О НИЖНЕЙ ОЦЕНКЕ СТОИМОСТИ КОДИРОВАНИЯ ДЛЯ СТОХАСТИЧЕСКОЙ КС-ГРАММАТИКИ, ИМЕЮЩЕЙ ВИД «ЦЕПОЧКИ», В КРИТИЧЕСКОМ СЛУЧАЕ

Игорь Мартынов (Нижний Новгород)

Введение

При передаче и хранении информации часто возникает необходимость кодирования данных таким образом, чтобы обеспечить наибольшую степень сжатия. Сжатие данных может быть достигнуто использованием статистических данных, таких как частоты появления букв в сообщениях. Если, кроме этого, учитывать структурые свойства языка сообщений, можно дополнительно увеличить эффективность сжатия.

Исследуется источник сообщений, описываемый разложимой стохастической КС-грамматикой с матрицей первых моментов А специального вида. Рассматривается критический случай, когда перронов корень матрицы А равен 1. Для таких грамматик рассматривается множество деревьев вывода фиксированной высоты, оценивается энтропия множества слов, порождённых такими деревьями, а также стоимость кодирования.

1. Основные определения

Стохастической КС-грамматикой [1] называется система $G = \langle V_T, V_N, R, s \rangle$ где V_T и V_N — конечные множества терминальных и нетерминальных символов (терминалов и нетерминалов) соответственно, $s \in V_N$ — аксиома, $R = \bigcup_{i=1}^k R_i$, где k — мощность алфавита V_N , и R_i — множество правил вида

$$r_{ij}: A_i \xrightarrow{p_{ij}} \beta_{ij}, \qquad j = 1, \dots, n_i,$$

где $A_i \in V_N, \; \beta_{ij} \in (V_N \cup V_T)^*$ и p_{ij} — вероятность применения правила $r_{ij},$ причём

$$0 < p_{ij} \le 1, \qquad \sum_{j=1}^{n_i} p_{ij} = 1.$$

Применение правила грамматики к слову состоит в замене вхождения нетерминала из левой части правила на слово, стоящее в его правой части.

Каждому слову α из КС-языка соответствует последовательность правил грамматики (вывод), с помощью которой α выводится из аксиомы s. Выводу слова соответствует дерево вывода [2], вероятность которого определяется как произведение вероятностей правил, образующих вывод.

По стохастической КС-грамматике строится матрица A первых моментов. Для неё элемент a^i_j определяется как $\sum_{l=1}^{n_i} p_{il} s^j_{il}$, где величина s^j_{il} равна числу

нетерминальных символов A_j в правой части правила r_{il} . Перронов корень матрицы A обозначим через r.

Будем говорить, что нетерминал A_j непосредственно следует за нетерминалом A_i (и обозначать $A_i \to A_j$), если в грамматике существует правило вида $A_i \xrightarrow{p_{ij}} \alpha_1 A_j \alpha_2$, где $\alpha_1, \alpha_2 \in (V_T \cup V_N)^*$. Рефлексивное транзитивное замыкание отношения \to обозначим \to_* .

Классом нетерминалов назовём максимальное по включению подмножество $K\subseteq V_N$ такое, что $A_i\to_*A_j$ для любых $A_i,A_j\in K$. Для различных классов нетерминалов K_1 и K_2 будем говорить, что класс K_2 непосредственно следует за классом K_1 (и обозначать $K_1\prec K_2$), если существуют $A_1\in K_1$ и $A_2\in K_2$, такие, что $A_1\to A_2$. Рефлексивное транзитивное замыкание отношения \prec обозначим через \prec_* .

Пусть $\mathcal{K} = \{K_1, K_2, \dots, K_m\}$ — множество классов нетерминалов грамматики, $m \geq 2$. Будем полагать, что классы нетерминалов пронумерованы таким образом, что $K_i \prec_* K_j$ тогда и только тогда, когда i < j.

Будем говорить, что грамматика имеет вид «цепочки», если её матрица первых моментов A имеет вид

$$\begin{pmatrix} A_{11} & A_{12} & 0 & \cdots & 0 & 0 \\ 0 & A_{22} & A_{23} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_{m-1,m-1} & A_{m-1,m} \\ 0 & 0 & 0 & \cdots & 0 & A_{m,m} \end{pmatrix}$$
 (1)

Один класс нетерминалов представлен в матрице множеством подряд идущих строк и соответствующим множеством столбцов с теми же номерами. Для класса K_i квадратная подматрица, образованная соответствующими строками и столбцами, обозначается через A_{ii} . Подматрица A_{ij} является нулевой, если $K_i \not\prec K_j$. Блоки, расположенные ниже главной диагонали, нулевые в силу упорядоченности классов.

Для грамматики с матрицей первых моментов вида (1) классы нетерминалов образуют линейный порядок по отношению \prec :

$$K_1 \prec K_2 \prec \ldots \prec K_i \prec \ldots \prec K_m$$
.

Для каждого класса K_i матрица A_{ii} неразложима. Без ограничения общности будем считать, что она строго положительна и непериодична. Обозначим через r_i перронов корень [3] матрицы A_{ii} . Для неразложимой матрицы перронов корень является вещественным и простым. Очевидно, $r = \max_i \{r_i\}$.

2. Полученные результаты

Пусть $J = \{i_1, i_2, \dots, i_l\}$ — множество всех номеров i_j классов, для которых r_{ij} .

Рассмотрим подцепочку классов

$$K_j \prec K_{j+1} \prec \ldots \prec K_m$$

такую что $j \in J$, и $i \notin J$ для любого i > j. Обозначим через $I = \{j, j+1, \ldots, m\}$ множество индексов классов этой подцепочки. Тогда верна следующая теорема:

Теорема 1. Энтропия языка L^t , состоящего из слов, порождаемых в разложимой стохастической KC-грамматике вида «цепочки» с однозначным выводом деревьями высоты t, выражается формулой

$$H(L^t) \sim \sum_{i \in I} \sum_{i=1}^{n_i} d_i H(R_i) \cdot t^2,$$

где $d_i>0,$ $H(R_i)=\sum_{j=1}^{n_i}p_{ij}\log p_{ij}$ — энтропия множества R_i правил вывода с нетерминалов A_i в левой части.

Энтропия $H(L^t)$ имеет асимптотику t^2 , причём константа при t^2 определяется нетерминалами из наиболее удалённого от начала цепочки критического класса, а также классами следующими за ним.

Будем обозначать через L^t множество слов, порождённых деревьямы высоты t. Через f^* обозначим кодирование языка L^t , минимизирующее величину

$$M_t(f) = \sum_{\alpha \in L^t} p_t(\alpha) \cdot |f(\alpha)|,$$

где величины $p_t(\alpha)$ задают распределение вероятностей на множестве слов L^t . По определению f^* , для любого кодирования f множества слов L^t справедливо $M_t(f) \geq M_t(f^*)$. Тогда верна следующая теорема:

Теорема 2. Пусть матрица A первых моментов грамматики имеет вид (1) и её перронов корень r=1. Тогда стоимость любого кодирования f языка L, порождаемого этой грамматикой, удовлетворяет неравенству

$$C(L, f) \ge C^*(L),$$

 $r \partial e$

$$C^*(L) = \frac{\sum_{i \in I_l^+} d_i H(R_i)}{\sum_{i \in I_l^+} d_i L(R_i)},$$

где, в свою очередь, $H(R_i) = -\sum_{j=1}^{n_i} p_{ij} \log p_{ij}$, $L(R_i) = \sum_{j=1}^{n_i} l_{ij} p_{ij}$, l_{ij} — число терминальных символов в правой части правила r_{ij} , и $d_i > 0$ — некоторая константа.

Список литературы

- 1. Фу К. Структурные методы в распознавании образов. М.: Мир, 1977
- 2. Ахо А., Ульман Дж. Теория синтаксического анализа, перевода и компиляции. Том 1. М.: Мир, 1978
- 3. Гантмахер Ф. Р. Теория матриц. 5-е изд., М.: ФИЗМАТЛИТ, 2010