Лабораторная работа 4

Дуденко Екатерина

1 мая 2023 г.

1 Условие

Рассматривается уравнение теплопроводности:

$$u_t - div(a \ grad(u)) = 0$$

$$(x, u) \in \Omega, \ u = u(x, y), \ a = a(x, y), \ f = f(x, y)$$
(1)

Уравнение (1) дополнено краевыми условиями:

$$u=0$$
, на D_1,D_2,D_3,D_4
$$u_x=1$$
, на N_2
$$u_y=-1$$
, на N_1

Коэффициент а равен 4000 в квадрате S и 500 вне его. Начальные условия – нулевые.

Рис. 1: Сетка

2 Выполнение

На каждом шаге строятся две матрицы A и B, B - для уже известного, с прошлого шага, вектора u_n , матрица A для нового вектора u_{n+1} . Также присутствуют векторы значений add_n и add_{n+1} , которые получаются из краевых условий, для u_{ij} , на границах сетки. u_0 - это u_{11} .

$$A * u_{n+1} + add_{n+1} = B * u_n + add_n \tag{3}$$

Получающаяся ѕру матрица:

Рис. 2: Матрица на первом шаге

Итерации продолжаются до тех пор, пока разница L_1 норм векторов u_n и u_{n+1} не будет меньше установленной точности e=0.5 (мне не хотелось долго ждать ответа).

3 Результат

В итоге можно получить матрицу значений узлах сетки:

Рис. 3: Результат

Для такого e=0.5 получается примерно 30 итераций. Тогда график схождения для нормы вектора будет выглядеть так:

Рис. 4: Сходимость нормы