IoT Networks

IoT & Mobile Communication Networks

IoT & Mobile Communication Networks

❖ 3GPP & IoT

- 3GPP (The 3rd Generation Partnership Project)
 - Refers to 7 telecommunication standardization groups to produce 3GPP standard releases for cellular network services
 - Radio Access, QoS (Quality of Service)
 - Core Transport Network
 - Network Services, Security, etc.
- 3GPP standards are structed as a 'Release'
- Release 8 (and beyond) includes standards for IoT

3GPP's 7 Groups: ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC

❖ 3GPP & IoT

IoT & Mobile Communication Networks

❖ LTE Cat 1 (Rel. 8)

- 3GPP's first standard option for IoT
- Includes transitional characteristics
 - Higher data rate than later 3GPP-IoT standards
 - Peak data rate: 10 Mbps (DL), 5 Mbps (UL)
 - UE receiver bandwidth: 20 MHz

Feature/Standard	LoRaWAN	Sigfox	LTE Cat 1 (Rel. 8)
Modulation	CSS	D-BPSK	OFDMA
Bandwidth	125 ~ 500 kHz	100 Hz	20 MHz
Data rate (peak)	50 Kbps	100 bps	10 Mbps
Max. output power	20 dBm	20 dBm	23 - 46 dBm
Power efficiency	Very High	Very High	Low

- ❖ NIMTC (Rel. 10) & SIMTC (Rel. 11)
 - NIMTC (Network Improvement for MTC, Rel. 10)
 - Specifies requirements for MTC to make the network more suitable for MTC
 - Congestion and overload control in IoT Networks
 - SIMTC (System Improvement to MTC, Rel. 11)
 - Device triggering: Higher reachability from the App server to a MTC device
 - Triggering request via SMS (Only LTE possible)

IoT & Mobile Communication Networks

- ❖ LTE Cat 0 (Rel. 12)
 - Supports a new UE category that can save the battery life significantly
 - Suitable for IoT
 - Reduced data rate from previous standards
 - Peak data rate: 1 Mbps (DL & UL)
 - UE receiver bandwidth: 20 MHz
 - Duplex type: Half duplex

❖ LTE Cat M1 (eMTC, Rel. 13)

- eMTC (enhanced MTC) focuses far more on reduction of cost for LTE-IoT Networks
 - Peak data rate: ~1 Mbps
 - UE receiver bandwidth: 1.08 MHz
 - Modulation: OFDMA
 - UE transmit power: 20 dBm (new) or 23 dBm
- Allows a lot more IoT traffic to fit in the same
 LTE network bandwidth
- Compatible with the existing LTE network

IoT & Mobile Communication Networks

❖ Rel. 14 eMTC enhancements

- Support for Position Tracking
- Support for Multicasting (group message delivery)
- Support for Higher Data Rates
 - Larger max. channel bandwidth (5 MHz wide signal)
- Support for VoLTE

- ❖ NB-IoT (Rel. 13)
 - Also known as LTE Cat M2 or LTE Cat NB1
 - Partners include Huawei, Ericsson, Qualcomm, etc.
 - Effort to reduce cost
 - Peak data rate: 250 kbps (DL), 250 or 20 kbps (UL)
 - UE receiver bandwidth: 180 kHz
 - Modulation: OFDMA
 - Removing gateways
 - Sensor data can be directly sent to the main server
 - No need for aggregating, format transition, etc.

IoT & Mobile Communication Networks

- ❖ NB-IoT (Rel. 13)
 - Supports 3 modes of operation
 - Stand-alone
 - Utilizes a stand-alone carrier
 - · Uses a GSM carrier
 - Not compatible with the LTE band
 - Guard band
 - Utilizes unused resource blocks within a LTE carrier's guard-band
 - In-band
 - Uses a normal LTE band

❖ Rel. 14 NB-IOT enhancements

- Support for position tracking
- Support for multicast
- Mobility and service continuity enhancements
- Power consumption and latency reduction
 - Available to define new UE power class(es)
 - Example: 14 dBm

IoT & Mobile Communication Networks

❖ EC-GSM-IoT (Rel. 13)

- Succeeding standard of GSM in a form of IoT
 - EC-GSM: Extended Coverage GSM
- EC-GSM-IoT Features
 - Peak data rate: 474 kbps ~ 2Mbps (DL & UL)
 - UE receiver bandwidth: 200 kHz
 - Modulation: TDMA/FDMA
 - UE transmit power: 23 dBm or 33 dBm
 - Long battery life: ~10 yrs. operation with 5 Wh battery

- mMTC (massive MTC)
 - IMT-2020 defines mMTC as one of the
 5G usage scenarios

- Key requirements
 - Wide area coverage: 694-790 MHz
 - Designed for connected cars, fleet service
 - Connection density: 10⁶ Device/Km²
 - Required for smart cities, smart metering

IoT & Mobile Communication Networks

❖ IoT Networks

IoT Networks Reference

References

- J. Bradley, J. Barbier, and D. Handler, "Embracing the Internet of Everything To Capture Your Share of \$14.4 Trillion," Cisco, White Paper, 2013.
- J. Bradley, C, Reberger, A. Dixit, and V. Gupta, "Internet of Everything: A \$4.6 Trillion Public-Sector Opportunity," Cisco, White Paper, 2013.
- D. Evans, "The Internet of Everything," Cisco IBSG, White Paper, 2012.
- S. Mitchell, N. Villa, M. Stewart-Weeks, and A. Lange, "The Internet of Everything for Cities," Cisco, White Paper, 2013.
- O. Hersent, D. Boswarthick, and O. Elloumi, The Internet of Things: Key Applications and Protocols. John Wiley & Sons, Dec. 2011.
- "Machine 2 Machine Perspective on Industry Status (Key Challenges and Opportunities)," Frost & Sullivan, Research Paper, Nov. 2011.
- "M2M Sector Map," Beecham Research, Sep. 2011. [Online] Available from: http://www.beechamresearch.com/download.aspx?id=18 [Accessed June 1, 2015]

References

- F. Behmann and K. Wu, Collaborative Internet of Things (C-IoT). John Wiley & Sons, 2015.
- J. Gubbia, R. Buyyab, S. Marusica, and M. Palaniswamia, "Internet of Things (IoT): A vision, architectural elements, and future directions," Future Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660, Sep. 2013.
- L. Atzori, A. Iera, and G. Morabito, "The Internet of Things: A survey," Computer Networks, vol. 54, no. 15, pp. 2787-2805, Oct. 2010.
- S. Li, L. D. Xu, and S. Zhao, "The Internet of Things: a Survey," Information Systems Frontiers, vol. 17, no, 2, pp. 243-259, Apr. 2015.
- A. J. Jara, L. Ladid, and A. Skarmeta, "The Internet of Everything through IPv6: An Analysis of Challenges, Solutions and Opportunities," Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol. 4, no. 3, pp. 97-118, 2013.
- O. Vermesan and P. Friess, Internet of Things Global Technological and Societal Trends From Smart Environments and Spaces to Green ICT. River Publishers, 2011.

References

- O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, I. S. Jubert, M. Mazura, M. Harrison, M. Eisenhauer, and P. Doody, "Internet of Things Strategic Research Roadmap," European Research Cluster on the Internet of Things, Sep. 2011.
- IEEE Std. 802.15.4-2006, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE, Sep. 2006.
- N. Kushalnagar, G. Montenegro, and C. Schumacher, "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals," IETF RFC 4919, Aug. 2007.
- G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks," IETF RFC 4944, Sep. 2007.
- ZigBee Alliance, "ZigBee specification: ZigBee document 053474r13 Version 1.1," Dec. 2006.
- ZigBee Alliance, www.zigbee.org