Análisis de Algoritmos y Estructuras de Datos Tema 1: Órdenes asintóticos

Mª Teresa García Horcajadas Antonio García Domínguez

José Fidel Argudo Argudo Francisco Palomo Lozano

Versión 1.0

- Introducción
- Orden asintótico O
- \odot Orden asintótico Ω
- Φ Orden asintótico Θ
- Operaciones asintóticas

Repaso de conceptos básicos

Eficiencia

- Algoritmos y programas consumen recursos al ejecutarse
- Recursos en una máquina secuencial: tiempo y espacio
- A menor consumo de recursos, mayor eficiencia computacional
- Relacionamos eficiencia con tamaño de la entrada mediante funciones $\mathbb{N} \to \mathbb{R}^+_0$, donde $\mathbb{R}^+_0 = \mathbb{R}^+ \cup \{0\}$

Relación entre la eficiencia de programas y algoritmos

- Por el principio de invarianza, la eficiencia de todo programa para un mismo algoritmo solo varía en un factor constante
- Los órdenes asintóticos sirven para expresar la eficiencia sin tener en cuenta esos factores constantes
- Esto nos permite centrarnos en los algoritmos

Definición de O

Definición

Dada una función $f: \mathbb{N} \to \mathbb{R}_0^+$, su orden O es el conjunto de las funciones acotadas superiormente, a partir de un cierto umbral, por múltiplos reales y positivos de f.

$$O(f) = \{t : \mathbb{N} \to \mathbb{R}_0^+ \mid \exists c \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \ \forall n \geqslant n_0 \ t(n) \leqslant cf(n)\}$$

Así,
$$t \in O(f)$$
 si, y solo si, $\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \geqslant n_0 \ t(n) \leqslant cf(n)$

Nota

Esta definición es asintótica, ya que solo importa lo que ocurre para valores de n suficientemente grandes. Por lo tanto, se puede relajar cuando $n < n_0$ y permitir que f tome el valor 0, valores negativos o que incluso no esté definida.

Pertenencia de n + 20 a O(n) con distintos c y n_0

Pertenencia de n^3 a $O(2^n)$ con distintos c y n_0

Propiedades de O (I)

Ordenación de funciones por órdenes

O induce un preorden \leq_O (una relación binaria reflexiva y transitiva) sobre $\mathbb{N} \to \mathbb{R}_0^+$, definido por:

$$f \leqslant_{\mathcal{O}} g \iff \mathcal{O}(f) \subseteq \mathcal{O}(g)$$

Este preorden no es total (existen elementos incomparables).

Pertenencia y contención

$$f \in O(g) \iff O(f) \subseteq O(g)$$
$$f \in O(g) \land g \in O(f) \iff O(f) = O(g)$$
$$f \in O(g) \land g \notin O(f) \iff O(f) \subset O(g)$$

Simplificación

In troducción

$$O(cf) = O(f)$$
 $(c \in \mathbb{R}^+)$ $O(f+g) = O(\max\{f,g\})$ $O\left(\sum_{i=0}^k c_i n^i\right) = O(n^k)$ $(c_k \in \mathbb{R}^+)$

Comparación mediante límites (si existen)

$$\lim \frac{f(n)}{g(n)} = 0 \implies O(f) \subset O(g)$$

$$\lim \frac{f(n)}{g(n)} \in \mathbb{R}^+ \implies O(f) = O(g)$$

$$\lim \frac{f(n)}{g(n)} = \infty \implies O(g) \subset O(f)$$

Jerarquía de complejidad: $\log_2 n <_O \sqrt{n} <_O n$

Jerarquía de complejidad: $n <_O n \log n <_O n^2 <_O n^3$

Jerarquía de complejidad: $n^3 <_O 2^n <_O 3^n$

Jerarquía de complejidad: $2^n <_O n! <_O n^n$

Jerarquía de complejidad

¿Qué ocurre si se multiplica el tiempo disponible?

Nombre	O(f(n))	t=1 s	t=2 s	t=10 s
logarítmico	log n	n = 100	n = 10000	$n = 10^{20}$
lineal	n	n = 100	n = 200	n = 1000
lineal logarítmico o cuasi-lineal	n log n	n = 100	n = 178	n = 702
cuadrático	n^2	n = 100	n = 141	n = 316
cúbico	n ³	n = 100	n = 126	n = 215
potencial	n ^k	n = 100	$n=100\cdot 2^{1/k}$	$n=100\cdot 10^{1/k}$
exponencial	2 ⁿ	n = 100	n = 101	n = 103

Orden de eficencia \Rightarrow luy $n < n < n \cdot \log n < n^2 < n^3 < n^k < 2^n$

Jerarquía de complejidad

¿Qué ocurre si se dobla el tamaño de la entrada?

Nombre	O(f(n))	n = 100	n = 200
logarítmico	log n	1 s	1,15 s
lineal	n	1 s	2 s
lineal logarítmico o cuasi-lineal	n log n	1 s	2,30 s
cuadrático	n ²	1 s	4 s
cúbico	n ³	1 s	8 s
potencial	n ^k	1 s	2 ^k s
exponencial	2 ⁿ	1 s	$1,27 \times 10^{30} \text{ s} > 4 \times 10^{20} \text{ siglos}$

Definición de Ω

Definición

Dada una función $f: \mathbb{N} \to \mathbb{R}_0^+$, su orden Ω es el conjunto de las funciones acotadas inferiormente, a partir de un cierto umbral, por múltiplos reales y positivos de f.

$$\Omega(f) = \{t : \mathbb{N} \to \mathbb{R}_0^+ \mid \exists c \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \ \forall n \geqslant n_0 \ cf(n) \leqslant t(n)\}$$

Así, $t \in \Omega(f)$ si, y sólo si, $\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \geqslant n_0 \ cf(n) \leqslant t(n)$

Propiedades de Ω

Dualidad

$$f \in O(g) \iff g \in \Omega(f)$$

Permite «traspasar» las propiedades de O a Ω y viceversa.

Relación entre O y Ω

$$O(f) = O(g) \iff \Omega(f) = \Omega(g)$$

Definición de Θ

Definición

Dada una función $f: \mathbb{N} \to \mathbb{R}_0^+$, su orden Θ es el conjunto de funciones acotadas (superior e inferiormente), a partir de un cierto umbral, por múltiplos reales y positivos de f.

$$\Theta(f) = \{t : \mathbb{N} \to \mathbb{R}_0^+ \mid \exists c_1, c_2 \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \}$$

$$\forall n \geqslant n_0 \ c_1 f(n) \leqslant t(n) \leqslant c_2 f(n) \}$$

Así, $t \in \Theta(f)$ si, y solo si, $t \in \Omega(f)$ y $t \in O(f)$

Equivalencia entre órdenes de funciones

 Θ induce una equivalencia \equiv_{Θ} (una relación binaria reflexiva, simétrica y transitiva) sobre $\mathbb{N} \to \mathbb{R}_0^+$, definida por:

$$f \equiv_{\Theta} g \iff \Theta(f) = \Theta(g)$$

Pertenencia a $\Theta(\log_2 n)$

Relación entre O, Ω y Θ

Propiedades

$$\Theta(f) = O(f) \cap \Omega(f)$$

$$O(f) = O(g) \iff \Theta(f) = \Theta(g)$$

$$\Omega(f) = \Omega(g) \iff \Theta(f) = \Theta(g)$$

Las propiedades de O y Ω se traducen de manera sencilla a Θ .

Ejemplos

$$\Theta(cf) = \Theta(f)$$

$$\Theta(f+g) = \Theta(\max\{f,g\})$$

$$\lim \frac{f(n)}{g(n)} \in \mathbb{R}^+ \implies \Theta(f) = \Theta(g)$$

Simplemente por aplicación directa de la relación entre O y Θ .

Operaciones asintóticas

Definición

Dados $\Xi \in \{O, \Omega, \Theta\}$, $f, g : \mathbb{N} \to \mathbb{R}_0^+$ y un operador binario \circ , se define $\Xi(f) \circ \Xi(g)$ como el conjunto de las funciones que se obtienen aplicando \circ a cada función de $\Xi(f)$ y de $\Xi(g)$.

$$\Xi(f) \circ \Xi(g) = \{t : \mathbb{N} \to \mathbb{R}_0^+ \mid \exists u \in \Xi(f) \ \exists v \in \Xi(g) \ \exists n_0 \in \mathbb{N} \forall n \geqslant n_0 \ t(n) = u(n) \circ v(n) \}$$

Suma y producto de órdenes

$$O(f) + O(g) = O(f + g)$$
 $O(f) \cdot O(g) = O(f \cdot g)$
 $O(f) + O(g) = O(f + g)$ $O(f) \cdot O(g) = O(f \cdot g)$
 $O(f) + O(g) = O(f \cdot g)$
 $O(f) \cdot O(g) = O(f \cdot g)$
 $O(f) \cdot O(g) = O(f \cdot g)$

Referencias

- Brassard, Gilles y Bratley, Paul. Algorítmica. Concepción y Análisis. Masson. 1990.
- Brassard, Gilles y Bratley, Paul. Fundamentos de Algoritmia. Prentice-Hall. 1997.
- Graham, Ronald L.; Knuth, Donald E. y Patashnik, Oren. Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley. 1994. 2^a ed.