The Design and Analysis of Algorithms HW1

B12508026 戴偉璿

September 26, 2025

- 1. (a) $\frac{n}{\log^3 n} = O(n)$, $64^{\sqrt{n}} = O(2^{\sqrt{6n}})$, $\log^{10} n = O(\log n)$, $\log(n!) = O(n \log n)$ (by Stirling's approximation), $n\sqrt{n} = O(n^{3/2})$, $\log 3^n = O(n)$, $n \log^2 n$
 - (b) i. **Disprove.** To prove or disprove $n^{\frac{1}{2}} = O(n^{\frac{1}{3}})$, consider the definition of Big-O notation. $n^{\frac{1}{2}} \leq cn^{\frac{1}{3}}$ where c is a constant. Dividing both sides by $n^{\frac{1}{3}}$ gives $n^{\frac{1}{6}} \leq c$. As n approaches infinity, $n^{\frac{1}{6}}$ also approaches infinity, so there is no constant c that satisfies the inequality. Therefore, $n^{\frac{1}{2}} \neq O(n^{\frac{1}{3}})$.
 - ii. Prove. To prove or disprove $3^n = \Omega(27^{\sqrt{n}})$, consider the definition of Big-Omega notation. $3^n \geq c27^{\sqrt{n}}$ where c is a constant. Dividing both sides by $27^{\sqrt{n}}$ gives $\frac{3^n}{27^{\sqrt{n}}} = 3^{n-3\sqrt{n}} \geq c$. As n approaches infinity, $n 3\sqrt{n}$ also approaches infinity, so there exists a constant c that satisfies the inequality. Therefore, $3^n = \Omega(27^{\sqrt{n}})$.
- 2. (a) The outer loop runs from 1 to n, and the inner loop runs from 1 to \sqrt{i} . So the total number of iterations is: $\sum_{k=1}^{n} \sqrt{k}$. To analysis this, we can use the integral method: $\sum_{k=1}^{n} \sqrt{k} \approx \int_{1}^{n} \sqrt{x} \, dx = \left[\frac{2}{3}x^{3/2}\right]_{1}^{n} = \frac{2}{3}(n^{3/2} 1) = \Theta(n^{3/2})$.