The impact of Basel III implementation on bank lending in South Africa

Xolani Sibande and Alistair Milne

South African Reserve Bank and Loughborough University

5 December 2023

Introduction

- This paper investigates the impact of the higher regulatory capital requirements of the implementation of the Basel III in South Africa between 2013 and 2019.
- The principal data employed is monthly balance sheet data
- Focus on a small set of large banks has some advantages: business models of these banks are similar
- Our empirical specification follows previous studies of the impact of capital requirements on bank credit supply (for UK Aiyar et al. (2014); for Peru Fang et al. (2020))
- We find little evidence of the impact of Basel III on lending

Incremental implementation of capital requirments

Data

- We collected data on the four major South African banks: Absa Bank, Standard Bank, First National Bank, and Nedbank
- Mainly utilised the BA900s (bank economic returns) and the BA930s (bank product lending rates)
- The Basel III capital requirements (BA700s) data was collected from the Prudential Authority
- From the Prudential Authority, we also collected the controls data
- We focus on real economic activity lending in the BA900s is represented by lending to households and non-financial corporations.
- However, the BA900s only report granular lending categories to households and non-financial corporations. Therefore, some aggregation was necessary.
- This aggregation essentially limited our sample to the big four lenders
- Three major categories for households and non financial corporations (secured, unsecured, and mortgages)

Methodology

Building on Fang et al. (2020):

$$\Delta \textit{LOAN}_{t,t-s}^i = \beta \Delta \textit{KR}_{t,t-1}^i + \lambda \Delta \textit{KS}_{t,t-1}^i + \alpha \Delta \textit{Demand}_{t,t-1}^i + \gamma' \pmb{X}_{t-s}^i + \phi^i + \tau_t + \varepsilon_t^i.$$

- i refers to the four banks
- $\Delta LOAN_{t,t-s}^{i}$ is the log difference of lending
- ullet $\Delta KR_{t,t-1}^i$ is the change in the minimum capital requirement
- $\Delta Demand_{t,t-1}^i$ is the lending demand proxy represented
- X_{t-s}^i is a bank level controls set at month t-s.
- ullet The fixed effects (ϕ^i) estimate other unobserved differences in bank characteristics.
- To account for other factors, such as changes in the macroeconomic environment, we employ time-fixed effects (τ_t) .
- ε_t^i using bank clustered standard errors

Results Household Secured Credit (Example)

Household secured credit					
	(1)	(2)	(3)	(4)	(5)
$\Delta \textit{KR}_{t,t-1}$	-0.1185 (0.1152)	-0.1941 (0.2621)	-0.3583 (0.2719)	0.3135 (0.3298)	0.0831 (0.3021)
$\Delta \mathcal{KS}_{t,t-1}$	(0.1132)	-0.0815 (0.1587)	-0.0355 (0.1773)	-0.0102 (0.1248)	0.0281 (0.1390)
$\Delta Demand_{t,t-1}$		(0.1367)	0.0032	(0.1240)	0.0031
ROA_{t-1}			(0.0042)	0.2672 (1.3378)	(0.0052) 0.1810 (1.3242)
ROE_{t-1}				-0.0900 (0.1107)	-0.0816 (0.1170)
$Liquidity_{t-1}$				-0.0081 (0.0068)	-0.0076 (0.0085)
Num.Obs.	372	372	369	368	365
Test of equality (p-value)	0.35	0.65	0.18	0.11	0.95
Adj.R squared	0.28	0.28	0.28	0.31	0.31

Note:

The dependant variables in loan growth at bank level at a monthly frequency, calculated as the log difference at t and t -1. Standard errors are clustered at a bank level.

All equations include both bank and monthly effects. A test for equality p-value of <0.1 is significant.

*** p < 0.01, ** p < 0.05, * p < 0.1)

Conclusion

- While our set up is similar to Fang et al. (2020), we find very much weaker evidence of an impact of capital requirements on the supply of bank lending.
- We investigate the impact three categories of lending for both household and corporate borrowers.
- Only in the case of secured credit for non-financial corporations do we obtain a statistically significant and economically sensible coefficient estimates and the coefficient is relatively small.
- Exploring alternative dynamic estimation similarly yields little evidence of any.

References

Aiyar, S., Calomiris, C. W., Hooley, J., Korniyenko, Y. and Wieladek, T. (2014). 'The international transmission of bank capital requirements: Evidence from the UK'. *Journal of Financial Economics*. Elsevier, 113 (3), pp. 368–382.

Fang, X., Jutrsa, D., Peria, S. M., Presbitero, A. F. and Ratnovski, L. (2020). 'Bank capital requirements and lending in emerging markets: The role of bank characteristics and economic conditions'. *Journal of Banking & Finance*. Elsevier, p. 105806.