Design context-free grammar (CFG) for the following languages:

1.
$$\{x^{2n} \# y^{3n} \mid n \ge 1\}$$
 Here, $\Sigma = \{x,y,\#\}$

2.
$$L = \{a^m b^n c^{3n} d^{2m} \mid \text{where m,n>=1} \}$$

3.
$$L = \{x^i y^j z^k \mid \text{where } i=k \text{ or } j=k \text{ and } i, j, k >=0\}$$

- 4. $L = \{w \text{ is consisted of } \{0,1\} \mid w \text{ is odd and mid symbol is } 0\}$
- 5. $L = \{ w \text{ is considered of } \{0,1\} \mid w \text{ is of even length } \& w \text{ starts and ends with different symbol } \}$

6.
$$L = \{ a^i b^j c^k \mid \text{ where } i \neq j \text{ and } k \geq 1 \}$$

7.
$$L = \{ a^i b^j c^k \mid 2i + 3j >= 6 \text{ and } 4i - 8j >= -16 \text{ and } k >= 1 \}$$

8.
$$L = \{ a^{m+n} c^{3n} d^{2m} | n,m >= 2 \}$$

9.
$$L = \{ c^p \# d^q g^r h \mid q=4p, p,q>=0 \text{ and } r>2 \}$$

10. L = {
$$a^m b^n c^u d^v | m = \frac{n}{2}, v = \frac{u}{4}, m,n,u,v > 0$$
 }

Consider the following Context-free grammars(CFG) and answer according to it:

1.	$S \to S + S \mid S * S \mid A \mid B$	With the help of Top-Down Parse Trees,		
	$A \rightarrow aA \mid 1$	find-out if the grammar is Ambiguous or		
	$B \rightarrow bB \mid 2$	not for the string "bbb2 + aa1 + b2"		
2.	$S \rightarrow S + S \mid S - S \mid (S) \mid T$	With the help of Leftmost derivation, derive		
	$T \to X * X X \% X X$	the following string " $(x + 2*y) - (3*z + 1)$ "		
	$X \rightarrow x \mid y \mid z \mid Y$			
	$Y \rightarrow 0 \mid 1 \mid 2 \mid 3$			

3.	$E \rightarrow E + E \mid E - E \mid E = E$	a. With the help of Top-Down Parse			
	$E \rightarrow MNV \mid MN$	Trees, figure out if the grammar is			
	$M \rightarrow - \mid \varepsilon$	Ambiguous or not for the string "x +			
	$N \rightarrow 0 1 2 3 4 5 6 7 8 9 NN$	y+z=2"			
	$V \rightarrow x \parallel y \mid z$	b. Show the Right Most Derivation for			
		the string " $-26x + 3y - 8z = -83$ "			
4.	$S \rightarrow AS \mid BAC$	With the help of Top-Down Parse Trees,			
	$A \rightarrow A1 \mid 0A1 \mid 0B1 \mid B$	find-out if the grammar is Ambiguous or			
	B → 0B 0 €	not for the string 00011111			
	C → 1 €				
5.	$E \rightarrow E+E \mid E-E \mid (E) \mid V$	With the help of Leftmost derivation, find-			
	$V \rightarrow p \mid q \mid r \mid X$	out if the grammar is Ambiguous or not for			
	$X \rightarrow X*X \mid X\%X \mid Y$	the string p+ $(0*1\%0)$ -r			
	$Y \rightarrow 0 \mid 1$				
6.	$S \rightarrow 2BA \mid 1S \mid 2A$	Consider the following context-free			
	$B \rightarrow 1B3 \mid 1S3 \mid \epsilon$	grammars (CFG). With the help of Top-			
	$A \rightarrow A11 \mid 12AS3 \mid B \mid \epsilon$	Down Parse Tree decide whether the			
		grammars are ambiguous or not:			
		211211313			
7.	B→ 11BS 0S0B ε	Consider the following context-free			
	$S \rightarrow AC01 \mid 0S \mid 1S \mid A1$	grammars (CFG). With the help of Top-			
	$A \rightarrow 1 \mid B \mid CA \mid \epsilon$	Down Parse Tree decide whether the			
	$C \rightarrow x \mid y \mid A$	grammars are ambiguous or not:			
		011010			
		011010			