### Geometria

*Geometria* (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi *Tálesom* (okolo 624-547 pred Kr.), ktorý sa zaoberal vzťahmi v priestore. Najstaršie známky geometrie sa dajú sledovať už v starovekom Egypte.



*Rindský papyrus* popisuje zarážajúco presný spôsob výpočtu aproximácie čísla π, s chybou menšou ako jedna stotina.

Teraz je geometria chápaná ako časť matematiky, ktorá sa zaoberá štúdiom geometrických útvarov - objektov.

Základné rozdelenie geometrie: *planimetria* - študuje geometrické útvary v rovine *stereometria* - študuje geometrické útvary v priestore.

Aby bolo štúdium geometrie l'ahšie, vytvárame si pre geometrické útvary rôzne modely.

Abstraktným geometrickým modelom sveta, v ktorom žijeme, t.j. priestoru, ktorý nás obklopuje, je euklidovský trojrozmerný **priestor** (označuje sa  $E_3$ ). Skladá sa z **bodov**, **priamok** a **rovín**. Ľudia zo skúsenosti alebo možno intuitívne charakterizujú priestor tými istými základnými vlastnosťami, ktoré sú zachytené *axiómami geometrie*. Z týchto *axióm* a *definícií* bodu, priamky, roviny, krivky, povrchov a telies sa potom odvádzajú *vety*, ktoré tvoria teóriu geometrie.

### Základné útvary v rovine

**Bod**, **priamku** a **rovinu** považujeme za <u>základné geometrické pojmy</u>, ktoré nedefinujeme, ale pomocou nich definujeme ostatné geometrické útvary.

Uvedené tri typy (neprázdnych) množín bodov zároveň predstavujú **základné geometrické útvary v rovine (priestore)**.

Označovanie: body: A, B, C, ..., P, Q, R, ..., priamky: a, b, c, ..., p, q, r, ..., alebo pomocou bodov:  $\leftarrow_{AB}$ ,  $\leftarrow_{PQ}$ , ... roviny:  $\alpha$ ,  $\beta$ ,  $\gamma$ , ...,  $\pi$ ,  $\nu$ ,  $\mu$ ,  $\rho$ , ... alebo pomocou bodov:  $\leftarrow_{ABC}$ ,  $\leftarrow_{PQR}$ , ...

**Základné vzťahy** medzi všetkými tromi základnými útvarmi - bodmi, priamkami a rovinami možno opísať nasledovne:

"bod leží na priamke", alebo "priamka prechádza bodom" ("priamka obsahuje boď"),

"bod leží v rovine", alebo "rovina prechádza bodom" ("rovina obsahuje boď"),

"priamka leží v rovine", alebo "rovina prechádza priamkou" ("rovina obsahuje priamku").

Tieto vzťahy možno vyjadriť pomocou pojmu *incidencia*, napr. jeden útvar inciduje s druhým alebo útvary navzájom incidujú.

Uvedené vzťahy zapisujeme pomocou symbolov: €, €, ⊂, ⊄, =, ≠,

napr.  $A \in a$ ,  $B \notin b$ ,  $p \subset \rho$ ,  $q \not\subset \sigma$ ,  $\alpha = \beta$ ,  $A \neq B$ .

Poznámka: Píšeme *p* ⊂ *p* a <u>nie</u> *p* ∉ *p*, nakoľko priamka p je **množina** bodov a nie prvok. Štyri základné axiómy incidencie:

- A1. Pre každé dva rôzne body existuje práve jedna priamka, ktorá nimi prechádza.
- A2. Pre <u>každé tri rôzne body neležiace na jednej priamke</u> (tri nekolineárne body) existuje práve jedna rovina, ktorá ich obsahuje.
- A3. Ak <u>dva rôzne body priamky ležia v rovine</u>, tak každý bod priamky leží v rovine.
- A4. Ak <u>dve rôzne roviny majú spoločný bod</u>, tak majú spoločný ešte aspoň jeden ďalší bod rôzny od tohto bodu (teda aspoň jednu priamku určenú týmito dvoma bodmi).



#### Vzájomné polohy priamok v rovine:

| vzájomné<br>polohy | rovnobežné<br>rôzne            | rôznobežné                                          | rovnobežné<br>totožné                              |
|--------------------|--------------------------------|-----------------------------------------------------|----------------------------------------------------|
| náčrt              | 5                              | * X                                                 | 0/0                                                |
| spoločné<br>body   | $a \cap b = \emptyset$         | $a \cap b = \{X\}$                                  | $a = b; a \cap b = a$                              |
| slovne             | priamky nemajú<br>spoločný bod | priamky majú jeden<br>spoločný bod<br>(=priesečník) | priamky majú<br>nekonečne veľa<br>spoločných bodov |

Každá priamka ležiaca v rovine ju delí na dve opačné polroviny

Označenie: 
$$\xrightarrow{pD}$$
 alebo  $\xrightarrow{ABD}$ 



Uhol môžeme zadefinovať ako:

- 1. prienik dvoch polrovín
- 2. časť roviny ohraničená dvomi polpriamkami so spoločným začiatkom

Polpriamky nazývame ramená uhla; spoločný začiatok polpriamok je vrchol uhla.

Konvexný uhol AVB – prienik polrovín AVB a BVA:



Nekonvexný uhol AVB – zjednotenie polrovín opačných k polrovinám AVB, BVA.



Geometrický útvar *je konvexný* práve vtedy, keď spojnica *jeho ľubovoľných dvoch rôznych bodov* je *podmnožinou* daného útvaru (celá je súčasťou daného útvaru).

| konvexné                                     | nekonvexné                                   |  |
|----------------------------------------------|----------------------------------------------|--|
|                                              |                                              |  |
| Ak spojíme ľubovoľné dva body útvaru, celá   | Ak spájame dvojice bodov patriacich útvaru,  |  |
| úsečka sa nachádza vo vnútornej oblasti      | nachádzajú sa medzi úsečkami také, ktoré     |  |
| útvaru.                                      | majú body nachádzajúce sa mimo útvaru.       |  |
| Jeho vnútorné uhly sú z intervalu (0°; 180°) | Jeho vnútorné uhly sú z intervalu (0°; 360°) |  |

### Rozdelenie uhlov:

| náčrt |          | názov                 | vlastnosti      |
|-------|----------|-----------------------|-----------------|
|       |          |                       | α ∈ (0°; 90°)   |
| 2     |          | pravý<br><i>dut</i> ý | <i>α</i> = 90°  |
|       | KONVEXNÉ | tupý<br><i>dut</i> ý  | α ∈ (90°; 180°) |
| В     |          | priamy                | α = 180°        |
|       |          | p <b>l</b> ný         | α = 360°        |

Dutý uhol:  $\alpha \in (0^\circ; 180^\circ)$ 



### Dvojice uhlov:

Pre jednoduché vyjadrenie vlastností dvojíc uhlov potrebujeme pomocné pojmy o vzájomnej polohe dvoch polpriamok na tej istej priamke:

polpriamky súhlasne rovnobežné – aspoň jedna je časťou druhej,



polpriamky nesúhlasne rovnobežné – ani jedna z nich nie je časťou druhej.



Jednoducho povedané súhlasne rovnobežné polpriamky smerujú rovnakým smerom, nesúhlasne rovnobežné polpriamky smerujú opačným smerom.

| styčné uhly                                                | doplnkové uhly                                                                                      | susedné uhly                                                                                                        | vrcholové uhly                                                                     |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Dvojica uhlov má spoločný vrchol a jedno rameno.           | Špeciálny prípad styčných uhlov –<br>kedy ramená uhlov, ktoré nie sú<br>spoločné, sú na seba kolmé. | Špeciálny prípad styčných uhlov –<br>kedy ramená uhlov, ktoré nie sú<br>spoločné, sú navzájom opačné<br>polpriamky. | Dvojica uhlov, ktoré majú spoločný<br>vrchol a ich ramená sú opačné<br>polpriamky. |
|                                                            | $\alpha + \beta = 90^{\circ}$                                                                       | $\alpha + \beta = 180^{\circ}$                                                                                      | $\alpha = \beta$                                                                   |
| Bo                                                         | Ва                                                                                                  | a B                                                                                                                 |                                                                                    |
| pril'ahlé uhly                                             | súhlasné uhly                                                                                       | striedavé uhly                                                                                                      | $Ak p_1 + p_2$ ,                                                                   |
| $p_1 \parallel p_2 \Rightarrow \alpha + \beta = 180^\circ$ | $p_1 \parallel p_2 \Rightarrow \alpha = \beta$                                                      | $p_1 \parallel p_2 \Rightarrow \alpha = \beta$                                                                      | potom ROVNOSTI NEPLATIA.                                                           |
| B 0                                                        | B                                                                                                   |                                                                                                                     |                                                                                    |

### Množina všetkých bodov danej vlastnosti v rovine - MBDV

#### Definícia:

Množina všetkých bodov s danou vlastnosťou **V** v rovine je množina **M** všetkých bodov v rovine, ktoré spĺňajú tieto dve požiadavky:

- 1) každý bod množiny **M** má požadovanú vlastnosť **V**,
- 2) každý bod roviny, ktorý má danú vlastnosť  ${\bf V}$ , patrí do množiny  ${\bf M}$ .

#### Poznámka:

Množinami všetkých bodov s danou vlastnosťou môžu byť priamky, kružnice, rôzne iné útvary, ich časti alebo zoskupenia, môžu to byť aj súbory izolovaných bodov a v niektorých prípadoch sa môže stať, že v hľadanej množine bodov nie je ani jeden bod.

### Najznámejšie a najčastejšie využívané množiny bodov s danou vlastnosťou v rovine:

*Kružnica* - množina *všetkých* bodov X v rovine, ktoré majú od daného bodu (*stredu* kružnice) *rovnakú* vzdialenosť nazývanú *polomer* kružnice.

Kružnicu so stredom S a polomerom r označujeme k (S, r).

$$k(S, r) = \{ X \in E_2, \mid SX \mid = r \}$$





Táto kružnica je taktiež množinou všetkých stredov kružníc, ktorých polomer je r a prechádzajú daným bodom S.

 $\mathit{Kruh}$  (so stredom S a polomerom r) - množina všetkých bodov X , pre ktoré platí  $\mid$  SX  $\mid$   $\leq$  r. Označujeme  $\mathit{K}(\mathit{S},\mathit{r})$ .



Os úsečky - množina všetkých bodov X v rovine, pre ktoré platí, že majú rovnakú vzdialenosť od dvoch rôznych bodov A, B je os úsečky AB, ktorá je na úsečku AB kolmá a prechádza jej stredom, t. j. pre ktoré platí |AX| = |BX|.

os - { 
$$\mathbf{X} \in \mathbf{E}_2$$
 ,  $|\mathbf{A}\mathbf{X}| = |\mathbf{B}\mathbf{X}|$  }





Iná definícia - os úsečky AB je množina stredov S všetkých kružníc, ktoré prechádzajú bodmi A, B.

*Os uhla* - množina *všetkých* bodov X v rovine, pre ktoré platí, že majú *rovnakú* vzdialenosť od *ramien uhla AVB*. Platí  $| \mathbf{X}, \to \mathbf{VA} | = | \mathbf{X}, \to \mathbf{VB} |$ .

os - { 
$$\mathbf{X} \in \mathbf{E}_2$$
 ,  $|\mathbf{X}, \rightarrow \mathbf{V}\mathbf{A}| = |\mathbf{X}, \rightarrow \mathbf{V}\mathbf{B}|$  }



Iná definícia - *množina stredov S všetkých kružníc* , ktoré sa *dotýkajú ramien uhla AVB*, okrem bodu V)

Os pásu - množina všetkých bodov X v rovine rovnako vzdialených od dvoch rovnobežných priamok; je to priamka s nimi rovnobežná v rovnakej vzdialenosti od oboch priamok.



Táto os pásu je tiež množinou *všetkých stredov kružníc*, ktoré sa *dotýkajú* daných rovnobežiek p, q.

Ekvidištanty priamky p - množina všetkých bodov X roviny, ktoré majú od priamky p vzdialenosť d; je to dvojica s ňou rovnobežných priamok vo vzdialenosti d.



Ekvidištanta kružnice k - množina všetkých bodov X roviny, ktoré majú od kružnice k (S, r) vzdialenosť d; je to dvojica s ňou sústredných kružníc s polomermi r + d a r - d.



<u>Talesova kružnica</u>- množina všetkých vrcholov X pravých uhlov nad úsečkou AB, čiže množina všetkých bodov v rovine, z ktorých vidíme úsečku AB pod pravým uhlom.

Je to kružnica s priemerom AB, so stredom v strede úsečky AB a s polomerom AS |, bez krajných bodov úsečky A, B.

$$\tau_{AB} = \{ \mathbf{X} \in \mathbf{E}_2, \mid \langle \mathbf{AXB} \mid = 90^{\circ} \}$$



Množina bodov, z ktorých vidíme úsečku pod daným uhlom (<u>množina G</u>)

Množina všetkých vrcholov uhlov s veľkosťou  $\alpha$  v rovine, ktorých ramená prechádzajú bodmi A, B (A  $\neq$  B), čiže množina všetkých bodov v rovine, z ktorých vidíme úsečku AB pod uhlom  $\alpha$ , sú dva kružnicové oblúky  $k_1$ ,  $k_2$  s krajnými bodmi A, B, ktoré do množiny G nepatria.

$$G = \{ X \in E^2, | \langle AXB | = \alpha \} \}$$





$$| < BAS_2 | = 90 \circ - \alpha$$

Množina *všetkých stredov kružníc*, ktoré sa *dotýkajú danej priamky p* v jej danom *bode T*, je priamka **n** idúca daným bodom T kolmo k danej priamke p (<u>normála</u> priamky p v bode T;  $T \in n, n \perp p$ ) mimo bodu T.





Množina všetkých stredov kružníc, ktoré sa dotýkajú danej kružnice k(S, r = |ST|) v jej danom bode T, je priamka n = ST (normála kružnice k v bode T) vyjmúc body S, T.



Množina *všetkých stredov kružníc*, ktoré sa *dotýkajú danej kružnice k*(S, r) a majú *daný polomer r*<sub>0</sub>, sú *sústredné* kružnice  $\mathbf{k_1}(\mathbf{S}, \mathbf{r} + \mathbf{r_0})$  (pre vonkajší dotyk s k) a  $\mathbf{k_2}$  (S,  $|\mathbf{r} - \mathbf{r_0}|$ ) (pre vnútorný dotyk s k).



### Uhly v kružnici – stredový a obvodový uhol

Nech A, B sú dva rôzne body ležiace na kružnici k. Body A, B rozdeľujú kružnicu k na dve časti, ktoré nazývame kružnicové oblúky. Polpriamky SA a SB potom rozdeľujú rovinu na dva uhly. Vrcholy oboch uhlov ležia v strede kružnice k. Nazývame ich **stredové uhly prislúchajúce oblúku** AB.



Väčšiemu oblúku AB prislúcha nekonvexný stredový uhol.



Menšiemu oblúku AB prislúcha konvexný stredový uhol.

**Definícia:** Uhol, ktorého vrcholom je *stred S kružnice k* a <u>ramená prechádzajú krajnými bodmi oblúka *AB* kružnice *k*, sa nazýva **stredový uhol prislúchajúci** k tomu **oblúku** *AB*, ktorý v tomto uhle leží.</u>

Okrem stredového uhla môžeme k obom oblúkom nájsť aj uhly, ktorých vrcholy ležia na "obvode" kružnice (správne obvode kruhu). Takéto uhly nazývame *obvodové*.



Obvodový uhol prislúchajúci väčšiemu oblúku AB.



Obvodový uhol prislúchajúci menšiemu oblúku AB.

**Definícia:** Uhol, ktorého vrchol V je  $bodom\ kružnice\ k$  a ramená prechádzajú krajnými  $bodmi\ oblúka\ AB\ kružnice\ k\ (V \neq A,\ V \neq B$ ), sa nazýva **obvodový uhol prislúchajúci** k tomu **oblúku** AB, ktorý v tomto uhlu leží.

#### Poznámky:

- 1. *Vrchol obvodového uhla* prislúchajúceho kružnicovému oblúku AB leží vždy na "protiľahlom" oblúku AB danej kružnice.
- 2. *Stredový* uhol je *určený jednoznačne* (kružnice má len jeden stred), *Obvodových* uhlov je *nekonečne veľa* (druhý oblúk má nekonečne veľa bodov).



#### Príklad 1:

K zobrazeným stredovým uhlom doplniť obvodové uhly:



# Možné riešenie:



# Príklad 2:

K zobrazeným obvodovým uhlom doplniť stredové uhly:



### Riešenie:



#### Príklad 3:

Každý žiak narysuje kružnicu k, vyznačí na nej dva navzájom rôzne body A, B a dvojicu stredový a obvodový uhol pre jeden z oblúkov, ktorý body A, B na kružnici vymedzia. Potom určia zmeraním veľkosť oboch vyznačených uhlov a nájdu vzťah medzi nimi.

Záver: Zdá sa, že stredový uhol je dvakrát väčší než príslušný uhol obvodový.

**Tvrdenie:** Veľkosť stredového uhla sa rovná **dvojnásobku** veľkosti obvodového uhla prislúchajúceho k tomu istému oblúku.

#### **Dôkaz:**

### 1. stred kružnice leží na jednom z ramien obvodového uhlu AVB:



 $\Delta$  SBV je rovnoramenný, t.j. uhly SVB a VBS sú zhodné, t.j. pre uhol  $\varphi$  platí:  $\varphi = 180^{\circ} - 2\alpha$ .

Uhol ASV je priamy, t.j. platí:  $\beta = 180^{\circ}$ -  $\varphi = 180^{\circ}$ -  $(180^{\circ} - 2\alpha) = 2\alpha$ 

Záver:  $\beta = 2\alpha$ 

#### 2. stred kružnice leží vnútri obvodového uhlu AVB:



Polpriamka VS rozdelí oba uhly na 2 časti a nakoľko stred kružnice S leží na spoločnom ramene VS oboch vzniknutých obvodových uhlov, na základe dôkazu 1 platí:

$$\beta_1 = 2\alpha_1 \wedge \beta_2 = 2\alpha_2 \Rightarrow$$
  
 $\beta = \beta_1 + \beta_2 = 2\alpha_1 + 2\alpha_2 = 2(\alpha_1 + \alpha_2) = 2\alpha$ 

Záver:  $\beta = 2\alpha$ 

#### 3. stred kružnice leží vo vonkajšej časti obvodového uhlu AVB:



Polpriamka VS vytvorí v obrázku ďalšie dve dvojice stredových a obvodových uhlov, pričom stred kružnice S leží na spoločnom ramene VS oboch vzniknutých obvodových uhlov, na základe dôkazu 1 platí:

$$\begin{array}{l} \beta_1 = 2\alpha_1 \ \land \ \beta_2 = 2\alpha_2 \ \Longrightarrow \\ \beta = \beta_1 - \beta_2 = 2\alpha_1 - 2\alpha_2 = 2(\alpha_1 - \alpha_2) = 2\alpha \end{array}$$

Záver:  $\beta = 2\alpha$ 

### Príklad 4:

Návrh dôkazu vety o obvodovom a stredovom uhle pre väčší oblúk a polkružnicu.

V oboch prípadoch môžeme postupovať rovnako ako v kroku 2. pri dôkaze pre menší oblúk.





### Dôsledky vety o obvodovom a stredovom uhle:

- Všetky obvodové uhly prislúchajúce tomu istému oblúku sú zhodné.
- Obvodový uhol prislúchajúci menšiemu oblúku je ostrý.
- Obvodový uhol prislúchajúci väčšiemu oblúku je tupý.
- Obvodový uhol prislúchajúci k polkružnici je pravý ~ Tálesova veta:

Všetky uhly nad priemerom kružnice sú pravé.

#### Príklad 5:

Kružnica je rozdelená na dva oblúky tak, že veľkosť obvodového uhla prislúchajúceho k väčšiemu oblúku sa rovná veľkosti stredového uhla prislúchajúceho k menšiemu oblúku.

Určte veľkosti obvodových uhlov prislúchajúcich k obom oblúkom.

#### Riešenie:

Nech pre väčší oblúk platí: obvodový uhol  $\alpha$ , stredový uhol  $2\alpha$ ,

pre menší oblúk platí: obvodový uhol  $\beta$  , stredový uhol  $2\beta$  .

Potom platí:  $\alpha = 2\beta$ .

Nakoľko oba stredové uhly sa rovnajú plnému uhlu, platí:  $2\alpha + 2\beta = 360^{\circ}$ , t.j.

$$2\alpha + 2\beta = 2(2\beta) + 2\beta = 360^{\circ} \dots 6\beta = 360^{\circ} \dots \beta = 60^{\circ} \Rightarrow \alpha = 120^{\circ}$$



#### Príklad 6:

Vypočítajte veľkosti vnútorných uhlov v trojuholníku, ktorého vrcholmi sú body vyznačujúce čísla 2, 7, 10 na kruhovom ciferníku hodín.

#### Riešenie:

Stačí si uvedomiť, že všetky vyznačené uhly sú uhly obvodové, ktorých veľkosť ľahko určíme prostredníctvom k ním prislúchajúcich uhlov stredových.



Veľkosť stredového uhla prislúchajúceho oblúku medzi "dvoma hodinami" je

$$\frac{360^{\circ}}{12} = 30^{\circ}$$
.

$$2\alpha \sim 3$$
 dieliky  $\Rightarrow 2\alpha = 3.30^{\circ} = 90^{\circ} \Rightarrow \alpha = 45^{\circ}$   
  $2\beta \sim 5$  dielikov  $\Rightarrow 2\beta = 5.30^{\circ} = 150^{\circ} \Rightarrow \beta = 75^{\circ}$ 

$$2\gamma \sim 4 \text{ dieliky} \Rightarrow 2\gamma = 4.30^{\circ} = 120^{\circ} \Rightarrow \gamma = 60^{\circ}$$

### Príklad 7:

V *tetivovom štvoruholníku ABCD* (vrcholy ležia na kružnici ~ každá strana štvoruholníka je tetivou kružnice) platí:  $\alpha = 52^{\circ}$ ,  $\beta = 96^{\circ}$ .

Určte veľkosti zvyšných vnútorných uhlov tohto štvoruholníka.



Uhol  $\alpha$  je *obvodový* uhol k *menšiemu oblúku BD*, uhol  $\gamma$  je *obvodový* uhol k *väčšiemu oblúku BD*,

preto 
$$\alpha + \gamma = 1/2.360^{\circ} = 180^{\circ} \Rightarrow \gamma = 180^{\circ} - \alpha = 180^{\circ} - 52^{\circ} = 128^{\circ}$$

Podobne pre uhly  $\beta$ ,  $\delta$ :  $\delta = 84^{\circ}$ 

#### Príklad 8:

AB je menši oblúk kružnice k, ktorému prislúcha obvodový uhol 65°. V bodoch A, B sú zostrojené dotyčnice kružnice k a bod X je ich priesečnik.

Vypočítajte veľkosť uhla AXB.



### Riešenie:

Hľadaný uhol AXB je jedným z vnútorných uhlov štvoruholníka ASBX.

Pre uhly štvoruholníka ASBX platí:

- uhly *ASX* a *SBX* sú pravé (dotyčnica je kolmá na polomer)
- uhol ASB je stredový uhol prislúchajúci k obvodovému uhlu  $AVB \Rightarrow /\langle ASB / = 2\phi = 130^{\circ}$

$$\omega = 360^{\circ} - 2.90^{\circ} - 130^{\circ} = 50^{\circ}$$

Uhol AXB má veľkosť **50°**.

# Konštrukcia Množiny "G"

Nech A, B sú dva rôzne body roviny  $\rho$ . Množina "G" je množina *všetkých bodov X roviny*  $\rho$ , pre ktoré platí, že veľkosť uhla AXB je  $\alpha$ :  $G = \{ X \in E^2; | AXB| = \alpha \}$ 

#### **Rozbor:**

### Postup konštrukcie:

 $\triangle$  ASB  $|SA| = |SB| \longrightarrow S \in OS AB$ 

BAX;  $| ABAY| = \alpha$ \*  $S \in p$ ;  $p \perp AY$ ;  $A \in p$ 

\* S  $\in$ o; o - os AB

 $*S \in o \cap p$ 

1. **AB** 

2. **os** AB = o

3.  $\langle BAY \rangle | \langle BAY \rangle = \alpha$ 

4.  $\mathbf{p}$ ;  $\mathbf{p} \perp \mathbf{A}\mathbf{Y}$ ;  $\mathbf{A} \in \mathbf{p}$ 

 $5. S \in o \cap p$ 

6. **k**; k(S; r = |AS| = |AB|)

7. **oblúk** nad AB = G

8. dokončiť aj oblúk "pod úsečkou AB"



# Úlohy – súhrn:

- 1. Dana je úsečka AB. Zostrojte množinu M všetkých bodov X v rovine: |XA| = |XB|
- 2. Daná je úsečka AB. Zostrojte množinu M, všetkých takých bodov X, pre ktoré platí, že uhol AXB je zhodný s pravým!
- Určte množinu všetkých bodov X roviny, z ktorých každý ma od priamky p vzdialenosť d = 3cm.
- 4. Daná je priamka p. Zostrojte množinu stredov všetkých kružníc, ktoré sa dotýkajú priamky p a majú polomer r.
- 5. Daná je kružnica k(S, r). Zostrojte množinu všetkých stredov kružníc, ktoré majú daný polomer w a dotýkajú sa kružnice k:

a) w < r b) w > r

- 6. Dané sú body A,B. Nech Bod C je vrcholom ľubovoľného pravouhlého trojuholníka s preponou AB. Určte množinu ťažísk týchto trojuholníkov.
- 7. Daná je kružnica k(C, 3 cm) a taká priamka p , že /Cp/=1 cm. Zostrojte všetky kružnice s polomerom r=1 cm, ktoré sa dotýkajú priamky p a kružnice k.
- 8. Daná je úsečka AB. Zostrojte množinu bodov, z ktorých vidieť úsečku AB pod uhlom:
- 9. a) 40° b) 90° c) 130°
- 10. Dané sú dve priamky p, q. Nakreslite  $\{X \in \rho, |Xp| = |Xq|\}$ . Uvažujte : a) p,q sú rovnobežky b) p,q sú rôznobežky
- 11. Úsečka AB má dĺžku 6 cm. Narysujte množiny bodov X daných vlastností v rovine ρ:
  - a)  $M_1 = \{X \in \rho, |\angle ABX| = 90^{\circ}\}$
  - b)  $M_2 = \{X \in \rho, | \angle AXB | = 90^{\circ} \}$
  - c)  $M_3 = \{X \in \rho, |\angle ABX| = 60^{\circ}\}$
  - d)  $M_4 = \{X \in \rho, | \angle AXB | = 60^{\circ} \}$
  - e)  $M_5 = \{X \in \rho, | \angle AXB | = 150^{\circ} \}$
  - f)  $M_6 = \{X \in \rho, | \angle AXB | \ge 45^{\circ} \}$
  - g)  $M_7 = \{X \in \rho, \mid \angle AXB \mid < 120^{\circ} \}$
  - h)  $M_8 = \{X \in \rho, 135^{\circ} \ge \big| \angle AXB \big| \ge 45^{\circ} \}$
- 12. Úsečka AB má dĺžku 6 cm. Narysujte množiny bodov daných vlastností v rovine ρ:
  - a)  $M_1 = \{X \in \rho, |AX| = 2 \text{ cm}\}$
  - b)  $M_2 = \{X \in \rho, |AX| \le 4 \text{ cm } \land |BX| \ge 4 \text{ cm } \}$
  - c)  $M_3 = \{X \in \rho, |AX| = |BX|\}$
  - d)  $M_3 = \{X \in \rho, |AX| \le |BX|\}$

| 13. Daná je úsečka AB. Určte množinu všetkých bodov X, ktorých vzdialenosť od priamky AB |
|------------------------------------------------------------------------------------------|
| je rovná dĺžke úsečky AB a z ktorých je vidieť úsečku AB pod uhlom 45°.                  |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |