- (c) Show that, under H_0 , 2T has a chi squared distribution, and find the number of degrees of freedom. (*Hint*: Obtain the joint distribution of the n-1 nontrivial terms $X_i/(\min_i X_i)$ conditional on $\min_i X_i$. Put these n-1 terms together, and notice that the distribution of T given $\min_i X_i$ does not depend on $\min_i X_i$, so it is the unconditional distribution of T.)
- **8.6** Suppose that we have two independent random samples: X_1, \ldots, X_n are exponential(θ), and Y_1, \ldots, Y_m are exponential(μ).
 - (a) Find the LRT of $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$.
 - (b) Show that the test in part (a) can be based on the statistic

$$T = \frac{\Sigma X_i}{\Sigma X_i + \Sigma Y_i}.$$

- (c) Find the distribution of T when H_0 is true.
- **8.7** We have already seen the usefulness of the LRT in dealing with problems with nuisance parameters. We now look at some other nuisance parameter problems.
 - (a) Find the LRT of

$$H_0: \theta \leq 0$$
 versus $H_1: \theta > 0$

based on a sample X_1, \ldots, X_n from a population with probability density function $f(x|\theta,\lambda) = \frac{1}{\lambda} e^{-(x-\theta)/\lambda} I_{[\theta,\infty)}(x)$, where both θ and λ are unknown.

- (b) We have previously seen that the exponential pdf is a special case of a gamma pdf. Generalizing in another way, the exponential pdf can be considered as a special case of the Weibull(γ , β). The Weibull pdf, which reduces to the exponential if $\gamma = 1$, is very important in modeling reliability of systems. Suppose that X_1, \ldots, X_n is a random sample from a Weibull population with both γ and β unknown. Find the LRT of $H_0: \gamma = 1$ versus $H_1: \gamma \neq 1$.
- 8.8 A special case of a normal family is one in which the mean and the variance are related, the $n(\theta, a\theta)$ family. If we are interested in testing this relationship, regardless of the value of θ , we are again faced with a nuisance parameter problem.
 - (a) Find the LRT of H_0 : a = 1 versus H_1 : $a \neq 1$ based on a sample X_1, \ldots, X_n from a $n(\theta, a\theta)$ family, where θ is unknown.
 - (b) A similar question can be asked about a related family, the $n(\theta, a\theta^2)$ family. Thus, if X_1, \ldots, X_n are iid $n(\theta, a\theta^2)$, where θ is unknown, find the LRT of $H_0: a = 1$ versus $H_1: a \neq 1$.
- **8.9** Stefanski (1996) establishes the arithmetic-geometric-harmonic mean inequality (see Example 4.7.8 and Miscellanea 4.9.2) using a proof based on likelihood ratio tests. Suppose that Y_1, \ldots, Y_n are independent with pdfs $\lambda_i e^{-\lambda_i y_i}$, and we want to test $H_0: \lambda_1 = \cdots = \lambda_n$ vs. $H_1: \lambda_i$ are not all equal.
 - (a) Show that the LRT statistic is given by $(\bar{Y})^{-n}/(\prod_i Y_i)^{-1}$ and hence deduce the arithmetic-geometric mean inequality.
 - (b) Make the transformation $X_i = 1/Y_i$, and show that the LRT statistic based on X_1, \ldots, X_n is given by $[n/\sum_i (1/X_i)]^n/\prod_i X_i$ and hence deduce the geometric-harmonic mean inequality.
- **8.10** Let X_1, \ldots, X_n be iid Poisson (λ) , and let λ have a gamma (α, β) distribution, the conjugate family for the Poisson. In Exercise 7.24 the posterior distribution of λ was found, including the posterior mean and variance. Now consider a Bayesian test of $H_0: \lambda \leq \lambda_0$ versus $H_1: \lambda > \lambda_0$.