Matgeo-q.4.13.1

AI25BTECH11036-SNEHAMRUDULA

September 17, 2025

Question

Consider the lines

$$L_1: x + 3y - 5 = 0,$$

 $L_2: 3x - ky - 1 = 0,$
 $L_3: 5x + 2y - 12 = 0.$

Match the statements in Column I with Column II (choices refer to values of k or relations).

Column I

- \bullet L_1, L_2, L_3 are concurrent, if
- One of L_1, L_2, L_3 is parallel to at least one of the other two, if
- \bullet L_1, L_2, L_3 form a triangle, if
- L_1, L_2, L_3 do not form a triangle, if

Column II

- k=5

Solution — (A) Concurrency

Intersection of L_1 and L_3 :

$$\begin{cases} x + 3y = 5, \\ 5x + 2y = 12, \end{cases} \Rightarrow 13y = 13, \ y = 1, \ x = 2.$$

So intersection point is

$$\mathbf{x}_0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
.

This point lies on L_2 iff

$$\begin{pmatrix} 3 \\ -k \end{pmatrix}^{\top} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 1 \iff 6 - k = 1$$
$$\iff k = 5.$$

Hence the three lines are concurrent precisely when k = 5.

Solution — (B) Parallelism

Two lines are parallel iff their normals are proportional. Normals of L_2 and L_3 :

$$\mathbf{n}_2 = \begin{pmatrix} 3 \\ -k \end{pmatrix}, \quad \mathbf{n}_3 = \begin{pmatrix} 5 \\ 2 \end{pmatrix}.$$

If $\mathbf{n}_2 = \lambda \mathbf{n}_3$ then

$$3 = 5\lambda$$
, $-k = 2\lambda \Rightarrow \lambda = \frac{3}{5}$, $k = -2\lambda = -\frac{6}{5}$.

So a parallel pair (between L_2 and L_3) occurs when $k = -\frac{6}{5}$. (Analogous checks show no other accidental proportionality with L_1 for these k.)

Solution — (C) Triangle & (D) Not a triangle

(C) Form a triangle: The three lines form a triangle iff no two are parallel and they are not concurrent. Therefore triangle occurs when

$$k \neq 5$$
 and $k \neq -\frac{6}{5}$.

(So any explicit example values like k=9 or $k=\frac{5}{6}$ satisfy the triangle condition.)

(D) Do not form a triangle: This happens when the lines are concurrent or when a parallel pair exists. Hence

no triangle
$$\iff k = 5$$
 or $k = -\frac{6}{5}$.

Final concise matching

- (A) Concurrency $\iff k = 5$.
- (B) One line parallel to another $\iff k = -\frac{6}{5}$.
- (C) They form a triangle $\iff k \neq 5$ and $k \neq -\frac{6}{5}$. (Examples: $k = 9, \ k = \frac{5}{6}$.)
- (D) They do *not* form a triangle $\iff k = 5$ or $k = -\frac{6}{5}$.

Graphical Representation

