Boosting as Frank-Wolfe

Kyushu University/Riken AIP

Kohei Hatano

Kyushu University/Riken AIP hatano@inf.kyushu-u.ac.jp

Edge minimization & Soft margin optimization

Input: A sample $S = ((\mathbf{x}_i, y_i))_{i=1}^m \in (\mathcal{X} \times \{\pm 1\})^m$, a parameter $\nu \in [1, m]$, and a hypothesis set $\mathcal{H} \subset [-1,+1]^{\mathcal{X}}$.

Edge minimization -

$$\min_{\boldsymbol{d}} \left[f(\boldsymbol{d}) + \max_{h \in \mathcal{H}} (\boldsymbol{d}^{\top} A)_h \right], \quad f(\boldsymbol{d}) = \begin{cases} 0 & \boldsymbol{d} \in \Delta_{m,\nu} \\ +\infty & \text{otherwise} \end{cases}$$
(1)

where $\Delta_{m,\nu} = \{ \boldsymbol{d} \in [0,1/\nu]^m \mid \|\boldsymbol{d}\|_1 = 1 \}$ and $A = (y_i h(\boldsymbol{x}_i))$. $(d^{\top}A)_h = \sum_i d_i y_i h(x_i)$ is the *edge* of $h \in \mathcal{H}$ w.r.t. the distribution d.

\$\(\) Fenchel dual problem (zero duality gap)

Soft margin optimization

$$\max_{\boldsymbol{w}\in\Delta_{\mathcal{H}.1}}\left[-f^{\star}(-A\boldsymbol{w}):=\min_{\boldsymbol{d}\in\Delta_{m,\nu}}\boldsymbol{d}^{\top}A\boldsymbol{w}\right] \tag{2}$$

where $f^*(\theta) = \sup_{d} [\theta^{\top} d - f(d)]$ is Fenchel conjugate function of f.

Output: $\sum_{h\in\mathcal{H}} \bar{w}_h h$, where \bar{w} is an optimal solution of (2). Hard for off-the-shelf solvers when \mathcal{H} is a huge set.

Boosting

Boosting is a protocol between *Booster* and *Weak Learner (WL)*.

At each round $t = 0, 1, 2, \ldots, T$,

- **11** Send a distribution $d_t \in \Delta_{m,\nu}$ over S to WL.
- (g > 0 is unknown).

Booster outputs a combined hypothesis $H_T = \sum_{t=1}^{T} w_{T,t} h_t$, where w_T is an ϵ -approximate solution of (2).

■ LPBoost

$$oldsymbol{d}_t^L \leftarrow rg \min_{oldsymbol{d}} \max_{h \in \{h_1,h_2,...,h_t\}} (oldsymbol{d}^ op A)_h + f(oldsymbol{d})$$

■ ERLPBoost

$$\boldsymbol{d}_t^E \leftarrow \arg\min_{\boldsymbol{d}} \max_{h \in \{h_1, h_2, \dots, h_t\}} (\boldsymbol{d}^\top A)_h + f(\boldsymbol{d}) + \underbrace{\frac{1}{\eta} \sum_{i=1}^m d_i \ln(md_i)}_{=:\tilde{f}(\boldsymbol{d})}, \ \eta = \frac{2}{\epsilon} \ln \frac{m}{\nu}$$

C-ERLPBoost

$$egin{aligned} m{d}_{t}^{\mathcal{C}} &\leftarrow \arg\min_{m{d}} m{d}^{ op} A m{w}_{t}^{\mathcal{C}} + ilde{f}(m{d}), \ & ext{where} \quad m{w}_{t}^{\mathcal{C}} = m{w}_{t-1}^{\mathcal{C}} + \lambda_{t-1}(m{e}_{h_{t}} - m{w}_{t-1}^{\mathcal{C}}) \in \mathit{CH}(\{m{e}_{h_{1}}, m{e}_{h_{2}}, \dots, m{e}_{h_{t}}\}) \ &\lambda_{t-1} = \dim_{m{d}} rac{m{d}_{t-1}^{ op} A(m{e}_{h_{t}} - m{w}_{t-1}^{\mathcal{C}})}{\eta \|A(m{e}_{h_{t}} - m{w}_{t-1}^{\mathcal{C}})\|_{\infty}^{2}} \end{aligned}$$

LPBoost ERLPBoost C-ERLPBoost One of our work

 $\Omega(m) \qquad O(\frac{1}{\epsilon^2} \ln \frac{m}{\nu})$

 $O(\frac{1}{\epsilon^2} \ln \frac{m}{\nu})$

 $O(\frac{1}{\epsilon^2} \ln \frac{m}{\nu})$

Sub-problem

Sorting

Goal.

Design a practical boosting algorithm with a theoretical guarantee.

The Frank-Wolfe algorithm

A first-order algorithm for solving the following class of problem:

$$\min_{\boldsymbol{\theta} \in \Theta} f(\boldsymbol{\theta})$$

 $\Theta \subset \mathbb{R}^m$ is a bounded & closed convex set, and $f:\Theta\to\mathbb{R}$ is an η -smooth convex function.

At each round $t = 0, 1, 2, \ldots, T$,

- **1** Compute $s_{t+1} \leftarrow \arg\min_{s \in \Theta} s^{\top} \nabla f(\theta_t)$.
- $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t + \lambda_t (oldsymbol{s}_{t+1} oldsymbol{ heta}_t), \quad \lambda_t \in [0,1].$

- Converges to an ϵ -approximate solution in $O(\eta/\epsilon)$ rounds.
- \blacksquare FW algorithms assume an LP oracle over Θ .
- Fast update per round.

Fully-corrective FW: $\theta_{t+1} \in \operatorname{arg\,min}_{\theta \in CH(\{s_1, s_2, ..., s_{t+1}\})} f(\theta)$

- Optimizes f over the convex hull of $\{s_1, s_2, \ldots, s_t\}$.
- Highly improves the objective value.
- Slow update per round.

Eiji Takimoto Kyushu University eiji@inf.kyushu-u.ac.jp

A unified view of the boosting algorithms

Consider the Fenchel dual problem of $\min_{d} \tilde{f}(d) + \max_{h \in \mathcal{H}} (d^{\top}A)_{h}$.

$$\max_{\boldsymbol{\theta} \in -A\Delta_{\mathcal{H},1}} -\tilde{f}^{\star}(\boldsymbol{\theta}) := \max_{\boldsymbol{w} \in \Delta_{\mathcal{H},1}} -\tilde{f}^{\star}(-A\boldsymbol{w}) = \max_{\boldsymbol{w} \in \Delta_{\mathcal{H},1}} -\left[\max_{\boldsymbol{d}} -\boldsymbol{d}^{\top}A\boldsymbol{w} - \tilde{f}(\boldsymbol{d})\right]$$

Here, we denote $-A\Delta_{\mathcal{H},1} = \{-Aw \mid w \in \Delta_{\mathcal{H},1}\}.$

- \tilde{f}^{\star} is η -smooth w.r.t. L_{∞} -norm (\tilde{f} is $1/\eta$ -strongly convex w.r.t. L_1 -norm).
- Distribution d over S is a/the (sub-)gradient of f^* / \tilde{f}^* at some point θ . **C-ERLPBoost** $d_t^C = \nabla \tilde{f}^*(-Aw_t^C)$.

ERLPBoost $d_t^E = \nabla \tilde{f}^*(-Aw_t^E),$

where $oldsymbol{w}_t^{\mathcal{E}} = \mathop{\mathsf{arg\,min}}_{oldsymbol{w} \in \mathit{CH}(\{e_{h_1}, e_{h_2}, ..., e_{h_t}\})} ilde{f}^{\star}(-Aoldsymbol{w}).$

 $d_t^L \in \partial f^{\star}(-Aw_t^L)$, **LPBoost**

where $\boldsymbol{w}_t^L \in \operatorname{arg\,min}_{\boldsymbol{w} \in CH(\{\boldsymbol{e}_{h_1}, \boldsymbol{e}_{h_2}, \dots, \boldsymbol{e}_{h_t}\})} \boldsymbol{f}^{\star}(-A\boldsymbol{w})$.

■ A max-edge WL corresponds to the LP oracle in FW:

$$h_{t+1} \in rg \max_{h \in \mathcal{H}} (oldsymbol{d}_t^ op A)_h \iff oldsymbol{e}_{h_{t+1}} \in rg \max_{oldsymbol{e} \in \Delta_{\mathcal{H},1}} oldsymbol{d}_t^ op A oldsymbol{e} = rg \min_{oldsymbol{\theta} \in -A\Delta_{\mathcal{H},1}} oldsymbol{ heta}^ op oldsymbol{d}_t$$

Theorem.

LPBoost, ERLPBoost, and C-ERLPBoost are instances of the FW algorithm.

A new boosting scheme

At each round $t = 0, 1, 2, \ldots, T$,

- Compute $d_t = \nabla \tilde{f}^\star(-Aw_t) = \arg\min_{d \in \Delta_{m,\nu}} d^\top Aw_t + \frac{1}{n} \sum_{i=1}^m d_i \ln(md_i)$.
- f 2 Obtain a hypothesis $h_{t+1} \in \mathcal{H}$.
- $\min_{q \leq t} (d_q^\top A)_{h_{q+1}} + \tilde{f}^*(-Aw_t) \leq \epsilon/2 \implies \text{break}.$
- Primary (Frank-Wolfe) update: $\mathbf{w}_{t+1}^F \in \Delta_{\mathcal{H},1}$.
- **Secondary update:** $w_{t+1}^B \in \Delta_{\mathcal{H},1}$.
- 6 $w_{t+1} \in \operatorname{arg\,min}_{w \in \{w_{t+1}^F, w_{t+1}^B\}} \widetilde{f}^{\star}(-Aw)$

Theorem.

With an appropriate primary update w_{t+1}^F , the proposed scheme outputs a w_T such that $-f^*(-Aw_T) \ge g - \epsilon$ after at most $T = O(\frac{1}{\epsilon^2} \ln \frac{m}{t})$ rounds.

- lacksquare One can compute the distribution $m{d}_t =
 abla ilde{f}^\star(-Am{w}_t)$ in $O(m \ln m)$ time.
- \blacksquare One can choose w_{t+1}^F that guarantee some improvement per round.
- Choosing $\mathbf{w}_{t+1}^B = \arg\min_{\mathbf{w} \in CH(\{\mathbf{e}_{j_1}, \mathbf{e}_{j_2}, \dots, \mathbf{e}_{j_{t+1}}\})} \tilde{f}^*(-A\mathbf{w})$ yields ERLPBoost.

Experiments

- MLPBoost: Uses $\mathbf{w}_t^B \in \operatorname{arg\,min}_{\mathbf{w} \in CH(\{e_{h_1}, e_{h_2}, \dots, e_{h_t}\})} f^*(-A\mathbf{w})$.
- Datasets: Gunnar Rätsch's benchmark datasets ^a.
- Parameters: $\epsilon = 0.01$, $\nu = 0.1m$.
- Max-edge Weak Learner for decision tree with depth 2.

Average running times (seconds) for 5-fold CV.

	m	LPB.	ERLPB.	C-ERLPB.	MLPB. (SS)	MLPB. (PFW)
R.norm	7,400	22.09	1, 148.16	> 10 ⁴	26.76	36.73
Twonorm	7,400	105.40	$> 10^{4}$	$> 10^{4}$	478.22	397.91
Waveform	5,000	437.29	9,018.54	$> 10^4$	2, 243.07	1,619.56

Summary & Future work

- We provide a unified view of the boosting algorithms.
- We propose a new scheme for boosting based on the FW algorithm.
 - By adopting LPBoost as the secondary update, our scheme yields a practical boosting algorithm with a theoretical guarantee.
- LPBoost is still faster in practice. \Longrightarrow Any other secondary update?
- ahttp://theoval.cmp.uea.ac.uk/~gcc/matlab/default.html#benchmarks.