Modern Algebra HW2

Michael Nameika

September 2022

Section 4 Problems

31. If * is a binary operation on a set S, an element x of S is an **idem- potent for** * if x * x = x. Prove that a group has exactly one idempotent element.

Proof: Let $\langle G, * \rangle$ be a group. Since $\langle G, * \rangle$ forms a group, we have that there exists a unique identity element $e \in G$ such that for all $a \in G$, a*e = e*a = a. It follows then that e*e = e. That is, e is an idempotent for *. We now wish to show that e is the only idempotent for *. Suppose that $e' \in G$ is another idempotent element for *. That is, e'*e' = e'. Now since $e' \in G$ and $\langle G, * \rangle$ is a group, there exists an inverse $\bar{e} \in G$ of e' such that $e'*\bar{e} = \bar{e}*e' = e$. Then compose e'*e' = e' on the left with \bar{e} :

$$\bar{e} * (e' * e') = \bar{e} * e'$$

by the associative property, the above can be rewritten as

$$(\bar{e} * e') * e' = \bar{e} * e'$$

since $\bar{e} * e' = e$ we have

$$e * e' = e$$

$$e' = e$$

That is, and idempotent element for a group is e, the identity element, and is the only idempotent element.

Section 4 Extra Problems

1. Give the table of the group $U = \{1, i, -1, -i\}$ under multiplication.

•	1	$\mid i \mid$	-1	-i
1	1	i	-1	-i
\overline{i}	i	-1	-i	1
-1	-1	-i	1	i
-i	-i	1	i	-1

2. Give the table of the group $Z_4 = \{0, 1, 2, 3\}$ under addition mod 4.

$+_{4}$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

3. Give the table of the group described in problem 14 of section 4 (for the case n=2). Call this group G.

	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
$ \begin{array}{c c} \hline \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} $	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
$ \begin{array}{c c} 1 & 0 \\ 0 & -1 \end{array} $	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

4. Compare and contrast the tables for U, Z_4 , and G.

U and \mathbb{Z}_4 have the form

•	e	a	b	c
\overline{e}	e	a	b	c
\overline{a}	a	b	c	e
\overline{b}	b	c	e	a
\overline{c}	c	e	a	b

Where e is the identity element for the group, and a, b, c are members of the group. That is, U and \mathbb{Z}_4 have the same structure, or are isomorphic. In contrast to U and \mathbb{Z}_4 , G has the structure

•	e	a	b	c
e	e	a	b	c
a	a	e	c	b
\overline{b}	b	c	e	a
\overline{c}	c	b	a	e

So G is structurally different from U and \mathbb{Z}_4 . In other words, G is not isomorphic to neither U nor \mathbb{Z}_4 .

Section 5 Problems

10. Determine if the set of upper-triangular $n \times n$ matrices with no zeros on the diagonal is a subgroup of $GL(n,\mathbb{R})$

Let H be the set of all upper-triangular matrices with no zeros on the diagonal. Recall that the determinant of a triangular matrix is the product of the diagonal elements, and a matrix is invertible if and only if the determinant is non-zero. Since any element of H has non-zero diagonal elements, its determinant will be non-zero. That is, any element of H is an invertible $n \times n$ matrix. So H is a subset of the set of all invertible matrices.

I claim that $\langle H, \cdot \rangle$ is a subgroup of $GL(n, \mathbb{R})$ where \cdot is standard matrix multiplication.

Proof: We must first show that H is closed under matrix multiplication. To begin, let $A, B \in H$ and consider AB. Recall that the ij^{th} element of a matrix product is given by the following formula:

$$ab_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \tag{1}$$

where ab_{ij} is the ij^{th} element of AB and a_{ik} is the ik^{th} element of A and b_{kj} is the kj^{th} element of B. Since A and B are upper-triangular, the elements of A and B are strictly zero below the main diagonal. That is, $a_{ij} = b_{ij} = 0$ whenever i < j. Using equation (1), we will now show that the product of two upper-triangular matrices is also upper-triangular. In particular, we wish to show that $ab_{ij} = 0$ whenever i < j.

Well, whenever i < j, we have $a_{ij} = 0$ and $b_{ij} = 0$. Then from equation (1), for k > i, $a_{ik} = 0$. Similarly, for k < j, $b_{ij} = 0$. Now, since i < j, we cannot have i = k = j. That is to say, either i < k or k < j. Then it will always be the case that $a_{ik} = 0$ or $b_{kj} = 0$. Then the sum in equation (1) must be equal to zero whenever i < j.

That is, for i < j, $ab_{ij} = 0$, so AB is an upper-triangular matrix. So we have established that H is closed under matrix multiplication. Now we must show that the identity element $e = I_n$ is in H.

Well, I_n is a diagonal matrix, that is, zeros everywhere except the main diagonal. So, I_n contains zeros in every element below the main diagonal, so $I_n \in H$.

Now we must show that for any $A \in H$, $A^{-1} \in H$. That is, we must show that if A is upper-triangular, A^{-1} is also upper triangular.

I will proceed by induction. We must first verify the base case (n = 2) holds. Recall that the inverse of a 2×2 matrix is given by the following:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - cb} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Then for an upper triangular matrix, we have the following:

$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}^{-1} = \frac{1}{ac} \begin{bmatrix} c & -b \\ 0 & a \end{bmatrix}$$

So we have that the inverse of a 2×2 upper-triangular matrix is also upper-triangular. Now assume this result holds to some natural number n. We must show that an $(n+1) \times (n+1)$ upper-triangular matrix's inverse is also upper-triangular.

Well, by the induction hypothesis, the inverse of an $n \times n$ upper-triangular matrix is upper-triangular, so let B be an $n \times n$ upper-triangular matrix of real entries and suppose without loss of generality that B is not a diagonal matrix (the case where B is diagonal is trivial since the inverse of a diagonal matrix is a diagonal matrix whose entries are the reciprocals of the original entries, both clearly upper-triangular) and let B^{-1} be the inverse of B.

Now let B_1 be an $(n+1) \times (n+1)$ upper-triangular matrix defined by the following:

$$B_1 = \begin{bmatrix} B & b_1 \\ \mathbf{0} & c \end{bmatrix}$$

where $b_1 \in \mathbb{R}^n$ is a column vector, **0** is the *n*-dimensional row vector consisting only of zeros, and $c \in \mathbb{R}$. We wish to show that B_1^{-1} is also upper-triangular. Suppose B_1^{-1} can be written as the following:

$$B_1^{-1} = \begin{bmatrix} B^{-1} & b_1' \\ b_2' & c' \end{bmatrix} \tag{2}$$

where $b'_1 \in \mathbb{R}^n$ is a column vector, $b'_2 \in \mathbb{R}^n$ is a row vector, and $c' \in \mathbb{R}$ is some number. We require that $B_1B_1^{-1} = B_1^{-1}B_1 = I_{n+1}$. Well,

$$B_1 B_1^{-1} = \begin{bmatrix} B & b_1 \\ \mathbf{0} & c \end{bmatrix} \begin{bmatrix} B^{-1} & b_1' \\ b_2' & c' \end{bmatrix} = \begin{bmatrix} BB^{-1} + b_1b_2' & Bb_1' + b_1c' \\ cb_2' & cc' \end{bmatrix}$$

and

$$B_1^{-1}B_1 = \begin{bmatrix} B^{-1} & b_1' \\ b_2' & c' \end{bmatrix} \begin{bmatrix} B & b_1 \\ \mathbf{0} & c \end{bmatrix} = \begin{bmatrix} B^{-1}B & B^{-1}b_1 + b_1'c \\ b_2'B & b_2'b_1 + c'c \end{bmatrix}$$

Since the above two equations must be equal (and equal to I_n), we must have that $b_1b_2' = [0]_{n \times n}$ where $[0]_{n \times n}$ denotes the $n \times n$ matrix populated only by zeros, and $cb_2' = b_2'B$, and cc' = 1.

From the equation $cb'_2 = b'_2B$, we have $b'_2 = b'_2(\frac{1}{c}B)$. For this to be true, it must be the case that either $B = cI_n$ or $b'_2 = 0$. Well, since B was assumed

to not be a diagonal matrix, it cannot be the case that $B = cI_n$, so we have that $b'_2 = 0$. Then from equation (2), we can see that B^{-1} is upper triangular.

All of that work is to say that $\langle H, \cdot \rangle$ is indeed a group.

12. Determine whether the set of $n \times n$ matrices with determinant -1 or 1 is a subgroup of $GL(n, \mathbb{R})$.

Let H be the set of all $n \times n$ matrices with determinant -1 or 1. Notice that since any element of H has non-zero determinant, $H \subseteq G$. I claim that $\langle H, \cdot \rangle$ is a subgroup of $GL(n, \mathbb{R})$ where \cdot is the operation of matrix multiplication.

Proof: We must first show that H is closed under matrix multiplication. Let $M, N \in H$. Then $\det(M) = \pm 1$ and $\det(N) = \pm 1$. Consider the product MN and find the determinant:

$$\det(MN) = \det(M)\det(N) = (\pm 1)(\pm 1) = \pm 1$$

Then $MN \in H$, so H is closed under matrix multiplication.

Now we must show the identity element $e = I_n \in H$. Well, $\det(I_n) = 1$, so $I_n \in H$.

Finally, we must show for each $M \in H$, $M^{-1} \in H$ where M^{-1} is the matrix inverse of M. Well, since $\det(M) = \pm 1$, we have

$$\det(M^{-1}) = \frac{1}{\det(M)} = \frac{1}{\pm 1} = \pm 1$$

So $M^{-1} \in H$.

That is, $\langle H, \cdot \rangle$ is a subgroup of $GL(n, \mathbb{R})$.

For problems 15 and 16, let F be the set of all real-valued functions with domain \mathbb{R} and let \tilde{F} be the subset of F consisting of those functions that have a nonzero value at every point in \mathbb{R} . Determine whether the given subset of F with the induced operation is (a) a subgroup of the group F under addition, (b) a subgroup of the group \tilde{F} under matrix multiplication.

- 15. The subset of all $f \in F$ such that f(1) = 0.
- (a) Let $H = \{ f \in F | f(1) = 0 \}$. I claim that $\langle H, + \rangle$ is a subgroup of $\langle F, + \rangle$.

Proof: We must begin by showing that H is closed under addition. In particular, we must show that if $f, g \in H$, then $f + g \in H$. Well, since $f, g \in H$, we have f(1) = 0 and g(1) = 0. Then (f + g)(1) = f(1) + g(1) = 0 + 0 = 0, so $f + g \in H$. Then H is closed under addition.

Now we must show the identity element $e(x) = 0 \in H$. Well, notice e(1) = 0, so $e(x) \in H$.

Finally, we must show that for any $f \in H$, its additive inverse $-f(x) \in H$. Well, for any $f \in H$, f(1) = 0, then -f(1) = 0, so $-f \in H$. So $\langle H, + \rangle$ is a subgroup of $\langle F, + \rangle$.

- (b) Let H be as in part (a) and \cdot be multiplication. $\langle H, \cdot \rangle$ is NOT a subgroup of $\langle \tilde{F}, \cdot \rangle$ since for $f \in \tilde{F}$, $f(x) \neq 0$ for all $x \in \mathbb{R}$. That is to say, H is not even a subset of \tilde{F} !
 - 16. The subset of all $f \in \tilde{F}$ such that f(1) = 1.
- (a) Let $H = \{ f \in \tilde{F} \mid f(1) = 1 \}$. $\langle H, + \rangle$ is not a subgroup of $\langle \tilde{F}, + \rangle$ since H is not closed under addition! Let $f, g \in H$ and consider f + g. Notice that $(f+g)(1) = f(1) + g(1) = 1 + 1 = 2 \neq 1$, so $f+g \notin H$.
 - (b) Let H be as in part (a). I claim that $\langle H, \cdot \rangle$ is a subgroup of $\langle \tilde{F}, \cdot \rangle$.

Proof: We must begin by showing that H is closed under multiplication. Well, let $f, g \in H$ and consider $f \cdot g$. Notice that $f(1) \cdot g(1) = f(1)g(1) = (1)(1) = 1$. So $f \cdot g \in H$.

Now we must show that the identity element $e(x) = 1 \in H$. Well, notice e(1) = 1, so $e(x) \in H$.

Finally, we must show for any $f \in H$, the inverse function $f^{-1} = \frac{1}{f} \in H$.

Well, since $f \in H \subseteq \tilde{F}$, $f(x) \neq 0$ for all $x \in \mathbb{R}$ and so $\frac{1}{f}$ is defined for all $x \in \mathbb{R}$. Further notice that $\frac{1}{f(1)} = \frac{1}{1} = 1$ so $\frac{1}{f} \in H$. Thus we have established that $\langle H, \cdot \rangle$ is a subgroup of $\langle \tilde{F}, \cdot \rangle$.

34. Find the order of the cyclic subgroup of the multiplicative group G of invertible 4×4 matrices generated by

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Let A be defined by the matrix above. We wish to find the set $\{A^n | n \in \mathbb{Z}\}$. Let us begin by calculating A^2 :

$$A^{2} = AA = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Now A^3 :

$$A^{3} = A^{2}A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

And A^4 :

$$A^{4} = A^{3}A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

That is, every fourth power of A will bring us to the identity matrix. Then we must have that this subgroup contains four elements, namely I_4 , A, A^2 , and A^3 . That is, the order of this subgroup is four.

40. Show by means of example that it is possible for the quadratic equation $x^2 = e$ to have more than two solutions in some group G with identity e.

Refer to problem 3 in the Section 4 Extra Problems. Notice that G has four solutions to $x^2 = e$.

47. Prove that if G is an abelian group, written multiplicatively, with identity element e, then all elements x of G satisfying the equation $x^2 = e$ form a subgroup H of G.

Proof: Let G be an abelian group, written multiplicatively with identity element e. Let $H = \{x \mid x \in G, x^2 = e\}$. We wish to show that H is a subgroup of G. To begin, we must show that H is closed under the operation on G. Let $x, y \in H$ and consider $x \cdot y$. We must show $(x \cdot y)^2 = e$.

Well,

$$(x \cdot y)^2 = (x \cdot y) \cdot (x \cdot y)$$

Since G is abelian, we have $x \cdot y = y \cdot x$. Then the above equation becomes

$$(x \cdot y) \cdot (x \cdot y) = (x \cdot y) \cdot (y \cdot x)$$

By the associative property and the fact that $x^2 = e$ and $y^2 = e$, we have

$$(x \cdot y) \cdot (y \cdot x) = x \cdot (y \cdot y) \cdot x = x \cdot y^2 \cdot x = x \cdot e \cdot x = x \cdot x = x^2 = e$$
 So $xy \in H$.

Now we must show that the identity element $e \in H$. Well, notice $e^2 = e \cdot e = e$, so $e \in H$.

Finally, we must show that for any $x \in H$, the inverse element $x^{-1} \in H$. Since G is a group, for any $x \in G$, x has an identity element, call it x^{-1} , which is unique. Notice that since $x^2 = e$, $x^{-1} = x$, so $(x^{-1})^2 = e$. That is, $x^{-1} \in H$.

So H is a subgroup of G.