Teoria da Computação

2022/1 - Trabalho da Disciplina

Enunciado

Implemente, em C ou C++, um simulador de autômatos não determinísticos com transições ε (ε -NFAs). Seu programa deve ler do usuário a descrição de um ε -NFA seguida de uma sequência de palavras, e determinar, para cada palavra, se ela pertence ou não à linguagem que o ε -NFA reconhece. Em caso positivo, seu programa também deve imprimir a sequência de estados pelos quais a máquina deve passar para aceitar a palavra.

Especificação da entrada e saída

A primeira linha da entrada contém um inteiro A indicando o tamanho do alfabeto Σ , seguido de uma string de A caracteres indicando, cada um, uma letra de Σ .

A segunda linha contém um inteiro Q indicando o número de estados. Considere que os estados são numerados de 0 a Q-1, e que o estado inicial é sempre o estado 0.

A próxima linha contém um inteiro F indicando o número de estados finais, seguido de F inteiros indicando os estados finais em si.

As próximas linhas descrevem a função de transição δ . Cada linha é dada no formato X str Y, onde X e Y são estados e str é uma string. Cada letra l da string str indica uma transição do estado X para o estado Y com a letra l (isto é, $Y \in \delta(X, l)$). Transições vazias (ε) são representadas na string pela letra &. A descrição da função de transição termina com a linha -1 * -1.

Por fim, a entrada contém uma sequência de palavras, uma por linha. Para cada palavra w dada na entrada, seu programa deve imprimir uma linha contendo w: nao se o ε -NFA rejeita w, ou w: sim se o ε -NFA aceita w. Em caso positivo, seu programa também deve imprimir, na ordem em que os estados são visitados pelo autômato, linhas no formato $X \to Y$, indicando que a máquina, no estado X processando a letra I, muda para o estado Y.

Imprima uma linha em branco após cada palavra. O final da entrada é indicado por uma linha contendo apenas *.

Como exemplo, considere $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$. O seguinte autômato de exemplo (que reconhece números pares) é descrito pelo exemplo de entrada abaixo:

Exemplo de entrada	Exemplo de saída
10 0123456789	42: sim
2	0 -> 4 -> 0
1 0	0 -> 2 -> 0
0 02468 0	
0 13579 1	3685: nao
1 13579 1	
1 02468 0	194: sim
-1 * -1	0 -> 1 -> 1
42	1 -> 9 -> 1
3685	1 -> 4 -> 0
194	
0	0: sim
33	0 -> 0 -> 0
*	
	33: nao

Como outro exemplo, considere $\Sigma = \{+, -, 0, 1, ..., 9, a, b, ..., z\}$. O seguinte autômato de exemplo (referente à solução do exercício 10(c) da lista 1) é descrito pelo exemplo de entrada abaixo:

Exemplo de entrada

```
38 + -0123456789qwertyuioplkjhgfdsazxcvbnm
7
1 6
0 & 1
1 +-& 2
2 0123456789 3
3 0123456789 3
3 & 6
0 & 4
4 abcdefghijklmnopqrstuvwxyz 5
5 abcdefghijklmnopqrstuvwxyz0123456789 5
5 & 6
-1 * -1
42
-328
+9
0
+0
-0
--256
2-83+1
i
evair
x1y2
42
1x2y
```

Exemplo de saída

42: sim	
0 -> & -> 1	256: nao
1 -> & -> 2	
2 -> 4 -> 3	+: nao
3 -> 2 -> 3	
3 -> & -> 6	2-83+1: nao
-328: sim	i: sim
0 -> & -> 1	0 -> & -> 4
1 ->> 2	4 -> i -> 5
2 -> 3 -> 3	5 -> & -> 6
3 -> 2 -> 3	
3 -> 8 -> 3	evair: sim
3 -> & -> 6	0 -> & -> 4
	4 -> e -> 5
+9: sim	5 -> v -> 5
0 -> & -> 1	5 -> a -> 5
1 -> + -> 2	5 -> i -> 5
2 -> 9 -> 3	5 -> r -> 5
3 -> & -> 6	5 -> & -> 6
0: sim	x1y2: sim
0 -> & -> 1	0 -> & -> 4
1 -> & -> 2	4 -> x -> 5
2 -> 0 -> 3	5 -> 1 -> 5
3 -> & -> 6	5 -> y -> 5
	5 -> 2 -> 5
+0: sim	5 -> & -> 6
0 -> & -> 1	
1 -> + -> 2	42: sim
2 -> 0 -> 3	0 -> & -> 1
3 -> & -> 6	1 -> & -> 2
	2 -> 4 -> 3
-0: sim	3 -> 2 -> 3
0 -> & -> 1	3 -> & -> 6
1 ->> 2	
2 -> 0 -> 3	1x2y: nao
3 -> & -> 6	

O seu programa será testado com outras entradas além das dadas como exemplo. Você pode assumir que o ε -NFA terá no máximo 100 estados, que o alfabeto terá no máximo 100 letras, e que a entrada será sempre válida (em particular, que todas as strings dadas na entrada são formadas apenas por letras do alfabeto dado, e que & e * nunca estarão no alfabeto dado).

Orientações

- O trabalho pode ser feito por equipes de até 2 (dois) estudantes;
- Submeta, via *Moodle*, um pacote (zip ou tar.gz) contendo todos os arquivos necessários para compilar e executar seu programa, além de um arquivo de texto (txt) onde conste:
 - O nome de todos os integrantes da equipe;
 - Toda informação que a equipe julgar relevante para a correção (como bugs conhecidos, detalhes de implementação, escolhas de projeto, etc.)
- Comente adequadamente seus códigos para facilitar a correção.
- Atenção: a correção será parcialmente automatizada, e a saída do programa será testada com outras entradas além das fornecidas como exemplo. Siga fielmente o formato de saída dado nos exemplos, sob pena de grande redução da nota;
- Certifique-se que seu programa compila e funciona antes de submetê-lo;
- O trabalho deve ser entregue até 8 de Maio de 2022, 23:59, apenas via Moodle. Trabalhos entregues
 por outros meios ou fora do prazo não serão aceitos. É suficiente que o trabalho seja submetido por
 apenas um estudante da equipe;
- Trabalhos detectados como cópia, plágio ou comprados receberão **todos** a nota 0 (**ZERO**) e estarão sujeitos a abertura de Processo Administrativo Disciplinar Discente.