

zipfR

Baroni & Evert

zipfR

A guided tour Playtime

Counting Words: The zipfR Toolkit

Marco Baroni & Stefan Evert

Málaga, 10 August 2006

zipfR

zipfR

Baroni & Evert

zipfR

A guided tour Playtime ▶ http://purl.org/stefan.evert/zipfR

▶ http://www.r-project.org/

Outline

zipfR

Baroni & Evert

zipfR

zipfR

A guided tour Playtime

A guided toui

Playtime

Outline

zipfR

Baroni & Evert

zipfl

zipfR

A guided tour Playtime A guided tour

Playtime

Loading

zipfR

Baroni & Evert

library(zipfR)

zipfF

A guided tour

?zipfR

Playtin

data(package="zipfR")

Looking at spectra

zipfR

Baroni & Evert

A guided tour

Playtime

summary(ItaRi.spc)
print(ItaRi.spc)

p11110(10**a**1111.5p

N(ItaRi.spc)
V(ItaRi.spc)

Vm(ItaRi.spc,1)
Vm(ItaRi.spc,1:5)

Baayen's P

Vm(ItaRi.spc,1) / N(ItaRi.spc)

plot(ItaRi.spc)

plot(ItaRi.spc, log="x")

Importing data

zipfR

Baroni & Evert

data(ItaRi.spc)
data(ItaRi.emp.vgc)

A guided tour

Playtime

my.spc <- read.spc("my.spc.txt")
my.vgc <- read.vgc("my.vgc.txt")</pre>

my.tfl <- read.tfl("my.tfl.txt")</pre>

my.spc <- tfl2spc(my.tfl)</pre>

Looking at vgcs

zipfR

Baroni & Evert

summary(ItaRi.emp.vgc)
print(ItaRi.emp.vgc)

A guided tour

Playtime N(ItaRi.emp.vgc) # NB!

plot(ItaRi.emp.vgc, add.m=1)

Creating vgcs with binomial interpolation

zipfR

Baroni & Evert

interpolated vgc

zipfR

A guided tour

ItaRi.bin.vgc <- vgc.interp(ItaRi.spc,
N(ItaRi.emp.vgc), m.max=1)</pre>

summary(ItaRi.bin.vgc)

comparison

plot(ItaRi.emp.vgc, ItaRi.bin.vgc,
legend=c("observed","interpolated"))

Observed/expected spectra at estimation size 1

zipfR

Baroni & Evert

expected spectra

A guided tour

ItaRi.zm.spc <- lnre.spc(ItaRi.zm, N(ItaRi.zm))</pre>

ItaRi.mmax1.zm.spc <- lnre.spc(ItaRi.mmax1.zm,
N(ItaRi.mmax1.zm))</pre>

ItaRi.fzm.spc <- lnre.spc(ItaRi.fzm, N(ItaRi.fzm))</pre>

ZipfR

Estimating LNRE models

zipfR

Baroni & Evert

ZM model

zipfR

A guided tour

ItaRi.zm <- lnre("zm", ItaRi.spc)
summary(ItaRi.zm)</pre>

ZM estimated fitting V and V_1 only

ItaRi.mmax1.zm <- lnre("zm", ItaRi.spc, m.max=1)
summary(ItaRi.mmax1.zm)</pre>

fZM model

ItaRi.fzm <- lnre("fzm", ItaRi.spc, exact=F) # NB!
summary(ItaRi.fzm)</pre>

Observed/expected spectra at estimation size 2

zipfR

Baroni & Evert

compare

zinfR

A guided tour

plot(ItaRi.spc, ItaRi.zm.spc,
ItaRi.mmax1.zm.spc, ItaRi.fzm.spc,
legend=c("observed","zm","zm1","fzm"))

plot first 10 elements only

plot(ItaRi.spc, ItaRi.zm.spc, ItaRi.mmax1.zm.spc,
ItaRi.fzm.spc, legend=c("observed","zm","zm1","fzm")
m.max=10)

Expected spectra at 10 times the estimation size

3

${\sf zipfR}$

Baroni & Evert

extrapolated spectra

zipfR

A guided tour

ItaRi.zm.spc <- lnre.spc(ItaRi.zm, 10*N(ItaRi.zm))</pre>

ItaRi.fzm.spc <- lnre.spc(ItaRi.fzm,
10*N(ItaRi.fzm))</pre>

compare

plot(ItaRi.zm.spc, ItaRi.fzm.spc,
legend=c("zm","fzm"))

Evaluating extrapolation quality 2

zipfR

Baroni & Evert

zipfR

A guided tour

extrapolate vgc up to original sample size

ItaRi.sub.fzm.vgc <- lnre.vgc(ItaRi.sub.fzm,
N(ItaRi.emp.vgc))</pre>

compare

plot(ItaRi.bin.vgc, ItaRi.sub.fzm.vgc,
NO=N(ItaRi.sub.fzm), legend=c("interpolated","fZM"))

Evaluating extrapolation quality 1

zipfR

Baroni & Evert

zipfR

A guided tour

taking a subsample and estimating a model (if you
repat you'll get different sample and different
model!)

ItaRi.sub.spc <- sample.spc(ItaRi.spc, N=700000)
ItaRi.sub.fzm <- lnre("fzm", ItaRi.sub.spc,</pre>

ItaRi.sub.fzm

exact=F)

Compare growth of two categories 1

zipfR

Baroni & Evert

A guided tour

the ultra- prefix

data(ItaUltra.spc)

summary(ItaUltra.spc)

cf.

summary(ItaRi.spc)

estimating model

ItaUltra.fzm <- lnre("fzm",ItaUltra.spc,exact=F)</pre>

ItaUltra.fzm

Compare growth of two categories 2

zipfR

Baroni & Evert

extrapolation of V to ri- sample size

A guided tour

ItaUltra.ext.vgc <- lnre.vgc(ItaUltra.fzm,</pre> N(ItaRi.emp.vgc))

compare

plot(ItaUltra.ext.vgc, ItaRi.bin.vgc, NO=N(ItaUltra.fzm), legend=c("ultra-","ri-"))

zooming in

plot(ItaUltra.ext.vgc, ItaRi.bin.vgc, NO=N(ItaUltra.fzm), legend=c("ultra-","ri-"), xlim=c(0,1e+5))

ZipfR

Now, try it yourself

zipfR

Baroni & Evert

A guided tour

Playtime

▶ Pick comparable datasets

► Explore spc, empirical vgc, interpolated vgc

► Compute LNRE model(s)

► Compare vgc and spectra of classes at different sample sizes

Outline

Baroni & Evert

A guided tour Playtime

Playtime

Baroni & Evert

A guided tour

Playtime

Data

▶ data(package="zipfR")

► E.g.:

► Brown adjectives vs. verbs

► Tiger NP vs. PP rules

► Great Expectations vs. Oliver Twist

► Or import your own frequency lists

Explore

zipfR

Baroni & Evert

zipfR

A guided tour

Playtime

► Remember: ?zipfR

► Summaries, spectrum plots

► Empirical and interpolated vgcs

► Plot vgcs of two classes together

LNRE modeling

zipfR

Baroni & Evert

zipfR

A guided tour

Playtime

▶ Try more than one model

▶ Play with exact and m.max arguments

► Look at goodness of fit, expected V and V_m

► Comparative spc plots at estimation size and larger sizes

Class comparison

zipfR

Baroni & Evert

zipfR

A guided tour

Playtime

► Extrapolate class with shorter sample

▶ Extrapolate both classes to very large sample size

► Look at spectra for matching sample sizes

Already done?

zipfR

Baroni & Evert

Try Case Study 2 from the tutorial (or go to get some lunch!)

 $\mathsf{zipf} \mathsf{R}$

A guided tour

Playtime