(Start TRIANGLES table)

Q1 Write a query to create the **TRIANGLES** table.

```
Ans. Create table triangles
(TRIANGLE INT primary key,
SIDE_A INT,
SIDE_B INT,
SIDE_C INT);
INSERT INTO TRIANGLES VALUES (1, 20, 20, 23);
INSERT INTO TRIANGLES VALUES (2, 20, 20, 20);
INSERT INTO TRIANGLES VALUES (3, 20, 21, 22);
INSERT INTO TRIANGLES VALUES (4, 13, 14, 30);
```

```
1 v CREATE TABLE TRIANGLES

(TRIANGLE INT primary key,

SIDE_A INT,

SIDE_B INT,

SIDE_C INT);

INSERT INTO TRIANGLES VALUES (1, 20, 20, 23);

INSERT INTO TRIANGLES VALUES (2, 20, 20, 20);

INSERT INTO TRIANGLES VALUES (3, 20, 21, 22);

INSERT INTO TRIANGLES VALUES (4, 13, 14, 30);

INSERT INTO TRIANGLES VALUES (4, 13, 14, 30);
```

```
Table created.
1 row(s) inserted.
1 row(s) inserted.
1 row(s) inserted.
1 row(s) inserted.
```

Q2. i) Write a query to obtain the sum of side_A of all triangles.

Ans. select sum(SIDE_A) FROM TRIANGLES

SUM(SIDE_A)

73

Download CSV

Q2 ii) Write a query to obtain an equilateral triangle from the table.

Ans. select * from TRIANGLES where SIDE_A = SIDE_B AND SIDE_B = SIDE_C;

TRIANGLE	SIDE_A	SIDE_B	SIDE_C
2	20	20	20

Download CSV

Q2 iii) Write a query to obtain an isosceles triangle from the table Ans. SELECT * FROM TRIANGLES

where SIDE_A = SIDE_B OR SIDE_B = SIDE_C OR SIDE_A = SIDE_C;

```
1 v
SELECT * FROM TRIANGLES
where SIDE_A = SIDE_B OR SIDE_B = SIDE_C OR SIDE_A = SIDE_C;
```

TRIANGLE	SIDE_A	SIDE_B	SIDE_C
1	20	20	23
2	20	20	20

Download CSV

2 rows selected.

Q2 iv) Find the no. of triangles in the table.

Ans SELECT COUNT(TRIANGLE) FROM TRIANGLES;

Q2 v) Find the length of side_B of Triangle 3.

Ans. SELECT SIDE_B FROM TRIANGLES
WHERE TRIANGLE = 3;

SIDE_B

Download CSV

(Start Employees table)

Q1 Write a query to create the **Employees** table

```
Ans. create table employees

(employee_id int primary key,

name varchar(50),

months int,

salary int);

insert into employees values (12228, 'Rahul', 15, 10000);

insert into employees values (33645, 'Amit', 1, 15000);

insert into employees values (45692, 'Aditi', 17, 18000);

insert into employees values (56188, 'Pavan', 11,21000);
```

```
Table created.
1 row(s) inserted.
1 row(s) inserted.
1 row(s) inserted.
1 row(s) inserted.
```

Q2 i) Count the total no. of employees.

Ans. select count(*) from employees;

Q2. ii) Find the salary of Rahul.

Ans. select Name ,salary from employees where name = 'Rahul';

Q2. iii) Set Amit's months to 12.

Ans. update employees set months = 12 where name = 'Amit';

```
1 v update employees set months = 12
2 where name = 'Amit';
3
```

1 row(s) updated.

Q2. iv) Find the sum of salaries of all employees.

Ans. select sum(salary) from employees;

Q2. v) Find no. of employees whose name starts with 'A'.

Ans. select count(name) from employees

where name like 'A%'

