

Klausur: Grundlagen Regelungstechnik university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK Prof. Dr.-Ing. W. Wöhlke 04.07.2011

Name:	Kempe
Vorname:	Sorch
Immatrikulationsnummer:	1893154
Semester:	E4a .
Notenpunkte:	7
Bemerkungen:	+ //

- 1. Als Lösungsblätter werden nur die Freiräume auf den ausgeteilten Aufgabenblättern akzeptiert. Zusätzliche Vorentwürfe etc. (auf Extraseiten) werden nicht bewertet!
- 2. Damit Unklarheiten bereits zu Beginn der Klausur beseitigt werden können, lesen Sie sich alle Aufgaben durch, bevor Sie mit der Bearbeitung beginnen.
- 3. Zugelassene Hilfsmittel: Zwei Seiten, Laplace-Tabelle, Regelalgorithmen, Otto Tapete
- 4. Die Kommunikation mit anderen Klausurteilnehmern ist nicht erlaubt.
- 5. Jeder Betrugsversuch führt zu einer ungültigen Klausur.
- 6. Schreiben Sie leserlich. Unleserliche Teile von Antworten werden nicht bewertet.
- 7. Die Aufgabenblätter sind **vollständig** abzugeben, ohne zusätzliche Entwürfe auf Extraseiten!
- 8. Ergebnisse werden nur dann als richtig bewertet, wenn sie zweifelsfrei nachvollziehbar sind!
- 9. Reklamationen der Bewertung können nur beim Rückgabetermin erhoben werden!
- 10. Ich wünsche Ihnen viel Erfolg!

Aufgabe	Punkte	Erreichte Punkte
1a,1b,1c,1d	6+6-+6+6	15
2	6	2
3	6	2
4a,4b	6+6	9
5	6	3

university of applied sciences
FACHBEREICH ELEKTROTECHNIK
UND INFORMATIK

Prof. Dr.-Ing. W. Wöhlke 04.07.2011

Aufgabe 1: Systemeigenschaften Glühlampe mit Phasenanschnittssteuerung

Eine Glühlampe wird mittels Phasenanschnittsteuerung

in der Leistung verändert. Die Gleichungen lauten

$$P_{el} = \frac{1}{\pi} \int_{\alpha}^{\pi} \sin^2(\omega t) \hat{u} \hat{i} d(\omega t)$$

mit

$$P_0 = \frac{\hat{u}}{\sqrt{2}} \frac{\hat{i}}{\sqrt{2}}$$

- a) Berechnen Sie das Verhältnis $\frac{P_{cl}}{P_0} = f(\alpha)$.
- b) Handelt es sich um ein statisches oder dynamisches System?
- c) Handelt es sich um ein lineares oder nichtlineares System?
- d) Berechnen Sie die Verstärkung $K_3 = \frac{\partial \frac{P_{el}}{P_0}}{\partial \alpha}$ für $\alpha = 90^{\circ}$.

Hinweis: $\int \sin^2(ax) dx = \frac{1}{2}x - \frac{1}{4a}\sin 2ax$

Klausur: Grundlagen Regelungstechnik

university of applied sciences
FACHBEREICH ELEKTROTECHNIK
UND INFORMATIK

Prof. Dr.-Ing. W. Wöhlke
04.07.2011

Lösung zu Aufgabe 1:

Klausur: Grundlagen Regelungstechnik	
	university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK
	Prof. DrIng. W. Wöhlke 04.07.2011
Lösung zu Aufgabe 1:	
	-
· · · · · · · · · · · · · · · · · · ·	

university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK

> Prof. Dr.-Ing. W. Wöhlke 04.07.2011

Aufgabe 2: Analyse eines mechanischen Subsystems

Gegeben ist das mechanisches Subsystem eines U-Bootes.

Es kann mit folgendem Wirkschaltplan angegeben werden:

Mit den Parametern K_P , K_{II} , K_{I2} , K_{I3} und K_{I4} .

a) Berechnen Sie die Führungsübertragungsfunktion $G_w(s) = \frac{Y(s)}{W(s)}$ mit minimalster Ordnung in normierter Form $(a_n \cdot s^n \text{ mit } a_n = 1)$.

university of applied sciences
FACHBEREICH ELEKTROTECHNIK
UND INFORMATIK

Prof. Dr.-Ing. W. Wöhlke 04.07.2011

Lösung zu Aufgabe 2:

university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK

> Prof. Dr.-Ing. W. Wöhlke 04.07.2011

> > 8

Aufgabe 3: Zustandsform

Gegeben sei die Zustandsform der folgenden Regelstrecke:

$$\mathbf{A} = \begin{bmatrix} -7 & -12 \\ 1 & 0 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \mathbf{c}^{T} = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathbf{c}^{T} = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

Berechnen Sie die Übertragungsfunktion!

Lösung zu Aufgabe 3:

Klausur: Grundlagen Regelungstechnik	
	university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK
	Prof. Drlng, W. Wöhlke 04.07.2011
Lösung zu Aufgabe 3:	
	_
-	

Klausur: Grundlagen Regelungstechnik	university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK
	Prof. DrIng. W. Wöhlke 04.07.2011
Lösung zu Aufgabe 3:	04.07.2011

university of applied sciences
FACHBEREICH ELEKTROTECHNIK
UND INFORMATIK

Prof. Dr.-Ing. W. Wöhlke 04.07.2011

Aufgabe 4: Reglerdimensionierung

Zu einer Regelstrecke

$$G_s(s) = \frac{K_s}{(1 + T_1 s)(1 + T_2 s)}$$

mit $K_s = 4$, $T_1 = 0.5$ sec und $T_2 = 2$ sec ist ein PI-Regler

$$G_R(s) = \frac{K_I}{s} (1 + T_n s) \rightarrow P_I - \text{Regler}$$

auszulegen. Die dominierende Zeitkonstante ist zu kompensieren und es ist ein schnelles Einschwingen ohne Überschwinger zu realisieren.

- a) Wie lauten die Parameter des Reglers?
- b) Der Regelalgorithmus nach der Trapezregel sowie die Abtastzeit sind anzugeben.

Lösung zu Aufgabe 4:

b) Es handelt sich hier land Tabelle um einen PI-Regler
Daniel ergibel sich für die Difforenzengleichung
UK=(Kp+ KIT) eK+ (KIT - Kp) eK-1+UK-1
Wahl der Abtast Zeit? Fir u.a. PI-Regler TS 0,1. TA 30550
ergibé sich T = 0,1.0,5 sec T=0,05 sec = 50 msec
1=0,05 sec = 50 msec V

Klausur: Grundlagen Regelungstechnik university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK Prof. Dr.-Ing. W. Wöhlke 04.07.2011

Lösung zu Aufgabe 4:

a) Pol-Kompensation durchfutiren: Ta = 0,5500
a) Pol-Kompensation durchführen: Tr. 0,5500 Strecke keglet T2=2500
(1+TAS)(1+TAS) (1+TAS)
Ubertragingfulstion nach Pol-Koup. Tos dominante Z.K. dan 2>0,5
GOG = KS O KI (1+T45)S
Gesammet übertragung fruhet aufstelle.
GW(S) = GO(S) = 185. NI 1+60(S) = (1+Tas)s /2/14+Tas)s
1+ Ks. KI
= Ks. KI (1+T,5)S = Ks. KI -> Ks. KI / OKs. KI (1+T,5)S + Ks. KI Txs2+S+Ks. KI / OKs. KI
= 1 T2 T2 T2 KS. KT.
$\frac{T_{\lambda}}{K_{S} \cdot K_{T}} = \frac{1}{K_{S} \cdot K_{T}} = \frac{1}{K_{S} \cdot K_{T}}$ $\frac{T_{\lambda}}{K_{S} \cdot K_{T}} = \frac{1}{K_{S} \cdot K_{T}}$ $\frac{T_{\lambda}}{K_{S} \cdot K_{T}} = \frac{1}{K_{S} \cdot K_{T}}$
2027 = 1 / Nach Tunsfeller
T= 10-Ks·Kz (()2 =) T = 402.Ks.Kz

Klausur: Grundlagen Regelungstechnik	
	university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK
	Prof. Drlng. W. Wöhlke 04.07.2011

Lösung zu Aufgabe 4:

1) Koenflizedenvorglerch & vornehmer	
2-0T=	
Tr A 1 1, 102, Kg2. KS. KE 402 Kg2. Kg2.	
TA . 402 KS 1 / KE KS . KI KIZ	
T1.402 K5 = KIX => KI = T1.402.KS	-
Ke = T. 4192 Ke Vorgobe: schnelles)	
KI = 0,5 sec . 4.12. 4 Bedender (9=1	g
KI = 8 sec = TN	

university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK

> Prof. Dr.-Ing. W. Wöhlke 04.07.2011

Aufgabe 5: Übertragungsfunktion

Berechnen Sie die Übertragungsfunktion: $G_W(s) = \frac{Y(s)}{U(s)}$

Lösung zu Aufgabe 5:

Klausur: Grundlagen Regelungstechnik	
	university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK
	Prof. DrIng. W. Wöhlke 04.07.2011

Lösung zu Aufgabe 5:

Guis	1 + G3(S) A + G4(S) 1 + G4(S)	
	$\frac{G_{\Lambda}(s)}{1+G_{3}(s)}$, $\frac{G_{2}(s)}{1+G_{3}(s)}$, $\frac{G_{2}(s)}{1+G_{3}$)
		3

Klausur: Grundlagen Regelungstechnik	
	university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK
	Prof. DrIng, W. Wöhlke 04.07.2011
Lösung zu Aufgabe 5 :	
	W.

Klausur: Grundlagen Regelungstechnik	
	university of applied sciences FACHBEREICH ELEKTROTECHNIK UND INFORMATIK
	Prof. DrIng. W. Wöhlke 04.07.2011
Lösung zu Aufgabe 5:	