

168409

mq

From: Mertz, Prema
 Sent: CRFZ
 To: Wednesday, October 12, 2005 1:30 PM
 Subject: STIC-Biotech/ChemLib
 10/666,225

Please search any 6 amino acids of SEQ ID NO:14 with protein databases.

Please search US PG PUB databases with SEQ ID NO:14.

Thanks.

Prema Mertz, Ph.D., J.D.
 Primary Examiner
 Art Unit 1646
 4D81 Remsen Bldg Mailbox 4C70
 US Patent & Trademark Office
 Tel # (571) 272-0876
 FAX # (571) 273-0876

RECEIVED
CUST 12 2005
PATENT & TRADEMARK OFFICE
U.S. DEPARTMENT OF COMMERCE

14-350aa
CB

10/14/05
JTH

 Searcher:
 Searcher Phone:
 Date Searcher Picked up:
 Date completed:
 Searcher Prep Time:
 Online Time:

 Type of Search
 NA# _____ AA#: _____
 S/L: _____ Oligomer: _____
 Encode/Transl: _____
 Structure #: _____ Text: _____
 Inventor: _____ Litigation: _____

 Vendors and cost where applicable
 STN: _____
 DIALOG: _____
 QUESTEL/ORBIT: _____
 LEXIS/NEXIS: _____
 SEQUENCE SYSTEM: _____
 WWW/Internet: _____
 Other (Specify): _____

Date completed:
 Searcher: Bevany e 2528
 Terminal time:
 Elapsed time:
 CPU time:
 Total time:
 Number of Searches:
 Number of Databases:

Search Site	Type of Search
_____ STIC	_____ N.A. Sequence
_____ CM-1	_____ A.A. Sequence
_____ Pre-S	_____ Structure
Type of Search	
_____ Bibliographic	_____ Other CGN

Vendors
_____ IG
_____ STN
_____ Dialog
_____ APS
_____ Geninfo
_____ SDC
_____ DARC/Questel
_____ Other CGN

Copyright (c) 1993 - 2005 Compugen Ltd.
GenCore version 5.1.6

OM protein - protein search, using sw model
Run on: October 13, 2005, 18:35:50 ; Search time 42 Seconds
801.806 Million cell updates/sec

Title: US-10-666-225-14
Perfect score: 350

Sequence: 1 MRLPDVQLMLVLWALVRAQ. NGNTVKTVDVPMVVACGCS 350

Scoring table: OLIGO
Gapop 60.0 , Gapext 60.0

Searched: 283416 seqs, 96216763 residues
Word size : 6

Total number of hits satisfying chosen parameters: 1748
Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Listing first 1000 summaries
Database : PIR_79:
1: pir1:
2: pir2:
3: pir3:
4: pir4:
SUMMARIES

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match Length	DB ID	Description
1	67	19.1	J05241	activin beta E chain inhibitor beta-C chain activin beta C pre-activin beta C-m
2	4.3	350	J24466	bone morphogenetic protein F14/F9.3 [1]
3	3.1	352	S70580	hypothetical protein S47162
4	3.1	352	J05366	DMDN0H nitrate reductase RnA p
5	2.6	151	S3296	ATP-dependent helicase RnA p
6	2.3	283	T34455	pirilysin (EC 3.4.2.2)
7	2.3	311	D64245	hypothetical protein H85933
8	2.3	367	J64151	unknown protein [1]
9	2.3	480	S22701	activin beta D chain mannoseyltransferas
10	2.3	1045	A29840	serine protease serine proteinase
11	2.3	1060	S63993	acrosome protein
12	2.3	1273	E2611	probable ATP-dependent protein
13	2.0	72	S28793	major merozoite surface protein
14	2.0	86	G64229	hypothetical protein
15	2.0	129	A83212	hypothetical protein
16	2.0	130	F72513	hypothetical protein
17	2.0	135	H02641	hypothetical protein
18	2.0	169	C55394	probable ATP-dependent protein (imported)
19	2.0	183	H03561	major merozoite surface protein
20	2.0	184	B87708	hypothetical protein
21	2.0	189	B89005	hypothetical protein
22	2.0	198	S848236	probable 2-oxoglutarate-dependent protein
23	2.0	233	A25814	SNM1 protein - yeast glycoprotein
24	2.0	237	A64013	hypothetical protein
25	2.0	240	D40595	hypothetical protein
26	2.0	243	B896010	conserved hypothetical protein
27	2.0	244	A2P2753	transcription regulator
28	2.0	245	S34242	hypothetical protein
29	2.0	247	G83798	ABC transporter (A)

30 7 2.0 252 2 D97534 probable transcript
31 7 2.0 274 2 K71275 hypothetical protein
32 7 2.0 281 2 B34498 major merozoite surface protein
33 7 2.0 283 2 T36640 probable ABC-type post-translocation receptor
34 7 2.0 291 2 AF1722 homeobox leucine zipper
35 7 2.0 292 2 T09784 conserved hypothetical annexin - upland c fiber annexin - up
36 7 2.0 303 2 R75528 3-methyl-2-oxobutanoate
37 7 2.0 315 2 T10805 probable branched-chain
38 7 2.0 316 2 T31428 cell division protein
39 7 2.0 334 2 T46885 collagen alpha 2(I)
40 7 2.0 334 2 T36511 conserves
41 7 2.0 338 2 AD3103 collagen alpha 1(I)
42 7 2.0 356 2 S16907 probable succinyl-
43 7 2.0 362 2 H75398 two-component sens
44 7 2.0 371 2 B83781 two-component response
45 7 2.0 378 2 AC1942 hypothetical protein
46 7 2.0 382 2 D75398 cell division protein
47 7 2.0 394 2 F69401 hypothetical protein
48 7 2.0 397 2 C82992 collagen alpha 1(I)
49 7 2.0 421 1 I64185 probable succinyl-
50 7 2.0 442 2 E72029 cell division protein
51 7 2.0 442 2 D86595 thiophene/furan ox
52 7 2.0 445 2 T47813 probable branched-chain
53 7 2.0 452 2 G60905 hypothetical protein
54 7 2.0 467 2 F64765 collagen alpha 1(I)
55 7 2.0 471 2 AB3422 probable membrane protein
56 7 2.0 474 2 D83396 conserved hypothetical protein
57 7 2.0 495 2 B71311 probable thioether
58 7 2.0 500 2 C64043 citrate (pro-3S)-1
59 7 2.0 506 2 T29968 hypothetical protein
60 7 2.0 546 2 D83408 yailu protein - bacillus
61 7 2.0 581 2 C82043 gluamyl-tRNA (gln)
62 7 2.0 588 2 TS1154 probable membrane protein
63 7 2.0 600 2 JC7725 mycodextranase (EC 3.2.1.10)
64 7 2.0 602 2 G83388 methyl-accepting C
65 7 2.0 652 2 T34497 glucose-6-phosphate
66 7 2.0 668 2 A0806 phosphoglycerate kinase
67 7 2.0 668 2 T11778 probable membrane protein
68 7 2.0 723 2 S70098 G70184 phosphoglycerate kinase
69 7 2.0 723 2 G70184 methyl-accepting C
70 7 2.0 763 2 A47563 glucose-6-phosphate
71 7 2.0 764 2 G95112 kinase
72 7 2.0 784 2 F97781 exoribonuclease, V
73 7 2.0 804 2 T05783 hypothetical protein
74 7 2.0 804 2 B89042 protein F14/F9.3 [1]
75 7 2.0 872 2 T10582 hypothetical protein
76 7 2.0 889 1 S47162 DNA-directed RNA polymerase
77 7 2.0 917 1 RDMM0H nitrate reductase RnA p
78 7 2.0 941 1 C76533 ATP-dependent helicase RnA p
79 7 2.0 962 1 SNECPI pirilysin (EC 3.4.2.2)
80 7 2.0 962 2 H85933 proteinase III (im)
81 7 2.0 962 2 F91088 proteinase III (im)
82 7 2.0 968 2 T29532 hypothetical protein
83 7 2.0 974 2 T29007 translation elongation factor
84 7 2.0 1029 2 S63993 outer membrane protein
85 7 2.0 1039 2 T35878 hypothetical protein
86 7 2.0 1049 1 CGB075 collagen alpha 1(I)
87 7 2.0 1049 1 A27079 fibronectin receptor
88 7 2.0 1058 2 A38564 ubiquitin-protein ligase
89 7 2.0 1058 2 JC1254 ubiquitin-protein ligase
90 7 2.0 1060 2 S62876 major merozoite surface protein
91 7 2.0 1085 2 S16752 hypothetical protein
92 7 2.0 1231 2 C84716 collagen alpha 1(I)
93 7 2.0 1487 1 ED8B11 immediate-early protein
94 7 2.0 1487 1 ED8B16 15K transcription
95 7 2.0 1488 2 AG2136 polykaryotic synthase
96 7 2.0 1631 1 SAZQKL major merozoite surface protein
97 7 2.0 1639 2 S05603 probable major surface protein
98 7 2.0 1640 2 A24593 collagen alpha 1(I)
99 7 2.0 1669 1 CGHSAB major merozoite surface protein
100 7 2.0 1669 1 CGMSAB major merozoite surface protein
101 7 2.0 1701 2 A26884 major merozoite surface protein
102 7 2.0 1701 2 A54498 major merozoite surface protein

103	7	2.0	1708	2	F63189	protochlorophyll IX	176	6	1.7	120	2	\$30770
104	7	2.0	1726	1	S42QGM	major merozoite su	177	6	1.7	120	2	B97057
105	7	2.0	1726	2	A55948	major merozoite su	178	6	1.7	120	2	G97833
106	7	2.0	1894	2	C14689	protein-tyrosine-p	179	6	1.7	121	2	S64505
107	7	2.0	2021	2	A7859	190-Ka cell suffa	180	6	1.7	122	2	F72636
108	7	2.0	2249	2	A1477	190K surface anti	181	6	1.7	123	2	S63055
109	7	2.0	2169	2	T00296	toxin B - Escheric	182	6	1.7	124	2	C83137
110	7	2.0	3972	2	S75251	hypothetical prote	183	6	1.7	125	2	E83746
111	6	1.7	33	2	B26762	proteamine (mugil)	184	6	1.7	125	2	S643295
112	6	1.7	34	1	TYUY2	protamine Y2 - blu	185	6	1.7	129	2	S05342
113	6	1.7	57	2	B87352	hypothetical prote	186	6	1.7	129	2	AH2003
114	6	1.7	61	1	S18336	hypothetical prote	187	6	1.7	129	2	G70657
115	6	1.7	67	2	A89226	cAMP-dependent pro	188	6	1.7	133	2	AB3465
116	6	1.7	68	2	D74248	hypothetical prote	189	6	1.7	134	2	B87022
117	6	1.7	69	2	T7938	hypothetical prote	190	6	1.7	135	1	LNHUG
118	6	1.7	74	2	S77212	hypothetical prote	191	6	1.7	136	2	S07637
119	6	1.7	74	2	B68871	hypothetical prote	192	6	1.7	136	2	D64324
120	6	1.7	74	2	P77551	hypothetical prote	193	6	1.7	137	2	T45371
121	6	1.7	75	2	D84003	probable bacterop	194	6	1.7	138	2	S14179
122	6	1.7	76	2	I58885	elastin - bovine (195	6	1.7	138	2	G70642
123	6	1.7	76	2	B71840	hypothetical prote	196	6	1.7	138	2	S04165
124	6	1.7	76	2	B6675	hypothetical prote	197	6	1.7	139	2	AF0685
125	6	1.7	80	2	G85414	conserved hypothet	198	6	1.7	139	2	PC4217
126	6	1.7	80	2	A0621	probable bacterop	199	6	1.7	139	2	DD5895
127	6	1.7	88	2	E87415	hypothetical prote	200	6	1.7	140	2	T45371
128	6	1.7	88	2	S77426	hypothetical prote	201	6	1.7	140	2	S04165
129	6	1.7	88	2	H83765	hypothetical prote	202	6	1.7	140	2	C69080
130	6	1.7	89	2	D72269	hypothetical prote	203	6	1.7	140	2	T10589
131	6	1.7	92	2	JC1136	conserved hypothet	204	6	1.7	140	2	T36136
132	6	1.7	92	2	A56413	major allergen Cha	205	6	1.7	141	2	AB0110
133	6	1.7	95	1	WTRBML	macrophage antibio	206	6	1.7	141	2	E95241
134	6	1.7	95	1	WTRBML	defensin CS-4 Pre	207	6	1.7	142	2	B72683
135	6	1.7	95	1	S73274	auxin-induced prot	208	6	1.7	142	2	A87653
136	6	1.7	95	2	S85624	hypothetical prote	209	6	1.7	143	1	GDBY
137	6	1.7	96	2	AG3795	conserved hypothet	210	6	1.7	145	2	S32213
138	6	1.7	96	2	G72574	hypothetical 11.0K	211	6	1.7	145	2	NTP
139	6	1.7	96	2	T10870	y4kp protein - Rhi	212	6	1.7	145	2	PR310
140	6	1.7	97	2	AC0034	probable type III	213	6	1.7	145	2	c-K-ras onco
141	6	1.7	99	2	T72020	probable regulator	214	6	1.7	146	2	T34697
142	6	1.7	99	2	A12695	hypothetical prote	215	6	1.7	146	2	T83550
143	6	1.7	99	2	E72533	hypothetical prote	216	6	1.7	147	2	AE1929
144	6	1.7	102	2	PT1077	hypothetical prote	217	6	1.7	147	2	D71540
145	6	1.7	103	2	CT4308	hypothetical prote	218	6	1.7	150	2	F71902
146	6	1.7	103	2	T24311	hypothetical prote	219	6	1.7	150	2	T52498
147	6	1.7	105	2	J05414	cortistatin-like p	220	6	1.7	151	2	R87696
148	6	1.7	105	2	S75861	ribosomal protein	221	6	1.7	151	2	BB5814
149	6	1.7	105	2	S7489	ribosomal protein	222	6	1.7	152	2	A71682
150	6	1.7	105	2	AT2347	30S ribosomal prot	223	6	1.7	153	2	PR310
151	6	1.7	105	2	S10134	probable membrane	224	6	1.7	153	2	c-K-ras onco
152	6	1.7	106	2	D89447	hypothetical prote	225	6	1.7	153	2	probable regulator
153	6	1.7	106	2	E72476	hypothetical prote	226	6	1.7	153	2	positive regulator
154	6	1.7	109	1	LIRB	hypothetical prote	227	6	1.7	155	2	hypothetical prote
155	6	1.7	109	2	T87748	hypothetical prote	228	6	1.7	156	2	hypothetical prote
156	6	1.7	109	2	AG0673	beta galactoside-b	229	6	1.7	156	2	xanthine-guanine P
157	6	1.7	110	2	B88302	hypothetical prote	230	6	1.7	156	2	PR310
158	6	1.7	111	2	T27779	transcription regu	231	6	1.7	157	2	hypothetical prote
159	6	1.7	112	2	G8105	neurofilament-L su	232	6	1.7	157	2	hypothetical prote
160	6	1.7	113	2	A6024	T cell receptor be	233	6	1.7	157	2	hypothetical prote
161	6	1.7	114	2	S62778	probable glutaredo	234	6	1.7	158	2	hypothetical prote
162	6	1.7	114	2	S17380	probable secreted	235	6	1.7	159	2	DNA mismatch endon
163	6	1.7	114	2	S88982	hypothetical prote	236	6	1.7	160	2	DNA mismatch endon
164	6	1.7	115	2	PT0504	activin beta A cha	237	6	1.7	160	2	guanine P
165	6	1.7	115	2	D3932	transcription regu	238	6	1.7	160	2	hypothetical prote
166	6	1.7	115	2	DP5507	neurofilament-L su	239	6	1.7	161	2	hypothetical prote
167	6	1.7	116	1	H9NS31	T cell receptor be	240	6	1.7	163	2	hypothetical prote
168	6	1.7	116	1	REBCMD	T-cell receptor be	241	6	1.7	164	2	hypothetical prote
169	6	1.7	116	2	A75111	hypothetical prote	242	6	1.7	164	2	probable transposa
170	6	1.7	117	1	H9Q81	activin beta A cha	243	6	1.7	164	2	Aligate regulator
171	6	1.7	118	2	B30505	transcription regu	244	6	1.7	165	2	heggagglutinin AFA-
172	6	1.7	118	2	A30505	hypothetical prote	245	6	1.7	165	2	hypothetical prote
173	6	1.7	118	2	T35585	hypothetical prote	246	6	1.7	167	2	hypothetical prote
174	6	1.7	119	2	E70161	probable membrane	247	6	1.7	169	1	ultra high-sulfur
175	6	1.7	119	2	S55992	probable membrane	248	6	1.7	169	2	hypothetical prote

395	1.7	250	2	C64546	hypothetical prote
396	1.7	250	2	AB3261	hypothetical prote
397	1.7	250	2	D57543	hypothetical prote
398	1.7	252	2	I50126	conserved hypothet
399	1.7	252	2	G91851	MHC class II histo
400	1.7	253	2	D71975	hypothetical prote
401	1.7	253	2	E64532	hypothetical prote
402	1.7	253	2	A84278	hypothetical prote
403	1.7	253	2	A12872	hypothetical prote
404	1.7	254	2	AP0521	hypothetical prote
405	1.7	254	2	A97111	uncharacterized pr
406	1.7	255	2	T38115	probable ATP-depen
407	1.7	256	2	T50892	spheroidene monoox
408	1.7	257	2	T10586	small nuclear ribo
409	1.7	257	2	140170	hypothetical prote
410	1.7	258	2	I46080	uroplakin Ia - bov
411	1.7	259	2	E81146	conserved hypothet
412	1.7	260	2	D95298	uncharacterized pr
413	1.7	261	2	H86636	chromosome parti
414	1.7	261	2	C84776	hypothetical prote
415	1.7	262	2	AI0053	probable metalloen
416	1.7	262	2	AB1071	ferric iron reduct
417	1.7	262	2	S55694	ferrichrome-iron r
418	1.7	262	2	G91294	ferric iron reduct
419	1.7	262	2	B88136	probable 4-carboxy
420	1.7	262	2	H70553	chromosomal partiti
421	1.7	263	2	T0162	hypothetical prote
422	1.7	263	2	T17302	tegument protein 6
423	1.7	265	2	T44114	hypothetical prote
424	1.7	265	2	F90422	probable ribbo 5-
425	1.7	265	2	B87157	hypothetical prote
426	1.7	265	2	A83625	probable ribosomal
427	1.7	265	2	C95285	probable ionic vol
428	1.7	267	2	A64200	DNA polymerase III
429	1.7	267	2	JN0331	Gbar Protein - Str
430	1.7	268	2	T40126	hypothetical prote
431	1.7	271	2	T08009	probable methyltra
432	1.7	271	2	T49556	probable ribosomal
433	1.7	271	2	B72270	hypothetical prote
434	1.7	271	2	D70191	conserved hypothet
435	1.7	272	2	A71202	probable L-isomasa
436	1.7	272	2	A45561	hypothetical prote
437	1.7	274	2	G97034	probable metal-dep
438	1.7	275	2	D70737	hypothetical prote
439	1.7	275	2	JH0124	conserved hypothet
440	1.7	276	2	T45275	oxidoreductase of
441	1.7	276	2	D70191	hypothetical prote
442	1.7	277	1	A45561	2,5-diketo-D-Gluco
443	1.7	277	2	C70017	4-hydroxybenzoyl-C
444	1.7	278	2	D41055	streptomyacin resis
445	1.7	278	2	T49556	streptomycin resis
446	1.7	278	2	I51344	drak-type molecula
447	1.7	278	2	C85552	hypothetical prote
448	1.7	278	2	AG2176	hypothetical prote
449	1.7	279	2	F86942	probable dehydra
450	1.7	279	2	A89920	conserved hypothet
451	1.7	281	2	C65988	L-arabinose transp
452	1.7	281	2	E75330	degly protein - Del
453	1.7	281	2	B86956	hypothetical prote
454	1.7	281	2	T05059	probable asparate
455	1.7	281	2	C97649	probable ATP-bindin
456	1.7	283	2	H95194	hypothetical prote
457	1.7	283	2	E89061	conserved hypothet
458	1.7	284	2	D81199	conserved hypothet
459	1.7	284	2	D81834	conserved hypothet
460	1.7	284	2	AD1184	pinin-like protein
461	1.7	284	2	H83119	probable transcrip
462	1.7	284	2	T39544	suppressor protein
463	1.7	284	2	S27931	Env/“mp” fusion P
464	1.7	285	2	F82957	hypothetical prote
465	1.7	286	2	G97110	stage 0 sporulatio
466	1.7	287	2	F82082	transcription regu
467	1.7	287	2	S57770	xyloglucan endo-1,
468	1.7	287	2	T22324	hypothetical prote
469	1.7	287	2	T42055	MPT4 protein homol
470	1.7	288	2	F70453	hypothetical prote
471	1.7	289	2	E87709	glutamate racemase
472	1.7	289	2	S49812	xyloglucan endo-1,
473	1.7	290	2	D42347	prephenate dehydro-
474	1.7	290	2	T18992	hypothetical prote
475	1.7	290	2	T18706	hypothetical prote
476	1.7	291	2	F70453	methyltetrahydr
477	1.7	292	1	A39871	calponin alpha, am
478	1.7	293	2	A40644	transcription regu
479	1.7	293	2	A83055	probable aminoacyl
480	1.7	294	2	JC5305	hypothetical prote
481	1.7	295	2	A40587	hypothetical prote
482	1.7	295	2	D69534	conserved hypothet
483	1.7	296	1	S31493	calponin H2 - pig
484	1.7	296	2	D82658	smooth muscle cell
485	1.7	297	2	C83285	hypothetical prote
486	1.7	297	1	H27098	calponin H1 - rat
487	1.7	297	1	S31484	calponin H1 - pig
488	1.7	297	1	S31486	basic calponin - h
489	1.7	297	2	G02142	osteoglyc 2
490	1.7	297	2	T2982	osteoglyc precu
491	1.7	297	2	A35272	osteocinductive fac
492	1.7	298	2	H83863	probable transcrip
493	1.7	298	2	B35272	transrepressor pro
494	1.7	298	2	A69351	modulation of CheA
495	1.7	298	2	D81445	osteocinductive fac
496	1.7	299	2	T2982	probable ABC transp
497	1.7	299	2	A80154	probable membrane
498	1.7	300	2	T40599	probable nitrogen
499	1.7	300	2	D88356	heterodisulfide red
500	1.7	300	2	T3012	probable permease
501	1.7	301	2	T13390	probable ABC transp
502	1.7	301	2	H71011	probable thiamin b
503	1.7	302	1	A70599	probable membrane
504	1.7	302	2	T02851	probable membrane
505	1.7	302	2	T49793	cinnamoyl-CoA redu
506	1.7	302	2	F82303	branched-chain-amino
507	1.7	302	2	H90740	ribokinase homolog
508	1.7	303	2	C64819	probable thiamin b
509	1.7	303	2	C55951	guanine nucleotide
510	1.7	305	2	G95364	probable membrane
511	1.7	305	2	KISM5C	probable membrane
512	1.7	305	2	F82303	probable permease
513	1.7	306	2	A32796	probable ABC transp
514	1.7	306	2	T3072	probable permease
515	1.7	306	2	S76000	probable permease
516	1.7	306	2	C95935	probable permease
517	1.7	307	1	KISM5C	probable permease
518	1.7	307	2	F70453	probable permease
519	1.7	307	2	C70871	probable permease
520	1.7	308	2	H70722	probable permease
521	1.7	308	2	T70917	probable permease
522	1.7	308	2	C95935	probable permease
523	1.7	309	2	JC4986	probable permease
524	1.7	310	2	C70871	probable permease
525	1.7	310	2	H70722	probable permease
526	1.7	310	2	T70917	probable permease
527	1.7	311	2	A98304	probable permease
528	1.7	311	2	AD2979	probable permease
529	1.7	311	2	T11017	probable permease
530	1.7	311	2	A9933	thiamin monophosp
531	1.7	312	2	A70708	hypothetical prote
532	1.7	313	2	S55948	hypothetical prote
533	1.7	313	2	H8771	oligoaptide ABC t
534	1.7	313	2	B69397	hypothetical prote
535	1.7	314	2	F90599	MUC1536_34 protein
536	1.7	315	2	F64192	hypothetical prote
537	1.7	316	2	A57099	hypothetical prote
538	1.7	317	2	A4733	hypothetical prote
539	1.7	317	2	D70617	hypothetical prote
540	1.7	318	2	T02288	hypothetical prote

541	6	1.7	318	2	G87342	614	6	1.7	343	2	A41748
542	6	1.7	319	2	S30173	615	6	1.7	343	2	T26594
543	6	1.7	320	2	A95266	616	6	1.7	343	2	S03415
544	6	1.7	321	2	G95920	617	6	1.7	343	2	E86198
545	6	1.7	321	2	G81404	618	6	1.7	344	2	C12835
546	6	1.7	322	2	A83549	619	6	1.7	344	2	T0110
547	6	1.7	322	2	A97030	620	6	1.7	345	2	T12359
548	6	1.7	322	2	T12093	621	6	1.7	345	2	H72488
549	6	1.7	322	2	C70700	622	6	1.7	345	2	S04280
550	6	1.7	322	2	T04595	623	6	1.7	345	2	E80664
551	6	1.7	322	2	B70326	624	6	1.7	345	2	T35357
552	6	1.7	323	2	D85256	625	6	1.7	346	2	AG3399
553	6	1.7	323	2	A99676	626	6	1.7	346	2	H59110
554	6	1.7	323	2	E69171	627	6	1.7	347	2	T17074
555	6	1.7	323	2	A75078	628	6	1.7	347	2	I80008
556	6	1.7	325	1	QQBE4	629	6	1.7	347	2	D33554
557	6	1.7	325	2	A69184	630	6	1.7	348	2	AB3121
558	6	1.7	325	2	A86423	631	6	1.7	348	2	H59110
559	6	1.7	325	2	S59834	632	6	1.7	348	2	F69016
560	6	1.7	326	2	T08591	633	6	1.7	349	2	D70543
561	6	1.7	326	2	A86411	634	6	1.7	349	2	S30143
562	6	1.7	326	2	AD2936	635	6	1.7	349	2	A39158
563	6	1.7	326	2	C98346	636	6	1.7	349	2	AD0990
564	6	1.7	327	2	T05744	637	6	1.7	349	2	AE21568
565	6	1.7	327	2	S49619	638	6	1.7	349	2	T47195
566	6	1.7	327	2	P8308	639	6	1.7	351	2	AE1923
567	6	1.7	327	2	G96333	640	6	1.7	351	2	A10670
568	6	1.7	327	2	T34666	641	6	1.7	352	2	S196350
569	6	1.7	328	2	T51215	642	6	1.7	353	2	AF3580
570	6	1.7	328	2	S69715	643	6	1.7	353	2	T51022
571	6	1.7	328	2	G8426	644	6	1.7	353	2	AE21568
572	6	1.7	329	1	DWECD	645	6	1.7	353	2	T35400
573	6	1.7	329	2	D8573	646	6	1.7	353	2	S196350
574	6	1.7	329	2	B91128	647	6	1.7	353	2	AB3650
575	6	1.7	329	2	D69194	648	6	1.7	353	2	E89142
576	6	1.7	329	2	JC501	649	6	1.7	353	2	AR3145
577	6	1.7	329	2	S32582	650	6	1.7	353	2	E89142
578	6	1.7	330	2	A53742	651	6	1.7	354	2	AR3145
579	6	1.7	330	2	AH697	652	6	1.7	354	2	T51480
580	6	1.7	330	2	S74408	653	6	1.7	354	2	C96705
581	6	1.7	331	2	T33100	654	6	1.7	354	2	T27338
582	6	1.7	331	2	T39699	655	6	1.7	354	2	G86104
583	6	1.7	331	2	E83368	656	6	1.7	354	2	B65219
584	6	1.7	332	2	A29711	657	6	1.7	355	2	T06748
585	6	1.7	332	2	H6494	658	6	1.7	355	2	T39599
586	6	1.7	333	2	AF4407	659	6	1.7	356	2	T29804
587	6	1.7	333	2	H83364	660	6	1.7	356	2	T47187
588	6	1.7	333	2	A83261	661	6	1.7	357	2	155210
589	6	1.7	334	2	A35707	662	6	1.7	358	2	A75561
590	6	1.7	334	2	PF6674	663	6	1.7	358	2	AC0875
591	6	1.7	334	2	C1842	664	6	1.7	359	2	AB3262
592	6	1.7	335	2	T5277	665	6	1.7	359	2	D81317
593	6	1.7	336	1	BR2274	666	6	1.7	359	2	A25732
594	6	1.7	336	2	ABC2613	667	6	1.7	360	2	T03373
595	6	1.7	336	2	BR8077	668	6	1.7	360	2	E72467
596	6	1.7	336	2	FB1348	669	6	1.7	360	2	T27504
597	6	1.7	337	1	AB2654	670	6	1.7	361	2	A53737
598	6	1.7	337	2	PF1191	671	6	1.7	361	2	B833680
599	6	1.7	337	2	GI6038	672	6	1.7	361	2	A53868
600	6	1.7	337	2	AG62230	673	6	1.7	361	2	T40857
601	6	1.7	338	2	CT5353	674	6	1.7	361	2	JQ0735
602	6	1.7	338	2	AD1142	675	6	1.7	362	1	T26520
603	6	1.7	338	2	AD3052	676	6	1.7	362	1	A53737
604	6	1.7	338	2	HR8233	677	6	1.7	362	2	B833680
605	6	1.7	339	2	DT2509	678	6	1.7	362	2	A53868
606	6	1.7	339	2	1_WHBL1	679	6	1.7	362	2	B87571
607	6	1.7	340	2	TP101	680	6	1.7	363	2	T16755
608	6	1.7	340	2	EG9544	681	6	1.7	364	1	WFRGA
609	6	1.7	341	2	EB6019	682	6	1.7	364	1	EDBESP
610	6	1.7	341	2	D75479	683	6	1.7	364	2	I45915
611	6	1.7	341	2	FB1276	684	6	1.7	364	2	C86015
612	6	1.7	343	2	T36539	685	6	1.7	364	2	F90672
613	6	1.7	343	2	A49117	686	6	1.7	364	2	T24657

833	6	424	1	B40905	906	6	1.7	448	2	A81369
834	6	424	1	S31440	907	6	1.7	449	2	T45605
835	6	424	1	WFPGBA	908	6	1.7	449	2	AD3181
836	6	424	1	B81660	909	6	1.7	449	2	H70652
837	6	424	2	C70551	910	6	1.7	450	2	T31188
838	6	425	1	S50098	911	6	1.7	450	2	T40337
839	6	425	1	AC3391	912	6	1.7	450	2	CB16262
840	6	425	2	T47072	913	6	1.7	451	2	SP1056
841	6	425	2	G83669	914	6	1.7	451	2	C811820
842	6	425	2	S60464	915	6	1.7	451	2	H75593
843	6	425	2	T12473	916	6	1.7	452	1	S14332
844	6	425	2	B9716	917	6	1.7	453	2	T37054
845	6	426	1	B24448	918	6	1.7	454	2	T35016
846	6	426	2	T51506	919	6	1.7	454	2	E70448
847	6	426	2	A82660	920	6	1.7	454	2	T02275
848	6	426	2	A30112	921	6	1.7	454	2	G75593
849	6	427	2	S57898	922	6	1.7	455	1	JC4338
850	6	427	2	B83149	923	6	1.7	455	2	T31440
851	6	427	2	B86769	924	6	1.7	455	2	E71028
852	6	427	2	G83361	925	6	1.7	456	2	F97372
853	6	427	2	AD3149	926	6	1.7	456	2	C86624
854	6	427	2	G98138	927	6	1.7	456	2	H72000
855	6	427	2	A83807	928	6	1.7	457	2	H85059
856	6	427	2	B25937	929	6	1.7	457	2	AF34246
857	6	429	1	B41902	930	6	1.7	458	2	E81059
858	6	429	1	C41903	931	6	1.7	459	2	AC2057
859	6	429	1	F91175	932	6	1.7	459	2	T45576
860	6	429	2	F86021	933	6	1.7	461	2	D89894
861	6	429	2	A80406	934	6	1.7	462	2	AC0672
862	6	429	2	G89962	935	6	1.7	462	2	S11431
863	6	430	2	C90096	936	6	1.7	462	2	AB5730
864	6	430	2	G85456	937	6	1.7	462	2	H90887
865	6	430	2	E64779	938	6	1.7	463	2	T09243
866	6	430	2	T44347	939	6	1.7	464	2	C82967
867	6	431	2	AD1237	940	6	1.7	465	2	T07620
868	6	431	2	A1599	941	6	1.7	465	2	JC5184
869	6	431	2	E70373	942	6	1.7	466	2	E82329
870	6	432	2	P83525	943	6	1.7	467	2	I50476
871	6	432	2	C92275	944	6	1.7	467	2	T45475
872	6	432	2	S01631	945	6	1.7	468	2	S21172
873	6	432	2	D51352	946	6	1.7	468	2	T45476
874	6	433	2	A1599	947	6	1.7	468	2	H70427
875	6	433	2	E70373	948	6	1.7	468	2	G82329
876	6	436	2	B54542	949	6	1.7	469	2	T45478
877	6	436	2	G84024	950	6	1.7	469	2	T34645
878	6	436	2	S47723	951	6	1.7	470	2	S36536
879	6	436	2	T6104	952	6	1.7	470	2	E875085
880	6	437	2	H84865	953	6	1.7	470	2	F96808
881	6	438	2	T65602	954	6	1.7	471	2	B87433
882	6	438	2	B14919	955	6	1.7	471	2	AC2651
883	6	439	2	H80582	956	6	1.7	471	2	T21972
884	6	439	2	B86302	957	6	1.7	471	2	S76290
885	6	439	2	S1378	958	6	1.7	472	2	A31082
886	6	439	2	G87159	959	6	1.7	472	2	T27754
887	6	440	1	S60755	960	6	1.7	473	2	C64371
888	6	441	2	S14441	961	6	1.7	473	2	H72419
889	6	441	2	C33318	962	6	1.7	473	2	T19707
890	6	441	2	T33461	963	6	1.7	473	2	C71404
891	6	442	2	A71486	964	6	1.7	475	2	C96503
892	6	442	2	B2633	965	6	1.7	475	2	D64799
893	6	442	2	T88691	966	6	1.7	475	2	A85565
894	6	442	2	D7351	967	6	1.7	475	2	D90714
895	6	442	2	S50062	968	6	1.7	475	2	T26850
896	6	442	2	CL1054	969	6	1.7	476	2	S09152
897	6	442	2	C1823	970	6	1.7	477	2	H86619
898	6	442	2	B85065	971	6	1.7	477	2	G72003
899	6	442	2	F77932	972	6	1.7	477	2	H83389
900	6	444	2	B88696	973	6	1.7	478	2	S47040
901	6	444	2	T24723	974	6	1.7	479	2	H83559
902	6	444	2	G61326	975	6	1.7	479	2	T23508
903	6	446	2	T13368	976	6	1.7	479	2	G75592
904	6	447	2	T12978	977	6	1.7	480	2	F72205
905	6	448	2	AB2590	978	6	1.7	480	2	JC7866

979 6 1.7 482 2 G15483
 980 6 1.7 482 2 JH0110
 981 6 1.7 483 2 R84596
 982 6 1.7 485 2 AUX1-like amino ac
 983 6 1.7 486 2 S03834
 984 6 1.7 487 2 T1431
 985 6 1.7 487 2 B13095
 986 6 1.7 488 1 AB0488
 987 6 1.7 488 2 QXASM4
 988 6 1.7 488 2 C73791
 989 6 1.7 488 2 C75488
 990 6 1.7 488 2 A73753
 991 6 1.7 488 2 A81852
 992 6 1.7 488 2 A81852
 993 6 1.7 490 2 A40283
 994 6 1.7 491 2 A40283
 995 6 1.7 492 2 A81852
 996 6 1.7 493 2 F84689
 997 6 1.7 493 2 G84689
 998 6 1.7 493 2 T0054
 999 6 1.7 493 2 T19370
 1000 6 1.7 493 2 T48934

ALIGNMENTS

C;Accession: JC2466
 R;Hoettgen, G.; Neidhardt, H.; Schneider, C.; Pohl, J.
 Biochem. Biophys. Res. Commun. 206: 608-613, 1995
 A;Title: Cloning of a new member of the TGF-beta family: A putative new activin betaC c
 A;Reference number: JC2466; MUID:95126961; PMID:7826378
 A;Accession: JC2466
 A;Molecule type: mRNA
 A;Residue: 1-352 <HOE>
 A;Cross-references: UNIPROT:P55103; GB:X82540; NID:9669154; PIDN:CAA57890_1; PID:966915
 A;Experimental source: liver
 C;Genetics:
 A;Gene: GDB:INHC
 A;Cross-references: GDB:632884
 A;Map position: 2cen-2q13
 C;Superfamily: inhibin
 C;Keywords: glycoprotein
 F;1-18/Domain: signal sequence #status predicted <SIG>
 F;19-236/Domain: propeptide #status predicted <PRO>
 F;237-352/Product: activin beta C #status Predicted
 F;110,143,161/Binding site: carbohydrate (Asn) (covalent) #status Predicted
 Query Match 4.3%; Score 15; DB 2; Length 352;
 Best Local Similarity 100.0%; Prd. No. 1.5e-05;
 Matches 15; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

RESULT 1

JC5241 activin beta E chain precursor - mouse

C;Species: Mus musculus (house mouse)

C;Date: 25-Apr-1997 #sequence_revision 09-May-1997 #text_change 09-Jul-2004

C;Accession: JC5241; MUID:97096313; PMID:894133

A;Title: Molecular cloning of the mouse activin beta E subunit gene.

A;Reference number: JC5241; MUID:97096313; PMID:894133

A;Contents: liver

A;Accession: JC5241

A;Molecule type: mRNA

A;Residues: 1-350 <PAN>

A;Cross-references: UNIPROT:Q08717; GB:U96386; NID:92072521; PIDN:AAB53801_1; PID:920725

R;Fang, J.; Wang, S.; Smiley, E.; Bonadio, J.
 Biochem. Biophys. Res. Commun. 231: 655-661, 1997

A;Title: Genes coding for mouse activin beta C and beta E are closely linked and exhibit

A;Reference number: JC5366; MUID:97224404; PMID:9070865

A;Accession: JC5367

A;Molecule type: DNA

A;Residues: 1-350 <PAN>

A;Cross-references: GB:U96386; NID:92072521; PIDN:AAB53801_1; PID:92072522

C;Genetics:
 A;Introns: 99/3

C;Superfamily: inhibin

Query Match 19.1%; Score 67; DB 2; Length 350;

Best Local Similarity 100.0%; Prd. No. 8.6e-58; Mismatches 0; Indels 0; Gaps 0;

Matches 67; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 244 TPUCCRDHYVDFQELGWRDWILQLPEQYQLNCNSGGCPHPIAGSPQIAASPTSAVFLSLK 303
 Db 244 TPLCCCRDHYVDFQELGWRDWILQLPEQYQLNCNSGGCPHPIAGSPQIAASPTSAVFLSLK 303

JC5566 activin beta C - mouse
 C;Species: Mus musculus (house mouse)
 C;Date: 28-May-1997 #sequence_revision 18-Jul-1997 #text_change 09-Jul-2004
 C;Accession: JC5566
 R;Fang, J.; Wang, S.; Smiley, E.; Bonadio, J.
 Biochem. Biophys. Res. Commun. 231: 655-661, 1997

A;Title: Genes coding for mouse activin beta C and beta E are closely linked and exhibit

A;Reference number: JC5366; MUID:97224404; PMID:9070865

A;Accession: JC5366

A;Molecule type: DNA

A;Residues: 1-352 <PAN>

A;Cross-references: UNIPROT:P55104; GB:U95962

C;Comment: Activin beta C and beta E form a distinct subset of related activins.

RESULT 2

JC2466 inhibin beta-C chain precursor - human
 N;Alternate names: activin beta C chain
 C;Species: Homo sapiens (man)

C;Date: 29-Mar-1995 #sequence_revision 26-May-1995 #text_change 09-Jul-2004

C;Genetics:
A;Introns: 105/3
C;Superfamily: inhibin

Query Match Similarity 3.1%; Score 11; DB 2; Length 352;
Best Local Similarity 100.0%; Pred. No. 0.013; Mismatches 0; Indels 0; Gaps 0;
Matches 11; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Oy 340 PDWVVEAGGS 350
Db 342 PDWVVEAGGS 352

RESULT 5

S43296 bone morphogenetic_protein-related protein (GDP7) - mouse
C;Species: Mus musculus (house mouse)

C;Date: 20-Oct-1994 #sequence_revision 10-Nov-1995 #text_change 09-Jul-2004
R;Storm, E.B.; Huynh, T.V.; Copeland, N.G.; Jenkins, N.A.; Kingsley, D.M.; Lee, S.J.

Nature 368, 639-643, 1994
A;Title: Limb alterations in brachydipodism mice due to mutations in a new member of the TGF-
B superfamily

A;Reference number: S43294; MUID:94195427; PMID:8145850
A;Accession: S43296
A;Status: preliminary

A;Molecule type: DNA
A;Residues: 1-51 <STO>

A;Cross-references: UNIPROT:P43029; GB:U08339; NID:9480465; PIDN:AAA18780.1; PID:9480466
C;Superfamily: inhibin

A;Residues: 1-51 <STO>
A;Map position: 1

Query Match Best Local Similarity 2.6%; Score 9; DB 2; Length 151;
Best Local Similarity 100.0%; Pred. No. 0.62; Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Oy 341 DWVVEAGGC 349
Db 142 DWVVEAGGC 150

RESULT 6

T14455 hypothetical protein - wild cabbage (fragment)
C;Species: Brassica oleracea (wild cabbage)

C;Date: 20-Sep-1999 #sequence_revision 20-Sep-1999 #text_change 09-Jul-2004
C;Accession: T14455
R;Croy, R.D.; Booker, J.P.

submitted to the EMBL Data Library, July 1995
A;Reference number: Z18098
A;Accession: T14455
A;Status: preliminary; translated from GB/EMBL/DDJB

A;Residues: 1-83 <CRO>
A;Cross-references: UNIPROT:039374; EMBL:274941; NID:e1001204; PID:8256042
A;Experimental source: strain alboglabra; Sigma

Query Match Best Local Similarity 2.3%; Score 8; DB 2; Length 283;
Best Local Similarity 100.0%; Pred. No. 10; Matches 8; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Oy 222 KIRANBPG 279
Db 193 KIRANBPG 200

RESULT 7

D86425 unknown protein [imported] - Arabidopsis thaliana
C;Species: Arabidopsis thaliana (mouse-ear cress)
C;Date: 02-Mar-2001 #sequence_revision 02-Mar-2001 #text_change 09-Jul-2004
C;Accession: D86425
R;Theologis, A.; Ecker, J.R.; Palm, C.J.; Federici, N.A.; Kaul, S.; White, O.; Alonso, C.W.; Chung, M.K.; Conn, L.; Conway, A.B.; Conway, A.R.; Creasy, T.H.; Dewar, K.; Hansen, N.P.; Hughes, B.; Huijar, L.

Nature 408, 816-820, 2000

A;Authors: Hunter, J.L.; Jenkins, J.; Johnson-Hopson, C.; Khan, S.; Khaykin, E.; Kim, C.C.A.; Li, J.H.; Li, Y.; Lin, X.; Liu, Z.A.; Durbin, J.S.; Maiti, R.; Marzali, Rizzo, M.; Rooney, T.; Rowley, D.; Sakano, H.

A;Authors: Salberg, S.L.; Schwartz, J.R.; Shinn, P.; Southwick, A.M.; Sun, H.; Talon, M.; Wu, D.; Yu, G.; Fraser, C.M.; Ventier, J.C.; Davis, R.W.

A;Title: Sequence and analysis of chromosome 1 of the plant Arabidopsis.
A;Reference number: A86141; MUID:21016719; PMID:11130712

A;Accession: D86425
A;Status: preliminary
A;Molecule type: DNA
A;Residues: 1-11 <STO>
A;Cross-references: UNIPROT:Q9CC624; GB:AE005172; NID:911094785; PIDN:AAG29717.1; GSPDB:
C;Genetics:

A;Map position: 1

Query Match Best Local Similarity 2.3%; Score 8; DB 2; Length 311;
Best Local Similarity 100.0%; Pred. No. 11; Matches 8; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Oy 222 KIRANBPG 229
Db 175 KIRANBPG 182

RESULT 8

JC4151 activin beta D chain precursor - African clawed frog
C;Species: Xenopus laevis (African clawed frog)

C;Date: 27-Aug-1995 #sequence_revision 19-Oct-1995 #text_change 09-Jul-2004
C;Accession: JC4151
R;Oda, S.; Nishimatsu, S.; Murakami, K.; Ueno, N.

Biochem. Biophys. Res. Commun. 210, 581-588, 1995
A;Title: Molecular cloning and functional analysis of a new activin beta subunit: a dimeric molecule

A;Reference number: JC4151; MUID:9527314; PMID:7755637
A;Accession: JC4151
A;Molecule type: mRNA
A;Residues: 1-367 <ODA>

A;Cross-references: UNIPROT:091696; DDBJ:D49543; NID:9961512; PIDN:BAA08494.1; PID:9961
A;Experimental source: embryo

C;Superfamily: inhibin
C;Keywords: glycoprotein; meadowlark
F1;253 Domain: signal sequence #status predicted <SIG>
F2;254-367 Product: activin beta D chain #status predicted <MAT>
F3;64,155,161,208,230/Binding site: carbohydrate (Asn) (covalent) #status predicted

Query Match Best Local Similarity 2.3%; Score 8; DB 2; Length 367;
Best Local Similarity 100.0%; Pred. No. 13; Matches 8; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Oy 45 BLAKQQL 52
Db 47 BLAKQQL 54

RESULT 9

S2201 mannosyltransferase (EC 2.4.1.1.) - yeast (Saccharomyces cerevisiae)
N;Alternate_names: protein G3626; protein YGL08C

C;Species: Saccharomyces cerevisiae
C;Date: 04-Dec-1992 #sequence_revision 04-Dec-1992 #text_change 09-Jul-2004
C;Accession: S2201; S4040
R;Nakayama, K.I.; Nagao, T.; Shimma, Y.; Kuramitsu, J.; Jigani, Y.

EMBO J. 11, 2511-2519, 1992
A;Title: OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation
A;Reference number: S2201; MUID:92331603; PMID:162616

A;Accession: S2201
A;Molecule type: DNA
A;Residues: 1-480 <NAK>

A;Cross-references: UNIPROT:P31755; EMBL:D11095; NID:9218450; PIDN:BAA01869.1; PID:9218
R;Hebling, U.; Hofmann, B.; Delius, H.

submitted to the Protein Sequence Database, May 1996
A;Reference number: S44003

A;Accession: S64040
A;Molecule type: DNA
A;Residues: 1-480 <HEBS>
A;Cross-references: EMBL:272560; NID:91322519; PID:e243938; PID:g1322520; MIPS:YGL038C
A;Experimental source: strain S288C
C;Genetics:
A;Gene: SGD_OCH1
A;Cross-references: SGD:S0003006; MIPS:YGL038C
A;Map position: 7L
C;Keywords: glycoprotein; glycosyltransferase; hexosyltransferase; transmembrane #status predicted <TIME>
F:16-32/Domain: transmembrane site: carbohydrate (Asn) (covalent) #status predicted
F:203,281,341,393/Binding site: carbohydrate (Asn) (covalent) #status predicted

Query Match 2.3%; Score 8; DB 2; Length 1060;
Best Local Similarity 100.0%; Pred. No. 30;
Matches 8; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 107 SLTFLHS 114
Db 26 SLTFLHS 33

RESULT 10

A29840 serine proteinase (EC 3.4.21.-) precursor - *Serratia marcescens* (strain IFO-3046)
C;Species: *Serratia marcescens*
C;Date: 19-May-1989 #sequence_revision 19-May-1989 #text_change 09-Jul-2004
C;Accession: A29840
R;Yamagida, N.; Uozumi, T.; Beppu, T.
J; Bacteriol, 166, 937-944, 1986
A;Title: Specific excretion of *Serratia marcescens* protease through the outer membrane
A;Reference number: A29840; MUID:86223815; PMID:301754
A;Molecule type: DNA
A;Residues: 1-1045 <YAN>
A;Cross-references: UNIPROT:P09489; GB:MI13469; NID:9152857; PIDN:AAA26572.i; PID:g152858
C;Superfamily: autotransporter subtilisin-like protease precursor; subtilisin homology
C;Keywords: hydrolase; *Berine* proteinase
F:1-27/Domain: signal sequence #status predicted <SIG>
F:28-108/Product: serine proteinase #status predicted <MAT>
F:67-355/Domain: subtilisin homology <SBT>
F:409-1045/Domain: carboxyl-terminal propeptide #status predicted <PRO>
F:76,112,341/Active site: Asp, His, Ser #status predicted

Query Match 2.3%; Score 8; DB 2; Length 1045;
Best Local Similarity 100.0%; Pred. No. 30;
Matches 8; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 82 GSTAPGNG 89
Db 525 GSTAPGNG 532

RESULT 11

S63933 acrosomal protein AZ1 - mouse
C;Species: Mus musculus (house mouse)
C;Date: 20-Jul-1996 #sequence_revision 08-Nov-1996 #text_change 09-Jul-2004
C;Accession: S63933; S63932
R;Aoto, H.; Tsuchida, J.; Nishina, Y.; Nishimune, Y.; Akano, A.; Tajima, S.
submitted to the EMBL Data library, December 1994
A;Description: Isolation of a novel cDNA that encodes a protein localized to the pre-acrosome
A;Reference number: S63933
A;Molecule type: mRNA
A;Residues: 1-1060 <ACT>

A;Cross-references: UNIPROT:Q62036; EMBL:D43921; NID:91927501; PIDN:BA07868.1; PID:di0c
A;Note: this is a revision to the sequence from reference S63932
R;Aoto, H.; Tsuchida, J.; Nishina, Y.; Nishimune, Y.; Akano, A.; Tajima, S.
Bir, J. Biochem, 234, 8-15, 1995
A;Title: Isolation of a novel cDNA that encodes a protein localized to the pre-acrosome
A;Reference number: S63932; MUID:96056715; PMID:8526672

A;Accession: S63932

A;Molecule type: mRNA
A;Residues: 1-942 <SGCSP' <ACW>>
A;Cross-references: EMBL:D43931
A;Note: this sequence has been revised in reference S63933

Query Match 2.3%; Score 8; DB 2; Length 1060;
Best Local Similarity 100.0%; Pred. No. 30;
Matches 8; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 70 ALTRALR 77
Db 807 ALTRALR 814

RESULT 12

B72611 probable ATP-dependent DNA helicase APE1353 - *Aeropyrum pernix* (strain K1)
C;Accession: B72611
R;Kawarabayashi, Y.; Hino, Y.; Horikawa, H.; Yamazaki, S.; Haikawa, Y.; Jinno, K.; Taka
awa, H.; Takamiya, M.; Masuda, S.; Funahashi, T.; Tanaka, T.; Kudoh, Y.; Yamazaki, J.;
DNA Res, 6, 83-101, 1999
A;Title: Complete genome sequence of an aerobic hyper-thermophilic Crenarchaeon, *Aeropy*
A;Reference number: A72450; MUID:99310339; PMID:10382966
A;Status: preliminary
A;Molecule type: DNA
A;Residues: 1-1273 <KAW>
A;Cross-references: UNIPROT:Q9YCAL; DDBJ:AP000061; NID:95104821; PIDN:BAAB0347.1; PID:d
A;Experimental source: strain K1
A;Genetics:
A;Gene: APE1353

Query Match 2.3%; Score 8; DB 2; Length 1273;
Best Local Similarity 100.0%; Pred. No. 35;
Matches 8; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 176 SGLRGEGS 183
Db 1121 SGLRGEGS 1128

RESULT 13

S28793 major merozoite surface antigen - malaria parasite (*Plasmodium falciparum*) (fragments)
C;Alternate names: major surface antigen p190
C;Species: *Plasmodium falciparum*
C;Date: 17-Apr-1993 #sequence_revision 17-Apr-1993 #text_change 09-Jul-2004
C;Accession: S28793
R;Hall, R.; Hyde, J.B.; Goman, M.; Simmons, D.L.; Hope, I.A.; Mackay, M.; Scaife, J.; M
Nature, 311, 379-382, 1984
A;Title: Major surface antigen gene of a human malaria parasite cloned and expressed in
A;Reference number: S28793; MUID:83012800; PMID:6099034
A;Accession: S28793
A;Molecule type: mRNA
A;Residues: 1-72 <HAL>
A;Cross-references: UNIPROT:Q25925; EMBL:M32152; NID:9160423; PIDN:AAA29658.1; PID:g160
C;Superfamily: major merozoite surface antigen
C;Keywords: merozoite; surface antigen

Query Match 2.0%; Score 7; DB 2; Length 72;
Best Local Similarity 100.0%; Pred. No. 31;
Matches 7; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 221 LKIRANE 227
Db 26 LKIRANE 32

RESULT 14

G84229 hypothetical protein Vng0724h [imported] - Halobacterium sp. NRC-1

C;Species: Halobacterium sp. NRC-1
 C;Date: 02-Feb-2001 #sequence_revision 02-Feb-2001 #text_change 09-Jul-2004
 C;Accession: G84229
 R;Ng, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.; Iasky, S.
 ; Leithauser, B.; Keller, K.; Cruz, R.; Dawson, M.J.; Hough, D.W.; Maddocks, D.G.; Jabil
 Jung, K.H.; Alam, M.; Freitas, T., 12176-12181, 2000
 A;Authors: Hou, S.; Daniels, C.J.; Dennis, P.P.; Omer, A.D.; Ebbhardt, H.; Lowe, T.M.; Li
 A;Title: Genome sequence of Halobacterium species NRC-1
 A;Reference number: AB4160; MUID:20504483; PMID:11016950
 A;Accession: G84229
 A;Status: preliminary
 A;Molecule type: DNA
 A;Residues: 1-86 <STO>
 A;Cross-references: UNIPROT:Q9HRF5; GB:AE004437; NID:910580303; PIDN:AGC19203.1; GSPDB:G
 A;Gene: VNG0724H

Query	Match	2.0%	Score	7	DB	2	Length	86
Db	Best Local Similarity	100.0%	Pred. No.	36				
	Matches	7	Conservative	0	Mismatches	0	Indels	0
	Qy	319	ARRPLSL	325				
	Db	12	ARRPLSL	18				

RESULT 15

AB3212
 hypothetical protein Atus431 [imported] - Agrobacterium tumefaciens (strain C58, Dupont)
 C;Species: Agrobacterium tumefaciens
 C;Date: 11-Jan-2002 #sequence_revision 11-Jan-2002 #text_change 03-Jul-2004
 C;Accession: AB3212
 R;Wood, D.W.; Serubal, J.C.; Kaul, R.; Monk, D.; Chen, L.; Wood, G.E.; Chen, Y.; Woo, I.
 erage, G.; Gillett, W.; Grant, C.; Guenthner, D.; Kuryaviv, T.; Levy, R.; Li, M.; McClell
 an, P.; Romero, P.; Zhang, S.; Karp, P.; Romero, P.; Science, 294, 231-2323, 2001
 A;Authors: Yoo, H.; Tao, Y.; Biddle, P.; Jung, M.; Krebs, W.; Perry, M.; Gordon-Kamm,
 E.W.; Author: Title: The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58.
 A;Reference number: AB2577; MUID:21608550; PMID:11743193
 A;Accession: AB3212
 A;Status: preliminary
 A;Molecule type: DNA
 A;Residues: 1-129 <KUR>
 A;Cross-references: UNIPROT:Q8UJPS; GB:AE008687; PIDN:AAI46118.1; PID:917743884; GSPDB:G
 A;Experimental source: strain C58 (dupont)
 C;Genetics:
 A;Gene: Atus431
 A;Genome: plasmid

Query Match 2.0%; Score 7; DB 2; Length 129;
 Best Local Similarity 100.0%; Pred. No. 51;
 Matches 7; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy	155	RTILAEH	161
Db	24	RTILAEH	30

Search completed: October 13, 2005, 18:47:17
 Job time : 80 secs

Copyright (c) 1993 - 2005 Compugen Ltd.

OM Protein - protein search, using sw model

Run on: October 13, 2005, 18:38:45 ; Search time 43 Seconds
 607,609 Million cell updates/sec

Title: US-10-666-225-14
 Perfect score: 350

Sequence: 1 MRLPDVQLWLVLLWALVRAQ.....NGNNVKTIDVPMVTEACGCS 350

Scoring table: OLIGO
 Gapop 60.0 , Gapext 60.0

Searched: 513545 seqs, 74649064 residues

Word size : 6
 Total number of hits satisfying chosen parameters: 2107
 Minimum DB seq length: 0
 Maximum DB seq length: 200000000

Post-processing: Listing first 1000 summaries
 Database : Issued Patents AA:
 1: /cgnt_6/prodata1/iaa/5A_COMB_pep:
 2: /cgnt_6/prodata1/iaa/5B_COMB_pep:
 3: /cgnt_6/prodata1/iaa/6A_COMB_pep:
 4: /cgnt_6/prodata1/iaa/6B_COMB_pep:
 5: /cgnt_6/prodata1/iaa/PCTUS_COMB_pep:
 6: /cgnt_6/prodata1/iaa/backfilesl.pep:
 Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	350	100.0	350	2 US-08-765-622-14
2	350	100.0	350	5 PCT-US95-08245-14
3	34.0	119	2 US-08-274-215A-12	
4	34.0	119	2 US-08-765-622-12	
5	34.0	119	3 US-09-184-933-12	
6	34.0	119	5 PCT-US95-08245-12	
7	4.3	106	1 US-08-482-577B-24	
8	4.3	106	3 US-08-289-222E-28	
9	4.3	106	3 US-09-218-166-7	
10	4.3	106	3 US-09-054-226B-28	
11	4.3	352	1 US-08-482-577B-2	
12	4.3	352	3 US-08-289-222B-4	
13	4.3	352	3 US-09-218-176-2	
14	4.3	352	3 US-09-545-525B-4	
15	4.3	352	4 US-08-981-990B-3	
16	3.4	35	4 US-09-374-958C-23	
17	3.1	352	1 US-08-482-577B-4	
18	3.1	352	3 US-09-218-176-4	
19	3.1	352	3 US-08-981-490B-4	
20	2.6	13	4 US-09-374-958C-74	
21	2.6	35	4 US-09-374-958C-17	
22	2.6	35	4 US-09-374-958C-34	
23	2.6	102	4 US-09-374-958C-87	
24	2.6	102	4 US-09-374-958C-88	
25	2.6	117	4 US-09-374-958C-69	
26	2.6	119	2 US-08-528A-7	
27	2.6	119	4 US-09-412-791D-7	

28	9	2.6	119	5 PCT-US94-07799-7
29	9	2.6	129	1 US-08-360-914B-15
30	9	2.6	129	1 US-08-741-589A-13
31	9	2.6	139	4 US-09-374-958C-90
32	9	2.6	140	4 US-09-374-958C-90
33	9	2.6	160	4 US-09-252-991A-17039
34	9	2.6	161	2 US-08-581-528A-6
35	9	2.6	161	4 US-09-412-791D-6
36	9	2.6	161	5 PCT-US94-07799-6
37	9	2.6	240	1 US-08-362-670B-30
38	9	2.6	240	3 US-08-808-322-30
39	9	2.6	240	4 US-08-908-324-30
40	9	2.6	240	4 US-09-945-182-2
41	9	2.6	240	5 PCT-US94-14030A-2
42	9	2.6	240	1 US-08-362-670B-34
43	9	2.6	240	3 US-08-333-576C-34
44	9	2.6	240	3 US-08-808-324-34
45	9	2.6	240	4 US-09-945-182-34
46	9	2.6	240	5 PCT-US94-14030A-34
47	9	2.6	240	5 US-08-362-670B-28
48	9	2.6	240	5 US-08-333-576C-28
49	9	2.6	240	5 US-08-808-324-34
50	9	2.6	240	5 US-09-945-182-28
51	9	2.6	240	5 PCT-US94-14030A-28
52	9	2.6	240	5 US-09-920-540-6109
53	9	2.6	240	5 US-09-218-176-43
54	9	2.6	240	5 US-09-252-991A-22067
55	9	2.6	240	5 US-09-270-767-53839
56	9	2.6	240	5 US-09-270-767-51056
57	9	2.6	240	5 US-09-45-182-28
58	8	2.3	240	4 US-09-252-991A-23179
59	8	2.3	240	4 US-09-252-991A-25669
60	8	2.3	240	4 US-09-489-039A-9736
61	8	2.3	240	4 US-09-489-039A-12983
62	8	2.3	240	4 US-09-252-991A-25776
63	8	2.3	240	4 US-09-252-991A-25776
64	8	2.3	240	4 US-09-252-991A-25776
65	8	2.3	240	4 US-09-252-991A-25776
66	8	2.3	240	4 US-09-252-991A-25776
67	8	2.3	240	4 US-09-252-991A-25776
68	7	2.0	240	4 US-09-287-849-37
69	7	2.0	240	4 US-09-513-999C-6694
70	7	2.0	240	4 US-09-248-796A-26301
71	7	2.0	240	4 US-09-621-976-5451
72	7	2.0	240	4 US-09-270-767-42777
73	7	2.0	240	4 US-09-270-767-47994
74	7	2.0	240	4 US-09-489-039A-11675
75	7	2.0	240	4 US-09-270-767-49293
76	7	2.0	240	4 US-09-270-767-49293
77	7	2.0	240	4 US-09-199-637A-307
78	7	2.0	240	4 US-09-159-922A-7
79	7	2.0	240	4 US-09-489-039A-12045
80	7	2.0	240	4 US-09-247-907A-2
81	7	2.0	240	4 US-09-452-772-2
82	7	2.0	240	4 US-09-765-875-4
83	7	2.0	240	4 US-09-795-671-4
84	7	2.0	240	4 US-09-414-234-2
85	7	2.0	240	4 US-09-919-850-2
86	7	2.0	240	4 US-09-45-540-4
87	7	2.0	240	4 PCT-US94-05288-2
88	7	2.0	240	4 US-09-455-550-11
89	7	2.0	240	4 US-09-101-646-618
90	7	2.0	240	4 US-09-252-991A-16650
91	7	2.0	240	4 US-09-252-991A-16650
92	7	2.0	240	4 US-09-241-796A-27732
93	7	2.0	240	4 US-09-252-991A-19409
94	7	2.0	240	4 US-09-252-991A-21079
95	7	2.0	240	4 US-09-252-991A-18426
96	7	2.0	240	4 US-09-252-991A-27555
97	7	2.0	240	4 US-09-252-991A-19862
98	7	2.0	240	4 US-09-728-864-42
99	7	2.0	240	4 US-09-902-540-13382
100	7	2.0	240	4 US-09-252-991A-24652

Sequence 7, Appli	Sequence 15, Appli
Sequence 6, Appli	Sequence 13, Appli
Sequence 6, Appli	Sequence 11, Appli
Sequence 6, Appli	Sequence 10, Appli
Sequence 6, Appli	Sequence 30, Appli
Sequence 6, Appli	Sequence 31, Appli
Sequence 6, Appli	Sequence 32, Appli
Sequence 6, Appli	Sequence 33, Appli
Sequence 6, Appli	Sequence 34, Appli
Sequence 6, Appli	Sequence 35, Appli
Sequence 6, Appli	Sequence 36, Appli
Sequence 6, Appli	Sequence 37, Appli
Sequence 6, Appli	Sequence 38, Appli
Sequence 6, Appli	Sequence 39, Appli
Sequence 6, Appli	Sequence 40, Appli
Sequence 6, Appli	Sequence 41, Appli
Sequence 6, Appli	Sequence 42, Appli
Sequence 6, Appli	Sequence 43, Appli
Sequence 6, Appli	Sequence 44, Appli
Sequence 6, Appli	Sequence 45, Appli
Sequence 6, Appli	Sequence 46, Appli
Sequence 6, Appli	Sequence 47, Appli
Sequence 6, Appli	Sequence 48, Appli
Sequence 6, Appli	Sequence 49, Appli
Sequence 6, Appli	Sequence 50, Appli
Sequence 6, Appli	Sequence 51, Appli
Sequence 6, Appli	Sequence 52, Appli
Sequence 6, Appli	Sequence 53, Appli
Sequence 6, Appli	Sequence 54, Appli
Sequence 6, Appli	Sequence 55, Appli
Sequence 6, Appli	Sequence 56, Appli
Sequence 6, Appli	Sequence 57, Appli
Sequence 6, Appli	Sequence 58, Appli
Sequence 6, Appli	Sequence 59, Appli
Sequence 6, Appli	Sequence 60, Appli
Sequence 6, Appli	Sequence 61, Appli
Sequence 6, Appli	Sequence 62, Appli
Sequence 6, Appli	Sequence 63, Appli
Sequence 6, Appli	Sequence 64, Appli
Sequence 6, Appli	Sequence 65, Appli
Sequence 6, Appli	Sequence 66, Appli
Sequence 6, Appli	Sequence 67, Appli
Sequence 6, Appli	Sequence 68, Appli
Sequence 6, Appli	Sequence 69, Appli
Sequence 6, Appli	Sequence 70, Appli
Sequence 6, Appli	Sequence 71, Appli
Sequence 6, Appli	Sequence 72, Appli
Sequence 6, Appli	Sequence 73, Appli
Sequence 6, Appli	Sequence 74, Appli
Sequence 6, Appli	Sequence 75, Appli
Sequence 6, Appli	Sequence 76, Appli
Sequence 6, Appli	Sequence 77, Appli
Sequence 6, Appli	Sequence 78, Appli
Sequence 6, Appli	Sequence 79, Appli
Sequence 6, Appli	Sequence 80, Appli
Sequence 6, Appli	Sequence 81, Appli
Sequence 6, Appli	Sequence 82, Appli
Sequence 6, Appli	Sequence 83, Appli
Sequence 6, Appli	Sequence 84, Appli
Sequence 6, Appli	Sequence 85, Appli
Sequence 6, Appli	Sequence 86, Appli
Sequence 6, Appli	Sequence 87, Appli
Sequence 6, Appli	Sequence 88, Appli
Sequence 6, Appli	Sequence 89, Appli
Sequence 6, Appli	Sequence 90, Appli
Sequence 6, Appli	Sequence 91, Appli
Sequence 6, Appli	Sequence 92, Appli
Sequence 6, Appli	Sequence 93, Appli
Sequence 6, Appli	Sequence 94, Appli
Sequence 6, Appli	Sequence 95, Appli
Sequence 6, Appli	Sequence 96, Appli
Sequence 6, Appli	Sequence 97, Appli
Sequence 6, Appli	Sequence 98, Appli
Sequence 6, Appli	Sequence 99, Appli
Sequence 6, Appli	Sequence 100, Appli

101	7	2.0	243	4	US-09-252-991A-19011	Sequence 19011, A
102	7	2.0	250	4	US-09-902-540-13919	Sequence 13919, A
103	7	2.0	250	4	US-09-252-991A-32459	Sequence 32459, A
104	7	2.0	254	4	US-09-252-991A-26135	Sequence 26135, A
105	7	2.0	264	4	US-09-252-991A-22289	Sequence 22289, A
106	7	2.0	275	4	US-09-252-991A-11338	Sequence 11338, A
107	7	2.0	278	4	US-09-252-991A-24928	Sequence 24928, A
108	7	2.0	282	4	US-09-252-991A-28431	Sequence 28431, A
109	7	2.0	283	4	US-09-252-991A-24509	Sequence 24509, A
110	7	2.0	296	4	US-09-673-395A-407	Sequence 407, APP
111	7	2.0	300	4	US-09-252-991A-17479	Sequence 17479, A
112	7	2.0	307	4	US-09-252-991A-21588	Sequence 21588, A
113	7	2.0	324	4	US-09-252-991A-32256	Sequence 22566, A
114	7	2.0	326	4	US-09-252-991A-30194	Sequence 30194, A
115	7	2.0	328	4	US-09-252-991A-28618	Sequence 28618, A
116	7	2.0	333	4	US-10-101-164A-561	Sequence 561, APP
117	7	2.0	333	4	US-09-949-016-7704	Sequence 7304, APP
118	7	2.0	334	4	US-08-482-385A-7	Sequence 7, APP
119	7	2.0	334	4	US-09-949-016-9946	Sequence 9846, APP
120	7	2.0	349	4	US-09-252-991A-30661	Sequence 30661, A
121	7	2.0	362	1	US-08-452-772-11	Sequence 11, APP
122	7	2.0	362	3	US-09-414-234-11	Sequence 11, APP
123	7	2.0	362	4	US-08-919-501-11	Sequence 11, APP
124	7	2.0	362	5	PCT-US94-05288-11	Sequence 11, APP
125	7	2.0	362	5	PCT-US94-05288-11	Sequence 11, APP
126	7	2.0	367	4	US-09-252-991A-20708	Sequence 20708, A
127	7	2.0	379	4	US-09-252-991A-31693	Sequence 31693, A
128	7	2.0	395	4	US-09-673-395A-612	Sequence 612, APP
129	7	2.0	401	4	US-09-489-039A-12481	Sequence 12481, A
130	7	2.0	401	4	US-09-949-016-823	Sequence 823, APP
131	7	2.0	407	2	US-08-765-875-2	Sequence 2, APP
132	7	2.0	407	2	US-08-765-875-6	Sequence 6, APP
133	7	2.0	407	3	US-08-795-671-2	Sequence 2, APP
134	7	2.0	407	3	US-08-795-671-6	Sequence 6, APP
135	7	2.0	407	4	US-09-454-540-6	Sequence 2, APP
136	7	2.0	407	4	US-09-454-540-6	Sequence 6, APP
137	7	2.0	407	4	US-09-626-896-25	Sequence 2, APP
138	7	2.0	407	4	US-09-485-646-16	Sequence 16, APP
139	7	2.0	410	4	US-09-252-991A-32716	Sequence 32716, A
140	7	2.0	418	4	US-09-252-991A-7463	Sequence 17463, A
141	7	2.0	419	4	US-09-949-016-295	Sequence 7295, APP
142	7	2.0	425	4	US-09-252-991A-20467	Sequence 20467, A
143	7	2.0	432	4	US-09-252-991A-22739	Sequence 22739, A
144	7	2.0	432	4	US-09-902-540-5774	Sequence 15774, A
145	7	2.0	436	4	US-09-902-540-917	Sequence 917, APP
146	7	2.0	442	4	US-09-198-452A-903	Sequence 903, APP
147	7	2.0	447	4	US-09-902-540-4598	Sequence 14598, A
148	7	2.0	462	3	US-08-630-915A-38	Sequence 38, APP
149	7	2.0	462	4	US-09-879-957-38	Sequence 38, APP
150	7	2.0	467	4	US-09-492-709A-381	Sequence 381, APP
151	7	2.0	472	4	US-09-438-185A-840	Sequence 840, APP
152	7	2.0	476	4	US-09-252-991A-17561	Sequence 17561, APP
153	7	2.0	483	4	US-09-252-991A-27152	Sequence 27152, A
154	7	2.0	483	4	US-09-252-991A-29267	Sequence 29267, A
155	7	2.0	495	4	US-09-252-991A-24607	Sequence 24607, A
156	7	2.0	508	4	US-09-252-991A-32269	Sequence 32269, A
157	7	2.0	520	4	US-09-538-1347	Sequence 1347, APP
158	7	2.0	525	4	US-09-252-991A-31946	Sequence 31946, APP
159	7	2.0	530	4	US-09-252-991A-23861	Sequence 23861, APP
160	7	2.0	547	1	US-08-340-203A-3	Sequence 3, APP
161	7	2.0	547	2	US-08-452-567-3	Sequence 3, APP
162	7	2.0	547	2	US-08-452-427-3	Sequence 3, APP
163	7	2.0	557	3	US-09-085-407-3	Sequence 3, APP
164	7	2.0	557	4	US-09-252-991A-28083	Sequence 28083, APP
165	7	2.0	561	4	US-09-252-991A-26778	Sequence 26778, A
166	7	2.0	569	4	US-09-252-991A-32124	Sequence 32124, A
167	7	2.0	603	4	US-09-252-991A-25034	Sequence 25034, APP
168	7	2.0	605	4	US-09-252-991A-18837	Sequence 18837, A
169	7	2.0	620	4	US-09-934-868-62	Sequence 62, APP
170	7	2.0	655	4	US-09-252-991A-7112	Sequence 17112, A
171	7	2.0	690	3	US-09-228-986-69	Sequence 69, APP
172	7	2.0	690	4	US-10-101-464A-69	Sequence 69, APP

393	6	1.7	102	4	US-09-374-98C-85	Sequence 85, Appl	466	6	1.7	116	4	US-09-378-238-35
394	6	1.7	102	4	US-09-374-98C-86	Sequence 86, Appl	467	6	1.7	116	4	US-09-378-238-35
395	6	1.7	103	4	US-09-313-99C-5877	Sequence 5877, Appl	468	6	1.7	116	4	US-09-412-791D-15
396	6	1.7	105	1	US-09-482-577B-27	Sequence 27, Appl	469	6	1.7	116	4	US-09-619-0611-15
397	6	1.7	105	3	US-08-478-097A-22	Sequence 22, Appl	470	6	1.7	116	5	PCT-US94-07657-21
398	6	1.7	105	3	US-08-892-212E-31	Sequence 31, Appl	471	6	1.7	116	5	PCT-US94-07762-15
399	6	1.7	105	3	US-09-218-176-10	Sequence 10, Appl	472	6	1.7	116	5	PCT-US94-07799-15
400	6	1.7	105	3	US-09-034-546B-31	Sequence 31, Appl	473	6	1.7	116	6	5206160-1
401	6	1.7	105	3	US-08-931-898B-169	Sequence 169, Appl	474	6	1.7	116	6	5206160-1
402	6	1.7	105	3	US-08-001-422-2	Sequence 2, Appl	475	6	1.7	116	6	5206160-1
403	6	1.7	105	3	US-08-981-739-169	Sequence 169, Appl	476	6	1.7	117	1	US-08-249-013-6
404	6	1.7	105	4	US-09-128-056-169	Sequence 169, Appl	477	6	1.7	117	2	US-08-886-863-6
405	6	1.7	105	4	US-09-071-075-292	Sequence 292, Appl	478	6	1.7	117	3	US-09-175-229-6
406	6	1.7	105	4	US-08-837-389-26	Sequence 26, Appl	479	6	1.7	117	5	PCT-US95-06764-6
407	6	1.7	105	4	US-09-96-398-22	Sequence 169, Appl	480	6	1.7	117	6	5206160-1
408	6	1.7	105	4	US-09-775-27A-2	Sequence 2, Appl	481	6	1.7	117	6	5206160-1
409	6	1.7	105	4	US-09-775-27A-13	Sequence 13, Appl	482	6	1.7	117	1	US-08-252-991A-25169
410	6	1.7	105	4	US-09-220-407-169	Sequence 169, Appl	483	6	1.7	117	1	US-08-252-991A-25169
411	6	1.7	105	4	US-09-732-210-1287	Sequence 1287, Appl	484	6	1.7	117	2	US-08-460-402-11
412	6	1.7	105	4	US-09-720-120-1291	Sequence 1291, Appl	485	6	1.7	117	3	US-09-079-616-7
413	6	1.7	105	4	US-09-220-616-169	Sequence 169, Appl	486	6	1.7	117	4	US-09-270-676-56640
414	6	1.7	105	4	US-09-374-95C-61	Sequence 61, Appl	487	6	1.7	117	5	US-09-519-051-7
415	6	1.7	105	4	US-09-230-527-169	Sequence 169, Appl	488	6	1.7	117	6	5206160-1
416	6	1.7	105	4	US-09-220-407-169	Sequence 169, Appl	489	6	1.7	117	1	US-08-581-529B-7
417	6	1.7	105	4	US-09-766-396-26	Sequence 26, Appl	490	6	1.7	117	2	US-08-460-402-11
418	6	1.7	106	1	US-08-492-577B-25	Sequence 25, Appl	491	6	1.7	117	3	US-09-079-616-7
419	6	1.7	106	3	US-09-720-128-07A-23	Sequence 23, Appl	492	6	1.7	117	4	US-09-270-676-56640
420	6	1.7	106	3	US-08-289-22E-29	Sequence 29, Appl	493	6	1.7	117	5	US-09-519-051-7
421	6	1.7	106	3	US-09-218-16-8	Sequence 8, Appl	494	6	1.7	117	6	5206160-1
422	6	1.7	106	3	US-09-252-956B-29	Sequence 29, Appl	495	6	1.7	117	1	PCT-US94-07762-7
423	6	1.7	106	3	US-08-931-898E-153	Sequence 153, Appl	496	6	1.7	117	2	US-08-478-311-11
424	6	1.7	106	3	US-08-931-739-153	Sequence 153, Appl	497	6	1.7	117	3	US-09-153-733A-20
425	6	1.7	106	4	US-09-128-056-153	Sequence 153, Appl	498	6	1.7	117	4	US-09-134-000C-489A
426	6	1.7	106	4	US-09-378-228-36	Sequence 36, Appl	499	6	1.7	117	5	US-09-481-377-21
427	6	1.7	106	4	US-09-96-398-23	Sequence 23, Appl	500	6	1.7	117	6	5206160-1
428	6	1.7	106	4	US-09-252-991A-22993	Sequence 23, Appl	501	6	1.7	117	1	PCT-US94-07762-7
429	6	1.7	106	4	US-09-489-099A-11258	Sequence 11258, A	502	6	1.7	117	2	US-09-732-210-976
430	6	1.7	106	4	US-09-320-615-153	Sequence 153, Appl	503	6	1.7	117	3	US-09-153-733A-20
431	6	1.7	106	4	US-09-74-98C-62	Sequence 62, Appl	504	6	1.7	117	4	US-09-134-000C-489A
432	6	1.7	106	4	US-09-374-98C-63	Sequence 63, Appl	505	6	1.7	117	5	US-09-481-377-21
433	6	1.7	106	4	US-09-220-527-153	Sequence 153, Appl	506	6	1.7	117	6	5206160-1
434	6	1.7	106	4	US-09-220-407-153	Sequence 153, Appl	507	6	1.7	117	1	PCT-US94-00685-18
435	6	1.7	107	4	US-09-252-991A-32005	Sequence 32005, A	508	6	1.7	117	2	US-09-153-733A-21
436	6	1.7	107	4	US-09-489-039A-7316	Sequence 7336, Ap	509	6	1.7	117	3	US-09-301-520D-18
437	6	1.7	108	1	US-09-252-991A-29540	Sequence 29540, A	510	6	1.7	117	4	US-09-31-520D-18
438	6	1.7	109	1	US-08-721-212-2	Sequence 2, Appl	511	6	1.7	117	5	PCT-US94-00666-21
439	6	1.7	109	1	US-08-271-212-2	Sequence 4, Appl	512	6	1.7	117	6	PCT-US94-00666-21
440	6	1.7	110	4	US-09-252-991A-29004	Sequence 29004, A	513	6	1.7	117	1	PCT-US94-00666-21
441	6	1.7	111	4	US-09-513-99C-8147	Sequence 8147, Appl	514	6	1.7	117	2	US-09-301-520D-18
442	6	1.7	111	4	US-09-513-99C-6218	Sequence 6218, Appl	515	6	1.7	117	3	PCT-US94-00666-21
443	6	1.7	115	1	US-08-081-377-19	Sequence 19, Appl	516	6	1.7	117	4	US-09-389-705-20
444	6	1.7	115	2	US-08-491-855-17	Sequence 17, Appl	517	6	1.7	117	5	PCT-US94-00685-18
445	6	1.7	115	3	US-09-513-733A-19	Sequence 19, Appl	518	6	1.7	117	6	US-09-389-705-21
446	6	1.7	115	3	US-08-946-098A-17	Sequence 17, Appl	519	6	1.7	117	1	US-09-389-705-21
447	6	1.7	115	3	US-09-172-022-17	Sequence 17, Appl	520	6	1.7	117	2	US-09-581-529B-17
448	6	1.7	115	3	US-09-301-520D-17	Sequence 17, Appl	521	6	1.7	117	3	US-09-455-559-23
449	6	1.7	115	3	US-09-389-705-19	Sequence 19, Appl	522	6	1.7	117	4	US-09-455-559-23
450	6	1.7	116	1	US-08-459-214-35	Sequence 19, Appl	523	6	1.7	117	5	US-09-455-559-23
451	6	1.7	116	1	PCT-US94-00666-19	Sequence 19, Appl	524	6	1.7	117	6	US-09-455-559-23
452	6	1.7	116	1	PCT-US94-00685-17	Sequence 17, Appl	525	6	1.7	117	1	US-09-455-559-23
453	6	1.7	116	1	US-08-197-732-38	Sequence 17, Appl	526	6	1.7	117	2	US-09-145-060-22
454	6	1.7	116	1	US-08-459-850-35	Sequence 17, Appl	527	6	1.7	117	3	US-09-145-060-22
455	6	1.7	116	2	US-08-089-850-38	Sequence 19, Appl	528	6	1.7	117	4	US-09-145-060-22
456	6	1.7	116	1	US-08-459-214-35	Sequence 19, Appl	529	6	1.7	117	5	US-09-145-060-22
457	6	1.7	116	1	US-08-459-214-38	Sequence 19, Appl	530	6	1.7	117	6	US-09-145-060-22
458	6	1.7	116	1	US-08-081-529B-15	Sequence 15, Appl	531	6	1.7	117	1	US-09-145-060-22
459	6	1.7	116	1	US-08-081-529B-25	Sequence 15, Appl	532	6	1.7	117	2	US-09-145-060-22
460	6	1.7	116	1	US-08-459-850-38	Sequence 15, Appl	533	6	1.7	117	3	US-09-145-060-22
461	6	1.7	116	2	US-08-081-529B-15	Sequence 15, Appl	534	6	1.7	117	4	US-09-145-060-22
462	6	1.7	116	3	US-08-097-850-38	Sequence 15, Appl	535	6	1.7	117	5	US-09-145-060-22
463	6	1.7	116	1	US-08-177-850-25	Sequence 15, Appl	536	6	1.7	117	6	US-09-145-060-22
464	6	1.7	116	3	US-08-624-635-17	Sequence 17, Appl	537	6	1.7	117	1	US-09-145-060-22
465	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	538	6	1.7	117	2	US-09-145-060-22
466	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	539	6	1.7	117	3	US-09-145-060-22
467	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	540	6	1.7	117	4	US-09-145-060-22
468	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	541	6	1.7	117	5	US-09-145-060-22
469	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	542	6	1.7	117	6	US-09-145-060-22
470	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	543	6	1.7	117	1	US-09-145-060-22
471	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	544	6	1.7	117	2	US-09-145-060-22
472	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	545	6	1.7	117	3	US-09-145-060-22
473	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	546	6	1.7	117	4	US-09-145-060-22
474	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	547	6	1.7	117	5	US-09-145-060-22
475	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	548	6	1.7	117	6	US-09-145-060-22
476	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	549	6	1.7	117	1	US-09-145-060-22
477	6	1.7	116	3	US-09-145-060-22	Sequence 21, Appl	550	6	1.7	117	2	US-09-145-060-22
47												

539	6	1.7	122	5	PCT-US94-00657-22	Sequence 22, Appli	612	6	1.7	139	4	US-09-252-991A-23049
540	6	1.7	122	5	PCT-US94-00657-23	Sequence 23, Appli	613	6	1.7	140	4	US-09-252-991A-23924
541	6	1.7	122	5	PCT-US94-00716-23	Sequence 15, Appli	614	6	1.7	140	4	US-09-489-0319-A-7553
542	6	1.7	122	5	PCT-US94-0716-23	Sequence 17, Appli	615	6	1.7	141	4	US-09-252-991A-19681
543	6	1.7	122	5	PCT-US94-07799-16	Sequence 16, Appli	616	6	1.7	141	4	US-09-252-991A-00549
544	6	1.7	122	5	PCT-US94-07799-17	Sequence 17, Appli	617	6	1.7	141	4	US-09-252-991A-25829
545	6	1.7	123	4	US-09-252-991A-30802	Sequence 30802, A	618	6	1.7	141	4	US-09-252-991A-28392
546	6	1.7	124	4	US-09-270-67-32001	Sequence 32001, A	619	6	1.7	142	3	US-08-775-110-4779
547	6	1.7	124	4	US-09-270-67-47218	Sequence 47218, A	620	6	1.7	142	4	US-09-270-767-40599
548	6	1.7	127	4	US-09-893-37-48	Sequence 48, Appli	621	6	1.7	142	4	US-09-10-67-55815
549	6	1.7	129	4	US-09-270-67-52565	Sequence 37348, A	622	6	1.7	142	4	US-09-219-952-82
550	6	1.7	129	4	US-09-270-67-52565	Sequence 52565, A	623	6	1.7	143	4	US-09-252-991A-28392
551	6	1.7	129	4	US-09-949-016-8110	Sequence 8110, Ap	624	6	1.7	143	4	US-09-252-991A-37886
552	6	1.7	130	1	US-08-215-989-21	Sequence 21, Appli	625	6	1.7	143	4	US-09-270-67-52103
553	6	1.7	130	1	US-08-435-55-9	Sequence 9, Appli	626	6	1.7	144	3	US-08-775-41-81
554	6	1.7	130	1	US-08-570-92-21	Sequence 21, Appli	627	6	1.7	144	4	US-09-270-67-40507
555	6	1.7	130	1	US-08-580-01-21	Sequence 21, Appli	628	6	1.7	144	4	US-09-219-952-81
556	6	1.7	130	3	US-09-79-88-21	Sequence 21, Appli	629	6	1.7	145	2	US-08-708-708-51A-32
557	6	1.7	130	4	US-09-628-126-21	Sequence 21, Appli	630	6	1.7	145	4	US-09-252-991A-39773
558	6	1.7	130	4	US-09-248-799A-167-65	Sequence 16265, A	631	6	1.7	145	4	US-09-17-771-32
559	6	1.7	131	4	US-09-61-63-654	Sequence 654, Appli	632	6	1.7	147	3	US-08-65-844-A-7
560	6	1.7	131	4	US-09-071-35-290	Sequence 290, Appli	633	6	1.7	147	4	US-09-252-991A-19713
561	6	1.7	131	4	US-09-621-970-5133	Sequence 5133, Ap	634	6	1.7	147	4	US-09-54-0-236-2273
562	6	1.7	131	4	US-10-70-07-654	Sequence 654, Appli	635	6	1.7	148	4	US-09-48-039A-14211
563	6	1.7	131	4	US-09-902-540-1159	Sequence 11259, A	636	6	1.7	149	4	US-09-248-96A-16976
564	6	1.7	132	4	US-09-232-991A-19533	Sequence 19533, A	637	6	1.7	149	4	US-09-10-7-433-583
565	6	1.7	132	4	US-09-621-96-4084	Sequence 4084, Ap	638	6	1.7	149	4	US-09-94-016-10945
566	6	1.7	132	4	US-09-734-422A-4	Sequence 4, Appli	639	6	1.7	150	3	US-08-775-41-84
567	6	1.7	133	4	US-09-352-991A-26400	Sequence 26400, A	640	6	1.7	150	4	US-09-54-0-236-2273
568	6	1.7	133	4	US-09-252-991A-27155	Sequence 27155, A	641	6	1.7	151	4	US-09-48-039A-12329
569	6	1.7	133	4	US-09-489-039A-10879	Sequence 10879, A	642	6	1.7	151	4	US-09-270-767-33903
570	6	1.7	134	3	US-08-581-559B-6	Sequence 6, Appli	643	6	1.7	152	3	US-08-775-41-83
571	6	1.7	134	3	US-09-570-921-35	Sequence 35, Appli	644	6	1.7	152	4	US-09-252-991A-19039
572	6	1.7	134	4	US-09-570-921-30	Sequence 30, Appli	645	6	1.7	152	4	US-09-219-952-83
573	6	1.7	134	4	US-09-570-921-33	Sequence 31, Appli	646	6	1.7	153	4	US-09-252-991A-27025
574	6	1.7	134	4	US-09-570-921-32	Sequence 32, Appli	647	6	1.7	154	4	US-09-248-799A-14119
575	6	1.7	134	4	US-09-570-921-33	Sequence 33, Appli	648	6	1.7	155	4	US-09-252-991A-32030
576	6	1.7	134	4	US-09-570-921-34	Sequence 34, Appli	649	6	1.7	156	4	US-09-252-991A-32450
577	6	1.7	134	4	US-09-570-921-35	Sequence 35, Appli	650	6	1.7	156	4	US-09-248-796A-24761
578	6	1.7	134	4	US-09-570-921-37	Sequence 37, Appli	651	6	1.7	156	4	US-09-252-991A-27602
579	6	1.7	134	4	US-09-570-921-39	Sequence 39, Appli	652	6	1.7	159	4	US-09-25-2-991A-26161
580	6	1.7	134	4	US-09-570-921-47	Sequence 47, Appli	653	6	1.7	159	4	US-09-14-108C-13
581	6	1.7	134	4	US-09-570-921-48	Sequence 48, Appli	654	6	1.7	160	4	US-09-252-991A-19367
582	6	1.7	134	4	US-09-570-921-49	Sequence 49, Appli	655	6	1.7	160	4	US-09-252-991A-27091
583	6	1.7	134	4	US-09-570-921-50	Sequence 50, Appli	656	6	1.7	162	4	US-09-252-991A-17602
584	6	1.7	134	4	US-09-570-921-51	Sequence 51, Appli	657	6	1.7	162	4	US-09-252-991A-21940
585	6	1.7	134	4	US-09-570-921-52	Sequence 26710, A	658	6	1.7	163	4	US-09-25-2-991A-22745
586	6	1.7	134	4	US-09-570-921-55	Sequence 26711, A	659	6	1.7	163	4	US-09-252-991A-21322
587	6	1.7	134	4	US-09-326-462C-14	Sequence 14, Appli	660	6	1.7	164	3	US-09-134-001-C-5217
588	6	1.7	135	2	PCT-US4-07762-6	Sequence 6, Appli	661	6	1.7	164	3	US-09-249-697A-9
589	6	1.7	135	2	US-09-647-66-3	Sequence 3, Appli	662	6	1.7	164	3	US-09-363-316B-9
590	6	1.7	135	3	US-08-946-914-16	Sequence 15, Appli	663	6	1.7	164	4	US-09-252-991A-24587
591	6	1.7	135	3	US-08-0-50-259B-20	Sequence 16, Appli	664	6	1.7	164	4	US-09-25-1-99C-5462
592	6	1.7	135	3	US-09-45-764A-10	Sequence 17, Appli	665	6	1.7	164	4	US-09-25-2-991A-22742
593	6	1.7	135	3	US-09-489-292-2	Sequence 18, Appli	666	6	1.7	164	4	US-09-25-2-991A-17601
594	6	1.7	135	4	US-09-719-55-2	Sequence 19, Appli	667	6	1.7	165	4	US-09-25-2-991A-31549
595	6	1.7	135	4	US-09-656-45-15	Sequence 20, Appli	668	6	1.7	165	4	US-09-25-2-991A-27263
596	6	1.7	135	4	US-09-252-991A-17592	Sequence 21, Appli	669	6	1.7	166	4	US-09-25-2-991A-30524
597	6	1.7	135	4	US-09-919-172-91	Sequence 22, Appli	670	6	1.7	166	4	US-09-25-2-991A-28741
598	6	1.7	135	4	US-09-976-59-628	Sequence 23, Appli	671	6	1.7	166	4	US-10-136-227A-9
599	6	1.7	135	4	US-09-540-216-3329	Sequence 24, Appli	672	6	1.7	166	4	US-09-981-649A-9
600	6	1.7	135	4	US-09-0-540-216-3329	Sequence 25, Appli	673	6	1.7	167	4	US-09-25-2-991A-17701
601	6	1.7	135	4	US-09-919-49-71-81	Sequence 26, Appli	674	6	1.7	167	4	US-09-25-2-991A-27263
602	6	1.7	135	4	US-09-513-99C-4874	Sequence 2752, A	675	6	1.7	167	4	US-09-25-2-991A-31549
603	6	1.7	136	4	US-09-252-991A-31120	Sequence 28, Appli	676	6	1.7	167	4	US-09-25-2-991A-22832
604	6	1.7	136	4	US-09-732-210-670	Sequence 29, Appli	677	6	1.7	168	4	US-09-134-000-5521
605	6	1.7	137	4	US-09-902-540-13403	Sequence 30802, A	678	6	1.7	168	4	US-09-25-2-991A-17701
606	6	1.7	138	4	US-09-252-991A-17701	Sequence 32001, A	679	6	1.7	169	4	US-09-25-2-991A-17701
607	6	1.7	138	4	US-09-732-210-633	Sequence 3329, A	680	6	1.7	170	4	US-09-25-2-991A-18184
608	6	1.7	138	4	US-09-732-210-633	Sequence 3429, A	681	6	1.7	170	4	US-09-25-2-991A-18184
609	6	1.7	138	4	US-09-270-767-37472	Sequence 3529, A	682	6	1.7	170	4	US-09-25-2-991A-23800
610	6	1.7	138	4	US-09-270-767-37472	Sequence 3629, A	683	6	1.7	170	4	US-09-25-2-991A-24227
611	6	1.7	138	4	US-09-270-767-37472	Sequence 3729, A	684	6	1.7	170	4	US-09-25-2-991A-25850

685	6	1.7	174	4	US-09-248-766A-9813	Sequence 19813, A	759	6	1.7	197	4	US-09-220-616-7
686	6	1.7	174	2	US-09-248-766A-24013	Sequence 24013, A	759	6	1.7	197	4	US-09-220-527-7
687	6	1.7	175	4	US-09-252-931A-32945	Sequence 5, Appli	760	6	1.7	197	4	US-09-220-407-7
688	6	1.7	175	4	US-09-270-767-31720	Sequence 32945, A	761	6	1.7	197	4	US-09-662-183A-34
689	6	1.7	175	4	US-09-270-767-31720	Sequence 31720, A	762	6	1.7	197	4	US-09-211-952-7
690	6	1.7	175	4	US-09-270-767-31720	Sequence 34225, A	763	6	1.7	198	4	US-09-489-039A-13828
691	6	1.7	175	4	US-09-270-767-34429	Sequence 49446, A	764	6	1.7	198	4	US-09-134-000C-4251
692	6	1.7	175	4	US-09-270-767-49446	Sequence 5, Appli	765	6	1.7	198	4	US-09-270-767-60790
693	6	1.7	175	4	PCT-US5-13662A-5	Sequence 20857, A	766	6	1.7	197	4	US-09-662-183A-34
694	6	1.7	176	4	US-09-252-931A-20852	Sequence 28, Appli	767	6	1.7	197	4	US-09-270-767-34039
695	6	1.7	176	4	US-09-270-767-60379	Sequence 60879, A	768	6	1.7	202	4	US-09-270-767-49256
696	6	1.7	178	4	US-09-270-767-60379	Sequence 25298, A	769	6	1.7	202	4	US-09-252-931A-23298
697	6	1.7	179	4	US-09-252-931A-26223	Sequence 26223, A	770	6	1.7	203	4	US-09-949-016-9395
698	6	1.7	180	4	US-09-252-931A-26223	Sequence 19262, A	771	6	1.7	203	4	US-09-252-931A-29026
699	6	1.7	180	4	US-09-252-931A-26223	Sequence 19262, A	772	6	1.7	204	4	US-09-252-931A-60790
700	6	1.7	181	4	US-10-012-522-196	Sequence 25467, A	773	6	1.7	205	4	US-09-49-09A-11450
701	6	1.7	181	4	US-10-115-153-196	Sequence 196, Appli	774	6	1.7	205	4	US-09-252-931A-23271
702	6	1.7	182	4	US-09-252-931A-31056	Sequence 31056, A	775	6	1.7	208	4	US-09-252-931A-5401
703	6	1.7	182	4	US-09-270-767-52384	Sequence 37167, A	776	6	1.7	208	4	US-09-583-110-3680
704	6	1.7	181	4	US-09-61-335-196	Sequence 52384, A	777	6	1.7	209	4	US-09-252-931A-29026
705	6	1.7	181	4	US-10-012-522-196	Sequence 196, App	778	6	1.7	209	4	US-09-252-931A-28575
706	6	1.7	181	4	US-10-115-153-196	Sequence 196, Appli	779	6	1.7	209	4	US-09-252-931A-28755
707	6	1.7	182	4	US-09-252-931A-26228	Sequence 22288, A	780	6	1.7	210	4	US-09-107-532A-5401
708	6	1.7	182	4	US-09-252-931A-26228	Sequence 26290, A	781	6	1.7	210	4	US-09-252-931A-26393
709	6	1.7	182	4	US-09-252-931A-26493	Sequence 29493, A	782	6	1.7	211	4	US-09-270-767-3557
710	6	1.7	182	4	US-09-734-422A-12	Sequence 12, Appli	783	6	1.7	211	4	US-09-270-767-50674
711	6	1.7	182	4	US-09-734-422A-24	Sequence 24, Appli	784	6	1.7	212	4	US-09-252-931A-17137
712	6	1.7	182	4	US-09-270-767-37041	Sequence 37041, A	785	6	1.7	212	4	US-09-252-931A-17449
713	6	1.7	182	4	US-09-270-767-52358	Sequence 52258, A	786	6	1.7	212	4	US-09-252-931A-23200
714	6	1.7	183	4	US-09-613-92A-303	Sequence 303, App	787	6	1.7	212	4	US-09-252-931A-27233
715	6	1.7	184	2	US-08-078-311-4	Sequence 4, Appli	788	6	1.7	213	4	US-09-252-931A-17280
716	6	1.7	184	2	US-08-078-460-412-4	Sequence 4, Appli	789	6	1.7	213	4	US-09-252-931A-19029
717	6	1.7	184	2	US-09-351-150A-39	Sequence 39, Appli	790	6	1.7	213	4	US-09-252-931A-23963
718	6	1.7	184	4	US-09-252-931A-27862	Sequence 27862, A	791	6	1.7	214	4	US-09-252-931A-24368
719	6	1.7	184	4	US-09-734-422A-8	Sequence 8, Appli	792	6	1.7	212	4	US-09-252-931A-23200
720	6	1.7	185	4	US-09-252-931A-27520	Sequence 27520, A	793	6	1.7	212	4	US-09-252-931A-27233
721	6	1.7	186	4	US-09-252-931A-24073	Sequence 24073, A	794	6	1.7	213	4	US-09-252-931A-17280
722	6	1.7	188	4	US-09-352-931A-23977	Sequence 23977, A	795	6	1.7	213	4	US-09-252-931A-19029
723	6	1.7	188	4	US-09-198-422A-8	Sequence 183, App	796	6	1.7	213	4	US-09-252-931A-25381
724	6	1.7	188	4	US-09-902-550-12348	Sequence 12348, A	797	6	1.7	214	4	US-09-252-931A-26084
725	6	1.7	189	4	US-09-438-150A-165	Sequence 165, Appli	798	6	1.7	214	4	US-09-248-766A-16727
726	6	1.7	190	4	US-09-248-766A-16727	Sequence 16727, A	799	6	1.7	215	4	US-09-252-931A-26661
727	6	1.7	191	4	US-09-107-532A-4567	Sequence 4567, Appli	800	6	1.7	215	4	US-09-252-931A-29923
728	6	1.7	192	3	US-09-199-637A-9	Sequence 9, Appli	801	6	1.7	216	4	US-09-253-681A-56881
729	6	1.7	192	4	US-09-570-931A-65652	Sequence 26562, A	802	6	1.7	216	4	US-09-252-931A-25381
730	6	1.7	193	4	US-09-489-039A-7517	Sequence 7517, Ap	803	6	1.7	217	4	US-09-252-931A-25381
731	6	1.7	195	1	US-08-519-77-8	Sequence 8, Appli	804	6	1.7	217	4	US-09-252-931A-30650
732	6	1.7	195	1	US-08-742-015-8	Sequence 8, Appli	805	6	1.7	218	4	US-09-252-931A-26852
733	6	1.7	195	2	US-08-077-44-3-8	Sequence 8, Appli	806	6	1.7	219	4	US-09-252-931A-31020
734	6	1.7	195	3	US-08-775-414-8	Sequence 8, Appli	807	6	1.7	220	1	US-09-220-637-39
735	6	1.7	195	3	US-08-931-858E-8	Sequence 8, Appli	808	6	1.7	220	1	US-09-50-01-19
736	6	1.7	195	3	US-08-981-739-8	Sequence 8, Appli	809	6	1.7	220	3	US-09-77-985-19
737	6	1.7	195	4	US-09-128-026-8	Sequence 8, Appli	810	6	1.7	220	4	US-09-252-931A-16651
738	6	1.7	195	4	US-09-252-931A-30009	Sequence 30003, A	811	6	1.7	220	4	US-09-628-126-19
739	6	1.7	195	4	US-09-220-636-8	Sequence 8, Appli	812	6	1.7	221	4	US-09-107-532A-4477
740	6	1.7	195	4	US-09-220-637-8	Sequence 8, Appli	813	6	1.7	221	4	US-09-134-000C-6523
741	6	1.7	195	4	US-09-220-407-8	Sequence 8, Appli	814	6	1.7	222	4	US-09-270-767-45500
742	6	1.7	195	4	US-09-19-119-912-8	Sequence 8, Appli	815	6	1.7	222	4	US-09-134-001C-54426
743	6	1.7	195	4	US-09-126-416-5	Sequence 8, Appli	816	6	1.7	224	3	US-09-252-931A-25926
744	6	1.7	196	4	US-09-252-931A-25335	Sequence 34829, A	817	6	1.7	224	4	US-09-671-395A-514
745	6	1.7	196	4	US-09-270-767-44829	Sequence 3003, A	818	6	1.7	225	4	US-09-917-254-72
746	6	1.7	197	1	US-08-519-77-7	Sequence 7, Appli	819	6	1.7	225	4	US-09-270-767-42451
747	6	1.7	197	2	US-08-742-015-7	Sequence 7, Appli	820	6	1.7	226	4	US-09-489-039A-9024
748	6	1.7	197	2	US-08-777-019-7	Sequence 7, Appli	821	6	1.7	227	4	US-09-270-767-35605
749	6	1.7	197	2	US-08-777-143-7	Sequence 7, Appli	822	6	1.7	227	4	US-09-270-767-50822
750	6	1.7	197	3	US-09-106-416-5	Sequence 8, Appli	823	6	1.7	228	4	US-09-671-395A-514
751	6	1.7	197	3	US-08-931-831-7	Sequence 7, Appli	824	6	1.7	228	4	US-09-270-767-45173
752	6	1.7	197	3	US-08-981-739-7	Sequence 7, Appli	825	6	1.7	228	4	US-09-248-796A-26825
753	6	1.7	197	3	US-08-981-739-7	Sequence 7, Appli	826	6	1.7	229	4	US-09-134-000C-4443
754	6	1.7	197	3	US-09-377-446-5	Sequence 7, Appli	827	6	1.7	229	4	US-09-270-767-44828
755	6	1.7	197	3	US-09-128-026-7	Sequence 7, Appli	828	6	1.7	230	4	US-09-19-49-49-49-49-49
756	6	1.7	197	4	US-09-252-931A-23884	Sequence 23884, A	829	6	1.7	237	4	US-09-489-039A-89116
757	6	1.7	197	4	US-09-252-931A-32294	Sequence 32294, A	830	6	1.7	237	4	US-09-489-039A-89116

831 6 1.7 237 4 US-09-248-796A-18794 Sequence 18794, A 904 6 1.7 259 4 US-09-902-540-14988 Sequence 1535, A 905 6 1.7 237 4 US-09-902-540-13535 Sequence 174, APP 906 6 1.7 238 4 US-09-466-3396A-174 Sequence 174, APP 907 6 1.7 238 4 US-09-883-134-2 Sequence 2, APP 908 6 1.7 238 4 US-09-542-6115A-174 Sequence 174, APP 909 6 1.7 238 4 US-09-606-421B-174 Sequence 174, APP 910 6 1.7 238 4 US-09-466-3396A-174 Sequence 174, APP 911 6 1.7 238 4 US-09-476-4162A-174 Sequence 174, APP 912 6 1.7 238 4 US-09-630-940B-174 Sequence 174, APP 913 6 1.7 239 1 US-08-221-989-6 Sequence 6, APP1 914 6 1.7 239 1 US-08-570-923-6 Sequence 6, APP1 915 6 1.7 239 1 US-08-580-014-6 Sequence 6, APP1 916 6 1.7 239 1 US-08-460-590-11 Sequence 11, APP1 917 6 1.7 239 1 US-08-462-1698-11 Sequence 11, APP1 918 6 1.7 239 2 US-08-201-412B-14 Sequence 14, APP1 919 6 1.7 239 2 US-08-595-822-35 Sequence 15, APP1 920 6 1.7 239 3 US-09-103-079-11 Sequence 11, APP1 921 6 1.7 239 3 US-08-718-904-12 Sequence 12, APP1 922 6 1.7 239 3 US-09-022-082A-21 Sequence 21, APP1 923 6 1.7 239 3 US-09-479-3109-2 Sequence 2, APP1 924 6 1.7 239 3 US-09-093-585-11 Sequence 11, APP1 925 6 1.7 239 3 US-09-739-85-6 Sequence 14, APP1 926 6 1.7 239 3 US-09-365-51-35 Sequence 15, APP1 927 6 1.7 239 4 US-09-425-021-11 Sequence 11, APP1 928 6 1.7 239 4 US-09-449-249-12 Sequence 12, APP1 929 6 1.7 239 4 US-09-390-07-18 Sequence 18, APP1 930 6 1.7 239 4 US-09-228-947-35 Sequence 2, APP1 931 6 1.7 239 4 US-09-627-393-2 Sequence 30745, A 932 6 1.7 239 4 US-09-610-51-21 Sequence 5, APP1 933 6 1.7 239 4 US-09-564-829-5 Sequence 21, APP1 934 6 1.7 239 4 US-09-248-998-21 Sequence 5, APP1 935 6 1.7 239 4 US-09-572-40B-5 Sequence 4, APP1 936 6 1.7 239 4 US-09-921-667-4 Sequence 6, APP1 937 6 1.7 239 4 US-09-628-126-6 Sequence 21, APP1 938 6 1.7 239 4 US-09-270-767-30746 Sequence 44271, A 939 6 1.7 239 4 US-09-270-767-44271 Sequence 19038, A 940 6 1.7 239 4 US-09-282-991A-19038 Sequence 2710, A 941 6 1.7 239 4 US-09-282-991A-27170 Sequence 32897, A 942 6 1.7 239 4 US-09-270-767-32897 Sequence 48114, A 943 6 1.7 243 4 US-09-270-767-48114 Sequence 18452, A 944 6 1.7 243 4 US-09-28-785A-18452 Sequence 34075, A 945 6 1.7 243 4 US-09-270-767-34075 Sequence 49292, A 946 6 1.7 245 4 US-09-252-991A-22449 Sequence 9067, AP 947 6 1.7 245 4 US-09-949-016-9057 Sequence 407, APP 948 6 1.7 246 3 US-09-199-633A-407 Sequence 2967, AP 949 6 1.7 246 4 US-09-83-110-2967 Sequence 1589, AP 950 6 1.7 246 4 US-09-248-841A-1988 Sequence 28060, A 951 6 1.7 248 4 US-09-232-991A-28060 Sequence 29249, A 952 6 1.7 248 4 US-09-252-991A-22449 Sequence 2820, AP 953 6 1.7 248 4 US-09-107-433-2820 Sequence 102, APP 954 6 1.7 249 3 US-08-86-099-102 Sequence 102, APP 955 6 1.7 249 3 US-08-84-232B-102 Sequence 102, APP 956 6 1.7 249 3 US-08-919-571-102 Sequence 102, APP 957 6 1.7 249 3 US-08-475-608A-102 Sequence 102, APP 958 6 1.7 249 3 US-08-452-551A-102 Sequence 102, APP 959 6 1.7 249 3 US-08-471-913A-102 Sequence 102, APP 960 6 1.7 249 3 US-08-85-242A-102 Sequence 102, APP 961 6 1.7 249 3 US-08-874-319A-102 Sequence 102, APP 962 6 1.7 249 4 US-08-470-861-102 Sequence 102, APP 963 6 1.7 249 4 US-08-495-568A-102 Sequence 102, APP 964 6 1.7 249 4 US-09-252-991A-27274 Sequence 102, APP 965 6 1.7 249 4 US-08-85-551A-102 Sequence 102, APP 966 6 1.7 249 4 US-08-471-913A-102 Sequence 102, APP 967 6 1.7 250 3 US-08-360-17A-112 Sequence 102, APP 968 6 1.7 251 4 US-09-540-236-3406 Sequence 102, APP 969 6 1.7 251 4 US-09-902-540-1439 Sequence 102, APP 970 6 1.7 252 4 US-09-252-991A-29152 Sequence 102, APP 971 6 1.7 255 4 US-09-667-313-2 Sequence 102, APP 972 6 1.7 255 4 US-09-252-991A-22208 Sequence 102, APP 973 6 1.7 258 3 US-08-957-10-13 Sequence 102, APP 974 6 1.7 258 4 US-09-252-991A-26233 Sequence 102, APP 975 6 1.7 299 4 US-09-252-991A-17878 Sequence 6, APP1 976 6 1.7 299 4 US-09-270-767-42567 Sequence 6, APP1

RESULT 1
US-08-765-662-14
; Sequence 14, Application US/08765662
; Patent No. 5939213
GENERAL INFORMATION:
TITLE OF INVENTION: GROWTH DIFFERENTIATION FACTOR-12
NUMBER OF SEQUENCES: 14
CORRESPONDENCE ADDRESS:
APPLICANT: THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE
ADDRESS: Fish & Richardson
STREET: 4225 Executive Square, Suite 1400
CITY: La Jolla
STATE: CA
COUNTRY: USA
ZIP: 92037
COMPUTER READABLE FORM:
MEDIUM TYPE: Diskette
COMPUTER: IBM Compatible
OPERATING SYSTEM: DOS
SOFTWARE: FastSEQ Version 1.5
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08-765,662
FILING DATE: 28-APR-1997
CLASSIFICATION: 536
PRIOR APPLICATION DATA:
APPLICATION NUMBER: PCT/US95/08745
FILING DATE: 12-JUL-1995
ATTORNEY/AGENT INFORMATION:
NAME: Haile, Ph.D., Lisa A.
REGISTRATION NUMBER: 38,347
REFERENCE/DOCKET NUMBER: 07265/042WO1 (FD-3830)
TELECOMMUNICATION INFORMATION:
TELEPHONE: 619-678-5070
TELEFAX: 619-678-5099
INFORMATION FOR SEQ ID NO: 14:
SEQUENCE CHARACTERISTICS:
LENGTH: 350 amino acids
TYPE: amino acids
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: protein
HYPOTHETICAL: NO
ANTI-SENSE: NO

RESULT 1
US-08-765-662-14
; Sequence 14, Application US/08765662
; Patent No. 5939213
GENERAL INFORMATION:
TITLE OF INVENTION: GROWTH DIFFERENTIATION FACTOR-12
NUMBER OF SEQUENCES: 14
CORRESPONDENCE ADDRESS:
APPLICANT: THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE
ADDRESS: Fish & Richardson
STREET: 4225 Executive Square, Suite 1400
CITY: La Jolla
STATE: CA
COUNTRY: USA
ZIP: 92037
COMPUTER READABLE FORM:
MEDIUM TYPE: Diskette
COMPUTER: IBM Compatible
OPERATING SYSTEM: DOS
SOFTWARE: FastSEQ Version 1.5
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08-765,662
FILING DATE: 28-APR-1997
CLASSIFICATION: 536
PRIOR APPLICATION DATA:
APPLICATION NUMBER: PCT/US95/08745
FILING DATE: 12-JUL-1995
CLASSIFICATION:
ATTORNEY/AGENT INFORMATION:
NAME: Haile, Ph.D., Lisa A.
REGISTRATION NUMBER: 38,347
REFERENCE/DOCKET NUMBER: 07265/042WO1 (FD-3830)
TELECOMMUNICATION INFORMATION:
TELEPHONE: 619-678-5070
TELEFAX: 619-678-5099
INFORMATION FOR SEQ ID NO: 14:
SEQUENCE CHARACTERISTICS:
LENGTH: 350 amino acids
TYPE: amino acids
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: protein
HYPOTHETICAL: NO
ANTI-SENSE: NO

RESULT 2
PCT-US95-08745-14
; Sequence 14, Application PC/TUS9508745
GENERAL INFORMATION:
APPLICANT: THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE
TITLE OF INVENTION: GROWTH DIFFERENTIATION FACTOR-12
NUMBER OF SEQUENCES: 14
CORRESPONDENCE ADDRESS:
ADRESSEE: Fish & Richardson
STREET: 4225 Executive Square, Suite 1400
CITY: La Jolla
STATE: CA
COUNTRY: USA
ZIP: 92037
COMPUTER READABLE FORM:
MEDIUM TYPE: Diskette
COMPUTER: IBM Compatible
OPERATING SYSTEM: DOS
SOFTWARE: FastSEQ Version 1.5
CURRENT APPLICATION DATA:
APPLICATION NUMBER: PCT/US95/08745
FILING DATE: 12-JUL-1995
CLASSIFICATION:
ATTORNEY/AGENT INFORMATION:
NAME: Haile, Ph.D., Lisa A.
REGISTRATION NUMBER: 38,347
REFERENCE/DOCKET NUMBER: 07265/042WO1 (FD-3830)
TELECOMMUNICATION INFORMATION:
TELEPHONE: 619-678-5070
TELEFAX: 619-678-5099
INFORMATION FOR SEQ ID NO: 14:
SEQUENCE CHARACTERISTICS:
LENGTH: 350 amino acids
TYPE: amino acids
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: protein
HYPOTHETICAL: NO
ANTI-SENSE: NO

; FRAGMENT TYPE: internal
; ORIGINAL SOURCE: PCT-US95-08745-14

Query Match 1 100.0%; Score 350; DB 5; Length 350;
Best Local Similarity 100.0%; Pred. No. 0; Mismatches 0; Indels 0; Gaps 0;
Matches 350; Conservative

QY 1 MRLLPDVQLWVLUWALVALVRAQGTGSCVCPSCGGSKLAPOAERAVLBLEAKQQLDGLHUTSR 60
Db 1 MRLLPDVQLWVLUWALVALVRAQGTGSCVCPSCGGSKLAPOAERAVLBLEAKQQLDGLHUTSR 60

QY 61 PRITHPPPOALTAIRRQIOPGSVAPGNGEVEISFATVTDTSAYSSLTIFHLSPTSHH 120
Db 61 PRITHPPPOALTAIRRQIOPGSVAPGNGEVEISFATVTDTSAYSSLTIFHLSPTSHH 120

QY 121 LYHARLWLWVLPUGTGLRIFWGPGRRRRSRTLAEHTNLGHHTLTUPSGRG 180
Db 121 LYHARLWLWVLPUGTGLRIFWGPGRRRRSRTLAEHTNLGHHTLTUPSGRG 180

QY 181 EKSGVLUQLDCRPLEGSTVTGCPRLDITAGHQOPPLEKIRANERGGRARRPTC 240
Db 181 EKSGVLUQLDCRPLEGSTVTGCPRLDITAGHQOPPLEKIRANERGGRARRPTC 240

QY 241 EPATPLCCRRDHVDFQSLGRDWLQPEGYQLYNCGOCPPHLASPGRIA 300
Db 241 EPATPLCCRRDHVDFQSLGRDWLQPEGYQLYNCGOCPPHLASPGRIA 300

QY 301 LLKANNPPASTCCVPARRPPLSLYDHNQMVKTDPDMVTEACCS 350
Db 301 LLKANNPPASTCCVPARRPPLSLYDHNQMVKTDPDMVTEACCS 350

; MOLECULE TYPE: protein
; FRAGMENT TYPE: internal
; US-08-274-215A-12

Query Match 232 34.0%; Score 119; DB 2; Length 119;
Best Local Similarity 100.0%; Pred. No. 2.1e-108; Mismatches 0; Indels 0; Gaps 0;
Matches 119; Conservative

QY 232 RARRTTCEPATPLCCRRDHVDFQSLGRDWLQPEGYQLYNCGOCPPHLASPGRIA 291
Db 1 RARRTTCEPATPLCCRRDHVDFQSLGRDWLQPEGYQLYNCGOCPPHLASPGRIA 291

QY 61 ASPHSAVFSLLKANNPPASTCCVPARRPPLSLYDHNQMVKTDPDMVTEACCS 119
Db 61 ASPHSAVFSLLKANNPPASTCCVPARRPPLSLYDHNQMVKTDPDMVTEACCS 119

RESULT 4 US-08-765-662-12

; Sequence 12, Application US/08765662
; Patent No. 5929213

; GENERAL INFORMATION:
; APPLICANT: THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE
; TITLE OF INVENTION: GROWTH DIFFERENTIATION FACTOR-12
; NUMBER OF SEQUENCES: 14
; CORRESPONDENCE ADDRESS:
; ADDRESSEE: Fish & Richardson
; STREET: 4225 Executive Square, Suite 1400
; CITY: La Jolla
; STATE: CA
; COUNTRY: USA
; ZIP: 92037

; COMPUTER READABLE FORM:
; COMPUTER READABLE FORM:
; COMPUTER: Diskette
; MEDIUM TYPE: Disquette
; OPERATING SYSTEM: DOS
; SOFTWARE: FastSEQ Version 1.5

; CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/08/765,662
; FILING DATE: 28-APR-1997

; CLASSIFICATION: 536
; PRIOR APPLICATION DATA:
; APPLICATION NUMBER: PCT/US95/08745
; FILING DATE: 12-JUL-1995

; ATTORNEY/AGENT INFORMATION:
; NAME: Haile, Ph.D., Lisa A
; REGISTRATION NUMBER: 38,347
; REFERENCE/DOCKET NUMBER: 07265/042W01 (FD-3830)

; TELECOMMUNICATION INFORMATION:
; TELEPHONE: 619-678-5070
; TELEX: 619-678-5099

; INFORMATION FOR SEQ ID NO: 12:
; LENGTH: 119 amino acids
; TYPE: amino acids
; STRANDEDNESS: Single
; TOPOLOGY: linear
; MOLECULE TYPE: protein
; HYPOТЕTICAL: NO
; ANTI-SENSE: NO
; FRAGMENT TYPE: internal
; ORIGINAL SOURCE: US-08-765-662-12

Query Match 1 34.0%; Score 119; DB 2; Length 119;
Best Local Similarity 100.0%; Pred. No. 2.1e-108; Mismatches 0; Indels 0; Gaps 0;
Matches 119; Conservative

QY 232 RARRTTCEPATPLCCRRDHVDFQSLGRDWLQPEGYQLYNCGOCPPHLASPGRIA 291
Db 1 RARRTTCEPATPLCCRRDHVDFQSLGRDWLQPEGYQLYNCGOCPPHLASPGRIA 291

QY 1 RARRTTCEPATPLCCRRDHVDFQSLGRDWLQPEGYQLYNCGOCPPHLASPGRIA 60
Db 1 RARRTTCEPATPLCCRRDHVDFQSLGRDWLQPEGYQLYNCGOCPPHLASPGRIA 60

TELECOMMUNICATION INFORMATION:
NAME: Haile, Ph.D., Lisa A
REGISTRATION NUMBER: 38,347
REFERENCE/DOCKET NUMBER: 07265/040001
TELEPHONE: 619-678-5070
TELEFAX: 619-678-5099
INFORMATION FOR SEQ ID NO: 12:
SEQUENCE CHARACTERISTICS:
LENGTH: 119 amino acids
TYPE: amino acid
TOPOLOGY: linear
TOPOLOGY: linear
FRAGMENT TYPE: internal
ORIGINAL SOURCE: US-08-765-662-12

QY 292 ASFHSAVFSLLKANNPWPASTSCCVPTARRPLSLYLIDHNGNVVKTDVPMVVEACGCS 350
 Db 61 ASFHSAVFSLLKANNPWPASTSCCVPTARRPLSLYLIDHNGNVVKTDVPMVVEACGCS 119

RESULT 5
 US-0-184-933-12
 Sequence 12, Application US/09184933
 Patent No. 6130050
 GENERAL INFORMATION:
 APPLICANT: Lee, See-Jin
 APPLICANT: Esquila, Aurora F.
 TITLE OF INVENTION: GROWTH DIFFERENTIATION FACTOR-12
 NUMBER OF SEQUENCES: 12
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Fish & Richardson, P.C.
 STREET: 4225 Executive Square, Suite 1400
 CITY: La Jolla
 STATE: CA
 COUNTRY: US
 ZIP: 92037
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Diskette
 COMPUTER: IBM Compatible
 OPERATING SYSTEM: Windows95
 SOFTWARE: Fabseq for Windows Version 2.0
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/09/184,933
 FILING DATE:
 CLASSIFICATION:
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: 08/274,215
 FILING DATE: 13-JUL-1994
 ATTORNEY/AGENT INFORMATION:
 NAME: Haile, Ph.D., Lisa A.
 REGISTRATION NUMBER: 38,347
 REFERENCE/DOCKET NUMBER: 07265/040001
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 619-678-5070
 FAX: 619-678-5099
 INFORMATION FOR SEQ ID NO: 12:
 INQUIRY FOR SEQ ID NO: 12:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 119 amino acids
 TOPOLogy: linear
 MOLECULE TYPE: protein
 HYPOTHETICAL: NO
 ANTI-SENSE: NO
 FRAGMENT TYPE: internal
 ORIGINAL SOURCE:
 PCT-US95-06745-12

Query Match 34.0%; Score 119; DB 3; Length 119;
 Best Local Similarity 100.0%; Pred. No. 2.1e-108; Mismatches 0; Indels 0; Gaps 0;
 Matches 119; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 232 RARRRTPTCEPATPLCRRDRHYDQELGRDWILOPEGYQNLNCGQCOPHLAGSPGIA 291
 Db 1 RARRRTPTCEPATPLCRRDRHYDQELGRDWILOPEGYQNLNCGQCOPHLAGSPGIA 60

QY 292 ASFHSAVFSLLKANNPWPASTSCCVPTARRPLSLYLIDHNGNVVKTDVPMVVEACGCS 350
 Db 61 ASFHSAVFSLLKANNPWPASTSCCVPTARRPLSLYLIDHNGNVVKTDVPMVVEACGCS 119

RESULT 6
 US-0-184-933-12
 PCT-US95-08745-12
 Sequence 12, Application PC/TUS9508745
 GENERAL INFORMATION:
 APPLICANT: THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE
 TITLE OF INVENTION: GROWTH DIFFERENTIATION FACTOR-12
 NUMBER OF SEQUENCES: 14
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Fish & Richardson
 STREET: 4225 Executive Square, Suite 1400
 CITY: La Jolla

STATE: CA
 COUNTRY: USA
 ZIP: 92037
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Disquette
 COMPUTER: IBM Compatible
 OPERATING SYSTEM: DOS
 SOFTWARE: Fastseq Version 1.5
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: PCT/US95/08745
 FILING DATE: 12-JUL-1995
 CLASSIFICATION:
 ATTORNEY/AGENT INFORMATION:
 NAME: Haile, Ph.D., Lisa A.
 REGISTRATION NUMBER: 38,347
 REFERENCE/DOCKET NUMBER: 07265/042WO1 (FD-3830)
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 619-678-5070
 FAX: 619-678-5099
 TELX:

Query Match 34.0%; Score 119; DB 5; Length 119;
 Best Local Similarity 100.0%; Pred. No. 2.1e-108; Mismatches 0; Indels 0; Gaps 0;
 Matches 119; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 232 RARRRTPTCEPATPLCRRDRHYDQELGRDWILOPEGYQNLNCGQCOPHLAGSPGIA 291
 Db 1 RARRRTPTCEPATPLCRRDRHYDQELGRDWILOPEGYQNLNCGQCOPHLAGSPGIA 60

QY 292 ASFHSAVFSLLKANNPWPASTSCCVPTARRPLSLYLIDHNGNVVKTDVPMVVEACGCS 350
 Db 61 ASFHSAVFSLLKANNPWPASTSCCVPTARRPLSLYLIDHNGNVVKTDVPMVVEACGCS 119

RESULT 7-5-577B-24
 US-08-482-577B-24
 Sequence 24, Application US/08402577B
 Patent No. 580713
 GENERAL INFORMATION:
 APPLICANT: HOTTEN, GERTRUD
 APPLICANT: NEIDhardt, HEIGE
 APPLICANT: BECHTOLD, ROlf
 APPLICANT: POHL, JENS
 TITLE OF INVENTION: DNA SEQUENCES ENCODING NOVEL
 TITLE OF INVENTION: GROWTH/DIFFERENTIATION FACTORS
 NUMBER OF SEQUENCES: 49
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: NIKAITO, MARMELSTEIN, MURRAY, AND ORAM
 STREET: 655 PIFEBARTH STREET, N.W., G STREET LOBBY,
 STREET: SUITE 330
 CITY: WASHINGTON
 STATE: DC
 COUNTRY: USA
 ZIP: 20005

COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: Patent In Release #1.0, Version #1.3.0
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/482,577B

FILING DATE: ;
 CLASSIFICATION: 435 ;
 ATTORNEY/AGENT INFORMATION: ;
 NAME: KLESNER, SHARON ;
 REGISTRATION NUMBER: 36,335 ;
 REFERENCE/DOCKET NUMBER: P564-5010 ;
 TELECOMMUNICATION INFORMATION: ;
 TELEPHONE: 202/638-5000 ;
 TELEFAX: 202/638-4810 ;
 INFORMATION FOR SEQ ID NO: 24: ;
 SEQUENCE CHARACTERISTICS: ;
 LENGTH: 106 amino acids ;
 TYPE: amino acid ;
 STRANDEDNESS: single ;
 TOPOLOGY: linear ;
 MOLECULAR TYPE: peptide ;
 US-08-482-577B-24 ;
 Query Match 4.3%; Score 15; DB 1; Length 106;
 Best Local Similarity 100.0%; Pred. No. 9.7e-07;
 Matches 15; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Qy 313 SCCVPTARRPISLY 327 ;
 Db 69 SCCVPTARRPISLY 83 ;
 RESULT 8 ;
 US-08-289-222E-28 ;
 Sequence 28, Application US/08289222E ;
 Patent No. 6120760 ;
 GENERAL INFORMATION: ;
 APPLICANT: HOTTEN, GERTRUD ;
 APPLICANT: NEIDHARDT, HELENE ;
 APPLICANT: BECHTOLD, ROLF ;
 APPLICANT: POHL, JENS ;
 TITLE OF INVENTION: GROWTH/DIFFERENTIATION FACTORS OF THE TGF-B ;
 NUMBER OF SEQUENCES: 53 ;
 TITLE OF INVENTION: FAMILY ;
 NUMBER OF SEQUENCES: 53 ;
 CORRESPONDENCE ADDRESS: ;
 ADDRESSE: NIKAITO, MARMELSTEIN, MURRAY & ORAM LLP ;
 STREET: 655 Fifteenth Street, N. W., G Street Lobby, ;
 CITY: SUITE 330 ;
 STATE: DC ;
 COUNTRY: USA ;
 ZIP: 20005-5701 ;
 COMPUTER READABLE FORM: ;
 MEDIUM TYPE: Floppy disk ;
 COMPUTER: IBM PC compatible ;
 OPERATING SYSTEM: PC-DOS/MS-DOS ;
 SOFTWARE: Patent Release #1.0, Version #1.25 ;
 CURRENT APPLICATION DATA: ;
 APPLICATION NUMBER: US/08/489,222E ;
 FILING DATE: 25-AUG-1999 ;
 CLASSIFICATION: 424 ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: US 08/289,222 ;
 FILING DATE: 12-AUG-1994 ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: DE P 44 23 190.3 ;
 FILING DATE: 07-JUL-1994 ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: EPO 92102324.8 ;
 FILING DATE: 12-FEB-1992 ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: PCT/EP93/00350 ;
 FILING DATE: 12-FEB-1992 ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: DE P 44 23 190.3 ;
 FILING DATE: 01-JUL-1994 ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: DE 195 11 243.1 ;
 FILING DATE: 27-MAR-1995 ;
 ATTORNEY/AGENT INFORMATION: ;
 TELECOMMUNICATION INFORMATION: ;
 TELEPHONE: 202/638-5000 ;
 TELEFAX: 202/638-4810 ;
 INFORMATION FOR SEQ ID NO: 28: ;
 SEQUENCE CHARACTERISTICS: ;
 LENGTH: 106 amino acids ;
 TYPE: amino acid ;
 STRANDEDNESS: ;
 TOPOLOGY: linear ;
 MOLECULAR TYPE: protein ;
 US-08-289-222E-28 ;
 Query Match 4.3%; Score 15; DB 3%; Length 105;
 Best Local Similarity 100.0%; Pred. No. 9.7e-07;
 Matches 15; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Qy 313 SCCVPTARRPISLY 327 ;
 Db 69 SCCVPTARRPISLY 83 ;
 RESULT 9 ;
 US-09-218-176-7 ;
 Sequence 7, Application US/09218176 ;
 ; Parent No. 6171584 ;
 GENERAL INFORMATION: ;
 APPLICANT: H. TTEN, Gertrud ;
 APPLICANT: NEIDHARDT, Helge ;
 APPLICANT: BECHTOLD, Rolf ;
 APPLICANT: POHL, Jens ;
 APPLICANT: PAULSEN, Michael ;
 TITLE OF INVENTION: NEW GROWTH/DIFFERENTIATION FACTORS OF THE TGF-
 FAMILY ;
 NUMBER OF SEQUENCES: 49 ;
 CORRESPONDENCE ADDRESS: ;
 ADDRESSE: NIKAITO, MARMELSTEIN, MURRAY & ORAM LLP ;
 STREET: 655 Fifteenth Street, N. W., G Street Lobby, ;
 STREET: Suite 330 ;
 CITY: Washington ;
 STATE: DC ;
 COUNTRY: USA ;
 ZIP: 20005 ;
 COMPUTER READABLE FORM: ;
 MEDIUM TYPE: Floppy disk ;
 COMPUTER: IBM PC compatible ;
 OPERATING SYSTEM: PC-DOS/MS-DOS ;
 SOFTWARE: Patentin Release #1.0, Version #1.30 ;
 CURRENT APPLICATION DATA: ;
 APPLICATION NUMBER: US/09/218,176 ;
 FILING DATE: 12-JUL-1996 ;
 CLASSIFICATION: ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: 08/679,048 ;
 FILING DATE: 12-JUL-1996 ;
 CLASSIFICATION: ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: PCT/EP96/03065 ;
 FILING DATE: 12-JUL-1996 ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: PCT/EP93/00350 ;
 FILING DATE: 2-FEB-1993 ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: US 08/482,577 ;
 FILING DATE: 7-JUN-1995 ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: EP 92 102 324 8 ;
 FILING DATE: 12-FEB-1992 ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: DE P 44 23 190.3 ;
 FILING DATE: 01-JUL-1994 ;
 PRIOR APPLICATION DATA: ;
 APPLICATION NUMBER: DE 195 11 243.1 ;
 FILING DATE: 27-MAR-1995 ;
 ATTORNEY/AGENT INFORMATION: ;

NAME: KITTS, Monica Chin
 REGISTRATION NUMBER: 36105
 REFERENCE/DOCKET NUMBER: P564-6010
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 202/638-5000
 TELEX/FAX: 202/638-4910
 INFORMATION FOR SEQ ID NO: 7:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 106 amino acids
 TYPE: amino acid
 STRANDBNESS:
 STRANDBNESS: linear
 MOLECULE TYPE: protein
 MOLECULE TYPE: protein
 US-09-218-176-7

Query Match 4.3%; Score 15; DB 3; Length 106;
 Best Local Similarity 100.0%; Pred. No. 9.7e-07;
 Matches 15; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 313 SCCVPTARRPLSLY 327
 Db 69 SCCVPTARRPLSLY 83

RESULT 10
 US-09-054-526B-28
 Sequence 28, Application US/09054526B
 Patent No. 6197550
 GENERAL INFORMATION:
 APPLICANT: H TTEN, GERTRUD
 APPLICANT: NEIDHARDT, HEIGE
 APPLICANT: BECHTOLD, ROLF
 APPLICANT: POHL, JENS
 TITLE OF INVENTION: DNA SEQUENCES ENCODING NOVEL
 TITLE OF INVENTION: GROWTH/DIFFERENTIATION FACTORS
 NUMBER OF SEQUENCES: 53

CORRESPONDENCE ADDRESS:
 ADDRESSEE: NIKADO, MARMELSTEIN, MURRAY & ORAM LLP
 STREET: 655 FIFTEENTH STREET, N. W., G STREET LOBBY,
 STREET: SUITE 330
 CITY: WASHINGTON
 STATE: DC
 COUNTRY: USA
 ZIP: 20005-5701

COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: Patentin Release #1.0, Version #1.25

SOFTWARE: Patentin Release #1.0., Version #1.25
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/09/054,526B
 FILING DATE: 03-APR-1998

PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 08/289,222
 FILING DATE: 12-AUG-1994

PRIOR APPLICATION DATA:
 APPLICATION NUMBER: DE P 44 23. 190.3
 FILING DATE: 01-JUL-1994

PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EPO 92102324.8
 FILING DATE: 12-FEB-1992

PRIOR APPLICATION DATA:
 APPLICATION NUMBER: PCW/EPP93/00350
 FILING DATE: 12-FEB-1993

ATTORNEY/AGENT INFORMATION:
 NAME: KITTS, MONICA CHIN
 REGISTRATION NUMBER: 36105
 REFERENCE/DOCKET NUMBER: P564-5010
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 202/638-5000
 TELEX/FAX: 202/638-4810

INFORMATION FOR SEQ ID NO: 2:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 352 amino acids
 TYPE: amino acid
 STRANDBNESS: single
 TOPOLOGY: linear
 MOLECULE TYPE: peptide

US-08-482-577B-2

Query Match 4.3%; Score 15; DB 1; Length 352;
 Best Local Similarity 100.0%; Pred. No. 3e-06; Mismatches 0; Indels 0; Gaps 0;

QY 313 SCCVPTARRPLSLY 327
 Db 315 SCCVPTARRPLSLY 329

RESULT 12
 US-08-289-222B-4
 Sequence 4, Application US/08289222B

INFORMATION FOR SEQ ID NO: 28:
 SEQUENCE CHARACTERISTICS:

Patent No. 6120760
GENERAL INFORMATION:
APPLICANT: HOTTEN, GERTRUD
APPLICANT: NEIDHARDT, HELGE
APPLICANT: BECHTOLD, ROLF
TITLE OF INVENTION: GROWTH/DIFFERENTIATION FACTORS OF THE TGF-B
NUMBER OF SEQUENCES: 53
CORRESPONDENCE ADDRESS:
ADDRESSEE: NIKHAIDO, MARMELSTEIN, MURRAY & ORAM LLP
STREET: 655 Fifteenth Street, N. W., G Street Lobby,
SUITE: Suite 330
CITY: Washington
STATE: DC
COUNTRY: USA
ZIP: 20005-5701
COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: PatentIn Release #1.0, Version #1.25
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08/289,222E
FILING DATE: 25-AUG-1999
CLASSIFICATION: 424
PRIORITY APPLICATION DATA:
APPLICATION NUMBER: US 08/289,222
FILING DATE: 12-AUG-1994
PRIORITY APPLICATION DATA:
APPLICATION NUMBER: DE P 44 23 190.3
FILING DATE: 07-JUL-1994
PRIORITY APPLICATION DATA:
APPLICATION NUMBER: EPO 92102324.8
FILING DATE: 12-FEB-1992
PRIORITY APPLICATION DATA:
APPLICATION NUMBER: PCT/EP93/00350
FILING DATE: 12-FEB-1993
ATTORNEY/AGENT INFORMATION:
NAME: KITTS, MONICA CHIN
REGISTRATION NUMBER: 36,105
REFERENCE/DOCKET NUMBER: P564-9021
TELECOMMUNICATION INFORMATION:
TELEPHONE: 202/638-5000
TELEFAX: 202/638-4810
INFORMATION FOR SEQ ID NO: 4:
SEQUENCE CHARACTERISTICS:
LENGTH: 352 amino acids
TYPE: amino acid
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: protein
US-08-289-222E-4

Query Match 4.3%; Score 15; DB 3; Length 352;
Best Local Similarity 100.0%; Pred. No. 3e-06; 0; Mismatches 15; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 313 SCCVPTARRPSLLY 327
Db 315 SCCVPTARRPSLLY 329

RESULT 13
GENERAL INFORMATION:
Sequence 2 Application US/09218176
Patient No. 6171564
US-09-218-176-2

Query Match 4.3%; Score 15; DB 3; Length 352;
Best Local Similarity 100.0%; Pred. No. 3e-06; 0; Mismatches 15; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 313 SCCVPTARRPSLLY 327
Db 315 SCCVPTARRPSLLY 329

RESULT 14
US-09-054-526B-4
Sequence 4 Application US/09054526B
Patient No. 6197550
GENERAL INFORMATION:
APPLICANT: H TTEN, GERTRUD

APPLICANT: NEIDHARDT, HELGE
 APPLICANT: BECHTOLD, ROLF
 APPLICANT: POHL, JENS
 TITLE OF INVENTION: DNA SEQUENCES ENCODING NOVEL
 TITLE OF INVENTION: GROWTH/DIFFERENTIATION FACTORS
 NUMBER OF SEQUENCES: 53
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: NIKARDO, MARBLSTEIN, MURRAY & ORAM LLP
 STREET: 655 FIFTEENTH STREET, N. W., G STREET LOBBY,
 STREET: SUITE 330
 CITY: WASHINGTON
 STATE: DC
 COUNTRY: USA
 ZIP: 20005-5701
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.25
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US109/054,526B
 FILING DATE: 03-APR-1998
 PRIORITY APPLICATION DATA:
 APPLICATION NUMBER: US 08/289,222
 FILING DATE: 12-AUG-1994
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: DE P 44 23 190.3
 FILING DATE: 01-JUL-1994
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EPO 92102324.8
 FILING DATE: 12-FEB-1992
 PRIORITY APPLICATION DATA:
 APPLICATION NUMBER: PCT/EP93/00350
 FILING DATE: 12-FEB-1993
 ATTORNEY/AGENT INFORMATION:
 NAME: KITTS, MONICA CHIN
 REGISTRATION NUMBER: 35,105
 REFERENCE/DOCKET NUMBER: P564-8005
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 02/638-5000
 TELEFAX: 02/638-4910
 INFORMATION FOR SEQ ID NO: 4:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 352 amino acids
 TYPE: amino acid
 STRANDEDNESS: single
 TOPOLOGY: linear
 MOLECULE TYPE: protein
 US-09-054-526B-4

RESULT 15
 US-08-981-90B-3
 Sequence 3, Application US/08981490B
 Patient No. 653450
 GENERAL INFORMATION:
 APPLICANT: Rotten, Gertrud
 APPLICANT: Bohl, Jens
 APPLICANT: Bechtold, Rolf
 APPLICANT: Paulista, Michael
 APPLICANT: Unicker, Klaus
 TITLE OF INVENTION: USE OF MP52 OR MP121 FOR TREATING AND PREVENTING DISEASES OF THE
 TITLE OF INVENTION: NERVOUS SYSTEM
 FILE REFERENCE: 100564-07032
 CURRENT APPLICATION NUMBER: US/08/981,490B

; CURRENT FILING DATE: 1998-05-18
 ; PRIOR APPLICATION NUMBER: PCT/EP96/03065
 ; PRIOR FILING DATE: 1996-07-12
 ; PRIOR APPLICATION NUMBER: DE/195 25 416.3
 ; PRIOR FILING DATE: 1995-07-12
 ; NUMBER OF SEQ ID NOS: 7
 ; SOFTWARE: PatentIn version 3.1
 ; SEQ ID NO 3
 ; LENGTH: 352
 ; TYPE: PRT
 ; ORGANISM: Homo sapiens
 US-08-981-90B-3

Query	Match	Score	DB	Length	Job time
Qy	313 SCCVPRRPLSY	4.3%	4	352	62 secs
Db	315 SCCVPRRPLSY	100.0%	0	0	

Search completed: October 13, 2005, 18:47:48