PROYECTO DERIVADOS AVANZADOS

FELIPE DURAN

FELIPE GALDAMES

DESCRIPCIÓN DE LA DATA

CICLOS DENTRO DEL TIPO DE CAMBIO

Hasta comienzos del año 2018, se pudo observar como se recuperó la libra esterlina con respecto al dólar, situación que se da El alcalde de Londres, Boris Johnson, le otorgó desde que Donald Trump asumió como todo apoyo y voto al Brexit, lo que se tradujo presidente de los Estados Unidos. en una fuga de capitales. Jun. 2016 Dic. 2018 Feb. 2017 Feb. 2016 El referéndum celebrado del 23 de Junio de Theresa May (La primera ministra del Reina 2016, con motivo del Brexit, presentó una Unido) ganó el voto de confianza entre los aprobación equivalente al 51,9% de los parlamentarios, lo que trajo mayor incertidumbre al mercado británico. votantes.

CICLOS DENTRO DEL TIPO DE CAMBIO

DESCRIPCIÓN DE LA DATA

Media del 1,3254.

Volatilidad de 0,0659.

Máximo de 1,4877. Mínimo de 1,2047.

Cuenta de 804.

CALCULO DEL FORWARD PRICE

$$K^{ATMF} = S_0 \cdot \frac{e^{-q \cdot T}}{e^{-r \cdot T}}$$
 $q = Tasa \ de \ descuento \ extranjera$
 $r = Tasa \ de \ descuento \ doméstica$
 $S_0 = Precio \ spot$
 $T = Tiempo$

CALCULO DEL STRIKE PRICE

$$K = S_0 \cdot e^{(r-q) \cdot T} \cdot e^{\frac{\sigma^2 \cdot T}{2} - d_1 \cdot \sigma \cdot \sqrt{T}}$$
$$d_1 = \epsilon \cdot N^{-1} \left(\frac{\epsilon \cdot \Delta}{\alpha}\right)$$
$$\alpha = e^{-q \cdot T}$$

METODOLOGÍAS

METODOLOGÍA DE BLACK-SCHOLES

- BENCHMARKING USADO PARA COMPARAR LOS OTROS MÉTODOS.

$$V_0 = \epsilon \cdot S_0 \cdot e^{-qT} \cdot N(\epsilon \cdot d_1) - \epsilon \cdot K \cdot e^{-rT} \cdot N(\epsilon \cdot d_2)$$

$$d_1 = \frac{\ln(\frac{S_0}{K}) + (r - q) \cdot T}{\sigma \cdot \sqrt{T}} + \frac{\sigma \cdot \sqrt{T}}{2}$$
$$d_2 = d_1 - \sigma \cdot \sqrt{T}$$

METODOLOGÍA DE MONTE-CARLO

$$dS_t = (r - q) \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dW_t^Q$$

$$S_{t+1} = S_t \cdot e^{(r - q - \frac{\sigma^2}{2}) \cdot \Delta t + \sigma \cdot \Delta W}$$

$$S_{t+1} = S_t \cdot e^{(r - q - \frac{\sigma^2}{2}) \cdot \Delta t + \sigma \cdot \sqrt{\Delta t} \cdot Z}$$

METODOLOGÍA DE MONTE-CARLO

$$V_t = V(S_t) = Max(S_t - K, 0)$$

$$Y_t = \frac{V_t}{e^{r \cdot t}} \longrightarrow \overline{V_0}(N) = \frac{1}{N} \cdot \sum_{i=1}^N Y_i$$

Movimiento del Spot

$$dS_t = \mu \cdot S_t \cdot dt + \sqrt{\nu_t} \cdot S_t \cdot dW_t^S$$

Movimiento de la varianza instantánea

$$d\nu_t = \Theta \cdot (\omega - \nu_t) \cdot dt + \xi \cdot \sqrt{\nu_t} \cdot dW_t^{\nu}$$

Movimiento del Spot

$$dS_t = \mu \cdot S_t \cdot dt + \sqrt{\nu_t} S_t \cdot dW_t^S$$

Movimiento de la varianza instantánea

$$d\nu_t = \Theta \cdot (\omega - \nu_t) \cdot dt + \xi \cdot \sqrt{\nu_t} \cdot dW_t^{\nu}$$

Correlación procesos de Wiener

Precio del contrato

$$C_0 = S_0 e^{-qT} P_1 - K e^{-rT} P_2$$

Probabilidades

$$P_{j} = \frac{1}{2} + \frac{1}{\pi} \int_{\phi=0}^{+\infty} \operatorname{Re} \left\{ \frac{e^{-i\phi \ln K} f_{j} \left(\phi \mid x_{0}, \nu_{0}, T\right)}{i\phi} \right\} d\phi$$

METODOLOGÍA DE HESTON

$$f_{j}(\phi \mid x_{0}, \nu_{0}, T) = \exp \left[C_{j}(\phi \mid T) + D_{j}(\phi \mid T)\nu_{0} + i\phi x_{0}\right]$$

$$C_{j}(\phi \mid T) = i\phi(r - q)T + \frac{a}{\xi^{2}} \left[\left(b_{j} - i\phi\rho\xi + d_{j}\right)T - 2\ln\frac{1 - g_{j}e^{d_{j}T}}{1 - g}\right]$$

$$D_{j}(\phi \mid T) = \left[\frac{b_{j} - i\phi\rho\epsilon + d_{j}}{\xi^{2}}\right] \left[\frac{1 - e^{d_{j}T}}{1 - ge^{d_{j}T}}\right]$$

$$g(\phi) = \frac{b_{j} - i\phi\rho\xi + d_{j}}{b_{j} - i\phi\rho\epsilon - d_{j}}$$

$$d_{j}(\phi) = \sqrt{\left(i\phi\rho\xi - b_{j}\right)^{2} - \xi^{2}\left(2i\phi u_{j} - \phi^{2}\right)}$$

$$u_1 = \frac{1}{2}$$

$$u_2 = -\frac{1}{2}$$

$$a = \theta \omega$$

$$b_1 = \theta + \psi - \rho \xi$$

$$b_2 = \theta + \psi$$

$$\psi = \theta \left(\omega^P - \omega^Q\right)$$

$$x_0 = \ln S_0$$

METODOLOGÍA DE HESTON: PARÁMETROS

V: Varianza instantánea

Θ: Reversión a la media

ω: Varianza de equilibrio

ξ: Volatilidad de la varianza

p: Correlación

MOTOR DE CÁLCULO

Money Market Account

Forward Contract

Opción Call Europea

MONEY MARKET ACCOUNT

Deposito a plazo

$$V_0 = e^{-rt}$$

Payoff=I

Estandarización resultados

$$Z = \frac{x - \mu}{\sigma}$$

MONEY MARKET ACCOUNT: RESULTADOS

	Monte-Carlo	Heston
Error	7.33e-15%	0%
Porcentaje dentro del intervalo de confianza	100%	100%

MONEY MARKET ACCOUNT: PROBLEMÁTICA

Simulaciones de Monte-Carlo

$$dS_t = (r - q) \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dW_t^Q$$

MONEY MARKET ACCOUNT: PROBLEMÁTICA

Simulaciones de Monte-Carlo

$$dS_t = (r - q) \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dW_t^Q$$

FORWARD CONTRACT

• Pay off $V(S_t) = Max(S_t - K, 0)$

Valor opción

$$V_0 = e^{-r \cdot T} \cdot S - e^{-q \cdot T} \cdot K$$

FORWARD CONTRACT: RESULTADOS

	Monte-Carlo	Heston
Error	0.082%	2.9181%
Porcentaje dentro del intervalo de confianza	99.95%	100%

OPCIÓN CALL EUROPEA

Volatilidades del 5%, 10%, 20% y 50%

Modelo de Heston Simulaciones de Monte-Carlo

Modelo de Black-Scholes

OPCIÓN CALL EUROPEA

OPCIÓN CALL EUROPEA: ERRORES

Motor de calculo	Error
Simulaciones de Monte-Carlo	0.9295%
Modelo de Heston	0.83849%

MODELO DE HESTON: RANGO DE PARÁMETROS

Min
$$\epsilon$$

s.a
 $0 \le \mathbf{v} \le \mathbf{I}$
 $0 \le \mathbf{\Theta} \le 100$
 $0 \le \mathbf{\omega} \le \mathbf{I}$
 $0 \le \mathbf{\xi} \le 0.5$
 $-0.9 \le \mathbf{\rho} \le 0.9$

v: 0.01

O: 0.015

ω: 0.0 I

ξ: 0.25

ρ: 0.05

MODELO DE HESTON: RANGO DE PARÁMETROS

Modelos	Error
Heston & Black-Scholes	135.39%
Monte-Carlo & Black-Scholes	473.37%
Heston & Monte-Carlo	58.94%

MODELO DE HESTON: RANGO DE PARÁMETROS

MODELO DE HESTON: RANGO DE PARÁMETROS

MODELO DE HESTON: RANGO DE PARÁMETROS

VOLATILIDADES IMPLÍCITAS

Volatilidades del 5%, 10%, 20% y 50%

Precisión 10pb

Greek Vega

$$V^{'BS} = \frac{\partial V^{BS}}{\partial \sigma} = S_0 \cdot e^{-qT} \cdot n(d1) \cdot \sqrt{T}$$

Algoritmo Newton-Raphson

$$\sigma_{N+1} = \sigma_N + \frac{C_0 - V_0(\sigma_N)}{V'^{BS}(\sigma_N)}$$

VOLATILIDADES IMPLÍCITAS

Motor de calculo	Error
Simulaciones de Monte-Carlo	4.5148%
Modelo de Heston	1.4114%

VOLATILIDADES IMPLÍCITAS DEL MERCADO

Volatilidades del Mercado

Precisión 20pb

Greek Vega

$$V^{'BS} = \frac{\partial V^{BS}}{\partial \sigma} = S_0 \cdot e^{-qT} \cdot n(d1) \cdot \sqrt{T}$$

Algoritmo Newton-Raphson

$$\sigma_{N+1} = \sigma_N + \frac{C_0 - V_0(\sigma_N)}{V'^{BS}(\sigma_N)}$$

VOLATILIDADES IMPLÍCITAS DEL MERCADO

Volatilidades del Mercado

Precisión 20pb

Greek Vega

$V^{'BS} = \frac{\partial V^{BS}}{\partial \sigma} = S_0 \cdot e^{-qT} \cdot n(d1) \cdot \sqrt{T}$

Algoritmo Newton-Raphson

$$\sigma_{N+1} = \sigma_N + \frac{C_0 - V_0(\sigma_N)}{V'^{BS}(\sigma_N)}$$

VOLATILIDADES IMPLÍCITAS DEL MERCADO

Motor de calculo	Tiempo computacional	Error
Simulaciones de Monte-Carlo	5611	20.6442%
Modelo de Heston	4575	29.8921%

CALIBRACIÓN DEL MODELO

CALIBRACIÓN DEL MODELO: PARÁMETROS INICIALES Y REGRESIÓN LINEAL

$$\Delta V = B_0 + B_1 \cdot \sigma_{ATM}^2$$

$$B_1 = -\theta \cdot \Delta t$$

$$B_0 = \theta \cdot V_{\infty} \cdot \Delta t$$

CALIBRACIÓN DEL MODELO: PARÁMETROS INICIALES Y REGRESIÓN LINEAL

$$\Delta V = B_0 + B_1 \cdot \sigma_{ATM}^2$$

$$B_1 = -\theta \cdot \Delta t$$

$$B_0 = \theta \cdot (V_{\infty}) \cdot \Delta t$$

CALIBRACIÓN DEL MODELO: PARÁMETROS INICIALESY REGRESIÓN LINEAL

Valor de ξ

$$\xi = \psi^2 \cdot \Delta t \cdot \nu_t$$

$$\xi = (\omega \cdot \theta)^2 \cdot \Delta t \cdot \nu_t$$

Valor de p

$$\Delta S = B_0 \cdot \Delta V$$

CALIBRACIÓN DEL MODELO: PARÁMETROS INICIALES

Parámetros	Valor
V	0.02882^2
Θ	0.01
ω	0.009691
ξ	6.3086e-07
ρ	-0.29678

CALIBRACIÓN DEL MODELO: FUNCIÓN DE ERROR PROMEDIO

$$\epsilon = \frac{1}{N} \cdot \sum_{i,j} \left| \sigma_{ij}^{market} - \sigma_{ij}^{model} \right|$$

CALIBRACIÓN DEL MODELO: FUNCIÓN DE ERROR PORCENTUAL PROMEDIO

CALIBRACIÓN DEL MODELO: PRIMERA ITERACIÓN

CALIBRACIÓN DEL MODELO: PRIMERA ITERACIÓN

Min
$$\epsilon$$

s.a
 $0 \le \mathbf{v} \le \mathbf{I}$
 $0 \le \mathbf{\Theta} \le 100$
 $0 \le \mathbf{\omega} \le \mathbf{I}$
 $0 \le \mathbf{\xi} \le 0.5$
 $-0.9 \le \mathbf{\rho} \le 0.9$

CALIBRACIÓN DEL MODELO: PRIMERA ITERACIÓN

Parámetros	Valor
V	0.00097^2
Θ	0.6593
ω	0.0243
ξ	0.2869
ρ	-0.0141

CURVA SMILE: TENOR DE I MES

CURVA SMILE: TENOR DE 3 MESES

CURVA SMILE: TENOR DE 6 MESES

CURVA SMILE: TENOR DE 9 MESES

CURVA SMILE: TENOR DE 12 MESES

CALIBRACIÓN DEL MODELO: ITERACIÓN COMPLETA

CALIBRACIÓN DEL MODELO: RESULTADOS

Error promedio

0.01525

Error promedio porcentual

14.7394%

ν: VARIANZA INSTANTÁNEA

θ: REVERSIÓN A LA MEDIA

ω: VARIANZA DE EQUILIBRIO

ξ : VOLATILIDAD DE LA VARIANZA

 ρ :
CORRELACIÓN

ψ : PRIMA DE RIESGO POR VOLATILIDAD

EVOLUCIÓN DE LA VOLATILIDAD EN EL TIEMPO

EVOLUCIÓN DE LA VOLATILIDAD EN EL TIEMPO

CURVA SMILE EN EL TIEMPO: TENOR DE I MES

CURVA SMILE EN EL TIEMPO: TENOR DE 3 MESES

CURVA SMILE EN EL TIEMPO: TENOR DE 6 MESES

CURVA SMILE EN EL TIEMPO: TENOR DE 9 MESES

CURVA SMILE EN EL TIEMPO: TENOR DE 12 MESES

¡MUCHAS GRACIAS!

FELIPE DURAN

FELIPE GALDAMES