- 1. Sejam os pontos u = (0, 1, 1), v = (1, 1, 0) e w = (-1, 1, 0).
 - (a) Calcule a distância entre u e o plano π gerado por v e w.
 - (b) Determine a equação vetorial da reta que passa por u e é paralela ao vetor v.
- 2. Seja $T:\mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear definida por T(x,y,z)=(2x-y,3y,2z).
 - (a) Determine a dimensão e uma base para cada subespaço de T.
 - (b) (8 pontos) T é diagonalizável? Justifique sua resposta. Em caso afirmativo, determine uma base do \mathbb{R}^3 de autovetores de T.
- 3. Sejam em $P_2(\mathbb{R})$, o produto interno dado por $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$.
 - (a) Utilize o algoritmo de Gram-Schmidt para obter uma base ortogonal de $P_2(\mathbb{R})$, a partir da base $\{1, x, x^2\}$
 - (b) Determine o ângulo entre e u(x) = 1 + x e $v(x) = x x^2$.
 - (c) Seja $W = [1 x, x + x^2]$. Obtenha uma base ortogonal para W^{\perp} , o complemento ortogonal de W.
- 4. Seja em \mathbb{R}^3 o produto interno $\langle (x,y,z),(a,b,c)\rangle = xa + xc + za + yb zb yc + 3zc$. Calcule a distância entre os pontos $A=(1,0,0),\,B=(0,0,1)$.
- 5. Considere em \mathbb{R}^3 o produto interno usual. Classifique a quádrica de equação

$$x^2 + 4y^2 + 2z^2 - 4xy + 2\sqrt{5}x + \sqrt{5}y = 0$$

Use diagonalização da forma quádrica para obter uma equação sem termos mistos e sem termos lineares.

- 6. Verifique se as afirmações são verdadeiras ou falsas. Justifique sua resposta.
 - (a) A fórmula $\langle (x,y,z),(a,b,c)\rangle=xa+2yb+zc-xb-ya+yc+zb$ define um produto interno em \mathbb{R}^3 .
 - (b) Seja V um espaço vetorial munido de um produto interno e $u, v \in V$. Então ||u + v|| = ||u v|| se, e somente se, $u \perp v$.
 - (c) Em $M_2(\mathbb{R})$, se o produto interno é dado por $\left\langle \begin{bmatrix} x & y \\ z & t \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right\rangle = ax + 2by + 2cz + tw$, então o ângulo entre $\begin{bmatrix} x & y \\ z & t \end{bmatrix}$ e $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ é $\pi/3$.
 - (d) Seja V um espaço vetorial de dimensão 2 e $B=\{u_1,u_2\}$ uma base ortonormal de V. Sejam $u,v\in V$, se $[v]_B=\begin{bmatrix} a\\b \end{bmatrix}$ e $[u]_B=\begin{bmatrix} c\\d \end{bmatrix}$, então $\langle u,v\rangle=ac+db$.