UNIVERSITÉ LIBRE DE BRUXELLES

Faculté des Sciences Département d'Informatique

Éclairage public

HEREMAN Nicolas, VAN BRANDE Rodrigue, HUBLET Magali, VANBERGEN Julien.

Superviseurs: Labbe Martine, Porretta Luciano

Abstract

Ce rapport présente ...

Contents

1	Introduction	2
2	État de l'art	3
3	Méthodes implémentées 3.1 Modélisation du problème	4
4	Résultats expérimentaux	5
5	Discussion	6
6	Conclusion et perspectives	7
Bi	ibliographie	7

Introduction

L'éclairage public est un terme général représentant l'ensemble des moyens mis en place afin d'illuminer les espaces publics. C'est un domaine qui ne doit pas être sous-estimé car il a de grandes conséquences sur notre vie à tous, que ce soit au niveau de sa qualité ou de la sécurité. [?]

Malheureusement, cela a un certain coût, aussi bien financier qu'énergétique, et les risques de pénurie d'électricité ne font qu'augmenter. Tout cela nous indique qu'il devient urgent de réaliser des économies dans ce domaine. En effet, en moyenne, en Belgique, ce coût s'éleve à 53% de la consommation électrique à la charge d'une commune. De plus, selon l'Ademe [?], l'éclairage actuel pourrait être très coûteux pour le financement public. Ainsi, une amélioration de l'efficacité énergétique pourrait réduire la facture de moitié

Depuis plusieurs années, les pouvoirs publics expérimentent des extinctions d'éclairage à certaines heures de la nuit afin de réduire ces coût. Cependant, l'éclairage est un élément essentiel à notre sécurité, c'est pourquoi nous nous devons de trouver d'autres moyens d'économie.

Un éclairage possède un placement dit "optimisé" lorsqu'il s'adapte au contexte, c'est à dire au terrain dans lequel il se trouve. En effet, certains endroits demandent plus de lumière que d'autres. Par exemple, les chemins passants au bord de l'eau. Chaque année, plusieurs personnes meurent noyées car les endroits au bord de l'eau sont peu ou pas éclairés. Mais la pollution lumineuse a un impact très négatif sur les animaux. Par exemple, les abeilles sont fortement attirées par la lumière. Ces petites ouvrières s'activent à la première lueur aperçue. C'est l'une des nombreuses causes de leur disparition près des zones rurales car elles meurent de fatigue! Il ne suffit pas de mettre des lampes partout! Pour des soucis écologiques, on souhaiterait utiliser le moins de lampes possibles.

Le but de notre projet parait donc simple ; nous devons placer un nombre minimum de lampadaires dans un espace donné afin d'éclairer la zone de manière optimale.

Nous utiliserons

État de l'art

Méthodes implémentées

Afin de pouvoir trouver des méthodes pour résoudre le problème, il est important de le définir correctement. Ce que nous voulons, c'est placer des lampadaires afin d'obtenir une luminosité le plus proche possible de ce qui est demandé.

3.1 Modélisation du problème

Pour pouvoir résoudre le problème, nous devons d'abord le modéliser. Nous divisons l'endroit à éclairer sous forme de matrice dont nous remplissons chaque case d'un nombre représentant la luminosité voulue à cet emplacement.

La taille de cette matrice est en lien direct avec la précision des résultats et du temps de calcul. Lorsque le nombre de cases augmente, leur taille diminue. Chaque case représente donc une partie plus précise de l'endroit à éclairer. Le résultat sera donc lui aussi plus précis. Mais si le nombre de case augmente, le nombre de solution possible et donc de calcul à effectuer augmente aussi. Le temps d'exécution sera donc plus long.

Résultats expérimentaux

Discussion

Conclusion et perspectives