Neural Network Models for Text Classification

Hongwei Wang 18/11/2016

Deep Learning in NLP

- ☐ Feedforward Neural Network
 - ☐ The most basic form of NN
- □ Convolutional Neural Network (CNN)
 - Quite successful in computer vision
 - Extract local features
 - Most popular and effective in sentence classification
- Recursive Neural Network
 - □ Rely on parser tree of the sentence
- Recurrent Neural Network (RNN)
 - Designed for sequential data
 - The most popular version: Long Short-Term Memory (LSTM)
 - ☐ Further variants: Bidirectional-LSTM, Deep-LSTM ...

Deep Learning in NLP

- ☐ Feedforward Neural Network
 - ☐ The most basic form of NN
- □ Convolutional Neural Network (CNN)
 - Quite successful in computer vision
 - Extract local features
 - Most popular and effective in sentence classification
- Recursive Neural Network
 - ☐ Rely on parser tree of the sentence
- □ Recurrent Neural Network (RNN)
 - ☐ Designed for sequential data
 - ☐ The most popular version: Long Short-Term Memory (LSTM)
 - ☐ Further variants: Bidirectional-LSTM, Deep-LSTM

Paper roadmap

Paper roadmap

5

Convolutional Neural Networks for Sentence Classification

Yoon Kim arXiv, 2014

Model architecture

Preparation

Word embedding

- Sparse, 1-of-V encoding → lower dimensional vector space
- Semantically close words are likewise close

□ Padding to size *n* if necessary

Projection of the embedding vectors to 2-D

CNN layers

- Convolution layer
 - \square Input sentence: $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n$
 - \Box Output local feature: $c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b)$
 - □ Feature map: $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}]$
- Max-pooling layer

$$\hat{c} = \max\{\mathbf{c}\}$$

☐ Fully connected layer with softmax output

Regularization on the FC layer

Dropout

Using \mathbf{r} (Bernouli random variables w.p. p of being 1) as mask when training:

$$y = \mathbf{w} \cdot (\mathbf{z} \circ \mathbf{r}) + b$$

Scale learned vectors by p when testing:

$$\hat{\mathbf{w}} = p\mathbf{w}$$

\square I_2 -norms constraints

 \square Rescale w to have $||\mathbf{w}||_2 = s$

Model variations

- ☐ CNN-rand (baseline)
 - All words are randomly initialized and modified during training
- CNN-static
 - Pre-trained word vectors via word2vec
 - Kept static during training
- CNN-non-static
 - Pre-trained word vectors via word2vec
 - Fine-tuned for each task during training
- CNN-multichannel
 - Both channels are initialized with word2vec
 - One channel static, the other fine-tuned
 - Each filter is applied to both channels and the results are added

Hyper-parameters and training

- ☐ **Hyper-parameters** (via grid search on the SST-2 set)
 - Rectified linear units
 - ☐ Filter windows: 3, 4, 5 with 100 feature maps each
 - ☐ Dropout rate: 0.5
 - $\square L_2$ constraint: 3
 - ☐ Minibatch size: 50
 - □ Dimensionality of word embedding: 300

During training——

- Early stopping
- Stochastic gradient descent over shuffled mini-batches

Datasets

Data	c	l	N	V	$ V_{pre} $	Test
MR	2	20	10662	18765	16448	CV
SST-1	5	18	11855	17836	16262	2210
SST-2	2	19	9613	16185	14838	1821
Subj	2	23	10000	21323	17913	CV
TREC	6	10	5952	9592	9125	500
CR	2	19	3775	5340	5046	CV
MPQA	2	3	10606	6246	6083	CV

c: number of target classes;

I: average sentence length;

N: dataset size;

|V|: vocabulary size;

 $|V_{\text{pre}}|$: number of word present in the set of pre-trained word vectors;

Test: test set size (CV means 10-fold CV was used)

Results (accuracy)

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM_S (Silva et al., 2011)	_	_	_	_	95.0	_	_

Discussion

- Multichannel vs. single channel
- Additional 2%-4% gain by dropout
- word2vec gave far superior performance compared with another word embedding method

Discussion (cont.)

☐ Static vs non-static

	Most Sim	nilar Words for
	Static Channel	Non-static Channel
	good	terrible
bad	terrible	horrible
vaa	horrible	lousy
	lousy	stupid
	great	nice
good	bad	decent
good	terrific	solid
	decent	terrific
	OS	not
n't	са	never
n ı	ireland	nothing
	wo	neither
	2,500	2,500
!	entire	lush
•	jez,	beautiful
	changer	terrific
	decasia	but
	abysmally	dragon
,	demise	а
	valiant	and

Summary

Network type	CNN
# of layers	3 (1 con + 1 pool + 1 fc)
Word or character level	word level
Embedding	word2vec / self-learned
# of embedding dimension	300
Padding	yes
# of feature maps	3 * 100
Size of window	3, 4, 5
Pooling type	max
Non-linear function	ReLU
Regularization	dropout
	<i>I</i> ₂ -norm constraint

Paper roadmap

18

A Convolutional Neural Network for Modeling Sentences

Nal Kalchbrenner, Edward Grefenstette, Phil Blunsom arXiv, 2014

First we should know ...

- Disadvantages of max pooling
 - Cannot distinguish the occurrence time of specific feature
 - Pooling factor can be excessive
- Narrow & wide convolution

Model architecture

What is new

- Wide convolution
- Dimension-wise convolution
 - □ Embedding dimension d; window size m;
 - #d convolution vector of size m;
- Dynamic *k*-Max pooling
 - □ Largest k values selected, order preserved
 - $\square k_l = \max(k_{top}, \lceil \frac{L-l}{L} s \rceil)$
- Folding
 - ☐ After convolution layer, before *k*-max pooling layer
 - ☐ Sum every two rows in a feature map component-wise

Results (accuracy)

SST1 & SST2

Classifier	Fine-grained (%)	Binary (%)
NB	41.0	81.8
BINB	41.9	83.1
SVM	40.7	79.4
RECNTN	45.7	85.4
Max-TDNN	37.4	77.1
NBoW	42.4	80.5
DCNN	48.5	86.8

TREC

Classifier	Features	Acc. (%)
HIER	unigram, POS, head chunks NE, semantic relations	91.0
MAXENT	unigram, bigram, trigram POS, chunks, NE, supertags CCG parser, WordNet	92.6
MAXENT	unigram, bigram, trigram POS, wh-word, head word word shape, parser hypernyms, WordNet	93.6
SVM	unigram, POS, wh-word head word, parser hypernyms, WordNet 60 hand-coded rules	95.0
MAX-TDNN	unsupervised vectors	84.4
NBoW	unsupervised vectors	88.2
DCNN	unsupervised vectors	93.0

Twitter sentiment

Classifier	Accuracy (%)
SVM	81.6
BINB	82.7
MAXENT	83.0
Max-TDNN	78.8
NBoW	80.9
DCNN	87.4

Summary

Experiment	SST1	SST2	TREC	Twitter	
Network type	CNN				
# of layers	7 ((1	7 ((1 con + 1 fold + 1 pool) * 2 + 1 fc)			
Word or character level	word level				
Embedding	self-learned				
# of embedding dimension	48 32 60			60	
Padding	no				
# of feature maps	6, 14 6, 12 8, 5		8, 5	/	
Size of window	7, 5	10, 7	/	/	
Pooling type	dynamic <i>k</i> -max				
Non-linear function	tanh				
Regularization		L	2		

Paper roadmap

25

Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts

Cicero Nogueira dos Santos, Maira Gatti Coling, 2014

What is new

■ Word-level + character-level embedding

Model Architecture

convolution & max-pooling

Results (accuracy)

SST

Model	Phrases	Fine-Grained	Positive/Negative
CharSCNN	yes	48.3	85.7
SCNN	yes	48.3	85.5
CharSCNN	no	43.5	82.3
SCNN	no	43.5	82.0
RNTN (Socher et al., 2013b)	yes	45.7	85.4
MV-RNN (Socher et al., 2013b)	yes	44.4	82.9
RNN (Socher et al., 2013b)	yes	43.2	82.4
NB (Socher et al., 2013b)	yes	41.0	81.8
SVM (Socher et al., 2013b)	yes	40.7	79.4

Twitter sentiment

Model	Accuracy	Accuracy (random	
	(unsup. pre-training)	word embeddings)	
CharSCNN	86.4	81.9	
SCNN	85.2	82.2	
LProp (Speriosu et al., 2011)	84.7		
MaxEnt (Go et al., 2009)	83.	0	
NB (Go et al., 2009)	82.7		
SVM (Go et al., 2009)	82.2		

Summary

Experiment	SST	Twitter	
Network type	CNN		
# of layers	6 ((1 con + 1 p	oool) * 2 + 2 fc)	
Word or character level	word level + character level		
Embedding	word2vec (word) / self-learned (char)		
# of embedding dimension	5 (char), 30 (word)		
Padding	yes		
# of feature maps	10 (char), 300 (word) 50 (char), 300 (word)		
Size of window	3 (char), 5 (word)		
Pooling type	max		
Non-linear function	tanh		
Regularization		/	

Paper roadmap

31

Effective Use of Word Order for Text Categorization with Convolutional Neural Networks

Rie Johnson, Tong Zhang arXiv, 2015

What is new

11/17/2017

No word-embedding

- Word embedding is just s special case of convolution layer with window size 1
- Directly learn features of text without embedding learning

seq-CNN & bow-CNN

- V = {"don't", "hate", "I", "it", "love"}, D = "I love it"
- $\mathbf{x} = [0\ 0\ 1\ 0\ 0\ |\ 0\ 0\ 0\ 0\ 1\ |\ 0\ 0\ 0\ 1\ 0]^{\mathsf{T}}$

$$\mathbf{r}_0(\mathbf{x}) = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \mathbf{I} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{matrix} \mathrm{don't} \\ \mathrm{hate} \\ 1 \\ \mathrm{love} \\ - \\ 0 \\ 0 \\ 0 \\ 1 \\ \mathrm{love} \end{matrix} \qquad \mathbf{r}_1(\mathbf{x}) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ \mathrm{love} \end{matrix} \qquad \mathbf{r}_0(\mathbf{x}) = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \begin{matrix} \mathrm{don't} \\ \mathrm{hate} \\ \mathbf{I} \\ \mathrm{love} \\ - \\ 0 \\ 0 \\ 1 \\ \mathrm{lit} \\ \mathrm{love} \\ 1 \\ \mathrm{love}$$

$$\mathbf{r}_0(\mathbf{x}) = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \begin{cases} \mathrm{don't} \\ \mathrm{hate} \\ \mathbf{I} \\ \mathrm{it} \\ \mathrm{love} \end{cases} \mathbf{r}_1(\mathbf{x}) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ \mathrm{it} \\ \mathrm{love} \end{cases} \begin{cases} \mathrm{don't} \\ \mathrm{hate} \\ \mathbf{I} \\ \mathrm{it} \\ \mathrm{love} \end{cases}$$

33

bow-CNN seq-CNN

Model Architecture

Results (error)

methods	IMDB	Elec	RCV1
SVM bow3 (30K)	10.14	9.16	10.68
SVM bow1 (all)	11.36	11.71	10.76
SVM bow2 (all)	9.74	9.05	10.59
SVM bow3 (all)	9.42	8.71	10.69
NN bow3 (all)	9.17	8.48	10.67
NB-LM bow3 (all)	8.13	8.11	13.97
bow-CNN	8.66	8.39	9.33
seq-CNN	8.39	7.64	9.96
seq2-CNN	8.04	7.48	_
seq2-bown-CNN	7.67	7.14	_

Summary

Experiment	IMDB & Elec	RCV1
Network type	CNN	
# of layers	3 (1 con + 1 pool + + 1 fc)	
Word or character level	word level	
Embedding	none	
# of embedding dimension	N.A.	
Padding	yes	
# of feature maps	1000 (seq, bow) 2000 (seq2) 2020(seq2-bow <i>n</i>)	1000
Size of window	3	20
Pooling type	max	avg (10 units)
Non-linear function	ReLU	
Regularization	dropout L ₂	

Johnson's CNN

What's more ...

- tv-embedding
 - □ tv stands for "two-view"
 - Region embedding from unlabeled data
- Supervised CNN + tv-embedding = semi-supervised CNN
 - Published in NIPS 2015
 - Even better results

		IMDB	Elec	RCV1	
linear S	VM with 1-3g	10.14	9.16	10.68	
linear	TSVM with 1	9.99	16.41	10.77	
	[13]'s CNN		9.17	8.03	10.44
One-h	ot CNN (sim	ole) [11]	8.39	7.64	9.17
One-hot CN	N (simple) co	o-training best	(8.06)	(7.63)	(8.73)
	unsup-tv.	100-dim	7.12	6.96	8.10
	unsup-tv.	200-dim	6.81	6.69	7.97
	parcup ty	100-dim	7.12	6.58	8.19
Our CNN	parsup-tv.	200-dim	7.13	6.57	7.99
	ungun3 tv	100-dim	7.05	6.66	8.13
	unsup3-tv.	200-dim	6.96	6.84	8.02
	all three	100×3	6.51	6.27	7.7 1

Paper roadmap

38

Character-level Convolutional Networks for Text Classification

Xiang Zhang, Junbo Zhao, Yann LeCun NIPS, 2015

What is new

- Apply CNN only on characters
 - Do not require knowledge of words
 - ☐ Do not require knowledge about syntactic or semantic structure
- Somewhat deep ...

Model Architecture

Layer	Large Feature	Small Feature	Kernel	Pool
1	1024	256	7	3
2	1024	256	7	3
3	1024	256	3	N/A
4	1024	256	3	N/A
5	1024	256	3	N/A
6	1024	256	3	3

Layer	Output Units Large	Output Units Small
7	2048	1024
8	2048	1024
9	Depends on	the problem

Datasets

Dataset	Classes	Train Samples	Test Samples	Epoch Size
AG's News	4	120,000	7,600	5,000
Sogou News	5	450,000	60,000	5,000
DBPedia	14	560,000	70,000	5,000
Yelp Review Polarity	2	560,000	38,000	5,000
Yelp Review Full	5	650,000	50,000	5,000
Yahoo! Answers	10	1,400,000	60,000	10,000
Amazon Review Full	5	3,000,000	650,000	30,000
Amazon Review Polarity	2	3,600,000	400,000	30,000

Results (error)

Model	AG	Sogou	DBP.	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
BoW	11.19	7.15	3.39	7.76	42.01	31.11	45.36	9.60
BoW TFIDF	10.36	6.55	2.63	6.34	40.14	28.96	44.74	9.00
ngrams	7.96	2.92	1.37	4.36	43.74	31.53	45.73	7.98
ngrams TFIDF	7.64	2.81	1.31	4.56	45.20	31.49	47.56	8.46
Bag-of-means	16.91	10.79	9.55	12.67	47.46	39.45	55.87	18.39
LSTM	13.94	4.82	1.45	5.26	41.83	29.16	40.57	6.10
Lg. w2v Conv.	9.92	4.39	1.42	4.60	40.16	31.97	44.40	5.88
Sm. w2v Conv.	11.35	4.54	1.71	5.56	42.13	31.50	42.59	6.00
Lg. w2v Conv. Th.	9.91	_	1.37	4.63	39.58	31.23	43.75	5.80
Sm. w2v Conv. Th.	10.88	_	1.53	5.36	41.09	29.86	42.50	5.63
Lg. Lk. Conv.	8.55	4.95	1.72	4.89	40.52	29.06	45.95	5.84
Sm. Lk. Conv.	10.87	4.93	1.85	5.54	41.41	30.02	43.66	5.85
Lg. Lk. Conv. Th.	8.93	_	1.58	5.03	40.52	28.84	42.39	5.52
Sm. Lk. Conv. Th.	9.12	_	1.77	5.37	41.17	28.92	43.19	5.51
Lg. Full Conv.	9.85	8.80	1.66	5.25	38.40	29.90	40.89	5.78
Sm. Full Conv.	11.59	8.95	1.89	5.67	38.82	30.01	40.88	5.78
Lg. Full Conv. Th.	9.51	_	1.55	4.88	38.04	29.58	40.54	5.51
Sm. Full Conv. Th.	10.89	_	1.69	5.42	37.95	29.90	40.53	5.66
Lg. Conv.	12.82	4.88	1.73	5.89	39.62	29.55	41.31	5.51
Sm. Conv.	15.65	8.65	1.98	6.53	40.84	29.84	40.53	5.50
Lg. Conv. Th.	13.39	-	1.60	5.82	39.30	28.80	40.45	4.93
Sm. Conv. Th.	14.80	-	1.85	6.49	40.16	29.84	40.43	5.67

Summary

Network type	CNN			
# of layers	12 (6 con + 3 pool + 3 fc)			
Word or character level	character level			
Embedding	None			
# of embedding dimension	N.A.			
Padding	yes			
# of feature maps	1024 / 256			
Size of window	7, 3			
Pooling type	max (window size 3)			
Non-linear function	ReLU			
Regularization	dropout data augmentation (synonym replacement)			

Paper roadmap

45

Efficient Character-level Document Classification by Combining Convolutional and Recurrent Layers

Yijun Xiao, Kyunghyun Cho arXiv, 2016

What is new

- ☐ CNN + RNN
 - □ RNN can efficiently capture long-term dependencies
 - □ RNN can reduce the number of convolutional layers

Model Architecture

$$H_{\text{forward}} = (\overrightarrow{\mathbf{h}}_{1}, \overrightarrow{\mathbf{h}}_{2}, \dots, \overrightarrow{\mathbf{h}}_{T'}) \\ H_{\text{reverse}} = (\overleftarrow{\mathbf{h}}_{1}, \overleftarrow{\mathbf{h}}_{2}, \dots, \overleftarrow{\mathbf{h}}_{T'}).$$

$$F = (\mathbf{f}_{1}, \mathbf{f}_{2}, \dots, \mathbf{f}_{T'})$$

$$E = (\mathbf{e}_{1}, \mathbf{e}_{2}, \dots, \mathbf{e}_{T})$$

$$X = (\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{T}).$$

Model Architecture

$$H_{\text{forward}} = (\overrightarrow{\mathbf{h}}_{1}, \overrightarrow{\mathbf{h}}_{2}, \dots, \overrightarrow{\mathbf{h}}_{T'}) \\ H_{\text{reverse}} = (\overleftarrow{\mathbf{h}}_{1}, \overleftarrow{\mathbf{h}}_{2}, \dots, \overleftarrow{\mathbf{h}}_{T'}).$$

$$F = (\mathbf{f}_{1}, \mathbf{f}_{2}, \dots, \mathbf{f}_{T'})$$

$$E = (\mathbf{e}_{1}, \mathbf{e}_{2}, \dots, \mathbf{e}_{T})$$

$$X = (\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{T})$$

Model Details

	Embeddin		Convolu	Recurrent Layer			
Model	Model Sec. 2.1			Se	Sec. 2.3		
	V	d	d'	r	r'	ϕ	d'
C2R1DD				5,3	2,2		
C3R1D <i>D</i>	96	O	D	5,5,3	2,2,2	ReLU	D
C4R1DD	90	0	D	5,5,3,3	2,2,2,2	KeLU	D
C5R1DD				5,5,3,3,3	2,2,2,1,2		

Results (error)

				Our Model		(Zhar	ng et al., 201	5)
Data set	# Ex.	# Cl.	Network	# Params	Error (%)	Network	# Params	Error (%)
AG	120k	4	C2R1D1024	20M	8.39/ 8.64	C6F2D1024	27M	-/9.85
Sogou	450k	5	C3R1D128	.4M	4.82/ 4.83	C6F2D1024*	27M	-/4.88
DBPedia	560k	14	C2R1D128	.3M	1.46/ 1.43	C6F2D1024	27M	-/1.66
Yelp P.	560k	2	C2R1D128	.3M	5.50/5.51	C6F2D1024	27M	-/5.25
Yelp F.	650k	5	C2R1D128	.3M	38.00/ 38.18	C6F2D1024	27M	-/38.40
Yahoo A.	1.4M	10	C2R1D1024	20M	28.62/ 28.26	C6F2D1024*	27M	-/29.55
Amazon P.	3.6M	2	C3R1D128	.4M	5.64/5.87	C6F2D256*	2.7M	-/5.50
Amazon F.	3.0M	5	C3R1D128	.4M	40.30/40.77	C6F2D256*	2.7M	-/40.53

Table 3: Results on character-level document classification. CCRRFFDD refers to a network with C convolutional layers, R recurrent layers, F fully-connected layers and D dimensional feature vectors. \star denotes a model which does not distinguish between lower-case and upper-case letters. We only considered the character-level models without using Thesaraus-based data augmentation. We report both the validation and test errors. In our case, the network architecture for each dataset was selected based on the validation errors. The numbers of parameters are approximate.

Summary

Network type	CNN + RNN
# of layers	4-12 (2-5 con + 2-5 pool + 1 rec + 1 fc)
Word or character level	character level
Embedding	/
# of embedding dimension	8
Padding	yes
# of feature maps	128, 1024
Size of window	5, 3
Pooling type	max (window size 2, 1)
Non-linear function	ReLU
	dropout
Regularization	L ₂
	early stopping

Paper roadmap

Very Deep Convolutional Networks for Natural Language Processing

Alexis Conneau, Holger Schwenk, Yan LeCun, Loic Barreau arXiv, 2016

What is new

- ☐ Very deep ...
 - □ No one uses more than 6 convolutional layers before for sentence classification
 - □ Significant improvement have been reported using much deeper networks in computer vision

Model Architecture

Figure 2: Detailed architecture of a convolutional block.

Model Details

Table 1: Number of convolutional layers for each depth.

Depth:	9	17	29	49
conv block 512	2	4	4	6
conv block 256	2	4	4	10
conv block 128	2	4	10	16
conv block 64	2	4	10	16
First conv. layer	1	1	1	1
#params [in M]	2.2	4.3	4.6	7.8

Results (error)

Best results from previous work

Corpus:	AG	Sogou	DBP.	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
			[Zhang]	[Zhang]		Conv+RNN [Xiao] 28.26	Conv [Zhang] 40.43*	[Zhang]

Very deep CNN

Depth	Pooling	AG	Sogou	DBP.	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
9	Convolution	10.17	4.22	1.64	5.01	37.63	28.10	38.52	4.94
9	KMaxPooling	9.83	3.58	1.56	5.27	38.04	28.24	39.19	5.69
9	MaxPooling	9.17	3.70	1.35	4.88	36.73	27.60	37.95	4.70
17	Convolution	9.29	3.94	1.42	4.96	36.10	27.35	37.50	4.53
17	KMaxPooling	9.39	3.51	1.61	5.05	37.41	28.25	38.81	5.43
17	MaxPooling	8.88	3.54	1.40	4.50	36.07	27.51	37.39	4.41
29	Convolution	9.36	3.61	1.36	4.35	35.28	27.17	37.58	4.28
29	KMaxPooling	8.67	3.18	1.41	4.63	37.00	27.16	38.39	4.94
29	MaxPooling	8.73	3.36	1.29	4.28	35.74	26.57	37.00	4.31

Results (error) cont.

Effect of shortcut

	without shortcut	with shortcut
depth 9	33.08 / 37.63	33.51 / 40.27
depth 17	30.85 / 36.10	35.80 / 39.18
depth 29	29.57 / 35.28	30.59 / 36.01
depth 49	35.54 / 37.41	32.28 / 36.15

Inspired by the best paper of CVPR 2016:

He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[J]. arXiv preprint arXiv:1512.03385, 2015.

Summary

Network type	CNN			
# of layers	16-56 (9-49 con + 4 pool + 3 fc)			
Word or character level	character level			
Embedding	/			
# of embedding dimension	16			
Padding	yes			
# of feature maps	64, 128, 256, 512			
Size of window	3			
Pooling type	max (halve or k-max)			
Non-linear function	ReLU			
Regularization	short cut temporal batch norm			

Johnson vs. Conneau

What's more ...

Johnson vs. Conneau

Word-level vs. char-level

Error rate

Models	depth	AG	Sogou	Dbpedia	Yelp.p	Yelp.f	Yahoo	Ama.f	Ama.p
Linear model best 9	0	7.64	2.81	1.31	4.36	40.14	28.96	44.74	7.98
char-CNN best [1]	9+2	9.17	3.58	1.35	4.88	36.73	27.60	37.95	4.70
Char-Civiv best [1]	29+2	8.67	3.18	1.29	4.28	35.28	26.57	37.00	4.28
word-CNN w/o tv-embed.	1	6.95	2.21	1.12	3.44	34.21	26.06	37.51	4.27
word-CNN w/ tv (300-dim)	2	6.57	1.89	0.84	2.90	32.39	24.85	36.24	3.79

Model size & computation time

		Depth	Dimensionality of layer outputs (#layers)	#param	Time	Error rate(%)
char-CNN [1]		9+2	16(1), 64(3), 128(2), 256(2), 512(2), 2048(2)	2.2M	†215	36.73
Char-Civiv [1]		29+2	16(1), 64(11), 128(10), 256(4), 512(4), 2048(2)	4.6M	‡700	35.28
	w/o tv-embed.	1	500(1)	45M	6	34.21
word-CNN	w/ 2 tv (100-dim)	2	100(2), 500(1)	68M	21	32.77
	w/ 4 tv (100-dim)	2	100(4), 500(1)	91M	36	32.55
	w/ 4 tv (300-dim)	2	300(4), 500(1)	184M	72	32.39

Paper roadmap

Paper roadmap

Deep Learning in NLP

- ☐ Feedforward Neural Network
 - ☐ The most basic form of NN
- ☐ Convolutional Neural Network (CNN)
 - ☐ Quite successful in computer vision
 - Extract local features
 - ☐ Most popular and effective in sentence classification
- Recursive Neural Network
 - Rely on parser tree of the sentence
- Recurrent Neural Network (RNN)
 - Designed for sequential data
 - The most popular version: Long Short-Term Memory (LSTM)
 - ☐ Further variants: Bidirectional-LSTM, Deep-LSTM ...

Paper roadmap

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, Christopher Potts EMNLP, 2013

Model Architecture

Compute the posterior probability over labels given the word vector *a* via:

$$y^a = \operatorname{softmax}(W_s a)$$

Recursive Neural Network

$$p_1 = f\left(W \begin{bmatrix} b \\ c \end{bmatrix}\right), p_2 = f\left(W \begin{bmatrix} a \\ p_1 \end{bmatrix}\right)$$

RNTN (Recursive Neural Tensor Network)

$$p_{1} = f\left(\left[\begin{array}{c} b \\ c \end{array}\right]^{T} V^{[1:d]} \left[\begin{array}{c} b \\ c \end{array}\right] + W \left[\begin{array}{c} b \\ c \end{array}\right]\right)$$

$$p_2 = f\left(\left[\begin{array}{c} a \\ p_1 \end{array}\right]^T V^{[1:d]} \left[\begin{array}{c} a \\ p_1 \end{array}\right] + W \left[\begin{array}{c} a \\ p_1 \end{array}\right]\right)$$

$$h = \left[\begin{array}{c} b \\ c \end{array} \right]^T V^{[1:d]} \left[\begin{array}{c} b \\ c \end{array} \right]; h_i = \left[\begin{array}{c} b \\ c \end{array} \right]^T V^{[i]} \left[\begin{array}{c} b \\ c \end{array} \right]$$

Model Architecture

RNTN (Recursive Neural Tensor Network)

$$p_1 = f\left(\left[\begin{array}{c} b \\ c \end{array}\right]^T V^{[1:d]} \left[\begin{array}{c} b \\ c \end{array}\right] + W \left[\begin{array}{c} b \\ c \end{array}\right]\right)$$

Results (accuracy)

Model	Fine-g	grained	Positive	Positive/Negative		
	All	Root	All	Root		
NB	67.2	41.0	82.6	81.8		
SVM	64.3	40.7	84.6	79.4		
BiNB	71.0	41.9	82.7	83.1		
VecAvg	73.3	32.7	85.1	80.1		
RNN	79.0	43.2	86.1	82.4		
MV-RNN	78.7	44.4	86.8	82.9		
RNTN	80.7	45.7	87. 6	85.4		

Summary

Network type	Recursive NN		
Word or character level	word level		
Embedding	self learned		
# of embedding dimension	25-35		
# of features	25-35		
Non-linear function	tanh		
Regularization	L ₂		

Paper roadmap

Distibuted Representation of Sentences and Documents

Quoc Le, Tomas Mikolov ICML, 2014

Model architecture

- An unsupervised algorithm that learns representation for piece of texts
 - Sentences, paragraphs, documents ...
 - Word embedding + paragraph vector
- Learned by predicting a word given the other words in a context

Maximize the average log probability:

$$\frac{1}{T} \sum_{t=k}^{T-k} \log p(w_t | w_{t-k}, ..., w_{t+k})$$

where

$$p(w_t|w_{t-k},...,w_{t+k}) = \frac{e^{y_{w_t}}}{\sum_i e^{y_i}}$$
$$y = b + Uh(w_{t-k},...,w_{t+k},D;W)$$

Results (error)

- Trained by gradient descent
- Apply logistic regression after learning representations
- Dataset: SST

Model	Error rate	Error rate
	(Positive/	(Fine-
	Negative)	grained)
Naïve Bayes	18.2 %	59.0%
(Socher et al., 2013b)		
SVMs (Socher et al., 2013b)	20.6%	59.3%
Bigram Naïve Bayes	16.9%	58.1%
(Socher et al., 2013b)		
Word Vector Averaging	19.9%	67.3%
(Socher et al., 2013b)		
Recursive Neural Network	17.6%	56.8%
(Socher et al., 2013b)		
Matrix Vector-RNN	17.1%	55.6%
(Socher et al., 2013b)		
Recursive Neural Tensor Network	14.6%	54.3%
(Socher et al., 2013b)		
Paragraph Vector	12.2%	51.3%

11/17/2017 75

Summary

Network type	feedforward NN
Word or character level	word level
Embedding	self learned
# of embedding dimension	400
# of features	N.A.
Non-linear function	/
Regularization	/

11/17/2017 76

Paper roadmap

Deep Recursive Neural Networks for Compositionality in Language

Ozan Irsoy, Claire Cardie NIPS, 2014

Model architecture (cont.)

- Not only deep in structure, but also deep in space
 - Capture hierarchy representations
- Untile the transforming matrix between leaves and internal nodes

To compute the embedding vector of a node, previously we did this:

$$h_{\eta} = f(W_L^{l(\eta)} h_{l(\eta)} + W_R^{r(\eta)} h_{r(\eta)} + b)$$

Now:

$$h_{\eta}^{(i)} = f(W_L^{(i)} h_{l(\eta)}^{(i)} + W_R^{(i)} h_{r(\eta)}^{(i)} + V^{(i)} h_{\eta}^{(i-1)} + b^{(i)})$$

Results (error)

Dataset: SST

ℓ	h	Fine-grained	Binary
1	50	46.1	85.3
2	45	48.0	85.5
3	40	43.1	83.5
1	340	48.1	86.4
2	242	48.3	86.4
3	200	49.5	86.7
4	174	49.8	86.6
5	157	49.0	85.5

Method Fine-grained Binary Bigram NB 41.9 83.1 **RNN** 43.2 82.4 **MV-RNN** 44.4 82.9 **RNTN** 45.7 85.4 **DCNN** 48.5 86.8 Paragraph Vectors 87.8 48.7 DRNN (4, 174) 49.8 86.6

⁽a) Results for RNNs. ℓ and |h| denote the depth and width of the networks, respectively.

⁽b) Results for previous work and our best model (DRNN).

Discussion

		not great	
1	as great	nothing good	not very informative
2	a great	not compelling	not really funny
3	is great	only good	not quite satisfying
4	Is n't it great	too great	thrashy fun
5	be great	completely numbing experience	fake fun

Table 2: Example shortest phrases and their nearest neighbors across three layers.

Summary

Network type	Recursive NN
Word or character level	word level
Embedding	word2vec
# of embedding dimension	300
# of features	/
Non-linear function	ReLU
Regularization	Dropout L_2

Paper roadmap

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

Kai Sheng Tai, Richard Socher, Christopher D. Manning CoRR, 2015

LSTM

□ Long Short-Term Memory

$$i_{t} = \sigma \left(W^{(i)} x_{t} + U^{(i)} h_{t-1} + b^{(i)} \right),$$

$$f_{t} = \sigma \left(W^{(f)} x_{t} + U^{(f)} h_{t-1} + b^{(f)} \right),$$

$$o_{t} = \sigma \left(W^{(o)} x_{t} + U^{(o)} h_{t-1} + b^{(o)} \right),$$

$$u_{t} = \tanh \left(W^{(u)} x_{t} + U^{(u)} h_{t-1} + b^{(u)} \right),$$

$$c_{t} = i_{t} \odot u_{t} + f_{t} \odot c_{t-1},$$

$$h_{t} = o_{t} \odot \tanh(c_{t}),$$

Model architecture

■ Apply LSTM to tree-structured network topologies

Figure 1: **Top:** A chain-structured LSTM network. **Bottom:** A tree-structured LSTM network with arbitrary branching factor.

Figure 2: Composing the memory cell c_1 and hidden state h_1 of a Tree-LSTM unit with two children (subscripts 2 and 3). Labeled edges correspond to gating by the indicated gating vector, with dependencies omitted for compactness.

Model architecture (cont.)

Dependency Tree-LSTMs

☐ Treat all children of a node as equivalent and unordered

Constituency Tree-LSTMs

☐ Treat all children of a node as distinct and ordered

$$\tilde{h}_{j} = \sum_{k \in C(j)} h_{k}, \qquad (2)$$

$$i_{j} = \sigma \left(W^{(i)} x_{j} + U^{(i)} \tilde{h}_{j} + b^{(i)} \right), \qquad (3)$$

$$f_{jk} = \sigma \left(W^{(f)} x_{j} + U^{(f)} h_{k} + b^{(f)} \right), \qquad (4)$$

$$o_{j} = \sigma \left(W^{(o)} x_{j} + U^{(o)} \tilde{h}_{j} + b^{(o)} \right), \qquad (5)$$

$$u_{j} = \tanh \left(W^{(u)} x_{j} + U^{(u)} \tilde{h}_{j} + b^{(u)} \right), \qquad (6)$$

$$c_{j} = i_{j} \odot u_{j} + \sum_{k \in C(j)} f_{jk} \odot c_{k}, \qquad (7)$$

$$h_{j} = o_{j} \odot \tanh(c_{j}), \qquad (8)$$

$$i_{j} = \sigma \left(W^{(i)} x_{j} + \sum_{\ell=1}^{N} U_{\ell}^{(i)} h_{j\ell} + b^{(i)} \right), \quad (9)$$

$$f_{jk} = \sigma \left(W^{(f)} x_{j} + \sum_{\ell=1}^{N} U_{k\ell}^{(f)} h_{j\ell} + b^{(f)} \right), \quad (10)$$

$$o_{j} = \sigma \left(W^{(o)} x_{j} + \sum_{\ell=1}^{N} U_{\ell}^{(o)} h_{j\ell} + b^{(o)} \right), \quad (11)$$

$$u_{j} = \tanh \left(W^{(u)} x_{j} + \sum_{\ell=1}^{N} U_{\ell}^{(u)} h_{j\ell} + b^{(u)} \right), \quad (12)$$

$$c_{j} = i_{j} \odot u_{j} + \sum_{\ell=1}^{N} f_{j\ell} \odot c_{j\ell}, \quad (13)$$

$$h_{j} = o_{j} \odot \tanh(c_{j}), \quad (14)$$

Results (error)

□ Dataset: SST

Method	Fine-grained	Binary
RAE (Socher et al., 2013)	43.2	82.4
MV-RNN (Socher et al., 2013)	44.4	82.9
RNTN (Socher et al., 2013)	45.7	85.4
DCNN (Blunsom et al., 2014)	48.5	86.8
Paragraph-Vec (Le and Mikolov, 2014)	48.7	87.8
CNN-non-static (Kim, 2014)	48.0	87.2
CNN-multichannel (Kim, 2014)	47.4	88.1
DRNN (Irsoy and Cardie, 2014)	49.8	86.6
LSTM	46.4 (1.1)	84.9 (0.6)
Bidirectional LSTM	49.1 (1.0)	87.5 (0.5)
2-layer LSTM	46.0 (1.3)	86.3 (0.6)
2-layer Bidirectional LSTM	48.5 (1.0)	87.2 (1.0)
Dependency Tree-LSTM	48.4 (0.4)	85.7 (0.4)
Constituency Tree-LSTM		
 randomly initialized vectors 	43.9 (0.6)	82.0 (0.5)
 Glove vectors, fixed 	49.7 (0.4)	87.5 (0.8)
- Glove vectors, tuned	51.0 (0.5)	88.0 (0.3)

Summary

Network type	RNN	
Word or character level	word level	
Embedding	Glove + fine-tuned	
# of embedding dimension	300	
# of features	120, 150, 168	
Non-linear function	tanh	
Regularization	Dropout L ₂	

Final PK on SST

Final PK on SST

Results (accuracy)

Dataset: SST

Model	Fine (5-class)	Binary
DCNN (Blunsom, et al. 2014)	0.485	0.868
RNTN (Socher, et al. 2013)	0.457	0.854
CNN-non-static (Kim, 2014)	0.480	0.872
CNN-multi-channel (Kim, 2014)	0.474	0.881
DRNN w. pretrained word-embeddings (Irsoy and Cardie, 2014)	0.498	0.866
Paragraph Vector (Le and Mikolov. 2014)	0.487	0.878
Dependency Tree-LSTM (Tai, et al, 2015)	0.484	0.857
Constituency Tree-LSTM (Tai, et al, 2015)	0.439	0.820
Constituency Tree-LSTM (Glove vectors) (Tai, et al, 2015)	0.510	0.880
Paragraph Vector	0.391	0.798
LSTM	0.456	0.843
Deep Recursive-NN	0.469	0.847

Hong J, Fang M. Sentiment Analysis with Deeply Learned Distributed Representations of Variable Length Texts[J].

References

- 1. Kim Y. Convolutional neural networks for sentence classification[J]. arXiv preprint arXiv:1408.5882, 2014.
- 2. Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences[J]. arXiv preprint arXiv:1404.2188, 2014.
- 3. dos Santos C N, Gatti M. Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts[C]//COLING. 2014: 69-78.
- 4. Johnson R, Zhang T. Effective use of word order for text categorization with convolutional neural networks[J]. arXiv preprint arXiv:1412.1058, 2014.
- 5. Johnson R, Zhang T. Semi-supervised convolutional neural networks for text categorization via region embedding[C]//Advances in neural information processing systems. 2015: 919-927.
- 6. Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text classification[C]//Advances in Neural Information Processing Systems. 2015: 649-657.
- 7. Xiao Y, Cho K. Efficient Character-level Document Classification by Combining Convolution and Recurrent Layers[J]. arXiv preprint arXiv:1602.00367, 2016.
- 8. Conneau A, Schwenk H, Barrault L, et al. Very Deep Convolutional Networks for Natural Language Processing[J]. arXiv preprint arXiv:1606.01781, 2016.
- 9. Johnson R, Zhang T. Convolutional Neural Networks for Text Categorization: Shallow Word-level vs. Deep Character-level[J]. arXiv preprint arXiv:1609.00718, 2016.
- 10. Socher R, Perelygin A, Wu J Y, et al. Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of the conference on empirical methods in natural language processing (EMNLP). 2013, 1631: 1642.
- 11. Le Q V, Mikolov T. Distributed Representations of Sentences and Documents[C]//ICML. 2014, 14: 1188-1196.
- 12. Irsoy O, Cardie C. Deep recursive neural networks for compositionality in language[C]//Advances in Neural Information Processing Systems. 2014: 2096-2104.
- 13. Tai K S, Socher R, Manning C D. Improved semantic representations from tree-structured long short-term memory networks[J]. arXiv preprint arXiv:1503.00075, 2015.
- 14. Hong J, Fang M. Sentiment Analysis with Deeply Learned Distributed Representations of Variable Length Texts[J].

References

Supplementaries

Word2vec

Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.

Dropout

Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. arXiv preprint arXiv:1207.0580, 2012.

AdaGrad

Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(Jul): 2121-2159.

Deep Convolutional Neural Network

Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.

Deep Residual Learning

He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[J]. arXiv preprint arXiv:1512.03385, 2015.

THANKS!