Dualité - formes linéaires

Exercice 1 Déterminer la forme linéaire f définie sur \mathbb{R}^3 telle que

$$f(1,1,1) = 0$$
, $f(2,0,1) = 1$ et $f(1,2,3) = 4$.

Donner une base du noyau de ker(f).

Exercice 2 Soient f_1, f_2 les deux éléments de $\mathcal{L}(\mathbb{R}^2, \mathbb{R})$ définis par

$$f_1(x,y) = x + y$$
 et $f_2(x,y) = x - y$.

- 1. Montrer que (f_1, f_2) forme une base de $(\mathbb{R}^2)^*$.
- 2. Exprimer les formes linéaires suivantes dans la base (f_1, f_2) :

$$g(x,y) = x$$
, $h(x,y) = 2x - 6y$.

Exercice 3 Soit E un \mathbb{R} -espace vectoriel de dimension 3, (e_1, e_2, e_3) une base de E. Soient f_1^* , f_2^* et f_3^* les formes linéaires sur E définies par

$$f_1^* = 2e_1^* + e_2^* + e_3^*, \ f_2^* = -e_1^* + 2e_3^*, \ f_3^* = e_1^* + 3e_2^*.$$

Montrer que (f_1^*, f_2^*, f_3^*) est une base de E^* et déterminer la base (f_1, f_2, f_3) de E dont elle est la base duale.

Exercice 4 Soit $E = \mathbb{R}_n[X]$, et x_0, \ldots, x_n des nombres réels distincts. On pose, pour tout $P \in E$, $\phi(P) = \int_{-1}^1 \frac{P(t)}{1+\cos^2(t)} dt$. Montrer qu'il existe $\lambda_0, \ldots, \lambda_n \in \mathbb{R}$ tels que, pour tout $P \in E$, $\phi(P) = \lambda_0 P(x_0) + \cdots + \lambda_n P(x_n)$.

Exercice 5 Soit ϕ une forme linéaire sur $M_n(\mathbb{R})$ vérifiant $\phi(AB) = \phi(BA)$ pour toutes matrices $A, B \in M_n(\mathbb{R})$. Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $\phi(M) = \lambda \text{Tr}(M)$.

Exercice 6 Soit E un espace vectoriel de dimension q et $(f_i)_{1 \leq i \leq p}$ une famille de p formes linéaires. On rappelle que pour $f \in \mathcal{L}(E, \mathbb{K})$: f est une combinaison linéaire des $(f_i)_{1 \leq i \leq p}$ si et seulement si

$$\bigcap_{i=1}^{p} \ker(f_i) \subset \ker(f).$$

- 1. On note $F = \bigcap_{i=1}^{p} \ker(f_i)$. Montrer que F est de dimension supérieure ou égale à q p, avec égalité si et seulement si les formes linéaires sont indépendantes.
- 2. En déduire la dimension de F, l'espace vectoriel des matrices carrées de taille n dont la somme de chaque ligne est nulle.
- 3. En appliquant le résultat de la première question à F et aux formes linéaires $g_j(M) = \sum_{i=1}^n m_{i,j}$, pour $j=1,\ldots,n-1$, en déduire la dimension de l'espace vectoriel des matrices carrées de taille n dont la somme de chaque ligne et la somme de chaque colonne est nulle. Pourquoi ne considère-t-on pas (g_j) pour $j=1,\ldots,n$?

Exercice 7

- 1. Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$. Montrer qu'il existe une matrice $A \in \mathcal{M}_n(\mathbb{K})$ tel que, pour tout M de $\mathcal{M}_n(\mathbb{K})$. $\varphi(M) = \text{Tr}(AM)$.
- 2. En déduire que tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ contient une matrice inversible.