Lenguaje matemático, conjuntos y números

Prueba Objetiva Calificable

Ejercicio 1

Sean A, B y C subconjuntos arbitrarios no vacíos de un conjunto X. Consideramos las igualdades:

- a) $(A \times B) \cap (\overline{A} \times B) = \emptyset$.
- b) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
- c) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Se tiene:

Las tres igualdades son siempre verdaderas.

Sólo dos igualdades son siempre verdaderas.

Sólo hay una igualdad siempre verdadera.

Ejercicio 2

Sea $U = \mathbb{N}$ el universo de las variables x e y. Consideramos las proposiciones:

- p; $\forall x \,\exists y \text{ tal que } y^2 = x$.
- q; $\forall y \exists x \text{ tal que } y^2 = x$.
- s; $\exists x \, \forall y \text{ tal que } [(y > x) \Rightarrow (y > 12)].$
- r; $\forall x \,\exists y \text{ tal que } y 2x = 1$.

Se tiene:

- a) p, q y s son verdaderas.
- b) s y r son verdaderas.
- c) p es verdadera y r es verdadera.

Ejercicio 3

En el conjunto $H = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x > 0, y > 0\}$, se considera la siguiente relación de orden:

$$(x,y) \, \Re \, (x',y') \quad \text{ si y s\'olo si } \quad (xy < x'y') \ \lor \ \left[(xy = x'y') \land (x \leqslant x') \right]$$

Sea el conjunto $J = \{(x, y) \in H \mid x + y = 4\}$. Respecto de la relación de orden \mathcal{R} , se tiene:

- a) J está acotado inferiormente.
- b) J tiene elemento mínimo.
- c) J tiene elemento máximo.

Ejercicio 4

Sean E un conjunto no vacío y S una relación en E reflexiva y transitiva que no es ni simétrica ni antisimétrica. Se define la relación \Re en E mediante:

$$x \mathcal{R} y$$
 si y sólo si $(x \mathcal{S} y) \wedge (y \mathcal{S} x)$

- a) \mathcal{R} no es simétrica ni antisimétrica.
- b) R es una relación de equivalencia.
- c) R es una relación de orden.

Ejercicio 5

Consideremos el grupo formado por el conjunto $G=\{a,b,c,e\}$ con la operación interna * dada por la tabla:

*	e	a	b	c
e	e	a	b	c
\overline{a}	a	e	c	b
\overline{b}	b	c	e	a
\overline{c}	c	b	a	e

 \mathcal{L} Cuántos subgrupos distintos tiene G?

- a) 5.
- b) 4.
- c) 3.

Soluciones

Ejercicio 1

Las tres igualdades son siempre verdaderas. Veamos la demostración.

a) Basta observar que aplicando la propiedad distributiva (p.57 del texto base)

$$(A \times B) \cap (\overline{A} \times B) = (A \cap \overline{A}) \times B = \emptyset \times B = \emptyset$$

$$x \in A \setminus (B \cup C) \iff x \in A \land (x \notin B \cup C) \iff x \in A \land (x \notin B \land x \notin C)$$
$$\iff (x \in A \land x \notin B) \land (x \in A \land x \notin C) \iff x \in (A \setminus B) \cap (A \setminus C)$$

$$x \in A \setminus (B \cap C) \iff x \in A \land (x \notin B \cap C) \iff x \in A \land (x \notin B \lor x \notin C)$$
$$\iff (x \in A \land x \notin B) \lor (x \in A \land x \notin C) \iff x \in (A \setminus B) \cup (A \setminus C)$$

Ejercicio 2

La proposición p es falsa pues para x=3 no existe $y\in\mathbb{N}$ tal que $y^2=3$.

La proposición q es verdadera pues si y es cualquier número natural entonces $x=y^2$ es también un número natural.

La proposición s es verdadera pues existe x, por ejemplo x=20, tal que $\forall y \ [(y>20) \Rightarrow (y>12)]$.

La proposición r es verdadera si x es cualquier número natural entonces y=2x+1 es también un número natural.

Ejercicio 3

La opción correcta es la afirma que J tiene elemento máximo.

En efecto, observemos que $J = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x+y=4, 0 < x, y < 4\}$ y que el máximo y mínimo de la función h(x,y) = xy en J coincide con el máximo y mínimo de función g(x) = x(4-x) en el intervalo (0,4). El máximo se alcanza en x=2 y el mínimo no existe (el valor ínfimo es 0 y no se alcanza en (0,4)).

Así pues $\forall (x,y) \in J$ se tiene que $(x,y) \Re (2,2)$ pues $xy < 2 \cdot 2 = 4$ o si xy = 4 entonces x = y = 2 y por tanto $x \leq 2$. En consecuencia, (2,2) es el máximo (respecto de \Re) de J.

Veamos que J no está acotado inferiormente. O equivalentemente, que $\forall (a,b) \in H$, (a,b) no es cota inferior de J. Si $(a,b) \in H$ entonces ab > 0 y como el ínfimo de h(x,y) = xy en J es 0, existe $(x,y) \in J$ tal que xy < ab, esto es, $(x,y) \Re (a,b)$. En consecuencia (a,b) no es cota inferior de J.

En consecuencia J no tiene elemento mínimo.

Ejercicio 4

La relación \mathcal{R} es una relación de equivalencia en E.

Reflexiva: Para todo $a \in E$ a $\Re a$ pues a $\Im a$ al ser \Im una relación reflexiva.

Simétrica: Para todo $a, b \in E$, si $a\Re b$ entonces a& b y b& a y en consecuencia $b\Re a$.

Transitiva: Para todo $a, b, c \in E$, si $a\mathcal{R}b$ y $b\mathcal{R}c$ entonces $a\mathcal{S}b$, $b\mathcal{S}a$, $b\mathcal{S}c$ y $c\mathcal{S}b$ y teniendo en cuenta que \mathcal{S} es transitiva, se deduce que $a\mathcal{S}c$ y $c\mathcal{S}a$. Por tanto, $a\mathcal{R}c$.

Falta comprobar que la relación \mathcal{R} no es antisimétrica. En efecto, como \mathcal{S} no lo es, existen $a,b\in E,\,a\neq b$, tales que $a\mathcal{S}b$ y $b\mathcal{S}a$. Por tanto, $a\mathcal{R}b$ y $b\mathcal{R}a$ y $b\neq a$.

Ejercicio 5

Tenemos que card(G) = 4 y sabemos que cualquier subgrupo H de G cumple que card(H) es un divisor de card(G) (veáse p.132 del texto base). Por tanto los subgrupos de G tienen 1, 2 o 4 elementos. Los subgrupos $\{e\}$ y el propio G son, respectivamente, los subgrupos de G con 1 y 4 elementos. Veamos cuántos subgrupos de 2 elementos hay. Los posibles subgrupos son $\{e,a\}$, $\{e,b\}$ y $\{e,c\}$. Para comprobar si son subgrupos, por la proposición 4.14, hay que ver que si X y son elementos del subgrupo también lo es $X * Y^{-1}$, hecho que se comprueba fácilmente en los tres casos (obsérvese que se cumple $A^{-1} = A$, $A^{-1} = A$, $A^{-1} = A$).