

Information Visualization and Visual Analytics (M1522.000500)

Why: Task Abstraction

Jinwook Seo, Ph. D.

Professor, Dept. of Computer Science and Engineering Seoul National University

The Big Picture

Why People Are Using Vis? (for What Tasks?)

Task Abstraction

- Consider tasks in abstract form, rather than domain-specific way
 - Otherwise, hard to make useful comparisons between domain situations
- domain-specific task descriptions

"Contrast the prognosis of patients who were intubated in the ICU more than one month after exposure to patients hospitalized within the first week"

"See if the results for the tissue samples treated with LL-37 match up with the ones without the peptide"

- Abstract form: "compare values between two groups"
- Task abstraction should guide data abstraction

Information Visualization and Visual Analytics – Task Abstractic

Actions

hci ldb seoul national university

Actions define User Goals

- High-level: Analyze
 - Consume, Produce
- Mid-level: Search
 - Lookup, Browse, Locate, Explore
- Low-level: Query
 - Identify, Compare, Summarize
- Choices at each level are independent
- Describe all of actions at all three levels

Actions

→ Enjoy

High-Level: Analyze – Consume (existing information)

- **Discover** (= explore)
 - Find new knowledge that was not previously known
 - **generate** a new hypothesis or **verify** an existing hypothesis
 - Often for scientific inquiry
- Present (= explain)
 - The communication of information that is specific and already understood
 - e.g., infographic (static information graphics)
 - output of a discover session -> input to a present session
- Enjoy
 - · Motivated by users' enjoyment
 - Casual encounters with vis for enjoyment
 - Users are driven by Curiosity stimulated and satisfied by vis
 - e.g. Name Voyager

→ Present

→ Consume

→ Discover

Information Visualization and Visual Analytics – Task Abstractio

Actions

High-level: Analyze – Produce (new information as input to a next instance)

- Annotate (~ tag)
 - Attaches temporary info to existing elements
- Record
 - To save or capture vis elements as persistent artifacts
 - e.g., screen shots, interaction logs, etc.
- **Derive** (= transform)
 - To produce new data elements (= derived attributes) based on existing elements
 - Could expand the design space of possible vis idioms
 - Changing types of data
 - Transform with additional info
 - Using arithmetic/logical/statistical operations

High-level: Analyze – Produce - Record

• Record

• graphical history of visual exploration

nformation Visualization and Visual Analytics – Task Abstractio

Actions

hci ldb

High-level: Analyze – Produce - Derive

• Do not just draw what you are given

- Decide what the right thing to show is
- Create it by transformations
- and draw it!

judging the difference in height

High-level: Analyze – Produce - Drive

- Do not just draw what you are given
 - Decide what the right thing to show is
 - Create it by transformations
 - and draw it!
 - detail is aggregated away, but

Information Visualization and Visual Analytics – Task Abstractio

Actions

Mid-level: Search (Find with successful outcome)

• High-level [analyze action] cases require the user to search for elements of interest

	Target known	Target unknown
Location known	• • • Lookup	Browse
Location unknown	C. Ocate	Explore

Mid-level: Search (Find with successful outcome)

- e.g. a tree vis for Tree of Life
 - Lookup
 - Looking up human (target O) knowing it belongs to mammals (location O)
 - Locate
 - Locating rabbits (target O) not knowing where it belongs to (location X)
 - Browse
 - Browsing all leaves (target X) of the mammal subtree (location O)
 - Explore
 - Exploring for a family having the largest number of species (target X, location X)

http://tolweb.org/tree/home.pages/aboutoverview.htm

Information Visualization and Visual Analytics – Task Abstractio

Actions

hcĭ ldb sedul national university

Low-level: Query

- Once targets for a search has found,
 - → QUERY the targets
- e.g. a choropleth map of US election results
 - **Identify** (a single target)
 - identify the election results for one state
 - Compare (multiple targets)
 - compare the election results of one state to another
 - Summarize / Overview (all possible targets)
 - *summarize* the election results across all states to determine how many favored one candidate

Things that actions refer to

• Some aspect of the data that is interest of the user

Information Visualization and Visual Analytics – Task Abstraction

Targets

hci ldb seoul national university

Targets – All Data Level

- All Data level
 - Trends (= pattern)
 - a high-level characterization of a pattern in the data
 - e.g. increases, decreases, peaks, regression fit etc.
 - Outliers (= anomalies, novelties, deviants, surprises)
 - Features
 - Any particular structures of interest
 - Task-dependent definition
 - clusters in cluster analysis

Targets

Targets – Attributes Level

- Attributes level
 - One attribute
 - · An individual value
 - extremes (maximum, minimum)
 - Multiple attributes
 - Dependency
 - An attribute depends on another attribute
 - Correlation
 - Tendency of values of two attributes are tied
 - Similarity
 - Quantitative measurement of how values of two attributes are similar

Information Visualization and Visual Analytics – Task Abstraction

Targets

hci lab Sedul national university

Targets

- Targets for specific types of datasets
 - Network data
 - Topology
 - paths
 - Spatial data
 - Shape
 - And more..
- ✓ These targets can be expressed in domain-specific terms, But should always recognize these abstractions

How: A Preview

How a vis idiom is constructed? – a set of design choices

Information Visualization and Visual Analytics - Task Abstraction

How: A Preview

How a vis idiom is constructed? – a set of design choices

- How to encode data (chapter 7, 8, 9, 10)
 - how to arrange data spatially
 - how to map data with nonspatial visual channels
- How to manipulate the view (chapter 11)
 - change aspect of view, select element in a view, navigate within the view
- How to facet data between views (chapter 12)
 - juxtapose, partition, superimpose
- How to reduce data (chapter 13)
 - filter, aggregate, embed (chapter 14)

Analyzing and Deriving: Examples

Comparing two idioms (comparative analysis)

Information Visualization and Visual Analytics – Task Abstraction

Analyzing and Deriving: Examples

Deriving one attribute

시험문제에 이 게 나오면

Why: Task Abstraction

Note

• Questions?

Information Visualization and Visual Analytics – Task Abstraction