

SRG Market microstructure

Report on my research

Vsevolod Zaostrovsky
Supervisors: Anton O. Belyakov, Anton A. Filatov

Vega Institute Foundation

October 22, 2023

Implementation of the Generalized OW Market Impact Model

The key recursive formula of an efficient implementation (from "Handbook of Price Impact Modeling" - A.3) generalizes to arbitrary event times t_i :

$$I_{t_{i+1}} = \rho(t_{i+1}, t_i)I_{t_i} + \lambda \Delta_{i+1}Q, \tag{1}$$

where I_{t_k} — market impact, $\Delta_i Q$ — change of the position (order volume); and the following ρ types are considered:

$$\begin{split} \rho(t_{i+1},t_i) &= \textit{const}, & \rho &= (1-\beta\Delta t) \\ \rho(t_{i+1},t_i) &= \rho^{t_{i+1}-t_i}, & \rho &= \textit{const} \\ \rho(t_{i+1},t_i) &= \frac{\rho_{t_{i+1}}}{\rho_{t_i}}, & \rho_t &= \exp{-\int_0^t \beta_s ds} \end{split}$$

How to find ρ and λ ?

The OW model:

$$I_{t_{i+1}} = \rho(t_{i+1}, t_i)I_{t_i} + \lambda \Delta_{i+1}Q$$
(2)

looks like ARX model:

$$I(t+1) = a_1 I(t) + b_1 Q(t),$$

where $a_1=\rho$ and $b_1=\lambda$. So, we can use time series metodology to estimate them. Moreover, dividing data by parts and fitting the model for each part we can find the graph of $\rho(t_{i+1},t_i)$.

What to do with that knowledge?

- 1. It is of great interest to determine the approximate type of trajectories of that coefficients.
- 2. One is able to find ρ and λ on real data just to predict market impact.
- 3. After, it is possible to use them to create a realistic OW market simulator.
- 4. The same ρ and λ are needed in continuos OW optimal execution strategy.

Another way: discrete OW model.

The article "Optimal trading strategy and supply/demand dynamics" contains (Proposition 1, p. 14) an algorithm for optimal execution:

$$x_n = -\frac{1}{2}\delta_{n+1}[D_{t_n}(1-\beta_{n+1}e^{-\rho\frac{T}{N}} + 2\kappa\gamma_{n+1}e^{-2\rho\frac{T}{N}}) - X_{t_n}(\lambda + 2\alpha_{n+1} - \beta_{n+1}\kappa e^{-\rho\frac{T}{N}})],$$

where D_t is a price; $\alpha_{n+1}, \beta_{n+1}, \gamma_{n+1}, \delta_{n+1}$ are determined recursively; κ and ρ are hyperparameters. Here and further, x_n — the volume of nth optimal order, T — total time to trade, N — total number of orders. These notations are simplified, details are in the article.

In my opinion, it is better to start with the simpler analogue from "Algorithmic Trading and Quantitative Strategies" (p. 366, eq. 10.24):

$$x_1 = x_n = \frac{X}{\rho T + 2}$$
$$x_t = \frac{\rho X}{\rho T + 2}$$

where ρ is hyperparameter, that can be estimated (?) from:

$$A_t = \overline{p}_t + \frac{s}{2} + x_1 \kappa e^{-\rho t},$$

where A_t — ask price after execution, $\overline{p}_t + \frac{s}{2}$ defines steady state level (here \overline{p}_t is a price and s is a spread), κ and ρ are hyperparameters.

