EXHIBIT A

(12) United States Patent

Helleday

US 8,859,562 B2 (10) **Patent No.:**

(45) **Date of Patent:**

Oct. 14, 2014

(54) USE OF RNAI INHIBITING PARP ACTIVITY FOR THE MANUFACTURE OF A MEDICAMENT FOR THE TREATMENT OF **CANCER**

4	(75)	Inventor:	Thomas	Helleday	Stockholm	(SE)
- 1	(1)	mvemor.	1 HUIII as	Helicuay,	Stockholli	انددا

(73)	A ccionee.	The University	of Sheffield	Sheffield

(GB)

Subject to any disclaimer, the term of this (*) Notice:

patent is extended or adjusted under 35 U.S.C. 154(b) by 2568 days.

(21) Appl. No.: 10/555,507

(22) PCT Filed: Jul. 23, 2004

(86) PCT No.: PCT/GB2004/003235

§ 371 (c)(1),

(2), (4) Date: Sep. 15, 2006

(87) PCT Pub. No.: WO2005/012524

PCT Pub. Date: Feb. 10, 2005

(65)**Prior Publication Data**

US 2007/0179160 A1 Aug. 2, 2007

(30)Foreign Application Priority Data

(GB) 0317466.1

(51)	Int. Cl.	
	A61K 31/495	(2006.01)
	A61K 31/33	(2006.01)
	A61K 31/435	(2006.01)
	A61K 38/00	(2006.01)
	C07D 487/06	(2006.01)
	C12N 15/113	(2010.01)
	A61K 31/5517	(2006.01)

(52) U.S. Cl. CPC C07D 487/06 (2013.01); A61K 38/005 (2013.01); C12N 15/1137 (2013.01); A61K 31/5517 (2013.01); C12Y 204/0203 (2013.01);

> C12N 2310/14 (2013.01) USPC **514/258.1**; 514/299; 514/388

(58)Field of Classification Search

See application file for complete search history.

(56)**References Cited**

U.S. PATENT DOCUMENTS

5,098,861	A	3/1992	Blackstone
5,484,951	\mathbf{A}	1/1996	Kun et al.
5,519,053	A	5/1996	Kun et al.
5,652,367	\mathbf{A}	7/1997	Kun et al.
6,548,494	B1 *	4/2003	Webber et al 514/220
7,072,771	B2 *	7/2006	Oliveira 702/27
7,087,637	B2	8/2006	Grandel et al.
7,176,188	B2	2/2007	Desnoyers
2003/0229004	A1	12/2003	Zarling et al.
2005/0227919	A1	10/2005	Ashworth et al.
2006/0142231	A1	6/2006	Ashworth et al.

FOREIGN PATENT DOCUMENTS

ED	0.600021 4.1	11/1000
EP	0600831 A1	11/1993
WO	WO 95/24379	9/1995
WO	WO 9908680 A1 *	2/1999
WO	00/42040	7/2000
WO	01/16136	3/2001
WO	WO 02/12239	2/2002
WO	WO 02/36576 A1	5/2002
WO	WO 02/090334 A1	11/2002
WO	WO 03/014090 A1	2/2003
WO	WO 03/063874 A1	8/2003
WO	WO 03/070234 A1	8/2003
WO	WO 03/093261 A1	11/2003
WO	WO 2004/008976 A1	1/2004

OTHER PUBLICATIONS

Gan et al., Specific interference with gene expression and gene function mediated by long dsRNA in neural cells, Journal of Neuroscience Methods, 121, 2002, pp. 151-157.*

Cecil Textbook of Medicine, 1997, 20th Edition, vol. 1, pp. 1007-

Sausville et al. (Cancer Research, 2006, vol. 66, pp. 3351-3354).*

Johnson et al. (British J. of Cancer, 2001, 84(10):1424-1431).*

Thacker, J., Cancer Letters, 2005, vol. 219, pp. 125-135.*

BG483078, http://mgc.nci.nih.gov/, National Institutes of Health, Mammalian Gene Collection (MGC, Unpublished, 1999, Contact: Robert Strausberg, Ph.D, Tissue Procurement: CLONTECH Laboratories. Inc.

Elbashir et al., Duplexes of 21-Nucleotide RNAs Mediate RNA Interference in Cultured Mammalian Cells, Nature, 2001, 411: 494-498. Larminat et al., Deficiency in BRCA2 Leads to Increase in Nonconservative Homologous Recombination, Oncogene, 2002, 21: 5188-5192

Massuda et al., PARP Inhibitor, Down-Regulates Metastasis Associated S100A4 (MTS1) and Suppresses Invasion of Breast Cancer Cells In Vitro, Proceedings of the American Association for Cancer Research, 2003, 44(2nd ed), 867-868.

Schultz et al., Poly (ADP-Ribose) Polymerase (PARP-1) Has a Controlling Role in Homologous Recombination, Nucleic Acids Research, 2003, 31(17): 4959-4964.

Shall et al., Poly(DP-Ribose) Polymerase-1: What Have We Learned From the Deficient Mouse Model?, Mutation Research, 2000, 460:

Weltin et al., Effect of 6(5H)-Phenanthridinone, An Inhibitor of Poly(ADP-Ribose) Polymerase, on Cultured Tumor Cells, Oncology Research, 6(9): 399-403.

(Continued)

Primary Examiner — James D Anderson (74) Attorney, Agent, or Firm — Bozicevic, Field & Francis LLP; Pamela J. Sherwood

(57)**ABSTRACT**

The present invention relates to the use of an agent that inhibits the activity of an enzyme that mediates repair of a DNA strand break in the manufacture of a medicament for the treatment of diseases caused by a defect in a gene that mediates homologous recombination.

1 Claim, 20 Drawing Sheets

Page 2

(56) References Cited

OTHER PUBLICATIONS

Gallmeier et al., Absence of Specific Cell Killing of the BRCA2-Deficient Human Cancer Cell Line CAPAN1 by Poly(ADP-Ribose) Polymerase Inhibition, 2005 Cancer Biol. & Ther., 4(7): 703-706. McCabe et al., BRCA2-Deficient CAPAN-1 Cells Are Extremely Sensitive to the Inhibition of Poly (ADP-Ribose) Polymerase, 2005, Cancer Biol. & Ther., 4(9): 934-936.

Jönsson, Göran; et al., "High-Resolution Genomic Profiles of Breast Cancer Cell Lines Assessed by Tiling BAC Array Comparative Genomic Hybridization", Genes, Chromosomes and Cancer, 2007, 46:543-558.

Sanger Institute database entry for MDA_MB-231, Catalogue of Somatic Mutations in Cancer, 2 pgs.

Turner, Nicholas; et al., "Hallmarks of 'BRCAness' in sporadic cancers", Nature Reviews, Oct. 2004, 4:1-6.

Wooster, Richard; et al., "Breast and Ovarian Cancer", The New England Journal of Medicine, Jun. 5, 2003, 348:2339-47.

Bernstein, C., et al., "DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis," (2002) *Mutation Research*, 511:147-178.

Bryant, H., et al., "Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase," (2005) *Nature*, 434:913-917.

Farmer, H., et al., "Targeting the DNA repair defect in *BRCA* mutant cells as a therapeutic strategy," (2005) *Nature*, 434:917-921.

Watchers, F., et al., "Selective targeting of homologous DNA recombination repair by gemcitabine," (2003) *Int. J. Radiation Oncology Biol. Phys.*, 57(2):553-562.

Banasik, Marek, et al., "Specific Inhibitors of Poly (ADP-Ribose) Synthetase and Mono (ADP-Ribosyl) transferase", The Journal of Biological Chemistry, Jan. 25, 1992, 267(3):1569-1575.

Calabrese, Christopher R; et al., "Identification of Potent Nontoxic Poly (ADP-Ribose) Polymerase-1 Inhibitors: Chemopotentiation and Pharmacological Studies", Clinical Cancer Research, Jul. 2003, 9:2711-2718.

Cepeda, Victoria; et al., "Poly (ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors in Cancer Chemotherapy", Recent Patents on Anti-Cancer Drug Discovery, 2006, 1:39-53.

Dillon, Krystyna J; et al., "A FlashPlate Assay for the Identification of PARP-1 Inhibitors", J. Biomol Screen, 2003, 8(3):347-352.

Ferraris, Dana; et al., "Design and Synthesis of Poly ADP-ribose Polymerase-1 Inhibitors. 2. Biological Evaluation of Aza-5[H]-phenanthridin-6-ones as Potent, Aqueous-Soluble Compounds for the Treatment of Ischemic Injuries", J. Med. Chem., 2003, 46:3138-3151.

Griffin, RJ; et al., "The role of inhibitors of poly (ADP-ribose) polymerase as resistance-modifying agents in cancer therapy", Biochimie, 1995, 77:408-422.

McCabe, Nuala; et al., "Deficiency in the Repair of DNA Damage by Homologous Recombination and Sensitivity to Poly (ADP-Ribose) Polymerase Inhibition", Cancer Res, Aug. 15, 2006, 66(16):8109-8115.

Virag, Laszlo; et al., "The Therapeutic Potential of Poly (ADP-Ribose) Polymerase Inhibitors", Pharmacological Reviews, 2002: 54(3):375-429.

Dudas, Andrej; et al., "DNA double-strand break repair by homologous recombination", Mutation Research, 2004, 566:131-167.

Hoeijmakers, Jan H. J.; et al., "Genome maintenance mechanisms for preventing cancer", Nature, May 17, 2001, 411:366-374.

Khanna, Kum Kum; et al., "DNA double-strand breaks: signaling, repair and the cancer connection", Nature Genetics, Mar. 2001, 27:247-254

Fong; et al., "AZD2281 (KU-0059436), a PARP (poly ADP-ribose polymerase) inhibitor with single agent anticancer activity in patients with BRCA deficient ovarian cancer: Results from a phase I study", J Clin Oncol 26: 2008 (May 20 suppl; abstr 5510).

Hao; et al., "BRCA1-IRIS activates cyclin D1 expression in breast cancer cells by downregulating the JNK phosphatase DUSP3/VHR", Int. J. Cancer (2007), 121:39-46.

Lau; et al., "Pre-clinical activity of the PARP inhibitor AZD2281 in homologous recombination repair deficient triple negative breast cancer", EORTIC 2008 Geneva, poster #557.

Calabrese; et al., "Identification of Potent Nontoxic Poly(ADP-Ribose) Polymerase-1 Inhibitors: Chempotentiation and Pharmacological Studies", Clinical Cancer Research (2003), 9:2711-2718.

Berthet; et al., "DNA repair inhibitors", Expert Opinion on Therapeutic Patents (1999), 9(4):401-415.

Perkins, et al., "Novel Inhibitors of Poly(ADP-ribose) Polymerase/PARP1 and PARP2 Identified Using a Cell-based Screen in Yeast", Cancer Research (2001), 61:4175-4183.

^{*} cited by examiner

Oct. 14, 2014

Sheet 1 of 20

Figure 1.

Oct. 14, 2014

Sheet 2 of 20

Figure 2.

Oct. 14, 2014

Sheet 3 of 20

Figure 3

Oct. 14, 2014

Sheet 4 of 20

Figure 4

Oct. 14, 2014

Sheet 5 of 20

Figure 5A

Oct. 14, 2014

Sheet 6 of 20

Oct. 14, 2014

Sheet 7 of 20

F14.6

Oct. 14, 2014

Sheet 8 of 20

Oct. 14, 2014

Sheet 9 of 20

U.S. Patent Oct. 14, 2014 Sheet 10 of 20 US 8,859,562 B2

FIGURE 9

1 cgcccgccca gccccggggg cagggaaagc ctaaattacg gaattaccgc gagcaaggag 61 cgcggaatcg gggagcgtcc ggagctagct ggatcctcta ggcaggatgg tgatgggaat 121 etttgeaaat tgtatettet gtttgaaagt gaagtacita eeteageage agaagaaaaa 181 getacaaact gacattaagg aaaatggegg aaagttttee ttttegttaa ateeteagtg 241 cacacatata atcttagata atgctgatgt tctgagtcag taccaactga attctatcca 301 aaagaaccac gttcatattg caaacccaga ttttatatgg aaatctatca gagaaaagag 361 actottggat gtaaagaatt atgateetta taageecetg gacateacae eaecteetga 421 tcagaaggcg agcagttctg aagtgaaaac agaaggtcta tgcccggaca gtgccacaga 481 ggaggaagac actgtggaac tcactgagtt tggtatgcag aatgttgaaa ttcctcatct 541 tecteaagat titgaagtig caaaatataa cacetiggag aaagtigggaa tiggagggagg 601 ccaggaaget gtggtggtgg agetteagtg ttegegggae teeagggaet gteettteet 661 gatateetea caetteetee tggatgatgg catggagaet agaagacagt ttgetataaa 721 gaaaacctct gaagatgcaa gtgaatactt tgaaaaattac attgaagaac tgaagaaaca 781 aggatticta ctaagagaac atticacace tgaagcaace caattagcat ctgaacaatt 841 gcaagcattg cttttggagg aagtcatgaa ttcaagcact ctgagccaag aggtgagcga 901 tttagtagag atgatttggg cagaggecet gggecaectg gaacacatge tteteaagee 961 agtgaacagg attagectca acgatgtgag caaggcagag gggattetee ttetagtaaa 1021 ggcagcactg aaaaatggag aaacagcaga gcaattgcaa aagatgatga cagagtttta 1081 cagactgata ceteacaaag geacaatgee caaagaagtg aacetgggae tattggetaa 1141 gaaagcagac etetgecage taataagaga catggttaat gtetgtgaaa etaatttgte 1201 caaacccaac ccaccatccc tggccaaata ccgagctttg aggtgcaaaa ttgagcatgt 1261 tgaacagaat actgaagaat ttctcagggt tagaaaagag gttttgcaga atcatcacag 1321 taagageeca gtggatgtet tgeagatatt tagagttgge agagtgaatg aaaccacaga 1381 gtitttgage aaactiggta atgtgaggee ettgttgeat ggtteteetg tacaaaacat 1441 cgtgggaate ttgtgtegag ggttgetttt acceaaagta gtggaagate gtggtgtgca 1501 aagaacagac gteggaaace ttggaagtgg gatttattte agtgattege teagtacaag 1561 tateaagtae teacaceegg gagagacaga tggeaceaga eteetgetea tttgtgaegt 1621 agccctegga aagtgtatgg acttacatga gaaggaettt teettaaetg aageaeeace 1681 aggetaegae agtgtgeatg gagttteaea aacageetet gteaceaeag aetttgagga 1741 tgatgaatti gtigtetata aaaccaatea ggttaaaatg aaatatatta ttaaatttte 1801 catgcctgga gatcagataa aggactttca tectagtgat catactgaat tagaggaata 1861 cagacetgag titteaaatt titeaaaggt tgaagattae eagttaceag atgeeaaaac 1921 ttccagcagc accaaggceg geetecagga tgettetggg aacttggtte etetggagga 1981 tgtccacatc aaagggagaa tcatagacac tgtagcccag gtcattgttt ttcagacata 2041 cacaaataaa agtcacgtgc ccattgaggc aaaatatatc tttcctttgg atgacaaggc 2101 cgctgtgtgt ggcttcgaag cettcatcaa tgggaagcac atagttggag agattaaaga 2161 gaaggaagaa geecagcaag agtacetaga ageegtgace cagggeeatg gegettaeet 2221 gatgagtcag gatgetcegg aegtttttae tgtaagtgtt ggaaaettae eeectaagge 2281 taaggttett ataaaaatta eetacateae agaacteage ateetgggea etgttggtgt 2341 ctttttcatg cccgccaccg tagcaccctg gcaacaggac aaggetttga atgaaaacct 2401 tcaggataca gtagagaaga tttgtataaa agaaatagga acaaagcaaa gcttctcttt 2461 gaetatgtet attgagatge egtaegtgat tgaatteatt tteagtgata eteatgaaet 2521 gaaacaaaag cgcacagact gcaaagetgt cattagcacc atggaaggca gctccttaga 2581 cagcagtgga ttttetetec acateggttt gtetgetgee tateteceaa gaatgtgggt 2641 tgaaaaacat ccagaaaaag aaagcgagge ttgeatgett gtettteaac ccgatetega 2701 tgtcgacctc cctgacctag ccaatgagag cgaagtgatt atttgtcttg actgctccag 2761 ttccatggag ggtgtgacat tcttgcaage caaggaaate geettgcatg egetgteett

U.S. Patent Oct. 14, 2014 Sheet 11 of 20 US 8,859,562 B2

2821 ggtgggtgag aagcagaaag taaatattat ccagttcggc acaggttaca aggagctatt 2881 ttegtateet aageatatea eaageaatae egeggeagea gagtteatea tgtetgeeae 2941 acctaccatg gggaacacag acttetggaa aacacteega tatettaget tattgtacce 3001 tgctcgaggg tcacggaaca tcctcctggt gtctgatggg cacctccagg atgagagcct 3061 gacattacag etegtgaaga ggageegeee geacaecagg ttattegeet geggtategg 3121 ttctacagca aatogtcacg tcttaaggat tttgtcccag tgtggtgccg gagtatttga 3181 ataitttaat gcaaaatcca agcatagttg gagaaaacag atagaagacc aaatgaccag 3241 gctatgttet cegagttgee actetgtete egteaaatgg eageaactea atceagatge 3301 gcccgaggcc ctgcaggccc cagcccaggt gccatcettg tttcgcaatg atcgactect 3361 tgtctatgga ttcattcctc actgcacaca ggcaactctg tgtgcactaa ttcaagagaa 3421 agaattttgt acaatggtgt cgactactga getteagaag acaactggaa etatgateea 3481 caagetggea geeegagete taateagaga ttatgaagat ggeattette aegaaaatga 3541 aaccagtcat gagatgaaaa aacaaacctt gaaatctctg attattaaac tcagtaaaga 3601 aaactetete ataacacaat ttacaagett tgtggcagtt gagaaaaggg atgagaatga 3661 gtcacctttt cetgatatic caaaagttte tgaacttatt gccaaagaag atgtagactt 3721 cctgccctac atgagctggc agggggaacc ccaagaagcc gtcaggaacc agtctctttt 3781 agcatectet gagtggeeag aattaegttt ateeaaaega aaacatagga aaatteeatt 3841 ttccaaaaga aaaatggaat tatctcagcc agaagtttct gaagattttg aagaggatgc 3901 cttaggtgta ctaccagctt tcacatcaaa tttggaacgt ggacgtgtgg aaaagctatt 3961 ggatttaagt tggacagagt catgtaaacc aacagcaact gaaccactat ttaagaaagt 4021 cagtecatgg gaaacateta ettetagett titteetatt tiggeteegg eegttggtte 4081 ctatettace eegactacee gegeteacag teetgettee ttgtettttg eeteatateg 4141 teaggtaget agttteggtt eagetgetee teecagacag titgatgeat etcaatteag 4201 ccaaggeeet gtgeetggea ettgtgetga etggateeea eagteggegt ettgteeeae 4261 aggacetece cagaaceeae ettetgeace etattgtgge attgttttt cagggagete 4321 attaagetet geaeagtetg eteeaetgea acateetgga ggetttaeta eeaggeette 4381 tgctggcacc ttccctgagc tggattctcc ccagcttcat ttctctcttc ctacagaccc 4441 tgateceate agaggttttg ggtettatea tecetetget taeteteett tteattttea 4501 accttccgca gcctctttga ctgccaacct taggctgcca atggcctctg ctttacctga 4561 ggetetttge agteagteec ggactaecee agtagatete tgtettetag aagaateagt 4621 aggcagtete gaaggaagte gatgteetgt etttgetttt caaagttetg acacagaaag 4681 tgatgageta teagaagtae tteaagacag etgettttta caaataaaat gtgatacaaa 4741 agatgacagt atcccgtgct ttctggaagt aaaagaagag gatgaaatag tgtgcacaca 4801 acactggcag gatgctgtgc cttggacaga actccteagt ctacagacag aggatggctt 4861 ctggaaactt acaccagaac tgggacttat attaaatett aatacaaatg gtttgcacag 4921 ctttettaaa caaaaaggea tteaatetet aggtgtaaaa ggaagagaat gteteetgga 4981 cctaattgcc acaatgctgg tactacagtt tattcgcacc aggttggaaa aagagggaat 5041 agtgttcaaa tcactgatga aaatggatga cccttctatt tccaggaata ttccctgggc 5101 ttttgaggca ataaagcaag caagtgaatg ggtaagaaga actgaaggac agtacccatc 5161 tatctgeeca eggettgaac tggggaacga etgggaetet gecaceaage agttgetggg 5221 actocagece ataageactg tgtcccctct teatagagte etceattaca gteaaggeta 5281 agtcaaatga aactgaattt taaacttttt gcatgettet atgtagaaaa taatcaaatg 5341 ataatagata ettataatga aaetteatta aggttteatt eagtgtagea attaetgtet 5401 ttaaaaatta agtggaagaa gaattacttt aatcaactaa caagcaataa taaaatgaaa 5461 cttaaaat

Oct. 14, 2014

Sheet 12 of 20

US 8,859,562 B2

Figure 10

1 ctagaattca gcggccgctg aattctaggc ggcgcggcgg cgacggagca ccggcggcgg 61 cagggcgaga gcattaaatg aaagcaaaag agttaataat ggcaacacgg ctccagaaga 121 ctcttcccct gccaagaaaa ctcgtagatg ccagagacag gagtcgaaaa agatgcctgt 181 ggctggagga aaagctaata aggacaggac agaagacaag caagatggta tgccaggaag 241 gtcatgggcc agcaaaaggg tctctgaatc tgtgaaggcc ttgctgttaa agggcaaagc 301 teetgtggae eeagagtgta eageeaaggt ggggaagget eatgtgtatt gtgaaggaaa 361 tgatgtctat gatgtcatgc taaatcagac caatctccag ttcaacaaca acaagtacta 421 tetgatteag etattagaag atgatgeeca gaggaactte agtgtttgga tgagatgggg 481 ccgagttggg aaaatgggac agcacagcet ggtggettgt tcaggcaate tcaacaagge 541 caaggaaatc tttcagaaga aattccttga caaaacgaaa aacaattggg aagatcgaga 601 aaagtttgag aaggtgeetg gaaaatatga tatgetacag atggaetatg eeaccaatae 661 tcaggatgaa gaggaaacaa aaaaagagga atctcttaaa tctcccttga agccagagtc 721 acagetagat ettegggtae aggagttaat aaagttgate tgtaatgtte aggeeatgga 781 agaaatgatg atggaaatga agtataatac caagaaagcc ccacttggga agctgacagt 841 ggcacaaatc aaggcaggtt accagtctct taagaagatt gaggattgta ttcgggctgg 901 ccagcatgga cgagctctca tggaagcatg caatgaattc tacaccagga ttccgcatga 961 ctttggactc cgtactcctc cactaatccg gacacagaag gaactgtcag aaaaaataca 1021 attactagag gettigggag acattgaaat tgetattaag etggtgaaaa cagagetaca 1081 aagcccagaa cacccattgg accaacacta tagaaaccta cattgtgcct tgcgccccct 1141 tgaccatgaa agttacgagt tcaaagtgat ttcccagtac ctacaatcta cccatgctcc 1201 cacacacage gactatacea tgacettget ggatttgttt gaagtggaga aggatggtga 1261 gaaagaagcc ttcagagagg accttcataa caggatgctt ctatggcatg gttccaggat 1321 gagtaactgg gtgggaatet tgagecatgg gettegaatt geceaecetg aageteecat 1381 cacaggitac atgittggga aaggaateta etttgetgac atgitetteea agagtgecaa 1441 ttactgettt geetetegee taaagaatae aggaetgetg etettateag aggtagetet 1501 aggtcagtgt aatgaactac tagaggccaa tcctaaggcc gaaggattgc ttcaaggtaa 1561 acatagcacc aaggggctgg gcaagatggc tcccagttct gcccacttcg tcaccctgaa 1621 tgggagtaca gtgccattag gaccagcaag tgacacagga attctgaatc cagatggtta 1681 tacccicaac tacaatgaat atattgtata taaccccaac caggtccgta tgcggtacct 1741 tttaaaggtt cagtttaatt teetteaget gtggtgaatg ttgatettaa ataaaccaga 1801 gatetgatet teaageaaga aaataageag tgttgtaett gtgaattttg tgatatttta

Oct. 14, 2014

Sheet 13 of 20

US 8,859,562 B2

Figure 11

1 tgggactggt cgcctgactc ggcctgcccc agcctctgct tcaccccact ggtggccaaa 61 tagecgatgt etaateccee acaeaagete atecceggee tetgggattg ttgggaatte 121 tetecetaat teaegeetga ggeteatgga gagttgetag acetgggaet geeetgggag 181 gegeacacaa eeaggeeggg tggeageeag gaceteteee atgteeetge ttttettgge 241 catggeteca aageegaage cetgggtaca gaetgaggge cetgagaaga agaagggeeg 301 gcaggcagga agggaggagg acccetteng etenaceget gaggecetea aggecatace 361 egeagagaag egeataatee gegtggatee aacatgteea eteageagea acceegggae 421 ccaggtgtat gaggactaca actgcaccct gaaccagacc aacatcgaga acaacaacaa 481 caagttetae atcatecage tgeteeaaga cageaacege ttetteacet getggaaceg 541 ctggggccgt gtgggagagg tcggccagtc aaagatcaac cacttcacaa ggctagaaga 601 tgcaaagaag gactttgaga agaaatttcg ggaaaagacc aagaacaact gggcagagcg 661 ggaccacttt gtgtctcacc cgggcaagta cacacttatc gaagtacagg cagaggatga 721 ggcccaggaa gctgtggtga aggtggacag aggcccagtg aggactgtga ctaagcgggt 781 geagecetge teeetggace eagecaegea gaageteate aetaacatet teageaagga 841 gatgttcaag aacaccatgg ccctcatgga cctggatgtg aagaagatgc ccctgggaaa 901 gctgagcaag caacagattg cacggggttt cgaggccttg gaggcgctgg aggaggccct 961 gaaaggcccc acggatggtg gccaaagcct ggaggagctg tcctcacact tttacaccgt 1021 catecegeae aactteggee acagecagee eeegeecate aatteeeetg agettetgea 1081 ggccaagaag gacatgctgc tggtgctggc ggacatcgag ctggcccagg ccctgcaggc 1141 agtetetgag caggagaaga eggtggagga ggtgccacac eccetggace gagactacca 1201 getteteaag tgecagetge agetgetaga etetggagea eetgagtaca aggtgataca 1261 gacctactta gaacagactg gcagcaacca caggtgccct acacttcaac acatctggaa 1321 agtaaaccaa gaagggagg aagacagatt ccaggcccac tccaaactgg gtaatcggaa 1381 getgetgtgg catggcacca acatggccgt ggtggccgcc atcctcacta gtgggctccg 1441 catcatgcca cattetggtg ggcgtgttgg caagggcate tactttgcct cagagaacag 1501 caagtcagct ggatatgtta ttggcatgaa gtgtggggcc caccatgtcg gctacatgtt 1561 cctgggtgag gtggccctgg gcagagagca ccatatcaac acggacaacc ccagcttgaa 1621 gageceacet cetggetteg acagtgteat tgeeegagge cacacegage etgateegae 1681 ccaggacact gagttggagc tggatggcca gcaagtggtg gtgccccagg gccagcctgt 1741 gecetgecea gagtteagea geteeacatt eteecagage gagtacetea tetaceagga 1801 gagccagtgt egeetgeget acetgetgga ggtccacete tgagtgeeeg eeetgteeee 1861 cggggtcctg caaggctgga ctgtgatctt caatcatcct gcccatctct ggtaccccta 1921 tatcactect ttttttcaag aatacaatac gttgttgtta actatagtca ccatgctgta 1981 caagateect gaacttatge etectaaetg aaattttgta ttetttgaca eatetgeeca 2041 gtccctctcc tcccagccca tggtaaccag catttgactc tttacttgta taagggcagc 2101 ttttataggt tccacatgta agtgagatca tgcagtgttt gtctttctgt gcctggctta 2161 tttcactcag cataatgtgc accgggttca cccatgtttt cataaatgac aagatttcct

U.S. Patent Oct. 14, 2014 Sheet 14 of 20 US 8,859,562 B2

Figure 12

```
1 cgaagatggc ggcgtcgcgt cgctctcagc atcatcacca ccatcatcaa caacagctcc
  61 ageocycecc aggggettca gegeogoogo egecacetec teccecacte ageoctggec
 121 tggccccggg gaccacccca gcctctccca cggccagcgg cctggccccc ttcgcctccc
 181 egeggeaegg cetagegetg ceggaggggg atggeagteg ggateegeec gaeaggeece
 241 gateceegga ecoggitigae ggtaceaget gitigeagtae caceageaea atetgitaceg
 301 tegeogeege teeegtggte coageggttt etactteate tgeogetggg gtegeteeca
 361 acccagoogg cagtggcagt aacaatteac ogtogtoote ttottocccg acttottoct
 421 catetteete tecatectee eetqqateqa qettqqeqqa qaqeeegag geggeeggag
 481 trageageac ageaceactg gggeetgggg cageaggace tgggacaggg gteccageag
 541 tgagcggggc cctacgggaa ctgctggagg cctgtcgcaa tggggacgtg tcccgggtaa
 601 agaggetggt ggacgeggca aacgtaaatg caaaggacat ggccggccgg aagtettete
 661 cectgeactt cgctgeaggt tttggaagga aggatgttgt agaacactta ctacagatgg
 721 gtgctaatgt ccacgctogt gatgatggag gtctcatccc gcttcataat gcctgttctt
 781 ttggccatgc tgaggttgtg agtotgttat tgtgccaagg agctgatcca aatgccaggg
 841 ataactggaa ctatacacct ctgcatgaag ctgctattaa agggaagatc gatgtgtgca
 901 ttgtgctgct geageaegga getgaeecaa acatteggaa caetgatggg aaateageec
 961 tqqacctqqc aqatccttca qcaaaagctg tccttacagg tgaatacaag aaagacgaac
1021 tectagaage tgctaggagt ggtaatgaag aaaaactaat ggetttactg actectetaa
1081 atgtgaattg ccatgcaagt gatgggcgaa agtcgactcc tttacatcta gcagcgggct
1141 acaacagagt togaatagtt cagettette tteageatgg tgetgatgtt catgeaaaag
1201 acaaaggtgg acttgtgcct cttcataatg catgttcata tggacattat gaagtcacag
1261 aactgctact aaagcatgga gettgtgtta atgccatgga tetetggcag tttactccac
1321 tgcacgagge tgcttccaag aaccgtgtag aagtotgctc tttgttactt agccatggcg
1381 ctgatcctac gttagtcaac tgccatggca aaagtgctgt ggatatggct ccaactccgg
1441 agottaggga gagattgact tatgaattta aaggtcattc tttactacaa gcagccagag
1501 aagcagactt agctaaagtt aaaaaaacac tegetetgga aatcattaat tteaaacaac
1561 egeagtetea tgaaacagea etgeaetgtg etgtggeete tetgeateee aaacgtaaac
1621 aagtgacaga attgttactt agaaaaggag caaatgttaa tgaaaaaaat aaagatttca
1681 tgactcccct gcatgttgca gccgaaagag cccataatga tgtcatggaa gttctgcata
1741 agcatggcgc caagatgaat gcactggaca cccttggtca gactgctttg catagagccg
1801 ccctagcagg ccaectgcag acctgccgcc tectgctgag ttacggctet gaccetteca
1861 teatcheett acaaggette acagcageae agatgggeaa tgaagcagtg cagcagatte
1921 tgagtgtgag ttacggctct gacccctcca tcatctcctt acaaggcttc acagcagcac
1981 agatgggcaa tgaagcagtg cagcagattc tgagtggtca ttcgtagata gtgatcattc
2041 tacttcagec ttaatggtga tettgagacg ggaagattta gaaggaaate tatccageat
2101 qtcttcactg tcaacatgaa gagtacacct atacgtactt ctgatgttga ttatcgactc
2161 ttagaggcat ctaaagctgg agacttggaa actgtgaagc aactttgcag ctctcaaaat
2221 gtgaattgta gagacttaga gggccggcat tccacgcct tacacttcgc agcaggctac
2281 aacagagtac acctatacgt acttctgatg ttgattatcg actcttagag gcatctaaag
2341 ctggagactt ggaaactgtg aagcaacttt gcagctctca aaatgtgaat tgtagagact
2401 tagagggccg gcattccacg cccttacact tegcagcagg ctacaaccgc gtgtctgttg
2461 tagagtacct gctacaccac ggtgccgatg tccatgccaa agacaagggt ggcttggtgc
2521 cccttcataa tgcctgttca tatggacact atgaggtggc tgagctttta gtaaggcatg
2581 gggettetgt caatgtggeg gaettatgga aatttacece tetecatgaa geageageta
2641 aaggaaagta tgaaatctgc aagctccttt taaaacatgg agcagatcca actaaaaaga
2701 acagagatgg aaatacacct ttggatttgg taaaggaagg agacacagat attcaggact
2761 tactgaaagg ggatgctgct ttgttggatg ctgccaagaa gggctgcctg gcaagagtgc
2821 agaagetetg taccccagag aatatcaact gcagagacac ccagggcaga aattcaaccc
2881 ctctgcacct ggcagcaggc tataataacc tggaagtagc tgaatatctt ctagagcatg
2941 gagotgatgt taatgeceag gacaagggtg gtttaattce tetteataat geggeatett
3001 atgggcatgt tgacatagcg gctttattga taaaatacaa cacgtgtgta aatgcaacag
3061 ataagtgggc gtttactecc ctccatgaag cageccagaa aggaaggacg cagetgtgcg
3121 controttent agegratggt gragactera cratgaagaa craggaagge ragaegente
3181 tggatctggc aacagctgac gatatcagag ctttgctgat agatgccatg cccccagagg
3241 cettacetae etgetetaaa ceteaggeta etgeagtgag tgeetetetg ateteaceag
3301 categacee etectgeete teggetgeca geageataga caaceteact ggecetttag
3361 cagagitggc cgtaggagga goctocaatg caggggatgg cgccgcggga acagaaagga
3421 aggaaggaga agttgctggt cttgacatga atatcagcca atttctaaaa agccttggcc
3481 ttgaacacct tcgggatatc tttgaaacag aacagattac actagatgtg ttggctgata
3541 tgggtcatga agagttgaaa gaaataggca tcaatgcata tgggcaccgc cacaaattaa
3601 tcaaaqqaqt aqaaaqactc ttaggttggac aacaaggcac caatccttat ttgacttttc
3661 actgtgttaa tcagggaacg attttgctgg atcttgctcc agaagataaa gaatatcagt
3721 cagtggaaga agagatgcaa agtactattc gagaacacag agatggtggt aatgctggcg
3781 qcatcttcaa cagatacaat qtcattcgaa ttcaaaaagt tgtcaacaag aagttgaggg
3841 ageggttetg ceacegacag aaggaagtgt etgaggagaa teacaaccat cacaatgage
```

U.S. Patent Oct. 14, 2014 Sheet 15 of 20 US 8,859,562 B2

```
3901 gcatgttgtt tcatggttet cctttcatta atgccattat tcataaaggg tttgatgagc 3961 gacatgcata cataggagga atgtttgggg ccgggattta ttttgctgaa aactcctcaa 4021 aaagcaacca atatgtttat ggaattggag gaggaacagg ctgccctaca cacaaggaca 4081 ggtcatgcta tatatgtcac agacaaatgc tcttctgtag agtgaccett gggaaatcct 4141 ttctgcagtt tagcaccatg aaaatggccc acgcgcctcc agggcaccac tcagtcattg 4201 gtagaccgag cgtcaatggg ctggcatatg ctgaatatgt catctacaga ggagaacagg 4261 catacccaga gtatcttatc acttaccaga tcatgaagcc agaagcccct tcccagaccg 4321 caacagccgc agagcagaag acctagtgaa tgcctgctgg tgaaggccag atcagattc 4381 aacctgggac tggattacag aggattgttt ctaataacaa catcaatatt ctagaagtcc 4441 ctgacagcct agaaataagc tgtttgtctt ctataaagca ttgctatag g
```

Figure 12 (continued)

U.S. Patent Oct. 14, 2014 Sheet 16 of 20 US 8,859,562 B2

Figure 13

1 egegeegeet egetageega aacetgeeca geeggtgeee ggeeactgeg eacgeggg 61 acgaegteac gtgcgetecc ggggetggae ggagetggea ggaggggeet tgccagette 121 cgccgccgcg tegtttcagg acccggacgg cggattcgcg ctgcctccgc cgccgcgggg 181 cagccggggg geagggagec cagcgagggg cgegegtggg egeggecatg ggaetgegee 241 ggatccggtg acagcaggga gccaagcggc ccgggccctg agcgcgtctt ctccgggggg 301 cetegecete etgetegegg ggeegggget eetgeteegg ttgetggege tgttgetgge 361 tgtggcggeg gecaggatea tgtcgggteg cegetgegee ggcgggggag cggcctgcgc 421 gagegeegeg geegaggeeg tggageegge egeeegagag etgttegagg egtgeegeaa 481 cggggacgtg gaacgagtca agaggctggt gacgcctgag aaggtgaaca gccgcgacac 541 ggcgggcagg aaatccacce cgctgcactt cgccgcaggt tttgggcgga aagacgtagt 601 tgaatatttg cttcagaatg gtgcaaatgt ccaagcacgt gatgatgggg gccttattcc 661 tetteataat geatgetett ttggteatge tgaagtagte aateteettt tgegacatgg 721 tgcagacccc aatgetegag ataattggaa ttatactcct etceatgaag etgeaattaa 781 aggaaagatt gatgtttgca ttgtgctgtt acagcatgga gctgagccaa ccatccgaaa 841 tacagatgga aggacagcat tggatttagc agatccatct gccaaagcag tgcttactgg 901 tgaatataag aaagatgaac tettagaaag tgecaggagt ggcaatgaag aaaaaatgat 961 ggctetacte acaccattaa atgteaactg ceaegeaagt gatggeagaa agteaactee 1021 attacatttg gcagcaggat ataacagagt aaagattgta cagctgttac tgcaacatgg 1081 agctgatgte catgetaaag ataaaggtga tetggtacca ttacacaatg cetgttetta 1141 tggtcattat gaagtaactg aactttiggt caagcatggt gcctgtgtaa atgcaatgga 1201 ettgtggcaa tteaeteete tteatgagge agettetaag aacagggttg aagtatgtte 1261 tettetetta agttatggtg cagacceaae aetgeteaat tgteacaata aaagtgetat 1321 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1381 gttgctgcaa gctgcacgag aagetgatgt tactcgaatc aaaaaacatc tctctctgga 1441 aatggtgaat tteaageate eteaaacaea tgaaacagea ttgeattgtg etgetgeate 1501 tecatatece aaaagaaage aaatatgtga aetgttgeta agaaaaggag caaacateaa 1561 tgaaaagact aaagaattet tgacteetet geaegtggea tetgagaaag eteataatga 1621 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat getetggata atettggtea 1681 gaetteteta cacagagetg catattgtgg teatetacaa acetgeegee tacteetgag 1741 ctatgggtgt gatcctaaca ttatatccct tcagggettt actgetttac agatgggaaa 1801 tgaaaatgta cagcaactcc tccaagaggg tatctcatta ggtaattcag aggcagacag 1861 acaattgctg gaagctgcaa aggctggaga tgtcgaaact gtaaaaaaac tgtgtactgt 1921 teagagtgte aactgeagag acattgaagg gegteagtet acaccactte attttgeage 1981 tgggtataac agagtgteeg tggtggaata tetgetacag catggagetg atgtgeatge 2041 taaagataaa ggaggeettg tacetttgea caatgeatgt tettatggae attatgaagt 2101 tgcagaactt cttgttaaac atggagcagt agttaatgta gctgatttat ggaaatttac 2161 acctttacat gaagcagcag caaaaggaaa atatgaaatt tgcaaacttc tgctccagca 2221 tggtgcagac cctacaaaaa aaaacaggga tggaaatact cctttggatc ttgttaaaga

2281 tggagataca gatatteaag atetgettag gggagatgea getttgetag atgetgecaa 2341 gaagggttgt ttageeagag tgaagaagtt gtetteteet gataatgtaa attgeegega 2401 taceeaagge agacatteaa eacetttaca tttageaget ggttataata atttagaagt 2461 tgeagagtat ttgttacaac aeggagetga tgtgaatgee caagacaaag gaggaettat 2521 teetttacat aatgeageat ettaegggea tgtagatgta geagetetae taataaagta 2581 taatgeatgt gteaatgeea eggacaaatg ggettteaea cetttgeaeg aageageeca 2641 aaagggaega acaeagettt gtgetttgtt getageecat ggagetgaee egactettaa 2701 aaateaggaa ggacaaacae etttagattt agttteagea gatgatgtea gegetettet 2761 gacageagee atgeeceeat etgetetgee etettgttae aageeteaag tgeteaatgg

U.S. Patent Oct. 14, 2014 Sheet 17 of 20 US 8,859,562 B2

2821 tgtgagaage ceaggageea etgeagatge tetetettea ggteeateta geceateaag 2881 cetttetgea geeageagte ttgacaactt atetgggagt tttteagaac tgtetteagt 2941 agttagttca agtggaacag agggtgcttc cagtttggag aaaaaggagg ttccaggagt 3001 agattttagc ataactcaat togtaaggaa tottggactt gagcacctaa tggatatatt 3061 tgagagagaa cagatcactt tggatgtatt agttgagatg gggcacaagg agctgaagga 3121 gattggaatc aatgettatg gacataggea caaactaatt aaaggagteg agagacttat 3181 eteeggacaa eaaggtetta aeceatattt aaetttgaac aectetggta gtggaacaat 3241 tettatagat etgteteetg atgataaaga gttteagtet gtggaggaag agatgeaaag 3301 tacagttega gagcacagag atggaggtea tgcaggtgga atctteaaca gatacaatat 3361 teteaagatt eagaaggttt gtaacaagaa actatgggaa agatacaete aeeggagaaa 3421 agaagtttet gaagaaaace acaaceatge caatgaacga atgetattte atgggtetee 3481 ttttgtgaat geaattatee acaaaggett tgatgaaagg catgegtaca taggtggtat 3541 gtttggaget ggeatttatt ttgetgaaaa etetteeaaa ageaateaat atgtatatgg 3601 aattggagga ggtactgggt gtccagttca caaagacaga tcttgttaca tttgccacag 3661 geagetgete tittgeeggg taacettggg aaagtettte etgeagttea gtgeaatgaa 3721 aatggcacat teteeteeag gteateacte agteaetggt aggeeeagtg taaatggeet 3781 agcattaget gaatatgtta tttacagagg agaacagget tatcetgagt atttaattac 3841 ttaccagatt atgaggeetg aaggtatggt egatggataa atagttattt taagaaacta 3901 attocactga acctaaaatc atcaaagcag cagtggcctc tacgttttac tcctttgctg 3961 aaaaaaaatc atcttgccca caggcctgtg gcaaaaggat aaaaatgtga acgaagttta 4021 acattetgae ttgataaage tttaataatg tacagtgttt tetaaatatt teetgttttt 4081 teageaettt aacagatgee atteeaggtt aaactgggtt gtetgtaeta aattataaac 4141 agagttaact tgaacctttt atatgttatg cattgattct aacaaactgt aatgccctca 4201 acagaactaa ttttactaat acaatactgt gttctttaaa acacagcatt tacactgaat 4261 acaatttcat ttgtaaaact gtaaataaga gettttgtac tageecagta tttatttaca 4321 ttgctttgta atataaatet gttttagaac tgcageggtt tacaaaattt tttcatatgt 4381 attgitcate tataciteat ettacategt eatgattgag tgatetttac atttgattee 4441 agaggetatg tteagttgtt agttgggaaa gattgagtta teagatttaa tttgeegatg 4501 ggagcettta tetgteatta gaaatettte teatttaaga aettatgaat atgetgaaga 4561 tttaatttgt gatacetttg tatgtatgag acacatteca aagageteta actatgatag 4621 gtcctgatta ctaaagaage ttctttactg gcctcaattt ctagetttca tgttggaaaa 4681 ttttctgcag tccttctgtg aaaattagag caaagtgctc ctgtttttta gagaaactaa 4741 atettgetgt tgaacaatta tigtgttett tteatggaac ataagtagga tgttaacatt 4801 tecagggtgg gaagggtaat cetaaateat tteceaatet attetaatta eettaaatet 4861 aaaggggaaa aaaaaaatca caaacaggac tgggtagttt tttatcctaa gtatattttt 4921 teetgttett tttacttggt tttattgetg tatttatage caatetatae ateatgggta 4981 aacttaaccc agaactataa aatgtagttg tttcagtccc cttcaggcct cctgaatggg 5041 caagtgcagt gaaacaggtg cttcctgctc ctgggttttc tctccatgat gttatgccca 5101 attggaaata tgctgtcagt ttgtgcacca tatggtgacc acgcctgtgc tcagtttggc 5161 agetatagaa ggaaatgetg teecataaaa tgecateeet atttetaata taacaetett 5221 ttccaggaag catgettaag catettgtta cagagacata catecattat ggettggcaa 5281 tetettttat tigttgaete tageteeett caaagtegag gaaagatett taeteaetta 5341 atgaggacat tececateae tgtetgtace agtteaeett tattttaegt tttatteagt 5401 etgtaaatta aetggeeett tgeagtaaet tgtacataaa gtgetagaaa ateatgttee 5461 ttgtcctgag taagagttaa tcagagtaag tgcatttctg gagttgtttc tgtgatgtaa 5521 attatgatca ttatttaaga agtcaaatcc tgatcttgaa gtgcttttta tacagctctc 5581 taataattac aaatateega aagteattte ttggaacaca agtggagtat gecaaatttt 5641 atatgaattt tteagattat etaagettee aggttttata attagaagat aatgagagaa 5701 ttaatggggt ttatatttac attatctctc aactatgtag cccatattac tcaccctatg 5761 agtgaatetg gaattgettt teatgtgaaa teattgtggt etatgagttt acaataetge

U.S. Patent Oct. 14, 2014 Sheet 18 of 20 US 8,859,562 B2

- 5821 aaactgtgtt attttatcta aaccattget taatgagtgt gttttteeat gaatgaatat
- 5881 accgtggttc atatgttagc atggcagcat tttcagatag ctttttgttt gttgggaagt
- 5941 tggggttttg gggggagggg gagtattagt acgttgcatg gaatagccta ctttataatg
- 6061 gtgccagtag tactattata cccatcttca gtgtcttact tgtactgtat caaattccat
- 6121 acceteattt aattettaat aaaaetgtte acttgtaaaa aaaaaaaaaa aaaaaaaaaa
- 6181 aaaaaaaaa

Figure 13 (continued)

U.S. Patent Oct. 14, 2014 Sheet 19 of 20 US 8,859,562 B2

Figure 14

1 cgcccgccca gccccggggg cagggaaagc ctaaattacg gaattaccgc gagcaaggag 61 cgcggaatcg gggagcgtcc ggagctagct ggatcctcta ggcaggatgg tgatgggaat 121 ettigeaaat tgtatettet gtttgaaagt gaagtaetta eeteageage agaagaaaaa 181 getacaaact gacattaagg aaaatggegg aaagttttee ttttegttaa ateeteagtg 241 cacacatata atcitagata atgctgatgt tetgagteag taccaactga attetateca 301 aaagaaccac gitcatatig caaacccaga tittatatgg aaatctatca gagaaaagag 361 actettggat gtaaagaatt atgateetta taageeeetg gacateacae caceteetga 421 teagaaggeg ageagttetg aagtgaaaac agaaggteta tgeeeggaca gtgeeacaga 481 ggaggaagae actgtggaac teactgagtt tggtatgeag aatgttgaaa ttecteatet 541 tecteaagat tttgaagttg caaaatataa cacettggag aaagtgggaa tggagggagg 601 ccaggaaget gtggtggtgg agetteagtg ttegegggae teeagggaet gteettteet 661 gatateetea eaetteetee tggatgatgg eatggagaet agaagaeagt ttgetataaa 721 gaaaacctct gaagatgcaa gtgaatactt tgaaaattac attgaagaac tgaagaaaca 781 aggattteta etaagagaae attteacaee tgaageaaee eaattageat etgaacaatt 841 gcaagcattg ettttggagg aagteatgaa tteaageact etgageeaag aggtgagega 901 titagtagag atgatttggg cagaggecet gggccacetg gaacacatge tictcaagec 961 agtgaacagg attagcetca acgatgtgag caaggcagag gggattetee ttetagtaaa 1021 ggcagcactg aaaaatggag aaacagcaga gcaattgcaa aagatgatga cagagtttta 1081 cagactgata ceteacaaag geacaatgee caaagaagtg aacetgggae tattggetaa 1141 gaaagcagac ctctgccagc taataagaga catggttaat gtctgtgaaa ctaatttgtc 1201 caaacccaac ccaccatece tggccaaata ccgagetttg aggtgcaaaa ttgagcatgt 1261 tgaacagaat actgaagaat ttctcagggt tagaaaagag gttttgcaga atcatcacag 1321 taagagccca gtggatgtet tgcagatatt tagagttggc agagtgaatg aaaccacaga 1381 gtttttgage aaacttggta atgtgaggee ettgttgeat ggtteteetg tacaaaacat 1441 cgtgggaate ttgtgtcgag ggttgetttt acccaaagta gtggaagate gtggtgtgca 1501 aagaacagac gtcggaaacc ttggaagtgg gatttatttc agtgattcgc tcagtacaag 1561 tatcaagtac tcacaccegg gagagacaga tggcaccaga ctcctgctca tttgtgacgt 1621 agccctegga aagtgtatgg acttacatga gaaggacttt ceettaactg aagcaccacc 1681 aggetacgae agtgtgeatg gagttteaea aacagcetet gteaceaeag actttgagga 1741 tgatgaattt gttgtctata aaaccaatca ggttaaaatg aaatatatta ttaaattttc 1801 catgcctgga gatcagataa aggactttca tectagtgat catactgaat tagaggaata 1861 cagacetgag tttteaaatt ttteaaaggt tgaagattae cagttaecag atgecaaaac 1921 ttccagcagc accaaggeeg geetecagga tgeetetggg aacttggtte etetggagga 1981 tgtccacatc aaagggagaa tcatagacac tgtagcccag gtcattgttt ttcagacata 2041 cacaaataaa agtcacgtgc ccattgaggc aaaatatatc tttcctttgg atgacaaggc 2101 cgctgtgtgt ggcttcgaag ccttcatcaa tgggaagcac atagttggag agattaaaga 2161 gaaggaagaa geecagcaag agtacetaga ageegtgace cagggecatg gegettacet 2221 gatgagteag gatgeteegg aegtttttae tgtaagtgtt ggaaaettae cecetaagge 2281 taaggttett ataaaaatta eetacateae agaacteage ateetgggea etgttggtgt 2341 ctttttcatg cocgccaccg tagcaccctg gcaacaggac aaggctttga atgaaaacct 2401 teaggataca gtagagaaga tttgtataaa agaaatagga acaaagcaaa gettetettt 2461 gactatgtct attgagatgc cgtatgtgat tgaattcatt ttcagtgata cacatgaact 2521 gaaacaaaag egeacagact geaaagetgt cattageace atggaaggea geteettaga 2581 cagcagtgga ttttctctcc acatcggttt gtctgctgcc tatctcccaa gaatgtgggt 2641 tgaaaaacat ccagaaaaag aaagegagge ttgeatgett gtettteaac eegatetega 2701 tgtcgacctc cctgacctag ccagtgagag cgaagtgatt atttgtcttg actgctccag

U.S. Patent Oct. 14, 2014 Sheet 20 of 20 US 8,859,562 B2

2761 ttccatggag ggtgtgacat tettgeaage caageaaate acettgeatg egetgteett 2821 ggtgggtgag aagcagaaag taaatattat ccagttcggc acaggttaca aggagctatt 2881 ttegtateet aageatatea caageaatae caeggeagea gagtteatea tgtetgeeae 2941 acctaccatg gggaacacag acttctggaa aacactccga tatcttagct tattgtaccc 3001 tgetcgaggg teacggaaca teeteetggt gtetgatggg caceteeagg atgagageet 3061 gacattacag etegtgaaga ggageegeee geacaceagg ttattegeet geggtategg 3121 ttctacagea aategteaeg tettaaggat ttigteeeag tgtggtgeeg gagtattiga 3181 atattttaat gcaaaatcca agcatagttg gagaaaacag atagaagacc aaatgaccag 3241 getatgitet cegagitigee aetetgiete egicaaatigg cageaactea atecagatige 3301 georgaggee etgeaggeee eageocaggt geoateettg titegeaatg ategacteet 3361 tgtctatgga ttcattcctc actgcacaca agcaactctg tgtgcactaa ttcaagagaa 3421 agaattitgt acaatggtgt egactactga getteagaag acaactggaa etatgateea 3481 caagetggca geeegagete taateagaga ttatgaagat ggeattette acgaaaatga 3541 aaccagteat gagatgaaaa aacaaacett gaaatetetg attattaaac teagtaaaga 3601 aaactetete ataacacaat ttacaagett tgiggcagtt gagaaaaggg atgagaatga 3661 gtcgcctttt cctgatattc caaaagtttc tgaacttatt gccaaagaag atgtagactt 3721 cetgecetae atgagetgge agggggagee ecaagaagee gteaggaace agtetettit 3781 agcatectet gagtggeeag aattaegttt atecaaaega aaacatagga aaattecatt 3841 ttccaaaaga aaaatggaat tatctcagcc agaagtttct gaagattttg aagaggatgg 3901 cttaggtgta ctaccagett teacateaaa tttggaaegt ggaggtgtgg aaaagetatt 3961 ggatttaagt tggacagagt catgtaaacc aacagcaact gaaccactat ttaagaaagt 4021 cagiccatgg gaaacatcta citetagett tittectatt tiggeteegg eegitggite 4081 ctatettace cegactacee gegeteacag teetgettee tigtettitg ceteatateg 4141 teaggtaget agtiteggti eagetgetee teecagacag titgatgeat eteaatteag 4201 ccaaggeet gtgeetggea ettgtgetga etggateeea eagteggegt ettgteeeae 4261 aggacetece cagaaceeae citetgeace etattgtgge attgttttt cagggagete 4321 attaagetet geaeagtetg eteeactgea acateetgga ggetttaeta eeaggeette 4381 tgetggeaec ttecetgage tggattetee ceagetteat ttetetette etacagaece 4441 tgateceate agaggttttg ggtettatea teeetetget tacteteett ticattttea 4501 acetteegea geetetttga etgecaaeet taggetgeea atggeetetg etttaeetga 4561 ggetetttge agteagteee ggactaceee agtagatete tgtettetag aagaateagt 4621 aggeagtete gaaggaagte gatgteetgt etttgetttt caaagttetg acacagaaag 4681 tgatgageta teagaagtae tteaagaeag etgettttta caaataaagt gtgatacaaa 4741 agatgacagt atcccgtgct ttctggaatt aaaagaagag gatgaaatag tgtgcacaca 4801 acactggcag gatgetgtgc cttggaeaga acteeteagt etacagaeag aggatggett 4861 etggaaactt acaccagaac tgggacttat attaaatett aatacaaatg gtttgcacag 4921 ctttettaaa eaaaaaggea tteaatetet aggtgtaaaa ggaagagaat gteteetgga 4981 cctaattgcc acaatgctgg tactacagtt tattcgcacc aggttggaaa aagagggaat 5041 agtgitcaaa tcactgatga aaatggatga cectictatt tccaggaata ttccctgggc 5101 tittgaggca ataaagcaag caagtgaatg ggtaagaaga actgaaggac agtacccatc 5161 tatetgeeca eggettgaae tggggaaega etgggaetet geeaceaage agttgetggg 5221 actoragece ataageaetg tgteceetet teatagagte etecattaca gteaaggeta 5281 agtcaaatga aactgaattt taaacttttt geatgettet aigtagaaaa taatcaaatg 5341 ataatagata attataatga aacticatta aggitteatt eagtgfagea attactgtet 5401 ttaaaaatta agtggaagaa gaattacttt aatcaactaa caagcaataa taaaatgaaa 5461 cttaaaataa aaaaaaaaaa aaaaaaaaaa

1

USE OF RNAI INHIBITING PARP ACTIVITY FOR THE MANUFACTURE OF A MEDICAMENT FOR THE TREATMENT OF CANCER

This invention relates to the use of an agent that inhibits the activity of an enzyme which mediates the repair of DNA strand breaks in the treatment of certain forms of cancer in particular breast cancer.

Homologous recombination (HR) has been shown to play an important role in repair of damage occurring at DNA replication forks in mammalian cells (2). Thus, cells deficient in HR show retarded growth and exhibit higher level of genetic instability. It is believed that genetic instability due to loss of HR repair in human cancers significantly contributes to the development of cancer in these cells (1).

Post transcriptional modification of nuclear proteins by poly(ADP-ribosyl)ation (PARP) in response to DNA strand breaks plays an important role in DNA repair, regulation of 20 apoptosis, and maintenance of genomic stability.

Poly(ADP-ribose)Polymerase (PARP-1) is an abundant nuclear protein in mammalian cells that catalyses the formation of poly(ADP-ribose) (PAR) polymers using NAD⁺ as substrate. Upon DNA damage, PARP-1 binds rapidly to a 25 DNA strand break (single strand or double strand) and catalyses the addition of negatively charged PAR chains to itself (automodification) and other proteins (see [3, 4] for reviews). The binding of PARP-1 to DNA strand breaks is believed to protect DNA lesions from further processing until PARP-1 is 30 dissociated from the break by the accumulated negative charge resulting from PAR polymers (5,6).

Although PARP-1 has been implicated in several nuclear processes, such as modulation of chromatin structure, DNA replication, DNA repair and transcription, PARP-1 knockout 35 mice develop normally (7). Cells isolated from these mice exhibit a hyper recombination phenotype and genetic instability in the form of increased levels of SCE, micronuclei and tetraploidy (8-10). Genetic instability may also occur in these PARP-1 knockout mice through telomere shortening, 40 increased frequency of chromosome fusion and aneuploidy (11), although all of these results could not be repeated in another set of PARP-1 knock-out mice (12). In the former mice knockout, PARP-1 null mutation rescue impaired V(D)J recombination in SCID mice (13).

These results support the view suggested by Lindahl and coworkers that PARP-1 has a protective role against recombination (5). They proposed that binding of PARP-1 to DNA strand breaks prevents the recombination machinery from recognizing and processing DNA lesions or, alternatively, 50 that the negative charges accumulated following poly ADP-ribosylation repel adjacent recombinogenic DNA sequences. Only the latter model is consistent with inhibition of PARP-1 itself and expression of a dominant negative mutant PARP-1, inducing SCE, gene amplification and homologous recombination (HR [14-18]).

Studies based on treating cells with PARP inhibitors or cells derived from PARP-1 or PARP-2 knockout mice indicate that the suppression of PARP-1 activity increases cell susceptibility to DNA damaging agents and inhibits strand 60 break rejoining (3, 4, 8-11, 19, 20, 47).

Inhibitors of PARP-1 activity have been used in combination with traditional anti-cancer agents such as radio therapy and chemotherapy (21). The inhibitors were used in combination with methylating agents, topoisomerase poisons and 65 ionising radiations and were found to enhance the effectiveness of these forms of treatment. Such treatments, however, 2

are known to cause damage and death to non cancerous or "healthy" cells and are associated with unpleasant side effects

There is therefore a need for a treatment for cancer that is both effective and selective in the killing of cancer cells and which does not need to be administered in combination with radio or chemotherapy treatments.

The present inventors have surprisingly found that cells deficient in homologous recombination (HR) are hypersensitive to PARP inhibitors as compared to wild type cells. This is surprising since PARP-1 knockout mice live normally thereby indicating that PARP-1 is not essential for life. Thus, it could not be expected that cells would be sensitive to PARP inhibition.

According to a first aspect of the invention there is provided the use of an agent that inhibits the activity of an enzyme that mediates the repair of DNA strand breaks in the manufacture of a medicament for the treatment of diseases that are caused by a genetic defect in a gene that mediates homologous recombination.

In a further aspect the invention provides a method of treatment of a disease or condition in a mammal, including human, which is caused by a genetic defect in a gene which mediates homologous recombination, which method comprises administering to the mammal a therapeutically effective amount of an agent which inhibits the activity of an enzyme which mediates repair of DNA strand breaks or other lesions present at replication forks.

In a preferred aspect said enzyme is PARP. In a further preferred aspect said agent is a PARP inhibitor or an RNAi molecule specific to PARP gene.

In a further preferred aspect, the use is in the treatment of cancer.

Preferably the medicament is a pharmaceutical composition consisting of the PARP inhibitor in combination with a pharmaceutically acceptable carrier or diluent.

The specific sensitivity of HR defective tumours to PARP-1 inhibition means that normally dividing cells in the patient will be unaffected by the treatment. Treatment of HR defective cancer cells using a PARP inhibitor also has the advantage that it does not need to be administered as a combination therapy along with conventional radio or chemotherapy treatments thereby avoiding the side effects associated with these conventional forms of treatment.

A genetic defect in a gene which mediates homologous recombination may be due to a mutation in, the absence of, or defective expression of, a gene encoding a protein involved in HR.

In a further aspect, the invention further provides the use of a PARP inhibitor in the manufacture of a medicament for inducing apoptosis in HR defective cells.

In another aspect the invention provides a method of inducing apoptosis in HR defective cells in a mammal which method comprises administering to the mammal a therapeutically effective amount of a PARP inhibitor.

By causing apoptosis in HR defective cells it should be possible to reduce or halt the growth of a tumour in the mammal.

Preferably, the HR defective cells are cancer cells.

Cancer cells defective in HR may partially or totally deficient in HR. Preferably the cancer cells are totally deficient in HR.

The term "cancer" or "tumour" includes lung, colon, pancreatic, gastric, ovarian, cervical, breast or prostate cancer. The cancer may also include skin, renal, liver, bladder or cerebral cancer. In a preferred aspect, the cancer is in a mammal, preferably human.

3

The cancer to be treated may be an inherited form of cancer wherein the patient to be treated has a familial predisposition to the cancer. Preferably, the cancer to be treated is genelinked hereditary cancer. In a preferred embodiment of the invention the cancer is gene-linked hereditary breast cancer.

In a preferred aspect, the PARP inhibitor is useful in the treatment of cancer cells defective in the expression of a gene involved in HR. Genes with suggested function in HR include XRCC1, ADPRT (PARP-1), ADPRTL2 (PARP-2), CTPS, RPA, RPA1, RPA2, RPA3, XPD, ERCC1, XPF, MMS19, RAD51, RAD51B, RAD51C, RAD51D, DMC1, XRCC2, XRCC3, BRCA1, BRCA2, RAD52, RAD54, RAD50, MRE11, NBS1, WRN, BLM, Ku70, Ku80, ATM, ATR, chk1, chk2, FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, RAD1, RAD9, FEN-1, Mus81. Eme1, DDS1, BARD (see (2, 3, 5, 22-28) for reviews).

A gene involved in HR may be a tumour suppressor gene. The invention thus provides for the treatment of cancer cells defective in the expression of a tumour suppressor gene. 20 Preferably, the tumour suppressor gene is BRCA1 or BRCA2.

Breast cancer is the most common cancer disease among women in the Western world today. Certain families have strong predisposition for breast cancer, which is often owing 25 to an inherited mutation in one allele of either BRCA1 or BRCA2. However, these patients still maintain one functional allele. Thus, these patients develop normally and have no phenotypic consequence from this mutation. However, in one cell, the functional allele might be lost, making this cell 30 cancerous and at the same time deficient in homologous recombination (HR). This step is critical for the onset of a tumour (1).

The present inventors have surprisingly found that BRCA2 deficient cells are 100 times more sensitive to the cytotoxicity 35 of the PARP inhibitor, NU1025, than wild type cells.

Thus in a preferred aspect, the invention provides the use of a PARP inhibitor in the manufacture of a medicament for the treatment of cancer cells defective in HR, e.g due to the loss of BRCA1 and/or BRCA2 expression.

The cancer cells to be treated may be partially or totally deficient in BRCA1 or BRCA2 expression. BRCA1 and BRCA2 mutations can be identified using multiplex PCR techniques, array techniques (29, 30) or using other screens known to the skilled person.

PARP inhibitors useful in the present invention may be selected from inhibitors of PARP-1, PARP-2, PARP-3, PARP-4, tankyrase 1 or tankyrase 2 (see 31 for a review). In a preferred embodiment, the PARP inhibitor useful in the present invention is an inhibitor of PARP-1 activity.

PARP inhibitors useful in the present invention include benzimidazole-carboxamides, quinazolin-4-[3H]-ones and isoquinoline derivatives (e.g. 2-(4-hydroxyphenyl)benzimidazole-4-carboxamide (NU1085), 8-hydroxy-2-methylquinazolin-4-[3H]one (NU1025); 6(5H)phenanthridinone; 55 aminobenzamide; benzimidazole-4-carboxamides (BZ1-6) and tricyclic lactam indoles (TI1-5)[32]. Further inhibitors of PARP may be identified either by design [33] or the novel FlashPlate assay [34].

The PARP inhibitor formulated as a pharmaceutical composition may be administered in any effective, convenient manner effective for targeting cancer cells including, for instance, administration by oral, intravenous, intramuscular, intradermal, intranasal, topical routes among others. Carriers or diluents useful in the pharmaceutical composition may 65 include, but are not limited to saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof.

4

In therapy or as a prophylactic, the active agent may be administered to an individual as an injectable composition, for example as a sterile aqueous dispersion. The inhibitor may be administered directly to a tumour or may be targeted to the tumour via systemic administration.

A therapeutically effective amount of the inhibitor is typically one which is sufficient to achieve the desired effect and may vary according to the nature and severity of the disease condition, and the potency of the inhibitor. It will be appreciated that different concentrations may be employed for prophylaxis than for treatment of an active disease.

For administration to mammals, and particularly humans, it is expected that the daily dosage level of the active agent will be up to 100 mg/kg, for example from 0.01 mg/kg to 50 mg/kg body weight, typically up to 0.1, 0.5, 1.0, 2.0 5.0, 10, 15, 20 or 30 mg/kg body weight. Ultimately, however, the amount of inhibitor administered and the frequency of administration will be at the discretion of a physician.

A therapeutic advantage of using PARP inhibitors to treat cancer cells is that only very low doses are needed to have a therapeutic effect in treating cancer thereby reducing systemic build up of the inhibitors and any associated toxic effects

A preferred aspect of the invention provides an agent which is an inhibitory RNA (RNAi) molecule.

A technique to specifically ablate gene function is through the introduction of double stranded RNA, also referred to as inhibitory RNA (RNAi), into a cell which results in the destruction of mRNA complementary to the sequence included in the RNAi molecule. The RNAi molecule comprises two complementary strands of RNA (a sense strand and an antisense strand) annealed to each other to form a double stranded RNA molecule. The RNAi molecule is typically derived from exonic or coding sequence of the gene which is to be ablated.

Preferably said RNAi molecule is derived from the nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of:

- a) a nucleic acid sequence as represented by the sequence in FIG. 9, 10, 11, 12, 13 or 14 or fragment thereof;
- b) a nucleic acid sequence which hybridises to the nucleic acid sequences of FIG. 9, 10, 11, 12, 13 or 14 and encodes a gene for PARP;
- c) a nucleic acid sequence which comprise sequences which are degenerate as a result of the genetic code to the nucleic acid sequences defined in (a) and (b).

Recent studies suggest that RNAi molecules ranging from 100-1000 bp derived from coding sequence are effective inhibitors of gene expression. Surprisingly, only a few molecules of RNAi are required to block gene expression which implies the mechanism is catalytic. The site of action appears to be nuclear as little if any RNAi is detectable in the cytoplasm of cells indicating that RNAi exerts its effect during 55 mRNA synthesis or processing.

More preferably said RNAi molecule according has a length of between 10 nucleotide bases (nb)-1000 nb. Even more preferably said RNAi molecule has a length of 10 nb; 20 nb; 30 nb; 40 nb; 50 nb; 60 nb; 70 nb; 80 nb; 90 nb; or 100 bp. Even more preferably still said RNAi molecule is 21 nb in length.

Even more preferably still the RNAi molecule comprises the nucleic acid sequence aaa agc cau ggu gga gua uga (PARP-1)

Even more preferably still the RNAi molecule consists of the nucleic acid sequence aag acc aau cuc ucc agu uca ac (PARP-2)

20

25

5

Even more preferably still the RNAi molecule consists of the nucleic acid sequence aag acc aac auc gag aac aac (PARP-

The RNAi molecule may comprise modified nucleotide bases

Preferred features of each aspect of the invention are as for each of the other aspects mutatis mutandis.

The present invention will now be described by way of example only with reference to the accompanying figures, wherein:

FIG. 1 is a graph demonstrating that HR deficient cells are hypersensitive to the toxic effect caused by inhibition of PARP-1. Colony outgrowth of the Chinese hamster cell lines AA8 (wild-type), irs1SF (deficient in HR[4]), CXR3 (irs1SF complemented with XRCC3 [2]), V79 (wild-type), irs1 (defi-15 cient in HR[5]) or irs1X2.2 (irs1 complimented with XRCC2 [1]) upon exposure to 3-AB (A), ISQ (B) or NU1025 (C). The means (symbols) and standard deviation (bars) of at least three experiments are shown. Colony outgrowth assay was used:

FIG. 2 is a graph showing cell survival in the presence of PARP inhibitor NU1025 in wt V79 cells, BRCA2 deficient VC-8 cells and VC-8 cells complimented with functional BRCA2 gene (VC-8#13, VC-8+B2). Colony outgrowth assay was used;

FIG. 3 is a histogram showing the percentage of the cells in apoptosis following a 72 hour incubation with NU1025;

FIG. 4. (a) Western blot analysis of protein lysates isolated from MCF-7 (p53^{wt}) or MDA-MB-231 (p53^{mut}) breast cancer cells following 48 hours transfection with siRNA. (b) 30 Colony outgrowth of siRNA-treated MCF-7 cells or (c) MDA-MB-231 cells following exposure to the PARP inhibitor NU1025. The means (symbols) and standard deviation (bars) of at least three experiments are shown.

FIG. 5. BRCA2 deficient cells fail to repair a recombina- 35 tion lesion formed at replication forks by inhibitors of PARP. (a) Visualization of double strand breaks (DSBs) in BRCA2 proficient or deficient cells following a 24-hour treatment with NU1025 (0.1 mM) by pulse-field gel electrophoresis. Hydroxyurea 2 mM was used as a positive control. (b) Visu- 40 alisation of yH2Ax foci in untreated V-C8+B2 and V-C8 cells. Number of cells containing yH2Ax foci (c) or RAD51 foci (d) visualised in V-C8+B2 and V-C8 cells following a 24-hour treatment with NU1025 (10 µM). The means (symbols) and standard errors (bars) of three to nine experiments are shown. 45 (e) A suggested model for cell death induced in BRCA2 deficient cells.

FIG. 6. PARP-1 and not PARP-2 is important in preventing formation of a recombinogenic lesion, causing death in absence of BRCA2. (a) RT-PCR on RNA isolated from 50 SW480SN.3 cells treated with BRCA2, PARP-1 and PARP-2 siRNA in combinations as shown for 48 hours. (b) Clonogenic survival following 48-hours depletion of BRCA2, PARP-1 and PARP-2. The means (symbols) and standard deviation (bars) of at least three experiments are shown. Two 55 and three stars designate statistical significance in t-test p<0.01 and p<0.001, respectively. (c) Western blot for PARP-1 in SW480SN.3 cells treated with different siRNA.

FIG. 7. (a) Visualisation of PAR polymers in untreated and (b) thymidine treated V79 cells (5 mM for 24 hours). (c) 60 Percentage cells containing >10 sites of PARP activity following treatment with hydroxyurea (0.2 mM) and thymidine (5 mM). At least 300 nuclei were counted for each treatment and experiment. (d) Survival of V-C8+B2 cells following co-treatment with hydroxyurea or (e) thymidine and NU1025 (10 µM). (f) The activity of PARP was measured by the level of free NAD(P)H¹¹, following treatment with MMS, hydrox-

yurea (0.5 mM) or thymidine (10 mM). The means (symbol) and standard deviation (error bars) from at least three experiments are depicted.

6

FIG. 8. (a) Visualisation of PAR polymers in untreated 5 V-C8 and (b) V-C8+B2 cells. (c) Quantification of percentage cells containing >10 sites of PARP activity in untreated V-C8 and V-C8+B2 cells. (d) Level of NAD(P)H measured in untreated V-C8 and V-C8+B2 cells. Three stars designate p<0.001 in t-test. (e) Visualization of RAD51 and sites of PARP activity in V79 cells following a 24-hour thymidine treatment (5 mM). (f) A model for the role of PARP and HR at stalled replication forks.

FIG. 9 is the human cDNA sequence of PARP-1;

FIG. 10 is the human cDNA sequence of PARP-2;

FIG. 11 is the human cDNA sequence of PARP-3;

FIG. 12 is the human gDNA sequence of Tankyrase 1;

FIG. 13 is the human mRNA sequence of Tankyrase 2;

FIG. 14 is the human mRNA sequence of VPARP.

MATERIALS AND METHODS

Cytotoxicity of PARP Inhibitors to HR-Defective Cells: XRCC2, XRCC3 or BRCA2

Cell Culture

The irs1, irs1X2.1 and V79-4 cell lines were a donation from John Thacker [40] and the AA8, irs1SF and CXR3 cell lines were provided by Larry Thompson [41].

The VC-8, VC-8+B2, VC-8#13 were a gift from Malgorzata Zdzienicka [42]. All cell lines in this study were grown in Dulbecco's modified Eagle's Medium (DMEM) with 10% Foetal bovine serum and penicillin (100 U/ml) and streptomycin sulphate (100 µg/mL) at 37° C. under an atmosphere containing 5% CO₂.

Toxicity Assay—Colony Outgrowth Assay

500 cells suspended in medium were plated onto a Petri dish 4 hours prior to the addition of 3-AB, ISQ or NU1025. ISQ and NU1025 were dissolved in DMSO to a final concentration of 0.2% in treatment medium. 7-12 days later, when colonies could be observed, these colonies were fixed and stained with methylene blue in methanol (4 g/l). Colonies consisting of more than 50 cells were subsequently counted.

Apoptosis Experiments

 0.25×10^6 cells were plated onto Petri dishes and grown for 4 hours before treatment with NU1025. After 72 hours, cells were trypsinized and resuspended with medium containing any floating cells from that sample. The cells were pelleted by centrifugation and resuspended for apoptosis analysis with FITC-conjugated annexin-V and propidium iodine (PI) (ApoTarget, Biosource International) according to manufacturer's protocol. Samples were analysed by flow cytometry (Becton-Dickenson FACSort, 488 nm laser), and percentage of apoptotic cells was determined by the fraction of live cells (PI-negative) bound with FITC-conjugated annexin-V.

Immunofluorescence

Cells were plated onto coverslips 4 h prior to 24-h treatments as indicated. Following treatments the medium was removed and coverslips rinsed once in PBS at 37° C. and fixed as described elsewhere [2]. The primary antibodies and dilutions used in this study were; rabbit polyclonal anti PAR (Trevigen; 1:500), goat polyclonal anti Rad51 (C-20, Santa Cruz; 1:200) and rabbit polyclonal anti Rad51 (H-92, Santa Cruz; 1:1000). The secondary antibodies were Cy-3-conjugated goat anti-rabbit IgG antibody (Zymed; 1:500), Alexa 555 goat anti-rabbit F(ab')₂IgG antibody (Molecular Probes; 1:500), Alexa 546 donkey anti-goat IgG antibody (Molecular Probes; 1:500) and Alexa 488 donkey anti-rabbit IgG antibody (Molecular Probes; 1:500). Antibodies were diluted in

7

PBS containing 3% bovine serum albumin. DNA was stained with 1 $\mu g/ml$ To Pro (Molecular Probes). Images were obtained with a Zeiss LSM 510 inverted confocal microscope using planapochromat 63X/NA 1.4 oil immersion objective and excitation wavelengths 488, 546 and 630 nm. Through focus maximum projection images were acquired from optical sections 0.50 μm apart and with a section thickness of 1.0 μm . Images were processed using Adobe PhotoShop (Abacus Inc). At least 300 nuclei were counted on each slide and those containing more than 10 RAD51 foci or sites of PARP activity were classified as positive.

PARP Activity Assays

A water-soluble tetrazolium salt (5 mM WST-8) was used to monitor the amount of NAD(P)H through its reduction to a yellow coloured formazan dye[43]. 5000 cells were plated in at least triplicate into wells of a 96 well plate and cultured in 100 μl normal growth media for 4 h at 37° C. CK8 buffer (Dojindo Molecular Technology, Gaithersburg, USA), containing WST-8, was then added either with or without treatment with DNA damaging agents at concentrations indicated. Reduction of WST-8 in the presence of NAD(P)H was deter- 20 mined by measuring visible absorbance (OD_{450}) every 30 min. A medium blank was also prepared containing just media and CK8 buffer. Changes in NAD(P)H levels were calculated by comparing the absorbance of wells containing cells treated with DNA damaging agents and those treated with DMSO alone. Alternately relative levels of NAD(P)H in different cells lines were calculated after 4 h incubation in

The ability of NU1025 to inhibit PARP-1 activity was also assayed in permeabilised cells using a modification of the method of Halldorsson et al [44], and described in detail elsewhere [45]. Briefly: 300 μ l of NU1025-treated (15 min) permeabilised cells were incubated at 26° C. with oligonucleotide (final conc. 2.5 μ g/ml), 75 μ M NAD+[32 P] NAD (Amersham Pharmacia, Amersham, UK) in a total volume of 400 μ l. The reaction was terminated after 5 min by adding ice cold 10% TCA 10% Na Ppi for 60 min prior to filtering through a Whatman GF/C filter (LabSales, Maidstone, UK), rinsed 6x with 1% TCA 1% NaPPi, left to dry and incorporated radioactivity was measured to determine PARP-1 activity. Data are expressed as pmol NAD incorporated/106 cells by reference 40 to [32 P] NAD standards.

Pulse-Field Gel Electrophoresis

 1.5×10^6 cells were plated onto 100 mm dishes and allowed 4 h for attachment. Exposure to drug was for 18 h after which cells were trypsinsied and 10^6 cells melted into each 1% agarose insert. These inserts were incubated as described elsewhere (8) and separated by pulse-field gel electrophoresis for 24 h (BioRad; 120° angle, 60 to 240 s switch time, 4 V/cm). The gel was subsequently stained with ethidium bromide for analysis.

siRNA Treatment

Predesigned BRCA2 SMARTpool and scrambled siRNAs were purchased (Dharmacon, Lafayette, Colo.). 10000 cells seeded onto 6 well plates and left over night before transfected with 100 nM siRNA using Oligofectamine Reagent (Invitrogen) according to manufacturers instructions. Cells were then cultured in normal growth media for 48 h prior to trypsinisation and replating for toxicity assays. Suppression of BRCA2 was confirmed by Western blotting (as described previously [46]) of protein extracts treated with siRNA with an antibody against BRCA2 (Oncogene, Nottingham, UK). 60

EXAMPLES

Homologous Recombination Deficient Cells are Hypersensitive to PARP-1 Inhibition

To investigate the involvement of HR in cellular responses to inhibition of PARP-1, the effects of PARP-1 inhibitors on 8

the survival of HR repair deficient cell lines were studied. It was found that cells deficient in HR (i.e., irs1SF which is defective in XRCC3 or irs1 which is defective in XRCC2 [see Table 1] were very sensitive to the toxic effect of 3-aminobenzamide (3-AB) and to two more potent inhibitors of PARP-1: 1,5-dihydroxyisoquinoline (ISQ; [37]) or 8-hydroxy-2-methylquinazolinone (NU1025 [38, 39]) (FIG. 1). The sensitivity in irs1SF cells to 3-AB, ISQ or NU1025 was corrected by the introduction of a cosmid containing a functional XRCC3 gene (CXR3). Similarly, the sensitivity in irs1 cells to 3-AB, ISQ or NU1025 was corrected by the introduction of a cosmid containing a functional XRCC2 gene (irs1X2.2).

BRCA2 Deficient Cells are Hypersensitive to PARP-1 Inhibition

The survival of BRCA2 deficient cells (VC8) and wild type cells (V79Z) in the presence of inhibitors of PARP-1 was investigated. It was found that VC8 cells are very sensitive to the toxic effect of NU1025 (FIG. 2). The sensitivity in VC8 cells was corrected by the introduction of a functional BRCA2 gene either on chromosome 13 (VC8#13) or on an overexpression vector (VC8+B2). This result demonstrates that the sensitivity to PARP-1 inhibitors is a direct consequence of loss of the BRCA2 function.

To investigate if inhibition of PARP-1 triggers apoptosis in BRCA2 deficient cells, the level of apoptosis 72 hours following exposure to NU1025 was investigated. It was found that NU1025 triggered apoptosis only in VC8 cells, showing that loss of PARP-1 activity in BRCA2 deficient cells triggers this means of death (FIG. 3).

BRCA2 Deficient Breast Cancer Cells are Hypersensitive to PARP-1 Inhibition

It was examined whether the MCF7 (wild-type p53) and MDA-MB-231 (mutated p53) breast cancer cell lines displayed a similar sensitivity to NU1025 upon depletion of BRCA2. It was found that PARP inhibitors profoundly reduced the survival of MCF7 and MDA-MB-231 cells only when BRCA2 was depleted with a mixture of BRCA2 siRNA (FIG. 4). This shows that BRCA2 depleted breast cancer cells are sensitive to PARP inhibitors regardless of p53 status.

BRCA2 Deficient Cells Die from PARP-1 Inhibition in Absence of DNA Double-Strand Breaks (DSBs) but in Presence of γH2Ax

HR is known to be involved in the repair of DSBs and other lesions that occur during DNA replication [2]. To determine whether the sensitivity of BRCA2 deficient cells is the result of an inability to repair DSBs following NU1025 treatment, the accumulation of DSBs in V79 and V-C8 cells was measured following treatments with highly toxic levels of NU1025. It was found that no DSBs were detectable by pulsed field gel electrophoretic analysis of DNA obtained from the treated cells (FIG. 5A), suggesting that low levels of DSBs or other recombingenic substrates accumulated following PARP inhibition in HR deficient cells, which trigger γH2Ax FIG. 5B). The reason why BRCA2 deficient cells die following induction of these recombinogenic lesions is likely to be due to an inability to repair such lesions. To test this, the ability of BRCA2 deficient V-C8 cells and BRCA2 complimented cells to form RAD51 foci in response to NU1025 was determined. It was found that RAD51 foci were indeed induced in V-C8+B2 cells following treatment with NU1025 (statistically significant in t-test p<0.05; FIG. 5D). This indicates that the recombinogenic lesions trigger HR repair in these cells allowing them to survive. In contrast, the BRCA2 deficient V-C8 cells were unable to form RAD51 foci in response to NU1025 treatment (FIG. 5D) indicating no HR, which would leave the recombinogenic lesions unrepaired and thus cause cell death.

PARP-1 and Not PARP-2 is Important in Preventing Formation of a Recombingenic Lesion

There are two major PARPs present in the nucleus in mammalian cells, PARP-1 and PARP-2 and all reported PARP inhibitors inhibit both. In order to distinguish which PARP 5 was responsible for the effect, we tested if the absence of PARP-1 and/or PARP-2 results in accumulation of toxic lesions, by depleting these and BRCA2 with siRNA in human cells (FIG. 6a). We found that the clonogenic survival was significantly reduced when both PARP-1 and BRCA2 pro- 10 teins were co-depleted from human cells (FIG. 6b). Depletion of PARP-2 with BRCA2 had no effect on the clonogenic survival and depletion of PARP-2 in PARP-1 and BRCA2 depleted cells did not result in additional toxicity. These results suggest that PARP-1 and not PARP-2 is responsible 15 for reducing toxic recombinogenic lesions in human cells. The cloning efficiency was only reduced to 60% of control in PARP-1 and BRCA2 co-depleted cells, while no HR deficient cells survived treatments with PARP inhibitors. This is likely to do with incomplete depletion of the abundant PARP-1 20 protein by siRNA (FIG. 6c), which might be sufficient to maintain PARP-1 function in some of the cells.

PARP-1 is Activated by Replication Inhibitors

HR is also involved in repair of lesions occurring at stalled replication forks, which may not involve detectable DSBs [2]. 25 To test if PARP has a role at replication forks, PARP activation in cells treated cells with agents (thymidine or hydroxyurea) that retard or arrest the progression of DNA replication forks was examined. Thymidine depletes cells of dCTP and slows replication forks without causing DSBs. Hydroxyurea 30 depletes several dNTP and block the replication fork, which is associated with the formation of DSBs at replication forks [2]. Both of these agents potently induce HR [2]. V79 hamster cells treated for 24 hours with thymidine or hydroxyurea were stained for PAR polymers. This revealed a substantial 35 increase in the number of cells containing sites of PARP activity (FIG. 7C). This result suggests a function for PARP at stalled replication forks. It was also shown that inhibition of PARP with NU1025 enhances the sensitivity to thymidine or hydroxyurea in V-C8+B2 cells (FIG. 7D,E). This result sug- 40 gests that PARP activity is important in repair of stalled replication forks or alternatively that it prevents the induction of death in cells with stalled replication forks.

PARP is rapidly activated at DNA single-strand breaks (SSB) and attracts DNA repair enzymes [3-6]. Methylmethane sulphonate (MMS) causes alkylation of DNA, which is repaired by base excision repair. PARP is rapidly activated by the SSB-intermediate formed during this repair, which depletes the NAD(P)H levels (FIG. 7F). We found that the activation of PARP and reduction of NAD(P)H levels is 50 much slower following thymidine or hydroxyurea treatments. This slow PARP activation can be explained by the indirect action of thymidine and hydroxyurea and the time required to accumulate stalled replication forks as cells enter the S phase of the cell cycle.

PARP-1 and HR Have Separate Roles at Stalled Replication Forks

The number sites of PARP activity in untreated BRCA2 deficient V-C8 cells was determined. It was found that more V-C8 cells contain sites of PARP activity compared to V-C8+60 B2 cells (FIG. 8A,B,C). Also, the V-C8 cells have lower free NAD(P)H levels than the corrected cells (FIG. 8D), as a likely result of the increased PARP activity. Importantly these sites of PARP activity do not overlap with RAD51 foci (FIG. 8E).

The results herein suggest that PARP and HR have separate 65 roles in the protection or rescue of stalled replication forks (FIG. 8F). A loss of PARP activity can be compensated by

10

increased HR while a loss of HR can be compensated by increased PARP activity. However, loss of both these pathways leads to accumulation of stalled replication forks and to death, as in the case of PARP inhibited BRCA2 deficient cells

As shown in the model outlined in FIG. 8F PARP and HR have complementary roles at stalled replication forks. (i) Replication forks may stall when encountering a roadblock on the DNA template. In addition, they may also stall temporarily, due to lack of dNTPs or other replication co-factors. (ii) PARP binds stalled replication forks or other replicationassociated damage, triggering PAR polymerization. Resulting negatively charged PAR polymers may protect stalled replication forks, by repelling proteins that normally would process replication forks (e.g., resolvases), until the replication fork can be restored spontaneously when dNTPs or other co-factors become available. Alternatively, PAR polymers or PARP may attract proteins to resolve the replication block by other means. (iii) In absence of PARP activity, HR may be used as an alternative pathway to repair stalled replication forks. This compensatory model explains the increased level of HR and RAD51 foci found in PARP deficient cells3-5 and higher PARP activity found in HR deficient cells (i.e. V-C8). Spontaneous replication blocks/lesions are only lethal in the absence of both PARP and HR.

TABLE 1

Genotype and origin of cell lines used in this study.					
	Cell line	Genotype	Defect	Origin	Reference
	AA8	Wt	Wt	СНО	[41]
	irs1SF	XRCC3-	XRCC3-, deficient in HR	AA8	[41]
	CXR3	XRCC3 ⁻ +	Wt	irs1SF	[41]
•		hXRCC3			
	V79-4	Wt	Wt	V79	[40]
	irs1	XRCC2-	XRCC2 ⁻ , deficient in HR	V79-4	[40]
	irs1X2.2	XRCC2 ⁻ +	Wt	irs1	[40]
		hXRCC2			
	V79-Z	Wt	Wt	V79	[42]
)	VC8	BRCA2	BRCA2 ⁻ , deficient in HR	V79-Z	[42]
	VC8#13	BRCA2" +	Wt	VC8	[42]
		hBRCA2			
	VC8 + B2	BRCA2 ⁻ +	Wt	VC8	[42]
		hBRCA2			

REFERENCES

- [1] A. R. Venkitaraman Cancer susceptibility and the functions of BRCA1 and BRCA2, Cell 108 (2002) 171-182.
- [2] C. Lundin, K. Erixon, C. Arnaudeau, N. Schultz, D. Jenssen, M. Meuth and T. Helleday Different roles for nonhomologous end joining and homologous recombination following replication arrest in mammalian cells, Mol Cell Biol 22 (2002) 5869-5878.
- [3] D. D'Amours, S. Desnoyers, I. D'Silva and G. G. Poirier Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions, Biochem J 342 (1999) 249-268.
- [4] Z. Herceg and Z. Q. Wang Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death, Mutat Res 477 (2001) 97-110.
- [5] T. Lindahl, M. S. Satoh, G. G. Poirier and A. Klungland Post-translational modification of poly(ADP-ribose)polymerase induced by DNA strand breaks, Trends Biochem Sci 20 (1995) 405-411.
- [6] M. S. Satoh and T. Lindahl Role of poly(ADP-ribose) formation in DNA repair, Nature 356 (1992) 356-358.

11

- [7] S. Shall and G. de Murcia Poly(ADP-ribose)polymerase-1: what have we learned from the deficient mouse model?, Mutat Res 460 (2000) 1-15.
- [8] Z. Q. Wang, L. Stingl, C. Morrison, M. Jantsch, M. Los, K. Schulze-Osthoff and E. F. Wagner PARP is important for 5 genomic stability but dispensable in apoptosis, Genes Dev 11 (1997) 2347-2358.
- [9] C. M. Simbulan-Rosenthal, B. R. Haddad, D. S. Rosenthal, Z. Weaver, A. Coleman, R. Luo, H. M. Young, Z. Q. Wang, T. Ried and M. E. Smulson Chromosomal 10 aberrations in PARP(-/-) mice: genome stabilization in immortalized cells by reintroduction of poly(ADP-ribose) polymerase cDNA, Proc Natl Acad Sci USA 96 (1999) 13191-13196.
- [10] J. M. de Murcia, C. Niedergang, C. Trucco, M. Ricoul, B. 15 [27] R. Kanaar, J. H. Hoeijmakers and D. C. van Gent Dutrillaux, M. Mark, F. J. Oliver, M. Masson, A. Dierich, M. LeMeur, C. Walztinger, P. Chambon and G. de Murcia Requirement of poly(ADP-ribose)polymerase in recovery from DNA damage in mice and in cells, Proc Natl Acad Sci USA 94 (1997) 7303-7307.
- [11] F. d'Adda di Fagagna, M. P. Hande, W. M. Tong, P. M. Lansdorp, Z. Q. Wang and S. P. Jackson Functions of poly(ADP-ribose)polymerase in controlling telomere length and chromosomal stability, Nat Genet 23 (1999) 76-80.
- [12] E. Samper, F. A. Goytisolo, J. Menissier-de Murcia, E. Gonzalez-Suarez, J. C. Cigudosa, G. de Murcia and M. A. Blasco Normal telomere length and chromosomal end capping in poly(ADP-ribose)polymerase-deficient mice and primary cells despite increased chromosomal instability, J 30 Cell Biol 154 (2001) 49-60.
- [13] C. Morrison, G. C. Smith, L. Stingl, S. P. Jackson, E. F. Wagner and Z. Q. Wang Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis, Nat Genet 17 (1997) 479-482.
- [14] V. Schreiber, D. Hunting, C. Trucco, B. Gowans, D. Grunwald, G. De Murcia and J. M. De Murcia A dominantnegative mutant of human poly(ADP-ribose)polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage, Proc Natl Acad Sci 40 USA 92 (1995) 4753-4757.
- [15] J. H. Kupper, M. Muller and A. Burkle Trans-dominant inhibition of poly(ADP-ribosyl)ation potentiates carcinogen induced gene amplification in SV40-transformed Chinese hamster cells, Cancer Res 56 (1996) 2715-2717.
- [16] J. Magnusson and C. Ramel Inhibitor of poly(ADPribose)transferase potentiates the recombinogenic but not the mutagenic action of alkylating agents in somatic cells in vivo in *Drosophila melanogaster*, Mutagenesis 5 (1990) 511-514.
- [17] A. S. Waldman and B. C. Waldman Stimulation of intrachromosomal homologous recombination in mammalian cells by an inhibitor of poly(ADP-ribosylation), Nucleic Acids Res 19 (1991) 5943-5947.
- [18] A. Semionov, D. Cournoyer and T.Y. Chow Inhibition of 55 poly(ADP-ribose)polymerase stimulates extrachromosomal homologous recombination in mouse Ltk-fibroblasts, Nucleic Acids Res 27 (1999) 4526-4531.
- [19] F. Dantzer, V. Schreiber, C. Niedergang, C. Trucco, E. Flatter, G. De La Rubia, J. Oliver, V. Rolli, J. Menissier-de 60 Murcia and G. de Murcia Involvement of poly(ADP-ribose)polymerase in base excision repair, Biochimie 81 (1999) 69-75.
- [20] F. Dantzer, G. de La Rubia, J. Menissier-De Murcia, Z. Hostomsky, G. de Murcia and V. Schreiber Base excision 65 repair is impaired in mammalian cells lacking Poly(ADPribose)polymerase-1, Biochemistry 39 (2000) 7559-7569.

12

- [21] L. Tentori, I. Portarena and G. Graziani Potential clinical applications of poly(ADP-ribose)polymerase (PARP) inhibitors, Pharmacol Res 45 (2002) 73-85.
- [22] T. Lindahl and R. D. Wood Quality control by DNA repair, Science 286 (1999) 1897-1905.
- [23] K. W. Caldecott DNA single-strand break repair and spinocerebellar ataxia, Cell 112 (2003) 7-10.
- [24] D. D'Amours and S. P. Jackson The Mre11 complex: at the crossroads of dna repair and checkpoint signalling, Nat Rev Mol Cell Biol 3 (2002) 317-327.
- [25] A. D. D'Andrea and M. Grompe The Fanconi anaemia/ BRCA pathway, Nat Rev Cancer 3 (2003) 23-34.
- [26] S. P. Jackson Sensing and repairing DNA double-strand breaks, Carcinogenesis 23 (2002) 687-696.
- Molecular mechanisms of DNA double strand break repair, Trends Cell Biol 8 (1998) 483-489.
- [28] D. C. van Gent, J. H. Hoeijmakers and R. Kanaar Chromosomal stability and the DNA double-stranded break connection, Nat Rev Genet 2 (2001) 196-206.
- [29] S. L. Neuhausen and E. A. Ostrander Mutation testing of early-onset breast cancer genes BRCA1 and BRCA2, Genet Test 1 (1997) 75-83.
- [30] G. Kuperstein, W. D. Foulkes, P. Ghadirian, J. Hakimi and S. A. Narod A rapid fluorescent multiplexed-PCR analysis (FMPA) for founder mutations in the BRCA1 and BRCA2 genes, Clin Genet 57 (2000) 213-220.
- [31] A. Chiarugi Poly(ADP-ribose) polymerase: killer or conspirator? The 'suicide hypothesis' revisited, Trends Pharmacol Sci 23 (2002) 122-129.
- [32] C. R. Calabrese, M. A. Batey, H. D. Thomas, B. W. Durkacz, L. Z. Wang, S. Kyle, D. Skalitzky, J. Li, C. Zhang, T. Boritzki, K. Maegley, A. H. Calvert, Z. Hostomsky, D. R. Newell and N. J. Curtin Identification of Potent Nontoxic Poly(ADP-Ribose)Polymerase-1 inhibitors: Chemopotentiation and Pharmacological Studies, Clin Cancer Res 9 (2003) 2711-2718.
- [33] D. Ferraris, Y. S. Ko, T. Pahutski, R. P. Ficco, L. Serdyuk, C. Alemu, C. Bradford, T. Chiou, R. Hoover, S. Huang, S. Lautar, S. Liang, Q. Lin, M. X. Lu, M. Mooney, L. Morgan, Y. Qian, S. Tran, L. P. Williams, Q. Y. Wu, J. Zhang, Y. Zou and V. Kalish Design and synthesis of poly ADP-ribose polymerase-1 inhibitors. 2. Biological evaluation of aza-5 [H]-phenanthridin-6-ones as potent, aqueous-soluble compounds for the treatment of ischemic injuries, J Med Chem 46 (2003) 3138-3151.
- [34] K. J. Dillon, G. C. Smith and N. M. Martin A FlashPlate assay for the identification of PARP-1 inhibitors, J Biomol Screen 8 (2003) 347-352.
- 50 [35] A. J. Pierce, R. D. Johnson, L. H. Thompson and M. Jasin XRCC3 promotes homology-directed repair of DNA damage in mammalian cells, Genes Dev 13 (1999) 2633-2638.
 - [36] R. D. Johnson, N. Liu and M. Jasin Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination, Nature 401 (1999) 397-399.
 - [37] G. M. Shah, D. Poirier, S. Desnoyers, S. Saint-Martin, J. C. Hoflack, P. Rong, M. ApSimon, J. B. Kirkland and G. G. Poirier Complete inhibition of poly(ADP-ribose)polymerase activity prevents the recovery of C3H10T1/2 cells from oxidative stress, Biochim Biophys Acta 1312 (1996)
 - [38] R. J. Griffin, S. Srinivasan, K. Bowman, A. H. Calvert, N. J. Curtin, D. R. Newell, L. C. Pemberton and B. T. Golding Resistance-modifying agents. 5. Synthesis and biological properties of quinazolinone inhibitors of the DNA repair enzyme poly(ADP-ribose)polymerase (PARP), J Med Chem 41 (1998) 5247-5256.

13

- [39] S. Boulton, L. C. Pemberton, J. K. Porteous, N. J. Curtin, R. J. Griffin, B. T. Golding and B. W. Durkacz Potentiation of temozolomide-induced cytotoxicity: a comparative study of the biological effects of poly(ADP-ribose)polymerase inhibitors, Br J Cancer 72 (1995) 849-856.
- [40] C. S. Griffin, P. J. Simpson, C. R. Wilson and J. Thacker Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation, Nat Cell Biol 2 (2000) 757-761.
- [41] R. S. Tebbs, Y. Zhao, J. D. Tucker, J. B. Scheerer, M. J. 10 Siciliano, M. Hwang, N. Liu, R. J. Legerski and L. H. Thompson Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene, Proc Natl Acad Sci USA 92 (1995) 6354-6358.
- [42] M. Kraakman-van der Zwet, W. J. Overkamp, R. E. van Lange, J. Essers, A. van Duijn-Goedhart, I. Wiggers, S. Swaminathan, P. P. van Buul, A. Errami, R. T. Tan, N. G. Jaspers, S. K. Sharan, R. Kanaar and M. Z. Zdzienicka Brca2 (XRCC11) deficiency results in radioresistant DNA

14

- synthesis and a higher frequency of spontaneous deletions, Mol Cell Biol 22 (2002) 669-679.
- [43] J. Nakamura, S. Asakura, S. D. Hester, G. de Murcia, K. W. Caldecott and J. A. Swenberg Quantitation of intracellular NAD(P)H can monitor an imbalance of DNA single strand break repair in base excision repair deficient cells in real time, Nucleic Acids Res 31 (2003) e104.
- [44] H. Halldorsson, D. A. Gray and S. Shall Poly(ADPribose)polymerase activity in nucleotide permeable cells, FEBS Lett 85 (1978) 349-352.
- [45] K. Grube, J. H. Kupper and A. Burkle Direct stimulation of poly(ADP ribose)polymerase in permeabilized cells by double-stranded DNA oligomers, Anal Biochem 193 (1991) 236-239.
- 15 [46] C. Lundin, N. Schultz, C. Amaudeau, A. Mohindra, L. T. Hansen and T. Helleday RAD51 is Involved in Repair of Damage Associated with DNA Replication in Mammalian Cells, J Mol Biol 328 (2003) 521-535.
 - [47] Schreider et al., Journal of Biological Chemistry 277: 23028-23036 (2002).

SEQUENCE LISTING

```
<160> NUMBER OF SEO ID NOS: 9
<210> SEO ID NO 1
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 1
aaaagccaug guggaguaug a
                                                                        21
<210> SEQ ID NO 2
<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 2
aaqaccaauc ucuccaquuc aac
                                                                        23
<210> SEQ ID NO 3
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 3
aagaccaaca ucgagaacaa c
<210> SEQ ID NO 4
<211> LENGTH: 5468
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 4
                                                                        60
cgcccgccca gccccggggg cagggaaagc ctaaattacg gaattaccgc gagcaaggag
cgcggaatcg gggagcgtcc ggagctagct ggatcctcta ggcaggatgg tgatgggaat
                                                                       120
ctttgcaaat tgtatcttct gtttgaaagt gaagtactta cctcagcagc agaagaaaaa
                                                                       180
gctacaaact gacattaagg aaaatggcgg aaagttttcc ttttcgttaa atcctcagtg
cacacatata atcttaqata atqctqatqt tctqaqtcaq taccaactqa attctatcca
                                                                       300
aaagaaccac gttcatattg caaacccaga ttttatatgg aaatctatca gagaaaagag
                                                                       360
acticttqqat qtaaaqaatt atqatcctta taaqcccctq qacatcacac cacctcctqa
                                                                       420
```

16

-continued

15

tcagaaggcg agcagttctg aagtgaaaac agaaggtcta tgcccggaca gtgccacaga 480 ggaggaagac actgtggaac tcactgagtt tggtatgcag aatgttgaaa ttcctcatct 540 tcctcaagat tttgaagttg caaaatataa caccttggag aaagtgggaa tggagggagg 600 ccaggaagct gtggtggtgg agcttcagtg ttcgcgggac tccagggact gtcctttcct 660 gatateetea caetteetee tggatgatgg catggagaet agaagacagt ttgetataaa 720 gaaaacctct gaagatgcaa gtgaatactt tgaaaaattac attgaagaac tgaagaaaca 780 aggatttcta ctaagagaac atttcacacc tgaagcaacc caattagcat ctgaacaatt 840 gcaagcattg cttttggagg aagtcatgaa ttcaagcact ctgagccaag aggtgagcga tttagtagag atgatttggg cagaggccct gggccacctg gaacacatgc ttctcaagcc 960 1020 aqtqaacaqq attaqcctca acqatqtqaq caaqqcaqaq qqqattctcc ttctaqtaaa ggcagcactg aaaaatggag aaacagcaga gcaattgcaa aagatgatga cagagtttta 1080 caqactqata cctcacaaaq qcacaatqcc caaaqaaqtq aacctqqqac tattqqctaa 1140 qaaaqcaqac ctctqccaqc taataaqaqa catqqttaat qtctqtqaaa ctaatttqtc 1200 1260 caaacccaac ccaccatccc tqqccaaata ccqaqctttq aqqtqcaaaa ttqaqcatqt tqaacaqaat actqaaqaat ttctcaqqqt taqaaaaqaq qttttqcaqa atcatcacaq 1320 taagagcca gtggatgtct tgcagatatt tagagttggc agagtgaatg aaaccacaga 1380 1440 qtttttqaqc aaacttqqta atqtqaqqcc cttqttqcat qqttctcctq tacaaaacat cgtgggaatc ttgtgtcgag ggttgctttt acccaaagta gtggaagatc gtggtgtgca 1500 1560 aagaacagac gtcggaaacc ttggaagtgg gatttatttc agtgattcgc tcagtacaag tatcaagtac tcacaccegg gagagacaga tggcaccaga ctcctgctca tttgtgacgt 1620 agccctcgga aagtgtatgg acttacatga gaaggacttt tccttaactg aagcaccacc 1680 aggctacgac agtgtgcatg gagtttcaca aacagcctct gtcaccacag actttgagga 1740 tgatgaattt gttgtctata aaaccaatca ggttaaaatg aaatatatta ttaaattttc 1800 catgcctgga gatcagataa aggactttca tcctagtgat catactgaat tagaggaata 1860 cagacctgag ttttcaaatt tttcaaaggt tgaagattac cagttaccag atgccaaaac 1920 ttccagcagc accaaggccg gcctccagga tgcttctggg aacttggttc ctctggagga 1980 tgtccacatc aaagggagaa tcatagacac tgtagcccag gtcattgttt ttcagacata 2040 cacaaataaa agtcacgtgc ccattgaggc aaaatatatc tttcctttgg atgacaaggc 2100 cgctgtgtgt ggcttcgaag ccttcatcaa tgggaagcac atagttggag agattaaaga 2160 gaaggaagaa gcccagcaag agtacctaga agccgtgacc cagggccatg gcgcttacct 2280 qatqaqtcaq qatqctccqq acqtttttac tqtaaqtqtt qqaaacttac cccctaaqqc taaggttctt ataaaaatta cctacatcac agaactcagc atcctgggca ctgttggtgt 2340 2400 ctttttcatg cccgccaccg tagcaccctg gcaacaggac aaggctttga atgaaaacct tcaggataca gtagagaaga tttgtataaa agaaatagga acaaagcaaa gcttctcttt 2460 qactatqtct attqaqatqc cqtacqtqat tqaattcatt ttcaqtqata ctcatqaact 2520 gaaacaaaag cgcacagact gcaaagctgt cattagcacc atggaaggca gctccttaga 2580 cagcagtgga ttttctctcc acatcggttt gtctgctgcc tatctcccaa gaatgtgggt 2640 tgaaaaacat ccagaaaaag aaagcgaggc ttgcatgctt gtctttcaac ccgatctcga 2700 2760 tgtcgacctc cctgacctag ccaatgagag cgaagtgatt atttgtcttg actgctccag

18

17 -continued

-continued	
ttccatggag ggtgtgacat tcttgcaagc caaggaaatc gccttgcatg cgctgtcctt	2820
ggtgggtgag aagcagaaag taaatattat ccagttcggc acaggttaca aggagctatt	2880
ttcgtatcct aagcatatca caagcaatac cgcggcagca gagttcatca tgtctgccac	2940
acctaccatg gggaacacag acttctggaa aacactccga tatcttagct tattgtaccc	3000
tgctcgaggg tcacggaaca tcctcctggt gtctgatggg cacctccagg atgagagcct	3060
gacattacag ctcgtgaaga ggagccgccc gcacaccagg ttattcgcct gcggtatcgg	3120
ttctacagca aatcgtcacg tcttaaggat tttgtcccag tgtggtgccg gagtatttga	3180
atattttaat gcaaaatcca agcatagttg gagaaaacag atagaagacc aaatgaccag	3240
gctatgttct ccgagttgcc actctgtctc cgtcaaatgg cagcaactca atccagatgc	3300
gcccgaggcc ctgcaggccc cagcccaggt gccatccttg tttcgcaatg atcgactcct	3360
tgtctatgga ttcattcctc actgcacaca ggcaactctg tgtgcactaa ttcaagagaa	3420
agaattttgt acaatggtgt cgactactga gcttcagaag acaactggaa ctatgatcca	3480
caagctggca gcccgagctc taatcagaga ttatgaagat ggcattcttc acgaaaatga	3540
aaccagtcat gagatgaaaa aacaaacctt gaaatctctg attattaaac tcagtaaaga	3600
aaactctctc ataacacaat ttacaagctt tgtggcagtt gagaaaaggg atgagaatga	3660
gtcacctttt cctgatattc caaaagtttc tgaacttatt gccaaagaag atgtagactt	3720
cctgccctac atgagctggc agggggaacc ccaagaagcc gtcaggaacc agtctctttt	3780
agcatectet gagtggeeag aattaegttt atecaaaega aaacatagga aaatteeatt	3840
ttccaaaaga aaaatggaat tatctcagcc agaagtttct gaagattttg aagaggatgc	3900
cttaggtgta ctaccagctt tcacatcaaa tttggaacgt ggacgtgtgg aaaagctatt	3960
ggatttaagt tggacagagt catgtaaacc aacagcaact gaaccactat ttaagaaagt	4020
cagtccatgg gaaacatcta cttctagctt ttttcctatt ttggctccgg ccgttggttc	4080
ctatcttacc ccgactaccc gcgctcacag tcctgcttcc ttgtcttttg cctcatatcg	4140
tcaggtaget agttteggtt cagetgetee teccagacag tttgatgeat etcaatteag	4200
ccaaggccct gtgcctggca cttgtgctga ctggatccca cagtcggcgt cttgtcccac	4260
aggacetece cagaaceeae ettetgeace etattgtgge attgtttttt cagggagete	4320
attaagetet geacagtetg etceactgea acateetgga ggetttaeta eeaggeette	4380
tgctggcacc ttccctgagc tggattctcc ccagcttcat ttctctcttc ctacagaccc	4440
tgatcccatc agaggttttg ggtcttatca tccctctgct tactctcctt ttcattttca	4500
acetteegea geetetttga etgeeaacet taggetgeea atggeetetg etttaeetga	4560
ggetetttge agteagteee ggaetaeeee agtagatete tgtettetag aagaateagt	4620
aggcagtete gaaggaagte gatgteetgt etttgetttt caaagttetg acacagaaag	4680
tgatgagcta tcagaagtac ttcaagacag ctgcttttta caaataaaat gtgatacaaa	4740
agatgacagt atcccgtgct ttctggaagt aaaagaagag gatgaaatag tgtgcacaca	4800
acactggcag gatgctgtgc cttggacaga actcctcagt ctacagacag aggatggctt	4860
ctggaaactt acaccagaac tgggacttat attaaatctt aatacaaatg gtttgcacag	4920
ctttcttaaa caaaaaggca ttcaatctct aggtgtaaaa ggaagagaat gtctcctgga	4980
cctaattgcc acaatgctgg tactacagtt tattcgcacc aggttggaaa aagagggaat	5040
agtgttcaaa tcactgatga aaatggatga cccttctatt tccaggaata ttccctgggc	5100
ttttgaggca ataaagcaag caagtgaatg ggtaagaaga actgaaggac agtacccatc	5160

19 continued

-continued	
tatctgccca cggcttgaac tggggaacga ctgggactct gccaccaagc agttgctggg	5220
actocagood ataagoactg tgtococtot toatagagto otocattaca gtoaaggota	5280
agtcaaatga aactgaattt taaacttttt gcatgcttct atgtagaaaa taatcaaatg	5340
ataatagata cttataatga aacttcatta aggtttcatt cagtgtagca attactgtct	5400
ttaaaaatta agtggaagaa gaattacttt aatcaactaa caagcaataa taaaatgaaa	5460
cttaaaat	5468
<210> SEQ ID NO 5 <211> LENGTH: 1910 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 5	
ctagaattca geggeegetg aattetagge ggegeggegg egaeggagea eeggeggegg	60
cagggcgaga gcattaaatg aaagcaaaag agttaataat ggcaacacgg ctccagaaga	120
ctcttcccct gccaagaaaa ctcgtagatg ccagagacag gagtcgaaaa agatgcctgt	180
ggctggagga aaagctaata aggacaggac agaagacaag caagatggta tgccaggaag	240
gtcatgggcc agcaaaaggg tetetgaate tgtgaaggcc ttgetgttaa agggcaaage	300
tcctgtggac ccagagtgta cagccaaggt ggggaaggct catgtgtatt gtgaaggaaa	360
tgatgtctat gatgtcatgc taaatcagac caatctccag ttcaacaaca acaagtacta	420
tctgattcag ctattagaag atgatgccca gaggaacttc agtgtttgga tgagatgggg	480
ccgagttggg aaaatgggac agcacagcct ggtggcttgt tcaggcaatc tcaacaaggc	540
caaggaaatc tttcagaaga aattccttga caaaacgaaa aacaattggg aagatcgaga	600
aaagtttgag aaggtgcctg gaaaatatga tatgctacag atggactatg ccaccaatac	660
tcaggatgaa gaggaaacaa aaaaagagga atctcttaaa tctcccttga agccagagtc	720
acagctagat cttcgggtac aggagttaat aaagttgatc tgtaatgttc aggccatgga	780
agaaatgatg atggaaatga agtataatac caagaaagcc ccacttggga agctgacagt	840
ggcacaaatc aaggcaggtt accagtetet taagaagatt gaggattgta ttegggetgg	900
ccagcatgga cgagctctca tggaagcatg caatgaattc tacaccagga ttccgcatga	960
ctttggactc cgtactcctc cactaatccg gacacagaag gaactgtcag aaaaaataca	1020
attactagag gctttgggag acattgaaat tgctattaag ctggtgaaaa cagagctaca	1080
aageecagaa caeecattgg accaacacta tagaaaecta cattgtgeet tgegeeceet	1140
tgaccatgaa agttacgagt tcaaagtgat ttcccagtac ctacaatcta cccatgctcc	1200
cacacacage gactatacea tgacettget ggatttgttt gaagtggaga aggatggtga	1260
gaaagaagcc ttcagagagg accttcataa caggatgctt ctatggcatg gttccaggat	1320
gagtaactgg gtgggaatct tgagccatgg gcttcgaatt gcccaccctg aagctcccat	1380
cacaggttac atgtttggga aaggaatcta ctttgctgac atgtcttcca agagtgccaa	1440
ttactgcttt gcctctcgcc taaagaatac aggactgctg ctcttatcag aggtagctct	1500
aggtcagtgt aatgaactac tagaggccaa tcctaaggcc gaaggattgc ttcaaggtaa	1560
acatagcace aaggggetgg geaagatgge teecagttet geecaetteg teaceetgaa	1620
tgggagtaca gtgccattag gaccagcaag tgacacagga attctgaatc cagatggtta	1680
taccctcaac tacaatgaat atattgtata taaccccaac caggtccgta tgcggtacct	1740
== = = = = = = = = = = = = = = = = = = =	

21 22

-continued	
tttaaaggtt cagtttaatt teetteaget gtggtgaatg ttgatettaa ataaaccaga	1800
gatetgatet teaageaaga aaataageag tgttgtaett gtgaattttg tgatatttta	1860
tgtaataaaa actgtacagg tctaaaaaaa aaaaaaaaaa	1910
<210> SEQ ID NO 6 <211> LENGTH: 2263 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 6	
tgggactggt cgcctgactc ggcctgcccc agcctctgct tcaccccact ggtggccaaa	60
tageogatgt ctaatecece acacaagete ateceeggee tetgggattg ttgggaatte	120
tetecetaat teaegeetga ggeteatgga gagttgetag acetgggaet geeetgggag	180
gcgcacacaa ccaggccggg tggcagccag gacctctccc atgtccctgc ttttcttggc	240
catggctcca aagccgaagc cctgggtaca gactgagggc cctgagaaga agaagggccg	300
gcaggcagga agggaggagg acccettecg etceaeeget gaggeeetea aggeeatace	360
cgcagagaag cgcataatcc gcgtggatcc aacatgtcca ctcagcagca accccgggac	420
ccaggtgtat gaggactaca actgcaccct gaaccagacc aacatcgaga acaacaacaa	480
caagttctac atcatccagc tgctccaaga cagcaaccgc ttcttcacct gctggaaccg	540
ctggggccgt gtgggagagg tcggccagtc aaagatcaac cacttcacaa ggctagaaga	600
tgcaaagaag gactttgaga agaaatttcg ggaaaagacc aagaacaact gggcagagcg	660
ggaccacttt gtgtctcacc cgggcaagta cacacttatc gaagtacagg cagaggatga	720
ggcccaggaa gctgtggtga aggtggacag aggcccagtg aggactgtga ctaagcgggt	780
gcagccctgc tccctggacc cagccacgca gaagctcatc actaacatct tcagcaagga	840
gatgttcaag aacaccatgg ccctcatgga cctggatgtg aagaagatgc ccctgggaaa	900
gctgagcaag caacagattg cacggggttt cgaggccttg gaggcgctgg aggaggccct	960
gaaaggcccc acggatggtg gccaaagcct ggaggagctg tcctcacact tttacaccgt	1020
catecegeae aactteggee acageeagee ecegeecate aatteeeetg agettetgea	1080
ggccaagaag gacatgctgc tggtgctggc ggacatcgag ctggcccagg ccctgcaggc	1140
agtototgag caggagaaga cggtggagga ggtgccacac cccctggacc gagactacca	1200
gcttctcaag tgccagctgc agctgctaga ctctggagca cctgagtaca aggtgataca	1260
gacctactta gaacagactg gcagcaacca caggtgccct acacttcaac acatctggaa	1320
agtaaaccaa gaaggggagg aagacagatt ccaggcccac tccaaactgg gtaatcggaa	1380
gctgctgtgg catggcacca acatggccgt ggtggccgcc atcctcacta gtgggctccg	1440
catcatgcca cattctggtg ggcgtgttgg caagggcatc tactttgcct cagagaacag	1500
caagtcagct ggatatgtta ttggcatgaa gtgtggggcc caccatgtcg gctacatgtt	1560
cctgggtgag gtggccctgg gcagagagca ccatatcaac acggacaacc ccagcttgaa	1620
gageceaect eetggetteg acagtgteat tgeeegagge cacacegage etgateegae	1680
ccaggacact gagttggagc tggatggcca gcaagtggtg gtgccccagg gccagcctgt	1740
gecetgeeca gagtteagea getecacatt eteceagage gagtacetea tetaceagga	1800
gagecagtgt egeetgeget acetgetgga ggtecacete tgagtgeeeg ecetgteeee	1860
cggggtcctg caaggctgga ctgtgatctt caatcatcct gcccatctct ggtaccccta	1920
tateacteet tittiteaag aatacaatae gitgitgita actatagica ecatgetgia	1980
555 666	

23 -continued

-continued	
caagatccct gaacttatgc ctcctaactg aaattttgta ttctttgaca catctgccca	2040
gtccctctcc tcccagccca tggtaaccag catttgactc tttacttgta taagggcagc	2100
ttttataggt tccacatgta agtgagatca tgcagtgttt gtctttctgt gcctggctta	2160
tttcactcag cataatgtgc accgggttca cccatgtttt cataaatgac aagatttcct	2220
cctttaaaaa aaaaaaaaaa aaaaaaaaaa aaa	2263
<210> SEQ ID NO 7 <211> LENGTH: 4491 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 7	
cgaagatggc ggcgtcgcgt cgctctcagc atcatcacca ccatcatcaa caacagctcc	60
agcccgcccc aggggcttca gcgccgccgc cgccacctcc tcccccactc agccctggcc	120
tggccccggg gaccacccca gcctctccca cggccagcgg cctggccccc ttcgcctccc	180
egeggeaegg cetagegetg eeggaggggg atggeagteg ggateegeee gacaggeeee	240
gateceegga eeeggttgae ggtaceaget gttgeagtae caeeageaca atetgtaeeg	300
tegeegeege teeegtggte ceageggttt etaetteate tgeegetggg gtegeteeea	360
acceageegg cagtggeagt aacaatteae egtegteete ttetteeeeg acttetteet	420
catetteete tecateetee eetggatega gettggegga gageeeegag geggeeggag	480
ttagcagcac agcaccactg gggcctgggg cagcaggacc tgggacaggg gtcccagcag	540
tgagegggge cetaegggaa etgetggagg cetgtegeaa tggggaegtg teeegggtaa	600
agaggetggt ggacgeggea aaegtaaatg caaaggacat ggeeggeegg aagtettete	660
ccctgcactt cgctgcaggt tttggaagga aggatgttgt agaacactta ctacagatgg	720
gtgctaatgt ccacgetegt gatgatggag gteteatece getteataat geetgttett	780
ttggccatgc tgaggttgtg agtctgttat tgtgccaagg agctgatcca aatgccaggg	840
ataactggaa ctatacacct ctgcatgaag ctgctattaa agggaagatc gatgtgtgca	900
ttgtgctgct gcagcacgga gctgacccaa acattcggaa cactgatggg aaatcagccc	960
tggacctggc agatccttca gcaaaagctg tccttacagg tgaatacaag aaagacgaac	1020
tcctagaagc tgctaggagt ggtaatgaag aaaaactaat ggctttactg actcctctaa	1080
atgtgaattg ccatgcaagt gatgggcgaa agtcgactcc tttacatcta gcagcgggct	1140
acaacagagt togaatagtt cagottotto ttoagoatgg tgotgatgtt catgoaaaag	1200
acaaaggtgg acttgtgcct cttcataatg catgttcata tggacattat gaagtcacag	1260
aactgctact aaagcatgga gcttgtgtta atgccatgga tctctggcag tttactccac	1320
tgcacgaggc tgcttccaag aaccgtgtag aagtctgctc tttgttactt agccatggcg	1380
ctgatectae gttagteaac tgeeatggea aaagtgetgt ggatatgget eeaacteegg	1440
agettaggga gagattgaet tatgaattta aaggteatte tttaetaeaa geageeagag	1500
aagcagactt agctaaagtt aaaaaaacac tcgctctgga aatcattaat ttcaaacaac	1560
egeagtetea tgaaacagea etgeaetgtg etgtggeete tetgeateee aaacgtaaac	1620
aagtgacaga attgttactt agaaaaggag caaatgttaa tgaaaaaaat aaagatttca	1680
tgactcccct gcatgttgca gccgaaagag cccataatga tgtcatggaa gttctgcata	1740
agcatggcgc caagatgaat gcactggaca cccttggtca gactgctttg catagagccg	1800

26

-continued

25

-continued	
coctagoagg coacetgoag acetgoogce teetgotgag ttacggotet gacccetcoa	1860
teateteett acaaggette acageageae agatgggeaa tgaageagtg eageagatte	1920
tgagtgtgag ttacggctct gacccctcca tcatctcctt acaaggcttc acagcagcac	1980
agatgggcaa tgaagcagtg cagcagattc tgagtggtca ttcgtagata gtgatcattc	2040
tacttcagcc ttaatggtga tcttgagacg ggaagattta gaaggaaatc tatccagcat	2100
gtetteactg teaacatgaa gagtacaeet ataegtaett etgatgttga ttategaete	2160
ttagaggcat ctaaagctgg agacttggaa actgtgaagc aactttgcag ctctcaaaat	2220
gtgaattgta gagacttaga gggccggcat tccacgccct tacacttcgc agcaggctac	2280
aacagagtac acctatacgt acttctgatg ttgattatcg actcttagag gcatctaaag	2340
ctggagactt ggaaactgtg aagcaacttt gcagctctca aaatgtgaat tgtagagact	2400
tagagggccg gcattccacg cccttacact tcgcagcagg ctacaaccgc gtgtctgttg	2460
tagagtacct gctacaccac ggtgccgatg tccatgccaa agacaagggt ggcttggtgc	2520
cccttcataa tgcctgttca tatggacact atgaggtggc tgagctttta gtaaggcatg	2580
gggcttctgt caatgtggcg gacttatgga aatttacccc tctccatgaa gcagcagcta	2640
aaggaaagta tgaaatctgc aagctccttt taaaacatgg agcagatcca actaaaaaga	2700
acagagatgg aaatacacct ttggatttgg taaaggaagg agacacagat attcaggact	2760
tactgaaagg ggatgctgct ttgttggatg ctgccaagaa gggctgcctg gcaagagtgc	2820
agaagctctg taccccagag aatatcaact gcagagacac ccagggcaga aattcaaccc	2880
ctctgcacct ggcagcaggc tataataacc tggaagtagc tgaatatctt ctagagcatg	2940
gagetgatgt taatgeeeag gacaagggtg gtttaattee tetteataat geggeatett	3000
atgggcatgt tgacatagcg gctttattga taaaatacaa cacgtgtgta aatgcaacag	3060
ataagtgggc gtttactccc ctccatgaag cagcccagaa aggaaggacg cagctgtgcg	3120
contented agogeatggt geagaceeea ceatgaagaa ceaggaagge cagaegeete	3180
tggatctggc aacagctgac gatatcagag ctttgctgat agatgccatg cccccagagg	3240
cettacetae etgttttaaa eeteaggeta etgtagtgag tgeetetetg ateteaceag	3300
catccacccc ctcctgcctc tcggctgcca gcagcataga caacctcact ggccctttag	3360
cagagttggc cgtaggagga gcctccaatg caggggatgg cgccgcggga acagaaagga	3420
aggaaggaga agttgctggt cttgacatga atatcagcca atttctaaaa agccttggcc	3480
ttgaacacct tcgggatatc tttgaaacag aacagattac actagatgtg ttggctgata	3540
tgggtcatga agagttgaaa gaaataggca tcaatgcata tgggcaccgc cacaaattaa	3600
tcaaaggagt agaaagactc ttaggtggac aacaaggcac caatcettat ttgacttttc	3660
actgtgttaa tcagggaacg attttgctgg atcttgctcc agaagataaa gaatatcagt	3720
cagtggaaga agagatgcaa agtactattc gagaacacag agatggtggt aatgctggcg	3780
gcatcttcaa cagatacaat gtcattcgaa ttcaaaaagt tgtcaacaag aagttgaggg	3840
ageggttetg ccacegacag aaggaagtgt etgaggagaa teacaaceat cacaatgage	3900
gcatgttgtt tcatggttct cctttcatta atgccattat tcataaaggg tttgatgagc	3960
gacatgcata cataggagga atgtttgggg ccgggattta ttttgctgaa aactcctcaa	4020
aaagcaacca atatgtttat ggaattggag gaggaacagg ctgccctaca cacaaggaca	4080
ggtcatgcta tatatgtcac agacaaatgc tcttctgtag agtgaccctt gggaaatcct	4140
ttctgcagtt tagcaccatg aaaatggccc acgcgcctcc agggcaccac tcagtcattg	4200

27 -continued

gatagacegag egtcaategg etgecatatg etgaatatgt catetacaga gagagacaagg 4260 catacecaga gtatettate acttaceaga teatgaagec agaagecect teccagaceg 4220 caacageege agagcagaaa acctagtgaa tgeetgetgg tgaaggecag atcagattte 4380 aacotgegac tggattacag aggattgtt etaataacaa cateatatt etagaagec 4440 ctgacagect agaaataage tgtttgett etaataacaa cateatatt etagaagec 4440 ctgacagect agaaataage tgtttgett etaataacaa eateatatgt g 4491 <					-contir	nued ———		
cataccege gagacagaag actagggaa tectgeega tectgeega tectgeega 4400 caacagcegc agagcagaag acctagtgaa tectgeega tegaagccegt tectgaagceg 4440 ctgacagcet agaaataagc tgtttgttt ctaataacaa catcaatatt ctagaagtce 4440 ctgacagcet agaaataagc tgtttgttt ctaataacaa catcaatatt ctagaagtce 4440 ctgacagcet agaaataagc tgtttgttt ctaataacaa catcaatatt ctagaagtce 4440 ctgacagcet agaaataagc tgtttgttt ctaataacaa catcaatat ctagaagtce 4440 ctgacagcet to boo sagitta cagaagcaa ttgcataagt gagacagcet 4491 callo SEQIID NO 8 c2112 TTPE DNO 8 c2112 TTPE DNO 8 c2113 TTPE DNO 8 c2113 TTPE DNO 8 c2114 ORGANISM: DNO sagiens c400 SEQIID CO 8 cqccgccgcc cgctagccga acctgacca gccggtgccc ggccactgg cacgggggg 60 acgacgtcac gtgcgtccc ggggggggggggggggggg	gtagaccgag c	gtcaatggg	ctagcatata	ctgaatatgt	catctacada	ggagaacagg	4260	
caacagcogc agagcagaag acctagtgaa tyctgtotg tyaaggcag atcagattc 4400 ctgacagcot agaaataagc tytttyttt ctaataacaa catcaatatt ctagaagtcc 4440 ctgacagcot agaaataagc tytttyttt ctaataacaa catcaatatt ctagaagtcc 4440 ctgacagcot agaaataagc tytttyttt ctaataacaa catcaatatt ctagaagtcc 4440 ctgacagcot agaaataagc tyttyttt ctaataacaa catcaatatt ctagaagtcc 4440 ctgacagcot agaaataagc tyttyttt ctaataacaa catcaatatt ctagaagtcc 4440 ctgacagcot Loundrik 4189 c212- TYPE: DNA c213- ORCANISH: Homo sapiens c400> SEQUENCE: 0 cgcgccgcct cogtagcoga aacctgccaa gccggtgcca ggcgactgg cacgggggg 60 cgcgccgcc togttccagg acccgacag ggagttcgc ggcgccatg gactgcgcc 240 cgccgccggg gcagggagc cacgcgacgg cgggtcctg agcggccatg ggactgcgc 240 ggatccggtg acagcagggg gccaagcgg cggggcctgg cggggccttg tctcggggg 300 cctcgccctc ctgctcgcgg ggccaggggc cctgctcgcc ggcggggggg tgttgctggg 360 cctcgccctc ctgctcgcgg ggccagggc cctgctcgcc ggcgggggggg cggctgcgc 420 ggatccggtg gccaggatca tgtcgggtc cctgctccgc ggcggggggg cggctgcgc 420 gacgcgcgg gccaggatca tgtcgggtc cctgctccgc ggcgggggag cggctgcgc 420 gacggggagg gcaagaagta agagctggt gacgcctgag agagtgaac cgcgcaaca 540 ggcgggagg gaaatcaagagt cacagcact ggccagag tcgttcgaag cgcgcaaca 540 ggcgggagg aaatcaacac cgctgaactt cgccgcaagt ttaggggg gccttattcc ggcgggagg aaatcaccc cgctgcaactt cgccgcaagt tatggggg gccttattca tgcagaccc aatgctcgag ataattggaa ttaatactcct ccccatgaag ctgcaattaa 780 aggaaagatt gatgtttgca ttgtgctgtt acagcatgga gctgagcaa ccatccgaaa 840 tacagatgga aggacagcat tggatttagc agatcactct gccaagaag tggtagcaa ccatccgaaa 840 tacagatgga aggacagcat tggatttagc agaactagga ggcaatgaag aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg cacgcaggt ggcaatgaag aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg cacgcaggg ggcatggaga agacaactcc 1020 attacattg gaagcaggat taaccagagt aaagctggt cacgctgttac tgcaactgg 1080 agctggtc catcgctaaa ataacagag aaagttgat cagctgttac tgcaacatg 1140 aatggtgaat tcaacaccat gaaccacaa atgaacaggt tatgaaaaaacact tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaacacaca ttgcattgtg tgctgaaa acctacaca 1560 tccatatccc aaaagaagc aaata					_			
accoteggac tegatacan angustett chantacan catcantat chanangtor 4440 cigacanget agnastaang tightigett chantangan tightiget gardinangan tightiget angustens gardinangan tightiget chantangan tightiget gardinangan tightiget chantangan tightiget chantangan tightiget gardinangan tightiget chantangan tightiget chantangan tightiget gardinangan angutakangan tightiget gardinangan tightiget gardinangan tightiget tight								
ctgacagct agaaataagc tgittgicti ctataaagca tigctatagt g 4491 <pre> <210</pre>								
211. LENGTH: 6189 2212. TYPE: DNA 2213. DENGTH: 6189 2212. TYPE: DNA 2213. ORGANISM: Home sapiens 2400. SEQUENCE: 8 cycgccgcct cyctagccga acctgccca gccgytyccc gyccactycy cacgogogy 60 acgacgtcac gtgcgctccc gyggctygac gyagctygac gyagctygcc gyccactycy cyccagcycy 120 cyccgccgcg togttrcagy acccgyacyg cygattcycy ctgctccgc cyccgcgygy 180 cagccgyggg gcaggagac cagcgagyg cycgctyga gyagctyct trocgygygy 300 catcgccyctc ctgctcagcy gyccagygac cycggctyga gyagcyctt trocgygygy 300 cctcgccctc ctgctcyggg gccagygyc cycgcgcgc gycgygygag cygcctygcy 360 tytygcgyg gccagyacy tycgygycy cyccycgcy gycgygygyag cygcytycy 360 tytygcgyg gccagyacy tycgygycy cyccycgcy gycgygygyag cygcyctycy 420 gagcygcyg gaacagata tytcgygtcy cygccycag gygygygag cygcyctycy 420 gagcygcyg gaacagagtca gygagcygy cyccycagag tyttogagy cytycycgca 480 cygygacyg gaacagata gycgagacyg cyccycagag tyttogagy cytycycgca 480 cygygacyg gaacagagta agagctygt gacyccyga aagytgaac gccycgaca 540 gycgggacyg gaacagaty gygacaaty ccaagcacy tyttogagy gytyccycaa 660 tytaatatty cttcagaady gycaaaty ccaagcacy gatgagygg gccttattc 660 tottcataat gcatgctcyf ttggtcafyf ccaagcacyg gatgagygg gccttattc 780 aggaaagatt gatgttyga ttgtgtyft acagcatyga gytyagccaa ccatcogaa 840 tacagatyga aggacagcat tygattag agattcatct gccaaaagag tycttactyg 900 tgaatataa aaagtcyga ataatggaa ttaactcct tccatgaa cycgcataa 840 tacagatyga aggacagcat tygattag agatccatct gccaaaagag tycttactyg 900 tgaatataa aaagatgaac tcttagaag tyccaggagt gycaatgaag aaaaaatga 960 gyctctactc acaccattaa atgtcaacty ccacgcagt gatgycagaa agtcaactcc 1020 attacatty gcagcaggat ataacagagt aacgtyt caagcatygt gyctytyaa atgcaatyg 1080 agctgatyc catgctaaag ataacagag tacggaga gyctytaa atgcaatyg 1200 cttgtggcaa ttcactcct ttcatgaaga agcttctaa gaacaggty aagtatytc 1260 tcttcttctta agtatagty cagacccaac actgctcaat tyccaata aaaaacagca 1380 gttgctgcaa gycgcagag aagctgat tacaacaga tycttaata agaacagca 1380 gttgctgcaa gycgcagag aagctgat tacaacaga tagaacagag caacatca 1560 tyaaaagact aaagaatt tygaccctct gcaggagaa acctgcygca tactcygaa acttatatyg 1								
<pre>c211</pre>	JJ w	<u></u>	J : : J : 2 : 2	3 - 4	3 3 -	-	_ _	
acgacgeceet cgctagacga aacetgeca geeggtggcc ggcactgeg caegogggg 60 acgacgtcae gtgcgctccc ggggctggac ggagtggcc tgccactgeg caegogggg 110 cagccgcggg tcgtttcagg acceggacgg cggattcgcg ctgcctccgc cgccgcgggg 110 cagccggggg gcagggagc caegogaggg cgcgcgtggg cgcggcctg ggactcgcgc 240 ggatccggtg acagcaggg ccaggaggc ccggcgtggg cgcgcctg agcgcttt ctccggggggg 300 cctcgcctc ctgctcgcgg ggccggggct cctgctccgg ttgctggc tgttgctggc 360 tgtgggggcg gccaggatca tgtcgggtcg ccgctgcgc ggcgggggag cggcctgcgc 420 gagcgccgcg gccaggatca tgtcgggtcg ccgccgagag ctgttcgagg cgtccgcca 480 cggggacgtg gaacgagtca agaggctggt gacgcctgag aaggtgaaca gccgcgacac 540 ggcggggagg aaatccacc cgctgcactt cgccgcaggt tttgggggg aagacgtggt 600 tgaatatttg cttcagaatg gtgcaaatgt ccaagcacgt gatgatgggg gccttattcc 660 tcttcataat gcatgctctt ttggtcatgc tgaagtagtc aatctccttt tgcgacatgg 720 tgcagacccc aatgctcgag ataattggaa ttatactcct ctccatgaag ctgcaattaa 780 aggaaagatt gatgtttgca ttgtgctgtt acagcatgga gcgagacaa ccatccgaaa 840 tacagatgga aggacagcat tggatttagc agatccatct gccaaagcag tgcttactcg 900 tgaatataag aaagatgaac tcttagaaag tgccaggag ggaagacaa agacaatagat 960 ggctctactc acaccattaa atgtcaactg ccacgcaagt gggaagacaaa acaaccaga 1020 attacatttg gcagcaggat ataacagag cacaccagaag gaggcagaa agtcaactcc 1020 attacatttg gcagcaggat ataacagag aaagattgta cagctgttac tgcaacatgg 1080 agctgatgtc catgctaaag ataacagagt acagcagg gcctgtaca ttacacaatg ctgttctta 1140 tggtcattat gaagtaactg aacttttgg caagcaga gagtcaat tgcaacatga agcagggaga acaacatcc 1120 cttgtgcaa ttcactcctc ttcatgagga agcttctaag aacagggttg aagtagttc 1120 cttgtggcaa ttcactcctc ttcatgagga agcttctaag aacagggttg aagtagtt 1120 agacttggca cccacaccac agttaaaaga aagattgta tagtgacaat ttgcactaat agagcactc 11380 gttggtggaa ttcaagcacga aacacaa actgctcaat tgcacaata aaaggcactc 1130 aacatgggcaa acacacaa agctgaatgt tactcgaatc aaaaaaacat tctctctgga 1440 aatggtgaat ttcaagcaca acatgaaca acatgctgac tctgaaaag ccaacacaa 1560 tccataccc aaaagaaga aaaattgga actgtgaca tctgaaaag ccaacacaa 1560 tccataccc aaaagaaga aaaattgaa acatgtgaa acctgcgct tactcctga 1740	<211> LENGTH <212> TYPE:	: 6189 DNA	sapiens					
acgacgtcac gtgcgctocc ggggctggac ggagctggca ggaggggcct tgccagettc 120 cgccgccqcqg tcgtttcaga acccggaggg cgggttcqcq ctgctccqc cgccqcgggg 180 cagccggggg cagggaggcc cagcggggg cgcgcgtgg gcgggcatg ggactgqcc 240 ggatccggtg acaggagagc cagcagggg cgcgcgtgg cgcggcatg ggactgqcc 240 ggatccggtg acagcaggag ccaagcagg ccgggggct ctgctcagc ggactctgcqc 240 ggatccggtg acagcaggag gccaagcgg ccagggggc cctgctcag ttgctgggc 360 tgtgggggg gcaggagtca ttgcgggggggggggggg	<400> SEQUEN	CE: 8						
cgccgccgcg tcgtttcagg acccggacgg cggattcgg ctgcctccgc cgccgcgggg 180 cagccggggg gcagggagcc cagcgagggg cgcgcgtggg cgcgccatg ggactcggcc 240 ggatccggtg acagcagga gccaaggag cccggtggg cgcgcctg agcgccttg tctccgggggg 300 cctcgccctc ctgctcgcgg ggccggggct cctgccgg ttgctggcgc tgttgtgctggc tgtgggggg gccaggatca tgtcgggtcg ccgccgaga gtgttcgagg cggctcgcg tgtggggggg gccagggcg tggagccggc cgcccgagag ctgttcgagg cggccgcaa 480 cggggacgtg gaacgagtca agaggctgt gacgcctgag aaggtgaaca gccgcgaca 540 ggcgggagga aaatccaccc cgctgcactt cgccgcagg tttgggggga aagacgagat 600 tgaatatttg cttcagaatg tggcaaatgt ccaagcacgt gatgatgggg gccttattcc 660 tcttcataat gcatgctctt ttggtcatgc tgaagtagtc aatctcctt ttggacatgg 720 tgcagaccc aatgctcgag ataattggaa ttataccct ctccatgaag ctgcaattaa 780 aggaaagatt gatgtttgca ttgtgctgtt acagcatga gctgagccaa ccatccgaaa 840 tacagatgga aggacagcat tggatttagc agatcatct gccaaagcag tgcttactgg 900 tgaatataag aaagatgaac tcttagaaag tgccaagtg ggcaatgaga aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg ccacgcaagt ggtggagaa aggtaactcc 1020 attacatttg gcagcaggat ataacaggat aaagattgta cagctgttac tgcaacatgg 1080 agctgatgtc catgctaaag ataatttggt caagcatggt gcctgtgtaa atgcaactcc 1020 attacatttg gcagcaggat ataacaggt accttctaga accgtgttac tgcaacatgg 1080 agctgatgtc catgctaaag accttttggt caagcatggt gcctgtgtaa atgcaactcc 1020 attacattt gaagtaactg accttttggt caagcatggt gcctgtgtaa atgcaactgg 1200 cttgtggcaa ttcactcctc ttcatgagge agcttctaag aacagggttg aagtatgttc 1260 tcttctctta agttatggtg cagaccaac actgctcaat tgcacaata aaaggctat 1320 agacttggct cccacaccac agttaaaaga aagattagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaga aactgatgt tactcgaat aaaaaacact tctctctgga 1440 aatggtgaat ttcaagcacc ctcaaacaca tgaacaaga ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaagc aaattgtga actgttgta agaaaagga caacaccaa 1560 tgaaaagact aaagaagc aaaatgga aaaaggtga aacacacaa 1620 tgaaaagact aaagagacg caattgtga acctgtggca tctgaaaag ctcataataga 1620 tgaaaagact acaagacgcg caattgtgg caacgagga aaaggtgaa acctccctgaa atcttggtc tactcctaa 1740	cgcgccgcct c	gctagccga	aacctgccca	gccggtgccc	ggccactgcg	cacgcgcggg	60	
cageggggg geagggagec cagegagggg egegegtggg egegetetg ggaetegggg 300 cetegecete etgetegegg ggeegggget cetgeteegg ttgetggee tettegegggg 360 tgtgggggg geaggagea tgtgegggget cetgeteegg ttgetggeg tgttgetgge 360 tgtgggggg geaggatea tgtegggteg eegeegggggggggg	acgacgtcac g	tgcgctccc	ggggctggac	ggagctggca	ggaggggcct	tgccagcttc	120	
ggatceggtg acagegga gecagegge cegggectg agegegtett eteeggggggg 300 cetegecete etgetegegg gecegggge cetegegg tryttegege tgttgetgge 360 tgtgeggegg gecaggatea tgtegggeg cegeoggaggaggggggggggggggggggggggggggggg	cgccgccgcg t	cgtttcagg	acccggacgg	cggattcgcg	ctgcctccgc	cgccgcgggg	180	
cetegocete etgetegogg gecegggget ectgeteegg ttgetggege tgttgetgge 360 tgtgggggeg gecaggatea tgtegggteg ecgetegeee ggeggggggg eggetgegee 420 gagegeegg gecagggeeg tggageegge egecegagag etgttegagg egtgeegeaa 480 eggggaegtg gaacgagtea agaggetggt gacgeetgag aaggtgaaca geegegaaca 540 ggegggeagg aaatceacee egetgeactt egeegeaggt tttgggegga aagacgtagt 600 tgaatatttg etteagaatg gtgeaaatgt ceaageaegt gatgatgggg geettattee 660 tetteataat geatgetett ttggteatge tgaagtagte aateteettt tgegaeatgg 720 tgeagaceec aatgetegag ataattggaa ttatacteet etceatgaag etgeaattaa 780 aggaaagatt gatgttgea ttgtgetgtt acageatgga getgageeaa ecateegaaa 840 tacagatgga aggacageat tggatttage agateeatet geeaaaageag tgettactgg 900 tgaatataag aaggatgaac tettagaaag tgecaggagt ggeaatgaag aaaaaatgat 960 ggetetacte acaccattaa atgteaactg ecacgeaagt gatggeagaa agteaactee 1020 attacatttg geageaggat ataacagagt aaagattgta eagetgttac tgeaacatgg 1080 agetgatte eatgetaaag ataacaggtg acageaggg geetgteteta 1140 tggteattat gaagtaactg aacttttggt eageatgtga geetgttaa atgeaatgga 1200 ettgtggeaa tteacteete teetgagage agettetaag aacaggtgt aagtatgtte 1260 tetteetta agttatggt eageaceaac actgeteaat tgteacaata aaaggetat 1320 agacttggea getgeacga agetgaaca actacgaaa acaaggetgt aagtatgtte 1260 tetteetta agttatggt eageaceaac actgeteaat tgteacaata aaaggetat 1320 agacttggea getgeacga agetgaatgt tactegaat aaaaaacate tetetetgga 1440 aatggtgaat tteaageate etcaaacaca tgaaacaga ttgeattgtg etgetgeate 1500 tecatatee aaaagaage aaatatgtga actgtteta agaaaaagag eaaacatca 1560 tgaaaagact aaagaatet tgacteetet geaegtggea tetgagaaa etcataatga 1620 tgaaaagact aaagaatet tgaattgg eageteetaaa accgeegee tacteetgga 1680 tgaaaagact aaagaatet tgaacteete geaegtggaa accgeace tacteetegaa 1620 tgaaaagact aaagaatet tgaacteete geaegtggaa accgeace tacteetegaa 1620 tgaaaagact aaagaatet cacaagaag aaaatggaa aacatgaa accgeacec tacteetega 1740	cagccggggg g	cagggagcc	cagegagggg	cgcgcgtggg	cgcggccatg	ggactgcgcc	240	
tgtggggggg gccgggatca tgtgggtcg ccgctgaggc ggcgggggg cggctggcc 420 gagcgccgcg gccgaggccg tggagccgg cgccgagag ctgttcqagg cgtgccgcaa 480 cggggacgtg gaacgatca agaggctggt gacgcctgag aaggtgaaca gccgcgacac 540 ggcgggcagg aaatccaccc cgctgcactt cgccgcaggt tttggggga aagacgtagt 600 tgaatatttg cttcagaatg gtgcaaatgt ccaagcacgt gatgatgggg gccttattcc 660 tcttcataat gcatgctctt ttggtcatgc tgaagtagtc aatctccttt tgcgacatgg 720 tgcagacccc aatgctcgag ataattggaa ttatactcct ctccatgaag ctgcaattaa 780 aggaaagatt gatgtttga ttgtgctgtt acagcatgg gctgagccaa ccatccgaaa 840 tacagatgga aggacagcat tggatttagc agatccatct gccaaagcag tgcttactgg 900 tgaatataag aagaagataac tcttagaaag tgccagggg ggcaatgaag aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg ccacgcaagt gatggcagaa agtcaactcc 1020 attacatttg gcagcaggat ataacagagt aaagattgta cagctgttac tgcaacatgg 1080 agctgatgtc catgctaaag ataaaggtga tctggtacca ttacacaatg cctgttctta 1140 tggtcattat gaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaatgga 1200 cttgtggcaa ttcactcctc ttcatgagag agcttctaag aacaggtgt aagtatgttc 1260 tcttctctta agttatggtg cagacccaac actgctcaat tgtcacaata aaaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacact tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaaacac tgaaacacga ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaatct tgactcctt gcacgtggca tctgagaaa ccatcaataga 1620 tgaaaagact aaagaatct tgactcctt gcacgtggca tctgagaaa ctcataataga 1620 tgaaaagact aaagaatct tgactcctt gcacgtggca tctgagaaa ctcataataga 1620 tggtgttgaa gtagtggtga aacatgaag aaaggttaat gctctggata atcttcgga 1740	ggatccggtg a	cagcaggga	gccaagcggc	ccgggccctg	agcgcgtctt	ctccgggggg	300	
gagcgccgcg gccgaggccg tggagccggc cgccgagag ctgttcgagg cgtgccgcaa 480 cggggacgtg gaacgagtca agaggctggt gacgcctgag aaggtgaaca gccgcgacac 540 ggcgggcagg aaatccaccc cgctgcactt cgccgcaggt tttgggcgga aagacgtagt 600 tgaatatttg cttcagaatg gtgcaaatgt ccaagcacgt gatgatgggg gccttattcc 660 tcttcataat gcatgctctt ttggtcatgc tgaagtagtc aatctccttt tgcgacatgg 720 tgcagacccc aatgctcgag ataattggaa ttatactcct ctccatgaag ctgcaattaa 780 aggaaagatt gatgtttgca ttgtgctgtt acagcatgga gctgagccaa ccatccgaaa 840 tacagatgga aggacagcat tggatttagc agatccatct gccaaagcag tgcttactgg 900 tgaatataag aaagatgaac tcttagaaag tgccaggagt ggcaatgaag aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg ccacgcaagt gatggcagaa agacaactcc 1020 attacatttg gcagcaggat ataacagagt aaagattgta cagctgttact tgcaacatgg 1080 agctgatgtc catgctaaag ataacaggta tctggatcaa ttacacaatg cctgttctta 1140 tggtcattat gaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaatgga 1200 cttgtggcaa ttcactcctc ttcatgaggc agcttctaag aacagggttg aagtatgtte 1260 tcttctctta agttatggtg cagacccaac actgctcaat tgtcacaata aaagtgctat 1320 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacact ctctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaaacagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaagag caaacatcaa 1560 tgaaaagact aaagaatct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tggaaagagct aaaagaatct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tggaaaagact aaagaatct tgactcctct gcacgtggca tctgagaaag ctcatactcgag 1740	cctcgccctc c	tgetegegg	ggccggggct	cctgctccgg	ttgctggcgc	tgttgctggc	360	
cggggacgtg gaacgagtca agaggctggt gacgcctgag aaggtgaaca gccgcgacac 540 ggcgggcagg aaatccaccc cgctgcactt cgccgcaggt tttgggcgga aagacgtagt 600 tgaatatttg cttcagaatg gtgcaaatgt ccaagcacgt gatgatgggg gccttattcc 660 tettcataat gcatgctctt ttggtcatge tgaagtagtc aatctccttt tgcgacatgg 720 tgcagaccc aatgctcgag ataattggaa ttatactcct ctccatgaag ctgcaattaa 780 aaggaaagatt gatgtttgca ttgtgctgtt acagcatgga gctgagccaa ccatccgaaa 840 tacagatgga aggacagcat tggatttagc agatccatct gccaaagcag tgcttactgg 900 tgaatataag aaagatgaac tettagaaag tgccaggagt ggcaaatgaag aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg ccacgcaagt gatggcagaa agtcaactcc 1020 attacatttg gcagcaggat ataacagagt acaggatgtac catgctaaag ataacaggat tctggtacca ttacacaatg cctgttctta 1140 tggtcattat gaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaatgga 1200 cttgtggcaa ttcactcctc ttcatgaggc agcttctaag aacagggttg aagtatgttc 1260 tcttctctta agttatggtg cagaccaac actgctcaat tgtcacaata aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aacagcatta tacagcactc 1500 tccatatccc aaaagaagc aaatatgga actgtgcta aagaaaggag caaacatca 1560 tccatatccc aaaagaagc aaaatatgga actgttgcta agaaagag caaacatcaa 1560 tgaaaagac aaaagaatct tgacctcctt tcaaaacaca tgaacacaca tcgacaggaa ctcataatga 1620 tgttgtgaa gtagtgtga aacatgagg caaactcata 1620 tgaaaagac aaaagaatct tgacctcctt gcacgtggca tctgagaaag ctcataatga 1620 tggttgtgaa gtagtgtga aacatgagc aaaaggttaat gctctggaa gtagtgtga aacatgaga 1620 tggaaagacca aaagaagc aaaatatgga acaggtgata tctgagaaag ctcataatga 1620 tggttgtgaa gtagtggtga aacatgaagc aaaaggttaat gctctggaaa gtcgtgaa acatgagga aacatgaagc aaaaggttaat gctctggaaa acctcctcaag 1680 gacttctcta cacagagctg catattgtgg tcatctcaaa acctgccgcc tactcctgag 1740	tgtggcggcg g	ccaggatca	tgtcgggtcg	ccgctgcgcc	ggcgggggag	cggcctgcgc	420	
tgaatatttg cttcagaatg gtgcaaatgt ccaagcacgt gatgatgggg gccttattcc 660 tcttcataat gcatgctctt ttggtcatgc tgaagtagtc aatctccttt tgcgacatgg 720 tgcagacccc aatgctcgag ataattggaa ttatactcct ctccatgaag ctgcaattaa 780 aggaaagatt gatgtttgca ttgtgctgtt acagcatgga gctgagccaa ccatccgaaa 840 tacagatgga aggacagcat tggatttagc agatccatct gccaaagcag tgcttactgg 900 tgaatataag aaagatgaac tcttagaaag tgccaggagt ggcaatgaag aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg ccacgcaagt gatggcagaa agtcaactcc 1020 attacatttg gcagcaggat ataacagagt acaggtgtac tgcaacatgg 1080 agctgatgtc catgctaaaag ataaaggtga tctggtacca ttacacaatg cctgttctta 1140 tggtcattat ggaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaactgg 1200 cttgtggcaa ttcactcctc ttcatgaggc agcttctaag aacagggtg aggtagtgta aggtagttc 1260 tcttctctta agttatggtg cagacccaac actgctcaat tgtcacaata aaagtgctat 1320 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacatc tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaaacagca ttgcattggt ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaagga caaacatcaa 1560 tgaaaagact aaagaattct tgactcctc gcacgtggca tctggaaa gctcataataga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gcctctggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	gagcgccgcg g	ccgaggccg	tggagccggc	cgcccgagag	ctgttcgagg	cgtgccgcaa	480	
tgaatatttg cttcagaatg gtgcaaatgt ccaagcacgt gatgatgggg gccttattcc 660 tcttcataat gcatgctctt ttggtcatgc tgaagtagtc aatctccttt tgcgacatgg 720 tgcagacccc aatgctcgag ataattggaa ttatactcct ctccatgaag ctgcaattaa 780 aggaaagatt gatgtttgca ttgtgctgtt acagcatgga gctgagccaa ccatccgaaa 840 tacagatgga aggacagcat tggatttagc agatccatct gccaaagcag tgcttactgg 900 tgaatataag aaagatgaac tcttagaaag tgccaggagt ggcaatgaag aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg ccacgcaagt gatggcagaa agtcaactcc 1020 attacatttg gcagcaggat ataacagagt acagcatgta cagctgttac tgcaacatgg 1080 agctgatgtc catgctaaag ataaaaggta tctggtacca ttacacaatg cctgttctta 1140 tggtcattat gaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaatgga 1200 cttgtggcaa ttcactcctc ttcatgaggc agcttctaag aacagggttg aagtatgttc 1260 tcttctctta agttatggtg cagacccaac actgctcaat tgtcacaata aaagtgctat 1320 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacact tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaaacagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gctctggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	cggggacgtg g	aacgagtca	agaggctggt	gacgcctgag	aaggtgaaca	gccgcgacac	540	
tetteataat geatgetett tiggteatge tgaagtagte aateteett tiggacatgg 720 tigeagacece aatgetegag ataatiggaa tiataceteet etecatgaag etgeaattaa 780 aggaaagatt gatgitigea tiggetigti acageatgga getgageeaa eeateegaaa 840 tacagatgga aggacageat tiggatitage agateeatet geeaaageag tigetactgg 900 tigaatataag aaagatgaae tettagaaag tigeeaggag gegaatgaag aaaaaatgat 960 ggetetaete acaceattaa atgieaactig eeaeggaagt gagaatgaag agteaactee 1020 attacattig geageaggat ataacagagt aaagatigta eagetigtae tigeaacatgg 1080 agetigatigte eatgetaaag ataaaggiga tetiggiacea tiacacaatig eetgitetta 1140 tiggicattat gaagtaactig aactitiggi eaageatggi geetigtaa atgeaatgga 1200 ettigtiggeaa ticacteete ticatgagge agetietaag aacaggitig aagtatgite 1260 tetitetetta agitatggig eagaceeaae actgeteaat tigeacaata aaagteeta 1320 agactigget eecacaceae agitaaaaga aagattagea tatgaattia aaggeeaete 1380 gitigetigeaa geetigeacgag aagetigatgi taetegaate aaaaaacate tetetetigga 1440 aatggigaat ticaageate eteaaacaca tigaaacaga tigeatigtig etgetigeate 1500 teeatateee aaaagaaage aaatatgiga actgitigeta agaaaaggag eaaacateaa 1660 tigaaaagact aaagaattet tigaeteetet geaegitigea tetgagaaag eteaatatga 1620 tigtigtigaa giagtiggiga aacatgaage aaaggitaat geetetiggata atettiggica 1680 gaetteteta eacagagetig eatattigtig teatetaeaa acetgeegee taeteetgag 1740	ggcgggcagg a	aatccaccc	cgctgcactt	cgccgcaggt	tttgggcgga	aagacgtagt	600	
tgcagacccc aatgctcgag ataattggaa ttatactcct ctccatgaag ctgcaattaa 780 aggaaagatt gatgtttgca ttgtgctgtt acagcatgga gctgagccaa ccatccgaaa 840 tacagatgga aggacagcat tggatttagc agatccatct gccaaagcag tgcttactgg 900 tgaatataag aaagatgaac tcttagaaag tgccaggagt ggcaatgaag aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg ccacgcaagt gatggcagaa agtcaactcc 1020 attacatttg gcagcaggat ataacagagt aaagattgta cagctgttac tgcaacatgg 1080 agctgatgtc catgctaaag ataaaggtga tctggtacca ttacacaatg cctgttctta 1140 tggtcattat gaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaatgga 1200 cttgtggcaa ttcactcctc ttcatgagge agcttctaag aacagggttg aagtatgttc 1260 tcttctctta agttatggt cagcaccaac actgctcaat tgtcacaata aaagtgctat 1320 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacatc tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaaccac tgaaacagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaacg aaatatgtga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgtgtgtgaa gtagtggtga aacatgaagc aaaggttaat gctcttggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	tgaatatttg c	ttcagaatg	gtgcaaatgt	ccaagcacgt	gatgatgggg	gccttattcc	660	
aggaaagatt gatgtttgca ttgtgctgtt acagcatgga gctgagccaa ccatccgaaa 840 tacagatgga aggacagcat tggatttagc agatccatct gccaaaagcag tgcttactgg 900 tgaatataag aaagatgaac tcttagaaag tgccaggagt ggcaatgaag aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg ccacgcaagt gatggcagaa agtcaactcc 1020 attacatttg gcagcaggat ataacagagt aaagattgta cagctgttac tgcaacatgg 1080 agctgatgtc catgctaaag ataaaggtga tctggtacca ttacacaatg cctgttctta 1140 tggtcattat gaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaatgga 1200 cttgtggcaa ttcactcctc ttcatgagge agcttctaag aacagggttg aagtatgtc 1260 tcttctctta agttatggtg cagacccaac actgctcaat tgtcacaata aaagtgctat 1320 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacact tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaaacaga ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaaagac aaagaatct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gccctggata atcttggtca 1680 gacttetcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	tcttcataat g	catgctctt	ttggtcatgc	tgaagtagtc	aatctccttt	tgcgacatgg	720	
tacagatgga aggacagcat tggatttagc agatccatct gccaaagcag tgcttactgg 900 tgaatataag aaagatgaac tcttagaaag tgccaggagt ggcaatgaag aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg ccacgcaagt gatggcagaa agtcaactcc 1020 attacatttg gcagcaggat ataacagagt aaagattgta cagctgttac tgcaacatgg 1080 agctgatgtc catgctaaag ataaaggtga tctggtacca ttacacaatg cctgttctta 1140 tggtcattat gaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaatgga 1200 cttgtgggaa ttcactcctc ttcatgaggc agcttctaag aacagggttg aagtatgttc 1260 tcttctctta agttatggtg cagacccaac actgctcaat tgtcacaata aaagtgctat 1320 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacact tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaaacagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gctctggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	tgcagacccc a	atgctcgag	ataattggaa	ttatactcct	ctccatgaag	ctgcaattaa	780	
tgaatataag aaagatgaac tcttagaaag tgccaggagt ggcaatgaag aaaaaatgat 960 ggctctactc acaccattaa atgtcaactg ccacgcaagt gatggcagaa agtcaactcc 1020 attacatttg gcagcaggat ataacagagt aaagattgta cagctgttac tgcaacatgg 1080 agctgatgtc catgctaaag ataaaggtga tctggtacca ttacacaatg cctgttctta 1140 tggtcattat gaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaatgga 1200 cttgtgggcaa ttcactcctc ttcatgaggc agcttctaag aacagggttg aagtatgttc 1260 tcttctctta agttatggtg cagacceaac actgctcaat tgtcacaata aaagtgctat 1320 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacatc tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaaacagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gctctggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	aggaaagatt g	atgtttgca	ttgtgctgtt	acagcatgga	gctgagccaa	ccatccgaaa	840	
ggctctactc acaccattaa atgtcaactg ccacgcaagt gatggcagaa agtcaactcc 1020 attacatttg gcagcaggat ataacagagt aaagattgta cagctgttac tgcaacatgg 1080 agctgatgtc catgctaaag ataaaggtga tctggtacca ttacacaatg cctgttctta 1140 tggtcattat gaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaatgga 1200 cttgtggcaa ttcactcctc ttcatgaggc agcttctaag aacagggttg aagtatgttc 1260 tcttctctta agttatggtg cagacccaac actgctcaat tgcacaata aaagtgctat 1320 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacatc tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaaacagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gctctggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	tacagatgga a	ggacagcat	tggatttagc	agatccatct	gccaaagcag	tgcttactgg	900	
attacatttg gcagcaggat ataacagagt aaagattgta cagctgttac tgcaacatgg 1080 agctgatgtc catgctaaag ataaaggtga tetggtacca ttacacaatg cetgttetta 1140 tggtcattat gaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaatgga 1200 cttgtgggcaa ttcactcctc ttcatgaggc agcttctaag aacagggttg aagtatgttc 1260 tcttctctta agttatggtg cagacccaac actgctcaat tgtcacaata aaagtgctat 1320 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacaatc tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaaacagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gctctggata atcttggtca 1740 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	tgaatataag a	aagatgaac	tcttagaaag	tgccaggagt	ggcaatgaag	aaaaaatgat	960	
agetgatgte catgetaaag ataaaggtga tetggtacca ttacacaatg cetgttetta 1140 tggtcattat gaagtaactg aacttttggt caagcatggt geetgtgtaa atgeaatgga 1200 cttgtggcaa tteacteete tteatgagge agettetaag aacagggttg aagtatgtte 1260 tetteeteta agttatggtg cagacceaac actgeteaat tgtcacaata aaagtgetat 1320 agacttgget eccacaceac agttaaaaga aagattagca tatgaattta aaggecacte 1380 gttgetgcaa getgcacgag aagetgatgt tactegaate aaaaaacate tetetetgga 1440 aatggtgaat tteaagcate etcaaacaca tgaaacagca ttgeattgtg etgetgcate 1500 tecatateec aaaagaaage aaatatgtga actgttgeta agaaaaagga caaacatcaa 1560 tgaaaagact aaagaattet tgacteetet geacgtggca tetgagaaag etcataatga 1620 tgttgttgaa gtagtggtga aacatgaage aaaggttaat getetggata atettggtea 1680 gaetteteta cacagagetg catattgtgg teatetacaa acctgeegee tacteetgag 1740	ggctctactc a	caccattaa	atgtcaactg	ccacgcaagt	gatggcagaa	agtcaactcc	1020	
tggtcattat gaagtaactg aacttttggt caagcatggt gcctgtgtaa atgcaatgga 1200 cttgtggcaa ttcactcctc ttcatgagge agcttctaag aacagggttg aagtatgttc 1260 tcttctctta agttatggtg cagacccaac actgctcaat tgtcacaata aaagtgctat 1320 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacatc tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaaccac tgaaacagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gctctggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	attacatttg g	cagcaggat	ataacagagt	aaagattgta	cagctgttac	tgcaacatgg	1080	
cttgtggcaa ttcactcctc ttcatgaggc agcttctaag aacagggttg aagtatgttc 1260 tcttctctta agttatggtg cagacccaac actgctcaat tgtcacaata aaagtgctat 1320 agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacatc tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaaacagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gctctggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	agctgatgtc c	atgctaaag	ataaaggtga	tctggtacca	ttacacaatg	cctgttctta	1140	
tetteetetta agetategetg cagacceaac actgeteaat tgecacaata aaagegetat 1320 agactteget eecacaccac agetaaaaga aagattagea tatgaatta aaageccacte 1380 getgeetgeaa geegeacgag aagetgatge tactegaate aaaaaacate teeteetgga 1440 aatggegaat eecaaacaca tgaaacagca eegaatege eegaacagga eegaacategaa 1500 teecatateec aaaagaaage aaatatgega actgetgeta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattee tgacteeteet geacgetggea teegagaaag eecataaatga 1620 tgetgetgaa geagetggaa aacatgaage aaaggetaat geeetggata ateeteggea 1680 gactteeteta cacagagetg catategegg teateetacaa accegeegee tacteetgag 1740	tggtcattat g	aagtaactg	aacttttggt	caagcatggt	gcctgtgtaa	atgcaatgga	1200	
agacttggct cccacaccac agttaaaaga aagattagca tatgaattta aaggccactc 1380 gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacatc tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaaacagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gctctggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	cttgtggcaa t	tcactcctc	ttcatgaggc	agcttctaag	aacagggttg	aagtatgttc	1260	
gttgctgcaa gctgcacgag aagctgatgt tactcgaatc aaaaaacatc tctctctgga 1440 aatggtgaat ttcaagcatc ctcaaacaca tgaaacagca ttgcattgtg ctgctgcatc 1500 tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gctctggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	tottototta a	gttatggtg	cagacccaac	actgctcaat	tgtcacaata	aaagtgctat	1320	
aatggtgaat ttcaagcate etcaaacaca tgaaacagca ttgcattgtg etgetgcate 1500 tccatatece aaaagaaage aaatatgtga aetgttgeta agaaaaggag caaacateaa 1560 tgaaaagact aaagaattet tgaeteetet geaegtggea tetgagaaag etcataatga 1620 tgttgttgaa gtagtggtga aacatgaage aaaggttaat getetggata atettggtea 1680 gaetteteta cacagagetg catattgtgg teatetacaa aeetgeegee taeteetgag 1740	agacttggct c	ccacaccac	agttaaaaga	aagattagca	tatgaattta	aaggccactc	1380	
tccatatccc aaaagaaagc aaatatgtga actgttgcta agaaaaggag caaacatcaa 1560 tgaaaagact aaagaattct tgactcctct gcacgtggca tctgagaaag ctcataatga 1620 tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gctctggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	gttgctgcaa g	ctgcacgag	aagctgatgt	tactcgaatc	aaaaaacatc	tctctctgga	1440	
tgaaaagact aaagaattet tgacteetet geaegtggea tetgagaaag eteataatga 1620 tgttgttgaa gtagtggtga aacatgaage aaaggttaat getetggata atettggtea 1680 gaetteteta eacagagetg eatattgtgg teatetacaa acetgeegee tacteetgag 1740	aatggtgaat t	tcaagcatc	ctcaaacaca	tgaaacagca	ttgcattgtg	ctgctgcatc	1500	
tgttgttgaa gtagtggtga aacatgaagc aaaggttaat gctctggata atcttggtca 1680 gacttctcta cacagagctg catattgtgg tcatctacaa acctgccgcc tactcctgag 1740	tccatatccc a	aaagaaagc	aaatatgtga	actgttgcta	agaaaaggag	caaacatcaa	1560	
gactteteta cacagagetg catattgtgg teatetacaa acetgeegee tacteetgag 1740	tgaaaagact a	aagaattct	tgactcctct	gcacgtggca	tctgagaaag	ctcataatga	1620	
	tgttgttgaa g	tagtggtga	aacatgaagc	aaaggttaat	gctctggata	atcttggtca	1680	
ctatgggtgt gatcctaaca ttatatccct tcagggcttt actgctttac agatgggaaa 1800	gacttctcta c	acagagetg	catattgtgg	tcatctacaa	acctgccgcc	tactcctgag	1740	
	ctatgggtgt g	atcctaaca	ttatatccct	tcagggcttt	actgctttac	agatgggaaa	1800	

30

29 -continued

-continued							
tgaaaatgta cagcaactcc tccaagaggg tatctcatta ggtaattcag aggcagacag	1860						
acaattgctg gaagctgcaa aggctggaga tgtcgaaact gtaaaaaaac tgtgtactgt	1920						
tcagagtgtc aactgcagag acattgaagg gcgtcagtct acaccacttc attttgcagc	1980						
tgggtataac agagtgtccg tggtggaata tctgctacag catggagctg atgtgcatgc	2040						
taaagataaa ggaggcettg tacetttgca caatgcatgt tettatggae attatgaagt	2100						
tgcagaactt cttgttaaac atggagcagt agttaatgta gctgatttat ggaaatttac	2160						
acctttacat gaagcagcag caaaaggaaa atatgaaatt tgcaaacttc tgctccagca	2220						
tggtgcagac cctacaaaaa aaaacaggga tggaaatact cctttggatc ttgttaaaga	2280						
tggagataca gatattcaag atctgcttag gggagatgca gctttgctag atgctgccaa	2340						
gaagggttgt ttagccagag tgaagaagtt gtcttctcct gataatgtaa attgccgcga	2400						
tacccaaggc agacattcaa cacctttaca tttagcagct ggttataata atttagaagt	2460						
tgcagagtat ttgttacaac acggagctga tgtgaatgcc caagacaaag gaggacttat	2520						
tcctttacat aatgcagcat cttacgggca tgtagatgta gcagctctac taataaagta	2580						
taatgcatgt gtcaatgcca cggacaaatg ggctttcaca cctttgcacg aagcagccca	2640						
aaagggacga acacagcttt gtgctttgtt gctagcccat ggagctgacc cgactcttaa	2700						
aaatcaggaa ggacaaacac ctttagattt agtttcagca gatgatgtca gcgctcttct	2760						
gacageagee atgeceecat etgetetgee etettgttae aageeteaag tgeteaatgg	2820						
tgtgagaagc ccaggagcca ctgcagatgc tctctcttca ggtccatcta gcccatcaag	2880						
cctttctgca gccagcagtc ttgacaactt atctgggagt ttttcagaac tgtcttcagt	2940						
agttagttca agtggaacag agggtgcttc cagtttggag aaaaaggagg ttccaggagt	3000						
agattttagc ataactcaat tcgtaaggaa tcttggactt gagcacctaa tggatatatt	3060						
tgagagagaa cagatcactt tggatgtatt agttgagatg gggcacaagg agctgaagga	3120						
gattggaatc aatgcttatg gacataggca caaactaatt aaaggagtcg agagacttat	3180						
ctccggacaa caaggtctta acccatattt aactttgaac acctctggta gtggaacaat	3240						
tettatagat etgteteetg atgataaaga gttteagtet gtggaggaag agatgeaaag	3300						
tacagttcga gagcacagag atggaggtca tgcaggtgga atcttcaaca gatacaatat	3360						
teteaagatt cagaaggttt gtaacaagaa actatgggaa agatacaete aceggagaaa	3420						
agaagtttct gaagaaaacc acaaccatgc caatgaacga atgctatttc atgggtctcc	3480						
ttttgtgaat gcaattatcc acaaaggett tgatgaaagg catgegtaca taggtggtat	3540						
gtttggagct ggcatttatt ttgctgaaaa ctcttccaaa agcaatcaat atgtatatgg	3600						
aattggagga ggtactgggt gtccagttca caaagacaga tcttgttaca tttgccacag	3660						
gcagctgctc ttttgccggg taaccttggg aaagtctttc ctgcagttca gtgcaatgaa	3720						
aatggcacat teteeteeag gteateacte agteactggt aggeecagtg taaatggeet	3780						
agcattagct gaatatgtta tttacagagg agaacaggct tatcctgagt atttaattac	3840						
ttaccagatt atgaggcctg aaggtatggt cgatggataa atagttattt taagaaacta	3900						
attccactga acctaaaatc atcaaagcag cagtggcctc tacgttttac tcctttgctg	3960						
aaaaaaaatc atcttgccca caggcctgtg gcaaaaggat aaaaatgtga acgaagttta	4020						
acattotgac ttgataaagc tttaataatg tacagtgttt totaaatatt tootgttttt	4080						
tcagcacttt aacagatgcc attccaggtt aaactgggtt gtctgtacta aattataaac	4140						
agagttaact tgaacctttt atatgttatg cattgattct aacaaactgt aatgccctca	4200						

32

31 -continued

acagaactaa ttttactaat acaatactgt gttctttaaa acacagcatt tacactgaat 4260 acaatttcat ttgtaaaact gtaaataaga gcttttgtac tagcccagta tttatttaca 4320 ttgctttgta atataaatct gttttagaac tgcagcggtt tacaaaattt tttcatatgt 4380 attgttcatc tatacttcat cttacatcgt catgattgag tgatctttac atttgattcc 4440 agaggctatg ttcagttgtt agttgggaaa gattgagtta tcagatttaa tttgccgatg 4500 4560 ggagccttta tctgtcatta gaaatctttc tcatttaaga acttatgaat atgctgaaga tttaatttgt gatacctttg tatgtatgag acacattcca aagagctcta actatgatag 4620 gtcctgatta ctaaagaagc ttctttactg gcctcaattt ctagctttca tgttggaaaa ttttctgcag tccttctgtg aaaattagag caaagtgctc ctgtttttta gagaaactaa 4740 atcttgctgt tgaacaatta ttgtgttctt ttcatggaac ataagtagga tgttaacatt 4800 tccagggtgg gaagggtaat cctaaatcat ttcccaatct attctaatta ccttaaatct 4860 4920 aaaqqqqaaa aaaaaaatca caaacaqqac tqqqtaqttt tttatcctaa qtatattttt tectottett tttacttoot tttattocto tatttatage caatetatae ateatoogta 4980 aacttaaccc agaactataa aatgtagttg tttcagtccc cttcaggcct cctgaatggg 5040 caagtgcagt gaaacaggtg cttcctgctc ctgggttttc tctccatgat gttatgccca 5100 attggaaata tgctgtcagt ttgtgcacca tatggtgacc acgcctgtgc tcagtttggc 5160 5220 aqctataqaa qqaaatqctq tcccataaaa tqccatccct atttctaata taacactctt ttccaggaag catgcttaag catcttgtta cagagacata catccattat ggcttggcaa 5280 totottttat ttgttgacto tagotocott caaagtogag gaaagatott tactoactta 5340 atgaggacat tececateae tgtetgtace agtteaeett tattttaegt tttatteagt 5400 ctgtaaatta actggccctt tgcagtaact tgtacataaa gtgctagaaa atcatgttcc 5460 ttgtcctgag taagagttaa tcagagtaag tgcatttctg gagttgtttc tgtgatgtaa 5520 attatgatca ttatttaaga agtcaaatcc tgatcttgaa gtgcttttta tacagctctc 5580 taataattac aaatatccga aagtcatttc ttggaacaca agtggagtat gccaaatttt 5640 atatgaattt ttcagattat ctaagcttcc aggttttata attagaagat aatgagagaa 5700 ttaatggggt ttatatttac attatctctc aactatgtag cccatattac tcaccctatg 5760 agtgaatctg gaattgcttt tcatgtgaaa tcattgtggt ctatgagttt acaatactgc 5820 aaactgtgtt attttatcta aaccattgct taatgagtgt gtttttccat gaatgaatat 5880 accgtggttc atatgttagc atggcagcat tttcagatag ctttttgttt gttgggaagt tggggttttg gggggagggg gagtattagt acgttgcatg gaatagccta ctttataatg 6000 6060 gtgccagtag tactattata cccatcttca gtgtcttact tgtactgtat caaattccat 6120 acceteattt aattettaat aaaactqtte acttqtaaaa aaaaaaaaaa aaaaaaaaaa 6180 aaaaaaaa 6189 <210> SEO TD NO 9 <211> LENGTH: 5490 <212> TYPE: DNA

<213 > ORGANISM: Homo sapiens

<400> SEOUENCE: 9

34

-continued

33

cgcggaatcg gggagcgtcc ggagctagct ggatcctcta ggcaggatgg tgatgggaat 120 ctttgcaaat tgtatcttct gtttgaaagt gaagtactta cctcagcagc agaagaaaaa 180 gctacaaact gacattaagg aaaatggcgg aaagttttcc ttttcgttaa atcctcagtg 240 cacacatata atcttagata atgctgatgt tctgagtcag taccaactga attctatcca 300 aaagaaccac gttcatattg caaacccaga ttttatatgg aaatctatca gagaaaagag 360 actottggat gtaaagaatt atgatootta taagcoootg gacatcacac cacotootga 420 tcagaaggcg agcagttctg aagtgaaaac agaaggtcta tgcccggaca gtgccacaga 480 ggaggaagac actgtggaac tcactgagtt tggtatgcag aatgttgaaa ttcctcatct 540 tcctcaagat tttgaagttg caaaatataa caccttggag aaagtgggaa tggagggagg ccaggaagct gtggtggtgg agcttcagtg ttcgcgggac tccagggact gtcctttcct gatateetea caetteetee tggatgatgg catggagaet agaagacagt ttgetataaa 720 qaaaacctct qaaqatqcaa qtqaatactt tqaaaaattac attqaaqaac tqaaqaaca 780 aggatttcta ctaaqaqaac atttcacacc tqaaqcaacc caattaqcat ctqaacaatt 840 900 gcaagcattg cttttggagg aagtcatgaa ttcaagcact ctgagccaag aggtgagcga 960 tttagtagag atgatttggg cagaggccct gggccacctg gaacacatgc ttctcaagcc agtgaacagg attagcctca acgatgtgag caaggcagag gggattctcc ttctagtaaa 1020 qqcaqcactq aaaaatqqaq aaacaqcaqa qcaattqcaa aaqatqatqa caqaqtttta 1080 cagactgata cctcacaaag gcacaatgcc caaagaagtg aacctgggac tattggctaa 1140 1200 qaaaqcaqac ctctqccaqc taataaqaqa catqqttaat qtctqtqaaa ctaatttqtc caaacccaac ccaccatccc tggccaaata ccgagctttg aggtgcaaaa ttgagcatgt 1260 tgaacagaat actgaagaat ttctcagggt tagaaaagag gttttgcaga atcatcacag 1320 taagagccca gtggatgtct tgcagatatt tagagttggc agagtgaatg aaaccacaga 1380 gtttttgagc aaacttggta atgtgaggcc cttgttgcat ggttctcctg tacaaaacat 1440 cgtgggaatc ttgtgtcgag ggttgctttt acccaaagta gtggaagatc gtggtgtgca 1500 aagaacagac gtcggaaacc ttggaagtgg gatttatttc agtgattcgc tcagtacaag 1560 1620 tatcaagtac tcacaccegg gagagacaga tggcaccaga ctcctgctca tttgtgacgt agccctcgga aagtgtatgg acttacatga gaaggacttt cccttaactg aagcaccacc 1680 aggctacgac agtgtgcatg gagtttcaca aacagcctct gtcaccacag actttgagga 1740 tgatgaattt gttgtctata aaaccaatca ggttaaaatg aaatatatta ttaaattttc 1800 catgcctgga gatcagataa aggactttca tcctagtgat catactgaat tagaggaata 1860 cagacctgag ttttcaaatt tttcaaaggt tgaagattac cagttaccag atgccaaaac ttccaqcaqc accaaqqccq qcctccaqqa tqcctctqqq aacttqqttc ctctqqaqqa 1980 tqtccacatc aaaqqqaqaa tcataqacac tqtaqcccaq qtcattqttt ttcaqacata 2040 cacaaataaa agtcacgtgc ccattgaggc aaaatatatc tttcctttgg atgacaaggc 2100 cgctgtgtgt ggcttcgaag ccttcatcaa tgggaagcac atagttggag agattaaaga gaaggaagaa gcccagcaag agtacctaga agccgtgacc cagggccatg gcgcttacct 2220 gatgagtcag gatgctccgg acgtttttac tgtaagtgtt ggaaacttac cccctaaggc 2280 taaqqttctt ataaaaatta cctacatcac aqaactcaqc atcctqqqca ctqttqqtqt 2340 ctttttcatg cccgccaccg tagcaccctg gcaacaggac aaggctttga atgaaaacct 2400 tcaggataca gtagagaaga tttgtataaa agaaatagga acaaagcaaa gcttctcttt 2460

36

-continued

35

gactatgtct	attgagatgc	cgtatgtgat	tgaattcatt	ttcagtgata	cacatgaact	2520
gaaacaaaag	cgcacagact	gcaaagctgt	cattagcacc	atggaaggca	gctccttaga	2580
cagcagtgga	ttttctctcc	acatcggttt	gtctgctgcc	tatctcccaa	gaatgtgggt	2640
tgaaaaacat	ccagaaaaag	aaagcgaggc	ttgcatgctt	gtctttcaac	ccgatctcga	2700
tgtcgacctc	cctgacctag	ccagtgagag	cgaagtgatt	atttgtcttg	actgctccag	2760
ttccatggag	ggtgtgacat	tettgeaage	caagcaaatc	accttgcatg	cgctgtcctt	2820
ggtgggtgag	aagcagaaag	taaatattat	ccagttcggc	acaggttaca	aggagctatt	2880
ttcgtatcct	aagcatatca	caagcaatac	cacggcagca	gagttcatca	tgtctgccac	2940
acctaccatg	gggaacacag	acttctggaa	aacactccga	tatcttagct	tattgtaccc	3000
tgctcgaggg	tcacggaaca	tectectggt	gtctgatggg	cacctccagg	atgagagcct	3060
gacattacag	ctcgtgaaga	ggagccgccc	gcacaccagg	ttattcgcct	gcggtatcgg	3120
ttctacagca	aatcgtcacg	tcttaaggat	tttgtcccag	tgtggtgccg	gagtatttga	3180
atattttaat	gcaaaatcca	agcatagttg	gagaaaacag	atagaagacc	aaatgaccag	3240
gctatgttct	ccgagttgcc	actctgtctc	cgtcaaatgg	cagcaactca	atccagatgc	3300
gcccgaggcc	ctgcaggccc	cagcccaggt	gccatccttg	tttcgcaatg	atcgactcct	3360
tgtctatgga	ttcattcctc	actgcacaca	agcaactctg	tgtgcactaa	ttcaagagaa	3420
agaattttgt	acaatggtgt	cgactactga	gcttcagaag	acaactggaa	ctatgatcca	3480
caagctggca	gcccgagctc	taatcagaga	ttatgaagat	ggcattcttc	acgaaaatga	3540
aaccagtcat	gagatgaaaa	aacaaacctt	gaaatctctg	attattaaac	tcagtaaaga	3600
aaactctctc	ataacacaat	ttacaagctt	tgtggcagtt	gagaaaaggg	atgagaatga	3660
gtcgcctttt	cctgatattc	caaaagtttc	tgaacttatt	gccaaagaag	atgtagactt	3720
cctgccctac	atgagctggc	agggggagcc	ccaagaagcc	gtcaggaacc	agtctctttt	3780
agcatcctct	gagtggccag	aattacgttt	atccaaacga	aaacatagga	aaattccatt	3840
ttccaaaaga	aaaatggaat	tatctcagcc	agaagtttct	gaagattttg	aagaggatgg	3900
cttaggtgta	ctaccagctt	tcacatcaaa	tttggaacgt	ggaggtgtgg	aaaagctatt	3960
ggatttaagt	tggacagagt	catgtaaacc	aacagcaact	gaaccactat	ttaagaaagt	4020
cagtccatgg	gaaacatcta	cttctagctt	ttttcctatt	ttggctccgg	ccgttggttc	4080
ctatcttacc	ccgactaccc	gcgctcacag	tcctgcttcc	ttgtcttttg	cctcatatcg	4140
tcaggtagct	agtttcggtt	cagctgctcc	tcccagacag	tttgatgcat	ctcaattcag	4200
ccaaggccct	gtgcctggca	cttgtgctga	ctggatccca	cagtcggcgt	cttgtcccac	4260
aggacctccc	cagaacccac	cttctgcacc	ctattgtggc	attgttttt	cagggagete	4320
attaagctct	gcacagtctg	ctccactgca	acatcctgga	ggctttacta	ccaggccttc	4380
tgctggcacc	ttccctgagc	tggattctcc	ccagcttcat	ttctctcttc	ctacagaccc	4440
tgatcccatc	agaggttttg	ggtcttatca	tccctctgct	tactctcctt	ttcattttca	4500
accttccgca	gcctctttga	ctgccaacct	taggctgcca	atggcctctg	ctttacctga	4560
ggctctttgc	agtcagtccc	ggactacccc	agtagatctc	tgtcttctag	aagaatcagt	4620
aggcagtctc	gaaggaagtc	gatgtcctgt	ctttgctttt	caaagttctg	acacagaaag	4680
tgatgagcta	tcagaagtac	ttcaagacag	ctgcttttta	caaataaagt	gtgatacaaa	4740
agatgacagt	atcccgtgct	ttctggaatt	aaaagaagag	gatgaaatag	tgtgcacaca	4800

37 38 -continued acactggcag gatgctgtgc cttggacaga actcctcagt ctacagacag aggatggctt ctggaaactt acaccagaac tgggacttat attaaatctt aatacaaatg gtttgcacag 4920 ctttcttaaa caaaaaggca ttcaatctct aggtgtaaaa ggaagagaat gtctcctgga 4980 cctaattgcc acaatgctgg tactacagtt tattcgcacc aggttggaaa aagagggaat 5040 agtgttcaaa tcactgatga aaatggatga cccttctatt tccaggaata ttccctgggc 5100 ttttgaggca ataaagcaag caagtgaatg ggtaagaaga actgaaggac agtacccatc 5160 tatctgccca cggcttgaac tggggaacga ctgggactct gccaccaagc agttgctggg actocagoco ataagoactg tgtcccctct tcatagagtc ctccattaca gtcaaggcta 5280 agtcaaatga aactgaattt taaacttttt gcatgcttct atgtagaaaa taatcaaatg ataatagata attataatga aacttcatta aggtttcatt cagtgtagca attactgtct ttaaaaatta agtggaagaa gaattacttt aatcaactaa caagcaataa taaaatgaaa 5460

The invention claimed is:

cttaaaataa aaaaaaaaaa aaaaaaaaaa

1. A method of treatment of cancer cells defective in homologous recombination (HR), the method comprising: identifying a human patient with a familial predisposition to gene-linked hereditary cancer, wherein said cancer comprises cancer cells defective in homologous recombination;

5490

identifying a compound which inhibits PARP-1, and administering to said human patient a therapeutically effective amount of said compound.

* * * * *