Simple

Null

Multigraph

5 Graph Theory Cheatsheet

Glossary

Complete

- * **Graph** is an ordered pair $G = \langle V, E \rangle$, where $V = \{v_1, \dots, v_n\}$ is a set of vertices, and $E = \{e_1, \dots, e_m\}$ is a set of edges.
- * Simple **undirected** graphs have $E \subseteq V^{(2)}$, *i.e.* each edge $e_i \in E$ between vertices u and v is denoted by $\{u, v\} \in V^{(2)}$. Such *undirected edges* are also called *links* or *lines*.
 - ∘ $A^{(k)} = \{\{x_1, ..., x_k\} \mid x_1 \neq ... \neq x_k \in A\} = \{S \mid S \subseteq A, |S| = k\}$ is the set of *k*-sized subsets of *A*.
- * Simple **directed** graphs have $E \subseteq V^2$, *i.e.* each edge $e_i \in E$ from vertex u to v is denoted by an ordered pair $\langle u, v \rangle \in V^2$. Such *directed edges* are also called *arcs* or *arrows*.
 - $A^k = A \times \cdots \times A = \{(x_1, \dots, x_k) \mid x_1, \dots, x_k \in A\}$ is the set of k-tuples (Cartesian k-power of A).
- * Multi-edges[™] are edges that have the same end nodes.
- * Loop[™] is an edge that connects a vertex to itself.
- * Simple graph[™] is a graph without multi-edges and loops.
- * Multigraph[™] is a graph with multi-edges.
- * Pseudograph[™] is a multigraph with loops.
- * Null graph is a "graph" without vertices.
- * **Trivial graph** is a graph consisting of a single vertex.
- * Empty (edgeless) graph is a graph without edges.
- * Complete graph K_n is a simple graph in which every pair of distinct vertices is connected by an edge.
- * Weighted graph $^{\mathbb{Z}}G = (V, E, w)$ is a graph in which each edge has an associated numerical value (the weight) represented by the weight function $w : E \to \text{Num}$.
- * **Subgraph** of a graph $G = \langle V, E \rangle$ is another graph $G' = \langle V', E' \rangle$ such that $V' \subseteq V, E' \subseteq E$. Designated as $G' \subseteq G$.
- * **Spanning (partial) subgraph**^{L'} is a subgraph that includes all vertices of a graph.
- * **Induces subgraph** \subseteq of a graph $G = \langle V, E \rangle$ is another graph G' formed from a subset S of the vertices of the graph and *all* the edges (from the original graph) connecting pairs of vertices in that subset. Formally, $G' = G[S] = \langle V', E' \rangle$, where $S \subseteq V$, $V' = V \cap S$, $E' = \{e \in E \mid \exists v \in S : e \mid v\}$.
- * **Adjacency** is the relation between two vertices connected with an edge.
- * **Adjacency matrix** is a square matrix $A_{V\times V}$ of an adjacency relation.
 - ∘ For simple graphs, adjacency matrix is binary, *i.e.* A_{ij} ∈ {0, 1}.
 - ∘ For directed graphs, A_{ij} ∈ {0, 1, −1}.
 - ∘ For multigraphs, adjacency matrix contains edge mutiplicities, *i.e.* $A_{ij} \in \mathbb{N}_0$.
- * **Incidence** is a relation between an edge and its endpoints.
- * **Incidence matrix** $^{\mathbb{Z}}$ is a Boolean matrix $B_{V \times E}$ of an incidence relation.
- * **Degree** $^{\mathbb{Z}}$ deg(v) the number of edges indident to v (loops are counted twice).
 - $\delta(G) = \min_{v \in G} \deg(v)$ is the **minimum degree**.
 - $\Delta(G) = \max_{v \in V} \deg(v)$ is the **maximum degree**.
 - Handshaking Lemma. $\sum_{v \in V} \deg(v) = 2|E|$.

- * A graph is called r-regular if all its vertices have the same degree: $\forall v \in V : \deg(v) = r$.
- * Complement graph G of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent iff they are non-adjacent in G.
- * Intersection graph $^{\bowtie}$ of a family of sets $F = \{S_i\}$ is a graph $G = \Omega(F) = \langle V, E \rangle$ such that each vertex $v_i \in V$ denotes the set S_i , i.e. V = F, and the two vertices v_i and v_j are adjacent whenever the corresponding sets S_i and S_j have a non-empty intersection, i.e. $E = \{\langle v_i, v_j \rangle \mid i \neq j, S_i \cap S_j \neq \emptyset \}$.
- * **Line graph** $G = \langle V, E \rangle$ is another graph $L(G) = \Omega(E)$ that represents the adjacencies between edges of G. Each vertex of L(G) represents an edge of G, and two vertices of L(G) are adjacent iff the corresponding edges share a common endpoint in G (*i.e.* edges are "adjacent"/"incident").
- * Walk is an alternating sequence of vertices and edges in an arbitrary graph traversal.
 - o Trail is a walk with distinct edges.
 - o Path is a walk with distinct vertices (and therefore distinct edges).
 - A walk is **closed** if it starts and ends at the same vertex. Otherwise, it is **open**.
 - Circuit is a closed trail.
 - **Cycle** is a closed path.
- * **Length** of a path (walk, trail) $l = u \rightsquigarrow v$ is the number of edges in it: |l| = |E(l)|.

Term V¹ E² Closed

Walk + + Closed walk

Trail + - Circuit

Path - - Cycle

+ (impossible)

¹Can vertices be repeated? ²Can edges be repeated?

- * **Girth**^{L'} is the length of the shortest cycle in the graph.
- * **Distance** dist(u, v) between two vertices is the length of the shortest path $u \rightsquigarrow v$.
 - $\varepsilon(v) = \max \operatorname{dist}(v, u)$ is the **eccentricity** of the vertex v.
 - $rad(G) = min \varepsilon(v)$ is the **radius** of the graph G.
 - diam(G) = w x v (v) is the diameter of the graph G.
 center(G) = {v | v(v) = rad(G)} is the center of the graph G.
- * Clique $Q \subseteq V$ is a set of vertices inducing a complete subgraph.
- **Stable set** $S \subseteq V$ is a set of independent (pairwise non-adjacent) vertices.
- * **Matching** $^{\mathbf{L}}M\subseteq E$ is a set of independent (pairwise non-adjacent) edges.
- * **Vertex cover** $^{\mathbb{Z}}$ $R \subseteq V$ is a set of vertices "covering" all edges.
- * **Edge cover** $E \subseteq E$ is a set of edges "covering" all vertices.
- * Vertex connectivity $^{\bowtie}$ $\varkappa(G)$ is the minimum number of vertices that has to be removed in order to make the graph disconnected or trivial. Equivalently, it is the largest *k* for which the graph *G* is *k*-vertex-connected.
- * k-vertex-connected graph $^{\mathbb{Z}}$ is a graph that remains connected after less than k vertices are removed, i.e. $\varkappa(G) \geq k$.
 - \circ Corollary of Menger's theorem: graph $G = \langle V, E \rangle$ is k-vertex-connected if, for every pair of vertices $u, v \in V$, it is possible to find k vertex-independent (internally vertex-disjoint) paths between u and v.
 - *k*-vertex-connected graphs are also called simply *k*-connected.
 - o 1-connected graph is called connected, 2-connected is biconnected, 3-connected is triconnected.
- * Edge connectivity $^{\mathbb{Z}} \lambda(G)$ is the minimum number of edges that has to be removed in order to make the graph disconnected. Equivalently, it is the largest k for which the graph G is k-edge-connected.
- * k-edge-connected graph $^{\mathbf{L}}$ is a graph that remains connected after less than k edges are removed, i.e. $\lambda(G) \geq k$.
 - \circ Corollary of Menger's theorem: graph $G = \langle V, E \rangle$ is k-edge-connected if, for every pair of vertices $u, v \in V$, it is possible to find k edge-disjoint paths between u and v.
- * Whitney's Theorem. $\varkappa(G) \leq \lambda(G) \leq \delta(G)$.
- * **Tree** is a connected undirected acyclic graph.
- * Forest is an undirected acyclic graph, *i.e.* a disjoint union of trees.
- * An **unrooted tree** (**free tree**) is a tree without any designated *root*.
- * A **rooted tree** is a tree in which one vertex has been designated the *root*.
 - In a rooted tree, the **parent** of a vertex v is the vertex connected to v on the path to the root.
 - \circ A **child** of a vertex v is a vertex of which v is the parent.
 - A **sibling** to a vertex v is any other vertex on the tree which has the same parent as v.
 - A **leaf** is a vertex with no children. Equivalently, **leaf** is a *pendant vertex*, *i.e.* deg(v) = 1.
 - An **internal vertex** is a vertex that is not a leaf.
 - A k-ary tree is a rooted tree in which each vertex has at most k children. 2-ary trees are called **binary trees**.
- * A **labeled tree** is a tree in which each vertex is given a unique *label*, e.g., $1, 2, \ldots, n$.
- * CAYLEY'S FORMULA. Number of labeled trees on n vertices is n^{n-2} .
- * **Prüfer code** is a unique sequence of labels $\{1, \ldots, n\}$ of length (n-2) associated with the labeled tree on *n* vertices.
 - **ENCODING** (iterative algorithm for converting tree T labeled with $\{1, ..., n\}$ into a Prüfer sequence K):
 - On each iteration, remove the leaf with the smallest label, and extend K with a single neighbour of this leaf.
 - After (n-2) iterations, the tree will be left with two adjacent vertices—there is no need to encode them, because there is only one unique tree on 2 vertices, which requires 0 bits of information to encode.

- **DECODING** (iterative algorithm for converting a Prüfer sequence *K* into a tree *T*):
 - Given a Prüfer code K of length (n-2), construct a set of "leaves" $W = \{1, \ldots, n\} \setminus K$.
 - On each iteration:
 - (1) Pop the *first* element of K (denote it as k) and the *minimum* label in W (denote it as w).
 - (2) Connect k and w with an edge $\langle k, w \rangle$ in the tree T.
 - (3) If $k \notin K$, then extend the set of "leaves" $W := W \cup \{k\}$.
 - After (n-2) iterations, the sequence K will be empty, and the set W will contain exactly two vertices connect them with an edge.

 $\varkappa(G) = 2, \lambda(G) = 3,$

 $\delta(G) = 3, \Delta(G) = 6$