BÀI 5. GIAO TIẾP VỚI LCD

1. Mục đích

Qua bài học sinh viên có thể đạt được các kiến thức sau:

- Hiểu biết về cơ chế giao tiếp LCD của PIC24F.
- Hiểu về cơ chế hoạt động của ngắt UART trong PIC24F.
- Xây dựng các ứng dụng cơ bản dùng LCD để hiện thị trên board Explorer 16/32.

2. Tóm tắt nội dung lý thuyết

2.1. Giới thiệu

Board Explorer 16 có thể tích hợp 3 loại LCD là dot-matrix, LCD hiển thị bảng chữ cái và graphic LCD. Mặc định, LCD trên board Explorer 16/32 có 2 hàng 16 cột và được điều khiển bởi bộ điều khiển NT7603. LCD được tích hợp bởi màn hình tinh thể LCD, bộ lựa chọn cột và hàng, mạch cấp nguồn và bộ điều khiện tích hợp bên trong, các thành phần trên được tích hợp thành 1 chip gọi là Chip On Glass. Chúng ta có thể giao tiếp với LCD bằng bus 8-bit song song thông qua port IO. Hình 2.1 thể hiện kết nối LCD với PIC24F thông qua 8 bit PORTE<7:0>, 2 bit điều khiển thông qua PORTD<4:5> và PORTB<15>.

Trên các mô-đun chữ và số, chúng ta có thể trực tiếp đặt mã ký tự ASCII vào bộ đệm RAM LCD Controller (DDRAM). Các hình ảnh đầu ra được sản xuất bởi một bộ tạo kí tự tích hợp (một bảng) sử dụng pixel lưới 5×7 để thể hiện cho kí tự. Bảng thường chứa một ký tự ASCII mở rộng, nó đã được sáp nhập với một tập hợp nhỏ các ký tự kanji trong tiếng Nhật cũng như một số biểu tượng của việc sử dụng phổ biến. Trong khi bảng tạo kí tự chủ yếu được thực hiện trong ROM điều khiển hiển thị, các mô hình hiển thị khác nhau cung cấp khả năng mở rộng bộ ký tự bằng cách sửa đổi/tạo các ký tự mới (lên đến 8 trên một số mô hình) truy câp vào bô đêm RAM bên trong nhỏ thứ hai (CGRAM).

Г					High	er 4-bit		D7) of 0	Characti	er Code		decimal)				
\vdash		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
	0	CG RAM (1)			0	0		·	P					9	≡ .	¢	
	1	CG RAM (2)			1			.=	4			:::	Ţ	Ţ.	<u></u> ,	ä	
	2	CG RAM (3)		::	2		R	b	ŀ"				4	ij	.×'		
	3	CG RAM (4)		#			5	<u>.</u>	≝.			!	ņ	Ŧ	₩	≝.	æ
	4	CG RAM (5)		#	4	D	T	ᅼ	t.			٠.	Ι	ŀ	†	ļi	<u></u>
	5	CG RAM (6)		7.	5		U	₽	u			:	7	; †•		S	ü
	6	CG RAM (7)			6	F	Ų	#"	V			ij	Ħ			p	Ξ
Hexadecimal)	7	CG RAM (8)			7	8	W	9	W			7	#	X	7	9	Л
racter Code (F	8	CG RAM (1)		ſ.	8	H	X	h	×			·4	7	*	Ņ	.,;"	X
4-bit (D0 to D3) of Character Code (Hexadecimal)	9	CG RAM (2)		Þ	9	I	Y	i	'			÷	•	ļ	ı.	-:	
Lower 4-bit (D0	А	CG RAM (3)		*	#	J.	Ξ.	ij	Z			::::		ľÌ	ŀ	.]	#:
Lov	В	CG RAM (4)		-	::	K	I.	K	₹.			*	**	<u>-</u>		×	;=
	С	CG RAM (5)		:	<	<u></u>	#	1				†?	::; ::;		7	4	H
	D	CG RAM (6)			::::	M		m	>			.:1.	<u></u>	٠,		#	. .
	Е	CG RAM (7)		::	>	N	۰۰.	m	÷			=	Ċ	:†:		ñ	
	F	CG RAM (8)			?				÷			•:::	늿	7	:: :	Ö	

Hình 2.1. Bảng tạo kí tự được sử dụng bởi NT7603H bên trong bộ điều khiển LCD.

Như đã đề cập ở trên, các Module $LCD 2 \times 16$ được sử dụng trong board Explorer 16 là một trong những lựa chọn rộng lớn của các mô-đun Hiển thị LCD có sẵn trên thị trường

trong các cấu hình khác nhau, từ một đến bốn dòng 8, 16, 20, 32 và lên đến 40 ký tự mỗi, tương thích với chipset HD44780 chuẩn công nghiệp hiện tại.

Bộ tích hợp của HD44780 chỉ có hai thanh ghi địa chỉ riêng biệt, một cho dữ liệu ASCII và một cho các lệnh điều khiển, và tập hợp các lệnh tiêu chuẩn trong bảng 2.1 và 2.2 có thể được sử dụng để thiết lập và điều khiển màn hình:

Bảng 2.1. Bảng các lệnh điều khiển LCD NT7603H.

Lệnh					Code					Mô tả	Thời gian thực thi	
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Clear display	0	0	0	0	0	0	0	0	0	1	Xóa Hiển thị và trả con trỏ đến vị trí đầu tiên (địa chỉ 0).	1.64 ms
Đưa con trỏ về vị trí bắt đầu	0	0	0	0	0	0	0	0	1	*	Trở về con trỏ đến vị bắt đầu (địa chỉ 0). Vị trí hiện thị cũng được đưa về vị trí đầu tiên. Nội dung DDRAM vẫn không thay đổi.	1.64 ms
Cursor home	0	0	0	0	0	0 0 1 I/D S Đặt con thay Các hiệi		Đặt hướng di chuyển của con trỏ (I/D), chỉ định để thay đổi các hiển thị (S). Các hoạt động được thực hiện trong dữ liệu đọc/ghi.	40 us			
Display On/Off control	0	0	0	0	0	0	1	D	С	В	Đặt on/off của tất cả các màn hình (D), hiển thị con trỏ (C) và nhấp nháy của ký tự vị trí con trỏ (B).	40us
Cursor/display shift	0	0	0	0	0	1	S/C	R/L	*	*	Đặt Cursor-Move hoặc Display-Shift (S/C), Shift hướng (R/L). Nội dung DDRAM vẫn không thay đổi.	40us
Function set	0	0	0	0	1	DL	N	F	*	*	Đặt chiều dài dữ liệu giao diện (DL), số dòng hiển thị (N) và phông chữ ký tự (F).	40us
Set CGRAM address	0	0	0	1	Set C	GRAN	A addr	ess			Đặt địa chỉ CGRAM. Dữ liệu CGRAM được gửi và nhận sau khi cài đặt câu lệnh này.	40us
Set DDRAM address	0	0	1	DDR	DDRAM address						Đặt địa chỉ DDRAM. Dữ liệu DDRAM được gửi và nhận sau khi cài đặt câu lệnh này.	40us
Read busy- flag and address counter	0	1	BF	CGR	GRAM / DDRAM address			Đọc cờ bận (BF) cho biết hoạt động nội bộ đang được thực hiện và đọc CGRAM hoặc DDRAM địa chỉ truy cập nội dung (tùy thuộc vào hướng dẫn trước).	Ous			

Write to CGRAM or DDRAM	1	0	write data	Ghi dữ liệu vào CGRAM hoặc DDRAM.	40us
Read from	1	1	Read data	Reads data from CGRAM	40us
CGRAM or				or DDRAM.	
DDRAM					

Bảng 2.2. Mô tả các bit dùng trong các câu lệnh điều khiển.

Tên bit	Cấu	hình/trạng thái
I/D	0 = Vị trí con trỏ giảm.	1 = Vị trí con trỏ tăng.
S	0 = Không hiển thị dịch chuyển.	1 = Hiển thị dịch chuyển.
D	0 = Tắt hiển thị.	1 = Bật hiển thị.
С	0 = Tát con trỏ.	1 = Bật con trỏ.
В	0 = Tắt con trỏ nhấp nháy.	1 = Bật con trỏ nhấp nháy.
S/C	0 = Dịch chuyển con trỏ.	1 = Dịch chuyển hiển thị.
R/L	0 = Dịch trái.	1 = Dịch phải.
DL	0 = Giao diện 4 bit.	1 = Giao diện 8 bit.
N	0 = 1/8 or 1/11 Duty (1 line)	1 = 1/16 Duty (2 lines)
F	0 = 5x7 dots	1 = 5x10 dots
BF	$0 = \text{C\'o} \text{ thể chấp nhận lệnh.}$	1 = Hoạt động bên trong đang được hiển thị.

2.2. Parallel Master Port – PMP

Hình 2.2 thể hiện việc kết nối các chân tín hiệu PMP với các thiết bị ngoại vi như vi điều khiển khác, LCD, EEPROM.

Hình 2.2. Tổng quan module PMP.

Việc ghi dữ liệu ra LCD được sử dụng bởi đường bus dữ liệu 8-bit: D7-D0 tương ứng với các chân PMPD<7:0>/RE0-RE7. Ngoài ra còn có các tín hiệu cần thiết sau:

- Tín hiệu cho phép: enable strobe line (E) tương ứng với chân tín hiệu PMPE/RD4.
- Tín hiệu cho phép đọc hoặc ghi: Read/Write selection line (R/W) tương ứng với chân tín hiệu PMPRD/PMPWR/RD5.
- Tín hiệu địa chỉ (RS) để chọn thanh ghi tương ứng với chân tín hiệu PMPCS<2:1>.

PIC24F cấu hình IP Port là Parallel Master Port (PMP) để truy xuất các đường dữ liệu và tín hiệu điều khiển của LCD. PMP trên PIC24F có những đặc điểm sau:

- Đường dữ liệu 2 chiều (đầu vào và đầu ra) có độ rộng là 8 hoặc 16 bit.
- 16 đường đia chỉ có thể đánh đia chỉ lên đến 64k.
- 6 tín hiệu strobe/điều khiển bao gồm:
 - Enable
 - Address latch
 - Read
 - Write
 - 2 đường tín hiệu Chip select.

2.3. Cấu hình EPMP để điều khiển LCD

2.3.1. Thanh ghi PMCON1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN	_	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0 ⁽¹⁾	R/W ₋₀ (1)	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0
CSF1	CSF0	ALP	CS2P	CS1P	BEP	WRSP	RDSP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Hình 2.3. Thanh ghi PMCON.

Bảng 2.3. Bảng mô tả các bit trong thanh ghi PMCON.

Bit	Tên	Chức năng
15	PMPEN: Parallel Master Port	1 = Cho phép PMP hoạt động.
	Enable bit	0 = PMP bị vô hiệu hoá, không có các truy cập off-
		chip được thực hiện.
13	PSIDL : Stop in Idle Mode bit	1 = Gián tiếp hoạt động mô-đun khi thiết bị vào chế
		độ nhàn rỗi.
		0 = Tiếp tục hoạt động mô-đun ở chế độ nhàn rỗi.

12-11	ADRMUX <1:0>: Address/Data	11 = Reserved
12 11	Multiplexing Selection bits	10 = Tất cả 16 bit địa chỉ được multiplexed trên
	Water Francisco	PMD < 7:0 > Pins.
		01 = Các bit thấp của multiplexed trên PMD<7:0>
		pins, 8 bit cao trên PMA<15:8>
		00 = Địa chỉ và dữ liệu xuất hiện trên các chân tách
		biêt.
9-8	MODE<1:0>: Parallel Port	11 = Chế độ master.
	Mode Select bits	10 = Chế độ Enhanced PSP; các chân được sử dụng
		là PMRD, PMWR, PMCS, PMD<7:0> and
		PMA<1:0>.
		01 = Chế độ Buffered PSP; các chân được sử dụng
		là PMRD, PMWR, PMCS and PMD<7:0>
		00 = Chế độ Legacy Parallel Slave Port; các chân
		được sử dụng là PMRD, PMWR, PMCS and
		PMD<7:0>
7-6	CSF <1:0>: Chip Select Function	11 = Reserved
	bits	10 = PMA15 được dùng cho Chip Select 2, PMA14
		được dùng cho Chip Select 1.
		01 = PMA15 được dùng cho Chip Select 2, PMCS1
		được dùng cho Chip Select 1.
		00 = PMCS2 được dùng cho Chip Select 2, PMCS1
		được dùng cho Chip Select 1.
5	ALP : Address Latch Polarity bit	1 = Active-high (PMALL and PMALH)
		0 = Active-low (PMALL and PMALH)
4	ALMODE: Address Latch	1 = Cho phép "smart" address strobes.
	Strobe Mode bit	0 = vô hiệu hóa "smart" address strobes.
2	BUSKEEP: Bus Keeper bit	1 = Dữ liệu Bus giữ giá trị cuối cùng của nó khi
		không được kích hoạt.
		0 = Bus dữ liệu là ở trạng thái trở kháng cao khi
		không được kích hoạt.
1	IRQM<1:0>: Interrupt Request	11 = Ngắt được tạo ra khi bộ Buffer 3 được đọc
	Mode bits	hoặc được viết (chế độ PSP buffered), hoặc trên
		một hoạt động đọc hoặc ghi khi PMA < 1:0 > = 11
		(chỉ ở chế độ địa chỉ PSP).
		10 = Reserved.
		01 = Ngắt được tạo ra ở phần cuối của một chu kỳ
		đọc/ghi.
		00 = Ngắt không được tạo ra.

2.3.2. Thanh ghi PMCON2

R-0, HSC	U-0	R/C-0, HS	R/C-0, HS	U-0	U-0	U-0	U-0		
BUSY	_	ERROR	TIMEOUT	_	_	_	_		
bit 15	pit 15 bit 8								

| R/W-0 |
|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| RADDR23 ⁽¹⁾ | RADDR22 ⁽¹⁾ | RADDR21 ⁽¹⁾ | RADDR20 ⁽¹⁾ | RADDR19 ⁽¹⁾ | RADDR18 ⁽¹⁾ | RADDR17 ⁽¹⁾ | RADDR16 ⁽¹⁾ |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

C = Clearable bit HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit

Hình 2.4. Thanh ghi PMCON2.

Bảng 2.4. Bảng mô tả các bit của thanh ghi PMCON2.

Bit	Tên	Chức năng
15	BUSY : Busy bit (Master mode	1 = Port đang bận.
	only)	0 = Port không bận.
13	ERROR : Error bit	1 = Quá trình đọc/ghi dữ liệu bị lỗi.
		0 = Quá trình đọc/ghi dữ liệu thành công.
12	TIMEOUT : Time-out bit	1 = Quá trình đọc/ghi dữ liệu quá thời gian chờ.
		0 = Quá trình đọc/ghi dữ liệu thành công.
7-0	RADDR <23:16>: Parallel	Địa chỉ ghi ra master port address.
	Master Port Reserved Address	
	Space bits	

2.3.3. Thanh ghi PMCON3

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTWREN	PTRDEN	PTBE1EN	PTBE0EN	_	AWAITM1	AWAITM0	AWAITE
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

Hình 2.5.Thanh ghi PMCON3.

Bảng 2.5. Bảng mô tả các bit của thanh ghi PMCON4.

Bit	Tên	Chức năng
15	PTWREN: Write/Enable	1 = Cho phép các chân PMWR/PMENB hoạt
	Strobe Port Enable bit	động.
		0 = Vô hiệu hóa các chân PMWR/PMENB.
14	PTRDEN : Read/Write Strobe	1 = Cho phép các chân PMRD/PMWR hoạt động.
	Port Enable bit	0 = Vô hiệu hóa các chân PMRD/PMWR.
13	PTBE1EN: High Nibble/Byte	1 = Cho phép chân PMBE1 hoạt động.
	Enable Port Enable bit	0 = Vô hiệu hóa chân PMBE1.
12	PTBE0EN: Low Nibble/Byte	1 = Cho phép chân PMBE0 hoạt động.
	Enable Port Enable bit	0 = Vô hiệu hóa chân PMBE0.
10-9	AWAITM<1:0>: Address	11 = Đợi 3½ TCY
	Latch Strobe Wait States bits	10 = Đợi 2½ TCY
		01 = Đợi 1½ TCY
		00 = Đợi ½ TCY
8	AWAITE: Address Hold After	1 = Đợi 1¼ TCY
	Address Latch Strobe Wait	0 = Đợi ¼ TCY
	States bits	

2.3.4. Thanh ghi PMCON5

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14			PTEN	<13:8>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PTEN<7:3>				PTEN<2:0>	
bit 7					•		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Hình 2.6. Thanh ghi PMCON5.

Bảng 2.6. Bảng mô tả các bit của thanh ghi PMCON5

Bit	Tên	Chức năng
15	PTEN15: PMA15 Port Enable bit	1 = PMA15 hoạt động như đường địa chỉ thứ 15
		hoặc Chip Select 2.
		0 = PMA15 hoạt động như port I/O.
14	PTEN14: PMA14 Port Enable bit	1 = PMA14 hoạt động như đường địa chỉ thứ 14
		hoặc Chip Select 1.
		0 = PMA14 hoạt động như port I/O.
13-3	PTEN<13:3>: EPMP Address	1 = PMA<13:3> hoặt động như EPMP đường địa
	Port Enable bits	chỉ.

		0 = PMA<13:3> hoặt động như port I/Os
2-0	PTEN <2:0>:	1 = PMA<2:0> hoạt động như đường địa chỉ hoặc
	PMALU/PMALH/PMALL Strobe	address latch.
	Enable bits	0 = PMA<2:0> hoạt động như port I/Os.

2.3.5. Thanh ghi PMCSxCF

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CSDIS	CSP	CSPTEN	BEP	_	WRSP	RDSP	SM
bit 15 bit 8							

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
ACKP	PTSZ1	PTSZ0	_	_	_	_	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Hình 2.7. Thanh ghi PMCSxCF.

Bảng 2.7. Bảng mô tả các bit của thanh ghi PMCSxCF.

Bit	Tên	Chức năng
15	CSDIS : Chip Select x Disable	1 = Vô hiệu hoá chức năng Chip Select x.
	bit	0 = Cho phép chức năng Chip Select x.
14	CSP : Chip Select x Polarity bit	1 = Kích hoạt mức cao (PMCSx)
		0 = Kích hoạt mức thấp (PMCSx)
13	CSPTEN : PMCSx Port Enable	1 = Cho phép port PMCSx.
	bit	0 = Vô hiệu hóa port PMCSx.
12	BEP : Chip Select x Nibble/Byte	1 = PMBE0, PMBE1 kích hoạt mức cao.
	Enable Polarity bit	0 = PMBE0, PMBE1 kích hoạt mức thấp.
10	WRSP : Chip Select x Write	Đối với chế độ Slave và chế độ Master khi SM = 0:
	Strobe Polarity bit	1 = Ghi strobe kích hoạt mức cao (PMWR)
		0 = Ghi strobe kích hoạt mức thấp (PMWR)
		Chế độ Master khi SM = 1:
		1 = Cho phép strobe kích hoạt mức cao (PMENB)
		0 = Cho phép strobe kích hoạt mức thấp (PMENB)
9	RDSP : Chip Select x Read	Đối với chế độ Slave và chế độ Master khi SM = 0:
	Strobe Polarity bit	1 = Đọc strobe kích hoạt mức cao (PMRD)
		$0 = $ Dọc strobe kích hoạt mức thấp (\underline{PMRD})
		Chế độ Master khi SM = 1:
		$1 = \text{Doc/ghi kich hoạt mức cao } (PMRD/\underline{PMWR})$
		0 = Đọc/ghi kích hoạt mức thấp (<u>PMRD</u> /PMWR)

8	SM: Chip Select x Strobe Mode	1 = Sử dụng các chân PMRD/ <u>PMWR</u> và PMENB.
	bit	0 = Sử dụng các chân PMRD and PMWR.
7	ACKP : Chip Select x	1 = ACK kích hoạt mức cao (PMACK1).
	Acknowledge Polarity bit	0 = ACK kích hoạt mức thấp (PMACK1).
6-5	PTSZ<1:0>: Chip Select x Port	11 = Reserved
	Size bits	10 = Sử dụng 16-bit port (PMD<15:0>)
		01 = Sử dụng 4-bit port (PMD < 3:0 >)
		00 = Sử dụng 8-bit port (PMD<7:0>)

2.3.6. Thanh ghi PMAEN

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PTEN7 | PTEN6 | PTEN5 | PTEN4 | PTEN3 | PTEN2 | PTEN1 | PTEN0 |
| bit 7 | | | | | | | bit 0 |

	_	~	_	n	႕	٠
_	c	u	c	ш	u	۰

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

Hình 2.8. Thanh ghi PMAEN.

Bảng 2.8. Bảng mô tả cac bit của thanh ghi PMAEN.

Bit	Tên	Chức năng
15-14	PTEN <15:14>: PMCSx	1 = Chức năng chân PMA15 and PMA14 như là
	Strobe Enable bits	PMA<15:14> hay PMCS2 và PMCS1.
		0 = PMA15 and PMA14 function as port I/O
13-2	PTEN<13:2>: PMP Address	1 = Chức năng chân PMA<13:2> như là PMP
	Port Enable bits	đường địa chỉ.
		0 = Chức năng chân PMA<13:2> như là I/O port.
1-0	PTEN <1:0>:	1 = Chức năng chân PMA1 và PMA0 như là
	PMALH/PMALL Strobe	PMA<1:0> hay PMALH và PMALL.
	Enable bits	0 = Chức năng chân PMA1 và PMA0 như I/O
		port.

2.3.7. Thanh ghi PMCSxBS

| R/W ⁽¹⁾ |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| | | | BASE< | :23:16> | | | |
| bit 15 | | | | | | | bit 8 |

R/W ⁽¹⁾	U-0	U-0	U-0	R/W ⁽¹⁾	U-0	U-0	U-0
BASE15	_	_	_	BASE11	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Hình 2.9. Thanh ghi PMCSxBS.

Bit	Tên	Chức năng
15-7	BASE <23:15>: Chip Select x	Địa chỉ cho ChipSelect x bit.
	Base Address bits	
3	BASE11 : Chip Select x Base	Địa chỉ cho ChipSelect x bit.
	Address bit	_

2.3.8. Thanh ghi PMCSxMD

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
ACKM1	ACKM0	AMWAIT2	AMWAIT1	AMWAIT0	_	_	_
bit 15							bit 8

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| DWAITB1 | DWAITB0 | DWAITM3 | DWAITM2 | DWAITM1 | DWAITM0 | DWAITE1 | DWAITE0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

Hình 2.10. Thanh ghi PMCSxMD

Bảng 2.9. Bảng mô tả các bit của thanh ghi PMCSxMD.

15-14 ACKM<1:02 Acknowledge	>: Chip Select x e Mode bits	11 = Reserved. 10 = PMACKx được sử dụng để xác định khi một thao tác đọc/ghi hoàn tất. 01 = PMACKx được sử dụng để xác định khi một
Acknowledge	e Mode bits	thao tác đọc/ghi hoàn tất.
		01 = PMACKx được sử dụng để xác định khi một
		7
		thao tác đọc/ghi được hoàn tất với thời gian.
		(Nếu DWAITM $< 3:0 > = 0000$, thời gian chờ tối
		đa là 255 TCY hoặc khác nó là DWAITM < 3:0 >
		chu kỳ.).
		00 = PMACKx không được sử dụng.
	2:0>: Chip Select x	111 = Chờ 10 chu kì master.
Alternate Ma	ster Wait States bits	
		001 = Chờ 4 chu kì master.
		000 = Chờ 3 chu kì master.
	:0>: Chip Select x	$11 = \text{Đợi } 3\frac{1}{4} \text{ TCY.}$
_	Sefore Read/Write	$10 = \text{Đợi } 2\frac{1}{4} \text{ TCY.}$
Strobe Wait S	States bits	$01 = \text{Đợi } 1\frac{1}{4} \text{ TCY.}$
		$00 = \text{Đợi} \frac{1}{4} \text{TCY}.$
	3:0>: Chip Select x	Với hoạt động ghi:
	rite Strobe Wait	$1111 = \text{Đợi } 15\frac{1}{2} \text{ TCY}.$
States bits		
		0001 = Đợi 1½ TCY.
		0000 = Đợi ½ TCY.
		Với hoạt động đọc:
		$1111 = \text{Đợi } 15\frac{3}{4} \text{ TCY}.$
		0001 Dai 13/ TCV
		0001 = Đợi 1¾ TCY.
1-0 DWAITE<1	•Ox • Chin Calaat v	0000 = Đợi ¾ TCY.
	:0>: Chip Select x fter Read/Write	Với hoạt động ghi: 11 = Đợi 3¼ TCY
Strobe Wait S		$10 = \text{Doi } 2\frac{1}{4} \text{ TCY}$
Shope wall	States Utts	$01 = \text{Boi } 1\frac{1}{4} \text{ TCY}$
		$00 = \text{Bot } \frac{1}{4} \text{ TCY}$
		Với hoạt động đọc:
		11 = Đợi 3 TCY
		10 = Đợi 2 TCY
		01 = Bot 1 TCY
		00 = Bot 0 TCY

2.3.9. Thanh ghi PMSTAT

	R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0
	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
bit	15							bit 8

R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1
OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E
bit 7 bit 0							

Legend: HS = Hardware Settable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

Hình 2.11. Thanh ghi PMSTAT.

Bit	Tên	Chức năng
15	IBF : Input Buffer Full Status	1 = Tất cả các thanh ghi đầu vào đệm là đầy.
	bit	0 = Một vài hoặc thất cả thanh ghi đầu vào của
		bộ đệm là trống.
14	IBOV : Input Buffer Overflow	1 = Một quá trình ghi cố gắng thực thiện ghi vào
	Status bit	thanh ghi đã đầy – overflow xảy ra (phải được
		xóa bởi phần mềm).
		0 = Không có overflow xảy ra.
11-8	IB3F-IB0F : Input Buffer n	1 = Buffer đầu vào chứa dữ liệu nhưng chưa
	Status Full bit	được đọc (đọc dữ liệu thừ buffer sẽ xóa bit này).
		0 = Buffer đầu vào không chứa dữ liệu chưa
		được đọc.
7	OBE : Output Buffer Empty	1 = Tất cả các thanh ghi của bộ đệm đầu ra là
	Status b	rỗng.
		0 = Một vài hoặc toàn bộ thanh ghi của bộ đệm
		đầu ra đã đầy.
6	OBUF : Output Buffer	1 = Được thiết lập khi xảy ra một hoạt động đọc
	Underflow Status bit	từ thanh ghi bộ đệm đâu ra rỗng – underflow xảy
		ra (phải được xóa bởi phần mềm).
		0 = Không có underflow xảy ra.
3-0	OB3E:OB0E : Output Buffer n	1 = Bộ đệm đầu ra đang rỗng (Ghi dữ liệu vào bộ
	Status Empty bit	đệm sẽ xóa bit này).
		0 = Bộ đệm đầu ra chứa dữ liệu và chưa được gửi
		đi.

2.3.10. Thanh ghi PADCON

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15 bit 8							

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	RTSECSEL ⁽¹⁾	PMPTTL ⁽²⁾
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Hình 2.12. Thanh ghi PADCFG1.

Bảng 2.10. Bảng mô tả các bit của thanh ghi PADCFG1.

Bit	Tên	Chức năng
1	RTSECSEL: RTCC Seconds	1 = RTCC Seconds Clock is selected for the
	Clock Output Select bit	RTCC pin.
		0 = RTCC Alarm Pulse is selected for the RTCC
		pin.
0	PMPTTL : PMP Module TTL	1 = PMP module uses TTL input buffers
	Input Buffer Select bit	0 = PMP module uses Schmitt input buffers

3. Nội dung thực hành

Tạo project cho PIC24FJ1024GB610, đặt tên là Lab5 và lưu ở đường dẫn: D:/VDK/Lab5.

Đoạn code bên dưới tiến hành cấu hình PMP dùng cho việc kết nối với LCD. Trong đó gồm các cấu hình:

- Cấu hình PMP enbled.
- Cấu hình đường dữ liệu và địa chỉ riêng biệt (Fully demultiplexed interface).
- RD4 đóng vai trò là tín hiệu enable strobe.
- RD5 đóng vai trò cho tín hiệu read.
- Cấu hình tín hiệu enable strobe kích hoạt ở mức cao.
- Cấu hình tín hiệu read kích hoặt ở mức cao, tín hiệu write ở mức thấp.
- Tín hiệu read/write ở trên cùng 1 chân RD5.
- Đường bus 8 bit thông qua PORTE: RE7-RE0.
- Chỉ cần 1 đường địa chỉ thông qua PMA0/RB15.

Ngoài ra, cần cấu hình thời gian chờ cho mỗi hoat đông đọc và ghi:

- Đơi dữ liêu setup trước khi đoc/ghi bằng 4xTcy
- Đợi giữa R/W và enable bằng 15xTcy.

```
#include "xc.h"
#include <p24FJ1024GB610.h>
#define LCD MAX COLUMN
                                                          16
#define CS1 BASE ADDRESS
                                                         0x00020000
#define CS2 BASE ADDRESS
                                                         0x000A0000
static __eds__ unsigned int __attribute__((noload, section("epmp_cs1"),
address(CS1_BASE_ADDRESS))) ADDR0 __attribute__((space(eds)));
static <u>__eds__</u> unsigned int <u>__attribute__((noload, section("epmp_cs1"), attribute__() (noload, section("epm</u>
address(CS1 BASE ADDRESS))) ADDR1 attribute ((space(eds)));
#define LCD COMMAND CLEAR SCREEN
                                                                                      0x01
#define LCD COMMAND RETURN HOME
                                                                                       0x02
#define LCD_COMMAND_ENTER_DATA MODE
                                                                                            0x06
#define LCD COMMAND CURSOR OFF
                                                                                   0x0C
#define LCD_COMMAND_CURSOR ON
                                                                                  0x0F
#define LCD COMMAND MOVE CURSOR LEFT 0x10
#define LCD COMMAND MOVE CURSOR RIGHT 0x14
#define LCD COMMAND SET MODE 8 BIT
                                                                                       0x38
#define LCD COMMAND ROW 0 HOME
                                                                                     0x80
#define LCD COMMAND ROW 1 HOME
                                                                                     0xC0
#define LCD START UP COMMAND 1
                                                                                 0x33
#define LCD_START_UP_COMMAND_2
                                                                                 0x32
#define LCD COMMAND CLEAR SCREEN
                                                                                      0x01
#define LCD COMMAND RETURN HOME
                                                                                       0x02
#define LCD_COMMAND_ENTER_DATA_MODE
                                                                                            0x06
#define LCD COMMAND CURSOR OFF
                                                                                   0x0C
#define LCD_COMMAND_CURSOR_ON
                                                                                   0x0F
#define LCD COMMAND MOVE CURSOR LEFT 0x10
#define LCD_COMMAND_MOVE_CURSOR_RIGHT 0x14
#define LCD_COMMAND_SET_MODE_8_BIT
                                                                                       0x38
#define LCD_COMMAND_ROW_0_HOME
                                                                                     0x80
#define LCD COMMAND ROW 1 HOME
                                                                                     0xC0
#define LCD START UP COMMAND 1
                                                                                 0x33
#define LCD START UP COMMAND 2
                                                                                 0x32
#define LCD_SET_ACG(d) LCD_CMD((d & 0x3f) | 0x40);
#define LCD_SET_ADD(d) LCD_CMD((d & 0x7f) | 0x80);
#define delay 32ms() TMR1 = 0; while(TMR1 < 2000);
#define delay 162us() TMR1 = 0; while(TMR1 < 100);
#define delay 48us() TMR1 = 0; while(TMR1 < 3);
#define DELAY() TMR1=0; while( TMR1<9000)
#define POT 5 // 10k potentiometer connected to AN5 input
#define AINPUTS 0xffef // Analog inputs for Explorer16 POT
void LCD CMD(char cmd){
    ADDR0 = cmd;
```

```
void LCD_DATA(char data){
  ADDR1 = data;
void LCD ClearScreen(void) {
  LCD CMD(LCD COMMAND CLEAR SCREEN);
  delay_32ms();
  LCD_CMD(LCD_COMMAND_RETURN_HOME);
  delay_32ms();
void LCDinit(void) {
  PMCON1bits.PMPEN = 1;
  PMCON1bits.MODE = 3;
  PMCON1bits.CSF = 0;
  PMCON1bits.ALP = 0;
  PMCON1bits.ALMODE = 0;
  PMCON1bits.BUSKEEP = 0;
  PMCON1bits.ADRMUX = 0;
  PMCON1bits.IRQM = 1;
  PMCS1BS = (CS1 BASE ADDRESS >> 8);
  PMCS1CFbits.CSDIS = 0; // enable CS
  PMCS1CFbits.CSP = 1; // CS1 polarity
  PMCS1CFbits.BEP = 1; // byte enable polarity
  PMCS1CFbits.WRSP = 1; // write strobe polarity
  PMCS1CFbits.RDSP = 1; // read strobe polarity
  PMCS1CFbits.CSPTEN = 1; // enable CS port
  PMCS1CFbits.SM = 0; // read and write strobes on separate lines
  PMCS1CFbits.PTSZ = 0; // data bus width is 8-bit
  PMCS1MDbits.ACKM = 0; // PMACK is not used
  PMCS1MDbits.DWAITB = 3;
  PMCS1MDbits.DWAITM = 0xf;
  PMCS1MDbits.DWAITE = 3;
  PMCON2bits.RADDR = 0; // don't care since CS2 is not be used
  PMCON4 = 0x0001; // PMA0 - PMA15 address lines are enabled
  PMCON3bits.PTWREN = 1; // enable write strobe port
  PMCON3bits.PTRDEN = 1; // enable read strobe port
  PMCON3bits.PTBE0EN = 1; // enable byte enable port
  PMCON3bits.PTBE1EN = 0; // enable byte enable port
  PMCON3bits.AWAITM = 0b11; // set address latch pulses width to 3 1/2 Tcy
  PMCON3bits.AWAITE = 1; // set address hold time to 1 1/4 Tcy
  PMCON1bits.PMPEN = 1; // enable the module
  T1CON = 0x8030; // Fosc/2, prescaled 1:256, 16us/tick
  delay_32ms();
```

```
LCD_CMD(LCD_START_UP_COMMAND_1);
  delay_48us();
 LCD CMD(LCD START UP COMMAND 2);
  delay 48us();
 LCD_CMD(LCD_COMMAND_SET_MODE_8_BIT);
  delay_48us();
 LCD CMD(LCD COMMAND CURSOR OFF);
  delay 48us();
 LCD_CMD(LCD_COMMAND_ENTER_DATA_MODE);
  delay_48us();
 LCD CMD(LCD COMMAND CLEAR SCREEN);
  delay_162us();
 LCD CMD(LCD COMMAND RETURN HOME);
  delay_162us();
void LCD PutChar(char inputChar){
 LCD DATA(inputChar);
  delay_48us();
}
void LCD_PutString(char* inputString, uint16_t length) {
  while (length--) {
    switch (*inputString) {
      case 0x00:
        return;
      default:
        LCD_PutChar(*inputString++);
        break;
int main(void) {
 LCDinit();
 initADC(AINPUTS);
 initInterrupt();
 LCD PutString("TH VDK", 6);
 while (1);
 return 0;
```

Tiến hành thêm file main.c với nội dung như đoạn code phía trên và cấu hình bit như hình 2.13. Sau đó tiến hành chạy trên board và quan sát kết quả.

Hình 2.13. Cấu hình bit.

4. Bài tập

4.1. Bài chuẩn bị ở nhà

- 1. Giải thích từng dòng code đã cho trên phần 3.
- 2. Dựa trên NT7603 datasheet, cho biết chức năng của CGRAM và DDRAM. Cho biết cách cấu hình kí tự tùy chỉnh và cấu hình ví trí xuất hiện của ký tự trên LCD?

4.2. Bài tập trên lớp

Đề 1.

- 1. Lập trình để hệ thống đọc giá trị điện thế tại ngõ ra trên biến trở và hiển thị lên LCD dưới dạng số thập phân có hai chữ số ở phần thập phân có sử dụng ngắt ADC. (0.5đ) Kết quả hiển thị trên LCD: **ADC la: 2.35V**
- 2. Dịch dòng kết quả của bài (1) từ trái sang phải. (0.25đ).

Đề 2.

 Lập trình để hệ thống hiển thị nhiệt độ môi trường trên LCD dạng thập phân có 1 chữ số ở phần thập phân sử dụng ngắt ADC.

Kết quả hiển thị trên LCD: Nhiet do la: 27.5. (0.5đ)

2. hêm ký tự đặt biệt °C vào kết quả trên. Kết quả hiển thị trên LCD: **Nhiet do la: 27.5°C.** (0.25đ).

TÀI LIỆU THAM KHẢO

- 1. PIC24FJ1024GB610 family datasheet.pdf.
- 2. Explorer_16_32_Schematics_R6_3.pdf.
- 3. PIC24FJ1024GB610 Plug-In Module (PIM) Information Sheet.pdf.
- 4. NT7603_V2.3.pdf.