

Module 1:

Introduction to Machine Learning

Overview

Faculty Introduction

Ekpe Okorafor, PhD

AFFILIATIONS:

- Accenture Applied Artificial Intelligence
- Nigerian British University
- African University of Science & Technology

RESEARCH INTERESTS:

- Generative Al
- Machine Learning
- Big Data & Advanced Analytics
- Knowledge Graph
- Information Assurance and Cybersecurity

- Drawing & Painting
- Hiking
- Soccer
- DJ & Dancing

Agenda Topics

- 1. Overview: What is Machine learning
 - Building Classification Model Lab Exercises
- 2. Recommender Systems
 - Building a Recommender Engine Lab Exercises
- 3. From ML to Deep Learning
 - The Rise of Gen AI Discussion Topic

Learning Objectives

Upon successful completion of this topic, you will be able to:

- Define machine learning
- Describe the categories of machine learning
- Decide when to leverage Machine learning
- Build a simple classifier model
- Discuss approaches to ML application development
- Differentiate between the ML approaches and motivations
- Build a simple recommender engine
- Good insight to Deep Learning & Gen Al

Introduction to Machine Learning

Overview

Sub - Topics

- Overview: What is Machine learning
- Categories of Machine Learning
- Machine Learning Application Development Approach
- Building Classification Model

Overview: What is Machine Learning?

What is Machine Learning?

fx

Data

Features

Algorithms

"Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed. – Arthur L. Samuel, Al Pioneer, 19<u>59</u>

Introduction to Machine Learning

What is Machine Learning?

"Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed. – Arthur L. Samuel, Al Pioneer, 1959

What is Machine Learning?

• Artificial Intelligence (AI) is a branch or Computer Science that uses algorithms and techniques to mimic human intelligence

• Machine Learning (ML) is one of several AI techniques for sophisticated cognitive

tasks

Machine Learning

Machine Learning is a particularly interesting technique because it represents a paradigm shift within Al

Traditional AI techniques

- Static hard-coded set of steps and scenarios
- Rule Based expert knowledge
- No generalization handling special cases is difficult

Machine Learning

Introduction to Machine Learning

- **Dynamic** evolves with data, finds new patterns
- Data driven discovers knowledge
- Generalization adapts to new situations and special cases

The World of Data

Categories of Machine Learning

The Main Categories of Machine Learning

1

CLASSICAL ML

Simple data with clear features

2

NEURAL NETWORKS & DEEP LEARNING 3

REINFORCEMENT LEARNING

Complicated data with unclear features

No data, but we have an environment to interact with

Our focus today

Classical Machine Learning

Supervised and Unsupervised Learning

1. Supervised learning - we already know the answers we want (found in past or completed data).

2. Unsupervised learning - we want to find unknown structures or trends.

Breaking It Down

CLASSICAL MACHINE LEARNING

Supervised Learning: Classification

Splits objects based at one of the attributes known beforehand.

- Spam filtering
- Language detection
- A search of similar documents
- Sentiment analysis
- Recognition of handwritten characters and numbers
- Fraud detection

Supervised Learning: Regression

Regression is basically classification where we forecast a number instead of category. (Linear and Polynomial)

- Stock price forecasts
- Demand and sales volume analysis
- Medical diagnosis
- Any number-time correlations

Unsupervised Learning: Clustering

Divides objects based on unknown features. Machine chooses the best way.

- For market segmentation (types of customers, loyalty)
- To merge close points on a map
- For image compression
- To analyze and label new data
- To detect abnormal behavior

Unsupervised Learning: Dimensionality Reduction

Divides objects based on unknown features. Machine chooses the best way.

- Recommender systems (★)
- Beautiful visualizations
- Topic modeling and similar document search
- Fake image analysis
- Risk management

Unsupervised Learning: Association Rule Learning

Look for patterns in the orders' stream.

Assiciation Rule Learning

- To forecast sales and discounts
- To analyze goods bought together
- To place the products on the shelves
- To analyze web surfing patterns

Neural Networks and Deep Leaning

Mimic the way the brain works – collection of neurons and connections

Neural Networks

- Replacement of all algorithms above
- Object identification on photos and videos
- Speech recognition and synthesis
- Image processing, style transfer
- Machine translation

Reinforcement Learning:

Throw a robot into a maze and let it find an exit.

- Self-driving cars
- Robot vacuums
- Games
- Automating trading
- Enterprise resource management

Supervised Learning – Simple Example

Math Quiz #1 - Teacher's Answer Key

$$1) 2 4 5 = 3$$

$$5)$$
 6 2 2 = 10

$$6) 3 1 1 = 2$$

$$7)$$
 5 3 4 = 1

Supervised Learning Algorithms

Supervised Learning – Simple Example

Math Quiz #1 - Teacher's Answer Key

1)
$$2 \times 4 - 5 = 3$$

$$5) 6 \times 2 - 2 = 10$$

2)
$$5 \times 2 - 8 = 2$$

6)
$$3 \times 1 - 1 = 2$$

3)
$$2 \times 2 - 1 = 3$$

7)
$$5 \times 3 - 4 = 11$$

4)
$$4 \times 2 - 2 = 6$$

8)
$$1 \times 8 - 1 = 7$$

Supervised Learning Algorithms

Unsupervised Learning – Simple Example

Math Quiz #1 - Teacher's Answer Key

Unsupervised Learning Algorithms

Supervised & Unsupervised Learning

Supervised Learning:

Predicting values. Known targets.

User inputs correct answers to learn from. Machine uses the information to guess new answers.

CLASSIFICATION:

Identify a unique class (Discrete values, Boolean, Categories)

REGRESSION:

Estimate continuous values (Real-valued output)

Unsupervised Learning:

Search for structure in data. Unknown targets.

User inputs data with undefined answers. Machine finds useful information hidden in data

CLUSTER ANALYSIS:

Group into sets

DIMENSION REDUCTION:

Find hidden dependencies

ASSOCIATION:

Identify Sequences

Supervised & Unsupervised Learning

Supervised Learning:

Classification

- Decision Trees
- K-Nearest Neighbors
- Support Vector Machine
- Logistic Regression
- Naïve Bayes
- Random Forests

Regression

- Linear Regression
- Polynomial Regression

Unsupervised Learning:

Cluster Analysis

- K-Means Clustering
- Hierarchical Clustering

Dimension Reduction

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)

Association Rule

- Apriori
- Euclat
- FP-growth

Machine Learning Application Design Approach

Supervised Learning Workflow

Supervised Learning Process

Supervised Learning Process

Example steps for ML Application Design

- 1. Define the problem to be solved.
- 2. Collect (labeled) data.
- 3. Prepare the data.
- 4. Choose an algorithm class.
- 5. Train the model.
- 6. Choose a metric or measure for evaluating the model.
- 7. Tune parameters
- 8. Prediction or inference

Building Classification Model

Lab 1 Exercise

Building classification models is one of the most important data science use cases. Classification models are models that predict a categorical label. A few examples of this include predicting whether a customer will churn or whether a bank loan will default. In this guide, you will learn how to build and evaluate a classification model in Python. We will train the logistic regression algorithm, which is one of the oldest yet most powerful classification algorithms.

https://drive.google.com/drive/folders/1QUaVwd_P6_C-hAXGBG5op59fH4maM1Un?usp=drive_link

Step 1: Open Teachable Machine

Go to:

https://teachablemachine.withgoogle.com/

Click "Get Started" > "Image Project" > "Standard Image Model."

Step 2: Define Your Classes

Create two or three classes (e.g.):

- Class 1: Thumbs up
- Class 2: Thumbs down
- (Optional) Class 3: Hand open

Rename the classes for clarity.

Step 3: Train the Model

- Click the "Webcam" button under each class.
- Record about 50–100 images for each class (move your hand slightly to create variety).
- After collecting data for all classes, click the "Train Model" button.

Step 4: Test Your Model

- Try showing your gestures again on camera.
- See if the model correctly identifies your input.

Conclusion

• We now have some basic understanding of the process to build an ML application.

