

Setting up your optimization problem

Numerical approximation of gradients

Checking your derivative computation

Checking your derivative computation

当你实现梯度逆传播时 你会发现一个测试 名叫梯度检验 可以帮助你确保 你的梯度逆传播的实 现是正确的 因为有时写下这些方程后 你无法百分百确定 你的所有细节都做对了 实现了正确的 逆传播 所以 为了之后能介绍梯度检验 我们先谈谈如何在数值上近似计算梯度 在下一个视频 中 我们再讨论如何实现 梯度检验 从而确保逆传播的实现是正确的 我们来看一下函数f 我把 它画在了这里 这个 $f(\theta)$ 等于 θ 立方 我们从某些 θ 取值出发 比如 θ =1 这次我们不再将 θ 向右扰动 到 $\theta+\varepsilon$ 我们将同时向左右扰动 得到 $\theta-\varepsilon$ 和 $\theta+\varepsilon$ 所以这里是1 这里是1.01 这里是0.99 ε 与之前 一样是0.01 事实上 相比于取这个小三角形 并计算高和宽 你还能得到更好的估计值 如果你选 取这个点 $f(\theta-\varepsilon)$ 和这个点 然后计算这个大三角形的高和宽 由于一些技术原因 我在此不作解 释 这个大三角形的 高和宽会给你一个 θ 点处梯度更好的近似值 很容易发现 如果不取右上的这 个小三角形 你可以认为你有两个小三角形 右上的这个和左下的这个 你相当于同时考虑这两个 三角形 通过使用这个大的绿三角形 所以你这次取了双侧的差值而不是单侧的差值 我们来写成 数学形式 这个点是 $f(\theta+\varepsilon)$ 而这个点是 $f(\theta-\varepsilon)$ 所以这个大的绿三角形的高是 $f(\theta+\varepsilon)-f(\theta-\varepsilon)$ 所以这个大的绿三角形的高是 $f(\theta+\varepsilon)-f(\theta-\varepsilon)$ 至于宽度 这里是1个 ε 这里是第2个 ε 所以这个 绿色三角形的宽就是 2ε 所以这里的高度就是 首先是高度 也就是 $f(\theta+\varepsilon)-f(\theta-\varepsilon)$ 除以宽度 也 就是2 ε 我写在这里了 这个很可能与 $g(\theta)$ 很接近 代入这些值 记住 $f(\theta)$ 是 θ 立方 这里 $\theta+\varepsilon$ 也就 是1.01 我取它的立方 然后减去0.99的立方 再除以2*0.01 你可以暂停视频并在计算器上算 一下 你会得到结果是3.0001 前一个幻灯片中 我们知道 $q(\theta)$ 也就是3 θ ^2 而 θ 是1 所以这两 个值十分接近 近似误差是0.0001 在上一个幻灯片中 我们取过单侧的差值 θ 和 $\theta+\epsilon$ 之间的结果 是3.0301 所以近似误差就是0.03而不是0.0001 所以用这个取双侧差值的方法 来近似导 数 你会发现结果非常接近3 所以这将让你更加自信 g(heta)很可能就是求f导数的正确实现 <mark>当你</mark> 把这个方法用于梯度检验和逆传播时 它运行起来很可能比用单侧差值要慢两倍 但从实践的角 度 我认为这个方法值得一用 因为它精确很多 我再说一些选修的理论知识 给你们之中比较熟悉 微积分的人 如果你听不懂我即将说到的内容也没有关系 事实上 导数的正式定义 就是对于很小 的 ε 计算[f($\theta+\varepsilon$)-f($\theta-\varepsilon$)]/(2 θ) 就是对于很小的 ε 计算[f($\theta+\varepsilon$)-f($\theta-\varepsilon$)]/(2 θ) 而导数 的正式定义就是右边这个公式 当ε趋近于0时的极限 极限的定义就是微积分课上学的那样 但我 这里不再详述 对于一个非零的 ε 值 你可以证明这个近似的误差 在 ε 平方这个阶上 ε 是个很小的 数 如果arepsilon是0.01 就像这里 那么arepsilon平方就是0.0001 这个大0记号就表示误差就是某个常数乘以 这个 这就是我们的近似误差 这个例子中的大0的常数恰好就是1 相比而言 如果我们用这边的 另一个公式 误差就在 ϵ 这个阶上 当 ϵ 是一个小于1的数时 ϵ 就比 ϵ 平方大很多 这也就是为什么 这 个公式不如左边这个公式精确 这也就是为什么我们做梯度检验时采用双侧差值 你计算 $f(\theta+\epsilon)$ – $f(\theta-\varepsilon)$ 再除以 2ε 而不使用这个不够精确的单侧差值 如果你不理解我最后说的两点 所有东西都 写在这儿了 Don't worry about it.Don't worry about it. 对微积分和数值近似比较 熟悉的人 可以多学一些 简单来说就是双侧差值的公式更加精确 我们在下一个梯度检验视频中 就会用到这个 所以你们学习了如何取双侧差值 来在数值上验证是否给定的函数 $q(\theta)$ 是函数f的导数的正确实现 我们来看看如何使用这个来验证是否 你的逆传播的实现是正确的 还是说里 面有错误要剔除掉