Universidade Federal do Paraná

ULA de 2 entradas de 4 bits e 4 operações

Relatório entregue para avaliação da disciplina Projeto de Circuitos Integrados Digitais da UFPR -1° semestre 2010.

Nomes: Rodrigo M. Da Silva

Tiago A. Adamczevski

Professores:

Márlio José do Couto Bonfim

Oscar Gouveia

Curitiba 2010

Sumário

1 INTRODUÇÃO	1
2 DESENVOLVIMENTO	
2.1 Topologia	
2.2 Otimização dos circuitos	6
4 LAY-OUT	
5-CONCLUSÃO	

1 INTRODUÇÃO

Uma Unidade Lógica Aritmética (ULA) pode ser encontrada em diversos processadores de dados. Esta é a parte do processador que realmente efetua cálculos aritméticos.

A ULA foi proposta pelo matemático John von Neumann em 1946..

Desde então o desenvolvimento destas tem sido de vial importância para o acelaramento do processamento de dados e a realização de cálculos matemáticos mais rapidamente. Hoje em dia uma unidade lógica aritmética pode realizar as seguintes operações:

- Operações aritméticas com inteiros
- Operações lógicas bit a bit And, Not, Or, XOR
- Operações de deslocamento de bits* (deslocamento, rotação por um número específico de bits para esquerda ou direita, com ou sem sinal).
- Operações de divisão e multiplicação.

^{*}Deslocamentos podem ser interpretados como multiplicações ou divisões por 2.

Figura 1: Diagrama de uma Unidade Lógico Aritmética

A Figura 1 representa uma ULA com suas entradas A e B, seletor de função F, saída R e D carry-out.

O objetivo deste trabalho é projetar uma ULA com entrada e saída com 4 bits, seletor de funções de 2 bits e funções : Soma, subtração , and e or.

2 DESENVOLVIMENTO

2.1 Topologia

Inicialmente o projeto foi dividido em 4 módulos um para cada operação, a saída de cada módulo foi ligada a um multiplexador, que era controlado por duas entradas externas.

Figura 2: Diagrama de blocos da ULA projetada

O diagrama de blocos do circuito projetado encontra-se na Figura 2.

Cada bloco foi projetado individualmente.

O módulo da adição encontra-se na Figura 3. Como pode-se notar, foram utilizados três tipos de portas : XOR, OR e AND. Foram utilizados 4 blocos desse, um para cada bit, sendo o pino de carry-out de cada um ligado no respectivo "primeiro" mais significativo após ele. Sendo que o carry-in do bit menos-signitivo foi ligado ao terra.

Figura 3: Esquema de portas utilizado no bloco do somador

А	В	Cin	S	C _{out}
1	1	0	0	0
1	1	1	1	1
0	1	0	1	0
0	1	1	0	1
0	0	0	0	0
0	0	1	1	0

Tabela 1: Tabela verdade incompleta para o circuito somador.

O circuito de subtração foi projetado utilizando o circuito de soma , pórem com outra entrada chamada aqui de controle de modo.

Figura 4: Circuito subtrator implementado apartir do somador; Modo = 0 seleciona soma e Modo = 1 subtração.

Modo	Α	В	Cin	S	C_{out}
1	0	0	1	0	0
1	1	0	1	1	1
1	0	1	1	1	1
1	1	1	1	0	1

Tabela 2: Tabela verdade com algumas situações para o crcuito de subtração

Deve-se observar que ao usar o circuito somador como subtrator Cin deve ser iniciado com zero, e o valor de Cout não necessariamente representa o valor do "empresta-um" do circuito subtrator original.

O circuitos utilizados para a operação AND e OR são as já conhecidas operações, realizadas bit-a-bit.

Figura 5: Operação OR (direita) e AND (esquerda) efetuadas bit-a-bit

O Mux utilizado para seleção da função ofi utilizado usando a tabela verdade da Tabela 3.

Tabela 3: Tabela verdade para o seletor de funções

SEL 1	SEL 2	SOMA	SUB	AND	OR
0	0	1	0	0	0
0	1	1	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

2.2 Otimização dos circuitos

Para o projeto do circuito foram utilizadas somente portas AND, OR, XOR e NOT. Todas essa portas foram construídas utilizando a construção já otimizada que foi utilizada em aula. Para que o tempo de subida e descida da resposta do sistema seja igual, ou em outras palavras, a resistência de entrada para cada canal na porta seja a mesma, deve-se ajustar a largura dos canais. Este cálculo da largura do canal foi feita individualmente para cada porta. Os valores encontrados estão na tabela

Partindo do fato de que:

$$R_p \alpha \frac{2}{W_p}$$
 $R_n \alpha \frac{1}{W_n}$

Tabela 4:Valores de largura de canal para os transistores. Para que a entrada de cada canal tenha a mesma resistência

Porta	R _{ep} / R _{en}	W_p/W_n	W _n usado	W _p usado
NOT	1	2	0.81	1.62
AND	4	0.5	1.62	0.81
OR	0.25	8	0.81	6.48
XOR*	-	-	0.81	0.81

^{*}Para esta porta os valores foram encontrados experimentalmente

3 SIMULAÇÕES ELÉTRICAS E LÓGICAS

3.1 Simulação Elétrica

Para verificar a funcionalidade da ULA bem como de seus sub-circuitos foi utilizado o simulador de circuitos da Mentor, que é um software amplamente utilizado para simulações elétrica e bem como simulações lógicas como será visto mais adiante.

Com a simulação elétrica é possível verificar as principais características elétricas de um circuito como o tempo de subida, tempo de descida e tempo de propagação que são importantes para uma análise de atraso, que apesar de pequenos, devem ser verificados e analisados para cada tipo de situação a fim de melhorar as características elétricas do circuito a ser projetado.

As tabelas abaixo mostram os tempos de subida, descida e de propagação de cada uma das operações efetuadas pela ULA, os tempos de subida e descida são medidos parada cada uma das saídas, já o tempo de propagação é medido apenas para a saída que tem o maior atraso:

OPERAÇÃO AND

Saída	Tempo de Subida[os]	Tempo de Descida[ps]	Tempo de Propagação[ps]
Y0	26,52	21,02	
Y1	24,57	22,98	
Y2	37,07	24,21	521,40
Y3	29,99	23,83	
Cout	Não medido	Não medido	

OPERAÇÃO OR

Saída	Tempo de Subida[os]	Tempo de Descida[ps]	Tempo de Propagação[ps]
Y0	34,86	20,84	
Y1	35,45	22,72	
Y2	36,29	20,04	322,35

Y3	30,79	19,75
Cout	Não medido	Não medido

OPERAÇÃO SOMA

Saída	Tempo de Subida[os]	Tempo de Descida[ps]	Tempo de Propagação[ps]
Y0	41,05	15,54	
Y1	41,77	18,83	
Y2	34,02	18,48	999,00
Y3	33,17	20,15	
Cout	-	21,27	

OPERAÇÃO SUBTRAÇÃO

Saída	Tempo de Subida[os]	Tempo de Descida[ps]	Tempo de Propagação[ps]
Y0	46,74	19,28	
Y1	40,17	16,33	
Y2	40,52	18,63	510,36
Y3	39,21	18,01	
Cout	-	-	

No anexo 1 estão as imagens de cada operação com o seus respectivos tempos de subida, descida e propagação.

3.2 Simulação Lógica

Na simulação elétrica estamos preocupados com os tempos de subida, descida e os atrasos contidos no circuito, já na simulação lógica são testadas as combinações de entrada e saída que cada circuito tem, a fim de verificar a validade e a funcionalidade das operações envolvidas que neste projeto são as operações de soma e subtração e as operações lógicas and e or:

As figuras abaixo mostram os resultados de algumas combinações para cada uma das operação contidas na ULA:

OPERAÇÃO AND

OPERAÇÃO SUBTRAÇÃO

Como dito anteriormente, cada uma das imagens contém apenas algumas combinações que comprovam a funcionalidade do circuito, pois o número de combinações que é utilizado em uma ULA com quatro operações é muito grande e levaria muito tempo de simulação, além de termos um resultado muito grande, logo apenas algumas combinações foram feitas para mostrar a funcionalidade do circuito.

4 LAYOUT

Para a conclusão do projeto da ULA foi criado o layout das portas utilizadas no projeto. Esta parte consiste elaborar em um conjunto de imagens para criação das portas a níveis de substrato e canais que compõem os transistores, podendo desta forma da uma idéia de como é de fato o circuito elaborado.

Para a confecção do layout deve-se respeitar um conjunto de regras e materiais a serem utilizados no processo, pois é a partir do layout é que se pode realmente "fabricar" a ULA ou qualquer outro circuito eletrônico, esta uma parte importante do projeto, pois requer cuidado e paciência para que o circuito possa ser construído com máxima precisão sem perder as características elétricas e lógicas previamente simuladas.

A confecção do layout foi feita em um sistema bottom-up, ou seja, foi feito primeiramente o layout dos transistores utilizados, seguindo depois para a confecção de cada um dos circuitos que efetua cada uma das operações e também circuitos internos em que não se tem acesso diretamente, como os "MUX" e os seletores de operações e, por fim, a interligação de todas as funções da ULA.

As figuras abaixo mostram as portas lógicas e as funções efetuadas pela ULA e seus respectivos layout's:

Layout porta NOT:

Layout porta AND2:

Layout da porta OR2:

Layout da porta OR3:

Layout do módulo AND:

Layout do módulo OR:

Layout do módulo SUM/SUB

Layout do MUX ULA

Layout do MUX Func.

Layout do MUX 2-1

Layout da ULA

5 CONCLUSÃO

Para o desenvolvimento da ULA foram seguidas as regras e programas utilizados previamente em sala de aula, o circuito teve seu funcionamento satisfatório tanto em nível elétrico – tempos de subida, descida e propagação – quanto em nível lógico que demonstra a funcionalidade da ULA.

O layout também funcionou corretamente, seguindo cuidadosamente as regras de espaçamento entre trilhas quanto o material a ser usado nos substratos e ligações entre circuitos.

O número de transistores utilizados no projeto foi de 316, a área total do CI é de 50,81nm² e isto no da uma densidade de 6,22 transistores/ nm². A largura do CI é de 237,6um e a altura é 213,84um.

ANEXOS

Anexo 1:

Gráficos com os tempos de subida, descida e de propagação de cada uma das operações feitas pela ULA:

OPERAÇÃO AND:

Tempo de Subida

Tempo de Descida:

Tempo de Propagação

OPERAÇÃO OR

Tempo de Subida

Tempo de Descida

Tempo de Propagação

OPERAÇÃO SOMA

Tempo de Subida

OPERAÇÃO SUBTRAÇÃO

Tempo de Subida

Tempo de Descida

Tempo de Propagação

