

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Campus de Bauru

2^a. Prova (P2)

20/Junho/2018, 16 - 18hSala 06A

Curso: Bacharelado em Ciência da Computação – **BCC**

Estruturas de Dados I – **ED1** Disciplina:

Professora: Simone das Graças Domingues Prado

RA:

Total	8.5
Questão 03	3.0
Questão 02	2,6
Questão 01	2,9

(Questão 01) AVL.

Nome:

- a) (0,8pt) Tendo a figura acima como referência, explique quando poderá ocorrer cada uma das Rotações na <u>Inserção de valores</u>, ou seja, como são escolhidas para serem aplicadas e balancearem a árvore.
- b) (0,5pt) Escreva uma rotina para verificar se um dado valor está armazenado em uma árvore AVL de números inteiros. Baseie-se no cabeçalho da rotina abaixo. A rotina deve devolver 1 (se encontrou o elemento) e 0 (se não achou).

```
typedef struct no_arvore{
      int info, balanco;
      struct no_arvore* esquerdo;
      struct no_arvore* direito;
      } *def_avl;
int verifica_AVL (def_avl Arvore, int valor) { ...}
```

- c) (1,2pt) Dada a sequência (57, 43, 51, 90, 75, 93, 27, 15), faça a inserção de cada nro em uma AVL.
- d) (0,4pt) Dada a árvore AVL abaixo, remova o elemento 70 e depois o 75.

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Campus de Bauru

(Questão 02) HEAP

a) (1,0 pt) Escreva uma rotina para verificar se um dado valor está armazenado em uma árvore HEAP MÁXIMA de números inteiros. Baseie-se no cabeçalho da rotina abaixo. A rotina deve devolver 1 (se encontrou o elemento) e 0 (se não achou). Suponha que a posição vazia da HEAP contem o valor "-1".

typedef int def_heap[Max];

int verifica_HEAP (def_heap H, int valor) { ... }

- b) (1,0pt) Dada a sequência de números (14, 33, 45, 7, 17, 9, 51, 13, 45, 10), faça a inserção deles, um por um, na ordem dada, numa Árvore HEAP máxima
- c) (0,6pt) Dado a árvore <u>HEAP Mínima</u>: [5, 7, 9, 15, 20, 17, 22, 30, 45]. Altere o valor 17 para 3. Mostre a árvore resultante. Depois remova os <u>dois primeiros</u> elementos. Mostre os números removidos (em sequencia) e a árvore resultante

(Questão 03) HASHING.

- a) (1,0pt) Tendo uma tabela de 17 posições, aplique a função hashing **Dobra** para as seguintes chaves: 75241, 734502, 137144, 91583, 678541, 457215, 25866, 958627, 743478, 91138. Aplique uma única vez o método. Se ainda não for o resultado aceitável, aplique o método da divisão inteira para encerrar os cálculos.
- b) (1,0pt) Fazendo o tratamento de colisão por Endereçamento Aberto por Tentativa Quadrática ($a_1 = 5$ e $a_2 = 9$) insira as chaves da letra (a) na tabela de 17 posições.

0	1	2	3	4	5
6	7	8	9	10	11
		<u> </u>			
12	13	14	15	16	7

c) (1,0pt) Implemente uma rotina para buscar um valor num vetor que armazena números inteiros e que usa o tratamento de colisão por Endereçamento Aberto por Tentativa Quadrática e função Hashing Divisão Inteira. Baseie-se no cabeçalho da rotina abaixo. A rotina deve devolver 1 (se encontrou o elemento) e 0 (caso contrário).

int verifica_TQ (int V[Max], int Valor, int M, int a1, int a2) { ... }

Boa Prova!