

 \Box $\ddot{\mathtt{E}}$ $\dot{\mathtt{U}}_{a}$ \equiv $\overline{\mathtt{O}}$

AI共學社群 > Python資料科學 > D04 NumPy 陣列邏輯 ... gic functions)

D04 NumPy 陣列邏輯函式 (Logic functions)

簡報閱讀

範例與作業

>

問題討論

學習心得(完成)

重要知識點

NumPy 陣列邏輯函式 - 陣列內容

NumPy 陣列邏輯函式 - 陣列型別偵測

NumPy 陣列邏輯函式 -陣列比較

NumPy 陣列邏輯函式 -邏輯操作

NumPy 陣列邏輯函式 - Truth值測試

重要知識點

五大類介紹相關的函式及使用。

- 陣列內容 (Array contents)
- 陣列型別偵測 (Array type testing)
- 比較 (Comparison)
- 邏輯操作 (Logical operations)
- Truth 值測試 (Truth value testing)

NumPy 陣列邏輯函式 - 陣列內容

函式	說明
isnan()	呼叫 isnan() 函式判斷陣列元素是否為 nan,如果是的話回傳 True,否則回傳 False。
isfinite()	判斷陣列元素是否為有限數 (finite number),如果是的話回傳 True,如果元素值為正無限數、負無限數、或是 nan 則回傳 False。
isinf() \ isposinf() \ isneginf()	判別元素是否為無限數、正無限數、負無限數,若是的話回傳 True,否則回傳 False。
isnat()	isnat() 的 nat (NaT) 是 not a time 的意思,用來判別陣列元素是 否為日期時間。若非日期時間 (包括 datetime 或 timedelta) 的話 回傳 True,若是的話則回傳 False。

- numpy.nan 與 numpy.NAN 都是 NumPy
 常數,代表 Not a Number,不過在官方文
 件中建議統一使用小寫的 nan。
- 判斷無限數的函式有 isinf()、isposinf()、 isneginf(),分別用來判斷判斷陣列元素是否 為正無限數或負無限數、是否為正無限數、 是否為負無限數。
- NumPy 內建常數 (Constants) 來示範,無限 數相關的常數如右表:

np.Inf	正無限數
np.Infinity	正無限數
np.PINF	正無限數
np.infty	正無限數
np.NINF	負無限數

• isnat() 的 nat (NaT) 是 not a time 的意思,用來判別陣列元素是否為日期時間。若非日期時間 (包括 datetime 或 timedelta) 的話回傳 True,若是的話則回傳 False。

NumPy 陣列邏輯函式 - 陣列型別偵測

函式	說明
isscalar()	如果陣列元素為純量或是數字物件 (例如實數、複數、有理數) 、內建常數、字串的話,isscalar() 回傳 True 。需要留意的是 isscalar() 不是 element-wise 的,所以傳入值須為元素。
isreal()	判斷輸入的陣列元素是否為實數 。
iscomplex()	判斷輸入的陣列元素是否為複數。
isrealobj()	判斷整個陣列物件是否為實數物件。
iscomplexobj()	判斷整個陣列物件是否為複數物件。

NumPy 陣列邏輯函式 - 陣列比較

- 使用 np.array_equal()、np.array_equiv() 比較 2 個陣列是否相同。
- 兩個函式不同之處在於 array_equal() 需要形 狀完全一樣且元素值皆相同才為 True。
- 說明如下:

np.array_equiv(

如果兩個陣列維度不同的話,須符合廣播規則,且元素值均相同,則回傳 True

- 比較等於/不等於、大於/大於或等於、小於/ 小於或等於,可以使用右表函式:
- 表中的函式均可以比較兩個形狀相同的陣列,或是比較符合廣播規則的兩個陣列,若元素值相同的話就回傳 True。比較時均是element-wise 的比較。

在武	說明
np.equal()	等於
np.not_equal()	不等於
np.greater()	大於
np.greater_equal()	大於或等於
np.less()	小於
np.less_equal()	小於或等於

NumPy 陣列邏輯函式 - 邏輯操作

- 邏輯比較函式都是 element-wise · 比較 2 個 陣列元素 · 如果 2 個陣列的形狀不同的話 · 必須符合廣播 (broadcasting) 規則 ·
- 邏輯操作與對應的函式如下表:

AND	np.logical_and()
OR	np.logical_or()
NOT	np.logical_not()
XOR	np.logical_xor()

• 邏輯操作與對應的範例如下:

```
x = np.array([True, True, False, False])
y = np.array([True, False, True, False])
np.logical_and(x, y)
array([ True, False, False, False])
np.logical_or(x, y)
array([ True, True, True, False])
np.logical_not(x)
array([False, False, True, True])
np.logical_xor(x, y)
array([False, True, True, False])
   x = np.array([True, True, False, False])
   y = np.array([True, False, True, False])
 1 np.logical_and(x, y)
 1 np.logical_or(x, y)
```

1

np.logical_not(x)

NumPy 陣列邏輯函式 - Truth值測試

使用 np.all() 進行Truth值測試

False

```
1 np.all([-1, 4, 0])
```

使用 np.any() 進行Truth值測試

```
np.any([[True, False], [False, False]], axis=0)
array([ True, False])
```

```
np.any([[True, False], [False, False]], axis=0)
```

- 可以依軸 (axis) 進行比較,兩個函式不同的 地方在於 np.all() 是 AND 邏輯的比較,而 np.any() 是 OR 邏輯的比較。
- 以下的值均認定為非 0,也就是屬於 True: True、NaN、正無限值、負無限值。

知識點回顧

- 操作時使用。
- 投影片介紹的函式請對照範例程式示範的使用方式。

延伸閱讀

NumPy 官方文件: <u>Logic functions</u>

下一步:閱讀範例與完成作業

