Направленные углы

Направленным углом $\angle(\ell_1,\ell_2)$ между прямыми ℓ_1 и ℓ_2 называют угол, на который надо повернуть прямую ℓ_1 против часовой стрелки, чтобы получить прямую, параллельную ℓ_2 . Значение направленного угла определено с точностью до 180° . Основные свойства направленных углов:

- $\angle(\ell_1, \ell_2) = -\angle(\ell_2, \ell_1);$
- $\angle(\ell_1, \ell_2) + \angle(\ell_2, \ell_3) = \angle(\ell_1, \ell_3);$
- $\angle(\ell_1,\ell_2) = 0 \Leftrightarrow \ell_1 \parallel \ell_2;$
- $\angle(AB,BC)=\angle(AD,DC)\Leftrightarrow A,B,C,D$ лежат на одной окружности или прямой;
- $\angle(AB,BC)=-\angle(AC,CB)\Leftrightarrow AB=BC$ или $A,\,B,\,C$ лежат на одной прямой.

Пример. Дан треугольник ABC. На прямых AB, AC, BC выбраны точки C_1 , B_1 , A_1 соответственно. Тогда окружности (AB_1C_1) , (A_1BC_1) , (A_1B_1C) пересекаются в одной точке.

Замечание 1. Равенства с направленными углами нельзя делить. Например, попробуйте поделить на 2 верное равенство $\angle(\ell_1,\ell_2)=180^\circ+\angle(\ell_1,\ell_2)$.

Замечание 2. Для удобства можно вместо обозначения $\angle(AB,BC)$ использовать обозначение $\angle ABC$. Но на этом занятии это запрещено.

- **1. Прямая Симсона.** Докажите, что проекции точки P на прямые, содержащие стороны треугольника ABC, лежат на одной прямой тогда и только тогда, когда P лежит на описанной окружности треугольника ABC.
- **2.** Точка Микеля. Четыре прямые общего положения в пересечении образуют четыре треугольника. Докажите, что их описанные окружности пересекаются в одной точке.
- 3. Окружности ω_1 и ω_2 пересекаются в точках A_1 и B_1 , окружности ω_2 и ω_3 в точках A_2 и B_2 , окружности ω_3 и ω_4 в точках A_3 и B_3 , окружности ω_4 и ω_1 в точках A_4 и B_4 . Докажите, что если точки A_1 , A_2 , A_3 , A_4 лежат на одной окружности или прямой, то точки B_1 , B_2 , B_3 , B_4 лежат на одной окружности или прямой.

- **4.** На окружности с центром O выбраны точки A, B, C, D. Прямые AB и CD пересекаются в точке P. Окружности (ADP) и (BCP) повторно пересекаются в точке Q. Докажите, что точки A, C, O, Q лежат на одной окружности.
- **5.** Точки O и I центры соответственно описанной и вписанной окружностей равнобедренного треугольника ABC с основанием BC. Окружности (ABC) и (BIO) вторично пересекаются в точке D. Докажите, что прямая BD касается окружности BIO.
- 6. В треугольнике ABC проведены высоты AA_1 , BB_1 , CC_1 . Обозначим одну из точек пересечения прямой B_1C_1 с окружностью (ABC) через X. Пусть Y точка пересечения прямых A_1C_1 и BX. Докажите, что AX = AY.
- 7. Треугольник ABC ($\angle C \neq 90^{\circ}$) вписан в окружность с центром в точке O, на окружности отмечена точка D. Перпендикуляр, опущенный из D на BC, пересекает прямую AC в точке E. Докажите, что центр окружности (AED) лежит на окружности (AOB).
- **8.** На плоскости даны точки A, B, C, D общего положения. Докажите, что окружности Эйлера треугольников ABC, ABD, ACD, BCD пересекаются в одной точке.
- 9. Внутри вписанного четырёхугольника ABCD нашлась такая точка X, что выполнено равенство $\angle XAB = \angle XBC = \angle XCD = \angle XDA$. Продолжения пар противоположных сторон AB и CD, BC и DA пересекаются в точках P и Q соответственно. Докажите, что $\angle PXQ$ равен углу между диагоналями AC и BD.