

Discovering Latent "Style"

An Approach to Recommending and Matching Clothes

Urvashi Uberoy, Khyati Agrawal, Andrew Zeng

Motivation

Goals

- Capturing relationships between attributes of clothing (such as cut, color, fabric) and latent "looks" (such as "professional", "formal", "casual")
- Quantifying similarity between clothing items based on latent attributes and using this to match items of clothing.

Dataset

Deep Fashion Attribute Prediction Dataset

289,222 number of clothes imagesImages of tops and bottoms1,000 number of clothing attributes

Example data point

Approach

Unsupervised Learning: Topic Modeling

Documents =
collections of
attributes for a image

Words = semantic visual attributes

Topic = fashion style

Implementation

Latent Dirichlet Allocation (LDA):

• *Hyperparameters*: Number of components, Learning rate Cross validated on sets [5, 10, 15] and [0.5, 0.7, 0.9]

Non-negative Matrix Factorization (NMF):

Hyperparameters: Number of components

Restricted Boltzmann Machine (RBM):

• Hyperparameters: Learning rate, Number of training iterations, Number of latent variable: Cross validated in [0.1, 0.01, 0.001] and [20, 40, 80]

Methods for matching and finding similar clothing:

- Experimented with L2, L1 and hamming distance between items in the latent variable space
- Used a random matching scheme as a baseline

Results

Metric: Average Reconstruction Error (per sample)

	LDA	NMF	BRBM
Train Error	0.0063	0.0056	0.0062
Test Error	0.0126	0.0112	0.0125

Latent Style and Matching

Sample Matches across Models

Discussion & Conclusion

Key conclusions:

- All three models models were able to capture broad latent styles like "casual", "floral/summery", "formal"
- NMF and RBM performed better at matching tops and bottoms than LDA.
- Our approach is appropriate for finding items sharing "style" for out-of-sample (test) examples.

Observations:

 Matching appears to be better for women's clothing than men's clothing because of more training data.