

Platforms for Advanced Wireless Research

Abhimanyu Gosain
Technical Program Director

https://www.advancedwireless.org/ Oct 10, 2018

Today's Agenda

- PAWR Approach
- PAWR Awardees
 - COSMOS (http://cosmos-lab.org)
 - POWDER-RENEW (http://powderwireless.net)
- Technical Details
- Deployment Plan
- What's in it for You?
- Looking Ahead
- Questions

Platforms for Advanced Wireless Research

Kick-Off April 2017

Industry Consortium <\$ + In-Kind> \$50M

NSF <\$> \$50M

Level-Setting: PAWR Approach

Attribute	Approach
Problem Definition	Enhanced efforts of ~400 university researchers who need mid-scale testing capabilities to ensure success
Early Industry Involvement	Multi-use research platforms with "pre-competitive" research topic areas selected bottom-up by university Pls, with industry input
Research Scope	Mid-sized areas within cities, experimental platforms, 10-20 antenna sites, backhaul, SDRs
Flexibility and Speed	1 - 2 platforms per year in years 1 and 2
Streamlined governance, deployment, and operation	One governance consortium focused on upfront research and policy; city/university teams propose how to streamline deployment and ops

Program Figures

Charter Members

PPO is Looking for more Industry Partners....

PAWR Guiding Principles

Reproducibility

- Platforms setup, maintained, documented
- High scientific standards
- · Accuracy and repeatability

Interoperability

- Prevent silos within research ecosystem
- Well-defined interfaces
- Interconnection with other PAWR platforms

Open Access

- Accessible by the research community
- Fairness in access

Drivers for success

Usability

- Low learning curve, even if "open"
- Operable by BS technical level
- Reprogrammed by Advanced Users

Programmability

- Programmable at multiple levels (e.g., radio, resource allocation, backbone)
- Clearly defined interfaces and APIs.

Diversity

- · Broad range of topics
- spectrum, mmWave, internet of things, wide-area wireless backhaul, measurements etc.

Mapping System Elements to a Changing Landscape

- Programmable Wireless (RF, Baseband) Substrate
- Wireless and/or Transport X-Haul
- Software configurable edge infrastructure
- Modular Hardware; extensible; BYOD
- White-Box and Black-Box User Equipment

- * Functional Disaggregation
- * Move Processing closer to the edge
- * SDN+NFV to accelerate service deployment
- * Bringing Services closer to the user
- * Devops + Closed Loop Network Automation

Platform(s) Go-Live Timeline

Time on Platforms

PAWR Awardees

Announced April 9 2018

Round I Platforms

Salt Lake City

New York City

COSMOS:Cloud Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale Deployment

- A multi-layered computing system with an RF thin client; flexible signal processing; network function virtualization (NFV) between a local SDR (with FPGA assist) and a remote cloud radio access network (CRAN) with massive CPU/GPU and FPGA assist
- Deployed in New York City, one of the country's most populated urban centers
- Wideband radio signal processing (with bandwidths of ~500 MHz or more)
- Support for mmWave communication (28 and 60 GHz)
- Optical switching technology (~1µs) provides passive WDM switch fabrics and
- radio over fiber interfaces for ultra-low latency connections

28GHz phased-array ICs and phased-array antenna modules (PAAM)

POWDER: Platform for Open Wireless Data-driven Experimental Research

RENEW: A Reconfigurable Ecosystem for Next-generation End-to-end Wireless

- Next Generation Wireless Architecture
- Dynamic Spectrum Sharing
- Distinct environments: a dense urban downtown and a hilly campus environment.

- RENEW Massive MIMO base station
- End-to-End Programmable
- Diverse Spectrum Access 50 MHz-3.8GHz
- Hybrid Edge computer composed of FPGA and GPU/CPU-based processing,

Hub Board aggregates/distributes streams of radio samples

Control Framework with Hardware + Software Building Blocks 13

Deployment Area: UofU Campus +Downtown SLC + Connected Corridor

IRIS softwaredefined radio modules

Architectural view of RENEW base station

PAWR Project Office

System Architecture

- Developed a fully programmable multi-layered (i.e. radio, network and cloud) system architecture for flexible experimentation
- COSMOS architecture has been developed to realize ultrahigh BW, low latency and tightly coupled edge computing
- Key design challenge: Gbps performance + full programmability at the radio level

Key Technologies - SDR

- All-software solution adopted for radio technology
- Advanced SDR Radio Nodes at various performance levels and form factors
- Design goal: 400 Mhz 6 Ghz + 28 Ghz and 60 Ghz bands, ~500 Mhz BW, Gbps
- Signal processing can be spread between radio node & edge cloud RAN

WINLAB SDR circa 2010

Mobile SDR Node (Small)

Prototype COSMOS SDR Node (Medium)

Key Technologies -mmWave

- mmWave a key new technology for the testbed, with limited availability of components
- Leveraging ongoing CU collaboration with IBM to provide mmWave phased arrays (64 antennas, 8 beams) for both 28 Ghz and 60 Ghz
- Extensive mmWave systems expertise at NYU, including prototype systems and channel measurements

NYU Channel Measurements

Key Technologies – Optical Net

- Fast and low latency optical x-haul network using 3D MEMS switch and WDM ROADM
 - Configure wide range of topologies
 - Experiment on converged fiber/wireless networks
- Enables fast front-haul/mid-haul/backhaul connectivity between radio nodes and edge cloud
- SDN control plane for both optical and Ethernet switching
- Leverages results from CIAN NSF ERC, EAGER dark fiber project at Columbia

CIAN

PAWR Project Office

Key Technologies - SDN & Cloud

- SDN control plane used to control xhaul and cloud server connectivity
- Open Network Operating System (ONOS) with radio API extensions
- Compute clusters collocated with radio nodes (M,L) with choice of CPU, GPU and FPGA accelerators
- Also, users have access to regular cloud racks for L3→ applications (GENI & NSF-Cloud federated clusters)

SDN Switching Rack

Planned Deployment

City scale living lab, for novices through experts, to enable repeatable research and fundamental advances in wireless technologies, services and applications

GOAL: Enable unforeseen community-driven "world's firsts"

- World's first fully programmable & observable Massive MIMO network platform
- Base-station class 3.5GHz (key 5G band), low-latency design
- Capable of 50MHz 3.8GHz

- World's first open-access complete networks stacks
- Support cellular and WiFi standards as baseline
- Foster next-generation ideas
- Support end-to-end applications

Geographical Coverage

Off-the-shelf RF equipment

RENEW Massive-MIMO Base Stations

RELIEW

- Iris SDR is the building block
- 64-128 antenna configs
 - Next gen design targets 256antennas
- 40 Gbps Ethernet backhaul through fiber
 - Next gen design targets 100Gbps link
- HW Built-in Clock Sync
 - Support for SyncE/PTP underway
- Software initiated triggers for time synchronization

Building Block: Skylark Iris Module

Software Flow: GPP-Centric Model

- Iris supports IQ streaming to PC for host-processing style applications
 - Similar to other existing platforms such as USRP.
- It can still do processing in the FPGA for latency-sensitive operations

Backhaul Network and Near Edge

- 100 Gbps private Metro Scale Fiber network
- Synchronous Ethernet (SyncE), Precision
 Time Protocol (PTP) for full path support
- Embedded Router Synchronization

Spectrum

Range (MHz)	
698-806	Commercial/Public Safety
902-928	Industrial, scientific and medical (ISM)
1710-1755	Extended Advanced Wireless Services (EAWS) uplink
2110-2155	Extended Advanced Wireless Services (EAWS) downlink
3550-3650	Citizens Broadband Service
5150-5925	Unlicensed National Information Infrastructure (U-NII)

- Broad range of frequencies
- Program license/Innovation zone
- Dynamic spectrum access system: federated wireless

Status

powderwireless.net

- Technology preview available:
 - Small number of SDR nodes with OAI profile
 - Try out POWDER portal/workflow
 - Looking for feedback...
- More information
 - Technology/timeline/team
- Busy with site surveys/RF measurements

What's in it for You?

Research	at-scale
----------	----------

Using Highly instrumented end-to-end Platforms to explore wireless, edge and cloud research topics independently or together

Industry Opportunity

Critical gap between demand pattern and supply; move away from legacy infrastructure; rapid development, inter-operability

International Scope

Federation between US,EU,Asia platforms, shared learning, data and operational best practices

Looking Ahead: Shift in Focus

Applications drive Technical Requirements

- Open-ended for emerging and frontier ideas; focus on what is new and cutting-edge
- Partner with Industry Vertical Experts to explore state of the what and the how;
- Provide solutions and specifications as well as relevant trade-offs and implications;
- Looking for various possible solutions to particular challenges

Round II RFP

ADVANCEDWIRELESS.ORG

Abhimanyu ("Manu") Gosain,

Northeastern University

agosain@coe.neu.edu

Kaushik Chowdhury,
Northeastern University
krc@ece.neu.edu

Tommaso Melodia,

Northeastern University
melodia@ece.neu.edu

Stefano Basagni,
Northeastern University
basagni@ece.neu.edu