### Homework 2

### Due 4/19 at 3:00PM on Gradescope

Please write your answers in the boxes provided for Part 2.

You are not required to submit the solutions to Part 1.

#### **Part 1 (Practice Problems):**

Refer to the circuit of figure below and label the dependent source αv<sub>3</sub>. Find v<sub>3</sub> and α if (a) the 90 V source generates 180 W; (b) the 90 V source absorbs 180 W.



2) Determine the power supplied by the 2 A source in the circuit below. (Use source transformations)



3) Find  $v_3$  in the circuit below if element A is (a) a short circuit; (b) a 9 V independent voltage source, with positive reference on the left.



Q1. Fig 1 below shows 2 equivalent circuits (a) and (b). In circuit (a) the 2 coupled inductors have self-inductances  $L_1$  and  $L_2$  as shown and a mutual inductance M. Find  $L_A$ ,  $L_B$  and  $L_C$  in terms of  $L_1$ ,  $L_2$  and M.



| $L_A =$   |  |   |
|-----------|--|---|
| $L_{B} =$ |  |   |
| $L_{C} =$ |  | _ |

Q2. Use a series of source transformations to find the current  $i_{\scriptscriptstyle 0}$  in the circuit given in the Fig 2 below.



Figure 2

Q3. Refer circuit below. Find i(t) (current flowing through the 1 ohm resistor) in terms of  $i_s(t)$ ,  $v_{S1}(t)$ ,  $v_{S2}(t)$ .



i(t) =

Q4. The circuit below is a commonly used equivalent circuit used to model the ac behavior of a bipolar junction transistor amplifier circuit. If  $g_m = 38 \text{ m}$  compute  $v_{\text{out}}$ .



 $v_{\rm out} =$