Teoría de las telecomunicaciones Laboratorio 1

Martín Noblía

Profesores:

Fabian Iakinchuk Martín Castillo

1

Problema 1

Dada una fuente de datos en un archivo de texto nombrado: texto.txt. Escribir un algoritmo de manera tal que calcule la probabilidad de ocurrencia de cada símbolo existente en la fuente. Mostrar en un listado (sea en pantalla o en otro archivo .txt cada elemento de la fuente con su probabilidad calculada asociada. Calcular la entropía de la fuente.

1.1. resolución

Para resolver este problema utilizamos el lenguaje de programación Julia(http://www.julialang.org) el cual es opensource, dinámico y tiene velocidades de procesamiento relativas a C entre otras características.

El script que realiza la tarea es el siguiente:

```
#= Script para el problema 1
desde consola:
julia problema1.jl
=#
# incluimos el modulo
include("teleco.jl")
# leemos el archivo
T = open(readall,"../Archivos/texto.txt");
# calculamos las frecuencias y probabilidades
d,p = Teleco.probs(T[1:end-1]);
# Mostramos los resultados
Teleco.show_source(d)
# Calculamos la entropia de la fuente
h = Teleco.entropy(p);
print("La fuente discreta texto.txt tiene una entropia: $h [bits/simbolo]")
```

Las definiciones de funciones estan agrupadas en el modulo *Teleco* que esta definido en el archivo *teleco.jl.* El cual mostramos a continuación:

```
# Modulo para el laboratorio1:Teoria de las telecomunicaciones
module Teleco
function probs(iter)
   # Funcion para calcular las probabilidades de ocurrencia de cada simbolo
   # en una fuente de informacion discreta sin memoria.
   # Input:
   # iter: Cualquier fuente iterable(texto,vectores...etc)
   # Output:
   # -----
    # d: Diccionario con los elementos de la fuente y sus frecuencias
   # p: Vector de probabilidades
   d = Dict{eltype(iter), Int}()
   1 = length(iter)
   for e in iter
        d[e] = get(d, e, 0) + 1
    end
```



```
p = collect((values(d))) / 1
   return d,p
end
function freqs_pr(iter)
   # Funcion para calcular
   pr = Collections.PriorityQueue()
   for e in iter
       pr["\$e"] = get(pr, "\$e", 0) + 1
   return pr
end
function entropy(p)
  # Funcion para calcular la entropia de una
   # fuente discreta sin memoria
  # Input:
   # ----
   # p: Vector de probabilidades de la fuente
   # Output:
  # ----
  # h: Entropia de la fuente
   i = log2(1./p)
   aux = p.*i
   h = sum(aux)
   return h
end
function show_source(d)
   # Funcion para mostrar los elementos de una fuente
   # y su frecuencia de aparicion
   for (v,k) in zip(values(d),keys(d))
        println("elemento: $k --> frecuencia: $v")
    end
end
export probs, probs_pr,entropy, show_source
end
     Cuya salida es:
elsuizo@debian:~/Telecomunicaciones/Laboratorios/Lab1/Programas/Julia$ ~/julia/./julia problema1.jl
elemento: --> frecuencia: 22
elemento: á --> frecuencia: 4
elemento: 1 --> frecuencia: 6
elemento: m --> frecuencia: 2
elemento: r --> frecuencia: 5
```



```
elemento: f --> frecuencia: 1
elemento: o --> frecuencia: 3
elemento: t --> frecuencia: 2
elemento: a --> frecuencia: 14
elemento: E --> frecuencia: 1
elemento: v --> frecuencia: 2
elemento: n --> frecuencia: 5
elemento: e --> frecuencia: 13
elemento: w --> frecuencia: 2
elemento: h --> frecuencia: 3
elemento: d --> frecuencia: 3
elemento: c --> frecuencia: 2
elemento: ; --> frecuencia: 1
elemento: p --> frecuencia: 2
elemento: i --> frecuencia: 4
elemento: q --> frecuencia: 5
elemento: s --> frecuencia: 4
elemento: u --> frecuencia: 8
La fuente discreta texto.txt tiene una entropia: 3.989736156368347 [bits/simbolo]
```

2

Problema 2

Dado un archivo de texto nombrado "texto2.txt" el cual posee una longitud fija de 30 caracteres ASCII: Escribir un algoritmo que codifique cada elemento de la fuente usando codificación Huffman. (Dicha codificación puede ser mostrada en pantalla o en un archivo de salida *.txt). El software creado debe calcular la entropía y la longitud media del código generado. Calcular en forma manual o con el mismo software la eficiencia de la compresión. Verifique si el código generado es óptimo.

2.1. resolución

3

Problema 3

Dado dos archivos de texto llamados Castellano.txt e ingles.txt, los cuales están en diferente lenguaje, comprimir los mismos en formato ZIP y:

- a) Realizar una tabla donde se pueda visualizar el cociente entre: (tamaño nuevo / tamaño original) x100.
- b) Realizar una tabla con la probabilidad de ocurrencia de cada uno de los caracteres para cada texto.
- c) Analizar los resultados de a) y b). Sacar conclusiones.

Referencias

[1] Preparación y evaluación de Proyectos,
cuarta edición, Nassir Sapag Chain, Reinaldo Sapag Chain
 Enlaces:

www.google.com.ar/
http://www.lanacion.com.ar/
http://www.espacioyconfort.com.ar/