ANUM-TD5 22. Feb. 23

Ex.1 (exam), algo, and proof that it converge

1) $\alpha \in \mathbb{R}^{n}$, we want to compute $\sqrt{\alpha}$, $\sqrt{\alpha}$ is a solution of the equation $f(\alpha) = 0$ with $f(\alpha) = \alpha^{2} - \alpha$.

Newton iteration.

$$\chi_{k+1} = \chi_k - \frac{f(\chi_k)}{f'(\chi_k)} = \chi_k - \frac{\chi_{k-\alpha}^2}{2\chi_k}$$
$$= \frac{1}{2} \left(\chi_k + \frac{\alpha}{\gamma_k}\right)$$

2) let us define
$$g(x) = \frac{1}{2}(x + \frac{\alpha}{2})$$

We have $\chi_{k+1} = g(x_k)$
 $g'(x_k) = \frac{1}{2}(1 - \frac{\alpha}{2})$

$$\frac{2\ell}{9(\alpha)}$$
 $\frac{1}{2}$ $\frac{1}{2}$

To 70, for any $k \ge 1$, $\exists x \ge \sqrt{a}$ and $\exists x \ge 0$ $\exists x_{k+1} - \exists x_k = \frac{1}{2}(\exists x_k + \exists x_k) - \exists x_k = \frac{a}{2} + \frac{1}{2}\exists x_k = \frac{a - \exists x_k^2}{2} \le 0$ So the sequence $(\exists x_k)$ in electrosing and lower hundred

So the sequence (χ_k) is decreasing and lower bounded by \sqrt{a} . So (χ_k) is convergent.

Let $J_{k} - \Im L$. Then as $\Im (x_{k+1}) = \Im (\Im (x_{k}))$ and the fact that g is continuse then by taking the limit we have $l = \Im (L)$ and $\Im (x_{k+1}) = \Im (L)$ and $\Im (x_{k+1}) = \Im (L)$.

3)
$$\chi_{k+1} - \sqrt{\alpha} = \frac{1}{2} \left(\chi_k + \frac{\alpha}{\chi_k} \right) - \sqrt{\alpha}$$

$$= \frac{1}{2} \left(\frac{\chi_k^2 + \alpha - 2\sqrt{\alpha}\chi_k}{\chi_k} \right) = \frac{1}{2\chi_k} \left(\chi_k - \sqrt{\alpha} \right)^2$$

As Zr≥√a, we have

$$|\chi_{k+1} - \sqrt{\alpha}| \leq \frac{1}{2\sqrt{\alpha}} |\chi_k - \sqrt{\alpha}|^2$$

this means we have a quadreic convergent.

ANUM-TD 5 22. Feb. 23

$$\frac{Ex.2}{1.) f(x)} = \sum_{i=0}^{n} a_{i} x^{i} \in \mathbb{Z}[x].$$

$$f'(x) = \sum_{i=0}^{n} i a_{i} x^{i-1} \in \mathbb{Z}[x].$$

If we use the Taylor expansion of order 1, we obtain. $f(x+h) = f(x) + f'(x)h + r(x,h)h^2$

2) f(x1) = 0 mad P and f'(x1) ≠ 0 mod P

Fr = Z/pZ is a finite field if p prime,

So, there exists $S \in \mathbb{Z}$ such that $S \cdot f(\alpha_1) = 1 \mod p$

let us define the "Newton iteration"

2x = 2x-1 - Sf(2x-1) mod pk.

By injection

 $2k=2k-1 \mod P$ because $f(2k-1)=0 \mod P^{k-1}$ so $f(2k)=0 \mod P$.

$$f(x_{k-1}) = f(x_{k-1} - S_1 f(x_{k-1}) + \alpha p^k)$$

$$= f(x_{k-1}) + f'(x_{k-1}) (-S_1 f(x_{k-1}) + \alpha p^k) + \beta (-S_1 f(x_{k-1}) + \alpha p^k)$$

$$= f(x_{k-1}) - S_1 f'(x_{k-1}) f(x_{k-1}) + f'(x_{k-1}) \alpha p^k$$

$$= f(x_{k-1}) - S_1 f'(x_{k-1}) f(x_{k-1}) + f'(x_{k-1}) \alpha p^k$$

$$= f(x_{k-1}) + \alpha p^k) \mod p^k$$

$$= f(x_{k-1})^2 + \alpha^2 p^{2k} - 2S_1 f(x_{k-1}) \alpha p^k \mod p^k$$

$$= f(x_{k-1})^2 = 0 \mod p^{k-1}$$

$$= f(x_{k-1})^2 = 0 \mod p^k$$
So, finally $f(x_k) = 0 \mod p^k$

$$\chi_{k} = \chi_{k-1} - Sf(\chi_{k-1}) + \chi_{p^{k}}$$

$$= \chi_{k-1} - S(\beta_{p^{k-1}}) + \chi_{p^{k}}$$

$$= \chi_{k-1} \mod p^{k-1}$$