

Modèles conjoints avec risques concurrents :

analyse de données longitudinales de qualité de vie en oncologie en présence de différents types de sorties d'étude

> Benjamin Cuer (doctorant) Encadrement : Caroline Mollevi et Célia Touraine

> > benjamin.cuer@icm.unicancer.fr

Journées de « Statistiques et santé », Paris

11 octobre 2019

Une notion complexe

Introduction •00000

Évaluée à l'aide de questionnaires

Introduction •00000

Une notion complexe

Subjective

Évaluée à l'aide de questionnaires

Auto-administrés

Une notion complexe

Subjective

Introduction

Multidimensionnelle

Évaluée à l'aide de questionnaires

Auto-administrés

Une notion complexe

Subjective

Introduction

Multidimensionnelle

Évaluée à l'aide de guestionnaires

- Auto-administrés
- Items regroupés par dimension

Une notion complexe

Subjective

Introduction

- Multidimensionnelle
- Dynamique

Évaluée à l'aide de questionnaires

- Auto-administrés
- Items regroupés par dimension
- Plusieurs évaluations au cours du temps

Questionnaire EORTC QLQ-C30

30 items regroupés en 15 échelles :

► Pour chaque échelle : 1 ou plusieurs variables qualitatives ordinales \rightarrow Score de 0 à 100

Essai clinique PRODIGE5/ACCORD17

- Essai randomisé de phase II-III
- N = 267 patients avec un cancer de l'oesophage localement avancé traité par (radio)-chimiothérapie
 - FOLFOX : bras expérimental5FU-Cisplatin : bras contrôle
- Critère principal : PFS Pas de différence entre les 2 bras de traitement 1
- ▶ Critère secondaire : QdV (mesurée par le QLQ-C30)
 - Compliance au questionnaire :

- Analyse de la QdV par des modèles linéaires mixtes²
- 1. Conroy et al., Lancet Oncology, 2014
- 2. Mollevi et al., EJC, 2017

Analyse des données longitudinales de QdV

Modèle linéaire mixte

Introduction

Le score de QdV du patient i au temps t s'écrit :

$$y_i(t) = \underbrace{\beta^T X_i(t)}_{\text{Trajectoire movenne}} + \underbrace{b_i^T Z_i(t)}_{\text{Déviations individuelles}} + \varepsilon_i(t)$$

avec β le vecteur des effets fixes et b_i celui des effets aléatoires

Trajectoires individuelles observées

Trajectoires moyennes prédites

Types de données manquantes

- ► MCAR/MAR : le mécanisme de données manquantes est indépendant de la QdV non observée ⇒ Données manquantes non informatives
- ► MNAR : le mécanisme de données manquantes peut dépendre de la QdV non observée ⇒ Données manquantes informatives

Types de données manquantes

- MCAR/MAR : le mécanisme de données manquantes est indépendant de la QdV non observée ⇒ Données manquantes non informatives
- MNAR : le mécanisme de données manquantes peut dépendre de la QdV non observée ⇒ Données manquantes informatives

Sorties d'étude

Introduction

▶ Données manquantes de structure monotone

Patient	Visite 1	Visite 2	Visite 3	Visite 4	Visite 5
1	83.3	100	66.7	66.7	×
2	91.7	25.0	25.0	×	×
3	66.7	66.7	×	×	×
4	50.0	×	×	×	×

Types de données manquantes

- MCAR/MAR : le mécanisme de données manquantes est indépendant de la QdV non observée ⇒ Données manquantes non informatives
- MNAR : le mécanisme de données manquantes peut dépendre de la QdV non observée ⇒ Données manquantes informatives

Sorties d'étude

- Données manquantes de structure monotone
- Non liées à la QdV (e.g. déménagement)
 - ⇒ non informatives

Patient	Visite 1	Visite 2	Visite 3	Visite 4	Visite 5	
1	83.3	100	66.7	66.7	×	
2	91.7	25.0	25.0	×	×	
3	66.7	66.7	×	×	×	
4	50.0	×	×	×	×	

Types de données manquantes

- MCAR/MAR : le mécanisme de données manquantes est indépendant de la QdV non observée ⇒ Données manquantes non informatives
- ► MNAR : le mécanisme de données manquantes peut dépendre de la QdV non observée ⇒ Données manquantes informatives

Sorties d'étude

- ▶ Données manquantes de structure monotone
- Non liées à la QdV (e.g. déménagement) ⇒ non informatives
- ▶ Liées à la QdV (e.g. sortie d'étude suite à un événement clinique)
 ⇒ informatives

Patient	Visite 1	Visite 2	Visite 3	Visite 4	Visite 5	Cause
1	83.3	100	66.7	66.7	×	
2	91.7	25.0	25.0	×	×	
3	66.7	66.7	×	×	×	Décès
4	50.0	×	×	×	×	Décès

Problématique et objectifs

Problématique

- ▶ Biais des estimations du modèle mixte si sorties d'étude informatives
- ▶ Prendre en compte l'association entre la QdV et les sorties d'étude :

Problématique et objectifs

Problématique

- ▶ Biais des estimations du modèle mixte si sorties d'étude informatives
- ▶ Prendre en compte l'association entre la QdV et les sorties d'étude :
 - ⇒ Utilisation d'un modèle conjoint
 - $= |\mathsf{Mod\`ele}|$ linéaire mixte + mod \check{e} le de temps jusqu'à événement

Problématique et objectifs

Problématique

- Biais des estimations du modèle mixte si sorties d'étude informatives
- ▶ Prendre en compte l'association entre la QdV et les sorties d'étude :
 - ⇒ Utilisation d'un modèle conjoint
 - Modèle linéaire mixte + modèle de temps jusqu'à événement
 - → Sorties d'étude suite au décès = supposées plus informatives
 - \hookrightarrow Distinguer 2 causes de sorties d'étude \Rightarrow Risques concurrents

Problématique

Introduction

- ▶ Biais des estimations du modèle mixte si sorties d'étude informatives
- ▶ Prendre en compte l'association entre la QdV et les sorties d'étude :
 - ⇒ Utilisation d'un modèle conjoint
 - = | Modèle linéaire mixte + modèle de temps jusqu'à événement
 - \hookrightarrow Sorties d'étude suite au décès = supposées plus informatives
 - \hookrightarrow Distinguer 2 causes de sorties d'étude \Rightarrow Risques concurrents

Objectifs

- Evaluer la performance d'un modèle conjoint qui distingue les causes de sorties d'étude
 - Modèle 1 = conjoint simple (sans distinguer les causes de sorties d'étude)
 - Modèle 2 = conjoint avec risques concurrents (sortie d'étude liée ou non liée au décès)
- Application aux données de l'essai clinique PRODIGE5/ACCORD17 pour analyser les données de QdV
- 2. Etude de simulations pour comparer les 2 modèles

Modèles conjoints

Modélisation des données longitudinales du score de QdV

Le score de QdV du patient i au temps t s'écrit :

$$y_i(t) = y_i^*(t) + \varepsilon_i(t)$$

= $\beta_0 + \beta_1 t + \beta_2 \{t \times bras_i\} + b_{0i} + b_{1i}t + \varepsilon_i(t)$

$$\begin{pmatrix} b_{0i} \\ b_{1i} \end{pmatrix} \sim \mathcal{N}(0, \Sigma) \text{ avec } \Sigma = \begin{pmatrix} \sigma_{b_0}^2 & \sigma_{b_0b_1} \\ \sigma_{b_0b_1} & \sigma_{b_1}^2 \end{pmatrix} \text{ et } \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2)$$

Modélisation du temps jusqu'à événement

Modèle de survie avec comme risque instantané pour $t \ge 0$:

$$h_i(t) = h_0(t) \exp\{\gamma bras_i + \alpha y_i^*(t)\}$$
 (M1)

Modèles conjoints

Modélisation des données longitudinales du score de QdV

Le score de QdV du patient i au temps t s'écrit :

$$y_i(t) = y_i^*(t) + \varepsilon_i(t)$$

= $\beta_0 + \beta_1 t + \beta_2 \{t \times bras_i\} + b_{0i} + b_{1i} t + \varepsilon_i(t)$

$$\begin{pmatrix} b_{0i} \\ b_{1i} \end{pmatrix} \sim \mathcal{N}(0, \Sigma) \text{ avec } \Sigma = \begin{pmatrix} \sigma_{b_0}^2 & \sigma_{b_0b_1} \\ \sigma_{b_0b_1} & \sigma_{b_1}^2 \end{pmatrix} \text{ et } \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2)$$

Modélisation du temps jusqu'à événement

Modèle de survie avec comme risque instantané pour $t \ge 0$:

$$h_i(t) = h_0(t) \exp\{\gamma bras_i + \alpha y_i^*(t)\}$$
 (M1)

Modèle à 2 risques concurrents avec comme risques instantanés pour $t \geq 0$:

$$h_{i1}(t) = h_{01}(t) \exp{\{\gamma_1 bras_i + \alpha_1 y_i^*(t)\}}, \text{ cause 1}$$

 $h_{i2}(t) = h_{02}(t) \exp{\{\gamma_2 bras_i + \alpha_2 y_i^*(t)\}}, \text{ cause 2}$
(M2)

Représentation et interprétation des modèles

Modèle conjoint (M1)

$$\begin{aligned} y_i(t) &= y_i^*(t) + \varepsilon_i(t) \\ &= \beta_0 + \beta_1 t + \beta_2 \{t \times bras_i\} \\ &+ b_{0i} + b_{1i} t + \varepsilon_i(t) \\ h_i(t) &= h_0(t) \exp\{\gamma bras_i + \alpha y_i^*(t)\} \end{aligned}$$

- \triangleright β_1 : **pente** = changement par unité de temps dans le bras contrôle
- β_2 : effet d'interaction = différence de pente entre le bras expérimental et le bras contrôle
- $ightharpoonup \gamma$: effet du bras sur le risque de sortie d'étude
- $ightharpoonup \alpha$: degré d'association entre QdV et risque de sortie d'étude

Représentation et interprétation des modèles

Modèle conjoint avec risques concurrents (M2)

$$\begin{aligned} y_i(t) &= y_i^{\star}(t) + \varepsilon_i(t) \\ &= \beta_0 + \beta_1 t + \beta_2 \{t \times bras_i\} \\ &+ b_{0i} + b_{1i} t + \varepsilon_i(t) \\ h_{ik}(t) &= h_{0k}(t) \exp\{\gamma_k bras_i + \alpha_k y_i^{\star}(t)\} \end{aligned}$$

- \triangleright β_1 : **pente** = changement par unité de temps dans le bras contrôle
- \triangleright β_2 : effet d'interaction = différence de pente entre le bras expérimental et le bras contrôle
- $ightharpoonup \gamma_k$: effet du bras sur le risque de sortie d'étude pour chaque cause
- $ightharpoonup lpha_k$: degré d'association entre QdV et risque de sortie d'étude pour chaque cause

Estimation des modèles

Estimation du modèle conjoint

- Utilisation du logiciel R, package JM, fonction jointModel^a
- \triangleright Formes non-paramétriques pour les risques instantanés de base h_0 (M1) et h_{0k} (M2) pour k=1,2 estimées par des B-splines
- ▶ Méthode adaptative de Gauss-Hermite pour approximer les intégrales sur les effets aléatoires (9 quadratures)
- Estimation par maximum de vraisemblance de la distribution conjointe du score de QdV et du temps de sorties d'étude

Tous les paramètres des deux sous-modèles sont estimés conjointement

a. D. Rizopoulos, Joint Models for Longitudinal and Time-to-Event Data: With Applications in R. CRC Press. 2012.

Essai clinique PRODIGE5/ACCORD17

Application des modèles conjoints

- ► Analyse de l'échelle fonction physique
- Données longitudinales QdV mesurées à 8 visites entre 0 et 36 mois

1.	Avez-vous des difficultés à faire certains efforts physiques pénibles comme porter un sac à provisions chargé ou une valise ?	1	2	3	4
2.	Avez-vous des difficultés à faire une longue promenade ?	1	2	3	4
3.	Avez-vous des difficultés à faire un petit tour dehors ?	1	2	3	4
4	Êtes-vous obligé(e) de rester au lit ou dans un fauteuil pendant la journée ?	1	2	3	4
5	Avez-vous besoin d'aide pour manger, vous habiller, faire votre toilette ou aller aux toilettes ?	1	2	3	4

Modèle 1 sans distinguer les causes possibles de sorties d'étude

Modèle 2 en distinguant 2 causes possibles de sorties d'étude

Résultats

	Modèle 1		Modèle 2	
	Estimation [IC 95 %]	р	Estimation [IC 95 %]	p
Score QdV				
β_1	-0.516 [-0.93;-0.10]	0.016	-0.523 [-0.96;-0.08]	0.020
β_2	0.069 [-0.42;0.56]	0.779	0.077 [-0.42;0.57]	0.759
Risque de sortie d'étude				
γ	-0.053 [-0.31;0.20]	0.685	-	-
γ_1	-	-	-0.088 [-0.39;0.21]	0.567
γ_2	-	-	-0.110 [-0.46;0.68]	0.704
α	-0.02 [-0.03;-0.01]	< 0.001	-	-
α_1		-	-0.014 [-0.03;0.00]	0.030
α_2	-	-	-0.008 [-0.03;0.02]	0.474

Interprétation des résultats

- ▶ Diminution de la QdV au cours du temps $(\widehat{\beta}_1)$ et pas de différence de QdV entre les deux bras de traitement $(\widehat{\beta}_2)$
- Pas de différence entre les deux bras sur le(s) risque(s) de sorties d'étude $(\widehat{\gamma}, \widehat{\gamma_1}, \widehat{\gamma_2})$

	Modèle 1		Modèle 2	
	Estimation [IC 95 %]	р	Estimation [IC 95 %]	р
Score QdV				
β_1	-0.516 [-0.93;-0.10]	0.016	-0.523 [-0.96;-0.08]	0.020
β_2	0.069 [-0.42;0.56]	0.779	0.077 [-0.42;0.57]	0.759
Risque de sortie d'étude				
γ	-0.053 [-0.31;0.20]	0.685	-	-
γ_1	-	-	-0.088 [-0.39;0.21]	0.567
γ_2	-	-	-0.110 [-0.46;0.68]	0.704
α	-0.02 [-0.03;-0.01]	< 0.001	-	-
α_1		-	-0.014 [-0.03;0.00]	0.030
α_2	-	-	-0.008 [-0.03;0.02]	0.474

Interprétation des résultats

- ▶ Diminution de la QdV au cours du temps $(\widehat{\beta}_1)$ et pas de différence de QdV entre les deux bras de traitement $(\widehat{\beta}_2)$
- Pas de différence entre les deux bras sur le(s) risque(s) de sorties d'étude $(\widehat{\gamma}, \widehat{\gamma_1}, \widehat{\gamma_2})$
- ▶ \ de 10 points du score de QdV courant correspond :
 - \nearrow de $e^{-10\hat{\alpha}} = 22\%$ du risque de sortie d'étude (M1)

	Modèle 1		Modèle 2		
	Estimation [IC 95 %]	р	Estimation [IC 95 %]	р	
Score QdV					
β_1	-0.516 [-0.93;-0.10]	0.016	-0.523 [-0.96;-0.08]	0.020	
β_2	0.069 [-0.42;0.56]	0.779	0.077 [-0.42;0.57]	0.759	
Risque de sortie d'étude					
γ	-0.053 [-0.31;0.20]	0.685	-	-	
γ_1	-	-	-0.088 [-0.39;0.21]	0.567	
γ_2	-	-	-0.110 [-0.46;0.68]	0.704	
α	-0.02 [-0.03;-0.01]	< 0.001	· - · ·	-	
α_1		-	-0.014 [-0.03;0.00]	0.030	
α_2	-	-	-0.008 [-0.03;0.02]	0.474	

Interprétation des résultats

- ▶ Diminution de la QdV au cours du temps $(\widehat{\beta}_1)$ et pas de différence de QdV entre les deux bras de traitement $(\widehat{\beta}_2)$
- Pas de différence entre les deux bras sur le(s) risque(s) de sorties d'étude $(\widehat{\gamma}, \widehat{\gamma_1}, \widehat{\gamma_2})$
- ▶ ∖ de 10 points du score de QdV courant correspond :
 - \nearrow de $e^{-10\hat{lpha}}=$ 22% du risque de sortie d'étude (M1)
 - \nearrow de $e^{-10\hat{lpha}_1}=15\%$ du risque de sortie d'étude non lié au décès (M2)

Etude de simulations

M=1000 jeux de données générés avec n=500 patients chacun

Simulation d'un modèle conjoint avec risques concurrents

- y_i : scores QdV du patient i, i = 1,...,n générés selon un modèle linéaire mixte
- T_i = min(T_i¹, T_i², C_i), le temps observé pour le patient i avec T_{ik} le temps d'événement pour la cause k = 1,2 et C_i le temps de censure

Modèle du temps jusqu'à sortie d'étude pour générer T_{ik}^{\star} :

$$h_{ik}(t) = h_{0k}(t) \exp{\{\gamma_k bras_i + \alpha_k y_i^*(t)\}}, \quad k = 1, 2$$

avec $h_{0k}(t) = \phi \lambda t^{\phi-1}$ pour k=1,2 les risques de base selon une distribution de Weibull, de paramètres ϕ (forme) et λ (échelle) fixés

Description des scénarios (1/2)

Modèle longitudinal

Qualité de vie qui se détériore pour le bras contrôle contrairement au bras expérimental :

$$\beta_1 = -0.5$$
 $\beta_2 = 0.6$

Modèle temps jusqu'à événement

Augmentation du risque similaire selon chaque cause et effet protecteur du bras expérimental :

$$\gamma_1 = \gamma_2 = -0.2$$

Description des scénarios (1/2)

Modèle longitudinal

Qualité de vie qui se détériore pour le bras contrôle contrairement au bras expérimental :

$$\beta_1 = -0.5$$
 $\beta_2 = 0.6$

Idées des scénarios

Augmenter le degré d'association entre QdV et risque de sortie d'étude :

Modèle temps jusqu'à événement

Augmentation du risque similaire selon chaque cause et effet protecteur du bras expérimental :

$$\gamma_1 = \gamma_2 = -0.2$$

Description des scénarios (2/2)

► Scénario 1

$$\alpha_1 = \alpha_2 = 0$$

► Scénario 2

$$\alpha_1 = \alpha_2 = -0.02$$

► Scénario 3

$$\alpha_1 = -0.03, \alpha_2 = -0.02$$

 \Rightarrow Terme d'association qui différencie les risques

Résultats sur les paramètres du modèle longitudinal

▶ Coefficient de pente β_1 :

▶ Coefficient d'interaction β_2 :

Résultats sur les paramètres du modèle de survie

▶ Effet du bras sur le risque de sortie d'étude γ , γ_1 et γ_2 :

Résultats sur les paramètres du modèle de survie

▶ Effet du bras sur le risque de sortie d'étude γ , γ_1 et γ_2 :

▶ Coefficients d'association α , α_1 et α_2 :

Conclusion sur les simulations

Comparaison des 2 modèles

- ▶ Paramètres de pente et d'interaction (β_1 et β_2) + effet du bras sur le(s) risque(s) de sorties d'étude (γ , γ_1 et γ_2) bien estimés par les 2 modèles
- ▶ Modèle 2 distingue lorsqu'il y a 2 associations différentes selon la cause de sortie d'étude mais semblent mal estimer α_1 et α_2

Conclusion sur les simulations

Comparaison des 2 modèles

- Paramètres de pente et d'interaction (β_1 et β_2) + effet du bras sur le(s) risque(s) de sorties d'étude (γ , γ_1 et γ_2) bien estimés par les 2 modèles
- ▶ Modèle 2 distingue lorsqu'il y a 2 associations différentes selon la cause de sortie d'étude mais semblent mal estimer α_1 et α_2

Perspectives

- ▶ Risques de base simulés de Weibull mais estimés avec B-splines :
 - → merlin (Stata) permet d'estimer selon Weibull
- ▶ Sensibilité des résultats et problème de robustesse :
 - Nombre et placement des noeuds pour les B-splines
 - Nombre de quadrature pour approximer les intégrales des effets aléatoires
- ► Considérer d'autres scénarios complémentaires
 - D'autres paramètres pour les Weibull
 - Ajouter un effet du bras sur le risque de sortie d'étude

Conclusions générales

En amont

- Éviter les données manguantes
- ► Lorsqu'elles surviennent → essayer de collecter la raison de sortie d'étude
 - → Considérer différentes causes de sortie d'étude

Lors de l'analyse

- ▶ Modèles conjoints pour QdV en présence de sorties d'étude
- Modèles à risques concurrents :
 - → Théoriquement mieux mais plus difficile à mettre en oeuvre

Questionnaire EORTC QLQ-C30

- ► Exemple de la dimension Fonction Physique :
 - Variable qualitative (Pas du tout / Un peu / Assez / Beaucoup)
 - Variable d'intérêt quantitative (score de 0 à 100)

$$S = \left[1 - \frac{\left(\frac{1}{J}\sum y_j\right) - 1}{M - 1}\right] \times 100 = 60$$

Pour les 3 approches, pour chaque jeu de données m et pour chaque paramètre θ ,

$$\mathsf{Biais}(\theta) = \frac{\widehat{\theta}_{\mathit{m}} - \theta^{\star}}{\theta^{\star}} \times 100$$

- $ightharpoonup heta^{\star}$ la vraie valeur du paramètre heta
- $\mathbf{\hat{\theta}}_{m}$ l'estimation de θ dans le jeu de données m