Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

Методы измерений и электромеханические системы Отчёт по лабораторной работе №7

«Измерение отношения заряда электрона к постоянной Больцмана»

Выполнил студент:

Самохин Павел Константинович группа: 23.Б12-мм

Проверил:

к.ф.-м.н., доцент, профессор Морозов Виктор Александрович

Содержание

1	Вве	едение	2
	1.1	Цель работы	2
		Решаемые задачи	
2	Осн	ювная часть	6
	2.1	Теоретическая часть	6
	2.2	Эксперимент	•
	2.3		۷
		Исходный код	۷
		Таблицы	(
		Графики	,
3	Вы	вод	1(

1 Введение

1.1 Цель работы

Цель работы — исследовать зависимость коллекторного тока от напряжения базы в полупроводниковом приборе, вычислить ток насыщения I_0 , а также построить теоретическую кривую зависимости $I_k = I_0 e^{\frac{e}{kT}U_{96}}$ и сравнить её с экспериментальными данными.

1.2 Решаемые задачи

- 1. Измерить зависимость тока короткого замыкания коллектора биполярного транзистора от напряжения между эмиттером и базой.
- 2. По результатам измерений определить отношение заряда электрона к постоянной Больцмана.

2 Основная часть

2.1 Теоретическая часть

Ток короткого замыкания в биполярном транзисторе. Пусть $U_{\Im B}$ — напряжение между эмиттером и базой, I_0 — ток насыщения, T — температура в кельвинах, e — заряд электрона, k — постоянная Больцмана. Тогда ток короткого замыкания I_k вычисляется по формуле:

$$I_k = I_0 \left(e^{\frac{U_{\text{BB}}e}{kT}} - 1 \right)$$

При комнатной температуре единицей можно пренебречь по сравнению с экспонентой, то есть можно считать:

$$I_k = I_0 e^{\frac{U_{\text{3B}}e}{kT}}$$

Прологарифмировав, получим:

$$\ln I_k = \ln I_0 + \frac{U_{\mathcal{P}B}e}{kT}$$

График $\ln I_k$ как функции от $U_{\Im B}$ — прямая. Тангенс угла её наклона равен:

$$\tan \alpha = \frac{e}{kT}$$

Откуда:

$$T = \frac{e}{k \tan \alpha}$$

Измерения проводились дважды с разными шкалами вольтметра.

2.2 Эксперимент

На этой схеме:

- БП блок питания электрической схемы;
- R_1 ограничительный резистор;
- R_2 потенциометр, с помощью которого можно изменять напряжение U_{96} ;
- V_1 вольтметр для измерения $U_{\mathfrak{s}\mathfrak{b}}$;
- R_3 резистор в цепи , по падению напряжения на котором можно измерить ток коллектора I_{κ} ;
- V_2 вольтметр для измерения падения напряжения $U_{\kappa\delta}$ на R_3 .

Рис. 1. Схема электрической установки

Рис. 2. Фотография установки

2.3 Обработка данных и обсуждение результатов

Исходный код

Для написания программы, вычисляющей все требуемые данные, используется язык C++; среда разработки - Visual Studio.

Этот код открывает два файла для чтения, один с грубыми данными о напряжениях, а другой с точными. Он извлекает 16 значений напряжений из каждого файла и сохраняет их в два вектора: Urough для грубых данных и Uprecise для точных. Затем программа вычисляет токи, где напряжение делится на 12, а результат умножается на 1000 для перевода в миллиамперы. После этого программа вычисляет натуральный логарифм тока и записывает результаты в четыре файла: два для значений тока (для грубых и точных данных) и два для значений их логарифмов. В конце работы программы все файлы закрываются, и выводится сообщение, что результаты успешно сохранены в соответствующие файлы.

Листинг 1. Функция вычисления тока

Этот код выполняет анализ данных с использованием метода парных точек. Он считывает данные из двух файлов, вычисляет наклон для каждой пары точек, а затем проводит статистический анализ этих наклонов. Для каждой пары точек рассчитываются разницы по координатам x и y, а затем вычисляется наклон $a_i = \frac{dy}{dx}$. Результаты выводятся в консоль и записываются в файл CSV.

$$a_i = \frac{dy}{dx}$$

Далее программа вычисляет среднее значение наклона \bar{a} , отклонения от среднего для каждого значения $a_i - \bar{a}$, а также квадраты отклонений $(a_i - \bar{a})^2$. Эти величины используются для вычисления стандартного отклонения и стандартной ошибки, а также 95% доверительного интервала для наклона $[a_{\min}, a_{\max}]$.

$$\bar{a} = \frac{1}{N} \sum_{i=1}^{N} a_i$$

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (a_i - \bar{a})^2}$$

Для расчетов используется t-критическое значение для 95% доверия:

$$t_{\rm value} = 2.3646$$

Листинг 2. Функция расчета отклонений

```
for (int i = 0; i < N; ++i) {
          double diff = a[i] - a avg;
2
          double diff sq = diff * diff;
3
          sum diff += diff;
          sum diff sq += diff sq;
          cout << i + 1 << ";" << diff << ";" << diff sq
    << endl;
          outfile << i + 1 << ";" << a[i] << ";" << diff << ";" <<
    diff sq << "\n";
     double variance = sum diff sq / (N-1);
11
      double std dev = sqrt(variance);
12
      double std err = std dev / sqrt(N);
13
      double delta a = t value * std err;
14
15
      double a_min = a_avg - delta_a;
16
      double a max = a avg + delta a;
17
18
      double ek = T * a_avg;
19
      double delta ek = T * delta a;
20
```

Таблицы

N_{Π}/Π	$U_{\mathfrak{s}\mathfrak{b}},\;\mathrm{B}$	$U_{ m K}$ б, В	$I_k = \frac{U_{ ext{k6}}}{R_3}$, MA	$\ln I_k$
1	0.30	0.0019	0.158333	-8.750810
2	0.31	0.0038	0.316667	-8.057660
3	0.32	0.0073	0.608333	-7.404790
4	0.33	0.0106	0.883333	-7.031810
5	0.34	0.0165	1.375000	-6.589300
6	0.35	0.0257	2.141670	-6.146170
7	0.36	0.0424	3.533330	-5.645510
8	0.37	0.0550	4.583330	-5.385330
9	0.38	0.0761	6.341670	-5.060610
10	0.39	0.0910	7.583330	-4.881800
11	0.40	0.1215	10.125000	-4.592750
12	0.41	0.1502	12.516700	-4.380690
13	0.42	0.1864	15.533300	-4.164770
14	0.43	0.2126	17.716700	-4.033250
15	0.44	0.2308	19.233300	-3.951110
16	0.45	0.2530	21.083300	-3.859270

Таблица 1. Грубые измерения

$N_{\overline{0}}$	x_2	x_1	$x_2 - x_1$	y_2	y_1	$y_2 - y_1$	a_i	$a_i - a$	$(a_i - a)^2$
1	0.380	0.300	0.080	-5.061	-8.751	3.690	46.128	14.741	217.308
2	0.390	0.310	0.080	-4.882	-8.058	3.176	39.698	8.312	69.091
3	0.400	0.320	0.080	-4.593	-7.405	2.812	35.151	3.764	14.170
4	0.410	0.330	0.080	-4.381	-7.032	2.651	33.139	1.753	3.073
5	0.420	0.340	0.080	-4.165	-6.589	2.425	30.307	-1.080	1.165
6	0.430	0.350	0.080	-4.033	-6.146	2.113	26.412	-4.975	24.747
7	0.440	0.360	0.080	-3.951	-5.646	1.694	21.180	-10.206	104.165
8	0.450	0.370	0.080	-3.859	-5.385	1.526	19.076	-12.310	151.546

Таблица 2. Метод парных точек для грубых измерений

Среднее значение а=31.386 Рассчитаем стандартную погрешность выборки по формуле:

$$S = \sqrt{\frac{\sum (a_i - \bar{a})^2}{n(n-1)}}$$

где S — стандартная погрешность выборки, a_i — значения наблюдений, \bar{a} — среднее значение, n — количество элементов в выборке.

S=3.233 1/B

Найдем коэффициент Стьюдента t для 8 элементов и вероятности 0,95 из таблиц: t=2,3646

$$\tan(\alpha) = 31,386 \pm 7,644 \left(\frac{1}{B}\right)$$

Определим теперь погрешность измерения искомого отношения как погрешность косвенных измерений по формуле

$$\Delta \frac{e}{k} = \sqrt{\frac{1}{9} \left(\frac{\partial \frac{e}{k}}{\partial T}\right)^2 \Delta T^2 + \left(\frac{\partial \frac{e}{k}}{\partial \tan \alpha}\right)^2 \Delta \tan \alpha^2}$$

$$\Delta \frac{e}{k} = \sqrt{\frac{1}{9} \bar{a}^2 \Delta T^2 + T^2 \Delta \tan \alpha^2}$$
(4)

Где:

$$\Delta T = 0.5 \,\text{K}, \quad \Delta \tan \alpha = S \cdot t = 7,645 \,\frac{1}{\text{B}}$$

Тогда для первого измерения:

$$\frac{e}{k} = (9321.684 \pm 870.369) \frac{K}{B}$$

Далее рассчитаем ток насыщения по формуле:

$$I_0 = \exp\left(\overline{\ln I_k} - \frac{e}{kT} \cdot \overline{U_{\text{96}}}\right)$$

Таким образом, значение тока насыщения равно:

$$I_0 = 2.801 \times 10^{-8} \text{ MA}$$

N_{Π}/Π	$U_{ m 96},~{ m B}$	$U_{ m \kappa 6},~{ m B}$	$I_k = \frac{U_{\text{\tiny K6}}}{R_3}$, MA	$\ln I_k$
1	0.3000	0.0017	0.141667	-8.862030
2	0.3100	0.0029	0.241667	-8.327950
3	0.3200	0.0055	0.458333	-7.687910
4	0.3300	0.0104	0.866667	-7.050860
5	0.3400	0.0142	1.183330	-6.739420
6	0.3500	0.0241	2.008330	-6.210450
7	0.3600	0.0360	3.000000	-5.809140
8	0.3700	0.0485	4.041670	-5.511100
9	0.3800	0.0666	5.550000	-5.193960
10	0.3900	0.0888	7.400000	-4.906280
11	0.4000	0.1114	9.283330	-4.679530
12	0.4100	0.1414	11.783300	-4.441070

$N_{\overline{0}}\Pi/\Pi$	U, B	U, B	$I_k = \frac{U}{R_3}$, MA	$\ln I_k$
13	0.4200	0.1709	14.241700	-4.251580
14	0.4300	0.1979	16.491700	-4.104900
15	0.4400	0.22256	18.800000	-3.973900
16	0.4500	0.2470	20.583300	-3.883270

Таблица 3. Точные измерения

$N_{\overline{0}}$	x_2	x_1	$x_2 - x_1$	y_2	y_1	$y_2 - y_1$	a_i	$a_i - a$	$(a_i - a)^2$
1	0.380	0.300	0.080	-5.194	-8.862	3.668	45.851	13.407	179.735
2	0.390	0.310	0.080	-4.906	-8.328	3.422	42.771	10.327	106.638
3	0.400	0.320	0.080	-4.680	-7.688	3.008	37.605	5.160	26.630
4	0.410	0.330	0.080	-4.441	-7.051	2.610	32.622	0.178	0.032
5	0.420	0.340	0.080	-4.252	-6.739	2.488	31.098	-1.346	1.813
6	0.430	0.350	0.080	-4.105	-6.210	2.106	26.319	-6.125	37.515
7	0.440	0.360	0.080	-3.974	-5.809	1.835	22.941	-9.504	90.323
8	0.450	0.370	0.080	-3.883	-5.511	1.628	20.348	-12.096	146.324

Таблица 4. Метод парных точек для точных измерений

Аналогично $S=3.243\ 1/B$ Среднее a=32.444

$$\tan(\alpha) = 32,443 \pm 7,669 \left(\frac{1}{B}\right)$$
$$\frac{e}{k} = (9635.965 \pm 877.620) \frac{K}{B}$$

Ток насыщения:

$$I_0 = 1.694 \times 10^{-8} \text{ MA}$$

Графики

Рис. 3. График

Рис. 4. График

Рис. 5. График

Рис. 6. График

3 Вывод

В ходе экспериментальных исследований было проведено измерение отношения заряда электрона к постоянной Больцмана. Кроме того, изучена зависимость тока короткого замыкания коллектора биполярного транзистора от напряжения между эмиттером и базой, по результатам измерений построены соответствующие графические зависимости.

Погрешность определения искомой физической постоянной рассчитана методом оценки погрешностей косвенных измерений. Полученные результаты находятся в удовлетворительном согласии с теоретическими предсказаниями, что подтверждает корректность применённой методики измерений.

Данные исследования позволяют сделать вывод о применимости использованного экспериментального подхода для определения фундаментальных физических констант и изучения характеристик полупроводниковых приборов.

Список литературы

 $[1] \ \texttt{https://github.com/st117168/2025-4sem-Measurement_methods/tree/main/Workshop4}$