LACROSSE VIRUS DYNAMICS

BEN LEBDAOUI

1. The Model

S_L	Susceptible Larval (aquatic) stage
I_L	Infected Larval (aquatic) stage
S_M	Susceptible Males
E_M	Exposed Males
I_M	Infected Males

The adult female mosquitoes are in these compartments:

S_B	Susceptible host-seeking females
S_D	Susceptible digesting females
S_O	Susceptible ovipositing females
E_D	Exposed digesting females
E_O	Exposed ovipositing females
I_B	Infected host-seeking females
I_D	Infected digesting females
I_O	Infected ovipositing females

The reservoir species (chipmunk) has the following compartments:

S_C	Susceptible chipmunks
I_C	Infected chipmunks
R_C	Recovered chipmunks

And we have the following table of parameters

γ	Instrinsic growth rate
θ	Vertical transmission rate
K	Carrying capacity
a	Maturation rate
μ_2	Larval death rate
r	Proportion of male offspring
b	Biting rate per capita
β	Transmission rate to vector
p	Mating contact rate
μ_1	Adult death rate
$\tilde{\mu}$	Ovipositing death rate??
τ	Venereal transmission rate
ξ	Transission rate to host
φ	Rate from E_D to I_D
ψ	Rate from E_O to I_O
ν	Rate from E_M to I_M
ω	Recovery rate of host

Date: September 2025.

For the mating success probabilities, we've adopted a more intuitive labeling system: the first subscript describes that disease status of the **female** and the second does the status of the *male*. That brings us this updated table:

α_{SS}	Success between S_D and S_M
α_{SE}	Success between S_D and E_M
α_{SI}	Success between S_D and I_M
α_{ES}	Success between E_D and S_M
α_{EE}	Success between E_D and E_M
α_{EI}	Success between E_D and I_M
α_{IS}	Success between I_D and S_M
α_{IE}	Success between S_D and E_M
α_{II}	Success between I_D and I_M

$$(1.1) \quad \dot{S}_L = \frac{\gamma}{K} (S_O + (1 - \theta)I_O + (1 - \theta')E_O)[K - (S_L + I_L)] - aS_L - \mu_2 S_L$$

$$(1.2) \quad \dot{S}_M = raS_L - \mu_1 S_M - \tau p \alpha_{IS} S_M \left(\frac{I_D}{S_D + E_D + I_D} \right)$$

$$(1.3) \quad \dot{S}_B = (1 - r)aS_L - bS_B - \mu_1 S_B$$

$$(1.4) \quad \dot{S}_{D} = bS_{B} \left(\frac{S_{C} + R_{C} + (1 - \beta)I_{C}}{S_{C} + I_{C} + R_{C}} \right) - pS_{D} \left(\frac{\alpha_{SS}S_{M} + \alpha_{SE}E_{M} + \alpha_{SI}I_{M}}{S_{M} + E_{M} + I_{M}} \right) - \mu_{1}S_{D}$$

$$(1.5) \quad \dot{S}_O = pS_D \left(\frac{\alpha_{SS} S_M + \alpha_{SE} E_M + \alpha_{SI} (1 - \tau) I_M}{S_M + E_M + I_M} \right) - \tilde{\mu} S_O$$

(1.6)

$$(1.7) \quad \dot{E}_M = \tau p \alpha_{IS} S_M \left(\frac{I_D}{S_D + E_D + I_D} \right) - \nu E_M - \mu_1 E_M$$

$$(1.8) \quad \dot{E}_D = \beta b S_B \left(\frac{I_C}{S_C + I_C + R_C} \right) - p E_D \left(\frac{\alpha_{ES} S_M + \alpha_{EE} E_M + \alpha_{EI} I_M}{S_M + E_M + I_M} \right) - \varphi E_D - \mu_1 E_D$$

$$(1.9) \quad \dot{E}_O = \tau p \alpha_{SI} S_D \left(\frac{I_M}{S_M + E_M + I_M} \right) + p E_D \left(\frac{\alpha_{ES} S_M + \alpha_{EE} E_M + \alpha_{EI} I_M}{S_M + E_M + I_M} \right) - \psi E_O - \tilde{\mu} E_O$$

(1.10)

$$(1.11) \quad \dot{I}_{L} = \frac{\gamma}{K} (\theta I_{O} + \frac{\theta' E_{O}}{\epsilon}) [K - (S_{L} + I_{L})] - aI_{L} - \mu_{2} I_{L}$$

$$(1.12) \ \dot{I}_M = raI_L + \nu E_M - \mu_1 I_M$$

$$(1.13) \quad \dot{I}_B = (1 - r)aI_L - bI_B - \mu_1 I_B$$

$$(1.14) \quad \dot{I}_D = bI_B + \varphi E_D - pI_D \left(\frac{\alpha_{IS} S_M + \alpha_{IE} E_M + \alpha_{II} I_M}{S_M + E_M + I_M} \right) - \mu_1 I_D$$

$$(1.15) \quad \dot{I}_O = pI_D \left(\frac{\alpha_{IS} S_M + \alpha_{IE} E_M + \alpha_{II} I_M}{S_M + E_M + I_M} \right) + \psi E_O - \tilde{\mu} I_O$$

(1.16)

$$(1.17) \quad \dot{S}_C = -\xi b S_C \left(\frac{S_B + I_B}{S_C + I_C + R_C} \right) \left(\frac{I_B}{S_B + I_B} \right)$$

$$(1.18) \quad \dot{I}_C = \xi b S_C \left(\frac{S_B + I_B}{S_C + I_C + R_C} \right) \left(\frac{I_B}{S_B + I_B} \right) - \omega I_C$$

$$(1.19) \ \dot{R}_C = \omega I_C$$