习题 1.10.6

叶卢庆*

2015年1月7日

题目. 对于任意 $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$, 证明

$$(\mathbf{b}\mathbf{c}\mathbf{d})\mathbf{a} - (\mathbf{c}\mathbf{d}\mathbf{a})\mathbf{b} + (\mathbf{d}\mathbf{a}\mathbf{b})\mathbf{c} - (\mathbf{a}\mathbf{b}\mathbf{c})\mathbf{d} = \mathbf{0}.$$

证明. 我们知道空间中任意四个向量 \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{d} 都是线性相关的, 这个题目给出了系数的具体构造. 设

$$\lambda_1 \mathbf{a} + \lambda_2 \mathbf{b} + \lambda_3 \mathbf{c} + \lambda_4 \mathbf{d} = \mathbf{0}.$$

则

$$\lambda_1 \mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) + \lambda_2 \mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) + \lambda_3 \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) + \lambda_4 \mathbf{d} \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{0}.$$

即

$$\lambda_3 \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) + \lambda_4 \mathbf{d} \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{0}.$$

这样, 我们就得到

$$\lambda_3: \lambda_4 = \mathbf{abd}: -\mathbf{abc}.$$

类似地我们可以得到 λ_1 和 λ_2 的比值, 以及 λ_2 和 λ_3 的比值. 这样我们就得到了题目中的等式.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:yeluqingmathematics@gmail.com