Object Recognition via Convolution

An Example of Global Optimization

Gang Pan gpan@zju.edu.cn

Department of Computer Science
Zhejiang University

Slide credit: Stanford CS 131

12	3	19
25	10	1
9	7	17

*

1	2
3	4

=

?	?
?	?

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

12	3	19
25	10	1
9	7	17

*

1	2
3	4

_

133	?
?	?

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

12	3	19
25	10	1
9	7	17

1	2
3	4

133	75
?	?

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

12	3	19
25	10	1
9	7	17

1	2
3	4

133	75
100	

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

12	3	19
25	10	1
9	7	17

1	2
3	4

133	75
100	101

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

12	3	19
25	10	1
9	7	17

*

1	2
3	4

=

133	75
100	101

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

12	21
18	31

*

1	2
3	4

=

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

*

1	2
3	4

=

232

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

Why they are useful

Allow us to find interesting insights/features from images!

*

0	-1/2	0
0	0	0
0	1/2	0

=

Recall Image Classification...

Allow us to use features to put images in categories!

Wait a Minute...

Convolution = Image -> Features

Classification Algorithm = Features -> Category

Wait a Minute...

Convolution = Image -> Features

Classification Algorithm = Features -> Category

Let's put 'em together!

In Specific...

Let's build a **convolution-based** classification algorithm for the CIFAR-10 dataset (10 classes, 32x32 images):

"probability" of

Classifier

$$c_{pred} = \arg\max($$

Classifier

The Whole Shebang

The Whole Shebang

The Whole Shebang

Reframing convolution

12	21
18	31

*

1	2
3	4

Reframing convolution

12	21
18	31

*

1	2
3	4

=

Reframed Feature Extractor

32x32 "Airplane Filter"

Reframed Feature Extractor

$$Wx = \hat{y}$$

W: the (10x1024) matrix of weight vectors

X: the (1024x1) image vector

 \hat{y} : the (10x1) vector of class "probabilities"

New Feature Extractor

W: the (10x1024) matrix of weight vectors

X: the (1024x1) image vector

 \hat{y} : the (10x1) vector of class "probabilities"

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ w_4 & w_5 & w_6 \end{bmatrix} \cdot = \hat{y}$$

 $Wx = \hat{y}$

"Fully-Connected"

Every node is connected to every other node

"Neural Network"

Kinda looks like a neuron!

New Feature Extractor

$$Wx = \hat{y}$$

W: the (10x1024) matrix of weight vectors

 \mathcal{X} : the (1024x1) image vector

 \hat{y} : the (10x1) vector of class "probabilities"

New Feature Extractor

$$Wx = \hat{y}$$

W: the (10x1024) matrix of weight vectors

X: the (1024x1) image vector

 \hat{y} : the (10x1) vector of class "probabilities"?

Class Probability Vector

- Must have values between 0 and 1
- Must sum to 1
- There's no guarantee either requirement is satisfied!

$$\hat{y} = Wx$$

Softmax Function

Softmax:
$$a(x)_i = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

Softmax Function

Softmax:
$$a(x)_i = \frac{e^{x_i}}{\sum_i e^{x_j}}$$

Class Probability Vector

- Must have values between 0 and 1
- Must sum to 1

$$\hat{y} = Wx$$

Class Probability Vector

- Must have values between 0 and 1
- Must sum to 1

$$\hat{y} = SM(Wx)$$

System so far...

Feature extractor:

• Classifier:
$$\hat{y} = SM(Wx)$$

$$c_{pred} = \arg\max(\hat{y})$$

System so far...

Feature extractor:

• Classifier:

$$\hat{y} = SM(Wx)$$

$$c_{pred} = \arg\max(\hat{y})$$

System so far...

Feature extractor:

• Classifier:

Using the label

Let's compare our prediction with the real answer! For each image, we have the label y which tells us the true class:

Key Insight:

We want:

 $arg max(\hat{y}) = arg max(y)$

Key Insight:

We want:

$$arg max(\hat{y}) = arg max(y)$$

Which we can accomplish by:

$$W^* = \arg\min_{W} \left(-\sum_{x,y} \log(p_c) \right)$$

Key Insight:

We want:

$$arg max(\hat{y}) = arg max(y)$$

Which we can accomplish by:

$$W^* = \arg\min_{W} \left(-\sum_{x,y} \log(p_c) \right)$$

Where p_c is the probability of the true class in \hat{y}

Cross-Entropy Loss

Our loss function represents how bad we are currently doing:

$$L = -\log(p_c)$$

Cross-Entropy Loss

Our loss function represents how bad we are currently doing:

$$L = -\log(p_c)$$

Examples:

$$p_c = 0 \to L = -\log(0) = \infty$$
 $p_c = 0.1 \to L = -\log(0.1) = 2.3$
 $p_c = 0.9 \to L = -\log(0.9) = 0.1$
 $p_c = 1 \to L = -\log(1) = 0$

Cross-Entropy Loss

Our loss function represents how bad we are currently doing:

$$L = -\log(p_c)$$

Examples:

$$p_c = 0 \to L = -\log(0) = \infty$$
 $p_c = 0.1 \to L = -\log(0.1) = 2.3$
 $p_c = 0.9 \to L = -\log(0.9) = 0.1$
 $p_c = 1 \to L = -\log(1) = 0$

The larger the loss, the worse our prediction.
We want to minimize L!

Our Classification System

Our System's Performance

- ~40% accuracy on CIFAR-10 test
 - Best class: Truck (~60%)
 - Worst class: Horse (~16%)
- Check out the model at: https://tinyurl.com/cifar10
- What about the filters? What do they look like?

Visualizing the Filters

Next Time...

Building a stronger convolution-based feature extractor

History of deep learning + computer vision (Convolutional Neural Nets!)

Applications of CNNs