Dynamic Programming

Dynamic Programming

- Another strategy for designing algorithms is dynamic programming
 - A metatechnique, not an algorithm (like divide & conquer)
 - The word "programming" is historical and predates computer programming
- Use when problem breaks down into recurring small subproblems

Properties of a problem that can be solved with dynamic programming

Simple Subproblems

■ We should be able to break the original problem to smaller subproblems that have the same structure

Optimal Substructure of the problems

 The solution to the problem must be a composition of subproblem solutions

Subproblem Overlap

 Optimal subproblems to unrelated problems can contain subproblems in common

Dynamic Programming Example: Longest Common Subsequence

- ➤ Longest common subsequence (LCS) problem:
 - Given two sequences x[1..m] and y[1..n], find the longest subsequence which occurs in both
 - Ex: x = {A B C B D A B }, y = {B D C A B A}
 - {B C} and {A A} are both subsequences of both
 - What is the LCS?
 - Brute-force algorithm: For every subsequence of x, check if it's a subsequence of y
 - How many subsequences of x are there?
 - What will be the running time of the brute-force alg?

LCS Algorithm

- ➤ Brute-force algorithm: 2^m subsequences of x to check against n elements of y: $O(n \ 2^m)$
- ➤ We can do better: for now, let's only worry about the problem of finding the *length* of LCS
 - When finished we will see how to backtrack from this solution back to the actual LCS
- Notice LCS problem has optimal substructure
 - Subproblems: LCS of pairs of prefixes of x and y

Finding LCS Length

- Define c[i,j] to be the length of the LCS of x[1..i] and y[1..j]
 - What is the length of LCS of x and y?
- > Theorem:

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

> What is this really saying?

Longest Common Subsequence (LCS)

- ➤ Define X_i , Y_j to be prefixes of X and Y of length i and j; m = |X|, n = |Y|
- \triangleright We store the length of LCS(X_i, Y_j) in c[i,j]
- Trivial cases: $LCS(X_0, Y_j)$ and $LCS(X_i, Y_0)$ is empty (so c[0,j] = c[i,0] = 0)
- > Recursive formula for c[i,j]:

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

c[m,n] is the final solution

Longest Common Subsequence (LCS)

After we have filled the array c[], we can use this data to find the characters that constitute the Longest Common Subsequence

Algorithm runs in O(m*n), which is much better than the brute-force algorithm: $O(n 2^m)$

0-1 Knapsack problem

- ➤ Given a knapsack with maximum capacity *W*, and a set *S* consisting of *n* items
- Each item i has some weight w_i and benefit value b_i (all w_i , b_i and W are integer values)
- Problem: How to pack the knapsack to achieve maximum total value of packed items?

0-1 Knapsack problem: a picture

		_	Weight	Benefit valu	е
		Item	s W_i	b_i	
			2	3	
This	is a kna	psack	3	4	
Max	weight:	W = 20	4	5	
	W = 20		5	8	
			9	10	

0-1 Knapsack problem

> Problem, in other words, is to find

$$\max \sum_{i \in T} b_i$$
 subject to $\sum_{i \in T} w_i \leq W$

- The problem is called a "0-1" problem, because each item must be entirely accepted or rejected.
- Just another version of this problem is the "Fractional Knapsack Problem", where we can take fractions of items.

0-1 Knapsack problem: bruteforce approach

Let's first solve this problem with a straightforward algorithm

- Since there are n items, there are 2^n possible combinations of items.
- We go through all combinations and find the one with the most total value and with total weight less or equal to W
- \triangleright Running time will be $O(2^n)$

0-1 Knapsack problem: bruteforce approach

- > Can we do better?
- Yes, with an algorithm based on dynamic programming
- We need to carefully identify the subproblems

Let's try this:

If items are labeled 1..n, then a subproblem would be to find an optimal solution for $S_k = \{items \ labeled \ 1, \ 2, ... \ k\}$

Defining a Subproblem

If items are labeled 1..n, then a subproblem would be to find an optimal solution for S_k = {items labeled 1, 2, .. k}

- > This is a valid subproblem definition.
- The question is: can we describe the final solution (S_n) in terms of subproblems (S_k) ?
- ➤ Unfortunately, we <u>can't</u> do that. Explanation follows....

Defining a Subproblem

	$w_3 = 5$ $b_3 = 8$	
		7

Max weight: W = 20

For S_4 :

Total weight: 14; total benefit: 20

		Item #	W_{i}	D_i
		1	2	3
	$ S_4 $	2	3	4
S_5		3	4	5
		4	5	8
		5	9	10
1		i		

Benefit

$W_1 = b_1 = 0$	=2 =3	$w_2 = 4$ $b_2 = 5$	$w_3 = 5$ $b_3 = 8$	$w_4 = 9$ $b_4 = 10$	

For S_5 :

Total weight: 20 total benefit: 26

Solution for S_4 is not part of the solution for $S_5!!!$

Defining a Subproblem (continued)

- As we have seen, the solution for S_4 is not part of the solution for S_5
- So our definition of a subproblem is flawed and we need another one!
- Let's add another parameter: w, which will represent the <u>exact</u> weight for each subset of items
- The subproblem then will be to compute B/k, w

Recursive Formula for subproblems

■ Recursive formula for subproblems:

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- It means, that the best subset of S_k that has total weight w is one of the two:
- 1) the best subset of S_{k-1} that has total weight w, or
- 2) the best subset of S_{k-1} that has total weight $w-w_k$ plus the item k

Recursive Formula

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- The best subset of S_k that has the total weight w, either contains item k or not.
- First case: $w_k > w$. Item k can't be part of the solution, since if it was, the total weight would be > w, which is unacceptable
- Second case: $w_k <= w$. Then the item k can be in the solution, and we choose the case with greater value

0-1 Knapsack Algorithm

```
for w = 0 to W
   B[0,w] = 0
for i = 0 to n
   B[i,0] = 0
   for w = 0 to W
      if w_i \le w // item i can be part of the solution
             if b_i + B[i-1, w-w_i] > B[i-1, w]
                    B[i,w] = b_i + B[i-1,w-w_i]
             else
                    B[i,w] = B[i-1,w]
      else B[i,w] = B[i-1,w] // w_i > w
```

Running time

for
$$w = 0$$
 to W

$$B[0,w] = 0$$
for $i = 0$ to n

$$B[i,0] = 0$$
for $w = 0$ to W

$$O(W)$$

$$< the rest of the code >$$

What is the running time of this algorithm?

Remember that the brute-force algorithm takes O(2ⁿ)

Example

Let's run our algorithm on the following data:

```
n = 4 (# of elements)

W = 5 (max weight)

Elements (weight, benefit):

(2,3), (3,4), (4,5), (5,6)
```

Example (2)

W i	0	1	2	3	4
0	0				
1	0				
2	0				
3	0				
4	0				
5	0				

for
$$w = 0$$
 to W
 $B[0,w] = 0$

Example (3)

W i	0	1	2	3	4
0	0	0	0	0	0
1	0				
2	0				
3	0				
4	0				
5	0				

for
$$i = 0$$
 to n
 $B[i,0] = 0$

Example (4)

Items:

3

1: (2,3)

0 0 0 0 0

2: (3,4)

0

3: (4,5) 4: (5,6)

1 0

0

0

0

0

i=1 b_i=3

2

W

3

 $w_i=2$

4

w=1

5

 $W-W_i = -$

if $w_i \le w$ // item i can be part of the solution $if b_i + B[i-1, w-w_i] > B[i-1, w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else

B[i,w] = B[i-1,w]

e/se $B[i,w] = B[i-1,w] // w_i > w$

Example (5)

i 0 1 2 3 4

V	· ·	•	_	C	•
0	0	0	0	0	0
1	0	0			
2	0	3			
3	0				
4	0				
5	0				

$$i=1$$

$$b_i = 3$$

$$w_i=2$$

$$W=2$$

if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else

$$B[i,w] = B[i-1,w]$$

else $B[i,w] = B[i-1,w] // w_i > w$

Items:

Example (6)

W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$i=1$$
 $b_i=3$
 $w_i=2$

$$W_i=2$$

$$W=3$$

$$W_i = 1$$

if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1, w-w_i] > B[i-1, w]$

$$B[i,w] = b_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else $B[i,w] = B[i-1,w] // w_i > w$

Example (7)

3 W 0 0 0 0 0 0 1 0 0 2 3 0 3 3 0 4 3 0

5

0

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=1 $b_i=3$ $w_i=2$

W=4

W-

 $w_i = 2$ if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1, w-w_i] > B[i-1, w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]

else $B[i, w] = B[i-1, w] // w_i > w$

Example (8)

W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$b_i = 3$$

$$i=1$$
 $b_i=3$
 $w_i=2$

$$W=5$$

$$w_i=2$$

 $w_i = 2$ if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1, w-w_i] > B[i-1, w]$ $B[i,w] = b_i + B[i-1,w-w_i]$

$$B[i,w] = B[i-1,w]$$

else $B[i,w] = B[i-1,w] // w_i > w$

Example (9)

W	0	1	2	3	4
0	0	0	0	0	0
1	0	0 -	→ 0		
2	0	3			
3	0	3			
4	0	3			
5	0	3			

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$b_i = 4$$

$$w_i = 3$$

$$W=1$$

$$W-W_i=-2$$

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (10)

W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$i=2$$
 $b_i=4$
 $w_i=3$

$$W_i = 3$$

$$W=2$$

$$W-W_i=-1$$

if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1, w-w_i] > B[i-1, w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]e/se $B[i,w] = B[i-1,w] // w_i > w$

Example (11)

i 0 1 2 3 4

W	U	,	2	3	4
0	0	0	0	0	0
1	0	0	0		
2	0	3	3		
3	0	3	4		
4	0	3			
5	0	3			

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$

else $B[i,w] = B[i-1,w] // w_i > w$

Example (12)

W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$b_i = 4$$

$$i=2$$
 $b_i=4$
 $w_i=3$

$$W=4$$

$$W-W_i=1$$

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (13)

i 0 1 2 3 4

W		,	_		•
0	0	0	0	0	0
1	0	0	0		
2	0	3	3		
3	0	3	4		
4	0	3	4		
5	0	3	* 7		

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (14)

3

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=3 b_i=5 w_i=4

w=1...3

W

0

1

2

3

4

5

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (15)

W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$W=4$$

$$W-W_i=0$$

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (15)

0

1

2

W

_	_	

<u> </u>	0	-
U	Ü	

3

$$W_i=4$$

$$w=5$$

$$W-W_i=1$$

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else

$$B[i,w] = B[i-1,w]$$

else $B[i,w] = B[i-1,w] // w_i > w$

Items:

Example (16)

W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=3

 $b_i=5$ $w_i=4$

w = 1..4

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (17)

W 7 -

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=3 b_i=5 w_i=4

w=5

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$

else
$$B[i, w] = B[i-1, w] // w_i > w$$

Comments

- This algorithm only finds the max possible value that can be carried in the knapsack
- To know the items that make this maximum value, an addition to this algorithm is necessary
- Refer to previous algorithms to figure out a strategy to extract this data from the table we built

Conclusion

- Dynamic programming is a useful technique of solving certain kind of problems
- When the solution can be recursively described in terms of partial solutions, we can store these partial solutions and re-use them as necessary
- > Running time (Dynamic Programming algorithm vs. naïve algorithm):
 - LCS: O(m*n) vs. O(n * 2^m)
 - 0-1 Knapsack problem: O(W*n) vs. O(2ⁿ)