USER MANUAL

NEMEC OUTPUT

E. Strumberger and C. Tichmann

Max Planck Institute for Plasma Physics, Garching, EURATOM Association Boltzmannstr. 2, 85748 Garching, Germany

NEMEC EQUILIBRIUM OUTPUT

The program **readnemec.f90** reads the equilibrium output of the NEMEC code, which is stored in the output file **wout.**xxx. Both, ASCII and binary data files are possible. Please note, the equilibrium output is provided in double precision: real-size 64. Therefore, on a LINUX system the program has to be compiled with

Please also read the comments in program **readnemec.f90**.

The NEMEC code [1, 2, 3] uses the left-handed flux coordinates (s, θ, ζ) with the radial coordinate s being the normalized toroidal flux, the poloidal coordinate, θ , $(0 \le \theta < 2\pi)$, and the toroidal coordinate, ζ , $(0 \le \zeta < 2\pi)$.

Fig. 1: Flux surfaces from the magnetic axis to the plasma boundary for a poloidal cross-section in the cylindrical coordinate system (R, φ, Z) . The solid lines mark the flux surfaces (full mesh) on which the Fourier coefficients $\{\hat{r}_{m,n}^c(s_i), \hat{r}_{m,n}^s(s_i), \hat{z}_{m,n}^c(s_i), \hat{z}_{m,n}^s(s_i)\}$ are given, while the dashed lines belong to surfaces (half mesh) on which the Fourier coefficients of the magnetic field are defined. The arrows represent the curvilinear basis vectors $(\mathbf{r}, s, \mathbf{r}, \theta, \mathbf{r}, \zeta)$ used in the NEMEC code.

The flux coordinates are related with the cylindrical coordinates (R, φ, Z) :

$$R = \sum_{m=0,n=-n_b}^{m_b,n_b} \hat{r}_{m,n}^c(s) \cos(m\theta - n\zeta N_p) + \hat{r}_{m,n}^s(s) \sin(m\theta - n\zeta N_p),$$

$$\varphi = \zeta,$$
(1)

$$Z = \sum_{m=0, n=-n_b}^{m_b, n_b} \hat{z}_{m,n}^{c}(s) \cos(m\theta - n\zeta N_p) + \hat{z}_{m,n}^{s}(s) \sin(m\theta - n\zeta N_p),$$

with $\{\hat{r}_{m,n}^c(s),\hat{r}_{m,n}^s(s),\hat{z}_{m,n}^c(s),\hat{z}_{m,n}^s(s)\}$ being the Fourier coefficients of a flux surface with normalized toroidal flux s. N_p is the number of periods, $0 \le m \le m_b$ are the poloidal harmonics, and $-n_b \le n \le n_b$ are the toroidal harmonics.

The covariant form of the magnetic field reads

$$\mathbf{B} = B^{\theta} \mathbf{r}_{,\theta} + B^{\zeta} \mathbf{r}_{,\zeta} \,, \tag{2}$$

with the contravariant components

$$B^s = 0$$
,

$$B^{\theta} = \sum_{\mathbf{m}=0,\mathbf{n}=-\mathbf{n}_{b}}^{\mathbf{m}_{b},\mathbf{n}_{b}} \hat{b}_{\mathbf{m},\mathbf{n}}^{\theta,c}(s)\cos(\mathbf{m}\theta - \mathbf{n}\zeta \mathbf{N}_{p}) + \hat{b}_{\mathbf{m},\mathbf{n}}^{\theta,s}(s)\sin(\mathbf{m}\theta - \mathbf{n}\zeta \mathbf{N}_{p}), \tag{3}$$

$$B^{\zeta} = \sum_{\mathbf{m}=0,\mathbf{n}=-\mathbf{n}_{\mathbf{b}}}^{\mathbf{m}_{\mathbf{b}},\mathbf{n}_{\mathbf{b}}} \hat{b}_{\mathbf{m},\mathbf{n}}^{\zeta,\mathbf{c}}(s) \cos(\mathbf{m}\theta - \mathbf{n}\zeta \mathbf{N}_{\mathbf{p}}) + \hat{b}_{\mathbf{m},\mathbf{n}}^{\zeta,\mathbf{s}}(s) \sin(\mathbf{m}\theta - \mathbf{n}\zeta \mathbf{N}_{\mathbf{p}}),$$

and the Fourier coefficients $\{\hat{b}_{m,n}^{\theta,c}(s), \hat{b}_{m,n}^{\theta,s}(s), \hat{b}_{m,n}^{\zeta,c}(s), \hat{b}_{m,n}^{\zeta,s}(s)\}$.

Its contravariant form is given by

$$\mathbf{B} = B_s \nabla s + B_\theta \nabla \theta + B_\zeta \nabla \zeta \tag{4}$$

with the covariant components

$$B_{s} = \sum_{m=0, n=-n_{b}}^{m_{b}, n_{b}} \hat{b}_{s,c}^{m,n}(s) \cos(m\theta - n\zeta N_{p}) + \hat{b}_{s,s}^{m,n}(s) \sin(m\theta - n\zeta N_{p})$$

$$B_{\theta} = \sum_{m=0, n=-n_{b}}^{m_{b}, n_{b}} \hat{b}_{\theta, c}^{m, n}(s) \cos(m\theta - n\zeta N_{p}) + \hat{b}_{\theta, s}^{m, n}(s) \sin(m\theta - n\zeta N_{p})$$
 (5)

$$B_{\zeta} = \sum_{\mathbf{m}=0,\mathbf{n}=-\mathbf{n}_{\mathbf{b}}}^{\mathbf{m}_{\mathbf{b}},\mathbf{n}_{\mathbf{b}}} \hat{b}_{\zeta,\mathbf{c}}^{\mathbf{m},\mathbf{n}}(s)\cos(\mathbf{m}\theta - \mathbf{n}\zeta\mathbf{N}_{\mathbf{p}}) + \hat{b}_{\zeta,\mathbf{s}}^{\mathbf{m},\mathbf{n}}(s)\sin(\mathbf{m}\theta - \mathbf{n}\zeta\mathbf{N}_{\mathbf{p}})$$

and the Fourier coefficients $\{\hat{b}_{s,\mathrm{c}}^{\mathrm{m,n}}(s),\hat{b}_{s,\mathrm{s}}^{\mathrm{m,n}}(s),\hat{b}_{\theta,\mathrm{c}}^{\mathrm{m,n}}(s),\hat{b}_{\theta,\mathrm{s}}^{\mathrm{m,n}}(s),\hat{b}_{\zeta,\mathrm{c}}^{\mathrm{m,n}}(s),\hat{b}_{\zeta,\mathrm{s}}^{\mathrm{m,n}}(s)\}$.

Furthermore, the NEMEC code uses the following Fourier representation of the single-valued function λ

$$\lambda = \sum_{m=0, n=-n_b}^{m_b, n_b} \hat{\lambda}_{m,n}^c(s) \cos(m\theta - n\zeta N_p) + \hat{\lambda}_{m,n}^s(s) \sin(m\theta - n\zeta N_p)$$
 (6)

with the Fourier coefficients $\{\hat{\lambda}_{m,n}^c(s),\hat{\lambda}_{m,n}^s(s)\}.$

The NEMEC code provides the Fourier coefficients

$$\{\hat{r}_{m,n}^{c}(s_i), \hat{r}_{m,n}^{s}(s_i), \hat{z}_{m,n}^{c}(s_i), \hat{z}_{m,n}^{c}(s_i), \hat{z}_{m,n}^{s}(s_i), \hat{\lambda}_{m,n}^{c}(s_i), \hat{\lambda}_{m,n}^{s}(s_i)\},$$

for a discrete number, N_s of nested flux surfaces i with $0 \le i \le N_s - 1$ (full mesh), while the Fourier coefficients

$$\{\hat{b}_{m,n}^{s,c}(s_j),\hat{b}_{m,n}^{s,c}(s_j),\hat{b}_{m,n}^{\theta,c}(s_j),\hat{b}_{m,n}^{\theta,s}(s_j),\hat{b}_{m,n}^{\phi,c}(s_j),\hat{b}_{m,n}^{\phi,s}(s_j),\hat{b}_{m,n}^{m,n}(s_j),\hat{b}_{\theta,c}^{m,n}(s_j),\hat{b}_{\theta,s}^{m,n}(s_j),\hat{b}_{\phi,c}^{m,n}(s_j),\hat{b}_{\phi,s}^{m,n}(s_j)\}$$

are defined on flux surfaces in between (half mesh), that is, $s_j = (s_i + s_{i+1})/2$ (for details see Fig. 1).

The equilibrium output (file **wout.xxx**) of the NEMEC code, which is written in subroutine **wrout.f90**, has the following form:

List of variables:

Dimensions of the fields

gamma	real	adiabatic constant
enfp	real	N_p = number of periods
enrho	real	N_S = number of flux surfaces ($0 \le i \le N_s - 1$)
empol	real	$m_b + 1$ = number of poloidal harmonics $(0 \le m \le m_b)$
entor	real	n_b = maximum toroidal harmonic $(-n_b \le n \le n_b)$
empmnt	real	total number of harmonics $m_b(2n_b+1)+(n_b+1)$
eiasym	real	symmetry of the equilibrium
	= 0	stellarator-symmetric equilibrium
	= 1	asymmetric equilibrium
phiedge	real	total toroidal flux

Please note, these variables are transformed into integers after reading.

Fourier coefficients of R, Z, B^{θ} , B^{ζ} , λ , B_{θ} , B_{ζ} , and B_{s}

frmnc(m,n,i)	real	$\hat{r}_{ ext{m,n}}^{ ext{c}}(s_{ ext{i}})$
fzmns(m,n,i)	real	$\hat{z}_{ ext{m,n}}^{ ext{s}}(s_{ ext{i}})$
frmns(m,n,i)	real	$\hat{r}_{ ext{m,n}}^{ ext{s}}(s_{ ext{i}})$
fzmnc(m,n,i)	real	$\hat{z}_{ ext{m,n}}^{ ext{c}}(s_{ ext{i}})$
hbumnc_up(m,n,j)	real	$\hat{b}_{\mathrm{m,n}}^{ heta,\mathrm{c}}(s_{\mathrm{j}})$
hbumnc_up(m,n,j) hbvmnc_up(m,n,j)	real real	$\hat{b}_{ ext{m,n}}^{\zeta, ext{c}}(s_{ ext{j}})$
1 ' ' '		$\hat{b}_{\mathrm{m,n}}^{ heta,c}(s_{\mathrm{j}}) \ \hat{b}_{\mathrm{m,n}}^{\zeta,c}(s_{\mathrm{j}}) \ \hat{b}_{\mathrm{m,n}}^{\zeta,s}(s_{\mathrm{j}})$

flmns(m,n,i)	real	$\hat{\lambda}_{ ext{m,n}}^{ ext{s}}(s_{ ext{i}})$
flmnc(m,n,i)	real	$\hat{\lambda}_{ ext{m,n}}^{ ext{c}}(s_{ ext{i}})$
11 1 / "	•	îm.n./
$hbumnc_dw(m,n,j)$	real	$\hat{b}_{ heta, ext{c}}^{ ext{m,n}}(s_{ ext{j}})$
$hbvmnc_dw(m,n,j)$	real	$\hat{b}_{\zeta,\mathrm{c}}^{\mathrm{m,n}}(s_{\mathrm{j}})$
$hbsmns_dw(m,n,j)$	real	$\hat{b}_{s,\mathrm{s}}^{\mathrm{m,n}}(s_{\mathrm{j}})$
$hbumns_dw(m,n,j)$	real	$\hat{b}_{\theta,\mathrm{s}}^{\mathrm{m,n}}(s_{\mathrm{j}})$
$hbvmns_dw(m,n,j)$	real	$\hat{b}^{ ext{m,n}}_{\zeta, ext{s}}(s_{ ext{j}})$
$hbsmnc_dw(m,n,j)$	real	$\hat{b}_{s,c}^{\mathrm{m,n}}(s_{\mathrm{j}})$

Radial profiles: The definitions below relate the NEMEC output quantities to the corresponding ASDEX Upgrade quantities in SI units.

hiota(j)	real	rotational transform ι
hmass(j)	real	mass function
hpres(j)	real	$\mu_0 p$ with $p = \text{pressure in [Pa]}$
hphip(j)	real	$\frac{1}{2\pi} \frac{\partial \Phi(s)}{\partial s}$ with Φ = toroidal flux in [Tm ²]
hbuco(j)	real	$-\frac{\mu_0}{2\pi}I$ with $I = \text{toroidal current in } [A]$
hbvco(j)	real	$-\frac{2\mu_0}{2\pi N_n}J$ with J = poloidal current in [A]
hphi(j)	real	$\Phi(s)$ = toroidal flux in [Tm ²]
hvp(j)	real	$\frac{1}{4\pi^2 N_p} \frac{\partial V(s)}{\partial s}$ with $V(s)$ = volume in [m ³]
hoverr(j)	real	overr(j) in NEMEC
fjcuru(i)	real	$-\frac{1}{2\pi N_p} \frac{\partial J}{\partial s}$ $\frac{1}{2\pi} \frac{\partial I}{\partial s}$
fjcurv(i)	real	$\frac{1}{2\pi} \frac{\partial f}{\partial s}$
hspecw(j)	real	specw(j) in NEMEC

The prefixes \mathbf{f} and \mathbf{h} denote full mesh and half mesh quantities, respectively. The suffix \mathbf{up} markes the contravariant vector components, while \mathbf{dw} denotes the covariant ones.

Below ASDEX Upgrade and NEMEC algebraic signs of the toroidal current, I, the poloidal current, J, the toroidal magnetic field, B_{tor} , the poloidal magnetic field, B_{pol} , the toroidal flux, Φ , and its radial derivative, Φ' , the poloidal flux, Ψ , and its radial derivative, Ψ' , and the safety factor $q = \Phi'/\Psi'$ are defined.

Fig. 2: (a) Toroidal and (b) poloidal field and current directions of ASDEX Upgrade.

Algebraic signs of AUG and NEMEC quantities									
	I	J	$B_{\rm tor}$	$B_{\rm pol}$	Φ	Φ'	Ψ	Ψ'	\overline{q}
AUG	+	+	-	-	-	-	+	-	+
NEMEC	+	+	-	-	-	-	-	-	+

Please note, $\Psi_{NEMEC}(s) = \Psi_{AUG}(s) - \Psi_{AUG}(s=0)$

References

- [1] Hirshman S P and Whitson J C 1983 'Steepest-decent moment method for three-dimensional magnetohydrodynamic equilibria.' *Phys. Fluids* **26** 3553. doi:10.1063/1.864116.
- [2] Hirshman S P and Lee D K 1986 'MOMCON: a spectral code for obtaining three-dimensional magnetohydrodynamic equilibria.' *Comput. Phys. Commun.* **39** 161.
- [3] Hirshman S P, van Rij W I, and Merkel P 1986 'Three-dimensional free boundary calculations using a spectral Greens's function method.' *Comput. Phys. Commun.* **43** 143.