华中科技大学计算机科学与技术学院 2021~2022 第一学期

" 算法设计与分析 " 考试试卷 (A卷)

	‡	 皆试方式	<u>.</u> [闭卷	考试	代日期	单击或点 处输入日		考试时长	:150	分钟	
	Ą	令业班级	ŧ		学	号		;	姓 名			
		题号	_	=	Ξ	四	五	六	七	总分	核对人	
		分值	24	8	12	16	12	14	14	100		
		得分										
		分数 平卷人								有一个或多 题 2 分,共	·个选项是正 ∶24 分)	
军等与	1.						C、 F			能行性		
圣不导	\mathcal{L} 。 但设 $f(n)$ 和 $g(n)$ 是渐近正函数。 若存在正堂数 \mathcal{L} 。 \mathcal{L} 。 位得对所有的 $n \geq n$ 。有								Ī			
迢 寸		$c_1g(n) \leq$	$\leq f(n) \leq c_{28}$	g(n),则i	己作		0					
· 麦 丁		$A \cdot f(n)$	=O(g(n))	В	g(n)=0	O(f(n))	C. f($(n) = \Theta(g(n))$	n)) D,	$g(n) = \Theta(f(n))$))	
·	3、	如果 d(n)是 O(f(n)), e(n)	是 O(g(n))),那么	d(n)+e(n)	是	0			
i		A, O(f	f(n)+g(n)	В	O(d(n))	+e(n)	C、 e	O(f(n)+g(n))	(n)) D,	$\Theta(d(n)+e(n))$))	
!	4、	以下属于	F稳定排F	序的算法 ^{>}	有		0					
i 		A、快i	速排序	В	、归并排	序	C、指	插入排序	D,	冒泡排序		
	5、	用动态规	见划策略求解,一般要求问题满足。									
		A、重益	叠子问题'	性质 B	、最优子	结构性	C、F	尼后效性	D _v	贪心选择性	=	
	6、	以下属于	一贪心算》	去的是		o						
		A, Bel	lman-For	d 算法	B、Pri	m 算法	C、Dijks	tra 算法	D, F	loyd-Warsh	all 算法	
	7、	以下可以	从使用动流		行求解的	问题是_						
-		A、最	长公共子	序列问题	В,	活动选择	译问题					
-		C、单》	原点最短日	路径问题	D _s	所有结点	5对之间的	最短路往	そ 问 题			

8,	3、以下属于启发式搜索算法的是。							
	A、	BFS	В、	LC-检索	C	、LIFO-检索	D,	FIFO-检索
9、	设 G	是一个流网络	,则	定义在 G 上的深	₹ <i>f</i> 应满足	<u>-</u>	o	
	A、	容量守恒		B、流量限制	C	、容量限制	D,	流量守恒
10	. 关	于最优二叉检索	尽树,	以下描述正确的	的是 <u></u>	o		
	A、	最优二叉检索	树的	加权平均检索次	以数是最少	的		
	В、	相比包含相同	结点	的其它二叉树,	最优二叉	检索树的高度是	き最短	美的
	C,	相比包含相同	结点	的其它二叉树,	最优二叉	检索树的叶子组	吉点数	是最少的
	D,	最优二叉检索	树可	以为单分支的二	[叉树			
11、	以一	下可用于求解说	追归式	的方法有		o		
	A、	列表法		B、递归树法	C	、主方法	D,	代入法
12	任何	可以比较为基础	出的排	非序算法,最坏 情	青况下的时	寸间下界是		o
	A,	$\Omega(\log n)$		B. $\Omega(n \log n)$	C	$\Omega(n^2)$	D,	无法不确定
7	分 劵	女	二,	求下列递归式的		角界(本题8分)	
ì	平卷丿			要求: 写出计	算过程。			

二、	 不卜列	递归式的渐近紧備界	(本題8分)
	要求:	写出计算过程。	

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2\sqrt{n}$$

订线

三、简答与计算(本题共2小题,每小题6分,共12分)

1、简述活动选择问题求最大兼容活动集合的贪心算法设计思想,并对以下活动集合(s_i 、 f_i 分别是活动的开始时间和结束时间)求出它的一个最大兼容活动集合,要求:写出一定的计算过程。

i	1	2	3	4	5	6	7	8	9	10
	0									
f_i	6	4	14	5	9	7	9	10	11	16

过 2、请画出下面的差分约束系统的约束图。并回答如何利用约束图求一个差分约束系统的可行解 装 或判定该系统没有可行解。

 $x_1 - x_2 \leq 1$

 x_1 - $x_3 \le -4$

 x_2 - x_4 \leq 7

 x_3 - x_2 ≤ 2

 x_4 - $x_1 \le -1$

*x*₄-*x*₃≤3

分 数	
评卷人	

四、(本题 16 分) 对给定的两个序列 X 和 Y,记 c[i,j] 为前缀序列 X_i 和 Y_j 的一个 LCS 的长度:

$$c[i,j] = \begin{cases} 0 & \text{如果} i = 0 \text{ 或} j = 0 \\ c[i-1,j-1]+1 & \text{如果 i,j} > 0 \text{ } \textit{\textit{且}} x_i = y_j \\ max(c[i,j-1],c[i-1,j]) \text{ 如果 i,j} > 0 \text{ } \textit{\textit{L}} x_i \neq y_j \end{cases}$$

已知序列 X=< C, B, C, A, B, A, C, B>和 Y=<A, C, B, D, A, B, C>, 求 LCS(X, Y)。

	j	0	1	2	3	4	5	6	7
i		y j	A	C	В	D	A	В	С
0	$\mathbf{x}_{\mathbf{i}}$								
1	С								
2	В								
3	C								
4	A								
5	В								
6	A								
7	C								
8	В								

LCS	(X,Y)=		

五、(本题 12 分)数组 A[1..n]中含有 n 个互不相同的整数元素。对 A 中的元素 A[i] ($1 \le i \le n$),若有 A[i] 〈A[i-1] 并且 A[i] 〈A[i+1],则称 A[i] 为 A 的局部最小元素,即局部最小元素是比其两个相邻元素都小的元素

(注: 在边界上,即 i=1 或 i=n 时,只需考虑一侧的邻居即可)。例: 如果 $A=\{5,3,4,1,2\}$,那么 A 有二个局部最小元素 3 和 1; 而若 $A=\{1,2,3,4,5\}$,那么 A 就只有一个局部最小值元素 1。

请设计一个时间复杂度为 0(logn) 的算法输出 A 中的一个局部最小元素(当有多个局部最小元素时,输出任意一个即可),给出算法的伪代码描述,并证明你的算法关于时间复杂度的结论。

分 数	ナ
评卷人	者

六、(本题 14 分)设有 n 个任务(用编号 $1\sim n$ 表示),每个任务 $j\in [1...n]$, 都有一个权重(记为 W_j)、执行时间(记为 I_j),其中, $W_j\in [0,1]$ 且

 $\sum_{j=1}^{n} W_{j} = 1$,并记其完成时间为 C_{j} 。这里仅考虑任务的串行调度,即一个任务接着一个任务被调度执行,不考虑等待和空闲时间,则 C_{j} 即是串行调度至任务 j 并执行完任务 j 的总时间。

请设计一个调度算法,求出一种执行顺序,使得所有任务按顺序执行完后, $\sum_{j=1}^n W_j C_j$ 最小,并证明算法的正确性。

七、(本题 14 分)符号乘法问题: 定义在符号集 S= {a, b, c} 上的一种乘法运算规则如下表所示:

	a	b	c
a	b	b	a
b	c	b	a
c	a	c	c

如,ab=b,ba=c等。注:该乘法规则不满足结合律和交换律。

请设计一个有效的算法,对给定的 S 上的符号串,如 bbbbac,判定是否可以通过适当加括号的方式,使得其"乘积"等于 a,若可以则返回 TRUE,否则返回 FALSE。如,对 bbbbac,算法返回 TRUE,因为((b(bb))(ba)c=a。