

INTERPRETING CHANGES IN MANAGEMENT AT SCALE

LIZ RIEKE, PHD
SOIL MICROBIOME SCIENTIST

Mission: safeguard and enhance the vitality and productivity of soil through scientific research and advancement

Adebukola Dada Soil Health Dashboard

Mara Cloutier
Dairy Soil & Water
Regeneration

Liz Rieke Soil Microbiologist NAPESHM

Dianna Bagnall
NAPESHM
US Regen. Cotton Fund

Dan Liptzin NAPESHM Dairy Soil & Water Regeneration

Jason Ackerson DeepC, TruCarbon, Soil Health Dashboard

Jessica Kelton,
Soil Health Educator

Christine MollingWater and GHG Modeling

Loutrina Staley
Directs Intern Program
Fundraising

Nate Looker Soil Health Targets

Michael Cope
SHI Database Manager

Archie Flanders
Agricultural Economist

Measuring Soil Health at Scale

NAPESHM Measurements

Minimum Suite of Effective Indicators for North America

Establishing Soil Health Targets at Scale

Soil Map Units in Easton Area

Soil strata in Easton Area

Soil Health Institute Metrics of Interest

- Continuous management indices
 - Physical Disturbance Index
 - Living Roots Index

Predicting available water holding capacity

Interpreting Soil Health Data at Scale

Develop a simple set of continuous management indices that require a minimum amount of management data

Evaluate the impact of these management indices on soil health indicators (soil organic carbon, wet aggregate stability and 24 hr C mineralization)

Management Targets

Methods

❖ What do "conventional tillage" and "no-till" mean to you?

Study	Tillage Description	Details
Corn-soybean (Illinois, USA)	Conventional tillage	Spring disc, Fall moldboard plow
Wheat-fallow (Saskatchewan, Canada)	Conventional tillage	Cultivator, field 6-12 inch sweeps (4 passes spring-summer)
Corn, soybean, wheat (Pennsylvania, USA)	No-till	Fall moldboard plow every 3rd year

Minimum?

Moderate?

Intense?

Tillage Disturbance Index (Minimize Disturbance)

Modified from NRCS Soil Tillage Intensity Rating (NRCS-STIR)

D= Tillage Depth,

A = Area of soil disturbed within the operating width of the equipment

T = Tillage Type Modifier

S = Operating Speed (miles per hour)

Tillage Type: it describes how the tillage operation mixes the soil and the associated residues. (Ferruzi, NRCS)

- 1.0 Inversion (moldboard plow)
- 0.8 Mixing + some inversion (Disk, chisel plows)
- 0.7 Mixing only (Rotary tillers)
- 0.4 Lifting and fracturing (Subsoilers)
- 0.15 Compression (sheep foot's rollers, cattle trampling)

Tillage Disturbance Index (Minimize Disturbance)

We took out the speed to obtain

General-purpose Tillage Intensity Rating (gTIR)

$$gTIR = D(cm) * A * 3.25T$$

We also took out the tillage modifier to obtain

Normalized Soil Volume Disturbed (SVD)

$$SVD = D(cm) * A$$

We aggregated annual tillage data over 5 years in 3 ways

1. Take the average within each calendar year and then average across years. ($STIR_{mean}$, $GTIR_{mean}$, SVD_{mean})

2. Take the sum of all values within each calendar and then average across years. (STIR_{sum}, GTIR_{sum}, SVD_{sum})

3. Take the maximum value within each calendar year and then average across years. (STIR_{max}, GTIR_{max}, SVD_{max})

Tillage indices

Fig 2. Univariate effect sizes of the relationship of within-trial mean differences in soil health measurements to within-trial differences in tillage disturbance indices.

- Annual Mean Maximum is the most efficient aggregation method
- gTIR and NRCS-STIR are comparable- gTIR requires less parameters
- gTIRmax showed strong effect size for the soil health indicators

Tillage Index

Figure 3. Responses of differences in soil organic carbon (SOC) concentration to differences in gTIRmax between paired tillage treatments.

- Negative relationship between gTIRmax and SOC
- Increase in intensity of tillage decreases SOC concentration.

What does cover cropping mean to you?

Study	Cover Crop Description	Details
Corn, snap bean, acorn squash (Michigan, USA)	Rye-Vetch or Vetch	Planted early fall, terminated following spring (every year)
Corn, soybean, wheat (Ontario, Canada)	Red Clover	Inter-seeded in winter wheat in spring, terminated in fall (every 4th year)

Cover Crop?

No Cover Crop?

Live Roots Index (Continuous live roots)

Live Roots Index (Continuous live roots)

It is simply conceptualized as the total number of days per year when living roots are present in the soil.

Planting and Harvesting dates

Living Roots Index (LRI) =
$$\frac{\text{Number of days with living plant/roots}}{\text{Number of days in a year (365)}}$$

Living Root Index

Figure 4. Univariate effect sizes of the relationship of within-trial absolute mean differences in soil health measurements to within-trial differences in continuous living root index.

- Positive relationship between LRI and soil health measurements
- Cover crops increased the SOC concentration
- Practices that increase LRI such as double cropping and inclusion of perennial crops also increased SOC

Indices Under Development

Indices Summary

- Tillage Disturbance Index developed from STIR inputs- only need to know most disruptive implement from each year
- Living Roots Index calculated based on planting & termination data
- Results to be submitted for peer review by Dada et al.

Soil Health Institute Metrics of Interest

Continuous management Indices

Predicting available water holding capacity

Indicators of soil water cycle

- Indicators assessed:
 - Bulk density (D_b)
 - Permanent wilting point (θ_{PWP})
 - Field capacity measured on repacked (θ_{FC_REPACK}) and intact (θ_{FC_INTACT}) cores
 - Saturated hydraulic conductivity (K_S)

Response to management practices

Predicting Available Water Holding Capacity

- Current pedotransfer functions show a small effect of soil organic C plant available water
- Used NAPSHEM data with intact field capacity
- Differences represent changes in soil health management through soil organic C

Predicting Available Water Holding Capacity- Summary

- Field capacity must be measured on intact cores to identify management induced changes- costly & not widely available!
- SHI pedotransfer function available on website: https://soilhealthinstitute.org/ourwork/initiatives/measurements/#resources

Questions?

