

ational **Aeronautics** and bace **Administrati**on

t Estimates

scal Year 1995

Volume II
ssion Support
pector General

Unclas

04 / C + O O - E O

63/83 00124

(NASA-IM-109792) BUDGET ESTIMATES, FISCAL YEAR 1995. VOLUME 2: MISSION SUPPORT AND INSPECTOR GENERAL (NASA) 246 D

TABLE OF CONTENTS

FY 1995 CONGRESSIONAL BUDGET

MISSION SUPPORT INSPECTOR GENERAL

VOLUME II

	Page Numbers
MISSION SUPPORT	MS SUM-1
SAFETY, RELIABILITY AND QUALITY ASSURANCE	MS 1-1
SPACE COMMUNICATION SERVICES	MS 2-1
RESEARCH AND PROGRAM MANAGEMENT	MS 3-1
Summary Information	RPM SUM-1
	RPM 1-1
Kennedy Space Center	RPM 2-1
Marshall Space Flight Center	RPM 3-1
Stennis Space Center	RPM 4-1
Space Station Program Office	RPM 5-1
Goddard Space Flight Center	RPM 6-1
Ames Research Center	RPM 7-1
Langley Research Center	RPM 8-1
Lewis Research Center	RPM 9-1
NASA Headquarters	RPM 10-1
CONSTRUCTION OF FACILITIES	MS 4-1
Summary Information	CF SUM-1
Project Justification	
Human Space Flight	CF 1-1
Science, Aeronautics and Technology	CF 2-1
Mission Support	CF 3-1
Repair	CF 3.2-1

TABLE OF CONTENTS

FY 1995 CONGRESSIONAL BUDGET

MISSION SUPPORT INSPECTOR GENERAL

VOLUME II

CONSTRUCTION OF FACILITIES

Page Numbers

CF 3.3-
CF 3.4-
CF 3.5-
CF 3.6-1
IG 1-1

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MISSION SUPPORT

FISCAL YEAR 1995 ESTIMATES

GENERAL STATEMENT

services, safety and quality assurance activities, and for maintenance activities for the NASA institution. The Mission Support appropriation provides funding for NASA's civil service workforce, space communication These objectives are accomplished through the following elements:

Safety, Reliability and Quality Assurance: This includes funding for programs to assure the safety and quality of NASA missions, through the development, implementation and oversight of Agencywide safety, reliability, maintainability and quality assurance policies and procedures.

This includes the Tracking and Data Relay Satellite System (TDRSS), and the telecommunications system which data acquisition, and communications and data processing activities that are required by all NASA projects. <u>Space Communication Services</u>: This includes funding for the operation of the tracking, telemetry, command, provides for real time transmission of data, video and voice information between and among NASA installations. <u>Research and Program Management</u>: This includes funding for the salaries, benefits, travel requirements and other support of the civil service workforce, and the necessary funding for all of NASA's administrative functions in support of research in NASA's field centers.

and construction of the administrative facilities, the environmental compliance and restortation program, Construction of Facilities: This includes funding for the modification, rehabilitation, repair and the advanced planning of facilities and design of future facilities.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MISSION SUPPORT

FISCAL YEAR 1995 BUDGET ESTIMATES

(IN MILLIONS OF REAL YEAR DOLLARS)

		BUDGET PLAN	
	1993	1994	1995
MISSION SUPPORT	2,727.2	2,619.0	2,662.9
SAFETY, RELIABILITY AND QUALITY ASSURANCE	32.7	34.3	38.7
SPACE COMMUNICATION SERVICES	333.7	214.4	268.9
RESEARCH AND PROGRAM MANAGEMENT	2,171.4	2,148.2	2,220.3
CONSTRUCTION OF FACILITIES	189.4	222.1	135.0

PROPOSED APPROPRIATION LANGUAGE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MISSION SUPPORT

For necessary expenses, not otherwise provided for, in carrying out mission support for human space flight programs and science, aeronautical, and technology programs, including research operations, and support; space communications activities including operations, productions, and services; construction of facilities expenses including repair, rehabilitation, and modification of facilities, minor construction of new facilities and additions to existing facilities, facility planning and design; environmental compliance and restoration; acquisition or condemnation of real property, as authorized by law; program management; personnel and related costs, including uniforms or allowances therefor, as authorized by law (5 U.S.C. 5901–5902); travel expenses; purchase, lease, charter, maintenance, and operation of mission and administrative aircraft; not to exceed \$35,000 for official reception and representation expenses; and purchase (not to exceed thurty-three for replacement only) and hire of passenger motor vehicles; \$2,662,900,000, to remain available until September 30, 1996.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MISSION SUPPORT

REIMBURSABLE SUMMARY

(IN MILLIONS OF REAL YEAR DOLLARS)

		BUDGET PLAN	
	1993	1994	1995
MISSION SUPPORT	83.0	138.8	117.2
SAFETY, RELIABILITY AND QUALITY ASSURANCE	6.0	1.5	1.2
SPACE COMMUNICATION SERVICES	58.3	92.0	72.0
RESEARCH AND PROGRAM MANAGEMENT	22.1	0.44	43.0
CONSTRUCTION OF FACILITIES	1.7	1.3	1.0

NATIONAL AEROWAUTICS AND SPACE ADMINISTRATION

DISTRIBUTION OF MSSION SUPPORT BUDGET PLAN BY INSTALLATION AND FISCAL YEAR

3,105 0 2,208 1,820 476 5,059 3,753 302 3,565 0 1,296 1,296 1,879 730 4,185 3,110 800 3,625 0 1,306 2,275 750 6,320 5,500 950 0 0 5,207 750 6,320 5,500 950 0 0 5,207 750 0 253,956 12,804 0 0 0 5,000 0 2,030 7,500 0 0 332,639 0 7,500 0 0 5,000 0 2,030 7,500 0 0 2,030 7,500 0 0 332,639 0 7,500 0 0 5,000 0 2,030 7,500 0 0 332,639 14,481 0 16,700 25,853 19,834 10,595 13,641 12,585 0 24,430 37,144 31,696 329,992 0 20,783 13,641 12,585 0 24,430 37,130 11,480 10,910 21,010 10,910 21,010 10,150 23,715 23,800 14,420 10,910 21,010 21,010 21,010 21,010 21,010 21,010 21,010 21,010 25,810 23,715	Program		Total	Proposed Supplemental	Johnson Space Center	Space Sta Program Office	X Space Center Center	Rarshall Space Fligh Center	Steam is Space Center	Goddard Space Flt Center	Jet Propulsion Lab	Research Ceater	langley Research Center	Lewis Research Center	MASA
214,400 0 0 55,287 0 253,956 12,804 0 26,900 0 0 0 59,600 0 145,395 6,000 0 26,100 0 0 0 0 0 59,600 0 145,395 6,000 0 2,146,219 0 0 0 50,100 0 210,300 7,500 0 0 2,220,300 0 332,639 0 25,286 295,592 32,100 314,422 0 203,558 2 22,100 314,422 0 203,558 2 22,569 0 207,839 2 203,558 2 2 203,558 2 2 203,558 2 2 203,558 2	Safety, Reliability & QA	1993 1994 1995	32,70	69	3, 105 3, 354 3, 625	000	2,208 1,296 1,300	1,820 1,879 2,275	476 730 750	5,059 4,185 6,320	3,753	302 800 950	2,372 2,196 2,325	4,237	9,375
2,171,388 0 332,639 0 258,122 289,172 28,563 311,804 0 203,730 2 2,148,219 -60,000 339,777 25,346 255,288 29,592 32,100 314,422 0 203,580 2 2,220,300 0 342,730 26,707 249,248 301,444 31,696 329,692 0 207,839 2 151,289 0 14,481 0 16,700 25,853 6,335 19,834 10,595 13,641 155,289 0 14,430 0 14,430 10,910 21,010 116,045 0 10,150 0 11,150 23,675 4,280 14,430 10,910 21,010 14,285 8,955 8,955 8,956 4,280 14,430 10,910 21,010 23,300 32,000 10,000 350,434 0 277,030 375,132 35,374 590,653 277,673 217,408 2,662,900 0 356,716 261,688 377,494 36,726 560,742 23,910 277,673	Space Community of the state of	1993 1994 1995	333,71 214,40 268,90	2	209	000	000	58,287 59,600 50,100	000	253,956 145,395 210,300	12,804 6,000 7,500	000	000	250	8,209 3,405 1,000
151,289	1 ED S S S S S S S S S S S S S S S S S S	1993 1994 1995	2,171,38 2,148,21 2,220,30	! ! !	332,639 339,777 342,730	25,346	258,122 255,288 249,248	289, 172 295, 592 301, 444	28,563 32,100 31,696	314,422 314,422 329,692	000	203,730 203,558 207,839	212,742 216,516 222,494	218,917 223,719 221,666	315,699 301,901 286,784
14,285 8,955 8,955 10,000	Const of Facilities	1993 1994 1995	175,81		12,585	000	16,700 24,430 11,150	25,853 37,310 23,675	6,335 11,890 4,280	33,8834	10,595	13,641	12,771	26,225 15,010 9,650	1,810
23,300 32,000 10,000 10,000 2,721,210 2,619,008 -60,000 355,716 25,346 281,014 394,381 44,720 497,882 21,030 217,408 2,662,900 0 356,505 26,707 261,698 377,494 36,726 560,742 23,910 229,799	Const of Facilities Various Locations	1993	14,28		• • • • • • • • • • • • • • • • • • •					; ; ; ; ; ;					
1993 2,727,210 0 350,434 0 277,030 375,132 35,374 590,653 27,152 217,673 1994 2,619,008 -60,000 355,716 25,346 281,014 394,381 44,720 497,882 21,030 217,408 1995 2,662,900 0 356,505 26,707 261,698 377,494 36,726 560,742 23.910 259,7408	Const of Facilities Facil Planning & Design	1993	23,30	!	1	1 1 1 1 1 1 1 1		; ; ; ; ; ; ;							
	TOTAL BUDGET PLAN	1994	2,727,21 2,619,00 2,662,90 2,662,90	11 14 12 17	11	25,346 26,707	277,030 281,014 261,698	375,132 394,381 377,494	35,374 44,720 36,726	590,653 497,882 560,742	27,152 21,030 21,030 23,910	217,673 217,408 217,408 229,799	227,885 232,642 233,839	249,629 243,109 235,816	338,137 319,475 300,709

MISSION SUPPORT

FISCAL YEAR 1995 ESTIMATES

BUDGET SUMMARY

NABILITY	о С	Number	MS 1-2 MS 1-2	MS 1-2													
ITY, MAINTAI URANCE		FY 1995	24,200 8,700	5,800	38,700		3,625	1,300	2,275	750	2,325	4,500	950	6,320	2,500	11,155	38,700
SAFETY, RELIABILITY, MAINTAINABILITY AND QUALITY ASSURANCE	IREMENTS	FY 1994 (Thousands of dollars)	27,134 3,545	3,610	34,289		3,354	1,296	1,879	730	2,196	4,380	800	4,185	3,110	12,359	34,289
	SOURCES REQU	FY 1993	24.807	300	32,707		3,105	2,208	1,820	914	2,372	4.237	302	5,059	3,753	9,375	32,707
OFFICE OF SAFETY AND MISSION ASSURANCE	SUMMARY OF RESOURCES REQUIREMENTS		Policy, oversight, and standardsrrrrr	Software independent verification and validationvalidation	Total	Distribution of Program Amount by Installation	Tohnacon Conton	Vonnody Roote Center	Marshall Space Flight Center	Stennis Space Center	Tanolay Research Center	Tewis Research Center	Amba Research Center	Goddard Space Flight Center	Tet Propilaton Laboratory	Headquarters	Tota1

OBJECTIVES AND JUSTIFICATION

The goal of the Office of Safety and Mission Assurance (OSMA) is to provide innovative, NASA-wide leadership standards and demonstration of key technologies for improving program assurance; safety; systems assessments compliance to SRM&QA requirements. The SRM&QA functions include program assurance; development of technical and trend analyses; risk identification and resolution; reliability, maintainability, and quality assurance; in promulgating and ensuring safety and mission quality. The OSMA will continue the key roles of program and project oversight; develop program-level safety, reliability, maintainability, and quality assurance (SRM&QA) policy and standards; and develop project-specific plans and procedures. In addition, OSMA conducts independent technical assessments of all major flight and nonflight projects to determine and quality management initiatives.

The OSMA's FY 1995 strategic planning includes the following goals:

- Maintain oversight of the activities of NASA's SRM&QA offices, providing advice to the Administrator on key safety and mission assurance issues.
 - Develop and implement NASA-wide risk management practices.
- Ensure that OSMA is an effective, contributing partner in planning, developing, and implementing NASA
- Support development of innovative methods and techniques to achieve safety, mission success, and technology advancement.
 - Improve and update the SRM&QA program to anticipate evolving technologies and requirements.
 - Promote a work force and environment that cultivates technical excellence.
- Continue the effectiveness of OSMA products and services as value-added functions.

Agency's programs; Headquarters SRM&QA staff conduct oversight and provide technical support across all of The SRM&QA funded activities represent functions performed for the benefit of all of the the Agency's programs; and OSMA performs as an advocate of the SRM&QA offices and activities in all NASA Beginning in FY 1995, funds to support NASA's SRM&QA program will be requested under the Mission Support Centers and facilities. The OSMA also performs as monitor of services provided by the Defense Contract Management Command in the oversight of contractor and supplier quality assurance programs. appropriation.

beginning in FY 1995, other activities are reduced. This reduction will result in a decrease in contractor Though increasing in absolute value from FY 1994 to FY 1995, because funding responsibility for NASA's Electrical, Electronic, and Electromechanical (EEE) and Mechanical Parts will be transferred to OSMA support for NASA's SRM&QA program.

The office is involved across all levels of NASA programs to provide SRM&QA leadership. A key function provide independent judgments of program decisions and issues based on SRM&QA analyses, particularly where there is divergent engineering opinion on critical points or a high degree of uncertainty that could impact program safety and mission success. The Office of Safety and Mission Quality (OSMQ) ensures that Conformance with SRM&QA policies and procedures is monitored through each program phase to SRM&QA requirements are integrated into the earliest phases of development for space and aeronautics proper attention to risk. Through SRM&QA surveys and Functional Management Reviews (FMR's) of the NASA Centers, SRM&QA program implementation is assessed.

will be funded directly under the SRM&QA program beginning in FY 1995. These funds will be allocated along Beginning in FY 1994, the Safety, Reliability and Quality Assurance (SR&QA) program will be managed under three new program elements. These are the Policy, Oversight, and Standards (POS) program; the Technology (SIV&V) program. In addition, programs previously performed under an Agency operating account EEE Parts Qualification and Integration (TQI) program; and the Software Independent Verification and Validation with other ongoing SRM&QA activities under the TQI program.

methodologies. A primary means of supporting the NASA risk management process is to conduct hazard analyses facilities. The OSMA also performs trend analyses using mission performance and problem data to identify/ Technical Standards, and Quality Assurance. In the area of Safety and Risk Management, OSMA develops toppredict areas that require preventive measures, or corrective actions to assure reliable and maintainable The POS program supports SRM&QA activities in the areas of Safety and Risk Management, Program Assurance, and quantitative risk assessments to identify and resolve safety threats to NASA flight programs and spacecraft. NASA operational safety considerations also include crew safety, range safety, mishap level safety policies, defines program-specific safety requirements, and develops risk assessment investigations, emergency preparedness, and implementation of federal safety requirements.

programs; ensure flight program compliance with NASA's SRM&QA policies; and provide guidance and direction to NASA flight program offices regarding system design, test program management, and risk management. The OSMA maintains rigorous oversight of the Space Shuttle; the Space Station; and NASA's robotics spacecraft, guidance to NASA flight programs. Programs funded under these activities serve to establish program-level SRM&QA requirements to address the unique mission, design, and operational characteristics of NASA flight In the area of Program Assurance, OSMA serves as both an overseer and as a source of senior technical aeronautics, and launch vehicle programs. Ongoing technical support, such as last year's continuous monitoring of the final stages of preparation for the repair of the Hubble Space Telescope, is also

supports the establishment of NASA-wide standards and practices for design, manufacture, and test of flight In the Technical Standards area, funds are provided for the development of NASA engineering standards and systems. Finally, funds provided for Quality Assurance support the development of standards for parts capabilities required to enhance the safety, reliability, and performance of NASA missions. quality, product assurance, materials and processes, handling, and test procedures. The TQI program supports a large number of projects required to document and to verify the flight quality of parts used in NASA flight systems; to examine new methods in areas such as spacecraft wiring, microcircuit systems evaluation, such as nondestructive evaluation. Results from these program activities support the design and manufacture, and spacecraft battery production and operation; and to evaluate new methods of development of future space projects and will lead to improvements in overall mission capability.

initiatives in this emerging area of systems evaluation. Other programs in support of NASA-wide information systems for the archiving and distribution of flight system assurance information are also funded under this Finally, NASA's SIV&V program provides for a new comprehensive Agency focus on software assurance practices related to NASA flight, ground control, and science data processing systems. The OSMA funding provides for the operation and maintenance of NASA's IV&V facility located at Fairmont, West Virginia, and for research program element

BASIS OF FY 1995 ESTIMATE

policy and standards formulation; safety and risk management; spaceflight, robotics, and aeronautics systems develop its systems engineering and concurrent engineering concepts and programs; its software IV&V program; software IV&V. Through careful use of the funds provided under the SRM&QA program, NASA will continue to In FY 1995, OSMA will continue to perform NASA assurance assessments and conduct ongoing activities in assurance; systems engineering; quality assurance; technology qualification and standardization; and and its assurance metrics program.

offices in systems planning and program execution; and will extend the development of NASA's Lessons Learned decisions, spaceflight systems development, and NASA program planning; will establish an Independent Safety program, using data derived from the earliest developmental phases to enable program management to build on and Mission Assurance (S&MA) program for the Space Station program; will increase support to NASA program In FY 1995, OSMA also will emphasize its use of risk management methods in support of space launch Agency and industry experiences.

MISSION SUPPORT

FISCAL YEAR 1995 ESTIMATES

BUDGET SUMMARY

OFFICE OF SPACE COMMUNICATIONS

SERVICES		Page <u>Number</u>	MS 2-4 MS 2-8	
SPACE COMMUNICATION SERVICES		FY 1995	154,000 114,900	268,900
SPACE CO	IREMENTS	FY 1994 (Thousands of dollars)	83,500 130,90 <u>0</u>	214,400
	SOURCES REQU	FY 1993	199,106 134,609	333,715
OFFICE OF SPACE COMMUNICATIONS	SUMMARY OF RESOURCES REQUIREMENTS		Space networkTelecommunications	Total

Distribution of Program Amount by Installation

Johnson Space Center	209	•	1
naisnail Space Filght Center	58.287	59,600	50,100
rewis negation center	250	,	1
Goddard Space Flight Center	253,956	145,395	210,300
Jet Propulsion Laboratory	12,804	6,000	7,500
Headquarters	8,209	3,405	1,000
Total	333,715	214,400	268.900

MISSION SUPPORT

FISCAL YEAR 1995 ESTIMATES

OFFICE OF SPACE COMMUNICATIONS

SPACE COMMUNICATION SERVICES

OBJECTIVES AND JUSTIFICATION

of Tracking and Data Relay Satellites (TDRS) required to sustain operational support to those NASA and other communication among all elements of the NASA and associated activities. This program funds the development requirements. Ground terminals at White Sands, New Mexico which provide tracking and communication access The Space Communication Services program provides user satellite-to-ground and point-to-point terrestrial (NASCOM) and the Program Support Communications Network (PSCN) which serve to interconnect all of NASA's worldwide tracking network facilities with NASA and other spacecraft control centers and data processing for the TDRS System (TDRSS) are also provided under this program element. Finally, NASA Communications domestic and international users who depend on NASA's Space Network for their space communication facilities located throughout the Nation.

network and other user support services, are contained in this appropriation. The NASCOM and PSCN services Support. NASA Space Network capabilities other than those required solely to provide user access to the Beginning in FY 1995, funding for these activities is requested under the NASA appropriation for Mission and capabilities, which are not easily allocable to individual end users, are also included in NASA's Mission Support appropriation.

The Office of Space Communications provides vital tracking, telemetry, command, data acquisition services communications for the Hubble Space Telescope, NASA's premier astronomical observatory; the Compton Gamma communications programs is the primary tracking, telemetry, command and data acquisition system for low-These capabilities are also made available to Earth-orbiting spacecraft including the Space Transportation System (STS) and its payloads, observatory The Space Network and TDRS also will provide operational communication with NASA's Earth The Space Network portion of NASA's As such, the Space Network provides the flight Ray Observatory; the Upper Atmospheric Research Satellite; and other Earth science and astronomical other domestic and international users on a reimbursable basis. and communications required by all NASA flight projects. class missions, and other TDRS compatible missions, Observing System

Space Network for all STS operations. Remote operation of all Spacelab payloads is also provided through The Space Network is the principal means of communication with the STS. providing primary support for all on-orbit procedures. Voice communication and televideo communication services are provided through the In the future, TDRSS will also play a fundamental role in NASA's human spaceflight program through the communication access it will provide to the Space Station and in STS rendezvous with the Russian Mir station. In addition to the replacement of TDRS spacecraft, ongoing maintenance, refurbishment and improvement of the facility, in addition to the existing Cacique ground terminal complex, the new title for the White Sands ground elements of the Space Network is also needed. Initial operation of the Danzante ground terminal complex, the new title for the Second TDRSS Ground Terminal (STGT) is scheduled for March 1994. This Ground Terminal (WSGT), will provide new, more reliable access by users to their orbiting spaceflight Finally, through its NASCOM and PSCN services, NASA provides point-to-point communication services among its Kennedy Space Center (KSC) and the Dryden Flight Research Facility (DFRF); a medium rate system for the Deep capabilities serve to support a wide ranging network of participants towards the advancement of the Nation's voice and video conferencing, facsimile and electronic mail services among its many users. Together, these departments to NASA spaceflight and aeronautics facilities in order to participate in NASA flight programs or to conduct mission operations for their own flight programs supported on a reimbursable basis by NASA's Space and Ground Networks; and provides nationwide access by educational facilities and the general public Space Network (DSN); and a high rate system for the Space Network. The PSCN provides computer networking, facilities; provides access by scientists, laboratories, industry researchers, and other U.S. agencies and to information on NASA programs. The NASCOM network provides three classes of service for the conduct of a relatively low data rate system for the launch and landing facilities at the own facilities and remote activities using leased land lines and other satellite telecommunications future in science and technology. spaceflight programs:

BASIS OF FY 1995 FUNDING REQUIREMENT

SPACE NETWORK

FY 1995		7,200	000'9	22,200	100,000	18,600	154,000
FY 1994	(Thousands of dollars)	10,100	46,100	5,700	2,600	19,000	83,500
FY 1993		25.817	93,889	6,300	,	73,100	199,106
	Tracking and data relay satellite	system (TDRSS)	Space network services	TDRS replacement spacecraft	TDRS replenishment spacecraft	Second TDRSS ground terminal	Total

OBJECTIVES AND JUSTIFICATION

functional satellite is being operated to reduce schedule overloads during Shuttle missions; the other will be repositioned to increase data return from the Compton Gamma Ray Observatory (CGRO). The CGRO, which has The last satellite, launched in January 1993, serves as a backup spacecraft. One partially current TDRS constellation consists of three fully functional satellites, and two partially functional The Space Network consists of the Tracking and Data Relay Satellites (TDRS) and the associated ground experienced problems with its tape recorder subsystem, required a remote ground terminal in order to elements necessary to meet the communications requirements of low-Earth orbital spacecraft missions. complete its scientific mission. satellites.

Network support, or \$38 million in FY 1995, will be recorded by NASA as an offset to our budget request for reimbursements. Beginning in FY 1995, 100% of the anticipated reimbursement from external users for Space the Space Network Services program. Additional reduction of services provided by the TDRSS to NASA users Although some reduction of the current level of services is planned in FY 1995 from that performed in FY 1994 by the Space Network program, decreases in the amount requested for Space Network Services is primarily due to a change of financial management assumptions in the recording of planned offsetting will be required to meet the FY 1995 funding targets.

The network provides ground uplink and downlink communication facilities at White Sands, The TDRSS is the core of the Space Network, providing inflight communication with spacecraft operating in New Mexico. In FY 1994, two ground terminal complexes, the Second TDRSS Ground Terminal (STGT) and the low-Earth orbit.

The STGT and the WSGT are White Sands Ground Terminal (WSGT), will both be operating for the first time. co-located at NASA's White Sands communications complex.

Network to various spaceflight systems on orbit. Currently, the Space Network system provides communication and televideo communications with the Space Transportation System (STS) are provided via the TDRS and Space and services to the Hubble Space Telescope (HST), the CGRO, the Upper Atmosphere Research Satellite (UARS), Command and control of robotics systems and voice the Earth Radiation Budget Satellite (ERBS). the Extreme Ultraviolet Explorer (EUVE), the Ocean Topography Experiment (TOPEX), the Cosmic Background Explorer (COBE), the STS and its attached payloads, and other domestic users. All of these will require support in FY 1995, except for COBE whose operations will be Once returned to the ground, user's data is transferred via the NASA Communications (NASCOM) system to Payload Operations Control Centers at various locations. terminated in FY 1994.

ø will begin to be transferred to the Space Network Services program. The Space Network Services program is customer oriented services to Space Network users, including funds for the Network Control Center at GSFC. Beginning in FY 1995, responsibility for funding of the operation of the Space Network ground facilities Technology appropriation will provide funds for the control of the network user interface and to provide new funding element for NASA's communication program beginning in FY 1995. It combines activities that appropriations. The Space Network Customer Services program contained in the Science, Aeronautics and Engineering and Support programs, in addition to the White Sands Ground Terminal operations currently support multiple customers previously performed under the Space Network Operations and the Systems Also beginning in FY 1995, funds to support the operation and improvement of the ground elements of the Space Network will be provided under two separate NASA performed under the TDRSS contract.

The two partially degraded spacecraft, TDRS-1 and TDRS-3 will be utilized to increase data return coverage from 15% to 85% and the available data rates by a factor of six, fifteen ground stations have been closed and operating costs reduced. A continuing spacecraft replenishment program is considered essential redundant systems. The TDRS-6 was successfully launched in January 1993 to ensure uninterrupted essential by NASA to ensure reliable continuation of this service into the next century. The TDRS-4 and TDRS-5 are fully functional, with one positioned in the west and the other in the east. The TDRS-4 is operating The TDRSS program has been very successful over its ten year history. While increasing NASA's global from the CGRO and to reduce schedule overloads during Shuttle missions, respectively.

incorporating design changes to improve reliability. Final hardware deliveries have been made, and critical The TDRS-7 spacecraft, funded under the TDRS Replacement Spacecraft program, is functionally identical to the previously produced satellites. Its development program is scheduled for completion in June 1995. TDRS-7 provides a simple replacement capability for the current constellation of satellites while integration and test activities are scheduled to be completed in FY 1994.

(EOS) cannot accomplish their objectives without a reliable Space Network. The investment in these programs STS, the HST, the CGRO, TOPEX and future missions such as the Space Station and the Earth Observing System requirements for operating current and approved new missions cannot be met. Present programs such as the Late in this decade many of the initial TDRS satellites will have exceeded their expected lifetime. Analyses indicate that without additional spacecraft, a substantial part of NASA's communications must be balanced by a continuing capital investment in replenishment spacecraft.

initiate development of TDRS-8 through TDRS-10 under the TDRS Replenishment Spacecraft program beginning in FY 1995 to assure continuity of network service. A minimal amount of funding has been set aside by NASA in benchmark for reliable and secure space communications services that represent a national asset. NASA will Prospective offerors will be required to make contractual commitments to deliver on-orbit TDRS capability Funding is requested to conduct a viable replenishment strategy for the space-based assets of the Space Network. Prior investments in the ground terminals and spacecraft of this network have established a FY 1994 for the initiation of procurement activities leading up to contract award early in FY 1995 under a fixed price agreement.

trial period of operation, the WSGT will be closed in order to modernize its equipment to provide more costexpense. The STGT is scheduled to transition to initial operational capability in March 1994. Following a The Second TDRSS Ground Terminal (STGT) program is nearing completion. This program will eliminate a critical single point of failure of the existing White Sands Ground Terminal (WSGT) and lower operations effective and reliable communications.

completion, will allow the STGT complex to begin operations. Parallel operations with the WSGT will begin System level testing of the STGT complex has been completed. The Pennsylvania test berth has been closed, shortly thereafter. By the end of FY 1994, the STGT is scheduled to assume the day-to-day operational Network level testing is now underway which, upon workload of the TDRSS, allowing the modernization of the WSGT to commence. and all systems have been shipped to New Mexico.

BASIS OF FY 1995 ESTIMATE

of existing equipment and preparation of the WSGT for modernization. Remaining TDRSS funding will provide At that time, the original terminal will undergo modification. The TDRSS program will support the removal During FY 1995, operations and maintenance of the WSGT will cease when the STGT becomes fully operational. calibration of the new equipment suite. Future funding requirements for the operation of the White Sands for the operations and maintenance staff who will remove and install equipment and conduct testing and complex will be funded from the Space Network Services program. Funds requested for the TDRS Replacement Spacecraft program will allow for completion of the satellite's assembly and test program and final preparation for the scheduled launch in July 1995 aboard the STS.

contract for the spacecraft in early FY 1995. This level of funding will support the procurement of three TDRS spacecraft. Current plans are to issue a fixed-price contract with limitations upon the Government's are also requested for the TDRS Replenishment Spacecraft program which will allow NASA to enter into a liability pending successful on-orbit performance of the satellite system. The first replenishment spacecraft is planned to be available for launch four years after contract award. Funding requested for the Second TDRSS Ground Terminal program in FY 1995 will provide for the modernization of the WSGT. When the STGT becomes operational, the WSGT will be remodeled and new equipment identical to the STGT will be installed. The WSGT antennas will be modified and refurbished. When testing has been completed, the WSGT will be returned to operations. A third Space-Ground Link Terminal (SGLT) will be retained at the STGT for use as a diagnostic tool and will be installed at WSGT later in the year.

BASIS OF FY 1994 FUNDING REQUIREMENT

TELECOMMUNICATIONS

<u>FY 1995</u>	9,800 105,100	114,900
FY 1994 (Thousands of dollars)	11,800 119,100	130,900
FY 1993	8,694 125,915	134,609
	Communications systems implementation	Total

OBJECTIVES AND STATUS

MASA mission operations control centers and the NASA Networks. The NASCOM also provides linkages to mobile missions and other user's missions supported by NASA communications, and to the management and execution of data transfer between Space and Ground Network ground stations, the spacecraft mission control centers, and Communications (NASCOM) network and the Program Support Communications Network (PSCN). The NASCOM network provides for the transmission of data, video, and voice information among NASA installations and between computer networking services, voice and video conferencing, broadcast television service, and high-speed tracking stations. The PSCN provides administrative and data handling services to international space institutions. The transmission and sharing of information is critical to the success of NASA's flight NASA's development programs and other activities. Included in NASA's Telecommunications program are NASA's Telecommunications program supports the operation, maintenance, and improvement of the NASA agencies, other domestic users, scientists, laboratories, aerospace contractors, and educational distributed data processing facilities.

Due to fiscal constraints upon the entire NASA program in FY 1994, the Telecommunications program will be Information regarding specific required to reduce the cost, scope and quality of current services. reductions will be available as further assessments are conducted.

at the Goddard Space Flight Center (GSFC). The overseas elements of NASCOM employ a sub-switching center at to multiple overseas destinations, and to achieve optimum utilization of circuit bandwidth. Direct services The NASCOM network interconnects the tracking and data acquisition facilities for all NASA and other user's flight projects via leased voice, data, video, and wideband circuits. The NASCOM control center is located the Jet Propulsion Laboratory (JPL) to improve diversity of communications services, to ensure connectivity from Madrid and Australia to the JPL were established in FY 1992 to economically provide the increased bandwidth required by new missions under development.

and video teleconferencing. Control facilities for the PSCN are located at the Marshall Space Flight Center information and scientific data. The PSCN services include computer networking, electronic mail, and voice NASA's PSCN provides communication links among NASA Field Centers and NASA Headquarters, and between remote NASA facilities and NASA contractors and university facilities for the transfer of program management

Many domestic PSCN circuits within the U.S. are provided by the Federal Telecommunications System (FTS) 2000 made with the General Services Administration (GSA) to modify the FTS 2000 contract to permit the provision program. Because of the critical nature of the real-time communications, special arrangements are being PSCN circuits are outside of the scope of the current FTS 2000 program and are managed by NASA under of increased reliability and flexibility for the FTS services required for NASA applications. separate arrangements.

The Communications Systems Implementation program provides necessary augmentation of the capability of the NASCOM system to meet new NASA flight program requirements, to increase the efficiency of NASCOM services, and to maintain reliable and secure data transmission among U.S. spacecraft and their control centers.

Significant upgrades to the NASCOM system scheduled to be completed in FY 1994 include the upgrade of the multiplexer/demultiplexer (MDM) system between the White Sands complex, the GSFC, and the Johnson Space Center (JSC); and the replacement of the Digital Matrix Switch with the Digital Communications Switch. data handling capability of the Deep Space Network (DSN) to 768 K b/s: the implementation of a new

The Communications Operations program performs management, operation, and sustainment of the NASCOM and PSCN systems,

BASIS OF FY 1995 ESTIMATE

and Space Networks, and remote tracking and data acquisition stations. FY 1995 funds will support delivery FY 1995 funding for the Communications Systems Implementation program will provide the necessary equipment services and equipment required to provide communication access to spacecraft, launch sites, NASA's Ground of science data to various locations that require access to NASA control centers to access their flight requirements established by users of spaceflight systems' science data. The budget request reflects acquisitions and sustaining engineering modifications necessary to continue support of operational

missions and the interconnect that will begin with the newly completed Second TDRSS Ground Terminal ground provide the level of NASCOM services required for mission operations, and to support planning for new The requested FY 1995 funding for the Communications Operations program supports NASA's capability to

terminal at the White Sands, New Mexico complex. The PSCN will continue to provide circuits, facilities, and systems integration support to various users of the network.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FISCAL YEAR 1995 ESTIMATES

TABLE OF CONTENTS

RESEARCH AND PROGRAM MANAGEMENT

Summary Information and Tables	Page	Page Number	
General Statement	RPM S	SUM 1	
Summary of budget plan by function	RPM SI	SUM 5	
Distribution of full-time equivalent (FTE) workyears by installation	RPM S	SUM 12	
Summary of budget plan by installation	RPM SI	SUM 13	
Distribution of full-time equivalent (FTE) workyears by program	RPM SI	SUM 14	
Distribution of budget plan by function by installation	RPM SI	SUM 15	
Detail of permanent positions	RPM SI	SUM 16	
Personnel summary	RPM SI	SUM 17	
Installation Justification			
Johnson Space Center	RPM	1-1 thru 7	
Kennedy Space Center	RPM	2-1 thru 6	
Marshall Space Flight	RPM	3-1 thru 7	
Stennis Space Center	RPM	4-1 thru 7	
Space Station Program Office	RPM	5-1 thru 5	
Goddard Space Flight Center	RPM	6-1 thru 7	
Ames Research Center	RPM	7-1 thru 7	
Langley Research Center	RPM	8-1 thru 7	
Lewis Research Center	RPM	9-1 thru 7	
NASA Headquarters	RPM	10-1 thru	æ

RESEARCH AND PROGRAM MANAGEMENT

FISCAL YEAR 1995 ESTIMATES

GENERAL STATEMENT

Funding for Research and Program Management (R&PM) provides the salaries, personnel and related costs, travel and the necessary support for all of NASA's administrative functions and other basic services in support of research and development activities at NASA field installations. Consistent with the new budget structure, Research Operations Support funding previously included in the Research and Development and Space Flight, Control, and Data Communications appropriations has been consolidated in Research and Program Management

select and monitor the contractors; manage the various research, development, and test activities; and oversee These are the people who plan the programs, conduct and oversee the research; The NASA civil service workforce is the underpinning for the successful accomplishment of the Nation's civil percent of the requested appropriation is required to fund travel necessary to manage NASA and its programs, all of NASA's operations. The salaries and benefits of this workforce comprise approximately 76 percent of the requested appropriation. Administrative and other support is 22 percent of the request. and provide the training and other supporting costs for NASA personnel. aeronautics and space programs.

savings in the institutional support for NASA, the Congress directed a further reduction of \$25 million in the aggressively examined every activity which supports the institutional operations at NASA. The NASA management FY 1994 appropriation (P.L. 103-124) for Research Operations Support, and the proposed \$95 million rescission Funding for the institutional support of NASA is reduced significantly from the FY 1994 level, and plans are being implemented to achieve that savings. The FY 1994 budget request incorporated significant team is committed to making sure all of its activities are conducted in the most efficient and effective The FY 1995 budget signals a new way of doing business across the board and the NASA workforce has includes another reduction of \$10 million.

The FY 1995 request supports a total FTE ceiling level of 22,700 (plus 728 FTE for previously ceiling-exempt In P.L. 103-124, the Congress directed NASA to reach an end-This is a reduction of 837 FTE from the FY 1994 level and a of-year employment level of 22,900, a reduction of 1,000 FTE from the FY 1993 level, and reduced funding for positions exclusive of the Inspector General). reduction of 1,284 FTE from the FY 1993 level.

RPM SUM 1

authority is granted. Unless buyout authority is granted, the ability to achieve the employment ceiling will This reduction was based on the restructure granted the authority by the Office of Personnel Management (OPM) to offer early retirement incentives, and The House and senate have To enable NASA to achieve this reduction through attrition, the agency was Reorganization Act of 1993 (H.R. 2876), and final action has not been taken. As a result of this delayed action, attrition has slowed because employees have delayed making retirement decisions until the buyout passed slightly different versions of the National Aeronautics and Space Administration Management authority was requested from Congress to offer separation incentives (buyouts). Research and Program Management consistent with that reduction. of the Space Station program. be severely jeopardized.

increased salaries and expenses requirements due to the delay in reducing employment levels, the President is The FY 1994 funding level for Research and Program Management has been further strained by implementation of locality pay in January 1994. In order to meet the increased costs of locality pay implementation, and the These funds are obtained through the rescission of \$95 million of Research and Development and proposing legislation for a supplemental appropriation in FY 1994 of \$60 million in Research and Program rescission/supplemental legislation is required to avoid a highly disruptive furlough of the entire NASA workforce. The funding plan proposed for FY 1995 assumes positive action on the rescission/supplemental legislation and H.R. 2876, and assumes that FTE levels in FY 1994 are achieved. Space Flight, Control, and Data Communications, so the entire transaction remains outlay neutral. This

NASA Field Centers report to the various Program Associate Administrators responsible for the major portion of their technical programs. The principal roles assigned to each Installation, based on demonstrated capabilities and capacities to meet NASA's overall program goals, are described below:

OFFICE OF SPACE FLIGHT:

Johnson Space Center (JSC) - Management, selection, and training of astronauts and mission specialists, Space Station and Shuttle Flight operations, including mission planning, operational procedures, and flight control.

payload checkout and integration with the Shuttle, Shuttle launch and post landing processing, and Space - Management of Shuttle Launch Operations, including orbiter processing, Kennedy Space Center (KSC) Station launch processing. Marshall Space Flight Center (MSFC) - Management of the Space Shuttle Main Engine, Redesigned Solid Rocket

Motor, Solid Rocket Booster, and External Tank projects; management of NASA's activities on the Spacelab experiments in materials processing in space; and payload integration activities for the Space Station. project, management of Advanced X-Ray Astrophysics Facility development; development and conducting of

- Space Shuttle engine testing, and Earth resources research and technology Stennis Space Center (SSC)

Space Station Program Office (JSC) - Management of the design, development, integration, test, qualification and production of the flight hardware and software associated with the redesign of the Space Station.

OFFICE OF MISSION TO PLANET EARTH

The Wallops Flight Facility balloons; operation of an instrumented flight range for aeronautical and space research and procurement of expendable launch services for small and medium payloads. The Goddard Space Flight Center has also begun Goddard Space Flight Center (GSFC) - Development and operation of Earth orbital flight experiments and management of tracking and data acquisition activities; management and launch of sounding rockets and automated spacecraft to conduct scientific investigations and to demonstrate practical applications; is an operational element and component installation of the Goddard Space Flight Center, development of the Earth Observing System (EOS) and its associated data system.

OFFICE OF AERONAUTICAL RESEARCH AND TECHNOLOGY

life sciences dealing with gravitational biology, and exobiology; human factors; autonomous systems; guidance computational/numerical simulation rotorcraft technology; short and vertical takeoff and landing technology; <u>Ames Research Center (ARC)</u> - Conduct of activities involving computational aerodynamics and flight testing, and control; and operation of an alternate landing site for the Space Shuttle missions. The Dryden Flight Research Facility (DFRF) is an operational element and component installation of the Ames Research Center. Effective March 1, 1994, the DFRF will be established as a separate entity and will no longer be a Ames Research Center.

sensing; advanced conceptual space system design independent assessments; research in the areas of structures hypersonic propulsion; experimental and theoretical aerodynamics; environmental quality monitoring by remote Langley Research Center (LaRC) - Conduct of airframe aerodynamics and structures research and technology;

and materials, guidance and controls; and airframe/propulsion integration of the transatmospheric research and technology program.

Lewis Research Center (LeRC) - Conduct of aeronautical propulsion, electric space propulsion, and space power research and technology; space communications research and technology; development of microgravity sciences for fluid physics and combustion science; and procurement of expendable launch services on intermediate and large payload vehicles

NASA HEADQUARTERS (HQ) - Overall executive direction of NASA's programs and activities, including functional management of such areas as personnel policies and development, Equal Employment Opportunity, procurement, financial management, information resource management, logistics, etc.

SUMMARY OF FUNDING REQUIREMENTS

Detailed data on funding requirements are provided in the section on each Installation. A summary description The FY 1995 Budget provides the necessary resources to apply in-house capabilities to program activities. of, and the funding required by the functional category includes:

- Personnel and Related Costs (\$1,684,500,000) (assuming reappropriation approval): Includes salaries and This category also includes other personnel and related costs such as, moving expenses (excluding the associated travel of people); recruiting and personnel investigation services provided by the Office of personnel of other Government agencies detailed to NASA. In FY 1995, the budget provides for 23,428 FTE benefits, the Government's contribution to personnel benefits for NASA civil service employees, and for workyears (22,700 and 728 formerly categorized as ceiling exempt employees), exclusive of the Inspector Personnel Management; and the training of NASA civil service employees.
- domestic and foreign -- of civil service employees who travel for coordination and management of NASA program Travel (\$48,700,000): Includes the cost of transportation, per diem, and related travel expensesactivities including contract management; flight mission support; meetings and technical seminars and symposia; and for permanent and temporary relocations.
- staff as well as providing significant support service to the entire civil service staff. It also provides Research Operations Support (\$487,100,000): Includes all required support to NASA's administrative for maintenance of roads and grounds and other institutional facilities.

SUMMARY OF THE BUDGET PLAN BY FUNCTION

		<u>FY 1993</u> (Tho	<u>93 FY 1994 FY</u> (Thousands of Dollars)	<u>FY 1995</u> lars)
н	Personnel and Related Costs	1,569,359	1,649,508	1,684,500
II.	Travel	45,477	46,000	48,700
III.	FY 1993 Supplemental Appropriation (P.L. 103-50)	20,000*	0	0
IV.	Reduction if reappropriation not approved	0	-60,000	0
. >	Research Operations Support	536,552	512,711	487,100
	Total, NASA	2,171,388	2,148,219	2,220,300

*Funds appropriated in FY 1993 to accommodate Space Station related activities

BASIS OF THE FY 1995 ESTIMATE

1994 Estimate assuming reappropriation approval. This increase provides for a civil service ceiling of 23,428 FTE workyears (22,700 plus 700 formerly categorized as ceiling exempt employees), the cost of the FY 1994 pay raise, anticipated pay increases in 1995, travel consistent with increased transportation and related costs Costs, \$2.7 million for Travel, and a decrease of \$25.6 million for Research Operations Support over the FY and program requirements, and the transfer of the Research Operations Support budget of \$487.1 million into The FY 1995 Estimate of \$2,220.3 million represents an increase of \$35.0 million for Personnel and Related Research and Program Management.

- I. <u>Personnel and Related Costs (\$1,684,500,000)</u>: The FY 1995 estimate for Personnel and Related Costs is \$35.0 million higher than FY 1994. The basis for the increase is the January 1994 locality based pay raise and an OMB anticipated pay increase in January of 1995.
- accomplishment of its programs and providing responsible oversight of these contractors requires considerable travel to the contractor locations. Additionally, the launch of a major payload on the Space Transportation required to coordinate Agency management and administration, for professional development and training, and The FY 1995 increase of \$2.7 Travel (\$48,700,000): NASA relies very heavily on contracts with the private sector for the actual program travel is approximately two-thirds of NASA's travel expenditures. The remaining travel funds are million in travel is consistent with increased transportation and related costs and program requirements. System involves the integration and coordination of a very large number of people and activities. only be effectively accomplished by holding multiple pre-launch meetings in multiple locations. for the transportation of new and transferred employees to new duty stations.
- services, transportation, medical (other than astronaut), security, and fire protection as well as maintenance workforce and to the physical plant at the Centers and at NASA Headquarters. This funding supports the basic Research Operations Support (\$487,100,000): This account provides vital support to the civil service core administrative Centerwide services for civil service staff, such as mail, telephones, janitorial of roads, grounds, and all requirements of administrative buildings. III.

In summary, the FY 1995 budget requirement of \$2,220,300,000 is to provide for 23,428 FTE workyears (22,700 plus 728 formerly categorized as ceiling exempt employees) to support the activities at eight NASA Installations and Headquarters.

RPM SUM 7

DETAIL OF CONTENTS BY FUNCTION

I. Personnel and Related Costs

A. Compensation and Benefits

1. Compensation:

- Permanent Positions: This part of Personnel and Related Costs covers the salaries the full-time permanent civil service workforce and is the largest portion of this functional category.
- students participating in cooperative training, summer employment, youth opportunity, Programs such as Presidential Management Interns, Other Than Full-Time Permanent Positions: This category includes the salaries of and temporary clerical support are covered in this category. NASA's non-permanent workforce. . م
- Reimbursable Detailees: In accordance with existing agreements, NASA reimburses the parent Federal organization for the salaries and related costs of persons detailed ΰ
- Overtime and Other Compensation: Overtime, holiday, post and night differential, and hazardous duty pay are included in this category. Also included are incentive awards for outstanding achievement and superior performance. ъ
- employer's contribution to personnel benefits. These benefits include contributions to the Benefits: In addition to compensation, NASA, as authorized and required by law, makes the annuitants and severance pay to former employees involuntarily separated through no fault Civil Service Retirement Fund, the Federal Employees Retirement System, employees' life and health insurance, payments to the Medicare fund for permanent employees, and social security contributions. Payments to the civil service retirement fund for re-employed of their own are also included. . د

RPM SUM 8

B. Supporting Costs:

- such as the expenses of selling and buying a home, subsistence expenses, and the movement and Transfer of Personnel: Provided under this category are relocation costs required by law, storage of household goods. ij.
- Investigative Services: The Office of Personnel Management is reimbursed for activities such as security investigations of new hires and revalidation of sensitive position clearances, recruitment advertising, and Federal wage system surveys. 7
- Part of the training costs are for courses offered by other Government Training is provided within the framework of the Government Employees agencies, and the remainder is for training through nongovernment sources. Training Act of 1958. Personnel Training: ω.

II. Travel

- required for flight projects is significant as it is directly related to the number of systems and prelaunch activities including overseas travel to launch and tracking sites. The amount of travel necessitate this category of travel. As projects reach the flight stage, support is required for subsystems, the number of design reviews, and the number and complexity of the launches and The largest part of travel is for direction, coordination, and management of program activities including international programs and activities. The complexity of the programs and the geographical distribution of NASA Installations and contractors associated ground operations. Program Travel: Ä
- present both accomplishments and problems to their associates and provides for the dissemination of from exposure to technological advances which arise outside NASA, as well as allowing personnel to seminars permits employees engaged in research and development to participate in both Government Scientific and Technical Development Travel: Travel to scientific and technical meetings and This participation allows personnel sponsored and nongovernment sponsored activities. technical results to the United States community. m.

areas as personnel, financial management, and procurement. This category also includes review the status of programs. It also includes travel by functional managers in such the cost of travel of unpaid members of research advisory committees; and initial duty Management and Operations Travel: Management and operations travel provides for the direction and coordination of general management matters and travel by officials to station, permanent change of assignment, and related travel expenses. υ.

III. Research Operations Support

- buildings and facilities. Finally, it provides rental of administrative buildings and all utility It also provides maintenance of roads and grounds and of all administrative Facilities Services provides basic security, fire protection, and other costs of administrative buildings. custodial services. Ä.
- capability that supports Accounting, Payroll, Budgeting, Procurement, Personnel as well as all Technical Services: Technical Services provides the Administrative Automatic Data Processing other Administrative functions. It also funds the Graphics and Photographic support to these functions. Finally, it funds the Centerwide safety and public information programs. m m
- general purpose motor pools and the program support aircraft. It also funds the basic medical and Finally, it funds printing and reproduction and all other support, systems, the administrative equipment and supplies, and the transportation system including the Management and Operations: Management and Operations funds the telephone, mail, and logistics such as small contract and purchases for the Center Directors staff and the Administrative environmental health programs. functions.

ς.

RPM SUM 10

CENTER LOCATIONS AND CAPITAL INVESTMENT

NASA owns 1,618 acres of land at the Houston site and uses another 60,552 at the White Sands Test Facility, sas Cruces, New Mexico. The total capital investment including land, buildings, structures and facilities, JOHNSON SPACE CENTER - The Lyndon B. Johnson Space Center is located 20 miles southeast of Houston, Texas. equipment, and other fixed assets was \$1,202,176,000 as of September 30, 1993.

total capital investment including land, buildings, structures and facilities, equipment, and other fixed 82,943 acres and uses launch facilities at Cape Canaveral Air Station and Vandenberg Air Force Base. KENNEDY SPACE CENTER - The Kennedy Space Center is located 50 miles east of Orlando, Florida. assets was \$2,278,377,000 as of September 30, 1993.

including land, buildings, structures and facilities, equipment, and other fixed assets was \$1,387,316,000 as MARSHALL SPACE FLIGHT CENTER - The Marshall Space Flight Center is located within the U.S. Army's Redstone Arsenal at Huntsville, Alabama. MSFC also manages operation at the Michoud Assembly 15 miles east of New The total capital investment Orleans, Louisiana and the Slidell Computer Complex in Slidell, Louisiana. of September 30, 1993.

The total capital **STENNIS SPACE CENTER** - The Stennis Space Center is located approximately 50 miles northeast of New Orleans, investment including land, buildings, structures and facilities, equipment, and other fixed assets was Louisiana. NASA owns 20,588 acres and has easements covering an additional 118,284 acres. \$462,884,000 as of September 30, 1993.

Wallops Flight Facility in Wallops Island, Virginia. The total capital investment including land, buildings, GODDARD SPACE FLIGHT CENTER - The Goddard Space Flight Center is located 15 miles northeast of Washington D.C. at Greenbelt, Maryland. NASA owns 1,106 acres at this location and an additional 6,176 acres at the structures and facilities, equipment, and other fixed assets at both locations was \$1,120,634,000 as of

The Dryden facility was under the operation of Ames until a decision was made in early 1994 that The total capital investment including land, buildings, structures and facilities, equipment, and other fixed The Dryden Flight Research Facility is located 65 miles northeast of Los Angeles at Edwards Air each facility will operate under separate management. NASA owns 429.9 acres at the Moffett Field location. AMES RESEARCH CENTER - The Ames Research Center is located south of San Francisco on Moffett Field, assets at both locations was \$1,289,430,000 as of September 30, 1993. California.

The total capital investment including land, buildings, structures and facilities, equipment, and other fixed LANGLEY RESEARCH CENTER - The Langley Research Center is adjacent to Langley Air Force Base which is located between Williamsburg and Norfolk at Hampton, Virginia. NASA owns 807 acres and has access to 3,276 acres. assets was \$1,060,215,000 as of September 30, 1993.

adjacent to Cleveland-Hopkins Airport; the second site is the Plum Brook Station located south of Sandusky, LEWIS RESEARCH CENTER - The Lewis Research Center occupies two sites; the main site is in Cleveland, Ohio, Cleveland location. The total capital investment including land, buildings, structures and facilities, Ohio, and 50 miles west of Cleveland. NASA owns 6,820 acres and leases an additional 14 acres at the equipment, and other fixed assets at both locations was \$766,241,000 as September 30, 1993. **NASA HEADQUARTERS** - NASA Headquarters is located at Two Independence Square, 300 E St. SW, Washington, DC and occupies other buildings in the District of Columbia, Maryland, and Virginia

DISTRIBUTION OF FULL TIME EQUIVALENT WORKYEARS BY INSTALLATION

	FY 1993	FY 1994	FY 1995
JOHNSON SPACE CENTER	3,606	3,415	3,189
KENNEDY SPACE CENTER	2,512	2,457	2,348
MARSHALL SPACE FLIGHT CENTER	3,659	3,595	3,298
STENNIS SPACE CENTER	509	200	209
SPACE STATION PROGRAM OFFICE	0	240	300
GODDARD SPACE FLIGHT CENTER	3,934	3,881	3,856
AMES RESEARCH CENTER	2,210	2,126	2,149
LANGLEY RESEARCH CENTER	2,902	2,821	2,810
LEWIS RESEARCH CENTER	2,753	2,698	2,524
HEADQUARTERS	1,912	1,835	1,753
SUBTOTAL, FULL-TIME PERMAMENT WORKYEARS	23,697	23,268	22,436
OTHER THAN FULL-TIME PERMAMENT WORKYEARS	267	269	264
SUBTOTAL, FTEs	23,964	23,537	22,700
FORMER NON-CEILING	728	728	728
GRAND TOTAL, FTEs	24,692	24,265	23,428

SUMMARY OF BUDGET PLAN BY INSTALLATION (THOUSANDS OF DOLLARS)

	FY 1993	FY 1994	FY 1995
JOHNSON SPACE CENTER	252,539	261,377	264,130
KENNEDY SPACE CENTER	161,022	168,088	169,248
MARSHALL SPACE FLIGHT CENTER	236,872	242,292	246,144
STENNIS SPACE CENTER	14,563	15,300	15,796
SPACE STATION PROGRAM OFFICE	0	25,346	26,707
GODDARD SPACE FLIGHT CENTER	257,844	266,122	279,092
AMES RESEARCH CENTER	163,230	168,334	174,054
LANGLEY RESEARCH CENTER	179,242	186,013	194,049
LEWIS RESEARCH CENTER	178,325	186,035	186,796
HEADQUARTERS	171,199	176,601	177,184
S/TOTAL, RESEARCH AND PROGRAM MANAGEMENT	1,614,836	1,695,508	1,733,200
FY 1993 SUPPLEMENTAL APPROPRIATION (P.L. 103-50)	20,000	0	0
REDUCTION IF REAPPROPRIATION NOT APPROVED	0	(000'09)	0
RESEARCH OPERATIONS SUPPORT	536,552	512,711	487,100
TOTAL, RESEARCH AND PROGRAM MANAGEMENT	2,171,388	2,148,219	2,220,300

RPM SUM 14

DISTRIBUTION OF FULL - TIME EQUIVALENT (FTE) WORKYEARS BY PROGRAM

NASA TOTAL	FY 1993	FY 1994	FY 1995
SPACE STATION	2,394	1,647	1,000
SHUTTLE PROGRAMS	5,479	5,490	5,328
SPACE SCIENCE PHYSICS AND ASTRONOMY PLANETARY EXPLORATION	2,225 2,017 2,017	2,085 1,842 243	2,041
LAUNCH SERVICES	232	228	248
LIFE AND MICROGRAVITY SCIENCES	1,050	1,534	1,533
MISSION TO PLANET EARTH	1,567	1,527	1,556
ADVANCED CONCEPTS AND TECHNOLOGY	1,522	1,455	1,428
AERONAUTICAL RESEARCH AND TECHNOLOGY	3,527	3,615	3,725
SAFETY RELIABILITY AND QUALITY ASSURANCE	142	142	144
ACADEMIC PROGRAMS	32	38	39
COMMUNICATIONS	289	656	646
SUBTOTAL – DIRECT FULL-TIME PERMANENT FTEs	18,857	18,417	17,688
CENTER MANAGEMENT AND OPERATIONS	4,840	4,851	4,748
SUBTOTAL – FULL-TIME PERMANENTS FTEs	23,697	23,268	22,436
OTHER CONTROLLED FTE's	267	269	264
SUBTOTAL - FULL-TIME EQUIVALENTS	23,964	23,537	22,700
FORMER NON –CEILING	728	728	728
GRAND TOTAL - FULL-TIME EQUIVALENTS	24,692	24,265	23,428

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RESEARCH AND PROGRAM MANAGEMENT – FY 1995 ESTIMATES DISTRIBUTION OF BUDGET PLAN BY FUNCTION BY INSTALLATION

FUNCTION	TOTAL	JOHNSON SPACE CENTER	KENNEDY SPACE CENTER	MARSHALL SPACE FLIGHT CENTER	STENNIS SPACE CENTER	SPACE STATION P.O.	GODDARD SPACE FLIGHT CENTER	AMES RESEARCH CENTER	LANGLEY RESEARCH CENTER	LEWIS RESEARCH CENTER	HEADQUARTERS
PERSONNEL	PERSONNEL AND RELATED COSTS	red costs									
FY 1993 FY 1994	1,569,359	245,811	157,089	231,108	13,985	23.019	250,940	159,040	175,230	174,211	161,945
FY 1995	1,684,500	257,671	165,249	240,300	15,181	23,939	271,916	169,850	190,050	182,695	167,649
TRAVEL											
FY 1993	45,477	6,728	3,933	5,764	578	0	6,904	4.190	4.012	4 114	9.254
FY 1994 FY 1995	46,000	6,318	3,769	5,653		2,327	6,539	3,991	3,768	3,880	002,00
		3)		3	2	4,04	86.5°	4	C5C 6
FY 1993 SUP	FY 1993 SUPPLEMENTAL	APPROPRI,	APPROPRIATION (P.L. 103-50)	03-50)							
FY 1993	20,000										
REDUCTION IF REAPPROPRIATION NOT APPROVED	IF REAPPRO	PRIATION N	OT APPROV	ED							
FY 1994	(60,000)										
RESEARCH	RESEARCH OPERATIONS SUPPORT	S SUPPORT									
FY 1993 FY 1994 FY 1995	536,552 512,711 487,100	78,600	90,000	55,300	15,900	0	50,600	33.785	28.445	34 870	PO P
TOTAL			-		·			-		-	
FY 1993	2,171,388	252,539	161,022	236,872	14,563	0	257,844	163,230	179.242	178.325	171 199
FY 1994 FY 1995	2,148,219	261,377	168,088	242,292	15,300	25,346	266,122	168,334	186,013	186,035	176,601
	2,22,000	012,700	13,613	t t t	060'10	707'07	260,625	207,839	222,494	221,666	286,784

DETAIL OF PERMAMENT POSITIONS

FY 1995	25 23 275	2,531 3,830 5,652 3,377 1,978 302 714 333 901 686 686 751 751	35 648 22,500 0 22,500
FY 1994	54 126 305 27 23 23	2,594 4,016 4,016 5,714 3,410 1,995 306 722 337 911 691 7	35 648 22,900 0 22,900
FY 1993 1 0 0	51 120 290 25 39 39 548	65 2,581 4,009 3,553 3,553 307 748 339 942 718 793 104	31 648 23,484 0 0
NASA TOTAL Executive level III Executive level III Executive level V	ES-6 ES-5 ES-4 ES-3 ES-2	CA SL/ST GS/GM - 15 GS/GM - 14 GS/GM - 13 GS - 12 GS - 10 GS - 10 GS - 08 GS - 07 GS - 06 GS - 05 GS - 05 G	SPECIAL UNGRADED POSITIONS ESTABLISHED BY NASA ADMINISTRATOR UNGRADED POSITIONS TOTAL PERMAMENT POSITIONS UNFILLED POSITIONS, EOY TOTAL PERM EMPLOYMENT, EOY

PERSONNEL SUMMARY

	FY 1993	FY 1994	FY 1995
AVERAGE GS/GM GRADE	12.0	12.0	12.0
AVERAGE ES SALARY	\$107,507	\$107,894	\$109,750
AVERAGE GS/GM SALARY	\$52,660	\$57,835	\$60,489
AVERAGE SALARY OF SPECIAL UNGRADED POSITIONS ESTABLISHED BY NASA ADMINISTRATOR	\$91,584	\$91,734	\$91,734
AVERAGE SALARY OF UNGRADED POSITIONS	\$37,831	\$38,398	\$38,974

RESEARCH AND PROGRAM MANAGEMENT

FISCAL YEAR 1995 ESTIMATES

LYNDON B. JOHNSON SPACE CENTER

ROLES AND MISSIONS

This includes test capabilities, the provision of Government Furnished Equipment (GFE), and engineering analysis support for the work of the prime contractor, its major subcontractors, and NASA system engineering and integration The Johnson Space Center (JSC) is the host center for the Space Station program office. SPACE STATION - Institutional personnel provide engineering and testbed support to the program. narrative describing these activities is included separately.

JSC will develop JSC shares the responsibility for operations capability and construction with Kennedy Space Center (KSC) and will develop a set of facilities and systems to conduct the operations of the Space Station. systems for on-orbit operations control of the Space Station. SHUTTLE PROGRAMS - Provide support to Spacelab, the engineering technical base, payload operations and support Conduct concept studies and development on flight systems and options for for Shuttle operational flight program management including system integration, crew equipment modification and processing, crew training, flight mission planning and operations, and procurement of Orbiter hardware. Provide development, integration, and operations support for the Mission Control Center (MCC), human transportation. Provide for Shuttle activities to support a schedule consistent with major program the Shuttle Mission Simulator (SMS), and other ground facilities needed for Space Shuttle operations. equipment, and advanced programs.

dissemination, and interact with outside scientists. The research focuses on the composition, structures, and SPACE SCIENCE - Support the Agency's planetary science program in the area of geosciences required to support potential future programs, provide curatorial support for lunar materials, assist in information evolutionary histories of the solid bodies of the universe.

medical training; ground-based medical support of missions; develop a longitudinal crew health data base; and biotechnology applications in microgravity in order to study growth factors, medical chemo/immunotherapeutic, phases of flight. Define and develop on-board health care systems and environmental monitoring systems; crew develop medical and psychological crew selection criteria. JSC has established a center for the support of environment and develop effective countermeasures to assure crew health and optimal performance during all LIFE AND MICROGRAVITY SCIENCES - Evaluate human physiological changes associated with the space flight and human tissue transplantation.

technologies that derive from NASA's programs and activities. Works to establish innovative partnerships and ADVANCED CONCEPTS AND TECHNOLOGY - Provide technology to support the evolution of the Space Shuttle, and the technologies and promote industrial productivity through the transfer to the nation's commercial sector of development of transportation systems. Promote and develop private sector investment in space-based innovative approaches leading to new commercial enterprises, products, and services.

management and the Space Station Program Office, and provide for the operation and maintenance of the CENTER MANAGEMENT AND OPERATIONS - Provide administrative and financial services in support of Center institutional facilities, systems, and equipment.

DISTRIBUTION OF FULL-TIME EQUIVALENT (FTE) WORKYEARS BY PROGRAM

JOHNSON SPACE CENTER	FY 1993	FY 1994	FY 1995
SPACE STATION	865	909	380
SHUTTLE PROGRAMS	1,988	2,049	1,957
SPACE SCIENCE PHYSICS AND ASTRONOMY PLANETARY EXPLORATION	23	50 24 26	50 24 26
LAUNCH SERVICES	0	0	0
LIFE AND MICROGRAVITY SCIENCES	101	150	150
MISSION TO PLANET EARTH	ဇ	4	4
ADVANCED CONCEPTS AND TECHNOLOGY	49	107	107
AERONAUTICAL RESEARCH AND TECHNOLOGY	0	0	0
SAFETY RELIABILITY AND QUALITY ASSURANCE	-	2	CA
ACADEMIC PROGRAMS	0	4	4
COMMUNICATIONS	0	0	0
SUBTOTAL – DIRECT FULL- TIME PERMANENT FTEs	3,054	2,872	2,654
CENTER MANAGEMENT AND OPERATIONS	252	543	535
SUBTOTAL - FULL-TIME PERMANENTS FTEs	3,606	3,415	3,189
OTHER CONTROLLED FTE's	28	23	23
SUBTOTAL - FULL-TIME EQUIVALENTS	3,634	3,438	3,212
FORMER NON-CEILING	114	114	114
GRAND TOTAL - FULL-TIME EQUIVALENTS	3,748	3,552	3,326

332,639 339,777 342,730

TOTAL, FUND REQUIREMENTS

				FY 1993 (Thou	993 <u>FY 1994 FY 1</u> (Thousands of Dollars)	<u>FY 1995</u> llars)
H.	PERSON	PERSONNEL AND RELATED COSTS		245,811	255,059	257,671
	A	COMPENSATION AND BEN	BENEFITS	242,871	252,246	254,600
		1. COMPENSATION		203,643	209,484	212,051
		2. BENEFITS		39,228	42,762	42,549
	В	SUPPORTING COSTS		2,940	2,813	3,071
		1. TRANSFER OF 1	PERSONNEL	276	650	475
		2. INVESTIGATIVE SERVICES	E SERVICES	173	100	350
		3. PERSONNEL TRA	TRAINING	2,491	2,063	2,246
II.	TRAVEL			6,728	6,318	6,459
	Α.	PROGRAM TRAVEL		5,587	5,559	5,490
	В.	SCIENTIFIC AND TECHN	TECHNICAL DEVELOPMENT TRAVEL	324	188	256
	ນີ	MANAGEMENT AND OPER	ERATIONS TRAVEL	817	571	713
III.	RESEA	RESEARCH OPERATIONS SUPPORT		80,100	78,400	78,600
	₩.	FACILITIES SERVICES		17,900	17,600	18,800
	В.	TECHNICAL SERVICES		30,700	24,800	23,200
	ŗ.	MANAGEMENT AND OPERATIONS	ATIONS	31,500	36,000	36,600

FY 1995	ollars)
FY 1994	usands of L
FY 1993	(Tho

245,811 255,059 257,671	203,643 209,484 212,051	39,228 42,762	2,940 2,813
PERSONNEL AND RELATED COSTS	1. Compensation	2. Benefits	3. Supporting Costs

H

Basis of the FY 1995 Estimate

locality based pay raise; (2) the Office of Management and Budget (OMB) anticipated FY 1995 pay raise; and (3) The increase from the FY 1994 estimate to the FY 1995 estimate includes: (1) the impact of the January 1994 increased health care costs.

6,459	
6,318	
6,728	
	II
TRAVEL.	
Ė	

Basis of the FY 1995 Estimate

The increase from the FY 1994 estimate to the FY 1995 estimate is the continuation of monitoring and managing cooperative ventures with foreign countries; mission support, and provide management overview of programs and functions. FY 1993 FY 1994 FY 1995 (Thousands of Dollars)

III. RESEARCH OPERATIONS SUPPORT

A. FACILITIES SERVICES

80,100 78,400 78,600 17,900 17,600 18,800

It also provides maintenance of all roads and grounds and of all administrative buildings and Facilities Services provides basis security, fire protection and other custodial services for the Johnson facilities. Finally, it provides all utility costs of administrative buildings. Space Center.

Basis of FY 1995 Estimate

The FY 1995 estimate shows a minor increase over the FY 1994 estimate, though not enough to accommodate the utilities costs, offset by further reductions in maintenance related areas, fire protection and custodial services due to institutional reductions. The impact of these reductions will be reduced capability for anticipated escalation of costs. This increase is a result of anticipated increases in maintenance and facility services centerwide.

3. TECHNICAL SERVICES

30,700 24,800

Technical Services provides the Johnson Space Center administrative automated data processing (ADP) capability which supports accounting, payroll, budgeting, procurement, and personnel as well as all other administrative functions. It also funds the graphics and photographic support to these functions. Finally, it funds the centerwide safety and public information programs.

Basis of FY 1995 Estimate

The FY 1995 estimate shows a further reduction over the FY 1994 estimate, and does not accommodate anticipated escalation costs. There is a minor increase in the administrative ADP area which is offset by reductions in public affairs, scientific and technical information support and photographic support due to institutional reductions

FY 1995 FY 1994 FY 1993

(Thousands of Dollars)

36,600 36,000 31,500

MANAGEMENT AND OPERATIONS

υ.

administrative equipment and supplies, and the transportation system including the general purpose motor pool Finally, it funds printing and reproduction and all other support, such as small contracts and purchases for and the program support aircraft. It also funds the basic medical and environmental health programs. Management and Operations funds the Johnson Space Center telephone, mail and logistics systems, the the Center Director's staff and the Administrative functions.

Basis of FY 1995 Estimate

The FY 1995 estimate shows a minor increase over the FY 1994 estimate, but does not accommodate anticipated There is an additional increase in administrative communications and a small increase in medical and environmental services which is partially offset by reductions in printing and reproduction services, transportation, and institutional support services. escalation costs.

RESEARCH AND PROGRAM MANAGEMENT

FISCAL YEAR 1995 ESTIMATES

JOHN F. KENNEDY SPACE CENTER

ROLES AND MISSIONS

conducting prelaunch and post-landing ground operations including integrated testing, interface verification, construction with the Johnson Space Center (JSC) to develop a set of facilities, systems, capabilities to conduct the operations of the Space Station. KSC will develop launch site operations capabilities for SPACE STATION - The Kennedy Space Center (KSC) shares responsibility for operations capability and servicing, launch activities, and experiment-to-rack physical integration.

payload experiment integration; upper stages processing; orbiter, Spacelab, and Ground Support Equipment (GSE) SHUTTLE PROGRAMS - Provide Space Shuttle launch preparation, including Spacelab assembly and checkout and logistics; and operation and maintenance of GSE.

LAUNCH SERVICES - Provide government oversight of all launch vehicle and payload processing and checkout activities for all NASA contracted expendable launch vehicle and upper stage launch services both at the KSC and the Vandenberg Air Force Base, and for NASA launch management responsibility.

management and provides for the operation and maintenance of the institutional facilities, systems, and CENTER MANAGEMENT AND OPERATIONS - Provide administrative and financial services in support of Center equipment

DISTRIBUTION OF FULL-TIME EQUIVALENT (FTE) WORKYEARS BY PROGRAM

KENNEDY SPACE CENTER	FY 1993	FY 1994	FY 1995
SPACE STATION	257	197	150
SHUTTLE PROGRAMS	1,691	1,690	1,629
SPACE SCIENCE PHYSICS AND ASTRONOMY PLANETARY EXPLORATION	0 0	0 0	0 0
LAUNCH SERVICES	43	53	53
LIFE AND MICROGRAVITY SCIENCES	115	117	117
MISSION TO PLANET EARTH	0	0	0
ADVANCED CONCEPTS AND TECHNOLOGY	တ	10	10
AERONAUTICAL RESEARCH AND TECHNOLOGY	0	0	0
SAFETY RELIABILITY AND QUALITY ASSURANCE	0	0	0
ACADEMIC PROGRAMS	0	0	0
COMMUNICATIONS	0	0	0
SUBTOTAL - DIRECT FULL- TIME PERMANENT FTES	2,115	2,067	1,959
CENTER MANAGEMENT AND OPERATIONS	397	390	389
SUBTOTAL - FULL-TIME PERMANENTS FTEs	2,512	2,457	2,348
OTHER CONTROLLED FTE'S	13	15	15
SUBTOTAL - FULL-TIME EQUIVALENTS	2,525	2,472	2,363
FORMER NON-CEILING	\$	401	104
GRAND TOTAL - FULL-TIME EQUIVALENTS	2,629	2,576	2,467

249,248

255,288

258,122

TOTAL, FUND REQUIREMENTS

				FY 1993 F (Thousands	FY 1994 FY ds of Dollars	FY 1995 Irs)
н.	PERSON	NEL AND	PERSONNEL AND RELATED COSTS	157,089	164,319	165,249
	Ą.	COMPEN	COMPENSATION AND BENEFITS	153,986	161,530	162,260
		ب	COMPENSATION	128,193	134,532	135,205
		2 .	BENEFITS	25,793	26,998	27,055
	ъ.	SUPPOR	SUPPORTING COSTS	3,103	2,789	2,989
		1.	TRANSFER OF PERSONNEL	404	340	555
		2 .	INVESTIGATIVE SERVICES	62	36	150
			PERSONNEL TRAINING	2,637	2,413	2,284
II.	TRAVEL			3,933	3,769	3,999
		PROGRA	PROGRAM TRAVEL	2,367	2,900	3,076
	В.	SCIENT	SCIENTIFIC AND TECHNICAL DEVELOPMENT TRAVEL	83	80	87
	ŗ.	MANAGE	MANAGEMENT AND OPERATIONS TRAVEL	1,483	789	836
iii.	RESEAR	RESEARCH OPERATIONS	ATIONS SUPPORT	97,100	87,200	80,000
	Α.	FACILI	FACILITIES SERVICES	34,500	32,000	29,900
	m.	TECHNI	TECHNICAL SERVICES	22,900	21,800	19,000
	ပ်	MANAGE	MANAGEMENT AND OPERATIONS	39,700	33,400	31,100

FY 1995	lars)
FY 1994	s of Doll
FY 1993	(Thousand

157,089 164,319 165,249	128,193 134,532	25,793 26,998	3,103 2,789
PERSONNEL AND RELATED COSTS	1. Compensation	2. Benefits	3. Supporting Costs

H.

Basis of the FY 1995 Estimate:

locality based pay raise; (2) the Office of Management and Budget (OMB) anticipated FY 1995 pay raise; and (3) The increase from the FY 1994 estimate to the FY 1995 estimate includes: (1) the impact of the January 1994 increased health care costs.

3,999	
3,769	
3,933	
1	
TRAVEI	
II.	

Basis of the FY 1995 Estimate:

The increase from the FY 1994 estimate to the FY 1995 estimate provides the necessary support to monitor and manage the test, checkout and launch of space vehicles; mission support; and management overview of programs and functions. <u>FY 1993</u> <u>FY 1994</u> <u>FY 1995</u> (Thousands of Dollars)

80,000 29,900 32,000 87,200 97,100 34,500 RESEARCH OPERATIONS SUPPORT FACILITIES SERVICES ď III.

Facilities Services provide basic security, fire protection and other custodial services for the Kennedy Space It also provides maintenance of all roads and grounds and of all administrative buildings and facilities. Finally, it provides all utility costs of administrative buildings. Center.

Basis of FY 1995 Estimate

The FY 1995 estimate shows an additional decrease and does not accommodate the anticipated escalation of costs. This decrease is a result of further reductions in maintenance related support, security, fire protection, and custodial services which was partially offset by a minor increase in utilities due to anticipated rate and consumption increases.

B. TECHNICAL SERVICES

21,800

22,900

which supports accounting, payroll, budgeting, procurement, and personnel as well as all other administrative Technical Services provides the Kennedy Space Center administrative automated data process (ADP) capability functions. It also funds the graphics and photographic support to the functions. Finally, it funds the centerwide safety and public information programs.

Basis of FY 1995 Estimate

A11The FY 1995 estimate shows an institutional reduction and does not accommodate escalation costs. categories within this functional area were affected FY 1993 FY 1994 FY 1995

(Thousands of Dollars)

C. MANAGEMENT AND OPERATIONS

39,700 33,400 31,100

administrative equipment and supplies, and the transportation system including the general purpose motor pool Finally, it funds printing and reproduction and all other support, such as small contracts and purchases for and the program support aircraft. It also funds the basic medical and environmental health programs. Management and Operations funds the Kennedy Space Center telephone, mail and logistics systems, the the Center Director's staff and the Administrative functions.

Basis of FY 1995 Estimate

This The FY 1995 estimate reflects a decrease from the FY 1994 estimate due to institutional reductions. decrease curtails all institutional activities in the Management and Operations function.

RESEARCH AND PROGRAM MANAGEMENT

FISCAL YEAR 1995 ESTIMATES

GEORGE C. MARSHALL SPACE FLIGHT CENTER

ROLES AND MISSIONS

subcontractors. Responsible for developing payload utilization capabilities and managing operations payload. SPACE STATION - Provide engineering and testbed support to the program including engineering analysis in support of the station system engineering and integration effort and the work of the prime and major

System. Study and definition of future space programs including space transportation systems, space power and SHUTILE PROGRAMS - Design, development, and procurement of propulsion elements of the Space Transportation energy systems, space structures, space processing, and space science and applications facilities

development, integration, and testing of launch vehicles and space transportation systems and system definition for future manned and unmanned launch systems.

definition; integration of science payloads into payload carriers; and operation of the payload integrated Spacecraft mission management including design, development and testing of payload carriers; payload

LAUNCH SERVICES - Support of the Inertial Upper Stage (IUS) missions with readiness reviews, joint integrated Management of the development, production and launch support of the Small Expendable Deployer flight simulations, launch and flight operations support, and post flight evaluation of the upper stage System (SEDS) performance.

SPACE SCIENCE - Manage and plan Shuttle/Spacelab activities of the Atmospheric Laboratory for Applications and Science (ATLAS), Advanced X-Ray Astrophysics Facility (AXAF), International Microgravity Laboratory (IML), United States Microgravity Laboratory (USML), and other dedicated payload missions. LIFE AND MICROGRAVITY SCIENCES - Provide the fundamental science and technology for processing materials under experiments for Spacelab; operates integrated payload systems; and trains mission and payload specialists in research in the areas of crystal growth, fluid physics, biophysics, solidification mechanics, chemistry and polymeric materials. Integrates microgravity flight experiments and science and applications flight conditions that allow detailed examination of the constraints imposed by gravitational forces. the science aspects of their missions.

ADVANCED CONCEPTS AND TECHNOLOGY - Provide propulsion and vehicle technology to reduce schedule and cost risk the Shuttle Program Office, mature technologies that will reduce costs and avoid obsolescence of the Shuttle. transportation vehicle materials and structures. Conduct, under cooperative agreements with the U.S. launch vehicle industry, technology efforts to improve the competitiveness of current systems. In cooperation with in the development of next generation expendable and reusable space transportation vehicles. Perform technology development in hybrid and liquid propulsion systems, advanced manufacturing processes and

weather, severe storms, and local weather areas in order to improve the understanding of severe storms, local <u>MISSION TO PLANET EARTH</u> - Conduct theoretical, field, and laboratory experimental research in the global and global scale weather systems, and to establish criteria for Shuttle missions.

communications hardware, software, and transmission medium that inter-connects NASA Headquarters, Field COMMUNICATIONS - Manage and maintain the Program Support Communications Network (PSCN) which provides installations, and major contractor locations for the transfer of data, voice, and video.

nanagement and provides for the operation and maintenance of the institutional facilities, systems, and Lead center for the development and implementation of the NASA Financial Information System CENTER MANAGEMENT AND OPERATIONS - Provide administrative and financial services in support of Center equipment.

DISTRIBUTION OF FULL-TIME EQUIVALENT (FTE) WORKYEARS BY PROGRAM

MARSHALL SPACE FLIGHT CENTER	FY 1993	FY 1994	FY 1995
SPACE STATION	280	412	150
SHUTTLE PROGRAMS	1,418	1,412	1,398
SPACE SCIENCE PHYSICS AND ASTRONOMY PLANETARY EXPLORATION	482	348	348 348 0
LAUNCH SERVICES	54	41	59
LIFE AND MICROGRAVITY SCIENCES	351	596	296
MISSION TO PLANET EARTH	129	137	137
ADVANCED CONCEPTS AND TECHNOLOGY	147	153	153
AERONAUTICAL RESEARCH AND TECHNOLOGY	2	0	0
SAFETY RELIABILITY AND QUALITY ASSURANCE	0	0	0
ACADEMIC PROGRAMS	0	0	0
COMMUNICATIONS	17	17	17
SUBTOTAL - DIRECT FULL- TIME PERMANENT FTEs	3,180	3,116	2,858
CENTER MANAGEMENT AND OPERATIONS	479	479	440
SUBTOTAL - FULL-TIME PERMANENTS FTEs	3,659	3,595	3,298
OTHER CONTROLLED FTE's	11	10	80
SUBTOTAL - FULL-TIME EQUIVALENTS	3,670	3,605	3,306
FORMER NON-CEILING	124	124	124
GRAND TOTAL - FULL-TIME EQUIVALENTS	3,794	3,729	3,430

				FY 1993 (Thou:	993 <u>FY 1994</u> (Thousands of Do	<u>994 FY 1995</u> of Dollars)
н	PERSON	NEL AND	PERSONNEL AND RELATED COSTS	231,108	236,639	240,300
	A.	COMPEN	COMPENSATION AND BENEFITS	228,198	234,074	237,485
			COMPENSATION	189,990	194,502	196,632
			BENEFITS	38,208	39,572	40,853
	В.	SUPPOR	SUPPORTING COSTS	2,910	2,565	2,815
		٦.	TRANSFER OF PERSONNEL	405	365	315
		2.	INVESTIGATIVE SERVICES	46	20	200
		3.	PERSONNEL TRAINING	2,459	2,150	2,300
ii.	TRAVEL	. •		5,764	5,653	5,844
	А.	PROGRA	PROGRAM TRAVEL	4,515	4,713	4,923
	В.	SCIENT	SCIENTIFIC AND TECHNICAL DEVELOPMENT TRAVEL	201	111	103
	<u>ن</u>	MANAGE	MANAGEMENT AND OPERATIONS TRAVEL	1,048	829	818
III.	RESEAR	CH OPER	RESEARCH OPERATIONS SUPPORT	52,300	53,300	55,300
	A	FACILI	FACILITIES SERVICES	14,800	15,700	15,600
	В.	TECHNI	TECHNICAL SERVICES	12,200	11,700	12,400
	Ü	MANAGE	MANAGEMENT AND OPERATIONS	25,300	25,900	27,300
		TOTAL,	, FUND REQUIREMENTS	289,172	295,592	301,444

FY 1995	ollars)
FY 1994	Thousands of Do
FY 1993	(Tho

231,108 236,639 240,300	189,990 194,502 196,632	38,208 39,572 40,853	2,910 2,565 2,815
PERSONNEL AND RELATED COSTS	Compensation	Benefits	Supporting Costs
PERSONNEL AND	· ተ		М
÷.			

Basis of the FY 1995 Estimate:

locality based pay raise; (2) the Office of Management and Budget (OMB) anticipated FY 1995 pay raise; and (3) The increase from the FY 1994 estimate to the FY 1995 estimate includes: (1) the impact of the January 1994 increased health care costs.

5,844
5,653
5,764
TRAVEL
II.

Basis of the FY 1995 Estimate:

manage the design, development and procurement of propulsion elements; the design, development, integration, The increase from the FY 1994 estimate to the FY 1995 estimate allows the Center to continue to monitor and and testing of launch vehicles and upper stages, and management overview of programs and functions. FY 1993 FY 1994 FY 1995 (Thousands of Dollars)

III. RESEARCH OPERATIONS SUPPORT

FACILITIES SERVICES

ď.

52,300 53,300 55,300 14,800 15,700 15,600 Facilities Services provides basic security, fire protection and other custodial services for the Marshall Space Flight Center. It also provides maintenance of all roads and grounds and of all administrative buildings and facilities. Finally, it provides all utility costs of administrative buildings.

Basis of FY 1995 Estimate

The FY 1995 estimate shows a minor decrease in maintenance related support and does not accommodate the anticipated escalation of costs.

11,700 12,200 TECHNICAL SERVICES

administrative functions. It also funds the graphics and photographic support to the functions. Finally, it Technical Services provides the Marshall Space Flight Center administrative automated data processing (ADP) capability which supports accounting, payroll, budgeting, procurement, and personnel as well as all other funds the centerwide safety and public information programs.

Basis of FY 1995 Estimate

The FY 1995 estimate reflects an increase for ADP services and anticipated escalation of costs

25,300 MANAGEMENT AND OPERATIONS ς;

administrative equipment and supplies, and the transportation system including the general purpose motor pool and the program support aircraft. It also funds the basic medical and environmental health programs as well as printing and reproduction and all other support, such as small contracts and purchases for the Center Management and Operations funds the Marshall Space Flight Center telephone, mail and logistics systems, Director's staff and the Administrative functions.

Basis of FY 1995 Estimate

The FY 1995 budget estimate represents an increase based on projected inflation and increased services in the area of institutional support services.

RESEARCH AND PROGRAM MANAGEMENT

FISCAL YEAR 1995 ESTIMATES

JOHN C. STENNIS SPACE CENTER

ROLES AND MISSIONS

naintains, and manages the facilities and the related capabilities required for the continued development and SHUTTLE PROGRAMS - Provide, operate, maintain, and manage a propulsion test center and related capabilities for development, certification, and acceptance of rocket propulsion systems and components. Provides, acceptance testing of the Space Shuttle Main Engines.

MISSION TO PLANET EARTH - Conduct technology utilization, applications, and commercialization programs support the Agency goals in environmental systems sciences and observations, remote sensing, and image processing systems and applicable products.

Also conducts research into applications for non-remote sensing, primarily in such areas as ADVANCED CONCEPTS AND TECHNOLOGY - Conduct fundamental and applied research, develops advanced airborne sensors and data/information systems, and conducts test and evaluation activities of remote sensing environmental system development and closed ecosystems development. Commercial program activities emphasize promoting and developing private sector investment in space-based technologies and promoting industrial productivity through the transfer of technologies that derive from NASA's research and development programs and activities. **AERONAUTICAL RESEARCH AND TECHNOLOGY** - Conduct challenging and quality research and development programs that Facility (HHFF) for high temperature material testing is underway. Stennis Space Center conducts technology Facility design modifications and construction. Design, construction, and activation of the High Heat Flux propulsion programs. Provides management oversight of National Aerospace Plane (NASP) Propulsion Test will contribute and significantly advance propulsion test technologies for Government and commercial development projects, including Hydrogen Leak Detection and Plume Diagnostics. CENTER MANAGEMENT AND OPERATIONS - Provide operate, maintain, and manage the institutional base and laboratories required to accomplish and support assigned programs of NASA and other Federal and State organizations resident at SSC.

DISTRIBUTION OF FULL-TIME EQUIVALENT (FTE) WORKYEARS BY PROGRAM

STENNIS SPACE CENTER	FY 1993	FY 1994	FY 1995
SPACE STATION	0	0	0
SHUTTLE PROGRAMS	85	77	80
SPACE SCIENCE PHYSICS AND ASTRONOMY PLANETARY EXPLORATION	0 0	0 0 0	0 0
LAUNCH SERVICES	0	0	0
LIFE AND MICROGRAVITY SCIENCES	-	-	_
MISSION TO PLANET EARTH	ហ	-	-
ADVANCED CONCEPTS AND TECHNOLOGY	11	11	16
AERONAUTICAL RESEARCH AND TECHNOLOGY	22	22	22
SAFETY RELIABILITY AND QUALITY ASSURANCE	-	-	-
ACADEMIC PROGRAMS	ဗ	ဗ	က
COMMUNICATIONS	0	0	0
SUBTOTAL – DIRECT FULL- TIME PERMANENT FTEs	128	116	124
CENTER MANAGEMENT AND OPERATIONS	81	84	85
SUBTOTAL - FULL-TIME PERMANENTS FTEs	500	200	209
OTHER CONTROLLED FTE's	2	S	5
SUBTOTAL - FULL-TIME EQUIVALENTS	214	205	214
FORMER NON-CEILING	12	12	12
GRAND TOTAL - FULL-TIME EQUIVALENTS	226	217	226

				FY 1993 FY (Thousands	FY 1984 FY sands of Dollars)	<u>FY 1995</u> lars)
ij	PERSON	PERSONNEL AND RELATED COSTS	COSTS	13,985	14,745	15,181
	ъ.	COMPENSATION AND	ND BENEFITS	13,586	14,394	14,726
		1. COMPENSATION	SATION	11,079	11,622	11,977
		2. BENEFITS	73	2,507	2,772	2,749
	В.	SUPPORTING COSTS	TS I	399	351	455
		1. TRANSFER	ER OF PERSONNEL	142	178	250
		2. INVESTI	INVESTIGATIVE SERVICES	32	23	55
		3. PERSONN	PERSONNEL TRAINING	225	150	150
H.	TRAVEL			578	555	615
	Ą.	PROGRAM TRAVEL		265	294	326
	В.	SCIENTIFIC AND) TECHNICAL DEVELOPMENT TRAVEL	130	100	111
	ç.	MANAGEMENT AND	OPERATIONS TRAVEL	183	161	178
iii.	RESEAR	RESEARCH OPERATIONS SUF	UPPORT	14,000	16,800	15,900
	A	FACILITIES SER	SERVICES	2,600	8,800	8,200
	B.	TECHNICAL SERVICES	/ICES	3,700	3,500	3,200
	<u>ن</u>	MANAGEMENT AND	OPERATIONS	4,700	4,500	4,500
		TOTAL, FUND REQUIREMENTS	QUIREMENTS	28,563	32,100	31,696

FY 1995	lars)
FY 1984	ands of Dol
FY 1993	(Thous

15,181	11,977	2,749	455
13,985 14,745 15,181	11,622	2,772	351
13,985	11,079	2,507	399
RELATED COSTS	Compensation	Benefits	Supporting Costs
PERSONNEL AND RELATED	ij		e e
i.			

Basis of the FY 1995 Estimate:

locality based pay raise; (2) the Office of Management and Budget (OMB) anticipated FY 1995 pay raise; and (3) The increase from the FY 1994 estimate to the FY 1995 estimate includes: (1) the impact of the January 1994 increased health care costs.

	615	
	555	
	578	
	TRAVEL	
ļ		

Basis of the FY 1995 Estimate:

maintenance and management of facilities and related capability required for the development and acceptance The increase from the FY 1994 estimate to the FY 1995 estimate allows the Center to continue providing testing of the Space Shuttle Main Engines, and provide increased management overview of programs and functions. FY 1993 FY 1984 FY 199 (Thousands of Dollars)

III. RESEARCH OPERATIONS SUPPORT

FACILITIES SERVICES

Ä.

14,000 16,800 15,900 5,600 8,800 8,200

Space Center. It also provides maintenance of all roads and grounds and of all administrative buildings and Facilities Services provides basic security, fire protection and other custodial services for the Stennis facilities. Finally, it provides all utility costs of administrative buildings.

Basis of FY 1995 Estimate

The FY 1995 estimate shows a decrease reflecting the Agency's decision to reduce institutional costs and does Reductions were taken in maintenance related services and security which partially offset an increase to utilities. not accommodate the anticipated escalation of costs.

3. TECHNICAL SERVICES

3,700 3,500

Technical Services provides the Stennis Space Center administrative automated data processing (ADP) capability which supports accounting, payroll, budgeting, procurement, and personnel as well as all other administrative It also funds the graphics and photographic support to the functions. Finally, it funds the centerwide safety and public information programs.

Basis of FY 1995 Estimate

The FY 1995 estimate reflects a decrease based on reduced institutional costs not allowing for anticipated Reductions were taken in administrative ADP support and graphics support with a minor increase in public afairs support. escalation costs.

. MANAGEMENT AND OPERATIONS

4,700 4,500 4,50

administrative equipment and supplies, and the transportation system including the general purpose motor pool Management and Operations funds the Stennis Space Center telephone, mail and logistics systems, the

FY 1993 FY 1984 FY 1995 (Thousands of Dollars)

Finally, it funds printing and reproduction and all other support, such as small contracts and purchases for and the program support aircraft. It also funds the basic medical and environmental health programs. the Center Director's staff and the Administrative functions.

Basis of FY 1995 Estimate

minor decrease in administrative communications support, printing and reproduction and institutional support There is a The FY 1995 estimate shows no net change and does not accommodate anticipated escalation costs. services which is offset by the increase in medical and environmental services. FISCAL YEAR 1995 ESTIMATES

SPACE STATION

ROLES AND MISSIONS

Design and Development of Space Station Elements and Systems

In fiscal years 1994 and 1995, efforts are being concentrated on modifying the Space Station Freedom design to Alpha, will require the modification/deletion of hardware and include the incorporation of significant Russian participation. Contract negotiations are underway with the Space Station prime contractor, Boeing, and its accommodate changes brought about by the fiscal year 1993 redesign activity. The new design, designated the International Partners and Russia will be held to modify existing agreements where necessary. subcontractors to implement management and design changes brought about by the redesign.

The United States (U.S.) elements of the Space Station include two nodes, a laboratory module, truss segments, adapter, a cupola, and an unpressurized logistics carrier. Joint U.S./Russian components include the airlock, during the second quarter of fiscal year 1994. Development will continue in FY 1995 with the production of design drawings, fabrication, and testing of hardware, software development/testing, and the outfitting of three photovoltaic arrays, a mini pressurized logistics module, a habitation module, a pressurized mating Salyut energy block, two Soyuz Assured Crew Return Vehicles (ACRV), batteries, solar dynamic modules, and additional photovoltaic arrays. Implementation of the design changes will culminate in a systems review operations facilities.

Johnson Space Center

The program office is responsible for contract and technical oversight of the prime contract with Boeing and its subcontractors. consisting of NASA and contractor personnel, are responsible for the design, development, integration, test, These teams call on support from NASA Integrated product teams are responsible for the systems and elements of the Space Station. These teams, The Johnson Space Center (JSC) is the host location for the Space Station Program Office. qualification, and production of the flight hardware and software. Personnel involved in the Space Station program located at Headquarters are included in the JSC Space Station FTE total. institutional personnel located at JSC and the other Field Centers where necessary. project offices have been eliminated.

JSC shares responsibility for Operations Capability and Construction with the Kennedy Space Center to develop develop space systems operation capabilities for conducting training and on-orbit operations control for the a set of facilities, systems, and capabilities to conduct the operations of the Space Station. JSC will Space Station.

Marshall Space Flight Center

Streamlined and responsive payload operations support to includes test capabilities, the provision of GFE, and engineering analysis support for the work of the prime MSFC is also The utilization of Space Station must be integrated The Marshall Space Flight Center (MSFC) provides engineering and testbed support to the program. contractor, its major subcontractors, and NASA system engineering and integration efforts. users will be provided through one research and science control facility. responsible for payload utilization and operations. across NASA Centers and the International Partners.

Lewis Research Center

capabilities, the provision of GFE, and engineering analysis support for the work of the prime contractor, its This includes test The Lewis Research Center (LeRC) provides engineering and testbed support to the program. major subcontractors, and NASA system engineering and integration efforts.

Kennedy Space Center

will develop launch site operations capabilities for conducting prelaunch and post-landing ground operations develop a set of facilities, systems, and capabilities to conduct the operations of the Space Station. KSC The Kennedy Space Center (KSC) shares responsibility for Operations Capability and Construction with JSC to including integrated testing, interface verification, servicing, launch activities, and experiment-to-rack physical integration.

DISTRIBUTION OF FULL-TIME EQUIVALENT (FTE) WORKYEARS BY PROGRAM

SPACE STATION PROGRAM OFFICE	FY 1993	FY 1994	FY 1995
SPACE STATION	0	240	300
SHUTTLE PROGRAMS	0	0	0
SPACE SCIENCE PHYSICS AND ASTRONOMY PLANETARY EXPLORATION	0 0 0	0 0 0	0 0 0
LAUNCH SERVICES	0	0	0
LIFE AND MICROGRAVITY SCIENCES	0	0	0
MISSION TO PLANET EARTH	0	0	0
ADVANCED CONCEPTS AND TECHNOLOGY	0	0	0
AERONAUTICAL RESEARCH AND TECHNOLOGY	0	0	0
SAFETY RELIABILITY AND QUALITY ASSURANCE	0	0	0
ACADEMIC PROGRAMS	0	0	0
COMMUNICATIONS	0	0	0
SUBTOTAL - DIRECT FULL- TIME PERMANENT FTEs	0	240	300
CENTER MANAGEMENT AND OPERATIONS	0	0	0
SUBTOTAL - FULL-TIME PERMANENTS FTEs	0	240	300
OTHER CONTROLLED FTE's	0	0	0
SUBTOTAL - FULL-TIME EQUIVALENTS	0	240	300
FORMER NON-CEILING	0	0	0
GRAND TOTAL - FULL-TIME EQUIVALENTS	0	240	300

				FY 1993 FY (Thousands	FY 1994 FY ands of Dollars	<u>FY 1995</u> lars)
ij.	PERSON	NEL AND	PERSONNEL AND RELATED COSTS	0	23,019	23,939
	A.	COMPEN	COMPENSATION AND BENEFITS	0	14,809	23,374
		. .	COMPENSATION	0	12,268	19,429
		2 .	BENEFITS	0	2,541	3,945
	В.	SUPPOR	SUPPORTING COSTS	0	8,210	565
		1.	TRANSFER OF PERSONNEL	0	8,000	325
			INVESTIGATIVE SERVICES	0	15	15
		3.	PERSONNEL TRAINING	0	195	225
II.	TRAVEL			0	2,327	2,768
	Α.	PROGRA	PROGRAM TRAVEL	0	2,161	2,763
	B.	SCIENT	SCIENTIFIC AND TECHNICAL DEVELOPMENT TRAVEL	0	0	0
		MANAGE	MANAGEMENT AND OPERATIONS TRAVEL	0	166	Ŋ
		TOTAL,	TOTAL, FUND REQUIREMENTS	0	25,346	26,707

1995	_
FY	llars
FY 1994	of Do
FY	Phousands
Y 1993	(Tho
щ	

PERSONNEL AND RELATED COSTS 1. Compensation 2. Benefits 3. Supporting Costs	0 23,019 23,939	0 12,268 19,429	0 2,541 3,945	0 8,210 565
	PERSONNEL AND RELATED COSTS			Supporting

H.

Basis of the FY 1995 Estimate:

locality based pay raise; (2) the Office of Management and Budget (OMB) anticipated FY 1995 pay raise; and (3) The increase from the FY 1994 estimate to the FY 1995 estimate includes: (1) the impact of the January 1994 increased health care costs.

2,768	
2,327	
0	
	•
EL	
TRAVEL	
H	

Basis of the FY 1995 Estimate:

cooperative ventures with foreign countries, and increased management overview of programs and functions. The increase from the FY 1994 estimate to the FY 1995 estimate provides continuation of support to the

FISCAL YEAR 1995 ESTIMATES

GODDARD SPACE FLIGHT CENTER

ROLES AND MISSIONS

SHUTILE PROGRAMS - Manage development of the Hitchhiker, a reusable carrier system which provides increased flight opportunities with reduced leadtime while maximizing Shuttle load factors and minimizing spaceflight Also manage and coordinate the Agency's Get Away Special (GAS) program. costs.

LAUNCH SERVICES - Manages the small and medium class expendable launch vehicle services such as Pegasus and Delta used to put a wide variety of spacecraft into a broad spectrum of orbits. PHYSICS AND ASTRONOMY - GSFC manages activities in the following discipline areas: gamma ray astronomy, X-ray physics, interplanetary physics, planetary magnetospheres, and astrochemistry. GSFC is also responsible for Other activities include managing astronomy, ultraviolet and optical astronomy, infrared and radio astronomy, particle astrophysics, solar conducting the mission operations for a variety of operating spacecraft. NASA's sounding rocket and scientific balloon program. PLANETARY EXPLORATION - Conducts research into the physics of interplanetary and planetary space environments. Participates in planetary mission instrument development, operations, and data analysis.

This process and modeling research effort will provide the basis MISSION TO PLANET EARTH - Development of the Earth Observing System (EOS). The primary objective of the EOS will document global change over a fifteen year period to provide long-term, consistent data sets for use in Earth Observing System is to record global change and to observe regional-to-global processes . for establishing predictive global change models for policy makers and scientists. modeling and understanding global processes.

National Oceanic and Atmospheric Administration (NOAA) and conduct correlation measurements from balloons, Manage flight projects (Earth Probes, Landsat) and develop and operate weather satellite missions for the sounding rockets, aircraft, and ground installations. ADVANCED CONCEPTS AND TECHNOLOGY - Develop technologies targeted at improved space borne instruments, on-board spacecraft systems and subsystems, and end-to-end systems. GSFC is involved in flight test and demonstration private sector investment in space-based technologies through the transfer of technologies that derive from of the integration of new technology on Space Shuttle and Expendable Launch Vehicle (ELV) systems. NASA's programs and activities.

AERONAUTICAL RESEARCH AND TECHNOLOGY - Wallops Flight Facility conducts flight studies of new approach and landing procedures using the latest in guidance equipment and techniques, pilot information displays, human factors data, and terminal area navigation. COMMUNICATIONS - Research and technology involves the investigation and development of advanced systems and processing. The primary objectives are to apply technology and develop advanced capabilities to meet techniques for spacecraft communications and tracking, command and control, and data acquisition and tracking and data processing requirements of new missions and to improve the cost effectiveness and reliability of flight mission support.

TDRS spacecraft; provides mission control, data processing, and orbit/attitude computation support; operates the Space Tracking and Data Network (STDN), the NASA Communications (NASCOM) Network, and the Aeronautics, Operates the Tracking and Data Relay Satellite System (TDRSS) manages the development of the replenishment Balloons and Sounding Rocket Program.

The NASA Communications Network links the stations of the Deep Space Network (DSN), STDN, TDRSS, and other tracking and data acquisition elements with control centers and data processing and computation centers. CENTER MANAGEMENT AND OPERATIONS SUPPORT - Provides administrative and financial services in support of Center management and provides for the operation and maintenance of the institutional facilities, systems, and

DISTRIBUTION OF FULL-TIME EQUIVALENT (FTE) WORKYEARS BY PROGRAM

GODDARD SPACE FLIGHT CENTER	FY 1993	FY 1994	FY 1995
SPACE STATION	0	0	0
SHUTTLE PROGRAMS	61	44	46
SPACE SCIENCE PHYSICS AND ASTRONOMY PLANETARY EXPLORATION	1,440 1,325 115	1,404	1,361 1,243 118
LAUNCH SERVICES	90	52	54
LIFE AND MICROGRAVITY SCIENCES	0	0	0
MISSION TO PLANET EARTH	696	1,008	1,037
ADVANCED CONCEPTS AND TECHNOLOGY	71	59	61
AERONAUTICAL RESEARCH AND TECHNOLOGY	17	21	21
SAFETY RELIABILITY AND QUALITY ASSURANCE	13	12	12
ACADEMIC PROGRAMS	0	0	0
COMMUNICATIONS	287	556	546
SUBTOTAL - DIRECT FULL- TIME PERMANENT FTEs	3,208	3,156	3,138
CENTER MANAGEMENT AND OPERATIONS	726	725	718
SUBTOTAL - FULL-TIME PERMANENTS FTEs	3,934	3,881	3,856
OTHER CONTROLLED FTE'S	30	30	30
SUBTOTAL - FULL-TIME EQUIVALENTS	3,964	3,911	3,886
FORMER NON-CEILING	78	78	78
GRAND TOTAL - FULL-TIME EQUIVALENTS	4,042	3,989	3,964

TOTAL, FUND REQUIREMENTS

				FY 1993 (Thou	993 FY 1994 FY 1 (Thousands of Dollars)	<u>FY 1995</u>
н.	PERSON	THEL AND	PERSONNEL AND RELATED COSTS	250,940	259,583	271,916
	A.	COMPEN	COMPENSATION AND BENEFITS	247,049	256,103	268,096
		٦.	COMPENSATION	208,620	214,635	224,698
		2.	BENEFITS	38,429	41,468	43,398
	B.	SUPPOR	SUPPORTING COSTS	3,891	3,480	3,820
		J.	TRANSFER OF PERSONNEL	262	230	500
			INVESTIGATIVE SERVICES	06	90	120
		ë.	PERSONNEL TRAINING	3,539	3,200	3,200
II.	TRAVEL	_		6,904	6,539	7,176
	ج	PROGRAN	PROGRAM TRAVEL	5,552	5,416	5,942
	m	SCIENT	SCIENTIFIC AND TECHNICAL DEVELOPMENT TRAVEL	816	619	746
	.;	MANAGEN	MANAGEMENT AND OPERATIONS TRAVEL	536	444	488
III.	RESEAR	CH OPERA	RESEARCH OPERATIONS SUPPORT	53,960	48,300	50,600
	A.	FACILIT	FACILITIES SERVICES	19,967	20,116	23,174
	B.	TECHNIC	TECHNICAL SERVICES	12,487	11,274	10,970
	G	MANAGEN	MANAGEMENT AND OPERATIONS	21,506	16,910	16,456

(Tho	(Thousands of D	Dollars)
250,940	259,583	271,916
247,049	256,103	268,096
208,620	214,635	224,698
38,429	41,468	43,398
3,891	3,480	3,820
262	230	200
06	20	120
3,539	3,200	3,200
6,904	6,539	7,176
5,552	5,416	5,942
816	619	746
536	444	488
53,960	48,300	50,600
19,967	20,116	23,174
12,487	11,274	10,970
21,506	16,910	16,456
311,804	314,422	329,692

FY 1995	llars)
FY 1994	sands of Do
FY 1993	(Thor

250,940 259,583 271,916	208,620 214,635 224,698	38,429 41,468	3,891
PERSONNEL AND RELATED COSTS	Compensation	Benefits	Supporting Costs
PERSONNEL AN	1.		m
ij.			

Basis of the FY 1995 Estimate:

locality based pay raise; (2) the Office of Management and Budget (OMB) anticipated FY 1995 pay raise; and (3) increased health care costs. The increase from the FY 1994 estimate to the FY 1995 estimate includes: (1) the impact of the January 1994

7,176	
6,539	
6,904	
TRAVEL	
II.	

Basis of the FY 1995 Estimate

The increase from the FY 1994 estimate to the FY 1995 estimate allows the Center to continue to monitor and manage the EOS program, and management overview of programs and functions. FY 1993 FY 1994 FY 1995 (Thousands of Dollars)

50,600

48,300

53,960

23,174

20,116

19,967

III. RESEARCH OPERATIONS SUPPORT

Ä.

FACILITIES SERVICES

service workforce and to the physical plant at the Goddard Space Flight Center. It also provides maintenance of all roads and grounds and of all administrative buildings and facilities. Finally, it provides rental of Facilities Services provides basic security, fire protection and other custodial services for the civil administrative buildings and purchased utilities.

Basis of FY 1995 Estimate

The FY 1995 estimate provides for the following: funding of maintenance of facilities, equipment, roads, and grounds which have been deferred from prior years, anticipated rate changes in support service contracts, increased requirements for security, fire protection, custodial services, utility rate and consumption increases.

B. TECHNICAL SERVICES

12,487 11,274 10

Finally, capability that supports accounting, payroll, budgeting, procurement, personnel, as well as all the other Technical services provides the Goddard Space Flight Center administrative automatic data processing administrative functions. It also funds the graphics and photographic support to these functions. its funds the centerwide safety and public information programs.

Basis of FY 1995 Estimate

The FY 1995 estimate represents reductions across the board in technical services in order to maintain the minimum level in facilities services to protect employee health and safety. It is the result of intensive cost cutting activities which respond to NASA's commitment to hold down costs in all areas. FY 1993 FY 1994 FY 1995 (Thousands of Dollars)

MANAGEMENT AND OPERATIONS

ن

21,506 16,910 16,456

It also funds the basic medical and environmental health programs. Printing and reproduction and all other administrative equipment and supplies, transportation system--including the general purpose motor pool. Management and Operations funds the Goddard Space Flight Center telephone, mail and logistics systems, support, such as small contracts and purchases for the Center Director's staff and the administrative functions are also funded here.

Basis of FY 1995 Estimate

The FY 1995 estimate represents the minimum support necessary at the Goddard Space Flight Center. As in the technical services area, a greater share of the institutional reduction was taken in this area to maintain essential funds for facilities services. RESEARCH AND PROGRAM MANAGEMENT

FISCAL YEAR 1995 ESTIMATES

AMES RESEARCH CENTER

ROLES AND MISSIONS

- Dryden Flight Research Facility (DFRF) is one of two primary recovery sites for the Space in mating the orbiter to the Shuttle Carrier Aircraft. Provide prime and contingency landing support to the Upon landing, Dryden provides orbiter convoy operations and servicing support and support Space Transportation System. SHUTTLE PROGRAMS Shuttle missions.

PHYSICS AND ASTRONOMY - Provide support for the airborne astronomy program with aircraft operated as flying (ARC) manages and operates a variety of these operational aircraft which serve as facilities for research. astronomical observatories for research conducted by various NASA/university teams. Ames Research Center Provides infrared technology research program utilizes the unique capabilities of infrared astronomy to investigate the nature and evolution of astronomical systems.

basic atmospheric planetary modeling concepts and obtain the necessary physical data to interpret spacecraft PLANETARY EXPLORATION - Provide a program of laboratory, computational, and theoretical studies to develop of instrumentation and systems are carried out for potential deployment on future planetary missions. observations of planetary atmospheres and relate these data to the atmosphere of the Earth.

spaceflight experiments, ground simulation, and hypergravity facilities to understand the effects of gravity support technologies and extravehicular activity systems essential to exploration and extended presence in on the development of living systems, and to develop options for preventing health and psychophysiological problems during and following extended spaceflight. Develop the physical/chemical and regenerative life Continue biospherics research to enhance the understanding of the biological aspects of global LIFE AND MICROGRAVITY SCIENCES - Continue research on the effects of gravity on living systems using conditions and biochemical processes on Earth.

atmospheric constituents and properties from aircraft platforms. Continued applied research and development Conducting MISSION TO PLANET EARTH - Develop instruments and computer models for the measurement and analysis of research, develop airborne and spaceborne instruments, and manage projects in the science of Earth's to enhance the use of remote and in-situ sensing technology for Earth resources applications. atmosphere and ecosystems.

research, intelligent systems technology, and advanced technology for space platforms. Continue the development of spaceborne processors and sensor technology and of technologies for humans in space, and the ADVANCED CONCEPTS AND TECHNOLOGY - Conduct research on aerothermodynamics, entry technology materials advancement in robotics and artificial intelligence.

Conducting aeronautical flight research and technology projects, including joint and/or cooperative <u>AERONAUTICAL RESEARCH AND TECHNOLOGY</u> - Conduct fundamental aeronautics research encompassing the entire range This research forms a coherent and interdependent program to provide a technology base for the development of subsonic and high speed transport aircraft, hypersonic aircraft, advanced rotorcraft and from computation to flight including computational analysis, wind tunnel research, flight simulation, and powered lift configurations, and the improvement of the performance and efficiency of high performance activities with other NASA Centers, Government agencies, and industry. flight research.

Conducting transatmospheric research activities which focus on developing wind tunnel and flight analysis for Strengthen basic research and technology development for aerospace systems that transport humans, and instrumentation to and from space and within the atmospheres of other bodies within the solar system. use in evaluating the performance of a hypersonic/transatmospheric vehicle.

SAFETY, RELIABILITY AND QUALITY ASSURANCE - Provide institutional safety and health programs and develop and integrate SR&QA guidelines into program and project development.

management and provides for the operation and maintenance of the institutional facilities, systems, and CENTER MANAGEMENT AND OPERATIONS - Provide administrative and financial services in support of Center

DISTRIBUTION OF FULL-TIME EQUIVALENT (FTE) WORKYEARS BY PROGRAM

AMES RESEARCH CENTER	FY 1993	FY 1994	FY 1995
SPACE STATION	7	9	0
SHUTTLE PROGRAMS	37	18	12
SPACE SCIENCE PHYSICS AND ASTRONOMY PLANETARY EXPLORATION	106 79	123 74 49	124 75 49
LAUNCH SERVICES	0	0	0
LIFE AND MICROGRAVITY SCIENCES	172	164	163
MISSION TO PLANET EARTH	91	98	86
ADVANCED CONCEPTS AND TECHNOLOGY	128	102	102
AERONAUTICAL RESEARCH AND TECHNOLOGY	1,062	1,024	1,055
SAFETY RELIABILITY AND QUALITY ASSURANCE	33	32	33
ACADEMIC PROGRAMS	0	0	0
COMMUNICATIONS	26	26	26
SUBTOTAL - DIRECT FULL- TIME PERMANENT FTEs	1,663	1,581	1,601
CENTER MANAGEMENT AND OPERATIONS	547	545	548
SUBTOTAL - FULL-TIME PERMANENTS FTEs	2,210	2,126	2,149
OTHER CONTROLLED FTE'S	24	30	35
SUBTOTAL - FULL-TIME EQUIVALENTS	2,234	2,156	2,184
FORMER NON-CEILING	83	83	83
GRAND TOTAL FULL-TIME EQUIVALENTS	2,317	2,239	2,267

				<u>FY 1993</u> (Tho	Thousands of I	<u>FY 1995</u> Dollars)
н	PERSON	NEL AND	Personnel and related costs	159,040	164,343	169,850
	Α.	COMPE	COMPENSATION AND BENEFITS	156,240	161,903	167,184
		. .	COMPENSATION	131,447	134,340	139,804
			BENEFITS	24,793	27,563	27,380
	В.	SUPPOF	SUPPORTING COSTS	2,800	2,440	2,666
			TRANSFER OF PERSONNEL	362	390	250
			INVESTIGATIVE SERVICES	408	250	216
			PERSONNEL TRAINING	2,030	1,800	2,200
II.	TRAVEL	_		4,190	3,991	4,204
	A.	PROGRA	PROGRAM TRAVEL	2,649	2,573	2,710
	ъ.	SCIENT	SCIENTIFIC AND TECHNICAL DEVELOPMENT TRAVEL	583	539	568
	Ö.	MANAGE	MANAGEMENT AND OPERATIONS TRAVEL	928	879	926
III.	RESEAR	CH OPER	RESEARCH OPERATIONS SUPPORT	40,500	35,224	33,785
	A.	FACIL	FACILITIES SERVICES	18,000	14,090	13,794
	В.	TECHNICAL	ICAL SERVICES	11,700	879,6	9,208
	<u>ن</u>	MANAGI	MANAGEMENT AND OPERATIONS	10,800	11,456	10,783
		TOTAL,	TOTAL, FUND REQUIREMENTS	203,730	203,558	207,839

FY 1995	Dollars)
FY 1994	ousands of
FY 1993	(Tho

159,040 164,343 169,850	131,447 134,340 139,804	24,793 27,563 27,380	2,800 2,440 2,666
PERSONNEL AND RELATED COSTS	Compensation	Benefits	Supporting Costs
PERSONNEL AND	1.		ř
н Н			

Basis of the FY 1995 Estimate:

locality based pay raise; (2) the Office of Management and Budget (OMB) anticipated FY 1995 pay raise; and (3) The increase from the FY 1994 estimate to the FY 1995 estimate includes: (1) the impact of the January 1994 increased health care costs.

4,204	
3,991	
4,190	
	11
TRAVEL	
H	

H

Basis of the FY 1995 Estimate:

The increase from the FY 1994 estimate to the FY 1995 estimate allows the Center to provide support to monitor and manage major flight and aeronautical programs, and provides for increased management overview of programs and functions. FY 1993 FY 1994 FY 1995 (Thousands of Dollars)

III. RESEARCH OPERATIONS SUPPORT

FACILITIES SERVICES

Ä.

 40,500
 35,224
 33,785

 18,000
 14,090
 13,794

Facilities services provides the cost of maintaining and repairing institutional facilities and equipment; the cost of custodial services associated with approximately three million square feet of various types of space located in 231 buildings and structures; the cost of security services for buildings and property, fire protection; and utilities costs for administrative buildings and structures.

Basis of FY 1995 Estimate

The FY 1995 budget estimate reflects a decrease to accommodate the Agency's decision to reduce institutional

. TECHNICAL SERVICES

11,700 9,678 9

Technical services provides the cost of automatic data processing for management activities; the cost of institutional activities, such as safety support, photo and graphics services, and audiovisual services. public affairs, educational and public information programs; and the cost of technical shops supporting

Basis of FY 1995 Estimate

These cuts will be accommodated The FY 1995 estimate reflects the minimum funding to support technical services at the Center and includes reduced funding in all areas. The impact will be scaled back programming support to the administrative in photo, graphics, and video services by further scaling back services to customers. computing system and a freeze on all hardware and software systems upgrades.

. MANAGEMENT AND OPERATIONS

10,800 11,456 10,78

services; the cost of transportation services, such as motor pool operation costs, government bills of lading and air freight costs; the cost of support to Center management and staff, such as personnel, procurement and Management and Operations provides the cost of administrative communications, such as telephone and teletype

financial management; the cost of medical services, including the staffing of the health unit clinic supplies and equipment maintenance; and the cost of installation support services which provide supply and property management, mail pickup and delivery services, and postage.

Basis of FY 1995 Estimate

This reduction was partially The FY 1995 estimate reflects the minimum funding to support management and operations at the Center and includes reduced funding in most areas. The reduced services will result in decreased availability to telephone system users and a reduction in GSA-leased vehicles and equipment. offset by a printing press upgrade which will reduce annual printing costs.

RESEARCH AND PROGRAM MANAGEMENT

FISCAL YEAR 1995 ESTIMATE

LANGLEY RESEARCH CENTER

ROLES AND MISSIONS

LIFE AND MICROGRAVITY SCIENCES - Conduct a space radiation exposure program to support current and future manned space efforts in order to more accurately assess astronaut radiation exposures and body shielding factors

Langley Research Center (LaRC) has been designated a Primary Data and Archival Center the chemical composition of the stratosphere that would change the transmission of solar ultraviolet radiation atmosphere to assess changes caused by man and to determine whether or not there is any associated change in MISSION TO PLANET EARTH - Conduct research to understand the environment and to develop atmospheric sensing for Earth Radiation and Atmospheric Chemistry for the Earth Observing System (EOS). Study of the Earth's systems and techniques. to the Earth's surface.

Promote and develop private sector investment in space-based technologies and spacecraft guidance and control, large space antenna systems, automation and robotics, sensor technology, and naterials research to determine environmental effects on the mechanical and physical properties of materials technology requirements. Long range studies are directed at defining the technology requirements for future Agency long-range planning for a second generation Space Shuttle anticipated after the year 2000. Develop promote industrial productivity through the transfer of technologies that derive from NASA's programs and space systems and missions. Conduct research on advanced manned launch system studies which provide the ADVANCED CONCEPTS AND TECHNOLOGY - Application of multi-discipline research to current and future space Conduct using specialized facilities and laboratories. Conduct research in electronic component technology, advanced concepts and technology base for future space transportation systems and spacecraft. information systems technology. activities

structures and materials. Develop a technology base for improving transport, general aviation, and commuter requirements and to demonstrate technology applications. Conduct theoretical and experimental research in aircraft. Conduct an aeronautical research and technology program to study current and future technology **AERONAUTICAL RESEARCH AND TECHNOLOGY** - Conduct advanced research in fundamental aerodynamics; high-speed, highly maneuverable aircraft technology; hypersonic propulsion; guidance and controls; acoustics; and fluid and flight mechanics to determine aerodynamic flows and complex aircraft motions.

Study critical environmental compatibility issues in order to make decisions on future high speed civil transport technology and development programs. Develop technology options for realization of practical hypersonic and transatmospheric flight.

aircraft control systems, cockpit systems integration and interfacing techniques, and performance validation Conduct control and guidance research programs to advance technology in aircraft guidance and navigation, Conduct research in aircraft noise prediction and abatement and wind shear and verification methods. avoidance. Research activity also includes study of supersonic combustion of both ramjets and other advanced airbreathing propulsion systems; development of large reusable structures for aerospace vehicles; and studies to define and understand the integration of advanced technologies into a future class of horizontal takeoff and landing vehicles capable of operating to orbit and/or hypersonic cruise within the atmosphere.

SAFETY, RELIABILITY, AND QUALITY ASSURANCE - The Safety, Reliability, and Quality Assurance program provides independent assessment activities which reduce program risk.

management and provides for the operation and maintenance of the institutional facilities, systems, and CENTER MANAGEMENT AND OPERATIONS - Provides administrative and financial services in support of Center equipment

DISTRIBUTION OF FULL-TIME EQUIVALENT (FTE) WORKYEARS BY PROGRAM

LANGLEY RESEARCH CENTER	FY 1993	FY 1994	FY 1995
SPACE STATION	23	16	0
SHUTTLE PROGRAMS	32	21	16
SPACE SCIENCE PHYSICS AND ASTRONOMY PLANETARY EXPLORATION	0 - +	2	0 0
LAUNCH SERVICES	2	0	0
LIFE AND MICROGRAVITY SCIENCES	=	22	22
MISSION TO PLANET EARTH	236	208	208
ADVANCED CONCEPTS AND TECHNOLOGY	485	399	371
AERONAUTICAL RESEARCH AND TECHNOLOGY	1,388	1,444	1,483
SAFETY RELIABILITY AND QUALITY ASSURANCE	16	6	10
ACADEMIC PROGRAMS	0	0	0
COMMUNICATIONS	0	0	0
SUBTOTAL - DIRECT FULL- TIME PERMANENT FTEs	2,195	2,121	2,110
CENTER MANAGEMENT AND OPERATIONS	707	200	700
SUBTOTAL - FULL-TIME PERMANENTS FTEs	2,902	2,821	2,810
OTHER CONTROLLED FTE'S	15	17	17
SUBTOTAL - FULL-TIME EQUIVALENTS	2,917	2,838	2,827
FORMER NON-CEILING	118	118	118
GRAND TOTAL – FULL-TIME EQUIVALENTS	3,035	2,956	2,945

COSTS
RELATED
AND
PERSONNEL
i.

S
F
н
Ē
- [₹]
5
包
m
111
\circ
片
7
~
-
NO
$^{\circ}$
Н
ď
S
ը
1
Σ
O
U
ď
a,

- COMPENSATION
- . BENEFITS
- SUPPORTING COSTS

щ.

- 1. TRANSFER OF PERSONNEL
- INVESTIGATIVE SERVICES

. w

PERSONNEL TRAINING

II. TRAVEL

- A. PROGRAM TRAVEL
- B. SCIENTIFIC AND TECHNICAL DEVELOPMENT TRAVEL
- C. MANAGEMENT AND OPERATIONS TRAVEL

III. RESEARCH OPERATIONS SUPPORT

- A. FACILITIES SERVICES
- B. TECHNICAL SERVICES
- C. MANAGEMENT AND OPERATIONS

10,214

11,214

13,000

TOTAL, FUND REQUIREMENTS

2,270 270 195 2,673 846 7,945 3,999 190,050 187,315 30,588 2,735 480 156,727 28,445 10,286 FY 1995 (Thousands of Dollars) 200 2,150 3,768 182,245 149,728 30,010 2,507 2,518 990'8 179,738 157 797 453 30,503 11,223 FY 1994 258 2,354 8,500 175,230 26,,685 4,012 2,681 849 2,748 136 482 172,482 145,797 33,500 12,000 FY 1993

FY 1993 FY 1994 FY 1995 (Thousands of Dollars)

175,230 182,245 190,050	145,797 149,728 156,727	26,685 30,010 30,588	2,748 2,507 2,735
PERSONNEL AND RELATED COSTS	Compensation	Benefits	Supporting Costs
PERSONNEL AND	1.	. 2	ë.

Basis of the FY 1995 Estimate

locality based pay raise; (2) the Office of Management and Budget (OMB) anticipated FY 1995 pay raise; and (3) The increase from the FY 1994 estimate to the FY 1995 estimate includes: (1) the impact of the January 1994 increased health care costs.

3,999
3,768
4,012
TRAVEL

Basis of the FY 1995 Estimate

H.

The increase from the FY 1994 estimate to the FY 1995 estimate allows the Center to continue the provision of oversight of aeronautical program activity, and provide increased management overview of programs and functions. FY 1995 (Thousands of Dollars) FY 1994

> RESEARCH OPERATIONS SUPPORT III.

FACILITIES SERVICES ď

28,445 10,286 11,223 30,503 12,000 33,500

Facilities services provides the cost of maintaining and repairing institutional administrative facilities and equipment; the cost of janitorial, security and ambulance services and supplies; the cost of fire protection which is purchased from the City of Hampton; and the cost of utilities services, such as electricity, fuel oil, water and sewage charges; and operation of the cooperative refuse burner.

Basis of FY 1995 Estimate

The FY 1995 estimate reflects the minimum funding to support facilities services at the Center and includes services, reducing and rescheduling test shifts, further reductions of custodial service, and deleting estimate also anticipates increased utilities costs. The impact will be cutting facility engineering level funding for security and fire protection services and reduced repair and custodial services. purchase of non-collateral equipment.

TECHNICAL SERVICES

8,500

7,945

Technical services provides the costs of automatic data processing (equipment lease, purchase and maintenance, management information; the cost of educational and informational programs, including library services and public affairs activities; and the cost of technical shops supporting institutional activities, such as supplies, and programming and operations services) for management activities, such as accounting and technical documentation, safety support, and photo and graphics services.

Basis of FY 1995 Estimate

Anticipated increases in support service contractor rates will impact technical library operations, and photo, graphics The FY 1995 estimate reflects the minimum funding to support technical services at the Center. and video services. FY 1993 FY 1994 FY 1995 (Thousands of Dollars)

C. MANAGEMENT AND OPERATIONS

13,000

and freight charges; and the cost of installation common services, including medical services, mail delivery, Management and Operations provides the cost of administrative communications, such as telephone and exchange costs, and datafax and telegraph service; printing and reproduction operating costs, as well as supplies and materials; transportation costs, such as operation, maintenance and purchase of motor vehicles, and shipping and stock issue and warehousing.

Basis of FY 1995 Estimate

The impact of the reduced funding will be suspended telephone and network upgrades, elimination of intracenter transportation, and reduced support service contractor administrative support in the areas of The FY 1995 estimate reflects reduced institutional funding to support management and operations at the personnel, legal, procurement, and logistics services.

RESEARCH AND PROGRAM MANAGEMENT

FISCAL YEAR 1995 ESTIMATES

LEWIS RESEARCH CENTER

ROLES AND MISSIONS

includes test capabilities, the provision of Government Furnished Equipment (GFE), and engineering analysis support for the work of the prime contractor, its major subcontractors, and NASA system engineering and SPACE STATION - The Lewis Research Center provides engineering and testbed support to the program. integration efforts.

intermediate (Atlas/Centaur and Titan III) and large (Titan IV) class expendable launch vehicles in the NASA LAUNCH SERVICES - LeRC is responsible for procurement and management of commercial launch services for the Mixed Fleet

physics, and instrumentation. Perform research on advanced design and operation of microgravity experimental LIFE AND MICROGRAVITY SCIENCES - Conduct microgravity science and applications research; design and develop space flight experiments; and perform ground and space flight experiments in materials, combustion, fluid flight hardware. Conduct ground-based research and flight experiments in basic science and technology associated with materials, combustion, fluid physics phenomena, and power and propulsion technology

vehicles, satellites, microsatellites, and space platforms. Conduct research on enhanced micro- and full-size planetary power systems; to create new propulsion options for high- and low- thrust systems; to enable new fluids in microgravity. Conduct research in propulsion to support the next generation of unmanned launch capabilities in space communications and electronics; and to provide effective means to manage cryogenic ADVANCED CONCEPTS AND TECHNOLOGY - Conduct research to provide advancements in satellite, platform and satellite power systems as well as power systems for deep space and planetary exploration.

communication systems. Emphasis is on developing high data return from NASA missions using less mass and Perform applied research and technology aimed at development of advanced concepts and technologies for

power and developing innovative and cost competitive commercial satellite communications services.

Conduct space materials and structures research and technology to develop improved materials, advance structural analysis and life prediction, and develop long-life, reliable space mechanisms

Promote and develop private sector investment in space-based technologies and to promote industrial productivity through the transfer of technologies that derive from NASA's programs and activities

assessments & technology definition studies for future space operations in the areas of telecommunications and Provide technology Conduct studies to provide long-range planning for future launch systems and spacecraft. information management networks.

technology base for developing advanced aeronautical propulsion systems in order to increase speed and range; AERONAUTICAL RESEARCH AND TECHNOLOGY - Conduct aerospace propulsion research and technology to enhance the improve fuel efficiency, operating cost, reliability and durability; and decrease environmental impact Conduct vehicle focused research and technology directed at developing the propulsion technology for specific Applications for these focused propulsion systems research efforts include subsonic transports, commuters, supersonic cruise (High Speed Research), hypersonic aircraft, rotorcraft, general aviation, and high performance aircraft. engines and propulsion systems.

Management and provides for the operation and maintenance of the institutional facilities, systems, and CENTER MANAGEMENT AND OPERATIONS - Provides administrative and financial services in support of Center equipment

DISTRIBUTION OF FULL-TIME EQUIVALENT (FTE) WORKYEARS BY PROGRAM

LEWIS RESEARCH CENTER	FY 1993	FY 1994	FY 1995
SPACE STATION	384	190	20
SHUTTLE PROGRAMS	4	4	4
SPACE SCIENCE PHYSICS AND ASTRONOMY PLANETARY EXPLORATION	0 0	0 0	0 0
LAUNCH SERVICES	77	92	92
LIFE AND MICROGRAVITY SCIENCES	238	406	406
MISSION TO PLANET EARTH	62	0	0
ADVANCED CONCEPTS AND TECHNOLOGY	541	528	522
AERONAUTICAL RESEARCH AND TECHNOLOGY	945	686	1,029
SAFETY RELIABILITY AND QUALITY ASSURANCE	4	4	4
ACADEMIC PROGRAMS	0	0	0
COMMUNICATIONS	0	0	0
SUBTOTAL - DIRECT FULL-TIME PERMANENT FTEs	2,255	2,197	2,061
CENTER MANAGEMENT AND OPERATIONS	498	501	463
SUBTOTAL - FULL-TIME PERMANENTS FTEs	2,753	2,698	2,524
OTHER CONTROLLED FTE'S	43	44	46
SUBTOTAL - FULL-TIME EQUIVALENTS	2,796	2,742	2,570
FORMER NON-CEILING	27	27	27
GRAND TOTAL - FULL-TIME EQUIVALENTS	2,823	2,769	2,597

				FY 1993 (Thous	1993 <u>FY 1994 FY</u> (Thousands of Dollars)	<u>FY 1995</u> .lars)
· H	PERSON	PERSONNEL AND RELATED COSTS	. ·	174,211	182,155	182,695
	A.	COMPENSATION AND BI	BENEFITS	171,023	179,245	179,500
		1. COMPENSATIO	NO	142,938	148,903	149,529
		2. BENEFITS		28,085	30,342	29,971
	В.	SUPPORTING COSTS		3,188	2,910	3,195
		1. TRANSFER OF	PERSONNEL	94	78	550
		2. INVESTIGATI	INVESTIGATIVE SERVICES	171	150	06
		3. PERSONNEL T	TRAINING	2,923	2,682	2,555
II.	TRAVEL			4,114	3,880	4,101
	A.	PROGRAM TRAVEL		2,723	2,572	2,719
	'n.	SCIENTIFIC AND TEC	CHNICAL DEVELOPMENT TRAVEL	731	687	726
	ບ່	MANAGEMENT AND OPE	ERATIONS TRAVEL	099	621	929
III.	RESEA	RESEARCH OPERATIONS SUPPORT	RT	40,592	37,684	34,870
	ď.	FACILITIES SERVICE	ES	14,700	14,779	13,455
	В.	TECHNICAL SERVICES		8,100	9,011	8,861
		MANAGEMENT AND OPERATIONS	TRATIONS	17,792	13,894	12,554
		TOTAL, FUND REQUIREMENTS	REMENTS	218,917	223,719	221,666

FY 1995 (Thousands of Dollars) FY 1994 FY 1993

174,211 182,155 182,695	142,938 148,903 149,529	28,085 30,342 29,971	3,188 2,910 3,195
PERSONNEL AND RELATED COSTS	Compensation	Benefits	Supporting Costs
PERSONNEL AND	1.	. 2	
ij			

Basis of the FY 1995 Estimate

locality based pay raise; (2) the Office of Management and Budget (OMB) anticipated FY 1995 pay raise; and (3) The increase from the FY 1994 estimate to the FY 1995 estimate includes: (1) the impact of the January 1994 increased health care costs.

4,101	
3,880	
4,114	
]
TRAVEL	
i.	

H

Basis of the FY 1995 Estimate

The increase from the FY 1994 estimate to the FY 1995 estimate allows the Center to monitor and track the research experiments in conjunction with shuttle activities, and provide increased management overview of programs and functions. <u>FY 1993</u> FY 1994 FY 1995 (Thousands of Dollars)

III. RESEARCH OPERATIONS SUPPORT

A. FACILITIES SERVICES

 40,592
 37,684
 34,870

 14,700
 14,779
 13,455

security and fire protection; and the cost of institutional utilities services, such as electricity, natural institutional facilities operation and maintenance; the cost of custodial services, including janitorial, Facilities services provides for the rental of office space for civil service employees; the cost of gas, sewer, water and oil.

Basis of FY 1995 Estimate

The FY 1995 estimate reflects reduced institutional funding that will support minimum facilities services at engineering services related to configuration management, reduction in janitorial, security and ground services, and reductions in off-site office lease costs by moving off-site civil service employees to Significant impacts include reduction of facility modifications, reductions in facility government-owned on-site offices. the Center.

B. TECHNICAL SERVICES

8,100 9,011 8,861

cost of educational and informational programs, including library and public information services; the cost of institutional management, accounting and finance, procurement, personnel management and utility tracking; the graphics and photographic services, including supplies, materials and equipment; the cost of safety services Technical services provides the cost of all administrative automatic data processing functions (equipment lease, replacement and maintenance, and programming and operations contractor support) in support of and environmental compliance activities.

Basis of FY 1995 Estimate

The FY 1995 estimate reflects the minimum funding to support technical services at the Center, reduced funding in administrative automatic data processing, and level funding plus inflation in all other areas. FY 1993 FY 1994 FY 1995

(Thousands of Dollars)

MANAGEMENT AND OPERATIONS

ς:

17,792 13,894 12,5

Management and Operations provides the cost of administrative communications, such as local and long distance cost of transportation services, such as bus, package delivery, and administrative aircraft maintenance; and operating costs of the printing and reproduction facility as well as supplies, materials and equipment; the telephone services and non-telephone communications; the cost of administrative printing, including the the cost of administrative services for Center management and staff, including medical services, mail delivery, postage, stock issue and warehousing, and environmental studies activities.

Basis of FY 1995 Estimate

The FY 1995 estimate reflects the minimum funding to support management and operations at the Center and includes substantial reductions in telecommunications by slowing phone system upgrades, and substantial reductions in installation support services (i.e., internal mail distribution and property management, warehousing). In addition, less substantial reductions will be required in transportation services, printing/reproduction services and medical services.

RESEARCH AND PROGRAM MANAGEMENT

FISCAL YEAR 1995 ESTIMATES

NASA HEADQUARTERS

CENTER ROLES AND MISSIONS

The mission of Headquarters is to plan and provide executive direction for the implementation of U.S. space and aeronautics programs consistent with the objectives stated in the National Aeronautics and Space Act of formulating, and advocating executive direction to national programs to implement the above objectives. Responsibilities include providing a balanced Agency workforce capable of planning, following offices at Headquarters assist in carrying out the technical aspects of the mission: 1958, as amended.

The Office of Space Office of Space Flight - Plans, directs, executes, and evaluates the acquisition and operations of space improvements in safety, reliability, and effectiveness of Shuttle operational performance; and manages a variety of programs such as Spacelab, Payload Operations and Support Equipment. Manages the design, flight programs including the Space Shuttle and other space flight related programs. development, test, and evaluation of the Space Station program. Office of Space Science (OSS) - Responsible for research and development efforts utilizing a variety of flight system and ground based observatories to increase knowledge of the universe. Office of Space Science research Astrophysics, and Space Physics. The Planetary Exploration program includes the scientific exploration of the solar system including the planets and their satellites, comets and asteroids, and the interplanetary medium. The Astrophysics program studies the distant galaxies and the interstellar medium in our galaxy. The Space Physics program studies our own sun providing answers to questions requiring comprehensive research into solar-terrestrial processes. Responsibilities also include the procurement of Expendable Launch Vehicle and development activities are carried out through the following program areas: Planetary Exploration, Services for NASA and other civil government programs.

involved in these processes and extends the national capability to predict environmental phenomena, both short atmosphere, oceans, land surface and interior of the Earth, and to advance our knowledge of the interactions between these environments. The Mission to Planet Earth program provides space observations of parameters Office of Mission to Planet Earth (OMTPE) - Responsible for research and development efforts utilizing a The Mission to Planet Earth program also variety of flight system and ground based observatories to increase knowledge of the processes in the and long-term, and their interactions with human activities. supports a broad interdisciplinary basic research program.

Microgravity Sciences. The Life Sciences research program results are applied to maintaining astronaut health by the effects of gravity and to increase understanding of gravity-dependent phenomena. Responsibilities also the low gravity environment to obtain new knowledge and understanding of those physical phenomena made obscure efforts utilizing a variety of flight system and ground based observatories to increase knowledge in Life and support systems for long-term piloted space flight. The Microgravity Research program is aimed at utilizing Office of Life and Microgravity Sciences and Applications (OLMSA) - Responsible for research and development cellular, development, and physiological processes; development of environmental health requirements and and productivity; understanding the response of biological mechanisms to weightlessness; study of basic include the Shuttle/Spacelab and attached payload mission management activities. Office of Aeronautics - Plans, directs, executes, and evaluates the aeronautical and transatmospheric research to strengthen U.S. leadership in civil and military aviation. The program is based on a strong commitment to and technology programs. The goal of the aeronautical programs is to conduct research and develop technology develop a broad technology base in support of the aviation industry, to enhance safety and capacity of the national airspace system, and to assure U.S. aviation superiority for national security.

scientific, and technological competitiveness of the U.S. and will promote U.S. industrial preeminence through Office of Advanced Concepts and Technology (OACT) - In 1993, the Office of Commercial Programs and the Space Advanced Launch Technology and Single Engine Centaur which were previously distributed in several programs Technology Directorate of the former Office of Aeronautics and Space Technology were merged to create the Office of Advanced Concepts and Technology. Also, in FY 1994, the Advanced Space Transportation program combines space transportation technology, advanced programs, Solid Propulsion Integrity Program (SPIP), The new office will support the development and application of technologies critical to the economic, strengthened linkages between the private sector and NASA technology efforts.

acquisition of engineering data on the performance of spacecraft and launch vehicle systems; (d) reception of various capabilities provided include: (a) tracking to determine the position and trajectory of vehicles in spacecraft; (f) voice communications with astronauts; (g) transfer of information between the various ground objectives of all flight missions and for executing the critical decisions necessary to the success of these facilities and control centers; and (h) processing of data acquired from the launch vehicles and spacecraft. These capabilities are essential for operating and maintaining U.S. space assets to achieve the scientific celevision transmissions from space vehicles; (e) transmissions of commands from ground facilities to the activities are the Space Transportation System (STS), Spacelab, and scientific and applications missions. space; (b) acquisition of science and space applications data from on-board experiments and sensors; (c) communications, and data processing required by all NASA flight projects. Included in Earth orbital Office of Space Communications - Provides the vital tracking, telemetry, command, data acquisition, missions.

implementation, and oversight of uniform safety, reliability, maintainability, technical standards, improving Office of Safety and Mission Quality (OSMQ) - Assures NASA mission safety through the development, program assurance, and quality assurance (SRM&QA) policies and procedures.

The first group includes all the functional and staff offices which provide Agencywide guidance and oversight <u>Center Management and Operations</u> - This category is composed of two major groups of Headquarters employees. in areas such as procurement, personnel, financial management, supply and logistics, equal opportunity, international relations, and management systems and facilities.

Headquarters staff by providing day-to-day operations in procurement, personnel, financial, and other The second major group includes the employees whose primary task is to provide direct support to the administrative functions.

DISTRIBUTION OF FULL-TIME EQUIVALENT (FTE) WORKYEARS BY PROGRAM

HEADQUARTERS	FY 1993	FY 1994	FY 1995
SPACE STATION	278	80	0
SHUTTLE PROGRAMS	163	175	186
SPACE SCIENCE PHYSICS AND ASTRONOMY PLANETARY EXPLORATION	148	158 112 46	158
LAUNCH SERVICES	9	9	9
LIFE AND MICROGRAVITY SCIENCES	61	78	78
MISSION TO PLANET EARTH	72	83	83
ADVANCED CONCEPTS AND TECHNOLOGY	80	86	86
AERONAUTICAL RESEARCH AND TECHNOLOGY	91	115	115
SAFETY RELIABILITY AND QUALITY ASSURANCE	74	82	82
ACADEMIC PROGRAMS	29	31	32
COMMUNICATIONS	57	57	57
SUBTOTAL - DIRECT FULL-TIME PERMANENT FTEs	1,059	951	883
CENTER MANAGEMENT AND OPERATIONS	853	884	870
SUBTOTAL - FULL-TIME PERMANENTS FTEs	1,912	1,835	1,753
OTHER CONTROLLED FTE's	86	95	85
SUBTOTAL - FULL-TIME EQUIVALENTS	2,010	1,930	1,838
FORMER NON-CEILING	89	89	89
GRAND TOTAL – FULL-TIME EQUIVALENTS	2,078	1,998	1,906

н	PERSON	TNEL AND	PERSONNEL AND RELATED COSTS	161,9
	А.	COMPEN	COMPENSATION AND BENEFITS	151,7
		1.	COMPENSATION	130,0
			BENEFITS	21,6
	В	SUPPOR	SUPPORTING COSTS	10,2
		1.	TRANSFER OF PERSONNEL	2,5
			INVESTIGATIVE SERVICES	1,3
		з.	PERSONNEL TRAINING	6,2
II.	TRAVEL			9,2
	А.	PROGRA	PROGRAM TRAVEL	3,9
	ъ.	SCIENT	SCIENTIFIC AND TECHNICAL DEVELOPMENT TRAVEL	σ
	ن	MANAGEN	MANAGEMENT AND OPERATIONS TRAVEL	4,4
III.	RESEAR	CH OPERA	RESEARCH OPERATIONS SUPPORT	124,5
	A.	FACILIT	FACILITIES SERVICES	38,4
	В.	TECHNIC	TECHNICAL SERVICES	58,1

MANAGEMENT AND OPERATIONS TOTAL, FUND REQUIREMENTS

<u>ن</u>

161,945	167,401	167,649
151,738	157,951	157,861
130,076	134,110	135,099
21,662	23,841	22,762
10,207	9,450	9,788
2,570	3,250	2,337
1,362	006	1,436
6,275	5,300	6,015
9,254	9,200	9,535
3,930	3,929	4,056
906	904	930
4,418	4,367	4,549
124,500	125,300	109,600
38,400	34,500	30,200
58,100	63,100	56,300
28,000	27,700	23,100
295,699	301,901	286,784

FY 1993 FY 1994 FY 1995 (Thousands of Dollars)

Dollars)
s of
(Thousand

ij.	PERSONNEL AN	PERSONNEL AND RELATED COSTS	161,945	161,945 167,401 167,649	167,649
	1.	Compensation	130,076	130,076 134,110 135,099	135,099
	2.	Benefits	21,662	23,841	22,762
	3.	Supporting Costs	10,207	9,450	9,788

Basis of the FY 1995 Estimate

The increase from the FY 1994 estimate to the FY 1995 estimate includes: (1) the impact of the January 1994 locality based pay raise; (2) the Office of Management and Budget (OMB) anticipated FY 1995 pay raise; and (3) locality based pay raise; (2) increased health care costs.

9,535	
9,200	
9,254	
ı	
TRAVEL	
II.	

Basis of the FY 1995 Estimate

The increase from the FY 1994 estimate to the FY 1995 estimate allows for increased management oversight of programs and functions.

FY 1995	lars)
FY 1994	s of Dol
FY 1993 F	(Thousand
1	

109,601

125,300

124,500

34,500

38,400

III. RESEARCH OPERATIONS SUPPORT

A. FACILITIES SERVICES

It also provides for facilities maintenance and repair, security and custodial services for NASA This function includes lease costs for NASA Headquarters offices and warehouse, and the Center for Aerospace Headquarters. Funding is also included here for Agency costs for security investigations for contractor personnel, support of the Agency maintenance management project, and the automated security program. Information.

Basis of FY 1995 Budget Estimate

Headquarters administrative buildings (Headquarters is the only installation within NASA that leases its The FY 1995 estimate identifies a decrease as a result of final negotiations on rates for leasing the facilities); and, the impact of the directed reduction to downsize institutional support.

B. TECHNICAL SERVICES

58,100 63,100 56,300

This function includes the costs of the Headquarters computer center operations, various ADP/T operations, and administrative computing systems including the NASA Accounting and Financial Information System (NAFIS); the Funding also supports the operations; the Agency Information Resources Management (IRM) program; and the Agency public information the Agency Automated Information Management (AIM) program, which manages the development of Agency scientific and technical information program including Center for Aerospace Information (CASI) hardware and software acquisition in support of NASA Headquarters staff offices. program

Basis of FY 1995 Budget Estimate

These reductions reflect consolidation of Headquarters contractors and curtails initiatives that The FY 1995 estimate reflects a substantial decrease from the FY 1994 estimate due to institutional would bring new ADP/T technology to the aging administrative systems within NASA. reductions.

FY 1993 FY 1994 FY 1995

(Thousands of Dollars)

MANAGEMENT AND OPERATIONS

ς;

28,000 27,700 23,100

program, Agency occupational health and safety program, patent fees and services, and miscellaneous center support for the Small Business program, Employee Equal Opportunity program, continual process improvement service, and the Agency aircraft management activity. Also included are costs of administrative program This function includes the costs of Headquarters local communications costs, printing, mail and logstics services, transportation services including the NASA 1 aircraft operations, the Agency FTS long distance operations costs.

Basis of FY 1995 Budget Estimate

A portion of the reduction is a result of reductions in the FTS 2000 telephone/communications costs. Particuarly affected is The FY 1995 estimate reflects reductions to all activities within Management and Operations. the institutional support services to the numerous Headquaraters staff offices.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONSTRUCTION OF FACILITIES FISCAL YEAR 1995 ESTIMATES

TABLE OF CONTENTS

Page No.

General Statement	CF SUM 1
Summary of the Budget Plan by Location	CF SUM 3
Summary of the Budget Plan by Appropriation and Project (New Structure)	CF SUM 4
Summary of Budget by Authorization Line Item (Current Structure)	CF SUM 8
Geographic Location of NASA Installations	CF SUM 12
Recorded Value of NASA's Capital Type Property	CF SUM 13
Project Justification:	
Human Space Flight	CF 1
Science, Aeronautics, and Technology	CF 2
Mission Support	CF 3
Repair	CF 3.2
Rehabilitation and Modification	CF 3.3
Minor Construction	CF 3.4
Facility Planning and Design	CF 3.5
Environmental Compliance and Restoration	CF 3.6

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 BUDGET ESTIMATES

GENERAL STATEMENT

appropriation also includes minor projects (repair, rehabilitation, and modification of existing facilities facilities projects; and advanced planning related to future facilities needs. However, the narratives for discrete projects, including the acquisition of related collateral equipment, that are required to conduct distributed in the appropriations which require specific facilities to conduct their programs. Funds for specific Human Space Flight or Science, Aeronautics, and Technology programs or projects are provided in facilities required in FY 1995. The program budgets include the specific facility project as a program appropriation provides for discrete projects including the acquisition of related collateral equipment required for components of the basic infrastructure and institutional facilities. The Mission Support all construction projects are included in this portion of the budget submission to identify the total and minor construction projects), environmental compliance and restoration activities; the design of requirement and reference the narratives provided in Mission Support for detailed descriptions and Funding for Construction of Facilities has been restructured from a single appropriation to being these two appropriations. The Construction of Facilities budget line item in the Mission Support justifications. In Human Space Flight, the FY 1995 budget request provides for construction of a Neutral Buoyancy Laboratory inadequate Space Shuttle component assembly and cleaning facilities at KSC with an efficient facility that at the Johnson Space Center in support of the Space Station. Funding is also included to modernize the Firex Systems at Launch Complexes 39A and 39B at the Kennedy Space Center (KSC) and to replace the will meet environmental and safety standards.

Ames Unitary Plan Wind Tunnel Complex and the construction of the Goddard Earth Systems Science Building to funded projects begun in prior years to meet mission requirements. Included are the modernization of the The funds requested for FY 1995 in Science, Aeronautics and Technology provide for continuing multi-year support the Earth Observing System (EOS) Program.

Laboratory, Johnson Space Center, Kennedy Space Center, and Marshall Space Flight Center. Also included are cooling, mechanical, and electrical distribution facilities at Goddard Space Flight Center, Jet Propulsion In Mission Support, funding is requested in FY 1995 for discrete projects to repair and modernize utility systems and building systems which have reached or exceeded their normal design life, including heating,

structural modifications to the Research, Development and Test Building at the Dryden Flight Research Center for vital seismic protection requirements.

support of the payloads and launch facilities as well as our aeronautical and aerospace testing capabilities These facilities are critical to the development and operation of the space transportation system, and to support military and private industry users. The FY 1995 construction program is required to help preserve and enhance the capabilities and usefulness of compliance and restoration program is critical to ensuring that statutory environmental requirements are met responsive repair program. The minor construction program provides a means to accomplish smaller facility continues the necessary rehabilitation and modification program begun in prior years and continues a projects which accommodate changes in technical and institutional requirements. The environmental existing facilities and ensure safe, economical, and efficient use of the NASA physical plant. and that necessary remedial actions are promptly taken.

potential future projects, master planning, facilities studies, engineering reports and studies, and the Funds requested for facility planning and design cover advance planning and design requirements for preparation of facility project design drawings and bid specifications. The budget authority requested for FY 1995 for facilities budgeted in the Mission Support appropriation is \$135,000,000.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONSTRUCTION OF FACILITIES FISCAL YEAR 1995 ESTIMATES SUMMARY OF THE BUDGET PLAN BY LOCATION (Thousands of Dollars)

	Fiscal	Fiscal	Fiscal Year
	rear	rear	1995 Agency
LOCATION	1993	1994	Request
Ames Research Center	60,626	62,105	31,800
Dryden Flight Research Center	3,415	1,945	11,210
Goddard Space Flight Center	27,716	32,750	27,110
Jet Propulsion Laboratory	10,595	11,920	10,910
Lyndon B. Johnson Space Center	14,481	27,985	30,350
John F. Kennedy Space Center	35,000	37,930	23,450
Langley Research Center	14,971	81,930	9,020
Lewis Research Center	26,225	54,510	9,650
George C. Marshall Space Center	70,920	37,310	23, 675
John C. Stennis Space Center	13,135	16,490	4,280
Wallops Flight Facility	7,418	13,130	4,320
Various Locations	162,344	105,885	8,955
	4,854	1,810	1,770
Facility Planning and Design	23,300	32,000	10,000
	8,000	!	!!!
Consortium For International Earth Science Information Network	37,000		1 1 1
Total Construction of Facilities	520,000	517,700	206,500

PACE ADMINISTRATION	FACILITIES	ESTIMATES
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION	CONSTRUCTION OF FACILITIES	FISCAL YEAR 1995 ESTIMATES

Page 1 of 4

BUDGET PLAN BY APPROPRIATION AND PROJECT (NEW STRUCTURE)
(Thousands of Dollars)

INSTALLATION AND PROJECT	Fiscal Year 1993	Fiscal Year 1994	Fiscal Year 1995 Agency Request	Page No
HUMAN SPACE FLIGHT	 	 	 	
SPACE STATION: Construction of Neutral Buoyancy Laboratory (JSC)	13,800 12,000 1,800		20,200 20,200 CF 	CF 1-1
	178,100	33,500	12,300	
Modernize Firex System, Pads A and B (KSC)	!		4,800 CF	1-4
0	!		7,500 CF	1-7
Replace Mission Control Air Handlers (JSC)	1	8,000	!	
Replace Thermal Vacuum Helium Refrigeration Systems (JSC)	!!!	7,400	;	
	!	1,200	! !	
Kerurbish Launch Complex 39 Cooling System (KSC)	!	4,000	!	
Refurbish Launch Complex 39 Secondary Circuit Breakers (KSC)		3,300	!	
Restore C-5 Substation, Launch Complex 39 Area (KSC)	 	5,000	-	
Nescore some lest complex High Pressure Industrial Water				
oystem (500)	! !	2,300	1	
Kenabilitate LC-39 Area Fire Alarm Reporting System (KSC)	4,300	!	!	
Rehabilitation of Crawlerway (KSC)	2,000		}	
Restore High Pressure Gas Systems (SSC)	6,800	2,300	!	
Virginian of Advanced Solid Rocket Motor Program Facilities				
(various Locations)	165,000	-	!	
Total - Human Space Flight	191,900	33,500	32,500	

39,000

262,100

138,700

Total - Science, Aeronautics, and Technology.............

NOI
INISTRAT
E ADM
SPAC
AND
AERONAUTICS
NATIONAL

4

οŧ

Page 2

Fiscal Year

Fiscal

BUDGET PLAN BY APPROPRIATION AND PROJECT CONSTRUCTION OF FACILITIES FISCAL YEAR 1995 ESTIMATES (Thousands of Dollars) (NEW STRUCTURE)

2-5 Page 2 - 1CF Ç 1995 Agency 17,000 22,000 22,000 17,000 Request 1 | | 2,100 3,900 17,600 212,000 181,000 25,000 12,500 12,500 12,000 8,000 37,600 Year 1994 1 1 1 1 8,000 2,000 2,200 37,000 15,300 15,600 16,200 52,600 25,000 17,400 Fiscal 86,100 1993 1 1 1 Year 1 1 Repair and Modernization of the 12-Foot Pressure Wind Tunnel (ARC).. Rehabilitation of Rocket Engine Test Facility (LERC)........ Construction of 34-Meter Multifrequency Antenna, Goldstone (JPL).... Goldstone (JPL).... Upgrade of Outdoor Aerodynamic Research Facility (ARC)....... Modernization of the Unitary Plan Wind Tunnel Complex (ARC)...... Construction of Earth Systems Science Building (GSFC)........ National Aeronautics Facilities Upgrade Program (Various Locations) Rehabilitation of Control Systems, National Full-Scale Aerodynamics Construction of Earth Observing System Data Information System Construction of EOSDIS Distributed Active Archive Center (DAAC) Consortium for International Earth Science Information Network Construction and Modernization of Infrared Telescope Facility, Modifications to 14 by 22-Foot Subsonic Wind Tunnel (LaRC)... Construction of 34-Meter Multifrequency Antenna, Canberra, (CIESIN)...... Australia (JPL)...... Construction of 34-Meter Multifrequency Antenna, INSTALLATION AND PROJECT AERONAUTICS, AND TECHNOLOGY (EOSDIS) Facility (GSFC)...... Mauna Kea, HI..... Complex (ARC)..... AERONAUTICS SCIENCE

| | 1 | |

> 1 1

4,500 1,600 4,400

> Replace Aircraft Operations Support Facilities (JSC)......... Replace Central Plant Chilled Water Equipment (JSC).........

Modify Electrical and Mechanical Systems, Utility Annex (KSC)......

Restoration of Airfield (WFF).......... Modernize Secondary Electrical Systems, Various Buildings (GSFC).... | |

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONSTRUCTION OF FACILITIES

Page 3 of

BUDGET PLAN BY APPROPRIATION AND PROJECT FISCAL YEAR 1995 ESTIMATES

(Thousands of Dollars) (NEW STRUCTURE)

	Fiscal	Fiscal	Fiscal Year	
INSTALLATION AND PROJECT	Year 1993	Year 1994	1995 Agency Request	Page No
MISSION SUPPORT	 			i i !
Seismic Upgrade of Research, Development, and Test Building (DFRC)	!	!	8,000	F 3.1-1
Restore Exterior/Interior Systems, Buildings 3, 13, and 14 (GSFC)		!	2,000 3	F 3.1-4
Modernize Condenser Water Systems, Southern Sector (JPL)	1	-	4,300 C	E 3.1-7
	1	!		CF 3.1-11
Modernize Payloads Hazardous Servicing Facility HVAC System (KSC)	!!!	!		CF 3.1-14
Modernize Metrology and Calibration Facility (MSFC)	!	!		CF 3.1-17
Replacement of Central Plant Steam and Electrical Generation				
Equipment (GSFC)	!	8,600	1 4 1	
Restoration and Modernization of Chilled Water System (GSFC)	!	2,000	-	
Replace Chillers, Various Buildings (JPL)	!	2,900	1 -	
Rehabilitate Electrical Distribution System, Project Management		·		
Building (JSC)	i	2.200	!	
Wat		3,000	!	
		4,900	!!!	
•	!	1,900	•	
Restoration of Electrical Power System (MSFC)	;	2,600	1	
Restoration of High Pressure Air Compressor System (MSFC)	!	8,500	:	
Repair Decking and Roof, X-Ray and Staging Facility (MAF)	! ! !	1,500	;	
Replace Cooling Tower and Boiler (MAF)	 	4,000	;	
Restoration of Underground Communication Distribution System (SSC)	2,200	3,800	!	
Restoration of Airfield (WFF)	!	5,200	!	
Moderniae Cocondern Dioatedeel Contractor		1 .		

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONSTRUCTION OF FACILITIES

Page 4 of 4

FISCAL YEAR 1995 ESTIMATES BUDGET PLAN BY APPROPRIATION AND PROJECT

(NEW STRUCTURE)
(Thousands of Dollars)

INSTALLATION AND PROJECT	Fiscal Year 1993	Fiscal Year 1994	Fiscal Year 1995 Agency Request	r Y Page No
MISSION SUPPORT (Continued)				
Rehabilitate Explosive Safe Area-60 High Bays Support Systems (KSC).	2,000	;		
Restoration of Information and Electronic Systems Laboratory (MSFC)	12,200		;	
Replace Boiler House Components (MAF)	2,300	1		
Repair of Facilities at Various Locations, Not in excess of \$1,000,000 per project	31,900	36,000	30,000	CF 3.2
Rehabilitation and Modification of Facilities at Various Locations, Not in excess of \$1,000,000 per project	34,000	36,000	30,000	CF 3.3
Minor Construction of New Facilities and Additions to Existing Facilities at Various Locations, Not in excess of \$750,000				
per project	14,000	14,000	2,000 (CF 3.4
Facility Planning and Design	23,300	32,000	10,000	CF 3.5
Delta College	8,000	}	;	
Environmental Compliance and Restoration	40,000	50,000	35,000 (CF 3.6
Total - Mission Support	189,400	222,100	135,000	
Total - Construction of Facilities 520,000 (Total Construction of Facilities funding included in the three appropriations	520,000 copriations	517,700	206, 500	

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION	CONSTRUCTION OF FACILITIES	FISCAL YEAR 1995 ESTIMATES	BUDGET PLAN BY AUTHORIZATION LINE ITEM	(CURRENT STRUCTURE)	(Thousands of Dollars)	
AERONAUTI	CONSTRUC	FISCAL Y	T PLAN BY	(CUR	(Thous	
NATIONAL			BUDGE			

Page 1 of 4

INSTALLATION AND PROJECT	Fiscal Year 1993	Fiscal Year 1994
SPACE STATION FACILITIES AT VARIOUS LOCATIONS: Construction of Space Station Processing Facility (KSC)	13,800 12,000 1,800	
SPACE FLIGHT FACILITIES AT VARIOUS LOCATIONS:	193,400	55,400
(JSC)		8,000
Repace Thermal Vacuum Helium Refrigeration Systems (JSC)	-	7,400
Refurbleh Launch Commics 29 Cooling Outlity Piping (KSC)	!	1,200
Refurbleh Isunch Complex 20 George C.	!	4,000
Definition Martin Tourist 39 Secondary Circuit Breakers (KSC)	i	3,300
Relucions Venicle Assembly Building/Pad Water Storage Tanks (KSC)	! !	3,000
Renabilitate Industrial Area Fire Alarm Reporting System (KSC)	!!	4,900
Restore C-5 Substation, Launch Complex 39 Area (KSC)	!	5,000
Restoration of High Pressure Air Compressor System (MSFC)	!	8,500
Repair Decking and Roof, X-Ray Staging Facility (MAF)	;	1,500
Replace Cooling Tower and Boiler (MAF)	!	4,000
Restore SSME Test Complex High Pressure Industrial Water System (SSC)	!!	25.300
Replace Aircraft Operations Support Facilities (JSC)	1,600	
Modify Electrical and Mechanical Systems, Utility Annex (KSC)	4,400	;
Rehabilitate Explosive Safe Area-60 High Bays Support Systems (KSC)	2,000	;
Rehabilitate LC-39 Area Fire Alarm Reporting System (KSC)	4,300	!
Rehabilitation of Crawlerway (KSC)	2,000	!
Replace Boiler House Components (MAF)	2,300	1
Restoration of Information and Electronic Systems Laboratory (MSFC)	5,000	!
	6,800	2,300
Construction of Advanced Solid Rocket Motor Program Facilities		
(Various Locations)	165,000	}

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONSTRUCTION OF FACILITIES FISCAL YEAR 1995 ESTIMATES BUDGET PLAN BY AUTHORIZATION LINE ITEM (CURRENT STRUCTURE) (Thousands of Dollars)	Pag	Page 2 of 4
INSTALLATION AND PROJECT	Fiscal Year 1993	Fiscal Year 1994
LYNDON B. JOHNSON SPACE CENTER Rehabilitate Electrical Distribution System, Project Management Building	4,000	2,200
JOHN F.KENNEDY SPACE CENTER Restore Class III Landfill		1,900
MARSHALL SPACE FLIGHT CENTER Restoration of Electrical Power System		2,600
JOHN C. STENNIS SPACE CENTER Restoration of Underground Communication Distribution System	2,200	3,800
GODDARD SPACE FLIGHT CENTER Construction of Earth Systems Science Building	19,800	25,600 12,000 8,600 5,000
Construction of Earth Observing System Data Information System (EOSDIS) Facility	15,300	}
JET PROPULSION LABORATORY Replace Chillers, Various Buildings		2,900
WALLORS FLIGHT FACILITY Restoration of Airfield		5,200

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONSTRUCTION OF FACILITIES FISCAL YEAR 1995 ESTIMATES BUDGET PLAN BY AUTHORIZATION LINE ITEM (CURRENT STRUCTURE) (Thousands of Dollars)		Page 3 of 4
	Fiscal	Fiscal
INSTALLATION AND PROJECT	Year 1993	Year 1994
	 	1 1 1 1
AERONAUTICAL FACILITIES AT VARIOUS LOCATIONS. National Aeronautics Facilities Upgrade Program	64,800	212,000
(Various Locations)	25,000	181,000
Aeronautical Facilities Revitalization	39,800	31,000
Complex (ARC)	<u> </u>	(2, 100)
Upgrade of Outdoor Aerodynamic Research Facility (ARC)	-	(3,900)
Modernization of the Unitary Plan Wind Tunnel Complex (ARC)	(8,000)	(25,000)
12-Foot Pressure Wind Tunnel (ARC)	(17,400)	1
Subsonic Wind Tunnel (LaRC)	(2,200)	!
Rehabilitation of Central Air System (LeRC)	(12,200)	!!!
LANGLEY RESEARCH CENTER Construction of EOSDIS Distributed Active Archive Center (DAAC)		8,000 8,000
LEWIS RESEARCH CENTER Rehabilitation of Rocket Engine Test Facility		12,500 12,500
VARIOUS LOCATIONS Construction of 34-Meter Multifrequency Antennas, Canberra, Australia (JPL) Construction of 34-Meter Multifrequency Antenna, Goldstone (JPL) Construction of 34-Meter Multifrequency Antenna, Goldstone (JPL) Construction and Modernization of Infrared Telecope Facility, Mauna Kea, HI	33,800 15,600 16,200 2,000	17,600

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONSTRUCTION OF FACILITIES FISCAL YEAR 1995 ESTIMATES BUDGET PLAN BY AUTHORIZATION LINE ITEM (CURRENT STRUCTURE) (Thousands of Dollars)	ă	Page 4 of 4
	Fiscal	Fiscal
INSTALLATION AND PROJECT	Year 1993	Year 1994
	1 1 1	
Repair of Facilities at Various Locations, Not in excess of \$1,000,000 per project	31,900	36,000
Rehabilitation and Modification of Facilities at Various Locations, Not in excess of \$1,000,000 per project	34,000	36,000
Minor Construction of New Facilities and Additions to Existing Facilities at Various Locations, Not in excess of \$750,000 per project	14.000	14,000
Facility Planning and Design	23,300	32,000
Delta College	8,000 37,000	
SUBTOTAL, Construction	480,000	467,700
Environmental Compliance and Restoration Program	40,000	50,000
TOTAL, Construction of Facilities	520,000	517,700

LOCATION OF MAJOR AND COMPONENT INSTALLATIONS

RECORDED VALUE OF CAPITAL TYPE PROPERTY IN-HOUSE AND CONTRACTOR-HELD AS OF SEPTEMBER 30, 1993 (DOLLARS IN THOUSANDS)

REPORTING INSTALLATION	LAND	BUILDING	OTHER STRUCTURES AND FACILITIES	LEASEHOLD IMPROVEMENTS	TOTAL EC	EQUIPMENT	FIXED ASSETS IN PROGRESS GR	GRAND TOTAL
AMES RESEARCH CENTER	2,929	589,056	46.484	0	638,469	401,475	249,486	1,289,430
ARC MOFFETT FIELD, CA	2,928	527,848	20,700	0	551,476	304,094	240,667	1,096,237
DRYDEN FUGHT FACIUTY EDWARDS, CA	0	60,512	25,437	0	85,949	22,22	918'8	187,290
VARIOUS LOCATIONS	-	969	347	0	1,044	4,859	0	5,903
GODDARD SPACE FUGHT CENTER	3,311	281,447	131,944	0	416,702	645,274	88,658	1,120,634
GSFC-GREENBELL, MD	1,577	186,401	107,701	0	215,679	349,377	39,539	604,595
TRACKING STATIONS NETWORK	S	39,209	23,153	0	62,367	102,498	2,698	167,563
WFF-WALLOPS ISLAND, VA	1,729	54,886	76,847	0	133,462	79,106	16,421	228,989
VAROUS LOCATIONS	0	150	4,243	0	5,194	114,293	0	119,487
JET PROPULSION LABORATORY	1,189	179,555	113,756	100,1	295,591	408,683	0	704.274
JPL PASADENA, CA	1,189	179,555	113,756	160'1	295,591	408,683	0	704,274
JOHNSON SPACE CENTER	11,238	312,943	113,189	501	437,475	724.493	40,208	1,202,176
JSC-HOUSTON, TX	1,291	261,022	11,104	0	339,417	485,300	40,208	864,925
WHITE SANDS TEST FACIUTY LOS CRUCES, NM	377	15,375	38,222	52	52,079	0	0	52,079
VARIOUS LOCATIONS	3,570	36,546	5,863	0	45.979	239,193	0	285,172
KENNEDY SPACE CENTER	73,672	623,719	550,494	0	1,247,885	893,976	136,516	2.278.377
KSC-CAPE CANAVERAL, FL	73,672	623,719	550,494	0	1,247,885	1287.8	136,516	1,472,222
WESTERN TEST RANGE, LOMPAC, CA	0	0	0	0	o	2,928	0	2.928
VAROUS LOCATIONS	0	0	0	0	0	803,227	0	603.227
LANGLEY RESEARCH CENTER	158	231,727	436,112	0	905,799	327,435	64.785	1,060,215
LARC-HAMPTON, VA	3 51	231,727	436,112	0	567,995	308,867	64.785	1,041,647
VARIOUS LOCATIONS	0	0	0	0	0	18,568	0	18,568
LEWIS RESEARCH CENTER	2,621	305,940	112,579	136	421,276	263,969	80,996	766.241
LERC-CLEVELAND, OH	316	228,790	93,517	136	322,759	171,442	966'08	575,197
PLUMBROOK, SANDUSKY, OH	2,305	77,150	19,062	0	98,517	79,693	0	178,210
VARIOUS LOCATIONS	0	0	0	0	0	12,834	0	12,834
MARSHALL SPACE FUGHT CENTER	11,093	369,289	202,848	0	583,230	788,983	15,103	1,387,316
MSFC-HUNTSVILLE, AL	0	193,713	395,001		294,278	438,068	15,103	747,449
MICHOUD ASSEMBLY FACILITY, LA	7,162	164,007	88,500	0	259,669	72,609	0	332,278
SUDELL COMPUTER COMPLEX, LA	\$	5,253	3,176		8,498	14,557	0	23,055
VAROUS LOCATIONS	3,862	6,316	10,001	0	20,785	263,749	0	284,534
STENNIS SPACE CENTER	18,080	130,796	234,251	0	383,127	48,140	31,617	462,884
STENNIS SPACE CENTER	18,080	130,796	234,251	0	383,127	48,140	31,617	462,884
VARIOUS LOCATIONS	0	0	0	0	0	0	0	0
NASA HEADQUARTERS	0	0	0	11	11	58,592	0	58,609
NASA-HOS, WASH, DC	0	0	0	11	11	58,592	0	609'85
VARIOUS LOCATIONS	0	0	0	0	0	0	0	0
AGENCY TOTAL	124,289	3,024,472	1,941,657	1,349	6,091,767	4,561,020	677,369	10,330,156

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONSTRUCTION OF FACILITIES FISCAL YEAR 1995 ESTIMATES

SUMMARY

HUMAN SPACE FLIGHT

		Page
	Amount	No.
	(Dollars)	
Space Station:		
Construction of Neutral Buoyancy Laboratory, Johnson Space Center	20,200,000	CF 1-1
Other Human Space Flight:		
Modernize Firex System, Pads A and B, Kennedy Space Center	4,800,000	CF 1-4
Replace Components Refurbishment Laboratory, Kennedy Space Center	7,500,000	CF 1-7

32,500,000

Total Human Space Flight

FISCAL YEAR 1995 ESTIMATES

PROJECT TITLE: Construction of Neutral Buoyancy Laboratory

INSTALLATION: Lyndon B. Johnson Space Center

FY 1995 COF Estimate: \$20,200,000

LOCATION OF PROJECT: Houston, Harris County, Texas

COGNIZANT HEADQUARTERS OFFICE: Office of Space Flight

FY 1994 AND PRIOR YEARS FUNDING: The following prior years funding is related to this project:

Total	\$3,954,014	\$3,954,014
Construction		1
Planning and Design	\$3,954,014	\$3,954,014
	Specific CoF Funding	Total

SUMMARY PURPOSE AND SCOPE:

This project provides for the first of two increments for the construction of the Neutral Buoyancy Laboratory to meet the requirements for extravehicular activity (EVA) simulations for astronaut training, EVA procedures development, and validation for the Space Station assembly and operations.

PROJECT JUSTIFICATION:

Station. A major critical requirement is the validation of EVA timelines to ensure that the EVA activities can be successfully carried out. Experience from several satellite retrieval/servicing EVA tasks, e.g., Solar Maximum, This project is required for EVA simulations for astronaut training and procedures development for the Space realistic, complete simulations made possible by the larger pool size of the NBL will significantly increase Westar/Palapa, Syncom, Intelsat-VI, and the recent Hubble Space Telescope, has clearly shown that the more assurance of successful and safe EVA mission operations.

Larger facilities are required for the larger Space Techniques developed and refined in neutral buoyancy facilities allow astronauts in space suits to perform space-Station flight hardware assemblies. The NBL will accommodate the large space hardware portions and provide related EVA operations on the ground in a way that correlates closely to actual on orbit task performance. Existing facilities were sized for existing program hardware.

CF 1-2

operations. There are no acceptable neutral buoyancy facilities available for providing adequate Space Station EVA evaluations and astronaut training. The NBL also will be the primary EVA facility for Space Shuttle and other realistic EVA development and operations planning activities during the Space Station buildup and follow-on program requirements.

IMPACT OF DELAY:

Delay in providing this facility The NBL is required to support Space Station assembly engineering and training and will be invaluable for the fourth and following assembly missions which have the highest EVA complexity. will seriously impact Space Station assembly and operations.

PROJECT DESCRIPTION:

panels comprising approximately 69,000 square feet. Approximately 12,000 square feet of this space will be test article mock up assembly and 12,000 square feet of this space will be used for locker room, scuba servicing rooms, electrical, mechanical rooms, hallways, and offices. Tank water circulation/treatment systems also will be installed. The pool will be 202 by 102 by 40 feet. The facility also will include breathing gas, support include site preparation and construction of the tank and associated support systems, cranes, and the laboratory building which houses the pool. The laboratory building will be a steel framed structure with insulated metal This increment will This project provides for the first of two increments for the construction of the NBL. systems, out buildings to support the tank, and parking.

PROJECT COST ESTIMATE:	Unit of Measure	Quantity	Unit Cost	COST
Construction	ļ		}	\$20,200,000
Civil/Sitework	LS	!	}	3,400,000
Fire & Safety	LS	!		200,000
Architectural	LS	1	1 1	1,000,000
Structural	LS	1	-	10,000,000
Electrical	LS]]]	!!	1,600,000
Other Related Pool Equipment	LS		!!!	1,000,000
Crane	LS		1	1,100,000
Miscellaneous Equipment	LS			1,900,000
Total				\$20,200,000

Total cost of this project is \$32.2M.

LIST OF RELATED GRAPHICS: Figure 1 - Location Plan

FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT: Approximately \$12,000,000 will be required in FY 1996 to complete the construction and provide a fully operational facility.

FIGURE 1

FISCAL YEAR 1995 ESTIMATES

PROJECT TITLE: Modernize Firex System, Pads A & B

INSTALLATION: John F. Kennedy Space Center

FY 1995 COF Estimate: \$4,800,000

LOCATION OF PROJECT: John F. Kennedy Space Center, Brevard County, Florida

COGNIZANT HEADOUARTERS OFFICE: Office of Space Flight

FY 1994 AND PRIOR YEARS FUNDING: The following prior years funding is related to this project:

Planning

Total	\$440,000 \$216,362,462	\$216,802,462
Construction	\$216,362,462	\$216,362,462
and Design	\$440,000	\$440,000
	Specific CoF Funding	Total

SUMMARY PURPOSE AND SCOPE:

The purpose of this project is to replace the fire water perimeter loop piping and components to meet the required 300 psig operating pressure. The failure rate of this piping is increasing because it was not designed to withstand the required high operating pressures.

PROJECT JUSTIFICATION:

existing piping was installed in approximately 1966 and was designed to operate at 160 psig. There is concern in continuing to use the systems at high range pressures. In addition, most of the system components, particularly hydrants and hose reels, are not rated for the system pressure. Replacing Firex piping and making system modifications to connect water fog nozzles to the high pressure will improve overall system reliability. The Firex system is operated at 155 psig static pressure with occasional pressure surges up to 300 psig.

systems are required for emergency egress on the Orbiter Mid-Body Umbilical Unit and fuel handling areas to meet safety standards

IMPACT OF DELAY:

Increasing system failures and component failures could render the Pad A/B Firex protection system inadequate during an emergency. Personnel safety will be compromised.

PROJECT DESCRIPTION:

New Firex piping will be installed with the proper pressure classification with connections at the perimeter valve create a new low-pressure system serving hydrants and hose reels. System connection details at several facilities located. The Pad B surface requires only piping and nozzles; however, Pad A requires a complete Type I system will need to be revised to isolate water fog nozzles on the new Firex system and connect facility hydrants and hose reels to the new low pressure system. Nozzles will be added where hypergolic and cryogenic equipment is pit and facility valve pits. Existing Firex piping will be connected to the existing potable water system to

Cost	\$4,800,000	3,000,000 1,100,000 700,000
Unit Cost	;	
Quantity	}	
Unit of Measure	f f 1	LS LS LS
PROJECT COST ESTIMATE:	Construction	Civil/Site Work

LIST OF RELATED GRAPHICS: Figure 1 - Location Plan

FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT:

JOHN F. KENNEDY SPACE CENTER FISCAL YEAR 1995 ESTIMATES MODERNIZE FIREX SYSTEM, PADS A & B

FISCAL YEAR 1995 ESTIMATES

PROJECT TITLE: Replace Components Refurbishment Laboratory

INSTALLATION: John F. Kennedy Space Center

FY 1995 CoF Estimate: \$7,500,000

John F. Kennedy Space Center, Brevard County, Florida LOCATION OF PROJECT:

COGNIZANT HEADOUARTERS OFFICE: Office of Space Flight

FY 1994 AND PRIOR YEARS FUNDING: The following prior years funding is related to this project:

Total	\$645,000	\$645,000
Construction		
Planning and Design	\$645,000	\$645,000
	Specific CoF Funding	Total

SUMMARY PURPOSE AND SCOPE:

The project also includes utilities to the site, site clearing, and The purpose of this project is to upgrade the existing Space Shuttle Component Refurbishment Facilities by support systems required for component assembly and cleaning. replacing approximately 30,000 square feet.

PROJECT JUSTIFICATION:

flight hardware components and proof testing of tubing and flex hoses. The facilities are currently operated 7 systems, and have friable asbestos in the roof deck and in the mechanical areas. Modifications to replace the existing primary facilities are overcrowded, do not comply with OSHA fire safety standards, have aging utility days per week to support the number of Shuttle and Air Force components requiring refurbishment and cleaning. The Components Refurbishment Laboratory is the only certified laboratory at Kennedy Space Center for cleaning

the existing facilities are located within the Shuttle launch impact zone requiring evacuation and subsequent work asbestos have been canceled due to the requirement to keep this mission critical operation on-line. In addition, utility systems, install fire sprinklers, install non-chlorofluorocarbon (CFC) cleaning upgrades, and remove the stoppage on launch days. Providing a replacement facility that meets present environmental and safety criteria will eventually permit the demolition of the existing facility and eliminate the present deficiencies.

IMPACT OF DELAY

Continued use of the existing facilities would result in continued fire safety noncompliance, overcrowding, noncompliance with non-CFC cleaning upgrades, and increased breakdowns of out-dated utility systems.

PROJECT DESCRIPTION

Services This project provides for replacing approximately 30,000 square feet for rough cleaning, pre-clean laboratories and shops, precision cleaning/verification clean rooms and test cells, hydraulics laboratories, shipping and provided will include communication, electricity, water, sewer, compressed air, and hazardous waste storage Deionized water supply, wastewater holding tanks, and compressed gas tube banks will be relocated from the receiving, logistics and other support space. A fire protection and detection system will be installed. existing facilities.

Cost	\$7,500,000	1,700,000 2,500,000 1,200,000 1,700,000 400,000
Unit	!	
Ouantity	:	
Unit of Measure	!!!	
PROJECT COST ESTIMATE:	Construction	Civil Structural/Architectural Structural St

LIST OF RELATED GRAPHICS: Figure 1 - Site Plan

Approximately \$3,300,000 of other funds will be required for outfitting and facility OTHER EQUIPMENT SUMMARY: support equipment.

FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT: A future addition is planned so that all functions in the existing refurbishment facilities can be located in the same area

JOHN F. KENNEDY SPACE CENTER FISCAL YEAR 1995 ESTIMATES REPLACE COMPONENTS REFURBISHMENT LABORATORY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONSTRUCTION OF FACILITIES FISCAL YEAR 1995 ESTIMATES

SUMMARY

Ş	
1	
Ē	Ē
9	
^	
007	
F1.	
S INC	
7 5 0	
[z	•
TUNE	
TLUX	
0	2

		Page
	Amount	No.
	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!]] [
Science:	(Dollars)	
Construction of Earth Systems Science Building, Goddard Space Flight Center	17,000,000	CF 2-1
Aeronautics:		
Modernization of the Unitary Plan Wind Tunnel Complex, Ames Research Center	22,000,000	CF 2-5
Total Science, Aeronautics, and Technology	39,000,000	

FISCAL YEAR 1995 ESTIMATES

Construction of Earth Systems Science Building PROJECT TITLE:

INSTALLATION: Goddard Space Flight Center

FY 1995 CoF Estimate: \$17,000,000

LOCATION OF PROJECT: Greenbelt, Prince George's County, Maryland

COGNIZANT HEADOUARTERS OFFICE: Office of Mission to Planet Earth

FY 1994 AND PRIOR YEARS FUNDING: The following prior years funding is related to this project:

Total	\$16,044,850	\$16,044,850
Construction	\$12,000,000	\$12,000,000
Planning and Design	\$4,044,850	\$4,044,850
	Specific CoF Funding	Total

SUMMARY PURPOSE AND SCOPE:

change. This facility is located adjacent to the Earth Observing System Data Information System (EOSDIS) Facility contractor, and visiting scientist personnel conducting interdisciplinary earth science and research into global This project provides the second increment of the Earth Systems Science Building (ESSB) at the Goddard Space and will support the Earth Observing System (EOS) program by data analysis, assimilation, and instrument and The facility will provide approximately 290,000 square feet to house civil service, algorithm development. The third increment required to complete the facility is planned for FY 1996. Flight Center (GSFC).

PROJECT JUSTIFICATION:

The Earth Observing Systems (EOS) Program is a critical component of this effort. It will contribute The United States has taken the leadership role in one of the largest Earth Science enterprises -- Global Change research.

principal observational, data processing and archiving, and scientific research capabilities essential to conduct Goddard Space Flight Center is NASA's lead Center for EOS, with responsibility for development of Earth Observing capabilities including the Earth Observing System Morning Crossing (EOSAM) and Earth Observing System Afternoon Crossing (EOSPM) spacecraft; GSFC-sponsored NASA facilities class instruments; Earth Science mission operations; principal or co-investigator for a number of EOS-related scientific investigations; Land Remote-Sensing Satellite (LANDSAT); and processing, archiving, and disseminating GSFC-related EOS data.

Change research. The proximity of the ESSB Facility to the EOSDIS Facility will provide ready access to the GSFC EOS Distributed Active Archive Center (DAAC), the central repository (located within the EOSDIS Facility) for all goals. The ESSB will also provide a venue for collaboration between NASA and other scientists engaged in Global facilitate and promote the interdisciplinary scientific research required to achieve EOS/Global Change research talent in specialized facilities dedicated to the conduct of EOS/Global Change research. This is essential to The Earth System Science Building (ESSB) brings together vital elements of GSFC's substantial Earth Sciences GSFC EOS-related data.

programmatic support. The ESSB will provide a consolidated environment in which interdisciplinary interactions are fostered for the resident earth scientists and the visiting scientists. The ESSB will also accommodate new equipment such as computer, workstation, and graphics terminal technologies as they evolve over the life of the EOS/Global Change research effort. This facility will ensure an efficient and productive work environment for obstacles to interdisciplinary scientific communication and collaboration, and inefficient EOS Project/EOSDIS Goddard's Earth Science group is currently located in seven widely separated buildings, creating substantial EOS/Global Change research.

IMPACT OF DELAY:

If the ESSB facility is delayed, it will adversely impact the analysis and understanding of EOS data, as well as delay the development of instrumentation and algorithms for future Earth Science missions.

PROJECT DESCRIPTION:

The 290,000 square foot facility will be located on the east site adjacent to the EOSDIS Facility at Greenbelt and included extension of basic utilities infrastructure to the ESSB site, expansion of EOSDIS utility plant including and electrical long lead items; construction of building interior, partitioning, and finishes; and completion of long lead items. The third increment (FY 1996) will provide for installation of the architectural, mechanical, increment will provide for the ESSB shell and procurement of building architectural, mechanical and electrical Soil Conservation Service Roads. The first increment (FY 1994) provided for site development/utilities, and provision for backup diesel electric power, and construction of ESSB footings and foundations. This second remaining work to provide a complete and usable facility.

exterior wall, and interior support systems. Utility control systems, to be tied in with the Center-wide Utility The overall scope of work for this project provides for site development, including the extension of appropriate Center utility distribution systems (communication duct banks, electrical power, steam, chilled water, sanitary sewer and storm drainage systems), clearing and grubbing, construction of new access roads, necessary parking lots, area lighting, security fencing, and a gate house. Also included are foundations, structural steel, Control System (UCS) monitored from the Central Power Plant, are also included.

Cost	\$17,000,000	4,700,000	5,500,000	3,400,000	3,400,000	\$17,000,000
Unit Cost	1 1 1	-			 	
Quantity		-			!	
Unit of Measure	!	LS	LS	LS	LS	
PROJECT COST ESTIMATE:	Construction:	Architectural	Structural	Mechanical	Electrical	Total

The total This cost estimate provides for the FY 1995 increment of the total facility. cost of the project is estimated to be \$46 million. Note:

LIST OF RELATED GRAPHICS: Figure 1 - Location Plan

OTHER EQUIPMENT SUMMARY:

Noncollateral equipment such as systems furniture, other furnishings, and equipment for special purpose areas will be required at a cost of approximately \$20,000,000, which will be provided from other than CoF resources.

FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT:

The third increment required to complete this project will be included in the FY 1996 budget request for \$17,000,000.

GODDARD SPACE FLIGHT CENTER FISCAL YEAR 1995 ESTIMATES CONSTRUCTION OF EARTH SYSTEMS SCIENCE BUILDING (ESSB)

LOCATION PLAN

FIGURE 1

FISCAL YEAR 1995 ESTIMATES

PROJECT TITLE: Modernization of the Unitary Plan Wind Tunnel Complex

INSTALLATION: Ames Research Center

FY 1995 COF Estimate: \$22,000,000

LOCATION OF PROJECT: Moffett Field, Santa Clara County, California

COGNIZANT HEADQUARTERS OFFICE: Office of Aeronautics

FY 1994 AND PRIOR YEARS FUNDING: The following prior years funding is related to this project:

Total	\$37,600,000 50,358,472	\$87,958,472
Construction	\$33,000,000 50,358,472	\$ <u>83,358,472</u>
Planning and Design	\$4,600,000	\$4,600,000
	Specific CoF Funding	Total

SUMMARY PURPOSE AND SCOPE:

controls; automated controls for tunnel auxiliaries; flow quality improvements in the 11 by 11 foot Transonic Wind shell to allow recertification. This increment of work continues the construction of this Aeronautical Facilities This project provides funding for modernization of the Unitary Plan Wind Tunnel Complex to improve productivity, Tunnel (11-ft TWT); repair or replacement of aging facility systems; and repair of weld defects in the pressure The project will provide new automated tunnel and model support reliability, and the quality of test results. Revitalization project.

PROJECT JUSTIFICATION:

The Unitary Plan Wind Tunnel (UPWT) is a vital National high-speed tunnel facility consisting of one transonic and two supersonic test sections and supporting auxiliary equipment. This facility is the most heavily used wind However, the facility's productivity is limited by the 1950's era control systems and the productivity, data quality, and reliability. This complex has been operated on three-shifts-per-day basis since modern data acquisition equipment results in over half of tunnel tests being concluded before all needed data is 1956, with minimal improvements to the facility. Tunnel downtime resulting from equipment and control failures increasing frequency of equipment breakdowns due to age and heavy use. Modernization is needed now to improve has caused major delays to important aircraft projects. Tunnel backlog of testing exceeds two years. Lack of acquired. Comparable foreign facilities have shown two to three times the productivity achieved in this wind cunnel complex in NASA.

developed military and civil aircraft flying or nearing service in its speed regime of Mach 0.3 to 3.5, as well as every U.S. manned spacecraft. It has provided valuable experimental results for development of military aircraft Since it was placed in service in 1956, the UPWT Complex has contributed to the development of almost every U.S. transports, including McDonnell Douglas DC-8, 9, 10, 11, 87V/88V, and 90, as well as Boeing 727, 747, 757, 767, such as F-100, F-106, F-111, F-14, F-15, F-16, F-18, F-22, B-58, B-70, B-1, A7, and EA-6; and for commercial

welds in the tunnel shell contain defects typical of 1950's technology and must be repaired and the pressure shell Repair or replacement of tunnel components that have reached the end of their useful life is required. recertified.

IMPACT OF DELAY:

(unmodified) facility will continue to fail more frequently, requiring the use of alternate testing resources in aeronautical research and development will diminish resulting in further degradation of the United States' world Europe and other countries. This in turn, will reduce or delay improvements to U.S. commercial and military Failure to modernize this facility will increase the delay in acquiring critical test data. The existing aircraft, and will significantly increase the cost of testing. In addition, NASA's leadership role in leadership in aviation.

PROJECT DESCRIPTION:

improvements in the 11-ft TWT. The project also includes refurbishing, repairing, or replacing major components, This increment of work will continue construction of facility refurbishments; controls modernization, automation, including the cooling tower, large electrical switch-gear, and make-up air system; and repairing weld defects in refurbishing and providing automated controls for the tunnel systems, model support systems, make-up air system, the pressurized portions of the tunnel circuits and make-up air system and recertifying the pressurized systems and compressor lubrication system; enlarging and modernizing the control rooms; and installing flow quality and replacement; flow quality improvements; and pressure vessel shell repair. The total project includes for safe operation.

Cost	\$22,000,000	4,300,000	2,000,000		8,200,000	1,000,000	4,100,000	700,000	1,700,000	\$ <u>22,000,000</u>
Unit Cost	!	;	!		1	l l t	[:	-	•
Ouantity	;		1 1		: :	!!!	!	:	!	•
Unit of Measure	;	LS	LS		LS	LS	LS	LS	LS	•
PROJECT COST ESTIMATE:	Construction:	Piping Refurbishments	Facility Refurbishments	Refurbish and Replace Tunnel	Control System	Repair of Pressure Vessels	Flow Quality Improvements	Integration	Construction Management	Total

The total cost of the project is Note: This cost estimate provides for the FY 1995 increment of the project. estimated to be \$61 million. Previous funding has been provided as follows: FY 1993 - \$8.0M, and FY 1994 - \$25.0M.

Figure 2 - Perspective LIST OF RELATED GRAPHICS: Figure 1 - Site Plan Data acquisition systems, model check-out equipment, and advanced instrumentation estimated to cost \$5.0 million will be located in this facility. OTHER EQUIPMENT SUMMARY:

To complete this project a fourth increment will EUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT: be included in the FY 1996 budget at approximately \$6,000,000.

FIGURE 1 SITE PLAN

MODERNIZATION OF UNITARY PLAN WIND TUNNEL COMPLEX FISCAL YEAR 1995 ESTIMATES AMES RESEARCH CENTER

FIGURE 2 PERSPECTIVE

AIR PIPING

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONSTRUCTION OF FACILITIES FISCAL YEAR 1995 ESTIMATES

SUMMARY

MISSION SUPPORT		Page
	Amount	No.
		1 1
	(Dollars)	
Seismic Upgrade of Research, Development, and Test Building,		
Dryden Flight Research Center	8,000,000	CF 3.1-1
Restore Exterior/Interior Systems, Buildings 3, 13, and 14,		
Goddard Space Flight Center	2,000,000	CF 3.1-4
Modernize Condenser Water Systems, Southern Sector,		
Jet Propulsion Laboratory	4,300,000	CF 3.1-7
Rehabilitate Utility Tunnel Structure and Systems,		
Johnson Space Center	4,300,000	CF 3.1-11
Modernize Payloads Hazardous Servicing Facility HVAC System,		
Kennedy Space Center	1,500,000	CF 3.1-14
Modernize Metrology and Calibration Facility,		
Marshall Space Flight Center	4,900,000	CF 3.1-17
Repair	30,000,000	CF 3.2
Rehabilitation and Modification	30,000,000	CF 3.3
Minor Construction	2,000,000	CF 3.4
Facility Planning and Design	10,000,000	CF 3.5
Environmental Compliance and Restoration	35,000,000	CF 3.6
Total Mission Support	135,000,000	

FISCAL YEAR 1995 ESTIMATES

PROJECT TITLE: Seismic Upgrade of Research, Development, and Test Building

INSTALLATION: <u>Dryden Flight Research Center</u>

FY 1995 CoF Estimate: \$8,000,000

LOCATION OF PROJECT: Edwards Air Force Base, Kern County, CA

COGNIZANT HEADQUARTERS OFFICE: Office of Aeronautics

FY 1994 AND PRIOR YEARS FUNDING: The following prior years funding is related to this project:

Total	\$ 900,000 10,529,000	\$11,429,000
Construction	\$10,529,000	\$10,529,000
Planning and Design	000,006\$	000,006\$
	Specific CoF Funding	Total

SUMMARY PURPOSE AND SCOPE:

This project will provide for seismic repair of Building 4800 to protect building occupants from injury or death. resistance, and allow building occupants to survive if a major earthquake occurs near the Dryden Flight Research This project will upgrade the structural systems of the building, provide collateral equipment with seismic Center (DFRC).

PROJECT JUSTIFICATION:

adjacent to DFRC is over 60 percent. Building 4800 is the main administrative, research, development, and test building with over 300 persons. All missions are monitored, controlled, and recorded in this building. A major The probability of a major earthquake (magnitude 8+) occurring within the next 30 years in the San Andreas area earthquake could severely damage Building 4800 and halt missions and cause death or injury to personnel

codes. During previous minor earthquakes these walls absorbed energy; were stressed to brittle cracking; and have a high probability of future failures. Also, in the event of a major earthquake, total or partial collapse of the fire water piping is likely and must be remedied. In addition, asbestos used on mechanical piping and building Major additions and walls were constructed of unreinforced masonry walls which are banned by current building Building 4800 and the adjoining hangars, 4801 and 4802, were designed in accordance with 1952 building codes. fireproofing, has deteriorated, been damaged, and become friable and must be replaced.

IMPACT OF DELAY:

interruption, and assure catastrophic failure of Building 4800 induced by a major earthquake. The section of the Delay of this project will continue to expose personnel to injury or death, maintain the risk of drastic mission San Andreas fault adjacent to DFRC is a locked fault segment where major (magnitude 8+) earthquakes occur.

PROJECT DESCRIPTION:

materials as necessary to complete the upgrade will be removed. The fire water piping will be braced and allowed The seismic upgrade will include the demolition of existing masonry walls and suspended ceilings, and removal abandoned collateral equipment, including cables. Concrete foundations and concrete walls will be modified. alarm and communication systems will be reworked and certified. Asbestos materials and any other hazardous Structural steel bracing will be installed. URM walls will be replaced with metal stud/gypsum board walls. conduits, cable trays, and adequate bracing for each of these items. Lighting systems will be reinstalled. Ceilings will be replaced and braced. Work will include reworking plumbing, ventilation ducts, electrical the proper degrees of freedom to maintain automatic fire suppression during and after earthquakes.

Cost	\$8,000,000	3,500,000 1,600,000 1,200,000 800,000	000,000,8\$
Unit Cost	! !		
Quantity	;		
Unit of <u>Measure</u>			
PROJECT COST ESTIMATE:	: uoi	Demolition and Asbestos Removal Structural Architectural Mechanical Electrical	
PROJECT CO	Construction:	Demolition an Structural Architectural Mechanical . Electrical .	Total

LIST OF RELATED GRAPHICS: Figure 1 - Site Plan

None FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT:

SEISMIC UPGRADE OF RESEARCH, DEVELOPMENT, AND TEST BUILDING DRYDEN FLIGHT RESEARCH CENTER FISCAL YEAR 1995 ESTIMATES

FIGURE 1 SITE PLAN

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

Restore Exterior/Interior Systems, Buildings 3, 13, and 14 PROJECT TITLE:

INSTALLATION: Goddard Space Flight Center

FY 1995 COF ESTIMATE: \$5,000,000

LOCATION OF PROJECT: Greenbelt, Prince George's County, Maryland

COGNIZANT HEADOUARTERS OFFICE: Office of Mission to Planet Earth

FY 1994 AND PRIOR YEARS FUNDING: The following prior years funding is related to this project:

Total	\$ 500,000 \$17,999,059	\$18,499,059
Construction	\$17,999,059	\$17,999,059
Planning and Design	\$500,000	\$500,000
	Specific CoF Funding	Total

SUMMARY PURPOSE AND SCOPE:

This project restores various building systems in the basement, plumbing, and loading dock at Building 3; all of Building 13; and the full basement of Building 14. The project will correct building deficiencies in order to effectively support spacecraft mission operations.

PROJECT JUSTIFICATION:

systems are difficult and costly to obtain. Opportunities exist for cost savings from energy efficient, state-of-the-art replacement systems. The loading dock at Building 3 is too small and narrow for the current volume of The buildings in this project include the Central Flight Control and Range Operations, Building 3; Network Control Replacement parts for these building systems in this complex are approximately 30 years old and have reached the end of their useful life. together to form the 3/13/14 complex, which provides critical support to GSFC spacecraft mission operations. Center Facility, Building 13; and Spacecraft Operations Facility, Building 14. These buildings are linked The mechanical, plumbing, and electrical systems are failing and costly to maintain.

One building entrance serves both goods and personnel creating a difficult and potentially unsafe situation traffic.

IMPACT OF DELAY:

critical to mission operations. Any unanticipated outage in the facility seriously impacts on-going missions. Buildings 3/13/14 are System breakdown could occur at any time, resulting in emergency repair/replacement.

PROJECT DESCRIPTION:

Also Removal emergency egress paths, and upgrades to the fire alarm system will be provided. The building loading docks will abandoned and superfluous ducting and wire/cable distribution systems above the ceiling and beneath the floors Will be removed, and replaced. Interior ceiling, raised floor, and wall systems will be replaced and upgraded This project restores the mechanical and plumbing systems, and modifies and upgrades the electrical systems. be modified. Accessibility for persons with disabilities will be provided in restrooms and egress paths. Interior doors and hardware will be replaced and several life safety upgrades i.e., fire rated enclosures, of asbestos will also be included in this project.

Cost	35,000,000	1,200,000 2,500,000 300,000 1,000,000	\$5,000,000
Unit Cost	-		•
Ovantity			
Unit of Measure	}	LS LS LS LS	
PROJECT COST ESTIMATE:	Construction	Architectural	Total

LIST OF RELATED GRAPHICS: Figure 1 - Location Plan

Future CoF funding will be requested to restore FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT: and modernize other areas in this building complex.

3, 13 AND 14 GODDARD SPACE FLIGHT CENTER FISCAL YEAR 1995 ESTIMATES RESTORE EXTERIOR/INTERIOR SYSTEMS, BLDGS.

FIGURE 1

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

Modernize Condenser Water Systems, Southern Sector PROJECT TITLE:

INSTALLATION: Jet Propulsion Laboratory

FY 1995 CoF Estimate: <u>\$4,300,000</u>

LOCATION OF PROJECT: La Canada-Flintridge, Los Angeles County, California

COGNIZANT HEADOUARTERS OFFICE: Office of Space Science

FY 1994 AND PRIOR YEARS FUNDING: The following prior years funding is related to this project:

Total	\$400,000	\$400,000
Construction		
Flanning and Design	\$400,000	\$400,000
	Specific CoF Funding	Total

SUMMARY PURPOSE AND SCOPE:

Road and west of Surveyor Road. The new cooling tower will replace 16 old individual cooling towers which will be This project will install a new multi-celi, central cooling tower to serve the major buildings south of Mariner incrementally removed.

PROJECT JUSTIFICATION:

expensive to maintain. Repair parts are difficult to obtain. Many of the towers are in need of major repairs or This consolidation project will operations. The existing towers are decades old, beyond their economic lives, unreliable, inefficient and very replace 16 small cooling towers which serve 20 existing buildings. Twelve of these buildings contain critical The Jet Propulsion Laboratory relies on a decentralized cooling system in which almost every building in the southern sector of the site has its own refrigeration system and cooling tower.

installation of a ground level cooling tower would also remove the damage potential to the roofs of many buildings replacement and many of the roofs in the tower area are in need of maintenance. A centralized cooling tower will lower the total number of cooling towers and their requirements for energy, maintenance and monitoring. The and eliminate an unsuitable siphon situation at two of the buildings.

IMPACT OF DELAY

cooling towers will continue. It will inhibit Jet Propulsion Laboratory's ability to provide necessary cooling If this project is not approved, inefficient and costly operation, maintenance and repair of these obsolete for equipment and personnel. Repairs will be required with increasing frequency and cost.

PROJECT DESCRIPTION:

Construct a new south campus cooling tower and centralized condensing water distribution loop to serve Buildings 157, 158, 168, 169, 170, 171, 179, 183, 186, 190, 200, 201, 202, 218, 231, 233, 241, 291, 301, and 306. The new accommodate a static head of approximately 16 feet. Additional head when required will be provided by localized pumps are shut down and will include chemical water treatment, water bleed off, and replenishment water control. The pumping system will be sized to maintain basic loop circulation of approximately 12,000 GPM and pressure to structures. The cooling tower system will incorporate a sump to retain condensing water within the loop when tower will have a minimum capacity of 4,000 tons and will be architecturally compatible with surrounding circulation pumps. Underground piping will be added to existing pipes to establish a circulation loop. to and through buildings to chillers will be provided.

it St Cost		330,000 110,000 3,520,000 34,300,000
Unit Cost	İ	
Ouantity	1 1	
Unit of Measure		
PROJECT COST ESTIMATE:		Sitework
PROJECT CO	Construction	Sitework . Architectur: Mechanical Electrical Total .

Figure 2 - Perspective View LIST OF RELATED GRAPHICS: Figure 1 - Location Plan

FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT:

THERN SECTOR JET PROPULSION LABORATORY FISCAL YEAR 1995 ESTIMATES MODERNIZE CONDENSER WATER SYSTEMS - SOU

LOCATION PLAN

FIGURE 1

CF 3.1-10 FIGURE 2

JET PROPULSION LABORATORY FISCAL YEAR 1995 ESTIMATES MODERNIZE CONDENSER WATER SYSTEMS - SOUTHERN SECTOR PERSPECTIVE VIEW OF COOLING TOWER

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

Rehabilitate Utility Tunnel Structure and Systems PROJECT TITLE:

INSTALLATION: Lyndon B. Johnson Space Center

FY 1995 CoF Estimate: \$4,300,000

LOCATION OF PROJECT: Houston, Harris County, Texas

COGNIZANT HEADOUARTERS OFFICE: Office of Space Flight

FY 1993 AND PRIOR YEARS FUNDING: The following prior years funding is related to this project:

Total	\$ 540,000 5,382,635	\$ 5,922,635
Construction	 \$ 5,382,635	\$ 5,382,635
Planning and Design	\$ 540,000	\$ 540,000
	Specific CoF Funding	Total

SUMMARY PURPOSE AND SCOPE:

modifications, systems modifications, and provision of safety features to meet Occupational Safety and Health The work includes structural This project rehabilitates the existing utility tunnel structure and systems. Administration (OSHA) requirements.

PROJECT JUSTIFICATION:

and services to Center buildings. The utility tunnel now requires restoration in many areas to preserve integrity The utility tunnel system was originally constructed in 1962 to provide a protected passageway to carry utilities confirmed as critical priorities during the JSC Facility Condition Assessment of 1992. Breaches of the tunnel and bring the tunnels into compliance with current safety regulations. The deteriorating conditions were

communications upgrades; many valves in the chilled water system are beginning to exhibit wall failures from over Major failures in the tunnel steam or chilled water systems are increasingly likely and would cause considerable disruption to approaching catastrophic failure conditions; numerous cable tray failures and inadequacies exist and hamper structure are increasing in number and severity; the steam return/condensate system as a whole is rapidly extended usage; and tunnel accesses and ventilation are markedly inadequate for personnel safety. buildings and potential hazard to operations personnel.

IMPACT OF DELAY:

If this project is not approved, the reliability and safety of the JSC utility tunnel and systems will continue to deteriorate and increase the risk of a catastrophic failure which would result in serious disruptions to mission operations.

PROJECT DESCRIPTION:

selected chilled water system valves and components; upgrade of the ventilation system; structural modifications; replacement of concrete access sections; modification of substandard personnel access provisions; replacement of steam condensate piping, components and asbestos insulation; cable and cable tray modifications; replacement of The work includes repair and sealing of areas of water infiltration; correction of wall-section displacements; and provision of safety features to meet OSHA requirements.

Cost	\$ 4,300,000	2,900,000	800,000	\$ 4,300,000
Unit Cost	1 1			
Ouantity	!!	н п	г	
Unit of <u>Measure</u>	!	LS	LS	
PROJECT COST ESTIMATE:	Construction:	Structural and Safety Modifications	Replace Mechanical Systems and Asbestos Insulation	Total

LIST OF RELATED GRAPHICS: Figure 1 - Site Location

increment is planned for the FY 1997 budget request at \$8,000,000 and a third increment in the FY 1999 budget at To complete the entire tunnel system, a second FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT:

LYNDON B. JOHNSON SPACE CENTER FISCAL YEAR 1995 ESTIMATES REHABILITATE UTILITY TUNNEL STRUCTURE AND SYSTEMS

FIGURE 1

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

PROJECT TITLE: Modernize Payloads Hazardous Servicing Facility HVAC System

INSTALLATION: John F. Kennedy Space Center

FY 1995 CoF Estimate: \$1,500,000

John F. Kennedy Space Center, Brevard County, Florida LOCATION OF PROJECT:

COGNIZANT HEADOUARTERS OFFICE: Office of Space Flight

FY 1994 AND PRIOR YEARS FUNDING: The following prior years funding is related to this project:

Total	\$105,000 10,255,399	\$10,360,399
Construction	 \$10,255,399	\$10,255,399
Planning and Design	\$105,000	\$105,000
	Specific CoF Funding	Total

SUMMARY PURPOSE AND SCOPE:

Processing Facility (PHSF) and minimize the maintenance workload through replacing the existing deteriorated The purpose of this project is to increase reliability of the HVAC control system in the Payloads Hazardous direct expansion auxiliary HVAC system with a chilled water HVAC system.

PROJECT JUSTIFICATION:

precisely with both systems to maintain control of the specified processing environment. In addition, the current expansion HVAC serving the same building. This configuration requires multiple levels of controls that must work Existing HVAC systems serving the PHSF consists of a main chilled water HVAC system and an auxiliary direct system continues to deteriorate causing degradation in overall system performance and requiring increased unscheduled maintenance and repairs. By replacing the direct expansion system and its controls, the facility will be able to maintain the specified conditions reliably and efficiently.

IMPACT OF DELAY

environment requirements and will necessitate additional funding from other sources to perform repetitive Delay of this project will affect payload processing through the loss of ability to maintain processing maintenance and unscheduled repairs.

PROJECT DESCRIPTION:

This project will replace the existing auxiliary direct expansion system with a chilled water system eliminating the need for the direct expansion compressors and air cooled condenser unit. Equipment needed to replace the controls and electrical work. Architectural/structural work will be included as necessary to provide weather direct expansion system includes air handling units, duct work, associated piping, insulation, pumps, valves, protection for new equipment.

PROJECT COST ESTIMATE: Construction	Unit of Measure	Quantity 	Unit Cost	Cost \$1,500,000
Demolition	LS	!!!	}	10,000
Architectural/Structural	LS	!!!	;	100,000
Mechanical	LS	-	!	1,170,000
Electrical	LS	!	-	220,000
Total			•	\$1,500,000

LIST OF RELATED GRAPHICS: Figure 1 - Site Plan

OTHER EQUIPMENT SUMMARX: Additional funding of \$70,000 is required.

None FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT:

JOHN F. KENNEDY SPACE CENTER FISCAL YEAR 1995 ESTIMATES MODERNIZE PAYLOADS HAZARDOUS SERVICING FACILITY HVAC SYSTEM

FIGURE 1

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

Modernize Metrology and Calibration Facility PROJECT TITLE:

George C. Marshall Space Flight Center INSTALLATION:

FY 1995 COF Estimate:

\$4,900,000

Marshall Space Flight Center, Madison County, Alabama LOCATION OF PROJECT:

Office of Space Flight COGNIZANT HEADOUARTERS OFFICE:

FY 1994 AND PRIOR YEARS FUNDING: The following prior years funding is related to this project:

Total	\$ 390,000 2,934,490	\$3,324,490
Construction	\$2,934,490	\$2,934,490
Planning and Design	\$390,000	<u>390,000</u> \$
	Specific CoF Funding	Total

SUMMARY PURPOSE AND SCOPE:

Metrology and Calibration Laboratory and reconfigures adjacent space to permit relocation and consolidation of the This project provides for the restoration and modernization of the section of Building 4650, which houses the remaining calibration activities from other substandard facilities.

PROJECT JUSTIFICATION:

area that rust forms on precision standards. Electrical calibration standards cannot be maintained without proper noisy electrical power. High resistance measurement in the direct current (DC) calibration area is compromised by The Metrology and Calibration Laboratory supports all projects and programs at the Center by testing, calibrating, cleanliness, and humidity control. In the existing facility, humidity is routinely so high in the calibration returned to the customer. Pressure transducer calibration is continuously degraded by varying temperature and electrical screening and temperature control, so hundreds of instruments are only partially calibrated and These devices are extremely sensitive to temperature, and maintaining critical instrumentation devices.

some way being detrimentally affected by environmental inadequacies of the existing facilities. This project will Every kind of instrument used for critical testing at the Center is in the lack of radio frequency shielding. correct this situation.

IMPACT OF DELAY

test results. Significant additional cost and lost time is incurred in trying to reduce risk associated with low Use of less than optimum calibrations can result in measurements which will propagate into direct compromises quality calibrations.

PROJECT DESCRIPTION:

approximately 2,000 square feet of vibration free floor will be constructed. A new loading dock with a scissor This project restores and modernizes approximately 21,000 square feet of existing office and laboratory space standing-seam metal roof system over the existing flat roof, removal of existing windows, and installation of thermal protection and a new exterior facade. A 2,900 square foot addition with 12-foot ceilings and within Building 4650. Interior work includes upgrading of the interior electro-mechanical systems, ceilings, lighting, and fire detection and suppression systems. Exterior work includes installation of a sloped lift will be constructed between the new and existing areas.

PROJECT COST ESTIMATE:	Unit of Measure	Ouantity	Unit Cost	Cost
Construction	1 1 1	!!	!	\$4,900,000
Site	LS	}	!!!	145,000
Civil/Structural	LS	!	1 1	255,000
Architectural	LS	!!!		1,380,000
Mechanical	LS		!!!	1,770,000
Electrical	LS	!!!	!	1,350,000
Total				\$4,900,000

LIST OF RELATED GRAPHICS: Figure 1 - Location Plan

None FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT.

MARSHALL SPACE FLIGHT CENTER FISCAL YEAR 1995 ESTIMATES MODERNIZE METROLOGY AND CALIBRATION FACILITY

FIGURE 1

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

SUMMARY

REPAIR

Summary of Project Amounts by Location:	Amount	Page No.
Ames Research Center	3,090,000	CF 3.2-3
Dryden Flight Research Center	950,000	CF 3.2-4
Goddard Space Flight Center	2,300,000	CF 3.2-4
Jet Propulsion Laboratory	1,560,000	CF 3.2-5
Johnson Space Center	1,850,000	CF 3.2-6
Kennedy Space Center	3,035,000	CF 3.2-6
Langley Research Center	3,415,000	CF 3.2-7
Lewis Research Center	3,500,000	CF 3.2-8
Marshall Space Flight Center	3,320,000	CF 3.2-9
Michoud Assembly Facility	2,000,000	CF 3.2-10
Stennis Space Center	1,125,000	CF 3.2-10
Wallops Flight Facility	2,280,000	CF 3.2-11
Various Locations	1,325,000	CF 3.2-12
Miscellaneous Projects Not in Excess of \$250,000 Each	250,000	CF 3.2-12
Total	330,000,000	

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

PROJECT TITLE: Repair of Facilities, Not in Excess of \$1,000,000 Per Project

INSTALLATION: Various Locations

FY 1995 COF Estimate: \$30,000,000

\$36,000,000

FY 1994:

FY 1993: \$31,900,000

COGNIZANT HEADOUARTERS OFFICE: Office of Management Systems and Facilities

COGNIZANT INSTALLATIONS/LOCATIONS OF PROJECT: Various Locations

SUMMARY PURPOSE AND SCOPE:

industrial plants supporting NASA activities. Included in the request are those facility repair needs for FY 1995 request includes the substantially equivalent replacement of utility systems and collateral equipment necessitated These resources will provide for critical repairs to facilities at NASA field installations and Government-owned that can be identified at the time of the submission of these estimates and are not in excess of \$1 million per equipment, to a condition substantially equivalent to their originally intended and designed capability. The The thrust of this program is to restore facilities and components thereof, including collateral This work also includes major preventive measures that are normally by incipient or actual breakdown. accomplished on a cyclic schedule project.

PROJECT JUSTIFICATION:

NASA is now experiencing "block obsolescence" where a substantial portion of the agency's facilities have been in electrical and mechanical components reach the end of their serviceable or economic life at the 20 year point and use for over 25 to 30 years. Repair costs for mechanical and electrical systems in a typical building are almost should be replaced in the interest of long-term economy. Continued piecemeal repair of these components is more three times higher after system operations exceed 15-20 years than they are during the initial years. Many

Approximately costly in the long run than replacement at the end of the economic life of the original components. 90 percent of NASA's physical plant has been in service for over 25 years. A major thrust of this repair program is to help preserve the capabilities of the NASA physical plant, which has a significantly greater. More importantly, there will be increased breakdowns, interruption of critical operations, capital investment of \$5.1 billion and a current replacement value of more than \$15 billion. This work must be addressed and progressively accomplished. Otherwise, risks are increased and future repair costs will be and costly unscheduled repairs incurred.

This program includes only facility repair work having an estimated cost not in excess of \$1 million per project. maintenance and repair activities. Repair projects estimated to cost more than \$1 million are included as The work is of such a nature and magnitude that it cannot be accomplished by routine day-to-day facility separate discrete projects in the budget request.

PROJECT DESCRIPTION:

repair program has been distilled from requests in excess of \$53 million, and thus represents a modest request in work would adversely impact the availability of critical facilities and program schedules. Projects estimated to highest priority based on relative urgency and expected return on investment. Deferral of this mission-essential cost not in excess of \$250,000 have not been individually described or identified by Center. The total request relation to the continuing backlog of this type of work. The projects that comprise this request are of the Proposed repair projects for FY 1995 totaling \$30 million are described under "PROJECT COST ESTIMATE." This for this category is \$250,000.

force a change in some of the items to be accomplished. Any such changes, however, will be accomplished within total available repair resources. The following broad categories of work are described further in the "PROJECT During the course of the year, it is recognized that some rearrangement of priorities may be necessary. COST ESTIMATE":

Utility Systems General Purpose Buildings
Technical Buildings/Structures
Pavements and Drainage
Building Exteriors and Roofs

A. Ames Research Center (ARC)

\$3,090,000

will be replaced in this project. Fan drive controls and breaker trucks will be reworked as necessary to install Malfunctions and breakdowns are a frequent occurrence. The breakers must be replaced to reduce tunnel downtime The existing breakers were designed as substation circuit breakers. Their use as motor circuit protectors results in undue stress in the tripping mechanism. Over time, this has worn out the mechanism. 1. Repair Switchgear, N221C and maintenance and repair costs.

2. Repair Roofs,

including replacement of insulation, roof membranes, flashings, and drains. Heavy traffic and inadequate support insulation causes bubbling of the roof membrane in hot weather, causing further leaks. Both roofs have reached This project provides for replacement of roofs on the Visitor Center and the Space Science Research Laboratory, of mechanical equipment have accelerated the failure of the N223 roof. Plans to replace the N245 roof by 1996 have been accelerated because the insulation has become saturated due to extensive leakage. Moisture in the the end of their useful lives.

. Compressors, Building N229A Instrument Air

1959. Their performance has deteriorated over time, and researchers have been forced to obtain air from the 3,000 This project provides for replacement of two instrument air compressors in the Wind Tunnel Auxiliaries Building Associated piping and controls will be modified. The existing compressors were installed in existing piston compressors will be replaced by new rotary compressors with integrated drying/filtration and psi high pressure air system and use the instrument air compressors as a backup. This operation is highly serving the Thermoprotection Lab, Arc Jets, Physical Science Research Lab, and Hypersonic Wind Tunnel. inefficient and results in oil contamination and subsequent damage to equipment. control systems.

approximately 50 percent of inspected welds in HRC I and II contain defects. If weld failures were to occur, the Laboratory will be repaired in this project. Work will include weld replacements, replacement of shell sections, Pressure shells in High Reynolds Channels (HRC) I and II, and the downstream vacuum piping in the Fluid Dynamics and replacement of piping. Recently completed pressure shell recertification inspections have revealed that pressure system, the facility, and personnel would be seriously impacted.

5. Repair Heating, Ventilating, and Air Conditioning System; Building N239

Equipment This project will include replacement of three chillers, chilled water pumps, piping, and controls in the Life Science Research Laboratory. The existing system is over 24 years old and is beyond its useful life.

Research animals are housed in the building Temperature control is critical and cannot be maintained with the existing system. is in poor condition and some replacement parts are not available. year-round.

. B. Dryden Flight Research Center (DFRC)

aircraft ground rods. Airfield pavements have developed severe structural cracks. Sealant has become brittle and failed after many years of exposure to desert conditions. Spalls have occurred due to failed sealants and aging of the pavement. If pavements are not repaired, Foreign Object Damage (FOD) could occur to aircraft, risking an concrete, replacing approximately 6,500 square yards of failing apron, crack and joint sealing, and installing aircraft accident and endangering personnel.

C. Goddard Space Flight Center (GSFC)

1. Repair of Building Foundation and Exterior System in

The proposed work will restore facility integrity drains, repair of cracks in foundation walls, waterproofing of the foundations, site work such as the removal and replacement of paved surfaces, regrading the landscaped areas to direct water away from the buildings, associated excavation, and replacement of sealant around windows and along the joints between the building and the adjacent exterior metal panel system with a new enclosure system and masonry repairs to include replacement of damaged Also, included is repair of the footing (Building 1) and Research Projects Laboratory (Building 2). This work includes replacement of the existing brick, repointing of mortar joints, and resetting of parapet walls. pavement. These buildings show numerous signs of water damage. and minimize potential loss of equipment due to water damage.

insulation with non-asbestos insulation. The central steam distribution system was installed in the early 1960's Building 6, MH5 to MH7, and MH6-1 to MH9A, behind Building 1; replacement of 22 steam ejectors in steam manholes and has major condensate leaks. This project will minimize capacity loss, reduce maintenance cost, and restore replacement of deteriorated condensate lines and high pressure drip lines between manholes MH4 to MH5, MH4 to with high temperature sump pumps and provide electrical service in manholes; and replacement of all asbestos This project will provide for the repair of various components of the Center's steam system and will include

of Heating, Ventilating and,

with the Center's program for utilizing Direct Digital Control to establish a centralized utility control system. also includes replacement of eight air handlers in Building 2 and the replacement of HVAC induction systems in includes replacement of associated pumps, air compressors, exhaust fans, etc. New controls will be compatible years ago and have outlived their service lives. Repairs are required to extend equipment life and to prevent various other buildings. The HVAC equipment, related piping and controls are original equipment installed 30 conditioned air to the Magnetic Test Facility Complex 1, Buildings 302, 303, 304 and 305. The project work This project provides for the replacement of the central HVAC system located in Building 302 that supplies This project provides for the removal and disposal of all asbestos materials within the work area. Air Conditioning (HVAC) Systems; Various Buildings potential breakdowns.

Compressor System, Payload Testing Facility, Building 7/10/15 4. Replace ${\tt GN}_2$

This project provides for the replacement of the GN2 compressor system for the Payload Testing Facility (Building safety devices, and an equipment enclosure. This project will replace and upgrade the 25 year old GN2 compressor liquid nitrogen storage vessel, replacement of ambient air vaporizers, associated piping and valves, controls, 7) complex. The project includes site preparation, replacement of the GN2 cryogenic pump, replacement of the system which is used daily to produce high pressure GN2 for payload processing in the 7/10/15 complex.

780,000 controls will employ solid state technology and improve operating economics, maintenance, and elevator scheduling longer manufactured and the old parts are either being repaired or custom fabricated. This project will provide standards. The elevators are thirty years old and service this nine story building. Many of the parts are no and sequencing. The existing cabs will be retained and reused making alterations to conform with current reliable service and reduce the maintenance cost and improve operating efficiency.

2. Replace Ceiling and Lighting Systems,

The existing ceiling system will be replaced modified to meet current life safety codes. The lighting; ceiling; and heating, ventilating and air conditioning with acoustical lay-in panels in a seismically braced suspension system. The existing fixtures will be replaced with a modern energy-efficient lighting system. The heating ventilating and air conditioning system will be systems do not meet current life safety codes and, in certain instances, pose a danger to the occupants. fourth floors of Building 168 and the fourth floor of Building 169.

\$1,850,
•
•
•
•
•
•
•
•
•
•
•
•
(JSC)
Center
Space
Johnson
떠

950,000 This project provides for selective repair and/or replacement of structural, mechanical, and electrical systems in systems, condensing units, electrical panels, transformers, wiring, and lights. The hangar is approximately 50 components and systems. This includes roofing components, boilers, space heaters, air conditioning units and Maintenance Hangar 135, Ellington Field. The work includes replacement of interior and exterior building years old and many of the building components and systems have exceeded their life expectancy. Ellington Field bring the building up to current life safety standards. 1. Repair Aircraft Maintenance Hangar 135,

2. Repair Heating, Ventilating, Air Conditioning Systems;

900,006

structures, valves, fan/scroll assemblies and associated control systems. This equipment is over 30 years old and Systems Laboratory, Building 16. The work includes the repair and/or replacement of air-handler casings and repair is required to provide for an efficient, reliable, and maintainable energy-conserving system.

\$3,035,000 F. Kennedy Space Center (KSC)

870,000 Replacement includes relocating the heat exchangers to more accessible/serviceable locations. Also included are replacement of the existing buried "RIC-WIL" supply and return feeder piping, and removal of asbestos. All of the subject heat exchangers and the 1. Neplace near Exchangers and Feeder Fiping, Industrial Area
This project is required to replace 13 high temperature hot water heat exchangers and their associated underground building feeder line have exceeded their 25-year life expectancy. 1. Replace Heat Exchangers and Feeder Piping, Industrial Area valves/piping located in various buildings in the KSC industrial area.

2. Replace CCAFS Administrative Building 1385 Root This project is required to replace the roof in the old mission control center (Building 1385) at Cape Canaveral The roof is approximately 27,000 square feet. In addition to the roof replacement, new flashing and miscellaneous metals will be replaced as necessary. The roof can no longer be kept leak-free Replacement is necessary to restore the with regular maintenance procedures because of weathering and aging. integrity of the roof and protect the contents of the building. 2. Replace CCAFS Administrative Building 1385 Roof Air Force Station (CCAFS).

3. Repair Roads and Paving	
This project is required to repair various KSC roads and paved areas including parking lots. Repairs will include	y parking lots. Repairs will include
asphaltic concrete surface courses, base course repairs as necessary, and/or repair of stabilized surface courses.	repair of stabilized surface courses.
Repairs may also include providing for treatment of surface water runoff, as required by environmental	required by environmental
regulations.	

- cart hoists. The 2-ton APU hoists at Pads A & B are exclusively used to raise and lower the APU service carts and This project is required to replace two 5-ton monorail hoists on the 135 foot level on Pads A & B. Work includes installation of two hoists, electrical hookup, and GN2 purge for hoists motors and controls. These hoists will replace the present air-powered hoists and eliminate the need for the four existing auxiliary power units (APU) recurring problems with the existing hoists becoming disabled during critical operations. The new hoists will to lift other payload Ground Support Equipment to and from the pad surface to the 170 foot level. There are 4. Replace Two 5-Ton Auxiliary Power Unit Hoists, Pads A & B correct these problems and increase reliability.
- of defective welds. The systems to be repaired include piping systems and pressure vessels at the West Area Steam analyzed and spot inspected under LaRC's ongoing Recertification Program. Completion of this project is essential includes the replacement of defective piping, valves, and fittings; radiographic inspection of welds; and repair Distribution System and a portion of the West Area Air Distribution System (1247). These systems are being to ensure the safe and efficient operation of the research facilities. . G. Langley Research Center (LaRC)
- associated piping, controls, and electrical components that serve the facility environmental and computer cooling requirements. The existing 1967 vintage chillers, which are unreliable and costly to maintain, will be replaced Computer Facility, Building 1268. The project will replace two existing nominal 400-ton centrifugal chillers, with chillers using an acceptable substitute refrigerant.
- volt and 480 volt unit substations and associated panelboards, and removal of asbestos pipe and duct insulation at maintain. The new installation will also bring the power system into conformance with the current requirements of This project provides for the replacement of the 40 year old main air conditioning system, replacement of the 208 the Cafeteria building. This project will provide a system which is quieter, more efficient, and easy to 3. Repairs to Cafeteria, West Area (1213) the National Electric Code.
- This project provides for replacement of the two existing 45 ton capacity hydraulic lift systems which are used to raise and lower the model support carts into the desired locations in the test section floor of the 14 by 22 Foot Subsonic Tunnel. The existing hydraulic cylinders are worn and assistance by riggers is required to properly 14 x 22 Subsonic Tunnel (1212C). . . .

4. Replace Model Cart Hydraulic Lift System,

Replacement of the lift systems with a system designed to handle the non-uniformly distributed loads of the model carts will allow for safer, more efficient, more reliable, and more productive operation of the system and the facility. position the model carts. Much valuable time is lost during this procedure.

boiler. The repairs will provide a safe, comfortable working environment, reduce maintenance, and increase system painting, replacing ceiling tiles and lighting fixtures, and upgrading existing rest rooms on the second floor to the second floor and repairs to the office areas on the second floor of Building 1300. The repairs will include also include replacement of the existing oil-fired boiler which serves the entire building with a new gas-fired chiller; and associated pumps, piping, direct digital control system, and electrical service. The project will meet handicap standards. The new HVAC system will include a variable volume air distribution system; packaged reliability and efficiency.

. H. Lewis Research Center (LeRC)

000,006 and support the main and secondary drive motors for the 10 x 10. Rupture of one of these units would contaminate lighting, receptacles, and system modifications necessary to meet current National Electrical Code requirements. the facility with PCB's to the extent that the 10 x 10 SWT Facility would have to be shutdown for an indefinite The units identified in this project are more than thirty years old, contain Polychlorinated Biphenyls (PCB's), Facilities at Lewis Research Center. The work includes replacement of capacitor cabinets, lighting panel,

This project is an important part of a multi-year program to increase water pressure and improve water quality for This project provides for the repair of the central water distribution system. The work includes the replacement deposits on the inside of the water mains have caused a general reduction in water flow throughout the Center. or cleaning/relining of corroded and clogged water mains located on Ames, Moffett, and Westover Roads. the various buildings served.

deterioration due to road salts and freeze-thaw cycling; advanced corrosion of condensate piping and pipe supports replacement, drainage and manhole repairs, piping and valve reinsulation, trench water level sensor installation, and roadway resurfacing. Existing conditions include collapsed sections of trench and roadway; severe concrete and 125 in the steam distribution system. The locations will also require road excavation, trench cover

260,000 700,000 of already exceeded its life expectancy and is very deteriorated. Repair of this roof will preserve the integrity drains; replacement of flashing; and removal of unnecessary expansion joints and vents. The existing roof has insulation system; a 40,000 square foot sloped standing-seam metal roof; new gutters, downspouts, and interior installed during original construction in 1950. Replacement will eliminate deterioration and erosion, reduce

900,006

project will provide safe, reliable steam service to critical research buildings and administrative functions.

due to the trench environment; and poor condition of steam line insulation, valves, and expansion joints.

work includes miscellaneous mechanical and structural modifications as necessary. The piping in this building

maintenance, and increase system reliability.

I. Marshall Space Flight Center (MSFC)

steel chilled water piping in the basement, and replacement with new fiberglass insulated steel piping. Other

includes removal of approximately 2,000 linear feet of old 6-inch through 12-inch diameter asbestos insulated

roof; new gutters, downspouts, and interior drains; replacement of flashing; and removal of unnecessary expansion this roof will preserve the integrity of the facility, reduce maintenance costs, and provide energy cost savings. R-30 roof insulation system; a 15,000 square foot sloped standing-seam metal roof; new gutters, downspouts, and hydrogen, helium, nitrogen, and high purity air. This system provides critical support to major test programs. installation of an R-30 roof insulation system; approximately 50,000 square feet of sloped standing-seam metal associated components throughout the Center. This piping is part of the high pressure distribution system for interior drains; replacement of flashing; and removal of unnecessary expansion joints and vents. The existing roof has already exceeded its life expectancy and is very deteriorated. Repair of this roof will preserve the It is very old and deteriorated. Continued piecemeal repairs are costly and disruptive to testing activities. The existing roof has already exceeded its life expectancy and is very deteriorated. integrity of the facility, reduce maintenance costs, and provide energy cost savings. joints and vents.

the facility, reduce maintenance costs, and provide energy cost savings.

This project provides for repairs to Building 4250. Work includes providing thermal protection to exterior walls

. Repair Exterior of Facilities Office Building (4250)

K. Stennis Space Center (SSC)

2. Repair Road Surfaces

1. Repair Seawall

Erosion of the canal banks

has been accelerated by the barge traffic along the waterways and by run-off down the canal bank slopes. This

concrete riprap at the waterline; and sodding of the embankment above the waterline.

project ensures the unobstructed flow of propellant barge traffic in support of the Space Shuttle Main Engine

testing program.

demolition of the exterior metal walls, roof panels, and insulation; repair of structural framing; replacement of 4. Repair Rocket Assembly Shop No. 5, Building W-40

doors, windows, heating, ventilating, air conditioning, lighting, power panels, and interior finish systems; drainage system. This facility serves as an assembly shop for multistage research vehicles. The building installation of metal siding, roofing, insulation, interior liner panels, fire protection, and an entrance years old and has been compromised by age and storm damage. It is in need of repair to improve building integrity, reduce maintenance, and increase efficiency.

\$1,325,000

two new 150-ton chillers, and new controls will be installed. The work includes repair of the roof area under the Building at the Spaceflight Tracking and Data Network station located at Merritt Island, Florida. New condensers, chillers and the interior space occupied by the old chillers. This work is essential to provide reliable air missions including pre-launch, launch, and landing phases at the Kennedy Space Center. The old systems are conditioning for the electronic equipment in this building, which is vital for Space Transportation System severely deteriorated and require continual maintenance due to the corrosive salt-air environment at this 1. Replace Air Cooled Condensers, Merritt Island, Florida

300,000 security hardware and fire protection systems. Inspection of the 50-year-old bunkers indicate that they are in Network Station in Bermuda. The magazines require repairs to preserve their utility for the station's storage urgent need of repair. Maintenance equipment, spare parts, and other materials are stored in these bunkers. This project will repair six deteriorated underground storage magazines at the Spaceflight Tracking and Data needs. The work includes repair of ceilings, floors, walls, headwalls, doors, electrical wiring, lighting, repair will save the cost of providing new aboveground storage facilities.

concrete paving. The runway will be restriped after paving. The runway condition is deteriorating and requires an overlay to preserve it in safe and usable condition. The repair will improve area drainage, strengthen the runway structure, and maintain and provide a smooth reliable surface for aircraft operations.

N. Miscellaneous Projects Not In Excess of \$250,000 Each

\$30,000,000

FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT:

Approximately \$40-50 million per year will be required for continuing repair needs.

CF 3.3

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

SUMMARY

REHABILITATION AND MODIFICATION

Amount Page No.	\$3,420,000 CF 3.3-3	650,000 CF 3.3-4	2,810,000 CF 3.3-4	1,850,000 CF 3.3-6	2,450,000 CF 3.3-6	3,450,000 CF 3.3-7	2,940,000 CF 3.3-9	2,700,000 CF 3.3-10	2,110,000 CF 3.3-10	1,750,000 CF 3.3-11	2,155,000 CF 3.3-11	2,040,000 CF 3.3-12	1,130,000 CF 3.3-13	545,000 CF 3.3-13	
			•	•	•	•		•		•		•			
	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	
	:				•	•	•	•	•	•		•	•	•	
	•		•		•				•	•		•	•		
	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	
	•	:	•		•	•	•	•	•	•	•	•	•	•	
					•			•	•	•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	_	
										•	•	•	•	Each	
	•	•	•	•	•	•	•	•	•	•	•	•	•		
	•	:	•	•	•	•	•	•	:	•	•	•	•	00	
												•	•	\$250,000	
	•	•	•	•	•	•	•	•	•	•	•	•	•		
••	•		•	•			•		•			•		of	
on	•	•	•	•	•			•	•	•		•		88	
ati	•	•	•	•	•	•	•	•	•	•	•	•	•	XC6	
Toc	•	н	•	•	•	•	•	•	•	•	•			ᇤ	
Summary of Project Amounts by Locati	•	Research Center	H		٠	•	•	•	ter		•	•	•	Miscellaneous Projects Not in Excess	
9	•	Ö	int	ıry	•	•		•	en	t.y	•	_	•	No	
unt		ch	ပ	ato	•	•	ter	н	t O	i1i	•	ity	•	t s	
Amo	ter	ear	ght	bor	ter	ter	Cen	nte	igh	ra c	ter	cil		jec	
爿	en	çes,	11.	Lal	Center	en	ų,	Ç	FL	>	eni	Facility	suc	ro	
jec	д Д		a)	u u	9 9	e U	arc	ch	ပို	mb]	e e	ht	tic	S TH	
Pro	Ames Research Center	Dryden Flight	Goddard Space Flight Center	Jet Propulsion Laboratory	Johnson Space	Kennedy Space Center	Langley Research Center	Research Center	Marshall Space Flight Center	Michoud Assembly Facility	Space Center	Flight	Various Locations	noe	
ĭ	386	Fl	1 S	pn.	ı Sı	S	, R	ses(<u> </u>	Ä			ŭ	ane	
>	Re	en	arc	Pro	SOL	edy	ley		hal	ono	nia	ops	ons	e 11	
mar	mes	ryd	odd	et	ohn	enn	ang	Lewis	ars	ich	Stennis	Wallops	ari	isc	
Ħ	×	Ω	Ŋ	D.	ט	×	ı	Ĥ	Σ	Σ	Ś	3	>	Σ	

CF3.3-1

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

Rehabilitation and Modification of Facilities, PROJECT TITLE:

Not in Excess of \$1,000,000 Per Project

INSTALLATION: Various Locations

FY 1995 CoF Estimate: \$30,000,000

\$36,000,000

FY 1994:

FY 1993: \$34,000,000

Office of Management Systems and Facilities COGNIZANT HEADOUARTERS OFFICE:

COGNIZANT INSTALLATIONS/LOCATIONS OF PROJECT: Various Locations

SUMMARY PURPOSE AND SCOPE:

These resources will provide for the rehabilitation and modification of facilities at NASA field Installations and rehabilitation and modification needs for FY 1995 that have been fully identified at the time of the submission of some restoration of current functional capability but also includes enhancement of the condition of a facility so these estimates and are estimated not to exceed \$1,000,000 per project. The purpose of this program may include Government-owned industrial plants supporting NASA activities. Included in this request are those facility that it can more effectively accomplish its designated purpose or increase its functional capability

PROJECT JUSTIFICATION:

The NASA physical plant has a capital investment of \$5.1 billion and has a current replacement value of more than \$15 billion. A continuing program of rehabilitation and modification of these facilities is required to accomplish the following:

- Protect the capital investment in these facilities by minimizing the cumulative effects of wear and deterioration . თ
- Ensure that these facilities are continuously available and that they operate at peak efficiency. . م

- Improve the capabilities and usefulness of these facilities and thereby mitigate the effects of obsolescence υ.
- d. Provide a better and safer environment for all personnel.

This program includes only facility rehabilitation and modification work having an estimated cost not in excess of \$1,000,000. The work is of such a nature and magnitude that it cannot be accomplished by routine day-to-day facility maintenance or by related routine facility work efforts that are provided for in other than CoF estimates.

PROJECT DESCRIPTION:

Based on relative urgency and have not been described individually or identified by center. The total cost of these miscellaneous projects is Deferral of this mission-essential work would adversely affect the availability of critical facilities, program COST ESTIMATE." The total program of \$30 million has been distilled from requests of more than \$64 million and schedules, and energy-conservation objectives. Only those projects estimated to cost not in excess of \$250,000 Proposed rehabilitation and modification projects for FY 1995 totaling \$30 million are described under "<u>PROJECT</u> expected return on investment, the projects that comprise this request are the highest priority requirements. represents only a modest request in relation to the backlog of this type of work.

During the course of the year, some rearrangement of priorities may be necessary. This may force a change in some The following of the items to be accomplished. Any such change will be accomplished within available resources. broad categories of work are described further in the "PROJECT COST ESTIMATE":

		3,040,000	13,175,000
•		:	•
•	•		•
•	•	•	•
	•		•
	•	•	
•	•		•
•	•	•	•
:		•	
•	ms	•	
	Systems		ures
•	rotection	3uildings	ngs/Struct
Utility Systems	Fire Detection/Protection	General Purpose Buildings	Technical Buildings/Structures
В	ů.	ů	r G

A. Ames Research Center (ARC)

Basement Facilities, 1. Rehabilitation and Modification of Building N-241.

handicapped access. The current configuration of the area proposed for upgrade is inefficient and means of egress do not meet fire codes. It is essential that the area be reconfigured to prevent injury to personnel in case of fire sprinkler system, renovation of graphics and training areas, and rehabilitation of bathrooms to provide fire and to improve efficiency.

2. Rehabilitate Steam Vacuum System Turning Vanes,

Building N234A

Hoses and pipe fittings frequently break, flooding the plenum. The entire Arc Jet facility must then be shut down the Steam Vacuum System (SVS). Heat exchangers and electrical controls will be installed, booster pumps will be added to increase flow rate, and piping will be modified. The existing SVS Turning Vanes are old and corroded. to accomplish repairs, significantly increasing cost and down time.

. Rehabilitation and Modification of Secondary Electrical

power factor correction capacitor banks and controllers is included in this project. Modification of the Center's improve its power factor or face mandatory surcharges. Completion of this project will reduce operating cost and Currently, the Center cannot make use of the cheapest available power, provided by the Western Area Power power system is needed to improve capability and to defray excessive costs of operating at power factors below Administration (WAPA). Often operation is at power factors as low as 0.50. WAPA has required the center to Distribution System, Building N225B . . . improve efficiency.

4. Rehabilitation and Modification of 7 Ft X 10 Ft Wind Tunnel

experiences heavy gusting and meandering of the air flow, causing instability in model rotors. This impairs the also modify the test section by installing a turntable, used to yaw the test models. The wind tunnel ability of researchers to obtain accurate data. The turntable will enhance test productivity.

Included are rehabilitation of bathrooms; heating, ventilating, and air conditioning (HVAC) systems; utilities, and 5. Kenabilitation of N239A, High Bay Area This project provides for rehabilitation of the high bay area of the Life Science Research Laboratory. 5. Rehabilitation of N239A, High Bay Area

for advanced life support research, development, and testing projects range from traditional wet chemistry labs to Facility requirements Technology Test Beds (NTTB). This project improves CGRC capability and allows for NTTB system level tests of open high bay space suitable for large scale equipment, such as Crop Growth Research Chambers (CGRC) and New An elevator will be installed to provide access to the physically disadvantaged. physical/chemical life support technology.

Work will include switchgear, a tie-breaker, rework of feeders, installation of new interlock control systems, and approximately 1,650 feet of duct bank. The 2.4KV existing power supply on the west side of Moffett Field is not adequate to support the demand. The Navy had been upgrading to a 12.8KV system, but has terminated 6. Rehabilitation and Modification of Switchgear, Building 104 this work due to transfer of facilities to NASA.

. B. Dryden Flight Research Center (DFRC)

1. Rehabilitation and Modification of Foam Deluge and Suppression System, Building 4826

drainage. The existing systems are in violation of NASA and National Fire Protection Association standards. aircraft fuel fires. Until this project is completed, a fuel fire in the hangar could cause major damage to are closed-head systems, providing neither foam-water fire suppression nor sufficient water flow to control Maintenance Hangar, including a new deluge sprinkler system, foam system, detection and alarm systems, and expensive research aircraft and property.

C. Goddard Space Flight Center (GSFC)

\$2,810,000

.

900,006 conditioning systems. This project is critical to providing effective energy conservation. The existing obsolete sensors will be replaced with new digital systems to provide reliable inputs and independent local control of air UCS is primarily a monitoring system and has incurred numerous operational problems such as software failures and 3/13/14 with a state-of-the-art Direct Digital Control UCS System. Pneumatic automatic temperature controls and inaccurate sensor inputs. The new digital system will provide for an efficient, reliable, and maintainable air 1. Rehabilitation of Utility Control System conditioning control system.

Accessibility Standard. Included in this project is the installation of visual warning systems consisting of This project provides for the upgrade of various buildings and facilities to meet the Uniform Federal 2. Modifications for Disabled Access, Various Buildings

specific offices occupied by people with hearing impairments. The visual warning systems shall interface with and operate in conjunction with the building fire alarm system. Also included is upgrades of other building elements visual alarm devices (strobe lights) in the corridors, restrooms, conference rooms, various assembly areas, and such as the bathroom facilities, elevator controls, handrails for stairs, drinking fountains, doors, parking spaces, curb ramps, ramps to building entrances, public telephones, and signage.

Modification of Logistics Supply and 3. Rehabilitation and

Facilities (Buildings 16 and 16W) which will be vacated by individuals moving to the Earth Observing System Data Information System Facility. Modifications include the relocation of wall partitions; heating, ventilating, and lighting, smoke detection, and sprinkler systems is also included. This project is an essential element in the Center's overall housing plan. This project will relieve overcrowding of existing facilities and will promote air conditioning systems; ceiling systems; floor tiles; and wall finishes as required. Rehabilitation of Warehouse Facilities, Buildings 16 and 16W operational efficiency of like activities.

4. Rehabilitation of Radio Frequency Interference (RFI) Clean Room, Mechanical Integation Facility

require a smaller reverberation area in acoustic enclosure materials than is currently present in this 25 year old flight hardware detectors/receivers. New technology applications in sensitive spacecraft detectors and receivers desired acoustical properties and to minimize particle infiltration. Upgrades to the RFI Cleanroom are required be converted to an anechoic test chamber and upgrades to include extension of utilities and services to the RFI modifications to the High Efficiency Particulate Air (HEPA) filter wall will also be required to achieve the to prevent the creation of RF waves during electromagnetic interference testing which could damage sensitive cleanroom through RFI shielded penetrations will be required. In order to maintain the cleanroom integrity,

power supply system (UPS) which serve the NASA Communications (NASCOM) systems. The old air conditioners will be The old UPS systems will be replaced with two 75 KVA systems, which will provide Voice Switching System and Voice Distribution System have expanded, adversely reducing the operational redundancy operational redundancy necessary for critical support to NASA missions. The HVAC and electrical loads of NASCOM This project will modify the heating, ventilating and air conditioning systems (HVAC) and the uninterruptible the necessary full power redundancy. These modifications are required to provide the increased capacity and 5. Modify NASA Communications Systems Facilities, Spacecraft Operations replaced with four 8-ton units. for contingencies.

\$1,850,0
•
•
•
•
•
•
(TEFF)
Laboratory
Jet Propulsion
Д

000

550,000 Deteriorated insulation on the liquid nitrogen piping system will be repaired or replaced. The existing emergency This project will provide a new 200 Kilowatt, 250 Kilovolt diesel powered emergency generator and a surface fuel tank with a 10 hour fuel capacity. A new feeder cable and modern transfer switch will be installed with related generator has frequent problems and is underrated for the required load. Long duration power outages result. circuiting and over current protection. Deteriorated liquid nitrogen pipe fittings will be replaced 1. Modify Utility Services, Environmental Test Laboratory (144)

400,000 system will be upgraded to include a filtering and humidity control system. The project will improve access and Included is demolition of non-bearing partitions, removal of raised floor, rearrangement of exit doors, and the fluorescent light fixtures, and associated painting of the walls. The heating ventilating and air conditioning environment for the work force and the public. Data housed in this facility requires temperature and humidity 4. MODILY REGIONAL Flanetary image Facility (202)

This project will rearrange and upgrade approximately 4,800 square feet on the first floor of this building. Modifications include new floor surfaces, ceiling system with new 2. Modify Regional Planetary Image Facility (202) construction of an entrance vestibule. controls for long-term preservation.

Space Flight Operations Facility (230) 3. Upgrade Emergency Generator Capacity,

isolation connections to the engine, space ventilation system, and exhaust system will be adapted to the existing existing generators are over twenty years old and use antiquated technology. Major spare parts require long lead rough-in. A new 2,400 ampere busway will be installed. The existing distribution switchboard will be remodeled to accommodate the additional power circuit. The existing 3,000 ampere draw-out circuit will be serviced, generator will be installed in an existing space of the generator room on new foundations. New vibration recalibrated, and reinstalled. The existing control system will be expanded to serve the new generator. This project will procure and install an additional 1,350 Kilowatt, 1,750 Kilovolt emergency generator. times and are fabricated on a costly individual basis.

. E. Johnson Space Center (JSC)

.

.

Building 207a; and an approximately 400 square foot addition to the Water Treatment Plant, Building 322, to house distribution control valves, approximately 2,000 feet of 3-inch pipe to the Utility Maintenance Storage Facility, environment. The current system does not consistently supply the quality of potable water required by the Texas 322, and the repair of the potable water distribution system. The work includes modifications to the chlorine injection equipment; installation of injection equipment for ammonia, pH adjustment, corrosion inhibitors, the chlorination system. The existing water supply system has deteriorated from age and the corrosive 1. Rehabilitate Water Distribution System

Water Commission. The work is required to prevent further deterioration of the water quality and to bring the system into compliance

- wall section displacements and cracks, roof replacement, waterproofing and recaulking of the below-grade portions system. Also included are rehabilitation and modification to the facility storm drain and sanitary sewer systems corrected providing basic laboratory environments for environmental control, stability, and safety for critical of the structure, rehabilitation of water-damaged ceilings and walls, and readjustment of the air conditioning to correct frequent backups and unsafe conditions. Major facility deterioration and deficiencies will be Rehabilitation of Laser Tracking Facility (14) engineering development and testing.
- flows, replacing pumps, and installing approximately 7,900 lineal feet of 8-inch force main piping. The project is required to meet additional demands on the system caused by the addition of several new facilities and increased flow from cooling tower waste streams.
- Electrical and mechanical systems for building 18 will be upgraded to accommodate current and future test support Transmitting Antenna Tower, Facility 450. The structural members of the tower will be renovated and repainted. operations. In addition, a small enclosure will be added to the building to support Global Positioning System (GPS) hardware development. The new addition and existing exterior walls facing the test range will be covered with a new high-frequency absorbent material. These facilities have deteriorated over time and are in need of rehabilitation. This project is required to maintain the capability to support the Shuttle program and other Rehabilitation of Antenna Test Range Facilities (18 and 450)

F. Kennedy Space Center (KSC)

air lines from the Obiter Processing Facility-3 to each Mobile Launch Platform refurbishment site. Also provided are new steel piping lines for compressed air from the Utility Annex to each Mobile Launch Platform refurbishment site. The existing tube banks at the refurbishment sites do not provide adequate pressure or capacity required for efficient operation. Increase GO2 Storage Capacity, LC-39A

includes new chiller water lines, electrical power, a 200 cubic feet 6,000 psig pressure vessel rated for gaseous exist due to the potential of water intrusion into high voltage equipment. Maintenance is hazardous because they oxygen (GO2) storage. The existing fan coil units are located above 460 volt electrical panels. Safety hazards Service Structure (RSS) hoist machine rooms with air delivery through ductwork into machine rooms. Work also are suspended above high voltage equipment. Additional GO2 storage is needed due to increased fuel cell requirements to support launch scrub turnarounds.

rated motor. All existing underfloor conduit will be replaced with overhead watertight conduit. The 30-year old motor control center is an obsolete model and direct replacement parts are difficult to obtain. The underfloor conduit and wiring have been failing at an increasing rate. Installation of a new Motor Control Center is the most economical and safe approach to obtain satisfactory separation of water, oil and electricity at this 3. Replace Central Heat Plant Motor Control Center No. 1

4. Upgrade Firex and Heating Systems in the Hypergolic Maintenance Facility

area. Work includes replacement of piping, insulation, valves, and associated system supports. It will eliminate supply loop. Additionally, the building's firex system will be upgraded to a 300 psig allowable working pressure. This project is required to replace the central hot water piping system for various buildings in the industrial The central hot water system for these buildings was changed from high temperature hot water to low temperature electrical single failure points by removing the firex deluge system from the electricity-driven potable water pump source. The new system will be tied to the Hypergolic Maintenance Facility's (HMF) diesel-driven firex hot water. The additional flow needed dictates larger pipe size throughout the existing system. facility deluge system booster pump is approximately 25 years old and in deteriorated condition.

5. Upgrade Operations and Control (O&C) Building Accommodate the Functionally Disabled

access to restroom facilities. Three restrooms per floor, for male and female personnel, are included. Existing stalls; lavatories; toilets; visual, audible, and general signage; access to restroom accessories; and general facilities are restrictive and are not adequate for those with functional disabilities. 1. Rehabilitation of Office Area, 8-Foot High

Temperature Tunnel Facility

conditioning systems in two portions of the building. The project also includes asbestos removal. This area has 8-Foot High Temperature Tunnel Facility, Building 1265; construction of a 2,300 square foot addition to the east end of the facility with a ramp for disabled access to the facility; and a parking lot. The rehabilitation will not been upgraded since the original construction in 1959 and has deteriorated due to its age and continued use. restrooms for disabled access; upgrading the electrical system; and upgrading the heating, ventilating, and air include installing new windows and exterior doors; replacing ceilings, lights, and interior walls; upgrading

facilitate sampling and allow identification to ensure that Hampton Roads Sanitation District permit requirements NASA LaRC sewage collection from the Langley Air Force Base system prior to discharge into Air Force pumping station, Building 656. This project will require approximately 815 lineal feet of new sewer line and 10 new manholes to accomplish separation from the Air Force collection system. Separation of the two flows will

3. Modifications to Steam and Hot Water Distribution Systems,

Area. The work at Building 1272 will also include the removal of the existing boiler, installation of a new steam to hot water heat exchanger, and connection into the existing hot water heating system which is currently supplied extension of the existing hot water distribution system from Building 1154 to Buildings 1163 and 1164 in the West supplied to NASA by the Hampton Refuse-Fired Steam Generation Plant, decrease maintenance requirements, improve by the existing boiler. This project will increase the utilization of existing steam being generated and reliability, and result in a cost savings.

4. Modifications to Nozzle Test Chamber (1247D)

for calibration, as well as modifications to the existing vacuum and high pressure air systems to accommodate the The modifications also include replacing the existing test chamber with a new larger test chamber to permit room accommodate larger models and to relocate the Nozzle Test Chamber from Room D108 to Room D114 in Building 1247D. Separating the two facilities will allow more room for model preparation, model changes, check-out, and enhance Currently the Nozzle Test Chamber is located in the same room with the 20-Inch Mach 6 Tunnel. the productivity of both. new location.

000,006 improving helium compressor controls, rehabilitation of the helium storage facilities, installation of government Laboratory (EPL) (301). The work includes modification of the helium gas and liquid transfer and delivery lines, pumping essential for programs such as Space Electric Power and Nuclear Electric Power (Topaz and SP-100 class); furnished cryopanels, and upgrade of the helium loop controls. The cryopanels will provide very high speed 1. Modifications of Tank 5 for Cryopumping, Electric Power Laboratory

advanced propulsion concepts; high capacity environmental and other interaction phenomena; and cooperative

projects with DOD, industry, and other NASA Centers.

- constant maintenance and repair. The new HVAC system will provide efficient, reliable, and economical service for handlers, abandoned chillers, and associated asbestos insulated chilled water and steam piping is also included. The current 1962 vintage heating, ventilating, and air conditioning (HVAC) systems are inefficient and require This project provides for rehabilitation of mechanical systems and central air handlers in the Basic Materials Laboratory (BML) (106). Work includes installation of new air handling units to serve the first floor, second floor, and rear basement labs, and a recirculation water system. Demolition and disposal of the existing air 2. Rehabilitation of Mechanical Systems, Basic Materials Laboratory
- conditioning (HVAC) system including air handlers, piping, ductwork, controls, and demolition and removal of the existing HVAC system. The HVAC system, installed in 1951, has deteriorated beyond repair. The new HVAC system Research Laboratory (IRL) (77). The work includes the installation of a new heating, ventilating, and air will provide efficient, reliable, and economical service to handle heating and cooling loads for the IRL.

I. Marshall Space Flight Center

- restrooms. These modifications will improve the overall efficiency and reduce the operational cost of the Solid installation of heating, ventilation, and air conditioning (HVAC) equipment; walk-in coolers; and material handling and shelving systems. Work also includes addition of a mezzanine with associated stairways and This project provides for modification of the Structures Storage Building at Kennedy Space Center. 1. Modification of Structures Storage Building (Kennedy Space Center) Rocket Booster refurbishment and assembly support activities.
- replacement of the electrical control systems with microprocessor controls and solid state drive systems. Work 2. Rehabilitate Elevators in Office Building (4201)
 This project provides for complete rehabilitation of the elevators in Office Building 4201. Work includes 2. Rehabilitate Elevators in Office Building (4201)

\$2,155,000

facility. Its elevators are obsolete, unreliable, costly to maintain, and parts are difficult to obtain. This also includes replacement of the car platform, cab, hoist cables, tracks, rollers, door panels, and operator Building 4201 is a 29-year-old, six story project will upgrade the elevator systems to current Life Safety and Handicapped Accessibility standards mechanisms. The hoist equipment will be reconditioned for reuse.

580,000 also includes replacement of the car platform, cab, hoist cables, tracks, rollers, door panels, and operator mechanisms. The hoist equipment will be reconditioned for reuse. Building 4202 is a 29-years-old, six story facility. Its elevators are obsolete, unreliable, costly to maintain, and parts are difficult to obtain. replacement of the electrical control systems with microprocessor controls and solid state drive systems. project will upgrade the elevator systems to current Life Safety and Handicapped Accessibility standards. 3. Rehabilitate Elevator in Office Building (4202) .

\$1,750,000

due to severe corrosion. Current configuration does not provide sufficient valves to adequately isolate problem installed in the 1940's and is very deteriorated. Pipe wall thickness has decreased by 50 percent in some areas return piping in the External Tank Main Manufacturing Building. The new piping will be routed differently than the existing piping to improve accessibility and maintainability. Work to be done includes the replacement of existing valves, or the addition of new valves, as required. The chilled water return system was originally areas during outages. Lack of easy access to piping makes piecemeal repairs difficult and costly.

2. Rehabilitate and Modify Substation No. 10

starters, and other electrical components at Motor Control Centers 1 and 2. Substation No. 10 is 40 years old, difficult to maintain, and constantly overheating. The substation provides power for External Tank production processes, a chemical tank farm, and a cooling tower. It can no longer meet these requirements in its present with two 2,000 KVA transformers with associated switchgear, and the replacement of power panels, breakers, configuration because of substantial load increases since its original installation.

Shuttle Main Engine test stands. Work includes the installation of state-of-the-art monitoring and gas detection devices. Rehabilitation of the existing fire and hazardous gas detection system is necessary to provide more expedient protection for personnel and equipment located in the vicinity of these facilities during test operations. 000,006 This project provides for modifications to the 13.8KV electrical distribution system. Work includes the 2. Modify 13.8KV Electrical Distribution System

replacement of approximately 1,600 feet of underground cable and 4,900 feet of overhead cable in the industrial complex. Work also includes the installation of two new 13.8KV feeders at the Main Substation feeder pole and approximately 33,000 feet of new overhead cable. This project will install the necessary power supply loop to ensure the reliability of the electrical distribution system for the base support of Space Shuttle Main Engine test operations.

system. Work includes the dredging of the waterway to the original design depth and the repair, augmentation, or construction of spoil areas as required. A cyclical dredging program maintains access to the canal system and ensures the critical supply of propellant for the Space Shuttle Main Engine testing program. 3. Dredge East Pearl River

430,000 entrance to provide a reception/conference room area and a connecting corridor for passage between Buildings E-107 briefings and holding areas during long count down periods prior to launch. The connecting corridor will provide A reception/conference area in close proximity of the Control Center is essential for meetings, a less complicated and safer passage between buildings.

active launch complex on Wallops Island. It consists of three launchers mounted on a concrete pad at an elevation tray relocation, and perimeter fencing. Launch Pad No. 2 which was built in 1950 is currently the oldest and most below the surrounding beach and adjacent to the dune line. During storms the pad is subject to overwash, leaving slab and foundation, structural steel, launch shelter with rails, electrical troughs and grounding system, cable a layer of sand and mud. Pad relocation and placement at a higher elevation west of the seawall will reduce the overwash hazard and downtime on scheduled launches. 2. Modification to Launch Area No. 2

This project provides for modification to various buildings on the Main Base that are inaccessible to people with entrances and thresholds, modification to restroom areas including fixtures, modifications to drinking fountains, disabilities. The work includes the installation of elevators, modification of building exterior and interior 3. Modification for Disabled Access, Various Buildings .

This project is required to meet the installation of interior and exterior access ramps, and display of signs. regulations established by the Uniform Federal Accessibility Standards. 600,000 This project provides for rehabilitation of the first floor hangar and environmental lab areas in the west wing of area, provides efficient use of space in the laboratories, and represents the first significant rehabilitation to Building N-159. The work includes the demolition of interior partitions and finishes, electric wiring, lighting modifications to heating, ventilating, and air conditioning; installation of boiler, fire protection, plumbing, and restrooms. The west wing of Building N-159 houses observational science equipment, aeronautics hangar and support laboratories, and temporary partitioned offices. The modification updates the utilities in the hangar and panels, installation of interior partitions, personnel doors, finishes, lighting, wiring, and panels; 4. Rehabilitation of Range Control/Evaluation Facility West Wing, (N-159) the west wing since its construction over 35 years ago.

\$1,130,000
•
•
٠
٠
٠
•
•
٠
٠
•
•
•
is Locations
. Various

Z

This project will provide for the extension of fire detection and water sprinkler, carbon dioxide, or other fire located at Merritt Island, Florida. This project will correct the detection and suppression deficiencies, and suppression systems to various buildings and structures at the Spaceflight Tracking and Data Network station replace existing halon fire suppression systems. This station provides key pre-launch, launch, and landing 1. Modify Fire Suppression Systems, Merritt Island, Florida communications support to the Space Transportation System.

UPS will act as a power conditioner in the normal mode and provides battery power for a limited time, until diesel Processing Center electronics at Building G86 of the Mars site at the Goldstone Deep Space Communications Complex. The electronic equipment is subject to power outages, which result time consumption for extensive reconfiguration of the computers to restore operations for spacecraft support. The modifications will protect electronic equipment against short transient power surges and allow orderly California Supply, Goldstone, generated or commercial power is back on line. emergency shut-down during power outages. 2. Modify Uninterruptible Power

\$545,000	330,000,000
٠	·
•	
•	
•	•
•	•
•	•
•	
•	•
•	•
•	•
	•
•	
•	•
	•
	•
a	
9	•
250,000	•
\$25	•
4	
9	
20	•
g	•
Ä	
d	
1	•
성	•
7	
育	
9	•
9	•
괵	•
9	
ō	
and	•
7	a]
. Miscellaneous Projects Not	Total
z Z	

의

FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT

Approximately \$40-50 million per year will be required for continuing rehabilitation and modification needs.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

SUMMARY

MINOR CONSTRUCTION

Summary of Project Amounts by Location:	Amount	Page No.
Kennedy Space Center	000'599	CF 3.4-3
Langley Research Center	000'599	CF 3.4-3
Marshall Space Flight Center	670,000	CF 3.4-3
Total	\$2,000,000	

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

Minor Construction of New Facilities and Additions to Existing Facilities, PROJECT TITLE:

Not in Excess of \$750,000 Per Project

INSTALLATION: Various Locations

FY 1995 CoF Estimate: \$2,000,000

\$14,000,000

FY 1994:

FY 1993: \$14,000,000

COGNIZANT INSTALLATIONS/LOCATIONS OF PROJECT: Various Locations

COGNIZANT HEADOUARTERS OFFICE: Office of Management Systems and Facilities

SUMMARY PURPOSE AND SCOPE:

\$750,000 and involves either the construction of new facilities or additions to existing facilities. The FY 1995 Each project in this program is estimated to cost no more than These resources will provide for minor facility construction at NASA field Installations and Government-owned request of \$2 million will improve the usefulness of NASA's physical plant by changing the utilization of augmenting the capabilities of various facilities. Included in this request are those programmatic and institutional projects that are essential to the accomplishment of mission objectives. industrial plants supporting NASA activities.

PROJECT JUSTIFICATION:

required by changes in technology or in mission needs. Demands are generated by research, development, testing, Specific justification for each minor construction project is provided under "PROJECT The configuration of NASA's physical plant necessarily must respond to changes in utilization and adaptions and similar activities. COST ESTIMATE."

PROJECT DESCRIPTION

investment. During the course of the year, the revision of priorities may require changes in some of the items to Projects were selected on the basis of the relative urgency of each item and the expected return on the totaling \$2 million are included in this resource request and have been distilled from a list totalling over \$26 facility needs that could be fully identified at the time of submission of this budget estimate. Items of work Included in the FY 1995 minor construction program are those facility projects for institutional or technical be accomplished. Such changes will be accommodated within the total resources allocated. million.

These projects represent requirements that must be met in this time frame to support institutional needs and programmatic objectives. The following listing summarizes the cost distribution by category of work:

665,000	1,335,000
•	•
•	•
•	•
	•
•	
•	
•	•
•	•
•	•
•	•
•	•
•	•
•	•
٠	•
•	•
•	•
	·
	ıres
General Purpose Buildings	Technical Buildings/Structu
ъ В	Ъ.

\$665,000 provided for the press and international partners to follow the shuttle activities. The existing facility is not square foot facility. During launch activities and press conferences it is essential that a safe place be appropriate or safe and must be replaced. A. Kennedy Space

B. Langley Research Center (LaRC)	<u>000'599</u> \$
	000 (999
This project provides for construction of a two-story addition of approximately 5,200 square feet. The addition	ximately 5,200 square feet. The addition
will house computer laboratories, simulator spaces, a pilot briefing and debriefing conference room, a control	d debriefing conference room, a control
room, and a technician work station/office. An access ramp will be provided between the second floors of the	vided between the second floors of the
existing building and the new addition. The space provided by the addition will support research under the	tion will support research under the
Terminal Area Productivity and High-Speed Research programs, as well as on-going research efforts in Aviation	on-going research efforts in Aviation
Safety/Automation, Wind Shear, Advanced Transport Operating Systems, and Advanced Aircraft.	d Advanced Aircraft.

a

0

C. Marshall Space Flight Center
and Testing (4487-B)

Approximately \$6 million per year will be	
FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT:	required for continuing minor construction needs.

Total

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

SUMMARY

FACILITY PLANNING AND DESIGN

	,	-2	. .	·	PNO
Page No.	CF 3.5-1	CF 3.5-2	CF 3.5-3	CF 3.5-4	
Page	CF 3	CF 3	CF 3	CF 3	
			0		ા
Amount	400,000	700,000	1,600,000	7,300,000	10,000,000
A.	40	70	1,60	7,30	00,00
	10-			.,	- ∏
	•				
			•	•	•
	•	•	•	•	•
	•	•	:	•	
	•			•	•
	•	•	•	•	•
		•		•	•
			•	•	•
	•				•
	•	•		•	•
	•	•		•	•
	•	•		•	•
	•	•	•	•	•
	•	•	•	•	•
	•	•	•	•	•
	•	•	•	•	•
	•		a ort	•	
	•	•	anc		•
		rt	rts g s		
	•	odd	epo	•	•
	•	ı Su	g R nee		•
	•	ing	rin Ingi	•	
	•	lee1	inee al E	•	•
	ing	ngir	Eng	•	
	ann	g El	ry 1 Spe	ign	•
	Master Planning	Sustaining Engineering Support	Preliminary Engineering Reports and Related Special Engineering Support	Final Design	•
	ster	stai	elin Rela	lal	Total
	Ma	Sus	Pre	Fir	Tot

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

PROJECT TITLE: Facility Planning and Design

FY 1995 COF Estimate: \$10,000,000

FY 1993: \$23,300,000

FY 1994: \$21,500,000

The funds requested in this estimate are required to provide for the following advance planning and design activities related to facilities activities and projects where not otherwise provided for:

- a. The accomplishment of necessary studies, development and master planning for field installation and the provision of continuing engineering support and special engineering management and other services.
- schedules. Also includes the preliminary engineering efforts required to initiate design-build projects. b. The preparation of preliminary engineering reports, cost estimates, and design and construction
- c. The preparation of final designs which include construction plans, specifications, and associated cost estimates and schedules required to implement construction projects.
- The accomplishment of facilities siting and other investigations, studies and reports.

A. Master Planning

\$400.000

Provides for updating, developing and automating existing field installation master plans. This effort includes facility studies, site investigations, and analyses of utility systems. The existing utility and civil drawings Topographical features from original drawings will be merged electronically to create individual area maps or an entire center map. The master plan documents will be updated to reflect as-built conditions and to graphically will be converted into a highly detailed electronic database using a computer-aided-design (CADD) system. represent the 5-year facility plan baseline for future development.

documents for land use planning, identification of physical relationships of facilities, and proper orientation and arrangement of facilities. The updates reflect as-built condition of facilities and utility systems with The NASA field center master plans are periodically updated. The master plans are essential as reference emphasis on changes caused by recent facility construction and modifications.

B. Sustaining Engineering Support

700,000

years. These efforts are important due to changing cost trends in construction materials and fuels; the operation Provisions for facility studies and specific engineering support continue in importance as evidenced in recent and maintenance costs for the physical plant; and energy conservation and efficiency.

The following items are included in the FY 1995 requirements:

1. Building Research Board

Covers annual support to the Federal Construction Council's (FCC) operations and provides for special studies that building and construction. The FCC is subordinate to the Building Research Board, National Academy of Sciences, the Council will perform throughout FY 1995 to help advance the science and technology of Federal Government and its activities are supported by NASA and other Federal agencies with similar construction programs

2. Value Engineering, Cost Validations and Analyses

criteria, specifications and working drawings for specific material components and systems to detailed independent Provides for engineering services to improve cost-effectiveness of facility projects by subjecting project design reviews by engineering specialists. Also provides services necessary to predict and validate facility costs to aid in resources planning.

3. Facilities Utilization Analyses

Such analyses provide for (1) to quantify level of facilities use; and (3) actions to improve facilities utilization. Work provides for review insights into and development of better methods of identifying underutilized facilities; (2) improved techniques building space; (2) designate major technical facilities; and (3) special studies comparing the utilization of necessary to validate the reported data in relation to a specific problem or need, and to assist in providing Provides for the analyses of agencywide facilities utilization data covering (1) office and other types of of each installation's inventory data base in support of the facilities utilization program. Surveys are technical facilities which are similar in type or capability, such as wind tunnels. credible foundation for plans to improve the use of facilities.

4 Facilities Management Systems

Provides for continued engineering support for the technical updating of NASA's master text construction specifications to reflect the use of new materials, state-of-the-art construction techniques and current references to building codes and safety standards.

5. Independent Analysis and Third Party Reviews

Provides the technical and engineering support analyses, designs, and reviews required to verify, confirm and ensure suitability of construction designs within the project cost estimates.

6. Facilities Engineering Metrication

Required to support the transitioning of NASA facilities engineering designs and specifications from the English inch-pound system to metric, as required by Presidential Executive Order 12770 of July 25, 1991

Related Special Engineering Support. C. Preliminary Engineering Reports and

\$1,600,000 .

projects in the FY 1997 and FY 1998 Construction of Facilities programs. These reports are required to permit the (1,300,000) 1. Preliminary Engineering Reports (PERs)
1,300,000
This estimate provides for preparation of PERs, investigations, and project studies related to proposed facility early and timely development of the most suitable project to meet the stated programmatic and functional needs. Reports provide basic data, cost estimates and schedules relating to future budgetary proposals. This request provides for PERs associated with proposed construction. (PERS) Engineering Reports 1. Preliminary

PERs for \$20 to \$30 million in construction, and the development of new PERs for an additional \$90 to \$100 million The estimated cost of PER support for FY 1997 construction projects is \$1,000,000, which will permit updating of

million of construction projects which will be high priority candidates for inclusion in the FY 1998 Construction An additional \$300,000 has been included in this line for the completion of new PERs for approximately \$15 to \$20 of Facilities program. The activity associated with FY 1998 will be confined to the highest priority candidates.

Such studies involve documentation and validation of "asbuilt" conditions, survey/study of present condition of such items as roofing and cooling towers, utility plant condition and operational modes, and other like studies. These studies are required to allow for the timely development of projects to meet the stated functional needs and to provide basic data, cost estimates and in the subsequent Construction of Facilities programs. schedules for related future budgetary proposals.

\$7,300,000
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Final Design

The amount requested will provide for the preparation of designs, plans, drawings, and specifications necessary for the accomplishment of projects. Projects involved are planned for inclusion in the FY 1996 and FY 1997 programs. The goal is to obtain better facilities on line earlier at a lower cost.

estimated to cost \$140 to \$150 million, and for \$10 to \$20 million of high potential projects proposed for the FY nature which have accumulated from prior years activities is \$6,100,000. For FY 1997 \$1,200,000 is included and The request will provide for final design work associated with construction proposed for the FY 1996 program, 1997 program. The final design amount included for FY 1996 candidates and for residual requirements of this design activity will be confined to the highest priority candidates.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

SUMMARY

ENVIRONMENTAL COMPLIANCE AND RESTORATION

Summary of Project Amounts by Location:	Amount	Page No.
Ames Research Center	\$3,290,000	CF 3.6-3
Dryden Flight Research Center	1,610,000	CF 3.6-3
Jet Propulsion Laboratory	3,200,000	CF 3.6-4
Johnson Space Center	550,000	CF 3.6-4
Kennedy Space Center	2,500,000	CF 3.6-5
Langley Research Center	2,000,000	CF 3.6-5
Lewis Research Center	3,450,000	CF 3.6-5
Marshall Space Flight Center	5,700,000	CF 3.6-6
Michoud Assembly Facility	3,000,000	CF 3.6-7
Stennis Space Center	1,000,000	CF 3.6-7
White Sands Test Facility	1,000,000	CF 3.6-7
Miscellaneous Projects Not in Excess of \$250,000 Each	1,200,000	CF 3.6-8
Remedial Investigations, Feasibility Studies, Assessments, Studies, Design, and Related Engineering	000'005'9	CF 3.6-8
Total	\$35,000,000	

CONSTRUCTION OF FACILITIES

FISCAL YEAR 1995 ESTIMATES

PROJECT TITLE: Environmental Compliance and Restoration Program

INSTALLATION: Various Locations

FY 1995 CoF Estimate: \$35,000,000

FY 1993: \$40,000,000 FY 1994:

\$50,000,000

COGNIZANT INSTALLATIONS/LOCATIONS OF PROJECT: Various Locations

COGNIZANT HEADOUARTERS OFFICE: Office of Management Systems and Facilities

SUMMARY PURPOSE AND SCOPE:

field installations, Government-owned industrial plants supporting NASA activities, and other locations where NASA statutory requirements and standards. The resources authorized and appropriated pursuant to this program may not options for remedial action; conduct of prescribed remedial investigations and feasibility studies as required by be applied to other activities. The program includes studies or assessments to determine compliance status and related engineering, and remedial action projects for environmental compliance and restoration measures at NASA Federal environmental laws; and performance of environmental restoration, hazardous waste removal and disposal, addition, these resources will be used to acquire land if necessary to implement environmental compliance and These resources will provide for studies, assessments, remedial investigations, feasibility studies, design, operations have contributed to environmental problems and NASA is obligated to contribute to cleanup costs. restoration measures. The purpose of this program is to enable NASA to comply with mandatory environmental cleanups, and closures.

PROJECT JUSTIFICATION/DESCRIPTION:

Proposed environmental compliance and restoration projects and activities for Fiscal Year 1995 total \$35 million, which has been distilled from requests of approximately \$105 million. This program represents only a modest request in relation to the total requirements for environmental compliance and restoration that must be implemented within the next several years. Based on relative urgency and potential health hazards, the following new discoveries or regulatory requirements change, it is expected that priorities may change and revisions of the jeopardize critical NASA operations. The remedial investigations, feasibility studies, assessments, design, and \$1,200,000. As studies, assessments, remedial investigations, feasibility studies, and designs progress and as \$250,000 have not been described or identified by specific location. The estimated cost of these projects is related engineering costs are estimated to be approximately \$6,500,000. Projects estimated to cost less than of these necessary remedial measures would preclude NASA from complying with environmental requirements and listed projects are the highest priority requirements currently planned for accomplishment in FY 1995. activities and projects may be necessary. The following listing summarizes broad categories of effort to be undertaken with projects of an estimated cost of over \$250,000:

\$3,000,000	1,020,000	15,650,000	000'069	6,390,000	550,000
	•				
•			· · ·	•	
	· · ·	•	•	•	•
•	(PCB)	•	•	•	•
•	3iphenyl	•	•	•	•
sk	rinated 1	anups	•	•	•
Storage Tan	of Polychlorinated Biphenyl (PCB)	Actions/Cle	Control		•
nderground	eplacement	Corrective	Storage and	ntrol	Control .
Replacement of Underground Storage Tanks	Rehabilitation/Replacement Transformers	Hazardous Waste Corrective Actions/Cleanups	Hazardous Waste Storage and Control	Air Pollution Control	Water Pollution Control
ro	٠ ۵	ċ	v	ů.	f.

PROJECT COST ESTIMATE:

A. Ames Research Center (ARC)

- and supply system used by Flight Operations at Building 211. Leak detection and monitoring, spill containment, and groundwater remediation as needed. The project is required to comply with the Federal RCRA, state, and local site cleanup are required to conform with the underground storage tank (UST) regulatory requirements. This project provides for removal/closure of a fuel supply line, installation of a new fuel system, and soil and environmental regulations.
- includes providing new facilities and control devices and retrofitting of existing facilities for the indoor and outdoor storage and/or use of the regulated gases and materials. The work is required to conform with the Santa Clara County Toxic Gas Ordinance requirements, regulating facilities which store, use, dispense or handle toxic adequate use and storage of toxic gases and materials in conformance with environmental requirements. The work gases or materials which may act as toxic gases when released into the atmosphere. 2. Construct Toxic Gas Storage Facilities

B. Dryden Flight Research Center (DFRC)

- contaminated transformers with non-PCB fluids and equipment. The work includes removal and disposal of PCB fluids project will prevent potential contamination or hazards, and disruption of the Center's operations due to leaks, 1. Replace Polychlorinated Biphenyl Transformers

 This project provides for the final phase of the replacement of existing polychlorinated biphenyl (PCB) and PCB and transformers in accordance with regulations and replacement of transformers with non-PCB equipment. The spills, or fires associated with these transformers. It will provide for compliance with environmental requirements and tenant agreements. PCBs are regulated by the Toxic Substances Control Act (TSCA).
- repair and replacement of existing hazardous waste accumulation facilities with new enclosed facilities and the construction of a solvent recycling and a drum crushing facility with associated utilities. This project will construction of new facilities for the storage and recycling of hazardous waste materials. The work involves upgrade and expand the Center's hazardous waste operations to ensure compliance with the Federal RCRA, state This project provides for the repair and replacement of existing hazardous waste storage facilities and 2. Hazardous Waste Storage and Recycling Facilities hazardous waste regulations, and tenant agreements.

This project provides for the installation, repair and replacement of air pollution control systems at air emissions sources within the Center. Preliminary study work in support of the project involved identification and testing of air emission sources and the performance of risk assessments from air toxic emissions. This project involves the installation of new, or repair and replacement of existing pollution control equipment in order to minimize emissions from the identified sources. The work is needed to conform with the Federal Clean Air Act (CAA) requirements, the state CAA regulations, and tenant agreements with the host facility environmental pollicies.	
---	--

\$3,200,000	2,500,000 ontaminants s. This dentify the tosts as ties List" ty Act
C. Jet Propulsion Laboratory (JPL)	This project provides for continuation of the groundwater cleanup effort of the Arroyo Seco aquifer contamination. Sampling and testing of groundwater in the vicinity of JPL confirmed the presence of contaminants beneath the site and in nearby production wells, in excess of Federal and State of California standards. This phase of the project provides for continuation of remedial investigations and feasibility studies to identify the extent of the contamination and determine remedial alternatives, and for the payment of state oversight costs as required by the Federal Facilities Agreement (FFA). This site is listed in the EPA's "National Priorities List" and is subject to the provisions of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA).
C. Jet Pro	1. Clean This proje contaminati beneath the phase of th extent of t required by and is subj.

2. Construct Air Pollution Control Units
This project provides for the construction of air pollution control devices and installation of emission
monitoring systems at JPL facilities. These control and monitoring devices are required to comply with the air
emission reduction requirements being incorporated as part of the South Coast Air Quality Management District air
pollution control regulations. The work involves the addition of emission control devices to equipment based on
results of compliance surveys, in order to control and reduce air pollutant emission levels and comply with
current and pending Federal, state and local air quality regulations.

D. Johnson Space Center (JSC)	1. Modify Photo Waste Treatment Facilities	This project provides modifications to the photographic waste treatment facilities at the Johnson Space Center.	This project is needed to provide safe operations of the waste treatment and collection system and to bring JSC	into compliance with pretreatment standards required under the Clean Water Act and the waste handling requirements	of the Resource Conservation and Recovery Act
-------------------------------	--	---	---	--	---

\$2,500,
•
•
•
•
•
•
•
•
•
•
•
•
(KSC)
Center
Space
Kennedy

1. Construct Corrosion Abatement Facility

paint areas office and sanitary facilities and equipment storage and staging facilities. The project will provide The project adequate blasting and painting facilities and satisfy the deficiencies found during State of Florida inspections. includes construction of concrete pads to increase the serviceable area of the blast facilities covered spray compliance with the Clean Air Act (CAA), the Clean Water Act (CWA) and State of Florida regulations.

complex 39 (LC-39) areas. This project involves the retrofill of approximately 25 transformers. Upon removal of the PCB containing oil, the transformers will be cleaned, flushed, and refilled with insulating oil which is PCB free. Continued use of the PCB transformers represents a significant potential hazard to human health, the environment, and for disruption of the Center's operations and schedules from leaks and/or fires. PCBs are regulated by the Toxic Substance Control Act.

. F. Langley Research Center (LaRC)

\$2,000,000

Back River about a mile from the Center property line. Tabbs Creek is a tidal wetland and Back River is used for Response, Compensation and Liability Act (CERCLA). LaRC is proposed for listing on the EPA's National Priorities remediate identified contamination. Tabbs Creek is located behind the Center and joins the Northwest Branch of Facilities Compliance Agreement was signed with the Environmental Protection Agency (EPA). PCBs are regulated (PCBs) and polychlorinated terphenyls (PCTs). The Center is required to assess, investigate and verify, and under the Toxic Substances Control Act (TSCA) and cleanup is regulated under the Comprehensive Environmental oyster harvesting. Chemicals were released into the creek from the Langley storm drain system. A Federal

• • G. Lewis Research Center (LeRC)

.

.

cabinets pad, removal and disposal of PCB capacitors, cleanup of contamination in a cable tunnel, and remediation the 10X10 SWT Substation. The work includes removal and replacement of contaminated concrete from capacitor of contaminated soil in the vicinity of the capacitors. PCB contamination is regulated under Federal TSCA regulations.

evaluate treatment options for remediation of these areas. This study project will be conducted following CERCLA Environmental Response, Compensation and Liability Act (CERCLA) requirements. This work continues the effort for preparation of work plans and conduct of an RI/FS according to priorities established by previous studies. The RI/FS will further investigate and assess contamination at prioritized project management units to identify and The facility was required by the This study project provides for continuation of environmental studies to verify, assess, and remediate site Environmental Protection Agency (EPA) to perform site investigations in accordance with the Comprehensive contamination at the LeRC Plum Brook Station (PBS) located in Sandusky, Ohio.

. H. Marshall Space Flight Center (MSFC)

\$5,700,000

3,000,000

MSFC. This project will finalize the investigations and begin the initial phase of the Resource Conservation and contamination as identified in the Preliminary Assessment (PA) by the Environmental Protection Agency (EPA) and Recovery Act (RCRA) Corrective Measures Study for the sites and areas of concern determined to require

2. Cleanup of Groundwater Contamination,

Susana Field Laboratory (SSFL)

currently under way at SSFL. Current results indicate a high level of trichloroethylene in the groundwater, which assessment/cleanup consists of well installations, sampling and analysis, and removal actions. This project is required to be in compliance with the Resource Conservation and Recovery Act (RCRA) and the regulations of the has been associated with rocket engine testing performed at SSFL by both NASA and the Air Force. The State of California

This project is the final component of the investigation, characterization, and assessment of the SWMUs identified investigation include NASA's Area II SWMUs and sites associated with rocket engine testing on Rocketdyne's Areas I and III. This project will include the initiation of the Corrective Measures Study and involve a wide array of by SSFL, the Environmental Protection Agency (EPA) and the state of California. The SWMUs involved in this 3. Cleanup of Solid Waste Management Units (SWMUs), SSFL methodologies including soil boring, well installations, sampling and analysis, and soil removal.

4. Remove and Replace Underground Storage Tanks
Air Emission Regulations 1,000, 114, 130, and 103. The work includes thermal oxidizer upgrades, vapor recoversions to existing treatment systems, and installation of monitoring/control 1. The emission controls and monitoring devices are needed to comply with Federegulations.
2. Consolidated Investigations, MAF
J. Stennis Space Center (SSC) s1.000.000
1. Cleanup of the Herbicides/Pesticides Handling Area
K. White Sands Test Facility (WSTF) s1.000.000
1. Groundwater Contamination Assessment and Remediation

\$1,200,000	\$6,500,000	\$35,000,000
•	•	
•	•	•
•	•	•
•	•	•
	•	•
		•
•	•	
•	•	
•	•	٠
•	•	•
•	1.	•
	되 .	•
	gen .	•
act	8	
ы		•
g	4	•
KCess of \$250,000 Each	ility Studies. Assessments.	
25	ii a	•
	97	
٩	भूत व	•
ឡ	ility Studie Engineering	•
ě	ゴ福	•
Ä		
4	as j	•
7	1	•
ģ	٦	•
		•
Ħ	3 7	•
Z je	eg g	•
Pro	म्	•
62	ag ag	
no	뒴亅	•
ans	1 8	
I. Miscellaneous Projects Not in E	M. Remedial Investigations, Feasib. Studies, Design, and Related	Total
308	E E	To
Ϋ́	Re	
н	Σ.	

FUTURE COF ESTIMATED FUNDING REQUIRED TO COMPLETE THIS PROJECT:

Approximately \$40-\$50 million per year for the next few years is the current estimate for meeting Environmental Compliance and Restoration requirements. This figure will become better defined as studies are completed and remediation projects are reviewed by Federal, state and local regulators.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

INSPECTOR GENERAL

FISCAL YEAR 1995 ESTIMATES

prevention initiatives. This budget level recognizes the fiscal constraints facing the Agency and the need At the requested The NASA Office of Inspector General (OIG) budget request of \$16 million for FY 1995 is based primarily on related cost of the 210 FTEs represents approximately 92% of the total OIG budget request. This is the level the OIG will: provide assistance and work cooperatively with Agency management as it carries out assistance in the audit of the Agency's financial statement as required by the Chief Financial Officers 210 Full Time Equivalents (FTEs), the same staffing level as authorized in FY 1994. The personnel and (CFO) Act; and concentrate investigative resources on procurement fraud matters including emphasis on NASA's programs and operations; maintain a balanced audit program which includes providing technical minimal staffing level that allows the OIG to effectively perform its legislated mission. for the OIG to provide quality products and services to meet all of our customers' needs.

Throughout this process the OIG is increasing The OIG will continue to selectively concentrate staff resources on those programs and operations identified its cooperation with NASA management while assuring that the OIG's statutory independence is maintained As NASA establishes new priorities and modifies others for its programs and operations within proposed as the most critical and vulnerable to fraud and abuse based on funding levels, program needs, Congressional/Administration concerns and results of OIG research and findings. budget constraints, efforts are underway to reinvent the OIG.

irregularities, unethical and improper conduct, and waste and mismanagement. Investigative matters will be investigations program will remain focused on complex procurement fraud matters, criminal and noncriminal; fraud against the Government by contractor and government employees, product substitution, procurement evaluate programmatic, operational and financial management concerns, problems, and vulnerabilities. cooperatively with NASA management and program managers. Audits will be prioritized and selected to The OIG's mission is to conduct audits and investigations of NASA's programs and operations working approached on a programmatic, priority basis to identify preventive initiatives.

OBJECTIVES AND STATUS

the OIG mission. Recognizing that the identified audit and investigative workload significantly exceeds the available resources, continuous adjustments of priorities will be necessary to ensure balanced coverage of This request represents the resources (FTEs) needed at NASA Headquarters and the Field Offices to fulfill

NASA's programs and operations is maintained, that critical and sensitive matters are promptly investigated and that all OIG customers receive timely, accurate, and complete responses.

Flight, Space Station, Space Science, Aeronautics, Mission to Planet Earth, Space Communications, Financial The OIG audit program sets priorities for internal and external audits to maximize the return on available audit resources. These priorities are established and contained in each major program area plan - Space Management, Management Systems and Facilities, and Procurement. The OIG uses a formal, comprehensive process to identify, review, prioritize and select the audits to be performed.

resources and published in the required annual audit plan. The OIG will continue its implementation of the NASA's prime contractors, their subcontractors and grantees: and (3) addressing issues required by laws and internal regulations. The audits identified from these sources are prioritized and compared to available internal audit universe encompassing NASA's programs and operations and an external universe comprised of The OIG audit workload and assignments are derived: (1) by working closely with management and program managers to determine programmatic concerns and vulnerabilities; (2) selecting audits using a structured program manager concept to obtain greater visibility and awareness of issues related to NASA's major programs which will be included in the audit plan.

Health and Human Services (HHS) OIG audits of NASA contractors and grantees to ensure effective contract and grant execution and administration. NASA was billed approximately \$18 million during FY 1993 for contract procurement) requires direct OIG audit work and oversight of Defense Contract Audit Agency (DCAA) and the mismanagement. Further, program/project change, growth, delay, and termination increase the need for oversight of contractor/subcontractor/grantee cost, schedule and performance effectiveness. NASA's continued reliance on contractors and grantees (about 90% of the Agency's total obligations are for The defined audit workload far exceeds available staff which will require continuous adjustment priorities to provide balanced coverage of programs and operations most vulnerable to abuse and audit services.

of major issues related to NASA's major programs/projects. During FY 1995 the OIG will focus attention and administration, technology transfer, financial management, information resources management, facilities and Space Station, Earth Observing System, Shuttle, The OIG will continue its implementation of the program manager concept to ensure visibility and awareness Spacelab, Cassini, etc. The functional areas to be evaluated will include procurement and contract provide support to program managers on issues relating to: equipment and space science.

financial systems-accounting; procurement and environmental programs; institutional contracting practices: contract management; printing management; contractor-held property; contractor cost reporting; Areas of emphasis will The OIG will continue to monitor and assess NASA's high risk areas, material weaknesses and areas of significant concern to ensure that corrective actions are implemented timely.

financial statement to render an opinion on the statement, its internal control structure and compliance significance increased with the passage of the CFO Act requiring the OIG to audit the Agency's annual Our financial audits will concentrate on accounting controls, information Financial management's allotment and budgetary controls; and financial reporting/general ledger. systems and required performance measurements. with laws and regulations.

expenditure on information technology is providing expected programmatic and financial information needed to These identified vulnerabilities are then evaluated, prioritized actions: completeness of safety and mission quality activities; and the adequacy of agency-wide corrective Agency vulnerabilities are determined by taking into consideration the following: whether program/project management's actions to correct internal control weaknesses reported under the Federal Manager's Financial effectiveness of the audit follow-up system in enabling management to maintain the status of corrective objectives are accomplished in the most cost effective manner; if NASA's more than \$1 billion annual Integrity Act; improvements in financial management systems, practices, controls and information; make sound decisions (NASA is the top ranked civilian agency in information technology spending) and included in our plans for further action, actions addressing environmental concerns.

investigations program managers, like audit, are assessing the allegations and cases on a programmatic basis determine their potential impact and, if serious, opening an investigation; further adversely affecting the and with such cases taking longer to resolve, our flexibility to improve and expand the program is reduced. The OIG investigative workload of both criminal and noncriminal cases continues to exceed the availability allegations represent about 85% of our total investigative caseload.) The FY 1995 investigative staffing level will enable and require OIG management to effectively manage the increasing and complex workload of primarily reactive with emphasis given to the more serious criminal allegations. (Historically, criminal both criminal and civil matters. As the number of complex procurement fraud cases continues to increase, Also, the increasing quantity of investigative allegations received requires a preliminary evaluation to to determine the seriousness and impact to the programs meeting its objectives and the adverse financial timely completion of ongoing cases. We continue to work with management by referring the more routine administrative matters to them for their resolution, keeping the OIG advised of the action taken. The of investigative resources. Continued growth in the investigative program has caused the OIG to be

In summary, the OIG will work collaboratively with Agency management to address issues of joint concern and identify preventive measures, and enhance its capability to assist NASA management to efficiently and to improve the scope. timeliness and thoroughness of it's oversight of NASA programs and operations, effectively achieve program/project goals and objectives.

INSPECTOR GENERAL

FISCAL YEAR 1995 ESTIMATES

BUDGET SUMMARY

		FY 1993	<u>FY 1994</u> (Thousands of dollars)	FY 1995	Page Number
i.	Personnel & related costs	13,292	14,176	14,735	IG 1-5
II.	Travel	779	700	700	IG 1-7
III.	Operation of installation	655	515	565	IG 1-8
	A. Facilities services	()	()	()	
	B. Technical services	(995)	(335)	(355)	
	C. Management & operations	(88)	(180)	(210)	
	Total	14,591	15,391	16,000	
		FY 1993	FY 1994	FY 1995	
Full-	Full-time permanents	204	200	200	
Other	controlled FTE's	10	10	10	
	Total	214	210	210	

BASIS OF FY 1995 FUNDING REQUIREMENT

H.

<u>4</u> dollars)	<u> 14,735</u>			11,356 340 250	11,946			1,382 22 205 505 180 2,354
$\frac{\text{FY 1994}}{\text{(Thousands of dollars)}}$	14,176			10,877 325 250	11,452			1,358 21 495 250 165 2,289
FY 1993	13,292			10,254 308 218	10,780			1,270 20 462 235 157 2,144
	Personnel & related costs	A. Compensation & benefits	1. Compensation	a. Full-time permanentb. Other than full-time permanentc. Overtime & other compensation	Subtotal compensation	2. Benefits	Contributions by category:	Retirement fund & thrift plan. Employee life insurance Employee health insurance Workmen's compensation FICA Medicare Subtotal benefits

FY 1995		275	150	10	435
FY 1994 (Thousands of dollars)		275	150	10	435
<u>FY 1993</u>		238	130	:	368
	B. <u>Supporting costs</u>	1. Transfer of personnel	2. Personnel training	3. OPM services	Subtotal supporting costs

BASIS OF FY 1995 ESTIMATE

In FY 1995 the compensation cost of permanent workyears is estimated to be \$11,356,000. The increase from FY 1994 results from the cost changes in FY 1995 for locality pay, within-grade and career advances of \$479,000.

temporary expenses, and real estate and miscellaneous moving expenses related to change of duty station. The costs associated with transfer of personnel include movement of household goods, subsistence and

The maintenance and expansion of skills through various training and educational activities is essential in are necessary not only for routine training, but also to fund training mandated by the General Accounting Government agencies, usually for a fee. The remainder of the training is provided through non-government carrying out the Inspector General's mission. Part of the training consists of courses offered by other The costs are for tuition, fees, and related costs for training at colleges, universities and technical institutions, and also to cover the costs associated with seminars and workshops. Office (GAO) audit standards and training for Financial Management Audits.

The cost associated with the Office of Personnel Management's (OPM) investigation of new hires at for the investigations of new hires due to a backlog at OPM, however, OPM will conduct these investigations in FY Office of Inspector General are included here (NASA Headquarters only). In FY 1993 NASA OIG conducted 1994 and FY 1995.

BASIS OF FY 1995 FUNDING REQUIREMENT

FY 1995	
FY 1994	(Thousands of dollars)
FY 1993	

700

700

779

Trave1.....

II.

BASIS OF FY 1995 ESTIMATE

Travel funding is required to carry out audit, investigation and management duties. Per diem, airline costs, and workloads have all increased, however, we are maintaining our travel request at the FY 1994 level.

BASIS OF FY 1995 FUNDING REQUIREMENT

III.

FY 1995	265	;	355		;	;	210	210
$rac{ ext{FY} ext{ 1994}}{ ext{(Thousands of dollars)}}$	<u>515</u>	;	335		;	;	180	180
FY 1993	655	;	266		1		88	89
	Operation of installation	A. Facilities services	B. Technical services	C. Management and operations	1. Administravtive communications	2. Printing and reproduction	3. Installation common services	Subtotal management and operations

BASIS OF FY 1995 ESTIMATE

Operation of Installation provides a broad range of services and equipment in support of the Inspector General's activities.

upgrading the EDP equipment, replacing equipment that has become outdated or unserviceable, and the initial The technical services estimate provides for all OIG equipment, including the lease, purchase, maintenance, common services item such as office space, communications, some supplies, and printing and reproduction at no charge to the Office of Inspector General. The funding for technical services will cover the cost of programming and operations services of electronic data processing (EDP) equipment. The NASA provides a costs of installing a new nationwide network.

The increase will primarily allow for Included in the installation common services estimate are the General Services Administration (GSA) cars, miscellaneous expenses, contracts, and supplies not provided by NASA. additional supply costs and miscellaneous small contracts.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

OFFICE OF INSPECTOR GENERAL

WORKLOAD

FY 1995	210	473	877	472	7.5	*65	63	77
FY 1994	210	416	434	447	7.2	+65	62	7.5
FY 1993	214	330 539	453	416	7.4	69	7.1	7.2
	Office Staff Ceilings Full-Time Permanents	Investigations Cases pending beginning of year	Closed during year	Cases pending end of year	<u>Audits</u> Audits pending beginning of year	Opened during year	Closed during year	Audits pending end of year

*Instituting emphasis on programmatic audits

PROPOSED APPROPRIATION LANGUAGE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

OFFICE OF INSPECTOR GENERAL

For necessary expenses of the Office of the Inspector General in carrying out the provisions of the Inspector General Act of 1978, as amended, [\$15,391,000] \$16,000,000, to remain available until September 30, 1996. (Departments of Veterans Affairs and Housing and Urban Development, and Independent Agencies Appropriations Act, 1994.)