Analysis Cheat-Sheet

Janis Hutz https://janishutz.com

2. August 2025

Inhaltsverzeichnis

1	äume	2
	l Reelle Zahlen	2
	B Komplexe Zahlen	2
2	olgen und Reihen	3
	I Grenzwerte	3
	2 Der Satz von Weierstrass	3
	3 Limes Superior und Limes Inferior	3
	4 Cauchy Kriterium (Konvergenzkriterien)	3
	5 Der Satz von Bolzano-Weierstrass	3
	Folgen in Räumen ausserhalb der Reellen Zahlen	3
	7 Reiĥen	3
3	etige Funktionen	5
	Reellwertige Funktionen	5
	2 Stetigkeit	5
	B Zwischenwertsatz	5
	4 Min-Max-Satz	5
	5 Satz über die Umkehrabbildung	5
	Reellwertige Exponentialfunktion	5
	Konvergenz von Funktionenfolgen	6
	Trigonometrische Funktionen	6
	9 Pie (delicious)	6
	10 Grenzwerte von Funktionen	6
4	ifferenzierbare Funktionen	7
	1 Ableiten	7
	2 Erste Ableitung: Wichtige Sätze	7
	B Höhere Ableitungen	7
	4 Potenzreihen und Taylor Approximation	8
	5 Exercise Help	8
5	iemann Integral	9
	Definition und Integrabilitätskriterien	9
	2 Integrierbare Funktionen	9
	3 Ungleichungen und Mittelwertsatz	9
	Fundamentalsatz der Differentialrechnung	9
		10
	Euler-McLaurin Summationsformel	
		10
	B Uneigentliche Integrale	
		10
	, i at manufactureguing	10
6	abelle von Ableitungen und Stammfunktionen	11

1 Räume

Reelle Zahlen 1.1

S 1.1.1: (Lindemann) Es gibt keine Gleichung der Form $x^n + a_{n-1}x^{n-1} + \ldots + a_0 = 0$ mit $a_i \in Q$ so dass $x = \pi$ eine Lösung ist

K 1.1.7: (Archimedisches Prinzip) Sei $x \in \mathbb{R}$ mit x > 0 und $y \in \mathbb{R}$. Dann existiert $n \in \mathbb{N}$ mit $y \leq n \cdot x$

Max, Min, Betrag

Definition 1.1.9

Seien $x, y \in \mathbb{R}$. Dann:

(i)
$$\max\{x, y\} = \begin{cases} x & \text{falls } y \le x \\ y & \text{falls } x \le y \end{cases}$$

$$(i) \ \max\{x,y\} = \begin{cases} x & \text{falls } y \le x \\ y & \text{falls } x \le y \end{cases} \qquad (ii) \ \min\{x,y\} = \begin{cases} y & \text{falls } y \le x \\ x & \text{falls } x \le y \end{cases}$$

(iii) Der Absolutbetrag von
$$x \in \mathbb{R} : |x| = \max x, -x$$

Eigenschaften des Absolutbetrags

Satz 1.1.10

(i)
$$|x| \ge 0 \ \forall x \in \mathbb{R}$$

(ii)
$$|xy| = |x||y| \ \forall x, y \in \mathbb{R}$$

(*iii*)
$$|x+y| \le |x| + |y|$$

$$(iv) |x+y| \ge ||x| - |y||$$

S 1.1.11: (Young'sche Ungleichung) $\forall \varepsilon > 0$, $\forall x, y \in \mathbb{R}$ gilt: $2|xy| \le \varepsilon x^2 + \frac{1}{\varepsilon}y^2$

Schranken

Definition 1.1.12

- (i) $c \in \mathbb{R}$ obere Schranke von A falls $\forall a \in A : a \leq c$. A nach oben beschränkt falls eine obere Schranke für A existiert
- (ii) $c \in \mathbb{R}$ untere Schranke von A falls $\forall a \in A : a \leq c$. A nach unten beschränkt falls eine untere Schranke für A existiert
- (iii) Element $m \in \mathbb{R}$ Maximum von A falls $m \in A$ und m obere Schranke von A ist
- (iv) Element $m \in \mathbb{R}$ Minimum von A falls $m \in A$ und m untere Schranke von A ist

Supremum & Infimum

Satz 1.1.15

- (i) Die kleinste obere Schranke von einer nach oben beschränkten Menge A, gennant das **Supremum** von A, ist definiert als $c := \sup(A)$. Es existiert nur falls die Menge nach oben beschränkt ist.
- (ii) Die grösste untere Schranke von einer nach unten beschränkten Menge A, gennant das *Infimum* von A, ist definiert als $c := \inf(A)$. Es existiert nur falls die Menge nach unten beschränkt ist.

Supremum & Infimum

Korollar 1.1.16

Sei $A \subset B \subset \mathbb{R}$

(1) Falls B nach oben beschränkt ist, gilt $\sup(A) \leq \sup(B)$ (2) Falls B nach unten beschränkt ist, gilt $\inf(B) \leq \inf(A)$

Komplexe Zahlen

 $\begin{aligned} \mathbf{Operationen:} \ i^2 &= -1 \ (\text{NICHT} \ i = \sqrt{-1} \ \text{da sonst} \ 1 = -1). \ \text{Komplexe Zahl} \ z_j = a_j + b_j i. \ Addition, \ Subtraktion \ (a_1 \pm a_2) + (b_1 \pm b_2) i. \\ Multiplikation \ (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i. \ Division \ \frac{a_1 b_1 + a_2 b_2}{b_1^2 + b_2^2} + \frac{a_2 b_1 - a_1 b_2}{b_1^2 b_2^2} i; \end{aligned}$

Teile: $\Re(a+bi) := a$ (Realteil), $\Im(a+bi) := b$ (Imaginärteil), $|z| := \sqrt{a^2 + b^2}$ (modulus), $\overline{a+bi} := a-bi$ (Komplexe Konjugation);

Polarkoordinaten: a+bi (Normalform), $r \cdot e^{i\phi}$ (Polarform). Transformation polar \rightarrow normal: $r \cdot \cos(\phi) + r \cdot \sin(\phi)i$. Transformation normal \rightarrow polar: $|z| \cdot e^{i \cdot \arcsin(\frac{b}{|z|})}$;

Fundamentalsatz der Algebra

Satz 1.3.17

Sei $n \ge 1, n \in \mathbb{N}$ und sei

$$P(z) = z^{n} + a_{n-1}z^{n-1} + \ldots + a_{0}, \quad a_{j} \in \mathbb{C}$$

Dann gibt es $z_1, \ldots, z_n \in \mathbb{C}$ so dass

$$P(z) = (z - z_1)(z - z_2) \dots (z - z_n)$$

Die Menge $\{z_1,\ldots,z_n\}$ und die Vielfachheit der Nullstellen z_i sind eindeutig bestimmt.

Surjektivität Eine Funktion $f: X \to Y$, ist Surjektiv, g.d.w. $\forall y \in Y, \exists x \in X: f(x) = y$ (stetige Funktion)

Injektivität $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

Folgen und Reihen

2.1Grenzwerte

D 2.1.4: Eine Folge $(a_n)_{n\geq 1}$ heisst **konvergent** falls $\exists l\in\mathbb{R}$ s.d. $\forall \varepsilon>0$ die Menge $\{n\in\mathbb{N}^*: a_n\notin]l-\varepsilon, l+\varepsilon[\}$ endlich ist. Jede konvergente Folge ist beschränkt. L 2.1.6: $(a_n)_{n\geq 1}$ konvergiert gegen $l=\lim_{n\to\infty}a_n \Leftrightarrow \forall \varepsilon>0 \ \exists N\geq 1 \text{ s.d. } |a_n-l|<\varepsilon \ \forall n\geq N$

S 2.1.8: $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ konvergent, $a=\lim_{n\to\infty}a_n, b=\lim_{n\to\infty}b_n$. Dann gilt:

- (1) $(a_n + b_n)_{n \ge 1}$ konvergent und $\lim_{n \to \infty} (a_n + b_n) =$
- (2) $(a_n \cdot b_n)$ konvergent $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$;
- (3) Falls zudem $b_n \neq 0 \ \forall n \geq 1 \ \text{and} \ b \neq 0$, dann gilt $(a_n \div b_n)_{n \ge 1}$ konvergent und $\lim_{n \to \infty} (a_n \div b_n) = a \div b;$
- (4) Falls $\exists \overline{K} \geq 1 \text{ mit } a_n \leq b_n \ \forall n \geq K \Rightarrow a \leq b$

Der Satz von Weierstrass

D 2.2.1: $(a_n)_{n\geq 1}$ monoton wachsend (fallend) falls $a_n\leq a_{n+1}$ $(a_n\geq a_{n+1})$ $\forall n\geq 1$

S 2.2.2: (Weierstrass) $(a_n)_{n\geq 1}$ monoton wachsend (sinkend) und nach oben (unten) beschränkt konvergiert gegen $\lim_{n\to\infty} a_n =$ $\sup\{a_n:n\geq 1\}\ (\lim_{n\to\infty}a_n=\inf\{a_n:n\geq 1\}),$ genannt das Supremum und Infimum **Bsp 2.2.6:** $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$

L 2.2.7: (Bernoulli Ungleichung) $(1+x)^n \ge 1 + n \cdot x \ \forall n \in \mathbb{N}, x > -1$

Limes Superior und Limes Inferior

Für $(a_n)_{n\geq 1}$ definieren wir zwei monotone Folgen $b_n=\inf\{a_k:k\geq n\}$ und $c_n=\sup\{a_k:k\geq n\}$, dann ist $b_n\leq b_{n+1}\ \forall n\geq 1$ und $c_{n+1} \le c_n \ \forall n \ge 1$, und beide Folgen sind beschränkt. Zudem konvergieren beide und es gilt $\liminf_{n\to\infty} a_n := \lim_{n\to\infty} b_n$ und $\limsup_{n\to\infty} a_n := \lim_{n\to\infty} c_n$. Ausserdem gilt: $\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n$.

Cauchy Kriterium (Konvergenzkriterien)

L 2.4.1: $(a_n)_{n\geq 1}$ konvergiert genau dann, wenn sie beschränkt ist und $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$

S 2.4.2: (Cauchy Kriterium) $(a_n)_{n\geq 1}$ konvergent $\Leftrightarrow \forall \varepsilon > 0 \ \exists N \geq 1 \text{ so dass } |a_n - a_m| \leq \varepsilon \ \forall n, m \geq N$

2.5Der Satz von Bolzano-Weierstrass

D 2.5.1: (Abgeschlossenes Intervall) Teilmenge $I \subseteq \mathbb{R}$ der Form wie unten zu sehen und der Länge $\mathcal{L}(I) = b - a$ (für (1)) oder $\mathcal{L}(I) = +\infty$:

(1) $[a,b]; a \leq b; a,b \in \mathbb{R}$

(2) $[a, +\infty[; a \in \mathbb{R}$

 $(3)]-\infty,a]; a \in \mathbb{R}$

 $(4)]-\infty,+\infty[=\mathbb{R}$

Ein Intervall I ist abgeschlossen \Leftrightarrow Für jede konvergente Folge aus Elementen von I auch deren Grenzwerte in I enthalten sind

S 2.5.5: (Cauchy-Cantor) Sei $I_1 \supseteq \ldots \supseteq I_n \supseteq I_{n+1} \supseteq \ldots$ eine Folge abgeschlossener Intervalle mit $\mathcal{L}(I_i) < +\infty$. Dann ist $\bigcap_{n\geq 1}^{\infty}I_n\neq\emptyset$. Falls zudem $\lim_{n\to\infty}\mathcal{L}(I_n)=0$, dann enthält die Menge genau einen Punkt. S 2.5.6: \mathbb{R} ist nicht abzählbar

D 2.5.7: (Teilfolge von $(a_n)_{n\geq 1}$) $(b_n)_{n\geq 1}$ wobei $b_n=a_{l(n)}$ und $l(n)\leq l(n+1) \ \forall n\geq 1$

S 2.5.8: (Bolzano-Weierstrass) Jede beschränkte Folge besitzt eine konvergente Teilfolge. Zudem: $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n \leq \limsup_{n\to\infty} a_n$

Folgen in Räumen ausserhalb der Reellen Zahlen

D 2.6.1: Folgen in \mathbb{R}^d und \mathbb{C} werden gleich wie in \mathbb{R} notiert

D 2.6.2: $(a_n)_{n\geq 1}$ in \mathbb{R}^d heisst konvergent falls $\exists a\in\mathbb{R}^d$ so dass $\forall \varepsilon>0$ $\exists N\geq 1$ mit $||a_n-a||\leq \varepsilon$ $\forall n\geq N$

S 2.6.3: Sei $b = (b_1, \ldots, b_n)$ (Koordinaten von b, da b ein vektor ist). Dann ist $\lim_{n \to \infty} a_n = b \Leftrightarrow \lim_{n \to \infty} a_{n,j} = b_j \ \forall 1 \le j \le d$

S 2.6.6: $(a_n)_{n\geq 1}$ konvergiert $\Leftrightarrow (a_n)_{n\geq 1}$ ist eine Cauchy-Folge; Jede beschränkte Folge hat eine konvergierende Teilfolge

Reihen

D 2.7.1: (Konvergenz) $\sum_{k=1}^{\infty} a_k$ konvergiert falls $(S_n)_{n\geq 1}$ (Folge von Partialsummen) konvergiert, d.h. $\sum_{k=1}^{\infty} a_k := \lim_{n\to\infty} S_n$ **Bsp 2.7.2:** (Geometrische Reihe) Konvergiert gegen $\frac{1}{1-q}$, und $s_n = a_1 \cdot \frac{1-q^n}{1-q}$ **Bsp 2.7.3:** (Harmonische Reihe) $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert

S 2.7.4: Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ konvergent, $\alpha \in \mathbb{C}$. Dann ist:

1.
$$\sum_{k=1}^{\infty} (a_k + b_k) \text{ konvergent und } \sum_{k=1}^{\infty} (a_k + b_k) = \left(\sum_{k=1}^{\infty} a_k\right) + \left(\sum_{k=1}^{\infty} b_k\right)$$
2.
$$\sum_{k=1}^{\infty} (\alpha \cdot a_k) \text{ konvergent und } \sum_{k=1}^{\infty} (\alpha \cdot a_k) = \alpha \cdot \left(\sum_{k=1}^{\infty} a_k\right)$$

- **S 2.7.5:** (Cauchy Kriterium) Eine Reihe $\sum_{k=1}^{\infty} a_k$ ist konvergent $\Leftrightarrow \forall \varepsilon > 0 \ \exists N \geq 1 \ \text{mit} \ |\sum_{k=n}^{m} a_k| \leq \varepsilon \ \forall m \geq n \geq N$
- S 2.7.6: $\sum_{k=1}^{\infty} a_k$ mit $a_k \ge 0 \ \forall k \in \mathbb{N}^*$ konvergiert $\Leftrightarrow (S_n)_{n \ge 1}, S_n = \sum_{k=1}^n a_k$ ist nach oben beschränkt
- **K** 2.7.7: (Vergleichssatz) $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} a_k$ mit $0 \le a_k \le b_k$ $\forall k \ge K$ (wo $K \ge 1$), dann gelten:

$$\sum_{k=1}^{\infty} b_k$$
 konvergent $\Longrightarrow \sum_{k=1}^{\infty} a_k$ konvergent $\sum_{k=1}^{\infty} a_k$ divergent $\Longrightarrow \sum_{k=1}^{\infty} b_k$ divergent

- **D 2.7.9:** (Absolute Konvergent) Eine Reihe für welche $\sum_{k=1}^{\infty} |a_k|$ konvergiert. Eine Anwendung des Cauchy Kriteriums liefert:
- **S 2.7.10:** Eine absolut konvergente Reihe ist auch konvergent und $\left|\sum_{k=1}^{\infty} a_k\right| \leq \sum_{k=1}^{\infty} |a_k|$

$\sum_{a=0}^{\infty} \frac{1}{a^p}$ konvergiert für n>1Konvergenzkriterien

- **S 2.7.12:** (Leibniz) Sei $(a_n)_{n\geq 1}$ monoton fallend mit $a_n\geq 0 \ \forall n\geq 1$ und $\lim_{n\to\infty}a_n=0$. Dann konvergiert $S:=\sum_{k=1}^{\infty}(-1)^{k+1}a_k$ und $a_1 - a_2 \le S \le a_1$
- **Usage** Um Konvergenz zu zeigen, beweise dass $(a_n)_{n\geq 1}$ monoton fallend ist, $a_n\geq 0$ und dass der Grenzwert 0 ist
- **D 2.7.14:** (Umordnung) Eine Reihe $\sum_{k=1}^{\infty} a'_k$ für eine $\sum_{k=1}^{\infty} a_k$ falls eine Bijektion gibt ϕ so dass $a'_n = a_{\phi(n)}$
- S 2.7.16: (Dirichlet) Falls $\sum_{k=1}^{\infty} a_k$ absolut konvergiert, so konvergiert jede Umordnung der Reihe zum selben Grenzwert.
- **S 2.7.17:** (Quotientenkriterium) Reihe s mit $a_n \neq 0 \ \forall n \geq 1$, s konvergiert absolut falls $\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1$. Falls $\liminf_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1$ divergiert sie. Falls einer der Grenzwerte gleich 1 ist, dann war der Test nicht eindeutig.
- **S 2.7.18:** (Wurzelkriterium) Falls $\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$ konvergiert die Folge. Falls der Grenzwert grösser als eins ist, divergiert sie
- **K 2.7.19:** (Konvergenzradius) Eine Potenzreihe der Form $\sum_{k=0}^{\infty} c_k z^k$ konvergiert absolut für alle $|z| < \rho$ und divergiert für alle $|z| > \rho$. Sei $l = \limsup_{n \to \infty} \sqrt[k]{|c_k|}$, dann ist $\rho = \begin{cases} +\infty & \text{falls } l = 0 \\ \frac{1}{l} & \text{falls } l > 0 \end{cases}$. Der Konvergenzradius ist dann definiert durch ρ falls $\rho \neq \infty$

Doppelreihen

- **D** 2.7.22: Für eine Doppelreihe $\sum_{i,j\geq 0}^{\infty} a_{ij}$, $\sum_{k=0}^{\infty} b_k$ ist eine *lineare Anordnung* falls eine Bijektion σ existiert s.d. $b_k = a_{\sigma(k)}$
 - **S 2.7.23:** (Cauchy) Wir nehmen an, $\exists B \geq 0$ s.d. $\sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \leq B \ \forall m \geq 0$. Dann gilt: $S_i := \sum_{j=0}^{\infty} a_{ij} \ \forall i \geq 0$ und
 - $U_j := \sum_{i=0}^{\infty} a_{ij} \ j \ge 0$ konvergieren absolute, sowie $\sum_{i=0}^{\infty} S_i$ und $\sum_{j=0}^{\infty} U_j$ und es gilt: $\sum_{i=0}^{\infty} S_i = \sum_{j=0}^{\infty} U_j$.
 - Jede lineare Anordnung konvergiert absolut mit demselben Grenzwert.

D 2.7.24: (Cauchy Produkt)
$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_j \right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) + (a_0 b_2 + a_1 b_1 + a_2 b_0) + \dots$$
 für zwei Folgen $\sum_{i=0}^{\infty} a_i$, $\sum_{j=0}^{\infty} b_j$

- S 2.7.26: Falls zwei Reihen absolut konvergieren, so knovergiert auch ihr Cauchy Produkt und es besteht aus den ausmultiplizierten Termen der zwei Reihen.
- **S** 2.7.27: Sei f_n eine Folge. Wir nehmen an, dass:

•
$$f(j) := \lim_{n \to \infty} f_n(j)$$
 existiert $\forall j \in \mathbb{N}$
• $\exists g \text{ s.d. } |f_n(j)| \leq g(j) \ \forall j, n \geq 0 \text{ und } \sum_{j=0}^{\infty} g(j) \text{ konvergiert}$

Dann folgt $\sum_{j=0}^{\infty} f(j) = \lim_{n \to \infty} \sum_{j=0}^{\infty} f_n(j)$

K 2.7.28: Für jedes $z \in \mathbb{C}$ konvergiert die Folge und es gilt $\lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n = \exp(z)$ wo $\exp(z) := 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$

Stetige Funktionen

3.1 Reellwertige Funktionen

D 3.1.1: (Beschränkung) Sei $f \in \mathbb{R}^D$, wobei \mathbb{R}^D die Menge aller Funktionen $f: D \to \mathbb{R}$ ist, d.h. \mathbb{R}^D ist ein Vektorraum

- f ist $nach\ oben\ beschränkt$, falls $f(D) \subseteq \mathbb{R}$ nach oben beschränkt ist.
- f ist nach unten beschränkt, falls $f(D) \subseteq \mathbb{R}$ nach unten beschränkt ist.
- f ist **beschränkt** falls $f(D) \subseteq \mathbb{R}$ beschränkt ist.

D 3.1.2: (Monotonie) Falls $D \subseteq \mathbb{R}$ gibt es die folgenden Monotoniebegriffe:

- monoton wachsend $\forall x, y \in D \ x \leq y \Rightarrow f(x) \leq f(y)$
- streng monoton wachsend, falls $\forall x, y \in D \ x < y \Rightarrow f(x) < f(y)$
- monoton fallend, falls $\forall x, y \in D \ x \leq y \Rightarrow f(x) \geq f(y)$
- streng monoton fallend, falls $\forall x, y \in D \ x < y \Rightarrow f(x) > f(y)$
- monoton, falls f monoton wachsend oder monoton fallend ist
- streng monoton, falls f streng monoton machend oder streng monoton fallend ist

3.2Stetigkeit

Intuition: Eine stetige Funktion kann ohne den Stift zu heben gezeichnet werden.

D 3.2.1: (Stetigkeit von f in x_0) Falls für jedes $\varepsilon > 0$ ein δ existiert, s.d. $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$ **D** 3.2.2: (Stetigkeit) f stetig falls f in allen Punkten von D stetig ist S 3.2.4: f ist stetig in $x_0 \iff \text{für } (a_n)_{n\geq 1} \lim_{n\to\infty} a_n = x_0 \Rightarrow f(a_n) = f(x_0)$

K 3.2.5: Seien f, g stetig in x_0 , dann gilt f+g, $\lambda \cdot f$, $f \cdot g$, $f \circ g$ sind stetig in x_0 und falls $g(x_0) \neq 0$, ist $\frac{f}{g}$ stetig in x_0 für $\frac{f}{g}: D \cap \{x \in D: g(x) \neq 0\} \to \mathbb{R}$

D 3.2.6: (Polynomiale Funktion) $P(x) = a_n x^n + \ldots + a_0$, falls $a_n \neq 0$, $\deg(P) = n$ (Grad von P) **K** 3.2.7: Sie sind stetig auf ganz \mathbb{R} K 3.2.8: P, Q pol. funk. auf \mathbb{R} mit $Q \neq 0$, wobei x_1, \dots, x_m die Nullstellen von Q sind. Dann gilt: $\frac{P}{Q} : \mathbb{R} \setminus \{x_1, \dots, x_m\} \to \mathbb{R}$ ist stetig

3.3 Zwischenwertsatz

S 3.3.1: Sei $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ eine stetige Funktion und $a, b \in I$. Für jedes c zwischen f(a) und f(b) existiert ein zzwischen a und b mit f(z) = c K 3.3.2: Sei P ein Polynom mit deg(P) = n, n ungerade. Dann hat P mind. eine Nullstelle in \mathbb{R}

3.4Min-Max-Satz

D 3.4.2: (Kompaktes Intervall) falls das Intervall I von der Form $I = [a,b], a \le b$ ist **L** 3.4.3: f,g stetig in x_0 . Dann gilt: |f|, max(f,g) und min(f,g) sind stetig in x_0 (min(f,g) ist das Minimum der beiden Funktionen für jedes x) **L** 3.4.4: $(x_n)_{n\geq 1}$ konvergente Reihe in \mathbb{R} mit $\lim_{n\to\infty} x_n \in \mathbb{R}$ und $a\leq b$. Falls $\{x_n:n\geq 1\}\subseteq [a,b]$ dann gilt $\lim_{n\to\infty} x_n\in [a,b]$ Sei f stetig auf dem kompakten Intervall I. Dann gilt $\exists u \in I \text{ und } \exists v \in I \text{ mit } f(u) \leq f(x) \leq f(v) \ \forall x \in I. f \text{ ist beschränkt.}$

Satz über die Umkehrabbildung

S 3.5.1: Seien $D_1, D_2 \subseteq \mathbb{R}$, $f: D_1 \to D_2$, $g: D_2 \to \mathbb{R}$, $x_0 \in D_1$. Falls f stetig in x_0 , g and $f(x_0)$ dann $f \circ g: D_1 \to \mathbb{R}$ stetig in x_0

K 3.5.2: Falls in Satz 3.5.1 f stetig auf D_1 und g auf D_2 , dann ist $g \circ f$ stetig auf D_1

S 3.5.3: (Satz über Umkehrabbildung) Sei $f: I \to \mathbb{R}$ stetig, streng monoton und sei $I \subseteq \mathbb{R}$ ein Intervall. Dann gilt: $J:=f(I)\subseteq \mathbb{R}$ ist ein Intervall und $f^{-1}: J \to I$ ist stetig und streng monoton.

Reellwertige Exponentialfunktion

Die Exponentialfunktion $\exp: \mathbb{C} \to \mathbb{C}$ wird normalerweise durch eine auf ganz \mathbb{C} konvergente Potenzreihe definiert: $\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$,

hier für $z \in \mathbb{R}$. exp ist bijektiv, streng monoton wachsend, glatt und stetig. $\exp^{-1}(x) = \ln(x)$

S 3.6.1: $\exp : \mathbb{R} \to]0, +\infty[$ ist streng monoton wachsend, stetig und surjektiv **K** 3.6.2: $\exp(x) > 0 \ \forall x \in \mathbb{R}$

K 3.6.3: $\exp(z) > \exp(y) \ \forall z > y$ **K** 3.6.4: $\exp(x) \ge 1 + x \ \forall x \in \mathbb{R}$ **K** 3.6.5: $\ln z = 0, +\infty$ ist streng monoton wachsend, stetig und bijektiv. Es gilt $\ln(a \cdot b) = \ln(a) + \ln(b) \ \forall a, b \in]0, +\infty[$. Dies ist die Umkehrabbildung von exp **K** 3.6.6:

- 1. Für a > 0 $]0, +\infty[$ \rightarrow $]0, +\infty[$ ist $x \mapsto x^a$ eine stetige, streng monoton wachsende Bijektion.
- 2. Für $a < 0 \]0, +\infty[\rightarrow \]0, +\infty[$ ist $x \mapsto x^a$ eine stetige, streng monoton fallende Bijektion.
- 3. $\ln(x^a) = a \ln(x) \quad \forall a \in \mathbb{R}, \quad \forall x > 0$ 4. $x^a \cdot x^b = x^{a+b} \quad \forall a, b \in \mathbb{R}, \quad \forall x > 0$ 5. $(x^a)^b = x^{a \cdot b} \quad \forall a, b \in \mathbb{R}, \quad \forall x > 0$

Konvergenz von Funktionenfolgen

D 3.7.1: (Punktweise Konvergenz) $(f_n)_{n\geq 1}$ konvergiert punktweise gegen eine Funktion $f:D\to\mathbb{R}$ falls für alle $x\in D$ f(x)= $\lim_{n\to\infty} f_n(x)$

D 3.7.3: (Weierstrass) Folge f_n konv. gleichmässig in D gegen f falls $\forall \varepsilon > 0 \ \exists N \ge 1 \text{ s.d. } \forall n \ge N, \ \forall x \in D : |f_n(x) - f(x)| < \varepsilon$

S 3.7.4: f_n ist eine Folge von (in D) stetigen Funktionen die in D gleichmässig konvergieren. Dann ist f (in D) stetig

D 3.7.5: (Gleichmässige Konvergenz von $(f_n)_{n\geq 1}$)) f_n falls $\forall x\in D$ $f(x):=\lim_{n\to\infty}f_n(x)$ existiert und $(f_n)_{n\geq 1}$ gleichmässig gegen f konvergiert

K 3.7.6: f_n konvergiert gleichmässig in $D \iff \forall \varepsilon > 0 \ \exists N \geq 1 \text{ so dass } \forall n, m \geq N, \ \forall x \in D \ |f_n(x) - f_m(x)| < \varepsilon$

K 3.7.7: Falls f_n eine gleichmässig konvergierende Funktionenfolge ist, dann ist $f(x) := \lim_{n \to \infty} f_n(x)$ stetig

D 3.7.8: $\sum_{k=0}^{\infty} f_k(x)$ konvergiert gleichmässig, falls $S_n(x) := \sum_{k=0}^n f_k(x)$ gleichmässig konvergiert **S 3.7.9:** Angenommen, dass $|f_n(x)| \le 1$

 $c_n \ \forall x \in D \ \text{und dass} \ \sum_{n=0}^{\infty} c_n \ \text{konvergiert.}$ Dann konvergiert $\sum_{n=0}^{f_n(x)}$ gleichmässig in $D \ \text{und} \ f(x) := \sum_{n=0}^{\infty} f_n(x)$ ist stetig in $D \ \text{und} \ f(x) := \sum_{n=0}^{\infty} f_n(x)$

D 3.7.10: (Konvergenzradius) Siehe **K** 2.7.19 **S** 3.7.11: Eine Potenzreihe konvergiert gleichmässig auf]-r,r[wobei $0 \le r < \rho$

3.8 Trigonometrische Funktionen

S 3.8.1: $\sin : \mathbb{R} \to \mathbb{R}$ und $\cos : \mathbb{R} \to \mathbb{R}$ sind stetige Funktionen S 3.8.2:

- 1. $\exp iz = \cos(z) + i\sin(z) \ \forall z \in \mathbb{C}$
- 2. $\cos(z) = \cos(-z)$ and $\sin(-z) = -\sin(z) \ \forall z \in \mathbb{C}$ 3. $\sin(z) = \frac{e^{iz} e^{-iz}}{2i}$; $\cos(z) = \frac{e^{iz} + e^{iz}}{2}$
- 4. $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$ $\cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w)$
- 5. $\cos(z)^2 + \sin(z)^2 = 1 \ z \in \mathbb{C}$

K 3.8.3: $\sin(2z) = 2\sin(z)\cos(z)$ and $\cos(2z) = \cos(z)^2 - \sin(z)^2$

Pie (delicious)

S 3.9.1: Die Sinusfunktion hat mindestens eine Nullstelle auf $]0, +\infty[$ und $\pi := \inf\{t > 0 : \sin(t) = 0\}$. Dann gilt $\sin(\pi) = 0, \ \pi \in \mathbb{R}$ $[2,4[;\forall x\in]0,\pi[:\sin(x)>0 \text{ and } e^{\frac{i\pi}{2}}=i \text{ } \mathbf{K} \text{ } \mathbf{3.9.2:} \text{ } x\geq\sin(x)\geq x-\frac{x^3}{3!} \text{ } \forall 0\leq0\leq\sqrt{6} \text{ } \mathbf{K} \text{ } \mathbf{3.9.3:}$

- 1. $e^{i\pi} = -1$, $e^{2i\pi} = 1$
- 2. $\sin\left(x+\frac{\pi}{2}\right)$, $\cos\left(x+\frac{\pi}{2}\right)=-\sin(x) \ \forall x\in\mathbb{R}$
- 5. Nullstellen von Sinus = $\{k \cdot \pi : k \in \mathbb{Z}\}$ $\sin(x) > 0 \ \forall x \in]2k\pi, (2k+1)\pi[, k \in \mathbb{Z} \sin(x) >$ $0 \ \forall x \in](2k+1)\pi, (2k+2)\pi[, \ k \in \mathbb{Z}]$
- 3. $\sin(x+\pi) = -\sin(x)$, $\sin(x+2\pi) = \sin(x) \ \forall x \in \mathbb{R}$
- 4. $\cos(x+\pi) = -\cos(x)$, $\cos(x+2\pi) = \cos(x) \ \forall x \in \mathbb{R}$
- 6. NullStellen von Cosinus = $\{\frac{\pi}{2} \cdot k \cdot \pi : k \in \mathbb{Z}\}$ $\cos(x) > 0 \ \forall x \in]-\frac{\pi}{2} + 2k\pi, -\frac{\pi}{2} + (2k+1)\pi[, \ k \in \mathbb{Z}]$ $\cos(x) > 0 \ \forall x \in]-\frac{\pi}{2} + (2k+1)\pi, -\frac{\pi}{2} + (2k+2)\pi[, \ k \in \mathbb{Z}]$

3.10Grenzwerte von Funktionen

D 3.10.1: (Häufungspunkt): $x_0 \in \mathbb{R}$ von D falls $\forall \delta > 0$ ($|x_0 - \delta, x_0 + \delta| \setminus \{x_0\}$) $\cap D \neq \emptyset$

D 3.10.3: $A \in \mathbb{R}$ ist der Grenzwert von f(x) für $x \to x_0$ bezeichnet $\lim_{x \to x_0} f(x) = A$, wobei x_0 ein Häufungspunkt ist, falls:

$$\forall \varepsilon \ \exists \delta > 0 \text{ s.t. } \forall x \in D \cap (]x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) : |f(x) - A| < \varepsilon$$

S 3.10.6: Seien $D, E \subseteq \mathbb{R}, x_r$ ein Häufungspunkt von D und $f: D \to E$ eine Funktion. Angenommen, dass $y_0 := \lim_{x \to x_0} \text{ existient}$ und $y_0 \in E$. Falls $g: E \to \mathbb{R}$ in y_0 stetig ist, dann gilt $\lim_{x \to x_0} g(f(x)) = g(y_0)$

Links- / Rechtsseitige Grenzwerte

Wird gebraucht, wenn Funktionen Polstellen haben. Wir nähhern uns der Polstelle von beiden Seiten an, um sie zu evaluieren. Anders als an der Kanti notieren wir sie mit $x \to x_0^-$ anstelle von mit $x \uparrow x_0$

4 Differenzierbare Funktionen

4.1 Ableiten

- **D 4.1.1:** (Differenzierbarkeit) f ist differenzierbar in x_0 falls $f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = \lim_{h \to 0} \frac{f(x_0 + h) f(x_0)}{h}$ existiert.
- **S** 4.1.3: Sei x_0 Häufungspunkt von D: f differenzierbar in $x_0 \iff \exists c \in \mathbb{R} \text{ und } r : D \to \mathbb{R} \text{ mit (falls es zutrifft, ist } c = f'(x_0)$ eindeutig bestimmt):

$$f(x) = f(x_0) + c(x - x_0) + r(x)(x - x_0)$$
 sowie auch $r(x_0) = 0$ und r ist stetig in x_0

- **S 4.1.4:** f differenzierbar in $x_0 \Leftrightarrow \exists \phi : D \to \mathbb{R}$ stetig in $x = \text{und } f(x) = f(x_0) + \phi(x)(x x_0) \ \forall x \in D$. Dann ist $\phi(x_0) = f'(x_0)$
- **K** 4.1.5: $x_0 \in D$ Häufungspunkt von D. Falls f differenzierbar in x_0 , f stetig in x_0 **D** 4.1.7: f ist auf ganz D differenzierbar, falls f für jeden Häufungspunkt x_0 in x_0 differenzierbar ist
 - **S 4.1.9:** (Grundregeln vom Ableiten) Let f, g be functions differentiable in x_0
 - $(f+g)'(x_0) = f'(x_0) + g'(x_0)$
 - $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$

• falls $g(x_0) \neq 0$, $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$

S 4.1.11: (Kettenregel) $x_0 \in D$ Häufungspunkt, $f: D \to E$ differenzierbar in x_0 s.d. $y_0 := f(x_0) \in E$ ein Häufungspunkt von E ist und sei $g: E \to \mathbb{R}$ differenzierbar in y_0 . Dann gilt $g \circ f: D \to \mathbb{R}$ differenzierbar in x_0 und $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$ **K 4.1.12:** Sei $f: D \to E$ eine in x_0 (Häufungspunkt) differenzierbare Bijektion $f'(x_0) \neq 0$ und zudem sei f^{-1} stetig in $y_0 = f(x_0)$.

Dann ist y_0 ein Häufungspunkt von E, f^{-1} differenzierbar in y_0 und $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$

4.2 Erste Ableitung: Wichtige Sätze

- **D** 4.2.1: (1) f hat ein Maximum in x_0 falls $\exists \delta > 0$ s.d. $f(x) \leq f(x_0) \ \forall x \in]x_0 \delta, x_0 + \delta[\cap D (2) f$ hat ein Minimum in x_0 falls $\exists \delta > 0$ s.d. $f(x) \geq f(x_0) \ \forall x \in]x_0 \delta, x_0 + \delta[\cap D (3) f$ hat ein lokales Extremum in x_0 fall es entweder ein max oder min ist
 - **S 4.2.2:** Angenommen, f is in x_0 differenzierbar $f'(x_0) = 0$, dann existiert in x_0 ein Extremum
 - 1. Falls $f'(x_0) > 0 \; \exists \delta > 0 \; \text{s.d.} \; f(x) > f(x_0) \; \forall x \in]x_0, x_0 + \delta[\; \text{und} \; f(x) < f(x_0) \; \forall x \in]x_0 \delta, x_0[$
- 2. Falls $f'(x_0) < 0 \; \exists \delta > 0 \; \text{s.d.} \; f(x) < f(x_0) \; \forall x \in]x_0, x_0 + \delta[\; \text{und} \; f(x) > f(x_0) \; \forall x \in]x_0 \delta, x_0[$
- **S 4.2.3:** Sei $f:[a,b]\to\mathbb{R}$ stetig und differenzierbar in [a,b[. Falls $f(a)=f(b), \exists \xi\in]a,b[$ mit $f'(\xi)=0$
- **S** 4.2.4: Sei f wie oben, dann $\exists \xi \in]a, b[$ s.t. $f(b) f(a) = f'(\xi)(b-a)$ **K** 4.2.5: Sei f, g wie oben (I = [a, b]), dann gilt:
 - 1. $f'(\xi) = 0 \ \forall \xi \in]a,b[\Rightarrow f \text{ konstant}]$
 - 2. $f'(\xi) = g'(\xi) \ \forall \xi \in]a, b[\Rightarrow \exists c \in \mathbb{R} \text{ mit } f(x) = g(x) + c \ \forall x \in [a, b]$
 - 3. $f'(\xi) \ge 0 \ \forall \xi \in]a,b[\Rightarrow f \text{ monoton wachsend auf } I$
 - 4. $f'(\xi) > 0 \ \forall \xi \in]a, b[\Rightarrow f \text{ strikt mon. wachsend auf } I$
- 5. $f'(\xi) \leq 0 \ \forall \xi \in]a,b[\Rightarrow f \text{ monoton fallend auf } I$
- 6. $f'(\xi) < 0 \ \forall \xi \in]a,b[\Rightarrow f \text{ strikt mon. fallend auf } I$
- 7. Falls $\exists M \geq 0$ s.d. $|f'(\xi)| \leq M \ \forall \xi \in]a, b[$, dann gilt $\forall x_1, x_2 \in [a, b] \ |f(x_1) f(x_2)| \leq M|x_1 x_2|$

4.3 Höhere Ableitungen

Höhere Ableitungen

Definition 4.3.1

- 1. Für $n \ge 2$, f n-mal differenzierbar in D falls $f^{(n-1)}$ in D differenzierbar ist. $f^{(n)} := (f^{(n-1)})'$, n-te Ableitung von f
- 2. f ist n-mal stetig differenzierbar in D falls $f^{(n)}$ existiert und ist stetig in D
- 3. f ist **glatt** in D falls $\forall n \geq 1$ $f^{(n)}$ existiert.
- **S 4.3.3:** (1) $(f+g)^{(n)} = f^{(n)} + g^{(n)}$, (2) $(f \cdot g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$ (binomial expansion), für f, g n-mal differenzierbar
- **S 4.3.5:** f, g wie oben; Falls $g(x) \neq 0 \ \forall x \in D$, dann ist $\frac{f}{g}$ n-mal in D differenzierbar **S 4.3.6:** Seien $E, D \subseteq \mathbb{R}$ für die jeder Punkt ein Häufungspunkt ist und $f: D \to E$ und $g: E \to D$, beide n-mal differenzierbar. Dann ist $(g \circ f)^{(n)}(x) = \sum_{k=1}^{n} A_{n,k}(x)(g^{(k)} \circ f)(x)$

wobei $A_{n,k}$ ein Polynom in den Funktionen $f', f^{(2)}, \ldots, f^{(n+1-k)}$ ist

Potenzreihen und Taylor Approximation

S 4.4.1: Angenommen, dass $(f_n)_{n\geq 1}$ (für f_n und f'_n stetig differenzierbar) und $(f'_n)_{n\geq 1}$ gleichmässig auf a,b konvergieren für a,b mit b,b mit b,b

S 4.4.2: Potenzreihe
$$\sum_{k=0}^{\infty} c_k x^k$$
 mit $\rho > 0$, $f(x) = \sum_{k=0}^{\infty} c_k (x - x_0)^k$ auf $]x_0 - \rho, x_0 + \rho[$ differenzierbar und $f'(x) = \sum_{k=1}^{\infty} k c_k (x - x_0)^{k-1}$

K 4.4.3: Wie in 4.4.1,
$$f$$
 glatt auf einem konvexen Invervall und $f^{(j)}(x)\sum_{k=j}^{\infty}c_k\frac{k!}{(k-j)!}(x-x_0)^{k-j}$. Insbesondere, $c_j=\frac{f^{(j)}(x_0)}{j!}$

S 4.4.5:
$$f$$
 stetig, $\exists f^{(n+1)}$. Für jedes $a < x \le b \ \exists \xi \in]a, x[$ mit $f(x) \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$ **K 4.4.6:** (Taylor Approximation) Gleich wie oben, aber $f: [c,d] \to \mathbb{R}$ anstelle von $f: [a,b] \to \mathbb{R}$ und $c < a < d$ und ξ zwischen x und a .

K 4.4.7:
$$a < x_0 < b$$
 und f wie zuvor, angenommen, dass $f'(x_0) = f^{(2)}(x_0) = \dots = f^{(n)}(x_0) = 0$. Dann gilt:

- 1. Falls n gerade und x_0 lokales Extremum, $f^{(n+1)}(x_0) = 0$
- 2. Falls n ungerade und $f^{(n+1)}(x_0) > 0$, x_0 strikte lokale Minimalstelle
- 3. Falls n ungerade und $f^{(n+1)}(x_0) < 0$, x_0 strikte lokale Maximalstelle

K 4.4.8: f 2-mal differenzierbar und $a < x_0 < b$, wir nehmen an, dass $f'(x_0) = 0$

- 1. $f^{(2)}(x_0) > 0$, x_0 strikte lokale Minimalstelle
- 2. $f^{(2)}(x_0) < 0$, x_0 strikte lokale Maximalstelle

4.5 Exercise Help

$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$	$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$	$\sum_{i=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$
$\sum_{i=1}^{\infty} \frac{1}{n(n+1)} = 1$	$\sum_{i=1}^{\infty} z^i = \frac{1-z^{i+1}}{1-z}$

Häufige Grenzwerte

$\lim_{x \to \infty} \frac{1}{x} = 0$	$\lim_{x \to \infty} 1 + \frac{1}{x} = 1$
$\lim_{x \to \infty} e^x = \infty$	$\lim_{x \to -\infty} e^x = 0$
$\lim_{x \to \infty} e^{-x} = 0$	$\lim_{x \to -\infty} e^{-x} = \infty$
$\lim_{x \to \infty} \frac{e^x}{x^m} = \infty$	$\lim_{x \to -\infty} x e^x = 0$
$\lim_{x \to \infty} \ln(x) = \infty$	$\lim_{x \to 0} \ln(x) = -\infty$
$\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = 1$	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$
$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^b = 1$	$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^b = 1$
$\lim_{x \to \infty} x^a q^x = 0, \ \forall 0 \le q < 1$	$\lim_{x \to \infty} n^{\frac{1}{n}} = 1$
$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e$	$\lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^x = \frac{1}{e}$
$\lim_{x \to \pm \infty} \left(1 + \frac{k}{x} \right)^{mx} = e^{km}$	$\lim_{x \to 0} \frac{\sin x}{x} = 1$
$\lim_{x \to 0} \frac{1}{\cos(x)} = 1$	$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$
$\lim_{x \to 0} \frac{\log 1 - x}{x} = -1$	$\lim_{x \to 0} x \log x = 0$
$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
$\lim_{x \to 0} \frac{x}{\arctan x} = 1$	$\lim_{x \to \infty} \arctan x = \frac{\pi}{2}$
$\lim_{x \to \infty} \left(\frac{x}{x+k} \right)^x = e^{-k}$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a) \ \forall a > 0$	$\lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$
$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$	$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$
$\lim_{x \to \infty} \frac{\ln(x)}{x} = 0$	$\lim_{x \to \infty} \frac{\log(x)}{x^a} = 0$
$\lim_{x \to \infty} \sqrt[x]{x} = 1$	$\lim_{x \to \infty} \frac{2x}{2^x} = 0$
$\lim_{x \to \frac{\pi^{-}}{2}} \tan x = +\infty$	$\lim_{x \to \frac{\pi^+}{2}} \tan x = -\infty$
$\lim_{x \to \infty} \frac{\sin x}{x} = 0$	$\lim_{x \to 0^+} x \ln x = 0$

Bekannte Taylorreihen

$$\begin{split} \mathrm{e}^x &= 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \mathcal{O}(x^5) \\ \sin x &= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \mathcal{O}(x^7) \\ \sinh(x) &= x + \frac{x^3}{3!} + \frac{x^5}{5!} + \mathcal{O}(x^7) \\ \cos(x) &= 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \mathcal{O}(x^8) \\ \cosh(x) &= 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \frac{x^6}{6!} + \mathcal{O}(x^8) \\ \tan(x) &= x + \frac{x^3}{3} + \frac{2x^5}{15} + \mathcal{O}(x^7) \\ \tan(x) &= x - \frac{x^3}{3} + \frac{2x^5}{15} + \mathcal{O}(x^7) \\ \log(1 + x) &= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \mathcal{O}(x^5) \\ (1 + x)^\alpha &= 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \mathcal{O}(x^4) \\ \sqrt{1 + x} &= 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \mathcal{O}(x^4) \end{split}$$

5 Riemann Integral

5.1 Definition und Integrabilitätskriterien

D 5.1.1: (Partition) endliche Teilmenge $P \subset I$ wo I = [a, b] und $\{a, b\} \subseteq P$

Untersumme:
$$s(f, P) := \sum_{i=1}^{n} f_i \delta_i$$
, $f_i = \inf_{x_{i-1} \le x \le x_i} f(x)$, Obersumme: $S(f, P) := \sum_{i=1}^{n} f_i \delta_i$, $f_i = \sup_{x_{i-1} \le x \le x_i} f(x)$, δ_i sub-interval

L 5.1.2: Sei P' eine Verfeinerung von P, dann $s(f,P) \leq s(f,P') \leq S(f,P') \leq S(f,P)$; für beliebige $P_1,P_2,s(f,P_1) \leq S(f,P_2)$

D 5.1.3:
$$f$$
 beschränkt ist integrierbar falls $s(f) = S(f)$ und das Integral ist $\int_a^b f(x) dx$

S 5.1.4: f beschränkt, integrierbar $\iff \forall \varepsilon > 0 \ \exists P \in \mathcal{P}(I) \ \text{mit} \ S(f,P) - s(f,P) \leq \varepsilon \ \text{wobei} \ \mathcal{P}(I) \ \text{alle Paritionen von } I \ \text{ist}$

S 5.1.8:
$$f$$
 integrierbar $\iff \forall \varepsilon > 0 \ \exists \delta > 0 \text{ s.d. } \forall P \in \mathcal{P}_{\delta}(I), S(f, P) - s(f, P) < \varepsilon$, wobei $\mathcal{P}_{\delta}(I)$ die Menge von P wofür $\max_{1 \leq i \leq n} \delta_i \leq \delta$

K 5.1.9: f integrierbar mit $A := \int_a^b f(x) dx \iff \forall \varepsilon > 0 \ \exists \delta > 0 \text{ s.d. } \forall P \in \mathcal{P}(I) \text{ mit } \delta(P) < \delta \text{ und } \xi_1, \dots, \xi_n \text{ mit } \xi_i \in [xi-1, x_i]$ und $P = \{x_0, \dots, x_n\}, \left| A - \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1}) \right| < \varepsilon$

5.2 Integrierbare Funktionen

S 5.2.1: f, g beschränkt, integrierbar und $\lambda \in \mathbb{R}$. Dann gilt f + g, $\lambda \cdot f$, $f \cdot g$, |f|, $\max(f, g)$, $\min(f, g)$ und $\frac{f}{g}(\text{falls } |g(x)| \ge \beta > 0 \ \forall x \in [a, b]$ alle integrierbar **K 5.2.3:** Seien P, Q Polynome, Q keine Nullstellen auf [a, b], dann: $[a, b] \to \mathbb{R}$ und $x \mapsto \frac{P(x)}{Q(x)}$ int.

D 5.2.4: (Gleichmässige Stetigkeit) falls $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x,y \in D : |x-y| < \delta \Longrightarrow |f(x)-f(y)| < \varepsilon$ **S 5.2.6:** f stetig auf kompaktem Intervall $I = [a,b] \Longrightarrow f$ ist gleichmässig stetig auf I **S 5.2.7:** f stetig $\Longrightarrow f$ integrierbar **S 5.2.8:** f monoton $\Longrightarrow f$ integrierbar **S 5.2.10:** $I \subset \mathbb{R}$ kompaktes Intervall mit I = [a,b] und f_1, f_2 beschränkt, integrierbar und $\lambda_1, \lambda_2 \in \mathbb{R}$.

Dann gilt:
$$\int_{a}^{b} (\lambda_1 f_1(x) + \lambda_2 + f_2(x)) dx = \lambda_1 \int_{a}^{b} f_1(x) dx + \lambda_2 \int_{a}^{b} f_2(x) dx$$

5.3 Ungleichungen und Mittelwertsatz

S 5.3.1: f, g beschränkt, integrierbar und $f(x) \leq g(x) \forall x \in [a, b]$, dann $\int_a^b f(x) dx \leq \int_a^b g(x) dx$ **K 5.3.2:** falls f beschränkt, integrierbar, $\left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx$ **S 5.3.3:** Sei f, g beschränkt, integrierbar, dann $\left| \int_a^b f(x) g(x) dx \right| \leq \sqrt{\int_a^b f^2(x) dx} \cdot \sqrt{\int_a^b g^2(x) dx}$.

S 5.3.4: (Mittelwertsatz) f stetig. Dann gilt $\exists \xi \in [a,b]$ s.d. $\int_a^b \mathrm{d}x = f(\xi)(b-a)$ **S 5.3.6:** Sei f stetig, g beschränkt und integrierbar mit $g(x) \geq 0 \ \forall x \in [a,b]$. Dann gilt $\exists \xi \in [a,b]$ s.d. $\int_a^b f(x)g(x)\mathrm{d}x = f(\xi)\int_a^b g(x)\mathrm{d}x$

5.4 Fundamentalsatz der Differentialrechnung

Erster Fundamentalsatz

Satz 5.4.1

Sei a < b und $f : [a, b] \to \mathbb{R}$ stetig. Die Funktion

$$F(x) = \int_{a}^{x} f(t)dt, \ a \le x \le b$$

ist differenzierbar in [a, b] und $F'(x) = f(x) \ \forall x \in [a, b]$

Beweis: Intervall aufteilen: $\int_a^{x_0} f(t) dt + \int_{x_0}^x f(t) dt = \int_a^x f(t) dt$, also $F(x) - F(x_0) = \int_{x_0}^x f(t) dt$. Mithilfe des Mittelwertsatzes erhalten wir $\int_{x_0}^x f(t) dt = f(\xi)(x - x_0)$ und für $x \neq x_0$ ergibt sich $\frac{F(x) - F(x_0)}{x - x_0} = f(\xi)$ und da ξ zwischen x_0 und x liegt und da f stetig ist, $\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$

D 5.4.2: (Stammfunktion) F für f falls F differenzierbar in [a, b] ist und F' = f in [a, b]

Zweiter Fundamentalsatz

Satz 5.4.3

f wie in 5.4.1. Dann existiert eine Stammfunktion F von f die eindeutig bestimmt ist bist auf die Integrationskonstante und

$$\int_{a}^{b} f(x) dx = F(a) - F(b)$$

Beweis: Existenz von F gegeben dur 5.4.1. Falls F_1 und F_2 Stammfunktionen von f sind, dann $F_1' - F_2' = f - f = 0$, i.e. $(F_1 - F_2)' = 0$. Mithilfe von 4.2.5 (1) erhalten wir, dass $F_1 - F_2$ konstant ist. Wir haben $F(x) = C + \int_a^x f(t) dt$, wobei C eine beliebige Konstante ist. Insbesondere, $F(b) = C + \int_a^b f(t) dt$, F(a) = C und deshalb $F(b) - F(a) = C + \int_a^b f(t) dt - C = \int_a^b f(t) dt$

S 5.4.5: (Partielle Integration)
$$\int_a^b f(x)g'(x)dx = [f(x)g(x)]_a^b - \int_a^b f'(x)g(x)dx$$
. Aufgepasst mit Zyklen

S 5.4.6: (Integration durch Substitution)
$$\phi$$
 stetig und differenzierbar. Dann gilt $\int_a^b f(\phi(t))\phi'(t)dt = \int_{\phi(a)}^{\phi((b))} f(x)dx$

Um das Obige zu Nutzen muss die innere Funktion passend gewählt, abgeleitet und rücksubstituiert werden um eine einfacher integrable Funktion zu erhalten. **K** 5.4.8: $I \subseteq \mathbb{R}$ und $f: I \to \mathbb{R}$ stetig

- 1. Sei $a, b, c \in \mathbb{R}$ s.d. das abgeschlossenes Intervall mit Endpunkten a + c, b + c in I enthalten ist. Dann gilt
- 2. Sei $a,b,c \in \mathbb{R}, c \neq 0$ s.d. das abgeschlossene Intervall mit Endpunkten ac, b in I enthalten ist. Dann gilt

$$\int_{a+c}^{b+c} f(x) dx = \int_{a}^{b} f(t+c) dt$$

$$\frac{1}{c} \int_{ac}^{bc} f(x) dx = \int_{a}^{b} f(ct) dt$$

Integration einer konvergierenden Reihe

S 5.5.1: Sei $f_n:[a,b]\to\mathbb{R}$ eine Folge von beschränkten, integrierbaren Funktionen die gleichmässig gegen f konvergieren. Dann ist f beschränkt integrierbar und $\lim_{n\to\infty}\int_a^b f_n(x)\mathrm{d}x = \int_a^b f(x)\mathrm{d}x$ **K 5.5.2:** f_n s.d. die Reihe konvergiert. Dann ist $\sum_{n=0}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \left(\sum_{n=0}^{\infty} f_n(x) \right) dx$

K 5.5.3: $f(x) = \sum_{n=0}^{\infty} x_k x^k \text{ mit } \rho > 0$. Dann ist $\forall 0 \le r < \rho$, f integrierbar auf [-r, r] und $\forall x \in]-\rho$, $\rho[, \int_0^x f(t) dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$

Euler-McLaurin Summationsformel

D 5.6.1: $\forall k \geq 0$, das k-te Bernoulli Polynom $B_k(x) = k!P_k(x)$, wobei $P_k' = P_{k-1} \ \forall k \geq 1$ und $\int_0^1 P_k(x) dx = 0 \ \forall k \geq 1$ **D 5.6.2:** Sei $B_0 = 1$. $\forall k \geq 2$ B_{k-1} ist rekursiv durch $\sum_{i=0}^{k-1} \binom{k}{i} B_i = 0$ definiert **S 5.6.3:** (McLaurin Reihe) $B_k(x) = \sum_{i=0}^k \binom{k}{i} B_i x^{k-i}$ **S 5.6.5:** f k mal stetig differenzierbar, $k \geq 1$. Dann gilt für $\widetilde{B_k}(x) = \begin{cases} B_k(x) & \text{für } 0 \leq x < 1 \\ B_k(x-n) & \text{für } n \leq x \leq n+1 \text{ wobei } n \geq 1 \end{cases}$ dass

1. Für k=1: $\sum_{i=1}^n f(i) = \int_0^n f(x) \mathrm{d}x + \frac{1}{2} (f(n) - f(0)) + \int_0^n \widetilde{B_1}(x) f'(x) \mathrm{d}x$ unten: $\widetilde{R_k} = \frac{(-1)^{k-1}}{k!} \int_0^n \widetilde{B_k}(x) f^{(k)}(x) \mathrm{d}x$

 $2. \ \mathrm{F} \ddot{\mathrm{u}} \mathbf{r} \ k \geq 2: \sum_{i=1}^n f(i) = \int_0^n f(x) \mathrm{d} x + \frac{1}{2} (f(n) - f(0)) + \sum_{i=2}^k \frac{(-1)^j B_j}{j!} (f^{(j-1)}(n) - f^{(j-1)}(0)) + \widetilde{R_k}, \ \widetilde{R_k} = \sum_{i=1}^{k!} \int_0^n \widetilde{B_1}(x) f^{(k)}(x) \mathrm{d} x$

Stirling'sche Formel

S 5.7.1: $n! = \frac{\sqrt{2\pi n}n^n}{e^n} \cdot \exp\left(\frac{1}{12n} + R_3(n)\right), \ |R_3(n)| \leq \frac{\sqrt{3}}{216} \cdot \frac{1}{n^2} \ \ \forall n \geq 1 \ \ \mathbf{L} \ \ \mathbf{5.7.2:} \ \ \forall m \geq n+1 \geq 1: |R_3(m,n)| \leq \frac{\sqrt{3}}{216} \left(\frac{1}{n^2} - \frac{1}{m^2}\right)$

Uneigentliche Integrale

D 5.8.1: f beschränkt und integrierbar auf [a,b]. Falls $\lim_{b\to\infty}\int_a^b f(x)\mathrm{d}x$ existiert, wir notieren als $\int_a^\infty f(x)\mathrm{d}x$ und sagen f ist integrierbar auf $[a, +\infty[$ **L** 5.8.3: $f: [a, \infty[\to \mathbb{R} \text{ beschränkt und integrierbar auf } [a, b] <math>\forall b > 0$. Falls $|f(x)| \leq g(x) \forall x \geq a \text{ und } g(x)$ integrierbar auf $[a, \infty[$, dann ist f integrierbar auf $[a, \infty[$. Falls $0 \le g(x) \le f(x)$ und $\int_a^\infty g(x) dx$ divergiert, wie auch $\int_a^\infty f(x) dx$ **S** 5.8.5: $f:[1,\infty[\to[0,\infty[$ monoton fallend. $\sum_{n=1}^{\infty}f(n)$ konvergiert $\Leftrightarrow \int_{1}^{\infty}f(x)\mathrm{d}x$ konvergiert $\Leftrightarrow \int_{1}^{\infty$

schränkt und integrierbar auf $[a+\varepsilon,b], \varepsilon>0$, aber nicht zwingend auf]a,b], dann ist f integrierbar falls $\lim_{\varepsilon\to 0^+}\int_{a+\varepsilon}^b f(x)\mathrm{d}x$ existiert, dann gennant $\int_a^b f(x) dx$

D 5.8.11: (Gamma function) Für s > 0 definieren wir $\Gamma(s) := \int_0^\infty e^{-x} x^{s-1} dx$

S 5.8.12: (1) $\Gamma(s)$ erfüllt $\Gamma(1) = 1$, $\Gamma(s+1) = s\Gamma(s)$ $\forall s > 0$ und $\Gamma(\lambda x + (1-\lambda)y) \le \Gamma(x)^{\lambda} \Gamma(y)^{1-\lambda}$ $\forall x, y > 0$, $\forall 0 \le \lambda \le 1$ (2) $\Gamma(s)$ einzige Funktion $]0, \infty[\rightarrow]0, \infty[$ die obige Voraussetzungen erfüllt. Ausserdem: $\Gamma(x) = \lim_{n \to \infty} \frac{n! n^x}{x(x+1) \dots (x+n)} \forall x > 0$

S 5.8.13: Sei p,q>1 mit $\frac{1}{p}+\frac{1}{q}=1$, für alle $f,g:[a,b]\to\mathbb{R}$ stetig, dann gilt $\int_a^b|f(x)g(x)|\mathrm{d}x\leq||f||_p||g||_q$

Partialbruchzerlegung

Wird für rationale Polynom-Funktionen genutzt. Man started mit Aufteilen des Bruchs into (meistens) faktorisierte Teile. Suche Nullstellen. Nenner in gefundene Teile unterteilen, z.B. $\frac{a}{x-4} + \frac{b}{x+2}$, dann alle Brüche auf denselben Nenner bringen. Dann muss p(x) (der Zähler) des ursprünglichen Bruch gleich dem des neuen Bruchs entsprechen, also Lineares Gleichungssystem zum Finden der Koeffizienten nutzen. Den Zähler in die Form von Polynomen bringen, also z.B. $(a+b) \cdot x + (2a-4b)$, dann ist das SLE

$$\begin{vmatrix} 2=a+b\\ -4=2a-b \end{vmatrix} \Leftrightarrow a=\frac{2}{3}, b=\frac{4}{3} \quad \text{ für unser rationales Polynom } \frac{2x-4}{x^2-2x-8}$$

Wir können denn die Koeffizienten in den aufgeteilten Bruch einsetzen (hier $\frac{a}{x-4}$...) und wir können normal integrieren

6 Tabelle von Ableitungen und Stammfunktionen

Stammfunktion	Funktion	Ableitung
x^{n+1}	x^n	$n \cdot x^{n-1}$
$\overline{n+1}$		
$\ln x $	$\frac{1}{x} = x^{-1}$	$-x^{-2} = -\frac{1}{x^2}$
$\frac{2}{3}x^{\frac{3}{2}}$	$\sqrt{x} = x^{\frac{1}{2}}$	$\frac{1}{2 \cdot \sqrt{x}}$
$\frac{n}{n+1}x^{\frac{1}{n}+1}$	$\sqrt[n]{x} = x^{\frac{1}{n}}$	$\frac{1}{n}x^{\frac{1}{n}-1}$
e^x	e^x	e^x
$\exp(x)$	$\exp(x)$	$\exp(x)$
$\frac{1}{a \cdot (n+1)} (ax+b)^{n+1}$	$(ax+b)^n$	$n \cdot (ax+b)^{n-1} \cdot a$
$x \cdot (\ln x - 1)$	ln(x)	$\frac{1}{x} = x^{-1}$
$x \cdot (\ln x - 1)$ $\frac{1}{\ln(a)} \cdot a^x$	a^x	$a^x \cdot \ln(a)$
$\frac{x}{\ln(a)} \cdot (\ln x - 1)$	$\log_a x $	$\frac{1}{x \cdot \ln(a)}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$
$x \cdot \arcsin(x) + \sqrt{1 - x^2}$	$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$x \cdot \arccos(x) - \sqrt{1 - x^2}$	$\arccos(x)$	$-\frac{1}{\sqrt{1-r^2}}$
$x \cdot \arctan(x) - \frac{\ln(x^2 + 1)}{2}$	$\arctan(x)$	$ \frac{1}{\sqrt{1-x^2}} \\ -\frac{1}{\sqrt{1-x^2}} \\ \frac{1}{x^2+1} \\ -\frac{1}{x^2-1} $
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\cosh(x)$	sinh(x)	$\cosh(x)$
$\sinh(x)$	$\cosh(x)$	$\sinh(x)$
$\ln \cosh(x) $	tanh(x)	$\frac{1}{\cosh^2(x)}$
	$\operatorname{arcsinh}(x)$	$\frac{1}{\sqrt{1+x^2}}$
	$\operatorname{arccosh}(x)$	$\frac{1}{\sqrt{x^2-1}}$
	$\operatorname{arctanh}(x)$	$\frac{\sqrt{x^2-1}}{1-x^2}$

Logarithmen

 $\begin{array}{l} (Basiswechsel) \ \log_a(x) = \frac{\ln(x)}{\ln(a)} \ (Potenzen) \ \log_a(x^y) = y \log_a(x) \\ (Div, \ Mul) \ \log_a(x \cdot (\div)y) = \log_a(x) + (-) \log_a(y) \\ \log_a(1) = 0 \ \ \forall a \in \mathbb{N} \end{array}$

Partielle Integration Sollte sich ein unvermeidbarer Zyklus, wo wir immer wieder denselben Integral erhalten, bilden, können wir einfach das Integral zu beiden Seiten addieren und erhalten so 2 mal das Integral auf der linken Seite und können dann die partielle Integration auf der rechten Seite abschliessen und schliesslich durch den Faktor auf der linken Seite dividieren, um das Resultat zu erhalten.

Umkehrfunktion der Hyperbelfunktionen

- $\operatorname{arcsinh}(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$
- $\operatorname{arccosh}(x) = \ln\left(x + \sqrt{x^2 1}\right)$
- $\operatorname{arctanh}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$

Komplement-Trick
$$\sqrt{ax+b} - \sqrt{cx+d} = \frac{ax+b-(cx+d)}{\sqrt{ax+b}+\sqrt{cx+d}}$$

Werte der trigonometrischen Funktionen

0	rad	$\sin(\xi)$	$\cos(\xi)$	$\tan(\xi)$
0°	0	0	1	1
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{3}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	Ø
120°	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$
135°	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
150°	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$
180°	π	0	-1	0

Trigonometrie
$$\cot(\xi) = \frac{\cos(\xi)}{\sin(\xi)}, \tan(\xi) = \frac{\sin(\xi)}{\cos(\xi)}$$

$$\sinh(x) := \frac{e^x - e^{-x}}{2} : \mathbb{R} \to \mathbb{R}, \ \cosh(x) := \frac{e^x + e^{-x}}{2} : \mathbb{R} \to [1, \infty],$$

$$\cosh(x) := \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} : \mathbb{R} \to [-1, 1]$$

- 1. cos(x) = cos(-x) und sin(-x) = -sin(x)
- 2. $cos(\pi x) = -cos(x)$ und $sin(\pi x)sin(x)$

- 3. $\sin(x+w) = \sin(x)\cos(w) + \cos(x)\sin(w)$
- 4. $\cos(x+w) = \cos(x)\cos(w) \sin(x)\sin(w)$
- 5. $\cos(x)^2 + \sin(x)^2 = 1$
- 6. $\sin(2x) = 2\sin(x)\cos(x)$
- 7. $\cos(2x) = \cos(x)^2 \sin(x)^2$

Weitere Ableitungen

F(x)	f(x)
$\frac{1}{a}\ln ax+b $	$ \frac{1}{ax+b} $ $a(cx+d)-c(ax+b)$
$\frac{ax}{c} - \frac{ad-bc}{c^2} \ln cx+d $	$\frac{a(cx+d)-c(ax+b)}{(cx+d)^2}$
$\frac{x}{2}f(x) + \frac{a^2}{2}\ln x + f(x) $	$\sqrt{a^2 + x^2}$
$\frac{x}{2}f(x) - \frac{a^2}{2}\arcsin\left(\frac{x}{ a }\right)$	$\sqrt{a^2 - x^2}$
$\frac{x}{2}f(x) - \frac{a^2}{2}\ln x + f(x) $	$\sqrt{x^2 - a^2}$
$\ln(x + \sqrt{x^2 \pm a^2})$	$\frac{1}{\sqrt{x^2 \pm a^2}}$
$\arcsin\left(\frac{x}{ a }\right)$	$\frac{1}{\sqrt{x^2-a^2}}$
$\frac{1}{a} \arctan \left(\frac{x}{ a } \right)$	$\frac{1}{a^2 - x^2}$

$$F(x) \qquad f(x) \\ \frac{-\frac{1}{a}\cos(ax+b)}{\frac{1}{a}\sin(ax+b)} \qquad \sin(ax+b) \\ \cos(ax+b) \\ x^x \qquad x^x \cdot (1+\ln|x|) \\ (x^x)^x \qquad (x^x)^x \cdot (x+2x\ln|x|) \\ x^{(x^x)} \qquad x^{(x^x)} \cdot (x^{x-1}+\ln|x| \cdot x^x (1+\ln|x|)) \\ \frac{1}{2}(x-\frac{1}{2}\sin(2x)) \qquad \sin(x)^2 \\ \frac{1}{2}(x+\frac{1}{2}\sin(2x)) \qquad \cos(x)^2 \\ \end{cases}$$