IRT Tutorial

EACL 2024

John P. Lalor, Pedro Rodriguez, João Sedoc, 3,4 Jose Hernandez-Orallo⁵

- ¹ IT, Analytics, and Operations, University of Notre Dame
- ² Meta FAIR, Seattle
- ³ Technology, Operations and Statistics, New York University
- ⁴ Center for Data Science, New York University
- ⁵ Universitat Politècnica de València
- john.lalor@nd.edu, me@pedro.ai, jsedoc@stern.nyu.edu, jorallo@upv.es

IRT for NLP

Overview of IRT Applications:

- Dataset Construction
- Model Training
- Evaluation

Assumptions for IRT + NLP

Basic assumptions of the data and parameterization we have:

- A dataset with items indexed by *i*.
- A set of subjects indexed by j.
- Responses r_{ij} from graded responses of subjects to each item.
- An IRT parameterization, e.g., one with item difficulty β_i , discriminability γ_i , and skill θ_j might assume:

$$p(r_{ij}=1|eta_i, heta_j)=rac{1}{1+e^{-\gamma_i(heta_j-eta_i)}}$$

What IRT Yields

Given the previous information, IRT will yield estimates for chosen parameters, i.e.: item difficulty β_i , discriminability γ_i , and skill θ_i .

Consider two scenarios:

- What if the dataset is the training data?
- What if the dataset is a test set?

IRT from Improving Model Training

TODO: John fill some of this?

Data set filtering

- AVI: $|b_i| < \tau$
- UB: $b_i < \tau$
- PCUB: pc_i < τ</p>

- AVO: $|b_i| > \tau$
- LB: $b_i > \tau$
- PCLB: $pc_i > \tau$

MT-DNN Results

% of Training Data		
0.1%	1%	10%
82.1	85.2	88.4
81.79	84.90	88.32
43.68	41.56	39.89
81.62	80.46	79.06
82.44	85.44	86.73
43.60	42.05	40.81
	0.1% 82.1 81.79 43.68 81.62 82.44	0.1% 1% 82.1 85.2 81.79 84.90 43.68 41.56 81.62 80.46 82.44 85.44

Biggest Differences

Task	Label	Item Text	Difficulty ranking		
			Humans	LSTM	NSE
SNLI	Con.	P: Two dogs playing in snow. H: A cat sleeps on floor	168	1	5
	Ent.	P: A girl in a newspaper hat with a bow is unwrapping an item. H: The girl is going to find out what is under the wrapping paper.	55	172	176
SSTB	Pos.	Only two words will tell you what you know when deciding to see it: Anthony. Hopkins.	9	103	110
	Neg.	are of course stultifyingly contrived and too stylized by half. Still, it gets the job done—a sleepy afternoon rental.	128	46	41

Dynamic Data Selection for

Estimation (DDaCLAE)

Curriculum Learning via Ability

Traditional Curriculum Learning

Dynamic Data Selection

Traditional CL

TODO: screenshot of older figure, or redo

- Example difficulty based on heuristics
- Strategy is static

Dynamic Data Selection

TODO: screenshot of older figure, or redo

- Example difficulty is learned
- Training set dynamically selected as a function of model ability

Estimating θ

Gather responses from model j for items with known difficulties

$$Z_j = orall_{y \in Y} \mathbf{I}[y_i = \hat{y}_i]$$
 $L(heta_j | Z_j) = p(Z_j | heta_j)$
 $\hat{ heta}_j = rg \max_{ heta_j} \prod_{i=1}^l p(z_{ij} = y_{ij} | heta_j)$

DDaCLAE

Dynamic Data selection for Curriculum Learning via Ability Estimation

- At each epoch *e*:
 - Label all data: \hat{Y}
 - Estimate $\hat{\theta}_e$: $score(Y, \hat{Y}, B)$
 - Select training data: $b_i \leq \hat{ heta}_e$

Metric	Experiment	MNIST	CIFAR	SSTB	SNLI
%Δ	Baseline	0	0	0	0
Train Size	DDaCLAE	-9.37	-53.71	-88.68	33.51
	CB Lin	-8.22	-21.56	-73.17	38.07
	CB Root	11.29	-22.63	10.23	60.08
%Δ	Baseline	0	0	0	0
Accuracy	DDaCLAE	-0.17	0.66	0.45	-1.08
	CB Lin	-0.01	-0.90	-0.18	0.69
	CB Root	-0.06	0.13	-0.38	-0.37

Label	Review	Δ_d
	11	
Pos	Heart	67342
Pos	The year's greatest adventure and lackson's limited	67334
FOS	The year's greatest adventure, and Jackson's limited	07334
	but enthusiastic adaptation has made literature literal	
	without killing its soul – a feat any thinking person is	
	, , , , , , , , , , , , , , , , , , , ,	
	bound to appreciate.	
Pos	Hip	67332
N.I.	E %	67046
Neg	Exit	67346
Neg	There's an admirable rigor to Jimmy's relentless anger,	67330
		0.000
	and to the script's refusal of a happy ending, but as	
	those monologues stretch on and on, you realize there's	
	no place for this story to go but down.	
	p.acc ic. time sterly to go but down.	

Label	Premise	Hypothesis	Δ_d
	To a second to a deposit of the second	There is no more leading	F40170
Con.	Two men in a jogging race on a black top street, one man wearing a black top and pants and the other is dressed as a nun with bright red tennis shoes, while onlookers stand in a grassy area and watch from behind a waist high metal railing.	There is no metal railing.	549179
Ent.	Two dogs in the water.	They are swimming	549180
Neut.	Male musicians are playing a gig with one on the drums and the other on the guitar, with a backdrop of purple graphics apart of the light show.	Male musicians with long hair are playing a gig with one on the drums and the other on the guitar, with a backdrop of purple graphics apart of the light show.	549184
Neut.	A dog in a lake.	A dog is swimming.	549183

Citations to Incorporate

• Rodriguez et al. (2021), (Vania et al., 2021)

IRT Applications in NLP Evaluations

- Alternate Evaluation Metrics, e.g., Subject skill θ_j (Lalor et al., 2018; Rodriguez et al., 2021)
- Find Bad Evaluation Items (Rodriguez et al., 2021)
- Estimate Longevity of Tasks (Vania et al., 2021)

IRT Applications: Alternate Evaluation Metrics

IRT Applications: Finding Annotation Error

Test examples can be: too hard, discriminative, too easy, or erroneous ¹

How can we use IRT to identify each example type?

¹Boyd-Graber and Börschinger (2020)

IRT Applications: Finding Annotation Error

- Too Hard → Bad examples?:
 - High item difficulty β_i
 - Low discriminability γ_i

IRT Parameters

- Item Difficulty: β_i
- Item Discriminability: γ_i
- Subject Skill θ_j

IRT Model

$$p(r_{ij} = 1|\beta_i, \theta_j) = \frac{1}{1 + e^{-\gamma_i(\theta_j - \beta_i)}}$$

IRT Applications: Finding Annotation Error

In Rodriguez et al. (2021), we used a slightly different model to explicitly model this:

Remarks

- Correlation between parameters between human and machine IRT models
- Downstream effectiveness of difficulty
- Qualitative check of learned parameters
- What about θ ?

References

Jordan Boyd-Graber and Benjamin Börschinger. 2020. What question answering can learn from trivia nerds. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7422–7435, Online. Association for Computational Linguistics.

John P. Lalor, Hao Wu, Tsendsuren Munkhdalai, and Hong Yu. 2018. Understanding deep learning performance through an examination of test set difficulty: A psychometric case study. In *EMNLP*.

Pedro Rodriguez, Joe Barrow, Alexander Miserlis Hoyle, John P. Lalor, Robin Jia, and Jordan Boyd-Graber. 2021. Evaluation examples are not equally informative: How should that change NLP leaderboards? In *ACL*.

Clara Vania, Phu Mon Htut, William Huang, Dhara Mungra, Richard Yuanzhe Pang,