TEMA II

PROCESO ETL

DISEÑO DE BASE DE DATOS II

ING. CARINA COZZOLINO

AGENDA

- Dimensiones Especiales
 - Calendario
 - Role Playing
 - o Junk
 - Snwoflake
- Tipos de Tablas de Hecho
- Proceso de Transformación de Datos
 - Extracción
 - Transformación
 - o Carga
 - Componentes
- Ejemplo Práctico
- Práctica

DIMENSIONES ESPECIALES

CALENDARIO

ROLE PLAYING

JUNK

SNOWFLAKE

DIMENSIÓN CALENDARIO

- Existe en todos los Data Warehouse.
- Las Tablas de Hechos se suelen analizar a través del tiempo.
- Evita el cálculo de este tipo de datos
- Se pueden agregar tantos datos como sean necesarios (número de semana, periodo fiscal, etc.).
- La **Llave Primaria** es un número **entero** con el formato adecuado para representar la fecha correspondiente.

ID	Fecha	Día	Mes	Año	Semestre
01022001	01/02/2001	1	2	2001	1
23042005	23/04/2005	23	4	2005	1
16092010	16/09/2010	16	9	2010	2

DIMENSIÓN ROLE PLAYING

- Una dimensión que puede ser referenciada varias veces por la tabla de Hechos, pero de forma independiente.
- Se crean distintas vistas de la misma tabla (cada vista toma un rol diferente)

I D	KE Y	Pedid o	Fecha- Pedido	Fecha- Envio	Fecha- Pago
1 8	1	82378 34	01022001	01042005	01052005
1 9	2	83845 89	16052007	16062007	16072007
2	3	3494 5 03	31122015	20022016	20042016

ID	Fecha	Dí a	Me s	Añ O	Semest re
010220 01	1/2/2001	1	2	200 1	1
160520 07	16/5/20 07	16	5	200 7	1

ID	Fecha	Dí a	Me s	Año	Semest re
010420 05	1/4/200 5	1	4	200 5	1
160620 07	16/6/20 07	16	6	200 7	1

	ď	S	Año	re
1/5/200 5	1	5	200 5	1
16/7/20 07	16	7	200 7	2
	5	5 16/7/20 16	1/5/200 5 16/7/20 16 7	1/5/200 5 1 5 200 5 5 200 6/7/20 16 7 200

DIMENSIÓN JUNK

- Se utilizan para evitar dimensiones con una sola columna, o con muy pocas filas.
- NO ES UN PRODUCTO CARTESIANO de todos los atributos
- Son combinaciones que se pueden aplicar en el mundo real.

ID	Key	Pedido	Fecha-Pedido	Estado-Confirmado
18	1	8237834	01032005	1
19	2	8384589	16052007	1
20	3	3494503	31120015	3

ID	Estado	Confirmado
1	Tránsito	Confirmado
2	Tránsito	Pendiente
3	Enviado	Confirmado

DIMENSIÓN SNOWFLAKE

- Dentro de un Data Warehouse pueden darse relaciones jerárquicas.
- Cuando una dimensión es normalizada, se obtienen dos tablas relacionadas por una llave foránea.
- Según el caso puede ser una buena alternativa, pero deben evitarse ya que impacta en el rendimiento de las consultas.

ID	Nombre	Edad	Categoría	Mercado
1	Juan Perez	Adulto Joven	Web	1
2	José Gomez	Adulto Joven	Partner	2
3	Martín Gacía	Adulto Mayor	Partner	3

ID	Mercado
1	LATAM
2	USA
3	EU

TABLAS DE HECHO - TIPO

TRANSACCIONAL

- Cada event es una fila
- Las fias solo exisnten si una medida ocurrió
- Permiten mayor nivel de filtrado

SNAPSHOT PERIÓDICO

- Sumariza varias medidas basdo en un periodo de tiempo.
- Cad fila muestra EL GRANO en el tiempo, no la transacción.
- Una fila es insertada incluso si no hubo transacciones (agrega fila en 0).

• FACTLES

- Sirven para analizar lo que NO PASÓ
- Las filas no tienen medidas
- Reistra un conjunto de dimensiones en un punto del tiempo.

PROCESO ETL

- Proceso que permite a las organizaciones mover datos desde múltiples fuentes, reformatearlos, limpiarlos y cargarlos en un almacén de datos para apoyar un proceso de negocio.
- Se aplican criterios de calidad y consistencia para que los datos pudan unirse en un solo almacén.

EXTRACCIÓN DE DATOS

- Determina qué fuentes de datos se van a procesar.
- La velocidad y el orden de extracción de dicha información tienen gran impacto en todo el proceso de integración.
- Durante la extracción de los datos de la fuente original, eleproceso de ETL realiza un análisis y limpieza de todos los datos, que ayuda a diferenciarlos.
- El lenguaje de consulta estructurado (SQL) permite gestionar y extraer las partes de una base de datos en forma de informes.
- Se realizan variedad de acciones sobre las tablas y filas de datos específicas.

TRANSFORMACIÓN

- Se realiza la transformación de los datos, se corrigen y se resuelven todas las diferencias que puedan contener los datos para su mejor clasificación.
- Se lleva a cabo a través de un conjunto de reglas que proporcionan el orden y la claridad con los datos que van a ser integrados en la base de datos y que varían según los criterios de cada compañía.

Por medio de una validación, eliminación de duplicados, codificación y filtrado en el formato deseado, permite conocer cuáles datos tiene alguna diferencia para ver si se omiten o se hacen a un lado para un análisis más profundo.

CARGA

El proceso de Carga de Datos en una base de datos destino, que es un Almacén de Datos o Repositorio centralizado (en la nube o físicamente en una instalación).

COMPONENTES DEL PROCESO ETL

El proceso de ETL permite ahorrar tiempo en la extracción y preparación de datos para las empresas.

Los componentes de un proceso de ETL incluyen:

- <u>COMPATIBILIDAD</u>: al cargar nuevos datos, se actualizan los existentes según parámetros establecidos previamente.
- <u>AUDITORÍA Y REGISTRO</u>: es necesario un registro detallado de los datos para que garantice la precisión de los datos y eliminar los errores.
- MANEJO DE MÚLTIPLES FORMATOS: al extraer los datos de diversas fuentes, debe manejar una gran variedad de datos.
- TOLERACIA A FALLAS: deben recuperarse ante cualquier problema que ocurra en el proceso, y asegurar que se desplacen los datos sin dificultad.
- <u>SOPORTE DE NOTIFICACIONES</u>: debe incluir un sistema de notificaciones que dé aviso cuando se presenta algún problema.
- <u>ACTUALIZACIONES</u>: para la toma de decisiones en tiempo real, la actualización de datos debe ser fluída y óptima.
- <u>ESCALABILIDAD</u>: debe tenerse en cuenta la expansión de la empresa en cuanto a datos y procesos. Se debe prever almacenamiento y procesamiento.
- <u>PRECISIÓN</u>: los datos deben grantizar una óptima carga y un flujo preciso de información, que refleje la veracidad en cada etapa del porceso.

EJEMPLO

La situación actual de la empresa es que n cuenta con los siguientes reportes, que estarían siendo necesarios:

- a. Clasificación de los productos (familia)
- b. Distribución de los clientes por zona de venta (**región**, **provincia**, **comuna**, **sucursal**).
- c. Tipo de clientes que están prefiriendo los productos (**edad**, **estado civil**).
- d. Relación entre las ventas (\$) por vendedor y la cantidad de horas de capacitación que reciben (**tipo de capacitación** y **horas de capacitación**).
- e. Ventas mensuales y anuales.

REQUERIMIENTOS

- Generar un modelo multidimensional del tipo estrella, a partir de los reportes requeridos por la empresa:
 - a. Crear las tablas de Dimensiones:
 - o Productos
 - o Clientes
 - o Sucursal
 - o Vendedor
 - b. Crear la tabla de Hechos o medidas correspondientes en el Data Warehouse con la siguiente información:
 - o Cantidad de Ventas
 - o Monto de Venta
 - o Mes
 - o Año
 - o ID de cada Dimensión.
- 2.Implementar un ETL en Integration Services, traspasar los registro desde la Base de Datos
- Transaccional al Data Warehouse

TRABAJO PRÁCTICO N°2

- Crear en SQL Server la Base de Datos del Data
 Warehouse, a partir del modelo multidimensional
 diseñado en el Trabajo Práctico Nº 1
- Desarrollar al menos 10 requerimientos a responder con el Data Warehouse.
- Generar los ETLs necesarios para traspasar los datos desde la Base de Datos Operacional al Data Warehouse.

FECHA DE ENTREGA: 4 de Octubre

CONSULTAS

ING. CARINA COZZOLINO