

1 **P-TYPE QUANTUM-WELL-BASE BIPOLAR TRANSISTOR DEVICE**
2 **EMPLOYING INTERDIGITATED BASE AND EMITTER FORMED WITH A**
3 **CAPPING LAYER**

5 CROSS-REFERENCE TO RELATED APPLICATION

7 This application is a continuation-in-part of co-owned U.S. Application Nos.
8 10/340,941 and 10/340,942, filed on January 13, 2003, herein incorporated by reference
9 in their entirety.

11 BACKGROUND OF THE INVENTION

13 1. Field of the Invention

15 This invention relates broadly to field of semiconductor devices (and associated
16 fabrication methodology) and, in particular, to semiconductor devices (and associated
17 fabrication methodology) that utilize modulation doped quantum well heterojunctions to
18 realize optoelectronic/electronic devices.

20 2. State of the Art

22 Modulation-doped quantum well heterojunction transistors - including well
23 known Pseudomorphic Pulsed Doped High Electron Mobility Transistors (Pulsed Doped
24 PHEMT), which are sometimes referred to as Pulsed Doped Modulation Doped Field
25 Effect Transistors (Pulsed Doped MODFET) or Pulsed Doped Two Dimensional Gas
26 Field Effect Transistors (Pulsed Doped TEGFET) - have become well recognized for
27 their superior low noise and high frequency performance and are now in demand in many
28 high frequency applications (e.g., front end amplifier in wireless communications
29 systems and in Monolithic Microwave and Millimeterwave IC (MMIC) designs).

1 GaAs/InGaAs/Al_xGa_{1-x}As is the III-V material system of choice for these devices
2 because of the ability to grow high optical/electrical quality epitaxial layers by molecular
3 beam epitaxy (MBE). Alternatively, strained silicon heterostructures employing silicon-
4 germanium (SiGe) layers have been used to produce such devices.

5

6 U.S. Patent No. 4,827,320 to Morkoc et al. discloses a pseudomorphic HEMT
7 (PHEMT) structure that employs a layer of strained InGaAs (undoped) between a GaAs
8 substrate and a layer of undoped AlGaAs to form a quantum well (QW) defined by the
9 strained InGaAs layer. A layer of n+ doped AlGaAs is formed on the undoped AlGaAs
10 layer. A layer of n+ GaAs is formed on the layer of n+ doped AlGaAs. The layer of n+
11 GaAs facilitates an ohmic contact to source/drain electrodes. A gate electrode of
12 aluminum is recessed below the layer of n+ GaAs and a portion of the n+ AlGaAs layer
13 by wet chemical etch and evaporation of aluminum.

14

15 The PHEMT structure has been very successful in producing microwave
16 transistors that operate well into the multi-gigahertz regime, initially being used
17 extensively in military systems and now finding their way into commercial products,
18 particularly in the area of cellular communications. In recent years, there has been a
19 growing interest in combining the PHEMT with optical capability because of the
20 difficulty in propagating very high frequency signals to and from the integrated circuit by
21 coaxial lines. Combining electronic with optoelectronic components monolithically gives
22 rise to the concept of the optoelectronic integrated circuit (OEIC). However, there are
23 serious problems encountered because of the dissimilar nature of the structures of the
24 FET, the pn junction laser, PIN diode, etc.

25

26 To achieve this goal, inversion channel heterojunction structures created from a
27 single epitaxial growth have been used to realize a range of optoelectronic devices
28 including lasers, detectors and field effect transistors (FETs). An exemplary inversion
29 channel heterojunction structure is described in Taylor and Kiely, "Theoretical and
30 Experimental Results for the Inversion Channel Heterostructure Field Effect Transistors",
31 IEE Proceedings-G, Vol. 140, No. 6, December 1993. In this structure, for the region

1 between the modulation doping layer and the gate of the semiconductor surface, the
2 doping of this region is substantially p type in order to provide a low resistance ohmic
3 contact for the gate of the FET.

4

5 However, the high p-type doping of this region creates many problems, including:

6 i) the effects of free carrier absorption makes formation of a vertical cavity
7 laser difficult;

8 ii) forming a depletion-type FET by implanting n-type dopant is difficult;
9 this difficulty stems from the difficulty in controlling the dopant density in the bulk
10 region; more specifically, compensating a large p density with a large n density to obtain
11 a lower p density is difficult to control in a bulk region (but much easier in a delta doped
12 region);

13 iii) controlling the threshold voltage of an enhancement type FET is
14 difficult because the input capacitance is a function of doping which is harder to control
15 than layer thickness; and

16 iv) producing effective current funneling for inducing lasing is difficult;
17 more specifically, it is very desirable to create a pn junction by N type implantation to
18 steer the current in this structure since this would be compatible with the overall approach
19 to building the FET devices; the heavy p doping bulk layers makes it difficult to create
20 junction isolation that has low leakage.

21

22 Heterojunction Bipolar Transistor (HBT) devices have also been developed for
23 high frequency applications. An HBT device includes a base layer structure disposed
24 between an emitter layer structure and a collector layer structure. The base layer
25 structure may utilize a graded composition (as described in U.S. Patent 6,037,616) or a
26 modulation doped QW structure (as described in U.S. Patent 5,003,366). A transferred-
27 substrate process may be used wherein the emitter is epitaxially grown on a substrate, and
28 the collector is epitaxially grown on the top of the sample. By depositing the collector as
29 a small feature on the top surface of the sample and etching a collector mesa, a minimum
30 collector capacitance is realized. At this point, the sample is flipped and mounted on a
31 low resistance ground plane, and the substrate below the emitter is removed by etching so

1 that processing of the emitter and base can begin in a conventional manner from the top
2 side. An exemplary transferred-substrate process for HBTs is described in D. Mensa et
3 al., "Transferred-substrate HBTs with 254 GHz F_T ," Electron. Lett., April 1999, 35(7),
4 pp. 605-606. These prior art devices provide for improved current gain and cutoff
5 frequency with respect to prior art silicon bipolar transistors. However, it is difficult to
6 realize a range of optoelectronic devices (including lasers, detectors, FET devices,
7 waveguide devices) from the epitaxial growth that is used to form such HBT devices.

8

9 SUMMARY OF THE INVENTION

10

11 It is therefore an object of the invention to provide a bipolar transistor device
12 suitable for high frequency applications that can be used to realize within a single
13 integrated circuit chip a wide range of optoelectronic devices (including lasers, detectors,
14 FET devices, complementary HFET devices with n-channel and p-channel control
15 elements respectively, etc).

16

17 It is another object of the invention to provide such a bipolar transistor device
18 with reduced base resistance and capacitance as well as reduced emitter resistance and
19 capacitance to thereby improve the frequency response characteristics of the device.

20

21 In accord with these objects, which will be discussed in detail below, a high
22 performance bipolar transistor device is realized from a series of layers formed on a
23 substrate, the series of layers including a first set of one or more layers each comprising
24 n-type dopant material, a second set of layers forming a p-type modulation doped
25 quantum well structure, and a third set of one or more layers each comprising n-type
26 dopant material. The first set of layers includes an n-type ohmic contact layer. A
27 collector terminal metal layer is deposited and patterned on one layer of the third set. On
28 both sides of the collector terminal metal layer, p-type ion implant regions and a
29 patterned base terminal metal layer (which contact the p-type modulation doped quantum
30 well structure) are formed in an interdigitated manner with respect to a patterned emitter
31 metal layer formed on the n-type ohmic contact layer. Preferably, a capping layer that

1 covers the sidewalls of the active device structure as well as the collector metal layer is
2 used to form the interdigitated base and emitter metal layers of the device. These features
3 reduce the base resistance and capacitance as well as reduce the emitter resistance and
4 capacitance and thus enable higher frequency operation. One or more of the metal layers
5 of the device are preferably formed from a composite metal structure (such as a NiInW
6 composite metal structure) that is transformed into a low resistance metal layer by a
7 rapid-thermal anneal operation.

8

9 Additional objects and advantages of the invention will become apparent to those
10 skilled in the art upon reference to the detailed description taken in conjunction with the
11 provided figures.

12

13 BRIEF DESCRIPTION OF THE DRAWINGS

14

15 FIG. 1A is a cross-sectional schematic showing the generalized construction of an
16 exemplary p-type quantum-well-base bipolar transistor in accordance with the present
17 invention;

18

19 FIG. 1B is a pictorial illustration of an exemplary configuration of the p-type
20 quantum-well-base bipolar transistor device of FIG. 1A;

21

22 FIG. 1C is a graph showing the generalized current-voltage characteristics of the
23 p-type quantum-well-base bipolar transistor device of FIG. 1A and 1B;

24

25 FIG. 2A is a schematic showing an exemplary layer structure made with group
26 III-V material in accordance with the present invention, and from which bipolar transistor
27 devices of the present invention can be made;

28

29 FIG. 2B shows the energy band diagram of the structure of FIG. 2A;

30

FIGS. 3A - 10 are schematic views of the structure of FIG. 2A during fabrication of an exemplary p-type quantum-well-base transistor from such structure; FIG. 3A is a cross-sectional schematic view of the structure showing the formation of the collector metal layer; FIG. 3B is an elevational schematic view of the collector metal layer; FIG. 4 is an elevational schematic view of the interdigitated base and emitter metal layer that is disposed on opposite sides of the collector metal layer; FIGS. 5A and 5B are cross-sectional schematic views of the structure showing the mesas upon which is formed the base metal layer and the emitter metal layer, respectively; FIGS. 6A and 6B are cross-sectional schematic views that show a capping layer (preferably a nitride film) that covers the mesas of FIGS. 5A and 5B as well as the active device structure; FIGS. 7A and 7B are cross-sectional schematic views that shows the result of a directional etching operation that exposes mesa areas for metal contact formation thereto; FIGS. 8A, 8B, 9A and 9B are cross-sectional schematic views that show the formation of the base metal layer and the emitter metal layer, respectively; and FIG. 10 an elevational schematic view of the completed device, including the interdigitated base and emitter metal layers.

16

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

18

The present invention builds upon novel device structures utilizing modulation-doped QW heterojunctions that do not suffer from the problems associated with the prior art PHEMT devices and HBT devices. Such novel device structures are described in detail in the following patent references: U.S. Patent 6,031,243; U.S. Patent Application No. 09/556,285 (Attorney Docket No. OPE-002), filed on April 24, 2000; U.S. Patent Application No. 09/798,316 (Attorney Docket No. OPE-004), filed on March 2, 2001; U.S. Patent Application No. 08/949,504 (Attorney Docket No. OPE-005), filed on October 14, 1997; U.S. Patent Application No. 10/200,967 (Attorney Docket No. OPE-005-CIP), filed on July 23, 2002; U.S. Application No. 09/710,217 (Attorney Docket No. OPE-006), filed on November 10, 2000; U.S. Patent Application No. 60/376,238 (Attorney Docket No. OPE-008-PROV), filed on April 26, 2002; and U.S. Application No. 10/280,892 (Attorney Docket No. OPE-012), filed on October 25, 2002; each of these references herein incorporated by reference in its entirety.

1

2 Turning now to FIG. 1A, a multi-layer sandwich structure in accordance with the
3 present invention, and from which devices of the present invention can be made, includes
4 a bottom dielectric distributed bragg reflector (DBR) mirror 12 formed on a substrate 10.
5 The bottom DBR mirror 12 typically is formed by depositing pairs of semiconductor or
6 dielectric materials with different refractive indices. When two materials with different
7 refractive indices are placed together to form a junction, light will be reflected at the
8 junction. The amount of light reflected at one such boundary is small. However, if
9 multiple junctions/layer pairs are stacked periodically with each layer having a quarter-
10 wave ($\lambda/4n$) optical thickness, the reflections from each of the boundaries will be added
11 in phase to produce a large amount of reflected light (e.g., a large reflection coefficient)
12 at the particular center wavelength λ_D . Deposited upon the bottom DBR mirror 12 is the
13 active device structure which consists of a p-type modulation doped quantum well
14 structure 20 sandwiched between a bottom n-type region (layers 14,16) and a top n-type
15 region 49. An undoped spacer layer 18 is disposed between the bottom n-type region and
16 the p-type modulation doped quantum well structure 20. An undoped spacer layer 22 is
17 disposed between the p-type modulation doped quantum well structure 20 and the top n-
18 type region 49.

19

20 More particularly, the bottom n-type ohmic contact layer(s) 14 enables the
21 formation of ohmic contacts thereto, such as the emitter terminal electrodes 60A, 60B.
22 Deposited on layer 14 are one or more n-type layer(s) 16. Preferably, the doping of
23 layer(s) 16 is such that it should not be depleted in any range of operation of the device,
24 i.e. the total doping in this layer should exceed the total doping charge contained in the
25 modulation doped layer of the p-type modulation doped QW structure 20 described
26 below. This layer 16 also serves optically as a small part of the lower waveguide
27 cladding for optical devices realized in this structure. Note that a majority of the lower
28 waveguide cladding is provided by the lower DBR mirror 12 itself. Deposited on layer
29 16 is an undoped spacer layer 18. Layers 14, 16 and 18 serve electrically as part of the
30 emitter of the p-type quantum well base bipolar transistor. In this configuration, layer 14
31 achieves low contact resistance for the emitter.

1

2 Deposited on layer 18 is a p-type modulation doped QW structure 20 that defines
3 one or more quantum wells (which may be formed from strained or unstrained
4 heterojunction materials) that serve electrically as part of base of the p-type quantum well
5 base bipolar transistor. Deposited on the p-type modulation doped QW structure 20 is an
6 undoped spacer layer 22 followed by an n-type region 49. The undoped spacer layer 22
7 and the n-type region 49 serve electrically as part of the collector of the p-type quantum
8 well base bipolar transistor. The n-type region 49 provides an ohmic contact for the
9 collector terminal electrode 62 of the p-type quantum well base bipolar transistor.

10

11 For the p-type quantum well base bipolar transistor, base terminal electrodes 58A,
12 58B are operably coupled to opposite sides of the p-type QW structure 20, emitter
13 terminal electrodes 60A, 60B are operably coupled to opposite sides of the n-type contact
14 layer 14, and a collector terminal electrode 62 is operably coupled to the top n-type
15 region 49 of the device. Preferably, the base terminal electrode 58A and emitter terminal
16 electrode 60A on the one side of the device have an interdigitated structure, while the
17 base terminal electrode 58B and emitter terminal electrode 60B on the other side of the
18 device also have an interdigitated structure. Such interdigitated structures decrease the
19 base terminal resistance as well as the emitter terminal resistance.

20

21 In addition, as will be discussed in detail hereinafter with reference to FIGS. 2A -
22 9, the device is preferably formed with a capping layer that is deposited to cover the
23 active device structure prior to metallization of the base terminal electrodes and the
24 emitter terminal electrodes. This capping layer, which is preferably a nitride film,
25 enables the base and emitter metal layer pattern to be moved in a lateral direction closer
26 to the active device structure, which also decreases the base terminal resistance and the
27 emitter terminal resistance. By decreasing such resistance values, the transconductance
28 (g_m) and cutoff frequency of the device is increased. In this manner, the device can be
29 used in higher frequency applications.

30

FIGS. 1B and 1C illustrate the operational characteristics of the p-type quantum-well-base bipolar transistor device of FIG. 1A. Under normal operation, the base terminal electrodes 58A, 58B are forward biased with respect to the emitter terminal electrodes 60A, 60B by a voltage level V_{BE} , and the collector terminal electrode 62 is forward biased with respect to the emitter terminal electrodes 60A, 60B by a voltage level V_{CE} as shown in FIG. 1B. For small values of V_{CE} , the device operates in the saturation region where the current I_C varies in a quasi-linear manner with respect to V_{CE} as shown in FIG. 1C. For larger values of V_{CE} , the device operates in the constant current region where the current I_C is substantially constant with respect to V_{CE} as shown in FIG. 1C.

The p-type quantum well base bipolar transistor is preferably integrated with one or more other devices, including transistor devices (such as n-type quantum well base bipolar transistors, complementary HFET transistors), optoelectrical devices (such as resonant cavity lasers, detectors, modulators, optical amplifiers) and passive optical devices (such as waveguides). Preferably, such devices are realized from the inversion quantum-well channel device structures as described in detail in the patent references incorporated by reference above. With these structures, a single fabrication sequence is used to make the devices, including the electrical devices (e.g., transistors) and the optoelectronic devices (e.g., laser/detector/modulator). In other words, a single set of n type and p type contacts, critical etches, dielectric depositions etc. are used to realize these devices simultaneously. The essential features of this device structure include 1) a modulation doped quantum well interface, 2) a refractory metal gate/emitter contact, 3) self-aligned channel contacts formed by ion implantation, 4) n-type metal contacts to the n-type ion implants and the bottom n-type layer, and 5) p-type metal contacts to the p-type layers.

To form a resonant cavity device where light enters into and/or is emitted from the device laterally (i.e., from a direction normal to the cross section of FIG. 1A), a diffraction grating and top dielectric mirror are formed over the active device structure. For resonant cavity lasing devices, the diffraction grating performs the function of

1 differacting light produced by the resonant cavity into light propagating laterally in a
2 waveguide which has the top dielectric mirror and bottom DBR mirror as waveguide
3 cladding layers. For resonant cavity detecting devices, the diffraction grating performs
4 the function of diffracting incident light that is propagating in the lateral direction into a
5 vertical mode, where it is absorbed resonantly in the resonant cavity.

6

7 Alternatively, light may enter (and/or exit) the resonant cavity in a vertical
8 direction through an optical aperture (not shown) in the top surface (or bottom surface) of
9 the device. In this case, the diffraction grating is omitted, and the top dielectric mirror
10 and bottom DBR mirror define a resonant cavity for the vertical emission (and/or
11 absorption) of light such that the device operates as a vertical cavity surface emitting
12 laser (detector).

13

14 The optical path length between the bottom DBR mirror and top dielectric mirror
15 preferably represents an integral number of 1/2 wavelengths at the designated
16 wavelength. The optical path length is controlled to enable this condition.

17

18 The epitaxial growth structures described above may be realized with a material
19 system based on group III-V materials (such as a GaAs/AlGaAs). Alternatively, strained
20 silicon heterostructures employing silicon-germanium (SiGe) layers may be used to
21 realize the multilayer structures described herein. FIG. 2A illustrates an exemplary
22 epitaxial growth structure utilizing group III-V materials for realizing the structure of
23 FIG. 1A and the optoelectrical/electrical/optical devices formed from this structure in
24 accordance with the present invention.

25

26 The structure of FIG. 2A can be made, for example, using known molecular beam
27 epitaxy (MBE) techniques. As shown, a first semiconductor layer 151 of AlAs and a
28 second semiconductor layer 152 of GaAs are alternately deposited (with preferably at
29 least seven pairs) upon a semi-insulating gallium arsenide substrate 149 in sequence to
30 form the bottom distributed bragg reflector (DBR) mirror 12. The number of AlAs layers
31 will preferably always be one greater than the number of GaAs layers so that the first and

1 last layers of the mirror are shown as layer 151. In the preferred embodiment the AlAs
2 layers 151 are subjected to high temperature steam oxidation to produce the compound
3 Al_xO_y so that a mirror will be formed at the designed center wavelength. This center
4 wavelength is selected such that all of the resonant wavelengths for the various cavities of
5 the array will be subject to high reflectivity. Therefore the thicknesses of layers 151 and
6 152 in the mirror are chosen so that the final optical thickness of GaAs and Al_xO_y are one
7 quarter wavelength of the center wavelength λ_D . Alternatively the mirrors could be
8 grown as alternating layers of one quarter wavelength thickness of GaAs and AlAs at the
9 designed wavelength so that the oxidation step is not used. In that case, many more pairs
10 are required (with typical numbers such as 22 pairs) to achieve the reflectivity needed for
11 efficient lasing.

12

13 Deposited upon the mirror is the active device structure which consists of two
14 HFET devices. The first of these is the p-channel HFET (PHFET) 11, which has one or
15 more p-type modulation doped quantum wells and is positioned with the gate terminal on
16 the bottom (i.e. on the mirror 12 just described) and the collector terminal above. The
17 second of these is an n-channel HFET (NHFET) 13, which has one or more n-type
18 modulation doped quantum wells and is positioned with the gate terminal on top and the
19 collector terminal below. The collector region of the NHFET device 13 also functions as
20 the collector region of the PHFET device 11. However, the collector terminal of the
21 NHFET device 13 is a p-type contact to p-type quantum well(s) disposed below (above)
22 the collector region, while the collector terminal of the PHFET device 11 is an n-type
23 contact to n-type quantum well(s) disposed above the collector region. Therefore a non-
24 inverted n-channel device is stacked upon an inverted p-channel device to form the active
25 device structure.

26

27 The active-device layer structure begins with layer 153 of N+ type GaAs that
28 enables the formation of ohmic contacts thereto (for example, when contacting to the
29 emitter terminal of a p-type quantum-well-base bipolar device, the cathode terminal of a
30 thyristor device, the gate terminal of an inverted p-channel HFET device, or the sub-
31 collector terminal of an n-channel HFET device). Layer 153 has a typical thickness of

1 1000-3000 Å and a typical n-type doping of $3.5 \times 10^{18} \text{ cm}^{-3}$. The N+ doped GaAs layer
2 153 corresponds to the ohmic contact layer 14 of FIG. 1A. Deposited on layer 153 is
3 layer 154 of n-type $\text{Al}_{x_1}\text{Ga}_{1-x_1}\text{As}$ with a typical thickness of 500-3000 Å and a typical
4 doping of $1 \times 10^{17} \text{ cm}^{-3}$. The parameter x_1 is preferably in the range between 70% and
5 80% for layer 154. This layer serves as part of the PHFET gate and optically as a small
6 part of the lower waveguide cladding of the device. Note that a majority of the lower
7 waveguide cladding for waves propagating in the guide formed by the optically active
8 region of the device is provided by the lower DBR mirror itself. The lower DBR mirror
9 causes the light to be guided partially as a dielectric waveguide and partially as a mirror
10 waveguide. Next are 4 layers (155a, 155b, 155c, and 155d) of $\text{Al}_{x_2}\text{Ga}_{1-x_2}\text{As}$. These 4
11 layers (collectively, 155) have a total thickness about 380-500 Å and where x_2 is about
12 15%. The first layer 155a is about 60-80 Å thick and is doped N+ type in the form of
13 delta doping. The second layer 155b is about 200-300 Å thick and is undoped. The third
14 layer 155c is about 80 Å thick and is doped P+ type in the form of delta doping. The
15 fourth layer 155d is about 20-30 Å thick and is undoped to form a spacer layer. This layer
16 forms the lower separate confinement heterostructure (SCH) layer for the laser, amplifier
17 and modulator devices. The n-type AlGaAs layer 154 and n-type AlGaAs layer 155a
18 correspond to the n-type layer(s) 16 of FIG. 1A, and the undoped AlGaAs layer 155b
19 corresponds to the undoped spacer layer 18 of FIG. 1A.

20
21 The next layers define the quantum well(s) that form the inversion channel(s)
22 during operation of the PHFET 11. For a strained quantum well, this includes a spacer
23 layer 156 of undoped GaAs that is about 10-25 Å thick and then combinations of a
24 quantum well layer 157 that is about 40-80 Å thick and a barrier layer 158 of undoped
25 GaAs. The quantum well layer 157 may be comprised of a range of compositions. In the
26 preferred embodiment, the quantum well is formed from an $\text{In}_{0.2}\text{Ga}_{0.8}\text{AsN}$ composition
27 with the nitrogen content varying from 0% to 5% depending upon the desired natural
28 emission frequency. Thus, for a natural emission frequency of $.98\mu\text{m}$, the nitrogen
29 content will be 0%; for a natural emission frequency of $1.3\mu\text{m}$, the nitrogen content will
30 be approximately 2%; and for a natural emission frequency of $1.5\mu\text{m}$, the nitrogen
31 content will be approximately 4-5%. The well barrier combination will typically be

1 repeated (for example, three times as shown), however single quantum well structures
2 may also be used. Unstrained quantum wells are also possible. Following the last barrier
3 of undoped GaAs is a layer 159 of undoped $\text{Al}_{x_2}\text{Ga}_{1-x_2}\text{As}$ which serves electrically as part
4 of the collector of the PHFET device 11 and is about $0.5\mu\text{m}$ in thickness. All of the
5 layers grown thus far form the PHFET device 11 with the gate contact on the bottom.
6 The layers between the P+ AlGaAs layer 155c and the last undoped GaAs barrier layer
7 158 correspond to the p-type modulation doped heterojunction QW structure 20 of FIG.
8 1A. Undoped AlGaAs layer 159 corresponds to the undoped spacer layer 22 of FIG. 1A.
9

10 Layer 159 also serves electrically as part of the collector of the NHFET device 13.
11 Deposited on layer 159 are two layers (collectively 160) of undoped GaAs of about 200-
12 250 Å total thickness, which form the barrier of the first n-type quantum well. Layer 160
13 is thicker than the normal barrier layer of about 100 Å because it accommodates the
14 growth interruption to change the growth temperature from 610°C (as required for
15 optical quality $\text{Al}_{x_2}\text{Ga}_{1-x_2}\text{As}$ layers) to about 530°C for the growth of InGaAs. Therefore
16 layer 160 includes a single layer 160a of about 150 Å and a barrier layer 160b of about
17 100 Å. The next layer 161 is the quantum well of $\text{In}_{0.2}\text{Ga}_{0.8}\text{As}$, which is undoped and
18 about 40-80 Å in thickness. It is noted that the n-type quantum well layer 161 need not
19 be of the same formulation as the p-type quantum well layer 157. The barrier layer 160b
20 of 100 Å and quantum well layer 161 may be repeated, e.g., three times. Then there is a
21 barrier layer 162 of about 10-30 Å of undoped GaAs which accommodates a growth
22 interruption and a change of growth temperature. Next there are four layers (collectively
23 163) of $\text{Al}_{x_2}\text{Ga}_{1-x_2}\text{As}$ of about 300-500 Å total thickness. These four layers (163) include
24 a spacer layer 163a of undoped $\text{Al}_{x_2}\text{Ga}_{1-x_2}\text{As}$ that is about 20-30 Å thick, a modulation
25 doped layer 163b of N+ type doping of $\text{Al}_{x_2}\text{Ga}_{1-x_2}\text{As}$ (with doping about $3.5 \times 10^{18} \text{ cm}^{-3}$)
26 that is about 80 Å thick, a spacer layer 163c of undoped $\text{Al}_{x_2}\text{Ga}_{1-x_2}\text{As}$ that is about 200-
27 300 Å thick, and a P+ type delta doped layer 163d of $\text{Al}_{x_2}\text{Ga}_{1-x_2}\text{As}$ (with doping about
28 $3.5 \times 10^{18} \text{ cm}^{-3}$) that is about 60-80 Å in thickness. Layers 163b and 163d form the top
29 plate and bottom plate of a parallel plate capacitor which forms the field-effect input to
30 all active devices. The doping species for layer 163d is preferably carbon (C) to ensure
31 diffusive stability. In contrast to layer 163b which is always depleted, layer 163d should

1 never be totally depleted in operation. For the optoelectronic device operation, layer 163
2 is the upper SCH region. The layers between the undoped GaAs barrier layer 160a and
3 the N+ AlGaAs layer 163b provide an n-type modulation doped heterojunction QW
4 structure 24. Undoped AlGaAs layer 163c corresponds to the undoped spacer layer 26 of
5 FIG. 1A.

6

7 One or more layers (collectively 164) of p-type $\text{Al}_{x_1}\text{Ga}_{1-x_1}\text{As}$ are deposited next to
8 form part of the upper waveguide cladding for the laser, amplifier and modulator devices.
9 Note that a majority of the upper waveguide cladding for waves propagating in the guide
10 formed by the optically active region of the device is provided by an upper dielectric
11 mirror as described below. The upper dielectric mirror causes the light to be guided
12 partially as a dielectric waveguide and partially as a mirror waveguide. Preferably, layer
13 164 has a thickness on the order of 500-1500 Å, and includes a first thin sublayer 164a
14 that is 10-20 Å thick and has a P+ doping of 10^{19} cm^{-3} and a second sublayer 164b that is
15 700 Å thick and has a P doping of $1 \times 10^{17} - 5 \times 10^{17} \text{ cm}^{-3}$. The parameter x_1 of layer 164 is
16 preferably about 70%.

17

18 Deposited next is an ohmic contact layer 165 (which may comprise a single layer
19 of GaAs or a combination of GaAs (165a) and InGaAs (165b) as shown). Layer 165 is
20 about 50-100 Å thick and is doped to a very high level of P+ type doping (about 1×10^{20}
21 cm^{-3}) to enable formation of ohmic contacts thereto (for example, when contacting to the
22 anode terminal of a thyristor device).

23

24 Alternatively, the active device structure may be described as a pair of stacked
25 quantum-well-base bipolar transistors formed on the bottom DBR mirror (layers
26 151/152). The first of these is an p-type quantum-well-base bipolar transistor
27 (comprising layers 153 through 159) which has one or more p-type modulation doped
28 quantum wells and is positioned with the emitter terminal on the lower side (i.e. on the
29 bottom mirror as just described) and the collector terminal on the upper side. The second
30 of these is an n-type quantum-well-base bipolar transistor (comprising layers 159 through
31 165b) which has one or more n-type modulation doped quantum wells and is positioned

1 with the emitter terminal on the top side and the collector terminal on the lower side
2 which is the collector of the p-type quantum-well-base bipolar transistor. Therefore a
3 non-inverted n-channel device is stacked upon an inverted p-channel device to form the
4 active device structure. In this configuration, the bottom n-type layers (layers 153
5 through 155a) and the undoped spacer layer 155b serve electrically as part of the emitter
6 of the p-type quantum-well-base bipolar transistor (as well as part of the cathode of a
7 thyristor device), the p-type QW structure (layers 155c though 158) serves electrically as
8 part of the base of the p-type quantum-well-base bipolar transistor, and spacer layer 159
9 serves electrically as part of the collector of the p-type quantum-well-base bipolar
10 transistor (as well as part of the collection of an n-type quantum-well-base bipolar
11 transistor). The n-type QW structure (layers 160a through 163b) serves electrically as
12 part of the base of an n-type quantum-well-base bipolar transistor. The top p-type layers
13 (layers 163d through 165b) and the undoped spacer layer 163c serve electrically as part
14 of the emitter of the n-type quantum-well-base bipolar transistor as well as part of the
15 anode of the thyristor device.

16

17 FIG. 2B shows the energy band diagram of the structure of FIG. 2A.

18

19 To form a resonant cavity device where light is input into and emitted from the
20 device laterally (i.e., from a direction normal to the cross section of FIG. 2A), a
21 diffraction grating (for example, as described in detail in U.S. Patent 6,031,243) and top
22 DBR mirror is formed over the active device structure described above. For vertical
23 cavity lasing devices, the diffraction grating performs the function of diffracting light
24 produced by the vertical cavity into light propagating laterally in a waveguide which has
25 the top DBR mirror and bottom DBR mirror as waveguide cladding layers and which has
26 lateral confinement regions (typically formed by implants as described herein in more
27 detail). For vertical cavity detecting devices, the diffraction grating performs the function
28 of diffracting incident light that is propagating in the lateral direction into the vertical
29 cavity mode, where it is absorbed resonantly in the vertical cavity.

30

1 Alternatively, light may enter and exit the resonant vertical cavity vertically
2 through an optical aperture in the top surface of the device. In this case, the diffraction
3 grating is omitted, the top DBR mirror defines a cavity for the vertical emission and
4 absorption of light, and the device operates as a vertical cavity surface emitting
5 laser/detector. The distance between the top DBR mirror and bottom DBR mirror
6 preferably represents an integral number of 1/2 wavelengths at the designated
7 wavelength. Preferably, the thickness of layer 164 and/or layer 159 is adjusted to enable
8 this condition.

9

10 The structure of FIGS. 2A and 2B may also be used to realize various transistor
11 devices (including p-type quantum-well-base bipolar transistors, n-type quantum-well-
12 base bipolar transistors, n-channel HFET devices, p-channel HFET devices) as well as
13 waveguide devices as described in detail in the patent references incorporated by
14 reference above.

15

16 FIGS. 3A through 9 illustrate cross-sectional views and elevational views of the
17 multilayer structure of FIG. 2A during the fabrication of an exemplary p-type quantum-
18 well-base bipolar transistor. The operations begin by implanting n-type ions, which
19 preferably comprise silicon ions through the top p-type structure (layers 163d through
20 layer 165b). The n-type implanted ions may include impurities, such as silicon fluoride
21 molecules, which aid in reducing the activation temperature for the implanted ions. The
22 n-type implanted ions are subsequently activated by a rapid-thermal-anneal (RTA)
23 operation as described below to form an n-type region 49. The n-type implant region 49
24 serves electrically as part of the collector of the p-type quantum well base bipolar
25 transistor, and thus will be covered by collector metal layer 174 as described below.
26 Preferably, the N-type implant region 49 extends to a depth near layer 162 as shown in
27 FIG. 3A. In this configuration, layers 159 through 162 correspond to the undoped spacer
28 layer 22 of FIG. 1A for the p-type quantum well base bipolar transistor.

29

30 A metal layer 174 and capping layer 181 are deposited and defined over the n-
31 type implant region 49. The capping layer 181, which preferably comprises a silicon

1 nitride film, covers the metal layer 174 as shown in FIG. 3A. The metal layer 174 forms
2 the collector terminal as best shown in the elevational view of FIG. 3B. Preferably, the
3 metal layer 174 comprises a composite metal structure formed by depositing Nickel (Ni),
4 Indium (In) and Tungsten (W) metals, which is transformed during an RTA operation as
5 set forth below into a thermally-stable low resistance metal layer in contact with the n-
6 type implant region 49. Exemplary NiInW composite metal structures are described in
7 Murakami et al., "Thermally stable ohmic contacts to n-type GaAs. VIII Sputter-
8 deposited InAs contacts," J. Appl. Physics, Vol. 68, No. 5, 1990, pgs. 2475-2481; and
9 Hallili et al., "Thermally stable ohmic contacts to n-type GaAs. IX. NiInW and
10 NiIn(Mn)W Contact Metals," J. Appl. Physics, Vol. 70, No. 12, 1991, pgs. 7443 -7448,
11 herein incorporated by reference in their entireties. Such composite metal structures
12 include an InAs/W multilayer structure, an InAs/Ni/W multilayer structure, an
13 Ni/InAs/Ni/W multilayer structure, and Ni/Ni-In/Ni/W multilayer structure (where the
14 Ni-In layer is formed by codeposition of Ni and In). In the preferred embodiment of the
15 present invention, the same composite metal structure is used to form low resistance
16 metal contact layers to both the n-type and p-type GaAs conduction channels of the
17 device.

18

19 The resultant structure is subjected to patterning and etching operations that
20 expose two sets of interdigitated mesa regions 183, 185 on each side of the collector
21 metal layer 174 as shown in FIG. 4. The mesa regions 183 are formed at (or near) layer
22 158 as shown in FIG. 5A, and the mesa regions 185 are formed at (or near) layer 153 as
23 shown in FIG. 5B. The mesa regions 183 are used to form contacts to the p-type QW
24 structure (layers 155c through 158) as part of the base terminal electrode of the device.
25 The mesa regions 185 are used to form contacts to the bottom n-type ohmic contact layer
26 153 as part of the emitter terminal electrode of the device. Preferably, a mask covers the
27 capping layer 181 (and the metal layer 174 thereunder) during a directional plasma
28 etching operation that forms sidewalls that extend from the edges of the top capping layer
29 181 down in a substantially-vertical direction to the mesa regions 183 and 185.

30

1 P-type ions are implanted into the mesa regions 183 on both sides of the collector
2 metal layer 174. When activated, the p-type ions form p-type implant regions 171 as
3 shown in FIG. 5A. Advantageously, the p-type implant regions 171 are self-aligned by
4 the collector metal layer 174 as shown. The p-type ions used for the p-type implant
5 regions 171 may comprise magnesium ions and possibly phosphorous ions.
6 Alternatively, the p-type ions may comprise beryllium (and possibly other impurities,
7 such as fluorine, that control diffusion of the p-type ions during RTA activation).
8 Moreover, other impurities, such as manganese, may be implanted in conjunction with
9 the p-type ions in order to lower the potential barrier between the composite metal
10 structure of layer 188 and the p-type implant regions 171 upon thermal transformation as
11 described below.

12

13 The resultant structure is then covered with a capping layer 187 as shown in
14 FIGS. 6A and 6B. The capping layer 187 is preferably realized by a nitride film.

15

16 The capping layer 187 is then subject to a directional plasma etching operation
17 that removes portions of the capping layer 187 over the mesa regions 183, 185 as shown
18 in FIGS. 7A and 7B. The directional plasma etching operation also removes portions of
19 the capping layer 187 that covers the top capping layer 181. Importantly, the top capping
20 layer 181 (or portions thereof) remains in place to protect against shorts between the
21 metal layer 174 and the metal layers 189, 191 as described below.

22

23 The resultant structure is then covered with a metal layer 188 as shown in FIGS.
24 8A and 8B. Preferably, the metal layer 188 comprises a composite metal structure
25 formed by depositing Nickel (Ni), Indium (In) and Tungsten (W) metals. For those
26 portions of the NiInW composite metal structure that interface to the p-type implant
27 regions 171, such NiInW composite metal portions are transformed during an RTA
28 operation as set forth below into a thermally-stable low resistance metal layer in contact
29 with the p-type implant regions 171. Similarly, for those portions of the NiInW
30 composite metal structure that interface to the n-type contact layer 153, such NiInW
31 composite metal portions are transformed during an RTA operation as set forth below

1 into a thermally-stable low resistance metal layer in contact with the n-type contact layer
2 153. In this manner, the same NiInW composite metal structure is used to form low
3 resistance metal contact layers to both the n-type and p-type GaAs conduction channels
4 of the device. Exemplary NiInW composite metal structures are described in the articles
5 to Murakami et al. and Hallili et al., which are incorporated by reference above. Such
6 composite metal structures include an InAs/W multilayer structure, an InAs/Ni/W
7 multilayer structure, an Ni/InAs/Ni/W multilayer structure, and Ni/Ni-In/Ni/W multilayer
8 structure (where the Ni-In layer is formed by codeposition of Ni and In).

9

10 The device structure is then subjected to an RTA operation on the order of 800°C
11 to 900°C (or greater). The RTA has two primary purposes. First, it activates all of the
12 implants to form the n-type implant region 49 and the p-type implant regions 171.
13 Secondly, it transforms the composite metal structure of layers 174 and 188 to form low
14 resistance metal contact layers to both the n-type and p-type conduction channels of the
15 device. Also note that during the RTA, the metal composite layers 174 and 188 provide
16 barrier layers to out-diffusion of the particular implanted ion species that underlies such
17 layers.

18

19 The metal layer 188 is then patterned and etched to form the base terminal
20 electrode portions 189 and the emitter terminal electrode portions 191 of the p-type
21 quantum-well-base bipolar transistor device. The base terminal electrode portions 189
22 cover the mesa regions 183 and corresponding p-type implants 171 as shown in FIG. 9A.
23 The emitter terminal electrode portions 191 cover the mesa regions 185 at the n-type
24 contact layer 153 as shown in FIG. 9B. In addition, the device is isolated from other
25 devices by an etch down to the semi-insulating substrate 149, which includes an etch
26 through the mirror pairs 151/152 of AlAs/GaAs as shown in FIGS. 9A and 9B.

27

28 Preferably, the metal layer 188 is patterned by a wet etchant that removes only
29 those portions of the metal layer 188 that overlie the capping layer 187 (these portions do
30 not interface to the p-type and n-type contacts of the device layers and are not
31 transformed during RTA). The wet etchant does not react with those portions of the

1 metal layer 188 that interface to the p-type and n-type contacts of the device layers (and
2 which are transformed to a low resistance contact metal structure during RTA). An
3 example of such a wet etchant suitable for use with the exemplary NiInW composite
4 metal structures is sold by the Transene Company under the name TFG. Note that
5 during the RTA, the Ni/Ni-In/Ni/W composite structure that overlies the GaAs-based
6 layers of the mesa regions 183,185 interacts with the GaAs layers thereunder to transform
7 part of the composite structure adjacent to such mesa regions 183,185 to InGaAs. The
8 wet etchant does not attack these InGaAs structures yet attacks the Ni-based composite
9 structures that overlie the capping layer 187, thus leaving behind the InGaAs structures as
10 an appropriate ohmic contact (p-type for base, or n-type for emitter) to the
11 underlying GaAs layers. Preferably, the isolation etch down to the semi-insulating
12 substrate 149 is accomplished by a directional plasma etching operation.

13

14 Finally, the device may be oxidized in a steam ambient to convert layers 151 to
15 AlO, which form the bottom DBR mirror. During this oxidation step, the exposed
16 sidewalls of the etched AlGaAs layers are passivated by the formation of very thin layers
17 of oxide. In addition, dielectric layers (not shown) are deposited to form the top DBR
18 mirror for resonant cavity devices as described below. Preferably, the dielectric layers
19 comprise SiO₂ and a high refractive index material such as GaAs, Si, or GaN.

20

21 A plan schematic view of the resultant p-type quantum well base bipolar transistor
22 device is shown in FIG. 10. Note that the process methodology described above enables
23 the offset (in the lateral direction) between the active device structure and the base metal
24 layer pattern 189 and the emitter metal layer pattern 191, respectively, to substantially
25 correspond to the thickness of the capping layer 187. Preferably, the thickness of the
26 capping layer 187 can be made small (on the order of 200Å to 500 Å). By reducing this
27 offset, the base terminal resistance and the emitter terminal resistance are decreased. By
28 decreasing such resistance values, the transconductance (g_m) and cutoff frequency of the
29 device is increased. In this manner, the device can be used in higher frequency
30 applications.

31

1 For a high performance p-type quantum-well-base bipolar transistor device, it is
2 preferable that the effective area of the base-collector junction in addition to the effective
3 area of the base-emitter junction be minimized. This reduces the base-collector
4 capacitance and the base-emitter capacitance, and thus provides for higher frequency
5 operation. Moreover, it is preferable that the resistance of the base terminal, the
6 resistance of the collector terminal and the resistance of the emitter terminal be
7 minimized to provide for higher frequency operation.

8

9 In the p-type quantum-well-base bipolar transistor device of FIGS. 3 through 10,
10 the effective area of the base-collector junction is controlled by the dimensions of the
11 collector electrode metal layer 174. The resistance of the collector is minimized by
12 controlling the doping concentration of the collector contact (N+ implant 49). Finally,
13 the effective area of the base-emitter junction in addition to the base terminal resistance
14 and emitter terminal resistance are minimized by interdigitization of the P+-type implants
15 171/base electrode portions 189 with respect to the emitter electrode portions 191 on both
16 sides of the collector metal layer 174. As shown in FIGS. 5A through 9A, the P+
17 implants 171 are formed in selected areas on both sides of the collector metal layer 174.
18 Importantly, these implants 171 are deep to a point near the dielectric layer 151, which
19 reduces the effective area of the base-emitter junction, and eliminates much of the
20 capacitance between the base and the emitter (e.g., the capacitance is reduced to that
21 which exists along the sidewalls of the implants 171). Advantageously, the finger
22 regions of metal layers 189/191 that are part of the base terminal electrode 58 and emitter
23 terminal electrode 60 as shown in FIG. 10 provide very low base terminal resistance and
24 emitter terminal resistance, respectively. In addition, because the implants are 171 are
25 self-aligned to the metal layer 174, the width of the metal layer 174 may be minimized
26 (preferably, to sub-micron widths). All of these features contribute to higher frequency
27 operation of the device.

28

29 For high performance quantum-well-base bipolar transistor devices, it is also
30 preferable that the vertical distance between the QW base and the emitter /collector of the
31 device be minimized. Such reduced vertical dimensions reduce the transit time delay of

1 charge passing therethrough, and thus provides for higher frequency operation.
2 Advantageously, the vertical dimension between the n-type ohmic contact layer 153 and
3 the top electrode metal layer 174 can be made small (e.g., on the order of 370 - 655 Å) to
4 provide for high frequency operation.

5

6 There are many advantages gained by the p-type quantum-well-base transistor
7 device structures described herein including high frequency operation. Moreover, a
8 broad array of optoelectronic devices and electronic devices can be integrated therewith
9 to form a monolithic optoelectronic integrated circuit suitable for many diverse
10 applications. Such devices include an optoelectronic thyristor. The thyristor has unique
11 properties of sensitive detection in its OFF state and laser emission in its ON state. The
12 thyristor structure may be used as a digital modulator, a transceiver, an amplifier and a
13 directional coupler. These devices may be realized as either waveguide or vertical cavity
14 devices. The vertical cavity construction enables resonant cavity operation of all device
15 modes. In addition to the multiple optoelectronic devices, a wide array of transistor
16 devices (including complementary HFET devices and complementary quantum-well-base
17 bipolar transistors) are implementable.

18

19 There have been described and illustrated herein several embodiments of a p-type
20 quantum-well-base bipolar transistor. While particular embodiments of the invention
21 have been described, it is not intended that the invention be limited thereto, as it is
22 intended that the invention be as broad in scope as the art will allow and that the
23 specification be read likewise. Thus, while particular layers have been described with
24 particular thicknesses and with particular types and strengths of dopings, it will be
25 appreciated that certain transition layers could be removed and/or additional layers and/or
26 sublayers could be utilized, and further that the layers could have different thicknesses
27 and be differently doped. Also, while particular layers have been described with
28 reference to their percentage content of certain constituents, it will be appreciated that the
29 layers could utilize the same constituents with different percentages, or other
30 constituents. Additionally, while particular formation and metallization techniques have
31 been described, it will be appreciated that the described structures can be formed in other

1 manners, and other metals can be used. For example, it is contemplated that the collector
2 of the p-type quantum-well-base bipolar transistor device of FIGS. 3 through 10 can be
3 formed by etching away portions of the top of multilayer structure of FIG. 2A prior to
4 implantation of the n-type implant 49 and metallization of the collector metal pattern.
5 These operations are similar to those described in detail in U.S. Application Nos.
6 10/340,941 and 10/340,942, filed on January 13, 2003, incorporated by reference above
7 in their entirety. Further, while particular arrangements of bipolar transistors (as well as
8 FET transistors, optical emitters, detectors, modulators, amplifiers, etc. formed from the
9 described semiconductor structure) have been described, it will be appreciated that other
10 devices can be made from the provided structure and components. It will therefore be
11 appreciated by those skilled in the art that yet other modifications could be made to the
12 provided invention without deviating therefrom.