

EL CERTAMEN CONSTA DE 8 PÁGINAS CON 20 PREGUNTAS EN TOTAL. TIEMPO: 105 MINUTOS

SIN CALCULADORA.

SIN TELÉFONO CELULAR

1. Considere el vector $\vec{V} = 6 \hat{i} + 8 \hat{j}$. Entonces, un vector perpendicular a \vec{V} y de módulo 10 es:

B)
$$-2\hat{i} + 8\hat{j}$$

C)
$$-6\hat{i} - 8\hat{j}$$

D)
$$-8\hat{i} + 6\hat{j}$$

E)
$$-6\hat{i} + 8\hat{j}$$

2. La rapidez instantánea de cambio, V_V , del volumen de agua en un estanque varía con el tiempo según el gráfico adjunto. En el instante t = 40 [s] el volumen de agua en el estanque es 220 [m³]. Entonces, el volumen de agua en t = 0 es igual a:

E) 0

3. Para que los vectores $\vec{p}=6\hat{i}+12\hat{j}$ y $\vec{q}=2\hat{i}-\epsilon\hat{j}$ tengan la misma dirección y sentido, el valor del escalar ϵ debe ser igual a :

- A) 2
- B) 4
- C) 4
- D) -2

E) diferente de los anteriores.

4. Un recipiente cónico de radio R [cm] y altura H = 4R [cm] tiene un agujero en el fondo. En t = 0 el recipiente está lleno de agua hasta el borde y, luego de 2 [s], el nivel de agua ha bajado a la mitad de su valor inicial.

Entonces, usando $\pi\approx 3\,,$ la rapidez media de cambio del volumen de agua contenido en el recipiente, entre los instantes 0 y 2[s] es igual a:

B)
$$-R^3 \left[\frac{cm^3}{s} \right]$$

C)
$$\frac{7}{4}R^3\left[\frac{cm^3}{s}\right]$$

D)
$$-\frac{7}{4}R^3\left[\frac{cm^3}{s}\right]$$

E)
$$-\frac{7}{2}R^3\left[\frac{cm^3}{s}\right]$$

5. El nivel del agua en el estanque B varía con el tiempo según el gráfico adjunto. Entonces, en el instante t = 300[min], la rapidez instantánea de cambio del nivel de agua en el estanque B es aproximadamente :

- A) 0,02[m/min]
- B) -0,02[m/min]
- C) -0,01[m/min]
- D) 0,06[m/min]
- E) -0.06[m/min]

6. Una partícula se mueve en el plano XY con velocidad constante. En t = 0 la partícula pasa por el punto P indicado en la figura, y 2[s] después pasa por el origen O del sistema de coordenadas. Entonces, el vector velocidad de la partícula es :

A)
$$(-4\hat{i}-8\hat{j})[m/s]$$

B)
$$(-4\hat{i}+8\hat{j})[m/s]$$

C)
$$(4 \hat{i} - 8 \hat{j})[m/s]$$

D)
$$(4 \hat{i} + 8 \hat{j})[m/s]$$

- E) diferente de las anteriores
- **7.** Un objeto es lanzado verticalmente hacia arriba con rapidez inicial v_0 . El roce del aire es despreciable. El gráfico que mejor representa la componente v_y del vector velocidad del objeto es:

8. Una bola de billar choca con la "banda" (borde elástico de la mesa de billar). Los vectores velocidad de la pelota, antes y después de golpear la banda, tienen igual magnitud y están indicados en la figura (vista desde arriba de la mesa).

De los siguientes vectores, el que mejor representa al vector *cambio de velocidad* $\Delta \vec{v}$ de la pelota es:

9. La figura muestra dos vectores *unitarios* \hat{n} y \hat{p} . Entonces, el vector $\vec{s} = \hat{n} - \hat{p}$ es igual a:

A)
$$(\operatorname{sen}\alpha - \operatorname{cos}\beta)\hat{i} + (\operatorname{cos}\alpha - \operatorname{sen}\beta)\hat{j}$$

B)
$$(\cos \alpha + \cos \beta)\hat{i} - (\sin \alpha + \sin \beta)\hat{j}$$

C)
$$(\cos \alpha + \cos \beta)\hat{i} + (\sin \alpha - \sin \beta)\hat{j}$$

D)
$$(sen\alpha - sen\beta)\hat{i} + (cos\alpha + cos\beta)\hat{j}$$

E)
$$(\cos \alpha - \sin \beta)\hat{i} + (\sin \alpha - \cos \beta)\hat{j}$$

10. El triángulo rectángulo PQR de la figura tiene una altura PQ=15[cm]. Los ángulos α y β cumplen con la relación: $sen \alpha = \sqrt{2} \cdot sen \beta$.

Entonces, si $\alpha = 45^{\circ}$, el largo del trazo QR, expresado en [cm], es :

- A) $5\sqrt{3}$
- B) $15\sqrt{3}$
- C) 15
- D) 45/4
- E) $15/\sqrt{2}$

- **11.** El peso de un bebé en gestación varía en función del tiempo según el gráfico adjunto. De las siguientes afirmaciones:
 - I. En el intervalo entre 24 y 39 semanas, la rapidez media de cambio del peso es, aproximadamente, 0,2 [Kg/semana].
 - II. La rapidez instantánea de cambio del peso es máxima entre las semanas 30 y 36.
 - III. La aceleración media de cambio del peso es negativa en el intervalo entre 24 y 33 semanas.

Son verdaderas:

- A) IyII
- B) IyIII
- C) II y III
- D) Todas
- E) Ninguna
- **12.** Magdalena y Nidia corren en bicicleta una carrera de 1[km], con rapideces constantes V_M y V_N respectivamente. Magdalena corre a 30[km/h]. Nidia demora 1[min] más que Magdalena en llegar a la meta. Entonces, la razón V_M/V_N entre las dos rapideces es igual a :
 - A) $\frac{2}{3}$
 - B) 3
 - C) $\frac{1}{2}$
 - D) $\frac{3}{2}$
 - E) 2

13. Dos automóviles P y Q se mueven en el mismo sentido por una carretera recta. El automóvil Q viaja con rapidez constante de 10[m/s]. En t = 0 el automóvil P está 40 [m] detrás de Q, moviéndose a 30[m/s], y desacelerando uniformemente. En el instante t' el auto P sobrepasa a Q.

La pareja de gráficos que mejor representa el enunciado es:

14. Una nave espacial recorre una recta y luego una semicircunferencia, moviéndose siempre con rapidez constante de 2[UA/año]. La nave demora 0,5[año] en llegar desde S hasta P. Entonces, en ese intervalo de tiempo, el *vector aceleración media* de la nave vale:

D)

E)

A)
$$(-4\hat{i} + 4\hat{j})$$
 [UA/año²]

D)
$$(-4\hat{i} - 4\hat{j})$$
 [UA/año²]

15. Un avión vuela con una velocidad de 100[m/s] hacia el norte, con respecto al aire. En cierto instante ingresa a una zona donde el viento tiene una velocidad de 15[m/s] en dirección S37°O (37° al oeste del sur), con respecto al suelo.

Entonces, el vector velocidad del avión respecto al suelo, en la zona con viento es:

- A) 85 î [m/s]
- B) 115 j [m/s]
- C) $(9 \hat{i} + 88 \hat{j})[m/s]$
- D) $(-9 \hat{i} + 88 \hat{j})[m/s]$
- E) $(-9 \hat{i} + 112 \hat{j})[m/s]$

16. La concentración de un compuesto químico en un reactor, varía con el tiempo según la expresión: $C(t) = \frac{\beta}{t}$, siendo β una constante positiva. La rapidez media de cambio \overline{V}_C de la concentración, en el intervalo entre t y $t+\Delta t$, puede expresarse como:

- A) $-\frac{\beta}{t^2}$
- B) $\frac{\beta}{t \cdot \Delta t}$
- C) $-\frac{\beta}{t \cdot \Delta t}$
- D) $-\frac{\beta}{t \cdot (t + \Delta t)}$
- $\mathsf{E}) \quad \frac{\beta}{\mathsf{t} \cdot (\mathsf{t} + \Delta \mathsf{t})}$

17. En el gráfico adjunto se muestra la rapidez media de cambio de una variable F, para los intervalos de tiempo indicados. De las siguientes afirmaciones:

- I. En el intervalo entre 0 y 6T, la rapidez media de cambio de F es igual a cero.
- II. Entre los instantes 0 y 3T, la variable F aumentó en $12[\alpha]$

III. El valor de la variable F en el instante T es mayor que su valor en 3T.

Son verdaderas:

- **18.** Una bolita se deja caer desde una altura de 2,5[m] y, simultáneamente, desde el suelo se lanza otra bolita verticalmente hacia arriba, con rapidez inicial V_0 . Las bolitas se cruzan al cabo de 0,5[s]. Entonces la rapidez V_0 es:
 - A) 10[m/s]
 - B) 12,5[m/s]
 - C) 2,5[m/s]
 - D) 5,0[m/s]
 - E) 7,5[m/s]
- **19.** Una partícula se mueve a lo largo del eje x con aceleración constante $\vec{a} = -2\hat{i} [m/s^2]$. En t = 0 pasa por el origen O con velocidad $\vec{v} = 4\hat{i} [m/s]$. Entonces, la partícula pasa por el punto P, ubicado en $x_p = +3,0[m]$,

- A) en t = 1[s] y en t = 2[s]
- B) en t = 1[s] y en t = 3[s]
- C) en t = $(2-\sqrt{7})[s]$ y en t = $(2+\sqrt{7})[s]$
- D) sólo en t = 1[s]
- E) sólo en t = 3[s]
- **20.** Dos móviles P y Q se mueven sobre el eje x, de modo que las componentes v_x de sus vectores velocidad varían con el tiempo según el gráfico adjunto. Las posiciones de los móviles coinciden en el instante t = T. Entonces, la distancia entre P y Q en el instante t = 0 es igual a :

- B) $\frac{1}{4}V_0T$
- C) $\frac{1}{8}V_{0}T$
- D) $\frac{3}{8}V_{0}T$
- E) ninguno de las anteriores

CORRECTAS CERTAMEN 2 FIS 100 1^{ER} SEMESTRE 2008

FORMAS	R	S	Т	U
1	В	D	Е	С
2	В	Α	Е	D
3	Α	В	С	D
4	В	D	Е	С
5	D	Е	Α	В
6	D	Α	D	С
7	С	С	С	С
8	D	D	D	D
9	В	С	D	Е
10	В	Α	С	Е
11	Α	Α	Α	Α
12	Е	D	С	Α
13	Е	Е	Е	E
14	Е	Α	С	D
15	C	D	Α	В
16	E	D	Α	В
17	AyC	AyC	AyC	AyC
18	В	D	E	Α
19	D	В	Е	Α
20	С	D	Α	В