Corrigés des exercices du chapitre 6

12. Déterminer les minimums de f sur C dans les cas suivants :

a)
$$f:(x,y,z)\mapsto 4x^2+y^2+z^2$$
 et $C=\{(x,y,z)\; ;\; 2x+3y+z-12=0\}.$

b)
$$f:(x,y,z)\mapsto xy+2yz+2xz$$
 et $C=\{(x,y,z)\; ;\; xyz=32\}.$

c)
$$f:(x,y)\mapsto xy \text{ et } C=\{(x,y)\; ;\; xy>0 \text{ et } x^2+y^2=8\}.$$

- a) On pose u = (x, y, z). $C = \psi^{-1}(\{0\})$ où $\psi(u) = 2x + 3y + z 12$: C est fermé comme image réciproque du fermé $\{0\}$ par l'application continue ψ .
 - $f(u) \ge ||u||^2$ donc f est coercive continue, et il y a existence du minimum de f sur C.

$$f$$
 et φ sont convexe ; le minimum u est solution de $\nabla f(u) + \mu \nabla \psi(u) = 0$, soit
$$\begin{cases} 8x + 2\mu = 0 \\ 2y + 3\mu = 0 \\ 2z + \mu = 0 \\ \psi(u) = 0 \end{cases}$$
.

On a donc
$$x = -\frac{\mu}{4}$$
, $y = -\frac{3\mu}{2}$ et $z = -\frac{\mu}{2}$, avec $2x + 3y + z - 12 = -\frac{\mu}{2} - \frac{9\mu}{2} - \frac{\mu}{2} - 12 = 0$, ce qui donne $-\frac{11}{2}\mu = 12$, donc $\mu = -\frac{24}{11}$ et $u_0 = \left(\frac{6}{11}, \frac{36}{12}, \frac{12}{11}\right)$. Arg_C min $f = \{u_0\}$ et min $f = f(u_0)$.

- $u_k = (3k, -2k, 12) \in C$ et $f(u_k) = 40k^2 + 144 \rightarrow +\infty$ quand $k \rightarrow +\infty$ donc il n'y a pas de maximum.
 - **b)** Pas de maximum car si $u_k = (k, \frac{1}{k}, 32), u_k \in C$ et $f(u_k) \to +\infty$ si $k \to +\infty$.
 - De même, pas de minimum car si $u_k = (k, -\frac{1}{k}, -32), u_k \in C$ et $f(u_k) \to -\infty$ si $k \to +\infty$.
 - c) On cherche d'abord les extrémums sur $X = \{(x, y) ; xy \ge 0 \text{ et } x^2 + y^2 = 8\}.$

X est fermé, borné donc compact et f continue. On a donc existence du minimum et du maximum de f sur X.

Sur
$$X$$
, $f \ge 0$ et $f = 0$ si et seulement si $xy = 0$, soit $x = 0$ et $y = \pm 2$ ou $y = 0$ et $x = \pm \sqrt{2}$. $X = \varphi^{-1}(] - \infty, 0]) \cap \psi^{-1}(\{0\})$ où $\varphi(x, y) = -xy$ et $\psi(x, y) = x^2 + y^2 - 8$.

 ψ est convexe et $\nabla \varphi(u) \neq 0$ si $u \neq 0$, ce qui est le cas ici donc on a bien qualification des contraintes.

Si $\varphi(u) = 0$, on a un minimum, sinon $\nabla f(u) + \mu \nabla \psi(u) = 0$, ce qui donne $\begin{vmatrix} y & 2x \\ x & 2y \end{vmatrix} = 0 = 2y^2 - 1$ $2x^2$, soit $y^2 = x^2$ et $2x^2 = 8$, soit $x = \pm 2$, avec f(2,2) = f(-2,-2) = 4. On a donc $\min_X f = 0$ avec $\operatorname{Arg}_{C} \min f = \{(0, \pm 2\sqrt{2}), (\pm 2\sqrt{2}, 0)\}\$ et $\max_{X} f = 4$ avec $\operatorname{Arg}_{X} \max f = \{(2, 2), (-2, -2)\}.$ (-2, -2) et (2, 2) sont dans C donc $\max_{C} f = \max_{X} f$ et $\boxed{\operatorname{Arg}_{C} \max f = \{(2, 2), (-2, -2)\}}.$ Par contre $(0, \pm 2\sqrt{2})$ et $(\pm 2\sqrt{2}, 0)$ ne sont pas dans C et f > 0 sur C. On a $u_k = (1, \sqrt{2}, \sqrt{2})$ et $(\pm 2\sqrt{2}, \sqrt{2}, \sqrt{2})$ et $(\pm 2\sqrt{2}, \sqrt{2}, \sqrt{2})$ et $(\pm 2\sqrt{2}, \sqrt{2}, \sqrt{2})$ ne sont pas dans C et f > 0 sur C. On a $u_k = (1, \sqrt{2}, \sqrt{2}, \sqrt{2})$ et $(\pm 2\sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2})$ et $(\pm 2\sqrt{2}, \sqrt{2}, \sqrt{2},$

$$(-2,-2)$$
 et $(2,2)$ sont dans C donc $\max_{C} f = \max_{X} f$ et $Arg_{C} \max_{T} f = \{(2,2),(-2,-2)\}$

 $\left(\frac{1}{k}, \sqrt{8 - \frac{1}{k^2}}\right) \in C$ et $f(u_k) = \frac{1}{k}\sqrt{8 - \frac{1}{k^2}} \to 0$ quand $k \to +\infty$. Il n'y a donc <u>pas de minimum</u>

13. Déterminer les maximums de f sur C dans les cas suivants :

a)
$$f:(x,y,z)\mapsto xy^2z^2$$
 et $C=\{(x,y,z)\in (\mathbb{R}_+^*)^3: x+y+z=12\}.$

b)
$$f:(x,y)\mapsto x^2y$$
 et $C=\{(x,y)\; ;\; 0\leq x\leq 1 \text{ et } 0\leq y\leq 1\}.$

c)
$$f:(x,y) \mapsto xy$$
 et $C = \{(x,y) ; (x+1)^2 + y^2 = 1\}.$

a) Comme C est non fermé, on commence par résoudre le problème sur $X = \{(x, y, z) ; x \ge 1\}$ $0, y \ge 0, z \ge 0, x + y + z = 12$.

X est un compact car il est fermé et borné (inclus dans $[0,12]^3$). Les contraintes sont linéaires donc qualifiées.

On a
$$\nabla f(u) = \begin{pmatrix} y^2 z^2 \\ 2xyz^2 \\ 2xy^2z \end{pmatrix}$$
 et $\nabla \psi(u) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, où $\psi(u) = x + y + z - 12$.

$$\nabla f(u) + \mu \nabla \psi(u) = 0 = \begin{pmatrix} y^2 z^2 + \mu \\ 2xyz^2 + \mu \\ 2xy^2 z + \mu \end{pmatrix}. \text{ On a donc } \begin{cases} yz^2 (y - 2x) = 0 \\ 2xyz (y - z) = 0 \\ x + y + z - 12 = 0 \end{cases}.$$

- Si x = 0 ou y = 0 ou z = 0, alors f(x, y, z) = 0. Si $xyz \neq 0$, alors y = 2x et y = z, puis x + y + z 12 = 0 donne 5x = 12 et $u = \left(\frac{12}{5}, \frac{24}{5}, \frac{24}{5}\right)$.

On a donc
$$\min_{X} f = 0$$
 avec $\operatorname{Arg}_{X} \min f = \{(0, y, 12 - y), (x, 0, 12 - x), (x, 12 - x, 0)\}$

$$\max_{X} f = \frac{4(12)^{3}}{5^{3}} \operatorname{avec} \left[\operatorname{Arg}_{X} \max f = \left\{ \left(\frac{12}{5}, \frac{24}{5}, \frac{24}{5} \right) \right\} \right].$$

 $\left(\frac{12}{5}, \frac{24}{5}, \frac{24}{5}\right) \in C$ donc $\max_{C} f = \max_{X} f$. Par contre les minimums ne sont pas dans C:

$$u_k = \left(\frac{1}{k}, y - \frac{1}{k}, 12 - y \frac{24}{5}\right) \in C \text{ et } f\left(\frac{1}{k}, y - \frac{1}{k}, 12 - y_k\right) = \frac{1}{k} \left(y - \frac{1}{k}\right)^2 (12 - y^2) \to 0 \text{ quand } k \to 0 \text{ et il n'y a pas de minimum sur } C.$$

b) Directement : $0 \le x \le 1$ et $0 \le y \le 1$ donc $0 \le x^2y \le 1$ avec $x^2y = 0$ si et seulement si x = 0 ou y = 0 et $x^2y = 1$ si et seulement si x = y = 1 (car si x < 1 ou y < 1, alors $x^2y < 1$).

Sinon, on pose $u = (x, y), \varphi_1(u) = -x, \varphi_2(u) = x - 1, \varphi_3(u) = -y \text{ et } \varphi_4(u) = y - 1.$ C est un compact (fermé borné) et f est continue, donc admet sur C un minimum et un maximum. On écrit tous les gradients :

$$\nabla f(u) = \begin{pmatrix} 2xy \\ x^2 \end{pmatrix}, \ \nabla \varphi_1(u) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \ \nabla \varphi_2(u) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \nabla \varphi_3(u) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \ \nabla \varphi_4(u) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Les contraintes sont linéaires donc qualifiées en tout point.

- À l'intérieur, aucune contrainte n'est saturée. On a alors $\nabla f(u) = 0$ mais alors x = 0, ce qui n'est pas possible à l'intérieur.
 - Si φ_1 est saturée, alors x=0 et f(u)=0
 - Si φ_3 est saturée, y = 0 et f(u) = 0.
 - Si φ_2 est saturée, x=1 et $f(u)=y\in [0,1]$ Si φ_4 est saturée, $f(u)=x^2\in [0,1]$.

Finalement, on a max f = 1, $\min_{C} f = 0$, $\operatorname{Arg}_{C} \max f = \{(1,1)\}$ et $\operatorname{Arg}_{C} \min f = \{(x,0) ; x \in C\}$ [0,1] \cup $\{(0,y) ; y \in [0,1]\}.$

c) C est un disque compact (fermé et borné). la contrainte φ est convexe donc qualifiée en tout u = (x, y); f est continue donc admet un minimum et un maximum sur C compact. Pour rechercher les extrémums possibles, on utilise le théorème de Kuhn-Tucker et on écrit en particulier que les gradients de f et de φ sont liés :

$$\det(\nabla f(u), \nabla \varphi(u)) = 0 = \begin{vmatrix} y & 2(x+1) \\ x & 2y \end{vmatrix} = 2y^2 - 2x(x+1).$$

- On a donc $y^2 = x(x+1)$ et $\lambda \varphi(x,y) = \lambda((x+1)^2 + y^2 1) = 0$. Si $\lambda = 0$, alors $\nabla f(u) = 0$, soit y = x = 0 et f(0,0) = 0. Si $\lambda \neq 0$, alors $(x+1)^2 + y^2 1 = 0 = (x+1)^2 + x(x+1) 1 = 2x^2 + 3x = x(2x+3)$. $\rightarrow x = 0$ donne y = 0 et f(0,0) = 0 (déjà vu)

14. Déterminer les extrémums de f sur C dans les cas suivants :

a)
$$f:(x,y,z)\mapsto x^2+y^2+z^2$$
 et $C=\{(x,y,z)\;;\;\frac{x^2}{64}+\frac{y^2}{36}+\frac{z^2}{25}=1\}.$

b)
$$f:(x,y)\mapsto x^2+2y^2-x$$
 et $C=\{(x,y)\; ;\; x^2+y^2\leq 1\}.$

c)
$$f:(x,y,z)\mapsto x^2+y^2+z^2$$
 et $C=\{(x,y,z)\; ;\; x^2+2y^2-z^2-1=0\}.$

a) On a une contrainte égalité qui est convexe (valeurs propres de la hessienne $\frac{2}{64}$, $\frac{2}{36}$ et strictement positives). Ainsi, la contrainte est qualifiée en tout $u=(x,y,z)\in C.$

 $C = \psi^{-1}(\{0\})$ est fermé comme image réciproque du fermé $\{0\}$ par l'application continue ψ . $C \subset [-8,8] \times [-6,6] \times [-5,5]$ est aussi borné. C'est donc un compact et f continue admet sur C des extrémums. On cherche les candidats au moyen du théorème de Kuhn-Tucker, c'est-à-dire que $\nabla f(u) + \mu \nabla \psi(u) = 0$, avec $\psi(u) = 0$, ce qui donne

$$\begin{cases} 2x + \mu \frac{2}{64}x = 2x\left(1 + \frac{\mu}{64}\right) = 0\\ 2y + \mu \frac{2}{36}y = 2y\left(1 + \frac{\mu}{36}\right) = 0\\ 2z + \mu \frac{2}{25}z = 2z\left(1 + \frac{\mu}{25}\right) = 0 \end{cases}$$

 μ ne peut pas prendre 2 valeurs distinctes à la fois donc 2 au moins des coordonnées de usont nulles mais pas les 3, sinon on aurait $\psi(u) = -1 \neq 0$.

- Si x = y = 0, alors $\mu = -25$ et $u = (0, 0, \pm 5)$ avec f(u) = 25;
- Si x = z = 0, alors $\mu = -36$ et $u = (0, \pm 6, 0)$ avec f(u) = 36;

• Si u = z = 0, alors $\mu = -64$ et $u = (\pm 8, 0, 0)$ avec f(u) = 64. Ainsi, $\max_{C} f = 64$ avec $\operatorname{Arg}_{C} \max f = \{(8, 0, 0), (-8, 0, 0)\}$ et $\min_{C} f = 25$ avec $\operatorname{Arg}_{C} \max f = 64$ $\{(0,0,-5),\overline{(0,0,5)}\}.$

b) On pose u=(x,y). $C=\varphi^{-1}(]-\infty,0])$ est fermé comme image réciproque du fermé $]-\infty,0])$ par l'application continue $\varphi:u\mapsto x^2+y^2-1$. C est aussi borné car c'est le disque unité. Donc $f: u \mapsto x^2 + 2y^2 - x$, qui est continue, admet des extrémums sur le compact C. La contrainte φ étant convexe, elle est qualifiée en tout u et les candidats pour être extrémums vérifient

$$\nabla f(u) + \lambda \nabla \varphi(u) = 0 \text{ avec } \lambda \varphi(u) = 0 \text{ et } \varphi(u) \leq 0, \text{ soit } \begin{cases} 2x - 1 + 2\lambda x = 2x(1+\lambda) - 1 = 0 \\ 4y + 2\lambda y = 2y(2+\lambda) = 0 \end{cases} \text{ et } \lambda \varphi(u) = 0.$$

On a donc y = 0 ou $\lambda = -2$ et $x = \frac{1}{2(\lambda + 1)}$ (avec $\lambda \neq -1$).

• $\lambda = 0$ donne y = 0 et $x = \frac{1}{2}$ et $f\left(\frac{1}{2}, 0\right) = -\frac{1}{4}$.

•
$$\lambda = -2$$
 donne $x = -\frac{1}{2}$ et $x^2 + y^2 = 1$, soit $y^2 = \frac{3}{4}$ et $f\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = f\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) = f\left(-\frac{\sqrt{3}}{2}\right) = f\left(-\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}\right) = f\left(-\frac{\sqrt{3}}{$

 $\frac{1}{4} + 2 \times \frac{3}{4} + \frac{1}{2} = \frac{9}{4}.$

• $\lambda \notin \{0, -2\}$ donne y = 0 et $x^2 + y^2 = 1$, soit $x^2 = 1$ avec f(1, 0) = 0 et f(-1, 0) = 2.

Donc finalement, $\max_{C} f = \frac{9}{4}$ avec $\operatorname{Arg}_{C} \max f = \left\{ \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2} \right), \left(-\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \right\}$

et
$$\overline{\min_{C} f = -\frac{1}{4}}$$
 avec $\overline{\operatorname{Arg}_{C} \min f} = \left\{ \left(\frac{1}{2}, 0\right) \right\}$.

Remarque: En utilisant directement $(\nabla f(u), \nabla \varphi(u))$ lié, on a $\begin{vmatrix} 2x-1 & 2x \\ 4y & 2y \end{vmatrix} = 2y(2x-1-4x) = 2y(-1-2x) = 0$, soit y = 0 ou bien $x = -\frac{1}{2}$.

c) f est coercive continue et $C=\psi^{-1}(\{0\})$ est fermé comme image réciproque du fermé $\{0\}$ par l'application continue $\psi: u=(x,y,z)\mapsto x^2+2y^2-z^2-1$ donc le minimum existe. On cherche les candidats au moyen du théorème de Kuhn-Tucker, c'est-à-dire que $\nabla f(u)+\mu\nabla\psi(u)=0$, avec $\psi(u)=0$, ce qui donne

$$\begin{cases} 2x + 2\mu x = 2x(1+\mu) = 0\\ 2y + 4\mu y = 2y(1+2\mu) = 0\\ 2z - 2\mu z = 2z(1-\mu) = 0 \end{cases}$$

 μ ne peut pas prendre 2 valeurs distinctes à la fois donc 2 au moins des coordonnées de u sont nulles mais pas les 3, sinon on aurait $\psi(u) = -1 \neq 0$.

• Si x = y = 0, alors $-z^2 - 1 = 0$: impossible;

• Si x = z = 0, alors $2y^2 = 1$ et $u = \left(0, \pm \frac{1}{\sqrt{2}}, 0\right)$ avec $f(u) = \frac{1}{2}$;

• Si y = z = 0, alors $x^2 = 1$ et $u = (\pm 1, 0, 0)$ avec f(u) = 1.

En tous ces points $\nabla \psi(u) \neq 0$ donc la contrainte est qualifiée.

$$\text{Ainsi,} \boxed{\min_C f = \frac{1}{2}} \text{ avec } \operatorname{Arg}_C \min f = \left\{ \left(0, -\frac{1}{\sqrt{2}}, 0\right), \left(0, \frac{1}{\sqrt{2}}, 0\right) \right\}.$$

Pour le maximum, on remarque que C est non borné : en effet $u_k = (\sqrt{k^2 + 1}, 0, k) \in C$ et $||u_k||^2 = 2k^2 + 1 \to +\infty$ quand $k \to +\infty$. Il n'y a donc pas de maximum de f sur C.

15. Déterminer la hauteur de C (i.e. $z_{\text{max}} - z_{\text{min}}$); C étant l'intersection de la sphère d'équation $x^2 + y^2 + z^2 = 1$ et du cône d'équation $(x + 2z)^2 + y^2 = z^2$.

On pose u=(x,y,z). On cherche les extrémums de $f:u\mapsto z$ sur $C=\psi_1^{-1}(\{0\})\cap\psi_2^{-1}(\{0\})$ où $\psi_1(u)=\|u\|^2-1$ et $\psi_2(u)=(x+2z)^2+y^2-z^2$. C est fermé comme intersection de fermés (images réciproques de $\{0\}$ par ψ_1 et ψ_2 qui sont continues). De plus, C est borné, car contenu dans la sphère unité. Ainsi, C est compact et f continue y admet des extrémums. Les candidats sont les u tels que $(\nabla f(u), \nabla \psi_1(u), \nabla \psi_2(u))$ soit lié et $\psi_1(u)=\psi_2(u)=0$.

$$\det(\nabla f(u), \nabla \psi_1(u), \nabla \psi_2(u)) = \begin{vmatrix} 0 & 2x & 2(x+2z) \\ 0 & 2y & 2y \\ 1 & 2z & 4(x+2z) - 2z \end{vmatrix} = 2y(2x - 2(x+2z)) = -8yz.$$

$$\psi_1 \text{ est convexe et } \nabla \psi_2(u) \neq 0 \text{ si } u \neq 0.$$

• Si z=0, alors $\psi_1(u)=x^2+y^2-1$ et $\psi_2(u)=x^2+y^2$ et on ne peut pas avoir $\psi_1(u)=x^2+y^2$ $\psi_2(u) = 0.$

• Si
$$y = 0$$
, alors $x^2 + z^2 = 1$ et $(x + 2z)^2 - z^2 = 0 = (x + 3z)(x + z)$.
 $\to x = -z$ donne $2z^2 = 1$ et $z = \pm \frac{1}{\sqrt{2}}$
 $\to x = -3z$ donne $10z^2 = 1$ et $z = \pm \frac{1}{\sqrt{10}}$
On a donc $z_{\text{max}} = \frac{1}{\sqrt{2}}$, $z_{\text{min}} = -\frac{1}{\sqrt{2}}$ et $h = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$, soit $h = \sqrt{2}$.

16. Déterminer les extrémums de $f: x \mapsto \|x\|^2$ sur $C = \{x \in \mathbb{R}^n ; \langle Ax, x \rangle = 1\}$ où la matrice est

Application à
$$n = 2$$
 et $A = \begin{pmatrix} 1 & \sqrt{6} \\ \sqrt{6} & 2 \end{pmatrix}$.

 $\psi: x \mapsto \langle Ax, x \rangle - 1$ est continue et $C = \psi^{-1}(\{0\})$ est fermé comme image réciproque du fermé $\{0\}$ par l'application continue ψ . De plus $f: x \mapsto ||x||^2$ est continue coercive donc $\min_{G} f$ existe.

On a $\psi(x+h) = \langle A(x+h), x+h \rangle - 1 = \langle Ax, x \rangle - 1 + \langle Ax, h \rangle + \langle x, Ah \rangle + \langle Ah, h \rangle$, ce qui nous donne $\nabla \psi(x) = 2Ax$ (car $\langle x, Ah \rangle = \langle Ax, h \rangle$ par symétrie de A). De même, $\nabla f(x) = 2x$. On a donc, par Kuhn-Tucker, $2x + \mu 2Ax = 0$ et $\langle Ax, x \rangle = 1$. Si on avait $\mu = 0$, on aurait x = 0, et $\psi(0) = -1 \neq 0$, donc $\mu \neq 0$ et $Ax = -\frac{1}{\mu}x$ et les candidats sont des vecteurs propres de A.

A est une matrice symétrique réelle donc diagonalisable dans une base orthonormée (e_i) , de valeurs propres $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ et si $x = \sum x_i e_i$,

$$\lambda_1 ||x||^2 \le \langle Ax, x \rangle = 1 = \sum_i \lambda_i x_i^2 \le \lambda_n ||x||^2$$

- Si $\lambda_n \leq 0$, $C = \emptyset$ (on ne peut pas avoir $\langle Ax, x \rangle = 1$) Si $\lambda_n > 0$, pour $x \in C$, $||x||^2 \geq \frac{1}{\lambda_n}$ avec égalité si $x \in E_{\lambda_n}$ et $||x||^2 = \frac{1}{\lambda_n}$, soit $x = \frac{1}{\sqrt{\lambda_n}} u_n$ où u_n est un vecteur unitaire de E_{λ_n} . On a donc $\min_C f = \frac{1}{\lambda}$.
- Si $\lambda_1 > 0$, alors $||x||^2 \le \frac{1}{\lambda_1}$ avec égalité si $x \in E_{\lambda_1}$ et $||x||^2 = \frac{1}{\lambda_1}$, soit $x = \frac{1}{\sqrt{\lambda_1}} u_1$ où u_1 est un vecteur unitaire de E_{λ_1} . On a donc $\max_C f = \frac{1}{\lambda_1}$.
- Si $\lambda_1 \leq 0$, posons $x_k = ke_1 + \frac{1}{\sqrt{\lambda_n}} \sqrt{1 \lambda_1 k^2} e_n : x_k \in C \text{ et } ||x_k||^2 \geq k^2 \to +\infty$, donc pas de maximum si $\lambda_1 \leq 0$ et si $\lambda_1 > 0$, $\max_C f = \frac{1}{\lambda_1}$.

Application:
$$A = \begin{pmatrix} 1 & \sqrt{6} \\ \sqrt{6} & 1 \end{pmatrix}$$
. On a $\chi_A(\lambda) = \lambda^2 - \operatorname{tr} A \lambda + \det A = \lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4)$.

Les valeurs propres sont -1 et 4: il n'y a donc pas de maximum et $\left| \min_{C} f = \frac{1}{4} \right|$. A - 4I =

$$\begin{pmatrix} -3 & \sqrt{6} \\ \sqrt{6} & -2 \end{pmatrix} \text{ d'où } E_4 = \{u_4 = (\sqrt{6}\alpha, 3\alpha), \ \alpha \in \mathbb{R}\}. \text{ On veut } \|u_4\|^2 = \frac{1}{4} = 15\alpha^2, \text{ donc } \alpha^2 = \frac{1}{60}$$
 et finalement
$$\boxed{ \text{Arg}_C \min f = \left\{ \left(\frac{1}{\sqrt{10}}, \sqrt{\frac{3}{20}}\right), \left(-\frac{1}{\sqrt{10}}, -\sqrt{\frac{3}{20}}\right) \right\} }.$$

17. Application à la géométrie.

- a) Déterminer le point P du plan d'équation ax + by + cz + d = 0 dont la distance à O est minimale.
- b) Calculer la distance du point $M_0(x_0, y_0, z_0)$ à la droite d'équation

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}.$$

a) On pose u=(x,y,z). Si P a pour coordonnées (x,y,z), alors $d(O,P)^2=\|u\|^2$. On cherche donc à minimiser $f:u\mapsto \|u\|^2$ sur $C=\{u\;;\;ax+by+cz+d=0\}=\psi^{-1}(\{0\})$ avec $\psi:(x,y,z)\mapsto ax+by+cz+d$ continue.

C est fermé comme image réciproque du fermé $\{0\}$ par l'application continue ψ ; f est coercive $(\lim_{\|u\|\to+\infty}f(u)=+\infty)$ donc $\min_{C}f$ existe et vérifie $\nabla f(u)+\mu\nabla\psi(u)=0$ c'est-à-dire

$$\begin{cases} 2x + \mu a = 0 \\ 2y + \mu b = 0 \end{cases}$$
 (La contrainte est qualifiée car linéaire).
$$2z + \mu c = 0$$

On exprime x, y et z en fonction de μ et on reporte dans $\psi(u) = 0$, ce qui donne :

$$a\left(-\frac{\mu a}{2}\right) + b\left(-\frac{\mu b}{2}\right) + c\left(-\frac{\mu c}{2}\right) + d = 0,$$
soit $\mu = \frac{2d}{a^2 + b^2 + c^2}$, $x = -\frac{ad}{a^2 + b^2 + c^2}$, $y = -\frac{bd}{a^2 + b^2 + c^2}$ et $z = -\frac{cd}{a^2 + b^2 + c^2}$.

On a alors $d(O, P)^2 = ||u||^2 = \frac{d^2}{(a^2 + b^2 + c^2)^2}(a^2 + b^2 + c^2) = \frac{d^2}{a^2 + b^2 + c^2}$ et $\min_{P \in C} d(O, P) = \frac{|d|}{d(O, C)} = \frac{|d|}{d(O, C)}$.

Par la méthode classique : \mathcal{H} est l'hyperplan d'équation ax + by + cz + d = 0. Si P est la projection orthogonale de O sur \mathcal{H} , on a $OP \perp \mathcal{H}$ donc $x_p = \lambda a$, $y_P = \lambda b$, $z_p = \lambda c$ (ce qui est l'analogue de $\nabla f(u) + \mu \nabla \psi(u)$, puis $P \in \mathcal{H}$ donne $\lambda(a^2 + b^2 + c^2) + d = 0$ (qui est l'analogue de $\psi(u) = 0$).

b)
$$d(M_0, M)^2 = \|\overrightarrow{MM_0}\|^2 = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = f(x, y, z).$$
 On cherche $\min_C f$ où $C = \{(x, y, z) \; ; \; ax + by + cz + d = 0 \text{ et } a'x + b'y + c'z = 0\}.$

On pose u = (x, y, z), $\psi_1(u) = ax + by + cz + d$ et $\psi_2(u) = a'x + b'y + c'z + d'$: les fonctions f, ψ_1 et ψ_2 sont continues convexes.

On a donc, pour le minimum,
$$\begin{cases} (\nabla f(u), \nabla \psi_1(u), \nabla \psi_2(u)) \text{ liés} \\ \psi_1(u) = \psi_2(u) = 0 \end{cases} .$$

Or
$$\det(\nabla f(u), \nabla \psi_1(u), \nabla \psi_2(u)) = \begin{vmatrix} 2(x - x_0) & a & a' \\ 2(y - y_0) & b & b' \\ 2(z - z_0) & c & c' \end{vmatrix} = 0$$
 traduit exactement $\overline{M_0M} \perp \mathcal{D}$ et $\psi_1(u) = \psi_2(u) = 0$ traduit $M \in \mathcal{D}$...

18. Soit
$$C = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = -3 \text{ et } xy + xz + yz = 0\}.$$

- a) Montrer que C est borné et calculer les extrémums sur C de $f:(x,y,z)\mapsto xyz$.
- b) Retrouver ce résultat en étudiant, pour $\lambda \in \mathbb{R}$, le nombre de racines réelles de

$$P_{\lambda}(x) = x^3 + 3x^2 - \lambda.$$

a) Si $u=(x,y,z)\in C$, $(x+y+z)^2=9=x^2+y^2+z^2+2(xy+xz+yz)=x^2+y^2+z^2$ donc $u\in\mathcal{S}(0,3)$. Ainsi, C est inclus dans la sphère de centre 0 et de rayon 3, donc C est bien borné. $C=\psi_1^{-1}(\{0\})\cap\psi_2^{-1}(\{0\})$ avec $\psi_1(u)=x+y+z+3$ et $\psi_2(u)=xy+xz+yz$. ψ_1 et ψ_2 sont continues et C est fermé, comme intersection de deux fermés (images réciproques de $\{0\}$ fermé par des applications continues).

C est un fermé borné et c'est donc un compact. Comme f est continue, elle admet un maximum et un minimum sur le compact C.

Pour rechercher les candidats au poste d'extrémum, on va utiliser le théorème de Kuhn-Tucker. En particulier, on doit avoir $(\nabla f(u), \nabla \psi_1(u), \nabla \psi_2(u))$ liés, avec $\psi_1(u) = 0$ et $\psi_2(u) = 0$.

z)(z-y) en faisant $L_i \leftarrow L_i - L_1$ pour $i \in \{2,3\}$, puis en développant par rapport à la deuxième colonne.

Ainsi, les extrémums possibles vérifient le système : $\begin{cases} (x-y)(x-y)(x-z) = 0 \\ x+y+z = -3 \\ xy+xz+yz = 0 \end{cases} .$

On remarque que x,y et z jouent le même rôle et que deux d'entre eux doivent être égaux. Si x=y, alors z=-3-2x et $x^2+2x(-3-2x)=0=x(-6-3x)$. On a alors, soit x=y=0 et z=-3, soit x=y=-2 et z=1. Par symétrie, les candidats sont donc (0,0,-3), (0,-3,0), (-3,0,0) d'image 0 par f et (-2,-2,1), (-2,1,-2), (1,-2,-2) d'image 4 par f. ψ_1 est linéaire et $\nabla \psi_2(u) \neq 0$ pour $u \neq 0$ donc les contraintes sont qualifiés en tout $u \neq 0$.

On a finalement
$$\min_{C} f = 0$$
, $\max_{C} f = 4$, $\operatorname{Arg}_{C} \min_{f} f = \{(0, 0, -3), (0, -3, 0), (-3, 0, 0)\}$ et $\operatorname{Arg}_{C} \max_{f} f = \{(-2, -2, 1), (-2, 1, -2), (1, -2, -2)\}$.

b)
$$P_{\lambda}(x) = (x - x_1)(x - x_2)(x - x_3) = x^3 - (x_1 + x_2 + x_3)x^2 + (x_1x_2 + x_1x_3 + x_2x_3)x - x_1x_2x_3 = x^3 + 3x - \lambda \text{ si (*)}$$

$$\begin{cases} x_1 + x_2 + x_3 = -3 \\ x_1x_2 + x_1x_3 + x_2x_3 = 0 \end{cases}.$$

$$x_1x_2x_3 = \lambda$$

On a $P'_{\lambda}(x) = 3x^2 + 6x = 3x(x+2)$ qui est positif si x < -2 ou x > 0 et négatif si $x \in]-2,0[$. On a le tableau de variations suivant :

x	$-\infty$		-2		0		$+\infty$
$P'_{\lambda}(x)$		+	0	_	0	+	
$P_{\lambda}(x)$	$-\infty$	7	$4-\lambda$	>	$-\lambda$	7	$+\infty$

On a donc 3 racines réelles si $-\lambda \le 0$ et $4 - \lambda \ge 0$, c'est-à-dire pour $\lambda \in [0,4]$ et dans ce cas (*) a une solution.