Serii de numere

Fie x_n un şir de numere complexe şi fie $s_n = \sum_{k=1}^n x_k$ şirul sumelor parţiale

asociat. Seria $\sum_{n} x_n$ se numeşte convergentă dacă şirul s_n este şir convergent;

în caz contrar seria se numește divergentă. Dacă seria este convergentă, atunci limita șirului s_n este suma seriei, notată $\sum x_n$.

Seria $\sum_{n} x_n$ se numește absolut convergentă dacă seria $\sum_{n} |x_n|$ este serie convergentă. Orice serie absolut convergentă este convergentă, reciproca fiind falsă.

Dacă $x_n = u_n + iv_n, u_n \in R, v_n \in R$, atunci seria $\sum_n x_n$ este convergentă dacă și numai dacă seriile $\sum u_n$ și $\sum v_n$ sunt ambele convergente.

Dăm în continuare două exemple remarcabile de serii.

Seria geometrică

Fie $z \in C$ (numit rație) și fie seria geometrică $\sum_{n\geq 0} z^n$. Atunci seria este convergentă dacă și numai dacă |z| < 1. In acest caz suma seriei este:

$$\sum_{n>0} z^n = \frac{1}{1-z}.$$

Evident, dacă z=1 seria este divergentă; pentru orice $z\in C,\ z\neq 1$ șirul sumelor parțiale este:

$$s_n = \sum_{k=0}^n z^k = \frac{1 - z^{n+1}}{1 - z}, \forall z \neq 1.$$

De aici rezultă că s_n este convergent dacă şi numai dacă |z| < 1. Seria lui Riemann (seria armonică generalizată)

Fie $\alpha \in R$ și fie seria $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$.

Seria dată este convergentă dacă și numai dacă $\alpha > 1$; în particular, seria armonică $\sum \frac{1}{n}$ este divergentă.

Fie $\alpha \leq 1$. Vom demonstra că șirul sumelor parțiale s_n este nemărginit, deci divergent; pentru orice $n \in N$, avem inegalitățile:

$$s_{2^{n}} = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{2^{n\alpha}} \ge 1 + \frac{1}{2} + \dots + \frac{1}{2^{n}} \ge$$

$$\ge 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) \left(+\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots$$

$$\dots + \left(\frac{1}{2^{n-1} + 1} + \frac{1}{2^{n-1} + 2} + \dots + \frac{1}{2^{n}}\right) \ge$$

$$\ge 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \dots + 2^{n-1} \cdot \frac{1}{2^{n}} = 1 + \frac{n}{2} \to \infty.$$

Fie acum $\alpha>1$; este suficient să arătăm că șirul sumelor parțiale este mărginit (fiind crescător, rezultă convergent). Pentru orice $n\in N$ avem inegalitățile:

$$s_{2^{n}-1} = 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}}\right) + \dots +$$

$$+ \left(\frac{1}{2^{(n-1)\alpha}} + \frac{1}{2^{(n-1)\alpha} + 1} + \dots + \frac{1}{2^{n\alpha} - 1}\right) \le$$

$$\le 1 + 2 \cdot \frac{1}{2^{\alpha}} + 4 \cdot \frac{1}{4^{\alpha}} + 8 \cdot \frac{1}{8^{\alpha}} + \dots + 2^{n-1} \cdot \frac{1}{2^{(n-1)\alpha}} =$$

$$= 1 + \frac{1}{2^{\alpha-1}} + \frac{1}{2^{2(\alpha-1)}} + \frac{1}{2^{3(\alpha-1)}} + \dots + \frac{1}{2^{(n-1)(\alpha-1)}} \le \frac{2^{\alpha-1}}{2^{\alpha-1} - 1}.$$

De aici rezultă că șirul s_n este mărginit.

Criterii de convergență pentru serii de numere

Fie $z_n \in C$ un şir de numere complexe; atunci seria $\sum_n z_n$ este convergentă

dacă și numai dacă $\forall \varepsilon > 0, \exists N(\varepsilon) \in N$ cu proprietatea

$$|z_{n+1} + z_{n+2} + \dots + z_{n+p}| < \varepsilon, \, \forall \, n \ge N(\varepsilon), \, \forall \, p \in N.$$

2. Criteriul comparației

- a. Dacă seria $\sum_{n=0}^{\infty} u_n$ este convergentă, atunci și seria $\sum_{n=0}^{\infty} v_n$ este convergentă.

 b. Dacă seria $\sum_{n=0}^{\infty} v_n$ este divergentă, atunci și seria $\sum_{n=0}^{\infty} u_n$ este divergentă.
- 3. Criteriul de comparație la limită

Fie $u_n > 0$ şi $v_n > 0$.

- a. Dacă $\lim_{n\to\infty}\frac{u_n}{v_n}$ există și este un număr real nenul, atunci cele două serii au aceeași natură.
- **b.** În particular, dacă $v_n = \frac{1}{n^{\alpha}}$, atunci obținem criteriul de comparație la limită cu seria lui Riemann:

Fie $\ell = \lim_{n \to \infty} n^{\alpha} u_n$.

- i. Dacă $\alpha > 1$ și $\ell \in R$, (ℓ poate fi și 0), atunci seria $\sum u_n$ este convergentă.
- ii. Dacă $\alpha \leq 1$ și $\ell > 0$, $(\ell \text{ poate fi și } \infty)$ atunci seria $\sum u_n$ este divergentă.
- 4. Criteriul raportului (al lui D'Alembert)

Fie $u_n > 0$; presupunem că există $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \ell$

- a. Dacă $\ell < 1$, atunci seria $\sum u_n$ este convergentă.
- **b.** Dacă $\ell > 1$, atunci seria $\sum u_n$ este divergentă.

O variantă (mai generală) a acestui criteriu este: Dacă există $c \in (0,1)$ și $n_0 \in N$ astfel încât

$$\frac{u_{n+1}}{u_n} < c, \forall \, n \ge n_0,$$

atunci seria $\sum_{n} u_n$ este convergentă.

5. Criteriul rădăcinii (al lui Cauchy)

Fie $u_n > 0$; presupunem că există $\lim_{n \to \infty} \sqrt[n]{u_n} = \ell$. a. Dacă $\ell < 1$, atunci seria $\sum_n u_n$ este convergentă.

b. Dacă $\ell > 1$, atunci seria $\sum u_n$ este divergentă.

O variantă (mai generală) a acestui criteriu este: Dacă există $c \in (0,1)$ și $n_0 \in N$ astfel încât

$$\sqrt[n]{u_n} < c, \forall \, n \ge n_0,$$

atunci seria $\sum_{n} u_n$ este convergentă.

6. Criteriul Raabe-Duhamel

Fie $u_n > 0$; presupunem că există

$$\lim_{n \to \infty} n \left(\frac{u_n}{u_{n+1}} - 1 \right) = \ell.$$

a. Dacă $\ell > 1$, atunci seria $\sum u_n$ este convergentă.

b. Dacă $\ell < 1$, atunci seria $\sum_{n=1}^{n} u_n$ este divergentă.

7. Criteriul logaritmic

Fie $u_n > 0$; presupunem că există $\lim_{n \to \infty} \frac{\ln \frac{1}{u_n}}{\ln n} = \ell$.

a. Dacă $\ell > 1$, atunci seria $\sum_{n} u_n$ este convergentă.

b. Dacă $\ell < 1$, atunci seria $\sum_{n=1}^{n} u_n$ este divergentă.

8. Criteriul condensării

Fie $u_n \geq u_{n+1} \geq 0, \forall n \in \mathbb{N}$. Atunci seriile

$$\sum_{n} u_n \text{ si } \sum_{n} 2^n u_{2^n}$$

au aceeași natură.

9. Criteriul integral

Fie $f:(0,\infty)\mapsto [0,\infty)$ o funcție descrescătoare și fie șirul

$$a_n = \int_1^n f(t)dt.$$

Atunci seria $\sum_{n} f(n)$ este convergentă dacă și numai dacă șirul a_n este convergent.

10. Criteriul lui Leibniz

Fie $u_n \ge 0$ și fie seria alternată $\sum_{n=0}^{\infty} (-1)^n u_n$. Dacă șirul u_n este descrescător si are limita zero, atunci seria este convergentă.

11. Criteriul Abel-Dirichlet

Fie a_n un şir descrescător cu $a_n \to 0$ şi fie u_n un şir de numere complexe

astfel încât șirul sumelor parțiale $\sum_{k=1}^{n} u_k$ este mărginit. Atunci seria $\sum_{n=1}^{n} a_n u_n$ este convergentă.

Convergență condiționată

O serie convergentă $\sum_{n}^{\infty} u_n$ se numește necondiționat convergentă dacă pentru orice permutare (funcție bijectivă) $\sigma: N \mapsto N$, seria $\sum_{n} u_{\sigma(n)}$ este de asemenea convergentă; altfel, seria se numește condiționat convergentă.

Dăm în continuare două rezultate remarcabile cu privire la convergența condiționată:

Teorema lui Dirichlet

Orice serie absolut convergentă este necondiționat convergentă.

Teorema lui Riemann

Fiind date o serie convergentă, dar nu absolut convergentă și $S \in R \cup \{\pm \infty\}$, atunci există o permutare a termenilor seriei inițiale astfel încât suma noii serii să fie S.

Aproximarea sumelor seriilor convergente

Evident, suma unei serii convergente se poate aproxima cu termenii șirului sumelor parțiale. Dăm mai jos două rezultate în acest sens.

Aproximarea sumelor seriilor cu termeni pozitivi

Fie $u_n \geq 0$ și fie $k \geq 0$ astfel încât $\frac{u_{n+1}}{u_n} < k < 1, \forall n \in N$. Dacă Seste suma seriei convergente $\sum_{n\in\mathbb{N}}u_n$, iar $s_n=\sum_{k=0}^nu_n$ este suma primilor n+1 termeni, atunci:

$$|S - s_n| < \frac{k}{1 - k} u_n.$$

Aproximarea sumelor seriilor alternate

Fie $\sum_{n\in N} (-1)^n u_n$ o serie alternată convergentă, și fie S suma sa.

Dacă $S_n = \sum_{k=0}^{n} (-1)^k u_k$ este suma primilor n+1 termeni, atunci

$$|S - S_n| \le u_{n+1}.$$