Skenery

Úvod

Nejjednodušší a nejkratší otázka. Doba zpracovávání asi hodina. Tuhle otázku u maturity chceš

Definice

Vstupní zařízení, které umožňuje fyzické 2D a 3D předlohy převést do digitální podoby. Můžeme je použít na hromadu věcí od archivace dokumentů a fotografií, přes sken písma, až po získání 3D objektu.

Princip

Předloha je postupně osvěcena a odražené světlo od předloh je zaznamenáváno optikou (hranoly a zrcadla, které ho rozdělí na RGB). RGB světlo je poté zpracováno CCD prvkem, který ho převede na napětí (analogový signál). A/D převodník ho pak ještě jednou převede do digitální podoby (1 a 0).

Optický hranol (zrcadlo) Optický hranol (zrcadlo) Optické čočky Předání signálu A/D převodníku Světlocitlivé prvky CCD opatřené barevnými filtry

Druhy

- 1. CCD (Charge Coupled Device)
- 2. CIS (Contact Image Sensor)

CCD Charge Coupled Device

Osvětlení CCD snímače pomocí optické soustavy (čočky, zrcadla). Zdrojem světla je zářivka, která se musí zahřát (30s). Je to citlivý přístroj na otřesy a má citlivou jak hlavu, tak I samotnou optiku. Má vyšší rozlišení a je kvalitnější než CIS, ale také dražší.

CIS Contact Image Sensor

Nepoužívá optickou soustavu, ale RGB diody integrované v hlavě, které jsou blízko předlohy (s rostoucí vzdáleností klesá osvícení). Není tedy potřeba složitá optika ani zrcadla, takže je přístroj menší, levnější a bytelnější. Má ale horší rozlišení a nedokáže skenovat filmy.

Parametry

- CCD, CIS senzory
- Optické rozlišení skeneru [DPI] fyzické rozlišení CCD prvku, minimálním posun skenovací hlavy
- Interpolované rozlišení skeneru dopočítávají se pixely mezi naskenovanými (řadami), vizuální zlepšení obrázku, kvalita se nezlepšuje
- Barevná hloubka [bit] počet bitů na pixel, více barevných odstínů (obvykle 24 bitů)
- Maximální velikost snímané předlohy A3, A4, film...

Druhy

- Ruční v obchodech čárové kódy, uživatel jím "přejede" přes předlohu, nízká kvalita a výstup
- Průtahový podobný faxu, papír je protažen snímacím mechanismem (většinou A4)
- Plošný nejrozšířenější, snímá předlohu na skleněné desce, pod kterou je snímací mechanismus, vysoce kvalitní, jak formát A4, tak A3, předloha je nehybná
- Bubnový na profesionální využití, cenově i rozměrově náročný, pro velké formáty předloh, nejkvalitnější
- Filmový zvětšuje předlohu o velikosti diapozitivu, sken pro převod do elektronické podoby, dianástavec pro plošné skenery, vysoká kvalita, vysoké rozlišení

Rozdělení

- Podle počtu průchodů
 - Jednoprůchodové předloha osvětlovávána po řádcích, světlo děleno na 3 složky pomocí hranolů, vyhodnoceno jedním řádkem CCD
 - Tříprůchodové skenuje zvlášť každou barevnou složku, osvětlováno každým světlem zvlášť (RGB)
- Podle barevné škály
 - o Barevné
 - Pouze odstíny šedi

Rozhraní

- LPT (paralelní port) nejjednodušší, nejpomalejší, nejlevnější, dnes se již nepoužívá
- SCSI nejdražší, rychlejší než USB a LPT, nutnost host-adapteru, dnes se nepoužívá
- FireWire (IEEE 1394) podobné USB
- USB nejčastější
- Wi-Fi, RJ-45

OCR Optical Character Recognition

Metoda, jak digitalizovat tištěný text a jeho převedení do počítače. Dokáže převést i bitmapový obrázek na text. Vniká mnoho problému při rozpoznávání textu, jelikož hodně závisí na kvalitě fontu a textu. Je potřeba dodržet vodorovný text a jednobarevné pozadí, jakékoliv nečistoty jsou problém. Pracuje na principu neuronových sítí a učí se jednotlivá písmena. Alespoň 300dpi. Programy, které toto dokáží zpracovat jsou poměrně drahé (ABBYY FineReader, OmniPage, Adobe Acrobat)

Zdroje

- https://www.czc.cz/skener/skenery/hledat
 https://cs.wikipedia.org/wiki/SCSI#S%C3%A9riov%C3%A9 SCSI a iSCSI
 https://en.wikipedia.org/wiki/Charge-coupled device
 https://en.wikipedia.org/wiki/Image_scanner
 https://en.wikipedia.org/wiki/Image_scanner

- https://cs.wikipedia.org/wiki/Skener