Optimization: Nonlinear Optimization with Constraints

Constraints in nonlinear optimization

Equality constraints

- Linear equality constraints
- Nonlinear equality constraints

Inequality constraints

- Linear inequality constraints
- Nonlinear inequality constraints
 - penalty/barrier function
 - SQP: Sequential Quadratic Programming

Equality constraints

Linear constraints → Elimination

$$\min_{x \in \mathbb{R}^n} f(x)$$
, where $Ax = b$

$$x = x_0 + \bar{A}^T \bar{x}$$

such that $Ax_0 = b$ and $A\bar{A}^T = 0$

$$\min_{\bar{x} \in \mathbb{R}^{(n-m)}} f(x_0 + \bar{A}^T \bar{x})$$

Use SVD (Singular Value Decomposition):

$$A = U \begin{bmatrix} \Sigma & 0 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} = U \Sigma V_1^T$$

Define
$$\bar{A} = V_2^T$$
 and $x_0 = V_1 \Sigma^{-1} U^T b$

Equality constraints

Nonlinear equality constraints

$$\min_{x \in \mathbb{R}^n} f(x)$$
, where $h(x) = 0$

New problem (note: unconstrained problem!):

$$\min_{x,\lambda} f(x) + \lambda^T h(x)$$

Zero-gradient condition

$$\nabla_{x,\lambda} \left(f(x) + \lambda^T h(x) \right) = 0$$

is equivalent to Lagrange conditions

$$\nabla_{x} f(x) + \nabla_{x} h(x) \lambda = 0$$

$$\nabla_{\lambda} \Big(\lambda^T h(x) \Big) = h(x) = 0$$

Inequality constraints

$$\min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $g(x) \leqslant 0$

Elimination

Mapping $\Phi: \bar{x} \to x$ such that

$$\{x = \Phi(\bar{x}), \ \bar{x} \in \mathbb{R}^m\} = \{x \mid x \in \mathbb{R}^n, \ g(x) \leq 0\}$$

New unconstrained minimization problem

$$\min_{\bar{x} \in \mathbb{R}^m} f\left(\Phi(\bar{x})\right)$$

Gradient projection method

Linear inequality constraints: $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $Ax - b \leq 0$

What if $-\nabla f(x_k)$ points outside feasible region in boundary point x_k ?

For boundary point
$$x_k$$
: $a_j^T x_k = b_j$ for $j \in \mathcal{A} \rightarrow$ "active" $a_j^T x_k < b_j$ for $j \notin \mathcal{A}$

Rows indexed by $\mathcal{A} \to \text{submatrices } A_{\mathsf{a}}$ and b_{a} with

$$A_{\mathsf{a}} x_i = b_{\mathsf{a}}$$

Define projection matrix:

$$P = I - A_{\mathsf{a}}^T (A_{\mathsf{a}} A_{\mathsf{a}}^T)^{-1} A_{\mathsf{a}}$$

New search direction:

$$d_k = -P \, \nabla f(x_k)$$

One-dimensional minimization problem:

$$\min_{s\in\mathbb{R}} f(x_k + d_k s)$$
 s.t. $A(x_k + d_k s) - b \leq 0$

Gradient projection method (continued)

Inequality constraints — Penalty/barrier function

Nonlinear inequality constraints

$$\min_{x \in \mathbb{R}^n} f(x)$$
, where $g(x) \leq 0$

Ideally: feasibility function $f_{\text{feas}}(x)$ given by

$$f_{\mathsf{feas}}(x) = 0$$
 if $\max_{i} g_i(x) \leqslant 0$ (or: $g(x) \leqslant 0$)
 $f_{\mathsf{feas}}(x) = \infty$ if $\max_{i} g_i(x) > 0$ (or: $g(x) \nleq 0$)

Unconstrained minimization:

$$\min_{x} \left(f(x) + f_{\text{feas}}(x) \right)$$

Feasibility function is not smooth !!

- Penalty function
- Barrier function

Penalty function

$$f_{\text{pen}}(x) = 0$$
 for $\max_{i} g_{i}(x) \leq 0$
 $f_{\text{pen}}(x) \gg 0$ for $\max_{i} g_{i}(x) > 0$

Examples of penalty functions are:

$$f_{\mathsf{pen}} = \beta \sum_{i=1}^{m} \max \left(0, g_i(x) \right) , \quad \beta \gg 1$$

$$f_{\mathsf{pen}} = \beta \sum_{i=1}^{m} \max \left(0, g_i(x)\right)^2, \quad \beta \gg 1$$

$$f_{\mathsf{pen}} = \max_{i} \max(0, e^{\beta \, g_i(x)} - 1)^2 \ , \quad \beta \gg 1$$

Barrier function

$$f_{\mathsf{bar}}(x) \approx 0 \; \text{ for } \; \max_{i} g_i(x) \ll 0$$
 $f_{\mathsf{bar}}(x) \longrightarrow \infty \; \text{ for } \; \max_{i} g_i(x) \uparrow 0$

usually undefined for $\max_i g_i(x) \geqslant 0$

Examples of barrier functions are:

$$f_{\mathsf{bar}} = -rac{1}{eta} \sum_{i=1}^m \mathsf{In} \left(-g_i(x) \right) \;, \quad eta > 1$$

$$f_{\mathsf{bar}} = -rac{1}{eta} \sum_{i=1}^m rac{1}{g_i(x)} \;\;, \quad eta > 1$$

$$f_{\mathsf{bar}} = -rac{1}{eta} \ln \left(- \max_i g_i(x)
ight) \;, \;\; eta > 1$$

Penalty & barrier functions

Sequential Quadratic Programming

State-of-the art algorithm for

$$\min_{x} f(x)$$
 s.t. $g(x) \leq 0$

Idea 1:

approximate f by quadratic function, g by linear function \rightarrow does not always work in practice

Idea 2:

use Lagrange function:

$$L(x,\lambda) = f(x) + \lambda^{T} g(x)$$

$$\Rightarrow \min_{x} L(x,\lambda) \quad \text{s.t. } g(x) \leq 0$$

zero-gradient condition:
$$\nabla_x L(x, \lambda) = 0$$

first Karush-Kuhn-Tucker condition: $\nabla f(x) + \lambda^T \nabla g(x) = 0$

SQP (continued)

Quadratic approximation for *L*:

$$L(x, \lambda_k) \approx L(x_k, \lambda_k) + \nabla_x^T L(x_k, \lambda_k) \underbrace{(x - x_k)}_{d} + \underbrace{\frac{1}{2} (x - x_k)^T}_{d} H_L(x_k, \lambda_k) \underbrace{(x - x_k)}_{d}$$

Linear approximation of g:

$$g(x) = g(x_k) + \nabla^T g(x_k) \underbrace{(x - x_k)}_{d}$$

ightarrow quadratic programming problem in d

<u>Note</u>: In literature $\nabla f(x_k)$ is mostly used instead of $\nabla_x L(x_k, \lambda_k)$ in quadratic objective function since this yields better performance

SQP algorithm

- Current point: x_k, λ_k
- 2 Compute (approximations) of $\nabla f(x_k)$ and $H_L(x_k, \lambda_k)$: G_k , H_k
- 3 Define $d = x x_k$ and solve QP:

$$\min_{d} \frac{1}{2} d^{T} H_{k} d + G_{k}^{T} d$$
s.t.
$$g(x_{k}) + \nabla^{T} g(x_{k}) d \leq 0$$

$$\Rightarrow$$
 $d_k = d^*$, $\Delta_k = \lambda^* - \lambda_k$ with λ^* the optimal Lagrange multiplier for the QP

- Perform line search: $s_k = \arg\min_s \ \psi(x_k + s \ d_k)$ with, e.g., $\psi = f + f_{pen}$
- **5** Define the new estimate: $x_{k+1} = x_k + s_k d_k$ $\lambda_{k+1} = \lambda_k + s_k \Delta_k$
- 10 If not optimal, goto step 1.

Summary

Nonlinear optimization with constraints: Standard form

$$\min_{x} f(x)$$
s.t. $h(x) = 0$

$$g(x) \leq 0$$

- Main solution approaches:
 - Elimination of constraints!
 - ▶ Nonlinear equality constraints → Lagrange
 - ightharpoonup Linear inequality constraints ightharpoonup gradient projection
 - lacktriangle Nonlinear inequality constraints ightarrow penalty or barrier function, SQP