

自动驾驶课程

第2节: Apollo&LGSVL联合仿真

主讲人

王文

- 1. 仿真器介绍
- 2.Apollo联合仿真

○ 1.仿真器介绍

\$ 仿真器介绍

自动驾驶在真正实现落地之前,需要大量的路测来对算法进行验证。目前由于开放道路测试仍然受限于法规,对于极端交通以及Corner case场景复现困难,导致在路测上进行算法验证需要花费较大运营和时间成本。

仿真器的要求:

真实还原测试场景,快速验证自动驾驶算法,满足自动驾驶定位、感知、决策规划、和控制的全栈算法闭环。

仿真器	开发引擎	特点	学习成本
AirSim	Unreal Engine4/ Unity	逼真的城市3D场景,支持Python API接口,Lidar、IMU、GNSS、Camera等多种传感器的仿真,提供配套的高精地图。	中等
Carla	Unreal Engine4		中等
LGSVL	Unity		开箱即用,适配 apollo , 易于上手
CarSim		动力学仿真,充分考虑真实世界物理模型对车辆动力学的影响,具备Matlab和Simulink接口	<u>高</u>

⇒ 仿真器介绍

\$ LGSVL仿真器介绍

SVL官方: https://www.svlsimulator.com/

Github: https://github.com/lgsvl/simulator

- 支持ROS、ROS2、CyberRT通信机制
- 同Apollo、Autoware实现开箱即用
- 支持多种高精地图格式(Autoware、 Apollo、lanelet2、Opendrive)

\$ LGSVL仿真器介绍

SVL官方: https://www.svlsimulator.com/

Github: https://github.com/lgsvl/simulator

- 支持自定义场景
- 随机交通仿真(车辆、行人)
- 时间、天气、道路环境变化

\$ LGSVL仿真器介绍

SVL官方: https://www.svlsimulator.com/

Github: https://github.com/lgsvl/simulator

- 支持多LiDAR实时仿真
- Radar, IMU, GNSS, Camera (深度、语义)
- 车道线检测
- 2D & 3D 真值信息

◯ 2.Apollo联合仿真

LGSVL(深蓝版): https://github.com/shenlan2017/ShenLanSVL

车辆: Lincon2017MKZ

传感器配置:

CAN BUS

GPS

Apollo ImuSensor

LiDAR(128线)

Camera_6mm

Camera_12mm

Apollo Car Control

LGSVL(深蓝版): https://github.com/shenlan2017/ShenLanSVL

- 1. 仿真环境搭建,同Apollo端建立通信
- 2. LiDAR-Ins、LiDAR-Camera传感器标定
- 3. NDT建图与定位
- 4. 视觉、激光及融合感知测试
- 5. 汽车循迹+横纵向控制器调参
- 6. 实现Apollo的自动驾驶

⇒ 联合仿真

仿真环境搭建,同Apollo端建立通信

LiDAR-Ins、LiDAR-Camera传感器标定

汽车循迹+横纵向控制器调参

NDT建图与定位

实现Apollo的自动驾驶

感谢聆听

Thanks for Listening