Selection on Observables

Causal Inference using Machine Learning Master in Economics, UNT

Andres Mena

Spring 2024

Content

- 1 Identifications of Causal Effects under Unconfoundedness
- 2 Estimations Using Linear Regression
- Inverse Probability Weighting
- 4 Doubly Robust Estimation
- Meyman Orthogonality
- 6 Generic DML

Selection on Observables Spring 2024

Confounding in Observational Studies

Causal Inference for Observational Studies:

- Experimental studies are often not feasible due to ethical, practical, or financial constraints.
- Instead, we rely on observational data, where treatment assignment is not controlled by the researcher.

Notation:

- Data: $\{(Y_i, D_i, X_i) : i = 1, ..., N\}$ are i.i.d. from an infinite super-population.
- $X_i \in \mathbb{R}^K$: vector of pre-treatment covariates.

Key Concern: Confounding Factors

- Confounders are variables related to both the treatment assignment and the outcome.
- If not properly accounted for, confounding leads to biased estimates of causal effects.

CIML Selection on Observables Spring 2024

Causal Graph: Potential Outcomes and Confounding

- X influences both the treatment D and the potential outcomes Y(d).
- Potential outcomes Y(d) determine the realized outcome Y.
- Note: D does not affect Y(d) directly; Y(d) is defined as the outcome if D were set to d.

Key Assumptions

Unconfoundedness (Conditional Ignorability)

Assumption: $(Y(1), Y(0)) \perp D \mid X$.

5/32

Spring 2024

Key Assumptions

Unconfoundedness (Conditional Ignorability)

Assumption: $(Y(1), Y(0)) \perp D \mid X$.

Overlap

Assumption: For all $x \in \mathcal{X}$, 0 < p(x) < 1, where

$$p(x) = P(D = 1 \mid X = x).$$

Conditioning Removes Selection Bias

Theorem 1(Conditioning on X Removes Selection Bias)

Under Unconfoundedness and Overlap,

$$E[Y \mid D = d, X] = E[Y(d) \mid X].$$

Proof:

Identification of the Average Treatment Effect (ATE)

Theorem 2 (Identification of ATE)

Statement: Under Unconfoundedness and Overlap,

ATE =
$$\int_{\mathcal{X}} (E[Y \mid D=1, X=x] - E[Y \mid D=0, X=x]) dF_X(x)$$
.

Proof:

Content

- Estimations Using Linear Regression

Spring 2024

Definition of ATE and ATT

Average Treatment Effect (ATE):

ATE =
$$E[Y(1)-Y(0)] = \int_{\mathcal{X}} (E[Y \mid D=1, X=x]-E[Y \mid D=0, X=x]) dt$$

Definition of ATE and ATT

Average Treatment Effect (ATE):

$$ATE = E[Y(1) - Y(0)] = \int_{\mathcal{X}} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X = x]) dt$$

Average Treatment Effect on the Treated (ATT):

$$ATT = E[Y(1) - Y(0) \mid D = 1] = \int_{\mathcal{X}} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X]$$

Definition of ATE and ATT

Average Treatment Effect (ATE):

$$ATE = E[Y(1) - Y(0)] = \int_{\mathcal{X}} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X = x]) dt$$

Average Treatment Effect on the Treated (ATT):

$$\mathsf{ATT} = E[Y(1) - Y(0) \mid D = 1] = \int_{\mathcal{X}} \big(E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 1, X = x] - E[Y \mid D = 0, X] + \sum_{i=1}^{n} (E[Y \mid D = 0, X] + \sum_{i=1}^{n}$$

- Both ATE and ATT rely on conditional expectations $E[Y \mid D, X]$.
- Once we identify these conditional expectations, we integrate over the appropriate distribution of X.

Step 1: Estimate E[Y|D=0,X] by OLS using observations with D=0 only.

Step 1: Estimate E[Y|D=0,X] by OLS using observations with D=0 only.

Step 2: Estimate E[Y|D=1,X] by OLS using observations with D=1 only.

Step 1: Estimate E[Y|D=0,X] by OLS using observations with D=0 only.

Step 2: Estimate E[Y|D=1,X] by OLS using observations with D=1 only.

Estimate ATE:

$$\widehat{\mathsf{ATE}} = \frac{1}{N} \sum_{i=1}^{N} (\widehat{E}(Y|D=1,X_i) - \widehat{E}(Y|D=0,X_i))$$

Step 1: Estimate E[Y|D=0,X] by OLS using observations with D=0 only.

Step 2: Estimate E[Y|D=1,X] by OLS using observations with D=1 only.

Estimate ATE:

$$\widehat{\mathsf{ATE}} = \frac{1}{N} \sum_{i=1}^{N} (\widehat{E}(Y|D=1,X_i) - \widehat{E}(Y|D=0,X_i))$$

Estimate ATT:

$$\widehat{\mathsf{ATT}} = \frac{1}{\mathsf{N}_1} \sum_{i:D_i=1} (\widehat{E}(Y|D=1,X_i) - \widehat{E}(Y|D=0,X_i))$$

where
$$N_1 = \sum_{i=1}^{N} 1\{D_i = 1\}.$$

Pooled Model:

$$E[Y|D,X] = \alpha_1 D + \alpha_2' WD + \beta_1 + \beta_2' W,$$

where W includes X and its transformations (centered E[W] = 0).

11/34

Spring 2024

Pooled Model:

$$E[Y|D,X] = \alpha_1 D + \alpha_2' WD + \beta_1 + \beta_2' W,$$

where W includes X and its transformations (centered E[W] = 0). **Interpreting Parameters:**

- ATE: $\widehat{\alpha_1}$ recovers the ATE when W is centered.
- CATE: $\delta(X) = \alpha_1 + \alpha_2' W$ captures treatment heterogeneity.

Pooled Model:

$$E[Y|D,X] = \alpha_1 D + \alpha_2' WD + \beta_1 + \beta_2' W,$$

where W includes X and its transformations (centered E[W] = 0). **Interpreting Parameters:**

- ATE: $\widehat{\alpha_1}$ recovers the ATE when W is centered.
- CATE: $\delta(X) = \alpha_1 + \alpha_2' W$ captures treatment heterogeneity.

Estimating ATT: If interested in ATT, you can take the estimated conditional means from the model and average them over the treated sample distribution of X, analogous to the separate regressions approach:

$$\widehat{\mathsf{ATT}} = \frac{1}{N_1} \sum_{i:D_i=1} (\widehat{\alpha_1} + \widehat{\alpha_2}' W_i).$$

Pooled Model:

$$E[Y|D,X] = \alpha_1 D + \alpha_2' WD + \beta_1 + \beta_2' W,$$

where W includes X and its transformations (centered E[W] = 0). **Interpreting Parameters:**

- ATE: $\widehat{\alpha_1}$ recovers the ATE when W is centered.
- CATE: $\delta(X) = \alpha_1 + \alpha_2' W$ captures treatment heterogeneity.

Estimating ATT: If interested in ATT, you can take the estimated conditional means from the model and average them over the treated sample distribution of X, analogous to the separate regressions approach:

$$\widehat{\mathsf{ATT}} = \frac{1}{\mathsf{N}_1} \sum_{i:D_i=1} (\widehat{\alpha_1} + \widehat{\alpha_2}' W_i).$$

Note: In high-dimensional settings, partialling out and machine learning methods (e.g., Double Lasso) can be employed to improve flexibility and inference.

CIML Selection on Observables Spring 2024

Regression on the Propensity Score

Theorem 3: Rosenbaum & Rubin (1983)

Under unconfoundedness:

$$(Y(1), Y(0)) \perp D \mid p(X),$$

where $p(X) = P(D = 1 \mid X)$ is the propensity score.

Regression on the Propensity Score

Theorem 3: Rosenbaum & Rubin (1983)

Under unconfoundedness:

$$(Y(1), Y(0)) \perp D \mid p(X),$$

where $p(X) = P(D = 1 \mid X)$ is the propensity score.

Implication:

- Under unconfoundedness, conditioning on p(X) (the propensity score) suffices to remove confounding.
- This allows for more parsimonious models by reducing the dimensionality of X.

Regression on the Propensity Score

Theorem 3: Rosenbaum & Rubin (1983)

Under unconfoundedness:

$$(Y(1), Y(0)) \perp D \mid p(X),$$

where $p(X) = P(D = 1 \mid X)$ is the propensity score.

Implication:

- Under unconfoundedness, conditioning on p(X) (the propensity score) suffices to remove confounding.
- This allows for more parsimonious models by reducing the dimensionality of X.

• Estimate p(X) using a flexible binary regression model (e.g., logistic regression or machine learning methods).

- Estimate p(X) using a flexible binary regression model (e.g., logistic regression or machine learning methods).
- **2** Run regressions to estimate $E(Y \mid D = d, p(X))$ using the estimated propensity scores $\widehat{p}(X)$.

- Estimate p(X) using a flexible binary regression model (e.g., logistic regression or machine learning methods).
- **2** Run regressions to estimate $E(Y \mid D = d, p(X))$ using the estimated propensity scores $\widehat{p}(X)$.
- Compute:

$$\widehat{\delta}(x_i) = \widehat{E}(Y \mid D = 1, p = \widehat{p}(X_i)) - \widehat{E}(Y \mid D = 0, p = \widehat{p}(X_i)).$$

- Estimate p(X) using a flexible binary regression model (e.g., logistic regression or machine learning methods).
- **2** Run regressions to estimate $E(Y \mid D = d, p(X))$ using the estimated propensity scores $\widehat{p}(X)$.
- Compute:

$$\widehat{\delta}(x_i) = \widehat{E}(Y \mid D = 1, p = \widehat{p}(X_i)) - \widehat{E}(Y \mid D = 0, p = \widehat{p}(X_i)).$$

1 Take the sample average of $\hat{\delta}(x_i)$ to estimate ATE or ATT.

Alternative Approach: Propensity Score Blocking

• Divide the range of $\widehat{p}(X)$ into blocks or strata (e.g., deciles).

Alternative Approach: Propensity Score Blocking

- Divide the range of $\widehat{p}(X)$ into blocks or strata (e.g., deciles).
- Within each block, assume $E(Y \mid D, p(X))$ is approximately constant.

Alternative Approach: Propensity Score Blocking

- Divide the range of $\widehat{p}(X)$ into blocks or strata (e.g., deciles).
- Within each block, assume $E(Y \mid D, p(X))$ is approximately constant.
- Estimate $E(Y \mid D = d, p(X))$ within each block as the average outcome for treated (D = 1) and control (D = 0) units.

Alternative Approach: Propensity Score Blocking

- Divide the range of $\widehat{p}(X)$ into blocks or strata (e.g., deciles).
- Within each block, assume $E(Y \mid D, p(X))$ is approximately constant.
- Estimate $E(Y \mid D = d, p(X))$ within each block as the average outcome for treated (D = 1) and control (D = 0) units.
- Aggregate across blocks to compute:

$$\widehat{\mathsf{ATE}} = \frac{1}{N} \sum_{i=1}^{N} \big(\widehat{E}(Y \mid D = 1, p = \widehat{p}(X_i)) - \widehat{E}(Y \mid D = 0, p = \widehat{p}(X_i)) \big).$$

Alternative Approach: Propensity Score Blocking

- Divide the range of $\widehat{p}(X)$ into blocks or strata (e.g., deciles).
- Within each block, assume $E(Y \mid D, p(X))$ is approximately constant.
- Estimate $E(Y \mid D = d, p(X))$ within each block as the average outcome for treated (D = 1) and control (D = 0) units.
- Aggregate across blocks to compute:

$$\widehat{\mathsf{ATE}} = \frac{1}{N} \sum_{i=1}^{N} \big(\widehat{E}(Y \mid D=1, p=\widehat{p}(X_i)) - \widehat{E}(Y \mid D=0, p=\widehat{p}(X_i)) \big).$$

Pros:

• Nonparametric approach that avoids imposing a functional form on $E(Y \mid D, p(X))$.

Cons:

- Requires sufficient sample size within each block to ensure reliable estimates.
- Sensitivity to the choice of the number and width of blocks.

CIML Selection on Observables Spring 2024

Content

- Inverse Probability Weighting

Spring 2024

Proving Identification of E[Y(0)] and E[Y(1)] Using IPW

Theorem 4 (Horvitz-Thompson: Propensity Score Reweighting Removes Bias)

$$E\left[\frac{Y\cdot 1(D=d)}{P(D=d|X)}\mid X\right] = E[Y(d)\mid X]$$

Proof Outline:

Estimating ATE and ATT Using IPW

ATE Estimation Using the Horvitz-Thompson Formula:

$$\widehat{\mathsf{ATE}}_{\mathsf{IPW}} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{D_i Y_i}{\widehat{p}(X_i)} - \frac{(1 - D_i) Y_i}{1 - \widehat{p}(X_i)} \right].$$

Estimating ATE and ATT Using IPW

ATE Estimation Using the Horvitz-Thompson Formula:

$$\widehat{\mathsf{ATE}}_{\mathsf{IPW}} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{D_i Y_i}{\widehat{p}(X_i)} - \frac{(1 - D_i) Y_i}{1 - \widehat{p}(X_i)} \right].$$

Normalized Propensity Score Weighting (Recommended):

 Adjust weights to sum to 1 within treated and control groups for improved stability.

Estimating ATE and ATT Using IPW

ATE Estimation Using the Horvitz-Thompson Formula:

$$\widehat{\mathsf{ATE}}_{\mathsf{IPW}} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{D_i Y_i}{\widehat{p}(X_i)} - \frac{(1 - D_i) Y_i}{1 - \widehat{p}(X_i)} \right].$$

Normalized Propensity Score Weighting (Recommended):

 Adjust weights to sum to 1 within treated and control groups for improved stability.

ATT Estimation Using IPW:

$$\widehat{\mathsf{ATT}}_{\mathsf{IPW}} = \frac{1}{N_t} \sum_{i:D_i = 1} Y_i - \frac{1}{N_c} \sum_{i:D_i = 0} \frac{\widehat{P(D = 0)}}{\widehat{P(D = 1)}} \frac{Y_i}{1 - \widehat{p}(X_i)}.$$

Estimating ATE and ATT Using IPW

ATE Estimation Using the Horvitz-Thompson Formula:

$$\widehat{\mathsf{ATE}}_{\mathsf{IPW}} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{D_i Y_i}{\widehat{p}(X_i)} - \frac{(1 - D_i) Y_i}{1 - \widehat{p}(X_i)} \right].$$

Normalized Propensity Score Weighting (Recommended):

 Adjust weights to sum to 1 within treated and control groups for improved stability.

ATT Estimation Using IPW:

$$\widehat{\mathsf{ATT}}_{\mathsf{IPW}} = \frac{1}{N_t} \sum_{i:D_i = 1} Y_i - \frac{1}{N_c} \sum_{i:D_i = 0} \frac{\widehat{P(D = 0)}}{\widehat{P(D = 1)}} \frac{Y_i}{1 - \widehat{p}(X_i)}.$$

Role of Propensity Score Weighting:

- ullet Equalizes the distribution of X across treatment and control groups.
- For ATE: $X \mid D = 1$ weighted by P(D = 1)/p(X) matches the marginal distribution of X.
- For ATT: $X \mid D = 0$ weighted by $\frac{P(D=0)p(X)}{P(D=1)(1-p(X))}$ matches $X \mid D = 1$

CIML

Content

- 1 Identifications of Causal Effects under Unconfoundedness
- 2 Estimations Using Linear Regression
- Inverse Probability Weighting
- 4 Doubly Robust Estimation
- Meyman Orthogonality
- 6 Generic DML

Selection on Observables Spring 2024

Setup:

- Let $E(Y \mid D = d, X = x) = E(Y(d) \mid X = x) = \mu_d(x; \beta)$, the outcome regression model.
- Let $P(D = 1 \mid X = x) = p(x; \gamma)$, the propensity score model.

Setup:

- Let $E(Y \mid D = d, X = x) = E(Y(d) \mid X = x) = \mu_d(x; \beta)$, the outcome regression model.
- Let $P(D=1 \mid X=x) = p(x; \gamma)$, the propensity score model.

Moment Condition for θ_{ATE} :

$$\theta_{ATE} = E\left[\mu_1(X;\beta) - \mu_0(X;\beta) + \frac{D(Y - \mu_1(X;\beta))}{p(X;\gamma)} - \frac{(1 - D)(Y - \mu_0(X;\beta))}{1 - p(X;\gamma)}\right].$$

Setup:

- Let $E(Y \mid D = d, X = x) = E(Y(d) \mid X = x) = \mu_d(x; \beta)$, the outcome regression model.
- Let $P(D = 1 \mid X = x) = p(x; \gamma)$, the propensity score model.

Moment Condition for θ_{ATE} :

$$\theta_{\mathsf{ATE}} = E\left[\mu_1(X;\beta) - \mu_0(X;\beta) + \frac{D(Y - \mu_1(X;\beta))}{p(X;\gamma)} - \frac{(1-D)(Y - \mu_0(X;\beta))}{1 - p(X;\gamma)}\right].$$

Doubly Robust (DR) Estimator for θ_{ATE} :

$$\widehat{\theta}_{\text{DR, ATE}} = \frac{1}{N} \sum_{i=1}^{N} \left[\mu_1(X_i; \widehat{\beta}) - \mu_0(X_i; \widehat{\beta}) + \frac{D_i(Y_i - \mu_1(X_i; \widehat{\beta}))}{\widehat{p}(X_i; \widehat{\gamma})} - \frac{(1 - D_i)(Y_i - \mu_0(X_i; \widehat{\beta}))}{1 - \widehat{p}(X_i; \widehat{\gamma})} \right].$$

Observables Spring 2024

Setup:

- Let $E(Y \mid D = d, X = x) = E(Y(d) \mid X = x) = \mu_d(x; \beta)$, the outcome regression model.
- Let $P(D=1 \mid X=x) = p(x; \gamma)$, the propensity score model.

Moment Condition for θ_{ATE} :

$$\theta_{\text{ATE}} = E\left[\mu_1(X;\beta) - \mu_0(X;\beta) + \frac{D(Y - \mu_1(X;\beta))}{p(X;\gamma)} - \frac{(1 - D)(Y - \mu_0(X;\beta))}{1 - p(X;\gamma)}\right].$$

Doubly Robust (DR) Estimator for θ_{ATE} :

$$\widehat{\theta}_{\text{DR, ATE}} = \frac{1}{N} \sum_{i=1}^{N} \left[\mu_1(X_i; \widehat{\beta}) - \mu_0(X_i; \widehat{\beta}) + \frac{D_i(Y_i - \mu_1(X_i; \widehat{\beta}))}{\widehat{p}(X_i; \widehat{\gamma})} - \frac{(1 - D_i)(Y_i - \mu_0(X_i; \widehat{\beta}))}{1 - \widehat{p}(X_i; \widehat{\gamma})} \right].$$

Key Properties:

- Doubly Robust: The estimator is consistent if either:
 - The outcome regression model $\mu_d(X; \beta)$ is correctly specified, OR
 - The propensity score model $p(X; \gamma)$ is correctly specified.

Setup:

- Let $E(Y \mid D = d, X = x) = E(Y(d) \mid X = x) = \mu_d(x; \beta)$, the outcome regression model.
- Let $P(D = 1 \mid X = x) = p(x; \gamma)$, the propensity score model.

Moment Condition for θ_{ATE} :

$$\theta_{\text{ATE}} = E\left[\mu_1(X;\beta) - \mu_0(X;\beta) + \frac{D(Y - \mu_1(X;\beta))}{p(X;\gamma)} - \frac{(1 - D)(Y - \mu_0(X;\beta))}{1 - p(X;\gamma)}\right].$$

Doubly Robust (DR) Estimator for θ_{ATE} :

$$\widehat{\theta}_{\text{DR, ATE}} = \frac{1}{N} \sum_{i=1}^{N} \left[\mu_1(X_i; \widehat{\beta}) - \mu_0(X_i; \widehat{\beta}) + \frac{D_i(Y_i - \mu_1(X_i; \widehat{\beta}))}{\widehat{p}(X_i; \widehat{\gamma})} - \frac{(1 - D_i)(Y_i - \mu_0(X_i; \widehat{\beta}))}{1 - \widehat{p}(X_i; \widehat{\gamma})} \right].$$

Key Properties:

- Doubly Robust: The estimator is consistent if either:
 - The outcome regression model $\mu_d(X; \beta)$ is correctly specified, OR
 - The propensity score model $p(X; \gamma)$ is correctly specified.
- **Efficiency:** If both models are correctly specified, the estimator is more efficient than using either model alone.

CIML Selection on Observables Spring 2024

Content

- Neyman Orthogonality

Selection on Observables

Motivation: In modern econometrics, we often estimate causal parameters θ while also estimating high-dimensional nuisance functions β and/or γ . Examples include:

- Outcome regression functions $\mu_d(X; \beta)$
- Propensity scores $p(X; \gamma)$

Motivation: In modern econometrics, we often estimate causal parameters θ while also estimating high-dimensional nuisance functions β and/or γ . Examples include:

- Outcome regression functions $\mu_d(X; \beta)$
- Propensity scores $p(X; \gamma)$

Problem: Naive estimators are sensitive to estimation errors in these nuisance parameters. If $\widehat{\beta}$ or $\widehat{\gamma}$ converge slowly, such errors can cause large biases in the causal parameter estimates.

Motivation: In modern econometrics, we often estimate causal parameters θ while also estimating high-dimensional nuisance functions β and/or γ . Examples include:

- Outcome regression functions $\mu_d(X; \beta)$
- Propensity scores $p(X; \gamma)$

Problem: Naive estimators are sensitive to estimation errors in these nuisance parameters. If $\widehat{\beta}$ or $\widehat{\gamma}$ converge slowly, such errors can cause large biases in the causal parameter estimates.

Neyman Orthogonality: A property of a moment equation (or estimator) that makes it *insensitive* to small perturbations in the nuisance parameter estimates. Formally, the first-order derivative of the moment condition with respect to the nuisance parameters at the true value is zero. This ensures that small estimation errors in β or γ do not induce first-order bias in the estimator of θ .

Comparison: Regression-based Estimator for ATE

Consider a regression-based ATE estimator:

$$\widehat{\theta} = \frac{1}{N} \sum_{i=1}^{N} [\mu_1(X_i; \widehat{\beta}) - \mu_0(X_i; \widehat{\beta})] = \frac{1}{N} \sum_{i=1}^{N} \Delta \mu(X_i, \widehat{\beta}).$$

Comparison: Regression-based Estimator for ATE

Consider a regression-based ATE estimator:

$$\widehat{\theta} = \frac{1}{N} \sum_{i=1}^{N} [\mu_1(X_i; \widehat{\beta}) - \mu_0(X_i; \widehat{\beta})] = \frac{1}{N} \sum_{i=1}^{N} \Delta \mu(X_i, \widehat{\beta}).$$

Taylor Expansion: Let θ_0 be the true ATE and β_0 the true parameter. Using a Taylor expansion around β_0 :

$$\sqrt{N}(\widehat{\theta}-\theta_0)=\frac{1}{\sqrt{N}}\sum_{i=1}^N m_{1i}(\beta_0)+G_\beta\cdot\sqrt{N}(\widehat{\beta}-\beta_0)+o_p(1),$$

Comparison: Regression-based Estimator for ATE

Consider a regression-based ATE estimator:

$$\widehat{\theta} = \frac{1}{N} \sum_{i=1}^{N} [\mu_1(X_i; \widehat{\beta}) - \mu_0(X_i; \widehat{\beta})] = \frac{1}{N} \sum_{i=1}^{N} \Delta \mu(X_i, \widehat{\beta}).$$

Taylor Expansion: Let θ_0 be the true ATE and β_0 the true parameter. Using a Taylor expansion around β_0 :

$$\sqrt{N}(\widehat{\theta}-\theta_0)=rac{1}{\sqrt{N}}\sum_{i=1}^N m_{1i}(eta_0)+G_eta\cdot\sqrt{N}(\widehat{eta}-eta_0)+o_p(1),$$

where:

- G_{β} is the **derivative (gradient)** of the estimator's moment condition with respect to β at β_0 .

Spring 2024

Comparison: Regression-based Estimator for ATE

Consider a regression-based ATE estimator:

$$\widehat{\theta} = \frac{1}{N} \sum_{i=1}^{N} [\mu_1(X_i; \widehat{\beta}) - \mu_0(X_i; \widehat{\beta})] = \frac{1}{N} \sum_{i=1}^{N} \Delta \mu(X_i, \widehat{\beta}).$$

Taylor Expansion: Let θ_0 be the true ATE and β_0 the true parameter. Using a Taylor expansion around β_0 :

$$\sqrt{N}(\widehat{\theta}- heta_0)=rac{1}{\sqrt{N}}\sum_{i=1}^N m_{1i}(eta_0)+G_eta\cdot\sqrt{N}(\widehat{eta}-eta_0)+o_p(1),$$

where:

- G_{β} is the **derivative (gradient)** of the estimator's moment condition with respect to β at β_0 .

-
$$m_{1i}(\beta_0) = \Delta \mu(X_i, \hat{\beta}) - E[\Delta \mu(X_i, \hat{\beta})]$$

Comparison: Regression-based Estimator for ATE

Consider a regression-based ATE estimator:

$$\widehat{\theta} = \frac{1}{N} \sum_{i=1}^{N} [\mu_1(X_i; \widehat{\beta}) - \mu_0(X_i; \widehat{\beta})] = \frac{1}{N} \sum_{i=1}^{N} \Delta \mu(X_i, \widehat{\beta}).$$

Taylor Expansion: Let θ_0 be the true ATE and β_0 the true parameter. Using a Taylor expansion around β_0 :

$$\sqrt{N}(\widehat{\theta}-\theta_0)=rac{1}{\sqrt{N}}\sum_{i=1}^N m_{1i}(eta_0)+G_eta\cdot\sqrt{N}(\widehat{eta}-eta_0)+o_p(1),$$

where:

- G_{β} is the **derivative** (gradient) of the estimator's moment condition with respect to β at β_0 .

-
$$m_{1i}(\beta_0) = \Delta \mu(X_i, \hat{\beta}) - E[\Delta \mu(X_i, \hat{\beta})]$$

Consequence: If $\widehat{\beta} - \beta_0$ converges more slowly than $N^{-1/2}$, the term $G_{\beta} \cdot \sqrt{N}(\widehat{\beta} - \beta_0)$

introduces a first-order bias. Hence, the accuracy of $\widehat{\theta}$ critically depends on the rate at which $\widehat{\beta}$ converges.

CIML Selection on Observables Spring 2024

Double Robust (DR) Estimator for ATE:

$$\widehat{\theta}_{\mathrm{DR}} = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\mu_{1}(X_{i}; \widehat{\beta}) - \mu_{0}(X_{i}; \widehat{\beta}) \right) + \frac{D_{i}(Y_{i} - \mu_{1}(X_{i}; \widehat{\beta}))}{\widehat{p}(X_{i}; \widehat{\gamma})} - \frac{(1 - D_{i})(Y_{i} - \mu_{0}(X_{i}; \widehat{\beta}))}{1 - \widehat{p}(X_{i}; \widehat{\gamma})} \right].$$

Double Robust (DR) Estimator for ATE:

$$\widehat{\theta}_{\mathsf{DR}} = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\mu_1(X_i; \widehat{\beta}) - \mu_0(X_i; \widehat{\beta}) \right) + \frac{D_i(Y_i - \mu_1(X_i; \widehat{\beta}))}{\widehat{\rho}(X_i; \widehat{\gamma})} - \frac{(1 - D_i)(Y_i - \mu_0(X_i; \widehat{\beta}))}{1 - \widehat{\rho}(X_i; \widehat{\gamma})} \right].$$

Taylor Expansion of the DR Estimator: Let $\psi(X_i; \beta, \gamma)$ represent the influence function in the above bracketed term. Expanding around (β_0, γ_0) :

$$\widehat{\theta}_{\mathsf{DR}} - \theta_0 = \frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} [\psi(\mathsf{X}_i; \beta_0, \gamma_0) - E\{\psi(\mathsf{X}; \beta_0, \gamma_0)\}] + \frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} \left(\frac{\partial \psi}{\partial \beta}, \frac{\partial \psi}{\partial \gamma} \right) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_{\mathsf{P}}(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o$$

Double Robust (DR) Estimator for ATE:

$$\widehat{\theta}_{\mathsf{DR}} = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\mu_1(X_i; \widehat{\beta}) - \mu_0(X_i; \widehat{\beta}) \right) + \frac{D_i(Y_i - \mu_1(X_i; \widehat{\beta}))}{\widehat{\rho}(X_i; \widehat{\gamma})} - \frac{(1 - D_i)(Y_i - \mu_0(X_i; \widehat{\beta}))}{1 - \widehat{\rho}(X_i; \widehat{\gamma})} \right].$$

Taylor Expansion of the DR Estimator: Let $\psi(X_i; \beta, \gamma)$ represent the influence function in the above bracketed term. Expanding around (β_0, γ_0) :

$$\widehat{\theta}_{\mathsf{DR}} - \theta_0 = \frac{1}{N} \sum_{i=1}^{N} [\psi(X_i; \beta_0, \gamma_0) - E\{\psi(X; \beta_0, \gamma_0)\}] + \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\partial \psi}{\partial \beta}, \frac{\partial \psi}{\partial \gamma} \right) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} -$$

Neyman Orthogonality: For the DR estimator, the partial derivatives $\frac{\partial \psi}{\partial \beta}$ and $\frac{\partial \psi}{\partial \gamma}$ at (β_0, γ_0) are zero. Hence:

$$G_{eta} = rac{\partial E[\psi]}{\partial eta}igg|_{eta_0, \gamma_0} = 0, \quad G_{\gamma} = rac{\partial E[\psi]}{\partial \gamma}igg|_{eta_0, \gamma_0} = 0.$$

Double Robust (DR) Estimator for ATE:

$$\widehat{\theta}_{\mathsf{DR}} = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\mu_1(X_i; \widehat{\beta}) - \mu_0(X_i; \widehat{\beta}) \right) + \frac{D_i(Y_i - \mu_1(X_i; \widehat{\beta}))}{\widehat{\rho}(X_i; \widehat{\gamma})} - \frac{(1 - D_i)(Y_i - \mu_0(X_i; \widehat{\beta}))}{1 - \widehat{\rho}(X_i; \widehat{\gamma})} \right].$$

Taylor Expansion of the DR Estimator: Let $\psi(X_i; \beta, \gamma)$ represent the influence function in the above bracketed term. Expanding around (β_0, γ_0) :

$$\widehat{\theta}_{\mathsf{DR}} - \theta_0 = \frac{1}{N} \sum_{i=1}^{N} [\psi(X_i; \beta_0, \gamma_0) - E\{\psi(X; \beta_0, \gamma_0)\}] + \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\partial \psi}{\partial \beta}, \frac{\partial \psi}{\partial \gamma} \right) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} - \beta_0, \widehat{\gamma} - \gamma_0)' + o_p(1) \Big|_{(\beta_0, \gamma_0)} (\widehat{\beta} -$$

Neyman Orthogonality: For the DR estimator, the partial derivatives $\frac{\partial \psi}{\partial \beta}$ and $\frac{\partial \psi}{\partial \gamma}$ at (β_0, γ_0) are zero. Hence:

$$G_{eta} = rac{\partial E[\psi]}{\partial eta}igg|_{eta_0, \gamma_0} = 0, \quad G_{\gamma} = rac{\partial E[\psi]}{\partial \gamma}igg|_{eta_0, \gamma_0} = 0.$$

Implications:

- With $G_{\beta} = G_{\gamma} = 0$, the leading bias terms vanish.
- The DR estimator is robust to first-order estimation errors in β and γ .
- If either the outcome model or the propensity score model is correctly specified, the DR estimator remains consistent, making it highly valuable in high-dimensional or complex modeling scenarios.

CIML Selection on Observables Spring 2024

Content

- 1 Identifications of Causal Effects under Unconfoundedness
- 2 Estimations Using Linear Regression
- Inverse Probability Weighting
- 4 Doubly Robust Estimation
- Neyman Orthogonality
- 6 Generic DML

27) 32

Defining the Moment Condition

Key Ingredients

• DML is based on the **method-of-moments** framework, targeting a low-dimensional parameter of interest, θ_0 , defined via the moment condition:

$$E[\psi(W;\theta_0,\eta_0)]=0,$$

where:

- ψ : Score function.
- W: Data vector.
- θ_0 : Parameter of interest.
- η_0 : Nuisance parameters (unknown high-dimensional functions).

Defining the Moment Condition

Key Ingredients

• DML is based on the **method-of-moments** framework, targeting a low-dimensional parameter of interest, θ_0 , defined via the moment condition:

$$E[\psi(W;\theta_0,\eta_0)]=0,$$

where:

- ψ : Score function.
- W: Data vector.
- θ_0 : Parameter of interest.
- η_0 : Nuisance parameters (unknown high-dimensional functions).
- **Interpretation:** θ_0 is identified when the above equation holds.

Key Concept

• A score function $\psi(W; \theta, \eta)$ satisfies **Neyman orthogonality** if:

$$\left. \frac{\partial}{\partial \eta} E[\psi(W; \theta_0, \eta)] \right|_{\eta = \eta_0} = 0.$$

Key Concept

• A score function $\psi(W; \theta, \eta)$ satisfies **Neyman orthogonality** if:

$$\left. \frac{\partial}{\partial \eta} E[\psi(W; \theta_0, \eta)] \right|_{\eta = \eta_0} = 0.$$

• Importance: Eliminates first-order bias from errors in the nuisance parameter estimates, $\hat{\eta}$.

Key Concept

• A score function $\psi(W; \theta, \eta)$ satisfies **Neyman orthogonality** if:

$$\frac{\partial}{\partial \eta} E[\psi(W; \theta_0, \eta)] \bigg|_{\eta = \eta_0} = 0.$$

• **Importance:** Eliminates first-order bias from errors in the nuisance parameter estimates, $\hat{\eta}$.

Remark

- Named after Jerzy Neyman.
- \bullet Ensures robustness in high-dimensional settings, where $\hat{\eta}$ is regularized and inherently biased.

Gateaux Derivative

Definition

The Gateaux derivative formalizes sensitivity to small perturbations:

$$\frac{\partial}{\partial \eta} E[\psi(W; \theta, \eta)][\Delta] := \frac{\partial}{\partial t} E[\psi(W; \theta, \eta + t\Delta)] \bigg|_{t=0}.$$

Gateaux Derivative

Definition

• The **Gateaux derivative** formalizes sensitivity to small perturbations:

$$\frac{\partial}{\partial \eta} E[\psi(W; \theta, \eta)][\Delta] := \frac{\partial}{\partial t} E[\psi(W; \theta, \eta + t\Delta)] \bigg|_{t=0}.$$

• Implication: Neyman orthogonality implies:

$$\frac{\partial}{\partial \eta} E[\psi(W; \theta_0, \eta_0)][\Delta] = 0, \quad \forall \Delta.$$

Gateaux Derivative

Definition

• The **Gateaux derivative** formalizes sensitivity to small perturbations:

$$\frac{\partial}{\partial \eta} E[\psi(W; \theta, \eta)][\Delta] := \frac{\partial}{\partial t} E[\psi(W; \theta, \eta + t\Delta)] \bigg|_{t=0}.$$

• Implication: Neyman orthogonality implies:

$$\frac{\partial}{\partial \eta} E[\psi(W; \theta_0, \eta_0)][\Delta] = 0, \quad \forall \Delta.$$

• Admissible Directions: Δ is admissible if $\eta_0 + t\Delta$ stays in the parameter space for small t.

Good Learners for Nuisance Functions

Requirements for High-Quality Learners

ullet Learners must approximate the true nuisance parameters η_0 well:

$$n^{1/4} \|\hat{\eta} - \eta_0\|_{L^2} \approx 0.$$

Good Learners for Nuisance Functions

Requirements for High-Quality Learners

• Learners must approximate the true nuisance parameters η_0 well:

$$n^{1/4}\|\hat{\eta}-\eta_0\|_{L^2}\approx 0.$$

- Examples of Machine Learning Methods:
 - **1 LASSO:** For sparsely parameterized η_0 .
 - **2 Random Forests:** For tree-like structures in η_0 .
 - **Output** Deep Neural Networks: For η_0 approximable by sparse deep nets.
 - **Insemble Models:** Combining methods to leverage strengths of each.

Good Learners for Nuisance Functions

Requirements for High-Quality Learners

• Learners must approximate the true nuisance parameters η_0 well:

$$n^{1/4}\|\hat{\eta}-\eta_0\|_{L^2}\approx 0.$$

- Examples of Machine Learning Methods:
 - **1 LASSO:** For sparsely parameterized η_0 .
 - **2 Random Forests:** For tree-like structures in η_0 .
 - **3 Deep Neural Networks:** For η_0 approximable by sparse deep nets.
 - **Insemble Models:** Combining methods to leverage strengths of each.
- Cross-validation and careful tuning are critical for robust performance.

Cross-Fitting

Why Cross-Fitting?

• Prevents **overfitting**, which occurs when nuisance parameter estimates are correlated with the same data used for inference.

29/32

Spring 2024

Cross-Fitting

Why Cross-Fitting?

- Prevents overfitting, which occurs when nuisance parameter estimates are correlated with the same data used for inference.
- Mechanism:
 - Split data into K folds.
 - ② Use K-1 folds to estimate nuisance parameters $(\hat{\eta})$.
 - Use the left-out fold to compute residuals and estimate the target parameter.

Cross-Fitting

Why Cross-Fitting?

- Prevents overfitting, which occurs when nuisance parameter estimates are correlated with the same data used for inference.
- Mechanism:
 - Split data into K folds.
 - ② Use K-1 folds to estimate nuisance parameters $(\hat{\eta})$.
 - Use the left-out fold to compute residuals and estimate the target parameter.
- Outcome: Avoids biases arising from overfitting complex machine learning methods.

Example 1: Partially Linear Model (PLM)

Moment Condition for PLM

$$\psi(W;\theta,\eta)=(Y-\ell(X)-\theta(D-m(X)))(D-m(X)).$$

- W = (Y, D, X): Observable variables.
- $\eta = (\ell, m)$: Nuisance parameters.
 - $\ell(X) = E[Y|X], m(X) = E[D|X].$

Example 1: Partially Linear Model (PLM)

Moment Condition for PLM

$$\psi(W;\theta,\eta)=(Y-\ell(X)-\theta(D-m(X)))(D-m(X)).$$

- W = (Y, D, X): Observable variables.
- $\eta = (\ell, m)$: Nuisance parameters.
 - $\ell(X) = E[Y|X], m(X) = E[D|X].$

Neyman Orthogonality

Using elementary calculations:

$$\frac{\partial}{\partial \eta} E[\psi(W; \theta, \eta)]\big|_{\eta = \eta_0} = 0.$$

Example 1: Partially Linear Model (PLM)

Moment Condition for PLM

$$\psi(W;\theta,\eta)=(Y-\ell(X)-\theta(D-m(X)))(D-m(X)).$$

- W = (Y, D, X): Observable variables.
- $\eta = (\ell, m)$: Nuisance parameters.
 - $\ell(X) = E[Y|X], m(X) = E[D|X].$

Neyman Orthogonality

Using elementary calculations:

$$\frac{\partial}{\partial \eta} E[\psi(W; \theta, \eta)]\big|_{\eta = \eta_0} = 0.$$

Interpretation: $\psi(W; \theta, \eta)$ generalizes residualization in linear models, enabling robust inference.

CIML Selection on Observables Spring 2024

Example 2: Doubly Robust IPW

Score for ATE

$$\psi(W; \theta, \eta) = (g(1, X) - g(0, X)) + H(D, X)(Y - g(D, X)) - \theta,$$

where:

$$H(D,X) = \frac{D}{m(X)} - \frac{(1-D)}{1-m(X)}.$$

Example 2: Doubly Robust IPW

Score for ATE

$$\psi(W; \theta, \eta) = (g(1, X) - g(0, X)) + H(D, X)(Y - g(D, X)) - \theta,$$

where:

$$H(D,X) = \frac{D}{m(X)} - \frac{(1-D)}{1-m(X)}.$$

- g(D,X) = E[Y|D,X], m(X) = P[D=1|X].
- Neyman Orthogonality:

$$\frac{\partial}{\partial \eta} E[\psi(W;\theta,\eta)] = 0.$$

Generic DML Algorithm

Steps

- **1 Input:** Data $\{W_i\}_{i=1}^n$, Neyman orthogonal score $\psi(W; \theta, \eta)$, and machine learning methods for η .
- ② Cross-Fitting:
 - Split data into K folds.
 - Train $\hat{\eta}[k]$ on K-1 folds and compute residuals on the left-out fold.
- Moment Estimation:

$$\hat{M}(\theta,\hat{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \psi(W_i; \theta, \hat{\eta}[k(i)]).$$

Solve for θ :

$$\hat{M}(\hat{\theta},\hat{\eta})=0.$$

- Variance and Confidence Intervals:
 - Estimate variance \hat{V} :

$$\hat{V} = \frac{1}{n} \sum_{i=1}^{n} \phi(W_i) \phi(W_i)'.$$

Spring 2024