

Master-Thesis

Data Mining in Industrial Processes:

Evaluation of different machine learning models for product quality prediction

ANGEWANDTE INFORMATIK IV UNIVERSITÄT BAYREUTH

Andreas Braun 1200197 Master Applied Computer Science INF301: Master-Thesis (30LP)

Overview

- Motivation
 - Introduction and Quality Goal
 - Advantages of Machine Learning and Requirements
 - Manufacturing Process Data Understanding and Data Partitioning
- Data Processing and Dataset Description
- Analytical Processing: Prediction of Quality
 - Selection of Discipline and Algorithms
 - Exploration of Algorithm types
 - Evaluation of best Algorithms
 - Combination of Algorithms

Introduction

Goal:

Further improvement of the quality control mechanism

- Customers expect products free from error
- Less (financial) compensation in case of defect

Quality in Manufacturing (Quality Goal)

Product developement stages:

Design of product and process

Manufacturing

Customer usage

Manufacturing process directly adds value

— quality analysis here

Associated quality task:

Goal:

Prediction of quality

Core question: Final product quality, good or poor?

Advantages of Machine Learning (ML) and Requirements

Advantages of ML over traditional methods:

- +
- High dimensionality of the feature space manageable
- Automatic identification and removal of failed products (vs batch wise)

- Requirements:
 - General approach --> useable for all articles
 - Assistance system for the workers
 - Data driven knowledge creation
 - Complement exisiting techniques with a ML approach

Basic Data Understanding - Manufacturing Process

Properties of the manufacturing process:

- Plastic profile extrusion of window profiles
- Linear, continuous production process
- Product quality is inherently connected to the production line itself

Data Partitioning – Manufacturing Process

- $y_{12} \quad \dots \quad y_{1i} \quad \dots$ $y_1(t)$ $y_2(t)$
- Y(t) =

 $y_d(t)$

Series stand for one Machine with Meta Information

Multiple Time

Relevant field: Time Series **Data Mining** (TSDM)

Horizontal & vertical approach

Time series based & state based

Data Types of the vertical and horizontal partitioning

Possible Data Type Conversions Examples (Non)Dependency Data

 Vertical state based = nondepedency oriented + multidimensional data type

$$Y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_j(t) \\ \vdots \\ y_d(t) \end{bmatrix} = \begin{bmatrix} y_{21} & y_{22} & \dots & y_{2i} & \dots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ y_{j1} & y_{j2} & \dots & y_{ji} & \dots & y_{jn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ y_{d1} & y_{d2} & \dots & y_{di} & \dots & y_{dn} \\ t_1 & t_2 & \dots & t_i & \dots & t_n \end{bmatrix}$$

Horizontal time series based = dependency oriented + time series data type

Overview

- Motivation
 - Introduction and Quality Goal
 - Advantages of Machine Learning and Requirements
 - Manufacturing Process Data Understanding and Data Partitioning
- Data Processing and Dataset Description
- Analytical Processing: Prediction of Quality
 - Selection of Discipline and Algorithms
 - Exploration of Algorithm types
 - Evaluation of best Algorithms
 - Combination of Algorithms

Data Processing

- Extract, Transfer, Load (ETL): From Data Lake to flat ML-raw-file
- B. Preprocessing: Feature selection, Interpolation, Normalization, Encoding, Outlier handling, ...
- C. Analytical Processing

Dataset Description: Representative Article

~100 cols 400k rows

	M996_S99	M996_S100	M996_S101	T0	T1	T2_1.0	T2_2.0	T2_3.0	T2_4.0	T3_1615.0
2018- 04-07 08:55:18	1.04	-2.23	0.24	11.20	1.04	0	0	1	0	0
2018- 04-07 08:55:19	1.01	-2.23	0.24	11.20	1.04	0	0	1	0	0
2018- 04-07 08:55:20	0.98	-2.23	0.24	11.20	1.04	0	0	1	0	0

- ETL and Preprocessing is finished
- Dataset is specific for the production line and the produced article --> representative article
- Sensor values S_i: temperature, pressure, weight, speed, effective power,...
- Meta information T_i: material number, variant number, garbage production, recycled material, ...

Overview

- Motivation
 - Introduction and Quality Goal
 - Advantages of Machine Learning and Requirements
 - Manufacturing Process Data Understanding and Data Partitioning
- Data Processing and Dataset Description
- Analytical Processing: Prediction of Quality
 - Selection of Discipline and Algorithms
 - Exploration of Algorithm types
 - Evaluation of best Algorithms
 - Combination of Algorithms

Analytical Processing: Prediction of Quality

- Most basic information about quality available (error time, production time)
- --> Discipline of Classification (Binary)
 - Performance determination by scoring function
 - Assistance system: No unnecessary Alarms
 - Complement exisiting methods: Be sure about bad quality detection
 - Class imbalance present in the dataset
 - --> <u>Primary score of Precision and</u> <u>secondary score of Recall</u>
- Precision = TP / (TP+FP)
- Recall = TP / (TP+FN)

		True condition		
	Total population	Condition positive	Condition negative	
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	
condition	Predicted condition negative	False negative, Type II error	True negative	

Selection of Algorithms for Exploration

- Overview about popular ML algorithms in the process industry
- Data Science expert knowledge of supervisor at Rehau AG
- Availability of stable implementations in major frameworks
- Explainability of models

Optional step

- principal component analysis (PCA)
- independent component analysis (ICA)

- gaussian naive bayes (GNB)
- k nearest neighbour (KNN)
- logistic regression (LR)
- linear support vector machine (SVM)
- random forest (RF)

Overview

- Motivation
 - Introduction and Quality Goal
 - Advantages of Machine Learning and Requirements
 - Manufacturing Process Data Understanding and Data Partitioning
- Data Processing and Dataset Description
- Analytical Processing: Prediction of Quality
 - Selection of Discipline and Algorithms
 - Exploration of Algorithm types
 - Evaluation of best Algorithms
 - Combination of Algorithms

Analytical Processing

- Goal: Find good working ML pipeline
 - Challenge: No Free Lunch Theorem --> What model to use?

$$Y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_j(t) \\ \vdots \\ y_d(t) \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} & \dots & y_{1i} & \dots & y_{1n} \\ y_{21} & y_{22} & \dots & y_{2i} & \dots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ y_{j1} & y_{j2} & \dots & y_{ji} & \dots & y_{jn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ y_{d1} & y_{d2} & \dots & y_{di} & \dots & y_{dn} \\ t_1 & t_2 & \dots & t_n \end{bmatrix}$$

Analytical Processing: Prediction of Quality

- 1. Exploration of algorithm types: Use a subset (10% of the data) --> best algorithm type
- 2. Evaluation of best Algorithms: Best algorithms on the entire dataset
- 3. Combination of Algorithms: Time series based + state based algorithm

Tab. 4.1: Cases for algorithm exploration.

Case	Approach	Scoring Function
1	state based	precision
2	state based	recall
3	time series based	precision
4	time series based	recall

Tab. 4.6: Evaluation cases for the two best algorithms.

Case	Approach	Scoring Function
5	Best of state based	precision
6	Best of state based	recall
7	Best of time series based	precision
8	Best of time series based	recall

State-based: 1. Exploration on Precision (Case 1)

State-based: 1. Exploration on Recall (Case 2)

Total population	Condition positive	Condition negative
Predicted condition positive	True positive, Power	False positive, Type I error
Predicted condition negative	False negative, Type II error	True negative

Optional use of PCA / ICA

Top 3 recall (=TP/(TP+FN)):

- RF
- GNB
- KNN

	RF	LR	GNB	KNN	SVM
mean	0.8019	0.2497	0.7353	0.5221	0.2053
min	0.4397	0.0000	0.4276	0.3300	0.0000
25%	0.7204	0.1924	0.5439	0.4232	0.1924
50%	0.8586	0.3152	0.7404	0.5132	0.2316
75%	0.9032	0.3443	0.8897	0.5965	0.2462
max	0.9397	0.3805	0.9846	0.8772	0.3059

State-based: 2. Best Algorithm (Cases 5+6)

	RF_precision	RF_recall			
RF0	0.9977	0.4397	RF5	0.9918	0.8722
RF1	0.9951	0.5482	RF6	0.9911	0.4885
RF2	0.9949	0.7494	RF7	0.9910	0.9024
RF3	0.9944	0.6749	RF8	0.9899	0.8657
RF4	0.9920	0.8838	RF9	0.9895	0.6201

Entire dataset with cross validation cv=10:

RF2 (state b.)	Precision (Case 5)	Recall (Case 6)
CV Score	99.83% (+/-00.17)% [99.66, 100]%	98.83% (+/-00.63)% [98.20, 99.46]%
Test Score	99.97%	98.99%

Time Series based: Windowing

Different data types need different processing.

- Dataset of d-many very long time series y(t)
 - --> Windowing retrieves sub time series
 - One window represents the information for a timestamp t i
- Numeric Spatial Multidim Graphs Discrete Any type Sequence

Numeric

Categorical

- Heuristics influence parameters of windowing (manageable size)
 - --> window_size=5min, window_shift=1min -- > 40k windows

Text

TSDM: Representation and Distance Measure

Time Series feature based distance approach

Raw time series representation with feature based distance approach

- Data size reduction
- Numeric multidimensional data type which is input in many standard ML-frameworks

TS-based: 1. Exploration on Precision (Case 3)

Total population	Condition positive	Condition negative
Predicted condition positive	True positive, Power	False positive, Type I error
Predicted condition negative	False negative, Type II error	True negative

Optional use of PCA / ICA

Top 3 precision (=TP/(TP+FP)):

- RF
- KNN
- SVM

	RF	LR	GNB	KNN	SVM
mean	0.8753	0.7006	0.2277	0.7705	0.7284
min	0.6901	0.0000	0.0640	0.0000	0.0000
25%	0.8179	0.7503	0.1631	0.7440	0.6515
50%	0.9078	0.8060	0.2517	0.8300	0.8146
75%	0.9322	0.8301	0.2739	0.8797	0.8501
max	0.9780	0.9106	0.4297	0.9667	0.8816

TS-based: 1. Exploration on Recall (Case 4)

Total population	Condition positive	Condition negative
Predicted condition positive	True positive, Power	False positive, Type I error
Predicted condition negative	False negative, Type II error	True negative

Optional use of PCA / ICA

Top 3 recall (=TP/(TP+FN)):

- GNB
- RF
- SVM

	RF	LR	GNB	KNN	SVM
mean	0.5905	0.4619	0.6618	0.4186	0.4919
min	0.1025	0.0000	0.3871	0.0000	0.0000
25%	0.5551	0.3734	0.4368	0.2999	0.4087
median	0.6326	0.4860	0.7404	0.4310	0.5578
75%	0.6808	0.6217	0.8537	0.5443	0.6077
max	0.7733	0.6906	0.9530	0.8565	0.6850

Time Series based: 2. Best Algorithm (Cases 7+8)

	RF_precision	RF_recall			
RF0	0.9780	0.4419	RF5	0.9579	0.5523
RF1	0.9776	0.6353	RF6	0.9568	0.6712
RF2	0.9757	0.4060	RF7	0.9553	0.7264
RF3	0.9651	0.4556	RF8	0.9546	0.6849
RF4	0.9609	0.4446	RF9	0.9528	0.6711

Entire dataset with cross validation cv=10:

RF1 (time series b.)	Precision (Case 7)	Recall (Case 8)
CV Score	99.20% (+/-01.74)% [97.46, 100]%	86.45% (+/-04.19)% [82.26, 90.64]%
Test Score	99.35%	84.53%

3. Combination of algorithms

- Locigal OR combines the algorithms' prediction
- Idealized Idea: Perfect precision with non overlapping recalled sets
- Aim: Further performance enhancement with combination of most precise algorithms

Scoring Function	RF0 state based [%]	RF0 TS based [%]	Combined [%]
Precision (subset)	99.77	97.80	/
Recall (subset)	43.97	44.19	/
Precision	99.85 +/- 00.46	97.87 +/- 01.50	97.94 +/- 01.52
Recall	98.62 +/- 00.84	89.11 +/- 02.23	99.00 +/- 00.94

--> No improvement achieved in this case

Requirements and Result Summary

- General approach --> useable for all articles
- Data driven knowledge creation
- Assistance system for the workers
- Complement exisiting techniques with a ML approach

Goal:

Further improvement of the quality control mechanism Prediction of quality

Random Forest	Precision [%]	Recall [%]
State based	99.83 +/-00.17	98.83 +/-00.63
Time Series based	99.20 +/-01.74	86.45 +/-04.19
Combination	97.94 +/-01.52	99.00 +/-00.94

Thank you for your attention.

Now Q & A.

Additional Information

- Random forests are the best working algorithm types
 - Robust to outliers, interpretability by variable importance
 - Ensemble method vs non ensemble methods
- Paritioning: state based > time series based
 - Select more and invariant (shift, drift) features
- PCA/ICA implies information loss --> less achieveable performance
- More refined preprocessing steps
- Choose other discipline of TSDM to solve quality question (clustering, motiv discovery, anomaly detection)

TSDM: Representation and Distance Measure

Definition 2.3.4. Time Series Representation. Given a univariate time series $T \in \mathbb{R}^n$ of length $n \in \mathbb{N}$, a representation of T is a model T' of reduced dimensionality $n' \in \mathbb{N}$ with (n' << n) such that T' closely approximates T [EA12].

- Distance depends on the representation
 - Representation: raw, (non)-data adaptive, model based
 - Distance: shape, edit, feature or structure based
- Distance and representation amplify the visibility of information
- Chosen approach:

Raw time series with feature based distance approach