1 Description of the problem

Problem: Solve the HSP for $H \leq G$, where G is a nil-2 group.

2 Discussion of background

2.1 Preliminaries

Here is a summary about the preliminaries for HSP and nilpotent groups:

- 1. There is an extension of the standard algorithm for HSP in terms of quantum hiding function, which is given in section 2.1.
- 2. A group G is called nilpotent if its lower central series stops in $\{e\}$ after finitely many steps.
- 3. A nilpotent group G is said to be a nil-n group if it is of class at most n.
- 4. A group G is a nil-2 group if G' is contained in the center of G, where G' is the derived subgroup of G.
- 5. If G is a p-group of exponent p and of class 2, the structure of G, G' and G/G' is well studied and is summarized in section 2.3 in this paper.
- 6. If G is a p-group of exponent p and of class 2, there is an automorphism ϕ_j , which has certain properties. This automorphism is used in the quantum algorithm described in this paper.

2.2 Related Work

HSP can be solved efficiently for abelian groups using quantum algorithms. Many efforts have been made to solve the HSP in finite non-abelian groups. Many groups where the HSP have been efficiently solved are somehow groups that are very close to be abelian groups, e.g. [1], [3] and [2].

Some previous work for this paper have been done is about solving the HSP for extraspecial groups [4], which are groups in nil-2 groups. This paper follows a similar procedure, which uses theoretical tools to reduce the problem to the HSP in abelian groups.

3 Summary of Nil-2 HSP Algorithm

3.1 Reduction Steps

- 1. Calculate the refined polycyclic representation of G.
- 2. Reduce to HSP in nil-2 p-groups
- 3. Reduce to case where H is either trivial or order p

- 4. Reduce to case where G has exponent p.
- 5. Reduce to finding a quantum hiding function for HG'
- 6. Reduce to finding an appropriate triple
- 7. Reduce to solving a large system of linear and quadratic equations

3.2 Quantum Algorithm

All of the above steps have efficient classical algorithms, except for the step of generating a quantum hiding function for HG' given an appropriate triple, so I'll focus on this step. **Summary:**

- 1. Compute the superposition $\sum_{u \in G'} |u\rangle |aHG'_u\rangle$ for random $a \in G$, where $G_u = DFT(|u\rangle)$.
- 2. Do the last step n times in parallel for some large n
- 3. Solve the system of equations to get $\bar{j} \in (\mathbf{Z}_p)^n$
- 4. $\left|\Psi_g^{\bar{a},\bar{u},\bar{j}}\right\rangle = \bigotimes_{i=1}^n \left|a_i H G'_{u_i} \phi_{j_i}(g)\right\rangle$ as a function of $g \in G$ is a hiding function for HG', where ϕ_j are nice automorphisms of G.

The following properties of the automorphisms ϕ_i are used in the proof:

- 1. $|aHG'_u\rangle$ is an eigenvector for right multiplication by $\phi_j(g)$
- 2. ϕ_j maps HG' to HG'

References

- M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani. Quantum mechanical algorithms for the non- abelian Hidden Subgroup Problem. In Proc. 33rd ACM STOC, pages 6874, 2001.
- [2] C. Moore, D. Rockmore, A. Russell, and L. Schulman. The power of basis selection in Fourier sampling: Hidden subgroup problems in affine groups. In Proc. 15th ACM-SIAM SODA, pages 11061115, 2004.
- [3] M. Rötteler and T. Beth. Polynomial-time solution to the Hidden Subgroup Problem for a class of non-abelian groups. http://xxx.lanl.gov/abs/quant-ph/9812070
- [4] G. Ivanyos, L. Sanselme, and M. Santha. An efficient quantum algorithm for the hidden subgroup problem in extraspecial groups. Proc. 24th STACS, LNCS vol. 4393, pages 586597, 2007.