

## **Data Sheet**

## MM32SPIN05x

32-bit Microcontroller Based on Arm®Cortex®-M0

版本: 1.24

### Contents

| 1 | General Introduction                                      | 6  |
|---|-----------------------------------------------------------|----|
|   | 1.1 Introduction                                          | 6  |
|   | 1.2 Product Characteristics                               | 6  |
| 2 | Specification                                             | 8  |
|   | 2.1 Model List                                            | 8  |
|   | 2.1.1 Ordering Information                                | 8  |
|   | 2.1.2 Marking Information                                 | 9  |
|   | 2.1.3 Block Diagram                                       | 12 |
|   | 2.2 Functional Description                                | 13 |
|   | 2.2.1 Arm® Cortex®M0 with embedded flash memory and SRAM  | 13 |
|   | 2.2.2 Embedded flash memory                               | 13 |
|   | 2.2.3 Memory mapping                                      | 13 |
|   | 2.2.4 Embedded SRAM                                       | 14 |
|   | 2.2.5 Nested vectored interrupt controller (NVIC)         | 14 |
|   | 2.2.6 Extended interrupt/event controller (EXTI)          | 15 |
|   | 2.2.7 Clocks and startup                                  |    |
|   | 2.2.8 Boot Modes                                          | 17 |
|   | 2.2.9 Power Supply Schemes                                | 17 |
|   | 2.2.10 Power Supply Supervisors                           | 17 |
|   | 2.2.11 Voltage Regulator                                  | 17 |
|   | 2.2.12 Low Power Mode                                     | 17 |
|   | 2.2.13 HWDIV                                              | 19 |
|   | 2.2.14 Direct memory access controller (DMA)              | 19 |
|   | 2.2.15 Timers and watchdogs                               | 19 |
|   | 2.2.16 GPIO                                               | 21 |
|   | 2.2.17 Universal asynchronous receiver/transmitter (UART) |    |
|   | 2.2.18 I2C interface                                      | 22 |
|   | 2.2.19 Serial peripheral interface (SPI)                  |    |
|   | 2.2.20 Analogtodigital converter (ADC)                    |    |
|   | 2.2.21 Hardware Dvision                                   |    |
|   | 2.2.22 Comparator (COMP)                                  | 22 |
|   | 2.2.23 Temperature sensor                                 |    |
|   | 2.2.24 Serial wire debug port (SWDP)                      | 23 |
| 3 | Pin Definition and Alternate Function                     | 24 |
|   | 3.1 Pinout Diagram                                        | 24 |
|   | 3.2 Pin Assignment Table                                  | 28 |
|   | 3.3 Multiplex Function Table                              | 31 |
| 4 | Electrical Characteristics.                               |    |
|   | 4.1 Test Condition                                        |    |
|   | 4.1.1 Loading Capacitor                                   |    |
|   | 4.1.2 Pin input voltage                                   |    |
|   | 4.1.3 Power Supply Scheme                                 |    |
|   | 4.1.4 Current Consumption Measurement                     |    |
|   |                                                           |    |

|   | 4.2 Absolute Maximum Ratings                                 | 34 |
|---|--------------------------------------------------------------|----|
|   | 4.3 Operating Conditions                                     | 35 |
|   | 4.3.1 General Operating Conditions                           | 35 |
|   | 4.3.2 Thermal characteristics                                | 35 |
|   | 4.3.3 Operating conditions at powerup/powerdown              | 36 |
|   | 4.3.4 Embedded reset and power control block characteristics | 36 |
|   | 4.3.5 Supply current characteristics                         | 37 |
|   | 4.3.6 External clock source characteristics                  | 40 |
|   | 4.3.7 Internal Clock Source Characteristics                  | 42 |
|   | 4.3.8 Memory Characteristics                                 | 43 |
|   | 4.3.9 EMC Charcateristics                                    | 43 |
|   | 4.3.10 Functional EMS (electrical sensitivity)               | 44 |
|   | 4.3.11 GPIO port general input/output characteristics        | 45 |
|   | 4.3.12 NRST Pin Characteristics                              | 47 |
|   | 4.3.13 Timer characteristics                                 | 48 |
|   | 4.3.14 Communication Interface                               | 48 |
|   | 4.3.15 ADC Characteristics                                   | 53 |
|   | 4.3.16 Temperature Sensor Characteristics                    | 55 |
|   | 4.3.17 Comparator Characteristics                            | 56 |
| 5 | Package Dimensions                                           | 57 |
|   | 5.1 Package LQFP48                                           |    |
|   | 5.2 Package LQFP32                                           |    |
|   | 5.3 Package QFN32                                            |    |
|   | 5.4 Package QFN20                                            |    |
|   | 5.5 Package TSSOP20                                          |    |
| 6 | Product Naming Rule                                          | 67 |
| 7 | Revision History                                             | 68 |

## Figure

| Figure 1 QFN32 package marking                                                           | 9  |
|------------------------------------------------------------------------------------------|----|
| Figure 2 QFN20 package marking                                                           | 10 |
| Figure 3 LQFP package marking                                                            | 10 |
| Figure 4 TSSOP package marking                                                           | 11 |
| Figure 5 Block diagram                                                                   | 12 |
| Figure 6 Clock tree                                                                      | 16 |
| Figure7 LQFP48 pinout diagram                                                            | 24 |
| Figure8 LQFP32 pinout diagram                                                            | 25 |
| Figure 9 QFN32 pinout diagram                                                            | 26 |
| Figure 10 QFN20 pinout diagram                                                           | 26 |
| Figure 11 TSSOP20 pinout diagram                                                         | 27 |
| Figure 12 Pin loading conditions                                                         | 33 |
| Figure 13 Pin input voltage                                                              |    |
| Figure 14 Power supply scheme                                                            |    |
| Figure 15 Current consumption measurement scheme                                         | 34 |
| Figure 16 Typical current consumption in standby mode vs. temperature at $V_{DD} = 3.3V$ | 39 |
| Figure 17 Typical current consumption in stop mode vs. temperature at $V_{DD} = 3.3V$    | 39 |
| Figure 18 High-speed external user clock alternate current timing diagram                |    |
| Figure 19 Typical application with an 8MHz crystal                                       | 42 |
| Figure 20 Input/output AC characteristics definition                                     | 47 |
| Figure 21 Recommended NRST pin protection                                                |    |
| Figure 22 I2C bus AC waveform and measurement circuit (1)                                |    |
| Figure 23 SPI timing diagram-slave mode and CPHA = 0, CPHASEL = 1                        |    |
| Figure 24 SPI timing diagram-slave mode and CPHA = 1, CPHASEL = 1 (1)                    |    |
| Figure 25 SPI timing diagram-master mode (1)                                             |    |
| Figure 26 Typical connection diagram using ADC                                           |    |
| Figure 27 Decoupling circuit of power supply and reference power supply                  | 55 |
| Figure 28 LQFP48, 48-pin low-profile quad flat package                                   |    |
| Figure 29 LQFP32, 32-pin low profile quad flat package                                   | 59 |
| Figure 30 QFN32, 32-pin low profile quad flat package                                    |    |
| Figure 31 QFN20, 20-pin low profile quad flat package                                    |    |
| Figure 32 TSSOP20, 20-pin low profile quad flat package                                  |    |
| Figure 33 MM32 model naming                                                              | 67 |

### Table

| Table 1 Ordering Information                                                   |    |
|--------------------------------------------------------------------------------|----|
| Table 2 Memory mapping                                                         |    |
| Table 3 Low power mode list                                                    | 17 |
| Table 4 Timer feature comparison                                               | 19 |
| Table 5 Pin assignment table                                                   | 28 |
| Table 6 Multiplex function for PA port: AF0-AF7                                | 31 |
| Table 7 Multiplex function for PB port: AF0-AF7                                | 32 |
| Table 8 Multiplex function for PC port: AF0-AF7                                | 32 |
| Table 9 Multiplex function for PD port: AF0-AF7                                |    |
| Table 10 Voltage characteristics                                               | 34 |
| Table 11 Current characteristics                                               | 35 |
| Table 12 General operating conditions                                          |    |
| Table 13 Package thermal characteristics                                       |    |
| Table14 Operating conditions at powerup/powerdown                              | 36 |
| Table 15 Embedded reset and power control block characteristics                |    |
| Table 16 Typical current consumption in Run mode, code executing from Flash    | 38 |
| Table 17 Typical current consumption in sleep mode, code executing from Flash  |    |
| Table 18 Typical and maximum current consumption in stop and standby modes (1) | 38 |
| Table 19 Built-in peripheral current consumption (1)                           |    |
| Table 20 Low-power mode wake-up time                                           |    |
| Table 21 High-speed external user clock characteristics                        | 40 |
| Table22 HSE 8~24MHz oscillator characteristics (1)(2)                          |    |
| Table23 HSI oscillator characteristics (1)(2)                                  |    |
| Table 24 LSI oscillator characteristics <sup>(1)</sup>                         | 43 |
| Table 25 Flash memory characteristics                                          |    |
| Table 26 Flash memory endurance and data retention period (1)(2)               | 43 |
| Table 27 EMS characteristics                                                   | 43 |
| Table 28 ESD characteristics                                                   |    |
| Table 29 I/O static characteristics                                            |    |
| Table 30 Output voltage characteristics                                        | 45 |
| Table 31 Input/output AC characteristics (1)(3)                                | 46 |
| Table32 NRST characteristics                                                   | 47 |
| Table33 TIMx <sup>(1)</sup> characteristics                                    | 48 |
| Table 34 I2C characteristics                                                   | 49 |
| Table 35 SPI characteristics (1)                                               | 50 |
| Table 36 ADC characteristics                                                   | 53 |
| Table 37 Maximum $R_{AIN}$ at $f_{ADC}$ = 15MHz <sup>(1)</sup>                 | 54 |
| Table38 ADC static parameter (1)(2)                                            |    |
| Table 39 Temperature sensor characteristics (3)(4)                             | 55 |
| Table 40 Comparator characteristics                                            | 56 |
| Table 41 LQFP48 dimensions                                                     | 58 |
| Table 42 LQFP32 dimensions                                                     | 60 |
| Table 43 QFN32 dimensions                                                      | 62 |
| Table 44 QFN20 dimensions                                                      | 64 |
| Table 45 TSSOP20 dimensions                                                    | 66 |

## 1 General Introduction

#### 1.1 Introduction

This product incorporates a high performance 32 bit microcontroller with the core of Arm® Cortex®M0. The highest operating frequency is up to 72MHz, with builtin high-speed memory, a rich set of I/O ports and peripherals connected to the external bus. This product contains one 12 bit ADC, one comparator, one 16bit generalpurpose timer, one 32bit generalpurpose timer, three 16bit basic timers, one 16bit advanced timer, and standard communication interfaces, including one I2C, two SPI and two UART interfaces.

The device works between 2.0V to 5.5V range. The regular temperature for the device is 40°C to +85°C and 40°C to +105°C extended temperature range are also available. A comprehensive set of powersaving mode allows the design of lowpower applications.

The abundant peripherals make this microcontroller suitable for a variety of applications:

- Motor drive and application control
- · Medical and handhled devices
- PC gaming peripherals and GPS platform
- ndustrial applications: programmable controllers (PLCs), inverters, printers and scan-ners
- Alarm system, video intercom, heating, ventilation and air conditioning

The devices are available in 5 different packages: LQFP48, LQFP32, QFN32, QFN20 and TSSOP20.

#### 1.2 Product Characteristics

- Core and system
  - 32bit Arm® Cortex®M0 processor as the core
  - Maximum operating frequency is up to 72MHz
  - Single cycle 32bit hardware multiplier
  - Hardware divider(32bit)
- Memory
  - 32K bytes of Flash memory
  - 4K bytes of SRAM
  - Boot loader supports Chip Flash and ISP (InSystem Programming)
- Clock, reset and power management
  - 2.0V to 5.5V power supply
  - Poweron/Powerdown reset (POR/PDR), Programmable voltage detector (PVD)
  - External 4 ~ 24MHz high speed crystal oscillator
  - Embedded factorytuned 48/72MHz high speed oscillator
- Low-power
  - Sleep, Stop and Standby modes
- One 12bit ADC and 1µS of conversion time (up to 13 channels)
  - Conversion range: 0 to V<sub>DDA</sub>
  - Support sampling time and resolution configuration

#### General Introduction

- Onchip temperature sensor
- Onchip voltage sensor
- One comparator
- One 5-channel DMA controller
  - Supported peripherals: Timer, UART, I2C, SPI and ADC
- Up to 39 fast I/Os:
  - All I/O ports can be mapped to 16 external interrupts
  - All ports are capable of inputting and outputting 5V signals
- Up to 9 timers
  - One 16bit 4channel advancedcontrol timer with 4channel PWM output, dead-time generation and emergency stop
  - One 16bit timer and one 32bit timer, with up to 4 IC/OC, usable for IR control decoding
  - Two 16bit timer, with one IC/OC, one OCN, deadtime generation and emergency stop and modulator gate for IR control
  - One 16bit timer, with one IC/OC
  - Two watchdog timers (independent and window type)
  - One SysTick timer: 24bit downcounter
- Debug mode
  - Serial wire debug (SWD)
- Up to 5 Communication interfaces
  - Two UARTs
  - One I2C
  - Two SPIs
- 96bit unique ID (UID)
- Packages LQFP48, LQFP32, QFN32, QFN20 and TSSOP20

# 2 Specification

### 2.1 Model List

### 2.1.1 Ordering Information

Table 1 Ordering Information

|                         | Model                           |              |              |              |                 |  |  |
|-------------------------|---------------------------------|--------------|--------------|--------------|-----------------|--|--|
| Peripheral<br>Interface |                                 | MM32SPIN05PF | MM32SPIN05PT | MM32SPIN05NT | MM32SPIN05NW/TW |  |  |
| СР                      | U frequency                     |              | 72           | MHz          |                 |  |  |
| Flash                   | memory KB                       | 32           | 32           | 32           | 32              |  |  |
| S                       | RAM KB                          | 4            | 4            | 4            | 4               |  |  |
|                         | General-<br>purpose (16<br>bit) | 4            | 4            | 4            | 4               |  |  |
| Tim<br>er               | General-<br>purpose (32<br>bit) | 1            | 1            | 1            | 1               |  |  |
|                         | Advanced control                | 1            | 1            | 1            | 1               |  |  |
| Com                     | UART                            | 2            | 2            | 2            | 2               |  |  |
| mun<br>icati            | I2C                             | 1            | 1            | 1            | 1               |  |  |
| on<br>inter<br>face     | SPI / I2S                       | 2            | 1            | 1            | 1               |  |  |
| Num                     | ber of GPIO                     | 39           | 25           | 27           | 16              |  |  |
| 12-                     | Number                          | 1            | 1            | 1            | 1               |  |  |
| bit<br>ADC              | Number of<br>channels           | 13           | 13           | 13           | 9               |  |  |
| С                       | omparator                       | 1            | 1            | 1            | 1               |  |  |
| Woi                     | king voltage                    | 2.0V~5.5V    |              |              |                 |  |  |
| Working temperature     |                                 | -40℃~105℃    |              |              |                 |  |  |
|                         | Package                         | LQFP48       | LQFP32       | QFN32        | QFN20/TSSOP20   |  |  |

#### 2.1.2 Marking Information

## **Marking**QFN marking:



Figure 1 QFN32 package marking

QFN32 package has the following topside marking:

- 1st line: MM32SPIN
- First part of product name
- 2<sup>nd</sup> line: 05NT
- Second part of product name
- 3<sup>rd</sup> line: ABCDEF -Trace code GH-Revision code
- 4th line: GQRY YWW
  - "GQRY" , other information; "YWW" ,Date code, "Y" means year and "ww" means week in date code



Figure 2 QFN20 package marking

QFN20 3x3 package has the following topside marking:

1st line: SPIN
Motor product
2nd line: ABCD
Trace code
3rd line: YWW

- Date code, "Y" means year and "ww" means week in date code

## **Marking** LQFP marking:



Figure 3 LQFP package marking

LQFP package has the following topside marking:

- 1st line:
- Company logo+ARM
- 2<sup>nd</sup> line: MM32SPIN
- First part of product name
- 3rd line: 05PF/05PT
- Second part of product name
- 4<sup>th</sup> line: ABCDEF -Trace code GH-Revision code

- 5th line: GQRY YWW
- "GQRY", other information; "YWW", Date code, "Y" means year and "ww" means week in date code

#### Marking

TSSOP marking:



Figure 4 TSSOP package marking

TSSOP20 package has the following topside marking

- 1st line:
- Company logo
- ABCD means Trace code
- nX means Revision code
- 2<sup>nd</sup> line: MM32SPIN05TW
- Product name
- 3<sup>rd</sup> line: GQRY YWW
- "GQRY", other information; "YWW", Date code, "Y" means year and "ww" means week in date code

### 2.1.3 Block Diagram



Figure 5 Block diagram

### 2.2 Functional Description

### 2.2.1 Arm® Cortex®M0 with embedded flash memory and SRAM

The Arm® Cortex®M0 processor is configurable and has multilevel pipeline 32 bit reduced instruction set processor, and characterized by high performance and low power consumption.

#### 2.2.2 Embedded flash memory

The embedded flash memory is up to 32K bytes, usable for storing programs and data.

#### 2.2.3 Memory mapping

Table 2 Memory mapping

| Bus    | Boundary address        | Size     | Peripheral                                                                               |
|--------|-------------------------|----------|------------------------------------------------------------------------------------------|
|        | 0x0000 0000 0x0000 7FFF | 32 KB    | Main flash memory,<br>system memory, or<br>SRAM, depends on the<br>configuration of BOOT |
|        | 0x0000 8000 0x07FF FFFF | ~ 128 MB | Reserved                                                                                 |
|        | 0x0800 0000 0x0800 7FFF | 32 KB    | Main Flash memory                                                                        |
|        | 0x0800 8000 0x1FFD FFFF | ~256 MB  | Reserved                                                                                 |
| FLASH  | 0x1FFE 0000 0x1FFE 01FF | 0.5 KB   | Reserved                                                                                 |
|        | 0x1FFE 0200 0x1FFE 0FFF | 3 KB     | Reserved                                                                                 |
|        | 0x1FFE 1000 0x1FFE 1BFF | 3 KB     | Reserved                                                                                 |
|        | 0x1FFE 1C00 0x1FFF F3FF | ~256 MB  | Reserved                                                                                 |
|        | 0x1FFF F400 0x1FFF F7FF | 1 KB     | System memory                                                                            |
|        | 0x1FFF F800 0x1FFF F80F | 16 B     | Option bytes                                                                             |
|        | 0x1FFF F810 0x1FFF FFFF | ~2 KB    | Reserved                                                                                 |
| SRAM - | 0x2000 0000 0x2000 0FFF | 4 KB     | SRAM                                                                                     |
| SKAW   | 0x2000 1000 0x2FFF FFFF | ~ 512 MB | Reserved                                                                                 |
|        | 0x4000 0000 0x4000 03FF | 1 KB     | TIM2                                                                                     |
|        | 0x4000 0400 0x4000 07FF | 1 KB     | TIM3                                                                                     |
|        | 0x4000 0800 0x4000 27FF | 8 KB     | Reserved                                                                                 |
|        | 0x4000 2800 0x4000 2BFF | 1 KB     | Reserved                                                                                 |
|        | 0x4000 2C00 0x4000 2FFF | 1 KB     | WWDG                                                                                     |
|        | 0x4000 3000 0x4000 33FF | 1 KB     | IWDG                                                                                     |
|        | 0x4000 3400 0x4000 37FF | 1 KB     | Reserved                                                                                 |
|        | 0x4000 3800 0x4000 3BFF | 1 KB     | SPI2                                                                                     |
| APB1   | 0x4000 4000 0x4000 43FF | 1 KB     | Reserved                                                                                 |
|        | 0x4000 4400 0x4000 47FF | 1 KB     | UART2                                                                                    |
|        | 0x4000 4800 0x4000 4BFF | 3 KB     | Reserved                                                                                 |
|        | 0x4000 5400 0x4000 57FF | 1 KB     | I2C1                                                                                     |
|        | 0x4000 5800 0x4000 5BFF | 1 KB     | Reserved                                                                                 |
|        | 0x4000 5C00 0x4000 5FFF | 1 KB     | Reserved                                                                                 |
|        | 0x4000 6000 0x4000 63FF | 1 KB     | Reserved                                                                                 |
|        | 0x4000 6400 0x4000 67FF | 1 KB     | Reserved                                                                                 |
|        | 0x4000 6800 0x4000 6BFF | 1 KB     | Reserved                                                                                 |

| Bus  | Boundary address        | Size     | Peripheral |
|------|-------------------------|----------|------------|
|      | 0x4000 6C00 0x4000 6FFF | 1 KB     | Reserved   |
|      | 0x4000 7000 0x4000 73FF | 1 KB     | PWR        |
|      | 0x4000 7400 0x4000 FFFF | 1 KB     | Reserved   |
|      | 0x4001 0000 0x4001 03FF | 1 KB     | SYSCFG     |
|      | 0x4001 0400 0x4001 07FF | 1 KB     | EXTI       |
|      | 0x4001 0800 0x4001 23FF | 7 KB     | Reserved   |
|      | 0x4001 2400 0x4001 27FF | 1 KB     | ADC1       |
|      | 0x4001 2800 0x4001 2BFF | 1 KB     | Reserved   |
|      | 0x4001 2C00 0x4001 2FFF | 1 KB     | TIM1       |
| ADDO | 0x4001 3000 0x4001 33FF | 1 KB     | SPI1       |
| APB2 | 0x4001 3400 0x4001 37FF | 1 KB     | DBGMCU     |
|      | 0x4001 3800 0x4001 3BFF | 1 KB     | Reserved   |
|      | 0x4001 3C00 0x4001 3FFF | 1 KB     | COMP       |
|      | 0x4001 4000 0x4001 43FF | 1 KB     | TIM14      |
|      | 0x4001 4400 0x4001 47FF | 1 KB     | TIM16      |
|      | 0x4001 4800 0x4001 4BFF | 1 KB     | TIM17      |
|      | 0x4001 4C00 0x4001 7FFF | 13 KB    | Reserved   |
|      | 0x4002 0000 0x4002 03FF | 1 KB     | DMA        |
|      | 0x4002 0400 0x4002 0FFF | 3 KB     | Reserved   |
|      | 0x4002 1000 0x4002 13FF | 1 KB     | RCC        |
|      | 0x4002 1400 0x4002 1FFF | 3 KB     | Reserved   |
|      | 0x4002 2000 0x4002 23FF | 1 KB     | Flash 接口   |
|      | 0x4002 2400 0x4002 5FFF | 15 KB    | Reserved   |
|      | 0x4002 6000 0x4002 63FF | 1 KB     | Reserved   |
| AHB  | 0x4002 6400 0x4002 FFFF | 39 KB    | Reserved   |
|      | 0x4003 0000 0x4003 03FF | 1 KB     | HDIV       |
|      | 0x4003 0400 0x47FF FFFF | ~ 128 MB | Reserved   |
|      | 0x4800 0000 0x4800 03FF | 1 KB     | GPIOA      |
|      | 0x4800 0400 0x4800 07FF | 1 KB     | GPIOB      |
|      | 0x4800 0800 0x4800 0BFF | 1 KB     | GPIOC      |
|      | 0x4800 0C00 0x4800 0FFF | 1 KB     | GPIOD      |
|      | 0x4800 1000 0x5FFF FFFF | ~ 384 MB | Reserved   |

#### 2.2.4 Embedded SRAM

4K Bytes of embedded SRAM.

#### 2.2.5 Nested vectored interrupt controller (NVIC)

This product embeds a nested vectored interrupt controller, which can handle multiple maskable interrupting channels (excluding 16 Cortex® M0 interrupt lines) with 16 programmable priorities.

- Tightly coupled NVIC enables low latency interrupt response
- Interrupt vector entry address directly enters into the core
- Tightly coupled NVIC interfaces
- Allow early processing of interrupts
- Handle higher priority interrupts that arrive late

- · Support tailchaining of interrupts
- Automatically saves the processor state
- Offer automatic recovery when the interrupt returns with no instruction overhead
   This module provides flexible interrupt management with minimal interrupt latency.

#### 2.2.6 Extended interrupt/event controller (EXTI)

The external interrupt/event controller consists of multiple edge detectors used to generate interrupt/event requests. Each interrupt line can be independently configured to select the trigger event (rising edge, falling edge or both) and can be masked independently. A pending register maintains the status of all interrupt requests. The EXTI can detect a signal with a pulse width shorter than the internal AHB clock period. All GPIOs can be connected to the 16 external interrupt lines.

#### 2.2.7 Clocks and startup

System clock selection is performed on startup, however the internal 48 MHz oscillator is selected as default CPU clock on reset. Then an external 2~24 MHz clock with failure monitoring function can be selected. If an external clock failure is detected, the clock will be isolated. The system automatically switches back to the internal oscillator. If an interrupt is enabled, the software can receive the corresponding interrupt.

Multiple prescalers are used to configure AHB frequency and highspeed APB (APB2 and APB1) domain. The maximum frequency of AHB and highspeed APB is 72MHz. Please refer to the clock drive diagram in figure 6.



Figure 6 Clock tree

#### 2.2.8 Boot Modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:

- Boot from User Flash memory
- Boot from System Memory
- Boot from embedded SRAM

The boot loader is stored in the system memory, and can reprogram the flash by UART1

#### 2.2.9 Power Supply Schemes

- $V_{DD} = 2.0 \text{V} \sim 5.5 \text{V}$ : external power supply for I/Os and the internal regulator through  $V_{DD}$  pins.
- $V_{SSA}$ ,  $V_{DDA}$ = 2.0V  $\sim$  5.5V: external power supply for reset modules and oscillators.  $V_{DDA}$  and  $V_{SSA}$  must be connected to  $V_{DD}$  and  $V_{SS}$ .

#### 2.2.10 Power Supply Supervisors

This product has integrated poweron reset (POR)/powerdown reset (PDR) circuit. The circuit remains in the working state and ensures proper operation above a threshold of 2.0V. When V<sub>DD</sub> is below a specified threshold (V<sub>POR/PDR</sub>), the device will be placed in the reset state, without the need for an external reset circuit.

Additionally, the device features an embedded programmable voltage detector (PVD) that monitors the  $V_{DD}/V_{DDA}$  power supply and compares it to the threshold  $V_{PVD}$ . When  $V_{DD}$  is below or above the threshold  $V_{PVD}$ , an interrupt can be generated. The interrupt handler will send a warning message or switch the microcontroller to the safe mode. The PVD function should be enabled by a program.

#### 2.2.11 Voltage Regulator

The voltage regulator converts the external voltage into the internal digital logic operating voltage. The voltage regulator remains in the working state after reset.

#### 2.2.12 Low Power Mode

The product support low power mode to achieve the best compromise between low power consumption, short startup time and multiple wake up events.

Table 3 Low power mode list

| Mode  | Entry       | Wakeup        | Influence on<br>1.5V area<br>clock | Influence<br>on V <sub>DD</sub><br>area<br>clock | Vo<br>Ita<br>ge<br>re<br>gu<br>lat<br>or | Influence on<br>data and<br>registers | Preautions |
|-------|-------------|---------------|------------------------------------|--------------------------------------------------|------------------------------------------|---------------------------------------|------------|
| Sleep | WFI(Waitfo  | Any arbitrary | CPU clock off,                     | Off                                              | On                                       |                                       | The        |
| Mode  | rInterrupt) | interrupt     | no influence                       | Oii                                              | Oll                                      |                                       | peripheral |

| Mode            | Entry                                             | Wakeup                                                                               | Influence on<br>1.5V area<br>clock | Influence<br>on V <sub>DD</sub><br>area<br>clock | Vo<br>Ita<br>ge<br>re<br>gu<br>lat<br>or | Influence on<br>data and<br>registers                                                                                        | Preautions                                                                      |
|-----------------|---------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                 | WFE(Waitf<br>or<br>Event)                         | Wake-up event                                                                        | on other clock<br>and ADC clock    |                                                  |                                          |                                                                                                                              | clock still remains and the contents of register and SRAM are kept              |
| Stop<br>Mode    | LPDS bit;<br>SLEEPDEE<br>P bit;<br>WFI or<br>WFE; | Any arbitrary interrupt (set in the external interrupt register), IWDG reset wake-up |                                    |                                                  | On                                       | The contents of register and SRAM are kept and all peripheral clocks are disabled                                            | GPIOs that are not used before entering low power should set analog input state |
| Standby<br>Mode | PDDS bit;<br>SLEEPDEE<br>P bit;<br>WFI or<br>WFE; | WKUP pin, NRST<br>pin external reset,<br>IWDG reset                                  | All 1.5V area clocks are off       | HSI and<br>HSE<br>oscillator<br>off              | Off                                      | The contents of register and SRAM are kept and all peripheral clocks are disabled. Here, wake-up is equivalent to chip reset |                                                                                 |

#### Sleep mode

In the Sleep mode, only the CPU stops working. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs

#### Stop mode

The Stop mode minimizes the power consumption while retaining the content of SRAM and registers. The HSI oscillator and HSE crystal oscillator are also shut down in the Stop mode. The microcontroller can be woken up from the Stop mode by any of the EXTI signals. The EXTI signal can be a wake up signal from one of the 16 external I/O ports and the output of the PVD

#### Standby mode

The Standby mode can minimize the power consumption of the system. In the Standby mode, the voltage regulator turns off when the CPU is in the deep sleep mode. The entire 1.5V power supply domain is disconnected. HSI and HSE oscillators are also turned off. They can be woken up by the rising edge of WKUP

pin, external reset of NRST pin and IWDG reset. They also can be woken up by the watchdog timer without reset. The contents of SRAM and registers will be lost.

#### 2.2.13 HWDIV

The hardware division unit consists of four 32bit data registers, which are dividend, divisor, quotient and remainder, and can be done with signed or unsigned 32bit division. The hardware division control register USIGN can choose whether to have signed division or unsigned division.

Each time the divisor register is written, the division operation is automatically triggered. After the operation is completed, the result is written to the quotient and remainder registers. If the reader register, remainder register, or status register is read before the end, the read operation is suspended until the end of the operation.

If the divisor is zero, an overflow interrupt flag will be generated.

#### 2.2.14 Direct memory access controller (DMA)

The flexible 5 way universal DMA can manage memory to memory, peripheral to memory and memory to peripheral transfers. The DMA controller supports the management of the ring buffer, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel has dedicated hardware DMA request logic, with support for software trigger on each channel. The length, the source address and the destination address of the transfer can be set separately by the software.

The DMA can be used with major peripherals: UART, I2C, SPI, ADC and general-purpose, basic, advanced control timer TIMx.

#### 2.2.15 Timers and watchdogs

The product includes one advanced timer, two generalpurpose timers, three basic timers, two watchdog timers and one SysTick timer. The following table compares the functions of advanced control timer, generalpurpose timer and basic timer:

Table 4 Timer feature comparison

| Timer type       | Timer | Counter resolution | Counter<br>type      | Prescaler<br>factor        | DMA request generation | Capture/compa<br>re<br>channels | Complem - entary outputs |
|------------------|-------|--------------------|----------------------|----------------------------|------------------------|---------------------------------|--------------------------|
| Advanced control | TIM1  | 16-bit             | Up, down,<br>up/down | Interger from 1<br>~ 65536 | Yes                    | 4                               | Yes                      |
| General-         | TIM2  | 32-bit             | Up, down,<br>up/down | Interger from 1 ~ 65536    | Yes                    | 4                               | No                       |
| purpose          | TIM3  | 16-bit             | Up, down,<br>up/down | Interger from 1 ~ 65536    | Yes                    | 4                               | No                       |

| Timer type | Timer Counter Counter Prescaler resolution type factor |        | DMA request generation | Capture/compa<br>re<br>channels | Complem - entary outputs |   |     |
|------------|--------------------------------------------------------|--------|------------------------|---------------------------------|--------------------------|---|-----|
| Davia      | TIM14                                                  | 16-bit | Up                     | Interger from 1<br>~ 65536      | Yes                      | 1 | No  |
| Basic      | TIM16/TIM17                                            | 16-bit | Up                     | Interger from 1 ~ 65536         | Yes                      | 1 | Yes |

#### Advancedcontrol timer (TIM1)

The advanced control timer is composed of one 16bit counter, four capture/compare channels and one threephase complementary PWM generator. It has complementary PWM outputs with dead time insertion and can be used as a complete generalpurpose timer. Four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center alignment mode)
- Single pulse output

If configured as a 16-bit general purpose timer, it has the same features as a TIM2 timer. If configured as a 16-bit PWM generator, it has full modulation capability (0  $\sim$  100%).

In the debug mode, the counter can be frozen and the PWM output is disabled to cut off the switches controlled by these outputs.

Many features are shared with those of general-purpose TIM timers which have the same architecture. The advanced control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

#### **General purpose timers (TIMx)**

Two synchronizable generalpurpose timers (TIM2, TIM3) are built into the product. The generalpurpose timer has one 16/32-bit autoload up/ down counter, one 16-bit prescaler and four independent channels. Each channel can be used for input capture, output compare, PWM and single pulse mode output.

#### **Generalpurpose timers 32-bit**

The generalpurpose timer has one 32-bit autoload up/ down counter, one 16-bit prescaler and four independent channels. Each channel can be used for input capture, output compare, PWM and single pulse mode output

#### **Generalpurpose timers 16-bit**

The generalpurpose timer has one 16-bit autoload up/down counter, one 16-bit prescaler and four independent channels. Each channel can be used for input capture, output compare, PWM and single pulse mode output.

The generalpurpose timers can work together with the advanced control timer via the Timer Link feature for synchronization or event chaining. Their counters can be frozen in the debug mode. Any of the generalpurpose timer can be used to produce PWM outputs. Each timer has independent DMA request mechanism.

These timers can also handle signals from incremental encoders and digital outputs from  $1\sim4$  Hall sensors. Each timer can produce PWM outputs or be seen as a simple time reference.

#### **Basic timer**

#### **TIM14**

This timer is based on a 16-bit autoreload upcounter and a 16-bit prescaler. TIM14 features one single channel for input capture/output compare, PWM or one pulse mode output. Its counter can be frozen in debug mode

#### TIM16/TIM17

Every timer is based on a 16-bit autoreload upcounter and a 16-bit prescaler. They each have a single channel for input capture/output compare, PWM or onepulse mode output. TIM16 and TIM17 have a complementary output with dead time generation and independent DMA request generation. Their counters can be frozen in debug mode.

#### Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter. It is clocked from an independent 40 KHz internal oscillator and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

#### Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability, and the counter can be frozen in debug mode.

#### **Systick**

This timer is dedicated to realtime operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

#### 2.2.16 GPIO

Each GPIO pin can be configured by software as an output (pushpull or opendrain), an input (with or without pull up/pull down), or alternate peripheral function. Most GPIO pins are shared with digital or analog alternate peripherals.

2.2.17 Universal asynchronous receiver/transmitter (UART)

UART provides hardware management of the CTS, RTS. Compatible with ISO7816

smart card mode. The UART interface supports output data lengths of 5 bits, 6 bits, 7 bits, 8 bits, and 9 bits. All UART interface can be served by the DMA controller.

#### 2.2.18 I2C interface

The I2C interface can operate in multimaster or slave modes. It can support Standard mode, and Fast Mode.

It supports 7bit or 10bit addressing modes.

#### 2.2.19 Serial peripheral interface (SPI)

The SPI interface, in slave or master mode, can be configured to  $1 \sim 32$  bits per frame. The maximum rate is 24M for master mode and 12M for slave mode.

All SPI interfaces can be served by the DMA controller.

#### 2.2.20 Analogtodigital converter (ADC)

The product is embedded with one 12-bit analogous digital converter (ADC) which has up to 13 external channels and is available for singleshot, one cycle and continuous scan conversion. In the scan mode, the acquisition value conversion is automatically performed on a selected set of analog inputs.

All ADC can be served by the DMA controller.

The analog watchdog function allows to monitor one or all selected channels precisely. An interrupt will occur when the monitored signal exceeds a preset threshold.

Events generated by generalpurpose timers (TIMx) and the advanced control timer can be cascaded internally to the trigger of the ADC respectively. The application can synchronize the ADC conversion with the clock.

#### 2.2.21 Hardware Dvision

The hardware division unit consists of four 32bit data registers, which are dividend, divisor, quotient and remainder, and can be done with signed or unsigned 32bit division. The hardware division control register USIGN can choose whether to have signed division or unsigned division.

Each time the divisor register is written, the division operation is automatically triggered. After the operation is completed, the result is written to the quotient and remainder registers. If the reader register, remainder register, or status register is read before the end, the read operation is suspended until the end of the operation.

If the divisor is zero, an overflow interrupt flag will be generated.

#### 2.2.22 Comparator (COMP)

The product has one builtin comparator which can be used independently (suitable for I/Os on all terminals) or in combination with the timer. It can also be used for a variety of functions, including:

- Trigger wake up events in the lowpower mode by analog signals
- Adjust the analog signal
- Combine with PWM outputs from timers to form a cyclebycycle current control loop

- Railtorail comparator
- Each comparator has an optional threshold
  - Alternate I/O pins
  - The internal comparison voltage CRV can be AVDD or the partial voltage value of the internal reference voltage
- Programmable hysteresis voltage
- Programmable rate and power consumption
- The output terminal can be redirected to an I/O port or multiple timer input terminals to trigger the following events:
  - Capture event
  - OCref\_clr event (cyclebycycle current control)
  - Brake event to shut off PWM rapidly

### 2.2.23 Temperature sensor

The temperature sensor generates a voltage that varies linearly with temperature.

The temperature sensor is internally connected to the ADC input channel to convert the sensor output to a digital value.

#### 2.2.24 Serial wire debug port (SWDP)

Two-wire serial debug port (SWDP) is embedded in the Arm.

An Arm SWDP allows to be connected to a singlechip microcomputer through serial wire debugging tools.

## **Pin Definition and Alternate**

## **Function**

#### 3.1 Pinout Diagram



Figure7 LQFP48 pinout diagram



Figure8 LQFP32 pinout diagram



Figure 9 QFN32 pinout diagram



Figure 10 QFN20 pinout diagram



Figure 11 TSSOP20 pinout diagram

Annotate: VCap should be setted to float or connect to ground with 0.1uF-0.01uF capacitor.

### 3.2 Pin Assignment Table

Table 5 Pin assignment table

| Pin number |        |       |         |       |                |             |          |                  |                                                                                                         |                              |
|------------|--------|-------|---------|-------|----------------|-------------|----------|------------------|---------------------------------------------------------------------------------------------------------|------------------------------|
| LQFP48     | LQFP32 | QFN32 | TSSOP20 | QFN20 | Pin name       | Type<br>(1) | I/Olevel | Main<br>Function | Alternate<br>functions                                                                                  | Additional functions         |
| 1          | -      | -     | -       | -     | NC             | S           | -        | NC               |                                                                                                         |                              |
| 2          | -      | -     | -       | -     | PC13           | I/O         | FT       | PC13             | TIM2_CH1                                                                                                | -                            |
| 3          | -      | -     | -       | -     | PC14           | I/O         | FT       | PC14             | TIM2_CH2                                                                                                | -                            |
| 4          | -      | -     | -       | -     | PC15           | I/O         | FT       | PC15             | TIM2_CH3                                                                                                |                              |
| 5          | 2      | 2     | 5       | 2     | PD0<br>OSC_IN  | I/O         | FT       | PD0              | I2C1_SDA                                                                                                | -                            |
| 6          | 3      | 3     | 6       | 3     | PD1<br>OSC_OUT | I/O         | FT       | PD1              | I2C1_SCL                                                                                                | -                            |
| 7          | 4      | 4     | 4       | 1     | NRST           | I/O         | FT       | NRST             | -                                                                                                       | -                            |
| 8          | -      | -     | -       | 4     | VSSA           | S           | -        | VSSA             | -                                                                                                       | -                            |
| 9          | 5      | 5     | 9       | 6     | VDDA/VDD       | S           | -        | VDDA             | -                                                                                                       | -                            |
| 10         | 6      | 6     | 10      | 7     | PA0<br>WKUP    | I/O         | TC       | PA0              | UART2_CTS/<br>TIM2_CH1_ETR/<br>SPI2_NSS/<br>TIM2_CH3/<br>COMP1_OUT                                      | ADC1_VIN[0]                  |
| 11         | 7      | 7     | -       | -     | PA1            | I/O         | TC       | PA1              | UART2_RTS/<br>TIM2_CH2                                                                                  | ADC1_VIN[1]/<br>COMP1_INP[0] |
| 12         | 8      | 8     | -       | -     | PA2            | I/O         | TC       | PA2              | UART2_TX/<br>TIM2_CH3/<br>SPI2_NSS                                                                      | ADC1_VIN[2]/<br>COMP1_INP[1] |
| 13         | 9      | 9     | -       | -     | PA3            | I/O         | TC       | PA3              | UART2_RX/<br>TIM2_CH4                                                                                   | ADC1_VIN[3]/<br>COMP1_INP[2] |
| 14         | 10     | 10    | 11      | 8     | PA4            | I/O         | TC       | PA4              | SPI1_NSS/<br>TIM1_BKIN/<br>TIM14_CH1/<br>I2C1_SDA                                                       | ADC1_VIN[4]/<br>COMP1_INP[3] |
| 15         | 11     | 11    | 12      | 9     | PA5            | I/O         | TC       | PA5              | SPI1_SCK/<br>TIM2_CH1_ETR/<br>TIM1_ETR/<br>I2C1_SCL/<br>TIM1_CH3N                                       | ADC1_VIN[5]/<br>COMP1_INM[0] |
| 16         | 12     | 12    | 3       | 20    | PA6            | I/O         | TC       | PA6              | SPI1_MISO/<br>TIM3_CH1/<br>TIM1_BKIN/<br>UART2_RX/<br>TIM1_ETR/<br>TIM16_CH1/<br>TIM1_CH3/<br>COMP1_OUT | ADC1_VIN[6]/<br>COMP1_INM[1] |
| 17         | 13     | 13    | -       | -     | PA7            | I/O         | TC       | PA7              | SPI1_MOSI/<br>TIM3_CH2/<br>TIM1_CH1N/<br>TIM14_CH1/<br>TIM17_CH1/<br>TIM1_CH2N/<br>TIM1_CH3N            | ADC1_VIN[7]/<br>COMP1_INM[2] |
| 18         | 14     | 14    | 13      | 10    | PB0            | I/O         | TC       | PB0              | TIM3_CH3/<br>TIM1_CH2N/<br>TIM1_CH1N/<br>TIM1_CH3                                                       | ADC1_VIN[8]                  |
| 19         | 15     | 15    | 14      | 11    | PB1            | I/O         | тс       | PB1              | TIM14_CH1/<br>TIM3_CH4/<br>TIM1_CH3N/<br>TIM1_CH4/<br>TIM1_CH2N/<br>MCO/<br>TIM1_CH2/<br>TIM1_CH1N      | ADC1_VIN[9]                  |
| 20         | -      | 16    | -       | -     | PB2            | I/O         | FT       | PB2              |                                                                                                         | -                            |
| 21         | -      | -     | -       | -     | PB10           | I/O         | FT       | PB10             | I2C1_SCL/<br>TIM2_CH3/<br>SPI2_SCK                                                                      | -                            |

| Pin number |        | in numbe | er      |       |          |          |          |                  |                                                                                                         |                      |
|------------|--------|----------|---------|-------|----------|----------|----------|------------------|---------------------------------------------------------------------------------------------------------|----------------------|
| LQFP48     | LQFP32 | QFN32    | TSSOP20 | QFN20 | Pin name | Type (1) | I/Olevel | Main<br>Function | Alternate functions                                                                                     | Additional functions |
| 22         | -      | -        | -       | -     | PB11     | I/O      | FT       | PB11             | I2C1_SDA/<br>TIM2_CH4                                                                                   | -                    |
| 23         | 16     | -        | 7       | 4     | VSS      | S        | -        | VSS              | -                                                                                                       | =                    |
| 24         | 17     | 17       | 9       | 6     | VDD      | S        | -        | VDD              | -                                                                                                       | -                    |
| 25         | -      | ı        | -       | ı     | PB12     | I/O      | FT       | PB12             | SPI2_NSS/<br>SPI2_SCK/<br>TIM1_BKIN/<br>SPI2_MOSI/<br>SPI2_MISO                                         | -                    |
| 26         | -      | -        | 15      | 12    | PB13     | I/O      | FT       | PB13             | SPI2_SCK/<br>SPI2_MISO/<br>TIM1_CH1N/<br>SPI2_NSS/<br>SPI2_MOSI/<br>I2C1_SCL/<br>TIM1_CH3N/<br>TIM2_CH1 | -                    |
| 27         | -      | -        | 16      | 13    | PB14     | I/O      | FT       | PB14             | SPI2_MISO/<br>SPI2_MOSI/<br>TIM1_CH2N/<br>SPI2_SCK/<br>SPI2_NSS/<br>I2C1_SDA/<br>TIM1_CH3/<br>TIM1_CH1  | -                    |
| 28         | -      | -        | -       | -     | PB15     | I/O      | FT       | PB15             | SPI2_MOSI/<br>SPI2_NSS/<br>TIM1_CH3N/<br>SPI2_MISO/<br>SPI2_SCK/<br>TIM1_CH2N/<br>TIM1_CH2              | -                    |
| 29         | 18     | 18       | -       | -     | PA8      | I/O      | FT       | PA8              | MCO/<br>TIM1_CH1/<br>TIM1_CH2/<br>TIM1_CH3                                                              | -                    |
| 30         | 19     | 19       | -       | -     | PA9      | I/O      | FT       | PA9              | UART1_TX/<br>TIM1_CH2/<br>UART1_RX/<br>I2C1_SCL/<br>MCO/<br>TIM1_CH1N/<br>TIM1_CH4                      | -                    |
| 31         | 20     | 20       | -       | -     | PA10     | I/O      | FT       | PA10             | TIM17_BKIN/ UART1_RX/ TIM1_CH3/ UART1_TX/ I2C1_SDA/ TIM1_CH1/ SPI2_SCK                                  | -                    |
| 32         | 21     | 21       | -       | ı     | PA11     | I/O      | FT       | PA11             | UART1_CTS/<br>SPI2_MOSI/<br>TIM1_CH4/<br>I2C1_SCL/<br>COMP1_OUT                                         | -                    |
| 33         | 22     | 22       | -       | -     | PA12     | I/O      | FT       | PA12             | UART1_RTS/<br>TIM1_ETR/<br>SPI2_MISO/<br>I2C1_SDA/<br>TIM1_CH2                                          | -                    |
| 34         | 23     | 23       | 17      | 14    | PA13     | I/O      | FT       | PA13             | SWDIO/<br>SPI2_MISO/<br>MCO/<br>TIM1_CH2/<br>TIM1_BKIN                                                  | -                    |
| 35         | -      | Ī        | -       | -     | PD2      | I/O      | FT       | PD2              | -                                                                                                       | -                    |

|        | F      | Pin number |         |       | _        |             |          |                          |                                                                              |                      |
|--------|--------|------------|---------|-------|----------|-------------|----------|--------------------------|------------------------------------------------------------------------------|----------------------|
| LQFP48 | LQFP32 | QFN32      | TSSOP20 | QFN20 | Pin name | Type<br>(1) | I/Olevel | Main<br>Function         | Alternate functions                                                          | Additional functions |
| 36     | -      | -          | -       | -     | PD3      | I/O         | FT       | PD3                      | -                                                                            | -                    |
| 37     | 24     | 24         | 18      | 15    | PA14     | I/O         | FT       | PA14                     | SWDCLK/<br>UART2_TX/<br>SPI1_NSS                                             | -                    |
| 38     | 25     | 25         | -       | -     | PA15     | I/O         | FT       | PA15                     | SPI1_NSS/<br>UART2_RX/<br>TIM2_CH1_ETR                                       | -                    |
| 39     | 26     | 26         | 19      | 16    | PB3      | I/O         | TC       | PB3                      | SPI1_SCK/<br>TIM2_CH2/<br>UART1_TX/<br>TIM2_CH3/<br>TIM1_CH1/<br>TIM2_CH1    | ADC1_VIN[10]         |
| 40     | 27     | 27         | 20      | 17    | PB4      | I/O         | тс       | PB4                      | SPI1_MISO/<br>TIM3_CH1/<br>UART1_RX/<br>TIM17_BKIN/<br>TIM1_CH2/<br>TIM2_CH2 | ADC1_VIN[11]         |
| 41     | 28     | 28         | -       | -     | PB5      | I/O         | FT       | PB5                      | SPI1_MOSI/<br>TIM3_CH2/<br>TIM16_BKIN/<br>MCO/<br>TIM1_CH3/<br>TIM2_CH3      | -                    |
| 42     | 29     | 29         | 1       | 18    | PB6      | I/O         | FT       | PB6                      | UART1_TX/<br>I2C1_SCL/<br>TIM16_CH1N/<br>TIM2_CH1                            | -                    |
| 43     | 30     | 30         | 2       | 19    | PB7      | I/O         | тс       | PB7                      | UART1_RX/<br>I2C1_SDA/<br>TIM17_CH1N/<br>UART2_TX                            | ADC1_VIN[12]         |
| 44     | 31     | 31         | -       | -     | воото    | I/O         | FT       | воото                    | -                                                                            | -                    |
| 45     | 31     | 32         | -       | -     | PB8      | I/O         | FT       | PB8                      | I2C1_SCL/<br>TIM16_CH1/<br>UART2_RX                                          | -                    |
| 46     | -      | -          | -       | -     | PB9      | I/O         | FT       | PB9                      | I2C1_SDA/<br>TIM17_CH1/<br>TIM1_CH4/<br>SPI2_NSS                             | -                    |
| 47     | 32     | -          | -       | 4     | VSS      | S           | -        | VSS                      | -                                                                            | -                    |
| 48     | 1      | 1          | -       | 6     | VDD      | S           | -        | VDD                      | -                                                                            | -                    |
| -      | -      | ı          | 8       | 5     | VCap     | Ø           | ı        | 1.5V regulator capacitor | -                                                                            | -                    |

<sup>1.</sup> I = input, O = output, S = power pins, HiZ = high resistance 2. TC: standard IO, input signal level should not exceed  $V_{DD}$  3. Only exist in QFN20 and TSSOP package types.

## **3.3 Multiplex Function Table** Table 6 Multiplex function for PA port: AF0-AF7

| Pin  | AF0        | AF1       | AF2              | AF3       | AF4       | AF5       | AF6       | AF7       |
|------|------------|-----------|------------------|-----------|-----------|-----------|-----------|-----------|
| PA0  | -          | UART2_CTS | TIM2_CH1<br>_ETR | SPI2_NSS  | TIM2_CH3  | -         | -         | COMP1_OUT |
| PA1  | -          | UART2_RTS | TIM2_CH2         | -         | -         | -         | -         | -         |
| PA2  | -          | UART2_TX  | TIM2_CH3         | SPI2_NSS  | -         | -         | -         | -         |
| PA3  | -          | UART2_RX  | TIM2_CH4         | ı         | -         | -         | -         | -         |
| PA4  | SPI1_NSS   | -         | -                | TIM1_BKIN | TIM14_CH1 | I2C1_SDA  | -         | -         |
| PA5  | SPI1_SCK   | -         | TIM2_CH1<br>_ETR | TIM1_ETR  | -         | I2C1_SCL  | TIM1_CH3N | -         |
| PA6  | SPI1_MISO  | TIM3_CH1  | TIM1_BKIN        | UART2_RX  | TIM1_ETR  | TIM16_CH1 | TIM1_CH3  | COMP1_OUT |
| PA7  | SPI1_MOSI  | TIM3_CH2  | TIM1_CH1<br>N    | -         | TIM14_CH1 | TIM17_CH1 | TIM1_CH2N | TIM1_CH3N |
| PA8  | MCO        | -         | TIM1_CH1         | -         | -         | -         | TIM1_CH2  | TIM1_CH3  |
| PA9  | -          | UART1_TX  | TIM1_CH2         | UART1_RX  | I2C1_SCL  | MCO       | TIM1_CH1N | TIM1_CH4  |
| PA10 | TIM17_BKIN | UART1_RX  | TIM1_CH3         | UART1_TX  | I2C1_SDA  | -         | TIM1_CH1  | SPI2_SCK  |
| PA11 | -          | UART1_CTS | TIM1_CH4         | -         | SPI2_MOSI | I2C1_SCL  | -         | COMP1_OUT |
| PA12 | -          | UART1_RTS | TIM1_ETR         | -         | SPI2_MISO | I2C1_SDA  | -         | TIM1_CH2  |
| PA13 | SWDIO      | -         | -                | -         | SPI2_MISO | MCO       | TIM1_CH2  | TIM1_BKIN |
| PA14 | SWDCLK     | UART2_TX  | -                | SPI1_NSS  | -         | -         | -         | -         |
| PA15 | SPI1_NSS   | UART2_RX  | TIM2_CH1<br>_ETR | -         | -         | -         | -         | -         |

Table 7 Multiplex function for PB port: AF0-AF7

| Pin  | AF0       | AF1       | AF2            | AF3       | AF4           | AF5            | AF6           | AF7       |
|------|-----------|-----------|----------------|-----------|---------------|----------------|---------------|-----------|
| PB0  | -         | TIM3_CH3  | TIM1_CH2<br>N  | TIM1_CH1N | TIM1_CH3      | -              | -             | -         |
| PB1  | TIM14_CH1 | TIM3_CH4  | TIM1_CH3<br>N  | TIM1_CH4  | TIM1_CH2<br>N | MCO            | TIM1_CH2      | TIM1_CH1N |
| PB2  | -         | -         | -              | -         | -             | -              | -             | -         |
| PB3  | SPI1_SCK  | -         | TIM2_CH2       | UART1_TX  | TIM2_CH3      | -              | TIM1_CH1      | TIM2_CH1  |
| PB4  | SPI1_MISO | TIM3_CH1  | -              | UART1_RX  | -             | TIM17_BKI<br>N | TIM1_CH2      | TIM2_CH2  |
| PB5  | SPI1_MOSI | TIM3_CH2  | TIM16_BKI<br>N | MCO       | -             | -              | TIM1_CH3      | TIM2_CH3  |
| PB6  | UART1_TX  | I2C1_SCL  | TIM16_CH<br>1N | -         | TIM2_CH1      | -              | -             | -         |
| PB7  | UART1_RX  | I2C1_SDA  | TIM17_CH<br>1N | -         | UART2_TX      | -              | -             | -         |
| PB8  | -         | I2C1_SCL  | TIM16_CH<br>1  | -         | UART2_R<br>X  | -              | -             | -         |
| PB9  | -         | I2C1_SDA  | TIM17_CH<br>1  | -         | TIM1_CH4      | SPI2_NSS       | -             | -         |
| PB10 | -         | I2C1_SCL  | TIM2_CH3       | -         | -             | SPI2_SCK       | -             | -         |
| PB11 | -         | I2C1_SDA  | TIM2_CH4       |           | -             | -              | -             | -         |
| PB12 | SPI2_NSS  | SPI2_SCK  | TIM1_BKIN      | SPI2_MOSI | SPI2_MIS<br>O | -              | -             | -         |
| PB13 | SPI2_SCK  | SPI2_MISO | TIM1_CH1<br>N  | SPI2_NSS  | SPI2_MOS      | I2C1_SCL       | TIM1_CH3<br>N | TIM2_CH1  |
| PB14 | SPI2_MISO | SPI2_MOSI | TIM1_CH2<br>N  | SPI2_SCK  | SPI2_NSS      | I2C1_SDA       | TIM1_CH3      | TIM1_CH1  |
| PB15 | SPI2_MOSI | SPI2_NSS  | TIM1_CH3<br>N  | SPI2_MISO | SPI2_SCK      | -              | TIM1_CH2<br>N | TIM1_CH2  |

#### Table 8 Multiplex function for PC port: AF0-AF7

| Pin  | AF0 | AF1 | AF2 | AF3 | AF4 | AF5 | AF6      | AF7 |
|------|-----|-----|-----|-----|-----|-----|----------|-----|
| PC13 | -   | -   | -   | -   | -   | -   | TIM2_CH1 | -   |
| PC14 | -   | -   | -   | -   | -   | -   | TIM2_CH2 | -   |
| PC15 | -   | -   | -   | -   | -   | -   | TIM2_CH3 | -   |

#### Table 9 Multiplex function for PD port: AF0-AF7

| Pin | AF0 | AF1      | AF2 | AF3 | AF4 | AF5 | AF6 | AF7 |
|-----|-----|----------|-----|-----|-----|-----|-----|-----|
| PD0 | -   | I2C1_SDA | -   | -   | -   | -   | -   | -   |
| PD1 | -   | I2C1_SCL | -   | -   | -   | -   | -   | -   |

## 4 Electrical Characteristics

#### 4.1 Test Condition

Unless otherwise specified, all voltages are referenced to V<sub>SS</sub>

#### 4.1.1 Loading Capacitor

The loading conditions used for pin parameter measurement are shown in the figure below.



Figure 12 Pin loading conditions

#### 4.1.2 Pin input voltage

The input voltage measurement on a pin of the device is described in the figure below.



Figure 13 Pin input voltage

#### 4.1.3 Power Supply Scheme

The power supply scheme is shown in the figure below.



Figure 14 Power supply scheme

#### 4.1.4 Current Consumption Measurement

The current consumption measurement on a pin is shown in the figure below.



Figure 15 Current consumption measurement scheme

#### 4.2 Absolute Maximum Ratings

Stresses above "the absolute maximum ratings" listed in (Table 10 and Table 11) may cause permanent damage to the device. These are stress maximum ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 10 Voltage characteristics

| Symbol                             | Description                                                | Min     | Max                  | Unit |
|------------------------------------|------------------------------------------------------------|---------|----------------------|------|
| V <sub>DDx</sub> -V <sub>SSx</sub> | External main supply voltage (including VDDA and VSSA) (1) | -0.3    | 5.8                  | V    |
| V <sub>IN</sub> (2)                | Input voltage on the 5 Vtolerant pin                       | VSS-0.3 | 5.8                  | V    |
| VIN <sup>(-)</sup>                 | Input voltage on other pins                                | VSS-0.3 | V <sub>DD</sub> +0.3 |      |
| △ V <sub>DDx</sub>                 | Voltage variations between different                       |         | 50                   | mV   |

| Symbol   | Description                                      | Min | Max | Unit |
|----------|--------------------------------------------------|-----|-----|------|
|          | power pins                                       |     |     |      |
| Vssx-Vss | Voltage variations between different ground pins |     | 50  |      |

All power (V<sub>DD</sub>, V<sub>DDA</sub>) and ground (V<sub>SS</sub>, V<sub>SSA</sub>) pins must always be connected to the external power supply, in the permitted range.

Table 11 Current characteristics

| Symbol                        | Description                                                                                      | Max  | Unit |
|-------------------------------|--------------------------------------------------------------------------------------------------|------|------|
| I <sub>VDD</sub>              | Total current into V <sub>DD</sub> /V <sub>DDA</sub> power lines (supply current) <sup>(1)</sup> | +120 |      |
| Ivss                          | Total current out of Vss wire (outflow current) (1)                                              | -120 |      |
| lio                           | Output sink current on any I/O and control pins                                                  | +20  |      |
| IIO                           | Output current on any I/O and control pins                                                       | -18  | Л    |
|                               | Injection current on NRST pin                                                                    | ±5   | mA   |
| I <sub>INJ</sub> (PIN) (2)(3) | Injection current on OSC_IN pin of HSE and OSC_IN pin LSE                                        | ±5   |      |
|                               | injection current on other pins (4)                                                              | ±5   |      |
| ∑I <sub>INJ</sub> (PIN) (4)   | Total injection current on all I/O and control pins (4)                                          | ±25  |      |

- 3. All main power (V<sub>DD</sub>, V<sub>DDA</sub>) and ground (V<sub>SS</sub>, V<sub>SSA</sub>) pins must always be connected to the external power supply within the permissible range
- 4. This current consumption must be correctly distributed to all I/O and control pins. The total output current must not be sunk/pulled between two consecutive power pins that refer to LQFP package with dense pins.
- 5. The reverse injection current can interfere with the analog performance of the device.
- A positive injection current is induced by VIN > VDDA while a negative injection current is induced by VIN < VSS. IINJ(PIN) must never be exceeded.</li>
- 7. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values).

#### 4.3 Operating Conditions

#### 4.3.1 General Operating Conditions

Table 12 General operating conditions

| Symbol             | Parameter                                        | Conditions       | Min | Typical | Max               | Unit                 |
|--------------------|--------------------------------------------------|------------------|-----|---------|-------------------|----------------------|
| f <sub>HCLK</sub>  | Internal AHB clock frequency                     | -                | 0   | -       | 72                |                      |
| f <sub>PCLK2</sub> | Internal APB2 clock frequency                    | -                | 0   | -       | f <sub>HCLK</sub> | MHz                  |
| f <sub>PCLK1</sub> | Internal APB1 clock frequency                    | -                | 0   | -       | f <sub>HCLK</sub> |                      |
| $V_{DD}$           | Digital operating voltage                        | -                | 2.0 | -       | 5.5               | V                    |
|                    | Analog operating voltage (ADC used)              | Must be the same | 2.5 | -       | 5.5               |                      |
| V <sub>DDA</sub>   | Analog operating voltage (ADC not used)          |                  | 2.0 | -       | 2.5               | V                    |
|                    | TA=85°C (industrial) or                          | QFN20            | -   | -       | 266               |                      |
| P <sub>D</sub>     | TA=105℃ (extended industrial) power dissipation) | TSSOP20          | -   | -       | -                 | mW                   |
| T <sub>A</sub>     | Ambient temperature                              | =                | -40 | -       | 105               | $^{\circ}\mathbb{C}$ |
| TJ                 | Junction temperature range (3)                   | -                | -40 | -       | 125               | $^{\circ}$           |

It is recommended to power V<sub>DD</sub> and V<sub>DDA</sub> from the same source. A maximum difference of 300 mV between V<sub>DD</sub> and V<sub>DDA</sub> can be tolerated during powerup and operation.

#### 4.3.2 Thermal characteristics

The maximum junction temperature of the chip must not exceed the value given in the "General operating conditions".

V<sub>IN</sub> maximum must always be respected. Refer to the table below for the maximum allowed injected current values.

#### **Electrical Characteristics**

The maximum junction temperature is calculated as follows:

 $T_j max = T_A max + P_D max \times \theta_{JA}$ 

T<sub>A</sub>max: Maximum ambient temperature;

P<sub>D</sub>max: Total chip power consumption, including the sum of internal and IO power consumption.

Table 13 Package thermal characteristics

| Symbol | Description                                                                       | 数值 | 单位   |
|--------|-----------------------------------------------------------------------------------|----|------|
| θ 1Α   | QFN20 Thermal resistance from junction temperature to ambient temperature         | 75 | °C/W |
| О ЈА   | TSSOP20 Thermal resistance<br>from junction temperature to<br>ambient temperature | ı  | C/VV |

#### 4.3.3 Operating conditions at powerup/powerdown

The parameters given in the table below are based on tests under normal operating conditions.

Table14 Operating conditions at powerup/powerdown

| Symbol          | Parameter                      | Conditions            | Min | Typical | Max | Unit |
|-----------------|--------------------------------|-----------------------|-----|---------|-----|------|
| t <sub>DD</sub> | V <sub>DD</sub> rise time rate | T. = 25°°             | 300 | -       | ∞   | Us/V |
|                 | V <sub>DD</sub> fall time rate | T <sub>A</sub> = 25°C | 300 | -       | 8   |      |

<sup>1.</sup> All powerups need to start at 0V, to ensure that the chip can be powered up reliably

#### 4.3.4 Embedded reset and power control block characteristics

The parameters given in the table below are based on the ambient temperature and the  $V_{DD}$  supply voltage listed in Table 12.

Table 15 Embedded reset and power control block characteristics

| Symbol           | Parameter                                                     | Conditions                   | Min | Тур  | Max | Unit |
|------------------|---------------------------------------------------------------|------------------------------|-----|------|-----|------|
| V <sub>PVD</sub> | Level<br>selection of<br>programmable<br>voltage<br>detectors | PLS[3:0]=0000 (Rising edge)  | ı   | 1.82 | ı   |      |
|                  |                                                               | PLS[3:0]=0000 (Falling edge) | ı   | 1.71 | ı   |      |
|                  |                                                               | PLS[3:0]=0001 (Rising edge)  | -   | 2.12 | ı   |      |
|                  |                                                               | PLS[3:0]=0001 (Falling edge) | -   | 2.00 | -   |      |
|                  |                                                               | PLS[3:0]=0010(Rising edge)   | -   | 2.41 | -   |      |
|                  |                                                               | PLS[3:0]=0010 (Falling edge) | -   | 2.30 | -   | V    |
|                  |                                                               | PLS[3:0]=0011(Rising edge)   | -   | 2.71 | -   |      |
|                  |                                                               | PLS[3:0]=0011(Falling edge)  | -   | 2.60 | -   |      |
|                  |                                                               | PLS[3:0]=0100(Rising edge)   | -   | 3.01 | -   |      |
|                  |                                                               | PLS[3:0]=0100 (Falling edge) | -   | 2.90 | -   |      |
|                  |                                                               | PLS[3:0]=0101(Rising edge)   | -   | 3.31 | -   |      |

| Symbol                               | Parameter                     | Conditions                   | Min | Тур  | Max | Unit |
|--------------------------------------|-------------------------------|------------------------------|-----|------|-----|------|
|                                      |                               | PLS[3:0]=0101(Falling edge)  | -   | 3.19 | i   |      |
|                                      |                               | PLS[3:0]=0110 (Rising edge)  | -   | 3.61 | -   |      |
|                                      |                               | PLS[3:0]=0110(Falling edge)  | -   | 3.49 | -   |      |
|                                      |                               | PLS[3:0]=0111 (Rising edge)  | -   | 3.91 | -   |      |
|                                      |                               | PLS[3:0]=0111(Falling edge)  | -   | 3.79 | -   |      |
|                                      |                               | PLS[3:0]=1000 (Rising edge)  | -   | 4.21 | -   |      |
|                                      |                               | PLS[3:0]=1000 (Falling edge) | -   | 4.09 | -   |      |
|                                      |                               | PLS[3:0]=1001 (Rising edge)  | -   | 4.51 | -   |      |
|                                      |                               | PLS[3:0]=1001 (Falling edge) | -   | 4.39 | -   |      |
|                                      |                               | PLS[3:0]=1010 (Rising edge)  | -   | 4.81 | -   |      |
|                                      |                               | PLS[3:0]=1010 (Falling edge) | -   | 4.69 | -   |      |
| Vpor/pdr                             | Power on/down reset threshold | -                            | -   | 1.66 | -   | V    |
| V <sub>hyst_PDR</sub>                | PDR<br>hysteresis             | -                            | -   | 110  | -   | mV   |
| T <sub>RSTTEMPO</sub> <sup>(2)</sup> | Reset<br>duration             | -                            | -   | 0.61 | -   | ms   |

- 1. The product behavior is guaranteed by design down to the minimum value  $V_{\text{POR/PDR}}$ .
- 2. Guaranteed by design, not tested in production.

Note: The reset duration is measured from poweron (POR reset) to the time when the user application code reads the first instruction.

#### 4.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

All Runmode current consumption measurements given in this section are performed with a reduced code.

#### **Current consumption**

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode, and are connected to a static level V<sub>DD</sub> or V<sub>SS</sub> (no load).
- All peripherals are disabled except when explicitly mentioned.
- The Flash memory access time is adjusted to the fHCLK (0  $\sim$  24 MHz is 0 waiting period , 24  $\sim$  48 MHz is 1 waiting period, 48  $\sim$  72 MHz is 2 waiting periods ).
- The instruction prefetching function is on. When the peripherals are enabled:
   f<sub>HCLK</sub>=f<sub>PCLK1</sub>=f<sub>PCLK2</sub>.

Note: The instruction prefetching function must be set before setting the clock and bus divider.

The parameters given in the following tables are derived from tests performed

## **Electrical Characteristics**

under ambient temperature and  $V_{\text{DD}}$  supply voltage conditions summarized in Table 12  $_{\circ}$ 

Table 16 Typical current consumption in Run mode, code executing from Flash

| Sy Para Conditi HCL K(H |                              |                   | Typical value<br>All peripherals enabled |       |       | Typical value<br>All peripherals disabled |       |      |             | Unit |      |    |
|-------------------------|------------------------------|-------------------|------------------------------------------|-------|-------|-------------------------------------------|-------|------|-------------|------|------|----|
| ol                      | er                           | ons               | Ž)                                       | -40℃  | 25℃   | 85℃                                       | 105℃  | -40℃ | <b>25</b> ℃ | 85℃  | 105℃ |    |
|                         | Sup                          |                   | 72M                                      | 13.99 | 14.40 | 14.76                                     | 14.84 | 8.02 | 8.32        | 8.60 | 8.66 |    |
|                         | ply<br>curr                  |                   | 48M                                      | 10.23 | 10.55 | 10.81                                     | 10.91 | 6.27 | 6.51        | 6.73 | 6.81 |    |
| I <sub>DD</sub>         | ent<br>in<br>Run<br>mod<br>e | Internal<br>clock | 8M                                       | 3.08  | 3.25  | 3.43                                      | 3.49  | 2.45 | 2.59        | 2.77 | 2.86 | mA |

Table 17 Typical current consumption in sleep mode, code executing from Flash

| Sy<br>mb | mb   met   Condi   IHCLK(FI        |                       | Typical value<br>All peripherals enabled |             |       | Typical value<br>All peripherals disabled |       |             |      | Unit |      |    |
|----------|------------------------------------|-----------------------|------------------------------------------|-------------|-------|-------------------------------------------|-------|-------------|------|------|------|----|
| ol       | . I I IIONS I /)                   | ۷)                    | -40℃                                     | <b>25</b> ℃ | 85℃   | 105℃                                      | -40°C | <b>25</b> ℃ | 85℃  | 105℃ |      |    |
|          | Sup                                |                       | 72M                                      | 9.81        | 10.08 | 10.33                                     | 10.39 | 3.83        | 3.98 | 4.15 | 4.20 |    |
|          | ply<br>curr                        |                       | 48M                                      | 6.87        | 7.09  | 7.30                                      | 7.36  | 2.89        | 3.03 | 3.18 | 3.24 |    |
| IDD      | ent<br>in<br>Slee<br>p<br>mod<br>e | Intern<br>al<br>clock | 8M                                       | 2.10        | 2.21  | 2.35                                      | 2.40  | 1.44        | 1.55 | 1.69 | 1.74 | mA |

When the HCLK frequency is less than 8MHz, the system clock is HSI 8M, and the AHB clock is obtained by dividing the frequency

Table 18 Typical and maximum current consumption in stop and standby modes (1)

| Symbol                                | Parameter                               | Conditions                         | Typical<br>T <sub>A</sub> =25℃ | Unit |
|---------------------------------------|-----------------------------------------|------------------------------------|--------------------------------|------|
| Supply current in Stop mode Stop mode |                                         | 6                                  |                                |      |
| I <sub>DDx</sub>                      | Supply<br>current in<br>Standby<br>mode | Enter the standby mode after reset | 0.4                            | μΑ   |

<sup>1.</sup> Data based on characterization results, not tested in production. The IO state is an analog input.



Figure 16 Typical current consumption in standby mode vs. temperature at  $V_{DD} = 3.3V$ 



Figure 17 Typical current consumption in stop mode vs. temperature at  $V_{DD}$  = 3.3V

## **Built-in peripheral current consumption**

The current consumption of the built-in peripherals is given in Table 19. The MCU is placed under the following conditions:

- All I/O pins are in analog input mode, and are connected to a static level V<sub>DD</sub> or V<sub>SS</sub> (no load).
- All peripherals are disabled except when explicitly mentioned.
- The given value is calculated by measuring the current consumption.
- With all peripherals clocked OFF
- With only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions V<sub>DD</sub> summarized in Table 12.

Table 19 Built-in peripheral current consumption (1)

| Symbol          | Parameter | Bus  | Typical | Unit      |
|-----------------|-----------|------|---------|-----------|
|                 | GPIOD     |      | 0.75    |           |
|                 | GPIOC     |      | 0.58    |           |
|                 | GPIOB     |      | 0.71    |           |
|                 | GPIOA     | AHB  | 0.71    |           |
|                 | CRC       |      | 1.00    |           |
|                 | HWDIV     |      | 2.17    |           |
|                 | DMA       |      | 4.38    |           |
|                 | PWM       |      | 1.75    |           |
|                 | TIM17     | APB2 | 3.29    |           |
|                 | TIM16     |      | 3.17    |           |
|                 | TIM14     |      | 3.17    |           |
| I <sub>DD</sub> | COMP      |      | 0.58    | uA/MHz    |
|                 | SPI       |      | 7.92    | uA/WII IZ |
|                 | TIM1      |      | 17.04   |           |
|                 | ADC       |      | 1.54    |           |
|                 | SYSCFG    |      | 0.37    |           |
|                 | UART1     |      | 5.38    |           |
|                 | PWR       |      | 0.79    |           |
|                 | I2C       |      | 9.58    |           |
|                 | WWDG      | APB1 | 5.96    |           |
|                 | TIM3      |      | 8.83    |           |
| •               | TIM2      |      | 0.50    |           |
|                 | UART2     |      | 5.96    |           |

<sup>1.</sup> f<sub>HCLK</sub>=72MHz, f<sub>APB1</sub>=f<sub>HCLK</sub>/2, f<sub>APB2</sub>=f<sub>HCLK</sub>, the prescaler coefficient of each peripheral is the default value.

#### **Wake-up Time from Low-power Mode**

- The wake-up times given in the following tables are measured in the wake-up phase of the internal clock HSI. The used clock source for wake-up is determined according to the present operation mode:
- Stop or Standby mode: Clock source is the oscillator
- Sleep mode: The clock source is the one used in the Sleep mode and the time is measured under the ambient temperature and supply voltage conforming to the general operating conditions in Table 12.

Table 20 Low-power mode wake-up time

| Symbol              | Parameter                    | Conditions                                                                   | Typical | Unit |
|---------------------|------------------------------|------------------------------------------------------------------------------|---------|------|
| twusleep            | Wake-up from Sleep<br>mode   | The system clock is HSI                                                      | 4.2     | μS   |
| t <sub>WUSTOP</sub> | Wake-up from Stop<br>mode    | HSI clock wakeup < 2μS                                                       | 12      | μS   |
| twustdby            | Wake-up from Standby<br>mode | HSI clock wakeup < 2μS<br>The regulator wakes up<br>from the off mode < 38μS | 230     | μS   |

# 4.3.6 External clock source characteristics High-speed external user clock generated from an external oscillator source

The parameters of characteristics given in the following table are measured by a high-speed external clock source, and the ambient temperature and supply voltage conform to the general operating conditions

Table 21 High-speed external user clock characteristics

| Symbol               | Parameter                              | Conditions | Min.   | Typical | Max.            | Unit |
|----------------------|----------------------------------------|------------|--------|---------|-----------------|------|
| f <sub>HSE_ext</sub> | User external clock<br>frequency (1)   | -          | 2      | 8       | 24              | MHz  |
| VHSEH                | OSC_IN input pin high<br>level voltage | -          | 0.7VDD | 1       | $V_{\text{DD}}$ | V    |
| V <sub>HSEL</sub>    | OSC_IN input pin low                   | -          | Vss    | -       | $0.3V_{DD}$     | V    |

| Symbol               | Parameter                    | Conditions            | Min. | Typical | Max. | Unit |
|----------------------|------------------------------|-----------------------|------|---------|------|------|
|                      | level voltage                |                       |      |         |      |      |
| t <sub>w(HSE)</sub>  | OSC_IN high or low time (1)  | -                     | 16   | -       | -    | ns   |
| $t_{r(HSE)}$         | OSC_IN rise time             |                       |      |         | 20   | ns   |
| T <sub>f(HSE)</sub>  | OSC_IN fall time             |                       |      |         | 20   | ns   |
| C <sub>in(HSE)</sub> | OSC_IN input capacitance     |                       |      | 5       |      | pF   |
| DuCy(HSE)            | Duty cycle                   |                       | 45   |         | 55   | %    |
| lι                   | OSC_IN input leakage current | VSS ≤<br>VIN ≤<br>VDD |      |         | ±1   | μА   |

1. Guaranteed by design, not tested in production.



Figure 18 High-speed external user clock alternate current timing diagram

#### High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be generated by an oscillator composed of an  $4 \sim 24 \text{MHz}$  crystal/ceramic resonator. All the information given in this section is based on the results obtained from comprehensive characteristic evaluation with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and stabilization time at startup. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy, etc.).

Table22 HSE 8~24MHz oscillator characteristics (1)(2)

| Symbo                                               | Parameter                                                       | Conditions | Min. | Typical | Max. | Unit |
|-----------------------------------------------------|-----------------------------------------------------------------|------------|------|---------|------|------|
| fosc_in                                             | Oscillator frequency                                            | -          | 4    | 8       | 24   | MHz  |
| R <sub>F</sub>                                      | Feedback resistance                                             | -          | -    | 1000    | -    | kΩ   |
| C <sub>L1</sub> /<br>C <sub>L2</sub> <sup>(3)</sup> | The proposed load capacitance corresponds to the crystal serial | Rs = 30 Ω  | -    | 30      | -    | Ω    |

| Symbo<br>I       | Parameter                          | Conditions                                    | Min. | Typical | Max. | Unit |
|------------------|------------------------------------|-----------------------------------------------|------|---------|------|------|
|                  | impedance<br>(RS) <sup>(4)</sup>   |                                               |      |         |      |      |
| l <sub>2</sub>   | HSE current consumption            | $V_{DD} = 3.3V$ $V_{IN} = V_{SS}$ $30pF load$ | -    | -       | 4.5  | mA   |
| gm               | Oscillator<br>transconductan<br>ce | Startup                                       | -    | 8.5     | •    | mA/V |
| tsu<br>(HSE) (5) | Startup time                       | V <sub>DD</sub> is stabilized                 | -    | 3       | -    | mS   |

- 1. The characteristic parameters of the resonator are given by the crystal/ceramic resonator manufacturer
- 2. Drawn from comprehensive evaluation, not tested in production.
- 3. For  $C_{L1}$  and  $C_{L2}$ , it is recommended to use high-quality ceramic capacitors in the 5pF to 25pF range (typical value) designed for high-frequency applications, and selected to match the requirements of the crystal or resonator.  $C_{L1}$  and  $C_{L2}$  usually have the same parameters. The crystal manufacturer typically specifies a load capacitance which is the series combination of  $C_{L1}$  and  $C_{L2}$ . PCB and MCU pin capacitance must be included (10pF can be used as a rough estimate of the combined pin and board capacitance) when choosing choosing  $C_{L1}$  and  $C_{L2}$ .
- 4. The relatively low R<sub>F</sub> resistance value can provide protection and avoid problems occurred when operating in a humid environment. Changes have been made to leakage and bias conditions generated in this environment. However, if the MCU is used in harsh humid conditions, such parameters need to be considered in designing.
- t<sub>SU(HSE)</sub> is the startup time, measured from the moment it is enabled HSE by software to a stablized 8 MHz is reached. This value is measured from a standard crystal resonator and it can vary significantly with the crystal manufacturer.



Figure 19 Typical application with an 8MHz crystal

#### 4.3.7 Internal Clock Source Characteristics

The parameters given in the following table are derived from tests performed under ambient temperature and supply voltage conforming to the general operating conditions.

#### High-speed internal (HSI) oscillator

Table23 HSI oscillator characteristics (1)(2)

| Symbol                 | Parameter                        | Conditions                   | Min. | Typical | Max. | Unit |
|------------------------|----------------------------------|------------------------------|------|---------|------|------|
| f <sub>HSI</sub>       | Frequnecy                        | -                            | -    | 48/72   | -    | MHz  |
|                        | HSI oscillator accuracy          | T <sub>A</sub> =-40°C ~105°C | -2.5 | 1       | +2.5 | %    |
| ACC <sub>HSI</sub>     |                                  | T <sub>A</sub> =-10°C ~105°C | -2   |         | +2   | %    |
|                        |                                  | T <sub>A</sub> =25°C         | -1   | -       | +1   | %    |
| tsu(HSI)               | HSI oscillator<br>startup time   | 1                            | 1    | 10      | -    | μS   |
| T <sub>stab(HSI)</sub> | HSI oscillator stablization time | 1                            | -    |         | 1    | μS   |
| I <sub>DD(HSI)</sub>   | HSI oscillator power consumption | -                            | -    | 200     | -    | μΑ   |

1.  $V_{DD} = 3.3V$ ,  $T_A = -40^{\circ}C \sim 105^{\circ}C$ , unless otherwise specified.

2. Guaranteed by design, not tested in production.

## Low-speed internal (LSI) oscillator

Table 24 LSI oscillator characteristics (1)

| Symbol                              | Parameter                              | Conditions | Min. | Typical | Max. | Unit |
|-------------------------------------|----------------------------------------|------------|------|---------|------|------|
| f <sub>LSI</sub> <sup>(2)</sup>     | Frequnecy                              | -          | -    | 40      | -    | KHz  |
| t <sub>SU(LSI)</sub> (3)            | LSI oscillator<br>startup time         | -          | -    | -       | 100  | μS   |
| t <sub>stab(LSI)</sub> (3)          | LSI oscillator stablization time       | -          | -    | -       |      | μS   |
| I <sub>DD(LSI)</sub> <sup>(3)</sup> | LSI oscillator<br>power<br>consumption | -          | -    | 1.1     | 1.7  | μΑ   |

- 1.  $V_{DD} = 3.3V$ ,  $T_A = -40^{\circ}C \sim 105^{\circ}C$ , unless otherwise specified.
- 2. Guaranteed by design, not tested in production.

## 4.3.8 Memory Characteristics

Table 25 Flash memory characteristics

| Symbol             | 参数                            | 条件                 | 最小值 | 典型值 | 最大值 | 单位 |
|--------------------|-------------------------------|--------------------|-----|-----|-----|----|
| t <sub>prog</sub>  | 16-bit programming time       | -                  | -   | 28  | -   | μS |
| t <sub>ERASE</sub> | Page (1024K bytes) erase time | -                  | -   | 8   | 10  | mS |
| t <sub>ME</sub>    | Full erase time               | -                  | -   | 30  | 40  | mS |
|                    | Average current consumption   | Read mode<br>40MHz | -   | 9   | -   | mA |
| I <sub>DD</sub>    | -                             | Write mode         | -   | -   | 7   | mA |
|                    | -                             | Erase mode         | -   | -   | 2   | mA |

Table 26 Flash memory endurance and data retention period (1)(2)

| Symbol | Parameter   | Conditions           | Min.  | Typical | Max. | Unit  |
|--------|-------------|----------------------|-------|---------|------|-------|
| Nend   | Erase times |                      | 20000 | -       | -    | Times |
| -      | Data        | T <sub>A</sub> =105℃ | 20    | -       | -    | Years |
| $T_DR$ | retention   | T <sub>A</sub> =25°C | 100   | -       | -    | rears |

#### 4.3.9 EMC Charcateristics

Susceptibility tests are performed on a sample basis during device comprehensive evaluation.

#### **Functional EMS (electromagnetic susceptbility)**

When a simple application is executed (toggling two LEDs through I/O ports), the test sample is stressed by one electromagnetic interference until an error occurs. The error is indicated by the flashing LEDs.

• EFT: In V<sub>DD</sub> and V<sub>SS</sub>, impose a pulse group (forward and backward) with a transient voltage by a 100 pF capacitor until a functional error is generated. This test complies with the IEC61000-4-4 standard.

Chip reset can restore normal operation of the system. The test results are listed in the table below.

Table 27 EMS characteristics

| Symbol | Parameter                                                                      | Conditions                                                                                       | Level/class |
|--------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------|
| VFESD  | Voltage limits to be applied on any I/O pin to induce a functional disturbance | $V_{DD}$ =3.3V, $T_A$ =+25 $^{\circ}$ C, $f_{HCLK}$ =72MHz $_{\circ}$ Conforming to IEC61000-4-2 | 2A          |

| Symbol            | Parameter                                                                                                                                       | Conditions                                                                                     | Level/class |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------|
| V <sub>FEFT</sub> | Fast transient voltage burst limits to be applied through 100 pF on V <sub>DD</sub> and V <sub>SS</sub> pins to induce a functional disturbance | $V_{DD}$ =3.3 $V$ , $T_A$ =+25 $^{\circ}$ C, $f_{HCLK}$ =72 $MHz$ . Conforming to IEC61000-4-4 | 2A          |

#### Designing hardened software to avoid noise problems

EMC evaluation and optimization are performed at component level with a typical application environment. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore, it is recommended that the user applies EMC software optimization and qualification tests in relation with the EMC.

#### Software recommendations

The software flowchart must include the management of runaway conditions, such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

#### **Prequalification trials**

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST or the crystal oscillator pins for 1 second.

To complete ESD test, a voltage can be applied directly on the chip, over the range of application requirements. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

## 4.3.10 Functional EMS (electrical sensitivity)

Based on three different tests (ESD, LU), using specific measurement methods, the chip is stressed in order to determine its performance in terms of electrical sensitivity.

#### Electrostatic discharge (ESD)

Electrostatic discharge (a positive then a negative pulse separated by 1 second) are applied to the all pins of each sample. The sample size depends on the number of supply pins on the chip (3 parts x (n + 1) supply pins). This test conforms to the JEDEC JS-001-2017/002-2018 standard.

#### Static latchup

Two complementary static latchup tests are required on six samples to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin. This
  test is compliant with the EIA/JESD78E IC latchup standard.

Table 28 ESD characteristics

| Symbol    | Parameter                                               | Conditions                                       | Level/class | Max.  | Unit |
|-----------|---------------------------------------------------------|--------------------------------------------------|-------------|-------|------|
| VESD(HBM) | Electrostatic discharge voltage (mannequin)             | TA=25°C, conforming<br>ESDA/JEDECJS-001-<br>2017 | 2           | ±4000 | ٧    |
| VESD(CDM) | Electrostatic discharge voltage (charging device model) | TA=25°C, conforming<br>ESDA/JEDECJS-002-<br>2018 | C1          | ±500  | V    |
| ILU       | Electrostatic latchup (Latchup current)                 | TA=25°C,conforming<br>JESD78E                    | IA          | ±100  | mA   |

## 4.3.11 GPIO port general input/output characteristics

Unless otherwise specified, the parameters listed in the table below are derived from tests performed under the conditions summarized in Table 10. All I/O ports are CMOS-compliant.

Table 29 I/O static characteristics

| SPEED            | Parameter                                      | Conditions          | Min.    | Typical | Max.    | Unit |
|------------------|------------------------------------------------|---------------------|---------|---------|---------|------|
| VIL              | Input low level voltage                        | 2.5V< VDD < 5.5V    | -       | -       | 0.3*VDD | V    |
| ViH              | Input high level voltage                       | 2.5V< VDD < 5.5V    | 0.7*VDD | -       | -       | V    |
| V <sub>hy</sub>  | I/O pin Schmidt trigger voltage hysteresis (1) | 2.5V< VDD < 5.5V    | -       | 0.1*VDD | -       | V    |
| I <sub>lkg</sub> | Input leakage current (2)                      | 2.5V< VDD <<br>5.5V | -1      | -       | 1       | μΑ   |
| R <sub>PU</sub>  | Weak pull-up equivalent resistance (3)         | 2.5V< VDD < 5.5V    | 10      | -       | 100     | kΩ   |
| R <sub>PD</sub>  | Weak pull-down equivalent resistance (3)       | 2.5V< VDD < 5.5V    | 10      | -       | 100     | kΩ   |
| Сю               | I/O pin capacitor                              | -                   | -       | -       | 10      | pF   |

- 1. Drawn from comprehensive evaluation, not tested in production.
- 2. In case of a negative current back flow in the adjacent pin, the leakage current may be higher than the maximum value.
- 3. Pull-up and pull-down resistance is MOS resistance.

#### **Output drive current**

The GPIOs (general purpose input/outputs) can sink or source up to ±20mA current

In user application, the number of I/O pin must ensure that the drive current must be limited to respect the absolute maximum rating specified in Section 4.2:

- The sum of the currents sourced by all the I/O pins on V<sub>DD</sub>, plus the maximum running current of the MCU sourced on V<sub>DD</sub> cannot exceed the absolute maximum rating I<sub>VDD</sub>.
- The sum of the currents absorbed and sunk by all the I/O pins on V<sub>SS</sub>, plus the
  maximum running current of the MCU sunk on V<sub>SS</sub> cannot exceed the absolute
  maximum rating I<sub>VSS</sub>.

#### **Output voltage**

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and V<sub>DD</sub> supply voltage conditions summarized in Table 12. All I/O ports are CMOS-compliant.

Table 30 Output voltage characteristics

| SPEED   | Symbol                         | Parameter         | Conditions             | Min  | Typical | Max  | Unit |
|---------|--------------------------------|-------------------|------------------------|------|---------|------|------|
| 11      | VoL <sup>(1)</sup>             | Output low level  | I <sub>IO</sub>  =6mA, |      |         | 0.40 | V    |
| (50MHz) | V <sub>OH</sub> <sup>(2)</sup> | Output high level | VDD=3.3V               | 2.80 |         |      | V    |

| SPEED   | Symbol                            | Parameter                                                                                                                                      | Conditions              | Min  | Typical | Max  | Unit |
|---------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|---------|------|------|
|         | V <sub>OL</sub> <sup>(1)(3)</sup> | Output low level                                                                                                                               | I <sub>IO</sub>  =8mA,  |      |         | 0.40 |      |
|         | $V_{OH}^{(2)(3)}$                 | Output high level                                                                                                                              | VDD=3.3V                | 2.80 |         |      |      |
|         | V <sub>OL</sub> <sup>(2)(3)</sup> | Output low level                                                                                                                               | I <sub>IO</sub>  =20mA, |      |         | 0.80 |      |
|         | V <sub>OH</sub> <sup>(2)(3)</sup> | Output high level                                                                                                                              | VDD=3.3V                | 2.20 |         |      |      |
| 10      | VoL <sup>(1)</sup>                | Output low level                                                                                                                               | I <sub>IO</sub>  =6mA,  |      |         | 0.40 |      |
|         | Vон <sup>(2)</sup>                | Output high level                                                                                                                              | VDD=3.3V                | 2.80 |         |      |      |
|         | V <sub>OL</sub> <sup>(1)(3)</sup> | Output low level                                                                                                                               | I <sub>IO</sub>  =8mA,  |      |         | 0.60 |      |
| (2MHz)  | V <sub>OH</sub> <sup>(2)(3)</sup> | Output high level                                                                                                                              | VDD=3.3V                | 2.60 |         |      |      |
| -       | V <sub>OL</sub> <sup>(2)(3)</sup> | Output low level                                                                                                                               | I <sub>IO</sub>  =20mA, |      |         | 1.00 |      |
|         | V <sub>OH</sub> <sup>(2)(3)</sup> | $V_{OH}^{(2)(3)}$ Output high level VDD=3.3V $V_{OL}^{(2)(3)}$ Output low level $ I_{IO} $ =20mA, $V_{OH}^{(2)(3)}$ Output high level VDD=3.3V | 1.80                    |      |         |      |      |
|         | V <sub>OL</sub> <sup>(1)</sup>    | Output low level                                                                                                                               | I <sub>IO</sub>  =6mA,  |      |         | 0.60 |      |
|         | V <sub>OH</sub> <sup>(2)</sup>    | Output high level                                                                                                                              | VDD=3.3V                | 2.60 |         |      |      |
| 01      | V <sub>OL</sub> <sup>(1)(3)</sup> | Output low level                                                                                                                               | I <sub>IO</sub>  =8mA,  |      |         | 0.60 |      |
| (10MHz) | V <sub>OH</sub> <sup>(2)(3)</sup> | Output high level                                                                                                                              | VDD=3.3V                | 2.40 |         |      |      |
|         | V <sub>OL</sub> <sup>(2)(3)</sup> | Output low level                                                                                                                               | I <sub>IO</sub>  =20mA, |      |         | 1.40 |      |
|         | V <sub>OH</sub> <sup>(2)(3)</sup> | Output high level                                                                                                                              | VDD=3.3V                |      |         |      |      |

- 1. The  $I_{IO}$  current sourced by the chip must always respect the absolute maximum rating specified in the table, and the sum of  $I_{IO}$  (all I/O ports and control pins) cannot exceed  $I_{VSS}$ .
- 2. The current  $I_{IO}$  sunk by the chip must always respect the absolute maximum rating speified in the table, and the sum of  $I_{IO}$  (all I/O ports and control pins) cannot exceed  $I_{VDD}$ .
- 3. Drawn from comprehensive evaluation.

#### Input/output AC characteristics

The definition and values of input/output AC characteristics are given in Unless otherwise specified, the parameter listed in Table 34 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 12.

Table 31 and Figure 20, respectively.

Unless otherwise specified, the parameter listed in Table 34 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 12.

Table 31 Input/output AC characteristics (1)(3)

| SPEED[1:0] configuration | Symbol                | Parameter                          | Conditions           | Min | Typical | Max | Unit |
|--------------------------|-----------------------|------------------------------------|----------------------|-----|---------|-----|------|
| 11                       | t <sub>f(IO)out</sub> | Output high to low level fall time |                      |     | 4.0     |     | ns   |
| 11                       | $t_{r(IO)out}$        | Output low to high level rise time |                      |     | 5.0     |     | ns   |
| 10                       | t <sub>f(IO)out</sub> | Output high to low level fall time | C <sub>L</sub> =50pF |     | 5.0     |     | ns   |
| 10                       | t <sub>r(IO)out</sub> | Output low to high level rise time | VDD=3.3V             |     | 6.2     |     | ns   |
| 01                       | t <sub>f(IO)out</sub> | Output high to low level fall time |                      |     | 7.2     |     | ns   |
| O1                       | t <sub>r(IO)out</sub> | Output low to high level rise time |                      |     | 11.0    |     | ns   |

- 1. The I/O port speed is configured through MODEx[1:0]. Refer to the Reference manual for a description of the GPIO port configuration register.
- 2. The maximum frequency is defined in Figure 20.
- 3. Guaranteed by design, not tested in production.



Figure 20 Input/output AC characteristics definition

#### 4.3.12 NRST Pin Characteristics

The NRST pin input driver uses the CMOS technology, and it is connected to a permanent pull-up resistor, RPU. Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and  $V_{DD}$  supply voltage conditions summarized in Table 12 General operating conditions Table 12.

#### Table32 NRST characteristics

| Symbol                               | Parameter                               | Conditions                       | Min.    | Typical | Max.    | Unit |
|--------------------------------------|-----------------------------------------|----------------------------------|---------|---------|---------|------|
| V <sub>IL(NRST)</sub> <sup>(1)</sup> | NRST input low level voltage            |                                  | -0.3    | -       | 0.3*VDD | V    |
| VIH(NRST) <sup>(1)</sup>             | NRST input high level voltage           |                                  | 0.7*VDD | -       | VDD     | V    |
| V <sub>hys(NRST)</sub>               | NRST Schmitt trigger voltage hysteresis |                                  | -       | 0.1*VDD | -       | V    |
| R <sub>PU</sub>                      | Weak pull-up equivalent resistor (2)    | V <sub>IN</sub> =V <sub>SS</sub> | -       | 50      |         | kΩ   |

- 1. Guaranteed by design, not tested in production.
- 2. The pull-up resistor is a MOS resistor.



Figure 21 Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- 2. The user must ensure that the level on the NRST pin can go below the V<sub>IL(NRST)</sub> max level specified in Table 44, otherwise the MCU cannot be reset.

#### 4.3.13 Timer characteristics

The parameters given in the table below are guaranteed by design.

Refer to Section 4.3.11 GPIO port general input/output characteristics for details on the input/output alternate function pin (output compare, input capture, external clock, PWM input).

Table33 TIMx<sup>(1)</sup> characteristics

| Symbol                            | Parameter                          | Conditions                  | Min.   | Max.                       | Unit                 |  |
|-----------------------------------|------------------------------------|-----------------------------|--------|----------------------------|----------------------|--|
| tres(TIM)                         | Timer resolution                   | -                           | 1      | -                          | t <sub>TIMxCLK</sub> |  |
| tres(TIM)  fext  Restim  tcounter | time                               | f <sub>TIMxCLK</sub> =24MHz | 41.6   | -                          | nS                   |  |
| fryt                              | CH1 to CH4 timer<br>external clock | -                           | 0      | 0 f <sub>TIMxCLK</sub> MHz |                      |  |
| TEXT                              | frequency                          | f <sub>TIMxCLK</sub> =24MHz | 0      | 24                         | IVII IZ              |  |
| Restim                            | Timer resolution                   | -                           | ı      | 16                         | 位                    |  |
| t                                 | 16-bit counter clock               | -                           | 1      | 65536                      | t <sub>TIMxCLK</sub> |  |
| COUNTER                           | period                             | f <sub>TIMxCLK</sub> =24MHz | 0.0417 | 2732                       | μS                   |  |
| t                                 | Maximum possible count(TIM_PSC     | -                           | ı      | 65536*65536                | tтімхськ             |  |
| tmax_count                        | adjustable)                        | f <sub>TIMxCLK</sub> =24MHz | -      | 178.9                      | S                    |  |

#### 4.3.14 Communication Interface

#### **I2C** interface characteristics

Unless otherwise specified, the parameters given in the table below are derived from the tests performed under the ambient temperature,  $f_{PCLK1}$  frequency and  $V_{DD}$  supply voltage conditions summarized in Table 12.

The I2C interface complies with the standard I2C communication protocol, but has the following limitations: the SDA and SCL are not "true open-drain" pins. When

#### **Electrical Characteristics**

configured as open-drain, the PMOS tube connected between the pin and  $V_{\text{DD}}$  is disabled, but is still present.

I2C interface characteristics are listed in the table below. Refer to section 4.3.11 for details on the characteristics of input/output alternate function pins (SDA and SCL).

Table 34 I2C characteristics

| Symbol                | Parameter                                              | Standard | Standard I2C <sup>(1)</sup> |                       | 2C <sup>(1)</sup> | Unit  |
|-----------------------|--------------------------------------------------------|----------|-----------------------------|-----------------------|-------------------|-------|
| Symbol                | Parameter                                              | Min.     | Max.                        | Min.                  | Max.              | Offic |
| tw (SCLL)             | SCL clock low time                                     | 4.7      | -                           | 1.3                   | -                 | μs    |
| tw (SCLH)             | SCL clock high time                                    | 4.0      | -                           | 0.6                   | -                 | μs    |
| tsu (SDA)             | SDA establishment time                                 | 250      | -                           | 100                   | -                 | ns    |
| th (SDA)              | SDA data retention time                                | 0(3)     | -                           | 0(4)                  | 900(3)            | ns    |
| t <sub>r</sub> (SDA)  | SDA and SCL rise time                                  | -        | 1000                        | 2.0+0.1C <sub>b</sub> | 300               | ns    |
| t <sub>f</sub> (SDA)  | SDA and SCL fall time                                  | -        | 300                         | -                     | 300               | ns    |
| th (STA)              | Start condition hold time                              | 4.0      | -                           | 0.6                   | -                 | μs    |
| t <sub>su (STA)</sub> | Repeated start condition establishment time            | 4.7      | -                           | 0.6                   | -                 | μs    |
| t <sub>su (STO)</sub> | Stop condition establishment time                      | 4.0      | -                           | 0.6                   | -                 | μs    |
| t <sub>w</sub>        | Time from stop condition to start condition (Bus Free) | 4.7      | -                           | 1.3                   | -                 | μs    |
| Сь                    | Capacitive load of each bus                            | -        | 400                         | -                     | 400               | pF    |

- 1. Guaranteed by design, not tested in production.
- To reach the maximum frequency of I2C standard mode, f<sub>PCLK1</sub> must be greater than 3MHz. To reach the maximum frequency of I2C fast mode, f<sub>PCLK1</sub> must be greater than 12MHz
- 3. If the low-level time of the SCL signal is not required to be lengthened, only the maximum hold time of the startup condition needs to be met.
- In order to cross the undefined area of the falling edge of SCL, a hold time of at least 300nS on the SDA signal must be guaranteed inside the MCU.



Figure 22 I2C bus AC waveform and measurement circuit (1)

1. The measurement points are set at CMOS level:  $0.3V_{DD}$  and  $0.7V_{DD}$ 

#### **SPI** interface characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 12.

Refer to section 4.3.11 for more details on the input/output alternate function pins (NSS, SCK, MOSI, MISO)

Table 35 SPI characteristics (1)

| Symbol                              | Parameter              | Conditions                                                       | Min.               | Max. | Unit    |
|-------------------------------------|------------------------|------------------------------------------------------------------|--------------------|------|---------|
| fsck1/tc(sck)                       | SPI clock frequency    | Master mode                                                      | 0                  | 36   | MHz     |
| ISCK I/Lc(SCK)                      | SET Clock frequency    | Slave mode                                                       | 0                  | 18   | IVII IZ |
| t <sub>r(SCK)</sub>                 | SPI clock rise time    | Load capacitance: C = 15pF                                       | -                  | 8    | ns      |
| t <sub>f(SCK)</sub>                 | SPI clock fall time    | Load capacitance:C =<br>15pF                                     | -                  | 8    | nS      |
| t <sub>su(NSS)</sub> <sup>(1)</sup> | NSS establishment time | Slave mode                                                       | 4t <sub>PCLK</sub> | -    | nS      |
| $t_{h(NSS)}^{(1)}$                  | NSS hold time          | Slave mode                                                       | 73                 | -    | nS      |
| tw(SCKH) <sup>(1)</sup>             | SCK high level time    | Master mode, f <sub>PCLK</sub> = 36MHz, prescale coefficient = 4 | 50                 | 60   | nS      |
| tw(SCKL) <sup>(1)</sup>             | SCK low level time     | Master mode, f <sub>PCLK</sub> = 36MHz, prescale coefficient = 4 | 50                 | 60   | nS      |

| Symbol                             | Parameter                | Conditions                                                           | Min. | Max.                | Unit |
|------------------------------------|--------------------------|----------------------------------------------------------------------|------|---------------------|------|
| $t_{su(MI)}^{(1)}$                 | Data input               | Master mode                                                          | -    | -                   | nS   |
| t <sub>su(SI)</sub> <sup>(1)</sup> | establishment time       | Slave mode                                                           | 1    | -                   | nS   |
| t <sub>h(MI)</sub> <sup>(1)</sup>  | Data input hold time     | Master mode                                                          | -    | -                   | nS   |
| t <sub>h(SI)</sub> (2)             | Data input hold time     | Slave mode                                                           | 3    | -                   | nS   |
| t <sub>a(SO)</sub> (2)(3)          | Data output access       | Slave mode,f <sub>PCLK</sub> =<br>36MHz, prescale<br>coefficient = 4 | 0    | 55                  | nS   |
|                                    | ume                      | Slave mode,f <sub>PCLK</sub> =<br>24MHz                              |      | 4*t <sub>PCLK</sub> | nS   |
| t <sub>dis(SO)</sub> (2)(4)        | Data output disable time | Slave mode                                                           | 10   |                     | nS   |
| $t_{v(MO)}^{(2)(1)}$               | Data output valid        | Master mode (after<br>enable edge)                                   | -    | 3                   | nS   |
| t <sub>v(SO)</sub> (2)(1)          | time                     | Slave mode (after enable edge)                                       | -    | 25                  | nS   |
| t <sub>h(MO)</sub> <sup>(2)</sup>  | Data output hold         | Master mode (after enable edge)                                      | 4    |                     | nS   |
| t <sub>h(SO)</sub> (2)             | time                     | Slave mode (after enable edge)                                       | 25   |                     | nS   |

- 1. Drawn from comprehensive evaluation.
- 2. The minimum value indicates the minimum time for driving output, and the maximum value indicates the maximum time to obtain data correctly.
- 3. The minimum value represents the minimum time for closing output, and the maximum value represents the maximum time to put the data line in the high impedance state.



Figure 23 SPI timing diagram-slave mode and CPHA = 0, CPHASEL = 1



Figure 24 SPI timing diagram-slave mode and CPHA = 1, CPHASEL = 1 (1)

1. Measurement points are set at CMOS level:  $0.3V_{DD}$  and  $0.7V_{DD}$ 



Figure 25 SPI timing diagram-master mode (1)

1. Measurement points are set at CMOS level:  $0.3V_{DD}$  and  $0.7V_{DD}$ .

#### 4.3.15 ADC Characteristics

Unless otherwise specified, the parameters in the following table are derived from tests performed under the ambient temperature,  $f_{PCLK2}$  frequency and  $V_{DDA}$  supply voltage specified in Table 12.

Table 36 ADC characteristics

| Symbol                           | Parameter                           | Conditions                     | Min.                        | Typical | Max.              | Unit               |
|----------------------------------|-------------------------------------|--------------------------------|-----------------------------|---------|-------------------|--------------------|
| $V_{DDA}$                        | Supply voltage                      | -                              | 2.5                         | 3       | 5.5               | V                  |
| f <sub>ADC</sub>                 | ADC clock frequency                 | -                              | -                           | -       | 15 <sup>(1)</sup> | MHz                |
| fs <sup>(2)</sup>                | Sampling rate                       | -                              | -                           | -       | 1                 | MHz                |
| - (0)                            | External                            | 12bits;f <sub>ADC</sub> =15MHz | -                           | -       | 823               | kHz                |
| f <sub>TRIG</sub> <sup>(2)</sup> | trigger<br>frequency <sup>(3)</sup> | 12bits                         | ı                           | -       | 1/17              | 1/f <sub>ADC</sub> |
| V <sub>AIN</sub> <sup>(2)</sup>  | Conversion voltage range            | -                              | V <sub>SSA</sub>            | -       | $V_{DDA}$         | V                  |
| R <sub>AIN</sub> <sup>(2)</sup>  | External input impedance            | -                              | See Formulas 1 and Table 37 |         | kΩ                |                    |
| R <sub>ADC</sub> <sup>(2)</sup>  | Sampling<br>switch<br>resistance    | -                              | -                           | -       | 1                 | kΩ                 |

#### **Electrical Characteristics**

| Symbol                           | Parameter                                          | Conditions               | Min.                                                             | Typical | Max.  | Unit               |
|----------------------------------|----------------------------------------------------|--------------------------|------------------------------------------------------------------|---------|-------|--------------------|
| C <sub>ADC</sub> <sup>(2)</sup>  | Internal<br>sample and<br>hold capacitor           | -                        | -                                                                | 10      | -     | pF                 |
| ts <sup>(2)</sup>                | Compling time                                      | $f_{ADC} = 15MHz$        | 0.1                                                              | -       | 16    | μS                 |
| ls\=/                            | t <sub>s</sub> <sup>(2)</sup> Sampling time        |                          | 1.5                                                              | -       | 239.5 | 1/f <sub>ADC</sub> |
| t <sub>STAB</sub> (1)            | Power-on time                                      | -                        | -                                                                | 1       | -     | μS                 |
|                                  | Total                                              | f <sub>ADC</sub> = 15MHz | 1                                                                |         | 16.9  | μS                 |
| T <sub>conv</sub> <sup>(2)</sup> | conversion<br>Time<br>(Including<br>sampling time) |                          | 15 ~ 253 (sampling t <sub>s+</sub> ) stepwise approximation 13.5 |         |       | 1/f <sub>ADC</sub> |

- 1. Guaranteed by comprehensive evaluation, not tested in production.
- 2. Guaranteed by design, not tested in production.
- 3. In this product series,  $V_{REF+}$  is connected to  $V_{DDA}$ ,  $V_{REF-}$  connected to  $V_{SSA}$  internally.
- 4. Guaranteed by design, not tested in production.
- 5. For external trigger, a delay of  $1/f_{ADC}$  must be added to the delay.

#### Input impedance list

$$R_{AIN} < \frac{TS}{f_{ADC} \times C_{ADC} \times \ln(2^{n+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N=12 (from 12bit resolution).

Table 37 Maximum R<sub>AIN</sub> at f<sub>ADC</sub> = 15MHz<sup>(1)</sup>

| T <sub>S</sub> (cycles) | t <sub>S</sub> (µS) | $R_{AIN} \max (k\Omega)$ |
|-------------------------|---------------------|--------------------------|
| 1.5                     | 0.1                 | 0.1                      |
| 7.5                     | 0.5                 | 4.0                      |
| 13.5                    | 0.9                 | 7.8                      |
| 28.5                    | 1.9                 | 17.5                     |
| 41.5                    | 2.76                | 25.9                     |
| 55.5                    | 3.7                 | 34.9                     |
| 71.5                    | 4.77                | 45.2                     |
| 239.5                   | 16.0                | 153.4                    |

<sup>1.</sup> Guaranteed by design, not tested in production.

Table38 ADC static parameter (1)(2)

| Symbol | Parameter                       | Conditions                                   | Typical | Unit | Parameter |
|--------|---------------------------------|----------------------------------------------|---------|------|-----------|
| ET     | Composite error                 |                                              | ±10     | ±14  |           |
| EO     | Offset error                    | f <sub>PCLK2</sub> =60MHz,                   | ±4      | ±10  |           |
| EG     | Gain error                      | $f_{ADC}=15MHz$ , $R_{AIN}<10k\Omega$ ,      | ±6      | ±8   | LSB       |
| ED     | Differential<br>linearity error | V <sub>DDA</sub> =3.3V, T <sub>A</sub> =25°C | ±2      | ±4   |           |
| EL     | Integral linearity error        |                                              | ±4      | ±6   |           |

- 1. Correlation between ADC accuracy and negative injection current: Injecting negative current on any standard analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input pin. It is recommended to add a Schottky diode (pin to ground) to standard analog pins that may potentially inject negative current. If the forward injection current is within the range of I<sub>INJ(PIN)</sub> and Σ<sub>IINJ(PIN)</sub> given in Section 4.3.12, the ADC accuracy will not be affected.
- 2. Guaranteed by comprehensive evaluation, not tested in production.
- 3. ET = Total unadjusted error: the maximum deviation between the actual and ideal transfer curves.
- 4. EO = Offset error: the deviation between the first actual transition and the first ideal one.
- 5. EG = Gain error: the deviation between the last ideal transition and the last actual one.
- 6. ED = Differential linearity error: the maximum deviation between the actual steps and the ideal ones.

7. EL = Integral linearity error: the maximum deviation between any actual transition and the endpoint correlation line.



Figure 26 Typical connection diagram using ADC

- 1. Refer to Table 36 for the values of R<sub>AIN</sub>, R<sub>ADC</sub> and C<sub>ADC</sub>.
- C<sub>parasitic</sub> represents the parasitic capacitance (about 7pF) on the PCB (dependent on soldering and PCB layout quality) and the pad. A high C<sub>parasitic</sub> value downgrades conversion accuracy. To remedy this, f<sub>ADC</sub> should be reduced.

#### PCB design guidelines

Power supply decoupling should be performed as shown in the diagram below. The 10 nF capacitor should be ceramic and it should be placed as close as possible to the MCU chip.



Figure 27 Decoupling circuit of power supply and reference power supply

## 4.3.16 Temperature Sensor Characteristics

Table 39 Temperature sensor characteristics (3)(4)

## **Electrical Characteristics**

| Symbol                        | Parameter                                            | Min.  | Typical | Max.  | Unit  |
|-------------------------------|------------------------------------------------------|-------|---------|-------|-------|
| T <sub>L</sub> <sup>(1)</sup> | V <sub>SENSE</sub> linearity with temperature        | 1     | ±5      | -     | °C    |
| Avg_Slope <sup>(1)</sup>      | Average slope                                        | 4.571 | 4.801   | 5.984 | mV/∘C |
| $V_{25}^{(1)}$                | Voltage at 25°C                                      | 1.433 | 1.451   | 1.467 | V     |
| tstart <sup>(2)</sup>         | Establishment time                                   | -     | -       | 10    | μS    |
| ts_temp <sup>(2)</sup>        | ADC sampling time<br>when reading the<br>temperature | 10    | -       | -     | μS    |

- 1. Guaranteed by comprehensive evaluation, not tested in production.
- 2. Guaranteed by design, not tested in production.
- 3. The shortest sampling time can be determined by application through multiple circulations.
- 4.  $V_{DD} = 3.3V$
- 5. Temperature formula: TS\_adc = 25 + (value\*vdda offset\*3300)/(4096\*Avg\_slope), offset recorded in 0x1FFF7F6 low 12-bit.

## 4.3.17 Comparator Characteristics

Table 40 Comparator characteristics

|                        | Comparator characteristics |            |       |         |       |      |  |
|------------------------|----------------------------|------------|-------|---------|-------|------|--|
| Symbol                 | Parameter                  | Conditions | Min.  | Typical | Max.  | Unit |  |
|                        |                            | 00         | -     | 0       | -     | mV   |  |
| <b>t</b>               | Hyatarasia                 | 01         | -     | 15      | -     | mV   |  |
| thyst                  | Hysteresis                 | 10         | -     | 30      | -     | mV   |  |
|                        |                            | 11         | -     | 90      | -     | mV   |  |
|                        |                            | 00         | 0.091 | 0.213   | 0.358 | mV   |  |
| V                      | Offset voltage             | 01         | 3.23  | 7.51    | 12.08 | mV   |  |
| VOFFSET                |                            | 10         | 9.79  | 15      | 20.8  | mV   |  |
|                        |                            | 11         | 34.25 | 47.4    | 62.22 | mV   |  |
|                        |                            | 00         | -     | 80      | -     | ns   |  |
| t <sub>DELAY</sub> (1) | Propagation                | 01         | -     | 51      | -     | ns   |  |
| IDELAY'''              | delay                      | 10         | -     | 26      | -     | ns   |  |
|                        |                            | 11         | -     | 9       | -     | ns   |  |
|                        |                            | 00         | -     | 4.5     | -     | uA   |  |
| Iq <sup>(2)</sup>      | Average                    | 01         | -     | 4.4     | -     | uA   |  |
| Iq <sup>(-)</sup>      | operating<br>current       | 10         | -     | 4.4     | -     | uA   |  |
|                        | ourion                     | 11         | -     | 4.4     | -     | uA   |  |

- 1. Time difference between output flip 50% and input flip.
- 2. Mean value of the total consumption current, running current.

## **5** Package Dimensions

## 5.1 Package LQFP48



Figure 28 LQFP48, 48-pin low-profile quad flat package

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 41 LQFP48 dimensions

| Oh - l | Milimeter |         |         |  |  |  |
|--------|-----------|---------|---------|--|--|--|
| Symbol | Minimum   | Typical | Maximum |  |  |  |
| А      | -         | -       | 1.6     |  |  |  |
| A1     | 0.05      | -       | 0.15    |  |  |  |
| A2     | 1.35      | 1.4     | 1.45    |  |  |  |
| А3     | 0.59      | 0.64    | 0.69    |  |  |  |
| b      | 0.18      | -       | 0.27    |  |  |  |
| b1     | 0.17      | 0.20    | 0.23    |  |  |  |
| С      | 0.13      | -       | 0.18    |  |  |  |
| c1     | 0.12      | 0.127   | 0.134   |  |  |  |
| D      | 8.80      | 9.00    | 9.20    |  |  |  |
| D1     | 6.90      | 7.00    | 7.10    |  |  |  |
| Е      | 8.80      | 9.00    | 9.20    |  |  |  |
| E1     | 6.90      | 7.00    | 7.10    |  |  |  |
| е      |           | 0.50BSC |         |  |  |  |
| L      | 0.45      | 0.60    | 0.75    |  |  |  |
| L1     |           | 1.00REF |         |  |  |  |
| L2     |           | 0.25BSC |         |  |  |  |
| R1     | 0.08      | -       | -       |  |  |  |
| R2     | 0.08      | -       | 0.2     |  |  |  |
| S      | 0.2       | -       | -       |  |  |  |
| θ      | 0 °       | 3.5 °   | 7°      |  |  |  |
| θ1     | 0 °       | -       | -       |  |  |  |
| θ2     | 11 °      | 12 °    | 13 °    |  |  |  |
| Θ3     | 11 °      | 12 °    | 13 °    |  |  |  |

## 5.2 Package LQFP32



Figure 29 LQFP32, 32-pin low profile quad flat package

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 42 LQFP32 dimensions

| O      |         | Milimeter |         |
|--------|---------|-----------|---------|
| Symbol | Minimum | Typical   | Maximum |
| А      |         |           | 1.6     |
| A1     | 0.05    |           | 0.15    |
| A2     | 1.35    | 1.4       | 1.45    |
| A3     | 0.59    | 0.64      | 0.69    |
| b      | 0.32    |           | 0.43    |
| b1     | 0.31    | 0.35      | 0.39    |
| С      | 0.13    |           | 0.18    |
| c1     | 0.12    | 0.127     | 0.134   |
| D      | 8.8     | 9         | 9.2     |
| D1     | 6.9     | 7         | 7.1     |
| E      | 8.8     | 9         | 9.2     |
| E1     | 6.9     | 7         | 7.1     |
| е      |         | 0.8       |         |
| L      | 0.45    | 0.6       | 0.75    |
| L1     |         | 1.00REF   |         |
| L2     |         | 0.25BSC   |         |
| R1     | 0.08    |           |         |
| R2     | 0.08    |           | 0.2     |
| S      | 0.2     |           |         |
| θ      | 0 °     | 3.5 ∘     | 7 °     |
| θ1     | 11 ∘    | 12 ∘      | 13 ∘    |
| θ2     | 11 ∘    | 12 ∘      | 13 ∘    |

## 5.3 Package QFN32



Figure 30 QFN32, 32-pin low profile quad flat package

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 43 QFN32 dimensions

| Complete | Milimeter |         |         |  |  |
|----------|-----------|---------|---------|--|--|
| Symbol   | Minimum   | Typical | Minimum |  |  |
| А        | 0.70      | 0.75    | 0.80    |  |  |
| A1       | 0.00      | 0.02    | 0.05    |  |  |
| A2       | 0.50      | 0.55    | 0.60    |  |  |
| A3       |           | 0.20REF |         |  |  |
| b        | 0.20      | 0.25    | 0.30    |  |  |
| c1       | -         | 0.08    | -       |  |  |
| c2       | -         | 0.08    | -       |  |  |
| D        | 4.90      | 5.00    | 5.10    |  |  |
| E        | 4.90      | 5.00    | 5.10    |  |  |
| D2       | 3.40      | 3.50    | 3.60    |  |  |
| E2       | 3.40      | 3.50    | 3.60    |  |  |
| е        |           | 0.50    |         |  |  |
| Н        | 0.30REF   |         |         |  |  |
| K        | 0.35REF   |         |         |  |  |
| L        | 0.35      | 0.40    | 0.45    |  |  |
| R        | 0.09      | -       | -       |  |  |

## 5.4 Package QFN20



Figure 31 QFN20, 20-pin low profile quad flat package

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 44 QFN20 dimensions

| O. week and |                     | Milimeter |         |  |  |
|-------------|---------------------|-----------|---------|--|--|
| Symbol      | Minimum             | Typical   | Maximum |  |  |
| А           | 0.50                | 55        | 0.60    |  |  |
| A1          | 0.00                | 0.02      | 0.05    |  |  |
| A3          |                     | 0.15      | S2REF   |  |  |
| b           | 0.15                | 0.20      | 0.25    |  |  |
| D           | 2.90                | 3.00      | 3.10    |  |  |
| E           | 2.90                | 3.00      | 3.10    |  |  |
| D2          | 1.40                | 1.50      | 1.60    |  |  |
| E2          | 1.40                | 1.50      | 1.60    |  |  |
| е           | 0.30                | 0.40      | 0.50    |  |  |
| Н           |                     | 0.3       | 5REF    |  |  |
| K           | 0.40REF             |           |         |  |  |
| L           | 0.25                | 0.35      | 0.45    |  |  |
| R           | 0.075               |           |         |  |  |
| N           | Number of pins = 20 |           |         |  |  |

## 5.5 Package TSSOP20



Figure 32 TSSOP20, 20-pin low profile quad flat package

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 45 TSSOP20 dimensions

| Comphal | Milimeter |         |         |  |  |
|---------|-----------|---------|---------|--|--|
| Symbol  | Minimum   | Typical | Minimum |  |  |
| Α       | 1.0       | - 1.10  |         |  |  |
| A1      | 0.05      | - 0.15  |         |  |  |
| A2      | -         | - 0.95  |         |  |  |
| A3      | 0.39      | -       | 0.40    |  |  |
| b       | 0.20      | 0.22    | 0.24    |  |  |
| С       | 0.10      | - 0.19  |         |  |  |
| c1      | 0.10      | -       | 0.15    |  |  |
| D       | 6.40      | 6.45    | 6.50    |  |  |
| E       | 6.25      | 6.40    | 6.55    |  |  |
| E1      | -         | 4.35    | 4.40    |  |  |
| е       | 0.55      | 0.65    | 0.75    |  |  |
| L       | 0.45      | 0.60    | 0.75    |  |  |
| L1      | 1.00REF   |         |         |  |  |
| L2      | 0.25BSC   |         |         |  |  |
| R       | 0.09      |         |         |  |  |
| θ1      | 0°        | - 8°    |         |  |  |

## **6** Product Naming Rule

|                            | MM32 SP         | IN O | 5 | Ņ | Ţ |  |
|----------------------------|-----------------|------|---|---|---|--|
| Device family              |                 |      |   |   |   |  |
| MM32 = ARM-based 32-bit n  | nicrocontroller |      |   |   |   |  |
| Product type               |                 |      |   |   |   |  |
| SPIN = Motor               |                 |      |   |   |   |  |
|                            |                 |      |   |   |   |  |
| Sub-family                 |                 |      |   |   |   |  |
| 0 = 0 Series               |                 |      |   |   |   |  |
|                            |                 |      |   |   |   |  |
|                            |                 |      |   |   |   |  |
| User code memory size      |                 |      |   |   |   |  |
|                            |                 |      |   |   |   |  |
| 5 = 32K                    |                 |      |   |   |   |  |
|                            |                 |      |   |   |   |  |
|                            |                 |      |   |   |   |  |
|                            |                 |      |   |   |   |  |
| Package                    |                 |      |   |   |   |  |
| P = LQFP                   |                 |      |   |   |   |  |
| N = QFN                    |                 |      |   |   |   |  |
| T = TSSOP                  |                 |      |   |   |   |  |
| Pin count                  |                 |      |   |   |   |  |
| F = 48 Pins                |                 |      |   |   |   |  |
| T = 32 Pins<br>W = 20 Pins |                 |      |   |   |   |  |
| VV - 20 FIIIS              |                 |      |   |   |   |  |
|                            |                 |      |   |   |   |  |
|                            |                 |      |   |   |   |  |
|                            |                 |      |   |   |   |  |

Figure 33 MM32 model naming

7

## **Revision History**

| Date       | Revision | Description                                                                |  |  |
|------------|----------|----------------------------------------------------------------------------|--|--|
| 2018/08/04 | Rev1.00  | Initial release.                                                           |  |  |
| 2018/08/26 | Rev1.01  | Modify pin definition.                                                     |  |  |
| 2018/10/11 | Rev1.02  | Modify electrical parameters.                                              |  |  |
| 2018/11/12 | Rev1.03  | Modify descriptions.                                                       |  |  |
| 2018/11/13 | Rev1.04  | Modify descriptions.                                                       |  |  |
| 2018/12/14 | Rev1.05  | Modify ADC descriptions.                                                   |  |  |
| 2019/01/07 | Rev1.06  | Modify ADC voltage parameters.                                             |  |  |
| 2019/01/10 | Rev1.07  | Add the QFN20 package.                                                     |  |  |
| 2019/03/06 | Rev1.08  | Modify the package parameters.                                             |  |  |
| 2019/03/11 | Rev1.09  | Modify the package parameters.                                             |  |  |
| 2019/05/05 | Rev1.10  | Modify pin definition.                                                     |  |  |
| 2019/07/08 | Rev1.11  | Modify ADC parameters in the selection guide.                              |  |  |
| 2019/07/26 | Rev1.12  | Modify selection guide.                                                    |  |  |
| 2020/01/17 | Rev1.13  | Modify typical current consumption                                         |  |  |
| 2020/04/07 | Rev1.14  | Modify highspeed internal oscillator                                       |  |  |
| 2020/05/10 | Rev1.15  | Modify electrical parameters.                                              |  |  |
| 2020/08/27 | Rev1.16  | Modify AF parameters in the pin definition.                                |  |  |
| 2021/09/08 | Rev1.17  | Modify IO static characteristics.                                          |  |  |
| 2021/09/30 | Rev1.18  | Modify temperature characteristics.                                        |  |  |
| 2021/11/10 | Rev1.19  | Modify highspeed internal oscillator                                       |  |  |
| 2022/01/12 | Rev1.20  | Modify $P_D$ and add thermal characteristics                               |  |  |
| 2022/01/21 | Rev1.21  | Modify the maximum value of the voltage characteristics.                   |  |  |
| 2022/06/06 | Rev1.22  | Update IO parameters; add annoation 1 in table 14; change the NRST figure. |  |  |
| 2022/08/24 | Rev1.23  | Update the parameters of operating                                         |  |  |
| 2023/03/06 | Rev1.24  | Update the electrical characteristics                                      |  |  |