Problem 1

- (a) $A \cap \overline{B} \cap \overline{C}$
- (b) $A \cap B \cap \overline{C}$
- (c) $A \cup B \cup C$
- (d) $(A \cap B) \cup (A \cap C) \cup (B \cap C)$
- (e) $A \cap B \ capC$
- (f) $\overline{A} \cap \overline{B} \cap \overline{C}$
- (g) $(A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap B \cap \overline{C}) \cup (\overline{A} \cap \overline{B} \cap C)$
- (h) $\overline{A} \cup \overline{B} \cup \overline{C}$
- (i) $(A \cap B \cap \overline{C}) \cup (A \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap C)$
- $(j) \Omega$

Problem 2

(a) By Bonferroni's inequality:

$$P(A \cap B) \ge P(A) + P(B) - 1 = 0.9 + 0.8 - 1 = \mathbf{0.7}$$

(b) By the addition rule¹:

$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

Since $P(A \cup B) \le 1$, then $P(A \cap B) \ge P(A) + P(B) - 1$

(c) *Proof.* Consider the base case, n = 2:

$$P(A_1 \cap A_2) \ge P(A_1) + P(A_2) - (2-1) = P(A_1) + P(A_2) - 1$$

Substituting $P(A_1 \cap A_2) + P(A_1 \cup A_2) = P(A_1) + P(A_2)$ from the addition rule, we get:

$$P(A_1 \cap A_2) \ge P(A_1 \cap A_2) + P(A_1 \cup A_2) - 1$$

Since $P(A_1 \cup A_2) \leq 1$, then $P(A_1 \cup A_2) - 1 \leq 0$. Thus the inequality is true. Induction hypothesis, for $k \in \mathbb{N}$:

$$P(A_1 \cap A_2 \cap \dots \cap A_k) \ge P(A_1) + P(A_2) + \dots + P(A_k) - (k-1)$$

For
$$k + 1$$
: $P(A_1 \cap A_2 \cap \dots \cap A_{k+1}) \ge P(A_1 \cap A_2 \cap \dots \cap A_k) + P(A_{k+1}) - 1$

¹Proved in class slide 10/16

Substituting $P(A_1 \cap A_2 \cap \cdots \cap A_k)$ from our hypothesis:

$$P(A_1 \cap A_2 \cap \cdots \cap A_{k+1}) > P(A_1) + P(A_2) + \cdots + P(A_k) - (k-1) + P(A_{k+1}) - 1$$

And so:

$$P(A_1 \cap A_2 \cap \dots \cap A_{k+1}) \ge P(A_1) + P(A_2) + \dots + P(A_k) + P(A_{k+1}) - ((k+1)-1)$$

(d) *Proof.* Consider the base case, n = 2. By the inclusion-exclusion principle:

$$P(\bigcup_{i=1}^{2} A_i) = P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

Since $P(A_1 \cap A_2) \geq 0$, then

$$P(\bigcup_{i=1}^{2} A_i) \le P(A_1) + P(A_2) = \sum_{i=1}^{2} P(A_i)$$

Induction hypothesis, for $k \in \mathbb{N}$:

$$P(\cup_{i=1}^k A_i) \le \sum_{i=1}^k P(A_i)$$

For k + 1, by the inclusion-exclusion principle:

$$P(\bigcup_{i=1}^{k+1} A_i) = P(\bigcup_{i=1}^k A_i) + P(A_{k+1}) - P(A_{k+1} \cap (\bigcup_{i=1}^k A_i))$$

Since $P(A_{k+1} \cap (\bigcup_{i=1}^k A_i)) \ge 0$, then:

$$P(\bigcup_{i=1}^{k+1} A_i) \le P(\bigcup_{i=1}^k A_i) + P(A_{k+1})$$

By our hypothesis:

$$P(\bigcup_{i=1}^{k+1} A_i) \le \sum_{i=1}^k P(A_i) + P(A_{k+1}) = \sum_{i=1}^{k+1} P(A_i)$$

Problem 3 (Total Probability)

Proof. If $A_1, A_2, \ldots A_n$ is a partition, then the entire sample space is accounted for $(\bigcup_{i=1}^n A_i = \Omega)$ and all sets $A_1, A_2, \ldots A_n$ are disjoint.

Since $B \subseteq A_i$ for $i \in \mathbb{N}$, by the the Intersection of a Subset theorem, $B = B \cap A_i$. Therefore:

$$P(B) = P(B \cap (A_1 \cup A_2 \cup \dots \cup A_n))$$

By the distributive property:

$$P(B \cap (A_1 \cup A_2 \cup \dots \cup A_n)) = P((B \cap A_1) \cup (B \cap A_2) \cup \dots \cup (B \cap A_n))$$

Since all A_i are disjoint, then all $B \cap A_i$ are also disjoint. So by probability axiom three:

$$P((B \cap A_1) \cup (B \cap A_2) \cup \dots \cup (B \cap A_n)) = \sum_{i=1}^n P(A_i \cap B)$$

 $P(B|A_i)$ indicates the probability of B given A_i . By the conditional probability definition:

$$P(B|A_i) = \frac{P(B \cap A_i)}{P(A_i)}$$

Therefore:

$$\sum_{i=1}^{n} P(A_i \cap B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Problem 4

(a) For n antennae, the number of linear orderings without consecutive antennas down is equal to the the (n+1)th element of the fibbonaci sequence, that is:

$$\sum_{m=0}^{n} \binom{n-m+1}{m}$$

	# orderings				
n	total	w/o consecutive failures			
0	1	1			
1	2	2			
2	4	3			
3	8	5			
4	16	8			
5	32	13			
6	64	21			
7	128	34			
8	256	55			
9	512	89			
10	1024	144			
11	2048	233			
12	4096	377			
13	8192	610			
14	16384	987			
15	32768	1597			
16	65536	2584			
17	131072	4181			
18	262144	6765			
19	524288	10946			

I determined this through simulation using the following Python code:

```
def binary_list(num, bits):
    u = format(num, "0" + str(bits) + "b")
    return [int(d) for d in u]
def binary_list_sequence(bits):
    for i in range(0, 2**(bits)):
        l.append(binary_list(i, bits))
    return 1
def consecutive_zeros(1):
    for i in range(len(1) - 1):
        if(l[i] == 0 \text{ and } l[i+1] == 0):
            return True
    return False
def number_with_consecutive_zeros(bits):
    for l in binary_list_sequence(bits):
        if(not consecutive_zeros(1)): nf += 1
for i in range(0, 20):
    print(i, "\t", 2**i, "\t", number_with_consecutive_zeros(i))
```

(b) Since $\sum_{i=0}^{6} P(m=i) = 1$, the probability P(m=6), $P(m=7) \dots P(m=10) = 0$.

The probability that communication flows through the system is the probability that no two consecutive antennas are down:

$$P = \frac{\# \text{ arrangements without consequtive failures}}{\# \text{ all possible orderings}}$$

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

$$= P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3) + \dots + P(B|A_6)P(A_6)$$

$$= \frac{1}{1}(0.11) + \frac{2}{2}(0.27) + \frac{3}{4}(0.30) + \frac{5}{8}(0.20) + \frac{8}{16}(0.09) + \frac{13}{32}(0.02) + \frac{21}{64}(0.01) = \mathbf{0.68741}$$

Problem 5

(a) *Proof.* Suppose to the contrary that all points in the sample space are equally likely, such that $p_1, p_2, p_3 \dots p_{\infty}$ are all equal to some probability ϵ . Then the sum of each point's probability would have to add up to 1^2 . However for case 1, $\epsilon = 0$, then:

$$\sum_{i=1}^{\infty} p_i = \sum_{i=1}^{\infty} \epsilon = 0$$

²Where's this from

Alternatively for case 2, $\epsilon > 0$, then:

$$\sum_{i=1}^{\infty} p_i = \sum_{i=1}^{\infty} \epsilon = \infty$$

- . Either way, $\sum_{i=1}^{\infty} p_i \neq 1$, therefore not all points are equally likely.
- (b) Although all points cannot be equally likely, all points can have a positive probability so long as they converge. Consider the series:

$$\sum_{i=1}^{\infty} \frac{1}{2^i} = 1$$

If $p_i = \frac{1}{2^i}$, then each $p_1, p_2, p_3 \dots p_{\infty} > 0$ and $\sum_{i=1}^{\infty} p_i = 1$, as required. Therefore yes, all the points can have a positive probability of occurring.

For another example, consider the tutorial example 1.10

Problem 6

(a) I argue this formula based on my experimental results from the following Python³ code. This script generates all the possible combinations of 0 and 1 of n bits, using a binary sequence. Respectively, these representing *heads*, *tails*, and *number of tosses*.

It then iterates through all the possible combinations, and counts the number for which there are not successive heads (called consecutive zeros in the script).

The script provided the sequence 1, 2, 3, 5, 8, 13, 21..., which is immediately recognizable as the Fibbonaci sequence – ie. $f_n = f_{n-1} + f_{n-1}$, as given.

```
def binary_list(num, bits):
    u = format(num, "0" + str(bits) + "b")
    return [int(d) for d in u]
def binary_list_sequence(bits):
    1 = []
    for i in range(0, 2**(bits)):
        l.append(binary_list(i, bits))
    return 1
def consecutive_zeros(1):
    for i in range(len(1) - 1):
        if(l[i] == 0 \text{ and } l[i+1] == 0):
            return True
    return False
def number_with_consecutive_zeros(bits):
    nf = 0
    for 1 in binary_list_sequence(bits):
        if(not consecutive_zeros(1)): nf += 1
    return nf
for n in range(0, 25+1):
    combinations = 2**n
    no_consequtives = number_with_consecutive_zeros(n)
    probability = no_consequtives/combinations
    print(n, combinations, no_consequtives, probability)
```

n	# combinations	# w/o successive heads
0	1	1
1	2	2
2	4	3
3	8	5
4	16	8
5	32	13
6	64	21
7	128	34
8	256	55
9	512	89
10	1024	144
11	2048	233
12	4096	377
13	8192	610
14	16384	987
15	32768	1597
16	65536	2584
17	131072	4181
<u>:</u>	<u>:</u>	<u>:</u>

³Rewrite as R if time

(b) The number of possible combinations of throws is 2^n , so:

$$P_n = \frac{f_n}{2^n}$$

(c) Values to complete the table calculated using the script from (a):

n	P_n
0	1.0
1	1.0
2	0.75
3	0.625
4	0.5
5	0.40625
6	0.328125
7	0.265625
8	0.21484375
9	0.173828125
10	0.140625
11	0.11376953125
12	0.092041015625
13	0.074462890625
14	0.06024169921875
15	0.048736572265625
16	0.0394287109375
17	0.03189849853515625
18	0.025806427001953125
19	0.020877838134765625
20	0.016890525817871094
21	0.013664722442626953
22	0.01105499267578125
23	0.008943676948547363
24	0.007235586643218994
25	0.005853712558746338

Problem 7

- (a) Where r=6, g=6, b=8, and c=# number of choices =3. $\binom{r+g+b}{c}$ represents all the possible choices of three balls.
 - (i) Probability all are red:

$$\frac{6}{20} imes \frac{5}{19} imes \frac{4}{18} = \frac{1}{57} \approx \mathbf{0.017544}$$

Alternatively, we could use the formula:

$$\frac{\binom{r}{c}}{\binom{r+g+b}{c}} = \frac{\binom{6}{3}}{\binom{20}{3}} = \frac{1}{57}$$

(ii) Probability all are same colour:

$$\frac{\binom{r}{c} + \binom{g}{c} + \binom{b}{c}}{\binom{r+g+b}{c}} = \frac{\binom{6}{3} + \binom{6}{3} + \binom{8}{3}}{\binom{20}{3}} = \frac{8}{95} \approx \mathbf{0.084211}$$

(iii) Probability all are different colours. The numerator states the number of ways that we can take only one ball of each colour.

$$\frac{\binom{r}{1}\binom{g}{1}\binom{b}{1}}{\binom{r+g+b}{c}} = \frac{\binom{6}{1}\binom{6}{1}\binom{8}{1}}{\binom{20}{3}} = \frac{24}{95} \approx \mathbf{0.25263}$$

(b) Using the formula $\frac{\binom{r}{i}}{\binom{r+g+b}{i}}$:

$$i = 0$$

$$\frac{\binom{6}{0}}{\binom{20}{0}} = \mathbf{1}$$

$$i = 1$$

$$\frac{\binom{6}{1}}{\binom{20}{1}} = \frac{3}{10} = \mathbf{0.3}$$

$$i = 2$$

$$\frac{\binom{6}{2}}{\binom{20}{2}} = \frac{3}{38} \approx \mathbf{0.078947}$$

$$i = 3$$

$$\frac{\binom{6}{3}}{\binom{20}{3}} = \frac{1}{57} \approx \mathbf{0.017544}$$

Problem 8

(a) From $P(A \cap B) + P(\overline{A} \cap B) = P(B)^4$:

$$P(\overline{A} \cap B) = P(B) - P(A \cap B)$$

Since A and B are independent, $P(A \cap B) = P(A)P(B)$:

$$P(\overline{A} \cap B) = P(B) - P(A)P(B)$$

Factoring P(B):

$$P(\overline{A} \cap B) = P(B)(1 - P(A))$$

Since $1 - P(A) = P(\overline{A})$:

$$P(\overline{A} \cap B) = P(B)P(\overline{A})$$

And so \overline{A} and B are also independent.

(b) From 8(a), we know \overline{A} and B are independent:

$$P(\overline{A} \cap B) = P(\overline{A})P(B)$$

⁴From lecture slide 31/61

Since A and B are independent, by the same logic we know (\star) :

$$P(A \cap \overline{B}) = P(A)P(\overline{B})$$

From $P(A \cap B) + P(\overline{A} \cap B) = P(B)$:

$$P(\overline{A} \cap \overline{B}) + P(\overline{\overline{A}} \cap \overline{B}) = P(\overline{B})$$

And so rearranging and using (\star) :

$$P(\overline{A} \cap \overline{B}) = P(\overline{B}) - P(A)P(\overline{B})$$

Factoring $P(\overline{B})$:

$$P(\overline{A} \cap \overline{B}) = P(\overline{B})(1 - P(A))$$

Since $1 - P(A) = P(\overline{A})$:

$$P(\overline{A} \cap \overline{B}) = P(\overline{B})P(\overline{A})$$

And so \overline{A} and \overline{B} are also independent.

Problem 9

See Problem 3.

Problem 10

(a) Since A and B are independent, then $P(A \cap B) = P(A)P(B) = (0.8)(0.9) = 0.72$. So:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.8 + 0.9 - 0.72 = 0.98$$

(b) From Problem 8, we know that if A and B are independent, then so too are \overline{A} and B, and \overline{B} and A. Therefore:

$$P(\overline{A} \cap B) = (1 - P(A))P(B) = (1 - 0.8)(0.9) = 0.18$$

$$P(A \cap \overline{B}) = (1 - P(B))P(A) = (1 - 0.9)(0.8) = 0.08$$

The probability of A detecting and B not detecting, or B detecting and A not detecting is the summation of the two.

$$P = P(A \cap \overline{B}) + P(\overline{A} \cap B) = 0.18 + 0.08 = 0.26$$

(c) Assuming the location detection is also independent, the probability of accurately determining the location is:

$$P = (0.7 + 0.4 - (0.7)(0.4)) = 0.82$$

To accurately locate a forest fire, we must first detect the forest fire, 0.98 from (a), and also then accurately determine the location.

$$P = (0.98)(0.82) = \mathbf{0.8036}$$

Problem 11

- (a) $P = p^j$
- (b) Since the error-correction only works when one bit has an error, the probability it can be corrected is when exactly one digit has an error (p), and that n-1 don't have an error (1-p)

$$P = (p)^{1}(1-p)^{n-1}$$

Problem 12

(a) I calculated the values of $P(D|I_k)$ using the following Python code:

```
# True indicates a positive test, False indicates a negative test
B1 = [True, False, True, False, True, True, True, False, False, True]
B2 = [True, True, True, False, False, True, False, False, False, False]
B3 = [False, False, False, True, True, False, True, True, True, True]
tests = [B1, B2, B3]
p = [0.80, 0.64, 0.86, 0.80, 0.74, 0.76, 0.77, 0.84, 0.85, 0.75]
q = [0.20, 0.16, 0.07, 0.09, 0.18, 0.13, 0.17, 0.14, 0.21, 0.08]
                    # n tests
pi = [None]*(n+1)  # probability of event of interest, part is defective
pi[0] = 0.15
for B in tests:
   for k in range(1, n+1):
        # sequential Bayes' formula
        if B[k-1] == 1:
           a = p[k - 1]
           b = q[k - 1]
           a = 1 - p[k - 1]

b = 1 - q[k - 1]
        pi[k] = a*pi[k-1] / (a*pi[k-1] + b*(1-pi[k-1]))
        print( round(pi[k], 4) , end="t\&t")
    print(r"\\")
```

Results:

\overline{k}	1	2	3	4	5	6	7	8	9	10
(i) $P(D I_k)$	0.4138	0.2323	0.788	0.4496	0.7705	0.9515	0.9889	0.943	0.7585	0.9672
(ii) $P(D I_k)$	0.4138	0.7385	0.972	0.884	0.7074	0.9339	0.7966	0.4215	0.1215	0.0362
(iii) $P(D I_k)$	0.0423	0.0186	0.0028	0.0247	0.0942	0.0279	0.115	0.4381	0.7594	0.9673

- (b) When $\alpha = 0.50$, $J(\alpha) = 0.0519177$. I used the R code provided by Elana to calculate this.
- (c) Please see Table 1 for values of α and $J(\alpha)$ for $\alpha = 0.01, 0.02, 0.03 \dots 0.99$

Table 1: Optimal Value for Alapha

α	Probability of error	α	Probability of error
0	0.85		
0.01	0.321497454545455	:	•
0.02	0.257556363636364	0.5	0.0519177272727273
0.03	0.237290454545455	0.51	0.0519177272727273
0.04	0.233191545454545	0.51	0.0519297272727273
0.05	0.157001363636364	0.53	0.0519503050505051
0.06	0.155858272727273	0.54	0.0519584545454545
0.07	0.154035272727273	0.55	0.0520518181818182
0.08	0.153439090909091	0.56	0.0520734545454545
0.09	0.150737272727273	0.57	0.0520704545454546
0.1	0.149551545454545	0.58	0.0520752727272727
0.11	0.149205181818182	0.59	0.0520793636363636
0.12	0.148071272727273	0.6	0.0521002727272727
0.13	0.147725	0.61	0.0521487272727273
0.14	0.146997363636364	0.62	0.05214912121213
0.15	0.0750047272727273	0.63	0.0523355454545455
0.16	0.0746272727272727	0.64	0.0523488181818182
0.17	0.0744789090909091	0.65	0.0523616363636364
0.18	0.0738287272727273	0.66	0.0523928181818182
0.19	0.0709645454545454	0.67	0.0525442727272727
0.2	0.0700902727272727	0.68	0.0528992727272727
0.21	0.0694141818181818	0.69	0.053686
0.22	0.069297	0.7	0.053755
0.23	0.0692476363636364	0.71	0.0540540909090909
0.24	0.0601465454545455	0.72	0.0540820909090909
0.25	0.0599877272727273	0.73	0.0541475454545455
0.26	0.0599171818181818	0.74	0.0587941818181818
0.27	0.0598713636363636	0.75	0.0589438181818182
0.28	0.0596006363636364	0.76	0.059052
0.29	0.0588762727272727	0.77	0.0590936363636364
0.3	0.0575611818181818	0.78	0.0595245454545455
0.31	0.0574602727272727	0.79	0.0620800909090909
0.32	0.0573461818181818	0.8	0.0628735454545454
0.33	0.0569400909090909	0.81	0.0630185454545455
0.34	0.0568936363636364	0.82	0.0631708181818182
0.35	0.0568782727272727	0.83	0.0632596363636364
0.36	0.0568252727272727	0.84	0.0633046363636364
0.37	0.0568250909090909	0.85	0.0634796363636364
0.38	0.0567721818181818	0.86	0.0639188181818182
0.39	0.056733	0.87	0.0640528181818182
0.4	0.0565952727272727	0.88	0.0643854545454546
0.41	0.0565560909090909	0.89	0.0656797272727273
0.42	0.0521120909090909	0.9	0.0663837272727273
0.43	0.052062	0.91	0.0667487272727273
0.44	0.0520558181818182	0.92	0.0678722727272727
0.45	0.0519163636363636	0.93	0.0682357272727273
0.46	0.0519284545454545	0.94	0.0692656363636364
0.47	0.0519146363636364	0.95	0.0698046363636364
0.48	0.0519121818181818	0.96	0.0720112727272727
0.49	0.0518956363636364	0.97	0.07398
		0.98	0.0844239090909091
:	:	0.99	0.090548

(d) Plotting the values of α vs. $J(\alpha)$ in R, we can see that the range for the minimum number of errors is $\alpha = 0.49$, so I suggest using this value as the cutoff.

Figure 1: Optimal value of α to minimize errors

Problem 13

(a) Probability mass function:

$$f(y) = P(Y = y) = \begin{cases} \frac{1}{100}, & \text{if } Y \in \{1, 2, 3 \dots 100\} \\ 0, & \text{otherwise} \end{cases}$$

Distribution function:

$$F(y) = \sum_{k=1}^{100} P(Y = y_k) = \begin{cases} 0, & \text{if } Y < 1\\ \frac{1}{100}, & \text{if } 1 \le Y < 2\\ \frac{2}{100}, & \text{if } 2 \le Y < 3\\ \vdots\\ \frac{100}{100}, & \text{if } 99 \le Y < 100 \end{cases}$$

Then the mean, ie. the expected value is:

$$\mu = E(Y) = \sum_{y=1}^{100} y f(y) = \frac{1}{100} \sum_{y=1}^{100} y = \frac{5050}{100} =$$
50.5

And the variance is:

$$\sigma^2 = Var(Y) = E[(Y - \mu)^2] = \sum_{y=1}^{100} (y - \mu)^2 f(y) = \frac{1}{100} \sum_{y=1}^{100} (y - 50.5)^2 = \frac{3333}{4} = 833.25$$

(b) Probability mass function:

$$f(x) = P(X = x) = \frac{\binom{100 - x}{5}}{\binom{100}{5}}$$

Distribution function:

$$F(x) = \sum_{k=1}^{100} P(X = x_k) = \sum_{k=1}^{x} \frac{\binom{100-x}{5}}{\binom{100}{5}}$$

 $Mean^5$:

$$\mu = E(X) = \sum_{x=1}^{100} f(X) = \sum_{x=1}^{100} \frac{\binom{100-x}{5}}{\binom{100}{5}} = \frac{95}{6} = 15.833$$

Variance:

$$\sigma^2 = Var(X) = E[(X - \mu)^2] = \sum_{x=1}^{100} (x - \mu)^2 f(x) = \sum_{x=1}^{100} \left(x - \frac{95}{6}\right)^2 \frac{\binom{100 - x}{5}}{\binom{100}{5}} = \frac{3526115}{1512} = \mathbf{2332.08}$$

The variance seems incorrect to me, as it implies a standard deviation of 48.29 but I can't identify my error at the moment.

	Mean	Variance
(a)	50.5	833.25
(b)	15.833	2332.08

Problem 14

The probability that the two-engine plane crashes is the probability that two out of two engines fail.

$$P_{2e} = p^2$$

The probability that the four-engine plane crashes is the probability that three or four out of four engines fail.

- 1. The probability that four engines fail is p^4 .
- 2. The probability that exactly three engines fail is the probability that 3 engines fail and 1 engine doesn't fail, $p^3(1-p)^1$. But since this can happen four different ways, depending on which engine does not fail, the probability is $4(1-p)p^3$.

$$P_{4e} = p^4 + 4(1-p)p^3$$

⁵I did these calculations with the HP-50g, not in R, hence the fractions

Setting $P_{4e} = P_{2e}$ equal, we can solve for the value of p at the intersection points.

$$p^2 = p^4 + 4(1-p)p^3 \to p = 0, p = 1, p = \frac{1}{3}$$

Plotting the functions in R:

Figure 2: Four-Engine Plane Failure (Blue) vs. Two-Engine Plane Failure (Red)

Since we are interested in the range between 0 and 1, we can see that we would *prefer* the two-engine plane for $1 > p > \frac{1}{3}$.

Problem 15

(a) The distribution is a function of the number of right-turns the pinball takes. If the pinball takes 0 right turns, it will be in the 0th position. If it takes 1 right turn, it will be in the 1st position, and so on.

The probability it will be in cell 0 and 4 is the probability that there are all right-turns or all left-turns over the four possible times to switch:

$$\left(\frac{1}{2}\right)^4 = \frac{1}{16} = 0.0625$$

The probability it will be in cell 1 or 3 is the probability that there are 1 right-turn or left-turn over the four possible times to switch, so the probability is one-in-four:

$$\frac{1}{4} = 0.25$$

Since there is only cell 2 left, the probability it will be in cell 2 is the probability is the remaining probability:

$$1 - 2(0.0625) - 2(0.25) = 0.375$$

(b) Code:

```
from random import randint
def choice():
    return randint(0,1)
def sequence(n):
    return [choice() for i in range(n)]
def position(arr):
    return arr.count(1)
def frequencies(cells):
    counter = [0]*cells
    for i in range(N):
        pos = position(sequence(cells - 1))
        counter[pos] += 1
    return counter
N = 1000
for i, c in enumerate(frequencies(5)):
    print(i, round(c/N*100,4))
```

Results:

Cell	Simulation	Theoretical	% Difference
0	0.066	0.0625	5.6
1	0.262	0.25	4.8
2	0.354	0.375	5.6
3	0.253	0.25	1.2
4	0.065	0.0625	4.0

The simulation results mostly complement the theoretical values, however they would be more accurate if I ran more than 1000 simulations.

(c) This distribution is a binomial distribution, that is for each cell k, the probability is:

$$P(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Since there is an equal probability of going left or right, then p = 0.5. Since there are 100 cells, then n = 100. So for our pinball board, the probability of landing on cell k is:

$$P(k) = {100 \choose k} 0.5^k (1 - 0.5)^{100-k} = \frac{100!}{(100 - k)!k!} 0.5^k 0.5^{100-k} = \frac{(100!)0.5^{100}}{(100 - k)!k!}$$

See Table 2 for calculated probabilities of landing in cells 0 through 100.

(d) I ran the experiment using the above functions in section (b) with the updated parameters. I also calculated the theoretical value from section (c) and calculated the percent difference to compare between the simulated and theoretical values:

```
p = 0.5
n = 100
for k, c in enumerate(frequencies(n)):
    theorical = factorial(n)/(factorial(n-k)*factorial(k))*(p**k)*((1-p)**(n-k))
    print(k, " & ", c/N, " & ", theorical, " & ", round(100*abs(theorical-c/N)/theorical,6), r"\\")
```

Table 2: Pinboard Cell Distribution Theoretical and Simulated

Cell	Simulation	Theoretical	% Difference	Cell	Simulation	Theoretical	% Difference
0	0.0	7.888609052210118e-31	100.0				
1	0.0	7.888609052210118e-29	100.0	:		•	•
2	0.0	3.9048614808440084e-27	100.0	50	0.086	0.07958923738717877	8.054811
3	0.0	1.275588083742376e-25	100.0	51	0.091	0.07802866410507722	16.623809
4	0.0	3.093301103075262e-24	100.0	52	0.081	0.07352701040670738	10.163598
5	0.0	5.939138117904503e-23	100.0	53	0.054	0.06659049999098027	18.907352
6	0.0	9.403635353348797e-22	100.0	54	0.049	0.05795839814029764	15.456601
7	0.0	1.2627738903068384e-20	100.0	55	0.049	0.048474296626430755	0.97845
8	0.0	1.4679746474816996e-19	100.0	56	0.037	0.03895255978909614	5.012661
9	0.0	1.5005963063146263e-18	100.0	57	0.019	0.030068642644214563	36.811248
10	0.0	1.3655426387463099e-17	100.0	57 58	0.019	0.030068642644214363 0.022292269546572867	46.16968
11	0.0	1.1172621589742536e-16	100.0	59	0.012	0.015869073236543397	18.079652
12	0.0	8.286361012392381e-16	100.0	60	0.013		
13	0.0	5.609228993004073e-15	100.0			0.010843866711637987	17.003775
14	0.0	3.4857351599382454e-14	100.0	61 62	0.006	0.00711073226992655	15.620505
15	0.0	1.998488158364594e-13	100.0		0.01	0.00447287997624412	123.569603
16	0.0	1.0616968341311906e-12	100.0	63	0.001	0.0026979276047186754	62.934513
17	0.0	5.246031415707059e-12	100.0	64	0.001	0.0015597393964779842	35.886726
18	0.0	2.4190033750204773e-11	100.0	65	0.001	0.0008638556657416528	15.760079
19	0.0	1.0439909302719954e-10	100.0	66	0.0	0.00045810527728724014	100.0
20	0.0	4.2281632676015815e-10	100.0	67	0.0	0.00023247133474277857	100.0
21	0.0	1.6107288638482216e-09	100.0	68	0.0	0.00011281697127223077	100.0
22	0.0	5.78398092018225e-09	100.0	69	0.0	5.232091421320847e-05	100.0
23	0.0	1.9615239642357197e-08	100.0	70	0.0	2.3170690580135184e-05	100.0
24	0.0	6.2932227185896e-08	100.0	71	0.0	9.790432639493739e-06	100.0
25	0.0	1.9131397064512386e-07	100.0	72	0.0	3.9433687020183116e-06	100.0
26	0.0	5.518672230147804e-07	100.0	73	0.0	1.5125249815960647e-06	100.0
27	0.0	1.5125249815960647e-06	100.0	74	0.0	5.518672230147804e-07	100.0
28	0.0	3.9433687020183116e-06	100.0	75	0.0	1.9131397064512386e-07	100.0
29	0.0	9.790432639493739e-06	100.0	76	0.0	6.2932227185896e-08	100.0
30	0.0	2.3170690580135184e-05	100.0	77	0.0	1.9615239642357197e-08	100.0
31	0.0	5.232091421320847e-05	100.0	78	0.0	5.78398092018225e-09	100.0
32	0.0	0.00011281697127223077	100.0	79	0.0	1.6107288638482216e-09	100.0
33	0.0	0.00011281097127223077	100.0	80	0.0	4.2281632676015815e-10	100.0
				81	0.0	1.0439909302719954e-10	100.0
34 35	0.001	0.00045810527728724014	118.290434	82	0.0	2.4190033750204773e-11	100.0
	0.002	0.0008638556657416528	131.520158	83	0.0	5.246031415707059e-12	100.0
36	0.002	0.0015597393964779842	28.226549	84	0.0	1.0616968341311906e-12	100.0
37	0.002	0.0026979276047186754	25.869026	85	0.0	1.998488158364594e-13	100.0
38	0.003	0.00447287997624412	32.929119	86	0.0	3.4857351599382454e-14	100.0
39	0.006	0.00711073226992655	15.620505	87	0.0	5.609228993004073e-15	100.0
40	0.018	0.010843866711637987	65.99245	88	0.0	8.286361012392381e-16	100.0
41	0.015	0.015869073236543397	5.476522	89	0.0	1.1172621589742536e-16	100.0
42	0.028	0.022292269546572867	25.60408	90	0.0	1.3655426387463099e-17	100.0
43	0.03	0.030068642644214563	0.228286	91	0.0	1.5005963063146263e-18	100.0
44	0.039	0.03895255978909614	0.12179	92	0.0	1.4679746474816996e-19	100.0
45	0.047	0.048474296626430755	3.041399	93	0.0	1.2627738903068384e-20	100.0
46	0.069	0.05795839814029764	19.050909	94	0.0	9.403635353348797e-22	100.0
47	0.077	0.06659049999098027	15.63211	95	0.0	5.939138117904503e-23	100.0
48	0.071	0.07352701040670738	3.436846	96	0.0	3.093301103075262e-24	100.0
49	0.072	0.07802866410507722	7.726217	97	0.0	1.275588083742376e-25	100.0
				98	0.0	3.9048614808440084e-27	100.0
				99	0.0	7.888609052210118e-29	100.0

(e) In simulation, we see no distribution in the outermost cells, however in the theoretical probabilities there are of course nonzero probabilities. The more iterations we ran, the more likely our simulation would be to reflect the theoretical distribution.