Harthshorne Reading Study

at KAIST Mathematical Problem Solving Group

20190262 Jeongwoo Park

Period: 2022 December - 2023 January

Section II.1

Exercise (II.1.8). For any open subset $U \subset X$, show that the functor $\Gamma(U,_)$ from sheaves on X to abelian groups is a left-exact functor. The functor $\Gamma(U,_)$ need not be exact.

First Solution (for beginners). The sequence

$$0 \longrightarrow \mathscr{F}' \longrightarrow \mathscr{F} \stackrel{g}{\longrightarrow} \mathscr{F}''$$

is exact means \mathscr{F} is the kernel object of the second map g, i.e, there is an isomorphism $\alpha:\mathscr{F}'\to\ker g$ such that

commutes. Taking the global section gives a commutative diagram

$$\mathscr{F}'(X) \xrightarrow{\mathscr{F}(X)} \mathscr{F}'(X) \xrightarrow{g_X} \mathscr{F}''(X)$$

$$(\ker g)(X)$$

Since the global section functor and the kernel commutes, we know that $(\ker g)(X) = \ker g_X$. Hence, $\mathscr{F}'(X)$ is a kernel object of the map g_X , so the sequence

$$0 \longrightarrow \mathscr{F}'(X) \longrightarrow \mathscr{F}(X) \xrightarrow{g_X} \mathscr{F}''(X)$$

is exact.

Second Solution (keep in mind). A functor is exact if and only it it commutes with the kernel. \Box

Third Solution (for those who are interested in category theory).

- 1 The global section functor PSh \rightarrow Ab is exact.
- 2 The forgetful functor $\underline{Sh} \to \underline{PSh}$ is left-exact. Indeed, it is right adjoint to the sheafification functor $PSh \to Sh$.

By combining these two results, the global section functor $\underline{Sh} \to \underline{Ab}$ is left-exact. \Box

The global section functor is not exact. Let's consider an exact sequence of sheaves

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2\pi i} \mathscr{H} \xrightarrow{\exp} \mathscr{H}^* \longrightarrow 0.$$

in $\underline{\operatorname{Sh}}(\mathbb{C}^\times)$. (Here, \mathscr{H} is the sheaf of holomorphic functions, and \mathscr{H}^* is one of invertiable holomorphic functions.) Indeed, the sequence is exact on each contractible open sets (and contractible open sets in \mathbb{C}^\times forms a basis of topology).

If we take global section functor at the sequence, then we have a sequence

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2\pi i} \mathscr{H}(\mathbb{C}^{\times}) \xrightarrow{\exp} \mathscr{H}^*(\mathbb{C}^{\times}) \longrightarrow 0$$

However, the exponential map is not surjective. Indeed, the fiber of $z\in \mathscr{H}^*(\mathbb{C}^\times)$ is empty, because there is no logorithm function defined on \mathbb{C}^\times .

Note. The first cohomology of $\underline{\mathbb{Z}} \in \underline{\operatorname{Sh}}(\mathbb{C}^{\times})$ is the same with the singular cohomology $H^1(\mathbb{C}^{\times};\mathbb{Z}) = \mathbb{Z}$.

Exercise (II.1.16, Flasque sheaves). A sheaf \mathscr{F} on a topological space X is <u>flasque</u> or

 $\underline{\mathsf{flabby}} \text{ if for every inclusion } V \subseteq U \text{ of open sets, the restriction map } \mathscr{F}(U) \to \mathscr{F}(V)$ is surjective.

- (a) Show that a constant sheaf on an irreducible topological space is flasque.
- (b) If $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ is an exact sequence of sheaves, and if \mathscr{F}' is flasque, then for any open set U, the sequence $0 \to \mathscr{F}'(U) \to \mathscr{F}(U) \to \mathscr{F}''(U) \to 0$ of abelian groups is alse exact, i.e, the global section functor is exact for those sequences.
- (c) If $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ is an exact sequence of sheaves, and if \mathscr{F}' and \mathscr{F} are flasque, then \mathscr{F}'' is flasque.
- (d) If $f:X\to Y$ is a continuous map, and if $\mathscr F$ is a flasque sheaf on X, then $f_*\mathscr F$ is a flasque sheaf on Y.
- (e) Let \mathscr{F} be any sheaf on X. We define a new sheaf \mathscr{G} , called the sheaf of disconntinuous sections of \mathscr{F} as follows. For each open set $U\subseteq X,\mathscr{G}(U):=\prod_{x\in U}\mathscr{F}_x$. Show that \mathscr{G} is a flasque sheaf, and that there is a natural injective morphism of \mathscr{F} to \mathscr{G} .

Solution.

- (a) This is because $\underline{A}(U) = A$ whenever U is non-empty, and the restriction map is the identity map except for the empty-set case.
- (b) It is enough to show that the global section functor is exact. Let $f \in \mathscr{F}''$ be any element. Note that the sequence at each stalk is exact. It is enough to show that if there are sections $g_i \in \Gamma(U_i,\mathscr{F})$ which map to $f|_{U_i}$ (i=1,2), then there is a section (a sort of of "gluing") $g \in \Gamma(U_1 \cup U_2,\mathscr{F})$ which maps to f.

Since g_1-g_2 is in the kernel of $\psi_{U_{12}}$, by the left-exactness of the global section functor, g_1-g_2 is an image of some section $h\in\Gamma(U_{12},\mathscr{F}')$. Since \mathscr{F}' is flabby, it can be extended to U_2 .

Now, g_1 and $g_2-\varphi(h)$ coincides on the intersection U_{12} , so there is a gluing $g\in\Gamma(U_1\cup U_2,\mathscr{F})$ of them. Now, g maps to f because g_1 and g_2 maps to f, and $\varphi(h)$ maps to g_1 .

(c) Let's see next commutative diagram.

$$\mathcal{F}'(U) \longrightarrow \mathcal{F}(U) \xrightarrow{\psi_U} \mathcal{F}''(U)$$

$$\downarrow \qquad \qquad \downarrow^{\text{res}} \qquad \qquad \downarrow^{\text{res}''}$$

$$\mathcal{F}'(V) \longrightarrow \mathcal{F}(V) \xrightarrow{\psi_V} \mathcal{F}''(V)$$

- (e) $\boxed{1}$ $\mathscr G$ is flabby: This is because the projection map $\prod_{x\in U}\mathscr F_x\to\prod_{x\in V}\mathscr F_x$ is surjective for any inclusion $V\subseteq U$ of open sets.
 - $\fbox{2}$ There is a natural injective map $\mathscr{F} \to \mathscr{G}$: Define $\varphi: \mathscr{F} \to \mathscr{G}$ as $\varphi_U: s \mapsto [x \mapsto s_x]$. This map is clearly injetive because $s \in \ker \varphi_U$ implies $s_x = 0$ for all $x \in U$, which implies s = 0 by the sheaf axiom.

4

Problems

Section II.1

1. Let

$$0 \longrightarrow \mathscr{F}' \longrightarrow \mathscr{F} \longrightarrow \mathscr{F}'' \longrightarrow 0$$

be a sequence of sheaves.

- (a) Explain how's different the exactness of the sequence in <u>Sh</u> and in <u>PSh</u>. Do the exactness in one category implies one in the another category?
- (b) (With some knowledge in cohomology theory) Why the exactness of the global section is guaranteed only by the first term \mathscr{F}' ?
- (c) Why the sequence

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathscr{H} \longrightarrow \mathscr{H}^* \longrightarrow 0$$

is <u>not exact</u> after taking the global section functor? How this fact is related with the sheaf cohomology?

(Here, $\mathscr{H}\in\underline{\operatorname{Sh}}(\mathbb{C})$ is the sheaf of holomorphic functions, and $\mathscr{H}^*\in\underline{\operatorname{Sh}}(\mathbb{C})$ is one of invertiable holomorphic functions.)

Properties in Philosophy

Proposition 1. (adjoint functors) Following pairs are adjoint.

- 1. Sheafification \dashv Forgetful functor : $\underline{PSh} \rightleftarrows \underline{Sh}$
- 2. Constant presheaf functor \dashv Global section functor : $\underline{Ab} \rightleftharpoons \underline{PSh}$
- 1+2. Constant sheaf functor \dashv Global section functor : $\underline{Ab} \rightleftarrows \underline{Sh}$
 - 3. Forgetful functor \dashv Reduction functor : $\underline{Sch} \rightleftarrows \underline{Sch}_{red}$

[[adjunction and pullback/pushout? (co)limit? commutes... Gluing? Refuction of schemes?]]

Section II.1

1. An abelian functor is left-exact (resp. right-exact) if and only if it commutes with the kernel (resp. cokernel).