МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Машинное обучение»

Тема: Понижение размерности пространства признаков

Студент гр. 8304	 Холковский К.В
Преподаватель	Жангиров Т. Р.

Санкт-Петербург

Цель работы

Ознакомиться с методами понижения размерности данных из библиотеки Scikit Learn

Ход работы

Загрузка данных

Были загружены и нормированы данные и построена диаграмма.

Рис 1 – Диаграмма рассеяния

Рис 2 – Соответствие цвета на диаграмме и класса в датасете

Рис 3 – HSV colormap

Метод главных компонент

Для нашего набора данных были получены следующие значения объясненной дисперсии и собственные числа.

[0.45429569 0.17990097] [5.1049308 3.21245688]

Была построена диаграмма для 2-х компонент

Было выявлено количество компонент, объясняющих не менее 85% - 4.

Данные восстановленные при помощи inverse_transform соответствуют исходным данным пропорционально размеру дисперсии данных.

Параметр svd_solver:

Tiapamerp svu_sorver.		
Если входные данные больше 500х500, а количество		
извлекаемых компонентов меньше 80% наименьшего		
измерения данных, тогда более эффективнее использовать		
'randomized'. В противном случае вычисляется full SVD и,		
возможно, впоследствии усекается.		
Полное вычисление SVD.		
Запускает SVD, усеченный до n_components. Требуется		
строго 0 <n_components (x.shape).<="" <min="" td=""></n_components>		
Вычисление рандомизированного SVD.		

Модификации метода главных компонент

По диаграммам видно, что linear соответствует обычному PCA .

Рис 5 – Диаграммы КРСА

По диаграммам видно, что при alpha=0 данные SparsePCA совпадают с данными РСА.

Рис 6 – Диаграммы SPCA

Факторный анализ

По диаграмме видно, что данные сильно отличаются.

Рис 6 – Диаграмма факторного анализа

Математика факторного анализа и анализа главных компонент (РСА) различна. Факторный анализ явно предполагает наличие скрытых факторов, лежащих в основе наблюдаемых данных. Вместо этого РСА стремится идентифицировать переменные, которые являются составными частями наблюдаемых переменных. Хотя эти методы могут давать разные результаты, они схожи с тем, что ведущее программное обеспечение, используемое для проведения факторного анализа (SPSS Statistics), использует PCA в качестве алгоритма по умолчанию.