(2)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-240629

(43)Date of publication of application: 28.08.2002

(51)Int.CI.

B60R 1/00 B60R 1/06 H04N 5/22

H04N 5/238 H04N 7/18

(21)Application number: 2001-043906

(71)Applicant : SONY CORP

(22)Date of filing:

20.02.2001

(72)Inventor: NAKAMURA YOSHIYUKI

(54) ON-VEHICLE VIDEO CAMERA

(57)Abstract:

PROBLEM TO BE SOLVED: To excellently pick up an image with an on-vehicle video camera under the day and night.

SOLUTION: This on-vehicle video camera is provided with an image pickup means 10 for converting the image light to an electrical image pickup signal and for outputting the image pickup signal as an image signal with the predetermined mode, a light emitting means 20 for lighting a range to be picked up by the image pickup means, and a control means for controlling the pickup image by the image pickup means and the light emitted from the light emitting means together. The light emitting means 20 is formed of a means for emitting the infrared ray signal in the predetermined zone, and a process for cutting the infrared ray signal in the predetermined zone included in the image pickup signal by the image pickup means 10 is eliminated. The image pickup means 10 and the light emitting means 20 are fitted to an equipment body forming an outside mirror of the vehicle.

ビデオカメラを定面側から見た国

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-240629 (P2002-240629A)

(43)公開日 平成14年8月28日(2002.8.28)

(51) Int.Cl.7		識別記号	FΙ		テーマコート*(参考)
B 6 0 R	1/00		B 6 0 R	1/00	A 3D053
	1/06			1/06	D 5C022
H 0 4 N	5/225		H 0 4 N	5/225	C 5C054
	5/238			5/238	Z
	7/18			7/18	J
			審査請求	未請求 請求項の	数6 OL (全8頁)
(21)出願番号		特願2001-43906(P2001-43906)	(71)出願人	000002185	
				ソニー株式会社	
(22)出願日	平成13年2月20日(2001.2.20)			東京都品川区北品	川6丁目7番35号
			(72)発明者	中村 好行	
				東京都品川区北品	川6丁目7番35号 ソニ
				一株式会社内	
			(74)代理人	100080883	
				弁理士 松隈 秀	盛
			Fターム(参	考) 3D053 FF14 G	G06 HH47 MM34 MM49
•				50022 AA04 A	B15 AB37 AC03 AC13
35.				AC42 A	C55 AC69
				50054 AA05 C	A04 CA05 CC02 CD03
				CE01 C	F01 CF05 CH01 EA01
				EAO3 E	A05 FA02 HA30

(54) 【発明の名称】 車載用ビデオカメラ

(57)【要約】

【課題】 車載用のビデオカメラで、昼夜を問わず良好に撮影できるようにする。

【解決手段】 像光を電気的な撮像信号に変換し、その 撮像信号を所定の方式の映像信号として出力する撮像手 段10と、撮像手段で撮像する範囲を照明する発光手段 20と、撮像手段での撮像と発光手段での発光を連動さ せて制御する制御手段とを備えた。また、この場合に、 発光手段20は、所定の帯域の赤外線信号を発光する手 段で構成し、撮像手段10で、撮像信号に含まれる上記 所定の帯域の赤外線信号をカットする処理を行わないよ うにした。さらに、撮像手段10及び発光手段20は、 車両のアウトサイドミラーを構成する筐体に取付けるよ うにした。

ビデオカメラを底面側から見た図

【特許請求の範囲】

【請求項1】 像光を電気的な撮像信号に変換し、その 撮像信号を所定の方式の映像信号として出力する撮像手 段と、

上記撮像手段で撮像する範囲を照明する発光手段と、 上記撮像手段での撮像と上記発光手段での発光を連動させて制御する制御手段とを備えた車載用ビデオカメラ。

【請求項2】 請求項1記載の車載用ビデオカメラにおいて、

上記発光手段は、所定の帯域の赤外線を発光する手段で 構成し、

上記撮像手段で、撮像信号に含まれる上記所定の帯域の 赤外線信号をカットする処理を行わない車載用ビデオカ メラ。

【請求項3】 請求項1記載の車載用ビデオカメラにおいて、

上記制御手段は、車両のライトの点灯を検出したとき、 上記撮像手段での撮像時に上記発光手段を発光させる車 載用ビデオカメラ。

【請求項4】 請求項1記載の車載用ビデオカメラにおいて、

上記制御手段は、車両の周囲の明るさを検出して、その 検出した明るさに応じて上記撮像手段での撮像時に上記 発光手段を発光させる車載用ビデオカメラ。

【請求項5】 請求項1記載の車載用ビデオカメラにおいて

上記撮像手段及び上記発光手段は、車両のアウトサイド ミラーを構成する筐体に取付けた車載用ビデオカメラ。

【請求項6】 請求項5記載の車載用ビデオカメラにおいて、

上記制御手段は、車両の方向指示器の所定の操作を検出 したとき、上記撮像手段での撮像を行う車載用ビデオカ メラ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車などの車両 に搭載させて、その車両の側部などの監視を行う用途に 使用して好適な車載用ビデオカメラに関する。

[0002]

【従来の技術】近年、自動車などの車両では、ルームミラー等と称されるインサイドミラーや、ドアミラー等と称されるアウトサイドミラーを各部に取付けて、車両の後部や側部などの運転者から見て死角となる位置を、容易に確認できるようにしてある。

【0003】ところが、車両の構造によっては、上述したミラーだけでは監視できない場合があり、例えば後部の確認用として車両の後端にビデオカメラを取付けて、そのビデオカメラが撮影した映像を、運転者が見える位置に設置されたモニタに表示させるようにした、いわゆるバックモニタと称されるものが各種実用化されてい

ろ.

【0004】ところで、従来のバックモニタ用などの主 載用として使用されるビデオカメラとしては、一般の撮 影用のビデオカメラとして用意されたビデオカメラの内 で、比較的小型の製品がそのまま(或いは若干の改造 で)使用されることが多い。このような市販された一般 のビデオカメラを使用した場合、昼間の屋外での走行時 には、十分な照度が得られて、ビデオカメラの出力から 良好な映像が得られるが、夜間の走行時には、ビデオカ メラで撮像可能な最低照度以下で撮像される可能性が高 く、ビデオカメラの出力をモニタに表示させても、被写 体を認識できるような画像が表示される可能性は低い。

【0005】ここで、自動車の後端部には、その車両の後退操作に連動して点灯するいわゆるバックランプが備わっているため、そのランプを光源として、バックモニタ用のビデオカメラが撮影する範囲が照明されて、夜間でもそれなりの明るさで撮像することができる。

[0006]

【発明が解決しようとする課題】これに対して、近年バ ックモニタ以外の用途でも、自動車にビデオカメラを搭 載させて、運転者にモニタさせることが提案されている が、バックモニタ以外の用途の場合には、自動車側に連 動して点灯する光源がなく、該当する位置を撮影するビ デオカメラを車両に取付けたとしても、夜間走行時には 使えなくなってしまう問題があった。例えば、自動車の サイドを運転者が確認する際には、一般にはドアミラー 等と称されるアウトサイドミラーを使用して行うように してあるが、アウトサイドミラーだけでは運転者から見 えにくい死角があるため、ビデオカメラを自動車のサイ ドの所定位置に取付けて、確認できるようにすることが 提案されている。ところが、このようなサイドの位置に ビデオカメラを取付けた場合には、暗視用の特殊なカメ ラを使用しない限りは夜間走行時に良好な撮影を行うこ とは困難であった。

【0007】本発明はかかる点に鑑み、車載用のビデオ カメラで、昼夜を問わず良好に撮影できるようにするこ とを目的とする。

[0008]

【課題を解決するための手段】本発明は、像光を電気的な撮像信号に変換し、その撮像信号を所定の方式の映像信号として出力する撮像手段と、撮像手段で撮像する範囲を照明する発光手段と、撮像手段での撮像と発光手段での発光を連動させて制御する制御手段とを備えたものである。

【0009】かかる構成のビデオカメラを備えたことで、このビデオカメラでの撮影時には、自動的に発光手段が発光して、その光で撮像範囲が照明される。

[0010]

【発明の実施の形態】以下、本発明の一実施の形態を、 添付図面を参照して説明する。 【0011】本例においては、道路を走行する自動車に搭載した車載用のビデオカメラとしてある。図1は、本例のビデオカメラの構成及びそのビデオカメラに接続される機器のシステム構成例を示したものである。本例のビデオカメラ10は、後述するように自動車のサイドに設置された一方のドアミラー(アウトサイドミラー)に内蔵させてある。ビデオカメラ10にはレンズ11が取付けてあり、このレンズ11を介してイメージャ10aに結像した像光を、イメージャ10a内で電気的な撮像信号に変換する。レンズ11としては、比較的広角の撮像ができる単焦点レンズが使用される。イメージャ10aとしては、CCD型撮像素子、CMOS型撮像素子などが使用される。

【0012】イメージャ10aが出力する撮像信号は、信号処理部10bに供給して、信号の増幅や補正などの処理をした後、所定の方式の映像信号(例えばNTSC方式の映像信号)とする映像処理が行われる。信号処理部10bは、例えばデジタルシグナルプロセッサ(DSP)と称される集積回路を備えて、一部の処理についてはデジタル処理が行われる。この信号処理部10bで処理された映像信号は、ビデオカメラ10の出力映像信号として自動車内に設置された切換器2を介して表示装置4に供給する。切換器2には、ナビゲーション装置3などの車内の他の映像機器が接続してあり、切換器2で表示される映像を選択できるようにしてある。なお、切換器2はナビゲーション装置3又は表示装置4に内蔵されている場合もある。

【0013】なお、本例のイメージャ10aは、可視光に感度を持つイメージャが使用されるが、近赤外線についても若干の感度を持って撮像される。そして、信号処・理部10bでは、撮像信号に含まれる赤外線信号成分を除去する赤外線除去フィルタとしての機能が実行可能であるが、本例の場合にはこの赤外線除去フィルタの機能を作動させないようにしてあり、イメージャ10aで撮像された近赤外線成分が含まれた撮像信号を処理するようにしてある。但し、撮像信号に近赤外線成分が含まれることによって、ビデオカメラの出力映像信号を表示させたときにカラー画像の色バランスが乱れることがないような処理(ホワイトバランス調整の特性設定など)が必要である。赤外線除去フィルタの作動時と非作動時の特性例については後述する。

【0014】イメージャ10aでの撮像及び信号処理部10bでの信号処理は、ビデオカメラ10内の制御部10cにより制御される。この制御部10cには、外部から制御信号入力端子10dを介して供給される信号により、撮像動作が制御される。本例の場合には、入力端子10dに、自動車の走行制御部1から方向指示器の操作に連動した信号が供給され、その信号の状態でビデオカメラ10の撮像動作のオン・オフを制御部10cが制御するようにしてある。

【0015】具体的には、自動車に設置された左右の方向指示器の内の左側の方向指示器を点滅させる操作を行っている間、入力端子10dにハイレベル信号が供給され、左側の方向指示器を点滅させる操作が行われていないとき、入力端子10dを介してハイレベル信号が制御部10cに供給されるとき、制御部10cはイメージャ10aでの撮像と信号処理部10bでの信号処理を実行させて、ビデオカメラ10が映像信号を出力させる。また、入力端子10dを介してローレベル信号が制御部10cに供給されるとき、制御部10cは撮像動作を停止させて、ビデオカメラ10から映像信号を出力させない。

【0016】ここで本例においては、ビデオカメラ10内に照明部20が内蔵させてあり、この照明部20内の光源が、ビデオカメラ10で撮像する範囲を照明するようにしてある。照明部20内の光源としては、本例の場合には赤外線発光ダイオードが使用される。この照明部20での光源の点灯制御についても、入力端子10dに得られる自動車の左側の方向指示器の操作に連動した信号で行うようにしてある。即ち、入力端子10dにハイレベル信号が供給されるとき、照明部20内の光源を点灯させ、入力端子10dにローレベル信号が供給されるとき、照明部20内の光源を高くとき、照明部20の具体的な回路構成例については後述する。

【0017】本例のビデオカメラ10が撮像して出力する映像信号は、切換器2に供給する。この切換器2には、自動車内に設置されたナビゲーション装置3が出力する映像信号が供給され、自動車の走行制御部1から供給される方向指示器の操作信号に連動して、表示装置4で表示させる映像を切換えさせるようにしてある。具体的には、例えばローレベル信号が走行制御部1から切換器2に供給されるとき、ナビゲーション装置3が出力する映像信号を表示装置4に供給して、ナビゲーション用の映像(道路地図など)を表示装置4に表示させる。また、切換信号が走行制御部1から切換器2に供給されるとき、ビデオカメラ10が撮像して出力する映像信号を表示装置4に供給して、ビデオカメラ10が撮像した映像を表示装置4に表示させる。

【0018】図2~図4は、本例のビデオカメラ10が自動車のドアミラー30に設置された状況を示した図である。図2は、ドアミラー30のミラーを外した状態で、内部のビデオカメラ10が見える状態として、内部を示してある。図3は、ドアミラー30の底面から見たビデオカメラ10の取付け状態を示してあり、図4は、ビデオカメラ10を斜め下から斜視図として示してあり、図4ではドアミラー30の位置を仮想線で示してある。図4に示すように、ビデオカメラ10は、レンズ11が下側を向いた状態でドアミラー30に取付けられる

ようにしてあり、レンズ11の脇に照明部20の発光面 20 a が配置してある。図2及び図3に示すように、本 例のドアミラー30は、一端側の接続部31が自動車の フロントドアの先端に取付けられ、底面32の先端寄り (即ちドアから離れた位置)に、開口部32aが設けて あり、その開口部32aから、レンズ11と照明部20 が露出するように取付けてある。

【0019】ビデオカメラ10の全体の形状としては、 図4に示すように、合成樹脂で成形された横長の筐体1 2で構成される形状としてあり、レンズ押さえ部材13 でレンズ11を押さえ、さらにレンズ保護枠14がレン ズ11の周囲に配置してある。また、筐体12の4隅に ネジ孔15を設けてあり、ネジ止めでドアミラー30の 底面に固定されるようにしてある。また、筐体12の端 部から接続ケーブル16が引き出されて、自動車の車内 側の機器と接続される。なお、図2に示したドアミラー 30の内部には、ミラー保持機構部33が設けてあり、 この保持機構部33により、図4に仮想線で示すミラー 34が取付けられる。ミラー保持機構部33がミラーを モータなどで駆動する機構になっている場合には、取付 けられたミラー34の位置が、キー操作で調整できる。 【0020】図5は、本例のビデオカメラ10が内蔵す る照明部20の回路構成例を示す図である。本例の照明 部20は、光源として6個の赤外線発光ダイオードD 1, D2, D3, D4, D5, D6を使用してある。そ の6個のダイオードD1~D6の接続としては、図5に 示すように、2個ずつ直列に接続されたダイオードD 1, D2とD3, D4とD5, D6を並列に接続してあ る。各赤外線発光ダイオードD1~D6が発光する赤外 線としては、900nm程度の波長の近赤外線とする。 具体的には、商品化されている出力波長が850nm. 880 nm, 940 nm等の赤外発光ダイオードが使用 される。

【0021】並列に接続された発光ダイオードD1, D3, D5のアノードには、抵抗器21を介して電源22の正極側が接続してあり、発光ダイオードD2, D4, D6のカソードには、NPN型のトランジスタ23のコレクタが接続してある。抵抗器21は発光ダイオードを流れる電流を制限するための素子である。トランジスタ23のエミッタは、電源22の負極側と接続してあり、トランジスタ23のベースには、制御信号入力端子24から抵抗器25を介して、ビデオカメラ10の制御信号入力端子10dに得られる信号(左側の方向指示器の操作信号)が供給される。

【0022】図5に示すように構成されることで、入力端子24に得られる信号がハイレベルであるとき、トランジスタ23がオン状態になって、電源24が発光ダイオードD1~D6と接続された状態となり、発光ダイオードD1~D6が発光する。この発光により、ビデオカメラ10の撮像範囲が照明される。また、入力端子24

に得られる信号がローレベルであるとき、トランジスタ 23がオフ状態になって、発光ダイオードD1~D6域。 発光しなくなる。

【0023】図6は、このビデオカメラ10の撮像感度の例を示した図である。図6の横軸は光の波長であり、縦軸は撮像される感度が最も高い波長を1.0として、そのレベルからの感度の低下を示した図である。実線で示すのが本例のビデオカメラ10の感度であり、信号処理部10b内で赤外線カットフィルタを作動させた場合(本例の場合には作動させない)の感度例を破線で示してある。本例のビデオカメラ10の場合には、近赤外線の帯域の一部である800nmから900nmの波長でも、それなりの撮像感度(ピーク時の感度の20%から10%程度)が得られるようにしてある。

【0024】次に、本例のビデオカメラ10が取付けら れたドアミラー30を自動車に取付けて、撮像される範 囲について、図7及び図8を参照して説明する。本例の 場合には、自動車mの右側の座席が運転席であるいわゆ る右ハンドルの車両の場合を想定してあり、左側のドア にドアミラー30が取付けてある。このドアミラー30 の底部にビデオカメラ10が取付けてあり、自動車mの サイドに平行な所定範囲をビデオカメラ10が撮像す る。自動車mを側面から見た図7では、撮像範囲をaと して示してあり、自動車mを上面から見た図8では、撮 像範囲をbとして示してある。図8から判るように、自 動車mの側面が若干見える程度の範囲に撮像範囲を設定 してあり、画面の水平方向がサイドと平行になるような 方向で撮像するようにしてある。即ち、通常のビデオカ メラでは、画面の縦方向よりも横方向の方が長く、その 長い辺である横方向が、自動車mのサイドと平行になる ようにして、自動車mのサイドの前方から後方までの近 傍を比較的長い範囲で撮像できるようにしてある。そし て、照明部20で照明させる範囲についても、撮像範囲 a, bのほぼ全体をカバーするように照明させる。

【0025】なお、図8に示すように運転席に近い側(即ち右側)に設置されたドアミラー30′にも、同様のビデオカメラ10を取付けて、自動車mの右側のサイドの近傍を撮像するようにしても良い。

【0026】図8に示すようにしてビデオカメラ10で 撮像して得た映像信号を、自動車m内に設置された表示 装置に表示させる際には、映像が表示される方向を90°曲げて、自動車mのサイドと平行になる方向が、表示 装置の画面上では縦方向となるようにする。このように することで、運転者から見て表示される画像の方向と、 実際の方向とが一致するようになり、表示される画像の 位置関係が判り易くなる。なお、映像の表示方向を90°曲げる処理は、ビデオカメラ10内で実行させる場合 と、表示装置内で実行させる場合と、ビデオカメラ10 と表示装置の間に接続された機器(図1に示す切換器2 など)で実行させる場合のいずれでも良い。 【0027】このようにして、自動車のサイドミラーに 取付けられたビデオカメラ10で撮像を行い、その撮像 された映像信号を図1に示すシステム構成で切換器2を 介して表示装置4に供給して表示させることで、表示装 置4で表示される映像から自動車のサイドの監視が良好 に行える。特に本例の場合には、自動車の方向指示器の 操作に連動して、ビデオカメラ10での撮像と、照明部 20による照明動作を行い、切換器2がビデオカメラ1 0の映像を選択するようにしたので、運転者が自動車の 左側の方向指示器を操作するだけで、自動的に表示装置 4にサイドの映像が表示されるようになり、使い勝手が 向上する。

【0028】そして本例においては、発光ダイオードを 光源とした照明部20をビデオカメラ10に組み込むよ うにして、ビデオカメラ10で撮像する範囲を照明する ようにしたので、自動車の周囲が暗い状況であっても、 良好に撮像して表示させることができる。この場合、赤 外線発光ダイオードを使用したので、発光している光が 肉眼で見えることがなく、自動車の車外に不要な光を出 すことがない。

【0029】また、赤外線発光ダイオードとして、波長900nm前後の近赤外線信号を発光させるダイオードとしたことで、ビデオカメラ10として赤外線撮像用の特殊なビデオカメラでない通常の可視光撮像用のビデオカメラが使用でき、特殊なビデオカメラなどを使用することなく低コストで良好に夜間撮像ができる。即ち、ビデオカメラ10として可視光撮像用の通常の構成のイメージャを備えたビデオカメラを使用して、そのビデオカメラ内の信号処理部10bで撮像信号に含まれる赤外線信号を除去しない構成とした上で、イメージャが持つ近赤外線信号に対する感度を利用して、夜間の撮像を行うようにしたので、赤外線信号に対する感度が特に優れた特殊なイメージャを使用することなく、良好に夜間撮像ができる。

【0030】なお、上述した実施の形態では、ビデオカ メラ10で撮像を行う際には、照明部20が常時発光す るようにしたが、照明が必要な状況のときだけ、照明部 20が作動するようにしても良い。例えば、自動車のラ イトの点灯操作に連動した信号をビデオカメラ10内の 制御部10cが判断する構成として、自動車のライトを 点灯させたときだけ、制御部10cが撮像動作に連動し て照明部20内の発光ダイオードを点灯させるようにし ても良い。また、ビデオカメラ10などに車両の周囲の 明るさを検出するセンサを取付けて、ビデオカメラ10 内の制御部10 cが、そのセンサの出力から周囲が暗い 状況であると判断したときだけ、制御部10cが撮像動 作に連動して照明部20内の発光ダイオードを点灯させ るようにしても良い。或いは、ビデオカメラ10内で得 られた撮像信号のレベルから、照明が必要か否か判断し て、照明部20の発光を制御するようにしても良い。

【0031】このように照明部での照明動作を選択的に行う構成とした場合には、ビデオカメラ10内の信号短型部10bでの処理状態についても、昼間の明るい状況で撮像した場合と、夜間などの照明を使用して撮像した場合とで、特性を切換えるようにしても良い。例えば、昼間の明るい状況で撮像した場合には、信号処理部10b内の赤外線カットフィルタを作動させて、例えば図6に破線で示す特性の撮像信号を得るようにして、その撮像信号を処理するようにし、夜間などの照明を使用して撮像した場合には、信号処理部10b内の赤外線カットフィルタを非作動として、赤外線信号が含まれた撮像信号を処理するようにしても良い。このようにすることで、いずれの撮像時にも出力映像信号の特性を最適化できる。

【0032】また、照明部を点灯させる際には、撮像中に連続して発光ダイオードを点灯させるのではなく、イメージャ10aでの撮像タイミングに連動して、間欠的に発光ダイオードを発光させるようにしても良い。即ち、イメージャ10aでは、映像信号のフィールド周期で撮像動作が行われ、その撮像周期に連動した発光ダイオードの点灯周期を設定するようにしても良い。このようにすることで、それだけ照明部の消費電力を低減させることが可能になる。

【0033】また、上述した実施の形態では、ビデオカメラでの撮像動作及び表示装置での表示は、方向指示器の操作に連動して行われるようにしたが、方向指示器の操作とは関係なく、撮像して表示装置に表示させるようにしても良い。例えば、サイドモニタ用の操作キーを運転席の近傍に設けて、その操作キーが操作されたときビデオカメラ10での撮像動作を実行させてサイドの映像がモニタできるようにしても良い。また、このような操作キーによるモニタ動作と、上述した方向指示器によるモニタ動作を組み合わせるようにしても良い。

【0034】また、上述した実施の形態では、表示装置 での表示として、切換器2でビデオカメラ10の出力映 像とナビゲーション装置3の出力映像とを切換えるもの として説明したが、例えば左側の方向指示器が操作され たとき、切換器2でナビゲーション装置3からの出力映 像とビデオカメラ10からの出力映像との合成処理を行 って、その合成映像を表示装置4で表示させるようにし ても良い。例えば図9に示すように、表示装置4の表示 画面5が設定されているとき、左側の方向指示器が操作 されたとき、その画面5の左半分の領域5aに、ビデオ カメラ10が撮像した映像を表示させ、右半分の領域5 bに、ナビゲーション装置3が出力する道路地図などの 案内映像を表示させるようにしても良い。図9の左半分 の領域5aの表示では、自車mのサイドと、隣接する車 両xとの位置関係が表示画像から判るようになってい る。

【0035】また、図8に示した右側のドアミラー3

0'にもビデオカメラを取付けた場合には、図9に示す ・画面5の左半分の領域5aに、左側のドアミラー30の ビデオカメラが撮像した映像を表示させ、右半分の領域 5bに、右側のドアミラー30のビデオカメラが撮像し た映像を表示させるようにしても良い。

【0036】また、上述した実施の形態では、ビデオカメラを自動車のアウトサイドミラーに組み込むようにした例について説明したが、その他の用途に使用される車載用のビデオカメラで、同様の処理を行うようにしても良い。

[0037]

【発明の効果】本発明によると、このビデオカメラでの 撮影時には、自動的に発光手段が発光して、その光で撮 像範囲が照明される。従って、夜間の走行時であって も、ビデオカメラが撮像した映像で被写体を良好に確認 できるようになる。

【0038】この場合、発光手段は、所定の帯域の赤外線信号を発光する手段で構成し、撮像手段で、撮像信号に含まれる所定の帯域の赤外線信号をカットする処理を行わないようにしたことで、肉眼では発光手段で照明されていることが判らず、不要な光を出さずに良好に撮像できる。

【0039】また、制御手段は、車両のライトの点灯を 検出したとき、撮像手段での撮像時に発光手段を発光さ せる制御を行うことで、例えば運転者が車外を見るのに ライトが必要が状況になったときに、自動的に発光手段 で照明され、必要なときだけ良好に照明させることがで きる。

【0040】また、制御手段は、車両の周囲の明るさを検出して、その検出した明るさに応じて撮像手段での撮像時に発光手段を発光させることで、周囲の明るさに応じて自動的に発光手段が発光するようになり、必要なときだけ自動的に照明させることができる。

【0041】また、撮像手段及び発光手段は、車両のアウトサイドミラーを構成する筐体に取付けたことで、車両が備える付属物にビデオカメラが一体に収まると共に、アウトサイドミラーが取付けられた車両のサイドの近傍を良好に撮像することが可能になる。

【0042】さらに、このようにアウトサイドミラーに取付けた場合に、制御手段は、車両の方向指示器の所定の操作を検出したとき、撮像手段での撮像を行うようにしたことで、車両の方向を変えてサイドの確認が必要なときだけ、自動的にサイドの映像を撮像して表示させることができるようになる。

【図面の簡単な説明】

【図1】本発明の一実施の形態によるビデオカメラを使用したシステム構成例を示すブロック図である。

【図2】本発明の一実施の形態によるビデオカメラが組 み込まれたドアミラーの内部を示す平面図である。

【図3】本発明の一実施の形態によるビデオカメラが組 み込まれたドアミラーを示す底面図である。を示す斜視 図である。

【図4】本発明の一実施の形態によるビデオカメラが組み込まれたドアミラーを示す斜視図である。

【図5】本発明の一実施の形態によるビデオカメラの照明部の構成例を示す回路図である。

【図6】本発明の一実施の形態によるビデオカメラの特性例を示す特性図である。

【図7】本発明の一実施の形態によるビデオカメラの撮像範囲及び照明範囲の例を示す側面図である。

【図8】本発明の一実施の形態によるビデオカメラの撮像範囲及び照明範囲の例を示す平面図である。

【図9】本発明の一実施の形態による表示例を示す説明 図である。

【符号の説明】

1…走行制御部、2…切換器、3…ナビゲーション装置、4…表示装置、10…ビデオカメラ、10a…イメージャ、10b…信号処理部、10c…制御部、10d…制御信号入力端子、11…レンズ、12…筐体、13…レンズ押さえ部材、14…レンズ保護枠、15…ネジ孔、16…接続ケーブル、20…照明部、20a…発光面、21…抵抗器、22…電源、23…トランジスタ、24…制御信号入力端子、25…抵抗器、30…ドアミラー、31…接続部、32…底面、32a…開口部、33…ミラー保持機構部、34…ミラー、D1、D2、D3、D4、D5、D6…発光ダイオード

【図3】

ドアミラーへの装着例

【図7】

【図1】

【図2】

ドアミラーへの装着例

【図4】

ビデオカメラを底面側から見た図

【図5】

照明部の構成例

【図6】

カメラの感度例

[図9]

