Now, let M' be obtained from M by exchanging columns i and j. So  $w_1, \ldots, w_n$  are vectors obtained respectively from  $v_1, \ldots, v_n$  by exchanging the i-th and j-th coordinates. Suppose  $r_1w_1 + \cdots + r_dw_d = 0$ . Then we get an equation  $r_1b_{1k} + \cdots + r_db_{dk} = 0$  for  $1 \le k \le m$ . Rearranging these equations, we see that  $r_1v_1 + \cdots + r_dv_d = 0$ , which implies  $r_1 = \cdots = r_d = 0$ , showing that  $w_1, \ldots, w_d$  are left linearly independent. This means that d is preserved by column exchanges.

Preservation of other ranks of M are similarly proved.

**Proposition 2.** Additions of rows and columns preserve all ranks of M.

*Proof.* Let M' be the matrix obtained from M by replacing row i by vector  $v_i + v_j$ , and let V' be the left vector space spanned by the rows of M'. Since  $v_i + v_j \in V$ , we have  $V' \subseteq V$ . On other hand,  $v_i = (v_i + v_j) - v_j \in V'$ , so  $V \subseteq V'$ , and hence V = V'.

Next, let  $w_1, \ldots, w_n$  be vectors obtained respectively from  $v_1, \ldots, v_n$  such that the *i*-th coordinate of  $w_k$  is the sum of the *i*-th coordinate of  $v_k$  and the *j*-th coordinate of  $v_k$ , with all other coordinates remain the same. Again, by renumbering if necessary, let  $v_1, \ldots, v_d$  be left linearly independent. Suppose  $r_1w_1 + \cdots + r_iw_i + \cdots + r_dw_d = 0$ . A similar argument like in the previous proposition shows that  $r_1v_1 + \cdots + (r_i + r_j)v_j + r_dv_d = 0$ , which implies  $r_1 = \cdots = r_i + r_j = \cdots r_d = 0$ . Since  $r_i = 0$ ,  $r_j = 0$  too. This shows that  $w_1, \ldots, w_d$  are left linearly independent, which means that d is preserved by additions of columns.

Preservation of other ranks of M are proved similarly.  $\square$ 

**Proposition 3.** Left (right) non-zero row scalar multiplication preserves left (right) row rank of M; left (right) non-zero column scalar multiplications preserves left (right) column rank of M.

Proof. Let  $w_1, \ldots, w_n$  be vectors obtained respectively from  $v_1, \ldots, v_n$  such that the *i*-th vector  $w_i = rv_i$ , where  $0 \neq r \in D$ , and all other  $w_j$ 's are the same as the  $v_j$ 's. Assume that the first d rows of M are left linearly independent, and that  $i \leq d$ . Suppose  $r_1w_1 + \cdots + r_dw_d = 0$ . Then  $r_1v_1 + \cdots + r_i(rv_i) + \cdots + r_dv_d = 0$ , which implies  $r_1 = \cdots = r_i r = \cdots = r_d = 0$ . Since  $r \neq 0$ ,  $r_i = 0$ , and therefore  $w_1, \ldots, w_d$  are left linearly independent.

The others are proved similarly.  $\Box$ 

**Proposition 4.** Left (right) non-zero row scalar multiplication preserves right (left) column rank of M; left (right) non-zero column scalar multiplication preserves right (left) row rank of M.

*Proof.* Let us prove that right multiplying a column by a non-zero scalar r preserves the left row rank d of M. The others follow similarly.

Let  $w_1, \ldots, w_n$  be vectors obtained respectively from  $v_1, \ldots, v_n$  such that the *i*-th coordinate  $b_{ik}$  of  $w_k$  is  $a_{ik}r$ , where  $a_{ik}$  is the *i*-th coordinate of  $v_k$ . Suppose once again that the first d rows of M are left linearly independent, and suppose  $r_1w_1 + \cdots + r_dw_d = 0$ . Then for each coordinate j we get an equation  $r_1b_{1j} + \cdots + r_db_{dj} = 0$ . In particular, for the *i*-th coordinate, we

have  $r_1a_{1j}r + \cdots + r_da_{dj}r = 0$ . Since  $r \neq 0$ , right multiplying the equation by  $r^{-1}$  gives us  $r_1a_{1j} + \cdots + r_da_{dj} = 0$ . Re-collecting all the equations, we get  $r_1v_1 + \cdots + r_dw_d = 0$ , which implies that  $r_1 = \cdots = r_d = 0$ , or that  $w_1, \ldots, w_d$  are left linearly independent.