

Code:	15ME42T
-------	---------

Register					
Number					

IV Semester Diploma Examination, Oct./Nov.-2019

BASIC THERMAL ENGINEERING

Tim	e: 3 Hours] [Ma	x. Marks : 100
Note	 (i) Answer any six questions from Part – A. (ii) Answer any seven full questions from Part – B. 	
	PART – A	
1.	Define the terms:	5
	(i) System	
	(ii) State of a system	
	(iii) Cycle	
	(iv) Enthalpy	
	(v) Specific heat	
2.	State the characteristics of Throttling process.	5
3.	One kg of air is heated in a closed vessel at a constant volume from 2 bar to 5 bar. If the initial temperature of the air is 300 °K. Determine internal energy, work done. $C_V = 0.712 \text{ kJ/kg K}$.	a pressure of the change in 5
		• \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
4.	List any five assumptions made in thermodynamic air standard cycles.	5
5.	Explain with the help of P - V and T - S diagram working of Carnot cyc	le. 5
6.	Define the following:	5
	(i) Cylinder bore	
	(ii) Swept volume	
	(iii) Compression ratio	
	(iv) Indicated power	
	(v) Brake power	* * **
	1 of 4	(Turn over

5

7.	Expl	ain with diagram, Rope Brake dynamometer.	5
8.	Expl	ain with line diagram radial heat transfer by conduction through thick cylinder.	5
9.	Diffe	erentiate between the closed and open cycle gas turbine.	5
		PART – B	
10.	(a)	Differentiate between Intensive and Extensive properties of a system. Give examples for each.	5
	(b)	A domestic food freezer is to be maintained at a temperature of -15 °C. The ambient air temperature is 30 °C. If the heat leaks into the freezer at the continuous rate of 1.75 kJ/sec. Find the power required to pump this heat out	
		continuously, if the actual COP is one-third of theoretical COP.	5
11.	(a)	Derive the characteristic gas equation PV = mRT.	5
	(b)	A gas having initial pressure, volume and temperature as 275 kN/m ² , 0.09 m ³ and 185 °C respectively, is compressed at constant pressure until its temperature is 15 °C. Calculate the amount of heat transferred during the process. Take $R = 290 \text{ J/kg} \cdot \text{K}$ and $C_p = 1.005 \text{ kJ/kg K}$.	5

- 12. (a) Draw P.V. & T.S. diagram for Iso-thermal process with indicate various process.
 - (b) One kg of air at a temperature of 40 °C is compressed isothermally from a pressure of 1.5 bar to 6 bar. Determine the heat rejected by the air during the process of compression.

For air
$$C_p = 1.005 \text{ kJ/kg K}$$
 and $C_v = 0.712 \text{ kJ/kg K}$.

13. A gas has a molecular mass of 26.7. The gas is compressed through a ratio of 12, according to the law PV^{1.25} = C from initial condition of 0.9 bar and 333 K. Assuming specific heat at constant volume Cv = 0.79 kJ/kg K, determine per kg of mass, work done, heat flow across the cylinder walls, gas constant and ratio of specific heat. Take Ru = 8314 J/kg K.
 10

- 14. With the help of P V and T S diagram, derive an expression for air standard efficiency of Otto cycle.
- 15. The compression ratio of an ideal air standard diesel cycle is 15. The heat transfer is 1465 kJ/kg of air. Determine the pressure and temperature at the end of each process and cycle efficiency, if the inlet conditions are 300 K and 1 bar. Take $\gamma = 1.4$ and $C_v = 0.712$ kJ/kg K and $C_p = 1$ kJ/kg K for air.
- 16. Explain with neat diagram working of four stroke Diesel engine.

10

17. A test on a single cylinder 4-stroke oil engine having bore 18 cm and stroke 36 cm yielded the following results:

Brake torque = 0.44 kN-m

MEP = 7.2 bar

Fuel consumption = 3.5 kg/min

Cooling water flow = 4.5 kg/min

Water temperature rise = 36 °C

A/F ratio = 25 (Air fuel ratio)

Exhaust gas temperature = 415 °C

Room temperature = 21 °C

Specific heat of exhaust gases 1.05 kJ/kg K

Calorific value = 45200 kJ/kg K

Speed = 286 rpm

Draw up a heat balance sheet on kJ/min basis

[Turn over

15ME42T

4 of 4

18. (a) The following data refer to a test on a petrol engine:

Indicated power = 30 kW

Brake power = 26 kW

Engine speed = 1800 rpm

Fuel per brake power hour = 0.35 kg

Calorific value of the fuel used = 44100 kJ/kg

Calculate:

- (i) Mechanical efficiency
- (ii) Indicated thermal efficiency
- (iii) Brake thermal efficiency
- (b) Derive an expression for heat transfer through a composite slab.

19. (a) Heat is conducted through a wall of room made of composite plate with a conduction of 134 W/m K and 60 W/m K and thickness 36 mm and 42 mm respectively.

The temperature at the outer face 96 °C and at the inner face 8 °C. Determine the temperature at the interface of the two materials.

(b) Explain with neat diagram the working of turbojet engine.

5

٠,

5