

ARQUITETURA DE COMPUTADORES

Microprocessador INTEL 8085 (exercícios)

Conteúdos

1. Programação do microprocessador da INTEL 8085

Nota: as resoluções constantes nos slides seguintes representam propostas de resolução, o que significa que as resoluções apresentadas não são únicas.

1. Ache o complemento para um do conteúdo de uma posição de memória (1040H) e guarde o resultado na posição de memória seguinte (1041H).

Código	Comentário
LDA 1040H	[A] ← [1040H]
CMA	$[A] \leftarrow [\bar{A}]$
STA 1041H	[1041H] ← [A]
HLT	END

2. Ache o complemento para um do conteúdo de uma posição de memória (1040H) e guarde o resultado na posição de memória seguinte (1041H), utilizando o par de registos HL como apontador de memória.

Código	Comentário
LXI H, 1040H	[HL] ← 1040H
MOV A, M	[A] ← [[HL]]
СМА	$[A] \leftarrow [\bar{A}]$
LXI H, 1041H	[HL] ← 1041H
MOV M, A	[1041H] ← [A]
HLT	END

3. Adicione o conteúdo de duas posições de memória consecutivas (1040H e 1041H) e guarde o resultado na posição de memória seguinte (1042H).

Código	Comentário
LDA 1040H	[A] ← [1040H]
MOV B, A	$[B] \leftarrow [A]$
LDA 1041H	[A] ← [1041H]
ADD B	$[A] \leftarrow [A] + [B]$
STA 1042H	[1042H] ← [A]
HLT	END

4. Adicione o conteúdo de duas posições de memória consecutivas (1040H e 1041H) e guarde o resultado na posição de memória seguinte (1042H), utilizando o par de registos HL como apontador da memória.

Código	Comentário
LDA 1040H	[A] ← [1040H]
LXI H, 1041H	[HL] ← 1041H
MOV B, M	[B] ←[[HL]]
ADD B	$[A] \leftarrow [A] + [B]$
STA 1042H	[1042H] ← [A]
HLT	END

5. Adicione o conteúdo de duas posições de memória consecutivas (1040H e 1041H) e guarde o resultado na posição de memória seguinte (1042H), utilizando o par de registos HL como apontador da memória e a instrução de incrementação (INX)

Código	Comentário
LXI H, 1040H	[HL] ← 1040H
MOV A, M	[A] ← [[HL]]
INX H	[HL] ← [HL] + 1
ADD M	$[A] \leftarrow [A] + [[HL]]$
INX H	[HL] ← [HL] + 1
MOV M, A	[[HL]] ← [A]
HLT	END

6. Elabore um programa que carregue os números E2H e 58H nos registos B e C, respetivamente. Guarde o número A2H na posição de memória 1065H, usando o par de registos HL como apontador da memória. Realize a subtração entre E2H – 58H. Ache o complemento do resultado da subtração obtida anteriormente, e some esse valor com o número A2H contido no posição de memória 1065H. Finalmente guarde o resultado na posição de memória 1066H.

Código	Comentário	
LXI B, E258H	[BC] ← E258H; [B] ← E2H; [C] ← 58H	
LXI H, 1065H	[HL] ← 1065H	
MVI M, A2H	[[HL]] ← A2H	
MOV A, B	$[A] \leftarrow [B]$	
SUB C	$[A] \leftarrow [A] - [C]$	
CMA	$[A] \leftarrow [\bar{A}]$	
ADD M	$[A] \leftarrow [A] + [[HL]]$	
INX H	[HL] ← [HL] + 1	
MOV M, A	[[HL]] ← [A]	
HLT	END	

7. Elabore um programa que leia o conteúdo de uma posição de memória (1040H) e que guarde nas duas posições de memória seguintes (1041H e 1042H) o complemento para um e o complemento para dois do valor lido.

Código	Comentário
LXI H, 1040H	[HL] ← 1040H
MOV A, M	[A] ← [[HL]]
CMA	$[A] \leftarrow [\bar{A}]$
INX H	[HL] ← [HL] + 1
MOV M, A	[[HL]] ← [A]
INR A	$[A] \leftarrow [A] + 1$
INX H	[HL] ← [HL] + 1
MOV M, A	[[HL]] ← [A]
HLT	END

8. Elabore um programa que adicione os conteúdos de três posições de memória consecutivas (1038H, 1039H e 1040H), guarde o resultado da soma na posição de memória anterior à ocupada pelas parcelas a adicionar.

Código	Comentário	
LXI H, 1040H	[HL] ← 1040H	
MOV A, M	[A] ← [[HL]]	
DCX H	[HL] ← [HL] - 1	
ADD M	$[A] \leftarrow [A] + [[HL]]$	
DCX H	[HL] ← [HL] - 1	
ADD M	$[A] \leftarrow [A] + [[HL]]$	
DCX H	[HL] ← [HL] - 1	
MOV M, A	[[HL]] ← [A]	
HLT	END	

9. Elabore um programa que adicione dois números de 16 bits colocados cada um em duas posições sucessivas de memória (1040H e 1042H), sabendo que o byte mais significativo está na posição de memória com endereço superior. Guarde o resultado nas duas posições de memória seguintes.

Código	Comentário
LHLD 1040H	[L] ← [1040H]; [H] ← [1041H]
XCHG	$[D] \leftarrow \rightarrow [H]; [E] \leftarrow \rightarrow [L]$
LHLD 1042H	[L] ← [1042H]; [H] ← [1043H]
DAD D	$[HL] \leftarrow [HL] + [DE]$
SHLD 1044H	[1044H] ← [L]; [1045H] ← [H]
HLT	END

10. Elabore um programa que calcule o complemento para um de um número de 16 bits, contido em duas posições de memória consecutivas (1040H e 1041H) e coloque o resultado nas duas posições de memória seguintes (1042H e 1043H). O byte mais significativo está e deve ficar na posição de memória mais elevada.

Código	Comentário
LHLD 1040H	[L] ← [1040H]; [H] ← [1041H]
MOV A, L	$[A] \leftarrow [L]$
CMA	$[A] \leftarrow [\bar{A}]$
MOV L, A	$[L] \leftarrow [A]$
MOV A, H	[A] ← [H]
CMA	$[A] \leftarrow [\bar{A}]$
MOV H, A	[H] ← [A]
SHLD 1042H	[1042H] ← [L]; [1043H] ← [H]
HLT	END

11. Elabore um programa que coloque os conteúdos de duas posições de memória (1040H e 1041H) por ordem decrescente, ou seja, o maior valor em primeiro lugar.

Etiqueta	Código	Comentário
	LDA 1040H	[A] ← [1040H]
	MOV B, A	$[B] \leftarrow [A]$
	LDA 1041H	[A] ← [1041H]
	CMP B	[A] - [B]
	JC FIM	$[PC] \leftarrow FIM \ if \ carry \ flag \ (CS) \ equal \ to \ 1$
	STA 1040H	[1040H] ← [A]
	MOV A, B	$[A] \leftarrow [B]$
	STA 1041H	[1041H] ← [A]
FIM	HLT	END

12. Elabore um programa que efetue a contagem de 0 a 15 e que repita o ciclo de contagem.

Etiqueta	Código	Comentário
INICIO	SUB A	[A] ← [A] – [A] Clean the acumulator register (A)
CONT	INR A	[A] ← [A] + 1 Count update
	CPI 0FH	[A] - OFH Finish counting?
	JNZ CONT	[PC] \leftarrow CONT if zero flag (Z) equal to 0 Finish counting = No \rightarrow continue counting
	JMP INICIO	$[PC] \leftarrow INICIO$ Finish counting = Yes \rightarrow restart counting
	HLT	END

13. Elabore um programa que calcule a soma de um bloco de números. O tamanho do bloco está colocado na posição 1041H. O bloco inicia-se na posição de memória seguinte (1042H). Coloque o resultado da soma na posição de memória 1040H.

Etiqueta	Código	Comentário
	LXI H, 1041H	[HL] ← 1041H
	MOV B, M	[B] ← [[HL]] Acquires the block size
	SUB A	[A] ← [A] – [A] Clean the acumulator register (A)
CICLO	INX H	$[HL] \leftarrow [HL] + 1$ Register pair HL acquires new position
	ADD M	$[A] \leftarrow [A] + [[HL]]$ $Sum = Sum + data$
	DCR B	$[B] \leftarrow [B] - 1$ Decrement register B
	JNZ CICLO	$[PC] \leftarrow CICLO \text{ if zero flag (Z) equal to 0}$
	STA 1040H	[1040H] ← [A]
	HLT	END

14. Elabore um programa que coloque dois bytes em hexadecimal, A9H e 7BH, nos registos B e C, e calcule a respetiva soma. Se a soma for maior que 8 bits, ou seja, se produzir carry, então coloque o número 00H no porto PORT2, cujo endereço é 02H, e na posição de memória 1080H. Caso contrário, guarde a soma apenas na posição de memória 1080H.

Etiqueta	Código	Comentário
	MVI B, A9H	[B] ← A9H
	MVI C, 7BH	[C] ← 7BH
	MOV A, C	[A] ← [C]
	ADD B	$[A] \leftarrow [A] + [B]$
	JNC GUAR	$[PC] \leftarrow GUAR$ if carry flag (CS) equal to 0
	MVI A, 00H	[A] ← 00H
	OUT 02H	[02H] ← [A] Puts the byte in register accumulator (A) into port with address 02H (PORT2)
GUAR	STA 1080H	[1080H] ← [A]
	HLT	END

15. Elabore um programa que efetue a leitura de dados provenientes do porto PORT1, cujo endereço é 01H, que conte o número de leituras realizadas e efetue a soma dos bytes lidos. Quando a soma ultrapassar o valor FFH, pare de efetuar leituras do porto PORT1, coloque o número de leituras realizadas na posição de memória 1080H e coloque no porto PORT2, cujo endereço é 02H, o byte 01H.

Não

Etiqueta	Código	Comentário
	LXI B, 0000H	[BC] ← 0000H; $[B]$ ← 00H; $[C]$ ← 00H
LEDA	IN 01H	[A] ← [01H] Read data from port with address 01H (PORT1)
	INR C	[C] ← [C] + 1 Counting update
	ADD B	[A] ← [A] + [B] Add the new data with previous sum
	MOV B, A	[B] ← [A] Save the sum
	JC GUAR	$[PC] \leftarrow GUAR$ if carry flag (CS) equal to 1
	JMP LEDA	[PC] ← LEDA Return to the begining to read new value
GUAR	LXI H, 1080H	[HL] ← 1080H Register pair HL acquires memory position 1080H
	MOV M, C	$[[HL]] \leftarrow [C]$ Save counting in memory
	MVI A, 01H	[A] ← 01H
	OUT 02H	$[02H] \leftarrow [A]$ Puts the byte in register accumulator (A) into port with address 02H (PORT2)
	HLT	END