第13次作业

1. 在某公路上50分钟之内,观测每15秒钟过路的汽车数量的记录表如下:

辆数	0	1	2	3	4	5
频数	92	68	28	11	1	0

试问公路上过路的汽车数量是否服从泊松分布?取检验水平 $\alpha = 0.05$.

- 2. *如果第一次作业中你所掷硬币为均匀的,请构建一个假设检验核实一下你的第一次作业掷硬币 50 次假想试验的记录表数据是否伪造。(提示:可以考虑将数据等分为 5 个单元.)
- 3. 一项 Mendel 的繁殖试验结果如下. 做卡方检验核实一下这些数据是否伪造. 证据指出是哪一种情况? 确凿吗? 取检验水平 $\alpha = 0.05$.

豌豆类型	观察频数	期望频数
光滑黄色	315	313
起皱黄色	101	104
光滑绿色	108	104
起皱绿色	32	35

4. 和为了研究慢性支气管炎与吸烟量的关系,调查385人,记录如下表:

类型\人数\烟量	x 支/日	y 支/日	z 支/日	总计
患病者人数	26	147	37	210
健康者人数	30	123	22	175
总计	56	270	59	385

试问慢性支气管炎与吸烟量是否有关? 取检验水平 $\alpha = 0.1$.

5. 设想正在调查对政府某项议题的意见,分别随机抽取了 200 个城市居民、200 个郊区居民和 100 个农村居民,记录如下表:

居民	支持	反对	总计
城市	143	57	200
郊区	98	102	200
农村	13	87	100
总计	254	246	500

试问来自不同组别的居民对于该政府议题是否有不同的想法? 取检验水平 $\alpha = 0.05$.

- 6. 自行查资料了解列联表分析中的 Fisher 精确检验,给出示例说明.
- 7. 假设总体服从正态分布 $N(\mu,\sigma^2)$,参数 σ^2 已知知, X_1,\cdots,X_n 为其独立随机

样本,请给出假设 $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$ 的似然比检验,并将结果与之

前的Z 检验相比较. 取检验水平 $\alpha = 0.05$.

8. Mendel 把饱满的黄颜色豌豆和皮皱的绿颜色豌豆杂交,产生四种可能后代: 饱满的黄颜色的、皮皱的黄颜色的、皮皱的绿颜色的、饱满的绿颜色的. 他的遗传理论预测每一种类型的个数服从多项分布,概率为

$$p_1 = \frac{9}{16}, p_2 = \frac{3}{16}, p_3 = \frac{3}{16}, p_4 = \frac{1}{16}.$$

在 n = 556 次试验中, 观察到的每种类型个数分别为 315, 101, 108, 32. 请利用 P 值方法分别通过卡方检验和似然比检验验证 Mendel 的理论.