Student's Name:	
Teacher's Name:	

(GPF) Mr Fitzmaurice (ESP) Mrs Pratt (ARP) Mr Perkins (AYG) Mrs Henry (DXC) Mr Chua

(LAK) Mrs Kalnins *
(RAS) Mr Smith

Monday 15 June 2020 Period 4 or 5

Time Allowed: 50 minutes

YEAR 9 MATHEMATICS 5.3

ASSESSMENT 2

170 copies

Earning Money Trigonometry Indices Algebra Products and Factors

INSTRUCTIONS TO STUDENTS

- * Write ALL answers in the space provided.
- * ALL NECESSARY working for each question must be shown to gain full marks.
- * Marks may not be awarded for careless or badly arranged working.
- **★ DIAGRAMS ARE NOT TO SCALE**
- * Write in blue or black pen
- * Board-approved, non-programmable calculators may be used.

TOTAL: [63 marks]
* * * *

Section 1: Financial Mathematics (18 marks)

Marks

- Aiden started a new job at the supermarket where he was paid \$12.50 per hour. He
 received time-and-a-half payment on Saturdays and double time payment on
 Sundays.
 - (i) Complete the table below by calculating the money he earnt on each day:

3

	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
Hours	0	2.5	0	4	0	4	3
Pay							

(ii) Hence calculate how much Aiden earnt in that week

- 1

- 2. Bernadette earnt a salary of \$56 500 p.a.
- (i) Calculate her fortnightly pay, given that there are 52 weeks per year.

.

(ii) Her boss decided to start paying everyone once per month. How much is Bernadette's monthly pay?

2

3. Chris was planning a two-week holiday. His salary was \$86 000. How much extra would he receive, over the two weeks, due to the leave loading bonus of 17.5%?

Page 1 of 13 Page 2 of 13

4. Dorothy had an annual salary of \$88 500.

In addition to her regular pay she earnt a bonus which was 5% of her annual salary for completing a project ahead of schedule.

Her deductions comprised a \$300 donation to a charity and annual union fees of \$600.

(i) Calculate Dorothy's **taxable income** for the year

2

(ii) Using the income tax table below, calculate her **income tax** payable

2

3

Taxable income	Tax on this income
0 - \$18,200	Nil
\$18,201 – \$37,000	19c for each \$1 over \$18,200
\$37,001 - \$90,000	\$3,572 plus 32.5c for each \$1 over \$37,000
\$90,001 - \$180,000	\$20,797 plus 37c for each \$1 over \$90,000
\$180,001 and over	\$54,097 plus 45c for each \$1 over \$180,000

(iii) If \$390 of PAYG tax was withheld each week, would Dorothy receive a tax rebate or would she owe some extra money? How much would that amount be?

(iv) Dorothy paid \$22 647 in tax for the year. What was her **taxable income**?

Section 2: Trignometry (14 marks)

5. Evaluate the missing side to 1 d.p.

Marks 2

14.5*cm*

6. Solve the following, answering to 2 d.p.

2

7. Find the missing angle, to the nearest minute

3

Page 3 of 13 Page 4 of 13

 The towns of Gilgandra and Hillston can be found in the central west region of NSW and are illustrated in the diagram below.

(i) What is the **True** bearing of Hillston from Gilgandra?

(ii) If the distance between Hillston and Gilgandra is 434km, how far **south** of Gilgandra is Hillston?

(iii) What is the true bearing of Gilgandra from Hillston?

- Francis was safely lying at the edge of a cliff looking out to sea when he saw a ship.
 He knew the cliff was 50m above sea level and he measured the angle of depression to the ship to be 8°.
- (i) Add this information to the diagram below:

(ii) Evaluate how far the ship was out to sea, to the nearest metre.

1

Page 5 of 13 Page 6 of 13

Section 3: Indices, Algebra, Products and Factors (24 marks)

Evalute the following, writing your answer to 3 significant figures:

$$\sqrt[3]{\frac{3\times6.2^2}{4\pi}} =$$

Write the following in scientific notation:

3450000

Write the following as a basic numeral:

 4.62×10^{-4}

Simplify the following expressions, using only positive indices

a.
$$a^2 \times a^3 =$$

$$a^5b^6 \div b^2 =$$

c.
$$(c^4)^3 =$$

d.
$$d^{-3} =$$

e.
$$6x^{-2} =$$

14. Evaluate

a.
$$2e^0 =$$

b.
$$(3f^4)^0 =$$

Marks

1

1

1

1

1

c.
$$(125g^9)^{\frac{1}{3}} =$$

2

2

3

4

$$\frac{4x^2y^3}{6xy^5} =$$

b.
$$\frac{2x^3y}{4} \div \frac{8xy^2}{1}$$

$$\frac{x^2 - 9}{x^2 + x - 2} \times \frac{x^2 - 1}{x^2 - 6x + 9}$$

Page 7 of 13 Page 8 of 13

17. Factorise
$$6x^2 + x - 2$$

2

(iii) What is the bearing of the whale from the yacht (nearest degree)?

2

Section 4: Challenge (7 marks)

18. Solve $\frac{27^x}{3} = 9^{3x}$

- A cruise ship captain saw a yacht 5.2 km away on a bearing of 214°T. She also saw a whale 650m away on a bearing of 304°T.
 - (i) Draw a diagram that represents all this information.

2

(ii) How far is the yacht from the whale (2.d.p.)?

1

END OF PAPER

YEAR 9 (5.3 MATHEMATICS) (2020) ASSESSMENT 2 IV) 22647= 20797 + 0.37 (x - 90000) i) TOES: 2.5 x 12.5 = \$31.25 1850 = 0.37 (x-90000) THURS: 4×12.5 = \$50 1850 = x - 90000 SAT: 1.5x4 x 12.5 = \$75 0.37 x = \$ 95000 SUN: 2 x 3 x 12.5 = \$75 ALL OTHER DAYS = \$0 $\chi^2 = 18.3^2 - 14.5^2$ ii) \$31.25 + \$50 + \$75+\$75 = 124.64 = \$231.25 x = 11.2 cm COS 39° = X 56500 = \$2173.08 x = 64 cos 390 <u>56500 = \$4708.33</u> = 49.74 m Weekly wage = 86000 tan 0 = 12 = \$1653.85 Q = tan -1 (12) leave loading = 0.175x 1653.85x 2 - 59.743 .. = \$578.85 = 590451 180 + 36 = 216° bonus = 88500 x 0.05 - \$4,425 COS 36° = 3C 4-34 88500 + 4425 - 300 - 600 = \$ 92025 x = 434 cos 36° 20797 + 0.37/92025 - 90000) = \$21546.25 = 351 km Tax pald = 390 x 52 111) = \$20 280 036 Dorothy owes 21 546.25-20 280 (alternate angles) in parallel lines \$ 1266.25

(9 :)	(14) a) 2x/ = 2
0	6) /
50m	0) /
30M	36.5 3 - 3
b	c) $\sqrt[3]{125} g^3 = 5g^3$
ii)	(S) a) $2x$ $3y^2$ b) $2x^3y \times 15z = x^2 \times 5$ $9-t 8xy^2 3z^3 4y$
50 tan 8° = 50	34
4 8	b) 2x2y x 15= 2 x S
$\chi = \frac{50}{\tan 8^{\circ}}$	1 2 0 27
	= 5x2
= 355.768	$12yz^3$
= 356m	
	(6) $(x-3)(x+3) \times (x-1)(x+1)$
(10) 2.0936	$(x+2)(x-1)$ $(2c-3)^2$
= 2.09	(2.2)
0 345 126	= (x+3)(x+1)
(1) 3.45×10 ⁶	(K+2)(X-3)
(a) 0 0000 11/3	(17) $6x^2 - 3x + 4x - 2$ $ac \mid b$
(1) 0.000462	
(13) a) a ⁵	
(13) a) a	= (3x+2)(2x-1) $(-3,4)$
b) a ⁵ b ⁴	
	$(18) \qquad (3^3)^{\mathcal{H}} = (3^2)^{3\mathcal{K}}$
c) C ¹²	2
	3 ^{3c} : 3 = 3 ^{6c}
d) <u>1</u>	3 3x -1 = 36x
d^3	3x-1=6x
e) $6 \times x^{-2} = 6 \times \frac{1}{x^2} = \frac{6}{x^2}$	-1 = 3x
$\chi^2 \chi^2$	$\chi = -1$
	3

