2.2 범주형 데이터 처리

범주형 데이터의 정의

범주형 데이터는 'A', 'B', 'C'와 같이 종류를 표시하는 데이터를 말한다. 카테고리(category(데이터라고도 부른다. 다음과 같은 데이터는 모두 범주형 데이터의 예다.

- 성별: 남자, 여자
- 혈액형: A, B, O, AB
- 이름: 홍길동, 성춘향, ...
- 주소: 서울, 부산, 대전, ...

반드시 문자만 범주형 데이터인 것은 아다. 예를 들어 소속을 나타내는 '1반', '2반', '3반'과 같은 데이터는 숫자로 표현된 값이지만 '1'이라는 글자를 이용한 것 뿐이지 숫자로서의 의미는 없다. 즉, '2'라는 값이 '1'이라는 값보다 2 배 더 크다는 뜻이 아니므로 이 경우는 범주형 값으로 보아야 한다.

범주형 데이터의 변형

대부분의 데이터 분석 모형은 숫자만 입력으로 받을 수 있기 때문에 범주형 데이터는 숫자로 변환해야 한다. 범주형 데이터를 숫자로 변환하는 방법은 두가지다.

- 더미변수화
- 카테고리 임베딩

더미변수화

더미변수(dummy variable)는 0 또는 1만 가지는 값으로 어떤 특징이 존재하는가 존재하지 않는가를 표시한다. 다음과 같은 명칭으로도 불린다.

- 이진지시자(Boolean indicator)
- 이진변수(binary variable)
- 지시변수(indicator variable)
- 설계변수(design variable)
- 처치(treatment)

카테고리값을 더미변수화하면 복수의 더미변수 벡터로 표시한다. 예를 들어 성별 x는 2개의 더미변수 (d_1,d_2) 로 표현할 수 있다. 더미변수 d_1 는 남자면 1, 여자면 0이 되는 값이다. 더미변수 d_2 는 남자면 0, 여자면 1이 되는 값이다.

$$x =$$
남자 $\rightarrow d_1 = 1, d_2 = 0$
 $x =$ 여자 $\rightarrow d_1 = 0, d_2 = 1$

혈액형은 4개의 더미변수 (d_1,d_2,d_3,d_4) 로 표현할 수 있다. d_1 은 혈액형이 A형인지 아닌지를 나타내는 더미변수이고 d_2 은 혈액형이 B형인지 아닌지를 나타내는 더미변수, d_3,d_4 는 각각 혈액형이 O형인지 아닌지를 나타내는 더미변수다.

$$x = A$$
형 $\rightarrow d_1 = 1, d_2 = 0, d_3 = 0, d_4 = 0$
 $x = B$ 형 $\rightarrow d_1 = 0, d_2 = 1, d_3 = 0, d_4 = 0$
 $x = O$ 형 $\rightarrow d_1 = 0, d_2 = 0, d_3 = 1, d_4 = 0$
 $x = AB$ 형 $\rightarrow d_1 = 0, d_2 = 0, d_3 = 0, d_4 = 1$

위 예제들에서 볼 수 있듯이 1부터 K까지의 값을 가질 수 있는 범주형값은 K개의 더미변수 벡터로 표시할 수 있다. 각 더미변수는 특정한 하나의 카테고리값인가 아닌가를 나타내는 지시자(indicator)가 된다.

patsy 패키지를 사용한 더미변수화

patsy 패키지의 dmatrix() 함수는 데이터프레임의 문자열 범주값을 더미변수로 바꿔준다. 예를 들어 다음과 같이 성별을 나타내는 "Male", "Female"값 데이터가 있는 경우,

In [1]:

```
df1 = pd.DataFrame(["Male", "Female"], columns=["x"])
df1
```

Out[1]:

0 Male

1 Female

dmatrix() 함수에 넣으면 x[Female], x[Male] 이라는 두 개의 더미변수를 만들어준다. x[Female] 는 값이 여자인지 아닌지를 나타내는 더미변수고 x[Male] 는 값이 남자인지 아닌지를 나타내는 더미변수다. 주의할 점은 formula 문자열에 항상 + 0을 추가하여 상수항이 생기지 않도록 해야 한다. 만약 이렇게 하지 않으면 뒤에서 설명할 축소랭크(reduce-rank)방식이라는 다른 방식으로 더미변수를 만들게 된다.

In [2]:

```
from patsy import dmatrix

dmatrix("x + 0", df1)
```

Out[2]:

```
DesignMatrix with shape (2, 2)
x[Female] x[Male]
0 1
1 0
Terms:
'x' (columns 0:2)
```

다음은 혈액형 데이터를 더미변수로 바꾸는 예제 코드다.

In [3]:

```
df2 = pd.DataFrame(["A", "B", "AB", "O"], columns=["x"])
df2
```

Out[3]:

```
x
0 A
```

1 B

2 AB

3 O

각각의 범주값에 대응하는 더미변수는 알파벳 순서로 정해진다. 혈액형의 경우에는 d_1 이 A형, d_2 이 AB형, d_3 이 B형, d_4 이 O형이다.

In [4]:

```
dmatrix("x + 0", df2)
```

Out[4]:

```
DesignMatrix with shape (4, 4)
  x[A] x[AB] x[B] x[0]
            0
                  0
                        0
     1
     0
            0
                        0
                  1
                  0
                        0
     0
            1
     0
            0
                  0
  Terms:
    'x' (columns 0:4)
```

데이터가 범주형 값이지만 정수로 표시된 경우에는 C() 연산자를 이용하여 범주형 값임을 명시적으로 지정할수 있다.

In [5]:

```
df3 = pd.DataFrame([1, 2, 3, 4], columns=["x"])
df3
```

Out[5]:

	^
0	1

1 2

2 3

3 4

In [6]:

```
dmatrix("C(x) + 0", df3)
```

Out [6]:

```
DesignMatrix with shape (4, 4)
  C(x)[1] C(x)[2] C(x)[3] C(x)[4]
                  0
                           0
                                    0
        1
        0
                  1
                           0
                                    0
                                    ()
        0
                  0
                           1
                  0
                                     1
        0
  Terms:
    C(x) (columns 0:4)
```

C() 연산자를 사용하면 각 범주값이 대응하는 더미변수의 순서도 바꿀 수 있다. 예를 들어 혈액형의 경우, d_1 이 A형, d_2 이 B형, d_3 이 AB형, d_4 이 O형으로 만들고 싶으면 다음과 같이 Tevel 인수를 사용한다.

In [7]:

```
dm = dmatrix("C(x, levels=['A', 'B', 'AB', '0']) + 0", df2)
dm
```

Out[7]:

```
DesignMatrix with shape (4, 4)
   Columns:
        ["C(x, levels=['A', 'B', 'AB', '0'])[A]",
        "C(x, levels=['A', 'B', 'AB', '0'])[B]",
        "C(x, levels=['A', 'B', 'AB', '0'])[AB]",
        "C(x, levels=['A', 'B', 'AB', '0'])[0]"]
   Terms:
        "C(x, levels=['A', 'B', 'AB', '0'])" (columns 0:4)
   (to view full data, use np.asarray(this_obj))
```

In [8]:

```
np.asarray(dm)
```

Out[8]:

```
array([[1., 0., 0., 0.],

[0., 1., 0., 0.],

[0., 0., 1., 0.],

[0., 0., 0., 1.]])
```

축소랭크 방식

지금까지 설명한 더미변수 방식을 **풀랭크(full-rank)** 방식이라고 한다. 이와 달리 **축소랭크(reducec-rank) 방식에서는 특정한 하나의 범주값을 기준값(reference, baseline)으로 하고 기준값에 대응하는 더미변수의 가중치는 항상 1으로 놓는다.** 다른 범주형 값을 가지는 경우는 기준값 더미변수도 1이고 추가적인 특성을 나타내는 더미변수도 1인 것으로 간주한다. 예를 들어 다음 축소랭크 방식은 x = A를 기준값으로 하는 경우이다.

$$x = A \rightarrow d_1 = 1, d_2 = 0, d_3 = 0, d_4 = 0$$

 $x = B \rightarrow d_1 = 1, d_2 = 1, d_3 = 0, d_4 = 0$
 $x = AB \rightarrow d_1 = 1, d_2 = 0, d_3 = 1, d_4 = 0$
 $x = O \rightarrow d_1 = 1, d_2 = 0, d_3 = 0, d_4 = 1$

반대로 x = B를 기준값으로 하면 다음과 같아진다.

$$x = A$$
 \rightarrow $d_1 = 1, d_2 = 1, d_3 = 0, d_4 = 0$
 $x = B$ \rightarrow $d_1 = 0, d_2 = 1, d_3 = 0, d_4 = 0$
 $x = AB$ \rightarrow $d_1 = 0, d_2 = 1, d_3 = 1, d_4 = 0$
 $x = O$ \rightarrow $d_1 = 0, d_2 = 1, d_3 = 0, d_4 = 1$

dmatrix() 함수를 사용할 때 formula 문자열에 + 0 을 생략하면 축소랭크 방식으로 더미변수를 만든다. 기준이되는 더미변수의 이름이 Intercept 가 된다. 기준이되는 더미변수는 알파벳 순서로 가장 앞의 값이 된다. 다음 예제코드에서는 Female 이 기준 범주값이 된다.

In [9]:

```
dmatrix("x", df1)
```

Out [9]:

```
DesignMatrix with shape (2, 2)
Intercept x[T.Male]

1 1
0
Terms:
'Intercept' (column 0)
'x' (column 1)
```

만약 기준 범주값을 다른 값으로 바꾸려면 Treatment() 함수를 formula 문자열에서 사용한다.

In [10]:

```
dmatrix("C(x, Treatment('Male'))", df1)
```

Out[10]:

혈액형 데이터를 축소랭크방식으로 더미변수화하면 다음과 같다. 기준 범주값은 A다.

In [11]:

```
dmatrix("x", df2)
```

Out[11]:

```
DesignMatrix with shape (4, 4)
Intercept x[T.AB] x[T.B] x[T.0]

1 0 0 0

1 0 1 0

1 1 0 0

1 0 0

1 1 0 0
```

Terms:

- 'Intercept' (column 0)
- 'x' (columns 1:4)

두 개의 범주형 변수가 있는 경우

두 개의 범주형 변수가 있는 경우에는 다음과 같은 두 가지 방법을 사용할 수 있다.

- 통합 축소형 방식
- 상호작용 방식

통합 축소형 방식은 각각의 변수를 축소형으로 기준값을 더미변수화한다. 다만 기준값을 나타내는 더미변수는 변수의 갯수와 상관없이 하나로 통합한다.

예를 들어 A, B 값을 가지는 범주형 변수 x1과 X, Y 값을 가지는 범주형 변수 x2가 있는 경우를 예로 들어보자.

In [12]:

```
df4 = pd.DataFrame([["A", "X"], ["B", "X"], ["A", "Y"], ["B", "Y"]], columns=["x1", "x2"])
df4
```

Out[12]:

통합 축소형 방식에서는 다음과 같이 3개의 더미변수 (d_1,d_2,d_3) 를 만든다. d_1 은 x1이 A, x_2가 X라는 기준값을 나타낸다. d_2 은 x1이 A가 아닌 B라는 것을 표시한다. d_3 은 x2이 X가 아닌 Y라는 것을 표시한다.

$$x_1 = A, x_2 = X \rightarrow d_1 = 1, d_2 = 0, d_3 = 0$$

 $x_1 = B, x_2 = X \rightarrow d_1 = 1, d_2 = 1, d_3 = 0$
 $x_1 = A, x_2 = Y \rightarrow d_1 = 1, d_2 = 0, d_3 = 1$
 $x_1 = B, x_2 = Y \rightarrow d_1 = 1, d_2 = 1, d_3 = 1$

In [13]:

```
dmatrix("x1 + x2", df4)
```

Out [13]:

```
DesignMatrix with shape (4, 3)
  Intercept x1[T.B]
                       x2[T.Y]
           1
                    0
                              ()
           1
                    1
                              0
                    0
           1
                              1
                    1
  Terms:
    'Intercept' (column 0)
    'x1' (column 1)
    'x2' (column 2)
```

상호작용 방식은 두 범주형 변수를 곱해서 각각의 변수의 조합을 나타내는 새로운 범주형 변수를 만드는 방식이다. 즉 앞의 예제에서는 범주형 독립변수가 하나가 되고 대신 범주형 값이 두 독립변수의 범주형 값들의 조합인 AX, BX, AY, BY의 네가지가 된다.

In [14]:

```
dmatrix("x1:x2 + 0", df4)
```

Out [14]:

```
DesignMatrix with shape (4, 4)
  x1[A]:x2[X] x1[B]:x2[X] x1[A]:x2[Y] x1[B]:x2[Y]
            1
                          0
                                       0
                                                     0
            0
                                       0
                                                     0
                          1
            0
                          0
                                                     0
                                        1
            0
                                       0
  Terms:
    'x1:x2' (columns 0:4)
```

카테고리 임베딩

카테고리 임베딩(embedding)은 범주값 대신 범주값의 특성을 나타내는 연속값 혹은 연속값 벡터를 사용하는 방법이다.

예를 들면 운동선수의 이름을 나타내는 범주값의 경우 해당 운동선수의 나이, 연봉, 신체능력치 등을 대신 사용한다. 또 다른 예로 지역명을 나타내는 범주값의 경우에는 해당 지역의 면적, 인구수 등을 사용할 수 있다.

하지만 임베딩을 사용하는 경우에는 데이터 분석 목적에 맞게 특징을 선택해야 하고 현재 가지고 있는 데이터가 아닌 외부의 추가적인 데이터를 조사해야 한다는 부담이 있다.