The International Niagara Falls Competition

Of 1890

Jimmy Jia

jimmy@jimmyjia.com

Last Edit: April 14, 2019

This work is licensed under a <u>Creative Commons</u>
Attribution 4.0 International License

The Problem

Move **100,000 hp** from Niagara to Buffalo over distance of **18 miles**

No one has transported that much power that far before.

Current technology limit: ~2 miles.

The Committee

- William Cawthorne Unwin,
 Professor of Engineering,
 Central Institution of the City
 and Guilds of London
- Coleman Sellers, Professor of Engineering, Steven's Institute of Technology, Hoboken, New Jersey
- Eleuthere-Elie-Nicolas
 Mascart, Professor au College
 de France
- Sir William Thomson (Lord Kelvin), President of the Commission
- Theodore Turrettini, President de la Ville de Geneva

Possible Plans

Niagara River

Generator

Original Plan (1850's)

- 12 parallel canals
- 300 factories, each with their own water wheel.

Disadvantage: Destroy the river landscape

Evershed Scheme (1880's)

- 1 tunnel
- Transport power to 300 factories

Disadvantage: Even 300 factories was not enough revenue for the venture.

The Contestants

- 1. Cuenod Sautter & Co., *Geneva, Switzerland* Complete plans for a hydraulic plant and electrical (DC) distribution to Buffalo.
- Prof. Vigreux and M. Leon Levy, Paris, France Complete plans for generation and aerial electric conductors (DC).
- 3. M. Hillairet and M. Bouvier, *Paris, France* Complete plans for hydraulic machines and electrical (DC) distribution.
- 4. Prof. Riedler and M. Victor Popp, *Berlin, Germany and Paris, France* Plans for hydraulic generators machines and transmission via compressed air.
- 5. Mr. G.F. Deacon and Messrs. Siemens Brothers, *London, England* Complete project for hydraulic generation and electrical (DC) distribution.
- 6. Mr. H.D. Pearstall, *Orpington, England* Utilization of power and distribution by compressed air.
- 7. Prof. Lupton and Mr. Sturgeon, *Leeds and Chester, England* Complete arrangement for hydraulic motors and compressed air transmission.

Telodynamics (Wire Rope)

Used by: Zurich, Belgrade

Advantage: Held the record for the longest distance at 4 miles.

Disadvantage: Was prone to breaking

Steam

Used by: Birdsill Holley's Thermal utility pre-dated Edison's electrical power plant by 17 years

Advantage: The factories in Buffalo already use steam boilers, so the solution would be plug-and-play for customers.

Disadvantage: Would lose heat rapidly; would require heating stations along the entire 18 miles.

Pneumatics (Compressed Air)

Used by: Mines used pneumatics to run heavy machinery. Paris installed a citywide pneumatic mail delivery system (pictured)

Advantage: Mature technology

Disadvantage: Largest system was 1 mile in diameter.

Electricity

Used by:

- DC power limited to 2 miles
- Portland built a 14-mile line to power electric streetcars.

Advantage: Held the record for distance.

Disadvantage: Reliability is questionable. The Portland line was destroyed 9 months into operations by the first winter storm.

The International Niagara Falls Commission

Who should win the prize?

Why?

What are the issues at stake?

What should Edward Dean Adams do?

CONCLUSIONS

The International Niagara Falls Commission

- Conclusions

Didn't choose any winners

 2nd place went to Cuenod Sautter & Co of Switzerland for their DC distribution system.

No AC proposals won any 2nd or 3rd place awards.

What Happened?

- 1891: No proposals chosen
- Chicago Exhibition
- Frankfurt to Lauffen AC line (100 miles)
- General Edison merged with Thomson-Houston to form General Electric

- 1893: 1st AC power plant proposal accepted
- 1896: 1st plant opened.

The Final Power Plant

Internal Plumbing

Discussion Points

- Power vs. Energy
- No Westinghouse or Edison proposal
- What was 'best' technology?
- Standards war and consolidation
- Experts can be wrong
- Responsibility for the "long tomorrow"

The "Long Tomorrow"

- We make decisions today based on best-available technology.
- But what if that changes within 5 years (a long time from a decision-making standpoint, but a short time from an infrastructure usage standpoint?)
- Solar PPAs last for 15 years. Will you company be in the same line of business in 15 years?
- What risks does it solve? What new risks does it introduce?

From The History of the Niagara Falls Power Company

- "This history of the Niagara Falls Power Company is the story of the development of the pioneer hydroelectric system, forerunner of modern utility power service. It records the great step in the transition from the century of mechanical power to the century of electrical power.
- "But we can scarcely appreciate the meagerness of the experience upon which so important decisions were based and the seriousness of the problems which were yet unsolved.

In Summary

- When consumption is aligned with corporate strategy, organizations tend to consume just what they need.
- This is usually 30% less than what they are currently consuming due to elimination of wasted consumption.
- Finance, resource consumption, and environmental sustainability are interrelated through your company's operations.
- A metrics-driven resource strategy can help improve all three outcomes.