Modelagem Biológica - 2021

Professor: Flávio Codeço Coelho Alunos: Patrick Saul e Sávio Vinícius

21 de Setembro de 2021

Modelo matemático da disseminação do vírus Ebola na África

Resumo

Este artigo propõe um modelo SIR para o Ebola Virus Disease(EVD) usando derivados conformáveis. Discrevemos todas as maneiras possíveis de trasmissão da doença, direta e indireta.

Introdução

O Ebola Virus Disease (EVD), anteriormente conhecido como febre hemorrágica Ebola, é uma doença grave e fatal causada pela infecção com uma das espécies do vírus do Ébola. O Ébola pode provocar doenças humanos e primatas não-humanos (macacos, gorilas e chimpanzés). O Ébola é provocado por um vírus da família Filoviridae, género Ebolavirus. Já foram descobertas cinco espécies do vírus do Ébola. Quatro delas provocam doenças nos humanos: Vírus do Ebola (Zaire ebolavirus); vírus do Sudão (Sudan ebolavirus); vírus da floresta Tai (Tai Forest ebolavirus, anteriormente conhecido por Cote d'Ivoire ebolavirus); e vírus Bundibugyo (Bundibugyo ebolavirus). A quinta espécie, o vírus Reston (Reston ebolavirus), provocou doenças em primatas não-humanos, mas não em humanos. Os vírus Ébola estão presentes em vários países africanos. O Ébola foi descoberto em 1976 perto do rio Ébola no território que pertence actualmente à República Democrática do Congo. Desde então, ocorrem surtos esporádicos em África. Ainda se desconhece o reservatório hospedeiro natural dos vírus Ébola. Contudo, com base em provas e na natureza de vírus semelhantes, os investigadores acreditam que o vírus é veiculado por animais e que os morcegos são os hospedeiros mais prováveis. Quatro das cinco subespécies surgem em animais hospedeiros originários de África.

A partir desse panorama, julgamos pertinente modelar os casos de Ébola causados pela infecção do vírus Ébola. O objetivo do modelo proposto é descrever a dinâmica de incidência da população da África que apresentam Ébola.

Revisão da literatura

Segundo a mathematical model of Ebola virus disease in Africa [2] a principal fonte para iniciar a doença foi "animal", em tal maneira que quando um homem caçava por comida, seu contato acontecia com animais infectados (como macacos, chimpanzés e morcegos frugívoros, etc.). A observação mencionada acima permitiu para afirmarmos que o contato indireto pode ser uma das razões para a propagação da doença . Má higiene e sanitária condições são também uma das razões para a propagação do Vírus Ebola na África. Um modelo do tipo SIR (suscetível-infectado-recuperado) para o estudo da propagação do Ebola Virus Disease (EVD) é desenvolvido usando derivados conformáveis. Todas as maneiras possíveis de transmissão da doença é incorporada (direta ou indireta), como práticas funerárias, consumo de carne de caça contaminada e a contaminação ambiental, etc. Descobrimos que a única situação livre de doença é a ausência de fluxo da doença do vírus Ebola do ambiente. Também observamos que, ao adotar algumas estratégias, como o isolamento de infectados indivíduos e enterro cuidadoso de cadáveres, a propagação de EVD pode ser controlada.

Estudando o Artigo, percebemos que a persistência e recorrência de EVD na África é devido a :

- 1. Consumo de carne de caça contaminada.
- 2. As cerimônias fúnebres.
- 3. Poluente ambiental.
- 4. Vômito, leite materno e urina, etc (Transmissão Direta).
- 5. Objetos como roupas contaminadas etc (transmissão indireta).

Segundo o artigo de Mathematical model of Ebola transmission dynamics with relapse and reinfection [1] a epidemia de Ebola ceifou a vida de mais de 11.300 pessoas e infectou mais de 28.500. A doença causou devastação sobre as famílias, comunidades e ao sistema econômico de saúde dos 3 países mais afetados (Guiné, Libéria e Serra Leone).

A recuperação de EVD requer tanto humoral quanto imunidade mediada por células, e há variabilidade na reação imunológica dos indivíduos. Além disso, a variabilidade na imunidade do hospedeiro pode determinar a suscetibilidade do hospedeiro a reinfecção. Entendemos no artigo que a letalidade do caso de EVD variou de 25% a 90% no entando a média de letalidade foi de 50%, altamente perigoso.

Metodologia

Os modelos matemáticos epidêmicos são de fundamental importância para a análise e compreensão sobre a dinâmica do processo de contágio, nesse caso, de doenças infecciosas, na sociedade. A fim de compreendermos a evolução dos casos de Ébola um modelo matemático compartimental foi usado para estimar o número de casos secundários gerados por um caso índice, na ausência ou presença de medidas de controle.

Formulação do modelo

Iremos modelar a doença do vírus Ebola por um modelo compartimental. Dito isso, iremos introduzir primeiro os nossos parâmetros com suas descrições do modelo que iremos apresentar.

Variável	Descrição
(t)	População de indivíduos suscetíveis
E(t)	População de indivíduos expostos
I_E	População de indivíduos sintomáticos no estágio inicial de infecção por EBOV
I_L	População de indivíduos sintomáticos no estágio final da infecção por EBOV
$R_1(t), R_2(t)$	População de indivíduos recuperados e imunes
D(t)	População de indivíduos falecidos por Ebola

Parâmetros	Descrição
β	Taxa de contato (transmissão) efetiva
П	Taxa de recrutamento
μ	Taxa de mortalidade natural
τ	Parâmetros de modificação para infecciosidade
ρ	Taxa de reativação de infecção
σ	Taxa de progressão de indivíduos sintomáticos
α	Taxa de progressão de indivíduos com sintomas iniciais
ξ	Taxa de progressão de indivíduos recuperados para a classe imune
h	Fração de indivíduos sintomáticos que se recuperaram
ϵ	Parâmetros de modificação de reinfecção
γ	Taxa de recuperação de indivíduos sintomáticos
δ	Taxa de cremação / sepultamento de indivíduos falecidos com Ebola

Iniciando o modelo.

doença.

A nossa população total, $N_H(t)$ no tempo té dividida em subpopulações mutuamente exclusivas de indivíduos que são suscetíveis(S(t)), expostos (E(t)), indivíduos sintomático no estágio inicial de infecção por EVD $(I_E(t))$, indivíduos sintomático no estágio final da infecção por EVD $(I_L(t))$, se recuperaram e indivíduos imunes $(R_1(t), R_2(t))$ e indivíduos falecidos infectados com Ebola (D(t)). De modo a

$$\begin{split} N(t) &= S(t) + E(t) + I_E(t) + I_L(t) + R_1(t) + R_2(t) + D(t) \\ S(t) &= \Pi - \lambda(I_E, I_L, R_1, D) S(t) - \mu S(t) \\ E(t) &= \lambda(I_E, I_L, D) S(t) + \epsilon \lambda(I_E, I_L, R_1, D) R_1(t) - (\sigma + \mu) E(t), \\ I_E(t) &= \sigma E(t) - (\alpha + \mu) I_E(t) + \rho R(t), \\ I_L(t) &= \alpha I_E(t) - (\gamma + \mu) I_L(t), \\ R_1(t) &= h \gamma I_L(t) - (\rho + \xi + \mu) R_1(t) - \epsilon \lambda(I_E, I_L, R_1, D) R_1(t), \\ R_2(t) &= \xi R_1(t) - \mu R_2(t), \\ D(t) &= (1 - h) \gamma I_L(t) - \delta D(t), \\ Onde \;,\; \lambda(I_E, I_L, R_1, D) &= \frac{(I_E + I_L + \tau_1 R_1 + \tau_2 D)}{S + E + I_E + I_L + R_1 + R_2 + D} \; \acute{\text{e}} \; \text{a taxa de infecção da doença.} \end{split}$$

Modelo matemático da disseminação do vírus Ebola na África

Pode-se vê que incluimos duas classes recuperadas (R_1 e R_2) e assumimos que os indivíduos na classe $R_1(t)$ podem sofrer reinfecção. Além disso, presumimos que esses indivíduos sejam capazes de transmitir o vírus, uma vez que os vírus podem persistir após a recuperação em partes do corpo e podem se espalhar através do sexo ou outros contatos com o sêmen. Já os da classe $R_2(t)$ experimentam imunidade vitalícia.

Referências

- [1] F.B. Agusto (2016) Mathematical model of Ebola transmission dynamics with relapse and reinfection.
- [2] Aqsa Nazir , Naveed Ahmed , Umar Khan, Syed Tauseef Mohyud-Din , Kottak-karan Sooppy Nisar (2020) mathematical model of Ebola virus disease in Africa
- [3] Revista Ciencia Inovação FAM V.5, N.1 JUN (2020) principais métodos de diagnóstico e tratamento da doença causada pelo vírus Ebola
- [4] Camila Soares de Souza (2017) previsão de surto epidêmico de Ebola abordagens probabilísticas e determinísticas