

Focal Loss for Dense Object Detection

Seminar in 2023, Paper Review

Samsung Software Developer Community
Korea Vision & Robotics
Gi-Beom Kim
2023.06.10

Contents

- 1. 요약
- 2. Binary Cross Entropy Loss
- 3. Cross Entropy Loss
- 4. Balanced Binary Cross Entropy Loss
- 5. Focal Loss
- 6. Balanced Focal Loss
- 7. RetinaNet
- 8. Results

1-Stage Detector 속도 빠름, 정확도 낮음 2-Stage Detector 속도 느림, 정확도 높음

1-Stage Detector 속도 빠름, 정확도 낮음 Localization, Classification 동시 진행 2-Stage Detector 속도 느림, 정확도 높음

1차: Localization, 2차: Classification

Focal loss는 쉬운 문제(초록색 박스)보다 어려운 문제(빨간 박스)에 가중치를 더 두어 문제를 해결하고자 함

실제로 가중치(감마)를 크게 줄수록 loss가 낮아짐

Korea Vision & Robotics

Binary Cross Entropy Loss

$$CE(p,y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1-p) & \text{otherwise.} \end{cases}$$
 (1)
$$p_{t} = \begin{cases} p & \text{if } y = 1\\ 1-p & \text{otherwise,} \end{cases}$$
 (2)

Binary Cross Entropy Loss

$$CE(p, y) = CE(p_t) = -\log(p_t).$$

Cross Entropy Loss

$$H(P,Q) = -\mathbb{E}_{X\sim P}[\log Q(x)] = -\sum P(x)\log Q(x)$$

$$H(P,Q) = -\sum P(x) \log Q(x)$$

= $-(0 \cdot \log 0.2 + 1 \cdot \log 0.7 + 0 \cdot \log 0.1)$
= $-\log 0.7 \approx 0.357$

Balanced Binary Cross Entropy Loss

- class 불균형을 해결하기 위해 임의의 가중치 α 적용
- Focal Loss의 기반이 되는 수식
- Positive example(object): α
- Negative example(background): 1α

Focal Loss

$$FL(p_t) = -(1 - p_t)^{\gamma} \log(p_t). \tag{4}$$

- Balanced CE 장점: 단일 분류(긍정/부정)에 대해 가중치 적용 가능
- Balanced CE 단점: example들에 대한 가중치 적용 불가능
- Easy example에 대해 가중치를 줄여 loss를 낮게 하고
- Hard example에 대해 가중치를 높여 loss를 높게 학습함
- P_t가 작으면 맞추기 어려운 example == hard example
- P t가 작으면 loss가 커짐
- P t가 크면 loss가 작아짐
- 감마가 커질수록 (1-p_t)의 영향력이 커짐 (논문에서는 감마=2가 베스트)

Balanced Focal Loss

$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} \log(p_t). \tag{5}$$

- Balanced Cross Entropy와 같은 알파 적용
- Focal loss보다 좋은 성능을 보여줌

RetianNet

- One Stage Detection을 위한 아키텍처
- ResNet, FPN 네트워크 채용
- 두 가지 subnet 보유

Results

Results

	backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [16]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [20]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [17]	Inception-ResNet-v2 [34]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [32]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [27]	DarkNet-19 [27]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [22, 9]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [9]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet (ours)	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet (ours)	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2

감사합니다.

Seminar in 2023, Paper Review

Samsung Software Developer Community
Korea Vision & Robotics
Gi-Beom Kim
2023.06.10