RTDT Laboratories AG

Aerosense

Aero-structural monitoring and diagnostics

Very difficult to measure the full flow field in front of wind turbines – in high resolution and in real-time.

About

Digital doctor for wind turbines

Aerosense [®] Multi-sensor node

Holistic Aero-Structural Health Diagnostics Software

Blade data capture with Aerosense (patent filed)

Flexible 3D printed enclosure with embedded microelectronics sensors, installed in minutes

Measures aerodynamic pressure, vibrations, strain, acoustics, and temperature in a single node

Wireless & self-sufficient onboard power (solar-powered)

Proprietary models for rotor diagnostics and control

Aerosense on wind turbines for aerostructural diagnostics

Physics Aero-stru dynamics

Aero-structural

Airfoil aerodynamics

Aerodynamic Forces on an airfoil

Turbulent wind field in front of the rotor

Turbulent wind field in a wind farm

The Challenge

Aerosense

Overview of the physical process

The challenge

Data

Turbulent wind fields

Vmean = 6, 12, 20 m/s Ti = 2, 10, 25%

12 realizations for each of the above combinations

Each wind field is made of 21x21 grid points

Data

Aerosens output

$$Acc_x(x,t)$$

 $Acc_y(x,t)$
 $M_x(x,t)$
 $M_y(x,t)$

$$F_N(x,t)$$

 $F_T(x,t)$

9 locations along the span of each of the 3 blades

Data

The Benefit

Why solve this challenge?

Consequences of solving this problem

More effective real-time control of wind turbines = higher energy production

Lower uncertainty in estimating remaining useful life

More accurate load cases = better turbine design → lower CAPEX

Lower uncertainty in estimating the probability of failure = better insurance premiums

Thank You!

Stefano-Franscini-Platz 5, IBK, HIL E 33.3 8093 Zurich, Switzerland

Proprietary & Confidential