LA8 Permutations

KYB

Thrn, it's a Fact mathrnfact@gmail.com

July 17, 2021

Overview

Ch4. Determinants and Eigenvalues

4.2 Further Properties of the Determinant Function

Ex 4.2.8

 $A \in F^{m \times n}$, $B \in F^{n \times m}$ and m > n. Then $\det(AB) = 0$.

Ex 4.2.9

If m < n, show by example that both $\det(AB) = 0$ and $\det(AB) \neq 0$ are possible.

LCh4. Determinants and Eigenvalues

└_4.2 Further Properties of the Determinant Function

$$\mathcal{P}(F)$$
 v.s. $F[x]$

- ▶ 공통점 : set of polynomials
- ▶ 차이점:
 - $\triangleright \mathcal{P}(F)$: as functions (so dim $\leq |F|$)
 - ightharpoonup F[x]: new algebraic objects (and $\dim = \infty$)

Example

Let $F = \mathbb{Z}_2$ and $x^2 + x, 0$.

- As functions: $x^2 + x = 0$
- lacktriangle As algebraic objects: $x^2 + x \neq 0$

Algebraic Object (set with some operations) : magma, quasi group, semi group, loop, monoid, group, etc.

Group

A group (G,+) where $+:G\times G\to G$ is

- ightharpoonup (a+b)+c=a+(b+c) (associativity)
- ▶ there exists $e \in G$ such that a + e = e + a = a for all $a \in G$ (identity)
- ▶ for all $\in G$, there exists $b \in G$ such that a + b = b + a = e (inverse)

If a group G satisfies a+b=b+a for all $a,b\in G$, G is called an abelian group.

Ring and Module

A ring $(R, +, \cdot)$ is

- ightharpoonup (R, +) is an abelian group (and denote additive identity 0)
- ightharpoonup (ab)c = a(bc)
- ightharpoonup a(b+c)=ab+ac and (a+b)c=ac+bc.

If a ring R has e such that ae = ea = a for all a, denote e = 1 and R is called a unital ring.

If R has no element such that ab=0 but $a,b\neq 0$, R is called an domain.

If for all $a, b \in R$ satisfies ab = ba, R is called a commutative ring.

If R is commutative and domain, R is called an integral domain.

If an integral domain R satisfies every nonzero element has multiplicative inverse, R is called a field.

Let R be a ring and (M,+) be an abelian group. If $\cdot: R \times M \to M$, (denote $r \cdot m = rm$) satisfies

- $ightharpoonup r(m_1 + m_2) = rm_1 + rm_2$
- $(r_1r_2)m = r_1(r_2m)$
- ightharpoonup if R has 1, then $1 \cdot m = m$,

M is called a R-module.

If R is a field, M is called a vector space over R.

If M is itself a ring and $r(m_1m_2)=(rm_1)m_2=m_1(rm_2)$, we call M a R-algebra.

F[x] is a polynomial ring.

$$\cdot: F \times F[x] \to F[x]$$
 by $\alpha(a_n x^n + \cdots + a_0) = \alpha a_n x^n + \cdots + \alpha a_0$

Then F[x] is a vector space and $\alpha(p(x)q(x))=(\alpha p(x))q(x)=p(x)(\alpha q(x)).$ Thus F[x] is a F-algebra.

Here,

$$a_n x^n + \cdots + a_0 = b_m x^m + \cdots + b_0 \iff m = n \text{ and } a_i = b_i \text{ for all } i$$

by definition.

Permutation

 S_n is a group.

Some Notation

Let
$$\tau = S_n$$
.

(1)
$$\tau = (\tau(1), \dots, \tau(n))$$

(2)
$$[i,j](k) =$$

$$\begin{cases} j & k=i \\ i & k=j \\ k & \text{otherwise} \end{cases}$$

(3) Cycle notation
$$\langle k, \tau(k), \tau^2(k), \cdots, \tau^l(k) \rangle$$
.

Two cycles $\langle a_1, \cdots, a_k \rangle$ and $\langle ._1, \cdots, b_l \rangle$ are said to be disjoint if $\{a_1, \cdots, a_k\} \cap \{b_1, \cdots, b_l\} = \emptyset$. In this case, they commute, that is,

$$\langle a_1, \cdots, a_k \rangle \langle b_1, \cdots, a_l \rangle = \langle b_1, \cdots, b_l \rangle \langle a_1, \cdots, a_k \rangle$$

- $\langle a_1, \dots, a_k \rangle = \langle a_2, \dots, a_k, a_1 \rangle \dots = \langle a_k, a_1, \dots, a_{k-1} \rangle$ Thus by choosing $a_i = \min\{a_1, \dots, a_k\}$, we can determine a cycle in a unique way.
- ▶ Every permutation is a composition of disjoint cycles.
- ▶ Every permutation is a composition of transposes.
- $ightharpoonup \operatorname{sgn}(\tau) = (-1)^n$ where n is the number of transposes of τ .
- ▶ If $\tau = \tau_1 \cdots \tau_k$ where τ_i 's are transposes, then

$$\tau^{-1} = \tau_k \cdots \tau_1$$

and this implies $sgn(\tau) = sgn(\tau^{-1})$.

LCh4. Determinants and Eigenvalues

└_4.2 Further Properties of the Determinant Function

$$f:S_n \to S_n$$
 by $f(\tau)=\tau^{-1}$ is bijection.

The End