Lecture 3 - Ionic Conductivity

Lecture summary

- Recap of defect types
- Ionic conductivity
- Conduction mechanisms
- Ionic migration paths
- Energetics of conduction

Defect recap

Defect recap results

Go to www.menti.com and use the code 7793 2358

Conductivity

- Many ionic solids conduct electricity; due to ionic and/or electronic motion.
- Most ionic solids are electrically insulating/semiconducting (localised electrons)

Conductivity

- Many ionic solids conduct electricity; due to *ionic* and/or *electronic* motion.
- Most ionic solids are electrically insulating/semiconducting (localised electrons)
- Ionic conductors are important!

Origin of ionic conduction

- Ionic conductivity is dominated by defects
 - In an ideal crystal, ions can't easily move
 - vacancies and/or interstitials are the main charge carriers

Origin of ionic conduction

- Ionic conductivity is dominated by defects
 - In an ideal crystal, ions can't easily move
 - vacancies and/or interstitials are the main charge carriers
- Conductivity, $\sigma = nq\mu$, where
 - \circ *n* is number of charge carriers
 - ∘ *q* is charge
 - \circ μ is the mobility of charge carriers

Origin of ionic conduction

- Ionic conductivity is dominated by defects
 - In an ideal crystal, ions can't easily move
 - vacancies and/or interstitials are the main charge carriers
- Conductivity, $\sigma = nq\mu$, where
 - \circ *n* is number of charge carriers
 - ∘ *q* is charge
 - \circ μ is the mobility of charge carriers
- In ionic solids, conductivity covers $10^{\,-16} 10^{\,3} \; \mathrm{S} \; \mathrm{m}^{-1}$
 - $\circ \,$ most solids are limited to around $10^{\,-2}~\mathrm{S~m^{-1}}$
 - \circ Liquid electrolytes typically $10^{\,-1} 10^{\,3} \; \mathrm{S} \; \mathrm{m}^{-1}$

Measuring Conductivity

- For electronic conductors, this is simple:
 - Apply a voltage (V) and measure the resulting current (I)
 - \circ Link by Ohm's law; V=IR
 - \circ Resistivity (in Ω cm) of the material calculated from geometry
- Resistivity ρ (in Ω cm) = $\frac{1}{\text{Conductivity } \sigma \text{ (in S cm}^{-1)}}$

Measuring Ionic Conductivity

• Current flow is eventually restricted

Measuring Ionic Conductivity

Current flow is eventually restricted

- Instead, we use alternating current
 - Impedance spectroscopy (see <u>lecture 5</u>)

Ion migration mechanisms

Three 'main' mechanisms of ionic migration

1. Vacancy mechanism

Vacancies move throughout the lattice (atoms move into vacancy)

2. Interstitial mechanism

lons hop between interstitial sites

3. Interstitialcy (knock-on) mechanism

Interstitial ions 'push' into a neighbouring site

Vacancy, Interstitial or Interstitialcy?

Suggestions

Go to www.menti.com and use the code 2129 1582

Migration paths

Ion paths are rarely direct, but will take the lowest energy route.

JSmol

Pathways can be complex

• Migration pathways can be calculated and/or experimentally determined e.g. NASICON $\mathrm{Na^+}$ conductor, $\mathrm{Na_3Zr_2(SiO_4)_2(PO_4)}$:

Migration energetics

• Defect mobility is a thermally-activated process:

$$\mu = \mu_0 \exp\!\left(-rac{\mathrm{E_a}}{\mathrm{RT}}
ight)$$

ullet interstitial sites are higher energy than vacancies, so smaller energy barrier ($E_i < E_a$) - dominates

Variation with temperature

As $\sigma = nq\mu$ and μ is thermally-activated,

$$egin{aligned} \sigma &= n q \mu_0 \expigg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}}igg) \ &= A \expigg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}}igg) \end{aligned}$$

Variation with temperature

As $\sigma = nq\mu$ and μ is thermally-activated,

$$egin{aligned} \sigma &= n q \mu_0 \exp igg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}} igg) \ &= A \exp igg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}} igg) \end{aligned}$$

Plotting $\ln \sigma$ vs. $\frac{1}{T}$ (or more commonly $\log_{10} \sigma$ vs $\frac{1000}{T}$ for high temperature measurements) should give a straight line

• gradient = $\frac{-E_a}{R}$ (or $\frac{-E_a}{2303R}$).

Lecture recap

- Defects can give rise to ionic conduction
 - Occurs by three main mechanisms:
 - Vacancy hopping
 - Interstitial hopping
 - interstitialcy (knock-on) cooperation
- Ionic conductivity is thermally-activated
 - shows Arrhenius-like behaviour
- Different defects have different conduction energetics
 - Pathways can sometimes be determined experimentally

Feedback

What did you like or dislike about this lecture?

Short answers are recommended. You have 250 characters left.

You can submit multiple answers

250

Submit

Return to course contents 19