Pop quiz 1 (CSC 330) - 27 February 2024

[Ungraded + Anonymous + Memory-only + Self-graded]

1. Open an SQLite database test.db from the command line with header and column table display options enabled (5 points).

```
sqlite3 -header -column test.db
```

2. On the SQLite console, check which database you're using, and which tables the database contains (5 points).

```
.databases
.tables

main: /home/marcus/GitHub/admin/RoamNotes/test.db r/w
student
```

3. Which header arguments does an Emacs Org-mode code block need to execute SQLite commands and print tables with header and columns to the screen? Complete the block below (10 points).

```
#+begin_src sqlite :db test.db :header :column :results output
#+end_src
```

4. Create a table named student with an field id for the student ID, a field for the student's chosen major, and a field for enrolment (0 or 1). The ID should be a PRIMARY KEY, the student must choose a major, and the student is enrolled by default (1) - (10 points).

```
CREATE TABLE student (
id INTEGER PRIMARY KEY,
major TEXT NOT NULL,
enrolled INTEGER DEFAULT 1);
```

5. Check the table design (5 points).

.schema

```
CREATE TABLE student (
id INTEGER PRIMARY KEY,
major TEXT NOT NULL,
enrolled INTEGER DEFAULT 1);
```

- 6. Insert three student records in **student** (10 points):
 - 1. The first student studies 'data science'.
 - 2. The second student studies 'computer science'.
 - 3. The third student studies 'Mathematik'.

```
INSERT INTO student (major) VALUES ('data science');
INSERT INTO student (major) VALUES ('computer science');
INSERT INTO student (major) VALUES ('Mathematik');
```

7. Print all rows of the column that shows the student's major and the student ID (in this order), as MAJOR and ID (5 points).

SELECT major AS 'MAJOR', id AS 'ID' FROM student;

```
MAJOR ID

data science 1
computer science 2
mathematics 3
data science 4
computer science 5
Mathematik 6
```

8. You notice a mistake: a German must have done the data entry. The 3rd student's major is not 'Mathematik' but 'mathematics'. Correct the entry, and then print the MAJOR and ID columns again (10 points).

```
UPDATE student SET major='mathematics' WHERE id=3;
SELECT major AS 'MAJOR', id AS 'ID' FROM student;
```

```
MAJOR ID

data science 1
computer science 2
mathematics 3
data science 4
computer science 5
Mathematik 6
```

9. In the SQLite console (10 points):

and that the content is intact (10 points).

- 1. create a directory SQLite using the command: mkdir -v SQLite
- 2. check with the command: ls SQLite (or DIR SQLite in Windows)

Save the table data to a file student.sql in the current directory

```
.shell mkdir -v SQLite
.shell ls -l SQLite

total 4
-rw-rw-r-- 1 marcus marcus 320 Feb 26 22:38 student.sql
```

10. Save your database as SQLite/student.sql, then check success by using the ls (or the DIR) command again to list the file (10 points).

```
.output SQLite/student.sql
.dump
.output stdout
.shell ls -l SQLite

total 4
```

```
-rw-rw-r-- 1 marcus marcus 466 Feb 26 22:54 student.sql

11. Delete your table (if it exists) on the SQLite console and check that it was deleted (10
```

```
points).
```

```
.tables
DROP TABLE IF EXISTS student;
.tables
student
```

12. Import the SQL file from SQLite/student.sql and check that the table was recreated

```
.read SQLite/student.sql
.tables
SELECT * FROM student;
```

```
student
id
   major
                      enrolled
1
   data science
                      1
2
   computer science 1
   mathematics 1
data science 1
3
4
   data science
                      1
5
   computer science 1
   Mathematik
```

Once you're finished writing out all commands, create an Org-mode file and enter the code in code blocks (one for each section). Grade yourself and enter the total points here, then return the sheet:

____/ 100