SECANT METHOD (derivation)

The secant method can also be derived from geometry, as shown in Figure 1. Taking two initial guesses, x_{i-1} and x_i , one draws a straight line between $f(x_i)$ and $f(x_{i-1})$ passing through the x -axis at x_{i+1} . ABE and DCE are similar triangles.

Hence

$$\frac{AB}{AE} = \frac{DC}{DE}$$

$$\frac{f(x_i)}{x_i - x_{i+1}} = \frac{f(x_{i-1})}{x_{i-1} - x_{i+1}}$$

On rearranging, the secant method is given as

$$x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}$$

Xr = xu - f(xu) (xu-xl) / f(xu) - f(xl)

Figure 1 Geometrical representation of the secant method.

Qa). Find out the root of the function $f(x) = x^4 - x - 10$ using Secant method with [1,2] initial bounds.

b) stop the iterative procedure when the following conditions get satisfied:

- i. |f(xr)| < Es
- ii. Eabs < Es

Numerical Analysis Software Engineering Department of Computer Science University of Karachi Course Supervisor: Ms. Shaista Rais

iii. Er < Es , where Es = 0.001

c) comment on the efficiency of the following conditions to approximate the root of the given function.

				x^4-x-10		secant method				
s.no		х0	f(x0)	x1	f(x1)	x2	f(x2)	erorr < 0.001	Eabs<0.001	Er < 0.001
	1	1	-10	2	4	1.71428571	-3.07788	FALSE		
	2	1.714286	-3.07788	2	4	1.83853125	-0.4128	FALSE	FALSE	FALSE
	3	1.838531	-0.4128	2	4	1.85363596	-0.04777	FALSE	FALSE	FALSE
	4	1.853636	-0.04777	2	4	1.85536335	-0.00543	FALSE	FALSE	TRUE
	5	1.855363	-0.00543	2	4	1.85555944	-0.00062	TRUE	TRUE	TRUE

Open methods

Characteristics:

- 1) Its works with at least one initial bounds
- 2) The root will always be located beyond the bound(s) or in other words the root will not be bracketed between the bounds.

Secant method:

- 1. belongs to open method category
- 2. it takes two initial bounds to start with