

DEPARTMENT OF COMPUTER SCIENCE

Gopinath Bordoloi Nagar, Gauhati University
Guwahati-781014, Assam, India

LESSON PLAN

Subject Name : Mathematical Foundation of Computer

Science

Paper Code : **csc1056/INF1046** Session: **2022-2023**

Program Name: M.Sc. (CS/IT) Semester: First

Faculty Name : Pranamika Kakati

Date : 01/08/2022 to 12/12/2022

Detailed Lesson Plan

UNIT-I (Discrete mathematical structures)

Lecture No	Topics to be Covered
1	Congruence
2	Permutation and combination withrepetitions
3	Basic concepts of sets. The principle of inclusionand exclusion.
4	Fuzzy sets
5	Relations, binary relations, closure of relations
6	Functions
7	Posets and Lattices.
8	Boolean Algebra; Boolean functions (SOM and POM)
9	Algebraic structures- Groups, Free groups
10	Permutation groups
11	Homomorphism and Isomorphism
12	Vector Spaces and its properties
13	basis and dimension
14	Linear transformations and linear operators
15	Fuzzy set operations

Defuzz	ification	Mathods
DETUZZ	illication	Methods

16

UNIT-II (Mathematical Logic)

17	Connectives- statement formulae and truth tables	
18	tautologies and tautological implications	
19	two-state devices and statement logic	
20	Theory of inference- rules	
21	consistency of premises and indirect method of proof	
22	automatic theorem proving	
23	Propositional calculus	
24	Predicate calculus- predicates, quantifiers, predicate formulas	
25	free and bound variables	
26	inference theory of predicate calculus	
27	validity, soundness, completeness, compactness (definitions only)	
28	Resolution principles	
29	Skolemization and Herbrand domain	
30	Introduction to axiomatic theory	

UNIT-III (Graph theory)

31	Basic concepts- finite and infinite graphs
32	incidence and degree
33	isolated and pendant vertices, null graph.
34	Paths and Circuits- isomorphism
35	subgraphs, walks
36	connected and disconnected graphs and components
37	Euler graphs
38	Bi-partite graphs
39	Hamiltonian paths and circuits
40	Trees- properties of trees

41	distance and centers	
42	rooted and binary trees	
43	counting trees	
44	spanning trees	
45	fundamental circuits	
46	spanning trees in weighted graphs	
47	Cut-sets- properties	
48	connectivity and separability	
49	Network flows	
50	Matrix representation of graphs	
51	incidence matrix, submatrices	
52	circuit matrix, cut-set matrix	
53	path matrix, adjacency matrix	
54	Coloring, Covering and Partitioning- basic concepts	
55	Directed graphs- definition, types	
56	directed paths and connectedness	
57	Euler digraph	
58	tress with directed edges.	

UNIT-IV (Automata theory)

59	Concept of language and grammar
60	Review of DFA, NFA, NFA with empty moves and their equivalence. Minimization of FA
61	Regular sets and regular expressions
62	Pumping lemma for regular sets
63	closure properties and decision algorithms for regular sets
64	Context free language - definition
65	removal of useless symbols, removal of null productions and unit productions
66	Normal forms of CFLs- CNF and GNF

With regards,

Yours faithfully,

(Pranamika Kakati)

(Assistant Professor(contractual), Dept. of Computer Sc., GU)