Football Statistique

CHIRINA Rania, Gonzalez Emmanuel, AKHLOUFI Khalil, Martin Samuel, VITOFFODJI Adjimon

Département MIASHS, UFR 6 Informatique, Mathématique et StatistiqueUniversité Paul Valéry, Montpellier 3

2024

Plan

- 1 Problématique et objectifs de l'étude
- Méthodologie
- Présentation des résultats

Plan

Problématique et objectifs de l'étude

Problématique (1/3)

Problème posé

- L'analyse statistique des performances des joueurs de football est devenue un outil incontournable pour les entraîneurs, les analystes et les passionnés du ballon rond.
- Des joueurs emblématiques tels que Lionel Messi et Cristiano Ronaldo ont continué à dominer les classements statistiques, tandis que de nouveaux talents ont émergé pour laisser leur empreinte dans l'histoire du football.
- Cependant, malgré l'abondance de données disponibles,il reste des questions cruciales à explorer pour mieux comprendre les facteurs qui influent sur la performance des joueurs et pour anticiper les tendances à venir.

Problématique (2/3)

Problème posé

- Comme l'a souligné Johan Cruyff, légendaire joueur et entraîneur de football, "Les statistiques sont comme un bikini : elles montrent beaucoup de choses, mais elles cachent l'essentiel."
- Cette citation emblématique résume parfaitement la complexité des chiffres dans le contexte du football. Alors que les statistiques peuvent offrir des indications précieuses sur les performances individuelles et collectives des joueurs, elles ne capturent jamais entièrement l'essence du jeu, son flair artistique et son imprévisibilité.

Problématique (3/3)

Problème posé

- Quelles sont les variables qui ont une influence sur la performance des joueurs ?
- Qui est-ce qui seront les potentiels meilleurs buteurs de chaque championnat durant l'année 2024?

objectifs (1/1)

Objectifs général

L'objectif général de cette étude est de mener une analyse approfondie des performances des joueurs de football de 2016 à 2023, en se concentrant sur les principales ligues européennes

Objectifs spécifique

- \bullet O_1 : d'examiner les données statistiques des joueurs pour identifier les variables clés qui influent sur leur performance individuelle et collective.
- O₂: anticiper les tendances futures en matière de performances des joueurs, en utilisant des techniques de modélisation prédictive basées sur les données
- O₃: prédire les potentiels meilleurs buteurs de chaque championnat pour l'année 2024, en tenant compte des caractéristiques des joueurs, des stratégies des équipes et des dynamiques du jeu.

Plan

Méthodologie

Methodologie (1/6)

Ce travail a été réaliser en utilisant les logociels :

- Excel
- PhpMyAmin
- Rstudio version 4.2.2
- Rmarkdown pour la rédaction
- Rmarkdown à travers Beamer pour la présentation

Methodologie (2/6)

Natures et Sources des données

- Les données étutilisé dans la présente études couvrent la période de 2016 à 2023 et concernent les 5 grandes ligues européennes.
- Ces données proviennent de la base de sofascore sur le site de sofascore.com

Methodologie (3/6)

Identification des variables de l'étude

- La variable endogène : Le nombre de but marqué par chaque joueur au cours d'une année;
- Les variables exogènes: Nombre de match jouer, Le nombre de minutes joué pendant la saison, Le nombre de tire tanté pendant la saison, Le nombre de tire cadré pendant une saison, Le ratio de but par match, Grosses occasions créées durant la saison, Identifiant associé à chaque joueur

Methodologie (4/6)

Processus d'analyse

Methodologie (5/6)

Modèle d'analyse

Notre modèle d'analyse repose sur une fonction de type régression linéaire multiple qui se présente comme suit:

Modèle 1

$$But = \beta_0 + \beta_1 \mathit{Tirs_Total} + \beta_2 \mathit{Gross_occas} + \beta_3 \mathit{tirs_cadr} \\ + \beta_5 \mathit{minutes_jou} \\ \acute{e}s + \beta_6 \mathit{Ratio_but_par_match} + \beta_7 \mathit{id_nom} + \varepsilon$$

Modèle 2

$$But = \beta_0 + \beta_1 tirs_cadr\'{e}s + \beta_2 matchs + \beta_3 minutes_jou\'{e}es + \beta_4 Ratio_but_par_match + \beta_5 id_nom + \varepsilon$$

Methodologie (6/6)

Modèle d'analyse

Modèle 3

$$\begin{split} \hat{But}_t &= \hat{\beta}_0 + \hat{\beta}_1 tire_c adr\acute{e}s_t + \hat{\beta}_2 matchs_t + \hat{\beta}_3 minutes_j ou\acute{e}es_t \\ &+ \hat{\beta}_4 Ratio_b ut_m atch_t + \hat{\beta}_5 id_n om_t + \epsilon_t \end{split}$$

Plan

O Présentation des résultats

Présentation des résultats (1/9)

Analyse descriptive

Présentation des résultats (2/9)

Analyse descriptive

Variables	Statistique W	p-value	Conclusion
But	0,85561	2,2e-16	Absence de normalité
Tirs_Total	0.94029	2.2e-16	Absence de normalité
Gross_occas	0.93052	2.2e-16	Absence de normalité
tirs_cadrés	0.91627	2.2e-16	Absence de normalité
matchs	0.89984	2.2e-16	Absence de normalité
minutes_jouées	0.96931	6.374e-12	Absence de normalité
ratio_but_par_match	0.86488	2.2e-16	Absence de normalité

Présentation des résultats (3/9)

Analyse descriptive

Représentation graphique de la liaison entre les variables (Matrice de corrélation de Spearman)

Présentation des résultats (4/9)

Estimation du modèle

Estimation du modèle 1

But					
Statistics	Coefficients				
-1,050	0,2939				
-1,050	0,2695				
4,974	8,05e-07 ***				
43,464	2e-16 ***				
-2,346	0,0192 *				
99,589	2e-16 ***				
1,542	0,1235				
-54,704	2e-16 ***				
0,9803					
5680					
2,2e-16					
	-1,050 -1,050 -1,050 4,974 43,464 -2,346 99,589 1,542 -54,704 0,9803 5680				

^{***} et * indiquent que les variables sont significatives aux seuils de 1/1000 et 5% respectivement.

Présentation des résultats (5/9)

Estimation du modèle

Estimation du modèle 2

But				
T	-Statistics	Coefficients		
tirs_cadrés	3,116	0,001899 **		
matchs	-17,277	2e-16 ***		
minutes_jouées	-3,497	0,000496 ***		
ratio_but_par_matcl	1 -34,402	2e-16 ***		
Id_Joueur	1,223	0,221614		
С	61,631	2e-16 ***		
R^2 :	0,8353			
F-statistic:	811,6			
p-value:	2,2e-16			

*** et ** indiquent que les variables sont significatives aux seuils de 1/1000 et 10% respectivement.

Présentation des résultats (6/9)

Estimation du modèle de prévision

Modèle 3

$$\begin{split} \hat{\textit{But}}_t = 61,631 + 3,116 \textit{tire}_c \textit{adr} \acute{e}s_t - 17,277 \textit{matchs}_t + -3,497 \textit{minutes}_j \textit{ou\'ees}_t \\ + -34,402 \textit{Ratio}_b \textit{ut}_m \textit{atch}_t + 1,223 \textit{id}_n \textit{om}_t + \epsilon_t \end{split}$$

Présentation des résultats (7/9)

Interprétation de prévision

Pévision

Prévisions 2024				
id_nom	nom	But		
68	Erling Haaland	35		
1	Harry Kane	29		
61	Ivan Toney	20		
30	Mohamed Salah	19		
41	Callum Wilson	18		

Présentation des résultats (8/9)

Interprétation de prévision

Présentation des résultats (8/9)

Interprétation de prévision

Présentation des résultats (9/9)

Interprétation de prévision

Conclusion

Merci pour votre attention