Fast Evasion Detection & Alert Management in Tree-Ensemble-Based Intrusion Detection Systems

Valency Oscar Colaco & Simin Nadjm-Tehrani

Linköping University, Sweden

A Machine Learning Based Intrusion Detection System (ML-IDS) protects systems against cyber-attackers

But an attacker could evade the ML-IDS

Motivation

- ML-IDSs are susceptible to evasion attacks
- ML-IDSs may produce many false alarms, causing alert fatigue
- ML-IDSs should not have high prediction times

Some Insights into Adversarial Examples

Some Insights into Adversarial Examples

Targeted Regions for Evasion Attacks

Targeted Regions for False Alarms

Verifier of Tree Ensembles (VoTE)

Törnblom & Nadjm-Tehrani, WAISE 2019

Failed Mappings → Counterexample Regions

Mappings that violate the property consist solely of individual counterexamples

Contributions

- A method to detect evasions & produce nuanced alert insights
- **Iceman**: prototype system of an evasion-hardened, flow re-annotatable IDS
- Evaluation on four real-world case studies & SOTA comparison

Proposed System: Iceman

Evasion-hardened and Flow Re-annotatable Tree Ensemble IDS

Counterexample (CEX) Region Generator

Pre-computing regions of likely evasion manipulation that attackers would normally target to evade detection

CEX Region Generator

Adversarial Analyzer

Measuring an example's adversarialness

The distance between the incoming vector and a CEX region is calculated using the **weighted l**_o **distance**

Adversarial Analyzer

Measuring an example's adversarialness

The distance between the incoming vector and a CEX region is calculated using the **weighted l**_o **distance**

This distance (**adversarial score**) is thresholded to postulate flows as adversarial and non-adversarial

Flow Re-annotator

Additional Quaternary Labels based on Postulated Evasion Likelihood

Alert Consolidator

Combining the IDS output into a single tuple (alert level, recommendation)

Flow Re-annotations		Alert Level	Alert Recommendation
True Negative Flow	s to	0	Benign Flow, Do Nothing!
True Positive Flow	maps	1	Attack, Investigate Now!
False Negative Flow		2	Evasion Attempt, Investigate Now!
False Positive Flow		3	Likely False Alarm, Investigate Later!

Alert Consolidation Strategy

Proposed Workflow

Experimental Setup

- 4 Datasets: APA-DDoS, CIC-IoT-2023, HCRL-Survival-Analysis, CIC-IoV-2024
- Equal ratio of adversarial and non-adversarial samples
- Compare Iceman to 2 methods: OC-Score and GROOT Forests
 - Detection Accuracy & Matthews Correlation Coefficient
 - Average Prediction Times
 - Accuracy of Alert Filtering & Prioritization

Baseline IDS Performance

Iceman hardens a baseline Tree Ensemble IDS

Case Study	Baseline Tree Ensemble IDS	Accuracy Score	Matthew's Correlation Coefficient
APA-DDoS	XGBoost GBM (depth = 5, trees = 50)	1.00	1.00
CIC-IoT-2023	XGBoost GBM (depth = 5, trees = 25)	1.00	0.91
HCRL-Survival-Analysis	Random Forest (depth = 10, trees = 50)	1.00	1.00
CIC-IoV-2024	Random Forest (depth = 10, trees = 25)	1.00	1.00

Accuracy of Baseline Detectors is Preserved

Good Detection Accuracy despite Evasion Attacks

Well Balanced Detection Performance

Good Matthew's correlation coefficient in four case studies

Low Prediction Latency

5-115x faster compared to OC-Score

Good Alert Management Performance

Accurate Alert Filtering and Alert Prioritization

Case Study	Alert Prioritization Accuracy	Alert Filtering Accuracy
APA-DDoS	1.00	1.00
CIC-IoT-2023	0.98	0.98
HCRL-Survival-Analysis	0.99	0.99
CIC-IoV-2024	1.00	1.00

Conclusion

- Our method can have benefits for safety and security
- Crafting counterexample regions is time-consuming but done offline
- Scalability depends on underlying formal verification tool
- Future Works → Counterexample-**Region** Guided Inductive Synthesis

Questions?

Fast Evasion Detection & Alert Management in Tree-Ensemble-Based Intrusion Detection Systems

Valency Oscar Colaco & Simin Nadjm-Tehrani

valency.colaco@liu.se

