Question Number		Scheme	Marks	
1.	(a)	Survey is less time consuming.	B1	
	(<i>b</i>)	It is easier/quicker to analyse the results	B1	(2)
	(c)	List of members	B1	(1)
	(<i>d</i>)	The members	B1	(1)
			(4 m	arks)
2.	(a)	Y is the random variable consisting of any function of the X_i that involves no other quantities.	B1 B1	(2)
	(<i>b</i>)	$Y = \overline{X} = \frac{\sum X}{n}$	B1	(1)
	(c)	When all possible samples are taken and the values of <i>Y</i> found then the values form a probability distribution (known as the sampling distribution of <i>Y</i>)	B1 B1	(2)
			(5 m	arks)
3.		$E(R) = \frac{\alpha + \beta}{2} = 3, \Rightarrow \alpha + \beta = 6$	M1 A1	
	(b)	$Var(R) = \frac{(\beta - \alpha)^2}{12} = \frac{25}{3}, \Rightarrow (\beta - \alpha)^2 = 100$ $\alpha = -2, \beta = 8$ $P(R < 6.6) = \frac{1}{10} \times 8.6 = 0.86$	M1 A1	
		$\alpha = -2, \beta = 8$	M1 A1 A	1 (7)
		$P(R < 6.6) = \frac{1}{10} \times 8.6 = 0.86$	M1 A1	(2)
			(9 m	arks)
4.	(a)	$H_0: \rho = 0.20, H_1: \rho < 0.20$	B1 B1	
		$X =$ number buying single packets, $X \sim B(25, 0.20)$		
		$P(X \le 2) = 0.0982$	M1 A1	
		0.0982 > 5%, so not significant (comparison)	M1	
		No reason to suspect the percentage who bought crisps in single packets that day was lower than usual (context)	A1 ft	(2)
		$H_0: \rho = 0.03, H_1: \rho \neq 0.03$	B1 B1	
		$Y =$ number buying bumper packs, $Y \sim B(300, 0.03) \Rightarrow Y \sim Po(9)$	M1	
		$P(Y \le 3) = 0.0212$ and $P(Y \le 15) = 0.9780 \Rightarrow P(Y \ge 16) = 0.0220$	M1 A1	
		Critical region $Y \le 3$ and $Y \ge 16$	A1	(6)
		Significance level = $0.0212 + 0.0220 = 0.0432$	B1 ft	(1)
			(13 m	arks)

Question Number	Scheme	Marks	
5. (a)	$L \sim N(\mu, 0.3^2), P(L < 150) = 0.05 \Rightarrow P\left(Z < \frac{150 - \mu}{0.3}\right) = 0.05$		
	$\Rightarrow \frac{150 - \mu}{0.3} = , -1.6449$	M1 A1, B1	
	$\mu = 150.49347 = 150.5$ 150μ	A1 (4)	
(b)	X represents number less than 150cm. $X \sim B(10, 0.05)$	B1	
	$P(X \le 2) = 0.9885$	M1 A1 (3)	
(c)	Normal approximation $\mu = 500 \times 0.05 = 25$, $\sigma^2 = 23.75$ or 25	B1, B1	
	$P(X < 35) \approx P(Z < \frac{34.5 - 25}{\sqrt{23.75 \text{ or } 25}})$ ±0.5, standardise	M1, M1	
	$\approx P(Z < 1.95 \text{ or } 1.9)$	A1	
	≈ 0.9744 or 0.9713	A1 (6)	
		(13 marks)	
6. (a)	X represents number of faults per 25 m \Rightarrow X ~ Po(1.5)	B1	
	P(X = 4) = 0.0471	B1 (2)	
(b)	Y represents number of faults per 100 m \Rightarrow Y \sim Po(6.0)	B1	
	$P(Y < 6) = P(Y \le 5) = 0.4457$	B1	
	R represents number of 100 m balls containing fewer than 6 faults		
	$R \sim B(3, 0.4457)$	M1 A1	
	$P(R=1) = C_1^3 \times 0.4457 \times (1 - 0.4457)^2 = 0.41082$ accept 0.411	M1 A1 (6)	
(c)	S represents number of faults in a 500 m ball \Rightarrow S ~ Po(30)	B1	
	$P(23 \le S \le 33) \approx P(\frac{22.5-30}{\sqrt{30}} \le Z \le \frac{33.5-30}{\sqrt{30}})$ ±0.5, standardise	M1, M1 A1	
	$\approx P(-1.37 \le Z \le 0.64)$	A1	
	≈ 0.6536	A1 (6)	
		(14 marks)	

Question Number	Scheme	Marks
7. (a)	f(x)	
		B1 (labels)
	$\frac{2}{15}$	B1 (graph)
	15	B1 (axes)
	0 2 7 10 <i>x</i>	
(b)	(i) $F(x) = \int_0^x \frac{x}{15} dx = \frac{x^2}{30}$ for $0 \le x \le 2$	B1
	$F(x) = \frac{12}{15} + \int_{7}^{x} (\frac{4}{9} - \frac{2x}{45}) dx = \frac{4x}{9} - \frac{x^{2}}{45} - \frac{11}{9} \text{ for } 7 \le x \le 10$	B1 M1 A1
	(ii) $F(x) = \frac{2}{15} + \int_2^x \frac{2}{15} dx = \frac{2x}{15} - \frac{2}{15}$ for $2 \le x \le 7$	B1 M1 A1
	(iii) $F(x) = 0, x < 0, F(x) = 1, x > 10$	B1 (8)
(c)	$P(X \le 8.2) = F(8.2) = 0.928$	M1 A1 (2)
(d)	$E(X) = \int_0^2 \frac{x^2}{15} dx + \int_2^7 \frac{2x}{15} dx + \int_7^{10} \left(\frac{4x}{9} - \frac{2x^2}{45}\right) dx$	M1 A1
	$= \left[\frac{x^3}{45}\right]_0^2 + \left[\frac{x^2}{15}\right]_2^7 + \left[\frac{2x^2}{9} - \frac{2x^3}{125}\right]_7^{10} = 4.78$	A1 A1 (4)
		(17 marks)