Statistical modelling with Python

Simple linear Regression with Python-native SkiKit-Learn Package

Imports necessary for Regression models with SciKitLearn

In [2]:

```
# imports necessary for statistical modelling
# convention is to define imports at the top of scripts

import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```

Using the ALLBUS data set for standard linear regressions

In [3]:

```
# import data set, set directory
home_dir = "/home/tobias_giesemann/Dropbox/Uni_Master/02SS19/01Advanced_Statistical_Modelling/Essay/"
# using pandas dataframe as a similar data structure to R dataframes
allbus_df = pd.read_csv(home_dir+"data/allbus_small.csv", index_col=0)
#show head
allbus_df.head()
```

Out[3]:

	income	sex	age	eduyears	eastwest	socialclass_self	leftright
1	1800.0	FRAU	47.0	13.0	NEUE BUNDESLAENDER	MITTELSCHICHT	2.0
2	2000.0	MANN	52.0	13.0	NEUE BUNDESLAENDER	MITTELSCHICHT	4.0
3	2500.0	MANN	61.0	9.0	ALTE BUNDESLAENDER	MITTELSCHICHT	8.0
4	860.0	FRAU	54.0	12.0	ALTE BUNDESLAENDER	NaN	3.0
5	NaN	MANN	71.0	NaN	ALTE BUNDESLAENDER	OBERSCHICHT	7.0

In [4]:

#description of numeric variables
allbus_df.describe()

Out[4]:

	income	age	eduyears	leftright
count	2654.000000	3486.000000	3303.000000	3335.000000
mean	1609.666164	51.143144	12.632758	5.078561
std	1100.712568	17.567575	3.694805	1.700014
min	1.000000	18.000000	4.000000	1.000000
25%	850.000000	37.000000	10.000000	4.000000
50%	1400.000000	52.000000	12.000000	5.000000
75%	2000.000000	65.000000	15.000000	6.000000
max	9500.000000	97.000000	33.000000	10.000000

Plotting in Python with package "Seaborn"

In [13]:

```
# basic plotting with seaborn plotting package
basic_plot = sns.relplot(x="eduyears",y="income", data=allbus_df)
```

```
2000 - 2000 - 5 10 15 20 25 30 eduyears
```

In [12]:

```
# little more advanced plotting
fair_plot = sns.relplot(x="eduyears",y="income", hue="sex", data=allbus_df)
```


In [11]:


```
In [10]:
```

```
# simple and fast plot for linear models -> very powerful
lm_plot = sns.lmplot('eduyears', 'income', data=allbus_df, fit_reg=True)
```


Linear Models with SciKit Learn

In [4]:

```
# reshape input variables
regression df1 = allbus df[['income', 'age']]
regression_df1.dropna(inplace=True)
X = np.array([regression_df1.age]).reshape(-1, 1)
y = np.array([regression_df1.income]).reshape(-1, 1)
# define model
regression_model = LinearRegression()
regression_model.fit(X, y)
y_predicted = regression_model.predict(X)
# model evaluation
mse = mean_squared_error(y, y_predicted)
r2 = r2_score(y, y_predicted)
# printing values
print('Estimate Std.:' ,regression_model.coef_)
print('Intercept:', regression_model.intercept_)
print('Mean squared error: ', mse)
print('R2 score: ', r2)
```

Estimate Std.: [[2.79715344]] Intercept: [1465.57232066]

Mean squared error: 1208951.0226202777

R2 score: 0.002015611062190281

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-viewversus-a-copy

This is separate from the ipykernel package so we can avoid doing imports until

Linear Regression with Package StatsModels

In [231:

```
import statsmodels.api as sm
# import data set, set directory
home_dir = "/home/tobias_giesemann/Dropbox/Uni_Master/02SS19/01Advanced_Statistical_Modelling/Essay/"
# using pandas dataframe as a similar data structure to R dataframes
allbus df = pd.read csv(home dir+"data/allbus small.csv", index col=0)
#show head
allbus_df.head()
# drop nan values
allbus_df. dropna(inplace = True)
```

Linear Regression

As we can see, this emulation of the R syntax is much easier to implement

In [25]:

```
import statsmodels.formula.api as smf
lm1 = smf.ols('income ~ 1+age+sex+eduyears+eastwest+leftright', data=allbus_df).fit()
print(lm1.summary())
```

OLS Regression Results

Dep. Variable:	income	R-squared:	0.218
Model:	0LS	Adj. R-squared:	0.216
Method:	Least Squares	F-statistic:	134.5
Date:	Thu, 25 Jul 2019	<pre>Prob (F-statistic):</pre>	4.95e-126
Time:	16:40:57	Log-Likelihood:	-20109.
No. Observations:	2418	AIC:	4.023e+04
Df Residuals:	2412	BIC:	4.026e+04
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept sex[T.MANN]	-412.2895 647.4251	128.587 40.427	-3.206 16.015	0.001	-664.442 568.149	-160.137 726.701
eastwest[T.NEUE BUNDESLAENDER]	-371.3275	42.863	-8.663	0.000	-455.380	-287.275
age eduyears	8.8806 99.1138	1.188 5.674	7.477 17.468	0.000 0.000	6.552 87.987	11.210 110.240
leftright ====================================	27.9986 =======	11.870	2.359 	0.018 =======	4.722 ==	51.275

Omnibus:	730.914	Durbin-Watson:	1.999			
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3151.537			
Skew:	1.402	Prob(JB):	0.00			
Kurtosis:	7.839	Cond. No.	356.			

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Residual Plot with Python

As this plot is often needed to check for homoscedascity, I will check if there is an easy implementation in python as well. As we will see, this is not the case, and we rather need to build our own plot.

In [41]:

Out[41]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f0e6a0f6438>

Here, we would rather have to check for heteroscedascity and maybe consider a quantile-regression model $\frac{1}{2}$