Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 6

Aufgabe 6.1 (3+2 Punkte)

Seien $P, Q, R, S \subseteq (D \times D)$ zweistellige Relationen auf einer nichtleeren Menge D.

a) Beweisen Sie:

$$P^* \circ Q = \bigcup_{i=0}^{\infty} (P^i \circ Q)$$

b) Zeigen Sie, dass für beliebige P, Q, R, S gilt:

$$P \subseteq Q, R \subseteq S \Rightarrow P \circ R \subseteq Q \circ S.$$

Lösung 6.1

a) Für alle $x, z \in D$ gilt:

$$(x,z) \in (P^* \circ Q)$$

$$\Leftrightarrow \exists y \in D : (y,z) \in P^* \land (x,y) \in Q$$

$$\Leftrightarrow \exists y \in D : (y,z) \in \bigcup_{i=0}^{\infty} P^i \land (x,y) \in Q$$

$$\Leftrightarrow \exists y \in D : \exists i \in \mathbb{N}_0 : (y,z) \in P^i \land (x,y) \in Q$$

$$\Leftrightarrow \exists i \in \mathbb{N}_0 : \exists y \in D : (y,z) \in P^i \land (x,y) \in Q$$

$$\Leftrightarrow \exists i \in \mathbb{N}_0 : (x,z) \in P^i \circ Q$$

$$\Leftrightarrow (x,z) \in \bigcup_{i=0}^{\infty} (P^i \circ Q).$$

b) Sei $(x, z) \in P \circ R$. Wir zeigen $(x, z) \in Q \circ S$.

Wenn $(x, z) \in P \circ R$, dann gibt es ein $y \in D$ mit $(x, y) \in R \land (y, z) \in P$.

Da $P \subseteq Q \land R \subseteq S$ gilt auch $(x,y) \in S \land (y,z) \in Q$, also auch $(x,z) \in Q \circ S$.

Aufgabe 6.2 (2+1+2 Punkte)

Es bezeichne \mathbb{Z} die Menge der ganzen Zahlen, also $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$. Gegeben sei eine Ziffernmenge $Z_{-2} = \{\mathbb{N}, \mathbb{E}\}$ mit der Festlegung $\operatorname{num}_2(\mathbb{N}) = 0$ und $\operatorname{num}_2(\mathbb{E}) = 1$. Analog zum Vorgehen in der Vorlesung definieren wir eine Abbildung $\operatorname{Num}_{-2}: \mathbb{Z}_{-2}^* \to \mathbb{Z}$ wie folgt:

$$\mathrm{Num}_{-2}(\varepsilon) = 0$$

$$\forall w \in Z_{-2}^* \ \forall x \in Z_{-2} : \mathrm{Num}_{-2}(wx) = -2 \cdot \mathrm{Num}_{-2}(w) + \mathrm{num}_2(x)$$

- a) Geben Sie für $w \in \{ \texttt{E}, \texttt{EN}, \texttt{EE}, \texttt{ENE}, \texttt{EEN}, \texttt{EEE} \}$ jeweils $\text{Num}_{-2}(w)$ an.
- b) Für welche Zahlen $x \in \mathbb{Z}$ gibt es ein $w \in \mathbb{Z}_{-2}^*$ mit $\operatorname{Num}_{-2}(w) = x$?
- c) Wie kann man an einem Wort $w \in \mathbb{Z}_{-2}^*$ erkennen, ob $\text{Num}_{-2}(w)$ negativ, Null oder positiv ist?

Lösung 6.2

a) $\text{Num}_{-2}(E) = \text{Num}_{-2}(\varepsilon \cdot E) = -2 \cdot \text{Num}_{-2}(\varepsilon) + \text{num}_{2}(E) = -2 \cdot 0 + 1 = 1,$

 $Num_{-2}(EN) = -2,$

 $Num_{-2}(EE) = -1,$

 $Num_{-2}(ENE) = 5$,

 $Num_{-2}(EEN) = 2.$

 $Num_{-2}(EEE) = 3.$

Hinweis: Es genügt, die Zahlenwerte anzugeben; Berechnungen waren nicht verlangt.

- b) Für alle Zahlen $x \in \mathbb{Z}$ gibt es ein $w \in \mathbb{Z}_{-2}^*$ mit $\operatorname{Num}_{-2}(w) = x$.
- c) Wenn $w \in \{\mathbb{N}\}^*$, also nur aus N's besteht, ist $\text{Num}_{-2}(w) = 0$.

Sei l die Länge des Suffixes von w ab dem ersten E (so dass führende N's nicht zur Länge gezählt werden). Num $_{-2}(w)$ ist positiv, wenn l ungerade ist, und negativ, wenn l gerade ist.

Hinweis: "Behandlung" der führenden "Nullen" ist wichtig.

Aufgabe 6.3 (3+3 Punkte)

Gegeben sei folgende Abbildung $f: \mathbb{N}_+ \to \mathbb{Z}$, mit f(n) = 1 - 3n, wobei \mathbb{Z} wieder die Menge der ganzen Zahlen ist.

- a) Gibt es eine Abbildung $g: \mathbb{Z} \to \mathbb{N}_+$, so dass $f \circ g = I_{\mathbb{Z}}$? Begründen Sie ihre Antwort.
- b) Gibt es eine Abbildung $h: \mathbb{Z} \to \mathbb{N}_+$, so dass $h \circ f = I_{\mathbb{N}_+}$? Begründen Sie ihre Antwort

Lösung 6.3

a) Es gibt keine solche Abbildung q.

Angenommen es gäbe eine solche Abbildung g, mit $f \circ g = I_{\mathbb{Z}}$. Dann müsste für alle $z \in \mathbb{Z}$ gelten: $(f \circ g)(z) = f(g(z)) = z$.

Also z.B. auch für 42:

$$42 = f(g(42)) = 1 - 3 \cdot g(42)$$

$$\Leftrightarrow -\frac{41}{3} = g(42)$$

Da $-\frac{41}{3} \notin \mathbb{N}_+$, kann es nicht Funktionswert einer solchen Abbildung $g : \mathbb{Z} \to \mathbb{N}_+$ sein.

b) Es gibt eine solche Abbildung h (sogar unendlich viele). Z. B.:

$$h(z) = \begin{cases} (1-z)/3, & \text{wenn } z \le 1 \land (1-z) \text{ modulo } 3 = 0\\ 42, & \text{sonst.} \end{cases}$$

Für jedes $n \in \mathbb{N}_+$ ist $(h \circ f)(n) = (h(f(n))) = h(1-3n)$.

$$1-(1-3n)=3n$$
ist für alle $n\in\mathbb{N}_+$ durch 3 teilbar $\Rightarrow (h\circ f)(n)=h(1-3n)=(1-(1-3n))/3=3n/3=n$

Also folgt $h \circ f = I_{\mathbb{N}_+}$

Hinweis: h muss vollständig definiert werden, also auch für Zahlen, die nicht die Bedingung " $z \le 1 \land (1-z)$ modulo 3=0" erfüllen (sonst wäre h nicht linkstotal).

Aufgabe 6.4 (3+2 Punkte)

Gegeben sei folgende Abbildung über dem Alphabet $A = \{a,b,c,\ldots,z\}$.

$$R(\varepsilon) = \varepsilon,$$

$$\forall w \in A^* : \forall x \in A : R(wx) = x \cdot R(w).$$

- a) Ist R ein Homomorphismus? Begründen Sie ihre Antwort.
- b) Geben Sie ein weiteres Alphabet A' an, so dass R ein Homomorphismus ist.

Lösung 6.4

a) R ist kein Homomorphismus.

$$R(a) = a$$

$$R(\mathbf{b}) = \mathbf{b}$$

$$R(ab) = ba$$

Es ist also
$$R(ab) = ba \neq ab = R(a) \cdot R(b)$$

Wäre R ein Homomorphismus, müsste aber gelten: $R(ab) = R(a) \cdot R(b)$.

Punkteverteilung: Für das Erkennen, dass R kein Homomorphismus ist, gibt es 1 Punkt und 2 Punkte für eine korrekte Begründung.

b) Für Alphabete mit nur einem Symbol ist R ein Homomorphismus. Also z.B. für $A' = \{a\}.$