```
[root@dev ~]# cat hello.sh
```

```
#!/bin/bash
echo "Bem vindos!";
```

[root@dev ~]# whoami Rafael Rêgo

[root@dev ~]# mail -s 'Contato' rafael.force@gmail.com, whatsapp 98860-7630

[root@dev ~]# cat today.txt

- → Tópico 101: Arquitetura do sistema
- → 101.1 Determinar e configurar o hardware
 - O candidato deve estar apto a configurar dispositivos de hardware do sistema

- → O Linux suporta uma grande quantidade de dispositivos e basicamente faz isso via módulos
- → Os dispositivos disponíveis para o Linux precisam ter módulos que podem ser carregados na inicialização ou com o sistema já inicializado
- → Ou podem ser descarregados interrompendo a funcionalidade dos dispositivos
- → O sistema udev nomeia dinamicamente e cria os dispositivos lógicos para acesso a esse hardware detectado

- → E o HAL (hardware abstraction layer) passa informações sobre mudanças de hardware pra camada do usuário (user space), mas o HAL está sendo incorporado pelo udev
- → O udev é o sucessor do devfs e do hotplug e está incorporando o HAL e sua função básica é gerenciar dispositivos do sistema, nomeando dinamicamente e localizando abaixo do /dev

[root@dev ~]# cat filesystem.txt

- → Os principais diretórios no sistema operacional que criam apontamentos para dispositivos do sistema são os seguintes:
 - > /sys
 - > /proc
 - > /dev

- → Introduzido no kernel 2.6 o sysfs é uma união do proc, devfs e devpty
- → O sysfs enumera os dispositivos e barramentos conectados ao sistema em uma hierarquia no sistema de arquivos que pode ser acessado pelo usuário
- → O sysfs é montado no /sys e contém diretórios que organizam os dispositivos conectados de várias formas diferentes

- → A estrutura de diretórios do sysfs contém:
 - /devices/: Representa através de subdiretórios todos os subcanais detectados pelo kernel (endereço lógico para acesso ao dispositivo)
 - /bus/: Contém dispositivos acessados via canal e que podem usar mais de um subcanal por dispositivo
 - /class/: Contém diretórios que agrupam dispositivos similares como ttys, SCSI tapes, dispositivos de rede etc.

- → A estrutura de diretórios do sysfs contém:
 - /block/: Representa através de subdiretórios todos os subcanais detectados pelo kernel (endereço lógico para acesso ao dispositivo)

- → Os principais comandos para trabalhar com hardware no linux são os seguintes:
 - Isusb, Ispci, modprobe, Ismod, uname, Ishw, Iscpu, Isblk, Isscsi, dmidecode

[root@dev ~]# Isusb

- → Instalação: yum install usbutils
- → Descrição: apresentar dispositivos USB e barramento se existentes
- → Principais parâmetros:
 - -v: apresenta informações detalhadas sobre cada dispositivo USB
- → Manpage: man Isusb

[root@dev ~]# Ispci

- → Instalação: yum install pciutils
- → Descrição: apresentar dispositivos e barramentos PCI
- → Principais parâmetros:
 - -v: apresenta informações detalhadas sobre cada dispositivo PCI
 - -t: apresenta a saída em forma de árvore para facilitar o entendimento da hierarquia
- → Manpage: man Ispci

[root@dev ~]# modprobe ip-tables

- → Instalação: [base]
- → Descrição: carregar ou remover módulos
- → Principais parâmetros:
 - > -f: força ou inserção ou remoção do módulo
 - > -D: imprime as dependência do módulo
 - > -r: remove o módulo ou invés de inserir
- → Manpage: man modprobe

[root@dev ~]# Ismod

→ Instalação: [base]

→ Descrição: listar módulos carregados

→ Manpage: man Ismod

[root@dev ~]# uname -a

- → Instalação: [base]
- → Descrição: mostra informações da arquitetura do hardware e do kernel
- → Principais parâmetros:
 - > -a: lista todas as informações disponíveis
- → Manpage: man uname

[root@dev ~]# Ishw -c net

- → Instalação: yum install Ishw
- → Descrição: apresenta informações detalhadas da configuração de hardware da máquina
- → Principais parâmetros:
 - -c: apresenta informações apenas da classe informada
- → Manpage: man Ishw

[root@dev ~]# Iscpu

- → Instalação: [base]
- → Descrição: apresenta informações da arquitetura da cpu a partir do /proc e /sys
- → Principais parâmetros:
 - -a: apresenta informações apenas de processadores online e offline
- → Manpage: man Iscpu

[root@dev ~]# lsblk

- → Instalação: [base]
- → Descrição: lista informação de todos os dispositivos de bloco
- → Nota:
 - Major: seleciona qual device driver é chamado para operação de I/O
 - Minor: é passado como parâmetro para chamada da operação de I/O
- → Manpage: man Isblk

[root@dev ~]# Isscsi -g

- → Instalação: [base]
- → Descrição: lista informações de dispostivos sas, sata e scsi conectados ao sistema, consulta informações do sysfs
- → Principais parâmetros:
 - > -g: mostra informações dos drives genéricos
 - > -c: saída classica do comando
- → Manpage: man Isscsi

[root@dev ~]# dmidecode

- → Instalação: [base]
- → Descrição: apresenta uma descrição dos componentes de hardware do sistema
- → Manpage: man dmidecode

[root@dev ~]# cat today.txt

- → Tópico 101: Arquitetura do sistema
- → 101.2 Boot do sistema
 - O candidato deve estar apto a guiar através do processo de boot do sistema

- → O gerenciador de boot padrão do linux é o Grub que atualmente está na versão 2
- → SYSLINUX também é um outro gerenciador de boot do linux, mas é mais usado para boot de Cds e Dvds e seu uso para boot de sistemas linux é desaconselhado
- → O principal arquivo de configuração do grub2 é /boot/grub2/grub.cfg
- → Diferente da versão 1 do grub a versão 2 é manipulada a partir do arquivo /etc/default/grub e do diretório /etc/grub.d

- → O arquivo grub.cfg contém sintaxe de script incluindo comandos de loop, funções e variáveis
- → Os dispostivos de disco agora são identificados por UUID (Indetificador Único Universal) para evitar perda de boot em caso de troca do nome do dispositivo (Ex: /dev/sda passar a ser /dev/sdb)
- → Vamos analisar alguns arquivos em /etc/grub.d/ ...

[root@dev ~]# apropos grub2

- → Os principais comandos para trabalhar com o grub são os seguintes:
 - > grubby, grub2-mkconfig, grub2-set-default

[root@dev ~]# grubby

- → Instalação: [base]
- → Descrição: linha de comando para configurar o grub
- → Exemplos:
 - grubby --default-kernel
 - grubby --default-index
 - grubby -info=ALL
 - > grubby --set-default /boot/vmlinuz-x.y.z-a.b.c
- → Manpage: man grubby

[root@dev ~]# grub2-mkconfig

- → Instalação: [base]
- → Descrição: Gera um arquivo de configuração do grub2
- → Exemplos:
 - > grub2-mkconfig -o /boot/grub2/grub.cfg
- → Manpage: man grub2-mkconfig

[root@dev ~]# grub2-set-default

- → Instalação: [base]
- → Descrição: Define a opção default de boot pro grub
- → Exemplos:
 - grub2-set-default 2
- → Manpage: man grub2-set-default

- → O Linux tem dois métodos para gerenciar a inicialização de serviços e do próprio sistema que são:
 - > System V initialisation
 - Systemd

[root@dev ~]# cat intro.txt

→ A inicialização do Linux no modelo System V (SysVInit) é organizado na seguinte estrutura de diretórios:

> /etc/rc.d

init.d rc3.d

rc0.d rc4.d

rc1.d rc5.d

rc2.d rc6.d

- → Cada um desses índices (rc?.d) estava relacionado a um respectivo runlevel
- → Estes são os seguintes runlevels possíveis:
 - > 0 hatl
 - > 1 modo single (mono usuário sem rede)
 - 2 multiusuário sem rede (definido pelo usuário)
 - > 3 modo multiusuário com rede
 - > 4 não utilizado ou definido pelo usuário

- > 5 multiusuário modo gráfico
- > 6 reboot

- → A seleção de qual runlevel será iniciado por padrão é definida no arquivo /etc/inittab e tem a seguinte sintaxe:
 - id:5:initdefault
- → E o controle do que é iniciado ou não pelo sistema é feito por meio da ferramenta chkconfig ou ntsysv (ou a interface gráfica system-config-services)

- → O modelo systemd é mais centralizador e por meio de algumas ferramentas permite controlar melhor o sistema com menos contato com arquivos de configuração
- → No próximo slide vamos apresentar algumas tabelas com comparativos entre os dois modelos

Descrição	SysVInit	Systemd
RunLevel Halt	0	runlevel0.target, poweroff.target
Single User Mode	1	runlevel1.target, rescue.target
Multiusuário	2	runlevel2.target, multi- user.target
Multiusuário com Rede	3	runlevel3.target, multi- user.target
Run Level 4	4	runlevel4.target, multi- user.target
Multiusuário com interaface gráfica e rede	5	Runlevel5.target, graphical.target
Shell emergência	emergency	emergency.target
Mudar run level	telinit 3	systemctl isolate runlevel3.target

Descrição	SysVInit	Systemd
Configurar run level 3 para próximo boot	Editar /etc/inittab	In -sf /lib/system/system/multi- user.target /etc/systemd/system/default.ta rget
Verificar o run level atual	runlevel	systemctl get-default

- → As diferenças entre o SysVInit e Systemd não param por ai ...
- → No modelo SysVInit o utilitário service controlava os serviços em execução ou não no sistema e com ele era possível para ou iniciar deamons etc. No caso de habilitar ou desabilitar serviço ficava a cargo chkconfig, mas no modelo systemd tudo isso ficou a cargo de uma única ferramenta
- → Vamos apresentar mais alguns slides com os comparativos ...

Descrição	SysVInit	Systemd
Iniciar um serviço	service serviço start	systemctl start serviço
Para um serviço	service serviço stop	systemctl stop serviço
Reiniciar um serviço	service serviço restart	systemctl restart serviço
Recarregar um serviço	service serviço reload	systemctl reload serviço
Verificar status de um serviço	service serviço status	systemctl status serviço
Habilitar um serviço no boot	chkconfig serviço on	systemctl enable serviço
Desabilitar um serviço no boot	chkconfig serviço off	systemctl disable serviço
Verificar se um serviço está habilitado	Chkconfiglist serviço	systemctl is-enable serviço

- → Até mesmo nas tarefas mais básicas como rebootar o sistema e verificar logs o systemd mudou a forma de realizar isso
- → Observe que o systemd tenta concentrar a maior parte das funções de controle na ferramenta systemctl ...

Descrição	SysVInit	Systemd
Desligar o sistema	halt	systemctl halt
Desligar um sistema com poweroff	poweroff	systemctl poweroff
Reiniciar um sistema	reboot	systemctl reboot
Suspender um sistema	pm-suspend	systemctl suspend
Hibernar um sistema	pm-hibernate	systemctl hibernate
Verificar logs do sistema	tail -f /var/log/messages ou tail -f /var/log/syslog	journalctl -f

[root@dev ~]# apropos SysVInit Systemd

- → Os principais comandos para trabalhar com os dois modelos de controle de inicialização do sistema e de serviços:
 - service, chkconfig, ntsysv, dmesg, /var/log/messages
 - » systemctl e journalctl

[root@dev ~]# service postfix status

- → Instalação: [base]
- → Descrição: Controla ou verifica o status de um serviço
- → Ações possíveis:
 - > stop
 - > start
 - restart, reload
 - > status
- → Manpage: man service

[root@dev ~]# chkconfig --list

- → Instalação: [base]
- → Descrição: Habilita ou desabilita um serviço
- → Ações possíveis:
 - --add: habilita um serviço
 - > --del: desabilita um serviço
 - --level [0123456] serviço on off: indica em qual level o serviço deve ser habilitado ou desabilitado
- → Manpage: man chkconfig

[root@dev ~]# ntsysv

- → Instalação: yum install ntsysv
- → Descrição: Habilita ou desabilita um serviço
- → Ações possíveis:
 - [interface gráfica]
- → Manpage: man ntsysv

[root@dev ~]# dmesg

- → Instalação: [base]
- → Descrição: lista informações registradas pelo kernel durante inicialização do sistema
- → Manpage: man dmesg

[root@dev ~]# tail -100 /var/log/messages

- → Instalação: [base]
- → Descrição: Armazena informações registradas pelo kernel ou por serviços do sistema em tempo de execução

[root@dev ~]# systemctl -t service

- → Instalação: [base]
- → Descrição: Habilita, desabilita, para, inicia, reinicia etc.
- → Ações possíveis:
 - > start, stop: inicia ou para um serviço
 - > enable, disable: habilita ou desabilita um serviço
 - > -t service: lista todos os serviços
- → Manpage: man systemctl

[root@dev ~]# journalctl -f

- → Instalação: [base]
- → Descrição: Verifica informações geradas/gerenciadas pelo systemd
- → Principais parâmetros:
 - -f: igual ao tail -f (lê continuamente ou monitora o arquivo)
 - > -k: imprime apenas as mensagens do kernel
- → Manpage: man journalctl

