Союз Советских Социалистических Республик

Государственный комитет
СССР
по делам изобретений
и открытий

ОПИСАНИЕ (11) 978808 ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву 😐

(22) Заявлено 18.01.80 (21) 2871945/30-15

с присоединением заявки № 👤

(23) Приоритет -

Опубликовано 07.12.82. Бюллетень № 45

Дата опубликования описания 07.12.82

(51) M. Kπ.

A 01 N 33/26

C 07 C 109/02

(53) УДК _{631.811} (088.8)

(72) Авторы изобретения

Г.К. Шугов, И.Я. Калвиныц и П.Т. Трапенциср

(71) Заявитель

Ордена Трудового Красного Знамени институт органического сингеза АН Латвийской ССР

(54) СПОСОБ РЕГУЛИРОВАНИЯ РОСТА РАСТЕНИЙ ЛЮПИНА

Изобретение относится к сельскому хозяйству, а именно к приемам регуляции обмена веществ созревающих растений.

Известно, что 3—(2,2,2-триметилгидразинит) пропионат обладает регулирующей рост растений активностью [1].

Известен также способ повышения урожайности растений путем опрыскивания их раствором препарата "композан" (ГДР) [2].

Недостатками этого способа являются высокая себестоимость используемого препарата, исобходимость неоднократной обработки и невысокая эффективность.

Цель изобретения — повышение зерновой продуктивности растений с одновременным и адекватным увеличением сбора белка.

Цель достигается тем, что в качестве рострегулирующего средства используют водный раствор 3—(2,2,2-триметилгидразиний) пропионата или его солей с концентрацией 0,83—11,7 г/л, причем опрыскивание растений проводят однократно в период от начала закладки генеративных органов до конца цвення главчого соцветия. Для опрыскивания

растений используют иодилы, клориды, молибдаты, нитраты или сульфаты 3—(2,2,2-триметилгидразиний) пропионата меди, аммония, марганца, магния, цинка или кобальта.

Пример. Обработку растений растворами изучаемых солей производили погарифмическим опрыскиванием методом разбавления исходной максимальной концентрации. Затем на 1, III иVI метрах делянок вдоль хода опрыскивания методом закрепленных растений производили учет эффективности препарата. На каждой повторности анализировали по 20 растений. Полученные 60 цифр проверяли на ЭВМ на нормальность ряда и затем обрабатывали по программе регрессионного математического анализа. Исследовали следующие соединения:

K-19-молибдат 3- (2,2,2-триметилтидразиний) пропионата аммония

K-21 — сульфат 3- (2,2,2-триметилгидразиний) пропионата меди

К-41 — сульфат 3- (2,2,2-триметилгидразиний)

пропноната марганца

2

К-51 — иодид 3- (2,2,2-триметилгидразиний) пропионата магния

K-52 - хлорид 3-(2,2,2-триметилгидразиний) пропионата магния

К-61 - сульфат 3-(2,2,2-триметилгидразиний),5 пропионата цинка

К-75 — нитрат 3- (2,2,2-триме гилгидразиний) пропионата кобальта

Результаты обработки приведены в табл. 1—3. Как показывают представленные данные, при обработке растений люпина на этапе органогенеза магниевые соли 3-(2,2,2-триметилгидразиний) пропионата (кватерина) уже на ранних стадиях развития плода увеличили число завязей бобов на 9—15% (табл. 1). Соли мартанца и кобальта, увеличили число завязей і на 6—8%. Влияние солей кватерина на конечную урожайность показано в табл. 2. Наиболее высокие результаты прибавки урожая зерна люпина обеспечивали кобальтовые и магниевые соли кватерина (39 и 42%, соответственно). Молибденовая и марганцевая соли повысили урожай зерна на 35,5%.

Обработку посевов люпина на 1X этапе развития растений проводили на увеличенных, 25 дискретных делянках. Для устранения влияния невыравненности почвенного плодородия применяли метод парного сравнения, т.е. каждая делянка имела свой рядом расположенный контроль. Испытали ; восемь различных дозировок препарата, начиная со средне-оптимальной 0,5 кг/га и ниже. Наибольций интерес

представляют варианты, где высокий эффект был получен при минимальной дозировке препарата. Представленные в табл. 3 данные показывают, что при разбавлении в восемь раз исходного раствора марганцевая и цинковая соли кватерина обеспечили наибольшее повышение урожая зерна (81 и 78% соответственно), Кватерин увеличил урожай только на 59%.

Все испытанные соли дали достаточно высокие результаты в одной из изученных дозировок. Учитывая, что почвы различных районов отличаются по содержанию микроэлементов, эффективность каждой конкретной соли будет наибольшей на тех почвах, где данный микроэлемент содержится в меньшем количестве.

Возможность вести эффективную обработку посевов в столь растянутый период времени имеет большое практическое значение, так как позволяет пережидать дождивые периоды, когда опрыскивание невозможно.

Способ повышения продуктивности растений позволяет совмещать его с одновременным обогащением выращиваемого урожая иодом, фтором или серой для восполнения дефицита указанных элементов в конкретном районе возделывания растений, при этом не наблюдается снижения белка в зерне, валовый сбор белка повышается прямо пропорционально увеличению урожая зерна.

Габлипа

:									٠.			
Варканты	Жетры де-	Число пве	meros l pact.			, 84	Числ	Число завязей 1	pacr.			ı
	JACHRCH		повторностя	E	ئ	контр.		повторности	H	8	Ср. % к контр.	5 .
		-	=	Ξ			-	=	Ξ		•	4.
:	-	31,8	31,3	31,2			12,4	13,2	10,4	12,0		í
Контроль (водя)	m	28,6	31,8	31,5	31,3		. 10,4	13,9	10,4	7,11		. 9
·	.	32,6	29,0	34,0			11,8	8,8	14,0	2,11		78808
		. 23 .	30,4	32,3	30,7	8,96	11,9	11,2	13,9	12,3	105,2	
K-19	m	30,0	29,2	32,5	30,6	97,8	11,3	10,5	13,1	11,6	. 2,66	
	· xo	31,0	31,0	33,0	31,7	101,3	12,7	11,2	5,01	11,5	588	
		30,1	31,8	30,8	30,9	7,86	12,2	11,4	14,1	12,6	107,7	6
K-41	m	32,8	31,8	31,5	32,0	. 102,2	12,2	11,7	12.9	12,3	105,1	
	•	28,8	29.2	30,0	29,2	93,6	10,4	9'6	13,5	11,2	7:56	
•	.	33,5	305.	32,8	32,3	103,2	14,7	12,0	13,8	13,5	115,4	

Продолжение габл. 1

The part The part	Bapit.	Метры			Число	водод			5	Число бобов Число зерен Масса			Macca	Benes (vm	- inch		
1 9,9 9,9 9,1 6,7 8,60 678 7,1 1,1	<u> </u>	KX		повторно	CTH				повтори	OCTH	_			10		7	<u>۔</u> ی
1 9,9 9,9 9,1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0			_	=	Ξ	9	رد	-	=	=	ف	د ځ	1	=		ප්	.
3 9,2 8,3 7,7 8,9 100 79,5 666 690 100 79,45 100,08 709,2 4 6 7,7 9,8 8,9 7,7 462 - 667 754 1022 882 12,8 13,8 13,4 13,4 13,4 860 764 1022 882 123 873 103 77,9 87,05 110,13 87,05 110,13 87,05 110,23 87,05 110,13 87,05 110,23 87,05 110,13 87,05 110,23 87,05 110,23 87,05 110,23 87,05 110,23 87,05 110,23 87,05 110,23 87,05 110,23 87,05 110,23 87,05 110,23 97,03 111,24 111,24 111,24 111,24 111,24 111,24 111,25 111,25 111,25 111,25 111,25 111,25 111,25 111,25 111,25 111,25 111,25 111,25 111,25 111,25		- .	6'6	6.6	6	٠		677	986	879		-	71,55	105,85	86.3		_
4 4	40	m	9,2	8,3	7.7	8,9	8	191	795	· 9 9	069	. 6	79,45	100,001	70.92	. 08	Ē
4 1 10,9 9,6 12,6 11,0 124 860 764 1022 882 128 128 9247 134,03 3 8,7 9,0 11,0 9,6 108 667 733 865 755 109 77.9 87.05 110,25 6 9,8 9,9 9,6 9,6 9,8 110,1 730 746 765 109 77.9 87.13 94.18 1 10,7 10,1 12,4 11,1 12,5 748 854 1031 878 127.2 97.81 101,18 124,87 3 9,4 11,2 12,2 12,3 855 967 858 127,2 97.81 101,18 124,87 4 11,2 11,4 8,8 98.9 521 570 773 136 137,6 103,78 137,73 137,73 137,43 137,73 1 11,2 11,2 12,0 12,	4500	•	7.7	8.6	6 <u>.</u>			462		667			51,82		81,2	}	3
6 9.8 9.0 11.0 9.6 10.8 667 733 865 755 109 77.9 87.05 110.23 6 9.8 9.9 9.6 9.8 110.1 750 800 746 765 109 89.7 91.18 94.18 1 10.7 10.1 12.4 11.1 12.5 748 854 1031 878 127.2 97.81 101.18 124.87 6 7.2 7.9 11.4 8.8 98.9 52.1 570 773 62.1 90 64.04 66.91 94.63 1 12.4 11.0 12.2 11.9 13.4 97.6 84.1 98.7 93.5 13.6	(mos	-	6'01	9.6	12.6	0 =	124	980	\$	1022	882	128	102,28	92.47	134,03	9'601	135.5
6 9,8 9,9 9,6 9,8 110,1 750 800 746 765 109 89,7 91,18 94,18 1 10,7 10,1 12,4 11,1 12,4 11,1 12,4 103,1 878 127,2 97,81 101,18 124,87 3 9,4 11,2 11,5 10,7 120 753 855 967 858 124 97,42 101,18 127,73 6 7,2 7,9 11,4 8,8 98,9 521 570 773 621 90 64,04 66,91 94,63 1 12,4 11,0 12,2 11,9 13,4 976 841 987 935 13,6 117,45 117,45 117,45 8 11,3 9,4 10,0 12,1 10,0 13,6 10,0 13,6 10,0 10,0 10,0 10,1 10,1 10,1 10,1 10,1 10,1 10,1	61-	m	8.7	0'6	0,11	9'6	108	199	733	. 865	755	<u>8</u>	6,17	87,05	110,25		113,4
1 10,7 10,1 12,4 11,1 12,5 748 854 1031 878 127,2 97,81 101,18 124,87 3 9,4 11,2 11,5 10,7 120 753 855 967 858 124 97,42 103,78 127,7 6 7,2 7,9 11,4 8,8 98,9 521 570 773 621 90 64,04 66,91 94,63 1 12,4 11,0 12.2 11,9 134 976 841 987 935 136 109,76 100,13 124,35 3 11,3 9,3 11,6 10,7 120 875 747 902 841 122 100,13 124,35 117,45 1 6 10,1 9,4 12,2 10,6 119,1 769 721 618 7017 102 98,62 98,62 98,62 98,62 98,73 67,78 87,78 <td>٠</td> <td>•</td> <td>8,6</td> <td>6.6</td> <td></td> <td>8,6</td> <td>110,1</td> <td>750</td> <td>8</td> <td>746</td> <td>765</td> <td>. 60</td> <td>7.68</td> <td>91,18</td> <td>94,18</td> <td>. 8'16</td> <td>113.5</td>	٠	•	8,6	6.6		8,6	110,1	750	8	746	765	. 60	7.68	91,18	94,18	. 8'16	113.5
3 9,4 11.2 11.5 10,7 120 753 855 967 858 124 97,42 103,78 127,7 6 7,2 7,9 11,4 8,8 98,9 521 570 773 621 90 64,04 66,91 94,63 1 12,4 11.0 12.1 11,9 134 976 841 987 935 136 119,76 100,13 124,35 3 11,3 9,3 11,6 10,7 120 875 747 902 841 122 100,13 117,45		-	10,7	101	271	11.1	125	748	854	1031	878	127,2	97,81	101.18	124,87	0.801	1340
6 7.2 7.9 11.4 8.8 98.9 521 570 773 621 90 64.04 66.91 94.63 1 12.4 11.0 12.1 11.9 134 976 841 987 935 136 119.76 100,13 124.35 3 11.3 9.3 11.6 10.7 120 875 747 902 841 122 102.52 87.47 117.45 1 6 10.1 9.4 12.2 10.6 119.1 769 736 1002 836 121.2 94.03 90,75 127.36 1 1 10.4 9.4 8.3 9.4 105.6 766 721 618 7017 102 98.62 88.23 67.78 8	Ŧ	m	• •	11.2	11.5	10,7	130	753	855	196	888	124	97.42	8C 501	133.4		
1 12.4 11.0 12.1 11.9 134 976 841 987 935 136 119.76 100,13 124,335 3 11.3 9.3 11.6 10.7 120 875 747 902 841 172 102,52 87,47 117,45 6 10.1 9,4 12.2 10.6 119.1 769 736 1002 836 121,2 94,03 90,75 127,36 1 10.4 9,4 8,3 9,4 105,6 766 721 618 7017 102 98,62 88,23 67,78		•	1,7	. 7,9	¥'11	80 80	6'86	521	570	57.7	· 6 21	8	20.00	16'99		107.b 75.2	25. P
3 11.3 9.3 11.6 10.7 120 875 747 902 841 122 102.52 87.47 117.45 6 10.1 9,4 12.2 10.6 119.1 769 736 1002 836 121.2 94.03 90.75 127.36 1 10.4 9.4 8,3 9,4 105.6 766 721 618 7017 102 98,62 88,23 67.78		_	12,4	0.1.0	12.3	11.9	¥	976	<u>\$</u>	. 286	935	136	119,76	100,13		114.7	? 3
10.1 9,4 12,2 10,6 119,1 769 736 1002 836 121,2 94,03 90,75 127,36 10,4 9,4 8,3 9,4 105,6 766 721 618 7017 102 98,62 88,23 67,78	15.	m	113	9.3	9'11'	10,7	6	875	747	902	841	123	102,52	87,47		102.5	<u> </u>
9,4 8,3 9,4 105,6 766 721 618 7017 102 98,62 88,23 67,78			10.1	. 1 6	22	10.6	119.1	992	736	1002	836	121,2	£,03	90,75		90	1 × × × × × × × × × × × × × × × × × × ×
		- -	10.4	* .	8.3	6 .	105,6.	766	121		101	, 102	98,62			. 22 6.	0.50

						1			1							
a	_			Число	Число бобов		•	ä	Число жрен			Macca	Масса зерен (урожай)	(KCK)	Срешнее	Hee
7.	Tenen		повторносп	#			ĕ	повторности	E				Повтопности	1		
		-	=	111	ۻ	<u></u>	_	=	Ξ	ۻ	٤٨	-	=	=	.	હ
K-52	•	ï	8'6	12,1	0.1	124	837	191	868	834	151	1,001	87.24	102,91	_]. &	120,0
	. •	8.1	121	66	113	127	916	196	918	868	130	110,32	91.85	10901	102,7	0721
	-	. 26	6'6	7°H	10.3	116	211	191	656	814	811	92.17	88	119,04	1.19, 40,911	127,0
	m	0.11	. 🕉	10,6	10.0	112,4	511	619	. 946	38		107,15	81,1	101,62	996	119.4
. <u>2</u>	•	06	8.5	¥21 ·	10.0	112,4	<u> 2</u>	. 189	916	627	105,7	85,28	75,6	105.97	68	0,011
•	-	9	8'6	10,2	9,3	104.5	632	830	790	151	8'801	10,17	97,64	80,82	83,2	102,9
K-75	•	12.2	3	11.4	9'01	119	1040	65	. 988	858	124	119,93	86,38	104,65	9'101	125,6
	•	11.5	2,6	12.4	171	ध्र	. 562	817	<u>\$</u>	898	126	107,21	111,37	119,005	112,5	139,1

Влияние солей 3-(2,2,2-триметилгидразиний) пропионата на урожай зерна люпина

		iX э	ran	1980 r		•	
	Контроль		Уроя	сай зерна по	сле обработки		
Вариан	ц/га		Исходная доза		1	/8 дозы	
		Урожай	Прибав	ка	Урожай	Приба	BK8
· .		. ц/га	ц/га	%	ц/га	ц/га	%
K-19	. 10,1	16,3	+6,2	61	11,7	-1,0	-8,5
K-21	12,7	11,8	-1,1	-8,7	11,7	-1,0	-8,6
K-41	10,1	13,8	+3,7	37	18,3	+8,2	81
K-51	12,8	9,9	-2,7	-21	16,2	+3,6	28
K-52	12,3	18,3	+6,0	49	15,2	+29	23,5
K61	7,9	12,1	+4,2	53	14,1	+6,2	~ 78 :
K-75	11,3	17,6	+6,2	55	12,3	+1,0	9

Формула изобретения

1. Способ регулирования роста растений люпина путем опрыскивания растений раствором рострегулирующего средства, о т л и ч а ющи й с я тем, что, с целью повышения зерновой продуктивности растений с одновременным и адекватным увеличением сбора белка, в качестве рострегулирующего средства используют водный раствор 3- (2,2,2-триметилгидразиний) пропионата или его солей с концентрацией 3,83-11,7 г/л, причем опрыскивание растений проводят однократно в период от начала закладки генеративных органов до конца цветения главного соцветия.

Источники информации, принятые во внимание при экспертизе

1. Авторское свидетельство СССР № 529155, кл. С 07 С 109/02, 1975.

2 "Arch. exp. Veterinarmed", 1978, 32, so N° 4, 593-599.

ВНИИПИ Заказ 9437/5' Тираж 699 Подписное

Филиал ПІП "Пасент", г. Ужгород, ул. Проектная, 4

^{2.} Способ по п. 1, о г л и ч а ю щ и йс я тем, что для опрыскивания растений используют иодиды, хлориды, молибдаты, нитраты или сульфаты 3- (2,2,2-триметилгидразиний) пропионата меди, аммония, марганца, магния, цинка или кобальта.

Union of Soviet **Socialist** Republics

State Committee of the USSR for Inventions and Discoveries

DESCRIPTION OF INVENTION

FOR AUTHOR'S CERTIFICATE

(61) Addition to author's certificate -

(22) Filed on 18.01.80 (21) 2871945/30-15

with attached application № —

(23) Priority -

Published on 07.12.82 Bulletin № 45

Date of publishing of descriptipon 07.12.82

(11)978808

51) Int. Class³ A 01 N 33/26 C 07 C 109/02

(53)UDC 631.811 (088.8)

(72) Authors of the invention

G.K. Shutov, I.Ya. Kalvinsh and P.T. Trapencier

(71) Applicant

Institute of Organic Synthesis of the Academy of Sciences of the Latvian SSR, decorated with the Order of the Red Banner of Labor

(54) A METHOD FOR CONTROLING THE GROWTH OF LUPINE PLANTS

1

The invention relates to agriculture, namely maturing plants.

3-(2,2,2-trimethylhydrazinium)propionate is known to possess plant growth controling activity [1].

"Composan" (GDR) [2].

product cost, the necessity of multiple software. treatments and the low effectivity thereof.

The objective of the invention is to increase the grain production of plants with simultaneous and adequate increase of protein productivity.

The objective is attained by using as the growth regulating means a water solution of 3-(2,2,2-trimethylhydrazinium)propionate or salts hydrazinium)propionate thereof with concentration of 0.83 - 11.7 g/l, the spraying of plants performed once in the period from the beginning of formation of generative hydrazinium)propionate organs till the end of florescence of the main flowerhead. For spraying the plants the iodides, chlorides, molybdates, nitrates or sulfates of copper, ammonium, managanese, magnesium, zinc or cobalt 3-(2,2,2-trimethylhydrazinium)propionate are used.

. 2

Example. Treating of plants by the solutions of the to methods for control of metabolism of investigated salts was performed by spraying with solution, obtained by logaritmic dilution of the starting maximum concentration solution. Afterwards on the I, III and VI metre of crofts along the line of spraying the efficiency of the preparation was A method for increasing of plant productivity evaluated by selecting of individu plants. In each by spraying with a solution of the preparation replication 20 plants were analyzed. The 60 figures thus obtained were checked by computing the The drawback of said method is the high normality of series and treated by regression analysis The following compounds were investigated:

> K-19 - molybdate of ammonium 3-(2,2,2-trimethylhydrazinium)propionate

K-21 - sulfate of copper 3-(2,2,2-trimethyl-

K-42 - sulfate of manganese 3-(2,2,2-trimethyl-

3

K-51 - iodide of magnesium 3-(2,2,2-trimethyl-hydrazinium)propionate

K-52 - chloride of magnesium 3-(2,2,2-trimethyl-hydrazinium)propionate

K-61 - sulfate of zinc 3-(2,2,2-trimethyl-hydrazinium)propionate

K-75 - nitrate of cobalt 3-(2,2,2-trimethyl-hydrazinium)propionate

The results of treatment are presented in Tables 1 - 3.

As evidenced by the data presented here, the treatment of lupine plants by magnesium salts of 3-(2,2,2-trimethylhydrazinium)propionate (quaterine) on the stage of organogenesis increases the number of bean ovaries for 9-15% already at the early stage of fruit formation (Table 1). Manganese and cobalt salts increased the number of ovaries for 6-8%. The influence of Quaterine salts on the final crop yield are shown in Table 2. The highest increase of the yield of lupine grain was provided by the cobalt and magnesium salts of Quaterine (29 and 42% accordingly). The molybdenum and manganese salts increased the yield of grain for 35.5%.

Treatment of lupine sowings on stage IX of crop development was tested on larger size discrete crofts. To exclude the influence of uneven distribution of soil productivity, a paired comparison method was used, i.e., each croft had an adjacent control. Eight different dosage regimes were tested, beginning with the medium-optimal dose of 0.5 kg/ha and lower.

4

The most interesting are the variants where the high effect was obtained with minimal dosage of preparation. The data presented in Table 3 demonstrate, that at the 8-fold dilution of the starting solution the highest increase of grain yield was produced by manganese and zinc salts of Quaterine (81 and 78% accordingly). Quaterine itself increased the crop yield for 59% only.

All investigated salts provided sufficient increase in one of the tested dosages. Considering that soils in various regions differ in microelement content, the efficiency of any particular salt will be the highest on those soils, where the content of particular microelement is lower

The possibility to effectively treat the sowings in extended time period is of high practical importance, since it allows to let pass rain periods when the spraying is impossible.

The method of increasing the productivity of crops provides for its combination with simultaneous enrichment of grown crops with iodine, fluorine or sulfur to compensate the deficiency of said elements in the specific region of cultivating of plants without the decrease of protein content in grain, thus increasing the total yield of protein in direct proportion to increase of grain yield.

Table 1

The influence of 3-(2,2,2-trimethylhydrazinium)propionate salts on the elements of lupine crop yield, stage IV, year 1980

Variations Metres of croft Controls (water) 1 31 28 K-19 3 30 1 29 K-19 3 30 1 30 K-41 3 33	re 1 31.8 28.6 32.6 29.3 30.0 31.0	II 31.3 31.8 30.4 29.0 30.4 29.2 31.8	111 31.2 31.5 34.0 32.3 32.5 33.0	Average	% or controls		replication 11		Average	% or controls
1		11.3 31.3 31.8 29.0 30.4 29.2 31.0	31.2 31.5 34.0 32.3 32.5 33.0	313	COLLETORS		=	111		
3 1 6 6 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3	31.8 28.6 32.6 29.3 30.0	31.3 31.8 29.0 30.4 29.2 31.0 31.8	31.2 31.5 34.0 32.3 32.5 33.0	313		I	11	Ш		
3 1 6 6 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28.6 32.6 29.3 30.0 31.0	31.8 29.0 30.4 29.2 31.0	31.5 34.0 32.3 32.5 33.0	313		12.4	13.2	10.4	12.0	
6 6	32.6 29.3 30.0 31.0	29.0 30.4 29.2 31.0	34.0 32.3 32.5 33.0 30.8)	1	10.4	13.9	10.4	11.7	
3 1 6	29.3 30.0 31.0	30.4 29.2 31.0 31.8	32.3 32.5 33.0 30.8			11.8	8.8	14.0	11.5	
3 1 6	30.0	29.2 31.0 31.8	32.5	30.7	8.96	11.9	11.2	13.9	12.3	105.2
9 1 3	31.0	31.0	33.0	30.6	8.76	11.3	10.5	13.1	11.6	99.2
3	30.1	31.8	30.8	31.7	101.3	12.7	11.2	10.5	11.5	98.3
3	1.00	0.0		30.9	98.7	12.2	11.4	14.1	12.6	107.7
	32.8	31.8	31.5	32.0	102.2	12.2	11.7	12.9	12.3	105.1
6 28	28.8	29.2	30.0	29.2	93.6	10.4	9.6	13.5	11.2	95.7
1 3	33.5	30.5	32.8	32.3	103.2	14.7	12.0	13.8	13.5	115.4
K-51 3 32	32.5	27.3	29.0	29.6	94.6	13.2	10.6	12.4	12.1	103.4
)(9	30.0	30.0	29.6	29.9	95.5	12.5	11.5	14.0	12.7	108.6
1 3(30.3	29.2	33.0	30.8	98.4	11.8	11.6	8.6	11.1	94.9
K-52 3 29	29.5	29.3	31.9	30.2	96.5	13.2	11.0	13.9	12.7	108.6
9 3(30.0	29.2	34.8	31.3	100.0	13.5	13.0	11.4	12.6	107.7
1 3	31.6	30.8	29.5	30.6	8.76	11.5	12.0	12.3	11.9	101.7
K-61 3 32	32.05	31.0	32.0	31.7	101.3	12.7	11.8	12.1	12.2	104.3
6 2	29.8	29.0	31.5	30.1	96.2	10.8	10.4	13.8	11.7	100.0
	32.1	33.3	31.8	32.4	103.5	8.6	11.8	12.8	11.5	98.3
K-75 3 3	33.6	30.9	31.5	32.0	102.2	13.8	10.3	12.2	12.1	103.4
6 3	31.3	30.3	35.9	32.5	103.8	12.4	11.1	13.7	12.4	106.0

k 1 4

The influence of 3-(2,2,2-trimethylhydrazinium) propionate salts on the lupine grain yield, stage IV

		_		-		_					_		_					1					
age	70	0/		100		135.5	113.4	113.5	134.0	135.5	93	141.9	127.0	128.6	105.0	120.0	127.0	127.0	119.4	110.0	102.9	125.6	139.1
Average	Asionogra	Average		80.89		109.6	91.7	91.8	108.0	109.6	75.2	114.7	102.5	104.0	84.9	97.0	102.7	101.1	9.96	8.9	83.2	101.6	112.5
eld)		III	86.3	70.92	81.2	134.03	110.25	94.18	124.87	127.7	94.63	124.35	117.45	127.36	87.79	102.91	106.01	119.04	101.62	105.97	80.82	104.65	119.05
Grain mass (yield)	replication	П	105.85	100.08		92.47	87.05	91.18	101.18	103.78	66.91	100.13	87.47	90.75	88.23	87.24	91.85	88	81.1	75.6	97.64	80.38	111.37
Grai	1	I	71.55	79.45	51.82	102.28	6.77	89.7	97.81	97.42	64.04	119.76	102.52	94.03	98.62	100.7	110.32	92.17	107.15	85.28	71.07	119.93	107.21
	/0	0/		100		128	109	109	127.2	124	06	136	122	121.2	102	121	130	118	111	105.7	108.8	124	126
grains	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Average		069		882	755	292	878	858	621	935	841	836	701	834	868	814	992	729	751	828	898
Number of grains	u	Ш	829	909	299	1022	865	746	1031	296	773	286	902	1002	618	868	816	626	846	916	190	886	991
N.	replication	II	098	795	-	764	733	800	854	855	570	841	747	736	721	192	961	192	629	631	830	649	817
	re	I	219	761	462	860	299	750	748	753	521	926	875	692	992	837	916	71.5	773	641	632	1040	795
p		e		100		124	108	110.1	125	120	6.86	134	120	119.1	105.6	124	127	116	112.4	112.4	104.5	119	125
Number of beans per pod		Average		8.9		11.0	9.6	9.8	11.1	10.7	8.8	11.9	10.7	10.6	9.4	11.0	11.3	10.3	10.0	10.0	9.3	10.6	11.1
er of be	u C	Ш	9.1	7.7	8.9	12.6	11.0	9.6	12.4	11.5	11.4	12.2	11.6	12.2	8.3	12.1	6.6	11.7	10.6	12.4	10.2	11.4	12.4
Numb	replication	II	6.6	8.3	9.8	9.6	9.0	9.9	10.1	11.2	7.9	11.0	9.3	9.4	9.4	8.6	12.1	6.6	8.4	8.5	8.6	8.3	9.5
	re	I	6.6	9.2	7.7	10.9	8.7	9.8	10.7	9.4	7.2	12.4	11.3	10.1	10.4	11.1	11.8	9.2	11.0	9.0	8.0	12.2	11.5
24.4	Metres	01 CT 011	1	3	9	1	3	6	1	3	9	1	3	9	1	3	9	1	3	9	1	3	9
	Variations		Control	Controls	(water)		K-19			K-41			K-51			K-52			K-61			K-75	

Table 3

The influence of 3-(2,2,2-trimethylhydrazinium)propionate salts on the lupine grain yield, stage IX, 1980

			(Grain yield a	fter treatmen	t_	
¥7=!4!	Controls		Starting dose	;		1/8 dose	
Variations	q/ha	Yield	Incr	ease	Yield	Incr	ease
	⁻	q/ha	q/ha	%	q/ha	q/ha	%
K-19	10.1	16.3	+6.2	61	11.7	-1.0	-8.5
K-21	12.7	11.8	-1.1	-8.7	11.7	-1.0	-8.6
K-41	10.1	13.8	+3.7	37	18.3	+8.2	81
K-51	12.8	9.9	-2.7	-21	-16.2	+3.6	28
K-52	12.3	18.3	+6.0	49	15.2	+29	23.5
K-61	. 7.9	12.1	+4.2	53	14.1	+6.2	78
K-75	11.3	17.6	+6.2	55	12.3	+1.0	9

Claims

- 1. A method for controling of lupine plant growth by spraying the plants with a solution of growth-controlling agent, characterized in that for the increase of grain yield of plants with simultaneous and adequate increase of protein production, as an aqueous solution of 3-(2,2,2-trimethylhydrazinium)propionate or salts thereof with concentration of 0.83-11.7 g/l is used as the growth-controlling agent, the spraying of plants is effected once during the period between the beginning of generative organ formation and the end of flowerescence of the main flowerhead.
- 2. The method of Claim 1, characterized in that for the spraying of plants iodides, chlorides, molybdates, nitrates or sulfates of copper, ammonium, manganese, magnesium, zinc or cobalt 3,3,3-(2,2,2-trimethylhydrazinium)-propionate are used.

Sources of information, considered in examination

- 1. USSR author's certificate № 529155, Class C 07 C 109/02, 1975.
- 2 Arch. exp. Veterinarmed., 1978, 32, No 4, 593-599.

VNIIPI Order 9437/5 Copies printed 699 By subscription Branch of PIP "Paveng", Uzhgorod, ul. Proektnaya, 4

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.