2.9 Which of the following sets of vectors are subspaces of \mathbb{R}^3 ?

a.
$$A = \{(\lambda, \lambda + \mu^3, \lambda - \mu^3) | \lambda, \mu \in \mathbb{R} \}$$

Solution.

If $\lambda, \mu \in \mathbb{R}$, then it holds that $\lambda, \lambda + \mu^3, \lambda - \mu^3 \in \mathbb{R} \forall \lambda, \mu$.

So, $A \subseteq \mathbb{R}^3$.

Since \mathbb{R}^3 is a vector space, and $A \subseteq \mathbb{R}^3$, we need to show the following to prove that A is subspace of \mathbb{R}^3 :

(a) $A \neq \emptyset$, in particular: $\mathbf{0} \in A$.

Proof:

For
$$\lambda, \mu = 0, \mathbf{x} = (\lambda, \lambda + \mu^3, \lambda - \mu^3) = (0, 0, 0).$$

 $\Longrightarrow \mathbf{0} \in A \text{ and } A \neq \emptyset.$

(b) Closure of A with respect to outer operation: $\forall \beta \in \mathbb{R}, \forall \mathbf{x} \in A$: $\beta \mathbf{x} \in A$.

Proof:

Let
$$\beta \in \mathbb{R}$$
, and $\mathbf{x} = (\lambda, \lambda + \mu^3, \lambda - \mu^3) | \lambda, \mu \in \mathbb{R}$.
 $\Longrightarrow \beta.\mathbf{x} = \beta.(\lambda, \lambda + \mu^3, \lambda - \mu^3) = (\beta\lambda, \beta\lambda + \beta\mu^3, \beta\lambda - \beta\mu^3)$
Let $\gamma = \beta\lambda$ and let $\psi = \beta^{\frac{1}{3}}\mu$.
 $\Longrightarrow \beta.\mathbf{x} = (\gamma, \gamma + \psi^3, \gamma - \psi^3)$
Since $\gamma, \psi \in \mathbb{R}$, $\beta.\mathbf{x} \in A$.

(c) Closure of A with respect to inner operation: $\forall \mathbf{x}, \mathbf{y} \in A : \mathbf{x} + \mathbf{y} \in A$.

Proof:

Let
$$\mathbf{x}_{1} = (\lambda_{1}, \lambda_{1} + \mu_{1}^{3}, \lambda_{1} - \mu_{1}^{3}), \mathbf{x}_{2} = (\lambda_{2}, \lambda_{2} + \mu_{2}^{3}, \lambda_{2} - \mu_{2}^{3}) | \lambda_{1}, \mu_{1}, \lambda_{2}, \mu_{2} \in \mathbb{R}$$

$$\mathbf{x}_{1} + \mathbf{x}_{2} = (\lambda_{1} + \lambda_{2}, \lambda_{1} + \mu_{1}^{3} + \lambda_{2} + \mu_{2}^{3}, \lambda_{1} - \mu_{1}^{3} + \lambda_{2} - \mu_{2}^{3})$$

$$= (\lambda_{1} + \lambda_{2}, \lambda_{1} + \lambda_{2} + \mu_{1}^{3} + \mu_{2}^{3}, \lambda_{1} + \lambda_{2} - (\mu_{1}^{3} + \mu_{2}^{3}))$$
Let $\lambda_{3} = \lambda_{1} + \lambda_{2}$ and $\mu_{3} = (\mu_{1}^{3} + \mu_{2}^{3})^{\frac{1}{3}}$

$$\Rightarrow \mathbf{x}_{1} + \mathbf{x}_{2} = (\lambda_{3}, \lambda_{3} + \mu_{3}^{3}, \lambda_{3} - \mu_{3}^{3}) \text{ where } \lambda_{3}, \mu_{3} \in \mathbb{R}$$

$$\Rightarrow \mathbf{x}_{1} + \mathbf{x}_{2} \in A$$

Therefore, A is a subspace of \mathbb{R}^3 .

b.
$$B = \{(\lambda^2, -\lambda^2, 0) | \lambda \in \mathbb{R}\}$$

Solution.

If $\lambda \in \mathbb{R}$, then it holds that $\lambda^2, -\lambda^2 \in \mathbb{R} \forall \lambda$.

So,
$$B \subseteq \mathbb{R}^3$$
.

Since \mathbb{R}^3 is a vector space, and $B \subseteq \mathbb{R}^3$, we need to show the following to prove that B is subspace of \mathbb{R}^3 :

(a) $B \neq \emptyset$, in particular: $\mathbf{0} \in B$

Proof:

For
$$\lambda = 0, \mathbf{x} = (\lambda^2, -\lambda^2, 0) = (0, 0, 0).$$

 $\Longrightarrow \mathbf{0} \in B \text{ and } B \neq \emptyset.$

(b) Closure of B with respect to outer operation: $\forall \beta \in \mathbb{R}, \forall \mathbf{x} \in B$: $\beta \mathbf{x} \in B$.

Proof:

Let
$$\beta \in \mathbb{R}$$
, and $\mathbf{x} = (\lambda^2, -\lambda^2, 0) | \lambda \in \mathbb{R}$.

$$\implies \beta.\mathbf{x} = \beta.(\lambda^2, -\lambda^2, 0) = (\beta\lambda^2, -\beta\lambda^2, 0)$$

Let
$$\gamma = \beta^{\frac{1}{2}} \lambda$$
.

$$\implies \beta.\mathbf{x} = (\gamma^2, -\gamma^2, 0)$$

Since $\gamma \in \mathbb{R}$, $\beta.\mathbf{x} \in B$.

(c) Closure of B with respect to inner operation: $\forall \mathbf{x}, \mathbf{y} \in B : \mathbf{x} + \mathbf{y} \in B$.

Proof:

Let
$$\mathbf{x}_1 = (\lambda_1^2, -\lambda_1^2, 0), \mathbf{x}_2 = (\lambda_2^2, -\lambda_2^2, 0) | \lambda_1, \lambda_2 \in \mathbb{R}$$

$$\mathbf{x}_1 + \mathbf{x}_2 = (\lambda_1^2 + \lambda_2^2, -(\lambda_1^2 + \lambda_2^2), 0)$$

Let
$$\lambda_3 = (\lambda_1^2 + \lambda_2^2)^{\frac{1}{2}}$$

$$\Longrightarrow \mathbf{x}_1 + \mathbf{x}_2 = (\lambda_3^2, -\lambda_3^2, 0)$$

Since
$$\lambda_3 \in \mathbb{R}, \mathbf{x}_1 + \mathbf{x}_2 \in B$$
.

Therefore, B is a subspace of \mathbb{R}^3 .

c. Let
$$\gamma$$
 be in \mathbb{R} . $C = \{(\eta_1, \eta_2, \eta_3) \in \mathbb{R}^3 | \eta_1 - 2\eta_2 + 3\eta_3 = \gamma\}$

Solution.

Since $C \subseteq \mathbb{R}^3$, we need to show the following to prove that C is subspace of \mathbb{R}^3 :

(a) $C \neq \emptyset$, in particular: $\mathbf{0} \in C$

Proof:

For
$$\eta_1 = \eta_2 = \eta_3 = 0$$
, $\mathbf{x} = (0, 0, 0)$ if $\gamma = 0$.
 $\Longrightarrow \mathbf{0} \in C$ and $C \neq \emptyset$ if $\gamma = 0$.

(b) Closure of C with respect to outer operation: $\forall \beta \in \mathbb{R}, \forall \mathbf{x} \in C$: $\beta \mathbf{x} \in C$.

Proof:

Let
$$\beta \in \mathbb{R}$$
, and $\mathbf{x} = (\eta_1, \eta_2, \eta_3) | \eta_1 - 2\eta_2 + 3\eta_3 = \gamma$.
 $\implies \beta . \mathbf{x} = \beta . (\eta_1, \eta_2, \eta_3) = (\beta \eta_1, \beta \eta_2, \beta \eta_3)$

We can see that
$$\beta\eta_1, \beta\eta_2, \beta\eta_3 \in \mathbb{R} \Longrightarrow (\beta\eta_1, \beta\eta_2, \beta\eta_3) \in \mathbb{R}^3$$
, and $\beta\eta_1 - 2\beta\eta_2 + 3\beta\eta_3 = \beta(\eta_1 - 2\eta_2 + 3\eta_3) = \beta\gamma$.

Therefore, closure w.r.t outer operation only holds if $\gamma = 0$.

(c) Closure of C with respect to inner operation: $\forall \mathbf{x}, \mathbf{y} \in C : \mathbf{x} + \mathbf{y} \in C$.

Proof:

Let
$$\mathbf{x}_1 = (\eta_1, \eta_2, \eta_3), \mathbf{x}_2 = (\eta_4, \eta_5, \eta_6) \mid \eta_1, \eta_2, \eta_3, \eta_4, \eta_5, \eta_6 \in \mathbb{R}, \eta_1 - 2\eta_2 + 3\eta_3 = \gamma, \eta_4 - 2\eta_5 + 3\eta_6 = \gamma$$

$$\mathbf{x}_1 + \mathbf{x}_2 = (\eta_1 + \eta_4, \eta_2 + \eta_5, \eta_3 + \eta_6)$$

Now,
$$(\eta_1 + \eta_4) - 2(\eta_2 + \eta_5) + 3(\eta_3 + \eta_6) = (\eta_1 - 2\eta_2 + 3\eta_3) + (\eta_4 - 2\eta_5 + 3\eta_6) = \gamma + \gamma = 2\gamma$$

Therefore, closure w.r.t inner operation only holds if $\gamma = 0$.

Therefore, C is a subspace of \mathbb{R}^3 only if $\gamma = 0$.

d. $D = \{(\eta_1, \eta_2, \eta_3) \in \mathbb{R}^3 | \eta_2 \in \mathbb{Z} \}$

Solution.

Since $\mathbb{Z} \subseteq \mathbb{R}$, $D \subseteq \mathbb{R}^3$. We need to show the following to prove that D is subspace of \mathbb{R}^3 :

(a) $D \neq \emptyset$, in particular: $\mathbf{0} \in D$

Proof:

Since $0 \in \mathbb{Z}$, for $\eta_1 = \eta_2 = \eta_3 = 0$, $\mathbf{x} = (0, 0, 0)$ and $\mathbf{0} \in D$ and $D \neq \emptyset$.

(b) Closure of D with respect to outer operation: $\forall \beta \in \mathbb{R}, \forall \mathbf{x} \in D$: $\beta \mathbf{x} \in D$.

Proof:

Let
$$\beta \in \mathbb{R}$$
, and $\mathbf{x} = (\eta_1, \eta_2, \eta_3) | \eta_1, \eta_3 \in \mathbb{R}, \eta_2 \in \mathbb{Z}$.
 $\Longrightarrow \beta.\mathbf{x} = \beta.(\eta_1, \eta_2, \eta_3) = (\beta \eta_1, \beta \eta_2, \beta \eta_3)$

We can see that $\beta\eta_1, \beta\eta_3 \in \mathbb{R}$, but $\beta\eta_2 \notin \mathbb{Z}$ as $\beta\eta_2$ can be a fraction.

Therefore, closure w.r.t outer operation does not hold.

Therefore, D is not a subspace of \mathbb{R}^3 .