Determinantes e Sistemas Lineares

8 de junho de 2021

DETERMINANTES

O determinante de uma matriz é um escalar (número) obtido dos elementos da matriz, mediante operações específicas.

DETERMINANTES

O determinante de uma matriz é um escalar (número) obtido dos elementos da matriz, mediante operações específicas.

Os determinantes são definidos somente para matrizes quadradas.

DETERMINANTES

O determinante de uma matriz é um escalar (número) obtido dos elementos da matriz, mediante operações específicas.

Os determinantes são definidos somente para matrizes quadradas.

$$\mathbf{det}A = |A| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix}.$$

Determinante de 1^a ordem

O determinante da matriz $A = [a_{11}]$ é dado por **det** $A = a_{11}$.

Determinante de 1^a ordem

O determinante da matriz $A = [a_{11}]$ é dado por **det** $A = a_{11}$.

Exemplo: $A = [-8] \Rightarrow \det A = -8$.

Determinante de 1^a ordem

O determinante da matriz $A = [a_{11}]$ é dado por **det** $A = a_{11}$.

Exemplo:
$$A = [-8] \Rightarrow \det A = -8$$
.

Determinante de 2^a ordem

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}.a_{22} - a_{12}.a_{21}.$$

Determinante de 1^a ordem

O determinante da matriz $A = [a_{11}]$ é dado por **det** $A = a_{11}$.

Exemplo:
$$A = [-8] \Rightarrow \det A = -8$$
.

Determinante de 2^a ordem

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}.a_{22} - a_{12}.a_{21}.$$

Exemplo:

$$A = \begin{bmatrix} 6 & -3 \\ 5 & -1 \end{bmatrix} \Rightarrow \det A = \begin{bmatrix} 6 & -3 \\ 5 & -1 \end{bmatrix} = 6.(-1) - (-3).5 = 9.$$

Determinante de 3^a ordem: Regra de Sarrus

Figura: Regra de Sarrus

Fonte: elaborado pelo autor

Exemplo: Seja
$$A = \begin{bmatrix} 5 & -3 & -1 \\ 2 & 0 & 6 \\ -1 & 3 & -2 \end{bmatrix}$$
.

Figura: Exemplo da Regra de Sarrus

Fonte: elaborado pelo autor

TEOREMA DE LAPLACE

Determinantes de matrizes de ordem superior a 3 serão aqui resolvidos por um procedimento conhecido como expansão de cofatores. Seja $A = [a_{ij}]_{n \times n}$. Eliminando-se a i-ésima linha e a j-ésima coluna da matriz, obtém-se outra matriz, de ordem $(n-1) \times (n-1)$, representada por $A = [a_{ij}]_{(n-1) \times (n-1)}$. O determinante dessa matriz é denominado menor ou menor principal ou menor complementar da matriz A. O escalar $C_{ij} = (-1)^{i+j}.|M_{ij}|$ é chamado cofator da matriz A.

Seja
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Os cofatores relativos a todos os elementos dessa matriz são:

$$C_{11} = (-1)^{1+1}.|4| = 4;$$

$$C_{11} = (-1)^{1+1}.|4| = 4;$$

$$C_{12} = (-1)^{1+2}.|3| = -3;$$

$$C_{11} = (-1)^{1+1}.|4| = 4;$$

$$C_{12} = (-1)^{1+2}.|3| = -3;$$

$$C_{21} = (-1)^{2+1}.|4| = -2;$$

$$C_{11} = (-1)^{1+1}.|4| = 4;$$

$$C_{12} = (-1)^{1+2}.|3| = -3;$$

$$C_{21} = (-1)^{2+1}.|4| = -2;$$

$$C_{22} = (-1)^{2+2}.|1| = 1.$$

Seja
$$A=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right]$$
 . Os cofatores relativos a todos os elementos dessa matriz são:

$$\begin{aligned} & \text{Seja } A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \text{ . Os cofatores relativos a todos os elementos dessa matriz são:} \\ & C_{11} = (-1)^{1+1} \cdot \begin{bmatrix} 5 & 6 \\ 8 & 9 \end{bmatrix} = 1.(43-48) = -3; \\ & C_{12} = (-1)^{1+2} \cdot \begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix} = -1.(36-42) = 6; \end{aligned}$$

Seja
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
. Os cofatores relativos a todos os elementos dessa matriz são:

$$C_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = 1.(43 - 48) = -3; C_{12} = (-1)^{1+2} \cdot \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = -1.(36 - 42) = 6;$$

$$C_{13} = (-1)^{1+3} \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = 1.(32 - 35) = -3; C_{21} = (-1)^{2+1} \cdot \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} = -1.(18 - 24) = 6;$$

Seja
$$A=\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]$$
 . Os cofatores relativos a todos os elementos dessa matriz são:

$$C_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = 1.(43 - 48) = -3; C_{12} = (-1)^{1+2} \cdot \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = -1.(36 - 42) = 6;$$

$$C_{13} = (-1)^{1+3}. \left| \begin{array}{cc} 4 & 5 \\ 7 & 8 \end{array} \right| = 1.(32 - 35) = -3; C_{21} = (-1)^{2+1}. \left| \begin{array}{cc} 2 & 3 \\ 8 & 9 \end{array} \right| = -1.(18 - 24) = 6;$$

$$C_{22} = (-1)^{2+2}. \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} = 1.(9-21) = -12; C_{23} = (-1)^{2+3}. \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = -1.(8-14) = 6;$$

Seja
$$A=\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]$$
 . Os cofatores relativos a todos os elementos dessa matriz são:

$$C_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = 1.(43 - 48) = -3; C_{12} = (-1)^{1+2} \cdot \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = -1.(36 - 42) = 6;$$

$$C_{13} = (-1)^{1+3}. \left| \begin{array}{cc} 4 & 5 \\ 7 & 8 \end{array} \right| = 1.(32-35) = -3; C_{21} = (-1)^{2+1}. \left| \begin{array}{cc} 2 & 3 \\ 8 & 9 \end{array} \right| = -1.(18-24) = 6;$$

$$C_{22} = (-1)^{2+2}. \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} = 1.(9-21) = -12; C_{23} = (-1)^{2+3}. \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = -1.(8-14) = 6;$$

$$C_{31} = (-1)^{3+1}$$
. $\begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = 1.(12 - 15) = -3; C_{32} = (-1)^{3+2}$. $\begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = -1.(6 - 12) = 6;$

Seja
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
. Os cofatores relativos a todos os elementos dessa matriz são:

$$C_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = 1.(43 - 48) = -3; C_{12} = (-1)^{1+2} \cdot \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = -1.(36 - 42) = 6;$$

$$C_{13} = (-1)^{1+3}. \left| \begin{array}{cc} 4 & 5 \\ 7 & 8 \end{array} \right| = 1.(32-35) = -3; C_{21} = (-1)^{2+1}. \left| \begin{array}{cc} 2 & 3 \\ 8 & 9 \end{array} \right| = -1.(18-24) = 6;$$

$$C_{22} = (-1)^{2+2}$$
. $\begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} = 1.(9-21) = -12$; $C_{23} = (-1)^{2+3}$. $\begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = -1.(8-14) = 6$;

$$C_{31} = (-1)^{3+1}$$
. $\begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = 1.(12 - 15) = -3$; $C_{32} = (-1)^{3+2}$. $\begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = -1.(6 - 12) = 6$;

$$C_{33} = (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = 1 \cdot (5-8) = -3.$$

Seja
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
. Os cofatores relativos a todos os elementos dessa matriz são:

$$C_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = 1.(43 - 48) = -3; C_{12} = (-1)^{1+2} \cdot \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = -1.(36 - 42) = 6;$$

$$C_{13} = (-1)^{1+3}. \left| \begin{array}{cc} 4 & 5 \\ 7 & 8 \end{array} \right| = 1.(32 - 35) = -3; C_{21} = (-1)^{2+1}. \left| \begin{array}{cc} 2 & 3 \\ 8 & 9 \end{array} \right| = -1.(18 - 24) = 6;$$

$$C_{22} = (-1)^{2+2}$$
. $\begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} = 1.(9-21) = -12$; $C_{23} = (-1)^{2+3}$. $\begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = -1.(8-14) = 6$;

$$C_{31} = (-1)^{3+1}$$
. $\begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = 1.(12 - 15) = -3$; $C_{32} = (-1)^{3+2}$. $\begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = -1.(6 - 12) = 6$;

$$C_{33} = (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = 1 \cdot (5-8) = -3.$$

$$\text{Matriz dos cofatores } C = \left[\begin{array}{ccc} -3 & 6 & -3 \\ 6 & -12 & 6 \\ -3 & 6 & -3 \end{array} \right].$$

DETERMINANTE VIA LAPLACE

O determinante de uma matriz quadrada $A = [a_{ij}]_{n \times n}$, com $n \ge 2$, pode ser obtido pela soma dos produtos dos elementos de uma linha ou coluna da matriz A multiplicada pelos respectivos cofatores, isto é:

- a) Fixando a coluna j, temos **det** $A = \sum_{i=1}^{n} a_{ij}.C_{ij}$.
- b) Fixando a linha *i*, temos **det** $A = \sum_{j=1}^{n} a_{ij}.C_{ij}$.

Seja
$$A=\left[\begin{array}{ccc} 6 & 1 & 0 \\ -2 & 3 & 4 \\ 5 & 2 & -3 \end{array}\right]$$
 . Fixemos, por exemplo, a 1^a linha.

Seja
$$A = \begin{bmatrix} 6 & 1 & 0 \\ -2 & 3 & 4 \\ 5 & 2 & -3 \end{bmatrix}$$
. Fixemos, por exemplo, a 1^a linha.

$$\det A = \sum_{j=1}^3 a_{1j} \cdot C_{1j} = a_{11} \cdot C_{11} + a_{12} \cdot C_{12} + a_{13} \cdot C_{13}, \text{ em que } a_{11} = 6, a_{12} = 1 \text{ e } a_{13} = 0.$$

Seja
$$A = \begin{bmatrix} 6 & 1 & 0 \\ -2 & 3 & 4 \\ 5 & 2 & -3 \end{bmatrix}$$
. Fixemos, por exemplo, a 1^a linha.

$$\det A = \sum_{j=1}^{3} a_{1j} \cdot C_{1j} = a_{11} \cdot C_{11} + a_{12} \cdot C_{12} + a_{13} \cdot C_{13}, \text{ em que } a_{11} = 6, a_{12} = 1 \text{ e } a_{13} = 0.$$

Retirando a primeira linha e a primeira coluna,
$$C_{11} = (-1)^{1+1}$$
. $\begin{vmatrix} 3 & 4 \\ 2 & -3 \end{vmatrix} = 1 \cdot (-9 - 8) = -17$.

Seja
$$A = \begin{bmatrix} 6 & 1 & 0 \\ -2 & 3 & 4 \\ 5 & 2 & -3 \end{bmatrix}$$
. Fixemos, por exemplo, a 1^a linha.

$$\det A = \sum_{j=1}^{3} a_{1j} \cdot C_{1j} = a_{11} \cdot C_{11} + a_{12} \cdot C_{12} + a_{13} \cdot C_{13}, \text{ em que } a_{11} = 6, a_{12} = 1 \text{ e } a_{13} = 0.$$

Retirando a primeira linha e a primeira coluna,
$$C_{11}=(-1)^{1+1}$$
. $\begin{vmatrix} 3 & 4 \\ 2 & -3 \end{vmatrix}=1.(-9-8)=-17.$

Retirando a primeira linha e a segunda coluna,
$$C_{12}=(-1)^{1+2}$$
. $\begin{vmatrix} -2 & 4 \\ 5 & -3 \end{vmatrix}=-1.(6-20)=14$.

Seja
$$A = \begin{bmatrix} 6 & 1 & 0 \\ -2 & 3 & 4 \\ 5 & 2 & -3 \end{bmatrix}$$
. Fixemos, por exemplo, a 1^a linha.

$$\det A = \sum_{j=1}^{3} a_{1j} \cdot C_{1j} = a_{11} \cdot C_{11} + a_{12} \cdot C_{12} + a_{13} \cdot C_{13}, \text{ em que } a_{11} = 6, a_{12} = 1 \text{ e } a_{13} = 0.$$

Retirando a primeira linha e a primeira coluna,
$$C_{11}=(-1)^{1+1}$$
. $\begin{vmatrix} 3 & 4 \\ 2 & -3 \end{vmatrix}=1$. $(-9-8)=-17$.

Retirando a primeira linha e a segunda coluna,
$$C_{12}=(-1)^{1+2}$$
. $\begin{vmatrix} -2 & 4 \\ 5 & -3 \end{vmatrix}=-1.(6-20)=14$.

Retirando a primeira linha e a terceira coluna,
$$C_{13}=(-1)^{1+3}$$
. $\begin{vmatrix} -2 & 3 \\ 5 & 2 \end{vmatrix}=1.(-4-15)=-19$.

Seja
$$A = \begin{bmatrix} 6 & 1 & 0 \\ -2 & 3 & 4 \\ 5 & 2 & -3 \end{bmatrix}$$
. Fixemos, por exemplo, a 1^a linha.

$$\det A = \sum_{j=1}^3 a_{1j}.C_{1j} = a_{11}.C_{11} + a_{12}.C_{12} + a_{13}.C_{13}, \text{ em que } a_{11} = 6, a_{12} = 1 \text{ e } a_{13} = 0.$$

Retirando a primeira linha e a primeira coluna,
$$C_{11}=(-1)^{1+1}$$
. $\begin{vmatrix} 3 & 4 \\ 2 & -3 \end{vmatrix}=1.(-9-8)=-17.$

Retirando a primeira linha e a segunda coluna,
$$C_{12}=(-1)^{1+2}$$
. $\begin{vmatrix} -2 & 4 \\ 5 & -3 \end{vmatrix}=-1.(6-20)=14$.

Retirando a primeira linha e a terceira coluna,
$$C_{13} = (-1)^{1+3}$$
. $\begin{vmatrix} -2 & 3 \\ 5 & 2 \end{vmatrix} = 1.(-4-15) = -19$.

Daí, det
$$A = 6.(-17) + 1.14 + 0.(-19) = -109 + 14 + 0 = -88$$
.

Regra de Chió

Calcula o determinante de uma matriz de ordem n através de uma matriz de ordem n-1 (uma ordem abaixo).

Regra de Chió

Calcula o determinante de uma matriz de ordem n através de uma matriz de ordem n-1 (uma ordem abaixo).

Condição: o elemento a_{11} deve ser igual a 1.

Regra de Chió

Calcula o determinante de uma matriz de ordem n através de uma matriz de ordem n-1 (uma ordem abaixo).

Condição: o elemento a_{11} deve ser igual a 1.

A regra de Chió é dada da seguinte forma:

- ▶ suprima a primeira linha e a primeira coluna da matriz.
- sos elementos que restaram na matriz, subtraia o produto dos dois elementos suprimidos (um da linha e o outro da coluna) correspondente a este elemento restante.
- ► com os resultados das subtrações realizadas no passo anterior, será obtida uma nova matriz, com ordem menor, entretanto com determinante igual à matriz original.

Calcule o determinante da matriz
$$A = \begin{bmatrix} 1 & 2 & 5 & 3 & 2 \\ 1 & 3 & 7 & 3 & 4 \\ 0 & 5 & 2 & 2 & 1 \\ 1 & 3 & 0 & 1 & 2 \\ 0 & 6 & 7 & 4 & 7 \end{bmatrix}$$
.

$$\det A = \begin{pmatrix} 1 & 2 & 5 & 3 & 2 \\ 1 & 3 & 7 & 3 & 4 \\ 0 & 5 & 2 & 2 & 1 \\ 1 & 3 & 0 & 1 & 2 \\ 0 & 6 & 7 & 4 & 7 \end{pmatrix} = \det \begin{pmatrix} 3 - 1.2 & 7 - 1.5 & 3 - 1.3 & 4 - 1.2 \\ 5 - 0.2 & 2 - 0.5 & 2 - 0.3 & 1 - 0.2 \\ 3 - 1.2 & 0 - 1.5 & 1 - 1.3 & 2 - 1.2 \\ 6 - 0.2 & 7 - 0.5 & 4 - 0.3 & 7 - 0.2 \end{pmatrix} = \det \begin{pmatrix} 1 & 2 & 0 & 2 \\ 5 & 2 & 2 & 1 \\ 1 & -5 & -2 & 0 \\ 6 & 7 & 4 & 7 \end{pmatrix}.$$

Calcule o determinante da matriz
$$A = \begin{bmatrix} 1 & 2 & 5 & 3 & 2 \\ 1 & 3 & 7 & 3 & 4 \\ 0 & 5 & 2 & 2 & 1 \\ 1 & 3 & 0 & 1 & 2 \\ 0 & 6 & 7 & 4 & 7 \end{bmatrix}$$
.

$$\det A = \begin{pmatrix} 1 & 2 & 5 & 3 & 2 \\ 1 & 3 & 7 & 3 & 4 \\ 0 & 5 & 2 & 2 & 1 \\ 1 & 3 & 0 & 1 & 2 \\ 0 & 6 & 7 & 4 & 7 \end{pmatrix} = \det \begin{pmatrix} 3 - 1.2 & 7 - 1.5 & 3 - 1.3 & 4 - 1.2 \\ 5 - 0.2 & 2 - 0.5 & 2 - 0.3 & 1 - 0.2 \\ 3 - 1.2 & 0 - 1.5 & 1 - 1.3 & 2 - 1.2 \\ 6 - 0.2 & 7 - 0.5 & 4 - 0.3 & 7 - 0.2 \end{pmatrix} = \det \begin{pmatrix} 1 & 2 & 0 & 2 \\ 5 & 2 & 2 & 1 \\ 1 & -5 & -2 & 0 \\ 6 & 7 & 4 & 7 \end{pmatrix}.$$

$$\det \begin{pmatrix} 1 & 2 & 0 & 2 \\ 5 & 2 & 2 & 1 \\ 1 & -5 & -2 & 0 \\ 6 & 7 & 4 & 7 \end{pmatrix} = \det \begin{pmatrix} 2-5.2 & 2-5.0 & 1-5.2 \\ -5-1.2 & -2-1.0 & 0-1.2 \\ 7-6.2 & 4-6.0 & 7-6.2 \end{pmatrix} = \det \begin{pmatrix} -8 & 2 & -9 \\ -7 & -2 & -2 \\ -5 & 4 & -5 \end{pmatrix}.$$

Calcule o determinante da matriz
$$A = \begin{bmatrix} 1 & 2 & 5 & 3 & 2 \\ 1 & 3 & 7 & 3 & 4 \\ 0 & 5 & 2 & 2 & 1 \\ 1 & 3 & 0 & 1 & 2 \\ 0 & 6 & 7 & 4 & 7 \end{bmatrix}$$
.

$$\det A = \begin{pmatrix} 1 & 2 & 5 & 3 & 2 \\ 1 & 3 & 7 & 3 & 4 \\ 0 & 5 & 2 & 2 & 1 \\ 1 & 3 & 0 & 1 & 2 \\ 0 & 6 & 7 & 4 & 7 \end{pmatrix} = \det \begin{pmatrix} 3 - 1.2 & 7 - 1.5 & 3 - 1.3 & 4 - 1.2 \\ 5 - 0.2 & 2 - 0.5 & 2 - 0.3 & 1 - 0.2 \\ 3 - 1.2 & 0 - 1.5 & 1 - 1.3 & 2 - 1.2 \\ 6 - 0.2 & 7 - 0.5 & 4 - 0.3 & 7 - 0.2 \end{pmatrix} = \det \begin{pmatrix} 1 & 2 & 0 & 2 \\ 5 & 2 & 2 & 1 \\ 1 & -5 & -2 & 0 \\ 6 & 7 & 4 & 7 \end{pmatrix}.$$

$$\det \begin{pmatrix} 1 & 2 & 0 & 2 \\ 5 & 2 & 2 & 1 \\ 1 & -5 & -2 & 0 \\ 6 & 7 & 4 & 7 \end{pmatrix} = \det \begin{pmatrix} 2-5.2 & 2-5.0 & 1-5.2 \\ -5-1.2 & -2-1.0 & 0-1.2 \\ 7-6.2 & 4-6.0 & 7-6.2 \end{pmatrix} = \det \begin{pmatrix} -8 & 2 & -9 \\ -7 & -2 & -2 \\ -5 & 4 & -5 \end{pmatrix}.$$

$$\det \begin{pmatrix}
-8 & 2 & -9 \\
-7 & -2 & -2 \\
-5 & 4 & -5
\end{pmatrix} = 148$$

1. Quando todos os elementos de uma linha ou coluna são nulos, o determinante dessa matriz será zero.

Exemplo: det
$$\begin{pmatrix} a & b & c \\ 0 & 0 & 0 \\ g & h & i \end{pmatrix} = 0$$

1. Quando todos os elementos de uma linha ou coluna são nulos, o determinante dessa matriz será zero.

Exemplo: det
$$\begin{pmatrix} a & b & c \\ 0 & 0 & 0 \\ g & h & i \end{pmatrix} = 0$$

2. Quando trocamos a posição de duas linhas (ou colunas) paralelas o determinante muda de sinal.

Exemplo: Se $\begin{vmatrix} 2 & 3 \\ -1 & 4 \end{vmatrix} = 11$, então $\begin{vmatrix} -1 & 4 \\ 2 & 3 \end{vmatrix} = -11$, uma vez que a primeira linha foi trocada com a segunda.

1. Quando duas linhas ou colunas são iguais, o determinante dessa matriz será zero.

Exemplo:
$$A = \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \\ a & b & c \end{pmatrix}$$
. \Rightarrow **det** $A = 0$.

1. Quando duas linhas ou colunas são iguais, o determinante dessa matriz será zero.

Exemplo:
$$A = \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \\ a & b & c \end{pmatrix}$$
. \Rightarrow **det** $A = 0$.

2. $\det B = k \cdot \det A$.

Exemplo: Seja $A = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix}$. Temos que **det** A = 10. Vamos multiplicar por 4 a segunda coluna de A, obtendo $B = \begin{pmatrix} 2 & -4 \\ 4 & 12 \end{pmatrix}$. Assim, **det** B = 40 que é equivalente a **det** B = 4. **det** A.

 Quando duas linhas ou colunas são proporcionais (uma múltipla da outra), o determinante dessa matriz será zero.

Exemplo: Seja
$$A = \begin{pmatrix} 3 & -1 & 2 \\ 5 & 4 & 1 \\ 18 & -6 & 12 \end{pmatrix}$$
. Note que a terceira linha é igual à primeira linha multiplicada por três. Logo, **det** $A = 0$

 Quando duas linhas ou colunas são proporcionais (uma múltipla da outra), o determinante dessa matriz será zero.

Exemplo: Seja
$$A = \begin{pmatrix} 3 & -1 & 2 \\ 5 & 4 & 1 \\ 18 & -6 & 12 \end{pmatrix}$$
. Note que a terceira linha é igual à primeira linha multiplicada por três. Logo, **det** $A = 0$

 Teorema de Jacobi: Quando os elementos de uma linha (coluna) forem combinações lineares dos elementos correspondentes das outras linhas (colunas), o determinante dessa matriz será zero.

Exemplo: Seja $A = \begin{pmatrix} 5 & 11 \\ -4 & 3 \end{pmatrix}$. Temos que **det** A = 59. Vamos substituir a segunda linha de A pela soma dela com a primeira linha multiplicada por -2 e obter $B = \begin{pmatrix} 5 & 11 \\ -14 & -19 \end{pmatrix}$. Portanto, **det** B = 59.

1. O determinante de uma matriz e o de sua transposta são iguais.

Exemplo: Seja
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix}$$
. Temos que $\det A = -6$. Transpondo a matriz A temos que $A^T = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$ e portanto $\det A^T = -6$.

1. O determinante de uma matriz e o de sua transposta são iguais.

Exemplo: Seja
$$A=\begin{pmatrix}1&3\\2&0\end{pmatrix}$$
. Temos que $\det A=-6$. Transpondo a matriz A temos que $A^T=\begin{pmatrix}1&2\\3&0\end{pmatrix}$ e portanto $\det A^T=-6$.

2. Teorema de Binet: det(A.B) = (det A).(det B)

Conclui-se que:
$$\det(A^{-1}) = \frac{1}{\det A}$$
, pois $A.A^{-1} = I_n$.

Exemplo: Seja
$$A = \begin{pmatrix} 6 & 2 \\ -1 & 4 \end{pmatrix}$$
 e $B = \begin{pmatrix} 1 & 0 \\ -3 & 2 \end{pmatrix}$. Temos que $\det A = 26$ e $\det B = 2$. Fazendo o produto das duas matrizes, temos $A.B = \begin{pmatrix} 0 & 4 \\ -13 & 8 \end{pmatrix}$ e $\det A.B = 58$. Por outro lado, $\det A.\det B = 26.2 = 58$. Por tanto, $\det A.B = \det A.\det B$.

1. Seja $A = [a_{ij}]_{n \times n}$ e $k \in \mathbb{R}$. det $(k.A) = k^n$.det (A).

Exemplo: Seja $A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$. Temos que **det** A = 7.

Vamos multiplicar a matriz *A* por 3, obtendo

$$B = \begin{pmatrix} 9 & 3 \\ -3 & 6 \end{pmatrix}$$
, cujo determinante é 63.

Note que **det** $B = 63 = 9.7 = 3^2.7$, em que, de acordo com a propriedade, temos a ordem da matriz n = 2 e k = 3.

1. Seja $A = [a_{ij}]_{n \times n}$ e $k \in \mathbb{R}$. det $(k.A) = k^n$.det (A).

Exemplo: Seja $A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$. Temos que **det** A = 7.

Vamos multiplicar a matriz A por 3, obtendo

$$B = \begin{pmatrix} 9 & 3 \\ -3 & 6 \end{pmatrix}$$
, cujo determinante é 63.

Note que **det** $B = 63 = 9.7 = 3^2.7$, em que, de acordo com a propriedade, temos a ordem da matriz n = 2 e k = 3.

2. O determinante de uma matriz triangular é o produto dos elementos da diagonal principal.

Exemplo: Exemplo: Seja
$$A=\begin{pmatrix}a&0&0\\0&b&0\\0&0&c\end{pmatrix}$$
 . Assim,
$$\det A=a.b.c.$$

Matriz inversa via matriz dos cofatores

Para calcular a matriz inversa de uma matriz A $n \times n$, usando cofatores, primeiro calculamos todos os cofatores e depois montamos uma matriz,e em que cada cofator ocupe a posição de índice equivalente.

$$cof(A) = \begin{bmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{bmatrix}.$$

Matriz inversa via matriz dos cofatores

Para calcular a matriz inversa de uma matriz A $n \times n$, usando cofatores, primeiro calculamos todos os cofatores e depois montamos uma matriz, e em que cada cofator ocupe a posição de índice equivalente.

$$cof(A) = \begin{bmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{bmatrix}.$$

Portanto, a matriz inversa de A é dada por

$$A^{-1} = \frac{(cof(A))^t}{\det(A)}.$$

Sistemas Lineares

Equação linear: $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b$.

Equação linear: $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b$.

Informalmente, são equações em que a variável tem expoente igual a um e não existe produto entre variáveis.

Equação linear: $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b$.

Informalmente, são equações em que a variável tem expoente igual a um e não existe produto entre variáveis.

Exemplo: $3x_1 + 4x_2 - 5x_3 - x_4 = 5$.

Equação linear: $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b$.

Informalmente, são equações em que a variável tem expoente igual a um e não existe produto entre variáveis.

Exemplo:
$$3x_1 + 4x_2 - 5x_3 - x_4 = 5$$
.

Observação: Note que não são lineares as equações:

$$2x_1^2 + 4x_2 - x_3 = 0$$
; $2x_1x_2 + x_3 - x_4 = 0$; $x_1 + \sqrt{x_2} - x_3 = 4$.

Equação linear: $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b$.

Informalmente, são equações em que a variável tem expoente igual a um e não existe produto entre variáveis.

Exemplo: $3x_1 + 4x_2 - 5x_3 - x_4 = 5$.

Observação: Note que não são lineares as equações:

$$2x_1^2 + 4x_2 - x_3 = 0$$
; $2x_1x_2 + x_3 - x_4 = 0$; $x_1 + \sqrt{x_2} - x_3 = 4$.

 $(\alpha_1,\alpha_2,\ldots,\alpha_n)$ é uma solução da equação linear $a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=b$ se $a_{11}\alpha_1+a_{12}\alpha_2+\ldots+a_{1n}\alpha_n=b$ for uma sentença verdadeira.

Equação linear: $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b$.

Informalmente, são equações em que a variável tem expoente igual a um e não existe produto entre variáveis.

Exemplo: $3x_1 + 4x_2 - 5x_3 - x_4 = 5$.

Observação: Note que não são lineares as equações:

$$2x_1^2 + 4x_2 - x_3 = 0$$
; $2x_1x_2 + x_3 - x_4 = 0$; $x_1 + \sqrt{x_2} - x_3 = 4$.

 $(\alpha_1,\alpha_2,\ldots,\alpha_n)$ é uma solução da equação linear $a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=b$ se $a_{11}\alpha_1+a_{12}\alpha_2+\ldots+a_{1n}\alpha_n=b$ for uma sentença verdadeira.

Exemplo: Seja $2x_1 + 3x_2 - x_3 + x_4 = 3$. A sequência (1,2,3,-2) é solução, pois 2.(-1) + 3.(2) - (3) + (-2) = 3 é sentença verdadeira, porém a sequência (1,1,2,1) não é solução, pois 2.(1) + 3.(1) - (2) + (1) = 3 é sentença falsa.

SISTEMA LINEAR

É um conjunto de $m(m \ge 1)$ equações lineares, nas incógnitas x_1, x_2, \dots, x_n .

$$S = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

SISTEMA LINEAR

É um conjunto de $m(m \ge 1)$ equações lineares, nas incógnitas x_1, x_2, \dots, x_n .

$$S = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Forma matricial:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

SISTEMA LINEAR

É um conjunto de $m(m \ge 1)$ equações lineares, nas incógnitas x_1, x_2, \dots, x_n .

$$S = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Forma matricial:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

EXEMPLO:

O sistema linear
$$S = \left\{ \begin{array}{ccc} 2x & + & 3y & = & 4 \\ x & - & y & = & 2 \end{array} \right.$$
 pode ser escrito na forma matricial $\left[\begin{array}{ccc} 2 & 3 \\ 1 & -1 \end{array} \right] \cdot \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} 4 \\ 2 \end{array} \right]$.

SOLUÇÃO DE UM SISTEMA LINEAR

Dizemos que a sequência ou ênupla ordenada de números reais $(\alpha_1, \alpha_2, \dots, \alpha_n)$ é solução de um sistema linear S, se for solução de todas as equações de S, isto é,

SOLUÇÃO DE UM SISTEMA LINEAR

Dizemos que a sequência ou ênupla ordenada de números reais $(\alpha_1, \alpha_2, \dots, \alpha_n)$ é solução de um sistema linear S, se for solução de todas as equações de S, isto é,

EXEMPLOS:

1. O sistema
$$S =$$

$$\begin{cases}
x + y + z = 6 \\
2x + y - z = 1 \\
3x - y + z = 4
\end{cases}$$
tripla ordenada (1,2,3), pois

EXEMPLOS:

1. O sistema
$$S =$$

$$\begin{cases}
x + y + z = 6 \\
2x + y - z = 1 \\
3x - y + z = 4
\end{cases}$$
tripla ordenada (1,2,3), pois

S não admite, porém, como solução, a tripla (-5,11,0), pois

EXEMPLOS:

1. O sistema
$$S =$$

$$\begin{cases}
x + y + z = 6 \\
2x + y - z = 1 \\
3x - y + z = 4
\end{cases}$$
tripla ordenada (1,2,3), pois

S não admite, porém, como solução, a tripla (-5,11,0), pois

2. O sistema linear
$$S = \begin{cases} x + 2y + 3z = 5 \\ x - y + 4z = 1 \text{ não admite} \\ 0x + 0y + 0z = 6 \end{cases}$$
 solução, pois a última equação não é satisfeita por nenhuma tripla $(0, 0, 0, 0)$

Classificação

Se um sistema linear *S* tiver uma única solução, dizemos que ele é *possível* ou *compatível* e *determinado*.

Se ele admitir várias soluções, ele é *possível* ou *compatível* e *indeterminado*.

Se ele não admitir solução, ele é *impossível* ou *incompatível*.

Fazer essa classificação é o mesmo que discutir um sistema linear.

Classificação

Se um sistema linear *S* tiver uma única solução, dizemos que ele é *possível* ou *compatível* e *determinado*.

Se ele admitir várias soluções, ele é *possível* ou *compatível* e *indeterminado*.

Se ele não admitir solução, ele é *impossível* ou *incompatível*.

Fazer essa classificação é o mesmo que discutir um sistema linear.

SISTEMA LINEAR HOMOGÊNEO

Chamamos de *sistema linear homogêneo* todo aquele em que o termo independente de todas as equações vale zero.

Exemplos:

1.
$$S_1 = \begin{cases} x + y + z = 0 \\ 2x - y + z = 0 \end{cases}$$
.

SISTEMA LINEAR HOMOGÊNEO

Chamamos de *sistema linear homogêneo* todo aquele em que o termo independente de todas as equações vale zero.

Exemplos:

1.
$$S_1 = \begin{cases} x + y + z = 0 \\ 2x - y + z = 0 \end{cases}$$
.

2.
$$S_2 = \begin{cases} 3x + 4y + z - t = 0 \\ 3x - y - 3z = 0 \\ x + 2y + z - 3t = 0 \\ 4x - z + t = 0 \end{cases}$$

Um sistema linear homogêneo admite sempre como solução a sequência $(\alpha_1, \alpha_2, \dots, \alpha_n)$ em que $\alpha_i = 0, \ \forall i \in \{1, 2, 3, \dots, n\}$, chamada solução nula, trivial ou imprópria.

Matrizes de um sistema

Dado um sistema linear *S* de *m* equações e *n* incógnitas, consideremos as matrizes:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} e$$

$$B = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}.$$

A é chamada matriz incompleta do sistema e B, matriz completa ou matriz ampliada. Notemos que B foi obtida a partir de A, acrescentando-se a esta a coluna formada pelos termos independentes das equações do sistema.

EXEMPLO:

Seja
$$S = \begin{cases} 2x + y = 3 \\ x - y = 4 \end{cases}$$
. Então $A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$ e $B = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 4 \end{bmatrix}$.

Sistemas lineares 2×2

Um sistema linear 2×2 , nas incógnitas x e y, é um conjunto de duas equações lineares em que x e y são as incógnitas de cada uma dessas equações.

Sistemas lineares 2×2

Um sistema linear 2×2 , nas incógnitas x e y, é um conjunto de duas equações lineares em que x e y são as incógnitas de cada uma dessas equações.

Método da Adição

Considere o sistema linear
$$S = \left\{ \begin{array}{lcl} 3x & + & 2y & = & 30 \\ 2x & + & y & = & 17 \end{array} \right.$$

$$\begin{cases} 3x + 2y = 30 \\ -4x - 2y = -34 \end{cases} \Rightarrow \begin{cases} 3x + 2y = 30 \\ -4x - 2y = -34 \oplus -34 \end{bmatrix}$$

Logo, x = 4. Substituindo em qualquer uma das equações anteriores, achamos y:

$$3x + 2y = 30 \Rightarrow 3.4 + 2y = 30 \Rightarrow 2y = 18 \Rightarrow y = 9.$$

Observe que x=4 e y=9 satisfazem simultaneamente as duas equações e portanto, o conjunto solução do sistema é: $S=\{(4,9)\}$.

MÉTODO DA SUBSTITUIÇÃO

Primeiro escolhemos uma das equações e nela isolamos uma das variáveis. Vamos escolher a segunda equação e isolar o valor de y: y = 17 - 2x.

Daí, pegamos o valor isolado e substituímos na outra equação, para achar a variável faltante.

$$3x + 2.(17 - 2x) = 30 \Rightarrow -x + 34 = 30 \Rightarrow x = 4.$$

Por fim, substituímos o valor de *x* encontrado na equação em que isolamos *y* para determinar o seu valor, ou seja:

$$y = 17 - 2x \Rightarrow y = 17 - 2.4 = 9.$$

Portanto, encontramos o conjunto solução $S = \{(4,9)\}$.

INTERPRETAÇÃO GEOMÉTRICA E CLASSIFICAÇÃO

A equação linear 3x + 2y = 30 é equivalente a 30-3x = 15-3 = 15-3 = 17 equivale a y = -2x + 17, (s).

Figura: Sistema Possível e Determinado

Fonte: elaborado pelo autor

Seja o sistema
$$S = \begin{cases} x - 2y = 5 \\ 2x - 4y = 7 \end{cases}$$
.

$$\begin{cases} x & - & 2y & = & 5 \\ 2x & - & 4y & = & 7 \end{cases} \Rightarrow \begin{cases} \frac{\cancel{2x}}{\cancel{2x}} + \frac{\cancel{4y}}{\cancel{4y}} = \frac{-10}{\cancel{2x}} \\ \frac{\cancel{2x}}{\cancel{0.x}} + \frac{\cancel{4y}}{\cancel{0.y}} = \frac{7}{\cancel{-3}} & \oplus \end{cases}.$$

Graficamente,
$$y = \frac{x-5}{2}$$
 e $y = \frac{2x-7}{4}$ têm por gráficos retas paralelas distintas.

Figura: Sistema Imossível

Fonte: elaborado pelo autor

Seja $S = \begin{cases} x + y = 1 \\ 2x + 2y = 2 \end{cases}$. Usando o método da adição, obtemos:

$$\begin{cases} x + y = 1 & .(-2) \\ 2x + 2y = 2 \end{cases} \Rightarrow \begin{cases} -2x - 2y = -2 \\ 2x + 2y = 2 & \oplus \\ 0.x + 0.y = 0(\text{ou } 0 = 0) \end{cases}.$$

Seja $S = \begin{cases} x + y = 1 \\ 2x + 2y = 2 \end{cases}$. Usando o método da adição, obtemos:

$$\begin{cases} x + y = 1 & .(-2) \\ 2x + 2y = 2 \end{cases} \Rightarrow \begin{cases} -2x - 2y = -2 \\ 2x + 2y = 2 & \oplus \\ \hline 0.x + 0.y = 0(\text{ou } 0 = 0) \end{cases}.$$

O sistema proposto se reduz à equação x + y = 1, que possui infinitas soluções, por exemplo: (0,1); (2,-1); (1,0); (25,6) etc.

Expressando-se y em função de x, obtemos y = 1 - x e, deste modo, todo par ordenado da forma (x, 1 - x), em que $x \in \mathbb{R}$, é solução do sistema e escrevemos: $S = \{(x, 1 - x); x \in \mathbb{R}\}$.

Nesse caso, dizemos que o **sistema é possível e indeterminado (S.P.I.)**.

Geometricamente, as funções do 1° grau dadas por y=-x+1 e $y=\frac{-2x+2}{2}=\frac{2(-x+1)}{2}=-x+1$ têm por gráficos retas coincidentes e, portanto, possuem como interseção todos os pontos de r. Como r tem infinitos pontos, o sistema admite infinitas soluções.

Figura: Sistema Possível e Indeterminado

Fonte: elaborado pelo autor

TEOREMA DE CRAMER

Consideremos um sistema linear em que o número de equações é igual ao número de incógnitas (isto é, m = n). Nessas condições, A é matriz quadrada; seja $D = \det(A)$.

Teorema: Seja *S* um sistema linear com número de equações igual ao de incógnitas. Se $D = \det S \neq 0$, então o sistema será possível e terá solução única $(\alpha_1, \alpha_2, \dots, \alpha_n)$, tal que

$$\alpha_i = \frac{D_i}{D}, \ \forall i \in \{1,2,\ldots,n\}$$

em que D_i é o determinante da matriz obtida de S, substituindo-se a *i*-ésima coluna pela coluna dos termos independentes das equações do sistema.

Se $D \neq 0$, o sistema é possível e determinado; se D = 0, o sistema ou possui infinitas soluções ou não tem solução. 📱 🙉 ୯ 🤏 35/45

EXEMPLO:

Seja o sistema
$$\begin{cases} x + y + z = 6 \\ x - y - z = -4 \end{cases}$$
 Temos
$$2x - y + z = 1$$
$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 2 & -1 & 1 \end{vmatrix} = -4 \neq 0.$$

Logo, o sistema tem solução única. Determinemos essa solução:

$$D_{1} = \begin{vmatrix} 6 & 1 & 1 \\ -4 & -1 & -1 \\ 1 & -1 & 1 \end{vmatrix} = -4, D_{2} = \begin{vmatrix} 1 & 6 & 1 \\ 1 & -4 & -1 \\ 2 & 1 & 1 \end{vmatrix} = -12, D_{3} = \begin{vmatrix} 1 & 1 & 6 \\ 1 & -1 & -4 \\ 2 & -1 & 1 \end{vmatrix} = -8.$$

Logo,
$$x = \frac{D_1}{D} = \frac{-4}{-4} = 1; y = \frac{D_2}{D} = \frac{-12}{-4} = 3; z = \frac{D_3}{D} = \frac{-8}{-4} = 2.$$

Portanto, a solução única do sistema é (1,2,3).

SISTEMAS EQUIVALENTES

Dois sistemas S e S' são equivalentes quando possuem o mesmo conjunto solução($S \sim S'$). Por meio de operações matemáticas triviais, pode-se transformar um sistema complicado S em um sistema mais simples S'.

SISTEMAS EQUIVALENTES

Dois sistemas S e S' são equivalentes quando possuem o mesmo conjunto solução($S \sim S'$). Por meio de operações matemáticas triviais, pode-se transformar um sistema complicado S em um sistema mais simples S'.

Propriedades:

1— Trocando as posições de duas equações de S, tem-se $S \sim S'$.

Exemplo: Trocar a 1^a equação com a 3^a.

$$S = \begin{cases} 3x + y - z = 1 & (I) \\ 4x - 2y + 3z = 0 & (II) \\ -x + 3y + 2z = 3 & (III) \end{cases} \Rightarrow S = \begin{cases} -x + 3y + 2z = 3 & (III) \\ 4x - 2y + 3z = 0 & (II) \\ 3x + y - z = 1 & (I) \end{cases}$$

2— Multiplicando-se uma ou mais equações de S, por um número real não nulo, tem-se $S \sim S'$.

Exemplo: Multiplicar a 2^a equação por 3.

$$S = \begin{cases} 3x + y = 1 & (I) \\ 4x - 5y = 3 & (II) \end{cases} \Rightarrow S = \begin{cases} 3x + y = 1 & (I) \\ 12x - 15y = 9 & (II) \end{cases}$$

ou
$$\begin{bmatrix} 3 & 1 & | & 1 \\ 4 & -5 & | & 3 \end{bmatrix} \sim \begin{bmatrix} 3 & 1 & | & 1 \\ 12 & -15 & | & 9 \end{bmatrix}$$
.

SISTEMAS EQUIVALENTES

3— Adicionando a uma das equações de S, outra equação desse sistema, multiplicada por $k, k \in \mathbb{R}$, tem-se $S \sim S'$.

Exemplo: Adicionar a 1^a equação com o produto da 2^a por -2.

$$S = \begin{cases} -x + 2y = 1 & (I) \\ 2x - 5y = -3 & (II) \end{cases} \Rightarrow S = \begin{cases} -5x + 12y = 7 & (I) + (II) \cdot (-2) \\ 2x - 5y = -3 & (II) \end{cases}$$

ou
$$\begin{bmatrix} -1 & 2 & | & 1 \\ 2 & -5 & | & -3 \end{bmatrix} \sim \begin{bmatrix} -5 & 12 & | & 7 \\ 2 & -5 & | & -3 \end{bmatrix}$$
.

ESCALONAMENTO DE SISTEMAS (OU MATRIZES)

Seja *S* o sistema linear, da seguinte forma:

$$S = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases},$$

onde existe, pelo menos, um coeficiente não nulo em cada equação. Se o número de coeficientes nulos, antes do primeiro coeficiente não nulo, aumenta de equação para equação, então o sistema está *escalonado* ou na *forma escada*.

1. Colocar como 1ª equação uma das que tenha o coeficiente da 1ª incógnita diferente de zero.

- 1. Colocar como 1ª equação uma das que tenha o coeficiente da 1ª incógnita diferente de zero.
- Anular todos os coeficientes da 1ª incógnita nas demais equações, utilizando as propriedades de sistemas equivalentes.

- 1. Colocar como 1ª equação uma das que tenha o coeficiente da 1ª incógnita diferente de zero.
- Anular todos os coeficientes da 1ª incógnita nas demais equações, utilizando as propriedades de sistemas equivalentes.
- 3. Anular todos os coeficientes da 2ª incógnita nas equações a partir da 3ª.

- 1. Colocar como 1ª equação uma das que tenha o coeficiente da 1ª incógnita diferente de zero.
- Anular todos os coeficientes da 1ª incógnita nas demais equações, utilizando as propriedades de sistemas equivalentes.
- 3. Anular todos os coeficientes da 2ª incógnita nas equações a partir da 3ª.
- 4. Repetir esse processo com as demais incógnitas, até que o sistema se torne escalonado.

EXEMPLO:

$$S = \left\{ \begin{array}{rcl} 3x & + & y & = & 1 \\ -x & + & 5y & = & 2 \end{array} \right. \text{ ou} \left[\begin{array}{rrrr} 3 & 1 & | & 1 \\ -1 & 5 & | & 2 \end{array} \right].$$

Trocar de posição a 1^a e a 2^a equações, ou $L_1 \longleftrightarrow L_2$.

$$S = \left\{ \begin{array}{rcl} -x & + & 5y & = & 2 \\ 3x & + & y & = & 1 \end{array} \right. \text{ ou } \left[\begin{array}{rrrr} -1 & 5 & | & 2 \\ 3 & 1 & | & 1 \end{array} \right].$$

Substituir a 2^a equação, pela soma do produto da 1^a equação por 3 com a 2^a equação, ou $L_2 \longrightarrow L_2 + 3L_1$.

$$S = \begin{cases} -x + 5y = 2 \\ 16y = 7 \end{cases} \text{ ou } \begin{bmatrix} -1 & 5 & | & 2 \\ 0 & 16 & | & 7 \end{bmatrix}.$$

Agora que o sistema está escalonado, podemos resolvê-lo:

$$16y = 7 \Rightarrow y = \frac{7}{16}.$$

Substituindo
$$y$$
 na 1^a equação: $-x + 5 \cdot \frac{7}{16} = 2 \Rightarrow x = \frac{3}{16}$ e $S = \left(\frac{3}{16}, \frac{7}{16}\right)$.

DISCUSSÃO DOS SISTEMA LINEAR

$$S = \left\{ \begin{array}{rcl} x & - & y & = & 2 \\ 2x & + & ay & = & b \end{array} \right.$$

Se **det** $S = \begin{vmatrix} x & -y \\ 2x & +ay \end{vmatrix} \neq 0$, pelo Teorema de Cramer o sistema tem solução única e portanto é possível e determinado.

Se $\det S = 0$, o sistema poderá ser indeterminado ou impossível.

Logo, **det**
$$S = \begin{vmatrix} x & - & y \\ 2x & + & ay \end{vmatrix} = a + 2.$$

Se **det** S = a + 2 = 0 então a = -2 e portanto, voltando ao sistema original, temos:

$$S = \begin{cases} x - y = 2 \\ 2x - 2y = b \end{cases} \sim \begin{cases} x - y = 2 \\ 0x + 0y = b - 4 \end{cases}$$

Daí, se $b-4=0 \Rightarrow b=4$ então o sistema é possível e indeterminado. Se $b-4\neq 0 \Rightarrow b\neq 4$ então sistema é impossível.

Portanto, para $a \neq -2$, o sistema é possível e determinado.

Se a = -2 e b = 4 então o sistema é possível e indeterminado.

E se a = -2 e $b \neq 4$ o sistema é impossível.

Dúvidas???