Triangle

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 1024 megabytes

Given n strings S_1, S_2, \dots, S_n consisting of lower-cased English letters, we say three strings S_a , S_b and S_c form a triangle, if all the following constraints are satisfied:

•
$$S_a + S_b > S_c \text{ or } S_b + S_a > S_c$$
.

•
$$S_a + S_c > S_b$$
 or $S_c + S_a > S_b$.

•
$$S_b + S_c > S_a$$
 or $S_c + S_b > S_a$.

Here + is the string concatenation operation and strings are compared by lexicographic order. For example, ba, cb and cbaa forms a triangle, because:

- cb + ba = cbba > cbaa.
- cbaa + ba = cbaaba > cb.
- cb + cbaa = cbcbaa > ba.

Count the number of integer tuples (a, b, c) such that $1 \le a < b < c \le n$ and S_a, S_b, S_c forms a triangle.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer n $(1 \le n \le 3 \times 10^5)$ indicating the number of strings.

For the following n lines, the i-th line contains a string S_i $(1 \le |S_i| \le 3 \times 10^5)$ consisting of lower-cased English letters.

It's guaranteed that the total length of the strings in a single test case does not exceed 3×10^5 , and the total length of strings of all test cases does not exceed 10^6 .

Output

For each test case, output one line containing one integer indicating the number of valid tuples.

Example

standard output
16
0
0