Prvi Kolokvij

Zadatak 1.

a) Skicirati prostor rješenja koji pripada zadatku LP-a.

$$-1,25 x_1 + 0,75 x_2 <= 3,75$$

$$x_2 <= 7$$

$$1,4 x_1 - 1,75 x_2 <= 3,5$$

$$0,67 x_1 + 0,73 x_2 <= 8,2$$

$$0,91 x_1 + 1,1 x_2 <= 10$$

$$x_1>=0, x_2>=0.$$

- b) Označiti na grafu gdje očekujemo optimume (kod standardnih zadataka, bez iznimnih situacija koje mogu nastati između f-je cilja i pojedinih ograničenja)
- c) Ako je ishodište osnovno moguće rješenje, označite na slici kako djeluje uvjet izvedivosti.

Zadatak 2.

- a) Riješite zadani problem optimizacije (LP).
- b) Ako zadatak opisuje "živi problem" navedite sve dopustive promjene u f-ji cilja (izračunajte granice) sa kojima će optimalni režim rada ostati u cjelosti nepromjenjen.

Maksimizirati:

$$x_0=3 x_1-3.9 x_2+4.8 x_3+0.5 x_4 uz$$

 $3.5x_1 + 1.5x_2 + x_3 + 0.9x_4 <=4$
 $0.5x_1 - 1.2x_2 + 3x_3 - 2x_4 <=15$

a)

Dopustive su promjene slijedećih koeficijenata f-je cilja i u granicama:

Zadatak 3.

Zadan je LP kojeg treba optimirati. Riješiti dualnim postupkom i naposati optimalne vrijednosti zadanaih decizijskih varijabli i f-je cilja.

Minimizirati f-ju cilja $x_0=0.5x_1+1.7 x_2 uz$ $5.1x_1+0.3x_2 >= 9$ $-0.9x_1+2.2x_2 >=15$ $x_1>=1$

Drugi Kolokvij

1)

a) Zadano je 5 skladišta – S1, S2, S3, S4, S5 sa kapacitetima (+ kapacitet znači da je pojedino skladište polazno tj. Šalje robu, a – znači da je pojedino skladište dolazno, tj. prima robu. Nule znače da je skladište prazno. U tablici su zadane sve c_{ii} – cijene između veza. Modelirajte zadatak kao transportni problem.

S1	S2	S3	S4	S5
(+25)	(0,0)	(+12,-5)	(+25,-2)	(-15)

	S1	S2	S3	S4	S5
S1	X	10	1	2	nemoguće
S2	10	X	nemoguće	0	4
S3	1	nemoguće	X	1	5
S4	2	0	1	Χ	9
S 5	nemoguće	4	5	9	Х

b) Odredite osnovno moguće rješenje metodom najmanjih troškova i kratko komentirajte što je to osnovno moguće rješenje.

2) U zgradi postoji 6 sala s različitim brojem sjedećih mjesta B1, B2, B3, B4, B5, B6. Treba rasporediti na optimalan način 5 grupa ljudi (A1, A2, A3, A4, A5) tako da ostane minimalan broj praznih sjedalica.

- planirati minimum tako da netko stoji samo iznimno.

Sale	B1	B2	В3	B4	B5	В6
Kapacitet	45	25	18	60	40	60
Grupa ljudi	A1	A2	А3	A4	A5	/
Broj ljudi	36	28	65	55	12	/

3) Igrač koji u ovom času ima pravo igre ima 3 moguća poteza (I1, I2, I3) a njegov protivnik 4 (P1, P2, P3, P4). Odredite strateški optimalne poteze za oba igrača, ako su cijene njihovih mogućih kontakata (gledajuči sa pozicije prvog igrača) zadane:

c(I1-P1)=0,5	c(I2-P1)=-1	c(I3-P1)=1
c(I1-P2)=-0,5	c(I2-P2)=6	c(I3-P2)=0
c(I1-P3)=8	c(I2-P3)=1	c(I3-P3)=7
c(I1-P4)=1	c(I2-P4)=2	c(I3-P4)=3

4) Na temelju zajedničkih principa teorije grafova na zadanom grafu označiti događaje i aktivnosti. Izdvojite sa strane samo 2 događaja (omeđuju jednu aktivnost) i na njima pokažite na koje se sve načine mogu zadati podaci o vremenima.

