Process Modelling with Neuro-Fuzzy Systems

University of Coimbra

Doctoral Program in Information Science and Technology

Real Time Learning in Intelligent Systems

June 12, 2017

Joaquim Pedro Bento Gonçalves Pratas Leitão

OBJECTIVES

- Sugeno-type Neuro-Fuzzy System (NFS) to model the dynamics of a process with intertia.
- Map system's input space to output space by a series of *IF-THEN* rules

MODELLED SYSTEM

•
$$G(s) = \frac{2}{s^3 + 5 s^2 + 6.75 s + 2.25}$$

• Third-order system, with memory of 3 instants in both the inputs and outputs and inertia

•
$$y(k) = f(y(k-1), y(k-2), y(k-3), u(k-1), u(k-1), u(k-2), u(k-3))$$

METHODOLOGY

- I. Learning Stage
 - > Data Collection
 - > Fuzzy Rules Initialisation
 - > Fuzzy Rules Optimisation
- 2. Assessment Stage

- Generate random input sequence and compute the system's output
- Simulink environment
- Sampling interval less than the inverse of the smaller pole of the system $(\frac{1}{3}$ was used)
- Discretization of the transfer function using *c2dm* function

•
$$G(z) = \frac{0.1079z^2 + 0.1413z + 0.009003}{z^3 - 0.8794z^2 + 0.1766z - 0.006738}$$

- Total Simulation time of 500 instants
- 70-30 split of generated data

Joaquim Leitão – Real Time Learning in Intelligent Systems

Joaquim Leitão – Real Time Learning in Intelligent Systems

FUZZY RULES INITIALISATION

- Fuzzy Inference Systems (FIS)
- Initial estimations for the fuzzy rules are produced as a result of a clustering process on training data (genfis function)
 - Subtractive Clustering
 - Fuzzy C-Means Clustering

FUZZY RULES INITIALISATION

Input Membership Functions - Subtractive Clustering.

Input Number	Membership Function Type	Parameters	
in1	Gaussian Curve (gaussmf)	$\sigma = [0.1095; 0.1095; 0.1095]$	
1111		C = [-0.0221; 0.1294; -0.1326]	
in2	Gaussian Curve (gaussmf)	$\sigma = [0.1095; 0.1095; 0.1095]$	
1112	Gaussian Curve (gaussiin)	C = [-0.0242; 0.1236; -0.1426]	
in3	Gaussian Curve (gaussmf)	$\sigma = [0.1095; 0.1095; 0.1095]$	
	Gaussian Curve (gaussiin)	C = [-0.0276; 0.1155; -0.1513]	
in4	Gaussian Curve (gaussmf)	$\sigma = [1.2188; 1.2188; 1.2188]$	
	Gaassian Carve (gaassiin)	C = [-0.056; -0.0963; 0.2091]	
in5	Gaussian Curve (gaussmf)	$\sigma = [1.2188; 1.2188; 1.2188]$	
		C = [0.1841; -0.2404; -0.0825]	
in6	Gaussian Curve (gaussmf)	$\sigma = [1.2188; 1.2188; 1.2188]$	
1110	Gaassian Carve (gaassiin)	C = [0.0674; -0.021; -0.0921]	

10

FUZZY RULES INITIALISATION

Input Membership Functions - Fuzzy C-Means Clustering.

Input Number	Membership Function Type	Parameters		
in1	Gaussian Curve (gaussmf)	$\sigma = [0.0636; 0.0638; 0.0636]$		
1111		C = [-0.0086; -0.0071; -0.0108]		
in2	Gaussian Curve (gaussmf)	$\sigma = [0.0637; 0.0637; 0.0636]$		
1112	Gaussian Curve (gaussiin)	C = [-0.0098; -0.0069; -0.0099]		
in3	Gaussian Curve (gaussmf)	$\sigma = [0.0637; 0.0637; 0.0635]$		
		C = [-0.0101; -0.0069; -0.0097]		
in4	Gaussian Curve (gaussmf)	$\sigma = [0.5497; 0.5851; 0.5863]$		
		C = [-0.0334; -0.4924; 0.4953]		
in5	Gaussian Curve (gaussmf)	$\sigma = [0.5592; 0.5909; 0.5669]$		
		C = [-0.2425; 0.5136; -0.3109]		
in6	Gaussian Curve (gaussmf)	$\sigma = [0.6152; 0.5591; 0.5746]$		
	Gaassian Carve (gaassiin)	C = [0.6764; -0.2763; -0.4373]		

Joaquim Leitão – Real Time Learning in Intelligent Systems

- ANFIS structure to optimise both FIS
 - Backpropagation Optimisation
 - Hybrid Optimisation
- MATLAB's anfis function with 200 epochs
- Performance assessed with test data and Root Mean Squared Error (RMSE) metric

- Subtractive Clustering + Backpropagation ☑
- Fuzzy C-Means Clustering + Backpropagation ☑
- Subtractive Clustering + Hybrid
- Fuzzy C-Means Clustering + Hybrid

Final Input Membership Functions - Subtractive Clustering and Hybrid Optimisation Method.

Input Number	Membership Function Type	Parameters		
in1	Gaussian Curve (gaussmf)	$\sigma = [0.2036; 6.5753e - 05; 0.0723]$		
1111		C = [-0.0207; 0.2147; -0.1315]		
in2	Gaussian Curve (gaussmf)	$\sigma = [0.2036; 0.0641; 0.0702]$		
1112	Gaussian Curve (gaussiin)	C = [-0.0219; 0.1512; -0.1613]		
in3	Gaussian Curve (gaussmf)	$\sigma = [0.2032; 0.0692; -2.2305e - 05]$		
		C = [-0.0237; 0.1266; -0.2394]		
in4	Gaussian Curve (gaussmf)	$\sigma = [1.2305; 1.2134; 1.2130]$		
		C = [-0.0553; -0.0965; 0.2101]		
in5	Gaussian Curve (gaussmf)	$\sigma = [1.2313; 1.2134; 1.2135]$		
		C = [0.1815; -0.2415; -0.0827]		
in6	Gaussian Curve (gaussmf)	$\sigma = [1.2294; 1.2135; 1.2138]$		
1110		C = [0.0644; -0.0212; -0.0924]		

Joaquim Leitão – Real Time Learning in Intelligent Systems

Final Input Membership Functions - Fuzzy C-Means Clustering and Hybrid Optimisation Method.

Input Number	Membership Function Type	Parameters		
in1	Gaussian Curve (gaussmf)	$\sigma = [-2.3364e - 04; 0.0964; -0.0021]$		
		C = [-0.0305; -0.0128; 0.0204]		
in2	Gaussian Curve (gaussmf)	$\sigma = [0.0145; 0.0966; 2.1969e - 04]$		
1112		C = [-0.0058; -0.0133; -0.0145]		
in3	Gaussian Curve (gaussmf)	$\sigma = [-1.5273e - 04; 0.0969; 0.0059]$		
		C = [-0.0029; -0.014; -0.0093]		
in4	Gaussian Curve (gaussmf)	$\sigma = [0.5424; 0.6011; 0.5833]$		
		C = [-0.0328; -0.4880; 0.4956]		
in5	Gaussian Curve (gaussmf)	$\sigma = [0.5521; 0.6047; 0.5634]$		
		C = [-0.242; 0.5106; -0.3113]		
in6	Gaussian Curve (gaussmf)	$\sigma = [0.6123; 0.5757; 0.5718]$		
		C = [0.6761; -0.2744; -0.4362]		

Final results of the optimisation process.

Cluster Technique	Optimisation Type	Minimum Training Error	Test Error	AND Method	OR Method	Number Rules	Order
Subtractive	Backpropagation	9.1984e-17	0.0053	prod	probor	3	1
Subtractive	Hybrid	1.5467e-06	8.9969e-04	prod	probor	3	1
Fuzzy C-Means	Backpropagation	2.1481e-16	0.0044	prod	probor	3	1
Fuzzy C-Means	Hybrid	1.5467e-06	1.5086e-06	prod	probor	3	1

- Lack of generalisation capacity for Backpropagation method
- Errors with Hybrid method remain more stable during training and testing
 - Suggest a more general (and more desirable)
 model

ASSESSMENT - SIGNAL GENERATOR

- Sawtooth
- Sine
- Square
- > Amplitude I; Units in Hz
- Sampling interval set to value defined during data collection

Works Trees	Cluster	Optimisation	RMSE	
Wave Type	Technique	Type		
Sawtooth	Subtractive	Hybrid	3.0734e-04	
Sawtooth	Subtractive	Backpropagation	0.0051	
Sawtooth	Fuzzy C-Means	Hybrid	3.0734e-04	
Sawtooth	Fuzzy C-Means	Backpropagation	0.0031	
Sine	Subtractive	Hybrid	8.4137e-04	
Sine	Subtractive	Backpropagation	0.0056	
Sine	Fuzzy C-Means	Hybrid	5.7272e-05	
Sine	Fuzzy C-Means	Backpropagation	0.0041	
Square	Subtractive	Hybrid	3.4867e-04	
Square	Subtractive	Backpropagation	0.0059	
Square	Fuzzy C-Means	Hybrid	3.4867e-04	
Square	Fuzzy C-Means	Backpropagation	0.005	

- Low RMSE registered for the different wave types
- NFSs can accurately reproduce the dynamics of the system being modelled

Joaquim Leitão - Real Time Learning in Intelligent Systems

CONCLUSIONS

- Neuro-Fuzzy Systems were projected and developed to model the dynamics of a given process
- Outputs very similar to the real system, for the different NFSs trained
- Hybrid optimisation produced more general NFSs, with smaller RMSEs in test data for different input signals

