Содержание

Введение	4
1. Линейная алгебра	
1.1. Задачи для аудиторных занятий	
1.2. Образцы решения задач	
1.3. Задачи для самоподготовки	
2. Аналитическая геометрия и векторная алгебра	23
2.1. Задачи для аудиторных занятий	23
2.2. Образцы решения задач	26
2.3. Задачи для самоподготовки	32
2.4. Тестовая контрольная работа по разделу «Линейная алгебра	
и аналитическая геометрия»	38
3. Введение в анализ	44
3.1. Задачи для аудиторных занятий	44
3.2. Образцы решения задач	
3.3. Задачи для самоподготовки	
3.4. Тестовая контрольная работа по разделу «Введение в анализ»	
4. Дифференциальное исчисление	
4.1. Задачи для аудиторных занятий	
4.2. Образцы решения задач	
4.3. Задачи для самоподготовки	94
4.4. Тестовая контрольная работа по разделу	
«Дифференциальное исчисление»	
5. Интегральное исчисление функции одной переменной	
5.1. Задачи для аудиторных занятий	
5.2. Образцы решения задач	
5.3. Задачи для самоподготовки	126
5.4. Тестовая контрольная работа по разделу «Интегральное исчисление	
функции одной переменной»	130
Приложения	
1. Таблица эквивалентных бесконечно малых функций	
2. Замечательные пределы	
3. Виды уравнения прямой на плоскости	
4. Виды уравнения плоскости	
5. Виды уравнений прямой в пространстве	
6. Графики основных элементарных функций	
7. Поверхности второго порядка	
8. Таблица основных интегралов	
9. Формулы, используемые при интегрировании	
10. Приложения определенного интеграла	
Литература	150

ВВЕДЕНИЕ

Пособие состоит из четырех разделов: линейная алгебра, аналитическая геометрия и векторная алгебра, введение в анализ, дифференциальное исчисление и интегральное исчисление функции одной переменной, что соответствует учебной программе математике ПО ДЛЯ первого Белорусского государственного университета информатики радиоэлектроники (факультет заочного обучения). В начале каждого раздела приводится список умений, необходимых для сдачи экзамена в рамках этой темы. Далее представлены тщательно отобранные наборы заданий с ответами для аудиторных занятий (в установочную и экзаменационную сессии). Для самостоятельной подготовки к экзаменам в период между сессиями предлагается большое количество задач с ответами. Для помощи в решении задач предназначается обширный круг заданий решениями, сопровождающимися подробными комментариями.

Пособие содержит также приложения, включающие формулы, правила, формулировки теорем, графики и иллюстрации. В конце каждого раздела приводятся варианты тестовых контрольных работ, подводящие итог изученному в этом разделе материалу.

Представленное пособие может послужить эффективным помощником студенту заочной формы обучения благодаря доступности и подробности изложения, большому количеству технически нетрудоемких заданий и наличию наглядного справочного материала.

Тщательно продуманные, хорошо сбалансированные наборы задач для аудиторной работы и тестовых контрольных заданий помогут преподавателю качественно провести занятия и контроль знаний студентов в период экзаменационной сессии.

Пособие рекомендуется для студентов инженерно-технических специальностей вузов заочной формы обучения и преподавателей высшей математики.

1. ЛИНЕЙНАЯ АЛГЕБРА

В результате изучения данной темы студент должен научиться:

- вычислять определители (по правилу Саррюса; разлагая определитель по элементам какой-либо строки (столбца));
- выполнять операции над матрицами (сложение, вычитание, умножение на число, транспонирование, произведение матриц);
 - находить матрицу, обратную данной;
 - решать матричные уравнения;
 - находить ранг матрицы;
 - проверять совместность систем линейных алгебраических уравнений;
- решать системы линейных уравнений методом Гаусса и по формулам Крамера;
 - находить собственные значения и собственные векторы матрицы;
 - приводить квадратичную форму к каноническому виду.

1.1. ЗАДАЧИ ДЛЯ АУДИТОРНЫХ ЗАНЯТИЙ

1. Даны матрицы
$$A = \begin{pmatrix} 0 & 2 & 4 \\ -6 & 4 & 0 \end{pmatrix}$$
 и $B = \begin{pmatrix} 0 & 5 & 10 \\ -15 & 10 & 0 \end{pmatrix}$. Найдите:

1)
$$A + B$$
; 2) $2B - 5A$; 3) $3A^{T} + 2B^{T}$.

2. Даны матрицы
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \\ -1 & 2 & 0 \end{pmatrix}$$
 и $B = \begin{pmatrix} 0 & 1 & 4 \\ 2 & -1 & 0 \\ 3 & 5 & 7 \end{pmatrix}$. Найдите:

1)
$$|A|$$
, $|B|$; 2) $A^{-1} + AB^{T}$.

3. Даны матрицы
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 3 & 4 \end{pmatrix}$ и $C = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$. Найдите те из произведений AB , BA , AC , CA , BC , CB , которые имеют смысл.

4. Решите матричные уравнения:

1)
$$\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$$
; 2) $X \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$.

5. Найдите значение матричного многочлена f(A), если:

1)
$$f(x) = x^2 + 2x - 1$$
, $A = \begin{pmatrix} 0 & 3 \\ -1 & -2 \end{pmatrix}$;

2)
$$f(x) = 3x^2 - 5x + 2$$
, $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & -1 \\ -2 & 1 & 4 \end{pmatrix}$.

6. Найдите ранг матрицы A методом элементарных преобразований, если:

1)
$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 3 & 4 & 1 \end{pmatrix}$$
; 2) $A = \begin{pmatrix} 1 & 2 & 4 & -3 \\ 3 & 5 & 6 & -4 \\ 3 & 8 & 2 & -19 \end{pmatrix}$; 3) $A = \begin{pmatrix} 3 & -1 & 3 & 2 & 5 \\ 5 & -3 & 2 & 3 & 4 \\ 1 & -3 & -5 & 0 & -7 \\ 7 & -5 & 1 & 4 & 1 \end{pmatrix}$.

7. Исследуйте системы уравнений на совместность и, в случае совместности, решите их: а) по формулам Крамера; б) методом Гаусса.

1)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 3, \\ 3x_1 + x_2 + 2x_3 = 7, \\ 2x_1 + 3x_2 + x_3 = 2; \end{cases}$$

$$\begin{cases} 2x_1 + 4x_2 - 3x_3 = 2, \\ x_1 + 5x_2 - x_3 = 3, \\ 3x_1 - x_2 - 3x_3 = -7; \end{cases}$$

$$\begin{cases} 4x_1 - 3x_2 + x_3 = 3, \\ x_1 + x_2 - x_3 = 4, \\ 3x_1 - 4x_2 + 2x_3 = 2. \end{cases}$$

8. Решите системы уравнений методом Гаусса:

1)
$$\begin{cases} x_1 + x_2 + x_3 = 3, \\ 2x_1 + 2x_2 + 2x_3 = 6; \end{cases}$$
 2)
$$\begin{cases} 2x_1 + 5x_2 - 8x_3 = 8, \\ 4x_1 + 3x_2 - 9x_3 = 9, \\ 2x_1 + 3x_2 - 5x_3 = 7, \\ x_1 + 8x_2 - 7x_3 = 12. \end{cases}$$

9. Найдите общее решение и фундаментальную систему решений однородной системы линейных уравнений:

$$\begin{cases} 2x_1 - x_2 + 2x_3 = 0, \\ 3x_1 + 2x_2 - 3x_3 = 0, \\ 5x_1 + x_2 - x_3 = 0. \end{cases}$$

10. Найдите собственные значения и собственные векторы матриц:

1)
$$A = \begin{pmatrix} 5 & 6 \\ 6 & 0 \end{pmatrix}$$
; 2) $A = \begin{pmatrix} 0 & 1 & 2 \\ 4 & 0 & 1 \\ 3 & -1 & 1 \end{pmatrix}$.

11. Запишите матрицы квадратичных форм:

1)
$$Q(x_1, x_2) = 2x_1^2 + 3x_2^2 - 5x_1x_2$$
;

2)
$$Q(x_1, x_2, x_3) = x_1^2 + 4x_1x_2 + 4x_1x_3 + 5x_2^2 + 12x_2x_3 + 7x_3^2$$
.

12. Приведите данные квадратичные формы к каноническому виду с помощью метода Лагранжа (выделение полных квадратов):

1)
$$Q(x_1, x_2) = 4x_1^2 + 4x_1x_2 + 5x_2^2$$
;

2)
$$Q(x_1, x_2, x_3) = x_1x_2 + x_2x_3 - x_1^2 - x_2^2 - x_3^2$$
.

Ответы

1. 1)
$$\begin{pmatrix} 0 & 7 & 14 \\ -21 & 14 & 0 \end{pmatrix}$$
; 2) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$; 3) $\begin{pmatrix} 0 & -48 \\ 16 & 32 \\ 32 & 0 \end{pmatrix}$.

2. 1)
$$|A| = -10$$
, $|B| = 38$; 2) $\begin{pmatrix} 7 & -0.2 & 19.4 \\ 24.5 & 1.9 & 64.2 \\ 1 & -3.6 & 7.2 \end{pmatrix}$.

3.
$$AB = \begin{pmatrix} 0 & 6 & 8 \\ 1 & 3 & 4 \end{pmatrix}, AC = \begin{pmatrix} 8 \\ 6 \end{pmatrix}.$$

4. 1)
$$X = \begin{pmatrix} -3 & 3 \\ -1 & 3 \end{pmatrix}$$
; 2) $X = \begin{pmatrix} -2 & 2 \\ 1 & 2 \end{pmatrix}$.

5. 1)
$$\begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix}$$
; 2) $\begin{pmatrix} 0 & 8 & -6 \\ 6 & 1 & -13 \\ -20 & 1 & 27 \end{pmatrix}$.

- **6.** 1) rang A = 2; 2) rang A = 3; 3) rang A = 3.
- 7. 1) $x_1 = 2$, $x_2 = -1$, $x_3 = 1$; 2) $x_1 = -4$, $x_2 = 1$, $x_3 = -2$; 3) система несовместна.
- **8.** 1) $(3-c_1-c_2;c_1;c_2)$, где c_1,c_2 произвольные действительные числа; 2) $x_1=3,\ x_2=2,\ x_3=1$.
- **9.** Общее решение: $x_1 = -c$, $x_2 = 12c$, $x_3 = 7c$, где c произвольное действительное число, ФСР: $(-1; 12; 7)^T$.

10. 1) C3:
$$\lambda_1 = -4$$
, $\lambda_2 = 9$, CB: $\overrightarrow{x_1} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$, $\overrightarrow{x_2} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$;

2) C3:
$$\lambda_1 = -3$$
, $\lambda_2 = 1$, $\lambda_3 = 3$, CB: $\overrightarrow{x_1} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $\overrightarrow{x_2} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$, $\overrightarrow{x_3} = \begin{pmatrix} 7 \\ 11 \\ 5 \end{pmatrix}$.

11. 1)
$$\begin{pmatrix} 2 & -2.5 \\ -2.5 & 3 \end{pmatrix}$$
; 2) $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 5 & 6 \\ 2 & 6 & 7 \end{pmatrix}$.

12. 1)
$$Q(y_1, y_2) = 4y_1^2 + 4y_2^2$$
, где $y_1 = x_1 + \frac{1}{2}x_2$, $y_2 = x_2$;

2)
$$Q(y_1, y_2, y_3) = -y_1^2 - \frac{3}{4}y_2^2 - \frac{2}{3}y_3^2$$
, где $y_1 = x_1 - \frac{1}{2}x_2$, $y_2 = x_2 - \frac{2}{3}x_3$, $y_3 = x_3$.

1.2. ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ

1. Даны матрицы
$$A = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$
 и $B = \begin{pmatrix} 0 & -1 & 2 \\ 2 & 1 & 1 \\ 3 & 7 & 1 \end{pmatrix}$. Найдите: 1) $3A - 2B$: 2) $A^{\mathrm{T}} + B^2 + 2E$: 3) $AB + BA$: 4) $|A|$: 5) A^{-1} .

Решение:

1) найдем матрицы 3A и 2B, умножая каждый элемент матрицы A на 3 и каждый элемент матрицы B на 2:

$$3A = \begin{pmatrix} 9 & 3 & 6 \\ -3 & 0 & 6 \\ 3 & 6 & 3 \end{pmatrix}, \ 2B = \begin{pmatrix} 0 & -2 & 4 \\ 4 & 2 & 2 \\ 6 & 14 & 2 \end{pmatrix}.$$

Вычислим разность 3A - 2B, вычитая из каждого элемента матрицы 3A соответствующий элемент матрицы 2B:

$$3A - 2B = \begin{pmatrix} 9 - 0 & 3 - (-2) & 6 - 4 \\ -3 - 4 & 0 - 2 & 6 - 2 \\ 3 - 6 & 6 - 14 & 3 - 2 \end{pmatrix} = \begin{pmatrix} 9 & 5 & 2 \\ -7 & -2 & 4 \\ -3 & -8 & 1 \end{pmatrix};$$

2) найдем транспонированную матрицу A^{T} , которая получается из матрицы A заменой каждой ее строки столбцом с тем же номером:

$$A^{\mathrm{T}} = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 3 & -1 & 1 \\ 1 & 0 & 2 \\ 2 & 2 & 1 \end{pmatrix}.$$

Вычислим
$$B^2=B\cdot B=\begin{pmatrix}0&-1&2\\2&1&1\\3&7&1\end{pmatrix}\cdot\begin{pmatrix}0&-1&2\\2&1&1\\3&7&1\end{pmatrix}=C_{3\times 3}=\begin{pmatrix}c_{11}&c_{12}&c_{13}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{pmatrix},$$

где

$$c_{11} = 0 \cdot 0 + (-1) \cdot 2 + 2 \cdot 3 = 4, \qquad c_{21} = 2 \cdot 0 + 1 \cdot 2 + 1 \cdot 3 = 5, \qquad c_{31} = 3 \cdot 0 + 7 \cdot 2 + 1 \cdot 3 = 17,$$

$$c_{12} = 0 \cdot (-1) + (-1) \cdot 1 + 2 \cdot 7 = 13, \qquad c_{22} = 2 \cdot (-1) + 1 \cdot 1 + 1 \cdot 7 = 6, \qquad c_{32} = 3 \cdot (-1) + 7 \cdot 1 + 1 \cdot 7 = 11,$$

$$c_{13} = 0 \cdot 2 + (-1) \cdot 1 + 2 \cdot 1 = 1, \qquad c_{23} = 2 \cdot 2 + 1 \cdot 1 + 1 \cdot 1 = 6, \qquad c_{33} = 3 \cdot 2 + 7 \cdot 1 + 1 \cdot 1 = 14.$$

Получаем
$$B^2 = \begin{pmatrix} 4 & 13 & 1 \\ 5 & 6 & 6 \\ 17 & 11 & 14 \end{pmatrix}$$
.

Находим

$$A^{\mathrm{T}} + B^2 - 2E = \begin{pmatrix} 3 & -1 & 1 \\ 1 & 0 & 2 \\ 2 & 2 & 1 \end{pmatrix} + \begin{pmatrix} 4 & 13 & 1 \\ 5 & 6 & 6 \\ 17 & 11 & 14 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} =$$

$$= \begin{pmatrix} 3+4-2 & -1+13-0 & 1+1-0 \\ 1+5-0 & 0+6-2 & 2+6-0 \\ 2+17-0 & 2+11-0 & 1+14-2 \end{pmatrix} = \begin{pmatrix} 5 & 12 & 2 \\ 6 & 4 & 8 \\ 19 & 13 & 13 \end{pmatrix};$$

$$3) \text{ вычислим}$$

$$AB = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 & 2 \\ 2 & 1 & 1 \\ 3 & 7 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 3\cdot0+1\cdot2+2\cdot3 & 3\cdot(-1)+1\cdot1+2\cdot7 & 3\cdot2+1\cdot1+2\cdot1 \\ 1\cdot0+2\cdot2+1\cdot3 & 1\cdot(-1)+2\cdot1+1\cdot7 & 1\cdot2+2\cdot1+1\cdot1 \\ 1\cdot0+2\cdot2+1\cdot3 & 1\cdot(-1)+2\cdot1+1\cdot7 & 1\cdot2+2\cdot1+1\cdot1 \end{pmatrix} = \begin{pmatrix} 8 & 12 & 9 \\ 6 & 15 & 0 \\ 7 & 8 & 5 \end{pmatrix}.$$

$$H \ \text{Найдем } BA = \begin{pmatrix} 0 & -1 & 2 \\ 2 & 1 & 1 \\ 3 & 7 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 & 2 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 0\cdot3+(-1)\cdot(-1)+2\cdot1 & 0\cdot1+(-1)\cdot0+2\cdot2 & 0\cdot2+(-1)\cdot2+2\cdot1 \\ 2\cdot3+1\cdot(-1)+1\cdot1 & 2\cdot1+1\cdot0+1\cdot2 & 2\cdot2+1\cdot2+1\cdot1 \\ 3\cdot3+7\cdot(-1)+1\cdot1 & 3\cdot1+7\cdot0+1\cdot2 & 3\cdot2+7\cdot2+1\cdot1 \end{pmatrix} = \begin{pmatrix} 3 & 4 & 0 \\ 6 & 4 & 7 \\ 3 & 5 & 21 \end{pmatrix}.$$

$$\text{Тогда } AB+BA = \begin{pmatrix} 8 & 12 & 9 \\ 6 & 15 & 0 \\ 7 & 8 & 5 \end{pmatrix} + \begin{pmatrix} 3 & 4 & 0 \\ 6 & 4 & 7 \\ 3 & 5 & 21 \end{pmatrix} = \begin{pmatrix} 11 & 16 & 9 \\ 12 & 19 & 7 \\ 10 & 13 & 26 \end{pmatrix};$$

4) вычислим определитель матрицы A, разлагая его по элементам второй строки: $|A|=a_{21}A_{21}+a_{22}A_{22}+a_{23}A_{23}$,

где $a_{2\,j}$ — элемент второй строки матрицы $A,\ j=1,\,2,\,3\,;\ A_{2\,j}$ — алгебраическое дополнение элемента $a_{2\,j}\,,\ j=1,\,2,\,3\,.$

Найдем алгебраические дополнения:

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = -(1-4) = 3$$
, $A_{22} = (-1)^{2+2} \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} = 3-2=1$, $A_{23} = (-1)^{2+3} \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} = -(6-1) = -5$. Получим $|A| = \begin{vmatrix} 3 & 1 & 2 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{vmatrix} = (-1) \cdot 3 + 0 \cdot 1 + 2 \cdot (-5) = -13$;

5) обратная матрица существует только для квадратной невырожденной матрицы (т. е. определитель которой отличен от нуля). Так как $|A| = -13 \neq 0$, то обратная матрица A^{-1} существует. Найдем ее по формуле

$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}.$$

Вычислим алгебраические дополнения A_{1j} и A_{3j} , $j=1,\,2,\,3$.

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix} = -4, \qquad A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} = 2,$$

$$A_{12} = (-1)^{1+2} \begin{vmatrix} -1 & 2 \\ 1 & 1 \end{vmatrix} = 3, \qquad A_{32} = (-1)^{3+2} \begin{vmatrix} 3 & 2 \\ -1 & 2 \end{vmatrix} = -8,$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} -1 & 0 \\ 1 & 2 \end{vmatrix} = -2, \qquad A_{33} = (-1)^{3+3} \begin{vmatrix} 3 & 1 \\ -1 & 0 \end{vmatrix} = 1.$$

Таким образом,
$$A^{-1} = -\frac{1}{13} \begin{pmatrix} -4 & 3 & 2 \\ 3 & 1 & -8 \\ -2 & -5 & 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{13} & -\frac{3}{13} & -\frac{2}{13} \\ \frac{3}{13} & -\frac{1}{13} & \frac{8}{13} \\ \frac{2}{13} & \frac{5}{13} & -\frac{1}{13} \end{pmatrix}.$$

2. Найдите значение матричного многочлена f(A), если $f(x) = 2x^2 - 3x + 1$, $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Решение

По определению $f(A) = 2A^2 - 3A + E$. Найдем

$$A^{2} = A \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 0 & 1 \cdot 0 + 0 \cdot (-1) \\ 0 \cdot 1 + (-1) \cdot 0 & 0 \cdot 0 + (-1) \cdot (-1) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Тогда
$$f(A) = 2 \cdot A^2 - 3 \cdot A + 1 \cdot E = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & -3 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 6 \end{pmatrix}.$$

3. Найдите ранг матрицы
$$A = \begin{pmatrix} 1 & 1 & 3 & 5 \\ 2 & -1 & 5 & 6 \\ 1 & -5 & 1 & -3 \end{pmatrix}$$
 методом элементарных

преобразований.

Решение

Обозначим I_1, I_2, I_3 строки матрицы A. Приведем матрицу A к ступенчатому виду с помощью элементарных преобразований строк, не изменяющих ранга матрицы A: $I_2 + (-2) \cdot I_1$, $I_3 - I_1$.

В результате получим

$$A = \begin{pmatrix} 1 & 1 & 3 & 5 \\ 2 & -1 & 5 & 6 \\ 1 & -5 & 1 & -3 \end{pmatrix} - 2I_1 \sim \begin{pmatrix} 1 & 1 & 3 & 5 \\ 0 & -3 & -1 & -4 \\ 0 & -6 & -2 & -8 \end{pmatrix} - 2I_2 \sim \begin{pmatrix} 1 & 1 & 3 & 5 \\ 0 & -3 & -1 & -4 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Отметим, что связанные значком ~ матрицы имеют одинаковые ранги.

Очевидно, все миноры третьего порядка полученной матрицы равны нулю, но существуют миноры второго порядка, не равные нулю, например $\begin{vmatrix} 1 & 1 \\ 0 & -3 \end{vmatrix}$. Следовательно, ранг матрицы, полученной в результате элементарных преобразований из матрицы A, равен 2. Значит, rang A=2.

4. Исследуйте системы линейных уравнений на совместность и, в случае совместности, решите их: а) по формулам Крамера; б) методом Гаусса.

1)
$$\begin{cases} x_1 + x_2 + 2x_3 = -4, \\ 2x_1 - x_2 + 2x_3 = 3, \\ 4x_1 + x_2 + 4x_3 = -3; \end{cases}$$
 2)
$$\begin{cases} 2x_1 - 3x_2 + x_3 = 2, \\ 3x_1 + x_2 - 3x_3 = 1, \\ 5x_1 - 2x_2 - 2x_3 = 4. \end{cases}$$

Решение:

1) совместность системы проверим по теореме Кронекера – Капелли. Определитель основной матрицы системы

$$|A| = \begin{vmatrix} 1 & 1 & 2 \\ 2 & -1 & 2 \\ 4 & 1 & 4 \end{vmatrix} = 1 \cdot \begin{vmatrix} -1 & 2 \\ 1 & 4 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 2 \\ 4 & 4 \end{vmatrix} + 2 \cdot \begin{vmatrix} 2 & -1 \\ 4 & 1 \end{vmatrix} =$$

$$=(-4-2)-(8-8)+2\cdot(2+4)=6\neq0$$
,

значит, строки матрицы A линейно независимы и, следовательно, ранг матрицы A равен 3.

Так как ранг матрицы $\overline{A} = \begin{pmatrix} 1 & 1 & 2 | -4 \\ 2 & -1 & 2 | & 3 \\ 4 & 1 & 4 | -3 \end{pmatrix}$ меньше либо равен 3 (она

имеет три строки) и, как мы показали, ее минор 3-го порядка $|A| \neq 0$, то

 $\operatorname{rang} A = \operatorname{rang} \overline{A} = 3$. Значит по теореме Кронекера — Капели исходная система совместна;

а) решим систему по формулам Крамера:

$$x_1 = \frac{\Delta_1}{\Delta}$$
; $x_2 = \frac{\Delta_2}{\Delta}$; $x_3 = \frac{\Delta_3}{\Delta}$,

где Δ – определитель основной матрицы системы; Δ_i – определитель,

полученный из Δ заменой в нем i-го столбца столбцом свободных членов $\begin{pmatrix} -4\\3\\-3 \end{pmatrix}$,

i = 1, 2, 3.

$$\Delta_{1} = \begin{vmatrix} -4 & 1 & 2 \\ 3 & -1 & 2 \\ -3 & 1 & 4 \end{vmatrix} = 6, \quad \Delta_{2} = \begin{vmatrix} 1 & -4 & 2 \\ 2 & 3 & 2 \\ 4 & -3 & 4 \end{vmatrix} = -18, \quad \Delta_{3} = \begin{vmatrix} 1 & 1 & -4 \\ 2 & -1 & 3 \\ 4 & 1 & -3 \end{vmatrix} = -6.$$

Отсюда получим решение системы уравнений:

$$x_1 = \frac{6}{6} = 1$$
; $x_2 = \frac{-18}{6} = -3$; $x_3 = \frac{-6}{6} = -1$;

б) решим ту же систему уравнений методом Гаусса. Запишем расширенную матрицу системы и приведем ее к ступенчатому виду с помощью элементарных преобразований над строками матрицы, что равносильно исключению неизвестной x_1 из второго и третьего уравнений и неизвестной x_2 из третьего уравнения. Для этого из второй строки вычтем первую, умноженную на 2; из третьей строки вычтем первую, умноженную на 4. Затем из третьей строки вычтем вторую:

$$\overline{A} = \begin{pmatrix} 1 & 1 & 2 & | & 4 \\ 2 & -1 & 2 & | & 3 \\ 4 & 1 & 4 & | & -3 \end{pmatrix} - 2I_1 \sim \begin{pmatrix} 1 & 1 & 2 & | & -4 \\ 0 & -3 & -2 & | & 11 \\ 0 & -3 & -4 & | & 13 \end{pmatrix} - I_2 \sim \begin{pmatrix} 1 & 1 & 2 & | & -4 \\ 0 & -3 & -2 & | & 11 \\ 0 & 0 & -2 & | & 2 \end{pmatrix}.$$

Полученной матрице соответствует система $\begin{cases} x_1 + x_2 + 2x_3 = -4, \\ -3x_2 - 2x_3 = 11, \\ -2x_3 = 2, \end{cases}$

которой последовательно находим $x_3 = -1$, $x_2 = -3$, $x_1 = 1$;

2) проверим совместность системы с помощью теоремы Кронекера -

Капелли. В расширенной матрице $\overline{A} = \begin{pmatrix} 2 & -3 & 1 & 2 \\ 3 & 1 & -3 & 1 \\ 5 & -2 & -2 & 4 \end{pmatrix}$ осуществим следующие

преобразования: из третьей строки вычтем сумму первых двух, из первой вычтем вторую, ко второй строке прибавим первую, умноженную на 3:

$$\overline{A} = \begin{pmatrix} 2 & -3 & 1 & 2 \\ 3 & 1 & -3 & 1 \\ 5 & -2 & -2 & 4 \end{pmatrix} - \begin{pmatrix} 1 & -4 & 4 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & -4 & 4 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} -1 & -4 & 4 & 1 \\ 0 & -11 & 9 & 4 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Очевидно, что ранг основной матрицы равен 2, а расширенной — 3. Из того, что ранги основной и расширенной матриц не равны, заключаем по теореме Кронекера — Капелли, что система не имеет решений, т. е. несовместна.

5. Найдите общее решение и фундаментальную систему решений однородной системы линейных уравнений:

$$\begin{cases} x_1 + 2x_2 - 5x_3 = 0, \\ 2x_1 - 4x_2 + x_3 = 0, \\ 3x_1 - 2x_2 - 4x_3 = 0. \end{cases}$$

Решение

Находим ранг основной матрицы системы с помощью элементарных преобразований строк.

$$\overline{A} = \begin{pmatrix} 1 & 2 & -5 & 0 \\ 2 & -4 & 1 & 0 \\ 3 & -2 & -4 & 0 \end{pmatrix} - 3I_1 \sim \begin{pmatrix} 1 & 2 & 5 & 0 \\ 2 & -4 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} - 2I_1 \sim \begin{pmatrix} 1 & 2 & -5 & 0 \\ 0 & -8 & 11 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Ранг r матрицы A равен 2, так как существует минор 2-го порядка, отличный от нуля (например $\begin{vmatrix} 1 & 2 \\ 0 & -8 \end{vmatrix}$). Поскольку ранг матрицы (r=2) меньше числа неизвестных (n=3), то система имеет бесконечно много решений. Найдем их, решая систему, соответствующую преобразованной матрице:

$$\begin{cases} x_1 + 2x_2 - 5x_3 = 0, \\ -8x_2 + 11x_3 = 0. \end{cases}$$

Из второго уравнения выразим x_2 через x_3 , а из первого — x_1 через x_3 , с учетом найденного x_2 (в этом случае x_3 является свободной переменной, которая принимает любые действительные значения). Получим

$$\begin{cases} x_2 = \frac{11}{8}x_3, \\ x_1 = \frac{9}{4}x_3, \\ x_3 \in \mathbb{R}. \end{cases}$$

Фундаментальная система решений состоит из n-r=3-2=1 решения. Положив, например, $x_3=1$, находим $x_2=\frac{11}{8},\ x_1=\frac{9}{4}.$ Тогда фундаментальная

система решений примет вид $\frac{1}{x_1} = \begin{pmatrix} \frac{9}{4} \\ \frac{11}{8} \\ 1 \end{pmatrix}$. Общее решение системы имеет вид

$$\overline{x} = c\overline{x_1}$$
, или $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = c \cdot \begin{pmatrix} \frac{9}{4} \\ \frac{11}{8} \\ 1 \end{pmatrix}$, где c – произвольное действительное число.

6. Найдите собственные значения и собственные векторы матрицы

$$A = \begin{pmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}.$$

Решение

Собственные значения матрицы A найдем, решив характеристическое уравнение $|A - \lambda E| = 0$, которое в нашем случае имеет вид

$$\begin{vmatrix} 2-\lambda & -2 & 3 \\ 1 & 1-\lambda & 1 \\ 1 & 3 & -1-\lambda \end{vmatrix} = 0 \Leftrightarrow$$

$$\Leftrightarrow (2-\lambda)(-(1-\lambda)(1+\lambda)-3) + 2(-1-\lambda-1) + 3(3-1+\lambda) = 0 \Leftrightarrow$$

$$\Leftrightarrow (2-\lambda)(\lambda^2-4) - 2(2+\lambda) + 3(2+\lambda) = 0 \Leftrightarrow$$

$$\Leftrightarrow (2+\lambda)((2-\lambda)(\lambda-2)+1) = 0 \Leftrightarrow -(\lambda+2)(\lambda^2-4\lambda+3) = 0 \Leftrightarrow$$

$$\Leftrightarrow -(\lambda+2)(\lambda-1)(\lambda-3) = 0 \Leftrightarrow \lambda_1 = 1, \ \lambda_2 = -2, \ \lambda_3 = 3.$$

Для каждого из трех собственных значений составим и решим однородную систему уравнений

$$\begin{pmatrix} 2-\lambda & -2 & 3 \\ 1 & 1-\lambda & 1 \\ 1 & 3 & -1-\lambda \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

решениями которой являются собственные векторы матрицы А.

Для $\lambda_1 = 1$ указанная система имеет вид

$$\begin{pmatrix} 1 & -2 & 3 \\ 1 & 0 & 1 \\ 1 & 3 & -2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 - 2x_2 + 3x_3 = 0, \\ x_1 + x_3 = 0, \\ x_1 + 3x_2 - 2x_3 = 0. \end{cases}$$

Решим систему методом Гаусса:

Отсюда $x_2=x_3, x_1=2x_2-3x_3=-x_3.$ Полагая $x_3=c_1\neq 0$, получим собственный вектор, соответствующий $\lambda_1=1$:

$$\vec{x_1} = \begin{pmatrix} -c_1 \\ c_1 \\ c_1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} c_1,$$

где c_1 – произвольное число, отличное от нуля.

Для $\lambda_2 = -2$ имеем следующую систему:

$$\begin{pmatrix} 2 - (-2) & -2 & 3 \\ 1 & 1 - (-2) & 1 \\ 1 & 3 & -1 - (-2) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{pmatrix} 4 & -2 & 3 \\ 1 & 3 & 1 \\ 1 & 3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 4 & -2 & 3 \\ 1 & 3 & 1 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 1 \\ 4 & -2 & 3 \\ 0 & 0 & 0 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 1 \\ 0 & -14 & -1 \\ 0 & 0 & 0 \\ 0 \end{pmatrix} .$$

Отсюда $x_3=-14x_2$, $x_1=11x_2$. Полагая $x_2=c_2\neq 0$, получим собственный вектор, соответствующий $\lambda_2=-2$:

$$\vec{x}_{2} = \begin{pmatrix} 11c_{2} \\ c_{2} \\ -14c_{2} \end{pmatrix} = \begin{pmatrix} 11 \\ 1 \\ -14 \end{pmatrix} c_{2},$$

где c_2 – произвольное число, отличное от нуля.

Аналогично для $\lambda_3 = 3$ имеем

$$\begin{pmatrix} 2-3 & -2 & 3 \\ 1 & 1-3 & 1 \\ 1 & 3 & -1-3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 2 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 2 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 2 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 2 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 4 \end{pmatrix} \sim$$

Отсюда $x_2 = x_3, x_1 = 3x_3 - 2x_2 = x_3$. Полагая $x_3 = c_3 \neq 0$, получим собственный вектор, соответствующий $\lambda_3 = 3$:

$$\vec{x_3} = \begin{pmatrix} c_3 \\ c_3 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} c_3,$$

где c_3 – произвольное число, отличное от нуля.

Таким образом, матрица A имеет три собственных значения $\lambda_1=1$, $\lambda_2=-2$, $\lambda_3=3$. Соответствующие им собственные векторы имеют вид

$$\vec{x_1} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} c_1, \ \vec{x_2} = \begin{pmatrix} 11 \\ 1 \\ -14 \end{pmatrix} c_2, \ \vec{x_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} c_3,$$

где $c_1, c_2, c_3 \in \mathbb{R} \setminus \{0\}$.

7. Приведите к каноническому виду уравнение линии второго порядка $3x^2 + 10xy + 3y^2 = 16$, используя теорию квадратичных форм.

Решение

Левая часть уравнения $3x^2 + 10xy + 3y^2 = 16$ представляет собой квадратичную форму с матрицей $A = \begin{pmatrix} 3 & 5 \\ 5 & 3 \end{pmatrix}$. Составим характеристическое уравнение $|A - \lambda E| = 0$ для матрицы A:

$$\begin{vmatrix} 3-\lambda & 5 \\ 5 & 3-\lambda \end{vmatrix} = 0 \iff \lambda_1 = 8, \lambda_2 = -2.$$

Находим собственные векторы из системы уравнений

$$\begin{cases} (3-\lambda)x_1 + 5x_2 = 0, \\ 5x_1 + (3-\lambda)x_2 = 0, \end{cases}$$

полагая $\lambda_1 = 8, \lambda_2 = -2$.

При $\lambda_1 = 8$ имеем

$$\begin{cases} -5x_1 + 5x_2 = 0, \\ 5x_1 - 5x_2 = 0, \end{cases} \Rightarrow x_1 = x_2 = c \neq 0.$$

Полагая c=1, получим собственный вектор $\overrightarrow{x_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, соответствующий собственному значению $\lambda_1 = 8$.

При $\lambda_2 = -2$ имеем

$$\begin{cases} 5x_1 + 5x_2 = 0, \\ 5x_1 + 5x_2 = 0, \end{cases} \Rightarrow x_1 = -x_2.$$

Полагая c = -1, получим собственный вектор $x_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Нормируем

собственные векторы $\vec{x_1}$ и $\vec{x_2}$ $\left(\vec{e_i} = \frac{\vec{x_i}}{|\vec{x_i}|} \right)$: $|\vec{x_1}| = |\vec{x_2}| = \sqrt{2}$ \Rightarrow

$$\Rightarrow \quad \overline{e_1} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \overline{e_2} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Составляем матрицу перехода от старого базиса к новому

$$T = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix},$$

столбцами которой являются координаты нормированных собственных векторов $\stackrel{\longrightarrow}{e_1}$ и $\stackrel{\longrightarrow}{e_2}$.

Выполним в уравнении $3x^2 + 10xy + 3y^2 = 16$ переход от координат x, y к новым координатам x', y' по формулам

$$\begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \end{pmatrix} \implies \begin{cases} x = \frac{1}{\sqrt{2}} (x' - y'), \\ y = \frac{1}{\sqrt{2}} (x' + y'). \end{cases}$$

В результате получаем из исходного уравнения кривой ее каноническое уравнение:

$$\frac{3}{2}(x'-y')^2 + 5(x'^2-y'^2) + \frac{3}{2}(x'^2+y'^2) = 16 \Leftrightarrow 8x_1'^2 - 2y_1'^2 = 16 \Leftrightarrow \frac{x_1'^2}{2} - \frac{y_1'^2}{8} = 1.$$

Последнее уравнение есть каноническое уравнение гиперболы.

1.3. ЗАДАЧИ ДЛЯ САМОПОДГОТОВКИ

1. Найдите
$$5A - 3B + 2C$$
, если $A = \begin{pmatrix} 1 & -2 & 0 \\ 3 & 5 & 1 \\ -1 & 2 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 1 & -2 \\ -3 & 2 & 7 \\ 4 & 0 & -1 \end{pmatrix}$,

$$C = \begin{pmatrix} -5 & 3 & 1 \\ 2 & 0 & 5 \\ 6 & 4 & 2 \end{pmatrix}.$$

- 2. Даны матрицы $A = \begin{pmatrix} 3 & 5 \\ 2 & 1 \end{pmatrix}$ и $B = \begin{pmatrix} 1 & -5 \\ -1 & 2 \end{pmatrix}$. Найдите AB и BA.
- 3. Найдите AA^T и A^TA , если $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 3 \\ 0 & 0 & 4 \end{pmatrix}$.

4. Даны матрицы
$$A = \begin{pmatrix} 3 & 6 \\ 2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 3 \\ 0 & -1 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $D = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Найдите AB, BC, B^TBC , AD, A^TAD .

5. Даны матрицы
$$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 & 2 & 0 \\ -1 & 2 & 0 & 0 \\ 1 & 2 & 1 & 0 \end{pmatrix}.$$

Найдите те из произведений АВ, ВА, АС, СА, ВС, СВ, которые имеют смысл.

6. Найдите значение матричного многочлена f(A), если:

1)
$$f(x)=x^2-3x+2$$
, $A = \begin{pmatrix} 1 & -3 & 0 \\ 0 & 2 & 1 \\ 3 & -3 & 2 \end{pmatrix}$;

2)
$$f(x) = 2x^3 - x^2 + 3$$
, $A = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$.

7. Вычислите определитель одним из следующих методов: а) по правилу треугольников; б) разложением по первой строке; в) приведением к треугольному виду:

1)
$$\begin{vmatrix} 1 & -2 & 1 \\ 3 & 1 & -5 \\ 4 & 2 & 5 \end{vmatrix}$$
; 2) $\begin{vmatrix} 3 & 4 & -5 \\ 8 & 7 & -2 \\ 2 & -1 & 8 \end{vmatrix}$; 3) $\begin{vmatrix} 5 & 6 & 3 \\ 0 & 2 & 0 \\ 7 & -4 & 5 \end{vmatrix}$.

8. Дана матрица A. Убедитесь, что она невырожденная, найдите обратную ей матрицу A^{-1} и проверьте равенства $AA^{-1} = A^{-1}A = E$:

1)
$$A = \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}$$
; 2) $A = \begin{pmatrix} 2 & -4 & 1 \\ 1 & -5 & 3 \\ 1 & -1 & 1 \end{pmatrix}$.

9. Решите матричные уравнения:

1)
$$X \begin{pmatrix} 4 & 3 \\ -5 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix};$$
 2) $\begin{pmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ 0 & -2 & 1 \end{pmatrix} X = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix};$

$$3) \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} X \begin{pmatrix} -5 & 6 \\ -4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}.$$

10. Найдите ранг матрицы A методом элементарных преобразований

1)
$$A = \begin{pmatrix} 1 & -3 & 5 & 4 \\ 2 & -6 & 4 & 3 \\ 3 & -9 & 3 & 2 \end{pmatrix};$$
 2) $A = \begin{pmatrix} -8 & 1 & -7 & -5 & -5 \\ -2 & 1 & -3 & -1 & -1 \\ 1 & 1 & -1 & 1 & 1 \end{pmatrix};$ 3) $A = \begin{pmatrix} -1 & 4 & 2 & 0 \\ 1 & 8 & 2 & 1 \\ 2 & 7 & 1 & -4 \end{pmatrix}.$

11. Исследуйте системы линейных уравнений на совместность и, в случае совместности, решите их: а) по формулам Крамера; б) методом Гаусса:

1)
$$\begin{cases} 2x_1 - x_2 + 2x_3 = 1, \\ 3x_1 + 2x_2 - x_3 = 9, \\ x_1 - 4x_2 + 3x_3 = -5; \end{cases} \begin{cases} 5x_1 + 8x_2 + x_3 = 2, \\ 3x_1 - 2x_2 + 6x_3 = -7, \\ 2x_1 + x_2 - x_3 = -5; \end{cases} \begin{cases} 4x_1 - 3x_2 + 2x_3 = 8, \\ 2x_1 + 5x_2 - 3x_3 = 11, \\ 5x_1 + 6x_2 - 2x_3 = 13. \end{cases}$$

12. Решите системы линейных уравнений методом Гаусса:

1)
$$\begin{cases} x_1 + 4x_2 - 2x_3 - 3x_5 = 2, \\ 2x_1 + 9x_2 - x_3 - 4x_4 = 5, \\ x_1 + 5x_2 + x_3 - 4x_4 + 3x_5 = 4; \end{cases}$$
2)
$$\begin{cases} x_1 + 2x_2 + 3x_3 - x_4 = 0, \\ x_1 - x_2 + x_3 + 2x_4 = 4, \\ x_1 + 5x_2 + 5x_3 - 4x_4 = -4, \\ x_1 + 8x_2 + 7x_3 - 7x_4 = -8; \end{cases}$$

$$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + x_5 = 1, \end{cases}$$

3)
$$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + x_5 = 1, \\ 3x_1 - x_2 + x_3 + 4x_4 + 3x_5 = 4, \\ x_1 + 5x_2 - 9x_3 - 8x_4 + x_5 = 0. \end{cases}$$

13. Найдите общее решение и фундаментальную систему решений однородной системы линейных уравнений:

1)
$$\begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 0, \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0, \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0, \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0; \end{cases}$$
 2)
$$\begin{cases} x_1 - x_2 + x_3 - x_4 = 0, \\ x_1 + x_2 + 2x_3 + 3x_4 = 0, \\ 2x_1 + 4x_2 + 5x_3 + 10x_4 = 0, \\ 2x_1 - 4x_2 + x_3 - 6x_4 = 0. \end{cases}$$

14. Найдите собственные значения и собственные векторы матрицы:

1)
$$A = \begin{pmatrix} 4 & 7 & 1 \\ -1 & -4 & -1 \\ -3 & -1 & 0 \end{pmatrix}$$
; 2) $A = \begin{pmatrix} 1 & 8 & 23 \\ 0 & 5 & 7 \\ 0 & 3 & 1 \end{pmatrix}$.

15. Приведите к каноническому виду уравнения кривых второго порядка и постройте их графики в исходной системе координат.

1)
$$9x^2 - 4xy + 6y^2 + 16x - 8y - 2 = 0$$
;

2)
$$5x^2 + 12xy - 22x - 12y - 19 = 0$$
;

3)
$$x^2 - 2xy + y^2 - 10x - 6y + 25 = 0$$
.

Ответы

$$\mathbf{1.} \begin{pmatrix}
-20 & -7 & 8 \\
28 & 19 & -6 \\
-5 & 18 & 27
\end{pmatrix}.$$

2.
$$AB = BA = \begin{pmatrix} -2 & -5 \\ -1 & -1 \end{pmatrix}$$

3.
$$AA^T = \begin{pmatrix} 2 & 5 & 4 \\ 5 & 14 & 12 \\ 4 & 12 & 16 \end{pmatrix}, A^T A = \begin{pmatrix} 5 & -2 & 7 \\ -2 & 1 & -3 \\ 7 & -3 & 26 \end{pmatrix}.$$

4.
$$AB = \begin{pmatrix} 3 & -6 & 3 \\ 2 & -1 & 5 \end{pmatrix}$$
, $BC = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $B^TBC = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$, $AD = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$,

$$A^T A D = \begin{pmatrix} -7 \\ -17 \end{pmatrix}.$$

5.
$$BA = \begin{pmatrix} -2 & 0 & -2 \\ 3 & -1 & 5 \end{pmatrix}, AC = \begin{pmatrix} 4 & 5 & 5 & 0 \\ 2 & 6 & 6 & 0 \end{pmatrix}.$$

6. 1)
$$\begin{pmatrix} 0 & 0 & -3 \\ 3 & -3 & 1 \\ 0 & -12 & -3 \end{pmatrix}$$
; 2) $\begin{pmatrix} 18 & -20 \\ 30 & -2 \end{pmatrix}$.

8. 1)
$$\begin{pmatrix} -\frac{3}{5} & \frac{2}{5} \\ \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$
; 2) $\begin{pmatrix} \frac{1}{4} & -\frac{3}{8} & \frac{7}{8} \\ -\frac{1}{4} & -\frac{1}{8} & \frac{5}{8} \\ -\frac{1}{2} & \frac{1}{4} & \frac{3}{4} \end{pmatrix}$.

9. 1)
$$X = \begin{pmatrix} 4 & 3 \\ -5 & -4 \end{pmatrix}$$
; 2) $X = \begin{pmatrix} \frac{15}{7} \\ -\frac{16}{7} \\ -\frac{11}{7} \end{pmatrix}$; 3) $X = \begin{pmatrix} -5 & 6 \\ -4 & 5 \end{pmatrix}$.

- **10.** 1) 2; 2) 2; 3) 3.
- **11.** 1) $x_1 = 2$, $x_2 = 1$, $x_3 = -1$; 2) $x_1 = -3$, $x_2 = 2$, $x_3 = 1$; 3) $x_1 = 3$, $x_2 = -2$, $x_3 = -5$.
- 12. 1) система несовместна; 2) $x_1 = \frac{8}{3} \frac{5}{3}c_1 c_2$, $x_2 = -\frac{4}{3} \frac{2}{3}c_1 + c_2$, $x_3 = c_1$, $x_4 = c_2$, c_1 , $c_2 \in \mathbb{R}$; 3) $x_1 = \frac{5}{4} + \frac{1}{4}c_1 \frac{3}{4}c_2 c_3$, $x_2 = -\frac{1}{4} + \frac{7}{4}c_1 + \frac{7}{4}c_2$, $x_3 = c_1$, $x_4 = c_2$, $x_5 = c_3$, c_1 , c_2 , $c_3 \in \mathbb{R}$.
 - 13. 1) ФСР: $\overline{x_1} = \begin{pmatrix} 8 \\ -6 \\ 1 \\ 0 \end{pmatrix}$, $\overline{x_2} = \begin{pmatrix} -7 \\ 5 \\ 0 \\ 1 \end{pmatrix}$, общее решение: $\overline{x} = c_1 \overline{x_1} + c_2 \overline{x_2}$, где

 c_1, c_2 – произвольные действительные числа;

2) ФСР:
$$\overline{x_1} = \begin{pmatrix} -1,5 \\ -0,5 \\ 1 \\ 0 \end{pmatrix}$$
, $\overline{x_2} = \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$, общее решение: $\overline{x} = c_1 \overline{x_1} + c_2 \overline{x_2}$, где

 $c_1, c_2 \in \mathbb{R}$.

14. 1) C3:
$$\lambda_1 = -2$$
, $\lambda_2 = 3$, $\lambda_3 = -1$, CB: $\overrightarrow{x_1} = a \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\overrightarrow{x_2} = b \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$,

$$\overrightarrow{x_3} = c \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}, \quad a, b, c \in \mathbb{R} \setminus \{0\}; \quad 2) \text{ C3:} \quad \lambda_1 = 1, \lambda_2 = 8, \lambda_3 = -2, \quad \text{CB:} \quad \overrightarrow{x_1} = a \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

$$\overrightarrow{x_2} = b \begin{pmatrix} 125 \\ 49 \\ 21 \end{pmatrix}, \ \overrightarrow{x_3} = c \begin{pmatrix} -5 \\ -1 \\ 1 \end{pmatrix}, \ a, b, c \in \mathbb{R} \setminus \{0\}.$$

15. 1) эллипс $\frac{{x'}^2}{2} + \frac{{y'}^2}{1} = 1$; 2) гипербола $\frac{{x'}^2}{4} - \frac{{y'}^2}{9} = 1$; 3) парабола $y'^2 = 4\sqrt{2}x'$.

2. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ВЕКТОРНАЯ АЛГЕБРА

В результате изучения данной темы студент должен научиться:

- изображать линейные комбинации заданных плоских векторов;
- находить координаты линейной комбинации векторов, длину вектора;
- вычислять скалярное, векторное, смешанное произведения векторов и с их помощью находить угол между векторами, площади треугольника, параллелограмма, объемы параллелепипеда, пирамиды;
- проверять коллинеарность, ортогональность и компланарность векторов;
 - составлять уравнения прямой на плоскости и в пространстве;
 - определять взаимное расположение прямых;
 - составлять уравнения плоскостей;
 - определять взаимное расположение плоскостей, прямой и плоскости;
- приводить уравнения кривых и поверхностей 2-го порядка к каноническому виду и определять типы кривых и поверхностей по полученным уравнениям.

2.1. ЗАДАЧИ ДЛЯ АУДИТОРНЫХ ЗАНЯТИЙ

1. Изобразите на плоскости два произвольных вектора \vec{a} и \vec{b} . Постройте векторы:

1)
$$2\vec{a} + \vec{b}$$
; 2) $\vec{a} - 3\vec{b}$; 3) $\frac{1}{2}\vec{a} + \frac{1}{3}\vec{b}$; 4) $-2\vec{a} + \frac{1}{3}\vec{b}$.

- 2. Среди изображенных на рис. 1 векторов укажите:
- 1) коллинеарные; 2) ортогональные;
- 3) противоположно направленные;
- 4) сонаправленные; 5) равные.
- 3. Найдите координаты, длину вектора AB и середину отрезка AB, если: 1) A(1;-1), B(-1;2); 2) A(3;-4;1), B(4;6;-3).
- 4. Найдите координаты и длины векторов $\vec{c}=2\vec{a}-3\vec{b}$ и $\vec{d}=3\vec{a}+\frac{1}{2}\vec{b}$, если $\vec{a}=(3;-1;2)$, $\vec{b}=(-2;0;2)$.

Рис. 1

- 5. Докажите, что векторы $\vec{a}=(3;-2;1), \vec{b}=(-1;1;-2)$ и $\vec{c}=(2;1;-3)$ образуют базис и найдите разложение вектора $\vec{d}=(11;-6;5)$ по этому базису.
- 6. Даны векторы $\vec{a}=2\vec{i}-\vec{k}$, $\vec{b}=\vec{i}+2\vec{j}+\vec{k}$, $\vec{c}=3\vec{i}-\vec{j}+2\vec{k}$. Выполните следующие задания:
 - 1) вычислите скалярное произведение векторов $2\vec{b}$ и $-\vec{c}$;
 - 2) найдите модуль векторного произведения векторов $\vec{a} + \vec{c}$ и \vec{b} ;

- 3) вычислите смешанное произведение векторов \vec{a} , $-\vec{b}$ и $2\vec{c}$;
- 4) проверьте, будут ли векторы $\vec{3b}$ и \vec{c} коллинеарными, ортогональными;
- 5) проверьте, будут ли векторы \vec{a} , \vec{b} , $2\vec{c}$ компланарными.
- 7. Прямая ℓ задана общим уравнением 5x + 3y + 15 = 0. Запишите следующие уравнения данной кривой: 1) с угловым коэффициентом; 2) «в отрезках»; 3) каноническое; 4) параметрические. Постройте прямую ℓ .
- 8. Запишите уравнения прямых, которые проходят через точку A(3;-1) и параллельны: 1) оси абсцисс; 2) оси ординат; 3) биссектрисе первого координатного угла; 4) прямой y = 3x + 9.
- 9. Даны вершины треугольника ABC: A(2;2), B(-2;-8), C(-6;-2). Найдите: 1) уравнение стороны AB; 2) уравнение высоты CH; 3) уравнение медианы AM; 4) расстояние от точки C до прямой AB; 5) уравнение прямой ℓ , проходящей через вершину C параллельно прямой AB; 6) косинус внутреннего угла при вершине A; 7) точку N пересечения высоты CH и медианы AM.
- 10. Запишите уравнение плоскости: 1) параллельной плоскости Oxz и проходящей через точку $M_0(7;-3;5);$ 2) проходящей через ось Oz и точку A(-3;1;-2); 3) параллельной оси Ox и проходящей через две точки $M_1(4;0;-2)$ и $M_2(5;1;7);$ 4) проходящей через точку B(2;1;-1) и имеющей нормальный вектор $\vec{n}=(1;-2;3);$ 5) проходящей через точку C(3;4;-5) параллельно двум векторам $\vec{a}=(3;1;-1)$ и $\vec{b}=(1;-2;1)$.
- 11. Составьте канонические и параметрические уравнения прямой, проходящей через точку A(1;-2;3) перпендикулярно плоскости x-3y+5z-7=0.
- 12. Даны координаты вершин пирамиды ABCD: A(1;0;3), B(-1;1;1), C(1;2;1) и D(0;3;2). Найдите: 1) уравнение прямой AB; 2) длину ребра AB; 3) угол ϕ между ребрами AB и AC; 4) уравнение плоскости ABC; 5) площадь $\triangle ABC$; 6) синус угла между ребром AD и гранью ABC; 7) объем пирамиды ABCD; 8) уравнения и длину высоты DH, опущенной из точки D на плоскость ABC; 9) уравнение плоскости, проходящей через точку D, параллельно плоскости ABC; 10) точку пересечения высоты DH и грани ABC.

Ответы

2. 1) \vec{a} , \vec{c} , \vec{k} , \vec{n} ; 2) $\vec{a} \perp \vec{b}$, $\vec{c} \perp \vec{b}$, $\vec{b} \perp \vec{k}$, $\vec{b} \perp \vec{n}$; 3) $\vec{a} \downarrow \uparrow \vec{c}$, $\vec{a} \downarrow \uparrow \vec{k}$, $\vec{n} \downarrow \uparrow \vec{c}$, $\vec{n} \downarrow \uparrow \vec{k}$; 4) $\vec{c} \uparrow \uparrow \vec{k}$, $\vec{a} \uparrow \uparrow \vec{n}$; 5) $\vec{a} = \vec{n}$.

3. 1)
$$\overrightarrow{AB} = (-2; 3), |\overrightarrow{AB}| = \sqrt{13}, M(0; \frac{1}{2}); 2) \overrightarrow{AB} = (1; 10; -4), |\overrightarrow{AB}| = \sqrt{117}, M(\frac{7}{2}; 1; -1).$$

4.
$$\vec{c} = (12;-2;-2), |\vec{c}| = 2\sqrt{38}, \vec{d} = (8;-3;7), |\vec{d}| = \sqrt{122}.$$

5.
$$\vec{d} = 2\vec{a} - 3\vec{b} + \vec{c}$$
.

6. 1) -6; 2) $\sqrt{146}$; 3) -34; 4) не коллинеарны, не ортогональны; 5) не компланарны.

7. 1)
$$y = -\frac{5}{3}x - 5$$
; 2) $\frac{x}{-3} + \frac{y}{-5} = 1$; 3) $\frac{x}{-3} = \frac{y + 5}{5}$; 4) $\begin{cases} x = -3t, \\ y = -5 + 5t, \end{cases}$ $t \in \mathbb{R}$.

8. 1)
$$y = -1$$
; 2) $x = 3$; 3) $y = x - 4$; 4) $y = 3x - 10$.

9. 1)
$$-5x + 2y + 6 = 0$$
; 2) $2x + 5y + 22 = 0$; 3) $7x - 6y - 2 = 0$; 4) $\frac{32}{\sqrt{29}}$;

5)
$$-5x + 2y - 26 = 0$$
; 6) $\frac{9}{\sqrt{145}}$; 7) $N\left(-\frac{122}{47}; -\frac{158}{47}\right)$.

10. 1)
$$y + 3 = 0$$
; 2) $x + 3y = 0$; 3) $9y - z - 2 = 0$; 4) $x - 2y + 3z + 3 = 0$;

5)
$$x + 4y + 7z + 16 = 0$$
.

11. Канонические уравнения: $\frac{x-1}{1} = \frac{y+2}{-3} = \frac{z-3}{5}$, параметрические

уравнения:
$$\begin{cases} x=t+1,\\ y=-3t-2, & t\in\mathbb{R}.\\ z=5t+3, \end{cases}$$

12. 1)
$$\frac{x-1}{-2} = \frac{y}{1} = \frac{z-3}{-2}$$
; 2) $AB = 3$; 3) $\varphi = \frac{\pi}{4}$; 4) $x - 2y - 2z + 5 = 0$;

5)
$$S_{ABC} = 3$$
; 6) $\sin \Theta = \frac{5}{3\sqrt{11}}$; 7) $V_{ABCD} = \frac{5}{3}$; 8) $\frac{x}{1} = \frac{y-3}{-2} = \frac{z-2}{-2}$, $DH = \frac{5}{3}$;

9)
$$x-2y-2z+10=0$$
; 10) $\left(\frac{5}{9}; \frac{17}{9}; \frac{8}{9}\right)$.

2.2. ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ

- 1. Даны векторы $\vec{a} = 6\vec{i} 2\vec{j} + 2\vec{k}$, $\vec{b} = 2\vec{i} + \vec{j} \vec{k}$, $\vec{c} = \vec{i} 3\vec{j} + 2\vec{k}$ $\vec{d} = 5\vec{i} - 20\vec{j} + 15\vec{k}$. Требуется:
 - 1) вычислить скалярное произведение векторов \vec{b} и $2\vec{a} \vec{c}$;
 - 2) вычислить векторное произведение векторов \vec{c} и $\vec{a} 3\vec{b}$;
- 3) выяснить, являются ли векторы $2\vec{a}$ и $-3\vec{b}$ коллинеарными, ортогональными;
- 4) показать, что векторы $\vec{a}, \vec{b}, \vec{c}$ образуют базис и найти координаты вектора \vec{d} в этом базисе.

Решение:

1) найдем координаты вектора

$$2\vec{a} - \vec{c} = 2(6\vec{i} - 2\vec{j} + 2\vec{k}) - (\vec{i} - 3\vec{j} + 2\vec{k}) = 11\vec{i} - \vec{j} + 2\vec{k}.$$

Так как скалярное произведение векторов $\vec{m} = (x_1; y_1; z_1)$ и $\vec{n} = (x_2; y_2; z_2)$ вычисляется по формуле $\vec{m} \cdot \vec{n} = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$, то

$$\vec{b} \cdot (2\vec{a} - \vec{c}) = 2 \cdot 11 + 1 \cdot (-1) + (-1) \cdot 2 = 19$$
;

2) найдем координаты вектора

$$\vec{a} - 3\vec{b} = (6\vec{i} - 2\vec{j} + 2\vec{k}) - 3(2\vec{i} + \vec{j} - \vec{k}) = -5\vec{j} + 5\vec{k}.$$

Так как векторное произведение векторов $\vec{m} = (x_1; y_1; z_1)$ и $\vec{n} = (x_2; y_2; z_2)$ вычисляется по формуле

$$\vec{m} \times \vec{n} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \vec{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \vec{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \vec{k}, \text{ TO}$$

$$\vec{c} \times (\vec{a} - 3\vec{b}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -3 & 2 \\ 0 & -5 & 5 \end{vmatrix} = \begin{vmatrix} -3 & 2 \\ -5 & 5 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & 2 \\ 0 & 5 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & -3 \\ 0 & -5 \end{vmatrix} \vec{k} = -5\vec{i} - 5\vec{j} - 5\vec{k};$$

3) условием коллинеарности векторов $\vec{m} = (x_1; y_1; z_1)$ и $\vec{n} = (x_2; y_2; z_2)$ является пропорциональность их координат:

$$\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}.$$

Найдем координаты векторов $2\vec{a}$ и $-3\vec{b}$: $2\vec{a} = 12\vec{i} - 4\vec{j} + 4\vec{k}; -3\vec{b} = -6\vec{i} - 3\vec{j} + 3\vec{k}$.

$$2\vec{a} = 12\vec{i} - 4\vec{j} + 4\vec{k}$$
; $-3\vec{b} = -6\vec{i} - 3\vec{j} + 3\vec{k}$.

Поскольку $\frac{12}{-6} \neq \frac{-4}{-3} = \frac{4}{3}$, то векторы $2\vec{a}$ и $-3\vec{b}$ не коллинеарны.

Условием ортогональности двух векторов является равенство нулю их скалярного произведения.

Так как $2\vec{a} \cdot (-3\vec{b}) = 12 \cdot (-6) + (-4) \cdot (-3) + 4 \cdot 3 = -48 \neq 0$, то векторы $2\vec{a}$ и $-3\vec{b}$ не ортогональны;

4) векторы $\vec{a}, \vec{b}, \vec{c}$ образуют базис в пространстве \mathbb{R}^3 , если они не компланарны, т. е. их смешанное произведение не равно нулю.

Найдем смешанное произведение векторов $\vec{a}, \vec{b}, \vec{c}$:

$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} 6 & -2 & 2 \\ 2 & 1 & -1 \\ 1 & -3 & 2 \end{vmatrix} = \begin{vmatrix} 10 & 0 & 0 \\ 2 & 1 & -1 \\ 1 & -3 & 2 \end{vmatrix} = 10 \begin{vmatrix} 1 & -1 \\ -3 & 2 \end{vmatrix} = 10(2-3) = -10 \neq 0.$$

Следовательно, векторы a,b,c не компланарны и образуют базис в пространстве \mathbb{R}^3 .

Представим вектор \vec{d} в виде линейной комбинации векторов $\vec{a}, \vec{b}, \vec{c}$, т. е. $\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$, где $(\alpha; \beta; \gamma)$ — координаты вектора \vec{d} в базисе $\vec{a}, \vec{b}, \vec{c}$. Запишем последнее равенство в координатной форме:

$$\alpha \begin{pmatrix} 6 \\ -2 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + \gamma \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ -20 \\ 15 \end{pmatrix} \Leftrightarrow \begin{cases} 6\alpha + 2\beta + \gamma = 5, \\ -2\alpha + \beta - 3\gamma = -20, \\ 2\alpha - \beta + 2\gamma = 15. \end{cases}$$

Решим полученную систему методом Гаусса:

$$\begin{pmatrix} 6 & 2 & 1 & 5 \\ -2 & 1 & -3 & -20 \\ 2 & -1 & 2 & 15 \end{pmatrix} + I_2 \sim \begin{pmatrix} 6 & 2 & 1 & 5 \\ -2 & 1 & -3 & -20 \\ 0 & 0 & -1 & -5 \end{pmatrix} + 3I_2 \sim \begin{pmatrix} 0 & 5 & -8 & 55 \\ -2 & 1 & -3 & -20 \\ 0 & 0 & -1 & -5 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} -2 & 1 & -3 | -20 \\ 0 & 5 & -8 | -55 \\ 0 & 0 & -1 | -5 \end{pmatrix}.$$

Преобразованной расширенной матрице системы соответствует следующая система линейных уравнений:

$$\begin{cases}
-2\alpha + \beta - 3\gamma = -20, \\
5\beta - 8\gamma = -55, \\
-\gamma = -5,
\end{cases}$$

из которой находим $\gamma = 5, \beta = -3, \alpha = 1$.

Значит, $\vec{d} = \vec{a} - 3\vec{b} + 5\vec{c}$.

- 2. Даны координаты вершин треугольника ABC: A(1;-3), B(0;7), C(-2;4). Найдите:
 - 1) уравнение стороны AB;
 - 2) уравнение высоты *СН*;
 - 3) уравнение медианы AM;
 - 4) точку N пересечения медианы AM и высоты CH;
- 5) уравнение прямой, проходящей через вершину C, параллельно стороне AB:
 - 6) расстояние от точки C до прямой AB.

Решение:

1) уравнение прямой, проходящей через точки $A(x_1; y_1)$ и $B(x_2; y_2)$, имеет вид

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

Подставляя в последнее равенство координаты точек A и B, получим

$$\frac{x-1}{0-1} = \frac{y-(-3)}{7-(-3)} \Leftrightarrow \frac{x-1}{-1} = \frac{y+3}{10} \Leftrightarrow 10(x-1) = -(y+3) \Leftrightarrow 10x + y - 7 = 0 \Leftrightarrow$$

 \Leftrightarrow *y* = -10x + 7 – уравнение прямой *AB* с угловым коэффициентом;

2) из перпендикулярности прямых AB и CH следует, что их угловые коэффициенты связаны равенством $k_{AB} \cdot k_{CH} = -1$.

Угловой коэффициент прямой AB равен -10. Тогда угловой коэффициент прямой CH: $k_{CH}=-\frac{1}{k_{AB}}=-\frac{1}{-10}=\frac{1}{10}$.

Используем уравнение прямой, проходящей через заданную точку $M_0(x_0;y_0)$ с известным угловым коэффициентом k: $y-y_0=k(x-x_0)$.

Подставляя в последнюю формулу координаты точки C и найденный коэффициент k_{CH} , получим

$$y-4=\frac{1}{10}(x-(-2)) \Leftrightarrow x-10y+42=0$$
 – общее уравнение высоты *CH*;

3) найдем координаты точки M — середины стороны AB по формулам:

$$x_M = \frac{x_A + x_B}{2} = \frac{1+0}{2} = \frac{1}{2},$$

 $y_M = \frac{y_A + y_B}{2} = \frac{-3+7}{2} = 2.$

Тогда по двум известным точкам A(1;-3) и $M\left(\frac{1}{2};2\right)$ составляем уравнение медианы AM:

$$\frac{x-1}{\frac{1}{2}-1} = \frac{y-(-3)}{2-(-3)} \Leftrightarrow -2(x-1) = \frac{1}{5}(y+3) \Leftrightarrow 10x+y-7=0;$$

4) для нахождения координаты точки N пересечения медианы AM и высоты CH составляем систему уравнений:

$$\begin{cases} x - 10y + 42 = 0, \\ 10x + y - 7 = 0. \end{cases}$$

Решая ее, находим точку $N\left(\frac{28}{101}; \frac{427}{101}\right);$

5) так как прямая, проходящая через вершину C, параллельна стороне AB, то угловой коэффициент искомой прямой равен $k_{AB} = -10$. По заданной точке C(-2;4) и угловому коэффициенту $k_{AB} = -10$ составляем уравнение искомой прямой:

$$y-4=-10(x-(-2)) \Leftrightarrow 10x+y+16=0$$
;

6) расстояние от точки $M_0\big(x_0;y_0\big)$ до прямой ax+by+c=0 вычисляется по формуле

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

Подставляя в последнее равенство координаты точки C(-2;4) и коэффициенты прямой AB: 10x+y-7=0 (a=10,b=1,c=-7), получим $d=\frac{|10\cdot (-2)+1\cdot 4-7|}{\sqrt{10^2+1^2}}=\frac{23}{\sqrt{101}}.$

- 3. Даны координаты вершин пирамиды ABCD: $A_1(2;1;7)$, $A_2(3;3;6)$, $A_3(2;-3;9)$, $A_4(1;2;5)$. Найдите:
 - 1) уравнение прямой A_1A_2 ;
 - 2) длину ребра A_1A_2 ;
 - 3) уравнение плоскости $A_1A_2A_3$;
- 4) уравнения и длину высоты A_4H , опущенной из вершины A_4 на плоскость $A_1A_2A_3$;
 - 5) площадь треугольника $A_1A_2A_3$;
 - 6) угол ϕ между ребрами A_1A_2 и A_1A_4 ;
 - 7) синус угла Θ между ребром A_1A_4 и гранью $A_1A_2A_3$.

Решение:

1) уравнения прямой, проходящей через две заданные точки $A_1(x_1;y_1;z_1)$ и $A_2(x_2;y_2;z_2)$, имеют вид

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}.$$

Подставляя в последнее равенство координаты точек A_1 и A_2 , получаем $\frac{x-2}{3-2} = \frac{y-1}{3-1} = \frac{z-7}{6-7} \iff \frac{x-2}{1} = \frac{y-1}{2} = \frac{z-7}{-1} -$ канонические уравнения прямой A_1A_2 ;

2) длина ребра
$$A_1A_2$$
 равна длине вектора $\overline{A_1A_2} = (3-2;3-1;6-7) = (1;2;-1), \ \left|\overline{A_1A_2}\right| = \sqrt{1^2+2^2+(-1)^2} = \sqrt{6}$;

3) уравнение плоскости, проходящей через три заданные точки $A_1(x_1;y_1;z_1), \quad A_2(x_2;y_2;z_2)$ и $A_3(x_3;y_3;z_3),$ имеет вид $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0.$

Подставляя в левую часть последнего равенства координаты точек A_1, A_2, A_3 , получаем

$$\begin{vmatrix} x-2 & y-1 & z-7 \\ 3-2 & 3-1 & 6-7 \\ 2-2 & -3-1 & 9-7 \end{vmatrix} = (x-2) \begin{vmatrix} 2 & -1 \\ -4 & 2 \end{vmatrix} - (y-1) \begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} + (z-7) \begin{vmatrix} 1 & 2 \\ 0 & -4 \end{vmatrix} = (x-2) \cdot 0 - (y-1) \cdot 2 + (z-7) \cdot (-4) = -2y - 4z + 30, \text{ откуда}$$
$$-2(y+2z-15) = 0 \iff y+2z-15 = 0.$$

Таким образом, уравнение плоскости $A_1A_2A_3$ имеет вид y + 2z - 15 = 0;

4) чтобы составить уравнение прямой A_4H , воспользуемся каноническими уравнениями:

$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$
,

где $(x_0; y_0; z_0)$ – координаты произвольной точки прямой; (m; n; p) – координаты направляющего вектора прямой.

Так как прямая A_4H перпендикулярна плоскости $A_1A_2A_3$, то в качестве направляющего вектора этой прямой можно взять вектор нормали $\vec{n}=(0;1;2)$ плоскости $A_1A_2A_3$. Тогда канонические уравнения прямой A_4H имеют вид:

$$\frac{x-1}{0} = \frac{y-2}{1} = \frac{z-5}{2}.$$

Длина высоты A_4H равна расстоянию от точки $A_4(1;2;5)$ до плоскости $A_1A_2A_3$: y+2z-15=0. Вычислим A_4H , используя формулу расстояния от точки $M_0(x_0;y_0;z_0)$ до плоскости Ax+By+Cz+D=0 :

$$d = \frac{\left|Ax_0 + By_0 + Cz_0 + D\right|}{\sqrt{A^2 + B^2 + C^2}}.$$
 Таким образом,
$$A_4 H = \frac{\left|0 \cdot 1 + 1 \cdot 2 + 2 \cdot 5 - 15\right|}{\sqrt{0^2 + 1^2 + 2^2}} = \frac{3}{\sqrt{5}};$$

5) площадь треугольника $A_1A_2A_3$ найдем, используя геометрический смысл векторного произведения:

$$S_{\Delta A_1 A_2 A_3} = \frac{1}{2} \cdot \left| \overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3} \right|.$$

Найдем координаты векторного произведения

$$\overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 2 & -1 \\ 0 & -4 & 2 \end{vmatrix} = \overrightarrow{i} \begin{vmatrix} 2 & -1 \\ -4 & 2 \end{vmatrix} - \overrightarrow{j} \begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} + \overrightarrow{k} \begin{vmatrix} 1 & 2 \\ 0 & -4 \end{vmatrix} = 0 \cdot \overrightarrow{i} - 2 \cdot \overrightarrow{j} - 4 \overrightarrow{k}.$$

Тогда
$$S_{\Delta A_1 A_2 A_3} = \frac{1}{2} \sqrt{0^2 + (-2)^2 + (-4)^2} = \sqrt{5}$$
;

6) косинус угла между ребрами A_1A_2 и A_1A_4 найдем по формуле

$$\cos \varphi = \frac{\overrightarrow{A_1 A_2} \cdot \overrightarrow{A_1 A_4}}{\left| \overrightarrow{A_1 A_2} \right| \cdot \left| \overrightarrow{A_1 A_4} \right|},$$

где $\overrightarrow{A_1A_2} \cdot \overrightarrow{A_1A_4}$ – скалярное произведение векторов $\overrightarrow{A_1A_2}$ и $\overrightarrow{A_1A_4}$.

Известны координаты вектора $\overrightarrow{A_1A_2}=(1;2;-1)$ и его длина $\left|\overrightarrow{A_1A_2}\right|=\sqrt{6}$. Найдем координаты и длину вектора $\overrightarrow{A_1A_4}$:

$$\overrightarrow{A_1 A_4} = (1-2; 2-1; 5-7) = (-1; 1; -2), \ \left| \overrightarrow{A_1 A_4} \right| = \sqrt{(-1)^2 + 1^2 + (-2)^2} = \sqrt{6}.$$
 Тогда $\cos \varphi = \frac{1 \cdot (-1) + 2 \cdot 1 + (-1) \cdot (-2)}{\sqrt{6} \cdot \sqrt{6}} = \frac{3}{6} = \frac{1}{2}, \text{ т. e. } \varphi = \frac{\pi}{3};$

7) синус угла между прямой с направляющим вектором $\vec{a} = (m; n; p)$ и плоскостью, имеющей вектор нормали $\vec{n} = (A; B; C)$, вычисляется по формуле

$$\sin\Theta = \frac{\left|\vec{a}\cdot\vec{n}\right|}{\left|\vec{a}\right|\cdot\left|\vec{n}\right|} = \frac{\left|m\cdot A + q\cdot B + p\cdot C\right|}{\sqrt{m^2 + q^2 + p^2}\cdot\sqrt{A^2 + B^2 + C^2}}.$$

Направляющим для прямой $\overrightarrow{A_1A_4}$ является вектор $\overrightarrow{A_1A_4}=(-1;1;-2).$ Вектор нормали \overrightarrow{n} к плоскости $A_1A_2A_3$ имеет координаты (0;1;2).

Таким образом,
$$\sin \Theta = \frac{\left| -1 \cdot 0 + 1 \cdot 1 + (-2) \cdot 2 \right|}{\sqrt{6} \cdot \sqrt{5}} = \frac{3}{\sqrt{30}}$$
.

4. Составьте уравнение линии, каждая точка которой находится в два раза ближе к точке A(1;0), чем к точке B(-2;0). Приведите полученное уравнение к каноническому виду и укажите тип линии, описываемой этим уравнением.

Решение

Обозначим произвольную точку искомой линии M(x;y). Тогда по условию 2|MA| = |MB|, где |MA| и |MB| — расстояния от точки M до точек A и B соответственно. Так как расстояние d между точками $(x_1;y_1)$ и $(x_2;y_2)$ вычисляется по формуле

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}, \text{ то}$$

$$|MA| = \sqrt{(x-1)^2 + (y-0)^2}, \quad |MB| = \sqrt{(x+2)^2 + (y-0)^2} \quad \text{и, следовательно,}$$

$$2\sqrt{(x-1)^2 + y^2} = \sqrt{(x+2)^2 + y^2} \Leftrightarrow 4\left((x-1)^2 + y^2\right) = (x+2)^2 + y^2 \Leftrightarrow$$

$$\Leftrightarrow x^2 - 4x + y^2 = 0.$$

Выделим полный квадрат по переменной x в последнем равенстве:

$$x^2 - 4x + 4 + y^2 = 4$$
 или $(x-2)^2 + y^2 = 4$.

Полученное уравнение определяет окружность с центром в точке (2; 0) и радиусом 2.

2.3. ЗАДАЧИ ДЛЯ САМОПОДГОТОВКИ

- 1. Даны три точки A(1;0;-2), B(2;-1;0), C(0;1;2). Найдите координаты и длину вектора $\overrightarrow{a} = \overrightarrow{AB} \overrightarrow{AC} + 2\overline{BC}$.
- 2. Найдите координаты и длину вектора $\vec{c} = 3\vec{a} + 2\vec{b}$, если $\vec{a} = (0;-2;-3)$, $\vec{b} = 3\vec{i} + 2\vec{j} + 3\vec{k}$.
- 3. Выясните, являются ли векторы $\vec{a} = -\vec{i} + 2\vec{j} 3\vec{k}$ и $\vec{b} = 3\vec{i} + 5\vec{j} + 2\vec{k}$ ортогональными, коллинеарными.
- 4. При каких значениях α и β векторы $\vec{a} = -2\vec{i} + 3\vec{j} + \alpha\vec{k}$ и $\vec{b} = \beta\vec{i} 6\vec{j} + 2\vec{k}$ коллинеарны?
- 5. Докажите, что векторы $\vec{a} = \vec{i} + 2\vec{j}$, $\vec{b} = \vec{i} 3\vec{j}$ и $\vec{c} = 4\vec{i} 2\vec{j}$ линейно зависимы.
- 6. Докажите, что векторы $\vec{a} = \vec{i} + \vec{j} + 4\vec{k}$, $\vec{b} = -3\vec{i} + 2\vec{k}$, $\vec{c} = \vec{i} + 2\vec{j} \vec{k}$ образуют базис. Найдите координаты вектора $\vec{d} = -13\vec{i} + 2\vec{j} + 18\vec{k}$ в этом базисе.
 - 7. Даны векторы $\vec{a} = 4\vec{i} \vec{j} 2\vec{k}$, $\vec{b} = (2; 1; 2)$. Найдите:
 - 1) скалярное произведение $\vec{a} \cdot \vec{b}$;
 - 2) косинус угла между векторами \vec{a} и \vec{b} ;
 - 3) $\operatorname{np}_{\vec{a}}\vec{b}$;

- 4) $np_{\vec{h}}\vec{a}$;
- 5) длину вектора \vec{b} .
- 8. Найдите координаты вектора $\vec{a} \times (2\vec{a} + \vec{b})$, если $\vec{a} = (3;-1;-2)$, $\vec{b} = (1;2;-1)$.
- 9. Даны вершины треугольника A(2;3;-1), B(4;1;-2) и C(1;0;2). Найдите: 1) внутренний угол при вершине C;2) пр $_{\overrightarrow{CA}}\overrightarrow{CB};3)$ площадь треугольника ABC.
- 10. Найдите площадь параллелограмма, построенного на векторах $\vec{a} = (8;4;1)$ и $\vec{b} = 2\vec{i} 2\vec{j} + \vec{k}$ как на сторонах.
- 11. Даны вершины пирамиды A(2;0;4), B(0;3;7), C(0;0;6), S(4;3;5). Вычислите ее объем V и длину высоты H, опущенной на грань ACS.
- 12. Лежат ли точки A(1;2;-1), B(4;1;5), C(-1;2;1) и D(6;1;3) в одной плоскости?
 - 13. Компланарны ли следующие векторы:
 - 1) $\vec{a} = (2;3;1), \vec{b} = (1;-1;3), \vec{c} = (-1;9;-11);$
 - 2) $\vec{a} = (3;-2;1), \vec{b} = (2;1;2), \vec{c} = (3;-1;-2)$?
- 14. Выясните, правой или левой будет тройка векторов \vec{a} = (3;4;0), \vec{b} = (0;-4;1), \vec{c} = (0;2;5).
- 15. По данным уравнениям постройте прямые, найдите их угловые коэффициенты и отрезки, отсекаемые ими на осях координат. Запишите канонические и параметрические уравнения этих прямых.
 - 1) 2x y + 3 = 0;
 - 2) 5x + 2y 8 = 0;
 - 3) 3x + 8y + 16 = 0.
- 16. Напишите уравнение прямой, проходящей через точки A(0;2) и B(-3;7).
- 17. Точка A(-2;3) лежит на прямой, перпендикулярной прямой 2x-3y+8=0. Напишите уравнение этой прямой.
- 18. Составьте уравнение прямой, проходящей через точку A(2;-3) параллельно прямой, соединяющей точки $M_1(-4;0)$ и $M_2(2;2)$.
 - 19. Исследуйте взаимное расположение следующих пар прямых:
 - 1) 3x + 5y 9 = 0 и 10x 6y + 4 = 0;
 - 2) 2x + 5y 2 = 0 и x + y + 4 = 0;
 - 3) x + 8 = 0 и 2x 3 = 0;
 - 4) 2y = x 1 и 4y 2x + 2 = 0.

В случае пересечения найдите координаты точки пересечения.

- 20. При каких значениях α следующие пары прямых: а) параллельны; б) перпендикулярны
 - 1) $\alpha x 3y 3 = 0$ и 3x 6y + 7 = 0; 2) 2x 5y + 9 = 0 и $\alpha x + 15y 1 = 0$?

- 21. Найдите координаты точки M_2 , симметричной точке $M_1(-3;4)$ относительно прямой 4x-y-1=0.
- 22. Найдите расстояние между параллельными прямыми 2x 3y + 8 = 0 и 4x 6y + 10 = 0.
- 23. Составьте уравнение прямой, параллельной прямой 2x + 5y + 10 = 0 и отсекающей от первого координатного угла треугольник, площадь которого равна 5.
 - 24. Найдите угол между прямыми x + 2y 5 = 0 и 4x + 2y 1 = 0.
 - 25. Найдите координаты центра O и радиус r окружности

$$2x^2 + 2y^2 - 8x + 5y - 4 = 0$$
.

- 26. Приведите к каноническому виду уравнения кривых второго порядка. Определите тип этих кривых и постройте их.
 - 1) $4x^2 + 9y^2 8x 36y + 4 = 0$; 2) $x^2 9y^2 + 2x 36y 44 = 0$;
 - 3) $2x^2 4x + 2y 3 = 0$.
 - 27. Определите, какая линия определяется уравнением

$$x = -5 + \frac{2}{3}\sqrt{8 + 2y - y^2}$$
.

- 28. Составьте уравнение плоскости, проходящей через три заданные точки A(1;2;0), B(2;1;1), C(3;0;1).
- 29. Напишите уравнение плоскости, проходящей через точку A(2;1;-1), параллельно векторам $\vec{a} = (3;-1;0)$ и b = (2;0;-1).
 - 30. Составьте уравнение плоскости, проходящей:
 - 1) через точку M(4;-1;2) и ось Ox;
 - 2) через точку M(1;0;3) и ось Oy.
- 31. Найдите длину h высоты пирамиды DABC, опущенной из точки D на грань ABC, если $D(2;2;-\sqrt{3})$, A(0;0;0), B(0;1;1), C(1;1;0).
- 32. Даны две плоскости $P_1: -x+2y-z+1=0$ и $P_2: y+3z-1=0$. Найдите косинус острого угла между ними.
- 33. Определите, при каких значениях λ и μ плоскости $P_1: 2x+ly+3z-5=0$ и $P_2: mx-6y-6z+2=0$ параллельны.
- 34. Определите, при каком значении λ плоскости $P_1:3x-5y+lz-3=0$ и $P_2:x+3y+2z+5=0$ перпендикулярны.
- 35. Вычислите объем пирамиды, ограниченной плоскостью P: 2x + 3y 5z 30 = 0 и координатными плоскостями.
- 36. Составьте уравнения плоскостей, параллельных плоскости P: x+2y-2z-3=0 и отстоящих от нее на расстоянии d=5.
- 37. Напишите канонические и параметрические уравнения прямой, проходящей через точки $M_1(1;2;3)$ и $M_2(2;4;7)$.

38. Установите взаимное расположение прямой и плоскости (в случае их пересечения, найдите координаты точки пересечения):

1)
$$\frac{x+1}{2} = \frac{y-3}{4} = \frac{z}{3}$$
 и $3x-3y+2z-5=0$;

2)
$$\frac{x-13}{8} = \frac{y-1}{2} = \frac{z-4}{3}$$
 и $x+2y-4z+1=0$;

3)
$$\frac{x-7}{5} = \frac{y-4}{1} = \frac{z-5}{4}$$
 и $3x - y + 2z - 5 = 0$.

39. Даны точка A(3;-1;1) и плоскость x+2y+2z+6=0. Найдите координаты точки A^* , симметричной точке A относительно этой плоскости.

40. Найдите угол между прямыми
$$l_1: \begin{cases} x=3t-2, \\ y=0, \end{cases}$$
 и $l_2: \begin{cases} x=2t-1, \\ y=0, \\ z=-t+3 \end{cases}$

- 41. Найдите координаты точки A^* , симметричной точке A(2;3;-1) относительно прямой $l: \begin{cases} x=t+1,\\ y=-t-2,\ t\in\mathbb{R}.\\ z=2t+1, \end{cases}$
- 42. Найдите угол между прямой $\frac{x-3}{1} = \frac{y-6}{1} = \frac{z+7}{-2}$ и плоскостью 4x-2y-2z-3=0.
- 43. Докажите, что прямые $l_1: \frac{x}{2} = \frac{y-1}{3} = \frac{z+2}{1}$ и $l_2: \frac{x+4}{3} = \frac{y+3}{2} = \frac{z-1}{4}$ скрещиваются.
- 44. Даны координаты вершин пирамиды $A_1(6;6;2)$, $A_2(5;4;7)$, $A_3(2;4;7)$, $A_4(7;3;0)$. Найдите: 1) длину ребра A_1A_2 ; 2) уравнение прямой A_1A_2 ; 3) угол φ между ребрами A_1A_2 и A_1A_4 ; 4) уравнение плоскости $A_1A_2A_3$; 5) угол φ между ребром A_1A_4 и гранью $A_1A_2A_3$; 6) уравнение высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$; 7) площадь грани $A_1A_2A_3$; 8) объем пирамиды.
- 45. Приведите к каноническому виду уравнения поверхностей второго порядка, определите их тип:

1)
$$4x^2 + 9y^2 + 36z^2 - 8x - 18y - 72z + 13 = 0$$
;

2)
$$x^2 - y^2 - 4x + 8y - 2z = 0$$
;

3)
$$4x^2 - y^2 + 4z^2 - 8x + 4y + 8z + 4 = 0$$
.

Ответы

1.
$$\vec{a} = (-2, 2, 2), |\vec{a}| = 2\sqrt{3}$$
.

2.
$$\vec{c} = (6;-2;-3), |\vec{c}| = 7.$$

3. Не коллинеарны, не ортогональны.

4.
$$\alpha = -1$$
, $\beta = 4$.

6.
$$\vec{d} = 2\vec{a} + 5\vec{b}$$
; $\vec{c} = (2;5;0)$.

7. 1) 3; 2)
$$\frac{1}{\sqrt{21}}$$
; 3) $\frac{3}{\sqrt{21}}$; 4) 1; 5) 3.

9. 1)
$$\arccos \frac{18}{\sqrt{494}}$$
; 2) $\frac{18}{\sqrt{19}}$; 3) $\frac{1}{2}\sqrt{170}$.

10.
$$18\sqrt{2}$$
.

11.
$$V = 2$$
, $H = \frac{2}{\sqrt{3}}$.

16.
$$5x + 3y - 6 = 0$$
.

17.
$$3x + 2y = 0$$
.

18.
$$x - 3y - 11 = 0$$
.

19. 1) перпендикулярны; 2) пересекаются в точке
$$\left(-\frac{2}{3}; -\frac{10}{3}\right)$$
;

3) параллельны; 4) совпадают.

20. 1) a)
$$\frac{3}{2}$$
; б) 1; 2) a) – 6; б) $\frac{75}{2}$.

21.
$$M_2(5;2)$$
.

22.
$$\sqrt{13}$$
.

23.
$$2x + 5y - 10 = 0$$
.

24.
$$\arccos \frac{4}{5}$$
.

25.
$$O\left(2;-\frac{5}{4}\right); \ r=\frac{11}{4}.$$

26. 1) эллипс
$$\frac{{x'}^2}{9} + \frac{{y'}^2}{4} = 1$$
, где $x' = x - 1$, $y' = y - 2$;

2) гипербола
$$\frac{{x'}^2}{9} - {y'}^2 = 1$$
, где $x' = x + 1$, $y' = y - 2$;

3) парабола
$$x'^2 = -y'$$
, где $x' = x - 1$, $y' = y - \frac{5}{2}$.

27. Правая половина эллипса с центром
$$M(-5;1)$$
 и полуосями $a=2$, $b=3$.

28.
$$x + y - 3 = 0$$
.

29.
$$x + 3y - 2z - 7 = 0$$
.

30. 1)
$$2y + z = 0$$
; 2) $-3x + z = 0$.

31.
$$h = 1$$
.

32.
$$\frac{1}{2\sqrt{15}}$$
.

33.
$$l = 3, m = -4$$
.

36.
$$x + 2y - 2z - 18 = 0$$
, $x + 2y - 2z + 12 = 0$.

37. Канонические уравнения:
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{4}$$
; параметрические

уравнения:
$$\begin{cases} x = t+1, \\ y = 2t+2, t \in \mathbb{R}. \\ z = 4t+3, \end{cases}$$

38. 1) параллельны; 2) прямая принадлежит плоскости; 3) пересекаются в точке (2;3;1).

39.
$$A^*(1;-5;-3)$$
.

41.
$$A^*\left(-\frac{8}{3}; -\frac{13}{3}; -\frac{7}{3}\right)$$
.

42.
$$\frac{\pi}{6}$$
.

44. 1)
$$\sqrt{30}$$
; 2) $\frac{x-6}{-1} = \frac{y-6}{-2} = \frac{z-2}{5}$; 3) $\varphi = \pi - \arccos \frac{\sqrt{105}}{42}$;

4)
$$5y + 2z - 34 = 0$$
; 5) $\theta = \arcsin \frac{19}{\sqrt{406}}$; 6) $\frac{x - 7}{0} = \frac{y - 3}{5} = \frac{z}{2}$; 7) $\frac{3\sqrt{29}}{2}$; 8) $\frac{19}{2}$.

45. 1) эллипсоид
$$\frac{{x'}^2}{9} + \frac{{y'}^2}{4} + {z'}^2 = 1$$
, где $x' = x - 1$, $y' = y - 1$, $z' = z - 1$;

2) гиперболический параболоид
$$x'^2-y'^2=2z'$$
, где $x'=x-2, y'=y-4,$ $z'=z-6$; 3) конус $x'^2-\frac{{y'}^2}{4}+z'^2=0$, где $x'=x-1, y'=y-2, z'=z+1$.

2.4. ТЕСТОВАЯ КОНТРОЛЬНАЯ РАБОТА

по теме

«Линейная алгебра и аналитическая геометрия»

I вариант

Для данного определителя $\Delta = \begin{vmatrix} 1 & -2 & 0 \\ 6 & -2 & 5 \\ 0 & 6 & 4 \end{vmatrix}$ найдите минор M_{12} и

алгебраическое дополнение A_{12} элемента a_{12} . Вычислите определитель, разложив его по элементам первой строки.

- 1) $M_{12} = -8$, $A_{12} = 8$, $\Delta = 10$; 2) $M_{12} = 24$, $A_{12} = -24$, $\Delta = 10$;
- 3) $M_{12} = -24$, $A_{12} = 24$, $\Delta = 10$; 4) $M_{12} = 24$, $A_{12} = -24$, $\Delta = -86$.
- $(x_1 4x_2 2x_3 = 0),$ 2. Проверьте совместность СЛАУ ${3x_1 - 5x_2 - 6x_3} = 2$, и, в случае совместности, $4x_1 - 9x_2 - 8x_3 = 0$

решите ее.

- 1) $x_1 = 2, x_2 = 1, x_3 = -1;$ 2) $x_1 = -2, x_2 = -1, x_3 = 1;$

- 3) $x_1 = 0, x_2 = 1, x_3 = -2;$ 4) несовместна. 3. Даны точки A(0; 1; 2), B(2; 1; 5), C(1; 3; -1), D(2; 1; 0). Найдите координаты векторов $\vec{a} = 2\vec{C}\vec{D} - \vec{A}\vec{B}$ и $\vec{b} = 3\vec{A}\vec{B}$, длины векторов \vec{a} , \vec{b} и косинус угла между векторами a и b.

1)
$$\vec{a} = (0; -4; -5), \vec{b} = (6; 0; 9), |\vec{a}| = \sqrt{41}; |\vec{b}| = \sqrt{117}, \cos(\vec{a}, \vec{b}) = -\frac{45}{\sqrt{4797}};$$

2)
$$\vec{a} = (0; 4; 1), \vec{b} = (-6; 0; -9), |\vec{a}| = \sqrt{17}; |\vec{b}| = \sqrt{117}, \cos(\vec{a}, \vec{b}) = -\frac{9}{\sqrt{1989}};$$

3)
$$\vec{a} = (0; -4; -1), \vec{b} = (6; 0; 9), |\vec{a}| = \sqrt{17}; |\vec{b}| = \sqrt{117}, \cos(\vec{a}, \vec{b}) = -\frac{9}{\sqrt{1989}};$$

4)
$$\vec{a} = (0; -4; -1), \vec{b} = (6; 0; 9), |\vec{a}| = \sqrt{17}; |\vec{b}| = \sqrt{117}, \cos(\vec{a}, \vec{b}) = \frac{10}{\sqrt{1989}}.$$

- $\vec{a}=2\vec{i}+4\vec{j}+3\vec{k}$ и $\vec{b}=-\vec{i}+\vec{j}+4\vec{k}$. Найдите площадь параллелограмма, сторонами которого являются эти векторы.
- 1) $S = \sqrt{326}$;
- 2) $S = \frac{1}{2}\sqrt{326}$; 3) S = 14; 4) $S = \sqrt{278}$.

5. Составьте уравнение прямой, проходящей через точку M(-1;-3) и середину отрезка AB, если A(0;3) и B(2;7).

отрезка
$$AB$$
, если $A(0;3)$ и $B(2;7)$.
1) $5x-2y-1=0$; 2) $4x-y+1=0$; 3) $4x-y-1=0$; 4) $2x-y+3=0$.

6. Составьте уравнение плоскости, проходящей через точку M(3;-1;4)параллельно плоскости x - 2y + 5z - 6 = 0.

1)
$$\frac{x-3}{1} = \frac{y+1}{-2} = \frac{z-4}{5}$$
;

2)
$$3x - y + 4z - 25 = 0$$
;

3)
$$x-2y+5z-25=0$$
;

4)
$$x-2y+5z+25=0$$
.

II вариант

 $\Delta = \begin{vmatrix} 4 & 3 & -5 \\ 1 & 0 & -2 \\ 0 & 1 & -3 \end{vmatrix}$ найдите минор M_{21} и 1. Для данного определителя

алгебраическое дополнение A_{21} элемента a_{21} . Вычислите определитель, разложив его по элементам второй строки.

1)
$$M_{21} = 4$$
, $A_{21} = -4$, $\Delta = 12$

2)
$$M_{21} = -14$$
, $A_{21} = 14$, $\Delta = 22$;

3)
$$M_{21} = -14$$
, $A_{21} = 14$, $\Delta = 6$

4)
$$M_{21} = -4$$
, $A_{21} = 4$, $\Delta = 12$.

1) $M_{21} = 4$, $A_{21} = -4$, $\Delta = 12$; 2) $M_{21} = -14$, $A_{21} = 14$, $\Delta = 22$; 3) $M_{21} = -14$, $A_{21} = 14$, $\Delta = 6$; 4) $M_{21} = -4$, $A_{21} = 4$, $\Delta = 12$. $\left[x_1 + 3x_2 - x_3 = 11, \right]$ 2. Проверьте совместность СЛАУ $\begin{cases} 2x_1 - x_2 + 3x_3 = -4, \ B$ случае совместности $|x_1 - 2x_2 + 2x_3| = -7.$

решите ее.

2)
$$x_1 = 2$$
, $x_2 = 2$, $x_3 = -3$

3)
$$x_1 = 3$$
, $x_2 = 3$, $x_3 = 1$

4)
$$x_1 = 1$$
, $x_2 = 3$, $x_3 = -1$.

решите ее.

1) несовместна;
2) $x_1 = 2, x_2 = 2, x_3 = -3;$ 3) $x_1 = 3, x_2 = 3, x_3 = 1;$ 4) $x_1 = 1, x_2 = 3, x_3 = -1.$ 3. Даны точки A(5; 1; 2), B(7; 1; 3), C(1; 0; 3), D(3; 1; 4). Найдите координаты векторов $\vec{a} = \overrightarrow{AB} + \overrightarrow{CD}$ и $\vec{b} = -2\overrightarrow{AB}$ и площадь треугольника, построенного на векторах a, b как на сторонах.

1)
$$\vec{a} = (4; 1; 2), \vec{b} = (-4; 0; -2), S = \sqrt{5};$$
 2) $\vec{a} = (-4; -1; -2), \vec{b} = (4; 0; 2), S = \sqrt{5};$

2)
$$\vec{a} = (-4; -1; -2), \vec{b} = (4; 0; 2), S = \sqrt{5}$$

3)
$$\vec{a} = (4; 1; 2), \vec{b} = (-4; 0; -2), S = \sqrt{69}$$

4)
$$\vec{a} = (-4;-1;-2), \vec{b} = (4;0;2), S = \sqrt{69}$$
.

3) $\vec{a} = (4;1;2)$, $\vec{b} = (-4;0;-2)$, $S = \sqrt{69}$; 4) $\vec{a} = (-4;-1;-2)$, $\vec{b} = (4;0;2)$, $S = \sqrt{69}$. 4. Найдите объем тетраэдра с вершинами в точках A(2;-3;5), B(0;2;1), C(-2;-2;3), D(3;2;4).

1)
$$V = 36$$
:

2)
$$V = 6$$
;

3)
$$V = 18$$
:

4)
$$V = 12$$

1) V = 36; 2) V = 6; 3) V = 18; 4) V = 12. 5. Составьте уравнение прямой, проходящей через точку M(3;4)перпендикулярно прямой x + 2y - 3 = 0.

1)
$$2x - y - 2 = 0$$
; 2) $2x - y + 2 = 0$; 3) $x + 2y - 11 = 0$; 4) $y = 3x + 4$.

6. Составьте уравнение плоскости, проходящей через ось Oy и точку B(2;3;4).

1)
$$2x - z = 0$$
; 2) $y - 3 = 0$;

2)
$$y-3=0$$
;

3)
$$x - 2z = 0$$
;

3)
$$x-2z=0$$
; 4) $4y-3z=0$.

III вариант

2. Проверьте совместность СЛАУ $\begin{cases} -x_1 + 2x_2 + x_3 = 0, & \text{В случае совместности} \\ 2x_1 + 2x_2 + 3x_3 = 1. \end{cases}$

решите ее.

1)
$$(5;5;-5);$$

(5;5;-5); 2) (2;2;-2); 3) несовместна; 4) (1;1;-1). 3. Найдите площадь треугольника с вершинами A(-1;1;5), B(3;-4;5),C(-1;5;2) и длину высоты, проведенной из вершины B к стороне AC.

1)
$$S_{\Delta} = \frac{25}{2}, h = 5; 2$$
) $S_{\Delta} = 25, h = 10; 3$) $S_{\Delta} = 25, h = 5; 4$) $S_{\Delta} = \frac{25}{2}, h = 10.$

4. Даны точки A(0;1;0), B(2;1;1), C(4;2;1), D(0;2;1). Найдите координаты векторов $\vec{a} = \overrightarrow{AB} - \overrightarrow{AD}$ и $\vec{b} = 2\overrightarrow{AC} + \overrightarrow{BD}$, определите ортогональны ли они.

1)
$$\vec{a} = (2;-1;0), \vec{b} = (6;3;2)$$
 – не ортогональны;

2)
$$\vec{a} = (-2; 1; 0), \vec{b} = (-2; -3; -2)$$
 – не ортогональны;

3)
$$\vec{a} = (2;-1;0), \vec{b} = (6;3;2)$$
 – ортогональны;

4)
$$\vec{a} = (-2; 1; 0), \vec{b} = (-2; -3; -2)$$
 – ортогональны.

5. Дан треугольник с вершинами в точках A(2;2), B(-2;-8) и C(-6;-2). Составьте уравнение медианы треугольника, проведенной из вершины A.

1)
$$6x + 7y - 26 = 0$$
; 2) $2x - 3y + 1 = 0$; 3) $3x + 2y - 10 = 0$; 4) $7x - 6y - 2 = 0$.

6. Составьте уравнение плоскости, проходящей через ось Ох и точку M(4;-1;2).

1)
$$-x + 4y = 0$$
; 2) $2y + z = 0$; 3) $y + 2z = 0$; 4) $2x + y = 0$.

IV вариант

1. Вычислите определитель матрицы $B = A^2 - 3A + 5E$, где $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

1) 45;

2) 41;

4) 36.

2. Проверьте совместность СЛАУ $\begin{cases} x_1 + 2x_2 - x_3 = 9, \\ 2x_1 - x_2 + 3x_3 = 13, \\ 3x_1 + 2x_2 - 5x_3 = -1. \end{cases}$ В случае совместности

решите ее.

1) несовместна;

2) (3; 3; 0); 3) (-2; 1; 9);

4) (3; 5; 4).

3. Даны векторы $\vec{a}(2;-1;1)$, $\vec{b}(1;0;1)$ и $\vec{c}(1;0;0)$. Найдите вектор \vec{x} , если известно, что $\vec{b} \cdot \vec{x} = 2$, $\vec{c} \cdot \vec{x} = 1$, $\vec{a} \cdot \vec{x} \cdot \vec{c} = 0$.

1) (1;-1;1);

2) (3; 1;-1);

3) (1; 0; -1);

4) (1; 0; 0);

4. Даны точки A(1;2;3), B(0;1;1), C(2;1;0). Найдите площадь параллелограмма, сторонами которого являются векторы $\vec{a} = 2\overrightarrow{AC} - \overrightarrow{AB}$ и $\vec{b} = \overrightarrow{BC} - 2\overrightarrow{BA}$.

1) 270;

2) $\frac{\sqrt{270}}{2}$; 3) $\sqrt{270}$; 4) $2\sqrt{270}$.

5. Даны вершины треугольника A(0;1), B(6;5) и C(12;-1). Составьте уравнение высоты треугольника, проведенной из вершины C.

1) 2x - 3y - 34 = 0;

2) 3x + 2y - 34 = 0:

3) 6x + 4y - 34 = 0;

4) 2x - 3y - 17 = 0.

6. Составьте уравнение плоскости, отсекающей на координатных осях ОХ, OY, OZ отрезки a = 1, b = -1, c = -1 соответственно.

1) x - y - z + 1 = 0;

2) x - y - z = 0;

3) x - y - z + 3 = 0;

4) x - y - z - 1 = 0.

V вариант

1. Найдите неизвестную матрицу X из уравнения AX + 2E = C, где $A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$,

2. Проверьте совместность СЛАУ
$$\begin{cases} x_1 + 2x_2 + 4x_3 = 31, \\ 5x_1 + x_2 + 2x_3 = 29, \text{ В случае совместности} \\ 3x_1 - x_2 + x_3 = 10. \end{cases}$$

решите ее.

1)
$$(-1; 0; 8);$$
 2) несовместна; 3) $(3; 4; 5);$ 4) $(-19; 9; 8).$

3. Даны точки A(1;0;0), B(2;1;3), C(4;1;1), D(0;1;2). Найдите координаты векторов $\vec{a} = 2\overrightarrow{AB} - \overrightarrow{AC}$ и $\vec{b} = \overrightarrow{CD} - 2\overrightarrow{BC}$ и синус угла между ними.

1)
$$\vec{a} = (-5; -3; -7), \vec{b} = (8; 0; -5), \sin \varphi = \sqrt{\frac{7362}{7387}};$$

2)
$$\vec{a} = (-1; 0; 2), \vec{b} = (0; 0; -1), \sin \varphi = \frac{1}{\sqrt{5}};$$

3)
$$\vec{a} = (-1; 1; 5), \vec{b} = (0; 0; 4), \sin \varphi = \sqrt{\frac{2}{27}};$$

4)
$$\vec{a} = (-1; 1; 5), \vec{b} = (0; 0; 4), \sin \varphi = \sqrt{\frac{1}{27}}$$
.

4. Лежат ли точки A(-1;2;1), B(-3;1;2), C(3;-2;2), D(3;-4;3): а) в одной плоскости; б) на одной прямой?

5. Дано общее уравнение прямой 3x - 5y - 15 = 0. Напишите уравнения этой же прямой: а) с угловым коэффициентом; б) в отрезках; в) нормальное. Найдите площадь треугольника, образованного данной прямой и осями координат.

1) a)
$$y = \frac{3}{5}x - 3$$
; 6) $\frac{x}{5} - \frac{y}{3} = 1$; B) $\frac{3}{\sqrt{34}}x - \frac{5}{\sqrt{34}}y - \frac{15}{\sqrt{34}} = 0$; $S_{\Delta} = \frac{15}{2}$;

2) a)
$$y = \frac{3}{5}x - 3$$
; 6) $\frac{x}{5} - \frac{y}{3} = 1$; B) $3x - 5y - 15 = 0$; $S_{\Delta} = \frac{15}{2}$;

3) a)
$$y = \frac{3}{5}x - 3$$
; 6) $\frac{x}{5} - \frac{y}{3} = 1$; B) $\frac{3}{\sqrt{34}}x - \frac{5}{\sqrt{34}}y - \frac{15}{\sqrt{34}} = 0$; $S_{\Delta} = \frac{9}{5}$;

4) a)
$$y = \frac{3}{5}x - 3$$
; 6) $\frac{3x}{15} - \frac{5y}{15} = 1$; B) $\frac{3}{\sqrt{34}}x - \frac{5}{\sqrt{34}}y - \frac{15}{\sqrt{34}} = 0$; $S_{\Delta} = \frac{225}{2}$.

6. Составьте уравнение плоскости, проходящей через точку A(2;3;5) и перпендикулярной вектору $\vec{n} = (4;3;2)$.

1)
$$4x + 3y + 2z = 0$$
;

2)
$$4x + 3y + 2z - 27 = 0$$
;

3)
$$2x + 3y + 4z - 33 = 0$$
;

4)
$$4x + 3y + 2z + 1 = 0$$
.

VI вариант

1. Дана матрица $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 0 & 2 \end{pmatrix}$. Найдите обратную матрицу.

$$1) \begin{pmatrix} 0 & -2 & 3 \\ -2 & 0 & 2 \\ 0 & 0 & -1 \end{pmatrix}; 2) \begin{pmatrix} 0 & -2 & 0 \\ -2 & 0 & 0 \\ 3 & 2 & -1 \end{pmatrix}; 3) \begin{pmatrix} 0 & 1 & -\frac{3}{2} \\ 1 & 0 & -1 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}; 4) \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ -\frac{3}{2} & -1 & \frac{1}{2} \end{pmatrix}.$$

2. Проверьте совместность СЛАУ $\begin{cases} x_1 + 2x_2 + x_3 = -1, \\ 2x_1 + 3x_2 + 5x_3 = 3, \text{ В случае совместности} \\ 3x_1 + 5x_2 + 6x_3 = 7. \end{cases}$

решите ее.

1)
$$(2;-1;-1);$$
 2) несовместна; 3) $(2;-1;\frac{2}{5});$ 4) $(0;0;-1).$

3. Даны точки A(2;0;1), B(1;3;1), C(2;1;1). Найдите координаты векторов $\vec{a} = \overrightarrow{AB} - 2\overrightarrow{CA}$, $\vec{b} = 2\overrightarrow{BC} + \overrightarrow{AC}$ и $\vec{c} = \overrightarrow{CB} + 2\overrightarrow{AC}$, определите компланарны ли они.

1)
$$\vec{a} = (-1, 2, 0), \vec{b} = (2, -1, 0), \vec{c} = (-1, 2, 0)$$
 – компланарны;

2)
$$\vec{a} = (-1; 2; 0), \vec{b} = (2; -1; 0), \vec{c} = (-1; 2; 0)$$
 – не компланарны;

3)
$$\vec{a} = (-1; 5; 0), \vec{b} = (2; -3; 0), \vec{c} = (-1; 4; 0)$$
 – не компланарны;

4)
$$\vec{a} = (-1; 5; 0), \vec{b} = (2; -3; 0), \vec{c} = (-1; 4; 0)$$
 – компланарны.

4. Найдите площадь треугольника с вершинами A(1;1;3), B(3;-1;6), C(5;1;-3).

5. Даны стороны треугольника AB: x+2y+5=0, BC: 3x+y+1=0, AC: x+y+7=0. Составьте уравнение высоты треугольника ABC, опущенной на сторону BC.

1)
$$-x + y + 5 = 0$$
;

2)
$$x - 3y + 15 = 0$$
;

3)
$$x-3y-15=0$$
;

4)
$$x-3y+7=0$$
;

6. Составьте уравнение плоскости, проходящей через точку M(2;0;1) и параллельной векторам $\vec{a} = (1;1;1)$, $\vec{b} = (-1;-1;1)$.

1)
$$x + y - 2 = 0$$
;

2)
$$x - y - 4 = 0$$
;

3)
$$x - y - z + 1 = 0$$
;

4)
$$x - y - 2 = 0$$
.

VII вариант

1. Найдите матрицу $C = A^T B + 2B^{-1} - 3E$, где $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

$$1)\begin{pmatrix} 0 & 3 \\ -1 & 6 \end{pmatrix}; \qquad 2)\begin{pmatrix} 0 & 6 \\ 2 & 6 \end{pmatrix}; \qquad 3)\begin{pmatrix} 2 & 6 \\ 2 & 7 \end{pmatrix}; \qquad 4)\begin{pmatrix} 2 & 3 \\ -1 & 7 \end{pmatrix}.$$

 $(x_1 + 2x_2 + 3x_3 = 1)$ 2. Проверьте совместность СЛАУ $\begin{cases} 2x_1 - x_2 + 2x_3 = 6, \ B \$ случае совместности $x_1 + x_2 + 5x_3 = -1.$

решите ее.

3. При каком значении m векторы $\vec{a} = m\vec{i} + \vec{j} - 3\vec{k}$ и $\vec{b} = 3\vec{i} - 3\vec{j} + 9\vec{k}$ будут:

а) ортогональными; б) коллинеарными?

1) a)
$$m = -1$$
; б) $m = 10$;
2) a) $m = 10$; б) $m = 1$;
3) a) $m = 10$; б) $m = -1$;
4) a) $m = 3$; б) $m = -1$.

3) а) m=10; б) m=-1; 4) а) m=3; б) m=-1. Даны точки A(0;0;1), B(1;2;3), C(3;1;1). Найдите длины векторов $\vec{a} = \overrightarrow{AB} - 3\overrightarrow{AC}$, $\vec{b} = \overrightarrow{BC} + \overrightarrow{CA}$ и синус угла между ними.

1)
$$|\vec{a}| = \sqrt{69}, |\vec{b}| = 3$$
, $\sin \varphi = \frac{1}{\sqrt{69}}$; 2) $|\vec{a}| = \sqrt{69}, |\vec{b}| = \sqrt{29}$, $\sin \varphi = \sqrt{\frac{65}{69 \cdot 29}}$;
3) $|\vec{a}| = \sqrt{69}, |\vec{b}| = 3$, $\sin \varphi = \sqrt{\frac{65}{69}}$; 4) $|\vec{a}| = 69, |\vec{b}| = 9$, $\sin \varphi = \frac{65}{69 \cdot 9}$.

5. Даны вершины треугольника A(0;0), B(-1;-3) и C(-5;-1). Составьте уравнение прямой, проходящей через вершину B параллельно стороне BC.

1)
$$x-5y+14=0$$
; 2) $x-5y-14=0$;
3) $5x+y+8=0$; 4) $5x+y-8=0$.

6. Среди уравнений 1) y + 2z = 0, 2) 2x + 5 = 0, 3) x - 3z + 5 = 0, 4) 5z - 63 = 0.

5) 7x - 3y + 1 = 0, 6) 9y + 8 = 0 плоскостей выберите уравнение плоскости:

- а) параллельной плоскости ХОУ;
- б) параллельной плоскости YOZ;
- в) параллельной плоскости ХОZ;
- Γ) параллельной оси θ ?;
- д) параллельной оси OZ;

е) проходящей через ось OX.

1) a) 2,	б) 3,	в) 4,	г) 5,	д) 6,	e) 1;	
2) a) 1,	б) 5,	в) 3,	г) 4,	д) 6,	e) 2;	
3) a) 2,	б) 4,	в) 6,	г) 3,	д) 5,	e) 1;	
4) a) 4,	б) 2,	в) 6,	г) 3,	д) 5,	e) 1.	

3. ВВЕДЕНИЕ В АНАЛИЗ

В результате изучения данной темы студент должен научиться:

- вычислять пределы функций;
- исследовать, является ли функция непрерывной;
- находить точки разрыва функции и определять их характер.

3.1. ЗАДАЧИ ДЛЯ АУДИТОРНЫХ ЗАНЯТИЙ

1. На рис. 2 задан график функции f(x), где

Определите следующее:

1) область определения D(f)и область значений E(f);

3)
$$\lim_{x \to -\pi + 0} f(x)$$
; $\lim_{x \to -0} f(x)$;

3) $\lim_{x \to -\pi + 0} f(x); \lim_{x \to -0} f(x);$ $\lim_{x \to +0} f(x); \lim_{x \to 1 -0} f(x); \lim_{x \to +\infty} f(x);$

Рис. 2

- 4) существуют ли $\lim_{x\to 0} f(x)$ и $\lim_{x\to 1} f(x)$? Верно ли, что функция f имеет разрыв в точках x = 0 и x = 1?
- 5) верно ли, что во всех остальных точках из области определения D(f)функция является непрерывной?
 - 6) $\lim_{x \to -\frac{\pi}{2}} f(x)$ и $\lim_{x \to 2} f(x)$.
 - 2. Найдите пределы функций, не пользуясь правилом Лопиталя:

1)
$$\lim_{x \to 2} \frac{2x^2 + 1}{x^3 - 4x + 1}$$
; 2) $\lim_{x \to 1} \frac{5x + 2}{x^2 - 1}$; 3) $\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 3x}$; 4) $\lim_{x \to 0} \frac{\sqrt{x + 25} - 5}{x^2 + 2x}$;

5)
$$\lim_{x \to 2} \frac{\sqrt{x+7}-3}{\sqrt{x+2}-2}$$
; 6) $\lim_{x \to \infty} \frac{2x^3+7x^2-2}{6x^2-4x+3}$; 7) $\lim_{x \to 0} \frac{\left(\sin\frac{x}{4}\right)^2}{x^2}$; 8) $\lim_{x \to 0} \frac{\operatorname{tg} 2x}{\sin 5x}$;

9)
$$\lim_{x \to 0} \frac{\ln(1+2x)}{\arcsin 3x}$$
; 10) $\lim_{x \to 0} \frac{1-\cos 6x}{x\sin 3x}$; 11) $\lim_{x \to \infty} \left(1+\frac{6}{x}\right)^x$; 12) $\lim_{x \to \infty} \left(\frac{x+3}{x-2}\right)^{x+2}$;

13)
$$\lim_{x \to 0} (1+5x)^{\frac{1}{x}}$$
; 14) $\lim_{x \to 0} (3-2x)^{\frac{x}{1-x}}$; 15) $\lim_{x \to \infty} x(\ln(x+3) - \ln x)$.

- 3. Исследуйте непрерывность функции f(x) в указанных точках x_1 и x_2 . Постройте график функции f(x).
 - 1) $f(x) = \frac{2x+4}{3x+9}$, $x_1 = -1$, $x_2 = -3$; 2) $f(x) = 4^{\frac{2}{3-x}}$, $x_1 = 3$, $x_2 = 5$.
- 4. Дана функция f(x). Найдите точки разрыва функции, если они существуют. Сделайте чертеж.

1)
$$f(x) = \begin{cases} 2, \text{ если } x < -2, \\ \sqrt{4 - x^2}, \text{ если } -2 \le x < 2, 2) \end{cases} f(x) = \begin{cases} x - 1, \text{ если } x < 0, \\ x + 1, \text{ если } 0 \le x < 2, \\ x^2 - 1, \text{ если } x \ge 2. \end{cases}$$

Ответы

2. 1) 9; 2)
$$\infty$$
; 3) 2; 4) 0,05; 5) $\frac{2}{3}$; 6) ∞ ; 7) $\frac{1}{16}$; 8) $\frac{2}{5}$; 9) $\frac{2}{3}$; 10) 6; 11) e^6 ; 12) e^5 ; 13) e^5 ; 14) e^2 ; 15) e^3 .

- **3.** 1) в точке x_1 функция непрерывна; точка x_2 точка разрыва 2-го рода; 2) x_1 точка разрыва 2-го рода; в точке x_2 функция непрерывна.
- **4.** 1) x = -2 точка разрыва 1-го рода, скачок равен -2; x = 2 точка устранимого разрыва; 2) x = 0 точка разрыва 1-го рода, скачок равен 2, в точке x = 2 функция непрерывна.

3.2. ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ

1. Найдите пределы функций:

1)
$$\lim_{x \to 2} \frac{x^3 - 3x^2 + 3}{x^2 - 3}$$
; 2) $\lim_{x \to \infty} \frac{7x^2 + 10x + 20}{x^3 - 10x^2 - 1}$; 3) $\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6}$;

4)
$$\lim_{x \to 1} \frac{\sqrt{x+8}-3}{x-1}$$
; 5) $\lim_{x \to 0} \frac{\sin^2 3x}{x}$; 6) $\lim_{x \to \infty} \left(\frac{2x-3}{2x-1}\right)^{4x+1}$.

Решение:

- 1) подставляя вместо x его предельное значение, равное 2, получим $\frac{2^3-3\cdot 2^2+3}{2^2-3}=-1.$ Поэтому $\lim_{x\to 2}\frac{x^3-3x^2+3}{x^2-3}=-1$;
- 2) при $x \to \infty$ числитель и знаменатель дроби являются бесконечно большими функциями, что приводит к неопределенности вида $\frac{\infty}{\infty}$. Раскроем эту неопределенность, разделив числитель и знаменатель на старшую степень аргумента, т. е. на x^3 :

$$\lim_{x \to \infty} \frac{7x^2 + 10x + 20}{x^3 - 10x^2 - 1} = \lim_{x \to \infty} \frac{\frac{7}{x} + \frac{10}{x^2} + \frac{20}{x^3}}{1 - \frac{10}{x} - \frac{1}{x^3}} = \frac{0 + 0 + 0}{1 - 0 - 0} = 0,$$

так как при $x \to \infty$ функции $\frac{7}{x}$, $\frac{10}{x^2}$, $\frac{20}{x^3}$, $\frac{10}{x}$ и $\frac{1}{x^3}$ являются бесконечно малыми;

3) пределы числителя и знаменателя при $x \to 2$ равны нулю, что приводит к неопределенности вида $\frac{0}{0}$. Так как x=2 является корнем многочленов в числителе и знаменателе, то разложив на множители числитель и знаменатель, сократим дробь на x-2. Получим

$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)(x - 3)} = \lim_{x \to 2} \frac{x + 2}{x - 3} = \frac{2 + 2}{2 - 3} = -4;$$

4) при подстановке предельного значения аргумента x = 1 получим неопределенность вида $\frac{0}{0}$. Для раскрытия неопределенности умножим числитель и знаменатель на выражение, сопряженное числителю:

$$\lim_{x \to 1} \frac{\sqrt{x+8} - 3}{x-1} = \lim_{x \to 1} \frac{\left(\sqrt{x+8} - 3\right)\left(\sqrt{x+8} + 3\right)}{\left(x-1\right)\left(\sqrt{x+8} + 3\right)} = \lim_{x \to 1} \frac{(x+8) - 9}{(x-1)\left(\sqrt{x+8} + 3\right)} = \lim_{x \to 1} \frac{x-1}{(x-1)\left(\sqrt{x+8} + 3\right)} = \lim_{x \to 1} \frac{1}{\sqrt{x+8} + 3} = \frac{1}{6};$$

5) непосредственная подстановка аргумента x = 0 приводит к неопределенности вида $\frac{0}{0}$. Раскроем неопределенность, воспользовавшись эквивалентными бесконечно малыми функциями. Так как $\sin 3x \sim 3x$ при $x \to 0$, то $\sin^2 3x = \sin 3x \cdot \sin 3x \sim (3x)^2 = 9x^2$ при $x \to 0$. Получим

$$\lim_{x \to 0} \frac{\sin^2 3x}{x} = \lim_{x \to 0} \frac{9x^2}{x} = \lim_{x \to 0} 9x = 0;$$

6) так как
$$\lim_{x \to \infty} \frac{2x-3}{2x-1} = \lim_{x \to \infty} \frac{2-\frac{3}{x}}{2-\frac{1}{x}} = 1$$
, a $\lim_{x \to \infty} (4x+1) = \infty$, то мы имеем

неопределенность вида 1^{∞} . Раскроем ее с помощью второго замечательного предела $\lim_{y\to\infty} \left(1+\frac{1}{y}\right)^y = e$. Получим

$$\lim_{x \to \infty} \left(\frac{2x - 3}{2x - 1} \right)^{4x + 1} = \lim_{x \to \infty} \left(1 + \left(\frac{2x - 3}{2x - 1} - 1 \right) \right)^{4x + 1} = \lim_{x \to \infty} \left(1 + \frac{-2}{2x - 1} \right)^{4x + 1} = \lim_{x \to \infty} \left(1 + \frac{-2}{2x - 1} \right)^{4x + 1} = \lim_{x \to \infty} \left(1 + \frac{-2}{2x - 1} \right)^{2x - 1} = \lim_{x \to \infty} \left(1 + \frac{-2}{2x - 1} \right)^{2x - 1} = \lim_{x \to \infty} \left(1 + \frac{-2}{2x - 1} \right)^{2x - 1} = e^{-4}.$$

2. Исследуйте непрерывность функции $f(x) = \frac{x}{x-4}$ в точках $x_1 = 1$ и $x_2 = 4$. Постройте график f(x).

Решение

Поскольку f является элементарной функцией, то она непрерывна всюду в области определения: $D(f) = (-\infty; 4) \cup (4; +\infty)$ (x = 4 не принадлежит D(f), поскольку является нулем знаменателя). Так как $x_1 = 1 \in D(f)$, то в этой точке f непрерывна. В точке $x_2 = 4$ функция f не определена, следовательно, эта точка является точкой разрыва. Вычислим односторонние пределы функции в этой точке:

$$\lim_{x \to 4-0} \frac{x}{x-4} = \frac{4-0}{4-0-4} = \frac{4}{-0} = -\infty;$$

$$\lim_{x \to 4+0} \frac{x}{x-4} = \frac{4+0}{4+0-4} = \frac{4}{+0} = +\infty.$$

Так как пределы слева и справа бесконечны, то $x_2 = 4$ является точкой разрыва второго рода.

Для построения графика f(x) найдем $\lim_{x\to\pm\infty} f(x) = \lim_{x\to\pm\infty} \frac{x}{x-4} = 1$. Найдем также точку пересечения графика с осями координат: при x = 0, f(0) = 0, т. е. график проходит через начало координат. Изобразим график f(x) (рис. 3).

Рис. 3

3. Дана функция $f(x) = \begin{cases} 1, & \text{если } x \le -1, \\ x^2 + 1, & \text{если } -1 < x < 1, \end{cases}$ Найдите точки разрыва -x + 3, & если x > 1.

этой функции, если они существуют. Определите их тип и сделайте чертеж.

Решение

Функция f определена и непрерывна на интервалах $(-\infty;-1)$, (-1;1) и $(1; \infty)$, где она задана непрерывными элементарными функциями. Следовательно, разрыв возможен только в точках $x_1 = -1$ и $x_2 = 1$. Для точки $x_1 = -1$ имеем:

$$f(-1)=1$$
, $\lim_{x\to -1-0} f(x) = \lim_{x\to -1-0} 1=1$, $\lim_{x\to -1+0} f(x) = \lim_{x\to -1+0} (x^2+1) = 2$.

Односторонние пределы конечны и различны, значит, функция f в точке $x_1 = -1$ имеет разрыв первого рода. Скачок функции f в точке $x_1 = -1$ находим как разность правого и левого пределов:

$$\lim_{x \to -1+0} f(x) - \lim_{x \to -1-0} f(x) = 2 - 1 = 1.$$

В точке $x_2 = 1$ функция f не определена. Вычислим односторонние пределы:

$$\lim_{x \to 1-0} f(x) = \lim_{x \to 1-0} (x^2 + 1) = 2, \quad \lim_{x \to 1+0} f(x) = \lim_{x \to 1+0} (-x + 3) = 2.$$

 $\lim_{x\to 1-0} f(x) = \lim_{x\to 1-0} \left(x^2+1\right) = 2, \quad \lim_{x\to 1+0} f(x) = \lim_{x\to 1+0} (-x+3) = 2.$ Так как $\lim_{x\to 1-0} f(x) = \lim_{x\to 1+0} f(x) = 2 \neq f(1), \text{ то точка } x_2 = 1 \text{ является точкой }$ устранимого разрыва.

График функции f изображен на рис. 4.

Рис. 4

3.3. ЗАДАЧИ ДЛЯ САМОПОДГОТОВКИ

1. Постройте графики элементарных функций:

1)
$$y = 4x - 2$$
;

2)
$$y = (x-2)^2$$
;

3)
$$y = \frac{1}{4-x}$$
; 4) $y = 2\sin x$;

$$4) y = 2\sin x;$$

5)
$$y = e^x - 3$$
;

6)
$$y = 2 \ln x$$
;

7)
$$y = \cos 2x$$
:

7)
$$y = \cos 2x$$
; 8) $y = 1 - x^3$;

9)
$$y = 1 + \arctan x$$
;

10)
$$y = \arcsin x$$
.

2. Найдите пределы функций:

1)
$$\lim_{x\to 4} \frac{5x+2}{2x+3}$$
;

2)
$$\lim_{x \to 0} \frac{4x^3 - 3x^2 + x}{2x};$$

3)
$$\lim_{x\to 1} \frac{2x^2 - 3x - 5}{x + 1}$$
;

4)
$$\lim_{x \to \infty} \frac{7x^3 + 15x^2 + 9x + 1}{5x^4 - 3x - 4}$$
;

5)
$$\lim_{x \to \infty} \frac{2x^2 - 3x - 5}{x + 1}$$
;

6)
$$\lim_{x \to \infty} \frac{4x^2 - 7x - 1}{3x^2 + x + 2}$$
;

7)
$$\lim_{x\to 0} \frac{x^2-6x+8}{x^2-8x+12}$$
;

8)
$$\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$$
;

9)
$$\lim_{x\to 8} \frac{x^2 - 8x}{\sqrt{x+1} - 3}$$
;

10)
$$\lim_{x\to 5} \frac{\sqrt{9-x}-2}{3-\sqrt{x+4}}$$
;

11)
$$\lim_{x \to 3} \frac{x^2 + x - 12}{\sqrt{x - 2} - \sqrt{4 - x}}$$
;

12)
$$\lim_{x\to 0} \frac{3x^2 - 5x}{\sin 3x}$$
;

13)
$$\lim_{x\to 0} \frac{\sin^2 3x}{\sin^2 2x}$$
;

14)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$
;

15)
$$\lim_{x \to 0} \frac{\operatorname{tg} 2x}{2\operatorname{arctg}^2 x};$$

16)
$$\lim_{x \to \infty} \left(\frac{3x+1}{3x} \right)^{4x+3}$$
; 17) $\lim_{x \to \infty} \left(\frac{x-2}{x+1} \right)^{2x+3}$;

17)
$$\lim_{x \to \infty} \left(\frac{x-2}{x+1} \right)^{2x+3};$$

18)
$$\lim_{x \to 1} (2-x)^{\frac{2x}{1-x}}$$
;

19)
$$\lim_{x\to 2} (2x-3) \frac{3x}{x-2}$$
;

20)
$$\lim_{x\to 0} \frac{e^{2x}-1}{\ln(1-4x)}$$
;

21)
$$\lim_{x \to 0} \frac{\sin^2 3x}{\ln^2 (1 + 2x)};$$

22)
$$\lim_{x \to \infty} (2x+1)(\ln(3x+1)-\ln(3x-2)).$$

3. Исследуйте непрерывность функции f в указанных точках x_1 и x_2 . Постройте график функции f .

1)
$$f(x) = \frac{x^2 - 1}{x - 1}$$
, $x_1 = 1$, $x_2 = 4$; 2) $f(x) = \frac{1}{1 + 2^{1/x}}$, $x_1 = 3$, $x_2 = 0$;

3)
$$f(x) = 2^{\frac{1}{x}}, x_1 = -1, x_2 = 0.$$

4. Дана функция f. Найдите точки разрыва функции, если они существуют. Сделайте чертеж.

$$1) \ f(x) = \begin{cases} x, \text{ если} & x \le -\pi, \\ \sin x, \text{ если} - \pi < x < \frac{\pi}{2}, \\ 1, \text{ если} & x > \frac{\pi}{2}, \end{cases}$$

$$2) \ f(x) = \begin{cases} \frac{2}{x+2}, \text{ если} & x < -2, \\ 2, \text{ если} - 2 \le x \le 2, \\ \frac{1}{2x}, \text{ если} & x > 2. \end{cases}$$

Ответы

2. 1) 2; 2)
$$\frac{1}{2}$$
; 3) -3; 4) 0; 5) ∞ ; 6) $\frac{4}{3}$; 7) $\frac{1}{2}$; 8) $\frac{1}{4}$; 9) 48; 10) $\frac{3}{2}$; 11) 7;

12)
$$-\frac{5}{3}$$
; 13) $\frac{9}{4}$; 14) $\frac{1}{2}$; 15) ∞ ; 16) $e^{\frac{4}{3}}$; 17) e^{-6} ; 18) e^{2} ; 19) e^{12} ; 20) $-\frac{1}{2}$; 21) $\frac{9}{4}$; 22) 2.

- **3.** 1) x_1 точка устранимого разрыва, x_2 точка непрерывности; 2) x_1 точка непрерывности, x_2 точка разрыва 1-го рода; 3) x_1 точка непрерывности, x_2 точка разрыва 2-го рода.
- **4.** 1) $x=-\pi$ точка разрыва 1-го рода, скачок равен π , $x=\frac{\pi}{2}$ точка устранимого разрыва; 2) x=-2 точка разрыва 2-го рода; x=2 точка разрыва 1-го рода, скачок равен $-\frac{7}{4}$.

3.4. ТЕСТОВАЯ КОНТРОЛЬНАЯ РАБОТА

по теме

«Введение в анализ»

I вариант

1. Вычислите:

1)
$$\lim_{x \to x_0} \frac{4-x}{x^2-5x+4}$$
, где $x_0 = -1$; 1; 4; ∞ :

a)
$$-0.5; \infty; \frac{1}{3}; -1;$$
 6) $0.5; \infty; -\frac{1}{3}; 0;$ B) $0.5; \infty; -\frac{1}{3}; \infty;$ Γ) $-0.5; 3; \frac{1}{3}; 0.$

6)
$$0.5; \infty; -\frac{1}{2}; 0;$$

B)
$$0.5; \infty; -\frac{1}{3}; \infty;$$

$$\Gamma$$
) -0,5; 3; $\frac{1}{3}$; 0

$$2) \lim_{x\to\infty} \left(\frac{1+2x}{3+2x}\right)^{-x}:$$

- a) e;
- б) e^{-1} ;
- в) 1;

3)
$$\lim_{x \to 3} \frac{x^2 + x - 12}{\sqrt{x - 2} - \sqrt{4 - x}}$$
:

- б) $7\sqrt{2}$;
- в) 7;
- $\Gamma) \quad \frac{7\sqrt{2}}{3}$

4)
$$\lim_{x \to \infty} \left(\frac{1+x}{2x-1} \right)^{3x}$$
:

- a) ∞ ;
- б) 0,5;
- в) 0;
- r) e.

$$5) \lim_{x \to 0} \frac{1 - \cos 8x}{x \cdot \sin 3x} :$$

- a) $\frac{32}{3}$;
- б) 0;
- B) $\frac{8}{3}$;

6) $\lim_{x \to 1-0} 2^{\overline{1-x}}$:

- - a) 32;
- δ) + ∞ ;
- B) $-\infty$;
- r) 0.

7) $\lim_{x \to 1+0} 2^{\overline{1+x}}$:

- a) 32;
- $6) + \infty;$
- B) $-\infty$;
- r) 0.

2. Исследуйте функцию
$$f(x) = \begin{cases} 2-x, & x \le -4, \\ 2, -4 < x \le -2, & \text{на непрерывность и постройте} \\ \frac{1}{x+2}, & x > -2 \end{cases}$$

ее график.

- 1) непрерывна для $\forall x \in \mathbb{R}$;
- 2) x = -4 точка разрыва 1-го рода, x = -2 точка разрыва 2-го рода;
- 3) x = -2 точка разрыва 2-го рода;
- 4) x = -4 и x = -2 точки разрыва 1-го рода.

II вариант

1. Вычислите:

1)
$$\lim_{x \to x_0} \frac{2-2x}{2-x-x^2}$$
, где $x_0 = -2; -1; 1; \infty$:
a) $0; 2; \frac{2}{3}; \infty;$ б) $-1; 2; 1; 0;$ в) $\infty; 2; \frac{2}{3}; 2;$ г) $\infty; 2; \frac{2}{3}; 0.$

2)
$$\lim_{x\to\infty} \left(\frac{2+x}{x}\right)^{3-2x}$$
:

- в) 1;
- L) ∞ .

3)
$$\lim_{x \to \infty} \left(\frac{5x+8}{x-2} \right)^{x+4}$$
:

- δ) + ∞ ;
- B) 5;
- Γ) –4.

4)
$$\lim_{x \to -1} \frac{3x^2 + 4x + 1}{\sqrt{x+3} - \sqrt{5+3x}}$$

- 6) $2\sqrt{2}$;
- B) ∞ :
- Γ) $3\sqrt{2}$.

5)
$$\lim_{x \to 0} \frac{\arcsin 5x}{x^2 - x}$$
:

- a) 0;
- б) 5;
- B) -5;

6)
$$\lim_{x \to 4-0} 5^{\frac{3x}{x-4}}$$
:

- a) $+\infty$:
- $6) \infty$;
- B) 5;
- r) 0.

- 7) $\lim 5^{x-4}$:
 - a) $+\infty$;
- δ) $-\infty$;
- в) 5;
- г) 0.

- 1) непрерывна для $\forall x \in \mathbb{R}$;
- 2) $x_1 = -1$ и $x_2 = 2$ точки разрыва 1-го рода;
- 3) $x_1 = -1$ точка разрыва 1-го рода, x = 2 точка устранимого разрыва;
- 4) x = -1 точка разрыва 2-го рода, x = 2 точка разрыва 1-го рода.

III вариант

1. Вычислите:

1)
$$\lim_{x \to x_0} \frac{x+1}{x^2 - 3x - 4}$$
, где $x_0 = -1; 4; 1; \infty$:
a) $-\frac{1}{4}; 0; 2; \infty;$ б) $0; 5; -\frac{1}{3}; 0;$ в) $-\frac{1}{5}; \infty; -\frac{1}{3}; 0;$ г) $\infty; \infty; 0; -\frac{1}{4}$.

$$2) \lim_{x\to\infty} \left(\frac{2x-1}{2x+1}\right)^x:$$

- a) e^{-1} :
- б) е;
- в) 1;
- L) ∞ .

$$3) \lim_{x \to \infty} \left(\frac{3x - 1}{4x + 5} \right)^x:$$

- б) ∞ ;

4)
$$\lim_{x \to 0} \frac{\sqrt{1 + x - \sqrt{1 - x}}}{x}$$

- a) 0;
- б) 1;
- в) 2;
- L) ∞ .

5)
$$\lim_{x \to 3} \frac{\sin(x-3)}{27-x^3}$$
:

- a) $-\frac{1}{27}$;
- б) 0;
- B) ∞ ;

6)
$$\lim_{x \to -2-0} 8^{\frac{1}{x+2}}$$
:

- a) 8;
- $6) \infty$;
- B) $\frac{1}{8}$;
- г) 0.

7)
$$\lim_{x \to -2+0} 8^{\frac{1}{x+2}}$$
:

	a) 0;	б) 8;]	$(B) + \infty;$	Γ) $\frac{1}{8}$.	
		непрерывность			$x^2 + 1$, $x < 1$,	
2.	Исследуйте	непрерывность	функции	$f(x) = \langle$	$\begin{cases} 2x, & 1 < x \le 3, \end{cases}$	и постройте ее

- 1) x = 1 точка устранимого разрыва, x = 3 точка разрыва 1-го рода, скачок равен 3;
- 2) x = 1 точки разрыва нет, x = 3 точка разрыва 1-го рода, скачок равен 3;
- 3) x = 1 точки разрыва нет, x = 3 точка разрыва 1-го рода, скачок равен 4;
- 4) x = 1 точка устранимого разрыва, x = 3 точка разрыва 1-го рода, скачок равен 4.

IV вариант

1. Вычислите:

1)
$$\lim_{x \to x_0} \frac{3x - 6}{x^2 - 3x + 2}$$
, где $x_0 = 2$; 1; 0; ∞ :

- a) $3; \infty; -3; 0;$
- б) 0; 3; 3; 3;
- B) $1; 1; 1; \infty;$

|2, x > 3|

 Γ) 3; ∞ ; -3; ∞ .

2)
$$\lim_{x \to \infty} \left(\frac{x+1}{x-2} \right)^{2x-1}$$
:

- a) e^6 :
- б) е;
- B) ∞ ;
- г) 1.

3)
$$\lim_{x\to\infty} \left(\frac{5x+3}{2x-1}\right)^x$$
:

- a) 1;
- **б**) ∞;
- $\mathbf{B}) e$;
- г) 0.

4)
$$\lim_{x \to -2} \frac{x^2 + x - 2}{\sqrt{x + 6} - 2}$$

- a) 1;
- б) 0;
- в) 4;
- Γ) -12.

5)
$$\lim_{x\to 0} \frac{\cos x - \cos^3 x}{x \cdot \sin 2x}$$
:

- a) $\frac{1}{4}$
- $6) \frac{1}{2};$
- в) 1;
- г) 0.

6)
$$\lim_{x \to -2-0} \arctan \frac{1}{2+x}$$
:

- a) $-\infty$;
- δ) $\frac{\pi}{2}$;
- B) $-\frac{\pi}{2}$;
- г) 0.

- 7) $\lim_{x \to -2+0} \arctan \frac{1}{2+x}$:
- $B) + \infty$;
- г) 1.
- 2. Исследуйте непрерывность функции $f(x) = \left\{ \lg x, \ 0 < x < \frac{\pi}{2}, \ \text{и постройте ее} \right\}$ $2x, x \ge \frac{\pi}{2}$

- 1) x = 0 точка устранимого разрыва, $x = \frac{\pi}{2}$ разрыва нет;
- 2) x = 0 разрыва нет, $x = \frac{\pi}{2}$ разрыва нет;
- 3) x = 0 точка устранимого разрыва, $x = \frac{\pi}{2}$ точка разрыва 2-го рода;
- 4) x = 0 разрыва нет, $x = \frac{\pi}{2}$ точка разрыва 2-го рода.

V вариант

- 1. Вычислите:
- 1) $\lim_{x \to x_0} \frac{x-3}{x^2 2x 3}$, где $x_0 = 3; -1; 1; \infty$:

- a) $0; 0; \frac{1}{2}; \infty;$ 6) $0; 0; \frac{1}{2}; 0;$ B) $0; \infty; \frac{1}{2}; 0;$ Γ) $\frac{1}{4}; \infty; \frac{1}{2}; 0.$
- 2) $\lim_{x\to\infty} \left(\frac{4x-3}{4x+5}\right)^{x-6}$:
 - a) 1;
- б) e^{-2} ;
- B) ∞ ;
- г) e^{-8} .

- 3) $\lim_{x \to \infty} \left(\frac{x+1}{2x-1} \right)^x$:
 - a) $\frac{1}{2}$;
- δ) ∞;
- в) e^2 ;
- г) 0.

- 4) $\lim_{x \to 3} \frac{\sqrt{x+6} \sqrt{10x-21}}{5x-15}$:
 - a) 1;
- B) $-\frac{3}{10}$;
- г) 0.

5)	lim	$e^x - e^{3x}$	
	$x \rightarrow 0$	$- \operatorname{tg} 2x$	•

б) 1;

B) -1;

L) ∞ .

6)
$$\lim_{x \to 0-0} \frac{1}{\frac{1}{x}}$$

a) 0;

 $6) \frac{1}{3};$

г) 1.

7)
$$\lim_{x \to 0+0} \frac{1}{\frac{1}{2^x + 1}}$$
:

a) 0;

б) 1;

B) $\frac{1}{3}$;

L) ∞ .

2. Исследуйте непрерывность функции $f(x) = \begin{cases} 2x^2, & x < 0, \\ x, & 0 < x \le 1, & \text{и постройте ее} \\ x + 2, & x > 1 \end{cases}$

график.

- 1) x = 0 точки разрыва нет, x = 1 точка разрыва 1-го рода, скачок равен 2;
- 2) x = 0 разрыва нет, x = 1 точка разрыва 1-го рода, скачок равен 3;
- 3) x = 0 точка устранимого разрыва, x = 1 точка разрыва 2-го рода;
- 4) x = 0 точка устранимого разрыва, x = 1 точка разрыва 1-го рода, скачок равен 2.

VI вариант

1. Вычислите:

1)
$$\lim_{x \to x_0} \frac{x-2}{x^2-3x+2}$$
, где $x_0 = 2; 1; -1; \infty$:
a) $0; 0; -\frac{1}{2}; 0;$ б) $1; 0; -\frac{1}{2}; \infty;$ в) $0; \infty; -\frac{1}{2}; 0;$ г) $1; \infty; -\frac{1}{2}; 0.$

$$2) \lim_{x\to\infty} \left(\frac{x+3}{x-3}\right)^{x+5}:$$

б) e^{6} ;

B) ∞ :

г) e^{30} .

3)
$$\lim_{x\to\infty} \left(\frac{2x+1}{x-1}\right)^x$$
:

a) 0;

б) 2;

в) e^{-2} ;

 Γ) ∞ .

4)	lim	$\sqrt{x-1}-3$		
		-x-10.		

- a) $\frac{1}{6}$;
- б) 0;
- в) 1;
- L) ∞ .

5)
$$\lim_{x \to 0} \frac{5^{2x} - 5^{3x}}{\arctan(7x)}$$

- в) 1;

6)
$$\lim_{x \to 2-0} 16^{\frac{1}{x-2}}$$
:

- a) 0;
- δ) + ∞ ;
- B) $\frac{1}{16}$;
- Γ) –16.

7)
$$\lim_{x \to 2+0} 16^{\frac{1}{x-2}}$$
:

- a) 0;
- б) 16;
- $B) + \infty$;
- г) 256.

2. Исследуйте непрерывность функции
$$f(x) = \begin{cases} x-1, & x < 0, \\ x^2 - 1, & 0 < x < 2, & u постройте ее \\ 3x, & x \ge 2 \end{cases}$$

- 1) x = 0 точка устранимого разрыва, x = 2 точка разрыва 1-го рода, скачок
- 2) x = 0 разрыва нет, x = 2 точка разрыва 1-го рода, скачок равен 3;
- 3) x = 0 точка устранимого разрыва, x = 2 точка разрыва 1-го рода, скачок равен 3;
- 4) x = 0 разрыва нет, x = 2 точка разрыва 2-го рода.

VII вариант

1. Вычислите:

- 1) $\lim_{x \to x_0} \frac{x-5}{x^2-4x-5}$, где $x_0 = 5; -1; 1; \infty$:

 a) $0; \infty; \frac{1}{2}; 0;$ b) $0; 0; \frac{1}{2}; \infty;$ г) $\frac{1}{6}; \infty; \frac{1}{2}; 0.$

$$2) \lim_{x\to\infty} \left(\frac{3x+8}{3x+2}\right)^x:$$

a) 1;

- **б**) ∞;
- в) $e^{\frac{1}{3}}$; г) e^2 .

3)
$$\lim_{x\to\infty} \left(\frac{4x-1}{x+1}\right)^x$$
:

a) ∞

б) 4;

в) 0;

r) e^3 .

4)
$$\lim_{x \to 1} \frac{\sqrt{3+2x} - \sqrt{x+4}}{3x^2 - 4x + 1}$$

a) $\frac{1}{2\sqrt{5}}$;

б) 1;

B) $\frac{1}{4\sqrt{5}}$

г) 0.

5)
$$\lim_{x \to 0} \frac{2^{3x^3} - 1}{\arcsin x^3}$$
:

a) 1;

б) 3 ln 2;

B) $\frac{3}{\ln 2}$

г) 3.

6)
$$\lim_{x \to 5-0} \left(-2^{\frac{3}{5-x}} \right)$$
:

a) $-\infty$;

 δ) $+\infty$;

в) 0;

 Γ) -8.

7)
$$\lim_{x \to 5+0} \left(-2^{\frac{3}{5-x}} \right)$$
:

a) $-\infty$;

 δ) $+\infty$;

в) 0;

 Γ) $-\frac{1}{8}$.

2. Исследуйте непрерывность функции
$$f(x) = \begin{cases} \frac{1}{x}, & x < 0, \\ 3x^2, & 0 \le x \le 1, & \text{и постройте ее} \\ -2x+1, & x > 1 \end{cases}$$

график.

- 1) x = 0 точка разрыва 2-го рода, x = 1 точка разрыва 1-го рода, скачок равен 4;
- 2) x = 0 точка разрыва 2-го рода, x = 1 точки разрыва нет;
- 3) x = 0 точка устранимого разрыва, x = 1 точка разрыва 1-го рода, скачок равен 4;
- 4) x = 0 точка разрыва 2-го рода, x = 1 точка разрыва 1-го рода скачок равен 2.