## 11 Monday, February 28, 2011

B finite type, G operator(?)

$$A=B^G$$

Showed A finite type

 $Y = \operatorname{Spec} B$ 

 $X = \operatorname{Spec} A$ 

 $X \leftrightarrow \{G \text{ orbits in } Y\}$ 

 $G \times B \to B$ 

 $\sigma, b \leadsto \sigma(b)$ 

(left)  $\sigma \tau(b)$ : first  $\tau$ , then  $\sigma$ 

Then G operates on the right on Y.

 $q \in Y$ ,  $\sigma$  sends  $q \to q^{\sigma}$ 

 $q^{\sigma\tau}$ : first  $\sigma$ , then  $\tau$ 

View

$$y \leftrightarrow \{\text{homomorphisms } B \to \mathbb{C}\}$$
  
 $q \leftrightarrow \pi_q : B \to \mathbb{C}$   
 $\leftrightarrow \{\text{max ideals of } B\}$   
 $q \leftrightarrow m_q$ 

18.721 Notes

Operation on Y:



$$\pi_q \circ \sigma(b) = \pi_q(\sigma b)$$

Define  $q^{\sigma}$  = that point such that  $\pi_{q^{\sigma}} = \pi_q \circ \sigma$ .

Operation on max ideals:

$$\mathfrak{M}_{q^{\sigma}} = \sigma^{-1}\mathfrak{M}_q$$

$$Y \to X$$
?

For any  $p \in X$ ,

$$B \xrightarrow{\pi \circ p} \mathbb{C}$$

 $Y \to X \text{ sends } q \sim r$ 

$$B \xrightarrow{\sigma} B \xrightarrow{\pi_q} \mathbb{C}$$

$$A \xrightarrow{\text{id}} A \xrightarrow{\pi_p} \mathbb{C}$$

Therefore, G-orbits in Y map to points of X.

We want to show that different orbits  $\{q_1, \ldots, q_r\} \neq \{q'_1, \ldots, q'_s\}$  in Y map to different points p, p' in X.

*Proof.* Plan: Find an element  $a \in A$  such that a = 0 on orbit  $\{q_i\}$ ,  $\pi_q(a) = 0$ ,  $a \neq 0$  on orbit  $\{q'_j\}$ . Then  $\pi_{q'_j}(a) \neq 0$ . This would give us that  $a \in \mathfrak{M}_{q_i}$  (same as  $\notin \mathfrak{M}_{p'}$ ) and  $a \notin \mathfrak{M}_{q'_j}$  (same as  $\notin \mathfrak{M}_{p'}$ ).

In B, choose  $b \in \mathfrak{M}_{q_1}$  (then ) such that  $b \notin \mathfrak{M}_{q'_j}$  for all  $j = 1, \ldots, s$ . (Note:  $b(q) := \pi_q(b)$ .)

Diversion: Suppose 
$$B = \mathbb{C}[x_1, \dots, x_n]/(f_1, \dots, f_k)$$
.  $b$  represented by the polynomial  $p(x_1, \dots, x_n)$ . Spec  $B \approx V(f_1, \dots, f_k)$  in  $\mathbb{C}^n$ . Spec  $B = (\max \text{ ideals}) = (\text{homomorphisms } B \to \mathbb{C}) = (V(I) \text{ if } B = \mathbb{C}[x]/I)$ 

We can do this. (Think about choosing (hyper-?)planes that do not pass through finite sets of points.)

Let  $a = \prod_{\sigma \in G} \sigma(b)$ . a is invariant. a = 0 on  $q_1$  because b divides a in B (since some  $\sigma \in G$  is the

identity). Therefore a = 0 on the orbit  $(q_1)$ .  $a \neq 0$  on  $q'_1$ .

 $\sigma(b)$  evaluated at  $q_1'$  is  $\pi_{q_1'}(\sigma b) = \pi_{q_1'\sigma}(b) = b$  evaluated at  ${q_1'}^{\sigma}$ .

Therefore,  $a \neq 0$  on the orbit.

## 11.1 Localization

Note: we always assume that the rings are domains and assume (whenever possible) that they're finite type algebras.

**Definition.** A multiplicative system S in a domain A is a subset of A satisfying

- $1 \in S$
- $0 \notin S$
- if  $s, t \in S$ , then  $st \in S$

**Definition.** The elements of S serve as denominators in the ring of fractions

$$A_S := \left\{ \frac{a}{s} \,\middle|\, s \in S, a \in A \right\} \middle/ \sim$$

where  $\frac{a}{s} \sim \frac{b}{t}$  if at = bs

$$A \hookrightarrow A_S$$
  
 $a \leadsto a/1$ 

**Example.**  $S = \{1, s, s^2, \ldots\}, \ s \neq 0. \ A_S = A[s^{-1}] = A[y]/(sy - 1)$ 

**Example.**  $S = A - \{0\}, A_S = fraction field$ 

**Example.** P a prime ideal of A,  $S = A - P = \{s \mid s \notin P\}$ . Then  $s \notin P$ ,  $t \notin P \implies st \notin P$ . Then  $A_S$  is the localization of A at P. This is (perversely) denoted  $A_P$ .

If  $A \subset B$  a subring, then we can relate ideals of A and B: Extended ideal:  $I^e$ 

I ideal of A

IB = ideal of B generated by  $\{I\}$ 

The elements are

$$\sum_{\text{finite}} x_i b_i \quad , \ x_i \in I, \ b_i \in B$$

Contracted ideal:  $J^c$ : For J an ideal of B,  $(J \cap A) = ideal$  of A

$$(I^e)^c \supset I$$

$$(J^c)^e \subset J$$

For  $A \subset B = A_S$ :

$$I^e = IA_s = \{x/s \mid x \in I, \ s \in S\} / \sim$$

 $J^c=J\cap A.$  If  $y/s\in J,$  then  $y\in J\cap A=J^c.$  Therefore,  $y/s\in (J^c)^e.$  Thus,  $J\subset (J^c)^e,$  so  $J=(J^c)^e.$ 

Corollary. If A noetherian, then  $A_S$  noetherian

*Proof.* Take an increasing sequence  $J_1 \subset J_2 \subset \cdots$  of ideals in  $A_S$ . Let  $I_{\nu} = J_{\nu} \cap A$ . Then  $I_1 \subset I_2 \subset \cdots$ . Since A is noetherian, this is eventually constant. Therefore  $I_{\nu}^e = (J_{\nu}^c)^e$  eventually constant. Thus  $A_S$  is noetherian.