				Covalent Radii				der Waals	
Z	Symbol	Name	$r_1/\mathrm{pm^a}$	$r_2/\mathrm{pm}^{\mathrm{b}}$	$r_3/\mathrm{pm^c}$	$r_{ m t}/{ m pm^d}$	$r_{ m B}/{ m pm}$	$r_{ m c}/{ m pm^h}$	$r_{ m eq}/{ m pn}$
1 1	Н	hydrogen	32	-	-	-	110^{f}	-	-
	Не	helium	46	-	-	-	140^{g}	-	-
3	Li	lithium	133	124	-	137	181^{g}	220	263
4	$_{\mathrm{Be}}$	beryllium	102	90	85	106.1	$153^{\rm e}$	190	223
5	В	boron	85	78	73	88.2	$192^{\rm e}$	180	205
6	$^{\mathrm{C}}$	carbon	75	67	60	77.3	170^{g}	170	196
7	N	nitrogen	71	60	54	68.9	$155^{\rm g}$	160	179
8 (O	oxygen	63	57	53	67.4	152^{g}	155	171
9	F	fluorine	64	59	53	57.5	147^{g}	150	165
10	Ne	neon	67	96	-	_	$154^{\rm g}$	240	-
	Na	sodium	155	160	_	_	227^{g}	220	277
	Mg	magnesium	139	132	127	141.2	173g	210	242
	Al	aluminium	126	113	111	128.5	184^{e}	210	240
	Si	silicon	116	107	102	117.6	210^{g}	210	226
	P	phosphorus	111	102	94	108.4	180g	195	214
	S	sulfur	103	94	95	104.2	180g	180	206
	Cl	chlorine	99	95	93	107.6	175 ^g	180	205
	Ar	argon	96	107	96	-	188 ^g	-	-
	K	potassium	196	193	-	-	275g	280	302
	Ca	calcium	171	147	133	-	231 ^e	240	$\frac{302}{278}$
	Ca Sc	scandium		116		138.6		230	262
		scandium titanium	148		114		-		
	Ti		136	117	108	-	-	215	244
	V	vanadium	134	112	106	-	-	205	227
	Cr	chromium	122	111	103	-	-	205	223
	Mn	manganese	119	105	103	140.3	-	205	225
	Fe	iron	116	109	102	120.9	-	205	227
	Со	cobalt	111	103	96	125.6	-	200	225
	Ni	nickel	110	101	101	-	-	200	223
	Cu	copper	112	115	120	127.1	-	200	227
	$_{ m Zn}$	zinc	118	120	-	130.4	-	210	224
	$_{ m Ga}$	gallium	124	117	121	127.5	187^{g}	210	241
32	Ge	germanium	121	111	114	122.5	$211^{\rm e}$	210	232
33	As	arsenic	121	114	106	117.4	185^{g}	205	225
34	Se	selenium	116	107	107	114.5	190^{g}	190	218
35	Br	bromine	114	109	110	119.5	183^{g}	190	210
36	Kr	krypton	117	121	108	-	202^{g}	-	-
37	Rb	rubidium	210	202	-	_	$303^{\rm e}$	290	315
38	Sr	strontium	185	157	139	_	249^{e}	255	294
	Y	yttrium	163	130	124	_	_	240	271
	m Zr	zirconium	154	127	121	_	_	230	257
	Nb	niobium	147	125	116	_	_	215	246
	Мо	molybdenum	138	121	113	_	_	210	239
	Tc	technetium	128	120	110	_	_	205	237
	Ru	ruthenium	125	114	103			205	237
		rhodium				-	-		
	Rh Pd	palladium	$\frac{125}{120}$	$\frac{110}{117}$	$\frac{106}{112}$	-	-	$\frac{200}{205}$	$\frac{232}{235}$
	Pd A s	-				- 1 <i>47</i> 9	-		
	Ag Cd	silver	128	139	137	147.3	-	210	237
	Cd	cadmium	136	144	146	148.2	- 1029	220	237
	In	indium	142	136	146	145.5	193 ^g	220	253
	Sn	tin	140	130	132	140.0	217 ^g	225	246
	Sb	antimony	140	133	127	136.3	206e	220	241
	Те	tellurium	136	128	121	133.5	206^{g}	210	236
	I	iodine	133	129	125	134.5	198^{g}	210	222
	Xe	xenon	131	135	122	-	$216^{\rm g}$	-	-
	Cs	caesium	232	209	-	-	343^{e}	300	330
	$_{\mathrm{Ba}}$	barium	196	161	149	-	$268^{\rm e}$	270	305
57	La	lanthanum	180	139	139	-	-	250	281
58 (Се	cerium	163	137	131	-	-	-	-
59	Pr	praseodymium	176	138	128	-	-	-	-
60	Nd	neodymium	174	137	-	-	-	-	-
61	Pm	promethium	173	135	-	-	-	-	-
	Sm	samarium	172	134	-	_	-	-	-
	Eu	europium	168	134	_	_	_	_	_
	Gd	gadolinium	169	135	132	_	_	_	_
	Tb	terbium	168	135	-	_	_	_	_
	Dy	dysprosium	167	133	-	_	-	_	_
	Dy Но	holmium	166	133 133	-	-	-	-	-
						-	-	-	-
	Er	erbium	165	133	-	-	-	-	-
	Tm	thulium	164	131	-	-	-	-	-
	Yb	ytterbium	170	129	-	-	-	-	-
71 1	Lu	lutetium	162	131	131	-	-	-	-

a single-bond additive covalent radii, Ref. [1] b double-bond additive covalent radii, Ref. [2] c triple-bond additive covalent radii, Ref. [3] d tetrahedral covalent radii for crystals, Ref. [4] e Consitent van der Waals Radii (compatible with Bondi), Ref. [5] f Consitent van der Waals Radiis (correction of Bondi), Ref. [6] g Consitent van der Waals Radii (Bondi), Ref. [7] h Recommended crystallographic van der Waals Radii (Batsanov), Ref. [8] r Recommended equilibrium van der Waals Radii (Batsanov), Ref. [8]

\overline{Z}	Symbol	Name	$r_1/\mathrm{pm^a}$	$r_2/\mathrm{pm^b}$	$r_3/\mathrm{pm^c}$	$r_{ m t}/{ m pm^d}$	$r_{ m B}/{ m pm}$	$r_{ m c}/{ m pm^h}$	$r_{ m eq}/{ m pm^h}$
72	Hf	hafnium	152	128	122	-	-	225	252
73	$_{\mathrm{Ta}}$	tantalum	146	126	119	-	-	220	242
74	W	tungsten	137	120	115	-	-	210	236
75	Re	rhenium	131	119	110	-	-	205	235
76	Os	osmium	129	116	109	-	-	200	233
77	$_{ m Ir}$	iridium	122	115	107	-	-	200	234
78	Pt	platinum	123	112	110	-	-	205	237
79	Au	gold	124	121	123	-	-	210	241
80	Hg	mercury	133	142	-	147.8	-	205	225
81	TÌ	thallium	144	142	150	138	196^{g}	220	253
82	Pb	lead	144	135	137	144.1	202^{g}	230	253
83	Bi	bismuth	151	141	135	146.0	$207^{\rm e}$	230	252
84	Po	polonium	145	135	129	141.6	$197^{\rm e}$	-	-
85	At	astatine	147	138	138	-	$202^{\rm e}$	-	-
86	Rn	radon	142	145	133	-	$220^{\rm e}$	-	-
87	Fr	francium	223	218	-	_	$348^{\rm e}$	_	_
88	Ra	radium	201	173	159	-	$283^{\rm e}$	_	_
89	Ac	actinium	186	153	140	-	_	_	_
90	Th	thorium	175	143	136	-	_	240	275
91	Pa	protactinium	169	138	129	_	-	-	_
92	U	uranium	170	134	118	_	_	230	265
93	Np	neptunium	171	136	116	-	_	_	_
94	Pu	plutonium	172	135	_	-	_	_	_
95	Am	americium	166	135	-	_	-	-	_
96	Cm	curium	166	136	_	-	_	_	_
97	$_{\mathrm{Bk}}$	berkelium	168	139	_	-	_	_	_
98	Cf	californium	168	140	_	-	_	_	_
99	Es	einsteinium	165	140	_	-	_	_	_
100	Fm	fermium	167	_	_	_	_	_	_
101	Md	mendelevium	173	139	_	-	_	_	_
102	No	nobelium	176	159	-	_	-	-	_
103	Lr	lawrencium	161	141	_	-	_	_	_
104	Rf	rutherfordium	157	140	131	-	_	_	_
105	Db	dubnium	149	136	126	-	_	_	_
106	Sg	seaborgium	143	128	121	_	-	_	_
107	Bh	bohrium	141	128	119	_	-	_	_
108	$_{\mathrm{Hs}}$	hassium	134	125	118	-	_	_	_
109	Mt	meitnerium	129	125	113	-	_	_	_
110	$_{\mathrm{Ds}}$	darmstadtium	128	116	112	-	_	_	_
111	Rg	roentgenium	121	116	118	_	-	-	-
112	Cn	copernicium	122	137	130	_	_	_	_
113	Nh	nihonium	136	-	-	_	_	_	_
114	Fl	flerovium	143	_	_	_	_	_	_
115	Мс	moscovium	162	_	_	_	_	_	_
116	Lv	livermorium	175	_	_	_	_	_	_
117	Ts	tennessine	165	_	_	_	_	_	_
118	Og	oganesson	157	_	_	_	_	_	_
		+:1:: I			J _ J J:4:				

References

- [1] Pekka Pyykkö and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118". In: Chem. Eur. J. 15.1 (2009), pp. 186-197. DOI: 10.1002/chem.200800987.
- Pekka Pyykkö and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112". In: Chem. Eur. J. 15.46 (2009), pp. 12770-12779. DOI: 10.1002/chem.200901472.
- [3] Pekka Pyykkö, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii". In: Chem. Eur. J. 11.12 (2005), pp. 3511-3520. DOI: 10.1002/chem.200401299.
- [4] Pekka Pyykkö. "Refitted tetrahedral covalent radii for solids". In: Phys. Rev. B 85.2 (2012). DOI: 10.1103/physrevb.85.024115.
- [5] Manjeera Mantina et al. "Consistent van der Waals Radii for the Whole Main Group". In: J. Phys. Chem. A 113.19 (2009), pp. 5806-5812. doi: 10.1021/jp8111556.
- [6] R. Scott Rowland and Robin Taylor. "Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii". In: J. Phys. Chem. 100.18 (1996), pp. 7384-7391. DOI: 10.1021/jp953141+.
- [7] A. Bondi. "van der Waals Volumes and Radii". In: J. Phys. Chem. 68.3 (1964), pp. 441-451. DOI: 10.1021/j100785a001.
- [8] Stepan S. Batsanov. "Van der Waals Radii of Elements". In: Inorg. Mater. 37.9 (2001), pp. 871-885. DOI: 10.1023/a: 1011625728803.

^a single-bond additive covalent radii, Ref. [1] b double-bond additive covalent radii, Ref. [2]

d tetrahedral covalent radii for crystals, Ref. [4] ^c triple-bond additive covalent radii, Ref. [3]

e Consitent van der Waals Radii (compatible with Bondi), Ref. [5] f Consitent van der Waals Radius (correction h Recommended crystallographic van der of Bondi), Ref. [6] g Consitent van der Waals Radii (Bondi), Ref. [7] Waals Radii (Batsanov), Ref. [8] i Recommended equilibrium van der Waals Radii (Batsanov), Ref. [8]