"A project about automatic image annotations"

LELEC2885

"Project Description"

2014-2015

Assistants:

Cédric Verleysen cedric.verleysen@uclouvain.be

Anthony Legrand anthony.legrand@uclouvain.be

Prof.:

Laurent Jacques laurent.jacques@uclouvain.be

Description

- Main objective:
 - automatic image segmentation,
 - ... element classification,
 - ... annotations
 - ⇒ Towards "automatic image interpretation"
- Area of interest?

 Louvain-la-Neuve!

- Database of images:
 - O(1000) pictures of LLN buildings

Your tools

- all the material learned in LELEC2885!!
- other methods if you described them properly

Outline

Part 1 (short):

Manual image annotation on about 100 images Remark: useful for validating future methods

Deadline: Sep. 25th (see next slides)

- Part 2: Automatic image annotations reading/understanding/combining/programming
- Part 3: Evaluations

Part 1:

Manual image annotation

Which kind of annotations?

 \Rightarrow ID card of the image!

Manual annotation?

- 1. Download all images of your group through FTP (read icampus, part "Course description")
- 2. Download matlab file "tools/annotate_images.m" (read icampus, part "Course description")
- 3. Place all files (images and mfile) in the same folder in your computer
- 4. Launch matlab, "cd <folder>", run "annotate_images"
- 5. This mfile parses each image one by one

Manual annotation?

5. For each image, mfile ask you to click on

- 6. Collected "clicks" saved in "<imgname>.mat" files
- 7. When finished, upload them in group folder in FTP

Collected clicks?

Collected clicks?

Points of
$$i^{ ext{th}}$$
 Category: $\mathcal{C}_i = \{\vec{x}_{i1}, \cdots, \vec{x}_{iM_1}\}$ class index (e.g., sky, vegetation, ...) \Rightarrow Category Set $\{\mathcal{C}_1, \cdots, \mathcal{C}_K\}$

The save .mat file contains a Matlab structure

Image examples

Part 2:

Automatic image annotation

Your tools

- Feature vectors design:
 - colors/textures/edges/variances/shape descriptors ...
- Image segmentation based on them (mandatory!)
- Classification tools: K-Means, (SVM)
- (possibly) Segmentation trees
- (possibly) image summarization:
 - SIFT/BRIEF/FREAK/...
- External "black boxes" (e.g., toolboxes) allowed but **only if you know what's inside!!**

<u>In summary</u>: Free choices but...

Test, Explain, and Validate (on many cases)!

For each image you should arrive to ...

Definition of areas of pixels:
$$\{\mathcal{C}_1,\cdots,\mathcal{C}_K\}$$

 $\widetilde{\mathcal{C}}_i = \{\text{all pixels segmented for element } i\}$

Evaluation (compare manual/auto)

We want:

- TP/TN/FP/FN averaged evaluation (type I/II errors) for each element on all images on average for all elements
- ROC curves
- Critical evaluation your results (limitations)

TP/TN/FP/FN?

[e.g., http://en.wikipedia.org/wiki/Evaluation of binary classifiers]

$$\begin{aligned} &\operatorname{TP}_{i} := \# \{ \vec{x} \in \mathcal{C}_{i} \mid \vec{x} \in \widetilde{\mathcal{C}}_{i} \} \\ &\operatorname{FN}_{i} := \# \{ \vec{x} \in \mathcal{C}_{i} \mid \vec{x} \in \widetilde{\mathcal{C}}_{\overline{i}} \} \quad \overline{i} = \text{``all but } i\text{''} \\ &\operatorname{FP}_{i} := \# \{ \vec{x} \in \mathcal{C}_{\overline{i}} \mid \vec{x} \in \widetilde{\mathcal{C}}_{i} \} \quad \text{``Confu} \\ &\operatorname{TN}_{i} := \# \{ \vec{x} \in \mathcal{C}_{\overline{i}} \mid \vec{x} \in \widetilde{\mathcal{C}}_{\overline{i}} \} \quad \text{``Condition } \underline{i} \end{aligned}$$

"reality" "detection" or condition

$$\bar{i} =$$
 "all but i "

"Confusion matrix"

condition	$\begin{array}{c} \text{Object} \\ = i \end{array}$	Object $\neq i$	
	TP	FP	$\Sigma = 100\%$
Detect. $\neq i$	FN	TN	$\Sigma = 100\%$
,	$\Sigma = 100\%$	$\Sigma = 100\%$	

Agenda

- September 25th: Project introduction (during the lecture).
- September 25th:

All groups must be formed and registered on icampus!

September 25th:

We provide a code for the image annotation (released on the FTP, see Database access below).

October 2th:

Image annotation must have be done and uploaded!

- (October 5th: mutualizing all annotations on ftp)
- November 3-7 (8th week):

 Mid-term project presentation
- December 12th: Project reports must be provided.
- **December 15-19** (14th week): Final project presentation.