Rješavanje optimizacijskih problema algoritmima evolucijskog računanja u Javi Numeričke optimizacije. Uspješnost generiranja početnih rješenja.

dr.sc. Marko Čupić

Fakultet elektrotehnike i računarstva Sveučilište u Zagrebu Akademska godina 2013./2014.

10. listopada 2013.

Layout

- Optimizacija derivabilnih funkcija
 - Primjer funkcije jedne varijable
 - Primjer funkcije više varijabli
 - Odgovarajući pomak
- Povećanje uspješnosti generiranja početnih rješenja

Pretpostavimo da je zadana funkcija $f(x) = 3x^2 - 6x - 45$ čiji tražimo minimum. To je skalarna funkcija koja je definirana nad skalarom $x \in \mathcal{R}$.

Pretpostavimo da je zadana funkcija $f(x) = 3x^2 - 6x - 45$ čiji tražimo minimum. To je skalarna funkcija koja je definirana nad skalarom $x \in \mathcal{R}$.

$$\frac{df}{dx} = 6x - 6$$

Pretpostavimo da je zadana funkcija $f(x) = 3x^2 - 6x - 45$ čiji tražimo minimum. To je skalarna funkcija koja je definirana nad skalarom $x \in \mathcal{R}$.

Funkcija ima prvu derivaciju definiranu u svim točkama.

$$\frac{df}{dx} = 6x - 6$$

Pretpostavimo da je zadana funkcija $f(x) = 3x^2 - 6x - 45$ čiji tražimo minimum. To je skalarna funkcija koja je definirana nad skalarom $x \in \mathcal{R}$.

Funkcija ima prvu derivaciju definiranu u svim točkama.

$$\frac{df}{dx} = 6x - 6$$

$$\frac{d^2f}{dx^2}=6$$

Pretpostavimo da je zadana funkcija $f(x) = 3x^2 - 6x - 45$ čiji tražimo minimum. To je skalarna funkcija koja je definirana nad skalarom $x \in \mathcal{R}$.

Funkcija ima prvu derivaciju definiranu u svim točkama.

$$\frac{df}{dx} = 6x - 6$$

Funkcija ima drugu derivaciju definiranu u svim točkama.

$$\frac{d^2f}{dx^2} = 6$$

• Kako izgleda graf ove funkcije?

Pretpostavimo da je zadana funkcija $f(x) = 3x^2 - 6x - 45$ čiji tražimo minimum. To je skalarna funkcija koja je definirana nad skalarom $x \in \mathcal{R}$.

Funkcija ima prvu derivaciju definiranu u svim točkama.

$$\frac{df}{dx} = 6x - 6$$

$$\frac{d^2f}{dx^2} = 6$$

- Kako izgleda graf ove funkcije?
- Gdje je minimum?

Pretpostavimo da je zadana funkcija $f(x) = 3x^2 - 6x - 45$ čiji tražimo minimum. To je skalarna funkcija koja je definirana nad skalarom $x \in \mathcal{R}$.

Funkcija ima prvu derivaciju definiranu u svim točkama.

$$\frac{df}{dx} = 6x - 6$$

$$\frac{d^2f}{dx^2} = 6$$

- Kako izgleda graf ove funkcije?
- Gdje je minimum? Za f' = 0.

Pretpostavimo da je zadana funkcija $f(x) = 3x^2 - 6x - 45$ čiji tražimo minimum. To je skalarna funkcija koja je definirana nad skalarom $x \in \mathcal{R}$.

Funkcija ima prvu derivaciju definiranu u svim točkama.

$$\frac{df}{dx} = 6x - 6$$

$$\frac{d^2f}{dx^2} = 6$$

- Kako izgleda graf ove funkcije?
- Gdje je minimum? Za f' = 0. $6 \cdot x_{min} 6 = 0 \rightarrow x_{min} = 1$

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

• Koja je vrijednost u minimumu?

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

• Koja je vrijednost u minimumu?

$$\left. \frac{df}{dx} \right|_{x=1} = 6x - 6|_{x=1} = 6 - 6 = 0$$

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

• Koja je vrijednost u x > 1

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

• Koja je vrijednost u x > 1

$$\left. \frac{df}{dx} \right|_{x>1} = 6x - 6|_{x>1} > 0$$

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

• Koja je vrijednost u x > 1

$$\left. \frac{df}{dx} \right|_{x>1} = 6x - 6|_{x>1} > 0$$

• Koja je vrijednost u x < 1

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

• Koja je vrijednost u x > 1

$$\left. \frac{df}{dx} \right|_{x>1} = 6x - 6|_{x>1} > 0$$

• Koja je vrijednost u x < 1

$$\left. \frac{df}{dx} \right|_{x < 1} = 6x - 6|_{x < 1} < 0$$

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

• Ako je f'(x) = 0, vrijednost x je lokalni optimum (ili točka infleksije, ili ...).

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

- Ako je f'(x) = 0, vrijednost x je lokalni optimum (ili točka infleksije, ili ...).
- Ako je f'(x) > 0, povećanjem x-a vrijednost funkcije će se također povećati.

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

- Ako je f'(x) = 0, vrijednost x je lokalni optimum (ili točka infleksije, ili ...).
- Ako je f'(x) > 0, povećanjem x-a vrijednost funkcije će se također povećati.
- Ako je f'(x) < 0, smanjenjem x-a vrijednost funkcije će se također povećati.

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

Za traženje minimuma funkcije tada ćemo okrenuti pravilo: potrebno je kretati se u smjeru negativne derivacije!

• Ako je f'(x) = 0, vrijednost x je lokalni optimum (ili točka infleksije, ili ...).

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

- Ako je f'(x) = 0, vrijednost x je lokalni optimum (ili točka infleksije, ili ...).
- Ako je f'(x) > 0, x ćemo smanjiti kako bi vrijednost funkcije pala: $x \leftarrow x \delta$, $\delta > 0$.

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

- Ako je f'(x) = 0, vrijednost x je lokalni optimum (ili točka infleksije, ili ...).
- Ako je f'(x) > 0, x ćemo smanjiti kako bi vrijednost funkcije pala: $x \leftarrow x \delta$, $\delta > 0$.
- Ako je f'(x) < 0, x ćemo povećati kako bi vrijednost funkcije pala: $x \leftarrow x + \delta$, $\delta > 0$.

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

- Ako je f'(x) = 0, vrijednost x je lokalni optimum (ili točka infleksije, ili ...).
- Ako je f'(x) > 0, x ćemo smanjiti kako bi vrijednost funkcije pala: $x \leftarrow x \delta$, $\delta > 0$.
- Ako je f'(x) < 0, x ćemo povećati kako bi vrijednost funkcije pala: $x \leftarrow x + \delta$, $\delta > 0$.
- Ako je $f'(x) \neq 0$, možemo pisati $x \leftarrow x \lambda \cdot f'(x)$, $\lambda > 0$.

Predznak prve derivacije u nekoj točki x definira što treba napraviti toj točki da bi vrijednost funkcije porasla.

$$f' = \frac{df}{dx} = 6x - 6$$

Za traženje minimuma funkcije tada ćemo okrenuti pravilo: potrebno je kretati se u smjeru negativne derivacije!

- Ako je f'(x) = 0, vrijednost x je lokalni optimum (ili točka infleksije, ili ...).
- Ako je f'(x) > 0, x ćemo smanjiti kako bi vrijednost funkcije pala: $x \leftarrow x \delta$, $\delta > 0$.
- Ako je f'(x) < 0, x ćemo povećati kako bi vrijednost funkcije pala: $x \leftarrow x + \delta$, $\delta > 0$.
- Ako je $f'(x) \neq 0$, možemo pisati $x \leftarrow x \lambda \cdot f'(x)$, $\lambda > 0$.

Za koliki iznos δ to smijemo promijeniti x?

Layout

- Optimizacija derivabilnih funkcija
 - Primjer funkcije jedne varijable
 - Primjer funkcije više varijabli
 - Odgovarajući pomak
- Povećanje uspješnosti generiranja početnih rješenja

Pretpostavimo da je zadana funkcija $f(\vec{x}) = (x_1-4)^2 + (x_2+8)^2 + (x_3+5)^2$ čiji tražimo minimum. To je skalarna funkcija koja je definirana nad n-dimenzijskim vektorom $\vec{x} \in \mathcal{R}^3$.

 Više ne možemo računati derivaciju jer je to funkcija od više varijabli.

Pretpostavimo da je zadana funkcija $f(\vec{x})=(x_1-4)^2+(x_2+8)^2+(x_3+5)^2$ čiji tražimo minimum. To je skalarna funkcija koja je definirana nad n-dimenzijskim vektorom $\vec{x}\in\mathcal{R}^3$.

- Više ne možemo računati derivaciju jer je to funkcija od više varijabli.
- Možemo računati gradijent pisat ćemo ga kao jednostupčani vektor čiji je element u i-tom retku parcijalna derivacija zadane funkcije po i-toj varijabli odnosno i-toj komponenti vektora x.

Pretpostavimo da je zadana funkcija $f(\vec{x}) = (x_1-4)^2 + (x_2+8)^2 + (x_3+5)^2$ čiji tražimo minimum. To je skalarna funkcija koja je definirana nad n-dimenzijskim vektorom $\vec{x} \in \mathcal{R}^3$.

- Više ne možemo računati derivaciju jer je to funkcija od više varijabli.
- Možemo računati gradijent pisat ćemo ga kao jednostupčani vektor čiji je element u i-tom retku parcijalna derivacija zadane funkcije po i-toj varijabli odnosno i-toj komponenti vektora x.

$$\nabla f(\vec{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 - 8 \\ 2x_2 + 16 \\ 2x_3 + 10 \end{bmatrix}$$

$$\nabla f(\vec{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 - 8 \\ 2x_2 + 16 \\ 2x_3 + 10 \end{bmatrix}$$

$$\nabla f(\vec{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 - 8 \\ 2x_2 + 16 \\ 2x_3 + 10 \end{bmatrix}$$

• Funkcija poprima ekstremnu vrijednost (ili sedlo, ili ...) u točkama u kojima je $\nabla f(\vec{x}) = \vec{0}$.

$$\nabla f(\vec{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 - 8 \\ 2x_2 + 16 \\ 2x_3 + 10 \end{bmatrix}$$

- Funkcija poprima ekstremnu vrijednost (ili sedlo, ili ...) u točkama u kojima je $\nabla f(\vec{x}) = \vec{0}$.
- Rezultira sustavom jednadžbi koji nije uvijek moguće riješiti egzaktno \rightarrow vodi na iterativne postupke koji malo po malo mijenjaju vrijednost trenutnog rješenja \vec{x} .

$$abla f(ec{x}) = \left[egin{array}{c} rac{\partial f}{\partial x_1} \ rac{\partial f}{\partial x_2} \ rac{\partial f}{\partial x_3} \end{array}
ight] = \left[egin{array}{c} 2x_1 - 8 \ 2x_2 + 16 \ 2x_3 + 10 \end{array}
ight]$$

- Funkcija poprima ekstremnu vrijednost (ili sedlo, ili ...) u točkama u kojima je $\nabla f(\vec{x}) = \vec{0}$.
- Rezultira sustavom jednadžbi koji nije uvijek moguće riješiti egzaktno \rightarrow vodi na iterativne postupke koji malo po malo mijenjaju vrijednost trenutnog rješenja \vec{x} .
- Interpretacija gradijenta je međutim slična kao i interpretacija derivacije: promjena vrijednosti \vec{x} za skalirani iznos $\lambda \cdot \nabla f(\vec{x})$, $\lambda > 0$, u okolici od \vec{x} vodi ka povećanju vrijednosti funkcije.

$$\nabla f(\vec{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 - 8 \\ 2x_2 + 16 \\ 2x_3 + 10 \end{bmatrix}$$

- Funkcija poprima ekstremnu vrijednost (ili sedlo, ili ...) u točkama u kojima je $\nabla f(\vec{x}) = \vec{0}$.
- Rezultira sustavom jednadžbi koji nije uvijek moguće riješiti egzaktno \rightarrow vodi na iterativne postupke koji malo po malo mijenjaju vrijednost trenutnog rješenja \vec{x} .
- Interpretacija gradijenta je međutim slična kao i interpretacija derivacije: promjena vrijednosti \vec{x} za skalirani iznos $\lambda \cdot \nabla f(\vec{x})$, $\lambda > 0$, u okolici od \vec{x} vodi ka povećanju vrijednosti funkcije.
- Za minimizaciju stoga biramo korekciju proporcionalnu iznosu $-\lambda \cdot \nabla f(\vec{x})$. Za koliki λ se smijemo pomaknuti?

Layout

- Optimizacija derivabilnih funkcija
 - Primjer funkcije jedne varijable
 - Primjer funkcije više varijabli
 - Odgovarajući pomak
- Povećanje uspješnosti generiranja početnih rješenja

Koliko je prikladno?

• U slučaju funkcije od jedne varijable došli smo do ažuriranja:

$$x \leftarrow x - \lambda \cdot f'(x)$$

Koliko je prikladno?

U slučaju funkcije od jedne varijable došli smo do ažuriranja:

$$x \leftarrow x - \lambda \cdot f'(x)$$

U slučaju funkcije od više varijabli došli smo do ažuriranja:

$$\vec{x} \leftarrow \vec{x} - \lambda \cdot \nabla f(\vec{x})$$

• U slučaju funkcije od jedne varijable došli smo do ažuriranja:

$$x \leftarrow x - \lambda \cdot f'(x)$$

U slučaju funkcije od više varijabli došli smo do ažuriranja:

$$\vec{x} \leftarrow \vec{x} - \lambda \cdot \nabla f(\vec{x})$$

 U oba slučaja ostalo je neodgovoreno za koliko se smijemo pomaknuti?

Koliko je prikladno?

U slučaju funkcije od jedne varijable došli smo do ažuriranja:

$$x \leftarrow x - \lambda \cdot f'(x)$$

U slučaju funkcije od više varijabli došli smo do ažuriranja:

$$\vec{x} \leftarrow \vec{x} - \lambda \cdot \nabla f(\vec{x})$$

- U oba slučaja ostalo je neodgovoreno za koliko se smijemo pomaknuti?
 - Ako je $\lambda > 0$ premali, da smo uzeli veći, mogli smo funkciju više minimizirati u trenutnom koraku.

Koliko je prikladno?

U slučaju funkcije od jedne varijable došli smo do ažuriranja:

$$x \leftarrow x - \lambda \cdot f'(x)$$

U slučaju funkcije od više varijabli došli smo do ažuriranja:

$$\vec{x} \leftarrow \vec{x} - \lambda \cdot \nabla f(\vec{x})$$

- U oba slučaja ostalo je neodgovoreno za koliko se smijemo pomaknuti?
 - Ako je $\lambda > 0$ premali, da smo uzeli veći, mogli smo funkciju više minimizirati u trenutnom koraku.
 - Ako je $\lambda > 0$ preveliki, izlazimo iz *okolice* od \vec{x} pa tako daleko funkcija se može ponašati drugačije (npr. rasti).

U oba prethodna slučaja zadana je točka $(x \text{ ili } \vec{x})$ te smjer u kojem se treba pomaknuti $(-\lambda \cdot f'(x) \text{ ili } -\lambda \cdot \nabla f(\vec{x}))$ – potrebno je pronaći prikladnu vrijednost za λ .

U oba prethodna slučaja zadana je točka $(x \text{ ili } \vec{x})$ te smjer u kojem se treba pomaknuti $(-\lambda \cdot f'(x) \text{ ili } -\lambda \cdot \nabla f(\vec{x}))$ – potrebno je pronaći prikladnu vrijednost za λ .

 Postoji niz algoritama koji se mogu koristiti za rješavanje ovog problema.

U oba prethodna slučaja zadana je točka $(x \text{ ili } \vec{x})$ te smjer u kojem se treba pomaknuti $(-\lambda \cdot f'(x) \text{ ili } -\lambda \cdot \nabla f(\vec{x}))$ – potrebno je pronaći prikladnu vrijednost za λ .

- Postoji niz algoritama koji se mogu koristiti za rješavanje ovog problema.
- Rijetko kada imamo egzaktno rješenje najčešće se radi o iterativnim postupcima.

U oba prethodna slučaja zadana je točka $(x \text{ ili } \vec{x})$ te smjer u kojem se treba pomaknuti $(-\lambda \cdot f'(x) \text{ ili } -\lambda \cdot \nabla f(\vec{x}))$ – potrebno je pronaći prikladnu vrijednost za λ .

- Postoji niz algoritama koji se mogu koristiti za rješavanje ovog problema.
- Rijetko kada imamo egzaktno rješenje najčešće se radi o iterativnim postupcima.
- Kako je višedimenzijski slučaj općenitiji (\vec{x}) , njega ćemo razmotriti.

Zadana je funkcija $f(\vec{x})$ čiji se traži minimum, pri čemu je $\vec{x} \in \mathcal{R}^n$. Neka je $\vec{x}^{(0)}$ odabrano početno rješenje. Pretpostavimo također da je $\vec{d}^{(0)} \in \mathcal{R}^n$ vektor koji pokazuje u smjeru u kojem je potrebno modificirati trenutno rješenje kako bi vrijednost funkcije pala, gledano iz trenutne točke $\vec{x}^{(0)}$.

Uvodimo parametar λ te definiramo novu funkciju:

$$\theta(\lambda) = f(\vec{x}^{(0)} + \lambda \cdot \vec{d}^{(0)}).$$

Funkcija θ ovisi samo o lambda; za nju su $\vec{x}^{(0)}$ i $\vec{d}^{(0)}$ konstante. Sada je zadatak pronaći vrijednost λ^* koja minimizira funkciju $\theta(\lambda)$ i potom kao novo rješenje uzeti vrijednost:

$$\vec{x}^{(1)} = \vec{x}^{(0)} + \lambda^* \cdot \vec{d}^{(0)}.$$

Neka je $f(\vec{x})=(x_1-4)^2+(x_2+8)^2+(x_3+5)^2$, $\vec{x}^{(0)}=[6,-10,-9]^T$ te $\vec{d}=[-1,2,1]^T$. Lagano se možemo uvjeriti da će za male vrijednosti λ funkcija padati te će potom u jednom trenutku početi rasti:

λ	$\vec{x}^{(0)} + \lambda \cdot \vec{d}^{(0)}$	$\theta(\lambda)$
0	$[6,-10,-9]^T$	24
1	$[5, -8, -8]^T$	10
2	$[4, -6, -7]^T$	8
3	$[3, -4, -6]^T$	18
4	$[2, -2, -5]^T$	40

Pogledajmo

$$\frac{d\theta(\lambda)}{d\lambda} = \nabla f(\vec{x})^T \cdot \vec{d}.$$

Pogledajmo

$$\frac{d\theta(\lambda)}{d\lambda} = \nabla f(\vec{x})^T \cdot \vec{d}.$$

Vrijedi

$$\left. \frac{d\theta(\lambda)}{d\lambda} \right|_{\lambda=0} < 0.$$

Zašto to vrijedi? Definirat ćemo stoga da je $\lambda_{lower} = 0$.

Pogledajmo

$$\frac{d\theta(\lambda)}{d\lambda} = \nabla f(\vec{x})^T \cdot \vec{d}.$$

Vrijedi

$$\left. \frac{d\theta(\lambda)}{d\lambda} \right|_{\lambda=0} < 0.$$

Zašto to vrijedi? Definirat ćemo stoga da je $\lambda_{lower} = 0$.

• Trebamo gornju ogradu za λ , oznaka λ_{upper} , uz koju će funkcija f ponovno početi rasti, odnosno za koju će $\frac{d\theta(\lambda)}{d\lambda_{upper}} > 0$.

Pogledajmo

$$\frac{d\theta(\lambda)}{d\lambda} = \nabla f(\vec{x})^T \cdot \vec{d}.$$

Vrijedi

$$\left. \frac{d\theta(\lambda)}{d\lambda} \right|_{\lambda=0} < 0.$$

Zašto to vrijedi? Definirat ćemo stoga da je $\lambda_{lower}=0$.

- Trebamo gornju ogradu za λ , oznaka λ_{upper} , uz koju će funkcija f ponovno početi rasti, odnosno za koju će $\frac{d\theta(\lambda)}{d\lambda_{upper}} > 0$.
 - Ako takvu nemamo, možemo isprobavati $\lambda_{upper}=1$, $\lambda_{upper}=2$, $\lambda_{upper}=4$, $\lambda_{upper}=8$, ... dok ne pronađemo potreban λ_{upper} .

Jednom kada imamo λ_{lower} i λ_{upper} , sigurno znamo da se λ koji minimizira funkciju nalazi između te dvije ograde. Možemo koristiti, primjerice, binarno raspolavljanje.

Metoda bisekcije

Korak 0. Postavi
$$k=0$$
. Postavi $\lambda_I=\lambda_{lower}$ te $\lambda_u=\lambda_{upper}$. Korak k. Postavi $\lambda=\frac{\lambda_I+\lambda_u}{2}$ i izračunaj $\frac{d\theta(\lambda)}{d\lambda}\Big|_{\lambda}$. Ako je $\frac{d\theta(\lambda)}{d\lambda}\Big|_{\lambda}>0$, redefiniraj $\lambda_U=\lambda$, $k=k+1$. Ako je $\frac{d\theta(\lambda)}{d\lambda}\Big|_{\lambda}$ λ λ 0, redefiniraj $\lambda_I=\lambda$, λ λ λ λ λ λ λ 0, stani jer smo došli dovoljno blizu.

Postoji još niz drugih sličnih metoda.

Jednom kada znamo kako pronaći prikladan korak, možemo definirati porodicu algoritama pretraživanja u zadanom smjeru (engl. *line-search algorithms*).

Pretraživanje u zadanom smjeru.

```
Ponavljaj za k = 1, 2, \dots
```

Ako je $\vec{x}^{(k)}$ optimum, prekini s izvođenjem i vrati $\vec{x}^{(k)}$.

lnače

Utvrdi $\vec{d}^{(k)}$ – smjer pretrage

Pronađi $\lambda^* > 0$ – korak

Definiraj $\vec{x}^{(k+1)} = \vec{x}^{(k)} + \lambda^* \cdot \vec{d}^{(k)}$ – novo rješenje

$$\vec{d}^{(k)} = -\nabla f(\vec{x})$$

Metoda gradi linearni model funkcije oko trenutnog rješenja. Kao vektor $\vec{d}^{(k)}$ bira upravo minus gradijent funkcije koju je potrebno minimizirati.

$$\vec{d}^{(k)} = -\nabla f(\vec{x})$$

 U ne baš rijetkim slučajevima, izračun gradijenta je računski skupa operacija!

$$\vec{d}^{(k)} = -\nabla f(\vec{x})$$

- U ne baš rijetkim slučajevima, izračun gradijenta je računski skupa operacija!
- Procjena optimalne vrijednosti λ^* može tražiti puno izračuna gradijenta funkcije; stoga se ponekad pomak radi i uz manje "dobru" vrijednost za λ .

$$\vec{d}^{(k)} = -\nabla f(\vec{x})$$

- U ne baš rijetkim slučajevima, izračun gradijenta je računski skupa operacija!
- Procjena optimalne vrijednosti λ^* može tražiti puno izračuna gradijenta funkcije; stoga se ponekad pomak radi i uz manje "dobru" vrijednost za λ .
- U najjednostavnijim varijantama za vrijednost λ se koristi mala pozitivna konstanta (npr. $\lambda=0.1$ ili čak $\lambda=0.01$) i ne provodi se pretraga za λ^* .

$$\vec{d}^{(k)} = -\nabla f(\vec{x})$$

- U ne baš rijetkim slučajevima, izračun gradijenta je računski skupa operacija!
- Procjena optimalne vrijednosti λ^* može tražiti puno izračuna gradijenta funkcije; stoga se ponekad pomak radi i uz manje "dobru" vrijednost za λ .
- U najjednostavnijim varijantama za vrijednost λ se koristi mala pozitivna konstanta (npr. $\lambda=0.1$ ili čak $\lambda=0.01$) i ne provodi se pretraga za λ^* .
- Primjer je vrlo poznati algoritam za učenje neuronskih mreža:
 Backpropagation.

Metoda gradi kvadratni model $g(\vec{x})$ funkcije $f(\vec{x})$ oko trenutnog rješenja.

$$f(\vec{x} + \vec{\tau}) = f(\vec{x}) + \nabla f(\vec{x})^T \cdot \vec{\tau} + \frac{1}{2!} \vec{\tau}^T \nabla^2 f(\vec{x}) \vec{\tau} + \zeta \tag{1}$$

pri čemu su s ζ označene pogreške višeg reda. Za potrebe izgradnje Newtonovog algoritma u okolici točke \vec{x} funkcija $f(\vec{x})$ modelira se kvadratnom funkcijom $g(\vec{x})$ koja je definirana na sljedeći način:

$$g(\vec{x} + \vec{\tau}) = f(\vec{x}) + \nabla f(\vec{x})^T \cdot \vec{\tau} + \frac{1}{2!} \vec{\tau}^T \nabla^2 f(\vec{x}) \vec{\tau}. \tag{2}$$

 $g(\vec{x} + \vec{\tau})$ pri tome promatramo kao funkciju od $\vec{\tau}$ i pitamo se koji $\vec{\tau}$ treba odabrati da bismo dobili minimum?

 $H(f) = \nabla^2 f(\vec{x})$ je Hesseova matrica odnosno matrica drugih parcijalnih derivacija. Ova matrica računa se na sljedeći način:

$$\begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$
(3)

Derivacijom

$$g(\vec{x} + \vec{\tau}) = f(\vec{x}) + \nabla f(\vec{x})^T \cdot \vec{\tau} + \frac{1}{2!} \vec{\tau}^T \nabla^2 f(\vec{x}) \vec{\tau}$$

po $\vec{ au}$ slijedi:

$$\nabla g = \nabla f(\vec{x}) + H(\vec{x}) \cdot \vec{\tau}. \tag{4}$$

Uvjet za optimum je da je gradijent jednak 0:

$$\nabla f(\vec{x}) + H(\vec{x}) \cdot \vec{\tau} = \vec{0} \tag{5}$$

iz čega slijedi:

$$H(\vec{x}) \cdot \vec{\tau} = -\nabla f(\vec{x}) \tag{6}$$

odnosno

$$\vec{\tau} = -H(\vec{x})^{-1} \cdot \nabla f(\vec{x}) \tag{7}$$

- Izraz $H(\vec{x})^{-1}$ predstavlja matrični inverz Hesseove matrice i upravo potreba za računom inverza čini ovaj postupak računski vrlo zahtjevnim.
- Dobiveni vektor $\vec{\tau}$ dalje se koristi kao vektor u čijem smjeru se radi pretraga prethodno opisanim algoritmom.

$$\vec{d}^{(k)} = \vec{\tau} = -H(\vec{x})^{-1} \cdot \nabla f(\vec{x})$$

 Treba odmah uočiti: ako je funkcija f kvadratna funkcija, tada joj njezin model g savršeno odgovara i postupak minimizacije će završiti u jednom koraku.

Razlog za neuspjeh?

Postupak stvaranja početnog rješenja može ne-uspjeti; najčešći razlog je kršenje tvrdih ograničenja. Jedan od prokušanih načina koji može pomoći:

Savjeti

- Pratite neuspjehe.
- Temeljem povijesti neuspjeha procijenjujte težinu (problematičnost; zahtjevnost) sastavnih dijelova rješenja.
- Dajte zahtjevnijim dijelovima rješenja priliku da prvi budu razriješeni.
- Izbor možete učiniti determinističkim ili vjerojatnosnim (teža komponenta, veća šansa da se ranije razriješi).

Pogledajte primjer i diskusiju u knjizi u poglavlju 5.3.