0.1. 関数の極限 1

0.1 関数の極限

0.1.1 ε-δ論法による関数の極限

 ε がどんなに小さい正の数であっても、x と a の誤差を δ 以内に収めることで f(x) と b の誤差が ε 以内に収まるとき、関数 f(x) は点 a で b に収束するという。

* * *

まず、y = b の周りに、両側それぞれ ε だけ広げた区間を考える。(この区間を青い帯と呼ぶことにする。)

x = a の周りには、両側それぞれ δ だけ広げた区間を考える。(この区間をピンクの帯と呼ぶことにする。)

このとき、「このxであれば、f(x)が青い帯に収まる」というxを探して、そのxをピンクの帯で包むように δ を設定する。

 ε は正の数ならなんでもよいとすれば、 ε を小さな数に設定し、いくらでも青い帯を狭めることができる。

しかしこのとき、xをピンクの帯に収まるようにしなければならない。

ピンクの帯の中心はaなので、xをピンクの帯に収めようとすると、xはaに近づいていくことになる。

青い帯の幅 ε がどんなに小さくても、ピンクの帯の幅 δ を小さくしていけば、x と f(x) をそれぞれ帯の中に収めることができる。

このように、x を a に近い範囲に閉じ込めれば、f(x) も b に近い範囲に閉じ込められるという状況を、点a での関数の収束と定義する。

青い帯の幅 ε がどんなに小さくても、「このx であれば、f(x) が青い帯に収まる」というx がピンクの帯からはみ出ないように δ を小さくしていけるなら、自動的にx も f(x) もそれぞれ帯の中に収まる。

つまり、 δ に課された制約が肝心で、「このx であれば、f(x) が青い帯に収まる」というx を包めるような δ の存在が、収束を保証することになる。

関	数(の北	又束	ع بَ	極	限値	<u>i</u> (<i>x</i> —	a	の場	易合)										
関	数	f(x	c) {	ヒ	定数	(a,	b K	つい	ハて		欠の)条	件を	考	える							
																-						

0.1. 関数の極限

3

[Topo 1: 定義 1.1]

関数の極限と数列の極限の関係

(Topo 2: 定理 1.7]

関数の極限の性質 0.1.3

[Topo 3: 定理 1.8]

[Topo 4: 定理 1.9]

0.1.4 はさみうち法

[Topo 5: 定理 1.10]

0.1.5 合成関数の極限

[Todo 6: 定理 1.11]

0.1.6 右極限と左極限

[Topo 7: 定義 1.15]

[Todo 8: 定義 1.16]

[Topo 9: 定理 1.19]

.....

Zebra Notes

Туре	Number
todo	9