

- We know it is good to learn a small model.
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?

Consider learning an image:

 Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Same pattern appears in different places: They can be compressed!

What about training a lot of such "small" detectors and each detector must "move around".

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

1	-1	-1
-1	1	1
-1	-1	1

Filter 1

-1	1	-1
-1	1	1
-1	1	-1

Filter 2

Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride= 1					
1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Dot product 3

-1

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

6 x 6 image

3

-3

Filter 1

6 x 6 image

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=					
1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels

Convolution v.s. Fully

Connected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

image

convolution

Fully-conn ected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0:
0	0	1	0	1	0

The whole CNN

cat dog

Fully Connected Feedforward network

Flattened

Can repeat many times

Max Pooling

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

Filter 2

3 -1	-3 -1
-3 1	0 -3

3	-2	-2	-1

Why Pooling

Subsampling pixels will not change the object bird

We can subsample the pixels to make image smaller fewer parameters to characterize the image

A CNN compresses a fully connected network in two ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

Max Pooling

New image but smaller

-1 1

0 3

2 x 2 image

Each filter is a channel

6 x 6 image

The whole CNN

-1 1

3

A new image

0

Smaller than the original image

The number of channels is the number of filters

Can repeat many times

The whole CNN

cat dog

<u>CNN in</u> Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

<u>CNN in</u> <u>Keras</u> Only modified the *network structure* and *input format (vector -> 3-D array)*

<u>CNN in</u> <u>Keras</u>

Only modified the *network structure* and *input format (vector -> 3-D array)*

AlphaGo

Neural Network +

Next move (19 x 19 positions)

19 x 19 matrix

Black: 1

white: -1

none: 0

Fully-connected feedforward network can be used

But CNN performs much better

AlphaGo's policy network

The following is quotation from their Nature article:

Note: AlphaGo does not use Max Pooling.

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

CNN in speech recognition

CNN in text classification

