

Peculiarities of the photoluminescence line shape in Ga(N,As,P)/GaP: Experiment and Monte Carlo simulations

V. ValkovskiiProf. S. D. Baranovskii

vitalii.valkovskii@physik.uni-marburg.de

GRK Seminar, Kunze-Hof, Stadland, 2017

Monte Carlo studies

Computer simulations of disordered materials properties:

- Charge Transport properties
- Optical properties

Ga(N,As,P)/GaP PL

Outline

- Intro
- Baranovskii Eichmann Thomas(BET) model
- Modified BET model: Two scales of disorder
- Alternative approach: Complex DOS and Tdependent non-radiative recombination
- Conclusions

Disorder-induced localized states

Tale of localized states (LS) due to disorder:

Experimental measurements

PL Spectra:

PL Features:

Karcher C, Jandieri K, Kunert B, Fritz R, Zimprich M,Volz K, Stolz W, Gebhard F, Baranovskii S D and Heimbrodt W 2010 Phys. Rev. B **82** 245309

Peculiarities of PL in disordered material

- (a) Schematic shapes of the PL spectra;
- (b) temperature-dependent PL peak position;
- (c) PL linewidth;

E / peak

> Green solid line – low excitation Red doted line – high excitation

Temperature

BET - model

Assumptions:

- Traps distributed randomly in energy and coordinates;
- No correlations between energy and spatial positions of traps are assumed;
- Electrons and holes are coupled in form of excitons.

Dimensionless parameters: $\frac{E_0}{\nu \tau}$ Na^2 $v_0 \tau_0$

Processes:

- Capture to localized states (LS);
- Activation to extended states;

$$v_i = v_0 \exp\left(\frac{E_i}{kT}\right)$$

Hopping transitions between LS;

$$v_{ij} = v_0 \exp\left(\frac{-2R_{ij}}{a} - \frac{E_j - E_i + |E_j - E_i|}{2kT}\right)$$

Recombination;

$$\frac{E_0}{T}$$
 Na² $v_0 \tau$

Baranovskii S D, Eichmann R and Thomas P 1998 Phys.Rev. B 5813081

BET - model

KMC Simulation algorithm:

- Step 1: Generate LS's;
- Step 2: Set particle to random site;
- Step 3: Throw random number to select next event;
- Step 4: Throw random number to generate event's time;
- Repeat Steps 3-4 until recombination.

$$\Delta t_i = -\ln(x) v_i^{-1}$$

BET - model

Successfully applied to:

Quantum wells:

GalnNAs/GaNAs, InGaN/GaN

Quantum dost:

InAs/GaAs

Bulk materials:

GaP(N)

Key feature:

Relations between energy scale of disorder(E) and temperature maximums (T1 and T2) of PL Stokes Shift / FWHM.

Feature	Relation to E/k
T1 (Stokes Shift max)	~ (0.7 – 0.8)
T2 (FWHM max)	~ (1.1 – 1.2)
FWHM (at low T)	~ 2.5

Rubel O, Galluppi M, Baranovskii S D, Volz K, Geelhaar, L, Riechert H, Thomas P and Stolz W 2005 J. Appl. Phys. **98** 063518 Dawson P, Rubel O, Baranovskii S D, Pierz K, Thomas P and Goebel E O 2005 Phys. Rev. B **72** 235301 Dawson P, Goebel E O, Pierz K, Rubel O, Baranovskii S D and Thomas P 2007 Phys. Stat. Sol. b 244 2803

Problems of BET - model for Ga(N,As,P)

Problem:

Relations between PL features and energy parameter of disorder doesn't work!

Relation between E_0 and PL features	PL feature (meV)	E ₀ (meV)
$k_B T_1 = (0.75 - 0.80) E_0$	10.4	13
$k_B T_2 = (1.10 - 1.15)E_0$	10.4	9
$FWHM(0) = (2.5 - 2.7)E_0$	57	22
$\beta = E_0^{-1}$	0.025 ^a	40

^aThe value of β is given in (meV)⁻¹.

Karcher C, Jandieri K, Kunert B, Fritz R, Zimprich M,Volz K, Stolz W, Gebhard F, Baranovskii S D and Heimbrodt W 2010 Phys. Rev. B **82** 245309

Modified BET – model: Two scales of disorder

DOS for double-scale of disorder:

$$G(E) = \frac{N_0}{\varepsilon_0 - E_0} \left[\exp\left(\frac{E}{\varepsilon_0}\right) - \exp\left(\frac{E}{E_0}\right) \right]$$

Simulated spectrum:

Karcher C, Jandieri K, Kunert B, Fritz R, Zimprich M,Volz K, Stolz W, Gebhard F, Baranovskii S D and Heimbrodt W 2010 Phys. Rev. B **82** 245309

Modified BET – model. Two scales of disorder

Experimental results and simulation:

Karcher C, Jandieri K, Kunert B, Fritz R, Zimprich M,Volz K, Stolz W, Gebhard F, Baranovskii S D and Heimbrodt W 2010 Phys. Rev. B **82** 245309

Ga(N,As,P) PL FWHM vs pump

Experimental result: At low temperatures *FWHM strongly decreases* along with the increase of the Peak Energy, when increasing the excitation power

Similar behavior reported for GaAsBi/GaAS:

Mazur Y I et al 2013 J. Phys. D: Appl. Phys. 46 065306

Modified BET - model: Complex DOS

Complex DOS:

Parameter	Value	Description
N_0/N_1	7/3	Fitting parameter
E_0	46 (mEv)	Experimentally determined
E_1	36 (mEv)	Fitting parameter
$\sigma_{ m l}$	15 (mEv)	Fitting parameter
$N\alpha^2$	0.06	Fitting parameter
$ u_0 \tau_0 $	$3.5\cdot 10^3$	Experimentally determined

-20

-140

-120

-100

Energy (meV)

Simulation results:

Valkovskii V V, Shakfa M K, Jandieri K, Ludewig P, Volz K, Stolz W, Koch M and Baranovskii S D, 2017 *J. Phys. D: Appl. Phys* **50** 025105

Experimental measurements

PL Spectra:

PL Features:

Karcher C, Jandieri K, Kunert B, Fritz R, Zimprich M,Volz K, Stolz W, Gebhard F, Baranovskii S D and Heimbrodt W 2010 Phys. Rev. B **82** 245309

Modified BET - model. Two types of LS

Assumptions:

- Many particle system;
- Complex DOS given by:

$$g(E) = A_0 \exp\left(\frac{E}{E_0}\right) + A_1 \exp\left(\frac{(E_1 - E)^2}{2\sigma_1}\right)$$
;

- Two types of the LS;
- Strong temperature dependence of non-radiative recombination;
- New parameter ratio of non-radiative recombination rates $\tau_{nr,1}/\tau_{nr,1}$.

Modified BET - model. Two types of LS

Simulation results:

Parameter	Value
N_0/N_1	6/4
E_0	40 [meV]
E_1	38 [meV]
σ_1	16 [meV]
$N\alpha^2$	0.25
$ u_0 au_{ m r}$	10^{3}

Conclusions

- We have studied PL features of Ga(N,As,P) quantum wells using Kinetic Monte Carlo method;
- Principal problems of the original BET model has been revealed;
- The original model has been refined, assuming the following:
 - > Two types of LS with non-monotonous (exponential-plus-Gaussian) DOS;
 - Strongly different temperature dependencies of non-radiative recombination rates at LS type-I and LS type-II

Philipps

Universität Marburg