Discorigido e disco de estado sólido

Gabriel Martins Machado Christo Lucas Guimarães Batista Vinicius Lima Medeiros

SUMÁRIO

01

INTRODUÇÃO

02

PROTOCOLOS DE COMUNICAÇÃO

03

HDD VS SSD

04

CONSIDERAÇÕES FINAIS

INTRODUÇÃO

INTRODUÇÃO

Discos rígidos e discos de estado sólido - HDDs e SSDs, respectivamente - são a forma de armazenamento em massa mais comuns nos computadores atualmente.

Um disco rígido é composto essencialmente por um disco móvel revestido de material magnético que armazena dados e por um braço mecânico que realiza as operações de leitura e escrita

O primeiro disco rígido foi desenvolvido e lançado em 1956 pela IBM com o modelo chamado de IBM 350, uma parte do 305 RAMAC, computador que introduziu a tecnologia de armazenamento em discos ao mundo

IBM 350 - Década de 50

3.5" HDD - Década de 90

SSD

Uma unidade de estado sólido é um dispositivo de armazenamento sem partes móveis feito de memórias não voláteis do tipo FLASH

SSD

Embora a memória FLASH utilizada nos SSDs seja utilizada desde meados dos anos 80 para outros propósitos, foi só a partir dos anos 2000 que o uso dela em dispositivos de armazenamento em massa para computadores começou a se popularizar.

2.5" SSD - Anos 2000

M.2 SSD - Anos 2010

Envios em escala global de HDDs e SSDs de 2012 a 2017 com projeções até 2020.

PROTOCOLOS DE COMUNICAÇÃO

SCSI

Small Computer System Interface

Usado em HDDs, scanners, drives de CD ...

Inúmeras versões

SAS

Serial Attached SCSI

Evolução serial do SCSI

Resolveu problema de clock skew

USB

Universal Serial Bus

Quatro gerações: 1.x, 2.0, 3.x e 4.x

Conectores tipo A, B e C

Usado pela maioria dos periféricos atuais

PATA (IDE)

IDE/ATA - Paralelo (passou a ser chamado Pata após a invenção do SATA).

Utilizado em HDs obsoletos.

SATA

Sata é utilizado tanto em SSDs quanto para HDs.

Possui sinal de Frequência de 100MHz e possui 3 gerações

SATA I - Também conhecida por SATA 1.5 Gb/s possui largura de banda de 150 Mb/s.

SATA II - Também conhecida por SATA 3 Gb/s possui largura de banda de 300 Mb/s

SATA III - Também conhecida por SATA 6 Gb/s possui largura de banda de 600 Mb/s

PCI

PCI

- Síncrono
- Frequência de 33 a 66 MHz.
- Comprimento máximo de 0.5m multiplexado
- Taxa de transferência de 132 a 158 MB/s
- Paralelo com dados de 32 ou 64 bits

PCIe (usado em SSDs) PCIe (evolução do PCI)

- Serial
- Possibilita a utilização do protocolo NVMe a partir da versão PCIe 3.0, que por sua vez tem taxa de transferência de 16 GB/s

- PCI Express x1: 25 mm de comprimento; 18 pinos
- PCI Express x4: 39 mm de comprimento; 32 pinos
- PCI Express x8: 56 mm de comprimento; 32 pinos
- PCI Express x16: 89 mm de comprimento; 82 pinos

PCI X PCIe

HDD x SSD (Comparativos)

Comparativo entre Sata x NVMe

Gráfico Comparativo de Performance

Comparativo de Várias Métricas

Comparativo de Componentes e Tamanho

Comparativo de Tempo de Boot do Sistema

RESUMO

A tecnologia está evoluindo e tanto o desenvolvimento de SSDs quanto o consumo está aumentando muito nos últimos anos. É notável, então, que os discos de estado sólido estão rumando para se tornar o padrão de indústria a ser usado para armazenamento em massa nos próximos anos.

OBRIGADO