Mathematical Analysis - Exam Feb. 4, 2021

Please give complete explanations/proofs. Unjustified answers will not be marked. Good luck!

1. (3 p)

- a) Let $x_n = \ln (n+2) \ln (n+1), n \in \mathbb{N}$.
 - i) Study if the sequence (x_n) is monotone, bounded and convergent.
 - ii) Find $\lim_{n\to\infty} ((3n+1)\cdot x_n)$ and $\lim_{n\to\infty} \frac{1+\frac{1}{4}+\ldots+\frac{1}{3n-2}}{\ln(n+1)}$.
 - iii) Study if the series $\sum_{n\geq 1} x_n$ is convergent or divergent.
- b) Let (x_n) be a sequence in [0,2) and suppose that $\sum_{n\geq 1} x_n$ is convergent. Is the series $\sum_{n\geq 1} \frac{x_n}{4-x_n^2}$ convergent as well?

2. (1 p) Let
$$f:(0,\infty)\times[0,\infty)\to\mathbb{R}$$
, $f(x,y)=\frac{e^{x-y}-\cos(x-y)}{x+y}$. Does f have a limit at 0_2 ?

3. (2.5 p) Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = x^3 + 3xy^2 + 6xy$.

- a) Find the gradient $\nabla f(x,y)$ and the Hessian matrix $H_f(x,y)$ of f at $(x,y) \in \mathbb{R}^2$.
- b) Find the stationary points of f and then classify them (as local minimum points, local maximum points, or points that are not local extremum points).
- c) Study whether the obtained local extremum points (if any) are in fact global extremum points.

4. (2.5 p)

- a) Let $f:[0,\infty)\to\mathbb{R},$ $f(x)=\frac{x^2}{4+x^6}.$ Study the improper integrability of f on its domain and, in case f is improperly integrable, determine the improper integral $\int_0^\infty f(x)\,dx.$
- b) Let M be the subset of \mathbb{R}^2 bounded by the parabola $y=x^2$ and the lines y=0 and x=1. Compute $\iint_M e^{x^3} dx dy$.