CPU Performance

About

Title

Relative CPU Performance Data, described in terms of its cycle time, memory size, etc.

Data Source

- Feldmesser, Jacob. (1987). Computer Hardware. UCI Machine Learning Repository.
- https://archive-beta.ics.uci.edu/dataset/29/computer+hardware

Relevant Information

The estimated relative performance values were estimated by the authors using a linear regression method.

Dataset

Load CPU Perfomance dataset

Data Dictionary

Column	Description
vendor name	30 different vendor
Model Name	many unique symbols
MYCT	machine cycle time in nanoseconds (integer)
MMIN	minimum main memory in kilobytes (integer)
MMAX	maximum main memory in kilobytes (integer)
CACH	cache memory in kilobytes (integer)

Column	Description
CHMIN CHMAX PRP ERP	minimum channels in units (integer) maximum channels in units (integer) published relative performance (integer) estimated relative performance from the original article (integer)

Class Distribution: the class value (PRP) is continuously valued.

PRP Value Range	Number of Instances in Range
0-20	31
21-100	121
101-200	27
201-300	13
301-400	7
401-500	4
501-600	2
above 600	4

	Vendor	Model	MYCT	${\tt MMIN}$	MMAX	CACH	CHMIN	\mathtt{CHMAX}	PRP	ERP
1	adviser	32/60	125	256	6000	256	16	128	198	199
2	amdahl	470v/7	29	8000	32000	32	8	32	269	253
3	amdahl	470v/7a	29	8000	32000	32	8	32	220	253
4	amdahl	470v/7b	29	8000	32000	32	8	32	172	253
5	amdahl	470v/7c	29	8000	16000	32	8	16	132	132
6	amdahl	470v/b	26	8000	32000	64	8	32	318	290

Summary Statistics

Vendor	Model	MYC'	Γ	MMIN
Length:209	Length: 209	Min. :	17.0 M	in. : 64
Class :characte	r Class:charac	ter 1st Qu.:	50.0 1	st Qu.: 768
Mode :characte	r Mode :charac	ter Median :	110.0 M	ledian : 2000
		Mean :	203.8 M	lean : 2868
		3rd Qu.:	225.0 3	rd Qu.: 4000
		Max. :	1500.0 M	lax. :32000
XAMM	CACH	CHMIN	CH	MAX
Min. : 64	Min. : 0.00	Min. : 0.000	O Min.	: 0.00
1st Qu.: 4000	1st Qu.: 0.00	1st Qu.: 1.00	0 1st Qu	.: 5.00

Median: 8000 Median: 8.00 Median : 2.000 Median: 8.00 Mean :11796 Mean : 25.21 Mean : 4.699 Mean : 18.27 3rd Qu.:16000 3rd Qu.: 32.00 3rd Qu.: 6.000 3rd Qu.: 24.00 Max. Max. :256.00 Max. :52.000 Max. :176.00 :64000 PRP **ERP** Min. : 6.0 Min. : 15.00

Min. : 6.0 Min. : 15.00 1st Qu.: 27.0 1st Qu.: 28.00 Median : 50.0 Median : 45.00 Mean : 105.6 Mean : 99.33 3rd Qu.: 113.0 3rd Qu.: 101.00 Max. :1150.0 Max. :1238.00

Glimpse of Data

Rows: 209

Columns: 10 \$ Vendor <chr> "adviser", "amdahl", "amdahl", "amdahl", "amdahl", "amdahl", "a~ \$ Model <chr> "32/60", "470v/7", "470v/7a", "470v/7b", "470v/7c", "470v/b", "~ <int> 125, 29, 29, 29, 29, 26, 23, 23, 23, 23, 400, 400, 60, 50, 350,~ \$ MYCT \$ MMIN <int> 256, 8000, 8000, 8000, 8000, 8000, 16000, 16000, 16000, 32000, ~ \$ MMAX <int> 6000, 32000, 32000, 32000, 16000, 32000, 32000, 32000, 64000, 6~ \$ CACH <int> 256, 32, 32, 32, 32, 64, 64, 64, 64, 128, 0, 4, 65, 65, 0, 0, 8~ <int> 16, 8, 8, 8, 8, 8, 16, 16, 16, 32, 1, 1, 1, 1, 1, 4, 4, 7, 5, 8~ \$ CHMIN <int> 128, 32, 32, 32, 16, 32, 32, 32, 32, 64, 2, 6, 8, 8, 4, 32, 15,~ \$ CHMAX <int> 198, 269, 220, 172, 132, 318, 367, 489, 636, 1144, 38, 40, 92, ~ \$ PRP \$ ERP <int> 199, 253, 253, 253, 132, 290, 381, 381, 749, 1238, 23, 24, 70, ~

Visual Analysis

Histograms

All of the features have some outliers.

Performance per Vendor

Amdahl and Sperry have the highest performance

Performance per Model of Sperry

The better performing Sperry is model #1100/94

Correlations

Drop Vendor, Model, and ERP from dataset

	${\tt MYCT}$	${\tt MMIN}$	MMAX	CACH	CHMIN	\mathtt{CHMAX}	PRP
1	125	256	6000	256	16	128	198
2	29	8000	32000	32	8	32	269
3	29	8000	32000	32	8	32	220
4	29	8000	32000	32	8	32	172
5	29	8000	16000	32	8	16	132
6	26	8000	32000	64	8	32	318

Run correlation

	MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP
MYCT	1.00	-0.34	-0.38	-0.32	-0.30	-0.25	-0.31
MMIN	-0.34	1.00	0.76	0.53	0.52	0.27	0.79
MMAX	-0.38	0.76	1.00	0.54	0.56	0.53	0.86

```
CACH -0.32
             0.53
                    0.54
                          1.00
                                 0.58
                                       0.49
                                              0.66
CHMIN -0.30
             0.52
                    0.56
                          0.58
                                 1.00
                                       0.55
                                              0.61
CHMAX -0.25
                                 0.55
             0.27
                    0.53
                          0.49
                                        1.00
                                              0.61
```

Correlation heatmap

From the correlation matrix we can see:

- PRP and MMAX are highly correlated
- PRP and CACH are highly correlated
- PRP and CHMAX are highly correlated
- PRP and MMIN are highly correlated
- PRP and CHMIN are highly correlated

Scatterplot of PRP vs features

PRP vs MYCT

PRP vs MYCT

PRP vs MMAX

PRP vs CACH

PRP vs CHMIN

PRP vs CHMAX

Model

Split data into training and test datasets

train: 167 7

test: 42 7

Training dataset

	MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP
1	125	256	6000	256	16	128	198
2	29	8000	32000	32	8	32	269
3	29	8000	32000	32	8	32	220
6	26	8000	32000	64	8	32	318
7	23	16000	32000	64	16	32	367
9	23	16000	64000	64	16	32	636

Check distribution of PRP response variable

The log transformation of the PRP response variable is closer to normal so we will use that

Log PRP

	MYCT	MMIN	MMAX	CACH	${\tt CHMIN}$	\mathtt{CHMAX}	PRP
1	125	256	6000	256	16	128	5.288267
2	29	8000	32000	32	8	32	5.594711
3	29	8000	32000	32	8	32	5.393628
6	26	8000	32000	64	8	32	5.762051
7	23	16000	32000	64	16	32	5.905362
9	23	16000	64000	64	16	32	6.455199

Regression model 1 - All features

Call:

lm(formula = PRP ~ ., data = train_df)

Coefficients:

(Intercept) MYCT MMIN MMAX CACH CHMIN 3.361e+00 -7.937e-04 1.702e-05 4.948e-05 6.133e-03 6.244e-03 CHMAX

Summary Statistics

```
Call:
```

lm(formula = PRP ~ ., data = train_df)

Residuals:

Min 1Q Median 3Q Max -1.49193 -0.25878 0.04092 0.30446 0.98896

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.361e+00 6.718e-02 50.029 < 2e-16 ***
           -7.937e-04 1.445e-04 -5.491 1.54e-07 ***
MYCT
MMIN
            1.702e-05 1.560e-05 1.091
                                          0.277
XAMM
            4.948e-05 5.661e-06 8.741 3.00e-15 ***
            6.133e-03 1.200e-03 5.111 9.04e-07 ***
CACH
CHMIN
          6.244e-03 6.740e-03 0.926 0.356
           -1.009e-04 1.791e-03 -0.056
                                         0.955
CHMAX
___
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.454 on 160 degrees of freedom Multiple R-squared: 0.8261, Adjusted R-squared: 0.8196 F-statistic: 126.7 on 6 and 160 DF, p-value: < 2.2e-16

Visualize model

The adjusted R-squared is .8196, meaning the independent variables explain 82% of the variance of the CPU performance.

Three variables (MYCT, MMAX, CACH) show very low p-values (less than 0.05) and are significant

The residuals vs fitted plot show the trend line close to zero except after around 5.5

The Q_Q plot shows us that the features are normal except for the ends

Regression Model 2 - features MYCT, MMAX, CACH only

Call:

lm(formula = PRP ~ MYCT + MMAX + CACH, data = train_df)

Coefficients:

(Intercept) MYCT MMAX CACH 3.365e+00 -8.074e-04 5.447e-05 6.761e-03

Summary Statistics

```
Call:
lm(formula = PRP ~ MYCT + MMAX + CACH, data = train_df)
Residuals:
    Min
              1Q
                 Median
                                ЗQ
                                       Max
-1.48775 -0.27856 0.01263 0.29954 1.00502
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.365e+00 6.671e-02 50.436 < 2e-16 ***
           -8.074e-04 1.441e-04 -5.605 8.73e-08 ***
MYCT
MMAX
            5.448e-05 3.695e-06 14.741 < 2e-16 ***
CACH
            6.761e-03 1.074e-03 6.293 2.76e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4533 on 163 degrees of freedom
Multiple R-squared: 0.8234,
                              Adjusted R-squared: 0.8201
```

F-statistic: 253.3 on 3 and 163 DF, p-value: < 2.2e-16

Visualize model

The F-statistic is much higher than in model 1 and all features are significant. The R2 is a little higher than in model 1.

Check predictor vs residual plot

ANOVA Test - Model 2

Analysis of Variance Table

Response: PRP

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Predict PRP with model 2

	ERP	PRP	MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX
4	5.300864	5.147494	29	8000	32000	32	8	32
5	4.429265	4.882802	29	8000	16000	32	8	16
8	5 522059	6 192362	23	16000	32000	64	16	32

 11
 3.205190
 3.637586
 400
 1000
 3000
 0
 1
 2

 16
 4.074847
 3.555348
 200
 512
 16000
 0
 4
 32

 20
 4.508345
 4.787492
 110
 5000
 5000
 142
 8
 64

Plot predicted PRP vs PRP

Residuals vs Prediction

The plot shows the prediction errors vary from the PRP

Gain Curve plot

Performance Model PRP~ERP

Gini score: 0.058, relative Gini score: 0.88

sort_criterion → model: sort by ERP - → wizard: sort by PRP

The Gini score of 0.88 shows that the model correctly sorts high performance from lower ones.

Performance on Test data

RMSE: 0.5243939

Std Deviation: 0.9720138

r2: 0.7283943

The RMSE is lower than the Std deviation so the model predicts the PRP well. The R2 is 73% which shows that the model predicts pretty well

Cross Validation

Split data

```
List of 3
$ :List of 2
..$ train: int [1:140] 2 3 4 5 7 9 10 11 12 13 ...
..$ app : int [1:69] 57 161 74 25 85 170 189 145 104 93 ...
$ :List of 2
..$ train: int [1:139] 1 2 4 6 8 10 13 16 17 18 ...
..$ app : int [1:70] 192 148 66 133 136 45 159 105 173 184 ...
$ :List of 2
..$ train: int [1:139] 1 3 5 6 7 8 9 11 12 14 ...
..$ app : int [1:70] 165 163 4 117 55 146 134 176 53 63 ...
- attr(*, "splitmethod")= chr "kwaycross"
```

Run Crossfold

RMSE on full model: 71.13728

RMSE of the cross-validation predictions: 81.09387