Note for Probability Theory and Statistics

Linlin Ge

November 1, 2019

1 Distribution

Multivariate normal distribution

$$f_{x}(x_{1},\dots,x_{k}) = \frac{e^{-\frac{(x-\mu)^{T}C^{-1}(x-\mu)}{2}}}{\sqrt{(2\pi)^{k}|C|}}$$

Where,

 $oldsymbol{C}$ The symmetric covariance matrix.

 \boldsymbol{x} A real k-dimensional column vector.

2 Distance

2.1 Distance of Random Variables (Same Distribution, Covariance Matrix= \sum)

Mahalanobis Distance

(1) Distance of vector \boldsymbol{x} and set:

$$D_M(\boldsymbol{x}) = \sqrt{(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{C}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}$$

If \boldsymbol{x} is a k-dimensional Gaussian random vector with mean vector $\boldsymbol{\mu}$ and rank k covariance matrix \boldsymbol{C} , then the Mahalanobis distance $D_M^2(\boldsymbol{x})$ follows a χ^2 -distribution with d degrees of freedom.

(2) Distance of two vectors \boldsymbol{x} and \boldsymbol{y} :

$$d(\boldsymbol{x},\boldsymbol{y}) = \sqrt{(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{C}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}$$

References