不同论文上Frank-Wolfe算法所得结果的小结

2020.9.6

表 1: 不同假设下、Frank-Wolfe算法收敛速度的比较

参考文献	可行域的条件	目标函数的条件	收敛速度
Jaggi,Martin,2013, [1],Robert M. Freund,Paul Grigas,2014, [8]	Д	Д	$\frac{1}{t}$
Dan Garber, Elad Hazan, 2015, [2]	强凸	强凸	$\frac{1}{t^2}$
GuéLat, Jacques, Marcotte, 1986, [3]	多面体	强凸	$\exp(-\Theta(t))$
Beck,Amir,Teboulle,2004, [4]	Д	$f(x) = Ax - b _2^2$	$\exp(-\Theta(t))$
Dunn, Joseph C, 1979, [5]	强凸	$\ \nabla f(x)\ \ge c > 0, \forall x \in K$	$\exp(-\Theta(t))$
Jarrid Rector-Brooks, Jun-Kun Wang, Barzan Mozafari, 2019, [6]	光滑,凸	强凸	较大的可能性为 $\frac{1}{t^2}$
	局部Lipschitz,梯度的范数有下界	严格局部拟凸	$\max(\frac{2\kappa}{\theta\varepsilon^2}, \frac{8L\kappa}{\theta\varepsilon^3})$
	强凸	非凸,光滑	较大的可能性为 $\frac{1}{t}$
Lacoste-Julien,2016, [7]	Д	非凸	$\frac{1}{\sqrt{t}}$

参考文献

- [1] Jaggi, Martin. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Proceedings of the 30th International Conference on Machine Learning, ICML, 2013.
- [2] Dan Garber, Elad Hazan, Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets, Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37.
- [3] GuéLat, Jacques and Marcotte, Patrice. Some comments on Wolfe's away step. Mathematical Programming, 351, 1986.
- [4] Beck, Amir and Teboulle, Marc. A conditional gradient method with linear rate of convergence for solving con- vex linear systems. Math. Meth. of OR, 592:235 247, 2004.
- [5] Dunn, Joseph C. Rates of Convergence for Conditional Gradient Algorithms Near Singular and Nonsingular Ex- tremals. SIAM Journal on Control and Optimization, 17 (2), 1979.
- [6] Jarrid Rector-Brooks, Jun-Kun Wang, Barzan Mozafari, Revisiting Projection-Free Optimization for Strongly Convex Constraint Sets.
- [7] Lacoste-Julien, S. 2016. Convergence rate of frank-wolfe for non-convex objectives, arXiv:1607.00345.
- [8] Robert M. Freund, Paul Grigas, New Analysis and Results for the Frank-Wolfe Method, matical Programming 155(1):199-230.