AFRE 835: Introductory Econometrics

Chapter 7: Multiple Regression Analysis: Discrete Variables

Spring 2017

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

1 / 38

Introduction

- For the most part, we have focussed our attention on continuous (or quantitative) dependent and independent variables thus far.
- However, we are often interested in how a dependent variable changes over qualitatively different (or discrete) subgroups; e.g.,
 - How housing prices vary by region of the country;
 - How wages vary by gender or race;
 - How educational outcomes vary by private versus public education systems;
 - How regional economic growth varies by EPA non-attainment designation;
- We are also often interested in how discrete outcomes are impacted by different discrete or continuous independent variables; e.g.,
 - How female participation in the labor force is impacted family size and composition;
 - How promotion varies by gender or race;
 - How arrests are impacted by law enforcement expenditures and sentencing policies;

Outline

- Discrete Independent Variables
 - A Single Binary Independent Variable
 - Using Binary Variables for Categorical/Ordinal Variables
 - Interactions Involving Binary Variables
 - Testing for Differences in Regression Functions Across Groups
- 2 Binary Dependent Variables: The Linear Probability Model
- Interpreting Discrete Dependent Variables

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

Discrete Independent Variables

Discrete Variables

- A discrete variable is one that takes on at most a finite or countably infinite number of values.
- The most common discrete variable is a binary (or dummy) variable, that takes on only one of two values (0 and 1).
- Examples include
 - female=1 for women; =0 for men;
 - married=1 for a married individual; =0 for a single individual;
 - hispanic=1 for a hispanic individual; =0 for for a non-hispanic individual;
 - jobtraining=1 for an individual who participated in a job training program; =0 for those who did not;
 - constillage=1 for a farmer employing conservation tillage; =0 for farmers using conventional tillage;

A Single Binary Independent Variable

 The simplest case is when we add a single binary variable to a simple regression model, with

$$y = \beta_0 + \delta_0 D + \beta_1 x + u \tag{1}$$

where D is our binary (or dummy) variable.

- The binary variable represents a *shift* in the intercept for those individuals in the group represented by D=1.
- To see this, note that under the zero conditional mean assumption:

$$E(y|x, D=0) = beta_0 + beta_1x$$
 (2)

while

$$E(y|x, D=1) = beta_0 + \delta_0 + beta_1 x \tag{3}$$

• The group represented by D=0 is typically referred to as the base group.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

5 / 38

Discrete Independent Variables

A Single Binary Independent Variable

The Wage Model Example

 Wooldridge uses an example modeling wage, including a binary variable for females; i.e.,

$$wage = \beta_0 + \delta_0 female + \beta_1 educ + u \tag{4}$$

- Here we are modeling the impact of education on wages, allowing for difference between male and female wages.
- Males are the base group.
- The model allows for an overall gender effect on wages, but assumes the returns to education is the same for both men and women.
- In this case, we would expect that $\beta_1 > 0$ and $\delta_0 < 0$.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

7 / 38

Discrete Independent Variables

A Single Binary Independent Variable

Using the WAGE1 Data Set

reg wage fem	nale educ						
Source	SS	df	MS	Numb	er of obs	=	526
				- F(2,	523)	=	91.32
Model	1853.25304	2	926.626518	B Prob	> F	=	0.0000
Residual	5307.16125	523	10.1475359	R-sq	uared	=	0.2588
				- Adj	R-squared	=	0.2560
Total	7160.41429	525	13.6388844	Root	MSE	=	3.1855
wage	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
female	-2.273362	.2790444	-8.15	0.000	-2.82154	7	-1.725176
educ	.5064521	.0503906	10.05	0.000	.407459	2	.605445
_cons	.6228168	.6725334	0.93	0.355	69838	2	1.944016

Controlling for Additional Variables

	Female	Add Educ	Add Exper & Tenure
female	-2.5118	-2.2734	-1.8109
	(0.3034)**	(0.2790)**	(0.2648)**
educ		0.5065	0.5715
		(0.0504)**	(0.0493)**
exper			0.0254
			(0.0116)*
tenure			0.1410
			(0.0212)**
_cons	7.0995	0.6228	-1.5679
	(0.2100)**	(0.6725)	(0.7246)*
R^2	0.12	0.26	0.36
N	526	526	526
erriges (MSII)	Do not a	unte/distribute witho	out permission Spring

To not quote/distribute without permission $\rho < 0.05$, $\rho < 0.01$

Spring 2017

9 / 3

Discrete Independent Variables

A Single Binary Independent Variable

Interpreting Coefficients on Binary Variables with log(y)

In a model with:

$$\log(y) = \beta_0 + \delta_0 D + \beta_1 x_1 + \dots + \beta_k x_k + u \tag{5}$$

 $100 \cdot \delta_0$ is *roughly* interpreted as the percentage change in y given a change in D from D=0 to D=1, holding everything else fixed.

• The exact percentage change would be

$$100 \cdot [exp(\delta) - 1] \tag{6}$$

ullet The difference between the two will depend on the size of δ_0

Error

The following figure graphs $diff = \{100 \cdot \delta_0\} - \{100 \cdot [exp(\delta) - 1]\};$ indicating the bias in using the simple percentage change interpretation of $100 \cdot \delta_0$.

Discrete Independent Variables

Using Binary Variables for Categorical/Ordinal Variables

Dummy Variables for Catagorical/Ordinal Variables

- There are many settings in which explanatory variables are ordinal or categorical in nature;
 - Credit ratings for cities or individuals;
 - Water quality evaluations (e.g., the Water Quality Ladder: *boatable*, *fishable*, *swimmable*, *drinkable*);
 - Schooling (e.g., high school graduate, some college, college graduate, some graduate work, professional degree, etc.)
 - Qualitative survey questions with response categories such as *strongly* agree, agree, disagree, strongly disagree and the like;
 - Qualitative evaluations (e.g., attractiveness: homely, quite plain, average, good looking, strikingly beautiful or handsome.)
- In these settings, it typically makes little sense to incorporate these variables directly in the model.

Wage Example

Suppose we have the following variable on schooling:

$$schooling = \begin{cases} 1 & \text{grade school or less} \\ 2 & \text{grade school graduate} \\ 3 & \text{some high school} \\ 4 & \text{high school graduate} \\ 5 & \text{some college} \\ 6 & \text{college graduate} \\ 7 & \text{some graduate education} \end{cases}$$
 (7)

• Consider simply including schooling in a simple regression model

$$In(wages) = \beta_0 + \beta_1 schooling + u \tag{8}$$

- This model would assume that each step in schooling has the same impact of wages.
 - ... The marginal effect of graduating grade school is the same as the marginal effect of graduating college

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

13 / 38

Discrete Independent Variables

Using Binary Variables for Categorical/Ordinal Variables

. reg lwage so	chooling						
Source	SS	df	MS	Number - F(1, 5	of ob	s =	526 127.07
Model Residual	28.948833 119.380929	1 524	28.948833	B Prob >	· F	=	0.0000 0.1952 0.1936
Total	148.329762	525	. 28253288	_	•	u – =	.47731
lwage	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
schooling _cons	.1758321 .8637806	.0155986 .0705173	11.27 12.25	0.000 0.000	. 1451		.2064755 1.002312

Each category of school increases wages by roughly 18 percent.

Binary Variable Categories

 A better approach would be to create a series of binary variables to represent each category; e.g.,

$$D_j = \begin{cases} 1 & schooling = j \\ 0 & otherwise \end{cases} \tag{9}$$

 Each category would then be included as a distinct binary variable in our regression model;

$$In(wages) = \beta_0 + \delta_2 D_2 + \dots + \delta_7 D_7 + u. \tag{10}$$

• β_0 represents the average log wage for those not completing grade school, while δ_j represents the increased wages relative to those in group 1 from having completed education level j.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

15 / 38

Discrete Independent Variables

Using Binary Variables for Categorical/Ordinal Variables

Source	SS	df	MS	Numb	per of obs	=	526
				- F(6,	, 519)	=	26.28
Model	34.5640494	6	5.76067491	. Prob	o > F	=	0.0000
Residual	113.765712	519	.219201758	R-sc	quared	=	0.2330
				- Adj	R-squared	=	0.2242
Total	148.329762	525	.28253288	Root	t MSE	=	.46819
lwage	Coef.	Std. Err.	t	P> t	[95% Coi	nf.	Interval]
d2	.1836909	.1488005	1.23	0.218	108634	4	.4760163
d3	0240041	.1227278	-0.20	0.845	265108	4	.2171002
d4	.2614643	.1152604	2.27	0.024	.0350	3	.4878985
d5	.3772034	.118818	3.17	0.002	.143780	1	.6106268
d6	.6789231	.1241025	5.47	0.000	.435118	1	. 922728
d7	.9812598	.1387404	7.07	0.000	.708698	8	1.253822
_cons	1.293997	.1103534	11.73	0.000	1.077203	3	1.510792

Why don't we include a binary variable for group 1 (i.e., D_1)?

Estimating Incremental Gains

- Having a comparison to group 1 can be useful, but we may instead be interested in the incremental gains from moving up a group.
- In this case we might form the group binary variable as follows:

$$\tilde{D}_{j} = \begin{cases} 1 & schooling \ge j \\ 0 & \text{otherwise} \end{cases}$$
 (11)

Our regression model;

$$In(wages) = \beta_0 + \delta_2 \tilde{D}_2 + \dots + \delta_7 \tilde{D}_7 + u. \tag{12}$$

• In this case:

$$E[In(wage)|D_j = 1] = \beta_0 + \delta_2 + \dots + \delta_j \tag{13}$$

$$\Rightarrow E[ln(wage)|D_j = 1] - E[ln(wage)|D_{j-1} = 1] = \delta_j$$
 (14)

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

17 / 38

Discrete Independent Variables Using

Using Binary Variables for Categorical/Ordinal Variables

. reg lwage to	12 td3 td4 td5	td6 td7					
Source	SS	df	MS	Numb	er of ob	s =	526
				- F(6,	519)	=	26.28
Model	34.5640494	6	5.76067491	. Prob	> F	=	0.0000
Residual	113.765712	519	.219201758	R-sq	uared	=	0.2330
				- Adj	R-square	d =	0.2242
Total	148.329762	525	.28253288	Root	MSE	=	.46819
lwage	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
td2	.1836909	.1488005	1.23	0.218	1086	344	.4760163
td3	207695	.1133488	-1.83	0.067	4303	739	.0149838
td4	.2854684	.0631768	4.52	0.000	.1613	546	.4095821
td5	.1157391	.0551989	2.10	0.036	.0072	984	.2241799
td6	.3017196	.0718568	4.20	0.000	.1605	538	.4428855
td7	.3023368	.1014622	2.98	0.003	.1030	097	.5016639
_cons	1.293997	.1103534	11.73	0.000	1.077	203	1.510792

Finishing degrees has a bigger impact than the longer incremental years.

Binning

- In the case of continuous variables, we often want to represent the impact of a variable in a flexible fashion.
- Including quadratic or cubic terms may not suffice.
- One solution is to include binary variables representing discrete ranges or "bins" of the variable.
- This is commonly done for weather variables, where we might include, say, average temperature in the form of discrete bins:

yields =
$$\beta_0 + \delta_2 D_{T2} + \cdot + \delta_B D_{TB} + \text{other factors} + u$$
 (15)

where B denotes the number of temperature bins and

$$D_{Tb} = \begin{cases} 1 & AvgTemp \in (T_b, T_{b+1}] \end{cases}$$
 (16)

with T_b and T_{b+1} denoting the lower and upper bounds, respectively, of temperature bin.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

19 / 38

Discrete Independent Variables

Interactions Involving Binary Variables

Interacting Two Binary Variables

- We are often interesting in the combined effect of two binary variables,
- For example, we might be interested if there are differences in wage by both gender (female) and region (south), as well as in combination.

$$ln(wages) = \beta_0 + \delta_1 female + \delta_2 south + \delta_3 female \times south + u$$
 (17)

• In this setting, and given the zero conditional mean assumption,

$$E[ln(wages)|female = 1] = \beta_0 + \delta_1 + \delta_2 south + \delta_3 south$$

 $E[ln(wages)|female = 0] = \beta_0 + \delta_2 south$
 $\Rightarrow E[ln(wages)|female = 1] - E[ln(wages)|female = 0] = \delta_1 + \delta_3 south$

• This allows us to test whether gender discrimination differs by region.

In this case, there does not appear to be a regional difference in gender discrimination.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

21 / 38

Discrete Independent Variables

Interactions Involving Binary Variables

Interacting a Binary and Continuous Variable

- We many also want to interact binary and continuous variables.
- For example if we want to understand the returns to experience and whether these returns differ by gender

$$In(wage) = \beta_0 + \delta_0 female + \beta_1 exper + \delta_1 exper \times female + u$$
$$= (\beta_0 + \delta_0 female) + (\beta_1 + \delta_1 female) \times exper + u \quad (18)$$

- δ_0 capture the shift in the intercept for females, while δ_1 capture the shift in the slope, or marginal impact of *exper* on ln(wages).
- Also

$$\begin{split} &E[\mathit{In}(\mathit{wage})|\mathit{female} = 1] = \beta_0 + \delta_0 + (\beta_1 + \delta_1)\mathit{exper} \\ &E[\mathit{In}(\mathit{wage})|\mathit{female} = 0] = \beta_0 + \beta_1\mathit{exper} \\ &\Rightarrow E[\mathit{In}(\mathit{wage})|\mathit{female} = 1] - E[\mathit{In}(\mathit{wage})|\mathit{female} = 0] = \delta_0 + \delta_1\mathit{exper} \end{split}$$

. gen femaleex	per = female*	exper					
. reg lwage fe	emale exper fe	maleexper					
Source	SS	df	MS	Numbe	r of obs	s =	526
				- F(3,	522)	=	31.78
Model	22.9051679	3	7.63505595	Prob	> F	=	0.0000
Residual	125.424594	522	.240277	R-squ	ared	=	0.1544
				- Adj R	-squared	= t	0.1496
Total	148.329762	525	.28253288	Root	MSE	=	.49018
lwage	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
female	2934318	.0685958	-4.28	0.000	42818	396	158674
exper	.0066007	.0021976	3.00	0.003	.00228	335	.0109179
femaleexper	0058634	.0031567	-1.86	0.064	01206	649	.000338
_cons	1.697672	.0486394	34.90	0.000	1.6021	119	1.793225

In this case, the gap between wages for men versus women appears to grow with experience.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

23 / 38

Testing for Differences in Regression Functions Across Groups

- In the previous example, we might want to test whether the gender effects are statistically significant; i.e., whether or not the ln(wage) regression equations differ for the two groups.
- One way to do this is to test the hypothesis H_0 : $\delta_0 = 0$ and $\delta_1 = 0$ versus the alternative hypothesis H_A : H_0 is not true.
- Using our F test from chapter 4, we have

$$F = \frac{\frac{SSR_c - SSR_{uc}}{q}}{\frac{SSR_{uc}}{n - k - 1}} = \frac{\frac{146.5 - 125.4}{2}}{\frac{125.4}{521}} = \frac{10.55}{0.24} = 44.0 \sim F_{2,521}$$
(19)

• The corresponding 1% critical level is 4.61, so we clearly reject this restriction.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

25 / 38

Discrete Independent Variables

Testing for Differences in Regression Functions Across Groups

The Chow Test

- An alternative way of constructing this F- statistic is to obtain $SSR_{uc} = SSR_f + SSR_m$, where SSR_f denotes the SSR from regressing In(wage) on exper for the female = 1 subpopulation and SSR_m denotes the SSR from regressing In(wage) on exper for the female = 0 subpopulation.
- This will yield the same F stat and the same result.
- It's just a different way of constructing the components.
- The approach can readily be generalized to more than two groups.

. reg lwage ex	oper if female	==0					
Source	SS	df	MS		er of obs	=	274
					272)	=	7.77
Model	2.16773686	1	2.16773686			=	0.0057
Residual	75.9164134	272	.279104461		uared	=	0.0278
				,	R-squared	=	0.0242
Total	78.0841503	273	.286022529	Root	MSE	=	.5283
lwage	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
exper	.0066007	.0023685	2.79	0.006	.00193	78	.0112636
_cons	1.697672	.0524223	32.38	0.000	1.5944	57	1.800877
. reg lwage ex	SS SS	==1 df	MS		er of obs	=	252
Model	.025431397	1	.025431397		250)	=	0.13 0.7204
Residual	49.5081804	250	.198032722		> г uared	=	
Residuat	49.3001004	250	.190032722		uareu R-squared	=	
Total	49.5336118	251	.197345067	,		=	
lwage	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
exper	.0007373	.0020574	0.36	0.720	003314	17	.0047893
_cons	1.404241	.0439119	31.98	0.000	1.3177	56	1.490725

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

27 / 38

Discrete Independent Variables

Testing for Differences in Regression Functions Across Groups

Program Evaluation

- Researchers are often interested in evaluating the success of a policy, such as the impact of :
 - A voluntary rate program on energy usage;
 - A job training program on wages;
 - Summer school on student achievement;
 - Financial aid packages on students recruitment;
 - Military service on wages;
 - Food aid programs on health outcomes;
- In each of these cases, it is tempting to usage a simple model, with

$$y = \beta_0 + \beta_1 partic + u \tag{20}$$

where partic denotes participation in the program in question.

• The key issue here is *self-selection*.

... Individuals select to participate in the program and that selection process is likely correlated with unobserved factors represented by u, requiring special techniques to avoid biased estimates.

Binary Dependent Variables

- Thus far, we have focused on continuous dependent variables.
- We might be interesting in modeling binary outcomes, such as
 - whether or not an individual works outside the home;
 - whether or not a student graduates;
 - whether or not a home loan is approved;
 - whether or not an individual is arrested;
 - whether or not a farmer participates in a conservation program;
 - whether or not some one smokes.
- However, none of the theoretical results regarding OLS (unbiasedness, consistency, asymptotic normality, etc.) required y to be continuous.
- All the results that we have seen carry forward if y is discrete.
- Interpreting OLS results in these cases, however, requires additional care.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

29 / 38

Binary Dependent Variables: The Linear Probability Model

The Linear Probability Model (LPM)

• Consider the standard multiple regression model, but with *y* representing a binary variable:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u \tag{21}$$

• Under the zero conditional mean assumption

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k \tag{22}$$

Interpreting the model in this case is helped by noting that

$$E(y|x) = 1 \cdot P(y = 1|x) + 0 \cdot P(y = 1|x)$$

= $P(y = 1|x)$ (23)

• Thus, in the case of a binary dependent variable, we can interpret our population regression model as implying a *Linear Probability Model* (*LPM*); i.e.,

$$P(y=1|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k \tag{24}$$

Interpreting the LPM

• In the LPM, the parameter β_j measures how much the probability of "success" (i.e., $Pr[y=1|\mathbf{x}]$) changes when x_j changes, holding all other factors fixed.

 $\beta_j = \frac{\partial P(y=1|\mathbf{x})}{\partial x_j} \tag{25}$

• As was the case for a continuous *y*, we can include nonlinear functions of our regressors in the model, as well as qualitative and discrete independent variables.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

31 / 38

Binary Dependent Variables: The Linear Probability Model

Example: Labor Force Participation

- Wooldridge examines labor force participation for women in 1975.
- A simpler version of his model would be:

$$inlf = \beta_0 + \beta_1 kidslt6 + \beta_2 kidsge6 + \beta_3 educ$$
 (26)

In this case

$$\beta_3 = \frac{\partial P(inlf = 1|\mathbf{x})}{\partial educ} = \frac{\Delta P(y = 1|\mathbf{x})}{\Delta educ}$$
(27)

denotes the change in the probability of labor force participation for each additional year of education.

Similarly,

$$\beta_1 = \frac{\Delta P(inlf = 1|\mathbf{x})}{\Delta kidslt6}$$
 (28)

denotes the change in the probability of labor force participation for each additional child less than 6.

. reg inlf kid	Islt6 kidsge6	educ				
Source	SS	df	MS	Number of obs	=	753
				- F(3, 749)	=	25.14
Model	16.8988576	3	5.63295254	Prob > F	=	0.0000
Residual	167.828898	749	.224070625	R-squared	=	0.0915
				- Adj R-squared	=	0.0878
Total	184.727756	752	.245648611		=	.47336
inlf	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
kidslt6	2267395	.03328	-6.81	0.00029207	26	1614064
kidsge6	.0114245	.0131559	0.87	0.38501440	24	.0372514
educ	.0467749	.0076333	6.13	0.000 .03178	98	.0617601
_cons	.0321156	.0975068	0.33	0.74215930	37	.2235348

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

33 / 38

Binary Dependent Variables: The Linear Probability Model

Results

- The results suggest that women with more education are more likely to enter the labor force, with each additional year increasing the probability by roughly 4.7 percentage points.
- Each additional child reduces the labor force participation probability by 22.7%.
- Older children have neither a statistically significant impact nor a substantive impact.
- The results illustrate one limitation of the LPM.
 - ...it assumes a constant marginal impact of each independent variable, whereas there may be nonlinear results.

Also, note that:

$$P(inlf = 1|kidslt6 = 3, kidsge6 = 0, educ = 8)$$

=0.032 + (-0.227)3 + (0.011)0 + (0.032)8 = -0.393 (29)

The LPM can yield probabilities outside the unit interval.

Binning Education

- The problem of constant marginal effects can be somewhat mitigated by using binning or quadratic variables.
- Consider in the case of education, subdividing education into two year increments/bins with

$$D_{8,9} = 1$$
 for $7 < educ \le 9$; $= 0$ otherwise $D_{10,11} = 1$ for $9 < educ \le 11$; $= 0$ otherwise $D_{12,13} = 1$ for $11 < educ \le 13$; $= 0$ otherwise $D_{14,15} = 1$ for $14 < educ \le 15$; $= 0$ otherwise $D_{16+} = 1$ for $15 < educ$; $= 0$ otherwise

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

35 / 38

Binary Dependent Variables: The Linear Probability Model

reg	inlf	kidslt6	kidsge6	d89	d1011	d1213	d1415	d16p

Source	SS	df	MS	Number of obs	=	753
Model Residual	16.5300232 168.197732	7 745	2.36143189	F(7, 745) Prob > F R-squared	=	10.46 0.0000 0.0895
Total	184.727756	752	.245648611	Adj R-squared Root MSE	=	0.0809 .47515

inlf	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
kidslt6	2228721	.0334173	-6.67	0.000	2884753	1572689
kidsge6 d89	.0120482 .0568961	.0132595 .1292979	0.91 0.44	0.364 0.660	0139821 1969355	.0380786 .3107277
d1011	.1505106	.1231388	1.22	0.222	0912297	.3922509
d1213 d1415	.2243499 .2921095	.1144714 .1266896	1.96 2.31	0.050 0.021	000375 .0433984	.4490748 .5408206
d1415	.4450079	.1214317	3.66	0.021	.2066188	.683397
_cons	.3708122	.1129393	3.28	0.001	.1490952	.5925293

Heteroskedasticity

- Another limitation of the LPM is that it necessarily violates the homoskedasticity assumption.
- In particular, one can show that

$$Var(y|x) = P(y = 1|x)[1 - P(y = 1|x)]$$
 (30)

• This doesn't mean the OLS estimator is suddenly biased or inconsistent, but traditional standard error calculations will be inconsistent and should be used with caution.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

37 / 38

Interpreting Discrete Dependent Variables

Interpreting Discrete Dependent Variables

- We've seen in interpreting a LPM, that we need to be careful in interpreting the implications of the model.
- The same is true when the dependent variable is discrete (such as the number of children in a family or the number of trips taken by a household.
- The marginal effect being measured are the marginal effects of the expected value of the dependent variable.
 - ... Just because the dependent variable is discrete it doesn't mean that these marginal effects have to be discrete.