Zadanie 12. (0-1)

Dla ciągu arytmetycznego (a_n) , określonego dla $n \ge 1$, jest spełniony warunek $a_4 + a_5 + a_6 = 12$. Wtedy

A.
$$a_5 = 4$$

C.
$$a_5 = 6$$

D.
$$a_5 = 5$$

Zadanie 13. (0-1)

Dany jest ciąg geometryczny (a_n) , określony dla $n \ge 1$, w którym $a_1 = \sqrt{2}$, $a_2 = 2\sqrt{2}$, $a_{\scriptscriptstyle 3} = 4\sqrt{2}$. Wzór na n-tywyraz tego ciągu ma postać

$$\mathbf{A.} \quad a_n = \left(\sqrt{2}\right)^n$$

B.
$$a_n = \frac{2^n}{\sqrt{2}}$$

$$\mathbf{C.} \quad a_n = \left(\frac{\sqrt{2}}{2}\right)^n$$

$$\mathbf{D.} \quad a_n = \frac{\left(\sqrt{2}\right)^n}{2}$$

Zadanie 14. (0-1)

Przyprostokatna LM trójkata prostokatnego KLM ma długość 3, a przeciwprostokatna KL ma długość 8 (zobacz rysunek).

Wtedy miara α kata ostrego *LKM* tego trójkata spełnia warunek

A.
$$27^{\circ} < \alpha \le 30^{\circ}$$

B.
$$24^{\circ} < \alpha \le 27^{\circ}$$

B.
$$24^{\circ} < \alpha \le 27^{\circ}$$
 C. $21^{\circ} < \alpha \le 24^{\circ}$ **D.** $18^{\circ} < \alpha \le 21^{\circ}$

D.
$$18^{\circ} < \alpha \le 21^{\circ}$$

Zadanie 15. (0–1)

Dany jest trójkąt o bokach długości: $2\sqrt{5}$, $3\sqrt{5}$, $4\sqrt{5}$. Trójkątem podobnym do tego trójkąta jest trójkat, którego boki mają długości

C.
$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{4}$

B. 20, 45, 80 **C.**
$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{4}$ **D.** $\sqrt{5}$, $2\sqrt{5}$, $3\sqrt{5}$