	学院、系	专业班级	学목	姓名
				线
; >	5, F,	3、根 4、设	~ ±	
A, $\sum_{n=1}^{\infty} (-1)^n \frac{n}{3n-1}$ C, $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{\sqrt{n^2+1}}$	A、 $\int_{1}^{c} dy \int_{0}^{\ln x} f(x, y) dx;$ C、 $\int_{0}^{\ln x} dy \int_{1}^{c} f(x, y) dx;$ 5、下列级数中,绝对收敛的是	3、根据三重积分的几何意义, 其中 D 为 $x^2 + y^2 \le a^2, x \ge 0, y$ A、 $\frac{1}{2}ma^3$ B、 $\frac{1}{6}ma^3$ 4、设 $f(x,y)$ 是连续函数, 交换二	例形人	L L L L
$ \begin{array}{c c} n \\ 3n-1 \\ \hline \sqrt{n^2 + 1} \end{array} $	f(x,y)d $f(x,y)$ d $f(x,y)$ d	以分的儿 以分的儿 + y² ≤ a², B, 企約函数		T
— II	dx; c数的是	3、根据二重积分的几何意义, $\iint_{D} \sqrt{a^2 - x^2 - y^2} dx dy =$ (\oint_{D} (其中 $\oint_{D} yx^2 + y^2 \le a^2, x \ge 0, y \ge 0, a \ge 0$ 。提示:所求为球体在第一卦限部分体积) A、 $\frac{1}{2}\pi a^3$ B、 $\frac{1}{6}\pi a^3$ C、 $\frac{1}{15}\pi a^3$ D、 $2\pi a^3$ 4、设 $f(x,y)$ 是连续函数,交换二次积分 $\int_{0}^{x} dx \int_{0}^{\ln x} f(x,y) dy$ 积分次字的结果为 (\oint_{0}	一、选择(6 小圆、其24 分) $\frac{y+4}{-7} = \frac{z}{3} + y + \ln \pi x 4x - 2y - z - 3 = 0 的 依置关系是 B、 I 依 π 上 C、 I 与 π 相交 D、 I 与 \frac{xy}{\sqrt{x^2 + y^2}} = x^2 + y^2 \neq 0 B、 处处有极限,但不经验 D、 I 经 D $	
		∬√a²- ≥0, a≥0 改积分∫	(6 小題 与平面 π 上 x ² -	国。
р в	Ď Ž B	$\frac{x^2 - y^2 dxdy}{x^2 - y^2 dxdy} = \frac{1}{15}\pi a^3$ $\frac{1}{15}\pi a^3 \int (x, y) dx$	$\sqrt{\frac{1}{2}}, \sqrt{\frac{2}{2}}$ $\sqrt{\frac{1}{2}}$ $C, \sqrt{\frac{2}{2}}$ $\sqrt{\frac{2}{2}} + \sqrt{\frac{2}{2}} \neq 0$ $\sqrt{\frac{2}{2}} + \sqrt{\frac{2}{2}} = 0$ $R = \frac{1}{2}$	(後人)
B. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\ln(n)}$ D. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}$	$\int_{a}^{b} dy \int_{a}^{b} f$	$\frac{\mathrm{d}x\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}x\mathrm{d}y}{\mathrm{f}(x,y)\mathrm{d}y}$	$y^2 = 0$ B. 处处有极	等 数
B. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\ln(n+1)}$ D. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}$	B. $\int_{\varepsilon}^{\varepsilon} dy \int_{0}^{1} f(x, y) dx;$ D. $\int_{0}^{1} dy \int_{\varepsilon}^{y} f(x, y) dx.$	$\frac{2-y^2}{4x}dy =$ $\frac{2-y^2}{15\pi i}$ $\frac{1}{15\pi a^3}$ $\frac{1}{15\pi a^3}$ $\frac{1}{15\pi a^3}$ $\frac{1}{15\pi a^3}$ $\frac{1}{15\pi a^3}$	其24分) ε-2y-z-3=0的依置关系 C、1与π相交 D、1: 2 ≠0 = 0 B、处处有极限,但不连级 B、处处有极限,但不连级	
5	• • •		20次系是 () D、7 与 n 垂直 () 不连续	別末考試試3 (本成卷共4 页) 八 <u>&分</u>
	_	() 部分体表 a3 果为 (]	(A) (A)	共4页)
	(文)			
	学会をプラー	E Jack John S	2、 · 椰球面的 x + y + t + y + 3、 设 $u = \frac{x}{y^2}$ 4、 函数 $z = x^2$ 4、 函数 $z = x^2$ 5、 收敛级数1+ 6、 微分方程 y^*	A. y ³ = x + 包分 包分 包卷入

 $\underline{\mathbf{L}}_{i}\overline{c} = \left\{4.7, -4\right\} \ \underline{\mathbf{L}}_{i} \left[0.415\overline{\Sigma}, \quad \mathrm{H.} \left| \overline{a} \right| = 27, \quad \mathrm{M.} \ \overline{a} = \left\{-12, -21, 12\right\}$

9对称辅与坐标轴重合,三个半轴长分别为2、3、4、则此椭球而的方程为

 $+\frac{y}{x}$, $\lim_{x \to \infty} \frac{\partial u}{\partial x} = \frac{1}{4x} - \frac{1}{3x}$ 2X+44 +6=0

 $+4xy-y^2+6x-8y+12 \text{ (f)} \text{ (f)} \text{ (1,-2)}$

南曜 3-(C1+C2×10-38

阅卷人

勒级数展开式。 五、(本題 10 分) 求函数 $f(x) = \frac{1}{2 + 2x + x^2}$ 在点 $x_0 = -1$ 的泰

3-6-8=6-8

5-10-12 = 10 12

:1-2-4+3-6-8+5-6-12+

= 2-2+6-8+6-12+...

= 2 (-1) 2+1 -

一点一点

 $f(x) = \frac{1}{1 - [-(x + 1)^{2}]} = \frac{1}{1 - [-(x + 1)^{2}]}$ = \frac{1}{2} (-1)^{\frac{1}{2}} (\text{XH})^{\frac{1}{2}} | \text{XH}|^{\frac{1}{2}} = | = \frac{1}{20} [- (x+1)]^n (02820)

六、 (本题 10 分) 己知 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$, 试求级数 $1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \cdots$ 的和 (提示: $1 - \frac{1}{2} - \frac{1}{4} = \frac{1}{2} - \frac{1}{4}$)

1. 方港七二阿和风信咀船分为港

图图 Sin3x ≠K (依约)

·· 如2x6022x为两个球,因光失好解

:. 夏基本解迎..

2. Sirfx、Ocex 見城解

101 SIMX + 052X -1, 052X - 57M2X =0552X

也是它究而个无关解

· 鬼鬼亦解迎.

七(本題 12 分)函数设 $f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2}, x^2 + y^2 \neq 0 \\ 0, x^2 + y^2 = 0 \end{cases}$

 $1 * f_{\chi}(0,0), f_{\chi}(0,0); 2 证明 f(x,y) 在点(0,0)处连续且可微。
<math display="block">f_{\chi}(x,0) = \lim_{x \to \infty} \frac{f(x,0) - f(x,y)}{x}$ 1. En f(x.y)=0 = f(q")

2 km x 670 x - 0

可称: fx(a) =fy(a) =0

河海域

0~10かりまつ(0,0)のよかは年 = him x 6717 >0

all my as-fr-ax-th-ah

1 (ax) - (ax) - (ax) - 0-0

1. sin² x, cos² x 构成微分方程(1)的基本解组;

2. 证明1cos2x也是微分方程(1)的基本解组

人、你 sin x 508x 共国方程

(50°x)' = 2610x003x=(10)x

(51m/x)" = (51m xx) = 2052x

(052x) = \$\frac{1}{2} \(\text{(05}^2 \text{X}) = -2 \text{(05}^2 \text{X})

(1) 0=x4418.(x)+xcm2.(x)+x5002).: @ 0 = x { 20 (x) } + (x6 m2 -) · (x) q + x 6200 C

 $p(x) = \frac{-2.0352x}{51n2x} = -2.00t 2x.$.. 0+0 9(x). 1=0 RP 9(x)=0