1. 4.1.

로지스틱 화커 - 선형퇴귀의 개념을 용박하는 가 변수형인 경우로 확장한 첫

· 여름변수의 값을 바탕으로 클러스가 알려져 있지 않은 관측자들은 분류

(클레스가 알려져있는 예측번수들에 대해 서로 다른 클래스로 구원해주는 2만은 촛술수도 있음(프로파일링) 로지스틱 화가는 다양한 분야에서 변수형 반송변수를 설명하거나 예측하기위해 구조화된 모델이 필요할 때 사용 다동선형회귀분석은 연속형 판송변수 Y의 값을 예측하는 것인 반면에 로지스틱 화기분석은 분유가 목탁 로지스틱 화귀는 2만개로 구성

- ① 각 클래스네 속하는 '성향' 혹은 '확률'을 취정
- ② 각 관측차의 클레스를 지점하기 위해 교육값에 대한 것으로 값을 모델

로지스틱 회귀의 원리: 종속번수 가를 대신해서 logit(로팠)이라고 부르는 가의 함수를 사용

(169;†을 예측번수들의 선형함수로 모형화 일단 로팠이 예측되면 그래터 확을 법당가능
(9);†의 이해

① 클래스 (에 속한 롹을 P=P(Y=()을 구한다. 클래스 0에 속한 롹은 1-P가 된다.
이 (두 개의 藏한 가진 수 왔는 Y와 달리 P는 구한 [0,1]에 존재하는 모든 값을 가진 수 있다.
(- 1러나 ᆦ PF 우개의 예획반들에 대한 원형합국 나라내면

$$P = B_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_3 X_4 - ^2$$
 원이 구간 $[0,1]$ 에 들어가는 것을 낼당 X

- 건반 $[0,1]$ 을 보답하게 위해 $P = \frac{1}{1 + e^{-(B_0 + B_1 X_1 + \cdots + B_3 X_4)}}$ 을 사용
- 로지스틱 반응함수

② 클래스 뚊라 언란된 다른 흑도인 Odds(RE)를 이해

에는 변수 시가 한 단위 증가하면 다른 에트변수들이 또는 인명하다고 가장할 때 Oulst C^{BI} 먼물 증가

이 의에 자연로그를 취하면 log(ads) = Bo+BiXi+··+BqXq

ملم لجلة فكات بدائيا . يحديث والألم لينا الأدائا بالسخاء

이 LEH 180(00HR) = 0 이번 00HR = 1 (화충 0.5)

반응변수와 여쪽변수의 관계를 나타내는 최종형태는 10g/1을 중속변수로 하며 1개의 예족변수에 대한 선형함수로 모형하

3. 에서: 개인대통제한 선목

· 단일 예약하는 것도 모델

하나의 예측변수 K.와 반응변수 Y의 관계를 직선으로 역합시킨 단원 연형회커모델과 개발적으로 비슷. CN 예측변수호 수입 만을 고려

 $P(CH\overline{\xi} = \gamma cs (Income = X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1)}}, Odds (CH\overline{\xi} = \gamma cs) = e^{\beta_0 + \beta_1 X_1}$

로지스되 화귀는 범수형 반응의 확률을 예측하게 해준다는 됨에서 예측 문에에 사용될수도 있지만 대개 분류문제에 사용 → 확률함수로서 표현 가능. 첫오프값 값 오즈 이용해서 분류가능

• 데이터로 부터 로지스틱 모델 추정: 모수 추정치의 계산

로디스틱 화케에서 You 모수 B의 관계는 비선형 - 다등 선형화키본덕에서 취검 최소제급병 사용 X 나 회대 가능도법 (Max:mam, likelihood method) 사용하여 추정

수기가 가진 데이터를 얻을 가능성을 최대확하는 추정치를 찾는 방법→ 컴퓨터를 이용해 반복추정하는 과정 필요
〈최대가능도법〉

최대가능도법은 추정치에 대한 죽은 덜근적(대표)성질을 보장, 배우 실반적인 조건하에서 다음을 만속

- ① 일치성(Gans:stent) 표본크게가 증가할데 따라 추정상과 원리값이 다른 확률이 이어 수점.
- ②집면 트립성(osymphically efficient) 일치성은 변화는 행당 등에 가장 다른 분산을 갖는다.
- ③ 터콘텍 당권된 (asymptotically Normally distribution) 표보크기가 쿡 때, 다통현형화기모델문석과 유사한 방식으로 원식구간을 계산하고 통계적 검점을 수행할 수 있다.

회귀게수 추정치를 계반하는 알고식음은 선형화커보다 된 강전

그러나 데이터에서 반응변수로 이 1을 갖는 관측치가 많을 때나 많이 이 1를 등 무엇과도 충분히 가장지 않을 때,
로지스틱 라귀포틴에서 희귀계속의 계속가 표분의 크기에 비해 작을 때 (10% 이하)는 일반적으로 회귀계수의 주정치 산회가능
선형 회계와 마찬가지도 예측면수들 간의 강한 상관관계인 공선성 (coll:nea-trly)은 취임지 계산을 어렵게 만듭

· (프로파일링을 위한) 오즈관립에서의 결과 해석

데이더에 잘 맞는 로지스틱 모델은 서울 다른 예록반약들의 역할에 더한 유용한 정말 제공 가능

(* 확률을 알아보는 것보다 오스를 이용하는 것이 더 좋다.

 $\frac{\text{Odds} = e^{\rho_0 + \rho_1 X_1 + \cdots + \rho_k X_k} - \text{w GNM} \times_1 \text{ol } \hat{\mathfrak{V}} \text{ 단계 동가, 다른 변수값은 모두 고점이면 } }{\text{Odds} (X_1, \dots, X_k)} = \frac{e^{\rho_0 + \rho_1 X_1 + \cdots + \rho_k X_k}}{e^{\rho_0 + \rho_1 X_1 + \cdots + \rho_k X_k}} = e^{\rho_0}$

변수 Kin 1단위 증가한 때 되게는 모드의 향이 CPI

오즈 결과를 보게 되면 보의 어떤 값에 대해서도 이번 해석이 가능하다는 첫

활값은 X:3→4, X:30→31일 CH 확 P가 바뀌는 집도가 다르다.

4. 봤供하

가장 많이 사용되는 것은 정도분류표와 항상차트에 기반한 최도

로지스틱 회케에서 정오분유표를 얻게 위해선 추정된 화귀식을 통해 출재스에 속할 경향을 예측.

그리고 클래스를 점하기 위해 귓오프값을 사용

· 郵記 P= e¹⁰¹¹/1+ e¹⁰³¹¹ 의 관계식을 통해 만을 수 있음

• 변수선택

대체모델을 찾게

(* 예측변수의 개수술 들어 더 간단한 모델로 만들거나 예측변수들간의 상호약용을 고려하고 그소부터 파범되는 변수들을 고려하여 더 복잡한 모델로 만들거나

⇒ 대체모델의 선택은 성능에 군가(권통데이터에 대해서)

복잡한 모델보다는 간단한 모델

선형 회귀에서와 따찬가지고 단계적 선택, 전방선택, 후방소거 등 사동화된 반수선택 가능

6 년: 로지스리 해 프로파넴링

· 선형 돼가 범주형 반응변수에 대해 문제가 되는 이웃

반응변수 Y을 연속형으로 잔주하고 다동선형화가 최용가능 → 선형확률모델 수치적 코드화 98 ⇒ 이렇게 하면 몇 가지 이상한 열등이 존재

- ① 모델을 사용하여 Y값을 예측할 때, 반드시 0,1이 나오지는 않는다.
- ② 전자에 대한 하스토그램이나 확률됐을 보면 할때번수(또는 전차)가 당하셨도 따른다는 가정 위배.
- ③ 모든 클래스에서 Y의 분단이 일정하다는 가정 성립 X. Y는 이항 분포를 따르기 때문에 분단은 np(1-7)

Mon He Ban Driften Yeron Bayof News British

②③의 라 표준으러로 이용한 통계된 라운 사용한 프로파일심에 BM.

수 본주형 반응원수의 분류에 로지스티 화가를 쓰는 아유

· 설명력 평가

분석의 프랑이 프로파일링인 경우 → 사라운 데이터의 분류보다 기존 데이터의 설명에 더 관심

· 모델이 데이터를 얼마나 잘 퇴합했지? 알아봐 효과 판

• 원체적인 역합상도

모델의 전체적인 설명적 당가 왔다.

클래스 란 차이를 설명하는데 예측변수가 필요한가? ⇒ 이탈도 D

이탈도 D는 런데데인 FT로를 취임하는 통계량 - 화세관비에서 오라제곱한 개념과 유사

모델의 이탈도를 에톡번수가 없는 나이보모델라 되고 ⇒ 통계력으로 의미가 있다면 예족번수 있는게 좋다.

• 단원 예측변수의 영향

로지스티 화가의 출력 : 각 예측면수 X:에 대한 화키 게수 b:와 표준된자가 있는 화키게수호 제공 나 P~ 값은 예측면수 X:의 통계적 유의성을 나타내며, 낮은 P~ 값은 예측변수와 반응면수 간에 통계적으로

유의미한 곤전이 있음을 나라내고, 이러한 관계가 유편이 아닐을 나라냄 〈음료한 사람들〉

- ① 통제리 뉴의미= <u>실일적 유의</u>대는 아니다. __ 에类변수의 영향적이 큰 것을 의미
- ② 모든 예측 변수의 스케일이 동일하지 않는한 계수의 크기나 오즈의 크기 때교는 무의미 → 각 계수에 예측변수의 값이 균해지므로 계수들만 배교하는 전 의미가 없다
- ③ 통계적으로 유의미한 예측된수는 횡조적으로 예측된수의 한 단위 증가가 실패에 미지는 어떤 특성 영향과 관련였다는 것을 의미. → 예측력을 나타내는 것은 아닐
- Gonfusion mattix나 lift Charten 스카페인 문제 근거해서 변수한택 활호
- 두 개 이상의 클래스에 대한 로지스틱 회귀

클래스가 m일 cti, m개의 확률합은 「이기 ttile에 m-17H의 확률만 루칭하면 됨

• 승서형 클래스

글래스에 의미있는 순서가 존대 — 클래스의 수가 5이상이면 연속형으로 취급하여 다동선형회귀 가능 3소 m스 5 및 대 로지스티 회귀의 확장은? 바여오도 (환 두덕로짓) 군 한 3개 I= 매수 $Z= \pm 1.3=$ 매도라 한 CH, $P(Y \le 1) - \pi 1 + \frac{1}{2} + \frac{1$

• 명모한 클래스

순서는 없고 단슨이 서로 다른 클래스빌 때. ~ 제개가 있다면 서그개의 확률만 취정

$$\begin{array}{ll} \log_{\mathbb{N}}\left(\mathbb{A}\right) = & \log_{\mathbb{N}}\frac{P(\gamma \circ A)}{P(\gamma \circ C)} = \alpha_{0} + \alpha_{1} \times \\ & & \text{if } P(\gamma \circ C) = I - \left(P(\gamma \circ A) + P(\gamma \circ B)\right) \end{array}$$

$$\left(\log_{\mathbb{N}}\left(\mathbb{A}\right) = & \log_{\mathbb{N}}\frac{P(\gamma \circ C)}{P(\gamma \circ C)} = p_{0} + p_{1} \times \end{aligned}$$