Formal: Assignment #3

Due on September 22, 2022 at $11:59 \mathrm{pm}$

 $Professor\ Matthew\ Patitz\ 4:10\ PM$

Piam Chittisane

Problem 1

Prove Theorem 1 (i.e. if L is a regular language, then $\overline{L} = \Sigma^*/L$ is also regular).

Solution

If L is a regular language, that must mean there is a DFA $M=(Q,\Sigma,\delta,q_0,F)$ that recognizes the language. Since \overline{L} accepts any expression that isn't accepted by L, all that needs to be done is complement the accepting states. DFA $\overline{M}=(Q,\Sigma,\delta,q_0,Q/F)$ should exist such that $L(\overline{M})=\overline{L}$.

Problem 2

Give regular expressions generating the following languages. In all parts, the alphabet is $\{0, 1\}$.

Part A

```
\{w \mid \text{ every odd position of } w \text{ is a } 1\}
```

Solution

 $R = (1\Sigma)^*$

Part B

 $\{w \mid w \text{ contains at least two 0s and at most one 1}\}$

Solution

R =

Problem 3

Write part of Quick-Sort(list, start, end)

```
1: function QUICK-SORT(list, start, end)
2: if start \ge end then
3: return
4: end if
5: mid \leftarrow \text{Partition}(list, start, end)
6: QUICK-SORT(list, start, mid - 1)
7: QUICK-SORT(list, mid + 1, end)
8: end function
```

Algorithm 1: Start of QuickSort

Problem 4

Suppose we would like to fit a straight line through the origin, i.e., $Y_i = \beta_1 x_i + e_i$ with i = 1, ..., n, $E[e_i] = 0$, and $Var[e_i] = \sigma_e^2$ and $Cov[e_i, e_j] = 0$, $\forall i \neq j$.

Part A

Find the least squares esimator for $\hat{\beta}_1$ for the slope β_1 .

Solution

To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{\beta}_1 x_i)^2$$

By taking the partial derivative in respect to $\hat{\beta}_1$, we get:

$$\frac{\partial}{\partial \hat{\beta}_1}(RSS) = -2\sum_{i=1}^n x_i(Y_i - \hat{\beta}_1 x_i) = 0$$

This gives us:

$$\sum_{i=1}^{n} x_i (Y_i - \hat{\beta}_1 x_i) = \sum_{i=1}^{n} x_i Y_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2$$
$$= \sum_{i=1}^{n} x_i Y_i - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

Solving for $\hat{\beta_1}$ gives the final estimator for β_1 :

$$\hat{\beta_1} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

Part B

Calculate the bias and the variance for the estimated slope $\hat{\beta}_1$.

Solution

For the bias, we need to calculate the expected value $E[\hat{\beta}_1]$:

$$\begin{split} \mathbf{E}[\hat{\beta}_1] &= \mathbf{E}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right] \\ &= \frac{\sum x_i \mathbf{E}[Y_i]}{\sum x_i^2} \\ &= \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2} \\ &= \frac{\sum x_i^2 \beta_1}{\sum x_i^2} \\ &= \beta_1 \frac{\sum x_i^2 \beta_1}{\sum x_i^2} \\ &= \beta_1 \end{split}$$

Thus since our estimator's expected value is β_1 , we can conclude that the bias of our estimator is 0.

For the variance:

$$\begin{aligned} \operatorname{Var}[\hat{\beta_1}] &= \operatorname{Var}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right] \\ &= \frac{\sum x_i^2}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{\sum x_i^2}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \sigma^2 \\ &= \frac{\sigma^2}{\sum x_i^2} \end{aligned}$$

Problem 5

Prove a polynomial of degree k, $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ is a member of $\Theta(n^k)$ where $a_k \ldots a_0$ are nonnegative constants.

Proof. To prove that $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$, we must show the following:

$$\exists c_1 \exists c_2 \forall n \ge n_0, \ c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

For the first inequality, it is easy to see that it holds because no matter what the constants are, $n^k \le a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ even if $c_1 = 1$ and $n_0 = 1$. This is because $n^k \le c_1 \cdot a_k n^k$ for any nonnegative constant, c_1 and a_k .

Taking the second inequality, we prove it in the following way. By summation, $\sum_{i=0}^{k} a_i$ will give us a new constant, A. By taking this value of A, we can then do the following:

$$a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0 =$$

$$\leq (a_k + a_{k-1} \ldots a_1 + a_0) \cdot n^k$$

$$= A \cdot n^k$$

$$\leq c_2 \cdot n^k$$

where $n_0 = 1$ and $c_2 = A$. c_2 is just a constant. Thus the proof is complete.

Problem 18

Evaluate $\sum_{k=1}^{5} k^2$ and $\sum_{k=1}^{5} (k-1)^2$.

Problem 19

Find the derivative of $f(x) = x^4 + 3x^2 - 2$

Problem 6

Evaluate the integrals $\int_0^1 (1-x^2) \mathrm{d}x$ and $\int_1^\infty \frac{1}{x^2} \mathrm{d}x$.