# Picture Calculus for QM

Jiří Velebil Department of Mathematics FEL ČVUT

http://math.feld.cvut.cz/velebil

This talk has been very much influenced by Bob Coecke's views on QM.

Thank you, Bob.

I am not a physicist. That's bad... I am a category theorist. So what? Hear, hear:

> We will need to use some very simple notions of category theory, an esoteric subject noted for its difficulty and irrelevance.

Gregory Moore and Nathan Seiberg: Classical and quantum conformal field theory, *Comm. Math. Physics* 123 (1989), 177–254.

Wow! That's a bit depressing...

# No, it isn't! CT means doing physics all the time!

# What does Category Theory Bring to Quantum Physics and Quantum Computing?

In both physics and computing (and everyday life for that matter):

- 1 We manipulate data. These data have various types.
- We can concatenate these manipulations: both sequentially and in parallel.

The above is essentially what category theory is about!

#### **Pictorial Notation**

Category Theory



Picture Calculus



Intuition: A, B are the state spaces, f is the transformation. So it's wires and boxes (plus axioms — later) instead of vector spaces, matrices, linear transformations, etc.

# Picture Calculi in Physics and Category Theory

- **1** Roger Penrose: picture calculus for spinors ( $\sim$ 1971).
- 2 André Joyal, Ross Street: picture calculus for tensor categories ( $\sim$ 1980).
- Samson Abramsky, Bob Coecke, Duško Pavlović, Peter Selinger, and others...: picture calculi for QM (~2000).

# Quantum Teleportation

#### Introduced in

Charles H. Bennett, Giles Brassard, Claude Crépeau, Richard Josza, Asher Peres and Williams K. Wooters: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, *Physical Review Letters* 70 (1993), 1895–1899.

#### Physically implemented

D. Boschi, S. Branca, F. De Martini, L. Hardy and S. Popescu in 1998, see also ArXiv: quant-ph/9710013

# How Teleportation Works (Roughly)

- 1 Two parties: Alice and Bob, sharing an EPR pair.
- ② Alice teleports a particle to Bob in that she measures a certain state and informs Bob about the result via a classical channel.

#### The categorical expression of Quantum Teleportation:



(B. Coecke, D. Pavlović, 2006)

# Superdense Coding

#### Introduced in

Charles H. Bennett and Stephen J. Wiesner: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, *Physical Review Letters* 69 (1992), 2881–2884.

# How Superdense Coding Works (Roughly)

- 1 Two parties: Alice and Bob, sharing an EPR pair.
- Alice encodes two classical bits into one q-bit and sends it to Bob via a quantum channel. Bob retrieves the message in that he measures a certain state.

# Superdense Coding in Picture Calculus:



(B. Coecke, D. Pavlović, 2006)

#### Support from the Fathers of QM

... I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space anymore.

John von Neumann in a letter to George David Birkhoff, 13 November 1935

#### And Remember

In mathematics you don't understand things. You just get used to them.

John von Neumann (1903–1957)

#### **Primitive Notions**

A (Labelled) Box:

A (Labelled) Wire: V

#### **Basic Axioms**

The Void Wire:

The Involution:

The void wire can be omitted from any picture.

#### **Operators**

These are made from wires and boxes, e.g.,

$$\begin{array}{c|c}
V^* \downarrow \\
\hline
f \\
V \downarrow W \downarrow
\end{array}$$

$$= \int_{V} f$$

$$f = \langle i \rangle$$

#### In Classical Model

V = finitely dimensional complex Hilbert space

 $V^* =$ space conjugate to V

I =the 1-dimensional space (complex numbers)





linear map from  $\mathbb{C}$  to V, i.e.,  $|f\rangle$ 

#### In Classical Model



linear map from V to  $\mathbb{C}$ , i.e.,  $\langle f |$ 



linear map from  $\mathbb C$  to  $\mathbb C$ , i.e., a scalar

# Sequential Composition

Glue together the corresponding wires: this composition is associative and has units:



Thus,  $1_V$  can be replaced by wire V in any picture.

# Parallel Composition



#### Lemma

$$\begin{array}{ccc}
\widehat{1}_{l} & \widehat{\langle f \rangle} & = & \widehat{\langle f \rangle} & \widehat{1}_{l} \rangle & = & \widehat{\langle f \rangle} \\
\widehat{\langle f \rangle} & \widehat{\langle g \rangle} & = & \widehat{\langle g \rangle} & \widehat{\langle f \rangle}
\end{array}$$

#### **Adjoint Operators**

For every operator f there is a unique adjoint  $f^{\dagger}$  obtained just by symmetry along the centre of the box.

For example:

$$V^*$$
 $f$ 
 $V \downarrow W \downarrow$ 

its adjoint is

$$V \downarrow V \downarrow f^{\dagger} V^{*} \downarrow$$

#### In Classical Model

 $\begin{array}{ll} {\sf adjoint} = {\sf transpose} \ {\sf of} \ {\sf the} \ {\sf conjugate} \\ {\sf Observe:} \end{array}$ 

for kets  $\frac{V \downarrow}{\alpha} \frac{V \downarrow}{\beta}$  the scale



#### Bell States and Yanking

For every V there is a Bell state



such that Yanking Axioms hold:





#### This is Already Quite a Powerful Beast

- One can prove basic facts about transposes, adjoints, unitary, self-adjoint and positive operators.
- 2 Traces can be defined.
- One can prove the Hilbert-Schmidt Correspondence.
- Spectral Decomposition Theorem and Born's Rule can be derived. (Requires biproducts.)
- ...and more.

But there is a serious drawback: linear algebra sneaks in!

# The Calculus at Work, No 1: The Hilbert-Schmidt Correspondence

The map



is a bijection.

#### In Classical Model

There is a bijection

$$\operatorname{Lin}(V,W) \cong V^* \otimes W$$

#### The Calculus at Work, No 2: The No-Cloning Theorem

# Suppose

holds for states  $|\alpha\rangle$ ,  $|\beta\rangle$  and  $|\varphi\rangle$ . Then we have the equality

$$\begin{array}{c|ccc}
 & & & & & & & & & & & \\
\hline
V \downarrow & & V \downarrow & & & & & & & \\
\hline
\alpha & & & \alpha & & & & & \\
\end{array} = 
\begin{array}{c|ccc}
 & & & & & & & \\
\hline
\alpha & & & & & & \\
\hline
\end{array}$$

# Proof of The No-Cloning Theorem

#### The Goal

To get rid of linear algebra once for all. This is done by distinguishing classical from quantum.

#### What does Distinguish Classical from Quantum?

Classical data can be copied and deleted:



In quantum world, Bell States prohibit copying (entanglement).

# **Entanglement Prohibits Copying**



# Axioms For Copying and Deleting





#### This Allows Us to Avoid Linear Algebra Altogether

- Bob Coecke and Duško Pavlović (2006): define quantum measurements and spectral decomposition without sums hence no linear algebra, new models.
- ② Bob Coecke (2006): Generalized Hadamard gates axiomatic reasons why teleportation and superdense coding is possible.

#### References

- B. Coecke: Kindergarten Quantum Mechanics, http://fr.arxiv.org/abs/quant-ph/0510032
- S. Abramsky and B. Coecke: Categorical Semantics of Quantum Protocols, http://fr.arxiv.org/abs/quant-ph/0402130
- B. Coecke and D. Pavlović: Quantum measurements without sums, to appear in Mathematics of Quantum Computing and Technology (2006)
- P. Selinger: Dagger Compact Closed Categories and Completely Positive Maps, Proceedings of the 3rd International Workshop on Quantum Programming Languages, Chicago, June 30 - July 1, 2005