Lista de Exercícios 1

Resolver os exercícios extraídos do livro do *Vetores e Geometria Analítica*, de Paulo Winterle (p. 14)

Problemas Propostos

 A Figura 1.29 apresenta o losango EFGH inscrito no retângulo ABCD, sendo O o ponto de interseção das diagonais desse losango. Decidir se é verdadeira ou falsa cada uma das seguintes afirmações:

Figura 1.29

a)
$$\overrightarrow{EO} = \overrightarrow{OG}$$

f)
$$H - E = O - C$$

k)
$$\overrightarrow{AO}$$
 // \overrightarrow{OC}

b)
$$\overrightarrow{AF} = \overrightarrow{CH}$$

g)
$$|\overrightarrow{AC}| = |\overrightarrow{BD}|$$

1)
$$\overrightarrow{AB} \perp \overrightarrow{OH}$$

c)
$$\overrightarrow{DO} = \overrightarrow{HG}$$

h)
$$|\overrightarrow{OA}| = \frac{1}{2} |\overrightarrow{DB}|$$

m)
$$\overrightarrow{EO} \perp \overrightarrow{CB}$$

d)
$$|C - O| = |O - B|$$

i)
$$\overrightarrow{AF}$$
 // \overrightarrow{CD}

n)
$$\overrightarrow{AO} \perp \overrightarrow{HF}$$

j)
$$\overrightarrow{GF}$$
 // \overrightarrow{HG}

o)
$$\overrightarrow{OB} = -\overrightarrow{FE}$$

2) Decidir se é verdadeira ou falsa cada uma das afirmações:

a) Se
$$\vec{u} = \vec{v}$$
, então $|\vec{u}| = |\vec{v}|$.

b) Se
$$|\vec{u}| = |\vec{v}|$$
, então $\vec{u} = \vec{v}$.

c) Se
$$\vec{u}$$
 // \vec{v} , então $\vec{u} = \vec{v}$.

d) Se
$$\vec{u} = \vec{v}$$
, então $\vec{u} // \vec{v}$.

h)
$$|5\vec{v}| = |-5\vec{v}| = 5|\vec{v}|$$
.

j) Se
$$\vec{u}$$
 // \vec{v} , $|\vec{u}| = 2 e |\vec{v}| = 4$, então $\vec{v} = 2\vec{u}$ ou $\vec{v} = -2\vec{u}$.

k) Se
$$|\vec{v}| = 3$$
, o versor de $-10\vec{v}$ é $-\frac{\vec{v}}{3}$.

- 3) Com base na Figura 1.29, determinar os vetores abaixo, expressando-os com origem no ponto A:
 - a) \overrightarrow{OC} + \overrightarrow{CH}
- e) $\overrightarrow{EO} + \overrightarrow{BG}$
- i) OG HO

- b) $\overrightarrow{EH} + \overrightarrow{FG}$
- f) $2\overrightarrow{OE} + 2\overrightarrow{OC}$
- j) $\overrightarrow{AF} + \overrightarrow{FO} + \overrightarrow{AO}$

- c) $2\overrightarrow{AE} + 2\overrightarrow{AF}$
- g) $\frac{1}{2} \overrightarrow{BC} + \overrightarrow{EH}$
- d) $\overrightarrow{EH} + \overrightarrow{EF}$
- h) $\overrightarrow{FE} + \overrightarrow{FG}$
- 4) O paralelogramo ABCD (Figura 1.30) é determinado pelos vetores \overrightarrow{AB} e \overrightarrow{AD} , sendo M e N pontos médios dos lados DC e AB, respectivamente. Determinar:

d) $\overrightarrow{AN} + \overrightarrow{BC}$

 $\overrightarrow{BA} + \overrightarrow{DA}$ b)

e) $\overrightarrow{MD} + \overrightarrow{MB}$

f) $\overrightarrow{BM} - \frac{1}{2} \overrightarrow{DC}$

Figura 1.30

5) Apresentar, graficamente, um representante do vetor \vec{u} - \vec{v} nos casos:

- 7) Dados três pontos A, B e C não-colineares, como na Figura 1.31, representar o vetor x nos casos:
 - a) $\vec{x} = \overrightarrow{BA} + 2\overrightarrow{BC}$
- c) $\vec{x} = 3 \overrightarrow{AB} 2 \overrightarrow{BC}$
- b) $\vec{x} = 2\vec{CA} + 2\vec{BA}$ d) $\vec{x} = \frac{1}{2}\vec{AB} 2\vec{CB}$

Figura 1.31

- 8) Dados os vetores u e v da Figura 1.32, mostrar, em um gráfico, um representante do vetor
 - a) u v
 - b) v u
 - c) $-\vec{v}$ $2\vec{u}$
 - d) $2\vec{u} 3\vec{v}$

Figura 1.32

- 12) Sabendo que o ângulo entre os vetores u e v é de 60°, determinar o ângulo formado pelos vetores
 - a) u e-v
- b) $-\vec{u}$ e $2\vec{v}$ c) $-\vec{u}$ e $-\vec{v}$ d) $3\vec{u}$ e $5\vec{v}$

i) V

j) F

k) V

1) V

g) F

h) V

i) F

g) AH;

h) AD

i) AO

e) MN

Respostas de Problemas Propostos

- 1) a) V
 - b) F
 - c) V
 - d) V
- 2) a) V
 - b) F
 - c) F
- 3) a) AE
- b) AC
 - c) AC
- 4) a) AC
- b) \overrightarrow{CA}
- 6) a) u-v
- 11) Não
- 12) a) 120°
- 13) b) 75°

- e) F
- f) F
- g) V
- h) V
- d) V
- e) F
- f) F
- d) AB
- e) AO
- f) AD
- c) AB
- d) AM
- b) $-\overline{u} v$

b) 120°

c) 60°

- - - c) 60°
- f) \overrightarrow{BD} c) v - u
 - d) u + v

m) V

n) F

o) V

j) V

k) V

j) AC

d) 60°