Formale Grundlagen der Informatik I 3. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach Alexander Kreuzer SS 2012

Pavol Safarik

Gruppenübung

Aufgabe G1 (Zum Aufwärmen)

(a) Sei $\Sigma = \{a, b\}$. Welche Sprache wird von dem folgenden DFA \mathcal{A} akzeptiert?

(b) Beschreiben Sie L(A) durch einen regulären Ausdruck.

Lösungsskizze:

- (a) $L(\mathcal{A})$ besteht aus den a/b-Folgen, in denen nach jedem a irgendwann ein b folgt. Anders gesagt besteht die Sprache aus allen Folgen, die auf b enden und dem leeren Wort.
- (b) Mögliche reguläre Ausdrücke sind: $(b + aa^*b)^*$, $(a + b)^*ab^*b + b^*$, oder auch $\emptyset^* + (a + b)^*b$.

Aufgabe G2 (Potenzmengentrick)

Betrachten Sie den folgenden NFA:

Bestimmen Sie einen DFA, der genau dieselbe Sprache erkennt. Geben Sie neben dem Automaten selbst auch die im Zuge der Lösung erstellte Tabelle an (siehe Skript, Beispiel 2.2.10).

Lösungsskizze:

δ	a	b
{0}	{0}	$\{1, 2\}$
$\{1, 2\}$	$\{1, 3\}$	$\{3\}$
$\{1, 3\}$	{3}	$\{3\}$
$\{3\}$	{3}	$\{3\}$

Die erreichbare Zuständen sind $\{0\}, \{1, 2\}, \{1, 3\}$ und $\{3\}$. Akzeptierend sind $\{1, 2\}$ und $\{1, 3\}$:

1

Aufgabe G3

Gegeben seien die folgenden DFA:

- (a) Geben Sie einen DFA an, der $L(A_1) \cap L(A_2)$ erkennt.
- (b) Geben Sie einen NFA an, der $L(\mathcal{A}_1) \cdot L(\mathcal{A}_2)$ erkennt. Extra: Was ändert sich an der Lösung, wenn der Zustand 1 in \mathcal{A}_1 auch akzeptierend ist?

Lösungsskizze:

(a) Wir bilden den Produktautomaten (vgl. Lemma 2.2.11 auf Seite 30 im Skript):

(b) Wir benutzen die Konstruktion aus Lemma 2.2.14(a) auf Seite 31 im Skript:

Falls Zustand 1 in A_1 auch akzeptierend ist, muss in diesem Automaten der Zustand 1 auch akzeptierend sein und es muss eine a-Transition von 1 nach q sowie eine b-Transition von 1 nach p und eine a-Transition von 3 nach p hinzugefügt werden (warum?).

Hausübung

Aufgabe H1 (6 Punkte)

L und M seien Σ -Sprachen.

- (a) Zeigen Sie, dass $L \subseteq L^*$ und $(L \subseteq M^* \Rightarrow L^* \subseteq M^*)$.
- (b) Schließen Sie aus (a), dass $(L^*)^* = L^*$ und $(L \subseteq M \Rightarrow L^* \subseteq M^*)$.
- (c) Zeigen Sie, dass $(L \cup M)^* = (L^*M^*)^*$.

Aufgabe H2 (NFA-Umkehrung)

Für ein Wort $w=a_1\dots a_n\in \Sigma^*$ wird w^{-1} durch $a_n\dots a_1$ definiert (d.h. w wird rückwärts gelesen). Die Sprache $\operatorname{rev}(L)$ ist definiert als

$$rev(L) := \{ w^{-1} \in \Sigma^* \mid w \in L \}.$$

Zeigen Sie, dass für jede reguläre Sprache L die Umkehrung $\operatorname{rev}(L)$ regulär ist, indem Sie zeigen, wie aus einem NFA, der die Sprache L erkennt, ein NFA, der die Sprache $\operatorname{rev}(L)$ erkennt, allgemein konstruiert werden kann.

Hinweise:

- Überlegen Sie sich dazu beispielhaft für den Automaten A_1 aus Aufgabe G2 zunächst, wie solch ein "umgekehrter NFA", erkennend die Sprache $\operatorname{rev}(L(A_1))$, auszusehen hat.
- Überlegen Sie sich, wie sich die Umkehrung eines NFA mit mehreren akzeptierenden Zuständen durch Ausnutzung der Abschlusseigenschaften regulärer Sprachen auf den Fall mit nur einem akzeptierenden Zustand zurückführen lässt.