F1 考虑如下应用环境,要求webserver按等级保护3级建立安全机制,如何评估安全体系?

F2 研究以下问题if该web服务基于 lamp实现:

- SEC 1 如果该LAMP定级为等级保护第三级,其数据安全、 应用安全技术要求分别有哪些类、多少检查点?描述其 具体细则。
- SEC 2 比较分析可对数据安全进行评估的主流扫描工具或系统,用表格对比其适用、用法、优点、局限性
- Sec3 比较分析可对web服务可用性进行评估的主流扫描 工具或系统,用表格对比其适用、用法、优点、局限性
- Sec 4 用sec2、sec3优选出的工具对sec1典型的lamp网站进行数据安全和服务安全等级保护3级评估,具体描述实施方法、流程、数据采集、分析及验证实例。

恶意代码防范管理

系统安全管理

介质管理

设备管理

资产管理

环境管理

网络安全管理

运行维护和监控管理

系统运维管理(四级)

密码管理 变更管理

系统备案

备份和恢复管理

安全事件处置

应急计划管理

- ♦ 基本要求
 - 技术要求
 - 管理要求
- ◆ 要求标注
 - 业务信息安全类要求(标记为S类)
 - 系统服务保证类要求(标记为A类)
 - 通用安全保护类要求(标记为G类)

三类要求之间的关系

安全要求

- ◆ 定级指南要求按照"业务信息"和"系统服务"的需求确定 整个系统的安全保护等级
- ◆ 定级过程反映了信息系统的保护要求

安全等级	信息系统保护要求的组合						
第一级	S1A1G1						
第二级	S1A2G2, S2A2G2, S2A1G2						
第三级	S1A3G3, S2A3G3, S3A3G3, S3A2G3, S3A1G3						
第四级	S1A4G4, S2A4G4, S3A4G4, S4A4G4, S4A3G4, S4A2G4, S4A1G4						

不同级别系统控制点的差异

安全要求类	层面	一级	二级	三级	四级
技术要求	物理安全	7	10	10	10
	网络安全	3	6	7	7
	主机安全	4	6	7	9
	应用安全	4	7	9	11
	数据安全及备 份恢复	2	3	3	3
管理要求	安全管理制度	2	3	3	3
	安全管理机构	4	5	5	5
	人员安全管理	4	5	5	5
	系统建设管理	9	9	11	11
	系统运维管理	9	12	13	13
合计	1	48	66	73	77
级差	1	1	18	7	4

控制点	一级	二级	三级	四级
结构安全	•	W.	*	*
访问控制	*	*	*	*
安全审计				
边界完整性检查		*	*	*
入侵防范		*	**	*
恶意代码防范			*	**
网络设备防护	*	*	.*	.*
合计	3	6	7	7

2020/5/27

- 一级网络安全要求:主要提供网络安全运行的基本保障,包括网络结构能够基本满足业务运行需要,网络边界处对进出的数据包头进行基本过滤等访问控制措施。
- ◆ 二级网络安全要求:不仅要满足网络安全运行的基本保障,同时还要考虑网络处理能力要满足业务极限时的需要。对网络边界的访问控制粒度进一步增强。同时,加强了网络边界的防护,增加了安全审计、边界完整性检查、入侵防范等控制点。对网络设备的防护不仅局限于简单的身份鉴别,同时对标识和鉴别信息都有了相应的要求。
- 三级网络安全要求:对网络处理能力增加了"优先级"考虑,保证重要主机能够在网络拥堵时仍能够正常运行;网络边界的访问控制扩展到应用层,网络边界的其他防护措施进一步增强,不仅能够被动的"防",还应能够主动发出一些动作,如报警、阻断等。网络设备的防护手段要求两种身份鉴别技术综合使用。
- 四级网络安全要求:对网络边界的访问控制做出了更为严格的要求,禁止远程拨号访问,不允许数据带通用协议通过;边界的其他防护措施也加强了要求。网络安全审计着眼于全局,做到集中审计分析,以便得到更多的综合信息。网络设备的防护,在身份鉴别手段上除要求两种技术外,其中一种鉴别技术必须是不可伪造的,进一步加强了对网络设备的防护。