• Clone Github repository with exercises:

git clone https://github.com/michalhapka/trex\_workshop2023.git

## 1 Exercise: $H_2$ - $H_2$ (static correlation)

Perform SAPT(CISD) calculations for the H<sub>2</sub>-H<sub>2</sub> complex (Figure 1):

- a) near the equilibrium geometry (R = 1.44 a.u.),
- b) with a broken covalent bond in one of the monomers (R = 7.20 a.u.).



Figure 1: H<sub>2</sub>-H<sub>2</sub> in T-shaped geometry.

The basis set is aug-cc-pVDZ.

- 1. Prepare input.inp file for SAPT. You will find the xyz files and input.inp templates in:
  - trex\_workshop2023/SAPT/h2\_h2/cisd.
- 2. Prepare a script to run CISD calculations (with Quantum Package) followed by SAPT calculation (with GammCor). You can find sample scripts at:
  - https://qchem.gitlab.io/gammcor-manual/pages/calculation/sapt\_methods/running\_sapt\_qpckg.html.

If you do not have access to Quantum Package, you will find the necessary HDF5 files in results subfolders.

#### Answer the questions:

- 1. Which interaction energy components dominate for R = 1.44 a.u. and R = 7.20 a.u.?
- 2. How accurate is SAPT based on Hartree-Fock description of the monomers near the equilibrium and in the case of a stretched bond?
- 3. Table 1 shows also SAPT results obtained with CASSCF wave functions. What is the effect of increasing the active space?

Table 1: Results of SAPT calculations for  $H_2$ - $H_2$  dimer. CAS(m, n) denotes CASSCF calculation with m electrons occupying n active orbitals (for each monomer). Energy unit is microhartree.

|                | $E_{ m elst}^{(1)}$ | $E_{\mathrm{exch}}^{(1)}$ | $E_{\mathrm{ind}}^{(2)}$ | $E_{\mathrm{exch-ind}}^{(2)}$ | $E_{\mathrm{disp}}^{(2)}$ | $E_{\rm exch-disp}^{(2)}$ | $E_{ m int}^{ m SAPT}$ |
|----------------|---------------------|---------------------------|--------------------------|-------------------------------|---------------------------|---------------------------|------------------------|
| R = 1.44  a.u. |                     |                           |                          |                               | •                         | •                         |                        |
| $_{ m HF}$     | -62.29              | 89.96                     | -5.169                   | 1.706                         | -154.2                    | 6.911                     | -123.0                 |
| CISD           |                     |                           |                          |                               |                           |                           |                        |
| CAS(2,2)       | -47.82              | 81.28                     | -4.030                   | 1.637                         | -143.6                    | 5.693                     | -106.8                 |
| CAS(2,8)       | -52.61              | 88.43                     | -4.565                   | 1.980                         | -151.7                    | 6.094                     | -112.4                 |
|                |                     |                           |                          |                               |                           |                           |                        |
| R = 7.20  a.u. |                     |                           |                          |                               |                           |                           |                        |
| $_{ m HF}$     | -185.4              | 445.0                     | -39.72                   | 26.29                         | -320.6                    | 33.55                     | -40.89                 |
| CISD           |                     |                           |                          |                               |                           |                           |                        |
| CAS(2,2)       | -44.87              | 201.1                     | -7.994                   | 5.465                         | -161.1                    | 10.15                     | 2.748                  |
| CAS(2,8)       | -47.17              | 209.4                     | -8.388                   | 5.992                         | -165.9                    | 10.43                     | 4.335                  |

## 2 Exercise: He-H<sub>2</sub>\* (excited states, ver 1)

Perform a SAPT(CISD)/aug-cc-pVDZ calculation for the He-H<sub>2</sub> complex (Figure 2):

- a) both monomers are in the ground state and R = 6.6 a.u.,
- b) He is in the ground state,  $H_2$  is in the first singlet excited state  $({}^{1}\Sigma_{u}^{+})$ , and R=4.0 a.u.



Figure 2: He-H<sub>2</sub> in T-shaped geometry.

- 1. Prepare input.inp file for SAPT. You will find the xyz files and input.inp templates in:
  - trex\_workshop2023/SAPT/he\_h2.
- 2. Prepare a script to run CISD calculations (with Quantum Package) followed by SAPT calculation (with GammCor). You can find sample scripts at:
  - https://qchem.gitlab.io/gammcor-manual/pages/calculation/sapt\_methods/running\_sapt\_qpckg.html.

### Answer the questions:

- 1. What are the key interaction energy ingredients in the van der Waals minimum region in ground- and excited-state?
- 2. Which energy component dominates ground/exited-state interaction at R = 4.4 a.u.?

If you do not have access to Quantum Package, you will find the necessary HDF5 files in /results subfolders.

Table 2: Results of SAPT(CISD)/aug-cc-pVDZ calculations for He-H<sub>2</sub> and He-H<sub>2</sub>\* dimers. Energy unit is millihartree.

| asy unit is inimitatoree. |                     |                           |                          |                             |                     |                              |                        |  |  |  |
|---------------------------|---------------------|---------------------------|--------------------------|-----------------------------|---------------------|------------------------------|------------------------|--|--|--|
|                           | $E_{ m elst}^{(1)}$ | $E_{\mathrm{exch}}^{(1)}$ | $E_{\mathrm{ind}}^{(2)}$ | $E_{\text{exch-ind}}^{(2)}$ | $E_{ m disp}^{(2)}$ | $E_{\text{exch-disp}}^{(2)}$ | $E_{ m int}^{ m SAPT}$ |  |  |  |
| ground state              |                     |                           |                          |                             |                     |                              |                        |  |  |  |
| $R=4.0~\mathrm{a.u.}$     | -1.103              | 5.740                     | -0.375                   | 0.395                       | -0.956              | 0.114                        | 3.816                  |  |  |  |
| R = 6.6  a.u.             |                     |                           |                          |                             |                     |                              |                        |  |  |  |
| excited state             |                     |                           |                          |                             |                     |                              |                        |  |  |  |
| $R=4.0 \mathrm{~a.u.}$    |                     |                           |                          |                             |                     |                              |                        |  |  |  |
| R = 6.6  a.u.             | -0.026              | -0.060                    | -0.036                   | -0.003                      | -0.204              | -0.005                       | -0.334                 |  |  |  |

# 3 Computation of singlet-triplet gap of cyclobutadiene with ACn-CAS

- In trex\_workshop2023/C4H4 directories you will find all files needed to run ACn calculations with GammCor for singlet (S) and triplet (T) states using CAS(2,2) and CAS(4,4) reference wavefunctions.
- Input files for GammCor with electron integrals and 1,2-reduced density matrices have been generated with Dalton and are provided.

If you want to learn how to use Dalton interfaced with GammCor see example in GammCor user manual:

https://qchem.gitlab.io/gammcor-manual/pages/calculation/correlation\_methods/acn\_dalton.html

• To run GammCor, prepare the job1 script for slurm (provide the correct path to gammcor in GAMMCOR\_EXEC="....").

```
#!/bin/bash
#SBATCH -n 1
#SBATCH -c 1
#SBATCH --nodelist=cn08
#SBATCH -t 0:10:00
#SBATCH --mem=1GB

$GAMMCOR_EXEC="...."
srun $GAMMCOR_EXEC > "gammcor.out"
```

• Copy the script to CAS22/S, CAS22/T, CAS44/S, CAS44/T directories. In each directory submit the job.

```
sbatch job1
```

- Collect the results from gammcor.out files. Look for the line: ECASSCF+ENuc, ACn-Corr, ACn-CASSCF at the end of outputs.
- Compute S-T energy gaps for CASSCF (ECASSCF+ENuc) and ACn-CASSCF (ACn-CASSCF) from CAS(2,2) and CAS(4,4) models. Compare the numbers with the reference value of 0.18 eV from Stoneburner et al., J. Chem. Phys. 2017, 147, 164120.