

Winda - sprawozdanie

1. Wstęp

Badanym modelem jest model wind jeżdżących w biurowcu o zmiennej liczba pięter. Windy poruszają się zgodnie z pewnym algorytmem, który dokładniej opisany zostanie później.

2. Cel badań

Celem badań jest sprawdzenie czy zwiększenie liczby wind w budynku sprawi, że pracownicy spędzą mniej czasu czekając na przyjazd windy. Sprawdzamy również jaki wpływ na czas spędzony w kolejce do windy jadącej na parter ma ilość pięter, o które wraca się winda podczas jazdy, jeżeli wyżej również pojawi się pasażer chcący zjechać na dół.

3. Model konceptualny

Opis modelu: Badanym modelem jest M wind o ładowności L jeżdżących między piętrami w biurowcu o N liczbie pięter. Po pojawieniu się w budynku pasażerowie wjeżdżają na wybrane piętro, gdzie spędzają ok. 8 godzin, a następnie zjeżdżają na parter.

Rozpatrywany jest algorytmy jeżdżenia windy - winda wraca się w zakresie A pięter do góry jeżeli pojawi się tam pasażer chcący zjechać na dół.

Pasażer:

- 1. Pasażer pojawia się w budynku (pasażerowie pojawiają się co t^{\uparrow} od 7:00)
- 2. Pasażer ustawia się w kolejce do windy
- 3. Po pojawieniu się windy na parterze pasażer wsiada do windy (gdy nadejdzie jego kolej w kolejce (FIFO) i jeżeli w windzie będzie dla niego miejsce (limit L))
- 4. Pasażer wysiada na wybranym przez siebie piętrze

- 5. Pasażer zostaje na swoim piętrze przez ok. 8 godzin (8 godzin + wartość z rozkładu norm(1000, 500))
- 6. Pasażer ustawia się w kolejce do windy
- 7. Po pojawieniu się windy, na piętrze na którym znajduje się pasażer, pasażer wsiada do windy (gdy nadejdzie jego kolej w kolejce (FIFO) i jeżeli w windzie będzie dla niego miejsce (limit L))
- 8. Pasażer wysiada na parterze
- 9. Pasażer opuszcza budynek

Winda:

- 1. Winda startuje na parterze
- 2. Po pojawieniu się pasażera w kolejce do windy drzwi windy się otwierają
- 3. Pasażerowie z kolejki na parterze wsiadają do windy (do zapełnienia się windy L lub do wyczerpania się pasażerów w kolejce)
- 4. Pasażerowie wybierają na jakie piętra chcą dojechać
- 5. Winda jedzie na najniższe z wybranych pięter
- 6. Wysiadają wszyscy pasażerowie chcący wysiąść na danym piętrze
- 7. Powtarzają się kroki 5-6 aż winda będzie pusta
- 8. Winda jedzie na najwyższe z pięter na którym jest kolejka pasażerów czekających by zjechać na parter, jeżeli nie ma kolejek na piętrach to winda jedzie na parter i pomijane są kroki 9-13
- 9. Wsiadają pasażerowie z kolejki na danym piętrze (do zapełnienia się windy L lub do wyczerpania się pasażerów w kolejce)
- 10. Jeżeli winda jest pełna to jedzie na parter bez zatrzymywania się na pośrednich piętrach (pomijane są kroki 11-12)
- 11. Jeżeli pojawi się pasażer w kolejce w odległości A pięter powyżej danego piętra to winda jedzie na dane piętro, jeżeli nie to jedzie na najwyższe (poniżej piętra na którym jest aktualnie winda) z pięter na którym znajduje się kolejka pasażerów czekających by zjechać na parter
- 12. Powtarzają się kroki 9-11 aż winda dojedzie na parter
- 13. Pasażerowie z windy wysiadają na parterze

14. Powtarzają się kroki 3-14 aż wszyscy pasażerowie (P) opuszczą budynek

Przeglądanie działań

Zdarzenia czasowe:

- Przybycie pasażera do budynku
 - o zwiększ counter pozostałych pasażerów w ciągu dnia o jeden P
 - o umieść pasażera na końcu kolejki na parterze
 - zapisz czas pojawienia się w systemie
 - zaplanuj przybycie kolejnego pasażera jeżeli aktualny czas ≤ 14:00
- Koniec pracy pasażera
 - o umieść pasażera na końcu kolejki na danym piętrze
- Opuszczenie piętra przez windę
 - zmień stan windy na 'jedzie'
- Przyjazd windy
 - zmień pozycję windy na k

Zdarzenia warunkowe:

Wejście pasażera do windy na parterze

Warunek: Winda znajduje się na parterze, wolne miejsce w windzie

- dodaj pasażera do strumienia
- wylosuj na jakie piętro jedzie pasażer
- usuń pasażera z kolejki
- $\circ~$ zwróć czas czekania w kolejce Q_1
- Wejście pasażera do windy na piętrze

Warunek: Winda znajduje się na piętrze, na którym jest pasażer, wolne miejsce w windzie

- dodaj pasażera do strumienia
- usuń pasażera z kolejki
- $\circ~$ zwróć czas czekania w kolejce Q_1
- Wyjście pasażera z windy na parterze

Warunek: Winda znajduje się na parterze

- usuń pasażera ze strumienia
- $\circ~$ zwróć czas spędzony w systemie Q_2
- o zmniejsz P o jeden
- Wyjście pasażera z windy na piętrze

Warunek: Winda znajduje się na piętrze na którym chce wysiąść pasażer

- usuń pasażera ze strumienia
- $\circ~$ zwróć czas spędzony w systemie Q_2
- zaplanuj koniec pracy pasażera
- Jazda windy w górę

Warunek: W windzie znajdują się pasażerowie chcący dojechać na piętro i>j lub winda jest pusta i na piętrze i>j znajdują się pasażerowie chcący zjechać na parter i nie ma zaplanowanej jazdy windy

- zaplanuj przyjazd windy na piętro k= j+1
- Jazda windy w dół

Warunek: W windzie nie znajdują się pasażerowie chcący wjechać na piętro i>j lub chcący zjechać na parter z piętra i>j i nie ma zaplanowanej jazdy windy

- zaplanuj przyjazd windy na piętro k= j-1
- Koniec dnia

Warunek: Wszyscy pasażerowie opuścili budynek (cP = 0, wszystkie kolejki są puste, winda jest pusta)

zakończ symulację

4. Parametry modelu

Wejścia:

- N liczba pięter
- ullet M liczba wind
- A parametr algorytmu obsługi liczba pięter o które wraca się winda

Zakłócenia:

- L ładowność windy liczba osób
- h wysokość piętra w budynku
- v prędkość jazdy windy
- t_p czas jazdy między dwoma piętrami (h/v)
- p liczba pasażerów w ciągu dnia
- t_l czas odjazdu windy z piętra
- t^{\uparrow} odstęp czasu między pojawianiem się pasażerów wjeżdżających z parteru (wartość z rozkładu exp(8))
- t^\downarrow -czas spędzony na piętrze po wjechaniu ok. 8 godzin (8h + wartość z rozkładu norm(1800, 800) po wjechaniu

	deterministyczne	niedeterministyczne
wejścia	M, A, N	
zakłócenia	L, t_p , p, t_l , h, v	$t^{\uparrow}, t^{\downarrow}$

Wyjścia:

- time_in_queue średni czas spędzony na czekaniu na windę
- time_in_queue_down średni czas spędzony na czekaniu na windę by zjechać na parter

6. Plan eksperymentu

Dziedziny parametrów:

$$N \in \{15, 30, 45\}$$

$$M \in \{1,2,3\}$$

$$A\in\{0,2,4\}$$

$$h=2.7~[m]$$

$$v=4\ [m/s]$$

$$L=20$$

$$p=1500$$

$$t_l=0.5[s]$$

```
egin{aligned} t^{\uparrow} &= 	ext{exponential}(8) \ t^{\downarrow} &= 28800 + 	ext{norm}(1800, 800) \end{aligned}
```

Macierz eksperymentu:

```
0
   15
                     2
   15
            1
2
2
3
3
3
1
                     4^{\bar{}}
  15
                     \begin{bmatrix} 0 \\ 2 \\ 4 \\ 0 \end{bmatrix}
  15
   15
   15
   15
                     2 \ 4
   15
  15
                     0
  30
            1
                     2
  30
             1
                     4^{\bar{}}
  30
           2
2
3
3
1
1
                     0
  30
                     egin{array}{c} 2 \ 4 \ 0 \ 2 \ 4 \ \end{bmatrix}
  30
  30
  30
  30
  30
                     egin{array}{c} 0 \ 2 \ 4 \ \end{array}
  45
45
```

7. Wyniki badań symulacyjnych

rys. 1 Czas spędzony w kolejce w budynku z 15 piętrami

rys. 2 Czas spędzony w kolejce w budynku z 30 piętrami

rys. 3 Czas spędzony w kolejce w budynku z 45 piętrami

Rysunki 1 - 3 przedstawiają jak zmienia się czas spędzony w kolejce w zależności od liczby wind w budynku, z rozróżnieniem na przypadki z różnymi parametrami algorytmu obsługi windy. Każdy z wykresów reprezentuje budynek z inną liczbą pięter.

Można zauważyć, że w każdym z przypadków różnica między czasem w kolejce w budynku z jedną windą a dwoma jest znacząco większa od różnicy między czasami w budynku z dwoma a trzema windami.

rys. 4 Czas spędzony w kolejce by zjechać na parter w budynku z 15 piętrami

rys. 5 Czas spędzony w kolejce by zjechać na parter w budynku z 30 piętrami

rys. 6 Czas spędzony w kolejce by zjechać na parter w budynku z 45 piętrami

Rysunki 4 - 6 przedstawiają jak zmienia się czas spędzony w kolejce by zjechać na dół w zależności od parametru algorytmu obsługi windy, z rozróżnieniem na przypadki z różną liczbą wind w budynku.

8. Analiza statystyczna wyników

Badanymi hipotezami są: H_1 : Zwiększenie liczby wind w budynku zmniejszy czas czekania w kolejce, oraz H_2 : Zwiększenie liczby pięter, o które wraca się winda zmniejszy czas czekania w kolejce, by zjechać na parter.

Żeby sprawdzić prawdziwość hipotezy H_1 porównamy średnie czasy spędzone w kolejce w budynku z 15 piętrami i z parametrem algorytmu jazdy windy równym 0, jedną zmienną będzie ilość wind w budynku. Porównanie to można wykonać za pomocą testu Studenta dla prób niezależnych. Jednym z założeń testu pochodzenie wyników z obu prób z rozkładu normalnego lub zbliżonego do normalnego. Można to sprawdzić za pomocą testu Shapiro-Wilka.

Nazwa testu	test Shapiro-Wilka
H_0	średnie czasy w kolejce dla budynku z 1 windą należą do rozkładu normalnego
H_A	średnie czasy w kolejce dla budynku z 1 windą nie należą do rozkładu normalnego
α	0.05
p-value	0.4371991753578186
wynik testu	0.915647566318512

Nie mamy wystarczających dowodów żeby odrzucić H_0 , więc możemy uznać że czasy te są z rozkładu normalnego.

Nazwa testu	test Shapiro-Wilka
H_0	średnie czasy w kolejce dla budynku z 2 windami należą do rozkładu normalnego
H_A	średnie czasy w kolejce dla budynku z 2 windami nie należą do rozkładu normalnego
α	0.05
p-value	0.47826728224754333
wynik testu	0.9272117614746094

Nie mamy wystarczających dowodów żeby odrzucić H_0 , więc możemy uznać że czasy te są z rozkładu normalnego.

Nazwa testu	test Shapiro-Wilka
H_0	średnie czasy w kolejce dla budynku z 3 windami należą do rozkładu normalnego
H_A	średnie czasy w kolejce dla budynku z 3 windami nie należą do rozkładu normalnego
α	0.05

p-value	0.47191473841667175
wynik testu	0.9254740476608276

Nie mamy wystarczających dowodów żeby odrzucić H_0 , więc możemy uznać że czasy te są z rozkładu normalnego.

Jako, że testów wynika iż czasy te należą do rozkładów normalnych, możemy je porównać.

Nazwa testu	test Studenta dla prób niezależnych
H_0	średni czas w kolejce dla budynku z 1 windą jest równy średniemu czasowi w kolejce dla budynku z 2 windami
H_A	średni czas w kolejce dla budynku z 1 windą jest większy od średniego czasu w kolejce dla budynku z 2 windami
α	0.05
p-value	4.317802458677157e-06
wynik testu	36.70206210270249

Mamy wystarczające dowody, żeby odrzucić H_0 , przyjmujemy więc H_A .

Nazwa testu	test Studenta dla prób niezależnych
H_0	średni czas w kolejce dla budynku z 2 windami jest równy średniemu czasowi w kolejce dla budynku z 3 windami
H_A	średni czas w kolejce dla budynku z 2 windami jest większy od średniego czasu w kolejce dla budynku z 3 windami
α	0.05
p-value	0.00177829748853088
wynik testu	10.261226716724016

Mamy wystarczające dowody, żeby odrzucić H_0 , przyjmujemy więc H_A .

Takie same testy możemy zastosować żeby zbadać prawdziwość hipotezy H_2 . Porównujemy budynki z 15 piętrami i jedną windą, jedyną zmienną jest parametr algorytmu jazdy windy.

Nazwa testu	test Shapiro-Wilka
H_0	średnie czasy w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 0 należą do rozkładu normalnego
H_A	średnie czasy w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 0 nie należą do rozkładu normalnego

α	0.05
p-value	0.4371991753578186
wynik testu	0.915647566318512

Nie mamy wystarczających dowodów żeby odrzucić H_0 , więc możemy uznać że czasy te są z rozkładu normalnego.

Nazwa testu	test Shapiro-Wilka
H_0	średnie czasy w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 2 należą do rozkładu normalnego
H_A	średnie czasy w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 2 nie należą do rozkładu normalnego
α	0.05
p-value	0.47191473841667175
wynik testu	0.9254740476608276

Nie mamy wystarczających dowodów żeby odrzucić H_0 , więc możemy uznać że czasy te są z rozkładu normalnego.

Nazwa testu	test Shapiro-Wilka
H_0	średnie czasy w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 4 należą do rozkładu normalnego
H_A	średnie czasy w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 4 nie należą do rozkładu normalnego
α	0.05
p-value	0.6905661225318909
wynik testu	0.9739788174629211

Nie mamy wystarczających dowodów żeby odrzucić H_0 , więc możemy uznać że czasy te są z rozkładu normalnego.

Nazwa testu	test Studenta dla prób niezależnych
H_0	średni czas w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 0 jest równy średniemu czasowi w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 2
H_A	średni czas w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 0 jest większy od średniego czasu w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 2

α	0.05
p-value	0.009992551815859741
wynik testu	6.344071772312815

Mamy wystarczające dowody, żeby odrzucić H_0 , przyjmujemy więc H_A .

Nazwa testu	test Studenta dla prób niezależnych
H_0	średni czas w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 2 jest równy średniemu czasowi w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 4
H_A	średni czas w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 2 jest większy od średniego czasu w kolejce na parter dla budynku z parametrem algorytmu jazdy windy równym 4
α	0.05
p-value	0.025812980167012608
wynik testu	3.875128232786587

Mamy wystarczające dowody, żeby odrzucić H_0 , przyjmujemy więc H_A .

Z testów wynika, że obie hipotezy H_1 i H_2 zostały potwierdzone.