Exercice 1: n moles de gaz parfait de coefficient γ connu et constant, passent de l'état (1) (po,Vo,To) connu à l'état (2) (p₁,V₁,T₁), qui est un état d'équilibre et V₁ = Vo/2 – Calculer le travail reçu par le gaz dans les cas suivants :

- *- La transformation est isobare.
- *- La transformation est monobare. Les parois de l'enceinte sont diathermanes.
- *- La transformation est isotherme.
- *- La transformation est adiabatique et $T_1 = 2$ To.
- *- La transformation est adiabatique et réversible.

Exercice 2: Pour les transformations précédentes (exercice 1) calculer les quantités de chaleur échangées par le gaz.

Exercice 3 : Pour les transformations précédentes (exercice 1) calculer les entropies échangées et créées par le gaz.

Exercice 4: n moles de gaz parfait à la température To contenu dans un cylindre aux parois diathermanes est fermé par un piston sans frottement de masse m et de section S – La pression extérieure est po – Dans l'état initial d'équilibre on met le cylindre en contact avec un thermostat à la température Te – Exprimer les paramètres de l'état final et les entropies échangée et créée.

Exercice 5 : Quels sont les paramètres d'état d'un corps pur en phase condensée ?

Exercice 6 : Un corps pur en phase condensée de masse m et de capacité thermique massique c initialement à la température To est mis en contact avec un thermostat à la température Te – Exprimer la quantité de chaleur, l'entropie échangée et l'entropie créée au cours de la transformation.

Exercice 7 : Un corps pur diphasé de masse totale m à la température T passe d'un état où le titre massique d'une phase est x_A à un état où le titre massique de la même phase est x_B – On donne l'enthalpie massique de changement d'état à la température $T: \ell_{1\rightarrow 2}(T)$ – Exprimer la quantité de chaleur échangée les entropies échangée et créée au cours de la transformation.

Exercice 8 : Un liquide saturant à la température T_1 subit une détente de Joule-Thomson jusqu'à la température $T_2 < T_1$ – Exprimer le titre en vapeur dans l'état final dans les cas suivants:

- *- On donne $h_L(T_1)$, $h_L(T_2)$ et $h_V(T_2)$
- *- On donne $\ell_{L\to V}(T_2)$ et la capacité thermique massique du liquide $c\ell$, supposée constante.

Exercice 9 : Une vapeur saturante sèche à la température T_1 subit une détente isentropique jusqu'à la température $T_2 < T_1 - Exprimer$ le titre en vapeur dans l'état final dans les cas suivants:

- *- On donne $s_V(T_1)$, $s_L(T_2)$ et $s_V(T_2)$
- *- On donne $\ell_{L\to V}(T_2)$, $\ell_{L\to V}(T_1)$ et la capacité thermique massique du liquide $c\,\ell$, supposée constante.

Exercice 1:

$$dW = -p_{ext}.dV$$

*- La transformation est isobare.

Elle est mécaniquement réversible donc $p_{ext} = po$ donc $W = -(p_I.V_I-po.Vo) = po.Vo/2$

*- La transformation est monobare. Les parois de l'enceinte sont diathermanes.

L'état final est un état d'équilibre (mécanique et thermique) donc $p_{ext} = p_1$ et $T_{ext} = T_1 = To$ – donc $W = p_1.Vo/2$ et $p_1.V_1 = po.Vo$ si bien que W = po.Vo.

*- La transformation est isotherme.

Donc lente (transfert thermique lent) et mécaniquement réversible donc réversible d'où $dW = -p.dV = -n.R.To.\frac{dV}{V}$ qui s'intègre en W = n.R.To.ln(2).

*- La transformation est adiabatique et $T_1 = 2$ To.

$$\Delta U = W + Q = W$$
 (car adiabatique) or $\Delta U = n.C_{Vm}.(T_I-T_O) = W = \frac{n.R.T_O}{\gamma-1}$

*- La transformation est adiabatique et réversible.

$$\Delta U = W + Q = W (car \ adiabatique) \ or \ \Delta U = n.C_{Vm}.(T_I-T_O) = W = \frac{n.R.}{\gamma-1}(T_I-T_O) = \frac{p_I.V_I-p_O.V_O}{\gamma-1}$$

Le gaz est parfait avec γ constant on peut donc appliquer les lois de Laplace : $p_1.V_1^{\gamma} = po.Vo^{\gamma}$ d'où $p_1 = po.(2)^{\gamma}$ si bien que $W = \frac{po.Vo}{\gamma - 1}(2^{\gamma - 1} - 1)$

Exercice 2:

$$Q = \Delta U - W$$

*- La transformation est isobare.

$$Q = \Delta U - W = \Delta U + (p_I.V_I-po.Vo) = \Delta H = \frac{n.R.\gamma}{\gamma-1} \left(T_I - To\right) \text{ or } \frac{V_I}{T_I} = \frac{Vo}{To} \text{ d'où } Q = \frac{n.R.\gamma.To}{2(\gamma-1)}$$

*- La transformation est monobare. Les parois de l'enceinte sont diathermanes.

La température initiale est égale à la température finale d'où $\Delta U = W + Q = 0$ d'où Q = -po.Vo

*- La transformation est isotherme.

La température est constante donc Q = -W = -n.R.To.ln(2).

- *- La transformation est adiabatique et $T_1 = 2$ To. Q = 0
- *- La transformation est adiabatique et réversible. Q = 0

Exercice 3:

D'après l'identité thermodynamique en U : $\Delta S = \frac{n.R}{\gamma - 1} \ln \frac{T_1}{T_O} + n.R. \ln \frac{V_1}{V_O}$

Le second principe $\Delta S = Se + Sc$

*- La transformation est isobare.

$$\frac{V_1}{T_1} = \frac{V_0}{T_0} \quad d'où \quad \Delta S = \frac{n.R}{\gamma - 1} \ln \frac{V_1}{V_0} + n.R \cdot \ln \frac{V_1}{V_0} \quad \text{donc} \quad \Delta S = -\frac{n.R \cdot \gamma}{\gamma - 1} \ln 2 \quad \text{puisque l'état final est un état d'équilibre on peut supposer que le thermostat est à la température T1 = To/2 donc Se = Q/T1 d'où$$

$$Se = -\frac{n.R.\gamma}{\gamma - 1}$$
 et donc $Sc = \frac{n.R.\gamma}{\gamma - 1}(1 - \ln 2) > 0$

*- La transformation est monobare. Les parois de l'enceinte sont diathermanes.

La température initiale est égale à la température finale, on peut supposer que le thermostat est à la température To d'où $\Delta S = -n.R.ln2$ et $Se = -\frac{po.Vo}{To} = -n.R$ enfin Sc = n.R.(1-ln2) > 0.

*- La transformation est isotherme.

La température est constante donc $\Delta S = -nR.To.ln(2) = Se d'où Sc = 0$.

*- La transformation est adiabatique et $T_1 = 2$ To.

$$\Delta S = \frac{n.R}{\gamma - 1} \ln \frac{T_1}{T_0} + n.R. \ln \frac{V_1}{V_0} = \frac{n.R}{\gamma - 1} \left(\frac{2 - \gamma}{\gamma - 1} \right) \ln 2 \text{ et si } Q = 0 \text{ alors } Se = 0 \text{ et } Sc = \Delta S > 0$$

*- La transformation est adiabatique et réversible. Q = 0

$$\Delta S = 0$$
 et $Q = 0$ donc $Sc = 0$ normal

Exercice 4:

$$p_1 = po + mg/S = Cte$$
; $T_1 = Te$ et $Vo/To = V_1/Te$ donc $V_1 = Vo.Te/To$

$$\Delta S = \frac{n.R.\gamma}{\gamma - 1} . \ln \frac{Te}{To} \quad \text{et} \quad Q = \Delta H = \frac{n.R.\gamma}{\gamma - 1} (Te - To) \, \text{d'où} \quad Se = \frac{n.R.\gamma}{\gamma - 1} (\frac{Te - To}{Te}) \quad \text{et} \quad donc \quad Sc = \frac{n.R.\gamma}{\gamma - 1} \left[\ln \frac{Te}{To} - \frac{Te - To}{Te} \right] > 0 \, (calcul \, classique \, on \, pose \, x = To/Te)$$

Exercice 5:

Les paramètres d'état d'un corps pur sont (p, V, T, n) or un corps pur en phase condensée est incompressible et indilatable (modèle théorique) donc p et V ne sont pas des paramètres d'état.

Exercice 6:

$$\Delta S = \frac{n.R.\gamma}{\gamma - 1}.\ln\frac{Te}{To} \quad \text{et} \quad Q = \Delta H = \frac{n.R.\gamma}{\gamma - 1}(Te - To) \, \text{d'où} \quad Se = \frac{n.R.\gamma}{\gamma - 1}(\frac{Te - To}{Te}) \quad \text{et} \quad donc \quad Sc = \frac{n.R.\gamma}{\gamma - 1}\left[\ln\frac{Te}{To} - \frac{Te - To}{Te}\right] > 0 \, \left(calcul \, classique, \, on \, pose \, x = To/Te\right)$$

Exercice 7:

Un changement d'état est une transformation à une pression et une température constante donc $Q = \Delta H_{1\rightarrow 2}(T) = m[x_B.h_1 + (1-x_B).h_2 - x_A.h_1 - (1-x_A).h_2] = m.(x_B-x_A)(h_1-h_2) = -m.(x_B-x_A).\ell_{1\rightarrow 2}(T)$

Exercice 8:

*- On donne $h_L(T_1)$, $h_L(T_2)$ et $h_V(T_2)$: $w = \frac{h(T_2) - h_L(T_2)}{h_V(T_2) - h_L(T_2)}$ or la détente étant isenthalpique $h(T_2) - h_L(T_1) = 0$ donc $w = \frac{h_L(T_1) - h_L(T_2)}{h_V(T_2) - h_L(T_2)}$

*- On donne $\ell_{L\to V}(T_2)$ et la capacité thermique massique du liquide $c\,\ell$, supposée constante.

De même on écrit $xv = \frac{h_L(T_1) - h_L(T_2)}{h_V(T_2) - h_L(T_2)}$ avec $h_L(T_1) - h_L(T_2) = c\ell.(T_1 - T_2)$ et $h_V(T_2) - h_L(T_2) = \ell_{Vap}(T_2)$ donc $xv = \frac{c\ell.(T_1 - T_2)}{\ell_{Vap}(T_2)}$

Exercice 9:

*- On donne $s_V(T_1)$, $s_L(T_2)$ et $s_V(T_2)$: $x_V = \frac{s(T_2) - s_L(T_2)}{s_V(T_2) - s_L(T_2)}$ or la détente étant isentropique $s(T_2) - s_V(T_1) = 0$ donc $x_V = \frac{s_V(T_1) - s_L(T_2)}{s_V(T_2) - s_L(T_2)}$

*- On donne $\ell_{L\to V}(T_2)$, $\ell_{L\to V}(T_1)$ et la capacité thermique massique du liquide $c\,\ell$, supposée constante.

De même on écrit $xv = \frac{sv(T_1) - s\iota(T_2)}{sv(T_2) - s\iota(T_2)} \quad \text{avec}$ $sv(T_1) - s\iota(T_2) = sv(T_1) - s\iota(T_1) + s\iota(T_1) - s\iota(T_2) = \frac{\ell_{vap}(T_1)}{T_1} + c\ell_1 \ln(\frac{T_1}{T_2}) \quad \text{et } s_V(T_2) - s_L(T_2) = \frac{\ell_{vap}(T_2)}{T_2} \text{donc}$ $xv = \frac{\ell_{vap}(T_1)}{T_1} + c\ell_1 \ln(\frac{T_1}{T_2}) - \ell_{vap}(T_2) - \ell_{vap}(T_2) - \ell_{vap}(T_2)}{T_1}$