Zadání č. VZOR01

a) není definován, b) je kladný,

1.	Množinou všech řešení nerovnice	$2^{ x+3 } < 2 \;$ s neznámou $x \in R$ je		(1 b.)
	a) $(-\infty, -3)$, d) $(-\infty, -4) \cup (2, 8)$,	b) \emptyset , e) $\langle -4, -2 \rangle$.	c) $(-4, -2)$,	
				-

2. Maximální definiční obor funkce $f(x) = \frac{x}{\sin x}$ je a) $(-\infty, \infty)$, b) stejný jako pro funkci $g(x) = \operatorname{tg} x$,

a) $(-\infty, \infty)$, b) stejný jako pro funkci g(x) = 0 c) $\bigcup_{k \in \mathbb{Z}} \langle k\pi, (k+1)\pi \rangle$, d) $\bigcup_{k \in \mathbb{Z}} \langle 2k\pi, (2k+1)\pi \rangle$, e) stejný jako pro funkci $g(x) = \cot x$.

c) je 0,

3. Jestliže $\sin \alpha \cdot \cos \alpha = \frac{1}{2}$ a $\alpha \in (\pi, 2\pi)$, pak $\operatorname{tg}(\pi - \alpha)$ (1 b.)

4. V intervalu $\langle 0, 2\pi \rangle$ má rovnice $\sin x = \cos x - 1$ (1 b.)

a) právě dvě řešení,
b) právě jedno řešení,
c) nekonečně mnoho řešení,
d) právě tři řešení,
e) žádné řešení.

d) je -1,

d) 116,

e) je $\frac{3}{4}\pi$.

e) 150.

5. Algebraický tvar komplexního čísla $z=\frac{1+\mathrm{i}}{1+2\mathrm{i}}\,$ je (1 b.)

a) $\frac{2}{5}$, b) $\frac{3}{5} - \frac{1}{5}i$, c) $1 + \frac{1}{2}i$, d) $\frac{2}{3}i$, e) 1 + i.

6. Jestliže $\log_2 y = 3\log_2 \frac{x-2}{2} - 2\log_2 \frac{x^2-4}{2}$, pak číslo y je rovno (1 b.)

a) $\frac{x-2}{2(x+2)^2}$, b) $3\frac{x-2}{2} - 2\frac{x^2-4}{2}$, c) $-x^2 + 3x + 2$, d) x+2, e) $\frac{x-2}{6} + \frac{x^2-4}{4}$.

7. Jsou dány dvě rekurentní posloupnosti $(a_n)_{n=1}^{\infty}$ a $(b_n)_{n=1}^{\infty}$ následujícími vztahy: $a_1=3, b_1=0$ a pro $n\geq 2$ (1 b.) platí $a_n=2\cdot a_{n-1}, b_n=b_{n-1}+a_n$. Určete b_{11} .

a) 2^{11} , b) $3 \cdot 2^{10}$, c) 6138, d) 2048, e) 0.

8. Mezi čísla 7 a 22 jsou vložena čtyři čísla tak, že spolu s danými čísly tvoří prvních šest po sobě jdoucích (1 b.) členů aritmetické posloupnosti. Součet prvních osmi členů této posloupnosti je

9. Výraz $\frac{6x^3b^3}{25y^4} \cdot \frac{15y}{b^2}$ je roven (1 b.)

a) $\frac{2x^3b^5}{75y^5}$, pokud $y \neq 0 \land b \neq 0 \land x \neq 0$, b) $\frac{18bx^3}{5y^3}$, pokud $y \neq 0 \land b \neq 0$, c) $\frac{2x^3b^5}{75y^2}$, pokud $y \neq 0 \land b \neq 0$, d) $\frac{5bx^3}{18y^3}$, pokud $y \neq 0$, e) $\frac{18bx^3}{5y^3}$, pokud $y \neq 0$.

c) 29,

Zadání č.

VZOR01

10. Graf funkce $y = \left(\frac{1-\sqrt{x}}{\sqrt{x}-x}\right)^2$ je částí

(1 b.)

a) přímky,

b) hyperboly,

c) paraboly,

d) dvou různoběžných přímek,

e) dvou rovnoběžných přímek.

11. Množinou všech řešení nerovnice $|x+5| \ge 4 + |3-2x|$ s neznámou $x \in \mathsf{R}$ je

(2 b.)

(2 b.)

a) $(-\infty, 8)$,

b) $\langle -5, 8 \rangle$,

c) $(-\infty, \infty)$,

d) ∅,

e) $\langle \frac{2}{3}, 4 \rangle$.

12. Směrnice přímek, které procházejí bodem A = [0, -5] a mají od počátku souřadné soustavy vzdálenost (2 b.) $\sqrt{5}$, jsou

a) 2; $\frac{1}{2}$,

b) -3; 2, c) 0; 3,

d) -2; 2,

e) -1; 1.

13. Jsou dány množiny A, B, C a D následovně: $A = \{1, 2, \dots, 1000\}, \ B = \{x \in A : \frac{x}{6} \in Z\}, \ C = \{x \in A : (2 \text{ b.}) \in A : (2 \text{ b.})$

 $\frac{x}{8} \in Z\}, \ D = \{x \in A : 237 \leqq x \leqq 356\}.$ Kolik prv
ků obsahuje množina $(B \cap C) \cup D?$ (Množina Zje množina celých čísel)

a) 160,

b) 125,

c) 159,

d) 154,

e) 156.

14. Rovnice $x^2 - (p+1)x + 4 = 0$ (s neznámou x) nemá reálný kořen právě tehdy, když

a) p = -1,

b) $p \in \mathbb{R}$,

c) $p \in (-5, 3)$,

d) $p \in (-1, 4)$,

e) $p \in (3, 5)$.

15. Kolik znaků Morseovy abecedy lze vytvořit, sestavují-li se tečky a čárky ve skupiny po jedné až pěti? (2 b.)

a) 62,

b) 64,

c) 32,

d) 66,

e) 26.