ATTACHMENT A

Claims 1 - 10: (Cancelled)

11. (New) A process for meso-selective preparation of ansa-metallocene complexes of formula (I):

$$R^{1}$$
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{2}

which comprises reacting a ligand starting compound of formula (II):

$$\begin{bmatrix} R^2 \\ R^1 & T \\ \end{bmatrix}$$

$$\begin{bmatrix} p M^2 \end{bmatrix}^{++}$$

$$\begin{bmatrix} R^2 \\ \end{bmatrix}$$

$$\begin{bmatrix} P M^2 \end{bmatrix}^{-+}$$

with a transition metal compound of formula (III):

$$(LB)_y M^1 (OR^3) X_{x+1}$$
 (III)

where

R¹, R¹ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms;

- R², R² are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms;
- R³ is a bulky organic radical comprising at least 3 carbon atoms, and is bound to the oxygen atom via a nonaromatic carbon or silicon atom, and may be substituted by halogen atoms or further organic radicals comprising from 1 to 20 carbon atoms, and optionally comprise at least one heteroatom selected from the group consisting of Si, N, P, O and S;
- T, T' are identical or different and are each a divalent organic group comprising from 1 to 40 carbon atoms, and together with the cyclopentadienyl rings form at least one further saturated or unsaturated, substituted or unsubstituted ring system comprising from 5 to 12 atoms, where T and T' optionally comprises at least one heteroatom selected from Si, Ge, N, P, As, Sb, O, S, Se or Te;
- A is a bridge consisting of a divalent atom or a divalent group;
- M¹ is at least one lanthanide or an element of group 3, 4, 5 or 6 of the Periodic Table of Elements;
- X are identical or different and are each an organic or inorganic radical which is able to be replaced by a cyclopentadienyl anion;
- x is a natural number from 1 to 4;
- M² is an alkali metal, an alkaline earth metal, or a magnesium monohalide fragment;
- p is 1 when M² is a doubly positively charged metal ion, or 2 when M² is a singly positively charged metal ion or metal ion fragment;
- LB is an uncharged Lewis base ligand;

and

y is a natural number from 0 to 6.

12. (New) The process as claimed in claim 11, wherein the ansa-metallocene complexes of formula (I) is converted into an ansa-metallocene complex of formula (IV):

$$R^{1}$$
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{1}
 R^{2}

where

- R¹, R^{1'} are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms;
- R², R^{2'} are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms;
- T, T' are identical or different and are each a divalent organic group comprising from 1 to 40 carbon atoms, and together with the cyclopentadienyl rings form at least one further saturated or unsaturated, substituted or unsubstituted ring system comprising from 5 to 12 atoms, where T and T' optionally comprises at least one heteroatom selected from Si, Ge, N, P, As, Sb, O, S, Se or Te;
- A is a bridge consisting of a divalent atom or a divalent group;
- M¹ is at least one lanthanide or an element of group 3, 4, 5 or 6 of the Periodic Table of Elements;
- X are identical or different and are each an organic or inorganic radical which is able to be replaced by a cyclopentadienyl anion; and
- x is a natural number from 1 to 4;

comprising reacting the ansa-metallocene complexes of formula (I) with at least one suitable elimination reagent in a subsequent reaction step.

- 13. (New) The process as claimed in claim 11, wherein
 - R¹, R¹ are identical or different and are each a C₁-C₁₀-alkyl;
 - R², R² are each hydrogen;
 - T, T' are identical or different and are each an unsubstituted 1,3-butadiene-1,4-diyl group or a 1,3-butadiene-1,4-diyl group substituted with from 1 to 4 R⁴ radicals, where R⁴ can be identical or different and are organic radicals having from 1 to 40 carbon atoms; and
 - A is ethylene, substituted ethylene or substituted silylene.
- 14. (New) The process as claimed in claim 12, wherein
 - R¹, R¹ are identical or different and are each a C₁-C₁₀-alkyl;
 - R², R^{2'} are each hydrogen;
 - T, T' are identical or different and are each an unsubstituted 1,3-butadiene-1,4-diyl group or a 1,3-butadiene-1,4-diyl group substituted with from 1 to 4 R⁴ radicals, where R⁴ can be identical or different and are organic radicals having from 1 to 40 carbon atoms; and
 - A is ethylene, substituted ethylene or substituted silylene.
- 15. (New) The process as claimed in claim 11, wherein
 - R^3 is an alkyl radical branched in an α position, and comprises from 4 to 40 carbon atoms, and is optionally substituted by at least one halogen atom or organic radical comprising from 1 to 10 carbon atoms;
 - M¹ is Ti, Zr or Hf;
 - X is halogen;
 - x is 2;

LB is a cyclic or acyclic ether or diether;
and
y is 1 or 2.

- 16. (New) The process as claimed in claim 12, wherein
 - R^3 is an alkyl radical branched in an α position, and comprises from 4 to 40 carbon atoms, and is optionally substituted by at least one halogen atom or organic radical comprising from 1 to 10 carbon atoms;

M¹ is Ti, Zr or Hf;

X is halogen;

x is 2;

LB is a cyclic or acyclic ether or diether;

and

y is 1 or 2.

17. (New) The process as claimed in claim 11, wherein

M² is Li, Na, K, MgCl, MgBr, Mgl or Mg.

18. (New) The process as claimed in claim 12, wherein

M² is Li, Na, K, MgCl, MgBr, Mgl or Mg.

19. (New) A method for preparing ansa-metallocene complexes comprising reacting a metallocene complex with a transition metal compound of formula (III):

 $(LB)_y M^1 (OR^3) X_{x+1}$ (III)

20. (New)) A transition	metal com	pound of t	the formula	(III):
-----------	----------------	-----------	------------	-------------	--------

$$(LB)_y M^1 (OR^3) X_{x+1}$$
 (III)

where

- R³ is a bulky organic radical comprising at least 3 carbon atoms, and is bound to the oxygen atom via a nonaromatic carbon or silicon atom, and may be substituted by halogen atoms or further organic radicals comprising from 1 to 20 carbon atoms, and optionally comprise at least one heteroatom selected from the group consisting of Si, N, P, O and S;
- M¹ is at least one lanthanide or an element of group 3, 4, 5 or 6 of the Periodic Table of Elements;
- X are identical or different and are each an organic or inorganic radical which is able to be replaced by a cyclopentadienyl anion;
- x is a natural number from 1 to 4;
- LB is an uncharged Lewis base ligand;

and

- y is a natural number from 0 to 6.
- 21. (New) A method for preparing ansa-metallocene complexes of formula (IV) comprising reacting a metallocene complex of formula (I):

$$R^{1}$$
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{2}

where

- R¹, R^{1'} are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms;
- R², R² are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms;
- R³ is a bulky organic radical comprising at least 3 carbon atoms, and is bound to the oxygen atom via a nonaromatic carbon or silicon atom, and may be substituted by halogen atoms or further organic radicals comprising from 1 to 20 carbon atoms, and optionally comprise at least one heteroatom selected from the group consisting of Si, N, P, O and S;
- T, T' are identical or different and are each a divalent organic group comprising from 1 to 40 carbon atoms, and together with the cyclopentadienyl rings form at least one further saturated or unsaturated, substituted or unsubstituted ring system comprising from 5 to 12 atoms, where T and T' optionally comprises at least one heteroatom selected from Si, Ge, N, P, As, Sb, O, S, Se or Te;
- A is a bridge consisting of a divalent atom or a divalent group;
- M¹ is at least one lanthanide or an element of group 3, 4, 5 or 6 of the Periodic Table of Elements;
- X are identical or different and are each an organic or inorganic radical which is able to be replaced by a cyclopentadienyl anion; and

x is a natural number from 1 to 4;

with a transition metal compound.

22. (New) An ansa-metallocene complex of formula (I):

$$R^{1}$$
 A
 $M^{1}(OR^{3})X_{x-1}$ (I)

 R^{2}

where

- R¹, R^{1'} are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms;
- R², R^{2'} are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms;
- T, T' are identical or different and are each a divalent organic group comprising from 1 to 40 carbon atoms, and together with the cyclopentadienyl rings form at least one further saturated or unsaturated, substituted or unsubstituted ring system comprising from 5 to 12 atoms, where T and T' optionally comprises at least one heteroatom selected from Si, Ge, N, P, As, Sb, O, S, Se or Te;
- A is a bridge consisting of a divalent atom or a divalent group;
- R^3 is an alkyl radical branched in an α position, and comprises from 4 to 40 carbon atoms, and is optionally substituted by at least one halogen atom or organic radical comprising from 1 to 10 carbon atoms;
- M¹ is Ti, Zr or Hf;

- X is halogen; and
- x is 2.
- 23. (New) A constituent of a catalyst system for polymerizing at least one olefin comprising an ansa-metallocene complex of formula (I):

$$R^{1}$$
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}

- R¹, R^{1'} are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms;
- R², R^{2'} are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms;
- R³ is a bulky organic radical comprising at least 3 carbon atoms, and is bound to the oxygen atom via a nonaromatic carbon or silicon atom, and may be substituted by halogen atoms or further organic radicals comprising from 1 to 20 carbon atoms, and optionally comprise at least one heteroatom selected from the group consisting of Si, N, P, O and S;
- T, T' are identical or different and are each a divalent organic group comprising from 1 to 40 carbon atoms, and together with the cyclopentadienyl rings form at least one further saturated or unsaturated, substituted or unsubstituted ring system comprising from 5 to 12 atoms, where T and T' optionally comprises at least one heteroatom selected from Si, Ge, N, P, As, Sb, O, S, Se or Te;

- A is a bridge consisting of a divalent atom or a divalent group;
- M¹ is at least one lanthanide or an element of group 3, 4, 5 or 6 of the Periodic Table of Elements;
- X are identical or different and are each an organic or inorganic radical which is able to be replaced by a cyclopentadienyl anion; and
- x is a natural number from 1 to 4.