

STOCHASTIC (PROACTIVE) ELECTRICITY MARKETS

INTRODUCTION

\ Unconventional

Electricity is a Commodity

- Highly Inelastic (price ↑↓, demand ---)
- Safety: Supply $\stackrel{!}{=}$ Demand

• Electricity Markets

- **How much** to schedule each power plant
- What is the electricity <u>price</u>
- Two-Stage: Day-Ahead + Real-Time

Supply

INTRODUCTION

Different Resources

- Some need scheduling one day in advance
- Some have no exact information one day in advance

Two-Stage Markets

INTRODUCTION

Different Resources

- Some need scheduling one day in advance
- Some have no exact information one day in advance

Two-Stage Markets

CONTRIBUTIONS

Stochastic <u>DA</u> Markets with Distribution Bidders

- Desired Properties
 - Economic Efficiency
 - Cost Recovery (Individual Rationality)
 - Incentive Compatibility
 - Revenue Adequacy (Balanced Budget)

ELECTRICITY MARKETS STRUCTURE

ELECTRICITY MARKETS STRUCTURE

Minimize Social Production Cost

s.t. Supply = Demand
$$(\lambda)$$

Capacity

Minimizing Production Cost Price 4 production cost Petroleum plant **Demand** market clearing Flexible gas turbine price Gas turbine Quantity Supply **Nuclear plant**

ELECTRICITY MARKETS STRUCTURE

Social Production Cost Minimize

> Supply = Demand (λ) s.t.

> > Capacity

DETERMINISTIC MARKETS

Total Cost $C = C^{DA} + C^{RT}$

STOCHASTIC MARKETS

STOCHASTIC MARKETS (PROACTIVE)

Improves the DA Market

- Different Bidding Structure (renewables as distribution bidders)
- Taking the future into consideration

Day-Ahead Market

Prod. Distribution $\omega \sim \mathcal{N}(50, 10^2)$

Min. Expected Total Costs $\mathbb{E}^{\boldsymbol{\omega} \sim \mathcal{F}} [\boldsymbol{C}^{\mathbf{DA}} + \boldsymbol{C}^{\mathbf{RT}}]$

MARKET EXAMPLE

Demand = 100 MW

One Gas Turbine

- Capacity: > 100 MW
- DA marginal cost: 10 \$/MWh
 RT marginal cost: 14 \$/MWh
 RT recoverable cost: 9 \$/MWh

One Wind Farm

- Zero marginal cost
- Prod. distribution: $\omega \sim U(80,130)$ MW

Economic Efficiency

	Social Cost	WPP Profit	TPP Profit
Deterministic	56 \$	- 56 \$	o \$
Stochastic	51 \$	409 \$	0 \$

Cost Recovery (Individual Rationality)

CONTRIBUTIONS

Stochastic <u>DA</u> Markets with Distribution Bidders

- Desired Properties
 - Economic Efficiency
 - Cost Recovery (Individual Rationality)
 - Incentive Compatibility
 - Revenue Adequacy (Balanced Budget)

Make better decisions!

When without market power

