ADVANCED CALCULUS MA11003

SECTION 11, 12, & 15CD

Dr. Jitendra Kumar

Professor
Department of Mathematics
Indian Institute of Technology Kharagpur
West Bengal 721302, India

Webpage: http://www.facweb.iitkgp.ac.in/~jkumar/

Integral Calculus Improper Integrals

- **☐** Introduction
- **■** Evaluation

Proper Integral

The Integral
$$\int_a^b f(x)dx$$
 is **proper** if

the range of integration is finite and the integrand is bounded.

Improper Integral

The Integral
$$\int_a^b f(x)dx$$
 is **improper** if

- \rightarrow $a=-\infty$ and/or $b=\infty$ and f(x) is bounded. (First kind)
- $\succ f(x)$ is unbounded at one or more points of $a \le x \le b$. (Second kind)
- Both 1 and 2 type. (Third kind or mixed kind)

Examples - Proper Integrals

$$\int_{0}^{2} \sqrt{(x^2+1)} \, \mathrm{d}x \qquad \int_{0}^{1} \frac{\sin x}{x} \, \mathrm{d}x$$

Examples - Improper Integrals

$$\int_0^1 \frac{1}{x-1} \ dx \quad \text{(Second Kind)}$$

$$\int_0^\infty \cos x \, dx \quad \text{(First Kind)}$$

$$\int_0^\infty \frac{1}{(1-x)^2} \ dx \quad \text{(Third Kind)}$$

Evaluation of Improper Integrals of First Kind

•
$$\int_{a}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{a}^{R} f(x)dx$$

•
$$\int_{-\infty}^{b} f(x)dx = \lim_{R \to \infty} \int_{-R}^{b} f(x)dx$$

•
$$\int_{-\infty}^{\infty} f(x)dx = \lim_{R_1 \to \infty} \int_{-R_1}^{c} f(x)dx + \lim_{R_2 \to \infty} \int_{c}^{R_2} f(x)dx$$
$$= \lim_{\substack{R_1 \to \infty \\ R_2 \to \infty}} \int_{-R_1}^{R_2} f(x)dx$$

Evaluation of Improper Integrals of First Kind

•
$$\int_{2}^{\infty} \frac{2x^{2}}{x^{4} - 1} dx = \frac{\pi}{2} - \tan^{-1} 2 + \frac{1}{2} \ln 3$$

$$\frac{2x^{2}}{x^{4} - 1} = \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right) + \frac{1}{x^{2} + 1}$$

$$\frac{2x^2}{x^4 - 1} = \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right) + \frac{1}{x^2 + 1}$$

Does not exist

$$\int_{a}^{b} f(x) dx \qquad f(x) \text{ is unbounded}$$

• If $f(x) \to \infty$ as $x \to b$ then

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{b-\varepsilon} f(x)dx$$

• If $f(x) \to \infty$ as $x \to a$ then

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\epsilon}^{b} f(x)dx$$

• If $f(x) \to \infty$ as $x \to c$ where a < c < b, then

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{c-\varepsilon} f(x) dx + \lim_{\varepsilon \to 0^{+}} \int_{c+\varepsilon}^{b} f(x) dx$$

• If $f(x) \to \infty$ as $x \to a$ and $x \to b$, then

$$\int_{a}^{b} f(x)dx = \lim_{\substack{\varepsilon_{1} \to 0^{+} \\ \varepsilon_{2} \to 0^{+}}} \int_{a+\varepsilon_{1}}^{b-\varepsilon_{2}} f(x)dx$$

$$\int_0^1 \frac{dx}{\sqrt{(1-x)}} = \lim_{\epsilon \to 0^+} \int_0^{1-\epsilon} \frac{dx}{\sqrt{(1-x)}} = \lim_{\epsilon \to 0^+} \left[-2\sqrt{1-x} \right]_0^{1-\epsilon}$$
$$= -2\lim_{\epsilon \to 0^+} (\sqrt{\epsilon} - 1)$$

$$\int_0^1 \frac{dx}{\sqrt{1-x}} = 2$$
 Integral converges

$$\int_{0}^{2} \frac{dx}{(2x - x^{2})} = \lim_{\epsilon_{1} \to 0^{+}} \int_{\epsilon_{1}}^{1} \frac{dx}{(2x - x^{2})} + \lim_{\epsilon_{2} \to 0^{+}} \int_{1}^{2 - \epsilon_{2}} \frac{dx}{(2x - x^{2})}$$

$$= \lim_{\epsilon_{1} \to 0^{+}} \frac{1}{2} \left[\ln \frac{x}{2 - x} \right]_{\epsilon_{1}}^{1} + \lim_{\epsilon_{2} \to 0^{+}} \frac{1}{2} \left[\ln \frac{x}{2 - x} \right]_{1}^{2 - \epsilon_{2}}$$

$$= -\lim_{\epsilon_{1} \to 0^{+}} \frac{1}{2} \left[\ln \frac{\epsilon_{1}}{2 - \epsilon_{1}} \right] + \lim_{\epsilon_{2} \to 0^{+}} \frac{1}{2} \left[\ln \frac{2 - \epsilon_{2}}{\epsilon_{2}} \right]$$

$$\int_0^2 \frac{dx}{(2x - x^2)} = \infty \quad \text{Integral Diverges}$$

Test Integral - I

$$\int_{a}^{R} \frac{1}{x^{p}} dx = \begin{cases} \ln\left(\frac{R}{a}\right), & p = 1\\ \frac{1}{1-p} \left[\frac{1}{R^{p-1}} - \frac{1}{a^{p-1}}\right], p \neq 1 \end{cases}$$
 $a > 0$

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx = \lim_{R \to \infty} \int_{a}^{R} \frac{1}{x^{p}} dx = \begin{cases} \infty, & p \le 1\\ \frac{1}{p-1} \frac{1}{a^{p-1}}, & p > 1 \end{cases}$$

Test Integral - II

$$\int_{a+\epsilon}^{b} \frac{1}{(x-a)^{p}} dx = \begin{cases} \frac{1}{1-p} \left[\frac{1}{(b-a)^{p-1}} - \frac{1}{\epsilon^{p-1}} \right], & p \neq 1\\ \ln(b-a) - \ln \epsilon, & p = 1 \end{cases}$$

$$\int_{a}^{b} \frac{1}{(x-a)^{p}} dx = \lim_{\epsilon \to 0^{+}} \int_{a+\epsilon}^{b} \frac{1}{(x-a)^{p}} dx = \begin{cases} \infty, & p \ge 1\\ \frac{1}{1-p} \frac{1}{(b-a)^{p-1}}, & p < 1 \end{cases}$$

KEY TAKEAWAY

Improper Integral
$$\int_{a}^{b} f(x)dx$$

- 1. $a = -\infty$ and/or $b = \infty$ and f(x) is bounded.
- 2. f(x) is unbounded at one or more points of $a \le x \le b$.

Evaluation of Improper Integrals

Integral Calculus Improper Integrals

☐ Convergence: Type-I Integrals

Recall (Previous Lecture)

Test Integral

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx, \quad a > 0, \quad \text{converges for } p > 1 \quad \& \quad \text{diverges if} \quad p \le 1$$

Convergence: Type - I Integrals

$$\int_{a}^{b} f(x)dx \qquad \qquad a = -\infty \text{ and/or } b = \infty \text{ and } f(x) \text{ is bounded}$$

Comparison Test-I:

Suppose f and g are integrable over [a, c], $\forall c \geq a$ and that $0 \leq f \leq g$, $\forall x > a$, then

- i. $\int_a^\infty f(x)dx$ converges if $\int_a^\infty g(x)dx$ converges
- ii. $\int_a^\infty g(x)dx$ diverges if $\int_a^\infty f(x)dx$ diverges

Comparison Test-II (limit Comparison test):

Suppose f and g are integrable over [a, c], $\forall c \geq a$ and $f \geq 0$, $g > 0 \ \forall x > a$. If

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = k(\neq 0)$$

Then both the integrals $\int_a^\infty f(x)dx$ and $\int_a^\infty g(x) dx$ converge or diverge together

Further, If
$$k = 0$$
 and $\int_{a}^{\infty} g(x)dx$ converges then $\int_{a}^{\infty} f(x)dx$ converges

If
$$k = \infty$$
 and $\int_{a}^{\infty} g(x)dx$ diverges then $\int_{a}^{\infty} f(x)dx$ diverges

REMARK: μ – **test** Comparison test (II) with $g(x) = \frac{1}{x^{\mu}}$

Let
$$f(x) \ge 0$$
 in the interval $[a, \infty)$, $a > 0$. (OR $f(x) \le 0$)

- a) If $\exists \mu > 1$ such that $\lim_{x \to \infty} x^{\mu} f(x)$ exists then $\int_a^{\infty} f(x) \ dx$ is convergent.
- b) If $\exists \mu \leq 1$ such that $\lim_{x \to \infty} x^{\mu} f(x)$ exists and $\neq 0$ then $\int_a^{\infty} f(x) \ dx$ is divergent and

the same is true if
$$\lim_{x\to\infty} x^{\mu} f(x)$$
 is $+\infty$. (OR $-\infty$)

Problem – 1: Test the convergence of
$$\int_{1}^{\infty} \frac{dx}{x\sqrt{x^2+1}}$$

Note that
$$\frac{1}{x\sqrt{x^2+1}} \sim \frac{1}{x^2}$$

Let
$$f(x) = \frac{1}{x\sqrt{x^2 + 1}}$$
 and $g(x) = \frac{1}{x^2}$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} = 1 \ (\neq 0)$$

As
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 converges $\implies \int_{1}^{\infty} \frac{dx}{x\sqrt{x^2+1}}$ converges

(OR apply μ – test as μ = 2)

Problem – 2: Test the convergence of $\int_{1}^{\infty} \frac{x^{2}}{\sqrt{x^{5}+1}} dx$

Let
$$f(x) = \frac{x^2}{\sqrt{x^5 + 1}} \left(\sim \frac{1}{\sqrt{x}} \right)$$
 and $g(x) = \frac{1}{\sqrt{x}}$

Note that
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^2 \sqrt{x}}{\sqrt{x^5 + 1}} = 1$$

As
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$
 diverges, by comparison test $\int_{0}^{\infty} \frac{x^2}{\sqrt{x^5 + 1}} dx$ diverges

(OR apply μ – test as μ = 0.5)

Problem – 3: Show that the integral $\int_{a}^{\infty} e^{-x^2} dx$ converges

$$\int_0^\infty e^{-x^2} dx \quad \text{converges}$$

$$\int_0^\infty e^{-x^2} dx = \int_0^1 e^{-x^2} dx + \int_1^\infty e^{-x^2} dx$$

Note that:
$$e^{x^2} = 1 + x^2 + \frac{x^4}{2!} + \dots > x^2$$
, $\forall x > 0 \& x < 0 \implies e^{-x^2} < \frac{1}{x^2}$

$$\forall x > 0 \& x < 0 \implies e^{-x^2} < \frac{1}{x^2}$$

Since
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 converges, the integral $\int_{1}^{\infty} e^{-x^2} dx$ converges

Problem – 4: Show that the integral $\int_0^\infty \frac{\sin^2 x}{x^2} dx$ converges

Note that
$$\int_0^\infty \frac{\sin^2 x}{x^2} \ dx = \int_0^1 \frac{\sin^2 x}{x^2} \ dx + \int_1^\infty \frac{\sin^2 x}{x^2} \ dx$$

Since
$$\frac{\sin^2 x}{x^2} \le \frac{1}{x^2}$$
 and $\int_1^\infty \frac{1}{x^2} dx$ converges

$$\int_{1}^{\infty} \frac{\sin^2 x}{x^2} \ dx \ \text{converges}$$

Problem – 5: Show that the integral
$$\int_{1}^{\infty} \frac{x \tan^{-1} x}{(1 + x^4)^{\frac{1}{3}}} dx$$
 diverges

Let
$$f(x) = \frac{x \tan^{-1} x}{(1 + x^4)^{\frac{1}{3}}} = \frac{\tan^{-1} x}{\frac{1}{3}(1 + x^{-4})^{\frac{1}{3}}}$$
 $\left(\sim x^{-\frac{1}{3}} \text{ at } \infty \right)$

$$\left(\sim x^{-\frac{1}{3}} \text{ at } \infty \right)$$

$$Let g(x) = \frac{1}{x^{\frac{1}{3}}}$$

Let
$$g(x) = \frac{1}{x^{\frac{1}{3}}}$$
 Note that $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\pi}{2}$

This follows the result.

(OR apply μ – test as $\mu = 1/3$)

KEY TAKEAWAY

Comparison Test -I: Let
$$0 \le f(x) \le g(x)$$

$$\int_{a}^{\infty} g(x)dx \text{ conveges} \implies \int_{a}^{\infty} f(x)dx \text{ conveges}$$

$$\int_{a}^{\infty} f(x)dx \text{ diverges } \Longrightarrow \int_{a}^{\infty} g(x)dx \text{ diverges}$$

KEY TAKEAWAY

Comparison Test -II: Let $0 \le f(x) \le g(x)$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = k$$

if
$$k \neq 0$$
 then $\int_{a}^{\infty} f(x)dx$ and $\int_{a}^{\infty} g(x)dx$ behave the same

if
$$k = 0$$
 & $\int_{a}^{\infty} g(x)dx$ conveges $\implies \int_{a}^{\infty} f(x)dx$ conveges

if
$$k = \infty$$
 & $\int_{a}^{\infty} g(x)dx$ diverges $\Longrightarrow \int_{a}^{\infty} f(x)dx$ diverges

LINK FOR RESPONSES: http://www.facweb.iitkgp.ac.in/~jkumar/teach/MA11003.html

Let

$$I_1 = \int_1^\infty \frac{x^2}{9x^4 + 36} dx \quad \& \quad I_2 = \int_1^\infty \frac{\cos^2 x}{x^2} dx$$

Which of the following statements is correct?

(A)	I_1 converges and I_2 diverges
(B)	$\it I_1$ diverges and $\it I_2$ converges
(C)	Both I_1 and I_2 diverges
(D)	Both I_1 and I_2 converges

Integral Calculus Improper Integrals

☐ Convergence Test: Dirichlet's Test

Dirichlet's Test: Let $f, g: [a, \infty) \to \mathbb{R}$ be such that

- f is integrable on each interval [a, b], b > a
- The integrals $\int_a^b f(x) dx$ are uniformly bounded $\left\{ \exists \ C > 0, \text{ s.t. } \left| \int_a^b f(x) dx \right| \le C \text{ for all } b > a \ (b < \infty) \right\}$
- g is monotone and bounded on $[a, \infty)$ and $\lim_{x \to \infty} g(x) = 0$

Then, the improper integral
$$\int_{a}^{\infty} f(x) g(x) dx$$
 converges

Problem – 1: The Integral
$$\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$$
 is convergent for $p > 0$.

Let
$$f(x) = \sin x$$
 and $g(x) = \frac{1}{x^p}$

Note that
$$\left| \int_1^b \sin x \ dx \right| = \left| \cos 1 - \cos b \right| \le \left| \cos 1 \right| + \left| \cos b \right| < 2, \quad \text{for } 1 \le b < \infty.$$

Also note that

$$g(x) = \frac{1}{x^p}$$
 is monotone decreasing function tending to 0 as $x \to \infty$, for $p > 0$.

Using Dirichlet's test
$$\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$$
 converges for $p > 0$.

Problem – 2: Test the convergence of $\int_0^\infty \frac{\sin x}{x} e^{-x} dx$

$$\int_0^\infty \frac{\sin x}{x} \ e^{-x} \ dx = \int_0^1 \frac{\sin x}{x} \ e^{-x} \ dx + \int_1^\infty \frac{\sin x}{x} \ e^{-x} \ dx$$

$$\left| \int_{1}^{b} \sin x \, dx \right| < 2 \quad \text{for } 1 \le b < \infty.$$

Note that e^{-x}/x is monotone and bounded as well as $\lim_{x\to\infty}e^{-x}/x=0$

Hence by Dirichlet's test
$$\int_0^\infty \frac{\sin x}{x} e^{-x} dx$$
 converges

Thank Ofour