Introduction to Machine Learning

Zengchang Qin (Ph.D)

1) Function: $x \rightarrow f(x)$

Given f(x) = 2x + 1

Input	×	X=1	X=2		×= 10
output	f(x)	f(x)=3	£≪)=5	-	于(×)=21

2) if we are only given:

				×= 10
f(x)	f(x)=3	£(×)=5	-	f(x)=21

what is f(x) = ?

3) The world is complicated, usually, the data is like the following:

				×= 10
f(x)	f(x) = 3.2	f(x) = 4.9	-	f(x)=20.9

what is f(x) = ?

4) Now, we introduce the Vector

E.g.
$$x = (x_1, x_2) , f(x) = 2x_1 + 3x_2 - 1$$

If we are given the following table:

$X = (X_1, X_2)$			
$f(x) = f(x', x^{r})$	f(x) = 4.1	f(x)=6.9	 f(x) = 15.8

Q: what is $f(x) = f(x_1, x_2) = ?$

5) Given an image: It can be

represented by a vector (x1, x2 ··· Xn) we need to learn a function

6) Some functions are easy, some are hard.

For complicated case like map a vector of an image, We may not find an existing function we may need a model which can approximate any functions. Artificial Neural Network is such a model.

For Complicated cases

We need to use a

NN to approximate

the underlying relations

8) The function is learned from given training Data, the function can be linear. Can be probabilistic. or a neural network with a large Capacity.