Automi e Linguaggi Formali

a.a. 2017/2018

LT in Informatica 8 Marzo 2018

Esercizio

1 Costruiamo un ε -NFA che riconosce le parole costituite da zero o più a, seguite da zero o più b, seguite da zero o più c

2 Calcolare la ε -chiusura di ogni stato

ECLOSE
$$(q_0) = \{q_0, q_1, q_2\}$$

ECLOSE $(q_1) = \{q_1, q_2\}$
ECLOSE $(q_2) = \{q_2\}$

3 Convertire I' ε -NFA in DFA

Esercizio – continua

- **1** Costruiamo un ε -NFA che riconosce le parole costituite da zero o più a, seguite da zero o più b, seguite da zero o più c
- **2** Calcolare la ε -chiusura di ogni stato
- **3** Convertire l' ε -NFA in DFA

Theorem

Sia $D = (Q_D, \Sigma, S_0, F_D)$ il DFA ottenuto da un ε -NFA E con la costruzione a sottoinsiemi modificata. Allora L(D) = L(E).

Dimostrazione: Prima mostriamo per induzione su |w| che

$$\hat{\delta}_D(S_0, w) = \hat{\delta}_E(q_0, w)$$

Base: $w = \varepsilon$. L'enunciato segue dalla definizione:

- Lo stato iniziale di D è $S_0 = \text{ECLOSE}(q_0)$;
- $\hat{\delta}_D(S_0, \varepsilon) = S_0 = \text{ECLOSE}(q_0);$
- $\hat{\delta}_E(q_0, \varepsilon) = \text{ECLOSE}(q_0)$.

Induzione:

- Sia |w| = n+1 e supponiamo vero l'enunciato per la lunghezza n. Scomponiamo w in w = xa (con |x| = n e a simbolo finale)
- Per ipotesi induttiva $\hat{\delta}_D(S_0,x) = \hat{\delta}_E(q_0,x) = \{p_1,\ldots,p_k\}$
- \blacksquare Per la definizione di $\hat{\delta}$ per gli ε -NFA

$$\hat{\delta}_{E}(q_0, xa) = \text{ECLOSE}\left(\bigcup_{i=1}^{k} \delta_{E}(p_i, a)\right)$$

■ Per la costruzione a sottoinsiemi

$$\delta_D(\{p_1,\ldots,p_k\},a) = \text{ECLOSE}\left(\bigcup_{i=1}^k \delta_E(p_i,a)\right)$$

Induzione (continua):

 \blacksquare Per la definizione di $\hat{\delta}$ per i DFA

$$\hat{\delta}_D(S_0, xa) = \delta_D(\{p_1, \dots, p_k\}, a) = \text{ECLOSE}\left(\bigcup_{i=1}^k \delta_E(p_i, a)\right)$$

lacksquare Quindi abbiamo mostrato che $\hat{\delta}_D(S_0,w)=\hat{\delta}_E(q_0,w)$

Poiché sia D che E accettano se solo se $\hat{\delta}_D(S_0, w)$ e $\hat{\delta}_E(q_0, w)$ contengono almeno un stato in F_E , allora abbiamo dimostrato che L(D) = L(N).

Teorema di equivalenza tra DFA e NFA

Theorem

Un linguaggio L è accettato da un DFA se e solo se è accettato da un ε -NFA.

Dimostrazione:

- La parte "se" è il teorema precedente
- La parte "solo se" si dimostra osservando che ogni DFA può essere trasformato in un ε -NFA modificando δ_D in δ_E con la seguente regola:

Se
$$\delta_D(q, a) = p$$
 allora $\delta_E(q, a) = \{p\}$

Espressioni Regolari

- Un FA (NFA o DFA) è un metodo per costruire una macchina che riconosce linguaggi regolari
- Una espressione regolare è un modo dichiarativo per descrivere un linguaggio regolare.
- Esempio: $01^* + 10^*$
- Le espressioni regolari sono usate, ad esempio, in:
 - comandi UNIX (grep)
 - strumenti per l'analisi lessicale di UNIX (lex (Lexical analyzer generator) e flex (Fast Lex))
 - editor di testo

Operazioni sui linguaggi

Unione:

$$L \cup M = \{w : w \in L \text{ oppure } w \in M\}$$

■ Concatenazione:

$$L.M = \{uv : u \in L \text{ e } v \in M\}$$

■ Potenze:

$$L^0 = \{\varepsilon\}$$
 $L^1 = L$ $L^k = L.L^{k-1} = \underbrace{L.L.L...L}_{k \text{ volte}}$

■ Chiusura (o Star) di Kleene:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Espressione regolari: sintassi

Le Espressioni Regolari sono costruite utilizzando

- un insieme di costanti di base:
 - lacksquare per la stringa vuota
 - Ø per il linguaggio vuoto
 - $\mathbf{a}, \mathbf{b}, \dots$ per i simboli $a, b, \dots \in \Sigma$
- collegati da operatori:
 - + per l'unione
 - · per la concatenazione
 - * per la chiusura di Kleene
- raggruppati usando le parentesi:
 - **(**)

Espressioni regolari: semantica

Se E è un espressione regolare, allora L(E) è il linguaggio denotato da E. La definizione di L(E) è induttiva:

■ Caso Base:

- $L(\varepsilon) = \{\varepsilon\}$
- $L(\emptyset) = \emptyset$
- $L(a) = \{a\}$

■ Caso induttivo:

- $L(E+F) = L(E) \cup L(F)$
- $L(\mathbf{EF}) = L(\mathbf{E}).L(\mathbf{F})$
- $L(E^*) = L(E)^*$
- L((E)) = L(E)

Espressioni regolari: esempio

oppure

■ Scriviamo l'espressione regolare per

$$L = \{w \in \{0,1\}^* : 0 ext{ e 1 alternati in } w\}$$
 $(01)^* + (10)^* + 1(01)^* + 0(10)^*$ $(arepsilon + 1)(01)^* (arepsilon + 0)$

Espressioni regolari: precedenza

Come per le espressioni aritmetiche, anche per le espressioni regolari ci sono delle regole di precedenza degli operatori:

- 1 Chiusura di Kleene
- 2 Concatenazione (punto)
- **3** Unione (+)

Esempio:

$$01^* + 1$$
 è raggruppato in $(0(1)^*) + 1$

e denota un linguaggio diverso da

$$(01)^* + 1$$

Esercizi (1)

Per ognuno dei seguenti linguaggi, costruire una ER sull'alfabeto $\{a, b, c\}$ che li rappresenti:

- Tutte le stringhe w che contengono un numero pari di a;
- 2 Tutte le stringhe w che contengono 4k+1 occorrenze di b, per ogni $k \ge 0$;
- 3 Tutte le stringhe la cui lunghezza è un multiplo di 3;

Esercizi (2)

Per ognuno dei seguenti linguaggi, costruire una ER sull'alfabeto $\{0,1\}$ che li rappresenti:

- 4 Tutte le stringhe w che contengono la sottostringa 101
- \bullet Tutte le stringhe w che non contengono la sottostringa 101

Sfida!

Costruire una ER sull'alfabeto $\{0,1\}$ per il linguaggio di tutti i numeri binari multipli di 3.

Equivalenza tra FA e RE

Sappiamo già che DFA, NFA, e ε -NFA sono tutti equivalenti.

Gli FA sono equivalenti alle espressioni regolari:

- **1** Per ogni espressione regolare R esiste un ε -NFA A, tale che L(A) = L(R)
- 2 Per ogni DFA A possiamo costruire un'espressione regolare R, tale che L(R) = L(A)

Da RE a ε -NFA

Theorem

Per ogni espressione regolare R possiamo costruire un ε -NFA A tale che L(A) = L(R)

Dimostrazione:

Costruiremo un ε -NFA A con:

- un solo stato finale
- nessuna transizione entrante nello stato iniziale
- nessuna transizione uscente dallo stato finale

La dimostrazione è per induzione strutturale su R

Da RE a ε -NFA

Caso Base:

- lacksquare automa per arepsilon
- start +
- automa per Ø
- start -

- automa per a
- start a

Da RE a ε -NFA

Caso Induttivo:

 \blacksquare automa per R + S

■ automa per RS

■ automa per R*

Esercizio

Trasformiamo $(0+1)^*1(0+1)$ in arepsilon-NFA