COMP232 - Mathematics for Computer Science Tutorial 2

Ali Moallemi moa_ali@encs.concordia.ca

Iraj Hedayati h_iraj@encs.concordia.ca

Concordia University, Winter 2016

Table of Contents

- 1.1 Propositional Logic
 - Exercise 4
 - Exercise 6
 - Exercise 9
 - Exercise 14
 - Exercise 19
 - Exercise 31
 - Exercise 34

What is negation of each of these propositions?

- a) Jenifer and Teja are friends.
 Jenifer and Teja aren't friends
- b) There are 13 items in a baker's dozen
 There aren't 13 items in a baker's dozen
- c) Abby sent more than 100 text messages every day.
 Abby didn't send more than 100 text messages every day or
 Abby sent less than 100 text messages every day.
- d) 121 is a perfect square 121 isn't a perfect square

	Smartphone A	Smartphone B	Smartphone C
RAM	256 MB	288 MB	128 MB
ROM	32 GB	64 GB	32 GB
Camera resolution	8 MP	4 MP	5 MP

Determine the truth value of each of these propositions.

- a) Smartphone B has the most RAM of these three smartphones TRUE
- b) Smartphone C has more ROM or a higher resolution camera than Smartphone B

First identify propositions:

- p: C has more ROM than B FALSE
- q: C has a higher resolution camera than B TRUE
- p or q=TRUE

Exercise 6 (Cont...)

	Smartphone A	Smartphone B	Smartphone C
RAM	256 MB	288 MB	128 MB
ROM	32 GB	64 GB	32 GB
Camera resolution	8 MP	4 MP	5 MP

 c) Smartphone B has more RAM, more ROM, and a higher resolution camera than Smartphone A

First identify propositions:

- p: B has more RAM than A TRUE
- q: B has more ROM than A TRUE
- r: B has a higher resolution camera than A FALSE
- p and q and r=FALSE
- d) If Smartphone B has more RAM and more ROM than Smartphone C, then it also has a higher resolution camera
 - p: B has more RAM than C TRUE
 - q: B has more ROM than C TRUE
 - r: B has a higher resolution camera than C FALSE
 - if (p and q) then r=FALSE

Exercise 6 (Cont...)

	Smartphone A	Smartphone B	Smartphone C
RAM	256 MB	288 MB	128 MB
ROM	32 GB	64 GB	32 GB
Camera resolution	8 MP	4 MP	5 MP

- e) Smartphone A has more RAM than Smartphone B if and only if Smartphone B has more RAM than Smartphone A
 - p: A has more RAM than B FALSE
 - q: B has more RAM than A TRUE
 - p if and only if q = FALSE

Propositions:

p: Swimming at the New Jersey shore is allowed

q: Sharks have been spotted near the shore

Compound	
proposition	Equivalent English sentence
$\neg q$	Sharks have not been spotted near the shore
$p \wedge q$	Swimming at the New Jersey shore is allowed
	but sharks have been spotted near the shore
$\neg p \lor q$	Either swimming at he New Jersey shore is not allowed
	or sharks have been spotted near the shore
p o eg q	A necessary condition for swimming at the New Jersey
	shore being allowed is that sharks have not been
	spotted near the shore
$\neg q ightarrow p$	if sharks have not been spotted near the shore
	then Swimming at he New Jersey shore is allowed

Exercise 9(Cont...)

Propositions:

- p: Swimming at the New Jersey shore is allowed
- q: Sharks have been spotted near the shore

Compound	
proposition	Equivalent English sentence
eg p ightarrow eg q	If swimming at the New Jersey shore is not allowed
	then sharks have not been spotted near the shore
$p \leftrightarrow \neg q$	Swimming at the New Jersey shore is allowed
	if and only if sharks have not been spotted near
	the shore
$\neg p \wedge (p \vee \neg q)$	Swimming at the New Jersey shore is not allowed
	and either Swimming at he New Jersey shore is allowed
	or sharks have not been spotted near the shore

- p: You get an A on the final exam
- q: You do every exercise in this book
- r: You get an A in this class

English sentence	Compound propositions
You get an A in this class, but you do not	$r \wedge \neg q$
do every exercise in this book	
You get an A on the final, you do every	$p \wedge q \wedge r$
exercise in this book, and you get an A	
in this class	
To get an A in this class, it is necessary	$r \rightarrow p$
for you to get an A on the final	
You get an A on the final but you don't do	$p \wedge \neg q \wedge r$
every exercise in this book; nevertheless,	
you get an A in this class	

Exercise 14 (Cont..)

- p: You get an A on the final exam
- q: You do every exercise in this book
- r: You get an A in this class

English sentence	Compound propositions
Getting an A on the final and doing	$(p \wedge q) \rightarrow r$
every exercise in this book is sufficient	
for getting an A in this class	
You will get an A in this class	$r \leftrightarrow (q \lor p)$
if and only if you either do every	
exercise in this book or you get	
an A on the final	

For each of these sentences, determine whether an inclusive or, or an exclusive or, is intended. Explain your answer.

- a) Coffee or tea comes with dinner.

 Answer: Exclusive. One of the hot drinks can be served with dinner.
- b) A password must have at least three digits or be at least eight characters long.
 - Answer: Inclusive. A password can contain both digits and characters.
- The prerequisite for the course is a course in number theory or a course in cryptography.
 - Answer: Inclusive. Student willing to take the course has to passed one of them. It is possible that he/she passed both.
- d) You can pay using U.S. dollars or Euros.
 Answer: Exclusive. Combination of currencies is not acceptable.
 Customer can pay either using U.S. dollars or Euros

Construct truth table for $p \land \neg p$

p	$\neg p$	$p \wedge \neg p$
T	F	F
F	T	F

Construct truth table for $p \vee \neg p$

р	$\neg p$	$p \lor \neg p$
T	F	T
F	T	T

Exercise 31(Cont..)

Construct truth table for $(p \lor \neg q) \to q$

T	T	F	T	T
T	F	T	T	T
F	T	F	F	T
F	F	T	T	F

Exercise 31 (Cont..)

Construct truth table for $(p \lor q) \to (p \land q)$

T	T	T	T	T
T	F	T	F	F
F	T	T	F	F
F	F	F	F	T

Exercise 31 (Cont..)

Construct truth table for $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$

T	T	T	T	T
T	F	F	F	T
F	T	T	T	T
F	F	T	T	Т

Exercise 31 (Cont..)

Construct truth table for (p o q) o (q o p)

T	Τ	T	T	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

Construct truth table for $p \oplus p$

$$\begin{array}{c|c}
p & p \oplus p \\
\hline
T & F \\
\hline
F & F
\end{array}$$

Construct truth table for $p \oplus \neg p$

р	$\neg p$	$p \oplus \neg p$
T	F	T
F	T	T

Construct truth table for $p \oplus \neg q$

р	q	$\neg q$	$p \oplus \neg q$
Т	Τ	F	T
T	Г	7	Г

Exercise 34(Cont..)

Construct truth table for $\neg p \oplus \neg q$

p	q	$\neg p$	$\neg q$	$\neg p \oplus \neg q$
T	T	F	F	F
T	F	F	T	T
F	T	T	F	T
F	F	Т	T	F

Exercise 34 (Cont..)

Construct truth table for $(p \oplus q) \lor (p \oplus \neg q)$

T	T	F	T	T
T	F	T	F	T
F	T	T	F	T
F	F	F	T	T

Exercise 34 (Cont..)

Construct truth table for $(p \oplus q) \land (p \oplus \neg q)$

T	T	F	T	F
T	F	T	F	F
F	T	T	F	F
F	F	F	T	F