

Scheduling di task periodici mediante algoritmi a priorità dinamica

Scheduling priority-driven con algoritmi a priorità dinamica

- EDF è il principale algoritmo di schedulazione dinamica priority-driven
- Algoritmi alternativi: FIFO, LST, LRT
 - presentano vari limiti e inconvenienti ...
- \rightarrow Ci focalizziamo su EDF

Algoritmo EDF

- EDF assegna la priorità ai singoli job dei task periodici in funzione delle loro deadline assolute d_i
- EDF è il più importante tra gli algoritmi di scheduling dinamici:
 offre elevate prestazioni e realizzabilità pratica
- □ EDF è ottimo: se esiste una schedule fattibile per un insieme di task Γ, anche EDF produce una schedule fattibile per Γ (Dertouzos, 1974)
- La dimostrazione dell'ottimalità di EDF avviene per trasformazione della schedule in senso EDF

Ottimalità di EDF

- Schedule σ non EDF: all'istante t non viene eseguito il job di τ_E la cui deadline d_E è più prossima, ma un job di τ_k con deadline d_k>d_E; τ_E viene invece eseguito in t_E>t
- □ Trasformiamo σ in una nuova schedule σ': $\sigma'(t) = \sigma(t_E)$, $\sigma'(t_E) = \sigma(t)$
- □ La fattibilità è preservata: $f_k = f_E \le d_E \le d_k$

- Utilizzazione schedulabile di EDF: U_{lub}(EDF)=1
- Teorema: Un insieme di n task periodici è schedulabile dall'algoritmo EDF se e solo se l'utilizzazione richiesta è ≤ 1 (Liu e Layland, 1973):

$$\sum_{i=1,n} C_i / T_i \leq 1$$

- Solo se: ovvio.
- □ Se: ... %

- Supponiamo che U≤1 e che l'insieme di n task periodici non sia schedulabile da EDF: si verifica un overflow in t₂
- □ Sia [t1,t2] il più lungo intervallo di utilizzazione continua prima dell'overflow tale che solo job con deadline $d_j \le t2$ sono eseguiti in [t1,t2]
- t1 è l'istante di rilascio di un job:

- Cp(t1,t2) tempo di esecuzione totale richiesto dai task periodici in [t1,t2]; K=insieme dei job rilasciati a partire da t1 e la cui deadline cade entro t2
- \Box Cp(t1,t2)= $\sum_{k \in K} C_k = \sum_{i=1,n} \lfloor (t2-t1)/Ti \rfloor$ Ci

Vale:

$$Cp(t1,t2) = \sum_{i=1,n} \lfloor (t2-t1)/Ti \rfloor Ci \leq \sum_{i=1,n} ((t2-t1)/Ti) Ci = (t2-t1)U$$

Poichè in t2 viene mancata una deadline:

$$(t2-t1) < Cp(t1,t2) \le (t2-t1)U$$

Ovvero, U>1, il che è una contraddizione

Realizzazione di EDF

- Con RM o DM la schedulazione è statica e a tempo di esecuzione non c'è overhead per stabilire la priorità dei job
- Con EDF e altri algoritmi dinamici occorre stabilire a tempo di esecuzione la priorità relativa dei job
- Con EDF il costo è quello di un ordinamento di un gruppo di job (O(n log n)), ovvero di inserimento di un job in una lista ordinata (O(n))
- □ EDF presenta una complessità realizzativa ragionevole → algoritmo di scheduling largamente usato!

EDF con deadline relative distinte dai periodi

- □ *Densità* di un task $\tau_i = (T_i, C_i, D_i)$: $\Delta_i = C_i / min(D_i, T_i)$
- Condizione sufficiente affinchè un insieme di N task periodici, anche con deadline relative diverse dai periodi, sia schedulabile con l'algoritmo EDF è che:

$$\Delta = \sum_{i=1,N} C_i / \min(D_i, T_i) \le 1$$

- \triangle è la *densità totale* dell'insieme di task
- E' una condizione sufficiente ma non necessaria

EDF con deadline relative distinte dai periodi

Esempio (già visto con algoritmo DM):

$$\tau$$
1=(10, 2, 3)

$$\tau 2 = (8, 3, 6)$$

$$\tau 1 = (10, 2, 3)$$
 $\tau 2 = (8, 3, 6)$ $[\tau_i = (T_i, C_i, D_i)]$

$$\Delta = \sum_{i=1,N} C_i / \min(D_i, T_i) = 2/3 + 3/6 = 1.16 > 1$$

- ---> I task non sono garantiti dal bound di densità di EDF (condizione solo sufficiente)
- NB: La schedule in figura è anche una schedule EDF

EDF con deadline relative distinte dai periodi

Q: I task dell'esempio precedente sono garantiti in caso di schedulazione EDF?

Esercizi: analisi di schedulabilità con uso dei bound

- \Box (A) Task set: $\Gamma = \{ \tau_1 = (10,6), \tau_2 = (25,5), \tau_3 = (50,5) \}$
- □ (B) Task set: Γ={ τ_a =(10,2), τ_b =(8,2), τ_c =(25,5), τ_d =(5,1) }
- Quesiti:
- task set schedulabile? (precisare quale algoritmo e quale bound di utilizzazione)
- singoli task individualmente garantiti? (in base ad algoritmo e bound)
- schedulabilità e garanzia in senso assoluto: combiniamo i diversi strumenti di analisi