WIMA MKS 2

Metallized Polyester (PET) Capacitors in PCM 5 mm

Special Features

- High volume/capacitance ratio
- Self-healing
- According to RoHS 2002/95/EC

Typical Applications

For general DC-applications e.g.

- By-pass
- Blocking
- Coupling and decoupling
- **■** Timing

Construction

Dielectric:

Polyethylene-terephthalate (PET) film

Capacitor electrodes:

Vacuum-deposited

Internal construction:

Encapsulation:

Solvent-resistant, flame-retardant plastic case with epoxy resin seal, UL 94 V-0

Terminations:

Tinned wire.

Marking:

Colour: Red. Marking: Silver/White. Epoxy resin seal: Red

Electrical Data

Capacitance range:

1000 pF to 10 µF (E12-values on request)

Rated voltages:

16 VDC, 50 VDC, 63 VDC, 100 VDC, 250 VDC, 400 VDC, 630 VDC

Capacitance tolerances:

±20%, ±10%, ±5%

Operating temperature range:

-55° C to +100° C

Climatic test category:

55/100/21 in accordance with IEC **Insulation resistance** at +20° C:

Test specifications:

In accordance with IEC 60384-2 and EN 130400

Test voltage: 1.6 U_r, 2 sec.

Voltage derating:

A voltage derating factor of 1.25 % per K must be applied from +85° C for DC voltages and from +75° C for AC voltages

Reliability:

Operational life > 300 000 hours Failure rate < 2 fit (0.5 x U, and 40° C)

U _r	U _{test}	C ≤ 0.33 µ F	0.33 µF < C ≤ 10 µF
16 VDC	10V	\geqslant 3.75 x 10 ³ M Ω (mean value: 1 x 10 ⁴ M Ω)	\geqslant 1000 sec (M Ω x μ F) (mean value: 3000 sec)
50 VDC	10V	\geqslant 5 x 10 ³ M Ω (mean value: 3 x 10 ⁴ M Ω)	\geqslant 1000 sec (M Ω x μ F) (mean value: 3000 sec)
63 VDC	50 V	\geq 1 x 10 ⁴ M Ω (mean value: 5 x 10 ⁴ M Ω)	\geqslant 1250 sec (M Ω x μ F) (mean value: 3000 sec)
≥100 VDC	100 V	\geq 1.5 x 10 ⁴ M Ω (mean value: 1 x 10 ⁵ M Ω)	≥3000 sec (MΩ x µF) (mean value: 6000 sec)

Measuring time: 1 min.

Dissipation factors at $+20^{\circ}$ C: tan δ

at f	C ≤ 0.1 µF	$0.1 \mu F < C \le 1.0 \mu F$	C > 1.0 µF
1 kHz	≤ 8 x 10 ⁻³	≤ 8 x 10 ⁻³	$\leq 10 \times 10^{-3}$
10 kHz	$\leq 15 \times 10^{-3}$	≤ 15 x 10 ⁻³	-
100 kHz	≤ 30 x 10 ⁻³	_	-

Maximum pulse rise time: for pulses equal to the rated voltage

			,										
Capacitance	Pulse rise time V/µsec max. operation/test												
ρι, μι	16 VDC	50 VDC	63 VDC	100 VDC	250 VDC	400 VDC	630 VDC						
1000 6800	-	-	-	-	_	-	110/1100						
0.01 0.022	-	-	35/350	35/350	50/500	80/800	110/1100						
0.033 0.068	-	_	20/200	25/250	50/500	80/800	90/900						
0.1 0.47	-	10/100	15/150	20/200	50/500	80/800	-						
0.68 1.0	-	8/80	12/120	15/150	25/250	-	-						
1.5 3.3	-	8/80	7.5/75	10/100	-	-	-						
4.7	4/40	5/50	5/50	-	-	-	-						
6.8	3/30	3/30	3/30	-	-	-	-						
10	3/30	2.5/25	_	-	_	_	-						

Mechanical Tests

Pull test on leads:

 $10\ N$ in direction of leads according to IEC 60068-2-21

Vibration:

6 hours at 10...2000 Hz and 0.75 mm displacement amplitude or 10 g in accordance with IEC 60068-2-6

Low air density:

1kPa = 10 mbar in accordance with IEC 60068-2-13

Bump test:

4000 bumps at 390 m/sec² in accordance with IEC 60068-2-29

Packing

Available taped and reeled.

Detailed taping information and graphs at the end of the catalogue.

For further details and graphs please refer to Technical Information.

WIMA MKS 2

Continuation

General Data

Capacitance	W	l H		6 VDC/ PCM**	10 VAC* Part number	50 VDC/30 VAC* W H L PCM** Part number					
0.33 μF 0.47 " 0.68 "						2.5 3 3.5	6.5 7.5 8.5	7.2 7.2 7.2	5 5 5	MKS2B033301A00 MKS2B034701B00 MKS2B036801C00	
1.0 µF 1.5 " 2.2 " 3.3 " 4.7 " 6.8 "	5.5 7.2	11.5 13	7.2 7.2	5 5	MKS2A044701H00 MKS2A046801K00	3.5 4.5 5 5.5 7.2 8.5	8.5 9.5 10 11.5 13	7.2 7.2 7.2 7.2 7.2 7.2	5 5 5 5 5 5	MKS2B041001C00 MKS2B041501E00 MKS2B042201F00 MKS2B043301H00 MKS2B044701K00 MKS2B046801M00	
10 µ F	8.5	14	7.2	5	MKS2A051001M00	11	16	7.2	5	MKS2B051001N00	

Canacitance			6	3 VDC/	40 VAC*			10	00 VDC.	/63 VAC*
Capacitance	W	Н	L	PCM**	Part number	W	Н	L	PCM**	Part number
0.01 µ F	2.5	6.5	7.2	5	MKS2C021001A00	2.5	6.5	7.2	5	MKS2D021001A00
0.015 "	2.5	6.5	7.2	5	MKS2C021501A00	2.5	6.5	7.2	5	MKS2D021501A00
0.022 "	2.5	6.5	7.2	5	MKS2C022201A00	2.5	6.5	7.2	5	MKS2D022201A00
0.033 "	2.5	6.5	7.2	5	MKS2C023301A00	2.5	6.5	7.2	5	MKS2D023301A00
0.047 "	2.5	6.5	7.2	5	MKS2C024701A00	2.5	6.5	7.2	5	MKS2D024701A00
0.068 "	2.5	6.5	7.2	5	MKS2C026801A00	2.5	6.5	7.2	5	MKS2D026801A00
0.1 µ F	2.5	6.5	7.2	5	MKS2C031001A00	2.5	6.5	7.2	5	MKS2D031001A00
0.15 "	2.5	6.5	7.2	5	MKS2C031501A00	3.5	8.5	7.2	5	MKS2D031501C00
0.22 "	3	7.5	7.2	5	MKS2C032201B00	3.5	8.5	7.2	5	MKS2D032201C00
0.33 "	3.5	8.5	7.2	5	MKS2C033301C00	4.5	9.5	7.2	5	MKS2D033301E00
0.47 "	3.5	8.5	7.2	5	MKS2C034701C00	4.5	9.5	7.2	5	MKS2D034701E00
0.68 "	4.5	9.5	7.2	5	MKS2C036801E00	5	10	7.2	5	MKS2D036801F00
1.0 µ F	5	10	7.2	5	MKS2C041001F00	7.2	13	7.2	5	MKS2D041001K00
1.5 "	5.5	11.5	7.2	5	MKS2C041501H00	8.5	14	7.2	5	MKS2D041501M00
2.2 "	7.2	13	7.2	5	MKS2C042201K00	11	16	7.2	5	MKS2D042201N00
3.3 "	7.2	13	7.2	5	MKS2C043301K00					
4.7 "	8.5	14	7.2	5	MKS2C044701M00					
6.8 "	11	16	7.2	5	MKS2C046801N00					

^{*} AC voltage: f = 50 Hz; 1.4 x U_{rms} + UDC $\leq U_{r}$

 ${\sf Dims.\ in\ mm.}$

Part number completion:

Tolerance: 20 % = M

10 % = K 5 % = JPacking: bulk = S
Lead length: 6-2 = SD

Taped version see page 140.

Impedance change with frequency (general guide).

Rights reserved to amend design data without prior notification.

Continuation page 42

^{**} PCM = Printed circuit module = lead spacing.

WIMA MKS 2

Continuation

General Data

Capacitance	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				160 VAC*	400 VDC/200 VAC* W H L						
'	W	Н	L	PCM**	Part number	W	Н	L	PC/M**	Part number		
0.01 µ F			MKS2F021001A00	2.5								
0.015 "	"		MKS2F021501A00	2.5	6.5	7.2	5	MKS2G021501A00				
0.022 "	"		MKS2F022201A00	3.5	8.5	7.2	5	MKS2G022201C00				
0.033 , 3.5 8.5		8.5	7.2	5	MKS2F023301C00	4.5	9.5	7.2	5	MKS2G023301E00		
0.047 "	3.5	8.5	7.2	5	MKS2F024701C00	4.5	9.5	7.2	5	MKS2G024701E00		
0.068 "	3.5	8.5	7.2	5	MKS2F026801C00	5.5	11.5	7.2	5	MKS2G026801H00		
0.1 µ F	4.5	9.5	7.2	5	MKS2F031001E00	7.2	13	7.2	5	MKS2G031001K00		
0.15 "	5	10	7.2	5	MKS2F031501F00	8.5	14	7.2	5	MKS2G031501M00		
0.22 "	5.5	11.5	7.2	5	MKS2F032201H00	11	16	7.2	5	MKS2G032201N00		
		MKS2F033301K00										
0.47 "			MKS2F034701M00									
0.68 "	11	16	7.2	5	MKS2F036801N00							

Capacitance			63	30 VDC/	'220 VAC*
Capacilarice	W	Н	L	PCM**	Part number
1000 pF 1500 " 2200 " 3300 " 4700 " 6800 "	3 3 3 3.5 4.5	7.5 7.5 7.5 7.5 8.5 9.5	7.2 5 7.2 5 7.2 5 7.2 5 7.2 5 7.2 5		MKS2J011001B00 MKS2J011501B00 MKS2J012201B00 MKS2J013301B00 MKS2J014701C00 MKS2J016801E00
0.01 µF 0.015 " 0.022 " 0.033 " 0.047 "	5.5 7.2 7.2 7.2 8.5	11.5 13 13 13 14	7.2 7.2 7.2 7.2 7.2 7.2	5 5 5 5 5	MKS2J021001H00 MKS2J021501K00 MKS2J022201K00 MKS2J023301K00 MKS2J024701M00

The values of the WIMA MKM 2 range according to the main catalogue 2009 are still available on request.

Part number	r completion:
Tolerance:	20 % = M 10 % = K 5 % = J
Packing: Lead length	bulk = S : 6-2 = SD

Taped version see page 140.

Dims. in mm.

Rights reserved to amend design data without prior notification.

Permissible AC voltage in relation to frequency at 10° C internal temperature rise (general guide).

^{*} AC voltage: f = 50 Hz; 1.4 x $U_{rms} + UDC \leq U_{r}$

^{**} PCM = Printed circuit module = lead spacing.

Recommendation for Processing and Application of **Through-Hole Capacitors**

Soldering Process

A preheating of through-hole WIMA capacitors is allowed for temperatures $T_{\text{max}} < 100 \,^{\circ} \text{C}.$

In practice a preheating duration of t < 5 min. has been proven to be best.

Single wave soldering

Soldering bath temperature: $T < 260 \,^{\circ}\, C$ Immersion time: t < 5 sec

Double wave soldering

Soldering bath temperature: $T < 260 \,^{\circ}\, C$ Immersion time: 2xt < 3sec

Due to different soldering processes and heat requirements the graphs are to be regarded as a recommendation only.

Typical temperature/time graph for double wave soldering

·WIMA Quality and Environmental Philosophy

ISO 9001:2000 Certification

ISO 9001:2000 is an international basic standard of quality assurance systems for all branches of industry. The approval according to ISO 9001:2000 of our factories by the VDE inspectorate certifies that organisation, equipment and monitoring of quality assurance in our factories correspond to internationally recognized standards.

WIMA WPCS

The WIMA Process Control System (WPCS) is a quality surveillance and optimization system developed by WIMA. WPCS is a major part of the quality-oriented WIMA production. Points of application of WPCS during production process:

- incoming material inspection
- metallization
- film inspection
- schoopage
- pre-healing
- lead attachment
- cast resin preparation/ encapsulation
- 100% final inspection
- **AQL** check

WIMA Environmental Policy

All WIMA capacitors, irrespective of whether through-hole devices or SMD, are made of environmentally friendly materials. Neither during manufacture nor in the product itself any toxic substances are used, e.g.

- Lead
- PBB/PBDE
- PCB
- Arsenic
- Cadmium
- Hydrocarbon chloride
- Mercury
- Chromium 6+

We merely use pure, recyclable materials for packing our components, such as:

- carton
- cardboard
- adhesive tape made of paper
- polystyrene

We almost completely refrain from using packing materials such as:

- foamed polystyrene (Styropor®)
- adhesive tapes made of plastic
- metal clips

RoHS Compliance

According to the RoHS Directive 2002/95/EC certain hazardous substances like e.g. lead, cadmium, mercury must not be used any longer in electronic equipment as of July 1st, 2006. For the sake of the environment WIMA has refraind from using such substances since years already.

Tape for lead-free WIMA capacitors

DIN EN ISO 14001:2005

WIMA's environmental management has been established in accordance with the guidelines of DIN EN ISO 14001:2005. The certification has been granted in June 2006.

Typical Dimensions for Taping Configuration

Diagram 2: PCM 10/15 mm

Diagram 3: PCM 22.5 and 27.5*mm
*PCM 27.5 taping possible with two feed holes between components

				Dimen	sions for Radial	Taping			
Designation	Symbol	PCM 2.5 taping	PCM 5 taping	PCM 7.5 taping	PCM 10 taping*	PCM 15 taping*	PCM 22.5 taping	PCM 27.5 taping	
Carrier tape width	W	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	
Hold-down tape width	W ₀	6.0 for hot-sealing adhesive tape	6.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	
Hole position	W ₁	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	
Hold-down tape position	W ₂	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	
Feed hole diameter	D ₀	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	
Pitch of component	Р	12.7 ±1.0	12.7 ±1.0	12.7 ±1.0	25.4 ±1.0	25.4 ±1.0	38.1 ±1.5	38.1 ±1.5 or 50.8 ±1.5	
Feed hole pitch	P ₀	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max.	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	cumulative pitch 12.7 ±0.3 error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pito error max. 1.0 mm/20 pito	
Feed hole centre to lead	e centre P ₁ 5.1 ±0.5 3.85 ±0.7		3.85 ±0.7	2.6 ±0.7 7.7 ±0.7		5.2 ±0.7 7.8 ±0.7		5.3 ±0.7	
Hole centre to component centre	P ₂	6.35 ±1.3	6.35 ±1.3	6.35 ±1.3	12.7 ±1.3	12.7 ±1.3	19.05 ±1.3	19.05 ±1.3	
Feed hole centre to bottom	Н	16.5 ±0.3	16.5 ±0.3	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5	
edge of the component	""	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	
Feed hole centre to top edge of the component	H ₁	H+H _{component} < H ₁ 32.25 max.	$H+H_{component} < H_1$ 32.25 max.	H+H _{component} < H ₁ 24.5 to 31.5	H+H _{component} < H ₁ H+H _{component} < F 25.0 to 31.5 26.0 to 37.0		H+H _{component} < H ₁ 30.0 to 43.0	H+H _{component} < H ₁ 35.0 to 45.0	
Lead spacing at upper edge of carrier tape	F	2.5 ±0.5	5.0 ^{+0.8} _{-0.2}	7.5 ±0.8	10.0 ±0.8	15 ±0.8	22.5 ±0.8	27.5 ±0.8	
Lead diameter	d	0.4 ±0.05	0.5 ±0.05	*0.5 ±0.05 or 0.6 +0.06 -0.05	*0.5 ±0.05 or 0.6 +0,06 -0.05	0.8 +0,08	0.8 +0,08	0.8 +0.08 -0.05	
Component alignment	Δh	± 2.0 max.	± 2.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.	
Total tape thickness	t	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	
D. I.		ROLL//	AMMO			AMMO			
'ackage see also page 141)		REEL \$\tilde{9}\$ 360 max. \$\tilde{9}\$ 30 \pm 1	$B \stackrel{52 \pm 2}{58 \pm 2} $ depending on comp. dimensions	REEL # 360 max. 8 58 ±2 or REEL # 500 max. 54 ±2 been ding on PCM and on PCM					
Unit					see details page 143.				

Dims in mm.

Please clarify customer-specific deviations with the manufacturer.

[•] Diameter of leads see General Data.

^{*} PCM 10 and PCM 15 can be crimped to PCM 7.5. Position of components according to PCM 7.5 (sketch 1). $P_0 = 12.7$ or 15.0 is possible

Packing Quantities for Bulk Capacitors and TPS*

2011		Si	ze			er packaging ur		pcs. per packo	
PCM	W	Н		Codes	Mini M	Standard S	Maxi G	Mini X	Standard Y
	2.5	7	4.6	OB	1000	5000	10 000	_	-
0 F	3	7.5	4.6	0C	1000	5000	10 000	-	-
2.5 mm	3.8	8.5	4.6	0D	1000	5000	10 000	-	-
	4.6 5.5	9	4.6 4.6	OE OF	1000 1000	5000 5000	10 000 10 000	_	_
	2.5	6.5	7.2	1A	2000	5000	10 000	-	-
	3	7.5	7.2	1B	1000	5000	-	-	-
	3.5	8.5	7.2	1C	1000	5000	-	-	-
	4.5 4.5	6 9.5	7.2 7.2	ID IE	1000 1000	6000 4000	_	_	
	5	10	7.2	1F	1000	3500	-	_	-
5 mm	5.5	7	7.2	1G	1000	4000	-	-	-
•	5.5 6.5	11.5 8	7.2 7.2	1H 1I	500 1000	2500 2500	-	-	-
	7.2	8.5	7.2	;;	500	2500	_	_	_
	7.2	13	7.2	iĸ	500	2000	-	-	-
	8.5	10	7.2	1L	500	2000	-	-	-
	8.5	14	7.2	1M	500	1500	-	-	-
	2.5	16 7	7.2 10	1N 2A	250 1000	1000 5000	_	_	
	3	8.5	10	2B	1000	5000	_	_	-
7 -	4	9	10	2C	1000	4000	-	-	-
7.5 mm	4.5	9.5	10.3	2D 2E	1000	3500	-	-	-
	5 5.7	10.5 12.5	10.3 10.3	2E 2F	1000 500	3000 2000	_	_	_
	7.2	12.5	10.3	2G	500	1500	_	_ _	_
	3	9	13	3A	1000	3000	-	-	-
	4	8.5 9	13.5 13	FA 3C	500 1000	3000 3000	-	-	-
	4	9.5	13	3D	1000	3000	_	_	_
10 mm	5	10	13.5	FB	500	2000	-	-	-
	5	11	13	3F	1000	3000	-	-	-
	6	12 12.5	13 13	3G 3H	800 800	2400 2400	-	-	-
	8	12.5	13	31	500	2000	_		_ _
	5	11	18	4B	800	2400	-	-	-
	5	13	19	FC	200	1000		-	-
	6	12.5 14	18 19	4C FD	500 250	2000 1000	-	-	-
	7	14	18	4D	400	1600	_	_	_
	7	15	19	FE	250	1000		-	-
15 mm	8	15	18	4H	400	1200	-	-	-
	8 9	17 14	19 18	FF 4F	100 400	500 1200		-	-
	9	16	18	4J	300	900	_	_	_
	10	18	19	FG	100	500	-	-	-
]] 	14	18	4M	300	1000	_	-	-
	5 6	14 15	26.5 26.5	5A 5B	300 250	1200 1000	_ _	_	-
	7	16.5	26.5	5D	190	760	_	-	_
	8	20	28	FH	-	-	-	115	690
22.5 mm	8.5	18.5	26.5	5F	-	-	-	220	880
	10 10.5	22 19	28 26.5	FI 5G	_	_	_	90 1 <i>7</i> 0	540 680
	10.5	20.5	26.5	5H	-	_	=	170	680
	11	21	26.5	51	-	-	-	170	680
	12 9	24 19	28 31.5	FJ 6A	_	-	_	75 160	450 640
	11	21	31.5	6B	_	_	_	136	544
	13	24	31.5	6D	-	-	-	112	448
	13	25	33	FK	-	-	-	56	336
27.5 mm	15 15	26 26	31.5 33	6F FL	_	-	_	96 48	384 288
	17	29	31.5	6G	-	_	_	88	176
	17	34.5	31.5	61	-	-	-	88	176
	20	32	33	FM	-	-	-	36	216
	20 9	39.5 19	31.5 41.5	6J 7A	-	_	-	36 60	144 480
	11	22	41.5	7A 7B	_	- -	_	51	480
	13	24	41.5	7C	-	-	-	84	252
37.5 mm	15	26	41.5	7D	-	-	-	72	144
57.5 mm	17	29	41.5	7E	-	-	-	66	132
	19	32	41.5	7F	_	_	_	54	108
	20	39.5	41.5	7G	_	_	_	27	108

Moulded versions.

Packing Units for Taped Capacitors - with Radial Leads

	Size				RO	LL		RE	EL			AM	MO					
PCM		Si	ze				ø3			500	340		490 >					
. 5.7.	W	Н	1	Codes	H16.5	H18.5	H16.5	H18.5	H16.5	H18.5	H16.5	H18.5	H16.5	H18.5				
	2.5	7	4.6	OB	220		25				28		-	_ <u> </u>				
2.5 mm	3	7.5	4.6	0C	200	00	23	OC		_	23	00	-	-				
2.5 mm	3.8 4.6	8.5 9	4.6 4.6	0D 0E	150 120		18 15		_ _			1800 1500		- -				
	5.5	10	4.6	0F		00	1200				1200							
	2.5 3	6.5 7.5	7.2 7.2	1A 1B	220 200		2500 2300			_	28 23		-	-				
	3.5	8.5	7.2	1C	160	1600 1300 1300		2000 1500 1500		_ _		00	-	-				
	4.5 4.5	6 9.5	7.2 7.2	1D 1E						- -	15 15		-	- -				
	5	10	7.2	1F	110	00	14	00		_	14	00	-	-				
5 mm	5.5 5.5	7 11.5	7.2 7.2	1G 1H	100 100		12 12			- -		00 00	-	- -				
	6.5	8	7.2	11	80	00	10	00		_	10	00	-	-				
	7.2 7.2	8.5 13	7.2 7.2	1 J 1 K	70	00 00	10	00 50		- -		00 00	-	- -				
	8.5	10	7.2	1L	60	00	8	00		-	8	00	-	-				
	8.5 11	14 16	7.2 7.2	1M 1N		00 00		00 00		- -		00	-	-				
	2.5	7	10	2A	-		25			100	25	00						
	3 4	8.5 9	10 10	2B 2C	_		22 17			300 200	23 17		41. 31					
7.5 mm	4.5	9.5	10.3	2D	-		15	OC	29	200	14	00	28					
	5 5.7	10.5 12.5	10.3 10.3	2E 2F	_	1000 1 0000		1300 1000		2500 2200		1300 1100		- -				
	7.2	12.5	10.3	2G	_	-		900		1800		1000		_				
	3 4	9 8.5	13 13.5	3A FA	-]](00 00	22	200		- -	19 14					
	4	9	13	3C	_	-		00	16	600	-	-	14	50				
10 mm	5	9.5 10	13 13.5	3D FB	_			00 00		600 800	-	- -	14 12					
10 11111	5	11	13	3F	_	-		700		300	-		12	.00				
	6	12 12.5	13 13	3G 3H	_			50 50		00	-		10 10					
	8	12.5	13	31	_			00	1100 800		<u> </u>		7	40				
	5 5	11 13	18 19	4B FC	_			00 00		200 200	-		11: 12	50				
	6	12.5	18	4C	_			00	10	000	-	-	10	00				
	6 7	14	19	FD 4D	_			00	10	000	-	-	10	00 50				
	7	14 15	18 19	FE FE	-		4.	50 50		200	-	- -		50				
15 mm	8	15 17	18 19	4H FF	_		400		400 400		400			300 300	-	-		'40 '40
	9	14	18	4F	_		3.	50	7	700	-	-	6	50				
	9	16 18	18 19	4J FG	-			50 00		700 550	-	-		50 90				
	11	14	18	4M	_			00		500	_			40				
	5	14	26.5	5A	-		-			300	-		1	70				
	6 7	15 16.5	26.5 26.5	5B 5D	_		-		1	700 500	-	-		40 50				
	8 8.5	20	28 26.5	FH	-		-		5	500	-	-	4	80				
22.5 mm	10	18.5 22	26.5	5F FI	_		-			180 120	-	-		50 80				
	10.5 10.5	19 20.5	26.5 26.5	5G 5H	-	- - -				100		-	360					
	11	21	26.5	5H 5I					400 380		_ _		360 350					
	12	24	28	FJ	350 -		350				10							
27 5	9	19 21	31.5 31.5	6A 6B		- 460/340* - 380/280* -				460/340* 380/280*		-		20 50				
27.5 mm	13	24	31.5	6D	_		-		300		300 -		290					
	15	26	31.5	6F	_		-		270			-	250					

^{*} for 2-inch transport pitches.

Samples and pre-production needs 1 packing unit minimum.

Moulded versions.

Rights reserved to amend design data without prior notification.

WIMA Part Number System

A WIMA part number consists of 18 digits and is composed as follows:

Field 1 - 4: Type description

Field 5 - 6: Rated voltage

Field 7 - 10: Capacitance

Field 11 - 12: Size and PCM

Field 13 - 14: Special features (e.g. Snubber versions)

Field 15: Capacitance tolerance

Field 16: Packing

Field 17 - 18: Lead length (untaped)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
M	K	S	2	С	0	2	1	0	0	1	Α	0	0	М	S	S	D
	MK	S 2		63 \	/DC	0.01 µ F			2.5×6.5×7.2		<7.2 -		20%	bulk	6	-2	

]				
Type description:		Rated voltage:	Capacitance:	Size:	Tolerance:
SMD-PET	= SMDT	16 VDC = A0	22 pF = 0022	$4.8 \times 3.3 \times 3$ Size $1812 = X1$	20% = M
SMD-PEN	= SMDN	2.5 VDC = A1	47 pF = 0047	$4.8 \times 3.3 \times 4$ Size $1812 = X2$	10% = K
SMD-PPS	= SMDI	4 VDC = A2	100 pF = 0100	$5.7 \times 5.1 \times 3.5$ Size $2220 = Y1$	5% = J
FKP 02	= FKPO	14 VDC = A3	150 pF = 0150	$5.7 \times 5.1 \times 4.5$ Size $2220 = Y2$	2.5% = H
MKS 02	=MKS0	28 VDC = A4	220 pF = 0220	$7.2 \times 6.1 \times 3$ Size $2824 = T1$	1% = E
FKS 2	= FKS2	40 VDC = A5	330 pF = 0330	$7.2 \times 6.1 \times 5$ Size 2824 = T2	
FKM 2	= FKM2	5 VDC = A6	470 pF = 0470	$10.2 \times 7.6 \times 5$ Size $4030 = K1$	
FKP 2	= FKP2	50 VDC = B0	680 pF = 0680	$12.7 \times 10.2 \times 6$ Size $5040 = V1$	
MKS 2	=MKS2	63 VDC = C0	1000 pF = 1100	$15.3 \times 13.7 \times 7$ Size $6054 = Q1$	Packing:
MKP 2	=MKP2	100 VDC = D0	1500 pF = 1150	$2.5 \times 7 \times 4.6 \text{ PCM } 2.5 = 0B$	AMMO H16.5 $340 \times 340 = A$
MKI 2	=MKI2	160 VDC = E0	2200 pF = 1220	$3 \times 7.5 \times 4.6 \text{ PCM } 2.5 = 0 \text{C}$	AMMO H16.5 $490 \times 370 = B$
FKS 3	= FKS3	250 VDC = FO	3300 pF = 1330	$2.5 \times 6.5 \times 7.2 \text{ PCM} 5 = 1 \text{A}$	AMMO H18.5 $340 \times 340 = C$
FKM 3	= FKM3	400 VDC = G0	4700 pF = 1470	$3 \times 7.5 \times 7.2 \text{ PCM} 5 = 1B$	AMMO H18.5 $490 \times 370 = D$
FKP 3	= FKP3	450 VDC = H0	6800 pF = 1680	$2.5 \times 7 \times 10 \text{ PCM} 7.5 = 2A$	REEL H16.5 360 = F
MKS 4	= MKS4	600 VDC = 10	$0.01 \mu F = 2100$	$3 \times 8.5 \times 10 \text{ PCM } 7.5 = 2B$	REEL H16.5 500 = H
MKM 4	= MKM4	630 VDC = J0	$0.022 \mu F = 2220$	$3 \times 9 \times 13 \text{ PCM } 10 = 3A$	REEL H18.5 360 = I
MKP 4	=MKP4	700 VDC = KO	$0.047 \mu F = 2470$	$ 4 \times 9 \times 13 \text{ PCM } 10 = 3C$	REEL H18.5 500 = J
MKP 10	=MKP1	800 VDC = 10	$0.1 \mu F = 3100$	$5 \times 11 \times 18 \text{ PCM } 15 = 4B$	ROLL H16.5 $= N$
FKP 4	= FKP4	850 VDC = M0	$0.22 \mu F = 3220$	$6 \times 12.5 \times 18 \text{ PCM } 15 = 4 \text{ C}$	ROLL H18.5 = O
FKP 1	= FKP1	900 VDC = N0	$0.47 \mu F = 3470$	$5 \times 14 \times 26.5 \text{ PCM } 22.5 = 5A$	BLISTER W12 180 $= P$
MKP-X2	=MKX2	1000 VDC = 01	$1 \mu F = 4100$	$6 \times 15 \times 26.5 \text{ PCM } 22.5 = 5B$	BLISTER W12 330 $= Q$
MKP-X2 R	=MKXR	1100 VDC = P0	$2.2 \mu F = 4220$	$9 \times 19 \times 31.5 \text{ PCM } 27.5 = 6A$	BLISTER W16 330 $=$ R
MKP-Y2	=MKY2	1200 VDC = Q0	$4.7 \mu F = 4470$	$11 \times 21 \times 31.5 \text{ PCM } 27.5 = 6B$	BLISTER W24 330 $=$ T
MP 3-X2	=MPX2	1250 VDC = R0	$10 \mu F = 5100$	$9 \times 19 \times 41.5 \text{ PCM} 37.5 = 7A$	Bulk Mini = M
MP 3-X1	=MPX1	1500 VDC = S0	$22 \mu F = 5220$	$11 \times 22 \times 41.5 \text{ PCM} 37.5 = 7B$	Bulk Standard = S
MP 3-Y2	=MPY2	1600 VDC = T0	$ 47 \mu F = 5470$	$94 \times 49 \times 182 \text{ DCH}_{-} = H0$	Bulk Maxi = G
MP 3R-Y2	=MPRY	2000 VDC = U0	$100 \mu F = 6100$	$94 \times 77 \times 182 \text{ DCH}_{-} = \text{H1}$	TPS Mini = X
Snubber MKP	= SNMP	2500 VDC = V0	$220 \mu F = 6220$		TPS Standard $= Y$
Snubber FKP	= SNFP	3000 VDC = W0	1 F = A010		
GTO MKP	= GTOM	4000 VDC = X0	2.5 F = A025		
DC-LINK MKP		6000 VDC = Y0	50 F = A500	Special features:	
DC-LINK MKP		250 VAC = 0 W	100 F = B100	Standard = 00	Lead length (untaped)
DC-LINK HC	= DCH_	275 VAC = 1 W	110 F = B110	Version A1 = 1A	$3.5 \pm 0.5 = C9$
SuperCap C	= SCSC	300 VAC = 2W	600 F = B600	Version A1.1.1 = 1B	6-2 = SD
SuperCap MC		400 VAC = 3W	1200 F = C120	Version A1.2 = 1C	16-1 = P4
SuperCap R	= SCSR	440 VAC = 4VV			
SuperCap MR	= SCMR	500 VAC = 5W			
1		1	1	1	1

The data on this page is not complete and serves only to explain the part number system. Part number information is listed on the pages of the respective WIMA range.