Notes on Inference Devices

Santa Fe Institute

Edward G. Huang

Summer 2018

1 Notation and Definitions

This manuscript utilizes standard notation taken from set theory and vector algebra. We clarify notation specific to Turing Machine theory and inference devices.

1.1 Turing Machines

- \mathbb{B}^* The space of all finite bit strings.
- Λ Symbol alphabet of a Turing Machine.
- σ A symbol on a Turing Machine tape.
- Q Set of finite states of a Turing Machine.
- Δ Transition function of a Turing Machine.
- k Number of tapes of a Turing Machine. The first tape is assumed to be read-only.
- η Non-halting state of a Turing Machine.

1.2 Inference Devices

- U Set of possible histories of the universe.
- u A history of the universe in U.
- X Setup function of an ID that maps $U \to X(U)$. A binary question concerning $\Gamma(u)$.
- x A binary question and a member of image X(U).
- Y Single-valued conclusion function of an ID that maps $U \to \{-1, 1\}$. A binary answer of an ID for X(u) = x.
- y A single-valued answer, and member of image $Y(U) = \{0, 1\}$.
- Γ A function of the actual values of a physical variable over U, equivalent to $\Gamma(u) = S(t_i)(u)$.
- γ Possible value of a physical variable, a member of the image $\Gamma(U)$.

δ Probe of any variable V parameterized by $v \in V$ such that :

$$\delta_v(v') = \begin{cases} 1 & \text{if } v = v' \\ -1 & \text{otherwise} \end{cases}$$

- \wp Set of probes over $\Gamma(U)$.
- $\mathcal{D} = (X, Y)$ An inference device, consisting of functions X and Y.
- \bar{F} Inverse. Given a function F over $U, F^{-1} = \bar{F} \equiv \{\{u : F(u) = f\} : f \in F(U)\}.$
- > Weak inference: a device \mathcal{D} weakly infers Γ iff $\forall \gamma \in \Gamma(U), \exists x \in X(U) \text{ s.t. } \forall u \in U,$ $X(u) = x \implies Y(u) = \delta_{\gamma}(\Gamma(u)).$
- \gg Strong inference: a device (X,Y) strongly infers a functions (S,T) over U iff $\forall \delta \in \wp(T)$ and all $s \in S(U)$, $\exists x$ such that $X(u) = x \implies S(u) = s, Y(u) = \delta(T(u))$.

2 Turing Machines

2.1 Deterministic Turing Machines

Arora and Barak denote a Turing Machine (TM) as $T = (\Lambda, Q, \Delta)$ containing:

- 1. An alphabet Λ of a finite set of symbols that T's tapes can contain. We assume that Λ contains a special blank symbol B, start symbol S, and the symbols 0 and 1.
- 2. A finite set Q of possible states that T's register can be in. We assume that Q contains a special start state q_s and a special halt state q_h .
- 3. A transition function $\Delta: Q \times \Lambda^k \to Q \times \Lambda^{k-1} \times \{L, S, R\}^k$, where $k \geq 2$, describing the rules T use in performing each step. The set $\{L, S, R\}$ denote the actions Left, Stay, and Right, respectively.

Suppose T is in state $q \in Q$ and $(\sigma_1, \sigma_2, \ldots, \sigma_k)$ are the symbols on the k tapes. Then $\Delta(q, (\sigma_1, \ldots, \sigma_k)) = (q', (\sigma'_2, \ldots, \sigma'_k), z)$ where $z \in \{L, S, R\}^k$ and at the next step the σ symbols in the last k-1 tapes will be replaced by the σ' symbols, the machine will be in state q, and the k heads will move Left, Right or Stay. This is illustrated in Figure 2.1.

Figure 2.1. The transition function Δ for a k-tape Turing Machine

$(q,(\sigma_1,\ldots,\sigma_k))$				$(q',(\sigma_2^{'},\ldots,\sigma_k^{'}),z)$				
Input	Work/output symbol read		Current	New work/output tape symbol		Move work/output tape		New state
:	:	٠	÷	:	٠	:	٠	:
σ_1	σ_i	٠	q	$\sigma_i^{'}$	٠	z_i	•••	$q^{'}$
:	:	٠.,	:	:	٠	:	٠	:

Remark: A can be reduced to $\mathbb{B} = \{0,1\}$ and k can be reduced to 1 without loss of computational power. Then, any Turing Machine can be expressed as a partial recursive function mapping $\mathbb{B}^* \to \mathbb{B}^* \cup \eta$, where η is the undefined non-halting output. Since $|\mathbb{B}^* \times \mathbb{B}^* \cup \eta| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, the set of all Turing Machines is countably infinite.

2.2 Non-deterministic Turing Machines

Non-deterministic Turing Machines (NDTM) differ from deterministic Turing Machines by having two transition functions Δ_0, Δ_1 and a special state q_{accept} . From Arora and Barak:

When a NDTM M computes a function, we envision that at each computational step M makes an arbitrary choice as to which of its two transition functions to apply. For every input x, we say that M(x) = 1 if there exists some sequence of these choices (which we call nondeterministic choices of M) that would make M reach q_{accept} on input x. Otherwise - if every sequence of choices makes M halt without reaching q_{accept} - then we say that M(x) = 0.

3 Inference of Turing Machines

In the next three examples we examine strong inference of integer-valued functions.

Example 3.1 Let $T(U) = \{0,1\}$ and $S(U) = \{0,1,2\}$. We construct (X,Y) in the table at the left such that it strongly infers (S,T). The right table indicates x for each s, δ such that the definition of strong inference is satisfied:

u	X(u)	Y(u)	S(u)	T(u)
1	1	1	0	0
2	2	-1	0	0
3	3	1	1	0
4	4	-1	1	0
5	5	1	2	1
6	6	-1	2	1

$s \setminus \delta$	δ_0	δ_1
0	1	2
1	3	4
2	6	5

Example 3.2 Let $T(U) = \{1, 2, 3\}$ and $S(U) = \{1, 2, 3, 4, 5\}$. Again, we construct (X, Y) in the table at the left such that it strongly infers (S, T). The right table indicates x for each s, δ such that the definition of strong inference is satisfied:

u	X(u)	Y(u)	S(u)	T(u)
1	1	1	1	1
2	2	-1	1	1
3	3	1	2	1
4	4	-1	2	1
5	5	1	3	2
6	6	-1	3	2
7	7	1	4	2
8	8	-1	4	2
9	9	1	5	3
10	10	-1	5	3

$s\setminus\delta$	δ_1	δ_2	δ_3
1	1	2	2
2	3	4	4
3	6	5	6
4	8	7	8
5	10	10	9

Example 3.3 Let $T(U) = \{1, 2, 3\}$ and $S(U) = \{1, 2\}$. In this example, the inferred function $f: S \to T, f(s) = T(S^{-1}(s))$ is not single-valued.

u	X(u)	Y(u)	S(u)	T(u)
1	1	-1	1	1
2	2	-1	1	2
3	3	-1	1	3
4	4	-1	2	1
5	5	-1	2	2

$s \setminus \delta$	δ_1	δ_2	δ_3
1	2	1	1
2	5	4	4

Theorem A deterministic Turing Machine (Λ, Q, Δ) can be strongly inferred by a device if

$$\forall s \in S(U), \ |S^{-1}(s)| \ge 2.$$

This holds for both the representation of a Turing Machine as a partial recursive function and the representation as an update function.

Proof We first examine the partial function case. Let f be the partial recursive function that describes the given Turing Machine tuple. Let $U := \mathbb{N}$. Choose any convenient single valued function $S: U \to \mathbb{B}^*$ and define $T: U \to \mathbb{B}^* \cup \eta$ given by T(u) = f(S(u)) as the single-valued function

mapping U to the halting and non-halting outputs of f. Then f can be written as the single-valued mapping $S \to T$ given by $f(s) = T(S^{-1}(s))$.

Let $V_s = \{u : S^{-1}(s) = u\}$ for a value of $s \in S(U)$. Define $n(s) = |V_s|$. Enumerate the elements of V_s as $v_{s_1}, v_{s_2}, \ldots, v_{s_{n(s)}}$. Then define X and Y as follows:

$$X(v_{s_i}) = i : i \in 1, \dots, n(s)$$
 $Y(v_{s_i}) = \begin{cases} 1 & \text{if } v_{s_i} = v_{s_1} \\ -1 & \text{otherwise} \end{cases}$

The condition $|S^{-1}(s)| \geq 2$ is required to guarantee Y(v) = -1 for some v_{s_i} . For each pair $(s, \delta_{t \in T(U)})$ choose x_1 if $t = T(v_1)$ or otherwise choose x_2 to force S(u) = s and $Y(u) = \delta_t(T(u))$. Since the choice of s was arbitrary, this holds for all (s, δ_t) pairs.

Now consider the update function that describes the given Turing Machine. The update function is written as Δ mapping $Q \times \Lambda^k \to Q \times \Lambda^{k-1} \times \{L, S, R\}^k$, $k \geq 2$. Consider a convenient single-valued function $S: U \to Q \times \Lambda^k$ representing the possible inputs for a Turing Machine and a corresponding single-valued $T: U \to Q \times \Lambda^{k-1} \times \{L, S, R\}^k$ given by $T(u) = \Delta(S(u))$. Then Δ can be written as the single-valued function $\Delta(s) = T(S^{-1}(s))$.

We proceed analogously to the partial function portion of the proof. Define V, X, and Y as described in the preceding paragraphs. For each pair $(s, \delta_{t \in T(U)})$ choose x_1 if $t = T(v_1)$ or otherwise choose x_2 to force S(u) = s and $Y(u) = \delta_t(T(u))$. Since the choice of s was arbitrary, this holds for all (s, δ_t) pairs.

4 Inference Complexity

Definition Let \mathcal{D} be an inference device and Γ be a function over U where X(U) and $\Gamma(U)$ are countable and $\mathcal{D} > \Gamma$. Let the **size** of $\gamma \in \Gamma(U)$ be written as $\mathcal{M}_{\mu:\Gamma(\gamma)} = -\ln[\int_{\Gamma^{-1}(\gamma)} d\mu(u)1]$. Then the **inference complexity** of Γ with respect to \mathcal{D} and measure μ is defined as:

$$\mathcal{C}_{\mu}(\Gamma; \mathcal{D}) \triangleq \sum_{\delta \in \wp(\Gamma)} \min_{x: X = x \implies Y = \delta(\Gamma)} [\mathcal{M}_{\mu, X}(x)]$$

Remark: This is only a working definition and may be revised depending on its behavior.