Algorithmen und Wahrscheinlichkeit

Woche 4

Minitest

Minitest

Password:

Färbungen

Färbung eines Graphen (V, E) mit k Farben: eine Abbildung $c: V \to [k]$ s.d. $c(u) \neq c(v)$ für alle Kanten $\{u, v\} \in E$ bzw. $V = V_1 \ \dot{\cup} \ \dots \ \dot{\cup} \ V_k$, wobei V_i keine Kanten enthält, V_i := Farbklasse

Chromatische Zahl $\chi(G)$: minimale Anzahl Farben, die für eine Färbung von G benötigt wird.

$$\chi(G) \le k \iff G \text{ ist } k\text{-partit}$$

Gegeben ein Graph G = (V, E), gilt $\chi(G) \le k$?

 $\underline{k}=\underline{2}$: In O(|V|+|E|) Zeit mit BFS (keine ungeraden Kreise)

k > 2: NP-vollständig

Farbklassen tauschen:

Falls wir **jeden Block** mit k Farben färben können, können wir **den ganzen Graphen** mit k Farben färben

Greedy-Färbung

wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, v_2, ..., v_n\}$ $c[v_1] \leftarrow 1$ for i = 2 to i = n do $c[v_i] \leftarrow \min\{k \in \mathbb{N} \,|\, k \neq c(u) \text{ für alle } u \in \mathcal{N}(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

Für jede Reihenfolge der Knoten braucht der Greedy-Algo höchstens $\Delta(G)+1$ viele Farben Es gibt eine Reihenfolge der Knoten, für die der Greedy-Algo nur $\chi(G)$ viele Farben braucht Es gibt bipartite Graphen und eine Reihenfolge der Knoten, für die der Greedy-Algo |V|/2 viele Farben braucht

Heuristik:

 $v_n =$ Knote vom kleinsten Grad. Lösche v_n $v_{n-1} =$ Knote vom kleinsten Grad im Restgraph. Lösche v_{n-1} . Iteriere

Bemerkungen:

- 1) Die Heuristik findet immer eine Färbung mit 2 Farben für **Bäume**
- 2) Die Heuristik findet eine Färbung mit 6 Farben für planare Graphen
- 3) Falls G = (V, E) zusammenhängend und $\exists v \in V : \deg(v) < \Delta(G)$: (Alle Graphen außer reguläre Graphen) Die Heuristik liefert Reihenfolge, für die der Greedy-Algo höchstens $\Delta(G)$ Farben braucht

Satz: Einen 3-färbbaren Graphen kann man in Zeit O(|V| + |E|) mit $O(\sqrt{|V|})$ Farben färben

Algorithmus:

while es gibt Knoten v mit $\deg(v) > \sqrt{|V|}$

färbe v mit neuer Farbe und seine Nachbarn mit 2 weiteren neuen Farben

lösche alle gefärbten Knoten, der Restgraph hat $\Delta(G) \leq \sqrt{\mid V \mid}$

Satz: Einen 3-färbbaren Graphen kann man in Zeit O(|V| + |E|) mit $O(\sqrt{|V|})$ Farben färben

Algorithmus:

while es gibt Knoten v mit $\deg(v) > \sqrt{|V|}$

färbe v mit neuer Farbe und seine Nachbarn mit 2 weiteren neuen Farben

lösche alle gefärbten Knoten, der Restgraph hat $\Delta(G) \leq \sqrt{\mid V \mid}$

Satz: Einen 3-färbbaren Graphen kann man in Zeit O(|V| + |E|) mit $O(\sqrt{|V|})$ Farben färben

Algorithmus:

while es gibt Knoten v mit $\deg(v) > \sqrt{|V|}$

färbe v mit neuer Farbe und seine Nachbarn mit 2 weiteren neuen Farben

lösche alle gefärbten Knoten, der Restgraph hat $\Delta(G) \leq \sqrt{\mid V \mid}$

Satz: Einen 3-färbbaren Graphen kann man in Zeit O(|V| + |E|) mit $O(\sqrt{|V|})$ Farben färben

Algorithmus:

while es gibt Knoten v mit $\deg(v) > \sqrt{|V|}$

färbe v mit neuer Farbe und seine Nachbarn mit 2 weiteren neuen Farben

lösche alle gefärbten Knoten, der Restgraph hat $\Delta(G) \leq \sqrt{\mid V \mid}$

Satz: Einen 3-färbbaren Graphen kann man in Zeit O(|V| + |E|) mit $O(\sqrt{|V|})$ Farben färben

Algorithmus:

while es gibt Knoten v mit $\deg(v) > \sqrt{|V|}$

färbe v mit neuer Farbe und seine Nachbarn mit 2 weiteren neuen Farben

lösche alle gefärbten Knoten, der Restgraph hat $\Delta(G) \leq \sqrt{\mid V \mid}$

Satz: Einen 3-färbbaren Graphen kann man in Zeit O(|V| + |E|) mit $O(\sqrt{|V|})$ Farben färben

Algorithmus:

while es gibt Knoten v mit $\deg(v) > \sqrt{|V|}$

färbe v mit neuer Farbe und seine Nachbarn mit 2 weiteren neuen Farben

lösche alle gefärbten Knoten, der Restgraph hat $\Delta(G) \leq \sqrt{\mid V \mid}$

Satz: Einen 3-färbbaren Graphen kann man in Zeit O(|V| + |E|) mit $O(\sqrt{|V|})$ Farben färben

Algorithmus:

while es gibt Knoten v mit $\deg(v) > \sqrt{|V|}$

färbe v mit neuer Farbe und seine Nachbarn mit 2 weiteren neuen Farben

lösche alle gefärbten Knoten, der Restgraph hat $\Delta(G) \leq \sqrt{\mid V \mid}$

Satz von Brooks

 $G \neq K_n, G \neq C_{2n+1}, G$ zsmhd $\Longrightarrow G$ kann in O(|E|) mit $\Delta(G)$ Farben gefärbt werden

Wahrscheinlichkeitstheorie

Kombinatorik

	Geordnet	Ungeordnet
Mit Zürücklegen	n^k	$\binom{n+k-1}{k}$
Ohne Zürücklegen	n <u>k</u>	$\binom{n}{k}$

	Geordnet	Ungeordnet
Mit Zürücklegen	n^k	$\frac{(n+k-1)!}{k!(n-1)!}$
Ohne Zürücklegen	$\frac{n!}{(n-k)!}$	$\frac{n!}{k!(n-k)!}$

Beispiele:

- 1. Anzahl der verschiedenen bit strings der Länge k $= 2^k$
- 2. Anzahl Möglichkeiten 11 Spieler aus einer Mannschaft von 22 auszuwählen, wobei die Reihenfolge wichtig ist.

$$=\frac{22!}{(22-11)!}$$

3. Anzahl Möglichkeiten 3 Kugeln aus 5 verschiedenen Kugelfarben zu ziehen, wenn jede Kugel nach dem Ziehen zurückgelegt wird?

$$= \begin{pmatrix} 5+3-1 \\ 3 \end{pmatrix}$$

4. Anzahl der möglichen Kanten im Graphen

$$=\binom{n}{2}$$

 \rightarrow ziehe 2 Elemente aus [n] ohne zurücklegen

Wahrscheinlichkeit - Grundbegriffe

Diskreter Wahrscheinlichkeitsraum: $(\Omega, Pr[\cdot])$

Ergebnismenge Ω : Menge von <u>Elementarereignissen</u>

Ereignis E: $E \subseteq \Omega$, d.h. eine Menge von Elementarereignissen

Komplementärereignis \overline{E} von E: $\overline{E}:=\Omega \backslash E$

1.
$$\forall \omega \in \Omega : 0 \leq \Pr[\omega] \leq 1$$

2.
$$\sum_{\omega \in \Omega} \Pr[\omega] = 1$$

3.
$$\forall E \subseteq \Omega : \Pr[E] = \sum_{\omega \in E} \Pr[\omega]$$

Laplace-Raum: Endlicher W-Raum in dem alle Elementarereignisse gleich wahrscheinlich sind

$$\forall \omega \in \Omega : \Pr[\omega] = \frac{1}{|\Omega|}, \Pr[E] = \frac{|E|}{|\Omega|}$$

Bedingte Wahrscheinlichkeit:

Für Ereignisse
$$A, B$$
 s.d. $\Pr[B] > 0$, $\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]}$

$$Pr[A \cap B] = Pr[A \mid B] \cdot Pr[B] = Pr[B \mid A] \cdot Pr[A]$$

Wahrscheinlichkeit - Lemmas

Additionssatz

Für paarweise disjunkte Ereignisse A_1, \ldots, A_n

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] = \sum_{i=1}^{n} \Pr[A_i]$$

Boolsche Ungleichung

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] \leq \sum_{i=1}^{n} \Pr[A_i]$$

Siebformel

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] = \sum_{k=1}^{n} \left((-1)^{k+1} \sum_{S \subseteq [n], |S| = k} \Pr\left[\bigcap_{i \in S} A_i\right]\right)$$

1)
$$Pr[\emptyset] = 0, Pr[\Omega] = 1$$

2)
$$0 \le \Pr[A] \le 1$$

3)
$$Pr[\overline{A}] = 1 - Pr[A]$$

4)
$$A \subseteq B \Longrightarrow \Pr[A] \le \Pr[B]$$

Bedingte Wahrscheinlichkeiten

Multiplikationssatz: Für A_1, \ldots, A_n , falls $\Pr[A_1 \cap A_2 \cap \cdots \cap A_n] > 0$,

$$\Pr[A_1 \cap \cdots \cap A_n] = \Pr[A_1] \cdot \Pr[A_2 \mid A_1] \cdot \Pr[A_3 \mid A_1 \cap A_2] \cdots \Pr[A_n \mid A_1 \cap \cdots \cap A_{n-1}]$$

Satz der totalen Wahrscheinlichkeit: Für paarweise disjunkte Ereignisse A_1,\ldots,A_n und B, s.d. $B\subseteq A_1\cup\cdots\cup A_n$,

$$\Pr[B] = \sum_{i=1}^{n} \Pr[B \mid A_i] \cdot \Pr[A_i]$$

$$= \Pr[B \cap A_i]$$

Satz von Bayes: Für paarweise disjunkte Ereignisse A_1, \ldots, A_n und B, s.d. $B \subseteq A_1 \cup \cdots \cup A_n$, $\Pr[B] > 0$,

$$\forall i \in [n] : \Pr[A_i \mid B] = \frac{\Pr[A_i \cap B]}{\Pr[B]} = \frac{\Pr[B \mid A_i] \cdot \Pr[A_i]}{\sum_{j=1}^n \Pr[B \mid A_j] \cdot \Pr[A_j]}$$