ECE 6350

3D Electrostatic Potential Integral Equation

D. R. Wilton

University of Houston

New Features of Static 3D Potential Integral Equation

- 3D geometry and Green's function
- Triangular elements
 - Data structure
 - Local coordinate system

 (area coordinates—both for IE and FEM)
 - Linear interpolation on triangles
 - Numerical integration on triangles
- Handling 1/R singularities in 3D

Equations of **Electrostatics** in Homogeneous Media

$$\bullet \quad \nabla \times \mathbf{E} = \mathbf{0} \quad \Rightarrow \quad \mathbf{E} = -\nabla \Phi$$

$$\bullet \quad \nabla \cdot \mathbf{D} = \varepsilon \nabla \cdot \mathbf{E} = q \quad [C/m^3]$$

$$\Rightarrow \nabla^2 \Phi = -\frac{q}{\varepsilon}$$

where

$$\Phi = \frac{1}{\varepsilon} \int_{\mathcal{V}} G(\mathbf{r}, \mathbf{r}') \ q(\mathbf{r}') d\mathcal{V}'$$

and
$$G(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi R}$$
, $R = |\mathbf{r} - \mathbf{r}'|$

Note:

$$\nabla^2 G = -\delta(\mathbf{r} - \mathbf{r}')$$

Definitions of Geometrical and Electrical Quantities for Charges on a Surface

Conductor Charged to a Given, Constant Potential Φ_0

Apply the boundary condition,

$$\frac{1}{\varepsilon} \int_{\mathcal{S}} G(\mathbf{r}, \mathbf{r}') \quad q(\mathbf{r}') \quad d\mathcal{S}' = \Phi_0, \quad \mathbf{r} \in \mathcal{S}$$
unknown
known

Reminder: Here $q(\mathbf{r})$ denotes a *surface* charge density!

Surface Discretization

Constant surface charge density assumed in each triangle => Piecewise constant representation

• A Global Node list defines vertex locations

Node #	Х	у	Z
23			
	₂₃	y ₂₃	.Z ₂₃

 An element list contains the global node numbers; here DoF# = element #

Element e	DoF	1	2	3
 17 	17	 36 	 16 	23

Piecewise Constant Surface Charge Approximation

$$e \to n$$
, $\mathcal{S} \approx \tilde{\mathcal{S}} = \bigcup_{n=1}^{N} \mathcal{S}^n$

Constant surface charge density assumed in each triangle => Piecewise constant representation

$$q(\mathbf{r}') \approx \sum_{n=1}^{N} Q_n \Pi_n(\mathbf{r}')$$

$$\Pi_n(\mathbf{r}) = \begin{cases} 1, & \mathbf{r} \in \mathcal{S}^n \\ 0, & \text{otherwise} \end{cases}$$

Substitute Charge Approximation and Enforce Equality at Subdomain Centroids

$$q(\mathbf{r}') \approx \sum_{n=1}^{N} Q_n \Pi_n(\mathbf{r}')$$
 [C/m²],

$$\int_{\mathcal{S}} \frac{q(\mathbf{r}')}{4\pi\varepsilon |\mathbf{r}-\mathbf{r}'|} d\mathcal{S}' = \Phi_0 \quad [V], \ \mathbf{r} \in \mathcal{S}$$

$$\Rightarrow \sum_{n=1}^{N} Q_{n} \int_{\tilde{S}} \frac{\prod_{n} (\mathbf{r}')}{4\pi\varepsilon |\mathbf{r}-\mathbf{r}'|} dS' \approx \Phi_{0},$$

Enforce equality at centroid of S^m :

let
$$\mathbf{r} = \mathbf{r}_c^m = \frac{\mathbf{r}_1^m + \mathbf{r}_2^m + \mathbf{r}_3^m}{3}$$
, $m = 1, 2, ..., N$

Matrix Equation for Approximate Surface **Charge Distribution**

$$\sum_{n=1}^{N} Q_n \int_{\tilde{S}} \frac{\Pi_n(\mathbf{r}')}{4\pi\varepsilon \left|\mathbf{r}_c^m - \mathbf{r}'\right|} dS' = \Phi_0, \quad m = 1, 2, \dots, N$$

or

$$[S_{mn}][Q_n] = [V_m]$$

where

$$S_{mn} = \int_{\tilde{S}} \frac{\Pi_{n}(\mathbf{r}')}{4\pi\varepsilon \left|\mathbf{r}_{c}^{m} - \mathbf{r}'\right|} dS' = \int_{S^{n}} \frac{dS'}{4\pi\varepsilon \left|\mathbf{r}_{c}^{m} - \mathbf{r}'\right|}$$

$$\mathbf{r}_c^m = \frac{\mathbf{r}_1^m + \mathbf{r}_2^m + \mathbf{r}_3^m}{3}$$
, $V_m = \Phi_0$ Alternative interpretation as delta f'n testing:

$$S_{mn} = \frac{1}{\varepsilon} \iint_{\tilde{S}} \delta(\mathbf{r} - \mathbf{r}_{c}^{m}) G(\mathbf{r} - \mathbf{r}') \Pi_{n}(\mathbf{r}') dS' dS$$

$$\equiv \frac{1}{\varepsilon} \langle \delta(\mathbf{r} - \mathbf{r}_{c}^{m}), G, \Pi_{n} \rangle$$

Area Coordinates Are Used to Represent Bases and Parameterize Element Geometry

An Area Coordinate Is Also the Fractional Distance from an Edge to the Opposite Vertex

It is convenient to define local edge vectors ℓ_i associated with the edge opposite each vertex and local height vectors h; associated

Coordinate Mapping and Modulo 3 Indexing

Modulo Vertex & Edge Indexing Scheme

i	i+1 (= i-2)	i-1 (= i+2)	
1	2	3	
2	3	1	
3	1	2	

Index arithmetic performed modulo 3:

$$i \pm j \equiv (i \pm j - 1)_{\text{mod } 3} + 1$$

Parameterization of a Triangular Patch

Parameterization proof:

$$\mathbf{r'} = \mathbf{r}_{i}^{e} + \underbrace{\xi_{i+1}\ell_{i-1} - \xi_{i-1}\ell_{i+1}}_{\rho_{i}}$$

$$= \mathbf{r}_{i}^{e} + \xi_{i+1} \left(\mathbf{r}_{i+1}^{e} - \mathbf{r}_{i}^{e}\right) - \xi_{i-1} \left(\mathbf{r}_{i}^{e} - \mathbf{r}_{i-1}^{e}\right)$$

$$= \mathbf{r}_{i}^{e} \left(1 - \xi_{i+1} - \xi_{i-1}\right) + \mathbf{r}_{i+1}^{e} \xi_{i+1} + \mathbf{r}_{i-1}^{e} \xi_{i-1}$$

$$\Rightarrow \mathbf{r'} = \mathbf{r}_{i}^{e} \xi_{i} + \mathbf{r}_{i+1}^{e} \xi_{i+1} + \mathbf{r}_{i-1}^{e} \xi_{i-1}$$

$$\Rightarrow \mathbf{r'} = \sum_{i=1}^{3} \mathbf{r}_{i}^{e} \xi_{i}$$

Parameterization of Integrals

 $d\xi_{\scriptscriptstyle i-1}$

If ξ_{i+1} and ξ_{i-1} are independent variables, what is the surface area $d\mathcal{S}$ swept out when (ξ_{i+1}, ξ_{i-1}) changes to $(\xi_{i+1} + d\xi_{i+1}, \xi_{i-1} + d\xi_{i-1})$?

Ans: $dS = \left| \ell_{i-1} \times \ell_{i+1} \right| d\xi_{i+1} d\xi_{i-1}$

Hence integrals are evaluated as

$$\int_{A^{e}} f(\mathbf{r}) dS$$

$$= |\ell_{i-1} \times \ell_{i+1}| \int_{0}^{1} \int_{0}^{1-\xi_{i-1}} f(\mathbf{r}_{1}^{e} \xi_{1} + \mathbf{r}_{2}^{e} \xi_{2} + \mathbf{r}_{3}^{e} \xi_{3}) d\xi_{i+1} d\xi_{i-1}$$

$$= 2A^{e} \int_{0}^{1} \int_{0}^{1-\xi_{i-1}} f(\mathbf{r}_{1}^{e} \xi_{1} + \mathbf{r}_{2}^{e} \xi_{2} + \mathbf{r}_{3}^{e} \xi_{3}) d\xi_{i+1} d\xi_{i-1}$$

For $m \neq n$, Integrate over Triangles Using Gaussian Area Coordinate Rules

$$\int_{A^{e}} f(\mathbf{r}) dS$$
= $2A^{e} \int_{0}^{1} \int_{0}^{1-\xi_{2}} f(\xi_{1} \mathbf{r}_{1}^{e} + \xi_{2} \mathbf{r}_{2}^{e} + \xi_{3} \mathbf{r}_{3}^{e}) d\xi_{1} d\xi_{2}$

$$\approx 2A^{e} \sum_{k=1}^{K} w_{k} f(\xi_{1}^{(k)} \mathbf{r}_{1}^{e} + \xi_{2}^{(k)} \mathbf{r}_{2}^{e} + \xi_{3}^{(k)} \mathbf{r}_{3}^{e})$$
Numerical integration

Hence,

$$S_{mn} = \int_{S^{n}} \frac{dS'}{4\pi\varepsilon |\mathbf{r}_{c}^{m} - \mathbf{r'}|}$$

$$\approx \frac{2A^{n}}{\varepsilon} \sum_{k=1}^{K} w_{k} G\left(\frac{\mathbf{r}_{1}^{m} + \mathbf{r}_{2}^{m} + \mathbf{r}_{3}^{m}}{3}, \xi_{1}^{(k)} \mathbf{r}_{1}^{n} + \xi_{2}^{(k)} \mathbf{r}_{2}^{n} + \xi_{3}^{(k)} \mathbf{r}_{3}^{n}\right)$$

Table 9 Sample points and weighting coefficients for K-point quadrature on triangles.

Sample Points, $\left(\xi_1^{(k)},\xi_2^{(k)} ight)$	Weights, \boldsymbol{w}_k
$(\xi_3^{(k)} = 1 - \xi_1^{(k)} - \xi_2^{(k)})$	
K=1, error $\mathcal{O}(\xi_i^2)$:	
(0.33333333333333, 0.33333333333333)	0.500000000000000
K=3, error $\mathcal{O}(\xi_i^3)$:	
(0.666666666666667, 0.16666666666667)	0.16666666666667
(0.166666666666667, 0.66666666666667)	0.16666666666667
(0.16666666666667, 0.16666666666667)	0.16666666666667
K=7, error $\mathcal{O}(\xi_i^6)$:	
(0.3333333333333, 0.33333333333333)	0.112500000000000
(0.79742698535309, 0.10128650732346)	0.06296959027241
(0.10128650732346, 0.79742698535309)	0.06296959027241
(0.10128650732346, 0.10128650732346)	0.06296959027241
(0.47014206410512, 0.47014206410512)	0.06619707639425
(0.47014206410512, 0.05971587178977)	0.06619707639425
(0.05971587178977, 0.47014206410512)	0.06619707639425
(**************************************	

Integration for Non-Self Terms, $m \neq n$

Non-singular case,

For m = n, Use a Singularity Cancellation Approach

- Split observation triangle into three subtriangles about the observation point
- Each subtriangle, which has a singularity at one of its vertices, is treated separately using a local x-y coordinate system

Transformation to Remove Singularity

$$\int_{\mathcal{S}_1'} \frac{1}{4\pi R} d\mathcal{S}' = \int_0^{h_1'} \int_{x_L(y)}^{x_U(y)} \frac{1}{4\pi R} dx dy$$
Let
$$du = \frac{dx}{R} \implies u = \sinh^{-1} \left(\frac{x}{y}\right) \left(= \ln \frac{x + \sqrt{x^2 + y^2}}{y}\right),$$

$$\Rightarrow x = y \sinh u, \quad R = \sqrt{x^2 + y^2} = y\sqrt{1 + \sinh^2 u} = y \cosh u$$

$$\sinh u_L = \frac{x_L(y)}{y} = \cot \phi_L; \ \sinh u_U = \frac{x_U(y)}{y} = \cot \phi_U$$

Evaluation of Integral

$$\int_{\mathcal{S}_i'} \frac{1}{4\pi R} d\mathcal{S}' = \int_0^{h_i'} \int_{x_L(y)}^{x_U(y)} \frac{1}{4\pi R} dx dy = \frac{1}{4\pi} \int_0^{h_i'} \int_{u_L = \sinh^{-1}\cot\phi_L}^{u_U = \sinh^{-1}\cot\phi_L} du dy$$

$$= \frac{h_i'}{4\pi} \left(\sinh^{-1}\cot\phi_U - \sinh^{-1}\cot\phi_L \right)$$
Repeat and sum over all three subtriangles

$$\cot \phi_{U} = \frac{\ell_{i} \cdot \left(\mathbf{r} - \mathbf{r}_{i+1}^{e}\right)}{\left|\ell_{i} \times \left(\mathbf{r} - \mathbf{r}_{i+1}^{e}\right)\right|}, \quad \cot \phi_{L} = \frac{\ell_{i} \cdot \left(\mathbf{r} - \mathbf{r}_{i-1}^{e}\right)}{\left|\ell_{i} \times \left(\mathbf{r} - \mathbf{r}_{i-1}^{e}\right)\right|} \quad \mathbf{r} - \mathbf{r}_{i-1}^{e}$$

Determining a Quadrature Rule

generalized to allow for phase factor, bases, etc.

$$\int_{\mathcal{S}_{1}'} \frac{f(\mathbf{r})}{4\pi R} d\mathcal{S}' = \frac{1}{4\pi} \int_{0}^{h_{1}'} \int_{u_{L}}^{u_{U}} f(\mathbf{r}(u, y)) dudy$$

$$= \frac{h_{1}'(u_{U} - u_{L})}{4\pi} \sum_{i} \sum_{j} w_{i} w_{j} f(\mathbf{r}(u^{(i)}, y^{(j)}))$$

where
$$u^{(i)} = u_{IJ}\xi_1^{(i)} + u_{IJ}\xi_2^{(i)}, \quad y^{(j)} = h_1'\xi_1^{(j)},$$

 $(w_k, \xi_1^{(k)})$ are Gauss - Legendre weights & samples,

$$u_{U,L} = \sinh^{-1} \frac{x_{U,L}(y)}{y} = \sinh^{-1} \left(\cot \phi_{U,L}\right)$$

 $\begin{array}{c}
\downarrow u \\
u_{\mathrm{U}} \\
\downarrow (u^{(i)}, y^{(j)}) \\
\downarrow u_{\mathrm{L}}
\end{array}$

Note only *one* sample pt. needed to integrate exactly if f(r)=1!

We Can Hide Transformation Details by Mapping Weights & Sample Points Back to Parent Triangle

- Map the index pair (i, j) to a single index $k: k \leftrightarrow (i, j)$
- Then force the integral into the standard parent triangle form,

$$\int_{\mathcal{S}_{1}^{\prime}} \frac{f(\mathbf{r})}{4\pi R} d\mathcal{S}^{\prime} \approx 2A^{e} \sum_{k=(i,j)} W_{k} \underbrace{\frac{f(\mathbf{r}^{(k)})}{4\pi R^{(k)}}}_{\text{Sampled values of integrand}}$$

• Since $\int_{\mathcal{S}_{1}^{\prime}} \frac{f(\mathbf{r})}{4\pi R} d\mathcal{S}^{\prime} \approx \frac{h_{1}^{\prime} \left(u_{U} - u_{L}\right)}{4\pi} \sum_{i} \sum_{j} w_{i} w_{j} f\left(\mathbf{r}^{(i,j)}\right)$ $\uparrow_{i} \\ \bullet \rightarrow j \\ \bullet$

$$\Rightarrow W_k = \frac{w_i w_j h_1' (u_U - u_L) R^{(k)}}{2A^e}$$
 (repeat for each subtriangle)

Mapping (u, y) Sample Points & Weights Back to ξ_i Coordinates

• Find corner of i - th subtriangle in local $\rho_{loc} = (x_{loc}, y_{loc})$ coordinates:

$$\boldsymbol{\rho}_U \equiv \left(\boldsymbol{x}_U(\boldsymbol{h}_i'),\,\boldsymbol{h}_i'\right),\,\boldsymbol{\rho}_L \equiv \left(\boldsymbol{x}_L(\boldsymbol{h}_i'),\,\boldsymbol{h}_i'\right),$$

where
$$h'_i = \hat{\mathbf{h}}_i \cdot (\mathbf{r}^e_{i\pm 1} - \mathbf{r}), \ x_L(h'_i) = -\hat{\ell}_i \cdot (\mathbf{r}^e_{i-1} - \mathbf{r})$$

$$x_U(h_i') = -\hat{\ell}_i \cdot (\mathbf{r}_{i+1}^e - \mathbf{r})$$
 (Note $\hat{\mathbf{x}}_{loc} = -\hat{\ell}_i, \hat{\mathbf{y}}_{loc} = \hat{\mathbf{h}}_i!$)

- Determine angular limits: $\cot \phi_{L,U} = \frac{x_{L,U}(h'_i)}{h'}$
- Determine u parameter limits: $u_{U,L} = \sinh^{-1}(\cot \phi_{U,L})$
- Determine transverse and radial sample points:

$$u^{(i)} = u_U \xi_1^{(i)} + u_L \xi_2^{(i)}, i = 1, 2, \dots, K_{\text{transverse}}$$

$$y^{(j)} = h'_i \xi_1^{(j)}, \ j = 1, 2, \dots, K_{\text{radial}}$$

• Map (u, y) sample points back to (x_{loc}, y_{loc}) , then global (x, y, z) coordinates:

$$\boldsymbol{\rho}^{(k)} \equiv (x^{(k)}, y^{(k)}) \stackrel{k \leftrightarrow (i,j)}{=} \left(y^{(j)} \sinh u^{(i)}, y^{(j)} \right) \Rightarrow \mathbf{r}^{(k)} = \mathbf{r} + y^{(k)} \hat{\mathbf{h}}_i - x^{(k)} \hat{\boldsymbol{\ell}}_i$$

Map r^(k) coordinates to area coordinates:

$$A_{i}^{(k)} = \left| \ell_{i} \times \left(\mathbf{r}^{(k)} - \mathbf{r}_{i+1}^{e} \right) \right| / 2, A_{i-1}^{(k)} = \left| \ell_{i-1} \times \left(\mathbf{r}^{(k)} - \mathbf{r}_{i+1}^{e} \right) \right| / 2,$$

$$\left(\xi_{i}^{(k)}, \xi_{i-1}^{(k)}, \xi_{i+1}^{(k)}\right) = \left(A_{i}^{(k)}/A^{e}, A_{i-1}^{(k)}/A^{e}, 1 - \xi_{i}^{(k)} - \xi_{i-1}^{(k)}\right)$$

$$W_{k} = \frac{w_{i}w_{j} h'_{1}(u_{U} - u_{L}) y^{(j)} \cosh u^{(i)}}{2A^{e}}$$

Typical Sample Point Schemes

Charge Distribution on a Conducting Circular Disk

Capacitance of a Conducting Sphere

TABLE I NORMALIZED CAPACITANCE OF A SPHERE (IN PICOFARADS/ METER)

Nφ	N ₀	N	C/a
6	3	24	94.03
6	4	36	98.35
6	5	48	100.39
6	6	60	101.51
6	8	84	102.64
8	3	32	96.81
3	4	48	101.20
8	5	64	103.28
8	5	80	104.43
exac	t		111.26

$$C = 4\pi\varepsilon_0 a \quad [F]$$

$$C = \frac{Q}{\Phi_0} \approx \frac{\int_{\mathcal{S}} \sum_{n=1}^{N} Q_n \Pi_n (\mathbf{r}) d\mathcal{S}}{\Phi_0}$$

$$\approx \frac{\sum_{n=1}^{N} Q_n \mathcal{S}^n}{\Phi_0} = \frac{1}{\Phi_0} [Q_n]^t [\mathcal{S}^n]$$

Charge Distribution on a Bent Conducting Circular Disk

Fig. 3. Calculated charge density distribution on unit disk bent 90° along diameter. Distribution is plotted along symmetry plane perpendicular to bend.

Conductor in a Uniform Static Electric Field

Modifications for a Conductor in a Uniform Impressed Field

 To produce a constant electric field in the direction of â, choose

$$\Phi^{i} = -E_{0} \hat{\mathbf{a}} \cdot \mathbf{r} = -E_{0} \left(\hat{a}_{x} x + \hat{a}_{y} y + \hat{a}_{z} z \right)$$

since

$$\mathbf{E}^{i} = -\nabla \Phi^{i} = E_{0} \left(\hat{a}_{x} \hat{\mathbf{x}} + \hat{a}_{y} \hat{\mathbf{y}} + \hat{a}_{z} \hat{\mathbf{z}} \right) = E_{0} \hat{\mathbf{a}}$$
 Assumed given!

•
$$(\mathbf{E}^{i} + \mathbf{E}^{s})_{tan} = 0$$
 on \mathcal{S}

$$\Rightarrow -\nabla_{tan} (\Phi^{i} + \Phi^{s}) = 0$$
 on \mathcal{S}

$$\Rightarrow \Phi^{i} + \Phi^{s} = \Phi_{0}$$
 on \mathcal{S}

$$\Rightarrow \frac{1}{\varepsilon} \int_{\mathcal{S}} G(\mathbf{r}, \mathbf{r}') \ q(\mathbf{r}') d\mathcal{S}' = -\Phi^{i}(\mathbf{r}) + \Phi_{0}, \mathbf{r} \text{ on } \mathcal{S}$$

Constraint: $\int_{\mathcal{S}} q(\mathbf{r}') d\mathcal{S}' = Q_0$ Assumed given!

Problem Discretization

Potential integral equation:

$$\Rightarrow \frac{1}{\varepsilon} \int_{\mathcal{S}} G(\mathbf{r}_{c}^{m}, \mathbf{r}') \ q(\mathbf{r}') d\mathcal{S}' \approx \sum_{n=1}^{N} Q_{n} \int_{\tilde{\mathcal{S}}} \frac{\Pi_{n}(\mathbf{r}')}{4\pi\varepsilon \left|\mathbf{r}_{c}^{m} - \mathbf{r}'\right|} d\mathcal{S}' = -\Phi^{i}(\mathbf{r}_{c}^{m}) + \Phi_{0},$$

Charge constraint:

$$\Rightarrow \int_{\mathcal{S}} q(\mathbf{r}') d\mathcal{S}' \approx \sum_{n=1}^{N} Q_n \int_{\tilde{\mathcal{S}}} \Pi_n(\mathbf{r}') d\mathcal{S}' = \sum_{n=1}^{N} Q_n \mathcal{S}^n = \left[\mathcal{S}^n \right]^t \left[Q_n \right] = Q_0$$

$$\Rightarrow \begin{bmatrix} \begin{bmatrix} S_{mn} \end{bmatrix} & \begin{bmatrix} -1 \end{bmatrix} \\ \begin{bmatrix} S^n \end{bmatrix}^t & 0 \end{bmatrix} \begin{bmatrix} Q_n \end{bmatrix} = \begin{bmatrix} V_m \end{bmatrix} \\ \Phi_0 \end{bmatrix} = \begin{bmatrix} V_m \end{bmatrix}$$

$$S^n \equiv \text{area of } S^n$$

 $m=1,2,\cdots,N$

where

$$S_{mn} = \int_{\tilde{S}} \frac{\Pi_n(\mathbf{r}')}{4\pi\varepsilon \left|\mathbf{r}_c^m - \mathbf{r}'\right|} dS' = \int_{S^n} \frac{dS'}{4\pi\varepsilon \left|\mathbf{r}_c^m - \mathbf{r}'\right|}$$

$$V_m = -\Phi^i(\mathbf{r}_c^m) = E_0 \hat{\mathbf{a}} \cdot \mathbf{r}_c^m$$

The End