BỘ GIÁO DỰC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2020 ĐỀ CHÍNH THỰC Bài thi: TOÁN

Thời gian làm bài: 90 phút, không kể thời gian phát đề

Mã đề thi : 101

Câu 1. Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ?

A.
$$y = x^3 - 3x^2 + 1$$

B.
$$y = -x^3 + 3x^2 + 1$$

C.
$$y = -x^4 + 2x^2 + 1$$
. **D.** $y = x^4 - 2x^2 + 1$.

D.
$$y = x^4 - 2x^2 + 1$$
.

Câu 2. Nghiệm của phương trình $3^{x-1} = 9$ là

A.
$$x = -2$$

B.
$$x = 3$$

C.
$$x = 2$$

D.
$$x = -3$$

Câu 3. Cho hàm số f(x) có bảng biến thiên như sau:

х	$-\infty$		0		3		+∞
f'(x)		+	0	-	0	+	
f(x)	_∞ /		y ² ∕		-5 /		+∞

Giá trị cực tiểu của hàm số đã cho bằng

A. 3.

B. -5.

C. 0.

D. 2.

Câu 4. Cho hàm số f(x) có bảng biến thiên như sau:

Х	$-\infty$	-1		0		1		+∞
f'(x)	_	0	+	0	_	0	+	
f(x)	+∞	-1		4 \		-1		≠ +∞

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A.
$$\left(-\infty;-1\right)$$

$$C. (-1;1)$$

D.
$$(-1;0)$$

Câu 5. Cho khối hộp chữ nhật có ba kích thước 3; 4; 5. Thể tích của khối hộp đã cho bằng

C. 12.

D. 60.

Câu 6. Số phức liên hợp của số phức z = -3 + 5i là

A.
$$\bar{z} = -3 - 5i$$

B.
$$\bar{z} = 3 + 5i$$

$$c. \bar{z} = -3 + 5i$$

D.
$$\bar{z} = 3 - 5i$$

Câu 7. Cho hình trụ có bán kính đáy r = 8 và độ dài đường sinh l = 3. Diện tích xung quanh của hình trụ đã cho bằng

A. 24π

B. 192π

C. 48π

D. 64π

Câu 8. Cho khối cầu có bán kính r = 4. Thể tích của khối cầu đã cho bằng

A. $\frac{256\pi}{3}$

B. 64π

C. $\frac{64\pi}{3}$

D. 256π

Câu 9. Với a,b là các số thực dương tùy ý và $a \ne 1, \log_{a^5} b$ bằng

A. $5\log_a b$

B. $\frac{1}{5} + \log_a b$

 $\mathbf{C.} \ 5 + \log_a b$

 $\mathbf{D.} \; \frac{1}{5} \log_a b$

Câu 10. Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + (z+2)^2 = 9$. Bán kính của (S) bằng

A. 6.

B. 18.

C. 9

D. 3.

Câu 11. Tiệm cận ngang của đồ thị hàm số $y = \frac{4x+1}{x-1}$ là

A. $y = \frac{1}{4}$

B. y = 4

C. v = 1

D. y = -1

Câu 12. Cho khối nón có bán kính đáy r = 5 và chiều cao h = 2. Thể tích của khối nón đã cho bằng

A. $\frac{10\pi}{3}$

B. 10π

C. $\frac{50\pi}{3}$

D. 50π

Câu 13. Nghiệm của phương trình $\log_3(x-1)=2$ là

A. x = 8

B. x = 9

C. x = 7

D. x = 10

Câu 14. $\int x^2 dx$ bằng

 $\mathbf{A.} \ 2x + C$

B. $\frac{1}{3}x^3 + C$

D. $x^3 + C$

D. $3x^3 + C$

Câu 15. Có bao nhiều cách xếp 6 học sinh thành một hàng dọc?

A. 36.

B. 720.

C. 6.

D. 1.

Câu 16. Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ.

Số nghiệm thực của phương trình f(x) = -1 là

A. 3.

B. 1.

C. 0.

D. 2.

Câu 18. Cho khối chóp c	có diện tích đáy $B=6$ và chi	ều cao $h = 2$. Thể tích của kl	hối chóp đã cho bằng
A. 6.	B. 3.	C. 4.	D. 12.
Câu 19. Trong không gia	an Oxyz, cho đường thẳng a	$d: \frac{x-3}{2} = \frac{y-4}{-5} = \frac{z+1}{3}$. Vect	ơ nào sau đây là một vectơ chi
phương của d?		_ 0 0	
A. $\overrightarrow{u_2} = (3;4;-1)$	B. $\overrightarrow{u_1} = (2; -5; 3)$	C. $\overrightarrow{u_3} = (2;5;3)$	D. $\overrightarrow{u_4} = (3;4;1)$
Câu 20. Trong không g phương trình là	ian Oxyz, cho ba điểm A	(3;0;0), $B(0;1;0)$ và $C(0;$	(0;-2). Mặt phẳng (ABC) có
A. $\frac{x}{3} + \frac{y}{-1} + \frac{z}{2} = 1$.	B. $\frac{x}{3} + \frac{y}{1} + \frac{z}{-2} = 1$.	$\mathbf{C.} \ \frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1.$	D. $\frac{x}{-3} + \frac{y}{1} + \frac{z}{2} = 1$.
Câu 21. Cho cấp số nhân	$u(u_n)$ với $u_1 = 3$ và công bộ	$\hat{q} = 2$. Giá trị của u_2 bằng	
A. 8.	B. 9.	C. 6.	D. $\frac{3}{2}$
Câu 22. Cho hai số phức	$z_1 = 3 - 2i$ và $z_2 = 2 + i$. Số	phức $z_1 + z_2$ bằng	2
A. $5 + i$	B. $-5+i$	C. $5-i$	D. $-5-i$
Câu 23. Biết $\int_{1}^{3} f(x) dx =$	= 3. Giá trị của $\int_{1}^{3} 2f(x) dx$ b	àng	
A. 5.	B. 9.	C. 6.	D. $\frac{3}{2}$.
Câu 24. Trên mặt phẳng	tọa độ, biết $M(-3;1)$ là điể	m biểu diễn số phức z. Phần	thực của z bằng
A . 1.	B 3.	C 1.	D. 3.
Câu 25. Tập xác định của	a hàm số $y = \log_5 x$ là		
$\mathbf{A.}\left[0;+\infty\right)$	B. $\left(-\infty;0\right)$	$\mathbf{C}.\ \left(0;+\infty\right)$	D. $\left(-\infty;+\infty\right)$
Câu 26. Số giao điểm củ	a đồ thị hàm số $y = x^3 + 3x^2$	và đồ thị hàm số $y = 3x^2 + 3$	3x là
A . 3.	B. 1.	C. 2.	D. 0.
Câu 27. Cho hình chóp	S.ABC có đáy ABC là tam	giác vuông tai $B, AB = a, B$	BC = 2a; SA vuông góc với mặt
phẳng đáy và $SA = \sqrt{15}a$	(tham khảo hình vẽ).		

Câu 17. Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Ox có tọa độ là

C. (0;0;1)

D. (0;2;0)

B. (3;0;0)

A. (0;2;1)

Góc giữa SC và mặt phẳng đáy bằng

A. 45°.

B. 30°.

C. 60°.

D. 90°.

Câu 28. Biết $F(x) = x^2$ là một nguyên hàm của hàm số f(x) trên \Box . Giá trị của $\int_{-\infty}^{\infty} (2+f(x))dx$ bằng

A. 5.

B. 3.

D. $\frac{7}{3}$

Câu 29. Diện tích hình phẳng giới hạn bởi hai đường $y = x^2 - 4$ và y = 2x - 4 bằng

A. 36

B. $\frac{4}{3}$

C. $\frac{4\pi}{3}$

Câu 30. Trong không gian Oxyz, cho điểm M(2;-2;3) và đường thẳng $d:\frac{x-1}{3}=\frac{y+2}{2}=\frac{z-3}{2}$. Mặt phẳng đi qua M và vuông góc với d có phương trình là

A. 3x + 2y - z + 1 = 0

B. 2x-2y+3z-17=0

C. 3x + 2y - z - 1 = 0

D. 2x-2y+3z+17=0

Câu 31. Gọi z_0 là nghiệm phức có phần ảo dương của phương trình $z^2 + 6z + 13 = 0$. Trên mặt phẳng tọa độ, điểm biểu diễn số phức $1-z_0$ là

A. N(-2;2)

B. M(4;2)

C. P(4;-2)

D. Q(2;-2)

Câu 32. Trong không gian Oxyz, cho ba điểm A(1;0;1), B(1;1;0) và C(3;4;-1). Đường thẳng đi qua A và song song với BC có phương trình là

A. $\frac{x-1}{4} = \frac{y}{5} = \frac{z-1}{-1}$. **B.** $\frac{x+1}{2} = \frac{y}{3} = \frac{z+1}{-1}$ **C.** $\frac{x-1}{2} = \frac{y}{3} = \frac{z-1}{-1}$ **D.** $\frac{x+1}{4} = \frac{y}{5} = \frac{z+1}{-1}$

Câu 33. Cho hàm số f(x) liên tục trên \Box và có bảng xét dấu của f'(x) như sau:

x	$-\infty$		-1		0		1		2		+∞
f'(x)		+	0	_	0	+		_	0	_	

Số điểm cực đại của hàm số đã cho là

A. 4.

B. 1.

C. 2.

D. 3.

Câu 34. Tập nghiệm của bất phương trình $3^{x^2-13} < 27$ là

A. $(4;+\infty)$

B. (-4;4)

C. $(-\infty;4)$

D. (0;4)

Câu 35. Cho hình nón có bán kính đáy bằng 2 và góc ở đỉnh bằng 60°. Diện tích xung quanh của hình nón đã cho bằng

B.
$$\frac{16\sqrt{3}\pi}{3}$$

C.
$$\frac{8\sqrt{3}\pi}{3}$$

Câu 36. Giá trị nhỏ nhất của hàm số $y = x^3 - 24x$ trên đoạn [2;19] bằng

A.
$$32\sqrt{2}$$

C.
$$-32\sqrt{2}$$

Câu 37. Cho hai số phức z = 1 + 2i và w = 3 + i. Môđun của số phức $z\overline{w}$ bằng

A.
$$5\sqrt{2}$$

B.
$$\sqrt{26}$$

Câu 38. Cho a và b là hai số thực dương thỏa mãn $4^{\log_2 a^2 b} = 3a^3$. Giá trị của biểu thức ab^2 bằng

Câu 39. Cho hàm số $f(x) = \frac{x}{\sqrt{x^2 + 2}}$. Họ tất cả các nguyên hàm của hàm số g(x) = (x+1).f'(x) là

A.
$$\frac{x^2 + 2x - 2}{2\sqrt{x^2 + 2}} + C$$
.

B.
$$\frac{x-2}{\sqrt{x^2+2}} + C$$
.

A.
$$\frac{x^2 + 2x - 2}{2\sqrt{x^2 + 2}} + C$$
. **B.** $\frac{x - 2}{\sqrt{x^2 + 2}} + C$. **C.** $\frac{2x^2 + x + 2}{\sqrt{x^2 + 2}} + C$. **D.** $\frac{x + 2}{2\sqrt{x^2 + 2}} + C$.

D.
$$\frac{x+2}{2\sqrt{x^2+2}} + C$$

Câu 40. Tập hợp tất cả các giá trị thực của tham số m để hàm số $y = \frac{x+4}{x+m}$ đồng biến trên khoảng $(-\infty, -7)$ là

C.
$$(4;7)$$

D.
$$(4; +\infty)$$

Câu 41. Trong năm 2019, diện tích rừng trồng mới của tỉnh A là 600 ha. Giả sử diện tích rừng trồng mới của tỉnh A mỗi năm tiếp theo đều tăng 6% so với diện tích rừng trồng mới của năm liền trước. Kể từ sau năm 2019, năm nào dưới đây là năm đầu tiên tỉnh A có diện tích rừng trồng mới trong năm đó đạt trên 1000 ha?

Câu 42. Cho hình chóp S.ABC có đáy là tam giác đều canh 4a, SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt phẳng đáy bằng 60°. Diện tích mặt cầu ngoại tiếp hình chóp S.ABC bằng

A.
$$\frac{172\pi a^2}{3}$$

B.
$$\frac{76\pi a^2}{3}$$

C.
$$84\pi a^2$$

D.
$$\frac{172\pi a^2}{9}$$

Câu 43. Cho hình lăng trụ đứng ABC.A'B'C' có tất cả các cạnh đều bằng a. Gọi M là trung điểm CC' (tham khảo hình vẽ).

Khoảng cách từ M đến mặt phẳng (A'BC) bằng

A.
$$\frac{\sqrt{21}a}{14}$$

B.
$$\frac{\sqrt{2}a}{2}$$

C.
$$\frac{\sqrt{21}a}{7}$$

D.
$$\frac{\sqrt{2}a}{4}$$

Câu 44. Cho hàm bậc bốn f(x) có bảng biến thiên như sau:

Số điểm cực trị của hàm $g(x) = x^4 \left[f(x+1) \right]^2$ là

A. 11.

B. 9.

C. 7.

D. 5.

Câu 45. Cho hàm số $y = ax^3 + bx^2 + cx + d(a,b,c,d \in \Box)$ có đồ thị là đường cong trong hình vẽ.

Có bao nhiều số dương trong các số a,b,c,d?

A. 4.

R 1

C. 2.

D. 3.

Câu 46. Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó **không** có hai chữ số liên tiếp nào cùng chẵn bằng

A. $\frac{25}{42}$

B. $\frac{5}{21}$

C. $\frac{65}{126}$

D. $\frac{55}{126}$

Câu 47. Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a và O là tâm của đáy. Gọi M, N, P, Q lần lượt là các điểm đối xứng với O qua trọng tâm của các tam giác SAB, SBC, SCD, SDA và S' đối xứng với S qua O . Thể tích khối chóp S'.MNPQ bằng

A. $\frac{20\sqrt{14}a^3}{81}$

B. $\frac{40\sqrt{14}a^3}{81}$

C. $\frac{10\sqrt{14}a^3}{81}$

D. $\frac{2\sqrt{14}a^3}{81}$

Câu 48. Xét các số thực không âm x và y thỏa mãn $2x + y.4^{x+y-1} \ge 3$. Giá trị nhỏ nhất của biểu thức $P = x^2 + y^2 + 4x + 6y$ bằng

A. $\frac{33}{4}$

B. $\frac{65}{8}$

C. $\frac{49}{8}$

D. $\frac{57}{8}$

Câu 49. Có bao nhiều số nguyên x sao cho ứng với mỗi x có không quá 728 số nguyên y thỏa mãn $\log_4\left(x^2+y\right) \ge \log_3\left(x+y\right)$?

A. 59.

B. 58.

C. 116.

D. 115.

Câu 50. Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình vẽ. Số nghiệm thực phân biệt của phương trình $f(x^3 f(x)) + 1 = 0$ là

A. 8.

B. 5.

- **C.** 6.
- **D.** 4.

BẢNG ĐÁP ÁN

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
C	В	В	D	D	A	C	A	D	D	В	C	D	В	В	A	В	C	В	В	C	C	C	В	C
26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
A	C	A	В	A	C	C	C	В	A	C	A	A	В	В	A	A	A	В	C	A	A	В	C	C

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1. Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ?

A.
$$y = x^3 - 3x^2 + 1$$

B.
$$y = -x^3 + 3x^2 + 1$$

C.
$$y = -x^4 + 2x^2 + 1$$
. **D.** $y = x^4 - 2x^2 + 1$.

D.
$$y = x^4 - 2x^2 + 1$$

Lời giải

Chon C.

Đồ thị trong hình vẽ của hàm bậc bốn, có hệ số a < 0.

Câu 2. Nghiệm của phương trình $3^{x-1} = 9$ là

A.
$$x = -2$$

B.
$$x = 3$$

C.
$$x = 2$$

D.
$$x = -3$$

Lời giải

Chọn B

$$3^{x-1} = 9 \Leftrightarrow x-1 = 2 \Leftrightarrow x = 3$$

Câu 3. Cho hàm số f(x) có bảng biến thiên như sau:

x			0		3		$+\infty$
f'(x)		+	0	-	0	+	
f(x)	-∞ /		▼ ² ~		-5 /		→ +∞

Giá trị cực tiểu của hàm số đã cho bằng

A. 3.

B. -5.

C. 0.

D. 2.

Lời giải:

Chọn B.

Dựa vào bảng biến thiên ta có giá trị cực tiểu của hàm số bằng −5.

Câu 4. Cho hàm số f(x) có bảng biến thiên như sau:

х	-∞	-1	0	1	+∞
---	----	----	---	---	----

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A.
$$\left(-\infty;-1\right)$$

$$C. (-1;1)$$

$$\mathbf{D}.(-1;0)$$

Lời giải:

Chọn D.

Dựa vào bảng biến thiên ta có hàm số đồng biến trên khoảng (-1;0).

Câu 5. Cho khối hộp chữ nhật có ba kích thước 3; 4; 5. Thể tích của khối hộp đã cho bằng

B. 20.

D. 60.

Lời giải:

Chọn D

Thể tích của khối hộp đã cho bằng 3.4.5 = 60.

Câu 6. Số phức liên hợp của số phức z = -3 + 5i là

$$\underline{\mathbf{A}}$$
. $\overline{z} = -3 - 5i$

B.
$$\bar{z} = 3 + 5i$$

C.
$$\bar{z} = -3 + 5i$$

D.
$$\bar{z} = 3 - 5i$$

Lời giải:

Chọn A

Số phức liên hợp của số phức z = -3 + 5i là $\overline{z} = -3 - 5i$.

Câu 7. Cho hình trụ có bán kính đáy r = 8 và độ dài đường sinh l = 3. Diện tích xung quanh của hình trụ đã cho bằng

A.
$$24\pi$$

B.
$$192\pi$$

D.
$$64\pi$$

Lời giải:

Chọn C

Diện tích xung quanh của hình trụ $S_{xq} = 2\pi rl = 2\pi.8.3 = 48\pi$.

Câu 8. Cho khối cầu có bán kính r = 4. Thể tích của khối cầu đã cho bằng

$$\underline{\mathbf{A.}} \ \frac{256\pi}{3}$$

C.
$$\frac{64\pi}{3}$$

D.
$$256\pi$$

Lời giải:

Chọn A

Thể tích của khối cầu $V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi . 4^3 = \frac{256}{3}\pi$.

Câu 9. Với a,b là các số thực dương tùy ý và $a \ne 1, \log_{a^5} b$ bằng

A.
$$5\log_a b$$

B.
$$\frac{1}{5} + \log_a b$$

C.
$$5 + \log_a b$$

$$\underline{\mathbf{D.}} \, \frac{1}{5} \log_a b$$

Lời giải

Chọn D

$$\log_{a^5} b = \frac{1}{5} \log_a b$$

Câu 10. Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + (z+2)^2 = 9$. Bán kính của (S) bằng

A. 6.

B. 18.

C. 9

D. 3.

Lời giải

Chọn D

Mặt cầu (S): $x^2 + y^2 + (z+2)^2 = 9$ có bán kính $r = \sqrt{9} = 3$.

Câu 11. Tiệm cận ngang của đồ thị hàm số $y = \frac{4x+1}{x-1}$ là

A. $y = \frac{1}{4}$

 $\mathbf{\underline{B}.} \ \ y = 4$

C. y = 1

D. y = -1

Lời giải

Chon B.

Tiệm cận ngang của đồ thị hàm số $y = \frac{4x+1}{x-1}$ là $y = \frac{a}{c} = \frac{4}{1} = 4$.

Câu 12. Cho khối nón có bán kính đáy r = 5 và chiều cao h = 2. Thể tích của khối nón đã cho bằng

A. $\frac{10\pi}{3}$

B. 10π

 $\underline{\mathbf{C}} \cdot \frac{50\pi}{3}$

D. 50π

Lời giải

Chọn C

Thể tích của khối nón đã cho bằng $V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi .5^2 .2 = \frac{50\pi}{3}$.

Câu 13. Nghiệm của phương trình $\log_3(x-1)=2$ là

A. x = 8

B. x = 9

C. x = 7

<u>D</u>. x = 10

Lời giải

Chọn D

Điều kiện xác định x > 1.

 $\log_3(x-1) = 2 \Leftrightarrow x-1 = 3^2 \Leftrightarrow x-1 = 9 \Leftrightarrow x = 10.$

Câu 14. $\int x^2 dx$ bằng

A. 2x + C

 $\underline{\mathbf{B}} \cdot \frac{1}{3}x^3 + C$

D. $x^3 + C$

D. $3x^3 + C$

Lời giải

Chon B

 $\int x^2 dx = \frac{1}{3}x^3 + C.$

Câu 15. Có bao nhiều cách xếp 6 học sinh thành một hàng dọc?

A. 36.

B. 720.

C. 6.

D. 1.

Lời giải

Chọn B

Mỗi cách xếp 6 học sinh thành một hàng dọc là một hoán vị của 6 phần tử. Do đó, số cách xếp 6 học sinh thành một hàng dọc là số hoán vị của 6 phần tử, tức là 6! = 720 cách.

Câu 16. Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ.

Số nghiệm thực của phương trình f(x) = -1 là

<u>**A**</u>. 3.

B. 1.

C. 0.

D. 2.

Lời giải

Chọn A

Số nghiệm của phương trình f(x) = -1 bằng số giao điểm của đường cong f(x) với đường thẳng y = -1. Nhìn vào hình ta thấy có 3 giao điểm nên có 3 nghiệm.

Câu 17. Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Ox có tọa độ là

A. (0; 2; 1)

B. (3;0;0)

C. (0;0;1)

D. (0; 2; 0)

Lời giải

Chon B

Hình chiếu của điểm A(3;2;1) lên trục Ox là A'(3;0;0).

Câu 18. Cho khối chóp có diện tích đáy B = 6 và chiều cao h = 2. Thể tích của khối chóp đã cho bằng

A. 6.

B. 3.

D. 12.

Lời giải

Chọn C

Thể tích khối chóp có công thức là $V = \frac{1}{3}B.h = \frac{1}{3}.6.2 = 4.$

Câu 19. Trong không gian *Oxyz*, cho đường thẳng $d: \frac{x-3}{2} = \frac{y-4}{-5} = \frac{z+1}{3}$. Vectơ nào sau đây là một vectơ chỉ phương của d?

A. $\overrightarrow{u_2} = (3;4;-1)$ **B.** $\overrightarrow{u_1} = (2;-5;3)$ **C.** $\overrightarrow{u_3} = (2;5;3)$ **D.** $\overrightarrow{u_4} = (3;4;1)$

Lời giải

Chon B

Đường thẳng có phương trình dạng $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$ thì có chỉ phương $\vec{u} = (a;b;c)$ nên đường thẳng $d: \frac{x-3}{2} = \frac{y-4}{5} = \frac{z+1}{3}$ có chỉ phương là $\overrightarrow{u_1} = (2; -5; 3)$

Câu 20. Trong không gian Oxyz, cho ba điểm A(3;0;0), B(0;1;0) và C(0;0;-2). Mặt phẳng (ABC) có phương trình là

A.
$$\frac{x}{3} + \frac{y}{-1} + \frac{z}{2} = 1$$
.

B.
$$\frac{x}{3} + \frac{y}{1} + \frac{z}{-2} = 1$$

C.
$$\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1$$
.

A.
$$\frac{x}{3} + \frac{y}{-1} + \frac{z}{2} = 1$$
. **B.** $\frac{x}{3} + \frac{y}{1} + \frac{z}{-2} = 1$. **C.** $\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1$. **D.** $\frac{x}{-3} + \frac{y}{1} + \frac{z}{2} = 1$.

Lời giải

Chọn B

Phương trình mặt phẳng phẳng qua 3 điểm $A(a;0;0), B(0;b;0), C(0;0;c), abc \neq 0$, có dạng là $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ nên phương trình mặt phẳng qua 3 điểm A(3;0;0), B(0;1;0) và C(0;0;-2) là $\frac{x}{3} + \frac{y}{1} + \frac{z}{-2} = 1$.

Câu 21. Cho cấp số nhân (u_n) với $u_1 = 3$ và công bội q = 2. Giá trị của u_2 bằng

A. 8.

B. 9.

<u>C</u>. 6.

D. $\frac{3}{2}$

Lời giải

Chon C

 $u_2 = u_1 \cdot q = 3.2 = 6.$

Câu 22. Cho hai số phức $z_1 = 3 - 2i$ và $z_2 = 2 + i$. Số phức $z_1 + z_2$ bằng

A.
$$5 + i$$

B.
$$-5 + i$$

C.
$$5-i$$

D.
$$-5 - i$$

Lời giải

Chon C

$$z_1 + z_2 = (3-2i) + (2+i) = 5-i.$$

Câu 23. Biết $\int_{0}^{3} f(x) dx = 3$. Giá trị của $\int_{0}^{3} 2f(x) dx$ bằng

A. 5.

B. 9.

<u>C</u>. 6.

D. $\frac{3}{2}$.

1.

Lời giải

Chon C

$$\int_{1}^{3} 2f(x) dx = 2 \int_{1}^{3} f(x) dx = 6.$$

Câu 24. Trên mặt phẳng tọa độ, biết M(-3;1) là điểm biểu diễn số phức z. Phần thực của z bằng

A. 1.

B. -3.

C. -1.

D. 3.

Lời giải

Chon B

z = -3 + i nên phần thực của z là -3.

Câu 25. Tập xác định của hàm số $y = \log_5 x$ là

A. $[0;+\infty)$

B. $(-\infty;0)$

 $\underline{\mathbf{C}}.\ (0;+\infty)$

D. $(-\infty; +\infty)$

Lời giải

Chọn C

Điều kiện: x > 0.

Tập xác định của hàm số $y = \log_5 x$ là $D = (0; +\infty)$.

Câu 26. Số giao điểm của đồ thị hàm số $y = x^3 + 3x^2$ và đồ thị hàm số $y = 3x^2 + 3x$ là

<u>**A**</u>. 3.

B. 1

C. 2.

D. 0.

Lời giải

Chọn A

Phương trình hoành độ giao điểm của đồ thị hàm số $y = x^3 + 3x^2$ và đồ thị hàm số $y = 3x^2 + 3x$ là $x^3 + 3x^2 = 3x^2 + 3x \Leftrightarrow x^3 - 3x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm\sqrt{3} \end{bmatrix}$.

Vậy số giao điểm của đồ thị hàm số $y = x^3 + 3x^2$ và đồ thị hàm số $y = 3x^2 + 3$ là 3.

Câu 27. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tai B,AB=a,BC=2a;SA vuông góc với mặt phẳng đáy và $SA=\sqrt{15}a$ (tham khảo hình vẽ).

Góc giữa SC và mặt phẳng đáy bằng

A. 45°.

B. 30°.

<u>C</u>. 60°.

D. 90°.

Lời giải

Chọn C

 $SA \perp (ABC)$ nên AC là hình chiếu của SC lên (ABC), góc giữa SC và mặt phẳng đáy bằng $SCA = \varphi$.

Tam giác ABC vuông tại B nên $AC^2 = AB^2 + BC^2 = 5a^2 \Rightarrow AC = a\sqrt{5}$

Tam giác SAC vuông tại A có $\tan \varphi = \frac{SA}{AC} = \sqrt{3} \Rightarrow \varphi = 60^{\circ}$.

Vậy $\varphi = 60^{\circ}$.

Câu 28. Biết $F(x) = x^2$ là một nguyên hàm của hàm số f(x) trên \square . Giá trị của $\int_{1}^{2} (2 + f(x)) dx$ bằng

<u>**A**</u>. 5.

B. 3.

C. $\frac{13}{3}$

D. $\frac{7}{3}$

Chọn A

$$\int_{1}^{2} (2+f(x)) dx = \int_{1}^{2} 2dx + \int_{1}^{2} f(x) dx = 2+x^{2} \Big|_{1}^{2} = 2+4-1=5.$$

Câu 29. Diện tích hình phẳng giới hạn bởi hai đường $y = x^2 - 4$ và y = 2x - 4 bằng

B.
$$\frac{4}{3}$$

C.
$$\frac{4\pi}{3}$$

D.
$$36\pi$$

Lời giải

Chon B

Phương trình hoành độ giao điểm của hai đường $y = x^2 - 4$ và y = 2x - 4 là

$$x^{2}-4=2x-4 \Leftrightarrow x^{2}-2x=0 \Leftrightarrow \begin{bmatrix} x=0\\ x=2 \end{bmatrix}$$

Diện tích hình phẳng giới hạn bởi hai đường $y = x^2 - 4$ và y = 2x - 4 là

$$S = \int_{0}^{2} \left| \left(x^{2} - 4 \right) - \left(2x - 4 \right) \right| dx = \frac{4}{3}.$$

$$V \hat{a} y S = \frac{4}{3}.$$

Câu 30. Trong không gian Oxyz, cho điểm M(2;-2;3) và đường thẳng $d:\frac{x-1}{3}=\frac{y+2}{2}=\frac{z-3}{-1}$. Mặt phẳng đi qua M và vuông góc với d có phương trình là

A.
$$3x+2y-z+1=0$$

B.
$$2x-2y+3z-17=0$$

C.
$$3x+2y-z-1=0$$

D.
$$2x-2y+3z+17=0$$

Lời giải

Chọn A.

Đường thẳng $d: \frac{x-1}{3} = \frac{y+2}{2} = \frac{z-3}{-1}$ có vecto chỉ phương $\vec{u} = (3;2;-1)$

Mặt phẳng (P) đi qua M và vuông góc với d nên (P) có vecto pháp tuyến $\vec{u} = (3;2;-1)$.

Vậy phương trình mặt phẳng (P) là $3(x-2)+2(y+2)-(z-3)=0 \Leftrightarrow 3x+2y-z+1=0$.

Câu 31. Gọi z_0 là nghiệm phức có phần ảo dương của phương trình $z^2 + 6z + 13 = 0$. Trên mặt phẳng tọa độ, điểm biểu diễn số phức $1 - z_0$ là

A.
$$N(-2;2)$$

B.
$$M(4;2)$$

C.
$$P(4;-2)$$

D.
$$Q(2;-2)$$

Lời giải

Chọn C

Phương trình $z^2 + 6z + 13 = 0$ có 2 nghiệm phức là -3 + 2i và -3 - 2i

Vì z_0 là nghiệm phức có phần ảo dương nên $z_0 = -3 + 2i$.

Ta có $1-z_0 = 1-(-3+2i) = 4-2i$. Vậy điểm biểu diễn số phức $1-z_0$ là P(4;-2).

Câu 32. Trong không gian Oxyz, cho ba điểm A(1;0;1), B(1;1;0) và C(3;4;-1). Đường thẳng đi qua A và song song với BC có phương trình là

A.
$$\frac{x-1}{4} = \frac{y}{5} = \frac{z-1}{-1}$$
. **B.** $\frac{x+1}{2} = \frac{y}{3} = \frac{z+1}{-1}$ **C.** $\frac{x-1}{2} = \frac{y}{3} = \frac{z-1}{-1}$ **D.** $\frac{x+1}{4} = \frac{y}{5} = \frac{z+1}{-1}$

B.
$$\frac{x+1}{2} = \frac{y}{3} = \frac{z+1}{-1}$$

$$\underline{\mathbf{C}} \cdot \frac{x-1}{2} = \frac{y}{3} = \frac{z-1}{-1}$$

D.
$$\frac{x+1}{4} = \frac{y}{5} = \frac{z+1}{-1}$$

Lời giải

Chon C

 $\overline{BC} = (2;3;-1).$

Đường thẳng đi qua A(1;0;1) và song song BC có phương trình là $\frac{x-1}{2} = \frac{y}{3} = \frac{z-1}{-1}$.

Câu 33. Cho hàm số f(x) liên tục trên \Box và có bảng xét dấu của f'(x) như sau:

х	$-\infty$	-1		0	1		2	+∞
f'(x)	-	+ 0	_	0 +		_	0	_

Số điểm cực đại của hàm số đã cho là

A. 4.

B. 1.

<u>C</u>. 2.

D. 3.

Lời giải

Chon C

Nhìn bảng xét dấu ta thấy f'(x) đổi dấu từ dương sang âm khi qua x = -1; x = 1; hàm số f(x) liên tục trên \Box nên hàm số đã cho có hai điểm cực đại.

Câu 34. Tập nghiệm của bất phương trình $3^{x^2-13} < 27$ là

A.
$$(4;+\infty)$$

B.
$$(-4;4)$$

C.
$$\left(-\infty;4\right)$$

D.
$$(0;4)$$

Lời giải

Chọn B

 $3^{x^2-13} < 27 \Leftrightarrow 3^{x^2-13} < 3^3 \Leftrightarrow x^2-13 < 3 \Leftrightarrow x^2-16 < 0 \Leftrightarrow -4 < x < 4.$

Câu 35. Cho hình nón có bán kính đáy bằng 2 và góc ở đỉnh bằng 60°. Diện tích xung quanh của hình nón đã cho bằng

B.
$$\frac{16\sqrt{3}\pi}{3}$$

C.
$$\frac{8\sqrt{3}\pi}{3}$$

Lời giải

Chon A

 $\triangle SAB$ đều nên SA = AB = 2.0B = 2.2 = 4.

Vậy diện tích xung quanh của hình nón là $S_{xa} = \pi.OB.SA = \pi.2.4 = 8\pi$.

Câu 36. Giá trị nhỏ nhất của hàm số $y = x^3 - 24x$ trên đoạn [2;19] bằng

A.
$$32\sqrt{2}$$

C.
$$-32\sqrt{2}$$

D. -45

Lời giải

Chọn C

$$f'(x) = 3x^2 - 24 = 3(x^2 - 8).$$

$$f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 2\sqrt{2} (nhan) \\ x = -2\sqrt{2} (loai) \end{bmatrix}$$

$$f(2) = -40, f(19) = 6403, f(2\sqrt{2}) = -32\sqrt{2}.$$

Do đó $\min_{[2;19]} f(x) = -32\sqrt{2}$.

Câu 37. Cho hai số phức z = 1 + 2i và w = 3 + i. Môđun của số phức $z\overline{w}$ bằng

B.
$$\sqrt{26}$$

D. 50.

Lời giải

Chon A

$$\overline{w} = 3 - i$$
 suy ra $z\overline{w} = (1 + 2i)(3 - i) = 3 - i + 6i - 2i^2 = 5 + 5i$.

$$\left| z\overline{w} \right| = \sqrt{5^2 + 5^2} = 5\sqrt{2}.$$

Câu 38. Cho a và b là hai số thực dương thỏa mãn $4^{\log_2 a^2 b} = 3a^3$. Giá trị của biểu thức ab^2 bằng

D. 2.

Lời giải

Chon A

$$4^{\log_2 a^2 b} = 3a^3 \Leftrightarrow 2^{2\log_2 a^2 b} = 3a^3 \Leftrightarrow \left(2^{\log_2 a^2 b}\right)^2 = a^3 \Leftrightarrow \left(a^2 b\right)^2 = 3a^3 \Leftrightarrow a^4 b^2 = 3a^3 \Leftrightarrow ab^2 = 3.$$

Câu 39. Cho hàm số $f(x) = \frac{x}{\sqrt{x^2 + 2}}$. Họ tất cả các nguyên hàm của hàm số g(x) = (x+1).f'(x) là

A.
$$\frac{x^2 + 2x - 2}{2\sqrt{x^2 + 2}} + C$$

B.
$$\frac{x-2}{\sqrt{x^2+2}} + C$$

A.
$$\frac{x^2 + 2x - 2}{2\sqrt{x^2 + 2}} + C$$
. **B.** $\frac{x - 2}{\sqrt{x^2 + 2}} + C$. **C.** $\frac{2x^2 + x + 2}{\sqrt{x^2 + 2}} + C$. **D.** $\frac{x + 2}{2\sqrt{x^2 + 2}} + C$.

D.
$$\frac{x+2}{2\sqrt{x^2+2}} + C$$
.

Lời giải

Chon B

Cách 1

$$f(x) = \frac{x}{\sqrt{x^2 + 2}} \Rightarrow f'(x) = \frac{2}{(x^2 + 2)\sqrt{x^2 + 2}}.$$

$$g(x) = (x+1) f'(x) = \frac{2(x+1)}{(x^2+2)\sqrt{x^2+2}}.$$

Ta có
$$\left(\frac{x-2}{\sqrt{x^2+2}} + C\right)^2 = \frac{2(x+1)}{(x^2+2)\sqrt{x^2+2}} = g(x)$$

Cách 2

Đặt
$$\begin{cases} u = x + 1 \\ dv = f'(x) dx \end{cases} \Rightarrow \begin{cases} du = dx \\ v = f(x) \end{cases}$$
. Khi đó

$$g(x) = (x+1) f(x) - \int f(x) dx = (x+1) \cdot \frac{x}{\sqrt{x^2 + 2}} - \int \frac{x dx}{\sqrt{x^2 + 2}} = \frac{x^2 + x}{\sqrt{x^2 + 2}} - \int \frac{d(x^2 + 2)}{2\sqrt{x^2 + 2}}$$

$$=\frac{x^2+x}{\sqrt{x^2+2}}-\sqrt{x^2+2}+C=\frac{x-2}{\sqrt{x^2+2}}+C.$$

Câu 40. Tập hợp tất cả các giá trị thực của tham số m để hàm số $y = \frac{x+4}{x+m}$ đồng biến trên khoảng $(-\infty; -7)$ là

D.
$$(4;+\infty)$$

Lời giải

Chon B

Tập xác định: $D = \Box \setminus \{-m\}$.

$$y' = \frac{m-4}{\left(x+m\right)^2}.$$

Hàm số đồng biến trên khoảng $(-\infty; -7) \Leftrightarrow \begin{bmatrix} y' > 0 \\ -m \notin (-\infty; -7) \end{cases} \Leftrightarrow \begin{cases} m - 4 > 0 \\ -m \ge -7 \end{cases} \Leftrightarrow \begin{cases} m > 4 \\ m \le 7 \end{cases}$

 $4 < m \le 7$.

Vậy $m \in (4,7]$.

Câu 41. Trong năm 2019, diện tích rừng trồng mới của tỉnh A là 600 ha. Giả sử diện tích rừng trồng mới của tỉnh A mỗi năm tiếp theo đều tăng 6% so với diện tích rừng trồng mới của năm liền trước. Kể từ sau năm 2019, năm nào dưới đây là năm đầu tiên tỉnh A có diện tích rừng trồng mới trong năm đó đạt trên 1000 ha?

A. Năm 2028.

B. Năm 2047.

C. Năm 2027.

D. Năm 2046.

Lời giải

Chọn A

Gọi Po là diện tích rừng trồng mới năm 2019.

Gọi P_n là diện tích rừng trồng mới sau n năm.

Gọi r% là phần trăm diện tích rừng trồng mới tăng mỗi năm.

Sau 1 năm, diện tích rừng trồng mới là $P_1 = P_0 + P_0 r = P_0 (1+r)$

Sau 2 năm, diện tích rừng trồng mới là $P_2 = P_1 + P_1 r = P_0 (1+r)^2$

Sau n năm, diện tích rừng trồng mới là $P_n = P_o (1+r)^n$.

Theo giải thiết: $P_0 = 600, r = 0,06$.

$$600(1+0.06)^n > 1000 \Leftrightarrow (1.06)^n > \frac{10}{6} \Leftrightarrow n > \log_{1.06} \frac{10}{6} \approx 8.8.$$

Do đó n = 9. Vậy sau 9 năm (tức năm 2028) thì tỉnh A có diện tích rừng trồng mới trong năm đó đạt trên 1000 ha.

Câu 42. Cho hình chóp *S.ABC* có đáy là tam giác đều cạnh 4a, SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt phẳng đáy bằng 60°. Diện tích mặt cầu ngoại tiếp hình chóp *S.ABC* bằng

A.
$$\frac{172\pi a^2}{3}$$

B.
$$\frac{76\pi a^2}{3}$$

C.
$$84\pi a^2$$

D.
$$\frac{172\pi a^2}{9}$$

Lời giải

Chọn A

Tam giác ABC đều cạnh 4a, $AM = \frac{4a\sqrt{3}}{2} = 2a\sqrt{3}$ với M là trung điểm BC.

Do $(SAM) \perp BC$ nên góc giữa (SBC) và (ABC) là $SMA = 60^{\circ}$.

Khi đó $SA = AM \cdot \tan 60^{\circ} = 2a\sqrt{3} \cdot \sqrt{3} = 6a$.

Qua tâm G của tam giác đều ABC dựng trục Gx vuông góc mặt phẳng (ABC) thì G cách đều A, B, C và tâm mặt cầu ngoại tiếp S.ABC nằm trên Gx.

Từ trung điểm E của SA dựng đường thẳng d song song với AM cắt Gx tại I thì IS = IA nên I là tâm mặt cầu ngoại tiếp chóp S.ABC.

Theo định lý Pytago cho tam giác vuông IAG ta có

$$R = IA = \sqrt{IG^2 + GA^2} = \sqrt{\left(\frac{SA}{2}\right)^2 + \left(\frac{2}{3}AM\right)^2} = \sqrt{\left(3a\right)^2 + \left(\frac{4a\sqrt{3}}{3}\right)^2} = \sqrt{\frac{43}{3}}a.$$

Vậy
$$S = 4\pi R^2 = 4\pi \cdot \frac{43}{3}a^2 = \frac{172}{3}\pi a^2$$
.

Câu 43. Cho hình lăng trụ đứng ABC.A'B'C' có tất cả các cạnh đều bằng a. Gọi M là trung điểm CC' (tham khảo hình vẽ).

Khoảng cách từ M đến mặt phẳng (A'BC) bằng

$$\underline{\mathbf{A}} \cdot \frac{\sqrt{21}a}{14}$$

B.
$$\frac{\sqrt{2}a}{2}$$

C.
$$\frac{\sqrt{21}a}{7}$$

D.
$$\frac{\sqrt{2}a}{4}$$

Lời giải

Chọn A

Gọi I là trung điểm BC. kẻ $AH \perp A'I$ tại H.

Ta có
$$AH \perp (A'BC)$$
 nên $d(M,(A'BC)) = \frac{1}{2}d(C',(A'BC)) = \frac{1}{2}d(A,(A'BC)).$

Xét ΔAA'I có

$$\frac{1}{AH^{2}} = \frac{1}{AA^{2}} + \frac{1}{AI^{2}} = \frac{1}{a^{2}} + \frac{4}{3a^{2}} = \frac{7}{3a^{2}} \Rightarrow AH = \frac{a\sqrt{21}}{7} \Rightarrow d\left(M, (A'BC)\right) = \frac{a\sqrt{21}}{14}.$$

Câu 44. Cho hàm bậc bốn f(x) có bảng biến thiên như sau:

x	$-\infty$		-1		0		1		+∞
f'(x)		_	0	+	0	_	0	+	
f(x)	+∞		— _2 /		x 3 \				+∞

Số điểm cực trị của hàm $g(x) = x^4 [f(x+1)]^2$ là

Lời giải

Chọn B

Vì f(x) là hàm bậc bốn nên f'(x) là hàm bậc ba có hệ số bậc ba đồng thời nhận các giá trị (-1;0;1) làm nghiệm. Do đó $f'(x) = ax(x-1)(x+1) = a(x^3-x) \Rightarrow f(x) = a\left(\frac{x^4}{4} - \frac{x^2}{2}\right) + b$.

Vì
$$f(0) = 3$$
 và $f(1) = -2$ nên suy ra $a = 20; b = 3$.

Vậy
$$f(x) = 5x^4 - 10x^2 + 3 = 5(x^2 - 1)^2 - 2$$
, suy ra $f(x+1) = 5(x^2 + 2x)^2 - 2$.

Ta có
$$g(x) = [x^2.f(x+1)]^2 = [5x^2(x^2+2x)^2-2x^2]^2$$
.

$$g'(x) = 0 \Leftrightarrow \begin{bmatrix} 5x^2(x^2 + 2x)^2 = 2x^2(1) \\ 10x(x^2 + 2x)^2 + 10x^2(x^2 + 2x)(2x + 2) = 4x(2) \end{bmatrix}$$

Phương trình (1)
$$\Leftrightarrow$$
 $x = 0 (kép)$ $x = 0$ $x = 0$ $x = 0,277676$ $x = 0,277676$ $x = -2,277676$ $x = -2,277676$ $x = -2,393746$ $x = -1,606254$

Phương trình (2)
$$\Leftrightarrow$$
 $\begin{bmatrix} x = 0 \\ 15x^4 + 50x^3 + 40x^2 - 2 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x \approx -2,0448 \\ x \approx -1,21842 \\ x \approx -0,26902 \\ x \approx 0,19893 \end{bmatrix}$

So sánh các nghiệm giải bằng máy tính cầm tay ta có 9 nghiệm không trùng nhau, trong đó 8 nghiệm đơn và nghiệm x = 0 là nghiệm bội 3 nên g(x) có 9 điểm cực trị.

Vậy g(x) có 9 điểm cực trị.

Câu 45. Cho hàm số $y = ax^3 + bx^2 + cx + d(a,b,c,d \in \Box)$ có đồ thị là đường cong trong hình vẽ.

Có bao nhiều số dương trong các số a,b,c,d?

A. 4.

B. 1.

<u>C</u>. 2.

D. 3.

Lời giải

Chọn C

Hình dạng đồ thị cho thấy a < 0.

Đồ thị cắt trục tung tại một điểm nằm phía trên trục hoành nên d > 0.

Đồ thị hàm số có hai điểm cực trị nằm bên phải trục tung nên hàm số đã cho có hai điểm cực trị cùng dương, khi đó $y' = 3ax^2 + 2bx + c$ có hai nghiệm phân biệt cùng dương.

Do đó
$$\frac{c}{3a} > 0 \Rightarrow c < 0$$
 và $-\frac{2b}{3a} > 0 \Leftrightarrow b > 0$.

Vậy trong các số a,b,c,d có 2 số dương.

Câu 46. Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp $\{1;2;3;4;5;6;7;8;9\}$. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó **không** có hai chữ số liên tiếp nào cùng chẵn bằng

<u>A</u>. $\frac{25}{42}$

B. $\frac{5}{21}$

C. $\frac{65}{126}$

D. $\frac{55}{126}$

Lời giải

Chọn A

Số các số tự nhiên có 4 chữ số đôi một khác nhau là $A_9^4 = 3024 \Longrightarrow n(\Omega) = 3024$.

Gọi A là biến cố số được chọn không có hai chữ số liên tiếp nào cùng chẵn.

Trường hợp 1: Số được chọn gồm 4 chữ số lẻ, có $A_5^4 = 120$ số.

Trường hợp 2: Số được chọn có 1 chữ số chẵn, có $C_4^1.C_5^3.4! = 960$ số.

Trường hợp 3: Số được chọn có 2 chữ số chẵn. Chọn 2 chữ số chẵn và 2 chữ số lẻ, có $C_4^2.C_5^2$ cách. Xếp trước 2 chữ số lẻ, có 2! cách. Xếp 2 chữ số chẵn vào 2 trong 3 vị trí trước, sau và giữa các chữ số lẻ, có A_3^2 cách. Suy ra có $C_4^2.C_5^2.2!.A_3^2 = 720\,$ số.

Vậy
$$n(A) = 1800 \Rightarrow P(A) = \frac{n(A)}{n(\Omega)} = \frac{25}{42}$$
.

Câu 47. Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a và O là tâm của đáy. Gọi M, N, P, Q lần lượt là các điểm đối xứng với O qua trọng tâm của các tam giác SAB, SBC, SCD, SDA và S' đối xứng với S qua O . Thể tích khối chóp S'.MNPQ bằng

Lời giải

A.
$$\frac{20\sqrt{14}a^3}{81}$$

B.
$$\frac{40\sqrt{14}a^3}{81}$$

C.
$$\frac{10\sqrt{14}a^3}{81}$$

D.
$$\frac{2\sqrt{14}a^3}{81}$$

Chọn A

Gọi E, F, G, H lần lượt là trọng tâm của các tam giác SAB, SBC, SCD, SDA.

Gọi X, Y, Z, T lần lượt là trung điểm các cạnh AB, BC, CD, DA.

Ta có M đối xứng với O qua E và N đối xứng với O qua F nên MN//EF và MN=2EF

Mà E, F là trọng tâm của các tam giác SAB, SBC nên EF //XY và $EF = \frac{2}{3}XY = \frac{2}{3} \cdot \frac{1}{2}AC = \frac{a\sqrt{2}}{3}$.

Suy ra MN / /XY và $MN = 2 \frac{a\sqrt{2}}{3} = \frac{2a\sqrt{2}}{3}$.

Chứng minh tương tự ta có QP//ZT, MQ//XT, NP//YZ và $MN = NP = PQ = QM = \frac{2a\sqrt{2}}{3}$.

Suy ra (MNPQ)//(ABCD) và MNPQ là hình thoi.

Do ABCD là hình vuông, XYZT là hình vuông nên $XY \perp XT \Rightarrow MN \perp MQ$. Suy ra MNPQ là hình vuông,

$$S_{MNPQ} = \left(\frac{2a\sqrt{2}}{3}\right)^2 = \frac{8a^2}{9}.$$

Gọi I là giao điểm của MP và NQ.

Ta có
$$\begin{cases} (MXZP) \cap (NYTQ) = SO \\ (MXZP) \cap (MNPQ) = MP \text{ nên } SO, MP, NQ \text{ đồng quy tại I.} \\ (MNPQ) \cap (NYTQ) = NQ \end{cases}$$

Do S.ABCD là hình chóp đầu nên $SO \perp \left(ABCD\right)$, mà $\left(MNPQ\right) / / \left(ABCD\right)$ nên $SO \perp \left(MNPQ\right)$

Trong mặt phẳng (MXZP), gọi $J = EG \cap SO$, ta có $\frac{SG}{SZ} = \frac{SE}{SX} = \frac{2}{3} \Rightarrow \frac{SJ}{SO} = \frac{2}{3}$.

Mà Δ*OMP* có EG là đường trung bình nên J là trung điểm OI.

Suy ra
$$OI = \frac{2}{3}SO = \frac{2}{3}\sqrt{SA^2 - AO^2} = \frac{2}{3}\sqrt{(2a)^2 - \left(\frac{a\sqrt{2}}{2}\right)^2} = \frac{2}{3} \cdot \frac{a\sqrt{14}}{2} = \frac{a\sqrt{14}}{3}$$
.

$$\text{Vậy } V_{S.MNPQ} = \frac{1}{3} S'I.S_{MNPQ} = \frac{1}{3} \left(S'O + OI \right).S_{MNPQ} = \frac{1}{3} \left(\frac{a\sqrt{14}}{2} + \frac{a\sqrt{14}}{3} \right). \frac{8a^2}{9} = \frac{20\sqrt{14}a^3}{81}.$$

Câu 48. Xét các số thực không âm x và y thỏa mãn $2x + y.4^{x+y-1} \ge 3$. Giá trị nhỏ nhất của biểu thức $P = x^2 + y^2 + 4x + 6y$ bằng

A.
$$\frac{33}{4}$$

B.
$$\frac{65}{8}$$

C.
$$\frac{49}{8}$$

D.
$$\frac{57}{8}$$

Lời giải

Chọn B

$$2x + y.4^{x+y-1} \ge 3 \Leftrightarrow y.4^{x+y-1} \ge 3 - 2x(*)$$

Theo giải thiết
$$\begin{cases} x \ge 0 \\ y \ge 0 \end{cases}$$

Ta xét hai trường hợp sau:

Trường họp 1: Nếu $3-2x \le 0 \Leftrightarrow x \ge \frac{3}{2}$. Mà $y \ge 0$ nên $y^2 + 6y \ge 0$

$$\Rightarrow P = x^2 + y^2 + 4x + 6y \ge x^2 + 4x.$$

Khi đó
$$P = x^2 + 4x \left(x \ge \frac{3}{2}\right)$$
.

$$P' = 2x + 4; P' = 0 \Leftrightarrow x = -2 \notin \left[\frac{3}{2}; +\infty\right].$$

Dựa vào bảng biến thiên suy ra giá trị nhỏ nhất của $P = x^2 + 4x \left(x \ge \frac{3}{2}\right)$ đạt được tại $x = \frac{3}{2}$.

Suy ra giá trị nhỏ nhất của biểu thức $P = x^2 + 4x = \left(\frac{3}{2}\right)^2 + 4 \cdot \left(\frac{3}{2}\right) = \frac{33}{4}$.

Trường hợp 2: Nếu $3-2x > 0 \Leftrightarrow x < \frac{3}{2}$. Mà $y.4^{x+y-1} \ge 3-2x > 0 \Rightarrow y > 0$.

Yêu cầu bài toán
$$\Leftrightarrow 4^{x+y-1} \ge \frac{3-2x}{y} \Leftrightarrow x+y-1 \ge \log_4\left(\frac{3-2x}{y}\right) = \frac{1}{2}\log_2\left(\frac{3-2x}{y}\right)$$

$$\Leftrightarrow 2x + 2y - 2 \ge \log_2(3 - 2x) - \log_2 y \Leftrightarrow 2y + \log_2(2y) \ge (3 - 2x) + \log_2(3 - 2x)(**)$$

Xét hàm số $f(t) = t + \log_2 t$ với t > 0.

Ta có
$$f'(t) = 1 + \frac{1}{t \ln 2} > 0, \forall t > 0.$$

Suy ra hàm số f(t) đồng biến $\forall t > 0$.

$$(**) \Leftrightarrow f(2y) \ge f(3-2x) \Leftrightarrow 2y \ge 3-2x \Leftrightarrow \begin{cases} 6y \ge 9-6x \\ y^2 \ge \frac{9-12x+4x^2}{4} \end{cases}$$

Ta có $P = x^2 + y^2 + 4x + 6y \ge xh2 + \frac{9 - 12x + 4x^2}{4} + 4x + 9 - 6x \Leftrightarrow p \ge \frac{8x^2 - 20x + 45}{4}$.

Đặt
$$f(x) = \frac{16x - 20}{4}$$
; $f'(x) = 0 \Leftrightarrow x = \frac{5}{4}$.

X	0	$\frac{5}{4}$		$\frac{3}{2}$
f'(x)	_	0	+	
f(x)		$\frac{65}{8}$		

Khi đó giá trị nhỏ nhất của $f(x) = \frac{8x^2 - 20x + 45}{4}(x \ge 0)$ đạt được tại $x = \frac{5}{4}$.

Suy ra giá trị nhỏ nhất của biểu thức $P \ge \frac{8 \cdot \left(\frac{5}{4}\right)^2 - 20 \cdot \left(\frac{5}{4}\right) + 45}{4} = \frac{65}{8}$.

Kết hợp hai trường hợp ta có giá trị nhỏ nhất của biểu thức $P = x^2 + y^2 + 4x + 6y$ bằng $\frac{65}{8}$.

Câu 49. Có bao nhiều số nguyên x sao cho ứng với mỗi x có không quá 728 số nguyên y thỏa mãn $\log_4(x^2+y) \ge \log_3(x+y)$?

A. 59.

B. 58.

<u>C</u>. 116.

D. 115.

Chọn C

Điều kiện: x + y > 0 và $x^2 + y > 0$. Khi đó

$$\log_4(x^2 + y) \ge \log_3(x + y) \iff x^2 + y \ge 4^{\log_3(x + y)} \iff x^2 + y \ge (x + y)^{\log_3 4}$$

$$\Leftrightarrow x^2 - x \ge (x + y)^{\log_3 4} - (x + y)(1)$$

Đặt t = x + y thì (1) được viết lại là $x^2 - x \ge t^{\log_3 4} - t(2)$

Với mỗi x nguyên cho trước có không quá 728 số nguyên y thỏa mãn bất phương trình (1) tương đương với bất phương trình (2) có không quá 728 nghiệm t.

Nhận thấy $f(t) = t^{\log_3 4} - t$ đồng biến trên $[1; +\infty)$ nên nếu $x^2 - x \ge 729^{\log_3 4} - 729 = 3367$ thì sẽ có ít nhất 729 nghiệm nguyên $t \ge 1$.

Do đó yêu cầu bài toán tương đương với $x^2 - x < 3367 \Leftrightarrow -57 \le x \le 58$ (do x nguyên).

Vậy có tất cả 58+58=116 số nguyên x thỏa mãn yêu cầu bài toán.

Câu 50. Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình vẽ. Số nghiệm thực phân biệt của phương trình $f(x^3 f(x)) + 1 = 0$ là

A. 8.

,

D. 4.

Chọn C

$$f(x^3 f(x)) + 1 = 0 \iff f(x^3 f(x)) = -1(*)$$

Lời giải

Dựa vào đồ thị

$$(*) \Leftrightarrow \begin{bmatrix} x^3 f(x) = 0 & (1) \\ x^3 f(x) = a & (2) & (2 < a < 3) \\ x^3 f(x) = b & (3) \end{bmatrix}$$

$$(1) \Leftrightarrow \begin{bmatrix} x = 0 \\ f(x) = 0 \end{cases} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = x_1 (5 < x_1 < 6) \end{bmatrix}.$$

Xét (2): dễ thấy x = 0 không là nghiệm. Với $x \neq 0$, (2) $\Leftrightarrow f(x) = \frac{a}{x^3}$.

Vẽ đồ thị hàm số $f(x) = \frac{a}{x^3} (2 < a < 3)$ và hàm số y = f(x) trên cùng hệ trục tọa độ suy ra phương trình có 2 nghiệm.

Tương tự xét phương trình (3) phương trình có 2 nghiệm.

Vậy phương trình đã cho có 6 nghiệm.

----- HÉT -----