COMP1002
Computational Thinking and Problem 9

Computational Thinking and Problem Solving

Lecture 9 Problem Solving III

Lecture 9

- > Graph
 - Modelling
 - Implementation
 - > Adjacency List
 - > Adjacency Matrix
- > A Glimpse of the Shortest Path Algorithm
- > Final Tips on Problem Solving

Graph

- > From the last lecture, we know *graphs* are so common for data modeling
 - How can we represent a graph in computers?
 - There are two parts
 - > Nodes: can be represented as a list or a set
 - > Edges: can be represented as a list or a set
 - For each edge, we would need a pair or a tuple expressing the two nodes
 - Some graphs need more information on the edges
 - > Weight of an edge
 - > Direction of an edge

Graph

- > For example
 - Nodes
 - > {a,b,c,d,e,f} (6 nodes)
 - Edges
 - > {ab, ac, af, bc, bd, cd, cf, de, ef} (9 edges)
 - With weights on edges:
 - > {ab=7, ac=9, af=14, bc=10, bd=15, cd=11, cf=2, de=6, ef=9}
 - This graph is undirected (no direction on edges)

Graph

- > We need to build the data model for the graph before we can use the computer to process it
 - It is easy to represent the nodes, but perhaps harder with the edges
 - We may represent nodes and edges separately as two different groups
 - It is more natural to represent edges as linked to nodes. There are two common representations:
 - > Adjacency list
 - > Adjacency matrix
 - Note that an edge in an undirected graph is equivalent to a pair of edges in a directed graph

Graph Representation

- > Graph Representation
 - Simply G = (V, E)
 - > Set of nodes
 - $V = \{a,b,c,d,e,f\}$
 - > Set of edges
 - $E = \{ab, ac, af, bc, bd, cd, cf, de, ef\}$
 - $E = \{(a,b), (a,c), (a,f), (b,c), (b,d), (c,d), (c,f), (d,e), (e,f)\}$
 - > Edges storing the weights
 - $E = \{ab=7, ac=9, af=14, bc=10, bd=15, cd=11, cf=2, de=6, ef=9\}$
 - $E = \{(a,b,7), (a,c,9), (a,f,14), (b,c,10), (b,d,15), (c,d,11), (c,f,2), (d,e,6), (e,f,9)\}$
 - > Should we try to store nodes and edges together instead of separately?

- > For each node, put together the edges for each node
- > An adjacency list is a list for each node, showing the neighbours of that node, i.e., edges
- > Example
 - Nodes, a set
 - > {a,b,c,d,e,f}
 - Edges in 6 adjacency lists: D(node), each being a set

$$D(a) = \{b,c,f\}$$

$$D(b) = \{a,c,d\}$$

$$D(c) = \{a,b,d,f\}$$

$$D(d) = \{b,c,e\}$$

$$D(e) = \{d,f\}$$

$$D(f) = \{a,c,e\}$$

- > For edges with weights, an adjacency list is a list for each node, showing the edges and the weights
- > Example
 - Nodes, a set
 - > {a,b,c,d,e,f}
 - Edges in adjacency lists: D(node), each being a set of tuples

```
D(a) = \{(b,7),(c,9),(f,14)\}
D(b) = \{(a,7),(c,10),(d,15)\}
D(c) = \{(a,9),(b,10),(d,11),(f,2)\}
D(d) = \{(b,15),(c,11),(e,6)\}
D(e) = \{(d,6),(f,9)\}
D(f) = \{(a,14),(c,2),(e,9)\}
```


- > For a directed graph (graph with direction on edges), an adjacency list is a list for each node, showing the next reachable node and perhaps also the weights
- > Example
 - Nodes, a set
 - > {a,b,c,d,e,f}
 - Edges in adjacency lists: D(node), each being a set

$$D(a) = \{b,c,f\}$$

$$D(b) = \{c,d\}$$

$$D(c) = \{a,b,d\}$$

$$D(d) = \{b,e\}$$

$$D(e) = \{f\}$$

$$D(f) = \{a,c,e\}$$

- > Modeling in Python
 - Nodes can be represented as a list
 - Edges can be represented as a list of lists
 - Example

- > Modeling in Python
 - Nodes can be represented as a list
 - Edges with weights can be represented as a list of lists of tuples
 - Example
 - > Nodes as a list

```
- N = ["a", "b", "c", "d", "e", "f"]
```

> Edges as a list of lists of tuples

- > For each pair of nodes, maintain a matrix to show the neighborhood between the pair
 - An adjacency matrix has each node in a row (source) and in a column (destination)
 - 1 / True means an edge
 - 0 / False means no edge
- > Example
 - Matrix D[6,6] for a graph with 6 nodes

	a	b	C	d	е	f
a	0	1	1	0	0	1
b	1	0	1	1	0	0
С	1	1	0	1	0	1
d	0	1	1	0	1	0
е	0	0	0	1	0	1
f	1	0	1	0	1	0

- An adjacency matrix for a graph with weight have matrix elements showing neighborhood and weight
- This is often called a distance matrix when the weight is the distance
- > Example
 - Matrix D[6,6] for a graph with 6 nodes

	a	b	C	d	е	f
a	0	7	9	∞	∞	14
b	7	0	10	15	∞	∞
С	9	10	0	11	∞	2
d	∞	15	11	0	6	∞
е	∞	∞	∞	6	0	9
f	14	∞	2	∞	9	0

- A distance matrix for a directed graph with weight have matrix elements showing the weight/distance from node in row i to node in column j
- > Example
 - Matrix D[6,6] for a graph with 6 nodes

	a	b	C	d	е	f
a	0	7	9	∞	∞	14
b	∞	0	10	15	∞	∞
С	8	14	0	11	∞	∞
d	∞	11	∞	0	6	∞
е	∞	∞	∞	∞	0	9
f	12	∞	2	∞	9	0

- > The 2-D matrix is normally represented as a list of lists as a logical 2-D array
 - Example

```
> Nodes as a list:
```

```
N = ["a", "b", "c", "d", "e", "f"]
```

Matrix as a list of lists:

```
D = [ [0, 1, 1, 0, 0, 1], \\ [1, 0, 1, 1, 0, 0], \\ [1, 1, 0, 1, 0, 1], \\ [0, 1, 1, 0, 1, 0], \\ [0, 0, 0, 1, 0, 1], \\ [1, 0, 1, 0, 1, 0] ]
```

- > The 2-D matrix can also be represented as a dictionary of dictionary
- > Example

 - Matrix as a dictionary of dictionary

Shortest Path

- A highly common application on a graph is to find the shortest path from one node to another
 - The starting node is often called source node in graph theory
 - The target node is often called *destination node*
 - The graphs may contain weights, or without
 - > We call them weighted graphs and unweighted graphs respectively
 - The graphs may contain edges with or without directions
 - We call these two types directed graphs and undirected graphs respectively

Shortest Path

- > Can you find the shortest path from a to e?
 - Algorithm 1: Layman approach to find all possible paths first

Mission impossible for a large graph!

	$a \rightarrow t \rightarrow e$	23
	$a \rightarrow c \rightarrow f \rightarrow e$	20
	$a \rightarrow c \rightarrow d \rightarrow e$	26
•	$a \to b \to c \to d \to e$	34
•	$a \rightarrow b \rightarrow d \rightarrow e$	28
•	$a \to c \to b \to d \to e$	40
•	Any more?	
•	$a \to b \to c \to f \to e$	28
•	$a \to b \to d \to c \to f \to e$	44
	Yet more?	
	$a \to f \to c \to d \to e$	33
	$a \rightarrow f \rightarrow c \rightarrow b \rightarrow d \rightarrow e$	47

Shortest Path

- > Can you find the shortest path from a to e?
 - This is a directed graph
 - There are fewer possible paths than previous one

Still mission impossible for a large graph!

Improvement

- > There are so many possible paths
- > Algorithm 2: search for paths starting with fewer steps

•
$$a \rightarrow f \rightarrow e$$

$$a \rightarrow b \rightarrow d \rightarrow e$$

$$a \rightarrow c \rightarrow d \rightarrow e$$

$$\bullet \quad a \to c \to f \to e$$

Stop here?

$$\bullet \quad a \to b \to c \to d \to e$$

•
$$a \rightarrow b \rightarrow c \rightarrow f \rightarrow e$$

$$a \rightarrow c \rightarrow b \rightarrow d \rightarrow e$$

$$\bullet \quad a \to f \to c \to d \to e$$

Stop here?

$$\bullet \quad a \to b \to d \to c \to f \to e$$

$$\bullet \quad a \to f \to c \to b \to d \to e$$

Improvement

- Consider this graph
- > Search for paths starting with fewer steps

•
$$a \rightarrow f \rightarrow e$$

$$a \rightarrow b \rightarrow d \rightarrow e$$

$$a \rightarrow c \rightarrow d \rightarrow e$$

$$\bullet \quad a \to c \to f \to e$$

Stop here?

$$\bullet \quad a \to b \to c \to d \to e$$

$$a \rightarrow b \rightarrow c \rightarrow f \rightarrow e$$

$$\bullet \quad a \to c \to b \to d \to e$$

$$\bullet \quad a \to f \to c \to d \to e$$

Stop here?

$$\bullet \quad a \to b \to d \to c \to f \to e$$

$$\bullet \quad a \to f \to c \to b \to d \to e$$

We may miss the correct answer if not trying out all possible paths...

Improvement

- > We need a more clever and systematic approach!
- > Possible approach
 - Look at edges and use them to improve on existing paths
 - An edge is said to lead to improvement, if passing through it would lead to a better path
 - Example
 - > Going from a to c directly, the distance is 9.
 - > Going from a to f directly, the distance is 14.
 - > Going from a to f via c, the distance improves to 11 < 14.

Improvement

- > A sketch of the idea
 - Starting from a, find the shortest distance to its neighbouring node, e.g., node b
 - Save the path to other neighbour and record the distance(s)
 - Then, use this path to go to b's neighbour
 - Compare the distance of the saved path with the distance when passing through b
 - To go to c, should we take a -> b -> c?
 - Explore from the newly done node, i.e., c, to its neighbours and continue the process until the shortest paths to all nodes are found

Further Improvement

- The shortest path problem will be carefully studied in algorithm courses
 - Further Reading Dijkstra's algorithm
 - > https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Final Tips on Problem Solving

- > Data abstraction
 - Use data structures to model the data and their relationship
 - > In our example, use graph
 - Use proper tools in the programming language to represent the model
 - > List, set and dictionaries
- > Procedure abstraction
 - Try stupid solutions first, as long as it is logical
 - > In our graph example, find all possible paths
 - Refine your solution based on your understanding of the problem and try to find out patterns/structures of the problem
 - > A problem can be broken down in to smaller ones. Sometimes the smaller problem has a similar pattern as the parent one
 - In our graph example, find the shortest path to near nodes first

Final Tips on Problem Solving

- > There is no magic to problem solving
 - The holy grail is to
 - > Practice, practice, and practice
- > There is no magic to programming
 - The holy grail is to
 - > Practice, practice, practice, and yet more practice
 - > Do not aim at producing the shortest or cleverest program unless you are an expert (how? Practice, practice, and practice!)

Summary

- Graph
 - Modelling
 - Implementation
 - > Adjacency List
 - > Adjacency Matrix
- > A Glimpse of the Shortest Path Algorithm
- > Final Tips on Problem Solving