TD 1: Rappels: tribus, indépendance, conditionnement

Exercice 1:

Soit (Ω, \mathscr{F}) un espace mesurable et $(A_n)_{n\geqslant 1}$ une partition de Ω avec $A_n\in \mathscr{F}$. On note $\mathscr{A}=\sigma(A_n, n\geqslant 1)$. Montrer que $X:\Omega\to \mathbf{R}$ est une application \mathscr{A} -mesurable si et seulement si $X=\sum_{n\geqslant 1}a_n\mathbf{1}_{A_n}$ avec $a_n\in \mathbf{R}$.

Exercice 2:

Soit $\Omega=\{1,\ldots,5\}$ muni de la tribu $\mathscr{F}=\mathscr{P}(\Omega).$ Soit $X,Y:\Omega\to\mathbf{R}$ définies par

$$X(1) = X(2) = 0, X(3) = 1, X(4) = X(5) = 2,$$

 $Y(\omega) = \omega^2, \quad \forall \omega \in \Omega.$

- 1. Déterminer $\sigma(X)$, la tribu engendrée par X.
- 2. On munit Ω de la loi uniforme **P**. Déterminer $Z = \mathbf{E}_{\mathbf{P}}[Y \mid X]$.
- 3. On munit Ω de la loi $\mathbf{Q} = (q_1, q_2, q_3, q_4, q_5)$ avec $q_1 = q_2 = \frac{1}{4}$ et $q_3 = q_4 = q_5 = \frac{1}{6}$. Déterminer $\tilde{Z} = \mathbf{E}_{\mathbf{Q}}[Y \mid X]$.

Exercice 3:

Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace de probabilité.

1. Soit ε une v.a. de Bernoulli symétrique (vérifiant $\mathbf{P}\left[\varepsilon=1\right]=\mathbf{P}\left[\varepsilon=-1\right]=\frac{1}{2}$) et X une v.a. indépendante de ε .

Montrer que εX et ε sont indépendantes si et seulement si X est symétrique.

Soit $A, B \in \mathcal{F}$ indépendantes telles que $\mathbf{P}[A] = \mathbf{P}[B] = \frac{1}{2}$.

- 2. Déterminer deux tribus \mathscr{A} et \mathscr{B} indépendantes et Y une v.a. telles que
 - (i) Y est $\sigma(\mathscr{A} \cup \mathscr{B})$ -mesurable
 - (ii) Y est indépendante de \mathscr{B}
 - (iii) Y n'est pas mesurable par rapport à \mathscr{A}

(indication : considérer $X = \mathbf{1}_A - \mathbf{1}_{A^c}$ et $\varepsilon = \mathbf{1}_B - \mathbf{1}_{B^c}$).

- 3. Déterminer deux tribus $\mathscr A$ et $\mathscr B$ indépendantes et Z une v.a. non constante telles que
 - (i) Z est $\sigma(\mathcal{A} \cup \mathcal{B})$ -mesurable
 - (ii) Z est indépendante de \mathscr{B}
 - (iii) Z est indépendante de \mathscr{A}

Exercice 4:

Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace de probabilité et \mathcal{G} une sous-tribu de \mathcal{F} . Pour $A \in \mathcal{F}$, on considère $B = \{ \mathbf{E} [\mathbf{1}_A \mid \mathcal{G}] = 0 \}$. Montrer que $B \subset A^c$.

Exercice 5:

Soit X et Y deux v.a. indépendantes de Bernoulli de paramètres respectifs p et q (vérifiant $\mathbf{P}[X=1]=p$). On pose $Z=\mathbf{1}_{\{X+Y=0\}}$ et $\mathscr{G}=\sigma(Z)$.

- 1. Calculer $U = \mathbf{E}[X \mid \mathcal{G}]$ et $V = \mathbf{E}[Y \mid \mathcal{G}]$.
- 2. Les v.a. U et V sont-elles indépendantes?

Exercice 6:

Soit $X \in \mathbf{L}^1(\Omega, \mathscr{F}, \mathbf{P})$ et \mathscr{G} une sous-tribu de \mathscr{F} . On note $Y = \mathbf{E}[X \mid \mathscr{G}]$ et on veut montrer le résultat suivant :

si X et Y ont même loi alors X = Y p.s.

- 1. Montrer le résultat dans le cas $X \in \mathbf{L}^2$.
- 2. Montrer que pour tout $K \in \mathbf{R}_+$,

$$\mathbf{E}\left[\left(X \wedge K\right) \vee \left(-K\right) \mid \mathcal{G}\right] = \left(Y \wedge K\right) \vee \left(-K\right) \quad p.s. \tag{*}$$

et en déduire le résultat.

Exercice 7:

Soit $(X_n)_{n\geqslant 1}$ et $(Y_n)_{n\geqslant 1}$ deux suites de Bernoulli indépendantes, définies sur un même espace de probabilité $(\Omega, \mathscr{F}, \mathbf{P})$, telles que

$$P[X_n = 1] = p \quad P[Y_n = 1] = q,$$

avec p, q fixés, 0 < p, q < 1.

- 1. Montrer que les variables aléatoires $Z_n = X_n Y_n$ sont indépendantes et identiquement distribuées. Déterminer leur loi.
- 2. Soit $S_n = \sum_{k=1}^n X_k$ et $T_n = \sum_{k=1}^n Z_k$. Déterminer la loi de S_n et celle de T_n .
- 3. Soit $\tau = \inf\{n \ge 1, T_n = 1\}$. Montrer que τ et S_τ sont des variables aléatoires. Déterminer la loi de τ .
- 4. Montrer que, pour tout $n \ge 2$ et $1 \le k < n$,

$$\mathbf{P}[X_k = 1 \mid \tau = n] = \mathbf{P}[X_k = 1 \mid Z_k = 0] = \frac{p(1-q)}{1-pq}.$$

5. Montrer que

$$\mathbf{P}\left[\bigcap_{i=1}^{n} \left\{X_{i} = x_{i}\right\} \middle| \tau = n\right] = \prod_{i=1}^{n} \mathbf{P}\left[X_{i} = x_{i} \middle| \tau = n\right],$$

- 6. En déduire l'expression de $\mathbf{P}[S_{\tau} = k \mid \tau = n]$ (pour $1 \leq k \leq n$) (indication : commencer par le cas k = 1, puis le cas k = n).
- 7. Calculer $\mathbf{E}[S_{\tau} \mid \tau = n]$ (en utilisant la formule du binome de Newton et sa dérivée) et $\mathbf{E}[S_{\tau}]$. Vérifier qu'on a bien les égalités suivantes (identité de Wald)

$$\mathbf{E}[S_{\tau}] = \mathbf{E}[\tau] \mathbf{E}[X_1],$$

$$\mathbf{E}[T_{\tau}] = \mathbf{E}[\tau] \mathbf{E}[Z_1].$$

Exercice 8:

Soit X et Y deux v.a. indépendantes de loi géométrique de paramètres respectifs a et b, 0 < a, b < 1.

- 1. Déterminer la loi de X + Y, de $X \wedge Y$ et de $X \vee Y$.
- 2. Déterminer la loi du couple $(X \wedge Y, X \vee Y)$.
- 3. Déterminer la loi du couple $(X Y, X \wedge Y)$. Que remarque-t-on si a = b?

Exercice 9:

Soit X et Y deux v.a. indépendantes, de loi binomiale de paramètres respectifs (n, p) et (m, p).

- 1. Déterminer la loi de X sachant X + Y = l pour tout $0 \le l \le n + m$.
- 2. Calculer $\mathbf{E}[X \mid X + Y]$ et retrouver le résultat $\mathbf{E}[X] = np$ (en préconditionnant par rapport à X + Y).

Exercice 10:

Soit X une v.a. de loi exponentielle de paramètre λ .

- 1. Calculer $\mathbf{E}[X]$, $\mathrm{var}(X)$, $L(s) = \mathbf{E}\left[e^{sX}\right]$ (la transformée de Laplace), $\bar{F}(t) = \mathbf{P}[X > t]$ (la fonction de survie).
- 2. Soit Y = |X| (la partie entière de X). Déterminer la loi de Y.

Exercice 11:

Soit X et Y deux v.a. indépendantes de loi exponentielle de paramètres respectifs λ_1 et λ_2 .

- 1. Calculer $\mathbf{E}[X \vee Y \mid X]$.
- 2. En déduire $\mathbf{E}[X \vee Y]$.