Decision Tree Learning

Abdus Salam Azad

When should I play Tennis ????

Can You Give Me Some Examples !!!!!!!!

When should I play Tennis ????

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Over cast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

	Day	Outlook	Temperature	Humidity	Wind	PlayTennis
	D1	Sunny	Hot	High	Weak	No
	D2	Sunny	Hot	High	Strong	No
Г	D3	Overcast	Hot	High	Weak	Yes
	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
	D6	Rain	Cool	Normal	Strong	No
	D7	Overcast	Cool	Normal	Strong	Yes
	D8	Sunny	Mild	High	Weak	No
	D9	Sunny	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes
	D11	Sunny	Mild	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
L	D13	${\bf Over cast}$	Hot	Normal	Weak	Yes
	D14	Rain	Mild	High	Strong	No

Classifiq

What About When Its Sunny or Raining ????

Day	Outlook	Temperature
D1	Sunny	Hot
D2	Sunny	Hot

D3Overcast

D4Rain

 D_5 Rain

D6Rain

D7Overcast

D8Sunny

D9Sunny

D10 Rain

D11Sunny

D12Overcast

D13Overcast

D14 Rain High

Mild Hot Mild

High Normal High

Strong Weak

Strong

Yes

Yes Yes

No

Yes

No

Yes

Yes

Yes

Yes

Yes

No

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D 3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes

Day	Outlook	Temperature	Humidity	Wind	PlayTenni
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes

So, Its Humidity !!!!!!!!

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes

All days here are sunny, so whats the point keeping it !!!!!!!!

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D14	Rain	Mild	High	Strong	No	

Day	Outlook	Temperature	Humidity	Wind	PlayTenni
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D14	Rain	Mild	High	Strong	No

Its Wind!

Learned Tree for Prediction

Thank you BUET CSE!!!!!!

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples
- Otherwise Begin
 - $A \leftarrow$ the attribute from Attributes that best* classifies Examples
 - The decision attribute for $Root \leftarrow A$
 - For each possible value, v_i , of A,
 - Add a new tree branch below *Root*, corresponding to the test $A = v_i$
 - Let $Examples_{v_i}$ be the subset of Examples that have value v_i for A
 - If Examples_{vi} is empty
 - Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
 - Else below this new branch add the subtree
 ID3(Examples_{vi}, Target_attribute, Attributes {A}))

- End
- Return Root

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples
- Otherwise Begin
 - A ← the attribute from Attributes that best* classifies Examples
 - The decision attribute for $Root \leftarrow A$
 - For each possible value, v_i , of A,
 - Add a new tree branch below Root, corresponding to the test $A = v_i$
 - Let $Examples_{v_i}$ be the subset of Examples that have value v_i for A
 - If Examples_{vi} is empty
 - Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
 - Else below this new branch add the subtree
 ID3(Examples_{vi}, Target_attribute, Attributes {A}))

- End
- Return Root

ID3(Examples, Target_ati Examples are the predicted by the decision tree. Rem

 How to choose the BEST ???
 More importantly what is the BEST ????

be ed

- Create a Root node
- If all Examples are
- If all Examples are negative,
- If Attributes is empty, Return the sin Target_attribute in Examples

ode now, with label = most common value of

With ravel = -

• Otherwise Begin

■ A ← the attribute from Attributes that best* classifies Examples

The decision attribute for Root ← A

corresponding to the test $A = v_i$ imples that have value v_i for A

add a leaf node with label = most common Examples Id the subtree tribute, Attributes - {A}))

Entropy

- S is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Entropy

- S is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

- Entropy Is Zero (Minimum), When all the examples belong to same class!!!
- Entropy Is 1(Maximum), When there are equal number of positive and negative examples!

Entropy

- Entropy Is Zero (Minimum), When all the examples belong to same class!!!
- Entropy Is 1(Maximum), When there are equal number of positive and negative examples!

To illustrate, suppose S is a collection of 14 examples of some boolean concept, including 9 positive and 5 negative examples (we adopt the notation [9+,5-] to summarize such a sample of data). Then the entropy of S relative to this boolean classification is

$$Entropy([9+, 5-]) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14)$$
$$= 0.940 \tag{3.2}$$

$$Entropy(S) \equiv \sum_{i=1}^{c} -p_i \log_2 p_i$$

Information Gain

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Values(Wind) = Weak, Strong$$

$$S = [9+, 5-]$$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Strong} \leftarrow [3+, 3-]$$

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (8/14) Entropy(S_{Weak})$$

$$- (6/14) Entropy(S_{Strong})$$

$$= 0.940 - (8/14) 0.811 - (6/14) 1.00$$

$$= 0.048$$

Which attribute is the best classifier?

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	$C_{nin}(S_{i}, O_{int} _{S_{i}}) = 0.246$
D4	Rain	Mild	High	Weak	Yes	Gain(S, Outlook) = 0.246
D5	Rain	Cool	Normal	Weak	Yes	Gain(S, Humidity) = 0.151
D6	Rain	Cool	Normal	Strong	No	Gain(S, Humidily) = 0.131
D7	Overcast	Cool	Normal	Strong	Yes	Gain(S, Wind) = 0.048
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	Gain(S, Temperature) = 0.029
D10	Rain	Mild	Normal	Weak	Yes	•
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

Measuring Performance

		Predicted class		Total	
		+	(<u>—</u>)	instances	
Actual class	+	TP	FN	P	
	_	FP	TN	N	

TP: true positives

The number of positive instances that are classified as positive

FP: false positives

The number of negative instances that are classified as positive

FN: false negatives

The number of positive instances that are classified as negative

TN: true negatives

The number of negative instances that are classified as negative

P = TP + FN

The total number of positive instances

N = FP + TN

The total number of negative instances

Thanks to **Muhammad Ali Nayeem** (মুহাম্মদ আলী নাঈম)
for providing the basic slide