2011/ 2012

Desarrollo de sistema inmótico basado en plataforma Arduino

Subproyecto:

Diseño Sistema de Gestión Energética. IES HERMINO ALMENDROS.

1. Historia del proyecto	2
1.1. Historia	2
1.2. Introducción	2
2. Participantes y su colaboración	3
3. Recursos y equipamientos	3
4. Bases técnicas y recursos metodológicos utilizados	4
4.1 Protocolo Modbus: Breve descripción de Modbus RTU	4
4.3. Instalación del Analizador	8
4.3 Especificaciones de Server OPC Kepware1	.3
4.4 Scada Cx Supervisor2	<u>'</u> 4
5. Medidas Realizadas, Resultados y Productos	5
5.1. Conexionado del equipo:	5
5.2. Inicialización del OPC Server 3	5
5.3. Visualización de algunas pantallas del Scada 3	6
6. Bibliografía 3	8
7. Desviaciones de lo previsto y soluciones aplicadas 3	9
8. Conclusiones y aplicaciones futuras 3	9
9. Valoración final del proyecto	39

1. Historia del proyecto

1.1. Historia.

Conforme con la resolución del 5 de abril de 2011 por la que se convocan ayudas destinadas a realizar proyectos de innovación aplicada a la formación profesional del sistema educativo (BOE del 27 de abril de 2011), se presenta la solicitud para proyecto desarrollo de sistema inmótico con plataforma arduino. Este proyecto se aprueba y nuestro centro IES Herminio Almendros accede a él para desarrollar el séptimo subproyecto. Este tiene por misión crear un sistema de gestión energética.

1.2. Introducción.

Para su realización contamos con un analizador de red eléctrica PM-2134 perteneciente a ICP DAS, el cual nos permite leer, en tiempo real, el valor de los parámetros más relevantes en una instalación eléctrica como son: Intensidad, tensión, Potencia demandada, energía consumida, coseno fi, entre otros.

Este analizador cuenta con puerto de conexión RS 485 y funciona en Modbus RTU, lo que hace que sea integrable en un sistema Inmótico utilizando el protocolo de comunicación Modbus, tanto RTU como TCP.

Para la realización del subproyecto hemos usado Kepware, un servidor OPC, el cual puede funcionar en modo Demo durante dos horas al día sin ninguna limitación. Con él podemos hacer compatibles Scadas de distintos fabricantes con nuestro Sistema inmótico. Su descarga es gratuita desde la página http://www.Kepware.com, sólo hace falta registrarse y seguir los pasos de instalación.

Con la intención de demostrar que es un sistema abierto, al igual que otros subproyectos han realizado la conexión a través de un servidor web o teléfono móvil, se ha implementado un Scada con el software de la marca Omron, denominado CX_Supervisor, en su versión educacional, que junto con el servidor OPC Kepware, nos han permitido la gestión de los datos suministrados por el analizador PM-2134.

2. Participantes y su colaboración

El proyecto ha sido llevado por:

- Juan Ángel Martínez Alcarria
- José Ramón Navarro López
- José Miguel Martínez Macías
- o Juan Gil Gualda
- o Carmelo Peláez Muñoz

Juan Ángel ha sido el coordinador del grupo de trabajo, ha estado en contacto con la coordinadora del proyecto y ha acudido a todas las reuniones en representación del grupo.

Cada integrante del grupo se ha centrado más en el tema que le era más afín.

3. Recursos y equipamientos

Para la realización del subproyecto hemos necesitado los siguientes recursos y equipamiento:

- Un PC con puerto serie integrado.
- Conversor USB a RS 485
- Software CX Supervisor educacional de Omron.
- Software Kepware para Servidor OPC.
- Armario eléctrico donde poder realizar la adquisición de datos.
- Analizador PM2134 de la marca ICP DAS, <u>www.icpdas.com</u>. El cual el válido para cuatro circuitos monofásicos.

4. Bases técnicas y recursos metodológicos utilizados

4.1 Protocolo Modbus: Breve descripción de Modbus RTU

Modelo OSI, basado en la arquitectura maestro/esclavo o cliente/servidor, diseñado en 1979 por Modicon para su gama de controladores lógicos programables (PLC's). Convertido en un protocolo de comunicaciones estándar de facto en la industria es el que goza de mayor disponibilidad para la conexión de dispositivos electrónicos industriales. Las razones por las cuales el uso de Modbus es superior a otros protocolos de comunicaciones son:

- es público
- 2. su implementación es fácil y requiere poco desarrollo
- 3. maneja bloques de datos sin suponer restricciones

Modbus permite el control de una red de dispositivos, por ejemplo un sistema de medida de temperatura y humedad, y comunicar los resultados a un ordenador. Modbus también se usa para la conexión de un ordenador de supervisión con una unidad remota (RTU) en sistemas de supervisión adquisición de datos (SCADA). Existen protocolos Modbus para puerto serie y Ethernet (Modbus/TCP).

Existen dos variantes, con diferentes representaciones numéricas de los datos y detalles del protocolo ligeramente desiguales. Modbus RTU es una representación binaria compacta de los datos. Modbus ASCII es una representación legible del protocolo pero menos eficiente. Ambas implementaciones del protocolo son serie. El formato RTU finaliza la trama con una suma de control de redundancia cíclica (CRC), mientras que el formato ASCII utiliza una suma de control de redundancia longitudinal (LRC). La versión Modbus/TCP es muy semejante al formato RTU, pero estableciendo la transmisión mediante paquetes TCP/IP (puerto del sistema 502).

Principales características de Modbus

- Control de acceso al medio tipo Maestro/Esclavo.
- El protocolo especifica: formato de trama, secuencias y control de errores.
- Existen dos variantes en el formato: ASCII y RTU
- Sólo especifica la capa de enlace del modelo ISO/OSI.

- A cada esclavo se le asigna una dirección fija y única en el rango de 1 a 247.
- La dirección 0 está reservada para mensajes de difusión sin respuesta.

Formato General de las Tramas

Mo	do	RT	U

WOOD KTO										
Comienzo	Dirección	Función	Datos	Control de	Fin de					
de Trama	Direction	1 dilcion	Errores		Trama					
Tiempo de 3 bytes	1 bytes	1 bytes	N x 1 bytes	2 bytes						

Código	Acción	Significado
01	Leer Bobinas (0:xxxx)	Obtiene el estado actual ON/OFF de un grupo de bo- binas lógicas.
02	Leer Entradas (1:xxxx)	Obtiene el estado actual ON/OFF de un grupo de entradas lógicas.
03	Leer Registros (4:xxxx)	Obtiene el valor binario de uno o más registros de al-
04	Leer Registros (3:xxxx)	macenamiento. Obtiene el valor binario de uno o más registros de en- trada.
05	Escribir Bobina (0:xxxx)	Fuerza el estado de una bobina.
06	Escribir Registro (4:xxxx)	Escribe el valor binario de un registro de almacena- miento
15	Escribir Bobinas (0:xxxx)	Fuerza el estado de un grupo de bobinas.
16	Escribir Registros (4:xxxx)	Escribe el valor binario de un grupo de registros de almacenamiento.

Ejemplo de funcionamiento de la función 04

Función 04 \rightarrow Leer Registros (3:xxxx)

Interrogación:

Dirección	Función	Registro comienzo (alto)	Registro comienzo (bajo)	Cantidad de Registros (alto)	Cantidad de Registros (bajo)	Control de Error
11	04	00	08	00	01	E2

Respuesta:

rteopaesta.										
Dirección	Función	Cuenta de bytes	Registro 30009 (alto)	Registro 30009 (bajo)	Control de Error					
11	04	02	05	39	AB					

Ejemplo de lectura del puerto COM, conectado al analizador PM-2134, puede verse como siempre se trabaja en Hexadecimal

01	0.4	11	0.0	00	48	F5	0.0	01	0.4	90	FD	FF	43	65	B0
25	3E	A1	BE	96	3D	11	AC	CB	3D	81	BF	7 A	3D	94	D4
B7	3E	FA	16	7A	3D	D/5	CB	A.7	3E	41	72	7B	3E	A5	FD
FF	43	65	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	3D	62	3D	8E	DC	45	3D	FE	OC.
36	3E	12	83	99	43	65	DC	99	3E	86	B0	3F	3C	EF	B0
1.A	3D	58	9F	0A	3D	77	CC	7F	3E	F7	D1	DC	3D	C9	E3
92	3E	35	44	1E	3E	50	83	99	43	65	00	0.0	0.0	00	00
00	00	0.0	00	00	00	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	FA
8.4	3D	8D	C7	11	3D	F3	0.4	28	3E	0F	86	2D			

4.2 Características del analizador PM-2134

El analizador PM-2134 es válido para cuatro circuitos monofásicos, siendo su esquema de conexión el que aparece en la imagen:

Especificaciones técnicas del analizador PM-2134:

Input Voltage PM-2134	10-300V
Input Current	СТ Ф10mm (60A)
Aux Power	DC +10~+30V
Frequency	60/50Hz
Starting Current	<0.025A
Wiring diagram	1-phase 4-channel
Parameters	V1, V1, V2, V2
Parameters	I 1, I 2, I 3, I 4

	kW1, kW2, kW3, kW4
	kVA1, kVA2, kVA3, kVA4
	kvar1, kvar2, kvar3, kvar4
Measures	PF1, PF2, PF3, PF4
	kWh1, kWh2, kWh3, kWh4
	kVAh1, kVAh2, kVAh3, kVAh4
	kvarh1, kvarh2, kvarh3, kvarh4
Communication RS485	Half duplex isolated
Baud Rate :	9600, 19200(default), 38400
Protocol	Modbus-RTU
Dimension	78(L) × 35(W) × 99(H) mm
Operating Temperature	-10° C~70° C
Installation	Rail-mounted

4.3. Instalación del Analizador:

Nota: Para conectar el analizador hay que tomar la precaución de trabajar sin tensión.

La conexión de la alimentación auxiliar $DC+10\sim+30V$ (+ - FG)

Para la conexión RS485 D+ D-

Para la conexión de las bobinas amperimétricas hay que tener en cuenta la marca $K\rightarrow L$, que viene serigrafiada en cada una de las bobinas.

No usar conductores de más de 10mm^2 de sección y no sobrepasar los 60 A de consumo.

La conexión de las bobinas voltimétricas será:

Para direccionar el analizador para Modbus hay que hacerlo a través de los Dip Switch, colocados debajo del conector V2- V2+ V1- V1+, de acuerdo a la tabla siguiente:

Nota: Por defecto todos los swicth a OFF, indican número de nodo 1.

	SW1	l -6 c	onfig	gurac	ión r	núme	ro de es	clav	о Мо	dBus	s, 1-6	4	
Modbus Address	1	2	3	4	5	6	Modbus Address	1	2	3	4	5	6
1	OFF	OFF	OFF	OFF	OFF	OFF	33	OFF	OFF	OFF	OFF	OFF	ON
2	ON	OFF	OFF	OFF	OFF	OFF	34	ON	OFF	OFF	OFF	OFF	ON
3	OFF	ON	OFF	OFF	OFF	OFF	35	OFF	ON	OFF	OFF	OFF	ON
4	ON	ON	OFF	OFF	OFF	OFF	36	ON	ON	OFF	OFF	OFF	ON
5	OFF	OFF	ON	OFF	OFF	OFF	37	OFF	OFF	ON	OFF	OFF	ON
6	ON	OFF	ON	OFF	OFF	OFF	38	ON	OFF	ON	OFF	OFF	ON
7	OFF	ON	ON	OFF	OFF	OFF	39	OFF	ON	ON	OFF	OFF	ON
8	ON	ON	ON	OFF	OFF	OFF	40	ON	ON	ON	OFF	OFF	ON
9	OFF	OFF	OFF	ON	OFF	OFF	41	OFF	OFF	OFF	ON	OFF	ON
10	ON	OFF	OFF	ON	OFF	OFF	42	ON	OFF	OFF	ON	OFF	ON
11	OFF	ON	OFF	ON	OFF	OFF	43	OFF	ON	OFF	ON	OFF	ON
12	ON	ON	OFF	ON	OFF	OFF	44	ON	ON	OFF	ON	OFF	ON
13	OFF	OFF	ON	ON	OFF	OFF	45	OFF	OFF	ON	ON	OFF	ON
14	ON	OFF	ON	ON	OFF	OFF	46	ON	OFF	ON	ON	OFF	ON
15	OFF	ON	ON	ON	OFF	OFF	47	OFF	ON	ON	ON	OFF	ON
16	ON	ON	ON	ON	OFF	OFF	48	ON	ON	ON	ON	OFF	ON
17	OFF	OFF	OFF	OFF	ON	OFF	49	OFF	OFF	OFF	OFF	ON	ON
18	ON	OFF	OFF	OFF	ON	OFF	50	ON	OFF	OFF	OFF	ON	ON
19	OFF	ON	OFF	OFF	ON	OFF	51	OFF	ON	OFF	OFF	ON	ON
20	ON	ON	OFF	OFF	ON	OFF	52	ON	ON	OFF	OFF	ON	ON
21	OFF	OFF	ON	OFF	ON	OFF	53	OFF	OFF	ON	OFF	ON	ON
22	ON	OFF	ON	OFF	ON	OFF	54	ON	OFF	ON	OFF	ON	ON
23	OFF	ON	ON	OFF	ON	OFF	55	OFF	ON	ON	OFF	ON	ON
24	ON	ON	ON	OFF	ON	OFF	56	ON	ON	ON	OFF	ON	ON
25	OFF	OFF	OFF	ON	ON	OFF	57	OFF	OFF	OFF	ON	ON	ON
26	ON	OFF		ON	ON	OFF	58	ON	OFF	OFF	ON	ON	ON
27	OFF	ON	OFF	ON	ON	OFF	59		ON	OFF	ON	ON	ON
28	ON	ON	OFF	ON	ON	OFF	60	ON	ON	OFF	ON	ON	ON
29	OFF	OFF	ON	ON	ON	OFF	61	OFF	OFF	ON	ON	ON	ON
30	ON	OFF	ON	ON	ON	OFF	62	ON	OFF	ON	ON	ON	ON
31	OFF	ON	ON	ON	ON	OFF	63	OFF	ON	ON	ON	ON	ON

ON

ON

ON

OFF

64

El formato de comunicación viene definido por:

- Protocolo de comunicación: Modbus

- Especificaciones

Bits per Byte : 1 start bit

8 data bits, Bit menos significativo se envía primero

1 or 2 stop bits (default = 1, stop)

Error Check: Cyclical Redundancy Check (CRC)

- Rate: 9600, 19200 (Defecto), 38400

- Modbus slave address : 1-64(default : 1)

Modbus Function Code: 03h, 04h, 10h,

03h Read Holding Registers

04h Read Input Registers

10h Pre-set Multiple Registers

Nota: el número máximo de registros que se pueden leer para las funciones Read Holding Registers (03h) y Read Imput Registers (04) es de 125 registros.

Modbus Registers

Holding Register : Setup Parameter

Parameter name	Modbus Register	Len	Data	Range	Default	Units		
raiametei name	Modicom Format	Hex	Len	Туре	Range	value	Offics	
Comm_485_BaudRate	44097	0×1000	Word	UInt	0:9600 1:19200 2:38400	1	bps	
Comm_485_StopBit	44098	0x1001	Word	UInt	0:1 Stop bit, 1:2 Stop bit	0		
Meter_Ratio	44099	0x1002	Word	UInt	1-65535	500		
PT_Ratio	44100	0x1003	Word	UInt	1-65535	10	0,1	
CT_Ratio	44101	0x1004	Word	UInt	1-65535	1		

Imput Register (Tensión, corriente, potencia y energía (float)

	Imput Re	gister (16	ension, co	orriente, p	otencia y	energia (float)
Parameter name	Modbus Register	Hex	Len	Data Type	Range	Units	Comment
	Format	riex		, ·			
V_a	34353- 34354	0x1100- 0x1101	DWord	Float		Volt	Primary
I_a	34355- 34356	0x1102- 0x1103	DWord	Float		Amp	Primary
kW_a	34357- 34358	0x1104- 0x1105	DWord	Float		kW	Primary
kvar_a	34359- 34360	0x1106- 0x1107	DWord	Float		kvar	Primary
kVA_a	34361- 34362	0x1108- 0x1109	DWord	Float		kVA	Primary
kWh_a	34365- 34366	0x110C- 0x110D	DWord	Float			Primary
kvarh_a	34367- 34368	0x110E- 0x110F	DWord	Float			Primary
kVAh_a	34369- 34370	0x1110- 0x1111	DWord	Float			Primary
V_b	34371- 34372	0x1112- 0x1113	DWord	Float		Volt	Primary
I_b	34373- 34374	0x1114- 0x1115	DWord	Float		Amp	Primary
kW_b	34375- 34376	0x1116- 0x1117	DWord	Float		kW	Primary
kvar_b	34377- 34378	0x1118- 0x1119	DWord	Float		kvar	Primary
kVA_b	34379- 34380	0x111A- 0x111B	DWord	Float		kVA	Primary
kWh_b	34383- 34384	0x111E- 0x111F	DWord	Float			Primary
kvarh_b	34385- 34386	0x1120- 0x1121	DWord	Float			Primary
kVAh_b	34387- 34388	0x1122- 0x1123	DWord	Float			Primary
V_c	34389- 34390	0x1124- 0x1125	Dword	Float		Volt	Primary
I_c	34391- 34392	0x1126- 0x1127	Dword	Float		Amp	Primary
kW_c	34393- 34394	0x1128- 0x1129	Dword	Float		kW	Primary
kvar_c	34395- 34396	0x112A- 0x112B	Dword	Float		kvar	Primary
kVA_c	34397- 34398	0x112C- 0x112D	Dword	Float		kVA	Primary
kWh_c	34401- 34402	0x1130- 0x1131	Dword	Float			Primary
kvarh_c	34403- 34404	0x1132- 0x1133	Dword	Float			Primary

kVAh_c	34405- 34406	0x1134- 0x1135	Dword	Float		Primary
V_d	34407- 34408	0x1136- 0x1137	Dword	Float	Volt	Primary
I_d	34409- 34410	0x1138- 0x1139	Dword	Float	Amp	Primary
kW_d	34411- 34412	0x113A- 0x113B	Dword	Float	kW	Primary
kvar_d	34413- 34414	0x113C- 0x113D	Dword	Float	kvar	Primary
kVA_d	34415- 34416	0x113E- 0x113F	Dword	Float	kVA	Primary
kWh_d	34419- 34420	0x1142- 0x1143	Dword	Float		Primary
kvarh_d	34421- 34422	0x1144- 0x1145	Dword	Float		Primary
kVAh_d	34423- 34424	0x1146- 0x1147	Dword	Float		Primary

Para ver todos los registros se recomienda ver el manual usuario del analizador PM-2134.

4.3 Especificaciones de Server OPC Kepware

El OPC (OLE for Process Control) es un estándar de comunicación en el campo del control y supervisión de procesos industriales, que ofrece un interface común para comunicación que permite que componentes software individuales interaccionen y compartan datos. La comunicación OPC se realiza a través de una arquitectura Cliente-servidor El servidor OPC es la fuente de datos (como un dispositivo hardware a nivel de planta) y cualquier aplicación basada en OPC puede acceder a dicho servidor para leer/escribir cualquier variable que ofrezca el servidor. Es una solución abierta y flexible al clásico problema de los drivers propietarios. Prácticamente todos los mayores fabricantes de sistemas de control, instrumentación y de procesos han incluido OPC en sus productos.

Un cliente OPC se puede conectar a servidores OPC proporcionados por más de un "proveedor".

Para nosotros:

Instalación:

Entramos en la página http://www.Kepware.com/

Pinchamos en *Download the Fully Functional Demo* y nos registramos.

Descargar el fichero que está en el enlace Current version: 5.9

Se selecciona Bulding Automation:

Una vez terminada la instalación:

Damos doble click sobre el icono KEPserverEX configuration que se ha generado en el escritorio

Insertamos un nuevo canal y lo llamamos ANALIZADOR

Damos a siguiente y elegimos el Driver Modbus RTU Serial

En el siguiente paso elegimos el puerto COM 8 y en paridad seleccionamos None

Dar a siguiente hasta el final, dejamos los por defecto.

Resumen de la configuración

Damos doble click para seleccionar un New Device

Le cambiamos el nombre analizador

Elegimos en Devide model Modbus

Elegimos el número de nodo del equipo, nosotros para esta aplicación lo dejamos en el nodo 1

Continuamos siguiente hasta el final y dejamos valores por defecto.

Hacemos click en add static tag

Editamos el tag, dándole un nombre, por ejemplo V_A, y añadimos la dirección del Imput Register (4053) en el que hemos de leer, en este caso la tensión del canal 1 del analizador, hacer ver que es un dato real (float).

La dirección va precedida por 3xxxxx, cómo se deduce del protocolo Modbus, para la función 04h, Read Imput Register., el número de registro se mira en el manual, para el ejemplo que nos ocupa:

Parameter	Mod Regi:		Len	Data	Range	Units	Comment
name	Modicom Format	Hex		Туре			
V_a	34353- 34354	0x1100- 0x1101	DWord	Float		Volt	Primary

En el caso de ser un Holding Register, entonces:

Editamos el tag, dándole un nombre, por ejemplo VEL_CONEXIÓN, y añadimos la dirección del Holding Register (4097) en el que hemos de leer/escribir en este caso la velocidad del bus, el dato es una palabra.

La dirección va precedida por 4xxxxx, cómo se deduce del protocolo Modbus, para la función 03h, Read/Write Holding Register., el número de registro se mira en el manual, para el ejemplo que nos ocupa:

Parameter name	Modi Regis Modicom Format		Len	Data Type	Range	Default value	Units	Comment
Comm_485_BaudRate	44097	0×1000	Word	UInt	0: 9600 1: 19200 2: 38400	1	bps	

Se procederá así con cada una de las variables a visualizar, quedando la lista de tag como sigue:

Una vez terminado el proceso anterior y para ver los resultados

Nos comunicamos con el cliente

4.4 Scada Cx Supervisor

Para realizar el Scada usaremos el software de Omron Cx Supervisor en su versión Educacional.

CARACT	ERÍSTICAS	DE CON	ISUMO D	E LA V	/IVIENDA			PORTADA
CARACTERÍSTICA		CARAG	имо	CONSUMO				
TIPO DE SUMINISTRO	#			ENERG	ÍA TOTAL	#.#	KWh	GRÁFICA
POTENCIA CONTRATADA	# Wat	ios		POTENC	CIA TOTAL	#.#	Watios	VARIABLE
INTENSIDAD I.C.P.	# Am	perios		INTENS	DA TOTAL	#.#	Amperios	
DESCRIPCIÓN CIRCUITOS	TENSIÓN SUMINISTRO	INTENSIDA ADMISIBL		ISIDAD NDADA	POTENCIA DEMANDADA		ERGIA SUMIDA	
ALUMBRADO	#.# Voltios	# Amp	erios #.#	Amperios	#.# Watios	#	# KWh	
TOMAS DE ENCHUFE	#.# Voltios	# Amp	erios #.#	Amperios	#.# Watios	#	# KWh	
ELECTRODOMÉSTICOS PESADOS	#.# Voltios	# Amp	erios #.#	Amperios	#.# Watios	#	# KWh	
COCINA	#.# Voltios	# Amp	erios #.#	Amperios	#.# Watios	#	# KWh	
BARRA CONSUMOS DESCRI	PCION DETALLES	GRAFICAS	PORTADA	VARIABLES	J			1

LISTA DE VARIABLES DEL SISTEMA

TIPO DE SUMINISTRO #

POTENCIA CONTRATADA #

INTENSIDAD DEL I.C.P. #

INT. MAX. CIRCUITO ALUMBRADO #

INT. MAX. CIRCUITO TOMAS CORRIENTE #

INT. MAX. CIRCUITO COCINA #

INT. MAX. CIR. ELECTRODOMÉST. PESADOS #

Una vez realizada la parte gráfica hay que asignar variables de punto del Scada con las del archivo Analizador creado con el software Kepware:

Creamos una variable con el editor de puntos

Seleccionamos el Setup

En este punto add

Guardamos en un nuevo archivo en este caso analizador.opc

Le damos a aplicar

Seleccionamos un grupo:

En este punto definimos el nombre de la variable que es y la asociamos a las que hemos creado en el OPC Server (Kepware)

Se repite si con todas la variables a visualizar, aquí tenemos el resumen de algunas variables

Una vez creados todos los puntos, se asocian

Buscamos la variable a asociar

Repitiendo los pasos anteriores para cada una de las variables que serán leídas del analizador.

5. Medidas Realizadas, Resultados y Productos.

Una vez terminado el proceso:

Lo primero que haremos será ejecutar el Kepware, el archivo de aplicación de Cx_ Supervisor y conectar el analizador a través del puerto RS 485 al PC, obteniendo los siguientes resultados.

5.1. Conexionado del equipo:

5.2. Inicialización del OPC Server.

Una vez iniciado el Kepware, podemos ver los valores de los registros del analizador:

5.3. Visualización de algunas pantallas del Scada.

Pantalla Portada

Pantalla de Variables

36

Pantalla de Consumos

37

Pantalla Gráfica Histórico Consumo de Corriente por Circuito

IES HERMINIO ALMENDROS

Pantalla Gráfica Histórico Potencia por Circuito y Potencia Contratada

6. Bibliografía

Entre otras páginas web de consulta, podemos destacar:

http://www.arduino.cc/

www.formacionconarduino.com/moodle/login/index.php

http://www.Modbus.org/

http://www.Kepware.com/

www.icpdas.com

https://github.com/

7. Desviaciones de lo previsto y soluciones aplicadas

En una primera aproximación al proyecto "Desarrollo de sistema inmótico basado en plataforma Arduino", este subproyecto: "Diseño sistema de gestión energética" podría utilizar el WK500 como maestro Modbus/TCP.

Sin embargo, hemos optado por el uso del OPC Server, ya que es una herramienta didáctica muy interesante y gratuita para la comunicación de componentes de distintos fabricantes.

8. Conclusiones y aplicaciones futuras

Modbus es un protocolo de comunicación muy interesante desde el punto de vista didáctico.

Arduino es una plataforma abierta basada en software y hardware flexibles y fáciles de usar. Es idóneo para la creación de prototipos, así, en nuestro Centro tenemos previsto su uso para módulos relacionados fundamentalmente con la Robótica, Domótica, Regulación y Control Automáticos.

9. Valoración final del proyecto

El proyecto ha resultado muy interesante porque se ha trabajado con nuevos sistemas de comunicación, software y hardware, distintos a los PLC's habituales en el ciclo de Grado Superior: Sistemas de Regulación y Control Automáticos.

También se ha abierto un área nueva dentro del Módulo de Domótica, más comprometida con el desarrollo real, por precio y viabilidad, que los sistemas propietarios.

Con este proyecto se ha actualizado y renovado conocimientos.