DIODES Determine Vo(VI) - skitch it. V. + P. T. Vo b) $V_{I}(t) = A cos(\omega t + 4)$ $V_o(t) = 7$. Plot $V_o(t)$ Assume Idual Mode c) Compute output impedance input d) What happens if a capacitiv is used as load? Plot to (k) in this case.

e) Compute $\frac{R_2}{R_1}$ so that the output inpute is $\frac{1}{10}$ of the input is.

 $I_{D} = I_{S} \left(e^{\frac{v_{O}}{2V_{I}}} - I \right) = I_{D} + I_{d}$ Assu me VI = VI + Vi V_I so that I_D= 1 mA e) (ompute Compute a linear diode model for ID=1mA (+)-MM-RDON = 7. The Compute a Ivol upper bound as a function of Right and Room (relation between input and output ripple)

 $V_A = \infty$ $\beta_F = 100$, $C_{\pi} = 2pF$ THE TODAY

CI PRI VI VO

SPI VE

REST TOD

GND To the same of the VK = VK + VK => Compute as a function of the circuit parameters a) V_I, V_B, V_C, V_E, V_O (O. P.) IB, Ic, IE
b) gm, (T, ro (incremental parameters)

 A_{r} , Z_{i} , Z_{o} for $R_{L} = \infty$ d) flow assuming C; and Co can be reglicted e) fhigh f) Explain, quantitatively, the effect of Re on Av, Zi, Zo 9) Replace Ci with a short circuit. Find the minimum and maximum value of VI that keeps the BJT in the FAR

 $\frac{GP-AMPS}{V_1} = A \sin(\omega t)$ $V_0(t) = 7 Sketch th$ $V_0(t) = 4 \sin(\omega t)$

7 Be careful => This problem is a trap!

2. Va a Million So

 $V_0 = V_0(V_A, V_B)$ Compute

Vcc = 5 v, VEE = -5 V

Vo(t) = ? Sketch the graph

Assume linear aperation (negative feedback stronger than positive fordback)

Service of the servic

Assume linear operation

 Δ) $V_{o}(V_{A}, V_{B}, V_{c}, V_{D}) = ?$

RA with CA (capacitor) b) Replace 1 LA (induster) () 11 11 RFP 11 CFP RFN 11 GN

and comple vo (va, vB, vc, vD)