Pre-Calculus Exercises

A. Prove the following identities.

1.
$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

2.
$$\sin(3x) = 3\sin(x) - 4\sin(x)^3$$

2.
$$\sin(3x) = 3\sin(x) - 4\sin(x)^3$$
 3. $\cos(x)\cos(y) = \frac{\cos(x-y) + \cos(x+y)}{2}$

B. Refer to the diagram of the triangle. Find the indicated value for each given set of angle and side measurements.

1.
$$a = 6$$
, $B = \pi/2$, $A = \pi/4$, $c = ?$

2.
$$a = 1, b = 1, C = \pi/3, c = ?$$

3.
$$A = \pi/2$$
, $b = 3$, $C = \pi/4$, $a = ?$

4.
$$C = \pi/2$$
, $a = 1$, $b = 1$, $c = ?$

5.
$$a = b = c = 1, A = ?$$

C. Draw the following sets on a number line.

1.
$$(0,3) \cup (4,6)$$

3.
$$\{2x : x \in \mathbb{R}\} \cap (0, 10)$$

5.
$$\{x \in \mathbb{R} : x^2 - 4 < 0\}$$

2.
$$[0,5] \cap (1,10]$$

4.
$$\{x^2 : x \in \mathbb{R}\} \cup \{0, 1\}$$
 6. $\{x \in \mathbb{R} : x^2 > 0\}$

$$6 \quad \{ x \in \mathbb{R} : r^2 > 0 \}$$

D. For each real-function, state the (largest possible) domain and range. whether the function is injective, surjective, and/or bijective. Then find a restricted domain and codomain on which the function is invertible, and find its inverse.

1.
$$f(x) = \sqrt{x}$$

4.
$$f(x) = \frac{1}{x+1}$$

7.
$$f(x) = \tan(x)$$

2.
$$f(x) = x^3$$

5.
$$f(x) = \frac{x}{x^2 + x}$$

8.
$$f(x) = \csc(x)$$

3.
$$f(x) = x^4$$

6.
$$f(x) = \cos(x)$$

9.
$$f(x) = \log_2(x)$$