學號:b05901070 系級:電機四 姓名:蔡昌廷

1. 請說明你實作的 CNN 模型,其模型架構、訓練參數量和準確率為何? (1%)

CNN 模型架構如下表所示, input 為 3 * 256 * 256 之 image

0.11.1 区里水南加下20////		
Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 32, 256, 256]	896
BatchNorm2d-2	[-1, 32, 256, 256]	64
ReLU-3	[-1, 32, 256, 256]	0
MaxPool2d-4	[-1, 32, 128, 128]	0
Conv2d-5	[-1, 64, 128, 128]	18,496
BatchNorm2d-6	[-1, 64, 128, 128]	128
ReLU-7	[-1, 64, 128, 128]	0
MaxPool2d-8	[-1, 64, 64, 64]	0
Conv2d-9	[-1, 128, 64, 64]	73,856
BatchNorm2d-10	[-1, 128, 64, 64]	256
ReLU-11	[-1, 128, 64, 64]	0
MaxPool2d-12	[-1, 128, 32, 32]	0
Conv2d-13	[-1, 256, 32, 32]	295,168
BatchNorm2d-14	[-1, 256, 32, 32]	512
ReLU-15	[-1, 256, 32, 32]	0
MaxPool2d-16	[-1, 256, 16, 16]	0
Conv2d-17	[-1, 512, 16, 16]	1,180,160
BatchNorm2d-18	[-1, 512, 16, 16]	1,024
ReLU-19	[-1, 512, 16, 16]	0
MaxPool2d-20	[-1, 512, 8, 8]	0
Conv2d-21	[-1, 512, 8, 8]	2,359,808
BatchNorm2d-22	[-1, 512, 8, 8]	1,024
ReLU-23	[-1, 512, 8, 8]	0
MaxPool2d-24	[-1, 512, 4, 4]	0
Linear-25	[-1, 1024]	8,389,632
Dropout-26	[-1, 1024]	0
ReLU-27	[-1, 1024]	0
Linear-28	[-1, 512]	524,800
Dropout-29	[-1, 512]	0
ReLU-30	[-1, 512]	0
Linear-31	[-1, 11]	5,643

訓練參數量:12851467

Validation accuracy: 77.3178 % Training accuracy: 96.1180 %

2. 請實作與第一題接近的參數量,但 CNN 深度(CNN 層數)減半的模型,並說明其模型架構、訓練參數量和準確率為何?(1%)

實作 CNN 層數減半的模型如下,最後呈現為跑 150 次 epoch 之結果,input 為 3 * 256 * 256 之 image。

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 64, 256, 256]	4,864
BatchNorm2d-2	[-1, 64, 256, 256]	128
ReLU-3	[-1, 64, 256, 256]	0
MaxPool2d-4	[-1, 64, 64, 64]	0
Conv2d-5	[-1, 256, 64, 64]	409,856
BatchNorm2d-6	[-1, 256, 64, 64]	512
ReLU-7	[-1, 256, 64, 64]	0
MaxPool2d-8	[-1, 256, 16, 16]	0
Conv2d-9	[-1, 512, 16, 16]	3,277,312
BatchNorm2d-10	[-1, 512, 16, 16]	1,024
ReLU-11	[-1, 512, 16, 16]	0
MaxPool2d-12	[-1, 512, 8, 8]	0
Linear-13	[-1, 280]	9,175,320
Dropout-14	[-1, 280]	0
ReLU-15	[-1, 280]	0
Linear-16	[-1, 11]	3,091
=======================================		=========

訓練參數量: 12872379

Validation accuracy : 63.8776 % Training accuracy : 81.3298 %

3. 請實作與第一題接近的參數量,簡單的 DNN 模型,同時也說明其模型架構, 訓練參數和準確率為何? (1%)

實作 DNN 的模型如下,最後呈現為跑 150 次 epoch 後的結果,input 為 3*128*128 影像拉直過後的 vector。

Layer (type)	Output Shape	Param #
Linear-1	[-1, 260]	12,779,780
ReLU-2	[-1, 260]	0
Linear-3	[-1, 11]	2,871
Dropout-4	[-1, 11]	0

訓練參數量:12782651

Validation accuracy : 25.4227 % Training accuracy : 24.7314 %

- 4. 請說明由 1~3 題的實驗中你觀察到了什麼?(1%)
 - 不同 CNN 深度之 model 比較

比較不同 CNN 深度的 model,會發現深度較深的 CNN 在 training 上準確率可以高達 96%,跟深度較淺的 CNN 比起來高出許多,同時在 validation 上,深度較深的 CNN 也表現得較佳,似乎可以推測出在同樣參數的情況下,深度較深的 model 表現會比較好。(撇除層數太深造成 gradient vanishing 的問題)

• CNN 跟 DNN 之 model 比較

在此可以明顯看出 CNN 的 performance 比 DNN 好太多,如同老師影片所說,CNN 在處理影像時有許多優點,兩者比較起來,DNN 只是把 image 所有 pixel 拉成很長的 vector,而且單一 pixel 的數值對影像分類問題來說能夠參考的資訊非常低,因此 DNN 的結果自然就不會到那麼好。

5. 請嘗試 data normalization 及 data augmentation,說明實作方法並且說明實行 前後對準確率有什麼樣的影響? (1%)

以下針對 best model 去嘗試是否實作 data normalization 以及 data augmentation 的影響,此處不做 data normalization 我是直接將[0,1]的 tensor轉換成[0,255],以下準確率為 validation set

	有 augmentation	無 augmentation
有 normalization	77.3178 %	65.0146 %
無 normalization	76.7347 %	67.0554 %

從上面結果可以發現是否實作 augmentation 會對準確率造成較大的影響,最主要是因為 data augmentation 可以透過旋轉、調整大小的方式,創造更多圖片讓 model 學習,可以解決原本 model 出現 overfit 的問題,至於 normalization 的影響不大,我認為因為 normalization 最大的好處是可以針對不同維度且不同的 scale 做統一標準化的處理,而在影像裡每個 pixel 都是介於 0-255 之間,scale 的差距並不大,因此 normalization 的影響才不像之前的作業有太大的影響。

6. 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析](1%)

從上圖來看會發現我的 model 在 label 1 的圖片滿容易把它認為是 label 2,因此我特地挑出圖片來看看

True: 1 · Predict: 2

label 1 我自己是判斷奶類的製品,例如牛奶、奶油等等,而 label 2 像是甜點類的食物,例如蛋糕、馬卡龍、冰淇淋等等,然而實際上有些 label 1 的圖我也會分不出其跟 label 2 的差異,因此 model 會混淆也是合情合理。上圖是其中一個認錯的圖片,我認為上圖三角形部分在 model 裡很容易會被認成蛋糕的形狀,很可能是這個原因導致 model 預測錯誤,但說真的這張圖我認為這張圖片歸類在 label 2 應該也不算答錯。