Ejercicios para Calculo Diferencial e Integral I

Actuaría 2016-I FES Acatlán

Prólogo de [Spi92] 1.

1.1. Teoría de conjuntos

Ejercicio 1.1.1. Sean $A = \{1\}$ y $B = \{1, 2\}$ conjuntos. Discute la validez de las siguiente afirmaciones.

- $\blacksquare A \subset B.$
- \bullet 1 \in A.
- \blacksquare 1 \subset A.

- $\blacksquare A \neq B.$
- $A \in B$.
- $1 \subset B$.

Ejercicio 1.1.2. Demuestra o refuta las siguiente afirmaciones:

- $\blacksquare \varnothing \in \varnothing$
- $\blacksquare \varnothing \subset \varnothing$
- $\bullet \{\emptyset\} \in \{\emptyset, \{\emptyset\}\}$

- $\emptyset \in \{\emptyset\}$
- $\blacksquare \{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$

Ejercicio 1.1.3 (de [Apo84]). Sean $A = \{1, 2\}, B = \{\{1\}, \{2\}\}, C = \{\{1\}, \{1, 2\}\}$ y $D = \{\{1\}, \{2\}, \{1,2\}\}$ conjuntos. Discute la validez las siguiente afirmaciones.

- $\blacksquare A = B.$
- $A \subset C$.
- $\blacksquare B \subset D.$

- \bullet $A \subset B$.
- \bullet $A \subset D$.
- $\blacksquare B \in D.$

- $A \in C$.
- $\blacksquare B \subset C.$
- $A \in D$.

Ejercicio 1.1.4. Demuestra las siguientes igualdades de conjuntos.

- $\bullet \{a\} = \{b,c\} \text{ si y}$ sólo si a = b = c.

Ejercicio 1.1.5. Demuestra que, si $X \subset \emptyset$ entonces $X = \emptyset$.

Ejercicio 1.1.6. Sea A un conjunto y sea \mathcal{F} una familia de conjuntos. Demuestra que, si $A \in \mathcal{F}$ entonces $A \subset \bigcup \mathcal{F}$.

Ejercicio 1.1.7 (Leyes conmutativas). Para conjuntos A y B, demuestra que

- $\blacksquare A \cap B = B \cap A$
- $\blacksquare A \cup B = B \cup A$

Ejercicio 1.1.8 (Leyes asociativas). Para conjuntos A, B y C, demuestra que

- $(A \cap B) \cap C = A \cap (B \cap C)$
- $(A \cup B) \cup C = A \cup (B \cup C)$

Ejercicio~1.1.9 (Leyes distributivas). Para conjuntos A, B y C, demuestra que

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Ejercicio 1.1.10. Demuestra que $A \setminus B$ es un subconjunto de $A \cup B$.

Ejercicio 1.1.11. Demuestra que A y B son ambos subconjuntos de $A \cup B$.

Ejercicio 1.1.12. Demostrar que

$$\quad \blacksquare \ \varnothing \cup A = A.$$

•
$$A \cup B = \emptyset$$
 implica que $A = \emptyset$ $B = \emptyset$.

$$A = \emptyset$$
 $B = \emptyset$

$$\quad \blacksquare \ \ A = A \cup A.$$

$$\bullet$$
 $\varnothing \cap A = \varnothing$.

$$\blacksquare (A \backslash B) \cap B = \varnothing.$$

 $\blacksquare A = A \cap A.$

Ejercicio 1.1.13. Demuestra que $A\backslash B=\varnothing$ si y sólo si $A\subset B.$

Ejercicio 1.1.14. Demuestra que $A \setminus B = A$ si y sólo si $A \cap B = \emptyset$.

Sea A un subconjunto de un conjunto universo $\mathcal{U}.$ Se define el complemento de A como el conjunto

$$A^c = \mathcal{U} \backslash A$$
.

Ejercicio 1.1.15. Determinar los conjuntos \varnothing^c y \mathcal{U}^c .

Ejercicio 1.1.16. Demuestra que $(A^c)^c = A$.

Ejercicio 1.1.17. Demuestra que $A \setminus B = A \cap B^c$

Ejercicio 1.1.18. Demuestra que $A \subset B$ implica $B^c \subset A^c$.

1.2. Propiedades fundamentales de los números

Ejercicio 1.2.1. ¿Qué número es el inverso aditivo del cero?

Ejercicio 1.2.2. ¿Qué número es el inverso multiplicativo del uno?

Ejercicio 1.2.3. Demuestra lo siguiente:

1. Si ax = a para algún número $a \neq 0$, x = 1.

2.
$$x^2 - y^2 = (x - y)(x + y)$$
.

3.
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$
.

4.
$$x^3 - y^3 = (x - y)(x^2 - xy + y^2)$$
.

5.
$$x^3 + y^3 = (x+y)(x^2 - xy + y^2)$$
.

 $\it Ejercicio$ 1.2.4. ¿Dónde esta el fallo en el siguiente argumento? Sea x=y. Entonces

$$x^{2} = xy$$

$$x^{2} - y^{2} = xy - y^{2}$$

$$(x+y)(x-y) = y(x-y)$$

$$x+y=y$$

$$2y = y$$

$$2 = 1.$$

Ejercicio 1.2.5. Demuestra lo siguiente:

1. Si
$$b, c \neq 0$$
, entonces

$$\frac{a}{b} = \frac{ac}{bc}.$$

2. Si
$$b, d \neq 0$$
, entonces

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

3. Si
$$a, b \neq 0$$
, entonces

$$(ab)^{-1} = a^{-1}b^{-1}.$$

4. Si
$$b \neq 0$$
, entonces

$$-\left(\frac{a}{b}\right) = \frac{-a}{b} = \frac{a}{-b}.$$

5. Si
$$b, d \neq 0$$
, entonces

$$\left(\frac{a}{b}\right)\left(\frac{c}{d}\right) = \frac{ac}{bd}.$$

6. Si
$$b, c, d \neq 0$$
, entonces

$$\frac{a/b}{c/d} = \frac{ad}{bc}.$$

 $\it Ejercicio$ 1.2.6. Sean a y b un par de números. Demuestra que se cumple uno y sólo uno de los siguientes enunciados:

$$a=b.$$

$$\bullet$$
 $a > b$.

Ejercicio 1.2.7. Demuestra lo siguiente:

1. Si
$$x^2 = y^2$$
, entonces $x = y$ o $x = -y$.

2. Si
$$a < b$$
, entonces $-b < -a$.

3. Si
$$a < b \ y \ c > d$$
, entonces $a - c < b - d$.

4. Si
$$a < b$$
 y $c > 0$, entonces $ac < bc$.

5. Si
$$a < b$$
 y $c < 0$, entonces $ac > bc$.

6. Si
$$a > 1$$
, entonces $a^2 > a$.

7. Si
$$0 < a < 1$$
, entonces $a^2 < a$.

8. Si
$$0 \le a < b$$
 y $0 \le c < d$, entonces $ac < bd$.

9. Si
$$0 \le a < b$$
, entonces $a^2 < b^2$.

10. Si $a, b \ge 0$, entonces $a^2 < b^2$ implica que a < b.

Ejercicio 1.2.8. Demostrar que si 0 < a < b, entonces

$$a < \sqrt{ab} < \frac{a+b}{2} < b.$$

Ejercicio 1.2.9. Demuestra lo siguiente:

- 1. $|xy| = |x| \cdot |y|$.
- 2. Si $x \neq 0$, entonces

$$\left|\frac{1}{x}\right| = \frac{1}{|x|}.$$

3. Si $y \neq 0$, entonces

$$\frac{|x|}{|y|} = \left| \frac{x}{y} \right|.$$

4. $|x + y + z| \le |x| + |y| + |z|$.

Ejercicio 1.2.10. Demuestra que

$$\max(a,b) = \frac{a+b+|b-a|}{2}$$

У

$$\min(a,b) = \frac{a+b-|b-a|}{2}.$$

Intenta ahora deducir una fórmula para el mínimo y el máximo de tres números.

1.3. Distintas clases de números

Referencias

[Apo84] Apostol, Tom M.: Cálculo con funciones de una variable, con una introducción al Álgebra Lineal. Editorial Reverté, 1984.

[KKCS89] Kudriávtsev, L. D., Kutásov, A. D., Chejlov, V. I. y Shabunin, M. I.: *Problemas de análisis matemático*. Editorial Mir, Moscú, 1989.

[Spi92] Spivak, Michael: Cálculo Infinitesimal. Editorial Reverté, $2^{\underline{a}}$ edición, 1992.