Биномиальная модель для оценки опционов на нечетких числах

17 июня 2025 г.

1 Введение

Одними из возможных инструментов для оценки стоимости опционов являются биномиальная модель и ее предельная версия — формула Блэка-Шоулза. Обе модели позволяют оценивать как пут, так и колл опционы. Биномиальная модель является алгоритмом с построением деревьев стоимостей базисного актива и опциона. Модель Блэка-Шоулза является предельным результатом биномиальной модели при увеличении числа шагов алгоритма.

1.1 Биномиальная модель для оценки опционов на нечетких числах

Классическая биномиальная модель предполагает использование действительных чисел в качестве входных параметров (текущая цена актива, цена исполнения актива в конце срока действия опциона — страйк, безрисковая ставка процента, общее время действия опциона, волатильность цены базисного актива, количество шагов в модели) [5]. Однако будет разумно рассмотреть биномиальную модель также и на нечетких числах [3], поскольку параметры биномиальной модели, как волатильность базисного актива и безрисковая ставка процента сложно определить на реальных данных (безусловно можно рассчитать волатильность на основе исторических данных, однако в таком случае при изменении конъюнктура рынка волатильность может также измениться — именно поэтому нужно добавить некоторую неопределенность в модель посредством нечетких чисел). Таким образом, предлагается рассмотреть частный случай биномиальной модели на нечетких числах, где волатильность базисного актива и безрисковая ставка процента — треугольные нечеткие числа. Будем рассматривать европейские колл опционы без дивидендов с

помощью биномиальной модели на нечетких числах.

2 Нечеткие числа

Определим нечеткие числа следующим образом: пусть некоторая функция $\mu_A(\xi): \mathbb{R} \to [0;1]$, а также точки $\xi_l \leq \xi_m \leq \xi_r \in \mathbb{R}$. Функция $\mu_A(\xi)$ треугольного нечеткого числа A неубывающая на отрезке $[\xi_l; \xi_m]$ и невозрастающая на отрезке $[\xi_m; \xi_r]$. При этом $\mu_A(\xi) = 1$ в точке $\xi = \xi_m$. Таким образом, треугольное нечеткое число A можно изобразить на графике следующим образом:

Аналитически функцию принадлежности можно задать как

$$\mu_A(x) = \begin{cases} \mu_{A_1}(\xi) \ , \ \text{если} \ \xi \in [\xi_l; \xi_m) \\ \mu_{A_2}(\xi) \ , \ \text{если} \ \xi \in [\xi_m; \xi_r) \\ 0 \ , \ \text{иначе} \end{cases}$$

(при условии, что максимум μ_A равен 1 и достигается в точке $\xi = \xi_m$)

Также заметим, что треугольное нечеткое число удобно представить в виде трехмерного вектора вида $(\xi_l; \xi_m; \xi_r)$, где числа ξ_l и ξ_r — наибольшая и наименьшая границы μ — среза числа A при $\mu = 0$, а число ξ_m — единственная точка μ среза числа A при $\mu = 1$. В случае использования такого подхода к заданию нечеткого числа удобно использовать такой переход [6] от функции

нечеткого числа к вектору $(\xi_l; \xi_m; \xi_r)$: если $\mu(\xi) = (\xi_l; \xi_m; \xi_r)$, то

$$\mu_{\xi} = \begin{cases} \frac{\xi - \xi_{l}}{\xi_{m} - \xi_{l}}, & \text{при } \xi \in [\xi_{l}; \xi_{m}) \\ \frac{\xi_{r} - \xi}{\xi_{r} - \xi_{m}}, & \text{при } \xi \in [\xi_{m}; \xi_{r}) \\ 0, & \text{иначе} \end{cases}$$

3 Биномиальная модель для оценки опционов

Рассмотрим предпосылки, общепринятые обозначения, а также непосредственно теоретическую реализацию биномиальной модели как на действительных, так и на нечетких числах.

3.1 Предпосылки

Введем предпосылки для биномиальной модели, в рамках которых мы будем работать в будущем:

- Нет арбитража
- Наличие постоянной безрисковой процентной ставки
- Бесконечная делимость ценных бумаг
- Отсутствие трансакционных издержек, налогов и комиссии
- Предположения относительно нормальности распределения цены базисного актива
- Постоянная волатильность базисного актива в течение срока действия опциона
- Коэффициент роста стоимости базисного актива обратно пропорционален коэффициенту понижению стоимости базисного актива
- Коэффициенты роста и понижения не изменяются в течение срока действия опциона \Rightarrow модель будет давать осмысленный результат только при стабильно низкой волатильности акции

3.2 Обозначения

Введем обозначения для параметров биномиальной модели:

Символ	Значение
C	цена опциона колл
P	цена опциона пут
S	цена актива, на который покупается опцион
X	цена исполнения актива в конце срока его действия (страйк)
r	безрисковая процентная ставка
t	общее время действия опциона
σ	волатильность доходности базисного актива
N	количество шагов в биномиальной модели
dt	$rac{t}{N}$ — число разбиений в биномиальной модели

3.3 Классическая биномиальная модель

Для расчета цены европейского опциона колл C по биномиальной модели необходимо составить дерево всевозможных изменений цен базисного актива, на который покупается опцион и с учетом риск-нейтральной вероятности p повышения цены актива на каждом шаге найти оптимальную цену опциона C. Коэффициенты повышения и понижения цены актива: $u = e^{\sigma \sqrt{dt}}$ и $d = \frac{1}{u}$ ($dt = \frac{t}{N}$). Риск-нейтральная вероятность p определяется как $p = \frac{e^{rdt} - d}{u - d}$. Затем нужно рассчитать дерево всевозможных цен базисного актива. На первом шаге берется текущая цена актива; на втором шаге возможны цены $S \cdot u$ и $S \cdot d$; на третьем шаге возможны цены $S \cdot uu$, $S \cdot du = S \cdot ud$ и $S \cdot dd$. После этого необходимо инициализировать дерево цен опционов на базисный актив с последнего шага и прийти к финальной цене опциона. На каждом узле i последнего шага дерева берем цену $\max(S_i - X, 0)$. Затем с переходим к предыдущему шагу дерева посредством рассчета математического ожидания соседних цен следующего шага: $p \cdot S_j + (1-p) \cdot S_{j+1}$. По такому алгоритму необходимо прийти к финальной цене опциона.

Продемонстрируем работу обычной биномиальной модели на действительных числах. В качестве примера рассчитаем биномиальную модель со следующими параметрами:

Параметр модели	Значение
S	10
X	10
t	3
N	10
r	0.1
σ	0.2

Рассчитаем dt: $dt = \frac{t}{N} = \frac{3}{10} = 0.3$; $u = e^{\sigma \cdot \sqrt{dt}} = e^{0.2 \cdot \sqrt{0.3}} = 1.116$ и $d = \frac{1}{u} = 0.896$;

 $p=rac{e^{r\cdot dt}-d}{u-d}=rac{e^{0.1\cdot 0.3}-0.896}{1.116-0.896}=0.611.$ Если выполнить алгоритм биномиальной модели с N=10, то получим C=2.873

3.4 Биномиальная модель на нечетких числах

При реализации биномиальной модели на нечетких числах попробуем работать не с функцией принадлежности непосредственно, а с вектором вида $(\xi_l; \xi_m; \xi_r)$ для треугольного нечеткого числа. При этом мы будем работать с каждым элементом этого вектора как с обычным числом, применяя к нем обычные математические функции. В таком случае также возникают проблемы, связанные с тем, что полученный результат может не быть нечетким числом в соответствие с заданным определением. По этой причине предлагается применять некоторые преобразования для вектора $(\xi_l; \xi_m; \xi_r)$. В частности, к вектору $(\xi_l; \xi_m; \xi_r)$ будем применять только строго монотонные преобразования (при этом если применяемая к вектору функция убывает, то поменяем крайние элементы вектора местами). Таким образом, полученное в качестве цены опциона нечеткое число по сути будет представлять собой значение цены опциона, рассчитанной с помощью обычной биномиальной модели на действительных числах в самом лучшем случае, в обычном случае, в лучшем случае. Именно поэтому необходимо обращать внимание не только на срезы этого нечеткого числа при $\mu = 1$ или $\mu = 0$.

Пусть для биномиальной модели заданы следующие параметры: S,X,N=2,t как обычные числа, а r и σ — как нечеткие числа $(r_l;r_m;r_r)$ и $(\sigma_l;\sigma_m;\sigma_r)$ соответственно. Найдем цену опциона по биномиальной модели. Рассчитаем u: $u=e^{(\sigma_l;\sigma_m;\sigma_r)\cdot\sqrt{dt}}=(e^{\sqrt{dt}\cdot\sigma_l};e^{\sqrt{dt}\cdot\sigma_m};e^{\sqrt{dt}\cdot\sigma_r})$ (при $dt=\frac{t}{N}$); $d=\frac{1}{u}=\frac{(1;1;1)}{(e^{\sqrt{dt}\cdot\sigma_l};e^{\sqrt{dt}\cdot\sigma_m};e^{\sqrt{dt}\cdot\sigma_n})}=(\frac{1}{e^{\sqrt{dt}\cdot\sigma_n}};\frac{1}{e^{\sqrt{dt}\cdot\sigma_n}};\frac{1}{e^{\sqrt{dt}\cdot\sigma_l}}).$

Теперь рассчитаем риск-нейтральную вероятность

$$p = \frac{e^{r \cdot dt} - d}{u - d} = \frac{e^{(dt \cdot r_l; dt \cdot r_m; dt \cdot r_r)} - \left(\frac{1}{e^{\sqrt{dt} \cdot \sigma_r}}; \frac{1}{e^{\sqrt{dt} \cdot \sigma_m}}; \frac{1}{e^{\sqrt{dt} \cdot \sigma_l}}\right)}{\left(e^{\sqrt{dt} \cdot \sigma_l}; e^{\sqrt{dt} \cdot \sigma_m}; e^{\sqrt{dt} \cdot \sigma_r}\right) - \left(\frac{1}{e^{\sqrt{dt} \cdot \sigma_r}}; \frac{1}{e^{\sqrt{dt} \cdot \sigma_m}}; \frac{1}{e^{\sqrt{dt} \cdot \sigma_l}}\right)}$$

.

Теперь можно построить дерево со всевозможными ценами ценами базисного актива (например, акции). Поскольку число шагов N=2, то в дереве будет 3 шага с соответственно 1, 2, 3 возможными ценами актива:

Теперь можно пройтись по дереву с конца и рассчитать нечеткую стоимость опциона:

Таким образом, мы нашли нечеткую цену для европейского опциона колл:

$$C = p \cdot [p \cdot \max(S \cdot u^2 - S, 0) + (1 - p) \cdot \max(S \cdot ud - S, 0)] + (1 - p) \cdot [p \cdot \max(S \cdot ud - S, 0) + (1 - p) \cdot \max(S \cdot d^2 - S, 0)]$$
(1)

Продемонстрируем на конкретном примере работу данного подхода к биномиальной модели на нечетких числах:

Параметр модели	Значение
S	(100, 100, 100)
X	105
t	1
N	2
r	(0.08; 0.1; 0.12)
σ	(0.18; 0.2; 0.22)

По выведенной для C формуле можно посчитать, что C=(11.603,13.566,14.601) (с точностью до тысячных). Заметим, что число 13.566- цена опциона по обычной модели — не является серединой отрезка цен $\frac{11.603+14.601}{2}$. Это свидетельствует о том, что при оценке некоторого опциона можно ориентироваться не только на срез $\mu=1$, то также и на срезы для $\mu:\mu<1-$ в этом и состоит идея оценки опциона нечетких числом.

4 Проблемы биномиальной модели на нечетких числах

Было замечено, что при расчете биномиальной модели с достаточно большим N $(N \to \infty)$ происходит "разъезжание"левой и правой границ нечеткого числа, вследствие чего получается, что для нечеткого числа цены опциона (ξ_l, ξ_m, ξ_r) при $N \to \infty$ будет $\xi_l \to 0$ и $\xi \to +\infty$. Такой результат приводит к неразумности использования биномиальной модели на нечетких числах при $N \to \infty$, поскольку при высокой вычислительной сложности биномиальная

модель на нечетких числах не давает осмысленный результат, отличающийся от обычной биномиальной модели на действительных числах. Покажем это: пусть есть некоторые параметры для оценки стоимости опциона, содержащие нечеткие числа:

Параметр модели	Значение
S	(9, 10, 11)
X	10
t	3
r	(0.05; 0.1; 0.15)
σ	(0.1; 0.2; 0.3)
N	5

С такими параметрами получаем цену европеского опциона колл C=(0.089,2.913,11.305) \Rightarrow срез нечеткого числа при $\mu=1$: [0.089,11.305]. Можно отметить, что срез слишком большой и не дает осмысленного результата.

Рассчитаем теперь модель Блэка-Шоулза на нечетких числах с такими же параметрами. Очевидно, что мы получим средний индекс нечеткого числа стоимости опциона C близкий по значению к 2.913 (из-за сходимости биномиальной модели к модели Блэка-Шоулза при $N \to \infty$ [1]); однако левый и правый индекс C по Блэку-Шоулзу будут существенно отличаться от левого и правого индексов по биномиальной модели: C = (0.824, 2.907, 4.946) — более разумный результат и срез при C при $\mu = 1$ будет равен (0.824, 4.946).

Из графиков видно, что уже при N=5 биномиальная модель дает результат, левый индекс которого почти нулевой, а правый индекс — слишком большой. Продемонстрируем, как меняются эти индексы при $N\to\infty$. Левый индекс:

Средний индекс:

Правый индекс:

Сходимость биномиальной модели к модели Блэка-Шоулза по среднему индексу нечеткого числа C:

Таким образом, из графиков видно, что при $N \to \infty$ будет $\xi_l \to 0$ и $\xi_r \to \infty$. Этот результат можно объяснить тем, что при $N \to \infty$ левый индекс нечеткого числа C будет показывать цену опциона при самой худшей ситуации (с минимальной волатильностью σ , минимальной процентной ставкой r и минимальной текущей ценой базисного актива S при постоянном понижении цены базисного актива) \Rightarrow такая цена будет стремиться к 0 при увеличении числа шагов; в то время, как самый лучший исход биномиальной модели будет очень большим. Оба этих события маловероятны, и поэтому необходимо каким-либо образом дефаззифицировать нечеткое число C, чтобы получать меньший срез при $\mu=1$. При этом чем больше в модели нечетких входных параметров, тем быстрее "расходится"ее результат при $N \to \infty$. Поэтому мы будем использовать биномиальную модель, где нечеткой будет только волатильность.

5 Обзор литературы по биномиальной модели на нечетких числах

Для того, чтобы решить проблему с «разъезжанием» нечеткого числа при использовании биномиальной модели, рассмотрим реализацию биномиальной модели на нечетких числах у других авторов. Всего рассмотрим 2 статьи:

- «Model construction of option pricing based on fuzzy theory» [2] (Shang-En Yu, Ming-Yuan Leon Li, Kun-Huang Huarng, Tsung-Hao Chen, and Chen-Yuan Chen)
- «A Fuzzy Set Approach for Generalized CRR Model: An Empirical Analysis

of S&P 500 Index Options» [3] (Cheng Few Lee, Gwo-Hshiungtzeng, Shin-Yun Wang)

5.1Обзор статьи «A Fuzzy Set Approach for Generalized CRR Model: An Empirical Analysis of S&P 500 Index **Options**»

Обзор статьи «A Fuzzy Set Approach for Generalized CRR Model: An Empirical Analysis of S&P 500 Index Options» [3] (Cheng Few Lee, Gwo-Hshiungtzeng, Shin-Yun Wang). Главная модификация биномиальной модели, представленная авторами в данной статье, состоит в том, что рассматриваются 6 чисел, задающих различное изменение цен: (u_l, u_m, u_r) и (d_l, d_m, d_r) — слабое, средние и сильное повышение цены на базисный актив. На каждом шаге стоимость базисного актива может подняться до $S_{ur} = S \cdot [e^{(1+r)\sigma\sqrt{dt}}], S_{um} =$ $S \cdot [e^{\sigma\sqrt{dt}}], S_{ul} = S \cdot [e^{(1-r)\sigma\sqrt{dt}}]$ и опуститься до $S_{dr} = S \cdot [e^{-(1-r)\sigma\sqrt{dt}}], S_{dm} = S \cdot [e^{-\sigma\sqrt{dt}}], S = dl = S \cdot [e^{-(1+r)\sigma\sqrt{dt}}]$. Цены опционов колл $C_{ur} = \max(S_{ur} - X, 0),$ $C_{um} = \max(S_{um} - X, 0), C_{ul} = \max(S_{ul} - X, 0), C_{dr} = \max(S_{dr} - X, 0), C_{dm} =$ $C_{um} = \max(S_{um} - X, 0), \ C_{ul} = \max(S_{ul} - X, 0), \ C_{dr} = \max(S_{dr} - X, 0), \ C_{dm} = \max(S_{dm} - X, 0), \ C_{dl} = \max(S_{dl} - X, 0).$ Также задается 3 риск-нейтральные вероятности: $p_u = \frac{e^{r_h dt - d_l}}{u_r - d_l}, \ p_m = \frac{e^{r_m dt} - d_m}{u_m - d_m}, \ p_d = \frac{e^{r_l \Delta t} - d_r}{u_l - d_r}.$ Таким образом, авторы получают такую нечеткую цену европейского опциона колл для двухшаговой $C_u = e^{-r_l dt} [p_u \cdot C_{ur} + (1 - p) \cdot C_{dl}]$ биномиальной модели: $C = \begin{cases} C_u = e^{-r_n dt} [p_m \cdot C_{ur} + (1 - p_m) \cdot C_{dl}] \\ C_d = e^{-r_h dt} [p_d \cdot C_{ul} + (1 - p_d) \cdot C_{dr}] \end{cases}$

биномиальной модели:
$$C = \begin{cases} C_u = e^{-r_l dt} [p_u \cdot C_{ur} + (1-p) \cdot C_{dl}] \\ C_m = e^{-r_m dt} [p_m \cdot C_{ur} + (1-p_m) \cdot C_{dl}] \\ C_d = e^{-r_h dt} [p_d \cdot C_{ul} + (1-p_d) \cdot C_{dr}] \end{cases}$$

5.2Обзор статьи «Model construction of option pricing based on fuzzy theory»

Обзор статьи «Model construction of option pricing based on fuzzy theory» [2] (Shang-En Yu, Ming-Yuan Leon Li, Kun-Huang Huarng, Tsung-Hao Chen, and Chen-Yuan Chen). Авторы статьи используют принцип, аналогичный использованному в [3]. Таким образом, строится дерево с 6^{n-1} вершинами на последнем шаге n и производится обратный проход с конца дерева стоимостей опционов до начала дерева. Авторы, исследуя реальные данные о ценах опционах, приходят к выводу, что точность прогноза такой биномиальной модели оказывается выше в сравнении с классической моделью. При этом левый индекс нечеткой цены опциона C предлагается использовать несклонным к риску агентам, а правый индекс — склонным к риску агентам.

6 Возможные решения проблем биномиальной модели на нечетких числах

В этом разделе рассмотрим, как можно решить проблему "разъезжания" левого и правого индексов нечеткого числа — цены опциона так, чтобы при $N \to \infty$ результат модели асимптотически сходился к некоторому конкретному значению по всем индексам, а не "расходился". Всего было предложено 3 метода, из которых действенным оказался последний — с нормировкой волатильности.

6.1 Нормировка стоимостей базисного актива

Было проверено, что при расчете нечеткой биномиальной модели проблема $\begin{cases} \xi_l \to 0 \\ \xi_r \to \infty \end{cases}$ проявляется уже на этапе рассчета возможных стоимостей бизис-

ного актива: минимальная возможная цена базисного актива при больших N стремится к нулю , а максимальная возможная цена базисного актива — к бесконечности. Поэтому было решено нормировать нечеткие цены базисного актива. Для этого при расчете каждой возможной цены актива в качестве левого коэффициента мы брали $S_l = S_m - S_l \cdot \alpha$, а в качестве правого — $S_r = S_m + S_r \cdot \alpha$, где α — некоторый экзогенный параметр, который можно интерпретировать, как степень расплывчатости стоимости актива. При таком подходе средний индекс результата модели все еще будет сходится к формуле Блэка-Шоулза по центральному индексу, однако непонятно, каким нужно выбрать α , чтобы нечеткая биномиальная модель выдавала стоимость опциона, не зависящую от числа шагов N. При следующих входных параметрах:

Параметр модели	Значение
S	1
X	1
t	1
r	0.1
σ	(0.1; 0.12; 0.15)
N	100
α	0.5

результат модели — нечеткое число [0, 0.1079, 1.1853], которое также "расходится".

6.2 Сужение массива цен базисного актива

Поэтому было решено использовать не все возможные цены базисного актива для построения дерева цен опциона, а только долю $\alpha \in (0,1)$ средних цен активов. При таком подходе модель не учитывает самые лучшие и самые худшие сценарии для изменения цен базисного актива, что приводит к усреднению ее результатов. Однако такая модификация биномиальной модели приводит к появлению дополнительного гиперпараметра, который нужно как-то подбирать. Для тестов было использовано $\alpha = \min(\sigma_m; 1)$, так как при росте волатильности и неопределенности логичнее рассматривать большую часть от стоимостей актива. Кроме того, из-за того, что массив цен актива модифицируется, то центральный индекс нечеткого результата не будет гарантированно сходится к формуле Блэка-Шоулза. Были проведены тесты такой модификации модели на следующих параметрах:

Параметр модели	Значение
S	1
X	1
t	1
r	0.1
σ	(0.1; 0.12; 0.15)
N	100

Результатом такой модели будет нечеткое число [0, 0.1079, 0.3001], которое также не является разумным результатом.

6.3 Нормировка волатильности

Поскольку "разъезжание"нечетких чисел происходит уже на этапе расчета стоимостей активов, то разумно нормировать волатильность сразу так, чтобы она уменьшалась при увеличении N. Возьмем волатильность $\sigma = (\sigma_l, \sigma_m, \sigma_r) = (\sigma_m - \frac{\sigma_l}{\sqrt{N}}, \sigma_m, \sigma_m + \frac{\sigma_r}{\sqrt{N}})$. С такой волатильностью модификация биномиальной модели будет сходиться к формуле Блэка-Шоулза по центральному индексу. Для тестов модели возьмем такие параметры:

Параметр модели	Значение
S	1
X	1
$ t \rangle$	1
r	0.1
σ	(0.1; 0.12; 0.15)
N	100

С заданными параметрами получаем цену опциона [0.0294, 0.10795, 0.2434]. Стоимость опциона не "разъезжается". Более того, при увеличении N (было численно проверенно для N до 3000) такая модификация нечеткой биномиальной модели будет сходиться к конкретному нечеткому числу и не зависеть от N:

7 Реализация и тесты в python

В приложении с реализацией моделей в среде **python** есть функции для:

- Классической модели Блэка-Шоулза
- Классической биномиальной модели
- Модели Блэка-Шоулза с нечеткими числами
- Биномиальной модели с нечеткими числами
- Нечеткой биномиальной модели с нормировкой стоимостей базисного актива.
- Нечеткой биномиальной модели с уменьшением массива стоимостей базисного актива
- Нечеткой биномиальной модели с нормировкой волатильности с использованием разных функций (корня, логарифма и линейной)

8 Выводы и результаты

- Изучили и реализовали классическую биномиальную модель и модель Блэка-Шоулза
- Рассмотрели и реализовали нечеткие версии модели Блэка-Шоулза и биномиальной модели
- Выявили проблему биномиальной модели на нечетких числах
- Сделали обзор литературы по биномиальной модели на нечетких числах
- Предложили (без доказательства) модификацию нечеткой биномиальной модели, сходящуюся к конкретному нечеткому числу при $N \to \infty$

Список литературы

- [1] S. Roman «Introduction to the Mathematics of Finance»
- [2] Shang-En Yu, Ming-Yuan Leon Li, Kun-Huang Huarng, Tsung-Hao Chen, and Chen-Yuan Chen «Model construction of option pricing based on fuzzy theory»
- [3] Cheng Few Lee, Gwo-Hshiungtzeng, Shin-Yun Wang «A Fuzzy Set Approach for Generalized CRR Model: An Empirical Analysis of S&P 500 Index Options»
- [4] Лис А. И. «О применении нечетких чисел при оценке опционов»
- [5] Шведов А. С. «О математических методах, используемых при работе с опционами»
- [6] A. Thavaneswaran, S. S. Appadoo, J. Frank «Binary option pricing using fuzzy numbers»
- [7] Jorge de Andrés-Sánchez «Modelling Up-and-Down Moves of Binomial Option Pricing with Intuitionistic Fuzzy Numbers»

Содержание

1	Введение		1
	1.1	Биномиальная модель для оценки опционов на нечетких числах	1
2	He	неткие числа	2
3	Бин	номиальная модель для оценки опционов	3
	3.1	Предпосылки	3
	3.2	Обозначения	3
	3.3	Классическая биномиальная модель	4
	3.4	Биномиальная модель на нечетких числах	5
4	Пре	облемы биномиальной модели на нечетких числах	7
5	Обз	вор литературы по биномиальной модели на нечетких чис-	
	лах		11
	5.1	Обзор статьи «A Fuzzy Set Approach for Generalized CRR Model:	
		An Empirical Analysis of S&P 500 Index Options»	12
	5.2	Обзор статьи «Model construction of option pricing based on fuzzy	
		theory»	12
6	Bos	вможные решения проблем биномиальной модели на нечет-	
	ких	х числах	13
	6.1	Нормировка стоимостей базисного актива	13
	6.2	Сужение массива цен базисного актива	14
	6.3	Нормировка волатильности	14
7	Pea	лизация и тесты в python	15
8	Вы	воды и результаты	16
Cı	писо	к литературы	17
C	одер	жание	18