Отчет по лабораторной работе 1.1.1 Измерение удельного сопротивления проволоки

Максим Осипов, Б03-504 10.09.2025

1 Аннотация

Работа посвящена измерению удельного сопротивления тонкой нихромовой проволоки. Электрическое сопротивление определяется двумя способами: через угол наклона графика зависимости напряжения от тока (с использованием аналоговых и цифровых вольтметров и амперметров) и с помощью моста постоянного тока. Диаметр и длина проволоки замеряются линейкой, штангенциркулем и микрометром. Центральное место в исследовании отводится детальному разбору погрешностей измерений, включая систематические и случайные.

2 Теоретические сведения

Удельное сопротивление материала проволоки круглого сечения изготовленной из однородного материала и имеющей постоянную толщину определяется по формуле:

 $\rho = \frac{R_{\rm np}}{l} \frac{\pi d^2}{4}$

где $R_{\rm np}$ -сопротивление измеряемого отрезка проволоки, l - его длина, d - диаметр. Поэтому измеряем длину, диаметр и электрическое сопротивление проволоки.

Диаметр у проволоки не постоянный поэтому нужно учесть случайную погрешность.

Рисунок 1: Схема для измерения сопротивления

Рисунок 2: Зависимость напряжения от силы тока для проводников разной длины

По закону Ома: $R_{\rm пp}=\frac{V_a}{I_a}$, где V_a и I_a - показания вольтметра и амперметра. Для измерения используем схему а) из учебника "Лабораторный практикум по общей физике т.1 Гладов" - рис.1, т.к. погрешность в измерениях там меньше чем в схеме б) (расчет будет в соответствующем параграфе).Получаем формулы для расчета: $R_{\rm пp1}=\frac{V_a}{I_a}=R_{\rm пp}\frac{R_v}{R_{\rm np}+R_v}$. Преобразовываем: $R_{\rm пp}=\frac{R_{\rm np1}}{1-(R_{\rm np1}/R_v)}\approx R_{\rm np1}(1+\frac{R_{\rm np1}}{R_v})$ (Используется приближение, т.к. сопротивление вольтметра

 $R_v \gg R_{\rm np}, R_{\rm np1}$).

График зависимости $V_a(I_a)$ должен представлять прямую, угловой коэффициент которой и будет равен R_1 .

3 Оборудование и системные погрешности

• инека: $\sigma_{\text{лин}} = \pm 0, 5$ мм (о ене делени).

• Штангенциркуль: $\sigma_{\text{штан}} = \pm 0, 1$ мм (маркировка производителя).

• Микрометр: $\sigma_{\text{микр}} = \pm 0,01$ мм (маркировка производителя).

Table 1: Характеристики приборов

	Амперметр	Вольтметр
система прибора	электромагнитная	цифорвая
класс точности	0,5	
предел измерений	0,75A	
число делений шкалы	150	
цена деления	0,5мА/дел	
чувствительность	200дел/А	
внутреннее сопротивление	пренебрежимо мало	10 МОм

4 Результаты измерений и обработка данных

4.1 Измерение диаметра проволоки

	1	2	3	4	5	6	7	8	9	10
$d_{\text{интанг}}$, мм	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
$d_{\text{микр}}, \text{ мм}$	0,35	0,34	0,36	0,36	0,34	0,35	0,37	0,33	0,35	0,36

Погрешности:

• Среднее значение: $\langle d \rangle = \frac{1}{n} \sum_{i=1}^{n} d_i = 0.348$ мм.

• Стандартное отклонение: $\sigma_{\rm d} = \sqrt{\frac{1}{n} \sum_{i=1}^n (d_i - \langle d \rangle)^2} = 0.001$ мм.

• Стандартная погрешность опыта: $\sigma_{\rm cp} = \frac{\sigma_{\rm d}}{\sqrt{n}} = 0.003$ мм.

• Полная погрешность: $\sigma_{\rm полн} = \sqrt{\sigma_{\rm cp}^2 + \sigma_{\rm микр}^2} = 0.005$ мм.

Table 2: ВАХ проволоки

l=2	0 см	l=3	0 см	l=5	0 см	
U, MB	I, мА	U, MB	I, мА	U, MB	I, MA	
141	130	220	130	322	110	
166	140	241	150	341	120	
181	160	288	170	386	140	
216	190	335	200	426	150	
232	210	395	280	555	200	
266	230	486	290	630	220	
301	260	626	370	720	260	
368	320	680	400	774	310	
470	360	873	510	813	400	
681	590	916	660	866	470	

Рисунок 3: Зависимость напряжения от силы тока для проводников разной длины

Результаты исследований зависимостей показаний вольтметра V_a от показаний амперметра I_a представлены графике ВАХ. С помощью метода наименьших квадратов были построены аппроксимирующие прямые $V_B = \langle R \rangle I_A$ по формуле:

$$\langle R \rangle = \frac{\langle VI \rangle}{\langle I^2 \rangle}$$

Погрешность угла наклона в аппроксимации(т.е. погрешность $\langle R \rangle$) найдем как косвенную погрешность наименьших квадратов по формуле: $\sigma_{R\text{случ}} = \sqrt{\frac{1}{n-1}(\frac{\langle V^2 \rangle}{\langle I^2 \rangle} - \langle R \rangle^2)}$.

Систематическую погрешность найдем как частные производные за значения выбрав наибольшие измерения:

$$\sigma_{R\text{\tiny CHCT}} = R \sqrt{\left(\frac{\sigma_{V}}{V max}\right)^{2} + \left(\frac{\sigma_{I}}{I max}\right)^{2}}$$

Полную погрешность вычислим по формуле:

$$\sigma_{R$$
полн = $\sqrt{(\sigma_{R$ случ})^2 + (\sigma_{R}сист $)^2}$

Table 3: Сопротивления

l, cm	$R_{\rm cp}$, Om	$\sigma_R^{\scriptscriptstyle \mathrm{c.r.}},\mathrm{O}$ м	$\sigma_R^{\text{\tiny CИСТ}}$, Ом	R_{np} , Om	σ_R , Om	$R_{\text{\tiny MOCT}}$, Om
20	2,34	0,04	0,01	2,34	0,05	2,134
30	3,15	0,02	0,02	3,15	0,03	3,150
50	5,09	0,14	0,01	5,09	0,14	5,196

Поправка $R_{\mbox{\tiny cp}}/R_V\ll 1$, поэтому ее погрешность можно не учитывать.

Согласно формуле (1) зависимость $R_{\rm np}(l)$ должна быть линейной, поэтому применим МНК для анализа данных, представленных в таблице 3. Погрешность найдем как

$$\frac{\sigma_{\rho}}{\rho} = \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{2\sigma_d}{d}\right)^2}$$

Результаты для каждой из длин представлены в таблице 4

Table 4: Результаты измерения ρ для каждой из длин проволок

l, cm	$\rho, 10^{-6} \text{ Om} \cdot \text{M}$	$\sigma_{\rho}, 10^{-8} \text{OM} \cdot \text{M}$
20	1.06	5,19
30	1.06	3,29
50	1.08	6,34

Окончательно $\rho = (1.10 \pm 0.04) \cdot 10^{-6} \text{ Ом·м}.$

5 Вывод

В ходе эксперимента было определено удельное сопротивление нихромовой проволоки с точностью порядка 5%. Полученное значение итог = $(1.07 \pm 0.052)\cdot 10$ Ом·м находится в пределах табличного диапазона для нихромового сплава, который составляет от 0.97 до $1.14\cdot 10$ Ом·м.

Особое внимание в работе было уделено анализу погрешностей. Сравнительный анализ показал, что случайная погрешность измерений на порядок меньше систематической, что свидетельствует о преобладающем влиянии инструментальногрешности измерительного оборудования. Наибольший вклад в общую погрешность результата внесла погрешность измерений микрометром, которая и оказалась определяющей для итоговой погрешности определения удельного сопротивления