Universidad Católica Boliviana "San Pablo" Unidad Académica Cochabamba Departamento de Posgrado Ing. Mauricio Alejandro Quezada Bustillo

PROYECTO FINAL - DIPLOMADO EN MACHINE LEARNING CLOUD (MÓDULO 4: MLOPS)

Objetivo General

Que los estudiantes diseñen, entrenen, desplieguen y documenten un proyecto completo de Machine Learning en la nube, aplicando Azure ML Designer, AutoML, SDK v2, Pipelines, MLflow y Azure Cognitive Services, demostrando las competencias adquiridas en el módulo.

Lineamientos del Proyecto

1. DATASET DE ELECCIÓN PROPIA

- El dataset debe ser público y de libre acceso (Kaggle, UCI, Open Data, etc.).
- Puede ser tabular.
- El problema debe pertenecer a clasificación o regresión.
- El dataset debe tener al menos 10.000 registros y requerir preprocesamiento.

2. PIPELINE DE ENTRENAMIENTO

- Construcción del pipeline con Azure ML SDK v2.
- Paso de ingesta y limpieza de datos.
- Entrenamiento de modelos (mínimo 2 algoritmos).
- Evaluación y comparación de métricas.
- Registro del modelo en Azure ML Registry.
- Uso opcional de Designer o AutoML para comparación.

3. DESPLIEGUE

- El modelo final debe ser desplegado como un endpoint en Azure:
- * Online Endpoint (tiempo real).
- * Batch Endpoint (predicciones masivas).
- Deben probar su endpoint con Postman o script en Python.

4. INTEGRACIÓN CON COGNITIVE SERVICES

- Integrar al menos un Cognitive Service en el proyecto (ejemplo: Decision o Text Analytics para tabulares).
- La integración puede ser:
- * Preprocesamiento de datos.
- * Enriquecimiento del modelo.
- * Servicio complementario en el despliegue.

Universidad Católica Boliviana "San Pablo" Unidad Académica Cochabamba Departamento de Posgrado Ing. Mauricio Alejandro Quezada Bustillo

NON TABLO

5. DOCUMENTACIÓN

- Notebook o Reporte en PDF con:
- * Justificación del dataset elegido.
- * Diseño del pipeline (incluyendo DAG).
- * Comparación de modelos y métricas.
- * Evidencia del despliegue (capturas de endpoints y pruebas).
- * Integración de Cognitive Services.
- Video demo (5-7 min) mostrando:
- * Pipeline en Azure ML.
- * Ejecución de pruebas al endpoint.
- * Uso del Cognitive Service integrado.

📊 Evaluación (100%)

Componente	Ponderación
Selección y justificación del dataset	10%
Pipeline en Azure ML	25%
SDK/Designer/AutoML	
Registro y comparación de modelos	15%
Despliegue en endpoint (Online/Batch)	20%
Integración con Cognitive Services	20%
Documentación y presentación final	10%

Entregables

- 1. Repositorio en GitHub/Drive con:
 - Código fuente (notebooks, scripts).
 - Archivos YAML de componentes/pipelines.
 - Reporte final en PDF.
- 2. Video Demo (link en el repo).
- 3. Endpoint funcional (si la suscripción lo permite; caso contrario, simulación local documentada).

Universidad Católica Boliviana "San Pablo" Unidad Académica Cochabamba Departamento de Posgrado Ing. Mauricio Alejandro Quezada Bustillo

Requerimientos mínimos del Proyecto (10–15)

- 1. Dataset (Data Asset)
- 2. Data Cleaning / Preprocesamiento
- 3. Feature Engineering
- 4. Split Data
- 5. Entrenamiento del Modelo (mínimo 2 algoritmos)
- 6. Evaluación de Modelos
- 7. Selección del Best Model
- 8. Integración con Cognitive Services
- 9. Registro del Modelo en Azure ML
- 10. Pipeline en Azure ML (SDK v2)
- 11. Deploy del Modelo (Online/Batch Endpoint)
- 12. Pruebas de Consumo (API REST con Postman o Python)
- 13. MLflow (Tracking y Registry)
- 14. Documentación Técnica
- 15. Demo Final en Video