

Tentamen i IE1204/5 Digital Design Iördagen den 18/1 2014 14.00-18.00

Allmän information

Examinator: Ingo Sander.

Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista IE1204),

Fredrik Jonsson, tel 08-790 4169 (Valhallavägen IE1205),

Tentamensuppgifterna behöver inte återlämnas när du lämnar in din skrivning.

Hjälpmedel: Inga hjälpmedel är tillåtna!

Tentamen består av tre delar med sammanlagt 12 uppgifter, och totalt 30 poäng:

Del A1 (**Analys**) innehåller åtta korta uppgifter. Rätt besvarad uppgift ger för sex av uppgifterna en poäng och för två av uppgifterna två poäng. Felaktig besvarad ger 0 poäng. Det totala antalet poäng i del A1 är **10 poäng**. För **godkänt på del A1 krävs minst 6p**, *är det färre poäng rättar vi inte vidare*.

Del A2 (Konstruktionsmetodik) innehåller två metodikuppgifter om totalt 10 poäng.

För att bli **godkänd på tentamen** krävs **minst 11 poäng** från A1+A2, *är det färre poäng rättar* vi inte vidare.

Del B (Designproblem) innehåller två friare designuppgifter om totalt **10 poäng**. Del B rättas bara om det finns minst 11p från tentamens A-del.

OBS! I slutet av tentamenshäftet finns ett inlämningsblad för del A1, som kan avskiljas för att lämnas in tillsammans med lösningarna för del A2 och del B.

För ett godkänt betyg (**E**) krävs **minst 11 poäng på hela tentamen**.

Betyg ges enligt följande:

0 –	11 –	16 –	19 –	22 –	25
F	Е	D	С	В	A

Resultatet beräknas meddelas före måndagen den 10/2 2014.

Del A1: Analysuppgifter.

Endast svar krävs på uppgifterna i del A1. Lämna svaren på inlämningsbladet för del A1 som du hittar på sista sidan av tentahäftet.

1. 2p/1p/0p

En funktion av tre varibler f(x, y, z) beskrivs med hjälp av exor-funktioner så här:

$$f(x, y, z) = z \cdot (x \oplus y + x \oplus y)$$

$$\oplus$$
 = exorfunktion

a) ange den på **normalform** som en summa av **mintermer** (summa-av-produkter)!

$$f(x, y, z) = \{SoP\}_{\text{normal}} = ?$$

b) ange den som minimal summa-av-produkter!

$$f(x, y, z) = \{SoP\}_{min} = ?$$

2. 2p/1p/0p

Figuren visar en krets med fyra heladderare (FA). Två 4-bits heltal $y = y_3y_2y_1y_0$ och $x = x_3x_2x_1x_0$ "adderas" med varandra i denna krets.

- a) Antag att $y = 7_{10}$ vilket värde har då x om NOR-grindens utgång Z = 1? Svara med x som binärtal $x = x_3x_2x_1x_0$.
- b) vilket värde har då c_4 ?

3. 1p/0p

Givet är ett Karnaughdiagram för en funktion av fyra variabler. Ange funktionen som minimerad produkt-av-summor, PoS-form.

("-" i diagrammet står för "don't care")

$$f(a,b,c,d) = \{P \circ S\}_{\min} = ?$$

,	√c d					
a b	\setminus	00	01	11	10	
b	0	0	0	1	ı	
	0 1	-	1	1	ı	
	1	-	1	0	0	
	1 0	0	0	1	0	

4. 1p/0p

NOR är komplett logik, alla andra grindtyper kan konstrueras med bara NOR-grindar. Ställ upp ett förenklat uttryck för Q = f(A, B) = ? så att det tydligt **framgår vilken funktion** det gäller.

5. 1p/0p

Ange den logiska funktionen som realiseras av CMOS-kretsen i figuren?

$$Y = f(A, B, C, D) = ?$$

6. 1p/0p

Sekvensnätet startar i tillståndet $q_1 = q_0 = 0$. Analysera kretsen och fyll i utsignalen z i tidsdiagrammet. En kopia av diagrammet finns även på *inlämningsbladet*.

7. 1p/0p

Studera sekvensnätet till uppgift 6. Beräkna den *kortaste* tid som kan följa mellan klockpulserna CP, utan att sekvensnätets funktion äventyras. Rita in "the critical path" i figuren på *inlämningsbladet* (den väg Du baserar din beräkning på).

Följande tider anges för komponenterna [ns]:

$$t_{\text{AND}} = 0.4$$
 $t_{\text{OR}} = 0.4$ $t_{\text{NOT}} = 0.1$
 $t_{\text{Setup}} = 0.3$ $t_{\text{Hold}} = 0.2$

8. 1p/0p

VHDL-koden beskriver en sekvenskrets. Rita sekvenskretsens tillståndsdiagram, rita tillståndsövergångar mellan de fyra tillstånden *på inlämningsbladet*. Ange de vilkor som finns för tillståndsövergångarna.

Del A2: Konstruktionsmetodik.

Observera! Del A2 rättas endast om Du är godkänd på del A1 (≥6p).

9. 5p

Konstruera ett grindnät som omkodar BCD-kod (samma som binärkod, fast bara talen 0...9) till kodens 9-komplement i BCD-kod. Ex. talet 3 (0011) har 9-komplementet 6 (0110) eftersom 9 - 3 = 6.

- a) (1p) Ställ upp sanningstabellen $y_3y_2y_1y_0 = f(x_3x_2x_1x_0)$, använd don't care.
- **b**) (2p) Minimera funktionerna y_3 , y_2 , y_1 , y_0 , använd don't care.
- **c**) (1p) Rita kretsens schema med användande av valfria **grindar**. Antag att alla variabler även finns tillgängliga i inverterad form.
- **d)** (1p) Rita funktionen y_2 schema med bara användande av en 2:1 MUX av den typ som visas i figuren. Antag att alla variabler även finns tillgängliga i inverterad form.

10. 5p

En synkron Moore-automat har fyra tillstånd kodade som q_1q_0 00, 10,

- 11, 01. I tillståndet 11 är utsignalen z=1, annars 0. Automaten har en insignal w.
- **a**) (1p) Ställ upp den kodade tillståndstabellen $q_1^+q_0^+=f(q_1q_0,w)$.

b) (1p) Tag fram minimerade funktioner för nästa tillstånd och för utsignalen:

$$q_1^+ = f(q_1q_0, w)$$
 $q_0^+ = f(q_1q_0, w)$ $z = f(q_1q_0)$

c) (1p) Realisera räknaren med D-vippor och valfria grindar. Rita ett **fullständigt** schema över kretsen.

d) (2p) Ett *annat* synkront sekvensnät har tillståndsdiagrammet enligt figuren till höger. Minimera antalet tillstånd och rita **tillståndsdiagrammet** över det tillståndsminimerade sekvensnätet.

Del B: Designproblem.

Observera! Del B rättas endast om Du har mer än 11p på del A1+A2.

11. 4p

En synkron Moore-automat har en insignal w och en utsignal z. För ingångssekvensen w=1 följt av w=1 ska utsignalen bli z=1. För ingångssekvensen w=0 följt av w=0 ska utsignalen bli z=0. För alla övriga ingångssekvenser behålles utsignalens värde. Tag fram automatens **tillståndstabell**, vid behov – minimera den så långt det går. Rita automatens **tillståndsdiagram**.

Konstruera ett **asynkront sekvensnät** som frekvensdelar en symmetrisk fyrkantvåg *w* till en likadan fyrkantvåg *z* men med tredjedelen av frekvensen. Se figuren.

Svaret ska innehålla ett **tillståndsdiagram** (med 6 tillstånd) en **flödestabell**, och en lämplig **tillståndstilldelning** med en **exitations-tabell** som ger kapplöpningsfria nät. Du ska ta fram de hasardfria **uttrycken för nästa tillstånd**, och ett **uttryck för utgångsvärdet**, men Du behöver *inte* rita grindnäten.

Lycka till!

Inlämningsblad för del A Blad 1

(tas loss och lämnas in tillsammans med lösningarna för del A2 och del B)

Efternamn:		Förnamn:		
Personnummer:		_		

Skriv in dina svar för uppgifterna från del A1 (1 till 8)

Fråga	Svar
1 2/1/0	a) $f(x, y, z) = \{SoP\}_{normal} = ?$ b) $f(x, y, z) = \{SoP\}_{min} = ?$
2 2/1/0	a) x binärtal $x_3x_2x_1x_0$? b) c_4 ? Bitens värde?
3 1/0	$f(a,b,c,d) = \{PoS\}_{\min} = ?$
4 1/0	Q = f(A, B) = ? (namn?)
5 1/0	Y = f(A, B, C, D) = ?
6 1/0	CP
7 1/0	Rita in "critical path" i figuren. (Den väg Du baserar din siffra på). Minimal tid mellan klockpulser: t [ns] = ?
8 1/0	0 1
	3 2

Nedanstående del fylls i av examinatorn!

Del A1	Del A2	Del A2		Del B		Totalt	
Poäng	9	10	11	12	Summa	Betyg	