COAST GUARD RESEARCH AND DEVELOPMENT CENTER GROTON CT F/6 13.
CHARACTERIZATION OF THE MOVEMENT OF A SINKER DURING DEPLOYMENT, (U)
OCT 77 WE COLBURN, J & CUTLER, R A MARCOLINI
CGR/DC-28/77 USCS =-0-2-80 MI AD-A080 400 F/6 13/10 UNCLASSIFIED] 0F2 A080400

			-	echnical Report D	-
1. Repart No.	<u> </u>	2. Government Accessio	on No. 3.	Recipient's Catalog N	•.
CG D-2-80	✓			\mathcal{T}	
4. Title and Subi	niele	<u></u>	5.	Hoport Data	
	Bridge Confidence and the second of the seco	VEMENT OF A SINE	KER DURING	OCTOBER #077	
DEPLOYMENT	ZATION OF THE MO	VERIENT OF A STAT	EK DOKING /	Performing Organisation	e tode
<i></i> .	هـ د. د. است ك كواني ب من الكوان بين خود بين من ويوري بين من الكوان	of an beliefer at high one fire was therefore a long of the con-	8 -	Performing Organization	na Regart No.
A TO THE PARTY OF	E. Colburn, Jr.	J. W. Cutler.		<i>V</i>)	
R. A. Marc	olihi 🗪 R. T./		La constant	CG_R/DC=28/7	7/
	tes Coast Guard	jymoestaanen et	102	West Win No. (TRAIS	រា
	nd Development Co	enter /	11.	Contract or Grant No.	
Avery Poin	t		<u></u>		
Groton, CT	06340		13.	Report and P	eriod Covered
	gency Name and Address		(FINAL REP	COT
	of Transportation tes Coast Guard	on		INAL REP	
Office of	Research and Deve	elopment	14/	Seengaging Agency C	940
	, DC 20590				
15. Supplementat	12	1551	•		
					
16. Abstract					
	es were made to				
	ers (which are us	sed to moor itos	ating alds to na	vigarion) as	thev tall
		ttom of the sea			
			. A series of e	xperiments wa	s conducted
in which s	inkers were dropp	ped in water and	. A series of e	experiments wa	s conducted recorded.
in which s Included w		ped in water and in highly contr	. A series of e d their offsets rolled condition	experiments wa at the bottom as, some of wh	s conducted recorded.
in which s Included w recorded o	inkers were droppers in film; and drops	ped in water and in highly contr s from a barge i	. A series of education their offsets rolled condition in more typical	experiments wa at the bottom as, some of wh field conditi	s conducted recorded. ich were ons.
in which s Included w recorded o The e	inkers were droppere sinker drops n film; and drops	ped in water and in highly contr s from a barge i	. A series of editheir offsets rolled condition in more typical ers were conside	experiments wa at the bottom as, some of wh field conditi ered: sinker	s conducted recorded. wich were cons.
in which s Included w recorded o The e 8500 lbs.)	inkers were droppere sinker drops n film; and drops ffects of the followers, depth of water	ped in water and in highly contr s from a barge i llowing paramete (up to 102 ft.)	. A series of ed their offsets rolled condition in more typical ers were conside), height of sin	experiments wa at the bottom as, some of wh field conditi ered: sinker aker above wat	s conducted recorded. ich were ons. size (up to er at time
in which s Included w recorded o The e 8500 lbs.) of release with respe	inkers were droppere sinker drops n film; and drops ffects of the following depth of water (up to 6 ft.), out to the centros	ped in water and in highly control in highly con	. A series of ed their offsets rolled condition in more typical ers were consided, height of sin knots, locati	experiments wa at the bottom as, some of wh field conditi ered: sinker aker above wat on of center	s conducted a recorded. ich were ons. size (up to er at time of gravity
in which s Included w recorded o The e 8500 lbs.) of release with respe	inkers were droppere sinker drops n film; and drops ffects of the followed to 6 depth of water (up to 6 ft.), o	ped in water and in highly control in highly con	. A series of ed their offsets rolled condition in more typical ers were consided, height of sin knots, locati	experiments wa at the bottom as, some of wh field conditi ered: sinker aker above wat on of center	s conducted a recorded. ich were ons. size (up to er at time of gravity
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o	inkers were drops ere sinker drops n film; and drops ffects of the for , depth of water (up to 6 ft.), out to the centros r absence of characteristics.	ped in water and in highly control in attached.	A series of ed their offsets rolled condition in more typical ers were consided, height of sin knots, location, initial tilt	experiments wa at the bottom is, some of wh field conditi ered: sinker aker above wat on of center of the sinker	s conducted recorded. ich were cons. size (up to cer at time of gravity and the
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is	inkers were droppere sinker drops on film; and drops ffects of the formatter, depth of water (up to 6 ft.), out to the centroise absence of characteristics.	ped in water and in highly control in attached.	A series of ed their offsets rolled condition in more typical ers were consided), height of sin knots, location, initial tilt	experiments wa at the bottom is, some of wh field conditi ered: sinker aker above wat on of center of the sinker	s conducted recorded. ich were ons. size (up to er at time of gravity, and the water depth.
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is to a maxim	inkers were droppere sinker drops on film; and drops ffects of the formatter, depth of water (up to 6 ft.), out to the centroise absence of chair found that offseum of about 12 fects of the control of the centrol of	ped in water and in highly control in highly control in highly control in highly control in highly in attached. The set in still water in highly in attached.	A series of ed their offsets rolled condition in more typical ers were consided, height of sin knots, location, initial tilt increase with sinter. The height	experiments wa at the bottom is, some of wh field conditi ered: sinker aker above wat on of center of the sinker aker size and above water,	s conducted recorded. ich were cons. size (up to er at time of gravity, and the water depth, initial
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is to a maxim tilt, and	inkers were droppere sinker drops on film; and drops ffects of the formatter, depth of water (up to 6 ft.), out to the centroise absence of characteristics.	ped in water and in highly control in highly control in highly control in the same of the sinker in attached. Lets generally in the set in still water of chain have	A series of ed their offsets rolled condition in more typical ers were consided, height of sin knots, location, initial tilt increase with sinter. The height we small or negli	experiments wa at the bottom is, some of wh field conditi ered: sinker eker above wat on of center of the sinker eker size and above water, igible effect	s conducted a recorded. iich were ons. size (up to er at time of gravity, and the water depth, initial s. Some
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is to a maxim tilt, and sinkers ar the sinker	inkers were droppere sinker drops on film; and drops of fects of the formatter (up to 6 ft.), out to the centroiser absence of characteristics of the found that offsetum of about 12 feromesence or absence found to exhibit as it falls, and	ped in water and in highly control in highly control in highly control (up to 102 ft.) current (up to 4 id of the sinker in attached. Lets generally in the pet in still water of chain have it a bias in off it the effect of	A series of ed their offsets rolled condition in more typical ers were consided, height of sind knots, location, initial tilt increase with sinter. The height we small or neglifsets in one direcurrent on offs	experiments wa at the bottom is, some of wh field conditi ered: sinker eker above wat on of center of the sinker eker size and above water, igible effect ection. The	s conducted a recorded. iich were ons. size (up to er at time of gravity, and the water depth, initial s. Some trajectory o
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is to a maxim tilt, and sinkers ar the sinker	inkers were droppere sinker drops on film; and drops of the following ffects of the following fects of the following to 6 ft.), on the centroist absence of characteristics of about 12 febresence or absence found to exhibit	ped in water and in highly control in highly control in highly control (up to 102 ft.) current (up to 4 id of the sinker in attached. Lets generally in the pet in still water of chain have it a bias in off it the effect of	A series of ed their offsets rolled condition in more typical ers were consided, height of sind knots, location, initial tilt increase with sinter. The height we small or neglifsets in one direcurrent on offs	experiments wa at the bottom is, some of wh field conditi ered: sinker eker above wat on of center of the sinker eker size and above water, igible effect ection. The	s conducted a recorded. iich were ons. size (up to er at time of gravity, and the water depth, initial s. Some trajectory o
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is to a maxim tilt, and sinkers ar the sinker	inkers were droppere sinker drops on film; and drops of fects of the formatter (up to 6 ft.), out to the centroiser absence of characteristics of the found that offsetum of about 12 feromesence or absence found to exhibit as it falls, and	ped in water and in highly control in highly control in highly control (up to 102 ft.) current (up to 4 id of the sinker in attached. Lets generally in the pet in still water of chain have it a bias in off it the effect of	A series of ed their offsets rolled condition in more typical ers were consided, height of sind knots, location, initial tilt increase with sinter. The height we small or neglifsets in one direcurrent on offs	experiments wa at the bottom is, some of wh field conditi ered: sinker eker above wat on of center of the sinker eker size and above water, igible effect ection. The	s conducted a recorded. iich were ons. size (up to er at time of gravity, and the water depth, initial s. Some trajectory o
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is to a maxim tilt, and sinkers ar the sinker	inkers were droppere sinker drops on film; and drops of fects of the formatter (up to 6 ft.), out to the centroiser absence of characteristics of the found that offsetum of about 12 feromesence or absence found to exhibit as it falls, and	ped in water and in highly control of the same of the sinker in attached. Let's generally in the same of the sill water of the same of the same of the same of the same of the effect of the effect of and experimental	A series of ed their offsets rolled condition in more typical ers were consided, height of sind knots, location, initial tilt increase with sinter. The height we small or neglifsets in one direcurrent on offs	experiments wa at the bottom is, some of wh field conditi ered: sinker eker above wat on of center of the sinker eker size and above water, igible effect ection. The eets, are discented.	s conducted a recorded. iich were ons. size (up to er at time of gravity, and the water depth, initial s. Some trajectory o
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is to a maxim tilt, and sinkers ar the sinker theoretica	inkers were drops ere sinker drops on film; and drops of fects of the following the following to 6 ft.), of the centrois of the centrois of absence of characteristics of the found that offsour of about 12 feresence or absence found to exhibit as it falls, and 1 point of view and the feresence of the found to exhibit as it falls, and 1 point of view and 1 point of	ped in water and in highly control in highly control in highly control in the sinker in attached. Lets generally in the sinker in still water in still water of chain have of chain have it a bias in off in the effect of and experimental in the sinker in attached.	A series of editheir offsets rolled condition in more typical ers were consided, height of sind knots, location, initial tilt increase with sind ter. The height we small or neglifisets in one direction offsets are presedual. 16. Distribution Statement	experiments wa at the bottom is, some of wh field conditi ered: sinker eker above wat on of center of the sinker eker size and above water, igible effect ection. The ects, are discented.	as conducted a recorded. Inch were ons. size (up to er at time of gravity, and the water depth, initial as. Some trajectory or sussed from a
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is to a maxim tilt, and sinkers ar the sinker theoretica	inkers were droppere sinker drops on film; and drops of fects of the formatter (up to 6 ft.), out to the centroiser absence of characteristics of the found that offsetum of about 12 feromesence or absence found to exhibit as it falls, and	ped in water and in highly control in highly control in highly control in highly control in the sinker in attached. Lets generally in the sinker in attached in still water of chain have of chain have it a bias in off in the effect of and experimental in the many control in the many co	A series of editheir offsets rolled condition in more typical ers were consided, height of sind knots, location, initial tilt increase with sind ter. The height we small or neglifisets in one direction offsets are presedual. 16. Distribution Statement Document is a	experiments wa at the bottom is, some of wh field conditi ered: sinker eker above wat on of center of the sinker eker size and above water, igible effect ection. The ects, are discented.	is conducted a recorded. Inch were ons. size (up to er at time of gravity, and the water depth, initial is. Some trajectory or ussed from a the U.S. publiche U.S. publiche Conducted in the con
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is to a maxim tilt, and sinkers ar the sinker theoretica	inkers were drops ere sinker drops on film; and drops of fects of the foil, depth of water (up to 6 ft.), out to the centrois absence of chains of about 12 fe presence or absence found to exhibit as it falls, and 1 point of view and the property of the control	ped in water and in highly control in highly control in highly control in highly control in the sinker in attached. Lets generally in the sinker in attached in still water of chain have of chain have it a bias in off in the effect of and experimental in the many control in the many co	A series of editheir offsets rolled condition in more typical ers were consided, height of sind knots, location, initial tilt increase with sind ter. The height we small or neglifisets in one direction offsets in one direction offsets are presedual. 16. Distribution Statement Document is a through the N	experiments wa at the bottom is, some of wh field conditi ered: sinker eker above wat on of center of the sinker eker size and above water, igible effect ection. The ects, are discented.	s conducted a recorded. Inch were ons. size (up to er at time of gravity, and the water depth, initial as. Some trajectory of ussed from a the U.S. publical Informatical Informatical Informatical are considered.
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is to a maxim tilt, and sinkers ar the sinker theoretica 17. Key Words Sinker, Si ment, Anch	inkers were drops ere sinker drops on film; and drops of fects of the following ffects of the following ffects of the following fect to the centrois of absence of characteristics of the found that offsour of about 12 for presence or absence found to exhibit as it falls, and all point of view and the found to fect of the fect	ped in water and in highly control of the same of the sinker in attached. Let's generally in the set in still water of chain have a bias in officiand experimental of the effect of the control of the effect	A series of editheir offsets rolled condition in more typical ers were consided, height of sind knots, locating, initial tilt increase with sinter. The height we small or neglifsets in one direcurrent on offsel data are present through the Nation Service,	experiments was at the bottom is, some of where the sinker is and above water, igible effection. The sets, are discontal Techn Springfield,	s conducted recorded. ich were ons. size (up to er at time of gravity, and the water depth, initial s. Some trajectory or ussed from a che U.S. publical Informa-VA 22161
in which s Included w recorded o The e 8500 lbs.) of release with respe presence o It is to a maxim tilt, and sinkers ar the sinker theoretica 17. Key Words Sinker, Si ment, Anch	inkers were drops ere sinker drops on film; and drops of fects of the foil, depth of water (up to 6 ft.), out to the centrois absence of chains of about 12 fe presence or absence found to exhibit as it falls, and 1 point of view and the property of the control	ped in water and in highly control in highly control in highly control in highly control in the sinker in attached. Lets generally in the sinker in attached in still water of chain have of chain have it a bias in off in the effect of and experimental in the many control in the many co	A series of editheir offsets rolled condition in more typical ers were consided, height of sind knots, locating, initial tilt increase with sinter. The height we small or neglifsets in one direcurrent on offsel data are present through the Nation Service,	experiments wa at the bottom is, some of wh field conditioned: sinker where above wat on of center of the sinker above water, igible effection. The est, are disconted.	as conducted a recorded. The cons. The constant is a constant in the constant is a constant in the constant in

Form DOT F 1700.7 (8-72) Reproduction of form and completed page is authorized

1408 130

METRIC CONVERSION FACTORS

	1	9	1 =	ī	1			~	J.	ì					3 4				3	1	7	ī	-	7				,-				
; Massures	7.		feet a	they.	anote s			Sequence mechan	special avenue	Equate miles	40.00				Carte es	shurt luns		٠	Property of the second	T T	disease.	F elluns	Cubic feet	Cubic yards		_		Fabrumbett tempet		, Z	091 091 091	
Approximate Conversions from Metric Maasures	Maltiply by	LENGTH	4 G	: 2	9.0		AREA	9.16		7.	4.5 -		MASS (weight)		0.036	=		VOLUME	8	2.7	97.1	2.0	36	2		TEMPERATURE (exact)		9. 5 (then		•	021 02	
Appreximate Conve	When You Know		continueters mules	mulars	hitanatars		İ	bythere continuities	Saprant Bustoff	Square beliancies	hor.taesh (10,000 m				Grains	tomes (1000 kg)		}		lites.		47941	Cubic meters	Cubic meters		TEN TEN	ł	Celstate		24	02-02-03	
	Symbol	1	i 5 a	· E	5			7#5	~ _e '	į	2				a J	? _			;	I -	-	_'	7.	" ±				نز		•	Ģ 1 Ç	
23		oz	6t	1		21 	9 t	! ! !!!!!!	st		•t 	E	: t 	15		t t	0		6	. • : :	i Hi!!	2	!		: :	5	! !!!!!!		(C	iona		
' ' ' 	1,1,1,1,	'1' '1' 	. 1.1.1	,	[']'	!	11,1,1	6	1	l' 	11	'1'	' ' 	ļ'!'	j'!'] "1"	` '!'	<u> </u>	"1"	¦'l'	1	']'	! *	' ! '	 ' '	'	' '	' '!'] '''	'l' :	inche	•
	Symbol			3 (i e	1			~ §~	'n	e Î	2			•	P	-			17	1	-	-	-		1 7	L		'n		į.	
Measures	To find			Capelitant last &	CEIN HOLLIS MODILIS	hilumeters			September Centifications	square malus	Square malera Square kilumins	hectares			carrie of	helve, pesses	***************************************			4111111111		leter >	FIETS	Inters	1001	Collect thereto			Cutsus	bergait alta e	harbert tollen i mer fellu bit m. Piate 2000. 10-200.	
reusions to Motric	Maltiply by	LENGTH		9 7.	g e	97	AHEA		4	6.03 6.03	6.E	9.0		MASS (weight)	82	9.45	6.9	VOLUME		٠ -	2 3	979	9,0	96.0	. (2.0	I EMPERATURE (exact)	5 2 Lafter	substacting 32)	Control and mary defected to the CO TO 20 200	
Approximate Canv	When Yes Know			anches.	100	an las			safras sombe	the feet	spire arrive	70102	:		Charles	chands	(2000 th)			4 sporter as	definition of the second		4	s prods	initias	College Total		T T T T T T T T T T T T T T T T T T T	Fabrenheit	lettipus altis a	series of the colour case broater	
																															4 6 7	
Approximate Conversions to Metric Measures		HENGIN		•	•		AHEA										3											IEMPERATORE			That is 2.5 the config. The offer countries of contributions and marchly trade of Respire and Nacions, Proceedings of 25.30 contributions for CD1.	

ABSTRACT

Studies were made to determine the horizontal offset incurred by typical Coast Guard sinkers (which are used to moor floating aids to navigation) as they fall from the surface to the bottom of the sea. A series of experiments was conducted in which sinkers were dropped in water and their offsets at the bottom recorded. Included were sinker drops in highly controlled conditions, some of which were recorded on film; and drops from a baige in more typical field conditions.

The effects of the following parameters were considered: sinker size (up to 8500 lbs), depth of water (up to 102 ft.), height of sinker above water at time of release (up to 6 ft.), current (up to 4 knots), location of center of gravity with respect to the centroid of the sinker, initial tilt of the sinker, and the presence or absence of chain attached.

It is found that offsets generally increase with sinker size and water depth, to a maximum of about 12 ft. in still water. The height above water, initial tilt, and presence or absence of chain have small or negligible effects. Some sinkers are found to exhibit a bias in offsets in one direction. The trajectory of the sinker as it falls, and the effect of current on offset, are discussed from a theoretical point of view and experimental data are presented.

Auceasion For	
HTIS GREAT DDG TAB Unannounced Jastification	
Ey	
Availability Coder Availability Coder Availabd/or	
A special	

ACKNOWLEDGEMENTS

The authors wish to express their appreciation for the efforts of those who helped in the completion of this report. In particular we gratefully acknowledge the technical and analytical contributions of Analysis and Technology, Inc. of North Stonington, Connecticut. We are also indebted to Mr. Richard Rush and Ms. Betty Mayfield formerly of the U.S. Coast Guard Research and Development Center, for their valuable contributions, particularly in the area of statistical analysis.

TABLE OF CONTENTS

1.0	INTR	ODUCTIO		<u>Page</u> 1
•••	1.1	Backgro Object	ound	1
2.0		•	OF EXPERIMENTS	3
			•	
	2.1	2.1.1	till Water Tank Experiments First Phase NSWC Experiments Second Phase NSWC Experiments	3 7 7
	2.2		Current Speed Experiments Circulating Water Channel (CWC) Moving Carriage in Deep Water Basin	10 10 12
	2.3	Full Sc	cale Tests at CEL, Port Hueneme, California	12
3.0	STAT	ISTICAL	ANALYSIS OF DATA	19
	3.1	Offset	Distribution in Still Water	19
	3.2	Offset 3.2.1	Bias and Directionality Offset Bias and Directional Correlation	31 42
	3.3	3.3.1	Effects and 95% Confidence Circles NSWC Factor Effects and Confidence Circles CEL Factor Effects and Confidence Circles Preliminary Phase Results	42 45 51 53
4.0	HYDR	ODYNAMIC	C ANALYSIS AND QUALITATIVE OBSERVATIONS	55
	4.1	4.1.1	of Current on Offset Time of Descent and Terminal Velocity Maximum Possible Offset Due to Current	55 55 58
	4.2	4.2.1	Motion in Still Water Observations of Sinker Motion Possible Mechanisms Affecting Sinker Motion	60 60 66
5.0	CONC	LUSIONS		69
6.0	RECO	MMENDAT	IONS	71
REFE	RENCE	S CITED		72
ADD I	TIONA	L REFER	ENCES	73

APPENDIX	A: RISPIN, PETER P., AN INVESTIGATION OF THE PLACEMENT ERRORS OF MODEL BUOY SINKERS, DINSRDC REPORT	A-1
APPENDIX	B: TEST DATA B1: WASHINGTON TEST DATA (NSWC) B2: CALIFORNIA TEST DATA (CEL)	B-1 B-2 B-12
APPENDIX	C : ANOVA METHODS	C-1
	LIST OF FIGURES	
1-1. 2-1. 2-2. 2-3. 2-4. 2-5. 2-6. 2-7. 2-8. 2-9. 2-10. 2-11.	Concrete Buoy Sinker Characteristics Positioning of a Sinker at the NSWC Tank 100 Foot Tank at NSWC A Sinker With Chain Immediately after Release Measuring the Horizontal Offset of a Sinker Side and Front Elevation of Circulating Water Channel Vertical Current Profile in the Circulating Water Channel Sinker Drop into Deep Water Basin Mass and Specific Gravity Determination of a Sinker A 1000-Pound Sinker Immediately Prior to Release The C.E.L. Warping Tug An 8500-Pound Sinker Being Readied for Release in Port	2 4 5 6 9 10 11 11 13 15 17
3-1. 3-2. 3-3. 3-4. 3-5. 3-6. 3-7. 3-8. 3-9.	Hueneme Harbor NSWC Sinker Offsets for Sinker #4 (250 lb) NSWC Sinker Offsets for Sinker #1 (500 lb) NSWC Sinker Offsets for Sinker #2 (500 lb) NSWC Sinker Offsets for Sinker #6 (500 lb) NSWC Sinker Offsets for Sinker #5 (1000 lb) Port Hueneme (CEL) Sinker Offsets for 1000 lb. Sinkers Port Hueneme (CEL) Sinker Offsets for 5000 lb. Sinkers Port Hueneme (CEL) Sinker Offsets for 8500 lb. Sinkers CEL Sinker Drops for Each Individual Sinker in 88 Feet of Water	20 21 22 23 24 25 26 27 28
3-10.	CEL Sinker Drops for Each Individual Sinker in 56 Feet of Water	29
3-11.	CEL Sinker Drops for Each Individual Sinker in 24 Feet of Water	30
3-12a.	Kolmogorov-Smirnov Test Plot of NSWC Still Water Cumulative Distribution of Offsets with a Range CDF Overlay	32
3-12b.	Port Hueneme Cumulative Distribution of Offsets with a Range CDF Overlay	33
3-13. 3-14. 3-15. 3-16. 3-17. 3-18. 3-19.	Scatter Diagram (c.g.) of NSWC Data for Sinker #4 (250 lb) Scatter Diagram (c.g.) of NSWC Data for Sinker #1 (500 lb) Scatter Diagram (c.g.) of NSWC Data for Sinker #2 (500 lb) Scatter Diagram (c.g.) of NSWC Data for Sinker #6 (500 lb) Scatter Diagram (c.g.) of NSWC Data for Sinker #5 (1000 lb) Location of Center of Gravity of Sinkers Scatter Diagram of all NSWC Sinker Drop Offsets Relative	37 38 39 40 41 43 44
3-20. 3-21. 4-1a. 4-1b. 4-2a. 4-2b.	to Corner Nearest Center of Gravity Confidence Circle Comparison Factorial Diagram for the Most Probable Offset 1000-Pound Sinker Movie Plot 1000-Pound Sinker Composite Movie Plot 60-Pound Sinker Movie Plot 60-Pound Sinker Composite Movie Plot	46 47 62 63 64 65

LIST OF TABLES

Physical Characteristics of the NSWC Sinkers	8
Physical Characteristics of the CEL Sinkers	14
Table of Bias Distances, Directions, Major and Minor	35
Standard Deviations and Orientation Angles for Sinkers	
Dropped at NSWC	
Table of Bias Distances, Directions, Major and Minor	36
Standard Deviations and Orientation Angles for the	
1000-Pound Sinkers Dropped at CEL	
Circular Normal σ^2 For NSWC Sinker Drops	48
Regression Equations for Radii of 95% Confidence Circles	50
and One Standard Deviation	
Circular Normal σ^2 for CEL Sinker Drops	52
2-way ANOVA Using Circular Normal σ 's:	54
8500-Pound Sinkers vs. Depths (56' & 88')	
	56
	59
Data	
Calculated Sinker Offset Due to Current	61
	Table of Bias Distances, Directions, Major and Minor Standard Deviations and Orientation Angles for Sinkers Dropped at NSWC Table of Bias Distances, Directions, Major and Minor Standard Deviations and Orientation Angles for the 1000-Pound Sinkers Dropped at CEL Circular Normal σ^2 For NSWC Sinker Drops Regression Equations for Radii of 95% Confidence Circles and One Standard Deviation Circular Normal σ^2 for CEL Sinker Drops 2-way ANOVA Using Circular Normal σ 's: 8500-Pound Sinkers vs. Depths (56' & 88') Sinker Drop Descent Times and Velocities Maximum Possible Offset Due to Current Based on Empirical Data

NOTATION

- A Cross Sectional Area of Body
- Cd Drag Coefficient on Body
- Dt Descent Time
- fs Vortex Shedding frequency
- g Acceleration Due to Gravity
- Ht Drop Height
- L Length of Side of Sinker
- m Mass of a Body
- mh Added Mass in Horizontal Motion
- m_v Added Mass in Vertical Motion
- R Correlation Coefficient
- S Strouhal Number
- S.G. Specific Gravity
- Ss Sinker Size
- u Horizontal Velocity
- U Stream Velocity
- v Vertical Velocity
- Vt. Terminal Velocity
- W Weight of Body
- Wd Water Depth
- Ww Immersed Weight of Body
- x Horizontal Displacement
- y Vertical Displacement
- σ Standard Deviation
- y Specific Weight of Body
- ho Mass Density of Fluid

1.0 INTRODUCTION

1.1 Background

The U.S. Coast Guard is the agency charged by Congress with the responsibility for establishing, operating, and maintaining aids to maritime navigation (Reference 1). Included in this responsibility is the exercise of due care in ensuring that the actual position of the aid itself, and the information advertised to the public by the government, are in concurrence. Among the contributing factors that affect the accuracy with which a navigational buoy is located at the desired position is the horizontal offset incurred by the buoy's sinker from the time it is deployed at the water's surface until it falls through the water column to the seabed. This study was undertaken as a task in the Aids to Navigation Position Accuracy and Reliability (ANPAR) Research and Development Project to assess the extent of error incurred during the sinker's descent in order to determine the significance of this error in relation to other positioning errors.

Figure 1-1 gives the nominal dimens ins of standard Coast Guard sinkers, but in practice actual sinkers differ from this considerably in both primary geometrical factors such as length, height and weight, and secondary factors such as rounding of corners and location of centers of gravity. Since all of these affect the hydrodynamic behavior of the sinker, it was felt that complete quantification of the sinker drop problem would be impractical, if not impossible; therefore the following more realistic objectives were aimed for.

1.2 Objectives

The objective of this study was to assess the propensity for a sinker to suffer lateral displacement from its initial drop point in terms of current, sinker weight, water depth, vertical release height and attitude. Specifically, this study attempts to:

- a. Assess the effect of current during sinker descent.
- b. Examine the trajectory of the sinker as it falls.
- c. Determine the nature of the distribution of sinker offsets.
- d. Establish a family of error ellipses resulting from horizontal displacement of sinkers during their descent from the water surface to the seabed.
- e. Determine the effects of certain major factors such as sinker size and water depth on the above.

WT (lbs)	W	L	Н	E	D
12750	60	5.25	42	5.5	2
8500	60	5.25	28	5.5	2
6500	58	5.25	23	5.5	2
5000	54	5 2 5	21	5.5	2
4000	50	5,25	19	5,5	2
3000	45	5,25	18	5,5	2
2000	40	5.25	15	5.5	1.5
1000	32	5.25	12	5.5	1.5
500	24	5.25	10	5.5	1.5
250	20	5,25	8	5.5	1.5

All dimensions in inches

Figure 1-1. Concrete Buoy Sinker Characteristics

2.0 DESCRIPTION OF EXPERIMENTS

A series of experiments were conducted using test facilities at the Naval Surface Weapons Center (NSWC) in White Oak, Maryland, the David Taylor Naval Ship Research and Development Center (DTNSRDC) in Carderock, Maryland, and the Civil Engineering Laboratory (CEL) Port Hueneme, California. The experimental effort was of an iterative nature wherein the first set of experiments conducted during the summer of 1976 at NSWC has the very limited objectives of observing the motion of the sinkers during deployment as a quide for designing future tests and the recording of sinker motion via moving pictures. Additional movies were taken at DTNSRDC in the Circulating Water Channel (CWC) of very small sinkers dropping in currents up to 4 knots. In order to assess the effect of current on larger sinkers, a 250 lb. sinker was dropped from a moving carriage into the Deep Water Basin at DTNSRDC to simulate dropping a sinker from a fixed point into a constant current. After the completion of the movies and observation of the motion from a qualitative standpoint, another test series (second phase) was initated at NSWC with more attention given to the orientation of the sinker. Displacement and directionality observations were recorded for various heights of the sinker above the water, water depths, and initial angles of the sinker to the water surface, as well as the condition of having chain or no chain. One size chain (1/2 inch) was used throughout the testing. These tests were conducted for the larger size sinkers (from 250-1,000 pounds). The 1,000 pound limitation was based upon tank capabilities. The tests run at Port Hueneme were undertaken because of this facility's capability to handle large size Coast Guard sinkers. The tests were run with sinkers from 1,000 to 8,500 pounds in weight. Thus, it can be seen that tests have progressed from initial observations of motion (during which time quantitative tests were being designed) to conducting of quantitative tests in controlled facilities (however, limited as to a maximum sinker size) to the largest size sinker tests conducted in a uncontrolled environment (with a resultant loss in accuracy).

2.1 NSWC Still Water Tank Experiments

The sinkers were dropped in a still water tank located at the U.S. Naval Surface Weapons Center in White Oak, Maryland. This tank is 104 feet deep, 50 feet in diameter, and has an elevator floor which can be adjusted to any depth or raised above the surface for the measurement and removal of the sinkers after a drop test. The sinkers were dropped from a gantry crane located above the tank by the use of a remotely activated electrical release mechanism. A fixed walkway projects over the center of the tank at a height of 4 feet above the water. It was used to orient the sinkers in the desired position prior to drop. Figures 2-1 and 2-2 show the general layout of the test tank. In those tests in which chain was used, the chain was faked out on a wooden pallet 1-1/2 feet above the surface of the water. This pallet was approximately 3-1/2 feet by 4 feet with the boards running perpendicular to the chain faking. All 93 feet of 1/2 inch chain was faked out on the pallet and the end of the chain was secured to the gantry. Figure 2-3 shows that upon release of the sinker the chain streamed off the pallet in a manner

The sinker was positioned in a selected location and orientation. The electrically operated release (shown above the sinker) was actuated remotely and the descent was timed by visual observation through a glass-pottom boat 'background'.

FIGURE 2-1. POSITIONING OF A SIMKER AT THE MEMO TANK

THIS PARK IS BUST QUALITY PRACTAGANGE TWO CORE PARK OF THE PARK OF

Figure 2-2. 100 FOOT TANK AT HSWC

The chain streamed off the pallet after the sinker's release. FIGURE 2-3. A SINKER WITH CHAIN IMMEDIATELY AFTER RELEASE

similar to that on a buoy tender in shallow water. (Note: chain is stopped off in deep water as a standard practice; this was not done here.)

2.1.1 First Phase NSWC Experiments

The first experimental phase consisted of dropping various size sinkers into 88 feet of fresh water in the 100 ft still water tank while visual observations were made and movies taken. Sinkers were dropped with and without a constraining chain faked out above the drop point. This was to find whether or not a gross difference in offset and descent velocity existed due to the chain. The drops were timed by means of a stopwatch and movies were taken. The time interval between movie frames was maintained at 1/16 of a second so that the film could be used during analysis to obtain velocity data (displacement-time and velocity-time plots). The camera positions are at 12.5 foot intervals starting 12.5 feet below the water surface. Viewing ports are in similar positions around the tank. A buoyant wooden platform was attached to the moveable floor so as to cushion the impact of the falling sinker.

Each sinker was suspended just above the water surface by means of an electrically operated release. On a signal the release was actuated and the sinker began to fall. Meanwhile a vertical array of movie cameras, one at each of the camera positions mentioned above, was also actuated. The sinker fell approximately along the center line of the tank, and its motion was recorded by each of the cameras in turn. The sinker fell on or near a buoyant platform a few inches above the moveable floor.

The sinkers tested were of similar shape and specific gravity. The shape was that of a rectangular solid with dimensions of width and breadth approximately twice that of each sinker height. The specific gravity of each of the sinkers tested was calculated from the wet and dry sinker weights and found to be very close to 2.4. The physical characteristics of the sinkers used in both the NSWC and DTNSRDC experiments are provided in Table 2-1.

2.1.2 Second Phase NSWC Experiments

During the 2nd phase of the NSWC experiments quantitative measurements of offset and direction were made and the time of descent recorded. Time of descent was measured by visual observation from the water surface through a glass-bottom boat. Qualitative observations of the sinker's trajectory were also made in the boat. A stopwatch was started at the time the electrically operated release was actuated and included the free-fall time for those sinkers that were suspended above the water surface. When possible, more than one sinker drop was conducted for each lowering of the elevator floor in order to reduce test time. The chain was used only on the last drop of the elevated floor sequence in order to prevent the interference of the suspended chain with subsequent drops.

A STATE OF THE STA

TABLE 2-1. PHYSICAL CHARACTERISTICS OF THE NSWC SINKERS

SINKER NUMBER	TYPE*	AIR WEIGHT (lbs)	WATER WEIGHT (lbs)	LENGTH (in)	HEIGHT (in)	SPECIFIC GRAVITY	TAPER
1 1	E	482	280	24.0	9.8	2.39	NO
2	E	525	307	24.0	10.8	2.41	NO
3	D	302	177	NOT	USED	2.42	YES
4	D	267	160	18.3	9.8	2.50	NO
5	F	1090	635	31.9	12.6	2.40	NO
6	E	490	287	24.0	9.8	2.41	NO
	Α	2.5		4.0	2.0	2.4	NO
	В	16		8.0	4.0	2.4	NO
	С	60		12.0	6.0	2.4	NO
	χ	11.2		4.0	2.0	11.4	NO

Excluding Type X sinker: $\overline{S.G.} = 2.41$ $\sigma = 0.03$ *Designation for the purpose of this study.

If a collision occurred and the descending sinker moved a sinker already on the bottom, the data were not recorded and the test was repeated. If, after collision, the descending sinker settled to the bottom without significantly affecting either sinker position, the data was recorded and the hit was noted on the data form next to the second sinker measurement, and is indicated in Appendix B by "H".

When the last sinker was dropped during a series, a plumb bob was suspended from the crane hook and the elevator floor was raised. This enabled the direct horizontal measurement of the offset using the plumb bob as a reference point as shown in Figure 2-4. The precision of this measurement was better than plus or minus one inch.

Each drop from a horizontal plane was selected so that the sinkers would have a varied angular (azimuthal) orientation both with respect to the tank and with respect to the chain. The azimuthal direction of the sinker with respect to a mark on the sinker (on the top surface in an arbitrary corner) before the drop was recorded. After dropping the sinker, its offset and direction with respect to the original position and orientation of the sinker were recorded. The release procedure and drop time were as in Phase I. Sinker drops were randomized so that all drops of a set (one water depth, sinker size, drop height) would not follow each other in order to prevent any influence on a complete set by some transient effect.

TRUE PARTE IN DE VALUE AND THE PRACTICALES.

The tank's elevator floor was raised after the last drop and the horizontal offset from the release location was measured.

FIGURE 2-4. MEASURING THE MCRIZONTAL OFFSET OF A SINKER

2.2 DTNSRDC Current Speed Experiments

The objective of the DTNSRDC experiments was to find the offset from the release point of the sinker as a function of current speed and sinker size. In the first phase, sinker Types A & B were dropped into a circulating water channel. In the second phase, a Type D sinker was dropped from a moving carriage into the Deep Water Basin to simulate dropping a sinker from a fixed point into a constant current. This was done because the large sinker would cause damage if dropped into the Circulating Water Channel (refer to Appendix A for details of the DTNSRDC experiments not included in this section).

2.2.1 <u>Circulating Water Channel (CWC)</u>

The circulating water channel has a fixed drop point and moving current. Its working section is sketched in Figure 2-5. The CWC is 9' deep and 22' across. The flow was varied from 0 to 2 knots. The horizontal flow velocity is constant to within 3% along a vertical line through the center of the channel. An example of the current profile is shown in Figure 2-6. The sinkers were released from a walkway suspended over the center of the channel. The sinkers were dropped with the bottom being about 1" above the water surface, and the drops were filmed from two viewing ports in the side of the channel. The sinkers fell on or near a buoyant platform anchored to the floor. The time of descent was measured and the point of impact noted. The resulting movies were analyzed in the same manner as those taken during the first phase of the NSWC experiments.

(Not To Scale)

FIGURE 2-5. SIDE AND FRONT ELEVATION OF CIRCULATING WATER CHANNEL

Figure 2-6. Vertical Current Profile in the Circulating Water Channel

Figure 2-7. Sinker Drop Into Water Basin

2.2.2 Moving Carriage in Deep Water Basin

The second phase of the DTNSRDC tests consisted of 13 drops of a Type D sinker into 22' of water from a moving carriage moving at speeds up to 2 knots. The drop was from a height of about 3" and the resulting velocity was less than the terminal velocity of the sinker. The concept is illustrated in Figure 2-7. At the moment of release of the sinker, the position of the moving carriage was noted. This was accomplished by observing the position of a pointer fixed to the carriage relative to a scale fixed to the side of the towing basin. After the carriage was brought to a stop, it was backed up to a position at which the sinker was released. A thin wire rope with a locating float had been attached to the sinker before the drop. This was now pulled taut vertically and the horizontal offset from the point of release was measured. The precision with which the offset was estimated was approximately ± 3 " based on careful sighting of the pointer by a second observer.

2.3 Full Scale Tests at CEL Port Hueneme, California

Fifteen sinkers, five of each different size (1,000, 5,000 and 8,500 lbs.) were used in the full-scale tests. The sinkers were made specifically for this experiment and contained only concrete and thus were free from old chain. (Old sections of chain are frequently added to concrete sinkers during construction in order to increase sinker density.) It was thought that these sinkers would be more homogeneous than those utilized in the NSWC tests (see Section 2.1).

Before testing began each sinker was numbered, measured, and weighed both in air and in water as shown in Figure 2-8. This information is presented in Table 2-2. Sinker No. 9 was rejected for test purposes because the bale was sufficiently off center to cause a severe tilt in the sinker when it was suspended.

The remaining fourteen sinkers were dropped in water depths of 24, 56, and 88 feet from drop heights as measured from the sea surface to the center of the sinker of 0, 4, and 6 feet. Thus the experiment contained three independent variables; sinker size, water depth, and drop height. A plumb bob was suspended from the release point to the bottom and divers were used to measure the offset and direction of the sinker from the plumb bob. All directions were from magnetic north and there was no attempt to note the orientation of the sinker relative to any identifying mark on the sinker. That is to say, no horizontal orientation of the sinker relative to its release location was made for these tests. Because empirical tests had previously indicated that chain did not significantly affect the offset of the sinker, chain was not used in these tests.

Divers were used to measure the offset distances and directions on the bottom. In order to optimize diver down time, between 5 and 7 sinkers were dropped before the divers entered the water to collect the offset data. This number of drops appeared to make the best overall use of the diver's time.

Before testing began, each sinker was weighed both in air and in water so its specific gravity could be determined. The weight of each sinker was measured by a calibrated load cell located just below the crane book.

FIGURE 2-8. MASS AND SPECIFIC GRAVITY DETERMINATION OF A SINKER

TABLE 2-2. PHYSICAL CHARACTERISTICS OF THE CEL SINKERS

SINKER NUMBER	AIR WEIGHT (1bs)	WATER WEIGHT (1bs)	LENGTH (in)	WIDTH (in)	HEIGHT (in)	SPECIFIC GRAVITY
1	8200	4500	57 1/2	54 1/2	28 1/2	2.22
2	8200	4500	54 1/2	57 1/2	28 3/4	2.22
3	8250	4600	54 1/4	57 1/2	28 3/4	2.26
4	8200	4600	57 1/2	54 1/2	28 1/2	2.28
5	7900	4350	55 1/2	54 1/2	28 1/4	2.23
6	5800	3300	53 3/4	57 3/4	21 1/4	2.32
7	5600	3300	53 1/2	57 1/2	21 1/4	2.43
8	5600	3200	57 3/4	53	21 1/2	2.33
9	5600	3250	57 1/2	52	21 1/4	2.38
10	5600	3150	57 3/4	51 1/2	21	2.29
11	950	540	30 1/4	30 1/4	12	2.32
12	890	500	30	29 3/4	11 3/4	2.28
13	960	530	29 3/4	30	11 1/2	2.23
14	960	550	30	29 3/4	11 3/4	2.34
15	980	580	30 1/4	30 1/4	12	2.45

 $\overline{S.G.} = 2.31$ $\sigma = 0.07$

Due to the handling problems with the large sinkers, as well as the need to re-rig the releasing hook location each time a different size sinker or drop height was used, very little randomness was employed in the performance of these tests. Had randomness been employed the time necessary, and hence the cost of these tests, would have been greatly increased.

Visual observations were made using a face mask, but these were severely impaired by murky water, below a depth of 20 feet. For this reason descent times were determined by using a small piece of parachute cord to the sinker and allowing this line to pay out through one's hand (with gloves on) during descent as shown in Figure 2-9. By keeping a slight tension on the cord, one was able to feel when the sinker struck the bottom. A stop watch was used to measure the time interval from release until touchdown. This parachute cord, however, in no way affected the trajectory of the sinker.

It was intended that this test be conducted in current conditions between 0 and 1 knot. Unfortunately, the test plan was not able to be carried out because there was no noticeable current found in the waters around Port Hueneme at the time of the tests.

The accuracy of offset distances and directions measured was affected by the sea conditions present at the time of the drop and the possible striking of a previously dropped sinker by one falling to the bottom. Even with the CEL warping tug (shown in Figure 2-10) from which these tests were performed, in a tight 3-point moor the plumb bob might swing in a pendulum motion several feet across the bottom. Furthermore, due to swell conditions the warping tug itself might move a distance of up to 1 foot; thus

Before release each sinker was carefully positioned so the proper height above water was maintained. A sinker's time of descent was measured by attaching a piece of parachute chord to the sinker and by keeping a slight tension, one could "fee!" the sinker strike the bottom.

FIGURE 2-9. A 1000 FOUND (454.5 kg) SIMKER IMMEDIATELY PRIOR TO RELEASE

the variability of this surface drop location is ± 6 ". In addition, despite the results predicted by an empirical model, sinkers landed on top of one another in nearly every series of drops. Such incidences undoubtedly affected some offset measurements and directionality measurements. A rough estimate of accuracy would be ± 1 foot for offset and $\pm 3^{\circ}$ for direction for the 56' and 88' drop cases. Sinker drops made at the 24' depth were done from a crane on a pier in Port Hueneme Harbor (see Figure 2-11). In this case the offset distances were estimated to be on the order of ± 4 ". In all cases the time of descent measurements were estimated to be accurate to approximately ± 0.2 seconds. Drop height measurements had an estimated accuracy due to the sea condition of ± 3 ". Water depth measurements due to sea conditions as well as changing tidal levels were accurate to ± 1 foot and ± 2 feet.

The C.E.L. Warping Tug from which much of the full-scale testing was performed. FIGURE 2-10.

An 8500-pound (3864 Kg) sinker just prior to release in Port Hueneme Harbor. Note the stopwatch in the right hand and parachute chord in the left hand of the hard-hatted observer used for time of descent measurements.

FIGURE 2-11. An 8500-POUND (3864 Kg) SINKER BEING READIED FOR RELEASE IN PORT HUENEME HARBOR

3.0 STATISTICAL ANALYSIS OF DATA

This section presents the results of the data analysis, and the statistical methods used. Charts and calculations are included where appropriate. The following general statements apply throughout the section.

All statistical testing is done at 95% confidence. Thus, a "significant" result in an Analysis of Variance (ANOVA) is one whose associated F-statistic reaches the .95 ordinate on the F distribution curve, and a similar remark holds for t-tests. All confidence circles presented contain 95% probability. All null hypotheses are tested at the level .05: therefore, when a null hypothesis is rejected, this is done with "95% confidence". When a test result is less than 95%, but still seems worth mentioning, this is clearly indicated. Finally, where any possibility of confusion exists, the exact confidence level will be indicated.

In testing an hypothesis on a group of data such as the NSWC or CEL experiments, which are divided into blocks of a few (2 to 10) data points each, the test can usually be applied in two ways. First, the data taken as a whole is tested, and then the individual blocks. If 10 blocks (for instance) taken together do not reject the hypothesis, then as many as two individual blocks may reject it due to chance variations between the blocks without contradicting the overall result. In this case it cannot be said that these two reject, while the others do not, unless there is a reason for isolating those blocks independent of the data analysis. Therefore, the statement "The NSWC data does not reject the hypothesis" will be used to mean: the data as a whole does not reject, and no more individual blocks reject than would be expected by chance, assuming the hypothesis to be true. Similar comments apply to such statements as "The CEL data rejects the hypothesis", etc.

X-Y plots of the NSWC sinker drops are given in Figures 3-1 through 3-5 and the CEL drops are given in Figures 3-6 through 3-8. Figures 3-9 through 3-11 show the CEL offsets for each individual sinker, broken down by water depth. Reference to these plots will clarify many of the points discussed in the following sections.

3.1 Offset Distribution in Still Water

Theoretically, it was expected that the following would be true. Each was tested as a null hypothesis at the .05 level, and not rejected by either the NSWC or CEL data. Therefore, they are assumed true throughout the analysis.

1. Both X and Y data are normally distributed. This was established using the Kolmogorov-Smirnov test statistic. The result implies that the data follow the bivariate normal distribution, whose density function is:

$$f(x,y) = \frac{1}{2\pi_x} \exp\left[\frac{1}{2(1-R^2)} \exp\left[\frac{(x-y_x)^2}{2(1-R^2)} - \frac{2R(x-y_x)(y-y_y)}{8x^2y} + \frac{(y-y_y)^2}{8y^2}\right]\right]$$

where \mathcal{H}_X and \mathcal{H}_y are the means of the x and y data, σ_X and σ_y are the standard deviations (s.d.'s) of the x and y data, and R is the correlation coefficient between the x and y data.

- 2. The standard deviations along the axes are equal, (See Table 3.1), as determined by a standard F-test on the variances of the data.
- 3. There is no correlation between the data along the two axes: R = 0. The observed coefficients vary between .06 and .25 in absolute value, and are not statistically significant.

Because of 2 and 3 above, the offsets are distributed as a sample of a special case of the bivariate normal density function, called the circular normal:

$$f(x,y) = \frac{1}{2\pi\sigma^2} \exp \frac{(x_{\mu x})^2 + (y_{\mu y})^2}{-2\sigma^2}$$

where
$$\sigma_x = \sigma_y = \sqrt{\frac{\sum_{n=1}^{\infty} (x - \bar{x})^2}{n-1}} = \sigma$$
.

The range (offset) density function derived from this circular normal distribution is:

$$f(r) = \frac{1}{\sigma^2} r \exp \left(-\frac{r^2}{2\sigma^2}\right)$$

where $r = \sqrt{(x-\mu_X)^2 + (y-\mu_y)^2}$, and σ is the $\sigma = \sigma_X = \sigma_y$ above. Note that this is not a normal distribution. It is in fact a special case of the Weibull distribution, called the Rayleigh distribution. Its mean is $\sigma \sqrt{\pi/2}$, and its variance is σ^2 (2- $\pi/2$).

Kolmogorov-Smirnov tests on the ranges of the NSWC and CEL data are shown in Figures 3-12a and 3-12b. Here the empirical CDFs (cumulative distribution functions) are fit by the theoretical CDFs. For the data taken as a whole, $\mathcal{M}_{x} = \mathcal{M}_{y} = 0$; this is not necessarily the case for individual blocks of data, as will be seen in the next section. It is clear that the fits are very good, and the test confirms this. In effect, this "validates" the above three conclusions, and agrees with intuitive expectations.

3.2 Offset Bias and Directionality.

It was expected that the mean of the sinker offsets would be directly underneath the suspended sinker at the origin of the coordinate system (i.e., that $\mu_x = \mu_y = 0$) since there was no current. Similarly, sinkers were not expected to tend to fall in the same direction on each drop relative to either the sinker or to true North. These two properties, called bias and directionality respectively, were tested as null hypotheses, as follows:

FIGURE 3-122 KOLMOGOROV-SMIRNOV TEST PLOT OF NSWC STILL WATER TANK CUMULATIVE DISTRIBUTION OF OFFSETS WITH A RANGE CDF OVERLAY

FIGURE 3-12b PORT HUENEME CUMULATIVE DISTRIBUTION OF OFFSETS WITH A RANGE CDF OVERLAY

lst hypothesis: that the mean of the sinker's distribution is at the origin, i.e., the sinker is unbiased. The test was a standard t-test, using the ratio of the range of the sample mean over the sample standard deviation. The figures for the NSWC sinkers, and the CEL 1000-lb. sinkers (which exhibited the only bias of the CEL sinkers) are given in Tables 3-la and 3-lb. The bias distance is the distance of the mean of the drops from the origin. The bias direction represents the angle of the mean from the reference axis (positive y-axis as shown in Figure 3-18). If a new coordinate system (x, y) is centered at the mean, the Orientation Angle is the angle through which the axes are rotated to minimize the standard deviation in the y direction.

2nd hypothesis: that the distribution of the drops' offsets is uniform through 360° , i.e., that the sinker is not directional. A Hodges-Ajnes test (Reference 2) was used. This is not a well-known procedure, so a brief description follows.

This test involves the polar plotting of the various offset directions for a group of data listed in Appendix B at a unit distance from the origin. An imaginary line is then drawn between any two adjacent points through the origin and subsequently the number of data points on either side of this line is determined by inspection. This imaginary line is then rotated about the origin until the minimum number of points on either side of this line has been determined. This minimum number is then compared with tabular values based on the total number of data points present to determine whether the hypothesis of uniformity should be rejected or accepted. Scatter plots (Figures 3-13 through 3-17) are used to demonstrate this test on the NSWC sinkers, using direction relative to the sinker, not the tank. The 0° reference is taken to be the direction from the centroid to the center of gravity, for reasons explained in the next section.

The results of the two tests agree fairly well. In general, it seems the bias test is at a higher level (i.e., more likely to be rejected).

NSWC: All five sinkers are biased. #2 and #6 are not directional at the 95% level, but both sinkers are directional at the 90% level. This is true with directions taken relative to the sinker; with directions relative to the tank, no bias or directionality is found.

CEL: The 1000 lb. sinkers, tested block by block, are biased. No other significant bias was found, although a fairly large number of individual blocks reach the 95% level. No directionality was found. Directions were not recorded relative to the sinkers, therefore only compass directions were used in the CEL test. The slight bias at CEL may be due to a small current, or some other small systematic error. It has a 10-15% probability of occurring by chance.

A 14 3 ...

TABLE 3-1a. TABLE OF BLAS DISTANCES, DIRECTIONS, MAJKR AND MINOR STANDARD INVITATIONS AND ORIENTATION ANGLES FOR SIMFRES INCOPPLD AT 18SMC

SINTER OFFITE DISTANCE DIRECTION (Feet) Andre Color Co	SINKER		MATER	_ BIAS	. BIAS			ORIENTATION	NUMBER	1531-1
1	3715	SINKER	Er II	DISTANCE	DIRECTION	. (Leet)	(Leel)	ANGI E	JO OF	SIGNIFICANCE
1 40 1.47 -157.1 0.67 0.01 90 4 1 40 1.41 -35.4 2.08 0.35 20 1 56 3.34 -101.9 3.50 2.05 65 10 72 2.60 1.21 2.08 0.35 20 3 102 6.15 -26.0 3.17 0.03 40 3 102 6.15 -49.5 3.77 0.03 70 3 102 6.15 -40.5 3.77 0.03 70 3 102 6.15 -40.5 3.77 0.03 70 3 102 6.15 -44.7 1.51 0.03 70 3 102 2.02 21.1 0.46 0.01 70 7 6 24 0.53 -128.6 0.04 7 4 6 1.34 4.22 0.09 75 4 7	(Jes)	•	(leel)	(1661)	(degrees)		Ď ČI	/ ded less		11
1 40 3.50 2.03 65 10 1 40 1.34 -157.1 3.50 2.05 65 10 1 40 1.29 -25.0 1.15 0.51 40 3 3 1 2 2.40 -104.9 3.17 0.61 40 3 40 3 40 3 40 3 40 2 40 3 40 2 40 3 40 2 40 3 40 2 40 3 40 2 40 3 40 2 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40 40 3 40 40 3	95	•	5 1		7. (2)		ē ē	3	2	:
1			8	3.46	1.761-	25.5		2 5	- 2	*
1 40 1.41 35.4 2.08 0.35 20 3 72 2.40 26.0 3.15 0.61 45 4 7 2.40 104.9 3.37 0.03 70 2 7 56 1.34 44.7 1.51 1.11 20 12 7 2.02 2.02 21.1 0.46 0.01 20 2 8 2.02 2.11 0.46 0.01 20 2 2 102 0.63 2.07 4.22 0.41 20 2 2 6 24 0.63 -178.6 0.68 0.00 20 2 3 4 6 24 0.58 -178.6 0.68 0.00 20 4			₹		6.101	9c -	c	2	2	
5 5.70 -25.0 3.15 0.61 45 4 6 1.18 4 6 7 4 6 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 4 7 7 3 4 4 7 4	973	_	•	Ę	18 A	2 (18	52 0	25	_	• :
7 2.40 -104.9 3.33 1.83 40 3 102 6.15 -49.5 3.77 0.03 70 2 7 56 1.34 -44.7 1.51 1.11 20 12 7 2.02 2.11 0.46 0.01 70 2 8 2.02 2.11 0.46 0.01 70 2 8 2.02 2.11 0.46 0.01 75 3 9 1.37 43.2 2.36 1.16 40 26 1.54 40.3 1.56 86.3 2.76 1.90 05 4 1.54 1.54 18.0 1.79 0.00 75 4 40 2.04 18.0 1.49 1.40 85 16 5 2.0 2.1 1.49 1.00 85 16 86 4.18 1.66 4.18 1.00 85 16 <	N.	-	2 4	52	. 56.0		19:0	45	-	•
2 56 [1.34			2 2		6 101	33.	: E	9	~	;
2 56 1.34 -44.7 1.51 1.11 20 102 2.02 21.1 0.46 0.01 20 102 0.63 20.7 4.22 0.49 75 6 24 0.58 -128.6 0.69 75 6 24 0.58 -128.6 0.00 20 7 1.37 43.2 3.16 1.56 60 7 1.56 86.3 2.76 1.90 0.5 8 4.94 18.0 1.79 0.00 75 5 24 2.04 5.4 1.82 0.41 75 5 24 2.04 5.4 1.82 0.41 75 5 27 2.04 5.4 1.08 85 5 5.27 1.43 1.08 85 5 5.27 4.08 86 5 5.27 1.49 1.08 85 5 5.20 -14.3 1.08 86 5 5.27 4.08 86 85 6 4.18 1.06 65 7 5.31 4.18 1.06 65 8 6 <td></td> <td></td> <td>2 2</td> <td>31.3</td> <td>49.5</td> <td>?</td> <td>20.0</td> <td>2</td> <td>~</td> <td>•</td>			2 2	31.3	49.5	?	20.0	2	~	•
2 56 1.34 -44.7 1.51 1.11 20 102 2.02 21.1 0.46 0.01 20 102 0.63 20.7 4.22 0.01 20 6 24 0.58 -128.6 0.68 0.00 20 6 24 0.58 -128.6 0.68 0.00 20 7 1.37 41.2 2.36 1.16 40 8 4.94 185.2 2.36 1.16 40 8 4.94 185.0 1.79 0.00 75 40 3.04 2.04 5.4 1.82 0.41 75 5 2.24 2.04 5.3 -14.3 1.08 85 5 5.27 -14.3 1.49 1.08 65 5 5.20 -6.6 4.18 1.06 65 5 5.30 6.6 4.18 1.06 65 6			<u> </u>			;				
6 24 0.53 21.1 0.46 0.01 20 6 24 0.53 20.7 4.22 0.49 75 6 24 0.53 -128.6 0.63 0.00 20 6 24 0.53 -128.6 0.68 0.00 20 7 1.37 43.2 3.16 1.56 60 8 1.54 82.2 2.36 1.16 40 83 4.94 18.0 1.79 0.90 75 40 3.04 2.04 5.4 1.82 0.41 75 56 5.52 -14.3 1.49 1.08 85 57 5.30 6.6 4.18 1.06 65 88 5.79 4.01 20 89 5.79 4.01 20 80 65 65 65	CON	~	Ş	2	-14.1	1.51	=:	25	12	44
6 24 0.63 20.7 4.22 0.49 75 60 40 1.37 40.58 -178.6 0.68 0.00 20 60 1.37 43.2 2.36 1.16 40 25 1.56 86.3 2.76 1.90 05 1.56 86.3 2.76 1.90 05 1.56 40 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5			2	2.02	21.12	0.46	0.01	₹	~	∢
6 24 0.58 -128.6 0.68 0.00 20 6 40 1.37 43.2 2.36 1.56 60 72 1.54 43.2 2.36 1.16 40 72 1.56 86.3 2.76 1.90 05 83 4.94 15.0 1.79 0.00 75 40 3.04 2.0 5.4 1.82 0.41 75 56 5.52 -14.3 1.49 1.08 85 72 5.70 6.6 4.18 1.06 65 85 5.79 4.01 20 20			102	0.63	70.7	4.22	0.49	22	~	
6 24 0.58 -178.5 0.66 0.00 5.0 6.0 1.37 41.2 2.36 1.16 40 6.3 2.76 1.90 6.5 1.56 6.0 6.0 6.3 2.76 1.90 6.5 1.56 6.0 6.0 6.3 2.76 1.90 6.5 1.56 6.0 6.5 1.56 6.0 6.5 1.56 6.0 6.5 1.56 6.0 6.5 1.56 6.0 6.5 1.56 6.0 6.5 1.56 6.5 1.5		,	;			9	3	Ę	•	
5 24 2.04 5.4 1.82 0.41 7.5 6.60 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.	<u>3</u>	و	₹	- PS O	-178.6	94.D	3.5	2		,
56 1.54 82.2 2.36 1.16 40 72 1.66 86.3 2.76 1.90 0.5 86.3 2.76 1.90 0.5 86.3 2.76 1.90 0.5 86 2.04 5.4 1.82 0.41 75 86 5.52 -14.3 1.49 1.08 85 87 5.70 6.6 4.18 1.06 65 88 5.70 6.6 4.18 1.06 65		•	\$	1.3	43.2	3.16	1.56	3	-	•
5 24 2.04 5.4 1.82 0.41 75 40 1.90 1.55 40 1.82 0.41 75 5.5 1.43 1.49 1.08 85 7.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.			: 55	<u>.</u>	82.2	2.36	1.16	ę	92	₹
5 24 2.04 5.4 1.82 0.41 75 40 1.82 0.41 75 5.4 1.82 0.41 75 5.5 1.43 1.49 1.00 85 5.70 6.6 4.18 1.86 65 5.70 6.6 4.18 1.86 65 5.70 6.6 4.18 1.86 65 5.70 6.6 4.18 1.86 65 5.70 6.6 4.18 1.86 65 5.70 6.6 4.18 1.86 65 65 65 65 65 65 65 65 65 65 65 65 65			22	99	86.3	2.76	06.1	90	~	:
5 24 2.04 5.4 1.82 0.41 75 40 3.04 2.1 2.08 0.69 55 56 5.52 -14.3 1.49 1.00 85 65 7.70 6.6 4.10 1.86 65 5.70 6.5 4.01 20			9	4.94	15.0	1.79	0.00	75	<	4
5 24 2.04 5.4 1.82 0.41 75 40 3.04 2.1 2.08 0.69 55 56 5.52 -14.3 1.49 1.08 85 85 85 8.70 6.6 4.18 6.5 4.01 20										
40 3.04 2.1 2.08 0.69 55 56 5.52 -14.3 1.49 1.08 85 65 7.0 6.6 4.18 1.06 65 65 7.19 4.01 20	HEN	ۍ	Σ.	2°.0	5.4	1.82	0.41	72	2	4
5.52 -14.3 1.49 1.08 85 5.70 6.6 4.18 1.86 65 5.31 4.5 7.79 4.01 20		:	Ş	5	2.1	2.08	0.69	55	8	:
5.70 6.6 4.18 1.86 65 5.31 4.51 7.79 4.01 20			. y	25.55	-14.3	1.49	8.	85	91	4
5, 11 A.5 7, 79 4,01 20			2	2.3	9.9	4.18	1.86	99	E	•
			2 00	2.5	•	7 79	4 01	2	2	•

Orientation Angle calculated to the nearest 50

** indicates 99% significance level * indicates 95% significance level

All five sinkers are biased as 95% level.

TABLE 3-1b. TABLE OF BLAS DISTANCES, DIRECTIONS, MAJOR AND MINOR STANDARD DEVIATIONS AND ORIENTATION ANGLES FOR THE 1000-POUND SINKERS DROPPED AT CEL

LEVE	8	3 06	2 06	;	:	•	;	*
POINIS	2	2	9	S	9	9	6	9
(degrees)	30	\$2	99	2	35	38	20	45
(ובבו)	1.02	1.17	3.25	3.27	2.62	1.07	4.28	4.13
(1221)	2.21	2.90	5.80	6.34	5.61	3.33	5.11	4.80
(degrees)	-52.1	-35.1	-73.4	-30.5	155.8	11.3	-98.4	-35.6
(feet)	1.14	-08	3.50	2.25	0.50	5.50	1.45	A. 45
(feet)	24	24	99	99	26	88	88	8
(feet)	0	4	0	_	9	0	•	ع
(lbs)	000							
	(feet) (feet) (degrees) (feet) (degrees) POINIS	(feet) (feet) (degrees) (100, 100, 100, 100, 100, 100, 100, 100	(feet) (feet) (degrees) (100, 221 1.02 30 1.17 2.5 10	(feet) (feet) (degrees) (1507) (degrees) PolNIS 0 24 1.04 -35.1 2.90 1.17 25 10 0 56 3.50 -73.4 5.80 3.25 65 6	(feet) (feet) (degrees) (legrees) (legrees) PolNIS 0 24 1.04 -35.1 2.90 1.17 25 0 56 3.50 -73.4 5.80 3.25 6 6 4 56 2.25 -30.5 6.34 3.27 6 5	(feet) (feet) (degrees) (100 27.1 (100 52.1 1.00 50.1 50.1 50.1 50.1 50.2	(feet) (feet) (degrees) (100 30 Folkus 0 24 1.14 -52.1 2.21 1.02 30 5 4 24 1.04 -35.1 2.90 1.17 25 10 0 56 3.50 -73.4 5.80 3.25 65 6 4 56 2.25 -30.5 6.34 3.27 20 5 6 56 0.50 155.8 5.61 2.62 35 6 0 08 5.50 11.3 3.33 1.07 35 6	(feet) (feet) (degrees) (vet) (degrees) 4 24 1.14 -52.1 2.21 1.02 30 4 24 1.04 -35.1 2.90 1.17 25 0 56 3.50 -73.4 5.80 3.25 65 4 56 2.25 -30.5 6.34 3.27 20 6 56 5.50 155.8 5.61 2.62 35 9 88 5.50 11.3 3.33 1.07 35 4 88 1.45 -98.4 5.11 4.28 50

Orientation Angle calculated to the nearest 50

indicates 99% significance level
 indicates 95% significance level

Although generally tests were not made for 90% significance, note that first three reach that level. Taking this into consideration, the sinker indicates bias at about 95% level.

		_	_	_			_		_	_	_			-	_			_			_	_	_			
	=	97.0												}		Ì		ļ						1		
	11.6	41.6												1												
		410.0 410.6 411.0 411.6 412.0			_										_											
	•	10.6					_							1												
	•	*								_				1	-											ᅦ
	••	49.6	-	_					-			_		7							_			ㅓ		-
	9.0	< 0.0												+		_		_								┥
	_	_		_		-			_					4		_		_			_			_		\dashv
	•	1.15		_		_			•			_		4			_	_				_				4
	7.6	5 < 0.0			_		_										_									
	7.0	<7.6																								
_	•	<7.0												1	57 .											
5	•	40.0												ز	<u>`</u>											J
2	_	· 🔻			_		_		_							_	_				_			_		_]
DISTANCE (ft.)	1:1	<0.0									4															
0	9 .	<1.1		į						<i>ٽ</i> ـــا	_					1										
	4.6	46.0	•																							
	4.0	< 4. 6																					77		┛	
	3.6	44.0													_								VÝ	4		
	-	43.6																					•			
	2.6	43.0			4																1					
	2.0	42.6							•			•		7	_			_								_
	1.5	•	4	\dashv	_				◀		-	_		4	_	_			•	_	•					_
		6 42.0	7				_		L		L				◀		77						_			_
	•:	<1.6				•				CENTER									77							
	•	<1.0	•												4		•						1			
	•.•	40.6								NULL																
								•												•	•	•	•	•	•	•
			.101	+111.	-322	•111.	386	-285-	302	1116	916	*116	.176	•	• • • •	•410		• 16•	.91	•	•101	-121-	•111	-141.	.991	•

4/24 DIRECTIONAL AT 95% CONFIDENCE LEVEL ACCORDING TO HODGES-AJNES TEST

FIGURE 3-13 SCATTER DIAGRAM (c.g.) OF NSWC DATA FOR SINKER #4 (250LBS)

NO1133810 37

< 0.0 < 5.6 <10.0 <10.5 <11.0 <11.5 <12.0 10.6 11.0 11.5 : -<7.5 <0.0 <0.8 18 7.0 4 47.0 DISTANCE(ft.) .. 44.6 46.0 46.6 46.0 40.5 0 0 0 2.5 43.6 44.0 -43.0 0 0 42.5 0 0 0 42.0 00 0 0 41.8 00 CENTER 0 40.6 41.0 0 MOLL 2210 === - 522. 266 285 = -105 =382. 3.50 3116 *346* . : -116

AJNES TEST • 4/18 : DIRECTIONAL AT 95% CONFIDENCE LEVEL ACCORDING TO HODGES

≠1 (500LBS) SINKER FOR DATA NSMC 3-14 SCATTER DIAGRAM (c.g.)0F FIGURE

DIRECTION

8.6 10.0 10.6 11.0 11.6 < 8.8 < 8.6 <10.0 <10.6 <11.8 <11.5 <12.0 . 15 • . <7.0 <7.5 <0.0 <0.5 4 7.0 DISTANCE (ft.) 48.5 41.8 41.5 42.8 42.6 43.8 43.8 44.8 44.5 45.0 46.5 48.0 48.5 8.8 0.0 4 4 9 4 4.5 4 4.0 4 3.5 • 4 2.5 4 4 4 ٥ 1. CENTER 4 ... KULL • -136. -1111-225° .305. *** ... -301. • • 3 8 7 116 386 -117 316 105 136 -116 316 *116 = • 11.

90% CONFIDENCE LEVEL ACCORDING TO HODGES-AJNES TEST 1/12: DIRECTIONAL AT

★2 (500LBS)! SINKER FOR DATA NSWC DIAGRAM (c.g.) OF SCATTER 3-15 FIGURE

400

10.0 10.6 11.0 11.5 < 0.0 < 0.6 < 10.0 < 10.5 < 11.0 < 11.5 < 12.0 . .. ? <0.6 | <1.0 | <1.5 | <2.0 | <2.5 | <2.0 | <2.5 | <4.0 | <4.5 | <0.0 | <0.5 | <0.0 | <0.5 | <7.0 | <7.5 | <0.0 | <0.5 |</p> 7.6 7.0 72 DISTANCE (ft.) 6.6 0.0 • = -• ••• 3.6 • • : • • • 2.6 • • • • ••• • • • • = • lacktriangleCENTER • • -1111-.127 20 C *136.992 .117 -386-3:5 .111. === === : = 11. = DIRECTION 40

95% CONFIDENCE ACCORDING TO HODGES-AJNES TEST DIRECTIONAL AT 12/43:

#8 (500LBS) DATA FOR SINKER NSWC 0F DIAGRAM (e.g.) SCATTER 3-18 FIGURE

Š 10.0 10.5 11.0 11.5 < 9.0 | < 9.5 | <10.0 | <10.5 | <11.0 | <11.5 | <12.0 | m 00 • 47.0 47.5 48.6 48.5 • 00 00 00 00 00 DISTANCE (ft.) 40.0 40.5 00 00 00 42.0 42.5 43.0 43.5 44.0 44.5 45.0 46.5 • 00 0 **.** --7.0 ~ 0 .. 0 41.0 41.6 NULL CENTER • 111. 325 .111. .315 .315 = ----. . . . -316-111. = -346-341. .:: -1361-...111. •11. = = • 11. . .

95%, CONFIDENCE LEVEL ACCORDING TO HODGES-AJNES TEST 3/51 : DIRECTIONAL AT

#5 (1000 LBS) SINKER DATA FOR NSWC (c.d.) OF DIAGRAM SCATTER 3-17 FIGURE

· 秦家 法 345

41

DIRECTION

3.2.1 Offset Bias and Directionality Correlation

No explanation was found for the definite directionality of the NSWC sinkers. It was postulated that some correlation might be found between the directionality and the center of gravity offset direction. The locations of the centers of gravity of the sinker with respect to their centroids, as shown in Figure 3-18 were compared to the offset directions. The results of this comparison are shown in the scatter diagrams for each NSWC sinker, Figures 3-13 through 3-17. 0^{0} represents the direction from the centroid to the center of gravity. The smaller bracket indicates the least number of drops occurring within any given interval of 180^{0} (the "null side") while the total number of drops is shown next to the larger bracket. The midpoint of the null side is indicated as the "null center". 180^{0} from the null center is considered the preferred direction for the data presented. Where there is latitude in selecting the null side interval, secondary null centers are indicated as "(n.c.)". Similarly Figure 3-19 presents data for all NSWC sinker offsets relative to the diagonal line drawn from the centroid to the corner nearest the center of gravity.

The preferred direction of the offsets shows no correlation with the center of gravity. It must be noted that the center of gravity is displaced a relatively small amount from the centroid in all the NSWC sinkers. The angular acceleration due to this moment is considered in more detail in section 4.2.2. Nevertheless, it seems intuitively reasonable that the center of gravity displacement may be significant, and it is felt that any future work should take this into consideration.

3.3 Factor Effects and 95% Confidence Circles

Since the distributions are circular normal the confidence ellipses are actually circles. These distributions are composed of the convoluted effects of (1) the population of individual sinker biases discussed above and (2) the variability about the biases. Since no information has been collected on the population of actual sinkers used by the Coast Guard, the contributions of (1) are unknown values. (This postulation emerged from an attempt to explain the biases found in the data). Without this information only the variability about the bias, (2), can be inferred from this data.

As a means of expediency in the analysis of the data, the following approximations were made:

- a. The finite size of the data sample is assumed to be sufficiently large enough that bivariate normal statistics are used vice the appropriate F-distribution which actually applies.
- b. The deviation about the origin is used vice the standard deviation about the sample mean.

The errors of these two approximations are small and can reasonably be expected to tend to cancel one another. Thus the formula for the "standard" deviation is:

$$T = \sqrt{\frac{\sum (x^2 + y^2)}{2n}}$$

FIGURE 3-18. LOCATIONS OF CENTER OF GRAVITY OF SINKERS

DISTANCE (ft)

1											5	£	UIS I A MUE ITT									i	:	
	•.•	9.0	1.0	1.1	2.0	2.6	1.0	3.6	4.0	4.6	8.0	1.1	9.0	1.1	1.0	1.6	0.0	•:•	0.0	-	:	10.6	11.0	=
V		< 1.0	41.6	42.6	<2.0 <2.6	63.6	< 3.6	6 <4.0		<4.6 < 6.0	<6.5	< 8.0	48.6	< 7.0	< 7.6	<0.0	41.6	4 9.0	4.6	43.5 416.0 410.6 411.0 411.5 412.0	19.6	411.0	411.6	2.0 2.0
106-		0	0	000	•0∇	□▼	0	•	0	0	400			0		00	0							
226.	:		0		4	8		8	8	٥	0	0	8	0	000				п		B			
2116					•		•		0	0		8				۵۵								<u> </u>
300			0000	8		٥		<u> </u>	•₽0			٥												
316			•	<u> </u>			:	:.	0	0		٥												
946.		•		4	•	•	•	•	•	•														
160		4	•	770		:	4	•					•											
• 3.6			1		•	•																		
76°				•	4	•	•						o			B								
-1817		٥			•		•	*	**															
1360									4							0								
-101-		4	•	▼	D	•				•														
																					=	LEGEND		

Figure 3-19 Scatter Diagram of All NSWC Sinker Drop Offsets Relative to Corner Nearest Center of Gravity

≠2-500 lbs ≠4-250 lbs

#6-10-01bs

4□ ●

€1-500 lbs

11 11 00 The pooled (average) x and y variance is used, with 0 for each mean, and the divisor is n, since no degree of freedom is lost in the calculation of the mean. The radius of the 95% confidence circle is 2.45 times, and the radius of the 90% circle is 2.15 times, according to well-known bivariate normal theory.

Sinker size, water depth, and drop height were the main factors investigated. Two methods were used to determine factor effects: analysis of variance and factorial analysis. Regression equations were used to express the radii of the confidence circles as functions of the factors. All such analyses were based on the circular normal ∇ 's.

It should be made clear that the confidence circle obtained in this fashion may not entirely encompass the one obtained in the usual way, centered around the sample mean. This will happen not when the bias is too large, as might be expected, but rather when it is too small: that is, when the sinker is unbiased. The 95% confidence circle about the assumed mean (0,0) has as its radius 2.45 times the circular normal σ , where σ is computed using n degrees of freedom. The 95% confidence circle about the sample mean (x, y) has as its radius 2.45 times the sample standard deviation s.d., where s.d. is computed with n-1 degrees of freedom. Thus when the sinker is unbiased, the centers of the two circles coincide, but the radius of the "sample" confidence circle is slightly larger. (The numerators of σ and s.d. are the same, but the denominators are n and n-1, respectively). In addition, use of the F-Distribution for the sample size of the data will yield a factor larger than 2.45 for the 95% confidence circle.

. Because of considerable differences between the two groups of data, NSWC and CEL, they are considered separately.

3.3.1 NSWC Factor Effects and Confidence Circles

Table 3.2 contains all the circular normal σ^2 s for the sinkers at NSWC. The most important part of this experiment is Test Series A. Test series A consisted of a complete 2^3 factorial design experiment, with five drops in each cell. The factors and their levels were:

Sinker size (Ss): 250 & 1000 lbs Water depth (Wd): 24 & 88 feet Drop height (Ht): 0 & 6 feet

The effect of the presence or absence of chain attached to the sinker (as described in Section 2) was also tested, using a blocked experimental design. As explained above, the test was an ANOVA done on the actual offsets. The results are given in Figure 3-21, as an illustration of this procedure. An ANOVA using the circular normal σ 's produced the same effects except of course for the one concerning chain, which it was not capable of determining because the effect is confounded with the triple cross product, which is used to estimate error in this procedure.

FIGURE 3-20; CONFIDENCE CIRCLE COMPARISON

FACTOR	EFFECTS	COEFFICIENTS	OF REGRESSION	
Mean Sa Wd Mt Sawd SaMt WdMt SaWdM1	+1.15 +3.32 +3.48 -1.13 +2.08 -0.95 -0.11 -0.10	A 0 A 1 A 2 A 3 A 4 A 5 A 6	+ 1.91 + 1.74 9.57 + 1.04 + - 9.48 0.06 +	7.31 × 10 - 1 1.50 × 10 - 3 7.01 × 10 - 3 5.65 × 10 - 4 3.23 × 10 - 5 3.13 × 10 - 4 2.94 × 10 - 5 1.30 × 10 - 5

OFFSET = $A_1 + A_1$ So + A_2 Wd + A_3 Ht + A_4 So Wd + A_5 So Ht + A_2 Wd Ht + A_3 SoWdHt

FIGURE 3-21 FACTORIAL DIAGRAM FOR THE MOST PROBABLE OFFSET HIN FEET, DEVELOPED FROM TEST SERIES A, NSWCI

TABLE 3-2. CIRCULAR NORMAL σ^2 FOR NSWC SINKER DROPS

SII	SINKER	#4 (250 lbs)	ps)	#1 (500 lbs)	1	#2 (500)	lbs)	#6 (500 lbs	ls)	#5 (1000	165)
WATER	DROP HE IGHT	C TRCULAR NORMAL		C I R CUL AR NORMAL		C I R CUL AR NORMAI.		C IRCULAR NORMAL		C I R CUL AR NORMAL	
(ft)	(ft)		=	0.5	_	20	_	2.0	_	αζ	=
24	0,	<u></u>	2		!			0.42	2	9.02	
	9	1.26	5					0.63	2	2.90	S
	 -	1 36	2					0.53	~	96 5	9
26	0	7.85				5.6	4	5.46	9	10.79	. 2
}	1.5			12.60	_	3.61	_	6.12	2	17.34	~
	m			10.40	_	3.48	~	4.55	10	16.81	~
	4.5			7.09	~	99.0	_	9.6	_	14.73	~
	و	3.56	2			2.34	e	1.12	^	12.3	~
	 	5.7	4	9.30	~	3,68	12	3.76	56	15.11	16
88	0	5.60	5					11.18	-2	50.76	
	9	4.79	5					4.37	2	30.12	S
	-	5.20	10					7.78	4	40.44	10
	1.5							5.6	'	6.94	~
	4.5			2.48	٣	0.19	-			5.93	4
	}-			2.48	<u>س</u>	0.19		5.6	4	6.44	≈
72	1.5			3.76	2	1.74	2			28.97	
	4.5			15.57	_			5.60	<	23.84	~
	 			7.70	<u>ب</u>	1.74	2	5.60	~	26.41	æ
102	3			22.5	2	6.21	3	11.81	-		i i
26	3			27.83	2	25.15	2	25.05	2		
(dropped											
lon suga					- <u>'</u> .						

 $n = number \ of \ data \ points$ I row: average σ^2 for all drops in one block

The factor effects were:

1. Offset increases as the following increase: Ss,

Wd, Ss x Wd.

- 2. Offset decreases slightly but significantly as the following increase: Ht, Ss \times Ht.
- 3. The presence or absence of chain, and the cross product \mbox{Wd} \mbox{x} \mbox{Ht} , had no effect.

Therefore, chain was not used in later NSWC drops.

In the later drops, three 500 lb. sinkers were used (as well as the original two sinkers). All five were dropped at various depths and heights between the original ones, namely: Wd: 24', 40', 56', 88'; Ht: 0, 1.5', 3', 4.5', 6'. Also, six drops were made at Wd = 102'. Unfortunately, it was later found that the three 500 lb sinkers had significant differences, and had to be analyzed separately. Since they were used randomly when the design called for a 500 lb sinker, when separated they did not constitute good experimental designs. ANOVA's could not be used in these cases, so regression analysis was substituted. It yielded the following results:

- 1. Later data does not contradict the test series A results and may be considered to validate the main factor effects obtained there. Specifically, offset increases as Ss and Wd increase, and to a lesser extent, as Ht decreases. The 500 lb sinkers had offsets only marginally greater than the original 250 lb sinker, however. The positive effect of depth was established at 102 feet (test series E).
- 2. Dropping the sinker on its side approximately doubled the offset (test series F).
- 3. A small tilt to the sinker prior to release had no effect (test series ${\sf C}$).

A regression equation from the test series A factorial experiment, and separate equations for each sinker, are given in Table 3-3. All equations were based on those for the circular normal σ 's which are included in the table for completeness. The equations express the radii of the 95% confidence circles as functions of Ss, Wd and Ht. The equations for test series A (which involved sinkers 4 and 5) and the separate equations for #4 and #5, all have good fits as indicated by high R² values (R is the correlation coefficient, thus R² = 1 is a perfect fit). However, all the 500 lb sinker equations have poor fits. This data was not as regular as the data for the 250 and 1000 lb sinkers, and it is felt that further analysis would be fruitless. There is a strong indication that the determination of the relationship would require more experimentation. Also, the idea that the offset depends simply on the sinker weight, even in a nonlinear fashion, is an oversimplification. This is clear because two of the 500 lb sinkers' mean offsets are not significantly larger than that of the 250 lb sinker, while the third 500 lb sinker has a mean offset significantly greater than any of these. Therefore the regression equation from test series A, which attempts

TABLE 3-3. REGRESSION EQUATIONS FOR RADII OF 95% CONFIDENCE CIRCLES AND ONE STANDARD DEVIATION

TEST	AVERAGE		
{	RADIUS OF		R ²
	95% CIRCLE		
\	(ft)	ONE STANDARD DEVIATION (ft)	
NSWC			
TEST SERIES A #4 & #5	7.40	r ₉₅ = 0.22 + 0.1Wd - 0.32Ht + 0.01Ss	.85
		$r_{\sigma} = 0.09 + 0.04 \text{Wd} - 0.13 \text{Ht} + .003 \text{Ss}$	
#4 (250 lbs)	4.46	r ₉₅ = 2.38 + 0.04Wd - 0.1Ht	.786
		$r_{\sigma} = 0.97 + .017 \text{Wd}042 \text{Ht}$	
#1 #2 #6 -(500 lbs)	6.03 4.48 4.83	r ₉₅ = 4.88 + 0.02Wd - Ö.38Ht	. 205
\ <u>"-</u> "	1100	$r_{\sigma} = 1.99 + .008Wd157Ht$.203
#5 (1000 1bs)	9.90	r ₉₅ = 6.67 + 0.08Wd - 0.44Ht	.932
	 	$r_{\sigma} = 2.76 + .032 \text{Wd} - 0.18 \text{Ht}$	
CEL		For all CEL sinker sizes and drop height	
24'WATER DEPTH		r ₉₅ = 5.34	į
		$r_{\sigma} = 2.18$	
56' & 88'		r95 = 11.12	
WATER DEPTH		$r_{cr} = 4.54$	
PRELIMINARY		For 250 lb sinker, 0 drop height	
PHASE: 88' WATER DEPTH		r ₉₅ = 4.54	
		$r_{\sigma} = 1.85$	

 r_{95} = radius of 95% confidence circle r_{σ} = radius at one standard deviation Wd = water depth = 24, 56, or 88 ft

Ht= drop height = 0, 1.5, 3, 4.5, or 6 ft

R² = correlation coefficient of the regression; good fit for A, #4, #5.

For #1 and #2 data was insufficient to produce meaningful equation

For #4 (250 lbs) and #2 and #6 (500 lbs) the means are not significantly different; but #1 (500 lbs) is significantly greater than any of these three.

to model this relationship as a linear function of sinker size (weight), is considered unreliable. The equations for #4 and #5 are considered to accurately represent 250 and 1000 lb sinkers. In the 500 lb sinkers, #6 is the most reliable, since considerably more drops were made with this than with the other 500 lb sinkers. In spite of the low R^2 value for this equation, it is the best estimate for 500 lb sinkers that this data provides.

3.3.2 CEL Factor Effects and Confidence Circles

The CEL experiments had basically a 3^3 factorial design, with the following levels:

Sinker size (Ss): 1000, 5000 & 8500 lbs.

(five sinkers in each group).

Water depth (Wd): 24, 56, and 88 feet Drop Height (Ht): 0, 4 and 6 feet

An ANOVA could not be done on all the data at once, since the configuration is not quite a complete 3³ factorial design. Table 3-4 makes this clear. Therefore, a series of ANOVA's on subsets of the data was done. Only one factor effect was established (at 95% significance) which holds for all levels of the other factors:

A very significant increase in offsets occurs from Wd = 24 feet to the greater depths. Offsets did not increase significantly from Wd = 56 to 88 feet.

The experimental design was set up to detect factor effects for the entire array of different sinker sizes, water depths, and drop heights. Therefore it can be misleading to single out a particular sinker size, for example, and study the data for that group of sinkers separately. In this light, it is interesting to note that there were three significant results for the 8500 lb. sinkers only:

- 1. A very significant increase occurs in offsets as Ht increases.
- 2. Offsets increase as Wd increases from 56 to 88 feet (as well as from 24 to 56 feet, as with all the CEL sinkers).
- 3. Considerable variation among individual sinkers exists; this is significant only at the 90% level, however.

Note that the first effect is contrary to that observed at NSWC, where offsets decreased as Ht increased. As pointed out above, an effect of this type cannot be considered truly significant because it was not tested for specifically. However it is included here because it does point out the danger of trying to extrapolate from the NSWC results for smaller sinkers, to gain information about heavier sinkers. Thus it would be dangerous to assume that, based on the NSWC results, offset will always decrease as Ht increases.

TABLE 3-4. CIRCULAR NORMAL σ^2 FOR CEL SINKER DROPS

SIM	IK ER	1000 lbs		5000 lb	ş	8500 lb	Ş
WATER DEPTH (ft)	DROP HEIGHT (ft)	CIRCULAR NORMAL 52	n	CIRCULAR NORMAL T 2	n	CIRCULAR NORMAL 2	n
24	0 4 6	3.02 4.95	5 10 -	- - -		5.57 5.12 7.68	3 6 1
	T	4.3	15			5.51	10_
56	0 4 6	21.02 24.82 16.08	6 5 6	34.35 14.97 21.04	8 8 6	12.81 16.91	6
	Ţ	20.39	17	23.67	22	14.86	12
88	0 4 6	17.04 20.46 26.53	6 8 6	15.63 21.43 25.66	6 6 6	23.98 26.45 35.13	6 9 6
	T	21.26	20	20.91	18	28.22	21

n = number of data points T row = for all drops in one block

The first two of the above effects are apparent in Table 3-4 and in the ANOVA performed on 8500 lb sinkers for depths of 56 and 88 feet, using either the offsets or the circular normal σ 's. Table 3-5 is included as an example of the latter procedure.

Thus there are only two statistically different groups to be considered in the confidence circle determination. The radii of the 95% confidence circles and one standard deviation are:

- a. 24 foot depth, all sinkers and drop heights:
 rg5 = 5.34'
 r= 2.18'
- b. 56 and 88 foot depths, all sinkers and drop heights: $r_{95} = 11.12'$ $r_{e} = 4.54'$

Unlike the NSWC data, no problems are seen in the interpretation of this data. Particularly since this experiment was conducted under conditions most closely approximating field conditions, it is felt that these figures give the most reliable estimates. They are listed in Table 3-3 also, for the sake of completeness.

3.3.3 Preliminary Phase Results

The preliminary experiment, delineated in Appendix A, was designed to examine the motion of the sinkers during descent, and the effect of current. Almost as a by-product, a statistically significant estimate (i.e., based on a sufficiently large number of drops) of offset for a 250 lb sinker at 88 feet depth was produced. This is given in Table 3-3. It agrees well with the NSWC results.

TABLE 3-5. 2-WAY ANOVA USING CIRCULAR NORMAL T'S: 8500 LB SINKERS VS DEPTHS (56' & 88')

Circular Normal σ 's for CEL 8500 lb Sinker

		. Si	nker Number		
Water Depth (ft)	1	2	3	4	5
56	3.91	3.66	4.16	2.02	4.61
88	4.89	4.74	4.69	4.76	6.47

2-WAY ANOVA

SOURCE	SS	DF	MS	_F-STAT	SIG LEVEL
DEPTH	5.17	1	5.17	13.79	**98%
SINKER SIZE	4.72	4	1.19	3.17	(.02) - 88% (.12)
ERROR	1.5	4	.375		.12)
TOTAL	11.39	9			

where:

SS = Sum of Squares DF = Degrees of Freedom MS = Mean Square

4.0 HYDRODYNAMIC ANALYSIS AND QUALITATIVE OBSERVATIONS

This section discusses two aspects of the sinker drop which have been lightly treated in the literature of hydrodynamics: the motion of the sinker as it falls, and the effect of current on the offset. In both cases, some observations and/or data were taken, but were insufficient for complete analysis. The hydrodynamic analysis is included for two reasons: to clarify the limited data and observed phenomena by placing them in the context of previous work; and to provide groundwork for possible future research.

4.1 Effect of Current on Offset

As mentioned earlier, it was originally intended to drop the larger size sinkers at Port Hueneme in a 1 kt current, to determine its effect on sinker offset. Unfortunately, no current was present during the test, and so no such data were obtained. The only current data obtained were with small sinkers (500 lbs and less) under controlled conditions at NSWC. This data was of two types: drops into a Circulating Water Channel, and drops from a moving carriage into still water, simulating the current effect. Appendix A contains a full description of these experiments. As explained there, the data shows that these small sinkers reach horizontal current velocity almost immediately upon entering the water. The data shows that the larger the sinker the longer it takes to reach horizontal steam velocity; but even for the 250 lb sinkers, it reaches the stream velocity very quickly. It is felt that full size sinkers would not come to stream velocity as quickly; but only further testing can definitely answer this question.

In lieu of actual measurement, the offset due to current can be determined if two things are known: the time of descent, Dt, and the horizontal velocity of the sinker due to current with respect to time, u(t). Ignoring the variations in offset found in still water, the following formula holds:

offset =
$$\int_0^{Dt} u(t) dt$$

Since considerable data were taken on the descent time, the next section discusses this and compares it to theoretical expectations. Two estimates of maximum possible offset due to current are given, based on these descent times and the above equation.

4.1.1 Time of Descent and Terminal Velocity

The descent times (Dt) for almost all the NSWC and CEL drops were recorded, as explained in Section 2, the description of the experiments, and the raw data are given in Appendix B with the offset data. The present section attempts to quantify offset due to current when the sinker is released at the water surface only, so the average Dt for each sinker at a drop height of 0, with no chain attached, is given in Table 4-1. These figures are considered quite reliable, since the variance around each mean is very small.

TABLE 4-1. SINKER DROP DESCENT TIMES AND VELOCITIES

ft/sec)	C _d =2		6.38	9.6.9	6.08		6.73	99.9	6.73	96.8	9.06	8.90	10.37	10.42	10.42			2.75	3.89	6.08 6.08			6.90
Vt (theoretical) (ft/sec)	C _d =1.5		7.37	7.95	7.02		1.11	7.69	7.7	10.34	10.46 10.40	10.28	11.97	12.03	12.03 11.97			3.17	4.4 4.4	7.02			7.96
Vt (theo	C _d =1		9.02	9.74	8.59		9.51	9.41	9.41	12.66	12.80	12.58	14.66	14.72	14.72			3.88	5.49	.8.59			9.74
t/sec)	56-88			8.06	3					13.30	11.03	10.32	. 11.85										
V _t eff (ft/sec)	24-56			17.0	7.48		7.62	11.1	1/•/				11.03										
	88			11 39	•					9.1	9.5 1	9.95	8.2					29.0	23.0	11.4		12.0	10.9
Dt(sec)	. 95		7.31	7.11	7.97		7.9	8.2	8.2	6.7	6.6 6.45	6.65	5.5	5.3	5.6 5.6								
	24'		Č	3.21	3.69		3.7	ć	3.8				2.6			-							1
SINKER	. TW)]	525	/9/ 108/	490		950	068	086	2800	5600	2600	8200	8200	8250 8200		DINSKUC	2.5	91	267	490	482	575 1090
SIN	Q	N.	2	2 · ·	, o	ان	11	12	14 15	9	7 8	90	_	~	~ ~		Z	<:	æ (ے د	:		- L

These figures are used to validate the following theoretical equation for Dt, and to show that a sinker drag coefficient (C_d) of about 1.5 is reasonable. Of course there are many uncertain factors in the equation; the C_d is one, and the sinker's projected area which is assumed constant, actually varies as the sinker descends due to fluttering. Hydrodynamic masses for sinkers are also uncertain. (See Section 4.2 and Appendix A for a further discussion of these topics.) Therefore, a rigorous statistical validation is not aimed for; rather, it is shown that the empirical data agrees well with the results of the equation.

Starting with the following well-known equation for acceleration due to gravity in a fluid:

$$W_w + 1/2(9 C_{d_v} A_v \times V) + (m + m_{H_v}) \frac{dv}{dt} = 0$$

where:

Cd. = Vertical Drag Coefficient

 A_{v}^{av} = Cross Sectional Area Presented to the Vertical

n = Mass of sinker

mu. = Hydrodynamic Mass for Vertical Motion

W'' = Weight of sinker in air Ww = Weight of Sinker in Water

The equations for vertical velocity (v) and descent time (Dt) of a sinker have been derived by Patton (Reference 3). Letting $K_V = 1/2 \rho C_{d_V} A_V$, they may be expressed as

$$V = \sqrt{W/K_V} \tanh \left(\sqrt{\frac{K_VW}{(m+m_{H_V})^2}} t\right)$$

$$D_{t} = \sqrt{\frac{(m+m_{H_{v}})^{2}}{K_{v}W}} \quad cosh^{-1} \left[exp\left(\frac{K_{v}Y}{m}\right) \right]$$

Furthermore, letting time go to infinity in the velocity equation gives the expression for terminal velocity (V_t):

$$V_t = \sqrt{W/K_v}$$

Unlike the preceding equations, the expression for V_t contains no hydrodynamic mass term, since the body is not accelerating after V_t is reached. Since no reliable estimate of hydrodynamic mass exists for the sinkers, the V_t rather than Dt is used for comparison between the data and the theoretical expectations.

Table 4-1 gives the empirical V_t 's (V_t eff), derived from the Dt data, and three estimates of V_t (V_t (Theoretical)) given by the

above equation. The three theoretical estimates are made using C_d 's of 1, 1.5, and 2. The value of 1.5 is considered a reasonable estimate of a sinker's C_d (Reference 4) and the other two figures are included to give an idea — the sensitivity of the V_t to the C_d .

The empirical figures are derived as follows. According to the equations for Dt and distance travelled, each sinker should be travelling at a constant velocity, V_t , after 24 ft. Therefore V_t is (for instance) the distance travelled from 24 to 56 ft. (32 ft) divided by the difference in descent times. Similarly, estimates are obtained between 56 and 88 ft. Admittedly, one of the 5000 lb. sinkers at CEL fell as much as 3 ft/sec faster than predicted. Although this aberration is unexplained, such a variation in experimental data is not unreasonable. Generally, it can be seen that with $C_d = 1.5$, the theoretical values agree well with the empirical results.

In the next section, the empirical Dt's are used in preparing the maximum offset tables. The theoretical values have been presented here only to lend credence to the empirical ones.

4.1.2 Maximum Possible Offset Due to Current

The data for the small sinkers show that they reached stream velocity almost immediately upon entering the water. Taking the horizontal velocity, u(t), as a constant equal to U (current velocity) the offset equation gives the maximum possible offset due to effect of the current. Thus,

maximum possible.offset =
$$\int u(t) dt = \int_0^{Dt} u dt = Ut \Big]_0^{Dt} = UDt$$

The values for maximum offset thus derived are given in Table 4-2 for all the sinkers, using the empirical descent times. These figures are experimentally validated for the small sinkers only; it is expected that the actual offsets for the larger sinkers would be less.

More reasonable estimates of maximum offset might be derived using the following theoretical equation for u(t):

$$u(t) = \frac{U^{2}\left(\frac{\alpha}{m+m_{h}}\right)t}{1 + U\left(\frac{\alpha}{m+m_{h}}\right)t}$$

where

$$\alpha = \frac{\rho^{C_{d_H} A_H}}{2}$$

TABLE 4-2. MAXIMUM POSSIBLE OFFSET DUE TO CURRENT BASED ON EMPIRICAL DATA

		******		0	Offset (ft)	(
CIMP				×	arer Depri	,			1 1
Ž		1	- 1	- !	20 TE	i		- 1	
NO.	1 kt	2 kt	4 kt	1 kt	2 kt	4 kt] kt	2 kt	4 kt
N N									
				12.3	24.7	49.4			
4 269	5.42	10.8	21.7	12.0	24.0	48.0			
				12.5	25.1	50.1	19.2	38.5	6.9/
6 490	6.23	12.5	24.9	13.5	6.92	53.8			
CEL									
<u> </u>									
	6.25	12.5	25.0	13.3	7.92	53.3			
	-	(1	13.8	27.7	55.4			
14 960	6.41	12.8	25.7	13.4	26.8	53.7 55.4			
				S • C •		• • • • • • • • • • • • • • • • • • • •			
0085 9				11.3	22.6	45.2	15.4	30.7	61.4
				11.1	22.3 21.8	44.6	15.0	30.7	64.1
10 5600				11.2	22.5	44.9	16.8	33.6	67.2
1 8200	4.4	8.8	17.6	9.3	18.6	37.1	13.8	27.7	55.4
				9.0	17.9	.35.8			
3 8250				9.5	18.9	37.8			
				9.5	18.9	37.8			
DTNSRDC				•					
							49.0		<u>5</u>
1 P							38.8	/://	155
~							19.2		77.0
064									
F 482							20.3	40.5	81.0
525							10.4	α <i>γ</i> ε	7.2 6
want i i							10.1	20.00	2.0

This is derived from the basic equation for acceleration of a sinker due to current in Appendix A. Again, a problem with this equation is that it involves the hydrodynamic mass, for which we have no data. However, a cursory examination reveals that the maximum u(t) is given using a hydrodynamic mass of O. Since this produces the maximum offset, it was used to find the figures given in Table 4-3. Since the true hydrodynamic mass is certainly greater than O, it may be expected that these values are somewhat higher than the true ones; but only further testing can establish (or disprove) this. A C_d of 1.5 is used.

It is not surprising that the offsets predicted by the equation and presented in Table 4-3 are smaller than the maximum possible offsets (UDt) in Table 4-2. Small sinkers are theoretically expected to approach stream velocity much more rapidly than larger sinkers. This fact in conjunction with the long fall times (up to 29 seconds for a Type A sinker in 88 feet of water) make the offset values predicted for small sinkers very close to the maximum offset, UDt.

These tables are presented as the best estimates possible for offset due to current given the limited extent of present knowledge. It should also be noted that they do not include the random offset in still water discussed in Section 3; this should be added on to find the total possible offset. Finally, these figures are for sinkers with no chain attached; it is expected that chain should reduce the offset due to current.

4.2 Sinker Motion in Still Water

4.2.1 Observations of Sinker Motion

As stated earlier, sinker drops at NSWC were recorded on film, and observed from a glass bottom boat. The films were thoroughly analyzed for two sinker drops; the results of the study are found in Figures 4-la and b and 4-2a and b. It should be noted that this is a distorted two-dimensional projection of the actual three-dimensional motion. No information could be obtained concerning the third dimension; the film is not clear enough to allow a study of such visual clues as foreshortening of the sinker. As an example, Figure 4-la shows the sinker landing 1 ft. away from the center; the actual offset for this drop was 9 ft. Thus, significant motion definitely occurred in the third dimension.

These plots indicate that the sinker initially fell straight down for about 10 ft., then oscillated or fluttered from side to side. This agrees with the motion observed from the boat, except that the observers felt the initial slide, preceding the flutter motion, was of greater magnitude than the following oscillations. It is entirely possible that much of this motion was in the third dimension, and so cannot be seen by the cameras. The idea that most of the offset is due to the initial slide is borne out by the fact that the sinkers were biased in the same direction at every depth. If, instead, the oscillations continued to be of equal magnitude as the initial one, veering first to one side of the tank, then the other, the directionality would probably be different at each depth.

TABLE 4-3. CALCULATED SINKER OFFSET DUE TO CURRENT

-	_	_																		
Offset (ft)		88 ft	4 kt		57.5	;				36.5	39.1	42.4	31.9			190	148 129	63.8		54.5
			2 kt		24.1					13.7	14.8	16.4	11.8			93.4	/1.6 61.3	28.2	•	22.7
			1 kt		9.25					4.66	5.10	5.71	3.97			45.2	28.1	11.7		8.68
		1	4 kt	35.7	33.9	39.4		37.0	39.1 36.9	24.0	23.8	24.6	18.2	18.7		•				
	Water Depth	26	2 kt	14.7	15.6	16.3		14.9	14.8	8.63	8.58	8.98	6.39 5.86	6.57				_		
	X		1 kt	5.53	6.11 4.88	6.20		5.47	5.43	2.80	2.85	2.95	2.02	2.08	-					
		•	4 kt		13./	14.7		13.6	13.9				5.84							
		24	2 kt		5.28	5.54		4.95	5.05				1.83							
			1 kt		1.84	1.88		1.62	1.65				0.53							
		SINKER	WT.	525	/92 1060	490	<u>ا</u> ا	950	096	2800	2600	2600	8200 8200	8200	DINSRDC	2.5	e 09	797	482	1090
		S	S Z	2	<u>4</u> v	9	iن	= :	14	9	~ 8) 0	2 - 2	J 4		<	ച 	٥	E	- L

FIGURE 4-1a 1000 Ib. SINKER MOVIE PLOT

FIGURE 4-1b 1000Ib SINKER COMPOSITE MOVIE PLOT

HORIZONTAL DISPLACEMENT (FEET)
FIGURE 4-2a 60 LB. SINKER MOVIE PLOT

FIGURE 4-2b 60 Ib. SINKER COMPOSITE MOVIE PLOT

The CEL sinker drops were observed for about the first 20 ft., and appeared to fall straight down during this time. The murkiness of the water made it impossible to see whether fluttering occurred afterwards. As explained previously, the CEL sinkers were made specially so as to have minimal center of gravity displacement while the NSWC sinkers definitely had such displacement.

The next section looks at this and other possible influences from a theoretical point of view, to put the foregoing discussion in perspective and provide a groundwork for possible future researchers.

4.2.2 Possible Mechanisms Affecting Sinker Motion

This section synopsizes the factors which may be significant in determining sinker motion.

The center of gravity location is undoubtedly important. Due to inhomogeneities in most standard sinkers, the center of gravity (c.g.) and center of buoyancy (c.b.) are not coincident. Sinkers dropped on their sides landed upside down in all cases, indicating the c.g. may be displaced above the c.b. Horizontal displacements of the c.g. from the centroids have also been quantified. The fact that the perturbations observed during the fluttering were nearly always insufficient to flip the sinker indicates that the c.g./c.b. vertical separation is probably relatively small. Aberrations in the basic geometric form, including chipped edges, rounded corners and non-parallel faces, could also affect the falling sinker.

As the sinker moves through the water it is subjected to hydrodynamic pressure forces. If, during the falling motion, the sinker becomes tilted at some angle to the horizontal, then the motion of the body may be explained like an airfoil. The tilt may be thought of as an angle of attack and the resultant flow around the sinker produces velocity changes of the fluid particles above and below the sinker. The velocity along the base of the sinker is decreased producing a relative increase in pressure, while the upper face experiences increased velocity and decreased pressure (suction). Due to these differential pressures, there is a resultant lift force. The effective point at which this resultant force acts varies with the sinker attitude, but in general it tends to orient the sinker back towards the horizontal.

As the leading edge rises due to the lift, the angle of attack increases and produces a corresponding increase in the lift force. This trend may continue until the pressure gradient due to the deceleration of flow past the after section of the suction side becomes too steep. The adverse pressure gradient causes boundary layer separation, the formation of vortices and a dramatic loss of lift. This phenomenon is known as stall and generally occurs at an angle of attack between $15^{\rm O}$ and $20^{\rm O}$ for a streamlined body, and somewhat less for a bluff body.

Boundary-layer transition also increases the fluid viscous forces on the body. Form drag, which is the resultant streamwise component of the pressure forces on the sinker, becomes significant. As the vortices created by the boundary layer separation move downstream there is considerable suction, which causes a large pressure drag on the sinker. Resonance with vortex shedding is unlikely in this flow situation. This is more characteristic of steady flow past a body and is responsible for phenomena such as cable strumming. The proportionality constant between the predominant frequency of vortex shedding (f_s) , and the free stream velocity (U) divided by the sinker width (L), is the Strouhal number (S) or

$$S = \frac{f_S L}{U}$$

For flow around a cylindrical body with a Reynolds number greater than 10^4 the Strouhal number is essentially constant and equal to 0.21. Using this as an approximation with an average vertical velocity for a typical falling sinker yields a shedding frequency of 0.63/sec or a period of 1.6 sec. However, it may be that the harmonic variation in flow conditions due to stall flutter would tend to prevent the formation of vortices at this frequency.

When the fluid particle velocities past the sinker are less than critical the viscous drag appears as skin drag. Once the particle velocities reach a critical value and boundary layer separation occurs, turbulent friction must also be considered. The relatively large Reynolds numbers (Re $^{-10^6}$) associated with the flow around a non-streamlined body such as the falling sinker are indicative of the likelihood of turbulent flow especially when the horizontal velocity component due to fluttering is superimposed on the general falling motion.

The actual sinker motion is probably the result of a complicated interaction of these phenomena and the relative predominance of any one factor is presently indeterminate. However, in order to put the foregoing discussion in perspective, the following postulation is suggested.

The initial motion of the sinker as it begins its descent through the water column may be governed by gravitational forces and a static instability. The instability is a result of the center of gravity/center of buoyancy moment which may cause the sinker to tilt. The sinker velocity increases due to gravitational acceleration and decreased hydrodynamic resistance as it falls off in the direction of tilt with a significant horizontal velocity component. Once the fluid velocities past the sinker reach a critical value, this early transient phase of the motion gives way to fluttering motion with small horizontal amplitudes superimposed on a more nearly vertical descent. The fluttering may be a result of alternate lift and stall phenomena affecting the sinker much as an airfoil. This action may be intensified by the c.g./c.b. moment. The viscous effects of skin drag, turbulent drag, and form drag naturally tend to dampen this type of motion.

Whether the flutter is confined to a single plane or not is unclear; however, classical potential flow theory as presented by Lamb (Reference 5) suggests the possibility of a helical or spiral type motion of a falling body when analyzed in six degrees of freedom. There is little data to support or negate such a motion. Also, present knowledge gives little indication of the magnitude of the flutter.

In order to further investigate the possible effects of sinker inhomogeneities, calculations were made to determine the instantaneous angular acceleration due to the center of gravity/center of buoyancy moment. The calculations were based on the c.g./c.b. separation in the horizontal plane as determined by measurement for the five sinkers used in the NSWC tests. (See Figure 3-18.) The angular acceleration is linearly related to the c.g./c.b. separation but inversely proportional to a complex function involving the lateral dimensions and buoyant weight of the sinker.

If the sinkers are ranked based on increasing c.g./c.b. separation the order is: 6, 4, 2, 1, and 5. With respect to increasing offset distance on the bottom, the ranking is: 4, 2, 6, 1, and 5. Based on the calculations, the ranking of sinkers' instantaneous acceleration about the x axis is: 6, 4, 2, 5, and 1 and about the y axis is: 6, 5, 1, 2, and 4.

Before drawing conclusions a few cautionary notes are in order. First, the values calculated are instantaneous accelerations, valid only for one sinker attitude. Secondly, the mass moment of inertia of the sinkers used was that for a block of homogeneous material, with the addition of the moment of inertia of the entrained fluid. Lastly, the size (weight) ranking of the sinkers is: 4, 1, 6, 2, and 5 and is not necessarily independent of c.g./c.b. separation or offset on the bottom.

The results indicate that an increase in the c.g./c.b. separation does not translate directly into increased instantaneous angular acceleration (due to the effect of sinker dimensions). Although the rankings based on increasing c.g./c.b. separation and increasing offset distance correlate well, this is not the case when comparing the offset distance with the angular acceleration rankings. In fact the ranking for angular acceleration about the y axis shows more of a reverse correlation. That is, for increasing instantaneous angular acceleration about the y axis the offset distance on the bottom is decreasing. This may indicate that once a falling sinker tilts and attains a horizontal velocity component, that a larger angular acceleration may cause further tilting and produce the flow conditions necessary to initiate the stall flutter motion sooner, resulting in a smaller horizontal offset. This explanation remains purely conjectural based on the limited data available.

5.0 CONCLUSIONS

- 1. Equations were developed by regression based on circular normal of 's of all test data which approximate giving 95% confidence circles for sinker offset in terms of sinker size, depth and height of drop above water. These are given in Table 3-3 (page 50).
- 2. Approximate one standard deviation and 95% confidence circles for sinker offset for the most important classification of sinker size and water depth, at a drop height of 3 feet, are as follows:

Radius of One Standard Deviation and 95% Confidence Circle for Sinker Offset (ft)

Sinker	Depth (ft)				
Size	1	24	56-88		
<1000 1b. (NSWC & CEL)	r ₉₅ =	2.54	r ₉₅ = 5.45		
	ľ	1.04	r _o - = 2.22		
≥1000 1b. (NSWC & CEL & PRELIM)	r ₉₅ =	5.08	r ₉₅ = 11.49		
		2.07	r _o = 4.69		

- 3. NSWC (Washington, D.C.) test factor effects:
- a. As sinker size (250 1000 lbs) or depth (24 102 ft.) increased, so did offset.
- b. As drop height (0 6 ft.) increased, offset decreased, relatively slightly but statistically significant at the .05 level.
- c. Presence or absence of chain, and a small tilt to the sinker, did not have any significant effect.
- d. Releasing the sinker on its side approximately doubled the offset.
 - 4. CEL (Port Heuneme, California) test factor effects:
- a. Sinker offset increased as depth increased from 24 to 56 feet; however, there was no significant difference between 56 and 88 feet.
- b. Neither sinker size (1000-8500 lbs) nor drop height (0 6 feet) had a significant effect on offset.
- c. The "8500" lb. sinker exhibited peculiarities not found in the other sinkers; most significantly, offset increased considerably as drop height increased; also, the individual sinkers varied considerably among themselves.
- 5. The difference between factor effects in NSWC and CEL cannot be attributed solely to the different sinker sizes because of the difference between the experimental situations: NSWC is a highly controlled experiment in an indoor tank facility, while the CEL experiment was conducted in the field.

- 6. Terminal velocities and times of descent for all sinkers agreed well with those predicted by a basic equation for gravitational acceleration of a body in a fluid. (See Table 4-1 on page 56).
- 7. Scale model sinkers reached stream velocity almost immediately when dropped in a current. No extrapolation to full-scale sinkers is justified due to the lack of dynamic similitude; therefore, no attempt was made to predict the effect of current on sinker offset. However, tables of maximum possible offset due to current, based on present knowledge, are included on pages 59 and 61.
- 8. All NSWC sinkers (the only ones whose orientations were recorded) exhibited statistically significant bias, i.e., the mean of the offsets was not directly under the sinker. Three of the five NSWC sinkers showed significant directionality, that is the distribution of offsets was not uniform through 360° . The remaining two NSWC sinkers were directional at the 90% confidence level.
- 9. The distribution of each sinker's offset is not different from the circular normal distribution. This is also true of all offsets taken as a whole.
- 10. When falling through the water column a sinker's motion is unsteady usually involving a "falling-leaf" fluttering probably due to a number of hydrodynamic factors, discussed in 4.2.1.

6.0 RECOMMENDATIONS

The following recommendations are offered for possible follow-up work in the ANPAR project.

- 1. If information on current effects is needed, tests should be conducted in a realistic ocean environment, with predictable tidal currents of reasonable magnitude. Attention should be given to the energy transfer effect at the surface (splash), which may cause the sinker to achieve stream velocity more quickly. This may be tested for by dropping sinkers from above and below the surface.
- 2. The approximate confidence circle estimates given here were obtained in more or less controlled conditions, and therefore are not directly applicable to actual field conditions. Validation using offset data from buoy tenders in the field is recommended.
- 3. It is clear from the present experiment that primary geometrical factors, i.e., nominal sinker dimensions of weight, height, etc., do not sufficiently define sinker motion. If further definition is required, preliminary theoretical and/or experimental work must be done to determine which of these may significantly affect hydrodynamic behavior: relatively small variations in nominal sizes, and secondary geometrical factors such as rough edges, rounding of corners, etc. Then a test under carefully controlled conditions, monitored in all 3 dimensions using the largest sinkers allowed by the test facilities, should be conducted using those factors identified as pertinent in the screening test.
- 4. A statistical study of the population of Coast Guard sinkers should also be conducted to determine how much variation in the significant factors exists among them.
- 5. Center of gravity location should be a factor in any future experiment, or at least should be recorded for each sinker.

REFERENCES CITED

- 1 Title 14, United States Code, Paragraph 2.
- Mardia, K.V., <u>Probability and Mathematical Statistics</u> (New York: Academic Press, 1972).
- Patton, K.T., "Kinematics of a Body Falling in a Viscous Fluid" (USL Tech Mem 933-313-64) Septembe: 1964.
- Patton, K.T., "Tables of Hydrodynamic Mass Factors for Translational Motion", ASME Paper (65-WA/UNT-2) November 1965.
- 5 Lamb, H., "Hydrodynamics", Dover, 1945. p. 178.

ADDITIONAL REFERENCES

- '1) Berteaux, Henri O., <u>Buoy Engineering</u> (New York, John Wiley & Sons, Inc., 1976).
- (2) Daily, James W. and Harleman, Donald, R.F., <u>Fluid Dynamics</u> (Reading, Massachusetts, Addision-Wesley Publishing Company, Inc., 1966).
- (3) Hollander, Myles and Wolfe, Douglas, Nonparametric Statistical Methods (New York, John Wiley & Sons, Inc., 1973), pp. 236-246.
- (4) Hoerner, Signhard F., Fluid-Dynamic Drag (Bricktown, New Jersey, by author, 1965), pp. 11-1 11-22.
- (5) Mardia, K.V., <u>Statistics of Directional Data</u> (New York, Academic Press, 1972), pp. 182-186.
- (6) Milne-Thomson, L.M., <u>Theoretical Hydrodynamics</u> (New York, MacMillian Co., 1968), pp. 164-175.
- (7) Resnick, Robert and Halliday, David, <u>Physics</u> (New York, John Wiley & Sons, Inc., 1966).
- (8) Sokal, Robert R. and Rohlf, F. James, <u>Biometry</u> (San Francisco, W.H. Freeman and Company, 1969), pp. 99-126.
- (9) White, Frank M., <u>Viscous Fluid Flow</u> (New York, McGraw-Hill Book Company, 1974).
- (10) "Strategy of Experimentation" (Wilmington, Delaware, E.I. DuPont de Nemours and Company, 1975).

APPENDIX A

Rispin, Peter P., "An Investigation of The Placement Errors of Model Buoy Sinkers," DTNSRDC Report

Request for Work to be Performed by other Government Agency #Z-51100 - 6202 - 6500

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Md. 20084

AN INVESTIGATION OF THE PLACEMENT ERRORS

OF MODEL BUOY SINKERS

Peter P. Rispin

April 1977

Report SPD

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
DROPS INTO STILL WATER	2
DROPS INTO MOVING WATER	5
THEORETICAL ANALYSIS	7
PRESENTATION OF RESULTS	15
CONCLUSIONS	35
APPENDIX A .	37
APPENDIX B	39
ADDENDIY C	42

NOTATION

- A Cross Sectional Area of Body
- C_d Drag Coefficient on Body
- d Diameter of Body
- D Drag on Body
- g Acceleration Due to Gravity
- K Added Mass Factor
- L Length of Side of Sinker
- m Mass of a Body
- m_h Added Mass in Horizontal Motion
- $m_{_{
 m V}}$ Added Mass in Vertical Motion
- T Total Time of Descent
- t Time
- u Horizontal Velocity
- U Speed of Stream
- Un Initial Horizontal Velocity
- v Vertical Velocity
- V Terminal Velocity
- V_O Initial Vertical Velocity
- W Weight of Body
- x Horizontal Displacement
- y Vertical Displacement
- ∠ Horizontal Drag on Body at Unit Velocity
- Vertical Drag on Body at Unit Velocity
- ✓ Specific Gravity of Body

(iii)

- κ Initial Horizontal Drag to Mass Ratio
- ρ Density of Fluid
- σ Vertical Fall Parameter; -βV/m

(iv)

ABSTRACT

A number of experimental observations of the dropping of concrete sinkers into still and moving water are reported. These sinkers are models of larger sinkers used to position buoys by the United States Coast Guard. Sinkers of up to 1100 pounds (500 kg) were dropped into 88 feet (27 m) of water and high speed movies were taken. Smaller sinkers were dropped into the Circulating Water Channel at the David W. Taylor Naval Ship Research and Development Center to simulate drops into a current. A simple computer program was written to assist in evaluating the results. Terminal velocities, sinker motion characteristics, trajectory plots and sinker placement offsets are given.

ADMINISTRATIVE INFORMATION

This work was sponsored by the United States Coast Guard Research and Development Center, Groton, Connecticut under David W. Taylor Naval Ship Research and Development Center Work Unit Number 1548-087.

INTRODUCTION

The United States Coast Guard routinely drops buoys with concrete sinkers into water depths of up to 100 feet (30 m). Often, a current may be running at the drop site. For this reason and because the sinkers, not being streamlined bodies, tend to move laterally even in still water; the sinkers do not strike the sea floor directly below the drop point. The distance between the point on the sea floor below the drop point and the point at which the sinker strikes is the offset. The purpose of the investigation reported here is to characterize this offset in terms of sinker size, distance of fall, presence or absence of a restraining chain, strength of current and other variables.

DROPS INTO STILL WATER

The first experimental phase consisted of dropping various size sinkers into 88 feet (27 m) of water in the 100-foot tank at the Naval Surface Weapons Center, White Oak. Sinkers were dropped with and without a constraining chain flaked out above the drop point. This was to find whether or not a gross difference in offset and descent velocity existed due to the chain. The drop was timed by means of a stop watch and movies were taken. After impact the lateral distance between the sinker and the release point was measured.

The 100-foot tank is shown in Figure 1. It is 50 feet (15 m) in diameter and contains 100 feet (30 m) of clear fresh water. The major feature of the tank is a movable floor which can be raised or lowered to any depth. Camera positions are at 12.5-foot (3.8 m) intervals starting 12.5 feet below the water surface. Viewing ports are in similar positions around the tank. A walkway projects over the center of the tank at a height of 4 feet (1.2 m) above the water surface. A buoyant wooden platform was attached to the movable floor so as to cushion the impact of a falling sinker.

Figure 1 - 100 Foot Tank at NSWC

The sinkers were made of concrete and their weights in air varied from about 2 pounds (1kg) to about 1100 pounds (500 kg). They were made of concrete with specific gravity $\frac{1}{2}$ equal to 2.4 approximately. They were, roughly, rectangular parallelepipeds $\frac{1}{2}$ $\frac{1}{2}$ where $\frac{1}{2}$ varied from 4 inches (100 mm) to 32 inches (0.8 m). Each had a metal eye-bolt protruding from the upper face. The sinkers are sketched in Figure 2 and some of their properties shown in Table 1.

Figure 2 - Typical Sinker

TABLE 1 - NOMINAL SINKER PROPERTIES

SINKER		А	В	С	D	E	F	Х
LENGTH	inches	4	8	12	20	24	32	4
L	m	0.10	0.20	0.30	0.51	0.61	0.81	0.10
WEIGHT	pounds	2.5	16	60	250	500	1000	11.2
IN AIR	kg	1.1	7.3	27	113	227	454	5.1

These are nominal values about which the actual values varied widely, especially those for the larger sinkers. For example, one type D sinker was $18 \times 17.6 \times 10$ inches $(0.46 \times 0.45 \times 0.25 \text{ m})$ and weighed 275 pounds (125 kg) while another was more of a pyramid. One face was 20×20 inches $(0.51 \times 0.51 \text{ m})$ while the other (top) face was 17.2×16.8 inches $(0.44 \times 0.43 \text{ m})$. The weight was 306 pounds (139 kg). A type E sinker

weighed 472 pounds (214 kg) while the only type F sinker weighed 1115 pounds (506 kg). A single lead sinker, type X, was also used. Some drops were made using a pair of type D sinkers tied together by a 3-foot (0.9 m) cord. This was done, for interest sake, to check on possible motions during descent.

The effects of chain attachment were investigated during some of the drops using type D. An 0.5 inch (13 mm) chain was flaked out on the overhanging walkway and followed the sinker as it fell.

Each sinker was suspended either just above or just below the water surface by means of an electrically operated release. The majority of drops were made from below the water surface so as to standardize the initial drop conditions. On a signal the release was actuated and the sinker began to fall. Meanwhile, a vertical array of movie cameras, one at each of the camera positions as mentioned above, was also actuated. The sinker fell approximately along the center line of the tank, and its motion was recorded by each of the cameras in turn. The sinker fell on or near a buoyant platform a few inches above the movable floor. This platform cushioned the impact of the falling sinker. The sinkers did not bounce or roll over on impact. They generally settled onto one side or other if they hit on an edge. An observer at the lowest viewing port timed the descent from the signal to impact on the platform and also noted any peculiarities of the sinker motion. The floor then was raised above the water level and the offset between the position of the centroid after impact and the position at release was measured.

This was carried out for about 50 drops, of which 37 were filmed. The movies were analyzed using a stop-action projector and the displacement of a point on the sinker was measured frame by frame. This was done by projecting a frame on a screen and marking a particular point on the image of the sinker. The next frame was then projected and the process repeated. The time interval was fixed at 1/16 seconds. These data were then converted into displacement-time and velocity-time tables and plots.

A second series of drops into still water was made from a moving carriage into still water, but because of the relative horizontal motion of the sinker it is reported in the next section.

DROPS INTO MOVING WATER

The objective of the second phase was to find the offset from the release point as a function of current speed and sinker size. Two separate experiments were carried out. In the first, sinker types A and B were dropped into the Circulating Water Channel at DTNSRDC. In the second, a type D sinker was dropped from a moving carriage into the Deep Water Basin, at DTNSRDC to simulate dropping a sinker from a fixed point into a constant current. This was done because the large sinker would cause damage if dropped into the Circulating Water Channel (CWC). At the same time it was desired that the largest possible sinker be used to minimize scale effects for extrapolation to larger sizes. The CWC has a fixed drop point and moving current. The carriage gave a moving drop point into fixed water. A simple linear transformation will be used to show the equivalence of the two approaches.

The Circulating Water Channel has a working section which is sketched in Figure 3. It is 9 feet (2.74 m) deep and 22 feet (6.7 m) across. The

(NOT TO SCALE)

Figure 3 - Side and Front Elevation of Circulating Water Channel

flow was varied from 0 to 2 knots. (3.4 feet/second; 1.03 m/s). The horizontal flow velocity is constant to within 3 percent along a vertical line through the center of the channel. An example of the current profile is shown in Figure 4. The sinkers were released from a walkway suspended

Figure 4 - Current Profile along a Vertical Line in the Circulating Water Channel

over the center of the channel. The sinkers were dropped with the bottom being about an inch (25 mm) above the water surface. The drops were filmed from two viewing ports in the side of the channel. The sinkers fell on or near a buoyant platform anchored to the floor. The time of descent was measured and the point of impact noted. Over 100 drops were made. The resulting movies were analyzed in the same manner as those taken during the first phase.

The second part of the second phase consisted of thirteen drops of a type D sinker into 22 feet (6.7 m) of water from a carriage moving at speeds up to 2 knots (3.4 feet/second, 1.03 m/s). The drop was from a height of about 3 inches (75 mm) and the resulting velocity was less than the terminal

velocity of the sinker. This is sketched in Figure 5. At the moment of

Figure 5 - Drop Into Deep Water Basin

release, the position of the moving carriage was noted. This was done by observing the position of a pointer fixed to the carriage relative to a scale fixed to the side of the towing basin. After the carriage was brought to a stop, it was backed up to the position at which the sinker was released. A thin wire rope with a locating float had been attached to the sinker before the drop. This was now pulled taut vertically and the horizontal offset from the point of release was measured. The accuracy with which the offset was estimated was approximately \pm 3 inches (75 mm), based on careful sighting of the pointer by a second observer.

THEORETICAL ANALYSIS

To help in the interpretation of the results obtained in the drops described above, a simple uncoupled model was made for the vertical and horizontal motions of the sinkers. In each case only a single degree of freedom analysis was made, the effects due to tilting and spiralling of the sinkers during descent being omitted so as to render tractable the resulting

equations of motion. The sinkers were modelled as point masses moving under gravity and buoyancy and under the vertical and horizontal drag forces due to the fluid. The coordinate system is shown in Figure 6.

Figure 6 - Coordinate System and Balance of Forces

The point of release, assumed to be in water, is taken to be the origin 0. The x-axis is along the direction of the moving stream, and the y-axis is vertically downward. The added masses in the horizontal and vertical directions are m_h and m_v respectively.

ADDED MASS:

Values for the added mass coefficients of parallelepipeds are given by Patton¹. Unfortunately, no data exist for parallelepipeds whose side ratios are those of the sinkers used here. Using Patton's data for a flat plate as an approximation,

$$m_h = 0.33 \text{ m/y}$$
 $m_v = 0.75 \text{ m/y}$

Patton, K.T., "Tables of Hydrodynamic Mass Factors for Translational Motion", ASME Paper 65-WA/UNT-2 (Nov 1965)

However, for a cube

$$m_h = m_v = 2.32 \text{ m/s}$$

Purely as an ad hoc approximation to be used in further calculations, the following values will be used here,

$$m_h = 0.9 \text{ m} / \text{ / }$$

 $m_V = 1.3 \text{ m} / \text{ / }$

HORIZONTAL MOTION:

Let $u = \frac{dx}{dt} = \dot{x}$ be the velocity in the x direction. Then the velocity of the sinker relative to the fluid is u - U, where U is the stream velocity. The assumption used here is that the horizontal force on the sinker is proportional to the square of the relative velocity and is positive if u < U and negative if u > U

$$F = -\alpha (u - U) | u - U |$$
 (1)

with =
$$1/2 \rho c_{dH} A_H$$
 (2)

where p is the density of water

 A_h is the projected cross-sectional area of the sinker in the horizontal direction

 C_{dh} is the drag coefficient in the horizontal direction

This is assumed to be the only force acting in the horizontal direction. The unsteady forces, such as those due to changing attitude or to vortex shedding, are reflected in the experimentally determined drag coefficient. The equation of motion is then

$$(m + m_h) \frac{du}{dt} = - \alpha (u-U) | u-U |$$
 (3)

The initial conditions are

$$x = 0$$
, $u = 0$ at $t = 0$ (4)

where $\mathbf{U}_{\mathbf{0}}$ is any initial horizontal speed the sinker may be given at the beginning.

The solutions, derived in Appendix A, are

$$u = \frac{U_0 + UKt}{1 + Kt} = U - \frac{U - U_0}{1 + Kt}$$
 (5)

$$x = Ut - \frac{1}{K} (U - U_0) \ln (1 + Kt)$$
 (6)

where

$$\mathcal{K} = \propto \frac{\left| \mathbf{U} - \mathbf{U_o} \right|}{\mathbf{m} + \mathbf{m_h}} \tag{7}$$

Thus as $t \rightarrow \infty$, equation (5) shows that $u \rightarrow U$, the stream velocity, and that the difference between u and U is proportional to the original difference, It also shows that the difference decreases slowly unless K is large, $\rho_{\text{dH}}^{\text{C}} A_{\text{H}} \left[U - U_{\text{o}} \right] / 2 \left(m + m_{\text{h}} \right)$ is large. If $U_{\text{o}} = 0$ then u/U = kt/1 + kt. To find the time it takes for u to reach 0.5U solve 0.5 = $\frac{1}{2}$ Then $t_{1/2} = \frac{1}{2}$ seconds.

Example: A cube of side 3 inches and of specific gravity 2.4 is dropped into a stream going at 3 feet/second. Plot u and x as functions of time if $C_{dH} = 1.5$. (p is 1.94 slugs/cubic foot)

$$\alpha = 0.5 \times 1.94 \times 1.5 \times (0.25)^2 = 0.0909 \text{ slug/foot}$$
 $m = 1.94 \times (0.25)^3 \times 2.4 = 0.0728 \text{ slug s}$
 $m = 2.32 \text{ m/ } 2.4 = 0.0704 \text{ slugs}$

$$m_h^{=} 2.32 \text{ m/ } 2.4 = 0.0704 \text{ slugs}$$

$$\mathbf{K} = 0.0909 \times 3 / (0.0728 + 0.0704) = 1.91$$

$$u = \frac{5.72 t}{1 + 1.91 t}$$

$$x = 3t - 1.57 \ln(1+1.91t)$$

The time to reach U/2 is 0.52 seconds.

The plots are shown in Figure 7. Note that the speed rises sharply at first but then takes a long time to reach the stream velocity.

Figure 7 - Horizontal Velocity and Displacement Against Time for Example VERTICAL MOTION:

Let $v = \frac{dy}{dt} = \dot{y}$ be the downward velocity. Let the vertical force be

$$F = mg - B - \beta V^2 \tag{8}$$

with
$$\beta = \frac{1}{2\rho} C_{dV} A_{V}$$
 (9)

where g is the acceleration due to gravity

B is the buoyancy

 $C_{
m dv}$ is the vertical drag coefficient

 ${\bf A_v}$ the cross sectional area for vertical motion.

The equation of motion is then

$$(m + m_h) \dot{v} = mg - B - \beta v^2$$
 (10)
= $W^{\ell} - \beta v^2$ (10a)

where $W^{\ell} = mg - B$ is the weight in water of the sinker. Note that $\mathring{V} = 0$ when $gv^2 = W^{\ell}$

Then the velocity is constant and is called the terminal velocity.

$$V_T^2 = W^{\ell}/\beta \tag{11}$$

Equation [10] can be integrated twice, as in Appendix A, with

$$y = 0, v = V_0$$
 at $t = 0$ (12)

as initial conditions to give

$$v = V_T \frac{1 - \lambda e^{-2\sigma t}}{1 + \lambda e^{-2\sigma t}}$$
 (13)

$$y = V_T t + \frac{V_T}{\sigma} \ln \frac{1 + \lambda e^{-2\sigma t}}{1 + \lambda}$$
 (14)

where
$$\lambda = \frac{V_T - V_0}{V_T + V_0}$$
 (15)

and
$$\sigma = \frac{\beta V_T}{m + m_V}$$
 (16)

Example: The cube of the previous example is dropped into water. Find v and y.

$$\beta = 0.5 \times 1.94 \times 1.5^{\circ} \times (0.25)^{2} = 0.0909 \text{ slugs/foot}$$

 $m = 1.94 \times (0.25)^{3} \times 2.4 = 0.0728 \text{ slugs}$

and since the sinker is a cube,

$$m_V = m_h = 0.0703$$
 slugs
 $W = mg = 0.0728 \times 32.15 = 2.34$ pounds
 $W' = \frac{Y - 1}{X} W = \frac{1.4}{2.4} \times 2.34 = 1.36$ pounds

Then, from equation [11]

$$V_T = 3.87$$
 feet/second

and

$$\sigma = 2.46$$

Therefore

$$v = 3.87 \frac{1 - e^{-4.92t}}{1 + e^{-4.92t}}$$
 feet/second

$$y = 3.87t + 1.58 \ln \frac{1 + e^{-4.92t}}{2}$$
 feet

The plots are shown in Figure 8. Note that the initial acceleration for vertical motion is greater than that for horizontal motion.

PARAMETERS IN TERMS OF THE TERMINAL VELOCITY

Combine equation [11] with equation [16] and note W'/W = (Y-1)/Y. Then

$$O^{-} = \frac{Y - 1}{Y + K} \frac{g}{v_{T}}$$
(17)

Figure 8 - Vertical Velocity and Displacement against Time for Example

where K is an added mass factor, as tabulated by Patton, which is defined as $K = m_v \chi/m$. Equation [17] gives σ in terms of observed values. Finally equation [9] gives

$$\dot{c}_{dV} = \frac{2W'}{\rho AV_T^2}$$
 (18)

These equations will aid in the interpretation of the data taken from both phases of the experiments.

PRESENTATION OF RESULTS

PHASE 1 NO CURRENT:

In general for the 50 drops made in this phase, the sinkers fell vertically with a low-frequency fluttering motion whose peak to peak amplitude was, approximately, two sinker widths. The bigger sinkers

Figure 9 - Offset at a Depth of 88 Feet (27 m) for Types B through F

oscillated about three times in an 88-foot (27 m) fall. As can be seen from Figure 9, the offset is highly variable within a sinker group, while the offset grows with sinker size. The effects of chain were small in that the mean offsets of the drops with and without chain did not differ appreciably. The variability within a group is due to a number of reasons. First, the sizes of the sinkers of the same nominal size are quite variable as noted previously. The characteristics of a number of sinkers are shown in Table 2. The line on the abscissas of Figures 9 through 12 represents the range of variation for the side L. Second, the

TABLE 2 - PHYSICAL CHARACTERISTICS OF TYPICAL SINKERS

Weight	in Air Weight in Water		Specific	Length		Height		
pounds	kg	pounds	kg	Gravity	inches	m	inches	m
267	121	160	73	2.50	18.3	0.46	9.8	0.25
482	219	280	127	2.39	24.0	0.61	9.8	0.25
490	222	287	130	2.41	24.0	0.61	9.8	0.25
525	238	307	139	2.41	24.0	0.61	10.8	0.28
1090	495	635	288	2.40	31.9	0.81	12.6	0.32

small angle at which the sinker starts out can change the initial phase of the flutter phenomenon. During the fall as the angle with the horizontal changes, the drag on the sinker changes. The leading edge stalls, drag rises and the oscillation reverses. It is not clear how this can be accounted for analytically. In an effort to extend the values obtained here to larger sizes a logarithmic plot of offset versus size is shown in Figure 10.

Figure 10 - Logarithmic Plot of Offset versus Size for 88 Foot Depth

The effect of the depth through which a sinker fell is shown in Figure 11 for the type-D sinker. The average velocity was calculated from the time of drop and the depth of the tank. Also the terminal velocity was taken from the movie footage taken at the 75-foot (23m) level. These are plotted in Figure 12. The effect of chain is seen to be so small as to be negligible. Drops for sizes larger than type-D were, therefore, done without chain. There is good agreement between the average and terminal velocities.

Figure 11b - Type E Sinker

Figure 11 - Offset versus Depth for Types D and E

Figure 12 - Average Velocity versus Size for 88 Foot (27 m) Depth

From equation [14] it can be shown that

$$V_T - V_{av} = V_T \frac{\ln 2}{\sigma T}$$

which, for the sinkers in this experiment, comes to about 3 percent of V_{T} . Thus the difference between the average and terminal velocities is small in these experiments. The velocity is seen to rise with size and

then levels off. It is seen that type E has a smaller velocity than the smaller type D. However, the type D sinkers were over nominal size and weight, while the type E were under. In an effort to clarify this apparent anomaly, the vertical drag coefficient was calculated using equation [18]. The results are plotted in Figure 13. The value of $C_{\rm dv}$ given by Hoerner is 1.50, though no Reynolds Number is given. It can be seen that the calculated values lie on both sides of Hoerner's value. The result for type D is, however, low while that for type E is high. A possible explanation is that type E is the most pyramidal of the sinkers, the larger face being downwards. Also plotted in Figure 13 is the vertical drag coefficient as a function of Reynolds Number,

$$R_{n} = \frac{LV_{T}}{V}$$
 (19)

where y is the kinematic viscosity of fresh water ($y = 1.21 \times 10^{-5}$ feet²/second, 1.12×10^{-6} m²/s). However, the sinkers oscillated many times during a drop. The drag coefficient would then be a function of oscillation frequency and other unsteady parameters which are not accounted for in the present simplified analysis.

Finally, the initial 1.5 seconds of motion for most of the sinker types were analyzed. The results are shown in Figures 14 through 19. In each figure, an average velocity over a number of runs is plotted against time. This is done by first finding the displacement as a function of time as described in the section "Drops into Still Water". The distance between successive positions of

one corner of a sinker was divided by the time interval between frames and multiplied by the calibration factor for the camera set-up. This gave the velocity as a function of time. From the observed value of V_T and a value of $\mathcal T$ calculated from equation [17], the theoretical value for the vertical velocity is plotted in Figures 14 through 19. Figure 14 includes an initial velocity of 15 feet/second (4.6 m/s) gained from a drop height in air of 3.5 feet (1.07 m) above the water surface. The other curves assume a zero initial velocity.

Hoerner, S., Fluid Dynamic Drag , Published by author, New Jersey (1965).

Figure 13a - C_{dv} as a Function of Length of Side

Figure 13b - $C_{\mbox{dv}}$ as a Function of Reynolds Number

Figure 13 - Vertical Drag Coefficient versus Length
of Side and Reynolds Number

Figure 14 - Velocity - Time Plot for Type X

22

Figure 16 - Velocity - Time Plot for Type C

Figure 17 - Velocity-Time Plot for Type D With and Without Chain

Figure 18 - Velocity-Time Plot for Type E

It can be seen that, except for type B, the calculated values follow the observed values, allowing for experimental data scatter. For type B, some of the sinkers were dropped from a height of about 3.5 feet (1.1 m) into the water, giving an initial velocity to the sinker's motion in the water. It should be noted that the data presented is averaged over five drops and is for the first second or so of drops which lasted for from 8 to 24 seconds. For example, Figure 17 shows that the velocity is higher than the average terminal velocity after 1 second. This is due to the fact that the motion is oscillatory and the velocity drops below the average value a few seconds later. Figure 20 shows a complete record for a drop for type D with chain. The cyclic nature of the vertical velocity can be seen to have a period of about 2 seconds and to have a peak to peak amplitude of about 6 feet per second about a slowly increasing trend.

Figure 19 - Velocity-Time Plot for Type F

Figure 20 - Complete Velocity - Time Plot for Drop 17 for Sinker Type D

An analysis was made concerning the effects of refraction at the water-air interface in front of the camera and of measuring the vertical velocity from a point on an oscillating sinker. The maximum error in velocity was found to be of the order of 1 percent, well within the measurement error itself. (See Appendix B)

PHASE TWO: CURRENT

To simulate drops into a current two experiments were done. The first was at the Circulating Water Channel (CWC) at DTNSRDC. The drop point was stationary and the current moved past. The second experiment used a moving drop point and a stationary body of water. The results from the CWC are presented first.

The downstream offset is shown in Figure 21, as a function of current speed, for both 4 inch and 8 inch sinkers (Types A and B). Also plotted is the horizontal offset to be expected if the sinkers moved downstream at the speed of the current.

This is found from

x = UT

where x is the horizontal offset

U is the stream velocity

and T is the experimentally measured time of fall

It can be seen that, for a given stream velocity, the sinkers are carried downstream as if they were convected by the stream. Note that the lighter Type A sinkers are carried farther and have a longer drop time. The corresponding times of descent are shown in Figure 22. The data on which these figures are based are given in Appendix C.

Figure 21 - Average Horizontal Offset as a Function of Stream
Speed in the Circulating Water Channel

Figure 22 - Time of Descent as a Function of Current

The times of descent are seen to be independent of current speed. This implies that the vertical motion does not depend very much on the horizontal motion. This can be further seen in Figure 22A where the vertical motion of a Type B sinker is shown with and without a current of 2 knots. The path in a current is intertwined with that for still water due to an oscillatory motion that is much stronger in the former case.

The corresponding horizontal motion for the same sinker type is shown in Figure 22B where data for seven drops are shown. The data have little scatter and can be seen to approach and oscillate about a line whose slope is 2 knots, the speed of the water channel. This indicates that, within approximately 0.3 seconds, the sinker reaches the stream velocity and is then convected by it. Equation [6] was used to calculate $\mathcal K$, from which a value of $C_{dH} = 4.7$ was found. This is a very high value and may reflect the tilting of the sinker after release.

Figure 22A - Vertical Motion of Type B Sinker in Still Water and in a 2 Knot Current

Figure 22B - Horizontal Motion of a Type B Sinker in a 2 Knot Current

DROPS FROM A MOVING CARRIAGE INTO STILL WATER:

The drops into the Circulating Water Channel were from a fixed point into a moving current. The remainder of the drops to be discussed here are those from a moving drop point into still water. By appropriately choosing a frame of reference from which to view the motion, the essential identity of the two approaches can be seen.

Imagine an object being dropped into still water from a carriage moving from right to left at speed U. Suppose the object is small enough to have its horizontal motion instantly retarded and its vertical motion instantly reduced to the terminal velocity. Then, as sketched in Figure 23, as viewed by an observer fixed relative to the towing basin, the object falls vertically at constant speed, V_{ϕ} say. Now imagine a second observer on the

- (a) As Viewed from a Frame Fixed Relative to Basin
- (b) As Viewed from a Frame Fixed Relative to Carriage

Figure 23 - Transformation from Fixed to Moving Reference Frame moving carriage. To his view the object falls vertically at constant speed $V_{\underline{T}}$ and moves to the right at constant speed U. In general a simple transformation

$$x = Ut - x'$$

 $y = y'$

relates the position relative to the carriage, (x,y) to the position relative to the basin, (x^*, y^*) .

Note that

$$\frac{dx}{dt} = \frac{dx'}{dt} + U$$

$$\frac{d^2x}{dt^2} = \frac{d^2x'}{dt^2}$$

$$\frac{dy}{dt} = \frac{dy'}{dt}$$

$$\frac{d^2y}{dt^2} = \frac{d^2y'}{dt^2}$$

Thus the velocities may be transformed by simply imposing a left to right uniform velocity U. The accelerations are left unchanged by this Galilean Transformation, and hence the forces acting remain unchanged. The usual statement is that the Newtonian Laws of Motion are invariant under a Galilean Transformation. Thus the two types of experiment used here may be put into correspondence by imposing a constant velocity U.

Table 4 shows the offsets, x^* , relative to the basin and the offsets, x, relative to the carriage. Γ is the time of descent, which was 3.0 seconds.

TABLE 4 - OFFSETS FOR D TYPE SINKER FUNCTIONS OF SPEED AT A DEFTH OF 22 FEET (6.7 m)

Spee	d U	Offs	et x'	Cffset	x
knots	m/s	feet	m	feet	n
0.0	0.00	-1.5 -1.2 -1.0	-0.45 -0.4 -0.3	1.5 1.2 1.0	.45 .4 .3
0.5	0.25	.0.8 0.0	0.25	1.13	•5 •75
1.0	0.51	1.2	0.4 0.45 0.6	3.87 3.57 3.07	1.13 1.08 .93
1.5	0.77	1.2	0.4 0.4 0.6	6.4 6.3 5.6	1.91 1.91 1.71
2.0	1.03	0.8 2.0 1.0	0.25 0.6 0.3	9.33 8.13 9.13	2.84 2.49 2.79

for all drops measured. The values of x are plotted in Figure 24 as a function of U. Note that x corresponds to the offsets used in the previous sections. The backwards offset at zero speed is probably due

Figure 24 - Horizontal Offset for Type D Sinker in Deep Water Basin

to a slight backwards initial tilt of the sinker, which was always dropped with the same crientation. If this zero offset is subtracted from all of the data then all of the transformed values lie along a line parallel to x = UT, which in a strict interpretation of this transformation principle implies that the sinker took some finite time to reach a horizontal velocity almost equal to the stream velocity. However, since the number of drops is small and the variability of these data over the current range is not sufficient upon which to base any firm conclusions and since the splash into the water of a horizontally moving sinker may be introducing effects not accounted for in the Galilean transformation, further thought and more extensive tests are needed to use this technique for the above stated purpose.

The drop time of 3.3 seconds corresponds to an average velocity of 7.4 feet per second (2.3 m/s) which agrees with the average value obtained from equation (14), with $V_{\rm av}$ = y/T.

A further series of 3 drops of a type Ξ sinker was made in 56 feet (17 m) of water at the NSWC 100-foot tank. The horizontal speed was 1 knot (0.51 m/s).

The results are given in Table 5.

TABLE 5 - OFFSETS AT 56 FEET (17 m) FOR 1 KNOT - TYPE E SINKER

Drop	1	2	3
Offset x'	1.2	-1.2	-1.0
Offset x	12.1	14.4	14.3
Note; Time of	drop is take	en to be 7	.9 seconds

In contrast to the 3 inch (0.08 m) accuracy of the data in Table 4, this data is accurate only to within ± 1 foot (0.3 m). The data clearly show, however, that the forward motion \dot{x}' is immediately retarded and that the sinker falls almost vertically. Or as viewed as \dot{x} , the sinker is taken up almost immediately by the stream. Calculation of drag coefficients based on the simple theory given previously, gives values from 40 to 90 for c_{dH} . These are clearly nonsensical. The dominant mechanism instead seems to be the loss of momentum to the splash produced on entry into the water.

In summary, the second phase of the investigation shows that the larger sinkers are taken up by the current and fall to the bottom with an offset that differs from U \times T by less than the deviation measured from drops into still water of the same depth.

NOTE ON MODELING ;

The sequence of sinker types A through F represents a set of scale models of the full scale sinkers used by the Coast Guard. They do not, however, represent a sequence from which full scale data can be obtained by a scale transformation such as is done for ship powering and resistance. In the present case the effects of gravity and viscosity must be taken into account, since a heavy object is falling in a viscous fluid. Under such conditions, and assuming water to be the fluid, the ratio of weight in water to resistance is preserved only if

$$\frac{L_{m}^{3}}{L_{p}^{3}} = \frac{\gamma_{p} - 1}{\gamma_{m} - 1}$$

where L is the length of the side of the sinker, Y is the specific gravity

of the sinker and the subscripts m and p refer to model and prototype respectively. Thus the largest scale factor allowed by use of even a lead sinker is $L_p/L_m=(10.4/1.4)^{1/3}=1.95$. Thus a lead sinker of the size of sinker F and weighing 4750 pounds (1050 kg) would allow modeling of a sinker almost twice the size of type F. Practical considerations rule out such an attempt. Therefore the present work is to be regarded as the investigation of a sequence of geometrically and physically similar sinkers and that values for larger sinkers should be estimated by judicious extrapolation from those for smaller sinkers.

CONCLUSIONS

The experiments done with the various sinkers used a 100-foot tank, a circulating water channel and a moving drop into still water. The results for the circulating water channel are for very small sinkers only. It is felt that the very small size is the major reason for the lack of consistency for the results in the CWC compared with those for the other two experiments.

The results for free fall into still water are consistent and valid. Since the full scale sinkers weigh up to 7000 pounds (3200 kg) and above, extrapolation to these higher weights must be made. From the logarithmic plot in Figure 10 and using straight line extrapolation through types D,E and F

$$x = 0.00228 L^{2.384}$$

for a depth of 88 feet (27 m). For example, the 7000 pound sinker with a length of side of 60 inches (0.15 m)

$$x = 0.00228 60^{2.384} = 39.5 feet$$

For a type E sinker, from Figure 11b

$$x = 0.11 y - 1.11$$
 feet

The vertical velocity, for all larger sinkers

$$V_T = 8 \text{ feet/second}$$

The results from drops from the moving carriage into the deep water basin are believed to be accurate. They indicate that, to within an error equivalent to that due to the vertical fluttering motion, the larger sinkers are taken up by the current, giving an offset equal to the product of the current velocity and the time of fall. This time can be reasonably calculated using the terminal velocity instead of the average velocity. The terminal velocity can be calculated using Equation [18] with a drag coefficient of 1. 5. For a sinker falling through a current shear an approximation

$$x = \frac{N}{1-1} \quad U_{1} \quad \frac{y_{1}}{V_{T}}$$

can be used where, U is the horizontal velocity in the i-th of the N layers,

 y_i is the thickness and V_T is the terminal velocity. However, this is not exact if the shear is abrupt or if the horizontal drag on the cylinder is small. The effects of the latter could best be investigated by drops of large sinkers into an actual shear current of known structure.

APPENDIX A

HORIZONTAL MOTION:

The equation of motion is

$$(m + m_h) \frac{du}{dt} = -\alpha (u-U) |u-U|$$
 with x = 0 and u = U₀ at t = 0

Now suppose u < U; the proof is similar for u > U

$$\frac{du}{(u-U)^2} = \frac{\alpha}{m} dt$$

$$\frac{1}{u-U} = -\frac{\alpha}{m} t + constant$$

Use $u = U_0$ at t = 0, with some simple manipulation

$$u = \frac{U_0 + U \chi t}{1 + \chi t}$$

$$\mathcal{K} = \frac{\alpha (U - U_0)}{m + m_b}$$

Then

$$x = \int_0^t u dt$$

$$= Ut + \frac{1}{K} (U_0 - U) \ln(1 + Kt)$$

VERTICAL MOTION:

The equation of motion is

$$(m + m_v) \frac{dv}{dt} = \beta (v_T^2 - v^2)$$

$$\frac{dv}{v_T^2 - v^2} = \frac{\beta}{m + m_v} dt$$

Use partial fractions and integrate to get

$$\frac{1}{2V_{T}} \ln \left(\frac{v - V_{T}}{V_{O} - V_{T}} \right) \left(\frac{V_{O} + V_{T}}{v + V_{T}} \right) = \frac{fS}{m + m_{V}} t$$

where $v = V_0$ at t = 0 has been used. Rewrite after exponentiation

$$\frac{V - V_T}{V_O + V_T} = \frac{V_O - V}{V_O + V} e^{-2\sigma t}$$

where

$$\sigma = -\frac{\beta V_T}{m + m_V}$$

Let

$$y = \frac{\lambda^{1} + \lambda^{0}}{\lambda^{2} - \lambda^{0}}$$

and rearrange

$$v = V_{T} \frac{1 - \lambda e^{-2\sigma t}}{1 + \lambda e^{-2\sigma t}}$$

Then

$$y = \int_0^t v dt$$

$$= V_T t + \frac{V_T}{\sigma} \ln \frac{1 + \lambda^2 e^{-2\sigma t}}{1 + \lambda^2}$$

after a little manipulation and use of integral tables.

Note:
$$V_T - V_{av} = V_T - Y/T = -\frac{V_T}{\sigma_T} \ln \frac{1 + \lambda^2 e^{-2\sigma t}}{1 + \lambda^2}$$
$$= -\frac{V_T}{\sigma_T} \ln \frac{1}{2}$$

for $\lambda = 1$ and $\sigma t \gg 1$

APPENDIX B

During analysis of the movie footage from the NSWC tank, a periodic variation in the vertical velocity was found. One of the possible explanations was the effect of refraction on the apparent velocity of the sinker.

Figure B-1 - Refraction of Light Ray at Water-Air Interface

The sinker position is P on the center line of the tank. A light ray from P strikes the water-glass-air interface, O, and is refracted along CB. The glass window is parallel-sided and can be neglected in the analysis that follows. Due to refraction, the sinker appears to be at P'. The apparent velocity v', is given by

$$v' = \frac{d}{dt} P' A = \frac{dy'}{dt}$$
 (B-1)

The true velocity v, is given by

$$V = \frac{d}{dt} PA = \frac{dy}{dt}$$
 (3-2)

The law of refraction gives

$$sinr = sin i$$

With

$$y = d \tan i$$
 (B-3)
 $y^1 = d \tan r$

then

$$\rho = \frac{\sqrt{1 - (\mu^2 - 1) \sqrt{2}}^{3/2}}{\left[1 - (\mu^2 - 1) \sqrt{2}\right]^{3/2}}$$
 (B-4)

where

$$n \equiv \frac{y}{d} = \tan i$$
 (B-5)

Note that ρ = 1 when n = 0, i.e. the velocity ratio is adjusted to unity when the sinker is directly opposite the camera. The factor μ , by which the sinker appears nearer the camera is accounted for in the data analysis. Thus ρ is the factor which must be examined to investigate the relationship between actual and apparent vertical velocity.

The results are shown in Figure B-2 for μ = 1.35.

Figure B-2 - Apparent Speed Ratio as a Function of Height and Apparent Height

The field of view used for plotting the vertical velocity corresponded to \pm 5.3 feet (\pm 1.4 m) in apparent position. The resultant effect is then

Thus the velocity effect due to refraction is less than one percent.

TABLE C-1 - DATA FROM DROPS INTO THE 100 FOOT TANK AT THE NAVAL SURFACE WEAPONS CENTER

	Sinker	Der	oth	Time		Offs	et	v _T	Remarks
Drop	Type	feet	m	sec		feet	m	ft/sec	
1	D	24	7.3	6.0	С	1.0	0.30	-	Taut Chain
2	D	24	7.3	3.4	С	0.5	0.15	5.7	Chain Slack
3	D	60	18.3	8.0	С	1.0	0.30	5.7	
4	D	88	26.8	11.3	С	3.6	1.10	8.4	
5	D	88	26.8	12.0	С	-	-	7.9	
6	D	88	26.8	10.4	С	4.4	1.34	8.9	
7	D	88	26.8	10.9	С	1.0	0.30	8.5	
8	D	88	26.8	11.3	С	2.1	0.64	8.3	•
9	ם	88	26.8	11.4	-	1.8	0.55	.8.8	
10	D	88	26.8	11.4	-	2.8	0.85	9.2	,
11	D	88	26.8	11.4	-	4.1	1.25	8.3	
12	A	88	26.8	29.0	-		- '	-	
12a	x	88	26.8	10.2	-	-	-	-	
13	D	88	26.8	11.3	-	2.4	0.73	-	
14	ם	88	26.8	10.9	С	3.6	1.10	9.0	
15	ם	88	26.8	10.6	С	3.1	0.94	8.8	
16	D	88	26.8	11.0	С	2.0	0.91	8.8	
17	D	88	26.8	10.8	С	4.0	1.22	9.4	
18	ם	88	26.8	10.7	С	2.0	0.91	9.2	
19	D+D	88	26.8	-	-	0.5	0.15	-	Timer Wrong
20	0+ 0	88	26.8	~	_	0.5	0.15	-	
20a	В	88	26.8	-	-	-	-	-	
21	D+D	88	26.8	-	-	3.7	1.13	-	
21a	В	88	26.8	-	-	-	-	-	
22	D+D	88	26.8	-	-	4.7	1.43	-	
22a	В	88	26.8	-	-	-	-	-	
23	ן פ+ם	88	26.8	10.7	-	-	-	7.6	
23a	В	ខន	26.3	20.3	-	-	-	- (1
24	Ε	88	26.8	12.2	-	5.8	1.77	8.1	
25	8	88	26.8	27.4	_	1.0	0.30	3.0	Dropped 3.5 ft

TABLE C-1 (cont'd)

	Sinker	Dep	th	Time		Offs	set	V _T	Remarks
Drop	T.ype	feet	m	sec		feet	m	ft/sec	
26	В	88	26.8	27.1	-	1.5	0.46	3.5	Dropped from
27a	В	88	26.8	27.3	-	1.6	0.49	-	3.5 ft in Air
27Ь	В	88	26.8	26.9	-	1.9	0.58	- .	n
27c	В	88	26.8	26.6	-	3.0	0.91	-	u
27d	В	88	26.8	27.4	-	3.8	1.16	-	u
27e	В	88	26.8	28.7	_	4.3	1.31	-	48
28	χ	88	26.8	10.4	_	0.0	0.00	8.6	
28x	В	88	26.8	21.6	-	-	-	-] .
29	Ε	88	26.8	11.5	-	2.5	0.76	8.0	
30	В	88	26.82	21.7	<u> -</u>	.1.2	0.37	~	
31	В	88	26.8	23.0	-	1.8	0.55	4.2	
31x	В	88	26.8	23.0	-	2.0	0.61	-	
32	Ε	88	26.8	12.2	-	5.8	1.77	7.9	
33	В	88	26.8	-	-	0.5	0.15	5.2	}
34	С	88	26.8	20.8	-	-	-	3.8	
35	С	88	26.8	20.4		-	-	4.2	
36	ε	88	26.8	12.1	-	7.0	2.13	7.9	
37	С	88	26.8	20.9	-	1.3	0.40	4.4	
37a	c	88	26.8	18.1	-	4.5	1.37	-	Fell Sideways
37ь	С	88	26.8	20.1	-	1.6	0.49	-	
38	F	88	26.8	10.9	-	9.0	2.74	8.0	

TABLE C-2 - MEAN AND STANDARD DEVIATION VALUES FOR OFFSETS AND AVERAGE VELOCITIES AT THE 83 FOOT DEPTH

Sinker	Size	Offset in feet			Velocity	Velocity in feet/sec			
Type	Weight	Mean	St Dev	No. Pts	Mean	St Dev	No. Pts		
A	4 in	_	-	-	3.0	-	1		
В	8 in	1.9	1.2	12	3.59	0.45	13		
С	12 in	1.9	1.2	7	4.38	0.25	5		
D	250 1ь	2.9	1.1	25	8.02	0.33	25		
E	500 lb	4.4	2.0	8	7.33	0.26	7		
F	1000 1ь	8.8	1.7	11	7.93	0.31	10		
Х	Lead	-	-	-	8.55	0.07	2		

TABLE C-2 - MEAN AND STANDARD DEVIATION VALUES FOR OFFSETS AT VARIOUS DEPTHS FOR TYPES E AND F

Sinker	Depth	Offset in Feet					
Туре	Feet	Mean	Std Dev	No. Pts			
Ε	24	0.93	0.50	4			
	40	2.46	1.06	9			
	56	3.23	1.89	50			
	72	3.08	1.25	9			
	88	4.08	1.84	7			
	102	4.56	2.27	6			
F	24	3.28	1.12	10			
	40	3.38	1.29	5			
	56	5.31	1.46	16			
	72	7.23	0.73	8			
	88	8.85	1.66	11			

TABLE C-4 - OFFSETS AND DROP TIMES IN THE CWC

(a) Four Inch Sinker

U		,	T	
knots	m/s	feet	m	sec
0.5	0.26	1.8	0.39	2.10
0.8	0.41	3.1	0.65	2.18
1.2	0.62	4.6	0.98	2.14
1.6	0.82	6.4	1.30	2.10
2.0	1.03	7.6	1.89	2.30

(b) Eight Inch Sinkers

U		,	·T	
knots	m/s	feet	m	sec
0.5	0.26	1.28	0.55	1.98
0.8	0.41	2.13	0.94	1.98
1.2	0.62	3.23	1.39	1.92
1.6	0.82	4.25	1.95	1.94
2.0	1.03	6.21	2.33	1.90

APPENDIX B

TEST DATA

APPLINDIX By - NSML DATA

 $S_1 = Standard Deviation of the Descent Time <math>-S_1^2 = Variance$ of the Descent Time $-a^2 = Circular$ Normal Variance of Offset $= -a^2 = \frac{a^2 + S_0^2}{a^2}$ S_0 - Standard Deviation of the Offset $-S_0^2$ = Variance of the Offset -f = Average of the Descent func 0 - Average of Offset

CLOCK AND DATE	02/28 02/28 03/01 1/48-03/01 1545-03/01		02/28 1409-03/01 1425-03/01 1508-03/01 1522-03/01		02/28 1546-03/04 1411-03/04 1558-03/01 1750-01/01	
DESCENT FIME (sec.)	1.23 3.12 3.16 3.32	3.21 0.088 0.008	3.27 3.51 3.51 3.46	3.41 0.127 0.016	11.37 11.34 11.29 10.70	11.16 0.314 0.098
OLTSET DIRECTION (c lock)	0700 0700 06 30 06 10 0800		0330 0230 0630 0300	н н н Э.	0600 1000 0400 0430 0430	- 53
HOR I ZONTAL OFF SET (FT)	2.36 1.31 2.07 0.95	1.63 0.55 0.30 1.46	7.49 3.77 4.95 4.25 3.61 II	4.22 0.54 0.30 9.01	1.02 4.66 1.80 4.13 3.6111	3.04 1.56 2.44 5.61
ORIENIATION (degrees)	0 270 270 90 90 90 90	0	271 180 172 172 172	0	270 270 270 270 270 90	0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×
VERTICAL HETGHT (FE)	00000		0000		00000	
CHAIN CHAIN YES UR NO	ON O		YES		: \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25	
MATER DEPTH (ft)	*****		****		£ 2 2 2 2	
SINKER	- 		- - - - - - - - - - - - - - - - - - -		 ਵਵਵਵਵ 	
NUMINAL SINKER SIZE (165)	22.22.2		1000 1000 1000 1000 1000			
15.11	z \$ \$ ± =		E S S S S		X X X X X X X X X X X X X X X	

CLOCK AND DALI	02/28 1406-01/04 02/28 1332-01/01 1555-01/01		02/28 1533-03/04 1703-03/01 03/01 1456-01/01		02/28 1505-03/04 02/28 1452-03/01 1646-03/01	1426 -03704 1440-03704 02728 02728 1518-03701
DESCÉNÍ LIMF (sec)	11.53 11.37 11.65 11.06	0.219 0.048	3.39 3.46 3.25 3.45 3.92	3.49 0.252 0.064	3.69 3.79 3.62 3.92 3.76 0.130 0.017	11.58 11.11 11.11 10.90 11.07 11.16 0.25.2
OFFSET DIRFCTION (clock)	0010 0001 00020 0000 0000	- 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1000 1030 1000 0100 0530	i 51 51,2	0.700 0.100 0.400 0.400 1	0430 0700 0830 1100 0800 7 = 5 51 = 5
HOR I ZONTAL OFFSET (fl)	10.14 10.33 11.52 7.55 10.42	9.99 1.47 2.15 50.78	0.82 1.64 1.87 2.30 0.66	1.46 0.70 0.49 1.26	1.35 2.69 2.40 2.49 7.82 2.35 0.34 2.90	0.85 2.85 2.53 3.61 3.61 1.85 4.79
ORIENIALION (degrees)	0 140 .: 270 270 270	0 Su So2 + 2	0 90 0 270 180	0 S ₀ = 2 0,2 0,2 0,2	180 180 180 270 270 270 80 80 80 80 80 80 80 80 80 80 80 80 80	270 180 270 270 80 80 80 80 80 80 80 80 80 80 80 80 80
WRITCAL III IGHI (ft)	20222		9 9 9		ووووو	0000
CHAIN CHAIN YES OR NO	2 2 2 2 E		YES YES YES YES YES		S S S S S	
WATER DEPTH (FL)	3 3 3 3 3		24 24 24 24		2222	**************************************
SINKER	ଜ୍ଞାନ୍ତ					
SINKER SINKER	1000 1000 1000 1000 1000		52 52 52 52 52 52 52 52 52 52 52 52 52 5		1000 1000 1000 1000 1000	250 250 250 250 250 250
15 12 2 10 00 0	= 2 8 2 =		= = 5 5		· ·× □ > ₹ ≅	

CLOCK AND DATE	1428-03/04 02/28 02/28 1626-03/01 1658-03/04		1438-03/01 1547-03/04	1608-03/01 1352-03/01	1436-03/01 1729-03/01
DESCINI LIM (sec)	H.01 H.15 H.147 H.21 0.236 0.036		7.11 7.61 7.36 0.384 0.125	7,26 7,21 7,24 0,040 0,040	7.42 7.48 7.40 0.028 0.001
OFFSET DIRECTION (clock)	2 1s 0050 0060 0060		0800 0930 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	0830 0500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0300 0630 1 = 1 51 = 1
HOR 70N FAL OI SE I (11)	2.17 6.00 7.84 7.68 7.68 1.37 1.37		3.64 4.27 3.95 0.19 7.85	3.25 1.948 2.2.59 0.93 3.58	5.1H 4.61 4.61 0.81 10.79
(degrees)	0 180 270 270 50 50 50 50 50 50 50 50 50 50 50 50 50	TEST DATA SERTES B	0, 2,0 0, 2,0 0, 2,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	270 0 0 50 50 20 20 20 20
VERTICAL JR TGHT (11)	و د د د د	1651 0	00		00
WITH CHAIN YES OR NO	55555	•	NO YES	YES	res res
WATER DEPTH (FL)	2		95 56	95 95 15	95 56
STUKER	ପଦନନଦ		् य च	**	က ဟ
NOWTHAL STRKER S17F (16s)	1000 1000 1000 1000 1000 1000	:	250	250 250	1000
1651	° ~ ≦ ≅ ≅	!	B X	표 조	/V 08

			;		:		!			
CLOCK AND DATE	1533-03/01 1637-03/01		1346-03/01 1547-03/01		1504-03/01		1420-03/01 1722-03/04		1516-03/01 1649-03/01	
DESCENT LIME (sec)	7.57 7.61 7.59	0.028 0.001	3.69	0.198 0.039	3.63 ··· 3.67	3.65 0.028 0.001	12.40		12.93 12.04	12.49 0.630 0.400
OFFSCT UNICCTION (Clock)	0730 0230 1	" " 23	0900 0230		0700 1200	i	0230 1000	* 2 ¹ S	0900	
HOR 120NTAL OFFSET (FL)	4.82 5.00 4.95	0.19 0.03 12.30	0.20	0.74 0.77 0.58 0.42	1.05	1.12 0.09 0.01 0.63	2.49	. 7.33 2.62 6.88 11.16	3.67	2.84 1.18 1.39 4.37
ORIENTATION (degrees)	270	50 202		50 20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	180	0 50 502 = 0 0.2 = 0.2	1	S ₀ S ₀ S ₀	180	500 S S S S S S S S S S S S S S S S S S
VERTICAL HE IGHT (11)	وو		0		9		0		9	
WEIII CUAIN YES OR NO	NO YES		NO YES		NO YES		NO YES		NO YES	
WATER DEPTH (11)	95 95		24		24 24		88 88		88	
SINKER			9		9		9		9	
NEW INAL SINKIR SIZE (165)	1000		500		500 500		500 500		905	
1631	E E		AL AS		¥ 2		ÅV BI		2 2	

CLOUK AND DATE		112/20	10/60-03/01	10/50-1701	1456-03/04	82/20	82/28	1536-03/01	17:0-03/04						02/28	02/28	03/01	1335-03/01	1633-03/01	02/28	10/10-131	1012-03/01	1730-03/04						1659-03/01	1712-03/01	10/50-72/1	50/50-7560	1048-03/05	1800 - 0.3704	1618-03/04	1627-03/04	16.88-0 5/04					
DESCENI LINE (sec.)	1.31	05.7 7	2 5 2 7	5.7	8.1%	7.17	1.24	7.64	8.07	,	7.70	0.379	0.143		1111	9.7	8.15	7.67	8.06	7.7e	3 3	6.03	8.17		16.7	0.224	0.0.0		7.69	8.02		= ====================================	,	7.85	8.30	, ;	N. U.	¥.0¥	161.0	0.036		
OFFSET DIRECTION (CTOCK)	0500	95.50 1	OF 10		8 8	1030	0530	0400	1200		i !	۔ کار	St? =		0200	0/0	1000	1130	1000	060	25	200	0000	·-		کر	- برار		0070	0200	0621	2.00	0,00	1000	0500	S. S.	8010		: '\	راج <u> </u>		•
IKDR 1 ZONTAL OFF SET (11)	1.74	1.5	e ? ?	£ 5.	6.5	8.9	1.87	3.22	3.50		3.07	1.34	1.80	5.62		2.3	0.26	1.84	2.30	2.72	£7.7	7.0%	0.2011	:	١./٩	16.0	E	¥	7.23	2.95	4.13d	79.7	₹.	2.45	1.84	2.33	3.31	2.69	0.85	0.73	3.95	
ORIENIATION (degrees)	0	<u> </u>	3 5	3	• •	. E	270	9	0	:	# 0	S ₀ =	S ₀ 2 =	. 2"	0	. Z	0/2	38	8	0% 0%	<u>8</u> .	> =	3	ю	" C	" [*] جر	* z ⁰ \$	= _+	180	0/2	-	? ?	0	981	0	3	972	0	" جمر	So?	* 2°	
VERTICAL HE IGHT (11)	9	0		- -	o c	· =	•		0						9		. •	9	9	۰ و	۵.	2 4	ာင							~ ·	ب ند	-, 	. ~	~	3	<i>ر</i> م	~					
WITH CHAIN YES OR NO	9	윤	2	29	NES YES	S J.	YES	S J A	YES						ON .	2	2	2	9	YES	71.5	\$ \$ \$	YES						04	윤	€ 3	2 2	2	YES	YES	K ES	YES					
WAIER DEPTH (TC)	3	56 5	£ ;	33	8 3	ي ج	<u> </u>	2	35						, te	9 9	3 2	35	93	95	3 2	ą v	3 23						95	9.	3 3	8 3	; 9;	92	ž,	<u>3</u> 5	25					
SINKER	~	2	، ۍ	۔ ع	ی د	• ^	۰.	ی ر	.							٠,	. •	9	9	٠ -	۰ د	پ م	و د						9	9	ب ص	ب ه	÷ ~	ب	ي د	9	و					1
MOMINAL SINKER SIZE (1152)	(XX)	200	9	995 305 3	993	35		3 5	2005							203	9 9	200	200	200	95	999	20.00						500	200	9	003	200	9	200	200	200,					
151	=	_	2	₹.	< ≃	: -	. 2	? ~	: ≧						-	- =	- =	€ €	≅	×	₹ ;	₹-	, <u>¥</u>						5	8	± 8	3 3	5	5	ຮ	ສ	5					

Abapticated in ITST DATA SURIUS D

SSO 6 40 NO 1.5 SSO 1.5 SSO 1.5 SSO 1 72 YES 1.5 SSO 2 72 YES 1.5 SSO 3 72 NO 1.5	1531 COOK	SINER SINER	SINKER	WATER DEPTE (TE)	WITH CHAIN YES OR NO	VÉRTICAL HE 16H1 (FL)	ORTENIATION (degrees)	IKNR 120NTAL OF USE I (fl.)	OFF SET DIRECTION (c lock)	DESCENT TIME (Sec.)	CLOCK AND DATE	
1000 1						1651	IMIM SERIES C					
Supplement Sup		200	9	014	NO	1.5	0	2.76	0010	6.04	1530-03/04	
Substitute G	~	200	9	9	2	S:.	3	- Od	0011	5.83 5.83	1813-03/04	
\$\begin{array}{c ccccccccccccccccccccccccccccccccccc	=	903	و	Q	물	<u>د.</u>	0/2 5/0	 	97.20	5.92	50/50-0580	
\$\begin{array}{c ccccccccccccccccccccccccccccccccccc	2	909	9	Ş	2	c. –	170	¥.	00/00	6. Jb	c0/50-6560	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								1. 1.	, <u> </u>	6.05		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										50.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								0.35		0.215		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0.30		0.046		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								5.58				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	4		4,512		416	70 6	ψινο	00 0	. 464.00 1051	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ر.	200	s.	€ :	TES	٠. د.	2,	£.;	0000	0.00	PO/CO-1001	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	و	000	s	₽:	YES	<u>د.</u>	- ;	2.03	06.60	. 3	10/50-25/1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	1000	S	\$	YES	- ·	3.	3.4 <u>1</u>	0020	3.95	1828-03/04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	æ	0001	5	€	YES	5:1	2	3.03	97.7D	•	084/03/03	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								3.37	11	6.71		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								1 25		0.262		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								93.		0.068		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								00.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								p.7/				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$:	005			YES	1.5		3.12	0000		1544-03/04	i
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2	200	. —	72	YES	1.5	270	2.30	0.100	10.26	1653-03/04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=	200	~	22	YES	1.5	Œ	1.6411	0530	09.6	1839-03/04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	200	7	7.5	YES	1.5	9	2.07	0500	9.71	0915-03/05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2.28	:	9.86		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0.62		0.354		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.39		0.125		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2.75	٠			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							=				3	
1000 5 72 N0 1.5 270 7.46 0230 9.10 1000 5 72 N0 1.5 0 7.58 0200 9.20 1000 5 72 N0 1.5 0 7.58 0200 9.20 1000 5 72 N0 1.5 0 0 7.50 0330 9.45 1000 5 $\frac{1}{5}$ = 0.20 $\frac{1}{5}$	113	1000	- 5	72	S	1.5	180	7.92	02.30	9.54	1512-03/04	
1000 5 72 N0 1.5 0 7.58 0200 9.20 1000 5 72 N0 1.5 90 7.50 0330 9.45 1000 5 72 N0 1.5 90 7.50 0330 9.45 $c_0 = 7.61$ $c_0 = 9.32$ $c_0 = 0.21$ $c_0 = 0.207$ $c_0 = 0.043$	7	1000	Z.	75	9	1.5	972	7.46	05.30	9.10	1229-03/05	
1660 5 72 NO 1.5 90 7.50 0.130 9.45	2	1000	S	72	2	1.5	0	7.58	0500	9.50	0311-03/05	
= 7.61	91	1000	cs.	7.5	9	1.5	3	7.50	0330	9.45	1016-03/05	
= 0.21 S ₁ = = 0.04 S ₁ ² = 29.01								1.61	(† 	9.32		
$s_1^2 = 0.00$ $s_1^2 = 29.01$								0.21		0.207		
10.62								0.0		0.043		
								29.01	•			

			!	
CLOCK AND DATE	1818-03/04 1832-63/04 0852-03/05 0937-03/05	1623-03/04 1746-03/04 1811-03/04 0933-03/05	1542-03/04 1645-03/04 1835-03/06 0943-03/05 1020-03/05	1718-03/04 1238-03/05 1040-03/05 1176-03/05
DESCENT 1 1204 (sec.)	6.01 6.15 6.15 5.21 5.93 0.190	5.67 5.56 5.00 0.008	10.40 10.55 10.55 10.57 10.42 0.048	9.36 9.10 9.29 9.29 0.166
OFFSET BIRECTION (Clock)	0200 0500 0530 0700 17 = = 5 5, = = 5,	06.00 0.300 0.300 7 = 1 5t = 5t =	1636 6730 0100 0630 1000 Î = *	0400 0400 1200 0300 51 = 51
UGR 120NTAL OFF SET (71)	2.46 1.25 2.69 0.62 1.76 0.99 1.90	4.76 1.94 1.98 1.98 1.98 1.66 2.75 5.92	2.62 2.76 4.56 5.58 3.08 3.72 1.29 1.68	5.91 7.50 7.75 6.27 6.27 6.86 0.91 0.82
ORICNIALION (degrees)	270 90 0 1 188 0 50 50 1 2 1 3	270 90 00 180 0 50 50 80 80 80 80 80 80 80 80 80 80 80 80 80	0 96 270 180 270 5,0 8,0 1,2	270 180 90 90 0 0 50 1,2 1,2
VERTICAL HEIGHT (fl)	ନ୍ଦ୍ର ୧୧୧	er er er er Norm norm	द द द द स से द द द स से से से से स	
WITH CHAIN YES OR NO	ESS S S S S S S S S S S S S S S S S S S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 N N O N O N O N O N O N O N O N O N O	YES YES YES YES
WATER DEPTH (ft)	5 5 5 5	40 40 40 40 40 40 40 40 40 40 40 40 40 4	2222	2 2 2 2
SINKER	2	សសស	و ــ و و و	www
MOMINA SINKER SIZE (165)	0005 0005 0005 0005	1000 1000 1000 1000	905 905 905 905 905 905 905	000 1000 1000 1000
COUE	7 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	022 023 023 024	13 13 13 13 13 13 13 13	026 030 031 032

CLOCK AND DATE		1635-03/04	1252-03/05	1758-01/04	1330-03/05					*** 1146 63 mm	1301-03/05	1102-03/05	1315-03/05					1244-03/05	1210-03/05	1310-03/05	10/50~1cm					Ō855-0 1/0s	1023-03/05	0957-03/05 1048-03/05	60/60-000				
DI SCENI LIM (Sec.)		7.49	7.30	7.12	4	7.50	0.210	0.044			1 1	1.44		7.44		ı		7.30	7.70	0.7°		7.31	0.083	0.00/		1.94	8.17	8. 3		8.17	0.187	0.035	
OITSTI DIRECTION (C lock)		0330	0400	0300	05.30	<i>n</i>			•	ON NO	26.50 26.50	000	0330	n !=-	. 5	5 ₁ 2 =		0330	0330	999	,	:=	• •	راد الا		0200	0330	0520)	"		۶ ^۱ ز =	
HOR I ZUNTAL OFF SFT (CL)		6.20	4.43	5.9 5.9	20.0	67.9	0.95	16.0	17.10	/6 !	. 6.1	6.56	7.42	4.98	2.49	6.20	14.72	7.33	6.20	5.6/ 1.81	;	5.73	1.4/	2.16	17.35	4.101	3.56	5.6 .23.		3.40	1.48	2.18	6.58
ORIENIALION (degrees)	PEST DATA SERIES D	270	Z,	e =	GEO!	0	S ₀	\$05 °	. Zo	0	981	0	180)O	- °°	5°2 =	= 2°	180	0	96 072	; 			50°.	= 2"		- 3	e 2	:;	" C	. م	2 ⁰ 5	* ~!·
VERTICAL HETGHT (CE)	HEST D	3	m :	~ ~	n					4.5	4.5	4.5	4.5					1.5	 	. c.		•					 	n m					
CHAIN CHAIN YES OR MO		YES	71. 12.	2 2	•					YES	YES	¥	S					YES	.	2 2						YES	£ ⊊	N 9					
WATER DEPTH (FC)		98	9 4	R 55	ł					95	99	20	99		•			96	8 %	3 8						56	2 5	2,95					
SINKER			n u	וא ה	ı					9	S)	ഹ	មា					- 5	n ur	, 2 0						<u>z</u>	- •	~					
SINKIR SINKIR SIZE (165)		900	000	200						1000	0001	000	000					000	000	1000						500	30	200					
1653		= S	71] =						ř5	9:	2	8					63	35	213						: : : : :		Ξ					

	S12E (16s)	NIMBER	(1)	YES OR NO	(11)	(degrees)	(E)	(c lock.)	(sec)	CHAIL AND DAIL
	200 200 200 200 200	-89-	56 56 56 56	YES YES NO NO	જજન જજન જજન	0 270 0	2.99H 1.15 3.35 1.40	0400 0530 1730 0600	8.09 7.72 	0921-03/05 1000-03/05 1212-03/05 1004-03/05
						0 50 502 = 1	2.9/ 1.35 1.83 5.19	:	7.92 0.187 0.035	
1	500 500 500 500 500	2 9	98 98 98 98	YES YES NO NO	8:-	270 90 180 0	2.69II 5.02 3.08II 3.8/	0300 0230 1230 1230	7.55 7.86 8.06 8.05	1025-03/05 1045-03/05 1050-03/05 0918-03/05
	·					0 S ₀ S ₀	3.67 1.03 1.06 7.11		7.89 0.238 0.057	
i					TESI 1	TEST DATA SERIES E				
!	500	29	102	ON SE		270 90	7.50 5.48 4.8611	0400 0230 1000	13.90	1214-03/05 1111-03/05 1134-03/05
	500 500 500	- ~ ~	102 103 103	S S S	m m m	180 90 270	5.81 2.23 1.51	0630	13.98 14.10 13.56	11.12-03/05 1216-03/05 11.30-03/05
					,	50 80 62 80 80 80 80 80 80 80 80 80 80 80 80 80	4.56 2.21 5.17 12.58	F 18 23 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.84 0.221 0.049	

	:		:
CLOCK AND DATE		1318-03/05 1343-03/05 1348-03/05 1403-03/05 1404-03/05 1406-03/05	
DESCENT TIME (sec)		7.00	
OFFSET DIRECTION [W.F.L. eye)		0430 0700 0700 0630 0430 0430 7 " " S	•
IORIZORIAL OFFSET (11)		8.50 7.42 8.25 6.25 5.67 7.14 7.14	26.01
	TEST DATA SERIES F		- Z ⁰
VERTICAL HEIGHT (71)	rest DA	& w w w w w	
NO CHAIN POSTITON ENTERING WATER		ON SIDE ON SIDE ON SIDE ON SIDE ON SIDE ON SIDE	
WATER DEPTH (T.C.)		999999	
SINKER		- 292-9	
MINIMAI SINKER SIZE (16s)		500 500 500 500 500 500	
11.51		ದ ೫ ಜ ೩ ೩ ೩	

APPENDIX B2 - CEL DATA

TEST SERIES A

//18 //18 //18 //18 CLOCK CLOCK 1542 1546 1604 1604 1007 1011 1015 1051 1054 1054 1519 1519 1519 1625 1637 1652 3.7 3.5 3.7 3.8 3.68 0.130 3.45 0.270 0.070 305 338 338 170 170 358 358 358 358 2.30 0.97 0.94 3.02 えええ ****** ===== 22222222 STAKER S1/E S1/E (16/S) 1000 1000 1000

	- ;																	į																					
IVA		81/2 2	9 5 7 7	= = = = = = = = = = = = = = = = = = =	2 / 18	7/18						1/78	•					1		7/21	1/21	1/2	12//	17//	17/1					16/1	7.7.7	1/21	1/51	1/21					
F		11.75	1262	52.	1440	145/						1707	;							0914	7160	1044	1045	1193	1144				•	1085	150	1256	1258	1300					
DI SCLNI	(sec)	1 1	: :	: ;	5.7	2.5		2.60	0.140	0.020		2.4	•	2.40	0.00	00.00				8.2	8.2	7.8	6.,	 :	3. ×	8.07	0.180	0.030		8.5	2.8	. e.	•	9.6	8. 13	91.0	0000	25.5	
OFFSET DIRECTION	l degrees/	040	0.50 1.55	210	2 2	8 22	,	B 	. · · · · · · · · · · · · · · · · · · ·	S ₁ 2 =		2.15		H	" بحل	S ₁ ² =	ı		a	050	255	300	280	23	143	!-		5,2 =	,	110		035	950	350		" .	ار درگ	lc	
		79.2			2.5	3.6/		3.04	1.10	1.21	5.13	1 92	•	3.92	0.00	0.00	7.68		TEST SERIES	4.50	4.42	6.33	79.6		£	6.21	2.0M	4.17	21.01	00.0	8 8	3.1	11.6/	6.17	9.8	74.4		24.83	
VERTICAL.	177	٠,	.	. •	. 4	-		C	S0 =	\$_2 805 =) C ⁴	9	þ	<u>. 0</u>	= 05	5 ₀ 2 =	- 2"			0	C	0	-	-	0	:0	50.		" "		- <	. 4	-	~		۱۱ کن :	, C >	, ,, ,, ~,	=
WATER	1 (111)	₹	5,5	5 7	5.5	; ર														95	25	જ	<u>ن</u> و	3	ş					93	3 5	3	25	95					
SINKER			~ <		r «	٠ ح							•							13	21	7	=:	e :	15					13	2 =	===	15	15					
SINKER	(iiis)	8500	8500 9500	S) (0) (0)	9058	8500						ละเกิด	3							1000	1000	1000	000	000	990					- John	801	0001	1000	1000					

(degrees) (sec) C10CK 240	4.58 4.17 10.75 2.60 5.33 2.58 4.30 3.13 9.77 16.08 10.75 5.83 5.83 5.92 2.58 10.75 5.92 7.66 3.38
8.0 8.3 8.3 8.3 9.4 8.3 0.040 6.3 6.3 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4	4.58 4.17 2.00 5.33 5.33 2.58 4.90 3.13 9.77 16.08 4.33 10.75 5.92 2.58 8.83
8.3 8.3 8.3 8.3 9.190 0.040 6.4 6.8 6.8 6.8 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4	10.75 2.00 5.33 2.58 2.58 3.13 10.50 10.75 5.92 2.50 8.92 2.50 11.45
8.4 8.3 8.3 8.3 8.3 8.3 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4	2.60 5.33 2.58 4.90 3.13 10.50 10.75 5.83 5.83 7.66 11.45
8.3 8.4 8.32 0.040 6.4 6.4 6.8 6.4 6.4 6.4 6.4 6.4 6.4 6.4	5.33 2.58 3.13 9.77 16.08 4.33 10.75 5.92 5.92 2.58 11.42
6.7 6.7 6.8 6.4 6.4 6.8 6.7 6.8 6.7 6.8 6.7 6.8 6.4 6.8	4.90 3.13 9.77 16.08 4.33 10.75 5.83 5.83 5.92 2.58 11.42
6.4 6.4 6.4 6.4 6.8 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4	3.13 9.77 16.08 4.33 10.75 5.83 5.92 5.92 2.58 11.42 7.66
6.7 6.1 6.1 6.8 6.8 6.8 6.8 6.8 6.4 6.4 6.4 6.4 6.4 6.4	9.77 16.08 4.33 10.75 5.83 9.92 2.58 11.42 7.66
6.2 6.4 6.1 6.8 6.7 6.8 6.4 6.4 6.49	10.50 4.33 10.75 5.83 5.92 2.58 11.42 7.66
6.2 6.4 6.8 6.8 6.8 6.8 6.4 6.4 6.4 9.760	10.50 4.33 5.83 5.92 2.58 11.42 7.66 3.38
6.1 6.1 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4	10.75 5.83 9.92 2.58 11.42 7.66 3.38
6.8 6.7 6.7 6.4 6.4 6.49 7.00 1.00 1.00	5.83 ·
6.4 6.4 6.4 6.4 6.49 7.00 7.00 9.00	9.92 2.58 11.42 1.66 3.38 11.45
6.4 6.4 6.49 6.49 7.000 7.000	2.55 2.58 11.42 7.66 3.38 11.45
6.5 6.49 = 0.260 = 0.070	11.42 7.66 3.38 11.45
	7.66 3.38 11.45
	3.38 11.45
•	11.45
•	21 12
· ·	1000
	0.43
0.0	
2:0	2.25
7.1	4.25
6.8	7.08
330 6.3 1432	4.75
6.9	6.75
T = 6.76	5.05
п	2.25
11	5.08
	14.98

				i				
HAIE	12/2	7/2 1/2 1/2 1/2 1/2 1/2 1/2		7/21	7/21	:	7721 7721 7721 7721 7721 7721	
CI OCK	0921 0925 0929	0933 1054 1056		1555 1604 1608	1612 1657 1700		1416 1423 1426 1429 1432 1530	:
TIME TESCENT (Sec.)	6.7	6.0 6.0 8.0	6.55 0.310 0.100	5.0 5.0 6.0	5.3	5.50 0.190 0.030	0.0 0.0 0.0 0.0	5.78 0.320 0.100
SET DIRECTION (degrees)	975	060 150 340	- 2 S = 2 S = 2	300	275 1180 230 90 90	# # # # # # # # # # # # # # # # # # #	90 140 30 75 330 175	γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ
OFFSET DISTANCE DIR (ft)	4.83 2.08 6.7	1.67 6.58 4.83	5.78 3.23 10.41	21.02	8.00 1.17 1.00 4.50	4.58 3.73 13.95 16.32	2.25 3.00 7.67 8.00 4.75	5.04 2.36 5.58 15.04
VERTICAL HE IGHT (ft)	· · · · · · · · · · · · · · · · · · ·			" 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°		6 S ₀ =	****	50,20
MANIR	98	* & & ?	3	95	& & & &	,	56 56 56 56 56 56	
SINKER	2 ~	. = C .	c		m ~ ~		m 4 ∨ v − v	
SINKER SIZE	5000 5000	0895 2895 2896 2896 2896 2896 2896 2896 2896 2896	Paris Carlo	8500 8500	8500 8500 8500		8500 8500 8500 8500 8500 8500	

ٺ
2
፷
7
12

Martief	STAKER	SINKER	WATER	VERTICAL	OF OF OF	FSET TOW	_	₩-	100
12. 688 0 1.75 13.5 14 88 0 2.58 350 12.9 15 88 0 8.17 8.7 = 13.25 17 = 13.27 18 88 4 2.28 170 19 8 5.21 $T = 13.27$ 19 8 5.21 $T = 13.27$ 10 8 5.21 $T = 13.27$ 11 88 4 2.28 17 12 88 4 4.58 170 13 88 4 4.58 170 14 88 4 4.58 170 15 88 4 4.58 170 16 8 5.80 170 17 = 0.050 18 88 4 4.58 170 19 8 5.80 170 10 8 5.80 170 11 8 8 4 6.67 170 12 8 8 6 1.00 345 13 8 8 6 6.08 370 14 8 8 6 1.00 345 15 8 8 6 1.00 345 17 8 6 1.00 345 18 8 6 1.00 345 18 8 6 1.00 345 18 8 6 6.08 370 18 8 8 6 6 8.08 370 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	(10s)	MUNIBER		(11)	(11)	(degrees)	(sec)	C1.0CK	
1	900	12	88	0	1.75		13.5	0953	02/7
14 88 0 3.25 000 13.5 13.7 14.7 15.5	1000	:=	: S	· ၁	5.58	350	12.9	0955	1/20
15 88 0 8.33 020 13.7 17 88 0 8.34 336 $S_0 = 5.21$ $T = 13.22$ $S_0 = 7.86$ $S_1 = 0.700$ 18.5 $S_0 = 1.17$ $S_1 = 0.750$ 19.5 19.6 19.7 19.8 10.7 10.7 10.7 11.8 10.7 10	1000	2	≋	9	3.25	000	13.5	2110	≈/
12 88 0 8.73 $\vec{1}$ 13.7 13.7 13.5 13.7 13.7 $\vec{1}$ 2.8 13.7 13.7 13.6 $\vec{1}$ 2.7 1 $\vec{1}$ 2.8 13.6 $\vec{1}$ 2.7 1 $\vec{1}$ 2.7 13.6 $\vec{1}$ 2.7 1 $\vec{1}$ 3.6 1 $\vec{1}$ 3.7 1 $\vec{1}$ 3.8 1 $\vec{1}$ 4 4 4.5 8 1 3.9 1 13.4 13.7 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8	000	15	æ	0	8.33	020	13.2	=======================================	1/50
11	901	2:	E	-	e. 7:	032 233	13.7	F11.	2/2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	900	=	₹	9	3.58	335	17.5	1 348	02//
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0	5.21	# '}~	13.22		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				5.0	2.86	- S	0.450		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				S ₀ 2 =	8.17	\$15 ±	0.200		
13				* ~;	16.96	•			
12 88	1000		2	b	3.83	19.0		1260	7/12
14 88) ()	12	S	~	2.25	0/0	:	0830	7/12
11) 88 4 4 4.50 270 1.13.1 14 88 4 4 4.56 270 1.13.1 15 88 4 6.67 339 1.13.4 15 88 4 6.67 145 1.13.7 17 88 6 1.00 3.15 12.8 18 88 6 1.00 3.15 12.8 18 88 6 1.00 3.15 12.8 18 88 6 1.00 3.15 12.8 18 88 6 1.00 3.15 12.8 18 88 6 1.00 3.15 12.8 18 88 6 1.00 3.15 12.8 18 88 6 1.00 3.15 12.8 18 88 6 1.00 3.15 12.8 19 88 6 1.00 3.15 12.8 10 88 6 1.00 3.15 12.8 10 88 6 0.08 3.00 12.8 11 88 6 0.08 3.00 12.8 12 88 6 0.08 3.00 12.8 13 88 6 0.08 3.00 12.8 14 88 6 1.00 3.15 12.8 15 88 6 0.08 3.00 12.8 16 89 6 0.08 3.00 12.8 17 88 6 0.08 3.00 12.8 18 88 6 0.08 0.08 0.08 0.08 0.08 0.08 0.0	<u> </u>	Ξ	æ	~	4.58	22		0932	7/15
15 88 4 4.58 3.00 13.1 16 88 4 6.67 339 13.4 17 88 4 6.67 145 13.7 18 80 6 1.00 3.15 17.8 19 80 6 6.08 3.00 12.8 19 80 6 6.08 3.00 12.8 10 6 6.08 3.00 12.8 11 88 6 1.00 3.15 12.8 12 88 6 6.08 3.00 12.8 13 88 6 1.00 3.15 12.8 14 88 6 6.08 3.00 12.8 15 88 6 6.08 3.00 12.8 16 8.08 0.020 12.8 17 88 6 6.08 3.00 12.8 18 88 6 1.00 3.15 12.8 19 88 6 1.00 3.15 12.8 10 6 6.08 3.00 12.8 10 6 6.08 3.00 12.8 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<u>2</u>	= :	€ :	~	10.75	9 ; 2 ;		66.55 66.55	7/12
12 18	22	23	2	~ •	6.50	2.2	7.7	8560 9001	7177
15 III III III III III III III III III I		2	£		- - -	2 E	7.7	51 O.I	7/12
11 H8 4 13.7 $S_0 = 5.80$ $I = 13.28$ $S_0 = 2.89$ $S_1 = 0.150$ $S_2 = 8.33$ $S_1^2 = 0.050$ $S_2 = 20.41$ 12 B8 6 1.00 315 12.8 15 88 6 6.08 300 12.8 15 88 6 7.17 245 12.8 17 88 6 1.00 315 12.8 18 86 6.08 300 12.8 18 88 6 1.00 315 12.8 18 88 6 1.00 315 12.8 18 88 6 1.00 315 12.8 18 88 6 0.03 300 12.8 18 88 6 1.00 315 12.8 18 88 6 0.03 300 12.8 19 88 6 0.03 300 12.8 10 0 0 0 0.03 13.1 10 0 0 0.03 13.1 11 0 0 0.03 13.1 12 0.03 13 13.1	200	: 51	3	• =	6.67	145		1042	1/12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	Ξ	Œ	4	:	1 : :	13.2	1046	1/15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0	5.80		13,28		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2, "	2.89	. = 15	0.150		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				\$°5 *	8,33	ء ح آد	0.020		
12 68 6 12,08 320 1.00 3.15 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.8 1				" ?	20.47	-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10001	12		9	12.08	320		1349	02//
15 88	9	7 :	æ ;	، ي	9: :	315	6.21	32	₹ ?
13 88 6 8.00 0.20 12.8 12.8 12.8 12.8 12.8 12.8 12.8 13.1 $0 = 0.00 = 0$	9	<u>s</u> :	≅ €	، ص	. o.	2 6	#.21	25.1	P//
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<u> </u>	£ £	ی و	e -	245	12.8	93PC	22
= 3.73 S ₁ = 3.73 S ₁ = 5.55	1000	22	€ €	ی د	4.24	023	13.1		7/30
$= 3.73 5_1 = 13.92 5_1^2 = 26.55$., Q	6.44	:	12.88		
= 13.92 S ₁ ² = 26.55				= "	3.73	- 1 <u>S</u>	0.1.0		
- 26.55				5,2 =	13.92	- 2 ¹ 5	0.050		
				, ,	26.55	÷			

STATE STREET THE CHILD CASE CASE	CIMPED		i waren i	VERTICAL	10 1	. 135		TIME	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SIZE (1bs)	NUMBER		HE TGHT (TL)	DISTANCE (ft)	OIRECTION (degrees)		: - 1	DAIF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000			0	4.50	260	10.0	1346	7.730
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2005	2	₹	• •	5.17	3	9.9	1620	1/20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2005		€	=	6.42	240	8.6	1622	1/20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2005	ی .	\E	0	6.42	000	9.1		1/20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2005	~	€	C	4.67	570	9.5	0937	02/2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000	•	æ	0	5.75	180	9.1	0939	1/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0	5.49	4	9.52		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, «	0.84	<u>2</u>	0.430		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				502 =	0.71	- 25	0.180		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				" ~:	15.36	4			
8 8 4 6.33 145	5000	9	.	ľ	2.00	240	10.3		1/20
108349.333000944781844.5816510.510047781844.250.3811161081844.250.3010.81119 $S_0 = S_0 = S_0 = S_1 = S_1 = S_2 = S_1 = S_2 = S_1 = S_2 = $	2000	=	82	~	6.33	145	•	0940	7/20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000	20	£	4	9.33	300		0944	7/20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000	~ :	æ :	₹ '	4. 58	165	10.5	7 1 1 1	02//
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2003	_ :	€ 8		4.33 26.4		: U	611	02/2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000	2	Ê	-	C -	2.0		ì	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4	5.97	"	10.53		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				ر ا	2.94	-	0.250		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				S ₀ 2 =	19.8	S ₁ 2 =	0.060		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				- 2-0	21.43				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000		8	9	8. N	280	10.2	1358	1/20
1088611.7503510.1145478865.5012011.0145868865.43270150188866.501409.91504 5_0 $=$ 6.56 \uparrow $=$ 10.22 5_0 $=$ 3.15 5_1 $=$ 0.450 2_0 $=$ 29.4 5_1 $=$ 0.210	2000	ۍ د	8	9	4.42	030	9.9	1400	02//
7 88 6 5.50 120 11.0 1458 6 88 6 5.54 140 1501 8 88 6 6.50 140 9.9 1504	2000	01	£	9	11.75	635	10.1	1454	1/20
6 (8) 6 2.83 270 1501 8 (8) 6 6.50 140 9.9 1504 $0 = 6.56$ $0 = 10.22$ $0 = 6.56$ $0 = 0.450$ $0 = 9.94$ 0.210	2000	~	≋	y	5.50	120	o: =	1458	02/
8 (88 6 6.50 140 9.9 1504 $0 = 6.56 1 = 10.22$ $5_0 = 3.15 5_1 = 0.450$ $5_0^2 = 9.94 5_1^2 = 0.210$ $2 = 25.62$	2000	9	€	ۍ	2.83	270	1	105	02//
1 6.56 1 = 3.15 51 = 3.15 51 = 9.94 51.2 = 25.62	5000	~	x	ت	6.50	140	9.9	1504	02//
3.15 51 = 9.94 51 ² = 9.94 51 ² = 75.62				Ö	95.9	, ,	10.22		
= 9,94 S ₁ ² = 25,62				5,	3,15	* 15	0.450		
25.62				**************************************	9.94	s ₁ 2 =	0.210		
				, ~	25.62				

CLOCK	0740 7/22 0745 7/22		•																												
DESCENT THE (Sec.)	: 1 1 1 1 1	1			7.0	8.20	8.20	8.20 0.000 0.000	8.70 0.000 0.000	8.70 0.000 0.000	8.70 0.000 0.000 9.00 8.9	8.20 0.000 0.000 9.0 8.9	8.20 0.000 0.000 9.0 8.9	8.20 0.000 0.000 9.0 8.9 9.2	8.70 0.000 0.000 9.0 8.9 9.2 9.2	8.70 0.000 0.000 0.000 8.9 9.0 9.2 9.2	8.20 0.000 0.000 9.0 8.9 9.2 9.2	8.20 0.000 0.000 9.0 8.9 9.2 9.2	8.20 0.000 0.000 9.0 8.9 9.2 9.2 9.2 9.2	8.20 0.000 0.000 9.0 8.9 9.2 9.2 9.2 9.2 9.2	8.20 0.000 0.000 9.6 8.9 9.2 9.2 9.2 9.2 9.2 9.02 0.180	8.20 0.000 0.000 9.0 8.9 9.2 9.2 9.2 8.8 8.8 9.02 0.180	8.20 0.000 0.000 0.000 8.9 9.2 9.2 9.2 8.8 8.8 0.180 0.030	8.20 0.000 0.000 9.0 8.9 9.2 9.2 9.2 8.8 8.8 6.030 0.180	8.20 0.000 0.000 9.0 8.9 9.2 9.2 9.2 9.2 9.02 0.180 0.030	8.20 0.000 0.000 9.0 8.9 9.2 9.2 9.2 9.02 0.180 0.030	8.20 0.000 0.000 9.00 9.2 9.2 9.2 9.2 9.02 0.180 0.030 8.0	8.20 0.000 0.000 9.0 8.9 9.2 9.2 9.2 9.02 0.180 0.030 8.0 8.0	8.20 0.000 0.000 9.0 8.9 9.2 9.2 9.2 9.2 9.2 9.02 0.180 0.030 8.3 8.3	8.20 0.000 0.000 9.0 8.9 9.2 9.2 9.2 9.2 9.02 0.180 0.180 6.030 8.0	8.20 0.000 0.000 9.0 8.9 9.2 9.2 9.2 9.02 0.180 0.030 8.1 8.0 8.0 8.0 9.010
FSET DIRECTION (degrees)	210	300	: E	020		; -	;- √.	=	i S ₁ = 5	1 = 51 = 51 = 030	1 = 51 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000	1 = 51 = 51 = 51 = 51 = 51 = 51 = 51 =	\$1 = \$1 = \$0.00	S ₁ = S	S ₁ = S ₂ = S	S ₁ = S ₂ = S	S ₁ = S ₂ = S	S ₁ = S ₂ = S	S ₁ = S	2	2,5 2,7 = 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 3,4 2,0 3,4 2,0 1,0 2,0 3,4 3,4 3,6 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0	285 285 286 286 286 286 286 286 286 286 286 286	1 = 81 = 81 = 81 = 81 = 81 = 81 = 81 =	285 200 330 230 230 230 230 240 250 250 250 250 250 250 250 250 250 25	285 286 286 286 286 286 286 286 286 286 286	\$\frac{1}{2} = \frac{1}{2} \\ \frac{1}{2} = \	S ₁ = S ₂ = S ₁ = S ₂ = S ₁ = S ₂ = S ₁ = S ₂ = S	285 286 286 286 286 286 286 286 286 286 286	2,5 2,6 3,6 2,8 2,8 2,8 2,8 2,10 2	2,5 2,7 2,03 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 3,	2,5 2,7 2,00 2,
DISTANČE (TL)	3.17	1.75	4.8 3	11.75	6.33	6.36	6.36 3.00	6.36 3.00 9.02	6.36 3.00 9.02 23.98	6.36 3.00 9.02 23.98	6.36 3.00 9.02 23.98	6.36 3.00 9.02 23.98 4.42 4.17	6.36 3.00 9.02 23.98 4.17 8.50 11.50	6.36 3.00 9.02 23.98 4.17 8.50 11.50 5.50	6.36 3.00 9.02 23.98 4.17 8.50 11.50 5.50 7.75	6.36 3.00 9.02 23.98 23.98 4.17 8.50 11.50 5.50 7.75	6.36 3.00 9.02 23.98 4.17 4.17 8.50 11.50 5.50 7.75 3.00 6.33	6.36 3.00 9.02 23.98 4.17 4.17 4.17 8.50 11.50 5.50 7.75 3.00 6.33	6.36 3.00 9.02 23.98 4.17 8.50 11.50 7.75 9.75 6.33	6.36 3.00 9.02 23.98 4.17 8.50 11.50 11.50 5.50 6.33 9.75 6.77	6.36 3.00 9.02 23.98 4.17 8.50 11.50 5.50 5.50 6.33 9.75 7.75 7.75 7.75 7.75 7.75	6.36 3.00 9.02 23.98 4.17 4.17 8.50 11.50 5.50 7.75 3.00 6.33 9.75 7.94 26.44	6.36 3.00 9.02 23.98 4.17 4.17 8.50 11.50 5.50 7.75 3.00 6.33 9.75 7.75 7.75 3.00 6.33 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7	6.36 3.00 9.02 23.98 4.17 4.17 8.50 11.50 5.50 7.75 3.00 6.33 9.75 7.94 26.44 26.44	6.36 3.00 9.02 23.98 4.17 4.17 8.50 11.50 5.50 5.50 6.33 9.75 7.94 7.94 26.44 8.08	6.36 3.00 9.02 23.98 4.17 8.50 11.50 11.50 5.50 6.33 9.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75	6.36 3.00 9.02 23.98 4.17 8.50 11.50 11.50 3.00 6.33 9.75 7.94 7.94 7.94 7.94 7.94 7.25 9.25 6.45 6.45	6.36 3.00 9.02 23.98 4.17 8.50 11.50 11.50 5.50 6.77 7.75 7.79 8.03 8.03 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25	6.36 3.00 9.02 23.98 4.17 4.17 8.50 11.50 9.75 9.75 17.94 26.44 8.03 8.03 7.25 9.75 17.50 6.33 7.25 7.25 8.03 7.25 8.03	6.36 3.00 9.02 23.98 4.42 4.17 8.50 11.50 5.50 11.50 5.30 9.75 7.94 26.44 8.03 9.75 12.50 12.50 6.43 4.58	2 = 9.02 2 3.98 2 3.98 2 3.98 3 .00 11.50 3 .00 5 .50 3 .00 6 .33 11.50 8 .63 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 13.00 14.17 15.50 16.33 17.75 18.60 18.
VERTICAL HEIGHT (TL)	0 0) C :	=	c :	9	= 0	O V3	0 % % 20%	0 S ₀ = 2 1,20 = 2	So = 50 = 0.2 = 0.2 = 0.3 = 0.	500 = 2 = 2 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4	500 500 200 200 200 444	2 2 E	So S	S S S S S S S S S S S S S S S S S S S	2005 ceeedee	2007 - eeeeee	So S	0 S S 2 C C C C C C C C C C C C C C C C C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
WATER DEPTH	≅ ≅	? 2 1	æ	3 3	2					. .	≅ ₹	## ## ## ## ## ## ## ## ## ## ## ## ##	3 3 3 3 3	33222	33222	838888	3 3 2 2 2 3 3 3	8388888 888	332333 33	3322222	3 3 2 2 2 3 3 3 3	### ## ## ## ## ## ## ## ## ## ## ## ##	332233 35	332223 33	######################################	######################################	33222222 2232	######################################	######################################	22222 22222 22222	22222 22222 22222
SINKER		, ~	~	so -	-						~ =	246	2461	~< m-s	~ < m - % m	~ < m - v m	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~<	~~ ~~ ~~ ~~ ~~ ~~	~~ ~ ~ ~ ~ ~ ~ ~ ~	~ < ~ ~ ~ ~ ~ <	246-38-34	×40-00-04	~~n-~n-~~	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
SINKER S176 (16s)	8500	8500	8500	8200	B. M.					(R)5(8	(0)58 (0)58	85.60 85.60 85.60	8500 8500 8500 8500	8500 8500 8500 8500 8500	8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500 8500 8500	8500 8500 8500 8500 8500 8500 8500 8500	85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00	85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00	8500 8500 8500 8500 8500 8500 8500 8500

APPENDIX C

As reported in Section 3.3, ANOVA's were performed on the circular normal σ 's, and also on the offsets (ranges), as a check. The results agreed well, as expected.

The mathematical nature of the σ 's presented a slight problem in performing the ANOVA's: Each ANOVA block contains replications, so that the variance within the block may be calculated. Thus, at a given setting of sinker size, water depth, etc., there were several drops, usually about five. Normally, a mean of five observations would be tested, and the within-block variance is the variance of the five observations from that mean. Unfortunately, the calculation of σ in Section 3.3, although based on n observations, cannot be written as a mean of n numbers. Recall:

$$\sigma = \underbrace{\sqrt{\sum (\chi \ 2 \ + \ \gamma 2)}}_{\sqrt{2n}}$$

Therefore, there is no natural way to calculate the within-block variance when σ is the ANOVA block entry. It is desirable, therefore, to find an appropriate "standard deviation" σ ' which is an arithmetic mean of n numbers. There are several possible solutions to this problem:

1. The ANOVA could be performed on the variance instead of the standard deviation. The variance is:

$$\sigma^2 = \frac{\sum \left(\frac{\chi^2 + \gamma^2}{2} \right)}{n}$$

which is the mean of the n numbers $(x^2 + Y^2)/2$. However, an ANOVA should be performed on a variable whose distribution is as close to normal as possible. The "squaring" effect of the variance would make the ANOVA's unreliable; the analysis could show an interaction effect when in fact none exists. Therefore, this approach was not used.

2. The ANOVA could be performed on the variable

$$\sigma' = \sum_{n} \sqrt{\frac{\chi^2 + \gamma^2}{2}}$$

Here σ' is derived by calculating the sample standard deviation for each single observation and then taking the mean of these n deviations.

Note that:

$$\frac{\sum_{x^2+y^2}}{2n} = \left(\frac{\sum \sqrt{\frac{x^2+y^2}{2}}}{n}\right)^2 + 1/2 \frac{\sum (\sqrt{x^2+y^2} - \frac{\sum \sqrt{x^2+y^2}}{n}}{n}\right)^2$$
i.e. $\sigma^2 = (\sigma')^2 + \frac{1}{2} \frac{\sum (r-\bar{r})^2}{n}$

or, equivalently, if σ_r = the standard deviation of the ranges about the mean range,

$$\sigma^2 = (\sigma')^2 + 1/2 (\sigma_r)^2$$

If the sinker is very directional, σ_r will be small compared to σ and σ' , which will therefore be nearly equal. This means that the NSWC results, which are more complicated than the CEL results and involve directional sinkers, experience little loss in accuracy due to the use of σ' .

Also note that σ' is very closely related to the range:

$$\sigma' = \frac{\sum \sqrt{\frac{x^2+y^2}{2}}}{n} = \frac{1}{\sqrt{2}} \frac{\sum \sqrt{x^2+y^2}}{n} = \frac{\text{mean range}}{\sqrt{2}}$$

Thus, performing an ANOVA using this "mean standard deviation" σ' as the block entry is equivalent to performing the ANOVA using the mean ranges. This approach was used for all ANOVA procedures.

3. The ANOVA could still be performed using σ as the block entry, even though σ is not a mean of n numbers. In this case the highest cross product (the interaction of all factors) is used as an estimate of the within-block variance. This procedure assumes, of course, that there is no highest-order interaction among the factors, which may not always be justified. However, this approach was also used in the ANOVA's, and almost all the results agree with those obtained by procedure #2 above.