No.	LD-K23X51B
DATE	Jan. 20.20 12

TECHNICALLITERATURE FOR

TFT-LCDModule

TENTATIVE LK800D3LA28

Thetechnicalliteratureissubjecttochangewitho utnotice.
So,pleasecontactSHARPoritsrepresentativebefo redesigning yourproductbasedonthisliterature.

DEVELOPMENTDEPT.2 LIQUIDCRYSTALDISPLAYDIVISION LARGELIQUIDCRYSTALDISPLAYBUSINESSGROUP SHARPCORPORATION

RECORDSOFREVISION

MODELNo.:LK800D3LA28

TLNo.:LD-K23X51A

SPECNo.	DATE	REVISED No.	PAGE	SUMMARY	NOTE	
LD-K23X51	2011.10.11	-	-	-	1stISSUE	
			8	UpdateofthecharacteristicsoftheLED	2ndISSUE	
LD-K23X51	2011.01.11	A	20	Updateofthemoduleoutlinedimensions		
			7	UpdateoftheBacklightdriving		
LD-K23X51	2011.01.20	В	20	Updateofthemoduleoutlinedimensions	3ndISSUE	

1. Application

Thistechnicalliteratureappliestothecolor80.0 "TFT-LCDModuleLK800D3LA28.

* This technical literature is proprietary products materials protected under copyright of SHARP. Do no any form or by any means, electronic or mechanical, writtenpermissionofSHARP.

of SHARP CORPORATION ("SHARP") and includes treproduce or cause any third party to reproduce t hemin for any purpose, in whole or in part, without the express

*In case of using the device for applications such trains, automobiles, etc.), rescue and security equ higher reliability and safety, take into considerat redundantsystemdesignshouldbetaken.

as control and safety equipment for transportation (aircraft. ipment and various safety related equipment which r equire ion that appropriate measures such as fail-safe fun ctions and

*Donotusethedeviceforequipmentthatrequires telecommunicationequipment(trunklines),nuclear lifesupport.

anextremelevelofreliability, such as aerospace applications, powercontrolequipmentandmedicalorotherequipm entfor

*SHARPassumes no responsibility for any damage re sulting from the use of the device that does not co mply withtheinstructionsandtheprecautionsspecified inthesetechnicalliterature.

*ContactandconsultwithaSHARPsalesrepresenta tiveforanyquestionsaboutthisdevice.

2. Overview

ThismoduleisacoloractivematrixLCDmoduleinc is composed of a color TFT-LCD panel, driver ICs, c back light systemetc. Graphics and texts can be d

orporatingamorphoussiliconTFT(T hinFilmT ransistor).It ontrol circuit, power supply circuit, LED driver circuit and isplayed on a 1920×RGB×1080 dots panel with one bil lion colorsbyusingLVDS(L _owV oltageD ifferentialS ignaling)tointerface,+12VofDCsupplyvoltages.

ThismoduleincludestheDCdrivercircuittodrive

And in order to improve the response time of LCD, t technology for the control circuit. In the O/S driv accordingtoapre-fixedprocessasanimagesignal signalofthepreviousframeandthatofthecurren

theLED.(+24VofDCsupplyvoltage)

With this technology, image signals can be set so t

his module applies the Over Shoot driving (O/S driv ing) ing technology, signals are being applied to the Li quid Crystal ofthepresentframewhenadifferenceisfoundbe tweenimage tframeaftercomparingthem.

result, motion blurreduces and clearer displayper

hat liquid crystal response completes within one fr ame. As a formancecanberealized.

This LCD module also adopts Double Frame Rate drivion the control circuit. Therefore the input signal Double-FrameRatepicture.FRCofthismoduleisa

ngmethod including FRC (Frame Rate Control) function to this LCD module is Single Frame Rate, but the ou tput is game(PC)modesetup.

With combination of these technologies, motion blur can be reduced and clearer display performance can be realized.

3. Mechanical Specifications

Parameter	Specifications U	
Displaysize	203.218 (Diagonal)	cm
Displaysize	80.0 (Diagonal)	inch
Activearea	1771.200 (H) x 996,300 (V)	mm
PixelFormat	1920(H)x1080(V)	pixel
Pixeiroilliat	(1pixel=R+G+Bdot)	
Pixelpitch	0.9225 (H) x0. 9225 (V)	mm
Pixelconfiguration	R,G,Bverticalstripe	
Displaymode	Normally black	
OpenCellOutline Dimensions	1820.2(H) x 1045.3(V) x 14.2(D)	mm
Mass	(37.5)	kg
Surfacetreatment	Low-Haze Antiglare	
Surfacetreatment	Hardcoating:2Handmore	

^(*1)Outlinedimensionsareshowninp.20(excludin gprotrudingportion)

4. InputTerminals5

4.2.TFTpaneldriving

CN1 (Interface signals and + 12 VDC power supply)

Usingconnector :91213-0510Y (ACES)
Matingconnector :91214-05130(ACES)

FI-RNE51HL,FI-REN51CL(JapanAviationElectronics Ind.,Ltd.) orequivalentdevice

MatingLVDStransmitter :THC63LVD1023orequivalen tdevice

	DStransmitter	:THC63LVD1023orequivalen tdevice			
PinNo.	Symbol	Function	Remark		
1	GND				
2	Reserved	Itisrequiredtosetnon-connection(OPEN)]	Pull UP:(3.3V) [Note3]		
3	Reserved	Itisrequiredtosetnon-connection(OPEN)	Pull UP:(3.3V) [Note3]		
4	Reserved	Itisrequiredtosetnon-connection(OPEN)			
5	Reserved	Itisrequiredtosetnon-connection(OPEN)			
6	Reserved	Itisrequiredtosetnon-connection(OPEN)			
7	SELLVDS	SelectLVDSdataorder[Note4] Pulldown:(GND)[Not			
8	Reserved	Itisrequiredtosetnon-connection(OPEN)			
9	O/Sset	O/Soperationsetting H:O/S_ON,L:O/S_OFF	Pull UP:(3.3V) [Note3]		
10	FRAME	Framefrequencysetting 1:60Hz0:50Hz	Pull down:(GND) [Note2]		
11	GND				
12	AIN0-	Aport(-)LVDSCH0differentialdatainput			
13	AIN0+	Aport(+)LVDSCH0differentialdatainput			
14	AIN1-	Aport(-)LVDSCH1differentialdatainput			
15	AIN1+	Aport(+)LVDSCH1differentialdatainput			
16	AIN2-	Aport(-)LVDSCH2differentialdatainput			
17	AIN2+	Aport(+)LVDSCH2differentialdatainput			
18	GND				
19	ACK-	AportLVDSClocksignal(-)			
20	ACK+	AportLVDSClocksignal(+)			
21	GND	Aporte v DS Clocksighal(+)			
22	AIN3-	Amout()I VDCCII2 differential detainment			
23		Aport(-)LVDSCH3differentialdatainput Aport(+)LVDSCH3differentialdatainput			
23	AIN3+	1			
	AIN4-	Aport(-)LVDSCH4differentialdatainput			
25	AIN4+	Aport(+)LVDSCH4differentialdatainput			
26	GND				
27	GND				
28	BIN0-	Bport(-)LVDSCH0differentialdatainput			
29	BIN0+	Bport(+)LVDSCH0differentialdatainput			
30	BIN1-	Bport(-)LVDSCH1differentialdatainput			
31	BIN1+	Bport(+)LVDSCH1differentialdatainput			
32	BIN2-	Bport(-)LVDSCH2differentialdatainput			
33	BIN2+	Bport(+)LVDSCH2differentialdatainput			
34	GND				
35	BCK-	BportLVDSClocksignal(-)			
36	BCK+	BportLVDSClocksignal(+)			
37	GND				
38	BIN3-	Bport(-)LVDSCH3differentialdatainput			
39	BIN3+	Bport(+)LVDSCH3differentialdatainput			
40	BIN4-	Bport(-)LVDSCH4differentialdatainput			
41	BIN4+	Bport(+)LVDSCH4differentialdatainput			
42	GND	2post(1)2. 25est temerentuluumput			
43	GND				
44	GND				
45	GND				
46					
47	GND	12VD			
	VCC	+12VPowerSupply			
48	VCC	+12VPowerSupply			
49	VCC	+12VPowerSupply			
50	VCC	+12VPowerSupply			
51	VCC	+12VPowerSupply			

[Note1]GNDofaliquidcrystalpaneldriveparth [Note2]Theequivalentcircuitfigureofthetermin

as connected with a module chass is.

al.

[Note3]Theequivalentcircuitfigureofthetermin al.

[Note4]LVDSDataorder

	SELLVD	OS .
Data	L(GND) orOPEN	H(3.3V)
	[VESA]	[JEIDA]
TA0	R0(LSB)	R4
TA1	R1	R5
TA2	R2	R6
TA3	R3	R7
TA4	R4	R8
TA5	R5	R9(MSB)
TA6	G0(LSB)	G4
TB0	G1	G5
TB1	G2	G6
TB2	G3	G7
TB3	G4	G8
TB4	G5	G9(MSB)
TB5	B0(LSB)	B4
TB6	B1	B5
TC0	B2	B6
TC1	В3	B7
TC2	B4	B8
TC3	B5	B9(MSB)
TC4	NA NA	
TC5	NA NA	
TC6	DE(*)	DE(*)
TD0	R6	R2
TD1	R7	R3
TD2	G6	G2
TD3	G7	G3
TD4	B6 B2	
TD5	В7	В3
TD6	N/A	N/A
TE0	R8	R0(LSB)
TE1	R9(MSB)	R1
TE2	G8	G0(LSB)
TE3	G9(MSB)	G1
TE4	В8	B0(LSB)
TE5	B9(MSB)	B1
TE6	N/A	N/A

NA:NotAvailable

(*) Since the display position is prescribed by the signal during operation at "High".

 $rise \, of \, DE \, (Display \, Enable) \, signal, please \, do \, not f \,$

ix DE

SELLVDS=Low(GND)orOPEN

DE:DisplayEnable,NA:NotAvailable(FixedLow)

360Hz.

4.3. Backlightdriving

CN101(+24VDCpowersupplyandinvertercontrol)

Usingconnector:20022WR-14B1(YEONHO)

Matingconnector:20022HS-14L(YEONHO)orequivalen tconnector.

PinNo.	Symbol	I/O	Function	n Default(OPEN) InputImpedance R		Remark	
					(min)		
1	V _{LED}	In	+24V	-			
2	V _{LED}	In	+24V	-			
3	V LED	In	+24V	-			
4	V _{LED}	In	+24V	-			
5	V LED	In	+24V	-			
6	GND	In	GND	-			
7	GND	In	GND	-			
8	GND	In	GND	-			
9	GND	In	GND	-			
10	GND	In	GND	-			
11	Error_out	Out	ErrorDetection	OpenColle	lector [Note1]		
12	Von/off	In	LEDdriverOn/Off	LEDdriverOff	10k-ohm pull-downtoGND	[Note2]	
13	NC	-	-	-			
14	EX_DIM	In	BrightnessControl (PWM1 ~100%)	3.3V:pullup Brightness100%	10k-ohm pull-upto3.3V	[Note3] PulseDimming	

[Note1]ErrorDetection

 \triangle

	MIN	TYP	MAX	
Normal	- 1.0V			
Abnormal	OpenCollector			

[Note2]LEDdriverON/OFF

Inputvoltage	Symbol	Function
Highvoltage	Von	LEDdriver:On
Lowvoltage	Voff	LEDdriver:Off

$\triangle B$ [Note3]PulseDimming

PinNo.14'EX_DIM'isusedforthepulsedimmingco ntrolbythePWMdutywithinputpulsefrom90Hzto

		MIN	TYP	MAX	Remark
Pulsesignal	[Hz]	90	-	360	
DUTY(Ton/T)	[%]	1	-	100	Ta=25 °C
Dimminglevel	[%]	-	-	100	Ta=25 °C
(luminanceratio)					

4.4 Thebacklightsystemcharacteristics

The characteristics of the LED are shown in the folcase of One LED.

lowing table. The value mentioned below is at the

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Lifetime	T LED	△340,000	T.B.D.	- I	Iour	25°C [Note.1]

[Note1]LEDlifetimeistheexpectationvaluecalc when brightness becomes 50% of the original value in Itis assumed that LED current becomes 70% when the

ulatedfromlifetimedataofmakerreport. It is de finedas the time nthe continuous operation under the condition of a=25°C.

LEDdimmingdutyratiois70% and calculates.

5. AbsoluteMaximumRatings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Inputvoltage (forC-PWB)	VI	Ta=25°C	-0.3~3.6	V	[Note1]
12Vsupplyvoltage (forC-PWB)	VCC	Ta=25°C	0~+14	V	
Inputvoltage (forLEDDriver)	Von/off DIM_SEL EX_DIM	Ta=25 °C	-0.3~3.9	V	
24Vsupplyvoltage (forLEDDriver)	V_{LED}	Ta=25 °C	0~+24	V	
Storagetemperature	Tstg	-	-25~+60	°C	DV 4 QI
Operationtemperature (Ambient)	Topa	-	0~+50	°C	[Note2]

[Note1]SELLVDS , OSset , FRAME

[Note2]Humidity95%RHMax.(Ta< <u>40</u>°C)

Maximumwet-bulbtemperatureat39 °Corless.(Ta>40 °C)

Nocondensation.

6. ElectricalCharacteristics

6.1. Controlcircuitdriving

Ta=25

	0	

P	arameter	Symbol	Min.	Тур.	Max.	Unit	Remark	
	Supplyvoltage		11.4	12	12.6	V	[Note1]	
+12Vsupply	Currentdissipation	Icc	-	(1.0)	T.B.D	A	[Note2]	
voltage	Inrushcurrent	I _{RUSH}	-	T.B.D	T.B.D	A	t1=500us [Note7]	
Permissiblei	nputripplevoltage	V RP	-	-	100	mV P-P	Vcc=+12.0V	
Input	Lowvoltage	V IL	0	-	1.0	V	[Note 2]	
Input	Highvoltage	V IH	2.3	-	3.3	V	[Note3]	
Innutleel	zaumant (Law)	I _{IL1}	-	-	(40)	μΑ	V _I =0V [Note4]	
Inputiear	kcurrent(Low)	I _{IL2}			(400)	μΑ	V _I =0V [Note5]	
Innutical	zourmont/Uigh)	Ітні	-	-	(400)	μΑ	V _I =3.3V [Note4]	
inputiear	current(High)	I _{IH2}	-	-	(40)	μΑ	V _I =3.3V [Note5]	
Terminalresistor		Rт	-	100	-	Ω	Differential input	
InputDiff	ferentialvoltage	VID	200	400	600	mV	No te6]	
Differentialinput commonmodevoltage		VCM	VID /2	1.2	2.4- VID /2	V	[Note6]	

 $[Note] V_{CM}\hbox{:} Common mode voltage of LVDS driver.$

[Note1]

Inputvoltagesequences

T.B.D.<t1<T.B.D.

T.B.D.<t2<T.B.D.

T.B.D.<t3<T.B.D.

0 < t4 < 1s

0<t5<1s

(1sec) < t6-1

(1sec) < t6-2

0 < t7 - 1

0 < t7 - 2

1s<t8

Dipconditionsforsupplyvoltage

a)V2 < Vcc < V1

td < 10ms

b)Vcc<V2

This case is based on input voltage sequences.

- Data1:ACK ±,AIN0 ±,AIN1 ±,AIN2 ±,AIN3 ±,AIN4 ±,BCK ±,BIN0 ±,BIN1 ±,BIN2 ±,BIN3 ±,BIN4 ±, *V_{CM}voltagepursuesthesequencementionedabove
- Data2:SELLVDS , O/Sset , FRAME

[Note] About the relation between data in put and bac sequence. When backlight is switched on before pan display normally. But this phenomenon is not based damage to a liquid crystal display.

klightlighting,pleasebaseontheabove-mentione dinput eloperationorafterapaneloperationstop,itma ynot onchangeofanincomingsignal,anddoesnotgive

[Note2]Typicalcurrentsituation:1024gray-barp atterns.(Vcc=+12.0V) TheexplanationofRGBgrayscaleisseen insection8.

Vcc=+12.0V CK=74.25MHz Th=14.8μs TV=120Hz

 $[Note 3] SELLVDS \ \ , FRAME \ \ O/S set$

[Note4]SELLVDS , FRAME

[Note5]O/Sset

[Note6]ACK ±,AIN0 ±,AIN1 ±,AIN2 ±,AIN3 ±,AIN4 ±,BCK±,BIN0 ±,BIN1 ±,BIN2 ±,BIN3 ±,BIN4 ±

[Note 7] Vcc 12 Vinrush current waveform

T.B.D

6.2. LEDdrivingforbacklight

Pa	rameter	Symbol	Min.	Тур.	Max.	Unit	Remark
+ 24371	Currentdissipation	I_{LEDD}	-	(12.5)	T.B.D.	A	$V_{LED} = +24V$
+24Vsupply voltage	Irushcurrent	I _{RUSH}	-	T.B.D.	-	A	Ta=25°C
voltage	Supplyvoltage	V LED	21.6	24.0	26.4	V	DUTY=100%
Permissibleir	putripplevoltage	V_{RP}	-	-	1	V P-P	$V_{\text{LED}} = +24.0 \text{V}$
Inputv	oltage(On)	V on	2.4	3.0	3.6	V	V _{ON/OFF} ,
Inputv	oltage(Off)	V off	-0.3	0	0.8	V	EX_DIM
Inputvolta	ige(DIMHigh)	VDIMH	2.4	-	3.6	V	DIM SEL
Inputvolta	age(DIMLow)	VDIML	-0.3	-	0.8	V	DIM-SEL

[Note] V LED-turn-oncondition

$2) V \; {\scriptsize \texttt{LED-turn-off}} condition$

7. Timingcharacteristicsofinputsignals

7.1. **Timingcharacteristics**

mingdiagrams	ofinputsignalareshowninFig	.2.					
	Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
Clock	Frequency	1/Tc	(67)	74.25	(76)	MHz	
Clock	· · · · · · · · · · · · · · · · · · ·		(1050)	1100	(1300)	clock	
Horizontalperiod	TH	(14.2)	14.8	(16.1)	μs		
Dataenable	Horizontalperiod (High)	THd	960	960	960	clock	
signal	Verticalperiod	TV	1109	1125	1400	line	
	verticalperiou	1 V	(47)	60	(61)	Hz	
	Verticalperiod (High)	TVd	1080	1080	1080	line	

[Note]-Whenverticalperiodisverylong,flickera ndetc.mayoccur.

- Please turn of fthe module after it shows the blac

kscreen.

-Please make sure that length of vertical period sh lengthofperiod.Otherwise,thescreenmaynotdis

ould become of an integral multiple of horizontal playproperly.

-As for your final setting of driving timing, we wi informyourfinalsetting.

ll conduct operation check test at our side, please

Fig.2 Timingdiagramofinputsignal

7.2. LVDSsignalcharacteristics

Item		Symbol	Min.	Тур.	Max.	Unit
	Delaytime,CLKrisingedge toserialbitposition0	tpd0	T.B.D.	0	T.B.D.	
	Delaytime,CLKrisingedge toserialbitposition1	tpd1	1*t _{CLK} /7-T.B.D.	1*t _{CLK} /7	1*t _{CLK} /7+T.B.D.	
	Delaytime,CLKrisingedge toserialbitposition2	tpd2	2*t _{CLK} /7-T.B.D.	2*t _{CLK} /7	2*t _{CLK} /7+T.B.D.	
Data position	Delaytime,CLKrisingedge toserialbitposition3	tpd3	3*t _{CLK} /7-T.B.D.	3*t _{CLK} /7	3*t _{CLK} /7+T.B.D.	ns
	Delaytime,CLKrisingedge toserialbitposition4	tpd4	4*t _{CLK} /7-T.B.D.	4*t _{CLK} /7	4*t _{CLK} /7+T.B.D.	
	Delaytime,CLKrisingedge toserialbitposition5	tpd5	5*t _{CLK} /7-T.B.D.	5*t _{CLK} /7	5*t _{CLK} /7+T.B.D.	
	Delaytime, CLK risingedge to serial bit position 6	tpd6	6*t _{CLK} 7-T.B.D.	6*t _{CLK} /7	6*t _{CLK} /7+T.B.D.	

7. 3. Inputdatasignalanddisplaypositiononthescree n

[Note]ScandirectionissettingforusingS-PWBs' sidedown.

8. Inputsignal, basic display colors and grayscale of each color

		ърга														D	ata-	:	o1												
Colors&GrayScale			D 0	D 4	-		- 1		D 4		D 0	.	-	~ .	-		atas	_		~=	-			- ·	-		- ·				
		_	R0	Rl	R2	R3	R4	R5	R6	R7	R8	R9	-										-	Bl	В2	В3	В4	В5	В6	В7	B8B
BasicColor	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1
	Green	_	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0
	Cyan	_	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
	Red	_	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	Magenta	_	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
GrayScaleofRed	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
								•••••		•••••		•••••	ļ			••••••	•			•••••							•••••				
	(SS1021	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	(SS1022	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	Red	GS1023	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
GrayScaleofGreen	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		GS1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		GS2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
												•••••					•									•••••					•••••
								•••••		•••••		•••••	ļ			••••••	•			•••••							•••••				
	(SS1021	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0
	(SS1022	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0
	Green	GS1023	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0
GrayScaleofBlue	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0 0
		GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0 0
										•••••			İ				•						l								•••••
												•••••				•	• • • • • • • • • • • • • • • • • • • •														
	(S1021	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1 1
	(S1022	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1 1
	Blue	GS1023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1

- 0:Lowlevelvoltage/1:Highlevelvoltage
- Each basic color can be displayed in 1021 gray scal es from 10 bits data signals. According to the combination of total 30 bits data signals, one bill ion-color display can be achieved on the screen.

9. Opticalcharacteristics

Ta=25°C,Vcc=12.V,VLED = +24V,Brightness 100%,Timing: 60Hz (typ. value)

Param	eter	Symbol	Condition	Min.	Typ.	Max.	Unit	Remark		
Viewing	Horizontal	<i>θ</i> 21 <i>θ</i> 22	CP> 10	70	88	-	Deg.	[Note1,4]		
anglerange	Vertical	<i>θ</i> 11 <i>θ</i> 12	CR <u>≥</u> 10	70	88	-	Deg.	[Note1,4]		
Contrast	tratio	CRn		4000	5000	-	- [Note2,4]		
Respons	etime	τrd		•	4	-	ms [l	Vote3,4,5]		
	White	X		Typ0.03	(0.282)	Typ.+0.03	-			
		у		Typ0.03	(0.288)	Typ.+0.03	-			
	Red	X		Typ0.03	(0.637)	Typ.+0.03	-			
Chromoticity		y		Typ0.03	(0.348)	Typ.+0.03	-	[Note 4]		
Chromaticity	Cusan	X	<i>θ</i> =0deg.	Typ0.03	(0.297)	Typ.+0.03	-	[Note4]		
	Green	y		Typ0.03	(0.623)	Typ.+0.03	-			
	Dlue	X		Typ0.03	(0.149)	Typ.+0.03	-			
	Blue	у		Typ0.03	(0.063)	Typ.+0.03	-			
Luminance	White	Y L		(300)	(350)	-	cd/m ²			
Luminance uniformity	White	δw		-	-	(1.43)		[Note6]		

- Measurement condition: Set the value of backlight c

ontrolvoltagetomaximumluminanceofwhite.

- Themeasurementshallbeexecuted60minutesafter

lightingatrating.

 $[Note] The optical characteristics are measured usi \\ \quad ng the following equipment.$

- Viewing angler angle: EZ-CONTRAST
- -Responsetime:Photodiode

MeasurementofContrast,Luminance,Chromaticity.

[Note1]Definitionsofviewinganglerange:

[Note2]Definitionofcontrastratio:

The contrastratio is defined as the following.

$$Contrast Ratio = \frac{Luminance (brightness)with all pixelswhite}{Luminance (brightness)with all pixels black}$$

[Note3]Definitionofresponsetime

Theresponsetime(τ_{rd})isdefinedasthefollowing,

$$\tau_{rd} = \{\sum (tr : x - y) + \sum (td : x - y)\}/20$$

 τ_{rd} is the average value of the switching time from fi vegraylevels (0%, 25%, 50%, 75% and 100%) to five graylevels (0%, 25%, 50%, 75% and 100%).

			Gra	aylevelofEnd(y)		
		0%	25%	50%	75%	100%
	0%		tr:0%-25%	tr:0%-50% t	r:0%-75% tr:0	0%-100%
vel (x)	25%	td:25%-0%		tr:25%-50%	tr:25%-75%	tr:25%-100%
Grayleve ofStart(x)	50%	td:50%-0%	td:50%-25%		tr:50%-75%	tr:50%-100%
Gra	75%	td:75%-0%	td:75%-25%	td:75%-50%		tr:75%-100%
0	100%	td:100%-0%	td:100%-25%	td:100%-50%	td:100%-75%	

[Note 4] This value shall be measured at center of t

hescreen.

[Note5]ThisvalueisvalidwhenO/Sdrivingisuse

dattypicalinputtimevalue.

[Note6]Definitionofwhiteuniformity;

Whiteuniformityisdefinedasthefollowingwithf

ivemeasurements.(A ~E)

10. Reliability testitem

No.	Testitem	Condition
1	Hightemperaturestoragetest	Ta=60°C 240h
2	Lowtemperaturestoragetest	Ta=-25°C 240h
3	Hightemperatureandhighhumidity	Ta=40°C;95%RH 240h
3	operationtest	(Nocondensation)
4	Hightemperatureoperationtest	Ta=50°C 240h
5	Lowtemperatureoperationtest	Ta=0°C 240h
	Vibrationtest	Frequency:10~57Hz/Vibrationwidth(oneside):0.07 5mm
6	(non-operation)	:58~500Hz/Acceleration:9.8m/s ²
0		Sweeptime:11minutes
		Testperiod:3hours(1hforeachdirectionofX,Y ,Z)
		*Atthefollowingconditions, it is a thing wi thout incorrect
		operationanddestruction.
		(1)Non-operation:Contactelectricdischarge ±10kV
7	ESD	Non-contactelectricdischarge ±20kV
		(2)Operation Contactelectric discharge ±8kV
		Non-contactelectricdischarge ±15kV
		Conditions:150pF,330ohm

[Resultevaluationcriteria]

Underthedisplayqualitytestconditionwithnorma loperationstate,thereshallbenochange,which may affectpracticaldisplayfunction.

11. Packingform

a) Pilingnumberofcartons
 b) Packingquantityinonecarton
 c) Cartonsize
 d) Totalmassofonecartonfilledwithfullmodules
 T.B.D

12. Cartonstoragecondition

Temperature 0°Cto40 °C Humidity 95% RHorless

Referencecondition 20°Cto35 °C,85 % RHorless(summer)

5°Cto15 °C,85%RHorless(winter)

thetotalstoragetime(40 °C,95%RH):240horless

Sunlight Besuretoshelteraproductionfromthedirectsun light.

Atmosphere Harmfulgas, suchasacidandalkali which bites electro nic components and/or

wiresmustnotbedetected.

Notes Besure to put cartons on palette or base, don't pu tit on floor, and store them

withremovingfromwall.

Please take care of ventilation in storehouse and a round cartons, and control

changing temperature is within limits of natural en vironment.

Storagelife 1 year.

13. Label

13.1 ModuleSerialLabel

a) Overview

This label is stuck on the backlight chass is.

b) HowtoexpressLotNo.

13.2.PackingLabel

Thislabelisstuckontheeachpackingbox.

ex)LK800D3LA28

- ① ModelNo.&SuffixCode
- ② LotNo.
- 3 Quantity

14.Precautions

- a) Besuretoturnoffthepowersupplywheninserting ordisconnectingthecable.
- b) Besuretodesignthecabinetsothatthemoduleca nbeinstalledwithoutanyextrastresssuchaswar portwist.
- c) Sincethefrontpolarizeriseasilydamaged,payat tentionnottoscratchit.
- d) Sincelongcontactwithwatermaycausediscolorati onorspots, wipeoffwaterdropimmediately.
- e) Whenthepanelsurfaceissoiled, wipeitwith abso rbentcotton or other softcloth.
- Sincethepanelismadeofglass,itmaybreakorc rackifdroppedorbumpedonhardsurface.Handlew ithcare.
- g) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into considerationwhenhandling.
- h) Themodulehassomeprintedcircuitboards(PCBs)o n pressure when handling or installing the module; ot damaged.
- nthebackside,takecaretokeepthemformanyst ressor herwise some of electronic parts on the PCBs may be
- i) Observeallotherprecautionaryrequirementsinhan dlingcomponents.
- j) Whensomepressureisaddedontothemodulefromre arsideconstantly,itcausesdisplaynon-uniformit yissue, functionaldefect,etc.So,pleaseavoidsuchdesig n.
- k) When giving a touch to the panel at power on supply , it may cause some kinds of degradation. In that conceturn off the power supply, and turn on a fter supply, and turn on a fter supply and turn on a fter supply ever also conducted as a set of the panel at power on supply and turn on a fter supply a
- WhenhandlingLCDmoduleandassemblingthemintoc abinets, please benoted that long-terms to rage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adh esive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- m) This LCD module is designed to prevent dust from en have a bad effect on display performance in case of ensure to design your TV set to keep dust away arou tering into it. However, there would be a possibili ty to having dust inside of LCD module. Therefore, pleas end LCD module.
- n) ThisLCDmodulepassesovertherust.
- o) Adjusting V com has been set optimally before shipme nt, so do not change any adjusted value. If adjuste d valueischanged, the specification may not be satisfied.
- p) Disassemblingthemodulecancausepermanentdamage and should be strictly avoided.
- q) Pleasebecarefulsinceimageretentionmayoccurw henafixedpatternisdisplayedforalongtime.
- r) Thechemicalcompound, which causes the destruction of ozonelayer, is not being used.
- s) Inanycase, pleased on otresolve this LCD module.
- t) ThismoduleiscorrespondedtoRoHS.
- u) Whenanyquestionorissueoccurs, it shall be solv ed by mutual discussion.

NOTE)1. UNSPECIFIED TOLERANCE TO BE ±2.0

LKSOODS***