Nonlinear Optimization

Derek Li

Contents

1	Rev	riew	2
	1.1	One-Variable Calculus	2
	1.2	Multi-variable Calculus	3
		1.2.1 Mean Value Theorems and Taylor Approximations	3
		1.2.2 Implicit Function Theorem	4
		1.2.3 Convexity	4
		1.2.4 Extreme Value Theorem	8
	1.3	Matrix Calculus	8
		1.3.1 Matrix Multiplication	8
		1.3.2 Partitioned Matrices	Ć
		1.3.3 Matrix Differentiation	Ć
2	Fini	ite Dimensional Optimization	11
	2.1	Unconstrained Optimization	11
	2.2	Equality Constraints	15
			15
		· -	15
	2.3		15

1 Review

1.1 One-Variable Calculus

Theorem 1.1 (Mean Value Theorem). Let $g \in C^1$ on \mathbb{R} . We have

$$\frac{g(x+h) - g(x)}{h} = g'(x+\theta h)$$

for some $\theta \in (0,1)$ and $\frac{g(x+h)-g(x)}{h}$ is the slope of secant line between (x,g(x)) and (x+h,g(x+h)). Or we can write $g(x+h)=g(x)+hg'(x+\theta h)$.

Theorem 1.2 (First Order Taylor Approximation). Let $g \in C^1$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + o(h)$$

where o(h) is the error and we say a function f(h) = o(h) to mean

$$\lim_{h \to 0} \frac{f(h)}{h} = 0$$

Proof. Want to show g(x+h) - g(x) - hg'(x) = o(h).

We have

$$\lim_{h \to 0} \frac{g(x+h) - g(x) - hg'(x)}{h} = \lim_{h \to 0} \frac{hg'(x+\theta h) - hg'(x)}{h}$$
$$= \lim_{h \to 0} g'(x+\theta h) - g'(x) = 0$$

Theorem 1.3 (Second Order Mean Value Theorem). Let $g \in \mathbb{C}^2$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + \frac{h^2}{2}g''(x+\theta h)$$

for some $\theta \in (0, 1)$.

Theorem 1.4 (Second Order Taylor Approximation). Let $g \in C^2$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + \frac{h^2}{2}g''(x) + o(h^2)$$

Proof. W.T.S. $g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x) = o(h^2)$.

We have

$$\lim_{h \to 0} \frac{g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x)}{h^2} = \lim_{h \to 0} \frac{\frac{h^2}{2}g''(x+\theta h) - \frac{h^2}{2}g''(x)}{h^2}$$
$$= \lim_{h \to 0} \frac{1}{2} [g''(x+\theta h) - g''(x)] = 0$$

1.2 Multi-variable Calculus

1.2.1 Mean Value Theorems and Taylor Approximations

Definition 1.1 (Gradient). Gradient of $f: \mathbb{R}^n \to \mathbb{R}$ at $\mathbf{x} \in \mathbb{R}^n, \nabla f(\mathbf{x})$, if exists is a vector characterized by the property

$$\lim_{\mathbf{v} \to \mathbf{0}} \frac{f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|} = 0$$

and
$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)$$
.

The instantaneous rate of change of f at x in direction v (suppose w.l.o.g. $\|\mathbf{v}\| = 1$) is

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} f(\mathbf{x} + t\mathbf{v}) = \nabla f(\mathbf{x} + t\mathbf{v}) \cdot \mathbf{v}\Big|_{t=0}$$

$$= \nabla f(\mathbf{x}) \cdot \mathbf{v}$$

$$= |\nabla f(\mathbf{x})| |\mathbf{v}| \cos \theta$$

$$= |\nabla f(\mathbf{x})| \cos \theta$$

where θ is the angle between $\nabla f(\mathbf{x})$ and \mathbf{v} . Obviously, the instantaneous rate maximizes when $\theta = 0$. Therefore, when it is not equal to zero, $\nabla f(\mathbf{x})$ points in the direction of steepest ascent.

Theorem 1.5 (Mean Value Theorem in \mathbb{R}^n). Let $f \in C^1$ on \mathbb{R}^n , then for any $\mathbf{x}, \mathbf{v} \in \mathbb{R}^n$, we have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}$$

for some $\theta \in (0, 1)$.

Proof. Consider $g(t) = f(\mathbf{x} + t\mathbf{v})$, where $t \in \mathbb{R}$ and $g \in C^1$ on \mathbb{R} . We have

$$g'(t) = \frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{x} + t\mathbf{v})$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\mathbf{x} + t\mathbf{v}) \cdot \frac{\mathrm{d}(\mathbf{x} + t\mathbf{v})_i}{\mathrm{d}t}$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\mathbf{x} + t\mathbf{v}) \cdot \frac{\mathrm{d}(x_i + tv_i)}{\mathrm{d}t}$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\mathbf{x} + t\mathbf{v}) \cdot v_i$$

$$= \nabla f(\mathbf{x} + t\mathbf{v}) \cdot \mathbf{v}$$

By Mean Value Theorem in \mathbb{R} , we have

$$g(0+1) = g(0) + 1 \cdot g'(0+\theta \cdot 1)$$

$$= g(0) + g'(\theta)$$

$$= f(\mathbf{x}) + \nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}$$

$$= g(1) = f(\mathbf{x} + \mathbf{v})$$

for some $\theta \in (0, 1)$.

Theorem 1.6 (First Order Taylor Approximation in \mathbb{R}^n). Let $f \in \mathbb{C}^1$ on \mathbb{R}^n . We have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + o(\|\mathbf{v}\|)$$

Proof. We have

$$\lim_{\|\mathbf{v}\| \to 0} \frac{f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|} = \lim_{\|\mathbf{v}\| \to 0} \frac{\nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v} - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|}$$
$$= \lim_{\|\mathbf{v}\| \to 0} \left[\nabla f(\mathbf{x} + \theta \mathbf{v}) - \nabla f(\mathbf{v}) \right] \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|} = 0$$

Theorem 1.7 (Second Order Mean Value Theorem in \mathbb{R}^n). Let $f \in \mathbb{C}^2$ on \mathbb{R}^n . We have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}$$

for some $\theta \in (0, 1)$.

Note 1. Hessian matrix

$$\nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x})\right)_{1 \leqslant i, j \leqslant n}$$

is a symmetric matrix because of Clairaut's Theorem.

Note 2.

$$\mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v} = \sum_{1 \le i, j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j} (\mathbf{x}) v_i v_j.$$

Theorem 1.8 (Second Order Taylor Approximation in \mathbb{R}^n). Let $f \in \mathbb{C}^2$ on \mathbb{R}^n . We have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v} + o(\|\mathbf{v}\|^2).$$

Proof. We have

$$\lim_{\|\mathbf{v}\| \to 0} \frac{f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) - \nabla f(\mathbf{x}) \cdot \mathbf{v} - \frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|^2}$$

$$= \lim_{\|\mathbf{v}\| \to 0} \frac{\frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v} - \frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|^2}$$

$$= \lim_{\|\mathbf{v}\| \to 0} \frac{1}{2} \left(\frac{\mathbf{v}}{\|\mathbf{v}\|}\right)^T \cdot \left[\nabla^2 f(\mathbf{x} + \theta \mathbf{v}) - \nabla^2 f(\mathbf{x})\right] \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

$$= 0$$

1.2.2 Implicit Function Theorem

Theorem 1.9 (Implicit Function Theorem). Let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ be a C^1 function. Fix $(\mathbf{a}, b) \in \mathbb{R}^n \times \mathbb{R}$ s.t. $f(\mathbf{a}, b) = 0$ and $\nabla f(\mathbf{a}, b) \neq 0$. We have $\{(\mathbf{x}, y) \in \mathbb{R}^n \times \mathbb{R} | f(\mathbf{x}, y) = 0\}$ is locally the graph of a function.

1.2.3 Convexity

Definition 1.2 (Level Set). $\{\mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) = c\}$ is called *c*-level set of f.

Theorem 1.10. Gradient $\nabla f(\mathbf{x}_0) \perp$ level curve through \mathbf{x}_0 .

Definition 1.3 (Convex Set). $\Omega \subseteq \mathbb{R}^n$ is a convex set if for all $\mathbf{x}_1, \mathbf{x}_2 \in \Omega$, we have line segment between $\mathbf{x}_1, \mathbf{x}_2 : s\mathbf{x}_1 + (1-s)\mathbf{x}_2 \in \Omega$, $s \in [0, 1]$.

Definition 1.4 (Convex Function). A function $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ is convex if

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) \leqslant sf(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2)$$

for all $\mathbf{x}_1, \mathbf{x}_2 \in \Omega$ and all $s \in [0, 1]$, where Ω is a convex set.

Example 1.1. $f: \mathbb{R}^n \to \mathbb{R}$ given by $f(\mathbf{x}) = ||\mathbf{x}||$ is convex.

Proof. Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$. We have

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) = ||s\mathbf{x}_1 + (1-s)\mathbf{x}_2|| \le ||s\mathbf{x}_1|| + ||(1-s)\mathbf{x}_2||$$

= $s||\mathbf{x}_1|| + (1-s)||\mathbf{x}_2|| = s_1 f(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2)$

Definition 1.5 (Concave Function). A function f concave if -f is convex.

Note. The linear function is both convex and concave.

Theorem 1.11 (Basic Properties of Convex Function). Let $\Omega \subseteq \mathbb{R}^n$ be a convex set.

- (1) f_1, f_2 are convex functions on $\Omega \Rightarrow f_1 + f_2$ is convex function on Ω .
- (2) f is convex functions and $a \ge 0 \Rightarrow af$ is a convex function.
- (3) f is a convex function on $\Omega \Rightarrow \mathrm{SL}_c := \{ \mathbf{x} \in \mathbb{R}^n | f(x) \leq c \}$, the sub-level sets are convex.

Proof of (3). W.T.S. for $\mathbf{x}_1, \mathbf{x}_2 \in \mathrm{SL}_c, s\mathbf{x}_1 + (1-s)\mathbf{x}_2 \in \mathrm{SL}_c$ for any $s \in [0,1]$.

Since $\mathbf{x}_1, \mathbf{x}_2 \in \mathrm{SL}_c$, we have $f(\mathbf{x}_1) \leq c, f(\mathbf{x}_2) \leq c$. Because f is a convex function, we have

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) \le sf(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2) \le sc + (1-s)c = c$$

Thus, $s\mathbf{x}_1 + (1-s)\mathbf{x}_2 \in SL_c$.

Theorem 1.12 (C^1 Criterion for Convexity). Let $f:\Omega\to\mathbb{R}$ be a C^1 function and Ω is a convex subset of \mathbb{R}^n . Then f is convex on Ω iff

$$f(\mathbf{y}) \geqslant f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x})$$

for all $\mathbf{x}, \mathbf{y} \in \Omega$.

Proof. (\Rightarrow) Suppose f is convex. By definition,

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) \leqslant sf(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2), 0 \leqslant s \leqslant 1$$

$$\Rightarrow \frac{f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) - f(\mathbf{x}_2)}{s} \leqslant f(\mathbf{x}_1) - f(\mathbf{x}_2), 0 < s \leqslant 1$$

$$\Rightarrow \lim_{s \to 0} \frac{f(\mathbf{x}_2 + s(\mathbf{x}_1 - \mathbf{x}_2)) - f(\mathbf{x}_2)}{s} \leqslant f(\mathbf{x}_1) - f(\mathbf{x}_2)$$

Recall that $\partial_{\mathbf{x}_1-\mathbf{x}_2} f(\mathbf{x}_2) := \lim_{s\to 0} \frac{f(\mathbf{x}_2+s(\mathbf{x}_1-\mathbf{x}_2))-f(\mathbf{x}_2)}{s}$, i.e., the directional derivative of f at \mathbf{x}_2 in the direction $\mathbf{x}_1-\mathbf{x}_2$.

Since f is C^1 , we have

$$\nabla f(\mathbf{x}_2) \cdot (\mathbf{x}_1 - \mathbf{x}_2) \leqslant f(\mathbf{x}_1) - f(\mathbf{x}_2) \Rightarrow f(\mathbf{x}_1) \geqslant f(\mathbf{x}_2) + \nabla f(\mathbf{x}_2) \cdot (\mathbf{x}_1 - \mathbf{x}_2)$$

i.e.,

$$f(\mathbf{y}) \geqslant f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x})$$

 (\Leftarrow) Fix $\mathbf{x}_0, \mathbf{x}_1 \in \Omega, s \in (0, 1)$. Let $\mathbf{x} = s\mathbf{x}_0 + (1 - s)\mathbf{x}_1$. We have

$$f(\mathbf{x}_0) \ge f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{x}_0 - \mathbf{x}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (1 - s)(\mathbf{x}_0 - \mathbf{x}_1)$$

$$f(\mathbf{x}_1) \ge f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{x}_1 - \mathbf{x}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot s(\mathbf{x}_1 - \mathbf{x}_0)$$

Therefore,

$$sf(\mathbf{x}_0) \ge sf(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot s(1-s)(\mathbf{x}_0 - \mathbf{x}_1)$$
$$(1-s)f(\mathbf{x}_1) \ge (1-s)f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot s(1-s)(\mathbf{x}_1 - \mathbf{x}_0)$$

Thus,

$$sf(\mathbf{x}_0) + (1-s)f(\mathbf{x}_1) \ge sf(\mathbf{x}) + (1-s)f(\mathbf{x}) = f(\mathbf{x}) = f(s\mathbf{x}_0 + (1-s)\mathbf{x}_1)$$

for all $\mathbf{x}_0, \mathbf{x}_1 \in \Omega$ and $s \in (0, 1)$.

When
$$s = 0$$
 or $s = 1$, $sf(\mathbf{x}_0) + (1 - s)f(\mathbf{x}_1) = f(s\mathbf{x}_0 + (1 - s)\mathbf{x}_1)$.

In conclusion, f is convex on Ω .

Theorem 1.13 (C^2 Criterion for Convexity). Let $f \in C^2$ on $\Omega \subseteq \mathbb{R}^n$, Ω is a convex set containing an interior point. Then f is convex on Ω iff $\nabla^2 f(\mathbf{x}) \ge 0$, $\forall \mathbf{x} \in \Omega$.

Proof. (\Leftarrow) Recall that $\mathbf{A} \ge 0$ means \mathbf{A} is an $n \times n$ matrix which is positive semi-definite, $\mathbf{v}^T \mathbf{A} \mathbf{v} \ge 0, \forall \mathbf{v} \in \mathbb{R}^n$.

By second order MVT,

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^T \nabla^2 f(\mathbf{x} + s(\mathbf{y} - \mathbf{x})) (\mathbf{y} - \mathbf{x})$$

for some $s \in [0, 1]$. Therefore,

$$f(\mathbf{y}) \geqslant f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}), \forall \mathbf{x}, \mathbf{y} \in \Omega$$

i.e., f is convex.

 (\Rightarrow) Suppose $\nabla^2 f(\mathbf{x})$ is not positive semi-definite at some $\mathbf{x} \in \Omega$, then

$$\exists \mathbf{v} \neq \mathbf{0} \text{ s.t. } \mathbf{v}^T \nabla^2 f(\mathbf{x}) \mathbf{v} < 0$$

Note we can assume \mathbf{x} is an interior point of Ω , because if \mathbf{x} is on the boundary, by continuity, we can find $\mathbf{x}' \in B(\mathbf{x}, \varepsilon)$ s.t. $\mathbf{v}\nabla^2 f(\mathbf{x}')\mathbf{v} < 0$.

By continuity, $\exists \mathbf{v}$ s.t.

$$\mathbf{v}^T \nabla^2 f(\mathbf{x} + s\mathbf{v})\mathbf{v} < 0, \forall s \in [0, 1]$$

Let $\mathbf{y} = \mathbf{x} + \mathbf{v}$, then

$$(\mathbf{y} - \mathbf{x})^T \nabla^2 f(\mathbf{x} + s(\mathbf{y} - \mathbf{x}))(\mathbf{y} - \mathbf{x}) < 0, \forall s \in [0, 1]$$

By MVT,

$$f(\mathbf{y}) < f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x})$$

for some $\mathbf{x}, \mathbf{y} \in \Omega$, which contradicts C^1 criterion so that $\nabla^2 f(\mathbf{x})$ is positive semi-definite for all $\mathbf{x} \in \Omega$

Note that in \mathbb{R} , f is convex $\Leftrightarrow f''(x) \ge 0, \forall x \in \Omega$.

Theorem 1.14. Let $f: \Omega \to \mathbb{R}$ be a convex function, where $\Omega \subseteq \mathbb{R}^n$ is convex. Suppose $\Gamma := \left\{\mathbf{x} \in \Omega | f(\mathbf{x} = \min_{\Omega} f(\mathbf{x}))\right\} \neq \emptyset$, i.e., minimizer exists, then Γ is convex set and any local minimum of f is a global minimum.

Proof. Let $m = \min_{\Omega} f(\mathbf{x})$. $\Gamma = \{x \in \Omega | f(\mathbf{x}) = m\} = \{x \in \Omega | f(\mathbf{x}) \leq m\}$ is a sub-level set that is convex.

Let **x** be a local minimizer. Suppose $\exists \mathbf{y}$ s.t. $f(\mathbf{y}) < f(\mathbf{x})$. We have

$$f(\mathbf{x} + s(\mathbf{y} - \mathbf{x})) \le sf(\mathbf{y}) + (1 - s)f(\mathbf{x}) < f(\mathbf{x}), \forall s \in [0, 1]$$

When $s \to 0$, $f(\mathbf{x} + s(\mathbf{y} - \mathbf{x})) \to \mathbf{x}$ with $f(\mathbf{x} + s(\mathbf{y} - \mathbf{x})) < f(\mathbf{x})$ and thus \mathbf{x} cannot be a local minimizer. By contradiction, m is a global minimum.

Theorem 1.15. Let $f:\Omega\to\mathbb{R}$ be a convex function, where $\Omega\subseteq\mathbb{R}^n$ is convex and compact. Then

$$\max_{\mathbf{x} \in \Omega} f(\mathbf{x}) = \max_{\mathbf{x} \in \partial \Omega} f(\mathbf{x})$$

Proof. Since Ω is closed, $\partial \Omega \subseteq \Omega$. Hence

$$\max_{\mathbf{x} \in \Omega} f(\mathbf{x}) \geqslant \max_{\mathbf{x} \in \partial \Omega} f(\mathbf{x})$$

Suppose $f(\mathbf{x}_0) = \max_{\mathbf{x} \in \Omega} f(\mathbf{x})$, for some $\mathbf{x}_0 \notin \partial \Omega$. Let l be an arbitrary line through \mathbf{x}_0 .

By convexity and compactness of Ω , l meets $\partial \Omega$ at two points $\mathbf{x}_1, \mathbf{x}_2$, and thus

$$\mathbf{x}_0 = s\mathbf{x}_1 + (1-s)\mathbf{x}_2$$

for some $s \in [0, 1]$.

Hence,

$$f(\mathbf{x}_0) = f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) \leqslant sf(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2)$$

$$\leqslant \max_{\mathbf{x} \in \partial \Omega} f(\mathbf{x}) + (1-s)\max_{\mathbf{x} \in \partial \Omega} f(\mathbf{x}) = \max_{\mathbf{x} \in \partial \Omega} f(\mathbf{x})$$

Therefore, $\max_{\mathbf{x} \in \Omega} f(\mathbf{x}) = \max_{\mathbf{x} \in \partial \Omega} f(\mathbf{x})$

Example 1.2. $|ab| \leq \frac{1}{p}|a|^p + \frac{1}{g}|b|^g$, where p, g > 1 s.t. $\frac{1}{p} + \frac{1}{g} = 1$.

Proof. We know $-\ln$ is convex and thus

$$-\ln|ab| = -\ln|a| - \ln|b| = -\frac{1}{p}\ln|a|^p - \frac{1}{g}\ln|b|^g$$

$$\ge -\ln\left(\frac{1}{p}|a|^p + \frac{1}{g}|b|^g\right)$$

Therefore,

$$\ln|ab| \leqslant \ln\left(\frac{1}{p}|a|^p + \frac{1}{g}|b|^g\right) \Rightarrow |ab| \leqslant \frac{1}{p}|a|^p + \frac{1}{g}|b|^g$$

Note that if p = g = 2, then $|ab| \leqslant \frac{|a|^2 + |b|^2}{2}$.

Remark that f is convex does not imply f is continuous.

1.2.4 Extreme Value Theorem

Recall that if h_1, \dots, h_k and g_1, \dots, g_m are continuous functions on \mathbb{R}^n , then the set of all points $\mathbf{x} \in \mathbb{R}^n$ that satisfy

$$\begin{cases} h_i(x) = 0, & \forall i \\ g_j(x) \le 0, & \forall j \end{cases}$$

is a closed set.

Theorem 1.16 (Extreme Value Theorem). Let $f: \mathbb{R}^m \to \mathbb{R}$ be continuous and $K \subseteq \mathbb{R}^n$ be a compact set, then the problem $\min_{\mathbf{x} \to K} f(\mathbf{x})$ has a solution.

Proof. Let $m = \inf_{\mathbf{x} \in K} f(\mathbf{x})$, (always exists but may be $-\infty$), then $\exists \{\mathbf{x}_i\} \subset K \text{ s.t. } f(\mathbf{x}_i) \to m$.

Since K is compact, then $\exists \{\mathbf{x}_{i_j}\}$ a subsequence s.t. $\mathbf{x}_{i_j} \to \mathbf{x}_{\infty} \in K$.

Since f is continuous, then

$$\begin{cases} f(\mathbf{x}_{i_j}) \to f(\mathbf{x}_{\infty}) \\ f(\mathbf{x}_{i_j}) \to m \end{cases} \Rightarrow f(\mathbf{x}_{\infty}) = m = \inf_{\mathbf{x} \in K} f(\mathbf{x}) = \min_{\mathbf{x} \in K} f(\mathbf{x})$$

Remark. Computer algorithms for solving minimum problems try to construct a sequence x_i s.t. $f(x_i)$ decreases to minimum value quickly.

Example 1.3. min f(x, y, z) subject to $\begin{cases} x + y + z = 5 \\ x, y, z \ge 0 \end{cases}$, where f is continuous.

There is a solution because $K:=\{x+y+z-5=0, -x\leqslant 0, -y\leqslant 0, -z\leqslant 0\}$ is closed and bounded, and hence K is compact.

1.3 Matrix Calculus

1.3.1 Matrix Multiplication

Definition 1.6. Let A be $m \times n$, B be $n \times p$, and the product be C = AB, then C is a $m \times p$ matrix, with element (i, j) given by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \forall i = 1, \dots, m, j = 1, \dots, p$$

Property 1.1. Let A be $m \times n$, \mathbf{x} be $n \times 1$, then the element of the product $\mathbf{z} = A\mathbf{x}$ is given by

$$z_i = \sum_{k=1}^n a_{ik} x_k, \forall i = 1, \cdots, m$$

Let **y** be $m \times 1$, then the element of the product $\mathbf{z}^T = \mathbf{y}^T A$ is given by

$$z_i^T = \sum_{k=1}^n y_k a_{ki}, \forall i = 1, \cdots, n$$

The scalar resulting from the product $\alpha = \mathbf{y}^T A \mathbf{x}$ is given by

$$\alpha = \sum_{j=1}^{m} \sum_{k=1}^{n} y_j a_{jk} x_k$$

1.3.2 Partitioned Matrices

Property 1.2. Let A be a square, non-singular matrix of order m. Partition A as

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

so that A_{11} and A_{22} are invertible, then

$$A^{-1} = \begin{pmatrix} (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} & -A_{11}^{-1}A_{12}(A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1} \\ -A_{22}^{-1}A_{21}(A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} & (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1} \end{pmatrix}$$

1.3.3 Matrix Differentiation

Property 1.3. Let A be a matrix,

$$\frac{\partial A}{\partial x} = \frac{\partial A^T}{\partial x}$$

Property 1.4. Let $\mathbf{y} = A\mathbf{x}$ where \mathbf{y} is $m \times 1$, \mathbf{x} is $n \times 1$, A is $m \times n$, and A does not depend on \mathbf{x} . Suppose that \mathbf{x} is a function of \mathbf{z} , while A is independent of \mathbf{z} , then

$$\frac{\partial \mathbf{y}}{\partial \mathbf{z}} = A \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$$

Property 1.5. Let the scalar α be $\alpha = \mathbf{y}^T A \mathbf{x}$, where \mathbf{y} is $m \times 1$, \mathbf{x} is $n \times 1$, A is $m \times n$, and A is independent of \mathbf{x} and \mathbf{y} , then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{y}^T A$$

and

$$\frac{\partial \alpha}{\partial \mathbf{v}} = \mathbf{x}^T A^T$$

Property 1.6. Let the scalar α is given by the quadratic form $\alpha = \mathbf{x}^T A \mathbf{x}$, where \mathbf{x} is $n \times 1$, A is $n \times n$, and A does not depend on \mathbf{x} , then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{x}^T (A + A^T)$$

Property 1.7. Let A be a symmetric matrix and $\alpha = \mathbf{x}^T A \mathbf{x}$, where \mathbf{x} is $n \times 1$, A is $n \times n$, and A does not depend on \mathbf{x} , then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = 2\mathbf{x}^T A$$

Property 1.8. Let the scalar α be $\alpha = \mathbf{y}^T \mathbf{x}$, where \mathbf{y} is $n \times 1$, \mathbf{x} is $n \times 1$, and both \mathbf{y} and \mathbf{x} are functions for \mathbf{z} , then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^T \frac{\partial \mathbf{y}}{\partial \mathbf{z}} + \mathbf{y}^T \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$$

Property 1.9. Let the scalar α be $\alpha = \mathbf{x}^T \mathbf{x}$, where \mathbf{x} is $n \times 1$, and \mathbf{x} is a function of \mathbf{z} , then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = 2\mathbf{x}^T \frac{\partial \mathbf{y}}{\partial \mathbf{z}}$$

Property 1.10. Let the scalar α be $\alpha = \mathbf{y}^T A \mathbf{x}$, where \mathbf{y} is $m \times 1$, A is $m \times n$, \mathbf{x} is $n \times 1$, both \mathbf{y} and \mathbf{x} are functions of \mathbf{z} , and A does not depend on \mathbf{z} , then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^T A^T \frac{\partial \mathbf{y}}{\partial \mathbf{z}} + \mathbf{y}^T A \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$$

Property 1.11. Let A be an invertible, $m \times m$ matrix whose elements are functions of the scalar parameter α , then

$$\frac{\partial A^{-1}}{\partial \alpha} = -A^{-1} \frac{\partial A}{\partial \alpha} A^{-1}$$

Theorem 1.17 (Young's Theorem). We have the symmetry of second derivatives

$$[\nabla_{\mathbf{x}\mathbf{y}} f(\mathbf{x}, \mathbf{y})]^T = \nabla_{\mathbf{y}\mathbf{x}} f(\mathbf{x}, \mathbf{y})$$

2 Finite Dimensional Optimization

2.1 Unconstrained Optimization

The optimization problems can be written as

$$\min_{x \in \Omega \subset \mathbb{R}^n} f(\mathbf{x}).$$

Typically, $\Omega \subseteq \mathbb{R}^n$, $\Omega = \mathbb{R}^n$, Ω is an open set, or Ω is the closure of an open set.

Property 2.1. $\max f(\mathbf{x}) = -\min -f(\mathbf{x})$ and $\min f(\mathbf{x}) = -\max -f(\mathbf{x})$.

Definition 2.1 ((Strictly) Local Minimum). f has a local minimum at a point $\mathbf{x}_0 \in \Omega$ if

$$\exists \varepsilon > 0 \text{ s.t. } f(\mathbf{x}_0) \leqslant f(\mathbf{x}), \forall \mathbf{x} \in B_{\Omega}(\mathbf{x}_0, \varepsilon).$$

f has a strictly local minimum at \mathbf{x}_0 if

$$\exists \varepsilon > 0 \text{ s.t. } f(\mathbf{x}_0) < f(\mathbf{x}), \forall \mathbf{x} \in B_{\Omega}(\mathbf{x}_0, \varepsilon) \setminus \{\mathbf{x}_0\}.$$

Definition 2.2 ((Strictly) Global Minimum). f has a global minimum at $\mathbf{x}_0 \in \Omega$ if

$$f(\mathbf{x}_0) \leqslant f(\mathbf{x}), \forall \mathbf{x} \in \Omega.$$

f has a strictly global minimum at \mathbf{x}_0 if

$$f(\mathbf{x}_0) < f(\mathbf{x}), \forall \mathbf{x} \in \Omega \setminus \{\mathbf{x}_0\}.$$

Note that strictly global minimum is always unique.

Definition 2.3 (Feasible Direction). $\mathbf{v} \in \mathbb{R}^n$ is a feasible direction at \mathbf{x}_0 if

$$\mathbf{x}_0 + s\mathbf{v} \in \Omega, \forall 0 \leq s \leq \overline{s},$$

where $\overline{s} \in \mathbb{R}$.

Theorem 2.1 (First Order Necessary Condition for Local Minimum). Let f be C^1 function on $\Omega \subseteq \mathbb{R}^n$. If f has a local minimum at $\mathbf{x}_0 \in \Omega$, then

$$\nabla f(\mathbf{x}_0) \cdot \mathbf{v} \geqslant 0$$
,

for all feasible directions \mathbf{v} at \mathbf{x}_0 .

Proof. Let **v** be a feasible direction at $\mathbf{x}_0 \in \Omega$. Let $g(s) = f(\mathbf{x}_0 + s\mathbf{v}), s \ge 0$. We have $g(s) \ge g(0)$, for small $s \ge 0$. Thus,

$$g'(0) = \lim_{s \to 0} \frac{g(s) - g(0)}{s - 0} \ge 0.$$

Besides,

$$g'(0) = \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} f(\mathbf{x_0} + s\mathbf{v}) = \nabla f(\mathbf{x_0}) \cdot \mathbf{v}.$$

Hence, $\nabla f(\mathbf{x_0}) \cdot \mathbf{v} \ge 0$.

Corollary 2.1. When Ω is an open set, if f has a local minimum at \mathbf{x}_0 on Ω , then $\nabla f(\mathbf{x}_0) = \mathbf{0}$.

Proof. Since Ω is an open set, then all directions are feasible.

By theorem, we have $\nabla f(\mathbf{x}_0) \cdot \mathbf{v} \ge 0$, and $\nabla f(\mathbf{x}_0) \cdot (-\mathbf{v}) \ge 0 \Leftrightarrow \nabla f(\mathbf{x}_0) \cdot \mathbf{v} \le 0$, $\forall \mathbf{v} \in \mathbb{R}^n$, i.e.,

$$\nabla f(\mathbf{x}_0) \cdot \mathbf{v} = 0, \forall \mathbf{v} \in \mathbb{R}^n.$$

Therefore, $\nabla f(\mathbf{x}_0) = \mathbf{0}$.

Example 2.1. min $f(x, y) = x^2 - xy + y^2 - 3y$ over \mathbb{R}^2 .

Solution. Let $\nabla f(x_0, y_0) = \begin{pmatrix} 2x_0 - y_0 \\ -x_0 + 2y_0 - 3 \end{pmatrix} = \mathbf{0}$. We have $x_0 = 1, y_0 = 2$, i.e., (1, 2) is the only candidate for a local minimizer. In fact f(1, 2) is the global minimum because $f(x, y) = \left(x - \frac{y}{2}\right)^2 + \frac{3}{4}(y - 2)^2 - 3$.

Example 2.2. $\min f(x,y) = x^2 - x + y + xy \text{ over } \Omega = \{(x,y)|x,y \ge 0\}.$

Solution. We have $\nabla f(x,y) = \begin{pmatrix} 2x-1+y\\x+1 \end{pmatrix}$.

Consider $(x_0, y_0) \in \operatorname{int}(\Omega), (x_0, y_0) \in \partial \Omega$.

- (i) Let $\nabla f(x_0, y_0) = \mathbf{0}$. We have $x_0 = -1$ that is outside Ω . So there is no interior point can be local minimizer.
- (ii) (x,0): The feasible direction is (v,w) s.t. $w \ge 0$.

If $(x_0, 0)$ is a local minimizer, we have $\nabla f(\mathbf{x}_0) \cdot \begin{pmatrix} v \\ w \end{pmatrix} \ge 0, \forall v \text{ and } \forall w \ge 0.$ Therefore,

$$(2x_0 - 1)v + (x_0 + 1)w \ge 0, \forall v \text{ and } \forall w \ge 0 \Rightarrow (2x_0 - 1)v \ge 0, \forall v \text{ and } w = 0$$

Therefore,

$$2x_0 - 1 = 0 \Rightarrow x_0 = \frac{1}{2}.$$

(iii) (y,0): The feasible direction is (v,w) s.t. $v \ge 0$.

Similarly, we have

$$(-1 + y_0)v + w \ge 0, \forall v \ge 0 \text{ and } \forall w \Rightarrow w \ge 0, v = 0 \text{ and } \forall w,$$

which is a contradiction.

(iv) (0,0): The feasible direction is (v,w) s.t. $v,w \ge 0$.

Similarly, we have

$$-v + w \ge 0, \forall v, w \ge 0,$$

but nothing can satisfy this inequation.

Thus, $(\frac{1}{2}, 0)$ is the only candidate for local minimizer.

Theorem 2.2 (Second Order Necessary Condition for Local Minimum). Let f be C^2 function on $\Omega \subseteq \mathbb{R}^n$. If f has a local minimum at $\mathbf{x}_0 \in \Omega$, then

if
$$\nabla f(\mathbf{x}_0) \cdot \mathbf{v} = 0$$
, then $\mathbf{v}^T \nabla^2 f(\mathbf{x}_0) \mathbf{v} \geqslant 0$.

Proof. Fix feasible direction \mathbf{v} at \mathbf{x}_0 . We have $f(\mathbf{x}_0) \leq f(\mathbf{x}_0 + s\mathbf{v})$, for small $s \geq 0$.

By second order Taylor theorem, we have

$$0 \leqslant f(\mathbf{x}_0 + s\mathbf{v}) - f(\mathbf{x}) = s\nabla f(\mathbf{x}_0) \cdot \mathbf{v} + \frac{1}{2}s^2\mathbf{v}^T \nabla^2 f(\mathbf{x}_0)\mathbf{v} + o(s^2).$$

Since $\nabla f(\mathbf{x}_0) \cdot \mathbf{v} = 0$, then

$$\frac{1}{2}s^2\mathbf{v}^T\nabla^2 f(\mathbf{x}_0)\mathbf{v} + o(s^2) = \frac{1}{2}\mathbf{v}^T\nabla^2 f(\mathbf{x}_0)\mathbf{v} + \frac{o(s^2)}{s^2} \geqslant 0, \forall s > 0.$$

Therefore,

$$\lim_{s \to 0} \left(\frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x}_0) \mathbf{v} + \frac{o(s^2)}{s^2} \right) = \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x}_0) \mathbf{v} \ge 0,$$

i.e.,
$$\mathbf{v}^T \nabla^2 f(\mathbf{x}_0) \mathbf{v} \ge 0$$
.

Note that in first and second order necessary condition for local minimum, if $\mathbf{x}_0 \in \text{int}(\Omega)$, $\nabla f(\mathbf{x}_0) = \mathbf{0}$, $\nabla^2 f(\mathbf{x}_0) \ge 0$.

Definition 2.4 (Positive Definite). We say an $n \times n$ matrix A is positive definite iff $\mathbf{v}^T A \mathbf{v} > 0$, $\forall \mathbf{v} \neq \mathbf{0} \Leftrightarrow \text{all eigenvalues}$ is greater than 0.

Definition 2.5 (Positive Semi-Definite). We say an $n \times n$ matrix A is positive definite iff $\mathbf{v}^T A \mathbf{v} \ge 0$, $\forall \mathbf{v} \Leftrightarrow \text{all eigenvalues}$ is greater than or equals 0.

Theorem 2.3 (Sylvester's Criterion). (1) A is positive definite iff determinant of all leading minors is greater than 0.

(2) A is positive semi-definite iff determinant of all principle minors is greater than 0.

Example 2.3. Suppose A is a 3 × 3 matrix, the principle minors are all matrix $Q_{I,I}$, where $I \subseteq \{1,2,3\}$ s.t. |I| = k.

Let

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ q & h & i \end{pmatrix}.$$

When $k = 1, I = \{1\}, \{2\}, \{3\}$ and thus the determinant of principle minors are a, c, i.

When $k = 2, I = \{1, 2\}, \{1, 3\}, \{2, 3\}$ and thus the determinant of principle minors are ae - bd, ai - cg, ei - fh.

When $k = 3, I = \{1, 2, 3\}$ and thus the determinant of principle minors are det(A).

Example 2.4. $f(x,y) = x^2 - xy + y^2 - 3y, \Omega = \mathbb{R}^2$.

Solution. We have $\nabla f(x,y) = \begin{pmatrix} 2x - y \\ -x + 2y - 3 \end{pmatrix}$, $\nabla f(1,2) = \mathbf{0}$. Besides,

$$\nabla^2 f(x,y) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}.$$

We want to check $\mathbf{v}^T \nabla^2 f(x, y) \mathbf{v} \ge 0$, $\forall \mathbf{v}$, which is equivalent to check if $\nabla^2 f(1, 2) \ge 0$. Since the determinant of all principle minors is greater than 0, then $\nabla^2 f(1, 2) \ge 0$.

Example 2.5. $f(x,y) = x^2 - x + y + xy, \Omega = \{(x,y)|x,y \ge 0\}.$

Solution. We have $\nabla f(x,y) = \begin{pmatrix} 2x-1+y\\1+x \end{pmatrix}$, but $(\frac{1}{2},0)$ is the only candidate for local minimum and

$$\nabla f(\frac{1}{2},0) = \begin{pmatrix} 0\\ \frac{2}{3} \end{pmatrix} \Rightarrow \begin{pmatrix} 0\\ \frac{2}{3} \end{pmatrix} \begin{pmatrix} v\\ w \end{pmatrix} = \frac{3}{2}w = 0 \Rightarrow \mathbf{v} = (v,0).$$

Also

$$\nabla^2 f(\frac{1}{2},0) = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \geqslant 0.$$

Lemma 1. $\nabla^2 f(\mathbf{x}_0)$ is positive definite, then $\exists a > 0$ s.t.

$$\mathbf{v}^T \nabla^2 f(\mathbf{x}_0) \mathbf{v} \geqslant a \|\mathbf{v}\|^2, \forall \mathbf{v}.$$

Proof. Suppose Q is orthogonal, i.e.,

$$Q^TQ = I \Leftrightarrow Q^{-1} = Q^T \Leftrightarrow \|Q\mathbf{v}\| = \|\mathbf{v}\|, \forall \mathbf{v}.$$

Hence,

$$Q^T \nabla^2 f(\mathbf{x}_0) Q = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \lambda_n \end{pmatrix},$$

and

$$\mathbf{v}^T \nabla^2 f(\mathbf{x}_0) \mathbf{v} = (Q \mathbf{w})^T \nabla^2 f(\mathbf{x}_0) (Q \mathbf{w}) = \mathbf{w}^T Q^T \nabla^2 f(\mathbf{x}_0) Q \mathbf{w}$$
$$= \sum_{i=1}^n \lambda_i w_i^2 \geqslant a \sum_{i=1}^n w_i^2 = a \|\mathbf{w}\|^2 = a \|Q^T \mathbf{v}\|^2 = a \|\mathbf{v}\|^2.$$

where $\mathbf{w} = Q^{-1}\mathbf{v}, 0 < a = \min\{\lambda_1, \dots, \lambda_n\}.$

Theorem 2.4 (Second Order Sufficient Conditions for Interior Points). Let $f \in C^2$ on Ω . If $\nabla f(x_0) = 0$, $\nabla^2 f(x_0) > 0$, then x_0 is a strict local minimum.

Proof. From the second order Taylor approximation, we have

$$f(\mathbf{x}_0 + \mathbf{v}) - f(\mathbf{x}_0) = \nabla f(\mathbf{x}_0)^T \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x}_0) \mathbf{v} + o(\|\mathbf{v}\|^2)$$
$$\geqslant \frac{1}{2} a \|\mathbf{v}\|^2 + o(a \|\mathbf{v}\|^2) = \|\mathbf{v}\|^2 \left(\frac{a}{2} + \frac{o(\|\mathbf{v}\|^2)}{\|\mathbf{v}\|^2}\right) > 0,$$

for small $\|\mathbf{v}\|$. Therefore, $f(\mathbf{x}_0 + \mathbf{v}) > f(\mathbf{x}_0)$ for all small $\mathbf{v} \in B(\mathbf{x}_0, \varepsilon)$.

Example 2.6. $\min f(x,y) = xy \text{ on } \Omega = \mathbb{R}^2$.

Solution. Suppose (x_0, y_0) is the local minimum. Let $\nabla f(x_0, y_0) = 0$, then $(x_0, y_0) = (0, 0)$. However $\nabla^2 f(0, 0) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is not positive definite.

2.2 Equality Constraints

2.2.1 Tangent Space

We define a surface $M := \{ \mathbf{x} \in \mathbb{R}^n | h_1(\mathbf{x}) = 0, \dots, h_k(\mathbf{x}) = 0 \}, h_i \in \mathbb{C}^1$.

Definition 2.6 (Differentiable Curve). A differentiable curve on surface $M \subseteq \mathbb{R}^n$ is a C^1 function $x: (-\varepsilon, \varepsilon) \to M$ given by $s \mapsto \mathbf{x}(s)$.

Let $\mathbf{x}(s)$ be a differentiable curve on M that passes through $\mathbf{x}_0 \in M$, say $\mathbf{x}(0) = \mathbf{x}_0$. The vector $\mathbf{v} = \frac{\mathrm{d}}{\mathrm{d}s}\big|_{s=0}\mathbf{x}(s)$ touches M tangentially, we say \mathbf{v} is generated by $\mathbf{x}(s)$.

Definition 2.7 (Tangent Vector). Any vector \mathbf{v} which is generated by some differentiable curve on M through \mathbf{x}_0 is called a tangent vector.

Tangent space to M at \mathbf{x}_0 is

$$T_{\mathbf{x}_0}M = \left\{ \mathbf{v} \in \mathbb{R}^n \middle| \mathbf{v} = \frac{\mathrm{d}}{\mathrm{d}s} \middle|_{s=0} \mathbf{x}(s), \text{ some differentiable curve } \mathbf{x}(s) \text{ on } M \text{ s.t. } \mathbf{x}(0) = \mathbf{x}_0 \right\}.$$

2.2.2 Lagrange Multiplier

2.3 Inequality Constraints