

UNIVERSITAS TRISAKTI

KONSEP BISNIS MODERN MENGGUNAKAN PLATFORM BLOCKCHAIN ETHEREUM DAN GOOGLE CLOUD PLATFORM PADA BIDANG AGRIBISNIS

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Komputer

> ANNUR HANGGA PRIHADI 065001800028

FAKULTAS TEKNOLOGI INDUSTRI PROGRAM STUDI SISTEM INFORMASI UNIVERSITAS TRISAKTI AGUSTUS 2022

TRISAKTI UNIVERSITY

MODERN BUSINESS CONCEPTS USING THE ETHEREUM BLOCKCHAIN PLATFORM AND GOOGLE CLOUD PLATFORM IN THE AGRIBUSINESS

THESIS

Submitted as one of the requirements to obtain a Bachelor of Computer Degree

ANNUR HANGGA PRIHADI 065001800028

FACULTY OF INDUSTRIAL TECHNOLOGY INFORMATION SYSTEM STUDY PROGRAM TRISAKTI UNIVERSITY JULY 2022

KATA PENGANTAR

Puji syukur saya ucapkan kepada Tuhan Yang Maha Esa karena atas rahmat-Nyalah saya mampu menyelesaikan skripsi ini dengan baik. Skripsi tentang "Konsep Bisnis Modern Menggunakan Platform Blockchain Ethereum dan Google Cloud Platform Pada Bidang Agribisnis" ini disusun dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Komputer Jurusan Teknik Informatika pada Fakultas Teknologi Industri Universitas Trisakti. Saya menyadari dalam penyusunan skripsi ini saya banyak dibantu oleh orang lain, oleh karena itu saya ucapkan terima kasih kepada:

- (1) Bapak Is Mardianto, S.Si., M.Kom dan bapak Iwan Purwanto, S.Kom., MTI., MOS., telah membimbing saya dalam penyusunan skripsi ini;
- (2) Vitalik Buterin telah menciptakan ekosistem Ethereum yang bisa saya modifikasi di dalam penyusunan ini;
- (3) Orang tua dan kerabat dekat yang telah memberikan dukungan kepada saya;
- (4) Sahabat Nagabonar yang membantu dalam mengurusi hal-hal lain dalam penyusunan ini.

Salam terakhir saya harap Tuhan Yang Maha Esa memberikan ridho balasan kepada pihak yang telah membantu saya. Semoga Skripsi ini dapat memberikan inspirasi sekaligus manfaat dalam pengembangan kedepannya. Semoga semua umat manusia berbahagia, Terima Kasih.

Jakarta, 26 Agustus 2022

Annur Hangga Prihadi

ABSTRAK

Nama : Annur Hangga Prihadi Program Studi : Sistem Informasi

Judul : Konsep Bisnis Modern Menggunakan Platform Blockchain

Ethereum dan Google Cloud Platform Pada Bidang

Agribisnis

Teknologi *blockchain* secara luas dianggap sebagai pilihan dalam perkembangan teknologi yang mengedepankan sistem *peer-to-peer*, dan data yang terdesentralisasi untuk data organisasi. Proses supply chain di bidang agribisnis saat ini masih menggunakan teknologi tradisional yang dimana data dan dokumentasi produk agribisnis masih dicatat dan disimpan di atas kertas atau database pribadi, dan hanya dapat diperiksa oleh otoritas pihak ketiga yang terpecaya. Teknologi blockchain berpotensi dapat mengubah proses tersebut menjadi lebih modern dikarenakan transparansi dalam setiap kegiatan untuk memudahkan pelacakan dan visibilitas barang dalam *supply chain* berkat auditabilitas pencatatan yang lebih mudah, contohnya seperti Carrefour Italia melaporkan bahwa telah menerapkan sistem pelacakan makanan dengan blockchain. Peneliti fokus dalam membangun solusi bisnis dan sistem blockchain pada transparansi supply chain agribisnis dengan target Minimum Viable Product berupa hasil Txn proses supply chain, lalu peneliti menggunakan jaringan Ethereum dengan produk Smart Contract-nya untuk membangun sistem bisnis beserta blockchain-nya. Dalam melakukan hal ini peneliti perlu mengidentifikasi fungsi-fungsi yang diperlukan dalam menggunakan jaringan Ethereum untuk mengimplementasikan proses bisnis dan sistem *blockchain* yang akan dijalankan. Hasil produk dari penelitian ini berupa prototipe sistem blockchain yang menghasilkan Txn pada proses supply chain untuk transparansi dalam kegiatan bisnis *supply chain* yang sedang berjalan.

Kata kunci:

Blockchain, Ethereum, Smart Contract, Supply Chain, Txn

ABSTRACT

Name : Annur Hangga Prihadi Study Program : Sistem Informasi

Title : Modern Business Concepts Using The Ethereum Blockchain

Platform and Google Cloud Platform in the Agribusiness

Blockchain technology is widely regarded as the choice in technological developments that promote peer-to-peer systems, and decentralized data for organizational data. The supply chain process in the agribusiness sector currently still uses traditional technology where data and documentation of agribusiness products are still recorded and stored on paper or personal databases, and can only be checked by trusted third-party authorities. Blockchain technology has the potential to change the process to be more modern due to transparency in every activity to facilitate tracking and visibility of goods in the supply cause easier auditability of records, for example Carrefour Italia reported that it has implemented a food tracking system with blockchain. The researcher focuses on building business solutions and blockchain systems on supply chain transparency in the agribusiness sector with the Minimum Viable Product target in the form of Txn supply chain processes, then the researcher uses the Ethereum network with its Smart Contract products to build a business system and its blockchain. In doing this, the researcher needs to identify the functions needed to use the Ethereum network to implement business processes and blockchain systems to be run. The product of this research is a prototype blockchain system that generates Txn in supply chain processes for transparency in ongoing supply chain business activities.

Key Words:

Blockchain, Ethereum, Smart Contract, Supply Chain, Txn

DAFTAR ISI

HALAMAN JUDUL	i
TITLE PAGE	ii
HALAMAN PERNYATAAN ORISINALITAS	iii
HALAMAN PENGESAHAN	iv
KATA PENGANTAR	v
LEMBAR PERSETUJUAN PUBLIKASI KARYA ILMIAH	vi
ABSTRAK	vii
ABSTRACT	viii
DAFTAR ISI	ix
DAFTAR GAMBAR	
DAFTAR TABEL	xiv
1. PENDAHULUAN	
1.1 Latar Belakang Masalah	1
1.2 Rumusan Masalah	
1.3 Batasan Masalah	
1.4 Tujuan Penelitian	3
1.5 Manfaat Penelitian	3
2. TINJAUAN PUSTAKA	4
2.1 Penelitian Terdahulu	
2.2 Pengertian Blockchain	4
2.3 Kerangka Kerja Blockchain	6
2.3.1 Transaksi dan Alamat	6
2.3.2 Smart Contract	6
2.4 Algoritma Konsensus Blockchain	7
2.4.1 Proof of Work (PoW)	8
2.4.2 Proof of Stake (PoS)	9
2.5 Blockchain Untuk Manajemen Supply Chain	11
2.6 Ethereum	13
2.7 MetaMask	17

	2.8 Conte	ent Management System	18
	2.9 Pytho	n	18
	2.10	Google Cloud Platform	19
	2.11	QR Code	19
	2.12	Flowchart	19
	2.13	Business Process Modeling Notation	21
		2.13.1 Flow Object	21
		2.13.2 Data	22
		2.13.3 Connecting Objects	22
		2.13.4 Swimlanes	23
		2.13.5 Artifacts	23
3.	METOD	OLOGI PENELITIAN.	24
	3.1 Arsite	ektur Ethereum	24
	3.2 Arsite	ektur Cloud	25
	3.3 Memb	buat Smart Contract,	25
	3.4 QR C	Code	27
	3.5 Mema	asang Token di MetaMask	27
	3.6 Prose	es Bisnis Supply Chain Menggunakan Blockchain	30
4.	PEMBAI	HASAN	33
	4.1 Imple	ementasi	33
	4.2 Memb	buat Smart Contract	33
	4.2.1	Modifikasi Smart Conract	33
	4.2.2	Meng-compile Smart Conract	34
	4.2.3	Deploy Smart Contract	35
	4.2.4	Konfirmasi Deploy Smart Contract	36
	4.2.5	Melihat Token	37
	4.3 Pasar	ng Token di MetaMask	38
	4.3.1	Detail Contract Deployment	38
	4.3.2	Token HAJW	40
	4.3.3	Import Token	41
	4.4 Input	CMS	43
	4.5 Prose	s Logistik dan Transport	46

	4.5.1 Proses Rantai Pasok	46
	4.5.2 Aktivitas POD	47
	4.6 Penggunaan Layanan GCP	47
	4.7 Grafik Pemegang Token	
	4.8 Cetak QR Code	50
	4.9 Tampilan Website	52
5.	SIMPULAN DAN SARAN	54
	5.1 Simpulan	54
	5.2 Saran	54
DA	AFTAR PUSTAKA	55
T . A	AMPIR AN	57

DAFTAR GAMBAR

Gambar 2.1.	Struktur Blockchain	5
Gambar 2.2.	Detail Struktur Blockchain	6
Gambar 2.3.	Algoritma Konsensus Proof Of Work	9
Gambar 2.4.	Algoritma Konsensus Proof Of Stake	11
Gambar 2.5.	Struktur Blockchain Ethereum	14
Gambar 2.6.	Contoh Struktur Header Transaksi Ethereum	15
Gambar 2.7.	Contoh Transaksi Smart Contract Yang Me	ngalami
	Kegagalan	15
Gambar 2.8.	Contoh Struktur Body Transaksi Ethereum	16
Gambar 2.9.	Tampilan MetaMask Akun Penulis	18
Gambar 3.1.	Arsitektur Ethereum	24
Gambar 3.2.	Arsitektur Cloud	25
Gambar 3.3.	Alur Membuat Smart Contract	25
Gambar 3.4.	Alur Kerja Mencetak QR Code	27
Gambar 3.5.	Pasang Token Smart Contract di MetaMask	27
Gambar 3.6.	Proses Bisnis Supply Chain Menggunakan Blockchair	ı (Pasar
	Jagal) Level 1	29
Gambar 3.7.	Proses Bisnis Supply Chain Menggunakan Blo	ckchain
	(Produsen Terkenal/PT) Level 1	30
Gambar 3.8.	Proses Bisnis Supply Chain Menggunakan Blockchair	ı (Pasar
	Jagal/Produsen Terkenal) Level 2	31
Gambar 4.1.	Modifikasi Smart Contract	33
Gambar 4.2.	Compile Smart Contract.	34
Gambar 4.3.	Sukses Compile Smart Contract.	34
Gambar 4.4.	Deploy Smart Contract Dengan Injected Web3	35
Gambar 4.5.	Konfirmasi Deploy Smart Contract	36
Gambar 4.6.	Aktivitas Deploy Smart Contract	37
Gambar 4.7.	Token Berhasil Dibuat	37
Gambar 4.8.	HAJW Token	38

Gambar 4.9.	Aktivitas Contract Deployment	.38
Gambar 4.10.	Detail Contract Deployment	.39
Gambar 4.11.	Txn Deployment Smart Contract	40
Gambar 4.12.	Token HAJW	.40
Gambar 4.13.	Tampilan MetaMask	.41
Gambar 4.14.	Isi Token Contract Address	41
Gambar 4.15.	Import Token Berhasil	.42
Gambar 4.16.	Kolom 1 Halaman Web	.43
Gambar 4.17.	Kolom 2 Halaman Web	.44
Gambar 4.18.	Kolom 3 Halaman Web	.45
Gambar 4.19.	Proses Rantai Pasok	.46
Gambar 4.20.	Tampilan Deployment Smart Contract	.47
Gambar 4.21.	Tampilan Instance Server CMS Peneliti	48
Gambar 4.22.	Tampilan Pengaturan Firewall	48
Gambar 4.23.	Grafik Pemegang Token HAJW	49
Gambar 4.24.	Tampilan Sistem Generator QR Code	50
Gambar 4.25.	Hasil QR Code	51
Gambar 4.26.	Tampilan Website Setelah User Memindai	QR
	Code	52

DAFTAR TABEL

Tabel 2.1.	Penelitian Terdahulu	4
Tabel 2.2.	Simbol dan Fungsi Flowchart	20
Tabel 2.3.	Flow Object BPMN	22
Tabel 2.4.	Notasi Data BPMN	22
Tabel 2.5.	Notasi Connecting Object BPMN	22
Tabel 2.6.	Notasi Swimlanes BPMN	23
Tabel 2.7.	Notasi Artifacts BPMN	23
Tabel 4.1	Aktivitas POD	47

