Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017753

International filing date: 30 November 2004 (30.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-402115

Filing date: 01 December 2003 (01.12.2003)

Date of receipt at the International Bureau: 17 February 2005 (17.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

20.12.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月 1日

出 願 番 号 Application Number:

特願2003-402115

[ST. 10/C]:

[JP2003-402115]

出 願 人 Applicant(s):

大日本印刷株式会社

2005年 2月 3日

特許庁長官 Commissioner, Japan Patent Office 1) 11]

ページ: 1/E

特許願 【書類名】 B0H00012 【整理番号】 平成15年12月 1日 【提出日】 特許庁長官殿 【あて先】 CO4B 35/10 【国際特許分類】 【発明者】 東京都新宿区市谷加賀町一丁目1番1号 大日本印刷株式会社内 【住所又は居所】 手嶋 勝弥 【氏名】 【発明者】 長野県千曲市稲荷山1743-4 【住所又は居所】 大石 修治 【氏名】 【特許出願人】 【識別番号】 000002897 大日本印刷株式会社 【氏名又は名称】 【代表者】 北島 義俊 【代理人】 100101203 【識別番号】 【弁理士】 【氏名又は名称】 山下 昭彦 03-5524-2323 【電話番号】 【選任した代理人】 100104499 【識別番号】 【弁理士】 岸本 達人 【氏名又は名称】 03-5524-2323 【電話番号】 【手数料の表示】 131924 【予納台帳番号】 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 【物件名】 図面 1 要約書 1 【物件名】

【包括委任状番号】

0105701

【書類名】特許請求の範囲

【請求項1】

 $\{1\ 1\ 3\}$ 面、 $\{0\ 1\ 2\}$ 面、 $\{1\ 0\ 4\}$ 面、 $\{1\ 1\ 0\}$ 面、 $\{1\ 0\ 1\}$ 面、 $\{1\ 1\ 6\}$ 面、 $\{2\ 1\ 1\}$ 面、 $\{1\ 2\ 2\}$ 面、 $\{2\ 1\ 4\}$ 面、 $\{1\ 0\ 0\}$ 面、 $\{1\ 2\ 5\}$ 面、 $\{2\ 2\ 3\}$ 面、 $\{1\ 3\ 1\}$ 面、および $\{3\ 1\ 2\}$ 面からなる群から選択される少なくとも $1\ 0$ の結晶面を有することを特徴とする人工コランダム結晶。

【請求項2】

{001} 面以外の優位な結晶面を有することを特徴とする人工コランダム結晶。

【請求項3】

六角両錘形の結晶に由来することを特徴とする請求項1または請求項2に記載の人工コランダム結晶。

【請求項4】

前記人工コランダム結晶は無色であることを特徴とする請求項1から請求項3までのいずれかの請求項に記載の人工コランダム結晶。

【請求項5】

前記人工コランダム結晶中に、着色成分としてクロム元素が添加されていることを特徴とする請求項1から請求項3までのいずれかの請求項に記載の人工コランダム結晶。

【請求項6】

原料およびフラックスを含有する試料を加熱し、フラックスの蒸発を駆動力として結晶を析出および成長させるフラックス蒸発法により、六角両錘形を基本形状とする人工コランダム結晶を製造することを特徴とする人工コランダム結晶の製造方法。

【請求項7】

前記フラックスは、酸化モリブデンを含有することを特徴とする請求項6に記載の人工コランダム結晶の製造方法。

【請求項8】

前記フラックスは、蒸発抑制剤を含有することを特徴とする請求項7に記載の人工コランダム結晶の製造方法。

【請求項9】

前記蒸発抑制剤は、アルカリ金属化合物であることを特徴とする請求項8に記載の人工コランダム結晶の製造方法。

【請求項10】

前記アルカリ金属化合物は、加熱することにより、 Li_2O 、 $Na_2OおよびK_2O$ からなる群から選択される少なくとも1種のアルカリ金属酸化物を生成するものであることを特徴とする請求項9に記載の人工コランダム結晶の製造方法。

【請求項11】

前記アルカリ金属化合物のアルカリ金属原子のモル数が、前記試料の全モル数に対して 40 m o 1%以下であることを特徴とする請求項10に記載の人工コランダム結晶の製造 方法。

【請求項12】

前記原料のモル数が、前記試料の全モル数に対して10mo1%以下であることを特徴とする請求項6から請求項11までのいずれかの請求項に記載の人工コランダム結晶の製造方法。

【請求項13】

人工コランダム結晶を製造するために用いられ、モリブデン化合物およびアルミニウム 化合物を含有することを特徴とする人工コランダム結晶製造用原料。

【請求項14】

アルカリ金属化合物を含有することを特徴とする請求項13に記載の人工コランダム結晶製造用原料。

【請求項15】

前記モリブデン化合物は、酸化モリブデン、もしくは加熱により酸化モリブデンを生成出証券2005-3006247

する化合物であることを特徴とする請求項13または請求項14に記載の人工コランダム 結晶製造用原料。

【請求項16】

前記アルミニウム化合物は、酸化アルミニウム、もしくは加熱により酸化アルミニウム を生成する化合物であることを特徴とする請求項13から請求項15までのいずれかの請 求項に記載の人工コランダム結晶製造用原料。

【請求項17】

前記アルカリ金属化合物は、アルカリ金属酸化物、あるいは加熱によりアルカリ金属酸化物を生成する化合物であることを特徴とする請求項14から請求項16までのいずれかの請求項に記載の人工コランダム結晶製造用原料。

【請求項18】

酸化クロム、あるいは加熱により酸化クロムを生成するクロム化合物を含有することを特徴とする請求項13から請求項17までのいずれかの請求項に記載の人工コランダム結晶製造用原料。

【書類名】明細書

【発明の名称】人工コランダム結晶

【技術分野】

[0001]

本発明は、例えばレーザー発振材料、高硬度軸受材料、物性測定用標準材料、宝飾品および高付加価値日用品等に用いることが可能な人工コランダム結晶に関するものである。

【背景技術】

[0002]

近年、天然に存在するような、結晶独自の立体形状を有する単結晶が、その未知なる特性から各分野で求められている。

[0003]

人工コランダム結晶の製造方法としては、(1)酸素および水素炎中にコランダム結晶の原料粉末を落下させながら結晶粒を成長させる火炎溶融法(ベルヌーイ法)、(2)コランダム結晶の原料粉末を適当なフラックスに混合して坩堝で溶融し、溶液を徐冷しながら結晶を析出・成長させる、または溶液を坩堝の中で温度勾配を付けながら結晶を析出・成長させる、あるいはフラックスを蒸発させながら結晶を析出・成長させるフラックス法、(3)コランダム結晶の原料粉末を坩堝で溶融し、融液から結晶を引き上げるチョクラルスキー法、(4)コランダム結晶の原料粉末を成形した後、水素ガス雰囲気中、高温で長時間加熱して焼結する方法等が挙げられる。

[0004]

上記 (1) の火炎溶融法では、結晶の成長速度が速いため、高品質な結晶を得ることは困難である。また、この方法では棒状の結晶が製造されるため、実際にレーザー発振材料等に使用する際には、製造された棒状の結晶を所望の形状となるように切削する必要があり、さらに人工コランダム結晶は硬度が高いことからコストがかかるという問題があった。さらにまた、この方法により製造された人工コランダム結晶は不純物を含まないのに対し、天然のコランダム結晶は不純物を含むものであり、容易に判別することができるため、宝飾品としての価値が非常に低いという欠点もあった。

[0005]

また、上記(3)のチョクラルスキー法は、純度の高い結晶を製造することが可能であるため、レーザー発振材料等に好適に用いることができるが、この方法では棒状の結晶が製造されるため、上述したように実用化する際には、棒状の結晶を所望の形状となるように切削する必要があり、さらに人工コランダム結晶は硬度が高いことからコストがかかるという問題があった。さらにまた、この方法により製造された人工コランダム結晶は純度が高いために不純物を含まず、天然のコランダム結晶と大きく異なることから、宝飾品としての価値が非常に低いという欠点もあった。チョクラルスキー法は例えば特許文献1または特許文献2に開示されている。

[0006]

さらに、上記(4)の成形後焼結する方法では、高温で長時間加熱しなければならず、膨大なエネルギーを必要とするため、コストがかかるという問題があった。焼結する方法は例えば特許文献3に開示されている。

[0007]

一方、上記(2)のフラックス法では、フラックスとして酸化リチウムー酸化(フッ化)鉛、フッ化アルミニウム・ナトリウム、酸化リチウムー酸化タングステンー酸化(フッ化)鉛、酸化ビスマスー酸化ランタン一酸化(フッ化)鉛等を用いて、溶液を徐冷しながら結晶を析出・成長させることにより、板状の結晶が得られることが知られている。しかしながら、薄い板状の結晶しか得ることができず、実用化する際にコストがかかるという問題があった。フラックス法は例えば非特許文献1または非特許文献2に開示されている

[0008]

【特許文献1】特開平7-277893号公報

【特許文献2】特開平6-199597号公報

【特許文献3】特開平7-187760号公報

【非特許文献 1】 Elwell D., Man-made gemstones, Ellis Horwood Ltd., Chichester (1979)

【非特許文献 2】 Elwell D., Scheel H. J., Crystal growth from high-temperatur e solutions, Academic Press, London (1975)

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明は、上記問題点に鑑みてなされたものであり、低コストで実用化することが可能な人工コランダム結晶およびその製造方法を提供することを主目的とするものである。

【課題を解決するための手段】

[0010]

上記目的を達成するために、本発明は、 $\{1\ 1\ 3\}$ 面、 $\{0\ 1\ 2\}$ 面、 $\{1\ 0\ 4\}$ 面、 $\{1\ 1\ 0\}$ 面、 $\{1\ 0\ 1\}$ 面、 $\{1\ 1\ 0\}$ 面、 $\{1\ 1\ 0\}$ 面、 $\{1\ 2\ 1\}$ 面 、 $\{1$

[0011]

本発明によれば、人工コランダム結晶が上記の結晶面を有することから、レーザー発振材料等に使用する際に切削等の加工を施すことがなく、または切削等の加工を施す場合であっても本発明の人工コランダム結晶が有する結晶面を利用して加工することができるため、低コストで実用化することができるという利点を有する。また、本発明の人工コランダム結晶は多面体結晶であり、天然のコランダム結晶に近いものであることから、宝飾品等としての価値が高いという利点も有する。

$[0\ 0\ 1\ 2\]$

本発明はまた、 {0 0 1} 面以外の優位な結晶面を有することを特徴とする人工コランダム結晶を提供する。

[0013]

本発明によれば、人工コランダム結晶が $\{0\ 0\ 1\}$ 面以外の優位な結晶面を有することから、従来の $\{0\ 0\ 1\}$ 面を優位な結晶面とする板状結晶に由来するものではなく、レーザー発振材料等に使用する際には切削等の加工を施すことがない、または切削等の加工を施す場合であっても本発明の人工コランダム結晶の形状を利用して加工することができるため、低コストで実用化することができるという利点を有する。また、本発明の人工コランダム結晶は天然のコランダム結晶に近いものであることから、宝飾品等としての価値が高いという利点も有する。

[0014]

また、本発明の人工コランダム結晶は、六角両錘形の結晶に由来することが好ましい。 これにより、所定の結晶面を有する人工コランダム結晶とすることができ、レーザー発振 材料等に使用する際に六角両錘形の形状を利用して加工を施すことができるため、低コス トでの実用化が可能となるからである。また、六角両錘形の結晶に由来することから、多 面体結晶であり、天然のコランダム結晶に近いものであるため、宝飾品等としての価値が 高くなるからである。

[0015]

さらに本発明においては、上記人工コランダム結晶は無色であってもよく、あるいは、 上記人工コランダム結晶中に、着色成分としてクロム元素が添加されていてもよい。

[0016]

また本発明は、原料およびフラックスを含有する試料を加熱し、フラックスの蒸発を駆動力として結晶を析出および成長させるフラックス蒸発法により、六角両錘形を基本形状とする人工コランダム結晶を製造することを特徴とする人工コランダム結晶の製造方法を

提供する。

[0017]

本発明によれば、フラックス蒸発法を用いることにより、六角両錘形を基本形状とする人工コランダム結晶を製造することが可能であるため、レーザー発振材料等に使用する際に切削等の加工を施すことがなく、または切削等の加工を施す場合であっても六角両錘形の形状を利用して加工することができ、低コストでの実用化が可能な人工コランダム結晶を製造することができる。また、フラックス蒸発法では、天然のコランダム結晶に近い結晶が得られるため、宝飾品等としての価値が高いものとすることができる。さらに、フラックス蒸発法において用いる装置は高温炉および坩堝と単純であり、容易に六角両錘形の人工コランダム結晶を製造することができる。

[0018]

また本発明においては、上記フラックスは酸化モリブデンを含有することが好ましい。 フラックスとして酸化モリブデンを用いることにより、板状結晶または針状結晶ではなく 、六角両錘形の結晶を選択的に製造することができるからである。

[0019]

さらに上記発明においては、上記フラックスは蒸発抑制剤を含有していてもよい。これにより、フラックスの蒸発速度が抑えられ、多核発生および結晶成長速度を抑制できるため、高品質な人工コランダム結晶を製造することが可能となるからである。

[0020]

また上記発明においては、上記蒸発抑制剤がアルカリ金属化合物であることが好ましい。さらに、上記アルカリ金属化合物は、加熱することにより、 Li_2O 、 Na_2O および K_2O からなる群から選択される少なくとも1種のアルカリ金属酸化物を生成するものであることが好ましい。これらを用いることにより、効果的にフラックスの蒸発を抑制することができ、高品質で大型の人工コランダム結晶を製造することができるからである。

[0021]

さらにまた上記発明においては、上記アルカリ金属化合物のアルカリ金属原子のモル数が、上記試料の全モル数に対して40mol%以下であることが好ましい。本発明においては、フラックスの蒸発を駆動力として核形成および結晶成長が促されるため、アルカリ金属化合物の含有量が上記範囲より多い場合、結晶化が妨げられる可能性があるからである。

[0022]

また本発明においては、上記原料のモル数が、上記試料の全モル数に対して10mol%以下であることが好ましい。原料の含有量が上記範囲より多い場合、上記フラックスに原料が溶解しにくくなり、結晶化が妨げられる可能性があるからである。

[0023]

本発明は、また、人工コランダム結晶を製造するために用いられ、モリブデン化合物およびアルミニウム化合物を含有することを特徴とする人工コランダム結晶製造用原料を提供する。

[0024]

本発明の人工コランダム結晶製造用原料を用いて人工コランダム結晶を製造した場合、板状または針状ではなく、六角両錘形の人工コランダム結晶を選択的に製造することができることから、上述したように低コストでの実用化が可能となり、また宝飾品等としての価値が高い結晶を得ることができる。

[0025]

また本発明においては、上記人工コランダム結晶製造用原料は、アルカリ金属化合物を含有してもよい。アルカリ金属化合物は、上記モリブデン化合物等の蒸発を抑制するため、本発明の人工コランダム結晶製造用原料を用いて人工コランダム結晶を製造した場合、多核発生および結晶成長速度を抑制することができ、高品質な人工コランダム結晶を得ることが可能となるからである。

[0026]

さらに本発明においては、上記モリブデン化合物は、酸化モリブデン、もしくは加熱により酸化モリブデンを生成する化合物であることが好ましい。

[0027]

さらにまた、本発明においては、上記アルミニウム化合物は、酸化アルミニウム、もしくは加熱により酸化アルミニウムを生成する化合物であることが好ましい。

[0028]

また本発明においては、上記アルカリ金属化合物は、アルカリ金属酸化物、あるいは加熱によりアルカリ金属酸化物を生成する化合物であることが好ましい。これらは効果的にフラックスの蒸発を抑制することができるため、本発明の人工コランダム結晶製造用原料を用いて人工コランダム結晶を製造した場合、高品質で大型の人工コランダム結晶を得ることができるからである。

[0029]

さらに本発明においては、上記人工コランダム結晶製造用原料は、酸化クロム、あるい は加熱により酸化クロムを生成するクロム化合物を含有してもよい。

【発明の効果】

[0030]

本発明によれば、フラックス蒸発法を用いることにより六角両錘形を基本形状とする人工コランダム結晶を製造することができるため、レーザー発振材料等に使用する際には加工が容易であり、低コストでの実用化が可能となる。また、天然のコランダム結晶に近い結晶が得られるため、宝飾品等としての価値が高いという利点を有する。

【発明を実施するための最良の形態】

[0031]

本発明は、人工コランダム結晶、その製造方法、および人工コランダム結晶製造用原料を含むものである。以下、それぞれについて詳細に説明する。

[0032]

A. 人工コランダム結晶

まず、本発明の人工コランダム結晶について説明する。

[0033]

本発明の人工コランダム結晶は 2 つの態様に分けることができる。第 1 の態様としては、 $\{113\}$ 面、 $\{012\}$ 面、 $\{104\}$ 面、 $\{110\}$ 面、 $\{101\}$ 面、 $\{116\}$ 面、 $\{211\}$ 面、 $\{122\}$ 面、 $\{214\}$ 面、 $\{100\}$ 面、 $\{125\}$ 面、 $\{23\}$ 面、 $\{131\}$ 面、および $\{312\}$ 面からなる群から選択される少なくとも 1 つの結晶面を有するものである。また、第 2 の態様としては、 $\{001\}$ 面以外の優位な結晶面を有するものである。

以下、それぞれの態様について説明する。

[0034]

1. 第1の熊様

本発明の人工コランダム結晶の第1の態様は、 | 113 | 面、 | 012 | 面、 | 104 | 面、 | 110 | 面、 | 101 | 面、 | 116 | 面、 | 211 | 面、 | 122 | 面、 | 214 | 面、 | 100 | 面、 | 125 | 面、 | 223 | 面、 | 131 | 面、および | 312 | 面からなる群から選択される少なくとも1つの結晶面を有することを特徴とするものである。

[0035]

ここで、コランダム結晶について説明する。コランダム結晶は三方晶系に属するコランダム構造を有している。このコランダム構造は、ほぼ六方最密充填した格子の六配位(八面体)位置の2/3を陽イオン(A1)が規則的に占有しており、陽イオン(A1)を中心としたA1 O6 八面体が一部で面を共有し、Z 軸方向に連結した構造をしている。また一般的に、コランダム(A1 Z0 Z0 Z0 の Z

[0036]

コランダム (A 1 2 O 3) はアルミナ多形の中でも最も安定であり、このようなコラン ダム構造を有するコランダム結晶は、融点が約2050℃であり、高硬度(モース硬度9)を有し、耐薬品性、耐摩耗性および耐候性に優れている。また、高温環境下においても 高い電気絶縁性を示す。上述した性質を有することから、コランダム結晶は計器用軸受、 マイクロメス、光スイッチ素子、レーザー発振材料等に用いられている。また、コランダ ム (Al2O3)のAlの一部がCrまたはTiやFe等に置換されることにより、色相 が異なる結晶となり、これらの結晶は一般にルビーやサファイアと呼ばれ、宝飾品として 用いられている。

[0037]

また、人工コランダム結晶の製造方法としては、従来からチョクラルスキー法、火炎溶 融法、フラックス法、焼結法等が知られている。チョクラルスキー法または火炎溶融法に より作製された人工コランダム結晶は棒状結晶として得られるため、複雑な結晶形状を有 していない。また、焼結法により作製された人工コランダム結晶は成形後に焼結されるた め、この場合も複雑な結晶形状を有していない。一方、フラックス徐冷法では板状結晶が 得られることから、得られた人工コランダム結晶は結晶面を有するが、優位な結晶面が 001 面である。

[0038]

このように従来では、人工コランダム結晶が棒状または板状の結晶として得られるため 、レーザー発振材料等に使用する際には所望の形状となるように切削等の加工を施す必要 があり、上述したように人工コランダム結晶が高硬度を有することから、コストがかかる という不具合が生じていた。また、チョクラルスキー法および火炎溶融法により作製され た人工コランダム結晶は不純物を含まないのに対し、天然のコランダム結晶は不純物を含 むため、容易に判別することができ、宝飾品等としての価値は低いものであった。

[0039]

本態様における人工コランダム結晶は、所定の結晶面を有するものであり、このような 結晶面は六角両錘形の結晶に由来するものである。六角両錘形の結晶とは、例えば図1(a) に示すような形状を有する人工コランダム結晶を意味する。本態様においては、人工 コランダム結晶が六角両錘形の結晶に由来することから、レーザー発振材料や宝飾品等に 使用する際に切削等の加工を施すことがなく、または切削等の加工を施す場合であっても 本発明の人工コランダム結晶が有する結晶面を利用して加工することができることから、 低コストで実用化することができるという利点を有する。

[0040]

ここで、上記結晶および結晶面はX線回折装置を用いてそれぞれ同定および測定する。 この際、三方晶系、a=4. 759Å、c=12. 993Åとし、同定の際にはJCPD S No. 46-1212と比較する。本態様の人工コランダム結晶の結晶面のX線回折 パターンの一例を図2(a)に示す。また図2(b)は、本態様の人工コランダム結晶を 同定するために粉砕して測定したX線回折パターンである。本態様において人工コランダ ム結晶が所定の結晶面を有するとは、例えば図2 (a)に示すように、所定の結晶面のい ずれかに帰属されるピークが検出されればよいものとする。なお、図2(c)はJCPD S No. 46-1212のX線回折パターンであり、図2(a)~(c)のX線回折パターンは、CuKα線を用いて測定した。

[0041]

また本発明においては、例えば {101} 面とは、(101) 面と等価な全ての面、す なわち(101)面および(011)面、あるいはその倍数である(202)面、(02 2) 面、(303) 面、(033) 面、(404) 面および(044) 面などを意味する ものとし、他の所定の結晶面についても同様とする。

[0042]

本態様の人工コランダム結晶は、所定の結晶面を有することにより、従来の製造方法に よって製造された人工コランダム結晶とは区別される。例えばチョクラルスキー法により 製造された人工コランダム結晶は複雑な結晶形状を有しておらず、切削等の加工を施して も特定の結晶面を有するように加工することはほとんど不可能である。また、フラックス 徐冷法により製造された人工コランダム結晶は板状結晶であり、 {001} 面を優位な結 晶面とするが、上述したような六角両錘形の結晶に由来する結晶面を有するように加工す ることは通常不可能である。

[0043]

また、本態様において人工コランダム結晶は、六角両錘形の結晶に由来するものであればよく、上記の結晶面以外の結晶面を有していてもよい。

[0044]

なお、六角両錘形の結晶に由来するとは、本態様の人工コランダム結晶が六角両錘形を 基本形状とする人工コランダム結晶であってもよく、六角両錘形の人工コランダム結晶に 切削等の加工を施したものであってもよいことを意味するものである。

[0045]

また、六角両錘形を基本形状とするとは、例えば図1(b)に示すように六角両錘形の人工コランダム結晶であってもよく、図1(c)に示すように六角両錘形の一部が欠け、他の結晶面が出現している人工コランダム結晶であってもよい。なお、図1(b)および(c)は、光学顕微鏡(キーエンス社製 VH-Z450+VH-7000C)を用いて、クロム添加の人工コランダム結晶を撮影した光学顕微鏡写真である。

[0046]

本態様の人工コランダム結晶は、無色であってもよく、人工コランダム結晶中にクロム元素等の添加物が添加されることにより着色されたものであってもよい。

[0047]

ここで、コランダム結晶は、クロム等の添加物の種類により色相が異なるものとなることが知られている。例えば添加物のないものは無色であり、クロムを添加したものは濃赤色透明、チタンおよび鉄を添加したものは青色、ニッケルを添加したものは黄色、バナジウムを添加したものはアレキサンドライトカラー、ニッケルおよびクロム、あるいはニッケル、クロムおよび鉄を添加したものはオレンジ色、ニッケル、チタンおよび鉄を添加したものは黄緑色、チタン、クロムおよび鉄を添加したものは紫色となる。また、クロムが添加されている濃赤色のコランダム結晶以外のコランダム結晶を一般にサファイアと呼ぶ。本発明においては、これらのなかでも、クロム元素が添加された人工コランダム結晶であることが好ましい。

[0048]

上記無色の人工コランダム結晶の化学量論的な組成は、A12O3で表される。一方、上記クロム添加の人工コランダム結晶の化学量論的な組成は、A12O3:Crで表される。本態様においては、いずれの人工コランダム結晶も、組成としては化学量論的なものに限らず、化学量論的な組成からずれているものも含んでいる。本態様の人工コランダム結晶は、後述するようにフラックス蒸発法により作製されることが好ましく、フラックス蒸発法により作製した場合、人工コランダム結晶にフラックス中に含まれる元素が不純物として含有される場合があるからである。なお、人工コランダム結晶中の不純物の含有量は、通常1mo1%以下と極微量である。

[0049]

また、上記クロム添加の人工コランダム結晶中のCr含有量としては、人工コランダム結晶が着色されるだけのCrが含有されていれば特に限定はされなく、極微量であってもよい。

[0050]

本態様において、人工コランダム結晶は、フラックス蒸発法により作製されることが好ましい。フラックス蒸発法において用いる装置は高温炉および坩堝と単純であり、容易に六角両錘形の人工コランダム結晶を提供することができるからである。また、用いるフラックスの種類により、板状結晶または針状結晶ではなく、選択的に六角両錘形の結晶を作製することができるからである。さらに、上述したようにフラックス蒸発法により作製された人工コランダム結晶は、フラックス中に含まれる元素を不純物として含有する場合が

[0051]

なお、フラックス蒸発法等の人工コランダム結晶の製造方法に関しては、後述する「B .人工コランダム結晶の製造方法」の欄に記載するため、ここでの説明は省略する。

[0052]

また、本態様の人工コランダム結晶は、故意に不純物が含有されたものであってもよい。上述したように、不純物を含有することにより、天然に近いものとすることができ、宝飾品等としての価値が高いという利点を有するからである。

[0053]

2. 第2の態様

本発明の人工コランダム結晶の第2の態様は、 {001} 面以外の優位な結晶面を有することを特徴とするものである。

[0054]

上記第1の態様で記載したように、従来のチョクラルスキー法、火炎溶融法または焼結法により作製された人工コランダム結晶は、複雑な結晶形状を有していない。また、フラックス徐冷法では板状結晶が得られることから、人工コランダム結晶は結晶面を有するが、優位な結晶面が {001} 面である。

[0055]

本態様における人工コランダム結晶は、 $\{0\ 0\ 1\}$ 面以外の優位な結晶面を有するものであり、このような結晶面は板状結晶には由来せず、上記第1 の態様と同様に六角両錘形の結晶に由来するものである。本態様においては、人工コランダム結晶が $\{0\ 0\ 1\}$ 面以外の優位な結晶面を有し、六角両錘形の結晶に由来するものであることから、レーザー発振材料や宝飾品等に使用する際に切削等の加工を施すことがなく、または切削等の加工を施す場合であっても本発明の人工コランダム結晶が有する結晶面を利用して加工することができ、低コストで実用化することができるという利点を有する。

[0056]

ここで、 $\{0\ 0\ 1\}$ 面以外の優位な結晶面を有するとは、 $\{0\ 0\ 1\}$ 面を有していないことを意味するか、また $\{0\ 0\ 1\}$ 面を有する場合は、X線回折パターンにおいて $\{0\ 0\ 1\}$ 面に帰属されるピークより強度の大きいピークが存在することを意味するものである。また、 $\{0\ 0\ 1\}$ 面以外の優位な結晶面としては、上記第1 の態様に記載した所定の結晶面のいずれかであることが好ましい。

[0057]

なお、人工コランダム結晶のその他の点に関しては、上記第1の態様に記載したものと 同様であるので、ここでの説明は省略する。

[0058]

B. 人工コランダム結晶の製造方法

次に、本発明の人工コランダム結晶の製造方法について説明する。

[0059]

本発明の人工コランダム結晶の製造方法は、原料およびフラックスを含有する試料を加熱し、フラックスの蒸発を駆動力として結晶を析出および成長させるフラックス蒸発法により、六角両錘形を基本形状とする人工コランダム結晶を製造することを特徴とするものである。

[0060]

フラックス法とは、溶液法の一種であり、融剤法とも呼ばれるものである。フラックス法により結晶を成長させる際には、フラックスとなる適当な塩または酸化物と、溶質となる原料とを混合し、加熱溶融した後、溶液を徐冷あるいはフラックスを蒸発させながら過飽和状態をつくり、結晶を成長させる。この過飽和状態の形成方法の違いにより、フラックス蒸発法、フラックス徐冷法およびフラックス温度勾配法に大別される。

$[0\ 0\ 6\ 1\]$

本発明は、上記の中でもフラックス蒸発法を用いるものである。フラックス蒸発法とは、フラックスの蒸発を駆動力とした核形成および結晶成長を促す方法であり、例えば図3(b)に示すように、フラックスおよび原料を含有する試料1が充填された坩堝12を高温炉13中に設置し、加熱して試料1中のフラックスを蒸発させて人工コランダム結晶2を析出・成長させると、図3(c)に示すように人工コランダム結晶2を含有する試料1が得られる。この残存した試料1を適当な媒体に溶解させることにより、人工コランダム結晶2を分離することができる。

[0062]

フラックス法を用いた人工コランダム結晶の製造方法としては、溶液を徐冷しながら過飽和状態をつくり結晶を成長させるフラックス徐冷法により、酸化リチウムー酸化(フッ化)鉛、酸化リチウムー酸化タングステンー酸化(フッ化)鉛、または酸化ビスマスー酸化ランタンー酸化(フッ化)鉛等の鉛系フラックスを用いて、板状結晶が得られることが知られている。しかしながら、この方法により得られる結晶は薄い板状結晶のみであり、大型で高品質な結晶を製造することは困難であった。したがって、レーザー発振材料等に使用する際には板状結晶を所望の形状に切削する必要があり、さらに人工コランダム結晶は高硬度を有することから、コストがかかるという不具合が生じていた。

[0063]

このような問題がある一方で、フラックス法ではフラックス中に含まれる元素が不純物として結晶に含有される場合があるため、チョクラルスキー法等とは異なり、得られる人工コランダム結晶は不純物を含み、天然のコランダム結晶に近いものとすることができることから、宝飾品等としての価値が高いものが得られるという利点を有する。

[0064]

本発明においては、フラックス蒸発法を用いることにより、例えば図1 (b) 示すような六角両錘形を基本形状とする人工コランダム結晶を製造することが可能であるため、実用化する際の加工が容易であり、安価に高付加価値の人工コランダム結晶を提供することができる。また、フラックス蒸発法に用いる装置は、図3 (b) に示すように高温炉13 および坩堝12があればよく単純であり、フラックス蒸発法では、フラックスを蒸発させて結晶を析出・成長させ、残存した試料を適当な媒体に溶解させると人工コランダム結晶が得られることから、製造工程が簡便である。さらに上述したように、フラックス蒸発法では、人工コランダム結晶がフラックス中に含まれる元素を不純物として含有する場合があり、天然のコランダム結晶に近いものが得られるため、宝飾品等としての価値が高い人工コランダム結晶を製造することが可能である。

[0065]

なお、本発明において、六角両錘形を基本形状とする人工コランダム結晶とは、図1(b)に示すような六角両錘形の結晶だけでなく、図1(c)に示すような六角両錘形の一部が欠け、他の結晶面が出現している結晶も含むものとする。

[0066]

図3は本発明の人工コランダム結晶の製造方法の一例を示す工程図である。図3に示すように、本発明の人工コランダム結晶の製造方法は、乳鉢11にてフラックスおよび原料を攪拌して試料1を調製する試料調製工程(図3(a))と、上記試料1を充填した坩堝12を高温炉13中に設置して加熱し、さらに高温保持してフラックスを蒸発させる加熱・蒸発工程(図3(b))と、上記加熱・蒸発工程において溶融した試料を冷却する冷却工程(図3(c))と、上記加熱・蒸発工程および上記冷却工程後に残存した試料1を適当な媒体に溶解させて人工コランダム結晶2を分離する結晶回収工程(図3(d))とを有するものである。

以下、このような人工コランダム結晶の製造方法の各工程について説明する。

[0067]

1. 試料調製工程

本発明の人工コランダム結晶の製造方法においては、まずフラックスおよび原料を攪拌 して試料を調製する試料調製工程が行われる。

[0068]

本工程において、フラックスおよび原料の攪拌方法としては、均一に攪拌することができる方法であれば特に限定はされないが、例えば乳鉢でフラックスおよび原料を十分に攪拌する方法を用いることができる。

[0069]

本発明に用いられる試料は、フラックスおよび原料を含有するものである。以下、フラックスおよび原料に分けて説明する。

[0070]

(1) フラックス

本発明に用いられるフラックスは、後述する加熱・蒸発工程において蒸発するものであり、かつ後述する結晶回収工程において適当な媒体に溶解するものであれば特に限定はされないが、酸化モリブデンを含有することが好ましい。上記フラックスが酸化モリブデンを含有することにより、板状または針状の人工コランダム結晶ではなく、六角両錘形を基本形状とする人工コランダム結晶を選択的に製造することが可能となるからである。

[0071]

このような酸化モリブデンとしては、酸化モリブデンそのものだけではなく、後述する加熱・蒸発工程において加熱することにより、酸化モリブデンを生成するもの、例えば炭酸モリブデン、硫酸モリブデン、硝酸モリブデン、モリブデン水酸化物、およびこれらの水和物等も使用することができる。本発明においては、酸化モリブデンそのものを用いることが好ましい。

[0072]

また、本発明においては、上記フラックスが蒸発抑制剤を含有してもいてよい。これにより、フラックスの蒸発速度が抑えられ、多核発生および結晶成長速度を抑制することができるため、高品質な人工コランダム結晶を製造することが可能となるからである。

[0073]

一方、フラックスが上記蒸発抑制剤を含有しない場合は、核形成の速度が速く、核が多 く形成されるため、多数の人工コランダム結晶を製造することができる。

[0074]

上記蒸発抑制剤としては、フラックスの蒸発を抑制することができるものであり、かつ 後述する結晶回収工程において適当な媒体に溶解するものであれば特に限定はされないが 、本発明においてはアルカリ金属化合物を用いることが好ましい。アルカリ金属化合物を 用いることにより、効果的にフラックスの蒸発を抑制することができ、高品質で大型の人 エコランダム結晶を製造することができるからである。

[0075]

このようなアルカリ金属化合物としては、後述する加熱・蒸発工程において加熱することにより、アルカリ金属酸化物を生成するものであれば特に限定はされなく、例えば炭酸アルカリ金属、硫酸アルカリ金属、硝酸アルカリ金属、アルカリ金属水酸化物、およびこれらの水和物等を用いることができる。本発明においては、上記の中でもLi2O、Na2OおよびK2Oからなる群から選択される少なくとも1種のアルカリ金属酸化物を生成するものであることが好ましい。具体的には、Li2CO3、Na2CO3、K2CO3等が挙げられる。

[0076]

また、上記アルカリ金属化合物の含有量としては、アルカリ金属化合物のアルカリ金属原子のモル数が、上記試料の全モル数に対して40mol%以下、中でも30mol%以下、特に20mol%の範囲となるように含有されることが好ましい。本発明においては、フラックスの蒸発を駆動力として核形成および結晶成長が促されるため、アルカリ金属化合物の含有量が上記範囲より多い場合、結晶化が妨げられる可能性があるからである。

[0077]

(2) 原料

次に、本発明に用いられる原料について説明する。本発明において、原料は人工コラン

ダム結晶の形成材料であり、人工コランダム結晶は上述した「A.人工コランダム結晶」の欄に記載したように、無色の人工コランダム結晶およびクロム添加の人工コランダム結晶により基本組成が異なるものである。以下、無色の人工コランダム結晶およびクロム添加の人工コランダム結晶に分けて説明する。

[0078]

(無色の人工コランダム結晶)

本発明において無色の人工コランダム結晶は、A 1 2 O 3 で表される基本組成を有する ものであることから、原料としてはA 1 2 O 3 源があればよい。

[0079]

A12O3源としては、後述する加熱・蒸発工程において加熱することにより A12O3 化合物となるものであればよく、例えば酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウム、炭酸アルミニウム、硝酸アルミニウム等が挙げられる。中でも、本発明においては酸化アルミニウムを用いることが好ましい。

[0080]

なお、無色の人工コランダム結晶の組成に関しては、上述した「A. 人工コランダム結晶」に記載したものと同様であるので、ここでの説明は省略する。

[0081]

本発明においては、上記原料の含有量としては、原料のモル数が上記試料の全モル数に対して10mo1%以下であることが好ましい。原料の含有量が上記範囲より多い場合、上記フラックスに原料が溶解しにくくなり、結晶化が妨げられる可能性があるからである。また、原料が少量でも含有されていれば結晶は形成されるため、原料の含有量の下限値としては特に限定はされない。

[0082]

(クロム添加の人工コランダム結晶)

本発明においてクロム添加の人工コランダム結晶は、 $Al_2O_3:Cr$ で表される基本組成を有するものであることから、上記原料は Al_2O_3 源およびCr源に分けられる。

[0083]

Cr源としては、後述する加熱・蒸発工程において加熱することによりCr2O3化合物となるものであればよく、例えば酸化クロム、水酸化クロム、硫酸クロム、炭酸クロム、硝酸クロム等が挙げられる。中でも、本発明においては酸化クロムを用いることが好ましい。

[0084]

A12O3源およびCr源の混合比としては、所定の組成となるような化学量論比で混合すればよい。例えば原料として酸化アルミニウムおよび酸化クロムを用いた場合、酸化クロムの添加量は、酸化アルミニウムの重量に対して5重量%以下となるように混合すればよく、好ましくは2重量%以下、より好ましくは1重量%以下となるように混合する。

[0085]

なお、A 1 2 0 3 源および原料の含有量等については、上記無色の人工コランダム結晶の欄に記載したものと同様であり、クロム添加の人工コランダム結晶の組成については、上述した「<math>A. 人工コランダム結晶」に記載したものと同様であるので、ここでの説明は省略する。

[0086]

(3) その他

本発明においては、上記試料に不純物を含有させてもよい。これにより、天然に近い結晶を製造することができ、宝飾品等としての価値が高い人工コランダム結晶が得られるからである。

[0087]

2. 加熱・蒸発工程

次に、本発明の人工コランダム結晶の製造方法における加熱・蒸発工程について説明する。本発明における加熱・蒸発工程は、フラックスおよび原料を含有する試料を加熱し、

さらに高温保持してフラックスを蒸発させる工程である。

[0088]

本工程においては、上記試料調製工程において調製された試料を坩堝に充填して蓋をかぶせ、例えば図3(b)に示すように試料1が充填された坩堝12を高温炉13中に設置する。次いで、最高保持温度まで昇温し、その温度にて所定時間保持することにより、試料1中のフラックスが蒸発し、このフラックスの蒸発を駆動力として核形成および結晶成長が促される。これにより、試料1中に人工コランダム結晶2が形成される。

[0089]

本工程における最高保持温度としては、上記試料が溶融する温度であれば特に限定はされないが、具体的には 9 5 0 \mathbb{C} \sim 1 3 0 0 \mathbb{C} 、中でも 9 7 5 \mathbb{C} \sim 1 2 5 0 \mathbb{C} 、特に 1 0 0 0 \mathbb{C} \sim 1 2 0 0 \mathbb{C} の範囲内であることが好ましい。

[0090]

また、上記最高保持温度に設定する際の昇温速度としては、上記試料を均一に加熱することができる速度であれば特に限定はされない。さらに、上記最高保持温度にて保持する時間としては、十分に結晶を成長させることができる時間であれば特に限定はされない。

[0091]

本工程に用いられる坩堝としては、上記最高保持温度に耐えうるものであれば特に限定はされないが、通常は白金坩堝を用いることとする。

[0092]

3. 冷却工程

次に、本発明の人工コランダム結晶の製造方法における冷却工程について説明する。本 発明における冷却工程は、上記加熱・蒸発工程において溶融した試料を冷却する工程であ る。

[0093]

本工程においては、例えば図3 (b) に示すような高温炉13から試料1が充填された坩堝12を取り出し、図3 (c) に示すように室温となるまで試料1が充填された坩堝12を冷却する。

[0094]

冷却方法としては、室温になるまで冷却することができる方法であればよく、坩堝を放 冷する方法等が挙げられる。

[0095]

4. 結晶回収工程

次に、本発明の人工コランダム結晶の製造方法における結晶回収工程について説明する。本発明において結晶回収工程は、上記加熱・蒸発工程および上記冷却工程後に残存した 試料を適当な媒体に溶解させることにより、結晶を分離する工程である。

[0096]

上記冷却工程後の坩堝においては、例えば図3 (c)に示すように試料1が人工コランダム結晶2を取り込んで残存している。本工程においては、この残存した試料を適当な媒体に溶解させることにより、人工コランダム結晶のみを容易に分離することができる。

[0097]

上記の残存した試料を溶解させるために用いる媒体としては、人工コランダム結晶に影響を及ぼさず、人工コランダム結晶以外の残存した試料を溶解させることができるものであれば特に限定はされないが、例えば冷水、温水、熱水等を挙げることができる。

[0098]

なお、本発明により製造された人工コランダム結晶のその他の点に関しては、上述した「A.人工コランダム結晶」の欄に記載したものと同様であるので、ここでの説明は省略する。

[0099]

C. 人工コランダム結晶製造用原料

次に、人工コランダム結晶製造用原料について説明する。

[0100]

本発明の人工コランダム結晶製造用原料は、人工コランダム結晶を製造するために用いられ、モリブデン化合物およびアルミニウム化合物を含有することを特徴とするものである。

[0101]

本発明の人工コランダム結晶製造用原料は、上述したフラックス蒸発法により人工コランダム結晶を製造する際に好適に用いられるものであり、このような本発明の人工コランダム結晶製造用原料を用いて人工コランダム結晶を製造した場合、板状結晶または針状結晶ではなく、六角両錘形の結晶を選択的に製造することができることから、上述したように低コストでの実用化が可能となる。また、宝飾品等としての価値が高い結晶が得られるという利点も有する。

[0102]

本発明に用いられるモリブデン化合物としては、酸化モリブデン、もしくは加熱により酸化モリブデンを生成する化合物が挙げられる。上記加熱により酸化モリブデンを生成する化合物としては、例えば炭酸モリブデン、硫酸モリブデン、硝酸モリブデン、モリブデン水酸化物、およびこれらの水和物等を挙げることができる。中でも、酸化モリブデンであることが好ましい。

[0103]

また、本発明に用いられるアルミニウム化合物は、酸化アルミニウム、もしくは加熱により酸化アルミニウムを生成する化合物が挙げられる。上記加熱により酸化アルミニウムを生成する化合物としては、例えば酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウム、炭酸アルミニウム、硝酸アルミニウム等が挙げられる。中でも、酸化アルミニウムであることが好ましい。

[0104]

本発明の人工コランダム結晶製造用原料は、アルカリ金属化合物を含有してもよい。アルカリ金属化合物は、上記モリブデン化合物等の蒸発を抑制するため、本発明の人工コランダム結晶製造用原料を用いて人工コランダム結晶を製造した場合、多核発生および結晶成長速度を抑制することができ、高品質な人工コランダム結晶を得ることが可能となるからである。

[0105]

このようなアルカリ金属化合物としては、アルカリ金属酸化物、あるいは加熱によりアルカリ金属酸化物を生成する化合物が挙げられる。上記加熱によりアルカリ金属酸化物を生成する化合物としては、例えば炭酸アルカリ金属、硫酸アルカリ金属、硝酸アルカリ金属、アルカリ金属水酸化物、およびこれらの水和物等を挙げることができる。これらの中でも、 Li_2O 、 Na_2O および K_2O からなる群から選択される少なくとも1種のアルカリ金属酸化物を生成するものであることが好ましい。具体的には、 Li_2CO_3 、 Na_2CO_3 、 K_2CO_3 等が挙げられる。

[0106]

さらに、本発明の人工コランダム結晶製造用原料は、酸化クロム、あるいは加熱により酸化クロムを生成するクロム化合物を含有してもよい。上記加熱により酸化クロムを生成するクロム化合物としては、例えば酸化クロム、水酸化クロム、硫酸クロム、炭酸クロム、硝酸クロム等が挙げられる。中でも、酸化クロムであることが好ましい。

[0107]

なお、上述した化合物の含有量等については、上述した「B. 人工コランダム結晶の製造方法 1. 試料調製工程」の欄に記載したものと同様であるので、ここでの説明は省略する。

[0108]

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

ページ: 13/E

【実施例】

[0109]

以下、実施例および比較例を挙げて本発明を具体的に説明する。

[0110]

[実施例]

まず、酸化アルミニウム(1.5g)、酸化クロム(0.008g)、酸化モリブデン(28.5g)および炭酸リチウム(1.5g)を秤量し、乳鉢に入れた。この混合試料を乳鉢中で、約20分間乾式混合した。その後、混合試料を白金坩堝に充填し、蓋をして、電気炉中に設置した。電気炉を毎時45 $^{\circ}$ の速度で1100 $^{\circ}$ まで加熱し、その温度で5時間保持した。保持後、電気炉から坩堝を取り出し、室温まで放冷した。室温まで冷却した坩堝を温水中に入れ、クロム添加の人工コランダム結晶を分離・回収した。得られた結晶は、六角両錘形を基本形状とした立体形状を有し、濃赤色透明であった。また、その平均サイズは、a軸およびc軸方向それぞれ約1mmに達した。

[0111]

[比較例]

まず、酸化アルミニウム(5.2g)、酸化クロム(0.05g)、フッ化鉛(49.8g)を秤量し、乳鉢に入れた。この混合試料を乳鉢中で、約20分間乾式混合した。その後、混合試料を白金坩堝に充填し、蓋をして、電気炉中に設置した。電気炉を毎時45℃の速度で1100℃まで加熱し、その温度で10時間保持した。保持後、毎時5℃の速度で600℃まで徐冷し、電気炉から坩堝を取り出し、室温まで放冷した。室温まで冷却した坩堝を温水中に入れ、クロム添加の人工コランダム結晶を分離・回収した。得られた結晶は、板状を基本形状とした赤色透明結晶であった。

【図面の簡単な説明】

[0112]

【図1】本発明の人工コランダム結晶の一例を示す形態図および光学顕微鏡写真である。

【図 2 】本発明の人工コランダム結晶のX線回折パターンの一例を示すグラフである

【図3】本発明の人工コランダム結晶の製造方法の一例を示す工程図である。

【符号の説明】

[0113]

1 … 試料

2 ・・・ 人工コランダム結晶

11 … 乳鉢

12 … 坩堝

13 … 高温炉

【書類名】図面 【図1】

2/

(d)

【要約】

【課題】 本発明は、低コストで実用化することが可能な人工コランダム結晶およびその 製造方法を提供することを主目的とするものである。

【解決手段】 本発明は、 $\{1\ 1\ 3\}$ 面、 $\{0\ 1\ 2\}$ 面、 $\{1\ 0\ 4\}$ 面、 $\{1\ 1\ 0\}$ 面、 $\{1\ 1\ 6\}$ 面、 $\{2\ 1\ 1\}$ 面、 $\{1\ 2\ 2\}$ 面、 $\{2\ 1\ 4\}$ 面、 $\{1\ 0\ 0\}$ 面、 $\{1\ 2\ 5\}$ 面、 $\{2\ 2\ 3\}$ 面、 $\{1\ 3\ 1\}$ 面、および $\{3\ 1\ 2\}$ 面からなる群から選択される少なくとも1つの結晶面を有することを特徴とする人工コランダム結晶を提供することにより、上記課題を解決する。

【選択図】 図1

特願2003-402115

出願人履歴情報

識別番号

[000002897]

1. 変更年月日 [変更理由] 住 所 1990年 8月27日

理由] 新規登録

東京都新宿区市谷加賀町一丁目1番1号

氏 名 大日本印刷株式会社