1 Soluzione degli esercizi del capitolo 7

Esercizio 7.1 (pag.89)

Nell'insieme $H=\mathbb{Z}\times\mathbb{Z}=\{(x,y)|x,\ y\in\mathbb{Z}\}$ si consideri l'operazione \star così definita:

$$(x,y) \star (z,t) = (x+z,yt).$$

Si stabilisca se è commutativa, associativa e si determinino gli elementi invertibili.

Soluzione

a) Proprietà commutativa:

Poiché $(x,y)\star(z,t)=(x+z,yt)$ e $(z,t)\star(x,y)=(z+x,ty)$, per la proprietà commutativa della somma e del prodotto in \mathbb{Z} , i risultati sono uguali per ogni coppia di elementi $(x,y), (z,t)\in\mathbb{Z}\times\mathbb{Z}$.

b) Proprietà associativa:

$$((x,y) \star (z,t)) \star (u,v) = (x+z,yt) \star (u,v) = ((x+z) + u,(yt)v)$$

 $(x,y) \star ((z,t) \star (u,v)) = (x,y) \star (z+u,tv) = (x+(z+u),y(tv)).$

Ancora i risultati sono uguali per la proprietà associativa di somma e prodotto validi in \mathbb{Z} e quindi è verificata la proprietà associativa per ogni terna di elementi in $\mathbb{Z} \times \mathbb{Z}$.

c) Prima di determinare gli eventuali elementi invertibili, stabiliamo se esiste l'elemento neutro (poiché l'operazione è commutativa, un eventuale elemento neutro a sinistra o a destra sarà bilatero e quindi unico), cioè l'elemento (h,k) di $\mathbb{Z} \times \mathbb{Z}$ tale che $\forall (x,y) \in \mathbb{Z} \times \mathbb{Z}$ si abbia:

$$(h,k) \star (x,y) = (h+x,ky) = (x,y).$$

L'elemento neutro sarà quindi l'elemento le cui componenti soddisfano contemporaneamente le condizioni: h+x=x e ky=y per ogni $h,\ k\in\mathbb{Z}$ e quindi è l'elemento (0,1).

Cerchiamo ora gli elementi unitari (o invertibili), cioè gli elementi $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ per i quali esista un elemento (x, y) tale che $(a, b) \star (x, y) = (a + x, by) = (0, 1)$. Si ottiene x = -a e $b = \pm 1$. Quindi $U = \{(a, 1), (a, -1) | a \in \mathbb{Z}\}$.

Esercizio 7.2 (pag. 89)

Nell'insieme $G = \mathbb{Q} \times \mathbb{Q} = \{(x,y)|x, y \in \mathbb{Q}\}$, ove \mathbb{Q} è l'insieme dei numeri razionali si consideri l'operazione \circ così definita:

$$(x,y) \circ (z,t) = (xz,yz+2t).$$

Si stabilisca se è commutativa, associativa e se ammette elemento neutro.

Soluzione

a) Poiché $(x,y) \circ (z,t) = (xz,yz+2t)$ e $(z,t) \circ (x,y) = (zx,tx+2y)$, in generale i risultati non sono uguali, come si puó vedere dal controesempio seguente:

$$(0,1) \circ (2,1) = (0,2+2) = (0,4)$$
 mentre $(2,1) \circ (0,1) = (0,0+2) = (0,2)$.

b) Analogamente non vale la proprietà associativa, come mostra il seguente controesempio:

$$[(1,0)\circ(2,1)]\circ(0,1)=(2,2)\circ(0,1)=(0,2)$$
 mentre $(1,0)\circ[(2,1)\circ(0,1)]=(1,0)\circ(0,2)=(0,4).$

c) Eventuale elemento neutro: cerchiamo un elemento $(a,b) \in \mathbb{Q} \times \mathbb{Q}$ tale che $\forall (x,y) \in \mathbb{Q} \times \mathbb{Q}$ valgano le relazioni:

i)
$$(a,b) \circ (x,y) = (ax,bx + 2y) = (x,y)$$

е

ii)
$$(x, y) \circ (a, b) = (xa, ya + 2b) = (x, y).$$

In questo caso la condizione i) implica: a = 1 e bx = -y: quindi non esiste elemento neutro a sinistra poiché un tale elemento dipenderebbe dalla scelta di x e di y.

Invece la ii) ha come soluzioni a=1 e b=0, quindi esiste elemento neutro a destra.

Esercizio 7.3 (pag. 89)

Nell'insieme $G = \mathbb{R} \times \mathbb{R} = \{(a,b)|a, b \in \mathbb{R}\}$, ove \mathbb{R} è l'insieme dei numeri reali, si consideri l'operazione \circ così definita:

$$(a,b)\circ(c,d)=(ac-bd,ad+bc).$$

Si verifichi che l'operazione o è associativa e commutativa. Si determini inoltre l'elemento neutro e l'insieme degli elementi invertibili.

Soluzione

a) Proprietà commutativa:

Poiché $(a,b) \circ (c,d) = (ac-bd,ad+bc)$ e $(c,d) \circ (a,b) = (ca-db,cb+da)$, per la proprietà commutativa della somma e del prodotto in \mathbb{R} , i risultati sono uguali per ogni coppia di elementi (a,b), $(c,d) \in \mathbb{R} \times \mathbb{R}$.

b) Proprietà associativa:

$$((a,b) \circ (c,d)) \circ (e,f) = (ac - bd, ad + bc) \circ (e,f) =$$

= $((ac - bd)e - (ad + bc)f, (ac - bd)f + (ad + bc)e) =$
= $(ace - bde - adf - bcf, acf - bdf + ade + bce)$

e

$$(a,b) \circ ((c,d) \circ (e,f)) = (a,b) \circ (ce - df, cf + de) =$$

= $(a(ce - df) - b(cf + de), a(cf + de) + b(ce - df))) =$
= $(ace - adf - bcf - bde, acf + ade + bce - bdf).$

Ancora i risultati sono uguali per le proprietà associativa e commutativa di somma e prodotto valide in \mathbb{R} e quindi è verificata la proprietà associativa per ogni terna di elementi in $\mathbb{R} \times \mathbb{R}$.

c) L'eventuale elemento neutro sarà un elemento $(h, k) \in \mathbb{R}$ tale che $\forall (a, b) \in \mathbb{R}$ soddisfi la relazione $(a, b) \circ (h, k) = (ah - bk, ak + bh) = (a, b)$.

Dobbiamo risolvere il sistema in \mathbb{R} :

$$\left\{ \begin{array}{ll} ah-bk&=a\\ ak+bh&=b \end{array} \right. \mbox{ che ha soluzione: } h=1,\ k=0.$$

L'elemento neutro è quindi (1,0)

d) Elementi invertibili saranno gli elementi $(h,k) \in \mathbb{R}$ per i quali esista un elemento $(a,b) \in \mathbb{R}$ tale che $(a,b) \circ (h,k) = (1,0)$. Risolviamo quindi il sistema

$$\begin{cases} ah - bk = 1 \\ ak + bh = 0 \end{cases}$$

Otteniamo le soluzioni $a = \frac{h}{h^2 + k^2}$ e $b = \frac{-k}{h^2 + k^2}$. Gli elementi invertibili saranno quindi tutte le coppie (h, k) con h e k non contemporaneamente nulli.