Project Design Phase-II

Technology Stack (Architecture & Stack)

Date	31 January 2025
Team ID	LTVIP2025TMID32756
Project Name	Pollen's Profiling Automated Classification of Pollen Grains
Maximum Marks	4 Marks

Technical Architecture

The Deliverable shall include the architectural diagram and the information as per Table 1 & Table 2.

Table 1: Components & Technologies

S.No	Component	Description	Technology
1	User Interface	How user interacts	HTML, CSS,
		(e.g. Web UI, Mobile	JavaScript, React JS
		App)	
2	Application Logic-1	Logic for	Python
		preprocessing	
		images	
3	Application Logic-2	Logic for feature	OpenCV, NumPy
		extraction	
4	Application Logic-3	Logic for	Scikit-learn /
		classification using	TensorFlow / Keras
		ML model	
5	Database	Store pollen sample	MySQL / MongoDB
		data, images, results	
6	Cloud Database	Remote data storage	Firebase / AWS RDS
		and access	/ IBM Cloudant
7	File Storage	Image and model	AWS S3 / IBM Cloud
		storage	Object Storage
8	External API-1	For accessing plant	PlantNet API / Flora
		taxonomy data	API
9	External API-2	Weather data for	OpenWeather API
		pollen analysis	
10	Machine Learning	Pollen grain	CNN / Random
	Model	recognition and	Forest / SVM
		classification model	(Scikit-learn)

11	Infrastructure	Cloud / Local	AWS EC2, Google
		deployment	Cloud, Kubernetes

Table 2: Application Characteristics

S.No	Characteristics	Description / Technology
1	Open-Source Frameworks	TensorFlow, Scikit-learn,
		React JS
2	Security Implementations	HTTPS, SHA-256, OAuth,
		JWT
3	Scalable Architecture	Microservices Architecture
4	Availability	AWS Load Balancer,
		Kubernetes
5	Performance	Redis, Cloudflare CDN

References

- https://c4model.com/
- https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/
- https://www.ibm.com/cloud/architecture
- https://aws.amazon.com/architecture
- $\bullet \quad \underline{https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-\\ \underline{diagrams-2d20c9fdaa9d}$

