Helixco Cavity

Jaewoong Lee

2020-08-24

Contents

1	Intr	oduction 3	_
	1.1	Dental Cavity	3
	1.2	Microbiome	3
2	Mat	terials	
	2.1	16S rRNA Analysis	3
3	Met	hods	
	3.1	t-SNE	
	3.2	Programming Methods	1
		3.2.1 Docker	
		3.2.2 QIIME 2	1
		3.2.3 Scikit-learn	1
		3.2.4 FastQC	1
4	Resi	ults 4	1
	4.1	t-SNE with Every Bacterium	1
5	Disc	cussion	1
References		4	
L	ist o	f Tables	
L	ist o	f Figures	
	1	Saggital and cross-sectional sections through a permanent molar (Loesche, 1986)	3
	2	Visualizations of handwritten digits from the MNIST data set (Maaten & Hinton 2008)	3

1 Introduction

1.1 Dental Cavity

Dental cavity is one of the most common bacterial infections in humans. *Streptococcus mutans* in the acquired enamel pellicle have a main role in human dental cavity (Loesche, 1986; Alaluusua & Renkonen, 1983).

Figure 1: Saggital and cross-sectional sections through a permanent molar (Loesche, 1986)

1.2 Microbiome

Microbiome refers the genome of microbal symbionts which live inside and on human (Turnbaugh et al., 2007). Microbiome is highly personalized, and gives effects to human health.

2 Materials

2.1 16S rRNA Analysis

3 Methods

3.1 t-SNE

t-SNE is one of the dimension reduction algorithm which visualizes high-dimensional data by giving each data-point a location in a two-dimensional map. (Maaten & Hinton, 2008)

Figure 2: Visualizations of handwritten digits from the MNIST data set (Maaten & Hinton, 2008)

3.2 Programming Methods

3.2.1 Docker

Docker is light-weight linux containers for consistent development and deployment (Merkel, 2014).

3.2.2 QIIME 2

QIIME 2 is a powerful, extensible, and decentralized microbiome analysis package with a focus on data and analysis transparency.

3.2.3 Scikit-learn

Scikit-learn is a simple and efficient tools for predictive data analysis (Pedregosa et al., 2011; Buitinck et al., 2013).

4 Results

4.1 t-SNE with Every Bacterium

5 Discussion

References

- Alaluusua, S., & Renkonen, O.-V. (1983). Streptococcus mutans establishment and dental caries experience in children from 2 to 4 years old. *European Journal of Oral Sciences*, 91(6), 453–457.
- Andrews, S., Krueger, F., Segonds-Pichon, A., Biggins, L., Krueger, C., & Wingett, S. (2012, January). *FastQC*. Babraham Institute. Babraham, UK.
- Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., ... Varoquaux, G. (2013). API design for machine learning software: experiences from the scikit-learn project. In *Ecml pkdd workshop:* Languages for data mining and machine learning (pp. 108–122).
- Loesche, W. J. (1986). Role of streptococcus mutans in human dental decay. *Microbiological reviews*, 50(4), 353.
- Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-sne. *Journal of machine learning research*, 9(Nov), 2579–2605.

- Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. *Linux journal*, 2014(239), 2.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, *12*, 2825–2830.
- Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The human microbiome project. *Nature*, 449(7164), 804–810.