MacroFinance

Lecture 01: Introduction to Macrofinance

Markus Brunnermeier

Princeton University

2024

Introduction to Modern Macro, Money, and Finance

- What is Macrofinance?
- Type of Frictions
- Portfolio/investment/risk- vs. consumption-focused macro
- Amplification, Persistence, Resilience in 1st Generation Models with aggregate MIT-Shock and reversion to steady state

Real US GDP in log: Financial Crises as Resilience Killers

Real US GDP in log: Financial Crises as Resilience Killers

Gap in 2023 alone $\approx 3-4$ trillion; Gap over the years (shaded area)

History of Macro and Finance

■ Verbal Reasoning (qualitative)
Fisher, Keynes, ...

Macro

- Growth theory
 - Dynamic (cts. time)
 - Deterministic

- Introduce stochastic
 - Discrete time
 - Brock-Mirman, Stokey-Lucas
 - DSGE models

Finance

- Portfolio theory
 - Static
 - Stochastic

- Introduce dynamics
 - Continuous time
 - Options Black Scholes
 - Term structure CIR
 - Agency theory Sannikov

· Cts. time macro with financial frictions

What is Macro-Finance?

- Macro: aggregate impact (resource allocation and constraint)
- Finance: risk allocation financial/contracting frictions, heterogeneous agents
 ⇒ institutions, liquidity
- Monetary: inside money creation
- How to design Financial Sector, Gov. bonds, etc. to achieve optimal resource and risk allocation
- Topics include:
 - Amplification, percolation of shocks, resilience, financial cycle
 - Financial stability, spillovers, systemic risk measures
 - (Un)conventional central bank policy and balance sheet, maturity structure, CBDC
 - Capital flows

MacroFinance: More than Intersection of Macro & Finance

Heterogeneous Agents

Lending-borrowing/insuring since agents are different

■ Poor-rich

Productive

Less patient

Less risk averse

More optimistic

Limited direct lending

Rich-poor

Less productive

More patient

More risk averse

More pessimistic

- Friction state prices/SDF_s/MRS_s differ after transactions
- Wealth distribution matters (net worths of subgroups) matters!
- Financial sector is not a veil

Financial Frictions and Distortions

- Incomplete markets
 - "natural" leverage constraint (BruSan)
 - Costly state verification

(BGG)

+ Leverage constraints (no "liquidity creation")

> Exogenous limit (Bewley/Ayagari)

- Collateral constraint
 - Current price $D_t \leq q_t k_t$
 - Next period's price $D_t \leq q_{t+1} k_t$
 - Next period's VaR $D_t \leq VaR_t(q_{t+1})k_t$ (BruPed)

Search Friction

(Duffie et al.)

Belief distortions

Financial Sector

- Financial sector helps to
 - overcome financing frictions and
 - channels resources
 - creates money
- ... but
 - Credit crunch due to adverse feedback loops & liquidity spirals
 - Non-linear dynamics
- New insights to monetary and international economics

Macro: Finance vs. Consumer Focused

- Portfolio and Investment decision Macro-finance
 - Risk-free rate and risk premia [term-risk, credit risk premia]
 - Risk-premia = price of risk * (exogenous risk + endogenous risk)

amplification/spirals, runs/sudden

- Δ price = $f(\Delta \mathbb{E}[\text{future cash flows}, \Delta \text{risk premia}])$
- Non-linearities are prominent
 - around ≠ away from steady state
- Heterogeneity: wealth distribution across investors (+ consumers)

Consumption decision

- Demand management [interest rate drives c_t]
 - ZLB (liquidity trap)
- Expectation hypothesis, UIP, ... (limited role for time-varying risk premia)
- Heterogeneity: wealth distribution across consumers (with different MPCs)

Cts.-time Macro: Macro-Finance vs HANK

Agents	Heterogenous investor focus - Net worth distribution (often discrete)	Heterogenous consumer focus - Net worth distribution (often cts.)
Tradition:	Finance (Merton) Portfolio and consumption choice	DSGE (Woodford) Consumption choice
	Full/global dynamical system Focused on non-linearities away from steady state (crisis) Length of recession is stochastic	 Zero probability shock Deterministic transition dynamics back to steady state Length of recession deterministic
Risk	Risk and Financial Frictions	No aggregate risk (in HANK paper)
Price of risk:	Idiosyncratic and aggregate risk	N/A
Assets:	Capital, money, bonds with different risk profile Risk-return trade-off	All assets are risk free No risk-return trade-off
	Liquidity-return trade-off Flight-to-safety	Liquidity-return trade-off
Money:	Risk and Financial Frictions	Price stickiness

Overview

- Defining Macrofinance
- Type of Frictions
- Portfolio/investment/risk- vs. consumption focused macro
- Amplification, Persistence, Resilience in 1st Generation Models with Aggregate MIT-shocks
- Kiyotaki-Moore in continuous time
- Bernanke-Gertler-Gilchrist

Persistence and Resilience

- Even in standard real business cycle models, temporary adverse shocks can have long-lasting effects
- Due to feedback effects, persistence is much stronger in models with financial frictions
 - Bernanke & Gertler (1989)
 - Carlstrom & Fuerst (1997)
- Negative shocks to net worth exacerbate frictions and lead to lower capital, investment and net worth in future periods

Persistence Leads to Dynamic Amplification

- *Static* amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of market liquidity of physical capital
- Dynamic amplification occurs because a temporary shock translates into a persistent decline in output and asset prices
 - Forward grow net worth via retained earnings
 - Backward asset pricing → tightens constraints

Two Sector Model: Kiyotaki Moore (1997) in Cts. Time

■ Expert sector (Farmers)

Household sector (Gatherers)

- Capital shares: κ_t^e (experts), κ_t^h (households), $\kappa_t^e + \kappa_t^h = 1, \kappa_t^e, \kappa_t^h \geqslant 0$
- Experts produce with capital with linear production function $a^e k_t^e (= a^e \kappa_t^e K_t)$.
- Households' production function $a^h(\kappa_t^h)k_t^h$ is concave in (aggregate) κ_t^h .
 - Productivity $a^h(\kappa^h) \leqslant a^e$ with equality for $\kappa^h = 0$ and strictly decreasing in κ^h
- Experts can only issue debt with leverage constraint: $D_t^e \leqslant \ell \kappa_t^e q_t K_t$
- All experts' net worth $N_t^e = \int_0^1 n_t^{e,i} di = n_t^e$; all households' net worth $N_t^h = n_t^h$
- Assumption: aggregate physical capitals are in fixed supply $K_t = \bar{K}$

Kiyotaki Moore (1997) in Cts. Time

Expert Sector (Farmers)

• Output: $y_t^e = a^e k_t^e = a^e \kappa_t^e \bar{K}$

■ Consumption rate: c_t^e

Household Sector (Gatherers)

• Output: $y_t^h = a^h(\kappa_t^h)k_t^h = a^h(\cdot)\kappa_t^h\bar{K}$

Consumption rate: c_t^e

Kiyotaki Moore (1997) in Cts. Time

Expert Sector (Farmers)

- Output: $y_t^e = a^e k_t^e = a^e \kappa_t^e \bar{K}$
- Consumption rate: c_t^e
- Objective: $\int_0^\infty e^{-\rho^e t} \log(c_t^e) dt$

Household Sector (Gatherers)

- $\qquad \qquad \mathsf{Output:} \ \ y^h_t = a^h(\kappa^h_t) k^h_t = a^h(\cdot) \kappa^h_t \bar{K}$
- Consumption rate: c_t^e
- Objective: $\int_0^\infty e^{-\rho^h t} \log(c_t^h) dt$

Assumptions:

- Experts are more impatient $\rho^e > \rho^h$
- Productivity $a^h(\kappa^h) \leqslant a^e$ with equality for $\kappa^h = 0$ and strictly decreasing in κ^h
- No equity issuance
- Debt issuance only w/ leverage constraint: $D_t^e \leq \ell \kappa_t^e q_t K_t$ $\Leftrightarrow \frac{D_t^e}{N_t^e} \leq \ell \frac{\kappa_t^e q_t K_t}{N_t^e} \Leftrightarrow -(1 \theta_t^{K,e}) \leq \ell \theta_t^{K,e}$ Leverage constraint in KM97: $D_t^e (1 + r_{t+dt} dt) \leq \ell \kappa_t^e q_{t+dt} K_t$

Portfolio choices: Hamiltonian Approach

■ Experts' problem: $\max_{c_t^e, \rho_t^{K,e}} \int_s^\infty e^{-\rho^e t} u(c_t^e) \mathrm{d}t$ s.t. $(1-\ell)\theta_t^{K,e} \leqslant 1$, and

$$\frac{\mathrm{d}n_t^e}{\mathrm{d}t} = \left[-c_t^e + n_t^e \left(r_t + \theta_t^{K,e} (r_t^{K,e} - r_t) \right) \right]$$

■ Households' problem: $\max_{c_t^h, \theta_t^h} \int_s^\infty e^{-\rho^h t} u(c_t^h) dt$, s.t.

$$\frac{\mathrm{d}n_t^h}{\mathrm{d}t} = \left[-c_t^h + n_t^h \left(r_t + \theta_t^{K,h}(r_t^{K,h} - r_t)\right)\right],$$

■ The Hamiltonians can be constructed as

$$\mathcal{H}_{t}^{e} = e^{-\rho^{e}t}u(c_{t}^{e}) + \xi_{t}^{e} \underbrace{\left[-c_{t}^{e} + n_{t}^{e}\left(r_{t} + \theta_{t}^{K,e}(r_{t}^{K,e} - r_{t})\right)\right]}^{\mu_{t}^{e} + n_{t}^{e}\lambda_{t}^{\ell}\left(1 - \underbrace{(1 - \ell)\theta_{t}^{K,e}}^{\ell,e}\right)$$

$$\mathcal{H}_{t}^{h} = e^{-\rho^{h}t}u(c_{t}^{h}) + \xi_{t}^{h}\left[-c_{t}^{h} + n_{t}^{h}\left(r_{t} + \theta_{t}^{K,h}(r_{t}^{K,h} - r_{t})\right)\right]$$

- ξ_t^i multiplier on the budget constraint, $\xi_t^e n_t^e \lambda_t^\ell$ multiplier on leverage constraint • We proceed to show that ξ_t^i is SDF later.
- Fisher Separation Theorem btw. consumption and portfolio choice

Hamiltonian Approach: First order conditions

FOC w.r.t c_t^i :

$$\begin{cases} e^{-\rho^e t} u'(c_t^e) = \xi_t^e \\ e^{-\rho^h t} u'(c_t^h) = \xi_t^h \end{cases} \Rightarrow c_t^i = \rho^i n_t^i, \log \text{ utility}$$

Hamiltonian Approach: First order conditions

FOC w.r.t c_t^i :

$$\begin{cases} e^{-\rho^e t} u'(c_t^e) = \xi_t^e \\ e^{-\rho^h t} u'(c_t^h) = \xi_t^h \end{cases} \Rightarrow c_t^i = \rho^i n_t^i, \log \text{ utility}$$

■ FOC w.r.t $\theta_t^{K,i}$:

$$\begin{cases} r_t^{K,e} - r_t = (1 - \ell)\lambda_t^{\ell} \\ r_t^{K,h} - r_t = 0 \end{cases}$$

■ Where capital returns are: (dividend + price drift)

$$\begin{cases} r_t^{K,e} = \frac{a^e}{q_t} + \frac{1}{q_t} \frac{\mathrm{d}q_t}{\mathrm{d}t} \\ r_t^{K,h} = \frac{a^h(\kappa_t^h)}{q_t} + \frac{1}{q_t} \frac{\mathrm{d}q_t}{\mathrm{d}t} \end{cases}$$

Aside: Understanding Asset Prices

Price dynamics (with some proper initial conditions):

$$\frac{1}{q_t} \frac{\mathrm{d}q_t}{\mathrm{d}t} + \frac{a^h(\kappa_t^h)}{q_t} = r_t,$$

$$q_t = \int_t^\infty e^{-\int_t^s r_u du} a^h(\kappa_s^h) ds$$

Discrete time analogy:

$$\frac{q_{t+1} - q_t}{q_t} + \frac{a^h(\kappa_t^h)}{q_t} = r_t$$
$$q_t = \sum_{s=0}^{\infty} \left[\prod_{u=0}^s \frac{1}{(1 + r_{t+u})} \right] a^h(\kappa_{t+s}^h)$$

- Asset price = sum of discounted dividend flows.
- Asset prices are solved backward

Dynamics

- Equilibrium objects are functions of state, net worth share, $\eta_t = \frac{N_t^e}{N_t} = \frac{N_t^e}{q_t K}$
- Price dynamics: (No arbitrage for households)

$$\frac{a^h(\kappa_t^h)}{q_t} + \frac{1}{q_t} \frac{\mathrm{d}q_t}{\mathrm{d}t} = r_t,$$

State dynamics:

$$\begin{split} \mu_{t}^{N}dt &= \frac{dN_{t}}{N_{t}} = \underbrace{\frac{N_{t}^{e}}{N_{t}}}_{\eta_{t}} \mu_{t}^{N^{e}}dt + \underbrace{\frac{N_{t}^{h}}{N_{t}}}_{(1-\eta_{t})} \mu_{t}^{N^{h}}dt \\ \mu_{t}^{\eta} &= \mu_{t}^{N^{e}} - \mu_{t}^{N} = (1 - \eta_{t})(\mu_{t}^{N^{e}} - \mu_{t}^{N^{h}}) \\ &= (1 - \eta_{t})[-(\rho^{e} - \rho^{h}) + \theta_{t}^{K,e}(\frac{a^{e}}{q_{t}} + \frac{1}{q_{t}}\frac{dq_{t}}{dt} - r_{t}) - \theta_{t}^{K,h}(\frac{a^{h}(\kappa_{t}^{h})}{q_{t}} + \frac{1}{q_{t}}\frac{dq_{t}}{dt} - r_{t})] \\ &= (1 - \eta_{t})[-(\rho^{e} - \rho^{h}) + \theta_{t}^{K,e}(\frac{a^{e}}{q_{t}} - \frac{a^{h}(\kappa_{t}^{h})}{q_{t}})] \end{split}$$

Equilibrium Conditions

- Equilibrium objects $(\kappa^e, \kappa^h, q, r)$ are functions of state, net worth share, $\eta_t = \frac{N_t^e}{N_t} = \frac{N_t^e}{a_t K}$
- pinned down by:

$$q_t \bar{K} [\rho^e \eta_t + \rho^h (1 - \eta_t)] = [a^e \kappa_t^e + a^h (\kappa_t^h) \kappa_t^h] \bar{K} \qquad \text{(Goods market)}$$

$$\underbrace{\theta_t^{Ke} \eta_t}_{=\kappa_t^e} q_t \bar{K} + \underbrace{\theta_t^{Kh} (1 - \eta_t)}_{=\kappa_t^h} q_t \bar{K} = q_t \bar{K} \qquad \text{(Capital market)}$$

$$\kappa_t^e \leqslant \frac{\eta_t}{1-\ell} \qquad \text{(Collateral Constraint)}$$

$$\mu_t^{\eta} = (1-\eta_t) \left[-(\rho^e - \rho^h) + \theta_t^{K,e} \frac{\mathsf{a}^e - \mathsf{a}^h(\kappa_t^h)}{q_t} \right]$$

$$\begin{aligned} & \text{simplified to (and define } \kappa_t := \kappa_t^e = 1 - \kappa_t^h) \\ & q_t \big[(\rho^e - \rho^h) \eta_t + \rho^h \big] = \kappa_t a^e + (1 - \kappa_t) a^h (1 - \kappa_t) \\ & \kappa_t \leqslant \frac{\eta_t}{1 - \ell} \\ & \mu_t^\eta = (1 - \eta_t) \left[-(\rho^e - \rho^h) + \frac{\kappa_t}{\eta_t} \frac{a^e - a^h (1 - \kappa_t)}{a_t} \right] \end{aligned}$$

Global Non-linear Solution

Parameters: $\rho^e = 0.06, \rho^h = 0.04, \ell = 0.05, a^e = 1.0, a^h(1 - \kappa) = \kappa$

Impluse Responses

Impulse response function with 30% (of η) negative redistribution shock.

Parameters: $\rho^e = 0.06, \rho^h = 0.04, \ell = 0.5, a^e = 1.0, a^h(1 - \kappa) = \kappa$

Log-linearization around Steady State

- I Derive steady state with $\mu^{\eta} = 0$ with its properties
- 2 Log-linearize around steady state characterize dynamical system locally around the steady state

The Steady State: Binding Collateral Constraint

- The collateral constraint always binds in the steady state
 - If collateral constraint does not bind $\lambda_t^\ell = 0$ and hence $r^{K,e} = r^{K,h}$, i.e. $a^e = a^h(\cdot)$
- Note, the constraint does not need to bind only if $\kappa_t = 1$.
 - Then $\mu_t^{\eta} = (1 \eta_t)(\rho^h \rho^e)$
 - \blacksquare as $\rho^e > \rho^h \Rightarrow \mu_t^{\eta} < 0$, i.e. η declines
- Characterization of Steady State (Next Page)

Steady State

Since Collateral constrained binds, steady state capital share

$$\kappa^* = \frac{\eta^*}{1-\ell}$$

lacksquare Expert sector's net worth share is $\eta_t:=rac{N_t^e}{q_t K}$, is constant, i.e. $\mu_t^\eta:=rac{\mathrm{d}\eta_t}{\mathrm{d}t}=0$

$$q^*[(\rho^e - \rho^h)\eta^* + \rho^h] = \kappa^* a^e + (1 - \kappa^*) a^h (1 - \kappa^*)$$
$$(\rho^e - \rho^h) = \frac{\kappa^*}{\eta^*} \frac{a^e - a^h (1 - \kappa^*)}{q^*} \quad \text{for } \mu^\eta = 0$$

Combine

$$\kappa^* a^e - \kappa^* a^h (1 - \kappa^*) + q^* \rho^h = \kappa^* a^e + (1 - \kappa^*) a^h (1 - \kappa^*)$$

$$\Rightarrow q^* = a^h (1 - \kappa^*) / \rho^h,$$

where the steady state κ^* is implicitly given by:

$$\frac{\rho^e - \rho^h}{\rho^h} = \frac{1}{1 - \ell} \frac{a^e - a^h (1 - \kappa^*)}{a^h (1 - \kappa^*)}.$$

■ For specific functional form $a^h(1 - \kappa_t) = a^e \kappa_t$:

$$\kappa^* = \frac{1}{(1-\ell)(\rho^{\mathsf{e}} - \rho^{\mathsf{h}})/\rho^{\mathsf{h}} + 1} \quad \Rightarrow \eta^* = \frac{1-\ell}{(1-\ell)(\rho^{\mathsf{e}} - \rho^{\mathsf{h}})/\rho^{\mathsf{h}} + 1}$$

Steady State: Comparative Static

- For the specific example $a^h(\cdot) = a^e \kappa$:
- For higher leverage, ℓ, (i.e. less tight collateral constraint)
 - \bullet κ^* , SS-capital share, is higher.
 - \blacksquare η^* , SS-net worth share, is lower.
 - $q^* = \frac{a^h}{\rho^h}$, price of capital, is higher.
 - $q^*\bar{K}$, total wealth in the economy, is higher too.
 - N^{e,*} SS-experts' net worth, is higher (Check?)
 - Comparative Static = permanent (long-run) shift to new steady state
 - Next: Dynamics of how to return to the old steady state (after an unanticipated shock)

Log-linearized Dynamics Around Steady State

■ Analytical solutions to η_t , q_t dynamics are hard to obtain. Expansion around the steady state:

$$\begin{aligned} \log(\eta_t/\eta^*) &= \hat{\eta}_t \\ \log(q_t/q^*) &= \hat{q}_t \\ \log(r_t/r^*) &= \hat{r}_t \\ \log(a_t^h/a^{h,*}) &= \hat{a}_t^h \end{aligned}$$

- **E**xpression for \hat{a}_t^h, \hat{q}_t^h as a function of $\hat{\eta}_t$
- State dynamics and price dynamics become:

$$\frac{\mathrm{d}\hat{\eta}_t}{\mathrm{d}t} = \frac{1 - \eta^*}{1 - \ell} \left(-\frac{a^{h,*}}{q^*} \hat{a}_t^h - \frac{a^e - a^{h,*}}{q^*} \hat{q}_t \right)$$
$$\frac{\mathrm{d}\hat{q}_t}{\mathrm{d}t} = r^* (\hat{r}_t + \hat{q}_t - \hat{a}_t^h)$$

Global vs. Log-linearized Solution for η -drift

■ Note: x-axis is $log(\eta)$, since log-linearization

Decomposing Amplification Effects

- Start at steady state $\{q^*, \eta^*, \kappa^*\}$
- Shock: redistribution of a fraction of experts' net worth share to households
 - In KM productivity shock lasts for one period (not for an instant), causes initial redistribution
- Impulse response function (with deterministic recovery)
- Immediate impact at t = 0
 - direct redistributive effect/shock
 - lacktriangledown price-net worth effect decline in q_t reduces experts' net worth share as they are levered \Rightarrow feedback
 - price-collateral effect decline in q_t tightens collateral constraints \Rightarrow feeds back on price-net worth effect
- Subsequent impact t > 0 (which feeds back to immediate impact)
- Decomposition:

Switch off price-collateral effect by assuming that collateral constraint is determined by SS-price q^* instead of equilibrium price q_t .

Decomposition of Amplification: Impulse Response Fcn

Impulse response function with 30% (of η) negative redistribution shock.

Parameters: $\rho^e = 0.06, \rho^h = 0.04, \ell = 0.5, a^e = 1.0, a^h(1 - \kappa) = \kappa$

Decomposing Amplification at t = 0

- At time t, the economy is at steady state $\{q^*, \eta^*, \kappa^*\}$.
- Negative initial/direct redistributive shock $\eta' = (1 \epsilon)\eta^*$, new price q', and capital holding κ' solves:

$$q' = \frac{\kappa' a^e + (1 - \kappa') a^h (1 - \kappa')}{(\rho^e - \rho^h) \eta' + \rho^h}$$
 (Goods market)
$$\kappa' = \frac{\eta^* (1 - \epsilon)}{1 - \ell}$$
 (q_t -constraint)
$$\kappa' = \frac{\eta^* (1 - \epsilon)}{1 - \ell q^* / q'}$$
 (q^* -constraint)

- However, debt contract was signed by old price $q^* \Rightarrow \eta$ drops further
- Consider the balance sheet (first round effect):

$$rac{\eta'}{1-\ell}q'=rac{\ell}{1-\ell}\eta'q^*+\eta''q'$$

To get the convergence result, we need to do this procedure iteratively.

Decomposing Amplification for t > 0 (global solution)

Decomposing Amplification for t > 0 (log-linearized sol.)

Price dynamics:

$$\frac{\mathrm{d}\hat{q}_t}{\mathrm{d}t} = r^*\hat{r}_t - r^*\hat{a}_t^h + r^*\hat{q}_t$$

■ State dynamics with q_t -collateral constraint:

$$\frac{\mathrm{d}\hat{\eta}_t}{\mathrm{d}t} = \frac{1-\eta^*}{1-\ell} \left(-\frac{a^{h,*}}{q^*} \hat{a}_t^h - \frac{a^e - a^{h,*}}{q^*} \hat{q}_t \right)$$

■ State dynamics with q^* -collateral constraint:

$$rac{\mathrm{d}\hat{\eta}_t}{\mathrm{d}t} = rac{1-\eta^*}{1-\ell} \left(-rac{\mathsf{a}^{h,*}}{q^*} \hat{\mathsf{a}}_t^h - rac{1}{1-\ell} rac{\mathsf{a}^{e}-\mathsf{a}^{h,*}}{q^*} \hat{q}_t
ight)$$

 $\hat{q}_t, \hat{a}_t^h, \hat{r}_t$ are different with different constraints.

Adding Investments/Physical Capital Formation

- Instead of fixed aggregate capital stock \bar{K} , convert goods into physical capital
- Capital conversion function $\Phi(\iota)$ (increasing and concave)

$$dk_t = \Phi(\iota_t)k_t - \delta k_t$$

- \bullet ι_t is the investment **rate** (real investment is $\iota_t k_t$)
- occurs within the period (no "time-to-build") ⇒ static problem
- lacksquare δ is the depreciation rate of capital
- Optimal investment rate depends on price of physical capital q_t .
 - Tobin's Q:

$$q_t = 1/\Phi'(\iota_t)$$

■ attractive functional form with adjustment cost ϕ : $\Phi(\iota) = \frac{1}{\sigma} \log (\phi \iota + 1)$

■ Homework: Redo continuous time KM analysis with ι -investment.

Bernanke, Gertler, Gilchrist 1999

- Fully fledged DSGE Model with price stickiness, idiosyncratic firm risk, ...
- Aggregate shocks are unanticipated zero-probability shocks (MIT shocks)
- No fire-sale to less productive household sector (unlike in KM97)
- Divestment: Convert physical capital back to consumption good at a cost (captured by $\Phi(\cdot)$ -adjustment cost function)
- Financial Frictions:
 - No equity issuance
 - Debt issues with costly state verification (instead of collateral constraint)
 - If firm defaults (after negative idiosyncratic shock),
 creditor has to pay cost to verify true (remaining) cash flow
 - Optimal contract is a debt contract (debt payoff is hockey stick function of cash flow)
 - De-facto borrowing firms pay verification costs in expectations (in form of higher interest rate/funding costs)
 - A negative aggregate shock, lowers firms' net worth ⇒ firm's default prob. rises
 ⇒ expected verification cost rise ⇒ Firms funding costs rise

"Single Shock Critique"

- Critique: After the shock all agents in the economy know that the economy will deterministically return to the steady state.
 - Length of slump is deterministic (and commonly known)
 - No safety cushion needed
- In reality an adverse shock may be followed by additional adverse shocks
 - Build-up extra safety cushion for an additional shock in a crisis
- Impulse response vs. volatility dynamics

Conclusion & Takeaways

- Defining Macrofinance
- Contrasting Different Financial Frictions
- First-Generation Macrofinance Models
 - Zero Probability Aggregate Shocks
 - Log-linearization Around Steady State
 - Agents believe deterministic return to Steady State
- Without (anticipated) risk, collateral constraint binds in equilibrium i.e. no difference between normal times and crisis times
- Log-linearlization is a good approximation
- NEXT: Stochastic Modeling
 2nd Generation Macrofinance Models

Endogenous Volatility & Volatility Paradox

Endogenous Risk/Volatility Dynamics in BruSan

Beyond Impulse responses

- Input: constant volatility
- Output: endogenous risk, time varying volatility
- ⇒ Precautionary savings
 - Role for money/safe asset
- ⇒ Nonlinearities in crisis
- ⇒ endogenous fait tails, skewness
- Volatility Paradox
 - Low exogenous (measured) volatility leads to high build-up of (hidden) endogenous volatility (Minksy' financial instability hypothesis)

