ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Определение предела прочности в анизотропной пластинке

Цель работы: Знакомство с анизотропными материалами и экспериментальное определение предела прочности в функции угла между осями анизотропии и направлением, под которым вырезан образец.

Теоретические сведения: Среда называется анизотропной, если свойства ее в каждой точке зависят от направления. Анизотропия бывает оптическая, механическая и т.д. В настоящей лабораторной работе определяются пределы прочности образцов, вырезанных из ортотропной пластинки под различными углами к осям анизотропии. В разрывной машине эти образцы доводятся до разрушения, и для каждого из них определяется предел прочности по формулу

$$\sigma_b(\varphi) = \frac{P_M}{S}$$

где P_M – наибольшая сила, которую выдержал образец, а S – площадь сечения образца. Так как предел прочности не очень стабильная величина, $\sigma_b(\varphi)$ определяется как среднее арифметическое по нескольким образцам.

Рис. 1: Разложение потенциальной энергии

Для изотропных материалов можно показать, что потенциальная энергия, накапливаемая в элементарном кубике, может быть представлена в виде суммы: энергии изменения объема и энергии изменения формы. Кубик А после деформации переходит в. Энергия кубика В может быть представлена в виде Эобъём + Эформоизм.

Энергия формоизменения пропорциональна некоторой квадратичной форме S от компонент напряжений

$$S^{2} = \frac{1}{6} [(\sigma_{x} - \sigma_{y})^{2} + (\sigma_{x} - \sigma_{z})^{2} + \sigma_{y} - \sigma_{z})^{2}] + \tau_{xy}^{2} + \tau_{xz}^{2} + \tau_{yz}^{2}$$

S называется интенсивностью касательных напряжений. Согласно энергетической теории прочности разрушение материала происходит тогда, когда интенсивность касательных достигает предельного значения. В случае одноосного напряжения разрушение происходит при $\sigma_x = \sigma_b$, то есть

$$S_{\text{pasp}} = \frac{1}{\sqrt{3}} \sigma_b$$

Для плоского напряженного состояния имеем

$$S^{2} = \frac{1}{3} [\sigma_{x}^{2} + \sigma_{y}^{2} - \sigma_{x}\sigma_{y}] + \tau_{xy}^{2}$$

Можно предположить, что для анизотропных материалов существует аналогичная величина, которую можно назвать обобщённой интенсивностью напряжений, которая также должна быть некоторой квадратичной формой от компонент тензора напряжений

$$S^2 = A\sigma_x^2 + B\sigma_y^2 + C\sigma_x\sigma_y + D\tau_{xy}^2$$

где σ_x , σ_y , τ_{xy} – компоненты тензора напряжений в осях анизотропии, A, B, C и D – постоянные, зависящие от модулей в законе Гука для анизотропных материалов и от текучести, которые для анизотропного материала зависят от направления. В системе координат, где базисные вектора направлены по ортотропным направлениям значения напряжений записываются в виде

$$\sigma_x = \sigma(\varphi)\cos^2\varphi, \quad \sigma_y = \sigma(\varphi)\sin^2\varphi^2, \quad \tau_{xy} = \sigma(\varphi)\cos\varphi\sin\varphi$$

в момент разрушения $\sigma(\varphi) = \sigma_b(\varphi)$. С помощью этих выражений получим значение предельного напряжения.

$$\sigma_b(\varphi) = \frac{S_m}{A\cos^4 \varphi + B\sin^4 \varphi + (C+D)\sin^2 \varphi \cos^2 \varphi}$$

Построим наилучшую кривую зависимости относительного предельного напряжения от угла

$$\frac{\sigma_b(\varphi)}{\sigma_b(0)} = \frac{\chi}{\chi \cos^4 \varphi + \sin^4 \varphi + b \sin^2 \varphi \cos^2 \varphi}$$

П

Обработка данных: Толщина каждой из пластинок одна и та же и равна d=2 мм. Ниже в таблице приведены результаты измерений.

Таблица 1: Значения критического напряжения в зависимости от угла

	I серия измерений		II серия измерений		III серия измерений	
φ , град	<i>b</i> , мм	$P_{\text{крит}}$,	<i>b</i> , мм	$P_{\text{крит}},$	b, mm	$P_{\text{крит}},$
0	23,2	241	22,8	1977,9	21,6	1858,7
15	21,8	218	22,4	1754,3	22,8	1923,3
30	21,3	186	22,0	1434,5	23,2	1599,1
45	21,7	175	22,5	1352,3	21,9	1127,2
60	21,6	164	22,2	1064,9	23,8	1387,6
75	21,0	152	22,1	1026,2	22,8	1261,3
90	22,6	166	22,1	936,0	22,6	1151,6

Для каждого угла усредним значение относительного напряжения разрыва, построим точки на графике. Затем найдём значения параметров χ и b, при которых кривая лучше всего описывает усреднённые точки. Построим эту кривую на том же графике.

