

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

(Universidad del Perú, Decana de América)

Facultad de Ingeniería de Sistemas e Informática

Escuela de Ingeniería de Software

ASIGNATURA: Cálculo I

CICLO: 2022-I

Docente: Hellen Terreros Navarro

GUÍA DE PRÁCTICA Nº 03

Tema: Funciones trascendentes y composición de funciones.

1.- Hallar el dominio de las siguientes funciones:

a)
$$f(x) = 2 \arctan(\sqrt{1-x^2})$$
 GRUPO 1

b)
$$f(x) = arcsen(\sqrt{1-x}) + arcsen(\sqrt{x})$$
 GRUPO 1

c)
$$f(x) = \arccos\left(\frac{1-x^2}{1+x^2}\right)$$
 GRUPO 2

d)
$$f(x) = \operatorname{sen}\left(\frac{1}{x}\right)$$
 GRUPO 2

2.- Graficar las siguientes funciones:

a)
$$f(x) = \frac{1}{2} + \cos(x)$$
 GRUPO 3

b)
$$f(x) = 1 - \cos(2x)$$
 GRUPO 3

c)
$$f(x) = 2 - sen\left(\frac{x}{2}\right)$$
 GRUPO 4

d)
$$f(x) = -2 + 4\cos(x)$$
 GRUPO 4

e)
$$f(x) = -3\cos(3x)$$
 GRUPO 5

3.- Grafique la siguiente función: $f(x) = sen\left(\frac{\pi}{2}x\right) + sen(x)$ cuando $x \in [-2; 2]$. GRUPO 5

4.- Dadas las siguientes funciones f y g definidas por: **GRUPO 6**

$$f(x) = \begin{cases} 1 - 2x, & x \in [-2; -1 > \\ 4 + \cos(x), & x \ge 0 \end{cases} \quad \text{y} \quad g(x) = \begin{cases} x^2 - 5, & x < 0 \\ sen(x) - 5, & x \in [0; \pi] \end{cases}$$

Determinar la suma y esbozar su gráfica.

5.- Verifique si las siguientes identidades son ciertas: GRUPO 7

a)
$$sen(arctan(x)) = \frac{x}{\sqrt{1+x^2}}$$
 b) $cos(arctan(x)) = \frac{x}{\sqrt{1+x^2}}$

b)
$$\cos(\arctan(x)) = \frac{x}{\sqrt{1+x^2}}$$

c)
$$tan(arcsen(x)) = \frac{x}{\sqrt{1-x^2}}$$

6.- Trazar la gráfica de siguientes funciones:

a)
$$f(x) = \left(\frac{3}{4}\right)^x$$

b)
$$f(x) = (\frac{4}{3})^x$$

a)
$$f(x) = \left(\frac{3}{4}\right)^x$$
 b) $f(x) = \left(\frac{4}{3}\right)^x$ c) $f(x) = -2^{-x}$ GRUPO 8 (a,b,c)

a)
$$f(x) = -5 + e^x$$
 e) $f(x) = 2 + e^{-x}$ f) $f(x) = 3^{-x}$ GRUPO 9 (a,b,c)

e)
$$f(x) = 2 + e^{-x}$$

f)
$$f(x) = 3^{-x}$$

Docente: Hellen Terreros Navarro

7.- Sombrear la gráfica de las siguientes relaciones: GRUPO 10

a)
$$R = \{ (x, y) \in \mathbb{R}^2 : y \le 2^x \land y \ge 2^{-x} \}$$

b)
$$R = \{ (x, y) \in \mathbb{R}^2 : y \le \log_3(x) \land x^2 + y^2 \le 9 \land x > 0 \}$$

c)
$$R = \{ (x, y) \in \mathbb{R}^2 : y \le 2^{-x} \land x + y \ge 0 \land x^2 + y^2 < 4 \}$$

9.- Resuelva las siguientes ecuaciones GRUPO 1

a)
$$x = \log_{\frac{1}{6}} 36$$

b)
$$ln(x) + ln(x - 2) = ln(3)$$

c)
$$ln(3) + ln(2x - 1) = ln(4) + ln(x + 1)$$

10. Si
$$f(x) = \log\left(\frac{1-x}{1+x}\right)$$
, demostrar que: $f(a) + f(b) = f\left(\frac{a+b}{1+ab}\right)$ GRUPO 2

11. Si
$$g = \{ (6;7); (5;4); (4;3); (2;3); (1;4); (0;7) \}$$
 y GRUPO 3
 $h = \{ (0;1); (1;2); (2;4); (4;3); (5;2); (6;1) \}.$

Determina la función f tal que $h = f \circ g$.

12. Si
$$f(x+1) = 2x^2 + mx + 1$$
, $g(x-1) = x + 1$. Halle $m \text{ si } f \circ g(1) = m.$ GRUPO 4

13. Sean las funciones GRUPO 5

$$f(x) = \begin{cases} 4 - x^2, & x \le 1 \\ x^2 + 2, & x > 1 \end{cases} \quad \text{y} \quad g(x) = \begin{cases} x^2 - 9, & x < 4 \\ x^2 + 2, & x > 4 \end{cases}$$

Determina $f \circ g$.

14. Si
$$f \circ g(x) = x + 2$$
 y $f(x) = x^3 + 6x^2 + 12x + 8$. Determina $g(x)$. **GRUPO 6**

15. Si
$$g \circ f(x) = sen(\sqrt{x^2 + 1})$$
. Determina $g(x)$ si $f(x) = \sqrt{x^2 + 1} - 1$. **GRUPO 7**

16. La población proyectada P de una ciudad está dada por $P = 100000e^{0.05t}$, Donde t es el número de años después de 1990. Predecir la población para el año 2010. GRUPO 8

17. Un elemento radioactivo decae de tal manera que después de t días, el número de N miligramos presentes este dado por $N=100e^{-0.062t}$. GRUPO 9

a) ¿Cuantos miligramos están presentes inicialmente? UNMSM / Cálculo I

- b) ¿Cuántos miligramos están presentes después de 10 días?
- 18.- Hay un límite máximo sobre la población de peces en un cierto lago debido a la cantidad de oxígeno, alimentación, etc. proporcionadas. La población de peces en este lago en el tiempo t, en mes esta dado por la función. GRUPO 10

$$p(t) = \frac{20000}{1 + 24^{-\frac{t}{4}}}, \ t \ge 0.$$

¿Cuál es el límite máximo de la población de peces?

- 19.- La velocidad de descomposición del ácido dibromonicinico en disolución acuosa obedece a la ley $c=5e^{-0.03t}$, donde c es la concentración de ácido en mililitros, que permanece después de t minutos. Dibujar el grafico de c en función de t y determinar cuánto tarda en descomponerse la mitad de la concentración del ácido. **GRUPO 1**
- 20. Un modelo exponencial para la cantidad de sustancia radioactiva remanente en el instante t está dado por $A(t) = A_0 e^{kt}$, donde A_0 es la cantidad inicial k < 0 es la constante de desintegración. **GRUPO 2**
 - a) Al inicio estaban presente 200mg de una sustancia radioactiva. Después de 6hrs la masa había decrecido en 3%. Elabore un modelo exponencial para la cantidad de sustancia en desintegración remanente después de *t* horas.
 - b) Encuentre la cantidad remanente después de 24 horas.
 - c) Encuentre el instante en que A(t) = 0.5A, se denomina vida media.
- 21. Si un objeto se coloca en un medio (como aire, agua, etc.) que se mantiene a temperatura constante T_n y si la temperatura inicial es T_0 entonces la ley de enfriamiento de Newton pronostica que la temperatura del objeto es el instante t esta dado por: **GRUPO 3**

$$T(t) = T_m + (T_0 - T_m)e^{kt}, \ k < 0.$$

- a) Un pastel se retira de un horno donde la temperatura es de $350^{0}F$ y se coloca en una cocina donde la temperatura es de $75^{0}F$. Un minuto después se mide y la temperatura del pastel es de $300^{0}F$. ¿Cuál es la temperatura del pastel después de 6 minutos?
- b) ¿En qué instante la temperatura del pastel es de $80^{\circ}F$?