

Feladat: Bináris keresés (BinSearch)

Bemenet stdin Kimenet stdout

```
bool binary_search(int n, int p[], int target){
   int left = 1, right = n;
   while(left < right){
      int mid = (left + right) / 2;
      if(p[mid] == target)
           return true;
      else if(p[mid] < target)
           left = mid + 1;
      else
           right = mid - 1;
   }
   if(p[left] == target) return true;
   else return false;
}</pre>
```

Jól ismert, hogy ha a p rendezett, akkor ez a kód true -val tér vissza akkor és csak akkor, ha a target előfordul a p-ben. Másrészt, ez nem biztos, amennyiben a p nem rendezett.

Kapsz egy n pozitív egész számot és egy $b_1, \ldots, b_n \in \{\text{true}, \text{false}\}\$ sorozatot. Garantált, hogy $n = 2^k - 1$ valamely k pozitív egész számra. Az $\{1, \ldots, n\}$ egy p permutációját kell előállítani bizonyos feltételekkel. Legyen S(p) az olyan $i \in \{1, \ldots, n\}$ indexek száma, amelyekre a binary_search(n, p, i) nem b_i -vel tér vissza. Olyan p-t kell előállítani, hogy az S(p) kicsi legyen (lásd a "Korlátok" részben).

(Megjegyzés: az $\{1,\ldots,n\}$ egy permutációja egy olyan n elemű sorozat, mely pontosan egyszer tartalmaz minden egész számot 1-től n-ig.)

Bemenet

A bemenet több tesztesetet tartalmaz. A bement első sorában a tesztesetek T száma található. Ezután a tesztesetek következnek.

A teszteset első sora egy n egész számot tartalmaz. A teszteset második sorában lévő n hosszú szöveg csak '0' és '1' karaktereket tartalmaz. Ezek a karakterek nincsenek szókösszel elválasztva. Ha az i. karakter '1', akkor $b_i = \mathtt{true}$, illetve ha az '0', akkor $b_i = \mathtt{false}$.

Kimenet

A kimenet minden T tesztesetre tartalmazza a választ. A válasz egy konkrét tesztesetre a p permutáció az adott tesztesethez generálva.

Korlátok

- Legyen $\sum n$ az n összes értékének összege egy bemenetben.
- $1 \le \sum n \le 100000$.
- $1 \le T \le 7000$.
- $n = 2^k 1$ valamely $k \in \mathbb{N}, k > 0$ -ra.
- \bullet Ha $S(p) \leq 1$ minden tesztesetre egy részfeladaton belül, akkor pontok 100% -át kapod arra a részfeladatra.
- Egyébként, ha $0 \le S(p) \le \lceil \log_2 n \rceil$ (azaz $1 \le 2^{S(p)} \le n+1$) minden tesztesetre egy részfeladaton belül, akkor pontok 50%-át kapod arra a részfeladatra.

#	Pontszám	Korlátok
1	3	$b_i = { t true}.$
2	4	$b_i = \mathtt{false}.$
3	16	$1 \le n \le 7.$
4	25	$1 \le n \le 15.$
5	22	$n=2^{16}-1$ és minden b_i egyenletesen és függetlenül véletlenszerűen választott $\{true, false\}$.
6	30	Nincs megszorítás.

Példák

Bemenet	Kimenet
4	1 2 3
3	1 2 3 4 5 6 7
111	3 2 1
7	7 6 5 4 3 2 1
1111111	
3	
000	
7	
00000000	
2	3 2 1
3	7 3 1 5 2 4 6
010	
7	
0010110	

Magyarázatok

1. példa Az első példa első két tesztesetében S(p) = 0.

A harmadik tesztesetben S(p)=1. Azért, mert binary_search(n, p, 2) visszatérési értéke true, de $b_2=\mathtt{false}$.

A negyedik tesztesetben S(p)=1. Azért, mert binary_search(n, p, 4) visszatérési értéke true, de $b_4=\mathtt{false}$.

2. példa S(p) = 0 mindkét tesztesetre.