Ejercicio 1. Sepano que
$$Y \in \{0, ..., K-1\}$$
 en $K \ge 2$. Si fici es guardan $X \mid Y = k - N(a_1, X_1)$. In regio to beyon a restrict come $K(y) = a_1 \max_{x \in Y} k(y)$.

Ser $a_1 = \sum_{i=1}^k \log_{x_i} x_i = \sum_{i=1}^k \log_{x_i} (x_i - k_i) \times \log_{x_i} x_i$.

Ser $a_2 = \sum_{i=1}^k \log_{x_i} x_i = \sum_{i=1}^k \log_{x_i} (x_i - k_i) \times \log_{x_i} x_i$.

Ser $a_1 = \sum_{i=1}^k \log_{x_i} x_i = \sum_{i=1}^k \log_{x_i} (x_i - k_i) \times \log_{x_i} x_i$.

Tima un exquita de para y rivinta tales valeres estimados.

In $(x_i)^2 = a_1$ and $x_i = \sum_{i=1}^k \log_{x_i} x_i = \sum_{i=1}^k \log_{x_i} (x_i - k_i) \times \log_{x_i} x_i$.

Fina un exquita de para y rivinta tales valeres estimados.

In $(x_i)^2 = a_1$ and $(x_i)^2 = a_1$ and $(x_i)^2 = a_2$ and

T.	ma~	, os	6,	رە+مر	ιу	دهادر	ilamo	3															
#ejercic	io 1		'																				
n=1808 K=3	umpy as np																						
d=2 #dim #generar X=np.zen																							
y=np.zer	os(n)	de covari	anza para	cada clase																			
signas=n for k in A=nn	gassima, prace((K,d,d)) + in range(K) Anny randou rand(d, d) Supposit (in-yellow) All Agrandizar que la matriz sea semidefinida positiva Supposit (in-yellow) All Agrandizar que la matriz sea semidefinida positiva																						
k=np	range(n): .random.ra =np.random =k	ndint(0, K .multivari) #clase ate_norma	aleatoria l(mus[k],sig	mas [k])																		
pi_hat=n	_k / n n.array[[n	n. sum(XIv	== kl. ax	range(K)]) is=0)/n_k[k] -mu_hat[k]).	for k in r T, X[y == k	ange(K)])]-mu_hat[k])/(n_k[k] - 1) fo	r k in range	e(K)])														
Númer	o de pui	ntos por	clase:	k) for k in]-mu_hat[k])/(xis=0)/(n - K)																	
mu_k: [7.1 [1.7 Sigma	[0.343 [[1.88 2873531 3688305 []] k: [[[419301 7 5.10725 0.77199 0.578120	.266846 298] 54]] 33 0.61																				
[[0.	[0.61633774 0.83995534]] [(0.03756978 0.23310139]																						
[[0.	9455721 7568621	6 0.7568	6213]																				
Sigma	: [[0.5: 4268689	3056712	0.54268	8689]																			
						ciones en la una observa																	
función	discrimi	inante. ¿	Cuál es	la funció	n discrim	inante en es	te caso?																
			FK	(x)=	P(X17-1	۲)																
P.	0					S4		طرياء		n	n o	rmal	mul	11.00	v.aate	,							
		١.															.L	L					
		7	αu	O4 N	31000	يا لد	7,0		· U IT (U	, 41 (awie	•				p(x	$ \mu, \Sigma) = \frac{1}{2}$	$\frac{1}{(2\pi)^{p/2} \Sigma}$	1/2 exp	$\{-\frac{1}{2}(x-$	$\mu)^T \Sigma^{-1}$	$(\mathbf{x} - \mu)$	+
		r	١.,								, ,			T _	٠١,		7						
		ځ×	. (x	J. b	ιχι	/=k)=	(2-18	/2\S	1/2	exp	, ų - ,	2 (x	-4 K	۱۷,	, (x	- yr)	ነ						
F							(211)	12	k l									Ρ.	- din	M Si c	n o	(a TO.	
1	dus							٠.															
	60	9 -	((,	<u>, π</u> , '	-	log (fi Cx	ι π,)	- C	۰g	(+,	(x)ī	L* /										
			+ (-X)∐									. 1										
					5	- 1/2 /	Logia	- ۱،۱	-12	lχ-	4, \	´ ≥,	l x·	- 14, 5	+ 1	هج ((۱)						
					+	1/2 Lo	وا Σ.	,) +'/	12 (7	κ - 1	K) E	\mathcal{Z}_{i}	l x-1	1 ₄)	-lo	g (11	()						
					, -	1/2 8	. (1	٤٠١/	- y	, ((x-	L \E	5.	4 - 4 ا	/	X - 4	165	-ı (~	۱ . به .	\ 4	0	1 7	-7
						12 4	1)60	Ex1)		. (7, 3	_,	(~ ~	,,	7-1	K 1 _	ĸ \ ^	(A)	, .	* 09	Сπ	ĸ l

Ejercicio 3. Sean $\mu_1 = (1,0)$. Considere la siguiente matriz: $\Sigma = \begin{pmatrix} 4 & 8 \\ 8 & 4 \end{pmatrix}$ ¿Existe un vector gaussiano con media μ_1 y matriz de covarianza Σ ? Eigen valore | 4-2 | = (4-x)2-64-0 | 6 | 4-2 | | 16-82 | 2 -61=0 22-82-48=0 2,=12 22=-4 Notemos que no todos los ergenvalores son positivos, por lo que la matrie no es positiva definida => no exste rector gaussiano

```
f(x_1, x_2, x_3) = \frac{\sqrt{u^2 - 1}}{(2\pi)^{3/2}} \exp \left(-\frac{1}{2}(ux_1^2 + x_2^2 + ux_3^2 + 2x_1x_2)\right),
con (x_1, x_2, x_3) \in \mathbb{R}^3. Calcula la distribución de (X_1, X_2, X_3)
```

$$\frac{1}{\sqrt{(2\pi)^n | del J}} e^{-\frac{1}{2}(x-y)^{\frac{1}{n}} J(x-y)}$$

$$= \frac{1}{(2\pi)^{3/4} \sqrt{u^2}} \exp\left(-\frac{1}{2}(x-4)^{\frac{1}{2}} \sum_{i=1}^{n} (x-4)^{\frac{1}{2}}\right)$$

$$\Rightarrow \int_{x_1,x_2,x_3} = \frac{1}{(2\pi)^{4/3} |\det \overline{L}|} \exp \left(\frac{1}{2} (x-4)^{\frac{1}{2}} (x-4)^{\frac{1}{2}} (x-4)^{\frac{1}{2}} \right)$$

Ejercicio 5. $\mu_1 = (1,0)$ y $\mu_2 = (-2,2)$. Considere las siguientes matrices: $\Sigma_1 = \begin{pmatrix} 7 & 2 \\ 2 & 1 \end{pmatrix}, \qquad \Sigma_2 = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ • ¿Existe un vector gaussiano bivariado con media μ_1 y matriz de covarianza Σ_1 ? • Si $\pi_k = 0.5$ para k = 1, 2 y si $f_1(x_1, x_2) \sim N(\mu_1, \Sigma_1)$ y $f_2(x_1, x_2) \sim N(\mu_2, \Sigma_1)$; calcule

$$L(x_1,x_2) = \log\left(\frac{\int_1(x_1,x_2)\pi_1}{\int_Z(x_1,x_2)\pi_2}\right).$$
 Recuerda que asignamos (x_1,x_2) a Π_1 si: $L(x_1,x_2) > 0$.

• ¿A qué grupo asignas $(2,1)$?

• Si $\pi_k = 0.5$ para $k = 1, 2$; calcule

 $Q(x_1, x_2) = \log \left(\frac{f_1(x_1, x_2)\pi_1}{f_2(x_1, x_2)\pi_2} \right)$ Recuerda que asignamos (x_1, x_2) a Π_1 si: $Q(x_1, x_2) > 0$.

 $\begin{vmatrix} 1 - \lambda & 0 \\ 0 & 3 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda \\ 0 & \lambda = 1 \\ 0 & \lambda = 3 \end{vmatrix}$

[x,xe): T, <; L(x,xe)>0

$$f_2(x_1, x_2) = 0$$
 amos $f_2(x_1, x_2) = 0$ amos $f_2(x_1, x_2) = 0$ as $f_2(x_1, x_2) = 0$.

Recuerda que asignamos
$$(x_1,x_2)$$
 a Π_1 si: $Q(x_1,x_2)>0$. • ¿A qué grupo asignas $(2,1)$?

 $L(x_1, x_2) = \log \left(\frac{f_1(x_1, x_2)\pi_1}{f_2(x_1, x_2)\pi_2} \right).$

$$\begin{vmatrix} 7-\lambda & 2 \\ 2 & |-2| = (7-\lambda)(1-\lambda)-4=0 \\ 2 & |-2|$$

exute un vector gaussiano bivariado

con y, y E,

la matrizes definide positing

exute un vector gaussiano bivariado

con y, y E,

TIR = 0.5 K = 1,2. f(x,,x2)~N(M,, 5,) f2(x,,x2)~N(M, 5,)

 $\sum_{2}^{1} + \frac{1}{2} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$

M, = (1,0) 42= (-2,2) $L(x) = \log \left(\frac{f_1(x_1, x_2) \pi}{f_2(x_1, x_2) \pi} \right) = \beta_0 + \beta^{t} \chi$

$$\sum_{i=1}^{3} \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 1/3 & -2/3 \\ 2/3 & 3/3 \end{pmatrix}$$

$$\rho = \sum_{1}^{7} \left(M_{1} - M_{2} \right) = \begin{pmatrix} 1/2 & -2/3 \\ 1/3 & 7/3 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 3/3 \\ -29/3 \end{pmatrix}$$

$$\rho_{0} = -\frac{1}{2} \left(\frac{1}{4} + \frac{1$$

$$O(x) = \frac{5}{2} + \frac{3}{5} - \frac{4}{12} \cdot \frac{2}{12} + \frac{2}{12} \cdot \frac{1}{12} \cdot \frac{1}{12} \cdot \frac{2}{12} \cdot \frac{2}$$

asignamos a (2,1) a T.

Cono Q(x) >0