HW07

ch6-8

求图6.28的一条最优投递路线。

图 6.28: G

使用EJ算法。

(1) 图G的奇度顶集 $V_0 = \{v_1, v_2, v_3, v_4\}$, $\mid V_0 \mid = 4$.

(2) 由Dijkstra算法: $d(v_1,v_2)=4, d(v_1,v_3)=5, d(v_1,v_4)=7$ $d(v_2,v_3)=2, d(v_2,v_4)=5, d(v_3,v_4)=3$

(4) 上图 K_4 的最佳匹配 $M = \{v_1v_2, v_3v_4\}$. 在G中 v_1, v_2 间最短轨为

3

(6)在图 G^* 找到Euler回路即为最优投递路线。不妨设出发点(邮局)为 v_6 ,则其中一条Euler回路为: $v_6v_2v_3v_4v_3v_7v_2v_7v_1v_7v_4v_5v_1v_6$

ch6-9

设G是二分图,证明:若G是Hamilton,则G必有偶数个顶点。习题1中的图6.27是Hamilton图吗?为什么?

证明:

设二分图 $G=X\bigcup Y,X\bigcap Y=\emptyset$,若G是Hamilton,则 $\omega(G-X)\leq \mid X\mid \ldots \mid Y\mid \leq \mid X\mid$.同理 $\mid X\mid \leq \mid Y\mid \ldots \mid X\mid = \mid Y\mid \ldots \mid G$ 有偶数个顶点。

证毕

在图6.27中, $:: G = \{v_1, v_2, v_3, v_4, v_5\} \bigcup \{v_6, v_7, v_8, v_9, v_{10}, v_{11}\} = X \bigcup Y$,且 $X \cap Y$ 没有边 :: Herschel图为二分图,且有11个顶点 :: Amplity Amplity

ch6-11

Petersen 图删除一个顶点后是不是Hamilton 图。

是。Hamilton图。

由Petersen 图的对称性可知。Petersen 图有两类顶点。 $\{1,2,3,4,5\}$ 一类, $\{6,7,8,9,10\}$ 一类。对去除的顶点分两类讨论。

1. 若去除的点是第一类顶点,不妨设为顶点1。所得的图为:

图中红色部分为一个Hamilton 圈 C_0 。 $C_0=10\ 5\ 4\ 3\ 2\ 7\ 9\ 6\ 8\ 10$

2. 若去除的点是第二类顶点,不妨设为顶点6。所得的图为:

图中红色部分为一个Hamilton 圈 C_1 。 $C_1=3\ 2\ 1\ 5\ 4\ 9\ 7\ 10\ 8\ 3$

综上: Petersen 图删除一个顶点后是Hamilton 图。

ch6-14

证明: 2k-1 阶的k 次正则图是Hamilton 图(k>2)

证明:

对任意点对(u,v) 有deg(u)+deg(v)=2k>2k-1=
u(G) . 由Ore定理,得证。

ch6-16

若G是二分图,但其顶点的划分X与 Y不均匀,即 $|X| \neq |Y|$ 。则G 是不是Hamilton 图?为什么?不是。

若G是Hamilton 图。则G中 存在Hamilton 图 C 。 C 中的顶点在X,Y中交替出现。则|X|=|Y| 。矛盾所以,G 不是Hamilton 图。

ch6-21

证明: 设G 是一个简单图, $\nu=|V(G)|\geq 3$, 如果对满足 $1\leq m\leq \nu-2$ 的任意正整数m, 度数不超过 m 的顶点个数小于 m, 则G是Hamilton 图.

证明:

先证命题: $c(G) = K_{\nu}$

假设 $c(G)
eq K_{
u}$ 。 则 $\exists u,v \in G, uv
ot\in c(G)$ 。记u',v' 是这样的点对中 $deg_{c(G)}(u) + deg_{c(G)}(v)$ 最大的点对。

定义 $V_0=\{v|v\in V(G),vv'\not\in c(G)\}$ 。 $V_1=\{v|v\in V(G),vv'\in c(G)\}$ 。有 $|V_1|=deg_{c(G)}(v')$, $|V_0|=\nu-1-deg_{c(G)}(v')$

 $\diamondsuit m = deg_{c(G)}(u') .$

由u',v' 的定义知 $\forall v \in V_0, deg_{c(G)}(v) + deg_{c(G)}(v') \leq deg_{c(G)}(u') + deg_{c(G)}(v')$,即 $\forall v \in V_0, deg_{c(G)}(v) \leq deg_{c(G)}(u')$ 。 又: $\forall v \ deg_G(v) \leq deg_{c(G)}(v)$: $\forall v \in V_0, deg_G(v) \leq m$

由c(G) 定义知 , $deg_{c(G)}(u') + deg_{c(G)}(v') \leq \nu - 1$ 。 $\therefore m \leq |V_0|$

即度数不超过m得顶点个数不小于m。矛盾

命题得证。

由推论6.3, G是Hamilton 图.

ch6-22

- 5 阶完全加权图如图6.30 所示。
- (1) 用最邻近法求以a 为起点的旅行商问题的近似解;
- (2)用最小生成树法求以a,b 为起点的旅行商问题的近似解;
- (3)用最小权匹配法求旅行商问题的近似解;

图 6.30: G

(1) 用最邻近法求以a 为起点的旅行商问题的近似解;

W = 26

从a出发 , 形成轨道 $P_1=a$ 。

从 $V(G)-\{a\}$ 中,选取与a 最近的顶点d 。形成 $P_2=ad$

从 $V(G)-\{a,d\}$ 中,选取与d 最近的顶点e 。形成 $P_3=ade$

从 $V(G)-\{a,d,e\}$ 中,选取与e 最近的顶b 。形成 $P_4=adeb$

从 $V(G)-\{a,d,e,b\}$ 中,选取与b 最近的顶点c 。形成 $P_5=adebc$

得Hamilton 圈, H = adebca

(2)用最小生成树法求以a, b 为起点的旅行商问题的近似解;

1. 求G的一颗最小生成树T.

2. 将T 各边加平行边得 G^*

从a 出发,求 G^* 的一条欧拉回路 $C_a=adecedaba$, "抄近路" 访问G 的各顶点。得 $H_a=adecba$ 。 $W_a=21$

从b 出发,求 G^* 的一条欧拉回路 $C_b=badecedab$, "抄近路" 访问G 的各顶点。得 $H_b=badecb$ 。 $W_b=21$

(3) 用最小权匹配法求旅行商问题的近似解;

1. 求G的一颗最小生成树T.

2. T 中奇度数顶点得集合为 $V_o=\{b,c\}$, V_o 的导出子图中总权最小得完备匹配 $M=\{bc\}$,M 加入 T 中得 G^*

- 3. 在 G^* 中求从a 出发得一条欧拉回路 $C_a=adecba$
- 4. 在G 中, 从a 出发,沿 C_a 中得边按 "抄近路" 走出Hamilton 圏 $H_a=adecba$

W=21