Armazenamento de Documentos XML em SGBDs Objeto-Relacionais

Vanessa Braganholo

XML em diferentes contextos

Como armazenar?

- 1. Sistema de arquivos
- 2. SGBD Relacional/Objeto Relacional
 - Mapeamento "manual"
 - 2. Com suporte a XML
 - Habilitado a XML
 - 2. Híbrido
- Banco de Dados XML Nativo

1 – Sistema de arquivos

- Vantagens
 - Flexível
- Desvantagens
 - Segurança
 - Impossibilidade de otimização de consultas (ausência de índices, etc.)

2 – Banco de Dados com suporte a XML

Alternativas:

- Fazer mapeamento "na mão"
 - Genérico ou
 - Específico para uma DTD ou XML Schema
- Utilizar um banco de dados Habilitado a XML
 - SGBDs com extensões para transferir dados entre documentos XML e suas estruturas.
- Utilizar um banco de dados híbrido
 - SGBD relacional/objeto-relacional que possui suporte a armazenamento XML nativo

3 – Banco de Dados Nativo

SGBDs que armazenam XML em sua forma nativa, geralmente como texto indexado ou como uma variante do DOM mapeado para uma estrutura proprietária

Fazendo o mapeamento "na mão"...

O princípio...

- Proposta publicada em 1993 (ABITEBOUL; CLUET; MILO; 1993) intitulada "Querying and Updating the file" sugeria usar a tecnologia relacional para consultar arquivos textuais
 - Para isso, seria necessário armazenar tais arquivos em BDs relacionais
 - Idéia: explorar a estrutura intrínseca de arquivos tais como arquivos SGML, código fonte, etc., para armazenálos no BD

XML

- XML possui tal estrutura intrínseca, e portanto poderia se beneficiar das idéias lançadas em 93
- Várias propostas específicas para armazenamento de XML surgiram ao longo dos anos:
 - ▶ (FLORESCU; KOSSMANN, 1999)
 - ▶ (DEUTSCH; FERNANDEZ; SUCIU, 1999)
 - ► (SHANMUGASUNDARAM et al., 1999)
 - ▶ (LEE; CHU, 2000)
 - ▶ (CHEN; DAVIDSON; ZHENG, 2002, 2003)

Consultas

- Mas não basta só armazenar os docs XML
- É necessário também poder consultá-los
- Propostas que exploram este problema são:
 - ► (SHANMUGASUNDARAM et al., 1999)
 - MANOLESCU; FLORESCU; KOSSMANN, 2001)
 - ► (SHANMUGASUNDARAM et al., 2001)
 - ► (TATARINOV et al., 2002)
 - ▶ (DEHAAN et al., 2003)

Tipos de proposta

Armazenamento:

- Técnicas que exploram a estrutura do XML (elementos, atributos, relação pai-filho)
 - ► (FLORESCU; KOSSMANN, 1999)
 - ▶ (DEHAAN et al., 2003)
 - ► (TATARINOV et al., 2002)
- Técnicas que exploram o esquema do doc. XML (DTD ou XML Schema)
 - ► (SHANMUGASUNDARAM et al., 1999)
- Técnicas que exploram alguma relação semântica entre os dados (ex. dependências funcionais)
 - ▶ (CHEN; DAVIDSON; ZHENG, 2002, 2003)
 - ▶ (LEE; CHU, 2000)

Técnicas que exploram a estrutura do modelo XML

Documentos a serem armazenados

(FLORESCU; KOSSMANN, 1999)

```
(person id=1, age=55)
      (name)Peter(/name)
      (address)4711 Fruitdale Ave.(/address)
      (child)
            (person id=3, age=22)
                   (name)John(/name)
                   (address)5361 Columbia Ave.(/address)
                   (hobby)swimming(/hobby)
                   (hobby)cycling(/hobby)
            (/person)
      (/child)
      (child)
             (person id=4, age=7)
                   (name)David(/name)
                   (address)4711 Fruitdale Ave.(/address)
            (/person)
      (/child)
(/person)
```

Proposta *Edge* (Aresta)

Armazenar todos os documentos em uma única tabela chamada *Edge*

Nome do elemento ou atributo

Edge(<u>source</u>, <u>ordinal</u>, name, flag, target)

id que indica o documento XML

Numero para preservar a ordem entre os elementos de um mesmo documento

Proposta *Edge* (Aresta)

- Armazenar todos os documentos em uma única tabela chamada Edge
 - Edge(source, ordinal, name, flag, target)
- Para armazenar os valores, uma tabela V para cada tipo:
 - V_{type}(<u>vid</u>, value)

Proposta *Edge* (Aresta)

- Armazenar todos os documentos em uma única tabela chamada Edge
 - Edge(source, ordinal, name, flag, target)
- Para armazenar os valores, uma tabela V para cada tipo:
 - V_{type}(vid, value)

Edge	_	_	_	
source	ordinal	name	flag	target
1	1	age	int	v1
1	2	name	string	v2
1	3	address	string	v3
1	4	child	ref	3
1	5	child	ref	4
2	1	age	int	v_4

V_{int}	$V_{ m string}$				
vid	value	vid	value		
v1	55	v2	Peter		
v4	38	v3	4711 Fruitdale Ave.		
v8	22	v_5	Mary		
v13	7	v6	4711 Fruitdale Ave.		
		v7	painting		
		v15	4711 Fruitdale Ave.		

```
(person id=1, age=55)
      (name)Peter(/name)
      (address)4711 Fruitdale Ave.(/address)
      (child)
            (person id=3, age=22)
                   (name)John(/name)
                   (address)5361 Columbia Ave.(/address)
                   (hobby)swimming(/hobby)
                   (hobby)cycling(/hobby)
            (/person)
      (/child)
      (child)
            (person id=4, age=7)
                   (name)David(/name)
                   (address)4711 Fruitdale Ave.(/address)
            (/person)
      (/child)
(/person)
(person id=2, age=38, child=4)
      (name)Mary(/name)
      (address)4711 Fruitdale Ave.(/address)
            (hobby)painting(/hobby)
(/person)
```

Edge	_	_		
source	ordinal	name	flag	target
1	1	age	int	v1
1	2	name	string	v_2
1	3	address	string	ψ3
1	4	child	ref	/ 3
1	5	_ehild	ref	4
2	1	age	int /	v4
/.			.,/.	
				•

Vint		$V_{ m strin}$	g
vid	value	vid	value
v1	55	v2	Peter
v4	38	v3	4711 Fruitdale Ave.
v8	22	v_5	Mary
v13	7	v6	4711 Fruitdale Ave.
		v7	painting
		v15	4711 Fruitdale Ave.

```
(person id=1, age=55)
      (name)Peter(/name)
       (address)4711 Fruitdale Ave.(/address)
      (child)
            (person id=3, age=22)
                   (name)John(/name)
                   (address)5361 Columbia Ave.(/address)
                   (hobby)swimming(/hobby)
                   (hobby)cycling(/hobby)
            (/person)
      (/child)
      (child)
            (person id=4, age=7)
                   (name)David(/name)
                   (address)4711 Fruitdale Ave.(/address)
            (/person)
      (/child)
(/person)
(person id=2, age=38, child=4)
      (name)Mary(/name)
      (address)4711 Fruitdale Ave.(/address)
            (hobby)painting(/hobby)
(/person)
```

	Edge				
	source	ordinal	name	flag	target
Ī	1	1	age	int	v1
	1	2	name	string	v2
	1	3	address	string	v3
	1	4	child	ref	3
	1	5	child	ref	4
	2	1	age	int	v_4

$V_{ m int}$	_	$V_{ m strin}$	g	
vid	value	vid	value	
v1	55	v2	Peter	
v4	38	v3	4711 Fruitdale Ave.	
v8	22	v_5	Mary	
v13	7	v6	4711 Fruitdale Ave.	
		v7	painting	
		v15	4711 Fruitdale Ave.	

Elemento Complexo: valor armazenado na própria tabela Edge

```
(person id=3, age=22)
                   (name)John(/name)
                    address 5361 Columbia Ave. (/address)
                   (hobby)swimming(/hobby)
                   (hobby)cycling(/hobby)
            (/person)
      (/child)
      (child)
             (person id=4, age=7)
                   (name)David(/name)
                   (address)4711 Fruitdale Ave.(/address)
            (/person)
      (/child)
(/person)
(person id=2, age=38, child=4)
      (name)Mary(/name)
```

(address)4711 Fruitdale Ave.(/address)

(hobby)painting(/hobby)

(/person)

- Propõem também várias variações
- A mais usada é chamada de inlining...
 - Armazenar tudo em uma única tabela
 - Duas possibilidades:
 - Uma coluna para cada tipo de valor Edge (<u>source</u>, <u>ordinal</u>, name, v_{string}, v_{int},..., target)
 - Uma coluna única para todos os tipos de valores (todos os valores seriam convertidos para string)

Edge (source, ordinal, name, v, target)

Processamento de consultas

Reconstrução do documento:

Tabela Edge: junção com tabelas V, seleção pelo *source*, ordenar pelo *ordinal*

Tabela Inlinning: não há necessidade de junção, seleção pelo *source*, ordenar pelo *ordinal*

Processamento de consultas

 Consultas com seleção (ex. selecionar todos os elementos hobby="swimming")

Tabela Edge: junção com tabelas V, seleção pelo *source* e por *value="swimming"*

Tabela Inlinning: não há necessidade de junção, seleção pelo *source* e por *value="swimming"*

Dynamic Interval (DEHAAN et al., 2003)

```
<site>
 <people>
  <person id="person0">
   <name>Jaak Tempesti</name>
   <emailaddress>mailto:Tempesti@labs.com</emailaddress>
   <phone>+0 (873) 14873867</phone>
   <homepage>http://www.labs.com/~Tempesti</homepage>
  </person>
  <person id="person1">
   <name>Cong Rosca</name>
   <emailaddress>mailto:Rosca@washington.edu</emailaddress>
   <phone>+0 (64) 27711230</phone>
   <homepage>http://www.washington.edu/~Rosca</homepage>
  </person>
 </people>
 <closed_auctions>
  <closed_auction>
   <seller person="person0" />
   <buyer person="person1" />
   <itemref item="item1" />
   <price>42.12</price>
   <date>08/22/1999</date>
   <quantity>1</quantity>
   <type>Regular</type>
  </closed_auction>
 </closed_auctions>
</site>
```

 Relação muito simples que guarda o elemento e a codificação do intervalo que o engloba

Dynamic Interval (DEHAAN et al., 2003)

```
() <site>
    <people>
     <person id="person0">
      <name>Jaak Tempesti</name>
      <emailaddress>mailto:Tempesti@labs.com</emailaddress>
      <phone>+0 (873) 14873867</phone>
      <homepage>http://www.labs.com/~Tempesti</homepage>
     </person>
     <person id="person1">
      <name>Cong Rosca</name>
      <emailaddress>mailto:Rosca@washington.edu</emailaddress>
      <phone>+0 (64) 27711230</phone>
      <homepage>http://www.washington.edu/~Rosca</homepage>
     </person>
    </people>
    <closed_auctions>
     <closed_auction>
      <seller person="person0" />
      <buyer person="person1" />
      <itemref item="item1" />
      <price>42.12</price>
      <date>08/22/1999</date>
      <quantity>1</quantity>
      <type>Regular</type>
     </closed_auction>
    </closed_auctions>
85</site>
```

s	1		г
<site></site>		0	85
<people></people>		1	46
<person></person>		2	23
Oid		3	6
person0		4	5
<name></name>		7	10
Jaak Tempesti		8	9
_		_	
-		-	

Dynamic Interval (DEHAAN et al., 2003)

 Tradução das consultas – operações matemáticas sobre os intervalos

```
CREATE VIEW T_XNODE_item AS
   SELECT s, 1+i*92 AS 1, r+i*92 AS r
   FROM   I,
      ( SELECT '<item>' AS s, 0 AS 1, 91 AS r
      FROM      UNIT
   UNION ALL
      SELECT s, 1+1 AS 1, r+1 AS r
   FROM
      ( SELECT s, 1-i*90 AS 1, r-i*90 AS r
      FROM      T_e
      WHERE   i*90<=1 AND r<(i+1)*90
      )
      )
      )
}</pre>
```


Opções para armazenar ordem

(TATARINOV et al., 2002)

- Global Order
- Local Order (irmãos)
- Dewey Order

Proposta de Armazenamento

(TATARINOV et al., 2002)

 Variação do esquema Edge proposto por FLORESCU

Proposta de Armazenamento

(TATARINOV et al., 2002)

 Variação do esquema Edge proposto por FLORESCU

Edge(id, parent_id, name, value)

Ao invés do nome, o caminho do nodo pode ser armazenado (ex. /play/act ao invés de act)

Para poupar espaço, uma tabela Path pode ser usada:

Path(path_id, path)

Mas ainda falta a ordem...

(TATARINOV et al., 2002)

Global Order:

```
Edge(<u>id</u>, parent_id, end_desc_id, path_id, value)
id – é o Global Order do nodo
end_desc_id – id do último descendente do nodo
```

Local Order:

```
Edge(<u>id</u>, parent_id, sIndex, path_id, value)
id – um ID único (que não precisa seguir a ordem do doc.)
sIndex – Local Order do nodo
```

Dewey Order:

Edge(dewey, path_id, value)

Atualização

(TATARINOV et al., 2002)

Figure 2. The worst case renumbering scenarios for Global, Local, and Dewey order encodings.

Consultas

(TATARINOV et al., 2002)

Consultas suportadas: XPath

Técnicas que exploram o esquema do documento XML

SHANMUGASUNDARAM et al., 1999

```
<!ELEMENT book (booktitle, author)
<!ELEMENT article (title, author*, contactauthor)>
<!ELEMENT contactauthor EMPTY>
<!ATTLIST contactauthor authorID IDREF IMPLIED>
<!ELEMENT monograph (title, author, editor)>
<!ELEMENT editor (monograph*)>
<!ATTLIST editor name CDATA #REQUIRED>
<!ELEMENT author (name, address)>
<!ATTLIST author id ID #REQUIRED>
<!ELEMENT name (firstname?, lastname)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT address ANY>
```

```
<book>
  <booktitle> The Selfish Gene </booktitle>
  <author id = "dawkins">
         <name>
             <firstname> Richard </firstname>
             <lastname> Dawkins </lastname>
         </name>
         <address>
             <city> Timbuktu </city>
             <zip> 99999 </zip>
         </address>
  </author>
</book>
```


SHANMUGASUNDARAM et al., 1999

Técnicas:

- Basic Inlining
- Shared Inlining
- Hybrid Inlining

Basic Inlining

SHANMUGASUNDARAM et al., 1999

Basic Inlining

- Criar uma tabela para cada elemento da DTD, pq um documento XML pode usar como raiz qualquer um dos elementos de uma DTD (por isso declaramos a raiz em !DOCTYPE)
- Para lidar com elementos que se repetem (*), um grafo é construído a partir da DTD

Basic Inlining

SHANMUGASUNDARAM et al., 1999

- <!ELEMENT book (booktitle, author)
- <!ELEMENT article (title, author*, contactauthor)>
- <!ELEMENT contactauthor EMPTY>
- <!ATTLIST contactauthor authorID IDREF IMPLIED>
- <!ELEMENT monograph (title, author, editor)>
- <!ELEMENT editor (monograph*)>
- <!ATTLIST editor name CDATA #REQUIRED>
- <!ELEMENT author (name, address)>
- <!ATTLIST author id ID #REQUIRED>
- <!ELEMENT name (firstname?, lastname)>
- <!ELEMENT firstname (#PCDATA)>
- <!ELEMENT lastname (#PCDATA)>
- <!ELEMENT address ANY>

Basic Inlining

SHANMUGASUNDARAM et al., 1999

- O esquema para armazenar documentos que seguem uma DTD é a união dos conjuntos de relações criadas para cada elemento
- Para determinar o conjunto de relações necessário para armazenar um determinado elemento, construímos um grafo chamado "element graph"
 - Um elemento é escolhido para percorrer o grafo
 - Grafo vai sendo percorrido e cada elemento vai sendo marcado como visitado
 - Se o algoritmo tentar visitar um nodo já marcado, adicionar um "backpointer"
 - O resultado é uma árvore

Basic Inlining

SHANMUGASUNDARAM et al., 1999

Grafo

Element Graph para elemento editor

Basic Inlining

SHANMUGASUNDARAM et al., 1999

- Dado um element graph, as relações são criadas como segue:
 - Uma relação é criada para o elemento raiz do element graph
 - Todos os descendentes são aninhados dentro desta relação, exceto:
 - ▶ Filhos de * são acomodados em relações separadas
 - Todo nodo que tem um backpointer é armazenado em uma relação separada (nova relação para lidar com recursão)
 - Ligações são feitas por chave estrangeira

Resultado SHANMUGASUNDARAM et al., 1999

book (bookID: integer, book.booktitle: string, book.author.name.firstname: string, book.author.name.lastname: string, book.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string, article.title: string)

article.author (article.authorID: integer, article.author.parentID: integer, article.author.name.firstname: string, article.author.address: string, article.author.author.authorid: string)

contactauthor (contactauthorID: integer, contactauthor.authorid: string)

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string, monograph.author.name.lastname: string, monograph.author.address: string, monograph.author.

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string, editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string, editor.monograph.author.aut

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

name (nameID: integer, name.firstname: string, name.lastname: string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

Resultado SHANMUGASUNDARAM et al.,

book (bookID: integer, book.booktitle : string, book.author.name.firstname.dook.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string, article.t

article.author (article.authorID: integer, article.author.parentID: intege article.author.name.lastname: string, article.author.add

contactauthor (contactauthorID: integer, contactauthor.authorid: string

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string, monograph.author.name.lastname: string, monograph.author.address: string, monograph.author.

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string, editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string, editor.monograph.author.author.author.address: string, editor.monograph.author.author.author.id: string)

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

name (nameID: integer, name.firstname: string, name.lastname: string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

Resultado SHANMUGASUNDARAM et al.,

book (bookID: integer, book.booktitle : string, book.author.name.firstname.dook.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string, article.t

article.author (article.authorID: integer, article.author.parentID: intege article.author.name.lastname: string, article.author.add

contactauthor (contactauthorID: integer, contactauthor.authorid: string

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string, monograph.author.name.lastname: string, monograph.author.address: string, monograph.author.

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string, editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string, editor.monograph.author.aut

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

name (nameID: integer, name.firstname: string, name.lastname: string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

Resultado SHANMUGASUNDARAM et al.,

book (bookID: integer, book.booktitle : string, book.author.name.firstname.book.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string, article.t

article.author (article.authorID: integer, article.author.parentID: intege article.author.name.lastname: string, article.author.add

contactauthor (contactauthorID: integer, contactauthor.authorid: string

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string, monograph.author.name.lastname: string, monograph.author.address: string, monograph.author.authorid: string)

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string, editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string, editor.monograph.author.authorid: string)

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

name (nameID: integer, name.firstname: string, name.lastname: string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

Basic Inlining SHANMUGASUNDARAM et al., 1999

- Eficiente para consultas do tipo: me dê todos os autores dos livros
- Provavelmente muito ineficiente para outros tipos de consulta
 - Ex.: Liste todos os autores cujo primeiro nome é Jack
 - União de 5 consultas separadas
- Pensem nas atualizações! Redundância de informações! Péssima prática de modelagem!

Resultado SHANMUGASUNDARAM et al., 1999

book (bookID: integer, book.booktitle: string, book.author.name.firstname: string, book.author.name.lastname: string, book.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string, article.title: string)

article.author (article.authorID: integer, article.author.parentID: integer, article.author.name.firstname: string, article.author.author.name.lastname: string, article.author.address: string, article.author.authorid: string)

contactauthor (contactauthorID: integer, contactauthor.authorid: string)

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string, monograph.author.name.lastname: string, monograph.author.address: string, monograph.author.

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string, editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string, editor.monograph.author.authorid: string)

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

name (nameID: integer, name.firstname: string, name.lastname: string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

SHANMUGASUNDARAM et al., 1999

- Garante que cada elemento é representado em apenas uma tabela
- Para isso: Identificar quais nós são representados várias vezes

SHANMUGASUNDARAM et al., 1999

Usar o grafo:

- Nós que têm mais de uma aresta entrando são transformados em relações próprias
- Nós restantes são colocados dentro de tabelas já existentes

SHANMUGASUNDARAM et al., 1999

Usar o grafo:

- Relações próprias:
 - Nodos que têm mais de uma aresta entrando
 - Nodos com zero arestas entrando (pois eles não são acessíveis de nenhum outro nodo)
 - Elementos depois de *
 - Elementos mutuamente recursivos (elementos fortemente conectados – editor e monograph) – um deles é transformado em relação única
- Restantes são colocados dentro de tabelas já existentes

Shared Inlining Resultado

book (bookID: integer, book.booktitle.isroot: boolean, book.booktitle : string)

article (articleID: integer, article.contactauthor.isroot: boolean, article.contactauthor.authorid: string)

monograph (monographID: integer,monograph.parentID: integer, monograph.parentCODE: integer, monograph.editor.isroot: boolean, monograph.editor.name: string)

title (titleID: integer, title.parentID: integer, title.parentCODE: integer, title: string)

author (authorID: integer, author.parentID: integer, author.parentCODE: integer, author.name.isroot: boolean, author.name.firstname.isroot: boolean, author.name.firstname: string, author.name.lastname: string, author.author

SHANMUGASUNDARAM et al., 1999

- Considerações
 - Uniões não são mais necessárias
 - No entanto, dependendo da consulta, junções são necessárias
- Abordagem que tenta balancear as vantagens das técnicas Basic e Shared: Hybrid

Hybrid Inlining

SHANMUGASUNDARAM et al., 1999

Mesmo que Shared:

Exceção: não cria relação separada para elementos que tem in-degree maior do que 1 e que não são recursivos e que não são filhos de *

Hybrid Inlining

SHANMUGASUNDARAM et al., 1999

Mesmo que Shared:

Exceção: não cria relação separada para elementos que tem in-degree maior do que 1 e que não são recursivos e que não são filhos de *

Hybrid Inlining Resultado

book (bookID: integer, book.booktitle.isroot: boolean, book.booktitle: string, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

article (articleID: integer, article.contactauthor.isroot: boolean, article.contactauthor.authorid: string, article.title.isroot: boolean, article.title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.parentCODE: integer, monograph.title: string, monograph.editor.isroot: boolean, monograph.editor.name: string, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

author (authorID: integer, author.parentID: integer, author.parentCODE: integer, author.name.isroot: boolean, author.name.firstname.isroot: boolean, author.name.string, author.name.lastname.isroot: boolean, author.name.lastname: string, author.address.isroot: boolean, author.address: string, author.author.authorid: string)

Referências

- CHEN, Y.; DAVIDSON, S. B.; ZHENG, Y. Constrain Preserving XML storage in Relations. In: INTERNATIONAL WORKSHOP ON THE WEB AND DATABASES, WEBDB, 2002, Madison, Wisconsin. Proceedings... [S.I.: s.n.], 2002. p.712.
- CHEN, Y.; DAVIDSON, S. B.; ZHENG, Y. RRXS: redundancy reducing XML storage in relations. In: INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, VLDB, 2003, Berlin, Germany. Proceedings... San Francisco:Morgan Kaufmann, 2003.
- DEHAAN, D.; TOMAN, D.; CONSENS, M.; OZSU, M. T. A Comprehensive XQuery to SQL Translation using Dynamic Interval Encoding. In: INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD, 2003, San Diego, CA. Proceedings. . . [S.I.: s.n.], 2003.
- DEUTSCH, A.; FERNANDEZ, M.; SUCIU, D. Storing semistructured data with STORED. In: INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD, 1999, Philadelphia, Pennsylvania. Proceedings... [S.I.: s.n.], 1999. p.431442.

Referências

- ▶ FLORESCU, D.; KOSSMANN, D. A performance evaluation of alternative mapping schemes for storing XML data in a relational database. France:INRIA, 1999. (Technical Report 3684).
- LEE, D.; CHU, W. W. Constraints-Preserving Transformation from XML Document Type Denition to Relational Schema. In: INTERNATIONAL CONFERENCE ON ENTITY RELATIONSHIP, ER, 2000, Salt Lake City, Utah, USA. Proceedings... [S.I.: s.n.], 2000. p.323338.
- MANOLESCU, I.; FLORESCU, D.; KOSSMANN, D. Pushing XML Queries inside Relational Databases. France: INRIA, 2001. (Technical Report 4112).
- ▶ SHANMUGASUNDARAM, J.; TUFTE, K.; ZHANG, C.; HE, G.; DEWITT, D. J.; NAUGHTON, J. F. Relational Databases for Querying XML Documents: limitations and opportunities. In: INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, VLDB, 1999, Edinburgh, Scotland, UK. Proceedings... San Francisco: Morgan Kaufmann, 1999. p.302314.

Referências

- SHANMUGASUNDARAM, J.; SHEKITA, E.; KIERNAN, J.; KRISHNAMURTHY, R.; VIGLAS, E.; NAUGHTON, J.; TATARINOV, I. A general technique for querying XML documents using a relational database system. Sigmod Record, [S.I.], v.30, n.3, p.2026, Sept. 2001.
- ➤ TATARINOV, I.; VIGLAS, E.; BEYER, K.; SHANMUGASUNDARAM, J.; SHEKITA, E. Storing and Querying Ordered XML Using a Relational Database System. In: INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD, 2002, Madison, Wisconsin. Proceedings... [S.I.: s.n.], 2002.

Banco de Dados Habilitado a XML/ Banco de Dados Híbrido

Motivação

- Empresas que já investiram enormes quantias em licenças de SGBDs relacionais/objeto relacionais
 - Não estão dispostas a adotar outros tipos de SGBDs para armazenar seus documentos XML
 - Necessidade de manter DBAs treinados nestes novos SGBDs implica em aumento de custos
 - Empresas fabricantes dos principais SGBDs perceberam este filão de mercado e investiram para permitir armazenamento de docs. XML em seus SGBDs

Primeira geração: SGBDs Habilitados a XML

- Novo tipo de coluna (XML), que era capaz de armazenar um DOC XML; e/ou
- Uso de arquivos de mapeamento para "espalhar" o conteúdo dos docs XML em diversas tabelas do SGBD

Suporte a consultas limitado

Nova geração: SGBDs híbridos

Suporte a armazenamento de docs. XML em sua forma nativa, ao mesmo tempo em que mantém suporte a armazenamento de dados relacionais/objeto-relacionais

- Suporte a SQLX
 - Documentação do Oracle http://download.oracle.com/docs/cd/B10500 01/appdev.9 20/a96616/arxml34.htm#1004572

Exemplo SQLX

```
SELECT
XMLElement("departments",
XMLElement("dept",
XMLElement("number", DEPTNO),
XMLElement("name", DNAME),
XMLElement("location", LOC)))
FROM DEPT;
```



```
<dept>
                                    <number>10</number>
Exemplo SQLX
                                    <name>ACCOUNTING</name>
                                    <location>NEW YORK</location>
                                   </dept>
                                  </departments>
                                  <departments>
                                   <dept>
                                    <number>20</number>
                                    <name>RESEARCH</name>
                                    <location>DALLAS</location>
                                   </dept>
SELECT
                                  </departments >
 XMLElement("departments",
    XMLElement("dept",
      XMLElement("number", DEPTNO),
      XMLElement("name", DNAME),
      XMLElement("location", LOC)))
  FROM DEPT;
```

<departments>

Problema

- O resultado não é um XML bem formado
- Solução: usar a função XMLAgg para agregar tags iguais sobre o mesmo pai

Exemplo

```
SELECT
XMLElement("departments", XMLAgg(
XMLElement("dept",
XMLElement("number", DEPTNO),
XMLElement("name", DNAME),
XMLElement("location", LOC))))
FROM DEPT;
```


Exemplo

```
<dept>
    <dept>
        <number>10</number>
        <name>ACCOUNTING</name>
        <location>NEW YORK</location>
        </dept>
        <number>20</number>
        <number>20</number>
        <number>RESEARCH</name>
        <location>DALLAS</location>
        </dept>
    </dept>
</departments >
```

SELECT XMLElement("departments", XMLAgg(XMLElement("dept", XMLElement("number", DEPTNO), XMLElement("name", DNAME), XMLElement("location", LOC)))) FROM DEPT;

Outras funções

- XMLElement() Creates an XML Element.
- XMLForest() Creates an XML Fragment from passed-in components.
- XMLColAttVal() Creates an XML fragment and then expands the resulting XML so that each XML fragment has the name "column" with the attribute "name"
- **ExtractValue()** Takes as arguments an XMLType instance and an XPath expression and returns a scalar value of the resultant node.
- **XMLTransform()** Takes as arguments an XMLType instance and an XSL style sheet, which is itself a form of XMLType instance. It applies the style sheet to the instance and returns an XMLType.
- XMLSequence() Takes input and returns either a varray of the top-level nodes in the XMLType, or an XMLSequence type an XML document for each row of the cursor.
- XMLConcat() Takes as input a series of XMLType instances, concatenates the series of elements for each row, and returns the concatenated series.
- UpdateXML() Takes as arguments an XMLType instance and an XPath-value pair, and returns an XMLType instance with the updated value.

Tarefa

- Cada aluno pesquisa sobre um dos SGBDs habilitados a XML/híbridos (Oracle, DB2, SQL Server – ou outro que vcs encontrarem)
- Ver o suporte que o banco escolhido dá para XML
 - Como armazenar um DOC XML no banco?
 - Como recuperar o documento armazenado?
 - É possível gerar um doc. XML a partir de dados relacionais pré-existentes? Como?
- Cada aluno irá apresentar o que encontrou no final da aula

