Mathematics

Robin Adams

September 6, 2023

Contents

4 CONTENTS

Chapter 1

Sets and Functions

1.1 Primitive Terms

Let there be sets.

Given sets A and B, let there be functions from A to B. We write $f: A \to B$ iff f is a function from A to B, and call A the domain of f and B the codomain.

Given functions $f:A\to B$ and $g:B\to C$, let there be a function $g\circ f:A\to C$, the *composite* of f and g.

1.2 The Axioms

Axiom 1.1 (Associativity). Given $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have

$$h(gf) = (hg)f$$
.

Axiom 1.2 (Identity). For any set A, there exists a function $i: A \to A$ such that:

- for any set B and function $f: A \to B$, we have fi = f
- for any set B and function $f: B \to A$, we have if = f.

Proposition 1.3. For any set A, there exists a unique function $i: A \to A$ such that:

- for any set B and function $f: A \to B$, we have fi = f
- for any set B and function $f: B \to A$, we have if = f.

PROOF: If i and j both satisfy these conditions then i = ij = j. \square

Definition 1.4 (Identity Function). For any set A, the *identity function* on A, id_A , is the unique function $A \to A$ such that:

• for any set B and function $f: A \to B$, we have $fid_A = f$

• for any set B and function $f: B \to A$, we have $id_B f = f$.

Definition 1.5 (Isomorphism). A function $f: A \to B$ is an isomorphism, $f: A \cong B$, iff there exists a function $g: B \to A$ such that $fg = \mathrm{id}_B$ and $gf = \mathrm{id}_A$.

Axiom 1.6 (Terminal Set). There exists an empty set \emptyset such that, for any set A, there exists exists exactly one function $\emptyset \to A$.

Proposition 1.7. If S and T are empty sets then there exists a unique isomorphism $S \cong T$.

Proof:

 $\langle 1 \rangle 1$. Let: f be the unique function $S \to T$

 $\langle 1 \rangle 2$. Let: f^{-1} be the unique function $T \to S$

 $\langle 1 \rangle 3$. $ff^{-1} = id_T$

PROOF: Each is the unique function $T \to T$.

 $\langle 1 \rangle 4$. $f^{-1}f = \mathrm{id}_S$

PROOF: Each is the unique function $S \to S$.

Definition 1.8 (Empty Set). Let \emptyset be the set such that, for any set A, there exists exactly one function $\emptyset \to A$.

Axiom 1.9 (Terminal Set). There exists a terminal set 1 such that, for any set A, there exists exists exactly one function $A \to 1.1$

Proposition 1.10. If S and T are terminal sets then there exists a unique isomorphism $S \cong T$.

Proof:

 $\langle 1 \rangle 1$. Let: f be the unique function $S \to T$

 $\langle 1 \rangle 2$. Let: f^{-1} be the unique function $T \to S$

 $\langle 1 \rangle 3. \ f f^{-1} = id_T$

PROOF: Each is the unique function $T \to T$.

 $\langle 1 \rangle 4$. $f^{-1}f = \mathrm{id}_S$

PROOF: Each is the unique function $S \to S$.

П

Definition 1.11 (Terminal Set). Let 1 be the set such that, for any set A, there exists exactly one function $!_A : A \to 1$.

Definition 1.12 (Element). An *element* of a set A is a function $1 \to A$. We write $a \in A$ for $a: 1 \to A$.

Given $f: A \to B$ and $a \in A$, we write f(a) for fa.

Axiom 1.13 (Extensionality). Let A and B be sets. Let $f, g : A \to B$. If $\forall x \in A. f(x) = g(x)$ then f = g.

Axiom 1.14 (Non-degeneracy). The empty set \emptyset has no elements.

Axiom 1.15 (Disjoint Unions). For any sets A and B, there exists a set A+B, the disjoint union of A and B, and functions $\kappa_1: A \to A+B$, $\kappa_2: B \to A+B$, the injections, such that, for any set X and functions $f: A \to X$ and $g: B \to X$, there exists a unique function $[f,g]: A+B\to X$ such that

$$[f,g]\kappa_1 = f,$$
 $[f,g]\kappa_2 = g.$

Definition 1.16 (Surjective). A function $f: A \to B$ is *surjective*, $f: A \twoheadrightarrow B$, iff, for all $b \in B$, there exists $a \in A$ such that f(a) = b.

Proposition 1.17. If $f: A \twoheadrightarrow B$ and $g: B \twoheadrightarrow C$ are surjective then $gf: A \twoheadrightarrow C$ is surjective.

```
Proof:
```

 $\langle 1 \rangle 1$. Let: $c \in C$

 $\langle 1 \rangle 2$. Pick $b \in B$ such that g(b) = c.

 $\langle 1 \rangle 3$. Pick $a \in A$ such that f(a) = b.

$$\langle 1 \rangle 4. \ gf(a) = c$$

Definition 1.18 (Injective). A function $f: A \to B$ is *injective*, $f: A \rightarrowtail B$, iff, for all $x, x' \in A$, if f(x) = f(x') then x = x'.

Proposition 1.19. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are injective then $gf: A \rightarrow C$ is injective.

PROOF: If g(f(x)) = g(f(x')) then f(x) = f(x') since g is injective, hence x = x' since f is injective. \square

Proposition 1.20. Let $f: A \to B$ and $g: B \to C$. If gf is injective then f is injective.

Proof:

 $\langle 1 \rangle 1$. Let: $x, x' \in A$

 $\langle 1 \rangle 2$. Assume: f(x) = f(x')

 $\langle 1 \rangle 3.$ g(f(x)) = g(f(x'))

$$\langle 1 \rangle 4. \ x = x'$$

Proposition 1.21. Let $f: A \to B$ be injective. For any set X and functions $x, y: X \to A$, if fx = fy then x = y.

Proof:

 $\langle 1 \rangle 1$. Let: $f: A \to B$

 $\langle 1 \rangle 2$. Assume: f is injective.

 $\langle 1 \rangle 3$. Let: X be a set.

 $\langle 1 \rangle 4$. Let: $x, y : X \to A$

 $\langle 1 \rangle 5$. Assume: fx = fy

 $\langle 1 \rangle 6$. Let: $t \in X$

```
PROVE: x(t) = y(t)

\langle 1 \rangle 7. f(x(t)) = f(y(t))

PROOF: \langle 1 \rangle 5

\langle 1 \rangle 8. x(t) = y(t)

PROOF: \langle 1 \rangle 2
```

Proposition 1.22. Any function $f: 1 \to A$ is injective.

PROOF: For any $x, y \in 1$, if f(x) = f(y) then x = y since 1 has only one element.

Proposition 1.23. For any sets A and B, the injections $\kappa_1 : A \to A + B$ and $\kappa_2 : B \to A + B$ are injective.

Proof:

```
\langle 1 \rangle 1. \kappa_1 is injective.

\langle 2 \rangle 1. Let: x, y \in A

\langle 2 \rangle 2. Assume: \kappa_1(x) = \kappa_1(y)

\langle 2 \rangle 3. Let: f: A+B \to A be the function f=[\mathrm{id}_A, x \circ !_B]

\langle 2 \rangle 4. x=y

PROOF: x=f(\kappa_1(x))=f(\kappa_1(y))=y.

\langle 1 \rangle 2. \kappa_2 is injective.

PROOF: Similar.
```

Definition 1.24 (Bijective). A function is *bijective* iff it is injective and surjective.

Definition 1.25 (Constant). A function $f: A \to B$ is *constant* iff there exists $b \in B$ such that $f = b \circ !_A$.

1.3 Subsets

Definition 1.26 (Subset). A *subset* of a set A is a pair (B, i) such that B is a set and $i: B \rightarrow A$ is an injective function.

Definition 1.27 (Equality of Subsets). Given subsets (U,i) and (V,j) of a set A, we say (U,i) and (V,j) are equal, (U,i) = (V,j), iff there exists an isomorphism $h: U \cong V$ such that jh = i.

Definition 1.28 (Inclusion). Let (B, i) and (C, j) be subsets of A. Then (B, i) is *included* in (C, j), $(B, i) \subseteq (C, j)$, iff there exists $k : B \to C$ such that jk = i.

Proposition 1.29. Let (U,i) and (V,j) be subsets of a set A. Then we have (U,i)=(V,j) iff $(U,i)\subseteq (V,j)$ and $(V,j)\subseteq (U,i)$.

Proof:

 $\langle 1 \rangle 1$. Let: (U, i) and (V, j) be subsets of a set A.

```
⟨1⟩2. If (U,i) = (V,j) then (U,i) \subseteq (V,j) and (V,j) \subseteq (U,i) ⟨2⟩1. Assume: (U,i) = (V,j) ⟨2⟩2. Pick an isomorphism h: U \cong V such that jh = i. ⟨2⟩3. (U,i) \subseteq (V,j) Proof: Since jh = i. ⟨2⟩4. (V,j) \subseteq (U,i) Proof: Since ih^{-1} = j. ⟨1⟩3. If (U,i) \subseteq (V,j) and (V,j) \subseteq (U,i) then (U,i) = (V,j). ⟨2⟩1. Assume: (U,i) \subseteq (V,j) and (V,j) \subseteq (U,i) ⟨2⟩2. Pick h: U \to V such that jh = i. ⟨2⟩3. Pick h^{-1}: V \to U such that ih^{-1} = j. ⟨2⟩4. ih^{-1} = idV Proof: ih^{-1} = ih^{-1} = j ⟨2⟩5. ih^{-1} = idU Proof: ih^{-1} = ih = i
```

Definition 1.30 (Membership). Let (B, i) be a subset of A and $a \in A$. Then a is a *member* of (B, i), $a \in (B, i)$, iff there exists $b \in B$ such that i(b) = a.

Proposition 1.31. Let A be a set. Let $a \in A$, and let S and T be subsets of A. If $a \in S$ and $S \subseteq T$ then $a \in T$.

```
Proof:
```

```
\langle 1 \rangle 1. Let: S = (B, i) and T = (C, j)

\langle 1 \rangle 2. Pick k : B \to C such that jk = i

\langle 1 \rangle 3. Pick b \in B such that i(b) = a

\langle 1 \rangle 4. j(k(b)) = a

\langle 1 \rangle 5. a \in T
```

Corollary 1.31.1. If $a \in S$ and S = T then $a \in T$.

1.4 The Subset Classifier

Definition 1.32.

$$2 = 1 + 1$$

Let $\top = \kappa_1 \in 2$.

Definition 1.33 (Characteristic Function). Let $i: X \rightarrow A$ be an injective function. Then a function $\chi_{(X,i)}: A \rightarrow 2$ is the *characteristic function* of (X,i) if and only if:

- $\chi i = \top!_X$
- for every set T and function $a: T \to A$ such that $\chi_{(X,i)}a = T!_T$, there exists a unique $\overline{a}: T \to X$ such that $i\overline{a} = a$.

Axiom 1.34 (Subset Classifier).

- 1. For any set A and function $\phi: A \to 2$, there exists a set X and monomorphism $i: X \to A$ such that ϕ is the characteristic function of (X, i).
- 2. For any set A, every part of A has a characteristic function.

Proposition 1.35. id₂ is the characteristic function of (1, T)

For any set T and function $a:T\to 2$ such that $\mathrm{id}_2 a=\top!_T$, then we have $\top!_T=a$. \square

Proposition 1.36. Let A be a set. Let (U,i) and (V,j) be subsets of A. Then (U,i)=(V,j) if and only if they have the same characteristic function.

Proof:

- $\langle 1 \rangle 1$. If (U, i) = (V, j) then (U, i) and (V, j) have the same characteristic function.
 - $\langle 2 \rangle 1$. Assume: (U, i) = (V, j)
 - $\langle 2 \rangle 2$. Let: $h: U \cong V$ be the isomorphism such that jh = i.
 - $\langle 2 \rangle$ 3. Let: $\chi : A \to 2$ be the characteristic function of (U, i). Prove: χ is the characteristic function of (V, j).
 - $\langle 2 \rangle 4$. $\chi j = \top!_V$
 - $\langle 3 \rangle 1. \ \chi i = \top !_U$
 - $\langle 3 \rangle 2$. $\chi jh = \top !_U$
 - $\langle 3 \rangle 3. \ \chi j = \top !_U h^{-1}$
 - $\langle 3 \rangle 4. \ \chi j = \top!_V$
 - $\langle 2 \rangle$ 5. Let: T be a set and $a: T \to A$ satisfy $\chi a = \top!_T$
 - $\langle 2 \rangle 6$. Let: $\overline{a}: T \to U$ be the unique function such that $i\overline{a} = a$.
 - $\langle 2 \rangle 7$. $h\overline{a}$ is the unique function $T \to V$ such that $jh\overline{a} = a$.
- $\langle 1 \rangle 2$. If (U,i) and (V,j) have the same characteristic function then (U,i) = (V,j).
 - $\langle 2 \rangle 1$. Assume: $\chi: A \to 2$ is the characteristic function of (U,i) and of (V,j)
 - $\langle 2 \rangle 2$. $\chi i = \top !_U$
 - $\langle 2 \rangle 3$. There exists $h: U \to V$ such that jh = i.
 - $\langle 2 \rangle 4. \ (U,i) \subseteq (V,j)$
 - $\langle 2 \rangle 5. \ \chi j = \top!_V$
 - $\langle 2 \rangle 6$. There exists $k: V \to U$ such that ik = j.
 - $\langle 2 \rangle 7. \ (V,j) \subseteq (U,i)$
- $\langle 2 \rangle 8. \ (U,i) = (V,j)$