2022-2023 MP2I

À chercher pour lundi 10/10/2022, corrigé

TD 5:

Exercice 4. Soit $f: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ x & \mapsto & x^2 \end{array} \right.$

1) f n'est pas surjective. En effet, il n'existe pas de $x \in \mathbb{N}$ tel que f(x) = 2 par exemple (puisque $x^2 = 2$ implique $x = \pm \sqrt{2}$ et $\sqrt{2} \notin \mathbb{N}$). f est par contre injective. En effet, si l'on prend $x_1, x_2 \in \mathbb{N}$ tels que $f(x_1) = f(x_2)$. On a alors $x_1^2 = x_2^2$, ce qui entraine $x_1 = \pm x_2$. Puisque x_1 et x_2 sont tous les deux positifs, on a donc $x_1 = x_2$, ce qui entraine que f est injective.

2) Supposons par l'absurde qu'il existe $g: \mathbb{N} \to \mathbb{N}$ telle que $f \circ g = Id_{\mathbb{N}}$. Puisque $Id_{\mathbb{N}}$ est bijective, elle est en particulier surjective. Par théorème du cours, on a alors f surjective (puisque $f \circ g$ est surjective). Ceci est absurde car on a montré à la première question que f n'était pas surjective.

On peut par contre construire une fonction $h: \mathbb{N} \to \mathbb{N}$ telle que $h \circ f = Id_{\mathbb{N}}$. En effet, on va définir h de la manière suivante :

- Si $n \in \mathbb{N}$ est un carré (c'est à dire s'il existe $m \in \mathbb{N}$ tel que $m^2 = n$), on pose h(n) = m.
- Si $n \in \mathbb{N}$ n'est pas un carré, on pose h(n) = 0.

On a bien défini une fonction $h: \mathbb{N} \to \mathbb{N}$. On a alors pour tout $n \in \mathbb{N}$:

$$(h \circ f)(n) = h(f(n))$$

= $h(n^2)$
= n (par construction)
= $\mathrm{Id}_{\mathbb{N}}(n)$.

Ceci entraine que $h \circ f = \mathrm{Id}_{\mathbb{N}}$. On a donc construit une fonction h comme demandé.

Exercice 7. Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (xy,x+y) \end{array} \right.$

1) Commençons par chercher si f est surjective. Soit $(z_1, z_2) \in \mathbb{R}^2$. Essayons de résoudre le système $f(x, y) = (z_1, z_2)$ avec $(x, y) \in \mathbb{R}^2$. On a alors :

$$\begin{cases} xy = z_1 \\ x + y = z_2 \end{cases} \Leftrightarrow \begin{cases} x(z_2 - x) = z_1 \\ y = z_2 - x \\ \Leftrightarrow \begin{cases} x^2 - xz_2 + z_1 = 0 \\ y = z_2 - x \end{cases}.$$

Or, le discriminant de l'équation en x est $z_2^2 - 4z_1$. Il est alors direct qu'un couple tel que ce discriminant est strictement négatif (par exemple (1,0)) n'admet pas d'antécédent dans \mathbb{R}^2 par f.

f n'est donc pas surjective.

Montrons à présent que f n'est pas injective. Puisque dans l'équation précédente, x, dans le cas où le discriminant est strictement positif, peut prendre deux valeurs possibles (deux solutions réelles distinctes). On a donc de bonnes raisons de penser que f n'est pas injective. Cherchons par exemple dans un cas simple où par exemple $z_1 = -1$ et $z_2 = 0$. On a alors f(-1,1) = f(1,-1) = (-1,0) et $(-1,1) \neq (1,-1)$. f n'est donc pas injective.

2) \mathbb{R} étant un sous ensemble de \mathbb{C} et f n'était pas injective de \mathbb{R} dans \mathbb{R} , elle ne l'est pas non plus de \mathbb{C} dans \mathbb{C} . Par contre à présent, f est surjective. En effet, si on reprend le système utilisé en 1),

le discriminant $\Delta = z_2^2 - 4z_1$ admet toujours une racine carrée dans \mathbb{C} . Notons δ une de ses racines carrées. On remarque alors que le système admet par exemple comme solution

$$\begin{cases} x = \frac{z_2 + \delta}{2} \\ y = \frac{z_2 - \delta}{2}. \end{cases}$$

Vérifions que le couple (x, y) ainsi trouvé vérifie bien $f(x, y) = (z_1, z_2)$. On a :

$$f\left(\frac{z_2+\delta}{2}, \frac{z_2-\delta}{2}\right) = \left(\frac{z_2^2-\delta^2}{4}, z_2\right)$$

$$= \left(\frac{z_2^2-(z_2^2-4z_1)}{4}, z_2\right)$$

$$= (z_1, z_2)$$

f est donc surjective de \mathbb{C}^2 dans \mathbb{C}^2 .

Exercice 10. Tout d'abord f est bien définie car $\forall z \in \mathbb{C}, \ e^z \neq 0$ (en effet, on a $e^z \times e^{-z} = 1 \neq 0$). L'exponentielle est donc bien à valeurs dans \mathbb{C}^* .

Pour la surjectivité, on fixe $a \in \mathbb{C}^*$ et on étudie l'équation $e^z = a$. Si on écrit $a = \rho_a e^{i\theta_a}$ avec $\rho_a > 0$ et $\theta_a \in \mathbb{R}$ (possible car a est non nul) et que l'on cherche z sous la forme z = x + iy avec $x, y \in \mathbb{R}$, on a :

$$e^z = a \Leftrightarrow e^x e^{iy} = \rho_a e^{i\theta_a}$$
.

Puisque $e^x > 0$ et $\rho_a > 0$, on peut identifier modules et arguments. On a donc :

$$e^z = a \Leftrightarrow e^x = \rho_a \text{ et } y \equiv \theta_a [2\pi].$$

On voit donc que $z = \ln(\rho_a) + i\theta_a \in \mathbb{C}$ est un antécédent de a. a ayant été pris quelconque dans \mathbb{C}^* , on a bien l'exponentielle surjective de \mathbb{C} dans \mathbb{C}^* .

On a trouvé plusieurs solutions donc l'exponentielle n'est pas injective. Par exemple, $e^0=e^{2i\pi}=1$.