# LLM from scratch - BuildLog

# Prerequisites and Requirements

## **Technical Prerequisites**

Developing an LLM requires a strong foundation in several domains. Here are the key areas that must be understood before starting:

- Mathematical Knowledge: A solid grasp of linear algebra, probability, and statistics is essential for understanding neural network operations and optimization algorithms.
- Deep Learning Fundamentals: Familiarity with transformers, self-attention mechanisms, and backpropagation techniques is necessary.
- Programming Skills: Experience with Python is crucial, particularly using deep learning frameworks such as PyTorch and TensorFlow.
- Data Handling Expertise: Knowledge of SQL, big data processing, and dataset preparation methods is required.
- Cloud & Infrastructure Management: Familiarity with setting up and managing local GPU clusters and budget-friendly cloud solutions is beneficial.
- Ethical Considerations: Understanding bias mitigation, regulatory compliance, and responsible AI deployment practices is vital to creating an ethically sound model.

## Hardware and Software Requirements

#### Hardware

The choice of hardware significantly impacts the cost of LLM development. Instead of opting for high-end GPU clusters, cost-effective alternatives include:

- Compute: Utilizing 2–4 NVIDIA RTX 4090 GPUs or second-hand NVIDIA A100s can provide sufficient computational power at a fraction of the cost of high-end data center GPUs.
- Storage: Using 2–5TB SATA SSDs instead of high-end NVMe storage reduces storage costs while maintaining adequate performance.
- Networking: A Gigabit Ethernet setup for local clusters is sufficient for training models in a distributed fashion.
- RAM: A system with 128–256GB of RAM balances performance and cost when handling large datasets.

#### Software

To streamline development and optimize costs, the following software tools and frameworks are recommended:

- Machine Learning Frameworks: TensorFlow or PyTorch for model training and experimentation.
- Distributed Training Libraries: DeepSpeed and Fully Sharded Data Parallel (FSDP) to enhance computational efficiency.
- Data Handling Tools: SQLite, Dask, and Apache Arrow for efficient data processing.
- Containerization Tools: Docker and lightweight Kubernetes alternatives for deployment.
- Monitoring & Debugging: Free tools like TensorBoard and the community version of Weights & Biases for model tracking and performance analysis.

# Step-by-Step Development Process



## **Data Collection and Preprocessing**

#### **Data Sources**

High-quality datasets are crucial for training an LLM. Free datasets such as CC-News, Wikipedia, and OpenWebText provide a rich foundation for language model training. Leveraging publicly available data reduces costs significantly.

#### **Data Cleaning**

Before training, data must be preprocessed to ensure consistency and quality. This includes:

- Removing duplicate entries to prevent bias.
- Filtering out low-quality text with heuristic and statistical methods.
- Standardizing formats to maintain uniformity.

#### Tokenization

Tokenization converts raw text into a format suitable for model training. Using SentencePiece, a lightweight tokenization tool, optimizes memory consumption while preserving token quality.

#### **Dataset Splitting**

The dataset should be divided into:

- 80% for training to enable model learning.
- 10% for validation to monitor model performance.
- 10% for testing to evaluate the model after training.

## Model Architecture Design

## Selecting Model Type

Efficient Transformer variants such as ALBERT and DistilBERT provide cost-effective alternatives to full-scale transformers. These models achieve high performance with fewer parameters, reducing computational requirements.

### Layer Design

- Fewer layers (6–12) with wider attention heads ensure efficient attention computation.
- Layer sharing reduces the number of parameters, making the model memory-efficient.
- Quantized computations help reduce memory footprint without significantly affecting performance.

## Hyperparameter Selection

- Hidden Size: 512–1024 dimensions provide a balance between expressivity and computational efficiency.
- Attention Heads: 8–16 heads improve contextual understanding without excessive computational burden.
- Context Window: 512 tokens maintain manageable sequence lengths for practical processing.



# **Training Setup**

#### Parallelism

To efficiently train the model on limited hardware, techniques such as gradient checkpointing and mixed precision training are used.

## **Optimization Techniques**

The Adam optimizer is used with low-memory adjustments to reduce training cost.

• Dynamic batch sizing allows adaptive resource allocation, optimizing GPU utilization.

#### Loss Functions

A cross-entropy loss function with label smoothing prevents overfitting while ensuring generalization.

# Fine-tuning and Reinforcement Learning from Human Feedback (RLHF)

#### Supervised Fine-Tuning

Fine-tuning on domain-specific datasets enhances model performance for targeted applications.

#### Reinforcement Learning

A simplified reward model enables reinforcement learning with minimal compute resources.

#### **Human Feedback Collection**

Affordable crowdsourced platforms facilitate efficient data collection for reinforcement learning.

## **Evaluation and Benchmarking**

#### **Performance Metrics**

- Perplexity: Measures language model fluency.
- BLEU and ROUGE scores: Assess text generation quality.

#### Bias and Fairness Testing

Community-driven open-source tools help ensure ethical AI development by detecting bias in model predictions.

## Deployment and Scaling

#### Inference Optimization

4-bit quantization, pruning, and distillation reduce inference latency.

#### Scaling Approaches

- On-premise inference reduces cloud dependency.
- Serverless inference utilizes budget-friendly cloud providers for cost efficiency.

## Monitoring & Logging

Free-tier observability tools enable real-time performance monitoring.