法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

神经序列模型V

主讲人: 史兴 07/26/2017

提纲

- □ 勘误: RNNLM实现细节
- □ Seq2Seq 实现细节
- □ Attention 实现细节
- □ 勘误: LSTM 与 beam_search
- □ Beam Search 实现细节

勘误: RNNLM实现细节

- □多层lstm的实现
- □ 错误的代码:
 - seqModel.py:108
 - single_cell =
 tf.contrib.rnn.MultiRNNCell([single_cell] *
 num_layers, state_is_tuple=True)
 - 导致每层的参数共享

勘误: RNNLM实现细节

- □多层lstm的实现
- □ 正确的代码:
 - seqModel.py:103-116
 - single_cell =
 tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in
 xrange(num_layers)], state_is_tuple=True)

□ 地址:

https://github.com/shixing/xing_nlp/tree/master/Seq2Seq

□ 文件夹说明

- □ run.py
 - _buckets
 - def train()#训练
 - def read_data() # 数据填入buckets
 - □ 输入语句的反向
 - □ 在输出语句末尾添加EOS
 - def beam_decode() #beam search
 - def read_data_test()#测试数据读取

- □ seqModel.py
 - def __init__() # 初始化
 - □ 注意多层LSTM的实现

- □ seqModel.py
 - def get_batch()#增加padding
 - □ source在前面加padding, target在后面加padding
 - \square a b c -> 1 2 3 _EOS
 - □ _PAD _PAD a b c -> 1 2 3 _EOS _PAD
 - def basic_seq2seq() # 连接encoder decoder
 - □ 注意scope问题

- □ 运行代码
 - /sh: bash train_small.sh
 - 字符串复制问题
 - \square a, b, c \rightarrow a, b, c
 - 理想的PPT应该是多少?

Attention 代码实现

☐ Attention

$$\begin{aligned} &\operatorname{score}(\boldsymbol{h}_{t}, \bar{\boldsymbol{h}}_{s}) = \begin{cases} \boldsymbol{h}_{t}^{\top} \bar{\boldsymbol{h}}_{s} & dot \\ \boldsymbol{h}_{t}^{\top} \boldsymbol{W}_{a} \bar{\boldsymbol{h}}_{s} & general \\ \boldsymbol{v}_{a}^{\top} \tanh \left(\boldsymbol{W}_{a} [\boldsymbol{h}_{t}; \bar{\boldsymbol{h}}_{s}] \right) & concat \end{cases} \\ &\boldsymbol{a}_{t}(s) = \operatorname{align}(\boldsymbol{h}_{t}, \bar{\boldsymbol{h}}_{s}) \\ &= \frac{\exp \left(\operatorname{score}(\boldsymbol{h}_{t}, \bar{\boldsymbol{h}}_{s}) \right)}{\sum_{s'} \exp \left(\operatorname{score}(\boldsymbol{h}_{t}, \bar{\boldsymbol{h}}_{s'}) \right)} \\ &\boldsymbol{c}_{t} = \sum \boldsymbol{a}_{t}(s') \; \overline{\boldsymbol{h}}_{s'} \end{aligned}$$

 $\tilde{\boldsymbol{h}}_t = anh(\boldsymbol{W_c}[\boldsymbol{c}_t; \boldsymbol{h}_t])$

Figure from https://arxiv.org/pdf/1508.04025.pdf

Attention

☐ Attention

■ feed-input: 下一个单词知道上一个单词的

attention

Figure from https://arxiv.org/pdf/1508.04025.pdf

Attention 代码实现

- □ seqModel.py
 - def attention_seq2seq()
 - □ conv2d

□下图表示实际是带有markov假设的

□ LSTM并没有markov假设

F	p(e1 F)	e1	p(e2 e1,F)	e2	p(e3 e2,e1,F)	e3
F	0.3	a	0.8	a	0.3	a
					0.7	b
			0.2	b	0.8	a
					0.2	b
	0.7	a	0.5	a	0.3	a
					0.7	b
			0.5	b	0.5	a
					0.5	b

□ 最优解: 穷举法 $O(|V|^N)$

F	p(e1 F)	e1	p(e2 e1,F)	e2	p(e3 e2,e1,F)	e3
F	0.3	a	0.8	a	0.3	a
					0.7	b
			0.2	b	0.8	a
					0.2	b
	0.7	a	0.5	a	0.3	a
					0.7	b
			0.5	b	0.5	a
					0.5	b

☐ Beam Search (beam_size = 2)

F	p(e1 F)	e1	p(e2 e1,F)	e2	p(e3 e2,e1,F)	e3
F	0.3	a	0.8	a	0.3	a
					0.7	b
			0.2	b	0.8	a
					0.2	b
	0.7	b	0.5	a	0.3	a
					0.7	b
			0.5	b	0.5	a
					0.5	b

b: 0.7 a: 0.3

☐ Beam Search (beam_size = 2)

F	p(e1 F)	e1	p(e2 e1,F)	e2	p(e3 e2,e1,F)	e3
F	0.3	a	0.8	a	0.3	a
					0.7	b
			0.2	b	0.8	a
					0.2	b
	0.7	b	0.5	a	0.3	a
					0.7	b
			0.5	b	0.5	a
					0.5	b

b: 0.7 ba: 0.35

a: 0.3 bb: 0.35

☐ Beam Search (beam_size = 2)

F	p(e1 F)	e1	p(e2 e1,F)	e2	p(e3 e2,e1,F)	e3
F	0.3	a	0.8	a	0.3	a
					0.7	b
			0.2	b	0.8	a
					0.2	b
	0.7	b	0.5	a	0.3	a
					0.7	b
			0.5	b	0.5	a
					0.5	b

b: 0.7	ba: 0.35	bab: 0.245	
a: 0.3	bb: 0.35	bba: 0.175	

潜在Bug#1

a:0.3 b:0.7 a:0.3 b:0.7

错误: a:0.3 b:0.7 a:0.3 b:0.7

$$h_0^1: \begin{bmatrix} 0.2,-0.3 \\ 0.2,-0.3 \end{bmatrix} = h_1^1: \begin{bmatrix} 1.0,-3.3 \\ 1.0,-3.3 \end{bmatrix}$$

a:0.5 b:0.5 a:0.8 b:0.2

$$h_1^1: \begin{bmatrix} 1.0, -3.3 \\ 1.0, -3.3 \end{bmatrix} = h_2^1: \begin{bmatrix} -1.3, -0.3 \\ 1.1, -1.5 \end{bmatrix} = \begin{bmatrix} -1.3, -0.3 \\ -1.3, -0.3 \end{bmatrix}$$

潜在Bug#2

a:0.3 b:0.7 a:0.5 b:0.5

$$h_2^1: \begin{bmatrix} -1.3,-0.3 \\ -1.3,-0.3 \end{bmatrix} = h_3^1: \begin{bmatrix} -1.5,-2.3 \\ 1.8,-2.1 \end{bmatrix}$$

a:0.3 b:0.7 a:0.5 b:0.5

$$h_2^1: \begin{bmatrix} -1.3,-0.3 \\ -1.3,-0.3 \end{bmatrix} = h_3^1: \begin{bmatrix} -1.5,-2.3 \\ 1.8,-2.1 \end{bmatrix}$$

Single-step Decoder

self.top_index
self.top_value
self.eos_value

a:0.3 b:0.7 a:0.5 b:0.5

25

Single-step Decoder

红色: placeholder

蓝色: variable

箭头: operation

self.before_state

[-1.3,-0.3] [-1.2,-0.5]

Single-step Decoder

self.top_index
self.top_value
self.eos_value

a:0.3 b:0.7 a:0.5 b:0.5

红色: placeholder

蓝色: variable

箭头: operation

Single-step Decoder

红色: placeholder

蓝色: variable

箭头: operation

self.before_state

[-1.3,-0.3]

[-1.2, -0.5]

_State

after2before_ops

self.after_state

 $[-1.5, -2.\overline{3}]$

[1.8, -2.1]

self.beam_parent

[0,0]

beam_step(index=0)

self.top_index self.top value self.eos_value

a:0.3 b:0.7 a:0.5 b:0.5

红色: placeholder

蓝色: variable

箭头: operation

[-1.3, -0.3][-1.2, -0.5]

beam_step(index>0)

self.top_index self.top_value self.eos_value

a:0.3 b:0.7 a:0.5 b:0.5

Dropout

Dropout

红色: placeholder

蓝色: variable

箭头: operation

decode2after_ops

- □ run.py
 - beam_decode()
 - □ 潜在bug#1
 - □ EOS
 - 当生成EOS的时候,就加入候选句子中
 - 最后一步时,直接强制输出beam中所有的句子,需要 查询EOS的值
 - 最长最短的控制(max_ratio, min_ratio)

- □ BLEU score
 - 评价机器翻译的标准

BLEU = min
$$\left(1, \frac{\text{output-length}}{\text{reference-length}}\right) \left(\prod_{i=1}^{4} \text{precision}_i\right)^{\frac{1}{4}}$$

□ BLEU score

Israeli officials responsibility of [airport] safety SYSTEM A: 2-GRAM MATCH 1-GRAM MATCH

Israeli officials are responsible for airport security REFERENCE:

airport security Israeli officials are responsible SYSTEM B:

2-GRAM MATCH

Metric	System A	System B
precision (1gram)	3/6	6/6
precision (2gram)	1/5	4/5
precision (3gram)	0/4	2/4
precision (4gram)	0/3	1/3
brevity penalty	6/7	6/7
BLEU	0%	52%

- □ BLEU score
 - bash beam_decode_small.sh
 - bash bleu_small.sh

- □ 高难度, 高价值的作业
 - 实现attention model 的beam search
 - □ def beam_attention_seq2seq()
 - □ feed_input是否需要加before_ht_att和after_ht_att

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 大数据分析挖掘

- 新浪微博: ChinaHadoop

