Datapath and Control Signals:

- 1. Instruction Fetch Stage: Using instruction address from PC module, fetch instruction from instruction cache, and load into IF/ID Reg.
 - a. Control Signals in this stage
 - load_PC: Load signal for PC register, when set high, register loads value into register.
 - ii. Instr cache read:
 - iii. Alu sel: Comes from Control rom, if jalr, set alu sel to 1, otherwise 0.
 - b. Data Signals
 - i. Cache Instr address:
 - ii. Cache_Instr_rdata:
 - iii. Branch Address: Selects between PC incremented by 4, or conditional/unconditional branch.
- Instruction Decode Stage: Split instruction from IF/ID Register into fields going into regfile and control_ROM. Control Rom will send the control word to all registers between the pipeline stages. The 32 bit values for rs1 and rs2 are also stored inside the ID/EX register.
 - a. Control Signals
 - b. Data Signals
 - i. Inputs
 - 1. opcode
 - 2. funct3
 - 3. funct7
 - ii. Outputs
 - 1. rs1
 - 2. rs2
 - 3. rs1 out
 - 4. rs2 out
 - 5. Control Word packed struct
 - a. Typedef struct packed {
 - Logic Alumux1 sel: selects between i_imm and rs2 out to send to CMP.
 - ii. <u>Logic [2:0] Alumux2_sel</u>: Selects between all immediate values and rs2_out to pass to the ALU.
 - iii. <u>Logic Load_regfile</u>: Tells the reg file to load the value regfilemux out into register rd.
 - iv. <u>Logic [3:0] Regfilemux_sel</u>: Selects between branch enable, u_imm, ALU output and mem_rdata to load into regfile.
 - v. <u>Logic [2:0] aluop</u>: Indicates which ALU operation to compute inside the ALU.

- vi. <u>Logic [2:0] cmpop</u>: Indicates which compare operation to perform in the CMP.
- vii. <u>Logic Instruction/data cache_read</u>: Read request to send to either the Instruction or data cache.
- viii. <u>Logic Data cache_write</u>: Write request to the data cache. Instruction cache is ROM.
- ix. <u>Logic cmpmux_sel</u>: Selects between i_imm and rs2 out.
- x. Logic pcmux_sel:_Selects between output of PC register added with 4, alu_out, and alu_out with LSB set to 0. This select signal is br_en if the corresponding pipeline stage is working on the branch instruction. Otherwise, it has to be set to pcmux::alu_mod2 or pcmux::alu_out if its on jalr or jal instruction, respectively. The Default value for this signal is 0 or pc_plus4.
- **xi.** Load pc: Where does this signal come from.
- b. } control_word
- 3. Execution Stage: Where comparisons and arithmetic/logical operations take place. Outputs of these operations are stored in the EX_MEM register.
 - a. Control Signals
 - i. Inputs
 - Alumux1_sel
 - 2. Alumux2 sel
 - 3. Cmpmux_sel
 - ii. Outputs
 - b. Data Signals
 - i. Inputs
 - 1. rs1 out
 - 2. rs2 out
 - 3. i imm
 - 4. u imm
 - 5. b imm
 - 6. s imm
 - 7. J_imm
 - 8. aluop
 - ii. Intermediate Data Path Signals
 - 1. Alumux1 out
 - 2. Alumux2 out
 - cmpmux_out
 - iii. Outputs
 - 1. Alu_out:

- 2. Br_en:
- 4. Memory Access Stage: Retrieve data from cache using alu_out. Load data into MEM_WB register.
 - a. Control Signals:
 - i. datacache_read
 - ii. datacache_write
 - iii. mdr_load
 - b. Datapath Signals:
 - i. Outputs
 - 1. Alu_out
 - 2. mdr_out
- 5. Register Write Back Stage: Choose between datapath input signals to load into regfile using regfilemux_sel.
 - a. Control Signals
 - i. Regfilemux_sel:
 - ii. Load_regfile:
 - b. Datapath Signals
 - i. Inputs
 - 1. br_en
 - 2. u_imm
 - 3. alu_out
 - 4. Mem_rdata
 - ii. Outputs
 - 1. regfilemux_out