担当:栽培植物起原学分野

種内・種間の系統関係を学ぶ

目的

遺伝子や遺伝子間の塩基配列の取得と解析を通して、種内・種間の系統関係を学ぶ

日程

4月17日(木) 実験実習 (PCR 産物の確認、精製)(図1)

18日(金)~21日(月) シーケンシング

22日(火) 解析実習(分子系統解析; 図1)、発表準備

23 日 (水) 解析結果の発表

24 日 (木) 博物館見学

図1 実習の流れ

テキスト

実験実習: pp. 3-4

解析実習: https://github.com/CropEvol/lecture

解析実習でパソコンを使用します。各自ラップトップパソコンを持参してください。 また、データの共有のために Google アカウントが必要です。持っていない方はアカウントを作成してください。

4月17日(木) 実験実習 (PCR産物の確認、精製) のタイムスケジュール

13:15-14:00	全体説明、シーケンシング法や系統解析について
14:00-14:30	実験サンプルの説明、サンプル担当班の決定
14:30-15:15	電気泳動
	休憩
15:15-15:30	電気泳動結果の確認
15:30-16:00	PCR 産物の精製
16:00-16:45	シーケンシングサンプルの調整
16:45-17:15	研究発表について

4月22日(火) 解析実習(分子系統解析)のタイムスケジュール

13:15-13:30	全体説明
13:30-14:00	シーケンスの確認とトリミング
14:00-14:15	アセンブル
14:15-14:30	マルチ FASTA ファイルの準備
14:30-14:45	遺伝子系統樹の作成
14:45-14:55	休憩
14:55-15:45	データベースについて、系統樹の見方について
15:45-17:15	残りのサンプルの解析と発表準備

4月23日(水) 発表準備、発表のタイムスケジュール

13:15-15:00	発表準備
15:00-15:45	発表 (2班)
15:45-16:00	休憩
16:00-16:45	発表 (2班)
16:45-17:15	総合討論

実験実習

準備済みの PCR 産物 (別紙 1)

- PCR 産物(確認用)約 12 uL(= PCR 産物 約 10 uL+ Loading buffer 2 uL)
- PCR 産物(精製用)50 uL(= PCR 産物 15 uL + Ultrapure water 35 uL)

ステップ 1: PCR 産物の確認

- 1-1) 1.0%アガロースゲルを泳動槽にセットする。
- 1-2) ゲルの各ウェルに「PCR 反応液 (確認用)」を 8 uL を入れる。
- 1-3) 100 bp ラダーマーカー 8 uL をサンプルの隣のウェルに入れる。
- 1-4) 150V で 10 分間程度電気泳動をおこなう。
- 1-5) 電気泳動後、泳動槽からゲルを回収し、トランスイルミネーターで PCR の成否を観察する。

ステップ 2: PCR 産物の精製

- ※ NucleoSpin Gel and PCR cleanup kit プロトコールに準拠。
- 2-1) PCR 産物 (精製用) に Buffer NTI を 100 uL 加える。
- 2-2) コレクションチューブに黄色のカラムをセットし、2-1 の溶液をカラムに添加する。

 ※ チューブの蓋にサンプル番号を記入してください。
- 2-3) 11,000×g、1 分間遠心する。
- 2-4) ろ液を捨てた後、カラムを再び同じコレクションチューブにセットする。
- 2-5) Wash Buffer NT3 700 µl をカラムに添加し、11,000×g で 1 分間遠心する。
- 2-6) ろ液を捨てた後、カラムを再び同じコレクションチューブにセットする。
- 2-7) 11,000×g で 2 分間遠心し、カラム内のメンブレンを乾燥させる。
- 2-8) カラムを 1.5 mL の蓋なしチューブにセットし、カラムに Buffer NE 30 μl を加える。
- 2-9) 室温で5分間インキュベートした後、11,000×gで1分間遠心する。
 - ※ 遠心後のろ液に PCR で増幅された DNA が含まれています。 その DNA をステップ3で「テンプレート DNA」として使用します。

ステップ 3: シーケンス用プレミックスの準備

- ※ ユーロフィン DNA シーケンスのサンプル調整方法に準拠。
- 3-1) チューブ番号リスト (別紙 2) のとおりに、テンプレート DNA とフォワードプライマーまたはリバースプライマーを混ぜた溶液を作成する。

表 5 シーケンス用プレミックス(フォワードプライマー)

内容	液量
テンプレート DNA	3 uL
Forward primer (2 pmol/uL)	4.8 uL
Ultrapure water	13.2 uL
Total	21 uL

表 6 シーケンス用プレミックス(リバースプライマー)

内容	液量
テンプレート DNA	3 uL
Reverse primer (2 pmol/uL)	4.8 uL
Ultrapure water	13.2 uL
Total	21 uL

(別紙1) 使用するサンプルと遺伝子領域について

使用サンプル 1: イネ Oryza sativa (2つの班が担当する)

表 1 イネ7系統の情報

サンプル名	種名	実験	解析
Os1	Oryza sativa	✓	✓
Os2	Oryza sativa	✓	✓
Os3	Oryza sativa	✓	✓
Os4	Oryza sativa	✓	✓
Os6	Oryza sativa	✓	✓
Os7	Oryza sativa	✓	✓
Os8	Oryza sativa	✓	✓

表 2 シーケンス解析をおこなう遺伝領域の情報

遺伝領域名	遺伝子コードするタンパク質	PCR 増幅長 A 班	B班
PiaN 1F-1R	NBS-LRR protein	509 bp 🗸	
PiaN 2F−2R	NBS-LRR protein	563 bp	✓

使用サンプル 2: コムギ近縁野生種 Aegilops tauschii (2つの班が担当する)

表 3 タルホコムギ Aegilops tauschii 18 系統の情報

サンプル名	玉	緯度	経度	系統群	出穗日数	芽生色	実験	解析
At01	Dagestan	42.06	48.33	TauL2	148	Red	-	V
At02	Pakistan	30.15	66.90	TauL1	156	Red	-	✓
At03	Pakistan	30.69	66.67	TauL1	170	Red	-	✓
At04	Afghanistan	31.83	66.21	TauL1	162	Red	-	✓
At05	Afghanistan	33.80	68.41	TauL1	162	Red	-	✓
At06	Iran	36.76	45.94	TauL1	148	Green	-	✓
At07	Iran	35.85	51.04	TauL2	165	Red	-	✓
At08	Iran	36.88	53.47	TauL2	148	Red	-	✓
At09	Pakistan	30.15	66.90	TauL1	153	Red	-	✓
At10	Iran	37.10	55.30	TauL2	165	Red	-	✓
At11	Iran	37.67	49.40	TauL2	166	Red	-	✓
At12	Iran	36.76	45.94	不明	_	Green	-	✓
At13	Afghanistan	35.91	68.92	TauL1	162	Red	✓	✓
At14	Afghanistan	32.81	67.75	TauL1	175	Red	✓	✓
At15	Turkey	38.29	43.15	TauL1	168	Red	✓	✓
At16	Turkey	38.29	43.15	TauL1	169	Red	✓	✓
At17	Armenia	40.25	44.62	TauL1	157	_	✓	✓
At18	Georgia	41.82	44.82	TauL3	167	Red	/	V

表 4 シーケンス解析をおこなう遺伝領域の情報

遺伝領域名	遺伝子コードするタンパク質	PCR 増幅長	C班	D班
<i>MYC1</i> 1F-1R	transcription factor EAT1-like	923 bp	/	
<i>Vrn1</i> 1F−1R	MADS-box transcription factor 14	1225 bp		✓
Vrn1 3F-3R	MADS-box transcription factor 14	980 bp	/	
<i>Vrn3</i> 1F−1R	protein HEADING DATE 3A	660 bp		✓

(別紙 2) PCR 産物のリスト

<u>A 班</u>

<u>B 班</u>

DNA: イネ

DNA: イネ

遺伝子領域: *PiaN* 1F-1R

遺伝子領域: PiaN 2F-2R

DNA
Os1
Os2
Os3
Os4
Os6
Os7
Os8
Negative control*

Z Z 1 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
チューブ No.	DNA	
9	Os1	
10	Os2	
11	Os3	
12	Os4	
13	Os6	
14	Os7	
15	Os8	
	Negative control [*]	

※ PCR 産物 (精製用) には Negative control は含まれていない。

<u>C 班</u>

<u>D 班</u>

DNA: タルホコムギ

DNA: タルホコムギ

遺伝子領域:*MYC1* 1F-1R

遺伝子領域: Vrn3 1F-1R

チューブ No.	系統名
17	At13
18	At14
19	At15
20	At16
21	At17
22	At18
23	Negative control [*]
	(空)

チューブ No.	系統名
41	At13
42	At14
43	At15
44	At16
45	At17
46	At18
47	Negative control [*]
	(空)

※ PCR 産物 (精製用) には Negative control は含まれていない。

(別紙3) シーケンス用サンプルのリスト

図 8 連チューブの側面のチューブ番号

表 シーケンス用チューブとサンプルの対応表

チューブ	DNA, プライマー	チューブ	DNA, プライマー
1.1	Os1, <i>PiaN</i> -1F	2.1	Os1, <i>PiaN</i> -1R
1.2	Os2, <i>PiaN</i> -1F	2.2	Os2, <i>PiaN</i> -1R
1.3	Os3, <i>PiaN</i> -1F	2.3	Os3, <i>PiaN</i> -1R
1.4	Os4, <i>PiaN</i> -1F	2.4	Os4, <i>PiaN</i> -1R
1.5	Os6, <i>PiaN</i> -1F	2.5	Os6, <i>PiaN</i> -1R
1.6	Os7, <i>PiaN</i> -1F	2.6	Os7, <i>PiaN</i> -1R
1.7	Os8, <i>PiaN</i> -1F	2.7	Os8, <i>PiaN</i> -1R

チューブ	DNA, プライマー	チューブ	DNA, プライマー
3.1	Os1, <i>PiaN</i> -2F	4.1	Os1, <i>PiaN</i> -2R
3.2	Os2, <i>PiaN</i> -2F	4.2	Os2, <i>PiaN</i> -2R
3.3	Os3, <i>PiaN</i> -2F	4.3	Os3, <i>PiaN</i> -2R
3.4	Os4, <i>PiaN</i> -2F	4.4	Os4, <i>PiaN</i> -2R
3.5	Os6, <i>PiaN</i> -2F	4.5	Os6, <i>PiaN</i> -2R
3.6	Os7, <i>PiaN</i> -2F	4.6	Os7, <i>PiaN</i> -2R
3.7	Os8, <i>PiaN</i> -2F	4.7	Os8, <i>PiaN</i> -2R

(別紙3) シーケンス用サンプルのリスト

図 8 連チューブの側面のチューブ番号

表 シーケンス用チューブとサンプルの対応表

チューブ	DNA, プライマー	チューブ	DNA, プライマー
5.1	At13, <i>MYC1</i> –1F	6.1	At13, <i>MYC1</i> –1R
5.2	At14, <i>MYC1</i> –1F	6.2	At14, <i>MYC1</i> -1R
5.3	At15, <i>MYC1</i> –1F	6.3	At15, <i>MYC1</i> –1R
5.4	At16, <i>MYC1</i> -1F	6.4	At16, <i>MYC1</i> -1R
5.5	At17, <i>MYC1</i> –1F	6.5	At17, <i>MYC1</i> -1R
5.6	At18, <i>MYC1</i> –1F	6.6	At18, <i>MYC1</i> –1R

チューブ	DNA, プライマー	チューブ	DNA, プライマー
7.1	At13, <i>Vrn3</i> –1F	8.1	At13, <i>Vrn3</i> -1R
7.2	At14, <i>Vrn3</i> -1F	8.2	At14, <i>Vrn3</i> -1R
7.3	At15, <i>Vrn3</i> -1F	8.3	At15, <i>Vrn3</i> –1R
7.4	At16, <i>Vrn3</i> –1F	8.4	At16, <i>Vrn3</i> -1R
7.5	At17, <i>Vrn3</i> –1F	8.5	At17, <i>Vrn3</i> –1R
7.6	At18, <i>Vrn3</i> -1F	8.6	At18, <i>Vrn3</i> -1R