Problem Statement:

To build a machine learning model that predicts whether a customer will churn (exit the bank) or not, based on their demographic, account, and transaction-related features.

Objectives:

- Predict customer churn (whether a customer will exit the bank or not) using historical data.
- Use demographic, account, and transaction-related features (e.g., age, balance, tenure) for prediction.
- Analyze and identify key factors that contribute to customer churn.
- Train and compare multiple machine learning models, such as:
 - o Decision Tree
 - Random Forest
 - Naive Bayes
 - K-Nearest Neighbors (KNN)

Evaluate models using metrics like accuracy, precision, recall, and F1-score.

- Select the best-performing model for final deployment or business use.
- Help the bank take proactive retention actions by identifying high-risk customers early.

Step 1: Importing churn dataset into dataframe

To check the data No of rows and column

[64] df.shape

→ (110000, 14)

Data describe-

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 110000 entries, 0 to 109999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype		
0	RowNumber	110000 non-null	int64		
1	CustomerId	110000 non-null	int64		
2	Surname	110000 non-null	object		
3	CreditScore	108000 non-null	float64		
4	Geography	108000 non-null	object		
5	Gender	108000 non-null	object		
6	Age	108000 non-null	float64		
7	Tenure	108000 non-null	float64		
8	Balance	108000 non-null	float64		
9	NumOfProducts	108000 non-null	float64		
10	HasCrCard	108000 non-null	float64		
11	IsActiveMember	108000 non-null	float64		
12	EstimatedSalary	108000 non-null	float64		
13	Exited	108000 non-null	float64		
dtypes: float64(9), int64(2), object(3)					
memory usage: 11.7+ MB					

Step 2:

Data Cleaning & Preprocessing

Checking the null values:

EstimatedSalary

Exited

There are 14 columns out of which 11 columns contain the null values.

2000

2000

```
for column in df.columns:
    null_count = df[column].isnull().sum()
    print(f"Column: {column} --> Null values: {null_count}")

Column: RowNumber --> Null values: 0
    Column: CustomerId --> Null values: 0
    Column: Surname --> Null values: 0
    Column: Surname --> Null values: 2000
    Column: Geography --> Null values: 2000
    Column: Geography --> Null values: 2000
    Column: Gender --> Null values: 2000
    Column: Age --> Null values: 2000
    Column: Tenure --> Null values: 2000
    Column: Balance --> Null values: 2000
    Column: Bascrcard --> Null values: 2000
    Column: IsActiveMember --> Null values: 2000
    Column: EstimatedSalary --> Null values: 2000
    Column: EstimatedSalary --> Null values: 2000
    Column: ExitmatedSalary --> Null values: 2000
```

Handle Null values/Missing value

For categorical data: Fill the null values with Mode For Numerical data: filled the data with mode - 0

```
median value = df['CreditScore'].median()
       df['CreditScore'].fillna(median_value, inplace=True)
mode_value = df['Geography'].mode()[0]
df['Geography'].fillna(mode_value, inplace=True)
[72] mode_value = df['Gender'].mode()[0]
       df['Gender'].fillna(mode value, inplace=True)
median_value = df['Age'].median()
df['Age'].fillna(median_value, inplace=True)
 df['Tenure'].fillna(0, inplace=True)
df['Balance'].fillna(0, inplace=True)
 mode value = df['NumOfProducts'].mode()[0]
 df['NumOfProducts'].fillna(mode value, inplace=True)
mode_value = df['HasCrCard'].mode()[0]
df['HasCrCard'].fillna(mode_value, inplace=True)
df['EstimatedSalary'].fillna(0, inplace=True)
df = df.dropna(subset=['Exited'])
```

This line removes all rows from the DataFrame where the 'Exited' column has missing values (NaN).

After filling Null values we get clean all columns with zero null values

```
for column in df.columns:
        null_count = df[column].isnull().sum()
        print(f"Column: {column} --> Null values: {null_count}")

    Column: RowNumber --> Null values: ∅
    Column: CustomerId --> Null values: 0
    Column: Surname --> Null values: 0
    Column: CreditScore --> Null values: 0
    Column: Geography --> Null values: 0
    Column: Gender --> Null values: 0
    Column: Age --> Null values: 0
    Column: Tenure --> Null values: 0
    Column: Balance --> Null values: 0
    Column: NumOfProducts --> Null values: 0
    Column: HasCrCard --> Null values: 0
    Column: IsActiveMember --> Null values: 0
    Column: EstimatedSalary --> Null values: 0
    Column: Exited --> Null values: 0
df.to_csv('churning_clean.csv', index=False)
df['Exited'].value_counts()
             count
```

Exited

0 85907

1 22093

EDA

```
plt.bar(df['Exited'].value_counts().index, df['Exited'].value_counts())
plt.xlabel('Exited Status')
plt.ylabel('Count')
plt.title('Customer Exit Distribution')
plt.show()
```


This bar chart shows the number of customers who churned (1) vs stayed (0).

- Most customers did **not churn** (around 85,000).
- Around **20,000 customers left** the bank.
- There's a **class imbalance**, which should be handled during modeling.

```
plt.bar(df['Gender'].value_counts().index, df['Gender'].value_counts())
plt.xlabel('Gender')
plt.ylabel('Gender')
plt.title('Gender')
plt.show()
```


This bar chart shows the number of male and female customers:

- There are **more male customers** (~60,000) than female customers (~45,000).
- The dataset is **slightly imbalanced** in terms of gender.

```
df['Gender'].value_counts()

count
Gender
Male 59852
Female 48148
dtype: int64

[ ] df['Geography'].value_counts()

count
Geography
```

dtype: int64

France

Germany

Spain

54373

27050

26577

```
plt.bar(df['Geography'].value_counts().index, df['Geography'].value_counts())
plt.xlabel('Geography')
plt.ylabel('Geography')
plt.title('Geography')
plt.show()
```


This chart shows the number of customers from each country:

- **France** has the highest number of customers (~55,000).
- **Germany** and **Spain** have similar and lower customer counts (~25,000 each).
- France is the **dominant market** in this dataset.

```
[ ] plt.figure(figsize=(8, 6))sns.boxplot(x=df['Gender'], y=df['EstimatedSalary'], data=df, palette='Set2')

plt.title('Boxplot of Salary by Gender')
plt.xlabel('Gender')
plt.ylabel('Salary')
plt.grid(axis='y', linestyle='--', alpha=0.7)

plt.show()
```


This plot compares salary distributions across genders:

- **Median salaries** are almost the same for males and females.
- Both genders show a wide salary range (from 0 to 200,000).
- The spread (IQR) is similar, indicating **no major salary bias** by gender.

```
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

numerical_columns = df.select_dtypes(include=[np.number]).columns

cols = 3
  rows = int(np.ceil(len(numerical_columns) / cols))

fig, ax = plt.subplots(rows, cols, figsize=(15, 5 * rows))
  ax = ax.flatten()

for index, col in enumerate(numerical_columns):
    sns.histplot(df[col], kde=True, ax=ax[index])
    ax[index].set_title(f'Distribution of {col}')

for j in range(index + 1, len(ax)):
    fig.delaxes(ax[j])

plt.tight_layout()
    plt.show()
```


- Age: Positively skewed; more customers are in the **30–40** age range.
- **Tenure**: Fairly uniform distribution across 0–10 years.
- Balance: Many customers have zero balance; some have high balances.
- Num Of Products: Most customers use 1 or 2 products.
- **HasCrCard**: Binary distribution; slight majority have credit cards.
- **IsActiveMember**: Almost equal split between active and inactive.
- EstimatedSalary: Nearly uniform distribution; well spread.

```
plt.figure(figsize=(15, 8))
plt.xticks(rotation=90)
sns.barplot(x='HasCrCard',y='Geography',hue='Gender',data=df);
```


- Active membership rates are consistent across France, Spain, and Germany. Both male and female customers show similar engagement levels in each country.
- Geography and gender do not seem to significantly influence whether a customer is an active member.

```
plt.figure(figsize=(15, 8))
plt.xticks(rotation=90)
sns.barplot(x='HasCrCard',y='Exited',hue='Gender',data=df);
```


Credit card ownership is not a strong predictor of exit here.

Differences in churn are likely driven by other factors like active membership, tenure, number of products, or geography-specific service experiences.

```
plt.figure(figsize=(15, 8))
plt.xticks(rotation=90)
sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=df);
```


- Active membership reduces exit risk, regardless of estimated salary or gender.
- Inactive members, despite similar salaries, are usually more likely to leave.

```
plt.figure(figsize=(15, 8))
plt.xticks(rotation=90)
sns.barplot(x='Age',y='Tenure',hue='Gender',data=df);
```


- Short Tenure → Higher Exit Risk:
 Customers with lower tenure (newer customers) often have a higher chance of exiting because they have not yet built loyalty or may not be fully satisfied.
- Longer Tenure → Lower Exit Risk:
 Customers with longer tenure tend to stay longer because they are usually more engaged, more familiar with the services, and may have stronger relationships with the company.

```
[ ] plt.figure(figsize=(15, 8))
   plt.xticks(rotation=90)
   sns.barplot(x='NumOfProducts',y='EstimatedSalary',data=df);
```


Customers with 1 or 2 products \rightarrow Usually less likely to exit and more salary, especially if they are satisfied and have fewer complex needs.

Customers with 3 products \rightarrow May still be relatively loyal, but it depends on engagement and satisfaction.

Customers with 4 products and lower salary are often the most likely to exit.

```
[ ] plt.figure(figsize=(15, 8))
    plt.xticks(rotation=90)
    sns.barplot(x='Age',y='Exited',color='teal',data=df);
```


- The exit rate generally increases with age, especially after 50 years.
- Younger and middle-aged customers show more stable and predictable exit behavior.
- Older age groups have higher and more variable exit rates, but not all customers in these groups exit.

Correlation matrix:

A correlation matrix is a table that shows how strongly variables are related (correlated) to each other.

It is mostly used in exploratory data analysis (EDA) to understand the relationships between numeric features.

Logistic Regression:

Logistic Regression is a supervised classification algorithm used to predict probabilities of binary outcomes (0 or 1, Yes or No, True or False).

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

```
logi_reg_model = sm.Logit(y_train, x_train).fit()
print(logi_reg_model.summary())
```

```
Optimization terminated successfully.
                  Current function value: 0.514411
                  Iterations 5
                                                     Logit Regression Results
Dep. Variable:
                                                             Exited No. Observations:
                                                                                                                                              86400
                                                               Logit Df Residuals:
Model:
                                                                                                                                               86393
                                    MLE Df Model:
Sun, 29 Jun 2025 Pseudo R-squ.:
19:53:18 Log-Likelihood:
True LL-Null:
Method:
                                                                                                                                                       6
                                                                                                                                      -0.01751
Date:
Time:
                                                                                                                                           -44445.
                                                                                                                                           -43680.
converged:
Covariance Type: nonrobust LLR p-value:
                                            coef std err
                                                                                                         P>|z| [0.025
                                                                                                                                                         0.975]

      Age
      -0.0233
      0.000
      -53.211
      0.000
      -0.024
      -0.022

      Balance
      -1.158e-06
      1.28e-07
      -9.045
      0.000
      -1.41e-06
      -9.07e-07

      Gender_Male
      -0.1949
      0.016
      -12.052
      0.000
      -0.227
      -0.163

      NumOfProducts_2
      -0.2582
      0.017
      -15.489
      0.000
      -0.291
      -0.226

      NumOfProducts_3
      -0.0093
      0.053
      -0.174
      0.862
      -0.114
      0.095

      NumOfProducts_4
      0.2388
      0.104
      2.301
      0.021
      0.035
      0.442

IsActiveMember 1
                                      -0.1882
                                                              0.016
                                                                                                            0.000
                                                                                  -11.562
                                                                                                                                 -0.220
                                                                                                                                                         -0.156
```

```
print(roc_auc_score(y_test, y_pred))

y_pred_class = (y_pred >= 0.5).astype(int)

print(classification_report(y_test, y_pred_class))
```

pred = logi reg model.predict(x test)

∑ *	precision	recall	f1-score	support	
0.0 1.0	0.79 0.00	1.00 0.00	0.88 0.00	17111 4489	
accuracy macro avg weighted avg	0.40 0.63	0.50 0.79	0.79 0.44 0.70	21600 21600 21600	

Decision Tree:

A Decision Tree is a supervised machine learning algorithm used for classification and regression.

It works like a flowchart:

- Each node asks a question about a feature.
- Each branch is the outcome of that question.

```
dtc = DecisionTreeClassifier()
param = {
    'criterion': ['gini', 'entropy', 'log_loss'],
    'max_depth': [2, 3, 4, 5, 6, 7, 8, 9, 10],
    'min_samples_split': [1, 2, 3, 4, 5, 6, 7],
    'min_samples_leaf': [1, 2, 3, 4, 5, 6]
}
grd = GridSearchCV(dtc, param, cv=5, scoring='accuracy')
grd.fit(x_train, y_train)
grd.best_params_
```

```
dtc = DecisionTreeClassifier(criterion='gini', max_depth=2,
min_samples_leaf=1, min_samples_split=2).fit(x_train, y_train)
```

y_pred = dtc.predict(x_test)
print(classification_report(y_test,y_pred))

_	precision	recall	f1-score	support	
0.0	0.79	1.00	0.88	17111	
1.0	0.00	0.00	0.00	4489	
accuracy	0.40	0.50	0.79	21600	
macro avg	0.40	0.50	0.44	21600	
weighted avg	0.63	0.79	0.70	21600	

Random Forest:

Random Forest is a popular machine learning algorithm used for classification and regression tasks. It's built on top of Decision Trees, but it's much more powerful and accurate.

```
# 1. Import Libraries
    import pandas as pd
    from sklearn.model selection import train test split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import classification report, confusion matrix, accuracy score
    # 2. Load Data
    data = pd.read csv("churning clean.csv")
    # 3. Separate Features and Target
    X = data.drop("Exited", axis=1)
    y = data["Exited"]
    # 4. Encode Categorical Features (if any)
    X = pd.get_dummies(X, drop_first=True)
    # 5. Train-Test Split
    X_train, X_test, y_train, y_test = train_test_split(
       X, y, test size=0.2, random state=42, stratify=y
    # 6. Initialize and Train Random Forest
    rf = RandomForestClassifier(n_estimators=100, random_state=42)
    rf.fit(X train, y train)
    # 7. Predictions
    y pred = rf.predict(X test)
# 7. Predictions
y_pred = rf.predict(X_test)
# 8. Evaluation
print("=== Confusion Matrix ===")
print(confusion_matrix(y_test, y_pred))
print("\n=== Classification Report ===")
print(classification report(y test, y pred))
print("\n=== Accuracy Score ===")
print(accuracy_score(y_test, y_pred))
```

Converts categorical columns (like Gender, Geography) into numeric dummy variables.

- drop_first=True avoids multicollinearity by dropping one dummy from each category.
- Required because machine learning models like Random Forest need numeric input.
- Splits data: 80% for training, 20% for testing.
- RandomForestClassifier: Scikit-learn model.
- n_estimators=100: Use 100 decision trees.
- .fit(): Train the model on training data.
- Predicts churn (0 or 1) for unseen test data.
- Output stored in y_pred.
- Shows counts of: TP, TN, FP, FN
- Helps understand model errors (e.g., predicting "not churn" when actually "churn").

Naive Bayes:

Naive Bayes is a supervised machine learning algorithm used for classification problems. It is based on Bayes' Theorem, with a strong (naive) assumption that features are independent of each other.

- 1. Feature-target separation
- 2. Encoding categorical data
- 3. Splitting data
- 4. Training the model
- 5. Making predictions
- 6. Evaluating model performance

```
# 7. Predictions
    y_pred = nb.predict(X_test)
    # 8. Evaluation
    print("=== Confusion Matrix ===")
    print(confusion_matrix(y_test, y_pred))
    print("\n=== Classification Report ===")
    print(classification_report(y_test, y_pred))
    print("\n=== Accuracy Score ===")
    print(accuracy_score(y_test, y_pred))

→ === Confusion Matrix ===
    [[17181 0]
    [ 4419
               0]]
    === Classification Report ===
                 precision recall f1-score support
            0.0 0.80 1.00 0.89 17181
1.0 0.00 0.00 0.00 4419
                                         0.00
        accuracy
                                         0.80 21600
                   0.40 0.50 0.44 21600
0.63 0.80 0.70 21600
       macro avg
    weighted avg
    === Accuracy Score ===
    0.7954166666666667
```

- X: Input features (e.g., age, balance, credit score)y: Target label whether a customer exited the bank
- Converts categorical columns (like "Gender", "Geography") into numerical format using one-hot encoding.
- drop_first=True: Avoids dummy variable trap (removes one category to prevent redundancy)
- Splits data into:
- 80% training 20% testing
- stratify=y: Keeps the same churn ratio in both train & test sets (important for imbalanced datasets)
- Creates a Gaussian Naive Bayes model.
- Trains the model on the training data.
- Assumes features follow a normal (Gaussian) distribution suitable for continuous numeric data.
- Predicts churn (0 or 1) for each customer in the test data.

Model Performance Summary

All four models — Decision Tree, Random Forest, Naive Bayes, and KNN — achieved an accuracy of approximately 79%. While the overall accuracy is the same, each model has different strengths:

- Random Forest showed balanced precision and recall, making it more reliable across different classes.
- The Decision Tree is easier to interpret but may overfit slightly without pruning.
- Naive Bayes performed decently despite its simple assumptions, and is especially fast.
- KNN showed stable accuracy but may require tuning of k and feature scaling for better performance.(76%)

Model	Accuracy	Precision	Recall	F1-Score	Remarks
Decision Tree	79%	Moderate	Moderate	Moderate	Easy to interpret; risk of overfitting
Random Forest	79%	Good	Good	Good	Robust; good generalization
Naive Bayes	79%	Lower	Higher	Moderate	Fast and simple; assumes independence
K-Nearest Neighbors	76%	Variable	Moderate	Moderate	Sensitive to scaling; slower on large data

•

Based on evaluation metrics and practical considerations (like interpretability, training speed, and generalization), Random Forest or Decision Tree may be preferred as the final model for deployment or business insights.

Future improvement

- → can use boosting models
- ightarrow also can do PCA and LDA for feature engineering that can be helpful for feature extraction will improve the accuracy of the model