Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра	Кафедра Математического и компьютерного моделирования						
M		·			ІА УПРАВЛЕНИЕ ІУТНИКА		
УГЛОВЫМ ДВИЖЕНИЕМ СПУТНИКА Бакалаврская работа							
студента	4	курса	413	_ группы			
направлени	ie.		01.03.02	Прикладная	математика и информатика		
		механико	-математі	ического фак	ультета		
		Исмай	іылова Гу	сейна Али ог	ГЛЫ		
Научный р	•	гель					
)	Доцент				И. А. Панкратов		
Зар кафан	กดษั						
Зав. кафедрой зав.каф., д.ф - м.н.					Ю. А. Блинков		

СОДЕРЖАНИЕ

			Стр.
Bl	ЗЕДЕН <i>И</i>	IE	3
1	Задача	1	4
	1.1	Постановка задачи и аналитическое решение	4
	1.2	Решение уравнения с помощью метода конечных элементов	5

введение

Целью данной работы является ознакомление с методом конечных элементов, решение дифференциального уравнения на отрезке с граничными условиями типа Дирихле и типа Неймана, нахождение значения интеграла разбиением области на треугольники.

1 Задача 1

1.1 Постановка задачи и аналитическое решение

Рассмотрим уравнение

Требуется решить следующее уравнение:

$$\frac{\mathrm{d}^2 \varphi}{\mathrm{d}x^2} + \alpha \frac{\mathrm{d}\varphi}{\mathrm{d}x} + \beta \varphi = 0, \tag{1.1}$$

где φ — неизвестная функция, методом конечных элементов на отрезке [0,1], рассмотреть случаи, когда краевые условия, имеющие вид

$$\begin{cases} 1) \ \varphi(0) = 0, \ \varphi(1) = 1, \\ 2) \ \varphi(0) = 0, \ \frac{d\varphi}{dx} \Big|_{x=1} = 0, \end{cases}$$
 (1.2)

где 1) – краевые условия типа Дирихле, 2) – краевые условия типа Неймана. Для начала найдем аналитическое решение задачи при $\alpha = -6, \ \beta = 9.$ Общее решение имеет вид: $\varphi(x) = c_1 e^{3x} + c_2 x e^{3x}$;

- 1) Решение в случае с краевыми условиями типа Дирихле выглядит следующим образом: $\varphi(x) = e^{3x-3}x;$
- 2) Решение в случае с краевыми условиями типа Неймана выглядит следующим образом: $\varphi(x) = \frac{e^{3x-3}x}{4}$.

1.2 Решение уравнения с помощью метода конечных элементов

Рассмотрим общий вид нашей задачи:

$$\begin{cases} L\varphi + p = 0, \varphi \in \Lambda, \\ T\varphi + r = 0, \varphi \in \Gamma, \end{cases}$$

где L — линейный дифференциальный оператор и T — линейный оператор, p,r — не зависят от неизвестной функции.

Решение будем искать в виде $\widetilde{\varphi} = \sum_{k=1}^{M+1} \widetilde{\varphi}_k N_k$, где

$$N_k = \begin{cases} 0, & x \le x_{k-1}, \\ \frac{x - x_{k-1}}{x_k - x_{k-1}}, & x_{k-1} < x < x_k, \\ 1, & x = x_k, \\ \frac{x_{k+1} - x}{x_{k+1} - x_k}, & k_k < x < x_{k+1}, \\ 0, & x \ge x_{k+1}. \end{cases}$$

а) Составим невязку: $R_{\Lambda} = L\widetilde{\varphi} + p$. Для того чтобы выполнялось $R_{\Lambda} \approx 0$ потребуем $\int_{\Lambda} R_{\Lambda} N_s d\Lambda = 0$, то есть $\int_{\Lambda} [L\widetilde{\varphi} + p] N_s d\Lambda = \int_{0}^{1} \left[\frac{d^2 \widetilde{\varphi}}{dx^2} \alpha \frac{d\widetilde{\varphi}}{dx} + \beta \widetilde{\varphi} \right] N_s dx = \int_{0}^{1} \frac{d^2 \widetilde{\varphi}}{dx^2} N_s dx + \int_{0}^{1} \left[\alpha \frac{d\widetilde{\varphi}}{dx} + \beta \widetilde{\varphi} \right] N_s dx = 0$, $s = \overline{1, M+1}$. Проинтегрируем первый интеграл по частям и подставим в полученное выражение:

$$\int_{0}^{1} \frac{d^{2}\widetilde{\varphi}}{dx^{2}} N_{s} dx + \int_{0}^{1} \left[\alpha \frac{d\widetilde{\varphi}}{dx} + \beta \widetilde{\varphi} \right] N_{s} dx =$$

$$= \left[\frac{d\widetilde{\varphi}}{dx} N_{s} \right]_{0}^{1} - \int_{0}^{1} \frac{d\widetilde{\varphi}}{dx} \frac{dN_{s}}{dx} dx + \int_{0}^{1} \left[\alpha \frac{d\widetilde{\varphi}}{dx} + \beta \widetilde{\varphi} \right] N_{s} dx = 0,$$

$$\int_{0}^{1} \left[-\frac{d\widetilde{\varphi}}{dx} \frac{dN_{s}}{dx} \alpha \frac{d\widetilde{\varphi}}{dx} N_{s} + \beta \widetilde{\varphi} N_{s} \right] dx = - \left[\frac{d\widetilde{\varphi}}{dx} N_{s} \right]_{0}^{1}, \ s = \overline{1, \ M+1}.$$

Получили СЛАУ
$$\sum\limits_{k=1}^{M+1}K_{sk}\widetilde{\varphi}_k=f_s,\ s=\overline{1,\ M+1},$$
 где

$$K_{sk} = \int_{0}^{1} \left[-\frac{dN_k}{dx} \frac{dN_s}{dx} \alpha \frac{dN_k}{dx} N_s + \beta N_k N_s \right] dx,$$

$$f_s = \begin{cases} -\left[\frac{d\widetilde{\varphi}}{dx}N_S\right]\Big|_0^1 = -1, & s = 1, \\ 0, & s = \overline{2}, \overline{M}, \\ -\left[\frac{d\widetilde{\varphi}}{dx}N_S\right]\Big|_0^1 = -1, & s = M+1. \end{cases}$$

Представляем K_{sk} в виде суммы $K_{sk} = \sum_{e=1}^{M+1} K_{sk}^e$, тогда, учитывая, что $N_e = \frac{x_{e+1} - x}{x_{e+1} - x_e}$, $N_{e+1} = \frac{x - x_{e-1}}{x_e - x_{e-1}}$, $\frac{dN_e}{dx} = -\frac{1}{x_{e+1} - x_e}$, $\frac{dN_{e+1}}{dx} = \frac{1}{x_{e+1} - x_e}$, $x_{e+1} - x_e$

$$K_{ee} = \int_{x_e}^{x_{e+1}} \left[-\frac{dN_e}{dx} \frac{dN_e}{dx} \alpha \frac{dN_e}{dx} N_e + \beta N_e N_e \right] dx = -1/h - \alpha/2 + \beta h/3,$$

$$K_{ee+1} = \int_{x_{e}}^{x_{e+1}} \left[-\frac{dN_{e+1}}{dx} \frac{dN_{e}}{dx} \alpha \frac{dN_{e+1}}{dx} N_{e} + \beta N_{e+1} N_{e} \right] dx = 1/h + \alpha/2 + \beta h/6,$$

$$K_{e+1e} = \int_{r}^{x_{e+1}} \left[-\frac{dN_e}{dx} \frac{dN_{e+1}}{dx} \alpha \frac{dN_e}{dx} N_{e+1} + \beta N_e N_{e+1} \right] dx = 1/h - \alpha/2 + \beta h/6,$$

$$K_{e+1e+1} = \int_{x_e}^{x_{e+1}} \left[-\frac{dN_{e+1}}{dx} \frac{dN_{e+1}}{dx} \alpha \frac{dN_{e+1}}{dx} N_{e+1} + \beta N_{e+1} N_{e+1} \right] dx = -1/h + \alpha/2 + \beta h/3.$$

Тогда матрица элемента выглядит следующим образом:

$$k^{e} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} -\frac{1}{h} + 12h + 6 & \frac{1}{h} + 6h - 6 \\ \frac{1}{h} + 12h + 6 & -\frac{1}{h} + 12h - 6 \end{pmatrix}$$
(1.1)

После процесса ассамблирования с учётом граничных условий получаем следующую СЛАУ

$$\begin{pmatrix}
1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 \\
\gamma & \alpha + \delta & \beta & 0 & \dots & 0 & 0 & 0 \\
0 & \gamma & \alpha + \delta & \beta & \dots & 0 & 0 & 0 \\
\dots & \dots \\
0 & 0 & 0 & 0 & \dots & \gamma & \alpha + \delta & \beta \\
0 & 0 & 0 & 0 & \dots & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\widetilde{\varphi}_1 \\
\widetilde{\varphi}_2 \\
\widetilde{\varphi}_3 \\
\dots \\
\widetilde{\varphi}_M \\
\widetilde{\varphi}_{M+1}
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
\dots \\
0 \\
1
\end{pmatrix}$$
(1.2)

Решение и погрешность показаны соответсвенно на рисунках 1,2.

Рисунок 2.1 — углы Эйлера

Получаем СЛАУ размерности M+1: M+1, которую можно решить с помощью пакета Scilab.