# Лабораторная работа №12, №13

Построение LR(k) -анализатора на основе активных префиксов и отношения OBLOW. Построить управляющую таблицу для функций перехода g(x) и действий f(u) и такты работы алгоритма.

Исходная грамматика  $G = (\{S,F,L\},\{i,j,\&,\land,(,)\},P,S)$ 

P:

- **1.** S → F^L
- 2. S → (S)
- 3. F→&L
- 4. F→i
- 5. L → j

#### Вывод цепочек:

- 1.  $S \Rightarrow {}^{1}F \land L \Rightarrow {}^{3}\&L \land L \Rightarrow {}^{5}\&j \land L \Rightarrow {}^{5}\&j \land j$
- 2.  $S\Rightarrow^2(S)\Rightarrow^1(F^L)\Rightarrow^3(\&L^L)\Rightarrow^5(\&j^L)\Rightarrow^5(\&j^j)$
- 3.  $S\Rightarrow^2(S)\Rightarrow^2((S))\Rightarrow^1((F^L))\Rightarrow^4((i^L))\Rightarrow^5((i^j))$

Определение активных префиксов:

| Символ грамматики | Магазинный символ         | Кодируемая цепочка   |
|-------------------|---------------------------|----------------------|
| S                 | $S_0$                     | $\perp_{\mathrm{S}}$ |
|                   | $S_2$                     | (S                   |
| F                 | $F_1$                     | F                    |
| L                 | $L_1$                     | F^L                  |
|                   | $L_3$                     | &L                   |
| i                 | $i_4$                     | i                    |
| j                 | $\mathbf{j}_5$            | j                    |
| &                 | <b>&amp;</b> <sub>3</sub> | &                    |
| ٨                 | ^ <sub>1</sub>            | F^                   |
| (                 | (2                        | (                    |
| )                 | )2                        | (S)                  |

Пополненая грамматика  $G^{\sim} = (\{S', S, F, L\}, \{i, j, \&, \land, (,)\}, P^{\sim}, S')$ 

**P**~:

- $0. S' \rightarrow S$
- 1. S→F^L
- 2. S → (S)
- **3**. F**→**&L
- 4. F → i
- 5. L → j

Матрица отношения OBLOW:

|                           | $S_0$ | $F_1$ | ۸ <sub>1</sub> | $L_1$ | ( <sub>2</sub> | $S_2$ | )2 | & <sub>3</sub> | $L_3$ | i <sub>4</sub> | $\mathbf{j}_5$ |
|---------------------------|-------|-------|----------------|-------|----------------|-------|----|----------------|-------|----------------|----------------|
| $S_0$                     |       |       |                |       |                |       |    |                |       |                |                |
| $\mathbf{F}_{1}$          |       |       | 1              |       |                |       |    |                |       |                |                |
| ^ <sub>1</sub>            |       |       |                | 1     |                |       |    |                |       |                | 1              |
| $L_1$                     |       |       |                |       |                |       |    |                |       |                |                |
| (2                        |       | 1     |                |       |                | 1     |    | 1              |       | 1              |                |
| $S_2$                     |       |       |                |       |                |       | 1  |                |       |                |                |
| )2                        |       |       |                |       |                |       |    |                |       |                |                |
| <b>&amp;</b> <sub>3</sub> |       |       |                |       |                |       |    |                | 1     |                | 1              |
| $L_3$                     |       |       |                |       |                |       |    |                |       |                |                |
| i <sub>4</sub>            |       |       |                |       |                |       |    |                |       |                |                |
| $\mathbf{j}_5$            |       |       |                |       |                |       |    |                |       |                |                |
| 上                         | 1     | 1     |                |       | 1              |       |    | 1              |       | 1              |                |

Построение таблицы переходов и действий:

| 1100                      | <u>. poc</u>            | 11110 | 1403 | 17140 | cp   |      | 40D i | <u>, д</u> с             | 71010 | <b>7171.</b> |                |                  |                |                |                |    |
|---------------------------|-------------------------|-------|------|-------|------|------|-------|--------------------------|-------|--------------|----------------|------------------|----------------|----------------|----------------|----|
|                           | Функция действий $f(u)$ |       |      |       |      |      |       | Функция переходов $g(x)$ |       |              |                |                  |                |                |                |    |
|                           | i                       | j     | &    | ٨     | (    | )    | 上     | S                        | F     | L            | i              | j                | &              | ٨              | (              | )  |
| $S_0$                     |                         |       |      |       |      |      | Д     |                          |       |              |                |                  |                |                |                |    |
| $F_1$                     | П                       | П     | П    | П     | П    | П    |       |                          |       |              |                |                  |                | ۸ <sub>1</sub> |                |    |
| ۸_1                       | П                       | П     | П    | П     | П    | П    |       |                          |       | $L_1$        |                | $\mathbf{j}_{5}$ |                |                |                |    |
| $L_1$                     | C(1)                    | C(1)  | C(1) | C(1)  | C(1) | C(1) | C(1)  |                          |       |              |                |                  |                |                |                |    |
| (2                        | П                       | П     | П    | П     | П    | П    |       | $S_2$                    | $F_1$ |              | $i_4$          |                  | & <sub>3</sub> |                | ( <sub>2</sub> |    |
| $S_2$                     | П                       | П     | П    | П     | П    | П    |       |                          |       |              |                |                  |                |                |                | )2 |
| )2                        | C(2)                    | C(2)  | C(2) | C(2)  | C(2) | C(2) | C(2)  |                          |       |              |                |                  |                |                |                |    |
| <b>&amp;</b> <sub>3</sub> | П                       | П     | П    | П     | П    | П    |       |                          |       | $L_3$        |                | $\mathbf{j}_{5}$ |                |                |                |    |
| $L_3$                     | C(3)                    | C(3)  | C(3) | C(3)  | C(3) | C(3) | C(3)  |                          |       |              |                |                  |                |                |                |    |
| i <sub>4</sub>            | C(4)                    | C(4)  | C(4) | C(4)  | C(4) | C(4) | C(4)  |                          |       |              |                |                  |                |                |                |    |
| $\mathbf{j}_5$            | C(5)                    | C(5)  | C(5) | C(5)  | C(5) | C(5) | C(5)  |                          |       |              |                |                  |                |                |                |    |
| 上                         | П                       | П     | П    | П     | П    | П    |       | $S_0$                    | $F_1$ |              | i <sub>4</sub> |                  | & <sub>3</sub> |                | ( <sub>2</sub> |    |
| _                         | O " E                   |       |      |       |      |      |       |                          |       |              |                |                  |                |                |                |    |

Д – допуск, С – свёртка, П – перенос, пустые клетки - ОШИБКА Таблица получилась детерминированной.

Такты работы алгоритма, распознавание цепочек:

1. 
$$(\bot, \&j \land j \bot, \varepsilon) \vdash^{\Pi}(\bot \&_{3}, j \land j \bot, \varepsilon) \vdash^{\Pi}(\bot \&_{3}, j_{5}, \land j \bot, \varepsilon) \vdash^{C}(\bot \&_{3} \bot_{3}, \land j \bot, 5) \vdash^{C}$$
1. 
$$\vdash^{C}(\bot F_{1}, \land j \bot, 35) \vdash^{\Pi}(\bot F_{1} \land_{1}, j \bot, 35) \vdash^{\Pi}(\bot F_{1} \land_{1} j_{5}, \bot, 35) \vdash^{C}$$

$$\vdash^{C}(\bot F_{1} \land_{1} \bot_{1}, \bot, 535) \vdash^{C}(\bot S_{0}, \bot, 1535) \vdash^{\Pi}(\bot G_{2} \lor_{3}, j_{5}, ) \bot_{1}, \varepsilon) \vdash^{\Pi}(\bot G_{2} \lor_{3}, j_{5}, ) \bot_{1}, \varepsilon) \vdash^{\Pi}(\bot G_{2} \lor_{3}, j_{5}, ) \bot_{1}, \varepsilon) \vdash^{C}$$
2. 
$$\vdash^{C}(\bot G_{2} \lor_{3} \bot_{3}, \land j) \bot_{1}, 5) \vdash^{C}(\bot G_{2} \lor_{1}, \land j) \bot_{1}, 35) \vdash^{\Pi}(\bot G_{2} \lor_{1}, \land j) \bot_{1}, 35) \vdash^{\Pi}$$

$$\vdash^{\Pi}(\bot G_{2} \lor_{1}, \land j) \bot_{1}, 35) \vdash^{C}(\bot G_{2} \lor_{1}, \land j) \bot_{1}, 35) \vdash^{C}(\bot G_{2} \lor_{1}, \land j) \bot_{1}, 35) \vdash^{\Pi}(\bot G_{2} \lor_{2}, \bot_{1}, 1535) \vdash^{\Pi}$$

$$\vdash^{\Pi}(\bot G_{2} \lor_{2}, \bot_{1}, 1535) \vdash^{C}(\bot G_{2} \lor_{1}, \land j) \bot_{1}, \varepsilon) \vdash^{C}(\bot G_{2} \lor_{1}, \land j) \bot_{1}, \varepsilon) \vdash^{C}$$
3. 
$$\vdash^{C}(\bot G_{2} \lor_{1}, \land j) \bot_{1}, 4) \vdash^{\Pi}(\bot G_{2} \lor_{2}, \bot_{1}, 154) \vdash^{C}(\bot G_{2} \lor_{2}, \bot_{1}, 154) \vdash^{C}$$

$$\vdash^{C}(\bot G_{2} \lor_{1}, \land_{1}, \bot_{1}, \bot_{1}, \bot_{1}, 54) \vdash^{C}(\bot G_{2} \lor_{2}, \bot_{1}, 154) \vdash^{C}(\bot G_{2} \lor_{2}, \bot_{1}, 154) \vdash^{C}$$

$$\vdash^{C}(\bot G_{2} \lor_{2}, \bot_{1}, 2154) \vdash^{\Pi}(\bot G_{2} \lor_{2}, \bot_{1}, 2154) \vdash^{C}(\bot G_{2} \lor_{2}, \bot_{1}, 154) \vdash^{C}$$

$$\vdash^{C}(\bot G_{2} \lor_{2}, \bot_{1}, 2154) \vdash^{\Pi}(\bot G_{2} \lor_{2}, \bot_{1}, 2154) \vdash^{C}(\bot G_{2} \lor_{1}, \bot_{1}, \bot_{1},$$

#### Лабораторная работа №14

Построение LR(k) -анализатора на основе LR(0) -ситуаций и функций CLOSURE и GOTO . Построить конечный автомат для переходов между ситуациями.

## Исходная грамматика $G = (\{S,F,L\},\{i,j,\&,\land,(,)\},P,S)$

Р:

- **1.** S→F^L
- 2. S → (S)
- 3. F→&L
- 4. F → i
- 5. L → j

# Пополненая грамматика $G^{\sim} = (\{S', S, F, L\}, \{i, j, \&, \land, (,)\}, P^{\sim}, S')$

**P**~:

- 0. S'→S
- 1. S→F^L
- 2. S → (S)
- 3. F→&L
- 4. F→i
- 5. L → i

### Построение функции FIRST:

$$FIRST(F^L) = \{\&, i\}, FIRST(S) = \{\{i\}, FIRST(S) = \{\{i\},$$

# Построение функции FOLLOW:

```
FOLLOW(S)={),^{\perp}}

FOLLOW(F)={^{\wedge}}

FOLLOW(L)=FOLLOW(S)\cupFOLLOW(F)={),^{\perp},^{\wedge}}
```

## Замыкание множеств пунктов:

 $I = CLOSURE(\{S' \rightarrow \cdot S\})$ 

$$\coprod$$
ar 1. I=CLOSURE({S'→·S})

$$\Box$$
 2. I=I∪{S→·F^L,S→·(S)}={S'→·S,S→·F^L,S→·(S)}

$$\Box$$
 a ∈ 3. I=I∪{F→⋅&L,F→⋅i}={S'→⋅S,S→⋅F∧L,S→⋅(S),F→⋅&L,F→⋅i}

$$I = \{S' \rightarrow \cdot S, S \rightarrow \cdot F \land L, S \rightarrow \cdot (S), F \rightarrow \cdot \&L, F \rightarrow \cdot i\}$$

## **Функция** GOTO:

$$I_0 = CLOSURE(\{S' \rightarrow \cdot S\}) = \{S' \rightarrow \cdot S, S \rightarrow \cdot F \land L, S \rightarrow \cdot (S), F \rightarrow \cdot \&L, F \rightarrow \cdot i\}$$

## Диаграмма переходов автомата:



## Лабораторная работа №15

Построить управляющую таблицу для функций перехода g(x) и действий f(u), такты работы алгоритма.

#### Каноническая форма множества ситуаций:

```
C = \{ I_0 = \{ S' \rightarrow S, S \rightarrow F \land L, S \rightarrow (S), F \rightarrow \& L, F \rightarrow i \}, 
I_1 = \{ S' \rightarrow S \land \}, 
I_2 = \{ S \rightarrow F \land L \}, 
I_3 = \{ S \rightarrow ( \cdot S), S \rightarrow F \land L, S \rightarrow (S), F \rightarrow \& L, F \rightarrow i \}, 
I_4 = \{ F \rightarrow \& \cdot L, L \rightarrow j \}, 
I_5 = \{ F \rightarrow i \cdot \}, 
I_6 = \{ S \rightarrow F \land \cdot L, L \rightarrow j \}, 
I_7 = \{ S \rightarrow (S \cdot) \}, 
I_8 = \{ F \rightarrow \& L \cdot \}, 
I_9 = \{ L \rightarrow j \cdot \}, 
I_{10} = \{ S \rightarrow F \land L \cdot \}, 
I_{11} = \{ S \rightarrow (S) \cdot \} \}
```

Построение таблицы переходов и действий:

| I ACTION GOTO |      |      |      |      |      |       |      |   |   |    |  |  |
|---------------|------|------|------|------|------|-------|------|---|---|----|--|--|
| I             |      |      | GOTO |      |      |       |      |   |   |    |  |  |
|               | i    | j    | &    | ٨    | (    | )     | 上    | S | F | L  |  |  |
| 0             | П, 5 |      | П, 4 |      | П, 3 |       |      | 1 | 2 |    |  |  |
| 1             |      |      |      |      |      |       | Д    |   |   |    |  |  |
| 2             |      |      |      | П, 6 |      |       |      |   |   |    |  |  |
| 3             | П, 5 |      | П, 4 |      | П, 3 |       |      | 7 | 2 |    |  |  |
| 4             |      | П, 9 |      |      |      |       |      |   |   | 8  |  |  |
| 5             |      |      |      | C, 4 |      |       |      |   |   |    |  |  |
| 6             |      | П, 9 |      |      |      |       |      |   |   | 10 |  |  |
| 7             |      |      |      |      |      | П, 11 |      |   |   |    |  |  |
| 8             |      |      |      | C, 3 |      |       |      |   |   |    |  |  |
| 9             |      |      |      | C, 5 |      | C, 5  | C, 5 |   |   |    |  |  |
| 10            |      |      |      |      |      | C, 1  | C, 1 |   |   |    |  |  |
| 11            |      |      |      |      |      | C, 2  | C, 2 |   |   |    |  |  |

Д – допуск, С – свёртка, П – перенос, пустые клетки - ОШИБКА

Такты работы алгоритма, распознавание цепочек:

1.  $(0, \&j \land j \perp, \varepsilon) \vdash^{\Pi}(0 \land 4, j \land j \perp, \varepsilon) \vdash^{\Pi}(0 \land 4 , j \land j \perp, \varepsilon) \vdash^{C}(0 \land 4 , k \land j \perp, 5) \vdash^{C}(0 \land 2, \land j \perp, 35) \vdash^{\Pi}$ 1.  $\vdash^{\Pi}(0 \land 2 \land 6, j \perp, 35) \vdash^{\Pi}(0 \land 2 \land 6 , j \perp, 35) \vdash^{C}(0 \land 2 \land 10, \perp, 535) \vdash^{C}(0 \land 1, \perp, 1535) \vdash^{\Pi}$   $\vdash^{\Pi} AO\Pi YCK$   $(0, (\&j \land j) \perp, \varepsilon) \vdash^{\Pi}(0 \land 3, \&j \land j) \perp, \varepsilon) \vdash^{\Pi}(0 \land 3 \land 4, j \land j) \perp, \varepsilon) \vdash^{\Pi}(0 \land 3 \land 4 , j \land j) \perp, \varepsilon) \vdash^{C}$ 2.  $\vdash^{C}(0 \land 3 \land 4 \land 8, \land j) \perp, 5) \vdash^{C}(0 \land 3 \land 2, \land j) \perp, 35) \vdash^{\Pi}(0 \land 3 \land 2 \land 6, j) \perp, 35) \vdash^{C}$   $\vdash^{C}(0 \land 3 \land 2 \land 6 \land 10, ) \perp, 535) \vdash^{C}(0 \land 3 \land 7, ) \perp, 1535) \vdash^{\Pi}(0 \land 3 \land 7 \land 11, \perp, 1535) \vdash^{C}$   $\vdash^{C}(0 \land 1, \perp, 21535) \vdash^{\Pi} AO\Pi YCK$   $(0, ((i \land j)) \perp, \varepsilon) \vdash^{\Pi}(0 \land 3, (i \land j)) \perp, \varepsilon) \vdash^{\Pi}(0 \land 3 \land 3 \land 2 \land 6, j)) \perp, \varepsilon) \vdash^{\Pi}(0 \land 3 \land 3 \land 2 \land 6, j)) \perp, \varepsilon) \vdash^{C}$ 3.  $\vdash^{C}(0 \land 3 \land 2, \land 3) \vdash^{L} (0 \land 3 \land 3, \land 3, ) \vdash^{L} (0 \land 3 \land 3, \land 3, 1) \perp, 154) \vdash^{C}$   $\vdash^{C}(0 \land 3 \land 3 \land 2, \land 3, 1) \vdash^{L} (0 \land 3 \land 3, 1, 1, 1) \vdash^{L} (154) \vdash^{C}$ 

 $\vdash^{\mathsf{C}}(0\ 3\ 7,)^{\perp},2154)$  $\vdash^{\mathsf{\Pi}}(0\ 3\ 7\ 11,^{\perp},2154)$  $\vdash^{\mathsf{C}}(0\ 1,^{\perp},22154)$  $\vdash^{\mathsf{\Pi}}$ ДОПУСК

# Лабораторная работа №16 Реализовать LR(k)-анализатор по управляющей таблице (g,f) для LR(k)- грамматики.

```
Введите продукции:
S F^L
S (S)
F &L
Fi
Lј
Исходная
КС - грамматика:
Алфавит нетерминальных символов: SLF
Алфавит терминальных символов: : ) (j&i^
Правила:
{ S F^L; S (S); F &L; F i; L j }
После удаления е-продукций
Правила:
S F^L
S (S)
F &L
Γi
Lј
ΠЅ
Терминалы : )(j&i^$
Нетерминалы: SLFП
____
Вычислены множества FIRST для символов грамматики и строк
First( S ): (&i
First( L ): j
First(F): &i
First(\Pi): (&i
First( F^L ): &i
First((S)): (
First( &L ): &
First( i ): i
First( j ): j
First( S ): (&i
CreateCArray:
IO: { Π .S,$; S .F^L,$; S .(S),$; F .&L,^; F .i,^ }
Шаги с GoTo...
```

```
Создана последовательность С:
IO { Π .S,$; S .F^L,$; S .(S),$; F .&L,^; F .i,^ }
I1 { S (.S),$; S .F^L,); S .(S),); F .&L,^; F .i,^ }
I2 { F &.L,^; L .j,^ }
I3 { F i., ^ }
I4 { Π S.,$ }
I5 { F &L., ^ }
16 { S F.^L,$ }
I7 { S (.S),); S .F^L,); S .(S),); F .&L,^; F .i,^ }
I8 { L j., ^ }
19 { S F^.L,$; L .j,$ }
I10 { S (S.),$ }
I11 { S F^L.,$ }
I12 { S F.^L,) }
I13 { S (S).,$ }
I14 { L j.,$ }
I15 { S F^.L,); L .j,) }
I16 { S (S.), ) }
I17 { S F^L.,) }
I18 { S (S).,) }
I19 { L j.,) }
Создана ACTION таблица
ACTION[0, (] = s 1
ACTION[3, ^] = r F i
ACTION[2, j] = s 8
ACTION[5, ^] = r F \&L
ACTION[4, \$] = a
ACTION[7, (] = s 7
ACTION[6, ^] = s 9
ACTION[0, i] = s 3
ACTION[7, i] = s 3
ACTION[19, )] = r L j
ACTION[1, i] = s 3
ACTION[0, \&] = s 2
ACTION[16, )] = s 18
ACTION[14, \$] = r L j
ACTION[18, )] = r S (S)
ACTION[17, )] = r S F^L
ACTION[7, \&] = s 2
ACTION[9, j] = s 14
ACTION[8, ^] = r L j
ACTION[11, \$] = r \$ F^L
ACTION[10, )] = s 13
ACTION[13, \$] = r \$ (\$)
ACTION[1, (] = s 7]
ACTION[15, j] = s 19
ACTION[12, ^] = s 15
ACTION[1, \&] = s 2
```

```
Создана GOTO таблица
GOTO[1, S] = 10
GOTO[0, S] = 4
GOTO[2, L] = 5
GOTO[0, F] = 6
GOTO[7, S] = 16
GOTO[9, L] = 11
GOTO[7, F] = 12
GOTO[1, F] = 12
GOTO[15, L] = 17
Введите строку:
&j^j
Введена строка: &j^j$
Процесс вывода:
L->j
F->&L
L->j
S->F^L
Строка допущена
Продолжить? (y or n)
У
Введите строку:
(&j^j)
Введена строка: (&j^j)$
Процесс вывода:
L->j
F->&L
L->j
S->F^L
S->(S)
Строка допущена
Продолжить? (y or n)
У
Введите строку:
((i^j))
Введена строка: ((i^j))$
Процесс вывода:
F->i
L->j
S->F^L
S \rightarrow (S)
S->(S)
Строка допущена
 Продолжить? (y or n)
```