Paulo Fagandini

A function takes one element from a set, and associates it with an element of another set.

Definition

f is a **function** from A to B, if it links each element from A to a single element from B.

The set A is called the *domain of* f, and the set B is called the *codomain of* f.

The notation for a function is $f: A \to B$, and if y = f(x) we say that $(x, y) \in f$.

Definition

Consider a function $f: \mathbb{R}^n \to \mathbb{R}$, the **Graph** of f, Gr(f) is defined as:

$$Gr(f) := \{(x, y) \in \mathbb{R}^n \times \mathbb{R} | y = f(x) \}$$

Definition

Consider a function $f: \mathbb{R}^n \to \mathbb{R}$, the **Graph** of f, Gr(f) is defined as:

$$Gr(f) := \{(x,y) \in \mathbb{R}^n \times \mathbb{R} | y = f(x) \}$$

Note: More generally neither the domain needs to be \mathbb{R}^n nor the codomain needs to be \mathbb{R} , the case given above is just the most common situation in economics.

Definition

Consider $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$,

- 1. Sum: $(f+g): \mathbb{R} \to \mathbb{R}$, and (f+g)(x) = f(x) + g(x).
- 2. Product: $(f \cdot g) : \mathbb{R} \to \mathbb{R}$, and $(f \cdot g)(x) = f(x)g(x)$
- 3. Division: $(f/g): \mathbb{R} \to \mathbb{R}$, and $(f/g)(x) = \frac{f(x)}{g(x)}$. This is only well defined when $g(x) \neq 0$.
- 4. Scaling: If $\alpha \in \mathbb{R}$, $(\alpha f) : \mathbb{R} \to \mathbb{R}$, and $(\alpha f)(x) = \alpha f(x)$

Definition

Consider the functions $f: B \to C$, and $g: A \to B$, then the **composite** function $f \circ g: A \to C$ is defined as

$$(f\circ g)(x)=f(g(x))$$

Definition

Consider sets A and B, and the function $f: A \rightarrow B$.

- 1. f is **injective** if, for a and a' in A, such that $a \neq a'$, then $f(a) \neq f(a')$.
- 2. f is **surjective** if, for any $b \in B$, exists $a \in A$ such that f(a) = b.
- 3. f is **bijective** if it is both, injective and surjective at the same time.

Function	Classification
$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$	
$f: \mathbb{R} o [-1,1], f(x) = sin(x)$	
$f: \mathbb{R} \to \mathbb{R}, f(x) = x^3$	

Function	Classification
$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$	-
$f: \mathbb{R} o [-1,1], f(x) = \mathit{sin}(x)$	
$f: \mathbb{R} \to \mathbb{R}, f(x) = x^3$	

Function	Classification
$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$	-
$f: \mathbb{R} ightarrow [-1,1], f(x) = \mathit{sin}(x)$	Surjective
$f: \mathbb{R} \to \mathbb{R}, f(x) = x^3$	

Function	Classification
$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$	-
$f: \mathbb{R} ightarrow [-1,1], f(x) = \mathit{sin}(x)$	Surjective
$f: \mathbb{R} \to \mathbb{R}, f(x) = x^3$	Bijective

Conjecture

If $f:A\to B$ is a bijective function, then there exists a unique function $g:B\to A$, bijective, such that

$$g(f(x)) = x$$

g is called the inverse of f, also known as f^{-1} .

Conjecture

Let $f: B \to C$, and $g: A \to B$ be both invertible functions, then $f \circ g$ is invertible. Moreover,

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$

Proof.

Existence:

▶ Let $g = \{(b, a) | (a, b) \in f\}$.

Proof.

Existence:

- ▶ Let $g = \{(b, a) | (a, b) \in f\}$.
- ▶ If $(b, a_1), (b, a_2) \in g$, then $(a_1, b), (a_2, b) \in f$, but f is injective, so $a_1 = a_2$. Then g is a function.

Proof.

Existence:

- ▶ Let $g = \{(b, a) | (a, b) \in f\}$.
- ▶ If $(b, a_1), (b, a_2) \in g$, then $(a_1, b), (a_2, b) \in f$, but f is injective, so $a_1 = a_2$. Then g is a function.
- ▶ The domain of g is $\{b|(b,a) \in g\} = \{b|(a,b) \in f\} = f(X)$.

Proof.

Existence:

- ▶ Let $g = \{(b, a) | (a, b) \in f\}$.
- ▶ If $(b, a_1), (b, a_2) \in g$, then $(a_1, b), (a_2, b) \in f$, but f is injective, so $a_1 = a_2$. Then g is a function.
- ▶ The domain of g is $\{b|(b,a) \in g\} = \{b|(a,b) \in f\} = f(X)$.
- Let $(b, a_2) \in g$ and $(a_1, b) \in f$. Then $(a_2, b) \in f$, and given f injective, we have $a_1 = a_2$. Then $g \circ f = \{(a, a) | a \in A\} = Id$.

Proof.

Existence:

- ▶ Let $g = \{(b, a) | (a, b) \in f\}$.
- ▶ If $(b, a_1), (b, a_2) \in g$, then $(a_1, b), (a_2, b) \in f$, but f is injective, so $a_1 = a_2$. Then g is a function.
- ▶ The domain of g is $\{b|(b,a) \in g\} = \{b|(a,b) \in f\} = f(X)$.
- Let $(b, a_2) \in g$ and $(a_1, b) \in f$. Then $(a_2, b) \in f$, and given f injective, we have $a_1 = a_2$. Then $g \circ f = \{(a, a) | a \in A\} = Id$.
- ▶ Let $f^{-1} = g$

Homework, show that g is bijective. Hint: Go with contradiction.

Unicity,

ightharpoonup Let g and h be inverse of f.

- \blacktriangleright Let g and h be inverse of f.
- ▶ Assume $g(b) \neq h(b)$, at least for some $x \in B$.

- \blacktriangleright Let g and h be inverse of f.
- ▶ Assume $g(b) \neq h(b)$, at least for some $x \in B$.
- ▶ As $b \in B$, then there is a such that f(a) = b.

- \blacktriangleright Let g and h be inverse of f.
- ▶ Assume $g(b) \neq h(b)$, at least for some $x \in B$.
- ▶ As $b \in B$, then there is a such that f(a) = b.
- ► So $g(b) \neq h(b)$, but $g(f(a)) \neq h(f(a))$.

- \blacktriangleright Let g and h be inverse of f.
- ▶ Assume $g(b) \neq h(b)$, at least for some $x \in B$.
- ▶ As $b \in B$, then there is a such that f(a) = b.
- ► So $g(b) \neq h(b)$, but $g(f(a)) \neq h(f(a))$.
- ▶ But $g \circ f$ and $h \circ f$ are both the identity so...

Unicity,

- \blacktriangleright Let g and h be inverse of f.
- ▶ Assume $g(b) \neq h(b)$, at least for some $x \in B$.
- ▶ As $b \in B$, then there is a such that f(a) = b.
- ► So $g(b) \neq h(b)$, but $g(f(a)) \neq h(f(a))$.
- ▶ But $g \circ f$ and $h \circ f$ are both the identity so...
- ▶ $g(f(a)) = a \neq a = h(f(a))$, contradiction!

So the inverse must be unique.

Proof.

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ f \circ f^{-1} \circ g^{-1}.$$

Proof.

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ f \circ f^{-1} \circ g^{-1}.$$

Proof.

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ f \circ f^{-1} \circ g^{-1}.$$

Proof.

- $(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ f \circ f^{-1} \circ g^{-1}.$

Trivial to show that $(f^{-1} \circ g^{-1}) \circ (g \circ f) = Id$. as well, using the same steps.

Definition

Consider $f: \mathbb{R}^n \to \mathbb{R}$ and \hat{y} in the codomain.

1. The **level curve** of f at \hat{y} is:

$$C_{\hat{y}} = \{(x, \hat{y}) \in \mathbb{R}^{n+1} | f(x) = \hat{y} \}$$

2. The **isoquant** curve of f at \hat{y} is:

$$I_{\hat{y}} = \{x \in \mathbb{R}^n | f(x) = \hat{y}\}$$

Definition

Consider the function $f : \mathbb{R} \to \mathbb{R}$, and any pair x and y in \mathbb{R} such that x < y, we say that

- 1. f is increasing if $f(x) \le f(y)$.
- 2. f is decreasing if $f(x) \ge f(y)$.

If the inequalities are strict, then you add the word *strictly* to increasing or decreasing. A non decreasing function is also known as monotonically increasing. Conversely, a non increasing function is also known as monotonically decreasing.

Definition

Consider the function $f: \mathbb{R}^n \to \mathbb{R}$, and any pair x and y in \mathbb{R}^n such that $y_i = x_i$ for every i = 1, ., j - 1, j + 1, ..., n, and $y_i = x_i + \epsilon$, with $\epsilon > 0$ we say that

1. f is increasing in the component j if

$$f(x_1,\ldots,x_j,\ldots,x_n) \leq f(x_1,\ldots,x_j+\epsilon,\ldots,x_n)$$

If the inequalities are strict, then you add the word strictly to increasing or decreasing.

Definition

Consider the function $f: \mathbb{R}^n \to \mathbb{R}$, x and y in \mathbb{R}^n , and $\lambda \in [0,1]$, we say that:

1. f is convex if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

2. f is **concave** if

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

If the inequalities are strict, then you add the word strictly to convex or concave.

Consider you want to avoid a bad behavior from a certain agent. You catch the agent in such behavior with probability p. The agent has an initial wealth of W, and you can determine a fine F in case you catch him/her. The agent gets a benefit of M for missbehaving.

Consider for this exercise that a risk neutral/lover/averse agent has a linear(identity)/(str)convex/(str)concave utility function over money (monotonically increasing). Find the relationship between the *lowest* fine necessary for a risk neutral and a risk lover/averse agent to behave properly. **You need to show your conclusions mathematically.**

Solution

Start with the reference, the risk neutral. So you can find an F_0 such that

$$u(W) = pu(W + M - F_0) + (1 - p)u(W + M)$$

as u() is monotonically increasing (identity) and linear, we know it is bijective, therefore exists u^{-1} ,

$$F_0 = W + M - u^{-1} \left(\frac{u(W) - (1 - p)u(W + M)}{p} \right)$$

furthermore, this is trivial, as the identity is equal to the inverse... the point is that exists and can be found (indeed $F_0 = M/p$).

Solution

Now that F_0 is well defined, let's compare it with our risk averse agent. We know that F_0 is such that:

$$W = p(W + M - F_0) + (1 - p)(W + M)$$

By the definition of concavity (for the risk averse) we know that

$$u(W) > pu(W + M - F_0) + (1 - p)u(W + M)$$

and therefore F_0 is too big!, note is the only thing we can adjust, and u() is monotonically increasing in the argument, so we can decrease F_0 and still the Agent prefers to behave!

Same rationale can be applied to the risk lover agent.