

Sharif University of Technology Department of Computer Engineering

Embedded System Design

StateCharts (6)

A. Ejlali

An Overview of StateCharts

- StateCharts is a language.
- CFSM MoC
- Communication
 - Shared Memory
- Deterministic FSM

Modeling of Hierarchy

- The key extension is hierarchy.
 - States comprising other states are called super-states.
 - States included in super-states are called sub-states of the super-states.
 - Each state which is not composed of other states is called a basic state.

Super Nodes vs. Basic States

Basic states

Super nodes

OR-Super-States

 The FSM can only be in one of the sub-states of super-state S at any time.

Design Modularity

- There are to mechanisms to hide the internal structure of super-states from the environment.
 - Default State Mechanism
 - History Mechanism

Default State Mechanism

 Note that the filled circle does not constitute a state itself.

History Mechanism

- It is possible to return to the last sub-state that was active before the super-state was left.
- The filled circle defines the next state for the very initial transition into the superstate.

History Mechanism

Another notation (Equivalent to the previous one)

AND-Super-States

- The system containing an AND-superstate S is in all of the sub-states of S whenever it is in S.
- Also, transitions out of S always result in leaving all the sub-states of S.
- AND-super-states are used to describe concurrency.

Example: Answering Machine

Example (Cont.)

