Linear Algebra

<u>Goal</u>: Develop tools to approximate complicated (potentially non-linear) functions with linear or quadratic functions.

• <u>Basis</u> (Ref.: 3.1)

Definition 1. A vector space V is a collection of objects called vectors, which may be added together and multiplied by real numbers, called scalars, satisfying:

- (1) Associativity of +: $\forall x, y, z \in V$, (x + y) + z = x + (y + z);
- (2) Commutativity of +: $\forall x, y \in V, x + y = y + x$;
- (3) Existence of zero: $\exists ! \bar{0} \in V \text{ s.t. } \forall x \in V, x + \bar{0} = \bar{0} + x = x;$
- (4) Existence of a vector additive inverse: $\forall x \in V \ \exists ! (-x) \in V \ \text{s.t.} \ x + (-x) = \bar{0};$ (We define x y := x + (-y).)
- (5) Distributivity of scalar multiplication over vector addition: $\forall \alpha \in \mathbb{R}, x, y \in V, \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y;$
- (6) Distributivity of scalar multiplication over scalar addition: $\forall \alpha, \beta \in \mathbb{R}, x \in V, (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x;$
- (7) Associativity of multiplication: $\forall \alpha, \beta \in \mathbb{R}, x \in V, (\alpha \cdot \beta)x = \alpha \cdot (\beta \cdot x);$
- (8) Multiplicative identity: $\forall x \in V, 1 \cdot x = x$.

Example.

- \mathbb{R}^n is a vector space;
- $M_{m \times n}$ (set of all $m \times n$ matrices) is a vector space;
- \mathbb{R}^X (set of all functions $f: X \to \mathbb{R}$) is a vector space;
- C(X) (set of all continuous functions $f: X \to \mathbb{R}$) is a vector space;
- B(X) (set of all bounded functions $f: X \to \mathbb{R}$) is a vector space;
- $\mathbb{R}_+ = [0, \infty)$ is <u>not</u> a vector space (if $x \in (0, \infty)$, then $-x = -1 \cdot c \notin [0, \infty)$).

Definition 2. Let V be a vector space. A <u>linear combination</u> of $x_1, \ldots, x_n \in V$ is a vector of the form

$$y = \sum_{i=1}^{n} \alpha_i x_i$$
, where $\alpha_1, \dots, \alpha_n \in \mathbb{R}$,

 α_i is called the <u>coefficient</u> of x_i in the linear combination.

We call a linear combination $\sum_{i=1}^{n} \alpha_i x_i$ nontrivial if $\sum_{i=1}^{n} \alpha_i^2 \neq 0$. That is, at least one coefficient is non-zero.

Definition 3. Let W be a subset of V. A $\underline{\text{span}}$ of W is the set of all linear combinations of elements of W,

span
$$W = \left\{ \sum_{i=1}^{n} \alpha_i x_i \mid n \in \mathbb{N}, \, \alpha_1, \dots, \alpha_n \in \mathbb{R}, \, x_1, \dots, x_n \in W \right\}.$$

The set $W \subset V$ spans V if $V = \operatorname{span} W$.

Definition 4. A set $X \subset V$ is linearly dependent if $\exists x_1, \ldots, x_n \in X, \alpha_1, \ldots, \alpha_n \in \mathbb{R}$ s.t.

$$\sum_{i=1}^{n} \alpha_i^2 \neq 0 \text{ and } \sum_{i=1}^{n} \alpha_i x_i = \bar{0}$$

A set $X \subset V$ is <u>linearly independent</u> if it is not linearly dependent. I.e., if $\forall x_1, \dots, x_n \in X$

$$\sum_{i=1}^{n} \alpha_i x_i = \bar{0} \iff \alpha_1 = \alpha_2 = \dots = \alpha_n = 0.$$

Definition 5. A <u>basis</u> of a vector space V is a linearly independent set of vectors in V that spans V.

Remark 6. To emphasize the fact that only finite linear combinations are allowed, sometimes the basis is called *Hamel* basis. In spaces where basis is infinite, it is more common to work with *Schauder* basis, which allows for infinite linear combinations. This, of course, requires the notion of convergence of infinite sums (when the sum is well-defined). If you have heard about the Fourier basis, then it is a Schauder basis and not a Hamel basis.

<u>Importance</u>: Basis allows us to write every element as a <u>unique</u> linear combination. Thus, if we know a basis, then we know V.

Example.

• $\{(1,0),(0,1)\}$ is a basis of \mathbb{R}^2 :

$$\alpha_1(1,0) + \alpha_2(0,1) = (\alpha_1, \alpha_2) = (0,0) \Leftrightarrow \alpha_1 = \alpha_2 = 0,$$

$$\forall x = (x_1, x_2) \in \mathbb{R}^2, \ x = x_1(1,0) + x_2(0,1).$$

• $\{(1,1),(-1,1)\}$ is a basis of \mathbb{R}^2 :

$$\alpha_1(1,1) + \alpha_2(-1,1) = (\alpha_1 - \alpha_2, \alpha_1\alpha_2) = (0,0) \Leftrightarrow \alpha_1 = \alpha_2 = 0,$$

$$\forall x = (x_1, x_2) \in \mathbb{R}^2, \ x = \frac{x_1 + x_2}{2}(1,1) + \frac{x_2 - x_1}{2}(-1,1).$$

• $\{(1,0)\}$ is <u>not</u> a basis of \mathbb{R}^2 :

$$\mathrm{span} \{(0,1)\} = \{(x,0) \mid x \in \mathbb{R}\} \neq \mathbb{R}^2.$$

• $\{(1,0),(0,1),(1,1)\}$ is <u>not</u> a basis of \mathbb{R}^2 . It is linearly dependent:

$$(1,0) + (0,1) - (1,1) = (0,0).$$

Theorem 7. Let B be a basis for V and enumerate elements of B by a set Λ so that $B = \{v_{\lambda} \mid \lambda \in \Lambda\}$. Then every vector $x \in V$ has a unique representation as a linear combination of elements of B with finitely many nonzero coefficients.

Proof. Let $x \in V$. Since B is a basis for V, span B = V, and

$$x = \sum_{\lambda \in \Lambda} \alpha_{\lambda} v_{\lambda},$$

where only finite subset of coefficients $\{\alpha_{\lambda}\}$ is nonzero. Thus, at least one such representation exists.

Suppose that there exists another representation

$$x = \sum_{\lambda \in \Lambda} \beta_{\lambda} v_{\lambda},$$

where, again, only finite subset of coefficients $\{\beta_{\lambda}\}$ is nonzero.

Thus,

$$\sum_{\lambda \in \Lambda} \alpha_{\lambda} v_{\lambda} - \sum_{\lambda \in \Lambda} \beta_{\lambda} v_{\lambda} = x - x = \bar{0}$$

or

$$\sum_{\lambda \in \Lambda} (\alpha_{\lambda} - \beta_{\lambda}) v_{\lambda} = \bar{0},$$

where, again, only finite subset of coefficients $\{\alpha_{\lambda} - \beta_{\lambda}\}$ is nonzero. Since B is a basis and $\sum_{\lambda \in \Lambda} (\alpha_{\lambda} - \beta_{\lambda}) v_{\lambda}$ is its linear combination, we must have $\alpha_{\lambda} \equiv \beta_{\lambda}$. Thus, representation is unique.

Remark 8. The representation of $\bar{0}$ has all zero coefficients.

The following properties presented without proofs hold for vector spaces.

Theorem 9. Every vector space has a basis. Any two bases of a vector space V have the same cardinality (are numerically equivalent).

Theorem 10. If V is a vector space and $W \subset V$ is linearly independent, then there exists a linearly independent set B such that $W \subset B \subset \operatorname{span} B = V$.

The second theorem says that any linearly independent set W can be extended to a basis of V.

Te first theorem says that the cardinality of V's basis B is a property of the space V, not B, and we can define the dimension of a vector space.

Definition 11. Let V be a vector space. The <u>dimension</u> of V, denoted dim V, is the cardinality of any basis of V. If dim V = n for some $n \in \mathbb{N}$, then V is <u>finite-dimensional</u>. Otherwise V is <u>infinite-dimensional</u>.

Example.

- dim $\mathbb{R}^n = n$, basis is a set $\{e_i\}_{i=1}^n$, where e_i has ith coordinate equal 1 and all other coordinates equal zero;
- dim $M_{m \times n} = mn$, basis is a set $\{E_{ij}\}_{i=1...m,j=1...n}$, where E_{ij} is a matrix with 1 on the *i*th row, *j*th column and zeros otherwise.

In the case of finite-dimensional vector spaces we can not have too many linearly independent vectors: if $\dim V = n$, then any set of more than n vectors is linearly dependent.

Theorem 12. Suppose dim $V = n \in \mathbb{N}$. If $W \subset V$ and |W| > n, where |W| denotes the cardinality of W, then W is linearly dependent.

Proof. If W is linearly independent, then by Theorem 10 we can extend it to a basis B for V that contains W. Yet, $|B| \ge |W| > n = \dim V$, which is a contradiction with Theorem 9.

Theorem 13. Suppose dim $V = n \in \mathbb{N}$ and $W \subset V$, |W| = n. Then

- (1) If W is linearly independent, then span W = V, so W is a basis of V;
- (2) If span W = V, then W is linearly independent, so W is a basis of V.

Proof. (1) If span $W \neq V$, then by Theorem 10 W can be extended to a basis B, so that $W \subset B \subset \text{span } B = V$. Thus, |B| > |V| = n. However, by Theorem 12, B is linearly dependent. So span $W \neq V$ and W is a basis of V.

(2) If W is not linearly independent, then it has nontrivial linear combination $\sum_{i=1}^{n} \alpha_i v_i = \bar{0}$. Thus, for $\alpha_j \neq 0$ $v_j = -\frac{1}{\alpha_j} \sum_{i \neq j} \alpha_i v_i$ and $\operatorname{span}(W \setminus v_j) = \operatorname{span}W = V$. If $W' := W \setminus v_j$ is still linearly dependent, we can repeat the procedure until we get $\tilde{W} = W \setminus v_{j_1}, \ldots, v_{j_k}$ such that \tilde{W} is linearly independent (the process terminates because W has finite number of elements). Therefore, \tilde{W} is a basis of V. Yet, $|\tilde{W}| < |W| = n = \dim V$ while all bases must have cardinality = n. Thus, we get a contradiction and If W is linearly independent, so W is a basis of V.

• <u>Linear Transformations</u> (Ref.: 3.2)

Suppose we have a function from one vector space to another. We want to characterize functions that preserve the algebraic structure (so that, for example, x + y is mapped to f(x) + f(y)).

Definition 14. Let X and Y be two vector spaces. We say that $T: X \to Y$ is a <u>linear transformation</u> if for all $x_1, x_2 \in X$, $\alpha_1, \alpha_2 \in \mathbb{R}$,

$$T(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 T(x_1) + \alpha_2 T(x_2)$$

Let L(X,Y) denote the set of all linear transformations from X to Y.

That is, given any two vectors, the image of their sum under a linear function is equal to the sum of their images, and the image of the product of a scalar and a vector is equal to the scalar times the image of the vector. It is in this sense that we can say that a linear function preserves the algebraic structure of the vector space on which it is defined.

Theorem 15. L(X,Y) is a vector space.

Proof. The scalar multiplication and vector addition of $T_1, T_2: X \to Y$ are defined by

$$(\eta T_1 + \gamma T_2)(x) = \eta T_1(x) + \gamma T_2(x).$$

Let us chech that $\eta T_1 + \gamma T_2$ is a linear transformation.

$$(\eta T_1 + \gamma T_2)(\alpha_1 x_1 + \beta x_2) = \eta T_1(\alpha_1 x_1 + \beta x_2) + \gamma T_2(\alpha_1 x_1 + \beta x_2)$$

$$= \eta(\alpha_1 T_1(x_1) + \beta T_1(x_2)) + \gamma(\alpha_1 T_2(x_1) + \beta T_2(x_2))$$

$$= \alpha_1(\eta T_1(x_1) + \gamma T_2(x_1)) + \beta(\eta T_1(x_2) + \gamma T_2(x_2))$$

$$= \alpha_1(\eta T_1 + \gamma T_2)(x_1) + \beta(\eta T_1 + \gamma T_2)(x_2),$$

so $\eta T_1 + \gamma T_2 \in L(X, Y)$.

We also need to check all of the vector space axioms, which is straightforward. \Box

Hence, every linear combination of linear functions is a linear function. Moreover, a composition of two linear functions is linear.

Theorem 16. If $R: X \to Y$ and $S: Y \to Z$ are linear transformations, then $S \circ R: X \to Z$ is a linear transformation.

Proof.

$$S \circ R(\alpha_1 x_1 + \beta x_2) = S(R(\alpha_1 x_1 + \beta x_2)) = S(\alpha_1 R(x_1) + \alpha_2 R(x_2))$$

= $\alpha_1 S(R(x_1)) + \alpha_2 S(R(x_2)) = \alpha_1 (S \circ R)(x_1) + \alpha_2 (S \circ R)(x_2).$

Definition 17. Let $T \in L(X,Y)$. The <u>image</u> of T is $\operatorname{Im} T := T(X) = \{T(x) \mid x \in X\}$, the <u>kernel</u> of T is $\ker T := \{x \in X \mid T(x) = \overline{0}\}$, and the <u>rank</u> of T is $\operatorname{rank} T := \dim(\operatorname{Im} T)$.

Theorem 18. Let X be a finite-dimensional vector space and $T \in L(X,Y)$. Then Im T and ker T are vector subspaces of Y and X respectively, and

$$\dim X = \dim \ker T + \operatorname{rank} T = \dim \ker T + \dim \operatorname{Im} T$$
.

Proof. Let us show that Im T is a vector subspaces of Y. We need to show that if $\alpha, \beta \in \mathbb{R}$ and $y_1, y_2 \in \text{Im } T$, then $\alpha y_1 + \beta y_2 \in \text{Im } T$. If $y_1, y_2 \in \text{Im } T$, then $\exists x_1, x_2 \in X$ such that $y_1 = T(x_1), y_2 = T(x_2)$. Thus,

$$\alpha y_1 + \beta y_2 = \alpha T(x_1) + \beta T(x_2) = T(\alpha x_1 + \beta x_2).$$

Because $\alpha x_1 + \beta x_2 \in X$, $\alpha y_1 + \beta y_2 \in T(X)$, and Im T is a vector subspaces of Y.

Let us show that ker T is a vector subspaces of X. If $x_1, x_2 \in \ker T$, then $T(x_1) = T(x_2) = \bar{0}$. Thus,

$$T(\alpha x_1 + \beta x_2) = \alpha T(x_1) + \beta T(x_2) = \bar{0} + \bar{0} = \bar{0},$$

and $\alpha x_1 + \beta x_2 \in \ker T$. So $\ker T$ is a vector subspaces of X.

We are left with showing dim $X = \dim \ker T + \operatorname{rank} T$. Let $V = \{v_1, \ldots, v_k\}$ be a basis for $\ker T$, so that dim $\ker T = k$ (note that $\ker T \subset X$ so dim $\ker T \leq \dim X$). If $\ker T = \{\bar{0}\}$, take k = 0 so $V = \emptyset$. Extend V to a basis B of X with $W = \{v_1, \ldots, v_k, w_1, \ldots, w_r\}$. We claim that $\{T(w_1), \ldots, T(w_r)\}$ is a basis for $\operatorname{Im} T$, so that $\operatorname{rank} T = r$.

• If $y \in \text{Im } T$, then y = T(x) for some $x \in X$, $x = \sum_{i=1}^{k} \alpha_i v_i + \sum_{i=1}^{r} \beta_i w_i$. Thus,

$$y = T\left(\sum_{i=1}^{k} \alpha_i v_i + \sum_{i=1}^{r} \beta_i w_i\right) = \sum_{i=1}^{r} \beta_i T(w_i),$$

as for all i = 1, ..., n, $v_i \in \ker T$ so that $T(v_i) = \bar{0}$. Thus, span $\{T(w_1), ..., T(w_r)\} = \operatorname{Im} T$.

• If $\{T(w_1), \ldots, T(w_r)\}$ is linearly dependent, then \exists nontrivial linear combination $\sum_{i=1}^r \beta_i T(w_i) = \bar{0}$.

$$\bar{0} = \sum_{i=1}^{r} \beta_i T(w_i) = T\left(\sum_{i=1}^{r} \beta_i w_i\right),\,$$

so that nontrivial linear combination $\sum_{i=1}^{r} \beta_i w_i \in \ker T$. However, basis of $\ker T$, V is independent of $\{w\}_i$, and we must have $\beta_i = 0$ for all $i = 1, \ldots, r$.

Since W is a basis of X, $\dim X = k + r = \dim \ker T + \operatorname{rank} T$.

Definition 19. $T \in L(X,Y)$ is <u>invertible</u> if there exists a function $S:Y \to X$ such that

$$S(T(x)) = x \,\forall x \in X,$$

$$T(S(y)) = y \, \forall y \in Y.$$

The transformation S is called the inverse of T and is denoted T^{-1} .

In other words, $S \circ T = I_X$ and $T \circ S = I_Y$, where I_X and I_Y are the identity mappings in X and Y, respectively.

When is the transformation invertible? First, T must not glue points, i.e., $\forall x_1 \neq x_2$ we must have $T(x_1) \neq T(x_2)$ (such T is called *one-to-one* or *injection*). Second, the image of T must equal Y, i.e., T(X) = Y (such T is called *onto* or *surjection*). For each point $y \in Y$ we must have $x \in X$ such that T(x) = y, otherwise we will not get T(S(y)) = y.

Theorem 20. If $T \in L(X,Y)$ is invertible, then $T^{-1} \in L(Y,X)$, i.e., T^{-1} is linear.

Proof. Suppose that $\alpha, \beta \in \mathbb{R}$, $y_1, y_2 \in Y$. Since T is invertible, $\exists ! x_1, x_2 \in X$ such that $y_1 = T(x_1), y_2 = T(x_2)$ and $T^{-1}(y_1) = x_1, T^{-1}(y_2) = x_2$. Therefore,

$$T^{-1}(\alpha y_1 + \beta y_2) = T^{-1}(\alpha T(x_1) + \beta T(x_2)) = T^{-1}(T(\alpha x_1 + \beta x_2))$$
$$= \alpha x_1 + \beta x_2 = \alpha T^{-1}(y_1) + \beta T^{-1}(y_2),$$

and
$$T^{-1} \in L(Y, X)$$
.

Theorem 21. $T \in L(X,Y)$ is one-to-one if and only if $\ker T = \{\bar{0}\}.$

Proof. Suppose $T \in L(X,Y)$ is one-to-one. If $x \in \ker T$, then $T(x) = \bar{0}$. Since T is linear,

$$T(\bar{0}) = T(0 \cdot \bar{0}) = 0 \cdot T(\bar{0}) = \bar{0}.$$

Since T is one-to-one, $x = \bar{0}$, so ker $T = \bar{0}$.

Suppose that $\ker T = \bar{0}$. If $T(x_1) = T(x_2)$, then $T(x_1 - x_2) = T(x_1) - T(x_2) = \bar{0}$. Thus, $x_1 - x_2 = \bar{0}$ and $x_1 = x_2$, so that T is one-to-one.

• Isomorphisms (Ref.: 3.3)

We will now show that two vector spaces of the same dimension are "equivalent" from an algebraic point of view. Thus, all n dimensional vector spaces are "equivalent" to \mathbb{R}^n and L(X,Y), where dim X=m, dim Y=n, is "equivalen" to $M_{m\times n}$. What does "equivalence" mean formally?

Definition 22. Two vector spaces X and Y are <u>isomorphic</u> if there exists an invertible linear function (one-to-one and onto) from X to Y. A function with these properties is called an <u>isomorphism</u>.

Theorem 23. Let X and Y be two vector spaces, and let $V = \{v_{\lambda} \mid \lambda \in \Lambda\}$ be a basis for X. Then a linear transformation $T: X \to Y$ is completely defined by its value on V, that is:

- (1) Given any set $\{y_{\lambda} \mid \lambda \in \Lambda\} \subset Y$, $\exists T \in L(X,Y) \text{ s.t. } T(v_{\lambda}) = y_{\lambda} \text{ for all } \lambda \in \Lambda$.
- (2) If $S, T \in L(X, Y)$ and $S(v_{\lambda}) = T(v_{\lambda})$ for all $\lambda \in \Lambda$, then S = T.

Proof. (1) Any $x \in X$ has a unique representation $x = \sum_{\lambda \in \Lambda} \alpha_{\lambda \in \Lambda} v_{\lambda}$, and only finite set of indices has non-zero coefficients α . Define $T(x) = \sum_{\lambda \in \Lambda} \alpha_{\lambda} y_{\lambda}$, which is well-defined as there are only finitely many non-zero terms. Thus, $T(x) \in Y$. Moreover, T is linear:

$$T(ax_1 + bx_2) = T\left(\sum_{\lambda \in \Lambda} a\alpha_{\lambda}v_{\lambda} + \sum_{\lambda \in \Lambda} b\beta_{\lambda}v_{\lambda}\right) = a\alpha_{\lambda}y_{\lambda} + b\beta_{\lambda}y_{\lambda} = aT(x_1) + bT(x_2).$$

(2) Suppose that $S(v_{\lambda}) = T(v_{\lambda})$ for all $\lambda \in \Lambda$. For any $x \in X$, $x = \sum_{i=1}^{n} \alpha_{i} v_{\lambda_{i}}$. Thus,

$$S(x) = S\left(\sum_{i=1}^{n} \alpha_i v_{\lambda_i}\right) = \sum_{i=1}^{n} \alpha_i S(v_{\lambda_i}) = \sum_{i=1}^{n} \alpha_i T(v_{\lambda_i}) = T\left(\sum_{i=1}^{n} \alpha_i v_{\lambda_i}\right) = T(x).$$

Theorem 24. Two vector spaces X and Y are isomorphic if and only if dim $X = \dim Y$.

Proof. Let $T: X \to Y$ be an isomorphism and let $\{v_{\lambda} \mid \lambda \in \Lambda\}$ be a basis of X. Then one can check that $\{T(v_{\lambda}) \mid \lambda \in \Lambda\}$ is a basis of Y. Hence, dim $X = |\Lambda| = \dim Y$.

In the opposite direction, suppose that dim $X = \dim Y$. Then we can enumerate bases of spaces X and Y by the same set Λ . Thus, we choose a basis $\{v_{\lambda} \mid \lambda \in \Lambda\}$ for X and a basis $\{u_{\lambda} \mid \lambda \in \Lambda\}$ for Y.

We define the map T by formula:

$$T\left(\sum_{\lambda} \alpha_{\lambda} v_{\lambda}\right) = \sum_{\lambda} \alpha_{\lambda} u_{\lambda}.$$

Following the proof of Theorem 23, T is linear. Also T is invertible, since its inverse is explicit:

$$T^{-1}\left(\sum_{\lambda}\alpha_{\lambda}u_{\lambda}\right) = \sum_{\lambda}\alpha_{\lambda}v_{\lambda}.$$

We conclude that T gives an isomorphism between X and Y.