Phương pháp tìm kiếm lân cận rộng thích ứng cho một số lớp bài toán định tuyến phương tiện

Nguyễn Mạnh Linh

Khoa Toán-Cơ-Tin học Đại học Khoa học Tự nhiên

2023/12

Linh (MIM, HUS)

thesis

2023/12

Outline

- 🕕 Giới thiệu
- 2 Định nghĩa và một số kí hiệu
- Open Phương pháp
- 4 Tìm kiếm lân cận
- (5) Ứng dụng ALNS
- 6 Thực nghiệm

Giới thiệu

Giới thiệu

Hình 1: VRP với 10 xe phục vụ 100 khách hàng (cấu hình Solomon C101)

Linh (MIM, HUS

thesis

2023/12

Outline

- Giới thiệu
- Dịnh nghĩa và một số kí hiệu
- 3 Phương pháp
- 4 Tìm kiếm lân cận
- (5) Ứng dụng ALNS
- 6 Thực nghiệm

Linh (MIM, HUS)

thesis

Định nghĩa

Hình 2: Các bài toán, biến thể của VRP

Linh (MIM, HUS

thesis

2023/12

6/39

Mô hình - Dòng xe

Công thức dòng xe hai chỉ số

 x_{ij} nhận giá trị bằng 1 nếu cung $(i,j) \in A$ nằm trong nghiệm tối ưu và 0 nếu trong trường hợp còn lại.

(VRP1)
$$\min \sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij}$$
 (1)

s.t.

$$\sum_{i \in V} x_{ij} = 1 \quad \forall j \in V \setminus \{0\},\tag{2}$$

$$\sum_{i \in V} x_{ij} = 1 \quad \forall i \in V \setminus \{0\},\tag{3}$$

$$\sum_{i \in V} x_{i0} = K,\tag{4}$$

Mô hình - Dòng xe

$$\sum_{i \in V} x_{0j} = K,\tag{5}$$

$$\sum_{i \notin S} \sum_{j \in S} x_{ij} \ge r(S) \quad \forall S \subseteq V \setminus \{0\}, S \ne \emptyset, \tag{6}$$

$$x_{ij} \in \{0, 1\} \quad \forall i, j \in V. \tag{7}$$

Mô hình - VRPTW

Công thức dòng xe ba chỉ số

 x_{ijk} nhận giá trị 1 nếu xe k đi trực tiếp từ nút i tới nút j và 0 nếu ngược lai.

$$\min \sum_{k \in K} \sum_{(i,j) \in A} c_{ij} x_{ijk} \tag{8}$$

s.t.

$$\sum_{k \in K} \sum_{j \in \Delta^{+}(i)} x_{ijk} = 1 \quad \forall i \in N,$$

$$\tag{9}$$

$$\sum_{j \in \Delta^{+}(0)} x_{0jk} = 1 \quad \forall k \in K, \tag{10}$$

$$\sum_{i \in \Delta^{-}(j)} x_{ijk} - \sum_{i \in \Delta^{+}(j)} x_{jik} = 0 \quad \forall k \in K, j \in N,$$
(11)

Linh (MIM, HUS

thesis 2023/12

$$\sum_{i \in \Delta^{-}(n+1)} x_{i,n+1,k} = 1 \quad \forall k \in K, \tag{12}$$

$$x_{ijk}(w_{ik} + s_i + t_{ij} - w_{jk}) \le 0 \quad \forall k \in K, (i, j) \in A,$$
 (13)

$$a_i \sum_{j \in \Delta^+(i)} x_{ijk} \le w_{ik} \le b_i \sum_{j \in \Delta^+(i)} x_{ijk} \quad \forall k \in K, i \in N,$$
 (14)

$$E \le w_{ik} \le L \quad \forall k \in K, i \in \{0, n+1\},\tag{15}$$

$$\sum_{i \in N} d_i \sum_{j \in \Delta^+(i)} x_{ijk} \le C \quad \forall k \in K, \tag{16}$$

$$x_{ijk} \ge 0 \quad \forall k \in K, (i,j) \in A,$$
 (17)

$$x_{ijk} \in \{0,1\} \quad \forall k \in K, (i,j) \in A.$$
 (18)

Outline

- Giới thiệu
- 2 Định nghĩa và một số kí hiệu
- Phương pháp
- 4 Tìm kiếm lân cận
- (5) Ứng dụng ALNS
- 6 Thực nghiệm

Phương pháp - Thuật toán chính xác

- Phương pháp nhánh cận
- Quy hoạch động
- Công thức dòng xe
- Công thức dòng hàng
- Công thức phân hoạch tập hợp

Phương pháp - Heuristic cổ điển

- Thuật toán tiết kiệm
- Phân cụm trước, định tuyến sau
- Heuristic cải tiến

Phương pháp - Metaheuristics

- Tìm kiếm địa phương
- \bullet Tìm kiếm quần thể
- Cơ chế học

Outline

- Giới thiệu
- 2 Định nghĩa và một số kí hiệu
- Phương pháp
- 4 Tìm kiếm lân cận
- (5) Ứng dụng ALNS
- 6 Thực nghiệm

Tìm kiếm lân cận

- Lân cận
- Tối ưu địa phương
- Tiêu chí chấp nhận nghiệm
- Điều kiện dừng

Tìm kiếm lân cận rộng

Hình 3: Lược đồ LNS

Tìm kiếm lân cận rộng (LNS)

Thuật toán 1 LNS Heuristic

10: until đạt điều kiện dừng

11: return shest;

```
Require: s \in \{\text{nghiệm chấp nhận được}\}, q \in \mathbb{N}
 1: nghiệm s_{best} = s;
 2: repeat
       s' = s;
 3:
       bỏ q yêu cầu từ s';
        thêm lại các yêu cầu đã bỏ đi vào s';
 5:
       if f(s') < f(s) then
 6:
           s_{best} = s';
 7:
        if accept(s', s) then
 8:
           s = s';
 9:
```

Hình 4: Mã giả LNS

LNS - Thuật toán hủy

Linh (MIM, HUS)

thesis

LNS - Thuật toán sửa

LNS - Tiêu chí chấp nhận nghiệm

Bước ngẫu nhiên - Ramdom Walk

Mọi nghiệm s' đều được chấp nhận.

Chấp nhận tham lam - Greedy Acceptance

Nghiệm s' được chấp nhận nếu chi phí của nó là nhỏ hơn so với nghiệm hiện tại.

Mô phỏng luyện kim - Simulated Annealing

Mọi nghiệm cải thiện s' được chấp nhận. Nếu c(s') > c(s) thì s' được chấp nhận với xác suất $\exp\{\frac{c(s)-c(s')}{T}\}$ với T là nhiệt độ. Nhiệt độ T giảm sau mỗi vòng lặp với một hệ số Φ .

Linh (MIM, HUS)

LNS - Tiêu chí chấp nhận nghiệm

Chấp nhận với ngưỡng - Threshold Acceptance

Nghiệm s' được chấp nhận nếu c(s') - c(s) < T với T là ngưỡng, ngưỡng này được giảm sau mỗi vòng lặp với hệ số Φ .

Đại hồng thủy - Great Deluge Algorithm

Nghiệm s' được chấp nhận nếu c(s') < L với một ngưỡng L, ngưỡng này chỉ giảm nếu nghiệm được chấp nhận, và giảm với hệ số Φ .

Tìm kiếm lân cận rộng thích ứng (ALNS)

Lựa chọn thuật toán hủy và thêm lại

Gán cho mỗi heuristic một trọng số khác nhau và sử dụng nguyên tắc "bánh xe lựa chọn". Nếu có k heuristic với trọng số $w_i, i \in \{1, ..., k\}$, ta chọn heuristic j với xác suất

$$p_j = \frac{w_j}{\sum_{i=1}^k w_i}. (19)$$

ALNS - Điều chỉnh tham số tự động

- Trọng số được điều chỉnh mỗi khi có nghiệm mới được chấp nhận.
- Mỗi heuristic được gán điểm khác nhau và được điều chỉnh tùy thuộc vào tình huống.
- Cập nhật trọng số sau mỗi bước.

ALNS - Điều chỉnh tham số tự động

Điểm của mỗi heuristic được đặt là 0 khi bắt đầu và được tăng thêm $\sigma_1, \sigma_2, \sigma_3$ tùy thuộc vào tình huống.

- σ_1 khi hành động xóa-chèn cuối cùng dẫn đến một nghiệm mới tốt hơn nghiệm tốt nhất toàn cục.
- σ_2 khi hành động xóa-chèn cuối cùng dẫn đến một nghiệm chưa được chấp nhận trước đó, chi phí tốt hơn chi phí của nghiệm hiện tại.
- σ_3 khi hành động xóa-chèn cuối cùng dẫn đến một nghiệm chưa được chấp nhận trước đó, chi phí của nghiệm mới tệ hơn chi phí của nghiệm hiện tại nhưng thỏa mãn điều kiện chấp nhận nghiệm.

ALNS - Điều chỉnh tham số tự động

 ω_{ij} là trọng số của heuristic i được sử dụng tại bước j Khi bước j kết thúc, ta tính toán trọng số cho tất cả heuristic i để sử dụng cho bước thứ j+1

$$\omega_{i,j+1} = \omega_{ij}(1-r) + r\frac{\pi_i}{\theta_i}.$$
 (20)

Trong đó, π_i là điểm số của heuristic i được nhận trong bước cuối cùng, θ_i là số lần ta cố gắng sử dụng heuristic i trong bước thực hiện đó, r là tham số điều khiển.

ALNS - B-ALNS

B-ALNS

Thêm nhiễu khi điều chỉnh tham số tự động. Giả sử sau m vòng lặp, chúng ta mới lại có một nghiệm được chấp nhận từ lần cuối cùng nghiệm được chấp nhận.

$$\omega_{i,j+1} = \omega_{ij}(1-r) + r\frac{\pi_i}{\theta_i} + \alpha\beta(1-e^{-\gamma m})$$
(21)

với α (có thể âm hoặc dương) và γ (dương) là các tham số điều khiển, β là một số ngẫu nhiên trong khoảng (0,1).

ALNS - Số lượng yêu cầu bỏ đi, thêm lại

Outline

- Giới thiệu
- 2 Định nghĩa và một số kí hiệu
- Open Phương pháp
- 4 Tìm kiếm lân cận
- (5) Ứng dụng ALNS
- 6 Thực nghiệm

Ứng dụng

Hình 5: Lược đồ chính của ALNS

Linh (MIM, HUS)

Ứng dụng - Các lớp chính

Customer uint16_t id vector<uint16_t> coord uint16_t demand vector<uint16_t> time_window uint16_t service_time

Hình 6: Lớp thuộc tính của khách hàng

Ứng dụng - Các lớp chính

CustomerState

uint16_t id

CustomerRoute customer_route

CustomerTime customer_time

CustomerRoute

uint16 t route idx

uint16 t position

CustomerTime

float arrival

float complete

Hình 7: Lớp trạng thái của khách hàng

Ứng dụng - Các lớp chính

Hình 8: Lớp trạng thái của hệ

Ứng dụng - Triển khai thuật toán

Chương trình được chia làm ba giai đoạn Tiền xử lý, Chương trình chính, $Do \ dac$.

- Tiền xử lý: đọc cấu hình, tính toán ma trận khoảng cách, lưu trữ vào các tệp.
- Chương trình chính: triển khai ALNS.
- Do đạc: phân tích logs, tính toán các độ đo.

Outline

- Giới thiệu
- 2 Định nghĩa và một số kí hiệu
- Phương pháp
- 4 Tìm kiếm lân cận
- (5) Ứng dụng ALNS
- 6 Thực nghiệm

Thực nghiệm - Phân loại cấu hình

Hình 9: Lớp các cấu hình

Thực nghiệm - Phân loại cấu hình

Hình 10: Minh họa lời giải cho các lớp cấu hình

Thực nghiệm

Định dạng cấu hình Solomon

- Tên cấu hình
- Số xe được sử dụng
- Tải trọng của mỗi xe
- ID của yêu cầu
- Tọa độ các yêu cầu
- Nhu cầu (về tải) của mỗi yêu cầu
- Khung thời gian của mỗi yêu cầu
- Thời gian phục vụ của mỗi yêu cầu

Thực nghiệm - Tập Solomon

Linh (MIM, HUS)

thesis