治理技术专题

# 定量政治分析方法

Quantitative Analysis II

#### 苏 毓 淞

清华大学社会科学院政治学系

第二讲 Logistic 和 Probit 回归分析



#### 二元因变量

- 当因变量为二元变量时(哑变量、虚拟变量、dummy variable),也就是 y 的取值是 0 和 1,我们使用 Logistic 回归或 Probit 回归。
- 基本原理:  $\Pr(y_i = 1) = f(\mathbf{X}_i \boldsymbol{\beta})$ , 透过 f 函数的转换,  $\mathbf{X}_i \boldsymbol{\beta}$  会成为 0 和 1 之间的数值。
- Logistic 回归和 Probit 的回归就是使用对应的 f 函数,将  $\mathbf{X}_i\beta$  转换的线性回归。
- $\Rightarrow z_i = \mathbf{X}_i \boldsymbol{\beta}$ ,我们称 z 为 y 之于 x 的潜变量 (latent variable),而 z 为介于 0 和 1 之间的连续变量,透过 f 转换后,成为取值为 0 和 1 的  $y_o$



#### logistics 回归

- logistic 回归,又称 logit 回归模型。
- 数学表达式:

$$\begin{aligned} \Pr(y = 1) &= \mathsf{logit}^{-1} \left( \mathbf{X}_i \boldsymbol{\beta} \right) \\ &= \frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{\exp(\mathbf{X}_i \boldsymbol{\beta}) + 1} \\ &= \frac{1}{1 + \exp(-\mathbf{X}_i \boldsymbol{\beta})} \end{aligned}$$



#### logistics 回归



■ logit 曲线在中心时,斜率最陡,斜率是 logit 回归系数除以 4。



#### logistics 回归案例



#### logistics 回归案例

```
. logit vote income if year==1992 & presvote < 3
```

```
Iteration 0: log likelihood = -795.6188
Iteration 1: log likelihood = -778.49911
Iteration 2: log likelihood = -778.45807
Iteration 3: log likelihood = -778.45807
```

#### Logistic regression

Number of obs = 1179 LR chi2(1) = 34.32 Prob > chi2 = 0.0000 Pseudo R2 = 0.0216

| T or | likalihaad | _ | -778 | 45807 |
|------|------------|---|------|-------|

| vote   | Coef.    | Std. Err. | z     | P> z  | [95% Conf. | Interval] |
|--------|----------|-----------|-------|-------|------------|-----------|
| income | .3259947 | .0568807  | 5.73  | 0.000 | .2145106   | .4374788  |
| _cons  | -1.40213 | .1894595  | -7.40 | 0.000 | -1.773464  | -1.030796 |



#### logistics 回归案例

- 回归系数显著性:  $\frac{\beta}{SE_{\beta}} > 2(1.96)$
- 偏差和似然比检验 (Deviance and likelihood ratio tests):

$$D_{\rm model} - D_{\rm null} = -2\log\left(\frac{{\rm Likelihood~of~fitted~model}}{{\rm Likelihood~of~null~model}}\right)$$

- null:没有自变量的情形下
- model: 有自变量的情形下
- 自由度: model 的自变量数-1
- $\mathbf{z}^2$  显著表示有自变量的模型较没有自变数的模型可以解释 y 更多的偏差,拟合优度 (goodness of fit) 显著性改善。
- $\blacksquare$  Psuedo $R^2=R_L^2=\frac{D_{\mathrm{null}}-D_{\mathrm{model}}}{D_{\mathrm{null}}}$ 
  - 表示有自变量的模型较没有自变数的模型可以解释的偏差比。
  - $PRE = \frac{E1-E2}{E1}$



#### 解释 logit 回归系数

- 由于 logit 回归拟合线是曲线,所以 x 的期望差对应的 y 的期望差是不固定的,斜率最大值在曲线中点。
- logit (0.5) = 0, logit (0.6) = 0.4, 所以在 logit 的刻度上加上 0.4, 会让概率从 50% 增加到 60%。
- logit (0.9) = 2.2, logit (0.93) = 2.6, 所以在 logit 的刻度上加上 0.4, 会让概率从 90% 增加到 93%



#### 解释 logit 回归系数

- $Pr(Bush Support) = logit^{-1} (-1.40 + 0.33income)$
- 收入每增加 1 单位, Bush 支持度增加 0.33 logit 概率。
- $\log it^{-1}(-1.40+0.33\times3) \log it^{-1}(-1.40+0.33\times2) = 0.08$ , 收入每增加 1 单位,Bush 支持度增加 8% 概率。
- 增加的概率大约是系数除以 4。



#### 潜变量模型

$$y_i = \begin{cases} 1 & \text{if } z_i > 0 \\ 0 & \text{if } z_i < 0 \end{cases}$$
$$z_i = \mathbf{X}_i \boldsymbol{\beta} + \epsilon_i, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2)$$



#### 潜变量模型方差无法识别

$$z_i = -1.40 + 0.33x_i + \epsilon,$$
  $\epsilon \sim \mathcal{N}(0, 1.6^2)$   
 $z_i = -14.0 + 3.3x_i + \epsilon,$   $\epsilon \sim \mathcal{N}(0, 16^2)$   
 $z_i = -140 + 33x_i + \epsilon,$   $\epsilon \sim \mathcal{N}(0, 160^2)$ 

- 方差  $\sigma^2$  在模型中是无法确定的,所以通常我们都把它设定为  $1.6^2$ 。
- 1.6 就是 logistic 分布的元单位。
- logistic 分布的方差是  $\frac{\pi}{3}=1.81^2$ ,但是我们使用  $1.6^2$ ,详见 R 代码。
- $z_i = \mathbf{X}_i \boldsymbol{\beta} + \epsilon_i, \qquad \epsilon \sim \mathsf{logistic}(0, \sigma^2)$
- 把方差设定为 1, 就成为了 probit 回归了!



#### 案例分析

■ 因变量: switch 是否改变取水井。

■ 白变量:

■ dist: 距离最近安全井的距离(公尺)

■ arsenic: 自家水井的砷含量

■ assoc: 家庭成员中是社区委员会成员

■ educ: 教育程度



#### 案例分析

#### . logit switch dist

```
Iteration 0: log likelihood = -2059.0496
Iteration 1: log likelihood = -2038.1212
Iteration 2: log likelihood = -2038.1189
Iteration 3: log likelihood = -2038.1189
```

Logistic regression

Number of obs = 3020 LR chi2(1) = 41.86 Prob > chi2 = 0.0000 Pseudo R2 = 0.0102

Log likelihood = -2038.1189

| switch |         | Std. Err. | _     |       |                     | Interval] |
|--------|---------|-----------|-------|-------|---------------------|-----------|
| dist   | 0062188 | .0009743  | -6.38 | 0.000 | 0081283<br>.4877535 | 0043093   |



```
. gen dist100 = dist/100
dist100 already defined
r(110):
. logit switch dist100
Iteration 0: log likelihood = -2059.0496
Iteration 1: log likelihood = -2038.1212
Iteration 2: log likelihood = -2038.1189
Iteration 3:
           log likelihood = -2038.1189
Logistic regression
                                            Number of obs = 3020
                                            LR chi2(1) = 41.86
                                            Prob > chi2 = 0.0000
                                            Pseudo R2 = 0.0102
Log likelihood = -2038.1189
               Coef. Std. Err. z P>|z| [95% Conf. Interval]
```

dist100 | -.6218819 .0974259 -6.38 0.000 -.8128331 -.4309307 cons | .6059594 .0603102 10.05 0.000 .4877535 .7241652

|      | - Comp | Pape.       |
|------|--------|-------------|
| A    | Late   | . 4         |
| - Ni | 94     | (At         |
| 881  | 8.5    | (W) ž       |
| 1/3  | , AND  | 44          |
|      | Trees  | The same of |

# 案例分析:图示





#### 案例分析:系数解读

- $Pr(switch) = logit^{-1} (0.61 0.62dist100)$
- 常数项: 当 dist100= 0 时,换井的概率为 logit<sup>-1</sup> (0.61) = 0.65,如果你就住在安全的井旁边,你会换井的概率为 65%
- 回归系数: 如果你家每远安全井 100 公尺, 你会换井的概率 就下降  $0.61/4 \approx 15\%$ 。



## 案例分析:两个变量

. logit switch dist100 arsenic;

```
Iteration 0: log likelihood = -2059.0496
Iteration 1: log likelihood = -1965.863
Iteration 2: log likelihood = -1965.343
Iteration 3: log likelihood = -1965.3341
```

Logistic regression

Number of obs = 3020 LR chi2(2) = 187.43 Prob > chi2 = 0.0000 Pseudo R2 = 0.0455

Log likelihood = -1965.3341

| switch                          | Coef.                           | Std. Err.                        | z                      | P> z                    | [95% Conf.                      | Interval]                       |
|---------------------------------|---------------------------------|----------------------------------|------------------------|-------------------------|---------------------------------|---------------------------------|
| dist100  <br>arsenic  <br>_cons | 8966439<br>.4607747<br>.0027489 | .1043469<br>.0413848<br>.0794477 | -8.59<br>11.13<br>0.03 | 0.000<br>0.000<br>0.972 | -1.10116<br>.3796619<br>1529657 | 6921277<br>.5418875<br>.1584635 |



## 案例分析:图示







#### 案例分析:系数解读

- $Pr(switch) = logit^{-1} (0.002 0.90dist100 + 0.46arsenic)$
- 回归系数 dist100: 如果你家每远安全并 100 公尺,你会换并的概率就下降  $0.90/4\approx 22\%$ ; 距离每增加 1 个标准差,你会换并的概率就下降  $0.90\times 0.38/4\approx 8\%$
- 回归系数 arsenic: 如果你家水井砷含量每多 1 单位,你会换井的概率就增加  $0.46/4\approx11\%$ ; 砷含量每增加 1 个标准差,你会换井的概率就增加  $0.46\times1.1/4\approx13\%$



#### 案例分析:两个变量

```
. logit switch dist100 arsenic dist100ars;
```

```
Iteration 0: log likelihood = -2059.0496
Iteration 1: log likelihood = -1964.7519
Iteration 2: log likelihood = -1963.815
Iteration 3: log likelihood = -1963.8142
Iteration 4: log likelihood = -1963.8142
```

Logistic regression

| Number of obs | = | 3020   |
|---------------|---|--------|
| LR chi2(3)    | = | 190.47 |
| Prob > chi2   | = | 0.0000 |
| Pseudo R2     | = | 0.0463 |

Log likelihood = -1963.8142

| switch | Coef.               | Std. Err.                                    | z                               | P> z                             |                                           | Interval]                                  |
|--------|---------------------|----------------------------------------------|---------------------------------|----------------------------------|-------------------------------------------|--------------------------------------------|
|        | 5772179<br>.5559767 | .2091793<br>.0693194<br>.1023282<br>.1175381 | -2.76<br>8.02<br>-1.75<br>-1.26 | 0.006<br>0.000<br>0.080<br>0.208 | 9872017<br>.4201133<br>3794656<br>3782385 | 167234<br>.6918402<br>.0216536<br>.0825023 |



## 案例分析:图示







#### 案例分析:系数解读

- $\Pr(\text{switch}) = \log i t^{-1} (-0.15 0.58 \text{dist} 100 + 0.56 \text{arsenic} 0.18 \text{dist} 100 : \text{arsenic})$
- 常数项: 当 dist100= 0 和 arsenic= 0 时,换井的概率为  $logit^{-1}(-0.15) = 0.47$ 。
- 回归系数 dist100: 将 arsenic 定在均值 1.66,如果你家每远安全并 100 公尺,而你家水井砷含量为 1.66,你会换井的概率就下降  $-0.58+0.18*1.66=0.88/4\approx22\%$
- 回归系数 arsenic: 将 dist100 定在均值 0.48,如果你家水井 砷含量每多 1 单位,你家距离安全井为 48 公尺你会换井的 概率就增加  $0.56-0.18\times0.48=0.47/4\approx12\%$ ;



#### 案例分析: 系数解读

- $\Pr(\text{switch}) = \log i t^{-1} (-0.15 0.58 \text{dist100} + 0.56 \text{arsenic} 0.18 \text{dist100} : \text{arsenic})$
- 交叉项:
  - 从 dist100 的角度来看,每增加 1 单位的 dist100,也就是说 距离安全井的距离每多 100 公尺,会减少 arsenic 的回归系 数 0.18;自家井含砷量越高,距离预测是否换井概率的重要 性随之增加(因为黑线(arsenic= 1)在红线 (arsenic= 0.5) 之上);但是这样的关系随着自家井含砷量的增加而越不显 著(黑线和红线的差距随着自家井含砷量的增加而越来越不明显)。
  - 从 arsenic 的角度来看,每增加 1 单位的 arsenic,也就是说自家井含砷量每增加 1 单位,会减少 dist100 的回归系数 0.18; 距离安全井越远,自家井含砷量预测是否换井概率的重要性随之减少 (因为黑线 (dist100=0) 在红线 (dist100=0.5) 之上); 但是这样的关系随着自家井含砷量的增加而越不显著(黑线和红线的差距随着安全井距离的增加而越来越不明显)。



#### 案例分析: 多个变量

```
. logit switch cdist100 carsenic cdisars assoc educ;
```

Logistic regression

Number of obs = 3020 LR chi2(5) = 212.75 Prob > chi2 = 0.0000 Pseudo R2 = 0.0517

Log likelihood = -1952.6755

| <br>switch   | I | Coef.    | Std. Err. | z     | P> z  | [95% Conf. | Interval] |
|--------------|---|----------|-----------|-------|-------|------------|-----------|
| <br>cdist100 | Ī | 8752828  | .1050702  | -8.33 | 0.000 | -1.081217  | 669349    |
| carsenic     | 1 | .4753105 | .0422936  | 11.24 | 0.000 | .3924165   | .5582044  |
| cdisars      | 1 | 1612339  | .1022485  | -1.58 | 0.115 | 3616372    | .0391695  |
| assoc        | 1 | 123188   | .0769771  | -1.60 | 0.110 | 2740604    | .0276843  |
| educ         | 1 | .0419477 | .0095941  | 4.37  | 0.000 | .0231436   | .0607518  |
| _cons        | 1 | .2025163 | .0693009  | 2.92  | 0.003 | .066689    | .3383436  |
|              |   |          |           |       |       |            |           |



#### 潜变量模型: Probit

$$y_i = \begin{cases} 1 & \text{if } z_i > 0 \\ 0 & \text{if } z_i < 0 \end{cases}$$
$$z_i = \mathbf{X}_i \boldsymbol{\beta} + \epsilon_i, \qquad \epsilon \sim \mathcal{N}(0, 1)$$

所以 probit 的回归系数是 logit 的回归系数除以 1.6



#### 案例分析: 多个变量

Probit regression

. probit switch cdist100 carsenic cdisars assoc educ

```
Iteration 0: log likelihood = -2059.0496
Iteration 1: log likelihood = -1954.2447
Iteration 2: log likelihood = -1954.0525
Iteration 3: log likelihood = -1954.0525
```

| TIODIC TEGLESSION           | Number of one | _ | 3020   |
|-----------------------------|---------------|---|--------|
|                             | LR chi2(5)    | = | 209.99 |
|                             | Prob > chi2   | = | 0.0000 |
| Log likelihood = -1954.0525 | Pseudo R2     | = | 0.0510 |
|                             |               |   |        |

Number of obs =

| switch                 | Coef.               | Std. Err.            | z              | P> z  |                    | Interval]           |
|------------------------|---------------------|----------------------|----------------|-------|--------------------|---------------------|
| cdist100  <br>carsenic | 5329807<br>.2787411 | .0642019<br>.0239218 | -8.30<br>11.65 | 0.000 | 658814<br>.2318553 | 4071473<br>.3256269 |
| cdisars                | 0774047             | .0604616             | -1.28          | 0.200 | 1959071            | .0410978            |
| assoc                  | 0792548             | .0474158             | -1.67          | 0.095 | 1721882            | .0136785            |
| educ                   | .0263465            | .0058917             | 4.47           | 0.000 | .0147989           | .0378941            |
| _cons                  | .1179523            | .0425845             | 2.77           | 0.006 | .0344882           | .2014164            |



#### 事件发生比

- 事件发生的概率: p
- 事件发生比 (Odds):  $\pi = \frac{p}{1-p}$
- 事件发生比率 (odds ratio):  $\frac{\pi^*}{\pi}$



#### 非线性到线性的转换

$$p = \frac{1}{1 + e^{-(\alpha + \beta x)}}$$
 
$$\pi = \frac{p}{1 - p} = \frac{\frac{1}{1 + e^{-(\alpha + \beta x)}}}{1 - \frac{1}{1 + e^{-(\alpha + \beta x)}}} = e^{\alpha + \beta x}$$
 
$$\log \operatorname{id}(p) = \log \pi = \alpha + \beta x$$



#### 发生比率解读

$$\pi = e^{(\alpha + \beta x)}$$

$$\pi^* = e^{(\alpha + \beta(x+1))}$$

$$\frac{\pi^*}{\pi} = \frac{e^{(\alpha + \beta(x+1))}}{e^{(\alpha + \beta x)}} = e^{\beta}$$



#### 发生比率解读

- 当  $\beta = 0.693$ ,则  $e^{\beta} = 2$  表示自变量变化一个单位,导致新的发生比率是原来的 2 倍。
- $e^{\beta}=0.8$  表示自变量变化一个单位,导致新的发生比率是原来的 80%。
- 如果自变量是虚拟变量, $e^{\beta} = 1.6$ ,则表示取值为 1 的哪一类的发生比是参照类的 1.6 倍。

