כל הזכויות שמורות לי - דר׳ אלכסנדרה ליטינסקי סימנובסקי אין לעתיק ולהשתמש בחומר ללא רשות

Lab #3 - EDA - Exploration Data Analises

Understanding the Titanic Survival

Wellcome to the Titanic, the largest British ship at the time, that sank in the North Atlantic Ocean in the early hours of 15 April 1912.

In this notebook we will try to undestand the characteristics of the individuals that were at the Titanic, how many survived and who survived.

This dataset is a partial dataset used as the training set on Kaggle's Titanic challenge. https://www.kaggle.com/c/titanic/data (https://www.kaggle.com/c/titanic/data (https://www.kaggle.com/c/titanic/data)

Columns

Those the descriptions of the variables in this dataset:

type should be integers	PassengerId
Survived or Not	Survived
Class of Travel	Pclass
Name of Passenger	Name
Gender	Sex
	Age
Number of Sibling/Spouse abord	SibSp

Parch

Number of Parent/Child abord

Ticket

Fare

Cabin

 $\begin{tabular}{ll} \textbf{Embarked} & The port in which a passenger has embarked. \\ C - Cherbourg, S - Southampton, Q = Queenstown \\ \end{tabular}$

```
In [393]: # Import all required libraries

# data analysis and wrangling
import numpy as np
import pandas as pd

# data visualization
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

plt.rcParams['figure.figsize']= (16,8)
import warnings
warnings.filterwarnings("ignore")
In [394]: # Load the training and testing data
data train = nd.read csy('train.csy')
```

```
In [394]: # Load the training and testing data

data_train = pd.read_csv('train.csv')

data_test = pd.read_csv('test.csv')
# combin the train and test data to one df
combined_data =pd.concat([data_train, data_test])
```

```
In [395]: # data_train head
          # [
                data_test.shape[0],
          # data_train.shape[0],
          # combined_data.shape[0]]
          data_train.head()
```

Out [395]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare (
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

In [396]: data_test.head()

Out[396]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emba
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	

```
In [397]: plt.style.use('seaborn-whitegrid')
In [398]:
           # shape of the data_train
           data train.shape
           data_train.columns
Out[398]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'S
           ibSp',
                   'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
                  dtype='object')
In [399]: # shape of the data_test
           data test.shape
Out[399]: (418, 11)
           Our response variable is Survived indicating who survived the Titanic. We will use four
           features: Pclass, Sex, Age and Fare.
           Pclass is the Ticket class (1 = 1st, 2 = 2nd, 3 = 3rd)
           For more information, please refer to <a href="https://www.kaggle.com/c/titanic/data">https://www.kaggle.com/c/titanic/data</a>
           (https://www.kaggle.com/c/titanic/data)
In [400]: # colum in data_train values
           data train.columns.values
Out[400]: array(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'S
           ibSp',
                   'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], dtype=objec
           t)
In [401]: # colum in data_test values
           data_test.columns.values
Out[401]: array(['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parc
           h',
                   'Ticket', 'Fare', 'Cabin', 'Embarked'], dtype=object)
In [402]: # get the dtype object and category in data_train
           data_train.select_dtypes(include=['object']).columns
Out[402]: Index(['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], dtype='objec
           t')
In [403]: # get the dtype object and category in data_test
           data_test.select_dtypes(include=['int', 'float']).columns
Out[403]: Index(['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare'], dt
           ype='object')
```

In [404]:

Pre-processing

Check the missing values in the training and testing dataset

summing up the missing values (column-wise) in data_train

data_train.isnull().sum().sort_values(ascending=False)

```
Out[404]: Cabin
                            687
           Aae
                            177
           Embarked
                              2
           PassengerId
                              0
           Survived
                              0
           Pclass
                              0
           Name
                              0
           Sex
                              0
           SibSp
                              0
           Parch
           Ticket
                              0
           Fare
           dtype: int64
In [405]: # summing up the missing values (column-wise) in data_test
           t = data_test.isnull().sum().sort_values(ascending=False)
           # get the precent of the missing values in data test
           d = pd.DataFrame(t, columns=['Total'])
           d['Precent'] = 100 * (d['Total'] / data_test.shape[0])
Out [405]:
                       Total
                              Precent
                 Cabin
                        327 78.229665
                  Age
                         86 20.574163
                  Fare
                             0.239234
            PassengerId
                             0.000000
                Pclass
                             0.000000
                 Name
                             0.000000
                  Sex
                         0
                             0.000000
                 SibSp
                             0.000000
                 Parch
                             0.000000
                 Ticket
                             0.000000
              Embarked
                         n
                             0.000000
In [406]: # len(data_train.PassengerId.unique())
           # data_train.Survived.sum()
```


Out [408]:

	Total	Precent
Cabin	687	77.10
Age	177	19.87
Embarked	2	0.22
Passengerld	0	0.00
Survived	0	0.00
Pclass	0	0.00
Name	0	0.00
Sex	0	0.00
SibSp	0	0.00
Parch	0	0.00
Ticket	0	0.00
Fare	0	0.00

In [409]: # Passangers and Survival - First, lets check how many passangers are
test data
missing_percentage(data_test)

Out [409]:

	IOtai	1 Tecent
Cabin	327	78.23
Age	86	20.57
Fare	1	0.24
Passengerld	0	0.00
Pclass	0	0.00
Name	0	0.00
Sex	0	0.00
SibSp	0	0.00
Parch	0	0.00
Ticket	0	0.00
Embarked	0	0.00

Total Precent

In [410]: # get the infomation about the data_train data_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	 int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
), int64(5), obj	ect(5)
memo	ry usage: 83.	7+ KB	

In [411]: # get the infomation about the data_test data_test.info()

memory usage: 36.0+ KB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Pclass	418 non-null	int64
2	Name	418 non-null	object
3	Sex	418 non-null	object
4	Age	332 non-null	float64
5	SibSp	418 non-null	int64
6	Parch	418 non-null	int64
7	Ticket	418 non-null	object
8	Fare	417 non-null	float64
9	Cabin	91 non-null	object
10	Embarked	418 non-null	object
dtyp	es: float64(2), int64(4), obj	ect(5)

 $local host: 8888/notebooks/year_3/information_lab/03_DS_Lab-EDA_Titanic_wos_report.ipynb\#Lab-\#3---EDA---Exploration-Data-Analises$

In [412]: # get the infomation about the type of values in the data_train data_train.dtypes

Out[412]: PassengerId

int64 Survived int64 Pclass int64 Name object Sex object float64 Age SibSp int64 Parch int64 Ticket obiect Fare float64 Cabin object Embarked object dtype: object

In [413]: # get the infomation about the type of values in the data_test

data_test.dtypes

Out[413]: PassengerId int64

Pclass int64 Name object object Sex Age float64 SibSp int64 int64 Parch Ticket object float64 Fare Cabin object Embarked object dtype: object

In [414]: # Summary statistics of the training data_train

data_train.describe()

Out [414]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [415]: # Summary statistics of the testing data_test
 data_test.describe()

Out [415]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

Distribution of categorical features

In [416]: # Summary statistics of the training data_train
data_train.describe(include=['object'])

Out [416]:

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	Kelly, Mr. James	male	347082	B96 B98	S
freq	1	577	7	4	644

In [417]: # distribution of categorical features in data_test
data_test.describe(include=['object'])

Out [417]:

	Name	Sex	Ticket	Cabin	Embarked
count	418	418	418	91	418
unique	418	2	363	76	3
top	Kelly, Mr. James	male	PC 17608	B57 B59 B63 B66	S
freq	1	266	5	3	270

Missing values

How many missing values are in the data_train?

```
In [418]: # count the the null values in the data_train
    data_train.isnull().sum()
```

Out[418]: PassengerId Survived 0 Pclass 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked dtype: int64

Answer:

Exploratory Data Analysis

We'll start by checking out missing data!

We can use seaborn to create a simple heatmap to see where we are missing data!

```
In [419]: # plot the mising values using seaborn
    missing_data_train = data_train.isnull()
    plt.figure(figsize=(14,9))
    sns.heatmap(missing_data_train, cbar=False, cmap=['purple', 'yellow'],
    plt.xlabel('Columns')
    plt.ylabel('')
```

Out[419]: Text(122.0, 0.5, '')

Where we have missing values?

Roughly 20 percent of the Age data is missing. The proportion of Age missing is likely small enough for reasonable replacement with some form of imputation. Looking at the Cabin column, it looks like we are just missing too much of that data to do something useful with at a basic level. We'll probably drop this later, or change it to another feature like "Cabin Known: 1 or 0"

```
In [420]: # create the df to aggregate the data_train by the surrvied and dead
df_survvied = pd.DataFrame({
        'Category': ['Dead','Survived', ],
        "Count": [
            len(data_train.PassengerId) - data_train.Survived.sum()
            ,data_train.Survived.sum()

        ]
})
sns.barplot(x='Category', y='Count', data=df_survvied, palette=['blue'
```

Out[420]: <AxesSubplot:xlabel='Category', ylabel='Count'>

Gender distribution and survival

How distributed the survivors by gender?

```
In [422]: # use groupby() and agg() to get the table bellow
```

Answer:

```
In [423]: # plot the count of the survived and dead by Sex plt.figure(figsize=(12,8)) plt.grid() sns.countplot(x='Survived', hue='Sex', data=data_train, palette=['blue
```

Out[423]: <AxesSubplot:xlabel='Survived', ylabel='count'>

Survived vs Class

```
In [424]: # create the groupby to aggregate the data_train by the surrvied and c
g = data_train.groupby('Pclass')['Survived']
# reset the index to get the table bellow
t = g.agg(['mean']).reset_index()
# reset the column name so that the column name will be the same as t
t['Survived'] = t['mean']
# show only the column that we need
t[['Pclass', 'Survived']]
```

Out [424]:

	r Class	Surviveu
0	1	0.629630
1	2	0.472826
2	3	0.242363

Polace Survived

```
In [425]: # correlation (average survived ratio > 0.5) among the group of Pclass
# using groupby() and sord_values()
```

We can see that there is a significant correlation (average survived ratio > 0.5) among Pclass=1 and Survived.

```
In [426]: # create the groupby to aggregate the data_train by the surrvied and of
g = data_train.groupby('Sex')['Survived']
# reset the index to get the table bellow
t = g.agg(['mean']).reset_index()
# reset the column name so that the column name will be the same as t
t['Survived'] = t['mean']
# show only the column that we need
t[['Sex', 'Survived']]
```

Out [426]:

Sex Survived

- o female 0.742038
- 1 male 0.188908

In [427]: # correlation between Sex and Survived

Who survival more male of female ?? explain

```
In [428]: # count the survived and dead by the Pclass
sns.countplot(x='Survived', hue='Pclass', data=data_train)
```

Out[428]: <AxesSubplot:xlabel='Survived', ylabel='count'>

Analyze by visualizing the Titanic data

Correlations between a numeric feature (Age) and our predictive goal (Survived)

```
In [429]: #sns.histplot(data=data_train, x='Age', hue='Survived')

g = sns.FacetGrid(data_train, col="Survived", height=5, aspect=1.5)
g.map(sns.histplot, "Age", element="step", bins=20 )

# Customize the ticks and grid lines
for ax in g.axes.flat:
    ax.grid(True) # Enable grid lines
    ax.xaxis.set_major_locator(plt.MaxNLocator(integer=True)) # Set x
    ax.yaxis.set_major_locator(plt.MaxNLocator(integer=True)) # Set y

# Display the plots
plt.show()
```


Out[430]: <AxesSubplot:xlabel='Age', ylabel='Count'>

In [431]: # plot the all surviver not using subplot, number of bins = 30 , wit

In [432]:

sns.histplot(x='Age', data=data_train,alpha=0.7, bins=30, color='red')

Out[432]: <AxesSubplot:xlabel='Age', ylabel='Count'>

In [433]: # using hist function with bins =3- and alpha =0.7

Combine three features (age, Pclass, and survived) for identifying correlations

```
In [434]: g = sns.FacetGrid(data=data_train, col='Survived', row='Pclass')
g.map(sns.histplot, 'Age', bins=20)
g.set(xlim=(0, 80))
#sns.histplot(x='Age', data=data_train, hue='Pclass', multiple="" ).ma
```

Out[434]: <seaborn.axisgrid.FacetGrid at 0x7fb5a2691eb0>

In [435]: # combine three features (age, Pclass, and survived) for identifying of

Correlations among Embarked, Sex, Fare, and Survived

```
In [436]: # we are plotting the
    g = sns.FacetGrid(data_train, col="Embarked", row="Survived", margin_t
    g.map_dataframe(sns.histplot, x="Sex", y="Fare")

g.set_axis_labels("Sex", "Fare")
    g.set_titles(col_template="Embarked = {col_name}", row_template="Surviplt.subplots_adjust(top=0.8)

g.savefig('corr-embarked-sex-fare-survived.png')
```


Converting Sex feature to a new feature called Gender where female=1, and male=0

```
In [438]: # converting Sex feature to a new feature called Gender where female=1
# on the combined_data

data_train['Gender'] = data_train.Sex.map({'male': 0, 'female': 1})
```

In [439]: # see the data_train head after the convertion of male=0 famle =1
data_train.head()

Out [439]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	

Missing values in the Cabin features of training dataset

```
In [440]: train_missing_cabin = data_train.Cabin.isnull().sum()
    print(train_missing_cabin)
    print(data_test.Cabin.isnull().sum())
```

687 327

In [441]: # Null values in the Cabin feature of the combine dataset of training # troing the number of missing values in the data_train and data_test

In [442]: # Null values in the Cabin feature of the training dataset
print(f'The null values in the Cabin feature of the training dataset {

The null values in the Cabin feature of the training dataset 687

The null values in the Cabin feature of the training dataset:

Rate of duplication for the Ticket feature

```
In [443]: # count the number of duplication the the data_train one line code

# print the number of the duplication
#len(data_train.Ticket.unique())

duplication_rate = round(1- len(data_train.Ticket.unique()) / len(data_print(f'Rate of duplication for the Ticket feature : {duplication_rate}
```

Rate of duplication for the Ticket feature: 0.24

Rate of duplication for the Ticket feature:

Correlation between the Ticket feature and survival

```
In [444]: ticket_to_freq_series = data_train.groupby('Ticket')['Ticket'].count()
    # ticket_to_freq_series.to_dict()
    # we are adding the Ticket_frequency feature to the data_train
    data_train['Ticket_frequency'] = data_train.Ticket.map(ticket_to_freq_
    data_train.head()
    # data_train.join()
```

Out [4441]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare (
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

In [445]: # use group by to create Ticket_frequency col (check the result before

```
In [446]: d = data_train.groupby('Ticket_frequency')['Survived'].agg('mean')
d.reset_index()
```

Out [446]:

	Ticket_frequency	Survived
0	1	0.297989
1	2	0.574468
2	3	0.698413
3	4	0.500000
4	5	0.000000
5	6	0.000000
6	7	0.238095

In [447]: # calculate the mean for each Ticket_frequency values

```
In [448]: sns.countplot(
    x='Ticket_frequency',
    #y='',
    data=data_train,
    hue='Survived'
)
```

Out[448]: <AxesSubplot:xlabel='Ticket_frequency', ylabel='count'>


```
In [449]: # plot using seabornd
#fig, axs = plt.subplots(figsize=(12, 9))
```

```
In [450]: g = sns.FacetGrid(data=data_train, col='Survived', height=8)
    g.map(sns.histplot,'Ticket_frequency')

# save the plot
plt.savefig('Ticket_frequency.png')

# for ax in g.axes.flat:
    ax.set_xticks([1, 2, 3, 4, 5, 6, 7, ])
# ax.set_xticklabels(['1', '2', '3', '4', '5', '6', '7',])

# data_train[(data_train.Ticket_frequency == 6) & (data_train.Survived)
```



```
In [451]: # make a plot using seabon and save it as png
```

Data Cleaning

We want to fill in missing age data instead of just dropping the missing age data rows.

- One way to do this is by filling in the mean age of all the passengers (imputation).
- However we can be smarter about this and check the average age by passenger class.

In [452]: sns.boxplot(data=data_train, x='Pclass', y='Age')

Out[452]: <AxesSubplot:xlabel='Pclass', ylabel='Age'>

Conclution

Type *Markdown* and LaTeX: α^2

Completing features with missing/null values

First way:

In []:

CHECK!

```
In [454]:
          avg_age = data_train['Age'].mean()
          std age = data train.Age.std()
          avg_age, std_age
          def generateAge(avg_age, std_age , age):
              if (pd.isna(age)):
                  return np.random.randint(avg_age - std_age, avg_age + std_age)
              return age
          data_train['Age_New'] = data_train.Age.apply(lambda x: generateAge(avg)
          fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 6), )
          # Plot the first plot on the first subplot
          sns.histplot(data=data_train, x='Age', ax=axes[0], bins=70)
          axes[0].set title('Age Distribution')
          # axes[0].set_xticks(np.arange(int(data_train['Age'].min()), int(data_
          # Plot the second plot on the second subplot
          sns.histplot(x='Age_New', data=data_train, ax=axes[1], bins=70, color=
          axes[1].set_title('Age Distribution New')
          # Adjust the layout
          plt.tight_layout()
          # Display the plots
          plt.show()
```



```
In [455]: # Filling the misisng/null values for Age feature in the training data
          # get average, std, and number of null values in the training data
          # generate random numbers between (mean - std) & (mean + std)
          # plot original Age values
          # NOTE: drop all null values, and convert to int
          # fill null values in Age column with random values generated
          # convert from float to int
          # plot new Age Values
In [456]: # sum the null values
          data_train.Age_New.isna().sum()
Out[456]: 0
In [457]: data_train.Embarked.isnull
Out[457]: <bound method Series.isnull of 0</pre>
                                                  S
                 C
          1
                 S
          2
          3
                 S
                 S
          4
          886
                 S
                 S
          887
          888
                 S
          889
                 C
          890
          Name: Embarked, Length: 891, dtype: object>
  In [ ]:
```

```
In [458]: missing_data_train = data_train.isnull()
    plt.figure(figsize=(18,12))
    sns.heatmap(missing_data_train.drop(columns=['Age',]), cbar=False, cmaplt.xlabel('Columns')
    plt.ylabel('')
```

Out[458]: Text(158.0, 0.5, '')


```
In [459]: # plot missing values after imputation
```

Second way

```
In [460]: # get data_train from combine
  data_train_tmp= combined_data

In [461]: # def Pclass 1-> 37, Pclass 2 -> 29, else 24, if not nul age

def impute_age(cols):
    '''Transform P class to age'''
    pclass_to_age = {1: 37, 2: 29, 3: 24}
    if pd.isna(cols['Age']):
        return pclass_to_age[cols['Pclass']]
    return cols['Age']
    # code
```

```
In [462]: # plot the umputation
    missing_data_train = data_train.isnull()
    plt.figure(figsize=(18,12))
    sns.heatmap(missing_data_train.drop(columns=['Age',]), cbar=False, cmaplt.xlabel('Columns')
    plt.ylabel('')
```

Out[462]: Text(158.0, 0.5, '')

Drop the Cabin column and the row.****

```
In [463]: # data_train.drop('Cabin', axis=1, inplace=True)
    data_train.shape
    # drop all the rows when the cabin is null
    no_cabin = data_train.dropna(subset=['Cabin'], )
    no_cabin.drop('Cabin', axis=1, inplace=True)
```

```
In [464]: # data_train.groupby('Embarked')['Survived'].agg(['mean',])
```

```
In [465]: # code - Drop the Cabin column and the row.
data_train['Age_New_1'] = data_train.apply(lambda x: impute_age(x), ax
data_train.head()
```

Out[465]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
In []:											

Completing a categorical feature and fill the missing values in Embarked feature with the most common occurrences

Embarked feature takes S, Q, C values based on port of embarkation. Our training dataset has some missing values. We simply fill these with the most common occurance.

```
In [466]:
          # impute the missing values in the Embarked column with the mode value
          data_train['Embarked'].fillna(data_train['Embarked'].mode()[0], inplace
          # print(data train['Embarked'].mode()[0])
In [467]: # fill na on combined_Data of Embarked values
          combined_data['Embarked'].fillna(combined_data['Embarked'].mode()[0],
          # on data_train group by the 'Embarked', 'Survived' column and caclul
          data_train.groupby('Embarked')['Survived'].agg('mean')
Out[467]: Embarked
               0.553571
          C
          0
               0.389610
          S
               0.339009
          Name: Survived, dtype: float64
```

In [468]: # check if we have an null in the data_train on 'Embarked' values
data_train.Embarked.isnull().sum()

Out [468]: 0

Completing and converting a numeric feature

Please complete the Fare feature for single missing value in test dataset using mode to get the value that occurs most frequently for this feature.

In [469]: sns.histplot(data=data_train, x='Fare', bins=40, color='green')

Out[469]: <AxesSubplot:xlabel='Fare', ylabel='Count'>

In [470]: # plot the Fare distribution, in bins - 40 using the mode

In [471]: data_train['Fare'].median()

Out[471]: 14.4542

In [472]: data_train['Fare'].fillna(data_train['Fare'].median(), inplace=True) data_train.head()

		_	_	
Λ.	. 44	Γ <i>1</i> 1 –	7 N 1	
- 111		14/	′ /	
-			~ ,	

:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	_
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	

In [473]: # on one line code replace the missing values on Fare column by mediar

In [474]: # code that count number of missing values data_train.isnull().sum()

Out[474]: PassengerId 0 Survived 0 **Pclass** 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 0 Gender 0 Ticket_frequency 0 Age_New 0 Age_New_1 0 dtype: int64

Convert the Fare feature to ordinal values based on the FareBand

```
In [475]: # FireBand
# split the data to 4 equel pars one line code
data_train['FareBand'] = pd.qcut(data_train['Fare'], 4)

# ggroup by and calculate the each part mean sort by pars
data_train.groupby('FareBand')['Survived'].agg('mean').sort_values()
```

Out[475]: FareBand

(-0.001, 7.91] 0.197309 (7.91, 14.454] 0.303571 (14.454, 31.0] 0.454955 (31.0, 512.329] 0.581081 Name: Survived, dtype: float64

In [476]: data_train.loc[[0, 1]]

Out [476]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Nai
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8:

```
In [477]: # Convert the Fare feature to ordinal values based on the FareBand in

def changeFare(row):
    if row['Fare'] <= 7.91:
        return 0
    elif row['Fare'] <= 14.454:
        return 1
    elif row['Fare'] <= 31:
        return 2
    else:
        return 3

data_train['Fare'] = data_train.apply(lambda x: changeFare(x), axis=1)

# drop FareBand column
data_train = data_train.drop(['FareBand'], axis=1)

data_train.head(15)</pre>
```

\sim				-	-	. 7	
11	111	- 1	_/I	_ /	/	' 1	
w	u		-	- /	•	_	

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	0
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	3
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	1
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	3
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	1
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	1
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	3
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	2
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	1
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	2
10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	2
11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	2
12	13	0	3	Saundercock, Mr. William Henry	male	20.0	0	0	A/5. 2151	1
13	14	0	3	Andersson, Mr. Anders Johan	male	39.0	1	5	347082	3
14	15	0	3	Vestrom, Miss. Hulda Amanda Adolfina	female	14.0	0	0	350406	0

```
In [478]: # using groupby calculate the mean of each new Fare data
data_train.groupby('Fare')['Survived'].agg('mean')
```

Out[478]: Fare

0 0.197309 1 0.308756 2 0.445415 3 0.581081

Name: Survived, dtype: float64

GOOD JOB:)