

DH Table 1	Link 1 2 3 4 5 6	ai	di	di	θ_i	in	mm
	1	25	$\pi/2$	400	D1		
	2	315	Ð	O	Ð2		
	3	35	$\pi/2$	0	Θз		
	4	0	-T/2	362	θ4		
	5	0	11/2	D	Ð5		
	6	-296.23	30	161,44	₽б		

Find D1:

Top view:

$$\frac{\alpha_1}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_1}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

Find Oz, O3

$$\begin{split} \overline{AD}^2 &= \overline{AE}^2 + \overline{DE}^2 - 2\overline{AE} \, \overline{DE} \, \cos\varphi \\ &(\sqrt{\chi_c^2 + \chi_c^2} - \Omega_c)^2 + (z_c - d_c)^2 = Q_c^2 + \Omega_s^2 + cd_c^2 - 2\alpha_s \sqrt{\chi_s^3 + cd_c^2} \, \cos\varphi \\ &(\cos\varphi) = \frac{\alpha_s^2 + \alpha_s^2 + dc_c^4 - (\sqrt{\chi_c^2 + \chi_c^2} - \Omega_c)^2 + (z_c - d_c)^2}{2\alpha_s \sqrt{\alpha_s^2 + cd_c^2}} \\ &\varphi &= \alpha \tan 2 \left(\left(\sqrt{1 - \cos\varphi^2} \right), \cos\varphi^2 \right) \\ &\psi &= \alpha \tan 2 \left(\alpha_s, d_c \right) \\ &\varphi &= \frac{3}{2}\pi - \varphi - \psi \end{split}$$

$$\frac{\partial_s}{\partial_s} = \frac{3}{2}\pi - \varphi - \psi = \frac{3}{2}\pi - \alpha \tan 2 \left(\sqrt{1 - \cos\varphi^2} \right), \cos\varphi^2 \right) - \alpha \tan 2 \left(\alpha_s, d_c \right) \\ &= \overline{DE} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \\ &= \sqrt{\alpha_s^2 + cd_c^2} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \\ &= \sqrt{\alpha_s^2 + cd_c^2} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \\ &= \sqrt{\alpha_s^2 + cd_c^2} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \\ &\varphi_2 &= \cot\alpha_1 \left(\sqrt{\alpha_s^2 + cd_c^2} \sin \left(\theta_s - \frac{\pi}{2} + \psi \right), \alpha_2 + \sqrt{\alpha_s^2 + cd_c^2} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \right) \\ &\varphi_1 &= \alpha \tan 2 \left(z_c - d_1, \sqrt{\chi_c^2 + \gamma_c^2} - a_1 \right) \\ &= \alpha \tan 2 \left(z_c - d_1, \sqrt{\chi_c^2 + \gamma_c^2} - a_1 \right) \\ &= \alpha \tan 2 \left(\sqrt{\alpha_s^2 + cd_c^2} \sin \left(\theta_s - \frac{\pi}{2} + \psi \right), \alpha_2 + \sqrt{\alpha_s^2 + cd_c^2} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \right) \\ &\text{Let} \left(R_s^2 \right)^T Rd = M, \\ &\theta_1 &= \alpha \tan 2 \left(\sqrt{1 - \alpha_s^2 + cd_c^2} \sin \left(\theta_s - \frac{\pi}{2} + \psi \right), \alpha_2 + \sqrt{\alpha_s^2 + cd_c^2} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \right) \\ &\text{Let} \left(R_s^2 \right)^T Rd = M, \\ &\theta_2 &= \alpha \tan 2 \left(\sqrt{1 - \alpha_s^2 + cd_c^2} \sin \left(\theta_s - \frac{\pi}{2} + \psi \right), \alpha_2 + \sqrt{\alpha_s^2 + cd_c^2} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \right) \\ &\text{Let} \left(R_s^2 \right)^T Rd = M, \\ &\theta_5 &= \alpha \tan 2 \left(\sqrt{1 - \alpha_s^2 + cd_c^2 + cd_c^2} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \right) \\ &\theta_5 &= \alpha \tan 2 \left(\sqrt{1 - \alpha_s^2 + cd_c^2} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \right) \\ &\theta_6 &= \alpha \tan 2 \left(\sqrt{1 - \alpha_s^2 + cd_c^2} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \right) \\ &\theta_7 &= \alpha \tan 2 \left(\sqrt{1 - \alpha_s^2 + cd_c^2} \sin \left(\theta_s - \frac{\pi}{2} + \psi \right), \alpha_2 + \sqrt{\alpha_s^2 + cd_c^2} \cos \left(\theta_s - \frac{\pi}{2} + \psi \right) \right) \\ &\theta_8 &= \alpha \tan 2 \left(\sqrt{1 - \alpha_s^2 + cd_c^2} \cos \left(\frac{\pi}{2} + \frac{\pi}{2} + \psi \right) \right) \\ &\theta_8 &= \alpha \tan 2 \left(\sqrt{1 - \alpha_s^2 + cd_c^2} \cos \left(\frac{\pi}{2} + \frac{\pi}{2} + \psi \right) \right) \\ &\theta_8 &= \alpha \tan 2 \left(\sqrt{1 - \alpha_s^2 + cd_c^2} \cos \left(\frac{\pi}{2} + \frac{\pi}{2} + \psi \right) \right) \\ &\theta_8 &= \alpha \tan 2 \left(\sqrt{1 - \alpha_s^2 + cd_c^2} \cos \left(\frac{\pi}{2} + \frac{\pi}{2} + \psi \right) \right) \\ &\theta_8 &= \alpha \tan 2 \left(\sqrt{1 - \alpha_s^2 + cd_c^2} \cos \left(\frac{\pi}{2} + \frac{\pi}{2} + \psi \right) \right) \\ &\theta_8 &= \alpha \tan 2$$