Application 0 Roulement à billes – Corrigé

Question 1 Réaliser les figures planes correspondant au paramétrage du système.

Ressources de Renan Bonnard.

Question 2 Déterminer $\overrightarrow{\Omega(1/0)}$, $\overrightarrow{V(O,1/0)}$ et $\overrightarrow{V(I,1/0)}$.

Correction

$$\left\{\mathcal{V}(1/0)\right\} = \left\{\begin{array}{l} \overrightarrow{\Omega(1/0)} = \dot{\theta}_1 \overrightarrow{z_0} \\ \overrightarrow{V(O,1/0)} = \overrightarrow{0} \end{array}\right\}_O = \left\{\begin{array}{l} \overrightarrow{\Omega(1/0)} = \dot{\theta}_1 \overrightarrow{z_0} \\ \overrightarrow{V(I,1/0)} = r_1 \omega_1 \overrightarrow{j} \end{array}\right\}_I$$

Question 3 Déterminer $\overrightarrow{\Omega(2/0)}$, $\overrightarrow{V(O,2/0)}$ et $\overrightarrow{V(J,2/0)}$.

Correction

$$\left\{\mathcal{V}(1/0)\right\} = \left\{\begin{array}{l} \overline{\Omega(2/0)} = \dot{\theta}_2 \overrightarrow{z_0} \\ \overline{V(O,2/0)} = \overrightarrow{0} \end{array}\right\}_O = \left\{\begin{array}{l} \overline{\Omega(2/0)} = \dot{\theta}_2 \overrightarrow{z_0} \\ \overline{V(J,2/0)} = r_1 \omega_2 \overrightarrow{j} \end{array}\right\}_J$$

Question 4 Exprimer les conditions de roulement sans glissement en I et J. Établir les expression des vecteurs V(I,3/0) et V(J,3/0).

Correction

$$\overrightarrow{V(I,3/1)} = \overrightarrow{0}$$

$$\overrightarrow{V(I,3/1)} = \overrightarrow{0}$$

$$\overrightarrow{V(I,3/0)} = \overrightarrow{V(I,3/1)} + \overrightarrow{V(I,1/0)} \Longrightarrow \overrightarrow{V(I,3/0)} = \overrightarrow{V(I,1/0)} = r_1\omega_1 \overrightarrow{j}$$

$$\overrightarrow{V(J,3/2)} = \overrightarrow{0}$$

$$\overrightarrow{V(J,3/0)} = \overrightarrow{V(J,3/2)} + \overrightarrow{V(J,2/0)} \Longrightarrow \overrightarrow{V(J,3/0)} = \overrightarrow{V(J,2/0)} = r_2\omega_2 \overrightarrow{j}$$

Question 5 En déduire l'expression de ω_3 en fonction de r_1 , r_2 , ω_1 , ω_2 .

Correction

$$\overrightarrow{V(I,3/0)} = \overrightarrow{V(J,3/0)} + \overrightarrow{IJ} \wedge \overrightarrow{\Omega(3/0)}$$

$$\omega_3 = \frac{r_2\omega_2 - r_1\omega_1}{r_2 - r_1}$$

Question 6 Déterminer $\overrightarrow{V(G,3/0)}$ en fonction de r_1 , r_2 , ω_1 , ω_2 .

Correction

$$\overrightarrow{V(G,3/0)} = \overrightarrow{V(I,3/0)} + \overrightarrow{GI} \wedge \overrightarrow{\Omega(3/0)} = \frac{r_2\omega_2 + r_1\omega_1}{2} \overrightarrow{j}$$

Question 7 Déterminer l'expression de la vitesse de glissement de la bille 3 par rapport à la cage 4 au point C en fonction de r_1 , r_2 , ω_1 , ω_2 .

Correction

On cherche à calculer $\overrightarrow{V(C,3/4)}$:

$$\overrightarrow{V(C,3/4)} = \overrightarrow{V(G,3/4)} + \overrightarrow{CG} \wedge \overrightarrow{\Omega(3/4)}$$

Calcul de \overrightarrow{CG} :

$$\overrightarrow{CG} = -\frac{1}{2}(r_2 - r_1)\overrightarrow{j}$$

Calcul de $\overrightarrow{\Omega(3/4)}$:

$$\overrightarrow{\Omega(3/4)} = \overrightarrow{\Omega(3/0)} - \overrightarrow{\Omega(4/0)}$$

Calcul de ω_4 :

$$\overrightarrow{V(G,3/4)} = \overrightarrow{V(G,3/0)} - \overrightarrow{V(G,4/0)} = \overrightarrow{0}$$

Calcul de $\overrightarrow{V(G,4/0)}$:

$$\overrightarrow{V(G,4/0)} = \overrightarrow{V(O,4/0)} + \overrightarrow{GO} \wedge \overrightarrow{\Omega(4/0)} = \frac{r_2 + r_1}{2} \omega_4 \overrightarrow{j}$$

Au final calcul de ω_4 :

$$\omega_4 = \frac{r_2\omega_2 + r_1\omega_1}{r_1 + r_2}$$

Calcul de $\overrightarrow{\Omega(3/4)}$:

$$\overrightarrow{\Omega(3/4)} = \overrightarrow{\Omega(3/0)} - \overrightarrow{\Omega(4/0)} = \left(\frac{r_2\omega_2 - r_1\omega_1}{r_2 - r_1} - \frac{r_2\omega_2 + r_1\omega_1}{r_2 + r_1}\right) \overrightarrow{z_0}$$

Au final en faisant le calcul on obtient :

$$\overrightarrow{V(C,3/4)} = \frac{r_2r_1(\omega_1 - \omega_2)}{r_1 + r_2}\overrightarrow{i}$$

