Name(s):		
Mambiel.		
Hullictol.		

Fill in all sections - These are today's notes

Student Learning Objectives

- 1. Identify flow patterns, inlets and outlets, and regions of counter, cross, and parallel flow.
- 2. Understand the difference between flow area and heat transfer area.
- 3. Determine experimental heat transfer rates.
- 4. Identify geometrical parameters used in heat-transfer correlations.
- 5. Determine the Reynolds number for the tube and shell sides.
- 6. Understand competing effects of design parameters on performance, including baffle spacing.
- 7. Calculate a correlated heat transfer coefficient and understand why it differs from a measured value.

Before Starting the Digital Experiment

Assuming hot fluid on the tube side and cold on the shell side, draw the expected flow patterns on onto the schematic labeling inlets and outlets of hot and cold fluids.

De	termine a	nd record the	following qua	antities:				
Number of tubes:			Number	of baffles:				
	Number o	of tube passes	3:		Number	of shell pass	es:	
Un	derstandi	ng Flow Path	s and Measuri	ng Heat Trans	sfer Rate/Hea	t Duty		
Ex	periment	1						
a)	Fill the i	nlet beakers, t	ube side with	hot water and	shell side wit	h cold water.		
b)	Record t	emperatures	of the cold wa	ter, then hot w	ater in Table	1.		
c)	Turn on	both pumps s	imultaneously	. When <u><i>hot an</i></u>	<u>id cold water i</u>	reach the outl	et beakers, st a	art a timer.
d)	<i>Before</i> t	he inlet beake	ers are empty,	turn off the pu	mps and <i>stop</i>	<i>timing</i> simul	taneously.	
e)	Measure <u>stops</u> .	and record th	ne temperatur	es of the <i>hot v</i>	<i>vater</i> , then the	cold water <u>ir</u>	nmediately af	ter flow
f)	Measure	and record th	ne volume of v	vater in the ho	t and cold <u>ou</u>	<i>tlet</i> beakers.		
Ta	ble 1. Exp	erimental dat	a					
			Tube Side (Ho	·		hell Side (Col	1	
E	xpt. #	T_{in} (°C)	T_{out} (°C)	V (mL)	T_{in} (°C)	T_{out} (°C)	V (mL)	time (s)
			r diagram on p <i>Temperature Di</i>				he hot and co	ld fluid.
a)	Pour the	water from th	e outlet beake	rs back into th	e correspond	ing hot and co	old inlet beake	ers.
b)	Repeat st	eps c-g of Exp	periment 1 and	d record result	s in Table 2			
Ta	ble 2. Exp	erimental dat	a					
		7	Tube Side (Hot	t)	S	hell Side (Col	d)	
E	xpt. #	<i>T_{in}</i> (°C)	T_{out} (°C)	V (mL)	T_{in} (°C)	T_{out} (°C)	V (mL)	time (s)
	2							
	•	e for Heat Ex	•					:
		how the temp	depends on the derature difference differenc	•				
_								
		emperature c nent 1 or Expo	hange of the c eriment 2?	cold fluid (diffe	erence betwee	en outlet and i	nlet temperati	ure) higher

4. The experimental heat transfer rate can be calculated with an energy balance on the cold fluid, shown below, where \dot{m}_c is the mass flow rate of the cold water, $C_{p,c}$ the heat capacity, and ΔT_c the temperature difference between the cold outlet and inlet fluid.

$$\dot{Q}_c = \dot{m}_c C_{p,c} \Delta T_c$$

5. Based on your answers to Questions 2 and 3 and considering the energy balance equation above, what is the relationship between the heat transfer rate (\dot{Q}) and the temperature difference between the hot and cold fluids? Does a higher temperature difference result in a higher or lower heat transfer rate?

Heat Exchanger Flow Patterns

In the shell and tube heat exchanger, three types of flow occur:

- a. Parallel flow: hot and cold fluids flow in the same direction.
- b. Counter flow: hot and cold fluid flow in *opposite* direction.
- c. Cross flow: cold fluid flows perpendicular to hot fluid.
- 6. Refer to your LCDLM and the image below. For each of the circled regions, identify whether parallel, counter, or cross flow is occurring. *Hint: trace the paths of the hot and cold fluid through the exchanger.*

Flow Areas in the Heat Exchanger

7. Referencing the schematic above and the diagram below, write a formula for the $\underline{cross-flow\ area}$, A_c (represented by diagonal lines), on the shell side. Blue arrows represent cold water flow direction.

B = baffle spacing

W_s = width of shell

 D_o = outer diameter of tube

8. Referencing the schematic below, write a formula for <u>baffle window flow area</u>, A_b (represented by diagonal lines), on the shell side.

h_{bw} = height of baffle window

D_s = width of shell

Do = outer diameter of tube

Determining the Theoretical Heat Transfer Rate

We can calculate *theoretical* overall heat transfer rate using a correlated heat transfer coefficient (U_o), the area available for heat transfer (A_o), the log mean temperature difference (ΔT_{LMTD}), and a correction factor (F).

$$\dot{Q} = U_o A_o \Delta T_{LMTD} F$$

9.	Why must we include a correction factor, F , for the log mean temperature difference. Hint: consider how changing flow patterns in Question 6 affect heat transfer. Also, look at the LCDLM and consider how cold fluid on the shell side passes tubes containing differing temperature hot fluid as the cold fluid flows across the two passes of tubes.
_	
10. _	What area is used for A_o ? How is this different than the areas in Questions 7 and 8? Consider where heat transfer from the hot to cold fluid occurs.
- 11.	The overall heat transfer coefficient, U_o , depends on individual shell and tube side heat transfer coefficients which <i>increase with Reynolds number</i> . Looking at the LCDLM, how will decreasing the baffle spacing, B, affect the shell side Reynolds number and heat transfer rate?
_	

12. From your experimental data, how will you determine the velocity used to calculate the tube-side Reynolds number? Consider that flow is split between two tubes per pass.

13. In determining the velocity for the shell side Reynolds number, you divide volumetric flow rate by a cross-sectional area. Considering your answers to questions 7 and 8, why must we use an average velocity? Is the cross-sectional area on the shell side constant?

Homework Problems

Due:

Reference Information for Shell and Tube Heat Exchanger DLM

- Tube length: L = 138 mm
- Tube type: 1/4" BWG No. 20
- Tube dia. outer, D_o = 6.35 mm (0.25 in)
- Tube dia. inner, D_i = 4.572 mm (0.18 in)
- Tube material: stainless steel 304
- Number of tube passes, $N_p = 2$

- Baffle thickness: 2 mm
- Number of tubes per pass, N_t = 2
- Baffle spacing: B = 18 mm
- Shell width: W_s = 10 mm
- Shell height: 82 mm
- Baffle window height: h_{bw} = 21 mm

Experimental Heat Duty

1. Calculate the rate of heat rejection for the hot fluid (\dot{Q}_h) and the rate at which the cold fluid receives heat (\dot{Q}_c) using your experimental data for Experiments 1 and 2. All physical properties should be calculated at the average fluid temperature.

$$\dot{Q}_h = \dot{m}_h C_{p,h} \Delta T_h \qquad \dot{Q}_c = \dot{m}_c C_{p,c} \Delta T_c$$

$$\Delta T_c = \left(T_{c,out} - T_{c,in} \right) \qquad \Delta T_h = \left(T_{h,in} - T_{h,out} \right) \qquad \dot{m}_i = \rho \dot{V}_i \qquad \dot{V}_i = \frac{V}{t}$$

Expt. #	Ż h [<i>W</i>]	Ċ с [<i>W</i>]
1		
2		

2. Compare the heat rejection rate of the hot fluid for Experiments 1 and 2. Which is highest and why?

6

Predicted Heat Transfer Rate

3. Calculate the tube side heat transfer coefficients for your experimental conditions. The velocity, \underline{v} of the fluid through tube is:

$$\underline{v} = \frac{\dot{V}}{A \cdot N_t} = \frac{\dot{V}}{(\frac{\pi}{4} \cdot D_i^2) \cdot N_t}$$

The Reynolds number is:

$$Re = \frac{\rho \underline{v} D_i}{\mu}$$

The tube side heat transfer coefficient can be found using the Sieder-Tate correlation for the Nusselt number (neglecting viscosity differences between the fluid at the wall and the bulk fluid):

$$\frac{h_i D_i}{k} = N u_i = 0.023 Re^{0.8} Pr^{1/3}$$

	Tube side			
Expt. #	$\underline{v}\left[\frac{m}{s}\right]$	Re	$h_i\left[\frac{W}{m^2{}^\circ C}\right]$	
1				
2				

4. Calculate the shell side heat transfer coefficients for your experimental conditions.

$$\frac{h_o D_o}{k} = N u_o = 0.2 Re^{0.6} Pr^{1/3} \qquad \text{where: } Re = \frac{D_o G_{avg}}{\mu}$$

The weighted average mass velocity, defined below, is used in the shell side Reynolds number:

$$G_{avg} = \sqrt{G_c \cdot G_b}$$

$$G_c = \frac{\dot{m_c}}{A_c} \qquad G_b = \frac{\dot{m_c}}{A_b}$$

$$A_c = B(W_s - D_o) \qquad A_b = h_{bw}W_s - \frac{\pi}{4}D_o^2$$

	Shell Side		
Expt. #	$G_{avg}\left[\frac{kg}{m^2s}\right]$	Re	$h_o\left[\frac{W}{m^2{}^\circ C}\right]$
1			
2			

5. Calculate the log mean temperature difference (ΔT_{LMTD}) and the heat transfer areas using the formulas below:

$$\Delta T_{LMTD,counter\;current\;flow} = \frac{(T_{h,in} - T_{c,out}) - (T_{h,out} - T_{c,in})}{ln\left(\frac{T_{h,in} - T_{c,out}}{T_{h,out} - T_{c,in}}\right)}$$

$$A_o = (\pi D_o L) N_t N_p \qquad A_i = (\pi D_i L) N_t N_p$$

Expt. #	ΔT_{LMTD} [°C]	$A_o [m^2]$	$A_i [m^2]$
1			
2			

6. Using the figure below and your experimental temperature differences, determine, F (the log mean temperature difference correction factor) for each experiment

Expt. #	F
1	
2	

7. Calculate the theoretical and experimental overall heat transfer coefficients for each experiment using the formulas below.

$$\frac{1}{(UA)_{theory}} = \frac{1}{h_o A_o} + \frac{ln\left(\frac{D_o}{D_i}\right)}{2\pi kL} + \frac{1}{h_i A_i} \qquad (UA)_{exp} = \frac{\dot{Q}_{h,measured}}{\Delta T_{LMTD}F}$$

Expt. #	$(UA)_{theory} \left[\frac{W}{\circ C} \right]$	$(UA)_{exp}\left[\frac{W}{{}^{\circ}C}\right]$
1		
2		

8. Compare the predicted heat transfer rate to the measured heat transfer rate for each experiment. If the values do not agree, list possible reasons.

$$\dot{Q}_{h,predicted} = (UA)_{theory} \Delta T_{LMTD} F \qquad \qquad \dot{Q}_{h,measured} = \frac{\dot{Q}_{cold} + \dot{Q}_{hot}}{2}$$

Expt. #	$\dot{Q}_{h,predicted}[W]$	$\dot{Q}_{h,mesured}[W]$
1		
2		

Reasons for difference in predicted vs. measured heat transfer rate. Hint: consider temperature driving force issues and evaporative cooling effects as hot fluid exits the DLM into the beaker.

Conceptual Question

9. What is the purpose of including baffles on the shell side of the heat exchanger? Consider the effects on velocity, Reynolds number, turbulence, and elimination of flow channeling on the shell side in the heat exchanger.