Appl. No.: 09/923,242

Amdt. dated April 4, 2008

Reply to Office Action of October 17, 2007

Amendments to the Claims:

1. (Previously Amended) A method of DC compensation for a direct conversion

radio receiver having an effective filter characteristic representing its frequency response,

comprising:

applying an inverse filter characteristic to a received modulated signal over a

predetermined number of samples to compensate for the effect of the effective filter

characteristic;

determining the modulation extremes of the filtered signal by determining minimum and

maximum signal amplitudes over the predetermined number of samples; and

determining a DC offset for the signal from the modulation extremes; and processing the

signal to compensate for the offset.

2. (Original) A method according to claim 1, comprising determining the DC offset

as substantially the mean of the signal amplitude at the modulation extremes.

3. (Original) A method according to claim 1, wherein the step of processing the

signal comprises subtracting the offset from the signal.

4. (Original) A method according to claim 1, wherein the step of processing the

signal comprises subtracting a weighted exponential function from the signal.

5. (Original) A method according to claim 4, wherein the weighting of the

exponential function comprises the determined DC offset.

2 of 8

Appl. No.: 09/923,242 Amdt. dated April 4, 2008

Reply to Office Action of October 17, 2007

- 6. (Canceled)
- 7. (Canceled)
- 8. (Original) A method according to claim 1, wherein the signal comprises an inphase component of a modulated signal.
- 9. (Original) A method according to claim 1, wherein the signal comprises a quadrature component Q of a modulated signal.
- 10. (Original) A method according to claim 1, wherein the signal is GMSK modulated.
- 11. (Currently Amended) A computer program stored in a computer readable medium executable by a computer which, when run on a processor, carries out the steps of claim 1.
- 12. (Previously Amended) A direct conversion receiver having an effective filter characteristic representing its frequency response comprising:

inverse filter means for applying an inverse filter characteristic to a received modulated signal over a predetermined number of samples to compensate for the effective filter characteristic;

means for determining the modulation extremes of the filtered signal by determining minimum and maximum signal amplitudes over the predetermined number of samples;

means for determining a DC offset for the signal from the modulation extremes; and 3 of 8

Appl. No.: 09/923,242 Amdt. dated April 4, 2008

Reply to Office Action of October 17, 2007

means for processing the signal to compensate for the offset.

13. (Canceled)

- 14. (Previously Amended) A program to be executed by a digital signal processor in a direct conversion receiver having an effective filter characteristic representing its frequency response, the receiver comprising an inverse filter circuit for applying an inverse filter characteristic to a received modulated signal over a predetermined number of samples_to compensate for the effect of the effective filter characteristic, a mixer circuit for providing quadrature related signals from the signal, a DC cancellation circuit for cancelling the DC component in the quadrature related signals and a digital signal processor for removing a residual DC component from the signals, said program being configured to cause the digital signal processor to determine the modulation extremes of the signals by determining minimum and maximum signal amplitudes over the predetermined number of samples, to calculate a DC offset for the signals from the modulation extremes and to process the signals to compensate for the DC offset.
- 15. (Previously Amended) A direct conversion radio receiver having an effective filter characteristic representing its frequency response including a digital signal processor for processing a received modulated signal, the digital signal processor being configured to apply an inverse filter characteristic over a predetermined number of samples to compensate for the effect of the effective filter characteristic, determine the modulation extremes of the filtered signal by determining minimum and maximum signal amplitudes over the predetermined number of samples, determine a DC offset for the signal from the modulation extremes and to process the signal to compensate for the offset.
- 16. (Previously Presented) A method according to claim 1, wherein the effective filter characteristic of the radio receiver is a high pass filter characteristic.

Appl. No.: 09/923,242

Amdt. dated April 4, 2008 Reply to Office Action of October 17, 2007

- 17. (Canceled)
- 18. (Canceled)
- 19. (Canceled)
- 20. (Canceled)