Riley Payung

CDS 292

<pre>import matplotlib.pyplot as plt</pre>	2,4; 2 <-> 4
In [71]:	2,3: 2 <-> 3
Imports	1,4t 1 k-2 2 k-2 4
Assignment 10	
	€ <-> ⊊ <-> £ ;€;;
04/30/2020	$\mathcal{L}_{\mathcal{L}}$ is the second constant $\mathcal{L}_{\mathcal{L}}$
ODO 232	

Question 2

b=3 | b2=6 | 0=3 | b4=3

Everything increases by 1 exceptifor by, which doubles in size

Paths:

import networkx as netx

import numpy as np

Question 3

$$b_2 = 5 - 1 + (2 - 1)(5 - 2) = 4 + 13 = 4 + 3 = 7$$

cont or next page.

Question 4

$$b_5 = -1 + (5 * 10) - 6^2 = -1 + 50 - 25 = -1 + 25 = 24$$

Question 5

Let us say that the no are the follwing:

gnuy67 volis

Paths:

b₁=3 | b₂=6 | b₃=3 | b₄=3

Everything increases by 1 except for b₂, which doubles in size.

Paths:

Question 3

$$b_2 = 5 - 1 + (2 - 1)(5 - 2) = 4 + 13 = 4 + 3 = 7$$

Question 4

$$b_5 = -1 + (5 * 10) - 5^2 = -1 + 50 - 25 = -1 + 25 = 24$$

Question 5

Let us say that the ns are the follwing:

```
n_1 = 4
n_2 = 4
n_3 = 4
n_4 = 4
Therefore n = 16 + 1 = 17.
In [53]:
n = 17;
b = [];
for i in range(1,n):
    b.append(-1 + (i * n) - (i**2))
In [60]:
                                                                             1,2: 1 <-> 2
print(b)
[15, 29, 41, 51, 59, 65, 69, 71, 71, 69, 65, 59, 51, 41, 29, 15]
In [74]:
plt.plot(b, marker='o')
plt.show()
                                                       2,4: 2 <-> 3 <-> 4, 2 <-> 4 <-> 4
 70
 60
 50
 40
 30
 20
           ż
                                10
                                           14
```

Question 6

$$b_1 = -1 + 5 - 1 = 3$$

$$b_2 = -1 + 2 * 5 - 4 = -1 + 10 - 4 = 5$$

$$b_3 = -1 + 3 * 5 - 9 = -1 + 15 - 9 = 5$$

$$b_4 = -1 + 4 * 5 - 16 = -1 + 20 - 16 = 3$$

$$b_5 = -1 + 5 * 5 - 25 = -1 + 25 - 25 = -1$$

Question 9

Paths:

$$b_1=5 | b_2=5 | b_3=5 | b_4=5$$

Question 10

$$b_i = n + 1$$

Question 11

Lets assume a star network of n = 5 for the following:

Paths: 1,2: 1 <-> 2 1,3: 1 <-> 2 <-> 3, 1 <-> 4 <-> 3 1,4: 1 <-> 4 2,3: 2 <-> 3 2,4: 2 <-> 3 <-> 4, 2 <-> 1 <-> 4 3,4: 3 <-> 4

b₁=4 | b₂=4 | b₃=4 | b₄=4 | b_{5(HUB)}=10

Considering 5 is our b_{hub}, if we do the calculation with the equation:

\$5 \choose 2\$ \$= \frac{5!}{2!(3!)} = \frac{120}{12} = 10\$
$$\left(\frac{5}{2}\right) = \frac{5!}{2!(3!)} = \frac{120}{12} = 10$$

We prove that the equation is the model for the hub centrality.

which is the same as:

$$5 - 1 + (\frac{4}{2}) = 4 + 6 = 10 \Longrightarrow 10 = (\frac{5}{2})$$

Question 12

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 10 & 0 & 0 \end{pmatrix} det \begin{pmatrix} -\lambda & 1 & 1 & 1 \\ 1 & -\lambda & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} = 0$$

$$-\lambda^{4} - (-\lambda - \lambda) = 0 \qquad -\lambda^{3} - 2 = 0$$

$$-\lambda^{4} + 2\lambda = 0 \qquad -\lambda(\lambda^{2}) = 22$$

$$-\lambda(\lambda^{3} - 2) = 0 \qquad \text{Therefore}$$

$$\lambda^{2} = 1$$

$$\lambda^{2} = 1$$

$$\lambda^{3} = 0 \qquad \lambda^{3} = -\sqrt{2}$$

$$\lambda^{4} = 0 \qquad \lambda^{3} = -\sqrt{2}$$

$$\lambda^{4} = 0 \qquad \lambda^{3} = -\sqrt{2}$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} = 0 \qquad \lambda^{4} = 0$$

$$\lambda^{4} = 0 \qquad \lambda^{4} =$$

Question 14

```
In [5]:
```

```
# Load watergate network:
WG = netx.Graph();
watergateFile = open('watergate-testimony-links.dat','r');
for line in watergateFile:
    cLine = line.strip();
    items = cLine.split();
    WG.add_edge(items[0],items[1]);
```

In [16]:

Considering 6 is our book if we go the calculation with the equations

Porter Halders Matine Barker Chapinsen

Strachan Macruder eat Kalmbach

O†Brien Huntur Cord LaRue

Kroom Baldwin Colson kinson

Sturgis

We prove that the equation is the model for the hub centre

\$5 - 1 + \$34\chouse 2\$ \$= 4 + 6 = 10 <=> 10 = \$ \$5\chouse 5 = $\frac{6}{2}$ \choose 4 + 6 = $\frac{6}{2}$ \choose 6 = $\frac{6}{2}$

Ouesiles 12

- (2, 2, 2, 0) - 0 - 2, 2, 2 0

- 2, 2, 2 0 - 2, 2, 2 0

- 2, (3, 2) = 0

- 2, (3, 2) = 0

- 2, (3, 2) = 0

- 2, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 3, (3, 2) = 0

- 4, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

- 5, (3, 2) = 0

et nodered

```
In [46]:
```

```
def BC1 (G , o ) :
    A = [o]
    V =[]
    1 = 0
    p = \{\}
    m = \{\}
    z = \{\}
    p [ o ]=[]
   m [ o ]=1
    z [ l ]=[ o ]
   while len( A ) >0:
        # print Len(A)
        1 = 1 + 1
        nA = []
        for i in A:
            for j in G . neighbors ( i ) :
                if ( j not in V ) and ( j not in A ) :
                    if j not in nA :
                        nA . append ( j )
                        z [ 1 ]= z . get (1 ,[])
                                                                              5.60 - build
                        z [ l ]. append ( j )
                    p [ j ]= p . get (j ,[])
                    p [ j ]. append ( i )
                    m [ j ]= m . get (j ,0)
                    m [ j ] = m [ j ] + m [ i ]
            V . append ( i )
        A = nA
                                                                          ,6.0mi k'saburgani
   lf = l - 1
   b = \{\}
   for i in G . nodes ():
        b [ i ]=0
   for l in range ( lf ,0 , -1) :
       for i in z [ l ]:
            b [ i ] = b [ i ] + m [ i ]
                                                           - 0,505 to shipping that in and and this
            for j in p [ i ]:
                b[j]=b[j]+m[j]*b[i]/m[i]
   return (b)
```

In [47]:

```
def BC ( G ) :
    B ={}
    for i in G . nodes () :
        B [ i ]=0
    for o in G . nodes () :
        b = BC1 (G , o )
        for i in b . keys () :
            B [ i ]= B [ i ]+ b [ i ]
    for i in G . nodes () :
        B [ i ]= B [ i ]/2
    return ( B )
```

```
In [48]:
G = BC(WG);
In [51]:
G
Out[51]:
{'Baldwin': 93.0,
 'Hunt(H)': 110.0,
 'Liddy': 79.0,
 'McCord': 117.0,
 'Sturgis': 47.0,
 'Dean': 208.0,
 'Barker': 29.0,
 'Ehrlichman': 29.0,
 'Gray': 29.0,
 'Haldeman': 38.0,
 'Kalmbach': 29.0,
 'LaRue': 30.0,
 'Martinez': 29.0,
 'Nixon': 38.0,
 'Colson': 35.0,
 'O'Brien': 28.0,
 'Parkinson': 35.0,
 'Krogh': 39.0,
 'Magruder': 110.0,
 'Mitchell': 30.0,
 'Porter': 28.0,
 'Strachan': 28.0,
 'Segretti': 1.0,
 'Chapin': 1.0}
Dean has the highest centrality, at 208.0
In [ ]:
```