NOTE ON HYPERGRAPHS

KEISUKE HOSHINO

[?]

Notation 0.1. We employ the following notations.

- For each category \mathbb{C} , we write \mathbb{C}^{\cong} for the core groupoid of \mathbb{C} .
- For each groupoid \mathbf{G} , we write $\pi_0(\mathbf{G})$ for the set of connected components of \mathbf{G} .
- For each category \mathbf{C} and an object $c \in \mathbf{C}$, we write $\mathbf{C}_{c/}$ and $\mathbf{C}_{/c}$ for the under category and the over category.
- For each category \mathbf{C} and an object $c \in \mathbf{C}$, the domain part defines a functor $\mathbf{C}_{/c} \xrightarrow{\Sigma_c} \mathbf{C}$, and we write c^* and Π_c for the right adjoints of Σ_c and c^* respectively, if exists.

The dual of Σ_c , c^* , and Π_c are denoted by $\Xi_c \colon \mathbf{C}_{c/} \longrightarrow \mathbf{C}$, $c_* \colon \mathbf{C} \longrightarrow \mathbf{C}_{c/}$, and $\coprod_c \colon \mathbf{C} \longrightarrow \mathbf{C}_{c/}$.

- We write **Set** for the catgeory of sets.
- For each nonnegative integer n, we write \bar{n} for the set $\{1, \ldots, n\}$.
- We write **FinSet** for the catgeory defined as follows.
 - $\operatorname{Obj}(\mathbf{FinSet}) = \mathbb{N}.$
 - $-\mathbf{FinSet}(n,m) = \mathbf{Set}(\bar{n},\bar{m}).$
 - $-n \mapsto \bar{n}$ extends to a fully faithful functor **FinSet** \hookrightarrow **Set**.
- For each category **C** with finite coproducts, we write -+- for the binary coporduct and \emptyset for the initial object.

We write $\nabla_c : c + c \longrightarrow c$ for the codiagonal.

Definition 0.2. Suppose we are given a set $\Lambda \in \mathbf{Set}$. We define a category $\mathbf{FS}(\Lambda)$ as the following Grothendieck construction. by the following pullback.

$$\begin{array}{ccc} \mathbf{FS}(\Lambda) & \longrightarrow \mathbf{Set}_{/\Lambda} \\ \downarrow & & \downarrow_{\Sigma_{\Lambda}} \\ \mathbf{FinSet} & \longrightarrow \mathbf{Set} \end{array}$$

An element of $FS(\Lambda)$ is called a λ -labelled finite set.

Proposition 0.3. For each $\Lambda \in \mathbf{Set}$, $\mathbf{FS}(\Lambda)$ has finite colimits.

Proof. Both **FinSet** \hookrightarrow **Set** and **Set**_{/ Λ} $\xrightarrow{\Sigma_{\Lambda}}$ **Set** create finite colimits.

Definition 0.4. Let C be a category with finite colimits. We write Cosp[C] for the category defined as follows.

- Obj(Cosp[C]) = Obj C.
- For each $c, c' \in \mathbf{C}$, the homset is defined as

$$\mathbf{Cosp}[\mathbf{C}](c,c') = \pi_0 \left((\mathbf{C}_{c+c'/})^{\cong} \right).$$

- The identity on c is represented by the codiagonal $\nabla : c + c \longrightarrow c$.
- The composition is obtained by applying $\pi_0((-)^{\cong})$ to the following functor.

$$\mathbf{C}_{c+c'/} \times \mathbf{C}_{c'+c''/} \stackrel{+}{\longrightarrow} \mathbf{C}_{c+c'+c'+c''/} \stackrel{(c+\nabla_{c'}+c'')_*}{\longrightarrow} \mathbf{C}_{c+c'+c''/} \stackrel{\Xi_{\mathtt{inc}_{1,3}}}{\longrightarrow} \mathbf{C}_{c+c''/}$$

Definition 0.5. Let $\Lambda \in \mathbf{Set}$. We write \mathbf{Cosp}_{Λ} for $\mathbf{Cosp}[\mathbf{FS}(\Lambda)]$.

Date: June 2, 2024.

Proposition 0.6. Let C be a category with finite colimits. Then the coproduct of C lifts to a dagger compact monoidal structure on Cosp[C].

Proof. Every object c is self-dual by applying $\pi_0((-)^{\cong})$ to the cacnonical isomorphism $\mathbf{C}_{(c_0+c)+c_1} \cong \mathbf{C}_{c_0+(c+c_1)}$. The involution $\dagger_{c,c'} : \mathbf{Cosp}[\mathbf{C}](c,c') \longrightarrow \mathbf{Cosp}[\mathbf{C}](c',c)$ is obtained by applying $\pi_0((-)^{\cong})$ to the canonical isomorphism $\mathbf{C}_{c+c'} \cong \mathbf{C}_{c'+c}$ for any $c,c' \in \mathbf{C}$.

Definition 0.7.

Email address: hoshinok@kurims.kyoto-u.ac.jp

RESEARCH INSTITUTE OF MATHEMATICAL SCIENCE, KYOTO UNIVERSITY