Physics 235. Heat, Sound and Light Laboratory

Error Propogation

1. Q is a **sum or difference** of independent measurements $x_i, x_j, x_k, ...$ with errors $\delta x_i, \delta x_j, \delta x_k, ...$

$$\delta Q = \sqrt{\delta x_i^2 + \delta x_j^2 + \delta x_k^2 + \cdots}$$

- Ex.) If Q = a + b c, then $\delta Q = \sqrt{\delta a^2 + \delta b^2 + \delta c^2}$. Suppose $a \pm \delta a = 5 \pm 2$, $b \pm \delta b = 6 \pm 2$, $c \pm \delta c = 3 \pm 1$. Then $Q \pm \delta Q = 8 \pm 3$.
- 2. Q is a **product or ratio** of independent measurements $x_i, x_j, x_k, ...$, with errors $\delta x_i, \delta x_j, \delta x_k, ...$.

$$\frac{\delta Q}{Q} = \sqrt{\left(\frac{\delta x_i}{x_i}\right)^2 + \left(\frac{\delta x_j}{x_j}\right)^2 + \left(\frac{\delta x_k}{x_k}\right)^2 + \cdots}$$

- Ex) $Q = \frac{ab}{c}$. Then $\delta Q = Q\sqrt{(\frac{\delta a}{a})^2 + (\frac{\delta b}{b})^2 + (\frac{\delta c}{c})^2}$ Suppose $Q = \frac{(9\pm 1)\cdot(50\pm 5)}{4\pm 0.5}$, then $Q \pm \delta Q = 113 \pm 22$ which rounds to 110 ± 20 .
- 3. Q = kx, where k is known exactly (i.e., a constant like π).

$$\delta Q = |k| \delta x$$

4. $Q = x^n$, where n is a power and x is the measurement.

$$\frac{\delta Q}{Q} = |n| \frac{\delta x}{|x|}$$

5. Q is any function of one variable x.

$$\delta Q = \left| \frac{dq}{dx} \right| \delta x$$