Voice Automated Helping Hand using Object Detection

Literature Review

Nigel C. Saldanha (22B-EE-027)

Pritesh Falkar (22B-EE-038)

Ashwesh Mayekar (22B-EE-006)

Atharva Gayakwad (22B-EE-009)

Project Guide: Dr. Sangeeta Mahaddalkar

Agenda

- 1. Introduction
- 2. Abstract
- 3. Literature Review
- 4. Primary and Secondary Objectives
- 5. Operations flowchart
- 6. Block diagram, component specification and B.O.M
- 7. Estimated timeline
- 8. References

1. Introduction

- Elderly and physically challenged individuals often face difficulties in performing simple daily tasks like retrieving household objects.
- Existing robotic assistive devices are either too complex, expensive, or not user-friendly for independent use.
- Many available solutions lack natural interfaces (like voice control) and struggle with accurate object detection and reliable grasping.
- There is a gap in designing a **low-cost**, **intuitive**, **and accurate** helping hand system that can be practically deployed at home.

Our Approach:

- Develop a Helping Hand using:
 - Voice-based commands via a simple mobile app.
 - o Dual-camera object detection.
 - o A robotic arm modeled with inverse kinematics for reliable grasping.
- Aim: To provide ease of use, high accuracy, and adaptability for assistive living.

2. Abstract

This project presents the design and development of a Voice Automated Helping Hand, an intelligent robotic arm that assists users in retrieving household objects through simple voice commands. A mobile application serves as the user interface, enabling real-time speech-totext conversion and intent recognition. A dual-camera system is employed, with a stationary overhead camera for global object localization and an arm-mounted camera for local refinement. Object detection is powered by YOLObased models, while arm movements are modeled using and inverse kinematics. The system prioritizes ease of use, reliability, and accuracy, aiming to serve as a practical assistive device for elderly and physically challenged individuals.

3. Literature Review Summary:

S.No.	Paper Title	Author(s)/Year	Technologies/Methodologies	Key Results/findings	Remarks / Notes
[1]	Voice Controlled personal assistant robot for elderly people	Jishnu U.K.; Indu V.; K.J. Ananthakrishnan; Korada Amith; P Sidharth Reddy; Pramod S. 2020 5th International Conference on Communication and Electronics Systems (ICCES)	 Rasp pi 3B YOLO HC05 bluetooth mode Four wheeled 	• FSR - shows inverse relationship between resistance and applied force. i.e. voltage rises as resistance decreases. Can be effectively used to measure gripping force (low force-low voltage and vice versa)	• FSR grasping force
[2]	Assistive device for physically challenged person using voice controlled intelligent robotic arm	Ripcy Anna John; Sneha Varghese; Sneha Thankam Shaji; K.Martin Sagayam 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)	 1.Voice commands 4 DOF arm Joystick Rail system NEMA17 Google Assistant 	 Phoneme based approach acoustic model (86.5% acc) SSD mobile net regression model (87.3%) GoogleNet (78.5%) ImageNet (87.8%) 	 Success based on user acceptability SNR (signal to noise ratio) 74% accuracy
[3]	Trends in service robots for the disabled and the elderly (ISAC-HERO system)	K. Kawamura; M. Iskarous Proceedings of IEEE/RSJ International Conference Intelligent Robots and Systems (IROS'94) Year: 1994 Conference Paper Publisher:IEEE	 Fuzzy command voice interpreter Macro action builder Blackboard logic for communication Task planning - complex tasks broken into sub tasks PID tuning on each joint, transputer based controller Macvicar Whelan fuzzy 	Success based on user acceptability (user interface, learning and adaptation)	_
[4]	ROS based control of robot using voice recognition	Rajesh Kannan Megalingam; Racharla Shriya Reddy; Yannam Jahnavi; Manaswini Motheram 2019 Third International Conference on Inventive Systems and Control (ICISC) Year: 2019 Conference Paper Publisher: IEEE	 HMM model for speech enhancement Pocket sphinx (offline) Rasp pi 3B ROS Virtebri algo for best path to decode speech 	-	Uses recognizer and mediator programs

S.No.	Paper Title	Author(s)/Year	Technologies/Methodologies	Key Results/findings	Remarks / Notes
[5]	Small scale robot arm design with pick and place mission based on inverse kinematics	Adnan Rafi Al Tahtawi , Muhammad Agni , Trisiani Dewi Hendrawati	Simple Kinematics equations for 3 DOF arm	-	-
[6]	Design, construction and control of SCARA prototype with 5 DOF	Delond Angelo Jimenez-Nixon; María Celeste Paredes-Sánchez; Alicia María Reyes-Duke 2022 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT) Year: 2022 Conference Paper Publisher: IEEE	 Denavit-Hartenberg algo and inverse kinematics using Geometric method 4 DOF 	Height limitation	 Used V-model for design planning and implementation
[7]	Designing 8 Degrees of Freedom Humanoid robotic arm	Le Bang Duc; Mohd Syaifuddin; Truong Trong Toai; Ngo Huy Tan; Mohd Naufal Saad; Lee Chan Wai 2007 International Conference on Intelligent and Advanced Systems Year: 2007 Conference Paper Publisher: IEEE	• 8 DOF robotic hand	-	 Shows different grasping techniques in case we want to make the end effector more versatile in picking different objects.
[8]	Swab-bot - an oral swabbing robotic arm	John Varghese Panicker; Divy Jain; Vibodh H. N; T. Vishnu Yeshwanth; Swetha Ramaiah 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) Year: 2023 Conference Paper Publisher: IEEE	Rasp pi 4BAdafruit servo hatRasp pi cam	Contains useful kinematics equations for 4 DOF arm	Arm mounted camera
[9]	Voice conversion based augmentation and a Hybrid CNN-LSTM model for improving speaker independent keyword recognition on limited datasets	Yeshanew Ale Wubet; Kuang-Yow Lian IEEE Access Year: 2022 Volume: 10 Journal Article Publisher: IEEE	 Speaker independent and detects keywords ACVAE Data augmentation (creates new slightly altered sample from original to augment data set) Pytorch, Keras, Tensorflow 	• 96% accuracy	• Speakers from 3 different countries, 12 keywords spoken 10 times
[10]	An MFCC-based Secure Framework for Voice Assistant Systems	Syed Fahad Ahmed;Rabeea Jaffari; Moazzam Jawaid; Syed Saad Ahmed;Shahnawaz Talpur 2022 International Conference on Cyber Warfare and Security (ICCWS) Year: 2022 Conference Paper Publisher: IEEE	• 1. Mel-frequency cepstral coefficients based user authenticated security	• 1.Trained on 10 authentic users in 5 conditions: 84% accuracy in normal condition and 59% accuracy in illness condition	VC arms have limited actions and can take up a lot of electricity

S.No.	Paper Title	Author(s)/Year	Technologies/Methodologies	Key Results/findings	Remarks / Notes
[11]	Comparative study on various architecture of YOLO models used in object recognition	Baranidharan Balakrishnan; Rashmi Chelliah; Madhumitha Venkatesan; Chetan Sah 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) Year: 2022 Conference Paper Publisher: IEEE	-	Darknet architecture gives the maximum accuracy among all the other architectures used. Following those come the Keras architecture and the ImageAI library, where in the ImageAI library, Tiny architecture gave the maximum among the other architectures in that library	-
[12]	Design a Human-robot interaction framework to detect household objects	Sadi Rafsan; Safayet Arefin; A. H. M. Mirza Rashedul Hasan; Mohammed Moshiul Hoque 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV) Year: 2016 Conference Paper Publisher: IEEE	 3 methods to detect objects: size, color, position Haar, openCV_traincascade, GentleAdaBoost 	88% accuracy11.06% false positive	• Text based interaction
[13]	Object detection using YOLO- V8	B Karthika; M Dharssinee; V Reshma; R Venkatesan; R Sujarani 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) Year: 2024 Conference Paper Publisher: IEEE	DETREfficientDetRoboflow for annotating	• 300 epochs, 85% precision, 80% recall, 82% mAP	-
[14]	Design and implementation of a robotic arm assistant with voice interaction using machine vision	Nantzios, G.; Baras, N.; Dasygenis, M. Design and Implementation of a Robotic Arm Assistant with Voice Interaction Using Machine Vision. Automation 2021, 2, 238–251. https://doi.org/10.3390/automation2040015	Nantzios, G.; Baras, N.; Dasygenis, M. Design and Implementation of a Robotic Arm Assistant with Voice Interaction Using Machine Vision. Automation 2021, 2, 238–251. https://doi.org/10.3390/automation2040015	 90% accuracy (96% with QR) 90% voice recognition (96% with QR) Drop item failure 3% Avg execution time 52secs 	 Arm range 200 degrees Movement speed reduced to 30% of attainable speed
[15]	Robotic arm vehicle using voice recognition for challenged people	Jia Nannda; Lokareddy Venkanna Dora; Tanvi Gupta; Aryan Chouhan; Anmol Verma 2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT)	 Vehicle Predefined commands for voice recognition Ultrasonic sensors 	Total time completion formulas	-

4.1 Primary objectives:

• Build simple one button app

Aim: To design a user friendly app catered to an elderly audience and achieve voice accuracy >90%

- App using MIT app inventor/ Flutter
- OpenAI whisper/Vosk/SpeechRecognition for Speech-to-text
- Tensorflow for intent classifier

• Using YOLOe/YOLOv12 for object detection

Aim: Reduce false positives <11.06% and achieve detection accuracy >90%

- Dual-camera localization (stationary Darknet based model + dynamic arm mounted TinyYOLO based model)
- Roboflow for annotating and labelling

Arm mechanics

Aim: Reduce drop item failure <3%

- o Denavit-Hartenberg and geometric inverse kinematics to model arm movements mathematically
- Implement appropriate gripping using FSR

4.2 Secondary objectives:

- Implement rail-based system across workspace to extend horizontal picking range
- Improve upon 74% SNR using HMM + Viterbi decoding
- Fine tune arm movements using PID and picking accuracy
- Lightweight data augmentation to artificially expand small speech datasets
- Use QR code object detection approach for commonly used household items
- Improve upon existing end-effector design to optimize picking objects of different shapes and sizes
- Security layer for voice recognition

USER INPUT

(Voice Command)

User Presses Button on Phone App Voice Recorded → Sent to Raspberry Pi

SPEECH-TO-TEXT

(STT)

Raspberry Pi runs Voice/Whisper (Offline STT)

Converts Voice → Text

INTENT CLASSIFICATION

Tensor Flow Model Interprets Command (e. g. : "Bring Red Ball")

Extract Target Object + Action

5.1 Flow of operations

OBJECT DETECTION & LOCALIZATION

Overhead Camera: Detects All Objects + Gets XY

Positions

On Arm Camera: Used for Close-Up Object

Classification & Verification

FEEDBACK LOOP

Arm Camera Verifies Grasp

If Failed → Retry

If Success → Deliver to User

ESP32 Receives Coordinates + Action Runs Inverse Kinematics to Position Arm Operates Servos to Pick Up Objects

DECISION & CONTROL

Raspberry Pi decIdes Trajectory → Sends Movement

Command to ESP32

via Wi-Fi/Serial

5.2 High level overview

• User Input (App Interface)

- The user presses and holds a large button on the app.
- While holding, the app records the audio command.
- When released, recording stops and the audio is sent to the bot.
- The app then converts speech to text and displays it on screen for user verification.

Command Verification

- If the text matches what the user intended, the app sends it forward.
- If not, the user can re-record.
- o Once verified, the command is passed to the bot (Raspberry Pi).

• Intent Classification

- The Raspberry Pi runs a TensorFlow-based intent classifier.
- It interprets the command (e.g., "bring the phone," "pick up the bottle").
- The classifier decides what object needs to be fetched.

• Stationary Camera and Dynamic Arm-mounted camera

- A fixed overhead camera scans the workspace.
- A YOLO model identifies all visible objects and determines their approximate (x,y) coordinates and the number of objects using primary camera and identification of the objects is done by the dynamic cam.

• Arm Movement Initialization

- The ESP32 controlling the robotic arm receives the target coordinates.
- Using Denavit-Hartenberg + inverse kinematics, the arm is moved toward the rough position.

• Grasp Execution

• The end-effector (gripper) positions itself grasps the object.

• Object Retrieval

- Once the object is secured, the arm lifts it.
- The system calculates the path back (simple return path).

6.1 Block Diagram

6.2 Component specifications

1) Raspberry Pi 4 Model B

Processor	Broadcom BCM2711, Quad-core Cortex-A72 @ 1.8 GHz		
Memory	4 GB		
Connectivity	Dual-band Wi-Fi, Bluetooth 5.0, Gigabit Ethernet, 2× USB 3.0, 2× USB 2.0		
Video/Audio	2× micro-HDMI (4Kp60), MIPI DSI/CSI, audio out		
Storage	Micro-SD card slot		
Power	5V DC via USB-C (≥3A), PoE supported		
GPIO	40-pin header		
Temperature	0-50°C		

2) ESP 32-WROOM

Processor	Dual-core 32-bit LX6, up to 240 MHz	
Memory	520 KB SRAM, 4–16 MB flash support	
Connectivity	Wi-Fi 802.11 b/g/n, Bluetooth 4.2 (Classic + BLE)	
GPIO Pins	34 (PWM, ADC, DAC, UART, I ² C, SPI)	
PWM/ADC/DAC	16 PWM channels, 12-bit ADC, 2× 8-bit DAC	
Voltage	3.3 V typical	
Current	~160 mA (Wi-Fi active), <10 μA (deep sleep)	
Size	18 × 25.5 mm	

3) MG996R Servo Motor

Туре	High-torque metal-geared servo	
Torque	11 kg-cm @ 6V	
Rotation Angle	~360°	
Voltage	4.8 – 7.2 V	

4) MG90S Micro Servo

Type	Metal-geared micro servo	
Torque	2.2 kg-cm @ 6V	
Rotation	180°	
Voltage	4.8 – 6 V	

5) Raspberry Pi Camera Module 3

Sensor	Sony IMX708, 12.3 MP	
Focus	Phase Detection Autofocus (PDAF), 10 cm − ∞	
Video	1080p@50fps, 720p@100fps, 480p@120fps	
Field of View	75° (Standard)	
Variants	Standard, Wide, NoIR (for night vision)	
Interface	CSI connector (200 mm ribbon)	
Size	25 × 24 mm (approx.)	

6.3 Estimated B.O.M.

Sr. No	Components	Quantity	Estimated Price
1	1 Raspberry PI 4 Model B		5,758 Rs
2	2 ESP 32-WROOM		499 Rs
3	3 MG996R Servo Motor		1,119 Rs
4	4 MG90S Micro Servo		378 Rs
5	Raspberry PI Camera Module 3	2	6,198 Rs
		Total Price	13,952 Rs

7. Project Timeline

8. References

- [1] J. U.K., I. V., K. J. Ananthakrishnan, K. Amith, P. S. Reddy and P. S., Voice Controlled Personal Assistant Robot for Elderly People, 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2020, pp. 269-274, doi: 10.1109/ICCES48766.2020.9138101.
- [2] R. A. John, S. Varghese, S. T. Shaji and K. M. Sagayam, Assistive Device for Physically Challenged Persons Using Voice Controlled Intelligent Robotic Arm, 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2020, pp. 806-810, doi: 10.1109/ICACCS48705.2020.9074236.
- [3] K. Kawamura and M. Iskarous, Trends in service robots for the disabled and the elderly, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94), Munich, Germany, 1994, pp. 1647-1654 vol.3, doi: 10.1109/IROS.1994.407636.
- [4] R. K. Megalingam, R. S. Reddy, Y. Jahnavi and M. Motheram, ROS Based Control of Robot Using Voice Recognition, 2019 Third International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 2019, pp. 501-507, doi: 10.1109/ICISC44355.2019.9036443.
- [5] Al Tahtawi, Adnan & Agni, Muhammad & Hendrawati, Trisiani. (2021). Small-scale Robot Arm Design with Pick and Place Mission Based on Inverse Kinematics. Journal of Robotics and Control (JRC). 2. 10.18196/26124.
- [6] D. A. Jimenez-Nixon, M. C. Paredes-Sánchez and A. M. Reyes-Duke, Design, construction and control of a SCARA robot prototype with 5 DOF, 2022 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT), Soyapango, El Salvador, 2022, pp. 1-6, doi: 10.1109/ICMLANT56191.2022.9996479.
- [7] L. B. Duc, M. Syaifuddin, T. T. Toai, N. H. Tan, M. N. Saad and L. C. Wai, Designing 8 Degrees of Freedom Humanoid Robotic Arm, 2007 International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malaysia, 2007, pp. 1069-1074, doi: 10.1109/ICIAS.2007.4658549.

- [8] Panicker, John & Jain, Divy & N, Vibodh & Yeshwanth, T. & Ramaiah, Swetha. (2023). SwabBot-An oral Swabbing Robotic arm. 1-6. 10.1109/ICECCME57830.2023.10252564.
- [9] Y. A. Wubet and K. -Y. Lian, Voice Conversion Based Augmentation and a Hybrid CNN-LSTM Model for Improving Speaker-Independent Keyword Recognition on Limited Datasets, in IEEE Access, vol. 10, pp. 89170-89180, 2022, doi: 10.1109/ACCESS.2022.3200479.
- [10] S. F. Ahmed, R. Jaffari, M. Jawaid, S. S. Ahmed and S. Talpur, An MFCC-based Secure Framework for Voice Assistant Systems, 2022 International Conference on Cyber Warfare and Security (ICCWS), Islamabad, Pakistan, 2022, pp. 57-61, doi: 10.1109/ICCWS56285.2022.9998446.
- [11] B. Balakrishnan, R. Chelliah, M. Venkatesan and C. Sah, Comparative Study On Various Architectures Of Yolo Models Used In Object Recognition, 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 2022, pp. 685-690, doi: 10.1109/ICCCIS56430.2022.10037635.
- [12] S. Rafsan, S. Arefin, A. H. M. M. R. Hasan and M. M. Hoque, Design a human-robot interaction framework to detect household objects, 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 2016, pp. 973-978, doi: 10.1109/ICIEV.2016.7760144.
- [13] B. Karthika, M. Dharssinee, V. Reshma, R. Venkatesan and R. Sujarani, Object Detection Using YOLO-V8, 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 2024, pp. 1-4, doi: 10.1109/ICCCNT61001.2024.10724411.
- [14] Nantzios, G.; Baras, N.; Dasygenis, M. Design and Implementation of a Robotic Arm Assistant with Voice Interaction Using Machine Vision. Automation 2021, 2, 238-251.
- [15] J. Nannda, L. V. Dora, T. Gupta, A. Chouhan and A. Verma, A Robotic Arm Vehicle using Voice Recognition for Physically Challenged People, 2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT), Faridabad, India, 2024, pp. 858-862, doi: 10.1109/ICAICCIT64383.2024.10912202.

Thank you!

