Factorization of Kazhdan–Lusztig elements for Grassmanians

Alexander Kirillov, Jr. and Alain Lascoux

ABSTRACT. We show that the Kazhdan-Lusztig basis elements C_w of the Hecke algebra of the symmetric group, when $w \in S_n$ corresponds to a Schubert subvariety of a Grassmann variety, can be written as a product of factors of the form $T_i + f_j(v)$, where f_j are rational functions.

1. Notation

In this section, we briefly list the main facts and notations related to Kazhdan–Lusztig polynomials and their parabolic analogues (see $[\mathbf{D}]$, $[\mathbf{S}]$). We use the following notations:

 \mathcal{H} —the Hecke algebra of the symmetric group S_n ; we consider it as an algebra over the field $\mathbf{Q}(v)$ (the variable v is related to the variable q used by Kazhdan and Lusztig via $v = q^{1/2}$), and we write the quadratic relation in the form

$$(T_i - v)(T_i + v^{-1}) = 0.$$

 C_w —KL basis in \mathcal{H} , which we define by the conditions $\overline{C_w} = C_w$, $C_w - T_w \in \oplus v \mathbf{Z}[v]T_y$.

For any subset $J \subset \{1, \ldots, n-1\}$, we denote by $W_J \subset S_n$ the corresponding parabolic subgroup, and by W^J the set of minimal length representatives of cosets S_n/W_J . We also denote by M^J the \mathcal{H} -module induced from the one-dimensional representation of $\mathcal{H}(W_J)$, given by $T_j m_1 = -v^{-1} m_1, j \in J$. We denote $m_y = T_y m_1, y \in W^J$ the usual basis in M^J .

We define the parabolic KL basis $C_y^J, y \in W^J$ in M^J by $\overline{C_y^J} = C_y^J, C_y^J - m_y \in \bigoplus_{z \in W^J} v \mathbf{Z}[v] m_z$.

Denote for brevity $C_J = C_{w_0^J}$ the element of KL basis in \mathcal{H} corresponding to the element of w_0^J of maximal length in W_J . The following result is well-known (see, e.g., $[\mathbf{S}]$).

Lemma 1. (i)

$$C_J = \sum_{w \in W^J} (-v)^{l(w_0^J) - l(w)} T_w.$$

(ii) Let $w \in W$ be such that it is an element of maximal length in the coset wW_J (which is equivalent to $w = \tau w_0^J$ for some $\tau \in W^J$). Then $C_w = XC_J$ for some $X \in \bigoplus_{y \in W^J} \mathbf{Z}[v^{\pm 1}]T_y$.

The first author was partially supported by NSF grants DMS-9610201, DMS-97-29992.

(iii) Let
$$X \in \bigoplus_{y \in W^J} \mathbf{Z}[v^{\pm 1}]T_y$$
. Then

$$Xm_1 = C_{\tau}^J \iff XC_J = C_{\tau w_0^J}.$$

Let us now consider the special case of the above situation. From now on, fix $k \leq n-1$, and let $J = \{1, \ldots, k-1, k+1, \ldots, n-1\}$ so that $W_J = S_k \times S_{n-k}$ is a maximal parabolic subgroup in S_n . In this case, the module M^J can be described as follows:

(1)
$$M = \bigoplus_{\varepsilon \in E} \mathbf{Q}(v)\varepsilon,$$

$$T_{i}\varepsilon = \begin{cases} s_{i}\varepsilon, & (\varepsilon_{i}, \varepsilon_{i+1}) = (+-), \\ -v^{-1}\varepsilon, & (\varepsilon_{i}, \varepsilon_{i+1}) = (--) \text{ or } (++), \\ s_{i}\varepsilon + (v - v^{-1})\varepsilon, & (\varepsilon_{i}, \varepsilon_{i+1}) = (-+), \end{cases}$$

where E is the set of all length n sequences of pluses and minuses which contain exactly k pluses. The relation of this with the previous notation is given by $m_y \leftrightarrow y(1) = T_y(1)$, where

$$\mathbf{1} = (\underbrace{+\cdots + \underbrace{-\cdots -}_{k}}_{k}).$$

In particular, $m_1 \leftrightarrow \mathbf{1}$.

The set of minimal length representatives W^J also admits a description in terms of Young diagrams. Namely, let λ be a Young diagram which fits inside the $k \times (n-k)$ rectangle. Define $w_{\lambda} \in S_n$ by

(3)
$$w_{\lambda} = \prod_{(i,j)\in\lambda} s_{k+j-i},$$

where (i, j) stands for the box in the *i*-th row and *j*-th column, and the product is taken in the following order: we start with the lower right corner and continue along the row, until we get to the first column; then we repeat the same with the next row, and so on until we reach the upper left corner.

EXAMPLE 1. Let λ be the diagram shown below, and k=7 (to assist the reader, we put the numbers k+j-i in the diagram).

7	8	9	10	11	12
6	7	8			
5	6	7			
4					
3					

Then $w_{\lambda} = s_3 \cdot s_4 \cdot s_7 s_6 s_5 \cdot s_8 s_7 s_6 \cdot s_{12} s_{11} s_{10} s_9 s_8 s_7$ (for easier reading, we separated products corresponding to different rows by ·).

The proof of the following proposition is straightforward.

PROPOSITION 2. The corespondence $\lambda \mapsto w_{\lambda}$, where w_{λ} is defined by (3), is a bijection between the set of all Young diagrams which fit inside the $k \times (n-k)$ rectangle and W^{J} .

2. The main theorem

As before, we fix $k \le n-1$ and let $J = \{1, \dots, k-1, k+1, \dots, n-1\}$. Unless otherwise specified, we only use Young diagrams which fit inside the $k \times (n-k)$ rectangle.

For a Young diagram λ , we define the shifts $r_{i,j} \in \mathbf{Z}_{>0}, (i,j) \in \lambda$ by the following relation

(4)
$$r_{ij} = \max(r_{i,j+1}, r_{i+1,j}) + 1,$$

where we let $r_{ij} = 0$ if $(i, j) \notin \lambda$.

EXAMPLE 2. For the diagram λ from Example 1, the shifts r_{ij} are shown below.

Next, let us define for each diagram λ an element $X_{\lambda} \in \mathcal{H}$ by

(5)
$$X_{\lambda} = \prod_{(i,j)\in\lambda} \left(T_{k+j-i} - \frac{v^{r_{ij}}}{[r_{ij}]} \right)$$

where, as usual, $[r] = (v^r - v^{-r})/(v - v^{-1})$, and the product is taken in the same order as in (3).

The main result of this paper is the following theorem.

Theorem 3. Let λ be a Young diagram. Then

$$X_{\lambda} \mathbf{1} = C_{w_{\lambda}}^{J}$$
.

Note that by Lemma 1, this is equivalent to

$$(6) X_{\lambda}C_J = C_{w_{\lambda}w_0^J}.$$

We remind the reader that the Kazhdan-Lusztig elements $C_{ww_0^J}$, where $w \in W^J$, and W_J is a maximal parabolic in S_n (they are also known as KL elements for Grassmanians), have been studied in a number of papers. A combinatorial description was given in [LS1]; it was interpreted geometrically in [Z], and in terms of representations of quantum \mathfrak{gl}_m in [FKK]. However, it is unclear how these results are related with the factorization given by the theorem above. A similar factorization was given in [L] for those permutations which correspond to non-singular Schubert varieties—i.e., for those w such that, for any $v \in S_n$, the Kazhdan-Lusztig polynomial $P_{v,w}$ is either 1 or 0.

Note that one can easily check that the elements X_{λ} are invariant under the Kazhdan–Lusztig involution: $\overline{X_{\lambda}} = X_{\lambda}$; thus, all the difficulty is in proving that they are integral and have the right specialization at v = 0.

A crucial step in proving this theorem is the following proposition.

PROPOSITION 4. Theorem 3 holds when λ is the $k \times (n-k)$ rectangle.

PROOF. For any $w \in S_n$, choose a reduced expression $w = s_{i_{\ell}} \dots s_{i_1}$. Define the element $\nabla_w \in \mathcal{H}$ by

(7)
$$\nabla_w = \left(T_{i_\ell} - \frac{v^{r_\ell}}{[r_\ell]}\right) \dots (T_{i_1} - v),$$

where $r_1, \ldots, r_\ell \in \mathbf{Z}_+$ are defined as follows: if $s_{i_{m-1}} \ldots s_{i_1}(1, \ldots, n) = (\ldots, a, b, \ldots)$ (in i_m -th, (i_m+1) -st places), then $r_m = b-a$. Then $\{\nabla_w, w \in S_n\}$ is a Yang-Baxter basis of the Hecke algebra, and we have (see [**DKLLST**, §3]):

Lemma 5. (i) The element ∇_w does not depend on the choice of reduced expression.

(ii) If w_0^J is the longest element in some parabolic subgroup $W_J \subset S_n$, then $\nabla_{w_0^J} = C_J$.

Now, let us prove our proposition, i.e. that $X_{\lambda}C_J$ is a KL element for rectangular λ . In this case, w_{λ} is the longest element in W^J :

$$w_{\lambda}(\mathbf{1}) = (\underbrace{-\cdots - + \cdots +}_{n-k}).$$

Let us choose the following reduced expression for the longest element w_0 in S_n : $w_0 = w_{\lambda}w_0^J$, where we take for w_{λ} the reduced expression given by (3). Then one easily sees that definition (7) in this case gives

$$\nabla_{w_0} = X_{\lambda} \nabla_{w_0^J}.$$

By Lemma 5, we get $C_{w_0} = X_{\lambda}C_J$, which is exactly the statement of the proposition.

The proof in the general case is based on the following proposition. Denote

(8)
$$O(v^m) = \{ f \in \mathbf{Q}(v) | f \text{ has zero of order } \ge m \text{ at } v = 0 \}.$$

Proposition 6.

$$X_{\lambda}\mathbf{1} = w_{\lambda}(\mathbf{1}) + \sum_{\varepsilon \in E} O(v)\varepsilon.$$

A proof of this proposition is given in Section 3.

Now we can give a proof of the main theorem. First, one easily checks the invariance under the bar involution, since

$$\overline{T_i - \frac{v^r}{[r]}} = T_i - \frac{v^r}{[r]}.$$

Combining this with Proposition 6, we see that it remains to show that $X_{\lambda}C_J$ are integral, i.e. $X_{\lambda}C_J \in \oplus \mathbf{Z}[v^{\pm 1}]T_w$ (note that it is not true that X_{λ} itself is integral.) This will be done by induction.

Let λ be a Young diagram. Then we claim that any such diagram can be presented as a union $\lambda = \lambda' \sqcup \mu$, where μ is a rectangle, and λ' is again a Young diagram such that for $(i,j) \in \lambda'$, the shifts $r_{(i,j)}^{\lambda'} = r_{(i,j)}^{\lambda}$. It can be formally proved as follows: if one writes the successive widths and heights of the stairs of the diagram

$$\infty, (a_1, b_1), (a_2, b_2), ...(a_k, b_k), \infty$$

then there is at least one index i for which $a_i \leq b_{i+1}$ and $b_i \leq a_{i+1}$. In that case, the rectangle μ has the lower right corner i.

EXAMPLE 3. For the diagram λ from Example 1, the sequence (a_k, b_k) is given by $\infty, (1, 2), (2, 2), (3, 1), \infty$, and the subdiagram μ is the shaded 2×2 square, as

shown below. As before, we also included the shifts r_{ij} in this diagram. The subsets I^{μ} , J^{μ} in this case are given by $I^{\mu} = \{6, 7, 8\}$, $J^{\mu} = \{6, 8\}$.

6	5	4	3	2	1
4	3	2			
3	2	1			
2					
1					

Let us choose for λ the presentation $\lambda = \lambda' \sqcup \mu$, where μ is a rectangle, as above. Then $X_{\lambda} = X_{\mu}X_{\lambda'}$.

Define the subsets I^{μ} , $J^{\mu} \subset \{1, \ldots, n-1\}$ by $I^{\mu} = \{k'-a+1, \ldots, k'+b-1\}$, $J^{\mu} = I^{\mu} \setminus \{k'\}$, where k' = k - i + j, (i, j)—coordinates of the UL corner of μ , a and b are numbers of rows and columns in μ respectively.

We need to show that $X_{\mu}X_{\lambda'}C_J \in \sum \mathbf{Z}[v^{\pm 1}]T_y$. By induction assumption, we may assume that $X_{\lambda'}C_J = C_{\sigma}$, where we denoted for brevity $\sigma = w_{\lambda'}w_0^J$. It is easy to show that if μ is chosen as before, then σ is the maximal length element in the coset $W_{J^{\mu}}\sigma$. Thus, by Lemma 1, we can write $C_{\sigma} = C_{J^{\mu}}Y$ for some integral $Y \in \mathcal{H}$. Therefore, $X_{\mu}X_{\lambda'}C_J = X_{\mu}C_{J^{\mu}}Y$. Since $W_{I^{\mu}}$ is itself a symmetric group, and $W_{J_{\mu}}$ is a maximal parabolic subgroup in it, we can use Proposition 4, which gives $X_{\mu}C_{J^{\mu}} = C_{I^{\mu}}$, and therefore, $X_{\mu}X_{\lambda'}C_J = C_{I^{\mu}}Y \in \sum \mathbf{Z}[v^{\pm 1}]T_w$.

3. Proof of regularity at v=0

In this section we give the proof of Proposition 6. Before doing so, let us introduce some notation.

As before, assume that we are given n, k, λ and a collection of positive integers $r_{ij}, (i, j) \in \lambda$ (not necessarily defined as in (4)). Let $\varepsilon \in E$ be a sequence of pluses and minuses. We define the weight $r_{\lambda}(\varepsilon)$ as follows.

Define $a(i), i = 1 \dots k$ by $a(i) = k + \lambda_i - i + 1$. Equivalently, these numbers can be characterized by saying that $w_{\lambda}(1)$ has pluses exactly at positions $a(k), \dots, a(1)$.

Define $r_{\lambda}(\varepsilon) = \sum_{t=1}^{n} r_{t}(\varepsilon)$, where $r_{t}(\varepsilon)$ is defined as follows:

- (i) if $t = a(i), \varepsilon_t = -$ then $r_t(\varepsilon) = r_{i,\lambda_i} 1$
- (ii) if $a(i) < t < a(i+1), \varepsilon_t = +$ then $r_t(\varepsilon) = r_{i,j}, k+j-i=t$
- (iii) otherwise, $r_t(\varepsilon) = 0$

In a sense, $r_{\lambda}(\varepsilon)$ measures the discrepancy between ε and $w_{\lambda}(1)$. Indeed, let us denote the numbers of rows and columns in λ by i, j respectively, and let ε be such that

(9)
$$\varepsilon_t = + \text{ for } t \le k - i,$$
$$\varepsilon_t = - \text{ for } t > k + j.$$

Then one easily sees that

(10)
$$r_{\lambda}(\varepsilon) \geq 0, \qquad r_{\lambda}(\varepsilon) = 0 \iff \varepsilon = w_{\lambda}(1)$$

EXAMPLE 4. Below we illustrate the calculation of $r_{\lambda}(\varepsilon)$, where λ is the diagram used in Example 1. The positions a(i) are shaded (thus, the sequence of colors encodes $w_{\lambda}(\mathbf{1})$, with "shaded" $\leftrightarrow +$, "unshaded" $\leftrightarrow -$), and we connected unshaded pluses with the corresponding box (i,j), defined in (ii) above. For convenience of

the reader, we also put the numbers k+j-i (not the shifts r_{ij} !) in the diagram.

LEMMA 7. Let λ be any Young diagram inside the $k \times (n-k)$ rectangle, and let $r_{ij}, (i,j) \in \lambda$, be positive integers satisfying $r_{ij} > r_{i,j+1}, r_{ij} > r_{i+1,j}$. Define $\mathcal{L}_{\lambda} \subset M^J$ by

$$\mathcal{L}_{\lambda} = \sum_{\varepsilon \in E} O(v^{r_{\lambda}(\varepsilon)}) \varepsilon.$$

Then

$$X_{\lambda} \mathbf{1} \in \mathcal{L}_{\lambda}$$
.

Before proving this lemma note that due to (10), this lemma immediately implies Proposition 6.

PROOF. The proof is by induction. Let (i,j) be a corner of λ , and $\lambda' = \lambda - (i,j)$, so that $X_{\lambda} = \left(T_{k-i+j} - \frac{v^{r_{ij}}}{[r_{ij}]}\right) X_{\lambda'}$. Since $\frac{v^r}{[r]} \in O(v^{2r-1})$, it suffices to prove that $\left(T_{k-i+j} + O(v^{2r_{ij}-1})\right) \mathcal{L}_{\lambda'} \subset \mathcal{L}_{\lambda}$. Since this operation only changes $\varepsilon_a, \varepsilon_{a+1}$ (a = k - i + j), we need to consider 4 cases: (++), (+-), (-+), (--). This is done explicitly. For example, for the (+-) case, we have

$$(T_m + O(v^{2r_{ij}-1}))(\cdots + \cdots) = (\cdots + \cdots) + O(v^{2r_{ij}-1})(\cdots + \cdots)$$

In this case, the first summand has the same weight and comes with the same power of v as the original ε (note that in the original ε , this (+-) didn't contribute to the weight), so it is in \mathcal{L}_{λ} . As for the second summand, its weight is increased by $2r_{ij}-1$ (the plus contributes r and the minus, r-1), but it comes with the factor $O(v^{2r_{ij}-1})$, so again, it is in \mathcal{L}_{λ} . The other cases are treated similarly.

4. Divided differences and parabolic Kazhdan-Lusztig bases

In this section, we give a factorization for the dual Kazhdan–Lusztig basis for Grassmanians.

To induce a parabolic module, one can start from the 1-dimensional representation $T_j\mapsto v$ instead of $T_j\mapsto -1/v$ which was used in §1. We now denote the corresponding module by M' and its Kazhdan-Lusztig basis by $C_y'^J$ to distinguish from previous case. Note that there exists a natural pairing between M and M', and C_y^J and $C_y'^J$ are dual bases with respect to this pairing (see, e.g., $[\mathbf{S}]$, $[\mathbf{FKK}]$). However, we will not use this pairing.

A simple element $T_i - v$ acts now by

(11)
$$(T_i - v)\varepsilon = \begin{cases} s_i \varepsilon - v \varepsilon, & (\varepsilon_i, \varepsilon_{i+1}) = (+-), \\ 0, & (\varepsilon_i, \varepsilon_{i+1}) = (--) \text{ or } (++), \\ s_i \varepsilon - v^{-1} \varepsilon, & (\varepsilon_i, \varepsilon_{i+1}) = (-+). \end{cases}$$

Consider the space $\mathcal{P}(k,n)$ of polynomials in x_1,\ldots,x_n of total degree n-k, and of degree at most 1 in each x_i . For any partition λ , denote by $x^{[\lambda]}$ the monomial $w_{\lambda}(x_{k+1}\cdots x_n)$, the symmetric group acting now by permutation of the x_i . In other words, if $w_{\lambda}(1) = (\varepsilon_1,\ldots,\varepsilon_n)$, then $x^{[\lambda]}$ is the product of the x_i 's for those i such that $\varepsilon_i = -$.

Consider the isomorphism of vector spaces

(12)
$$M' \simeq \mathcal{P}(k, n) \\ w_{\lambda}(\mathbf{1}) \mapsto v^{-|\lambda|} x^{[\lambda]}.$$

Then $T_i - v$ induces the operator ∇_i , acting only on x_i, x_{i+1} as follows:

(13)
$$\begin{cases} \nabla_i(x_i) = vx_{i+1} - v^{-1}x_i, \\ \nabla_i(1) = \nabla_i(x_i x_{i+1}) = 0, \\ \nabla_i(x_{i+1}) = -vx_{i+1} + v^{-1}x_i, \end{cases}$$

Therefore ∇_i is the operator

$$f \mapsto (vx_{i+1} - v^{-1}x_i)\,\partial_i(f)$$

denoting by ∂_i the divided difference

$$f \mapsto \frac{f - f^{s_i}}{x_i - x_{i+1}}$$

(for a more general action of the Hecke algebra on the ring of polynomials, see [LS2], [DKLLST]).

We intend to show that divided differences easily furnish the Kazhdan-Lusztig basis of $\mathcal{P}(k,n)$ (i.e. the image of the Kazhdan-Lusztig basis $C'_{n}, y \in W^{J}$ of M').

To any element $\varepsilon := w_{\lambda}(1)$ of E one associates a polynomial Q_{ε} as follows

- 1) pair recursively -, + (as one pairs opening and closing parentheses)
- 2) replace each pair (-,+), where is in position i and + in position j, with a $x_i v^{j+1-i}x_j$
 - 3) replace each single -, in position i, by x_i

The product of all these factors by $v^{-|\lambda|}$, where $|\lambda| = \lambda_1 + \lambda_2 + \cdots$, is by definition Q_{ε} .

THEOREM 8. Let E be the set of sequences of (+,-) of length n with k pluses. Then the collection of polynomials Q_{ε} , $\varepsilon \in E$, is the Kazhdan-Lusztig basis of the space $\mathcal{P}(k,n)$.

PROOF. We shall show that

$$Q_{\varepsilon} = \nabla_j \cdots \nabla_h (x_1 \cdots x_k)$$

when $\varepsilon = w_{\lambda}(1)$, and when $s_j \cdots s_h$ is a reduced decomposition of w_{λ} . Now, it is clear that the inverse image of Q_{ε} in M' is invariant under involution, and it is easy to check the powers of v to get that for v = 0, it specializes to ε .

Assume by induction that we already know Q_{ε} . Let us add on the right of ε sufficiently many pluses, so that all minuses are now paired (the original polynomial is recovered from the new one by specializing x_{n+1}, x_{n+2}, \ldots to 0). Take now any simple transposition s_i such that $\varepsilon_i = +, \varepsilon_{i+1} = -$. The variables x_i, x_{i+1} involve two or one factor in P_{ε} , depending whether ε_i is paired or not. The only possible cases for those factors and their images under ∇_i are

$$(x_{i-a} - v^{a+1}x_i)(x_{i+1} - v^{b+1}x_{i+b+1}) \mapsto (x_{i-a} - v^{a+b+2}x_{i+b+1})(v^{-1}x_i - vx_{i+1})$$
$$(x_{i+1} - v^{b+1}x_{i+b+1}) \mapsto (v^{-1}x_i - vx_{i+1})$$

but now the new pairing of -, + differs from the previous one exactly in the places described by the factors on the right.

COROLLARY 9. Let $\sigma_j \cdots \sigma_h$ be a reduced decomposition of $w \in W^J$. Then the corresponding Kazhdan-Lusztig element $C_w^{\prime J} \in M'$ is equal to $(T_j - v) \cdots (T_h - v)(\mathbf{1})$.

This factorization is equivalent to the one given in [FKK, Theorem 3.1]. One can check on examples that this factorization is compatible, via the duality between the two modules M and M', with the factorization given by Theorem 3. However, deducing Theorem 3 from Theorem 8 seems more intricate than proving the two factorization properties directly.

EXAMPLE 5. Let $\lambda = [5, 3, 2]$ and $\mu = [5, 3, 3]$. Then one has

places	1	2	3	4	5	6	7	8	9	
$w_{\lambda}(1)$	+	_	_	+	_	+	_	_	+	
	+						 —			
pairing			_	+	_	+		_	+	
polynomial		x_2					x_7			
			(x_3)	$-v^2x_4$)	(x_5)	$-v^2x_6$		(x_8)	$-v^2x_9$	
$w_{\mu}(1)$	+	_	_	-	+	+	_	_	+	
	+									
pairing			_			+				
					+				+	
polynomial		x_2					x_7			
			x_3	,	2 \	$-v^4x_6$,	2 \	
				(x_4)	$-v^2x_5$			(x_8)	$-v^2x_9$	

and thus

(14)
$$Q_{w_{\lambda}(1)} = v^{-10} x_2 x_7 (x_3 - v^2 x_4) (x_5 - v^2 x_6) (x_8 - v^2 x_9)$$
$$Q_{w_{\mu}(1)} = v^{-11} x_2 x_7 (x_3 - v^4 x_6) (x_4 - v^2 x_5) (x_8 - v^2 x_9).$$

Note that the pairing between -, +, which was a key point in the description of Kazhdan-Lusztig polynomials for Grassmannians in [LS1], is provided by divided differences, starting from the monomial $x_{k+1} \cdots x_n$.

References

- [D] V. V. Deodhar, On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. of Algebra 111 (1987), 483–506.
- [DKLLST] G. Duchamp, D. Krob, A. Lascoux, B. Leclerc, T. Scharf, and J.-Y. Thibon, Euler-Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras, Publ. RIMS, 31 (1995), 179–201.
- [FKK] I. B. Frenkel, M. G. Khovanov, and A. A. Kirillov, Jr., Kazhdan-Lusztig polynomials and canonical basis, Transf. Groups 3 (1998), 321–336.
- [L] A. Lascoux, Ordonner le groupe symétrique: pourquoi utiliser l'algèbre de Iwahori-Hecke?, ICM Berlin 1998, Documenta Mathematica, vol. III (1998), 355–364.
- [LS1] A. Lascoux, M.-P. Schützenberger, Polynômes de Kazhdan & Lusztig pour les grassmaniennes, Astérisque 87–88 (1981), 249–266.
- [LS2] _____, Symmetrization operators on polynomial rings, Functional Anal. Appl., 21 (1987), 77–78.
- W. Soergel, Kazhdan-Lusztig polynomials and combinatorics for tilting modules, Represent. Theory (electronic journal), 1 (1997), 83-114.
- A. V. Zelevinski, Small resolutions of singularities of Schubert varieties, Functional Anal. Appl., 17 (1983), 142–144.

Alexander Kirillov, Institute for Advanced Study, Princeton, NJ 08540, USA $E\text{-}mail\ address:\ kirillov@math.ias.edu$

Alain Lascoux, CNRS, Institut Gaspard Monge, Université de Marne-la-Vallée,, 5, Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2, France

E-mail address: Alain.Lascoux@univ-mlv.fr