

版本变更记录

日期	描述
2019年5月18日	EG2113D 数据手册初稿
2023年3月20日	11 脚更新
	2019年5月18日

目录

1.	特点		4
2.	描述		4
3.	应用领域	或	4
4.	引脚		5
	4.1.	引脚定义	5
	4.2.	引脚描述	6
5.	结构框图		7
6.	典型应用	月电路	7
7.	电气特性	<u> </u>	8
	7.1	极限参数	8
	7.2	典型参数	<u>ç</u>
	7.3	开关时间特性及死区时间波形图	10
8.	应用设计	t	11
	8.1	Vcc 端电源电压	11
	8.2	输入逻辑信号要求和输出驱动器特性	11
	8.3	自举电路	12
9.	封装尺寸	<u> </u>	13
	9.1	SOW16 封装尺寸	13
	9.2	SOP16 封装尺寸	14

EG2113D 芯片数据手册 V1.1

1.特点

- 高端悬浮自举电源设计,耐压可达 600V
- 最高频率支持 500KHZ
- 低端 VCC 电压范围 10V-20V
- 输出电流能力 IO+/- 2A/2A
- 内建死区控制电路
- 自带闭锁功能,彻底杜绝上、下管输出同时导通
- HIN 输入通道高电平有效,控制高端 HO 输出
- LIN 输入通道高电平有效,控制低端 LO 输出
- 静态电流小于 50uA
- 封装形式: SOW16 和 SOP16
- 无铅无卤符合 ROHS 标准

2. 描述

EG2113D 是一款高性价比的大功率 MOS 管、IGBT 管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、死区时控制电路、闭锁电路、电平位移电路、脉冲滤波电路及输出驱动电路,专用于无刷电机控制器中的驱动电路。

EG2113D 高端的工作电压可达 600V,低端 Vcc 的电源电压范围宽 10V~20V,静态功耗小于 50uA。该芯片具有闭锁功能防止输出功率管同时导通,输入通道 HIN 和 LIN 内建了一个 200K 下拉电阻,在输入悬空时使上、下功率 MOS 管处于关闭状态,输出电流能力 IO+/- 2A/2A,采用 SOP16 和 SOW16 封装。

3.应用领域

- 正弦波逆变器
- 变频水泵控制器
- 方波逆变器

- 电动车控制器
- 无刷电机驱动器
- 高压 Class-D 类功放

4. 引脚

4.1. 引脚定义

图 4-1. SOW16 和 SOP16L

备注: SOW16 和 SOP16 两种封装形式,但脚位完全一样。

4.2. 引脚描述

引脚序号	引脚名称	I/O	描述	
1	LO	0	输出控制低端 MOS 功率管的导通与截止	
2	COM	GND	功率地	
3	VCC	Power	芯片电源输入端,电压范围 10V-20V,外接一个高频 0.1uF 旁路电容	
4	NC	-	空脚	
5	NC	-	空脚	
6	VS	0	高端悬浮地端	
7	VB	Power	高端悬浮电源	
8	НО	0	输出控制高端 MOS 功率管的导通与截止	
9	NC	-	空脚	
10	NC	-	空脚	
11	NC	-	空脚	
12	HIN	I	逻辑输入信号高电平有效,控制高端功率 MOS 管的导通与截止 "0"是关闭功率 MOS 管 "1"是开启功率 MOS 管	
13	SD	I	逻辑输入,高电平有效,用于关闭 HO 和 LO 的输出	
14	LIN	ı	逻辑输入信号高电平有效,控制低端功率 MOS 管的导通与截止 "0"是关闭功率 MOS 管 "1"是开启功率 MOS 管	
15	VSS	GND	芯片的地端	
16	NC		空脚	

5. 结构框图

图 5-1. EG2113D 结构框图

6. 典型应用电路

图 6-1. EG2113D 典型应用电路图

7. 电气特性

7.1 极限参数

无另外说明,在 TA=25℃条件下

符号	参数名称	测试条件	最小	最大	单位
自举高端电源	VB	-	-0.3	600	V
高端悬浮地端	VS	-	VB-20	VB+0.3	V
高端输出	НО	-	VS-0.3	VB+0.3	V
低端输出	LO	-	-0.3	VCC+0.3	V
电源	VCC	-	-0.3	20	٧
高通道逻辑信号 输入电平	HIN	-	-0.3	6	٧
低通道逻辑信号 输入电平	LIN	1	-0.3	6	V
TA	环境温度	-	-45	105	೦
Tstr	储存温度	-	-55	150	${\mathbb C}$
TL	焊接温度	T=10S	-	300	${\mathbb C}$

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在 TA=25℃, Vcc=15V, 负载电容 CL=1nF 条件下

参数名称	符号	测试条件	最小	典型	最大	单位	
电源	Vcc	-	10	15	20	V	
静态电流	Icc	输入悬空,Vcc=15V	-	50	100	uA	
输入逻辑信号高 电位	Vin(H)	所有输入控制信号	3.0	-	-	V	
输入逻辑信号低 电位	Vin(L)	所有输入控制信号	-0.3	0	1.5	V	
输入逻辑信号高 电平的电流	lin(H)	Vin=5V	-	-	20	uA	
输入逻辑信号低 电平的电流	lin(L)	Vin=0V	-20	ı	-	uA	
VCC 电源欠压关键	所特性						
Vcc 开启电压	Vcc(on)	-	7.4	8.4	9.4	V	
Vcc 关断电压	Vcc (off)	-	7.0	8.0	9.0	V	
VB 电源欠压关断							
VB 开启电压	VB(on)	-	7.6	8.6	9.6	V	
VB 关断电压	VB (off)	-	7.2	8.2	9.2	V	
低端输出 LO 开关	时间特性						
开延时	Ton	见图 7-1	-	300	400	nS	
关延时	Toff	见图 7-1	-	180	280	nS	
上升时间	Tr	见图 7-1	-	20	25	nS	
下降时间	Tf	见图 7-1	-	15	20	nS	
高端输出 HO 开关	时间特性						
开延时	Ton	见图 7-2	-	300	400	nS	
关延时	Toff	见图 7-2	-	180	280	nS	
上升时间	Tr	见图 7-2	-	20	25	nS	
下降时间	Tf	见图 7-2	-	15	20	nS	
死区时间特性							
死区时间	DT	见图 7-3	50	130	250	nS	
IO 输出最大驱动能	IO 输出最大驱动能力						
IO 输出拉电流	IO+	Vo=0V,VIN=VIH		+2		Α	

			2 4 2 4 1		H	794 ps + 4t - 7 4 -
		PW≤10uS				
IO 输出灌电流	10-	Vo=12V,VIN=VIL PW≤10uS		-2	-	Α

7.3 开关时间特性及死区时间波形图

图 7-1. 低端输出 LO 开关时间波形图

图 7-2. 高端输出 HO 开关时间波形图

8.应用设计

8.1 Vcc 端电源电压

针对不同的 MOS 管,选择不同的驱动电压,高压开启 MOS 管推荐电源 Vcc 工作电压典型值为 10V-15V。

8.2 输入逻辑信号要求和输出驱动器特性

EG2113D 主要功能有逻辑信号输入处理、死区时间控制、电平转换功能、悬浮自举电源结构和上下桥图腾柱式输出。逻辑信号输入端高电平阀值为 3.0V 以上,低电平阀值为 1.5V 以下,要求逻辑信号的输出电流小,可以使 MCU 输出逻辑信号直接连接到 EG2113D 的输入通道上。

高端上桥臂和低端下桥臂输出驱动器的最大灌入可达 2A 和最大输出电流可达 2A, 高端上桥臂通道可以承受 600V 的电压,输入逻辑信号与输出控制信号之间的传导延时小,低端输出开通传导延时为 300nS、关断传导延时为 180nS。低端输出开通的上升时间为 25nS、关断的下降时间为 15nS, 高端输出开通的上升时间为 25nS、关断的下降时间为 15nS。

输入信号和输出信号逻辑功能图如图 8-2:

图 8-2. 输入信号和输出信号逻辑功能图

输入信号和输出信号逻辑真值表:

输入		输	出	
输入、输出逻辑				
HIN	LIN	НО	LO	
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	0	0	

从真值表可知, 当输入逻辑信号 HIN 为"1"和 LIN 为"0"时, 驱动器控制输出 HO 为"1"上管打开, LO 为

"0"下管关断;当输入逻辑信号 HIN 为"0"和 LIN 为"1"时,驱动器控制输出 HO 为"0"上管关断,LO 为"1"下管打开;在输入逻辑信号 HIN 和 LIN 同时为"0"或同时为"1"情况下,驱动器控制输出 HO、LO 为"0"将上、下功率管同时关断;内部逻辑处理器杜绝控制器输出上、下功率管同时导通,具有相互闭锁功能。

8.3 自举电路

EG2113D 采用自举悬浮驱动电源结构大大简化了驱动电源设计,只用一路电源电压 VCC 即可完成高端 N 沟道 MOS 管和低端 N 沟道 MOS 管两个功率开关器件的驱动,给实际应用带来极大的方便。EG2113D 可以使用外部一个自举二极管如图 8-3 和一个自举电容自动完成自举升压功能,假定在下管开通、上管关断期间 C 自举电容已充到足够的电压(Vc=VCC),当 HO 输出高电平时上管开通、下管关断时,VC 自举电容上的电压将等效一个电压源作为内部驱动器 VB 和 VS 的电源,完成高端 N 沟道 MOS 管的驱动。

图 8-3. EG2113D 自举电路结构

9. 封装尺寸

9.1 SOW16 封装尺寸

SYMBOL	MILLIMETER			
3 I MBUL	MIN	NOM	MAX	
A	_	_	2.65	
Al	0.10	_	0.30	
A2	2.25	2.30	2.35	
A3	0.97	1.02	1.07	
ь	0.35	_	0.43	
bl	0.34	0.37	0.40	
с	0.25	_	0.29	
cl	0.24	0.25	0.26	
D	10.20	10.30	10.40	
Е	10.10	10.30	10.50	
E1	7.40	7.50	7.60	
e	1.27BSC			
L	0.55	_	0.85	
L1	1,40REF			
θ	0		8"	

9.2 SOP16 封装尺寸

符号	尺寸 (mm)		
10 2	Min	Max	
А	1. 350	1.750	
A1	0.100	0.250	
A2	1.350	1. 550	
В	0.330	0.510	
С	0.190	0.250	
D	9.800	10.000	
E	3.800	4.000	
E1	5.800	6.300	
е	1.270 (TYP)		
L	0.400	1.270	
Θ	o°	8°	