

Design of Vhost-pci

- designing a new virtio device for inter-VM communication

Wei Wang wei.w.wang@intel.com

Contributors:

Jun Nakajima, Mesut Ergin, James Tsai, Guangrong Xiao, Mallesh Koujalagi, Huawei Xie, Yuanhan Liu

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2016 Intel Corporation.

Agenda

Part 1: Usage and Motivation

Part 2: Design Details

Part 3: Current Status

Part 1: Usage and Motivation

Transformation of Network Appliances

Network Appliances to Virtual Network Functions(VNF): transformation relies on high performance inter-VM communication schemes

Virtual Network Function Forwarding Graph

VNF Forwarding with Vhost-pci

Existing Inter-VM Network Packet Transmission

- Long Code Path: packets are transmitted from one VM to another via an intermediary
- Packets, streamed out of VMs, are bumper-to-bumper in the central vSwitch

Vhost-pci for Inter-VM Network Packet Transmission

Advantages:

- Short Code Path: packets are transmitted from one VM directly to another VM
- Better scalability

Micro-benchmarking Results

VSPERF / Chain of 2 to 5 VM

- RFC2544 via ext. packet generator DPDK Pktgen
- OVS DPDK on two cores (default)
- VM setup: one pinned vCPU, 2GB RAM (hugepages)
- pCPU: Intel(R) Xeon(R) E5-2698 v3 @ 2.30GHz

OPNFV

Part 2:
Design Details

Vhost-pci Design

- Frontend Device/Driver
- Backend
 Device/Driver
- QEMU Socket Server/Client
- Socket Connection
- New Component

No change needed to in-guest drivers for virtio devices

Vhost-pci Server

- To use the vhost-pci based inter-VM communication mechanism, a VM's QEMU needs to create a vhost-pci server
- Creates a vhost-pci-server by adding the following QEMU booting commands:
 - -chardev socket,id=vhost-pci-server-xyz,server,wait=off,connections=32,path=/opt/vhost-pci-server-xyz
 - -vhost-pci-server socket,chardev=vhost-pci-server-xyz

Vhost-pci Client

- To use a vhost-pci device on another VM as a backend, the originating virtio device supplies a vhost-pci client which connects to the remote vhost-pci server
- Create a virtio device with a vhost-pci client using the following commands:
 - -chardev socket,id=vp-client1,path=/opt/vhost-pci-server-xyz
 - -device virtio-net-pci,mac=52:54:00:00:00:01,vhost-pci-client=vp-client1
- The client communicates to the server using the vhost-pci protocol to set up the inter-VM communication channel

Vhost-PCI Protocol

Vhost-pci Driver

Vhost-pci-net

- vhost-pci-net shares vrings created by the originating virtio-net device
- TX ring from originating device becomes
 RX ring at mirrored device, and vice versa
- Copying packets in and out of originating device rings is the responsibility of vhostpci-net

Part 3: Current Status

Current Status

- Initial PoC completed, summary of results presented
- Design RFC v2 has been sent out to KVM/QEMU mailing list (https://lists.gnu.org/archive/html/qemu-devel/2016-06/msg05359.html)
- Patches implementing RFC v2 design are work in progress

End of Presentation

Thank you!

