

Project 2 – Group 7

STAT 6021 ~ Fall 2022

12/14/2022

Evanston, Mary - Haas, Tara - Hanley, Grant - Lankalapalli, Omprakash

Agenda

Questions of Interest

Project Motivation

04 Models

Answering Questions of Interest with Models

The Data

Data and Variable Descriptions

Results

High-level analysis of results

03 Visualizations

Addressing the Questions of Interest

Linear Regression Question

How does limit balance, previous monthly bill amounts, payment amounts, and demographic information (Age, Sex, Education, and Marriage status) predict the next month's bill amount?

Logistical Regression Question

What is the likelihood of credit card default considering variety of demographic factors and recent monthly payments?

The Data

Data Source

- Default of Credit Card Clients Dataset
- Retrieved from Kaggle.com
- Contains data related to credit card statements from clients in Taiwan during certain months in 2005
- Publicly available dataset includes payment and demographic data of credit card holders from an unspecified Taiwanese bank.

Data Structure

- The raw dataset included 30,000 observations on 24 variables
- Combined Numeric and Categoric Variables
- Credit card holder data, wide data

Variables

DEFAULT: binary factor representing defaulting on next payment

LIMIT BAL: numeric representing maximum card limit

BILL_AMT1 ... BILL_AMT6: numeric representing monthly bill amount

PAY_AMT1 ... PAY_AMT6: numeric representing amount of monthly

payments

PAY 2 ... PAY 6: factor representing number of months behind payments

SEX: factor representing male or female

AGE: numeric representing age

MARRIAGE: factor representing marital status

EDUCATION: factor representing education level

AVG_UTILIZATION_RATE: numeric representing

OVERSPENDER: factor representing payments exceed limit balance

TOTAL_EXCESS_BALANCE: numeric representing running amount over

the limit balance

Linear Visualization

SCHOOL of DATA SCIENCE

Logistic Visualizations

A)

SCHOOL of DATA SCIENCE

Linear Model

```
Analysis of Variance Table

Model 1: BILL_AMT1 ~ LIMIT_BAL + BILL_AMT2 + BILL_AMT3 + PAY_AMT2 + PAY_AMT3 + SEX + EDUCATION

Model 2: BILL_AMT1 ~ LIMIT_BAL + BILL_AMT2 + BILL_AMT3 + PAY_AMT2 + PAY_AMT3 + AGE + SEX + EDUCATION + MARRIAGE

Res.Df RSS Df Sum of Sq F Pr(>F)

1 23222 1.1854e+13
2 23220 1.1854e+13 2 50394338 0.0494 0.9518
```



```
BILL\_AMT1 = -869.60 + .0145LIMIT\_BAL + .8842BILL\_AMT2 + .1059BILL\_AMT3 \\ - .0800PAY\_AMT2 + .0693PAY\_AMT3 + .0689SEX\_Male \\ + 152.30EDUCATIONHigh School + .0068EDUCATIONOther \\ + .0017EDUCAITONUniversity
```


Logistic Model

Generic Model Form:

$$\log\left[\frac{P(DEFAULT=1)}{1-P(DEFAULT=1)}\right] = \alpha + \beta_1(X_1) + \dots + \beta_n(X_n)$$

Models

- Model 1: Everything No Scaling No Adjustment
- Model 1: Everything RobustScaler Over-Sample
- Model 2: Interactions MinMaxScaler Over-Sample
- Model 2: Interactions No Scaling No Adjustment
- Model 3: Two-Stage MinMaxScaler Over-Sample
- Model 3: Two-Stage No Scaling Over-Sample
- Model 4: Log Transformation No Scaling No Adjustment
- Model 4: Log Transformation RobustScaler No Adjustment

Linear Conclusions

 $BILL_AMT1 = -869.60 + .0145LIMIT_BAL + .8842BILL_AMT2 + .1059BILL_AMT3 \\ - .0800PAY_AMT2 + .0693PAY_AMT3 + .0689SEX_Male \\ + 152.30EDUCATIONHigh School + .0068EDUCATIONOther \\ + .0017EDUCAITONUniversity$

Logistic Conclusions

Model Comparison

combined <chr></chr>	max_AUC <dbl></dbl>	Average_Accuracy <dbl></dbl>
Model 4: Log Transformation No Scaling No Adjustment	0.6626522	0.7143659
Model 1: Everything RobustScaler Over-Sample	0.6529411	0.5566341
Model 2: Interactions No Scaling No Adjustment	0.6524546	0.6957317
Model 2: Interactions MinMaxScaler Over–Sample	0.6524485	0.5550488
Model 1: Everything No Scaling No Adjustment	0.6505972	0.6955854
Model 4: Log Transformation RobustScaler No Adjustment	0.6439588	0.7861220
Model 3: Two-Stage No Scaling Over-Sample	0.6045215	0.5376098
Model 3: Two-Stage MinMaxScaler Over-Sample	0.6020093	0.5403902

Selected Model Test Performance:

Anova(mod4, test = "chisq"):

	Df	Deviance	Resid. Df	Resid. Dev	Pr(>Chi)	
NULL			11166	11953		
log(LIMIT_BAL + 0.01)	1	333.93	11165	11619	< 2.2e-16	***
SEX	1	5.09	11164	11614	0.02408	*
AGE	1	6.45	11163	11608	0.01107	*
log(BILL_AMT1_PRED + 0.01)	1	0.00	11162	11608	0.94521	
log(BILL_AMT2 + 0.01)	1	15.25	11161	11592	9.437e-05	**
og(BILL_AMT3 + 0.01)	1	0.02	11160	11592	0.89139	
log(PAY_AMT1_PRED + 0.01)	1	0.06	11159	11592	0.80813	
Log(PAY_AMT2 + 0.01)	1	298.42	11158	11294	< 2.2e-16	**
$log(PAY_AMT3 + 0.01)$	1	98.29	11157	11196	< 2.2e-16	**
log(AVG_UTILIZATION_RATE + 0.01)	1	16.03	11156	11180	6.227e-05	**
PAY_Z	1	414.48	11155	10765	< 2.2e-16	**
PAY_3	1	38.60	11154	10726	5.204e-10	**

Recommended Model Selection: Model 4: Log Transformation...

$$\log\left[\frac{P(DEFAULT=0)}{1-P(DEFAULT=0)}\right] = \alpha + \beta_1(\log(LIMIT_BAL~+~0.01)) + \beta_2(SEX_{Female}) + \beta_3(AGE) + \beta_2(SEX_{Female}) + \beta_3(AGE) + \beta_3(AGE)$$

 $\beta_4(\log(BILL_AMT1_PRED\ +\ 0.01)) + \beta_5(\log(BILL_AMT2\ +\ 0.01)) + \beta_6(\log(BILL_AMT3\ +\ 0.01)) + \beta_7(\log(PAY_AMT1_PRED\ +\ 0.01)) + \beta_8(\log(PAY_AMT2\ +\ 0.01)) + \beta_9(\log(PAY_AMT3\ +\ 0.01)) + \beta_{10}(\log(AVG_UTILIZATION_RATE)) + \beta_{11}(PAY_2) + \beta_{12}(PAY_3)$

Name	Scaling	Sampling	Accuracy	Precision	Recall	Specificity	F1_Score	FPR	TP	TN	FP	FN	Prediction_Threshold	AUC
<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dpl></dpl>	<dbl></dbl>	<dbl></dbl>							
Model 4: Log Transformation	No Scaling	No Adjustment	0.758	0.478	0.459	0.849	0.468	0.151	1188	7295	1299	1403	0.275	0.6536791

