

Introduction to Mathematical Logic

For CS Students

CS104/CS108

Yida TAO (陶伊达)

2024年5月12日

Table of Contents

1 Satisfiability and Validity

- ► Satisfiability and Validity
- Semantic Entailment

Decidability

Satisfaction of Formulas

1 Satisfiability and Validity

An interpretation $\mathcal I$ and environment E satisfy a formula α , denoted $\mathcal I \vDash_E \alpha$, iff $\alpha^{(\mathcal I,E)} = 1$. They do not satisfy α , denoted $\mathcal I \not\vDash_E \alpha$, if $\alpha^{(\mathcal I,E)} = 0$.

Form of α	Condition for $\mathcal{I} \vDash_E \alpha$
$P(t_1,\dots,t_k)$	$\left\langle t_1^{(\mathcal{I},E)},\dots,t_k^{(\mathcal{I},E)}\right\rangle \in P^{\mathcal{I}}$
$(\neg \beta)$	$\mathcal{I} \nvDash_{E} \beta$
$(\beta \wedge \gamma)$	both $\mathcal{I} \vDash_{E} \beta$ and $\mathcal{I} \vDash_{E} \gamma$
$(\beta \vee \gamma)$	either $\mathcal{I} \vDash_E \beta$ or $\mathcal{I} \vDash_E \gamma$ (or both)
$(\beta \rightarrow \gamma)$	either $\mathcal{I} \nvDash_E \beta$ or $\mathcal{I} \vDash_E \gamma$ (or both)
$(\forall x \ \beta)$	for every $\mathbf{a} \in aom(1)$, $1 \vdash_{E[x \mapsto a]} \beta$
$(\exists x \ \beta)$	there is some $a \in dom(\mathcal{I})$ such that $\mathcal{I} \models_{E[x \mapsto a]} \beta$

If $\mathcal{I} \vDash_{E} \alpha$ for every E, hen \mathcal{I} satisfies α , denoted $\mathcal{I} \vDash \alpha$.

Validity and Satisfiability

1 Satisfiability and Validity

Validity and satisfiability of formulas have definitions analogous to the ones for propositional logic (the term "tautology" is not used in FOL).

A formula α is

- valid: if every interpretation and environment satisfy α ; that is, if $\mathcal{I} \vDash_E \alpha$ for every \mathcal{I} and E.
- satisfiable: if some interpretation and environment satisfy α ; that is, if $\mathcal{I} \vDash_E \alpha$ for some \mathcal{I} and E.
- unsatisfiable: if no interpretation and environment satisfy α ; that is, if $\mathcal{I} \not\models_E \alpha$ for every \mathcal{I} and E.

1 Satisfiability and Validity

Let $f^{(1)}$ and $h^{(2)}$ be function symbols, $P^{(1)}$ and $Q^{(2)}$ be predicate symbols, a,b,c be constant symbols.

Define an interpretation \mathcal{I} by

- Domain: $D = \{1, 2, 3\}$
- Constant: $a^{\mathcal{I}} = 1$, $b^{\mathcal{I}} = 2$, $c^{\mathcal{I}} = 3$
- Functions: $f^{\mathcal{I}}(1) = 2$, $f^{\mathcal{I}}(2) = 3$, $f^{\mathcal{I}}(3) = 1$, $h^{\mathcal{I}} : (x, y) \mapsto min\{x, y\}$
- Predicates: $P^{\mathcal{I}} = \{1, 3\}, Q^{\mathcal{I}} = \{\langle 1, 2 \rangle, \langle 3, 3 \rangle, \langle 3, 1 \rangle\}$

Define an environment E by

$$E(x) = 3, E(y) = 3, E(z) = 1$$

1 Satisfiability and Validity

(continued from the previous slide)

We have:

- $\mathcal{I} \vDash_E P(h(f(a), z))$
- $\mathcal{I} \vDash_E Q(y, h(a, b))$

Give a new interpretation \mathcal{J} and environment G such that

- $\mathcal{J} \not\models_G P(h(f(a),z))$
- $\mathcal{J} \not\models_{\mathcal{G}} Q(\gamma, h(a, b))$

1 Satisfiability and Validity

Let L be a language consisting of variables x, y, z, function symbols $f^{(2)}, g^{(1)}$ and predicate symbol $P^{(2)}$.

Define an interpretation ${\mathcal I}$ by

- $dom(\mathcal{I}): \mathbb{N}$
- $f^{\mathcal{I}}$: sum
- $g^{\mathcal{I}}$: square

Consider the formula $\alpha \stackrel{\mathsf{def}}{=} f(g(x), g(y)) = g(z)$

- ullet Give an environment such that lpha is satisfiable
- Whether α is valid?

1 Satisfiability and Validity

Whether the following formulas are valid?

- $\exists y \forall x R(x,y) \rightarrow \forall x \exists y R(x,y)$
- $\forall x \exists y R(x, y) \rightarrow \exists y \forall x R(x, y)$ not valid
 $\exists x (P(x) \rightarrow \forall x P(x))$

Table of Contents

2 Semantic Entailment

- Satisfiability and Validity
- ➤ Semantic Entailment

Decidability

We write $\mathcal{I} \vDash_{E} \Sigma$ iff for every formula $\varphi \in \Sigma$, we have $\mathcal{I} \vDash_{E} \varphi$.

Let Σ be a set of FOL formulas and α be a FOL formula. We say $\Sigma \vDash \alpha$ if and only if

For any interpretation \mathcal{I} and environment E, if $\mathcal{I} \vDash_E \Sigma$ then $\mathcal{I} \vDash_E \alpha$ (or $\alpha^{(\mathcal{I},E)} = 1$).

Interpretation: every pair of interpretation and environment that makes Σ true must also make α true.

 $\emptyset \vDash \alpha$ means that α is valid.

2 Semantic Entailment

Prove that for any well-formed FOL formulas α and β :

$$\emptyset \vDash (\forall \mathbf{x}(\alpha \to \beta)) \to ((\forall \mathbf{x} \ \alpha) \to (\forall \mathbf{x} \ \beta))$$

Proof by contradiction: Suppose there are \mathcal{I} and E such that:

Then we have $\mathcal{I} \vDash_E \forall \mathbf{x} (\alpha \to \beta), \mathcal{I} \vDash_E \forall \mathbf{x} \ \alpha$, and $\mathcal{I} \not\vDash_E \forall \mathbf{x} \ \beta$. By definition, for every $a \in dom(\mathcal{I})$, we have $\mathcal{I} \vDash_{E[\mathbf{x} \mapsto a]} (\alpha \to \beta), \mathcal{I} \vDash_{E[\mathbf{x} \mapsto a]} \alpha$. Hence, for every $a \in dom(\mathcal{I})$, we also have $\mathcal{I} \vDash_{E[\mathbf{x} \mapsto a]} \beta$, which is $\mathcal{I} \vDash_E \forall \mathbf{x} \ \beta$. Contradiction.

2 Semantic Entailment

Prove that $\forall x(\neg \gamma) \vDash \neg(\exists x \ \gamma)$

Proof: Suppose $\mathcal{I} \vDash_E \forall x(\neg \gamma)$. By definition, we have:

For every
$$a \in dom(\mathcal{I})$$
, $\mathcal{I} \vDash_{E[\mathbf{x} \mapsto \mathbf{a}]} (\neg \gamma)$

which is equivalent to

For every
$$a \in dom(\mathcal{I})$$
, $\mathcal{I} \not\models_{E[\mathbf{x} \mapsto a]} \gamma$

which means

There is no
$$a \in dom(\mathcal{I})$$
 such that $\mathcal{I} \vDash_{E[\mathbf{x} \mapsto a]} \gamma$

If $\mathcal{I} \vDash_E (\exists x \ \gamma)$, then there is a $b \in dom(\mathcal{I})$ such that $\mathcal{I} \vDash_{E[x \mapsto b]} \ \gamma$, contradiction. Hence, $\mathcal{I} \vDash_E \neg (\exists x \ \gamma)$ holds as required.

2 Semantic Entailment

Let's define a language $L=\langle R^{(2)} \rangle$, and the following interpretations:

- $\mathcal{I}_3 = \langle \mathcal{P}(\mathbb{N}), \{(A, B) : A \subseteq B\} \rangle$

E(%)=2 E(y)=3

;p=如 在自然教域中

Questions:

- Find an environment E such that $\mathcal{I}_1 \vDash_E R(x, y)$ and $\mathcal{I}_2 \nvDash_E R(x, y)$
- Find a sentence α such that $\mathcal{I}_1 \not\models_E \alpha$ and $\mathcal{I}_2 \models_E \alpha$ • Find a sentence α such that $\mathcal{I}_2 \vDash_E \alpha$ and $\mathcal{I}_3 \vDash_E \alpha$

2 Semantic Entailment

而性肤没有关联

Prove that:

$$(\forall x P(x)) \rightarrow (\forall x Q(x)) \not\vDash \forall x (P(x) \rightarrow Q(x))$$

Idea: All we need to do is to find an \mathcal{I} (and E) such that: $\mathcal{I} \vDash_E (\forall x P(x)) \to (\forall x Q(x))$ and

$$\mathcal{I} \not\vDash_E \forall x (P(x) \to Q(x))$$

Table of Contents

3 Decidability

Satisfiability and Validity

Semantic Entailment

▶ Decidability

Given a formula φ in FOL, is φ valid, yes or no?

This problem is not solvable (i.e., we cannot write a correct C or Java program that works for all φ). In other words, first-order logic is not decidable in general.

Propositional logic is decidable, because the truth-table method can be used to

• Text B: chapter 2.4.2

• Text F: chapter 7.3.2

Introduction to Mathematical Logic

Thank you for listening!
Any questions?