Bijection

Clipping

Extrapolation

Unbound: 0.8%

14

12

virial

Based on the uncertainty-weighted average of the property fits.

Rosolowsky & Leroy (2006 Rosolowsky et al. (2008)

Bijection

Clipping

Extrapolation

12 10 8 6

14

Unbound: 0.3%

virial_dendro

Based on the intensity-weighted 2nd moment along the v-axis.

Rosolowsky & Leroy (200 Rosolowsky et al. (2008)

Bijection

14

12

10

bijection

Unbound: 4.5%

Clipping

Extrapolation

Based on the Gaussian fit to the average spectrum.

Rosolowsky & Leroy (2006 Rosolowsky et al. (2008)

virial

Based on the uncertainty-weighted average of the property fits.

virial_dendro

Based on the Gaussian fit to the average spectrum.

virial_refit

Based on the Gaussian fit to the average spectrum.

Rosolowsky & Leroy (200 Rosolowsky et al. (2008)

virial

Based on the uncertainty-weighted average of the property fits.

virial_dendro

Based on the Gaussian fit to the average spectrum.

virial_refit

Based on the Gaussian fit to the average spectrum.

virial

Based on the uncertaintyweighted average of the property fits.

virial_dendro

Based on the Gaussian fit to the average spectrum.

virial_refit

Based on the Gaussian fit to the average spectrum.

Rosolowsky & Leroy (200 Rosolowsky et al. (2008)