Raspberry Pi 프로젝트

스마트 선루프

이현성 임재호 전병혁 황윤성

목차

01 필요성 **┃ 02** 설정 목표 **┃ 03** 사용 부품

┃ 04 동작 설명 **05** 프로젝트 구상 **06** 시연

SMART SUNROOF

프로젝트의 필요성

내부 온도 관리

여름철 주차된 차량의 온도는 BD도 이상 상승.

전자기기 보호

높은 온도는 차량 내 전자 기기의 성능 저하 및 고장 초래

에너지 절약

에어컨 사용 빈도가 높을 수록 연료 소비 증가

편안한 탑승 경험

내부 과열 방지, 자동 개방으로 공기 순환

설정 목표

선루프의 자동화

온습도 센서, 조도 센서를 사용하여 날씨에 맞게 스스로 블라인드를 조정

선루프 본체의 쉬운 탈 부착

다양한 차량의 모델이 사용이 가능하도록 설계

SMART SUNROOF project

사용 부품

라즈베리 파이 4모델 B

스텝 모터, 모터 드라이버 블라인드 열고 닫을 때 사용.

18650 배터리 4개

I2C LCD 현재 습도, 온도 표시.

조도 센서

적외선 센서 블라인드의 현재 위치 파악

 DHT22

 온습도 센서

폼보드,실

SMART SUNROOF project

동작 설명

센서 함수로 부터 얻은 온도, 조도 값을 토대로 Sunroof를 올리고, 내릴지 여부가 결정된다.

Sunroof의 위치는 왼쪽 그림과 같은 조건에 따라 동작합니다.

SMART SUNROOF project

모터 동작 설명

Sunroof_cntr 함수로부터 up_down 데이터와 Motor_enable 데이터를 토대로 Step motor를 제어하게 됩니다.

오른쪽 순서도과 같이 특정 조건에 부합할 때까지 Step motor를 가동합니다.

Sunroof DHT22 센서 cds 센서 ADC Converter 모듈 적외선 센서 7.2V * 2 = 15.4 V [외부 전원] 라즈베리 파이

SMART SUNROOF project

프로젝트 구성도

- 2개의 적외선 센서로 블라인드의 현재 상태 판단
- 온도 27도 이상 m CDS(조도센서) 값이 150 이상일때 블라인드가작동
- 블라인드를 펼치거나 접는 구동은 스텝모터 사용
- 스텝 모터의 충분한 구동을 위해 18650 배터리 4개 사용

SMART SUNROOF project 시연영상

QnA