Formas Indeterminadas e a Regra de L'Hopital

Forma indeterminada do tipo 0/0

Sabemos que, se
$$\lim_{x \to a} f(x)$$
 e $\lim_{x \to a} g(x)$ existem, então $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$, desde que $\lim_{x \to a} g(x) \neq 0$

Se $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, dizemos que a função f/g tem a forma indeterminada 0/0 em a.

Um método mais geral para calcular o limite, se ele existir, de uma função que tem uma forma indeterminada 0/0 é conhecido como regra de L'Hopital.

Teorema (Regra de L'Hopital)

Sejam f e g funções diferenciáveis em um intervalo aberto I, exceto possivelmente em um número a pertencente a I.

Se $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, se $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ existir e se, para todo $x \neq a$ em I, $g'(x) \neq 0$, então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Este teorema também é válido para limites laterais.

Exemplo:

Calcule
$$\lim_{x \to \frac{\pi}{2}} \frac{3 \cos x}{2x - \pi}$$

Solução:

Temos
$$\lim_{x \to \frac{\pi}{2}} 3 \cos x = \lim_{x \to \frac{\pi}{2}} (2x - \pi) = 0$$

$$\lim_{x \to \frac{\pi}{2}} \frac{3\cos x}{2x - \pi} = \lim_{x \to \frac{\pi}{2}} \frac{-3\sin x}{2} = -\frac{3}{2}$$

A regra de L'Hopital, também é válida na seguinte situação:

Teorema (Regra de L'Hopital)

Sejam f e g funções diferenciáveis para todo x > N, onde N é uma constante positiva.

Se
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$$
, se $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$ existir e se, para todo $x > N$, $g'(x) \neq 0$, então

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Este teorema também é válido se trocarmos $x \to +\infty$ por $x \to -\infty$

Calcule
$$\lim_{x \to +\infty} \frac{Sen^{\frac{2}{x}}}{\frac{1}{x}}$$

Solução:

Temos
$$\lim_{x \to +\infty} Sen \frac{2}{x} = \lim_{x \to +\infty} \frac{1}{x} = 0$$

 $\lim_{x \to +\infty} \frac{Sen \frac{2}{x}}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{-\frac{2}{x^2}cos \frac{2}{x}}{-\frac{1}{x^2}} = \lim_{x \to +\infty} 2 cos \frac{2}{x} = 2$

Outras formas indeterminadas ($(+\infty)/(+\infty)$, $(-\infty)/(-\infty)$, $(-\infty)/(+\infty)$ e $(+\infty)/(-\infty)$)

Teorema (Regra de L'Hopital)

Sejam f e g funções diferenciáveis em um intervalo aberto I, exceto possivelmente em um número a pertencente a I.

Se $\lim_{x \to a} f(x) = +\infty$ ou $-\infty$ e $\lim_{x \to a} g(x) = +\infty$ ou $-\infty$, se $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ existir e se, para todo $x \neq a$ em $I, g'(x) \neq 0$, então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Este teorema também é válido para limites laterais.

Exemplo:

Calcule
$$\lim_{x\to 0^+} \frac{\ln(x)}{\frac{1}{x}}$$

Solução:

Temos
$$\lim_{x \to 0^+} \ln(x) = -\infty$$
 e $\lim_{x \to 0^+} \frac{1}{x} = +\infty$

Temos
$$\lim_{x \to 0^+} \ln(x) = -\infty$$
 e $\lim_{x \to 0^+} \frac{1}{x} = +\infty$
 $\lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} (-x) = 0$

Teorema (Regra de L'Hopital)

Sejam f e g funções diferenciáveis para todo x > N, onde N é uma constante positiva.

Se
$$\lim_{x \to +\infty} f(x) = +\infty$$
 ou $-\infty$ e $\lim_{x \to +\infty} g(x) = +\infty$ ou $-\infty$, se

 $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$ existir e se, para todo x > N, $g'(x) \neq 0$, então

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Este teorema também é válido se trocarmos $x \to +\infty$ por $x \to -\infty$

Exemplo:

Calcule
$$\lim_{x \to +\infty} \frac{\ln(5+e^x)}{4x+3}$$

Solução:

Temos
$$\lim_{x \to +\infty} \ln(5 + e^x) = \lim_{x \to +\infty} (4x + 3) = +\infty$$

$$\lim_{x \to +\infty} \frac{\ln(5 + e^{x})}{4x + 3} = \lim_{x \to +\infty} \frac{\frac{1}{5 + e^{x}} \cdot e^{x}}{4} = \lim_{x \to +\infty} \frac{e^{x}}{20 + 4e^{x}}$$
Temos
$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} (20 + 4e^{x}) = +\infty$$

Aplicando novamente L'Hopital, temos

$$\lim_{x \to +\infty} \frac{\ln(5 + e^x)}{4x + 3} = \lim_{x \to +\infty} \frac{e^x}{4e^x} = \lim_{x \to +\infty} \frac{1}{4} = \frac{1}{4}$$

Outros Exemplos:

1)
$$\lim_{x \to 2} \frac{\ln(x-1)}{x-2}$$

Temos
$$\lim_{x\to 2} \ln(x-1) = \lim_{x\to 2} (x-2) = 0$$

$$\lim_{x \to 2} \frac{\ln(x-1)}{x-2} = \lim_{x \to 2} \frac{\frac{1}{x-1}}{1} = \lim_{x \to 2} \frac{1}{x-1} = 1$$

$$2) \quad \lim_{x \to +\infty} \frac{e^x}{x^3}$$

Temos
$$\lim_{x \to +\infty} e^x = \lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to +\infty} \frac{e^x}{x^3} = \lim_{x \to +\infty} \frac{e^x}{3x^2}$$

Temos $\lim_{x\to +\infty} e^x = \lim_{x\to +\infty} 3x^2 = +\infty$. Aplicando novamente a Regra de l'Hopital, temos

$$\lim_{x \to +\infty} \frac{e^x}{x^3} = \lim_{x \to +\infty} \frac{e^x}{3x^2} = \lim_{x \to +\infty} \frac{e^x}{6x}$$

Temos $\lim_{x\to +\infty} e^x = \lim_{x\to +\infty} 6x = +\infty$. Aplicando novamente a Regra de l'Hopital, temos

$$\lim_{x \to +\infty} \frac{e^x}{x^3} = \lim_{x \to +\infty} \frac{e^x}{3x^2} = \lim_{x \to +\infty} \frac{e^x}{6x} = \lim_{x \to +\infty} \frac{e^x}{6} = +\infty$$

3) $\lim_{x \to 0^+} arc \, sen \, x \cdot cosec \, x = \lim_{x \to 0^+} \frac{\arcsin x}{sen \, x}$

Temos $\lim_{x \to 0^+} \arcsin x = \lim_{x \to 0^+} \sec x = 0.$ $\lim_{x \to 0^+} (\arcsin x \cdot \csc x) = \lim_{x \to 0^+} \frac{\arcsin x}{\sec x} =$ $\lim_{x \to 0^+} \frac{\sqrt{1-x^2}}{\cos x} = \frac{1}{1} = 1$

4)
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{x^2 \sec x} \right) = \lim_{x \to 0} \left(\frac{\sec x - 1}{x^2 \sec x} \right)$$
Temos
$$\lim_{x \to 0} (\sec x - 1) = \lim_{x \to 0} x^2 \sec x = 0.$$

$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{x^2 \sec x} \right) = \lim_{x \to 0} \left(\frac{\sec x - 1}{x^2 \sec x} \right) = \lim_{x \to 0} \left(\frac{\sec x \tan x}{2x \sec x + x^2 \sec x \tan x} \right) = \lim_{x \to 0} \left(\frac{\tan x}{2x + x^2 \tan x} \right)$$

Temos $\lim_{x\to 0} tg \, x = \lim_{x\to 0} (2x + x^2 \operatorname{tg} x) = 0$. Aplicando novamente a Regra de l'Hopital, temos

$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{x^2 \sec x} \right) = \lim_{x \to 0} \left(\frac{\sec x - 1}{x^2 \sec x} \right) = \lim_{x \to 0} \left(\frac{\sec tg x}{2x \sec x + x^2 \sec x tg x} \right) = \lim_{x \to 0} \left(\frac{tgx}{2x + x^2 tg} \right) = \lim_{x \to 0} \left(\frac{\sec^2 x}{2 + 2x tgx + x^2 \sec^2 x} \right) = \frac{1}{2}$$