

Adaptation Genomics Course

Anna Tigano, Ph.D. & Claire Mérot, Ph.D. & Yann Dorant 14-18 September 2020

Anna Tigano

anna.tigano@unh.edu | @t_annina | annatigano.weebly.com

- Genomics of local adaptation with and without gene flow
- Genomic basis and architecture of adaptive traits
- Adaptation to extreme environments
- Structural variation and adaptation
- Conservation genomics

Claire Mérot

UNIVERSITÉ **LAVAL**

Faculté des sciences et de génie

<u>claire.merot@gmail.com</u> @ClaireMerot

http://www.normalesup.org/~cmerot/index_en.html

Speciation in *Heliconius* butterflies

Evolution

Ecologie

The evolution of biological diversity

Environmental adaptation

Inversion polymorphism in *Coelopa frigida* seaweed flies

Génomique

Structural Variants

Yann Dorant

→ Currently: PhD student in genomics (L. Bernatchez's Lab)
Québec, Canada

Bioinformatics

Genomics

RADseq/GBS

RAD-capture

Pool sequencing

- → Msc. Ecology of coastal areas and estuaries (France)
- → Bsc. Biology (France)

Projects:

→ Population genomics of American lobster (H. americanus) in the Northwest Atlantic.

→ Local adaptation spurred by structural variants in fish

Code

- Bash
- . R
- Python

Population structure

- Admixture
- PCA
- . DAPC
- IBD

Search for selection :

- OutFlank
- BayPass
- RDA
- LFMM

Search for Structural variants:

- CNVs
- Chromosomal inversions

Claire Yann Anna

Schedule

	Monday	Tuesday	Wednesday	Thursday	Friday
Morning	Lecture 1/	Lecture 1/	Lecture 1/	Lecture 1/	Lecture 1/
9-11:30	Practical 1	Lecture 2	Lecture 2	Practical 1	Lecture 2
Lunch 11:30-12:30	Break	Break	Break	Break	Break
Afternoon	Lecture 2/	Practical 1/	Practical 1/	Lecture 2/	Practical1/
12:30-15:00	Practical 2	Practical 2	Practical 2	Practical 2	Q&A

There will be a short 15 min break between lectures when both in the morning.

The instructors will take a break for lunch but otherwise be available for questions and support in the mornings and afternoons.

You are welcome to work at your own pace and when it's most convenient to you

You have access to the AWS server 9-15 EST

*** In case of particular needs ask Carlo for a time extension ***

Day 1

Intro to adaptation genomics
Bioinformatics and sequencing approaches
Population genomics for adaptation

Practical

From raw data to variant calling

Day 2

Genomic signatures of selection

Population structure as a confounding factor

Practical

Genetic diversity, population differentiation and structure

Day 3

Confounding factors of signatures of selection Outlier analyses and genotype-environment associations

Practical

Outlier analyses and genotype-environment associations

Day 4

Structural variation

Large blocks of differentiation and structural variation

Practical

Analysis of haploblocks Analysis of Copy Number Variants

Day 5

Other methods to study the genomics of adaptation Validation of candidate loci

Practical

Functional annotation of candidate loci for adaptation

Q & A

THE END!

Objectives

To get you familiar with bioinformatics, sequencing and analytical methods through the integration of *theory and empirical examples* to select the most appropriate approach to study the genomics of **adaptation** in your species of interest.

The main goal of adaptation genomics is to understand the genomic basis and architecture of adaptive traits

The main goal of adaptation genomics is to understand the genomic basis and architecture of adaptive traits

- Genetic basis of traits = loci that control the adaptive trait
- Genetic architecture =
 the interactions among
 alleles (dominance,
 epistasis, pleiotropy,
 polygeny)
- Genomic architecture = position of alleles and structural variants associated

The main goal of adaptation genomics is to understand the genomic basis and architecture of adaptive traits

Ecology

Often local adaptations are not apparent, and we use a top-down approach to understand what species/populations are adapted to

The main goal of adaptation genomics is to understand the genomic basis and architecture of adaptive traits

Ecology

Evolution

By identifying the genes underpinning local adaptation we can gain insights into the process of adaptation and the interplay among evolutionary forces

The main goal of adaptation genomics is to understand the genomic basis and architecture of adaptive traits

Ecology

Evolution

Conservation

Understanding how organisms have adapted in the past can help us predict their potential to future changes in their environment

The main goal of adaptation genomics is to understand the genomic basis and architecture of adaptive traits

Ecology

Evolution

Conservation

Management

Assessment of adaptive differentiation ensures appropriate management of population/species of socio-economic importance (e.g., fish stocks, game species)

The main goal of adaptation genomics is to understand the genomic basis and architecture of adaptive traits

Ecology

Evolution

Conservation

Management

Physiology, molecular evolution, biodiversity, speciation...

Sequencing approaches

Fraction of genome

Peterson et al. 2012, PlosOne

Divergence limited

Recombination limited

Linkage Diseq. limited

Peterson et al. 2012, PlosOne

Reduced-representation approaches

RADseq/GBS

Random sampling of the genome

• Exome/exon capture

Targeted capture of loci of interest

• SNP chip

RADseq

Single vs. double digestion

Andrews et al. 2016, Nature Gen. Rev.

Many different RADseq protocols

	mbRAD	ddRAD	ezRAD	2bRAD
Restriction cut sites per 10 kb*	~0.2-2.4	~3.7 × 10 ⁻⁵ –39	~39	~2.4
Postdigest fragment reduction	Size selection	Size selection	Size selection	Selective adapters
Contigs > 200 bp [†]	Yes	No	Some	No
Ability to blast/annotate de novo contigs	High	Mid	Mid	Low
Protocol complexity (# Steps) ²	6	4	4-6	3
Level of technical difficulty	High	Mid	Low	Low
Level of technical support	Low	Low	Mid-high	Low
Insert complexity (first × bases)	Low	Low	Very low	High
PCR AT/GC content, copy number Bias among loci	Yes	Yes	Yes, No	Yes
ID of PCR duplicates	Yes	No	Nof	No ¹
Uniform locus length	No	No	No	Yes
Oligos required to uniquely identify and build 96 libraries	196**	31	20-22	37
Target insert size range	200-600 bp	Customizable	Customizable	33-36 bp

^{*}These numbers represent only theoretical calculations for one enzyme (or enzyme combination). The number of fragments sampled will depend on size selection, genome composition, the number of enzymes used and the use of restrictive adapters (see 2bRAD).

[†]When performing 100 bp reads such as on a HiSeq platform.

Not counting clean-up steps.

ezRAD can be used with a PCR-free library preparation kit, thus removing the need to detect PCR duplicates.

¹2bRAD can detect PCR errors by mismatch among forward and reverse reads on individual strands.

^{**}With some effort, the indexing for mbRAD can be modified to reduce the oligo counts to 22-37.

Targeted approaches

Advantages:

- Scalable and cost-effective
- Lower variance in target coverage
- More accurate SNP calling
- Higher reproducibility
- Can be combined with other reducedrepresentation approaches

RADseq

Targeted sequencing - RAPTURE

Targeted approaches - Exome/exon capture

Used to sequence protein coding genes (or other sequences as well).

While probes are generally available for some model species (human, mouse), they have to be designed for other species.

Targeted approaches - Exome capture (in silico)

Targeted approaches - Exome capture (in silico)

Therkildsen & Palumbi 2017, Mol. Ecol. Res.

Targeted approaches - SNP chip array

Cost-effective to genotype high number of SNPs in large number of samples.

Targeted approaches - SNP chip array

Antarctic fur seal

85k Affymetrix Axiom genotyping array includes SNPs from

- Previous RADseq markers
- transcriptome markers
- MHC loci
- → To identify loci of adaptive importance and monitor levels of standing genetic variation

Whole genome resequencing

Short-read sequencing

Long-read sequencing

Linked-reads technology

Whole genome resequencing

Short-read sequencing

Hoban et al. 2016, American Naturalist

Sequencing approaches

Low-coverage sequencing

However, most population genomics analyses collapse genotypes to population allele frequencies.

In those cases, high number of individuals at low depth provide more accurate estimates than a few individuals sequenced at higher depths.

When genotypes are necessary, they can be associated with genotype uncertainty in a probabilistic framework.

Buerkle and Gompert 2013, Molecular Ecology

Application

Study design

Question

\$\$\$

Coverage

Depth

Samples

Jones & Good 2016, Molecular Ecology

In addition to all these technical aspects, there are many evolutionary and molecular factors to consider to choose the most appropriate sequencing approach for your study.

We will explore those throughout the rest of the week.

The end.