Variable Selection in Causal Inference Using Penalization

Brief Paper Summary

Denis Ostroushko

December 12, 2023

Motivation

- In small and moderate sample sizes common variable selection methods will lead to common issues
- Inclusion of spurious predictors can lead to inflated variance of the estimator
- Omission of important confounders may lead to a biased estimation of ATE
- Doubly robust estimators employ propensity score and outcome models to provide more credible estimates of ATE
- Under the conditions that both types are correctly specified,
 variance of such estimator is also minimized

Overview

- What if I told you there is a good method that addresses two common issues!
- Proposed method aims to find non-ignorable confounders and predictors of outcome
- Intuitively, we shrink or remove the parameters based on how much the predictor contributes to the outcome model

Estimation

- Consider all types of variables as predictors, construct outcome and treatment models with the same set of predictors. Variable selection is done using penalized joint maximum likelihood
- Penalty for each coefficient depends on the levels of contribution to both the outcome and treatment models. Authors call this a booster parameter
 - For example, when a covariate that barely predicts the outcome and treatment it has a stronger penalty on the associated parameter.
 - When a covariate barely predicts the outcome and is strongly related to treatment, penalty is less strict.
 - Idea is similar to adaptive lasso

Estimation Continued

- 3. Select final predictors with effects above a certain threshold: $\frac{1}{\sqrt{n}}$
- 4. Define $S_i = A_i \pi(\mathbf{X}_i)$
- 5. Doubly robust estimator: $E[Y_i|S_i, \mathbf{X}_i] = \theta * S_i + g(\mathbf{X}_i, \beta)$
- this one is similar to propensity score regression
- ullet θ is the average treatment effect

Results

Table 1. Performance of the proposed method when $r_2 > n$ and in the presence of a weak confounder. $S.D^{emp}$: empirical standard error; $S.D^{tb}$: sandwich standard error.

Method	Bias	$S.D^{emp}$	$S.D^{tb}$	MSE	Bias	$S.D^{emp}$	$S.D^{tb}$	MSE
Scenario 1.		n = 300		n = 500				
SCAD	0.010	0.515	0.502	0.266	0.012	0.386	0.381	0.149
LASSO	0.067	0.522	0.509	0.277	0.057	0.425	0.421	0.184
PS-fit	0.164	5.575	_	31.104	0.101	4.295	_	18.453
Oracle	0.017	0.510	_	0.260	0.007	0.373	_	0.139
Scenario 2.		n = 300			n = 500)		
SCAD	0.062	0.606	0.592	0.372	0.019	0.483	0.456	0.234
LASSO	0.037	0.612	0.593	0.375	0.012	0.481	0.460	0.232
Y-fit	0.710	0.598	_	0.862	0.818	0.453	_	0.875
PS-fit	0.381	6.722	_	45.326	0.094	5.117	_	26.189
Oracle	0.045	0.638	_	0.409	0.018	0.459	_	0.211

- ATE compared to IPW and Outcome Regression with varying number of weak confounders
- SCAD and LASSO used for considered method

Questions

NO QUESTIONS