Conversión binario-decimalhexadecimal-octal:

De: Leo y Daniel

Indice

- ¿Que son los sistemas numéricos?
- ¿Por qué son importantes en informática los principales sistemas?
- Conversion de los numeros
- ¿Por que es importante dominar las conversiones?
- Uso en sistemas digitales
- Uso en programacion

¿Por qué son importantes en informática los principales sistemas?

Los sistemas de numeración son importantes, porque permiten representar y manejar datos.

Los binario: son importantes porque las computadoras funcionan con dos estados: 0 y 1.

El decimal: conecta a la máquina con las personas, pues es el sistema que usamos dia a dia.

El octal: simplifica el trabajo con grandes cadenas binarias.

El hexadecimal: hace más fácil la programación y el diseño de sistemas al acortar la representación de datos.

Base	Sistema	Dígitos				
2	Binario	0, 1				
8	Octal	0, 1, 2, 3, 4, 5, 6, 7				
10	Decimal	0, 1, 2, 3, 4, 5, 6, 7, 8, 9				
16	Hexadecimal	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F				

Conversion de los numeros

 $Decimal \rightarrow Binario$: dividir entre 2 y tomar los residuos.

Decimal \rightarrow **Octal**: dividir entre 8.

Decimal \rightarrow **Hexadecimal**: dividir entre 16.

Binario ↔ **Octal/Hexadecimal:** agrupar bits (3 para octal, 4 para hexadecimal).

¿Que son los sistemas numéricos?

Un sistema numérico es una forma de representar cantidades mediante símbolos y reglas.

El sistema decimal, que usamos diariamente, tiene diez símbolos (0-9) y el valor depende de la posición.

Otros sistemas incluyen el binario (0 y 1), el octal (base 8) y el hexadecimal (base 16, con números y letras).

Cada sistema tiene su propia base y reglas para escribir y calcular números.

En resumen, los sistemas numéricos permiten expresar y operar con cantidades de distintas maneras.

shutterstock.com · 2476100831

	Binario	Octal	Decimal	Hexadecimal
Binario	1	Agrupar de a 3 bits	Formula Polinomica (potencias de 2)	Agrupar de a 4 bits
Octal	Escribir cada digito en binario (3 bits)		Formula Polinomica (potencias de 8)	Pasar por binario
Decimal	Entera / 2 Fraccionaria * 2	Entera / 8 Fraccionaria *8		Entera /16 Fraccionaria * 16
Hexadecimal	Escribir cada digito en binario (4 bits)	Pasar por binario	Formula polinomica (potencia de 16)	

¿Por que es importante dominar las conversiones?

Dominar las conversiones entre sistemas numéricos permite entender cómo funcionan los números en distintos contextos.

No siempre se usa el sistema decimal; en informática todo se basa en binario, y octal o hexadecimal .

Saber convertir entre sistemas ayuda a resolver problemas y a interpretar información correctamente.

Es útil en áreas como tecnología, electrónica y programación.

En resumen, es una herramienta clave para comprender cómo se procesan y transmiten los datos digitales.

Uso en sistemas digitales

Sistemas digitales:

Los sistemas digitales, trabajan con señales eléctricas que solo tienen dos estados: alto (1) o bajo (0). Por esto, el binario es fundamental:

- Binario (base 2): Cada bit representa un 0 o 1.
 Ejemplo: 1011 (binario) = 11 (decimal).
- Octal y hexadecimal: Se usan para simplificar la representación binaria.
- Cada dígito octal = 3 bits.
- Cada dígito hexadecimal = 4 bits.
 Ejemplo: 1111 1010 (binario) = FA (hexadecimal).

Uso en programacion

Programación:

En programación las conversiones entre sistemas numéricos son muy comunes porque las computadoras trabajan internamente en binario 0 y 1 mientras que los programadores suelen usar decimal, octal o hexadecimal según la necesidad.

Algunos ejemplos de uso:

- Direcciones de memoria: en bajo nivel se representan en hexadecimal porque es más compacto que el binario.
- Colores en diseño web: los códigos como #FF5733 son valores en hexadecimal.
- Permisos en sistemas UNIX/Linux: se usan números en octal (por ejemplo, chmod 755).
- Depuración y redes: al analizar datos o paquetes, muchas veces aparecen en binario o hexadecimal

Efecto práctico (decimal a binario, octal, hexadecimal)

Número decimal: 25

• **Binario:** 25 ÷ 2 → 11001

• **Octal:** $25 \div 8 \rightarrow 31$

• **Hexadecimal:** $25 \div 16 \rightarrow 19$ (en hexadecimal: 19 = 19)

Explicación práctica: Esto permite representar de manera

más útil según el sistema que se necesite, por ejemplo, en programación o electrónica.

Convierta de binario a hexadecimal, octal y decimal

OO I I OO I OO I O I

Hex = 001100100101
Hex = 3 2 5

Oct = 001100100101
Oct = 1 4 4 5

Conclusion

Dominar estas conversiones facilita la comprensión del funcionamiento interno de los ordenadores, sino que también permite realizar cálculos más eficientes y detectar errores en programación. En resumen, entender cómo convertir entre estos sistemas fortalece tanto el pensamiento lógico como la capacidad para interactuar con la tecnología a un nivel más profundo.