Unified Biomedical Knowledge Graph (UBKG)

- The UBKG, a knowledge graph, represents a set of interrelated concepts from biomedical ontologies and vocabularies.
- The UBKG integrates data from the National Library of Medicine's Unified Medical Language System (UMLS) with collections of assertions derived from ontologies or vocabularies that are external to the UMLS.
 - Assertions ≡ triples, or subject-predicate-object relationships.
- Sources and Source Abbreviations (SABs):
 - Source (e.g. DCC, owner) of a set of assertions is identified with a SAB
 - SAB examples:
 - PUBCHEM
 - IDG
 - UBERON
- The Rich Release Format (RRF) files contain information on source vocabularies or ontologies, codes, terms, and relationships both with other codes in the same vocabularies and with UMLS concepts.

Source: https://ubkq.docs.xconsortia.org/

Unified Biomedical Knowledge Graph (UBKG)

- For the purposes of the UBKG, an ontology is a collection of relationships that can be identified between the entities of a particular domain of knowledge.
 - The terms ontology and set of assertions can be used interchangeably for the purposes of the UBKG.
- An assertion includes two entities and a relationship.
 - The two entities are usually described as the subject and the object.
 - A particular entity may be part of more than one ontology. E.g., genes figure in a number of biomedical ontologies.
 - The relationship is expressed as the predicate of the assertion.
 - An assertion is thus a statement in the form: subject-predicate-object
- The domain for an ontology is also known as its namespace.
 - Domains are identified with acronyms called Source Abbreviations (SABs).

Source: https://ubkg.docs.xconsortia.org/

CFDE Data Distillery Data Dictionary

- The purpose of the Data Distillery Knowledge Graph (DDKG) is to link multiple sources of expertly curated data, thus providing data integration across multiple Common Fund data coordinating centers (DCCs).
- For the first phase of the project, the participating DCCs have submitted 29 different datasets for integration into the DDKG
- List of all DCCs and details of their data can be found here:
 https://github.com/nih-cfde/data-distillery/blob/main/DataDistilleryDataDictionary.md

Unified Biomedical Knowledge Graph (UBKG) database

- Latest UBKG database (10 sep 2023) information:
 - URL: <u>http://chiltepin.health.unm.edu:5000/brows</u> er/
 - Neo4j port: 5500 and password: Hello@001
- UBKG comprises the following nodes and edges:

Unified Biomedical Knowledge Graph (UBKG) database

Number of nodes in UBKG: 45,381,495

MATCH ()
RETURN count(*) as count

Count per Node Label in UBKG:

MATCH (n)
RETURN labels(n) as NodeLabel, count(labels(n)) as LabelCount;

"NodeLabel"	 "LabelCount"
["Concept"]	15639530
["Semantic"]	127
["Definition"]	705122
["Term"]	12462662
["Code"]	16574054

Number of edges in UBKG: 199,735,773

MATCH ()-[r]->()
RETURN count(r) as count

Count per Relationship Type in UBKG:

MATCH ()-[r]->()
RETURN TYPE(r) AS relationshipType, COUNT(r) AS relationshipCount;

There are 2101 Relationship Types in UBKG. List of relationship type

Nodes and Edges in UBKG

- Assertion is identified by SAB
- List of SAB:
 https://ubkg.docs.xconsortia.org/c
 ontexts/#data-distillery-context
- "Nodes" table on right shows the corresponding element in HuBMAP for a given field in nodes file. E.g. To access node_label, you need to use Term node with PT relationship.

Nodes

Field	Corresponding element in HuBMAP graph
node_id	Code node
node_label	Term node PT relationship PT (preferred term)
node_definition	Definition
(optional)	node • DEF relationship
node_synonyms (optional)	Term node SYN relationship
node_dbxrefs (optional)	Cross-references

Edges

Field	Correspond ing element in UBKG
subject	Code node
predicate	relationships
object	Code node

Cypher queries: UBKG vs. Local KG

- The cypher queries to fetch the similar information from Local (UNM) KG and UBKG will be different as one needs to use SAB to select a particular domain in UBKG.
 - The following cypher queries are some examples.

UBKG

```
MATCH (uniprot_code:Code 
{SAB:'UNIPROTKB'})-[:PT]-(term:Term)-[r]-(concept:Concept)-[:D 
EF]-(def:Definition) 
WHERE uniprot_code.CODE = "Q02318" 
RETURN uniprot_code.CodeID, term.name, def.DEF, 
concept.CUI
```

Local KG

```
1 MATCH (n:Protein)
   WHERE n.node_id = "UNIPROTKB Q02318"
 3 RETURN n
Graph
               "identity": 255804,
               "labels": [
                 "Protein"
               "properties": {
                 "node namespace": "IDG",
                 "node_synonyms": "Sterol 26-hydroxylase, mitochondrial",
                 "node dbxrefs": "ENSP00000258415",
                 "node_label": "CYP27A1",
                 "node_definition": "MK-24",
                 "node id": "UNIPROTKB 002318"
                "elementId": "255804"
```

- The following GitHub page has several cypher queries to explore the Data Distillery Knowledge Graph (DDKG): https://github.com/TaylorResearchLab/CFDE_DataDistillery_UserGuide.md
- The following GitHub page has some cypher queries to fetch information from UBKG using IDG as SAB:
 https://github.com/unmtransinfo/cfde-distillery/blob/main/cql/UBKG_cypher_examples_sept13.md
- Neo4j performs query caching.
 - The subsequent run of the identical query will return results much more quickly.

 Compounds associated with "Parkinson's Disease" via the IDG "indication" relationship:

MATCH (compound_term:Term)-[:PREF_TERM]-(compound_concept:Concept)-[:indication {SAB:'IDGD'}]-(disease_concept:Concept)-[:PREF_TERM]-(disease_term:Term) WHERE disease_term.name = "Parkinson Disease" RETURN *

• Disease terms containing the string "diabetes" and linked via the IDG indication relationship:

MATCH (t1:Term)<-[:PREF_TERM]-(p1:Concept)-[:indication]-(c2:Concept)--(t2:Term)

WHERE t1.name CONTAINS 'diabetes'

RETURN *;

 Showing compounds associated with proteins via the IDG "bioactivity" relationship:

MATCH (compound_term:Term)-[:PREF_TERM]-(compound:Concept)-[r:bioactivity {SAB:"IDGP"}]-(protein:Concept)-[:PREF_TERM]-(protein_term:Term) RETURN *
LIMIT 10

