ELEC 401: Analog CMOS Integrated Circuit Design Set 6

Opamp Design

References: "Analog Integrated Circuit Design" by D. Johns and K. Martin and "Design of Analog CMOS Integrated Circuits" by B. Razavi

All figures in this set of slides are taken from the above books

Shahriar Mirabbasi
Department of Electrical and Computer Engineering
University of British Columbia
shahriar@ece.ubc.ca

General Considerations

- Gain
- Small-signal bandwidth
- Large-signal performance
- Output swing
- Input common-mode range
- Linearity
- Noise/offset
- Supply rejection

One-Stage Op Amps

One-Stage Op Amp in Unity Gain Configuration

Cascode Op Amps

Unity Gain One Stage Cascode

Folded Cascode Op Amps

Folded Cascode Stages

Folded Cascode (cont.)

Folded Cascode (cont.)

$$|A_v| \approx g_{m1} \{ [(g_{m3} + g_{mb3}) r_{o3} (r_{o1} || r_{o5})] || [(g_{m7} + g_{mb7}) r_{o7} r_{o9}] \}$$

Telescopic versus Folded Cascode

Example Folded-Cascode Op Amp

Single-Ended Output Cascode Op Amps

Triple Cascode

 A_{v} app. $(g_{m}r_{o})^{3}/2$

Limited Output Swing

Complex biasing

Output Impedance Enhancement

$$R_{out} = A_1 g_{m2} r_{o2} r_{o1}$$

Gain Boosting in Cascode Stage

Differential Gain Boosting

Differential Gain Boosting

Differential Gain Boosting

Two-Stage Op Amps

Single-Ended Output Two-Stage Op Amp

Two-Stage CMOS Opamp

- Popular opamp design approach
- A good example to review many important design concepts
- Output buffer is typically used to drive resistive loads
- For capacitive loads (typical case in CMOS) buffer is not required.

Two-Stage CMOS Opamp Example

all transistor lengths = 1.6 μ m (1 μ m technology was used!)

Gain of the Opamp

First Stage

Differential to single-ended

$$A_{v1} = g_{m1}(r_{O2} || r_{O4})$$

$$g_{m1} = \sqrt{2\mu_{p}C_{ox}(\frac{W}{L})_{1}I_{D1}} = \sqrt{2\mu_{p}C_{ox}(\frac{W}{L})_{1}\frac{I_{bias}}{2}}$$

Second Stage

Common-source stage

$$A_{v2} = -g_{m7}(r_{O6} || r_{O7})$$

Output buffer is not required when driving capacitive loads

Gain of the Opamp

Third Stage

Source follower

$$A_{v3} \cong \frac{g_{m8}}{g_{m8} + G_L + g_{mb8} + g_{o8} + g_{o9}}$$

- Typical gain: between 0.7 to1
- Note: g_o=1/r_o and G_L=1/R_L
- g_{mb} is body-effect conductance (is zero if source can be tied to substrate)

Simplifying assumptions:

- *C_C* dominates
- Ignore Q₁₆ for the time being (it is used for lead compensation)

Miller effect results in

$$C_{eq} = C_C(1 + A_2) \cong C_C A_2$$

At midband frequencies

$$Z_{eq} = r_{O2} \| r_{O4} \| 1/sC_{eq} \cong 1 /(sC_CA_2)$$

 $A_1 = g_{m1}Z_{eq} = g_{m1}/(sC_CA_2)$

Overall gain (assuming A₃ ≈1)

$$A_{v}(s) = A_{2}A_{1} = g_{m1}/(sC_{C})$$

which results in a unity-gain frequency of

$$\omega_{ta} = g_{m1}/C_C$$

• Note: ω_{ta} is directly proportional to g_{m1} and inversely proportional to C_C .

First-order model

Slew Rate

Maximum rate of output change when input signal is large.

All the bias current of Q5 goes either into Q1 or Q2.

Slew Rate

Thus

$$SR = \frac{d v_{out}}{dt} \bigg|_{\text{max}} = \frac{I_{C_C}|_{\text{max}}}{C_C} = \frac{I_{D5}}{C_C} = \frac{2I_{D1}}{C_C}$$

 I_{D1} is nominal bias current of input transistors

• Using
$$C_C = g_{m1}/\omega_{ta}$$
 and $g_{m1} = \sqrt{2\mu_p C_{ox} \left(\frac{W}{L}\right)_1 I_{D1}}$
$$SR = \frac{2I_{D1}}{\sqrt{2\mu_p C_{ox} (W/L)_1 I_{D1}}} \omega_{ta} = V_{eff1} \omega_{ta}$$
 where $V_{eff1} = \sqrt{\frac{2I_{D1}}{\mu_p C_{ox} (W/L)_1}}$

Slew Rate

$$SR = V_{eff1}\omega_{ta}$$

Normally, the designer has not much control over ω_{ta}

- Slew-rate can be increased by increasing $V_{\it eff1}$
- This is one of the reasons for using p-channel input stage: higher slew-rate

Systematic Offset Voltage

 To ensure inherent (systematic) offset voltage does not exist, nominal current through Q7 should equal to that of Q6 when the differential input is zero.

Systematic Offset Voltage

Avoid systematic offset by choosing:

$$\frac{(W/L)_7}{(W/L)_4} = 2\frac{(W/L)_6}{(W/L)_5}$$

Found by noting

$$I_{D5} = 2I_{D3} = 2I_{D4}$$

and

$$V_{GS7} = V_{DS3} = V_{GS4}$$

then setting $I_{D7} = I_{D6}$

N-Channel versus P-Channel Input Stage

- Complimentary opamp can be designed with an n-channel input differential pair and p-channel second-stage
- Overall gain would be roughly the same in both designs

P-channel Advantages

- Higher slew-rate: for fixed bias current, V_{eff} is larger (assuming similar widths used for maximum gain)
- Higher frequency of operation: higher transconductance of second stage which results in higher unity-gain frequency
- Lower 1/f noise: holes less likely to be trapped; p-channel transistors have lower 1/f noise
- N-channel source follower is preferable (less voltage drop and higher g_m)

N-channel Advantage

 Lower thermal noise — thermal noise is lowered by high transconductance of first stage

Feedback and Opamp Compensation

- Feedback systems may oscillate
- The following two are the oscillation conditions:

$$|\beta H(j\omega)| = 1$$

 $\angle \beta H(j\omega) = -180$

Stable and Unstable Systems

Time-domain response of a feedback system

One-pole system

$$H(s) = \frac{A_0}{1 + \frac{s}{\omega_0}}$$

$$\frac{Y}{X}(s) = \frac{\frac{A_0}{1 + \beta A_0}}{1 + \frac{s}{\omega_0 (1 + \beta A_0)}}$$

$$S_p = -\omega_0 \left(1 + \beta A_0 \right)$$

Bode plot of the Loop gain

Multi-pole system

Bode plot of the Loop gain

Phase Margin

Phase Margin

$$\left| \frac{Y}{X}(s) \right| = \frac{11.5}{\beta}$$

Closed loop frequency response

Phase Margin (Cont.)

Phase Margin = 45°

Phase Margin (Cont.)

Phase Margin = 45°

Phase Margin (Cont.)

- At PM = 60° results in a small overshoot in the step response.
- If we increase PM, the system will be more stable but the time response slows down.

Frequency Compensation

- Push phase crossing point out
- Push gain crossing point in

Telescopic Opamp (single-ended) -example

Compensation (Cont.)

 Assume we need a phase margin of 45° (usually inadequate) and other non-dominant poles are at high frequency.

Compensation of a two-stage opamp

$$\begin{aligned} \textit{Miller Effect} \quad & C_{eq} = C_E + (1 + A_{v2})C_C \\ & f_{pE} = \frac{1}{2\pi R_{out}[C_E + (1 + A_{v2})C_C]} \end{aligned}$$

Compensating Two-Stage Opamps

Compensating Two-Stage Opamps

• Q16 has V_{DS16} = 0 therefore it is hard in the triode region.

$$R_C = r_{ds16} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)_{16} V_{eff16}}$$

• Small signal analysis: without R_C , a right-half plane zero occurs and worsens the phase-margin.

Compensating Two-Stage Opamps

Using R_C (through Q16) places zero at

$$\omega_Z = \frac{-1}{C_C(1/g_{m7} - R_C)}$$

- Zero moved to left-half plane to aid compensation
- · Good practical choice is

$$\omega_z = 1.2\omega_t$$

satisfied by letting

$$R_C \cong \frac{1}{1.2g_{m1}}$$

since $\omega_t \cong g_{m1}/C_C$ and $\omega_z \cong 1/(R_CC_C)$ if $R_C \gg 1/g_{m7}$

Design Procedure

Design example: Find C_C with R_C =0 for a 55° phase margin

- Arbitrarily choose $C_C'=1$ pF and set $R_C=0$
- Using SPICE, find frequency ω_t where a –125° phase shift exists, define gain as A'
- Choose new $\,C_{C}\,$ so $\,\omega_{t}\,$ becomes unity-gain frequency of the loop gain, resulting in a $\,55^{\circ}\,$ phase margin.
 - Achieved by setting $C_C = C_C A'$
- Might need to iterate on C_C a couple of times using SPICE

Design Procedure

Next: Choose R_C according to

$$R_C = \frac{1}{1.2\omega_t C_C}$$

- Increasing ω_t by about 20 percent, leaves zero near final ω_t
- Check that gain continues to decrease at frequencies above the new $\omega_{\scriptscriptstyle t}$

Next: If phase margin is not adequate, increase C_C while leaving R_C constant.

Design Procedure

Next: Replace R_C by a transistor

$$R_C = r_{ds16} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)_{16} V_{eff16}}$$

SPICE can be used for iteration to fine-tune the device dimensions and optimize the phase margin.

Process and Temperature Independence

Can show non-dominant pole is roughly given by

$$\omega_{p2} \cong \frac{g_{m7}}{C_1 + C_2}$$

Recall zero given by

$$\omega_Z = \frac{-1}{C_C(1/g_{m7} - R_C)}$$

• If R_C tracks inverse of g_{m7} then zero will track ω_{p2} :

$$R_{C} = r_{ds16} = \frac{1}{\mu_{n} C_{ox}(W/L)_{16} V_{eff16}}$$
$$g_{m7} = \mu_{n} C_{ox}(W/L)_{7} V_{eff7}$$

Process and Temperature Independence

• Need to ensure $V_{\it eff16}/V_{\it eff7}$ is independent of process and temperature variations

First set V_{eff13}=V_{eff7} which makes V_a=V_b

Process and Temperature Independence

$$\sqrt{\frac{2I_{D7}}{\mu_n C_{ox}(W/L)_7}} = \sqrt{\frac{2I_{D13}}{\mu_n C_{ox}(W/L)_{13}}}$$
$$\frac{I_{D7}}{I_{D13}} = \frac{(W/L)_7}{(W/L)_{13}}$$

Since V_a = V_b and gates of Q12 and Q16 same

$$V_{eff12} = V_{eff16}$$

$$\frac{V_{eff7}}{V_{eff16}} = \frac{V_{eff13}}{V_{eff12}} = \frac{\sqrt{\frac{2I_{D13}}{\mu_n C_{ox}(W/L)_{13}}}}{\sqrt{\frac{2I_{D12}}{\mu_n C_{ox}(W/L)_{12}}}} = \sqrt{\frac{(W/L)_{12}}{(W/L)_{13}}}$$

Stable Transconductance Biasing

Can bias on-chip g_m to a resistor

$$V_{GS13} = V_{GS15} + I_{D15}R_B$$

$$\sqrt{\frac{2I_{D13}}{\mu_n C_{ox}(W/L)_{13}}} = \sqrt{\frac{2I_{D15}}{\mu_n C_{ox}(W/L)_{15}}} + I_{D15}R_E$$

•But $I_{D13} = I_{D15}$ and rearrange

$$\frac{2}{\sqrt{2\mu_{n}C_{ox}(W/L)_{13}I_{D13}}} \left[1 - \sqrt{\frac{(W/L)_{13}}{(W/L)_{15}}} \right] = R_{B}$$

•Recall $g_{m13} = \sqrt{2\mu_n C_{ox}(W/L)_{13} I_{D13}}$

$$g_{m13} = 2 \left[1 - \sqrt{\frac{(W/L)_{13}}{(W/L)_{15}}} \right] / R_B$$

Stable Transconductance Biasing

- Transconductance of Q_{13} (to the first order) is determined by geometric ratios only.
- Independent of power-supply voltages, process parameters, temperature, etc.
- For special case (W/L)₁₅=4(W/L)₁₃

$$g_{m13} = 1/R_B$$

- Note that high-temperature will decrease mobility and hence increase effective gate-source voltages.
- Roughly 25% increase for 100 degree increase
- Requires a start-up circuit (might have all 0 currents)