

The Entity-Relationship Model

Chapter 2

Overview of Database Design

- Building a conceptual database design should be done after informal discussions with the customers.
- Your design should reflect all the details and operations that your customer need
- Examples of customers are: University databases, Company database, Banking, Airline reservation,...

Overview of Database Design

- ❖ Conceptual design: (ER Model is used at this stage.)
 - What are the *entities* and *relationships* in the enterprise?
 - What information about these entities and relationships should we store in the database?
 - What are the *integrity constraints* or *business rules* that hold?
 - A database `schema' in the ER Model can be represented pictorially (*ER diagrams*).
 - Can map an ER diagram into a relational schema.

ER Model Basics

- * Entity: Real-world object distinguishable from other objects. An entity is described (in DB) using a set of attributes.
- * Entity Set: A collection of similar entities. E.g., all employees.
 - All entities in an entity set have the same set of attributes. (Until we consider ISA hierarchies, anyway!)
 - Each entity set has a *key*.
 - Each attribute has a *domain*.

ER Model Basics (Entity)

- * Based on the discussion with our customers, we find that:
 - Each employee has there attributes: SSN, name, and parking lot
 - Each department has three attributes: number, name, and budget
- * Employees can be uniquely identified by their SSN (<u>SSN</u>), departments can be identified by their numbers (<u>Did</u>).
- ❖ A key is a minimal set of attributes whose values uniquely identify an entity in the set
 - If there are more than one candidate key, we designate one of them as the primary key

ER Model Basics (Relationship)

- * Relationship: Association among two or more entities.
 - E.g., Attishoo works in Pharmacy department.
- * Relationship Set: Collection of similar relationships.
- ❖ A relationship set may have *descriptive* attributes:
 - E.g., John starts working in the CS department since August 2005

N-ary Relationship

❖ An n-ary relationship set R relates n entity sets E1 ... En; each relationship in R involves entities e1 E1, ..., En

More on Relationship Set

- The entity set in a relation may not be distinct
 - An Employees can supervise another employee
 - In this case, a role indicator should be labeled (supervisor. subordinate)
- Same entity set could participate in different relationship sets, or in different "roles" in same set.

Key Constraints

* Each dept has at most one manager, according to the key constraint on Manages.

Key Constraints (Cont.)

Many-to-Many

1-to Many

Many-to-1

1-to-1

Works_In: An employee can work in many departments; a department can have many employees.

Manages: A department is managed only by one employee. One employee can manage many departments

Works_In: If we add a constraint that each employee can work in only one department Manages: If we add a constraint that one employee can manage only one department

Participation Constraints

- Does every department have a manager?
 - If so, this is a <u>participation constraint</u>: the participation of Departments in Manages is said to be <u>total</u> (vs. <u>partial</u>).
 - Every *did* value in Departments table must appear in a row of the Manages table (with a non-null *ssn* value!)

Weak Entities

- * A *weak entity* can be identified uniquely only by considering the primary key of another (*owner*) entity.
 - Owner entity set and weak entity set must participate in a one-tomany relationship set (one owner, many weak entities).
 - Weak entity set must have total participation in this *identifying* relationship set.

ISA (`is a') Hierarchies

- ❖ As in C++, or other PLs, attributes are inherited.
- ❖ If we declare A ISA B, every A entity is also considered to be a B entity.
- **❖ ISA** Relationship can be viewed as either specialization or generalization

ISA (`is a') Hierarchies

- Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed)
 - Hourly_Emps OVERLAPS Senior_Emps
- Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)
 - Hourly_Emps AND Contract_Emps COVERS Employees
- * Reasons for using ISA:
 - To add descriptive attributes specific to a subclass.
 - To identify entitities that participate in a relationship.

Aggregation

- Used when we have to model a relationship involving entity sets and a relationship set.
 - Aggregation allows us to treat a relationship set as an entity set for purposes of participation in (other) relationships.

- * Aggregation vs. ternary relationship:
- v Monitors is a distinct relationship, with a descriptive attribute.
- v Also, can say that each sponsorship is monitored by at most one employee.

Conceptual Design Using the ER Model

Design choices:

- Should a concept be modeled as an entity or an attribute?
- Should a concept be modeled as an entity or a relationship?
- Identifying relationships: Binary or ternary? Aggregation?

Constraints in the ER Model:

- A lot of data semantics can (and should) be captured.
- But some constraints cannot be captured in ER diagrams.

Entity vs. Attribute

- Should address be an attribute of Employees or an entity (connected to Employees by a relationship)?
- * Depends upon the use we want to make of address information, and the semantics of the data:
 - If we have several addresses per employee, *address* must be an entity (since attributes cannot be setvalued).
 - If the structure (city, street, etc.) is important, e.g., we want to retrieve employees in a given city, *address* must be modeled as an entity (since attribute values are atomic).

Entity vs. Attribute (Contd.)

 Works_In4 does not allow an employee to work in a department for two or more periods.

Similar to the problem of wanting to record several addresses for an employee: We want to record several values of the descriptive attributes for each instance of this relationship. Accomplished by introducing new entity set, Duration.

Entity vs. Relationship

First ER diagram OK if a manager gets a separate discretionary(budget for each dept.

What if a manager gets a discretionary budget that covers all managed depts?

> Redundancy: dbudget stored for each dept managed by manager.

 Misleading: Suggests *dbudget* associated with department-mgr combination.

Binary vs. Ternary Relationships

If each policy is owned by just one employee, and each dependent is tied to the covering policy, first diagram is inaccurate.

Summary of Conceptual Design

- Conceptual design follows requirements analysis,
 - Yields a high-level description of data to be stored
- ER model popular for conceptual design
 - Constructs are expressive, close to the way people think about their applications.
- * Basic constructs: *entities, relationships,* and *attributes* (of entities and relationships).
- * Some additional constructs: weak entities, ISA hierarchies, and aggregation.
- ❖ Note: There are many variations on ER model.

Summary of ER (Contd.)

- * Several kinds of integrity constraints can be expressed in the ER model: *key constraints, participation constraints,* and *overlap/covering constraints* for ISA hierarchies. Some *foreign key constraints* are also implicit in the definition of a relationship set.
 - Some constraints (notably, *functional dependencies*) cannot be expressed in the ER model.
 - Constraints play an important role in determining the best database design for an enterprise.

Summary of ER (Contd.)

- * ER design is *subjective*. There are often many ways to model a given scenario! Analyzing alternatives can be tricky, especially for a large enterprise. Common choices include:
 - Entity vs. attribute, entity vs. relationship, binary or nary relationship, whether or not to use ISA hierarchies, and whether or not to use aggregation.
- Ensuring good database design: resulting relational schema should be analyzed and refined further. FD information and normalization techniques are especially useful.