Iterative Algorithms in Optimization, Variational Analysis and Fixed Point Theory

Unit 04: Nonsmooth optimization.

Nonsmooth convex functions

Let $f: A \subset \mathbb{R}^N \to \mathbb{R}$ be convex. If f is differentiable at x, then

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

for all $y \in A$.

Nonsmooth convex functions

Let $f:A\subset\mathbb{R}^N\to\mathbb{R}$ be convex. If f is differentiable at x, then

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

for all $y \in A$.

A vector $v \in \mathbb{R}^N$ is a subgradient of f at x if

$$f(y) \ge f(x) + v \cdot (y - x)$$

for all $y \in A$.

Nonsmooth convex functions

Let $f: A \subset \mathbb{R}^N \to \mathbb{R}$ be convex. If f is differentiable at x, then

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

for all $y \in A$.

A vector $v \in \mathbb{R}^N$ is a subgradient of f at x if

$$f(y) \ge f(x) + v \cdot (y - x)$$

for all $y \in A$. The subdifferential of f at x, denoted by $\partial f(x)$, is the set of all the subgradients of f at x.

Juan PEYPOUQUET

A few simple but important examples

Example (A big ice cream cone)

Let $f: \mathbb{R}^N \to \mathbb{R}$ be defined by f(x) = ||x||.

A few simple but important examples

Example (A big ice cream cone)

Let $f: \mathbb{R}^N \to \mathbb{R}$ be defined by f(x) = ||x||.

Example (The ℓ^1 -norm)

Let $\|\cdot\|_1: \mathbb{R}^N \to \mathbb{R}$ be defined by $\|x\|_1 = |x_1| + \cdots + |x_N|$.

A few simple but important examples

Example (A big ice cream cone)

Let $f: \mathbb{R}^N \to \mathbb{R}$ be defined by f(x) = ||x||.

Example (The ℓ^1 -norm)

Let $\|\cdot\|_1: \mathbb{R}^N \to \mathbb{R}$ be defined by $\|x\|_1 = |x_1| + \cdots + |x_N|$.

Example (The indicator function)

Let $C \subset \mathbb{R}^N$ be nonempty, closed and convex. The indicator function of C is the function $\iota_C : C \to \mathbb{R}$, defined as $\iota_C(x) = 0$ for all $x \in C$.

3 / 20

Convexity, continuity and subdifferentiability

Can you think of a convex function that is not continuous?

Convexity, continuity and subdifferentiability

Can you think of a convex function that is not continuous?

Proposition

If $f: A \subset \mathbb{R}^N \to \mathbb{R}$ is convex, for each $x \in \text{int}(A)$, there exist $L_x, r_x > 0$ such that

$$|f(z)-f(y)|\leq L_x||z-y||$$

for all $z, y \in B(x, r_x)$. Moreover,

$$\emptyset \neq \partial f(x) \subseteq \bar{B}(0, L_x).$$

Convexity, continuity and subdifferentiability

Can you think of a convex function that is not continuous?

Proposition

If $f: A \subset \mathbb{R}^N \to \mathbb{R}$ is convex, for each $x \in \text{int}(A)$, there exist $L_x, r_x > 0$ such that

$$|f(z)-f(y)|\leq L_x||z-y||$$

for all $z, y \in B(x, r_x)$. Moreover,

$$\emptyset \neq \partial f(x) \subseteq \bar{B}(0, L_x).$$

Convex functions are continuous and subdifferentiable in the interior of their domains.

Juan PEYPOUQUET Iterative Algorithms

4 / 20

 $x_{n+1} = x_n - \alpha v_n$ with $v_n \in \partial f(x_n)$

 $x_{n+1} = x_n - \alpha v_n$ with $v_n \in \partial f(x_n)$

Lemma

Let $f: \mathbb{R}^N \to \mathbb{R}$ be convex and Lipschitz-continuous with constant M $(|f(x) - f(y)| \le M||x - y||)$ with minimizers, and let (x_n) be defined by the subgradient method. Then,

$$\frac{1}{n+1} \sum_{k=0}^{n} f(x_k) - \min(f) \le \frac{\alpha M^2}{2} + \frac{\|x_0 - p\|^2}{2\alpha(n+1)}$$

for every $p \in S$ and $n \ge 0$.

4 D > 4 B > 4 E > 4 E > E 9 Q C

5 / 20

Juan PEYPOUQUET Iterative Algorithms 2023-2024

$$x_{n+1} = x_n - \alpha v_n$$
 with $v_n \in \partial f(x_n)$

Corollary

Set
$$\bar{x}_n = \frac{1}{n+1} \sum_{k=0}^n x_k$$
. Then,

$$\min_{k=1,\dots,n} \left(f(x_k) - \min(f) \right) \leq \frac{\alpha M^2}{2} + \frac{\operatorname{dist}(x_0, S)^2}{2\alpha(n+1)}$$
$$f(\bar{x}_n) - \min(f) \leq \frac{\alpha M^2}{2} + \frac{\operatorname{dist}(x_0, S)^2}{2\alpha(n+1)}$$

 $x_{n+1} = x_n - \alpha v_n$ with $v_n \in \partial f(x_n)$

Corollary

Set
$$\bar{x}_n = \frac{1}{n+1} \sum_{k=0}^n x_k$$
. Then,

$$\min_{k=1,\dots,n} \left(f(x_k) - \min(f) \right) \leq \frac{\alpha M^2}{2} + \frac{\operatorname{dist}(x_0, S)^2}{2\alpha(n+1)}$$
$$f(\bar{x}_n) - \min(f) \leq \frac{\alpha M^2}{2} + \frac{\operatorname{dist}(x_0, S)^2}{2\alpha(n+1)}$$

Question

Given $\varepsilon > 0$, after how many iterations can we be sure to have found a point \hat{x} such that $f(\hat{x}) - \min(f) \le \varepsilon$?

(ロ) (個) (量) (量) (量) (型) のQの

Break

We extend the codomain $\mathbb R$ to $\mathbb R \cup \{+\infty\}$, with the conventions that $+\infty > \gamma$ for all $\gamma \in \mathbb R$

We extend the codomain \mathbb{R} to $\mathbb{R} \cup \{+\infty\}$, with the conventions that $+\infty > \gamma$ for all $\gamma \in \mathbb{R}$, and some algebraic operations are allowed:

- ullet $+\infty+\gamma=+\infty$ for all $\gamma\in\mathbb{R}$,
- $\gamma(+\infty) = +\infty$ for all $\gamma > 0$, and $0(+\infty) = 0$.

We extend the codomain \mathbb{R} to $\mathbb{R} \cup \{+\infty\}$, with the conventions that $+\infty > \gamma$ for all $\gamma \in \mathbb{R}$, and some algebraic operations are allowed:

- \bullet $+\infty + \gamma = +\infty$ for all $\gamma \in \mathbb{R}$,
- $\gamma(+\infty) = +\infty$ for all $\gamma > 0$, and $0(+\infty) = 0$.

The (effective) domain and epigraph of a function $f:\mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is

dom
$$(f) = \{x \in \mathbb{R}^N : f(x) < +\infty\}$$

epi $(f) = \{(x, z) \in \mathbb{R}^{N+1} : f(x) \le z\},$

respectively. We will always assume that $dom(f) \neq \emptyset$.

←ロト ←団ト ← 直ト ← 直 り へ ○

We extend the codomain \mathbb{R} to $\mathbb{R} \cup \{+\infty\}$, with the conventions that $+\infty > \gamma$ for all $\gamma \in \mathbb{R}$, and some algebraic operations are allowed:

- \bullet $+\infty + \gamma = +\infty$ for all $\gamma \in \mathbb{R}$,
- $\gamma(+\infty) = +\infty$ for all $\gamma > 0$, and $0(+\infty) = 0$.

The (effective) domain and epigraph of a function $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is

dom
$$(f) = \{x \in \mathbb{R}^N : f(x) < +\infty\}$$

epi $(f) = \{(x, z) \in \mathbb{R}^{N+1} : f(x) \le z\},$

respectively. We will always assume that $dom(f) \neq \emptyset$.

Notice that $dom(\lambda f + g) = dom(f) \cap dom(g)$.

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Examples

Every continuous function is closed.

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Examples

- Every continuous function is closed.
- ② If f and g are closed, and $\lambda \geq 0$, then $\lambda f + g$ is closed.

A function $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Examples

- Every continuous function is closed.
- ② If f and g are closed, and $\lambda \geq 0$, then $\lambda f + g$ is closed.
- **3** The indicator function of $C \subset \mathbb{R}^N$ $(C \neq \emptyset)$ is $\iota_C : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$, defined as $\iota_C(x) = 0$ if $x \in C$ and $\iota_C(x) = +\infty$ if $x \notin C$.

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Examples

- Every continuous function is closed.
- ② If f and g are closed, and $\lambda \geq 0$, then $\lambda f + g$ is closed.
- The indicator function of $C \subset \mathbb{R}^N$ $(C \neq \emptyset)$ is $\iota_C : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$, defined as $\iota_C(x) = 0$ if $x \in C$ and $\iota_C(x) = +\infty$ if $x \notin C$. Here, $dom(\iota_C) = C$ and $epi(\iota_C) = C \times [0, +\infty)$.

Juan PEYPOUQUET Iterative Algorithms 2023-2024

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Examples

- Every continuous function is closed.
- ② If f and g are closed, and $\lambda \geq 0$, then $\lambda f + g$ is closed.
- **③** The indicator function of $C \subset \mathbb{R}^N$ ($C \neq \emptyset$) is $\iota_C : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$, defined as $\iota_C(x) = 0$ if $x \in C$ and $\iota_C(x) = +\infty$ if $x \notin C$. Here, dom(ι_C) = C and epi(ι_C) = $C \times [0, +\infty)$.
 - This function is closed if C is closed, and convex if C is convex.

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Examples

- Every continuous function is closed.
- ② If f and g are closed, and $\lambda \geq 0$, then $\lambda f + g$ is closed.
- **③** The indicator function of $C \subset \mathbb{R}^N$ ($C \neq \emptyset$) is $\iota_C : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$, defined as $\iota_C(x) = 0$ if $x \in C$ and $\iota_C(x) = +\infty$ if $x \notin C$. Here, dom(ι_C) = C and epi(ι_C) = $C \times [0, +\infty)$.

This function is closed if C is closed, and convex if C is convex.

If
$$f: \mathbb{R}^N \to \mathbb{R}$$
, $\min\{f(x): x \in C\} = \min\{f(x) + \iota_C(x): x \in \mathbb{R}^N\}$.

◆ロト ◆昼 ト ◆ 豆 ト ◆ 豆 ・ り Q (^)

Juan PEYPOUQUET Iterative Algorithms 2023-202

Iterative Algorithms in Optimization, Variational Analysis and Fixed Point Theory

Unit 04: Nonsmooth optimization.

Closedness and proximity operator

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and $y \in \mathbb{R}^N$, the function

$$f_y(x) = f(x) + \frac{1}{2}||x - y||^2$$

is closed and strongly convex.

Juan PEYPOUQUET

Closedness and proximity operator

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and $y \in \mathbb{R}^N$, the function

$$f_y(x) = f(x) + \frac{1}{2}||x - y||^2$$

is closed and strongly convex. Its subdifferential is given by

$$\partial f_{y}(x) = \partial f(x) + x - y,$$

for each $x \in dom(f)$.

11 / 20

Juan PEYPOUQUET Iterative Algorithms 2023-2024

Closedness and proximity operator

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and $y \in \mathbb{R}^N$, the function

$$f_y(x) = f(x) + \frac{1}{2}||x - y||^2$$

is closed and strongly convex. Its subdifferential is given by

$$\partial f_{y}(x) = \partial f(x) + x - y,$$

for each $x \in dom(f)$. The unique minimizer of f_y is denoted by $prox_f(y)$, and is characterized by

$$y - \operatorname{prox}_f(y) \in \partial f(\operatorname{prox}_f(y)).$$

11/20

Juan PEYPOUQUET Iterative Algorithms

The proximal method

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and fix $\alpha > 0$. From an initial point $x_0 \in \mathbb{R}^N$, define a sequence inductively by

$$x_{n+1} = \operatorname{prox}_{\alpha f}(x_n).$$

The proximal method

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and fix $\alpha > 0$. From an initial point $x_0 \in \mathbb{R}^N$, define a sequence inductively by

$$x_{n+1} = \operatorname{prox}_{\alpha f}(x_n).$$

Exercise

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and $S \neq \emptyset$, then x_n converges to a point in S. Moreover,

$$f(x_n) - \min(f) \le \frac{\operatorname{dist}(x_0, S)^2}{2\alpha n}, \qquad n \ge 1.$$

Juan PEYPOUQUET

Suppose we want to find the minima of f = g + h, where $g : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and $h : \mathbb{R}^N \to \mathbb{R}$ is *L*-smooth and convex.

Suppose we want to find the minima of f = g + h, where $g : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and $h : \mathbb{R}^N \to \mathbb{R}$ is *L*-smooth and convex.

Example

A typical example in image and signal processing, statistics, ML, is

$$f(x) = \frac{1}{2} ||Ax - b||^2 + \rho ||x||_1$$

for $x \in \mathbb{R}^N$.

The proximal-gradient method consists in applying proximal iterations while linearizing the smooth function:

$$x_{n+1} = \operatorname{prox}_{\alpha g} (x_n - \alpha \nabla h(x_n))$$

The proximal-gradient method consists in applying proximal iterations while linearizing the smooth function:

$$\begin{array}{lcl} x_{n+1} & = & \operatorname{prox}_{\alpha g} \left(x_n - \alpha \nabla h(x_n) \right) \\ & = & \operatorname{Argmin} \left\{ g(x) + \frac{1}{2\alpha} \left\| x - \left(x_n - \alpha \nabla h(x_n) \right) \right\|^2 \right\}. \end{array}$$

14 / 20

Juan PEYPOUQUET Iterative Algorithms 2023-2024

The proximal-gradient method consists in applying proximal iterations while linearizing the smooth function:

$$\begin{array}{lcl} x_{n+1} & = & \operatorname{prox}_{\alpha g} \left(x_n - \alpha \nabla h(x_n) \right) \\ & = & \operatorname{Argmin} \left\{ g(x) + \frac{1}{2\alpha} \left\| x - \left(x_n - \alpha \nabla h(x_n) \right) \right\|^2 \right\}. \end{array}$$

This subproblem has a unique solution characterized by

$$0 \in \partial g(x_{n+1}) + \nabla h(x_n) + \frac{1}{\alpha}(x_{n+1} - x_n).$$

14 / 20

Juan PEYPOUQUET Iterative Algorithms 2023-2024

Example revisited

$$\ell^1 + \ell^2$$
 minimization

$$f(x) = \frac{1}{2} ||Ax - b||^2 + \rho ||x||_1$$

Break

Convergence of proximal-gradient sequences

Theorem

Let f = g + h, where $g : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and $h : \mathbb{R}^N \to \mathbb{R}$ is L-smooth and convex. Take $\alpha \in (0, 1/L]$ and define (x_n) by

$$x_{n+1} = \operatorname{prox}_{\alpha g} (x_n - \alpha \nabla h(x_n)), \qquad n \geq 0.$$

If $S \neq \emptyset$, x_n converges to an $\hat{x} \in S$, and

$$f(x_n) - \min(f) \le \frac{dist(x_0, S)^2}{2\alpha n}, \qquad n \ge 1.$$

Moreover, $\lim_{n\to\infty} n(f(x_n) - \min(f)) = 0.$

4 1 1 4 4 4 3 1 4 3 1 3 4 9 0

Juan PEYPOUQUET

Proof

$$f(x_n) + g(x_n)$$
 is nonincreasing

$$\begin{cases} f(x_{n+1}) & \leq f(x_n) + \nabla f(x_n) \cdot (x_{n+1} - x_n) + \frac{L}{2} ||x_{n+1} - x_n||^2 \\ g(x_{n+1}) & \leq g(x_n) + \left(\frac{x_n - x_{n+1}}{\alpha} - \nabla f(x_n)\right) \cdot (x_{n+1} - x_n). \end{cases}$$

Juan PEYPOUQUET Iterative Algorithms 2023-2024 18 / 20

Proof

$f(x_n) + g(x_n)$ is nonincreasing

$$\begin{cases} f(x_{n+1}) & \leq f(x_n) + \nabla f(x_n) \cdot (x_{n+1} - x_n) + \frac{L}{2} ||x_{n+1} - x_n||^2 \\ g(x_{n+1}) & \leq g(x_n) + \left(\frac{x_n - x_{n+1}}{\alpha} - \nabla f(x_n)\right) \cdot (x_{n+1} - x_n). \end{cases}$$

Convergence rate

$$\begin{cases} f(x_n) & \leq f(p) + \nabla f(x_n) \cdot (x_n - p) \\ g(x_{n+1}) & \leq g(p) + \left(\frac{x_n - x_{n+1}}{\alpha} - \nabla f(x_n)\right) \cdot (x_{n+1} - p). \end{cases}$$

Juan PEYPOUQUET Iterative Algorithms 2023-2024 18 / 20

Proof

$f(x_n) + g(x_n)$ is nonincreasing

$$\begin{cases} f(x_{n+1}) & \leq f(x_n) + \nabla f(x_n) \cdot (x_{n+1} - x_n) + \frac{L}{2} ||x_{n+1} - x_n||^2 \\ g(x_{n+1}) & \leq g(x_n) + \left(\frac{x_n - x_{n+1}}{\alpha} - \nabla f(x_n)\right) \cdot (x_{n+1} - x_n). \end{cases}$$

Convergence rate

$$\begin{cases} f(x_n) \leq f(p) + \nabla f(x_n) \cdot (x_n - p) \\ g(x_{n+1}) \leq g(p) + \left(\frac{x_n - x_{n+1}}{\alpha} - \nabla f(x_n)\right) \cdot (x_{n+1} - p). \end{cases}$$

Compatibility

$$||x_{n+1} - x_n - \alpha(\nabla f(x_{n+1}) - \nabla f(x_n))||^2 \le ||x_{n+1} - x_n||^2.$$

Juan PEYPOUQUET Iterative Algorithms 2023-2024 18 / 20

Polyak-Łojasiewicz inequality and gradient descent

A function $\phi: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ satisfies the Polyak-Łojasiewicz inequality with constant μ if

$$2\mu(\phi(x) - \min(\phi)) \le ||v||^2$$
 for every $x \in \mathbb{R}^N$ and $v \in \partial \phi(x)$.

Proposition

Let $f: \mathbb{R}^N \to \mathbb{R}$ be L-smooth and convex, and let $g: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ be closed and convex. Let $\phi:=f+g$ satisfy the Polyak-Łojasiewicz inequality with constant $\mu>0$, and iterate $x_{k+1}=\operatorname{prox}_{\gamma g}\left(x_k-\gamma\nabla f(x_k)\right)$, with $\gamma<2/L$. Then, for every $k\geq 0$, we have

$$f(x_k) - \min(f) \le \left(\frac{1}{1 + \mu\alpha(2 - \alpha L)}\right)^k \left(f(x_0) - \min(f)\right).$$

Nesterov's acceleration

The Fast Iterative Shrinkage-Thresholding Algorithm results from combining Nesterov's acceleration to the proximal-gradient method:

FISTA (Beck-Teboulle, 2009)

$$\begin{cases} y_k = x_k + \theta_k (x_k - x_{k-1}) \\ x_{k+1} = \operatorname{prox}_{\alpha g} (y_k - \alpha \nabla f(y_k)). \end{cases}$$