

Universidad Nacional Autónoma de México Facultad de Ingeniería Robótica

Algoritmo Denavit-Hartenberg:

1. Colocar los ejes $z_0, z_1, \dots z_{n-1}$ Colocar el eje z_{i-1} sobre el eje de giro de la articulación i, si es de revolución o sobre el eje de desplazamiento de la articulación i, si es prismática.

- 2. Completar el sistema de coordenadas de la base comenzando por o_0 en un punto conveniente sobre el eje z_0 , colocar x_0, y_0 para formar un sistema ortonormal dextrógiro.
- 3. Colocar los orígenes o_0 , $o_{1,\dots}o_{n-1}$ de acuerdo con los ejes z_{i-1} & z_i .
 - Si z_{i-1} & z_i se interceptan, colocar o_i en la intersección.
 - Si z_{i-1}& z_i son paralelos, colocar o_i en cualquier lugar conveniente sobre z_i.
 - Si z_{i-1} & z_i no son paralelos ni se interceptan, colocar o_i en la intersección de z_i con la normal común de z_{i-1} & z_i .

- 4. Colocar los ejes $x_0, x_{1,...}x_{n-1}$ de acuerdo con los ejes z_{i-1} & z_i .
 - Si z_{i-1} & z_i se interceptan, colocar x_i en la normal al plano que forman z_{i-1} & z_i pasando en o_i .
 - Si z_{i-1} & z_i no se interceptan, colocar x_i en la normal común a z_{i-1} & z_i pasando en o_i .

- 5. Colocar los ejes $y_0, y_1, ... y_{n-1}$ completando los sistemas de coordenadas.
- 6. Colocar el sistema de coordenadas del efector final, colocar o_n en el punto más importante, luego colocar el eje z_n paralelo a z_{n-1} y pasando por o_n .

Colocar el eje x_n de tal forma que se intersecte a \mathbf{z}_{n-1} .

Completar el sistema de coordenadas para formar un sistema dextrógiro.

Universidad Nacional Autónoma de México Facultad de Ingeniería Robótica

7. Formar la tabla de parámetros

i	a_i	d_i	α_i	θ_i
1				
n				

- a_i es la distancia desde la intersección de los ejes z_{i-1}& x_i hasta el origen o_i.
 Es la distancia medida a lo largo del eje x_i a z_{i-1}.
- d_i es la distancia desde el origen o_{i-1} hasta la intersección de los ejes z_{i-1}& x_i.
 Es la distancia medida a lo largo del eje z_{i-1} a x_i.

Si la articulación i es prismática, este parámetro es variable y se denotara como d_i .

- α_i es el ángulo entre z_{i-1} hasta z_i tomando a x_i como eje de giro.
- θ_i es el ángulo desde el eje x_{i-1} hasta el eje x_i tomando a z_{i-1} como eje de giro. Si la articulación i es de revolución, este parámetro es variable y se denota como θ_i .
- 8. Formar las n transformaciones homogéneas de acuerdo con la siguiente plantilla.

$${}^{i-1}H_i(q_i) = \begin{bmatrix} \cos\theta_i & -\sin\theta_i \cos\alpha_i & \sin\theta_i \sin\alpha_i & a_i \cos\theta_i \\ \sin\theta_i & \cos\theta_i \cos\alpha_i & -\cos\theta_i \sin\alpha_i & a_i \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ejemplo de intersecan

Ejemplo de paralelo

