Modeling ecosystems and biogeochemical cycles

H. Nüzhet Dalfes

Eurasia Institute of Earth Sciences Ecology and Evolution Dept.

Outline

- Hierarchy in the biosphere
- Distribution and components of life on Earth
- Global biogeochemical cycles
- Modeling ecosystems as components of the Earth System
 - Dynamic global vegetation models
- Models of global biogeochemical cycles

How to develop predictive schemes for the living components of the Earth System?

Why do we need to take **life** into account?

- From a 'climate' point of view:
 - We need to predict the future of the atmospheric composition in GHGs
 - Vegetation controls energy (and moisture) transfer properties of the land surface
- We live in/around ecosystems!
 - Ecosystems are providing us with services!

Hierarchy of life...

- Individual (of a given species)
- Population
- Community
- Ecosystem = biotic + abiotic
- Biomes
- Biosphere

Some numbers...

'Carbon-based' phenomenon

Carbon/Hydrogen/Oxygen/Nitrogen/

Phosphorus/...

Stoichiometry of life: ocean

- Redfield ratio:
 - C:N:P -> 106:16:1

Some key concepts: Reservoirs, residence times, ...

steady-state

flow out = flow in

Carbon in the atmosphere

$$3.1y = 590 Pg C \div 190 Pg C/y^{-1}$$

flow out ≠ flow in

not in steady-state

Modeling ecosystems...

- Many (too many species) -> (many)ⁿ interactions
- Food webs / trophic levels
- Biomass pyramid

Biomes

Dynamic global vegetation models

- Started in '90s
- DGVMs use time series of climate data and, given constraints of latitude, topography, and soil characteristics, simulate monthly or daily dynamics of ecosystem processes
- generally combine biogeochemistry, biogeography, and disturbance submodels
- spatially distributed mode, geographic points which are assumed to have homogeneous conditions within each cell

Plant functional types

- a system used by ecosystem modelers to classify plants according to their physical, phylogenetic and phenological characteristics
- for each plant functional type, key parameters are defined, such as fecundity, competitiveness, resorption (rate at which plant decays and returns nutrients to the soil after death), etc.

PFTs...

Function

Fecundity Dispersal Recruitment

Light interception Competitive ability

Nutrient resorption Litter decomposability

Absorption (nutrients, water) Carbon flux (exsudation ...)

Easily measurable trait

Seed mass others?

Vegetative height others?

Traits of living leaves NIRS spectrum; others?

Density, diameter Specific length

Fig. 13.1. Examples of soft traits and associated functions

IBIS Integrated Biosphere Simulator

• 1996:

"was designed to explicitly link land surface and hydrological processes, terrestrial biogeochemical cycles, and vegetation dynamics within a single physically consistent framework"

• 2000: **IBIS2**

new version of IBIS has improved representations of land surface physics, plant physiology, canopy phenology, plant functional type (PFT) differences, and carbon allocation

LPJ-GUESS Lund-Potsdam-Jena General Ecosystem Simulator

Vegetation representation in LPJ-GUESS

(d) 2100 **Figure 4.5**: *Abies nordmanniana* simulation

(d) 2100 **Figure 4.4**: *Picea orientalis* simulation