Project Track1 Stage2: Database Design for HealthTrack

Team008

Muzi Peng(muzip2), Weilong Li(weilong3), Rutuja Narwade(narwade2), Zhuofan Zeng(zz115)

1 ER Diagram

The ER Diagram of our database is shown in Figure 1.

Figure 1: ER Diagram of HealthTrack database

2 Assumptions for Each Entity and Relationship

2.1 Entities

- user: It represents primary actors in the system with attributes including user_id(primary key), name, email, password and weight(kg).
- food: It represents different food items, including a unique identifier (fdc_id), food name and category it belongs to.
- **nutrient:** It represents information of various nutrients, including nutrient_id(primary key), nutrient name and unit for recording its amount(like g or kcal).
- sport: It represents information of various sports, including sport_id(primary key), sport name, calories burned per kg when doing the sport.
- schedule: It represents predefined lifestyle schedules, each with specific plan of sleep time and exercise time. Users can select one schedule as their health target and reminder.å

2.2 Relationships

- schedule Track: A one-to-many relationship from schedule to user. One user can select one schedule as their health plan, one health plan can be selected by many different users.
- nutriTrack: A many-to-many relationship between user and food. It lets each user to log each food they have intaked, with intake amount(g) and time.
- **sportTrack:** A many-to-many relationship between user and sport. It lets each user to record each sport they have done, with start time and end time.
- **contains:** A many-to-many relationship between food and nutrient. It records the nutritional content of each food per 100g, detailing the amount of each nutrient present in the food items.

3 Entity and Relationship Requirement of ER diagram

Our ER diagram satisfies the following two requirements.

3.1 Entity Requirement

There are five entities in our database: **user**, **schedule**, **sport**, **nutrient**, **food**, with only the **user** entity being used to represent user account information.

3.2 Relationship Requirement

Our database design includes two types of relationships, including 1-1 and 1-many.

1-many relationship:

• user - schedule

many-many relationship:

- food nutrient
- food user
- user sport

4 Database Normalization

4.1 Define Tables:

- 1. User Table
- 2. Nutrient Table
- 3. Food Table
- 4. Sport Table
- 5. Schedule Table
- 6. NutriTrack Table (to track nutrient intake per user)
- 7. SportTrack Table (to track sports activities per user)
- 8. Contains Table

4.2 3NF Normalization:

3NF Definition:

A relation R is in 3rd normal form if: Whenever there is a nontrivial dependency A1, A2, ..., An -> B for R, then A1,A2,...,An is a super-key for R,OR B is part of a key.

Decomposition Process:

- (a) Get a "minimal basis" G of given FDs
- (b) For each FD A -> B in the minimal basis G, use AB as the schema of a new relation.
- (c) If none of the schemas from Step 2 is a superkey, add another relation whose schema is a key for the original relation.

4.2.1 User Table

Original Schema: user(user_id, name, email, password, weight, s_id) Minimal Basis: user_id — >name, email, password, weight, s_id 3NF Decomposition: user(user_id, name, email, password, weight, s_id)

4.2.2 Nutrient Table

Original Schema: nutrient(nutrient_id, nutrient_name, unit_name)
Minimal Basis: nutrient_id - >nutrient_name, unit_name
3NF Decomposition: nutrient(nutrient_id, nutrient_name, unit_name)

4.2.3 Food Table

Original Schema: food(fdc_id, food_name, category_name)
Minimal Basis: fdc_id - >food_name, category_name
3NF Decomposition: food(fdc_id, food_name, category_name)

4.2.4 Sport Table

Original Schema: sport(sport_id, sport_name, calories_per_kg)
Minimal Basis: sport_id -> sport_name, calories_per_kg
3NF Decomposition: sport(sport_id, sport_name, calories_per_kg)

4.2.5 Schedule Table

Original Schema: schedule(s_id , sleep_time, exercise_time) Minimal Basis: $s_id -> sleep_time$, exercise_time 3NF Decomposition: schedule(s_id , sleep_time, exercise_time)

4.2.6 NutriTrack Table

Original Schema: nutriTrack(user_id, fdc_id, intake_amount,store_time)
Minimal Basis: user_id, fdc_id->intake_amount,store_time
3NF Decomposition: nutrient(user_id, fdc_id, intake_amount,store_time)

4.2.7 SportTrack Table

Original Schema: sportTrack(user_id, sport_id, start_time, end_time)
Minimal Basis: user_id, sport_id- > start_time, end_time
3NF Decomposition: sportTrack(user_id, sport_id, start_time, end_time)

4.2.8 Contains Table

Original Schema: contains(fcd_id, nutrient_id, amount)

Minimal Basis: fcd_id,nutrient_id- > amount

3NF Decomposition: contains(fcd_id, nutrient_id, amount)

5 Logical design (Relational Schema)

- food(fcd_id : INT [PK], food_name : VARCHAR(255), category_name : VARCHAR(255))
- contains(fdc_id : INT [PK], nutrient_id : INT [PK], amount : FLOAT, fdc_id: INT [FK to food.fdc_id], nutrient_id : INT [FK to nutrient_nutrient_id])
- nutrient(nutrient_id : INT [PK], nutrient_name : VARCHAR(255), unit_name : VARCHAR(255))
- sport(sport_id : INT [PK], calories_per_kg : FLOAT, sport_name: VARCHAR(255))
- sportTrack(sport_id: INT [PK], user_id: INT [PK], start_time: TIMESTAMP, end_time: TIMESTAMP, sport_id: INT [FK to sport_sport_id], user_id: INT [FK to user_user_id])
- user(user_id : INT [PK], weight : FLOAT, email : VARCHAR(255), password : VARCHAR(255), name : VARCHAR(255), s_id : INT [FK to schedule.s_id])
- nutriTrack(fdc_id : INT [PK], user_id : INT [PK], store_time : TIMESTAMP, intake_amount : TIMESTAMP, fdc_id : INT [FK to food.fdc_id], user_id : INT [FK to user_user_id])
- schedule(s_id : INT [PK], sleep_time : FLOAT, exercise_time : FLOAT)

6 Clarification of Updates on Proposal

- Removed the data source Open Food Facts and we will only use data source USDA's FoodData Central because the requirement of 5 entities can be satisfied by using USDA's FoodData Central (Section 5)
- Added more details to all 4 points of creative component in terms of visual features (Section 3)
- Added explicit and detailed description of our UI design (Section 7)
- Added more detailed comparisons between HealthCheck and two other existing diet-related apps including MyFitnessPal and Yazio (Section 4)