pstat274_hw02_aoxu

AO XU

2022-10-10

Problem 1

E is correct, data set I and II exhibit statistically significant autocorrelations since $k \neq 0$ and $\rho > 1$.

Problem 2

(a)

It's stationary but not invertible.

It follows MA(2) Module, so it's stationary.

From R, we could get B_1 = 1, B_2 = -3; Since B_1 = 1 lies on the unit circle, it is not invertible.

polyroot(c(1,-2/3,-1/3))

[1] 1+0i -3+0i

(b)

It's not stationary but invertible.

It's AR(2) module, and it could converts to $(1 - \frac{2B}{3} - \frac{B^2}{3}) X_t = Z_t$. It's invertible since we could write it as the form of " $Z_t = \phi B X_t$ ".

From R, we could get $B_1 = 1$, $B_2 = -3$; Since $B_1 = 1$ lies on the unit circle, it is not stationary.

polyroot(c(1,-2/3,-1/3))

[1] 1+0i -3+0i

Problem 3

(a)

MA(3), θ_1 = 2, θ_2 = 0.5, θ_3 = -0.1

1. The mathematical equation for MA(3) model: $X_t = Z_t + 2Z_{t-1} + 0.5Z_{t-2} - 0.1Z_{t-3}$

2. By using the formula " $\rho_{\chi}(k)=\frac{\theta_{k}+\theta_{1}\theta_{k}+\#...+\theta_{q}-\ell k}{1+\theta_{1}^{2}+...+\theta_{q}^{2}}$), k=1,2,...,q, $\rho_{\chi}(k)=0,$ k>q", we get

$$\rho(1) = \frac{\theta_1 + \theta_1 \theta_2 + \theta_2 \theta_3}{1 + \theta_1^2 + \theta_2^2 + \theta_3^2} = \frac{2 + 2 * 0.5 + 0.5(-0.1)}{1 + 2^2 + 0.5^2 + (-0.1)^2} = 0.56083650$$

$$\rho(2) = \frac{\theta_2 + \theta_1 \theta_3}{1 + \theta_1^2 + \theta_2^2 + \theta_3^2} = \frac{0.5 + 2(-0.1)}{1 + 2^2 + 0.5^2 + (-0.1)^2} = 0.05703422$$

$$\rho(3) = \frac{thet_{a3}}{1 + \theta_1^2 + \theta_2^2 + \theta_3^2} = \frac{-0.1}{1 + 2^2 + 0.5^2 + (-0.1)^2} = -0.01901141$$

$$\rho(4) = 0$$

ARMAacf(ma = c(2, 0.5, -0.1), lag.max = 4, pacf = FALSE)

(b)

AR(1)
$$\phi_1 = -0.5$$

1. the mathematical equation for AR(1) model: $X_t = -0.5X_{t-1} + Z_t$

2.

$$\rho(1) = \phi_1 = -0.5$$

$$\rho(2) = {\phi_1}^2 = (-0.5)^2 = 0.25$$

$$\rho(3) = \phi_1^3 = (-0.5)^3 = -0.125$$

$$\rho(4) = \phi_1^4 = (-0.5)^4 = 0.0625$$

$$ARMAacf(ar = -0.5, lag.max = 4, pacf = FALSE)$$

Problem 4

Since $X_t = 3 + Y + Z$, Y is a mean zero random variable with variance σ_v^2 , independent of the white noise Z_t , then we could get

$$E(X_t) = E(3 + Y + Z_t) = 3 + E(Y) + E(Z_t) = 3 + 0 + 0 = 3$$

$$\mathsf{Var}(X_t) = \mathsf{Var}(3 + \mathsf{Y} + Z_t) = 0 + \mathsf{Var}(\mathsf{Y}) + \mathsf{Var}(Z_t) + 2\mathsf{Cov}(3,\mathsf{Y}) + 2\mathsf{Cov}(3,Z_t) + 2\mathsf{Cov}(\mathsf{Y},Z_t) = \sigma_Y^2 + \sigma_Z^2$$

$$\gamma(X_t, X_{t+k}) = \mathsf{Cov}(X_t, X_{t+k}) = \mathsf{E}(X_t X_{t+k}) - \mathsf{E}(X_t) \mathsf{E}(X_{t+k}) = \mathsf{E}(9 + 3\mathsf{Y} + 3\mathsf{Z}_{t+k} + 3\mathsf{Y} + \mathsf{Y}^2 +$$

When k = 0,
$$Cov(X_t, X_{t+k}) = E(X_t^2) - E(X_t)^2 = Var(X_t) = \sigma_Y^2 + \sigma_Z^2$$

$$\gamma_x(k) = \begin{cases} \sigma_Y^2 & k \neq 0 \\ \sigma_Y^2 + \sigma_Z^2 & k = 0 \end{cases}$$

Therefore, X_t is stationary since μ is constant and $\sigma_{\chi}(k)$ doesn't depend on t.

Autocovariance function:
$$\gamma(X_t, X_{t+k}) = \rho_x(k) = \begin{cases} \sigma_Y^2 + \sigma_Z^2 & k \neq 0 \\ \sigma_Y^2 & k = 0 \end{cases}$$

Autocorrelation function:

$$\rho_{x}(t, t+k) = Cov(X_{t}, X_{t+k}) / \sqrt{Var(X_{t})Var(X_{t+k})} = \begin{cases} \sigma_{Y}^{2} / (\sigma_{Y}^{2} + \sigma_{Z}^{2}) & k \neq 0 \\ (\sigma_{Y}^{2} + \sigma_{Z}^{2}) / (\sigma_{Y}^{2} + \sigma_{Z}^{2}) = 1 & k = 0 \end{cases}$$

Problem 5

$$X_t = Z_t + 2Z_{t-1} - 8Z_{t-2}$$

(a)

MA(2), q = 2

(b)

The model is stationary but not invertible.

Since MA(2) is always stationary, the model in the problem is stationary.

$$\theta(z) = 1 + \theta_1 z + \theta_2 z^2$$

Since both roots are inside of the unit circle, the model is not invertible.

polyroot(c(1,2,-8))

(c)

$$\rho_x(2) = \frac{\theta_2}{1+\theta_1^2+\theta_2^2} = \frac{-8}{1+2^2+(-8)^2} = -\frac{8}{69}$$

xt <- arima.sim(list(ma=c(1,2,-8)),n=300)
acf(xt, main="ACF")
acf(xt, main="ACF")\$acf[3]</pre>

ACF

[1] -0.09069785

-8/69

[1] -0.115942

Since -0.1424422 is nearly the same as -0.115942, then my sample estimate of $\rho X(2)$ are nearly the same as its true value found by calculations.

xt <- arima.sim(list(ma=c(1,2,-8)),n=10000)
acf(xt, main="ACF")
acf(xt, main="ACF")\$acf[3]</pre>

ACF

[1] -0.0708146

G₁

 $X_t = Z_t + \theta Z_{t-2}$

(a)

 $\mathsf{E}(X_{t}X_{t+k}) = \mathsf{E}((Z_{t}+\theta)(Z_{t+k}Z_{t-2+k})) = \mathsf{E}(Z_{t}Z_{t+k}) + \theta \mathsf{E}(Z_{t-2}Z_{t+k-2}) + \theta \mathsf{E}(Z_{t-2}Z_{t+k}) + \theta^{2} \mathsf{E}(Z_{t-2}Z_{t+k-2})$

 $\gamma_x(t,t+k) = \mathsf{E}(X_tX_{t+k}) - \mathsf{E}(X_t)\mathsf{E}(X_{t+k});$ When $\mathsf{k}=0$, $\gamma_x(t,t+k) = 1 + \theta^2;$ When $\mathsf{k}=\pm 2,$ $\gamma_x(t,t+k) = \theta;$ When k is other numbers, $\gamma_x(t,t+k) = 0.$

Therefore, $\rho_x(k) = 1$ when k = 0; $\rho_x(k) = \frac{\theta}{1+\theta^2}$ when $k = \pm 2$; $\rho_x(k) = 0$ when k is other numbers.

When θ = 0.8,

Autocovariance function: $\gamma_x(t, t+k) = 1.64$ when k = 0; $\gamma_x(t, t+k) = 0.8$ when k = ± 2 ; $\gamma_x(t, t+k) = 0$ when k is other numbers.

Autocorrelation function: $\rho_x(k) = 1$ when k = 0; $\rho_x(k) = \frac{20}{41}$ when $k = \pm 2$; $\rho_x(k) = 0$ when k is other numbers.

(b)

When θ = 0.8,

$$\begin{aligned} & \operatorname{Var}(\frac{X_1 + X_2 + X_3 + X_4}{4}) = \frac{Var(X_1 + X_2 + X_3 + X_4)}{16} = \frac{1}{16}((Var(X_1) + Var(X_2) + Var(X_3) + Var(X_4) + 2(\operatorname{Cov}(X_1X_2) + \operatorname{Cov}(X_1X_2) + \operatorname{Cov$$

(c)

When $\theta = -0.8$,

$$Var(\frac{X_1+X_2+X_3+X_4}{4}) = \frac{1}{16}(4(1+\theta^2)+4\theta) = \frac{1}{16}(4^*1.64-3.2) = 0.21$$

The variance in (c) is smaller than in (b) and closer to 0.

G2

Example 1: $X_t = 3X_{t-1} + 3X_{t-2} + Z_t$

xt <- arima.sim(list(ma=c(1,3,3)),n=100)
acf(xt, main="ACF")</pre>

ACF

plot(xt)

Example 2: $X_t = 5X_{t-1} - 8X_{t-2} + Z_t$

xt <- arima.sim(list(ma=c(1,5,-8)),n=100)
acf(xt, main="ACF")</pre>

2022/10/11 01:23 pstat274_hw02_aoxu

plot(xt)

G3

$$\sum_{E(e^{i=1})} a_i x_i \\ E(e^{i=1}) = \mathsf{E}(\exp(a_1 (Z_1 + \theta Z_0) + a_2 (Z_2 + \theta Z_1) + \ldots + a_n (Z_n + \theta Z_{n-1}))) = \mathsf{E}(\exp(a_1 \theta Z_0)) \mathsf{E}(\exp(a_1 + a_2 \theta) Z_1)) \ldots \mathsf{E}(\exp(a_n Z_n)) \\ = \mathsf{E}(\exp(a_1 \theta Z_0)) \mathsf{E}(\exp(a_1 \theta Z_0))$$

We find that the MGF of $x_1, x_2, ..., x_n$ depends on $a_1, a_2, ..., a_n$ and θ but not t, so X_t is strictly stationary.

$$E(X_t) = E(Z_t + \theta Z_{t-1}) = E(Z_t) + E(\theta Z_{t-1}) = 0 + \theta(0) = 0;$$

$$\mathsf{Cov}(X_{t+h}, X_t) = \mathsf{Cov}(Z_{t+h} + \theta Z_{t+h-1}, Z_t + \theta Z_{t-1}) = \mathsf{Cov}(Z_{t+h}, Z_t) + \theta \mathsf{Cov}(Z_{t+h}, Z_{t-1}) + \theta \mathsf{Cov}(Z_{t+h-1}, Z_t) + \theta^2 \mathsf{Cov}(Z_{t+h-1}, Z_{t-1}) + \theta \mathsf{E}(Z_{t+h}, Z_{t-1}) + \theta \mathsf{E}(Z_{t+h-1}, Z_{t-1}) + \theta \mathsf{E}(Z_{t+h-1}, Z_{t-1}) + \theta \mathsf{E}(Z_{t+h-1}, Z_{t-1})$$

When h = 0, E(
$$Z_t^2$$
) = Var(Z_t) - $E(Z_t)^2$ = σ_z^2 , then Cov(X_{t+h}, X_t) = $\sigma_z^2 + \theta^2 \sigma_z^2$;

When
$$h = \pm 1$$
, $Cov(X_{t+h}, X_t) = \theta$;

When h is other numbers, $Cov(X_{t+h}, X_t) = 0$;

Then, we could get $\gamma_x(t+h,h) = \text{Cov}(X_{t+h},X_t) =$

$$\begin{cases} \sigma_Z^2 + \theta^2 \sigma_Z^2 & h = 0\\ \theta & h = \pm 1\\ 0 & othernumbers \end{cases}$$

Since μ is independent of t and $\gamma_x(t+h,h)$ is also independent of t, then X_t is weakly stationary.

Therefore, X_t is s both weakly and strictly stationary.