2ª Prova de F 228

Turmas do Noturno Primeiro Semestre de 201 26/05/2010		1 2 3 4 Nota:
Nome:	RA:	Turma:
Sempre que necessário, use g	$= 10 \text{ m/s}^2 \text{ e } \pi = 3 \text{ e } v_{som} \text{ (som } \pi)$	no ar) = 340 m/s
Um bloco de massa <i>M</i> , em repous suporte rígido por duas molas de co velocidade <i>v</i> atinge o bloco como mostr	enstante elastica k_1 e k_2 . Um	a atrito, é ligado a um na bala de massa <i>m</i> e
$-\underbrace{\begin{pmatrix} k_1 \\ k_2 \\ \end{pmatrix}}_{k_2}$		
Este sistema de duas molas da figura a uma mola cuja constante elástica vale:	cima é equivalente a um sisten $k_{\text{ef}} = k_1 + k_2$	na composto por apenas
a) Deduza a expressão $k_{\text{ef}} = k_1 + k_2$.		
Em seguida, para a solução dos itens a m , v e k_1 :	baixo considere $k_1 = k_2/2$ e dete	ermine em função de M,
b) A velocidade do bloco imediatamentoc) A amplitude do movimento harmôn	ite após a colisão. ico simples.	
X= Xn=X2	F.=ma.	* ,
Frus = -Kef. X Kef = Ka+Kz	Wa = KI+Ka m N= TK	2 8
b) NF - m N ()	ETOTAL = K+U=cle	Kef = K, + Kz

- 3) Um microfone é colocado no meio da linha que une dois alto-falantes de 12 W que podem ser considerados fontes pontuais isotrópicas. Os dois alto-falantes estão separados de 10 m e emitem uma onda sonora em fase numa freqüência de 100 Hz. Despreze as ondas sonoras refletidas na montagem. O limiar de audibilidade corresponde a $I_0 = 10^{-12} \, \text{W/m}^2$.
- a) Calcule o nível sonoro em dB medido pelo microfone se apenas um alto-falante estiver ligado.
- b) Calcule a intensidade do som em W/m² se os dois alto-falantes estiverem ligados.
- c) Qual a menor distância que podemos mover o microfone ao longo da linha que une os alto-falantes de modo que a intensidade sonora detectada se torne mínima.

a)
$$\beta = 10 \log \frac{\Gamma}{\Gamma_0}$$
, $\Gamma = \frac{P}{A}$

$$\beta = 100 \text{ dB}$$

$$SmP = (5m + 5m) \times (25m)^2 = 45m$$

$$\Gamma = 245m$$

$$\Gamma = 245$$

- 3) Um tubo A, que possui 1,5 m de comprimento e é aberto em suas duas extremidades, vibra na sua terceira freqüência harmônica mais baixa. Um outro tubo B, de comprimento L, é fechado em uma de suas extremidades e vibra em sua segunda freqüência harmônica mais baixa. As freqüências dos tubos A e B coincidem.
- a) Encontre as posições do tubo A em que estão os nós de deslocamento.
- b) Encontre o comprimento L do tubo B.

tuber abello
$$L = n\frac{\lambda}{2}$$
 $m: 1, 2, 3, 4...$ $b = 1$

$$L = n\frac{\lambda}{4}, n = 1, 3, 5, 7$$

$$x = 1, 3 + 5, \frac{\lambda}{4}$$

$$x = 25 m \text{ on } (Kx) \text{ smill}$$

$$y = 340 \text{ fb}$$

$$C = 340 \text{ fb}$$

$$L = nN = 3 \text{ in }$$

$$4 = 3$$

- 4) Um menino está sentado próximo à janela aberta de um trem que está se movendo a uma velocidade de 10 m/s para o leste. O tio do menino está de pé próximo aos trilhos e vê o trem se afastar. O apito da locomotiva emite som na freqüência de 700 Hz. O ar está parado.
- a) Que freqüência o tio houve?

b) Que frequência o menino houve?

Suponha agora que um vento começa a soprar para o leste a 10 m/s.

c) Que frequência o menino houve agora?

d) Que frequência o som do apito deveria ter para que o tio percebesse uma frequência aparente de 1050 Hz?

a)