强化学习2022 第8节

涉及知识点:

基于神经网络的策略梯度、A3C、确定性梯度 策略、深度确定性策略梯度、TRPO、PPO

深度策略梯度

课程大纲

强化学习基础部分

- 1. 强化学习、探索与利用
- 2. MDP和动态规划
- 3. 值函数估计
- 4. 无模型控制方法
- 5. 规划与学习
- 6. 参数化的值函数和策略
- 7. 深度强化学习价值方法
- 8. 深度强化学习策略方法

强化学习前沿部分

- 9. 基于模型的深度强化学习
- 10. 离线强化学习
- 11. 模仿学习
- 12. 参数化动作空间
- 13. 多智能体强化学习基础
- 14. 多智能体强化学习前沿
- 15. 强化学习的应用
- 16. 技术交流与回顾

深度强化学习

- 直面理解:深度学习+强化学习
- 深度强化学习使强化学习算法能够以端到端的方式解决复杂问题
- 真正让强化学习有能力完成实际决策任务
- 比强化学习和深度学习各自都更加难以驯化
- 基于价值函数的深度强化学习
 - DQN: 一次输入多个行动Q值输出、目标网络、随机采样经验
 - Double DQN:解耦合行动选择和价值估计、解决DQN过高估计问题
 - Dueling DQN: 精细捕捉价值和行动的细微关联、多种advantage函数建模

深度强化学习的分类

- □基于价值的方法
 - 深度Q网络及其扩展
- □ 基于随机策略的方法
 - 基于神经网络的策略梯度,信任区域策略优化 (TRPO) , 近端策略优化 (PPO) , A3C
- □ 基于确定性策略的方法
 - 确定性策略梯度(DPG), DDPG

基于神经网络的策略梯度

复习:策略梯度定理

- □ 策略梯度定理把似然比的推导过程泛化到多步马尔可夫决策过程
 - 用长期的价值函数 $Q^{\pi_{\theta}}(s,a)$ 代替前面的瞬时奖励 r_{sa}
- □ 策略梯度定理涉及
 - 起始状态目标函数 J_1 ,平均奖励目标函数 J_{avR} ,和平均价值目标函数 J_{avV}

□定理

• 对任意可微的策略 $\pi_{\theta}(a|s)$,任意策略的目标函数 $J = J_1, J_{avR}, J_{avV}$,其策略 梯度是

$$\frac{\partial J(\theta)}{\partial \theta} = \mathbb{E}_{\pi_{\theta}} \left[\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} Q^{\pi_{\theta}}(s, a) \right]$$

详细证明过程请参考Rich Sutton's Reinforcement Learning: An Introduction (2nd Edition)第13章

策略网络的梯度

□ 对于随机策略,一般采样到每一个行动的概率由Softmax实现

$$\pi_{\theta}(a|s) = \frac{e^{f_{\theta}(s,a)}}{\sum_{a'} e^{f_{\theta}(s,a')}}$$

- 其中 $f_{\theta}(s,a)$ 是对状态-行动队的打分函数,由 θ 参数化,这可以通过一个神经网络来实现
- □ 其log形式的梯度为

$$\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} = \frac{\partial f_{\theta}(s,a)}{\partial \theta} - \frac{1}{\sum_{a'} e^{f_{\theta}(s,a')}} \sum_{a''} e^{f_{\theta}(s,a'')} \frac{\partial f_{\theta}(s,a'')}{\partial \theta}$$

$$= \frac{\partial f_{\theta}(s,a)}{\partial \theta} - \mathbb{E}_{a' \sim \pi_{\theta}(a'|s)} \left[\frac{\partial f_{\theta}(s,a')}{\partial \theta} \right]$$

策略网络的梯度

□ 其log梯度形式

$$\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} = \frac{\partial f_{\theta}(s,a)}{\partial \theta} - \mathbb{E}_{a' \sim \pi_{\theta}(a'|s)} \left[\frac{\partial f_{\theta}(s,a')}{\partial \theta} \right]$$

□ 策略网络的梯度为

$$\frac{\partial J(\theta)}{\partial \theta} = \mathbb{E}_{\pi_{\theta}} \left[\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} Q^{\pi_{\theta}}(s,a) \right]$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\left(\frac{\partial f_{\theta}(s,a)}{\partial \theta} - \mathbb{E}_{a' \sim \pi_{\theta}(a'|s)} \left[\frac{\partial f_{\theta}(s,a')}{\partial \theta} \right] \right) Q^{\pi_{\theta}}(s,a) \right]$$
反向梯度传播
反向梯度传播

策略梯度和Q学习的对比

- O 学习算法学习一个由 θ 作为参数的函数 $Q_{\theta}(s,a)$
 - 优化目标为最小化TD error

$$J(\theta) = \mathbb{E}_{\pi'} \left[\frac{1}{2} \left(r_t + \gamma \max_{a'} Q_{\theta'}(s_{t+1}, a') - Q_{\theta}(s_t, a_t) \right)^2 \right]$$

• 更新方程
$$\theta \leftarrow \theta - \alpha \frac{\partial J(\theta)}{\partial \theta}$$

$$= \theta + \alpha \mathbb{E}_{\pi'} \left[\left(r_t + \gamma \max_{a'} Q_{\theta'}(s_{t+1}, a') - Q_{\theta}(s_t, a_t) \right) \frac{\partial Q_{\theta}(s, a)}{\partial \theta} \right]$$

- 策略梯度学习一个由 θ 作为参数的策略 $\pi_{\theta}(a|s)$
 - 优化目标直接为策略的价值(比Q学习更加直接)

$$\max_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}}[\pi_{\theta}(a|s) A^{\pi_{\theta}}(s, a)]$$

• 更新方程

$$\theta \leftarrow \theta + \alpha \frac{\partial J(\theta)}{\partial \theta} = \theta + \alpha \mathbb{E}_{\pi_{\theta}} \left[\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} A^{\pi_{\theta}}(s, a) \right]$$

A₃C

复习: Actor-Critic

- □ Actor-Critic的思想
 - REINFORCE策略梯度方法: 使用蒙特卡罗采样直接估计 (s_t, a_t) 的值 G_t
 - 为什么不建立一个可训练的值函数Q_Φ来完成这个估计过程?
- □ 演员 (Actor) 和评论家 (Critic)

演员 $\pi_{\theta}(a|s)$

采取动作使评论 家满意的策略

评论家 $Q_{\Phi}(s,a)$

学会准确估计演 员策略所采取动 作价值的值函数

复习A2C: 优势Actor-Critic

- □ 思想:通过减去一个基线函数来标准化评论家的打分
 - 更多信息指导: 降低较差动作概率, 提高较优动作概率
 - 进一步降低方差
- □ 优势函数 (Advantage Function)

$$A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$$

A3C: 异步A2C方法

- □ A3C代表了异步优势动作评价(Asynchronous Advantage Actor Critic)
 - 异步 (Asynchronous) : 因为算法涉及并行执行一组环境
 - 优势 (Advantage) : 因为策略梯度的更新使用优势函数
 - 动作评价(Actor Critic):因为这是一种动作评价(actor-critic)方法, 它涉及一个在学得的状态值函数帮助下进行更新的策略

$$\nabla_{\theta'} \log \pi(a_t|s_t;\theta') A(s_t,a_t;\theta_v)$$

$$A(s_t, a_t; \theta_v) = \sum_{i=0}^{k-1} \gamma^i r_{t+i} + \gamma^k V(s_{t+k}; \theta_v) - V(s_t; \theta_v)$$

A3C: 异步A2C方法

A3C算法

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

```
// Assume global shared parameter vectors \theta and \theta_v and global shared counter T=0
// Assume thread-specific parameter vectors \theta' and \theta'_{ij}
Initialize thread step counter t \leftarrow 1
repeat
     Reset gradients: d\theta \leftarrow 0 and d\theta_v \leftarrow 0.
     Synchronize thread-specific parameters \theta' = \theta and \theta'_v = \theta_v
     t_{start} = t
     Get state s_t
     repeat
          Perform a_t according to policy \pi(a_t|s_t;\theta')
          Receive reward r_t and new state s_{t+1}
          t \leftarrow t + 1
          T \leftarrow T + 1
     until terminal s_t or t - t_{start} == t_{max}
    R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t, \theta'_v) & \text{for non-terminal } s_t \text{// Bootstrap from last state} \end{cases}
     for i \in \{t - 1, \dots, t_{start}\} do
          R \leftarrow r_i + \gamma R
          Accumulate gradients wrt \theta': d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i;\theta')(R - V(s_i;\theta'_v))
          Accumulate gradients wrt \theta_v': d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta_v'))^2 / \partial \theta_v'
     end for
     Perform asynchronous update of \theta using d\theta and of \theta_v using d\theta_v.
until T > T_{max}
```

A3C对比实验

a single Nvidia K40 GPU while the asynchronous methods were trained using 16 CPU cores

Method	Training Time	Mean	Median	
DQN	8 days on GPU	121.9%	47.5%]]
Gorila	4 days, 100 machines	215.2%	71.3%	
D-DQN	8 days on GPU	332.9%	110.9%	├ Nvidia K40 GPUs
Dueling D-DQN	8 days on GPU	343.8%	117.1%	
Prioritized DQN	8 days on GPU	463.6%	127.6%	ا_ا
A3C, FF	1 day on CPU	344.1%	68.2%	
A3C, FF	4 days on CPU	496.8%	116.6%	├ 16 CPU cores and no GPU
A3C, LSTM	4 days on CPU	623.0%	112.6%	

Mean and median human-normalized scores on 57 Atari games

确定性策略梯度

深度强化学习的分类

- □ 基于价值的方法
 - 深度Q网络及其扩展
- □ 基于随机策略的方法
 - 使用神经网络的策略梯度,自然策略梯度,信任区域策略优化 (TRPO) , 近端策略优化 (PPO) , A3C
- □ 基于确定性策略的方法
 - 确定性策略梯度 (DPG) , DDPG

随机策略与确定性策略

□ 随机策略

对于离散动作
$$\pi(a|s;\theta) = \frac{\exp\{Q_{\theta}(s,a)\}}{\sum_{a'} \exp\{Q_{\theta}(s,a')\}}$$
 对于连续动作
$$\pi(a|s;\theta) \propto \exp\{\left(a - \mu_{\theta}(s)\right)^{2}\}$$

□ 确定性策略

对于离散动作
$$\pi(s;\theta) = \arg\max_{a} Q_{\theta}(s,a)$$
 不可微 对于连续动作 $a = \pi(s;\theta)$ 可微

确定性策略梯度

□ 用于估计状态-动作值的评论家 (critic) 模块

$$Q^w(s,a) \simeq Q^{\pi}(s,a)$$

$$L(w) = \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} \left[\left(Q^{w}(s, a) - Q^{\pi}(s, a) \right)^{2} \right]$$

- □ 确定性策略
 - 确定性策略梯度定理

$$J(\pi_{\theta}) = \mathbb{E}_{s \sim \rho^{\pi}}[Q^{w}(s, a)]$$
 $\nabla_{\theta}J(\pi_{\theta}) = \mathbb{E}_{s \sim \rho^{\pi}}[\nabla_{\theta}\pi_{\theta}(s) \cdot \nabla_{a}Q^{w}(s, a)|_{a=\pi_{\theta}(s)}]$
在线策略

链式法则

确定性策略梯度实验效果

- COPDAC-Q: 当时论文提出的确定 性策略梯度 (off-policy)
- SAC: 随机梯度策略 (on-policy)
- OffPAC-TD: 随机梯度策略 (offpolicy)

深度确定性策略梯度

DDPG: 深度确定性策略梯度

□ 对于确定性策略的梯度

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{s \sim \rho^{\pi}} [\nabla_{\theta} \pi_{\theta}(s) \cdot \nabla_{a} Q^{w}(s, a)|_{a = \pi_{\theta}(s)}]$$

- 在实际应用中,这种带有神经函数近似器的actor-critic方法在面对有 挑战性的问题时是不稳定的
- □ 深度确定性策略梯度 (DDPG) 给出了在确定性策略梯度 (DPG) 基础上的解决方法
 - 经验重放 (离线策略)
 - 目标网络
 - 在动作输入前批标准化Q网络
 - 添加连续噪声

DDPG: 深度确定性策略梯度

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process \mathcal{N} for action exploration

Receive initial observation state s_1

on state s_1 动作上的噪声

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R 离线策略

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i | \theta^Q))^2$ 更新critic网络 (a_i 带有噪声)

Update the actor policy using the sampled gradient:

目标critic网络

$$\nabla_{\theta^{\mu}} \mu|_{s_i} \approx \frac{1}{N} \sum_{i} \nabla_a Q(s, a|\theta^Q)|_{s=s_i, a=\mu(s_i)} \nabla_{\theta^{\mu}} \mu(s|\theta^{\mu})|_{s_i}$$

目标actor网络

更新actor网络

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau) \theta^{\mu'}$$

end for end for

深度确定性策略梯度实验

- □ 确定性策略梯度 (DPG) 及其变种在一系列经典强化学习任务中的表现曲线
 - 浅灰色:使用批标准化的原始DPG算法
 - · 暗灰色:使用目标网络的原始DPG算法
 - 绿色:同时使用目标网络和批标准化
 - 蓝色:使用仅像素作为输入的目标网络

□ 目标网络至关重要

信任区域策略优化 TRPO

Contents

- 01 策略梯度的缺点
- 02 TRPO算法
- 03 策略改进的单调性保证
- 04 实验结果

策略梯度算法回顾

蒙特卡洛策略梯度(REINFORCE)算法 initialize θ arbitrarily for each episode $\{s_1, a_1, r(s_1, a_1), ..., s_T, a_T, r(s_T, a_T)\} \sim \pi_{\theta}$ do for t = 1 to T do $\theta \leftarrow \theta + \alpha \frac{\partial}{\partial \theta} \log \pi_{\theta}(a_t|s_t) G_t$

end for

end for return θ

相关定义

- \square s_t , a_t , $r(s_t, a_t)$: t 时刻的状态, 动作和奖励
- \square π_{θ} , θ : 使用的策略,表示策略所使用的参数
- □ *G_t*: 累计奖励
- □ α: 步长

策略梯度的缺点

步长

- □ 步长难以确定
 - 采集到的数据的分布会随策略的更新而变化。
 - 较差的步长产生的影响大。

策略梯度的优化目标

- □ 优化目标的两种形式
 - 第一种: $J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\sum_t \gamma^t r(s_t, a_t)]$
 - 因为 $V^{\pi_{\theta}}(s) = \mathbb{E}_{a \sim \pi_{\theta}(s)}[Q^{\pi_{\theta}}(s, a)] = \mathbb{E}_{a \sim \pi_{\theta}(s)}[\mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\sum_{s_k = s, a_k = a} \sum_{t = k}^{\infty} \gamma^{t k} r(s_t, a_t)]]$
 - 所以优化目标的第二种形式是: $J(\theta) = \mathbb{E}_{s_0 \sim p_{\theta}(s_0)}[V^{\pi_{\theta}}(s_0)]$

相关定义

- □ τ: 轨迹
- □ *s*₀: 初始状态
- \square s_t , a_t , $r(s_t, a_t)$: t 时刻的状态, 动作和奖励
- □ π_θ: 使用的策略
- □ θ:表示策略所使用的参数
- \square $Q^{\pi_{\theta}}$ 和 $V^{\pi_{\theta}}$: 策略 π_{θ} 下的 Q 值与状态值函数

优化目标的优化量

$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\sum_{t} \gamma^{t} r(s_{t}, a_{t})]$$

$$J(\theta) = \mathbb{E}_{s_{0} \sim p_{\theta}(s_{0})} [V^{\pi_{\theta}}(s_{0})]$$

使用重要性采样

□ 使用重要性采样 (Importance Sampling)

$$J(\theta') - J(\theta)$$

$$= \mathbb{E}_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{\theta}}(s_t, a_t) \right]$$

$$= \sum_{t} \mathbb{E}_{s_t \sim p_{\theta'}(s_t)} [\mathbb{E}_{a_t \sim \pi_{\theta'}(a_t|s_t)} [\gamma^t A^{\pi_{\theta}}(s_t, a_t)]]$$

$$= \sum_{t} \mathbb{E}_{s_t \sim p_{\theta'}(s_t)} [\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} [\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t)]]$$

$$f$$
仍然是 $p_{\theta'}$
(近似操作)

忽略状态分布的差异

- □ 当策略更新前后的变化较小时,可以令 $p_{\theta}(s_t) \approx p_{\theta'}(s_t)$.
 - 假设使用确定性策略, 当 $\pi_{\theta'}(s_t) \neq \pi_{\theta}(s_t)$ 的概率小于 ϵ 时
 - 或者假设使用随机策略, 当 $a' \sim \pi_{\theta'}(\cdot | s_t) \neq a \sim \pi_{\theta}(\cdot | s_t)$ 的概率小于 ϵ 时
 - $p_{\theta'}(s_t) = (1 \epsilon)^t p_{\theta}(s_t) + (1 (1 \epsilon)^t) p_{mistake}(s_t)$
 - $|p_{\theta'}(s_t) p_{\theta}(s_t)| = (1 (1 \epsilon)^t)|p_{mistake}(s_t) p_{\theta}(s_t)| \le 2(1 (1 \epsilon)^t) \le 2\epsilon t$

$$(1 - \epsilon)^t \ge 1 - \epsilon t \text{ for } \epsilon \in [0, 1]$$

$$J(\theta') - J(\theta) \approx \sum_{t} \mathbb{E}_{s_t \sim p_{\theta}(s_t)} \left[\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} \left[\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t) \right] \right]$$

约束策略的变化

□ 使用KL散度约束策略更新的幅度

$$\theta' \leftarrow \arg\max_{\theta'} \sum_{t} \mathbb{E}_{s_t \sim p_{\theta}(s_t)} [\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} [\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t)]]$$
such that $\mathbb{E}_{s_t \sim p(s_t)} [D_{KL} (\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t))] \leq \epsilon$

□ 实际多使用constraint violate as penalty

$$\theta' \leftarrow \arg \max_{\theta'} \sum_{t} \mathbb{E}_{s_t \sim p_{\theta}(s_t)} [\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} [\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t)]] -\lambda (D_{KL}(\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t)) - \epsilon)$$

- 1. 优化上式,更新 θ '
- 2. 更新 $\lambda \leftarrow \lambda + \alpha(D_{KL}(\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t)) \epsilon)$

Natural Policy Gradient

schemes. The natural policy gradient (Kakade, 2002) can be obtained as a special case of the update in Equation (12) by using a linear approximation to L and a quadratic approximation to the $\overline{D}_{\rm KL}$ constraint, resulting in the following problem:

$$\begin{aligned} & \underset{\theta}{\text{maximize}} \left[\nabla_{\theta} L_{\theta_{\text{old}}}(\theta) \big|_{\theta = \theta_{\text{old}}} \cdot (\theta - \theta_{\text{old}}) \right] \\ & \text{subject to } \frac{1}{2} (\theta_{\text{old}} - \theta)^T A(\theta_{\text{old}}) (\theta_{\text{old}} - \theta) \leq \delta, \\ & \text{where } A(\theta_{\text{old}})_{ij} = \\ & \frac{\partial}{\partial \theta_i} \frac{\partial}{\partial \theta_j} \mathbb{E}_{s \sim \rho_{\pi}} \left[D_{\text{KL}}(\pi(\cdot | s, \theta_{\text{old}}) \parallel \pi(\cdot | s, \theta)) \right] \big|_{\theta = \theta_{\text{old}}}. \end{aligned}$$

The update is $\theta_{\text{new}} = \theta_{\text{old}} + \frac{1}{\lambda} A(\theta_{\text{old}})^{-1} \nabla_{\theta} L(\theta) \big|_{\theta = \theta_{\text{old}}}$,

TRPO的原理

Line search (like gradient ascent)

Optimization in Trust Region

策略改进的单调性保证

$$J(\theta') \geq L_{\theta}(\theta') - C \cdot D_{KL}^{max}(\theta, \theta'), where \ C = \frac{4\epsilon\gamma}{(1-\gamma)^2}, \epsilon = \max_{s,a} |A_{\pi}(s, a)|$$

$$L_{\theta}(\theta') = J(\theta) + \sum_{t} \mathbb{E}_{s_t \sim p_{\theta}(s_t)} [\mathbb{E}_{a_t \sim \pi_{\theta}}(a_t|s_t) [\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t)]]$$

训练曲线

Walker

Hopper

结果比较

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random Human (Mnih et al., 2013)	354 7456	1.2 31.0	0 368	$-20.4 \\ -3.0$	157 18900	110 28010	179 3690
Deep Q Learning (Mnih et al., 2013)	4092	168.0	470	20.0	1952	1705	581
UCC-I (Guo et al., 2014)	5702	380	741	21	20025	2995	692
TRPO - single path TRPO - vine	1425.2 859.5	10.8 34.2	534.6 430.8	20.9 20.9	1973.5 7732.5	1908.6 788.4	568.4 450.2

推荐阅读

PPO

- □ TRPO的不足
 - 近似带来误差
 - 求解约束优化问题的困难
- □ PPO算法
 - 理论更简洁,操作更简单,实验效果更好
 - 推荐阅读 Proximal Policy Optimization Algorithms, John Schulman, et al. (2017)

™ FOLLOW

John Schulman

Research Scientist, OpenAl Verified email at openai.com - <u>Homepage</u> Artificial Intelligence Robotics Neuroscience

TITLE	CITED BY	YEAR
Proximal policy optimization algorithms J Schulman, F Wolski, P Dhariwal, A Radford, O Klimov arXiv preprint arXiv:1707.06347	7028	2017
Trust region policy optimization J Schulman, S Levine, P Abbeel, M Jordan, P Moritz International conference on machine learning, 1889-1897	4720	2015

近端策略优化 Proximal Policy Optimization

回顾TRPO

□ TRPO使用KL散度约束策略更新的幅度

$$\theta' \leftarrow \arg\max_{\theta'} \sum_{t} \mathbb{E}_{s_t \sim p_{\theta}(s_t)} [\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} [\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t)]]$$
such that $D_{KL}(\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t)) \leq \epsilon$

使用constraint violate as penalty

$$\theta' \leftarrow \arg\max_{\theta'} \sum_{t} \mathbb{E}_{s_t \sim p_{\theta}(s_t)} [\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} [\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t)]] -\lambda(D_{KL}(\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t)) - \epsilon)$$

- 1. 优化上式, 更新 θ'
- 2. 更新 $\lambda \leftarrow \lambda + \alpha(D_{KL}(\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t)) \epsilon)$

TRPO的不足

- □ 重要性比例带来的大方差
- □ 求解约束优化问题的困难

PPO: Proximal Policy Optimization

PPO在TRPO基础上的改进

1. 截断式优化目标

conservative policy iteration

$$L^{CPI}(\theta) = \widehat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \hat{A}_t \right] = \widehat{\mathbb{E}}_t \left[r_t(\theta) \hat{A}_t \right]$$

$$L^{CLIP}(\theta) = \widehat{\mathbb{E}}_t \left[\min \left(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]$$

构建下界

$$L^{CLIP}(\theta) \leq L^{CPI}(\theta)$$

在
$$r = 1$$
附近相等
$$L^{CLIP}(\theta) = L^{CPI}(\theta)$$

PPO: Proximal Policy Optimization

PPO在TRPO基础上的改进

1. 截断式优化目标

conservative policy iteration

$$L^{CPI}(\theta) = \widehat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \hat{A}_t \right] = \widehat{\mathbb{E}}_t \left[r_t(\theta) \hat{A}_t \right]$$

$$L^{CLIP}(\theta) = \widehat{\mathbb{E}}_t \left[\min \left(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]$$

2. 优势函数Â_t选用多步时序差分

$$\hat{A}_t = -V(s_t) + r_t + \gamma r_{t+1} + \dots + \gamma^{T-t+1} r_{T-1} + \gamma^{T-t} V(s_T)$$

- 在每次迭代中,并行N个actor收集T步经验数据
- 计算每步的 \hat{A}_t 和 $L^{CLIP}(\theta)$,构成mini-batch
- 更新参数θ,并更新θ_{old} ← θ

PPO: Proximal Policy Optimization

PPO在TRPO基础上的改进

3. 自适应的KL惩罚项参数

$$L^{KLPEN}(\theta) = \widehat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \hat{A}_t - \beta \text{ KL}[\pi_{\theta_{\text{old}}}(\cdot|s_t)|\pi_{\theta}(\cdot|s_t)] \right]$$

动态调整β方法

- 计算KL值 $d = \widehat{\mathbb{E}}_t \left[\text{KL} \left[\pi_{\theta_{\text{old}}}(\cdot | s_t) \middle| \pi_{\theta}(\cdot | s_t) \right] \right]$
 - a) 如果 $d < d_{\text{targ}}/1.5$,更新 $\beta \leftarrow \beta/2$
 - b) 如果 $d > d_{\text{targ}} \times 1.5$,更新 $\beta \leftarrow \beta \times 2$

注:这里1.5和2是经验参数,算法效能和它们并不是很敏感

PPO实验对比

No clipping or penalty:

$$L_t(\theta) = r_t(\theta)\hat{A}_t$$

Clipping:

$$L_t(\theta) = \min(r_t(\theta)\hat{A}_t, \operatorname{clip}(r_t(\theta)), 1 - \epsilon, 1 + \epsilon)\hat{A}_t$$

- KL penalty (fixed or adaptive) $L_t(\theta) = r_t(\theta) \hat{A}_t \beta \text{ KL}[\pi_{\theta_{\text{old}}}, \pi_{\theta}]$
 - 7个连续控制的环境
 - 3个random seed
 - 每个算法跑100个 episode, 跑21遍, 做 平均值计算
 - 最佳score归一化为1

algorithm	avg. normalized score
No clipping or penalty	-0.39
Clipping, $\epsilon = 0.1$	0.76
Clipping, $\epsilon = 0.2$	0.82
Clipping, $\epsilon = 0.3$	0.70
Adaptive KL $d_{\text{targ}} = 0.003$	0.68
Adaptive KL $d_{\text{targ}} = 0.01$	0.74
Adaptive KL $d_{\text{targ}} = 0.03$	0.71
Fixed KL, $\beta = 0.3$	0.62
Fixed KL, $\beta = 1$.	0.71
Fixed KL, $\beta = 3$.	0.72
Fixed KL, $\beta = 10$.	0.69

PPO实验对比

总结深度策略梯度方法

- 相比价值函数学习最小化TD误差的目标,策略梯度方法直接优化策略价值的目标 更加贴合强化学习本质目标
- 基于神经网络的策略在优化时容易因为一步走得太大而变得很差,进而下一轮产生 很低质量的经验数据,进一步无法学习好
- Trust Region一类方法限制一步更新前后策略的差距(用KL散度),进而对策略价值做稳步地提升
- PPO在TRPO的基础上进一步通过限制importance ratio的range,构建优化目标的下界,进一步保证优化的稳定效果,是目前最常用的深度策略梯度算法
- 针对连续动作的决定性策略,可以从构建的critic中直接回传梯度到动作上,然后通过链式法则进一步将梯度回传到策略网络中
- 分布式的actor-critic算法能够充分利用多核CPU资源采样环境的经验数据,利用
 GPU资源异步地更新网络,这有效提升了DRL的训练效率

THANK YOU