TD chimie des solutions

Réactions rédox

Nombre d'oxydation

- 1. Calculez les n.o. des espèces suivantes et des atomes les constituant : eau H_2O , ion sulfate SO_4^{2-} , fer solide Fe, diiode I₂.
- 2. Équilibrez l'équation bilan rédox entre les couples NO₃ /NO et Cu²⁺/Cu(s) en indiquant soigneusement l'évolution des n.o. Vous préciserez qui est oxydant, qui est réducteur, qui oxyde qui et qui réduit qui.

Le mercure et ses ions

On étudie le mercure (symbole chimique Hg). Il peut se trouver sous forme liquide Hg(l) ou sous deux formes ioniques solutées Hg²⁺ et Hg²⁺.

Il y aura deux couples rédox mis en jeu:

- $Hg^{2+}/Hg_2^{2+} = E_1^0 = 0.91 \text{ V}$ $Hg_2^{2+}/Hg(1) = E_2^0 = 0.79 \text{ V}$
- 1. Calculez les nombres d'oxydation du mercure dans les divers édifices intervenant ici et identifiez l'oxydant et le réducteur de chaque couple.
- 2. Écrivez l'équation bilan de la réaction du mercure liquide et de l'ion mercure II Hg²⁺ et déduisez-en sa constante d'équilibre.
- 3. Quelle est la composition à l'équilibre lorsque, à l'état initial, le réacteur contient une concentration C_0 $0,01 \text{ mol } L^{-1}$ de Hg^{2+} ainsi qu'une grande quantité de mercure liquide.

Pile zinc-argent

(CCP MP 2018) Une demi-pile (1) est constituée d'une solution de Zn²⁺ dans laquelle plonge une électrode de zinc; une demi-pile (2) est formée d'une électrode d'argent plongée dans une solution de Ag⁺. Elles sont reliées par un pont salin de K⁺ et de Cl⁻. On donne :

$$E^{0}(Zn^{2+}/Zn) = -0.7618 V$$
 $E^{0}(Ag^{+}/Ag) = -0.7996 V$ (1)

Les deux compartiments ont même volume, et les concentrations initiales sont $[Zn^{2+}]_0 = 0.10 \text{ mol } L^{-1}$ et $[Ag^+]_0 = 0.10 \text{ mol } L^{-1}$ et [Ag $0.20 \, \text{mol L}^{-1}$.

- 1. Faites un schéma du système.
- 2. Où se trouvent l'anode et la cathode? Dans quel sens circulent les électrons? Le courant? Les ions K⁺ et Cl⁻? Calculez la fem de la pile.
- 3. Écrivez l'équation globale de la réaction et calculez sa constante d'équilibre.
- 4. Quelles sont les concentrations des ions à la fin de la réaction?

Pile de concentration

Considérons la pile symbolisée par : $Ag(s) | Ag^+(C_1) | | Ag^+(C_2) | Ag(s)$. Le symbole || représente le pont salin, et les deux demi-piles se trouvent de chaque côté.

Une telle pile porte le nom de pile de concentration.

Chaque demi-pile a un volume $V_0 = 1$ L, et on donne $C_1 = 1.10^{-4}$ mol L⁻¹ et $C_2 = 1.10^{-1}$ mol L⁻¹.

Le potentiel standard du couple $Ag^+/Ag(s)$ est noté E^0 .

- 1. Calculez le potentiel de chaque électrode et déduisez-en les rôles (anode, cathode) et les polarités (borne +, borne –). 2. Calculez la fem de cette pile.
- 3. Quel est le bilan de matière lorsque la pile débite? Calculez la concentration des ions argent I à l'équilibre ainsi que la quantité de charges totale débitée par la pile pendant son fonctionnement.