Álgebra Superior II Tarea 3

- Las tareas se entregan a más tardar el día del examen parcial, que será el 21 de marzo.
- Si entregas la tarea el día del examen, deberás hacerlo al comienzo de éste.
- Para tener calificada esta tarea un día antes del examen, deberás entregarla a más tardar el día viernes 13 de marzo.
- Para tener derecho a presentar el segundo examen parcial, es necesario entregar al menos el 50 % de esta tarea. Si un ejercicio tiene incisos, para que éste cuente como entregado deberás hacer por lo menos la mitad de tales incisos.

1. Considera una familia A de subconjuntos no vacíos de $\mathbb N$ tal que

$$\mathbb{N} = \bigcup_{B \in A} B$$

Para cada $n \in \mathbb{N}$, sea el conjunto $A_n = \{C \in A : n \in C\}$ (observa que este conjunto es no vacío), y define

$$U_n = \bigcap_{C \in \mathcal{A}_n} C$$

Es decir, U_n es la intersección de todos los conjuntos de la familia A que tienen al elemento n.

Se define la relación $\sim_{\mathcal{A}}$ en $\mathbb N$ dada por $n \sim_{\mathcal{A}} m$ si y solo si $n \in U_m$. Demuestra o da contraejemplo de las siguientes afirmaciones:

- \sim_A es reflexiva;
- $\sim_{\mathcal{A}}$ es transitiva;
- ∼_A es antisimétrica.
- 2. Sea X un conjunto y sea $A = \mathcal{P}(X)$ su conjunto potencia. Definimos las operaciones $+ y \cdot \text{en } A$ como

$$B + C = B \triangle C$$
 y $B \cdot C = B \cap C$

Demuestra que $(A, +, \cdot)$ es un anillo conmutativo.

(Puedes utilizar, sin demostrarlo, que la diferencia simétrica \triangle es asociativa).

- 3. Demuestra que el conjunto de matrices de 3×3 con coeficientes en \mathbb{Z} (denotado $M_{3\times 3}(\mathbb{Z})$) forma un anillo con la suma y producto de matrices definidas en la tarea 2. Con un ejemplo, muestra que este anillo no cumple la ley de cancelación del producto.
- 4. Recuerda el anillo (ℤ,⊕,⊙) definido en el problema 4 de la tarea 2. ¿Este anillo es un dominio entero? Demuestra tus afirmaciones.
- 5. Sea $(A, +, \cdot)$ un anillo cualquiera y sean $u, v \in A$. ¿Cuáles de las siguientes afirmaciones son verdaderas? Demuestra o da contraejemplo.
 - Si u y v son unidades, entonces uv es unidad.
 - Si u y v son unidades, entonces u + v es unidad.
 - Si u + v es unidad, entonces u es unidad o v es unidad.
 - Si *u* es unidad, entonces su inverso aditivo es unidad.
- 6. Considera el conjunto $A = \{a, b, c, d\}$ con operaciones \oplus y \odot definidas como aparece en las siguientes tablas:

\oplus	a	b	c	d
a	a	b	С	d
b	b	С	d	a
С	С	d	a	b
d	d	a	b	С

\odot	a	b	С	d
a	a	a	a	a
b	a	b	С	d
c	a	С	a	С
d	a	d	С	b

Se puede probar, pero no es necesario que lo hagas, que (A, \oplus, \odot) es un anillo. Responde las siguientes preguntas demostrando todas tus afirmaciones.

- a) ¿Cuál es el neutro aditivo?
- b) ¿Cuál es el neutro multiplicativo?
- c) ¿Este anillo es conmutativo?
- *d*) ¿Este anillo es dominio entero?
- e) ¿Cuáles son las unidades?
- 7. ¿Falso o verdadero? Demuestra o da contraejemplo:
 - a) (C, \leq) es COTO.
 - b) (C, \leq) es COBO.
- 8. Sea $a = [(a_1, a_2)] \in \mathcal{C}$. Si -a denota el inverso aditivo de a, muestra que:
 - a) $[(1,2)] \cdot [(a_1,a_2)] = -a$.
 - $b) -(-a) = [(a_1, a_2)].$
- 9. Sean [(a,b)], [(c,d)], [(e,f)], $[(g,h)] \in C$. Demuestra lo siguiente:
 - a) Si $[(a,b)] \le [(1,1)]$ y $[(c,d)] \le [(e,f)]$, entonces $[(a,b)] \cdot [(e,f)] \le [(a,b)] \cdot [(c,d)]$.
 - b) Si $[(a,b)] \le [(c,d)]$ y $[(e,f)] \le [(g,h)]$, entonces $[(a,b)] + [(e,f)] \le [(c,d)] + [(g,h)]$.
 - c) Si $[(1,1)] < [(a,b)] \le [(c,d)] y [(1,1)] < [(e,f)] \le [(g,h)]$, entonces $[(a,b)] \cdot [(e,f)] \le [(c,d)] \cdot [(g,h)]$.
- 10. Demuestra que existe una función $i: \mathbb{N} \to \mathcal{C}$ que tiene las siguientes propiedades:
 - a) i es inyectiva.
 - b) *i* preserva la suma. $(\forall n, m \in \mathbb{N} : i(n+m) = i(n) + i(m))$.
 - c) *i* preserva el producto. $(\forall n, m \in \mathbb{N} : i(n \cdot m) = i(n) \cdot i(m))$.
 - *d*) *i* preserva el orden. $(\forall n, m \in \mathbb{N} : n \le m \iff i(n) \le i(m))$.

La función i muestra que el conjunto $\mathcal C$ contiene una «copia exacta» del conjunto $\mathbb N$, en el sentido de que las propiedades fundamentales de los números naturales – su aritmética y su orden usual, se transfieren de manera adecuada al conjunto $\mathcal C$.

- 11. Sean $a, b, c \in \mathbb{Z}$. Demuestra que:
 - $|a| a| = |a| y a \le |a|$
 - b) $|a| \ge 0$,
 - c) |a| = 0 si y solo si a = 0,
 - |ab| = |a||b|,
 - $||b| |c|| \le |b c|,$
 - f) $2máx\{a,b\} = a + b + |a b|$,
 - g) $2\min\{a,b\} = a + b |a-b|$.
- 12. Encuentra el cociente q y el residuo r que satisfagan el Algoritmo de la División para escribir a = bq + r, donde a y b son los siguientes:
 - a) a = 7392, b = -43
 - b) a = -7392, b = -43
 - c) a = -37, b = 3
 - d) a = -12, b = -90
 - *e*) a = -90, b = -12
- 13. Sean $a, b, c, d \in \mathbb{Z}$. Demuestra lo siguiente:
 - a) Si 0|a, entonces a = 0.
 - b) Si a|b, entonces a|bc.
 - c) Si a|b y c|d, entonces ac|bd.
 - d) Si a|b, entonces ac|bc.
 - e) Si a|b, entonces a|-b, -a|b y -a|-b.
 - f) Si $a|2b \ y \ a| 5b$, entonces a|b.