Statistical Learning and Machine Learning Lecture 7 - Probability Distributions 3

September 18, 2021

Course overview and where do we stand

Objectives of the lecture

- Introduction to Gaussian mixture models
- Nonparametric density estimation techniques
 - 4 Histogram method
 - Kernel density estimators
 - Nearest-neighbour method

Density Estimation I

- Suppose that we have a set of data points $\{x_1, \ldots, x_N\}$ which correspond to (random) measurements of a process.
- Next, assume that the process is governed by the underlying probability density function p(x). The value of p(x) indicates how probable is to obtain the measurement x.

Density Estimation II

- The problem of estimating the probability distribution p(x) given a set of data points x_1, \ldots, x_N is called density estimation.
- The density estimation problem is ill-posed as there are infinitely many probability distributions that could given rise to the specific set of data points $\{x_1, \ldots, x_N\}$.

• To solve that problem, we take an *informed decision* regarding the probability distribution that generated the data $\{x_1, \dots, x_N\}$.

Density Estimation III

- Example: A widely used probability distribution in machine Learning is the Gaussian distribution: $p(x) = 1 \frac{1}{(2\pi\sigma^2)^{1/2} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}}$ The Gaussian distribution, denoted by $\mathcal{N}(x|\mu,\sigma^2)$, is uniquely described by two parameters, the μ and the σ .
- We call distributions which are uniquely defined by a small set of parameters, as parametric distributions.

Frequenist (MLE) vs Bayesian Approach

Two different ways to estimate the value of the parameter of the density function p(x), e.g., μ

- Maximum Likelihood Estimation: Maximizing the (log-)likelihood function of a set of data points $\mathcal{D} = \{x_1, \dots, x_N\}$ as a function of parameter(s) (μ) ; it is assumed that \mathcal{D} correspond to the IID data.
- Bayesian Approach: Defining a prior distribution $p(\mu)$ for parameter (μ) , and obtaining posterior distribution by using: posterior ∞ likelihood \times prior

Note that the likelihood function plays a key role in both the approaches!

Mixture of Gaussian

Multi-modal data can be better described with mixtures of distributions rather than a single distribution.

Mixture of Gaussians

When using a superposition of K Gaussians, the resulting distribution has the form:

$$\rho(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

and is called a mixture of Gaussians.

The parameters π_k are called mixing coefficients and satisfy:

$$0 \le \pi_k \le 1, \qquad \sum_{k=1}^K \pi_k = 1.$$

Thus, the mixing coefficients have the form of probabilities $(\pi_k = p(k))$.

Mixture of Gaussians

The resulting distribution can take complex forms:

Parameter Estimation in Mixture of Gaussian

The form of the Gaussian mixture is governed by the parameters: π , μ_k and Σ .

- How can maximum likelihood estimation procedure be applied to obtain the above parameters, given N IID data points $\{x_1, \ldots, x_n\}$?
- What problems do you see in this approach?

Nonparametric Density Estimation

- Nonparametric density estimation approaches make very few assumptions about the form of the distribution
- Parametric methods: efficient (dependence on few parameters) but not flexible (e.g., poor performance on multimodal data)
- Nonparametric methods: no assumptions on data hence are flexible; may be computationally expensive.

Histogram Method

For 1-dimensional data, we can use histogram density models. Standard histograms are obtained by:

- ullet partitioning $\mathbb R$ into distinct bins of width Δ_i
- counting the number of data points n_i falling in bin i
- normalizing using N and Δ_i to obtain a probability density: $\mathsf{p}_i = \frac{n_i}{N\Delta_i}.$

This gives a model for the density p(x) that is constant over the width of each bin (piece wise constant model).

Histogram Method

Bin-width as smoothing parameter

Histogram-based density estimation of the distribution following the green line using N=50 data points for a varying number of (equal-length) bins.

Histogram Method: Advantages and disadvantages

Advantages

- Provides quick visualization of data (as approximate density estimate)
- Suitable for large data: data can be discarded once histogram is computed
- amenable for sequential processing
- Disadvantages
 - Discontinuity at bin edges
 - Curse of dimensionality

Foundations for nonparametric density estimation methods

Let us assume that observations are drawn from an unknown probability density p(x) in some D-dimensional space $x \in \mathbb{R}^D$. We wish to estimate p(x) from data.

Consider a small region \mathcal{R} containing \mathbf{x} . The probability mass within \mathcal{R} is $P = \int_{\mathcal{R}} p(\mathbf{x}) d\mathbf{x}$. Suppose we collect N observations drawn from $p(\mathbf{x})$. Since each data point has probability P of being within \mathcal{R} , the total number K of points that lie within \mathcal{R} follow binomial distribution.

- For $N \to \infty$ data points drawn from p(x), the approximate number of data points falling inside \mathcal{R} is NP.
- For small \mathcal{R} , we can assume that p(x) is constant over \mathcal{R} leading to $P \sim p(x)V$ for $x \in \mathcal{R}$.
- Combining the above two cases we have:

$$p(\mathbf{x}) = \frac{K}{NV}.\tag{3}$$

Nonparametric density estimation

Two approaches for nonparametric density estimation based on (3)

- Kernel density estimation: Fix V and determine K from the data
- K nearest-neighbour: Fix K and determine V from the data

Kernel Density Estimation

Let $\mathcal R$ be a small hypercube centered at the point x. To count the number $\mathcal K$ of points inside $\mathcal R$ we define the function:

$$k(\boldsymbol{u}) = \begin{cases} 1, & |u_i| \le 1/2, & i = 1, ..., D \\ 0, & \text{otherwise} \end{cases}$$

which expresses a hypercube centered at the origin. $k(\mathbf{u})$ is called kernel function (or *Parzen window*).

The quantity $k\left(\frac{\mathbf{x}-\mathbf{x}_n}{h}\right)$ will be 1 if the data point \mathbf{x}_n lies inside cube of side h centered at \mathbf{x} .

The number of points inside the hypercube of side h centered at x:

$$K = \sum_{n=1}^{N} k \left(\frac{\mathbf{x} - \mathbf{x}_n}{h} \right)$$

Kernel Density Estimation

Remember that $p(x) = \frac{K}{NV}$. Thus by substituting $V = h^D$ and K from the above:

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^{D}} k \left(\frac{x - x_{n}}{h} \right).$$

Reinterpret the above not as single hypercube centered at x but N hypercubes centered at x_n .

To avoid artificial discontinuities (at the borders of the hypercube), we can use a Gaussian kernel instead:

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{1/2}} exp\left\{-\frac{\|x - x_n\|^2}{2h^2}\right\}$$

where h is the standard deviation of the Gaussian components.

Kernel Density Estimation

Illustration of Kernel density model applied on real data; note the role of h as smoothing parameter

Nearest-neighbour methods

In kernel density estimators, the use of a fixed parameter h causes problems

- for regions with high data density, we need *h* to be small; large *h* will lead to over-smoothing
- but for regions with low density of points, small h will lead to noisy/spikier estimates
- h should depend on data (adaptive)

Nearest-neighbour method fixes the number of neighbours K (instead of fixing V). Then:

$$p(x) = \frac{K}{NV} \tag{4}$$

where V corresponds to the volume of the space around ${\it x}$ containing ${\it K}$ neighbours.

Nearest-neighbour methods

Operation:

- Consider a small sphere around x where we need to calculate p(x)
- Allow the radius of the sphere to grow until it contains precisely K
 data points
- The estimate of p(x) is then given by (4) with V set to the volume of the sphere

Nearest-neighbour methods

Example: Illustration of Nearest-neighbour density model applied on real data.

K-NN method for classification

Let us assume that we have a dataset formed by N_k points in class \mathcal{C}_k , and $N = \sum_{k} N_{k}$ points in total. To classify a new point x:

- Draw a sphere centered at x containing exactly K (labeled) points irrespective of their class
- The sphere has a volume V and contains K_k points from class C_k
- Then we define the following probabilities:
 - $p(\mathbf{x}|\mathcal{C}_k) = K_k/(N_k V)$
 - p(x) = K/(NV)
 - $p(C_k) = N_k/N$
- Using the Bayes formula:

$$p(C_k|x) = \frac{p(x|C_k)p(C_k)}{p(x)} = \frac{K_k}{K}$$

To minimize the misclassification probability, a test point x is assigned to the class having largest posterior probability.

K-NN method for classification

A test point is assigned according to the majority class membership of the K nearest training data points. (left) K=3 and (right) K=1.

K-NN method for classification

Illustration of K as controlling the degree of smoothness of the estimated density

