Simpsonovi zapiski v LATEX datoteki

Matej Knap

13. november 2023

1 Pravila dokazovanja

Pravili zamenjave

- izraz smemo zamenjati z njemu enakim izrazom
- izjavo smemo zamenjti z njej ekvivalentno izjavo

za vsak veznik in kvantifikator.

Pravila vpeljave

Povedo nam, kako neposredno dokažemo izjavo s tem veznikom ali kvantifikatorjem.

Pravila uporabe

Povedo nam, kako že znano izjavo uporabimo.

2 Konjunkcija

Pravilo vpeljave

• Če sta izjavi Φ in Ψ na voljo, potem lahko dodamo v dokaz:

$$\Phi \wedge \Psi$$
 ker veljata Φ in Ψ

Pravili uporabe

• Če je izjava $\Phi \wedge \Psi$ na voljo, potem lahko dodamo v dokaz:

$$\Phi$$
ker velja $\Phi \wedge \Psi$

• Če je izjava $\Phi \wedge \Psi$ na voljo, potem lahko dodamo v dokaz:

$$\Psi$$
 ker velja $\Phi \wedge \Psi$

3 Implikacija

Pravilo vpeljave

Lahko dodamo v dokaz:

```
Dokažimo \Phi \Rightarrow \Psi

Predpostavimo \Phi

... <dokaz> ...

\Psi

\Phi \Rightarrow \Psi
```

Predpostavka Φ je na voljo le v oranžni škatlici.

Pravilo uporabe

• Če sta izjavi $\Phi \Rightarrow \Psi$ in Φ na voljo, potem lahko dodamo v dokaz:

$$\Psi$$
 ker veljata $\Phi \Rightarrow \Psi$ in Φ

4 Disjunkcija

Pravili vpeljave

- Če je izjava Φ na voljo, potem lahko dodamo v dokaz:

$$\Phi \vee \Psi$$
 ker velja Φ

• Če je izjava Ψ na voljo, potem lahko dodamo v dokaz:

$$\Phi \vee \Psi$$
ker velja Ψ

Pravilo uporabe

• Če je izjava $\Phi \vee \Psi$ na voljo in bi želeli dokazati $\rho,$ lahko dodamo v dokaz:

Dokažemo ρ z uporabo $\Phi \vee \Psi$

```
Predpostavimo \Phi . . . <dokaz> . . . \rho
```

```
\begin{array}{c} \text{Predpostavimo } \Psi \\ \dots < \text{dokaz} > \dots \\ \rho \\ \end{array}
```

Vsaka predpostavka je na voljo le v svoji oranžni škatlici.

5 Negacija

Pravilo vpeljave

• Lahko dodamo v dokaz:

Predpostavka Φ je na voljo le v oranžni škatlici.

5.1 Pravilo uporabe

• Če sta $\neg \Phi$ in Φ na voljo, lahko dodamo v dokaz:

 \perp ker veljata $\neg \Phi$ in Φ

6 Neresnica

Pravila vpeljave ni

Pravilo uporabe

• Če je \perp na voljo, lahko dodamo v dokaz:

 Φ zaradi protislovja

7 Resnica

Pravilo vpeljave

• Vedno lahko dodamo v dokaz:

⊤ očitno

Pravila uporabe ni

8 Dokaz s protislovjem

• Dodamo v dokaz:

Dokažemo Φ s protislovjem

```
\begin{array}{c} \text{Predpostavimo } \neg \Phi \\ \dots < \text{dokaz} > \dots \\ \bot \\ \Phi \end{array}
```

Predpostavka Φ je na voljo le v oranžni škatlici.

9 Pravilo izključene tretje možnosti

• Vedno lahko dodamo v dokaz:

$$\Phi \vee \neg \Phi$$
 LEM

LEM pomeni "Law of the Excluded Middle".

10 Univerzalni kvantifikator

Pravilo vpeljave

• Dodamo v dokaz

Dokažemo $\forall x \in X. \Phi(X)$

Naj bo
$$x \in X$$

 $\dots < \text{dokaz} > \dots$
 $\Phi(X)$
 $\forall x \in X. \Phi(X)$

Izjava $x \in X$ doda spremenljivko x v kontext. x mora biti sveža spremenljivka. x je na voljo le v oranžni škatlici.

Pravilo uporabe

• Če je $\forall x \in X$. $\Phi(X)$ na voljo in če vemo da je $\langle izraz \rangle \in X$, lahko dodamo v dokaz:

$$\Phi(\langle izraz \rangle)$$
 ker velja $\forall x \in X$. $\Phi(X)$

Vse proste spremenljivke v $\langle izraz \rangle$ u morajo biti it trenutnega konteksta.

11 Eksistenčni kvantifikator

Pravilo vpeljave

• Če je $\Phi(\langle izraz \rangle)$ na voljo in vemo, da $\langle izraz \rangle \in X$, lahko dodamo v dokaz:

$$\exists x \in X. \ \Phi \text{ ker velja } \Phi(\langle izraz \rangle)$$

Samodejno drži, da so vse proste spremenljivke $\langle izraz \rangle$ a iz konteksta, ker je to posledica pogoja, da je $\Phi(\langle izraz \rangle)$ na voljo.

Pravilo uporabe

• Če je izjava $\exists x \in X. \Phi(X)$ na voljo in želimo dokazati ρ , lahko dodamo v dokaz:

Dokažemo ρ z uporabo $\exists x \in X. \Phi(X)$

Naj bo
$$x \in X$$

Predpostavimo $\Phi(x)$
... $<$ dokaz $>$... ρ

Izjava $x \in X$ doda x v kontekst, kjer je x sveža spremenljivka. Spremenljivka x in predpostavka $\Phi(x)$ sta na voljo le v oranžnem kvadratku.