

知识总览

存储元件不同导致的特性差异

DRAM和SRAM

DRAM的刷新

DRAM的地址线复用技术

Dynamic Random Access Memory,即动态RAM Static Random Access Memory,即静态RAM

DRAM用于主存、SRAM用于Cache

高频考点: DRAM和SRAM的对比

DRAM芯片:使用栅极电容存储信息

SRAM芯片:使用<mark>双稳态触发器</mark>存储信息

核心区别:存储 元不一样

0: 电容内未存储电荷

存储体

双稳态

1: A高B低

0: A低B高

读出**1**: MOS管接通,<u>电容放电</u>,数 据线上产生电流

读出0: MOS管接通后,数据线上无电流

读出数据,触发器状态保持稳定,是非破坏性读出, 无需重写

读写速度 更快 读出0时,BL 为低电平

读出1时,BLX 为低电平

每个存储元制造成 本更低,集成度高, 功耗低

DRAM v.s SRAM

	Static Random Access Memory	Dynamic Random Access Memory
类 型 特 点	SRAM(静态RAM)	DRAM(动态RAM)
存储信息	触发器	电容
破坏性读出	#	是
读出后需要重写? (再生)	不用	需要
运行速度	快	慢
集成度	低	一一一一
发热量	大	小
存储成本	高	低
易失/非易失性存储器?	易失 (断电后信息消失)	易失(断电后信息消失)
需要"刷新"?	不需要	需要
送行列地址	同时送	分两次送

常用作Cache

常用作主存

1: 电容内存储了电荷

0: 电容内未存储电荷

电容内的电荷只能维持2ms。即便不断电,2ms后信息也会消失

2ms之内必须 "刷新"一次 (给电容充电)

DRAM的刷新

- 1. 多久需要刷新一次? 刷新周期: 一般为2ms
- 2. 每次刷新多少存储单元? 以行为单位, 每次刷新一行存储单元
 - --为什么要用行列地址?

存储单元排列成 $2^{n/2} \times 2^{n/2}$ 的矩阵 拆分为行列地址(DRAM行、列地址等长) 存储器的简单模型 2^n 根选通线 $(0,2^{n/2}-1)$ (0,0)号存储单元 (0,1)号存储单元 行 0号存储单元 地 $(1,2^{n/2}-1)$ 译 (1,1)号存储单元 (1,0)号存储单元 址 A_0 1号存储单元 A_{n-1} 译 码 A_{n-1} $A_{\frac{n}{2}}$ 器 (2^{n/2}-1,0)号 (2^{n/2}-1,1)号 $(2^{n/2}-1,2^{n/2}-1)$ 存储单元 存储单元 2^n -1号存储单元 列地址译码器

DRAM的刷新

- 1. 多久需要刷新一次? 刷新周期: 一般为2ms
- 2. 每次刷新多少存储单元? 以行为单位, 每次刷新一行存储单元
 - --为什么要用行列地址?减少选通线的数量

DRAM的刷新

- 1. 多久需要刷新一次? 刷新周期: 一般为2ms
- 2. 每次刷新多少存储单元? 以行为单位, 每次刷新一行存储单元 --为什么要用行列地址?减少选通线的数量
- 3. 如何刷新? 有硬件支持,读出一行的信息后重新写入,占用1个读/写周期
- 4. 在什么时刻刷新?

存取周期

假设DRAM内部结构排列成128×128的形式,读/写周期0.5us

2ms共 2ms/0.5us = 4000 个周期

思路一:每次读写完都刷新一行

→系统的存取周期变为1us 前0.5us时间用于正常读写 后0.5us时间用于刷新某行

分散刷新

思路二: 2ms内集中安排时间全部刷新 思路三: 2ms内每行刷新1次即可

→系统的存取周期还是0.5us

有一段时间专门用于刷新,

无法访问存储器,称为访存"死区"

3872个周期(1936us)

128个周期(64us)

集中刷新

→2ms内需要产生128次刷新请求

每隔2ms/128 = 15.6us 一次

每15.6us内有0.5us的"死时间"

15. 6us

DRAM v.s SRAM

	Static Random Access Memory	Dynamic Random Access Memory
类 型 特 点	SRAM(静态RAM)	DRAM(动态RAM)
存储信息	触发器	电容
破坏性读出	#	是
读出后需要重写? (再生)	不用	需要
运行速度	快	慢
集成度	低	一一一一
发热量	大	小
存储成本	高	低
易失/非易失性存储器?	易失 (断电后信息消失)	易失(断电后信息消失)
需要"刷新"?	不需要	需要
送行列地址	同时送	分两次送

常用作Cache

常用作主存

DRAM的地址线复用技术

行、列地址分两次送,可使地址线更少,芯片引脚更少

本节回顾

	Static Random Access Memory	Dynamic Random Access Memory
类 型 特 点	SRAM(静态RAM)	DRAM(动态RAM)
存储信息	触发器	电容
破坏性读出	非	是
读出后需要重写? (再	生) 不用	需要
运行速度	快	慢
集成度	低	高
发热量	发	小 (
存储成本	高	低
易失/非易失性存储器	易失(断电后信息消失)	易失(断电后信息消失)
需要"刷新"?	不需要	需要(分散、集中、异步)
送行列地址	同时送	分两次送(地址线复用技术)
	常用作Cache	常用作主存

现在的主存通 常采用SDRAM 芯片

"刷新"由存 储器独立完 成,不需要 CPU控制

导致地址 线、地址 引脚减半

公 公众号: 王道在线

b站: 王道计算机教育

抖音: 王道计算机考研