# Mathematics for Computer Science Linear Algebra

Lecture 14: Complex vector spaces

Andrei Krokhin

February 5, 2021

### Reminder from the last two lectures

Let A be an  $n \times n$  matrix.

- A non-zero vector  $\mathbf{x} \in \mathbb{R}^n$  is called an eigenvector of A if  $A\mathbf{x} = \lambda \mathbf{x}$ .
- In this case, λ is called an eigenvalue of A, and x is an eigenvector corresponding to λ.
- The polynomial  $det(\lambda I A)$  is called the characteristic polynomial of A and the equation  $det(\lambda I A) = 0$  the characteristic equation of A.
- The eigenvalues of A are the solutions of  $det(\lambda I A) = 0$ . In particular, A is singular (non-invertible) iff 0 is an eigenvalue of A
- A is called diagonalisable if there is invertible P such that  $P^{-1}AP$  is diagonal. A is diagonalisable iff it has n linearly independent eigenvectors.

# Contents for today's lecture

- Complex numbers
- Complex vector spaces
- Eigenvalues of symmetric real matrices

### Complex numbers: motivation

Assume that we want to analyse the "eigen"-properties of the following matrix

$$A = \left( \begin{array}{cc} -2 & -1 \\ 5 & 2 \end{array} \right).$$

Computing its characteristic equation, we get

$$det(\lambda I - A) = \begin{vmatrix} \lambda + 2 & 1 \\ -5 & \lambda - 2 \end{vmatrix} = \lambda^2 + 1 = 0.$$

- This equation has no real roots, so we know that A has no real eigenvalues, but this is all we can say at the moment. Can we do more?
- It would (probably) be useful to work with some number set that extends  $\mathbb{R}$  and where every polynomial can be factorised into linear polynomials, i.e.

$$\lambda^{n} + c_{1}\lambda^{n-1} + \ldots + c_{n-1}\lambda + c_{n} = (\lambda - \lambda_{1})(\lambda - \lambda_{2})\cdots(\lambda - \lambda_{n}),$$

where the  $\lambda_i$ 's are not necessarily distinct.

### Complex numbers: reminder

A complex number is a number of the form z=a+bi where  $a,b\in\mathbb{R}$  and

• *i* is the imaginary unit: the number such that  $i^2 = -1$ .

#### Then

- Re(z) = a is the real part of z and Im(z) = b is the imaginary part of z
- $|z| = \sqrt{a^2 + b^2}$  is the modulus (or absolute value) of z (note that  $|z| \in \mathbb{R}$ )
- The number  $\overline{z} = a bi$  is the complex conjugate of z (and  $z\overline{z} = |z|^2$ )

The set of all complex numbers is denoted by  $\mathbb{C}$ .

The arithmetic operations on  $\mathbb{C}$  work as follows:

- (a + bi) + (c + di) = (a + c) + (b + d)i
- $(a + bi)(c + di) = ac + adi + bci + bdi^2 = (ac bd) + (ad + bc)i$

It is easy to check that  $\overline{\overline{z}} = z$ ,  $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$  and  $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$ .

## Complex numbers geometrically: reminder

- Each complex number z=a+bi can be viewed as a vector  $(a,b)\in\mathbb{R}^2$
- ullet Addition and multiplication by a real number are the same in  $\mathbb C$  and in  $\mathbb R^2$



- The angle  $\theta = \arctan(b/a)$  in the diagram is called the argument of z.
- The expression  $z = |z|(\cos \theta + i \sin \theta)$  is the polar form of z.
  - Example:  $\sqrt{2} \sqrt{2}i = 2(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}))$ .

## The fundamental theorem of algebra

#### **Theorem**

Each polynomial of degree  $n \ge 1$  with complex coefficients has n complex roots (counting with multiplicities). That is, each such polynomial can be factored into linear polynomials,

$$\lambda^{n} + c_{1}\lambda^{n-1} + \ldots + c_{n-1}\lambda + c_{n} = (\lambda - \lambda_{1})(\lambda - \lambda_{2})\cdots(\lambda - \lambda_{n}),$$

where the  $\lambda_i$ 's are not necessarily distinct.

(Proof omitted)

For example,

$$\lambda^2 + 1 = (\lambda - i)(\lambda + i)$$
 and  $\lambda^4 + 2\lambda^2 + 1 = (\lambda^2 + 1)^2 = (\lambda - i)^2(\lambda + i)^2$ .

All quadratic polynomials can now be factorised by using the standard formula for solving quadratic equations and the fact that, for D<0, we have  $\sqrt{D}=i\sqrt{|D|}$ .

## The vector space $\mathbb{C}^n$ and complex matrices

- Similarly to  $\mathbb{R}^n$ , the vector space  $\mathbb{C}^n$  is defined to consist of all n-tuples  $(v_1, \ldots, v_n)$ , where each  $z_i \in \mathbb{C}$ .
- Each vector  $\mathbf{v}=(v_1,\ldots,v_n)\in\mathbb{C}^n$ , where  $v_i=a_i+b_ii$ , can be represented as

$$\mathbf{v} = (v_1, \dots, v_n) = (a_1 + b_1 i, \dots, a_n + b_n i) = (a_1, \dots, a_n) + i(b_1, \dots, b_n) = \mathbf{a} + i\mathbf{b},$$

where  $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ . Then  $\mathbf{a} = Re(\mathbf{v})$  and  $\mathbf{b} = Im(\mathbf{v})$ .

- Can extend the complex conjugate to  $\mathbb{C}^n$ : If  $\mathbf{v} = \mathbf{a} + i\mathbf{b}$  then  $\overline{\mathbf{v}} = \mathbf{a} i\mathbf{b}$ .
- Example: if  $\mathbf{v} = (3 + i, -2i, 5)$  then

$$Re(\mathbf{v}) = (3,0,5), \quad Im(\mathbf{v}) = (1,-2,0), \quad \overline{\mathbf{v}} = (3-i,2i,5).$$

One can also consider complex matrices, i.e. matrices with complex entries.

All the above notions extend to complex matrices in a natural way.

We will call a matrix a real matrix to emphasize that all its entries are real.

# Algebraic properties of the complex conjugate

The facts that  $\overline{\overline{z}}=z$ ,  $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$  and  $\overline{z_1z_2}=\overline{z_1}$   $\overline{z_2}$  immediately imply

### **Theorem**

For any vectors  $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$  and a scalar  $k \in \mathbb{C}$ , the following holds:

- $\bullet \ \overline{\overline{u}} = u$
- $\overline{k}\overline{\mathbf{u}} = \overline{k} \overline{\mathbf{u}}$
- $\overline{\mathbf{u} + \mathbf{v}} = \overline{\mathbf{u}} + \overline{\mathbf{v}}$
- $\bullet \ \overline{u-v} = \overline{u} \overline{v}$

### **Theorem**

If A is an  $m \times k$  complex matrix and B is a  $k \times n$  complex matrix, then

- $\overline{\overline{A}} = A$
- $\overline{(A^T)} = (\overline{A})^T$
- $\overline{AB} = \overline{A} \overline{B}$

## Complex dot product

The complex dot product in  $\mathbb{C}^n$  is defined as follows: if  $\mathbf{u}=(u_1,\ldots,u_n)$  and  $\mathbf{v}=(v_1,\ldots,v_n)\in\mathbb{C}^n$  then

$$\mathbf{u}\cdot\mathbf{v}=u_1\overline{v_1}+\ldots+u_n\overline{v_n}.$$

The Euclidean norm in  $\mathbb{C}^n$  is then defined as follows:

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{|v_1|^2 + \ldots + |v_n|^2}.$$

Example: let 
$$\mathbf{u} = (1+i, i, 3-i)$$
 and  $\mathbf{v} = (1+i, 2, 4i)$ . Then

$$\mathbf{u} \cdot \mathbf{v} = (1+i)(1-i) + (i)(2) + (3-i)(-4i) = -2 - 10i$$

$$\mathbf{v} \cdot \mathbf{u} = (1+i)(1-i) + 2(-i) + 4i(3+i) = -2 + 10i$$

$$||\mathbf{u}|| = \sqrt{|1+i|^2 + |i|^2 + |3-i|^2} = \sqrt{2+1+10} = \sqrt{13}$$

# Properties of complex dot product

For vectors  $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ , viewed as columns (i.e.  $n \times 1$  matrices), we have

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$$
 and  $||\mathbf{u}||^2 = \mathbf{u} \cdot \mathbf{u} = \mathbf{u}^T \mathbf{u} = \mathbf{u}^T \mathbf{u}$ .

(The first product is the dot product and the other two are matrix products.) For complex vectors  $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ , this becomes

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \overline{\mathbf{v}} = \overline{\mathbf{v}}^T \mathbf{u}$$
 and  $||\mathbf{u}||^2 = \mathbf{u} \cdot \mathbf{u} = \mathbf{u}^T \overline{\mathbf{u}} = \overline{\mathbf{u}}^T \mathbf{u}$ .

#### **Theorem**

For any vectors  $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^n$  and a scalar  $k \in \mathbb{C}$ , the following holds:

- $\mathbf{u} \cdot \mathbf{v} = \overline{\mathbf{v} \cdot \mathbf{u}}$
- $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- $(k\mathbf{u}) \cdot \mathbf{v} = k(\mathbf{u} \cdot \mathbf{v})$  and  $\mathbf{u} \cdot (k\mathbf{v}) = \overline{k}(\mathbf{u} \cdot \mathbf{v})$
- $\mathbf{v} \cdot \mathbf{v} > 0$ , and  $\mathbf{v} \cdot \mathbf{v} = 0$  iff  $\mathbf{v} = \mathbf{0}$

# Complex eigenvalues and eigenvectors

If A is an  $n \times n$  matrix with complex entries.

As in the real case,  $\lambda \in \mathbb{C}$  is an eigenvalue of A if  $A\mathbf{x} = \lambda \mathbf{x}$  for a non-zero  $\mathbf{x} \in \mathbb{C}^n$ . Then  $\mathbf{x}$  is a complex eigenvector corresponding to  $\lambda$ .

As in the real case,

- the eigenvalues of A are the complex roots of  $det(\lambda I A) = 0$ .
- the eigenspace of A corrresponding to an eigenvalue  $\lambda_0$  is the solution space of the linear system  $(\lambda_0 I A)\mathbf{x} = \mathbf{0}$  (considered over  $\mathbb{C}$ ).

#### Theorem

If  $\lambda$  is an eigenvalue of a <u>real</u>  $n \times n$  matrix A and  $\mathbf{x}$  is a corresponding eigenvector, then  $\overline{\lambda}$  is also an eigenvalue of A and  $\overline{\mathbf{x}}$  is a corresponding eigenvector.

### Proof.

Since A is real, i.e.  $\overline{A} = A$ , we have  $A\overline{\mathbf{x}} = \overline{A}\overline{\mathbf{x}} = \overline{A}\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}}$ . (And  $\overline{\mathbf{x}} \neq \mathbf{0}$ .)

# Eigenvalues of real symmetric matrices

#### **Theorem**

If A is a real symmetric matrix then all (complex) eigenvalues of A are real.

### Proof.

- Let  $\lambda \in \mathbb{C}$  be an eigenvalue of A and  $\mathbf{x} \in \mathbb{C}^n$  a corresponding eigenvector.
- Take the complex conjugate of both sides of the equation  $A\mathbf{x} = \lambda \mathbf{x}$ .
- We get  $\overline{A}\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}}$ , and, since  $A = \overline{A}$  (A is real), it follows that  $A\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}}$ .
- Then, using  $A = A^T$ , we compute the number  $\bar{\mathbf{x}}^T A \mathbf{x}$  in two different ways:

$$\begin{split} & \overline{\mathbf{x}}^T A \mathbf{x} = \overline{\mathbf{x}}^T (A \mathbf{x}) = \overline{\mathbf{x}}^T (\lambda \mathbf{x}) = \lambda (\overline{\mathbf{x}}^T \mathbf{x}) = \lambda (\mathbf{x} \cdot \mathbf{x}) = \lambda ||\mathbf{x}||^2, \\ & \overline{\mathbf{x}}^T A \mathbf{x} = (A \overline{\mathbf{x}})^T \mathbf{x} = (\overline{\lambda} \overline{\mathbf{x}})^T \mathbf{x} = \overline{\lambda} (\overline{\mathbf{x}}^T \mathbf{x}) = \overline{\lambda} (\mathbf{x} \cdot \mathbf{x}) = \overline{\lambda} ||\mathbf{x}||^2. \end{split}$$

• Since  $\mathbf{x} \neq \mathbf{0}$ , have  $||\mathbf{x}|| \neq 0$ . So  $\lambda(\overline{\mathbf{x}}^T\mathbf{x}) = \overline{\lambda}(\overline{\mathbf{x}}^T\mathbf{x})$  implies  $\lambda = \overline{\lambda}$ , i.e.  $\lambda \in \mathbb{R}$ .



# Real $2 \times 2$ matrices with complex eigenvalues

### **Theorem**

The complex eigenvalues of the real matrix  $C = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$  are  $\lambda = a \pm bi$ . If a, b are not both zero, then C can be factored as

$$\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) = \left(\begin{array}{cc} |\lambda| & 0 \\ 0 & |\lambda| \end{array}\right) \left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right)$$

where  $\theta$  is the argument of  $\lambda = a + bi$ .

Geometrically, the operator  $T_C$  is equal to rotation by  $\theta$  followed by scaling by  $|\lambda|$ .

### Theorem

Let A be a real 2  $\times$  2 matrix with complex eigenvalues  $\lambda =$  a  $\pm$  bi , where b  $\neq$  0.

Then A is similar to 
$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
.

## What we learnt today

- Complex numbers
- Complex vector spaces
- All (complex) eigenvalues of real symmetric matrices are real
- Real 2 × 2 matrices with complex eigenvalues

#### Next time:

Inner product spaces - generalising the dot product