

考试科目: ___高等数学(上) ___ **开课单位:** ____数 学 系 ___

考试时长: ____120 分钟 ____ **命题教师:** ___高等数学出题组

题	号	1	2	3	4	5	6	7	8
分	值	20 分	20 分	10 分					

本试卷共9道大题,满分100分.(考试结束后请将试卷、答题本、草稿纸一起交给监考老师)

注意:本试卷里的中文为直译(即完全按英文字面意思直接翻译),所有数学词汇的定义请参照教材(Thomas' Calculus,13th Edition)中的定义。如果其中有些数学词汇的定义不同于中文书籍(比方说同济大学的高等数学教材)里的定义,以教材(Thomas' Calculus,13th Edition)中的定义为准。

- 1. (20pts) **Multiple Choice Questions:** (only one correct answer for each of the following questions.)
 - (1) Let $\lim_{x\to c} |f(x)| = L$. Which of the following statements must be **correct**?
 - (A) $\lim_{x \to c} f(x) = L$.

考试科目: 高等数学(上)

- (B) $\lim_{x \to c} f(x) = -L.$
- (C) $\lim_{x\to c} f(x)$ doesn't exist.
- (D) None of (A), (B) and (C) is correct.
- (2) If f(x) is defined on (-1,1), and $\lim_{x\to 0} f(x) = 0$. Which of the following statements is **correct**?
 - (A) When $\lim_{x\to 0} \frac{f(x)}{\sqrt{|x|}} = 0$, f(x) is differentiable at x = 0.
 - (B) When $\lim_{x\to 0} \frac{\dot{f}(x)}{x^2} = 0$, f(x) is differentiable at x = 0.
 - (C) When f(x) is differentiable at x = 0, $\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = 0$.
 - (D) When f(x) is differentiable at x = 0, $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$.
- (3) Let $f(x) = x^3 + 6x + 2$. Use Newton's method to find the root of f(x) = 0. Start with $x_0 = 1$, then

(A)
$$x_1 = 2$$
, $x_2 = \frac{20}{9}$.

(B)
$$x_1 = 2, x_2 = \frac{7}{9}$$
.

(C)
$$x_1 = 0, x_2 = -\frac{2}{3}$$
.

(D)
$$x_1 = 0$$
, $x_2 = -\frac{1}{3}$.

- (4) Let f(x) and g(x) be twice differentiable functions on **R** and g''(x) < 0. g(x) has a local extreme value at x_0 and $g(x_0) = a$.
 - (A) If f'(a) < 0, then f(g(x)) has a local maximum value at x_0 .
 - (B) If f'(a) > 0, then f(g(x)) has a local maximum value at x_0 .
 - (C) If f''(a) < 0, then f(g(x)) has a local maximum value at x_0 .
 - (D) If f''(a) > 0, then f(g(x)) has a local maximum value at x_0 .

(5) Suppose that f is continuous on [a, b], differentiable on (a, b), and f' is increasing on (a,b). For a fix c in (a,b), let

$$g(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$
 and $h(x) = f(c) + f'(c)(x - c)$.

Which of the following statements must be **correct**?

- (A) $f(x) < g(x) \le h(x), \forall x \in (a, b).$ (B) $h(x) \le f(x) < g(x), \forall x \in (a, b).$
- (C) $g(x) < f(x) \le h(x), \forall x \in (a, b).$ (D) $h(x) < g(x) < f(x), \forall x \in (a, b).$

- 2. (20 pts) Fill in the blanks.
 - (1) If $f(x) = \frac{1}{1+x^2}$, then $f'''(0) = \underline{\hspace{1cm}}$.
 - (2) Let $f(x) = \frac{x^2(|x|+x)}{x^2+1}$. Then the asymptotes of the curve f(x) are _____.
 - (3) $\int_{\frac{1}{2}}^{1} x^{-\frac{1}{4}} (1 x^{\frac{3}{4}})^{\frac{1}{3}} dx = \underline{\qquad}.$
 - (4) $\int_{0}^{\pi/3} (\sec x + \tan x)^2 dx = \underline{\qquad}$
 - (5) $\lim_{x \to 0} \frac{\sqrt{3} \sqrt{2 + \cos x}}{\sin^2 2x} = \underline{\qquad}.$
- 3. (10 pts) Find the equation of the tangent line to the curve $x^2 + 2xy^2 + 3y^4 = 6$ at the point P(1,-1).
- 4. (10 pts) Find $\frac{dy}{dx}$, if $y = x \int_{0}^{x^2} \sin(t^3) dt$.
- 5. (10 pts) Let $f(x) = \begin{cases} \frac{1-\cos x}{x} + a, & x > 0 \\ ax + b, & x \le 0 \end{cases}$. If f(x) is differentiable at x = 0, find a and b.
- 6. (10 pts) Let $f(x) = \frac{1}{2}x \sin x$, $0 < x < 3\pi$.
 - (a) Identify where the local extrema of f occur. Find the function's local extreme values.
 - (b) Find the open intervals where the graph of f is concave up and where it is concave down.
 - (c) Sketch the graph.
- 7. (10 pts) Let $\triangle ABC$ be a triangle with $\angle BAC = 120^{\circ}$ and $|AB| \cdot |AC| = 1$. AD is the angle bisector of $\angle BAC$. Find the largest possible value of |AD|.

8. (10 pts) Suppose that the function f(x) is defined on $(-\infty, \infty)$, and satisfies the following properties for any $x, y \in (-\infty, \infty)$.

$$f(x + y) = f(x)f(y), \quad f(x) = 1 + xg(x).$$

where $\lim_{x\to 0}g(x)=1$. Show that f(x) is differentiable for any $x\in (-\infty,\infty)$.

(20分) 单项选择题:

- (1) 设 $\lim_{x \to c} |f(x)| = L$. 则下列说法中哪一个是 **正确**的?
 - (A) $\lim_{x \to c} f(x) = L$.

(B) $\lim_{x \to c} f(x) = -L.$

(C) $\lim_{x \to c} f(x)$ 不存在.

- (D) 前面的 (A)、(B) 和 (C)都不对.
- (2) 设函数 f(x)在区间 (-1,1) 内有定义,且 $\lim_{x\to 0} f(x) = 0$.则下列说法中哪一个是 **正确**
 - (A) 当 $\lim_{x\to 0} \frac{f(x)}{\sqrt{|x|}} = 0$ 时,f(x) 在 x = 0 处可导.
 - (B) 当 $\lim_{x\to 0} \frac{f(x)}{x^2} = 0$ 时,f(x) 在 x = 0 处可导.
 - (C) 当 f(x) 在 x = 0 处可导时, $\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = 0$.
 - (D) 当 f(x) 在 x = 0 处可导时, $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$.
- (3) 设 $f(x) = x^3 + 6x + 2$,采用 Newton 法求 f(x) = 0 的近似解. 若令 $x_0 = 1$,则
 - (A) $x_1 = 2$, $x_2 = \frac{20}{9}$.

- (B) $x_1 = 2, x_2 = \frac{7}{9}$.
- (C) $x_1 = 0, x_2 = -\frac{2}{3}$.

- (D) $x_1 = 0, x_2 = -\frac{1}{3}$.
- (4) 设 f(x) 和 g(x) 在 R 上具有二阶导数,g(x) 在 x_0 处取局部极值,且 g''(x) < 0, $g(x_0) = a.$
 - (A) 若 f'(a) < 0, 则 f(g(x)) 在 x_0 处是局部极大值.
 - (B) 若 f'(a) > 0, 则 f(g(x)) 在 x_0 处是局部极大值.
 - (C) 若 f''(a) < 0, 则 f(g(x)) 在 x_0 处是局部极大值.
 - (D) 若 f''(a) > 0, 则 f(g(x)) 在 x_0 处是局部极大值.
- (5) 若函数 f(x) 在 [a,b] 上连续, 在 (a,b) 上可导, 且满足 f' 在 (a,b) 上单调增. 在 (a,b)中选定一个常数 c, 定义

$$g(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$
 π $h(x) = f(c) + f'(c)(x - c).$

则下列说法中哪一个是 正确的?

- (A) $f(x) < g(x) \le h(x), \forall x \in (a, b).$ (B) $h(x) \le f(x) < g(x), \forall x \in (a, b).$

- (C) $g(x) < f(x) \le h(x), \forall x \in (a, b).$ (D) $h(x) < g(x) < f(x), \forall x \in (a, b).$

(20分) 填空题:

- (1) $f(x) = \frac{1}{1+x^2}$, <math><math> f'''(0) =_____.
- (2) 设 $f(x) = \frac{x^2(|x|+x)}{x^2+1}$. 则曲线 f(x) 的所有的渐近线方程是 _____.
- (3) $\int_{1}^{1} x^{-\frac{1}{4}} (1 x^{\frac{3}{4}})^{\frac{1}{3}} dx = \underline{\qquad}.$
- (4) $\int_0^{\pi/3} (\sec x + \tan x)^2 dx = \underline{\qquad}$
- (5) $\lim_{x \to 0} \frac{\sqrt{3} \sqrt{2 + \cos x}}{\sin^2 2x} = \underline{\qquad}.$

三、 (10分) 求曲线 $x^2 + 2xy^2 + 3y^4 = 6$ 在点 P(1,-1) 处的切线方程.

四、 (10分)设

$$y = x \int_2^{x^2} \sin(t^3) \, dt,$$

求 $\frac{dy}{dx}$.

五、(10分)若函数

$$f(x) = \begin{cases} \frac{1 - \cos x}{x} + a, & x > 0\\ ax + b, & x \le 0 \end{cases}$$

在 x=0 处可导, 求 a 和 b 的值.

六、 (10分) 考虑函数 $f(x) = \frac{1}{2}x - \sin x$, $0 < x < 3\pi$.

- (a) 求f在哪些点取局部极值,并求函数的局部极值.
- (b) 求f上凹和下凹的开区间.
- (c) 做出 f(x)的简略图.

七、 (10分)在 $\triangle ABC$ 中, $\angle BAC=120^\circ$ 且 $|AB|\cdot |AC|=1$. 设 AD为角平分线,求 |AD| 的 最大值.

八、 (10分) 设函数 f(x) 在 $(-\infty,\infty)$ 上有定义,且对任意的 $x,y\in(-\infty,\infty)$ 恒有

$$f(x + y) = f(x)f(y), \quad f(x) = 1 + xg(x).$$

其中 $\lim_{x\to 0} g(x) = 1$. 证明: f(x) 在 $(-\infty, \infty)$ 上处处可导.