

TEST REPORT

FCC ID: VWZT800

Applicant: SPECTRA Technologies Holdings Co.Ltd.

Address: Unit 1301-09,19-20, Tower II, Grand Century Place, 193 Prince Edward

Road West, Kowloon, Hong Kong

Equipment Under Test(EUT):

Name : EFTPOS Terminal

Model: T800

Trademark : SPECTRA
Technologie

In Accordance with:FCC PART 2; FCC PART 22H; FCC PART PART 24E

Report No : STE100311149

Date of Test : Mar 11---12, 2010

Date of Issue: Mar 15, 2010

Test Result: PASS

In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

(Mark Zhu)

General Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Certification Technology Service Co., Ltd. Or test done by Shenzhen Certification Technology Service Co., Ltd. Approvals in connection with, distribution or use of the product described in this report must be approved by Shenzhen Certification Technology Service Co., Ltd. Approvals in writing.

FCC ID: VWZT800 Page 1 of 47

Contents

1.	Gen	eral Information	4
	1.1.	Description of Device (EUT)	4
	1.2.	Test Lab information	4
2.	Sum	mary of test	5
	2.1.	Summary of test result	5
	2.2.	Assistant equipment used for test	5
	2.3.	Test mode	6
	2.4.	Test Environment Conditions	6
	2.5.	Measurement Uncertainty (95% confidence levels, k=2)	6
	2.6.	Test Equipment	7
3.	Con	ducted Output power	8
	3.1.	Block Diagram of Test Setup	8
	3.2.	Limit	8
	3.3.	Test Procedure	8
	3.4.	Test Result	8
4.	Radi	ated Output power	9
	4.1.	Block Diagram of Test Setup	9
	4.2.	Limit	9
	4.3.	Test Procedure	9
	4.4.	Test Result	10
5.	Occi	ıpied Bandwidth	11
	5.1.	B lock Diagram of Test Setup	11
	5.2.	Limit	11
	5.3.	Test Procedure	11
	5.4.	Test Result	11
	5.5.	Orginal test data	12
6.	Freq	uency stability	15
	6.1.	Block Diagram of Test Setup	15
	6.2.	Limit	15
	6.3.	Test Procedure	15
	6.4.	Test Result	16
7.	Con	ducted spurious emissions	18
	7.1.	Block Diagram of Test Setup	18
	7.2.	Limit	18
	7.3.	Test Procedure	18
	7.4.	Test Result	18
8.	Radi	ated Spurious emissions	25
	8.1.	Block Diagram of Test Setup	25
	8.2.	Limit	25
	8.3.	Test Procedure	25
	8.4.	Test Result.	26
9.	Bloc	k Edge Compliance	28
	9.1.	Block Diagram of Test Setup	28

Report No.:STE100311149

11. Photos of EUT			
10.	Tests	setup photo	31
	94	Test Result	20
	9.3.	Test Procedure	28
	9.2.	Limit	28

1. General Information

1.1. Description of Device (EUT)

EUT : EFTPOS Terminal

Model No. : T800

Trademark : SPECTRA

Power supply : DC 9V from battery or DC 9V from adapter

Radio Technology : GSM/GPRS 850/900/1800/1900

GPRS Multislot Class : Class 10

Power class : GSM/GPRS 850/900: Class 4

GSM/GPRS 1800/1900: Class 1

Operation frequency : 824.2MHz—848.8MHz and 1850.2MHz—1909.8MHz

FCC Operation frequency : 824.2MHz—848.8MHz and 1850.2MHz—1909.8MHz

Modulation : GMSK

Antenna Type : Integral Patch antenna, Gain:0.22dBi

Applicant : SPECTRA Technologies Holdings Co.Ltd.

Address : Unit 1301-09,19-20, Tower II,Grand Century Place, 193 Prince

Edward Road West, Kowloon, Hong Kong

1.2. Test Lab information

 $Shenzhen\ Certification\ Technology\ Service\ Co., Ltd.$

3F, Bldg.27, Area A, Tanglang Industrial Zone, Xili Town, Nanshan District,

Shenzhen 518055, Guangdong, P.R. China

FCC Registered No.:305283

FCC ID: VWZT800 Page 4 of 47

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results
	FCC PART 2: 2.1046	
Conducted Output power	FCC PART 22H: 22.913 (a)	PASS
	FCC PART 24E: 24.232 (c)	
	FCC PART 22H:22.913 (a)	
Radiated Output power(erp/eirp)	FCC PART 24E:24.232(c)	PASS
	FCC PART 2: 2.1049	
Occupied bandwidth	FCC PART 22H: 22.917 (b)	PASS
	FCC PART 24E: 24.238 (b)	
	FCC PART 2: 2.1055	
Frequency stability	FCC PART 22H: 22.355	PASS
	FCC PART 24E: 24.235	
Conducted enurious amission	FCC PART 2: 2.1051	
Conducted spurious emission	FCC PART 22H: 22.917	PASS
(Antenna terminal)	FCC PART 24E: 24.238	
	FCC PART 2: 2.1053	
Radiated spurious emissions	FCC PART 22H: 22.917	PASS
	FCC PART 24E: 24.238	
DI I I I	FCC PART 22H: 22.917 (b)	DACC
Block edge compliance	FCC PART 24E: 24.238 (b)	PASS
Down Line Conducted Emission Test	FCC Part 15: 15.207	PASS
Power Line Conducted Emission Test	ANSI C63.4: 2003	rass

2.2. Assistant equipment used for test

N/A

FCC ID: VWZT800 Page 5 of 47

2.3. Test mode

During all testing, EUT is in link mode with base station emulator at maximum power level in each test mode and channel as below:

Mode	Channel	Frequency(MHz)
	128	824.2
GSM 850	190	836.6
	251	848.8
	512	1850.2
PCS 1900	661	1880.0
	810	1909.8

2.4. Test Environment Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.5. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	3.54dB	Polarize: V
(30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08dB	Polarize: H
(1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

FCC ID: VWZT800 Page 6 of 47

2.6. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	16/06/2009	1Year
Spectrum analyzer	Agilent	E4443A	MY46185649	06/06/2009	1Year
Receiver	R&S	ESCI	100492	04/06/2009	1Year
Receiver	R&S	ESCI	101202	07/01/2010	1Year
Bilog Antenna	Sunol	JB3	A121206	04/06/2009	1Year
Horn Antenna	EMCO	3115	640201028-06	04/06/2009	1Year
Power Meter	Anritsu	ML2487A	6K00001491	02/23/2009	1Year
ETS Horn Antenna	ETS	3160	SEL0076	12/08/2009	1Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	15/06/2009	1Year
Cable	Resenberger	N/A	No.1	04/06/2009	1Year
Cable	SCHWARZBEC K	N/A	No.2	04/06/2009	1Year
Cable	SCHWARZBEC K	N/A	No.3	04/06/2009	1Year
Pre-amplifier	R&S	AFS42-00101 800-25-S-42	SEL0081	18/06/2009	1Year
Pre-amplifier	R&S	AFS33-18002 650-30-8P-44	SEL0080	18/06/2009	1Year
Base station	Agilent	E5515C	GB44300243	May.08, 09	1 Year
Temperature controller	Terchy	MHQ	120	May.08, 09	1Year
Power divider	Anritsu	K240C	020346	May.08, 09	1 Year
Signal Generator	НР	83732B	VS3449051	May.08, 09	1 Year
Attenuator	Agilent	8491B	MY39262165	May.08, 09	1 Year
GPS Signal	Welnavigate	GS50	6423517	N/A	N/A

FCC ID: VWZT800 Page 7 of 47

3. Conducted Output power

3.1. Block Diagram of Test Setup

3.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

3.3. Test Procedure

- (1) The EUT's RF output port was connected to base station.
- (2) Set EUT at maximum power level through base station by power level command
- (3) Measure the maximum output power of EUT at each frequency band and mode by base station.

3.4. Test Result

EUT: EFTPOS Terminal		M/N:T800	Power: DC	9V from ad	apter	
Ambient Temperature:24℃		Relative Humic	dity: 62%			
Test date: 2010-03-11		Test site: RF si	te Teste	d by: TaTa_	Chen	
Conclusion:PA	ASS					
Mode	Channel	PK Output	ERP	EIRP	Li	mit
		Power(dBm)	(dBm)	(dBm)	ERP(dBm)	EIRP(dBm)
	128	31.33	29.4	/	38.5	/
GSM 850	190	31.45	29.52	/	38.5	/
	251	31.57	29.64	/	38.5	/
	512	29.23	/	29.45	/	33
PCS 1900	661	29.12	/	29.34	/	33
	810	29.20	/	29.42	/	33
Note: EIRP=Pk output power +Antenna Gain(0.22dBi);						
ERP=PK output power + Antenna Gain(0.22dBi) -2.15						

FCC ID: VWZT800 Page 8 of 47

4. Radiated Output power

4.1. Block Diagram of Test Setup

4.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

4.3. Test Procedure

- The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RBW= 3MHz,VBW= 3MHz and peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. The highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 3. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency lelow 1GHz) or Horn antenna(for frequency above 1GHz) at same location with same polarize of reveiver antenna and then a known power of each measure frequency from S.G. was applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain –Substitution antenna Loss(only for Dipole antenna) Analyzer reading. Then the EUT's

FCC ID: VWZT800 Page 9 of 47

EIRP was calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP – 2.15

4.4. Test Result

Power:DC 9V from	n adapter				
Ambient Temperat	ure:23°C		Relative Humidity:	60%	
Test date: 2010-03	-11		Test site: RF site	Tested by: Ta	Ta_Chen
Conclusion: PASS			•		
Mode	Channel	LVL	Correction	ERP	EIRP
		(dBm)	factor(dB)	(dBm)	(dBm)
	128	1.21	30.42	29.48	/
GSM 850	190	1.21	30.21	29.27	/
	251	1.89	30.05	29.79	/
	512	-20.34	46.80	/	26.46
PCS 1900	661	-20.45	46.45	/	26.00
	810	-20.68	46.58	/	25.90

FCC ID: VWZT800 Page 10 of 47

5. Occupied Bandwidth

5.1. B lock Diagram of Test Setup

5.2. Limit

N/A

5.3. Test Procedure

- 1. The EUT' RF output port was connected to Spectrum Analyzer and Base Station via power divider.
- 2. Spectrum analyzer's occupied bandwidth measure function was used to measure 99% bandwidth and -26dBc bandwidth

5.4. Test Result

EUT: EFTPOS Terminal M/N:T800						
Power:DC 9V from adapter						
Ambient Temperature:	23℃	Relative Humidity: 60%)			
Test date: 2010-03-11		Test site: RF site	Tested by: TaTa_Chen			
Mode	Channel	99% bandwidth	-26dBc bandwidth			
		(KHz)	(KHz)			
	128	244.84	305.639			
GSM 850	190	246.31	317.54			
	251	245.03	311.36			
	512	246.65	309.01			
PCS 1900	661	246.00	315.44			
	810	247.68	311.02			

FCC ID: VWZT800 Page 11 of 47

5.5. Orginal test data

GSM 850 CH128

GSM 850 CH190

FCC ID: VWZT800 Page 12 of 47

GSM 850 CH251

PCS 1900 CH512

FCC ID: VWZT800 Page 13 of 47

PCS 1900 CH661

PCS 1900 CH810

FCC ID: VWZT800 Page 14 of 47

6. Frequency stability

6.1. Block Diagram of Test Setup

6.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
± 2.5 ppm	Must stay within the authorized
	frequency block

6.3. Test Procedure

Test Procedures for Temperature Variation:

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
- 4. If the EUT can not be turned on at -30°C, the testing lowest temperature will be raised in 10°C step until the EUT can be turned on.

Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from 9V to 7V(Note)
- 3. The variation in frequency was measured for the worst case.

Note: When power below 7V, device will stop work

FCC ID: VWZT800 Page 15 of 47

6.4. Test Result

EUT: EFTPOS Termin	nal M/N:T800			
Ambient Temperature	::23℃	Relative Humidity: 60%		
Test date: 2010-03-11		Test site: RF site	Tested by: TaTa_Chen	
Conclusion:PASS				
Mode	Voltage	Frequency error	Frequency error	
	(V)	(Hz)	(ppm)	
	9V	-43	-0.051	
GSM 850	8.5V	-34	-0.041	
CH 190	8V	43	0.051	
CH 190	7.5V	-43	-0.051	
	7V	35	0.041	
	9V	32	0.017	
DCC 1000	8.5V	31	0.016	
PCS 1900	8V	-35	-0.018	
CH661	7.5V	-31	-0.016	
	7V	41	0.021	

FCC ID: VWZT800 Page 16 of 47

Mode	Temperature	Frequency error	frequency error
	(℃)	(Hz)	(ppm)
	-30	34	0.018
	-20	31	0.016
	-10	-22	-0.011
CCM 050	0	34	0.018
GSM 850	10	-31	-0.016
CH190	20	-43	-0.022
	30	25	0.013
	40	-22	-0.011
	50	25	0.013
	-30	-21	-0.011
	-20	-32	-0.017
	-10	33	0.017
DCG 1000	0	-35	-0.018
PCS 1900 CH661	10	-31	-0.016
CH001	20	31	0.016
	30	-36	-0.019
	40	-46	-0.024
	50	54	0.028

FCC ID: VWZT800 Page 17 of 47

7. Conducted spurious emissions

7.1. Block Diagram of Test Setup

7.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

7.3. Test Procedure

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The low,middle and high channels of each band and mode's spurious emissions for 30MHz to 10th Harmonic were measured by Spectrum analyzer.

7.4. Test Result

PASS

FCC ID: VWZT800 Page 18 of 47

Test Mode: GSM 850 CH 128

FCC ID: VWZT800 Page 19 of 47

Test Mode: GSM 850 CH 190

FCC ID: VWZT800 Page 20 of 47

Test Mode: GSM 850 CH 251

FCC ID: VWZT800 Page 21 of 47

Test Mode: GSM 1900 CH 512

FCC ID: VWZT800 Page 22 of 47

Test Mode: GSM 1900 CH 661

FCC ID: VWZT800 Page 23 of 47

Test Mode: GSM 1900 CH 810

FCC ID: VWZT800 Page 24 of 47

8. Radiated Spurious emissions

8.1. Block Diagram of Test Setup

8.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least (43 + 10 log P) dB, in this case, -13dBm.

8.3. Test Procedure

- The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated spurious emissions from 30MHz to 10th harmonious of fundamental frequency were measured at 3m with a test antenna and a spectrum analyzer with RBW= 1MHz,VBW= 1MHz ,peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions (record as LVL) at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 3. Final spurious emissions levels were measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency lelow 1GHz) or Horn antenna(for frequency above 1GHz) at same location with same polarize of reveiver antenna and then a known power of each measure frequency from S.G. was applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain –Substitution antenna Loss(only for Dipole antenna) Analyzer reading. Then final

FCC ID: VWZT800 Page 25 of 47

spurious emissions were calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP – 2.15

8.4. Test Result

EUT:EFTPOS Terminal		M/N:T800					
Power:DC 9V from adapter							
Test Date: 2010	0-03-11	Test site: RF	Chamber	Tested by: Ta	Ta_Chen		
Ambient Temp	erature: 24℃	Relative Hur	midity: 60%				
Conclusion:PA	SS						
			Test result				
Test Mode: G	SM 850 CH1	28					
Frequency	Antenna	LVL	Correction	Result	Limit	Margin	
(MHz)	polarization	(dBm)	factor(dB)	(ERP)(dBm)	(dBm)	(dB)	
1648.4	Н	-55.34	11.5	-45.99	-13	32.99	
1648.4	V	-54.23	10.56	-45.82	-13	32.82	
Test Mode: 0	GSM 850 CH	[190					
1673.2	Н	-56.34	10.94	-47.55	-13	34.55	
2509.8	Н	/	/	/	-13	/	
1673.2	V	-58.43	10.9	-49.68	-13	36.68	
2509.8	V	/	/	/	-13	/	
Test mode: GS	M 850 CH25	1					
1697.6	Н	-63.11	11.67	-53.59	-13	40.59	
2546.4	Н	/	/	/	-13	/	
1697.6	V	-55.34	11.13	-46.36	-13	33.36	
2546.4	V	/	/	/	-13	/	

FCC ID: VWZT800 Page 26 of 47

Test Mode: GSM 1900 CH512							
Frequency (MHz)	Antenna polarization	LVL (dBm)	Correction factor(dB)	Result (EIRP)(dBm)	Limit (dBm)	Margin (dB)	
3700.4	Н	-56.34	8.57	-47.77	-13	34.77	
5550.6	Н	/	/	/	-13	/	
3700.4	V	-56.43	8.37	-48.06	-13	35.06	
5550.6	V	/	/	/	-13	/	
Test Mode:	GSM 1900 C	H661					
3760	Н	-57.38	8.75	-48.63	-13	35.63	
5640	Н	/	/	/	-13	/	
3760	V	-58.32	8.55	-49.77	-13	36.77	
5640	V	/	/	/	-13	/	
Test mode: GS	M 1900 CH8	10					
3819.6	Н	-59.21	8.94	-50.27	-13	37.27	
5729.4	Н	/	/	/	-13	/	
3819.6	V	-57.38	8.72	-48.66	-13	35.66	
5729.4	V	/	/	/	-13	/	

Note: All the other emissions not recorded were too low to read, and deemed to comply with limit.

FCC ID: VWZT800 Page 27 of 47

9. Block Edge Compliance

9.1. Block Diagram of Test Setup

9.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

9.3. Test Procedure

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.

FCC ID: VWZT800 Page 28 of 47

9.4. Test Result

PASS

Test Mode: GSM 850

FCC ID: VWZT800 Page 29 of 47

Test Mode: GSM 1900

FCC ID: VWZT800 Page 30 of 47

10. Power line conducted emissions

10.1.Limit

	Maximum RF Line Voltage				
Frequency	Quasi-Peak Level	Average Level			
	$dB(\mu V)$	$dB(\mu V)$			
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*			
500kHz ~ 5MHz	56	46			
5MHz ~ 30MHz	60	50			

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

10.2.Test Procedure

The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT was powered from adapter which connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#).In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2003 on Conducted Emission Test.

The bandwidth of test receiver (R & S ESHS10) is set at 10kHz.

The frequency range from 150kHz to 30MHz is checked.

FCC ID: VWZT800 Page 31 of 47

10.3.Test Result

PASS

Engineer : TaTa_Chen

Site no :No.1 Conduction
Dis./Ant. :** 2009 KNW407 VB NEUTRAL
Limit :FCC PART 15 C
Env./Ins. :Temp:23°C Humi:54%

:EFTPOS Terminal M/N:T800 EUT

Power Rating :DC 9V from Adapter Input AC 120V/60Hz

Test Mode : Tx Mode

		LISN	Cable		Emission	1		
No	Freq (MHz)	Factor (dB)	Loss (dB)	Reading (dBuV)	Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1	0.17985	D.45	9.88	40.61	50.94	64.49	13.55	QP
2	0.26940	0.42	9.88	36.63	46.93	61.14	14.21	QP
3	0.38880	0.36	9.89	31.58	41.83	58.09	16.26	QP
4	0.44850	0.35	9.89	33.21	43.45	56.90	13.45	QP
5	6.060	0.39	9.92	31.06	41.37	60.00	16.63	QP
6	20.000	0.57	10.01	32.91	43.49	60.00	16.51	QP

Remarks: 1. Emission Level=LISN Factor+Cable Loss+Reading.

2. If the average limit is met when useing a quasi-peak detector. the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

FCC ID: VWZT800 Page 32 of 47

:No.1 Conduction :** 2009 KNW407 VA LINE :FCC PART 15 C Site no Data no :1

Dis./Ant.

Limit

Env./Ins. :Temp:23'C Humi:54% Engineer : TaTa_Chen

:EFTPOS Terminal M/N:T800 EUT

Power Rating :DC 9V from Adapter Input AC 120V/60Hz

Test Mode : Tx Mode

		LISN	Cable		Emission			
No	Freq (MHz)	Factor (dB)	Loss (dB)	Reading (dBuV)	Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1	0.17985	0.43	9.88	39.35	49.66	64.49	14.83	QP
2	0.26940	0.40	9.88	32.06	42.34	61.14	18.80	QP
3	0.32910	0.37	9.89	30.06	40.32	59.47	19.15	QP
4	0.44850	0.34	9.89	32.18	42.41	56.90	14.49	QP
5	0.77685	0.35	9.89	27.47	37.71	56.00	18.29	QP
6	4,687	0.39	9.91	33.08	43.38	56.00	12.62	QP

Remarks: 1.Emission Level=LISN Factor+Cable Loss+Reading.

2. If the average limit is met when useing a quasi-peak detector. the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

FCC ID: VWZT800 Page 33 of 47

11. Testsetup photo

FCC ID: VWZT800 Page 34 of 47

FCC ID: VWZT800 Page 35 of 47

12.Photos of EUT

FCC ID: VWZT800 Page 36 of 47

FCC ID: VWZT800 Page 37 of 47

FCC ID: VWZT800 Page 38 of 47

FCC ID: VWZT800 Page 39 of 47

FCC ID: VWZT800 Page 40 of 47

FCC ID: VWZT800 Page 41 of 47

FCC ID: VWZT800 Page 42 of 47

FCC ID: VWZT800 Page 43 of 47

FCC ID: VWZT800 Page 44 of 47

FCC ID: VWZT800 Page 45 of 47

FCC ID: VWZT800 Page 46 of 47

END OF REPOR