Question One

c) T(n) = 3T(n/3) +1, as function decomposes T(n) into three subproblems of size n/3 and recursively calls itself to solve those sub-problems, as seen in the assignment of k on line 5, followed by 3 recursive calls from lines 6-8.

Question Two

a) i) FIND_SMALLEST_SUM(A): // one-based indexing
A = sort(A)
O(n ign)

return array (A[1], A[2]>1

Inis algorithm uses Mergesort to sort

A as it shas the best worst-case
time complexity of any sorting algo
and since the last line is constant
time, the function has a run-time

of O(nign)
ii) FIND_SMALLEST_SUM(A): 11 one-based indexing

smallest, smallesting = 0, -1	=
- sec Smallest = ∞	1
for i in range (len(A)):	n
if A[i] < smallest:	1
smallest = A[i]	1
smallestida = i	1
for i in range (len(A)):	n
if A[i] < secSmallest and i!= secSmallest	1
sec Smallest = A[i]	1
return array ismallest, secsmallest>	1

:, 0(1+1+n+1+1+1+n+1+1+1)

= 0(n)

b) i) FIND_MATCHES(X, Y): 1/1-based indexing	
	nlgn
Y = sort(Y)	nign
x dx = 1	1
yldx, num Matches = 1,0	1
WHILE xidex <= en(x) and yidex (=1en(x)	n.
if $X[x]dx] == Y[y]dx$:	1
numMatches++	1
$\times 1dx + +$	1
y dx + t	1
elif x[x[dx]< Y[yldx]:	1
x 1 dx ++	1
elif Y[yldx] < X[xldx]	1
y ldic++ return numMatches	1
return numMatches	1
* NOTE: this algorithm uses Mergesort a it has the best worst-case time	5
complexity of any comparison-base	d
algorithm (O(nign)), :-	
O(nlgn + nlgn + n + 11)	
$= O(n \lg n)$	
ii) No, as substrings are matched based o	
not only their content, but their or	dering.
and since we seek to find matche	
regardless of ordering, LCS will r	10t
work. e.g.	
R = 3	
X = < 3, 1, 2, 3, 1, 2>	
Y = <1,1,2,3,3,2>	
Applying LCS would yield a result of	
"1, 2, 3, 2", therefore 4 matches. However	
this is incorrect as there are 6	

matches

iii) No, because we need to iterate over both sets (at minimum) in order to find matches, an order of o(n) operation.

QUESTION TH	IREE
a) i) char	freq Q= <a, b="" c,="" d,="" e,=""></a,>
A	5
В	15
C	6
D	14
The state of the s	110

	0.0		A = 010
	0/1		B = 11
			C = 011
	0/ 1 0/	1	D = 10
	(E) (D)	(B)	E = 00
0	0/10	0	
	(A) (C)		A CARREST

QUESTION ONE

T(n) = 5T(n/6) + n

-a = 5, b = 6, f(n) = n T(n)

1: 2 Log65 = n0.8982

 $f(n) > n^{0.8982}$

 $n > n^{0.8982}$. Case 3

2: f(n)/nlogba = n/n0.8982 > nE, & = 0.1

3: 5(n/6)

4 (5/6) n (1/6)

4 cf(n), c > 5/6

 $T(n) = \Theta(n \log n)$

:. Yes, as the time complexity is O(ntgn), the best possible for comparison-based sorting

Depends, I would need some knowledge about it space complexity before making that decision. T(n) = 4T(n/3) + n-a = 4, b = 3, f(n) = n1: nlog3 4 = n1.2619 f(n) Ln1.2619 n 1 n1.2619: Case 1 2: f(n) = O(n log3 4-1) = O(n 10933) =0(n)T(n) = O(n)... No, as the runtime is given as O(n) (it's WORST CASE) which is impossible as the time complexity of a sorting a 190 at best can only be 2 (nign) (comparison-based sorting) b) T(n) = T(2n/10) + T(8n/10) + n·T(n) = cntgn/10) - 3 sallo T(n) = T

Question Three b) i) Yes, as it will always execute because since the for loop condition is s<n-m, s will always be less than n-m (i.e. s < n-m) c)i). Finding MCSTs :. I will use the generic algorithm from the Lecture 6 slides ii) 1: Choose A, V= 2B, C, D, M, P, S> 2: Candidate edges = (A,B), (A,C), (A,D), (A,M), (A,P), (A,S)* 3: Choose (A, M), V = < B, C, D, P, S> 4: candidate edges = (A,B),(A,C),(A,D),(A,P), (A,S),(M,S)* 5: Choose edge (M,S), V= <B,C,D,P> 6: Candidate edges = (A,B), (A,C), (A,D), (A,P), (A,S),(S,B)* 7: Choose edge (S, B), V = < C, D, P> 8: Candidate edges = (A, B), (A, C), (A, D), (A, P), (A,S),(B,C)* 9: Choose edge (B,C), V= <D,P> 10: Candidate edges = (A,B), (A,C), (A,D), (A,P), (A,S),(C,D)* 11: Choose edge (C, D), V = < P> 12: (Candidate edges = (A, B), (A, C), (A, P), (A,S),(D,P)* 13: Choose edge (D,P), V = <> ". Dist = 9+7+8+17+20+32 = 93

```
Question Four
 a) i) · KNAPSACK (w,p,c): // One-based indexing
        masc Profit = 0
        remaining_capacity = C
        WHILE wri] < remaining-capacity
and in ax Profit += p[i]
           remaining-capacity == w[i]
           1++
        return max Profit
    0:.0(n+7)
      =0(n)
    · W = [12457]
     p = [86531]
      1: max Profit = 8, rem_cap = 7
      1: max Profit = 14, rem_cap = 5
      3: max Profit=19, rem-cap=1
      4: return maxProfit
 c) is Parallel-search(x, A):
      for all Pi do in parallel: // 1 L i L m/2
        if A[i] = x then
           index + i
        elifA[i+n/2]=x then
           index < i + n/2
   (ii) C(n) = P(n) \times T(11)
          = O(n^2)
     T*(n)=n
     :. Since C(n) = T*(n), algo is cost optimal
b)i) A = 5×3, B = 3×1, C=1×4, D=4×6
ariil)
```