MATH 171: Abstract Algebra I

Connor Neely, Fall 2024

1 Groups		2	
	1.1	Basic Axioms and Properties	2
	1.2	Some Important Groups	3
	1.3	Homomorphisms	4
	1.4	Group Actions	5

st Adapted from FA24 Lecture Notes.

1 Groups

1.1 Basic Axioms and Properties

For most of this course, the central object of study will be the group.

Definition: Binary operation

A binary operation on a set G is a function $\star : G \times G \to G$.

- If $a \star (b \star c) = (a \star b) \star c$ for all $a, b, c \in G$, then we say \star is associative.
- If $a \star b = b \star a$ for all $a, b \in G$, then we say \star is commutative.

For $a, b \in G$ we'll typically write $a \star b$ for $\star (a, b)$.

Definition: Group

A group is an ordered pair (G,\star) where G is a set and \star is a binary operation on G such that

- ★ is associative,
- there exists an $e \in G$, called an identity, such that $a \star e = e \star a = a$ for all $a \in G$, and
- for each $a \in G$ there is an $a^{-1} \in G$, called an inverse of a, such that $a \star a^{-1} = a^{-1} \star a = e$.

We say the group (G,\star) is commutative (or abelian) if \star is commutative.

We've already encountered many groups in our previous studies! For example, under addition we have \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , and $\mathbb{Z}/n\mathbb{Z}$ (the integers modulo n), and under multiplication we have \mathbb{Q}^{\times} , \mathbb{R}^{\times} , \mathbb{C}^{\times} , and $Z/n\mathbb{Z}^{\times}$ (where the \times denotes zero-exclusion). These examples help make the following properties a bit more concrete.

Theorem 1.1

If (G,\star) is a group then

- (a) the identity of G is unique,
- (b) a^{-1} is unique for each $a \in G$,
- (c) $(a^{-1})^{-1} = a$,
- (d) $(a \star b)^{-1} = b^{-1} \star a^{-1}$, and
- (e) for all $a_1, \dots, a_n \in G$, the value of $a_1 \star \dots \star a_n$ is independent of how the expression is bracketed.

Proof. We prove the first two parts.

(a) Suppose e and e' are both identities. Then we have the chain of equalities

$$e = e \star e' = e'$$
.

(b) Suppose some $a \in G$ has two inverses a', a''. Then we have the chain of equalities

$$a' = a' \star e = a' \star (a \star a'') = (a' \star a) \star a'' = a''.$$

Other parts are left as exercises. \Box

With these properties in mind, we'll make a few notes on notation.

• We read (G, \star) aloud as "G is a group under \star ". In practice, if the binary operation is self-evident, we'll simply write G to mean (G, \star) .

- For a group (G, \star) we'll usually write ab to mean $a \star b$. In the same spirit, we can write a length-n product $x \star \cdots \star x$ as x^n , and $x^{-n} = (x^{-1})^n$. (This is called multiplicative notation.)
- When multiplicative notation is being used, we will usually denote the identity of G by 1 and set $x^0 = 1$.

We'll finish off here with a few definitions which will be useful in future discussions.

Definition: Order of an element

Let G be a group and let $x \in G$. The order |x| of x is the smallest $n \in \mathbb{Z}^+$ such that $x^n = 1$.

Definition: Generator

Let G be a group, and let S be a subset of G. We say that S generates G if every element of G can be written as a finite product of elements in S and their inverses.

In this case, S is a set of generators for G and we write $G\langle S\rangle$.

Definition: Presentation

Let G be a group that is generated by S with a set of relations R. G has presentation $\langle S | R \rangle$.

1.2 Some Important Groups

Now we'll look at a few different kinds of well-known groups.

Definition: Dihedral group

The dihedral group of order 2n is the group D_{2n} of symmetries of a regular n-gon.

In general we'll use $r \in D_{2n}$ to denote clockwise rotation by $2\pi/n$ and $s \in D_{2n}$ for reflection through a fixed line of symmetry. We can get a few nice results from this!

- $D_{2n} = \{1, r, r^2, \dots, r^{n-1}\} \cup \{s, sr, sr^2, \dots, sr^{n-1}\}$ (where the two sets are disjoint).
- |r| = n and |s| = 2.
- $r^i s = s r^{-i}$ for all $i \in \mathbb{Z}$.

Thinking of the elements of D_{2n} as physical transformations is useful. But they're perhaps better understood as *equivalence classes* of physical moves since, for example, r^n is equivalent to r^{2n} .

Definition: Symmetric group

Let Ω be a non-empty set, and let S_{Ω} be the set of all bijections from Ω to Ω . The set S_{Ω} forms a group under function composition, and it is called the symmetric group on Ω .

Note that if $\Omega = \{1, 2, ..., n\}$ then we write $S_{\Omega} = S_n$. Permutations on such Ω can be communicated in several different ways—for example, if we had the bijection

$$1 \mapsto 3$$
 $2 \mapsto 5$ $3 \mapsto 1$ $4 \mapsto 2$ $5 \mapsto 4$,

then we have the two-line, one-line, and cycle notations, respectively:

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{bmatrix}, \qquad \begin{bmatrix} 3 & 5 & 1 & 2 & 4 \end{bmatrix}, \qquad (1\ 3)(2\ 5\ 4).$$

We again have a few important facts about symmetric groups.

- The order of S_n is n! ($|S_n| = n!$).
- S_n is non-abelian for $n \geq 3$.
- Disjoint cycles commute.
- The order of a permutation is the least common multiple of the cycle lengths in its decomposition.
- S_n is generated by the adjacent transpositions (the 2-cycles comprised of adjacent elements). The group can also be generated by $\{(1\ 2), (1\ 2\ \cdots\ n)\}.$

As a fun fact, S_3 can be used to create a permutation representation of D_6 —if we label the vertices of a triangle with 1, 2, and 3, the movements of the vertices are represented by

$$e' \mapsto e$$
 $s \mapsto (2\ 3)$
 $r \mapsto (1\ 2\ 3)$ $sr \mapsto (1\ 3)$
 $r^2 \mapsto (1\ 3\ 2)$ $sr^2 \mapsto (1\ 2)$

Thus S_3 is isomorphic to D_6 ($S_3 \cong D_6$).

Definition: General linear group

For each $n \in \mathbb{Z}^+$ let $GL_n(F)$ be the set of all invertible $n \times n$ matrices whose entries come from a field F. $GL_n(F)$ is a group under matrix multiplication and is called the general linear group of degree n.

Definition: Quaternion group

The quaternion group Q_8 has elements

$$Q_8 = \{1, -1, i, -i, j, -j, k, -k\},\$$

where 1 is the identity. For any $a \in Q_8$, the elements multiply as follows.

$$(-1)^2 = 1$$
, $(-1) \cdot a = a \cdot (-1) = -a$
 $i^2 = j^2 = k^2 = -1$
 $ij = k$, $jk = i$, $ki = j$
 $ji = -k$, $kj = -i$, $ik = -k$

1.3 Homomorphisms

Now we'll look at different kinds of maps between groups, starting with the simplest one posible.

Definition: Homomorphism

Let G and H be groups. A homomorphism from G to H is a function $\varphi:G\to H$ such that, for all $x,y\in G$,

$$\varphi(xy) = \varphi(x)\varphi(y).$$

The kernel and image of φ are, respectively,

$$\ker(\varphi) = \{x \in G \mid \varphi(x) = 1\}, \quad \operatorname{image}(\varphi) = \{\varphi(x) \mid x \in G\}.$$

Theorem 1.2

Let $\varphi:G\to H$ be a homomorphism. Then

(a) $\varphi(1)$ is the identity of H.

- (b) $\varphi(x^{-1}) = \varphi(x)^{-1}$ for all $x \in G$.
- (c) $\varphi(x^n) = \varphi(x)^n$ for all $x \in G$, $n \in \mathbb{Z}$.

If we want to do a better job at preserving structure in our map, we can go a step further.

Definition: Isomorphism

A homomorphism $\varphi:G\to H$ is an isomorphism if it is bijective. In this case we say G and H are isomorphic, and we write $G\cong H$.

The existence of the identity map on G is enough to show that $G\cong G$, but other isomorphisms may exist. For example, we may fix g and define $\varphi_g:G\to G$ by setting $\varphi_g(x)=gxg^{-1}$ for all $x\in G$. (This is a particular kind of isomorphism called an inner automorphism.)

Definition: Automorphism

An automorphism of a group G is an isomorphism from G to G.

Notably, the set Aut(G) of automorphisms of G forms a group under function composition!

1.4 Group Actions

We'll finish off our preliminary discussion of groups by looking at what might happen when a group acts on some other set.

Definition: Group action

A (left) group action of a group G on a set X is a map from $G \times X$ to X, where the image of (g,x) is written as $g \cdot x$ or simply gx, such that

- g(hx) = (gh)x for all $g, h \in G$ and $x \in X$.
- 1x = x for all $x \in X$.

There are many easily accessible examples of group actions—here's the most glaring one.

Definition: Left regular action

Every group acts on itself by left multiplication. This is called the left regular action of G.

As for some others: \mathbb{R}^{\times} acts on \mathbb{R}^n by scaling, S_{Ω} acts on Ω by permuting, and D_{2n} acts on the vertices of a regular n-gon.

Theorem 1.3

Suppose G acts on X. For each $g \in G$, $\sigma_g(x) = g \cdot x$ defines a permutation of X. Moreover, the map from G to S_X defined by $g \mapsto \sigma_g$ is a homomorphism.

Proof. Let $g \in G$. Since $\sigma_g \circ \sigma_{g^{-1}}$ and $\sigma_{g^{-1}} \circ \sigma_g$ are both the identity map on X, σ_g has a two-sided inverse and is therefore a bijection from X to X. In other words, σ_g is a permutation of X.

Now define a map $\varphi:G\to S_X$ such that $\varphi(g)=\sigma_g.$ We have

$$\varphi(gh)(x) = \sigma_{gh}(x)$$

$$= (gh) \cdot x$$

$$= g \cdot (h \cdot x)$$

$$= \sigma_g(\sigma_h(x))$$

$$= (\varphi(g) \circ \varphi(h)) (x)$$

Since these two expressions agree as functions on X, they must be equal. This holds for all $g,h\in G$ and φ is a homomorphism. \square

All this motivates the following.

Definition: Representation

Let G be a group, and let $n \in \mathbb{Z}^+$.

- \bullet A homomorphism $\varphi:G\to S_n$ is called a permutation representation.
- A homomorphism $\rho:G\to GL_n(\mathbb{C})$ is called a linear representation.