

Since Bu is a basis for U, ue U=)

$$U = \sum_{i=1}^{k+m} a_i b_i b_i$$
; $a_i \in F$, $b_i \in B_u$

Since Bu is a basis for W, we W=>

 $U = \sum_{i=1}^{k+m} a_i (b_{in})_i$; $a_i \in F$, $b_{in} \in B_i$.

This muons $d_i = u + w$ can be expressed as a linear combination of unders from Bu U Bur = B.

So span (B) = V. (I)

Linear independence: Consider linear combination on B.

 $U = u = u = u$
 $U = u = u = u$
 $U = u$

Since E & U NW it can be written as a lia. combination of vedors from Burw: £ = \(\frac{1}{2} di \(\tai \); =) 2 divi - 2 ciwi =0 Every rector in this equation $\in B_w$. B_w is a bain =) lin. independent =) $d_1...d_k = 0$ and $C_0 = 0$ $C_0 = 0$ Every redor in this equation & Bu Bu is a baris = lin independent =) a... ar =0 and b... bm =0 Since all coefficients must be 0 =) the since Colore (s) traballed in it is an of no crober (1), (1) =) B < U U w in a basis