## Aula 11: Sensores de posição empregados em determinação, navegação e controle de atitude: Sensores de Horizonte. Sistemas Sensores de Horizonte (cont.).

## Sistemas Sensores de Horizonte (cont.)

Sensores de fenda. Sensores de fenda, com projeto bastante diferente dos detetores de FOV estreitos vistos anteriormente, voaram nos satélites girantes COS-B, ISEE-B (*International Sun Earth Explorer-B*) e SIRIO (*Italian Industrial Operations Research Satellite*). A unidade usada no COS-B e ISEE-B é chamada de unidade sensora de atitude (ASU - attitude sensor unit) e consiste de duas fendas de 120° por 1° (Massart, 1974). O sistema sensor completo consiste de duas ASUs, montadas no COS-B como mostra a Figura 30. No ISEE-B, as ASUs foram montadas com a mesma orientação, similar àquela da unidade do lado direito da Figura 30 (Wetmore, et. al., 1976). Uma lente cilíndrica focaliza a radiação sobre o fotodiodo¹, formando um pulso que é identificado pela eletrônica do sensor. O sensor discrimina entre pulsos solares, terrestres e lunares e mede as diferenças temporais, ou ângulos de rotação, entre as passagens do Sol e da Terra pelas fendas, como está ilustrado na Figura 31. Os satélites COS-B e ISEE-B não tinham sensores de ângulo solar separados, porque o ângulo solar pode ser calculado a partir da diferença temporal entre as passagens do Sol pelas fendas meridiano e inclinada.



Fig. 30 – Configuração dos sensores de fenda para o satélite COS-B.

A principal vantagem da ASU é que pode-se obter uma grande cobertura angular com um único sensor que não tem partes móveis e que não necessita de comandos lógicos complexos, como aqueles requeridos pelo PAS. Além do mais, uma única ASU fornece ângulo solar, ângulo de nadir e múltiplas medidas do ângulo de rotação Sol/Terra. Entretanto, a ASU tem uma sensibilidade mais baixa à Terra e à Lua e uma eletrônica de processamento de sinais mais complexa que àquelas do PAS.

.

 $<sup>^{1}</sup>$  um termistor bolômetro com uma banda passante de 14 a 16  $\mu$ m foi usado no SIRIO.



Fig. 31 – Medidas geométricas entre o Sol e Terra para os sensores de horizonte de fenda do satélite COS-B.

**Outros sistemas**. Muitos sistemas tem sido projetados para condições específicas e, por isso, conseguem aumentar a precisão e a simplicidade de projeto às custas da redução da versatilidade. Esses sistemas operam sobre uma estreita faixa de órbitas e atitudes e incluem sistemas de rastreio de horizonte estáticos e móveis e de balanço radiométrico. *O rastreador de horizonte móvel*, ilustrado na Figura 32, foi usado nas missões OGO (*Orbiting Geophisical observatory*) e Gemini. Quatro detetores vibram cruzando a borda (horizonte) e geram um trem de pulsos quase retangulares, como mostra a Figura 32(b) e (c). O espaçamento e comprimento dos pulsos variam com o erro nulo ou a posição do detetor em relação ao horizonte. Como será mostrado mais adiante, a segunda harmônica da saída do detetor está relacionada com o erro nulo.

O rastreador móvel de horizonte usa um sistema realimentado para anular a segunda harmônica ou erro de atitude. Para rastreadores terrestres, irregularidades na composição atmosférica ou temperatura podem gerar uma estrutura falsa, como está mostrado na Figura 32(d), e uma segunda harmônica que não é confiável (Schwartz, 1966). Os rastreadores tipo borda em V da Gemini, sofreram perda do rastreio no nascer e morrer do Sol (Hatcher, 1967).

O sensor de horizonte estático do satélite Symphonie, geosíncrono, usou uma matriz de termopilhas configuradas como está mostrado na Figura 33(a) (Ebel, 1975). A diferença na saída de termopilhas opostas forneciam uma medida do erro de atitude. Oito termopilhas, ao invés de quatro, foram usadas por questões de redundância e discriminação solar. Sistemas de balanço radiométrico, ilustrado na Figura 33(b), são similares aos rastreadores estáticos a não ser pelo fato de que é empregado um sensor de vasto FOV. Tais sistemas trabalham bem se a radiância do alvo é uniforme. Um sensor de balanço

radiométrico preciso, fabricado pela Quantic e usado nos satélites ERTS/LANDSAT, fornece 0,1° de precisão (*General Electric Space Systems*, 1971).



Figura 32 – Rastreador móvel de horizonte (Schwartz, 1966).



Figura 33 – Sensor de horizonte estático.