

AD2 - Organização de Computadores 2011.1 Data de entrega 14/05/2011

"Atenção: Como a avaliação a distância é individual, caso seja constatado que provas de alunos distintos sejam cópias umas das outras, independentemente de qualquer motivo, a todas será atribuída a nota ZERO. As soluções para as questões podem ser buscadas por grupos de alunos, mas a redação final de cada prova tem que ser individual."

- 1. (1,0) Crie um conjunto de instruções de dois operandos, definidas em Linguagem Assembly, necessárias para a realização de operações aritméticas e elabore programas para o cálculo das seguintes equações:
 - a) X = A + (B*(C-A) + (D-E/B)*D)
 - b) Y = (A+B*(C-D*(E/(B-F))+B)*E)
- 2. (1,0) Considere um computador com instruções de um operando e endereçamento por palavras de 16 bits, possuindo o seguinte conjunto de instruções:

Cod. Op. (hexadecimal)	Sigla (assembly)	Descrição
0	END	Fim da execução
1	ADD Op.	$ACC\leftarrow ACC+(Op.)$
2	SUB Op.	ACC←ACC-(Op.)
3	LDA Op.	ACC← (Op.)
4	STA Op.	(Op.)← ACC
5	AND Op.	ACC←ACC and (Op.)
6	XOR Op.	ACC←ACC xor (Op.)
A	JMP Op.	$CI \leftarrow (Op.)$
В	ЈР Ор.	Se ACC>0, então CI← (Op.)
C	JZ Op.	Se ACC=0, então CI← (Op.)
D	JN Op.	Se ACC<0, então CI← (Op.)
Е	GET Op.	Ler dado para (Op.)
F	PRT Op.	Imprimir (Op.)

Considere ainda o código de operação com 4 bits e o campo de operando com 12 bits de endereço. Num dado instante, foi carregado um programa na memória. Os registradores da UCP têm os seguintes valores, em hexadecimal: CI=1AF; RI=20A3;ACC=153C; e a fila de dados de entrada tem os valores decimais: 19, 37, 13 e 52. Considere a instrução contida no RI como já executada.

End.	Conteúdo	End.	Conteúdo
1AF	E1C0	1BA	E1C3
1B0	E1C1	1BB	31C1
1B1	31C1	1BC	11C3
1B2	11C0	1BD	41C1
1B3	41C1	1BE	F1C1
1B4	D1BA	1BF	0000
1B5	E1C2	1C0	31°5
1B6	31C1	1C1	61C4
1B7	21C2	1C2	21C0
1B8	41C1	1C3	11C4
1B9	A1BE		

- a) Qual o valor em hexadecimal de CI, RI e ACC ao final da execução de cada instrução?.
- b) Quais os valores impressos em decimal?.
- c) O que aconteceria com o programa se o conteúdo da posição de endereço 1B3 fosse alterado para 81C1?
- 3. (1,0) Quais são as principais características dos processadores da AMD? (pesquise no livro Introdução à Organização de Computadores, de Mário Monteiro, quinta edição)
- 4. (1,0) Descreva:
 - a) Os modos de endereçamento, explicitando suas aplicações, vantagens e desvantagens.
 - b) Os modos compilação e interpretação, indicando em que circunstâncias um modo é mais vantajoso do que o outro.
- 5. (1,0) Explique, comparando:
 - a) Computadores vetoriais e Computadores matriciais
 - b) Sistemas SMP e Sistemas NUMA
 - c) Arquiteturas RISC e Arquiteturas CISC
- 6. (2,0) Considere as seguintes variáveis com as atribuições de valores decimais:

A = -1;

B=-7;

C=+1;

D=+2

- 6.1. Considere uma máquina que utiliza 4 bits para representar inteiros com sinal em sinal e magnitude e não detecta quando ocorre estouro nos valores atribuídos às variáveis.
 - 6.1.1. (0,4) Indique a representação dos valores atribuídos nesta máquina às variáveis A, B, C e D.
 - 6.1.2. (0,6) Considere que as seguintes atribuições foram executadas nesta máquina:

E=A+B;

F=A-D;

G=C+D;

H=C-B;

Indique o valor em **decimal** atribuído às variáveis E, F, G e H.

- 6.2. Considere uma máquina que utiliza 4 bits para representar inteiros com sinal em complemento a 2 e não detecta quando ocorre estouro nos valores atribuídos às variáveis.
 - 6.2.1. (0,4) Indique a representação dos valores atribuídos nesta máquina às variáveis A, B, C e D.
 - 6.2.2. (0,6) Considere que as seguintes atribuições foram executadas nesta máquina:

E=A+B;

F=A-D;

G=C+D;

H=C-B:

Indique o valor em **decimal** atribuído às variáveis E, F, G e H.

- 7. (1,0) Considere um computador, cuja representação para ponto fixo e para ponto flutuante utilize 20 bits.
 - 7.1. (0,3) Considere o seguinte conjunto de bits representado em hexadecimal CF0B0. Indique o valor deste número **em decimal**, considerando-se que o conjunto representa:
 - 7.1.1. um inteiro sem sinal
 - 7.1.2. um inteiro em sinal magnitude
 - 7.1.3. um inteiro em complemento a 2
 - 7.2. (0,7) Na representação em ponto flutuante, como na representação IEEE 754, utiliza-se o bit mais à esquerda para representar o sinal, os próximos 7 bits representam o expoente e os 12 bits seguintes representam os bits depois da vírgula. Quando todos os bits que representam o expoente são iguais a 0 ou iguais a 1 temos os casos especiais. Caso contrário, as combinações possíveis de bits representam números normalizados no formato +/-(1,b₋₁b₋₂b₋₃b₋₄b₋₅b₋₆b₋₇b₋₈b₋₉b₋₁₀b₋₁₁b₋₁₂ × 2^{Expoente}), onde o bit mais à esquerda representa o sinal (0 para números positivos e 1 para números negativos), os próximos 7 bits representam o expoente em excesso e os 12 bits seguintes representam os bits b₋₁ a b₋₁₂, como mostrado na figura a seguir:

S	Expoente representado em excesso	$b_{-1} b_{-2} b_{-3} b_{-4} b_{-5} b_{-6} b_{-7} b_{-8} b_{-9} b_{-10} b_{-11} b_{-12}$
1	7	12

- 7.2.1. (0,2) Determine o valor do excesso utilizado, sabendo que os projetistas desta máquina utilizaram o mesmo critério utilizado pelo padrão IEEE754 para definir o valor do excesso.
- 7.2.2. (0,2) Indique o valor do conjunto de bits do item anterior considerando que este conjunto está representando um número normalizado em ponto flutuante com a representação acima.
- 7.2.3. (0,2) Qual será a representação em ponto flutuante dos seguintes valores decimais neste computador:
 - 7.2.3.1. +24,25
 - 7.2.3.2. -0.05
- 7.2.4. (0,1) Indique o menor e o maior valor positivo **normalizado** na representação em ponto flutuante para este computador. Mostre os valores **em decimal**.
- 8. (0,5) Explique como é realizada a transferência de dados e a arbitração em um barramento PCI (sugestões de fonte de consulta: livro do Stallings e o site http://computer.howstuffworks.com. Na sua resposta indique as suas fontes de consulta).
- 9. (0,5) Explique o funcionamento de um monitor de vídeo que utiliza a tecnologia OLED (Organic Light-Emitting Diode) (indique as suas fontes de consulta).
- 10. (1,0) Considere uma máquina cujo controlador de teclado possui três registradores para se comunicar com o resto do sistema: o registrador de comandos utilizado para receber comandos do sistema (pedido de leitura do byte referente a uma tecla pressionada, por exemplo), o registrador de estado utilizado para indicar se existe dado para ser enviado, e o registrador de dados utilizado para armazenar o byte referente à tecla pressionada pelo usuário. O primeiro registrador possui o endereço 20, o segundo 21 e o terceiro 22. Para se obter o byte referente a uma tecla pressionada, deve-se enviar o comando 01 para o registrador de comandos do controlador de teclado. O controlador de teclado armazena o valor 01 no registrador de estado quando uma tecla foi pressionada pelo usuário e o byte referente a ela está armazenado no registrador de dados. Descreva **detalhadamente** os três possíveis métodos de comunicação entre o controlador de teclado com a unidade central de processamento e memória principal: por E/S programada, por interrupção e por acesso direto à memória.