A9 Differentiation Answers P3

© UCLES 2006 9709/03/O/N/06

Use product rule
Obtain derivative in any correct form
A1
Form equation of tangent at $x = \frac{1}{4}\pi$ correctly
Simplify answer to y = x, or y - x = 0[SR: The misread $y = x \sin x$ can only earn M1M1.]

- 3 (i) Use quotient or product rule to differentiate (1-x)/(1+x) M1
 Obtain correct derivative in any form
 A1
 Use chain rule to find $\frac{dy}{dx}$ M1
 Obtain a correct expression in any form
 Obtain the gradient of the normal in the given form correctly
 A1 [5]
 - (ii) Use product rule M1
 Obtain correct derivative in any form A1
 Equate derivative to zero and solve for x M1
 Obtain $x = \frac{1}{2}$ A1 [4]

© UCLES 2010 9709/31/M/J/10

9709/31/M/J/11

- 4 (i) Obtain $\frac{k \cos 2x}{1 + \sin 2_x}$ for any non-zero constant k M1
 Obtain $\frac{2 \cos 2x}{1 + \sin 2x}$ A1 [2]
 - (ii) Use correct quotient or product rule M1

 Obtain $\frac{x \sec^2 x \tan x}{x^2}$ or equivalent A1 [2]

© UCLES 2011

5 (i) EITHER: State
$$\frac{dx}{dt} = \sec^2 t / \tan t$$
, or equivalent B1

State
$$\frac{dy}{dt} = 2 \sin t \cos t$$
, or equivalent B1

Use
$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$
 M1

Obtain correct answer in any form, e.g.
$$2\sin^2 t \cos^2 t$$
 A1
Obtain $y = e^{2x} / (1 + e^{2x})$, or equivalent B1

OR: Obtain
$$y = e^{2x} / (1 + e^{2x})$$
, or equivalent
Use correct quotient or product rule

M1

Obtain correct derivative in any form, e.g.
$$2e^{2x}/(1+e^{2x})^2$$
 A1

Obtain correct derivative in terms of t in any form, e.g.
$$(2\tan^2 t) / (1 + \tan^2 t)^2$$
 A1 [4]

(ii) State or imply
$$t = \frac{1}{4}\pi$$
 when $x = 0$

Form the equation of the tangent at
$$x = 0$$
 M1

Obtain correct answer in any horizontal form, e.g.
$$y = \frac{1}{2}x + \frac{1}{2}$$
 A1 [3]

[SR: If the *OR* method is used in part (i), give B1 for stating or implying
$$y = \frac{1}{2}$$
 or

$$\frac{dy}{dx} = \frac{1}{2}$$
 when $x = 0$.

© UCLES 2011 9709/32/M/J/11

6	Use correct quotient or product rule or equivalent	M1	
	Obtain $\frac{(1+e^{2x}).2e^{2x}-e^{2x}.2e^{2x}}{(1+e^{2x})^2}$ or equivalent	A1	
	Substitute $x = \ln 3$ into attempt at first derivative and show use of relevant logarithm property at least once in a correct context	M1	
	Confirm given answer $\frac{9}{50}$ legitimately	A1	[4]

© UCLES 2011 9709/33/O/N/11

7 Use correct quotient or product rule M1 Obtain correct derivative in any form A1 Justify the given statement A1 [3]

> © UCLES 2013 9709/31/O/N/13

8	(i)	Use of product or quotient rule $\frac{1}{2} = \frac{1}{2} = $	M1			
		Obtain $-5e^{-\frac{\pi}{2}x} \sin 4x + 40e^{-\frac{\pi}{2}x} \cos 4x$	A1			
		Equate $\frac{dy}{dx}$ to zero and obtain $\tan 4z = k$ or R $\cos(4x \pm \alpha)$	M1			
		Obtain $\tan 4x = 8$ or $\sqrt{65} \cos \left(4x \pm \tan^{-1} \frac{1}{8} \right)$	A1			
		Obtain 0.362 or 20.7° Obtain 1.147 or 65.7°	A1 A1	[6]		
	(ii)	State or imply that x-coordinates of T_n are increasing by $\frac{1}{4}\pi$ or 45°	B1			
		Attempt solution of inequality (or equation) of form $x_1 + (n-1)k\pi$. 25	M1			
		Obtain $n > \frac{4}{\pi}(25 - 0.362) + 1$, following through on their value of x_1	A1√			
		n = 33	A1	[4]		
		© UCLES 2014	9709/3	1/M/J/14		
9	(i)	State or imply that the derivative of e^{-2x} is $-2e^{-2x}$ Use product or quotient rule Obtain correct derivative in any form Use Pythagoras Justify the given form	B1 M1 A1 M1 A1	[5]		
	(ii)	Fully justify the given statement	B1	[1]		
	(iii)	State answer $x = \frac{1}{4}\pi$	B 1	[1]		
		© UCLES 2015	9709/31	/O/N/15		
10		e correct quotient rule or equivalent to find first derivative	M1*			
Obtain $\frac{-(1 + \tan x)\sec^2 x - \sec^2 x(2 - \tan x)}{(1 + \tan x)^2}$ or equivalent Substitute $x = \frac{1}{4}\pi$ to find gradient Obtain $-\frac{3}{2}$			A1			
			dep M1*			
			A1			
Form equation of tangent at $x = \frac{1}{4}\pi$			M1			
		tain $y = -\frac{3}{2}x + 1.68$ or equivalent	A1	[6]		

© UCLES 2015 9709/33/O/N/15

11	Use correct quotient or product rule Obtain correct derivative in any form	M1 A1	
	Use Pythagoras to simplify the derivative to $\frac{1}{1+\cos x}$, or equivalent	A1	
	Justify the given statement, $-1 < \cos x < 1$ statement, or equivalent	A1	[4]

© UCLES 2016 9709/33/O/N/16

12(i)	Use the chain rule	M1
	Obtain correct derivative in any form	A1
	Use correct trigonometry to express derivative in terms of tan x	M1
	Obtain $\frac{dy}{dx} = -\frac{4 \tan x}{4 + \tan^2 x}$, or equivalent	A1
	Total:	4
12(ii)	Equate derivative to -1 and solve a 3–term quadratic for $\tan x$	M1
	Obtain answer $x=1.11$ and no other in the given interval	A1
	Total:	2

© UCLES 2017 9709/33/M/J/17

Question	Answer	Marks	Guidance
13	Use correct quotient rule	M1	Allow use of correct product rule on $x \times (1 + \ln x)^{-1}$
	Obtain correct derivative in any form	A1	$\frac{dy}{dx} = \frac{(1 + \ln x) - x \times \frac{1}{x}}{(1 + \ln x)^2} = \left(\frac{1}{1 + \ln x} - \frac{1}{(1 + \ln x)^2}\right)$
	Equate derivative to $\frac{1}{4}$ and obtain a quadratic in $\ln x$ or $(1 + \ln x)$	M1	Horizontal form. Accept $\ln x = \frac{1}{4} (1 + \ln x)^2$
	Reduce to $(\ln x)^2 - 2 \ln x + 1 = 0$	A1	or 3-term equivalent. Condone $\ln x^2$ if later used correctly
	Solve a 3-term quadratic in ln x for x	M1	Must see working if solving incorrect quadratic
	Obtain answer $x = e$	A1	Accept e ¹
	Obtain answer $y = \frac{1}{2}$ e	A1	Exact only with no decimals seen before the exact value. Accept $\frac{e^1}{2}$ but not $\frac{e}{1+\ln e}$
		7	

© UCLES 2019 9709/32/M/J/19

ıestion			
14(i)	Use the quotient or product rule	M1	
	Obtain correct derivative in any form	A1	
	Reduce to $-\frac{2e^{-x}}{\left(1-e^{-x}\right)^2}$, or equivalent, and explain why this is always negative	A1	
		3	

estion			
14(ii)	Equate derivative to – 1 and obtain the given equation	B1	
	State or imply $u^2 - 4u + 1 = 0$, or equivalent in e^a	B1	
	Solve for <i>a</i>	M1	
	Obtain answer $a = \ln(2 + \sqrt{3})$ and no other	A1	
		4	

© UCLES 2019 9709/33/M/J/19