

YOIN YIT QUESTION PAPERS ON TELESTRAM

SCHOOL OF ELECTRONICS ENGINEERING

Continuous Assessment Test 1 B Tech (ECE), Fall Semester 2019-20

Course Code

: ECE1003

Duration: 90 mins

Course Name

: Electromagnetic Field Theory

Max Marks: 50

Slots

: F1+TF1

1. Transform the H into spherical coordinate system. Also in the transformed system determine the vector at (3, -4, 5). (10)

$$H = xy^2z a_x + x^2yz a_y + xyz^2 a_z$$

- 2. (i) A point charge 100 pC is located at (4,1,-3) while the x-axis carries charge 2 nC/m. If the plane z = 3 also carries 5 nC/m², Find E at (1,2,3). (5)
 - (ii) Determine the curl of the following vector.

(5)

 $T = \frac{1}{r^2}\cos\theta \ \mathbf{a}_r + r\sin\theta \cos\Phi \ \mathbf{a}_\theta + \cos\theta \ \mathbf{a}_\Phi$

- 3. (i) Given that the electric filed in a certain region is $\mathbf{E} = (z+1) \sin \Phi \ \mathbf{a}_{\rho} + (z+1) \cos \mathbf{a}_{\phi} + \rho \sin \Phi \ \mathbf{a}_{z} \ \text{V/m.}$ Determine the work done in moving a 4 nC charge from A (4, 30°,0) to B (4, 30°, -2). (6)
 - (ii) Determine the \vec{E} due to the potential $V = x^2 + 2y^2 + 4z^2$ (4)
- A. Verify divergence theorem for the vector $\mathbf{A} = 2\rho z \, \mathbf{a}_{\rho} + 3z \sin\Phi \, \mathbf{a}_{\Phi} 4\rho \cos\Phi \, \mathbf{a}_{z}$ and S is the surface of the wedge $0 < \rho < 2$, $0 < \theta < 45^{\circ}$, 0 < z < 5. (10)
- 5. Three concentric spherical shells r = 1m, r = 2m and r = 3m respectively have charge distribution $2 \mu C/m^2$, $-4 \mu C/m^2$ and $5 \mu C/m^2$. (10)
 - (i) Calculate the flux through r = 1.5m and r = 2.5m.
 - (ii) Find D at r = 0.5m, r = 2.5m and r = 3.5m.

SEARCH VIT QUESTION PAPERS ON TELEGRAM TO JOIN

