Exercise 1 (Exercise 5). A binary tree of length n constructed recursively as follows.

- ♦ The empty set is a binary tree of length o.
- \diamond Otherwise a binary tree has a *root vertex* v, a *left subtree* T_1 and a *right subtree* T_2 , each of which is also a binary tree having a root vertex.

We draw the root vertex at the top with an edge going down to the root vertices of T_1, T_2 . Then draw each tree recursively in the same manner.

Prove that the number of binary trees on n vertices is the n^{th} Catalan number C_n . Hint: Show that they satisfy the recursion for the Dyck paths \mathbb{I}

Answer

Let us call f(n) the number of binary trees on n vertices. The initial condition is f(0) = 1 because the empty set is a binary tree.

To create a binary tree with n + 1 vertices we choose the root and then we still have n vertices to go.

Fix ℓ to be the number of vertices we assign to the left tree then, the the remaining $n-\ell$ vertices go to the right tree. The number of ways to build right and left subtrees this way is $f(\ell)f(n-\ell)$.

However, running ℓ through all possible options of n gives us a plethora of disjoint events. We can sum those possibilities to get the total number of binary trees on n+1 vertices which is

$$f(n+1) = \sum_{\ell=0}^{n} f(\ell)f(n-\ell).$$

It follows that $f(n) = C_n$.

Exercise 2 (Exercise 6). A **triangulation** of a convex (n+2)-gon is a collection (n-1) diagonals that do not intersect each other. Show that the number of triangulations of a convex (n+2)-gon is the n^{th} Catalan numbers C_n . $[\![$ Hint: Show that they satisfy the recursion for the Dyck paths $[\![$]

Answer

In the same way we chose a *left* and *right* trees, here we will chose L-and-R triangulations.

Once again let us begin by verifying the initial condition, for n=0 we have a 2-gon which is a line. There's no possible triangulation there. The definition of triangulation starts making sense at n=1 because we have a triangle and

1 - 1 = 0 diagonals.

Exercise 3 (Exercise 8). A **derangement** of [n] is a permutation $\pi \in S_n$ with no fixed points. That is $\forall i (\pi(i) \neq i)$. Let D_n be the number of derangements of [n]. Prove that

$$\sum_{n=0}^{\infty} \frac{D_n}{n!} x^n = \frac{e^{-x}}{1-x}.$$

Answer

Let us begin by establishing a recurrence relation for D_n . We will do this by considering grad students and their preffered place to sit at. Then the number D_n is the number of ways not grad student sits at their preffered desk.

Suppose that the first grad student enters the room and sits on desk i. When the ith grad student enters the room there are two possibilities:

- \diamond They sit on desk 1, and then the problem reduces to the case with n-2 grad students.
- \diamond Otherwise we may relabel grad student i as the first grad student and then say that desk 1 is i's preferred desk. This reduces to the case of n-1 grad students.

Since this events are disjoint, the possibilities for each must be summed. But our choice for the first one's preference was arbitrary, there are other n-1 possible choices. It follows that

$$D_n = (n-1)(D_{n-1} + D_{n-2}).$$

By taking the exponential generating function on both sides we get

$$\sum_{n=0}^{\infty} D_n \frac{x^n}{n!} = \sum_{n=0}^{\infty} (n-1)D_{n-1} \frac{x^n}{n!} + \sum_{n=0}^{\infty} (n-1)D_{n-2} \frac{x^n}{n!}$$