pandas - Series

김지성 강사

Pandas(Panel Datas)란

- ✓ Pandas는 주로 데이터 분석에 사용된다.
- ✓ 대부분의 데이터는 시계열(series)이나 표(table)의 형태로 나타낼 수 있다. Pandas 패키지는 이 러한 데이터를 다루기 위한 Series 클래스와 DataFrame 클래스를 제공.
- ✓ 숫자 테이블과 시계열 을 조작하기 위한 데이터 구조 와 연산을 제공.

Pandas package import

- ✓ NumPy와 마찬가지로 Pandas 패키지를 사용하기 위해선 해당 패키지를 임포트를 해야한다.
- ✓ Pandas 패키지는 pd라는 별칭으로 임포트하는 것이 관례.

import pandas as pd

Series class

- ✓ Series 클래스는 Numpy에서 제공하는 1차원 배열과 그 모양이 비슷하다.
- ✓ 하지만 Series class는 배열과 다르게 각 데이터의 의미를 표시하는 index(index)를 붙일 수 있다. 데이터 자체는 값(value)이라고 표현.

Series는 Value와 Index를 갖습니다.

- ✓ Series 객체를 만들 때 첫 인수로 data, 두 번째 인수로는 index를 넣는다.
- ✓ data 값으로 iterable, 배열, scalar value, dict(key와 index를 동일하게 사용하거나 생략)를 사용할 수 있다.
- ✓ index는 label이라고도 한다. index는 data와 length가 동일해야 한다. label은 꼭 unique할 필 요는 없다. 만약 index를 생략할 경우 RangeIndex(0, 1, ··· , n)를 제공한다.

pandas.Series

One-dimensional ndarray with axis labels (including time series).

- ✓ 다음 예제를 통해 각 도시의 2015년 인구 데이터를 Series로 만들어보자.
- ✓ 자리수가 긴 숫자의 경우에 쉽게 읽기 위해 콤마로 3자리씩 끊어 표기한다. 파이썬에서도 이처럼 사용할 수 있는 방법이 있는데, 아래 예제처럼 언더바를 숫자 사이사이 넣으면 된다

```
1 s = pd.Series([9_904_312, 3_448_737, 2_890_451, 2_466_052],
2 index=["서울", "부산", "인천", "대구"])
3 s
```

```
서울 9904312
부산 3448737
인천 2890451
대구 2466052
dtype: int64
```


Series 생성하기 - 연습 문제

✓ 다음과 같이 10, 20, 30, 40, 50, 60, 70, 80, 90의 값을 갖는 Series를 생성해보세요.

```
10
      20
      30
      40
      50
      60
      70
      80
      90
dtype: int64
```


Series 생성하기 - 연습 문제 해답

✓ 다음과 같이 10, 20, 30, 40, 50, 60, 70, 80, 90의 값을 갖는 Series를 생성해보세요.

```
test = pd.Series(list(range(10, 100, 10)))
     test
     10
     20
     30
     40
     50
5
     60
     70
     80
     90
dtype: int64
```


✓ 만약 index를 지정하지 않고 Series를 만들면 Series의 index는 0부터 시작하는 정수 값이 된다.

```
1 pd.Series(range(10, 14))
0    10
1    11
2    12
3    13
dtype: int64
```


- ✓ Series의 index는 index 속성으로 접근할 수 있다.
- ✓ Series의 value는 1차원 배열(ndarray) 이며 values 속성으로 접근할 수 있다.

```
1 s.index

Index(['서울', '부산', '인천', '대구'], dtype='object')

1 s.values

array([9904312, 3448737, 2890451, 2466052])
```


Series 생성하기 - 연습 문제

- ✓ 앞선 연습 문제에서 만든 Series 객체의 값 중 50보다 큰 값의 개수를 구해보세요.
- ✓ 결과:4

```
test = pd.Series(list(range(10, 100, 10)))
     test
     10
     20
     30
     40
     50
5
     60
     70
     80
     90
dtype: int64
```


Series 생성하기 - 연습 문제

✓ 앞선 연습 문제에서 만든 Series 객체의 값 중 50보다 큰 값의 개수를 구해보세요.

```
1 sum(test.values > 50)
```

4

- ✓ name 속성을 이용하여 Series 데이터에 이름을 붙일 수 있다.
- ✓ index.name 속성으로 Series의 index에도 이름을 붙일 수 있다.

```
1 s.name = "인구"
2 s.index.name = "도시"
3 s
```

도시 서울 9904312 부산 3448737 인천 2890451 대구 2466052

Name: 인구, dtype: int64

- ✓ Series 객체를 만들 때 data에 dict를 사용할 수 있다.
- ✓ 만들어진 Series 객체를 조회해보면 그 값이 정상적으로 조회되는 것을 확인할 수 있다.

```
1  d = {'a': 1, 'b': 2, 'c': 3}
2  ser = pd.Series(data=d, index=['a', 'b', 'c'])
3  ser
```

```
a 1 2 c 3 dtype: int64
```


- ✓ 이번에는 dict의 key와 Series 객체의 index를 다르게 설정해보자.
- ✓ data가 dict일 때 index가 최초에 dict의 key로 만들어진다. 그 후 Series는 index 키워드로 전달 받은 인수로 index를재할당한다.
- ✓ 밑에 예제와 같이 Series 객체의 값이 NaN의 결과를 출력하는 것을 확인할 수 있다.

```
Series가 생성될 때 최초에 dictionary의 key를 index로 사용.

1  d = {'a': 1, 'b': 2, 'c': 3}
2  ser = pd.Series(piata=d) (index=['x', 'y', 'z'])
3  ser

2. 그 이후 키워드 인수로 넘겨받은 index 값을 다시 재할당합니다.

dtype: float64
 그래서 해당 하는 값을 찾을 수 없다고 나옵니다.
```


✓ index 지정 없이 dict 객체만 가지고 Series를 만들 수도 있습니다. dic의 key가 index로 사용되는 것을 확인할 수 있다.

```
1 s2 = pd.Series({"서울":9_904_312,
2 "부산":3_448_737,
3 "인천":2_890_451,
4 "대구":2_466_052})
5 s2
```

```
서울 9904312
부산 3448737
인천 2890451
대구 2466052
dtype: int64
```


Series 생성하기 - 연습 문제

✓ 사회 점수가 다음과 같을 때 이름을 index로 하고 점수를 values로 하는 Series를 만들어보세요.

이름	사회 점수
철수	88
영희	95
길동	100
몽룡	67

Series 생성하기 - 연습 문제 해답

✓ 사회 점수가 다음과 같을 때 이름을 index로 하고 점수를 values로 하는 Series를 만들어보세요.

```
1 scores = {"철수": 88, "영희": 95, "길동": 100, "몽룡": 67}
2 s_scores = pd.Series(scores)
3 s_scores

철수 88
영희 95
길동 100
몽룡 67
dtype: int64
```


Series index를 속성처럼 활용하기

✓ 만약 label 값이 공백 없는 문자열인 경우에는 index label이 속성인것처럼 마침표(.)를 활용하여 해당 index 값에 접근할 수도 있다.

```
1  d = {'a': 1, 'b': 2, 'c': 3}
2  ser = pd.Series(data=d, index=['a', 'b', 'c'])
3  ser

a   1
b   2
c   3
dtype: int64

1  ser.a, ser.b, ser.c

(1, 2, 3)
```


Series의 특징

- ✓ Series 객체는 index label을 키(key)로 사용하기에 딕셔너리 자료형과 비슷한 특징을 갖는다.
- ✓ 그래서 Series를 딕셔너리와 같은 방식으로 사용할 수 있게 구현해놨음.
 - 예를 들어 in 연산도 가능하고, items() 메서드를 사용해서 for문 루프를 돌려 각 요소의 키

(key)와 값(value)에 접근할 수도 있다.

```
1 "서울" in s # 인덱스 레이블 중에 서울이 있는가
True
```

```
1 "대전" in s # 인덱스 레이블 중에 대전이 있는가
```

False

```
1  for k, v in s.items():
2     print(f"{k}, {v}")
```

```
서울, 9904312
부산, 3448737
인천, 2890451
대구, 2466052
```


Series 연습 문제

- ✓ 도시의 인구가 300만이 넘는 곳을 찾아 다음과 같이 출력해보세요.
 - for문과 items() 메서드를 활용하세요.

서울의 인구는 300만이 넘습니다. 부산의 인구는 300만이 넘습니다.

Series 연습 문제 해답

- ✓ 도시의 인구가 300만이 넘는 곳을 찾아 다음과 같이 출력해보세요.
 - for문과 items() 메서드를 활용하세요.

```
1 for i, v in s.items():
2 if v > 3_000_000:
3 print(f'{i}의 인구는 300만이 넘습니다.')
```

서울의 인구는 300만이 넘습니다. 부산의 인구는 300만이 넘습니다.

Series 연산하기

✓ 넘파이 배열처럼 Series도 벡터화 연산을 할 수 있다. 다만 연산은 Series의 value에만 적용되며 index 값은 변하지 않는다.

이 예를 들어 인구 숫자를 백만 단위로 만들기 위해 Series 객체를 1,000,000 으로 나누어도 index 도시

label에는 영향을 미치지 않는 것을 볼 수 있다.

Series 인덱싱

✓ Series는 넘파이 배열에서 가능한 index 방법 이외에도 index label을 이용한 인덱싱도 할 수 있

습니다. 배열 인덱싱이나 index label을 이용한 슬라이싱(slicing)도 가능합니다.

```
도시
서울 9904312
부산 3448737
인천 2890451
대구 2466052
```

Name: 인구, dtype: int64

```
1 [s[1]] [s["부산"]
```

(3448737, 3448737)

(2466052, 2466052)

Series 인덱싱

✓ 배열 인덱싱을 하면 부분적인 값을 가지는 Series 자료형을 반환한다. 자료의 순서를 바꾸거나 특정한 자료만 취사 선택할 수 있다.

```
도시
      9904312
      3448737
인천
      2890451
대구
      2466052
Name: 인구, dtype: int64
    s[[0, 3, 1]]
도시
서움
      9904312
대구
      2466052
      3448737
Name: 인구, dtype: int64
    s[["서울", "대구", "부산"]]
도시
서울
      9904312
대구
      2466052
      3448737
Name: 인구, dtype: int64
```


Series 인덱싱

✓ 단하나의 값을 시리즈 형태로 가져오고 싶으면 다음과 같이 값이 하나인 리스트로 인덱싱하여 작성할 수 있다.

1 **s[[0]]**

서울 9904312

dtype: int64

Series 슬라이싱

✓ 슬라이싱을 해도 부분적인 Series를 반환한다.

✓ 이 때 문자열 label을 이용한 슬라이싱을 하는 경우에는 숫자 인덱싱과 달리 콜론(:) 기호 뒤에 오

는 값도 결과에 포함되므로 주의해야 한다.

```
도시
서울 9904312
부산 3448737
인천 2890451
대구 2466052
```

Name: 인구, dtype: int64

```
1 s[1:3] # 두번째(1)부터 세번째(2)까지 (네번째(3) 미포함)
```

도시

부산 3448737 인천 2890451

Name: 인구, dtype: int64

```
1 s["부산":"대구"] # 부산에서 대구까지 (대구도 포함)
```

도시

부산 3448737 인천 2890451 대구 2466052

Name: 인구, dtype: int64

Series index 기반 연산

- ✓ 이번에는 2015년도와 2010년의 인구 증가를 계산해 보자. Series에 대해 연산을 하는 경우 index가 같은 데이터에 대해서만 차이를 구합니다.
- ✓ 대구와 대전의 경우에는 2010년 자료와 2015년 자료가 모두 존재하지 않기 때문에 계산이 불가 능하므로 NaN(Not a Number)이라는 값을 가지게 됩니다.

Series index 기반 연산

```
s = pd.Series([9904312, 3448737, 2890451, 2466052],
                index=["서울", "부산", "인천", "대구"])
    s.name = "인구"
    s.index.name = "도시"
도시
     9904312
     3448737
    2890451
    2466052
Name: 인구, dtype: int64
    s2 = pd.Series(("서울": 9631482, "부산": 3393191, "인천": 2632035, "대전": 1490158))
    52
     9631482
     3393191
    2632035
    1490158
dtype: int64
    ds = 8 - 82
          NaN
대전
          NaN
                               NaN 값이 float 자료형에서만 표현 가능하므로
      55546.0
                               다른 계산 결과도 모두 float 자료형이 되었다는
     272830.0
     258416.0
                               점에 주의해야 합니다.
dtype: float64
```


Series에서 값이 NaN인지 확인

✓ Series의 값이 NaN이면 True NaN이 아니면 False인 bool type의 Series를 구하려면 isnull() 메

서드를 사용하면 된다.

대구 NaN 대전 NaN 부산 55546.0 서울 272830.0 인천 258416.0 dtype: float64

] 1 ds.isnull()

대구 True 대전 True 부산 False 서울 False 인천 False dtype: bool

Series에서 값이 NaN인지 확인

✓ Series의 값이 NaN이 아니면 True NaN이면 False 값을 갖는 bool type의 Series를 구하려면

notnull() 메서드를 사용하면 된다.

대구 NaN 대전 NaN 부산 55546.0 서울 272830.0 인천 258416.0 dtype: float64

1 ds.notnull()

대구 False 대전 False 부산 True 서울 True 인천 True dtype: bool

Series에서 NaN이 아닌 값만 인덱싱으로 구하기

✓ notnull() 메서드로 구한 True / False 값을 갖는 시리즈를 활용하여 NaN인 값을 배제한 Series

객체를 인덱싱하여 만들 수 있다.

```
대구 NaN
대전 NaN
부산 55546.0
서울 272830.0
인천 258416.0
dtype: float64
```

```
1 ds.notnull()
```

대구 False 대전 False 부산 True 서울 True 인천 True dtype: bool

```
1 ds[ds.notnull()]
```

부산 55546.0 서울 272830.0 인천 258416.0 dtype: float64

Series에서 NaN이 아닌 값 구하기

✓ 마찬가지로 NaN 값인 것을 배제하고 2010년 대비 2015년 인구 증가율(%)은 다음과 같이 구할수 있다.

5 s # 2015년 도시별 인구	2 s2 # 2010년 도시별 인구
도시 서울 9904312 부산 3448737 인천 2890451 대구 2466052 Name: 인구, dtype: int64	서울 9631482 부산 3393191 인천 2632035 대전 1490158
	부산 1.636984 서울 2.832690 인천 9.818107 dtype: float64

Series 연습 문제

✓ 2010년 대비 2015년 인구 증가를 구하세요.(NaN 값인 것을 배제) 인구수 증가가 가장 많은 도시의 이름과 증가한 인구수를 Series 객체로 출력해보세요.

부산 55546.0 서울 272830.0

인천 258416.0

dtype: float64

서울 272830.0

dtype: float64

Series 연습 문제 해답

✓ 2010년 대비 2015년 인구 증가를 구하세요.(NaN 값인 것을 배제) 인구수 증가가 가장 많은 도시의 이름과 증가한 인구수를 Series 객체로 출력해보세요.

1	ds	=	s	_	s2	
2	ds					

대구	NaN
대전	NaN
부산	55546.0
서울	272830.0
인천	258416.0
dtype:	float64

1	ds =	ds[ds.notnull()]
2	ds	

부산	55546.0
서울	272830.0
인천	258416.0
dtype:	float64

1 ds[[ds.values.argmax()]]

서울 272830.0 dtype: float64

Series 데이터 추가, 갱신, 삭제

✓ 없는 index에 값을 할당하면 Series에 데이터가 추가(add)된다. 아래 예제에서는 "대구"라는 index는 현재 없는데 그 index에 값을 1.41 할당하여 데이터를 추가하고 있다.

rs

```
부산
      1.630000
서울
      2.832690
인처
      9.818107
dtype: float64
    rs["대구"] = 1.41
    rs
부산
      1.630000
서울
      2.832690
인천
      9.818107
대구
      1.410000
dtype: float64
```


Series 데이터 추가, 갱신, 삭제

✓ 데이터를 삭제할 때도 딕셔너리처럼 del 명령을 사용한다. 아래 예제에서는 "서울" 이라는 index에 접근하여 del 명령을 사용하여 데이터를 삭제하고 있다.

```
2 rs

부산 1.630000
서울 2.832690
인천 9.818107
대구 1.410000
dtype: float64
```

```
1 del rs["서울"]
2 rs
부산 1.630000
인천 9.818107
대구 1.410000
dtype: float64
```


pandas - DataFrame

김지성 강사

DataFrame class

- ✓ DataFrame은 Pandas의 주요 데이터 구조이다.
- ✓ label된 row와 column, 두 개의 축을 갖는 데이터 구조입니다. 산술 연산은 row와 column 모두 적용됩니다. Series 객체를 갖는 dictionary라고 생각하면 비슷합니다.
- ✓ 첫 인자로 data, 두 번째 인자로 index를 전달한다.

pandas.DataFrame

```
class pandas.DataFrame(data=None, index=None, columns=None,
dtype=None, copy=None) [source]
```

Two-dimensional, size-mutable, potentially heterogeneous tabular data.

DataFrame은 각 column마다 자료형이 다를 수 있다.

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

DataFrame 생성

- ✓ DataFrame을 만드는 방법은 다양하다. 가장 간단한 방법으로는 다음과 같다.
 - 1. 우선 하나의 열이 되는 데이터를 리스트나 일차원 배열을 준비합니다.
 - 2. 이 각각의 열에 대한 이름(label)을 키로 가지는 딕셔너리를 만듭니다.
 - 3. 이 데이터를 DataFrame 클래스 생성자에 넣는다. 동시에 열방향 index는 columns 인수로, 행방향 index는 index 인수로 지정합니다.

```
1  d = {'col1': [1, 2], 'col2': [3, 4]}
2  df = pd.DataFrame(data=d)
3  df
```

	col1	col2
0	1	3
1	2	4

DataFrame 생성

✓ 좀 더 스케일을 확장해서 데이터를 늘리면 아래와 같이 DataFrame을 만들 수 있다.

```
1 data = {
2     "2015": [9904312, 3448737, 2890451, 2466052],
3     "2010": [9631482, 3393191, 2632035, 2431774],
4     "2005": [9762546, 3512547, 2517680, 2456016],
5     "2000": [9853972, 3655437, 2466338, 2473990],
6     "지역": ["수도권", "경상권", "수도권", "경상권"],
7     "2010-2015 증가율": [0.0283, 0.0163, 0.0982, 0.0141]
8 }
9 columns = ["지역", "2015", "2010", "2005", "2000", "2010-2015 증가율"]
10 index = ["서울", "부산", "인천", "대구"]
11 df = pd.DataFrame(data, index=index, columns=columns)
12 df
```

	지역	2015	2010	2005	2000	2010-2015 증가율
서울	수도권	9904312	9631482	9762546	9853972	0,0283
부산	경상권	3448737	3393191	3512547	3655437	0,0163
인천	수도권	2890451	2632035	2517680	2466338	0.0982
대구	경상권	2466052	2431774	2456016	2473990	0.0141

1 df.dtypes	
지역	object
2015	int64
2010	int64
2005	int64
2000	int64
2010-2015 증가율	float64
dtype: object	

지역과 인구와 증가율은 각각 object, int, float입니다.

앞서 이야기했듯 DataFrame의 각 column은 자료형이 다를 수 있습니다.

DataFrame의 속성 values, columns, index

✓ Series와 마찬가지로 데이터만 접근하려면 values 속성을 사용.

Index(['서울', '부산', '인천', '대구'], dtype='object')

✓ 열방향 index와 행방향 index는 각각 columns, index 속성으로 접근.

```
1 df.values
array([['수도권', 9904312, 9631482, 9762546, 9853972, 0.0283],
      ['경상권', 3448737, 3393191, 3512547, 3655437, 0.0163],
       ['수도권', 2890451, 2632035, 2517680, 2466338, 0.0982],
       ['경상권', 2466052, 2431774, 2456016, 2473990, 0.0141]], dtype=object)
    df.columns
Index(['지역', '2015', '2010', '2005', '2000', '2010-2015 증가율'], dtype='object')
    df.index
```


DataFrame 이름 붙이기

✓ Series에서 처럼 열방향 index와 행방향 index에 이름을 붙이는 것도 가능하다.

1 2 3		dex.name Lumns.nam		j "		
특성 도시	지역	2015	2010	2005	2000	2010-2015 증가율
서울	수도권	9904312	9631482	9762546	9853972	0.0283
산	경상권	3448737	3393191	3512547	3655437	0.0163
인천	수도권	2890451	2632035	2517680	2466338	0.0982
대구	경상권	2466052	2431774	2456016	2473990	0.0141

✓ 아래 조건을 만족하는 DataFrame을 직접 만들어보세요!

- (1) column의 개수와 row의 개수가 각각 4개 이상이어야 합니다.
- (2) column에는 정수, 문자열, 실수 자료형 데이터가 각각 1개 이상씩 포함되어 있어야 합니다.

DataFrame 전치(Transpose)

✓ DataFrame은 전치(transpose)를 포함하여 넘파이 2차원 배열이 가지는 대부분의 속성이나 메서드를 지원한다.

1	df.T					
		도시	서울	부산	인천	대구
		특성				
	지역		수도권	경상권	수도권	경상권
	2015		9904312	3448737	2890451	2466052
	2010		9631482	3393191	2632035	2431774
	2005		9762546	3512547	2517680	2456016
	2000		9853972	3655437	2466338	2473990
2010)-2015 증	가율	0.0283	0.0163	0.0982	0.0141

DataFrame column 추가, 갱신, 삭제

✓ DataFrame은 column을 Series의 딕셔너리으로 볼 수 있는데, Column 단위로 데이터를 갱신하 거나 추가, 삭제할 수 있다. 아래 예제는 값을 갱신하고 있음.

DataFrame column 추가, 갱신, 삭제

✓ 아래 예제에서는 "2005-2010 증가율"이라는 이름의 Column을 추가하고 있다.

```
○ 기조에 언느 column의 "2005-2010 주가유"에 간은 한단해서 초가하니다
```

- 1 # "2005-2010 증가율"이라는 이름의 열 추가
- 2 df["2005-2010 증가율"] = ((df["2010"] df["2005"]) / df["2005"] * 100).round(2)
- 3 **df**

특성 도시	지역	2015	2010	2005	2000	2010-2015 증가율	2005-2010 증가율
서울	수도권	9904312	9631482	9762546	9853972	2.83	-1.34
부산	경상권	3448737	3393191	3512547	3655437	1.63	-3.40
인천	수도권	2890451	2632035	2517680	2466338	9.82	4.54
대구	경상권	2466052	2431774	2456016	2473990	1.41	-0.99

DataFrame column 추가, 갱신, 삭제

- ✓ 아래 예제에서는 "2010-2015 증가율"이라는 이름의 column을 삭제하고 있다.
- ✓ del 명령을 통해 해당 column에 접근하여 삭제합니다.
 - 1 # "2010-2015 증가율"이라는 이름의 열 삭제
 - 2 del df["2010-2015 증가율"]
 - 3 **df**

특성	지역	2015	2010	2005	2000	2005-2010 증가율
도시						
서울	수도권	9904312	9631482	9762546	9853972	-1.34
부산	경상권	3448737	3393191	3512547	3655437	-3.40
인천	수도권	2890451	2632035	2517680	2466338	4.54
대구	경상권	2466052	2431774	2456016	2473990	-0.99

- ✓ DataFrame을 인덱싱을 할 때도 column label을 키(key)로 생각하여 인덱싱을 할 수 있다.
- ✓ index로 label 값을 하나만 넣으면 Series 객체가 반환된다.

```
1 # 하나의 column만 인덱싱하면 Series가 반환된다.
```

2 df["지역"]

```
도시
서울 수도권
부산 경상권
인천 수도권
대구 경상권
```

Name: 지역, dtype: object

✓ index로 label 값을 하나의 column만 넣으면 Series 객체가 반환된다.

```
1 # 2010이라는 column을 반환하면서 Series 자료형으로 변환
2 df["2010"]
도시
서울 9631482
부산 3393191
인천 2632035
대구 2431774
Name: 2010, dtype: int64
```

pandas.core.series.Series

✓ label의 배열 또는 리스트로 인덱싱하면 DataFrame 타입이 반환.

```
1 # 여러 개의 columns을 인덱싱하면 부분적인 DataFrame이 반환된다.
2 df[["2010", "2015"]]

특성 2010 2015
도시

서울 9631482 9904312
부산 3393191 3448737
인천 2632035 2890451
대구 2431774 2466052
```


✓ 만약 하나의 column만 빼내어더라도 DataFrame 자료형을 유지하고 싶다면 요소가 하나인 리스트 자료형을 사용해서 인덱싱하면 된다.

```
1 # 2010이라는 column을 반환하면서 DataFrame 자료형을 유지 df[["2010"]]
특성 2010 도시 서울 9631482 부산 3393191 인천 2632035 대구 2431774
```

pandas.core.frame.DataFrame

✓ 문자열이 아닌 정수형 column index를 가지는 경우에는 index 값으로 정수를 사용할 수 있다.

```
1 df2 = pd.DataFrame(np.arange(12).reshape(3, 4)
2 df2

0 1 2 3

0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

별도의 columns 키워드 인수를 전달하지 않으
```

별도의 columns 키워드 인수를 전달하지 않으 면 RangeIndex를 기본 값으로 부여합니다.

```
1 df2[2]

0 2
1 6
2 10
Name: 2, dtype: int64

1 df2[[1, 2]]

1 2
0 1 2
1 5 6
2 9 10
```


DataFrame row 슬라이싱

- ✓ 만약 row 단위로 인덱싱을 하고자 하면 항상 슬라이싱(slicing)을 해야 한다.
- ✓ index의 값이 문자 label이면 label 슬라이싱도 가능.

1	df						
특성	지역	2015	2010	2005	2000	2005-2010	증가율
도시							
서울	수도권	9904312	9631482	9762546	9853972		-1,34
부산	경상권	3448737	3393191	3512547	3655437		-3.40
인천	수도권	2890451	2632035	2517680	2466338		4.54
대구	경상권	2466052	2431774	2456016	2473990		-0.99
1	df[:1]	# df[:	"서울"]	> 문자는	포함, 会	다는 미포함	
특성	지역	2015	2010	2005	2000	2005-2010	증가율
도시							
서울	수도권	9904312	9631482	9762546	9853972		-1.34

DataFrame row 슬라이싱

- ✓ row가 부산인 결과만 보고 싶을 경우에는 아래의 예제 코드처럼 작성해야 한다.
- ✓ 단 한 줄이기 때문에 ["부산":"부산"]으로 슬라이싱하고 있다.

1	df[1:	2]					
특성	지역	2015	2010	2005	2000	2005-2010	증가율
도시							
부산	경상권	3448737	3393191	3512547	3655437		-3.4
1	df["부	산":"부산'	1				
특성	지역	2015	2010	2005	2000	2005-2010	증가율
도시							
부산	경상권	3448737	3393191	3512547	3655437		-3.4

DataFrame 개별 데이터 인덱싱

- ✓ DataFrame에서 column label로 인덱싱하면 Series가 된다. 이 Series를 다시 row label로 인덱 싱하면 개별 데이터가 나온다.
- ✓ 즉 column label -> row label 순으로 인덱싱

```
1 df["2015"]["서울"]
```

9904312

1 type(df["2015"]["서울"])

numpy.int64

- ✓ 다음 DataFrame을 활용하여 아래 문제를 해결해보세요.
 - 모든 학생의 수학 점수를 Series로 나타낸다.
 - 모든 학생의 국어와 영어 점수를 데이터 프레임으로 나타낸다.
 - 모든 학생의 각 과목 평균 점수를 새로운 열로 추가한다.
 - 춘향의 점수를 DataFrame으로 나타낸다.
 - 향단의 점수를 Series로 나타낸다.

```
data = {
  "국어": [80, 90, 70, 30],
  "영어": [90, 70, 60, 40],
  "수학": [90, 60, 80, 70],
}
columns = ["국어", "영어", "수학"]
index = ["춘향", "몽룡", "향단", "방자"]
df = pd.DataFrame(data, index=index, columns=columns)
```


- ✓ 다음 DataFrame을 활용하여 아래 문제를 해결해보세요.
 - 모든 학생의 수학 점수를 Series로 나타낸다.

```
    # (1) 모든 학생의 수학 점수를 Series로 나타낸다.
    2 df["수학"]
```

```
춘향 90
몽룡 60
향단 80
방자 70
```

Name: 수학, dtype: int64

- ✓ 다음 DataFrame을 활용하여 아래 문제를 해결해보세요.
 - 모든 학생의 국어와 영어 점수를 데이터 프레임으로 나타낸다.

```
1 # (2) 모든 학생의 국어와 영어 점수를 DataFrame으로 나타낸다.
```

2 df[["국어", "영어"]]

	국어	영어
춘향	80	90
몽룡	90	70
향단	70	60
방자	30	40

- ✓ 다음 DataFrame을 활용하여 아래 문제를 해결해보세요.
 - 모든 학생의 각 과목 평균 점수를 새로운 열로 추가한다.

```
1 # (3) 모든 학생의 각 과목 평균 점수를 새로운 column로 추가한다.
2 df["평균"] = round((df["국어"] + df["영어"] + df["수학"]) / 3, 2)
3 # round(df.mean(axis=1), 2)을 활용해도 된다.
4 df
```

	국어	영어	수학	평균
춘향	80	90	90	86.67
몽룡	90	70	60	73.33
향단	70	60	80	70.00
방자	30	40	70	46.67

- ✓ 다음 DataFrame을 활용하여 아래 문제를 해결해보세요.
 - 춘향의 점수를 DataFrame으로 나타낸다.

```
2 df[:1]
3 # df["춘향":"춘향"]
```

	국어	영어	수학	평균
춘향	80	90	90	86.67

- ✓ 다음 DataFrame을 활용하여 아래 문제를 해결해보세요.
 - 향단의 점수를 Series로 나타낸다.

```
2 df.T["향단"]
국어 70.0
영어 60.0
수학 80.0
평균 70.0
Name: 향단, dtype: float64
```


✓ 데이터 출력하기에 앞서 다음과 같은 DataFrame을 만들어 보자.

	c1	c2	c3
0	1	1,11	one
1	2		two
2	누락	3.33	three

✓ 데이터 출력하기에 앞서 다음과 같은 DataFrame을 만들어 보자.

```
1 data = {
2     "c1": [1, 2, "누락"],
3     "c2": [1.11, "", 3.33],
4     "c3": ["one", "two", "three"]
5 }
6 df_csv = pd.DataFrame(data)
7 df_csv
```

	c1	c2	с3
0	1	1.11	one
1	2		two
2	누락	3.33	three

- ✓ 데이터를 csv 파일로 출력할 땐 to_csv() 메서드를 활용한다.
- ✓ 첫 인자로는 파일 경로를 입력한다.
 - 현재 만든 DataFrame의 index는 의미 없는 값이므로 출력할 때 고려하지 않는다.
 - to_csv()의 기본값 인자인 index의 default가 True이니 index=False 키워드를 활용하여 설

```
정해줘<sup>아 하다</sup>
pandas.DataFrame.to_csv
```

```
DataFrame.to_csv (path_or_buf=None) sep=',', na_rep='',
float_format=None, columns=None, header=True, index=True,
index_label=None, mode='w', encoding=None, compression='infer',
quoting=None, quotechar='"', lineterminator=None, chunksize=None,
date_format=None, doublequote=True, escapechar=None, decimal='.',
errors='strict', storage_options=None) [source]
```

Write object to a comma-separated values (csv) file.

- ✓ df_csv.to_csv("파일이름 및 확장자", index=False)와 같이 사용한다.
- ✓ 따로 경로를 지정하지 않으면 해당 노트북 폴더에 파일이 생성된다.

1 df_csv.to_csv("sample1.csv", index=False)

- ✓ 파일을 확인했을 때 아래와 같은 내용으로 생성된 것을 확인할 수 있다.
- ✓ 엑셀과 같은 형태로 보이기도, 텍스트처럼 보일수도 있는데, 둘 다 같은 파일이다.

Delimiter: , 🗸								
	c1	c2	с3					
1	1	1.11	one					
2	2		two					
3	누락	3.33	three					

- ✓ 이번에는 만든 csv 파일로부터 데이터를 불러오는 작업을 진행해보자.
- ✓ 이때는 read_csv() 메서드를 사용.

pandas.read_csv

```
pandas.read csv(filepath or buffer, *, sep= NoDefault.no default,
delimiter=None, header='infer', names= NoDefault.no default,
index col=None, usecols=None, squeeze=None,
prefix= NoDefault.no default, mangle dupe cols=True, dtype=None,
engine=None, converters=None, true values=None, false values=None,
skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None,
na values=None, keep default na=True, na filter=True, verbose=False,
skip blank lines=True, parse dates=None, infer datetime format=False,
keep_date_col=False, date_parser=None, dayfirst=False,
cache dates=True, iterator=False, chunksize=None, compression='infer',
thousands=None, decimal='.', lineterminator=None, quotechar='"',
quoting=0, doublequote=True, escapechar=None, comment=None,
encoding=None, encoding errors='strict', dialect=None,
error bad lines=None, warn bad lines=None, on bad lines=None,
delim_whitespace=False, low_memory=True, memory_map=False,
                                                               [source]
float precision=None, storage options=None)
```


- ✓ CSV 파일로부터 데이터를 읽어 DataFrame을 만들 때는 pandas.read_csv 함수를 사용한다.
- ✓ 함수의 첫 번째 인수로 "파일 이름.확장자" 문자열로 넣는다. 그럼 아래와 같이 DataFrame을 잘

불러오는 것을 확인하 스 이다

```
df_read = pd.read_csv("sample.csv")
df_read
```

	c1	c2	c3
0	1	1.11	one
1	2	NaN	two
2	누락	3.33	three

- ✓ 이번에는 column 인덱스를 배제하고 저장해보자.
- ✓ 아래의 예제 코드와 같이 header=False 키워드 인수를 추가해주면 된다.

df_csv.to_csv("sample2.csv", index=False, header=False)

- ✓ column을 지정하지 않았기 때문에 1행의 데이터가 column으로 지정되었다.
- ✓ 이러한 문제를 해결하기 위해서 column을 직접 넣을 수 있다.

✓ <u>데이터</u>를 다운받아서 폴더에 넣고 파일을 읽어보자.

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
0	1	Bulbasaur	Grass	Paisan	318	45	49	49	65	65	45	1	False
1	2	lvysaur	Grass	Poison	405	60	62	63	80	80	60	1	False
2	3	Venusaur	Grass	Poison	525	80	82	83	100	100	80	1	False
3	3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	1	False
4	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1	False
	100	144	36	100	-	-	-	114	764	347	344	***	- 1
795	719	Diancie	Rack	Fairy	600	50	100	150	100	150	50	6	True
796	719	DiancieMega Diancie	Rock	Fairy	700	50	160	110	160	110	110	6	True
797	720	HoopaHoopa Confined	Psychic	Ghost	600	80	110	60	150	130	70	6	True
798	720	HoopaHoopa Unbound	Psychic	Dark	680	80	160	60	170	130	80	6	True
799	721	Volcanion	Fire	Water	600	80	110	120	130	90	70	6	True

800 rows x 13 columns

- ✓ 파일 중에 건너 뛰어야 할 상단 행이 있으면 skiprows 인수를 사용하면 된다.
- ✓ 건너 뛸 줄을 리스트 안에 작성해도 되고 리스트가 아닌 range(2)를 활용할 수도 있다.

	2	lvysaur	Grass	Poison	405	60	62	63	80	80.1	60.1	1	False
0	3	Venusaur	Grass	Poison	525	80	82	83	100	100	80	1	False
1	3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	1	False
2	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1	False
3	5	Charmeleon	Fire	NaN	405	58	64	58	80	65	80	1	False
4	6	Charizard	Fire	Flying	534	78	84	78	109	85	100	1	False
777	-	-111	1,370	-	-711		-	777		-		1777	- 22
793	719	Diancie	Rock	Fairy	600	50	100	150	100	150	50	6	True
794	719	DiancieMega Diancie	Rock	Fairy	700	50	160	110	160	110	110	6	True
795	720	HoopaHoopa Confined	Psychic	Ghost	600	80	110	60	150	130	70	6	True
796	720	HoopaHoopa Unbound	Psychic	Dark	680	80	160	60	170	130	80	6	True
797	721	Volcanion	Fire	Water	600	80	110	120	130	90	70	6	True

	2	Ivysaur	Grass	Poison	405	60	62	63	80	80.1	60.1	1	False
0	3	Venusaur	Grass	Poison	525	80	82	83	100	100	08	1	False
1	3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	1	False
2	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1	False
3	5	Charmeleon	Fire	NaN	405	58	64	58	В0	65	80	1	False
4	6	Charizard	Fire	Flying	534	78	84	78	109	85	100	31	False
ine	-	tes.	***	-	164	-		164	-	del	- 175	100	-
793	719	Diancie	Rock	Fairy	600	50	100	150	100	150	50	6	True
794	719	DiancieMega Diancie	Rock	Fairy	700	50	160	110	160	110	110	6	True
795	720	HoopaHoopa Confined	Psychic	Ghost	600	80	110	60	150	130	70	6	True
796	720	HoopaHoopa Unbound	Psychic	Dark	680	80	160	60	170	130	80	6	True
797	721	Volcanion	Fire	Water	600	80	110	120	130	90	70	6	True

798 rows × 13 columns

pd.read_csv("pokenon.csv", skiprows=range(2))

798 rows x 13 columns

✓ 데이터로 불러올 자료 안 특정한 값을 NaN으로 취급하고 싶으면 na_values 인수에 NaN 값으로

취급할 값은 넌느다

	ø	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
0	1	Bulbasaur	NaN	Poison	318	45	49	49	65	65	45	1	False
1	2	lvysaur	NaN	Poison	405	60	62	63	80	80	60	1	False
2	3	Venusaur	NaN	Poison	525	80	82	83	100	100	80	1	False
3	3	VenusaurMega Venusaur	NaN	Poison	625	80	100	123	122	120	80	1	False
4	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1	False
-04	100	100		-	-			10		110		-	
795	719	Diancie	Rock	Fairy	600	50	100	150	100	150	50	6	True
796	719	DiancieMega Diancie	Rack	Fairy	700	50	160	110	160	110	110	6	True
797	720	HoopaHoopa Confined	Psychic	Ghast	600	80	110	60	150	130	70	6	True
798	720	HoopaHoopa Unbound	Psychic	Dark	680	80	160	60	170	130	В0	6	True
799	721	Volcanion	Fire	Water	600	80	110	120	130	90	70	6	True

✓ 불러올 때와 마찬가지로 저장할 때도 na_rep 키워드 인수를 사용해서 NaN 표시값을 바꿀 수도 있습니다. 아래의 코드를 보면 NaN 값을 '누락'으로 변경해서 저장한다.

df_na = pd.read_csv("pokemon.csv", na_values=["Grass"])
df_na.to_csv("df_na_sample.csv", na_rep="午雪")

	Unnamed: 0		Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
0	0	1	Bulbasaur	누락	Poison	318	45	49	49	65	65	45	1	False
1	.3	2	hysaur	を見	Poison	405	60	62	63	80	80	60	1	False
2	- 2	3	Venusaur	牛型	Poison	525	80	82	83	100	100	80	1	False
3	3	3	VenusaurMega Venusaur	누박	Poison	625	80	100	123	122	120	80	1	False
4	4	4	Charmander	Fire	누막	309	39	52	43	60	50	65	1	False
	+	-	-		-	-	100	-			100		-	-
195	795	719	Diancie	Rock	Fairy	600	50	100	150	100	150	50	6	True
796	796	719	DiancieMega Diancie	Rock	Fairy	700	50	160	110	160	110	110	6	True
97	797	720	HoopaHoopa Confined	Psychic	Ghost	600	80	110	60	150	130	70	6	True
798	798	720	HoopaHoopa Unbound	Psychic	Dark	680	80	160	60	170	130	90	6	True
199	799	721	Volcanion	Fire	Water	600	80.	110	120	130	90	70	6	Tru

800 rows × 14 columns

✓ 웹상에는 다양한 데이터 파일이 CSV 파일 형태로 제공되는데, read_csv 명령 사용시 path 대신

URL을 지정하면 Pandac가 지저 됐다 파이은 다으르드되어 이어드이다

titanic = pd.read_csv("https://storage.googleapis.com/tf-datasets/titanic/train.csv")
titanic

	survived	sex	age	n_siblings_spouses	parch	fare	class	deck	embark_town	alone
0	0	male	22.0	1	0	7.2500	Third	unknown	Southampton	n
1	1	female	38.0	1	0	71.2833	First	C	Cherbourg	n
2	11	female	26.0	0	0	7.9250	Third	unknown	Southampton	у
3	1	female	35.0	1	0	53,1000	First	C	Southampton	n
4	0	male	28.0	0	0	8.4583	Third	unknown	Queenstown	у
440	-		-	140	-					-
622	0	male	28.0	0	0	10.5000	Second	unknown	Southampton	у
623	.0	male	25.0	0	0	7.0500	Third	unknown	Southampton	у
624	21	female	19.0	0	0	30.0000	First	В	Southampton	у
625	0	female	28.0	1	2	23.4500	Third	unknown	Southampton	n
626	0	male	32.0	0	0	7.7500	Third	unknown	Queenstown	у

627 rows × 10 columns

데이터 출력 - head()/tail()

- ✓ 만약 앞이나 뒤의 특정 개수만 보고 싶다면 head() 메서드나 tail() 메서드를 사용하면 된다.
- ✓ 메서드 인수로 출려하 해이 스르 너ㅇ며 되다

	10.77			44.740	10200	17.4	92	47.75	2000	112
	survived	sex	age	n_siblings_spouses	parch	fare	e class	deck	embark_town	alone
0	0	male	22.0	1.	0	7.2500) Third	unknown	Southampton	n
1	-1	female	38.0	241	0	71.283	3 First	C	Cherbourg	n
2	1	female	26.0	0	0	7.9250) Third	unknown	Southampton	у
3	1	female	35.0	1	0	53.1000) First	C	Southampton	n
4	0	male	28.0	0	0	8.4583	3 Third	unknown	Queenstown	У
tita	anic.tail	()								
	survived	sex	age	n_siblings_spouses	parch	fare	class	deck	embark_town	alone
622	0	male	28.0	0	0	10.50	Second	unknown	Southampton	У
623	0	male	25.0	0	0	7.05	Third	unknown	Southampton	у
624	1	female	19.0	0	0	30.00	First	В	Southampton	У
625	0	female	28.0	1	2	23,45	Third	unknown	Southampton	
626	0	male	32.0	. 0	. 0	7.75	Third	unknown	Queenstown	У

데이터 출력 - head()/tail()

✓ 만약 앞이나 뒤의 특정 개수만 보고 싶다면 head() 메서드나 tail() 메서드를 사용하면 된다.

✓ 메서드 인수로 출려하 해이 스르 너ㅇ며 되다

tit	anic.hea	d()								
. 33	survived	sex	age	n_siblings_spouses	parch	fare	e class	deck	embark_town	alone
0	0	male	22.0	1	0	7.2500) Third	unknown	Southampton	n
1	-1	female	38.0	241	0	71.2833	3 First	C	Cherbourg	n
2	1	female	26.0	0	0	7.9250) Third	unknown	Southampton	у
3	1	female	35.0	1	0	53.1000) First	C	Southampton	n
4	0	male	28.0	0	0	8.4583	3 Third	unknown	Queenstown	У
tita	nic.tail	()								
	survived	sex	age	n_siblings_spouses	parch	fare	class	deck	embark_town	alone
622	0	male	28.0	0	0	10.50	Second	unknown	Southampton	У
623	0	male	25.0	0	0	7,05	Third	unknown	Southampton	у
624	1	female	19.0	0	0	30.00	First	В	Southampton	У
625	0	female	28.0	1	2	23,45	Third	unknown	Southampton	n
626	0	male	32.0	0	0	7.75	Third	unknown	Queenstown	У

데이터 출력 - nunique()

- ✓ nunique() 메서드는 고유한 값의 개수를 계산할 때 사용한다.
- ✓ DataFrame 객체는 nunique() 메서드에 대해서 각 컬럼마다 갖는 고유 값을 Series 객체로 반환

한다.

titanic.nunique()

survived	2
sex	2
age	76
n_siblings_spouses	7
parch	6
fare	216
class	3
deck	8
embark_town	4
alone	2
dtype: int64	

데이터 출력 - count()

- ✓ DataFrame 객체의 count() 메서드는 컬럼마다의 데이터의 개수를 계산한다.
- ✓ 이때 nan인 값에 대해서는 개수에 포함시키지 않는다.
 - 컬럼마다의 개수를 보여줘야해서 Series 객체로 값을 반환한다.
- ✓ DataFrame 객체를 인수로 해서 len() 함수를 사용하면 row index의 전체 크기를 알려주는데, nan 값과 관계없이 전체를 세기 때문에 단 하나의 값을 정수로 반환.

데이터 출력 - value_counts()

- ✓ count()와 마찬가지로 고유값의 개수를 카운팅해주는 메소드이다.
- ✓ 다양한 옵션값을 설정할 수 있다.
 - 오름차순 정렬: ascending=True
 - Na값을 집계에 포함시키려면 dropna=True
 - 노말라이즈: normalize=True
 - 그 이외에도 bins, sort 등의 다양한 옵션이 존재한다.

데이터 출력 - value_counts()

```
titanic['survived'].value_counts()
```

survived

0 384

1 243

Name: count, dtype: int64

```
titanic['class'].value_counts(normalize=True)
```

```
titanic[['class','sex']].value_counts()
```

```
class
Third 0.543860
First 0.253589
Second 0.202552
Name: proportion, dtype: float64
```

```
class
        sex
Third
        male
                  248
        female
                   93
First
        male
                   90
        male
Second
                   72
        female
First
                   69
Second female
                   55
Name: count, dtype: int64
```


데이터 출력 - count()

✓ titanic.count()의 개수와 len(titanic)의 개수가 다른 것을 볼 수 있다.

titanic.count()

dtype: int64

survived 627 627 sex 627 age n_siblings_spouses 627 parch 627 fare 627 class 627 deck 627 embark town 627 alone 627

len(titanic)

627

데이터 출력 - dtypes

- ✓ titanic의 각 컬럼에 대해 dtype을 조회해볼 수 있는데 이때는 dtypes 속성을 사용한다.
- ✓ object type은 주로 문자열 혹은 문자열+숫자의 혼합일 때 주로 나타난다.

titanic.dtypes

survived	int64
sex	object
age	float64
n_siblings_spouses	int64
parch	int64
fare	float64
class	object
deck	object
embark_town	object
alone	object
dtype: object	

데이터 출력 - describe()

✓ describe() 메서드는 수치 값을 갖는 DataFrame의 각 컬럼에 대해 count, mean, std, min,
 25%, median(50%). 75%. max에 대한 모든 통계를 구해준다.

titani	lc.describe()			
	survived	age	n_siblings_spouses	parch	fare
count	627.000000	627.000000	627.000000	627.000000	627.000000
mean	0.387560	29.631308	0.545455	0.379585	34.385399
std	0.487582	12.511818	1.151090	0.792999	54.597730
min	0.000000	0.750000	0.000000	0.000000	0.000000
25%	0.000000	23.000000	0.000000	0.000000	7.895800
50%	0.000000	28.000000	0.000000	0.000000	15.045800
75%	1.000000	35.000000	1.000000	0.000000	31.387500
max	1.000000	80.000000	8.000000	5.000000	512.329200

- ✓ series때 다뤘던 것과 마찬가지로 동일한 메소드를 사용할 수 있다.
- ✓ 특히 .isnull().sum()과 같은 결측치 확인 명령어는 알아두면 유용하다.

결측값 확인	내용
• isnull(데이터명) / 데이터명, Isnull	관측치가 결측이면 True
notnull(데이터명) / 데이터명,notnull	관혹치가 결측이면 False
• 데이터명.isnull().sum()	칼럼벌 결측값 개수
• 데이터명.isnull().sum(1)	행(row) 단위로 결촉값 개수
• 데이터명.notnull().sum(1)	행(row) 단위로 실촉값 개수
• dropna()	결촉값이 있는 축 제외
• fillnma()	누락된 값을 대체하거나 ffill 이나 bfill 메소드를 이용해 대체


```
import numpy as np
# 결측치가 포함된 샘플 데이터셋 생성
data = {
  "Name": ["Alice", "Bob", "Charlie", "David", "Eva"],
  "Age": [25, np.nan, 35, 40, np.nan],
  "Salary": [50000, 60000, np.nan, 80000, 90000],
  "Department": ["HR", "Finance", np.nan, "IT", "Marketing"]
}

df = pd.DataFrame(data)
```

df				
	Name	Age	Salary	Department
0	Alice	25.0	50000.0	HR
1	Bob	NaN	60000.0	Finance
2	Charlie	35.0	NaN	NaN
3	David	40.0	80000.0	IT
4	Eva	NaN	90000.0	Marketing

✓ isnull()/notnull()은 결과값이 반대이다.

df.isnull()	Č.	

	Name	Age	Salary	Department
0	False	False	False	False
1	False	True	False	False
2	False	False	True	True
3	False	False	False	False
4	False	True	False	False

df.isnull().	sum()		
Name	0		
Age	2		
Salary	1		
Department	1		
dtyne: int64			

df.notnull()

	Name	Age	Salary	Department
0	True	True	True	True
1	True	False	True	True
2	True	True	False	False
3	True	True	True	True
4	True	False	True	True

df.notnull().sum()

lame	5
\ge	3
Salary	4
Department	4
type: int64	

✓ dropna()는 결측치가 존재하는 행을 제외, fillna()는 결측치를 원하는 값으로 채울 수 있다.

df.dropna()								
	Name	Age	Salary	Department				
0	Alice	25.0	50000.0	HR				
3	David	40.0	80000.0	IT				

	Name	Age	Salary	Department
0	Alice	25.0	50000.0	HR
1	Bob	누락	60000.0	Finance
2	Charlie	35.0	누락	누락

40.0 80000.0

Marketing

Eva 누락 90000.0

df.fillna("누락")

David

DataFrame 차원 확인

- ✓ 데이터의 차원과 형태를 확인하기 위해서는 ndim과 shape 속성을 사용할 수 있다.
 - DataFrame은 2차원 형태를 가지는 경우가 많기 numpy에서 더 자주 사용하게 된다.
- ✓ ndim은 차원의 수를 반환하고 shape은 데이터의 형태를 반환한다.

titanic.ndim

2

titanic.shape

(627, 10)

pandas 연습 문제

- ✓ 데이터를 다운받아서 파일을 읽어오고 다음과 같은 문제에 답하세요.
 - nba 데이터에 대한 파악을 위해 각 컬럼이 어떤 타입을 갖는지 확인해봅시다.
 - 또 각각의 데이터 유형이 몇개씩 존재하나 확인해 봅시다.

Name	object	
Team	object	
Number	float64	
Position	object	object 5
Age	float64	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Height	object	float64 4
Weight	float64	Name: count, dtype: int64
College	object	
Salary	float64	
dtype: obj	ject	

pandas 연습 문제 해답

nba_df.dtypes

object Name Team object Number float64 Position object Age float64 object Height Weight float64 College object Salary float64 dtype: object

nba_df.dtypes.value_counts()

object 5 float64 4

Name: count, dtype: int64

pandas 연습 문제

- ✓ 데이터를 다운받아서 파일을 읽어오고 다음과 같은 문제에 답하세요.
 - nba 데이터의 차원의 수, 모양, 컬럼 인덱스, 로우 인덱스를 각각 구해보세요.

pandas 연습 문제 해답

```
nba_df.ndim
nba_df.shape
(458, 9)
nba_df.columns
Index(['Name', 'Team', 'Number', 'Position', 'Age', 'Height', 'Weight',
       'College', 'Salary'],
      dtype='object')
nba_df.index
RangeIndex(start=0, stop=458, step=1)
```


pandas 연습 문제

- ✓ 데이터를 다운받아서 파일을 읽어오고 다음과 같은 문제에 답하세요.
 - nba 데이터에 결측치를 갖는 컬럼이 존재하는지 확인해 봅시다. 그리고 존재한다면 몇개의
 데이터나 결측치 값을 갖는지 확인해보세요.
 - 또한 각 컬럼별 결측치를 제외한 데이터의 수를 확인해보세요.

pandas 연습 문제 해답

nba	_df.i	snull	().	sum()
-----	-------	-------	-----	-------

Name 1
Team 1
Number 1
Position 1
Age 1
Height 1
Weight 1
College 85
Salary 12
dtype: int64

nba_df.count()

Name 457 Team 457 Number 457 Position 457 457 Age Height 457 Weight 457 College 373 Salary 446 dtype: int64

pandas 연습 문제

- ✓ 데이터를 다운받아서 파일을 읽어오고 다음과 같은 문제에 답하세요.
 - nba 데이터에 각 컬럼마다 고유한 값을 몇개씩 갖는지 조회해보세요.
 - Salary 컬럼의 평균, 최대 최소 등 다양한 통계량을 확인해보세요.

pandas 연습 문제 해답

nba_df.nunique()

Name	457
Team	30
Number	53
Position	5
Age	22
Height	18
Weight	87
College	118
Salary	309
dtype: int6	4

```
# 과학적 표기법 비활성회
pd.set_option('display.float_format', '{:.0f}'.format)
nba_df['Salary'].describe()
count
             446
        4842684
mean
         5229238
std
min
           30888
25%
        1044792
50%
        2839073
75%
        6500000
```


25000000

Name: Salary, dtype: float64

max

고급 인덱싱

- ✓ DataFrame에서 특정한 데이터만 골라내는 것을 인덱싱(indexing)이라고 한다.
- ✓ 그런데 Pandas는 NumPy 배열과 같이 콤마(,)를 사용한 (row 인덱스, column 인덱스) 형식의 2 차원 인덱싱을 지원하기 위해 다음과 같은 특별한 인덱서(indexer) 속성도 제공한다.
 - loc: label 값 기반의 2차원 인덱싱
 - iloc: 순서를 나타내는 정수 기반의 2차원 인덱싱

✓ <u>다음과 같은 데이터를 마득어보자</u>

10x10 데이터프레임 생성 (인덱스를 처음부터 row_로 설정) data = np.arange(1, 101).reshape(10, 10) index = [f'row_{i+1}' for i in range(10)] columns = [f'col_{i+1}' for i in range(10)] df = pd.DataFrame(data, columns=columns, index=index)

df											
	col_1	col_2	col_3	col_4	col_5	col_6	col_7	col_8	col_9	col_10	
row_1	1	2	3	4	5	6	7	8	9	10	
row_2	-11	12	13	14	15	16	317	18	39	20	
row_3	21	22	23	24	25	26	27	28	29	30	
row_4	31	32	33	34	35	36	37	38	39	40	
row_5	41	42	43	44	45	46	47	48	49	50	
row_6	51	52	53	54	55	56	57	58	59	60	
row_7	61	62	63	64	65	66	67	68	69	70	
8_won	71	72	73	74	75	76	77	78	79	80	
row_9	81	82	83	84	85	86	87	88	89	90	
row_10	91	92	93	94	95	96	97	98	99	100	

✓ loc 인덱서는 다음처럼 사용할 수 있다.

df.loc[row 인덱스]

df.loc[row 인덱스, column 인덱스]

```
df.loc["row_1","col_1"]
```

1

sbo S

✓ 인덱스 데이터의 슬라이스도 가능하다. 이 때는 사실 loc를 쓰지 않을 때와 결과가 동일하다.

	col_1	col_2	col_3	col_4	col_5	col_6	col_7	col_8	col_9	col_10
row_1	1	2	3	4	5	6	7	8	9	10
row_2	11	12	13	14	15	16	17	18	19	20
row_3	21	22	23	24	25	26	27	28	29	30
df["ro	w_1":	'row_3"]							
	col_1	col_2	col_3	col_4	col_5	col_6	col_7	col_8	col_9	col_10
row_1	1	2	3	4	5	6	7	8	9	10
row_2	11	12	13	14	15	16	17	18	19	20
row_3	21	22	23	24	25	26	27	28	29	30

- ✓ 인덱스 데이터의 리스트 자료형도 사용 가능하다.
 - 이 때는 loc를 쓰지 않으면 KeyError 오류가 발생

	col_1	col_2	col_3	col_4	col_5	col_6	col_7	col_8	col_9	col_10
row_1	1	2	3	4	5	6	7	8	9	10
row_3	21	22	23	24	25	26	27	28	29	30

- ✓ Boolean Series로 row를 기준으로 인덱싱할 수 있다.
 - 아래 예제에서는 df.col_1(영어 문자열은 속성처럼 접근 가능)의 값 중 50 초과인 결과를

Boolean Series 값을 얻을 수 있습니다. 이 Boolean Series를 활용해 인덱싱하고 있다.

```
select_value = df.col_1>50
print(select value)
         False
row 1
         False
row 2
row 3
         False
         False
row 4
         False
row 5
row 6
         True
         True
row 7
         True
row 8
row 9
          True
row 10
          True
Name: col 1, dtype: bool
```

```
df.loc[select_value].col_1

row_6    51
row_7    61
row_8    71
row_9    81
row_10    91
Name: col_1, dtype: int32
```


- ✓ Boolean Series로 row를 기준으로 인덱싱할 수 있다.
 - 아래 예제에서는 df.col_1(영어 문자열은 속성처럼 접근 가능)의 값 중 50 초과인 결과를

Boolean Series 값을 얻을 수 있습니다. 이 Boolean Series를 활용해 인덱싱하고 있다.

```
select_value = df.col_1>50
print(select value)
         False
row 1
         False
row 2
row 3
         False
         False
row 4
         False
row 5
row 6
         True
         True
row 7
         True
row 8
row 9
          True
row 10
          True
Name: col 1, dtype: bool
```

```
df.loc[select_value].col_1

row_6 51

row_7 61

row_8 71

row_9 81

row_10 91

Name: col_1, dtype: int32
```


고급 인덱싱 - loc vs iloc

- ✓ iloc은 loc과 다르게 label 인덱스가 아닌 숫자로된 인덱스에 접근하기에 우리가 아는 슬라이싱 방식과 동일하게 포함하지 않습니다.
 - 데이터의 인덱스와 컬럼을 0부터 시작되게 변경하세요.

	col_0	col_1	col_2	col_3	col_4	col_5	col_6	col_7	col_8	col_9
row_1	11	12	13	14	15	16	17	18	19	20
df.ilc	c[1,3]									

고급 인덱싱 - loc vs iloc

✓ 일반적인 슬라이싱과 마찬가지로 행과 열에 각각 슬라이싱을 적용할 수 있다.

df.iloc[1:5,3:6]

	col_3	col_4	col_5
row_1	14	15	16
row_2	24	25	26
row_3	34	35	36
row_4	44	45	46

	col_2	col_4	col_6
row_1	13	15	17
row_2	23	25	27
row_3	33	35	37

고급 인덱싱 - 조건 필터링

✓ 조건을 걸어서 특정 원하는 데이터만 필터링이 가능하다.
col_5가 50보다 큰 행만 필터링

<pre>filtered_df = df[df['col_5'] > 50] print(filtered_df)</pre>										
	col_0	col_1	col_2	col_3	co1_4	col_5	col_6	col_7	col_8	col_9
row_5	51	52	53	54	55	56	57	58	59	68
row_6	61	62	63	64	65	66	67	68	69	78
row_7	71	72	73	74	75	76	77	78	79	86
row_8	81	82	83	84	85	86	87	88	89	.90
row 9	91	92	93	94	95	96	97	98	99	100

col_5가 30보다 크고, col_7이 70보다 작은 행 필터링

```
filtered_df = df[(df['col_5'] > 30) & (df['col_7'] < 70)]
print(filtered_df)
      col_0 col_1 col_2 col_3 col_4 col_5 col_6 col_7 col_8
                                                                   col 9
         31
                32
                       33
row 3
                                                  37
                                                         38
                                                               39
                                                                      40
                42
                       43
                                                               49
         41
                                                  47
                                                                      50
row 4
               52
                       53
row 5
         51
                                                  57
                                                         58
                                                               59
                                                                      60
                62
                                                                      70
         61
                                                               69
row 6
```


연습 문제

- 1. 타이타닉호 승객의 평균 나이를 구하세요. 29.6
- 2. 타이타닉호 승객중 여성 승객의 평균 나이를 구하세요. 28.7
- 3. 타이타닉호 승객중 1등실(class=="First") 선실의 여성 승객의 평균 나이를 구하세요. 34.3 평균은 mean() 메소드를 통해서 구할 수 있다.

47.0

연습 문제 해답

```
# 승객의 평균 나이
round(titanic['age'].mean(),1)
29.6
# 여성 승객의 평균 나이
round(titanic['sex']=='female']['age'].mean(),1)
28.7
# 1등급 선실의 여성 승객의 평균 나이
round(titanic['class']=="First") & (titanic['sex']=='female')]['age'].mean(),1)
34.3
```


- ✓ DataFrame에 대해 Function을 적용할 때에는 apply()를 활용하면 좋다.
- ✓ 이 메서드는 첫 인자로 함수를 필수 값으로 받는다. 경우에 따라 두 번째 인자로 axis를 사용할 수 있는데, axis 인자는 0이 default 이다.
 - axis가 0인 경우 행 방향으로 내려가면서 열마다 함수를 적용합니다.
 - axis가 1인 경우 열 방향으로 이동하면서 행마다 함수를 적용합니다.

pandas.DataFrame.apply

```
DataFrame.apply(func, axis=0, raw=False, result_type=None, args=(),
**kwargs) #
[source]
```

Apply a function along an axis of the DataFrame.

✓ 다음과 같은 데이터 프레임을 만들고 함수를 적용해보자.

```
# 데이터프레임 생성

df = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [4, 5, 6],
    'C': [7, 8, 9]
})

df
```

	Α	В	C
0	1	4	7
1	2	5	8
2	3	6	9

df.apply(np.sqrt)					
	А	В	С		
0	1.000000	2.000000	2.645751		
1	1.414214	2.236068	2.828427		
2	1.732051	2.449490	3.000000		

```
df.apply(lambda x: x.sum(), axis=0)

A     6
B     15
C     24
dtype: int64

df.apply(lambda x: x.sum(), axis=1)

0     9
1     12
2     15
dtype: int64
```


✓ 다음과 같은 데이터 프레임을 만들고 함수를 적용해보자.

```
# 각 열의 평균 개신
result = df.apply(lambda x: x.mean(), axis=0)
print("원본 데이터프레임:")
print(df)
print("\n각 열의 평균:")
print(result)
원본 데이터프레임:
각 열의 평균:
A 2.0
  5.0
    8.0
dtype: float64
```

```
result = df.apply(lambda x: x.mean(), axis=1)
print("원본 데이터프레임:")
print(df)
print("\n각 행의 평균:")
print(result)
원본 데이터프레임:
각 행의 평균:
   4.0
    5.0
    6.0
dtype: float64
```


✓ 다음과 같은 데이터 프레임을 만들고 함수를 적용해보자.

```
# A열과 B열의 차이를 계산하여 새로운 열 생성

df['A-B'] = df.apply(lambda x: x['A'] - x['B'], axis=1)

print("원본 데이터프레임:")
print(df)

원본 데이터프레임:
```

```
A B C A-B
```

0 1 4 7 -3

1 2 5 8 -3

2 3 6 9 -3

✓ 다음과 같은 데이터 프레임을 만들고 함수를 적용해보자.

○ 「"이다 파괴이에 내크요 여유 크기함 때 테마다 매핑을 하기 때문에 axis=1로 계산한다.

```
# 각 열의 최대값과 최소값의 차이를 구함
df.apply(lambda x: x.max() - x.min(), axis=0)
dtype: int64
# 각 행의 최대값과 최소값의 차이를 구함
df.apply(lambda x: x.max() - x.min(), axis=1)
    6
    6
dtype: int64
```

```
# 데이터 프레임에 새로운 열을 추가
df['max-min']=df.apply(lambda x: x.max() - x.min(), axis=1)
df
```

	Α	В	c	max-min
0	1	4	7	6.0
1	2	5	8	6.0
2	3	6	9	6.0

- ✓ 다음과 같은 데이터 프레임을 만들고 함수를 적용해보자.
 - 열마다의 계산값을 추가하고 싶다면 행에 추가하면 된다.

```
# 데이터 프레임에 새로운 열을 추가

col_max_min = df.apply(lambda x: x.max() - x.min(), axis=0)

col_max_min

A 2
B 2
C 2
dtype: int64
```

```
df.loc['max-min'] = col_max_min
df
        ABC
          6 9
max-min 2 2 2
```


- ✓ 다음과 같은 데이터 프레임을 만들고 함수를 적용해보자.
 - 람다식을 활용하여 조건을 줄 수 있다.

titanic["adult/child"] = titanic.apply(lambda r: "adult" if r.age >= 20 else "child", axis=1)
titanic.tail()

	survived	sex	age	n_siblings_spouses	parch	fare	class	deck	embark_town	alone	adult/child
622	0	male	28.0	0	0	10.50	Second	unknown	Southampton	У	adult
623	0	male	25.0	0	0	7.05	Third	unknown	Southampton	У	adult
624	1	female	19.0	0	0	30.00	First	В	Southampton	у	child
625	0	female	28.0	1	2	23.45	Third	unknown	Southampton	n	adult
626	0	male	32.0	0	0	7.75	Third	unknown	Queenstown	у	adult

apply() 연습 문제

- ✓ 타이타닉호의 승객에 대해 나이와 성별에 의한 카테고리 column인 category1 열을 만들어보세요. category1 카테고리는 다음과 같이 정의됩니다.
 - 1. 20살이 넘으면 성별을 그대로 사용합니다.
 - 2. 20살 미만이면 성별에 관계없이 "child"라고 합니다.

apply() 연습 문제 해답

titanic['category1'] = titanic.apply(lambda x: x['sex'] if x['age'] >= 20 else 'child', axis=1)
titanic

	survived	sex	age	n_siblings_spouses	parch	fare	class	deck	embark_town	alone	adult/child	category1
0	0	male	22.0	1	0	7.2500	Third	unknown	Southampton	n	adult	male
1	1	female	38.0	1	0	71.2833	First	C	Cherbourg	n	adult	female
2	1	female	26.0	0	0	7.9250	Third	unknown	Southampton	У	adult	female
3	1	female	35.0	1	0	53.1000	First	С	Southampton	n	adult	female
4	0	male	28.0	0	0	8.4583	Third	unknown	Queenstown	У	adult	male
***	***					***	***	***	in.	***	++	***
622	0	male	28.0	0	0	10.5000	Second	unknown	Southampton	у	adult	male
623	0	male	25.0	0	0	7.0500	Third	unknown	Southampton	у	adult	male
624	1	female	19.0	0	0	30.0000	First	В	Southampton	у	child	child
625	0	female	28.0	1	2	23.4500	Third	unknown	Southampton	n	adult	female
626	0	male	32.0	0	0	7.7500	Third	unknown	Queenstown	У	adult	male

DataFrame 합성

✓ pandas는 두 개 이상의 DataFrame을 하나로 합치는 데이터 병합(merge)이나 연결 (concatenate)을 지원한다.

pandas.DataFrame.join

```
DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='',
sort=False, validate=None) 
[source]
```

Join columns of another DataFrame.

pandas.DataFrame.merge

```
DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
```

Merge DataFrame or named Series objects with a database-style join.

[source]

DataFrame 합성

- ✓ 다음과 같이 2개의 데이터 프레임을 만들자.
- ✓ 두 데이터 프레임의 공통 column 혹은 index를 기준으로 2개의 테이블을 합칠 수 있다.

○ 이때 기즈이 되느 column row이 데이터를 kov라고 표첨하다

```
df1 = pd.DataFrame((
'고려변호': [1801, 1802, 1803, 1804, 1805, 1806, 1807],
'이름': ['돌리', '도우너', '또치', '걸등', '행동', '메이글', '영화']
), columns=['고객변호', '이름'])

df1
```

	고객턴호	이름
0	1001	돌리
1	1002	도우너
2	1003	또치
3	1004	길동
4	1005	희동
5	1006	마이콜
6	1007	영희

df2	2 = pd.DataFrame({ '고객면호': [1001, 1001, 1005, 1006, 1008, 1001],
},	'금액': [10000, 20000, 15000, 5000, 100000, 30000] columns=['고객번호', '금액'])
df2	

	고객번호	금액
0	1001	10000
1	1001	20000
2	1005	15000
3	1006	5000
4	1008	100000
5	1001	30000

DataFrame 합성 - merge()

- ✓ merge 함수로 위의 두 DataFrame df1, df2 를 합치면 공통 column인 고객번호 column을 기준으로 데이터를 찾아서 합친다.
 - 양쪽 DataFrame에 모두 키가 존재하는 데이터만 보여주는 inner join 방식을 사용한다.
 - pd.merge(df1, df2) 고객번호 이름 고객번호 이름 금액 고객번호 금액 둘리 1001 0 1001 10000 1002 도우너 1001 눌리 10000 20000 1001 2 1003 또치 1001 눌리 20000 1005 15000 3 1004 길동 1001 눌리 30000 1006 5000 4 1005 희동 1008 100000 1005 희농 15000 5 1006 마이콜 1001 30000 영희 6 1007 1006 마이콜 5000

DataFrame 합성 - merge()

✓ outer join을 진행하면 키 값이 한쪽에만 있어도 데이터를 합친다.

DataFrame 합성 - merge()

✓ left와 right를 인수를 줄 수 있는데 각각 첫 번째 인수, 두 번째 인수를 기준으로 합친다.

pd	.merge(df	1,df2,	how="left"
	고객번호	이름	금액
0	1001	둘리	10000.0
1	1001	둘리	20000.0
2	1001	둘리	30000.0
3	1002	도우너	NaN
4	1003	또치	NaN
5	1004	길동	NaN
6	1005	희동	15000.0
7	1006	마이콜	5000.0
8	1007	영희	NaN

	고객번호	이름	금액
0	1001	둘리	10000
1	1001	둘리	20000
2	1005	희동	15000
3	1006	마이콜	5000
1	1008	NaN	100000
5	1001	둘리	30000

- ✓ 만약 키가 지정하는 조건에 맞는 데이터가 하나 이상이라서 데이터 그룹을 이루는 경우에는 그룹의 특성을 보여주는 그룹분석(group analysis)을 해야 한다.
- ✓ 그룹분석은 키에 의해서 결정되는 데이터가 여러개가 있을 경우 미리 지정한 연산을 통해 그 그룹 데이터의 대표값을 계산한다.
- ✓ pandas에서는 groupby 메서드를 사용하여 다음처럼 그룹분석을 진행한다.
 - 1.분석하고자 하는 Series나 DataFrame에 groupby 메서드를 호출하여 그룹화를 한다.
 - 2.그룹 객체에 대해 그룹연산을 수행한다.

- ✓ groupby 메서드는 데이터를 그룹 별로 분류하는 역할을 한다.
- ✓ groupby 메서드의 인수로는 다음과 같은 값을 사용합니다.
 - column 또는 column의 리스트
 - row 인덱스
- ✓ 연산 결과로 그룹 데이터를 나타내는 GroupBy 클래스 객체를 반환하는데, 이 객체에는 그룹별로 연산을 할 수 있는 그룹연산 메서드가 있다.

- ✓ groupby 결과, 즉 GroupBy 클래스 객체의 뒤에 붙일 수 있는 그룹연산 메서드는 다양하다.
- ✓ 다음은 자주 사용되는 그룹연산 메서드들이다.
 - size(), count(): 그룹 데이터의 개수
 - mean(), median(), min(), max(): 그룹 데이터의 평균, 중앙값, 최소, 최대
 - sum(), prod(), std(), var(), quantile(): 합계, 곱, 표준편차, 분산, 사분위수
 - first(), last(): 그룹 데이터 중 가장 첫번째 데이터와 가장 나중 데이터

✓ 예를 들어 다음과 같은 데이터가 있을 때 key1의 값(A 또는 B)에 따른 data1의 합계는 어떻게 구

할수 있을까?

```
df2 = pd.DataFrame({
    'key1': ['A', 'A', 'B', 'B', 'A'],
    'key2': ['one', 'two', 'one', 'two', 'one'],
    'data1': [1, 2, 3, 4, 5],
    'data2': [10, 20, 30, 40, 50]
})
df2
```

	key1	key2	data1	data2
0	Α	one	1	10
1	А	two	2	20
2	В	one	3	30
3	В	two	4	40
4	Α	one	5	50


```
groups = df2.groupby(df2.key1)
groups

<p
```


✓ 이제 sum()을 이용하여 합계를 구할 수 있다.

```
groups.data1.sum()
key1
Name: data1, dtype: int64
df2.data1.groupby(df2.key1).sum()
key1
     8
Name: data1, dtype: int64
```



```
df2.groupby(df2.key1)['data1'].sum()
key1
     8
Name: data1, dtype: int64
df2.groupby(df2.key1).sum()['data1']
key1
    8
Name: data1, dtype: int64
```


- ✓ 복합 키 (key1, key2) 값에 따른 data1의 합계를 구할수 있다.
- ✓ 분석하고자 하는 키가 복수이면 리스트를 사용.

```
df2.data1.groupby([df2.key1, df2.key2]).sum()
```

```
key1 key2
A one 6
two 2
B one 3
two 4
Name: data1, dtype: int64
```


DataFrame 피벗 테이블

- ✓ 피벗 테이블은 데이터프레임에서 특정 열을 기준으로 데이터를 그룹화하고, 집계 함수(합계, 평균등)를 적용하여 요약된 표를 만드는 데 사용된다.
 - 엑셀의 피벗 테이블과 유사한 역할을 한다.
- ✓ 주요 매개변수로는 다음과 같다.

index: 행 인덱스로 사용할 열.

columns: 열로 사용할 데이터.

values: 계산할 데이터(값).

aggfunc: 데이터를 집계하는 함수(기본값은 mean) (sum, mean, count, min, max 등)

DataFrame 피벗 테이블

✓ 결과를 보면 연도별 각 지역의 매출 합을 쉽게 계산되어진 것을 볼 수 있다.

```
# 51018 414
data = (
   '지역': ['서울', '서울', '부산', '부산', '서울', '대구', '대구'],
   '연도': [2020, 2021, 2020, 2021, 2021, 2020, 2021],
   'III 3': [100, 150, 200, 250, 300, 400, 450]
df = pd.DataFrame(data)
# 用型 团01号 划划
pivot_table = pd.pivot_table(
   df.
   index='지역', # 캠 인데스
   columns='연도', # 2
   values='매출', # 집계 대성 값
   aggfunc='sum'
                    # 四洲 항수 (前別)
print("원본 데이터프레임:")
print(df)
print("\n叫型 데이블:")
print(pivot table)
```

```
원본 데이터프레임:
  지역
         연두
              매출
  서울
       2020
            100
  서울
       2021
            150
  부산
       2020
            200
  부산
       2021
            250
  서울
       2021
            300
  대구
       2020
            400
  대구
       2021
            450
피벗 테이블:
여두
    2020
         2021
지역
대구
           450
     400
부산
     200
           250
서울
     100
           450
```


DataFrame 피벗 테이블

✓ 다음의 예시를 화이해보고 어떤 이미를 나타내느지 생간해보자

```
pivot avg = pd.pivot table(df, index='지역', columns='연도', values='마음', aggfunc='mean')
print(pivot_avg)
      2020
            2021
지역
대구
     400.0 450.0
     200.0 250.0
     100.0 225.0
pivot_count = pd.pivot_table(df, index='지역', columns='연도', values='배출', aggfunc='count')
print(pivot count)
     2020 2021
지역
대구
부산
서울
pivot max = pd.pivot table(df, index='지역', columns='연도', values='매출', aggfunc='max')
print(pivot_max)
     2020 2021
지역
대구
      400
           450
부산
      200
           250
서울
      100
           300
```


