EduElevators with Standard Bank

Advertise with Us!

Your Brand, Front and Center –

Right Here on Page 1!

.Contact us today to secure

your spotlight!"

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P1/WISKUNDE V1

MARKING GUIDELINES/NASIENRIGLYNE

MAY/JUNE/MEI/JUNIE 2023

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 15 pages./ Hierdie nasienriglyne bestaan uit 15 bladsye.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking guidelines.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die nasienriglyne van toepassing.

QUESTION 1/VRAAG 1

1.1.1	$x^{2}-7x+12=0$ $(x-4)(x-3)=0$ $x=4 \text{ or } x=3$ $3x^{2}+5x-1=0$ Answer only: Full Marks	✓ factors ✓ $x = 4$ ✓ $x = 3$ (3) ✓ standard form
	$x = \frac{-5 \pm \sqrt{5^2 - 4(3)(-1)}}{2(3)} = \frac{-5 \pm \sqrt{37}}{6}$ $\therefore x = 0.18 \text{ or } x = -1.85$	✓ substitution into the correct formula $\checkmark x = 0.18$ $\checkmark x = -1.85$ (4)
1.1.3	$x^{2} + 2x - 15 < 0$ $(x - 3)(x + 5) < 0$ $x = 3 \text{ or } x = -5$ $-5 < x < 3$	✓ standard form ✓ critical values ✓ ✓ answer (4)
1.1.4	$\sqrt{2(1-x)} = x-1$ $(\sqrt{2(1-x)})^2 = (x-1)^2$ $2-2x = x^2 - 2x + 1$ $x^2 - 1 = 0$ $\therefore x = 1 \text{and} x \neq -1$	✓ squaring both sides ✓ simplification ✓ standard form ✓ answer with selection (4)

1.2	$3^{x+y} = 27$	
	$x^2 + y^2 = 17$	
	$3^{x+y} = 3^3$	$\checkmark 3^{x+y} = 3^3$
	$x + y = 3 \dots (1)$	$\checkmark x + y = 3$
	y = 3 - x	
	$x^2 + (3 - x)^2 = 17$	✓substitution
	$2x^2 - 6x - 8 = 0$	
	$x^2 - 3x - 4 = 0$	✓ standard form
	(x-4)(x+1)=0	
	x = 4 or x = -1	✓x-values
	y = -1 or y = 4	\checkmark y-values (6)
	OR/OF	OR/OF
	$3^{x+y} = 27$	
	$x^2 + y^2 = 17$	
	$3^{x+y} = 3^3$	$\checkmark 3^{x+y} = 3^3$
	$x + y = 3 \dots (1)$	$\checkmark x + y = 3$
	x = 3 - y	
	$(3-y)^2 + y^2 = 17$	✓substitution
	$9 - 6y + y^2 + y^2 - 17 = 0$	
	$2y^2 - 6y - 8 = 0$	
	$y^2 - 3y - 4 = 0$	✓ standard form
	(y-4)(y+1) = 0	
	y = -1 or y = 4	✓y-values
	x=4 or x=-1	$\checkmark x$ -values (6)

Need an amazing tutor? www.teachme2.com/matric

Mathematics P1/Wiskunde V1

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/May/June/Mei/Junie 2023

1.3	$\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{99} + \sqrt{100}}$ $= \frac{1}{\sqrt{1} + \sqrt{2}} \times \frac{\sqrt{1 - \sqrt{2}}}{\sqrt{1 - \sqrt{2}}} + \dots$ $+ \frac{1}{\sqrt{99} + \sqrt{100}} \times \frac{\sqrt{99} - \sqrt{100}}{\sqrt{99} - \sqrt{100}}$	✓rationalisation	
	$= -1 + \sqrt{2} - \sqrt{2} + \sqrt{3} - \sqrt{3} + 2 \dots - \sqrt{99} + 10$	✓ simplification	
	=-1+10		
	= 9	✓ answer	(3)
			[24]

QUESTION 2/VRAAG 2

	T	
2.1.1	$\frac{1}{5} + \frac{1}{15} + \frac{1}{45} + \dots$	
	$r = \frac{\frac{1}{15}}{\frac{1}{5}} = \frac{1}{3}$	$\checkmark r = \frac{1}{3}$
	$-1 < \frac{1}{3} < 1$ ∴ the series is convergent.	✓ answer (any indicator of convergence) (2)
2.1.2	$S_{\infty} = \frac{a}{1 - r}$	
	$=\frac{\frac{1}{5}}{1-\frac{1}{3}}$	✓ substitution
	$1 - \frac{1}{3}$ $= \frac{3}{10}$	✓ substitution
	$-\frac{10}{10}$	✓ answer (2)
2.2.1	$4x; \frac{1}{81}$	$\checkmark 4x \checkmark \frac{1}{81} \tag{2}$
2.2.2	T = r + (n-1)r	✓ substitution
		✓ answer (2)
2.2.3	$T_n = ar^{n-1}$	
	$T_{13} = \frac{1}{3} \left(\frac{1}{3}\right)^{13-1}$	$\checkmark n = 13$ $\checkmark r = \frac{1}{3}$
	$T_{13} = \left(\frac{1}{3}\right)^{13}$ or $\frac{1}{1594323}$ or $6,27 \times 10^{-7}$ or 3^{-13}	✓ answer (3)
2.2.4	$\sum_{n=1}^{21} P_n = S_{11} + S_{10}$	$\checkmark S_{11} \checkmark + S_{10}$
	$= \frac{11}{2} \left[2x + 10x \right] + \frac{\frac{1}{3} \left[1 - \left(\frac{1}{3} \right)^{10} \right]}{1 - \frac{1}{3}}$	✓ arithmetic sum ✓ geometric sum
	= 66 x + 0.5 $33.5 = 66 x + 0.5$	✓ $66 x + 0.5$ (A)
	$\therefore x = \frac{1}{2}$	✓ answer (6)
		[17]
	<u> </u>	ı

QUESTION 3/VRAAG 3

C	JI SI VRAAG S	
3.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$2a = 10 \qquad 3a + b = 0$ $a = 5 \qquad b = -15$	$\checkmark 2a = 10$ $\checkmark 3a + b = 0$
	$T_3 - x - 0 = 10$ $T_3 = x + 10$	$\checkmark T_3 = x + 10$
	$2x + T_3 = 28$ $2x + x + 10 = 28$ $3x = 18$	$\checkmark 2x + T_3 = 28$
	x = 6 $a + b + c = 6$	$\checkmark x = 6$
	5 - 15 + c = 6 $c = 16$	\checkmark 5−15+ c = 6 (6)
	$\therefore T_n = 5n^2 - 15n + 16$	
	OR/OF	OR/OF
	2a = 10 ∴ $a = 5$	$\checkmark 2a = 10$
	$T_1 = a+b+c$ $T_2 = 4a+2b+c$ $T_3 = 9a+3b+c$ = $5+b+c$ = $20+2b+c$ = $45+3b+c$	
	5+b+c=20+2b+c $b=-15$	$\checkmark 5 + b + c = 20 + 2b + c$
	$T_1 = -10 + c$ $T_2 = -10 + c$ $T_3 = c$	$\checkmark T_1 = -10 + c$ $\checkmark T_2 = -10 + c$
	$T_1 + T_2 + T_3 = -10 + c - 10 + c + c$ $28 = 3c - 20$ $c = 16$	$\checkmark 28 = 3c - 20$ $\checkmark c = 16 \tag{6}$
		. ,

Mathematics P1/Wiskunde V1

DBE/May/June/Mei/Junie 2023 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

3.2	$T_n = 5n^2 - 15n + 16$		
	$216 = 5n^2 - 15n + 16$	✓ equating	
	$5n^2 - 15n - 200 = 0$		
	$n^2 - 3n - 40 = 0$	✓ standard form	
	(n-8)(n+5) = 0		
	$n=8$ or $n \neq -5$	$\checkmark n = 8$	(3)
	$T_8 = 216$		
			[9]

QUESTION 4/VRAAG 4

4.1.1	decreasing	✓ decreasing	(1)
4.1.2	$y = \left(\frac{1}{3}\right)^x$		
	$x = \left(\frac{1}{3}\right)^{y}$	\checkmark swop x and y	
	$\therefore y = \log_{\frac{1}{3}} x$	✓ answer	(2)
	$ \mathbf{OR/OF} \\ y = 3^{-x} $	OR/OF	
	$y = 3$ $x = 3^{-y}$	\checkmark swop x and y	
	$\therefore y = -\log_3 x$	✓ answer	(2)
4.1.3	$x > 0; x \in R$	✓ answer	(1)
4.1.4	y = -5	✓ answer	(1)
4.2.1	x = 1	$\checkmark x = 1$	
	y = 2	$\checkmark y = 2$	(2)
4.2.2	$\frac{4}{x-1} + 2 = 0$ $4 = -2x + 2$ $2x = -2$	$\checkmark \text{ let } y = 0$	
	x = -1	$\checkmark x = -1$	(2)

Mathematics P1/Wiskunde V1

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/May/June/Mei/Junie 2023

4.2.3 ✓ asymptotes ✓ *x*-intercept ✓ y-intercept ✓ shape (4) 4.2.4 $\checkmark x \le -1$ $x \le -1$ or x > 1y = -x + c4.2.5 ✓ intersection of axes at (3; 2) \checkmark subst (3; 2) and m = -12 = -3 + cc = 5y = -x + 5 $\checkmark y = -x + 5$ (3) OR/OF OR/OF y = -x + c2 = -1 + cc = 3y = -x + 3y = -(x-2) + 3 $\checkmark y = -x + 5$ y = -x + 5(3) OR/OF OR/OF y = -(x+p) + q $\checkmark \checkmark y = -((x-2)+(-1))+2$ y = -((x-2)+(-1))+2 $\checkmark y = -x + 5$ (3) y = -x + 5[18]

QUESTION 5/VRAAG 5

5.1	T.P(-3;4)	√ −3	
		√ 4	(2)
5.2	$y \le 4$ or $y \in (-\infty; 4]$	✓answer	(1)
5.3	f(x) = g(x)		
	$-(x+3)^2 + 4 = x+5$	✓ equating	
	$-x^2 - 6x - 9 + 4 = x + 5$	$\checkmark -x^2 - 6x - 9$	
	$-x^2 - 7x - 10 = 0$	1 1 6	
	$x^2 + 7x + 10 = 0$	✓ standard form	
	(x+5)(x+2) = 0	✓ factors	(4)
	x = -5 or $x = -2$		
5.4	The graph must shift more than 2 and less than 5		
	units to the right $\therefore -5 < c < -2$	✓✓answer	(2)
5.5	$D(x) = f(x) - g(x) = -x^2 - 7x - 10$	✓ distance	(2)
	Max: $-2x-7=0$ OR/OF $x = \frac{-(-7)}{2(-1)}$	$\checkmark -2x - 7 = 0$	
	$x = -\frac{7}{2}$	$\checkmark x = -\frac{7}{2}$	
	$D\left(-\frac{7}{2}\right) = -\left(-\frac{7}{2}\right)^2 - 7\left(-\frac{7}{2}\right) - 10 = 2,25$	_	
	$\therefore k = 2,25$	✓ k = 2,25	
	$\therefore h(x) = x + 7,25$	$\checkmark h(x) = x + 7,25$	(5)
			[14]

OUESTION 6/VRAAG 6

	ON 6/VRAAG 6	
6.1.1	$A = P(1+i)^n$	✓ substitution into the
	$A = 150\ 000(1+0,065)^5$	correct formula
	A = R205 513	✓ answer (2)
6.1.2	A = P(1 - in)	
	$A = 150\ 000(1 - 0.09 \times 5)$	✓ substitution into the
	A = 150000 - 67000	correct formula
	A = R82500	✓ answer (2)
6.1.3	SF = A - T = 205 513 - 82 500	
	= R123 013	✓ answer
	$\begin{bmatrix} (1 & 1)^n & 1 \end{bmatrix}$	aliswei
	$F = \frac{x[(1+i)^n - 1]}{i}$	
	i	
	$x = \frac{F \times i}{(1+i)^n - 1}$	
	$(1+i)^n-1$	
	122 012 0,0785	0,0785
	$r = \frac{123013 \times \frac{12}{12}}{12}$	$\checkmark i = \frac{0,0785}{12}$
	$\begin{bmatrix} 1 & 0.0785 \end{bmatrix}^{59} \begin{bmatrix} 1 & 0.0785 \end{bmatrix}$	✓ 59 and $\left(1 + \frac{0.0785}{12}\right)$ (A)
	$x = \frac{123\ 013 \times \frac{0,0785}{12}}{\left[\left(1 + \frac{0,0785}{12} \right)^{59} - 1 \right] \left(1 + \frac{0,0785}{12} \right)}$	12 12
	= R1 704,01	✓ answer (A) (4)
6.2	$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$	
	$\begin{bmatrix} (0.0525)^{-4n} \end{bmatrix}$	
	$200000 = \frac{6000 \left[1 - \left(1 + \frac{0,0525}{4}\right)^{-4n}\right]}{200000}$	
	$200000 = \frac{200000}{0.0525}$	✓ substitution into correct
	$\frac{6,0323}{4}$	formula
	$\frac{7}{16} = 1 - \left(1 + \frac{0,0525}{4}\right)^{-4n}$	✓ simplification
	$0 (1621)^{-4n}$	
	$\frac{9}{16} = \left(\frac{1621}{1600}\right)^{-4n}$	
	$\log \frac{9}{16}$	
	$-4n = \frac{10}{(1621)}$	✓ use of logs
	$-4n = \frac{\log \frac{9}{16}}{\log \left(\frac{1621}{1600}\right)}$	
	-4n = -44,1243	$\checkmark -4n = -44,1243$
	n = 11,03 years	
	= 11,00 yours	\checkmark $n = 11,03 \text{ years}$ (5) [13]
		[13]

QUESTION 7/VRAAG 7

7.1 $f(x) = -2x^2 - 1$	
f(x+b) = f(x)	
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
$f'(x) = \lim_{h \to 0} \frac{-2(x+h)^2 - 1 - (-2x^2 - 1)}{h}$	✓ substitution into the correct formula
$f'(x) = \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 - 1 + 2x^2 + 1}{h}$	$\checkmark -2x^2 - 4xh - 2h^2 - 1$
$=\lim_{h\to 0}\frac{-4xh-2h^2}{h}$	$\checkmark -4xh-2h^2$
$=\lim_{h\to 0}\frac{h(-4x-2h)}{h}$	✓ common factor
=-4x	✓answer (5)
OR/OF	OR/OF
$f(x+h) = -2(x+h)^2 - 1$	
$f(x+h) = -2x^2 - 4xh - 2h^2 - 1$ $f(x+h) - f(x) = -2x^2 - 4xh - 2h^2 - 1 + 2x^2 + 1$	$\checkmark -2x^2 - 4xh - 2h^2 - 1$
$f(x+h)-f(x) = -2x^{2}-4xh-2h^{2}-1+2x^{2}+1$ $f(x+h)-f(x) = -4xh-2h^{2}$	
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark -4xh -2h^2$
$= \lim_{h \to 0} \frac{-4xh - 2h^2}{h}$ $h(-4x - 2h)$	✓ substitution into the correct formula
$=\lim_{h\to 0}\frac{h(-4x-2h)}{h}$	✓ common factor
=-4x	✓answer (5)
$7.2.1 f(x) = -2x^3 + 3x^2$	$\sqrt{-6x^2}$
$f'(x) = -6x^2 + 6x$	$\checkmark + 6x$ (2)
$f'(x) = -6x^{2} + 6x$ $7.2.2 y = 2x + \frac{1}{\sqrt{4x}}$	
$y = 2x + \frac{1}{2}x^{-\frac{1}{2}}$	$\checkmark \frac{1}{2} \checkmark x^{-\frac{1}{2}}$
$\frac{dy}{dx} = 2 - \frac{1}{4}x^{-\frac{3}{2}}$	$\checkmark 2 \checkmark -\frac{1}{4} x^{-\frac{3}{2}} \tag{4}$
7.3 <i>x</i> < 1	✓✓ answer (2)
	[13]

QUESTION 8/VRAAG 8

	answer (1)
	ubstitution of $x = 2$
1 + 4101 = 22 + 4101 = 7101 + 10 = 0	f(2) = 0 (2)
22 (4) (2) (2) (5)	
	(x-2)
f(x) = (x-2)(x+5)(x+1)	(x+5)
✓ ((x+1) (3)
	x- intercepts y-intercept sketching the graph with turning points in 2 nd and 4 th quadrant
	(3)
	$x \in (-3,4;0,7)$
OR/ OF -3,4 < x < 0,7	(2)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$f'(x) = 3x^2 + 8x = 7$	
	$f^{\prime\prime}(x) = 6x + 8$
f''(x) = 6x + 8 = 0	answer (2)
$\therefore x = -\frac{8}{6} = -\frac{4}{3} = -1{,}33$	answer (2)
6 3	
OR/OF OR	R/OF
	substitution
	answer (2)
8.5.3 $x \le -3.4$ or $-1.33 \le x \le 0.7$	$c \le -3.4 \text{ (A)}$
	x = 3, (12) $x = 1,33 \le x \le 0,7$
$x \in (-\infty; -3, 4] \cup [-1, 33; 0, 7]$	(A 0,7)
	(3)
	[16]

QUESTION 9/VRAAG 9

9.1	Perimeter of the square = $12-6x$	$\checkmark 12-6x$
	Side length of square $=\frac{12-6x}{4} = \frac{6-3x}{2} = 3 - \frac{3}{2}x$	✓ answer (2)
9.2	$V = \left(\frac{6-3x}{2}\right)^2 (4x)$	$\checkmark \left(\frac{6-3x}{2}\right)^2 (4x)$
	$= \left(\frac{36 - 36x + 9x^2}{4}\right)(4x)$	$\checkmark \left(\frac{36 - 36x + 9x^2}{4} \right)$
	$=36x - 36x^2 + 9x^3$. ,
	$V(x) = 36x - 36x^2 + 9x^3$	$\checkmark 36x - 36x^2 + 9x^3$
	$V'(x) = 36 - 72x + 27x^2$	$\checkmark V^{/}$
	$36 - 72x + 27x^2 = 0$	$\begin{array}{c} \checkmark V' \\ \checkmark V' = 0 \end{array}$
	$9x^2 - 24x + 12 = 0$	
	$3x^2 - 8x + 4 = 0$	
	(3x-2)(x-2) = 0	
	$x = \frac{2}{3}$ or $x = 2$	✓ values
	$V\left(\frac{2}{3}\right) = 36\left(\frac{2}{3}\right) - 36\left(\frac{2}{3}\right)^2 + 9\left(\frac{2}{3}\right)^3$	
	$= \frac{32}{3} \mathrm{m}^3 = 10,67 \mathrm{m}^3$	✓ answer (7)
		[9

QUESTION 10/VRAAG 10

10.1.1	Event A Event B	1
10.1.1	С НС	✓ Event A
	$\frac{3}{5}$	✓ Event B Medication:
	$\frac{1}{2}$ H $\frac{2}{5}$ N HN	for $P(C) = \frac{3}{5}$
	$\frac{3}{3}$ C SC	
	$\frac{1}{2}$ s $\frac{5}{10}$	✓ Event B sugar pill: for $P(NC) = \frac{7}{100}$
	$\frac{7}{10}$ N SN	for P(NC) = $\frac{7}{10}$
10.1.2		(3)
10.1.2	$P(\text{Not Cured}) = P(H) \times P(\text{NC}) + P(S) \times P(\text{NC})$ $(1)(2) (1)(7)$	
	$= \left(\frac{1}{2}\right)\left(\frac{2}{5}\right) + \left(\frac{1}{2}\right)\left(\frac{7}{10}\right)$	✓substitution
	$=\frac{11}{20}=0,55$	✓answer (2)
10.2.1	P(A or B) = P(A) + P(B) - P(A and B)	
	P(A and B) = $\frac{13}{20} - \frac{2}{5} - \frac{1}{4} = 0$	✓ substitution
	Events are mutually exclusive	✓ answer $(P(A \text{ and } B) = 0)$
	OR/OF	OR/OF (2)
	$P(A) + P(B) = \frac{2}{5} + \frac{1}{4}$	✓ substitution
	$=\frac{13}{20}$	
	P(A or B) = P(A) + P(B)	
	P(A and B) = 0 Events are mutually exclusive	✓ answer $(P(A \text{ and } B) = 0)$
	Zienis are mataary exercisive	(2)

10.2.2 P(B and C) = $\frac{1}{5}$ = 0,2 \checkmark P(B and C) = $\frac{1}{5}$ (A) P(only C) = $\frac{7}{10} - \frac{2}{5} - \frac{1}{5} = \frac{1}{10} = 0,1$ \checkmark $\frac{7}{10} - \frac{2}{5} - \frac{1}{5}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
10.2.3 P(no event) = $1 - \left(\frac{2}{5} + \frac{1}{10} + \frac{1}{5} + \frac{1}{20}\right) = \frac{1}{4} = 0,25$ $\checkmark 1 - (P(A) \text{ or } P(B) or $	(C)) (2)
10.3.1 $3! \times 5!$ Answer only: $\checkmark 3!$	
$= 720 Full Marks \checkmark 3! \times 5! (A)$	(2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
✓ answer	(3)
OR/OF OR/OF	
$1 - \frac{6! \times 2}{7!}$ $4 - \frac{6! \times 2}{\text{denominator } (7!)}$	
7! \checkmark denominator (7!)	
$=1-\frac{2}{7}$	
$= \frac{5}{7} = 0.71$ \checkmark answer	(3)
	[17]

TOTAL/TOTAAL: 150