

Melanoma Detection:

Enhancing Precision in Skin
Cancer Detection using Deep
Learning

Presented by:
Hrithik Sarda
Mohit Chodisetti
Valli Meenaa Vellaiyan

Table of Contents

01	Problem Statement	06	Results
02	Related Work	07	Performance Measures
03	Approach	80	Graphs and Plots
04	Solution Overview	09	Conclusion
05	Dataset Information	10	Future Work

01 Problem Statement

- Rising incidence of melanoma, leading to a significant health challenge.
- Importance of early detection for effective treatment and improved survival rates.
- Challenges faced by dermatologists in accurately diagnosing melanoma, particularly in advanced stages.

Study	Main Findings		
Esteva et al. [1]	Demonstrated the potential of deep neural networks in dermatologist-level classification of skin cancer, achieving performance on par with expert dermatologists.		
Haenssle et al. [2]	Conducted a comparative study between a deep learning convolutional neural network and dermatologists in diagnosing melanoma, showing comparable performance.		
Yadav and Jadhav [3]	Investigated the application of deep convolutional neural networks for disease diagnosis using medical images, showcasing the effectiveness of CNN-based algorithms.		
Dildar et al. [4]	Provided a comprehensive review of various deep learning techniques for skin cancer detection, highlighting the superiority of CNNs.		
Perez and Wang [5]	Explored the effectiveness of data augmentation in image classification using deep learning, suggesting the potential of neural augmentation for optimizing classifier performance.		

03 Approach and Solution Overview

1. Initial Approach:

- Created a CNN model with existing imbalanced data (class 1: class 0 = 1:50).
- Low performance due to class imbalance.

2. Addressing Class Imbalance:

- Sourced external images to upsample class 1 (malignant), achieving a ratio of 1:6.
- Performed data augmentation on class 1 to further balance the classes to 1:2.

04 Approach and Solution Overview

3. Model Iterations:

- First Model: Basic CNN with three CNNs and one dense layer: Better performance than the initial model but unsatisfactory.
- Second Model: Deep CNN network with numerous convolutional and max-pooling layers. Excluded augmented images to reduce training time. Used class weights to address class imbalance. Performed well on validation and test sets.
- Third Model: Transfer learning model using the ImageNet framework. Achieved good performance on both validation and test sets.

4. Key Points:

- Initial CNN model had low performance due to class imbalance.
- External images and data augmentation were used to balance classes.
- Deep CNN model without data augmentation used class weights to address imbalance.
- Transfer learning model also performed well on validation and test sets.

05 Dataset Information

- SIIM-ISIC Melanoma Classification Challenge dataset:
 33,126 dermoscopic images. Includes patient demographics, lesion characteristics, clinical history.
- External dataset:
 Only malignant images, integrated for class balance. Original:
 581 malignant, 32,079 benign; after integration: 5,025 malignant, 32,079 benign.

Q

Training results (Model 1)

Q

Training results (Model 2)

Q

Training results (Model 3)

06 Results and Performance Measures

Testing results

1. CNN with External Data and Data Augmentation:

- Demonstrates strong precision, indicating accurate classification of positive instances.
- Shows a recall of 0.714, suggesting some positive instances were missed.

2. DCNN with External Data (No Data Augmentation):

- Exhibits higher precision at 0.933 and outstanding recall of 0.966.
- Shows robustness in correctly identifying positive instances.

3. Inception Model with External Data (No Data Augmentation):

- Showcases a precision of 0.947 and a recall of 0.947, indicating balanced performance.
- Stands out as a reliable classifier for the given task.

#	Model Name	Accuracy	Precision	Recall
1	CNN	0.950	0.882	0.714
2	DCNN	0.981	0.933	0.966
3	Inception	0.988	0.947	0.947

09 Conclusion

- The Inception model demonstrated the highest precision, recall, and accuracy scores among the CNN, DCNN, and Inception models.
- The Inception architecture shows promise in accurately diagnosing skin lesions, balancing model complexity with superior performance.
- Consideration of both computational efficiency and performance metrics is crucial for model deployment in real-world applications.

10 Future Work

- Further optimization of model architectures to improve performance and efficiency.
- Exploration of advanced regularization techniques to mitigate overfitting.
- Investigation of domain-specific features to enhance model performance and robustness in dermatological image classification tasks.

Thank you!