ENERGIES CHIMIQUE ET ÉLECTRIQUE : CONVERSION ET STOCKAGE

Sommaire

I	Conversion énergie chimique-energie électrique : piles (générateurs primaires)		2
	I.1	Situation du problème : de la corrosion à la pile	2
	I.2	Approche thermodynamique (situation à l'équilibre $i=0$)	3
		a - Lien entre $\Delta_r G$ et ΔE - tension à vide	3
		b - Relation de la tension à vide avec la température	3
	I.3	Approche cinétique (Situation en évolution $i \neq 0$)	4
		a - Hypothèse thermodynamique : réaction spontanée (règle du $\gamma)$	4
		b - Lecture des courbes courant potentiel d'une pile	4
		c - Courbe de décharge - capacité - énergie massique	6
		d - Travail électrique/énergie maximal(e) récupérable : lien entre $\Delta G_{P,T}$ et W_e	6
	I.4	Exemple courant : la pile alcaline "classique"	7
II	Conversion énergie électrique-énergie chimique		8
	II.1	Electrolyseur	8
		a - Cinétique de l'électrolyse - seuil - caractère forcé de la transformation \dots	8
		b - Exemples d'application : raffinage électrolytique du cuivre	9
	II.2	Accumulateurs ou générateurs rechargeables	9
		a - Principe	9
		b - Cinétique de la recharge d'un accumulateur - contrainte de renversabilité .	9
		c - Exemple : l'accumulateur au plomb (cf mise en oeuvre en TP)	10

Conversion énergie chimique-energie électrique : piles (générateurs pri-Ι maires)

Situation du problème : de la corrosion à la pile

HYPOTHÈSE : on reprend l'expérience simple de corrosion différentielle cuivre-zinc par contact :

Figure VII.1 – Pile de corrosion différentielle cuivre-Zinc

IDÉE : on peut sépare la cellule galvanique en 2 demi-cellules afin de pouvoir exploiter le flux d'électrons ⇒ pile générant un courant extérieur exploitable; c'est la Pile Daniell (1836 John Daniell)

FIGURE VII.2 – Pile Daniell

Commentaires:

- A l'anode, il y a oxydation de l'électrode de Zinc dans la solution $ZnSO_4: Zn_{(s)} \longrightarrow Zn^{2+} + 2e^-$ A la cathode, il y a réduction des ions Cu^{2+} de la solution $CuSO_4: Cu^{2+} + 2e^- \longrightarrow Cu_{(s)}$

réaction bilan :
$$Zn_{(s)} + Cu^{2+} \longrightarrow Zn^{2+} + Cu_{(s)}$$

ullet Le pont salin permet : $\left[egin{array}{ll} \mbox{la fermeture du circuit} \\ \mbox{la compensation \'electrique des ions produits/consomm\'es} \end{array}
ight]$

⇒ La pile constitue un générateur puisque un courant extérieur au dispositif est exploitable.

Rappel: notation conventionnelle de la pile Daniell:

$$Zn \mid Zn_{aq}^{2+} \mid\mid Cu_{aq}^{2+} \mid Cu$$

Objectifs:

• Etude thermodynamique générale des piles à l'équilibre, soit i=0

- Etude cinétique donc hors équilibre, soit $i \neq 0$
- Exemples divers

I.2 Approache thermodynamique (situation à l'équilibre i = 0)

a - Lien entre $\Delta_r G$ et ΔE - tension à vide

On rappelle l'équation de la réaction générique d'une pile : $n_1Ox_2 + n_2red_1 \xrightarrow[(2)]{(1)} n_1red_2 + n_2ox_1$

FIGURE VII.3 – Schéma général d'une pile

Reprenons le critère d'évolution attaché au "bon" potentiel pour les réactions rédox $G + n\mathcal{F}\Delta E\xi$, soit :

$$d [G + n\mathcal{F}\Delta E\xi] \le 0 \quad \text{avec } \Delta E = E_2 - E_1$$

<u>Нуротнèse</u>: la pile ne débite pas situation d'équilibre donc : $d[G + n\mathcal{F}\Delta E\xi] = 0$

En appelant $U_0 = \Delta E = E_2 - E_1$ la tension dite "à vide" i.e. sans débit

$$dG=-n\mathcal{F}\Delta E d\xi$$
 A $(P,T)=cstes$, on a : $dG_{P,T}=\left(\frac{\partial G}{\partial \xi}\right)_{(P,T)}\cdot d\xi=\Delta_r G\cdot d\xi$

la relation précédente devient donc à RETENIR:

$$\Delta_r G = -n\mathcal{F} \underbrace{\Delta E}_{\text{tension à vide}}$$

b - Relation de la tension à vide avec la température

Prenons l'expression de l'"identité thermodynamique" de G:

$$dG = -S \cdot dT + V \cdot dP + \Delta_r G \cdot d\xi$$

D'après la relation de Schwartz ou bien la première relation de Gibbs-Helmoltz, il vient :

$$\Delta_r S = \frac{\partial S}{\partial \xi} = -\left(\frac{\partial \Delta_r G}{\partial T}\right)_{P,\xi} = +n\mathcal{F}\left(\frac{\partial \Delta E}{\partial T}\right)_{P,\xi}$$

Par ailleurs :
$$\Delta_r H = \Delta_r G + T \Delta_r S = n \mathcal{F} \left(-\Delta E + T \frac{\partial \Delta E}{\partial T} \right)_{P,\xi}$$

Ainsi:

$$\begin{bmatrix} \Delta_r G = -nF \cdot \Delta E \\ \Delta_r S = n\mathcal{F} \left(\frac{\partial \Delta E}{\partial T} \right)_{P,\xi} \\ \Delta_r H = n\mathcal{F} \left(-\Delta E + T \cdot \left(\frac{\partial \Delta E}{\partial T} \right)_{P,\xi} \right) \end{bmatrix}$$

NB: ces lois seront vérifiées en TP sur le cas de la pile à l'oxyde d'argent :

$$Zn_{(s)}, ZnO_{(s)}||KOH||C_{(s)}, Ag_2O_{(s)}, Ag_{(s)}$$

de réaction bilan :

$$Zn_{(s)} + Ag_2O_{(s)} \xrightarrow{(1)} 2Ag_{(s)} + ZnO_{(s)}$$

Pour un intervalle de température restreint ($\sim 50^{0}C$), on a ($\Delta_{r}H, \Delta_{r}S$) $\simeq cstes$

et les espèces sont solides
$$\Rightarrow$$
 \Longrightarrow
$$\begin{cases} \Delta_r H \simeq \Delta_r H^0 \overset{\text{Ellingh}}{\simeq} \Delta_r H^0(298K) \\ \Delta_r S \simeq \Delta_r S^0 \overset{\text{Ellingh}}{\simeq} \Delta_r S^0(298K) \\ \longrightarrow \text{ on mesure et on trace } U_0 = \Delta E = f(T) \text{ or } U_0 = \Delta E(T) = -\frac{\Delta_r G}{nF} \end{cases}$$

$$U_0 = \Delta E(T) \simeq \underbrace{-\frac{\Delta_r H^0(298K)}{n\mathcal{F}}}_{\text{ordonnée origine}} + T \underbrace{\frac{\Delta_r S^0(298K)}{n\mathcal{F}}}_{\text{pente}} \Longrightarrow \underbrace{\left[\Delta_r H^0, \, \Delta_r S^0, \, \Delta_r G^0(T) \text{ connues}\right]}_{\text{pente}}$$

I.3 Approche cinétique (Situation en évolution $i \neq 0$)

a - Hypothèse thermodynamique : réaction spontanée (règle du γ)

On reprend là-encore la pile "générique" mettant en jeu les couples Ox_1/Red_1 et Ox_2/Red_2 d'équation bilan :

$$n_1Ox_2 + n_2red_1 \xrightarrow{(1)} n_1red_2 + n_2ox_1$$

On suppose qu'à vide $\Delta E = E_2 - E_1 = -\frac{\Delta_r G}{n\mathcal{F}} > 0$, soit $\Delta_r G < 0 \Longrightarrow$ réaction spontanée

b - Lecture des courbes courant potentiel d'une pile

2 situations à considérer : (attention : diagrammes de potentiel ci-dessous hors programme)

• Pile à vide : i = 0

FIGURE VII.4 – Courbe i = f(E) de la pile à vide

FIGURE VII.5 – fem de la pile à vide Dans ces conditions, la différence de potentiel entre les électrodes de la pile est simplement la fem à vide, soit :

$$U_0 = V_B - V_A = E_{2_e} - E_{1_e}$$

• Pile "en débit" $i \neq 0$

FIGURE VII.6 – Courbe i = f(E) de la pile à vide

FIGURE VII.7 – fem de la pile en débit

Si la pile débite, la différence de potentiel entre les deux électrodes s'établit à :

$$U = V_B - V_A = -Ri + E_{2e} + \eta_c - (E_{1e} + \eta_a)$$

$$U = \underbrace{E_{2_e} - E_{1_e}}_{\text{fem \Rightarrow "thermodyn"}} + \underbrace{(\eta_c - \eta_a)}_{\text{surtensions \Rightarrow "cinétique"}} - Ri$$

CONCLUSION: "cahier des charges" d'une pile

On souhaite en général que la pile possède une tension élevée et **fixe** quelque soit le courant délivré. Pour cela il faut :

- Forte différence de potentiel d'équilibre \Longrightarrow $\begin{bmatrix} Ox_2 \text{ très oxydant} \\ Red_1 \text{ très réducteur} \end{bmatrix}$
- Faible résistance interne \Longrightarrow jonction électrolytique performante
- Faibles surtensions \Longrightarrow couples rapides

 $\Longrightarrow U$ "forte" et peu dépendante de i!!!!!

c - Courbe de décharge - capacité - énergie massique

EXPÉRIENCE : on enregistre l'évolution temporelle de la tension d'une pile qui débite :

FIGURE VII.8 – Courbe de décharge d'une pile

<u>Capacité</u> : On caractérise une pile par la quantité maximale d'électricité qu'elle peut fournir sur sa durée de vie, appelée **capacité** :

$$C = i_{moy} \cdot t_{maxi}$$
 exprimée en $A.h \ (\neq \text{unit\'e S.I.}!!!)$ avec
$$\begin{bmatrix} i_{moy} : \text{courant moyen d\'elivr\'e} \\ t_{maxi} : \text{dur\'ee de vie de la pile sous } i_{moy} \end{bmatrix}$$

NB : 1 A.h = 3600 C

Exemples de nomenclature :

 $C_{10}=20~A.h$ signifie que la pile peut fournir un courant de 2A pendant 10H $C_5=20~A.h$ signifie que la pile peut fournir un courant de 4A pendant 5H

Energie massique moyenne :

La puissance moyenne délivrée par la pile est : $\overline{P} = U_{moy} \cdot i_{moy}$

donc l'énergie massique moyenne dégagée par la pile pendant la durée de fonctionnement totale moyenne t_{moy} est :

$$\boxed{\overline{E_m} = \frac{\overline{\mathcal{P}} \cdot t_{moy}}{m} = \frac{U_{moy} \cdot i_{moy} \cdot t_{moy}}{m}} \quad \text{avec } m \text{ masse du générateur}$$

Unité "commode" : $Wh.kg^{-1}$

NB: 1 W.h = 3600 J

d - Travail électrique/énergie maximal(e) récupérable : lien entre $\Delta G_{P,T}$ et W_e

RAPPEL: On a toujours $n = n_1 n_2$;

En reprenant la condition d'évolution de la pile, il vient : $d[G + n\mathcal{F}\Delta E\xi] \leq 0$, soit :

$$dG \le -n\mathcal{F}\Delta E d\xi$$

Par ailleurs, on rappelle (cf chap. IV) que le travail électrique fourni par la pile est $\delta W_e = -n\mathcal{F}\Delta E d\xi$; il vient ainsi :

$$dG < \delta W_e$$

soit pour une transformation totale (À RETENIR):

$$\Delta G \leq W_e$$

Par ailleurs, en appelant $W_q = -W_e$ le travail cédé aux charges extérieures et donc récupérable on a :

$$\Delta G \le -W_q$$

soit le travail maximal produit par la pile et donc récupérable (à RETENIR) : $W_q(max) = -W_e(max) = -\Delta G$

I.4 Exemple courant : la pile alcaline "classique"

NB : technologie issue des piles salines à électrolyte NH_4Cl remplacé par de la potasse $KOH \Longrightarrow$ appellation "alcaline"

Les réactions se produisant aux électrodes sont les suivantes :

• Cathode:
$$MnO_2 + e^- + H_2O \xrightarrow{(1)} MnO(OH) + OH^-$$

• Anode :
$$Zn + 4OH^- \xrightarrow{(1)} Zn(OH)_4^{2-} + 2e^-$$

Bilan:
$$2MnO_2 + 2H_2O + Zn + 2OH^- \xrightarrow{(1)} 2MnO(OH) + Zn(OH)_4^{2-}$$

Notation: $Zn/Zn(OH)_4^{2-}||MnO(OH)/MnO_2|$

FIGURE VII.9 – Constitution d'une pile alcaline

QUELQUES ORDRES DE GRANDEURS :

- f.e.m. : $e = \Delta E = E(\underline{MnO_2/MnO(OH)}) E(Zn(OH)_4^{2-}/Zn) \simeq 1,5 \text{ V}$
- énergie massique : $\overline{E_m} \simeq 120 \ Wh.kg^{-1}$

<u>Exercice de cours:</u> (I.4) - n° 1 Evaluer la durée de fonctionnement d'une pile alcaline de masse m=30 g débitant dans une charge de 100Ω

II Conversion énergie électrique-énergie chimique

II.1 Electrolyseur

a - Cinétique de l'électrolyse - seuil - caractère forcé de la transformation

Supposons le système électrochimique constitué des deux couples Ox_1/Red_1 et Ox_2/Red_2 .

<u>Hypothèse</u>: on suppose $E_2 > E_1$

⇒ la réaction se fait **spontanément en sens 1** (règle du gamma) :

$$Ox_2 + Red_1 \xrightarrow{\text{spontan\'ee}} Ox_1 + Red_2$$

Expérience:

On réalise la cellule dite électrolytique suivante (par opposition à une cellule galvanique/pile) :

FIGURE VII.10 – Cellule électrolytique

Observations:

A partir d'une certaine valeur de tension "seuil" imposée par le générateur $U > U_{seuil}$, le courant circule de la 1/2 cellule 1 vers la demi-cellule 2.

$$\implies$$
 on réalise la réaction forcée : $Ox_2 + Red_1 \leftarrow Ox_1 + Red_2$

<u>INTERPRÉTATION</u>: à l'aide des courbes courant-potentiel des couples concernés :

 $Figure\ VII.11-Courbe\ courant-potentiel: fonctionnement\ d'un\ \'electrolyseur$

L'écart de potentiel "seuil" nécessaire pour observer la réaction forcée est donc :

$$\Delta E_{seuil} = (E_2 - E_1)_{seuil} = E_{e2} - E_{e1} + \eta_a + |\eta_c|$$

ce qui donne une différence de potentiel aux électrodes de :

$$U = V_2 - V_1 = \underbrace{(V_2 - V_{S_2})}_{=E_2} - \underbrace{(V_1 - V_{S_1})}_{=E_1} + \underbrace{(V_{S_2} - V_{S_1})}_{\text{chute ohmique}}$$

soit en négligeant la chute ohmique (jonction électrolytique de qualité) :

$$U \simeq E_2 - E_1 = E_{e2} - E_{e1} + \eta_a + |\eta_c|$$

b - Exemples d'application : raffinage électrolytique du cuivre

En direct!!!!

II.2 Accumulateurs ou générateurs rechargeables

a - Principe

On veut disposer d'un générateur système rédox $ox_1/red_1, Ox_2/red_2$ avec $E_2 > E_1$ "rechargeable".

<u>IDÉE</u>: inverser la réaction de décharge pour reformer les réactifs une fois le générateur épuisé:

PRINCIPE DE CHARGE : on impose une différence de potentiel supérieure à la tension seuil, c'est à dire en exécutant une électrolyse.

b - Cinétique de la recharge d'un accumulateur - contrainte de renversabilité

On reprend toujours le générateur électrochimique $(ox_1/red_1, Ox_2/red_2)$ avec $E_2 > E_1$.

2 cas de figure :

• Si un autre couple présent dans le système intervient lors de la charge; par exemple $H_20 \longrightarrow O_2$ à l'anode (cf fig 11) :

FIGURE VII.12 – Non renversabilité du système : pas un accumulateur

• Si aucun autre couple n'intervient lors de la charge : (cf fig 12)

Figure VII.13 – Renversabilité du système : c'est un accumulateur

c - Exemple : l'accumulateur au plomb (cf mise en oeuvre en TP)

L'accumulateur au plomb a été inventé en 1859 par Gaston Planté.

Avantages:

- faible coût de production
- facilité de fabrication
- durée de vie importante
- très fort courant débité

$$\underline{\text{Constitution}} : -Pb_{(s)}|PbSO_{4(s)}; H_2SO_4; PbSO_4|PbO_{2(s)}|Pb_{(s)} +$$

Les réactions sont les suivantes :

En cycle de charge:

• Cathode : $PbSO_{4(s)}$ +2 $e^ \longrightarrow$ $Pb_{(s)}$ + SO_4^{2-}

10 \diamond CPGE MP3...

FIGURE VII.14 - Charge et décharge d'un accumulateur au plomb

• Anode: $PbSO_{4(s)} + 2H_2O \longrightarrow PbO_{2(s)} + 4H^+ + 2e^- + SO_4^{2-}$

• Bilan: $2PbSO_{4(s)} + 2H_2O \longrightarrow Pb_{(s)} + 2SO_4^{2-} + PbO_{2(s)} + 4H^+$

En cycle de décharge :

• Cathode : $PbO_{2(s)}$ + $4H^+$ + $2e^-$ + SO_4^{2-} \longrightarrow $PbSO_{4(s)}$ + $2H_2O$

• Bilan: $PbO_{2(s)} + Pb_{(s)} + 2SO_4^{2-} + 4H^+ \longrightarrow 2PbSO_{4(s)} + 2H_2O$

Les phases de charge/décharge apparaissent donc ainsi sur la courbe courant potentiel de l'accumulateur au plomb :

FIGURE VII.15 – Courbe courant-potentiel de l'accumulateur au plomb

Remarque - (II.2) - 1:

En fait, les couples impliquées sont rapides $\implies U_{\text{décharge}} \simeq 2 \ V$.