(%o1)
$$\frac{2x^3 + 4x^2 + 2x}{6x^3 - 6x}$$

$$(\%02) \frac{x+1}{3x-3}$$

$$\left(2x^2-\frac{1}{x^3}\right)^3$$

2. Desarrolla la expresión: $\left(2x^2 - \frac{1}{x^3}\right)^3$

(%03)
$$\left(2 x^2 - \frac{1}{x^3}\right)^3$$

(%04)
$$8x^6 - 12x + \frac{6}{x^4} - \frac{1}{x^9}$$

3. Determina las raíces enteras del polinomio: $2x^4 - 2x^3 - 14x^2 + 2x + 12$

$$(\%05)$$
 2 x^4 -2 x^3 -14 x^2 +2 x +12

$$(\%06)$$
 [$x = -2, x = -1, x = 1, x = 3$]

4. Descomponer en fracciones simples: $\frac{1}{x^4-1}$

(%i10) partfrac(a,x);
(%o10)
$$-\frac{1}{2(x^2+1)} - \frac{1}{4(x+1)} + \frac{1}{4(x-1)}$$

$$3(x-1) - \frac{x-2}{5} - = 16 + \frac{x}{7}$$

5. Resuelve la ecuación:

(%i11)
$$3\cdot(x-1)-((x-2)/5)=16+x/7$$
;

(\%011) 3 (x-1) -
$$\frac{x-2}{5} = \frac{x}{7} + 16$$

$$(\%012) [x = 7]$$

6. Resuelve la ecuación para cada una de las incógnitas:

(%i13) a:
$$x^2 \cdot y - 2 \cdot x^2 - y = x^2 - 2 \cdot y$$
;
(%o13) $x^2 \cdot y - y - 2 \cdot x^2 = x^2 - 2 \cdot y$
(%i15) solve(a,x);
(%o15) $\left[x = -\sqrt{-\frac{y}{y-3}}, x = \sqrt{-\frac{y}{y-3}} \right]$
(%i16) solve(a,y);
(%o16) $\left[y = \frac{3x^2}{x^2 + 1} \right]$

$$2x^5 + 11x^4 + 2x^3 - 51x^2 - 14x + 60$$

7. Determina las raíces del polinomio: ———

(%i17)
$$2 \cdot x^5 + 11 \cdot x^4 + 2 \cdot x^3 - 51 \cdot x^2 - 14 \cdot x + 60$$
,
(%o17) $2 \cdot x^5 + 11 \cdot x^4 + 2 \cdot x^3 - 51 \cdot x^2 - 14 \cdot x + 60$
(%i18) solve(%),
(%o18) $[x = -\sqrt{5} - 1, x = \sqrt{5} - 1, x = -\frac{3}{2}, x = -\sqrt{6} - 1, x = \sqrt{6} - 1]$
(%i20) solve(%),numelt solve: more equations than unknowns. Unknowns given: $[x]$ Equations given: $[x]$ Equations given: $[x = -3.23606797749979, x = -1.5, x = -3.449489742783178, x = 1.449489742783178]$ —an error. To debug this try: debugmode(true);

8. Resuelve el sistema de ecuaciones: $\frac{\int_{x+3y-z-2t=4}^{x-5y+z-t=1}}{x+3y-z-2t=4}$

(%i1) sistema:
$$[x-5\cdot y + z-t=1, x+3\cdot y-z-2\cdot t=4];$$

(%o1) $[z-5y+x-t=1, -z+3y+x-2t=4]$
(%i3) solve(sistema,[x,y,z,t]);
(%o3) $[[x=\frac{2\%r2+13\%r1+23}{8},y=\frac{2\%r2+\%r1+3}{8},z=\frac{2\%r2+\%r1}{8}]$