

MATHEMATICS Max. Marks: 60

SECTION 1

- This section contains Four (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:
- Full Marks : +3 If ONLY the correct option is chosen;
- Zero Marks: 0 If the none of the options is chosen (i.e. the question is unanswered);
- : -1 In all other cases.
- Tangents are drawn from P(1,8) to the circle $x^2 + y^2 6x 4y 11 = 0$ touch the circle **39.** at points A and B, respectively. The radius of the circle which passes through the points of intersection of circles $x^2 + y^2 - 2x - 6y + 6 = 0$ and $x^2 + y^2 + 2x - 6y + 6 = 0$, and intersects the circum circle of the $\triangle PAB$ orthogonally is equal to
 - A) $\frac{\sqrt{73}}{4}$
- **B**) $\frac{\sqrt{71}}{2}$
- **C**) 3
- **D)** 2
- From points on the line 3x 4y + 12 = 0, tangents are drawn to circle $x^2 + y^2 = 4$. Then 40. the chords of contact pass through a fixed point. The slope of the chord of the circle having this fixed point as its midpoint is
 - A) $\frac{4}{3}$
- B) $\frac{1}{2}$
- C) $\frac{1}{2}$
- **D**) $\frac{3}{4}$
- let L = 0, be a line passing through (1, 2) and the point of intersection of this line with 41. x + y = 4 is at a distance of $\frac{\sqrt{6}}{2}$ units from (1, 2). Then the square of distance of the point (1, 0) from the line x - y + 1 = 0, measured in the direction of L = 0.
 - **A)** 6
- **B)** 8
- **C**) 3
- **D)** 2
- Given A = (1,1) and AB is any line through it cutting x-axis in B. If AC is perpendicular 42. to AB and meet the y-axis in C, then the locus of mid point P of BC satisfies the equation

- **A)** x + y = 1 **B)** x + y = 4 **C)** x + y = 2xy **D)** 2x + 3y = xy

Sec: Sr.S60 NUCLEUS & STERLING-BT Space for rough work

Page 20

SECTION 2

- This section contains THREE (03) questions stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:
- Full Marks: +2 If ONLY the correct numerical value is entered at the designated place;
- Zero Marks: 0 In all other cases.

Question Stem for Question Nos. 43 and 44

Question Stem

Let $L_1: 4x-3y+13=0$, $L_2: 4x-3y=37$, $L_3: 3x+4y=34$ are three lines in xy plane and $L_4: (1+\lambda)x+(1-\lambda)y=24$ is a variable line. P(a,b) is centre of circle which touches lines L_1, L_2 and L_3

On the basis of above information, answer the following questions:

- **43.** Maximum value of a + b is_____
- 44. If L_1, L_2, L_3 and L_4 form a quadrilateral, then the value of λ for which slope of line L_4 takes least positive integral value is

Question Stem for Question Nos. 45 and 46

Question Stem

Let S_1 and S_2 be two fixed externally tangent circles with radius 2 and 3 respectively. Let S_3 be a variable circle internally tangent to both S_1 and S_2 at point A and B respectively. The tangents to S_3 at A and B meet at T and given TA = 4.

- **45.** The square of the radius of circle S_3 is
- **46.** If the area of circle circumscribing ΔTAB is $k\pi$, then k is

Question Stem for Question Nos. 47 and 48

Question Stem

Let L_1 be a lien 5x - 7y = 35 which cuts x and y axis at A & B respectively. Variable line L_2 , which is perpendicular to L_1 cuts x and y axis at C & D respectively. Locus of point of intersection of lines joining AD and BC is the curve S

Sec: Sr.S60_NUCLEUS & STERLING-BT Space for rough work Page 21

02-10-2022_Sr.S60_NUCLEUS & STERLING-BT_ Jee-Adv(2021-P1)_PTA-04_Q.P

- 47. Area enclosed by curve S is $\frac{K\pi}{2}$ then the value of K is_____
- **48.** Coordinates of a point P, which is farthest from origin, on S is (a,b) then the value of a-b is

SECTION 3

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:
- Full Marks : +4 If only (all) the correct option(s) is (are) chosen;
- Partial Marks : +3 If all the four options are correct but ONLY three options are chosen,
- Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct:
- Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
- Zero Marks : 0 If unanswered:
- Negative Marks: -2 In all other cases.
- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to the correct answer, then

Choosing ONLY (A), (B) and (D) will get +4 marks;

Choosing ONLY (A), will get +1 mark;

Choosing ONLY (B), will get +1 mark;

Choosing ONLY (D), will get +1 mark;

Choosing no option(s) (i.e. the question is unanswered) will get 0 marks and

Choosing any other option(s) will get -2 marks.

- 49. O, A, C, B are the vertices of a square taken in anticlockwise order on x-y plane where O is the origin, A is on positive x-axis. Line through point A intersect the diagonal OC at D internally, side OB at E internally. Given that
 - AD:DE=4:3, AD=5 units and the square lies completely in the first quadrant. Which of the following is/are true?
 - A) Area of square OACB is 49 square units
 - **B)** If O' be the reflection of O in the line AE then coordinate of circumcentre of the triangle AO'E is $\left(\frac{7}{2}, \frac{21}{8}\right)$.
 - C) Area of square OACB is 64 square units
 - **D)** If O' be the reflection of O in the line AE then coordinate of circumcentre of the

triangle
$$AO'E$$
 is $\left(\frac{901}{25}, \frac{371}{100}\right)$.

Sec: Sr.S60 NUCLEUS & STERLING-BT

Space for rough work

50. Let ABCD be a square such that vertices A, B, C, D lie on circles

$$x^2 + y^2 - 2x - 2y + 1 = 0$$
, $x^2 + y^2 + 2x - 2y + 1 = 0$, $x^2 + y^2 + 2x + 2y + 1 = 0$ and $x^2 + y^2 - 2x + 2y + 1 = 0$ respectively with centre of square being origin and sides are parallel to coordinate axes. The length of side of such square can be

- **A)** $2 \sqrt{2}$
- **B)** $2 + \sqrt{2}$
- C) $3 \sqrt{3}$
- **D)** $3 + \sqrt{3}$

51. Consider three distinct lines

$$x + \lambda y + 6 = 0$$

$$2x + y - 3 = 0$$

$$\lambda x + 2y + 5 = 0$$

let m denotes number of possible value of λ for which given lines are concurrent and n denotes number of possible values of λ for which given lines do not form a triangle, then

- $\mathbf{A}) \text{ m}=2$
- **B)** m = 3
- **C)** n = 6
- **D)** n = 7
- 52. If line L:(3x-4y-25=0) touches the circle $S:(x^2+y^2-25=0)$ at P and L is common tangent of circles S=0 and $S_1=0$ at P and $S_1=0$ passes through (5,-6), then
 - **A)** Centre of $S_1 = 0$ is $\left(\frac{27}{7}, \frac{-36}{7}\right)$
 - **B)** Length of tangent from origin to $S_1 = 0$ is $\sqrt{\frac{275}{7}}$
 - C) Centre of $S_1 = 0$ is $\left(\frac{27}{7}, -\frac{16}{7}\right)$
 - **D)** Length of tangent from origin to $S_1 = 0$ is $\sqrt{\frac{375}{7}}$.
- Consider two circles $S_1 = 0$ and $S_2 = 0$ each of radius 1 unit touching internally the sides of $\triangle OAB$ and $\triangle ABC$ respectively where O = (0,0); A = (0,4) and B, C are points on positive x axis such that OB < OC, then which of the following is/are CORRECT

Sec: Sr.S60 NUCLEUS & STERLING-BT

Space for rough work

- A) If the angle subtended by $S_1 = 0$ at the point A is θ then $\cos \theta$ is equal to 4/5
- **B)** Length of tangent front A to the circle $S_2 = 0$ is 9/2
- C) If one of the diameter of $S_2 = 0$ is chord of the circle $S_3 = 0$ whose centre is $\left(\frac{3}{2}, 3\right)$ and radius of $S_3 = 0$ is r then $\frac{3}{4}r$ is 9/4
- **D)** Radius of the smallest circle that contains both the circles $S_1 = 0$ and $S_2 = 0$ is 9/4

54. Let
$$E = \{(x,y): x^2 + y^2 - 2y - 39 = 0\} - \{(-2,7),(2,-5),(6,3),(-6,3)\}.$$

Let F be the set of all straight line segments joining a pair of distinct points of E and passing through R(1,1). E' be set of midpoints of the line segments in the set F. Then, which of the following is/are INCORRECT?

A)
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$
 does not lies in E'

- **B)** \exists at least one line segment of set of F which lies on 6x + y = 7
- C) \exists at least one line segment of set of F which lies on 2x 5y = -3
- **D)** (1,1) does not lie in E'.

SECTION 4

- This section contains **THREE** (03) question.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer the using the mouse and the on-screen virtual numeric keypad in the
 place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:
- Full Marks : +4 If ONLY the correct integer is entered;
- Zero Marks : 0 In all other cases.
- 55. In a Δ^{le} ABC, x + y + 2 = 0 is the perpendicular bisector of side AB and it meets AB at (-1,-1). If x y 1 = 0 is \perp^{lar} bisector of side AC and it meets AC at (2,1), P is mid point of BC and distance of P from orthcentre of Δ^{le} ABC is k. Then $k^2 9$ is

Sec: Sr.S60 NUCLEUS & STERLING-BT

- 56. Let line 4x + 5y = 20 intersect x-axis at A and the y-axis at B. A line L intersect AB and OA at points C and D respectively. The least value of CD^2 for which line L divides the area of ΔOAB into two regions of equal area is $a\sqrt{41} b$ where $a, b \in N$, then $\frac{b}{a}$ is equal to
- 57. In a right angled triangle BC = 5, AB = 4, AC = 3, Let S be the circum circle. Let S_1 be the circle touching both sides AB and AC and circle S internally. Let S_2 be the circle touching the sides AB and AC(extended sides) of triangle ABC, and touching the circle S externally if r_1, r_2 are radii of circle S_1 and S_2 respectively, then $\sqrt{1 + r_1 r_2}$ is

Sec: Sr.S60_NUCLEUS & STERLING-BT

□ A.P □ T.S □ KARNATAKA □ TAMILNADU □ MAHARASTRA □ DELHI □ RANCHI

A right Choice for the Real Aspirant

ICON Central Office - Madhapur - Hyderabad

 Sec: Sr.S60_NUCLEUS & STERLING-BT
 2021_P1
 Date: 02-10-2022

 Time: 09.00Am to 12.00Noon
 PTA-04
 Max. Marks: 180

KEY SHEET

PHYSICS

1	A	2	В	3	В	4	A	5	8.94	6	35.77 to 35.78
7	2.00	8	7.00	9	8.00	10	5.00	11	A,B,D	12	A,C
13	B,C,D	14	B,D	15	В	16	B,C,D	17	8	18	5
19	9			·							

CHEMISTRY

20	В	21	С	22	С	23	С	24	3	25	7
26	101	27	24	28	77	29	112	30	B,D	31	C,D
	to				to		to				
	102				78		114				
32	A,B,C	33	в,с	34	A,B,C,D	35	C,D	36	5	37	8
38	3				<u>, </u>						

MATHEMATICS

39	A	40	D	41	В	42	A	43	17	44	1.4
45	64	46	20	47	37	48	12	49	A	50	A,B
51	A,C	52	A,B	53	A,B,C,D	54	A,B,C,D	55	4	56	5
57	5										

MATHEMATICS

39. Equation of circum circle of $\triangle PAB$ is

 $(x-1)(x-3)+(y-8)(y-2)=0 \Rightarrow x^2+y^2-4x-10y+19=0$ given that the circle of form $x^2+y^2-2x-6y+6+\lambda(x^2+y^2+2x-6y+6)=0$ cuts the circle

$$x^{2} + y^{2} - 4x - 10y + 19 = 0$$
 orthogonally. $-2\left(\frac{2\lambda - 2}{\lambda + 1}\right) - 5(-6) = 19 + 6 \Rightarrow \lambda = -9$

 $\therefore \text{ required circle is } x^2 + y^2 + \frac{5x}{2} - 6y + 6 = 0 \qquad \therefore \text{ radius} = \frac{\sqrt{73}}{4}.$

Let $P\left(h, \frac{3h+12}{4}\right)$ be any point on the line, whose chord of contact is

 $xh + \left(\frac{3h+12}{4}\right)y - 4 = 0 \Rightarrow h(4x+3y) + (12y-16) = 0$ but for all values of $h \in \mathbb{R}$, this

chard always passes through Q(-1,4/3) : slope of $OQ = \frac{-4}{3}$;

Hence the slope of chord with point Q as midpoint is $\frac{3}{4}$.

41. $(1 + \frac{\sqrt{6}}{3}\cos\theta, 2 + \frac{\sqrt{6}}{3}\sin\theta) \text{ lies on } x + y = 4 \Rightarrow \tan\theta = 2 \pm \sqrt{3}, \text{ now } (1 + r\cos\theta, r\sin\theta)$ lies on $x - y + 1 = 0 \Rightarrow r^2 = 8$.

Let P = (h,k), P is the circumcentre of $\triangle ABC$

$$B = (2h,0), C = (0,2k)$$

Now $M_{AC}.M_{AB} = -1$ $\left(\frac{1-2k}{1}\right)\left(\frac{1}{1-2h}\right) = -1$

$$1-2k=2h-1 \Rightarrow h+k=1 \Rightarrow x+y=1$$

43.

$$a + b = 13$$
 or 17

 L_4 passes through Q(12,12)

44.

a + b = 13 or 17 L_4 passes through Q(12,12)

45. Draw the figure: AT and BT are radical axis to C_3 and C_1 and C_3 and C_2

$$r_3 = TA \tan\left(\frac{\theta_1 + \theta_2}{2}\right) = 4\left(\frac{\frac{1}{2} + \frac{3}{4}}{1 - \frac{1}{2} \cdot \frac{3}{4}}\right) = 8$$

TA = TB = TD = 41 T is radical centre $\tan\left(\frac{\theta_1}{2}\right) = \frac{1}{2}; \tan\left(\frac{\theta_2}{2}\right) = \frac{3}{4}$

 TC_3 will be the diameter of circumcircle of ΔTAB

$$TC_3 = \frac{TA}{\cos\left(\frac{\theta_1 + \theta_2}{2}\right)} = 4\sqrt{5} \qquad \therefore 20\pi.$$

46. Draw the figure: AT and BT are radical axis to C_3 and C_1 and C_3 and C_2

$$r_3 = TA \tan\left(\frac{\theta_1 + \theta_2}{2}\right) = 4\left(\frac{\frac{1}{2} + \frac{3}{4}}{1 - \frac{1}{2} \cdot \frac{3}{4}}\right) = 8$$

TA = TB = TD = 41 T is radical centre $\tan\left(\frac{\theta_1}{2}\right) = \frac{1}{2}; \tan\left(\frac{\theta_2}{2}\right) = \frac{3}{4}$

 TC_3 will be the diameter of circumcircle of ΔTAB

$$TC_3 = \frac{TA}{\cos\left(\frac{\theta_1 + \theta_2}{2}\right)} = 4\sqrt{5} \qquad \therefore 20\pi.$$

47. $m_{L_1} = \frac{5}{7} \Rightarrow m_{L_2} = \frac{7}{5}$ Let $L_2 : 7x + 57 = c \Rightarrow C\left(\frac{c}{7}, 0\right); D\left(0, \frac{c}{5}\right)$

equation of AD: $\frac{x}{7} + \frac{5y}{c} = 1$; equation of BC: $\frac{7x}{c} - \frac{y}{c} = 1$

eliminating c, we get locus: $x^2 + y^2 - 7x + 5y = 0$

This is a circle with center $\left(\frac{7}{2}, \frac{5}{2}\right)$ and radius $\sqrt{\frac{37}{2}}$

Area = $\frac{\pi.37}{2}$ sq.units., Also circle passes through origin

farthest point: (7, -5)

48.

$$\mathsf{m_{L_1}} = \frac{5}{7} \Rightarrow \mathsf{m_{L_2}} = \frac{7}{5} \; \text{Let} \; \mathsf{L_2} : \mathsf{7x} + \mathsf{57} = \mathsf{c} \Rightarrow \mathsf{C}\left(\frac{\mathsf{c}}{\mathsf{7}}, \mathsf{0}\right) ; \mathsf{D}\left(\mathsf{0}, \frac{\mathsf{c}}{\mathsf{5}}\right)$$

equation of AD: $\frac{x}{7} + \frac{5y}{c} = 1$; equation of BC: $\frac{7x}{c} - \frac{y}{c} = 1$

eliminating c, we get locus: $x^2 + y^2 - 7x + 5y = 0$

This is a circle with center $\left(\frac{7}{2}, \frac{5}{2}\right)$ and radius $\sqrt{\frac{37}{2}}$ Area = $\frac{\pi.37}{2}$ sq.units.

Also circle passes through origin farthest point: (7, -5)

49.

 $\triangle ODE$ is similar to $\triangle ADC$ $\frac{3}{4} = \frac{\lambda}{a} \Rightarrow \lambda = \frac{3a}{4}$

$$E \equiv \left(0, \frac{3a}{4}\right)$$
, $AE = \sqrt{a^2 + \frac{9a^2}{16}} = \frac{5a}{4}$, Now $AD = \frac{4}{7}AE \Rightarrow 5 = \frac{4}{7} \times \frac{5a}{4} \Rightarrow a = 7$

area of square OACB = 49 Equation of AE is 3x + 4y = 21 O' $\equiv \left(\frac{126}{25}, \frac{168}{25}\right)$

 $\triangle AO'E$ will be right angle at O' so circumcentre of $\triangle AO'E$ is $\left(\frac{7}{2}, \frac{21}{8}\right)$

50.

$$OA = \sqrt{2} + 1 = \frac{d}{2}$$
 $d = 2\sqrt{2} + 2$

Side =
$$\frac{2\sqrt{2}+2}{\sqrt{2}} = 2 + \sqrt{2}$$
 OA' = $\sqrt{2} - 1 = \frac{d'}{2}$

$$d' = 2\sqrt{2} - 2$$
 side $= \frac{2\sqrt{2} - 2}{\sqrt{2}} = 2 - \sqrt{2}$.

51.

: For concurrency
$$\begin{vmatrix} 1 & \lambda & 6 \\ 2 & 1 & -3 \\ \lambda & 2 & 5 \end{vmatrix} = 0$$

$$\Rightarrow 3\lambda^2 + 16\lambda - 35 = 0 \Rightarrow (\lambda + 7)(3\lambda - 5) = 0 \qquad \Rightarrow \lambda = -7, \frac{5}{3} \Rightarrow m = 2$$

For not forming triangles either lines are parallel or concurrent

For concurrency
$$\begin{vmatrix} 1 & \lambda & 6 \\ 2 & 1 & -3 \\ \lambda & 2 & 5 \end{vmatrix} = 0$$
 $\Rightarrow 3\lambda^2 + 16\lambda - 35 = 0 \Rightarrow (\lambda + 7)(3\lambda - 5) = 0 \Rightarrow = -7, \frac{5}{3} \Rightarrow m = 2$

For not forming triangles either lines are parallel or concurrent

$$\frac{1}{2} = \frac{\lambda}{1} \Rightarrow \lambda = 2, \frac{2}{\lambda} = \frac{1}{2} \Rightarrow \lambda = 4$$

$$\frac{1}{\lambda} = \frac{\lambda}{2} \Rightarrow \lambda^2 = 2 \Rightarrow \lambda = \pm \sqrt{2}$$

$$n = 6$$

52. Conceptual.

$$AC_1 = \sqrt{10}; AT = 3\cos\frac{\theta}{2} = \frac{3}{\sqrt{10}}$$
 $\therefore \cos\theta = \frac{4}{5}$

$$\therefore \cos \theta = \frac{4}{5}$$

$$\angle ABC = \frac{\pi}{2} + \theta$$
 from $\triangle BQC_2$ $BQ = \cot\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{1}{2}$;

from
$$\triangle OAB \tan \theta = \frac{OB}{OA} \Rightarrow OB = 3$$
 $AB = 5 \Rightarrow AQ = \frac{9}{2}$;

BN =
$$\frac{1}{2}$$
 also r = 3 Radius of smallest circle $\frac{1}{2} \left(2 + \frac{5}{2} \right) = \frac{9}{4}$.

54.

AB is variable line segment and element of set F

Locus of P is
$$(x)(x-1) + (y+1)(y-1) = 0$$

$$x^2 + y^2 = 2$$
(1)

When A coincides with Q(-2,7) then foot of \bot :

equation of AB
$$\frac{y-1}{x-1} = \frac{7-3}{-2+6} \Rightarrow \frac{y-1}{x-1} = \frac{4}{4} \Rightarrow y-1 = x \Rightarrow x-y=0$$

$$P: \frac{x-0}{1} = \frac{y-1}{-1} = \frac{-(-1)}{2} \Rightarrow \frac{x}{1} = \frac{y-1}{-1} = \frac{1}{2}$$
 $x = \frac{1}{2}; y = -\frac{1}{2} + 1 \Rightarrow y = \frac{1}{2}$

If A or B coincide with R; Equation of AB: $\frac{y-1}{x-1} = \frac{-5-1}{2-1} \Rightarrow y-1 = -6x+6$

6x + y = 7. If A or B coincide with S (6, 3); Equation of AB:

$$\frac{y-1}{x-1} = \frac{6-1}{3-1} \Rightarrow 2y-2 = 5x-5$$
 $5x-2y=3$.

Clearly x + y + 2 = 0 x - y - 1 = 0 are perpendicular to each other $\therefore \angle BAC = 90^{\circ}$. 55.

 \therefore A is the ortho centre of Δ^{le} ABC

Mid point of BC = P = Circum centre = $\left(\frac{-1}{2}, \frac{-3}{2}\right)$. \therefore PA² = DE² = $\sqrt{9+4}$ = $\sqrt{13}$.

56. $C\left(\frac{20-5t}{4},t\right)D(5,0)$

$$\Delta = \frac{1}{2} (5 - s) t = 5$$

$$\Delta = \frac{1}{2}(5-s)t = 5$$
 $CD^2 = \left(\frac{20-5t}{4}-s\right)+t^2$

$$= \left[\left(\frac{10}{t} \right) - \frac{5t}{4} \right]^2 + t^2 = \frac{100}{t^2} + \frac{41}{16} t^2 - 25 \ge 5\sqrt{41} - 25$$

57.

$$\left(\alpha - \frac{3}{2}\right)^{2} + (\alpha - 2)^{2} = \left(\frac{5}{2} - \alpha\right)^{2}$$

$$\alpha^{2} - 3\alpha + \frac{9}{4} + \alpha^{2} - 4\alpha + 4 = \frac{25}{4} - 5\alpha + \alpha^{2}$$

$$\alpha^{2} - 2\alpha = 0 \qquad \alpha = 0, 2 \quad \alpha = 2 = r_{1} = 2$$

$$\left(\alpha' - \frac{3}{2}\right)^{2} + \left(\alpha' - 2\right)^{2} = \left(\frac{5}{2} + \alpha'\right)^{2}$$

$$\alpha^{2} - 3\alpha + \frac{9}{4} + \alpha^{2} - 4\alpha + 4 = \frac{25}{4} + \alpha^{2} + 5\alpha$$

$$\alpha'^{2} - 12\alpha' = 0 \qquad \alpha' = 0, 12 \qquad \alpha' = 12 = r_{2} \Rightarrow \sqrt{1 + r_{1}r_{2}} = 5 \text{ Ans}$$