Временные ряды и тренды

Определение

- Временной ряд (ВР)- это последовательность значений, описывающих протекающий во времени процесс, измеренных в последовательные моменты времени, обычно через равные промежутки.
- Данные типа временных рядов широко распространены в самых разных областях человеческой деятельности. В экономике это ежедневные цены на акции, курсы валют, еженедельные и месячные объемы продаж, годовые объемы производства и т.п.

Графики различных временных рядов

■ IM TOT

На 1-ом графике виден явный линеиныи тренд,

на 2-ом - случайные колебания,

на 3-ем - сложный цикл

Цели анализа ВР

- краткое описание характерных особенностей ряда;
- подбор статистической модели, описывающей ВР;
- предсказание будущих значений на основе прошлых наблюдений;
- управление процессом, порождающим ВР

Стадии анализа ВР

- графическое представление и описание поведения В
- выделение и удаление закономерных составляющих зависящих от времени: тренда, сезонных и циклическоставляющих;
- выделение и удаление низко- или высокочастотных составляющих процесса (фильтрация);
- исследование случайной составляющей ВР, оставше после удаления перечисленных выше составляющих
- построение математической модели для описания случайной составляющей и проверка ее адекватност
- прогнозирование будущего развития процесса, представленного ВР;
- исследование взаимодействий между различными В

Методы анализа ВР

 корреляционный анализ позволяет выявить существо периодические зависимости и их лаги (задержки) внуодного процесса (автокорреляция) или между несколи процессами (кросскорреляция);

• спектральный анализ позволяет находить периодиче

- квазипериодические составляющие ВР;
 сглаживание и фильтрация предназначены для
- сглаживание и фильтрация предназначены для преобразования ВР с целью удаления из них высокочастотных или сезонных колебаний;
- модели авторегрессии и скользящего среднего оказываются особенно полезными для описания и прогнозирования процессов, проявляющих однородн колебания вокруг среднего значения;
- прогнозирование позволяет на основе подобранной модели поведения ВР предсказывать его значения в будущем.

При анализе ВР принято выделять 4 компоненты:

- тренд (T) плавно изменяющаяся компонента, описыва чистое влияние долговременных факторов (рост населизменение структуры возрастного состава и т.д.);
- циклическая компонента (С) плавно изменяющаяся компонента, описывающая длительные периоды относительного подъема и спада, состоит из циклов, меняющихся по амплитуде и протяженности (в эконом бывает связана со взаимодействием спроса и предлож ростом и истощением ресурсов, изменением в финансиналоговой политике и т.п.);

сезонная компонента (S) - состоит из последовательно

почти повторяющихся циклов (объем продаж накануне

- Нового Года, объем перевозок пассажиров городским транспортом);
 случайная компонента (е) остается после полного
- случайная компонента (e) остается после полного выделения закономерных компонент.

ВР представляет собой

- либо сумму этих компонент X=T+C+S+e в аддитивной модели,
- либо произведение X=T*C*S*e в мультипликативной модели.

Второй вариант более распростране экономических приложениях и сводитс первому логарифмированием

<u>выделяется</u> методом наименьших квадратов

Наиболее распространены следующие модели трендов:

- линейная $T_t = e_0 + e$
- полиномиальная $-r_t = e_0 + fit + e_1t^2 + ... + p_2t^2$
- логарифмическая Tt = ехрСД, + $f5_xt$)
 Представление о характере тренда можно получить из графика ВР.

компоненты

<u>Чтобы выделить циклическую компоненту</u>, работают с ВР, не содержащими сезонности (например, годовыми ВР).

Из мультипликативной модели X=T*C*S*e

С выделяется следующим образом:

Удаляют тренд из модели (q . £) _ X ;

T t

- Вычисляют процентную долю, приходящуюся на (C £) t : (С
 *100%.
- Вычисляют скользящее среднее для процентной доли:
 MA[(C £) *100%]
 - эту величину и считают циклической компонентой.
- Для построения прогноза бывает необходимо выделять и исследовать случайную компоненту:

[(C •£) t *100%] / MA[(Č • £)t *100%].

По полученному графику можно определить точки поворота цикла

Выделение сезонной компоненты

Для выделения сезонной компоненты поступают следующим образом:

• сглаживают ВР, т.е. вычисляют

$$MA[x J = (T \cdot C)_{\Gamma}$$

• вычисляют компоненту

$$(S \bullet \pounds)_t = X_T = X f (T \bullet C) t$$
 $MA(X_t)$

• изолируют сезонную компоненту усреднением (S •£)_t

Рассмотрим пример выполнения п.3 данных о количестве миль, сделанных за квартал аэробусом

В качестве сезонного индекса выбирается медиана, т.к. реагирует на выбросы.

По индексам легко определить значимость влияни отдельного сезона.

Год	1-ый кв.	2-ой кв.	3-ий кв.	4-ый кв.
1986			180.21	71.17
1987	45.19	104.61	179.86	72.89
1988	46.80	99.82	177.24	77.06
1989	43.33	103.63	175.44	74.96
1990	44.78	104.02	178.17	70.14
1991	49.88	101.24		
медиана	45.19	103.63	178.17	72.89

позволяет ответить на вопротипа нижеследующих:

- Является ли настоящее увеличение безработицы естественным для данного периода времени?
- Не маскирует ли предрождественский наплыв покупателей переход к новому периоду экономического цикла?
- Если в будущем году предполагается продать 400 единиц товара, то каковы буд предполагаемые ежемесячные продажи с учетом сезонности?

Для ответа на подобные вопросы необходимо:

- Скорректировать влияние сезонной компоненты, чтобы более четко обнаружились основные тенденции;
- Инкорпорировать влияние сезонности в прогноз.

Для достижения первой цели проводится десезонализация: *X*

 $(T - C \cdot \pounds)_{\Gamma} = -^{\Lambda}$

где под S t понимается соответствующий индекс

Пример. Исследование ВР числа трансакций универмаг

Из таблицы видно, что несмотря на большое число трансакций квартале, годовая норма трансакций после корректировки на сезонность падает к 4-ому кварталу довольно заметно. Возможно - это начало циклического спада

№ квартал а	Число трансакци й (в 4тхзИаы≕на» цт	Сезонный индекс ^нсакцийна сезонность	Число трансакций, скорр. на сезонность (Т • с 4 = x / St	Годовая норма трансакций 4 • X t / St
1	17.36	70	24.80	99.20
2	21.11	85	24.84	99.36
3	21.68	92	23.57	94.28
4	32.35	153	21.08	84.32

Пример. Прогнозировани объема продаж

Пусть должно быть продано 200 единиц товара. Что можно ожидать для поквартальных объемов продаж?

№ квартала	X без S (1)	Сезонный индекс S (2)	X c S : (1)*(2)/100
1	50	123	61.5
2	50	108	54.0
3	50	79	39.5
4	50	90	45.0

Замечание

- В аддитивной модели учесть сезонность можно с помощью dummy- переменных
- Например, уравнение для учета тренда и квартальной сезонности может быть таким

$$X_t$$
 —+ θ +aD2 + aP_3 +£

Построение прогноза для ВР

- Задача прогнозирования состоит в том чтобы по имеющимся наблюдениям ВІ предсказать неизвестные будущи значения
- Прогнозирование в бизнесе играет очень большую роль, поскольку оно является рациональной основой для принятия решений.
- Например, предсказание ежемесячных объ продаж товара - это основа политики контролирования запасов, предсказание бу доходов корпорации - основа для приняти решений в инвестиционной политике.

Подход Бокса-Дженкинс ARMA

- Методы ARMA предназначены для прогнозирования либо стационарных BP, либо для BP, которые могут быть преобразованы к стационарным.
- К таким рядам относятся, например, остатки регрессионных моделей типа

$$X_t = BO + P \setminus t + a + a_2 D_2 + a_3 D_3 + \pounds_t$$

Стационарность

- Ряд является стационарным, если о совершает колебания вокруг своег математического ожидания.
- Сами значения ряда не являются, как правило, независимыми, но корреляция между членами ряда зависит только от расстояния S между ними.

Подход Бокса-Дженкинса ARMA

- Предположение о том, что существует связь между соседними значениями ВР и составляет основу методов ARMA.
- Именно эта гипотеза позволяет предсказа значения ${}^{\pounds}t+_{1}t^{\pounds}_{t}+_{2}$ »• t на основании известных значений $\pounds_{1}, \pounds_{2}, ..., \pounds_{t}$
- затем на основании регрессионной модел $X_t + \$ t + a_1 D_1 + a_2 D_2 + D_3 + \pounds_t$
- строятся будущие значения *X*,+1, *X*,+2,...

Методология Бокса-Дженкинса

- Ряд \pounds_t считается реализацией случайного процесса ARMA(p,q), и в зависимости от типа этого процесса строится прогноз.
- Например, если £t ~AR(1), то

$$\pounds t^{-a}o + a \cdot et - i + Ut$$

- где $E(u_t) 0$, $D(u_t) a^2$.
- Тогда прогнозное значение

$$ft+i-ao + ^a/ft$$

Методология Бокса-Дженкинса

- Если £ $_t$ ~MA(1), то £ $_t$ = a_0 + b u_{t-} + u_t
- Если €_t ~ARMA(1,1),to

$$\pounds t = a \circ + ai \pounds t - | + bjut - | + ut$$

• и прогнозное значение

$$ft + i = a_0 + a_i ft + b_i ut$$

• Если исходный ряд не является стационарным, то иногда его можно сдела стационарным, перейдя к первым (или вторым) разностям.

Алгоритм анализа ВР

- 1. Тестирование на стационарность (тест U Root). Если результат положительный, то пункт 3.
- 2. Приведение к стационарному виду взяти 1-ой или 2-ой разности и снова пункт 1.
- 3. Идентификация параметров р и q процес ARMA(p,q) по коррелограммам АС и РАС
- 4. Оценивание параметров методом максимального правдоподобия и выбор наилучшей модели (критерии Акаике, Швар
- 5. Диагностическая проверка (анализ коррелограмм AC и PAC).
- 6. Прогнозирование.

Тестирование стационарности (тест Дики-Фуллера)

• Для одной из моделей (какой именно, можі выбрать, используя опции)

- Оценивается уравнение $Ay_t = \mathbf{y} y_{t_x} + \mathbf{f}_t$
- И проверяется гипотеза *H*,: ^=0
- Которая соответствует наличию единично корня, т.е. нестационарности ВР

Автокорреляционная функци

Пусть X - некоторый временной ряд, тогда теоретическая АКФ имеет вид

$$\rho(\tau) = \frac{1}{Var(X_t)} E\{(X_t - \mu)(X_{t-\tau} - \mu)\}$$

Рис. 1. Значения автокорреляционной функции процесса AR(1) при значении коэффициента равном 0,8

Рис. 2. Значения автокорреляционной функции процесса AR(1) при значении коэффициента равном -0,8

Частная автокорреляционн функция

Частная АКФ определяется из системы линейных уравнений Юла-Уокера, связывающей значения АКФ и частной АКФ

Идентификация параметров ARMA

Вид коррелограмм АС и РАС для р>0

Autocorrelation Partial

AC PAC Q-Stat Prcb

1. 0.539 0,539	116.40	0.000
2. 0.319 0.041	! 57.37	0.0»
3. 0.190 0.004	171.91	0.000
4. 0.092 -0.029	175.35	0.000
5. 0.014 -0.044	175.43	0.000
6. 0.012 0.033	175.50	0.000
70.013 -0.026	175.56	0.000
В	0.025 0.0	059
175.81	0.0009	0.042
0.018	176.52	0.000
HI 0.069 0.042	178.47	0.000
11. 0.027 -0.051	178.78	0.000

ABfl). Υ_t

я параметр 1A

и РАС для р>0

Вид коррелограмм А

AR[1). $Y_t = -$

11	i i
[1	iii^
N	1,1
I	i i
	• и
	ii
1 1	
	i i 1 r
1 1	I I
	ı J

	AC	FAC	OStat	Pro _b	
1	-0.500 -(0.500	100.1 9	0.00 0	
2	0.28	0.04	131.8	0.00	
3	-0.125	0.04	138.1	0.00	
4	0-1	0.06	142.4	0.00	
5	-0.106 *(0.049	147.0	0.00	
6	0,090	0.00	150.3	0.00	
7	-0.096	-0.043	154.1	0.00	
8	0.08	0.01	156.7	0.00	
9	■0.068		158.5	0.00	
1	0.10	0,07	162.9	0.00	
11		0.00	165.6	QJO	
1	0.063	-0,002	167.2	0.00	

Идентификация параметро ARMA

Partial GOTOUfifc*

 $0.2Vt_^ + Sj-$

$$Y_t = 0.8Y_{t-1}$$

AC	PAC	Q-SMI	р*л
аяшшш		1NºM	ало
∩ 7W			
a.fIR; <₄	51 <i>7</i> 1	вдло	O.OW
одв -^.	01 e	2T65J	0,-Ж'
«юга -й	ОЭТ		одой
-3.006 -	&Щ?		O
-Π№1	рдав	iwltfd	ШИ
40S	U.U'C	М.0N	fI,™
MI?	Й.й71	HK8G	flco
DM	аэлл	М1.эа	Z
flumi	асад	233 ич	И» й
C1.B	G.U4J	ialOS	ОЛ»
1J.	OJHI	ввела	PWD

Идентификация параметро ARMA

АД(«). V_e - -O.SK-, - 0.2П-3 4 it

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
Chicago I		1	-0.670	-0.670	17:9.75	0.000
1		2	0.353	-0.173	229.82	0.000
	1 1	3	-0.147	0.028	238.48	0.000
- 10	1 2	4	0.087	0.083	241.55	0.000
4	10	5	-0.088	-0.032	244.67	0.000
	. 11	6	0.090	0.009	247.99	0.000
6 1	di.	7	-0.097	-0.042	251.78	0.000
a de	1 1	8	0.088	0.007	254.96	0.000
ď.	i do i	9	-0.086	-0.030	257.98	0.000
i la	l ib	10	0.106	0.062	26:2,57	0.000
	i ji	11	-0.092	0.029	266.04	0.000
- 7	l s di	12	0.071	0.010	268.12	0.000

Идентификация параметров ARMA

Аик%1ЯЦ|[*|11;.И1 PtWttmJ CUfmiUHIAC ihAt- НЧЬ

M A(2)_
$$Y_{\mathfrak{L}} = e:_{t} - O.U_{L}i$$
_
L + 0.2E_{r_a},

1	1	-0.Б	■ C.t∨	1 >4	fl.P
1	2	0.1^	■ 0.55	HTjOI	U.D
	а	p. TM	■O.'W	U [⊤] .O?	O.K
1	4	□.й0	■O.Dt	I-i [⊤] E0-	G.Qf
1	5	-0.Й5Э	-0.НИ	14151	Ci.rh
J	е	cure	0.003	IS'.ib-	О.Э
	7		■ O.O	1-51.7	й.йс
I	В	й <i>7,</i> -	-QAM	15SM	0Л
	n	-nnw	-TI	ito-4i	ОВД
	10	OOifi	rj.IMtl	0м7	
	11	-QW	OAH	ieus	□Jt
.1	T?	DCH	o.mo	1BJ.4	O

Autocomelation	Partial Correlation		γÇ	PAC	O-Start	Prob	
_	1	-	0.449	0.449	80.885	0.000	
		evi	0.389	0.22	1 8	0000	
Ļ	_	m	0.320	0.108	182,89	000	
	=	4	0.246	0.025	207.30	0000	
-	-	un-	0.162	-0.037	217.82	0.000	
-	-	40	0.161	0.040	228.44	0.000	
-	-	۲	9.10	-0.021	232.52	0.000	
	=	60	0.121	0.063	238,50	0.00	
	-	æ	0.102	0.019	242.73	800	
	-	9	0.123	0.052	248,91	88	
-	-	Ξ	0.057	-0.053	250 250 250 250 250 250 250 250 250 250	0000	
•	=	얼	0.067	0.002	252.10	0000	

¹АДМАПДЦ* 0.У __Ь£ __

$$BIC = SC = -2\frac{l}{T} + \frac{k \log T}{T}$$

Критерии качества подгонки

Информационный критерий Шварца (BIC)

логарифм функции правдоподобия, число оцениваемых параметров. Чем ниже значения критериев, тем лучше результат

Оценивание параметров ВР

Пусть *у t* подчиняется процессу ARMA(1,1) Введем обозначения:

И будем оценивать модель вида

 $c^*iidN(O_T(\Gamma^2)$

Оценивание параметров ВР

• Логарифм функции правдоподобия будет для ARMA(1,1) иметь вид:

Из эмпирических наблюдений над поведение процентных ставок, валютных курсов и т.п. б замечено, что наблюдения с большими отклонениями от среднего и с малыми отклонениями склонны к образованию класто Однодневные прираценвн индек

GARCH модели BP

 Это явление оказалось удобно моделиров зависимостью дисперсии ошибок от предыстории

Тогда простейшая модель этого класса
 ARCH(1) запишется в виде:

GARCH модели BP

Если сформулировать зависимость дисп от предыстории в более общем виде

$$\sigma_{t}^{2} = \alpha_{0} + \alpha_{1} u_{t-1}^{2} + \dots + \alpha_{p} u_{t-p}^{2} + \gamma_{1} \sigma_{t-1}^{2} + \dots + \alpha_{p} u_{t-p}^{2} + \alpha_{1} \sigma_{t-1}^{2} + \dots + \alpha_{p} u_{t-p}^{2} + \alpha_{p} \sigma_{t-1}^{2} + \dots + \alpha_{p} u_{t-p}^{2} + \alpha_{p} \sigma_{t-1}^{2} + \dots + \alpha_{p} u_{t-p}^{2} + \dots + \alpha_{p$$

то это приведет к моделям GARCH(p,q). Простейшую модель этого вида GARCH(1, можно записать так:

$$y_{1} = x'P + u_{1}$$

$$122V'^{2}$$

$$u_{1} = £, K + ^{a}Ut_{-1} + YP_{1}, -1),$$
£, ~ $iidN(0,1)$

Метод оценивания моделе GARCH

- Модели GARCH оцениваются методом максимального квазиправдоподобия, что означает следующее:
 - используется гипотеза о нормальности, даже если ошибка ненормальна,
 - делается специальная корректировка пр вычислении стандартных ошибок

Условия состоятельности оценок

1. Условие верной идентификации первых моментов

$$E(e, Ir,) = 0, E(e*Ir,) = 1$$

2. Условие стационарности

$$E \ln (a1e,2) 1 \Gamma,-1 < 0$$

3. Условие асимптотической нормальности

Достоинства моделей GARCH

• Метод позволяет оценивать регрессии

$$y_{i} = x_{i}p + u_{i}$$

- с не гауссовскими (не нормальными) распределениями ошибок при наличии тяжелых хвостов,
- успешно справляется с сериальной корреляцией квадратов ошибок
- несложно приспосабливаются для моделирования финансовых BP

Построение зависимостей между различными ВР

• Для ВР появляется возможность строить более сложные и реалистичные модели явлений, учитывающие возможность запаздывающих влияний зависимой и независимой переменных, например:

 $\Upsilon t = a \ 0 + b O \ X t + b I \ X t - I + 7 \Upsilon t - + \pounds t$

 $y_t = -\frac{2.79}{(-5.77)} - \frac{0.52}{(-21.5)} x_t; \quad R^2 = 0.607, \quad DW = 0.057$

Построение зависимостей между различными ВР

Если ряды и не являются стационарными зависимость между ними может оказаться ложной.

Признаками ложной зависимости являютс высокий R^2 при низкой статистике Дарбин Уотсона, например

Надо обязательно выделять тренд и сезонность.

Коинтеграция ВР

- Не ложная регрессия между нестационарными ВР возможна, если ВР являются коинтегрированными.
- Это означает стационарность ошибки для некоторой линейной комбинации

$$a y, +x', P = u,$$

Построение зависимостей между различными ВР

- Серьезной проблемой регрессионных зависимостей для ВР является автокорреляция.
- Иногда выбор удачной динамической спецификации, формы тренда или учесезонности позволяют ее избежать.
- Сложный вопрос направление причинно-следственной связи.

Причинность по Грэнджеру

- Способ выяснить статистическую причинность предлагает тест
 Грэнджера
- Оцениваются две регрессии:

$$y_{i} = \langle *_{0} + \mu y_{i} \rangle + \dots + a_{p} x_{t-p} + \mu y_{t-p} + A - Vi$$

.г, = $a^{+} + a^{+} x_{t-j} + \dots + a_{p} x_{t-p} + \mu y_{t-p} + \mu$

• И для каждой проверяется гипотеза

$$A = \blacksquare^* \blacksquare = /?, =^{\circ}$$

Популярные спецификаци регрессионных моделей для ВР

- Модель частичного приспособления
- Модель адаптивных ожиданий
- Модель коррекции ошибок
- Модель векторной авторегрессии (VAR)

Модель частичного приспособления

Пример. Рассмотрим зависимость между оптимальным (ненаблюдаемым) потреблением бензина и ценами на нефть:

 $\Upsilon_t = a + bX_t + \mathcal{L}_t$

Реальное потребление постепенно приближается к оптимальному по правилу

$$Yt - Y_M = (1 - \phi_{,*} - Y_{,-,})$$

Итоговая модель

$$Y_{t-1} = (1 - \Pi)a + (1 - X)pX_{t-1} + XY_{t-1} + U_{t-1} + U_{t-1} + U_{t-1} + U_{t-1}$$

$$X_{t}^{*} - X_{t-1}^{*} = (1 - \lambda)(X_{t-1} - X_{t-1}^{*})$$

ожиданий

• <u>Пример.</u> Рассмотрим зависимость между выпуском и оптимальным (ненаблюдаемы объемом продаж

$$Y_{i} = a + bX_{i} + e_{i}$$

Реальные продажи постепенно приближаюто оптимальным по правилу

Итоговая модель

$$Y = (1 - A)a + (1 - A)pX_t + AY_{t-1} + u_{t+1} + u_{t$$

Модель коррекции ошибок

• <u>Пример.</u> Рассмотрим зависимость между продажами и затратами на рекламу

$$Y_{,} = a \ 0 + b \ 0 \ x_{,} + b \ i \ x_{,} -1 + y \ y_{,} -1 + e_{,}$$

- $rac{d}{dt} = a_Q I(1 y), b = (b_0 + b_1) / (1 y)$
- член $Y_{t-1} a bX_{t-1} = u_t$ представляет собой «остаток равновесия»,
- (1 Y) скорость коррекции

Векторная авторегрессия (VAR)

VAR это система одновременных уравнени которая состоит из одномерных моделей ARMA

$$\Upsilon_{t=a_{I}+b_{II}}\Upsilon_{t-I+b_{12}} \times_{t-I+\xi_{It}} X_{t} = a_{I} + b_{II}\Upsilon_{t-I+b_{II}}$$

^1»^2 - белые шумы, которые могут быть коррелированы

Преимущества VAR

- Модель может быть более экономно включая меньше лагов
- Прогноз может быть точнее
- В модели не нужно уметь различать зависимые и независимые переменные
- Модель может быть оценена обычным М и оценки будут состоятельными, посколь белый шум предполагается независимым истории

Качество эконометрическ прогнозов

- При неизменных внешних условиях, когда эконометрическая модель и механизм порождения данных соответствуют друг дри прогноз, вычисленный как условное ожидание, будет оптимальным, т.е. несмещенным и эффективным.
- Различия прогноза и дальнейшей реализа процесса будут обусловлены только ошиб которую невозможно точно предсказать.
- Однако история хранит множество случаев несостоятельности прогнозов.

Качество эконометрическі прогнозов

- Теория прогнозирования, основанная на предположениях о стационарности процесс постоянстве параметров (которые должны ухватываться моделью) является неадеква
- С этими предположениями связана и гипоте нормальности, поскольку в нормальном зак распределения вероятностей дисперсия и математическое ожидание предполагаются неизменными.
- Однако использование моделей типа GARCI стохастической волатильности позволяет отказаться от нереалистичных предположен улучшить качество прогноза.

Заключение-1

- Подводя итоги нашего курса и размышляя о целесообразности изучения эконометрических методов для работы на финансовых рынках, уместно процитировать высказывание Грэнджера и Тиммермана:
- «Для получения количественной оценки ожидаемой экономической прибыли и степени рыночной эффективности необходим совместный анализ информационных множеств и моделей, включающих:

Заключение-2

- информационное множество (П) публично доступной информации с биржевыми цена и доступными результатами биржевой работы фондов и частных инвесторов;
- модель равновесных цен и модель премириск (ER)
- набор моделей предсказания (М), доступ в любой момент времени, включая метор оценки
- технологии поиска (S) для выбора лучшей модели прогнозирования из набора модел М

Заключение-З

- модель доступности информации (асимметрии), включая публичные версии частной информации, стоимости такой информации и затрат на ее преобразовани в модели принятия решения М и S во времени (A);
- модель изменения во времени стоимости транзакций, ликвидности и доступных технологий торговли (L);
- модель истощения (старения) (GO) моделе предсказания М (моделей рыночной эффективности)»

Заключение-4

- Тогда можно определить два способа получения (измерения) экономической прибыли:
- практический (на основании D,ER,M,S)
- модельный (на основании D,ER,M,S, A, L, GO) с многократным повторением вероятностных бутстрап-испытаний устойчивости модельных параметров