

Saarland University
Department of
Genetics/Epigenetics

Reference-free deconvolution of complex DNA methylation data a systematic protocol

Michael Scherer HADACA, Aussois 11/26/2019

Overview

- Introduction into DNA methylation
- DNA methylation-based deconvolution
- Systematic protocol for DNAmethylation based deconvolution using MeDeCom
- Application of the proposed protocol on TCGA data
- Conclusions

DNA methylation

5-Methyl-Cytosine Cytosine NH_2 NH_2 ₃НС

- Reversible epigenetic modification
- Almost exclusively in CpG context

DNA methylation

- Reversible epigenetic modification
- Almost exclusively in CpG context
- Transcriptional repression in promoter regions

DNA methylation

- Reversible epigenetic modification
- Almost exclusively in CpG context
- Transcriptional repression in promoter regions

Project

- ▲ DEEP
- : BLUEPRINT Highly cell type specific

Figure: tSNE plot of WGBS data from different cell types assayed in the DEEP¹ and BLUEPRINT² consortia

¹ http://www.deutsches-epigenom-programm.de/

² http://www.blueprint-epigenome.eu/

DNA methylation based deconvolution

Reference-based deconvolution

Reference-free deconvolution

DNA methylation based deconvolution

Reference-based deconvolution

- Houseman approach¹
- MethylCIBERSORT²
- EpiDISH³

Reference-free deconvolution

- RefFreeCellMix⁴
- EDec⁵
- MeDeCom⁶

¹ Houseman, E. A. *et al.* DNA methylation arrays as surrogate measures of cell mixture distribution. *BMC Bioinformatics* **13**, (2012).

² Chakravarthy, A. *et al.* Pan-cancer deconvolution of tumour composition using DNA methylation. *Nat. Commun.* **9**, (2018).

³ Teschendorff, A. E *et al*. A comparison of reference-based algorithms for correcting cell-type heterogeneity in Epigenome-Wide Association Studies. *BMC Bioinformatics* **18**, 105 (2017).

¹ Houseman, E. A. *et al.* Reference-free cell mixture adjustments in analysis of DNA methylation data. *Bioinformatics* **30**, 1431-1439 (2014). ² Onuchic, V. *et al.* Epigenomic Deconvolution of Breast Tumors Reveals Metabolic Coupling between Constituent Cell Types. *Cell Rep.* **17**, 2075-2086 (2016).

³ Lutsik, P. *et al.* MeDeCom: discovery and quantification of latent components of heterogeneous methylomes. *Genome Biol.* **18**, 55 (2017).

Non-negative matrix factorization

Key messages from HADACA 2018

- Only small performance differences between the three available reference-free deconvolution tools (*RefFreeCellMix*, *EDec*, *MeDeCom*) on *in-silico* mixed data
- Thorough data processing more important than choice of the deconvolution tool
- Accounting for confounding factors critical for obtaining biologically plausible results¹

¹ Decamps, C. *et al.* Guidelines for cell-type heterogeneity quantification based on a comparative analysis of reference-free DNA methylation deconvolution software. Preprint at https://www.biorxiv.org/content/10.1101/698050v1.abstract (2019).

Systematic protocol for DNA methylation based deconvolution

DecompPipeline¹

- Data import using the widely-used *RnBeads*² software package
- Three-step procedure
 - Quality-aware filtering
 - Accounting for confounding factors using independent component analysis (ICA³)
 - Selecting potentially informative CpGs

¹ https://github.com/lutsik/DecompPipeline

² Müller, F. *et al.* RnBeads 2.0: comprehensive analysis of DNA methylation data. *Genome Biol.* **20**, 55 (2019).

³ Nazarov, P. V *et al.* Deconvolution of transcriptomes and miRNomes by independent component analysis provides insights into biological processes and clinical outcomes of melanoma patients. *BMC Med. Genomics* **12**, 132 (2019).

Confounding factor adjustment using ICA

Confounding factor adjustment using ICA

Michael Scherer

13

Protocol overview

MeDeCom¹

- Regularized non-negative matrix factorization
- Critical parameter choices:
 - Number of latent methylation components (LMCs, K)
 - Regularization parameter (λ)
- Optimized using an alternate optimization scheme
- Cross validation error computed

¹ Lutsik, P. *et al.* MeDeCom: discovery and quantification of latent components of heterogeneous methylomes. *Genome Biol.* **18**, 55 (2017).

RefFreeCellMix and EDec

- Similar approaches as MeDeCom
- Seamless integration into the protocol

Protocol overview

FactorViz¹ overview

- R/Shiny application to visualize deconvolution results
- Evaluation and interpretation functions
- Proportions and LMC matrix biologically interpreted

¹ https://github.com/lutsik/FactorViz

FactorViz: Interface

FactorViz 2.0

Home

Files in the directory

```
[1] "ann_C.RData" "ann_S.RData" "medecom_set.RData" [4] "meth_data.RData"
```

FactorViz: Functions

Application to TCGA LUAD dataset

- 461 samples from the lung adenocarcinoma dataset from TCGA¹
- Assayed using the Illumina Infinium 450k BeadChip

¹ https://cancergenome.nih.gov/

QC on TCGA data

Parameter selection

Proportions heatmap

11/22/2019 Michael Scherer 24

Phenotypic trait associations

LMC LOLA¹ enrichment analysis

¹Sheffield, N. & Bock, C. LOLA:Enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor. *Bioinformatics* 32, 587-589 (2016).

Sample-specific marker gene expression

Conclusions

- Thorough data processing and biologically guided interpretation more critical than the deconvolution tool itself
- Three-stage protocol
 - Quality-adapted CpG filtering and confounding factor adjustment with ICA using *DecompPipeline*
 - Methylome deconvolution using MeDeCom, RefFreeCellMix or EDec
 - Validation and interpretation of deconvolution results with FactorViz
- Deconvolution of TCGA LUAD dataset shows indications of immune cell infiltration, stromal, and epithelial components

Acknowledgements

Pavlo Lutsik
Reka Toth
Valentin Maurer
Christoph Plass

Petr V. Nazarov Tony Kaoma

Jörn Walter Shashwat Sahay

Thomas Lengauer

