model.rmd

Yanran Li, Yijin Wang, Shubo Zhang

2024-03-20

```
library(mice)
library(tidyr)
library(dplyr)
library(visdat)
library(naniar)
library(ggplot2)
library(lme4)
library(broom.mixed)
library(kableExtra)
library(gtsummary)
data <- read.csv("data.csv") %>%
  janitor::clean_names() %>%
  mutate(day = as.factor(day),
         treatment_group = as.factor(treatment_group))
# pre-processing: expand design matrix and fill in NAs
full_data <- data %>%
  complete(day,
           nesting(subject_id, treatment_group)) %>%
  relocate(day, .after = subject_id) %>%
  relocate(treatment_group, .after = gender) %>%
  group_by(subject_id) %>%
  fill(age, gender, .direction = "downup") %>%
  arrange(subject_id, day) %>%
  group_by(subject_id) %>%
  # calculate difference
  mutate(diff_mem_comp = mem_comp - first(mem_comp)) %>%
  filter(day != 0) %>%
  select(-mem_comp) %>%
  ungroup()
full_data %>%
  group_by(day) %>%
  summarise(`Missing Data Percentage` = sum(is.na(diff_mem_comp))/n()*100) %>%
  rename(Day= day) %>%
  kable()
```

Day	Missing Data Percentage
5	4.255319
19	25.531915
90	34.042553

Relationship of age and missing values


```
full_data %>% filter(is.na(diff_mem_comp)) %>%
   ggplot()+
   geom_bar(aes(x=gender, stat = "count"))+
   facet_wrap(day~.)+
```

```
theme_bw()+
xlab("gender")+
ggtitle("Relationship of gender and missing values")
```

```
## Warning in geom_bar(aes(x = gender, stat = "count")): Ignoring unknown
## aesthetics: stat
```

Relationship of gender and missing values


```
# Rigorous test for MCAR: Little's Test.
# HO: data is MCAR
# HA: data is not MCAR ==> MAR or MNAR
# reject HO in this case
mcar_test(full_data)
## # A tibble: 1 x 4
##
     statistic
                  df p.value missing.patterns
         <dbl> <dbl> <dbl>
                                        <int>
## 1
         15.4
                  5 0.00867
mar_data <- full_data %>%
      filter(!is.na(diff_mem_comp)) %>%
  mutate(day = factor(day, levels = c(5,19,90)),
         treatment_group = factor(treatment_group,levels = c("A","B","C")))
```

```
# MAR assumption model
trt_model <- with(mar_data, lmer(diff_mem_comp ~ age + gender + treatment_group+day + (1|subject_id)))
## Aim 1: test separately for two treatment effect
summary_output <- summary(trt_model)
coef_table <- as.data.frame(summary_output$coefficients)
df <- df.residual(trt_model)
p_values <- 2 * pt(abs(coef_table[, "t value"]), df = df, lower.tail = FALSE)
coef_table$p_value <- p_values
coef_table %>% kable(caption = "Under MAR Assumption Model Summary Table")
```

Table 2: Under MAR Assumption Model Summary Table

	Estimate	Std. Error	t value	p_value
(Intercept)	0.2294536	0.3701469	0.6198987	0.5367069
age	-0.0114407	0.0087688	-1.3047029	0.1949301
genderM	0.1520745	0.1578286	0.9635424	0.3375542
$treatment_groupB$	0.0516028	0.1918193	0.2690179	0.7884593
$treatment_groupC$	0.4271182	0.1828673	2.3356733	0.0214653
day19	0.0456282	0.0900300	0.5068113	0.6133811
day90	0.0215896	0.0949081	0.2274790	0.8205066

```
## Aim 2: jointly test interaction terms
full_model <- with(mar_data, lmer(diff_mem_comp ~ age + gender + treatment_group+day +treatment_group:
car::Anova(full_model, type= "III") %>% kable(caption="Type III Anova Test")
```

Table 3: Type III Anova Test

Chisq	Df	Pr(>Chisq)
0.7466533	1	0.3875379
1.9966452	1	0.1576478
1.0351356	1	0.3089555
5.5578423	2	0.0621055
0.7412677	2	0.6902967
6.0043155	4	0.1988262
	0.7466533 1.9966452 1.0351356 5.5578423 0.7412677	0.7466533 1 1.9966452 1 1.0351356 1 5.5578423 2 0.7412677 2

```
trt_model_table <-
  trt_model %>%
  tbl_regression(
  estimate_fun = function(x) style_number(x, digits = 3),
  exponentiate = F,
  label = list(
    age ~ "Age",
    gender ~ "Gender",
    treatment_group ~ "Treatment",
    day ~ "Day"
  ))

gt.trt_model_table <- trt_model_table %>% as_gt()
gt::gtsave(gt.trt_model_table, file = "./pic/tbl_MAR_trt_model_table.png")
```

```
# sensitivity analysis for each data missing assumptions
# mcar - fit data with completers data
completers_data <- full_data %>%
    group_by(subject_id) %>%
    mutate(missing = any(is.na(diff_mem_comp))) %>%
    ungroup() %>%
    filter(missing == FALSE)

completers_trt_model <- with(completers_data, lmer(diff_mem_comp ~ age + gender + treatment_group+day +
## Aim 1: test separately for two treatment effect

summary_output <- summary(completers_trt_model)
coef_table <- as.data.frame(summary_output$coefficients)
df <- df.residual(completers_trt_model)
p_values <- 2 * pt(abs(coef_table[, "t value"]), df = df, lower.tail = FALSE)
coef_table$p_value <- p_values
coef_table %>% kable(caption = "Completers' Data Model Summary Table")
```

Table 4: Completers' Data Model Summary Table

	Estimate	Std. Error	t value	p_value
(Intercept)	-0.6003684	0.5348537	-1.1224909	0.2659136
age	0.0067441	0.0121918	0.5531654	0.5821079
genderM	0.0640661	0.1979345	0.3236730	0.7472577
$treatment_groupB$	0.2868187	0.2428841	1.1808872	0.2420866
$treatment_groupC$	0.4370294	0.2212894	1.9749219	0.0526630
day19	0.0329321	0.1169854	0.2815061	0.7792448
day90	-0.0056296	0.1169854	-0.0481223	0.9617710

```
## Aim 2: jointly test interaction terms
completers_full_model <- with(completers_data, lmer(diff_mem_comp ~ age + gender + treatment_group+day
car::Anova(full_model, type= "III") %>% kable(caption="Type III Anova Test")
```

Table 5: Type III Anova Test

	Chisq	Df	Pr(>Chisq)
(Intercept)	0.7466533	1	0.3875379
age	1.9966452	1	0.1576478
gender	1.0351356	1	0.3089555
$treatment_group$	5.5578423	2	0.0621055
day	0.7412677	2	0.6902967
$treatment_group:day$	6.0043155	4	0.1988262

```
completers_trt_model_table <-
  completers_trt_model %>%
  tbl_regression(
    estimate_fun = function(x) style_number(x, digits = 3),
    exponentiate = F,
    label = list(
```

```
age ~ "Age",
      gender ~ "Gender",
      treatment_group ~ "Treatment",
      day ~ "Day"
    ))
gt.completers_trt_model_table <- completers_trt_model_table %>% as_gt()
gt::gtsave(gt.completers_trt_model_table, file = "./pic/tbl_completers_trt_model_table.png")
# mnar - fill na's with different delta --> fit model --> CI's
# multiple imputations
imputed_data <- mice::mice(data = full_data, m = 6, seed =2024, print = FALSE)</pre>
## Warning: Number of logged events: 31
# Create a delta vector that represent the following adjustment values for mmHg: 0 for MAR, and -0.7, -
delta \leftarrow c(-0.7, -0.2, 0.2, 0.7)
imp.all <- vector("list", length(delta))</pre>
post <- imputed_data$post</pre>
for (i in 1:length(delta)){
  d <- delta[i]
  cmd <- paste("imp[[j]][,i] <- imp[[j]][,i] +", d)</pre>
  post["diff_mem_comp"] <- cmd</pre>
  imp <- mice::mice(full_data, post = post,m = 6,seed = 2024, print = FALSE)</pre>
  imp.all[[i]] <- imp</pre>
}
## Warning: Number of logged events: 31
# imputation with no adjustment (delta = -0.7)
densityplot(imp.all[[1]], lwd = 3)
```


imputation with adjustment (delta = -0.2) densityplot(imp.all[[2]], lwd = 3)

imputation with adjustment (delta = 0.2)
densityplot(imp.all[[3]], lwd = 3)

imputation with adjustment (delta = 0.7)
densityplot(imp.all[[4]], lwd = 3)


```
for (i in 1:length(delta)){
  curr_data <- imp.all[[i]]
  print(mice::stripplot(curr_data, diff_mem_comp))
}</pre>
```



```
int_results<-tibble(</pre>
  statistic = numeric(),
  df1 = numeric(),
  df2 = numeric(),
  p.value=numeric(),
  riv = numeric()
)
\# calculate results for imputation+adjustment datasets
for (i in 1:length(delta)){
  curr_data <- imp.all[[i]]</pre>
  # fit model
  curr_full_model <- with(curr_data,lmer(diff_mem_comp ~ age + gender + treatment_group+day+treatment_g</pre>
  curr_trt_model <- with(curr_data,lmer(diff_mem_comp ~ age + gender + treatment_group+day + (1|subject</pre>
  curr.pool.trt.fit <- pool(curr_trt_model) %>% summary
  print(curr.pool.trt.fit %>% kable(caption = paste0("delta=", delta[i]," Summary Table")))
  # anova based on likelihood ratio
  curr_int_result<-anova(curr_trt_model, curr_full_model,method = "D3")[["out"]][["2 ~~ 1"]][["result"]</pre>
    t() %>%
    as.data.frame()
```

```
colnames(curr_int_result) <-c("statistic","df1","df2","p.value","riv")
int_results<- int_results %>% rbind(curr_int_result)
}
```

Table 6: delta=-0.7 Summary Table

term	estimate	std.error	statistic	df	p.value
(Intercept)	0.0085035	0.3642237	0.0233469	31.02879	0.9815231
age	-0.0063985	0.0086018	-0.7438579	28.45655	0.4630608
$\operatorname{genderM}$	0.1378534	0.1329736	1.0366972	87.83756	0.3027226
$treatment_groupB$	0.0226668	0.1634136	0.1387081	79.87091	0.8900299
$treatment_groupC$	0.4094935	0.1498087	2.7334428	112.77782	0.0072790
day19	-0.0323330	0.1251122	-0.2584322	65.37118	0.7968853
day90	-0.2413337	0.1286710	-1.8755880	51.63986	0.0663705

Table 7: delta=-0.2 Summary Table

term	estimate	std.error	statistic	df	p.value
(Intercept)	0.1237174	0.3555619	0.3479488	28.89259	0.7304010
age	-0.0085214	0.0084294	-1.0109152	26.75466	0.3211127
genderM	0.1025427	0.1293774	0.7925858	85.02797	0.4302251
treatment_groupB	0.0413311	0.1590897	0.2597978	76.87298	0.7957143
treatment_groupC	0.4170558	0.1454923	2.8665138	111.30631	0.0049642
day19	0.0740499	0.1114839	0.6642212	51.68766	0.5095011
day90	-0.0923976	0.1154634	-0.8002324	39.61403	0.4283492

Table 8: delta=0.2 Summary Table

term	estimate	std.error	statistic	df	p.value
(Intercept)	0.2158885	0.3633203	0.5942097	30.80381	0.5567112
age	-0.0102197	0.0086205	-1.1855139	28.64291	0.2455567
genderM	0.0742941	0.1333613	0.5570886	88.12956	0.5788790
treatment_groupB	0.0562626	0.1638799	0.3433163	80.18489	0.7322591
treatment_groupC	0.4231056	0.1502736	2.8155691	112.92717	0.0057472
day19	0.1591563	0.1094868	1.4536572	49.59765	0.1523401
day90	0.0267514	0.1135364	0.2356195	37.87463	0.8149974

Table 9: delta=0.7 Summary Table

term	estimate	std.error	statistic	$\mathrm{d}\mathrm{f}$	p.value
(Intercept)	0.3311023	0.3901022	0.8487579	37.64723	0.4013808
age	-0.0123426	0.0092409	-1.3356456	35.04209	0.1902760
genderM	0.0389833	0.1461012	0.2668241	96.61744	0.7901732
$treatment_groupB$	0.0749270	0.1792172	0.4180791	89.51610	0.6768905
$treatment_groupC$	0.4306678	0.1655055	2.6021357	117.00162	0.0104620

term	estimate	std.error	statistic	$\mathrm{d}\mathrm{f}$	p.value
day19 day90	$\begin{array}{c} 0.2655393 \\ 0.1756876 \end{array}$	$\begin{array}{c} 0.1187795 \\ 0.1225223 \end{array}$	$\begin{array}{c} 2.2355642 \\ 1.4339226 \end{array}$	59.17023 46.04623	$0.0291664 \\ 0.1583507$

int_results %>% kable(caption = "Pooled Anova Test For Interaction Term")

Table 10: Pooled Anova Test For Interaction Term

statistic	df1	df2	p.value	riv
0.9890056	4	234.4496	0.4142293	0.3219873
0.7956954	4	156.7185	0.5296437	0.4307285
0.5579189	4	149.2497	0.6935537	0.4470963
0.2868625	4	202.5440	0.8862853	0.3567690