

Instacart: Market Basket Analysis
Nusrat Islam

Problem Statement

- Instacart is an online grocery pick-up and delivery service that allows customers to order groceries from participating retailers with the shopping being done by a personal shopper.
- Given the nature of this delivery service, it will be useful to know what a customer is likely to reorder to stock up and be able to deliver on time.
- This project aims at predicting the reorder items of a customer.

Data

- The data is obtained from the Kaggle competition hosted by Instacart.
- It contains anonymized transactional data of 3 Million Instacart Orders
- The Instacart data include orders of 200,000 Instacart users with each user having between 4 and 100 orders.
- It also have information about the week and hour of day the order was placed, and a relative measure of time between orders.
- There are 5 files containing information about aisles, departments, and products in the orders as well as the time of order and prior order pattern.
 - o **aisles.csv** contains aisle id and aisle
 - **departments.csv** contains department id and department
 - order_products_*.csv These files specify which products were purchased in each order. order_products__prior.csv contains previous order contents for all customers. 'reordered' indicates that the customer has a previous order that contains the product.
 - o **products.csv** product_id, product_name. aisle_id, departmanet_id
 - orders.csv This file tells to which set (prior, train, test) an order belongs. You are predicting reordered items only for the test set orders. 'order_dow' is the day of week.

Data Cleaning

- Descriptive statistics was used to check for missing values
- There were no missing values except for the days_since_prior_order feature.
- The missing values belonged to the first order for each of the customers as there was no prior information.
- We replaced that value with 0.

Exploratory data Analysis

- In this section we merged the aisle department and product data to see the top ordered aisles and departments.
- Personal care, dairy and beverages have the most aisles.

Ordering time

- Next we look at the times most orders are placed.
- The heatmap on the right shows order hour of day and order day of week
- We can see that people mostly ordered around the morning and afternoon during the weekends.

Heatmap showing ordering time

Reordering pattern

- People mostly ordered every week and also over a period of month.
- The spike around day 0
 means Instacart also
 has a constant influx of
 new users.

Reordering Pattern

Products ordered vs reordered

All items on both ordered and re-ordered are from produce section

Top items ordered and reorderd

Class balance

 The last thing we looked before moving on to feature engineering was to ensure the prediction classes were balanced.

Feature engineering

- Since we want to predict whether a user will reorder a product or not we have organized the dataset to have each row represent a unique user-product behavior
- Maximum products per order was used to generate a feature average product per order per user and we named it u_avg_prd
- Maximum number of products in an order per user was used to generate u_num_of_orders.
- We calculated the day of week and the hour of day a user ordered the most and named these features dow_most_orders_u and hod_most_orders_u respectively.
- Using the information of aisle and department we also obtained frequent_aisles per user and frequent_department per user
- We then combined all these information aggregated by users into a dataframe and called it users.

Feature engineering (contd.)

- Next we focused on the product side
- We calculated the number of times a product was ordered and named it prd_count_p
- We also obtained the number of times a product was re-ordered and named it
 p_reorderd_ratio
- We calculated the number of times a user has bought a particular product as well as the ratio of reordering that product. We called this dataframe uxp
- We then joined the users and uxp dataframe on user_id and product_id to create a new dataframe df
- Each row of this dataframe contains information of each user and each product based on the prior purchase behavior of the user

Algorithm and ML model

- We used a light gradient boosting classifier algorithm for this classification task.
- We used 5 fold cross validation with hyper parameter tuning.
- The parameters that were used to tune the model were:
 - o max_depth:
 - bagging_fraction
 - learning rate
- The metric for the model was 'log-loss' and 'roc-auc' was used as scoring for cross-validation.

Predictions

- We now have to choose a threshold to convert the probability from the model into predictions.
- We wanted to suggest at least 5 items to all the users we focus more on precision and less on recall.
- We used threshold tuning to chose a threshold that maximizes precision while having a decent recall. This point was drawn from the ROC-AUC curve and was found as 0.062

ROC-AUC curve with best threshold

Recommendations from the model

- Using this best threshold our prediction accuracy is 80%.
- We also looked at the top 5 items reordered by each user.
- More than 80% of the users would get 5 recommendations based on their prior purchase.

No. of recommendations per user

Conclusion

- Using the user transaction history and times of ordering we were able to develop a model that is capable of providing top 5 product recommendations based on prior order with 80% accuracy
- For new users the demographics of users could be used to make suggestions.
- The main trade-off for our model was the threshold we chose.
- Since we wanted to maximize precision we did not focus on whether all the top 5 suggestions were likely to be reordered by users.
- For further improvements, we can run an A/B test with users getting top 5
 recommendations based on a threshold that maximizes precision vs top 5
 recommendations that maximizes recall. We could use this test to then evaluate which recommendation model provides generate more revenue.
- Also, a further step could be added to filter products that were suggested to an user but they did not buy.