Handout N23 November17, 2005 Scribe: Varsha Dani

Notes for Lecture 23

Let G = (V, E) be a d-regular graph, |V| = n. Last time we defined the edge expansion of G,

$$h(G) = \min_{S, |S| \le n/2} \frac{\# \operatorname{edges}(S, \overline{S})}{d|S|}.$$

Today we will look at a different approach to defining expanders via random walks.

Let M denote the transition matrix of a ramdom walk on G, defined by

$$M(u, v) = \frac{\text{\# edges from } u \text{ to } v}{d}$$

Let π be a distribution over the vertices of G, $\pi \in \mathbb{R}^V$. Then πM is the distribution of the final position, after starting at $v \sim \pi$ and taking one step of the random walk. πM^t is the distribution of the final position, after starting at $v \sim \pi$ and taking t steps of the random walk. Let $\mathcal{U}_n = (\frac{1}{n}, \dots, \frac{1}{n})$ be the uniform distribution on the vertices.

We say G is an expander if for every distribution π , $||\mathcal{U}_n - \pi M||_2$ is smaller by a constant factor than $||\mathcal{U}_n - \pi||_2$.

We also define the following notion of expansion:

$$\lambda(G) = \max_{\text{distributions } \pi} \frac{||\pi M - \mathcal{U}_n||_2}{||\pi - \mathcal{U}_n||_2}$$

Observe that

$$||\mathcal{U}_{n} - \pi M^{t}||_{\mathrm{SD}} = \frac{1}{2}||\mathcal{U}_{n} - \pi M^{t}||_{1}$$

$$\leq \frac{\sqrt{n}}{2}||\mathcal{U}_{n} - \pi M^{t}||_{2} \qquad \text{by Cauchy-Schwarz}$$

$$= \frac{\sqrt{n}}{2}||\mathcal{U}_{n} - \pi M^{t-1}M||_{2}$$

$$\leq \frac{\sqrt{n}}{2}\lambda(G)||\mathcal{U}_{n} - \pi M^{t-1}||_{2}$$

$$\leq \dots$$

$$\leq \frac{\sqrt{n}}{2}\lambda^{t}(G)||\mathcal{U}_{n} - \pi||_{2} \qquad \text{by induction}$$

$$\leq \frac{\sqrt{n}}{2}\lambda^{t}(G) \qquad \text{since } ||\mathcal{U}_{n} - \pi||_{2} \leq 1$$

$$\leq \varepsilon \qquad \text{provided } t \geq \log_{\lambda(G)} \frac{\sqrt{n}}{2\varepsilon}$$

Thus, if the number of steps t is $\Omega\left(\frac{1}{1-\lambda(G)}(\log n + \log\frac{1}{\varepsilon})\right)$ then the resulting distribution is ε close to uniform. In particular this means that $\mathrm{Diam}(G) = O(\frac{1}{1-\lambda(G)}\log n)$. Also G is an expander if and only if $\lambda(G)$ is constant and bounded away from 1.

Our goal is to prove

Theorem 1 (Cheeger's inequality) For all d-regular graphs G,

$$\frac{1 - \lambda(G)}{2} \le h(G) \le \sqrt{2(1 - \lambda(G))}$$

We remark that these bounds are tight up to constant factors. The usefulness of Cheeger's inequality lies in the fact that λ is efficiently computable, whereas h is NP-hard to compute exactly.

From the definition of λ we see that it may be equivalently written as

$$\lambda(G) = \max_{x} \frac{||xM||_2}{||x||_2}$$

where the maximum is taken over all $x \in \mathbb{R}^V$ such that $\mathcal{U}_n + x$ is a distribution. Now, $\mathcal{U}_n + x$ is a distribution means that $\sum_v (\frac{1}{n} + x(v)) = 1$ so that $\sum_v x(v) = 0$ and also that $\forall v, x(v) \geq -\frac{1}{n}$. The latter condition is just a normalization. Using the former condition in our equivalent formulation, we get

$$\lambda(G) = \max_{x \in \mathbb{R}^V, \sum x(v) = 0} \frac{||xM||_2}{||x||_2}$$

This maximum is achieved by the vector orthogonal to the all-ones vector that is least shortened under the action of M.

Let us recall the following facts from linear algebra. Let M be an $n \times n$ matrix. We say (a complex number) λ is an eigenvalue for M if $\exists x \in \mathbb{R}^n$, $x \neq 0$ such that $xM = \lambda x$. Equivalently, $x(M - \lambda I) = 0$. Thus λ is an eigenvalue for M exactly when $\det(M - \lambda I) = 0$. The stipulated vector x is called an eigenvector corresponding to the eigenvalue λ .

If M is a symmetric matrix, then its eigenvalues are real. If λ has multiplicity k (i.e. $(z - \lambda)^k$ divides the characteristic polynomial, $\det(M - zI)$) then $\{x \mid xM = \lambda x\}$ is a linear subspace of dimension k. If λ and λ' are eigenvalues and x and x' are the corresponding eigenvectors, then

$$\lambda xy^T = (xM)y^T = x(My^T) = x(yM)^T = \lambda' xy^T.$$

It follows that the eigenvectors corresponding to *distinct* eigenvalues are orthogonal. Since any multiple of an eigenvector is also an eigenvector, it follows that there is an orthonormal basis of eigenvectors.

Now, if M is the transition matrix of a random walk on d-regular graph G, then

- (a) \mathcal{U}_n is an eigenvector for eigenvalue 1.
- (b) If λ is an eigenvalue of M and x the corresponding eigenvector, then $\lambda \leq 1$. Moreover, if $\lambda < 1$ then x is orthogonal to \mathcal{U}_n .

The proof of (a) is immediate. To see (b), note that

$$\begin{split} 0 &\leq \sum_{u,v \in V} M(u,v)(x(u)-x(v))^2 \\ &= \sum_{u,v} M(u,v)x^2(u) + \sum_{u,v} M(u,v)x^2(v) - 2\sum_{u,v} M(u,v)x(u)x(v) \\ &= \sum_{u} x^2(u) + \sum_{v} x^2(v) - 2\sum_{v} (xM)(v)x(v) & \text{since } M \text{ is a stochastic matrix} \\ &= 2\sum_{v} x^2(v) - 2\sum_{v} \lambda x^2(v) & \text{since } xM = \lambda x \\ &= 2(1-\lambda)\sum_{v} x^2(v) \end{split}$$

It follows that $1 - \lambda \ge 0$, *i.e.* $\lambda \le 1$. Moreover, if λ is an eigenvalue of M the λ^2 is an eigenvalue of M^2 , which is the transition matrix of a random walk on G^2 . (G^2 is the graph which has an edge between u and v exactly when there is a path of length 2 between them in G.) By the above argument, $\lambda^2 \le 1$.

Now suppose $1 = \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq -1$ are the eigenvalues of M. Let x_1, x_2, \ldots, x_n be an orthonormal basis of eigenvectors, x_i corresponding to eigenvalue λ_i and $x_1 = (1/\sqrt{n}, \ldots, 1/\sqrt{n})$. Then $x \perp (1, \ldots, 1)$ implies that there are real numbers a_2, \ldots, a_n such that $x = \sum_{i=2}^n a_i x_i$. We have

$$\lambda(G) = \max_{x \perp (1, \dots, 1)} \frac{||xM||_2}{||x||_2}$$

$$= \max_{a_2, \dots a_n} \frac{||(\sum_{i=1}^n a_i x_i)M||_2}{||\sum_{i=1}^n a_i x_i||_2}$$

$$= \max_{a_2, \dots a_n} \frac{||\sum_{i=1}^n a_i \lambda_i x_i||_2}{\sqrt{\sum_{i=1}^n a_i^2}}$$

$$= \max_{a_2, \dots a_n} \frac{\sqrt{\sum_{i=1}^n a_i^2 \lambda_i^2}}{\sqrt{\sum_{i=1}^n a_i^2}}$$

$$= \max_{a_2, \dots a_n} \frac{\max_{i \in \{2, \dots, n\}} |\lambda_i| \sqrt{\sum_{i=1}^n a_i^2}}{\sqrt{\sum_{i=1}^n a_i^2}}$$

$$= \max_{i \in \{2, \dots, n\}} |\lambda_i|$$

$$= \max_{i \in \{2, \dots, n\}} |\lambda_i|$$

$$= \max_{i \in \{2, \dots, n\}} |\lambda_i|$$

We would like to say that $\lambda(G) = \lambda_2$, but there may be negative eigenvalues. However negative eigenvalues only occur in bipartite graphs. If G is bipartite, then the random walk on G is periodic, and can therefore never mix (*i.e.* get close to uniform). To fix this problem, we can add self-loops to G and do a lazy random walk, staying at the same vertex with probability 1/2. This random walk has transition matrix $\frac{1}{2}(M+I)$, whose eigenvalues are $\frac{1}{2}(1+\lambda_i)$. Thus the eigenvalues are non-negative.

In fact, Cheeger's inequality actually involves λ_2 , rather than λ .

Another problem occurs if $\lambda_2=1$. In this case the graph is disconnected, and any random walk is confined to one component, and therefore cannot mix. To see that the graph is disconnected, observe that when $\lambda_2=1$, there is a non-zero vector $x\perp(1,\ldots,1)$, with xM=x. For this x, we have $0\leq \sum_{u,v\in V}M(u,v)(x(u)-x(v))^2=2(1-\lambda_2)\sum_v x^2(v)=0$. Thus for each $u,v\in V$ either M(u,v)=0 or x(u)=x(v). Fix u and look at the all the vertices that are reachable from u. An easy induction shows that if u' is reachable from u then x(u')=x(u). But since x is not a multiple of $(1,\ldots,1)$, there is a vertex v such that $x(v)\neq x(u)$. Thus v is not reachable from u and therefore G is disconnected.

Theorem 2 (Expander Mixing Lemma) For all $A, B \subseteq V, A \cap B = \emptyset$,

$$\left| \# edges(A, B) - \frac{d|A||B|}{n} \right| \le \lambda_2 d\sqrt{|A||B|}$$

Here note that $\frac{d|A||B|}{n}$ is the expected number of edges from A to B in a random d-regular graph G.

As a consequence of the expander mixing lemma, if $|A| = \alpha n$ and $|B| = \beta n$, then

$$|\# \operatorname{edges}(A, B) - d\alpha\beta n| \le \lambda_2 dn \sqrt{\alpha\beta} \le \varepsilon d\alpha\beta n$$

provided $\lambda_2 \leq \varepsilon \sqrt{\alpha \beta}$.

Another consequence is that the largest independent set in G has size $\lambda_2 n$. To see this, note that $\# \operatorname{edges}(A, B) = \sum_{u \in A, v \in B} \# \operatorname{edges}(u, v)$ in G. If A is an independent set in G and B = A then $\# \operatorname{edges}(A, B) = 0$. According to the theorem, $\left| \frac{d|A|^2}{n} \right| \leq \lambda_2 d|A|$. In other words, $|A| \leq \lambda_2 n$.

It also follows that the chromatic number of G is at least $1/\lambda_2$.