Table S1

	1 able 51
A	Model Summary
	Input: 4 excitatory stimuli (A, B, C, D);
Populations	Associative Layer (AL): 1 inhibitory + 1 excitatory;
	Decision Layer (DL): 2 excitatory, 2 inhibitory
	Input to Associative: random Input-E-to-E and Input-E-to-I
Connectivity	Recurrent Associative: sparse-random E-to-E and I-to-E, all-to-all I-to-I, no E-to-I, Associative to Decision: all-to-all E(AL)-to-E(DL)
	Recurrent Decision: all-to-all within-pop E-to-E; all-to-all across pop E-to-I;
	all-to-all within-pop I-to-E; all-to-all I-to-I
Neuron model	Leaky integrate-and-fire (Iaf) with dynamic threshold and dynamic
redion model	refractory conductance
Channel models	-
Synapse model	Excitatory AMPA + voltage-dependent NMDA, inhibitory GABA
Synapse model	Conductances - step increase then exponential decay.
	Input to associative and recurrent E-to-E synapses: triplet spike-timing-dependent plasticity (STDP).
Plasticity	I-to-E synapses: long-term potentiation of inhibition (LTPi).
	Associative to decision-making output synapses: DA reward-based
	plasticity; short-term facilitation, depression.
Input	Independent fixed-rate Poisson spike trains from populations of Input cells.
Measurements	Spike trains & times, synaptic connections & weights, decision times.
Input	Associative to decision-making output synapses: DA reward-based plasticity; short-term facilitation, depression. Independent fixed-rate Poisson spike trains from populations of Input cells.

В	Populations		
Name	Elements	Size	
Input-E	Poisson trains	$N_{In} = 2, 4, 6, 10, 20$	
Associative-E	laf neuron	$N_E = 4N_I$	
Associative-I	laf neuron	N _I	
Decision-E	laf neuron	2x200	
Decision-I	laf neuron	2x50	

C	Connectivity		
Name	Source	Target	Pattern
InE	Input-E	Associative-E	Random, p=[.055] plastic, initial weight InE ₀
InI	Input-E	Associative-E	Random, p=[.055] plastic, initial weight InI ₀
EE 	Associative- E	Associative-E	Random, p=.10; plastic, initial weight WEE ₀
I-to-E	Associative-I	Associative-E	Random, p=.25; plastic, initial weight WIE ₀
I-to-I	Associative-I	Associative-I	All-to-all, weight WII
E-to-D	Associative-	Decision-E	All-to-all; plastic, initial weight DW ₀
	E	Decision-E	Static or dynamic synapses
DE-to-DE	Decision-E	Same Decision-E	All-to-all, fixed weight DWEE
DE-to-DI	Decision-E	Opposite Decision-I	All-to-all, fixed weight DWEI

DI-to-DE	Decision-I	Same Decision-E	All-to-all, fixed weight DWIE
DI-to-DI	Decision-I	All Decision-I	All-to-all, fixed weight DWII

D	Neuron and Synapse Model
Name	laf neuron
Туре	Leaky integrate-and-fire (laf) with dynamic threshold, dynamic refractory conductance, and exponential conductance input.
Subthreshold dynamics	$\tau_{m} \frac{dV}{dt} = \begin{cases} g_{L}(V_{L} - V) + g_{GABA}(t)(V_{GABA} - V) + g_{AMPA}(t)(V_{AMPA} - V) \\ + g_{NMDA}(t)(V_{NMDA} - V) * NMDA(V) + g_{ref}(t)(V_{ref} - V) + g_{Poisson} \end{cases}$ $\tau_{ref} \frac{dg_{ref}}{dt} = -g_{ref} \text{ And } \tau_{th} \frac{dV_{th}}{dt} = -(V_{th} - V_{th}^{0})$
AMPA, GABA _A , NMDA synaptic conductance dynamics	$g_{i}(t) = \bar{g} \sum_{j} W_{ji} s_{j}(t)$ $\tau_{s} \frac{ds_{j}(t)}{dt} = -s_{j} + \sum_{k} \delta(t - t_{k}^{(j)})$ $NMDA(V) = 1 / ([Mg_{ext}^{2+}] e^{(-0.062(V(t)/3.57 \times 10^{-3})})$ Where $[Mg_{ext}^{2+}] = 1 \text{mM}$
Spiking	If $V(t-) \leq V_{th}(t-) \wedge V(t+) > V_{th}(t+)$ then (1) set $t^* = t$ (2) emit spike with time-stamp t^* (3) $g_{ref}(t) \mapsto g_{ref}(t^*) + \Delta g_{ref}$ (4) $V_{th}(t) \mapsto V_{th}^{max}$

E	Plasticity	
Type	Mechanism (presynaptic cell i, postsynaptic cell j)	Connections
Trialet	$ \text{if } t_{post} > t_{pre} \text{ then } \Delta W_{ij} = e^{\left(\frac{t_{pre} - t_{post}}{\tau_+}\right)} A_2^+ + A_3^+ \sum_{j} e^{\left(\frac{t_j - t_{post}}{\tau_y}\right)} $	E-to-E and In-to-E
Triplet- STDP	$\lfloor t_{nos} - t_{max} \rfloor $	1 synapse
SIDI	$ \text{if } t_{post} < t_{pre} \text{ then } \Delta W_{ij} = -e^{\left(\frac{t_{post} - t_{pre}}{\tau_{-}}\right)} \left[A_{2}^{-} + A_{3}^{-} \sum_{k} e^{\left(\frac{t_{k} - t_{pre}}{\tau_{k}}\right)} \right] $	per spike-pair
	if $ t_{post} - t_{pre} < \Delta T_{LTPi \text{ or }} V_{post} < -65 \text{mV then } \Delta W_{ij} = 0 \text{ else}$	I-to-E
LTPI		all presynaptic
	$\Delta W_{ij} = \Delta W_{LTPI}$	weights per
		Presynaptic spike
	sublinear: $\Delta W_i^R = \varepsilon_R \left(\sqrt{R_i} - \left\langle \sqrt{R_i} \right\rangle \right);$	E to D
DA-reward	linear: $\Delta W_i^R = \varepsilon_R \left(R_i - \langle R_i \rangle \right);$	E-to-D synapses to winning
	superlinear: $\Delta W_i^R = \varepsilon_R \left(R_i^2 - \left\langle R_i^2 \right\rangle \right);$	pool, every trial
	If Reward=1, $\Delta W_{ij} = \Delta W_i^R$; if Reward=0, $\Delta W_{ij} = -\Delta W_i^R$	

E-Homeo	$\Delta W_{ij} = arepsilon_{EH} W_{ij} \Big(r_{Egoal} - \overline{r_j(t)} \Big)$	InE-to-E, E-to-E, all synapses every trial
IE-Homeo	$\Delta W_{ij} = \varepsilon_{IEH} W_{ij} \left(r_{IEgoal} - \overline{r_j(t)} \right)$	I-to-E all synapses every trial
Facilitation	$F_{i}(t) = 1 + (F_{i}(t) - 1)e^{(-dt/\tau_{F})}$ $if V_{i} = V_{i}^{spike} F_{i}(t^{+}) = F_{i}(t^{-}) + f_{F}(F_{max} - F_{i}(t^{-}))$	E-to-D, all synapses every trial
Depression	$D_{i}(t) = 1 - (1 - D_{i}(t))e^{(-dt/\tau_{D})}$ $if V_{i} = V_{i}^{spike}D_{i}(t^{+}) = D_{i}(t^{-})(1 - D_{frac})$	E-to-D, all synapses every trial

F	Input
Type	Description
Poisson generators	Fixed rate, $v_{ln} = v_0 / N_{ln}$ for $t_{on} \le t < t_{off}$ ($v_0 = 480$ Hz) for selected Input populations

G Measurements		
Spike activities: mean rate per cell & decision pool during	ng stimulus presentation, spike times.	
Reaction times: bin time when mean activity of one decision pool exceeds other by 20Hz		
Connectivity: final distribution of AL-to-DL connection	S.	

Table S1: A summary of the spiking neuron network model's structure, plasticity, and dynamics. (Nordlie et al., 2009).

Table S2

B: Populations		
Name	Value	Description
Nin	2, 4, 6, 10, 20	Number of Input Poisson spike trains per Stimulus
NE	320	Number of excitatory Associative layer neurons
NI	80	Number of inhibitory Associative layer neurons
DNE	2x100	Number of excitatory Decision layer neurons
DNI	2x25	Number of inhibitory Decision layer neurons

	C: Connectivity		
Name	Value	Description	
r	480Hz/(Nin)	Mean Input rate	
Input synE	7	Excitatory Input Synaptic Weight	
Input synI	8	Excitatory Input Synaptic Weight	
WEE	0.05 ± 0.025	Associative Excitatory-to-Excitatory base synaptic Weight	
WIE	0.05 ± 0.025	Associative Inhibitory-to-Excitatory base synaptic Weight	
WII	0.038 ± 0.019	Associative Inhibitory-to-Inhibitory fixed synaptic Weight	
WEI		-	
WED	0.088	Associative Excitatory-to-Decision base synaptic Weight	
WDE-DE	0.02	Decision Excitatory-to-Excitatory fixed synaptic Weight	
WDE-DI	1.0	Decision Excitatory-to-Inhibitory fixed synaptic Weight	
WDI-DE	0.16	Decision Inhibitory-to-Excitatory fixed synaptic Weight	
WDI-DI	0.04	Decision Inhibitory-to-Inhibitory fixed synaptic Weight	

	D1: Associative Layer Neuron & Synapse Model Parameters				
Name	Excitatory value	Inhibitory value	Description		
$V_{\rm L}$	-67.5mV ±1.25mV	-67.5mV ±1.25mV	Leak reversal potential		
\mathbf{g}_{L}	$36\mu S \pm 0.5\mu S$	$36\mu S \pm 0.5\mu S$	Leak conductance		
$ au_m$	$10 \text{ms} \pm 0.75 \text{ms}$	$10 \text{ms} \pm 0.75 \text{ms}$	Membrane time constant		
$V_{\it reset}$	$-58 \text{mV} \pm 1 \text{mV}$	-58 mV ± 1 mV	Reset voltage		
V_{th}	-48 mV ± 1 mV	$-48 \text{mV} \pm 1 \text{mV}$	Voltage threshold		
$ m V_{thmax}$	150mV	150mV	Maximum voltage threshold		
$ au_{th}$	$2.25 \text{ms} \pm .125 \text{ms}$	1.25 ms $\pm .125$ ms	Dynamic threshold time constant		
$ au_{ref}$	$2.25 \text{ms} \pm .125 \text{ms}$	1.25 ms $\pm .125$ ms	Refractory conductance time constant		
$\delta_{ m gref}$	150µS	150μS	Refractory conductance step size		
E_{AMPA}	<mark>0mV</mark>	<mark>0mV</mark>	AMPA reversal potential		
E_{NMDA}	0mV	0mV	NMDA reversal potential		
E _{GABA}	-70mV	<mark>-70mV</mark>	GABA _A Reversal Potential		
$\overline{g}_{\text{AMPA}}$	3µS	<mark>3μS</mark>	AMPA maximal conductance		
$\overline{g}_{\scriptscriptstyle NMDA}$	$3\mu S$	$3\mu S$	NMDA maximal conductance		
\overline{g}_{GABA_A}	100μS	100μS	GABA _A maximal conductance		
$ au_{AMPA}$	2ms	2ms	AMPA synaptic time constant		
$ au_{NMDA}$	100ms	100ms	NMDA synaptic time constant		
$ au_{\mathit{GABA}_A}$	10ms	10ms	GABA _A synaptic time constant		

$[MG_{ext}^{2+}]$	1.0mM	1.0mM	External Magnesium concentration	
$\sigma_{\scriptscriptstyle V}$	$40 \mu V s^{-1/2}$	$40 \mu V s^{-1/2}$	Voltage noise amplitude	
$\sigma_{\scriptscriptstyle S}$	$1.2 mSs^{-1/2}$	$1.2 mSs^{-1/2}$	Conductance noise amplitude	
D2: Decision Layer Neuron & Synapse Model Parameters				
Name	Excitatory value	Inhibitory value	Description	
V_L	-70mV	-70mV	Leak reversal potential	
g_L	<mark>35μS</mark>	<mark>30μS</mark>	Leak conductance	
$ au_m$	20ms	10ms	Membrane time constant	
V_{reset}	-55mV	-55mV	Reset voltage	
V_{th}	-48mV	-50mV	Voltage threshold	
$ au_{th}$	$2.25 \text{ms} \pm .125 \text{ms}$	$1.25 \text{ms} \pm .125 \text{ms}$	Dynamic threshold time constant	
$ au_{ref}$	$2.25 \text{ms} \pm .125 \text{ms}$	$1.25 \text{ms} \pm .125 \text{ms}$	Refractory conductance time constant	
δ_{gref}	150μS	150µS	Refractory conductance step size	
E_{AMPA}	<mark>0mV</mark>	<mark>0mV</mark>	AMPA reversal potential	
E_{NMDA}	0mV	0mV	NMDA reversal potential	
$E_{\it GABAA}$	-70mV	-70mV	GABA _A Reversal Potential	
\overline{g}_{AMPA}	<mark>2μS</mark>	<mark>1μS</mark>	AMPA maximal conductance	
$\overline{\mathbf{g}}_{\mathit{NMDA}}$	<mark>6μS</mark>	<mark>1.5μS</mark>	NMDA maximal conductance	
$\overline{g}_{\mathit{GABA}_A}$	100μS	100μS	GABA _A maximal conductance	
$ au_{AMPA}$	2ms	2ms	AMPA synaptic time constant	
$ au_{NMDA}$	100ms	100ms	NMDA synaptic time constant	
$ au_{ extit{GABA}_A}$	10ms	10ms	GABA _A synaptic time constant	
$[MG_{ext}^{2+}]$	1.0mM	1.0mM	External Magnesium concentration	
$g_{urgency}^{ ext{max}}$	5μS		Maximum urgency signal conductance	
$\sigma_{_{V}}$			Voltage noise amplitude	
$\sigma_{\scriptscriptstyle S}$	$4 m S s^{-1/2}$	$4mSs^{-1/2}$	Conductance noise amplitude	

E1 Long-term Plasticity Parameters				
Name	Value	Description		
idW	0.001	LTPi potentiation per inhibitory spike		
LTPi window	±20ms	Window for excitatory spike to 'veto' LTPi		
V_{Thresh}	-65mV	Excitatory depolarization needed for LTPi		
A_{2+}	5*10 ⁻⁵	Amplitude – doublet LTP		
A_{2-}	$7*10^{-3}$	Amplitude – doublet LTD		
A_{3+}	$6.2*10^{-3}$	Amplitude – triplet LTP		
A_{3-}	$2.3*10^{-4}$	Amplitude – triplet LTD		
τ_{2+}	16.68ms	Time constant – doublet LTP		
τ_{2-}	33.7ms	Time constant – triplet LTD		
$\tau_{\rm y}$	125ms	Time constant – doublet LTP		
$\tau_{\rm x}$	101ms	Time constant – triplet LTD		
dW	0.005	3-STDP potentiation per excitatory spike		
3	0.001	Homeostatic rate constant		

Mark A. Bourjaily & Paul Miller

Short-term plasticity improves decision-making performance

rg_{E}	4Hz	Input and recurrent excitatory goal rate		
${ m rg_{IE}}$	8Hz	Inhibitory-to-excitatory goal rate		
\mathcal{E}_R	1*10 ⁻⁴	DA-reward learning rate constant		
E2 Short-term Plasticity Parameters				
f_F	1.0	Facilitation factor		
\mathbf{F}_{max}	4.0	Maximum facilitation variable value		
$ au_F$	500ms	Facilitation variable time constant		
D_0	1.0	Initial depression variable value		
D_{min}	0.0	Minimum depression variable value		
\mathbf{D}_{frac}	0.4	Depression factor		
$ au_{\scriptscriptstyle D}$	500ms	Depression variable time constant		

Table S2: A summary of the neural, synaptic, and plasticity parameters in the spiking neuron model corresponding to their respective section in Table S1, which details the spiking neuron model layout (Nordlie et al., 2009). Each parameter is described by its name, value in units, and a brief description.