

Visions to Products

CNNs

Marcus Rüb

Hahn-Schickard Villingen-Schwenningen Marcus.rueb@hahn-schickard.de

Fully Connected Neural Network

Depth

Why not simply more FC Layers?

We cannot make networks arbitrarily complex

- Why not just go deeper and get better?
 - No structure!!
 - It is just brute force!
 - Optimization becomes hard
 - Performance plateaus / drops!

Better Way than FC?

- We want to restrict the degrees of freedom
 - We want a layer with structure
 - Weight sharing → using the same weights for different parts of the image

Using CNNs in Computer Vision

Classification

Classification + Localization

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single object

Multiple objects

[Li et al., CS231n Course Slides] Lecture 12: Detection and Segmentation

Convolutions

Application of a filter to a function

- The 'smaller' one is typically called the filter kernel

Discrete case: box filter

'Slide' filter kernel from left to right; at each position, compute a single value in the output data

$$4 \cdot \frac{1}{3} + 3 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} = 3$$

$$3 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} + (-5) \cdot \frac{1}{3} = 0$$

$$2 \cdot \frac{1}{3} + (-5) \cdot \frac{1}{3} + 3 \cdot \frac{1}{3} = 0$$

$$(-5) \cdot \frac{1}{3} + 3 \cdot \frac{1}{3} + 5 \cdot \frac{1}{3} = 1$$

$$3 \cdot \frac{1}{3} + 5 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} = \frac{10}{3}$$

$$5 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} + 5 \cdot \frac{1}{3} = 4$$

$$2 \cdot \frac{1}{3} + 5 \cdot \frac{1}{3} + 5 \cdot \frac{1}{3} = 4$$

Discrete case: box filter

f 4 3 2 -5 3 5 2 5 6

g

1/3 1/3 1/3

$$5 \cdot \frac{1}{3} + 5 \cdot \frac{1}{3} + 6 \cdot \frac{1}{3} = \frac{16}{3}$$

Discrete case: box filter

What to do at boundaries?

Discrete case: box filter

4 3 2 -5 3 5 2 5 6

1/3 1/3 1/3

?? 3 0 0 1 10/3 4 4 16/3 **??**

What to do at boundaries?

24

Option 1: Shrink

3 0 0 1 10/3 4 4 16/3

Discrete case: box filter

1/3 1/3 1/3

 ??
 3
 0
 0
 1
 10/3
 4
 4
 16/3
 ??

$$0 \cdot \frac{1}{3} + 4 \cdot \frac{1}{3} + 3 \cdot \frac{1}{3} = \frac{7}{3}$$

What to do at boundaries?

25

Option 2: Pad (often 0's)

 7/3
 3
 0
 0
 1
 10/3
 4
 4
 16/3
 11/3

	-5	3	2	-5	3
Ř	4	3	2	1	-3
mage 5×5	1	0	3	3	5
mag	-2	0	1	4	4
	5	6	7	9	-1

χ	0	-1	0
el 3	-1	5	-1
Kernel 3×3	0	-1	0

3x3	6	
Ut		
Jutp		

$$5 \cdot 3 + (-1) \cdot 3 + (-1)^{26} \cdot 2 + (-1) \cdot 0 + (-1) \cdot 4$$

= $15 - 9 = 6$

	-5	3	2	-5	3
× 5	4	3	2	1	-3
lmage 5×5	1	0	3	3	5
mag	-2	0	1	4	4
	5	6	7	9	-1

X3	6	1	
utput 3×3			
)utp			

X	0	-1	0
el 3	-1	5	-1
(ernel 3×3	0	-1	0

$$5 \cdot 2 + (-1) \cdot 2 + (-1)^{27} \cdot 1 + (-1) \cdot 3 + (-1) \cdot 3$$

= $10 - 9 = 1$

	5	3	2	-5	3
x 5	4	3	2	1	-3
lmage 5×5	1	0	3	3	5
mag	-2	0	1	4	4
	5	6	7	9	1

	-1	0
1	5	-1
)	_1	0

Kernel 3x3

X3	6	1	8
ut 3x			
Jutp			

$$5 \cdot 1 + (-1) \cdot (-5) + (\frac{28}{-1}) \cdot (-3) + (-1) \cdot 3 + (1) \cdot 2 = 5 + 3 = 8$$

	-5	3	2	-5	3
٦Ž	4	3	2	1	-3
lmage 5×5	1	0	3	3	5
mag	-2	0	1	4	4
_	5	6	7	9	-1

×3	0	-1	0
el 3	-1	5	-1
Kernel 3×3	0	-1	0

x3	6	1	8
utput 3×3	-7		
Jutp			

$$5 \cdot 0 + (-1) \cdot 3 + (-1)^{29} \cdot 0 + (-1) \cdot 1 + (-1) \cdot 3$$

= $0 - 7 = -7$

	-5	3	2	-5	3						
5×5	4	3	2	1	-3						
3e 5	1	0	3	3	5						
Image	-2	0	1	4	4		ſ		T .		
_	5	6	7	9	-1		8X3	6	1	8	
L			1	'			out	-7	9		
	∞	0	-1	0		,	Output 3×3				
	ernel 3x3	-1	5	-1	5.	3+ (-		(-1)	³⁰ 3+ (-	-1) ·1+	(-1) ·0
	ern	0	-1	0	= _	L5-6=9					` /

	-5	3	2	-5	3
×5	4	3	2	1	-3
3e 5	1	0	3	3	5
mage 5×5	-2	0	1	4	4
	5	6	7	9	-1/

)	6	1	8
)	-7	9	2
F			

×3	0	-1	0
el 3	-1	5	-1
Kernel 3×3	0	-1	0

$$5 \cdot 3 + (-1) \cdot 1 + (-1)^{31} 5 + (-1) \cdot 4 + (-1) \cdot 3$$

= 15 - 13 = 2

	-5	3	2	-5	3
τŽ	4	3	2	1	-3
lmage 5×5	1	0	3	3	5
mag	-2	0	1	4	4
	5	6	7	9	-1

2	6	1	8
ט ט	-7	9	2
שישי	-5		

×3	0	-1	0
el 3	-1	5	-1
Kernel 3×3	0	-1	0

$$5 \cdot 0 + (-1) \cdot 0 + (-1) \cdot \overset{3}{1} + (-1) \cdot 6 + (-1) \cdot (-2)$$

	-5	3	2	-5	3
.	4	3	2	1	-3
lmage 5×5	1	0	3	3	5
mag	-2	0	1	4	4
_	5	6	7	9	-1

Output 3x3

6	1	8
-7	9	2
-5	-9	

$$5 \cdot 1 + (-1) \cdot 3 + (-1) \cdot 4^{\frac{33}{4}} (-1) \cdot 7 + (-1) \cdot 0$$

= $5 - 14 = -9$

	-5	3	2	-5	3
x 5	4	3	2	1	-3
lmage 5×5	1	0	3	3	5
mag	-2	0	1	4	4
_	5	6	7	9	-1

Jutput 3x3

6	1	8
-7	9	2
-5	-9	3

×3	0	-1	0
el 3	-1	5	-1
(ernel 3×3	0	-1	0

$$5 \cdot 4 + (-1) \cdot 3 + (-1) \cdot 4^{34} + (-1) \cdot 9 + (-1) \cdot 1$$

= 20 - 17 = 3

Image Filters

• Each kernel gives us a different image filter

Edge detection

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Gaussian blur

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Convolutions on RGBImages

Convolutions on RGBImages

- A basic layer is defined by
 - Filter width and height (depth is implicitly given)
 - Number of different filter banks (#weight sets)

• Each filter captures a different image characteristic

Different Filters

- Each filter captures different image characteristics:
 - Horizontal edges
 - Vertical edges
 - Circles
 - Squares
 - **–** ...

[Zeiler & Fergus, ECCV'14] Visualizing and Understanding Convolutional Networks

Dimensions of a Convolution Layer

Input: 7×7

Filter: 3×3

Input: 7×7

Filter: 3×3

Input: 7×7

Filter: 3×3

Input: 7×7

Filter: 3×3

Input: 7×7

Filter: 3×3

Input: 7×7

Filter: 3×3

Stride: 1

Output: 5×5

Stride of *S*: apply filter every *S*-th spatial location; i.e. subsample the image

Input: 7×7

Filter: 3×3

Stride: 2

Output: 3×3

Input: 7×7

Filter: 3×3

Stride: 2

Output: 3×3

Input: 7×7

Filter: 3×3

Stride: 2

Output: 3×3

Input: 7×7

Filter: 3×3

Stride: 3

Output: ?×?

Input: $N \times N$

Filter: F×F

Stride:

Output:
$$\left(\frac{N-F}{S}+1\right) \times \left(\frac{N-F}{S}+1\right)$$

$$N = 7, F = 3, S = 1$$
: $\frac{7-3}{1} + 1 = 5$
 $N = 7, F = 3, S = 2$: $\frac{7-3}{2} + 1 = 3$
 $N = 7, F = 3, S = 3$: $\frac{7-3}{5^2} + 1 = 2.\overline{3}$

Fractions are illegal

Shrinking down so quickly $(32 \rightarrow 28 \rightarrow 24 \rightarrow 20)$ is typically not a good idea...

Why padding?

- Sizes get small too quickly
- Corner pixel is only used once

Image 7×7+zero padding

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Why padding?

- Sizes get small too quickly
- Corner pixel is only used once

Image 7x7+zero padding

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input $(N \times N)$: 7×7

Filter $(F \times F)$: 3×3

Padding (*P*): 1

Stride (S): 1

Output 7×7

Most common is 'zero' padding

Output Size:

$$\left(\left\lfloor \frac{N+2\cdot P-F}{S}\right\rfloor + 1\right) \times \left(\left\lfloor \frac{N+2\cdot P-F}{S}\right\rfloor + 1\right)$$

[] denotes the floor operator (as in practice an integer division is performed)

Пg
÷
ddi
pado
zero
zer
Ņ
/ +/
/×/
٠
egge Gge
RD L
Ξ

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
Prof	sner, Pro	of. Leal-T	aixé					0
0	0	0	0	0	0	0	0	0

Types of convolutions:

Valid convolution: using no padding

Same convolution: output=input size

Set padding to
$$P = \frac{F-1}{2}$$

Example

Input image: 32×32×3

10 filters 5×5

Stride 1

Pad 2

Depth of 3 is implicitly given

Output size is:

$$\frac{32+2\cdot 2-5}{1} + 1 = 32$$

i.e. 32×32×10

Output:
$$\left(\left\lfloor \frac{N+2\cdot P-F}{S}\right\rfloor + 1\right) \times \left(\left\lfloor \frac{N+2\cdot P-F}{S}\right\rfloor + 1\right)$$

Example

Input image: 32×32×3

10 filters 5×5

Stride 1

Pad 2

Output size is:

i.e. 32×32×10

Remember

Output:
$$\left(\left\lfloor \frac{N+2\cdot P-F}{S}\right\rfloor + 1\right) \times \left(\left\lfloor \frac{N+2\cdot P-F}{S}\right\rfloor + 1\right)$$

Example

Input image: 32×32×3

10 filters 5 × 5

Stride 1

Pad 2

Number of parameters (weights): Each filter has $5 \times 5 \times 3 + 1 = 76$ params

-> **76**· **10**= 760 parameters in layer

(+1for bias)

Convolutional Neural Network (CNN)

CNN Prototype

ConvNet is concatenation of Conv Layers and activations

CNN Learned Filters

[Zeiler & Fergus, ECCV'14] Visualizing and Understanding Convolutional Networks

Pooling

Pooling Layer

Pooling Layer: MaxPooling

Single depthslice of input

3	1	3	5
6	0	7	9
3	2	1	4
0	2	4	3

Max pool with 2×2 filters and stride 2

'Pooled' output

6	9
3	4

Pooling Layer

- Conv Layer = 'Feature Extraction'
 - Computes a feature in a given region

- Pooling Layer = 'Feature Selection'
 - Picks the strongestactivation in a region

Pooling Layer

- Input is a volume of size $W_{in} \times H_{in} \times D_{in}$
- Two hyperparameters

- Spatial filter extent F Filter count K and padding P make no sense here

• Output volume is of size $W_{out} \times H_{out} \times D_{out}$

$$-W_{out} = \frac{W_{in} - F}{S} + 1$$

$$-H_{out} = \frac{H_{in} - F}{S} + 1$$

$$-D_{out} = D_{in}$$

Does not contain parameters; e.g. it's fixed function

Pooling Layer

- Input is a volume of size $W_{in} \times H_{in} \times D_{in}$
- Two hyperparameters
 - Spatial filter extent F
 - Stride S
- Output volume is of size $W_{out} \times H_{out} \times D_{out}$

$$-W_{out} = \frac{W_{in} - F}{S} + 1$$

$$-H_{out} = \frac{H_{in} - F}{S} + 1$$

$$-D_{out} = D_{in}$$

Does not contain parameters; e.g. it's fixed function

Common settings:

$$F = 2$$
, $S = 2$

$$F = 2, S = 2$$

 $F = 3, S = 2$

Pooling Layer: AveragePooling

Single depthslice of input

3	1	3	5
6	0	7	9
3	2	1	4
0	2	4	3

Average pool with 2×2 filters and stride 2

'Pooled' output

2.5	6
1.75	3

Typically used deeper in the network

CNN Prototype

Final Fully-Connected Layer

- Same as what we had in 'ordinary' neural networks
 - Make the final decision with the extracted features from the convolutions
 - One or two FC layers typically

Convolutions vs Fully-Connected

- In contrast to fully-connected layers, we want to restrict the degrees of freedom
 - FC is somewhat brute force
 - Convolutions are structured

- Sliding window to with the same filter parameters to extract image features
 - Concept of weight sharing
 - Extract same features independent of location

Spatial extent of the connectivity of aconvolutional filter

Spatial extent of the connectivity of aconvolutional filter

5x5 input

3x3 receptive field = 1 output pixel is connected to 9 input pixels

Spatial extent of the connectivity of aconvolutional filter

3x3 receptive field = 1 output pixel is connected to 9 input pixels

Spatial extent of the connectivity of aconvolutional filter

7x7 input

3x3 receptive field = 1 output pixel is connected to 9 input pixels

Spatial extent of the connectivity of aconvolutional filter

3x3 receptive field = 1 output pixel is connected to 9 input pixels

Spatial extent of the connectivity of aconvolutional filter

7x7 input

5x5 receptive field on the original input: one output value is connected to 25 input pixels

Hands-on

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb#scrollTo=2tRmdq_8CaXb

Example

- You are given a convolutional layer with 4 filters, kernel size 5, stride 1, and no padding that operates on an RGB image.
- Q1: What are the dimensions and the shape of its weight tensor?

□ A1: (3, 4, 5,5)

□ A2: (4, 5,5)

□ A3: depends on the width and height of the image

Example

- You are given a convolutional layer with 4 filters, kernel size 5, stride 1, and no padding that operates on an RGB image.
- Q1: What are the dimensions and the shape of its weight tensor?

Example

- You are given a convolutional layer with 4 filters, kernel size 5, stride 1, and no padding that operates on an RGB image.
- Q1: What are the dimensions and the shape of its weight tensor?

□ A1: (3, 4, 5,5)

□ A2: (4, 5,5)

☐ A3: depends on the width and height of the image