

烃类小结

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

塑料包装制品回收标志

■ 1号: PET

PET 宝特瓶是目前使用最广泛的饮料瓶,通常是无色透明无毒的。加色之后可成为浅绿、浅蓝色或茶色,圆形宝特瓶底有一圆点,瓶身无接缝

常用于:矿泉水、碳酸饮料、果汁等。

2号: HDPE

HDPE 在各种半透明、不透明的塑料容器上被广泛地使用,手感较厚。

常用于: 白色药瓶、不透明洗发水瓶、酸奶瓶、口香糖瓶等。

3号: PVC

圆的 PVC 瓶底部为一条线, 这是与宝特瓶的差别所在。这种材质只能耐热 81℃, 高温时易产生有害物质, 目前已经很少被用于食品包装上。

常用于: 雨衣。

4号: LDPE

多用于塑料膜等用具上,不宜作为饮料容器。

常用于:保鲜膜、塑料膜、牙膏或洗面乳的软管包装。

■ 5号: PP

PP 的硬度较高,且表面有光泽。

常用于:一次性果汁、饮料杯、塑料餐盘。

■ 6号: PS

分为发泡及未发泡两类,发泡即是一般常见的保丽龙器具,未发泡的如酸奶瓶。未发泡的轻折就有白痕出现,通常用手可以撕裂。

常用于:冰品容器、快餐盒、方便面桶。

■ 7号: PC (OTHER)

目前最常见的水杯材质,很多百货公司、汽车厂家都用这样材质的水杯当做赠品。

常用于:太空杯、奶瓶。

根深蒂固

		/\ <u>\</u>		饱和链烃	饱和链烃	
		分类	烷烃	烯烃	炔烃	环烷烃
	结构特点 链状,碳碳单键		链状,碳碳双键	链状,碳碳叁键	环状,碳碳单键	
		P式组成 通式	C_nH_{2n+2} $(n\ge 1)$	C_nH_{2n} $(n \ge 2)$	$C_nH_{2n-2}\ (n\!\!\geq\!\!2)$	C_nH_{2n} $(n \ge 3)$
	1-	代表物	CH ₄ (甲烷)	C ₂ H ₄ (乙烯)	C ₂ H ₂ (乙炔)	C ₃ H ₆ 环丙烷 C ₆ H ₁₂ 环己烷
	丝	吉构式	H H—C—H H 正四面体型 键角 109°28′	H H H 平面结构 键角约为 120°	H−C≡C−H 线型结构 键角 180°	H H H H H H C C H H H H H H H H H H H H
	结构简式		CH4	CH ₂ =CH ₂ 注意:双键不能省略 (CH ₂ CH ₂ 书写错误)	СН≡СН	H ₂ C CH ₂ CH ₂ 环丙烷 H ₂ C CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ TCH ₂ TCH ₂ 环己烷
	取	代反应	甲烷在光照条件下与 卤素单质(气态)反 应生成卤代烃			
化	加成反应			与 H ₂ 、X ₂ (卤素单质 氢) 发生加成反应	漬)、H₂O、HX(卤化	
学性	学 氧 可燃性		可燃性 火焰呈蓝色	可燃性 火焰明亮有黑烟	可燃性 火焰明亮有浓烟	可燃性
质			不 能 使 KMnO ₄ (H ⁺)溶液褪色	能使 KMnO ₄	(H⁺)溶液褪色	不能使 KMnO ₄ (H ⁺)溶液褪色
	加	聚反应		发生加聚反应生	成高分子化合物	
热稳定性			稳定			

一、烃的分类

【练一练】下列叙述中,正确的是 ()(双选)

- A. 乙烯分子里 C=C 双键的键能是乙烷分子里 C-C 单键键能的两倍
- B. 乙烯分子里碳、氢原子都处在同一平面上,而乙烷分子里的碳、氢原子不处于同一平面上
- C. 乙烯和乙烷都能在空气中燃烧而被氧化,具有强还原性,所以它们也能被强氧化剂酸性 $KMnO_4$ 溶液氧化
 - D. 乙烯易发生加成反应, 乙烷易发生取代反应

二、烷烃、烯烃、炔烃的系统命名

- 1. 烷烃的系统命名法:
- (1) 选主链, 称某烷;
- (2) 编号位, 定支链;
- (3) 取代基,写在前;注位置,短线连;
- (4) 不同基, 简到繁, 相同基, 合并算;

2. 烯烃和炔烃的命名:

原则上与烷烃的命名相似,所不同的是必须选含有双键或叁键的最长碳链为主链,而且双键或叁键上的碳原子应为最小序号;支链的定位应服从所含双键或叁键的碳原子的定位。

如: (CH₃)₂CHCH=CHCH₂CH₃, 正确命名为:

(1) 烯烃命名名称组成:

(2) 炔烃的命名名称组成

三、烷烃、烯烃、炔烃的同分异构体书写

1. 烷烃的同分异构体书写:

烷烃的同分异构体为______ 烷烃的同分异构体书写的一般步骤:

- (1) 主碳链由长到短(主链上的碳原子个数逐一减少)
- (2) 支链位置由心到边
 - ①首先对折链后的主链确定好对称轴
 - ②从主链上折下来的碳原子当做支链,依次连在折键后的主链由对称轴中心到链端的位置上。
- ③应注意分清折链后的主链上的位置相同的碳原子(又称等碳原子)位置相同的碳原子只做一次支链的连接。
- (3) 支链由整到散:如拆下来 2个碳原子时,先按一个乙基做支链连在折链后的主链上,再分为两个甲基做两个支链,连在折链后的主链上,如折下来 3个碳原子,先按一个丙基做支链,再按一个甲基一个乙基做两个支链、再按三个甲基做三个支链,分别连在折链后的主链上。
 - (4) 在烷烃范围内书写同分异构体时应注意:
 - ①折下来一个碳原子做—CH3时不能连在折链后主链上第一碳原子。
 - ②折下来两个碳原子做—CH2—CH3(乙基)不能连在折链后主链上第二个碳原子上.....依此类推。
 - (5) 书写同分异构体后可进行命名, 若名称相同, 使说明同分异构体书写是重复的。

2. 烯烃同分异构体的书写

(1) 碳链异构: 在分子中由于支键的位置不同而产生的异构。

如:

(2) 位置异构:

(3) 类别异构:

分子式相同由于是不同类有机化合物而产生的异构。

如: 丙烯和环丙烷

小结:碳原子数相同的环烷烃与单稀烃间互为同分异构体(分子组成通式相同皆为 C_nH_{2n})。

3. 炔烃同分异构体的书写

(1) 碳链异构: 在分子中由于支链的位置不同而产生的异构

(2) 位置异构: 在分子中由于不饱和键(—C≡C—) 碳碳叁键位置不同而产生的异构:

如: CH≡C—CH₂—CH₃

 CH_3 — $C \equiv C$ — CH_3

1一丁炔

2一丁炔

分子式 C₄H₆

分子式 C₄H₆

(3) 类别异构: 分子式相同由于是不同类有机物而产生的异构

如:碳原子相同的二烯烃与炔烃间互为同分异构体(因为分子组成通式相同皆为 C_nH_{2n-2})

CH≡C—CH2—CH3

1一丁炔

分子式 C₄H₆

CH₂≡CH—CH=CH₂

1,3一丁二烯

分子式 C₄H₆

四、四同概念辨析

(同位素、同素异形体、同分异构体、同系物)

概念	内涵	比较对象	实 例
同位素	质子数相等,中子数不等	原子	氕、氘、氚
同素异形体	同一元素形成的不同单质	单质	O_2 , O_3
同系物	结构相似,组成上差一个或 n 个 CH ₂	化合物	C ₂ H ₆ 、C ₄ H ₁₀
同分异构体	相同分子式,不同结构的化合物	化合物	正丁烷、异丁烷

练一练:

下列五组物质中______互为同位素,_______是同素异形体,_____是同分异构体,______是同系物,_____ 是同一物质。

1, 12₆C, 12₆C

2、白磷、红磷

4、CH₃CH₃、CH₃CHCH₃

5, CH₃CH(CH₃)CH₂CH₃ , C(CH₃)₄

五、等效氢的思维方法和应用

1. 等效氢的概念:

有机物分子中位置等同的氢叫等效氢,分子中等效氢原子有如下情况:

- (1) 分子中同一个碳原子上连接的氢原子等效。
- (2) 同一个碳原子上所连接的甲基上的氢原子等效。

如:新戊烷(可以看作四个甲基取代了甲烷分子中的四个氢原子而得),其四个甲基等效,各甲基上的氢原子完全等效,也就是说新戊烷分子中的12个H原子是等效的。

(3) 分子中处于镜面对称位置(相当于平面镜成像时,物与像的关系)上的氢原子是等效的。如: CH_3CH_3

ĊH₃ĊH₃ 分子中的 18 个 H 原子是等效的。

- 2. 取代等效氢法的关键: 观察并找出分子结构中的对称要素
- 3. 取代等效氢法要领:

利用等效氢原子关系,可以很容易判断出有机物的一元取代物异构体数目。

其方法是先写出烃(碳链)的异构体,观察分子中互不等效的氢原子有多少种,则一元取代物的结构 就有多少种。

【练一练】

- (1) CH_3 $-CH_3$ 中有 种等效氢,若与 Cl_2 光照取代,则所得一氯代物有___种。
- (2) CH₃-CH₂-CH₃中有 种等效氢,若与 Cl₂光照取代,则所得一氯代物有 种。 CH₃-CH-CH₃
- $\dot{C}H_3$ 中有 种等效氢,若与 Cl_2 光照取代,则所得一氯代物有___种。 (3) CH₃-CH-CH₃
- ĊH₃ (4) 中有 种等效氢, 若与 Cl₂ 光照取代, 则所得一氯代物有 种。

考点 1: 烷烯炔的结构和性质

例1:下列四种物质,

①正戊烷

②新戊烷

③2-甲基戊烷

④正己烷

沸点由低到高的顺序正确的是(

A. (1)(2)(3)(4)

B. (2)(3)(1)(4)

C. (2)(1)(3)(4)

D. (3)(4)(1)(2)

变式1: 下列物质常温下为气态的是()

A. 2-甲基丙烷 B. 2-甲基丁烷

C. 己烷

D. 二氯甲烷

例 2: 有人设计如下图所示实验以确认混合气体中有 C_2H_4 和 SO_2 。

所需试剂有:

A.品红溶液 B.NaOH 溶液 C.浓 H₂SO₄ D.高锰酸钾酸性溶液 试完成下列问题:

(1) 图中 I、II、III、IV 装置可盛放的试剂是:

I	, II	, III	, IV	0
(将上列有	关试剂的序号填入空格	内)。		

- (2) 能说明 SO₂ 存在的现象是
- (3) 使用装置Ⅱ的目的是
- (4) 使用装置 III 的目的是
- (5) 确证乙烯存在的现象是

变式 1: 甲烷中混有乙烯, 欲除去乙烯得到纯净的甲烷, 最好依次通过盛有下列哪些试剂的洗气瓶 (

A. 澄清石灰水,浓H₂SO₄

B. 酸性 KMnO₄,浓 H₂SO₄

C. 溴水, 浓 H₂SO

D. 浓 H₂SO₄, 溴水

变式 2: 将下列足量的各种液体①环己烷;②氯仿;③1—己烯;④碘化钾溶液分别与溴水混合充分振荡静置后,混合液分为两层,原溴水层几乎呈无色的是()

- A. (1)(2)(3)
- B. 只有①②
- C. 只有③
- D. (1)(2)(3)(4)

例 3: 从柑桔中炼制萜二烯 , 下列有关它的推测不正确的是(

- A. 它不能使酸性高锰酸钾溶液褪色
- B. 常温下为液态,难溶于水
- C. 分子式为 C₁₀H₁₆

考点 2: 烷烯炔的命名

例1: 按系统命名法命名下列烷烃, 并写出相应的化学式:

$$CH_3-CH_2-CH--CH_3 \ C_2H_5$$

$$\begin{array}{ccc} & \text{CH}_3\text{-CH--CH}_2\text{-CH}(\text{CH}_3)_2 \\ \downarrow & \text{CH}_3 \end{array}$$

- $(5) C(CH_3)_4$
- (6) (CH₃)₂CHCH₂CH(CH₂CH₃)₂

CH₂ 变式 1: 有机物 CH3-CH2--C----CH---CH₃ 的正确命名为 () CH₃ C₂H₅

- A. 2-乙基-3, 3-二甲基戊烷
- B. 3, 3-二甲基-4-乙基戊烷
- C. 3, 3, 4-三甲基已烷

D. 2, 3, 3-三甲基己烷

例 2: 下列有机物的命中正确的是(

- A. 1,2-二甲基戊烷
- B. 2,3-二甲基丁烷
- C. 3,4-二甲基戊烷
- D. 2,2-二甲基-2-丁烯

变式1: 写出下列各物质的结构简式

- (1) 2-甲基-3-乙基戊烷
- (2) 2,3-二甲基戊烷
- (3) 新戊烷
- (4) 2,5-二甲基己烷

例 3: 根据烯烃原则,回答下列问题.

变式 1: 某烃与氢气发生反应后能生成(CH₃)₂CHCH₂CH₃,则该烃不可能是 (

- A. 2-甲基-2-丁烯
- B. 3-甲基-1-丁炔
- C. 2,3-二甲基-1-丁烯
- D. 2-甲基-1,3-丁二烯

考点 3: 同分异构体

例1:下列化学式只能表示一种物质的是()

- A. C₄H₁₀ B. C₃H₆ C. C₂H₄Cl₂ D. CH₂Cl₂

变式 1: 根据下表中烃的分子式排列规律,判断空格中烃的同分异构体的数目是(

1	2	3	4	5	6	7	8
CH ₄	C ₂ H ₄	C_3H_8	C ₄ H ₈		C ₆ H ₁₂	C7H16	C ₈ H ₁₆

A. 3

B. 4

C. 5

D. 2

例 2: 化学式为 C ₇ H ₁₆ 的烷A. 2	烃中,在结构式中含存 B.3	有 3 个甲基的同分异构化 C. 4	本数目是() D. 5	
的两侧而互为同分异构体,				
考点 4: 四同概念辨析 例 1: 下列物质中是同系物 互为同素异形体的有				
① 液氯	② CH ₂ -CH ₃ CH ₃ -CH-CH ₃	③ 白磷		
⑤ 2, 2-二甲基	生丁烷 ⑥ 氯水	CH ₃ CH ₃ ⑦ CH ₃ -CH-CH ₂	©H ₃ CH ₃ ® CH ₃ -CH-CH-CH ₃	
⑨ ³⁵ ₁₇ Cl	⑩红磷	(1) 37 Cl	(12)CH ₃ —CH ₂ —C(CH ₃) ₃	
变式 1: 下列说法不正确的 A. 分子式为 C ₃ H ₈ 与 B. 具有相同通式的有 C. 两个相邻同系物的 D. 分子组成相差一个 考点 5: 等效氢思想 例 1: 某烷烃发生氯代反应 A. (CH ₃) ₂ CHCH ₂ CH ₂ CB. (CH ₃ CH ₂) ₂ CHCH(CH ₃)	C_6H_{14} 的两种有机物一 机物不一定互为同系特别和分子质量数值一定 相对分子质量数值一定 或若干个 CH_2 原子团的 证后,只能生成三种沸加	物 定相差 14 的化合物必定互为同系		
D. (CH ₃) ₃ CCH ₂ CH ₃				
变式 1: (双选) C ₅ H ₁₂ 的 () A. 2个甲基,能生成 B. 3个甲基,能生成 C. 3个甲基,能生成 D. 4个甲基,能生成	3 种一氯代物 3 种一氯代物 4 种一氯代物	所含甲基数目与相应	的一氯代物的数目,与下	列相符的是
例 2: C ₄ H ₉ Cl 共有和	抻异构体,C₅H₁₁Cl,共	有种异构体		

变式 1: C_5H_{12} 有三种同分异构体,有关它们的结构和的说法不正确的是(

- A. 三种同分异构体在常温常压下均为液体
- B. 其中一种同分异构体的碳原子间结构: 具有空间正四面体对称结构
- C. 三种同分异构体具有相同的分子式、相对原子质量, 化学相似
- D. C₅H₁₁Cl 共有 8 种同分异构体

例3: 如图所示为某有机物的结构简式

下列说法不正确的是()

- A. 该有机物属于饱和烷烃
- B. 该烃的名称是 3—甲基—5—乙基庚烷
- C. 该烃与 2,5—二甲基—3—乙基己烷互为同系物
- D. 该烃的一氯取代产物共有8种

变式 1: 某烷烃碳架结构如图所示: C—C—C—C,此烷烃的一溴代物有_____种, 若此烷烃为炔烃加氢制得,则此炔烃的结构简式为_____,若此烷烃为单烯烃加氢制得,则此烯烃的结构有_____种(不考虑顺反异构)。

例 4: 立方烷是一种新合成烃, 其分子为立方体结构, 其碳架结构如图所示。

- (1) 立方烷分子式。
- (2) 该立方烷二氯代物的同分异构体数目是。

变式 1: 金刚烷是一种特殊的烃, 其分子为立体结构, 其碳架结构如图所示。

- (1) 金刚烷分子式。
- (2) 金刚烷中所含的等效氢有 种。
- (3) 金刚烷的一氯代物有 种。

老占 6.	共平面和共直线问题	'n
'5 Ui	一六十四州六旦郑川城	٧.

例1: 以下有关物质结构的描述正确的是(

- A. 丙烯分子中的所有原子可能共平面
- B. 1.3-丁二烯分子中的所有原子不可能共平面
- C. 二氯甲烷分子为正四面体结构
- D. 乙烷分子中的所有原子不可能都在同一平面内

变式 1: 某烃的结构简式如图,分子中含有四面体结构的碳原子数为 a,在同一直线上的碳原子数为 b,在同 一平面上的碳原子数最多为 c,则 a、b、c 分别为 ()

$$CH_3$$
- CH_2 - CH = C - C \equiv CH
 C_2H_5

A. 4, 3, 6 B. 4, 3, 8

C. 2, 5, 4

D. 4, 4, 6

例 2: 分子式为 C_6H_{12} 的某烯烃, 若所有的碳原子都在同一平面上,

则该烯烃的结构简式为,名称是

变式 2: 盆烯是近年合成的一种有机物,它的分子结构可简化表示为 列关于盆烯的说法中错误的是()

(其中氢、碳分子已略去),下

- A. 盆烯分子中有 4 种不同化学环境的氢原子
- B. 盆烯分子中所有的碳原子不可能在同一平面上
- C. 盆烯在一定条件下可以发生加成反应
- D. 盆烯是乙烯的一种同系物

考点 7: 烃的结构与性质综合

例 1: 为了制备重要的有机原料——氯乙烷 (CH_3-CH_2CI) ,下面是两位同学设计的方案。甲同学: 选乙烷和 适量氯气在光照条件下制备,原理是:

$$CH_3CH_3 + Cl_2 \xrightarrow{\mathcal{H}M} CH_3 - CH_2Cl + HCl$$

乙同学: 选乙烯和适量氯化氢在一定条件下制备,原理是: CH_2 = CH_2 +HCI→ CH_3 — CH_2 CI 你认为上述两位同学的方案中,合理的是,简述你的理由:。

例 2: A、B、C、D、E 是五种气态烃, 其中 A、B、C 能使溴水褪色。1 mol A 与 2 mol Cl₂完全加成。A 与 C、 B 与 E 分别同系物, A 在催化剂存在下与氢气反应可得到 B, 在同温同压下 B 与氮气的密度相同, D 是最简单 的有机物,C、E没有同类的异构体,则五种气态烃的名称分别是 、 、 、 、

例 3: 已知 H ₂ C CH ₂ -C		。降冰片烯	条的分子结构可表示	示为:
(1) 降冰片烯属于	o			
A. 环烃	B. 不饱和烃	С.	烷烃 D.	芳香烃
(2) 降冰片烯的分	子式为	o		
(3) 降冰片烯不具	有的性质	o		
A. 能溶于水		В.	能发生氧化反应	
C. 能发生加成	泛反应	D.	常温常压下为气体	Ż

例 4: 思考并回答下列问题

(1) 下表为烯类化合物与溴发生加成反应的相对速率(以乙烯为标准)

烯类化合物	相对速率
(CH ₃) ₂ C=CHCH ₃	10.4
CH ₃ CH=CH ₂	2.03
CH ₂ =CH ₂	1.00
CH ₂ =CHBr	0.04

根据表中数据,总结烯类化合物加溴时,反应速率与 C=C 上取代基的种类、个数间的关系:

(2)下列化合物与氯化氢加成时,取代基对速率的影响与上述规律类似,则其中反应速率最慢的是 (填代号)。

A. $(CH_3)_2C=C(CH_3)_2$ B. $CH_3CH=CHCH_3$

C. CH₂=CH₂ D. CH₂=CHCl

(3) 烯烃与溴化氢、水加成时,产物有主次之分,例如:

下列框图中 B、C、D 都是相关反应中的主要产物(部分条件、试剂被省略),且化合物 B 中仅有 4 个碳 原子、1个溴原子、1种氢原子。

①上述框图中,	B 的结构简式为		;
②属于取代反应	立的有	(填框图中的序号);	

③属于消去反应的有 (填序号);

④写出反应④的化学方程式(只写主要产物,标明反应条件):

例 5: 一定条件下,某些不饱和烃可进行自身加成反应:

有机物甲的结构简式为:

,它是由不饱和烃乙的两个分子在一定条件下自身加成得到,

在此反应中除生成甲外,还同时生成另一种产量最高的有机物丙,其最长碳链仍为5个碳原子,丙是甲的同分 异构体。

(1)乙的结构简式是		
------------	--	--

(2)	丙的结构简式是	,
(4)	1,11,15H,12HH,7/VE	· · · · · · · · · · · · · · · · · · ·

气态烃是(气体体积均在相同条件下测定)()

B. 丙炔

A. 乙炔

CO		以	-			
1.		用于衡量一个国家 乙烯的产量				D. 汽油的产量
2.		: ①丙烷 ②正丁烷) ①③②④⑤			(1) (2) (3) (4) (5) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	为质的沸点按由低到高的顺序排列的是 D. ⑤①②④③
3.) A.	分子中碳原子不在		В.	光照下能够发生	
4.	下列	比丁烷更易液化 有机物中,不可能 CH ₃ CH ₃		7的是(是石油分馏的一) CH ₃ CH ₂ OH	种产品 D.CH ₃ CH ₂ Br
5.	A.	烯推测丙烯(CH ₂ =C CH ₂ Br—CH ₂ —CH ₅ CH ₃ —CH ₂ —CHBr ₂	₂ Br	В.	†反应产物的叙述 CH₃—CBr₂—CH CH₃—CHBr—C	3
6.	,	式可以简明地表示 丁烷	有机物的结构, B.丙烷	•	ē示的物质是(丙烯) D. 1-丁烯

7. 1 体积某气态烃和 2 体积氯化氢发生加成反应后,最多还能和 6 体积氯气发生取代反应,由此可以断定原

C. 丁炔

D. 1,3-丁二烯

8.	与 CH ₃ CH ₂ CH=CH ₂ 互为同分异构体的是()					
	CH_3 - C = CH_2							
	A. CH ₃		B. $CH_2=CH-CH=CH_2$					
			CH CH C—CH					
	CH ₃ -CH-CH=CH ₂		$CH_3-CH_2-C=CH_2$ D. CH_3					
	C. CH ₃		D. CH ₃					
0	ᆠᅉᆛᅻᇪᇫᄤᅜᄀᄱᅺᆋᅝᅜᅔᇰᆇᄓᆛ	. + <i>\</i> /						
	王链工有 4 个嫉原于的呆枰烷烃有 2 种问分弃 } 异构体有()	444	,含有相同碳原子且主链上也有 4 个碳原子的单烯烃的					
1.17		C.	4种 D. 5种					
10.	相同质量的下列各烃,完全燃烧后生成的 CO							
	A. 甲烷 B. 乙烷	C.	乙烯 D. 乙炔					
11	下列说法正确的是(
11.	A. 相对分子质量相同的物质是同一物质							
	B. 具有相同通式的不同物质一定属于同系物							
	C. 分子式相同而结构不同的有机物一定是同分异构体							
	D. 各种有机物都由一定的元素组成,由一定元素组成的物质只能形成一种有机物							
12								
12.	下列说法正确的是() A. 丙炔分子中三个碳原子不可能位于同一直线上							
	B. 乙炔分子中碳碳间的三个共价键性质完全相同							
	C . 分子组成符合 C_nH_{2n-2} 的链烃一定是炔烃							
	D. 在所有符合通式 C _n H _{2n-2} 炔烃中, 乙炔所含氢的质量分数最小							
12								
13.	以乙炔作为原料的合成反应,下列过程中能生 A. 先加 HCl, 再加 HBr							
	C. 先加 HCl,再加 Br ₂		先加 HBr,再加 HCl					
	0. YEAR 1201, 14 NH 212	٥.	78W 11217 11 W 1101					
14.	关于实验室制取乙烯的说法中,错误的是	()(双选)					
	A. 用稀硫酸同样起催化作用	В.	必须加碎瓷片,防止液体暴沸					
	C. 温度计的水银球在液面下	D.	应该缓慢加热,避免沸腾时液体剧烈跳动					
1.5	世界以上 D. 如如中文柳里 2. 2. 2. 2. 四		ki FWBT同名WabB())					
15.	某烃 W 与 Br_2 的加成产物是 2, 2, 3, 3—四 A. 2—丁烯		阮,与W周于问系物的是() 乙炔					
	C. 1, 3—丁二烯		异戊二烯					
	. 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		2.6.5					
16.	某烯烃与氢气加成后得到 2,2-二甲基丁烷,该烃的名称是()							
	A. 2, 2-二甲基-2-丁烯		3, 3-二甲基-2-丁烯					
	C. 2, 2-二甲基-1-丁烯	D.	3,3-二甲基-1-丁烯					

17. 据报道,1995年代 状烃,其分子中含碳碳		入为 C ₂₀₀ E	I ₂₀₀ 的含3个研	炭碳双键和	和多个碳碳叁	鍵(−C≡C −)的	链
A. 49 个	B. 50 个	C.	51 个	D.	100 个		
18. 主链含 5 个碳原子	,有甲基、乙基2个支	链的烷烷)			
A. 2 种	B. 3种	C.	4 种	D.	5 种		
19. 1983 年,福瑞堡力 宇(pagoda—style temp)	C学的普林巴克(Prinzb ble),所以该分子也就和						庙
		T.					
A. 分子式为 C ₂₀ H			一氯代物的同				
C. 分丁甲召有 2°	个亚甲基(—CH ₂ —)	D΄	万丁中百有4	+ ^ * 五.ノし傷	天小		
					\rightarrow		
(1) 有机物 A 的分子	应可得到有机物 A,则: 式为。 名有机物 A,其名称为_	Y	可机物 A 的键 。	线式结构 、	为	有机物 B 与等物	质
21. 2-丁烯是石油裂解	的产物之一,同答下列						
	下, 2-丁烯与氢气反应		方程式为:_			,反应类型	为
	的一种同分异构体,它 中能够共平面的碳原子 。						
22. 如图所示实验装置	可用于制取乙炔。请填	[空:					
	·e						
		A 管 ———————————————————————————————————	铁丝网 ——H ₂ O				
(1)图中, A 管的作用	用是	_,制取乙	→ 心炔的化学方程	程式是		o	
	MnO ₄ 溶液中观察到的现 Il4溶液中观察到的现象	🖳 🖳				反应。 反应。	
	714				双生]	°	

C. 将水倒入烧瓶中

23. 右图是某同学设计的实验室以乙醇制乙烯的实验装置图,请完成下列问题:

(1) 指出装置中存在的错误	0
(2) 在反应器中发生的化学反应是	
(3) 反应中浓硫酸的作用是	0
(4) 在加热时,应注意使温度迅速升到 170℃的理由是。	
(5) 在烧瓶中加入少量碎瓷片的作用是	ō
(6) 反应中常有少量的副产物 SO ₂ 生成, SO ₂ 对乙烯的性质实验有无影响(填"有"或"另	
去 SO ₂ 的方法。	
(7) 实验室里,常用的方法收集乙烯气体。反应完毕后,应先再	o
24. 如图为某实验小组的同学制备乙烯及验证乙烯性质的部分装置图,请回答:	
(1) 烧瓶中加入的两种试剂是;	
(2) 温度计的作用是	
(3)写出实验中产生乙烯的化学方程式:	
(4) 甲同学认为: 溴水褪色的现象不能证明乙烯具有不饱和性, 其原因是烧瓶中液体呈棕黑色	
气体. 乙同学经过仔细观察后认为: 试管中另一个现象可证明乙烯具有不饱和性,	
。丙同学为验证这一反应是加成而不是取代,提出了将杂质气体吸入的发表。对于1000000000000000000000000000000000000	.收后,可用 pH
试纸来测试反应后溶液的酸性,理由是;	
(5) 处理上述实验中烧瓶内废液的正确操作是。	
A. 废液直接倒入下水道 B. 废液倒入空废液缸中	

D. 废液倒入盛有水的塑料桶中, 经处理后再倒入下水道