Домашнее задание 2. Курс «Алгебра». Ответы. БПИ-225. Вариант 35

1. •
$$z^3 = 4^3 \cdot (\cos(-\pi) + i \cdot \sin(-\pi)) = -64 = -64$$
;

•
$$\sqrt[6]{z} = \left\{ \sqrt[3]{2} \cdot \left(\cos\left(\frac{\pi k}{3} - \frac{\pi}{18}\right) + i \cdot \sin\left(\frac{\pi k}{3} - \frac{\pi}{18}\right) \right) \mid k \in [0, 6) \right\};$$

•
$$\sqrt[6]{z^3} = \left\{ 2 \cdot \left(\cos \left(\frac{\pi k}{3} - \frac{\pi}{6} \right) + i \cdot \sin \left(\frac{\pi k}{3} - \frac{\pi}{6} \right) \right) \mid k \in [0, 6) \right\};$$

•
$$arg\left(\frac{3}{2}+\frac{3\sqrt{3}i}{2}\right)=\frac{\pi}{3};$$

- k = 4;
- Искомое значение = $2 \cdot \left(\cos\left(\frac{7\pi}{6}\right) + i \cdot \sin\left(\frac{7\pi}{6}\right)\right) = -\sqrt{3} i = 2e^{-\frac{5i\pi}{6}}$
- 2. Matrix([[11-12*I],[8-7*I]])

3. Над
$$\mathbb{C}$$
: $-4*(x+1)(x+5)(x-3-2i)(x-3+2i)(x+2-3i)(x+2+3i)$, Над \mathbb{R} : $-4*(x+1)(x+5)(x^2-6x+13)(x^2+4x+13)$

4. Все числа z: -27+43i, 19-51i, -23+3i

5. •
$$z_1 = 2 \cdot \left(\cos\left(\frac{5\pi}{6}\right) + i \cdot \sin\left(\frac{5\pi}{6}\right)\right);$$

•
$$z_2 = 2 \cdot \left(\cos\left(\frac{7\pi}{6}\right) + i \cdot \sin\left(\frac{7\pi}{6}\right)\right);$$

- угол между радиус-векторами = $\frac{\pi}{3}$;
- *n* = 6;

•
$$z = -64 = 2^6 \cdot (\cos(\pi) + i \cdot \sin(\pi)) = -64$$

- 6. 1) Область внутри окружности с центром в точке (0; -3) радиуса 2
 - 2) Область, ограниченная двумя прямыми, пересекающимися в точке (3; -6) под углом $=\pm\frac{2\pi}{3}$

7. •
$$\Delta = 3$$
;

•
$$\Delta_1 = 6\alpha + 2\beta + 3\gamma$$
;

•
$$\Delta_2 = -33\alpha - 14\beta - 18\gamma$$
;

•
$$\Delta_3 = 51\alpha + 21\beta + 27\gamma$$
;

•
$$A \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2\alpha + \frac{2\beta}{3} + \gamma \\ 0 & 1 & 0 & -11\alpha - \frac{14\beta}{3} - 6\gamma \\ 0 & 0 & 1 & 17\alpha + 7\beta + 9\gamma \end{pmatrix};$$

•
$$x = \begin{pmatrix} 2\alpha + \frac{2\beta}{3} + \gamma \\ -11\alpha - \frac{14\beta}{3} - 6\gamma \\ 17\alpha + 7\beta + 9\gamma \end{pmatrix}$$

$$A_0 = (25, 4, -15)$$

$$L: \frac{x+2}{-8} = \frac{y-15}{-16} = \frac{z+15}{0}$$
$$A_0 = (-18, -2, -37)$$

10. Возможная запись канонического уравнения прямой 1:

$$\frac{x+18}{4} = \frac{y+1}{2} = \frac{15-z}{9}$$

Возможная запись канонического уравнения прямой 2:

$$\frac{x+34}{4} = \frac{y+9}{2} = \frac{51-z}{9}$$