MICROPLASTIC INGESTION IN THE HUMAN BODY USING DEEP LEARNING

A PROJECT REPORT

Submitted by

SRINIVASAN.M	211420205154
THIRUSHANTH KARTHIKEYAN.G	211420205171
JAIVARDHAN.G	211420205049
PRAVEEN.D	211420205112

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

in

INFORMATION TECHNOLOGY

PANIMALAR ENGINEERING COLLEGE, POONAMALLEE

ANNA UNIVERSITY: CHENNAI 600 025

MARCH 2024

BONAFIDE CERTIFICATE

Certified that this project report "MICROPLASTIC INGESTION IN THE HUMAN BODY USING DEEP LEARNING" is the bonafide work of "SRINIVASAN.M(211420205154),THIRUSHANTHKARTHIKEYAN.G(211420205171),JAIVARDHAN.G (211420205049) ,PRAVEEN.D(211420205112)" who carried out the project under my supervision.

SIGNATURE	SIGNATURE

Dr. M. HELDA MERCY M.E., Ph.D., Mrs.M A.GUNAVATHIE M.Tech(Ph.D)

HEAD OF THE DEPARTMENT ASSISTANT PROFESSOR

Department of Information Technology
Panimalar Engineering College
Panimalar Engineering College

Poonamallee, Chennai - 600 123 Poonamallee, Chennai - 600 123

Submitted for the project and viva-voce examination held on _____

SIGNATURE SIGNATURE

INTERNAL EXAMINER EXTERNAL EXAMINER

DECLARATION

I here by declare that the project report entitled "MICROPLASTIC

INGESTION IN THE HUMAN BODY USING DEEP LEARNING" which is being

submitted in partial fulfillment of the requirement of the course leading to the award

of the 'Bachelor of Technology in Information Technology' in Panimalar Engineering

College, An Autonomous institution Affiliated to Anna University- Chennai is the

result of the project carried out by me under the guidance and supervision of Mrs.M

A.GUNAVATHIE, Assistant Professor in the Department of Information

Technology. I further declared that I or any other person has not previously

submitted this project report to any other institution/university for any other

degree/ diploma or any other person.

(SRINIVASAN.M)

(THIRUSHANTH KARTHIKEYAN.G)

(JAIVARDHAN.G)

(PRAVEEN.D)

Date:

Place: Chennai

It is certified that this project has been prepared and submitted under my guidance.

Date:

(Mrs.M A.GUNAVATHIE M.Tech(Ph.D))

Place: Chennai

(Assistant Professor /IT)

iii

ACKNOWLEDGEMENT

A project of this magnitude and nature requires kind co- operation and support from many, for successful completion. We wish to express our sincere thanks to all those who were involved in the completion of this project.

Our sincere thanks to Our Honorable Secretary and Correspondent, **Dr.P. CHINNADURAI**, **M.A.**, **Ph.D.**, for his sincere endeavor in educating us in his premier institution.

We would like to express our deep gratitude to Our Dynamic Directors, Mrs. C. VIJAYA RAJESHWARI and Dr.C.SAKTHI KUMAR, M.E.,Ph.D and Dr.SARANYA SREE SAKTHIKUMAR., B.E., M.B.A.,Ph.D for providing us with the necessary facilities for completion of this project.

We also express our appreciation and gratefulness to **Our Principal Dr. K. MANI, M.E., Ph.D.,** who helped us in the completion of the project. We wish to convey our thanks and gratitude to **our head of the department, Dr. M. HELDA MERCY, M.E., Ph.D.,** Department of Information Technology, for her support and by providing us ample time to complete our project.

We express our indebtedness and gratitude to our staff in charge, Mrs.M A.GUNAVATHIE M.Tech(Ph.D)Assistant Professor, Department of Information Technology for her guidance throughout the course of our project. Last, we thank our parents and friends for providing their extensive moral support and encouragement during the course of the project.

ABSTRACT

The abstract outlines a significant scientific inquiry into the prevalence of microplastics within the human body and their potential consequences for health. Through the utilization of cutting-edge deep learning methodologies, the study introduces an innovative approach designed to identify and measure microplastic particles within biological specimens. By harnessing the power of artificial intelligence, the research endeavor's to enhance our comprehension of how microplastics interact with the human body and the potential health ramifications therein.

The primary objective of this investigation is to illuminate the extent of microplastic contamination in human tissues and fluids, shedding light on a burgeoning concern in contemporary environmental and public health discourse. Furthermore, the development of an automated detection system represents a pioneering endeavor towards achieving comprehensive analysis of microplastic exposure and distribution within biological systems.

This study holds promise for advancing scientific knowledge regarding the bioaccumulation of microplastics and their potential physiological impacts. Moreover, the proposed deep learning framework offers a scalable solution for efficiently detecting and quantifying microplastic presence in diverse biological samples, paving the way for future research endeavor's and proactive interventions aimed at mitigating the adverse effects of microplastic pollution on human health.

LIST OF CONTENTS

CHAPTER NO	TITLE	PAGE
	ABSTRACT	V
	LIST OF FIGURES	ix
	LIST OF ABBREVATIONS	xi
1	INTRODUCTION	1
	1.1 THE MICROPLASTICS CHALLENGE	2
	1.2 MICROPLASTICS IN HUMAN SYSTEM	3
	1.3 DIGITAL IMAGE PROCESSING	8
2	LITERATURE SURVEY	7
3	SYSTEM ANALYSIS	13
	3.1 OVERVIEW	14
	3.2 REGION GROWING APPROACH	14
	3.3 CLUSTERING	15
	3.4 K-MEANS SEGMENTATION	15
	3.5 HIERARCHICAL SEGMENTATION	16
	3.6 THERSHOLDING	16
	3.7 DESIGN STEPS	17
	3.8 K-MEANS CLUSTERING	17

	3.9 ALGORITHM FOR GETTING INITIAL CENTROIDS	18
4	EXISTING METHOD	21
5	PROPOSED SYSTEM	24
	5.1 PROGRAM SYSTEM	25
	5.2 PREPROCESING	25
	5.3 DT-CWT	27
	5.4 WAVELET TRASFORM	27
	5.5 FUZZY CLUSTERING MODEL	31
	5.6 MORPHOLOGICAL PROCESS	35
	5.7 FUNDAMENTAL OPERATIONS	37
	5.8 CO-OCCURRENCE MATRIX	39
	5.9 KNN CLASSIFIER	42
	5.10 NEURAL NETWORK	43
6	APPENDIX & IMPLEMENTATION	48
	6.1 APPENDIX	49
	6.2 IMPLEMENTATION	51

8	REFERENCES	81
	7.3 RESULTS & DISCUSSION	79
	7.2 SCREENSHOT'S OF RESULT	75
	7.1 SOURCE CODE FILES	61
7	CODING AND SCREENSHOTS	60

LIST OF FIGURES

FIGURE NO	NAME OF THE FIGURE	PAGE NO
1	BLOCK DIAGRAM	25
2	THE VALUE OF THE WAVELET COEFFICIENT	26
3	ANALYSIS FB FOR THE DWT WITH INVERTIBLE COMPLEX POST FILTERING	29
4	A Q SHIFT COMPLEX WAVELET	29
5	PROBING OF AN IMAGE WITH STRUTURING ELEMENT	35
6	EXAMPLES OF SIMPLE STRUCTING ELEMENTS	36
7	FILTERINGAND HITTING OF BINARY IMAGE	37
8	Erosion: a 3×3 square structuring element	38
9	Dilation: a 3×3 square structuring element	39
10	Image example	40

11	Classical Co-occurrence	40
	matrix	
12	Neural Network	46
13	CNN With Hidden Layers	49
14	GUI OF INPUT IMAGE	75
15	DATASET IMAGES OF MICROPLASTIC.	75
16	FEATURE EXTRACTION OF MICROPLASTICS IMAGES	76
17	NEURAL NETWORK TRAINING	76
18	SEGMENTATION OF MICROPLASTIC	77
19	SEGMENTATION	77
20	PLASTIC FOUND IN PARTICULAR AREA	78
21	RESULT FOUND THAT DISEASE FOR A PARTICULAR PLASTIC	78

LIST OF ABBREVIATIONS

Expansion **SYMBOL** ΑI Artificial Intelligence NN Neural Network **MATLAB** Matrix Laboratory Convolutional Neural Networks **CNN** Discrete Wavelet Transform **DWT** Linear Equation Package LINPACK ARnoldi PACKage **ARPACK** Graphical User Interface GUI **CWT** Complex Wavelet Transform Filter Bank FB

BC

Breast Cancer