Formas normales y consecuencia lógica

Clase 6

IIC 1253

Prof. Pedro Bahamondes

Outline

Formas normales

Consecuencia lógica

Resolución proposicional

Epílogo

Definición

Un literal es una variable proposicional o la negación de una variable proposicional.

Ejemplo

Para el conjunto de variables $P = \{p, q, r\}$, las fórmulas p y $\neg r$ son literales.

Los literales son los átomos de la construcción que mostraremos

Definición

Decimos que una fórmula φ está en forma normal disyuntiva (DNF) si es una disyunción de conjunciones de literales; o sea, si es de la forma

$$B_1 \vee B_2 \vee \ldots \vee B_k$$

donde cada B_i es una conjunción de literales, $B_i = (I_{i1} \land ... \land I_{ik_i})$

Ejemplo

$$(p \wedge q) \vee (\neg p \wedge r \wedge s)$$

¿Hemos visto fórmulas en DNF antes?

Definición

Decimos que una fórmula φ está en forma normal disyuntiva (DNF) si es una disyunción de conjunciones de literales; o sea, si es de la forma

$$B_1 \vee B_2 \vee \ldots \vee B_k$$

donde cada B_i es una conjunción de literales, $B_i = (I_{i1} \wedge ... \wedge I_{ik_i})$

Teorema

Toda fórmula es equivalente a una fórmula en DNF.

Ya demostramos esto y ¡mostramos cómo construir tal fórmula!

Definición

Decimos que una fórmula φ está en forma normal conjuntiva (CNF) si es una conjunción de disyunciones de literales; o sea, si es de la forma

$$C_1 \wedge C_2 \wedge \ldots \wedge C_k$$

donde cada C_i es una disyunción de literales, $C_i = (I_{i1} \lor ... \lor I_{ik_i})$

Observaciones

- Una disyunción de literales se llama una cláusula.
 - Los C_i anteriores son cláusulas.
- Una fórmula en CNF es una conjunción de cláusulas.

Ejemplo

$$(p \vee \neg q) \wedge (\neg p \vee \neg r \vee s) \wedge (\neg r \vee s)$$

¿Podríamos obtener una fórmula en CNF para una tabla de verdad?

Definición

Decimos que una fórmula φ está en forma normal conjuntiva (CNF) si es una conjunción de disyunciones de literales; o sea, si es de la forma

$$C_1 \wedge C_2 \wedge \ldots \wedge C_k$$

donde cada C_i es una disyunción de literales, $C_i = (I_{i1} \lor ... \lor I_{ik_i})$

Teorema

Toda fórmula es equivalente a una fórmula en CNF.

Demuestre el teorema (★)

Demostración

Como sabemos que toda fórmula es equivalente a una fórmula en DNF, demostraremos que toda fórmula en DNF es equivalente a una fórmula en CNF por inducción en la cantidad de disyunciones de la primera fórmula. Dado un conjunto de variables proposicionales P, tenemos la siguiente propiedad sobre los naturales:

Prop(n): toda fórmula $\varphi \in \mathcal{L}(P)$ en DNF con a lo más n disyunciones es lógicamente equivalente a una fórmula ψ en CNF $(\varphi \equiv \psi)$.

Demostraremos esta propiedad por inducción.

Prop(n): toda fórmula $\varphi \in L(P)$ en DNF con a lo más n disyunciones es lógicamente equivalente a una fórmula ψ en CNF $(\varphi \equiv \psi)$.

BI: Prop(0): una fórmula en DNF con 0 disyunciones es de la forma

$$l_1 \wedge l_2 \wedge \ldots \wedge l_k$$

por lo que está trivialmente en CNF.

HI: Suponemos que Prop(n-1) es cierta; es decir, toda fórmula φ en DNF con a lo más n-1 disyunciones es lógicamente equivalente a una fórmula ψ en CNF.

TI: Debemos demostrar que toda fórmula φ' en DNF con n disyunciones es lógicamente equivalente a una fórmula ψ' en CNF. Cualquier φ' será de la forma

$$\varphi' = B_0 \vee B_1 \vee \ldots \vee B_{n-1} \vee B_n$$

donde los B_i son conjunciones de literales. Por asociatividad:

$$\varphi' \equiv (B_0 \vee B_1 \vee \ldots \vee B_{n-1}) \vee B_n$$

y por HI $\varphi' \stackrel{HI}{\equiv} \psi \vee B_n$, con ψ una fórmula en CNF. Expandiendo la conjunción B_n :

$$\varphi'\equiv\psi\vee \left(I_{n,1}\wedge\ldots\wedge I_{n,k_n}\right)$$

TI: Por distributividad:

$$\varphi' \equiv (\psi \vee I_{n,1}) \wedge \ldots \wedge (\psi \vee I_{n,k_n})$$

Como ψ está en CNF, podemos expandirla:

$$\varphi' \equiv ((C_1 \wedge \ldots \wedge C_m) \vee I_{n,1}) \wedge \ldots \wedge ((C_1 \wedge \ldots \wedge C_m) \vee I_{n,k_n})$$

con Ci cláusulas. Por distributividad:

$$\varphi' \equiv \left(\left(\left. C_1 \vee I_{n,1} \right) \wedge \ldots \wedge \left(\left. C_m \vee I_{n,1} \right) \right) \wedge \ldots \wedge \left(\left(\left. C_1 \vee I_{n,k_n} \right) \wedge \ldots \wedge \left(\left. C_m \vee I_{n,k_n} \right) \right) \right. \right)$$

Y por asociatividad:

$$\varphi' \equiv (C_1 \vee I_{n,1}) \wedge \ldots \wedge (C_m \vee I_{n,1}) \wedge \ldots \wedge (C_1 \vee I_{n,k_n}) \wedge \ldots \wedge (C_m \vee I_{n,k_n})$$

TI: Como los C_i son cláusulas, es claro que $(C_i \vee I_{n,j})$ es una cláusula. Luego, tenemos que

$$\psi' = (C_1 \vee I_{n,1}) \wedge \ldots \wedge (C_m \vee I_{n,1}) \wedge \ldots \wedge (C_1 \vee I_{n,k_n}) \wedge \ldots \wedge (C_m \vee I_{n,k_n})$$

está en CNF y es tal que $\varphi' \equiv \psi'$. \Box

Outline

Formas normales

Consecuencia lógica

Resolución proposicional

Epílogo

Conjuntos de fórmulas

Notación

Dado un conjunto de fórmulas Σ en L(P), diremos que una valuación σ satisface Σ , denotado por $\sigma(\Sigma)$ = 1, si para toda fórmula $\varphi \in \Sigma$ se tiene que $\sigma(\varphi)$ = 1.

Definición

Un conjunto de fórmulas Σ es **satisfactible** si existe una valuación σ tal que $\sigma(\Sigma) = 1$. En caso contrario, Σ es **inconsistente**.

¿Cuándo decimos que una fórmula se deduce de un conjunto?

Consecuencia lógica

Definición

 ψ es consecuencia lógica de Σ si para cada valuación σ tal que $\sigma(\Sigma)$ = 1, se tiene que $\sigma(\psi)$ = 1.

Lo denotamos por $\Sigma \vDash \psi$.

 ψ debe ser satisfecha en cada "mundo" donde Σ es verdadero

Consecuencia lógica

Ejemplo

La regla de inferencia llamada **Modus ponens** es $\{p,p \rightarrow q\} \vDash q$

р	q	р	$p \rightarrow q$	q
0	0	0	1	0
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1

Nos tenemos que fijar en las valuaciones que satisfacen al conjunto... En esos mundos, la fórmula "objetivo" también debe ser satisfecha

Ejercicio (propuesto ★)

Demuestre las siguientes reglas de inferencia

- Modus tollens: $\{\neg q, p \rightarrow q\} \vDash \neg p$
- Demostración por partes: $\{p \lor q \lor r, p \to s, q \to s, r \to s\} \models s$

Un resultado fundamental

Teorema

 $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

Este teorema combina dos mundos:

la consecuencia lógica y la satisfactibilidad

Demostración

- $(\Rightarrow) \text{ Supongamos que } \Sigma \vDash \varphi. \text{ Por contradicción, supongamos que } \Sigma \cup \{\neg \varphi\} \text{ es satisfactible, luego existe una valuación } \sigma \text{ tal que } \sigma(\Sigma \cup \{\neg \varphi\}) = 1. \text{ Esto implica que } \sigma(\Sigma) = 1 \text{ y que } \sigma(\neg \varphi) = 1, \text{ y por lo tanto } \sigma(\Sigma) = 1 \text{ y } \sigma(\varphi) = 0, \text{ lo que contradice que } \Sigma \vDash \varphi.$
- $(\Leftarrow) \text{ Sea } \Sigma \cup \{\neg \varphi\} \text{ inconsistente. Debemos demostrar que dada una}$ valuación σ tal que $\sigma(\Sigma)=1$, se tiene que $\sigma(\varphi)=1$. Como $\Sigma \cup \{\neg \varphi\}$ es inconsistente y $\sigma(\Sigma)=1$, necesariamente $\sigma(\neg \varphi)=0$, y luego $\sigma(\varphi)=1$. Hemos demostrado que si σ es tal que $\sigma(\Sigma)=1$, entonces $\sigma(\varphi)=1$, por lo que concluimos que $\Sigma \models \varphi$.

Un resultado fundamental

El teorema anterior nos permite chequear $\Sigma \vDash \varphi$ estudiando la satisfactibilidad de $\Sigma \cup \{\neg \varphi\}$

- Podemos usar tablas de verdad para esto último. . .
- ...pero es muy lento!

Estudiaremos un método alternativo que no requiere tablas de verdad más adelante

Outline

Formas normales

Consecuencia lógica

Resolución proposicional

Epílogo

Primer ingrediente: Cláusula vacía

Recordemos: una cláusula es una disyunción de literales

Notación

Denotaremos por □ una contradicción cualquiera. La llamaremos cláusula vacía

Teorema

Un conjunto de fórmulas Σ es inconsistente si y sólo si $\Sigma \vDash \square$.

Primer ingrediente: Cláusula vacía

Teorema

Un conjunto de fórmulas Σ es inconsistente si y sólo si $\Sigma \vDash \square$.

Demostración (propuesta ★)

- (⇒) Dado que Σ es inconsistente, debemos demostrar que Σ \vDash \square . Como Σ es inconsistente, sabemos que toda valuación σ es tal que $\sigma(\Sigma)$ = 0, y luego se cumple trivialmente que Σ \vDash \square .
- (\Leftarrow) Dado que $\Sigma \vDash \Box$, debemos demostrar que Σ es inconsistente. Por contradicción, supongamos que Σ es satisfactible. Luego, existe una valuación σ tal que $\sigma(\Sigma) = 1$. Como \Box es una contradicción, tenemos que $\sigma(\Box) = 0$, y por lo tanto obtenemos que $\sigma(\Sigma) = 1$ pero $\sigma(\Box) = 0$, lo que contradice que $\Sigma \vDash \Box$.

Segundo ingrediente: conjuntos equivalentes

Definición

Los conjuntos de fórmulas Σ_1 y Σ_2 son **lógicamente equivalentes** $(\Sigma_1 \equiv \Sigma_2)$ si para toda valuación σ se tiene que $\sigma(\Sigma_1) = \sigma(\Sigma_2)$.

Observaciones

lacktriangle Diremos que Σ es lógicamente equivalente a una fórmula arphi si

$$\Sigma \equiv \{\varphi\}$$

 \blacksquare Para todo Σ se cumple

$$\Sigma \equiv \left\{ \bigwedge_{\varphi \in \Sigma} \varphi \right\}$$

Segundo ingrediente: conjuntos equivalentes

Teorema

Todo conjunto de fórmulas Σ es equivalente a un conjunto de cláusulas.

Ejemplo

Pasando las fórmulas de un conjunto Σ a CNF, podemos separar sus cláusulas

$$\{p, q \rightarrow (p \rightarrow r), \neg (q \rightarrow r)\} \equiv \{p, \neg q \lor \neg p \lor r, q, \neg r\}$$

obteniendo un conjunto de cláusulas que es equivalente al original.

Para determinar si $\Sigma \vDash \varphi$, construiremos un conjunto de cláusulas $\Sigma' \equiv \Sigma \cup \{\neg \varphi\}$

La regla de resolución

Notación

Si un literal $\ell=p$, entonces $\bar{\ell}=\neg p$, y si $\ell=\neg p$, entonces $\bar{\ell}=p$.

Regla de resolución

Dadas cláusulas C_1 , C_2 , C_3 , C_4 y un literal ℓ ,

$$C_1 \lor \ell \lor C_2$$

$$C_3 \lor \bar{\ell} \lor C_4$$

$$C_1 \lor C_2 \lor C_3 \lor C_4$$

Observaciones

- La regla es correcta: $\{C_1 \lor \ell \lor C_2, C_3 \lor \bar{\ell} \lor C_4\} \models C_1 \lor C_2 \lor C_3 \lor C_4$
- \blacksquare ℓ y $\bar{\ell}$ se llaman literales complementarios

La regla de resolución

Regla de resolución

Dadas cláusulas C_1 , C_2 , C_3 , C_4 y un literal ℓ ,

$$\begin{array}{c}
C_1 \lor \ell \lor C_2 \\
C_3 \lor \overline{\ell} \lor C_4 \\
\hline
C_1 \lor C_2 \lor C_3 \lor C_4
\end{array}$$

Ejemplo

Algunos casos particulares de resolución

$$\begin{array}{ccc}
C_1 \lor \ell \lor C_2 & \ell \\
\overline{\ell} & \overline{\ell} \\
\hline
C_1 \lor C_2 & \Box
\end{array}$$

La regla de factorización

Regla de factorización

Dadas cláusulas C_1, C_2, C_3 y un literal ℓ ,

$$\frac{C_1 \vee \ell \vee C_2 \vee \ell \vee C_3}{C_1 \vee \ell \vee C_2 \vee C_3}$$

Observación

■ La regla es **correcta**: $\{C_1 \lor \ell \lor C_2 \lor \ell \lor C_3\} \models C_1 \lor \ell \lor C_2 \lor C_3$

Demostraciones por resolución

Definición

Una demostración por resolución de que Σ es inconsistente es una secuencia de cláusulas C_1, \ldots, C_n tal que

- Para cada *i* < *n*
 - $C_i \in \Sigma$ o
 - existen j, k < i tales que C_i se obtiene de C_j, C_k usando la regla de resolución o
 - existe j < i tal que C_i se obtiene de C_j usando la regla de factorización
- $C_n = \square$

Lo denotamos por $\Sigma \vdash \Box$.

```
Ejemplo
                   \Sigma = \{ p \lor q \lor r, \neg p \lor s, \neg q \lor s, \neg r \lor s, \neg s \}
                   (1) p \lor q \lor r \in \Sigma
                   (2) \neg p \lor s \in \Sigma
                   (3) s \lor q \lor r resolución de (1), (2)
                   (4) \neg q \lor s \in \Sigma
                   (5) s \lor s \lor r resolución de (3), (4)
                   (6) s \lor r factorización de (5)
                   (7) \neg r \lor s \in \Sigma
                   (8) s \vee s
                                        resolución de (6), (7)
                   (9) s factorización de (8)
                   (10)
                          ¬S
                                        \in \Sigma
                   (11)
                                        resolución de (9), (10)
```

Es decir, existe una demostración por resolución de que Σ es inconsistente

Teorema

Dado un conjunto de cláusulas Σ , se tiene que:

- **Correctitud:** Si $\Sigma \vdash \Box$ entonces $\Sigma \vDash \Box$.
- **Completitud:** Si $\Sigma \vDash \Box$ entonces $\Sigma \vdash \Box$.

Corolario

Si Σ es un conjunto de cláusulas, entonces $\Sigma \vDash \square$ si y sólo si $\Sigma \vdash \square$.

Corolario (forma alternativa)

Un conjunto de cláusulas Σ es inconsistente si y sólo si existe una demostración por resolución de que es inconsistente.

¡Resolución resuelve nuestro problema!

¡Resolución resuelve nuestro problema de consecuencia lógica!

Corolario

Dados un conjunto de fórmulas Σ y una fórmula φ cualesquiera,

$$\Sigma \vDash \varphi$$
 si y sólo si $\Sigma' \vdash \Box$

donde Σ' es un conjunto de cláusulas tal que $\Sigma \cup \{\neg \varphi\} \equiv \Sigma'$.

Este procedimiento nos permite determinar consecuencia lógica

Ejemplo

Demostremos que $\{p, q \rightarrow (p \rightarrow r)\} \models q \rightarrow r$.

Seguiremos la estrategia planteada

- 1. Agregar $\neg \varphi$ al conjunto
- 2. Transformar todo en $\Sigma \cup \{\neg \varphi\}$ a CNF y separar cláusulas
- 3. Obtener una secuencia de cláusulas por resolución para llegar a 🗆

El desarrollo se deja propuesto 🛨

Ejemplo

Consideremos el conjunto $\{p, q \to (p \to r), \neg(q \to r)\}$ y llamamos

$$\varphi = q \rightarrow (p \rightarrow r)$$

$$\psi = \neg (q \rightarrow r)$$

Transformamos cada una a conjuntos de cláusulas

lacktriangle Para arphi usamos ley de implicancia material (dos veces) y asociatividad

$$\varphi = q \rightarrow (p \rightarrow r) \equiv \neg q \lor (p \rightarrow r) \equiv \neg q \lor (\neg p \lor r) \equiv \{\neg q \lor \neg p \lor r\}$$

lacksquare Para ψ usamos implicancia y de Morgan

$$\psi = \neg (q \to r) \equiv \neg (\neg q \lor r) \equiv q \land \neg r \equiv \{q, \neg r\}$$

Ejemplo

Tenemos el conjunto de cláusulas

$$\Sigma = \{p, \neg q \lor \neg p \lor r, q, \neg r\}.$$

Basta demostrar que Σ es inconsistente, y como es un conjunto de cláusulas, lo haremos mostrando que $\Sigma \vdash \Box$:

- (1) $p \in \Sigma$
- (2) $\neg q \lor \neg p \lor r \in \Sigma$
- (3) $\neg q \lor r$ resolución de (1), (2)
- (4) $q \in \Sigma$
- (5) r resolución de (3), (4)
- (6) $\neg r \in \Sigma$
- (7) \Box resolución de (5), (6)

Outline

Formas normales

Consecuencia lógica

Resolución proposicional

Epílogo

Objetivos de la clase

- □ Conocer las formas normales
- □ Comprender concepto de consecuencia lógica
- □ Demostrar consecuencias lógicas sencillas