San José State University Computer Science Department CS 157-A, Introduction to Database Management Systems, Spring 2020

Course and Contact Information

Instructor: Harman Gill

Office Location: DH 282

Telephone: (408) 924-7171

Email: <u>harmandeep.gill@sjsu.edu</u>

Office Hours: M W 11:00 AM – 11:55 AM

Class Days/Time: M W 12:00 PM – 1:15 PM

Classroom: SH100

Prerequisites: CS 146 Data Structures and Algorithms with grade C- or better.

Course Description

Current, classical database systems. Entity-relationship and enhanced entity models. Relational model, algebra, calculus. Current, emerging SQL standard. Embedded, Dynamic SQL. Application perspective on transactions and security. Interactive and programmatic interfaces to database systems. Application programming project using commercial database system. Prerequisite: CS 146 (with a grade of "C-" or better); Computer Science, Applied and Computational Math, or Software Engineering majors only; or instructor consent.

Canvas Course Site

Course materials such as syllabus, textbook, assignments, questions of the week and exams can be found on the Canvas Leaning Management System course website at http://sjsu.instructure.com. You are responsible for regularly checking with Canvas to learn of any updates.

Course Goals

- 1. To introduce students to the purpose of Database systems and databases, as well as common users of such systems.
- 2. To teach students about the relational model and relation algebra.
- 3. To teach students about SQL, the standard language for interacting with a database.
- 4. To teach students about design theory (such as normalization, etc.) and algorithms that help determine if a given database's tables are organized in a reasonable way.
- 5. To teach students about real-world database system usage, architectures and components. Some example systems that might be considered are: MySQL, Postgres, and SQLite.
- 6. To teach students about SQL, the standard language for interacting with a database.
- 7. To teach students how to interact with a database system from a programming language such as Java and Python.

Course Learning Outcomes (CLO)

Upon successful completion of this course, students will be able to:

- Write relational algebra queries and predict given a database instance what such a query will return.
- Design a database by creating Entity/Relationship Diagram for a given problem.
- Being able to identify functional dependencies, check and perform a decomposition in a given normal form.
- Use Data Definition Language to define database schemas.
- Construct data retrieval procedures using the Data Manipulation Language (schema, index, normalization, view, trigger, constraints). Write SQL commands to create databases, create tables, insert/update/delete/retrieve rows in a common database management system. To teach students about SQL, the standard language for interacting with a database.
- Implement simple database application and write transactions using JDBC.

Required Texts/Readings

Textbook

Database System Concepts (6th edition) by Silberschatz, Korth, and Sudarshan. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer D. Widom, "Database Systems: The Complete Book".

Course Requirements and Assignments

SJSU classes are designed such that in order to be successful, it is expected that students will spend a minimum of forty-five hours for each unit of credit (normally three hours per unit per week), including preparing for class, participating in course activities, completing assignments, and so on. More details about student workload can be found in University Policy S12-3 at http://www.sjsu.edu/senate/docs/S12-3.pdf.

NOTE that University policy F69-24, "Students should attend all meetings of their classes, not only because they are responsible for material discussed therein, but because active participation is frequently essential to insure maximum benefit for all members of the class. Attendance per se shall not be used as a criterion for grading.

Grading Information

Homework	15%
Quiz	15%
Midterm 1 & 2	30%
Project	10%
Final Exam	20%
Class Participation	10%

Determination of Grades

Percentage	Grade
92 and above	Α
90-91	A-
88-89	B+
82-87	В
80-81	B-
78-79	C+
72-77	С
70-71	C-
60-69	D
59 and below	F

No make-up Midterms/ Final Exam and no late assignments will be accepted.

Note that "All students have the right, within a reasonable time, to know their academic scores, to review their grade-dependent work, and to be provided with explanations for the determination of their course grades." See University Policy F13-1 at http://www.sisu.edu/senate/docs/F13-1.pdf for more details.

Classroom Protocol

- 1. Students are expected to participate in all lectures. Attendance is crucial to do well on quiz, assignments, and exams.
- 2. Please turn off your cell phones during the lecture time.
- 3. Always start your email subject with "CS157A Spring 2020" to get my attention.
- 4. Cheating will result in ZERO score on assignment and exam, and will be reported to the department and university.

University Policies

Per <u>University Policy S16-9</u> (http://www.sjsu.edu/senate/docs/S16-9.pdf), relevant information to all courses, such as academic integrity, accommodations, dropping and adding, consent for recording of class, etc. is available on Office of Graduate and Undergraduate Programs' <u>Syllabus Information web page</u> at http://www.sjsu.edu/gup/syllabusinfo/".

CS 157A / Introduction to Database Management Systems, Spring 2020, Course Schedule

This detailed outline is subject to change based on the needs of the class. Updates will be notified in the class and Canvas will be kept up to date.

Course Schedule

Week	Date	Topics, Readings, Assignments, Deadlines
1	1/27	Introduction to DBMS (Chapter 1)
1	1/29	Relational Database model (2.1-2.2)
2	2/5	SQLite database
3	2/10	Keys (2.3)
3	2/12	Relational Algebra I (2.6)
4	2/17	Database definition language (3.1-3.2), Single table queries I (3.3.1), Quiz 1
4	2/19	Single table queries II (3.4), Simple Joins (3.3.2)
5	2/24	Natural Joins (3.3.3), Outer Joins (4.1)
5	2/26	Null Values and Integrity Constraints (4.4), Quiz 2
6	3/2	MIDTERM 1
6	3/4	Database Internals (10)
7	3/9	Database Indexing (11)
7	3/11	Aggregations (3.6-3.7) and Nested Queries (3.8)
8	3/16	Views (4.2), Database mods (3.9,4.3)
8	3/18	Relational Algebra II, Quiz 3
9	3/23	Triggers (5.3) and Misc.
9	3/25	ER Models (7.1-7.2) and ER Constraints (7.3-7.4)
10		Recess
11	4/6	ER Diagrams (7.5), Quiz 4, and Project Assignment
11	4/8	Mapping ER Model to Relations (7.6)
12	4/13	MIDTERM 2
12	4/15	Database Normalization and Functional Dependencies (8.1-8.3.1)
13	4/20	BCNF (8.3.2-8.3.3)

Introduction to Database Management Systems, CS 157A-01, Spring 2020

13	4/22	Third Normal Form (8.3.4) and Project Discussion
14	4/27	Database Transactions (14), Quiz 5
14	4/29	Database Server Connectivity
15	5/4	Database Authorization and OLAP
15	5/6	Distributed databases, NoSQL, and Quiz 6
16	5/11	NoSQL databases and Final Exam Review
17	5/19	Final Exam (9.45am - 12pm)