Ground Segment

Space System Design, MAE 342, Princeton University Robert Stengel

- Launch Ranges/Spaceports
- Range Safety
- Ground Stations
- Flight Dynamics
- Ground Data System
- Flight Operations System

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

Launch Ranges

- Site for launching and landing spacecraft
- Typically along a coastline
 - Available launch azimuths for desired orbit inclinations (polar, sun-synchronous, equatorial, ...)
 - Advantageous use of Earth's rotation (near equator)
 - Need for safe lower-stage impact zones downrange
- Distance from heavily populated areas
- Infrastructure for
 - Vehicle/spacecraft assembly
 - Pre-flight testing
 - Component transport and storage
 - Launch pads
 - Assurance of ground and flight safety
 - Launch control and handoff
 - Tracking, communications, data processing Down-range facilities

List of launch sites https://en.wikipedia.org/wiki/Spaceport

Launch Operations

- 3

Range Safety

Scout ST-1

July 1, 1960

Range Safety

- Range surveillance
 - Restricted airspace
 - Prohibited airspace
 - NOTAMs (Temporary flight restrictions)
 - Surface vessel monitoring
- Meteorological information
 - Apollo 12 lightning strike during launch
- Monitoring hazardous materials

Space and Ground Segments for Spacecraft Operation

7

GOES-R System Architecture

Ground Segment Basics

GROUND SEGMENT

Fortescue

9

Ground Segment Basics

Larson Wertz

Ground Segment Basics

Larson Wertz

11

Ground Station Location and Antennas

- Coverage of celestial sphere
- Access to low-elevation tracking and communications line-ofsight
- Low radio-frequency (RF) interference from surrounding area
- Stable geology, satisfactory weather
- Adequate, reliable power source

Tracking and Communication

- · Low frequencies for
 - Launch and early-orbit phase, launch vehicle and spacecraft
- · High frequencies for payload
- Frequency allocations by international agencies
- Antenna control
 - Pointing and tracking
 - Modes: program-, auto-, step-tracking
- Satellite transponders for ranging and range rate
- Uplink/downlink frequency shifts to avoid interference

Band	Downlink, GHz	Uplink, GHz
S, deep-space	2.29-2.3	2.11-2.12
S	2.2-2.29	2.025-2.11
С	3.4-4.2	5.925-6.425
Х	7.25-7.75 <i>,</i> 8.4-8.5	7.9-8.4,7.145- 7.235
Ku	10.7-12.75	13.75-14.5
Ка	17.7-21.2,25.5 -27.5	27.5-31

Fortescue

13

a/o June 2011

Eastern Range Instrumentation 2015 Baseline

Ground Station Block Diagram

System Timing

NIST Primary Time Standard, Boulder, Co

Larson, Wertz

Data Handling

Larson, Wertz

17

In-Orbit Testing

- · Telemetry, data communications testing
- Payload checkout
- Calibrations
- Adjacent satellite interference
- Acceptance tests

Ground Control Teams

Fortescue

19

Flight Dynamics Mission Analysis

- Identification of suitable ground sttion network
- Launch window determination
- Orbit maneuver planning
- · Final orbit acquisition and station-keeping
- Sequence of orbit-related events
- Ground station ephemeris (antenna-pointing)
- Command and telemetry files
- Interface documents

Fortescue

Orbit and Attitude Determination

Orbit Type	Measurement Type	Position Error, m
LEO	Angle Data	< 100
	Processed GPS Data	< 10
	Raw GPS Data (single frequency)	< 2
	Raw GPS Data (dual frequency)	< 0.01
GTO/GEO	Angle, Range, Range-Rate Data	x,y: < 100 z: < 400

Fortescue

21

Communications Links and Flight Readiness

Tracking and Data Relay Satellite System

Wertz, Everett, & Puschell

23

Flight Operations Monitoring and Control

- Raw data extraction
- Translation to engineering values
- Validity & verification of telemetry and commands
- Out-of-limit status, alarms
- Derived parameters

Flight Operations Monitoring and Control

Collision avoidance

Space weather

Next Time: Electromagnetic Compatibility

Supplemental Material

27

Ground Station

