

ME2110 Mechanics of Solids

Simulation of Mohr Circle

-Dr. Prabhat Kumar

Team:

Ashish Bhardwaj (ms22btech11007)

Swapnil Bag (es22btech11034)

Reddicharla Naga Giri Vardhan (es22btech11031)

Devansh Agrawal (es22btech11010)

Mohr Circle

ME2110 Mechanics of Solids

Mohr Formulas

Sign Convention

$$\sigma_{x1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\tau_{x1y1} = -\frac{\left(\sigma_x - \sigma_y\right)}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

$$\sigma_{avg} = \frac{\sigma_x + \sigma_y}{2}$$
 $R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + {\tau_{xy}}^2}$

$$(\sigma_{x1} - \sigma_{avg})^2 + \tau_{x1y1}^2 = R^2$$

which is the equation for a circle with centre (σ avg,0) and radius R.

Example

Draw the Mohr's Circle of the stress element shown below. Determine the principle and the maximum shear stresses.

Calculate the stress in a plane rotated 30° clockwise.

$$\sigma x = -80 \text{ MPa}$$

$$\sigma y = +50 MPa$$

$$\begin{aligned}
\sigma_{avg} &= \frac{-80+50}{2} = -15 \\
R &= \sqrt{\frac{(-80-50)^2}{2} + (-25)^2} \\
&= \sqrt{4850} \\
&= 69.6
\end{aligned}$$

$$ton(Q) = \frac{25}{65} = \frac{5}{13}$$
 $Q_1 = 21.0°$

$$\sigma_{5} = \sigma_{avg} + \frac{\sigma_{x} \cdot \sigma_{y} \cos 20 + 7 \text{ my sin 20}}{2}$$

$$= -15 + \left(\frac{-80 - 50}{2}\right) \cos(-60^{\circ}) - 25 \sin(-60)$$

$$= -15 - \frac{65}{2} + \frac{25 \sqrt{3}}{2} = -25.85$$

$$T_{5} = \frac{(\sigma_{x} - \sigma_{y}) \sin 20 + 7 \text{ my cos 20}}{2}$$

$$= -\frac{(-80 - 50)}{2} \sin(-60) - 25 \cos(-60^{\circ})$$

$$= -65 \frac{\sqrt{3}}{2} - \frac{25}{2} = -68.79$$

Simulation Results

Code Link

https://colab.research.google.com/drive/1mLxWgQq07r7yXUF7Ajpz2I_GV6H0kDhy?usp=sharing

Link for the Code has been sent on the mail also. Instructions for Google Collab are also there.

Thank You

Instructor: Dr. Prabhat Kumar

Team

Ashish Bhardwaj (ms22btech11007)

Swapnil Bag (es22btech11034)

Reddicharla Naga Giri Vardhan (es22btech11031)

Devansh Agrawal (es22btech11010)