1

Assignment 5

Chirag Mehta - AI20BTECH11006

Download all the python codes from

https://github.com/cmaspi/EE3900/tree/main/ Assignment-5/code

latex-tikz codes from

https://github.com/cmaspi/EE3900/blob/main/ Assignment-5/main.tex

1 Problem

(Quadratic forms Q2.66) Find the point at which the line $\begin{pmatrix} -1 & 1 \end{pmatrix} \mathbf{x} = 1$ is a tangent to the curve $y^2 = 4x$

2 Solution

The equation of line is given by

$$\begin{pmatrix} -1 & 1 \end{pmatrix} \mathbf{x} = 1 \tag{2.0.1}$$

$$\mathbf{x} = \mathbf{e_2} + \lambda \mathbf{1_2} \tag{2.0.2}$$

General equation of a conic is given by

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2 \mathbf{u}^T x + f = 0 \tag{2.0.3}$$

for $y^2 = 4x$, the equation can be written as

$$\mathbf{x}^{T} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} + 4 \begin{pmatrix} -1 \\ 0 \end{pmatrix}^{T} x = 0 \tag{2.0.4}$$

Using the condition of tangency, we get

$$\mathbf{m}^{T}(\mathbf{V}\mathbf{q} + \mathbf{u}) = 0 \tag{2.0.5}$$

$$\mathbf{1_2}^T \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -2 \\ 0 \end{pmatrix} \end{pmatrix} = 0 \tag{2.0.6}$$

$$\mathbf{1_2}^T \begin{pmatrix} -2\\ y \end{pmatrix} = 0 \tag{2.0.7}$$

$$\Longrightarrow y = 2, x = 1 \tag{2.0.8}$$

A plot for the line and parabola is given below

Fig. 0: Plot of the line and parabola