	Name:			
	1D:			_
017; Ma	arzban		6.5+11.5	
allowed				
	ig-answer pe	-		
ct answe	r without ex	plana	tion to dom	toure
Ma	jor	2511	Gardening	tua
math	statistics	CS	Gardening	Jinas,
• • •	• • •	• • •	• • •	
	• • •	• • •	• • • •	
٠	٠	٠		
oarams,	$E_Y[s^2] \stackrel{\checkmark}{=} 0$ a p-value to $-M_Y$	est do	which proof all if $Y \sim N$. $E[\frac{y_i - \bar{y}}{S}] = 0$ where $E[x_i] = 0$ where $E[x_i] = 0$ where $E[x_i] = 0$	iri]
n a rand	omization t		f the effect of	
trials tha			e considered. 2 3 4 3 4 3 4 1 13 10	
s, and it potheses	's more dar 3?	igeroi	have decided is to approve	_
3 d ew up H_0, H_0	(H	ve [does not w Ho)	orh)
aximum)	-f +ll	
-∞	e	лопе	of the above	
now that ements if $0.96/\sqrt{n}$ $0.96/\sqrt{n}$ $0.96/\sqrt{n}$ $0.96/\sqrt{n}$ $0.96/\sqrt{n}$ $0.96/\sqrt{n}$ $0.96/\sqrt{n}$	$\frac{\text{s/are TRU}}{n} \rightarrow \text{PV}$	Fin. 0	6 LY-Yobs	< 196)
ritical	5		we don	1+
of Th is	not good	's go . This		121 f 14!
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ayou ca	in d	erive CIG	, you

Stat 421, Test 1, Fall, Oct. 18, 20

ONLY a half-size "cheat sheet" is

Multiple choice: Circle all the correct answers; ther

For rest, SHOW answer & work; NO CREDIT for corre

1. Suppose you see a table like this in a paper, where the dots represent the grades of different students. The

Points

implication is that Genderis one of the nuisance factors. Fill the blank space.

			Major				ab
			physics	math	statistics	CS	Gardening
	Boy		• • •				
	Girl		• • •				
·P	Average	е	·	·	•	•	

Which of the following statements is/are FALSE? all y_i are iid, then $Cov[y_i, \overline{y}] = 0$

 $(c)V_Y[\bar{y}] = \sigma_Y^2/n$ only if $Y \sim N$.

Because the constrast Γ is defined in terms of population Γ Check The proof, Si(Yi-My

Tip on Depth. In the table provided, write one of the random Coupon Tip В В Depth |(13)|11 **(12)** 10

grade This.

Suppose we have to decide whether or not to approve a that it's less dangerous to deny a medicine that actually work a medicine that does not work. What are the appropriate hy

a) H_0 : medicine works, H_1 : medicine does not work.

3. We have observed the following data, and intend to perform

(b) H_0 : medicine does not work, H_1 : medicine works. c) Based on this information, it does not matter how we set-

Let $x \sim N(\mu, \sigma)$. Then, the most likely value of sample m

a) $-\infty$

b) 0

d) +

We have collected data and computed \overline{y}_{obs} . Suppose we k 95% Cl for μ_y is $\overline{y}_{obs} \pm 1.96/\sqrt{n}$. Which of the following stat

There is 95% probability that a random \overline{y} is within $\mu_y \pm 1$

b) There is 95% probability that a random \overline{y} is within $\overline{y}_{obs} \pm$

c) There is 95% probability that the observed \bar{y} is within μ_y

d) There is 95% probability that the observed \overline{y} is within \overline{y}_{ob}

e) The rejection region is the region outside of $\overline{y}_{obs} \pm 1.96/\sqrt{r}$

hurled 6-3) 7. Let F denote $(s_2/s_1)^2$. The Cl for $(\sigma_2/\sigma_1)^2$ is given by

(a) $[F_{obs}F_{1-\alpha/2,n_{1-1},n_{2-1}}, F_{obs}F_{\alpha/2,n_{1-1},n_{2-1}}]$

b) $[-F_{obs}F_{1-\alpha/2,n_{1-1},n_{2-1}}, F_{obs}F_{\alpha/2,n_{1-1},n_{2-1}}]$

c) $[F_{obs} - F_{1-\alpha/2,n_{1-1},n_{2-1}}, F_{obs} + F_{\alpha/2,n_{1-1},n_{2-1}}]$

d) None of the above.

Suppose we are given the following facts (always assuming iid): 1) If $y_i \sim N(0,1)$, then $z_i = \frac{y_i - \mu_y}{\sigma_y} \sim N(0,1)$, and $\frac{\bar{y} - \mu_y}{\sigma_y / \sqrt{n}} \sim N(0,1)$ 2) If $z_i \sim N(0,1)$, then $\sum_{i=1}^{n} z_i^2 \sim \chi_n^2$ 3) If $x_1 \sim \chi^2_{df_1}$, $x_2 \sim \chi^2_{df_2}$, then $x_1 - x_2 \sim \chi^2_{df_1 - df_2}$. From these facts, show that $\sum_{i}^{n} (\frac{y_i - \bar{y}}{\sigma_y})^2 \sim \chi^2_{n-1}$. Hint: Use an "ANOVA decomposition," but you have to decide whether to decompose $\sum_{i=1}^{n} (y_i - \bar{y})^2$ or $\sum_{i=1}^{n} (y_i - \mu_y)^2$ = (Yi-4)2 = = (Yi-4)2 + = (Y-MY)2-2(Y-MY)2 (Yi-7) $\frac{(Y_{i}-\mu_{y})^{2}}{\sim \chi_{n}^{2}} = \frac{2}{3} \left(\frac{Y_{i}-Y_{j}}{\sigma_{y}}\right)^{2} + \left(\frac{Y_{i}-\mu_{y}}{\sigma_{y}}\right)^{2} + \left(\frac{Y_{i}-\mu_{y}}$ For the model $y_{ij} = \mu + \tau_i + \epsilon_{ij}$, $i = 1 \cdots a, j = 1 \cdots n$, with $\epsilon_{ij} \sim N(0, \sigma_{\epsilon})$, we built Cls for $\mu, \mu_i = \mu + \tau_i$, and σ_{ϵ}^2 . But we forgot the Cl for τ_i . Let's start it here. Estimate τ_i with $\hat{\tau}_i = \bar{y}_{i.} - \bar{y}_{..}$. a) Find $E[\hat{\tau}_i]$ and $V[\hat{\tau}_i]$, in terms of a, n, τ_i , and σ_{ϵ}^2 . Use (w/o proof) the identity $V[\bar{\epsilon}_i - \bar{\epsilon}_{...}] = \frac{a-1}{an} \sigma_{\epsilon}^2$. Yij= M+7'+ Eij => Yi = M+7' + Ei => Y = M+7' + E. Pi = Yi. -Y. = p+Ti+Ei. -p-Ti-Ei = Mi-T. + Ei. -E. b E [fi] = (Ti - Ti) + E [Ei] - E [E.] TEEGIN TO SEEGIN $\Rightarrow V[\hat{\tau}_i] = V[\overline{\epsilon_i}, \overline{\epsilon_n}] = \frac{a-1}{a-1} \sigma_{\epsilon_i}^2$ [we graded this part with d) below. We are trying to build a CI for Υ . Then $z = \frac{\hat{\tau}_i - E[\hat{\tau}_i]}{\sqrt{|\hat{\tau}_i|}} = \frac{\hat{\tau}_i - T_i}{\sqrt{|\hat{\tau}_i|}}$ Write the appropriate quantity that has a t distribution with df = an - a. b) Write the appropriate quantity that has a N(0,1) distribution. You may set $\bar{\tau} = 0$ hereafter. ~ 2 t= (7:-17)/ a-1 MSE (OF-)MSE) d) Now, prove the identity used above. Assume we already know $V[\bar{\epsilon}_{i.}] = \sigma_{\epsilon}^2/n$, and $V[\bar{\epsilon}_{..}] = \sigma_{\epsilon}^2/(an)$. $V[\overline{\epsilon}_{i}, -\overline{\epsilon}_{-i}] = V[\overline{\epsilon}_{i}] + V[\overline{\epsilon}_{-i}] - 2Cov[\overline{\epsilon}_{i}, \overline{\epsilon}_{-i}]$ $\frac{\partial \mathcal{L}_{ei.} + v_{i}}{\partial e^{2}} \qquad \frac{\partial \mathcal{L}_{ei.}}{\partial e^{2}} = V[\overline{e}_{i.}] = \frac{\partial \mathcal{L}_{ei.}}{\partial e^{2}}$ $\frac{\partial \mathcal{L}_{ei.}}{\partial e^{2}} = V[\overline{e}_{i.}] = \frac{\partial \mathcal{L}_{ei.}}{\partial e^{2}}$ $\frac{\partial \mathcal{L}_{ei.}}{\partial e^{2}} = V[\overline{e}_{i.}] = \frac{\partial \mathcal{L}_{ei.}}{\partial e^{2}}$ = 5 (1+ 1 - 2) = 5 (a-1) To finish The problem: C.I. for T: : T: ± toutied \ a-1 MSF

10. It is easy to show that the pdf of the sample standard deviation s is given by $f_s(t) = 2(\frac{n-1}{\sigma^2})tf_W(\frac{n-1}{\sigma^2}t^2)$, where f_W is the pdf of the chi-squared random variable with df = n-1. Show that $F_s[s] = \frac{\sigma}{\sigma} F_W[\sqrt{W}]$.

that
$$E_s[s] = \frac{\sigma}{\sqrt{n-1}} E_W[\sqrt{W}].$$

$$E_s[s] = \int_0^1 t \, f_s(t) \, dt = \int_0^1 t \, 2(\frac{n-1}{\sigma^2}) \, t \, f_W(\frac{n-1}{\sigma^2}) \, dt \qquad u = \frac{n-1}{\sigma^2} \, t^2 \, dt$$

$$= \int_0^1 \sqrt{\frac{\sigma^2}{n-1}} \, T_U \, f_W(u) \, du = \sqrt{\frac{\sigma^2}{n-1}} \, \int_0^{\infty} T_U \, f_W(u) \, du = \frac{\sigma}{\sqrt{n-1}} \, E_W[\sqrt{W}] \, t \, dt$$

$$= \int_0^1 \sqrt{\frac{\sigma^2}{n-1}} \, T_U \, f_W(u) \, du = \sqrt{\frac{\sigma^2}{n-1}} \, \int_0^{\infty} T_U \, f_W(u) \, du = \frac{\sigma}{\sqrt{n-1}} \, E_W[\sqrt{W}] \, t \, dt$$

$$= \int_0^1 \sqrt{\frac{\sigma^2}{n-1}} \, T_U \, f_W(u) \, du = \sqrt{\frac{\sigma^2}{n-1}} \, \int_0^{\infty} T_U \, f_W(u) \, du = \frac{\sigma}{\sqrt{n-1}} \, E_W[\sqrt{W}] \, t \, dt$$

$$= \int_0^1 \sqrt{\frac{\sigma^2}{n-1}} \, T_U \, f_W(u) \, du = \sqrt{\frac{\sigma^2}{n-1}} \, \int_0^{\infty} T_U \, f_W(u) \, du = \frac{\sigma}{\sqrt{n-1}} \, E_W[\sqrt{W}] \, t \, dt$$

11. It is easy to show that $\eta_p = \mu + \lambda_p \sigma$, where η_p and λ_p are the p^{th} quantile (or percentile) of $N(\mu, \sigma)$ and N(0, 1), respectively. It is this identify that allows us to look at a normal applot and identify a linear pattern as indication of normality, and to identify the y-intercept and slope of the linear pattern as the μ and σ , respectively, of the Nomal distribution from which the data must have come. It's also easy to show that the p^{th} quantile of an exponential distribution with parameter λ is $(-1/\lambda)\log(1-p)$. Suppose we make a plot of the quantiles of some data versus quantiles of an exponential distribution with $\lambda = 1$, and find a linear pattern. How are the intercept AND the slope of that line related to the λ parameter of the exponential distribution from which our data must have come?

$$\mathcal{L}_{p}(\lambda) = -\frac{1}{\lambda} \mathcal{L}_{p}(i-p)$$
 $\Rightarrow \frac{\mathcal{L}_{p}(\lambda)}{\mathcal{L}_{p}(i)} = \frac{1}{\lambda} \Rightarrow \mathcal{L}_{p}(\lambda) = \frac{1}{\lambda} \mathcal{L}_{p}(i) + 0$

How does the CI for a contrast Γ change if the contrast vector is multiplied by a positive nonzero constant, k, i.e., $c_i \to kc_i$?

C.I. for
$$\Gamma$$
: Γ ± terity $MSE = \frac{1}{n} \stackrel{?}{\underset{i}{\stackrel{?}{\sim}}} C_{i}^{2}$
 $\stackrel{?}{\underset{i}{\sim}} C_{i} \stackrel{?}{\underset{i}{\sim}} V_{i} \stackrel{?}{\underset{i}{$

$$T.e. [CI] \rightarrow k[CI].$$

The p-value does not change,
But The C.I. does. For example,
instead of estimating M-M2,
we will be estimating k/M/M2)
So, This makes sonse.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.