Disciplina: Computacao Concorrente

Prof.: Silvana Rossetto

Módulo 1 - Laboratório: 2 **Aluno**: Gabriel Silva Pereira

Objetivo

Projetar e implementar uma versão concorrente para o problema de multiplicação de matrizes; e avaliar o desempenho da aplicação em termos de tempo de execuçãoo. Usaremos a linguagem C e a biblioteca Pthreads.

• Informações relevantes obtido do comando 1scpu no linux:

CPU(s): 4

Thread(s) per núcleo: 2 Núcleo(s) por soquete: 2

Nome do modelo: Intel(R) Core(TM) i5-3337U CPU @ 1.80GHz

CPU MHz máx.: 2700,0000 CPU MHz mín.: 800,0000 cache de L1d: 64 KiB cache de L1i: 64 KiB cache de L2: 512 KiB cache de L3: 3 MiB

Dados puros obtidos

```
$ ./mul_mat.out 500 1
Tempo inicializacao:0.003204
Tempo multiplicacao:1.681533
Tempo finalizacao:0.000351

total = 1.685088

$ ./mul_mat.out 500 2
Tempo inicializacao:0.003153
Tempo multiplicacao:0.837688
Tempo finalizacao:0.000473

total = 0.841314

$ ./mul_mat.out 500 4
Tempo inicializacao:0.003705
Tempo multiplicacao:0.776699
Tempo finalizacao:0.000250

total = 0.780654
```

\$./mul_mat.out 1000 1

Tempo inicializacao:0.013521 Tempo multiplicacao:17.811788 Tempo finalizacao:0.000782

total = 17.826091

\$./mul_mat.out 1000 2
Tempo inicializacao:0.013768
Tempo multiplicacao:8.842847
Tempo finalizacao:0.001473

total = 8.858088

\$./mul_mat.out 1000 4
Tempo inicializacao:0.014161
Tempo multiplicacao:7.909425
Tempo finalizacao:0.000875

total = 7.924461

\$./mul_mat.out 2000 1
Tempo inicializacao:0.054755
Tempo multiplicacao:141.023186
Tempo finalizacao:0.003438

total = 141.081379

\$./mul_mat.out 2000 2
Tempo inicializacao:0.052742
Tempo multiplicacao:69.732474
Tempo finalizacao:0.003349

total = 69.788565

\$./mul_mat.out 2000 4
Tempo inicializacao:0.051573
Tempo multiplicacao:62.376708
Tempo finalizacao:0.004117

total = 62.432398

Dados tabelados para comparação

Comparação com 2 threads

Tamanho da Matriz	1 Thread	2 Threads	Ganho de desempenho
500x500	1.685088	0.841314	2.158559
1000x1000	17.826091	8.858088	2.012408
2000x2000	141.081379	69.788565	2.021554

Comparação com 4 threads

Tamanho da Matriz	z 1 Thread	4 Threads	Ganho de desempenho
500x500	1.685088	0.780654	2.158559
1000x1000	17.826091	7.924461	2.249502
2000x2000	141.081379	62.432398	2.259746

• Comparação entre 2 e 4 threads

Tamanho da Ma	triz 2 Threads	4 Threads	Ganho de desempenho
500x500	0.841314	0.780654	1.077704
1000x1000	8.858088	7.924461	1.117815
2000x2000	69.788565	62.432398	1.117826

Comentários sobre os resultados

Os resultados obtidos estão dentro da expectativa de melhora no desempenho. Comparando o desempenho de 2 a 4 threads, houve um ganho de 7 a 11%. O processador utilizado tem na prática 2 núcleos de processamento, e 2 núcleos virtualizados. A tecnologia de "Hyper Threading'(https://www.hp.com/us-en/shop/tech-takes/hyper-threading-everything-to-know), em média tal tecnologia aumenta de 15 a 30% de ganho no processamento. Esse processador tem as caches de nível 1, 2 e 3 com 64 KiB, 512KiB e 3MiB respectivamente. Dado a configuração do computador e o quanto a tecnologia de 'Hyper Threading' ajuda na melhora do desempenho, os resultados são bem satisfatórios nessas condições apresentadas acima.