

PATIENT Wei, Ming Yeh TUMOR TYPE
Soft tissue sarcoma (NOS)
COUNTRY CODE
TW

REPORT DATE 14 Jul 2023 ORDERED TEST # ORD-1665268-01

ABOUT THE TEST FoundationOne[®] Heme is a comprehensive genomic profiling test designed to identify genomic alterations within hundreds of cancer-related genes in hematologic malignancies and sarcomas.

PATIENT

DISEASE Soft tissue sarcoma (NOS)
NAME Wei, Ming Yeh
DATE OF BIRTH 14 August 1980
SEX Male
MEDICAL RECORD# 49476053

ORDERING PHYSICIAN Yeh, Yi-Chen

MEDICAL FACILITY Taipei Veterans General Hospital

ADDITIONAL RECIPIENT None

MEDICAL FACILITY ID 205872

PATHOLOGIST Not Provided

SPECIMEN SITE Bone
SPECIMEN ID S112-20200A (PF23085)
SPECIMEN TYPE Slide Deck
DATE OF COLLECTION 04 May 2023
SPECIMEN RECEIVED 30 June 2023

Biomarker Findings

Microsatellite status - MS-Stable
Tumor Mutational Burden - 3 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

BRIP1 P488S IDH1 R132C TP53 Y220C PHF6 loss

SGK1 rearrangement intron 1

Report Highlights

- Targeted therapies with potential clinical benefit approved in another tumor type: Ivosidenib (p. Ţ), Niraparib (p. Ţ), Olaparib (p. 8), Rucaparib (p. 9), Talazoparib (p. 10)
- Evidence-matched clinical trial options based on this patient's genomic findings: (p. 11)

BIOMARKER FINDINGS	THERAPY AND CLINICA	L TRIAL IMPLICATIONS
Microsatellite status - MS-Stable	No therapies or clinical trials. See Biomarker Findings section	
Tumor Mutational Burden - 3 Muts/Mb	No therapies or clinical trials. See Biomarker Findings section	
GENOMIC FINDINGS	THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
BRIP1 - P488S	none	Niraparib
		Olaparib
		Rucaparib
10 Trials see p. <u>11</u>		Talazoparib
<i>IDH1 -</i> R132C	none	Ivosidenib
10 Trials see p. <u>13</u>		
TP53 - Y220C	none	none
1 Trial see p. <u>15</u>		

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

PHF6 - loss p. 6 SGK1 - rearrangement intron 1 p. 6

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

Wei, Ming Yeh

TUMOR TYPE
Soft tissue sarcoma (NOS)
COUNTRY CODE
TW

REPORT DATE
14 Jul 2023
ORDERED TEST #
ORD-1665268-01

NOTE Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

BIOMARKER FINDINGS

BIOMARKER

Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, p=0.001)⁵.

FREQUENCY & PROGNOSIS

In a computational analysis of paired tumor and normal sarcomas in the TCGA dataset, of which 25% were liposarcomas, only 0.8% (2/255) of samples were MSI-high (MSI-H)6. However, reports of MSI in sarcomas in the literature are conflicting and varied due to substantial heterogeneity, lack of consensus on the markers and methods used for MSI assessment, and small sample size in most studies⁷. In these smaller studies of soft tissue sarcoma, reports of MSI at any level have been rare, with the highest incidences between 11% (2/18) to 25% (10/40) of cases⁸⁻¹³. In one study, MSI was reported to occur more frequently in high-grade soft tissue sarcomas compared with lower grade¹⁴. However, published data investigating the prognostic implications of MSI in sarcoma are limited (PubMed, Jan 2023).

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹⁵. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH₂, MSH₆, or PMS₂¹⁵⁻¹⁷. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers¹⁸⁻²⁰. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins $^{15,17,19-20}$.

BIOMARKER

Tumor Mutational Burden

RESULT 3 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in solid tumors. increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L121-23, anti-PD-1 therapies21-24, and combination nivolumab and ipilimumab $^{25\mbox{-}30}.$ In multiple pan-tumor studies, increased tissue tumor mutational burden (TMB) was associated with sensitivity to immune checkpoint inhibitors^{21-24,31-35}. In the KEYNOTE 158 trial of pembrolizumab monotherapy for patients with solid tumors, significant improvement in ORR was observed for patients with TMB ≥10 Muts/Mb (as measured by this assay) compared with those with TMB <10 Muts/Mb in a large cohort that included multiple tumor types³¹; similar findings were observed in the KEYNOTE 028 and 012 trials²⁴. At the same TMB cutpoint, retrospective analysis of patients with solid tumors treated with any checkpoint inhibitor identified that tissue TMB

scores ≥ 10 Muts/Mb were associated with prolonged time to treatment failure compared with scores <10 muts/Mb (HR=0.68)35. For patients with solid tumors treated with nivolumab plus ipilimumab in the CheckMate 848 trial, improved responses were observed in patients with a tissue TMB ≥ 10 Muts/Mb independent of blood TMB at any cutpoint in matched samples³⁶. However, support for higher TMB thresholds and efficacy was observed in the prospective Phase 2 MyPathway trial of atezolizumab for patients with pan-solid tumors, where improved ORR and DCR was seen in patients with TMB ≥ 16 Muts/Mb than those with TMB \geq 10 and <16 Muts/Mb³⁴. Similarly, analyses across several solid tumor types reported that patients with higher TMB (defined as ≥16-20 Muts/Mb) achieved greater clinical benefit from PD-1 or PD-L1-targeting monotherapy compared with patients with higher TMB treated with chemotherapy³⁷ or those with lower TMB treated with PD-1 or PD-L1-targeting agents²².

FREQUENCY & PROGNOSIS

Soft tissue sarcomas harbor a median tumor mutational burden (TMB) of 2.4-2.5 mutations per megabase (muts/Mb), with angiosarcoma (up to 15%) and malignant peripheral nerve sheath tumor (up to 11%) having the highest percentage of cases with high TMB³⁸⁻³⁹. In a study, 3.9% of soft tissue sarcoma samples analyzed harbor TMB ≥10 muts/Mb³⁸; in addition, increased mutational burden has

been reported in undifferentiated pleomorphic sarcomas as compared with Ewing sarcomas or rhabdomyosarcomas⁴⁰⁻⁴². Published data investigating the prognostic implications of tissue TMB in sarcoma are conflicting (PubMed, Feb 2023). High tissue TMB was associated with improved PFS and metastasis-free survival in a study of undifferentiated sarcomas⁴³, but with reduced survival in a study of patients with rhabdomyosarcoma⁴⁴.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma⁴⁵⁻⁴⁶ and cigarette smoke in lung cancer⁴⁷⁻⁴⁸, treatment with temozolomide-based chemotherapy in glioma⁴⁹⁻⁵⁰, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes $^{51-55}$, and microsatellite instability (MSI)51,54-55. This sample harbors a TMB level associated with lower rates of clinical benefit from treatment with PD-1- or PD-L1-targeting immune checkpoint inhibitors compared with patients with tumors harboring higher TMB levels, based on several studies in multiple solid tumor types^{22-23,31}.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

GENOMIC FINDINGS

GENE

BRIP1

ALTERATION

P488S

HGVS VARIANT

NM_032043.2:c.1462C>T (p.P488S)

VARIANT CHROMOSOMAL POSITION

chr17:59870969

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical responses in ovarian cancer⁵⁶ and prostate cancer⁵⁷, as well as clinical benefit in breast cancer⁵⁸, loss or inactivation of BRIP1 may confer sensitivity to PARP inhibitors. It is not known whether these therapeutic approaches would be relevant in the context of alterations that

have not been fully characterized, as seen here.

FREQUENCY & PROGNOSIS

BRIP1 alterations are rare in sarcomas, with 1 mutation and 0 losses detected among 413 patients with sarcoma in two genomic studies⁵⁹⁻⁶⁰. Published data investigating the prognostic implications of BRIP1 alterations in sarcoma are limited (PubMed, Feb 2023).

FINDING SUMMARY

BRIP1, also known as FANCJ (Fanconi Anemia complementation group J) and BACH1, encodes a DNA helicase required for DNA repair and the maintenance of chromosomal stability⁶¹⁻⁶³. Although alterations such as seen here have not been fully characterized and are of unknown functional significance, similar alterations have been previously reported in the context of cancer, which may indicate biological relevance.

and chondrosarcoma achieved SD⁷⁴. A Phase 1 study of the pan-IDH1/IDH2 inhibitor vorasidenib

for patients with IDH1- or IDH2-mutated glioma

median PFS of 31.4 months for non-enhancing

glioma population $(n=52)^{75}$. Preclinical studies

also confer sensitivity to $PA\bar{R}P$ inhibitors⁷⁶⁻⁷⁹.

suggested that IDH1 neomorphic mutations may

reported an ORR of 18% (4/22; RANO criteria) and

cases and median PFS of 7.5 months for the overall

POTENTIAL GERMLINE IMPLICATIONS

Germline mutations in BRIP1 are associated with increased risk of breast, ovarian, and cervical cancers⁶⁴⁻⁶⁸. Germline mutations in BRIP1 are also associated with Fanconi anemia (FA), a rare autosomal disorder that predisposes patients to a subset of cancers, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), gynecological malignancies, and head and neck tumors⁶⁹⁻⁷¹; frequency estimates suggest an incidence of 3/1,000,000 individuals in Europe and the US, and a heterozygote carrier frequency of 1/ 181 to 1/300 in the US and Europe, respectively, with slightly higher rates in some populations, such as the Ashkenazi Jewish population (1/ 89)70,72. In the appropriate clinical context, germline testing of BRIP1 is recommended.

GENE

IDH1

ALTERATION R132C

HGVS VARIANT

NM_005896.2:c.394C>T (p.R132C)

VARIANT CHROMOSOMAL POSITION

chr2:209113113

FREQUENCY & PROGNOSIS

In the TCGA Sarcoma dataset, IDH1 mutations have been reported in fewer than 1% of samples⁸⁰. Published data investigating the prognostic implications of IDH1 mutations in soft tissue sarcoma are limited (PubMed, Sep 2022). Research suggests that IDH gene mutations could be early stage events in specific cancers; in central conventional cartilaginous cancer, benign tumors (enchondromas), which are known for their ability to transform into chondrosarcomas, have been reported to possess IDH mutations in 87% of

reviewed cases⁸¹⁻⁸². Assessment of IDH1 and IDH2 mutation status has been suggested to be of potential value for aiding in diagnosis of chondrosarcomas, including differentiation of chondrosarcoma from chondroblastic osteosarcoma and of intracranial chondrosarcoma from chordoma⁸³⁻⁸⁴.

FINDING SUMMARY

The isocitrate dehydrogenases IDH1 and IDH2 encode highly homologous enzymes that are involved in the citric acid (TCA) cycle and other metabolic processes, playing roles in normal cellular metabolism and in protection against oxidative stress and apoptosis⁸⁵. R132 is located within the active site of IDH1 and is a hotspot for mutations in cancer⁸⁵⁻⁸⁹. Substitutions at IDH1 R132 alter the enzymatic activity of IDH1, resulting in the production of the oncometabolite, D-2-hydroxyglutarate (2-HG)⁸⁷⁻⁹¹, which promotes tumorigenesis^{87,92-95}.

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

IDH1 mutations that lead to production of 2-HG, most commonly R132 alterations, may predict sensitivity to IDH1-mutation-specific inhibitors such as ivosidenib⁷³ and olutasidenib⁷⁴. A Phase 1B/2 basket study of the IDH1 inhibitor olutasidenib reported a DCR of 48% (12/25, 2 PR) in patients with glioma; patients with other solid tumors including intrahepatic cholangiocarcinoma

GENOMIC FINDINGS

GENE

TP53

ALTERATION Y220C

HGVS VARIANT

NM_000546.4:c.659A>G (p.Y220C)

VARIANT CHROMOSOMAL POSITION
chr17:7578190

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Clinical and preclinical data suggest that solid tumors with TP53 mutations, such as R175H, Y220C, G245S, and R248W, may benefit from adoptive cell therapy targeting these specific TP53 mutations⁹⁶. Clinical benefit has been reported for patients with breast cancer (2 PRs)96, ovarian cancer (1 PR)96, and colorectal cancer (CRC; 1 SD)97 treated with tumor infiltrating lymphocyte-based or modified T-cell receptor-based adoptive cell therapy. For patients with TP53 Y220C-mutated disease, a Phase 1 study of the Y220C-specific reactivator PC14586 reported an ORR of 32% (8/ 25) and DCR of 88% (22/25) at higher doses across a variety of solid tumor types98. There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor adavosertib $^{99-\overline{102}}$ or p53 gene therapy such as SGT53¹⁰³⁻¹⁰⁷. In a Phase 1 study, adavosertib in combination with gemcitabine, cisplatin, or carboplatin elicited PRs in 9.7% and SDs in 53% of patients with solid tumors; the response rate was 21% (4/19) for patients with TP53 mutations versus 12% (4/33) for patients who were TP53 wildtype¹⁰⁸. A Phase 2 trial of adavosertib in combination with chemotherapy (gemcitabine, carboplatin, paclitaxel, or doxorubicin) reported a 32% (30/94, 3 CR) ORR and a 73% (69/94) DCR for patients with platinumrefractory TP53-mutated ovarian, Fallopian tube, or peritoneal cancer¹⁰⁹. A smaller Phase 2 trial of adavosertib in combination with carboplatin achieved a 43% (9/21, 1 CR) ORR and a 76% (16/21) DCR for patients with platinum-refractory TP53-mutated ovarian cancer¹¹⁰. The combination of adavosertib with paclitaxel and carboplatin for

patients with TP53-mutated ovarian cancer also significantly increased PFS compared with paclitaxel and carboplatin alone¹¹¹. In the Phase 2 VIKTORY trial, patients with TP53-mutated metastatic and/or recurrent gastric cancer experienced a 24% (6/25) ORR with adavosertib combined with paclitaxel¹¹². A Phase 1 trial of neoadjuvant adavosertib in combination with cisplatin and docetaxel for head and neck squamous cell carcinoma (HNSCC) elicited a 71% (5/7) response rate for patients with TP53 alterations¹¹³. The Phase 2 FOCUS₄-C trial for patients with TP53- and RAS-mutated colorectal cancer reported improvement in PFS (3.61 vs. 1.87 months, HR=0.35, p=0.0022), but not OS (14.0 vs 12.8 months, p=0.93), following adavosertib treatment compared with active monitoring¹¹⁴. In a Phase 1b clinical trial of SGT-53 in combination with docetaxel for patients with solid tumors, 75% (9/12) of evaluable patients experienced clinical benefit, including 2 confirmed and 1 unconfirmed PRs and 2 instances of SD with significant tumor shrinkage¹⁰⁷. Missense mutations leading to TP53 inactivation may be sensitive to therapies that reactivate mutated p53 such as eprenetapopt. In a Phase 1b trial for patients with p53-positive highgrade serous ovarian cancer, eprenetapopt combined with carboplatin and pegylated liposomal doxorubicin achieved a 52% (11/21) response rate and 100% DCR¹¹⁵. A Phase 1 trial of eprenetapopt with pembrolizumab for patients with solid tumors reported an ORR of 10% (3/

FREQUENCY & PROGNOSIS

TP53 mutations and homozygous deletion have been observed in 33% and 9.4% of sarcoma samples in the TCGA dataset, respectively (cBioPortal, Feb 2023)¹¹⁷⁻¹¹⁸. TP53 alterations appear to lead to chromosomal instability and drive oncogenesis in soft tissue sarcomas¹¹⁹. One study of soft tissue sarcomas reported that TP53 non-frameshift mutations correlated with poor prognosis, including lymph node metastasis, increased rate of relapse, and decreased OS¹²⁰.

FINDING SUMMARY

Functional loss of the tumor suppressor p53, which is encoded by the TP53 gene, is common in

aggressive advanced cancers¹²¹. Alterations such as seen here may disrupt TP53 function or expression¹²²⁻¹²⁶. TP53 Y220C is targetable by mutation-specific inhibitors such as PC14586⁹⁸.

POTENTIAL GERMLINE IMPLICATIONS

One or more of the TP53 variants observed here has been described in the ClinVar database as a likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters) associated with Li-Fraumeni syndrome (ClinVar, Apr 2023)127. Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. Germline mutations in TP53 are associated with the very rare autosomal dominant disorder Li-Fraumeni syndrome and the early onset of many cancers128-130, including sarcomas¹³¹⁻¹³². Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000¹³³ to 1:20,000¹³². For pathogenic TP53 mutations identified during tumor sequencing, the rate of germline mutations was 1% in the overall population and 6% in tumors arising before age 30¹³⁴. In the appropriate clinical context, germline testing of TP53 is recommended.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion¹³⁵⁻¹⁴⁰. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy¹³⁵⁻¹³⁶. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease¹⁴¹. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH139,142-143. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

GENOMIC FINDINGS

GENE

PHF6

ALTERATION loss

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

There are no therapies or clinical trials directly targeting the loss of PHF6 activity.

FREQUENCY & PROGNOSIS

PHF6 mutations have been reported in up to 40% of T-cell acute lymphoblastic leukemias (T-ALLs)¹⁴⁴⁻¹⁵¹. PHF6 mutations are more commonly found in adult T-ALL than pediatric T-ALL and may be associated with reduced overall survival, although this has not been consistently observed^{144,148}. PHF6 mutations have been seen in approximately 2–3% of acute myeloid leukemias (AMLs)^{145,149} and associated with poorer outcome for patients with AML¹⁵²; they have been observed to affect males with a greater frequency than females¹⁴⁵.

FINDING SUMMARY

PHF6 encodes PHD finger protein 6, which has been implicated in ribosomal RNA biogenesis and chromatin remodeling¹⁵³⁻¹⁵⁴. PHF6 loss-of-function mutations have been associated with hematopoietic malignancies^{145,155}. Mutations in PHF6 underlie the X-linked disorder Börjeson-Forssman-Lehmann syndrome¹⁵⁶⁻¹⁵⁷.

GENE

SGK1

ALTERATION

rearrangement intron 1

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

The PI₃K inhibitor LY294002 has been reported to block SGK₁ activity in a preclinical study¹⁵⁸. Several SGK₁ inhibitors¹⁵⁹⁻¹⁶⁴ have been developed but are not suitable for clinical use. SGK₁ and NDRG₁ expression were reported to be increased in three

PIK3CA-mutated breast cancer samples from patients who did not respond to treatment with the PI3K inhibitor BYL719 in combination with aromatase inhibitor 160. Additionally, preclinical studies have reported that SGK1 expression confers resistance to BYL719 in breast cancer cells harboring PIK3CA activating mutations 160 and to the AKT inhibitors AZD5363 and MK2206 in breast cancer cells 165.

FREQUENCY & PROGNOSIS

SGK1 mutation has been observed in 6-16% of diffuse large B-cell lymphomas¹⁶⁶, 5/7 cases of variant nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), and 1/6 cases of typical

NLPHL¹⁶⁷. SGK1 amplification and mutation have rarely been observed in other tumor types (cBioPortal, COSMIC, 2023)^{117-118,168}. Increased SGK1 expression has been reported in lung squamous cell carcinoma¹⁶⁹, endometrioid endometrial carcinoma¹⁷⁰, glioblastoma¹⁷¹, and breast cancer¹⁷².

FINDING SUMMARY

SGK1 encodes serum/glucocorticoid regulated kinase 1, which activates ion channels in response to cellular stress. SGK1 can be activated by PI $_3$ K-mTORC2 signaling $_{173}$ and can in turn activate mTORC1 $_{160}$.

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Ivosidenib

Assay findings association

IDH1 R132C

AREAS OF THERAPEUTIC USE

Ivosidenib is an isocitrate dehydrogenase 1 (IDH1) inhibitor that is FDA approved to treat patients with a susceptible IDH1 mutation in relapsed or refractory acute myeloid leukemia (AML) or previously treated locally advanced or metastatic cholangiocarcinoma. It is also approved as a first-line treatment for patients with AML and a susceptible IDH1 mutation who are not eligible for intensive induction chemotherapy or who are ≥75 years old. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of extensive clinical evidence in AML^{174} and cholangiocarcinoma¹⁷⁵⁻¹⁷⁶ and limited clinical data in myelodysplastic syndrome (MDS)¹⁷⁴ and glioma^{73,177}, IDH1 R132 mutation may confer sensitivity to ivosidenib.

SUPPORTING DATA

Ivosidenib has shown clinical activity in diverse IDH1-mutated solid tumor types. In the Phase 3 ClaIDHy trial, patients with IDH1 R132-mutated cholangiocarcinoma treated with ivosidenib, compared to placebo, had a significantly increased PFS (HR=0.37, p<0.001) and numerically increased OS (HR=0.79, p=0.093) that became significant once adjusted for crossover (HR=0.49, p<0.0001) 176,178 . For patients with glioma, treatment with ivosidenib resulted in high rates of SD (72.7% [8/11] and 87.5% [21/24] for patients in the dose escalation and expansion cohorts, respectively)179. A cohort of patients with chondrosarcoma that harbored a high incidence of IDH1 R132 mutation (n=15/21) achieved a high rate of SD (55.0% [11/20]), including 3 SDs >1.5 years 180. In a Phase 1 trial for patients with IDH1-mutated solid tumors, including chondrosarcoma, cholangiocarcinoma, and glioma, ivosidenib led to 4 PRs73.

Niraparib

Assay findings association

BRIP1 P488S

AREAS OF THERAPEUTIC USE

The PARP inhibitor niraparib is FDA approved to treat patients with epithelial ovarian, fallopian tube, or primary peritoneal cancer, with or without homologous recombination deficiency (HRD)-positive status. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical evidence in ovarian^{56,181-182}, breast⁵⁸, endometrial¹⁸³, and prostate cancer⁵⁷, loss or inactivation of BRIP1 may confer sensitivity to PARP inhibitors. It is not known whether this therapeutic approach would be relevant in the context of alterations that have not been fully characterized, as seen here.

SUPPORTING DATA

A Phase 1 study of niraparib with temozolomide or irinotecan for patients with Ewing sarcoma reported an ORR of 8.3%, with 1/12 patient achieving a PR; the median PFS was 16.3 weeks¹⁸⁴. Niraparib has primarily been evaluated in the context of ovarian cancer. In a Phase 3 study of patients with platinum-sensitive, recurrent ovarian cancer, niraparib significantly increased median

PFS compared with placebo in patients with germline BRCA mutations (21 vs. 5.5 months) and in patients without germline BRCA mutations (9.3 vs. 3.9 months), as well as in a subgroup of the patients without germline BRCA mutations with homologous recombinationdeficient tumors (12.9 vs. 3.8 months)¹⁸⁵. In a Phase 1 study of niraparib treatment for patients with solid tumors, 40% (8/20) of patients with ovarian cancer and BRCA mutations and 50% (2/4) of patients with breast cancer and BRCA mutations experienced a PR, and 43% (9/21) of patients with castration-resistant prostate cancer and 100% (2/2) of patients with non-small cell lung cancer experienced SD186. A Phase 1 study of the combination of niraparib and bevacizumab for patients with platinumsensitive, high-grade ovarian cancer reported a DCR of 91% (10/11), with a response rate of 45% (5/11)¹⁸⁷. A Phase 2 study of niraparib reported 1 PR and 8 SDs, with 78% (7/9) of patients with BAP1-mutated cholangiocarcinoma, mesothelioma, uveal melanoma, or clear cell renal cell carcinoma (ccRCC) experiencing SD¹⁸⁸. A case study reported a patient with BAP1-mutated pretreated ccRCC experienced a PR of 5 months on niraparib¹⁸⁹.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Olaparib

Assay findings association

BRIP1 P488S

AREAS OF THERAPEUTIC USE

The PARP inhibitor olaparib is FDA approved to treat patients with epithelial ovarian, Fallopian tube, or primary peritoneal cancer, patients with deleterious or suspected deleterious gBRCA-mutated pancreatic adenocarcinoma or HER2-negative breast cancer, and patients with prostate cancer and mutations in homologous recombination repair genes. Olaparib is also approved in combination with bevacizumab to treat patients with ovarian, Fallopian tube, or primary peritoneal cancer with deleterious or suspected deleterious somatic or gBRCA mutation and/or genomic instability. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical evidence in ovarian^{56,181-182}, breast⁵⁸, endometrial¹⁸³, and prostate cancer⁵⁷, loss or inactivation of BRIP1 may confer sensitivity to PARP inhibitors. It is not known whether this therapeutic approach would be relevant in the context of alterations that have not been fully characterized, as seen here.

SUPPORTING DATA

Olaparib has been evaluated in a Phase 1b study for the treatment of patients with advanced and unresectable bone and soft tissue sarcomas with radiographic progression after first- or further-line therapy; among 22 evaluable patients, 18% (4/22) with synovial sarcoma or leiomyosarcoma achieved PR, and 23% (5/22) with liposarcoma, Ewing sarcoma, solitary fibrous tumor or malignant peripheral nerve sheath tumor achieved SD^{190} . However, a Phase 2 study of olaparib for patients (n=12) with genomically unselected advanced Ewing sarcoma and failure of standard chemotherapy did not observe any objective responses or durable disease control; the median PFS was 5.7 weeks¹⁹¹. A Phase 1 trial combining olaparib with trabectidin for patients with bone (n=11) or soft tissue (n=39) sarcomas who had progressed on standard treatment reported PRs for 14% (7/50) and SD for 32% (16/50) of patients, with all responders harboring soft tissue sarcomas¹⁹². Higher baseline PARP1 expression associated with significantly improved PFS relative to that for patients with low baseline PARP1 expression (59% vs. 8%, HR=0.37)192.

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Rucaparib

Assay findings association

BRIP1 P488S

AREAS OF THERAPEUTIC USE

The PARP inhibitor rucaparib is FDA approved to treat patients with metastatic castration-resistant prostate cancer (mCRPC) and deleterious somatic or germline BRCA mutations. Rucaparib is also approved as a maintenance treatment of patients with recurrent epithelial ovarian, Fallopian tube, or primary peritoneal cancer. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical evidence in ovarian^{56,181-182}, breast⁵⁸, endometrial¹⁸³, and prostate cancer⁵⁷, loss or inactivation of BRIP1 may confer sensitivity to PARP inhibitors. It is not known whether this therapeutic approach would be relevant in the context of alterations that have not been fully characterized, as seen here.

SUPPORTING DATA

Clinical data on the efficacy of rucaparib for the treatment of sarcoma are limited (PubMed, May 2023). Rucaparib has primarily been evaluated in the context of patients with ovarian carcinoma, breast carcinoma, pancreatic carcinoma, and melanoma. In a Phase 2 study of rucaparib for patients with recurrent, platinum-sensitive ovarian, peritoneal, or fallopian tube carcinoma, median PFS was significantly longer for patients with BRCA1/2 mutations (12.8 months) or high loss of heterozygosity (LOH; 5.7 months) compared with patients with low LOH (5.2 months). Objective responses were observed for 80% (32/40) of patients with BRCA1/2 mutations, for 29% (24/82) with high LOH, and for 10% (7/10) with low LOH⁵⁶. For

heavily pretreated patients with a germline BRCA1/2 mutation who had received 2-4 prior chemotherapy treatments and had a progression-free interval of greater than 6 months, 65% (17/26) of patients achieved an objective response with rucaparib treatment¹⁰⁹. In a Phase 2 study evaluating rucaparib for patients with advanced breast or ovarian cancer and germline BRCA1/2 mutations, disease control was observed for 92% (12/13) of patients with ovarian cancer treated with oral rucaparib dosed continuously, but no objective responses were reported for patients with breast cancer (n=23). However, 39% (9/23) of evaluable patients with breast cancer achieved SD lasting 12 weeks or more 193. In a Phase 1 study of rucaparib treatment for patients with solid tumors, 3/4 patients with ovarian cancer and 1/1 patient with breast cancer given the recommended Phase 2 dose reported objective responses; all responders harbored BRCA₁/₂ mutations¹⁹⁴. A Phase 2 study of rucaparib treatment for patients with relapsed pancreatic cancer reported 1/19 CR, 2/19 PR (1 unconfirmed), and 4/19 SD. 79% (15/19) of patients treated in the study had a BRCA2 mutation¹⁹⁵. In a Phase 2 study of intravenous rucaparib in combination with temozolomide for patients with metastatic melanoma, 17% (8/46) of patients achieved a PR and 17% (8/46) experienced SD196. A Phase 1 study reported 1 CR, 1 PR, and 4 SD lasting six months or longer for patients with metastatic melanoma¹⁹⁷. A Phase 1 study of intravenous and oral rucaparib in combination with chemotherapy for the treatment of patients with advanced solid tumors reported a disease control rate of 69% (53/ 77), including 1 CR and 9 PRs198.

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Talazoparib

Assay findings association

BRIP1 P488S

AREAS OF THERAPEUTIC USE

The PARP inhibitor talazoparib is FDA approved to treat HER2-negative locally advanced or metastatic breast cancer with deleterious or suspected deleterious germline BRCA mutations. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical evidence in ovarian^{56,181-182}, breast⁵⁸, endometrial¹⁸³, and prostate cancer⁵⁷, loss or inactivation of BRIP1 may confer sensitivity to PARP inhibitors. It is not known whether this therapeutic approach would be relevant in the context of alterations that have not been fully characterized, as seen here.

SUPPORTING DATA

A study of talazoparib plus irinotecan for children and young adults with recurrent solid tumors reported an ORR of 12.5% and a CBR of 45.8%, with PRs in synovial sarcoma and Ewing sarcoma and a CR in Ewing sarcoma¹⁹⁹. However, a study of single-agent talazoparib

reported an ORR of 0% (0/13) and SD in 23% (3/13) of patients with Ewing sarcoma²⁰⁰. Talazoparib has been studied primarily in the context of BRCA-mutated, HER2-negative breast cancer, where patients achieved significantly longer median PFS (8.6 vs. 5.6 months, HR=0.54), a higher ORR (62.6% vs. 27.2%), and improved quality of life on talazoparib compared with standard chemotherapy in a Phase 3 study 201-202. In a Phase 2 study of talazoparib for BRCA1/2-wildtype patients with homologous recombination pathway alterations, the best outcome in non-breast tumors was SD ≥ 6 months for 2/7 patients who had colon cancer with germline ATM alteration or testicular cancer with germline CHEK2 and somatic ATM alteration²⁰³. Clinical activity of single-agent talazoparib has been observed in numerous other solid tumors, including responses in BRCA-mutated ovarian, pancreatic, prostate, and ampulla of Vater cancers; PALB2-mutated pancreatic and bladder cancers; ATMmutated cholangiocarcinoma; and small cell lung cancer^{200,204-206}

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

TUMOR TYPE
Soft tissue sarcoma (NOS)

REPORT DATE 14 Jul 2023

ORDERED TEST # ORD-1665268-01

CLINICAL TRIALS

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and

FOUNDATION ONE ** HEME

should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \Rightarrow Geographical proximity \Rightarrow Later trial phase. Clinical trials listed here may have additional enrollment criteria that may require

medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or visit https://www.foundationmedicine.com/genomictesting#support-services.

GENE BRIP1

ALTERATION P488S

RATIONALE

BRIP1 inactivation may predict sensitivity to inhibitors of other DNA repair pathways, including inhibitors of PARP. It is not known

whether these therapeutic approaches would be relevant in the context of alterations that have not been fully characterized, as seen here.

NCT04434482 PHASE 1

IMP4297 in Combination With Temozolomide in Patients With Advanced Solid Tumors and Small Cell
Lung Cancer

TARGETS
PARP

LOCATIONS: Taipei (Taiwan), Taichung (Taiwan), Tainan (Taiwan), Gyeonggi-do (Korea, Republic of), Orange (Australia), Blacktown (Australia), Albury (Australia)

NCT03742895 PHASE 2

Efficacy and Safety of Olaparib (MK-7339) in Participants With Previously Treated, Homologous Recombination Repair Mutation (HRRm) or Homologous Recombination Deficiency (HRD) Positive Advanced Cancer (MK-7339-002 / LYNK-002)

TARGETS PARP

LOCATIONS: Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of), Darlinghurst (Australia), Adana (Turkey), Jerusalem (Israel), Konya (Turkey), Ramat Gan (Israel), Istanbul (Turkey), Antalya (Turkey), Brasov (Romania)

NCT02264678 PHASE 1/2

Ascending Doses of AZD6738 in Combination With Chemotherapy and/or Novel Anti Cancer Agents TARGETS

ATR, PARP, PD-L1

LOCATIONS: Seoul (Korea, Republic of), Goyang-si (Korea, Republic of), Cambridge (United Kingdom), Withington (United Kingdom), Manchester (United Kingdom), London (United Kingdom), Coventry (United Kingdom), Sutton (United Kingdom), Oxford (United Kingdom), Villejuif (France)

NCT05021367 PHASE 1

A Clinical Study of TQB3823 in Patients With Advanced Malignant Tumor

TARGETS
PARP

LOCATIONS: Guangzhou (China)

NCT04170153 PHASE 1

M1774 in Participants With Metastatic or Locally Advanced Unresectable Solid Tumors

TARGETS

ATR, PARP

LOCATIONS: Beijing (China), Chuo-ku (Japan), Kashiwa-shi (Japan), Newcastle upon Tyne (United Kingdom), Cambridge (United Kingdom), Manchester (United Kingdom), Sutton (United Kingdom), Barcelona (Spain), Valencia (Spain), Madrid (Spain)

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

CLINICAL TRIALS

NCT05035745	PHASE 1/2
Selinexor & Talazoparib in Advanced Refractory Solid Tumors; Advanced/Metastatic Triple Negative Breast Cancer (START)	TARGETS XPO1, PARP
LOCATIONS: Singapore (Singapore)	
NCT03772561	PHASE 1
Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients With Advanced or Metastatic Solid Tumor Malignancies	TARGETS PARP, AKTs, PD-L1
LOCATIONS: Singapore (Singapore)	
NCT03784014	PHASE 3
MOLECULAR PROFILING OF ADVANCED SOFT-TISSUE SARCOMAS	TARGETS ABL, KIT, ROS1, ALK, MET, ERBB2, EGFR, BRAF, MEK, PARP, PD-L1, CDK4, CDK6
LOCATIONS: Strasbourg (France), Dijon (France), Paris (France), Villejuif (France), Lyon (France), Clermont-Ferrand (France), Marseille (France), Saint-Herblain (France), Bordeaux (France)	
NCT03297606	PHASE 2

NCT03297606	PHASE 2
Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)	TARGETS VEGFRS, ABL, SRC, ALK, ROS1, AXL, TRKA, MET, TRKC, DDR2, KIT, EGFR, PD-1, CTLA-4, PARP, CDK4, CDK6, FLT3, CSF1R, RET, mTOR, ERBB2, MEK, BRAF, SMO

LOCATIONS: Vancouver (Canada), Kelowna (Canada), Edmonton (Canada), Saskatoon (Canada), Regina (Canada), Ottawa (Canada), Montreal (Canada), Toronto (Canada), Kingston (Canada), London (Canada)

NCT05327010	PHASE 2
Testing the Combination of the Anti-cancer Drugs ZEN003694 (ZEN-3694) and Talazoparib in Patients With Advanced Solid Tumors, The ComBET Trial	TARGETS PARP, BRD4, BRDT, BRD2, BRD3
LOCATIONS: Colorado, Illinois, Texas, North Carolina, Georgia	

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

LOCATIONS: Guangzhou (China)

CLINICAL TRIALS

GENE IDH1

ALTERATION R132C

RATIONALE

IDH1 mutations may predict sensitivity to IDH1 inhibitors. On the basis of preclinical data, IDH1 mutations may also confer sensitivity to PARP inhibitors in solid tumors.

NCT04434482	PHASE 1
IMP4297 in Combination With Temozolomide in Patients With Advanced Solid Tumors and Small Cell Lung Cancer	TARGETS PARP

LOCATIONS: Taipei (Taiwan), Taichung (Taiwan), Tainan (Taiwan), Gyeonggi-do (Korea, Republic of), Orange (Australia), Blacktown (Australia), Albury (Australia)

NCT02264678	PHASE 1/2
Ascending Doses of AZD6738 in Combination With Chemotherapy and/or Novel Anti Cancer Agents	TARGETS ATR, PARP, PD-L1

LOCATIONS: Seoul (Korea, Republic of), Goyang-si (Korea, Republic of), Cambridge (United Kingdom), Withington (United Kingdom), Manchester (United Kingdom), London (United Kingdom), Coventry (United Kingdom), Sutton (United Kingdom), Oxford (United Kingdom), Villejuif (France)

NCT05021367	PHASE 1
A Clinical Study of TQB3823 in Patients With Advanced Malignant Tumor	TARGETS PARP

NCT04170153	PHASE 1
M1774 in Participants With Metastatic or Locally Advanced Unresectable Solid Tumors	TARGETS ATR, PARP

LOCATIONS: Beijing (China), Chuo-ku (Japan), Kashiwa-shi (Japan), Newcastle upon Tyne (United Kingdom), Cambridge (United Kingdom), Manchester (United Kingdom), Sutton (United Kingdom), Barcelona (Spain), Valencia (Spain), Madrid (Spain)

NCT05035745	PHASE 1/2
Selinexor & Talazoparib in Advanced Refractory Solid Tumors; Advanced/Metastatic Triple Negative Breast Cancer (START)	TARGETS XPO1, PARP
LOCATIONS: Singapore (Singapore)	

NCT03772561	PHASE 1
Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients With Advanced or Metastatic Solid Tumor Malignancies	TARGETS PARP, AKTs, PD-L1
LOCATIONS: Singapore (Singapore)	

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE Soft tissue sarcoma (NOS)

PHASE 3

REPORT DATE 14 Jul 2023

FOUNDATIONONE®HEME

ORDERED TEST # ORD-1665268-01

NCT03784014

CLINICAL TRIALS

	111/10= 0	
MOLECULAR PROFILING OF ADVANCED SOFT-TISSUE SARCOMAS	TARGETS ABL, KIT, ROS1, ALK, MET, ERBB2, EGFR, BRAF, MEK, PARP, PD-L1, CDK4, CDK6	
LOCATIONS: Strasbourg (France), Dijon (France), Paris (France), Villejuif (France), Lyon (France), Clermont-Ferrand (France), Marseille (France), Saint-Herblain (France), Bordeaux (France)		
NCT05327010	PHASE 2	
Testing the Combination of the Anti-cancer Drugs ZEN003694 (ZEN-3694) and Talazoparib in Patients With Advanced Solid Tumors, The ComBET Trial	TARGETS PARP, BRD4, BRDT, BRD2, BRD3	
LOCATIONS: Colorado, Illinois, Texas, North Carolina, Georgia		
NCT04056910	PHASE 2	
Ivosidenib (AG-120) With Nivolumab in IDH1 Mutant Tumors	TARGETS PD-1, IDH1	
LOCATIONS: Pennsylvania		
NCT02769962	PHASE 1/2	
Trial of CRLX101, a Nanoparticle Camptothecin With Olaparib in People With Relapsed/Refractory Small Cell Lung Cancer	TARGETS PARP, TOP1	
LOCATIONS: Maryland		
	·	

TUMOR TYPE
Soft tissue sarcoma (NOS)

REPORT DATE 14 Jul 2023

ORDERED TEST # ORD-1665268-01

FOUNDATION ONE ** HEME

CLINICAL TRIALS

TP53

ALTERATION Y220C

RATIONALE

Clinical and preclinical evidence suggests that TP53 hotspot mutations may predict sensitivity to TP53-targeted adoptive cell therapies. Clinical

evidence suggests patients with TP53 Y220C mutations may benefit from Y220C-specific reactivators of TP53.

NCT04585750	PHASE 1/2
The Evaluation of PC14586 in Patients With Advanced Solid Tumors Harboring a p53 Y220C Mutation	TARGETS TP53
LOCATIONS: Washington, Oregon, California, Ohio, Massachusetts, Connecticut, New York, Texas, Tennessee	

TUMOR TYPE
Soft tissue sarcoma (NOS)

REPORT DATE 14 Jul 2023

ORDERED TEST # ORD-1665268-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future. Please note that some VUS rearrangements between targeted genes and unknown fusion partners or intergenic regions detected by RNA sequencing may not be reported.

APC

NM_000038.4: c.95A>G (p.N32S) chr5:112090682

GTSE1

NM_016426.6: c.1988C>G (p.P663R) chr22:46725316

MAP3K1

NM_005921.1: c.4469A>C (p.E1490A) chr5:56189437

SETD2

NM_014159.6: c.3612T>G (p.l1204M) chr3:47162514

ASXL1

NM_015338.5: c.341A>G (p.N114S) chr20:31016019

KDM4C

NM_015061.3: c.1304C>G (p.A435G) chr9:6984354

MITF

NM_198159.2: c.38T>C (p.V13A) chr3:69788786

SMC1A

amplification

CSF1R

NM_005211.3: c.224C>T (p.T75I) chr5:149460413

KDM5C

amplification

PCLO

NM_033026.5: c.15159A>G (p.15053M) chr7:82390084

TSC2

NM_000548.3: c.2032G>A (p.A678T) chr16:2121870

CSF3R

NM_156039.3: c.911C>G (p.T304S) chr1:36937925

LRP1B

NM_018557.2: c.9418C>G (p.Q3140E) chr2:141242919

PRKDC

NM_006904.6: c.935C>T (p.A312V) chr8:48855800

APPENDIX

Genes Assayed in FoundationOne®Heme

FoundationOne Heme is designed to include genes known to be somatically altered in human hematologic malignancies and sarcomas that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay utilizes DNA sequencing to interrogate 406 genes as well as selected introns of 31 genes involved in rearrangements, in addition to RNA sequencing of 265 genes. The assay will be updated periodically to reflect new knowledge about cancer biology.

HEMATOLOGICAL MALIGNANCY DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABL1	ACTB	ADGRA2 (GPR124,) AKT1	AKT2	AKT3	ALK	AMER1 (FAM123B	or WTX)
APC	APH1A	AR	ARAF	ARFRP1	ARHGAP26 (GRAF)	ARID1A	ARID2
ASMTL	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXL
B2M	BAP1	BARD1	BCL10	BCL11B	BCL2	BCL2L2	BCL6	BCL7A
BCOR	BCORL1	BIRC3	BLM	BRAF	BRCA1	BRCA2	BRD4	BRIP1
BRSK1	BTG2	ВТК	BTLA	CAD	CALR*	CARD11	CBFB	CBL
CCN6 (WISP3)	CCND1	CCND2	CCND3	CCNE1	ССТ6В	CD22	CD274 (PD-L1)	CD36
CD58	CD70	CD79A	CD79B	CDC73	CDH1	CDK12	CDK4	CDK6
CDK8	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHD2	CHEK1	CHEK2
CIC	CIITA	CKS1B	CPS1	CREBBP	CRKL	CRLF2	CSF1R	CSF3R
CTCF	CTNNA1	CTNNB1	CUX1	CXCR4	DAXX	DDR2	DDX3X	DNM2
DNMT3A	DOT1L	DTX1	DUSP2	DUSP9	EBF1	ECT2L	EED	EGFR
ELP2	EMSY (C11orf30)	EP300	EPHA3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3
ERBB4	ERG	ESR1	ETS1	ETV6	EXOSC6	EZH2	FAF1	FANCA
FANCC	FANCD2	FANCE	FANCF	FANCG	FANCL	FAS (TNFRSF6)	FBXO11	FBXO31
FBXW7	FGF10	FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1
FGFR2	FGFR3	FGFR4	FHIT	FLCN	FLT1	FLT3	FLT4	FLYWCH1
FOXL2	FOXO1	FOXO3	FOXP1	FRS2	GADD45B	GATA1	GATA2	GATA3
GID4 (C17orf39)	GNA11	GNA12	GNA13	GNAQ	GNAS	GRIN2A	GSK3B	GTSE1
HDAC1	HDAC4	HDAC7	HGF	H1-2 (HIST1H1C)	UNAS	H1-3 (HIST1H1D)	OSKSD	GISLI
H1-4 (HIST1H1E)	TIDAC4	H2AC6 (HIST1H2A		H2AC11 (HIST1H2A	G)	H2AC16 (HIST1H2)	4/)	
H2AC17 (HIST1H2	444)	H2BC4 (HIST1H2B	-	H2BC11 (HIST1H2B.	-	H2BC12 (HIST1H2B	•	
H2BC17 (HIST1H2	•	H3C2 (HIST1H3B)	C)	HNF1A	HRAS	HSP90AA1	ICK	ID3
IDH1	IDH2	IGF1R	IKBKE	IKZF1	IKZF2	IKZF3	IL7R	INHBA
INPP4B	INPP5D (SHIP)	IRF1	IRF4	IRF8	IRS2	JAK1	JAK2	JAK3
JARID2	JUN	KAT6A (MYST3)	KDM2B	KDM4C	KDM5A	KDM5C	KDM6A	KDR
KEAP1	KIT	KLHL6	KMT2A (MLL)	KMT2C (MLL3)	KMT2D (MLL2)	KRAS	LEF1	LRP1B
LRRK2	MAF	MAFB	MAGED1	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1
MAP3K14	MAP3K6	MAP3K7	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B
MEF2C	MEN1	MET	MIB1	MITF	MKI67	MLH1	MPL	MRE11 (MRE11A)
MSH2	MSH3	MSH6	MTOR	MUTYH	MYC	MYCL (MYCL1)	MYCN	MYD88
MYO18A	NCOR2	NCSTN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOD1
NOTCH1	NOTCH2	NPM1	NRAS	NSD2 (WHSC1 or N		NT5C2	NTRK1	NTRK2
NTRK3	NUP93	NUP98	P2RY8	PAG1	PAK3	PALB2	PASK	PAX5
PBRM1	PC	PCBP1	PCLO	PDCD1	PDCD11	PDCD1LG2 (PD-L2)		PDGFRA
PDGFRB	PDK1	PHF6	PIK3CA	PIK3CG	PIK3R1	PIK3R2	PIM1	PLCG2
POT1	PPP2R1A	PRDM1	PRKAR1A	PRKDC	PRSS8	PTCH1	PTEN	PTPN11
PTPN2	PTPN6 (SHP-1)	PTPRO	RAD21	RAD50	RAD51	RAF1	RARA	RASGEF1A
RB1	RELN	RET	RHOA	RICTOR	RNF43	ROS1	RPTOR	RUNX1
S1PR2	SDHA	SDHB	SDHC	SDHD	SERP2	SETBP1	SETD2	SF3B1
SGK1	SMAD2	SMAD4	SMARCA1	SMARCA4	SMARCB1	SMC1A	SMC3	SMO
SOCS1	SOCS2	SOCS3	SOX10	SOX2	SPEN	SPOP	SRC	SRSF2
STAG2	STAT3	STAT4	STAT5A	STAT5B	STAT6	STK11	SUFU	SUZ12
TAF1	TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TENT5C (FAM46C)		TGFBR2	TLL2	TMEM30A
TMSB4XP8 (TMSI		TNFAIP3	TNFRSF11A	TNFRSF14	TNFRSF17	TOP1	TP53	TP63
TRAF2	TRAF3	TRAF5	TSC1	TSC2	TSHR	TUSC3	TYK2	U2AF1

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use

ORDERED TEST #	ORD-1665268-	-01			APPE	NDIX Genes	Assayed in Found	ationOne®Heme
U2AF2	VHL	WDR90	WT1	XBP1	XPO1	YY1AP1	ZMYM3	ZNF217
ZNF24 (ZSCAN3)	ZNF703	ZRSR2						
*Note: the assay v	as updated on 11/	8/2016 to include t	he detection of alt	erations in CALR				
HEMATOLOGIC	AL MALIGNANCY	DNA GENE LIST	: FOR THE DETI	ECTION OF SELE	CT REARRANGEM	IENTS		
ALK	BCL2	BCL6	BCR	BRAF	CCND1	CRLF2	EGFR	EPOR
ETV1	ETV4	ETV5	ETV6	EWSR1	FGFR2	IGH	IGK	IGL
JAK1	JAK2	KMT2A (MLL)	MYC	NTRK1	PDGFRA	PDGFRB	RAF1	RARA
RET	ROS1	TMPRSS2	TRG					
HEMATOLOGICA	AL MALIGNANCY	RNA GENE LIST	: FOR THE DETE	ECTION OF SELE	CT REARRANGEM	ENTS*		
ABI1	ABL1	ABL2	ACSL6	AFDN (MLLT4 or	AF6)	AFF1	AFF4	ALK
ARHGAP26 (GRAF	-)	ARHGEF12	ARID1A	ARNT	ASXL1	ATF1	ATG5	ATIC
BCL10	BCL11A	BCL11B	BCL2	BCL3	BCL6	BCL7A	BCL9	BCOR
BCR	BIRC3	BRAF	BTG1	CAMTA1	CARS1 (CARS)	CBFA2T3	CBFB	CBL
CCND1	CCND2	CCND3	CD274 (PD-L1)	CDK6	CDX2	CEP43 (FGFR1OP)	CHIC2	CHN1
CIC	CIITA	CLP1	CLTC	CLTCL1	CNTRL (CEP110)	COL1A1	CREB3L1	CREB3L2
CREBBP	CRLF2	CSF1	CTNNB1	DDIT3	DDX10	DDX6	DEK	DUSP22
EGFR	EIF4A2	ELF4	ELL	ELN	EML4	EP300	EPOR	EPS15
ERBB2	ERG	ETS1	ETV1	ETV4	ETV5	ETV6	EWSR1	FCGR2B
FCRL4	FEV	FGFR1	FGFR2	FGFR3	FLI1	FNBP1	FOXO1	FOXO3
FOXO4	FOXP1	FSTL3	FUS	GAS7	GLI1	GMPS	GPHN	H4C9 (HIST1H4I)
HERPUD1	HEY1	HIP1	HLF	HMGA1	HMGA2	HOXA11	HOXA13	HOXA3
HOXA9	HOXC11	HOXC13	HOXD11	HOXD13	HSP90AA1	HSP90AB1	IGH	IGK
IGL	IKZF1	IL21R	IL3	IRF4	ITK	JAK1	JAK2	JAK3
JAZF1	KAT6A (MYST3)	KDSR	KIF5B	KMT2A (MLL)	LASP1	LCP1	LMO1	LMO2
LPP	LYL1	MAF	MAFB	MALT1	MDS2	MECOM	MLF1	MLLT1 (ENL)
MLLT10 (AF10)	MLLT3	MLLT6	MN1	MNX1	MRTFA (MKL1)	MSI2	MSN	MUC1
MYB	MYC	МҮН11	МҮН9	NACA	NBEAP1 (BCL8)	NCOA2	NDRG1	NF1
NF2	NFKB2	NIN	NOTCH1	NPM1	NR4A3	NSD1	NSD2 (WHSC1 or	
NSD3 (WHSC1L1)	NTRK1	NTRK2	NTRK3	NUMA1	NUP214	NUP98	NUTM2A	OMD
P2RY8	PAFAH1B2	PAX3	PAX5	PAX7	PBX1	PCM1	PCSK7	PDCD1LG2 (PD-L2)
PDE4DIP	PDGFB	PDGFRA	PDGFRB	PER1	PHF1	PICALM	PIM1	PLAG1
PML	POU2AF1	PPP1CB	PRDM1	PRDM16	PRRX1	PSIP1	PTCH1	PTK7
RABEP1	RAF1	RALGDS	RAPIGDS1	RARA	RBM15	RET	RHOH	RNF213
RNF217-AS1 (STL)		ROS1	RPL22	RPN1	RUNX1	RUNX1T1 (ETO)	RUNX2	SEC31A
SEPTIN5 (SEPT5)	SEPTIN6 (SEPT6)	SEPTIN9 (SEPT9)	SET	SH3GL1	SLC1A2	SNX29 (RUNDC2A		SRSF3
SS18	SSX1	SSX2	SSX4	STAT6	SYK	TAF15	TAL1	TAL2
TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TEC	TET1	TFE3	TFG	TFPT	TFRC
TLX1	TLX3	TMPRSS2	TNFRSF11A	TOP1	TP63	TPM3	TPM4	TRIM24
TDIDA	TEAS	TIVITICO	HALKSITIA	1011	70704	71 1/13	711714	1 NIIVIZ4

 $^{^*}$ Note: some VUS rearrangements between targeted genes and unknown fusion partners or intergenic regions detected by RNA sequencing may not be reported.

ZBTB16

ZMYM2

YPEL5

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

USP6

TYK2

Microsatellite (MS) status Tumor Mutational Burden (TMB)

TRIP11

TTL

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

© 2023 Foundation Medicine, Inc. All rights reserved.

ZNF384

ZNF521

APPENDIX

Performance Specifications

The median exon coverage for this sample is 678x

ACCURACY					
Sensitivity: Base Substitutions	At ≥5% Minor Allele Frequency	>99.0%			
Sensitivity: Insertions/Deletions (1-40bp)	At ≥10% Minor Allele Frequency	98.0%			
Sensitivity: Focal Copy Number Alterations (Homozygous Deletions or Amplifications)	At ≥8 copies	>95.0%			
Sensitivity: Microsatellite Instability-High (MSI-H) status	Positive Predictive Agreement (PPA)	100.0% (87.54%-100.00%)*			
Sensitivity: Microsatellite Stable (MSS) status	Positive Predictive Agreement (PPA)	89.66% (81.50%, 94.46%)*			
Sensitivity: Known Gene Fusions	>95.0%				
Specificity: Base Substitutions, Insertions/Deletions, and Focal Copy Number Alterations	Positive Predictive Value (PPV)	>99.0%			
Specificity: Known Gene Fusions	Positive Predictive Value (PPV)	>95.0%			
Specificity: Microsatellite Instability-High (MSI-H) status	Negative Predictive Agreement (NPA)	97.44% (91.12%-99.29%)*			
Specificity: Microsatellite Stable (MSS) status	Negative Predictive Agreement (NPA)	94.44% (86.57%, 97.82%)*			
Accuracy: Tumor Mutation Burden	At ≥20% tumor nuclei	>90.0%			
Reproducibility (average concordance between replicates)	97.0% inter-batch precision 97.0% intra-batch precision 95.0% microsatellite status precision 96.0% tumor mutation burden precision				

^{*95%} Confidence Interval

Assay specifications were determined for typical median exon coverage of approximately 500 X. For additional information regarding the validation of FoundationOne®Heme, please refer to the article He, J. et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting, Blood (2016 Jun. 16).

In the fraction-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the FoundationOne Heme assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided by

the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by analytical concordance to a PCR comparator assay using a pan-tumor sample set. Patients with results categorized as "MSStable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.

Tumor Mutational Burden (TMB) is determined by measuring the number of somatic mutations in sequenced genes on the FoundationOne Heme test and extrapolating to the genome as a whole. TMB is assayed for all FoundationOne Heme samples and is reported as the number of mutations per megabase (Muts/Mb). Tumor Mutational Burden is reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine Tumor Mutational Burden.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

About FoundationOne®Heme

ABOUT FOUNDATIONONE HEME

FoundationOne Heme is a comprehensive genomic profiling test for hematologic malignancies and sarcomas. The test is designed to provide physicians with clinically actionable information to help with diagnostic sub-classification, prognosis assessment, and targeted therapeutic selection. Test results provide information about clinically significant alterations, potential targeted therapies, available clinical trials and quantitative markers that may support immunotherapy clinical trial enrollment.

FoundationOne Heme was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Heme may be used for clinical purposes and should not be regarded as purely investigational or for research.

INTENDED USE

FoundationOne Heme is a next generation sequencing-based in vitro diagnostic device for hematologic malignancies and sarcomas. The test is intended for the detection of substitutions, insertion and deletion alterations (indels), copy number alterations (CNAs), and select rearrangements from the complete coding DNA sequences of 406 genes, as well as selected introns of 31 genes using DNA isolated from peripheral blood, bone marrow aspirate (BMA), and formalinfixed paraffin embedded (FFPE) tumor tissue specimens. In addition to DNA sequencing, FoundationOne Heme employs RNA sequencing across 265 genes to capture a broad range of gene fusions, common drivers of hematologic malignancies and sarcomas. FoundationOne Heme is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with hematologic malignancies and sarcomas.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any

drug or treatment regimen.

Diagnostic Significance

FoundationOne Heme identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification - equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne Heme for identifying a copy number amplification is five (5) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that FoundationOne Heme analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials

Ranking of Therapies in Summary Table
Therapies are ranked based on the following
criteria: Therapies with clinical benefit (ranked
alphabetically within each evidence category),
followed by therapies associated with resistance
(when applicable).

Ranking of Clinical Trials
Pediatric trial qualification → Geographical proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). ©

National Comprehensive Cancer Network, Inc. 2023. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Heme.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low sample quality or with homozygous losses of <3 exons; and deletions and insertions >40bp, or in repetitive/high homology sequences. FoundationOne Heme is performed using DNA and RNA derived from tumor, and as such germline

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

About FoundationOne®Heme

ORDERED TEST # ORD-1665268-01

events may not be reported.

The following targets typically have low coverage resulting in a reduction in sensitivity: SDHD exon 4, TNFRSF11A exon1, and TP53 exon 1.

FoundationOne Heme fulfills the requirements of the European Directive 98/79 EC for *in vitro* diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

ϵ

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic.

Interpretation should be based on clinical context

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
TKI	Tyrosine kinase inhibitor

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh37), also known as hg19.

MR Suite Version (RG) 7.10.0

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

References

- 1. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 5. Ayers et al., 2016; ASCO-SITC Abstract P60
- Bonneville R, et al. JCO Precis Oncol (2017) pmid: 29850653
- 7. Monument MJ, et al. ISRN Oncol (2012) pmid: 23401795
- 8. Wooster R, et al. Nat. Genet. (1994) pmid: 8162069
- 9. Kawaguchi K, et al. Oncol. Rep. (2005) pmid: 15643505
- 10. Saito T, et al. Hum. Pathol. (2003) pmid: 1456227811. Suwa K, et al. J Orthop Sci (1999) pmid: 10370164
- 12. Garcia JJ, et al. Mod. Pathol. (2006) pmid: 16619000
- 13. Aue G, et al. Cancer Genet. Cytogenet. (1998) pmid:
- Rucińska M, et al. Med. Sci. Monit. (2005) pmid: 15668629
- Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- 16. You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- Bairwa NK, et al. Methods Mol. Biol. (2014) pmid: 24623249
- 18. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- 19. Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- 20. Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 21. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 24. Cristescu R, et al. Science (2018) pmid: 30309915
- 25. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 26. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 27. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 28. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 29. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 30. Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- **31.** Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- **32.** Ott PA, et al. J. Clin. Oncol. (2019) pmid: 30557521
- 33. Cristescu R, et al. J Immunother Cancer (2022) pmid: 35101941
- **34.** Friedman CF, et al. Cancer Discov (2022) pmid: 34876409
- **35.** Sturgill EG, et al. Oncologist (2022) pmid: 35274716
- 36. Schenker at al., 2022; AACR Abstract 7845
- 37. Legrand et al., 2018; ASCO Abstract 12000
- Gounder MM, et al. Nat Commun (2022) pmid: 35705558
- **39.** Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 40. Lim J, et al. Clin. Cancer Res. (2015) pmid: 26330427
- **41.** Brohl AS, et al. PLoS Genet. (2014) pmid: 25010205
- Chen X, et al. Cancer Cell (2013) pmid: 24332040
 Steele CD, et al. Cancer Cell (2019) pmid: 30889380
- 44. Casey DL, et al. Clin Cancer Res (2020) pmid: 31699828
- **45.** Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 46. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- **47.** Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- **48.** Rizvi NA, et al. Science (2015) pmid: 25765070
- 49. Johnson BE, et al. Science (2014) pmid: 24336570

- **50.** Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 51. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 52. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 53. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 54. Nature (2012) pmid: 22810696
- 55. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- 56. Swisher EM, et al. Lancet Oncol. (2017) pmid: 27908594
- **57.** Abida W, et al. Clin. Cancer Res. (2020) pmid: 32086346
- 58. Dhawan et al., 2017; ASCO Abstract 2527
- 59. Barretina J, et al. Nat. Genet. (2010) pmid: 20601955
- Cancer Genome Atlas Research Network. Electronic address: elizabeth.demicco@sinaihealthsystem.ca, et al. Cell (2017) pmid: 29100075
- 61. Cantor SB, et al. Cell (2001) pmid: 11301010
- 62. Litman R, et al. Cancer Cell (2005) pmid: 16153896
- 63. Bridge WL, et al. Nat. Genet. (2005) pmid: 16116421
- 64. Filippini SE, et al. Front Biosci (Landmark Ed) (2013) pmid: 23747889
- 65. Ren LP, et al. Genet. Mol. Res. (2013) pmid: 24301948
- 66. Seal S, et al. Nat. Genet. (2006) pmid: 17033622
- **67.** Rafnar T, et al. Nat. Genet. (2011) pmid: 21964575
- **68.** Ma XD, et al. Biochem. Biophys. Res. Commun. (2013) pmid: 23473757
- 69. Hematology Am Soc Hematol Educ Program (2007) pmid: 18024606
- Khincha PP, et al. Semin. Hematol. (2013) pmid: 24246701
- 71. Chandrasekharappa SC, et al. Blood (2013) pmid:
- 23613520 72. Tischkowitz MD, et al. J. Med. Genet. (2003) pmid:
- 12525534 **73.** Fan B, et al. Invest New Drugs (2019) pmid: 31028664
- 74. de la Fuente MI, et al. Neuro Oncol (2022) pmid: 35639513
- 75. Mellinghoff et al., 2020: ASCO Abstract 2504
- **76.** Philip B, et al. Cell Rep (2018) pmid: 29719265
- 77. Molenaar RJ, et al. Clin. Cancer Res. (2018) pmid: 29339439
- 78. Lu Y, et al. Cancer Res. (2017) pmid: 28202508
- 79. Sulkowski PL, et al. Sci Transl Med (2017) pmid: 28148839
- 80. Sanchez-Vega F, et al. Cell (2018) pmid: 29625050
- 81. Amary MF, et al. J. Pathol. (2011) pmid: 21598255
- 82. Pansuriya TC, et al. Nat. Genet. (2011) pmid: 22057234
- 83. Arai M, et al. Brain Tumor Pathol (2012) pmid: 22323113
- 84. Kerr DA, et al. Am. J. Surg. Pathol. (2013) pmid: 23598960
- Reitman ZJ, et al. J. Natl. Cancer Inst. (2010) pmid: 20513808
- 86. Jin G, et al. PLoS ONE (2011) pmid: 21326614
- 87. Gross S, et al. J. Exp. Med. (2010) pmid: 20142433
- 88. Ward PS, et al. Cancer Cell (2010) pmid: 20171147 89. Leonardi R. et al. J. Biol. Chem. (2012) pmid: 22442146
- 00. Densit at al Mature (2000) amid 10035(4)
- **90.** Dang L, et al. Nature (2009) pmid: 19935646
- 91. Ward PS, et al. Oncogene (2012) pmid: 21996744
- 92. Figueroa ME, et al. Cancer Cell (2010) pmid: 2113070193. Xu W, et al. Cancer Cell (2011) pmid: 21251613
- **94.** Turcan S, et al. Nature (2012) pmid: 22343889
- **95.** Duncan CG, et al. Genome Res. (2012) pmid: 22899282
- **96.** Kim SP, et al. Cancer Immunol Res (2022) pmid: 35749374
- 97. Morelli et al., 2023; ASCO Abstract 2547
- 98. Dumbrava et al., 2022; ASCO Abstract 3003

- 99. Hirai H, et al. Cancer Biol. Ther. (2010) pmid: 20107315
- 100. Bridges KA, et al. Clin. Cancer Res. (2011) pmid: 21799033
- Rajeshkumar NV, et al. Clin. Cancer Res. (2011) pmid: 21389100
- **102.** Osman AA, et al. Mol. Cancer Ther. (2015) pmid: 25504633
- 103. Xu L, et al. Mol. Cancer Ther. (2002) pmid: 12489850
- **104.** Xu L, et al. Mol. Med. (2001) pmid: 11713371
- Camp ER, et al. Cancer Gene Ther. (2013) pmid: 23470564
- 106. Kim SS, et al. Nanomedicine (2015) pmid: 25240597
- 107. Pirollo KF, et al. Mol. Ther. (2016) pmid: 27357628
- 108. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27601554
- 109. Moore et al., 2019; ASCO Abstract 5513
- 110. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27998224
- 111. Oza et al., 2015; ASCO Abstract 5506
- 112. Lee J, et al. Cancer Discov (2019) pmid: 31315834
- 113. Méndez E, et al. Clin. Cancer Res. (2018) pmid:
- 114. Seligmann JF, et al. J Clin Oncol (2021) pmid: 34538072
- 115. Gourley et al., 2016; ASCO Abstract 5571
- 116. Park H, et al. ESMO Open (2022) pmid: 36084396
- 117. Cerami E. et al. Cancer Discov (2012) pmid: 22588877
- 118. Gao J, et al. Sci Signal (2013) pmid: 23550210
- 119. Pérot G, et al. Am. J. Pathol. (2010) pmid: 20884963
- **120.** Taubert H. et al. Cancer Res. (1996) pmid: 8797580
- 121. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675
- 122. Joerger AC, et al. Annu. Rev. Biochem. (2008) pmid: 18410249
- 123. Kato S, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid: 12826609
- 124. Kamada R, et al. J. Biol. Chem. (2011) pmid: 20978130
- **125.** Zerdoumi Y, et al. Hum. Mol. Genet. (2017) pmid: 28472496
- **126.** Yamada H, et al. Carcinogenesis (2007) pmid: 17690113
- 127. Landrum MJ, et al. Nucleic Acids Res. (2018) pmid:
- 29165669 128. Bougeard G, et al. J. Clin. Oncol. (2015) pmid: 26014290
- 129. Sorrell AD, et al. Mol Diagn Ther (2013) pmid: 23355100
- 130. Nichols KE, et al. Cancer Epidemiol. Biomarkers Prev. (2001) pmid: 11219776
- 131. Kleihues P, et al. Am. J. Pathol. (1997) pmid: 9006316
- **132.** Gonzalez KD, et al. J. Clin. Oncol. (2009) pmid:
- 19204208
- 133. Lalloo F, et al. Lancet (2003) pmid: 12672316
- 134. Mandelker D, et al. Ann. Oncol. (2019) pmid: 31050713
- Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837
 Genovese G, et al. N. Engl. J. Med. (2014) pmid:
- 25426838
- 137. Xie M, et al. Nat. Med. (2014) pmid: 25326804138. Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid:
- 28669404
- **139.** Severson EA, et al. Blood (2018) pmid: 29678827 **140.** Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212
- 141. Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320
- 142. Chabon JJ, et al. Nature (2020) pmid: 32269342
- 143. Razavi P, et al. Nat. Med. (2019) pmid: 31768066144. Van Vlierberghe P, et al. Nat. Genet. (2010) pmid: 20228800
- 145. Van Vlierberghe P, et al. Leukemia (2011) pmid: 21030981
- 146. Grossmann V, et al. Genes Chromosomes Cancer (2013) pmid: 23341344
- **147.** Zhang J, et al. Nature (2012) pmid: 22237106

APPENDIX

References

ORDERED TEST # ORD-1665268-01

- 148. Wang Q, et al. Haematologica (2011) pmid: 21880637
- 149. Yoo NJ, et al. Acta Oncol (2012) pmid: 21736506
- 150. Holmfeldt L, et al. Pediatr Blood Cancer (2010) pmid: 20589626
- 151. Huh HJ, et al. Ann. Hematol. (2013) pmid: 23354995
- 152. Patel JP, et al. N. Engl. J. Med. (2012) pmid: 22417203
- 153. Wang J, et al. J. Biol. Chem. (2013) pmid: 23229552
- 154. Todd MA, et al. J. Proteome Res. (2012) pmid: 22720776
- 155. Todd MA, et al. Genes (Basel) (2015) pmid: 26103525
- 156. Lower KM, et al. Nat. Genet. (2002) pmid: 12415272
- 157. Gécz J, et al. Eur. J. Hum. Genet. (2006) pmid: 16912705
- 158. Park J, et al. EMBO J. (1999) pmid: 10357815
- Ackermann TF, et al. Cell. Physiol. Biochem. (2011) pmid: 21865856
- 160. Castel P, et al. Cancer Cell (2016) pmid: 27451907
- 161. Halland N, et al. ACS Med Chem Lett (2015) pmid:
- Mansley MK, et al. Br. J. Pharmacol. (2010) pmid: 162. 20880397
- 163. O'Neill D, et al. Oncotarget (2015) pmid: 26267320
- 164. Sherk AB, et al. Cancer Res. (2008) pmid: 18794135
- 165. Sommer EM, et al. Biochem. J. (2013) pmid: 23581296 Lohr JG, et al. Proc. Natl. Acad. Sci. U.S.A. (2012) pmid:
- 167. Hartmann S, et al. Leukemia (2016) pmid: 26658840

22343534

- 168. Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878
- 169. Abbruzzese C, et al. J. Exp. Clin. Cancer Res. (2012) nmid: 22240294
- 170. Conza D, et al. J. Cell. Physiol. (2017) pmid: 28177128
- 171. Talarico C, et al. Oncotarget (2016) pmid: 26908461
- 172. Sahoo S, et al. Eur. J. Cancer (2005) pmid: 16246546
- 173. García-Martínez JM, et al. Biochem. J. (2008) pmid: 18925875
- 174. DiNardo CD, et al. N. Engl. J. Med. (2018) pmid: 29860938
- 175. Lowery MA, et al. Lancet Gastroenterol Hepatol (2019) pmid: 31300360
- 176. Abou-Alfa GK, et al. Lancet Oncol. (2020) pmid: 32416072
- **177.** Mellinghoff IK, et al. J. Clin. Oncol. (2020) pmid: 32530764
- 178. Abou-Alfa et al., 2021; ASCO Abstract 4069
- 179. Mellinghoff et al., 2017; SNO Abstract ACTR-46
- 180. Tap et al., 2016; CTOS Abstract P1-138
- 181. Dougherty et al., 2014: ASCO Abstract 5536
- 182. Piha-Paul et al., 2018; AACR Abstract A096
- 183. Nakamura et al., 2020; DOI: 10.1200/PO.19.00368 184. Chugh R, et al. Cancer (2021) pmid: 33289920
- 185. Mirza MR, et al. N. Engl. J. Med. (2016) pmid: 27717299 186. Sandhu SK, et al. Lancet Oncol. (2013) pmid: 23810788

- 187. Mirza et al., 2016: ASCO Abstract 5555
- 188. George et al., 2022; ASCO Abstract 3122
- 189. Lian BJ, et al. Front Oncol (2022) pmid: 35875073
- 190. Grignani et al., 2016; ASCO Abstract 11018
- 191. Choy E, et al. BMC Cancer (2014) pmid: 25374341
- 192. Grignani G, et al. Lancet Oncol. (2018) pmid: 30217671
- 193. Drew Y. et al. Br. J. Cancer (2016) pmid: 27002934
- 194. Kristeleit et al., 2014; ASCO Abstract 2573
- 195. Domcheck et al., 2016; ASCO Abstract 4110
- 196. Plummer R, et al. Cancer Chemother. Pharmacol. (2013) pmid: 23423489
- Plummer R, et al. Clin. Cancer Res. (2008) pmid: 19047122
- 198. Wilson RH, et al. Br. J. Cancer (2017) pmid: 28222073
- 199. Federico et al., 2017; ASCO Abstract 10542
- 200. de Bono J. et al. Cancer Discov (2017) pmid: 28242752
- 201. Litton JK, et al. N. Engl. J. Med. (2018) pmid: 30110579
- 202. Ettl J, et al. Ann. Oncol. (2018) pmid: 30124753
- 203. Gruber et al., 2019: ASCO Abstract 3006
- 204. Lu E, et al. J Natl Compr Canc Netw (2018) pmid: 30099369
- 205. Piha-Paul et al., 2017; EORTC-NCI-AACR Abstract A096
- 206. Meehan et al., 2017; AACR Abstract 4687

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy