Virtual Applied Data Science Training Institute - Spring 2024 Training Series

Session 2:

Data Exploration and Visualization Using Power BI Session

Session Leader

Dr. Anthony Tsetse

(Associate Professor)

Northern Kentucky University, KY

Instructor:

Dr. S. Tweneboah-Koduah

(Assistant Professor, Computer Science)

Gannon University, Erie, PA

Day 1: Tuesday February 13

Outline

- Ω Session Overview and Expectations
- Ω Overview of Data Science
- Ω Short Break
- Ω Introducing Data Exploration
- Ω Open Access Data Repositories
- Ω Questions and Answers

Compiled by: S. Tweneboah-Koduah, PhD CIS, Gannon

Day 2: Thursday February 15

Outline

- Ω Overview of Data Visualization
 - a. 1-Variable Graphs
 - b. 2-Variable Graphs
 - c. 3- and multivariable Graphs
- Ω An Overview of Power BI
 - a. The parts of Power BI
 - b. Use of Power BI and roles
 - c. Power BI flow
 - d. Use Power BI
 - e. Building blocks of Power BI
 - f. Power BI Services
 - g. Power BI license

Day 3: Tuesday February 20

Outline

- Ω Importing Dataset and Modelling
 - a. Importing data into Power BI Desktop
 - b. Dealing with errors
 - c. 'Applied steps' in modelling data
- Ω Building Visuals and Dashboards Using Power BI
 - a. Plotting
 - i. Visualization Panel
 - ii. Plot modifications
 - iii.Pages
 - b. Explore Marketplace for other visualizations
 - i. Filters
 - ii. Edit interactions
 - c. Saving and Exporting 39
 - i. Saving as pbix files
 - ii. Exporting and publishing report

Day: Thursday February 22

Outline

- Ω Presentations (Participants)
- Ω Closing Session

Overview of Data Science/Big Data

Topics For Today's Session

Why Big Data?

Explosion of Data

Big Data Why the interest?

- One of the hottest topics in the world of business,,,,, for business Intelligence
 - Data is the foundation of any successful Business
 - Business analytics typically implies the analysis of very large data sets. (For this reason, the term
 Data Science or Big Data
 - Today almost every business needs **Data Scientist**
 - Almost every University of higher learning is running Data Science
 Program or related!!!

Google server farms... over 10 million of connected machines....locations across the globe

Data Science.....why the interest?

- Living in the age of technology has implications for everyone in the digital ecosystem.
 - Technology makes it possible to collect huge amounts of data.
 - Technology has given more people the power and responsibility to analyze data and make decisions.
- A large amount of data already exists and will only increase in the future.

"Big Data" the needs

Crowdsourcing + physical modeling + sensing + forecasting + data assimilation +....

.....+..Planning

"Data Science/Big Data - What is it?

Multiple definitions.... new ones still emerging

Data Science =

Mining Data (to gain insigng and) to make

(informed) Decisions (knowledge)

Big Data – Key Characteristics

Data Analytics – Major Stages

"Big Data": Sources

- Medical/Hospital Records
- Data marts/warehouses
- Transactional databases (OLAP)
- Spatial and temporal data
- Time-series data
- Stream data
- Text databases & WWW
- Business: Web, e-commerce, transactions, stocks, ...
- Science: Remote sensing, bioinformatics, scientific simulation, ...
- Society & Social media and everyone: news, digital cameras

Big Data: Confluence of Disciplines

Data Science – Key Concepts

- Data Mining (Knowledge Discovery from Data)
- **■**Techniques
- **■**Tools
- Applications

Data Mining: Process

Data mining—attempts to discover patterns, trends, and relationships among data, especially nonobvious and unexpected patterns

Data Science – Methodologies!!!

Once a data warehouse is in place, analysts can begin to mine the data with a collection of methodologies:

- Classification analysis attempts to find variables that are related to a categorical (often binary) variable.
- *Prediction* tries to find variables that help explain a continuous variable, rather than a categorical variable.
- Cluster analysis tries to group observations into clusters so that observations within a cluster are alike, and observations in different clusters are not alike.
- *Market basket analysis* tries to find products that customers purchase together in the same "market basket."
- Forecasting used to predict values of a time series variable by extrapolating patterns seen in historical data into the future.

Data Science — Techniques

There are a number of techniques that can be applied in data science (usually for): Modification, Storage, Analysis, Insights, and Representation (Visualization). They include (not limited to..):

- Probability & Statistics (incl. Descriptive and Inferential statistics)
- Classification and Clustering (unsupervised learning)
- Anomaly Detection Analysis
- Regression (Linear & Multivariate) analysis

Graph Data	Sales	Fit	Residuals		
1	85	83.8232949	1.176750604		
2	103	108.9790334	-5.979033397		
3	102	108.9790334	-6.979033397		

Data Science — Techniques (conti..)

- Regression Analysis
- Non-Parametric statistics
- Neural Networks
- K-Means clustering
- Probability and Decision Trees

Data Science — Techniques (Conti..)

- Scala/Java
- Spatial Modelling
- Model Fitting

Spatial Modelling

$$S_t = S_{t-1} \cdot e^{((r-\frac{1}{2}\cdot stdev^2)\cdot \delta_t + stdev\cdot \sqrt{\delta_t}\cdot Z_t)}$$

Data Exploratory and Analytics Tools

■ Data Collection Tools

- Semantria, Trackur
- **■** Data Storage Tools
 - Apache Hadoop, Apache Cassandra, Hbase, Mongo DB
- **■** Data Extraction Tools
 - OctoParse, Content Grabber
- Data Cleaning/Refining Tools
 - OpenRefine
- Data Analysis Tools
 - Python, R, SAS, Excel Miner, Apache Spark
- Data Visualization Tools
 - **Power BI**, Python, Tableau, Google Fusion, Tableau

Modeling and Models

- A model is an abstraction of a real problem that tries to capture the essence and key features of the problem.
- Types of models; each can be a valuable aid in solving a particular problem:
 - Graphical models
 - Algebraic models
 - Spreadsheet models

Graphical Models (Visualization)

- Graphical models attempt to portray graphically how different elements of a problem are related—what affects what.
 - Do not provide enough quantitative details to "solve" the company's problem
 - Purpose is usually to show the important elements of a problem and how they are related
 - Can be very enlightening for complex problems as information for management

Algebraic Models

- Algebraic models use algebraic equations and inequalities to specify a set of relationships in a very precise way.
 - A typical example is the "product mix" model shown below.

$$\max \sum_{j=1}^{n} p_{j} x_{j}$$
subject to
$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i}, \quad 1 \le i \le m$$

$$0 \le x_{i} \le u_{i}, \quad 1 \le j \le n$$

Spreadsheet Models

- Spreadsheet modeling is an alternative to algebraic modeling that relates various quantities in a spreadsheet with cell formulas.
 - Instant feedback is available from spreadsheets.
 - If a formula is entered incorrectly, it is often immediately obvious.
 - Developing good spreadsheet models is not easy.
 - They must be correct, well designed, and well documented.

Spreadsheet Models

Names	Basic_Salary	Benefits	Total_Incom e	State_Tax	Local_Tax	Other_Ded	Total_Deducti	otal_Deducti ons Net_Income	Tot_Annaul_B To	Tot	_Ann_Benefi	Total_Ann_Inco	Tot_Paid_Tax	Tot_Paid_Tax	Tot_Ann_Deduct	Tot_Ann_net_I
							ons		asic	L.	ts	me	_State	Local	ions	ncome
Esi	£82,005.00	£12,300.75	£94,305.75	£6,129.87		CT	A F F C A L A	DIEC			£147,609.00	£1,131,669.00	£73,558.49	£35,308.07	£231,602.85	£900,066.15
Ana	£92,000.00	£13,800.00	£105,800.00	£6,877.00	STAFF SALARIES						£165,600.00	£1,269,600.00	£82,524.00	£39,611.52	£259,831.26	£1,009,768.74
Tom	£75,000.00	£11,250.00	£86,250.00	£5,606.25	Basic_Salary Benefits -					£135,000.00	£1,035,000.00	£67,275.00	£32,292.00	£211,818.96	£823,181.04	
Bill	£78,000.00	£11,700.00	£89,700.00	£5,830.50						£140,400.00	£1,076,400.00	£69,966.00	£33,583.68	£220,291.72	£856,108.28	
Nana	£10,500.00	£1,575.00	£12,075.00	£784.88							£18,900.00	£144,900.00	£9,418.50	£4,520.88	£29,654.65	£115,245.35
Joe	£112,567.00	£16,885.05	£129,452.05	£8,414.38	£150,000.00						£202,620.60	£1,553,424.60	£100,972.60	£48,466.85	£317,917.66	£1,235,506.94
Fiifi	£132,900.00	£19,935.00	£152,835.00	£9,934.28	£100,000.00	_	Λ				£239,220.00	£1,834,020.00	£119,211.30	£57,221.42	£375,343.20	£1,458,676.80
Akos	£78,000.00	£11,700.00	£89,700.00	£5,830.50	£50,000.00	7	/ \ \		_		£140,400.00	£1,076,400.00	£69,966.00	£33,583.68	£220,291.72	£856,108.28
lan	£92,123.00	£13,818.45	£105,941.45	£6,886.19				$\overline{}$			£165,821.40	£1,271,297.40	£82,634.33	£39,664.48	£260,178.64	£1,011,118.76
Fafa	£88,700.00	£13,305.00	£102,005.00	£6,630.33	£0.00		27)	+			£159,660.00	£1,224,060.00	£79,563.90	£38,190.67	£250,511.22	£973,548.78
Sefa	£67,000.00	£10,050.00	£77,050.00	£5,008.25		ES ANA FORM	0 I V Z 4	444	Basic_Salar	ν.	£120,600.00	£924,600.00	£60,099.00	£28,847.52	£189,224.94	£735,375.06
Eric	£72,000.00	£10,800.00	£82,800.00	£5,382.00		Z	AKO A FELL	RIC	z	<i>'</i>	£129,600.00	£993,600.00	£64,584.00	£31,000.32	£203,346.20	£790,253.80
James	£89,900.00	£13,485.00	£103,385.00	£6,720.03			- ш	S EF	Z ∢		£161,820.00	£1,240,620.00	£80,640.30	£38,707.34	£253,900.33	£986,719.67
Totti	£102,000.00	£15,300.00	£117,300.00	£7,624.50							£183,600.00	£1,407,600.00	£91,494.00	£43,917.12	£288,073.79	£1,119,526.21
Ann	£110,234.00	£16,535.10	£126,769.10	£8,239.99		ı					£198,421.20	£1,521,229.20	£98,879.90	£47,462.35	£311,328.68	£1,209,900.52

A Seven-Step DS Modeling Process

- Data Science portrays modeling as a seven-step process, but not all problems require all these seven steps.
 - Define the problem.
 - Collect and summarize data.
 - Develop a model.
 - Verify the model.
 - Select one or more suitable decisions.
 - Communicate your results.
 - Implement the model and update it over time.

Data Science: Applications

Data Science: Applications

DS application areas are numerous, and new fields are emerging.....

For Decision Support

- Market analysis
- Identifying and predicting disease
- Personalized healthcare recommendations
- Optimizing Shipping routes in real-time
- Customer relationship management (CRM), market basket analysis, market segmentation
- Search Optimization for Targeted Advertising and Re-targeting
- Price Comparison Website (e.g. pricecompare.com)

Market Analysis and Management

- ■Where does the market data come from?
 - Credit card transactions, discount coupons, customer complaint calls,
 phone calls log
- Target marketing
 - Find clusters of "model" customers who share the same characteristics: interest, income level, spending habits, etc.
 - Determine customer purchasing patterns over time (e.g. Amazon, ebay, Walmat, Best Buy, etc)

Market Analysis and Management

- Cross-market analysis
 - Associations/co-relations between product sales, & prediction based on such association
- Customer profiling
 - What CUSTOMERS buy what PRODUCT?
- Customer requirement analysis
 - Identifying the best products for different customers
 - Predict what factors will attract new customers

Risk, Fraud Detection & Mining Unusual Patterns

Approaches: Clustering & model construction for frauds, outlier analysis

Applications: Health care, retail, credit card service, telecom.

- Medical insurance
 - Patients, and ring of doctors
 - Unnecessary or correlated screening tests
- Telecommunications:
 - Phone call model: destination of the call, duration, time of day or week.
 - Analyze patterns that deviate from an expected norm
- Retail industry
 - Analysts estimate that 38% of retail shrink is due to dishonest employees and shoplifting

Data Mining – Applications (Conti...

Other Applications

- Text & Web mining (news group, email, documents)
- Data stream mining
- Bioinformatics and bio-data analysis
- Internet Search and Recommender Systems
- Image Recognition
- Speech Recognition
- Gaming/Gamification
- Airline Route Planning
- Delivery logistics

Trends in Data Science

Big Data in Revenue Streams (According to Forbes)

Trends in Data Science (conti...)

Big Data in figures (According to Forbes)

Trends in Data Science (conti...)

Big Data in figures (Career Opportunities)

Soaring Demand for Analytics Professionals

Salary Aspects

Huge Job Opportunities

Job Titles include:

- Big Data Analytics Business Consultant
- Big Data Analytics Architect
- Big Data Engineer
- Big Data Solution Architect
- · Big Data Analyst
- Analytics Associate
- Business Intelligence and Analytics Consultant
- · Metrics and Analytics Specialist

Trends in Data Science (conti...)

Required Skills Set (Data Analytics)

Here are a few skills which can be acquired depending upon the role in the field of Big Data Analytics:

Basic Programming

Data Visualization

Statistical and quantitative Analysis

Specific Business Knowledge

Data Warehousing

Computational Frameworks

Your Comment, Contribution and Question

