

TEORIA OBLICZALNOŚCI

Marcin Piątkowski

Wykład 3

Funkcje proste

Funkcje proste

zerowa:

 $Z: \mathbb{N}^n \longrightarrow \mathbb{N}$

 $Z(x_1,\ldots,x_n)=0$

następnik:

 $S: \mathbb{N} \longrightarrow \mathbb{N}$

S(x) = x + 1

rzutowanie:

 $p_i^n: \mathbb{N}^n \longrightarrow \mathbb{N}$

 $p_i^n(x_1,\ldots,x_n)=x_i$

Funkcje proste są obliczalne

 \mathcal{PR} – najmniejszy zbiór funkcji zawierający funkcje proste, który jest zamknięty ze względu na operacje **podstawiania** oraz **rekursji**.

 \mathcal{PR} – najmniejszy zbiór funkcji zawierający funkcje proste, który jest zamknięty ze względu na operacje **podstawiania** oraz **rekursji**.

$$f_1(x) = n \ (n \in \mathbb{N})$$

$$f_1(x) = \underbrace{S(S(\dots S(Z(x))\dots))}_{n}$$

Marcin Piątkowski

 \mathcal{PR} – najmniejszy zbiór funkcji zawierający funkcje proste, który jest zamknięty ze względu na operacje **podstawiania** oraz **rekursji**.

$$f_1(x) = n \ (n \in \mathbb{N})$$

$$f_1(x) = \underbrace{S(S(\ldots S(Z(x))\ldots))}_{n}$$

$$f_2(x) = x + n \ (n \in \mathbb{N})$$

$$f_2(x) = \underbrace{S(S(\ldots S(P_1^1(x))\ldots))}_{n}$$

 \mathcal{PR} – najmniejszy zbiór funkcji zawierający funkcje proste, który jest zamknięty ze względu na operacje **podstawiania** oraz **rekursji**.

$$f_1(x) = n \ (n \in \mathbb{N})$$

$$f_1(x) = \underbrace{S(S(\dots S(Z(x))\dots))}_{n}$$

$$f_2(x) = x + n \ (n \in \mathbb{N})$$

$$f_2(x) = \underbrace{S(S(\dots S(p_1^1(x))\dots))}_{p_2(x)}$$

$$f_3(x) = x + y$$

$$\begin{cases} f_3(x,0) = x \\ f_3(x,y+1) = S(f(x,y)) \end{cases}$$

 \mathcal{PR} – najmniejszy zbiór funkcji zawierający funkcje proste, który jest zamknięty ze względu na operacje **podstawiania** oraz **rekursji**.

$$f_1(x) = n \ (n \in \mathbb{N})$$

$$f_1(x) = \underbrace{S(S(\dots S(Z(x))\dots))}_{n}$$

$$f_2(x) = x + n \ (n \in \mathbb{N})$$

$$f_2(x) = \underbrace{S(S(\dots S(p_1^1(x))\dots))}_{p_2(x)}$$

$$f_{3}(x) = x + y$$

$$\begin{cases} f_{3}(x,0) = x \\ f_{3}(x,y+1) = S(f(x,y)) \end{cases}$$

 \mathcal{PR} – najmniejszy zbiór funkcji zawierający funkcje proste, który jest zamknięty ze względu na operacje **podstawiania** oraz **rekursji**.

Funkcje częściowo rekurencyjne

R – najmniejszy zbiór funkcji zawierający funkcje proste, który jest zamknięty ze względu na operacje podstawiania, rekursji oraz minimalizacji.

 \mathcal{PR} – najmniejszy zbiór funkcji zawierający funkcje proste, który jest zamknięty ze względu na operacje **podstawiania** oraz **rekursji**.

Funkcje częściowo rekurencyjne

R – najmniejszy zbiór funkcji zawierający funkcje proste, który jest zamknięty ze względu na operacje podstawiania, rekursji oraz minimalizacji.

Równoważność modeli obliczeniowych

Obliczalność

Twierdzenie

Każda funkcja częściowo rekurencyjna jest obliczalna.

- Funkcje proste są obliczalne
- Operacje podstawienia, rekursji oraz minimalizacji nie wyprowadzają poza klasę funkcji obliczalnych

Obliczalność

Twierdzenie

Każda funkcja obliczalna jest częściowo rekurencyjna.

- Funkcja opisująca konfigurację maszyny
- Funkcja zmiany stanu
- Działanie programu jako ciąg zmian konfiguracji
- Kodowanie konfiguracji
- Kod zawartości pamięci po zadanej liczbie kroków

Funkcja Ackermanna (1928)

$$A(0,y) = y+1$$

 $A(x+1,0) = A(x,1)$
 $A(x+1,y+1) = A(x,A(x+1,y))$

x \ y	0	1	2	3	4	 n
0	1	2	3	4	5	 n+1
1	2	3	4	5	6	 n + 2
2	3	5	7	9	11	 2n + 3
3	5	13	29	61	125	 $2^{n+3}-3$
4	$2^{2^2} - 3$	$2^{2^{2^2}} - 3$	$2^{2^{2^{2^{2}}}} - 3$	$2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2$	$2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2$	 $2^{2^{-1}}$ -3

$$A(0,y) = y + 1$$

$$A(x+1,0) = A(x,1)$$

$$A(x+1,y+1) = A(x,A(x+1,y))$$

	0	1	2	3	4	5
0	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	5	7	9	11	13
3	5	13	?			
4						
5						

$$A(0,y) = y + 1$$

$$A(x+1,0) = A(x,1)$$

$$A(x+1,y+1) = A(x,A(x+1,y))$$

	0	1	2	3	4	5
0	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	5	7	9	11	13
3	5	13	? -			
4						
5						

$$A(0,y) = y + 1$$

$$A(x+1,0) = A(x,1)$$

$$A(x+1,y+1) = A(x,A(x+1,y))$$

	0	1	2	3	4	5	6	7			10	11	12	13
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	3	5	7	9	11	13	55	17	19	21	23	25	27	29
3	5	13	?-					→ /	A (2 ,	A (3	,1))			
4														
5														

Własności

- **1** Dla ustalonego $y \in \mathbb{N}$ $A_v(x) = A(x,y)$ jest pierwotnie rekurencyjna.
- ② Dla ustalonego $x \in \mathbb{N}$ $A_x(y) = A(x, y)$ jest pierwotnie rekurencyjna.
- 3 Dla dowolnej funkcji pierwotnie rekurencyjnej f istnieją stałe $x_f, y_f \in N$ takie, że

$$\forall_{x \geq x_f} \max \left\{ f(x_1, \dots, x_n) | x_1, \dots, x_n \leq x \right\} < A_{y_f}(x),$$

Funkcja Ackermanna jest rosnąca ze względu na pierwszą współrzędną:

$$A(x+1,y) > A(x,y)$$

5 Funkcja Ackermanna jest rosnąca ze względu na drugą współrzędną:

$$A(x, y + 1) > A(x, y)$$

Twierdzenie

Funkcja Ackermanna jest częściowo rekurencyjna (obliczalna).

Dla dowolnego wywołania rekurencyjnego A(x, y):

- wartość x zmniejsza się
- wartość x nie zmienia się, zaś wartość y zmniejsza się
- jeśli y osiągnie 0 wartość x maleje

Twierdzenie

Funkcja Ackermanna nie jest pierwotnie rekurencyjna.

Twierdzenie

Funkcja Ackermanna nie jest pierwotnie rekurencyjna.

- Przypuśćmy, że A(x, y) jest pierwotnie rekurencyjna
- ightharpoonup Zatem istnieją stałe $x_A, y_A \in \mathbf{N}$, takie że

$$\forall_{x \geq x_A} \; \max \left\{ A(x_1, x_2) | x_1, x_2 \leq x \right\} \; < \; A_{y_A}(x) \; \Big(= \; A(x, y_A) \Big)$$

- Przyjmujemy $x \ge \max\{x_A, y_A\}$ oraz $x_1 = x_2 = x$
- Otrzymujemy nierówność $A(x,x) < A(x,y_A)$

Twierdzenie

Funkcja Ackermanna nie jest pierwotnie rekurencyjna.

- \nearrow Przypuśćmy, że A(x, y) jest pierwotnie rekurencyjna
- \square Zatem istnieją stałe $x_A, y_A \in N$, takie że

$$\forall_{x \ge x_A} \max \{ A(x_1, x_2) | x_1, x_2 \le x \} < A_{y_A}(x) (= A(x, y_A))$$

- Przyjmujemy $x \ge \max\{x_A, y_A\}$ oraz $x_1 = x_2 = x$
- Otrzymujemy nierówność $A(x,x) < A(x,y_A)$

Sprzeczność z monotonicznością ze względu na drugą współrzędną

Funkcja Sudana (1927)

$$F_0(x,y) = x + y$$

 $F_n(x,0) = x$
 $F_n(x,y) = F_{n-1}(F_n(x,y-1), F_n(x,y-1) + y)$

 $F_1(x, y)$

x \ y	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	4	11	26	57	120	247	502	1013	2036	4083
1	1	3	8	19	42	89	184	375	758	1525	3060	6131
2	2	5	12	27	58	121	248	503	1014	2037	4084	8179
3	3	7	16	35	74	153	312	631	1270	2549	5108	10227
4	4	9	20	43	90	185	376	759	1526	3061	6132	12275
5	5	11	24	51	106	217	440	887	1782	3573	7156	14323
6	6	13	28	59	122	249	504	1015	2038	4085	8180	16371
7	7	15	32	67	138	281	568	1143	2294	4597	9204	18419
8	8	17	36	75	154	313	632	1271	2550	5109	10228	20467
9	9	19	40	83	170	345	696	1399	2806	5621	11252	22515
10	10	21	44	91	186	377	760	1527	3062	6133	12276	24563
11	11	23	48	99	202	409	824	1655	3318	6645	13300	26611
12	12	25	52	107	218	441	888	1783	3574	7157	14324	28659
13	13	27	56	115	234	473	952	1911	3830	7669	15348	30707
14	14	29	60	123	250	505	1016	2039	4086	8181	16372	32755

 $F_1(x,y)$

x \ y	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	4	11	26	57	120	247	502	1013	2036	4083
1	1	3	8	19	42	89	184	375	758	1525	3060	6131
2	2	5	12	27	58	121	248	503	1014	2037	4084	8179
3	3	7	16	35	74	153	312	631	1270	2549	5108	10227
4	4	9	20	43	90	185	376	759	1526	3061	6132	12275
5	5	11	24	51	106	217	440	887	1782	3573	7156	14323
6	6	13	28	59	122	249	504	1015	2038	4085	8180	16371
7	7	15	32	67	138	281	568	1143	2294	4597	9204	18419
8	8	17	36	75	154	313	632	1271	2550	5109	10228	20467
9	9	19	40	83	170	345	696	1399	2806	5621	11252	22515
10	10	21	44	91	186	377	760	1527	3062	6133	12276	24563
11	11	23	48	99	202	409	824	1655	3318	6645	13300	26611
12	12	25	52	107	218	441	888	1783	3574	7157	14324	28659
13	13	27	56	115	234	473	952	1911	3830	7669	15348	30707
14	14	29	60	123	250	505	1016	2039	4086	8181	16372	32755

$$F_1(x,y) = (x+2) \cdot 2^y - y - 2$$

$$\boldsymbol{F_2}(\boldsymbol{x},\boldsymbol{y})$$

x \ y	0	1	2
0	0	1	19
1	1	8	10228
2	2	27	15569256417
3	3	74	5742397643169488579854258
4	4	185	36681813266165915713665394441869800619098139628586701684547

$$F_2(x,y) = (F_2(x,y-1)+2) \cdot 2^{F_2(x,y-1)+y} - F_2(x,y-1)-y-2$$

Twierdzenie

Funkcja Sudana jest częściowo rekurencyjna (obliczalna).

Twierdzenie

Funkcja Sudana nie jest pierwotnie rekurencyjna.

