Computer Systems Principles

Data Representation - Bits and Bytes

Today's Class

- Learn data representation in binary and hexadecimal
 - represent negative numbers.
- 2. Perform operations
 - addition, subtraction, multiplication

• Announcements: Moodle Quiz 2 & HW 1 are out.

Group Task

- Form partners
- Using only the three symbols @#& represent:
 - integers 0 10

How do we think about numbers?

- Representing and reasoning about numbers
 - Computers store variables (data).
 - Data is typically composed of numbers and characters.
 - Want a representation that is sensible.

• Digits 0-9

- Digits 0-9
- 171₁₀=1*100+7*10+1=
 171

- Digits 0-9
- 171₁₀=1*100+7*10+1=
 171
- Every time we move to the left we're thinking in bundles of 10 of the space to the right

- Digits 0-9
- 171₁₀=1*100+7*10+1= 171
- Every time we move to the left we're thinking in bundles of 10 of the space to the right
- Power of the base 10 system

Given four positions: $[X \times X \times X]_{10}$ what is the largest number you can represent?

• 9999₁₀

Binary Digits: (BITs)

Binary Digits: (BITS)

Most significant bit $\longrightarrow \underline{10001111}$ — Least significant bit

• Sequence of eight bits: byte

Binary Digits: (BITS)

```
76543210
Most significant bit → 10001111 ← Least significant bit
      b_7b_6b_5b_4b_3b_2b_1b_0
      b<sub>0</sub> 1s place
      b<sub>1</sub> 2s place
      b<sub>2</sub> 4s place
      b<sub>3</sub> 8s place
      b<sub>4</sub> 16s place
      b<sub>5</sub> 32s place
      b<sub>6</sub> 64s place
       b<sub>7</sub> 128s place
```

Sequence of eight bits: byte

Binary Number Systems

- Transistors: On or Off
- Optical: Light or No light
- Magnetic: Positive or Negative

Conversion: Binary to Decimal

Method:

Multiply each of the binary digits by the appropriate power of 2:

Conversion: Decimal to Binary

Method:

We have a decimal number (x):

- Highest power of two less than or equal to the
 decimal number (y)
- 2. Subtract the power of two (y) from the decimal number (x) as x = x-y.
- 3. If x = 0, we have our result! Else: Repeat

Hexadecimal Representation

- Hexadecimal numbers use 16 digits: {0-9, A-F}
 - does not distinguish between upper and lower case!

Hexadecimal Representation

- Hexadecimal numbers use 16 digits: {0-9, A-F}
 - does not distinguish between upper and lower case!
- $AB_{16} = A*16 + B*1$

Hexadecimal Representation

- Hexadecimal numbers use 16 digits: {0-9, A-F}
 - does not distinguish between upper and lower case!

```
• AB<sub>16</sub>=A*16+B*1
=10*16+11*1
=171
```

```
DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F
```

Conversion from Binary to Hexadecimal

- Splitting into groups of 4 bits each.
- If not a multiple of 4:
 - pad the number with <u>leading</u> zell
- Example:

Hexadecimal to
Binary is similar:
write each
hexadecimal digit
into 4 binary digits

3CADB3 ₁₆ =	0011	1100	1010	1101	1011	00112
------------------------	------	------	------	------	------	-------

Bin	0011	1100	1010	1101	1011	0011
Hex	3	С	Α	D	В	3

iClicker Activity

Convert the decimal number 231 to binary and hexadecimal equivalents.

- a) 1110 1111, F7
- b) 1110 0110, E6
- c) 1110 0111, E7
- d) 0110 0111, 57

DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
HEX	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F

Binary Addition

Rules

- 1+O = 1
- 1+1 = 10
- 1+1+1 = 11

Binary Addition

Rules

```
• 1+O = 1
```

	1	1	1	0		Carry in
		1	0	1	1	Augend (A)
+		1	1	1	0	Addend (B)
	1	1	0	0	1	Sum

Binary Addition

Rules

Binary Subtraction

Rules

```
1-0 = 1
1-1 = 0
0-1 = 1 \text{ (borrow 1)}
1-1 = 0
          0 1 1 = 1 + 2 + 8 = 11
                           (dec)
     0 1 1 0
                         = 2 + 4 = 6
                           (dec)
                         = 1 + 4 = 5
     0
               0
```

(dec)

$$0X0 = 0 \cdot 1X0 = 0 \cdot 1X1 = 1$$

$$0X0 = 0$$
 • $1X0 = 0$ • $1X1 = 1$

Since we always multiply by either 0 = 8 + 2 + 1 = 11 or 1, the partial $X \quad 1 \quad 1 \quad 0 \quad 1 = 8 + 4 + 1 = 13$ products are always either 0000 or the multiplicand (in this example: 1011). 1 = 128 + 8 + 4 + 1 = 141

iClicker Activity

Multiply the two numbers: 1101×1001

- a) 110 1001
- b) 100 1111
- c) 110 1101
- d) 111 0101

iClicker Activity

Largest binary integer that can be stored in 3 bits?

- a) 001
- b) 100
- c) 111
- d) None of these

What about the smallest?

Unsigned Binary representation

Unsigned binary:

Most significant bit
$$\longrightarrow 10001111 \longleftarrow$$
 Least significant bit

Representation:

$$1 \times 2^7 + 0 \times 2^6 \dots + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

 $128 + 0 \dots + 8 + 4 + 2 + 1$
 $10001111 = 143$

 We add/subtract/multiply using the normal rules that we use for decimal addition/subtraction/multiplication

Signed binary representation

- Sign bit
 - Left-most bit: $b_7b_6b_5b_4b_3b_2b_1b_0$
 - Also called the most significant bit

Negative Binary: Sign-magnitude

To get the negative number, set the sign bit to 1 and leave all the other bits unchanged.

81 =	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1
-81=	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1

Called sign-magnitude representation: sign bit + value

0 =																
0 =	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Two zeroes! Not fun

More difficulties ...

• It is not easy to add, subtract, or compare numbers in sign-magnitude format

$$5 - 2 = 5 + (-2) = 0101 + 1010 = 1111 = -7$$

More difficulties ...

 It is not easy to add, subtract, or compare numbers in sign-magnitude format

$$5 - 2 = 5 + (-2) = 0101 + 1010 = 1111 = -7$$

 Values do not fall in a natural order as compared with unsigned numbers

An alternative: Ones Complement

To get the negative of a number, invert or complement <u>all</u> the bits.

Complement = (~)

• $^{\sim}1 = 0$ and $^{\sim}0 = 1$

81 =	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1
-81=	1	1	1	1	1	1	1	1	1	0	1	0	1	1	1	0

An alternative: Ones Complement

- This solves the "unnatural order" problem
- But we still have two zeroes!

Two's Complement

To get the negative of a number, invert all the bits and then add 1.

If the addition causes a carry bit past the most significant bit, discard the high carry.

+1

Two's Complement

Do we have a unique representation of the value zero? Yes!

Two's Complement: Advantages

- ✓ Unique representation of zero
- ✓ Exactly same method for addition, multiplication, etc. as unsigned integers except throw away the high carry (high borrow for subtraction).

Two's Complement: Addition, Subtraction

$$45 - 14 = 45 + (-14) = 31$$

ignore high carry 1!

Two's Complement: Advantages

This solves the "unnatural order" problem

Conversion: Binary to Decimal

Method:

Multiply each of the binary digits by the appropriate power of 2:

Example:

Two's complement: Conversion from Binary to Decimal

Method:

Multiply each of the binary digits by the appropriate power of 2:

b-bit word x in Two's complement

- 1) For bit $0 \le i \le b-2$, multiply 2^i
- 2) For bit b-1, multiply -2^{b-1}

Example:

```
unsigned 11111111_2=128+64+32+16+8+4+2+1=255_{10} signed 11111111_2=-128+64+32+16+8+4+2+1=-1_{10}
```

Signed		Bits		UnSigned
0		0000		0
1		0001		1
2		0010		2
3		0011		3
4		0100		4
5		0101		5
6		0110		6
7		0111		7
-8		1000		8
-7		1001		9
-6		1010		10
-5		1011		11
-4		1100		12
-3		1101		13
-2		1110		14
-1		1111		15

Integer Value Range

Representing negative and positive numbers in b bits:

```
- Unsigned: 0 to 2^{b}-1 = 00...00 to 11...11
```

- Signed: $-2^{(b-1)}$ to $2^{(b-1)}$ -1 = 100..00 to 011...11

Integer Value Range

Representing negative and positive numbers in b bits:

```
- Unsigned: 0 to 2^{b}-1 = 00...00 to 11...11
```

```
- Signed: -2^{(b-1)} to 2^{(b-1)} -1 = 100..00 to 011...11
```

• Example: range for 8 bits is:

```
- Unsigned: 0 \text{ to } 2^8 - 1 = 0 \dots 255
```

- Signed:
$$-2^{(7)}$$
 to $2^{(7)}$ -1 = -128 127

i-clicker question

• What is the range of a signed 3-bit number?

A.
$$-2^1$$
 to $+2^1$

B.
$$-2^2$$
 to $+2^2$ -1

C.
$$-2^3$$
 to $+2^3-1$

$$D.-2^4 to +2^4-1$$

Two's Complement Overflow & Underflow

 Overflow is caused by a value near the upper limit of the range, while an underflow is caused by values near the lower limit of the range.

Overflow: Example

Consider the 8-bit two's complement addition:

					1	1	1	1	1	1		
1	2	7		0	1	1	1	1	1	1	1	
	+	1								+	1	
1	2	8		1	0	0	0	0	0	0	0	_

- The result should be +128, but the leftmost bit is 1, therefore the result is -128!
- This is an overflow: an arithmetic operation that should be positive gives a negative result.

Underflow: Example

Consider the 8-bit two's complement addition:

- The result should be -129, but the leftmost bit is 0, therefore the result is +127!
- This is an underflow: as an arithmetic operation that should be negative gives a positive result.

iClicker Activity

 What is the result of the following 8-bit two's complement addition 1000 0000 - 1?

- a) 0111 1111
- b) 1111 1111
- c) 0000 0000
- d) 0000 0001

Hint: Try converting it back to decimal and compare!

Next Class

- Lets represent Binary operations in C!
- Overflow conditions
 - How do we represent overflow?
 - What's the impact of an overflow?
 - How do we mitigate it?
- Readings posted on website