Combinational Logic Review (Class 1.2 – 1/21/2021)

CSE 4357/CSE 5357 – Advanced Digital Logic Design Spring 2021

Instructor – Bill Carroll, PhD, PE, Professor

Mandatory Face Covering Policy

All students and instructional staff are required to wear facial coverings while they are on campus, inside buildings and classrooms. Students that fail to comply with the facial covering requirement will be asked to leave the class session. If students need masks, they may obtain them at the Central Library, the E.H. Hereford University Center's front desk or in their department. Students who refuse to wear a facial covering in class will be asked to leave the session by the instructor, and, if the student refuses to leave, they may be reported to UTA's Office of Student Conduct.

Today's Topics

- Signed-number representation
 - Sign-magnitude
 - One's-complement
 - Two's complement
 - Overflow
- Ripple-carry Adder/Subtractor
 - Ripple-carry adder revisited
 - Two's complement subtractor
 - Two's complement adder/subtractor
 - Verilog model
- Overflow detection hardware
- More Verilog review
- Propagation delay
- Add times using basic adders

Fixed-Point Number Representation

Typical formats for integers and fractions

- Signed-number representation
 - ✓ Sign-magnitude
 - ✓ 2's complement
 - √ 1's complement

Sign-Magnitude Method

• $N = \pm (a_{n-2} ... a_0)_2$ is represented as $N = (sa_{n-2} ... a_0)_{2sm}$,

where s = 0 if N is positive and s = 1 if N is negative.

- $If N = +(101)_2$, then $N = (0101)_{2sm}$
- $If N = -(101)_2$, then $N = (1101)_{2sm}$
- Range $2^{n-1} 1 \ge N \ge -2^{n-1} + 1 (011..11 \ge N \ge 111..11)$
- Pros and cons
 - Simple and easy for humans to understand
 - Complicates computer arithmetic circuits
 - Two representations of zero, +0 and -0
 - Need both an adder and a subtractor for arithmetic

One's Complement Method

- Let $N = (a_{n-2} \dots a_0)_2$
 - If $N \ge 0$, it is represented by $(0a_{n-2} \dots a_0)_2$
 - If N < 0, it is represented by $[0a_{n-2} \dots A_0]_1$
- 1's complement $[N]_1 = 2^n (N)_2 1 = [N]_2 1$ where n is the number of bits in $[N]_1$
- Examples $(n = 4, 2^n = 10000)$
 - $+(110)_2 = (0110)_2$
 - $-(110)_2 = [0110]_1 = (10000-0110-1)_2 = (1001)_2$
- Range $2^{n-1} 1 \ge N \ge -2^{n-1} + 1 (011...11 \ge N \ge 100...00)$
- Pros and cons
 - Easy to derive (bit-wise complement)
 - Harder to perform arithmetic operations (end-around carry correction) than two's complement
 - Two representations of 0
 - Same range as sign-magnitude
 - Not intuitive for humans

Two's Complement Method

- Let $N = (a_{n-2} \dots a_0)_2$
 - If $N \ge 0$, it is represented by $(0a_{n-2} \dots a_0)_2$
 - If N < 0, it is represented by $[0a_{n-2} \dots a_0]_2$
- 2's complement $[N]_2 = 2^n (N)_{2}$, where n is the number of digits in $(N)_2$.
- Example $(n = 4, 2^n = 10000)$
 - $-+(110)_2=(0110)_2$
 - $-(110)_2 = [0110]_2 = (10000-0110)_2 = (1010)_2$
- Range $2^{n-1} 1 \ge N \ge -2^{n-1} (011...11 \ge N \ge 100...00)$
- Pros and Cons
 - Easy to implement in hardware
 - One representation of 0
 - Wider negative range
 - Not intuitive for humans

Signed Binary Numbers

Decimal	Sign-Magnitude	Two's Complement	One's Complement	
+7	0111	0111	0111	
+6	0110	0110	0110	
+5	0101	0101	0101	
+4	0100	0100	0100	
+3	0011	0011	0011	
+2	0010	0010	0010	
+1	0001	0001	0001	
0	0000, 1000	0000	0000, 1111	
-1	1001	1111	1110	
-2	1010	1110	1101	
-3	1011	1101	1100	
-4	1100	1100	1011	
-5	1101	1011	1010	
-6	1110	1010	1001	
-7	1111	1001	1000	
-8	NA	1000	NA	

Deriving the Two's Complement

- Derive [N]₂ given (N)₂
- Use the definition $[N]_2 = 2^n (N)_{2_n}$ where n is the number of digits in $(N)_2$.
- Use Algorithm 1.4
 - Copy the bits of N, beginning with the LSB and proceeding toward the MSB until the first 1 bit is reached.
 - Leave this 1 as is.
 - Replace each remaining digit a_j of N by its complement, i.e., replace each 1 with 0 and each 0 with 1.
- **Example**: 2's complement of $(1010)_2$ is $(0110)_2$.

Deriving the Two's Complement

- Derive [N]₂ given (N)₂
- Algorithm 1.5
 - Complement each digit of N and add 1
 - This follows from the equation $[N]_1 = 2^n (N)_2 1 = [N]_2 1$, i.e., $[N]_2 = [N]_1 + 1$
- **Example**: Derive the 2's complement of $N = (0100)_2$.

```
N = 0100
1011 complement the bits
+1 add 1
[N]_2 = (1100)_2
```


Ripple-Carry Adder (4-bit)

$$(C_4S_3S_2S_1S_0)_2 = (A_3A_2A_1A_0)_2 + (B_3B_2B_1B_0)_2$$

Ripple-Carry Adder

$$(C_4S_3S_2S_1S_0)_2 = (A_3A_2A_1A_0)_2 + (B_3B_2B_1B_0)_2$$

Using A Ripple-Carry Adder to Subtract

$$(C_4D_3D_2D_1D_0)_2 = (A_3A_2A_1A_0)_2 - (B_3B_2B_1B_0)_2$$

= $(A_3A_2A_1A_0)_2 + [B_3B_2B_1B_0]_{2cns}$
= $(A_3A_2A_1A_0)_2 + [B_3B_2B_1B_0]_{1cns} + 1$

Ripple-Carry Adder/2's-Comp Subtractor

XOR-Gate Revisited

а	b	f
0	0	0
0	1	1
1	0	1
1	1	0

If
$$b = 0$$
, then $f = a$.

If
$$b = 1$$
, then $f = a'$.

A Two's Complement Adder/Subtractor

If C0 = 0, then $(C_4R_3R_2R_1R_0)_2 = (A_3A_2A_1A_0)_2 + (B_3B_2B_1B_0)_2$. Therefore, R = A + B.

If C0 = 1, then $(C_4R_3R_2R_1R_0)_2 = (A_3A_2A_1A_0)_2 + [B_3B_2B_1B_0]_{1ns} + 1$. Therefore, R = A – B.

Ripple-Carry Adder/Subtractor Verilog Model

```
//Ripple Carry Adder Subtractor Structural Model
module RCAddSub (
  input AddSub, //select add (AddSub=0) or subtract (AddSub=1) operation
  input [3:0] A, B,
                            //declare input ports
  output [3:0] S,
                            //declare output ports for sum
  output Cout); //declare carry-out port
  wire [3:0] Bb;
                            //declare internal nets
  wire [4:0] C:
  //complement B input for subtraction
  assign Bb[3:0] = \{AddSub^B[3], AddSub^B[2], AddSub^B[1], AddSub^B[0]\};
  assign C[0] = AddSub; //Add 0 for addition, 1 for subtraction
  assign Cout = C[4]; //rename carry out port
  //instantiate the full adder module for each stage of the ripple carry adder
  FAbehave s0 (S[0], C[1], A[0], Bb[0], C[0]);
                                           //stage 0
  FAbehave s1 (S[1], C[2], A[1], Bb[1], C[1]); //stage 1
  FAbehave s2 (S[2], C[3], A[2], Bb[2], C[2]); //stage 2
  FAbehave s3 (S[3], C[4], A[3], Bb[3], C[3]); //stage 3
endmodule
```


 Two's complement number systems are used in computer systems since this reduces hardware requirements (only adders are needed).

$$-A + B = (A)_2 + (B)_2$$

- $-A B = (A)_2 + (-B)_2 = (A)_2 + [B]_2$ (add 2's complement of B to A)
- If the result of either operation falls outside the range, an *overflow condition* is said to occur and the result is not valid.
- Range of numbers in two's complement number system, where n is the number of bits.

$$-2^{n-1}-1=(0, 11 ... 1)_{2cns}$$
 and $-2^{n-1}=(1, 00 ... 0)_{2cns}$

- Consider A = B + C where B and C are two n-bit positive integers.
 - $-(A)_2 = (B)_2 + (C)_2$
 - If $A > 2^{n-1}$ -1 (**overflow**), it is detected by the *n*th bit, which is set to 1.
- **Example**: $(2)_{10} + (4)_{10} = ?$ using 4-bit two's complement arithmetic.

$$- + (2)_{10} = +(010)_2 = (0010)_{2cns}$$

$$- + (4)_{10} = +(100)_2 = (0100)_{2cns}$$

$$- (0010)_{2cns} + (0100)_{2cns} = (0110)_{2cns} = +(110)_2 = +(6)_{10}$$

No overflow.

• Example: $(5)_{10} + (4)_{10} = ?$ $- + (5)_{10} = +(101)_2 = (0101)_{2cns}$ $- + (4)_{10} = +(100)_2 = (0100)_{2cns}$ $- (0101)_{2cns} + (0100)_{2cns} = (1001)_{2cns}$ (overflow has occurred)

- Consider A = B C where B and C are two n-bit positive integers.
- $A = (B)_2 + (-(C)_2) = (B)_2 + [C]_2 = (B)_2 + 2^n (C)_2 = 2^n + (B C)_2$
 - Overflow cannot occur for this case
 - If $B \ge C$, then $A \ge 2^n$, discarding the carry, 2^n , leaves $(B C)_2$.
 - So, $(A)_2 = (B)_2 + [C]_2 |_{\text{carry discarded}}$
 - If B < C, then $A = 2^n (C B)_2 = [C B]_2$ or $A = -(C B)_2$ (no carry in this case).
- **Example**: $(7)_{10}$ $(2)_{10}$ = ?
 - Perform $(7)_{10} + (-(2)_{10})$
 - $(7)_{10} = +(111)_2 = (0111)_{2cns}$
 - $-(2)_{10} = -(010)_2 = (1110)_{2cns}$
 - $(7)_{10} (2)_{10} = (0111)_{2cns} + (1110)_{2cns} = (0101)_{2cns} + \frac{carry}{carry}$ $= +(101)_{2} = +(5)_{10}$

- **Example**: $(2)_{10}$ $(3)_{10}$ = ?
 - Perform $(2)_{10}$ + $(-(3)_{10})$

$$-(2)_{10} = +(10)_2 = (0010)_{2cns}$$

$$--(3)_{10} = -(11)_2 = (1101)_{2cns}$$

$$-(2)_{10} - (3)_{10} = (0010)_{2cns} + (1101)_{2cns} = (1111)_{2cns}$$
$$= -(0001)_{2} = -(1)_{10}$$

- Consider A = -B C where B and C are n-bit positive integers
 - $-A = [B]_2 + [C]_2 = 2^n (B)_2 + 2^n (C)_2 = 2^n + 2^n (B + C)_2 = 2^n (B + C)_2 = [B + C]_2$
 - An overflow can occur, and is indicated by a sign bit of 0.
 - The carry bit (2^n) is discarded leaving the 2's complement of B+C.
- **Example**: $-(3)_{10} (4)_{10} = ?$
 - Perform $(-(3)_{10}) + (-(4)_{10})$
 - $-(3)_{10} = -(11)_2 = (1101)_{2cns}$, $-(4)_{10} = -(100)_2 = (1100)_{2cns}$
 - $-(3)_{10} (4)_{10} = (1101)_{2cns} + (1100)_{2cns} = (1001)_{2cns} + \frac{carry}{carry}$ = $-(0111)_2 = -(7)_{10}$
- **Example**: $-(4)_{10} (5)_{10} = ?$
 - Perform $(-(4)_{10}) + (-(5)_{10})$
 - $-(4)_{10} = -(100)_2 = (1100)_{2cns}$, $-(5)_{10} = -(101)_2 = (1011)_{2cns}$
 - $-(4)_{10} (5)_{10} = (1100)_{2cns} + (1011)_{2cns} = (0111)_{2cns} + \frac{carry}{c}$
 - An overflow is indicated by the sign bit of 0.

Case Summary

Case	Carry	Sign of A	Condition	Overflow?
A = B + C	0	0	$(B+C) \leq 2^{n-1}-1$	No
A = B + C	0	1	$(B+C)>2^{n-1}-1$	Yes
A - B - C	1	0	$B \leq C$	No
A = B - C	0	1	B > C	No
A = -B - C	1	1	$-(B+C) \ge -2^{n-1}$	No
AB - C	1	0	$-(B+C)<-2^{n-1}$	Yes

Where B and C are n-bit positive integers.

Overflow Detection for Addition

Operation	Sign of X	Sign of Y	Sign of Z	Overflow?
	0	0	0	No
	0	0	1	Yes
	0	1	0	No
7 – V + V	0	1	1	No
Z = X + Y	1	0	0	No
	1	0	1	No
	1	1	0	Yes
	1	1	1	No

Design an Overflow Detection Circuit

Recall

```
(+) + (+) = (+): 0110 + 0001 = 0111 

: 0110 + 0010 = 1000 × OVERFLOW

(-) + (-) = (-): 1010 + 1111 = 1001 

: 1010 + 1110 = 1000 
: 1010 + 1101 = 1000 V

: 1010 + 1101 = 1011 OVERFLOW
```


Design an Overflow Detection Circuit

So
$$(A_3A_2A_1A_0) + (B_3B_2B_1B_0) = C_4R_3R_2R_1R_0$$

 $0111 + 0001 = 1000 \text{ OVERFLOW}$
 $1111 + 1000 = 10111 \text{ OVERFLOW}$

Two's Complement Overflow Detection

Adder Inputs			Adder (Outputs	Overflow	
a _{n-1}	b_{n-1}	\boldsymbol{c}_{n-2}	C _{n-1}	S _{n-1}	V	
0	0	0	0	0	0	
0	0	1	0	1	1	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	0	1	0	
_11	0	1	1	0	0	
1	1	0	1	0	1	
1	1	1	1	1	0	

Truth Table

$$V = \overline{a}_{n-1}\overline{b}_{n-1}s_{n-1} + a_{n-1}b_{n-1}\overline{s}_{n-1}$$
Logic Equation

Two's Complement Overflow Detection

Adder Inputs			Adder (Overflow	
<i>a</i> _{n-1}	b_{n-1}	C _{n-2}	C _{n-1}	S _{n-1}	V
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	1	0

Truth Table

$$V = C_{n-2} \oplus C_{n-1}$$

Logic Equation

Logic Circuit

The Verilog HDL

- Verilog is a widely used Hardware Description Language (HDL)
- C-like syntax, but not a programming language

(b) Verilog Hardware Description Language Compilation

- Used to capture existing designs for simulation purposes design verification or analysis
- Used to capture new designs for synthesis or analysis

When to Use Verilog Models

- In general anytime you want to realize a design with programmable logic (ASIC, CPLD, FPGA, SoC)
- Structural capture design (structure) of an existing circuit
 - Simulation
 - Synthesis
- Dataflow capture functionality of simple combinational logic
 - Simulation
 - Synthesis
- Behavioral capture functionality (behavior) of combinational and/or sequential logic
 - Simulation
 - Synthesis

Verilog Module Structure

```
module name (port list);

[port declarations]

[data type declarations]

[functionality statements]

[timing specifications]
```


Case Statements

Data Types

 Net datatypes – represent physical connections, must be driven, value can change at any time, declared by

```
wire d,e,f,g;
tri x,y,z;
```

 Variable datatypes – abstractions of storage elements, hold values from one assignment to the next, declared by

```
reg si, couti; //unsigned, length specified
integer I; //signed 32-bit variable
time t; //unsigned integer
```

Outputs of behavioral models must be declared as variable datatypes.

Number Representation

General format

```
<size><base><value>
```

3'b101 – three-bit binary number 101

8'd101 – eight-bit decimal number 101

8'h9e – eight-bit hexadecimal number 9E

Procedural Blocks

- Procedural blocks represent processes and execute concurrently, may be named.
- initial Blocks execute once, typically used to initialize variables in a test bench.
- always Blocks execute continuously, used to represent the functionality of hardware.

Assignment Statements

 Continuous assignment statements -- execute continuously, used outside of procedural blocks.

 Procedural assignment statements – used to derive or update variable datatypes, LHS must be a variable datatype, RHS may be any valid Verilog statement, used inside procedural blocks.

```
si = 1'b0;
begin si = 1'b0; couti = 1'b0; end
```


Concatenation

Concatenation symbol – {}

if ai = 0, bi = 1, cini = 0, then $\{a1,bi,cini\} = 010$

Events

 Event – a change in the value of a variable or on a net, may be used to control execution of always blocks.

@ expression where the expression defines the event

always @ (ai,bi,cini);

if ... else Statements

Propagation Delay

Propagation delay through a logic gate

(a) Two-input AND gate

(b) Ideal (zero) delay

Circuit Propagation Delay

Let t_q represent the propagation delay for all basic gates and t_f the circuit delay.

$$t_f = 2t_g$$

Circuit delay = sum of the gate delays through the longest path from an input to an output.

Add Times for Basic Adders

Half-Adder

 t_q

Full-Adder

 $2t_g$

Add Time for Ripple-Carry Adders

Assume all inputs are applied simultaneously and $t_{fa} = 2t_{q}$.

For an n-bit ripple-carry adder, the add time is $2nt_g$.

Add Time Implications

$$f_{MAX} = 1/t_{add} = 1/2nt_g$$

t _g n	16	32	64	128	
10	320 ns	640 ns	1,280 ns	2,560 ns	
10 ns	3.125 MHz	1.5625 MHz	0.78125 MHz	0.390625 MHz	
1 nc	32 ns	64 ns	128 ns	256 ns	
1 ns	6.25 MHz	3.125 MHz	1.5625 MHz	0.78125 MHz	
0.1 ns	3.2 ns	6.4 ns	12.8 ns	25.6 ns	
	12.5 MHz	6.25 MHz	3.125 MHz	1.5625 MHz	
0.01 pc	0.32 ns	0.64 ns	1.28 ns	2.56 ns	
0.01 ns	25 MHz	12.5 MHz	6.25 MHz	3.125 MHz	
0.004	0.032 ns	0.064 ns	0.128 ns	0.256 ns	
0.001 ns	50 MHz	25 MHz	12.5 MHz	6.25 MHz	

 t_{add} , f_{MAX}

How Fast Do We Need to Add?

Assume one add operation per clock cycle, f = 1/t_{add}

• Then $t_{add-max} = 1/f$

f (GHz)	1.5	1.8	2.0	2.4	2.8	3.0	3.6	3.9
t _{add-max} (ps)	666	555	500	417	357	333	277	256

Q&A

