EXERCISE CLASS 6 - SPC for iid data

EXERCISE 1

Data reported in 'ESE06_ex1.csv' represent the diameters of spheres in a recirculating ball mechanism widely used in machine tool industry. The component is very critical and the tolerance is 10 ± 0.5 mm.

Verify if the process is in control by using an X-bar and R chart.

```
In []: # Import the necessary libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy import stats

# Import the dataset
data = pd.read_csv('ESE06_ex1.csv')

# Inspect the dataset
data.head()
```

```
      Out[]:
      x1
      x2
      x3
      x4
      x5

      0
      10.10
      10.04
      10.13
      9.98
      10.14

      1
      10.28
      10.13
      9.78
      9.94
      9.83

      2
      9.95
      10.36
      9.90
      9.96
      9.96

      3
      9.88
      9.89
      9.98
      9.74
      10.14

      4
      10.12
      9.83
      10.14
      9.81
      9.86
```

Solution

Inspect the data by plotting the individual datapoints.

```
In []: # Make a scatter plot of all the columns against the index
plt.plot(data['x1'], linestyle='none', marker='o', label = 'x1')
plt.plot(data['x2'], linestyle='none', marker='o', label = 'x2')
plt.plot(data['x3'], linestyle='none', marker='o', label = 'x3')
plt.plot(data['x4'], linestyle='none', marker='o', label = 'x4')
plt.plot(data['x5'], linestyle='none', marker='o', label = 'x5')
# place the legend outside the plot
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.show()
```


Doesn't look like strange patterns or outliers are present.

We might also check randomness but we would need to know the within-sample order!

Verify the assumption of normality, assuming all the data are from the same population.

```
In []: # Stack the data into a single column
    data_stack = data.stack()

# We can use the Shapiro-Wilk test
__, p_value_SW = stats.shapiro(data_stack)
    print('p-value of the Shapiro-Wilk test: %.3f' % p_value_SW)

# QQ-plot
    stats.probplot(data_stack, dist="norm", plot=plt)
    plt.show()
```

p-value of the Shapiro-Wilk test: 0.753

Let's compute the mean and the range for each sample.

Note: we need to apply the mean and range functions to each row of the data frame.

```
In []: # Make a copy of the data
data_XR = data.copy()
# Add a column with the mean of the rows
data_XR['sample_mean'] = data.mean(axis=1)
# Add a column with the range of the rows
data_XR['sample_range'] = data.max(axis=1) - data.min(axis=1)
# Inspect the dataset
data_XR.head()
```

Out[]:		x1	x2	х3	х4	х5	sample_mean	sample_range
	0	10.10	10.04	10.13	9.98	10.14	10.078	0.16
	1	10.28	10.13	9.78	9.94	9.83	9.992	0.50
	2	9.95	10.36	9.90	9.96	9.96	10.026	0.46
	3	9.88	9.89	9.98	9.74	10.14	9.926	0.40
	4	10.12	9.83	10.14	9.81	9.86	9.952	0.33

```
In [ ]: Xbar_mean = data_XR['sample_mean'].mean()
R_mean = data_XR['sample_range'].mean()

print('Mean of the sample mean: %.3f' % Xbar_mean)
print('Mean of the sample range: %.3f' % R_mean)
```

Mean of the sample mean: 10.008 Mean of the sample range: 0.314

Since there is no constraint on the choice of Type I error α , we can set K = 3 (α = 0.0027)

Remember the formulas for the control limits.

$\mathbf{\bar{X}}$ chart:

- $UCL = \overline{\overline{X}} + A_2(n)\overline{R}$
- $CL = \overline{\overline{X}}$
- $LCL = \overline{\overline{X}} A_2(n)\overline{R}$

R chart:

- $UCL = D_4(n)\overline{R}$
- $CL = \overline{R}$
- $LCL = D_3(n)\overline{R}$

Factors for contructing variable control charts

	Chart	for Ave	rages		Chart for	Standar	d Deviat	tions				Chart f	or Rang	es			_
Observations in Sample, n- 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Factors for Control Limits				rs for r Line	Facto	rs for C	ontrol I	imits.		rs for r Line	Factors for Control Limits					
	Α	Az	A3	C4	1/c4	B_3	B_4	B_5	B4	d_2	1/d ₂	d_3	D_1	D_2	D_3	D_4	_
2	2.121	1.880	2.659	0.7979	1.2533	0	3.267	0	2.605	1.128	0.8865	0.853	0	3.686	0	3.267	
3	1.732	1.023	1.954	0.8862	1.1284	0	2.568	0	2.276	1.693	0.5907	0.888	0	4.358	0 .	2.574	
4	1.500	0.729	1.628	0.9213	1.0854	0	2.266	0	2.088	2.059	0.4857	0.880	0	4.698	0	2.282	
5	1,342	0,577 -	1.427	0.9400	1.0638	0	2.089	0	1.964	2.326	0.4299	0.864	0	4.918	0	2.114	
6	1.225	0.483	1.287	0.9515	1.0510	0.030	1.970	0.029	1.874	2.3.34	0.,1990				Ü	2.004	
7	1.134	0.419	1.182	0.9594	1.0423	0.118	1.882	0.113	1.806	2.704	0.3698	0.833	0.204	5.204	0.076	1.924	
8	1.061	0.373	1.099	0.9650	1.0363	0.185	1.815	0.179	1.751	2.847	0.3512	0.820	0.388	5.306	0.136	1.864	
9	1.000	0.337	1.032	0.9693	1.0317	0.239	1.761	0.232	1.707	2.970	0.3367	0.808	0.547	5.393	0.184	1.816	
10	0.949	0.308	0.975	0.9727	1.0281	0.284	1.716	0.276	1.669	3.078	0.3249	0.797	0.687	5.469	0.223	1.777	
-11	0.905	0.285	0.927	0.9754	1.0252	0.321	1.679	0.313	1.637	3.173	0.3152	0.787	0.811	5.535	0.256		
12	0.866	0.266	0.886	0.9776	1.0229	0.354	1.646	0.346	1.610	3.258	0.3069	0.778	0.922	5.594	0.283	1.717	
13	0.832	0.249	0.850	0.9794	1.0210	0.382	1.618	0.374	1.585	3.336	0.2998	0.770	1.025	5.647	0.307	1.693	
14	0.802	0.235	0.817	0.9810	1.0194	0.406	1.594	0.399	1.563	3.407	0.2935	0.763	1.118	5.696	0.328	1.672	
15	0.775	0.223	0.789	0.9823	1.0180	0.428	1.572	0.421	1.544	3.472	0.2880	0.756	1.203	5.741	0.347	1.653	
16	0.750	0.212	0.763	0.9835	1.0168	0.448	1.552	0.440	1.526	3.532	0.2831	0.750	1.282	5.782	0.363	1.637	
17	0.728	0.203	0.739	0.9845	1.0157	0.466	1.534	0.458	1.511	3.588	0.2787	0.744	1.356	5.820	0.378	1.622	
18	0.707	0.194	0.718	0.9854	1.0148	0.482	1.518	0.475	1.496	3.640	0.2747	0.739	1.424	5.856	0.391	1.608	
19	0.688	0.187	0.698	0.9862	1.0140	0.497	1.503	0.490	1.483	3.689	0.2711	0.734	1.487	5.891	0.403	1.597	
20	0.671	0.180	0.680	0.9869	1.0133	0.510	1.490	0.504	1.470	3,735	0.2677	0.729	1.549	5.921	0.415	1.585	
21	0.655	0.173	0.663	0.9876	1.0126	0.523	1.477	0.516	1.459	3.778	0.2647	0.724	1,605	5.951	0.425	1.575	
22	0.640	0.167	0.647	0.9882	1.0119	0.534	1.466	0.528	1.448	3.819	0.2618	0.720	1.659	5.979	0.434	1.566	
23	0.626	0.162	0.633	0.9887	1.0114	0.545	1,455	0.539	1.438	3.858	0.2592	0.716	1.710	6.006	0.443	1.557	
24	0.612	0.157	0.619	0.9892	1.0109	0.555	1.445	0.549	1.429	3.895	0.2567	0.712	1.759	6.031	0.451	1.548	
25	0.600	0.153	0.606	0.9896	1.0105	0.565	1.435	0.559	1.420	3.931	0.2544	0.708	1.806	6.056	0.459	1.541	

For n > 25.

```
D3 = 0
D4 = 2.114

# Now we can compute the CL, UCL and LCL for Xbar and R
data_XR['Xbar_CL'] = Xbar_mean
data_XR['Xbar_UCL'] = Xbar_mean + A2 * R_mean
data_XR['Xbar_LCL'] = Xbar_mean - A2 * R_mean

data_XR['R_CL'] = R_mean
data_XR['R_UCL'] = D4 * R_mean
data_XR['R_LCL'] = D3 * R_mean

# Inspect the dataset
data_XR.head()
```

Out[]:		х1	x2	х3	х4	х5	sample_mean	sample_range	Xbar_CL	Xbar_UCL	Xbar_LCL	R_CL
	0	10.10	10.04	10.13	9.98	10.14	10.078	0.16	10.0082	10.189378	9.827022	0.314
	1	10.28	10.13	9.78	9.94	9.83	9.992	0.50	10.0082	10.189378	9.827022	0.314
	2	9.95	10.36	9.90	9.96	9.96	10.026	0.46	10.0082	10.189378	9.827022	0.314
	3	9.88	9.89	9.98	9.74	10.14	9.926	0.40	10.0082	10.189378	9.827022	0.314
	4	10.12	9.83	10.14	9.81	9.86	9.952	0.33	10.0082	10.189378	9.827022	0.314

Add two columns to store the violations of the control limits.

Now plot the limits and the data in the charts.

```
In []: # Plot the Xbar chart
plt.title('Xbar chart')
plt.plot(data_XR['sample_mean'], color='b', linestyle='--', marker='o')
plt.plot(data_XR['Xbar_UCL'], color='r')
plt.plot(data_XR['Xbar_CL'], color='g')
plt.plot(data_XR['Xbar_LCL'], color='r')
plt.ylabel('Sample mean')
plt.xlabel('Sample number')
# add the values of the control limits on the right side of the plot
plt.text(len(data_XR)+.5, data_XR['Xbar_UCL'].iloc[0], 'UCL = {:.3f}'.format(data_XR[
plt.text(len(data_XR)+.5, data_XR['Xbar_LCL'].iloc[0], 'CL = {:.3f}'.format(data_XR['Xbar_LCL'].iloc[0], 'LCL = {:.3f}'.format(data_XR['Xbar_LCL'].iloc[0], '
```



```
In []: # Plot the R chart
plt.title('R chart')
plt.plot(data_XR['sample_range'], color='b', linestyle='--', marker='o')
plt.plot(data_XR['R_UCL'], color='r')
plt.plot(data_XR['R_CL'], color='g')
plt.plot(data_XR['R_LCL'], color='r')
plt.ylabel('Sample range')
plt.xlabel('Sample number')
# add the values of the control limits on the right side of the plot
plt.text(len(data_XR)+.5, data_XR['R_UCL'].iloc[0], 'UCL = {:.3f}'.format(data_XR['R_LCL'].iloc[0], 'CL = {:.3f}'.format(data_XR['R_LCL'].iloc[0], 'LCL = {:.3f}'.format(data_XR['R_LCL'].iloc[0], '
```


The process is in control.

Alternatively, we can use the XbarR function from the qcc.ControlCharts package.

```
In []: import qcc

# Create the control chart with the data
data_XR_qcc = qcc.ControlCharts.XbarR(data)
```

Xbar-R charts

EXERCISE 1 (continued)

Given the previous dataset:

- 1. Redesign the X-bar and R chart in order to achieve in both the charts a Type I error equal to 0.002 (assuming that the normal approximation applies for both of them).
- 2. Determine the operating characteristic curve (OC) for the X-bar chart (by using K=3 and expressing the shift of the mean in standard deviation units)
- 3. Determine the corresponding ARL curve.
- 4. Estimate the standard deviation through the statistic R.
- 5. Design the confidence interval on the process mean that corresponds to the control limits computed in point 1.

Point 1

Redesign the X-bar and R chart in order to achieve in both the charts a Type I error equal to 0.002 (assuming that the normal approximation applies for both of them).

Solution

Assuming that the normal approximation applies for both of them, we need to find the value of K such that lpha=0.002:

$$K=z_{lpha/2}$$

```
In [ ]: # Compute the new K_alpha value
        alpha = 0.002
        K_alpha = stats.norm.ppf(1-alpha/2)
        print('K = %.3f' % K_alpha)
```

K = 3.090

Now let's design the control charts with the new value of K.

Remember the formulas for the control limits for K
eq 3.

$\mathbf{\bar{X}}$ chart:

•
$$UCL = \overline{\overline{X}} + z_{\alpha/2} \frac{1}{d_2 \sqrt{n}} \overline{R}$$

•
$$CL = \overline{\overline{X}}$$

•
$$CL = \overline{\overline{X}}$$

• $LCL = \overline{\overline{X}} - z_{\alpha/2} \frac{1}{d_2 \sqrt{n}} \overline{R}$

R chart:

$$egin{aligned} ullet & UCL = \overline{R} + z_{lpha/2} rac{d_3}{d_2} \overline{R} \ ullet & CL = \overline{R} \end{aligned}$$

•
$$CL = \overline{R}$$

•
$$LCL = max(0; \overline{R} - z_{\alpha/2} \frac{d_3}{d_2} \overline{R})$$

Factors for contructing variable control charts

	Char	for Ave	rages		Chart for	Standar	d Deviat	lions		Chart for Ranges							
Observations in		actors fo atrol Lin			rs for r Line	Facto	rs for C	ontrol I	imits.		rs for r Line		Facto	ors for C	Control I	imits	
Sample, n-	Α	A ₂	A3	C4	1/c4	B_3	B_4	B_5	B4	d_2	$1/d_2$	d_3	D_1	D_2	D_3	D_4	
2	2.121	1.880	2.659	0.7979	1.2533	0	3.267	0	2.605	1,128	0.8865	0.853	0	3.686	0	3.267	
3	1.732	1.023	1.954	0.8862	1.1284	0	2.568	0	2.276	1.693	0.5907	0.888	0	4.358	0	2.574	
4	1.500	0.729	1.628	0.9213	1.0854	0	2.266	0	2.088	2.059	0.4857	0.880	0	4.698	0	2.282	
5	1,342	0,577	1.427	0.9400	1.0638	0	2.089	0	1,964	2.326	0.4299	0.864	0	4.918	0	2.114	
6	1.225	0.483	1.287	0.9515	1.0510	0.030	1.970	0.029	1.874	2.3.34	U.,1990	V.845		3.078		2.004	
7	1.134	0.419	1.182	0.9594	1.0423	0.118	1.882	0.113	1.806	2.704	0.3698	0.833	0.204	5.204	0.076	1.924	
8	1.061	0.373	1.099	0.9650	1.0363	0.185	1.815	0.179	1.751	2.847	0.3512	0.820	0.388	5,306	0.136	1.864	
9	1.000	0.337	1.032	0.9693	1.0317	0.239	1.761	0.232	1.707	2.970	0.3367	0.808	0.547	5.393	0.184	1.816	
10	0.949	0.308	0.975	0.9727	1.0281	0.284	1.716	0.276	1.669	3.078	0.3249	0.797	0.687	5.469	0.223	1.777	
-11	0.905	0.285	0.927	0.9754	1.0252	0.321	1.679	0.313	1.637	3.173	0.3152	0.787	0.811	5.535	0.256	1.744	
12	0.866	0.266	0.886	0.9776	1.0229	0.354	1.646	0.346	1.610	3.258	0.3069	0.778	0.922	5.594	0.283	1.717	
13	0.832	0.249	0.850	0.9794	1.0210	0.382	1.618	0.374	1.585	3.336	0.2998	0.770	1.025	5.647	0.307	1.693	
14	0.802	0.235	0.817	0.9810	1.0194	0.406	1.594	0.399	1.563	3.407	0.2935	0.763	1.118	5.696	0.328	1.672	
15	0.775	0.223	0.789	0.9823	1.0180	0.428	1.572	0.421	1.544	3.472	0.2880	0.756	1.203	5.741	0.347	1.653	
16	0.750	0.212	0.763	0.9835	1.0168	0.448	1.552	0.440	1.526	3.532	0.2831	0.750	1.282	5.782	0.363	1.637	
17	0.728	0.203	0.739	0.9845	1.0157	0.466	1.534	0.458	1.511	3.588	0.2787	0.744	1.356	5.820	0.378	1.622	
18	0.707	0.194	0.718	0.9854	1.0148	0.482	1.518	0.475	1.496	3.640	0.2747	0.739	1.424	5.856	0.391	1.608	
19	0.688	0.187	0.698	0.9862	1.0140	0.497	1.503	0.490	1,483	3.689	0.2711	0.734	1.487	5.891	0.403	1.597	
20	0.671	0.180	0.680	0.9869	1.0133	0.510	1.490	0.504	1.470	3,735	0.2677	0.729	1.549	5.921	0.415	1.585	
21	0.655	0.173	0.663	0.9876	1.0126	0.523	1.477	0.516	1.459	3.778	0.2647	0.724	1,605	5.951	0.425	1.575	
22	0.640	0.167	0.647	0.9882	1.0119	0.534	1.466	0.528	1.448	3.819	0.2618	0.720	1.659	5.979	0.434	1.566	
23	0.626	0.162	0.633	0.9887	1.0114	0.545	1,455	0.539	1.438	3.858	0.2592	0.716	1.710	6.006	0.443	1.557	
24	0.612	0.157	0.619	0.9892	1.0109	0.555	1.445	0.549	1.429	3.895	0.2567	0.712	1.759	6.031	0.451	1.548	
25	0.600	0.153	0.606	0.9896	1.0105	0.565	1.435	0.559	1.420	3.931	0.2544	0.708	1,806	6.056	0.459	1.541	

For n > 25.

Xbar-R charts

Point 2

Determine the operating characteristic curve (OC) for the X-bar chart (by using K=3 and expressing the shift of the mean in standard deviation units).

Solution

To determine the OC curve, we need to compute the probability of β for each value of the shift μ .

We are testing the null hypothesis H_0 that the sample mean \bar{X} is normally distributed with mean μ_0 and variance σ^2/n .

$$H_0: ar{X} \sim N(\mu_0, \sigma^2/n)$$

The alternative hypothesis is that the sample mean is normally distributed with mean μ_1 and variance σ^2/n .

$$H_1: ar{X} \sim N(\mu_1, \sigma^2/n)$$

So eta is the probability of rejecting H_0 when H_1 is true.

$$eta = P(LCL \leq ar{X} \leq UCL|H_1)$$

$$eta = P(Z \leq rac{UCL - \mu_1}{\sigma/\sqrt{n}}) - P(Z \leq rac{LCL - \mu_1}{\sigma/\sqrt{n}})$$

If we define $\delta = (\mu_1 - \mu_0)/\sigma$, we can write:

$$\beta = P(Z \le 3 - \delta \sqrt{n}) - P(Z \le -3 - \delta \sqrt{n})$$

```
In []: # Define a range of values for beta
delta = np.linspace(0, 4, 100)
# Compute the corresponding beta values
beta = stats.norm.cdf(3 - delta*np.sqrt(n)) - stats.norm.cdf(-3 - delta*np.sqrt(n))

# Plot the beta values
plt.plot(delta, beta)
plt.xlabel('Delta')
plt.ylabel('Beta')
plt.ylabel('Beta')
plt.title('Operating characteristic curve')
plt.show()
```

Operating characteristic curve

Point 3

Determine the corresponding ARL curve.

Solution

We know that the ARL curve is defined as:

$$ARL = \frac{1}{1 - \beta}$$

```
In [ ]: # Compute ARL using the previous values of beta
ARL = 1/(1-beta)

# Plot the ARL values
plt.plot(delta, ARL)
plt.xlabel('Delta')
plt.ylabel('ARL')
plt.title('Average run length')
plt.show()
```


Point 4

Estimate the standard deviation through the statistic R.

Solution

The standard deviation is estimated through the statistic R as:

$$\hat{\sigma}=rac{ar{R}}{d_2(n)}$$

You can use the function getd2 from qcc.constants to get the value of $d_2(n)$.

```
In [ ]: d2 = qcc.constants.getd2(n)
    sigma_hat = R_mean / d2
    print('Sigma_hat = %.3f' % sigma_hat)

Sigma hat = 0.135
```

Point 5

Design the confidence interval on the process mean that corresponds to the control limits computed in point 1.

Solution

The confidence interval corresponding to the control limits computed in point 1 uses:

- n=5
- $\alpha = 0.002$
- $\hat{\sigma} = 0.135$ (computed from the data)
- $\overline{X} = 10.008$ (computed from the data)

Remember the formula of the confidence interval (assume that $\hat{\sigma}$ is the real population variance):

$$ar{X} - z_{lpha/2} rac{\hat{\sigma}}{\sqrt{n}} \leq \mu \leq ar{X} + z_{lpha/2} rac{\hat{\sigma}}{\sqrt{n}}$$

You can compute the CI using the formula or using the interval function from the stats.norm package.

```
In [ ]: CI = stats.norm.interval(1-alpha, loc=Xbar_mean, scale=sigma_hat/np.sqrt(n))
    print('CI = (%.3f, %.3f)' % CI)
CI = (9.822, 10.195)
```

The CI limits correspond to the LCL and UCL of the control chart. Indeed, the X-bar control chart can be interpreted as a recursive application of the confidence interval on the mean along time t, assuming that the estimated sample variance is the real (population) variance.