

Laurea Triennale in Ingegneria per il Design Industriale

Dispositivi di segnalazione

a luce infrarossa

per ostacoli aerei

Relatore:

Prof. Francesco Tamburrino

Prof. Beatrice Aruanno

Candidato:

Davide Nascivera

Il problema

Lo **Slacklining** è lo sport, o disciplina, che consiste nel bilanciarsi e stare in equilibrio su una fettuccia tesa fra due punti di ancoraggio.

Fettucce sospese nel vuoto, quali **Highline**, rappresentano un rischio significativo per lo spazio aereo se non vengono gestite e controllate adeguatamente.

Pertanto durante le ore diurne vengono poste molteplici maniche a vento lungo un cordino parallelo alla linea, mentre di notte invece il problema persiste.

Il problema

Soluzione Svizzera:

La Svizzera prevede già questo tipo d'installazione nella loro normativa locale.

I dispositivi di sicurezza usati dai cittadini costano 500 euro e il prezzo è proibitivo per associazioni no-profit dove non è obbligatorio l'utilizzo del dispositivo.

Soluzione Open-Source:

L'obiettivo principale è lo sviluppo di un prodotto completo, accompagnato dalla pubblicazione di circuiti e file per la sua realizzazione, al fine di stabilire le basi per un sistema affidabile e conveniente.

Proof of concept

Sfruttando l'ispirazione derivante dal design dei dispositivi di segnalazione svizzeri, è stato possibile progettare e sviluppare un sistema di sicurezza basato su elementi già testati e affidabili, apportando però miglioramenti.

Il sistema si compone di una scocca esteriore impermeabile stampata in PETG che racchiude la parte elettronica e il pacco batterie al proprio interno.

8 LED infrarossi posizionati lungo i bordi dell'ottagono si attivano in modalità intermittente per fornire la segnalazione necessaria

Proof of work

La quarta e ultima versione del dispositivo risulta essere più elegante e avanzata a livello tecnico e meccanico.

Il risultato è un dispositivo con dimensioni paragonabili a quelle di uno smartphone, impermeabile e con un'elettronica efficiente che permette la messa in opera del dispositivo per 4 giorni per ogni batteria inserita.

Per ricaricare le batterie del dispositivo è sufficiente collegare la dedicata USB-C. Inoltre non è più necessario aprire il dispositivo per attivarlo, disponendo del pulsante d'accensione esterno.

Al momento dell'accensione, il dispositivo indica la percentuale di carica mediante il lampeggio di un LED integrato da I a 5 volte.

Confronto fra dispositivi

Dispositivo	SVIZZERA	PROTOTIPO 1	PROTOTIPO 2
Peso	1100 g	600 g	250 g
Dimensioni	$30~\mathrm{cm} \times 20\mathrm{cm}$	$16 \text{ cm} \times 15 \text{ cm}$	15 cm x 6 cm
Autonomia	Illimitata con	2 giorni per batte-	4 giorni per batte-
	il sole	ria	ria
Ricarica Batterie	Cella solare/	Caricatore 18650	Porta USB-C
	12 V	esterno	
Costo	500 €	40 €	50 €
Personalizzazione	0	Capacità di adatta-	Personalizzazione
		re ogni diodo lumi-	completa: selezione
		noso limitatamente	del pattern lumi-
		all'alimentazione	noso, tipologia di
			LED IR, Batterie

Verifica del dispositivo

In base alle numerose prove di laboratorio, il dispositivo è classificato con un grado di impermeabilità IP67 e offre la batteria offre un'autonomia di circa 12 giorni.

La validazione operativa è stata eseguita in collaborazione con il nucleo elisoccorso di Trento. Il dispositivo risulta essere notevolmente visibile anche a una distanza di 500 m con l'inquinamento luminoso della città in prossimità dell'aeroporto.

Future implementazioni

Nonostante il progetto sia un prodotto completo e utilizzabile, esistono alcuni punti che potrebbero essere ampliati e perfezionati:

- Certificare il funzionamento del dispositivo, sia a livello elettronico che ottico da laboratori specifici.
- Implementazione del LED infrarossi superiore
- Inclusione del modulo di ricarica e del BMS all'interno della scheda elettronica

Conclusioni

In conclusione si può affermare che è stato sviluppato un dispositivo in grado di affrontare con successo le sfide specifiche, caratterizzato da un design leggero, compatto e altamente **portatile**.

Il suo **prezzo accessibile** ed estremamente conveniente risulta particolarmente adatto per le comunità no-profit interessate alla slackline.

Grazie per l'attenzione

Domande:

Montaggio di un'Highline

1. Ricerca della location.

2. Utilizzo del drone per passaggio della bava.

3. Passaggio della tagline con la bava

4. Passaggio della slackline

Componenti di un'installazione

Manovra di risalita

Nuovo compentitor: Lira

- Masse = 650g
- Diamètre = 210mm
- Hauteur = 65mm
- Etanchéité IP65

Programmazione dispositivo

Permeabilità ottica PMMA

Fig. 5. Transmission spectra of PMMA, PET, CL400 substrates and Su8 wavequide layers.

