第二次報告

4105053128 應用數學系 唐永承

Problem

 $\underset{D1,D2,x1,x2}{\operatorname{argmin}} \|y_{1} - D_{1}x_{1}\|_{F}^{2} + \|y_{2} - D_{2}x_{2}\|_{F}^{2} + \lambda \|D_{1}^{T}D_{2}\|_{F}^{2} + \Gamma_{x}(x_{1}) + \Gamma_{x}(x_{2}) + \Gamma_{D}(D_{1}) + \Gamma_{D}(D_{2})$

 y_1 : picture 1

 y_2 : picture 2

 D_1 : dictionary for picture 1

 D_2 : dictionary for picture 2

 x_1 : sparse representation of picture 1 for D_1

 x_2 : sparse representation of picture 2 for D_2

 λ : regularization parameters

 Γ_{x} : constraint for x (make it sparse)

 Γ_D : constraint for D (normalize)

Mapping into high dimension

- 1. Use the Autoencoder architecture, but separate it into Encoder and Decoder.
- 2. Map data into high dimension via Encoder(\hat{y}_1 and \hat{y}_2).
- 3. Train a dictionary for \hat{y}_1 and \hat{y}_2 , respectively.
- 4. Use Decoder to map \hat{y}_1 and \hat{y}_2 back to original dimension.
- 5. Retrain Encoder and Decoder until they converge, i.e. repeat step2, 3, 4

Separate signal

- 1. When separate a signal, we need to map that signal into high dimension.
- 2. Use pre trained D_1 and D_2 to find its sparse representation x_1 and x_2 .
- 3. Use decoder to reconstruct image via D_1x_1 and D_2x_2 .

Experiment 1

Encoder, epoch=20000, learning=0.001

Decoder, epoch=20000, learning=0.001

Dictionary Learning, epoch=3000

y1

Reconstructed y1

Experiment 2

Encoder, epoch=30000, learning=0.001

Decoder, epoch=100000, learning=0.001

Dictionary Learning, epoch=5000

y1

Reconstructed y1

How to improve?

- 1. Using different decoder for y_1 and y_2 .
- 2. Bigger learning.
- 3. More Epochs.
- 4. Try using CNN to replace MLP in Encoder and Decoder. (not sure)
- 5. Try to use GAN architecture. (still thinking about it)