Widening IoT Security: 3rd-Party Authentication in Federated Cloud, Edge, and Fog Systems

Student: Asad Ali

Advisor: Prof. Dr. Ying-Dar Lin

High Speed Networks Lab

NCTU, Taiwan

Outline

- Federation Motivation
- Federation Background
 - Cloud-Edge-Fog Architecture
 - Cloud-Edge-Fog Federation Scenarios
 - Federation Classification
 - Protocols based Classification
- Federation Issues
- Federation Survey
- Problem-I: 3rd-Party Authentication in Federated MECs
- Problem-II: 3rd-Party Authentication in Federated Cloud-Edge
- Problem-III: 3rd-Party Authentication
- Problem-IV: 3rd-Party Authentication
- References

Federation Motivation-I

- Cloud:
 - Far
 - Better Computing Power
 - More Storage
- Fog and Edge:
 - Cloud Near the Ground
 - Geographical Distribution
 - Latency Reduction
 - Bandwidth Savings
 - Better QoS [1]

Federation Motivation-II

- Federation Brings:
 - Optimized Services
 - Enhanced Capabilities for:
 - Data Aggregation
 - Processing
 - Storage
 - Best of all worlds
- Authentication in Federated Cloud/Edge/Fog

Cloud-Edge-Fog Architecture

Federation Scenarios-I

Scenario	Federation	Category	ID Location
1	Cloud-Cloud	Horizontal	Cloud
2	Edge-Edge	Horizontal	Edge
3	Fog-Fog	Horizontal	Fog
4	Cloud-Edge-Edge	2-Tier one-to-many Vertical-ID upper tier	Cloud
5	Cloud-Fog-Fog	2-Tier one-to-many Vertical-ID upper tier	Cloud
6	Edge-Fog-Fog	2-Tier one-to-many Vertical-ID upper tier	Edge
7	Cloud-Edge-Edge	2-Tier one-to-many Vertical-ID lower tier	Edge
8	Cloud-Fog-Fog	2-Tier one-to-many Vertical-ID lower tier	Fog
9	Edge-Fog-Fog	2-Tier one-to-many Vertical-ID lower tier	Fog
10	Cloud-Edge-Fog	3-Tier Vertical	Cloud
11	Cloud-Edge-Fog	3-Tier Vertical	Edge
12	Cloud-Edge-Fog	3-Tier Vertical	Fog

Federation Scenarios-II

Scenario	Federation	Categories	ID Location
13	Cloud-Edge-Cloud	2-Tier Many-to-one Vertical	Cloud
14	Edge-Fog-Edge	2-Tier Many-to-one Vertical	Edge
15	Cloud-Fog-Cloud	2-Tier Many-to-one Vertical	Cloud
16	Cloud-Cloud-Edge	2-Tier Hybrid-ID upper tier	Cloud
17	Cloud-Cloud-Fog	2-Tier Hybrid-ID upper tier	Cloud
18	Edge-Edge-Fog	2-Tier Hybrid-ID upper tier	Edge
19	Cloud-Cloud-Edge-Edge	2-Tier Hybrid-ID lower tier	Edge
20	Cloud-Cloud-Fog-Fog	2-Tier Hybrid-ID lower tier	Fog
21	Edge-Edge-Fog-Fog	2-Tier Hybrid-ID lower tier	Fog
22	Cloud-Edge-Fog	3-Tier Hybrid	Cloud
23	Cloud-Edge-Fog	3-Tier Hybrid	Edge
24	Cloud-Edge-Fog	3-Tier Hybrid	Fog

Federation Classification

- Horizontal Federation
- Vertical Federation
 - Up-Link
 - 2-Tier Vertical Federation
 - ID in the upper tier
 - ID in the lower tier
 - 3-Tier Vertical Federation
 - ID in the upper tier
 - ID in the middle tier
 - ID in the lower tier
 - Down-Link
- Hybrid Federation
 - 2-Tier Federation
 - ID in the upper tier
 - ID in the lower tier
 - 3-Tier Federation
 - ID in the upper tier
 - ID in the middle tier
 - ID in the lower tier

Protocols based Classification-I

• A: Cloud-Cloud

• B: Edge-Edge

• C: Fog-Fog

• D: Cloud-Edge

• E: Cloud-Fog

• F: Edge-Fog

Federation Issues

• A: MEC-MEC

• B: Cloud-Edge

• C: Fog-Fog

• D: Edge-Edge

• E: Cloud-Fog

• F: Edge-Fog

Federation Problems

Year	Problem	
	Cloud-Edge	
Year 1	Edge-Edge	
	MEC-EPC-EPC-MEC	
	Cloud-Fog	
Year 2	Edge-Fog	
	Fog-Fog	

Federation Survey -I

Name	How	What	All Federation Scenarios?	Transparent ?	Multiple protocols support?
Marcos et al [2]	Shibboleth	Multi- Tenancy	× [C—C]	✓	×
Antonio [3]	IDM/SP model	SSO	× [C—C]	× [Modified]	×
Antonio [4]	IDM/SP model	3-phase SSO	× [C—C]	× [Modified]	×
Zubair [5]	TPM	Federated ID	× [C—C]	× [Modified]	×
Liang [6]	FIM/HIBC	Mutual Auth	× [C—C]	× [Modified]	×
Maicon [7]	LDAP	FIM	× [C—C]	✓	×

Federation Survey-II

Name	How	What	All Federation Scenarios?	Transparent ?	Multiple Protocols Support?
Donald [8]	Centralized Infrastructur e 3-p	Mutual Authenticati on	× [E-E]	× [New]	×
Ibrahim [9]	One master Key	Mutual Authenticati on	× [F-F]	× [New]	×
Shouhuai [10]	Whereabout s	Situational Authenticati on	× [Mobile Cloud]	× [New]	×
Bouzefrane [11]	NFC	Mutual Authenticati on	× [Mobile Cloud]	× [Modified]	×

Federation Survey-III

Name	How	What	All Federation Scenarios?	Transparent ?	Multiple Protocols Support?
SEGR [12]	certificateless aggregate signature	group roaming Authentication	× [F-E]	× [New]	×
MASFOG [13]	Blockchain	Mutual Authentication	× [F-E]	× [New]	×
Amor [14]	Pseudonym Based Cryptography	Mutual Authentication	× [F-E]	× [New]	×
Shidhani [15]	Modified EAP- AKA	Re- Authentication	× [F-E]	× [Modified]	×
Chen [16]	Vertical Handoff	QoS	× [F-E]	× [New]	×

Federation Survey-IV

servi ce agent

802.11 roaming

Name	How	What	All Federation Scenarios?	Transparent ?	Multiple Protocols Support
Hyeran [17]	Modified EAP-AKA	Mutual Authentication	× [F-E]	× [Modified]	×
Minghui [18]	Service Agent	Authentication /Billing	× [F-E]	× [New]	×
Yixin [19]	Secret Splitting	Mutual Authentication and Key Exchange	× [F-E]	× [New]	×
Minghui [20]	Mobile IP Handoff	Mutual Authentication	× [F-E]	× [Modified]	×
Sarang [21]	SDN	Security	×[F-C]	× [New]	×
Our Approach	Federatio n Proxy	Mutual Authentication	✓	✓	✓

Problem-I: Transparent 3rd-Party Authentication for Low-latency 5G Mobile Edge Computing with Mobility Support

Problem Scenario

Problem Formulation

Given:

- Two MECs connected via existing 3GPP network.
- UE is authenticated with source MEC initially.
- UE Accesses App server in source MEC and moves towards target MEC while using same application.
- Link layer handover triggers MEC handover.
- Each MEC knows about the public keys of other MECs.

Objective:

UE must access same application seamlessly from target MEC

Issues:

- Solve the issues while achieving low latency:
 - How to inform target MEC about source MEC.
 - How to authenticate the UE with target MEC.
 - How to transfer state information from MEC-1 App server to MEC-2 App server.

Architecture

Solution Approaches

- TC3A (Token-based Cookie transfer & 3^{rd} -party Authentication)
 - Target MEC does not need to contact source MEC for the authentication but, needs to contact for session state
- TS3A (Token-based State transfer & 3^{rd} -party Authentication)
 - Target MEC does not need to contact with the source MEC at all

Parameters	тсза	TS3A
3-p Authentication	✓	√
Cookie Transfer	✓	X
Session State Transfer	X	✓
Number of Tokens	1	N
Inter-MEC Connectivity	X	✓
Server Modification	Less	More

Experiment

Video Server Video Server Node js 140.113.169.13: 140.113.207.18: Node js 3000 3000 Database: Database: AP-2 SQL AP-1 SQL **Auth Server Auth Server** Asp.net Asp.net 140.113.207.18: 140.113.169.13: web API web API 51105 2873 Angular is **UE Client:** PC-1 PC-2 140.113.207.26:4200 Seventh Floor Second Floor PC-3

Results

Problem-II: 3rd-Party Authentication in Federated Cloud and 3GPP systems

Problem

- How third party authenticate user?
 - UE has no account on third party
 - UE does not want to register an account on third party
- How 3GPP network communicate with cloud?
 - Different authentication protocols
- Cloud-to-edge scenario
- Edge-to-cloud scenario
- Solution: Proxy

Proxy: cloud-to-edge scenario

Virtual HSS	Virtual user
Act as the home HSSCommunicate with 3GPP network	 Established a connection to home cloud on the Internet Perform mutual authentication

Proxy: edge-to-cloud scenario

IdP	Virtual UE
Act as the identity provider in OIDC protocol.Communicate with cloud	emulated typical UECommunicate with 3GPP network

Cloud-to-Edge Solution

Edge-to-Cloud Solution

Testbed

cloud-to-edge connections
edge-to-cloud connections

Delay time

__ 1.67

120

100

Delay time

What's Next?

- Problem-III: Federated Edge-Edge Problem
- Problem-IV: Federated Cloud-Fog Problem

Problems Overview:

Problem Name	Solved?	Authentication	Application Handover	Protocols	Proxy	Proxy Roles
Cloud- Edge	√	✓	X	OIDC,3GPP	✓	HSS, IdP, UE, Client
MEC-Edge	✓	✓	\checkmark	Novel	X	X
Edge-Edge	x	✓	X	3GPP	X	-:-
Cloud-Fog	x	✓	✓	OIDC, Multiple Protocols	✓	

Problem-III: Transparent 3rd-Party Authentication in Federated 3GPP systems

Problem Scenario

Problem Formulation

Given:

- Two 3GPP network connected to each other for roaming purposes.
- UE is authenticated with home EPC initially.
- UE Accesses computational services provided by the home 3GPP network and moves to the foreign 3GPP network and wants to access computational service.

Objective:

• UE must access computational services provided by foreign 3GPP network without having to make another account.

Issues:

- Solve the issues while achieving low latency:
 - How to authenticate UE with the computational services provided by foreign 3GPP network.
 - How to authenticate the UE with foreign 3GPP.

Survey

Name	Method	Problem	All Federation Scenarios?	Transparent?
Donald [8]	Centralized Infrastructure 3-p	Mutual Authentication	× [E-E]	× [New]
Yousaf [22]	Federated ID Systems	Seamless Authentication	X [E-WLAN]	X [Modified]
Vinod [23]	Multi factor Auth Proxy	Seamless Authentication	Multiple service providers	X
Joyce [24]	Open SDNCore	Infrastructure cloudification	X [E-E]	X

Proposed Solution-I

Proposed Solution-II

Proposed Solution-IV

Pending Issues

Application handover through state transfer

The important things to read

- Must understand the working of EPS-AKA
- Must understand the S6a interface in 3GPP LTE architecture
- Must understand the procedure of Roaming
- Must understand the state transfer

Problem-IV: Transparent 3rd-Party Authentication in Federated Cloud and Fog systems with Application Mobility Support

Problem Scenario

Problem Formulation [C-F]

Given:

- A Cloud connected with the fog device.
- UE is authenticated with cloud initially.
- UE Accesses computational services provided by the home cloud and moves to the foreign fog device and wants to access computational services.

Objective:

- UE must access computational services provided by foreign fog device without having to make another account.
- UE must also be provided with the seamless application mobility.

Issues:

Solve the issues while achieving low latency:

UE should get service even in mobility

- How to authenticate UE with the computational services provided by foreign fog network.
- How to authenticate the UE with foreign fog.
- How to communicate between fog and cloud.

Problem Formulation[F-C]

Given:

- A cloud connected with the fog device.
- UE is authenticated with home fog device.
- UE Accesses computational services provided by the home fog device and moves to the foreign cloud and wants to access computational services.

Objective:

- UE must access computational services provided by foreign cloud without having to make another account.
- UE must also be provided with the seamless application mobility.

Issues:

- Solve the issues while achieving low latency:
 - How to authenticate UE with the computational services provided by foreign cloud.
 - How to authenticate the UE with foreign cloud.
 - How to communicate between fog and cloud.

Survey

Name	Method	Problem	Scenarios	Transparent ?	Multiple Protocols?
Sarang [21]	SDN	Security	× [F-C]	× [New]	×
Kertesz [25]	MobIoT Sim	Latency	X [IoT-F-C]	X [New]	X
Souvik [26]	SFDDM	Security	X [F2C]	X	X
Tao [27]	Foud	Latency	X [V2G]		X

Proposed Solution

- Federation proxy between cloud and fog
- Roles have been defined for federation proxy [F-C and C-F]
- Message flow has been designed for:
 - Federated Authentication

Proposed Solution-I

F-Cloud UE RP Device OIDC Federation Proxy acting as IdP H-Fog F-C Scenario

Proposed Solution-II [C-F Scenario]:

Proposed Solution-III [C-F Scenario]

Kindly read notes for this solution

Proposed Solution-IV [F-C Scenario]:

Proposed Solution-V [F-C Scenario]

Proposed Solution V: Application Handover

Two cases:

- The user is a subscriber of Cloud or Fog and wants to access another a different application in Fog or Cloud.
- The user was using a an application in Cloud or Fog and moves out of range and wants to use the exact same service from fog or Cloud
 - More likely for the Fog-to-Cloud case
 - Less likely for Cloud-to-Fog case
- The solution is through the use of Session State Token
 - TC3A
 - TS3A

Another tentative solution:802.1x

- Another tentative solution is 802.1x
- Protocol for fog devices
- Incase we can't use OIDC:
- Design message flow between
 - 802.1x for fog
 - OIDC for cloud

The important things to read

- Must understand the working of OIDC
- Must understand the working of 802.1x
- Must understand the state transfer

Further research streams following the C-F

Scen ario	Federation	Federation Category	Federation Reason	Protocol Category	ID Location
1	Cloud-Fog- Fog	2-Tier one-to-many Vertical-ID upper tier	Latency/ Privacy	E	Cloud
2	Cloud-Fog- Fog	2-Tier one-to-many Vertical-ID lower tier	Capability/ Capacity	E	Fog
3	Cloud-Fog- Cloud	2-Tier many-to-one Vertical	Latency/ Privacy	E	Cloud
4	Cloud- Cloud-Fog	2-Tier Hybrid-ID upper tier	Capability/ Privacy	A, E	Cloud
5	Cloud- Cloud-Fog- Fog	2-Tier Hybrid-ID lower tier	Capability/ Capacity	A, E	Fog

- [1] https://telecomreseller.com/2018/02/20/ cloud-computing-vs-fog-computing-storing-your-companys-data/
- [2] Leandro, Marcos AP, et al. "Multi-tenancy authorization system with federated identity for cloud-based environments using shibboleth." Proceedings of the Eleventh International Conference on Networks. 2012.
- [3] Celesti, Antonio, et al. "Security and cloud computing: Intercloud identity management infrastructure." Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE), 2010 19th IEEE International Workshop on. IEEE, 2010.
- [4] Celesti, Antonio, et al. "Three-phase cross-cloud federation model: The cloud sso authentication." Advances in Future Internet (AFIN), 2010 second international conference on. IEEE, 2010.
- [5] Ahmad, Zubair, Jamalul-Lail Ab Manan, and Suziah Sulaiman. "User requirement model for federated identities threats." Advanced Computer Theory and Engineering (ICACTE), 2010 3rd International Conference on. Vol. 6. IEEE, 2010.
- [6] Yan, Liang, Chunming Rong, and Gansen Zhao. "Strengthen cloud computing security with federal identity management using hierarchical identity-based cryptography." IEEE International Conference on Cloud Computing. Springer, Berlin, Heidelberg, 2009.
- [7] Stihler, Maicon, et al. "Integral federated identity management for cloud computing." New Technologies, Mobility and Security (NTMS), 2012 5th International Conference on. IEEE, 2012
- [8] A. Donald, L. Arockiam, A Secure Authentication Scheme for MobiCloud, in: International Conference on Computer Communication and Informatics (ICCCI), 2015, pp. 1–6.

- [9] M. H. Ibrahim, Octopus: An Edge-fog Mutual Authentication Scheme, International Journal of Network Security 18 (6) (2016) 1089–1101
- [10] S. Xu, E. P. Ratazzi, W. Du, Security Architecture for Federated Mobile Cloud Computing, in: Mobile Cloud Security, Springer, 2016
- [11] S. Bouzefrane, A. Benkara Mostefa, F. Houacine, H. Cagnon, Cloudlets Authentication in NFC-Based Mobile Computing, in: Proceedings of the 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014, pp. 267–272.
- [12] Lai, Chengzhe, et al. "SEGR: A secure and efficient group roaming scheme for machine to machine communications between 3GPP and WiMAX networks." *Communications (ICC), 2014 IEEE International Conference on.* IEEE, 2014.
- [13] Imine, Youcef, et al. "MASFOG: An Efficient Mutual Authentication Scheme for Fog Computing Architecture." 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE, 2018.
- [14] Amor, Arij Ben, Mohamed Abid, and Aref Meddeb. "A Privacy-Preserving Authentication Scheme in an Edge-Fog Environment." Computer Systems and Applications (AICCSA), 2017 IEEE/ACS 14th International Conference on. IEEE, 2017.
- [15] Al Shidhani, Ali A., and Victor CM Leung. "Fast and secure reauthentications for 3GPP subscribers during WiMAX-WLAN handovers." *IEEE transactions on dependable and secure computing* 8.5 (2011): 699-713.
- [16] Chen, Yu-Chang, Ja-Hsing Hsia, and Yi-Ju Liao. "Advanced seamless vertical handoff architecture for WiMAX and WiFi heterogeneous networks with QoS guarantees." *Computer Communications* 32.2 (2009): 281-293.

- [17] Mun, Hyeran, Kyusuk Han, and Kwangjo Kim. "3G-WLAN interworking: security analysis and new authentication and key agreement based on EAP-AKA." 2009 Wireless Telecommunications Symposium, WTS 2009. IEEE, 2009.
- [18] Shi, Minghui, et al. "A service-agent-based roaming architecture for WLAN/cellular integrated networks." *IEEE Transactions on Vehicular Technology* 56.5 (2007): 3168-3181.
- [19] Jiang, Yixin, et al. "Mutual authentication and key exchange protocols for roaming services in wireless mobile networks." IEEE Transactions on wireless communications 5.9 (2006): 2569-2577.
- [20] Shi, Minghui, Xuemin Shen, and Jon W. Mark. "IEEE 802.11 roaming and authentication in wireless LAN/cellular mobile networks." IEEE Wireless Communications 11.4 (2004): 66-75.
- [21] Kahvazadeh, Sarang, et al. "Securing combined fog-to-cloud system through SDN approach." *Proceedings of the 4th Workshop on CrossCloud Infrastructures & Platforms*. ACM, 2017.
- [22] Targali, Yousif, Vinod Choyi, and Yogendra Shah. "Seamless authentication and mobility across heterogeneous networks using federated identity systems." 2013 IEEE International Conference on Communications Workshops (ICC). IEEE, 2013.
- [23] Choyi, Vinod K., and Alex Brusilovsky. "Seamless authentication across multiple entities." U.S. Patent Application No. 14/779,584.
- [24] Mwangama, Joyce, et al. "Towards mobile federated network operators." Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft). IEEE, 2015.
- [25] Kertesz, A., T. Pflanzner, and T. Gyimothy. "A mobile IoT device simulator for IoT-Fog-Cloud systems." Journal of Grid Computing 17.3 (2019): 529-551.

- [26] Sengupta, Souvik, et al. "SFDDM: A Secure Distributed Database Management in Combined Fog-to-Cloud Systems." 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). IEEE, 2019.
- [27] Tao, Ming, Kaoru Ota, and Mianxiong Dong. "Foud: Integrating fog and cloud for 5G-enabled V2G networks." IEEE Network 31.2 (2017): 8-13.