lab 1

Part 1:

Voltage divider

<u>AC</u>

```
simple_rc_ac.cir simple_rc_ac.cir
* Circuit Description
* RC low-pass filter with parametric sweep for CPAR
* Parameters
.PARAM CPAR=500p
* Signal sources
V1 1 0 AC 1
* Circuit elements
R1 1 2 1k
C1 2 0 {CPAR}
* Analysis request
* Run ac sweep from 1Hz to 100MEG with 10 pts per decade
 .AC DEC 10 1 100MEG
* Use parametric sweep for CPAR: 500p:500p:1.5n
.STEP PARAM CPAR 500p 1.5n 500p
*.STEP PARAM CPAR LIST 500p 1n 1.5n
* Output request
.PRINT AC V(1) V(2)
.PLOT AC V(1) V(2)
* Measure the peak
.MEAS AC PEAK max mag(V(2))
* Measure bandwidth using PEAK/sqrt(2)
.MEAS AC BW WHEN mag(V(2)) = PEAK/SQRT(2)
.END
```

LTspice 24.1.9 for Windows

Circuit: C:\Users\DELL\Desktop\Siemens AMS 2025\lab1\simple rc ac.cir

Start Time: Fri Jul 18 03:37:14 2025

solver = Normal

Maximum thread count: 8

tnom = 27temp = 27

method = trap

- .OP point found by inspection.
- .step cpar=5e-10
- .step cpar=1e-09
- .step cpar=1.5e-09

Total elapsed time: 0.064 seconds.

Files loaded:

C:\Users\DELL\Desktop\Siemens AMS 2025\lab1\simple rc ac.cir

Measurement: peak

step	MAX (mag (V(2))) FROM TO		
1	(-4.28633915609e-11dB,0A°)	1	100000000
2	(-1.71452601918e-10dB,0°)	1	100000000
3	(-3.85768595401e-10dB,0°)	1	100000000

Measurement: bw

step	<pre>p mag(V(2))=PEAK/SQRT(2</pre>	
1	318360.932452	
2	159171.763992	
3	106165.634071	

Transient

```
Simple RC Circuit
* Circuit Description
* Parameters
*** add line here ***
.PARAM CPAR=500p
* Signal sources
V1 1 0 PULSE(0V 1V 0 100n 100n 10u 20u)
* Circuit elements
R1 1 2 1k
C1 2 0 {CPAR}
* Initial conditions
.IC V(2) = 0
* Analysis request
* Run transient for 40us with 100ns step
*** add line here ***
.TRAN 100n 40u
* Use parametric sweep for CPAR: 500p:500p:1.5n
*** add line here ***
*.STEP PARAM CPAR 500p 1.5n 500p
.STEP PARAM CPAR LIST 500p 1n 1.5n
* Measure rise time from 10% to 90%
.MEAS TRAN TRISE
+ TRIG when v(2) = 0.1 CROSS = 1
+ TARG WHEN V(2) = 0.9 CROSS = 1
*** add line here ***
.PRINT TRAN V(1) V(2)
.PLOT TRAN V(1) V(2)
*** add line here ***
.END
```

```
LTspice 24.1.9 for Windows
Circuit: C:\Users\DELL\Desktop\Siemens AMS 2025\lab1\simple rc tran.cir
Start Time: Fri Jul 18 03:34:56 2025
solver = Normal
Maximum thread count: 8
tnom = 27
temp = 27
method = trap
.OP point found by inspection.
.step cpar=5e-10
.step cpar=1e-09
.step cpar=1.5e-09
Total elapsed time: 0.227 seconds.
Files loaded:
C:\Users\DELL\Desktop\Siemens AMS 2025\lab1\simple_rc_tran.cir
Measurement: trise
  step
            trise FROM TO
     1
            1.09838514095e-06 1.03673538479e-07 1.20205867943e-06
            2.19830457284e-06 1.55908759936e-07 2.35421333277e-06
     3
            3.2964401991e-06 2.08544980342e-07 3.50498517945e-06
```


Part 2:

1-

```
OPAMP.cir OPAMP.cir
 OPAMP CIRCUIT SIMULATION
 *** opamp subcuircuit ***
 .subckt opamp 1 2 3
 * VCVS with gain 10000
 Eopamp 1 0 4 0 1
 Gp \ 0 \ 4 \ 2 \ 3 \ 0.6289 ; A0 = Gp * Rp
 * redundant current sources to avoid errors
 Iopen1 2 0 0A
 Iopen2 3 0 0A
 * Parameters
 Rp 4 0 15.9k
                        ; dominant pole resistor
 Cp 4 0 10n
                                 ; dominant pole capacitor
 .ends opamp
Given: A0 = 10000 and UGF= 10MHz. fp=1KHz
RpCp = \frac{1}{2*3.14*fp} = \frac{1}{2*3.14*1000} = 159.23 \text{ u}
Assumed Rp =15.9 Kohm, Cp = 10nF
GP = A0/Rp = 0.6289
```

```
*** Circuit ***
*** Circuit ***

*V1 IN+ 0 DC 1V ; 1V DC input

Vsig IN+ 0 SIN(0 1 1k) ; 1V amplitude, 1kHz frequency sine wave
Rin IN- 0 1k
                            ; Input resistor
Rf IN- OUT 9k
                             ; Feedback resistor
XOP OUT IN+ IN- opamp ; Op-amp subcircuit
*** Transfer Function Analysis ***
*.TF V(OUT) V1
*** Transient Analysis ***
.TRAN 20u 2m 20u ; Step = 20 us, Stop time = 2 ms
*** Probes ***
.PRINT TRAN V(IN+) V(OUT)
.PLOT TRAN V(IN+) V(OUT)
*** Measurement Commands ***
.MEAS TRAN Vsig peak MAX V(IN+)
.MEAS TRAN Vout_peak MAX V(OUT)
.END
```

C:\Users\DELL\Desktop\Siemens AMS 2025\lab1\OPAMP.cir

```
--- Transfer Function ---

transfer_function: 9.99001 transfer

V1#input_impedance: 1e+20 impedance
output_impedance_at_v(out): 0 impedance
```

We can see that transfer function = $\frac{Vout}{Vsig}$ = 9.99 and the TF analatically =10

Very large input impedance(ideally infinity) and small output impedance(ideally 0) and that matches the predicted from the opamp analysis

```
*** Circuit ***
*V1 IN+ 0 DC 1V ; 1V DC input
Vsig IN+ 0 SIN(0 1 1k) ; 1V amplitude, 1kHz frequency sine wave
Rin IN- 0 1k
                         ; Input resistor
Rf IN- OUT 9k
                          ; Feedback resistor
XOP OUT IN+ IN- opamp ; Op-amp subcircuit
*** Transfer Function Analysis ***
*.TF V(OUT) V1
*** Transient Analysis ***
.TRAN 20u 2m 20u ; Step = 20 us, Stop time = 2 ms
*** Probes ***
.PRINT TRAN V(IN+) V(OUT)
.PLOT TRAN V(IN+) V(OUT)
.END
```

```
LTspice 24.1.9 for Windows
Circuit: C:\Users\DELL\Desktop\Siemens AMS 2025\lab1\OPAMP.cir
Start Time: Mon Jul 21 19:55:05 2025
solver = Normal
Maximum thread count: 8
tnom = 27
temp = 27
method = trap
.OP point found by inspection.
Total elapsed time: 0.061 seconds.

Files loaded:
C:\Users\DELL\Desktop\Siemens AMS 2025\lab1\OPAMP.cir

vdiff_peak: MAX(V(VDIFF))=0.00141209574511 FROM 0 TO 0.00198
vsig_peak: MAX(V(IN+))=0.999020652352 FROM 0 TO 0.00198
vout_peak: MAX(V(OUT))=9.98029558502 FROM 0 TO 0.00198
```


Right-Click to manually enter Horizontal Axis Limits

4- from the measured peaks of Vsig and Vout

Av= Vout / Vsig =
$$\frac{9.9802}{0.999}$$
 = 9.99

Hand analysis	TF analysis	Transient analysis
$Av = 1 + \frac{9K}{1K} = 10$	From TF log	Av=9.99
1 <i>K</i>	Av=9.9901	

We can see that the analytical way gives the most accurate results although LTspice gives good results also for both TF analysis and Transient analysis

- 5- ② At **1 kHz**, the op-amp has high gain → feedback works → differential input is **very small**.
 - ☑ At 10 MHz, the op-amp can no longer amplify → feedback fails
 → differential input is larger

Differential voltage for frequency 1KHz

vdiff peak: MAX(V(VDIFF))=0.000999087070492 FROM 0 TO 1.98e-07

The amplitude of Vdiff = 1mV nearly.

Hand analysis:

At low frequency, the output is:

So The differential input voltage is approximately:

$$Vdiff = Vout / A0 = 10 / 10000 = 1mV$$

6-

Differential voltage for frequency 10MHz

vdiff_peak: MAX(V(VDIFF))=0.949425053546 FROM 0 TO 1.98e-07
vsig_peak: MAX(V(IN+))=0.999966450467 FROM 0 TO 1.98e-07
vout_peak: MAX(V(OUT))=1.72927891716 FROM 0 TO 1.98e-07

The amplitude of Vdiff = 1V nearly.

Hand analysis:

At UGF, the op-amp's open-loop gain drops to 1:AO(f=UGF)=1The feedback will not work properly and the differential voltage will be close in value to output voltage with very small gain (nearly no gain).

7- Netlist:

```
test.cir test.cir
OPAMP CIRCUIT SIMULATION
*** opamp subcuircuit ***
.subckt opamp 1 2 3
* VCVS with gain 10000
Eopamp 1 0 4 0 1
Gp 0 4 2 3 0.6289
                             ; A0 = Gp * Rp
* redundant current sources to avoid errors
Iopen1 2 0 0A
Iopen2 3 0 0A
* Parameters
Rp 4 0 15.9k
                              ; dominant pole resistor
Cp 4 0 10n
                               ; dominant pole capacitor
.ends opamp
*** Circuit ***
* AC source for AC analysis
Vsig IN+ 0 AC 1
                              ; Input resistor
Rin IN- 0 1k
Rf IN- OUT {R_feedback}
                               ; Feedback resistor, using a parameter for sweep
XOP OUT IN+ IN- opamp
                              ; Op-amp subcircuit
*** AC Analysis ***
.AC DEC 10 1 100Meg
                               ; Decade sweep, 10 points per decade, from 1Hz to 100MHz
*** Parametric Sweep ***
.STEP PARAM R_feedback LIST 9k 4k
*** Probes ***
.PRINT AC V (OUT)
.PLOT AC DB(V(OUT))
```

Waveform:

GAIN

For the case RF = 4k : GAIN= 14dB

For the case RF = 9K : GAIN = 20dB

3dB Bandwidth

For the case RF = 4k : BW = 2MHz

For the case RF = 9k : BW = 1MHz

Unity Gain Frequency:

For the case RF = 4k : UGF= 9.85MHz (nearly)

For the case RF = 9k : UGF= 9.95MHz (nearly)

8- AC Analysis

There will be no clipping in the output because this is linear small-signal analysis that analyses the response with frequency, The simulator scales everything linearly and does not consider nonlinearities but we can achieve higher gain if the input amplitude increases.

Transient Analysis

you can see clipping in transient analysis if the output tries to go beyond the op-amp's output voltage limits (supply rails) because this is a timedomain simulation and applies real large voltages on the circuit

9- DC Gain:

$$Av = 1 + \frac{Rf}{Rin}$$

For RF = 9K : Av = 20log(1 + (9K/1K)) = 20dBFor RF = 4K : Av = 20log(1 + (4K/1K)) = 14dB

Bandwidth:

$$\underline{\mathsf{Bw}} = \frac{UGF}{Av}$$

For RF = 9K, UGF = 10MHz: BW = 10M / 10 = 1MHzFor RF = 4K, UGF = 10MHz: BW = 10M / 5 = 2MHz

Unity Gain Frequency:

Circuirt was designed for UGF = 10MHz so it is for the two cases

Parameter	Hand Analysis	AC analysis
DC Gain	RF=4K ==> 14dB	RF=4K ==> 13.975dB
	RF=9K ==> 20dB	RF=9K ==> 19.99dB
3dB Bandwidth	RF=4K ==> 2MHz	RF=4K ==> 2MHz
	RF=9K ==> 1MHz	RF=9K ==> 1MHz
UGF	RF=4K ==> 10MHz	RF=4K ==> 9.8MHz
	RF=9K ==> 10MHz	RF=9K ==> 9.945MHz

BONUS (Non Inverting Summing Amplifier) :

Netlist:

```
* === OPAMP BEHAVIORAL SUBCKT ===
.subckt opamp 1 2 3
Eopamp 1 0 4 0 1
Gp 0 4 2 3 0.6289
Iopen1 2 0 0A
Iopen2 3 0 0A
Rp 4 0 15.9k
Cp 4 0 10n
.ends opamp
* === SIGNAL SOURCES ===
V1 VIN1 0 SIN(0 1 1k) ; 1V amplitude sine at 1kHz V2 VIN2 0 SIN(0 0.5 1k) ; 0.5V amplitude sine at 1kHz
* === SUMMING RESISTORS INTO NON-INVERTING INPUT ===
R1 VIN1 NPLUS 10k
R2 VIN2 NPLUS 10k
* === FEEDBACK NETWORK ON INVERTING INPUT ===
Rf NMIN OUT 9k
Rin NMIN 0 1k
* === OPAMP INSTANCE ===
XOP OUT NPLUS NMIN opamp
* === ANALYSIS ===
.TRAN 10u 10m
.PRINT TRAN V(VIN1) V(VIN2) V(OUT)
.MEAS TRAN VIN1 peak MAX V(VIN1)
.MEAS TRAN VIN2_peak MAX V(VIN2)
.MEAS TRAN VOUT peak MAX V(OUT)
```

Measurement:

```
vin1_peak: MAX(V(VIN1))=0.9999999701977 FROM 0 TO 0.01
vin2_peak: MAX(V(VIN2))=0.499999850988 FROM 0 TO 0.01
vout_peak: MAX(V(OUT))=7.49249172211 FROM 0 TO 0.01
```

Wave form:

Components:

- 1- Two AC sources at frequency 1KHz with amplitudes 1, 0.5 Volts
- 2- Two summing resistors equal 10Kohm
- 3- Feedback resistor equals 9Kohm
- 4- Input resistor equals 1Kohm

Analysis:

$$Av = 1 + \frac{9K}{1K} = 10$$

V+=
$$\frac{V1+V2}{2}$$
 (equal resistor weights)

Voltage gain = Vout / Vsig =
$$\frac{7.5}{1+0.5}$$
 = 5

TF Analysis:

We perform TF analysis on each source with the output and we find the results are identical and the voltage gain is near to the gain we obtained from Transient analysis

transfer function:	4.995	transfer
V2#input_impedance:	20000	impedance
output_impedance_at_v(out):	0	impedance