生体情報工学 2025

Biological Information Engineering 2025

生産システム分野 生体医工学 Production Systems, Biomedical Engineering

高橋 淳子 Junko Takahashi

第1回	はじめに / Introduction	生体とは、生体の情報とは / What is a living body information?	4月16日	
第2回	生体情報の基礎(I) / Biological information Primer (I)	生体情報の種類と検出について / Types of biological information and detection	4月23日	
第3回	生体情報の基礎(II) / Biological information Primer (II)	センサ、トランスデューサーの原理と構造 / Sensors and transducers	4月30日	
第4回	生体情報計測(I) / Biological information measurement (I)	脳・神経・シナプス / Brain / nerve / synapse	5 月 7日	On Demand
第5回	生体情報計測(II) / Biological information measurement (II)	運動制御 / Motion control	5 月 14 日	
第6回	生体情報計測(III) / Biological information measurement (III)	視覚情報処理 / Visual information processing	5 月 21日	
第7回	生体情報計測(IV) / Biological information measurement (IV)	聴覚の生理学,心理音響 / Auditory physiology, psychoacoustics	5 月 28日	
第8回	生体情報計測(V) / Biological information measurement (V)	体性感覚の情報処理 / Information processing of somatosensory	6月4日	
第9回	生体情報の網羅的解析-概要 / Cyclopedic studies in biological information – overview	生体情報の網羅的解析-概要 / Cyclopedic studies in biological information	6 月 11日	
第10回	生体情報の網羅的解析 - トランスクリプトミクス / Cyclopedic studies in biological information – transcriptomics	トランスクリプトミクス / Transcriptomics	6月18日	
第11回	生体情報の網羅的解析 - プロテオミクス,メタボロミクス / Cyclopedic studies in biological information - proteomics, metabolomics	プロテオミクス,メタボロミクス / Proteomics, metabolomics	6月25日	
第12回	生体情報の網羅的解析 - 次世代シーケンス / Cyclopedic studies in biological information - next-generation sequencing	次世代シーケンス / Next-generation sequencing	7月2日	
第13回	生体情報の網羅的解析 - データ解析 / Cyclopedic studies in biological information - data analysis	データ解析 / Data analysis	7月9日	
第14回	まとめ / Summary	•	7 月 16日	

- Part 1. Structure of animal cell
- Part 2. Neuron
- Part 3. Signal transmission of neuron

パート1.動物細胞の構造

パート2. ニューロン

パート3. ニューロンの信号伝達

参考図書:生体情報工学(バイオメカニズム・ライブラリー)赤沢 堅造 (著),バイオメカニズム学会(編集)

Reference books: Biomechanism Library, Biological Information Engineering. Akazawa Kenzo

Part 1. Structure of animal cell

- > Organism taxonomy
- > Eukaryotic cell structure
- > Organelles and function
- > Cell type

生物分類学

真核細胞の構造

オルガネラと機能

細胞の種類

Organism taxonomy 生物の分類体系

- ✓ plants (producers)生産者
- ✓ animals (consumers) 消費者
- ✓ fungi (decomposers) 分解者

The five kingdoms by Robert Whittaker (1969)

- 1. Monera (Prokaryotic, Unicellular, Hetero/Autotrophic)
- 2. Protista (Eukaryotic, Unicellular, Hetero/Autotrophic)
- 3. Fungi (Eukaryotic, Multicellular, Saprotrophic)
- 4. Plantae (Eukaryotic, Multicellular, Autotrophic)
- 5. Animalia (Eukaryotic, Multicellular, Heterotrophic)

ホイッタカー(1969) の五界説

- 1. モネラ(原核、単細胞、ヘテロ/独立栄養)
- 2. 原生生物(真核生物、単細胞生物、ヘテロ/独立栄養生物)
- 3. 菌類(真核、多細胞、腐生)
- 4. 植物体(真核生物、多細胞生物、独立栄養生物)
- 5. 動物界(真核生物、多細胞生物、従属栄養生物)

Prokaryotes and Eukaryotes 原核生物と真核生物

Prokaryotic vs Eukaryotic Cells

3.8 billion years ago

38億年前

Cells are the building blocks of life

The human body has 250-300 cell types and 37 trillion cells. 人間の体には 250 \sim 300 種類の細胞があり、37 兆個の細胞があります。

https://jp.freepik.com/free-vector/human-organs-infographics_6204171.htm

https://getnavi.jp/entertainment/280859/

Eukaryotic cell structure 真核細胞の構造

Figure: Animal Cell Structure, Image Copyright © Sagar Aryal, www.microbenotes.com

Organelles and function 真核細胞の構造

Organelle 細胞小器官	Function 機能		
Nucleus 核	DNA Storage DNA 貯蔵		
Rough Endoplasmic Reticulum (RER) 粗面小胞体	Protein production; in particular for export out of the cell タンパク質生産; 特に細胞外への輸送用		
Smooth Endoplasmic Reticulum (SER) 滑面小胞体	Lipid production; Detoxification 脂質生産,解毒		
Golgi apparatus ゴルジ体	Protein modification and exportタンパク質の修飾と輸送		
Lysosome リソソーム	Protein destruction タンパク質の分解		
Peroxisome ペルオキシソーム	Lipid Destruction; contains oxidative enzymes 脂質分解		
Mitochondrion ミトコンドリア	Energy production エネルギー生産		
Cytoskeleton細胞骨格	Cell movement and stability.細胞移動、構造安定性。		

For more detailed information on the structure of cells, please refer to this Youtube or website. より詳細な細胞の構造については、このYoutubeかサイトを参考にしてください。

<u>https://www.youtube.com/watch?v=5ugDJhmmkFM</u>
Structure and Function of the ANIMAL CELL explained (Organelles)

https://biologydictionary.net/animal-cell/

Cell type 細胞の種類

Fibroblast-like cells 繊維芽細胞

Epithelial-like cells 上皮様細胞

Lymphoblast like cells リンパ芽球様細胞

D

Part 2. Neuron

- > Structure of neuron
- > Function of neuron
- > Synapse

ニューロンの構造

ニューロンの機能

シナプス

Neuron (nerve cell) ニューロン(神経細胞)

Neuron (nerve cell) ニューロン(神経細胞)

Number of neurons:

神経細胞の数:

16 billions in the cerebrum and 69 billion in the cerebellum 大脳に160億個、小脳に690億個

Structure of neuron ニューロンの構造

Function of neuron ニューロンの機能

- 1. Receiving incoming information
- 2. Processing incoming information
- 3. Communicating information to target cell

Synapse シナプス

Contact points where nerve cells communicate with each other 神経細胞同士が連絡する接点

presynaptic cell シナプス前細胞

postsynaptic cell シナプス後細胞

Part 3. Signal transmission of neuron

- > Resting membrane potential
- > Action potential
- > Conduction of action potential
- > Signal transmission via synapses

静止膜電位

活動電位

活動電位の伝導

シナプスを介した信号 伝達

Selective permeability of the cell membrane

Within nerve cells, information is transmitted as electrical signals 神経細胞内では、情報は電気信号として伝達

Difference in ion concentration inside and outside the cell

細胞内と細胞外のイオン濃度の違い

Resting membrane potential 静止膜電位

<u>Diffusion</u> The force on molecules to move from areas of high concentration to areas of low concentration.

Electrostatic pressure

The force on two ions with similar charge to repel each other.

The force of two ions with opposite charge to attract to one another. <u>拡散</u> 分子が高濃度の領域から低濃度の領域に移動しようとする力。 静電圧力

同じような電荷を持つ2つのイオンが互いに反発する力。 逆の電荷を持つ2つのイオンが互いに引き付け合う力。

Resting membrane potential 静止膜電位 -70 mV

	intracellular(mM)			extracellular (mM)		
	Na	K	Cl	Na	K	CI
Squid giant axon	49	410	40	440	22	560
Crab nerve	52	410	26	510	12	540
Frog sartorius	15	125	1.5	110	2.6	77

This concentration difference is created using energy.

Na⁺-K⁺ ATPase

Osmotic pressure 浸透圧

To understand the properties of resting membrane potential 静止膜電位の性質を理解するために、

水が I から II へ Wager moves from I to II

水の I から II への浸透と(II − I)の圧力が釣り合う。 この圧力を浸透圧という。

The permeation of water from I to II and the pressure of (II-I) are balanced.

This pressure is called osmotic pressure.

Equilibrium potential 平衡電位

Membrane that allows only K+ to pass through

IにKCIを加える

- 1) Kイオンが I から II へ移動
- 2) II から I へ電気的に引き戻す力
- 1)と2)が釣り合う

Add KCI to I region

- 1) K ion tend to move from I to II
- 2) There is a force that electrically pulls back from II to I
- 3) 1) and 2) are balanced

Equilibrium potential 平衡電位

この時、IとIIの間に平衡電位Exが生じる An equilibrium potential Ex is generated between I and II.

$$Ex = \frac{RT}{Fz} \times \ln \frac{[X]_{I}}{[X]_{II}}$$

[X]はモル濃度、Rは気体定数、Tは絶対温度、FはFaraday定数、zはイオンの価数

[X] is the molar concentration, R is the gas constant, T is the absolute temperature, F is the Faraday constant, and z is the valence of the ion.

I: out, II: in

上の例では、Kイオンは1価、その他の定数を入れて、常用対数に変換するとカリウムイオンの平衡電位は、

In the above example, if K ion is monovalent and other constants are entered and converted to the common logarithm, the equilibrium potential of potassium ion is .

Resting membrane potential 静止膜電位

$$Ex = \frac{RT}{Fz} \times \ln \frac{[X]_{I}}{[X]_{II}}$$

$$Ex = \frac{RT}{Fz} \times \ln \frac{[X]_{\text{I}}}{[X]_{\text{II}}}$$

$$Ex = 0.058 \times \log \frac{[K^+]_{\text{I}}}{[K^+]_{\text{II}}}$$

 $(18^{\circ}C)$

Unit: Volt

$$Ex = 0.058 \times \log \frac{[0.1]_{I}}{[0.01]_{II}}$$

R =
$$8.31 \text{ JK}^{-1}\text{mol}^{-1}$$

F = $9.65 \times 10^4 \text{ C mol}^{-1}$
T = 291 K
Ln x = $2.303 \log x$

In the above example, substituting the concentration of K ions. There will be a potential difference of 58 mV between I and II.

Hodgkin & Huxley, 1952

Hodgkin and Huxley studied a very large axon in the squid. Activation of the giant axon is responsible for a withdrawal response the squid uses when trying to escape from a predator.

- (a) S刺激電極, R導出電極
- (b),(c),(d) 膜電位: 脱分極(実線), 過分極(破線)

図 3.3 電流刺激による膜電位変化と活動電位の発生

It follows a fast course that cannot be recorded without using an oscilloscope. オシロスコープを使用しないと記録できない高速な経過を辿る。

Neuron model

$$x = \sum_{i=1}^{n} w_i x_i$$

$$y = f(x)$$

$$f(x) = \begin{cases} 1 & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

http://www.gifu-nct.ac.jp/elec/deguchi/sotsuron/oguri/node5.html

Heaviside step function

Depolarization 脱分極

depolarization

the potential-dependent sodium channel "open"

The cycle of further "opening" the sodium channel starts, even if the stimulation is stopped.

Conduction of action potential 活動電位の伝導

- Unmyelinated nerve 無髄神経 -

Alocal circuit is formed between the adjacent cell membrane.

⇒ leads the adjacent site to depolarization.

隣接する細胞膜の間には局所回路が形成

⇒ 隣接部位を脱分極に導く

The excitement of the membrane is transmitted in only one direction because the sodium channel once activated is immediately inactivated.

一度活性化されたナトリウム チャネルはすぐに不活化され、 その後<u>すぐに活性化されない不</u> <u>応期が存在</u>するため、膜の興奮 は一方向にのみ伝達される。

無髄神経 ↓ ジワジワと這うよう に伝わっていく

Unmyelinated nerve

It is transmitted as if it crawls slowly.

Conduction of action potential

-myelinated nerve 有髄神経 -

有髄神経

+

ランビエ絞輪を飛び 飛びに伝わる = 跳躍伝導

Myelinated nerve

The node of Ranvier is transmitted in a flying manner

= Saltatory conduction.

Synapse シナプス

Neurotransmitter: acetylcholine

神経伝達物質:アセチルコリン

Signal transduction via synapses

- At first, all channels are closed, but when an impulse arrives at the end of the axon, the voltage-gated Na channel opens and the potential changes.
- Next, the voltage-gated Ca channel opens and Ca ions flow into the axon terminal.
- ➤ This stimulates synaptic vesicles to fuse with the presynaptic membrane and release acetylcholine.
- When acetylcholine binds to a receptor on the postsynaptic membrane, at the same time as a Na channel, an electrical change occurs.
- ➤ The voltage-gated Na channel of the postsynaptic membrane opens, and an action potential is generated.
- Acetylcholine is decomposed by acetylcholinesterase. Choline is taken up and reused by the presynaptic membrane.

Structure of neuron ニューロンの構造

神経細胞内では情報は電気信号として伝達

- ✓ 有髄細胞 跳躍伝導
- / 無髄細胞 ゆっくりと這うように

神経細胞間では情報は化学信号として伝達

Within nerve cells, Information is transmitted as electrical signals.

- ✓ myelinated cells
- **Saltatory conduction**
- ✓ unmyelinated cells

as if it crawls slowly

Between nerve cells, Information is transmitted as chemical signals.

https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function

To learn how synapses work in the brain, please refer to this Youtube. どのようにシナプスが脳で働くかは、このYoutubeを参考にしてください。

https://www.youtube.com/watch?v=OvVI8rOEncE

How a synapse works

- Part 1. Structure of animal cell
- Part 2. Neuron
- Part 3. Signal transmission of neuron

パート1.動物細胞の構造

パート2. ニューロン

パート3. ニューロンの信号伝達

参考図書:生体情報工学(バイオメカニズム・ライブラリー)赤沢 堅造 (著),バイオメカニズム学会(編集)

Reference books: Biomechanism Library, Biological Information Engineering. Akazawa Kenzo