

Gerência de Memória Algoritmos de Substituição de Páginas

Introdução

- Quando ocorre um Page Fault, o S.O. deve escolher que página remover para abrir espaço em memória.
- Se a página foi alterada (bit Modified setado) é preciso salvá-la em disco. Senão foi, basta sobrescrevê-la.
- É melhor não escolher para remoção uma página que é usada frequentemente, pois ela pode ter que voltar para a memória logo.

Algoritmos de substituição

- Ótimo;
- NRU;
- □ FIFO;
- Segunda Chance;
- Relógio;
- LRU;
 - NFU
 - Aging

Algoritmo Ótimo

- Retira da memória a página que tem menos chance de ser referenciada;
- Praticamente impossível de se saber;
 - Marcar p/ cada página, quantas instruções faltam
 p/ que ela seja referenciada
- Impraticável;
- Usado em simulações para comparação com outros algoritmos;
 - Solução ótima, mas inviável!

NRU - Not Recently Used (1)

- Ou seja, algoritmo de substituição da página "não usada recentemente"
- Na maioria dos computadores com memória virtual, as entradas nas tabelas de páginas têm 2 bits de status
 - Reference bit (R); Modified bit (M)
- Algoritmo
 - Quado o processo é iniciado, os bits R e M das páginas são zerados
 - Bits são sempre alterados quando a página é referenciada/modificada
 - Periodicamente o bit R é zerado (por exemplo, a cada tique de clock)
 - Quando acontece um Page fault, o S.O. inspeciona todas as páginas que encontram-se na memória e as separa em categorias...

NRU - Not Recently Used (2)

- Páginas são classificadas
 - Classe 0: Not referenced, not modified (R=0, M=0)

Isso pode ocorrer???

- □ Classe 1: Not referenced, modified (R=0, M=1) ←
- □ Classe 2: referenced, not modified (R=1, M=0)
- □ Classe 3: referenced, modified (R=1, M=1)
- O S.O. remove uma das páginas (aleatoriamente) da classe mais baixa não vazia.
- Vantagens
 - Algoritmo fácil de entender e implementar
 - Desempenho adequado

FIFO - First In First Out

- Página mais velha é candidata em potencial;
- Mantem-se uma lista encadeada de páginas ordenada pela chegada das páginas à memória.
- Quando ocorre um Page Fault, a página no início da lista (que é a mais antiga) é a escolhida para a troca
- Vantagem:
 - Baixo custo
- Desvantagem:
 - A página mais antiga pode ser também uma página usada muito frequentemente.
- Não empregado!

SC - Segunda Chance (1)

- Tenta melhorar o FIFO
- Cada página tem um bit R (referenciada)
- Antes de remover a página mais antiga (cabeça da fila), seu bit R é verificado
 - Se R=0, a página é substituída (a página referenciada ocupará o seu lugar na memória)
 - Se R=1, a página vai para fim da fila, como se houvesse sido carregada agora e seu bit é setado para 0
 - Verifica-se a página que virou "cabeça" da fila
- Se todas as páginas tiverem seu bit R=1, haverá uma volta completa

SC - Segunda Chance (2)

Relógio

 O ponteiro sempre aponta para a página mais antiga

LRU - Least Recently Used (1)

- Ou MRU Menos Recentemente Usada
- Assume que as páginas usadas recentemente voltarão a ser usadas em breve
 - Substitui páginas que estão há mais tempo sem uso.
- Para implementá-lo completamente, deve-se manter lista encadeada de todas as páginas que estão na memória (muito custoso!)
 - página usada mais recentemente vai para o início da lista;
 - lista é reordenada a cada referência a memória
 - quado há Page Fault, escolhe-se a última página da fila

LRU - Least Recently Used (2)

- Uma solução simples: manter uma idade para cada página.
 - Usar um contador C de 64 bits incrementado a cada instrução (em hardware)
 - Cada entrada da tabela de páginas deve ter um campo extra para armazenar o valor do contador
 - A cada referência à memória o valor corrente de C é armazenado na entrada da tabela de páginas na posição correspondente à página referenciada
 - Quando ocorre um Page Fault, a tabela de páginas é examinada, a entrada cujo campo C é de menor valor é a escolhida
 - Substitui página com o menor valor no campo do contador (maior idade)

LRU – Least Recently Used (3)

LRU - Least Recently Used (4)

- LRU usando matrizes
 - Hardware especial que mantém uma matriz n x
 n, onde n é o número de molduras
 - Inicialmente todos os bits da matriz são 0
 - Sempre que a moldura k é referenciada, o hardware seta todos os bits da linha k para 1, e depois zera todos os bits da coluna k para 0
 - Deste modo, a qualquer instante a linha com o menor valor binário é a menos recentemente usada

LRU - Least Recently Used (5)

Página na moldura 0

0 1 2 3 0 0 1 1 1 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0

Página na moldura 1

Página na moldura 2

Página na moldura 3

Página na moldura 2

Página na moldura 1

Página na moldura 0

0	1	1	1
0	0	1	1
0	0	0	1
0	0	0	0

Página na moldura 3

0	1	1	0
0	0	1	0
0	0	0	0
1	1	1	0

Página na moldura 2

0	1	0	0
0	0	0	0
1	1	0	1
1	1	0	0

Página na moldura 3

Aproximando LRU em Software

- Problema das abordagens LRU em HW
 - Dependem de um HW especial
 - □ Procurar uma solução em SW
- Aproximando LRU em Software
 - Algoritmo NFU Not Frequently Used
 - Algoritmo Aging

NFU - Not Frequently Used

- Para cada página existe um contador
 - Iniciado com zero e incrementado a cada referência à pagina;
 - Página com menor valor do contador é candidata a troca;
- Esse algoritmo não se esquece de nada
 - Problema: pode retirar páginas que estão sendo referenciadas com frequência;
- Processo com várias funções:
 - □ F1 tem mais tempo de execução que os outras funções
 - páginas da F1 terão mais referências armazenadas;
 - Depois de um tempo F1 não será mais utilizado
 - Mas não sairá da memória pois contador esta alto!

Aging

- Modificação do NFU, resolvendo o problema descrito anteriormente;
 - Além de saber quantas vezes a página foi referenciada, também controla quando ela foi referenciada;
 - Geralmente, 8 bits são suficientes para o controle se as interrupções de relógio (clock ticks) ocorrem a cada 20ms (10⁻³);

Aging

Bits R para páginas 0-5						
Contadores	clock tick 1 1 1 0 0 1 0	clock tick 2 1 1 0 1 0 1	<i>clock tick</i> 3 100010	<i>clock tick</i> 4 0 1 1 0 0 0		
0 10000000	11000000	11100000	11110000	01111000		
1 00000000	10000000	11000000	01100000	10110000		
2 10000000	01000000	00100000	00100000	10001000		
3 00000000	0000000	10000000	01000000	00100000		
4 10000000	11000000	01100000	10110000	01011000		
5 10000000	01000000	10100000	01010000	00101000		
a)	b)	c)	d)	e)		

Referências

- Slides adaptados de Roberta Lima Gomes (UFES)
- Bibliografia
 - A. S. Tanenbaum, "Sistemas Operacionais Modernos", 3a. Edição, Editora Prentice-Hall, 2010.
 - Seção 3.4
 - Silberschatz A. G.; Galvin P. B.; Gagne G.; "Fundamentos de Sistemas Operacionais", 8a. Edição, Editora LTC, 2010.
 - Capítulo 9