CALCULATION OF YBUS

Objectives

- Develop a generalized program for calculating bus admittance matrix of a power system- neglecting shunt elements and mutual coupling between elements.
- Modify the above program to include shunt elements
- Modify the program to include shunt elements and mutual coupling between lines.

Simulation Tool

☐ Scripting language like Octave, MATLAB, Python

Mathematical Model

- $\Box Y_{BUS} = A^T Y A$
 - Bus admittance matrix : Y_{BUS} is an $n \times n$ matrix
 - Bus incidence matrix : A is an $e \times n$ matrix
 - Primitive admittance matrix : Y is an $e \times e$ matrix
 - lacktriangleq n is the total no. of buses excluding reference bus
 - *e* is the total no. of elements including shunt and series elements

Input

- □ Line data
 - Column1: Element number
 - Column2: From bus
 - Column3: To bus
 - Column4: Primitive impedance in pu
 - Column5: Element to which the element is mutually coupled
 - 0 if no mutual coupling
 - Column6: Coupling impedance in pu

Example- Line Data

Element No.	From Bus	To Bus	z (pu)	Coupled Element	z _m (pu)
1	1	0	Z ₁₁	-	-
2	3	0	Z ₂₂	-	-
3	2	0	Z ₃₃	-	-
4	1	2	Z ₄₄	-	-
5	2	3	Z ₅₅	6	$Z_m = z_{56}$
6	1	3	z ₆₆	5	$Z_m = z_{65}$

Case-I

- $lue{}$ Calculation of Y_{BUS} for a power system where shunt admittances and mutual coupling are neglected.
 - Elements connected to reference buses need not be considered
 - 0 will not appear in columns 2 and 3 of line data
 - Y will be diagonal matrix
 - Columns 5 and 6 of line data need not be considered

Input: Case-I

$$Line_data = \begin{bmatrix} 1 & 1 & 2 & 0.50i & 0 & 0 \\ 2 & 1 & 3 & 0.45i & 0 & 0 \\ 3 & 4 & 2 & 0.40i & 0 & 0 \\ 4 & 3 & 2 & 0.30i & 0 & 0 \\ 5 & 3 & 4 & 0.35i & 0 & 0 \end{bmatrix}$$

Primitive Admittance matrix

$$Y = Z^{-1}$$

- Size $e \times e$
- Diagonal elements of Z are the self impedances z_{ii}
- Off-diagonal elements of Z represent the mutual impedances z_{ij}

$$Z = \begin{bmatrix} 0.5j & 0 & 0 & 0 & 0 \\ 0 & 0.45j & 0 & 0 & 0 \\ 0 & 0 & 0.40j & 0 & 0 \\ 0 & 0 & 0 & 0.30j & 0 \\ 0 & 0 & 0 & 0 & 0.35j \end{bmatrix}$$

Bus Incidence Matrix

 $a_{ij} = \begin{cases} 1, if \ i^{th} element \ is \ incident \ and \ oriented \ away \ from \ j^{th} bus \\ -1, if \ i^{th} \ element \ is \ incident \ and \ oriented \ towards \ j^{th} \ bus \\ 0, elsewhere \end{cases}$

Bus → Line ↓	1	2	3	4
1	1	-1	0	0
2	1	0	-1	0
3	0	-1	0	1
4	0	-1	1	0
5	0	0	1	-1

Outputs: Case-I

```
Y=
 0.0000 - 2.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i \quad 0.0000 - 2.2222i \quad 0.0000 + 0.0000i \quad 0.0000 + 0.0000i \quad 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 2.5000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i \ 0.0000 + 0.0000i \ 0.0000 + 0.0000i \ 0.0000 - 3.3333i \ 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 2.8571i
A =
        0 0
  1 -1
    0 -1 0
  0 -1
        0 1
  0 -1 1 0
  0 0 1 -1
Ybus =
 0.0000 + 2.2222i 0.0000 + 3.3333i 0.0000 - 8.4127i 0.0000 + 2.8571i
 0.0000 + 0.0000i 0.0000 + 2.5000i 0.0000 + 2.8571i 0.0000 - 5.3571i
```

Case-II

- \Box Calculation of Y_{BUS} for a power system where shunt admittances are considered and mutual coupling is neglected.
 - Shunt elements should not be reflected in A
 - Y will be diagonal matrix
 - Columns 5 and 6 of line data need not be considered

Input: Case-II

$$Line_data = \begin{bmatrix} 1 & 1 & 2 & 0.50i & 0 & 0 \\ 2 & 1 & 3 & 0.45i & 0 & 0 \\ 3 & 4 & 2 & 0.40i & 0 & 0 \\ 4 & 3 & 2 & 0.30i & 0 & 0 \\ 5 & 3 & 4 & 0.35i & 0 & 0 \\ 6 & 0 & 1 & -5i & 0 & 0 \\ 7 & 2 & 0 & -5i & 0 & 0 \\ 8 & 3 & 0 & -5i & 0 & 0 \end{bmatrix}$$

Outputs: Case-II

```
1 -1 0 0

1 0 -1 0

0 -1 0 1

0 -1 1 0

0 0 1 -1

-1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

7bus =

0.0000 - 4.0222i  0.0000 + 2.0000i  0.0000 + 2.2222i  0.0000 + 0.0000i

0.0000 + 2.0000i  0.0000 - 7.6333i  0.0000 + 3.3333i  0.0000 + 2.5000i

0.0000 + 2.2222i  0.0000 + 3.3333i  0.0000 - 8.2127i  0.0000 + 2.8571i

0.0000 + 0.0000i  0.0000 + 2.5000i  0.0000 + 2.8571i  0.0000 - 5.1571i
```

A =

Case-III

- \Box Calculation of Y_{BUS} for a power system where shunt admittances and mutual coupling are considered.
 - Shunt elements should not be reflected in A
 - Y will not be diagonal matrix

Input : Case-III

$$Line_data = \begin{bmatrix} 1 & 1 & 0 & -5i & 0 & 0 \\ 2 & 3 & 0 & -5i & 0 & 0 \\ 3 & 2 & 0 & -5i & 0 & 0 \\ 4 & 1 & 2 & 0.50i & 0 & 0 \\ 5 & 2 & 3 & 0.40i & 6 & 0.2i \\ 6 & 1 & 3 & 0.25i & 5 & 0.2i \end{bmatrix}$$

$$0$$

Outputs: Case-III

```
yprimitive =
 0.0000 + 0.2000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.2000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.2000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i \quad 0.0000 + 0.0000i \quad 0.0000 + 0.0000i \quad 0.0000 - 2.0000i \quad 0.0000 + 0.0000i \quad 0.0000 + 0.0000i \quad 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 4.1667i 0.0000 + 3.3333i
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 3.3333i 0.0000 - 6.6667i
A =
      0
   0 1
  1 -1
  0 1 -1
  1 0 -1
Ybus =
 0.0000 + 5.3333i   0.0000 - 5.9667i   0.0000 + 0.8333i
 0.0000 + 3.3333i  0.0000 + 0.8333i  0.0000 - 3.9667i
```