Modeling Zombies and Infection

Ricky Marske and Steven Rosendahl

A Simple Model

• Population decay can be modeled by

$$y = a(1-r)^x$$

Population decay can be modeled by

$$y = a(1-r)^{x}$$

• a : Initial amount of population

Population decay can be modeled by

$$y = a(1-r)^{x}$$

- a : Initial amount of population
- r : Decay rate

Population decay can be modeled by

$$y = a(1 - r)^{x}$$

- a : Initial amount of population
- r : Decay rate
- x : The amount of time that has passed

Adding Complexity

• In the initial model, we assumed

- In the initial model, we assumed
 - 1. No one was immune

- In the initial model, we assumed
 - 1. No one was immune
 - 2. Non-Infected would have no response to infected

- In the initial model, we assumed
 - 1. No one was immune
 - 2. Non-Infected would have no response to infected
 - 3. No one could survive the virus or be cured

Immunities

Non-Infected Responses

Cures and Survival

Modeling Outside of NetLogo