

Группа Р3110	Дата и время измерений <u>27.12.2020 16:05</u>
Студент Лебедев Вадим Антонович	Работа выполнена
Преподаватель Коробков Максим Петрович	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.07V

Маятник Максвелла

- 1. Цель работы.
 - 1) Изучение динамики плоского движения твердого тела на примере маятника Максвелла.
 - 2) Проверка выполнения закона сохранения энергии маятника с учетом потерь на отражение и трение.
 - 3) Определение центрального осевого момента инерции маятника Максвелла.
- 2. Задачи, решаемые при выполнении работы.
 - 1) Измерение, с помощью виртуальной установки, интервалов времени необходимые для прохождения различных промежутков расстояния.
 - 2) Нахождение величины $\frac{1}{2}g\langle t\rangle^2$, построение графика зависимости $\frac{1}{2}g\langle t\rangle^2$ от Δh и нахождение коэффициента данной зависимости (α).
 - 3) Нахождение центрального момента инерции и сравнение полученного значения с теоретическим.
 - 4)Найти кинетическую и полную энергию в моменты трех прохождений одной из заранее установленных точек и построить графики зависимости кинетической и полной энергии от высоты положения маятника относительно стола для трех моментов времени.
- 3. Объект исслелования.

Маятник Максвелла.

4. Метод экспериментального исследования.

Многократные прямые измерения, построение графиков зависимостей и сравнение полученных величин с теоретическими значениями. .

5. Рабочие формулы и исходные данные.

$$I_{c} = mr^{2} \left(\frac{g}{a} - 1\right); \ h = \frac{at^{2}}{2}; \ \vartheta = \frac{2h}{t}; E_{\text{\tiny KUH}} = \frac{1}{2}m \left(\frac{I_{c}}{mr^{2}}\right) \cdot \vartheta^{2}; E_{\text{\tiny ПОТ}} = mgH; \ E_{\text{\tiny KUH}} = E_{\text{\tiny KUH}} + E_{\text{\tiny ПОТ}}$$

6. Измерительные приборы.

	o. Hamephrenbusic inprocepts.							
№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора				
1	Цифровой счетчик	Измерительный прибор	0 – 10000мс	0,1мс				
2	Линейка	Mepa	0-100см	0,5 мм				

7. Схема установки (перечень схем, которые составляют Приложение 1).

- 1. Цифровой счетчик.
- 2. Колесо.
- 3. Рамка с фотоэлементами.
- 4. Вертикальная линейка.
- 5. Пусковой механизм.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица №1(измерения представлены в миллисекундах, кроме последней строки)

h ₀	h _i						
10	20	30	40	50	60	70	80
t ₁	2611,2	3716,3	4559,6	5271,1	5896,5	6452,3	6978,3
t ₂	2613,1	3712,6	4562,5	5265,6	5897,3	6454,2	6980,5
t ₃	2612,9	3713,2	4558,3	5268,4	5889,5	6459,3	6979,1
t ₄	2611,9	3716,1	4562,7	5266,8	5892,1	6453,2	6981,9
t ₅	2614,7	3716,1	4560,9	5271,6	5896,5	6459,2	6975,8
Δh_i	10	20	30	40	50	60	70
t _{cp}	2612,76	3714,86	4560,8	5268,7	5894,38	6455,64	6979,12
$\frac{1}{2}g\langle t\rangle^2$	33,51817	67,75891	102,1324	136,2977	170,5916	204,6257	239,1568

$$t_{cp} = \frac{1}{N} \sum_{i=1}^{N} t_i; \ \Delta h_i = h_i - h_0$$
$$\frac{1}{2} g(t)^2 = \frac{9.82 \times \left(\frac{2612.76}{1000}\right)^2}{2} = 33.51817$$

Таблица №2(измерения представлены в миллисекундах, кроме строк ϑ_i)

h ₀ (см)	h _i						
10	20	30	40	50	60	70	80
t ₁	53,4	37,5	30,7	26,2	23,9	21,6	19,8
t ₂	80,9	44	33,8	28,4	25,1	22,5	20,7
t ₃	81,9	44,2	34	28,7	25,3	22,9	20,6
ϑ_1	0,074906367	0,106667	0,130293	0,152627	0,167364	0,185185	0,202020
ϑ_2	0,049443758	0,090909	0,118343	0,140845	0,159363	0,177778	0,193237
ϑ_3	0,048840049	0,090498	0,117647	0,139373	0,158103	0,176672	0,194175

$$\vartheta_i = \frac{2r}{t_i} = \frac{2*0,002}{53,4*0,001} = 0,0749$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов)

$$\alpha = \frac{\sum_{i=1}^{N} Y_i X_i}{\sum_{i=1}^{N} X_i^2} = \frac{\sum_{i=1}^{7} \frac{1}{2} g(t)_i^2 \Delta h_i}{\sum_{i=1}^{7} \Delta h_i^2}$$

$$= \frac{(33,51*10*0,01) + (67,75*20*0,01) + (102,13*30*0,01) + (136,29*40*0,01) + (10^2*0,01^2) + (20^2*0,01^2) + (30^2*0,01^2) + (40^2*0,01^2)}{(10^2*0,01) + (204,62*60*0,01) + (239,15*70*0,01)} = 341,1$$

$$I_c = (\alpha - 1)mr^2 = 0,0006$$

 $I_{\text{reop}} = mR^2 = 0,002$

Таблица №3

H _i	0,9	0,8	0,7	0,6	0,5	0,4	0,3
Екин,1	0,449783979	0,912061	1,360848	1,86846	2,245384	2,749027	3,271569
Екин,1	0,195969937	0,662493	1,122673	1,590193	2,035818	2,533503	2,993269
Екин,1	0,191213563	0,656511	1,109503	1,557122	2,003759	2,44577	3,022401
Епот	4,15386	3,69232	3,23078	2,76924	2,3077	1,84616	1,38462
Еполн,1	4,603643979	4,604381	4,591628	4,6377	4,553084	4,595187	4,656189
Еполн,2	4,349829937	4,354813	4,353453	4,359433	4,343518	4,379663	4,377889
Еполн,3	4,34507356	4,348831	4,340283	4,326362	4,311459	4,29193	4,407021

$$E_{\text{КИН}} = \frac{1}{2}m\left(\frac{I_c}{mr^2} + 1\right) \cdot \vartheta_i^{\ 2} = \frac{1}{2} * 0.47 * \left(\frac{0.001}{0.47 * (0.002)^2} + 1\right) * 0.0749^2 = 0.449783$$

$$E_{\text{ПОТ}} = mgH = 0.47 * 9.82 * 0.9 = 4.15386$$

$$E_{\text{ПОЛН,}i} = E_{\text{КИН}} + E_{\text{ПОТ}} = 4.15386 + 0.449783979$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений)

$$\sigma_{\alpha} = \sqrt{\frac{\sum_{i=1}^{N} (Y_{i} - \alpha X_{i})^{2}}{(N-1)\sum_{i=1}^{N} X_{i}^{2}}} = \sqrt{\frac{\sum_{i=1}^{7} \left(\frac{1}{2} g \langle t \rangle_{i}^{2} - \alpha \Delta h_{i}\right)^{2}}{(7-1)\sum_{i=1}^{7} \Delta h_{i}^{2}}}$$

$$= \sqrt{\frac{0,35052954 + 0,21305 + 0,03933 + 0,02054 + 0,00163 + 0,00128 + 0,14834}{6 * (0,01 + 0,04 + 0,09 + 0,16 + 0,25 + 0,36 + 0,49)}}$$

$$= 0,303689;$$

$$\Delta_{\alpha} = 2\sigma_{\alpha} = 0,606; \ \delta_{\alpha} = \frac{\Delta_{\alpha}}{\alpha} = \frac{0,606}{341,1} \cdot 100\% = 0,17\%$$

$$\frac{\Delta_{I_c}}{I_c} = \sqrt{\left(\frac{\Delta_{\alpha}}{\alpha}\right)^2 + \left(\frac{\Delta_m}{m}\right)^2 + \left(2 \cdot \frac{\Delta_r}{r}\right)^2} = 0,102$$

$$\Delta_{I_c} = \frac{\Delta_{I_c}}{I_c} \cdot I_c = 0,0000612; \ \delta_{I_c} = \frac{\Delta_{I_c}}{I_c} \cdot 100\% = 10,2\%$$

11. Графики (перечень графиков, которые составляют Приложение 2)

- 12. Окончательные результаты.
- 1) $I_c = 0.00100 \pm 0.0000612 \text{kg} \cdot \text{m}^2$; $\delta_{I_c} = 10.2\%$;
- 2) $\frac{I_c}{I_{\text{reop}}} = 0.3;$
- 3) Графики зависимостей $E_{\text{кин}}(\mathbf{H})$ и $\mathbf{E}_{\text{полн}}(\mathbf{H})$ для t_1, t_2 и $t_3.$
- 13. Выводы и анализ результатов работы.
 - 1) В результате эксперимента мы получили значение момента инерции маятника, которое отличается от рассчитанного значения в 0,3 раз, из-за того, что в полученном значении предполагается, что вся масса маховика сосредоточена на его внешней поверхности.
 - 2) Не смотря на значения H графики кинетической и полной энергии при t_2 и t_3 практически не отличаются (в пределах погрешности). График при t_1 находится выше графиков t_2 и t_3 на определенное постоянное значение, которое не зависит от H.