Discrete	Description	$\mathbf{Mean} \\ E(X) = \mu$	$ \begin{aligned} \mathbf{Variance} \\ Var(X) = \sigma^2 \end{aligned} $	$\begin{array}{l} \mathbf{PMF} \\ P(X=x) \end{array}$	$\begin{array}{l} \mathbf{CDF} \\ F(X) = P(X \le x) \end{array}$
Uniform $X \sim \text{Discrete Uni}(a, b)$	Each of the n outcomes has an equal probability.	$\frac{a+b}{2}$	$\frac{(b-a+1)^2 - 1}{12}$	$\frac{1}{b-a+1}, a \le k \le b$	$\frac{\lfloor x \rfloor - a + 1}{b - a + 1}, a \le x \le b$
$ \frac{\mathbf{Bernoulli}}{X \sim \mathrm{Ber}(p)} $	A single binary outcome, success (1) with probability p and failure (0) with probability $1-p$.	d	p(1-p)	$p^x(1-p)^{1-x}, x \in \{0,1\}$	$\begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$
Binomial $X \sim \operatorname{Bin}(n, p)$	The sum of n independent Bernoulli trials with success probability p .	du	np(1-p)	$\binom{n}{x} p^x (1-p)^{n-x}$	$\sum_{k=0}^{x} P(X=k)$
$egin{align*} \mathbf{Negative} \\ \mathbf{Binomial} \\ X \sim \mathrm{NegBin}(r,p) \end{aligned}$	The number of trials required to achieve r successes in independent Bernoulli trials with success probability p .	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\binom{x-1}{r-1}p^r(1-p)^{x-r}$	$\sum_{k=r}^{x} P(X=k)$
$\begin{array}{l} \textbf{Geometric} \\ X \sim \operatorname{Geo}(p) \end{array}$	The number of trials until the first success in independent Bernoulli trials with success probability p .	p = 1	$\frac{1-p}{p^2}$	$p(1-p)^{x-1}$	$1-(1-p)^x$
$ \begin{aligned} \mathbf{Hypergeometric} \\ X \sim \mathbf{HypGeo}(n,N,M) \end{aligned} $	The number of successes in a sample of size n drawn without replacement from a population of size N containing M successes.	$n rac{M}{N}$	$n\frac{M}{N}\left(1-\frac{M}{N}\right)\frac{N-n}{N-1}$	$\binom{M}{x}\binom{N-M}{n-x}$	$\sum_{k=0}^{x} P(X=k)$
$\begin{aligned} \mathbf{Poisson} \\ X \sim \operatorname{Poi}(\lambda) \end{aligned}$	Models the number of events occurring in a fixed interval of time or space with a known average rate λ .	<i>\</i>	ر ک	$\frac{\lambda^x e^{-\lambda}}{x!}$	$\sum_{k=0}^{x} P(X=k)$
Continuous	Description	$\mathbf{Mean} \\ E(X) = \mu$	Variance $Var(X) = \sigma^2$	$PDF \ f(x)$	$ \begin{array}{l} \mathbf{CDF} \\ F(X) = P(X \le x) \end{array} $
$\frac{\text{Uniform}}{X \sim \text{Uni}(a,b)}$	A continuous distribution where all outcomes in the range $[a,b]$ are equally likely.	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{b-a}, a \le x \le b$	8
$\frac{\mathbf{Beta}}{X \sim \mathrm{Beta}(\alpha,\beta)}$	A family of distributions defined on $[0, 1]$, often used in Bayesian statistics.	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$x^{\alpha-1}(1-x)^{\beta-1}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^x t^{\alpha-1} (1-t)^{\beta-1} dt$
$\begin{aligned} \textbf{Normal} \\ X \sim \mathcal{N}(\mu, \sigma^2) \end{aligned}$	A symmetric bell-shaped distribution used extensively in statistics.	π	σ^2	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$
$\begin{array}{l} \textbf{Lognormal} \\ X \sim \text{Lognormal}(\mu, \sigma^2) \end{array}$	A distribution where the logarithm of the variable follows a normal distribution.	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$	$\frac{1}{x\sigma\sqrt{2\pi}}\exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$	$\Phi\left(rac{\ln x - \mu}{\sigma} ight)$
Gamma $X \sim \operatorname{Gamma}(\alpha, \beta)$	A distribution modelling waiting times and generalising the exponential distribution.	lphaeta	$lphaeta^2$	$\frac{x^{\alpha - 1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}, x > 0$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_0^x t^{\alpha-1} e^{-t/\beta} dt$
Exponential $X \sim \text{Exp}(\lambda) \sim \text{Exp}(\beta)$	A special case of the Gamma distribution modelling the time until an event occurs.	$\frac{1}{\lambda} = \beta$	$\frac{1}{\lambda^2} = \beta^2$	$\lambda e^{-\lambda x} = \frac{1}{\beta} e^{-x/\beta}$	$1 - e^{-\lambda x} = 1 - e^{-x/\beta}$