RELATÓRIO EXPERIMENTO 4 (SEMANA 2)

por Ricardo Rocha, Rafael Augustus e Cláudio Nascimento Professor: Leonardo Cristiano Campos

Gráfico e Tabela (equação da reta na descrição do gráfico)

Imagem 1: Gráfico da Força (N) por Variação de Altura (m). Pode-se aproximar o resultado do gráfico pela equação **F** = (0,2371)*y + 0,0075. Fonte: Autoral, produzido em Python, equação obtida via Regressão Linear em Python com a biblioteca Scikit Learn (sklearn).

Nº	Força (N)	Variação da Altura (m)	Massa (Kg)
1	0.0489 ± 0,0490	0.015	0.005
2	0.0978 ± 0,0490	0.03	0.01
3	0.1467 ± 0,0490	0.043	0.015
4	0.1956 ± 0,0490	0.056	0.02
5	0.2445 ± 0,0490	0.068	0.025
6	0.2934 ± 0,0490	0.079	0.03
7	0.3423 ± 0,0490	0.089	0.035
8	0.3912 ± 0,0490	0.099	0.04
9	0.4401 ± 0,0490	0.108	0.045

Imagem 2: Tabela de dados. Fonte: Autoral, produzida em Python.

Introdução e Equações

Utilizando uma haste de material metálico e passível de sofrer deformação elástica, aplicou-se uma força vertical (F) em uma de suas extremidades enquanto a outra permanecia fixa. Observou-se então uma variação de altura (y) na extremidade com o peso. Com base nas forças verticais e alturas medidas, foi possível determinar a constante de flexão (Kf). Sabe-se que esta constante e o módulo de Young (E) estão relacionadas e, com o restante das medidas da haste, foi possível estimar o valor deste módulo para o material apresentado. O módulo de Young depende apenas do material utilizado.

Isso é expresso pelas equações:

 $Kf = \frac{F}{y} \mid Kf$ = constante de flexão (N/m), F = força vertical (mg), y = altura deslocada (m)

 $E = \frac{Kf \cdot 4 \cdot x^3}{l \cdot e^3}$ | E = M'odulo de Young (Pa), $Kf = \text{constante de flex\~ao (N/m)}$, x = comprimento da haste (m), l = largura da haste (m), e = espessura da haste (m)

<u>Objetivo</u>

Medir a constante de flexão de uma haste metálica.

Material utilizado

Haste, prendedor, suporte, objetos de massa $(5,0 \pm 0,1)$ g e régua milimetrada.

Procedimento

Após terem sidos realizados as medições em laboratório da variação de altura por peso adicionado, realizaram-se os seguintes passos teóricos:

1) Utilizar a equação $Kf = \frac{F}{y}$ para determinar a constante de flexão (F e y medidos experimentalmente).

2) Substituir a constante de flexão encontrada em $E = \frac{Kf \cdot 4 \cdot x^3}{l \cdot e^3}$ (x, l e e medidos experimentalmente) e determinar o Módulo de Young (E).

Cáculos Realizados

O cálculo da incerteza da força foi realizado mediante a seguinte fórmula:

$$\Delta F = \sqrt{((\partial F/\partial g) \cdot \Delta g)^2 + ((\partial F/\partial m) \cdot \Delta m)^2}$$

O resultado encontrado foi + 0.0490 N.

O cálculo da incerteza do módulo de Young foi realizado mediante a seguinte fórmula:

$$\Delta E = \sqrt{((\partial E/\partial x) \cdot \Delta x)^2 + ((\partial E/\partial Kf) \cdot \Delta Kf)^2 + ((\partial E/\partial e) \cdot \Delta e)^2 + ((\partial E/\partial l) \cdot \Delta l)^2}$$

O resultado encontrado foi ± 17494, 2571 *Pa*.

Os algarismos significativos foram estabelecidos da seguinte maneira:

- 3 algarismos significativos e 1 duvidoso após a vírgula para a força (por referência).
- 4 algarismos significativos e 1 duvidoso após a vírgula para as medidas de distância (pela precisão do paquímetro).
- Pela propagação da incerteza, a constante de flexão e o módulo de Young (em Pascal) possuem 3 algarismos significativos e 1 duvidoso após a vírgula.
- O módulo de Young apresentado abaixo está em GigaPascal, portanto terá precisão de 13 casas decimais (12 significativas e 1 duvidosa).

Resultado e Conclusões

Chegou-se, experimentalmente, a uma constante de flexão de 3,6230 N/m e um módulo de Young do material de 76,5884297520661 GPa. Não se pode determinar ao certo um material em específico que compõe a haste neste caso, porém o módulo de Young não está muito distante do que seria esperado do alumínio (~70GPa). Caso o material seja alumínio, uma possível causa da discrepância é uma irregularidade na haste ou defeitos em sua constituição.

<u>Referências</u>

https://www.fisica.ufmg.br/ciclo-basico/wp-content/uploads/sites/4/2020/05/Deformac

ao_Elastica_de_uma_Haste.pdf

"Modelo de trabalho a ser entregue - FIS Experimental", Leonardo Campos Notas de aula por Leonardo Campos, anotadas por Rafael Augustus https://github.com/RicardoRocha1/experimento4