

درس رقم

 \mathbb{Z} درس: الحسابيات في

\mathbb{Z} قابلية القسمة في . \mathbb{I}

<u>A</u> مضاعف لعدد نسبي - قاسم لعدد نسبي :

<u>1.</u> تعریف:

 $\mathbb Z$ او $\mathbf b$ من $\mathbb Z$

 $a \mid b \Leftrightarrow \exists q \in \mathbb{Z}, b = qa$ و نكتب : $a \mid b$ و منه: $a \mid b \Leftrightarrow \exists q \in \mathbb{Z}, b = qa$ و نكتب : $a \mid b \Leftrightarrow \exists q \in \mathbb{Z}, b = qa$ في هذه الحالة : نقول إن العدد $a \mid b \Leftrightarrow \exists q \in \mathbb{Z}, b = qa$ في هذه الحالة : نقول إن العدد $a \mid b \Leftrightarrow \exists q \in \mathbb{Z}, b = qa$ في هذه الحالة : نقول إن العدد $a \mid b \Leftrightarrow \exists q \in \mathbb{Z}, b = qa$

2. ملحوظة و أمثلة:

- مع a من a) من a و كذلك يقسم a و كذلك يقسم a من a من a . a مثال : 23- a و كذلك يقسم a و كذلك يقسم a من a من a مثال : 23- a و كذلك يقسم a من a من a مثال : 23- a و كذلك يقسم a من a من a من a مثال : 23- a من a من
- كل عدد نسبي a فهو قابل القسمة على 1 و 1 و a و a و a . أما القواسم ل a التي تخالف 1 و a و a و a فقسمى القواسم الفعلية a الفواسم ل a التي تخالف 1 و 1 و a
 - $D_b: D_b = \{d \in \mathbb{Z} \mid \exists q \in \mathbb{Z}, b = qd\}$ يرمز لها ب $D_b: D_b = \{d \in \mathbb{Z} \mid \exists q \in \mathbb{Z}, b = qd\}$ يرمز لها ب

 $\mathbf{D}_{15} = \left\{-15, -5, -3, -1, 1, 3, 5, 15
ight\}$: مجموعة قواسم 15 هي : مثال المجموعة مثال المجموعة والمجموعة المجموعة المحمو

- . $a\mathbb{Z}$ و يرمز لها: $\{\cdots, -qa, \cdots, -2a, -a, 0, a, 2a, \cdots, qa, \cdots\}$ و يرمز لها: $\mathbb{Z} = \{\leftarrow \cdots, -18, -12, -6, 0, 6, 15, 18, \cdots \rightarrow\}$. $\mathbb{Z} = \{\leftarrow \cdots, -18, -12, -6, 0, 6, 15, 18, \cdots \rightarrow\}$
 - $\mathbf{d} \in \mathbf{D}_{\mathbf{a}} \cap \mathbf{D}_{\mathbf{b}}$ کل عدد \mathbf{d} قاسم \mathbf{d} و \mathbf{d} من \mathbf{Z} فهو یسمی قاسم مشترك ل \mathbf{d} و \mathbf{d}
- $\mathbf{m} \in \mathbf{a} \mathbb{Z} \cap \mathbf{b}$ و \mathbf{a} من \mathbf{b} فهو يسمى مضاعف مشترك ل \mathbf{a} و \mathbf{b} اذن $\mathbf{m} \in \mathbf{a} \mathbb{Z} \cap \mathbf{b}$. \mathbf{b}

<u>1.</u> خاصية

 \mathbb{Z} ليكن \mathbf{a} و \mathbf{c} و \mathbf{b} من

- <u>a</u> الانعكاسية: a | a . (a يقسم a) . <u>a</u>
 - $a \mid b \Rightarrow a \mid cb ; (c \in \mathbb{Z}) \underline{b}$
- $(a | b \ e) \Rightarrow a | c$ التعدي: ع $a | c \ e$
- $(c \ b)$ من $\mathbb{Z}^2: (a|b)$ من $a|c) \ \Rightarrow a = a = (ab + bc)$. (a|b) من a|c) من a|c) من a|c
- $(\mathbb{Z}^*$ ومنه نستنتج $a \mid b \Rightarrow a^n \mid b^n :$ ومنه نستنتج $a \mid b \Rightarrow a^n \mid b^n :$ ومنه نستنتج $a \mid b \Rightarrow ac \mid bd :$
 - $. \ \left(a \, | \, b \quad \text{\mathfrak{g}} \ b \neq 0 \right) \quad \Rightarrow \left| a \right| \leq \left| b \right| \quad \underline{\underline{\mathfrak{g}}}$

2_ برهان 1: (لمعرفة البرهان اضغط هنا 🖘

<u>3.</u> أمثلة:

مثال 1 : ننعتبر a و b من Z .

- . 7|(5x+4y) فإن 7|(2x+3y) أ. بين أن : إذا كان
- . 7|(2x+3y) فإن 7|(5x+4y) فإن 7|(2x+3y) . بين أن : إذا كان

حه اب:

درس رقم

درس: الحسابيات في 🏿

ا، لدينا :
$$7 | 7(x+2y)|$$
 و $(2x+3y) | 7|$ إذن : $(2x+3y) - 7(x+2y)|$ (تأليفة خطية) أ. لدينا : $7 | (5x+4y)|$ و $1 | (5x+4y)|$

.
$$7 | (5x+4y)$$
 فإن $(2x+3y)$ أن خلاصة : إذا كان

ب. لدينا :
$$(5x+4y) - 7(4x+3y)$$
 و $(7(4x+3y) - 7(4x+3y))$ ا $(5x+4y) - 7(4x+3y)$ و تأليفة خطية)

عثال 2:

نعتبر n من ^{*} N.

n+1 ما هي قيم n حيث n+1 يقسم n+1

نكي يكون : $\binom{n^2+1}{2}$ يقسم $\binom{n+1}{2}$ يجب أن يكون $\binom{n+1}{2} \leq \binom{n+1}{2}$ و هذا يتحقق فقط ل n=1 . ونتحقق من بعد ذلك n=1 يكون حل .

مثال 3 :

. $5n^3-n$ يقسم n+2 . ما هي قيم n حيث n+2 يقسم

لدينا:

$$5n^{3} - n = 5n^{3} + 40 - 40 - n$$

$$= 5(n^{3} + 8) - 2 - n - 38$$

$$= 5(n+2)(n^{2} - 2n + 4) - (n+2) - 38$$

$$= (n+2)[5n^{2} - 10n + 19] - 38$$

. 38 يقسم
$$n+2$$
 يقسم $(n+2)[5n^2-10n+19]-(5n^3-n)=38$ يقسم $n+2$ يقسم $n+2$ يقسم $n+2$

$$n+2 \in D_{38} = \{-38; -19; -2; -1; 1; 2; 19; 38\}$$
 : و منه

.
$$n \in \{-40; -21; -4; -3; -1; 0; 17; 36\}$$
 . و بالتالي :

$$\left\{-40;-21;-4;-3;-1;0;17;36\right\}$$
 هي n هي مجموعة قيم م

Ila division Euclidienne - القسمة الإقليدية.

<u>.A</u> القسمة الإقليدية في Z.

1. خاصية:

 $.a \neq 0$ من \mathbb{Z}^2 حيث (a,b)

$$. egin{cases} \mathbf{b} = \mathbf{q}\mathbf{a} + \mathbf{r} \ \mathbf{0} \leq \mathbf{r} < |\mathbf{a}| \end{cases}$$
 حیث: (\mathbf{q}, \mathbf{r}) من

2 يرهان 2: (لمعرفة البرهان اضغط هنا 🖘 🗓

<u>3.</u> مفردات:

- // العدد b يسمى المقسوم . العدد a يسمى المقسوم عليه. العدد q يسمى الخارج . العدد r يسمى الباقي .
 - // العملية التي تمكننا من الحصول على q و r تسمى القسمة الإقليدية ل b على a .
 - . a يقول أن b يقبل القسمة على $\mathbf{r}=\mathbf{0}$

الباقي r في القسمة في \mathbb{N} أو في \mathbb{Z} هو عدد موجب ($r \geq 0$).

4. أمثلة :

$$0 \le r < 13$$
 مع $10 \le r < 13$ بالنسبة ل $10 \le r < 13$ لدينا : $10 \le$

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس رقم

درس: الحسابيات في 🏿

. ${f r}=6$ و ${f q}=-4$: بالنسبة ل ${f q}=-13{f q}+{f r}=5$ لدينا ${f r}=6$ لدينا و ${f q}=-13{f q}+{f r}=5$

 $m . \ r = 7$ و m q = 5 : بالنسبة ل m c = -13q + r لدينا m c = -13q + r بالنسبة ل

 $\mathbf{A}_{.}$ عدد أولي :

<u>1.</u> تعریف:

(أي p ليس له قواسم موجبة فعلية) و p ليس له قواسم له وعدد أولي عندما يكون قواسمه الموجبة فقط هي 1 و $\mathbb{Z}\setminus\{-1,1\}$ ليس له قواسم موجبة فعلية)

2. ملحوظة:

- // الأعداد 0 و 1 و 1- ليست بأعداد أولية.
 - a أولى يكافئ a عدد أولى.
- a = -1 و p و p و p و p و p و p و p و p و p و p و p و p
 - // a عدد لیس بأولي یسمی عدد مرکب.

<u>3.</u> أمثلة:

<u>1.</u> خاصية:

- ه من $\mathbb{Z}\setminus\{-1,0,1\}$. إذا كان 1>1 أصغر قاسم ل a فإن $\mathbb{Z}\setminus\{-1,0,1\}$
- d>1 ($d \leq \sqrt{a}$ فإن d هو عدد أولي و $d \leq \sqrt{a}$ أصغر قاسم ل a غير أولي من a أ $a \leq d \leq \sqrt{a}$ فإن a أصغر قاسم ل

4 برهان 3: (لمعرفة البرهان اضغط هنا 🖘 🗵)

<u>. C</u> طريقة لتحديد الأعداد الأولية:

ملحوظة:

حسب الخاصية السابقة:

لكي نتحقق أن عدد صحيح طبيعي a>1 هو عدد أولي أو ليس بعدد أولي

- $\mathbf{p} = \mathbf{p} \leq \sqrt{\mathbf{p}}$ و التي تحقق $\mathbf{p} \leq \mathbf{p} \leq 2$.
- ولي. a الأعداد الأولية p (مع $p \leq \sqrt{p}$) لا تقسم a فإن العدد a أولي .
- إذا كان عدد أولي p من بين هذه الأعداد (مع $\sqrt{p} \leq \sqrt{p}$) يقسم a فإن العدد a غير أولي .

<u>2.</u> أمثلة:

مثال 1:

a=109 لدينا: a>0 و منه الأعداد الأولية a>0 حيث a>0 هي 2 و 3 و 5 و 5 و 5 فهي لا تقسم 109 إذن 109 عدد أولي. مثال 2:

لاينا: a=173 و منه الأعداد الأولية p حيث a=170 a=2 هي: 2 و 3 و 5 و 7 و 11 و 13 فهي لا تقسم 173 إذن a=173 عدد أولي.

D. مجموعة الأعداد الأولية غير منتهية:

<u>1.</u> خاصية:

مجموعة الأعداد الأولية غير منتهية.

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس رقم

 \mathbb{Z} درس: الحسابيات في

يرهان 4: (لمعرفة البرهان اضغط هنا 🖘 🗵

E. التفكيك إلى جداء من عوامل أولية:

<u>1.</u> مبرهنة:

 $a \in \mathbb{Z} \setminus \{-1,0,1\}$

- . $1 < p_1 < p_2 < \dots < p_n$ توجد أعداد أولية موجبة p_1 و p_2 و p_2 عيث p_3
 - . \mathbb{N}^* من α_{n} و α_3 و α_2 و α_1 من α_3
- حيث a يكتب على شكل وحيد (أو أيضا a يفكك على شكل وحيد إلى جداءات من العوامل الأولية):

.
$$\mathbf{a} = \mathbf{p}_1^{\alpha_1} \times \mathbf{p}_2^{\alpha_2} \times \mathbf{p}_3^{\alpha_3} \times \dots \times \mathbf{p}_n^{\alpha_n}$$
 : $\mathbb{N} \setminus \{0,1\}$ أـ إذا كان \mathbf{a} في

.
$$a = -p_1^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times \cdots \times p_n^{\alpha_n}$$
 : $\mathbb{Z}^- \setminus \left\{0, -1\right\}$ ب يادا كان a من

<u>2.</u> ملحوظة:

السبب الوحيد الذي جعل عدم اختيار العددين 1 و 1- بأنهما غير أوليين هو التفكيك للعدد a يصبح غير وحيد:

$$a = 45 = 3^2 \times 5 = 1 \times 3^2 \times 5 = 1^2 \times 3^2 \times 5 = 1^3 \times 3^2 \times 5 = \cdots$$
 عثال 1:

.
$$a = -45 = -3^2 \times 5 = (-1)^3 \times 3^2 \times 5 : 2$$
مثال

أمثلة:

$$c = -1980 : 3$$
 مثال $a = 990$ مثال $a = 990$ مثال $a = 990$

$$b = 7(7^{2} - 1)(7^{2} + 1)$$

$$b = 7 \times 48 \times 50$$

$$b = 7 \times 8 \times 6 \times 2 \times 5^{2}$$

$$b = 2^{5} \times 3 \times 5^{2} \times 7$$

$$165$$

$$55$$

$$11$$

$$11$$

1

 $c = -1980 = -2^2 \times 3^2 \times 5 \times 11$: لينا $b = 7^5 - 7 = 2^5 \times 3 \times 5^2 \times 7$ و منه $a = 1980 = 2^2 \times 3^2 \times 5 \times 11$

IV القاسم المشترك الأكبر: PGDC

 \underline{A} قاسم مشترك :

<u>1.</u> تعریف:

 $(a,b) \neq (0,0)$ ابي $(a,b) \in \mathbb{Z}^* \times \mathbb{Z}^*$. ليكن

- $\mathbf b$ و $\mathbf a$ يسمى قاسم مشترك ل $\mathbf a$ و من $\mathbf Z$ يقسم كلتا العددين $\mathbf a$ و م
- . b و a یسمی مضاعف مشترك ل a و b و مناعف في نفس الوقت للعدين a و b مناعف مشترك ل a

<u>2.</u> مثال:

قاسم مشترك ل 30 و 48 لدينا كل عدد من الأعداد التالية: 1 و 1- و 2 و 2- و 3 و 3- 6 و 6- هو قاسم مشترك ل 30 و 48.

<u>B</u>. القاسم المشترك الأكبر:

<u>1.</u> تعریف:

$$(a,b) \neq (0,0)$$
 اُي $(a,b) \in \mathbb{Z}^* \times \mathbb{Z}^*$. ($(a,b) \neq (0,0)$

 $\delta = a \wedge b$: أو ب $\delta = p \gcd(a,b)$ يسمى القاسم المشترك الأكبر ل a و b يسمى القاسم المشترك الأكبر ل الم

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس رقم

درس: الحسابيات في 🏿

<u>.</u> ملحوظة:

 $\delta \mid b \mid \delta \mid a \mid a \mid (a \wedge b) \mid b \mid b \mid a \wedge b \mid a \mid a \wedge (ka) = |a|$ و $\delta \mid a \mid b \mid a \wedge b \mid a \mid b \mid a \wedge b \mid a \mid a$

<u>3.</u> خاصیات:

 $\cdot \frac{a}{\delta} \wedge \frac{b}{\delta} = 1$ و $a \wedge b \geq 1$: لينا $a \wedge b = \delta$: ڪيث $(a,b) \in \mathbb{Z}^2 \setminus \{(0,0)\}$

- $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ $\exists a \wedge b = b \wedge a$.1
 - $a/b \Leftrightarrow a \wedge b = |a|$.2
- a کل a قاسم مشترك ل a و a فهو يحقق a کا a (أي $a \land b$). القواسم المشتركة ل a و a فهو يحقق a فهو يحقق a
- . $p\gcd(ka,kb) = |k|p\gcd(a,b)$ و $p\gcd(\frac{a}{k},\frac{b}{k}) = \frac{1}{|k|}p\gcd(a,b)$ و a و a فإن a و b و a و b و a

4. برهان 5: (لمعرفة البرهان اضغط هنا 🖘 🗵)

- 3_ ملحوظة: يمكن تحديد pgcd(a,b) بثلاثة طرائق:
- تفكيك العددين إلى جداء من العوامل الأولية. (مقر للجذع المشترك علوم و للسنة الأولى علوم رياضية)
- باستعمال القسمات الإقليدية المتتالية (أو المتتابعة) و ذلك بأخذ آخر الباقي الغير المنعدم (خوارزمية أقليديس). (الفقرة الموالية)
 - أو استعمال مبرهنة بيزو (Bézout). (مقرر السنة الموالية)

L'algorithme d'Euclide pour déterminer $a \wedge b$ خوارزمية إقليدس لتحديد $extbf{V}$

 $r \neq 0$ و b = qa + r مع $p\gcd(a,b) = p\gcd(a,r)$ و $a \neq b$

<u>1.</u> تمهيدة إقليدس Lemme d'Euclide

. $a \wedge b = a \wedge r$ القسمة الاقليدية ل $a \wedge b = a \wedge r$ من \mathbb{R}^* مع b = aq + r ليكن b = aq + r

<u>2.</u> نشاط:

. $a \wedge b = \delta$ d \wedge = rو ط من \mathbb{Z} حیث: b = qa + r مع b = qa + r عن \mathbb{R}^* و ط من \mathbf{R}^*

Algorithme d'Euclide : خوارزمية أقليديس

1. القسمات المتتالية:

 $.b = aq_1 + r_1$ و $b \ge a$ و n^* نرید : حساب $p \gcd(a,b)$ حیث : $a = p \gcd(a,b)$

- . $p \gcd(a,b) = p \gcd(a,r_1)$ على $a = aq_1 + r_1 = aq_1 + r_1$ و حسب تمهيدة أقليديس نحصل على $a = aq_1 + r_1 = aq_1 + r_1 = aq_1 + r_1$ و حسب تمهيدة أقليديس نحصل على $a = aq_1 + r_1 = aq_1 + aq_1$
 - $\mathbf{r}_{2} \neq \mathbf{0}$ نواصل. $\mathbf{p} \gcd(\mathbf{a}, \mathbf{b}) = \mathbf{p} \gcd(\mathbf{a}, \mathbf{r}_{1}) = \mathbf{p} \gcd(\mathbf{r}_{1}, \mathbf{r}_{2}) = \mathbf{r}_{1}$ نواصل. $\mathbf{a} = \mathbf{r}_{1}\mathbf{q}_{2} + \mathbf{r}_{2}$
- . $\mathbf{r}_1 = \mathbf{r}_2 \mathbf{q}_2 + \mathbf{r}_3$ و $\mathbf{r}_3 = \mathbf{q}_3$ إذن $\mathbf{r}_3 = \mathbf{q}_3$ و $\mathbf{r}_3 = \mathbf{q}_3$ الجامان $\mathbf{r}_3 = \mathbf{q}_3$ و اصل $\mathbf{r}_3 = \mathbf{q}_3$ و اصل الجامان $\mathbf{r}_3 = \mathbf{q}_3$ و اصل الجامان $\mathbf{r}_3 = \mathbf{q}_3$ و اصل الجامان $\mathbf{r}_3 = \mathbf{q}_3$
 -
- $p \gcd(a,b) = p \gcd(a,r_1) = p \gcd(r_1,r_2) = \cdots = p \gcd(r_{k-1},r_k) = r_{k-1}$ و $r_k = 0$ و $r_{k-2} = r_{k-1}q_k + r_k$

درس: الحسابيات في \mathbb{Z} درس رقم

تسمى القسمات المتتالية ل a على d.

 $r_{k} \neq 0$ نواصل.

 $. p \gcd(a,b) = p \gcd(a,r_1) = p \gcd(r_1,r_2) = \cdots = p \gcd(r_k,0) = r_k$ بنن $r_{k-1} = r_k q_k + 0$

لدينا : في كل مرحلة الباقي أصغر من الخارج ونعلم أن $\mathbf{r}_{i+1} < \mathbf{r}_i$ إذن القسمات المتتالية تتوقف عند باقي سيكون 0 مع

 $a > r_1 > r_2 > \cdots > r_k \ge 0$

<u>2.</u> مبرهنة:

ليكن a من \mathbb{Z} من \mathbb{Z} حيث: a لا يقسم a ، القاسم المشترك الأكبر للعددين a و a هو آخر باقي غير منعدم في طريقة القسمات المتتالية ل a على a .

ينا: a=275 و a=3451 و a=3451 . لاينا: $a=3451 \wedge 275$. استنتج $a=3451 \wedge 275$. الدينا:

 $m r_1$ = 151 : النبي هو : 3451 = 275imes151 الباقي هو : 151

 $ho_2 = 124$: الباقي هو : 124 + 124 = 275 الباقي هو : 124 + 124

 $r_3 = 27$: الباقي هو : $151 = 124 \times 1 + 27$

 $r_4 = 16$: الباقى هو : $124 = 27 \times 4 + 16$ الباقى هو

 $ho_5 = 11$: الباقي هو $ho_5 = 16 \times 1 + 11$ القسمة $ho_5 = 16 \times 1 + 11$

 $ho_6 = 5$: النه هو $ho_6 = 11 \times 1 + 5$ الباقي هو $ho_6 = 5$ المسمة $ho_6 = 5$

 $\mathbf{r}_7 = \mathbf{1}$ الباقي هو: $\mathbf{1} = 5 \! \times \! 2 \! + \! 1$ الباقي هو: 7

 $\mathbf{r}_8=\mathbf{0}$: الباقي هو $\mathbf{5}=\mathbf{1}\!\times\!\mathbf{5}\!+\!\mathbf{0}$ الباقي هو

 $m r_7 = 1$ هو : آخر باقي غير منعدم إذن : القاسم المشترك الأكبر ل m a = 275 هو : $m r_7 = 1$

 $a \wedge b = 3451 \wedge 275 = 1$ خلاصة:

مثال 2: طريقة تطبيق خوارزمية أقليديس لحساب pgcd(a,b): مع: 226 و 109 b = 109 (109 عدد أولي).

$$226 = 109 \times 2 + 8 \quad (r_1 = 8)$$

$$109 = 8 \times 13 + 5 \quad (r_2 = 5)$$

$$8 = 5 \times 1 + 3 \quad (r_3 = 3)$$

$$5 = 3 \times 1 + 2 \quad (\mathbf{r}_4 = 2)$$

$$3 = 2 \times 1 + 1 \quad (r_5 = 1)$$

2 = 1 ×1 + 1 (
$$\mathbf{r}_6$$
 = 1) (\mathbf{p} gcd(226,109) = 1)

$$\boxed{1} = \boxed{1} \times 1 + \boxed{0} \quad (\mathbf{r}_7 = \mathbf{0})$$

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: [علوم رياضية المستدن بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: [علوم رياضية المسابيات في المسابيات

 \mathbb{Z} درس:الحسابيات في

خلاصة: 1 = pgcd(226,109)

مثال 3 و 4:

مثال 4 : نحسب : pgcd(9945,3003)	مثال 3 : نحسب : pgcd(600,124)				
b = 9945و a = 3003	a = 124 $b = 600$				
$b = aq_1 + r_1$ $9945 = 3003 \times 3 + 936$ 2 $3003 = 936 \times 3 + 195$ 2 $936 = 195 \times 4 + 156$ 2 $195 = 156 \times 1 + 39$ 2 2 $156 = 39 \times 4 + 0$	b = $aq_1 + r_1$ $600 = 124 \times 4 + 104$ $24 = 104 \times 1 + 20$ $20 = 4 \times 5 + 4$ $20 = 4 \times 5 + 0$				
خلاصة: 9945,3003) = 39 خلاصة	خلاصة : p gcd (600,124) = 4				

. 600u + 124v = 4 عيث: v = 0 ديث: v = 0 عديد v = 0 عديد v = 0

مثال p gcd (600,124) : نحسب a = 124 _و b = 600 نضع :	طريقة تحديد معاملي بيزو
$b = aq_1 + r_1$ $600 = 124 \times 4 + 104$ $124 = 104 \times 1 + 20$ $104 = 20 \times 5 + 4$ $20 = 4 \times 5 + 0$	$4 = 124 \times (-5) + (600 - 124 \times 4) \times 6 = 600 \times 6 + 124 \times (-29)$ $4 = 104 - (124 - 104 \times 1) \times 5 = 124 \times (-5) + 104 \times 6$ $4 = 104 - 20 \times 5$
غلاصة : 4 = p gcd (600,124)	معاملي بيزو هما v = -29 و u = 6 إذن : 6×600+(-29)×124=4

les nombres premiers entre eux : عددان أوليان فيما بينهما

 A_{\cdot} عددان أوليان فيما بينهما :

<u>1.</u> تعریف:

. $p\gcd(a,b)=a \wedge b=1$: فقول إن عددين a و b أوليان فيما بينهما لنعني أن $\mathbb Z$ من a

درس:الحسابيات في \ \ \ درس دق

2_ مثال:

 $45 \land 21 = 3$: 45 فيما بينهما لأن $21 = 3 \land 45$

<u>3.</u> ملحوظة:

 $a' \wedge b' = 1$ و $a \wedge b' = 2$ من $a \wedge b' = a'$ مع $a \wedge b = a$ لاينا $a \wedge b = a$ لاينا $a \wedge b = a$

4. تمرین تطبیقی:

نبين : $a=1 \wedge a=\mathbb{Z}$, a+1 ماذا تستنتج ؟

ليكن d قاسم مشترك ل a+1 و a إذن a a و a+1 و منه a+1 ومنه a+1 (تأليفة خطية ل a+1 و a)

 $(a+1)\land a=1$ أو a=1 و بالتالي أكبر قاسم مشترك ل a+1 و a=1 ومنه $a=1\land d=1$.

نستنتج أن: a+1 و a أوليان فيما بينهما.

VII. المضاعف المشترك الأصغر:

<u>A</u> المضاعف المشترك الأصغر:

<u>1.</u> تعریف:

. $(a,b) \in \mathbb{Z}^* imes \mathbb{Z}^*$: ليكن

او أيضا: a o b و a يسمى المضاعف المشترك الأصغر ل a و a و يرمز له ب: a o b او أيضا: a o b . نأخذ a o b ومنه a o b .

<u>2.</u> ملحوظة:

. $k' \in \mathbb{Z}$ مع m = k'b و $k \in \mathbb{Z}$ مع m = ka

 $a \lor b$ هو $(a \mathbb{Z} \cap b \mathbb{Z}) \cap \mathbb{N}^*$ هو أصغر عنصر من المجموعة

دينا: a > 1 = a

<u>3 مثال</u>:

 $.36 \lor (-30)$: أوجد

 $.36 \lor (-30) = 2^2 \times 3^2 \times 5 = 180$ و منه $.36 \lor (-30) = 2^2 \times 3^2 \times 5 = 180$ و منه $.36 \lor (-30) = 2^2 \times 3^2 \times 5 = 180$

4. نشاط:

 $a \lor b$ هو $(a \mathbb{Z} \cap b \mathbb{Z}) \cap \mathbb{N}^*$ هو $a \lor b$ هو $a \lor b$

- .a > b = b > a : بين أن
- . $a \lor b = |b| \iff (b \text{ يقسم } a)$.
- $m \leq M$ و و فإن a مضاعف مشترك غير منعدم ل a و و فإن M و a

جواب:

1. نبين أن: a > b > 0

 $a \lor b \in \mathbb{N}^*$: $a \lor b \in (a\mathbb{Z} \cap b\mathbb{Z}) \cap \mathbb{N}^*$. $a \lor b$ ومنه $a \lor b \in \mathbb{N}^*$ ومنه: $a \lor b \in \mathbb{N}^*$ ومنه: $a \lor b \in \mathbb{N}^*$ ومنه: $a \lor b > 0$

 $\mathbf{a} \vee \mathbf{b} = \mathbf{b} \vee \mathbf{a}$: نبین أن

 $a \lor b = b \lor a$ اِذْن: $a \lor b = b \lor a$ اِذْن: $a \lor b = b \lor a$

درس رقم

درس: الحسابيات في 🏿

- 3. نبين أن : (a يقسم a) ⇔ (b يقسم a ∨ b = |b|
 - $b\mathbb{Z} \subset a\mathbb{Z}$ يكافئ (b يقسم a)

 $\mathbf{b}\mathbb{Z} \cap \mathbf{a}\mathbb{Z} = \mathbf{b}\mathbb{Z}$

 $(b\mathbb{Z} \cap a\mathbb{Z}) \cap \mathbb{N}^* = b\mathbb{Z} \cap \mathbb{N}^*$ يكافئ

 $a \lor b = |b|$ يكافئ

 $m \leq |\mathbf{M}|$ فإن \mathbf{b} و \mathbf{a} فير منعدم ل \mathbf{a} في مضاعف مشترك غير منعدم ل \mathbf{a}

5. خاصیات:

 $.a \lor b = m$ ليكن : $\mathbb{Z}^* \times \mathbb{Z}^*$ عيث:

- $a \lor b = b \lor a$.1
- 2. كل من a و b يقسمان a > b.
- . $a \lor b = |b| \Leftrightarrow (b = a)$.3
- $\mathbf{M} \succeq \mathbf{M}$ و \mathbf{M} فإن $\mathbf{M} \succeq \mathbf{M}$. $\mathbf{M} \succeq \mathbf{M}$ و $\mathbf{M} \succeq \mathbf{M}$.
 - . ab يقسم m .5

<u>VII</u>. تحديد القاسم المشترك الأكبر – المضاعف المشترك الأصغر باستعمال التفكيك إلى جداء من العوامل الأولية: A. القسمة بعدد أولى p:

1. نشاط:

 $a \wedge b = a$ و $a \wedge b = a$ عدد أولي. $a \wedge b = a$ و $a \wedge b = a$ عدد أولي.

- 1. بين أن: p لايقسم a∧p=1⇔a
 - 2. أعط الخاصية.

جواب:

 $\mathbf{a} \wedge \mathbf{p} = |\mathbf{p}| \Leftrightarrow \mathbf{a}$ القواسم الموجبة ل \mathbf{p} هي 1 و $|\mathbf{p}|$ إذن: $\mathbf{a} \wedge \mathbf{p} = |\mathbf{p}|$ أو $\mathbf{a} \wedge \mathbf{p} = |\mathbf{p}|$ وبالتالي: \mathbf{p} يقسم $\mathbf{a} \Leftrightarrow \mathbf{p}$.

. $a \wedge p = 1 \Leftrightarrow a$ لا يقسم $a \wedge p \neq |p| \Leftrightarrow a$ يصبح و لا يقسم $a \wedge p \neq |p| \Leftrightarrow a$

<u>2.</u> خاصية:

 $a \wedge p = 1 \Leftrightarrow a$ ليكن : $a \otimes p$ عدد أولي لدينا : $a \wedge p = 1 \Leftrightarrow a$

<u>3.</u> خاصية:

ليكن: $\mathbb{Z}^* imes \mathbb{Z}^*$ و \mathbf{p} عدد أولي.

إذا كان: qيقسم ab فإن: p يقسم a أو p يقسم b .

<u>4.</u> خاصية:

و p_2 و و p_n أعداد أولية موجبة .

 $(\mathbf{p} = \mathbf{p}_i$ فإن \mathbf{p}_i يساوي أحد العوامل \mathbf{p}_i مع \mathbf{p}_i أي يوجد \mathbf{p}_i فإن \mathbf{p}_i فإن \mathbf{p}_i يساوي أحد العوامل \mathbf{p}_i مع \mathbf{p}_i

درس رقم

درس: الحسابيات في 🏿

B. عدد قواسم B:

1. مبرهنة:

. $\mathbf{a}=\mathbf{\epsilon}\mathbf{p}_1^{lpha_1} imes\mathbf{p}_2^{lpha_2} imes\mathbf{p}_3^{lpha_3} imes\cdots imes\mathbf{p}_n^{lpha_n}$ هو $\mathbf{a}=\mathbf{\epsilon}\mathbf{p}_1^{lpha_1} imes\mathbf{p}_2^{lpha_2} imes\mathbf{p}_3^{lpha_3} imes\cdots imes\mathbf{p}_n^{lpha_n}$ عيث تفكيك $\mathbf{a}=\mathbf{p}_1^{lpha_1} imes\mathbf{p}_2^{lpha_2} imes\mathbf{p}_3^{lpha_3} imes\cdots imes\mathbf{p}_n^{lpha_n}$

 $\gamma_2 \in \left\{0,1,\cdots,\alpha_2
ight\}$ و $\gamma_1 \in \left\{0,1,\cdots,\alpha_1
ight\}$ و $\alpha_2 \in \left\{0,1,\cdots,\alpha_1
ight\}$ و $\alpha_3 \in \left\{0,1,\cdots,\alpha_2
ight\}$ و $\alpha_3 \in \left\{0,1,\cdots,\alpha_2\right\}$ و $\alpha_3 \in \left\{0,1,\cdots,\alpha_2\right\}$

 $\gamma_n \in \{0,1,\cdots,\alpha_n\}$

2. ملحوظة:

كل جداء جزئي من هذه العوامل الأولية للتفكيك ل a فهو يقسم العدد a

 $(\alpha_1+1)(\alpha_2+1)\times\cdots\times(\alpha_n+1)$ هو a عدد القواسم الموجبة ل

 $2 \times (\alpha_1 + 1)(\alpha_2 + 1) \times \cdots \times (\alpha_n + 1)$ عدد القواسم الموجبة و السالبة ل a ف a

3_ تطبيق:

 $(\alpha_1+1)(\alpha_2+1)\times(\alpha_3+1)=(2+1)(1+1)(1+1)=12$ عدد الواسم الموجبة ل $a=60=2^2\times3\times5$ عدد الواسم الموجبة ل $a=60=2^2\times3\times5$

 $a \wedge b$ و a من أجل تحديد $a \vee b$ و a عند \underline{C}

1. مفردات و رموز:

- أصغر العددين: a = 13 و b = 17 هو 13 نرمز له ب inf (13,17) = 13 أو أيضا b = 17 و 13 أو أيضا
- أكبر العددين: a = 13 و a = 17 هو 17 نرمز له ب sup(13,17) = 17 أو أيضا b = 17 و أيضا

<u>2.</u> خاصية:

 $\epsilon'=\pm$ و $\epsilon=\pm$ و $\epsilon'=\pm$ و $\epsilon=\pm$ $\epsilon'=\pm$ و $\epsilon'=\pm$

- $. i \in \{0,1,\dots,n\} \quad \text{$\underline{\hspace{-0.05cm}}$} \quad \sigma_i = \sup(\alpha_i,\beta_i) \quad \text{$\underline{\hspace{-0.05cm}}$} \quad a \lor b = \operatorname{ppcm}(a,b) = p_1^{\sigma_1} \times p_2^{\sigma_2} \times p_3^{\sigma_3} \times \dots \times p_n^{\sigma_n} \quad \blacksquare$

. $b = 130 = 2 \times 5 \times 13$ و $a = -60 = -2^2 \times 3 \times 5$: نَطْبِيقَ: نَاخَذُ : 3

 $130 \land 60 = P.G.D.C(130,60) = 2^1 \times 3^0 \times 5^1 \times 13^0 = 2 \times 5 = 10$ لاينا:

. $130 \lor 60 = P.P.M.C(130,60) = 2^2 \times 3^1 \times 5^1 \times 13^1 = 4 \times 3 \times 5 \times 13 = 780$

La congruence modulo n الموافقة بترديد.

A. الموافقة بترديد n:

<u>1.</u> تعریف:

 $(a,b) \in \mathbb{Z}^2$ يكن $n \in \mathbb{N}^*$

 $a \equiv b \mod(n)$ أو أيضا $a \equiv b \pmod(n$ أو أيضا $a \equiv b \pmod(n)$ نقول إن $a \equiv b \pmod(n)$ أو أيضا

<u>2</u> مثال:

 $-4\cdots$ 5 [3] ؛ $12\cdots$ 6 [3] ؛ $1\cdots$ 4 [3] ؛ $1\cdots$ 5 [3] . \neq أتمم : باستعمال الرمز المناسب من بين: \neq أو \neq 1 أتمم : باستعمال الرمز المناسب من بين: \neq أو

B. خاصيات الموافقة بترديد n

درس رقم

درس: الحسابيات في 🏿

<u>1.</u> خاصیات

. $\mathbf{n} \in \mathbb{N}^*$ و $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \in \mathbb{Z}^3$

<u>.1</u>

 $a \equiv b [n] \Leftrightarrow \exists k \in \mathbb{Z} / b = a + kn = \underline{b}$

 $\{\cdots a-3n,a-2n,a-n,a,a+n,a+2n,a+3n,\cdots\}$. هي $\{a \in a : a-3n,a-2n,a-n,a,a+n,a+2n,a+3n,\cdots\}$

2

 $\forall a \in \mathbb{Z} : a \equiv a \ [n] : \underline{\underline{1}}$ الإنعكاسية

 $.\, \forall a,b \in \mathbb{Z} : a \equiv b \ [n] \iff b \equiv a \ [n] : \underline{\underline{2}}$

 $\forall a,b,c,d \in \mathbb{Z}: (a \equiv b \ [n]) \Rightarrow a \equiv c \ [n]) \Rightarrow \underbrace{a \equiv c \ [n]}$ ياتعدية :

يكافئ أن a=kn+r و b=k'n+r مع a=kn+r أي a=b و a=kn+r يكافئ أن a=kn+r و a=kn+r مع a=kn+r مع a=kn+r .

(نقول أن الموافقة منسجمة مع الجمع) $(c \equiv d \ [n]) \Rightarrow a + c \equiv b + d \ [n]$) $\Rightarrow a + c \equiv b + d \ [n]$

ي الموافقة منسجمة مع الضرب). $(c \equiv d \ [n]) \Rightarrow a \times c \equiv b \times d \ [n]$ ي $a \equiv b \ [n]$

 $a \equiv b \ [n] \Rightarrow (\forall k \in \mathbb{N}; a^k \equiv b^k \ [n]) \underline{\underline{3}}$

2. برهان 6: (لمعرفة البرهان اضغط هنا 🖘 🗵)

<u>3.</u> ملحوظة:

- علاقة الموافقة منسجمة مع الجمع و الفرق و الضرب.
- انتبه! علاقة الموافقة غير منسجمة مع القسمة و الجذر المربع:

مثال 1: [6] 8 = 44 و لكن لا يمكن أن نقسم ب 4 لكي نؤكد أن 11 يوافق 2 بترديد 6 مثال

مثال 2 : [12] 4 = 4 و لكن لا يمكن أن نستعمل الجذر المربع لنؤكد أن 2 يوفق 4 بترديد 12 .

الا يمكن أن نختزل في الموفقة كما نختزل في المتساويات

. 2 لا يمكن أن نختزل ب $2x \equiv 2y$ [p] : مثال

<u>4.</u> أمثلة:

نحدد باقي القسمة ل 3ⁿ على 7.

. $r \in \{0,1,2,3,4,5,6\}$ هي $r \in \{0,1,2,3,4,5,6\}$ على r على r

دينا : [7] : لدينا

نعطي جدول يعطي بواقي القسمة للأعداد الأولى من "3 على 7.

3 ⁿ	3 ⁰	3 ¹	3 ²	3 ³	3 ⁴	3 ⁵	3 ⁶
r	1	3	2	6	4	5	1

 $orall k\in \mathbb{N}, 3^{6k}\equiv \left(3^6
ight)^k\equiv 1^k\equiv 1$ [7] ومنه : لكل أس يكون مضاعف ل 6 الباقي هو 1 إذن لكل

n=6q+r من $n\in\mathbb{N}$ من (q,r) من $n\in\mathbb{N}$ من جهة أخرى : ليكن $n\in\mathbb{N}$ من على n=6q+r معلى $n\in\mathbb{N}$ من جهة أخرى : ليكن $n\in\mathbb{N}$

 $r \in \{1,2,3,4,5,6\}$ $0 \le r < 6$

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس رقم

 \mathbb{Z} درس: الحسابيات في

 $3^{n} \equiv 3^{6q+r} \equiv \left(3^{6}\right)^{q} \times 3^{r} \equiv 3^{r} \left[7\right]$ إذن

. منه :الجدول التالي يعطي ${f r}$ باقي القسمة ل ${f 3}^n$ على ${f 7}$.

n	6k	6k+1	6k + 2	6k+3	6k + 4	6k + 5	6k+6
3 ⁿ ≡	3°	3 ¹	3^2	3^3	3^4	3 ⁵	36
r	1	3	2	6	4	5	1

، نحدد باقى القسمة ل 1515²⁰¹⁵ على 7.

$$2012 \equiv 287 \times 7 + 3$$
 [7]
= $287 \times 7 + 3$ [7]

$$\equiv 3 \quad [7] ; \begin{cases} 7 \equiv 0 \Rightarrow 287 \times 7 \equiv 287 \times 0 \quad [7] \\ 287 \times 7 \equiv 287 \times 0 \Rightarrow 287 \times 7 + 3 \equiv 287 \times 0 + 3 \quad [7] \end{cases}$$

من جهة أخرى:

$$1512 \equiv 3[7] \Rightarrow 1512^{2015} \equiv 3^{2015}$$
 [7]

$$\Rightarrow 1512^{2015} \equiv 3^{335 \times 6 + 5}$$
 [7]

$$\Rightarrow 1512^{2015} \equiv 3^{335 \times 6} \times 3^5 \qquad \boxed{7}$$

$$\Rightarrow 1512^{2015} \equiv \left(3^6\right)^{335} \times 3^5 \quad [7]$$

$$\Rightarrow 1512^{2015} \equiv 1^{335} \times 3^5$$
 [7]

$$\Rightarrow 1512^{2015} \equiv 3^5$$
 [7]

$$\Rightarrow 1512^{2015} \equiv 5$$
 [7]

و منه: باقي القسمة ل 1515²⁰¹⁵ على 7 هو 5.

. $2^n \equiv n^2 \ \left[9 \right]$ حيث n حيث الأعداد الصحيحة الطبيعية م

نعطى جدول للقيم الممكنة ل n^2 و n^2 بترديد 9.

n	0	1	2	3	4	5	6	7	8
2 ⁿ	1	2	4	8	7	5	1	2	4
n ²	0	1	4	0	7	7	0	4	1

 $n\equiv 4$ $\left[9\right]$ أو $n\equiv 2$ $\left[9\right]$ أو $n\equiv n^2$ $\left[9\right]$ أو $n\equiv n^2$ أو $n\equiv n^2$ أو أو أمن خلال الجدول نستنتج أن $n\equiv n$

. $k\in\mathbb{N}$ مع n=9k+4 أو n=9k+2 أو n=9k+4 مع n=9k+4 مع n=9k+4 مع التي على شكل n=9k+4 أو

 $rac{\mathbb{Z}}{n\mathbb{Z}}$ أصناف التكافؤ - المجموعة $rac{\mathbb{Z}}{n}$

classes d'équivalence modulo n : n أصناف التكافئ بترديد $oldsymbol{A}$

<u>1.</u> تعریف:

. $\mathbf{a} = \mathbf{k}\mathbf{n} + \mathbf{r}$. حيث $\mathbf{n} \in \mathbb{N}^*$ ليكن $\mathbf{n} \in \mathbb{N}^*$. حيث

 \overline{a} الأعداد x من $\mathbb Z$ التي توافق a بترديد a تكون مجموعة تسمى صنف التكافؤ a ونرمز له ب:

2_ ملحوظة و مفردات و رموز:

a عدد من Z . حيث: a = kn + r

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس رقم

درس: الحسابيات في

. a-r=kn+r-r , $(k \in \mathbb{Z}) \Leftrightarrow a-r=kn$, $(k \in \mathbb{Z}) \Leftrightarrow a \equiv r \ [n]$. $a \equiv r \ [n]$

 $\bar{a} \equiv \bar{r} [n]$ ومنه $a \equiv r [n]$ إذن

. n على الأعداد من $\mathbb Z$ التي لها نفس الباقي $\mathbf r$ باقي القسمة على $\mathbf n$

 $\stackrel{-}{a}=\left\{k\in\mathbb{Z}/a\equiv x\;\left[n
ight]
ight\}$ أو أيضا $\stackrel{-}{a}=\left\{k\in\mathbb{Z}/x\equiv a\;\left[n
ight]
ight\}$ أي $\stackrel{-}{a}=\left\{a+kn/k\in\mathbb{Z}
ight\}$ أن:

 $\overline{n-1},\cdots,\overline{2},\overline{1},\overline{0}$: أصناف التكافؤ هي

 $\overline{n-1},\cdots,\overline{2},\overline{1},\overline{0}:$ بمأن $r\in\mathbb{N}$ و $r\in\mathbb{N}$ إذن $r\in\{0,1,2,3,\cdots,n-1\}:$ بمأن $r\in\mathbb{N}$ و $r\in\mathbb{N}$

$$\overline{0} = \left\{ \operatorname{kn} / \operatorname{k} \in \mathbb{Z} \right\} = \left\{ \cdots, -3n, -2n, -n, 0, n, 2n, 3n, \cdots \right\}$$
! $\dot{0}$

$$\bar{1} = \{kn+1/k \in \mathbb{Z}\} = \{\cdots, -3n+1, -2n+1, -n+1, 1, n+1, 2n+1, 3n+1, \cdots\}$$

$$\bar{2} = \{kn + 2/k \in \mathbb{Z}\} = \{\cdots, -3n + 2, -2n + 2, -n + 2, 2, n + 2, 2n + 2, 3n + 2, \cdots\}$$

.
$$\overline{3} = \{kn + 3/k \in \mathbb{Z}\} = \{\cdots, -3n + 3, -2n + 3, -n + 3, 3, n + 3, 2n + 3, 3n + 3, \cdots\}$$

.....

$$\overline{n-1} = \{kn + n - 1/k \in \mathbb{Z}\} = \{k'n - 1/k' \in \mathbb{Z}\}
= \{\dots, -3n - 1, -2n - 1, -n - 1, -1, n - 1, 2n - 1, 3n - 1, 3n + 1, \dots\}$$

المجموعة المخرجة هي:

هذه الأصناف تكون مجموعة هي: $\{\overline{0},\overline{1},\overline{2},\dots,\overline{n-1}\}$ و تسمى المجموعة المخرجة و يرمز لها ب $\mathbb{Z}/n\mathbb{Z}$ إذن:

$$\cdot \mathbb{Z}/_{n\mathbb{Z}} = \left\{ \bar{x} / x \in \mathbb{Z} \right\} = \left\{ \bar{0}, \bar{1}, \bar{2}, \dots, \bar{n-1} \right\}$$

3 أمثلة:

. $\mathbb{Z}/_{\mathbb{Z}} = \left\{ \overline{0} \right\}$ $\overline{0} = \mathbb{Z}$: الذن n = 1 : 1 مثال

مثال n = 2 : 2

 $\bar{1} = \{2k + 1 / k \in \mathbb{Z}\} = \{\cdots, -5, -3, -1, 1, 3, 5, 7, \cdots\}$ و $\bar{0} = \{2k / k \in \mathbb{Z}\} = \{\cdots, -6, -4, -2, 0, 2, 4, 6, \cdots\}$ إذَن :

$$\mathbb{Z}/_{2\mathbb{Z}} = \{\bar{0},\bar{1}\}$$
 : و منه

n = 4:3 مثال

 $\bar{1} = \left\{4k + 1/k \in \mathbb{Z}\right\} = \left\{\cdots, -11, -7, -3, 1, 5, 9, 11, \cdots\right\} \quad \bar{0} = \left\{4k / k \in \mathbb{Z}\right\} = \left\{\cdots, -12, -8, -4, 0, 4, 8, 12, \cdots\right\} = \left\{-4k + 1/k \in \mathbb{Z}\right\} = \left\{-4$

$$\mathbb{Z}/_{4\mathbb{Z}} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$$
 : و منه

 $\underline{\underline{\mathbb{Z}}}_{n\mathbb{Z}}$ الجمع و الضرب في المجموعة $\underline{\underline{B}}$

1. تعریف:

 \mathbb{Z} ليكن : \mathbb{N}^* و \mathbf{a} و \mathbf{a} من

$$\bar{a} + \bar{b} = \overline{a + b} : \mathbb{Z}/_{n\mathbb{Z}}$$

$$\overline{a} \times \overline{b} = \overline{a \times b} = \overline{ab}$$
 : $\mathbb{Z}_{n\mathbb{Z}}$

2. أمثلة:

درس: الحسابيات في 🌋 درس رق

	n=5 مثال	$\left(\mathbb{Z}_{5\mathbb{Z}}^{\prime},+ ight)$ جدول										
×	$\bar{0}$	ī	$\bar{2}$	$\bar{3}$	$\bar{4}$		Ť	$\bar{0}$	ī	$\bar{2}$	$\bar{3}$	$\bar{4}$
$\bar{0}$	$\bar{0}$	ō	$\bar{0}$	ō	$\bar{0}$		$\bar{0}$	$\bar{0}$	<u>-</u> 1	$\bar{2}$	<u>3</u>	$\bar{4}$
ī	$\bar{0}$	ī	$\bar{2}$	<u>-</u> 3	$\bar{4}$		ī	<u>-</u> 1	$\bar{2}$	$\bar{3}$	$\bar{4}$	ō
$\bar{2}$	$\bar{0}$	$\bar{2}$	$\bar{4}$	ī	$\bar{3}$		$\bar{2}$	$\bar{2}$	<u>-</u> 3	$\bar{4}$	$\bar{0}$	ī
<u>3</u>	$\bar{0}$	<u>3</u>	ī	4	$\bar{2}$		$\bar{3}$	<u>-</u> 3	$\bar{4}$	$\bar{0}$	$\bar{1}$	$\bar{2}$
$\bar{4}$	$\bar{0}$	$\bar{4}$	$\bar{3}$	$\bar{2}$	ī		$\bar{4}$	$\bar{4}$	$\bar{0}$	ī	$\bar{2}$	<u>3</u>

3. تمارین تطبیقیة:

. حدد باقي القسمة الإقليدية ل 73²⁰¹⁴ على 7.

$$73^{2014} \equiv 3^{2014}$$
 [7] : لاينا $3 \equiv 3$ [7] الاينا

$$3^{2014} \equiv \left(3^2\right)^{1007} \equiv 2^{1007} \equiv \left(2^3\right)^{335} \times 2^2 \equiv 1^{335} \times 4 \equiv 4 \quad [7]$$
 لاينا

خلاصة: 4 هو باقي القسمة الإقليدية ل 73²⁰¹⁴ على 7.

طريقة 2:

و
$$73^5 \equiv 3^4 \times 3 \equiv 4 \times 3 \equiv 5$$
 [7] و $73^4 \equiv 3^4 \equiv 4$ و $73^5 \equiv 3^3 \equiv 6$ و $73^5 \equiv 3^4 \times 3 \equiv 4 \times 3 \equiv 5$ و $73^5 \equiv 3^4 \times 3 \equiv 4 \times 3 \equiv 5$ و $73^5 \equiv 3^4 \times 3 \equiv 4 \times 3 \equiv 5$ و $73^5 \equiv 3^4 \times 3 \equiv 4 \times 3 \equiv 5$ و $73^5 \equiv 3^4 \times 3 \equiv 4 \times 3 \equiv 5$ و $73^5 \equiv 3^4 \times 3 \equiv 4 \times 3 \equiv 5$

$$73^6 \equiv 3^6 \equiv 3^3 \times 3^3 \equiv 6 \times 6 \equiv 35 \equiv 1$$
 [7]

$$73^{2014} \equiv 73^{335 \times 6 + 4} \equiv 73^{335 \times 6} \times 73^4 \equiv \left(73^6\right)^{335} \times 73^4 \equiv 1^{335} \times 4 \equiv 4 \quad [7]$$
 و هنه : $2014 = 335 \times 6 + 4 = 4$

خلاصة: 4 هو باقي القسمة الإقليدية ل 73²⁰¹⁴ على 7.

24537²⁰¹⁴: حدد رقم الوحدات للعدد

إذن باقي القسمة ل $24537^{2014} = 24537^{2014} = 10$ هو 9 و منه $(k \in \mathbb{Z})$ هو 9 و منه رقم الوحدات هو 9

 ${f c}$ عدد صحيح طبيعي ${f x}={f dcba}$ حيث رقم الوحدات هو ${f a}$ و رقم العشرات هو ${f b}$

$$x \equiv (a-b+c-d)$$
 [11] : بين أن

$$x = dcba = a \times 10^{0} + b \times 10^{1} + c \times 10^{2} + d \times 10^{3}$$
 لاينا:

.
$$n \in \mathbb{N}$$
 مع $10^n \equiv (-1)^n$ [11] : نعلم أن $= -1$ [11] مع

و منه:

$$x = (a \times 10^{0} + b \times 10^{1} + c \times 10^{2} + d \times 10^{3}) [11]$$

$$x = (a \times (-1)^{0} + b \times (-1)^{1} + c \times (-1)^{2} + d \times (-1)^{3}) [11]$$

$$x = (a - b + c - d) [11]$$

$$x \equiv (a-b+c-d)$$
 [11] خلاصة:

ما هو باقي القسمة ل 24789 على 11.

$$.24789 \equiv 9 - 8 + 7 - 4 + 2 \equiv 6 [11]$$
 : لدينا

خلاصة: 6 هو باقي القسمة ل 24789 على 11.

نهاية الدرس (ما تبقى فقط البراهين للفقرات السابقة)

رس رقم

درس: الحسابيات في 🏿

🔝 برهان 1 : (لرجوع إلى الدرس اضغط هنا 🖘 🗵)

<u>a عنا : a = 1 اذن a يقسم a .a</u>

غلاصة : a|a <u>b</u> لدينا :

 $a \mid b \Rightarrow \exists k \in \mathbb{Z} / b = ka$

 $\Rightarrow \exists k \in \mathbb{Z} / bc = kca = (kc)a$: النّ

 $\Rightarrow \exists k' = kc \in \mathbb{Z}/bc = k'a$: each

غ a | cb : أي

 $a \mid b \Rightarrow a \mid cb ; (c \in \mathbb{Z})$ خلاصة:

 $\Rightarrow (\exists k, k' \in \mathbb{Z} / c = k'(ka) = (kk')a \quad : \psi$

 $\Rightarrow \exists \mathbf{k}'' = \mathbf{k}\mathbf{k}' \in \mathbb{Z}/\mathbf{c} = \mathbf{k}''\mathbf{a} \qquad \vdots$

 \Rightarrow a|c : ومنه

(a|b|e) عا(a|b|e) خلاصة

. $(a \mid b \mid a) \Rightarrow |a| = |b|$ و $\underline{\underline{\mathbf{h}}}$

. $(a \mid b \mid a) \Rightarrow (\exists k, k' \in \mathbb{Z} / b = ka \mid a = k'b)$. $(a \mid b \mid a) \Rightarrow (\exists k, k' \in \mathbb{Z} / b = ka \mid a = k'b)$

 $a = k'b = k'(ka) = (kk') \times a$! !

(kk'=1) الن a=0 أو a=0 $(1-kk') \times a=0$

عالة a = 0 : 1

. |a| = |b| ومنه $b = ka = k \times 0 = 0$

دالة 2: 1 : 2 kk

 $\mathbf{k} = \mathbf{k'} = -1$ أو $\mathbf{k} = \mathbf{k'} = 1$ إذن $\mathbf{k} = \mathbf{k'} = 1$

 $(b=ka=-1\times a) = a+k'b=-1\times b) \quad (b=ka=1\times a) = a+k'b=1\times b$

 $\mathbf{a} = -\mathbf{b}$ \mathbf{b} $\mathbf{a} = \mathbf{b}$

 $|\mathbf{a}| = |\mathbf{b}| : |\mathbf{b}|$

 $(a \mid b \mid b \mid a) \Rightarrow |a| = |b|$ ف

 $(a \mid b \mid a \mid c) \Rightarrow (a \mid \alpha b \mid a \mid \beta c)$ و $(a \mid b \mid a \mid c)$

 $\Rightarrow (\exists k, k' \in \mathbb{Z} / \alpha b = k a)$ و $\beta c = k' a$

 $\Rightarrow (\exists k, k' \in \mathbb{Z} / \alpha b + \beta c = k a + k' a = (k + k')a$ ومنه:

 $\Rightarrow (\exists k'' = k + k' \in \mathbb{Z}/\alpha b + \beta c = k'' a$ و منه :

 \Rightarrow a | $(\alpha b + \beta c)$: افن

 $(a|b + a|c) \Rightarrow a|(\alpha b + \beta c)$ خلاصة:

 $\Rightarrow \exists k, k' \in \mathbb{Z} / bd = ka \times k'c = (kk')ac$: ومنه

درس رقم

درس: الحسابيات في 🏿

 $\Rightarrow \exists k'' = kk' \in \mathbb{Z} / bd = k''(ac)$: $\downarrow \dot{} \dot{} \dot{}$

غ ac | bd : إذن

 $\left. \begin{array}{c} \mathbf{a} \mid \mathbf{b} \\ \mathbf{c} \mid \mathbf{d} \end{array} \right\} \Rightarrow \mathbf{ac} \mid \mathbf{bd} : \mathbf{bd}$ خلاصة

 $\mathbf{n} \in \mathbb{N}^*$ مع $\mathbf{a} \mid \mathbf{b} \Rightarrow \mathbf{a}^{\mathrm{n}} \mid \mathbf{b}^{\mathrm{n}}$ نستنتج أن

نستدل على ذلك بالترجع:

. n=1 لدينا . $a \mid b \Rightarrow a^1 \mid b^1 \left(a^1=a \;\;, b^1=b \right) \;\;.$ لدينا . n=1 لدينا . n=1 الدينا . n=1

ب. نفترض أن العلاقة صحيحة إلى الرتبة $\,n\,$ أي $\,a^n\,|\,b^n\,$ (معطيات الترجع)

 $a^{n+1} \mid b^{n+1}$ أن : العلاقة صحيحة للرتبة n+1 أي نبين أن : العلاقة صحيحة للرتبة

(حسب الخاصية السابقة) . $\left. egin{array}{c} a \, | \, b \\ a^n \, | \, b^n \end{array} \right\}$ كدينا : $a \, | \, b \, | \, b$

 \Rightarrow $\mathbf{a}^{n+1} \mid \mathbf{b}^{n+1}$: إذن

غلاصة: a|b⇒aⁿ|bⁿ

 $(a \mid b \Rightarrow b \neq 0) \Rightarrow |a| \leq |b|$ و $(a \mid b \Rightarrow b \neq 0)$

 $\mathbf{b} = \mathbf{ka}; \mathbf{k} \in \mathbb{Z} \Rightarrow |\mathbf{b}| = |\mathbf{ka}| = |\mathbf{k}||\mathbf{a}|$ بما أن: \mathbf{a} تقسم \mathbf{b} و $\mathbf{b} \neq \mathbf{0}$ إذن:

 $|\mathbf{k}| \ge 1$: فری $\mathbf{k} \ne 0$ ومنه $\mathbf{k} \ne 0$ إذن

ومنه:

 $|\mathbf{k}| \ge 1 \Rightarrow |\mathbf{a}| |\mathbf{k}| \ge 1 |\mathbf{a}|$

 $\Rightarrow |\mathbf{b}| \ge |\mathbf{a}|$

. $(a \mid b \in b \neq 0) \Rightarrow |a| \leq |b|$ ف حلاصة:

2 برهان 2: (لرجوع إلى الدرس اضغط هنا 🖘 🗓

(1) (x الجزء الصحيح ل $E(x) \le x < E(x) + 1$ نذكر:

نبين الوجودية:

حالة 1: a > 0

r = b - aq نضع $\left(\frac{b}{a}\right)$ و الجزء الصحيح ل q) $q = E\left(\frac{b}{a}\right)$ نضع

من خلال (1) نحصل على:

$$E\left(\frac{b}{a}\right) \le \frac{b}{a} < E\left(\frac{b}{a}\right) + 1 \Leftrightarrow q \le \frac{b}{a} < q + 1$$

 \Leftrightarrow aq \leq b < a(q+1) ; a > 0

 \Leftrightarrow aq \leq aq + r < a(q+1)

⇔0≤r<a

 $\Leftrightarrow 0 \le r < |a| \qquad ; |a| = a$

a < 0 : 2 حالة

بما أن a < 0 إذن a - a من \mathbb{N}^* . حسب الحالة 1 إذن a < 0 بما أن a < 0

a<0 مع a=-a کئن a=-a مع $0\leq r<-a$

درس:الحسابيات في 🏿 درس رق

b = aq + r ومنه $0 \le r < |a|$

بالنسبة للوحدانية:

a(q-q')=r'-r' الذنa(q-q')=r'-r' ومنه a(q-q')=r'-r' الذن

 $\mathbf{q}=\mathbf{q}$ ' من خلال $\mathbf{r}'=\mathbf{r}$ ومنه $\mathbf{r}'=\mathbf{r}$ انن $\mathbf{r}'-\mathbf{r}=\mathbf{0}$ ومنه $\mathbf{q}=\mathbf{q}$

🙎 برهان 3: (لرجوع إلى الدرس اضغط هنا 🖘

• نفترض أن : d ليس بعدد أولي . (1)

(1) 1 < d' < d اذن d يقبل قاسم فعلي موجب 'd (أي d' ∉ {1,d} إذن d) إذن

بما أن d'|d و d|a فإن d'|d فإن . (2)

. a من خلال (1) و (2) إذن ' d هو أصغر قاسم ل a و هذا يناقض d أصغر قاسم ل a

إذن الافتراض كان خاطئا و الصحيح هو d عدد أولي.

خلاصة: a عدد أولى.

. $\mathbf{d} \leq \sqrt{\mathbf{n}}$ ليس بعدد أولي نبين \mathbf{a}

و لدينا : 1 < d و d < a و لان a = dd و d > 1 و d = d

d'|a و 1</b و بما أن d أصغر قاسم إذن d'≥d.

. $\sqrt{d} \le a$ ومنه $a \ge \sqrt{d}$ و الضرب ب $a \ge d^2$ أي $a \ge d^2$ ومنه $a \ge d^2$ ومنه $a \ge d$

 $\sqrt{d} \le a$ غلاصة

🙎 عبرهان 4: (لرجوع إلى الدرس اضغط هنا 🖘 🗓

لتكن P مجموعة الأعداد الأولية الموجبة.

- لينا: Ø≠Ø (الأن P∈Z).
- نستدل على ذلك بالخلف: نفترض أن : P مجموعة منتهية (أي P تحتوي على عدد منتهي من الأعداد الأولية). نضع : $P = \{p_1, p_2, p_3,, p_n\}$
 - . $N = p_1 \times p_2 \times \cdots \times p_n + 1$ نعتبر العدد
- N عدد صحيح طبيعي 1 > 1 نضع d أصغر قاسم ل N إذن d عدد أولي ومنه d ينتمي إلى p (لأنها تحتوي على جميع الأعداد d عدد صحيح طبيعي d نضع d أي d يقسم d يقسم d يقسم d وبالتالي d (نهتم فقط بالأعداد الموجبة) .
 - d=1 غير ممكن لأن d عدد أولي (أو P) .
 - ، الافتراض P مجموعة منتهية غير مُمكن و بالتالي P مجموعة غير منتهية .

خلاصة: P مجموعة غير منتهية.

5. برهان 5: (لرجوع إلى الدرس اضغط هنا 🖘 🗓)

 $(\frac{a}{\delta} \wedge \frac{b}{\delta} = 1$ و $a = \delta a_1$ باستعمال الخلف بين أن $a_1 \wedge b_1 = 1$ و $a = \delta a_1$.

جواب:

 $\mathbf{b}_1\in\mathbb{Z}$ مع $\mathbf{b}=\delta\mathbf{b}_1$ مع $\mathbf{b}=a$ مع $\mathbf{a}_1\in\mathbb{Z}$ مع $\mathbf{a}=\delta\mathbf{a}_1$ مع δ

. $\mathbb Z$ من $\mathbf k'$ $\mathbf k$ من $\mathbf b_1=\mathbf k'$ و منه $\mathbf a_1=\mathbf k$ و منه $\mathbf a_1=\mathbf k$ من $\mathbf a_1\wedge\mathbf b_1=\mathbf d$ من $\mathbf a_1\wedge\mathbf b_1=\mathbf d$ عن المنت عن المنتاخ بائن:

بالتالي : $\delta d \leq \delta$ اي اقض $\delta d \leq \delta$ و هذا يناقض $\delta d \leq \delta$ و هذا يناقض $\delta d \leq \delta$ اي $\delta d \leq \delta$ و هذا يناقض و التالي :

و بالتالى الافتراض كان خاطئا.

درس رقم

درس: الحسابيات في

 $a_1 \wedge b_1 = d = 1$ خلاصة:

🔬 برهان 6 : (لرجوع إلى الدرس اضغط هنا 🖘

. $\mathbf{n} \in \mathbb{N}^*$ ∮ $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \in \mathbb{Z}^3$

1. نبين:

لدينا:

$$a \equiv b [n] \Leftrightarrow n | (b-a)$$

 $\Leftrightarrow \exists k \in \mathbb{Z} / b - a = kn$

 $\Leftrightarrow \exists k \in \mathbb{Z} / b = a + kn$

 $\cdots a - 3$ n, a - 2n, a - n, a + n, a + 2n, a + 3n, a - 2n, a - 3n, a -

. $\left\{\cdots a-3n,a-2n,a-n,a,a+n,a+2n,a+3n,\cdots\right\}$: هي a علاصة a عداد التي توافق a بترديد a بترديد

2. نبین أن:

أ_ الانعكاسية:

 $a \equiv a \ [n]$ يكافى $a-a=0 \times n$ لدينا n يكافى

ومنه الانعكاسية.

<u>ب</u> التماثلية:

 $a \equiv b \ [n] \Leftrightarrow n \mid (b-a) \Leftrightarrow n \mid -(b-a) \Leftrightarrow n \mid (a-b) \Leftrightarrow b \equiv a \ [n]$ لاينا

ومنه: التماثلية.

<u>ج-</u> التعدي:

لدينا:

و منه التعدى:

3. نبين أن:

نضع : a = kn+r و b = k'n+r مع k و k' من Z . و a > r'<n و a = kn+r و 't'-r| (1). الانت :

$$a \equiv b \quad [n] \Leftrightarrow n/(b-a)$$

$$\Leftrightarrow b-a = k ''n$$

$$\Leftrightarrow k'n+r'-(kn+r) = k''n$$

$$\Leftrightarrow (k'-k)n+r'-r = k''n$$

$$\Leftrightarrow r'-r = (k''+k-k')n$$

$$\Leftrightarrow r'-r = Kn \quad ; \quad (K = k''+k-k')$$

$$\Leftrightarrow n/(r'-r)$$

$$\Leftrightarrow (r'-r) = 0 \quad ; \quad (|r'-r| < n \quad (1))$$

$$\Leftrightarrow r' = r$$

درس رقم

درس: الحسابيات في 🏿

خلاصة: ba لهما نفس باقي القسمة على n.

4. نبين أن:

1. الموافقة منسجمة مع الجمع:

لدينا:

$$(a \equiv b \ [n] \quad \Rightarrow \quad c \equiv d \ [n]) \Rightarrow \quad n \mid (b-a) \quad \Rightarrow \quad n \mid (d-c)$$

$$\Rightarrow n \mid ((b-a)+(d-c))$$

$$\Rightarrow n \mid ((b+d)-(a+c))$$

$$\Rightarrow (a+c) \equiv (b+d) \ [n]$$

خلاصة: الموافقة منسجمة مع الجمع.

2. الموافقة منسجمة مع الضرب.

 $\mathbf{a} \times \mathbf{c} \equiv \mathbf{b} \times \mathbf{d}$ $\begin{bmatrix} \mathbf{n} \end{bmatrix}$ و نبین أن $\mathbf{c} \equiv \mathbf{d}$ $\begin{bmatrix} \mathbf{n} \end{bmatrix}$ و $\mathbf{a} \equiv \mathbf{b}$

لدينا:

$$(c \equiv d [n] \ni a \equiv b [n]) \Rightarrow n | (b-a) \ni n | (d-c)$$

$$\Rightarrow n | (b-a) \times c \ni n | (d-c) \times b$$

$$\Rightarrow n | [(b-a) \times c + (d-c) \times b]$$

$$\Rightarrow n | [bc - ac + db - cb]$$

$$\Rightarrow n | [db - ac]$$

$$\Rightarrow ac \equiv bd [n]$$

خلاصة: الموافقة منسجمة مع الضرب.

. $\mathbf{k} \in \mathbb{Z}$: نَاخَذَ . $\forall \mathbf{k} \in \mathbb{N} \; ; \, \mathbf{a}^{\mathbf{k}} \equiv \mathbf{b}^{\mathbf{k}} \; [\mathbf{n}]$. ناخذ . 5

لدينا:

$$\begin{aligned} \mathbf{a} &\equiv \mathbf{b} \ \left[\mathbf{n} \right] \implies \mathbf{n} \, | \left(\mathbf{b} - \mathbf{a} \right) \\ &\implies \mathbf{n} \, | \left(\mathbf{b} - \mathbf{a} \right) \left(\mathbf{a}^{k-1} \mathbf{b}^0 + \mathbf{a}^{k-2} \mathbf{b}^1 + \mathbf{a}^{k-3} \mathbf{b}^2 + \dots + \mathbf{a}^1 \mathbf{b}^{k-1} + \mathbf{a}^0 \mathbf{b}^{k-1} \right) \\ &\implies \mathbf{n} \, | \left(\mathbf{b}^k - \mathbf{a}^k \right) \\ &\implies \mathbf{a}^k \equiv \mathbf{b}^k \ \left[\mathbf{n} \right] \end{aligned}$$

 $.a \equiv b \ \left[n
ight] \ \Rightarrow \ \left(orall k \in \mathbb{N}^* \ ; a^k \equiv b^k \ \left[n
ight]
ight) :$ خلاصة

أ. $r \in \{0,1,2\}$ لأن n = 3q + 2 أو n = 3q + 2 أو n = 3q + 3 أ. حالة a = 3 أو محالة a = 3 أو محالة a = 3