

PENGANTAR ORGANISASI ARSITEKTUR KOMPUTER NF024105

STT TERPADU TEKNIK INFORMATIKA 2017

Sumber: Computer Organization and Architechture 5th Edition

PENGERTIAN OAK

Organisasi Komputer mempelajari tentang unit-unit penyusun komputer dan bagaimana hubungan interkoneksi antar unit-unit tersebut dalam suatu komputer.

Misal: antarmuka antar peripheral komputer, jenis-jenis memori

Arsitektur Komputer mempelajari tentang atribut-atribut sistem komputer yang berdampak langsung pada pemrograman komputer.

Misal: susunan set instruksi prosesor, cara pemrosesan data, cara pengalamatan memori

ORGANISASI DAN ARSITEKTUR (1/2)

- Arsitektur berkaitan dengan atribut-atribut sebuah sistem yang tampak (visible) oleh seorang programmer
 - Set instruksi, jumlah bit yang digunakan untuk merepresentasikan data, mekanisme I/O, dan teknik pengalamatan
 - Misalnya: apakah ada instruksi bertingkat?
- Organisasi berkaitan dengan bagaimana fitur-fitur arsitektur diimplementasikan
 - Sinyal Kontrol, Antarmuka teknologi memori

ORGANISASI DAN ARSITEKTUR (2/2)

- Semua Keluarga Intel X86 mempunyai dasar arsitektur yang sama
- Keluarga 370/Sistem IBM 370 mempunyai arsitektur dasar yang sama
- Hal ini diwujudkan dalam bentuk Kompatibelitas
 - Arsitektur yang lama masih bisa digunakan untuk organisasi yang baru
- Organisasi berbeda antara satu versi dengan versi yang lainnya

SEJARAH KOMPUTER (1/4)

History: First Computer Developments

Alan Turing defined a hypothetic machine, the *Turing Machine*, between 1935 – 1936 which can be used for computability investigations. → Founder of Computer Science

(All programming languages are equivalent to the Turing Machine.)

SEJARAH KOMPUTER (2/4)

History: First Computer Developments

Konrad Zuse: First electromechanic computer Z1 between

1936 - 1938 (binary system, floating point arithmetic)

Reconstruction of the Z3 computer

SEJARAH KOMPUTER (3/4)

History: First Computer Developments

John William Mauchly and J. Presper Eckert: First electronic computer (18,000 electronic tubes) ENIAC between 1943 - 1946

SEJARAH KOMPUTER (4/4)

History: First Computer Developments

In 1945, John von Neumann published a conception for constructing universal computer systems, the von Neumann Computer.

Models were successors of the ENIAC system.

→ Founder of Computer Architecture

Institute for Advanced Study in Princeton

GENERASI KOMPUTER

Approximate Generation Dates		Technology	Typical Speed (operations per second)	
1	1946–1957	Vacuum tube	40,000	
2	1958-1964	Transistor	200,000	
3	1965–1971	Small and medium scale integration	1,000,000	
4	1972-1977	Large scale integration	10,000,000	
5	1978-1991	Very large scale integration	100,000,000	
6	1991-	Ultra large scale integration	1,000,000,000	

- Arsitektur Von Neuman kemudian diikuti dan banyak dipakai dalam industri komputer hingga saat ini
- IBM, HP, Motorola, dan beberapa perusahaan muncul dan terkenal sebagai produsen komputer mulai Generasi 2
- Standar IBM PC menjadi dominan dipakai di seluruh dunia dengan prosesor berbasis intel x86

(a) 1970s Processors

	4004	8008	8080	8086	8088
Introduced	1971	1972	1974	1978	1979
Clock speeds	108 kHz	108 kHz	2 MHz	5 MHz, 8 MHz, 10 MHz	5 MHz, 8 MHz
Bus width	4 bits	8 bits	8 bits	16 bits	8 bits
Number of transistors	2,300	3,500	6,000	29,000	29,000
Feature size (μm)	10		6	3	6
Addressable memory	640 Bytes	16 KB	64 KB	1 MB	1 MB

(b) 1980s Processors

	80286	386TM DX	386TM SX	486TM DX CPU
Introduced	1982	1985	1988	1989
Clock speeds	6 MHz-12.5 MHz	16 MHz-33 MHz	16 MHz-33 MHz	25 MHz-50 MHz
Bus width	16 bits	32 bits	16 bits	32 bits
Number of transistors	134,000	275,000	275,000	1.2 million
Feature size (µm)	1.5	1	1	0.8-1
Addressable memory	16 MB	4 GB	16 MB	4 GB
Virtual memory	1 GB	64 TB	64 TB	64 TB
Cache	-	_	-	8 kB

(c) 1990s Processors

	486TM SX Pentium Pro		Pentium Pro	Pentium II	
	4001313A	rentum	remain Pro	rentium 11	
Introduced	1991	1993	1995	1997	
Clock speeds	16 MHz-33 MHz	60 MHz-166 MHz,	150 MHz-200 MHz	200 MHz-300 MHz	
Bus width	32 bits	32 bits	64 bits	64 bits	
Number of transistors	1.185 million	3.1 million	5.5 million	7.5 million	
Feature size (µm)	1	0.8	0.6	0.35	
Addressable memory	4 GB	4 GB	64 GB	64 GB	
Virtual memory	64 TB	64 TB	64 TB	64 TB	
Cache	8 kB	8 kB	512 kB L1 and 1 MB L2	512 kB L2	

(d) Recent Processors

	Pentium III	Pentium 4	Core 2 Duo	Core 2 Quad
Introduced	1999	2000	2006	2008
Clock speeds	450-660 MHz	1.3-1.8 GHz	1.06-1.2 GHz	3 GHz
Bus sidth	64 bits	64 bits	64 bits	64 bits
Number of transistors	9.5 million	42 million	167 million	820 million
Feature size (nm)	250	180	65	45
Addressable memory	64 GB	64 GB	64 GB	64 GB
Virtual memory	64 TB	64 TB	64 TB	64 TB
Cache	512 kB L2	256 kB L2	2 MB L2	6 MB L2

STRUKTUR DAN FUNGSI

- Struktur adalah suatu cara yang digunakan untuk menghubungkan satu komponen dengan komponen yang lainnya
- Fungsi adalah operasi tiap-tiap komponen secara individual sebagai suatu bagian dari struktur

FUNGSI

- Semua komputer mempunyai fungsi sebagai berikut :
 - Pemproses data (Data processing)
 - Penyimpan data (Data storage)
 - Pemindahan data (Data movement)
 - Kontrol (Control)

FUNCTIONAL VIEW

Komputer dilihat dari sisi fungsional

OPERASI (1)

- Pemindahan data (Data movement)
 - Misalnya: dari keyboard ke layer monitor

OPERASI (2)

- Penyimpanan Data (Data storage)
 - Misalnya: Download Internet ke Disk

OPERASI (3)

- Pemroses dari / ke penyimpanan
 - Misalnya: update kumpulan statemen

OPERASI (4)

- Pemroses dari media penyimpan ke I/O
 - Misalnya: mencetak kumpulan statement

