## Capítulo 2: Transformações Geométricas (parte 2)

## 1. Transformações Comuns em PDI:

- \* 1 coordenadas cartesianas
- \* 2 coorrdenadas esféricas
- \* 3 conversão entre sistemas
- \* 4 translação
- \* 5 transformação de escala
- \* 6 rotação
- \* 7 transformação de reflexão
- \* 8 transformação de perspectiva

## 2. Propriedades de um Imagem Digital (pixels)

# 1 - Coordenadas Cartesianas (x,y,z)



# 2 - Coordenadas Esféricas $(r,\theta,\phi)$



 $\cos \phi \cdot \cos \theta$ 

 $\cos \phi \cdot \sin \theta$ 

sin φ

$$x = \cos \phi. \cos \theta$$
  $x = \cos \phi. \sin \theta$   $y = \sin \phi$   $z = \sin \phi$ 

## 3 - Conversão entre Sistemas

Sistema de coordenada direto (ou da mão direita) (ou anti-horário)

Sistema de coordenada indireto (ou da mão esquerda) (ou horário)



X = X

# 4 - Translação: movimento que um objeto realiza de um ponto a outro (não altera a topologia do objeto).

Deslocamento paralelo, em linha reta na mesma direção e no mesmo sentido de um objeto ou figura, em função de um vetor percorrendo a mesma distância.



5 - Tranformação de Escala: modifica as dimensões, mas não a topologia.

(em geral, aplica-se um fator de escala)

Fx: fator de escala no eixo X

Fy: fator de escala no eixo Y



$$S = \begin{vmatrix} a & 0 & 0 & x_0 \\ 0 & b & 0 & y_0 \\ 0 & 0 & c & z_0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

(matriz de transformação de escala)



### 6. Rotação: uma transformação angular de um sistema de coordenadas.

Se um ponto P de coordenadas (x, y) for rotacionado de um ângulo B em torno da origem, suas coordenadas, que antes eram definidas como:  $x = R \cos A$ ,  $y = R \sin A$ , passam a ser descritas como  $x' = R \cos(A+B)$ ,  $y' = R \sin(A+B)$ .



$$x' = R \cos (A+B) = R \cos A \cos B - R \sin A \sin B$$
  
 $y' = R \sin (A+B) = R \sin A \cos B + R \cos A \sin B$   
 $x' = x \cos B - y \sin B$   
 $y' = y \cos B + y \sin B$ 

Um ponto qualquer do espaço teria, no sistema (x,y,z), coordenadas dadas pela equação matricial:

$$x = \cos \phi \cdot \cos \theta$$
  
 $y = \cos \phi \cdot \sin \theta$   
 $z = \sin \phi$ 

Esse mesmo ponto, no sistema (x',y',z') teria:

$$x' = \cos \phi' \cdot \cos \theta'$$
  
 $y' = \cos \phi' \cdot \sin \theta'$   
 $z' = \sin \phi'$ 

Relacionado ambos sistemas, obtemos equações que também poderiam ser obtidas pela equação matricial:

$$x'$$
 = 1 0 0  $x$   
 $y'$  = 0  $\cos \theta \sin \theta$   $y$   
 $z'$  = 0  $-\sin \theta \cos \theta$   $z$ 

$$x' = x$$
  
 $y' = R_x(\theta)$   $y$   
 $z' = z$ 

 $R_x(\theta)$ : matriz de rotação de ângulo  $\theta$  em torno do eixo x

$$x'$$
 =  $x$   
 $y'$  =  $R_y(\phi)$   $y$   
 $z'$  =  $z$ 

 $R_v(\phi)$ : matriz de rotação de ângulo  $\phi$  em torno do eixo y

$$\begin{vmatrix} x' \\ y' \\ z' \end{vmatrix} = R_y(\phi) \begin{vmatrix} x \\ y \\ z \end{vmatrix}$$
 
$$\begin{vmatrix} R_y(\phi) : \text{matriz de rotação de ângulo } \\ R_y(\phi) : \text{matriz de rotação de ângulo } \\ \cos \phi \quad 0 \quad -\sin \phi \\ 0 \quad 1 \quad 0 \\ \sin f \quad 0 \quad \cos \phi$$

$$x' = R_z(\psi) = R_z(\psi$$

 $R_z(\psi)$ : matriz de rotação de ângulo  $\psi$  em torno do eixo z

$$R_{z}(\psi) = \begin{vmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

## 7. Transformação de Reflexão: Produz um novo objeto "espelhado"



**8. Transformação de Perspectiva:** resultado da projeção pontual da cena sobre um plano – trata-se de uma transformação não-linear, diferente das anteriores.

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$



## 2. Propriedades de um Imagem Digital (pixels)

**a) Imagem digital:** é uma imagem f(x,y) discretizada tanto espacialmente quanto em amplitude. Portanto, uma imagem digital pode ser vista como uma matriz cujas linhas e colunas identificam um ponto na imagem, cujo valor corresponde ao nível de cinza da imagem naquele ponto.

Para um pixel em particular, utilizaremos letras minúsculas, tais como p e q.

Um subconjunto de pixels de f(x,y) será indicado por S.

**b) Vizinhança:** em uma imagem, um pixel p, de coordenadas (x,y), tem 4 vizinhos horizontais e verticais, cujas coordenadas são (x+1, y), (x-1, y), (x, y+1) e (x, y-1). Estes pixels formam a chamada "4-vizinhança" de p, que será designada  $N_4(p)$ .

Os quatro vizinhos diagonais de p são os pixels de coordenadas: (x-1, y-1), (x-1, y+1), (x+1, y-1) e (x+1, y+1), que constituem o conjunto  $N_d(p)$ .



A "8-vizinhança" de p é definida como:

$$N_8(p) = N_4(p)) * N_d(p)$$



c) Conectividade entre Pixels: importante conceito usado para estabelecer limites de objetos e componentes de regiões em uma imagem.

Para se estabelecer se dois pixels estão conectados, é necessário determinar se eles são adjacentes segundo algum critério e se seus níveis de cinza satisfazem a um determinado critério de similaridade.

Ex.: em uma imagem binária, onde os pixels podem assumir os valores 0 e 1, dois pixels podem ser 4-vizinhos, mas somente serão considerados 4-conectados se possuírem o mesmo valor.



#### d) Adjacência

Um pixel "p" é adjacente a um pixel "q" se eles forem conectados.

Há tantos critérios de adjacência quantos são os critérios de conectividade.

Dois subconjuntos de imagens, S1 e S2, são adjacentes se algum pixel em S1 é adjacente a algum pixel em S2.

#### e) Caminho

Um caminho ("path") de um pixel "p" de coordenadas (x,y) a um pixel "q" de coordenadas (s,t) é uma seqüência de pixels distintos de coordenadas:  $(x_0, y_0)$ ,  $(x_1, y_1)$ , ...,  $(x_n, y_n)$ ,

onde:

$$(x_0, y_0) = (x,y)$$

$$(x_n, y_n) = (s,t)$$

 $(x_i, y_i)$  é adjacente a  $(x_i-1, y_i-1)$ 

1 < i < n, onde n é denominado o comprimento do caminho.

#### f) Medidas de Distância

Dados os pixels "p", "q" e "z", de coordenadas (x,y), (s,t) e (u,v), respectivamente.

Define-se a função distância D, cujas propriedades são:

- (i) D  $(p,q) \ge 0$  (D (p,q) = 0 se e somente se p = q)
- (ii) D (p,q) = D (q,p)
- (iii) D  $(p,z) \le D(p,q) + D(q,z)$

## g) Distância Euclidiana: D (p, q) = $(x - s)^2 + (y - t)^2$

Para esta medida de distância, os pixels com distância euclidiana em relação a (x,y) menor ou igual a algum valor "r", são os pontos contidos em um círculo de raio "r" centrado em (x,y).



### h) Distância $D_4$ (city-block): $D_4$ (p, q) = |x - s| + |y - t|

onde | . | denota módulo (ou valor absoluto).

Neste caso, os pixels tendo uma distância  $D_4$  em relação a (x,y) menor ou igual a algum valor "r" formam um losango centrado em (x,y). Os pixels com  $D_4$  = 1 são os 4-vizinhos de (x,y).



#### i) Distância D8 (tabuleiro de xadrez):

$$D_8(p, q) = max(|x - s|, |y - t|$$

onde "max" é um operador que devolve o maior valor dentre um conjunto de valores entre parênteses.

Neste caso os pixels com distância  $D_8$  em relação a (x,y) menor ou igual a algum valor "r", formam um quadrado centrado em (x,y).

Os pixels com  $D_8 = 1$  são os 8-vizinhos de (x,y).

