Recursive Sequences

General Form: $t_n = t_1 r^{n-1}$

Common Ratio: $r = \frac{t_i}{t_{i-1}}$ i > 1

1. For each of the following sequences, write the first 5 terms:

(a)
$$a_1 = 4$$
 and $a_n = n + a_{n-1} + 6$

(d)
$$a_1 = 5$$
 and $a_n = n^2 - a_{n-1}$

(b)
$$a_1 = 0$$
 and $a_n = a_{n-1} - n^2$

(e)
$$a_1 = 4$$
, $a_2 = 2$ and $a_n = a_{n-1} - a_{n-2}$

(c)
$$a_1 = 2$$
 and $a_n = (a_{n-1})^2 + 2$

(f)
$$a_1 = 1$$
, $a_2 = 3$ and $a_n = a_{n-1} \times a_{n-2}$

2. For each of the following sequences:

i write as an explicit rule

ii write as a recursive rule

iii find the 43^{rd} term

(a)
$$9, 1, -7, -15, \dots$$

(c)
$$\frac{\pi}{4}, \pi, \frac{7\pi}{4}, \frac{5\pi}{2}, \dots$$

(e) Geometric:
$$a_1 = \sqrt[3]{4}, r = \sqrt[3]{2}$$

(b)
$$40, -20, 10, -5, \dots$$

(d) Geometric:
$$a_1 = 2, r = 10$$

(f) Arithmetic:
$$a_1 = 14, d = \frac{1}{2}$$

- 3. Write the equation of the general term of an arithmetic sequence $t_n = t_1 + (n-1)d$ as a recursive rule.
- 4. Write the equation of the general term of a geometric sequence $t_n = t_1 r^{n-1}$ as a recursive rule.

- 5. You have just bought a new swimming pool and need to add chlorine to the water. You add 750mL of chlorine the first week and 350mL every week thereafter. Each week 40% of the chlorine in the pool evaporates.
 - (a) Write a recursive rule for the amount of chlorine in the pool each week. How much chlorine is in the pool at the beginning of the sixth week?
 - (b) What happens to the amount of chlorine after an extended period of time?
- 6. Give an example of a sequence in which each term after the third term is a function of the three terms preceding it. Write a recursive rule for the sequence and find the first 8 terms.
- 7. You can define a sequence using a piece-wise rule. The following is an example of a piece-wise defined sequence:

$$a_n = \begin{cases} 7 & \text{if } n = 1\\ \frac{a_{n-1}}{2} & \text{if } a_{n-1} \text{ is even}\\ 3a_{n-1} + 1 & \text{if } a_{n-1} \text{ is odd} \end{cases}$$

- (a) Write the first ten terms of the sequence.
- (b) Choose three different values for a_1 (other than $a_1 = 7$). For each value of a_1 , find the first ten terms of the sequence. What conclusions can you make about the behavior of this sequence?

- 8. How many sequences of 0s and 1s of length 19 are there that begin with a 0, end with a 0, contain no two consecutive 0s, and contain no three consecutive 1s? (2019 AMC 10B Problems/Problem 25)(try to solve using a recursive rule)
 - (A) 55 (B) 60 (C) 65 (D) 70 (E) 75