03 - Izlaz

TTL

- V_{OH min} = minimalni izlazni napon visoke logičke razine
 - sklop mora dati visoku razinu od najmanje 2.4 V uz struju od 0.4 mA
- V_{OL max} = maksimalni izlazni napon niske logičke razine
 - sklop ne smije dati više od 0.4 V na izlazu uz opterećenje do 16 mA
- V_{IH min} = minimalni ulazni napon visoke logičke razine
 - sklop mora prepoznati 2.0 ili više volti kao visoku logičku razinu, i ne vući struju višu od 0.04 mA
- V_{IL max} = maksimalni ulazni napon niske logičke razine
 - sklop mora prepoznati 0.8 V kao nisku logičku razinu i ne vući struju višu od 1.6 mA

Fig. 1: TTL razine napona

- · CMOS:
 - novi tip tranzistora, MOSFET baziran na CMOS logiki
 - o brz odziv, brzina, mala potrošnja i manje se zagrijava
- 3 stanja: 1, 0 i Z

ulaz		izlaz
A	В	C
0	0	Z
0	1	0
1	0	Z
1	1	1

Fig. 2: tranzistor s 3 stanja

primjer GPIO pina:

Fig. 3: shema GPIO pina

Ograničenja:

- 40mA izlazna po pinu (source)
- 28mA ulazna po pinu (sink)
- 1200mA za čitavi ESP32
- Uobičajeni napon: 3.3V

Fig. 4: ESP32 pinovi

PWM

• PWM - širina impulsa sadrži informaciju o amplitudi izlaznog signala

Fig. 5: PWM impulsi

• brojilo broji impulse prema gore/dolje i komparator određuje da li se output treba biti high ili low

Fig. 6: brojilo

- tipovi signala:
 - o asimetrični PWM signal (kraj je high)

Fig. 7: asimetrični PWM signal

o simetrični PWM signal (broji prema gore do granice, i onda kad izbroji ide prema 0 dolje)

Fig. 8: simetrični PWM signal

kombinirani (uglavnom AND operacija)

Fig. 9: kombinirani PWM signal

• PWM se na primjer može koristiti kod D/A pretvorbe tako da se generira signal stalne frekvencije i različite popunjenosti

Fig. 10: PWM D/A pretvorba

PID upravljač

- Proportional-integral-derivative controller
- digitalno upravljanje procesom

• ulaz u regulator je razlika između željene i izmjerene vrijednosti

- proporcija:
 - P_dio = greska * P_konstanta(pGain)
 - o brzi sustav oscilira oko željene vrijednosti

Fig. 13: brzi P

o spori sustav ne dostiže željenu vrijednost

Fig. 14: spori P

- integracija:
 - o zbroj svih prethodnih pogrešaka
 - I_dio = I_suma * I_konstanta(iGain)

Fig. 15: I

- P+I:
 - o kombinacija proporcionalnog i integracijskog djelovanja
 - o točnije nego samo kod I djelovanja

0

Fig. 16: P+I

derivative:

0

- o djeluje na kvalitetu prijelaza
- D_dio = (greska D_stanje) * D_konstanta(dGain)
- D_stanje = greska
- o uz dobre parametre smanjuje prijelazno vrijeme te se ne događa overshoot

Fig. 17: D

• Algoritam uključuje sva tri proračuna:

```
P_dio = grješka * P_konstanta(pGain)

I_suma += grješka
I_dio = I_suma * I_konstanta(iGain)

D_dio = (grješka - D_stanje) * D_konstanta(dGain)
D_stanje = grješka

Izlaz:
izlaz = P_dio + I_dio + D_dio

... ukupno 4 operacije zbrajanja i 3 množenja
```

Fig. 18: PID algoritam