Memory Hunting with volatility Mohammad Khorram

WHOAMI

THREAT DETECTION ENGINEER AT SECUREMIND

HTTPS://WWW.LINKEDIN.COM/IN/MOHAMMAD-KHORRAM-608430199

CERTIFICATION

EC-COUNCIL CERTIFIED SECURITY ANALYST (CSA)

MEMORY HUNTING

Memory Hunting is the process of finding malicious artifacts in memory. In memory hunting you should answer some questions like:

- On the time of infection what processes were running on the suspect system?
- Is there any suspicious network connection from abnormal process?
- Is there any artifacts from existed process?
- Are there any suspicious DLL loaded by processes?
- Are there any suspicious strings associated with a particular processes?

WHAT IS VOLATILITY

Volatility is one of the best open source software programs for analyzing RAM in 32 bit/64 bit systems. It supports analysis for Linux, Windows, Mac, and Android systems. It is based on Python and can be run on Windows, Linux, and Mac systems. It can analyze raw dumps, crash dumps, VMware dumps (.vmem), virtual box dumps, and many others.

https://www.volatilityfoundation.org/

1 1 1

STEP 1: FIND THE MEMORY IMAGE

PROFILE

In the first step you should find the memory image profile. identifying the profile is important when certain plugins may be OS dependent. In this example the best profile is WinXPSP2x86

```
D:\Training\volatillity\volatility_2.6_win64_standalone>volatility_2.6_win64_standalone.exe -f mem.vmem imageinfo
Volatility Foundation Volatility Framework 2.6
INFO : volatility.debug : Determining profile based on KDBG search...
         Suggested Profile(s): WinXPSP2x86, WinXPSP3x86 (Instantiated with WinXPSP2x86)
                    AS Layer1 : IA32PagedMemoryPae (Kernel AS)
                    AS Layer2 : FileAddressSpace (D:\Training\volatillity\volatility 2.6 win64 standalone\mem.vmem)
                     PAE type : PAE
                          DTB: 0x2fe000L
                         KDBG: 0x80545ae0L
         Number of Processors: 1
    Image Type (Service Pack) : 3
               KPCR for CPU 0 : 0xffdff000L
            KUSER SHARED DATA : 0xffdf0000L
          Image date and time: 2012-07-22 02:45:08 UTC+0000
    Image local date and time: 2012-07-21 22:45:08 -0400
D:\Training\volatillity\volatility_2.6_win64_standalone>_
```


STEP 2: WHAT PROCESSES WERE RUNNING ON THE SUSPECT SYSTEM AT THE TIME OF THE MEMORY ACQUISITION? In this example we can use pslist or pstree plugins to list the processes that

In this example we can use pslist or pstree plugins to list the processes that were running at the time of the memory acquisition.

set(V)	Name			Thds		Sess			Exit
к823c89c8	System	4	0	53					
x822f1020	smss.exe	368	4	3	19		0	2012-07-22	2 02:42:31 UTC+0000
x822a0598	csrss.exe	584	368	9	326	0	0	2012-07-22	2 02:42:32 UTC+0000
x82298700	winlogon.exe	608	368	23	519	0	0	2012-07-22	2 02:42:32 UTC+0000
x81e2ab28	services.exe	652	608	16	243	0	0	2012-07-22	2 02:42:32 UTC+0000
x81e2a3b8	lsass.exe	664	608	24	330	0	0	2012-07-22	2 02:42:32 UTC+0000
x82311360	svchost.exe	824	652	20	194	0	0	2012-07-22	2 02:42:33 UTC+0000
x81e29ab8	svchost.exe	908	652	9	226	0	0	2012-07-22	2 02:42:33 UTC+0000
x823001d0	svchost.exe	1004	652	64	1118	0	0	2012-07-22	2 02:42:33 UTC+0000
x821dfda0	svchost.exe	1056	652	5	60	0	0	2012-07-22	2 02:42:33 UTC+0000
x82295650	svchost.exe	1220	652	15	197	0	0	2012-07-22	2 02:42:35 UTC+0000
x821dea70	explorer.exe	1484	1464	17	415	0	0	2012-07-22	2 02:42:36 UTC+0000
x81eb17b8	spoolsv.exe	1512	652	14	113	0	0	2012-07-22	2 02:42:36 UTC+0000
x81e7bda0	reader_sl.exe	1640	1484	5	39	0	0	2012-07-22	2 02:42:36 UTC+0000
x820e8da0	alg.exe	788	652	7	104	0	0	2012-07-22	2 02:43:01 UTC+0000
x821fcda0	wuauclt.exe	1136	1004	8	173	0	0	2012-07-22	2 02:43:46 UTC+0000
x8205bda0	wuauclt.exe	1588	1004	5	132	0	0	2012-07-22	2 02:44:01 UTC+0000

At first glance, you may see all things normal. However if you look closely you will see

Explorer.exe with PID 1484 has a parent process with PPID 1464 that's exited and PID 1484 it self spawned some other processes like PID 1640

set(V) Name	PID		Thds		Sess	Wow64	Start			Exit	
 823c89c8 System	4	0	53			0					
822f1020 smss.exe	368	4	3	19		0	2012-07-22	02:42:31	UTC+0000		
822a0598 csrss.exe	584	368	9	326	0	0	2012-07-22	02:42:32	UTC+0000		
82298700 winlogon.exe	608	368	23	519	0	0	2012-07-22	02:42:32	UTC+0000		
81e2ab28 services.exe	652	608	16	243	0	0	2012-07-22	02:42:32	UTC+0000		
81e2a3b8 lsass.exe	664	608	24	330	0	0	2012-07-22	02:42:32	UTC+0000		
82311360 svchost.exe	824	652	20	194	0	0	2012-07-22	02:42:33	UTC+0000		
81e29ab8 svchost.exe	908	652	9	226	0	0	2012-07-22	02:42:33	UTC+0000		
823001d0 svchost.exe	1004	652	64	1118	0		2012-07-22				
821dfda0 svchost.exe	1056	652	5	60	0		2012-07-22				
82295650 sychost.exe	1220	652	15	197	0	0	2012-07-22	02:42:35	UTC+0000		
821dea70 explorer.exe	1484	1464	.7	415	0	0	2012-07-22	02:42:36	UTC+0000		
81eb17b8 spoolsv.exe	1512	652	14	113	0	0	2012-07-22	02:42:36	UTC+0000		
81e7bda0 reader sl.exe	1640	1484	5	39	0	0	2012-07-22	02:42:36	UTC+0000		
820e8da0 alg.exe	788	652	7	104	0	0	2012-07-22	02:43:01	UTC+0000		
821fcda0 wuauclt.exe	1136	1004	8	173	0	0	2012-07-22	02:43:46	UTC+0000		
8205bda0 wuauclt.exe	1588	1004	5	132	0	0	2012-07-22	02:44:01	UTC+0000		

STEP 3: FIND SUSPICIOUS NETWORK CONNECTIONS

With **connection** command we will see the active network connections at the time of memory acquisition.

In this example we see suspicious network connection to 41.168.5.140 from PID 1484 that it is associated with explorer.exe

STEP 3: FIND SUSPICIOUS NETWORK CONNECTIONS

With connscan command we will see that several connections were made.

In this example we see another suspicious network connection to 125.19.103.198 from PID 1484 that it is associated with explorer.exe

STEP 4: CHECK THE SOCKETS

With **sockets** command we can see the active sockets on the suspected system at the time of memory acquisition.

fset(V)	PID	Port	Proto Protocol	Address	Create Time
x81ddb780	664	500	17 UDP	0.0.0.0	2012-07-22 02:42:53 UTC+0000
x82240d08	1484	1038	6 TCP	0.0.0.0	2012-07-22 02:44:45 UTC+0000
x81dd7618	1220	1900	17 UDP	172.16.112.128	
x82125610	788	1028	6 TCP	127.0.0.1	2012-07-22 02:43:01 UTC+0000
x8219cc08	4	445	6 TCP	0.0.0.0	2012-07-22 02:42:31 UTC+0000
x81ec23b0	908	135	6 TCP	0.0.0.0	2012-07-22 02:42:33 UTC+0000
x82276878	4	139	6 TCP	172.16.112.128	2012-07-22 02:42:38 UTC+0000
x82277460	4	137	17 UDP	172.16.112.128	2012-07-22 02:42:38 UTC+0000
x81e76620	1004	123	17 UDP	127.0.0.1	2012-07-22 02:43:01 UTC+0000
x82172808	664	0	255 Reserved	0.0.0.0	2012-07-22 02:42:53 UTC+0000
x81e3f460	4	138	17 UDP	172.16.112.128	2012-07-22 02:42:38 UTC+0000
x821f0630	1004	123	17 UDP	172.16.112.128	2012-07-22 02:43:01 UTC+0000
x822cd2b0	1220	1900	17 UDP	127.0.0.1	2012-07-22 02:43:01 UTC+0000
x82172c50	664	4500	17 UDP	0.0.0.0	2012-07-22 02:42:53 UTC+0000
x821f0d00	4	445	17 UDP	0.0.0.0	2012-07-22 02:42:31 UTC+0000

We can see that there is a socket with Source port 1038 that is associated with PID 1484.

We saw this source port in connection plugin output, so there is nothing new here

STEP 4: CHECK THE SOCKETS

With **sockscan** command we can see the sockets were created on the suspected system.

D:\Training\	volatilli	ity\vol	atility	/_2.6_win64	1_standalone>volatilit	y_2.6_win64_standalone.exe -f mem.vmemprofile=WinXPSP2x86 sockscan
Volatility F	oundatior	n Volat	ility F	ramework 2	2.6	
Offset(P)	PID	Port	Proto	Protocol	Address	Create Time
0x01fd7618	1220	1900	17	UDP	172.16.112.128	2012-07-22 02:43:01 UTC+0000
0x01fdb780	664	500	17	UDP	0.0.0.0	2012-07-22 02:42:53 UTC+0000
0x0203f460	4	138	17	UDP	172.16.112.128	2012-07-22 02:42:38 UTC+0000
0x02076620	1004	123	17	UDP	127.0.0.1	2012-07-22 02:43:01 UTC+0000
0x020c23b0	908	135	6	TCP	0.0.0.0	2012-07-22 02:42:33 UTC+0000
0x02325610	788	1028	6	TCP	127.0.0.1	2012-07-22 02:43:01 UTC+0000
0x02372808	664	0	255	Reserved	0.0.0.0	2012-07-22 02:42:53 UTC+0000
0x02372c50	664	4500	17	UDP	0.0.0.0	2012-07-22 02:42:53 UTC+0000
0x0239cc08	4	445	6	TCP	0.0.0.0	2012-07-22 02:42:31 UTC+0000
0x023f0630	1004	123	17	UDP	172.16.112.128	2012-07-22 02:43:01 UTC+0000
0x023f0d00	4	445	17	UDP	0.0.0.0	2012-07-22 02:42:31 UTC+0000
0x02440d08	1484	1038	6	TCP	0.0.0.0	2012-07-22 02:44:45 UTC+0000
0x02476878	4	139	o	TCP	172.16.112.128	2012-07-22 02:42:38 UTC+0000
0x02477460	4	137	17	UDP	172.16.112.128	2012-07-22 02:42:38 UTC+0000
0x024cd2b0	1220	1900	17	UDP	127.0.0.1	2012-07-22 02:43:01 UTC+0000

According to the output there were no other suspicious sockets associated with PID 1484

STEP 5: ANALYZE THE IP ADDRESSES

At this step you can check the IP address artifacts with online OSINT services like:

- Virustotal
- Whois
- IBM xforce
- Talos intellgence

STEP 6: FINDING THE REMOTE CODE EXECUTION

At this step we will check if any remote code execution is done on PID 1484.

In remote code execution you will have readable, writeable, and executable private memory region. This region will contain PE file header or valid CPU instruction that can indicate a shellcode.

With **malfind** plugin you check the protection on this private memory region

```
SECURE MIND
```

```
D:\Training\volatillity\volatility_2.6_win64_standalone>volatility_2.6_win64_standalone.exe -f mem.vmem --profile=WinXPSP2x86 malfind -p 1484
Volatility Foundation Volatility Framework 2.6
Process: explorer.exe Pid: 1484 Address: 0x1460000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 33, MemCommit: 1, PrivateMemory: 1, Protection: 6
0x01460000 4d
                          DEC EBP
0x01460001 5a
                          POP EDX
0x01460002 90
 x01460003 0003
                          ADD [EBX], AL
                          ADD [EAX], AL
                          ADD [EAX+EAX], AL
0x0146000a 0000
                          ADD [EAX], AL
0x0146000c ff
                          DB 0xff
0x0146000d ff00
                          INC DWORD [EAX]
                          ADD [EAX+0x0], BH
0x0146000f 00b800000000
                          ADD [EAX], AL
0x01460015 0000
                          ADD [EAX+0x0], AL
0x01460017 004000
0x0146001a 0000
                          ADD [EAX], AL
0x0146001c 0000
                          ADD [EAX], AL
0x0146001e 0000
                          ADD [EAX], AL
0x01460020 0000
                          ADD [EAX], AL
0x01460022 0000
                          ADD [EAX], AL
0x01460024 0000
                          ADD [EAX], AL
0x01460026 0000
                          ADD [EAX], AL
0x01460028 0000
                          ADD [EAX], AL
0x0146002a 0000
                          ADD [EAX], AL
0x0146002c 0000
                          ADD [EAX], AL
0x0146002e 0000
                          ADD [EAX], AL
0x01460030 0000
                          ADD [EAX], AL
0x01460032 0000
                          ADD [EAX], AL
0x01460034 0000
                          ADD [EAX], AL
0x01460036 0000
                          ADD [EAX], AL
                          ADD [EAX], AL
                          ADD [EAX], AL
0x0146003a 0000
0x0146003c e000
                          LOOPNZ 0x146003e
0x0146003e 0000
                          ADD [EAX], AL
```

At this step you see VAD with Vads protection PAGE_EXECUTE_READWRITE You can also see MZ character that indicates the PE header.

STEP 7: DUMP THE PROCESS EXECUTABLE

At this time based on the parent/child relation ship between PID 1484 and 1640 Our hypothesis is that some sort of remote code execution is performed by PID 1640 on PID 1484

we will dump the executables of PID 1484 and 1640 and test it on virustotal

11 11

......

48db195007e5ae9fc1246506564af154927e9f3fbfca0b4054552804027abbf2

11 111

1 1111111 111 111111111

11111

1 1 11

1 11 1 1

I TITLE THE TELESCOPE

Q A Sign in

1111 1 1 1

.

TITLE TRACE

1 1 1 11

.

(!) 24 engines detected this file

peexe

48db195007e5ae9fc1246506564af154927e9f3fbfca0b4054552804027abbf2 executable.1484.exe

1009.50 KB Size

2020-02-29 02:26:23 UTC 14 days ago

DETECTION DETAILS	BEHAVIOR COMMUNITY 2		
AegisLab	() Riskware.Win32.Agent.1lc	Alibaba	① Trojan:Win32/Multiop.93945bf7
Antiy-AVL	① Trojan[Downloader]/Win32.Geral	SecureAge APEX	① Malicious
CrowdStrike Falcon	(I) Win/malicious_confidence_60% (W)	Cybereason	① Malicious.ccf96e
Cylance	① Unsafe	Ikarus	① Trojan-Dropper.Agent
K7AntiVirus	() Riskware (0040eff71)	K7GW	① Riskware (0040eff71)
Kaspersky	Not-a-virus:RiskTool.Win32.Agent.amvb	MaxSecure	① Trojan.Malware.9848371.susgen
McAfee	① ArtemisIF5D61A0CCF96	McAfee-GW-Edition	① BehavesLike.Win32.Dropper.fz
Microsoft	① Trojan:Win32/Multiop	Qihoo-360	① Win32/Virus.RiskTool.a55
Rising	① Trojan.Multiop!8.10079 (CLOUD)	Sangfor Engine Zero	① Malware
Sophos AV	① Generic PUA CA (PUA)	Symantec	① PUA.Gen.2

5b136147911b041f0126ce82dfd24c4e2c79553b65d3240ecea2dcab4452dcb5

1 1111111 111 111111111

1111 1 1 1 11 111 TITLE TITLE

1 1 1 11

.

.

Community

(!) 32 engines detected this file

5b136147911b041f0126ce82dfd24c4e2c79553b65d3240ecea2dcab4452dcb5 executable.1640.exe

peexe

28.50 KB

2020-03-06 06:14:20 UTC

8 days ago

DETECTION	DETAILS BEHAVIOR COMMUNITY 1		
Ad-Aware	① Trojan.GenericKD.41512677	AegisLab	① Trojan.Multi.Generic.4lc
Alibaba	① Trojan:Win32/Multiop.1c3efc4f	ALYac	① Trojan GenericKD 41512677
Arcabit	① Trojan Generic D2796EE5	BitDefender	① Trojan.GenericKD.41512677
Comodo	① Malware@#b2ihr9eixviv	CrowdStrike Falcon	(I) Win/malicious_confidence_60% (W)
Cylance	① Unsafe	Emsisoft	① Trojan.GenericKD.41512677 (B)
eScan	① Trojan GenericKD.41512677	FireEye	① Trojan.GenericKD.41512677
Fortinet	PossibleThreat	GData	① Trojan.GenericKD.41512677
Ikarus	① Trojan.Win32.Patched	Kaspersky	UDS:DangerousObject.Multi.Generic
MAX	① Malware (ai Score=99)	MaxSecure	① Trojan.Malware.1728101.susgen
McAfee	① ArtemisI12CF6583F5A9	McAfee-GW-Edition	① Artemis!Trojan

STEP 8: DUMP THE PROCESS MEMORY

ADDRESS

At this step we will dump the memory address and use it to find suspicious strings

Writing reader_sl.exe [1640] to 1640.dmp

If we search our IP address artifact from **connection** plugin you can see that its Communicating over HTTP protocol with specified user agent. also if we look carefully through The output you can see list of banking domains associated with this process

```
POST /zb/v_01_a/in/ HTTP/1.1
Accept: */*
User-Agent: Mozilla/5.0 (Windows; U; MSIE 7.0; Windows NT 6.0; en-US)
Host: 41.168.5.140:8080
Content-Length: 229
Connection: Keep-Alive
Cache-Control: no-cache
```

treasurypathways.com *CorporateAccounts* *weblink.websterbank.com* *secure7.onlineaccess1.com* *trz.tranzact.org* *onlineaccess1.com* *secureport.texascapitalbank.com* */Authentication/zbf/k/* *ebc_ebc1961* *tdbank.com* *online.ovcb.com* *ebanking-services.com* *schwab.com* *billmelater.com* *chase.com* *bankofamerica.com* *pnc.com* *suntrust.com* *wellsfargo.com*

- FOR MORE INFORMATION ABOUT LATEST THREATS AND FREE DETECTION RUES
 PLEASE VISIT OUR WEBSITE AND LINKEDIN PAGE:
- O HTTPS://WWW.THREATHUNTING.SE/
- HTTPS://LINKEDIN.COM/COMPANY/THREAT-HUNTING

. . . .

www.SecureMind.se