FPST 1373 Detectors Outline

- I. Detector operation
 - a. Mimics human sense
 - i. Not as accurate
 - ii. Longer to limit nuisance alarms
 - iii. Will be there at all times
 - iv. More accurate reporting
 - b. Signal distinguishable
 - i. Different from background
 - ii. Sensitivity: the level at which the detector will activate
 - iii. Transport lag
- II. Detector activation
 - a. Manual pull stations
 - i. Coded: Sends unique alert for which pull station was pulled
 - 1. Not common, typically at community level
 - ii. Non-coded: Same alert from all pull stations
 - 1. Common in buildings
 - iii. Single action
 - 1. Allows for quick activation
 - iv. Double action
 - 1. Minimizes nuisance alarms
 - v. Break glass
 - 1. Discourages nuisance alarms
 - 2. Creates safety hazard
 - vi. Not break glass
 - vii. Specifications
 - 1. Red
 - 2. Obvious
 - 3. Usable
 - a. 42 to 48 in above floor
 - b. 5 ft of exit
 - c. 200 ft travel distance
 - b. Heat
 - i. Oldest type
 - ii. Lowest nuisance alarm rate
 - 1. Relatively high sensitivity
 - 2. Ceiling mounted
 - iii. Fixed temperature
 - 1. Activates when the element reaches a specified temperature
 - iv. Rate of rise
 - 1. Responds to a change in temperature
 - v. Must review manufacturer data sheets to understand how detector operates
 - c. Smoke
 - i. More rapid response than heat detectors
 - 1. Nuisance sources (other particles)
 - a. Cooking

FPST 1373 Detectors Outline

- b. Dust
- c. Humidity
- 2. Away from air supply
 - a. Consider air currents when placing
- ii. Ionization: Uses small amount of radioactive material to cause a change in conductance when smoke is present
 - 1. Faster response to flaming fire due to particle sizes
- iii. Photoelectric: Uses a light emitter and receiver to monitor for a change in light received as a result of smoke
 - 1. Light scattering: Smoke enters a normally dark chamber and light reflects off of smoke to receiver
 - a. Spot detectors
 - 2. Light obscuration: Smoke partially blocks light from an emitter to a receiver
 - a. Linear detectors
 - b. Maintenance required to ensure proper alignment between emitter and receiver
 - 3. Better than ionization detectors for smoldering fires
 - 4. Performs well on flaming fires
- iv. Video
 - 1. Computer algorithm determines when smoke is observed based on changes in background image
- v. Air sampling
 - 1. Constantly monitoring through multiple ports
 - a. Network of tubes monitored for integrity
 - b. Small area covered
- d. Light
 - i. Very fast response (speed of light)
 - 1. Must have line of sight
 - ii. Selected based on fuels burned
 - 1. Most common hydrocarbon fuels have similar wave lengths emitted
 - 2. UV
 - 3. IR
 - 4. Combination
- e. Gases
 - i. Can look for products of incomplete combustion
 - ii. Not typically used as fire detectors
- f. Water flow
 - i. Not responding to fire itself
- III. Detector types
 - a. Spot
 - i. One location, must have products travel to it
 - ii. All activation methods can be spot detectors
 - b. Linear
 - i. A line is observed, products anywhere in line causes activation

FPST 1373 Detectors Outline

- ii. Heat and photoelectric obscuration
- c. Non-restorable: A detector that must be replaced after it has activated
 - i. Sprinkler head is one example
- d. Restorable: A detector that will return to its normal condition once the products from the fire are removed and can still be used
 - i. Smoke detector is an example
- e. Conventional
 - i. All signals give the same response on a given circuit
- f. Addressable
 - i. Each device has a unique identification at the panel
- g. Multi-criteria
 - i. Reduced nuisance alarms
 - 1. Can have lower sensitivities for each type to get faster response
 - 2. New detectors required to not alarm due to common nuisance sources