Corrigé du DS, sujet A

Seconde 11

1 Fondamentaux du chapitre (≈ 10 points)

A) Résoudre les équations suivantes (≈ 4 points)

1.
$$8x^2 = 2 \Leftrightarrow x^2 = \frac{1}{4} = \frac{1}{2^2} \mathcal{S} = \{-\frac{1}{2}; \frac{1}{2}\}$$

- 2. x(2x-3) = 0. C'est une équation produit nul donc x = 0 ou $2x 3 = 0 \Leftrightarrow x = \frac{3}{2}$, donc $S = \{0; \frac{3}{2}\}$
- 3. $7x^2 + 16 = 2 \Leftrightarrow x^2 = -2$. Pas de solutions, $S = \emptyset$.
- 4. $(x-2)^2 3 = 0 \Leftrightarrow (x-2)^2 = 3$. Donc, $x-2 = \sqrt{3}$ ou $x-2 = -\sqrt{3}$ donc $x = 2 + \sqrt{3}$ ou $x = 2 \sqrt{3}$ et donc $S = \{2 \sqrt{3}, 2 + \sqrt{3}\}$
- 5. $3x + 1 = 0 \Leftrightarrow x = \frac{-1}{3}$. $S = \{\frac{-1}{3}\}$.
- 6. $x^2 6x + 9 = 0 \Leftrightarrow (x 3)^2$. On applique la règle du produit nul et on trouve $S = \{3\}$

B) Forme canonique, développée, factorisée (≈ 4 points)

On considère la forme factorisée suivante

$$f(x) = (4x+1)(-2x+2).$$

- 1. On applique la règle du produit nul à l'expression donnant f, on doit donc avoir (4x+1)=0 ou (-2x+2). On trouve $\mathcal{S}=\left\{\frac{-1}{4};1\right\}$.
- 2. $f(x) = -8x^2 + 6x + 2$. a = -8; b = 6; c = 2.
- 3. $\alpha = \frac{-b}{2a} = \frac{3}{8}.\beta = f(\alpha) = \frac{25}{8}$
- 4. Pour résoudre $f(x) = \frac{25}{8}$, on utilise la forme canonique, on obtient l'équation $(x \frac{3}{8})^2 = 0$. On en déduit $S = \{\frac{3}{8}\}$
- 5. .

C) Extremum d'une fonction polynôme du second degré (\approx 2 points)

- 1. $\frac{-b}{2a} = \frac{3}{4}$, $f(\frac{3}{4}) = \frac{23}{8}$. Donc
- 2. Comme a < 0, g admet un minimum atteint en $\frac{3}{4}$ et il vaut $\frac{23}{8}$.

2 Exercice 1 : optimiser un coût (≈ 6 points

Le propriétaire d'un cinéma vend 300 billets à 6 euros par séance. Il a constaté qu'il diminue le prix de 0,1 euro, il vend 10 billets supplémentaires. Il décide d'engager une campagne de promotion.

- 1. Après x réductions de 0,1 euro, et comme le prix initial était de 6 euros, le prix du billet est de p(x) = 6 0,1x. Justifier que la quantité de billets vendue est q(x) = 300 + 10x.
- 2. On développe $r(x) = q(x) \times p(x) = (300 + 10x)(6 0.1x) = -x^2 + 30x + 1800$.
- 3. On calcule $\frac{-b}{2a} = \frac{-30}{-2} = 15$ et r(15) = 2025.
- 4. La recette maximale est atteinte pour 15 réductions de 0, 1 euros. La recette est alors de 2025 euros.
- 5. Le prix du billet est de 6 0, 1 * 15 = 4, 5 euros.

3 Exercice 2 : ajuster une aire (≈ 4 points)

On appelle x la longueur BE. Les quatre triangles sur les côtés de la figure doivent avoir la même aire A. L'aire du carré fait $40000m^2$, celle de l'hexagone $32800m^2$. Donc on doit avoir 4A = 40000 - 32800 donc 4A = 7200 donc $A = 1800m^2$.

Or $A = \frac{x^2}{2}$ (aire d'un triangle rectangle isocèle dont les côtés opposés à l'hypoténuse sont de longueur x). On a dont $\frac{x^2}{2} = 7200$, soit $x^2 = 3600$ donc d'après le théorème du cours x = 60 ou x = -60. Une longueur devant toujours être positive on en déduit que x = 60.