Modeling Uncertainty in Predicting Emotional Attributes from Spontaneous Speech

Kusha Sridhar And Carlos Busso

Reliability of SER Models

- Ambiguous emotional content leads to low SER performance
- Its is important to know what the model does not know
 - Abstain from predicting when in doubt, reducing the risk of error
 - Involve human-in-the-loop
- SER models should provide a prediction score along with its confidence
 - We can use confidence to achieve a low error rate while still maintaining coverage as high as possible (reject option)
 - Reliable SER models can be helpful in mission critical applications in (e.g., healthcare and security)

Related Work

Speech and Image Tasks

- Selective guaranteed risk algorithm for Imagenet and CIFAR-10 classification tasks
- Capturing uncertainty from text transcriptions and word error rates to solve ASR task

Speech Emotion Recognition

- Use human labelers' agreement to build emotion scoring models [Deng et. al. 2012]
- Include samples from target domain in a semi-supervised fashion based on confidence levels achieved from multi-corpora training [Deng et. al. 2012]
- Applying reject option to emotion classification under a risk minimization framework: learning thresholds based on softmax response and difference between two highest predictions [Sridhar and Busso 2018]
- Use MC dropout as a sampling technique for active learning to train autoencoder with unlabeled data selected based on their posterior probability estimates [Abdelwahab and Busso 2019]

Organization

We present the paper in two parts:

- An analysis on uncertainty prediction in case of arousal, valence and dominance
- Application of uncertainty modeling in reject options for SER problems

Monte Carlo Dropout

- DNNs with dropout regularization can be used to quantify prediction uncertainty [Gal et al., 2016]
 - We can represent the models' uncertainty
 - Use different configurations of dropout, analyzing predictions per sample
 - We can estimate the posterior distribution on the predictions during inferences by sampling weights in a Monte Carlo fashion

Posterior predictive distribution

 $p(x_{test}|X) \approx \int p(x_{test}|\omega)p(\omega|X)d\omega$

Uncertainty Estimation: Monte Carlo Dropout

- Dropout can approximate a Bayesian Inference in deep Gaussian processes [Gal et al., 2016]
 - Change the weights setup randomly by applying dropout
 - As such, different configurations of the network lead to slightly different prediction
 - Prediction Uncertainty will be the variance of N step predictions
 - Multiple iterations through a network with dropout is analogous to obtaining predictions form an ensemble of thinner networks.

Goal: Learn the confidence of the model in each of its predictions

Sample ordered binwise according to uncertainty in prediction

The MSP-Podcast Database

- Use existing podcast recordings
- Divide into speaker turns
- Emotion retrieval to balance the emotional content
- Annotate using crowdsourcing framework

The MSP-Podcast Database

MSP-Podcast

- Collection of publicly available podcasts (naturalness and the diversity of emotions)
 - Interviews, talk shows, news, discussions, education, storytelling, comedy, science, technology, politics, etc.
- Creative Commons copyright licenses
- Single speaker segments, High SNR, no music, no phone quality
- Developing and optimizing different machine learning framework using existing databases
 - Balance the emotional content.
- Emotional annotation using crowdsourcing platform

MSP-Podcast corpus version 1.4

- Test set
 - 9,255 segments from 50 speakers
 (25 males, 25 females)
- Development set
 - 4,300 segments from 30 speakers (15 males, 15 females)
- Train set
 - remaining 19,707 segments

Acoustic Features

Interspeech 2013 Feature set

- 65 low level descriptors (LLD)
- High Level Descriptors (HLDs) are calculated on LLDs resulting in total of 6,373 features
- HLDs include:
 - Quartile ranges
 - Arithmetic mean
 - Root quadratic mean
 - Moments
 - Mean/std. of rising/ falling slopes

4 energy related LLD	Group
Sum of auditory spectrum (loudness)	prosodic
Sum of RASTA-filtered auditory spectrum	prosodic
RMS Energy, Zero-Crossing Rate	prosodic
55 spectral LLD	Group
RASTA-filt. aud. spect. bds. 1–26 (0–8 kHz)	spectral
MFCC 1–14	cepstral
Spectral energy 250–650 Hz, 1 k–4 kHz	spectral
Spectral Roll-Off Pt. 0.25, 0.5, 0.75, 0.9	spectral
Spectral Flux, Centroid, Entropy, Slope	spectral
Psychoacoustic Sharpness, Harmonicity	spectral
Spectral Variance, Skewness, Kurtosis	spectral
6 voicing related LLD	Group
F ₀ (SHS & Viterbi smoothing)	prosodic
Prob. of voicing	voice qual.
log. HNR, Jitter (local & δ), Shimmer (local)	voice qual.

¹Implementation Details

Train separate regression model each for arousal, valence and dominance

- DNN with 3 dense layers, 512 nodes per layer
- SDG optimizer with a learning rate of 0.001
- Cost function: 1-CCC
- Input: 6,373D feature vector
- Output: Prediction score for arousal, valence and dominance

Activation functions:

- Tanh activation at the hidden layers give the best performance across emotional attributes
- We also compare reject option performance with tanh and ReLU as activation functions.
- **Evaluation metric: CCC**

$$\rho_c = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}$$

²Analysis of Uncertainty Prediction - 1

Prediction uncertainty as a function of emotional attributes:

- Train models each for arousal, valence, dominance with dropout and weight regularization
- Obtain test predictions with corresponding uncertainties for each sample
- Design a scatter plot to visualize uncertainty estimates for each test sample create uniform bins using prediction scores

Observations:

- More ambiguous emotional content observed among neutral samples (middle samples high uncertainty)
- Samples with extreme emotional content are predicted more confidently

³Analysis of Uncertainty Prediction - 2

Performance as a function of uncertainty

- Create five subsets according to uncertainty
 - 0-20%: lower uncertainty
 - 80-100% more uncertainty
- Global Selection
- **Balanced Selection**

Observations:

- Regression performance decreases as uncertainty increases.
- Ranges of performance are broader for global selection, creating large performance gaps across sets

⁴Application in Rejection Option for SER

- Accepting or rejecting samples based on prediction uncertainty
 - Rejecting ambiguous samples improves prediction performance of the model but at the same time reduces test coverage

Experiment:

- DNN performance optimized on the validation set with a fixed dropout of 0.5 for all emotional attributes. Here dropout *is not used* during inference.
- Accept or reject a test sample based on prediction uncertainty achieved from MC dropout models. Here dropout was used during inference
- Performance reported with tanh and ReLU activations at the hidden layers

⁵Reject Option Results

Baseline: CCC at 100% test coverage without MC dropout

Observations

- CCC improves as more uncertain samples are rejected, leading to decrease in coverage
- Reject Option leads to gains in CCC across emotional attributes without compromising too much on coverage
- Rejecting samples without attempting to balance their emotional content is better

- MC dropout is an effective method to quantify uncertainty in SER systems
- Confidence of SER models is higher for samples with extreme emotional values
- Rejecting samples with low confidence/high uncertainty increases the regression performance
- At a test coverage of 75%, relative gains in CCC was observed up to:
 - 7.34% (arousal); 13.73% (valence); 8.79% (dominance)
- Future Work
 - Understanding the impact of different activation functions
 - Uncertainty modeling in semi-supervised and unsupervised cases

Thank you

This work was funded by NSF CAREER Grant IIS-1453781

Our Research: msp.utdallas.edu

