

FIGURE 1

Figure 2

FIGURE 3A

FIGURE 3B

FIGURE 3C

LOVASTATIN		
Regioselectivity/Output Table		
site #	Ea	Lability Bin
1	6.71	labile
2	7.129	labile
3	8.944	moderate
4	9.502	moderate
5	9.806	moderate
6	10.396	moderate
7	10.515	stable
8	10.715	stable
9	10.856	stable
10	10.995	stable
11	11.02	stable
12	11.061	stable
13	11.097	stable
14	11.375	stable
15	11.401	stable
16	11.583	stable
17	11.599	stable
18	11.599	stable
water	10	NA

FIGURE 3D

FIGURE 3E

FIGURE 4

SURFACE AREA CORRECTION
 $K_{sa} = X_{sa} f(S(r))$

FIGURE 5

PARABOLIC CURVATURE
CORRECTION

$$K_p = X_g P_g + X_s P_s + X_l P_l$$

FIGURE 6A

FIGURE 6B

PROTRUSION CORRECTION

$$K_R = Y_G R_G + Y_S R_S + Y_L R_L$$

FIGURE 7A

FIGURE 7B

AMPHOTERIC CORRECTION

FIGURE 8

FIGURE 9

FIG 10

FIG 11

FIGURE 12

FIGURE 13

FIGURE 14

$$X \quad C = y$$

Atoms

Descriptors Coefficients Activity

FIGURE 15

16
VBA

FOR EACH TYPE OF DESCRIPTOR, SET THE ONE CORRESPONDING TO MOST REACTIVE/ ACCESSIBLE TO ZERO

1601

MAKE EACH DESCRIPTOR RELATIVE TO THE LOWEST OF ITS TYPE

1602

ADJUST TRAINING SET DATA

1603

PLS REGRESSION

1604

DIVIDE COEFFICIENTS BY ENO

1605

1613

SCALE UP EAS

1606

INCREASE IMPORTANCE OF METABOLIZED SITES

1607

INCREASE IMPORTANCE OF UNDERSAMPLED MECHANISMS

1608

FIG 16 ()

FIGURE 17

Figure 18A

Figure 18B

FIGURE 19