```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from nltk.tokenize import word_tokenize
         from nltk.corpus import stopwords
         from nltk.stem import WordNetLemmatizer
         from sklearn.model_selection import train_test_split
         from sklearn.naive_bayes import MultinomialNB, BernoulliNB # naive bayes classifier
         from sklearn.linear_model import LogisticRegression
         import sklearn.metrics as mt
         from sklearn.feature_extraction.text import TfidfVectorizer
         import plotly.express as px
         import string
         from wordcloud import WordCloud
         import warnings
         warnings.filterwarnings('ignore')
In [2]: data = pd.read_csv("https://raw.githubusercontent.com/rashakil-ds/Public-Datasets/m
In [3]: data.head(5)
Out[3]:
                                          reviewText Positive
         0 This is a one of the best apps according to a b...
                                                             1
         1 This is a pretty good version of the game for ...
                                                             1
                                                             1
             this is a really cool game. there are a bunch ...
            This is a silly game and can be frustrating, b...
                                                             1
            This is a terrific game on any pad. Hrs of fun...
                                                             1
```

Initial Observations

```
In [8]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 20000 entries, 0 to 19999
        Data columns (total 2 columns):
             Column
                         Non-Null Count Dtype
            -----
                         -----
             reviewText 20000 non-null object
             Positive
                         20000 non-null int64
        dtypes: int64(1), object(1)
        memory usage: 312.6+ KB
In [9]:
         df.describe()
Out[9]:
                    Positive
         count 20000.000000
                    0.761650
         mean
           std
                    0.426085
           min
                    0.000000
          25%
                    1.000000
           50%
                    1.000000
          75%
                    1.000000
                    1.000000
           max
In [10]:
         df.dtypes
Out[10]: reviewText
                       object
         Positive
                        int64
         dtype: object
In [11]: label = ["Positive","Negative"]
         values = df["Positive"].value_counts()
         plt.pie(labels = label, x = values)
Out[11]: ([<matplotlib.patches.Wedge at 0x27f2fe64e10>,
           <matplotlib.patches.Wedge at 0x27f2ff00dd0>],
          [Text(-0.8057580416543408, 0.748835080848488, 'Positive'),
           Text(0.8057581117653374, -0.7488350054079725, 'Negative')])
```


We can clearly see class imbalance here

Word Cloud

```
In [12]: positive_reviews = ' '.join(df[df['Positive'] == 1]['reviewText'])
    negative_reviews = ' '.join(df[df['Positive'] == 0]['reviewText'])

In [13]: wordcloud = WordCloud(width=800, height=400, background_color='white').generate(pos plt.figure(figsize=(10, 5))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis('off')
    plt.title("Positive Reviews")
    plt.show()
```

Positive Reviews


```
In [14]: wordcloud = WordCloud(width=800, height=400, background_color='white').generate(neg
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title("Negative Reviews")
plt.show()
```


Data Preprocessing

Null Handling

```
In [15]: df.isna().sum()
Out[15]: reviewText  0
    Positive  0
    dtype: int64
```

Text Preprocessing

```
In [16]: df["reviewText"][0]
Out[16]: 'This is a one of the best apps acording to a bunch of people and I agree it has b
          ombs eggs pigs TNT king pigs and realustic stuff'
         stopwords.fileids()
In [17]:
Out[17]: ['arabic',
           'azerbaijani',
           'basque',
           'bengali',
           'catalan',
           'chinese',
           'danish',
           'dutch',
           'english',
           'finnish',
           'french',
           'german',
           'greek',
           'hebrew',
           'hinglish',
           'hungarian',
           'indonesian',
           'italian',
           'kazakh',
           'nepali',
           'norwegian',
           'portuguese',
           'romanian',
           'russian',
           'slovene',
           'spanish',
           'swedish',
           'tajik',
           'turkish']
In [18]: stopword = stopwords.words("english")
In [19]: punctuation = string.punctuation
In [20]: def preprocess_text(text):
              preprocess_punctuation = "".join([char for char in text if char not in punctuat
```

```
preprocess_stopword = [char for char in preprocess_punctuation.split() if char.
                return preprocess_stopword
          df["reviewText"] = df["reviewText"].apply(preprocess_text)
In [21]:
In [22]: df.head()
Out[22]:
                                                reviewText Positive
           0 [one, best, apps, acording, bunch, people, agr...
                [pretty, good, version, game, free, LOTS, diff...
                                                                    1
           2
                 [really, cool, game, bunch, levels, find, gold...
                                                                    1
           3
                   [silly, game, frustrating, lots, fun, definite...
                 [terrific, game, pad, Hrs, fun, grandkids, lov...
```

Text Normalization/Scaling

```
In [23]: lemmatizer = WordNetLemmatizer()
In [24]: df["reviewText"][0]
Out[24]: ['one',
           'best',
           'apps',
           'acording',
           'bunch',
           'people',
           'agree',
           'bombs',
           'eggs',
           'pigs',
           'TNT',
           'king',
           'pigs',
           'realustic',
           'stuff']
In [25]: def normalize_data(text):
             normalized_text = ' '.join([lemmatizer.lemmatize(word) for word in text])
             return normalized_text
In [26]: import nltk #Handle Lookup Error
         nltk.download("wordnet")
         !unzip /usr/share/nltk_data/corpora/wordnet.zip -d /usr/share/nltk_data/corpora/
```

```
[nltk_data] Downloading package wordnet to
         [nltk_data]
                          C:\Users\ANJAR\AppData\Roaming\nltk_data...
         [nltk_data] Package wordnet is already up-to-date!
        unzip: cannot find or open /usr/share/nltk_data/corpora/wordnet.zip, /usr/share/nlt
        k_data/corpora/wordnet.zip.zip or /usr/share/nltk_data/corpora/wordnet.zip.ZIP.
In [27]: df["reviewText"] = df["reviewText"].apply(normalize data)
In [28]: df.head()
Out[28]:
                                                 reviewText Positive
          0 one best apps acording bunch people agree bomb...
                                                                   1
                 pretty good version game free LOTS different I...
          2
                 really cool game bunch level find golden egg s...
                                                                   1
          3
                    silly game frustrating lot fun definitely reco...
          4
                 terrific game pad Hrs fun grandkids love Great...
                                                                   1
```

Vectorization

```
In [29]: vectorizer = TfidfVectorizer()
In [30]: X = vectorizer.fit_transform(df["reviewText"])
y = df["Positive"]
In [31]: X.shape
Out[31]: (20000, 22617)
```

Data Spliting

```
In [32]: xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, random_state=4
In [33]: xtrain.shape
Out[33]: (14000, 22617)
```

Model Training

```
In [34]: mnbNB = MultinomialNB()
berNB = BernoulliNB()
lr = LogisticRegression()
```

Model Evaluation

```
In [38]: def evaluate_model(X_test, y_test, models):
             y_predicted_list = []
             accuracy_scores = []
             for model in models:
                 prediction = model.predict(X_test)
                 y_predicted_list.append(prediction)
                 accuracy_scores.append(mt.accuracy_score(y_test,prediction))
             for idx, prediction in enumerate(y_predicted_list):
                 print(f"{models[idx]}")
                 print()
                 print("Test Accuracy Score: ",accuracy_scores[idx])
                 print()
                 print(mt.classification_report(y_test,prediction))
                 print("-----
             return accuracy_scores, y_predicted_list
In [39]: | accuracy_scores, predictions = evaluate_model(xtest,ytest,models)
```

	precision	recall	f1-score	support	
0	0.91 0.78	0.11 1.00	0.19 0.88	1411 4589	
accuracy	0.70	2.00	0.79	6000	
macro avg	0.85 0.81	0.55 0.79	0.53 0.72	6000 6000	
weighted avg	0.81	0.75	0.72	0000	
RennoulliNR()					

BernoulliNB()

Test Accuracy Score: 0.8635

	precision	recall	f1-score	support	
0	0.80	0.56	0.66	1411	
1	0.88	0.96	0.91	4589	
accuracy			0.86	6000	
macro avg	0.84	0.76	0.79	6000	
weighted avg	0.86	0.86	0.85	6000	

.....

LogisticRegression()

	precision	recall	f1-score	support
0	0.86	0.60	0.71	1411
1	0.89	0.97	0.93	4589
accuracy			0.88	6000
macro avg	0.88	0.79	0.82	6000
weighted avg	0.88	0.88	0.88	6000

By analyzing the classification reports above, we can see that Logistic Regression has the best accuracy with 88%.

Accuracy Comparison

```
In [40]: plt.bar(['MultinomialNB','BernoulliNB','LogisticRegression'], accuracy_scores)
```

Out[40]: <BarContainer object of 3 artists>

Multinomial Naive Bayes:

- **Test Accuracy Score:** 78.73%
- Precision-Recall-F1 Score:
 - Class 0: Precision 91%, Recall 11%, F1-Score 19%
 - Class 1: Precision 78%, Recall 100%, F1-Score 88%

An interesting start with a good overall accuracy, though there's room for improvement in predicting Class 0.

Bernoulli Naive Bayes:

- Test Accuracy Score: 86.35%
- Precision-Recall-F1 Score:
 - Class 0: Precision 80%, Recall 56%, F1-Score 66%
 - Class 1: Precision 88%, Recall 96%, F1-Score 91%

Bernoulli Naive Bayes exhibits strong performance, particularly in correctly identifying instances of Class 1.

Logistic Regression:

• Test Accuracy Score: 88.43%

• Precision-Recall-F1 Score:

- Class 0: Precision 86%, Recall 60%, F1-Score 71%
- Class 1: Precision 89%, Recall 97%, F1-Score 93%

Logistic Regression takes the lead with the highest accuracy and robust performance across both classes.

Insights:

- Multinomial Naive Bayes shows potential but may benefit from additional optimization, especially in predicting Class 0.
- Bernoulli Naive Bayes excels in predicting Class 1, indicating its effectiveness in capturing relevant patterns.
- Logistic Regression emerges as a strong contender, offering high accuracy and balanced performance.

Confusion Matrix

```
In [41]: sns.heatmap(mt.confusion_matrix(ytest, predictions[0]),annot= True,fmt="d",yticklab
plt.title("MultinomialNB")
plt.xlabel('Predicted')
plt.ylabel('Actual')
```

Out[41]: Text(50.7222222222214, 0.5, 'Actual')


```
In [42]: sns.heatmap(mt.confusion_matrix(ytest, predictions[1]),annot= True,fmt="d",yticklab
    plt.title("BernoulliNB")
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
```

Out[42]: Text(50.7222222222214, 0.5, 'Actual')


```
In [43]: sns.heatmap(mt.confusion_matrix(ytest, predictions[2]),annot= True,fmt="d",yticklab
    plt.title("LogisticRegression")
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
```

Out[43]: Text(50.7222222222214, 0.5, 'Actual')

Multinomial Naive Bayes:

True Positives (TP): 4575
True Negatives (TN): 149
False Positives (FP): 1262
False Negatives (FN): 14

Observations:

- The model performs well in correctly predicting Class 1 (heart attack occurrence) with a high True Positive count.
- However, it struggles in predicting instances of Class 0, as indicated by the low True Negative count and a relatively high False Positive count.

Bernoulli Naive Bayes:

True Positives (TP): 4397
True Negatives (TN): 784
False Positives (FP): 627
False Negatives (FN): 192

Observations:

- The model shows a strong ability to predict both Class 0 and Class 1, with high counts in both True Positives and True Negatives.
- The False Positive count is relatively low, indicating a good balance between precision and recall.

Logistic Regression:

True Positives (TP): 4454
True Negatives (TN): 852
False Positives (FP): 559
False Negatives (FN): 135

Observations:

- Logistic Regression demonstrates a balanced performance in predicting both classes, with high counts in both True Positives and True Negatives.
- The False Positive count is relatively low, contributing to the model's high precision and accuracy.

Roc Auc Curve

```
In [44]: mt.RocCurveDisplay.from_predictions(ytest, predictions[0])
  plt.plot([0,1],[0,1])
  plt.title("MultinomialNB")
  plt.show()
```



```
In [45]: mt.RocCurveDisplay.from_predictions(ytest, predictions[1])
  plt.plot([0,1],[0,1])
  plt.title("BernoulliNB")
  plt.show()
```



```
In [46]: mt.RocCurveDisplay.from_predictions(ytest, predictions[2])
   plt.plot([0,1],[0,1])
   plt.title("LogisticRegression")
   plt.show()
```


The Logistic Regression Model performs better compared to other two models in ROC AUC Curve with a coverage of 79% percent.

HyperParameter Tuning

As Logistic Regression performed the best across all models, we hypertune the parameters to potentially gain even more performance

```
In [50]: grid_search = GridSearchCV(estimator=lr, param_grid=param_grid, cv=5, scoring=scori
         grid_search.fit(xtrain, ytrain)
                   GridSearchCV
Out[50]:
          ▶ estimator: LogisticRegression
                ▶ LogisticRegression
In [51]: best_params = grid_search.best_params_
In [52]: lr_best = LogisticRegression(**best_params)
In [53]: lr_best.fit(xtrain,ytrain)
Out[53]: ▼
                       LogisticRegression
         LogisticRegression(C=10, solver='liblinear')
In [54]: predicted = lr_best.predict(xtest)
In [55]: print(mt.classification_report(ytest,predicted))
                     precision recall f1-score support
                        0.81 0.71
0.91 0.95
                                             0.76
                                                       1411
                                             0.93
                                                       4589
           accuracy
                                             0.89
                                                      6000
       macro avg 0.86 0.83 0.84 weighted avg 0.89 0.89 0.89
                                                       6000
                                                       6000
```

Summary:

- All three models perform well in predicting Class 1 (heart attack occurrence), with high True Positive counts.
- Multinomial Naive Bayes struggles more with predicting instances of Class 0, while
 Bernoulli Naive Bayes and Logistic Regression demonstrate better balance in predicting both classes.
- Logistic Regression stands out with the highest overall accuracy and balanced performance across both cl
- After using Hyperparameter tuning, Logistic regression gained slight performance increase of about 1%ass

Recommendations:

	through further optimization or sampling technes es.	
In []:		

• For Multinomial Naive Bayes, consider addressing the imbalance in predicting Class 0