Лабораторная работа №6

Последовательность базовых заданий

1. Создайте класс Equalizer, который является наследником класса handle

					Проверка	Значение
Номер	Свойства класса	Размер	Тип	Атрибуты свойств	свойств	по
			данных	(Property Attributes)	(validation	умолчанию
					functions)	
1	freqArray	10x1	double	Константа	Вещественные	Из 3
					значения	лаб.раб
2	gain	10x1	double	Доступны любым	Вещественные	Единицы
				функциям	значения	
				Доступны к получению		64
	order	1x1	double	любыми функциями, к	Целые	
3				изменению только для	значения	
				членов класса и	зна-тепия	
				наследников		
4	bBank	-	double	Доступно только для	Вещественные	нет
				членов класса и	значения	
				наследников		
				Доступны к получению		44100
7	fs	1x1	double	любыми функциями, к	Вещественные значения	
				изменению только для		
				членов класса и	3114 10111111	
				наследников		
8	initB		double	Доступно только для	Вещественные	
				членов класса и	значения	[]
				наследников		

Методы класса	Описание			
	Создайте конструктор с двумя аргументами: order и fS. По входным			
Конструктор	параметрам необходимо рассчитывать и проинициализировать			
	коэффициенты фильтров bBank			
Filtoning	Добавьте метод фильтрации использовав ветку filter из функции			
Filtering	FilteringBanks			
CreateFilters	Создайте метод аналогичный одноименной функции из 3 лабораторной			
Credier lilers	работы			
	Возвращает частотную характеристику итогового фильтра			
	$\Pi pu m$. Используйте функцию $freqz$ как в 4 лаб. р., в качестве			
C -4E-1 - D	коэффициентов $b = sum(gain.*b)$			
GetFreqResponce	Π рим. Метод возвращает модуль H в д Γ и w в соответствии с			
	частотой дискретизации (см. 4 лаб. р.)			

- 2. Откройте окно создания нового приложения $Apps \rightarrow Design\ App \rightarrow Blank\ App$. Сохраните $EqualizerApp_SurnameN.mlapp$
- 3. В появившемся окне задайте разрешение ширину и высоту окна 1024х768
- 4. Добавьте на окно 4 кнопки (*Button*): *Load*, *Play*, *Pause*, *Stop*. Измените подписи и название объектов в соответствии с их назначением. По желанию можно изменить размер и цвет кнопки.
- 5. Добавьте элемент *Slider*. Измените его положение на вертикальное, разместите подпись ровно по центру под элементом. Выставите пределы от -10 до 10 с начальным значение равным 0.
- 6. Измените подписи и имя объекта в соответствии с частотой, например: подпись: 31 *Hz* (из *freqArray*), имя: *gain1*. Посредством копирования создайте 10 элементов *Slider* в соответствии с количеством фильтром.
- 7. Добавьте на окно два элемента типа оси: *Spectrum* и *FreqResponce*. Подпишите оси, графики, по желанию можете дополнительно отредактировать объекты.
- 8. Добавьте элемент *Label*, в котором будет отображаться имя mp3-файла.
- 9. Перейдите на вкладку *Code View* и добавьте следующие свойства класса:

				Атрибуты	Проверка	Значение по
Номер	Свойства класса	Размер	Тип данных	свойств	свойств	умолчанию
				(Property	(validation	
				Attributes)	functions)	
1	equalizer	-	Equalizer	Доступны		Аргументы
				любым	-	(64, 44100)
				функциям		
2	deviceWriter	-	audioDeviceWriter	Доступны		Аргументы
				любым	-	('SampleRate',
				функциям		44100)
3	fileReader	-	dsp.AudioFileReader	Доступны		
				любым	-	
				функциям		
4				Доступно		
				только для		
	filename			членов	-	
				класса и		
				наследников		
	stopFlag	1x1		Доступно		false
				только для	Логические	
				членов	значения	
				класса и	эна юния	
				наследников		

Примечение. Объекты deviceWriter и fileReader создайте по аналогии с лаб.р. 3.

- 10. Создайте метод класса *app PlotFreqResponce()*, который вызывает метод GetFreqResponce() класса Equalizer и строит результат на осях FreqResponce.
- 11. Создайте Callback startupFcn, в которой вызывается метод PlotFreqResponce(). Φy нкция startupFcn вызывается после создания объекта app.
- 12. Добавьте *Callback* для слайдеров. Изменение слайдеров меняет соответствующий элемент в массиве *gain* (первый слайдер *gain(1)* и тд.). Также в каждом Callback необходимо вызвать метод *PlotFreqResponce()*.

- 13. Добавьте Callback Load. Используя функцию uigetfile ДЛЯ кнопки проинициализируйте Используя filename. новый filename заново проинициализируйте fileReader, также изменив свойство PlayCount на значение inf и свойство SamplesPerFrame на значение 4096. Измените содержимое Label (поле *Text*) на содержимое *filename*.
- 14. Добавьте *Callback* для кнопки *Run*. Используйте бесконечный цикл наподобие того, что использовался в 3 лаб. р., добавив дополнительный выход через проверку переменной *stopFlag*. Внутри цикла фильтрация осуществляется при помощи метода *Filtering* объекта *equalizer*.
 - В цикле также необходимо вычислить спектр используя *pspectrum* и отображать результат на осях *Spectrum*. По оси x используйте логарифмический масштаб. По оси y можно отображать также дБ (или оставить по умолчанию).
 - Примечание. Также всегда необходимо при нажатии кнопки Run делать stopFlag = false.
- 15. Добавьте Callback для кнопки Pause, в котором выполняется: stopFlag = true;
- 16. Добавьте Callback для кнопки Stop: stopFlag = false, а также используйте функцию reset для перезагрузки объектов deviceWriter и fileReader.
- 17. В конце каждого метода и *callback*-ов добавьте *drawnow*(в том числе в теле бесконечного цикла *callback* кнопки *Run*)

Дополнительные задания

1. Отформатируйте формочку, сделав собственное визуальное оформление.