

Types of Machine Learning

Dr. Vittorio Zanella Palacios

vittorio.zanella@upaep.mx

Types of Machine Learning

Source: Machine Learning Department at Carnegie Mellon

Examples

• Games

• T : Play checkers

• P: % games won

• E: Combinations <board, optimal play>

• Natural Language Processing

- T: Recognize words
- P: % of words recognized correctly
- E: Pairs <wave form, word>

• Image Recognition

• T: Recognize objects in images

• E: Pairs <images, name of the object>

House

Decisions of a learning program

- 1.- What to learn?
- 2.- What experience do you use?
- 3.- Which representation to use?
- 4.- What algorithm to use?

In a **supervised learning** model, the algorithm learns on a labeled data set, that is, the desired output is given

In a **unsupervised learning** model, the training dataset is a collection of examples without a specific desired outcome or correct answer

Attributes

Clasification

Data set for supervised learning

Instances / examples

No	Age	Spectacle- prescript	Astigmati sm	Tear-prod-rate	Contact-lenses
1	young	myope	no	reduced	none
2	young	myope	no	normal	soft
3	young	myope	yes	reduced	none
4	young	myope	yes	normal	hard
5	young	hypermetrope	no	reduced	none
6	young	hypermetrope	no	normal	soft
7	young	hypermetrope	yes	reduced	none
8	young	hypermetrope	yes	normal	hard
9	pre-presbyopic	myope	no	reduced	none
10	pre-presbyopic	myope	no	normal	soft
11	pre-presbyopic	myope	yes	reduced	none
12	pre-presbyopic	myope	yes	normal	hard
13	pre-presbyopic	hypermetrope	no	reduced	none
14	pre-presbyopic	hypermetrope	no	normal	soft
15	pre-presbyopic	hypermetrope	yes	reduced	none

Attributes

Data set for unsupervised learning

Instances / examples

No	Age	Spectacle- prescript	Astigmati sm	Tear-prod-rate
1	young	myope	no	reduced
2	young	myope	no	normal
3	young	myope	yes	reduced
4	young	myope	yes	normal
5	young	hypermetrope	no	reduced
6	young	hypermetrope	no	normal
7	young	hypermetrope	yes	reduced
8	young	hypermetrope	yes	normal
9	pre-presbyopic	myope	no	reduced
10	pre-presbyopic	myope	no	normal
11	pre-presbyopic	myope	yes	reduced
12	pre-presbyopic	myope	yes	normal
13	pre-presbyopic	hypermetrope	no	reduced
14	pre-presbyopic	hypermetrope	no	normal
15	pre-presbyopic	hypermetrope	yes	reduced

Data

Numerical

(Numbers)

Age, weight, number of children, blood pressure, shoe size

Categorical

(Words)

Eye color, gender, blood type, pain severity, satisfaction rating

Continuos

(Infinite options)

Age, weight, blood pressure

Discrete

(finite options)

number of children, shoe size

Ordinal

(Data has hierarchy)

Pain severity, satisfaction rating

Nominal

(Data has no hierarchy)

Eye color, gender, blood type

Classification

No	Age	Spectacle- prescript	Astigma tism	Tear-prod-rate	Contact- lenses
1	young	myope	no	reduced	none
2	young	myope	no	normal	soft
3	young	myope	yes	reduced	none
4	young	myope	yes	normal	hard
5	young	hypermetrope	no	reduced	none
6	young	hypermetrope	no	normal	soft
7	young	hypermetrope	yes	reduced	none

Clustering / Segmentation

No	Age	Spectacle- prescript	Astigma tism	Tear-prod-rate
1	young	myope	no	reduced
2	young	myope	no	normal
3	young	myope	yes	reduced
4	young	myope	yes	normal
5	young	hypermetrope	no	reduced
6	young	hypermetrope	no	normal
7	young	hypermetrope	yes	reduced

Association

Items		
Bread, Milk		
Bread, Diaper, Beer, Eggs	Ī	
Milk, Diaper, Beer, Coke		
Bread, Milk, Diaper, Beer	Ī	
Bread, Milk, Diaper, Coke		
	Bread, Milk Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer	

Regression

Year	Month	Interest_Rate	Unemployment_Rate	Stock_Index_Price
2017	12	2.75	5.3	1464
2017	11	2.5	5.3	1394
2017	10	2.5	5.3	1357
2017	9	2.5	5.3	1293
2017	8	2.5	5.4	1256
2017	7	2.5	5.6	1254
2017	6	2.5	5.5	1234
2017	5	2.25	5.5	1195
2017	4	2.25	5.5	1159
2017	3	2.25	5.6	1167

- In a learning problem is necessary that the system has both *positive* and *negative* examples.
 - Positive examples are examples that show the characteristic that we want the system to learn
 - Negative examples are examples that show the characteristics contrary to what we want the system to learn

Training Data Da

Test the model

Training dataset

A training dataset is a dataset of examples used during the learning process and is used to fit the parameters

Test dataset

The test dataset is a dataset used to provide an unbiased evaluation of a final model fit on the training dataset

sample)

k-fold Cross-Validation

Overfitting and Underfitting

Overfitting and underfitting are two of the most common causes of poor model accuracy.

An underfit model results in high prediction errors for both training and test data

An overfit model gives a very low prediction error on training data, but a very high prediction error on test data

Underfitting

Optimal

Overfitting

