

Séquence 5
« Comment la simulation permet de valider le comportement d'un système ? »

les systèmes logiques combinatoires

IT+I2D

TD1

Exercice 1: Transcrire un schéma électrique en équation

K = A + c

 $N = ((c.\k)+f+(\g.j)).a.\b$

Exercice 2 : Transcrire une éguation en schéma électrique

a)
$$Q = (a + b) \bullet (c + d)$$

b)
$$R = (a + /b) \cdot (/c + d)$$

c) $T = /a \bullet b \bullet (c + d) \bullet (/e + f)$

d) $V = a + (/b \cdot c) + a \cdot (b \cdot /c)$

Exercice 3 : Transcrire une équation en logigramme

Utiliser uniquement des portes ET et des portes OU à 2 entrées, et éventuellement des portes NON.

a) $B = a \bullet b \bullet c \bullet d$

b) $C = (a + b) \bullet (c + d)$

c) $F = (/a + /b + /c) \cdot /d$

d) $G = [a + (b \cdot /c)] \cdot /d$

Exercice 4 : Transcrire un logigramme en équation

a) abc

L = (a./b) + (/a.c)

b) abcd

M = [a+(b+c)]+[d+(b+c)]