CS 699 Assignment 1

Katherine Rein

```
# Import libraries
library(glue)
## Warning: package 'glue' was built under R version 4.3.3
library(modeest)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(fastDummies)
## Warning: package 'fastDummies' was built under R version 4.3.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
```

Problem 1

Question 1

Calculate the mean, median, and standard deviation (sample) of the age feature

```
# Read in data
autism_data = read.csv('autism-adult.csv')

# Drop fully NA rows
autism_data <- autism_data[!apply(is.na(autism_data), 1, all), ]

# Remove 383 year old
autism_data = autism_data[autism_data$age != 383, ]

# Convert age to integer
autism_data$age = as.integer(autism_data$age)</pre>
```

Warning: NAs introduced by coercion

```
# Calculate the mean median and standard deviation for the age feature
mean = mean(autism_data$age, na.rm = TRUE)
median = median(autism_data$age, na.rm = TRUE)
stdev = sd(autism_data$age, na.rm = TRUE)

# Print answers
glue('Mean: {mean}')

## Mean: 29.1940085592011
glue('Median: {median}')

## Median: 27
glue('Standard Deviation (sample): {stdev}')
```

Standard Deviation (sample): 9.71152590893556

After some preliminary data analysis, I noticed there was someone who was 383 years old which seems impossible. I removed this entry before continuing on.

The mean of the data set is 29.20. The median is 27. The sample standard deviation is 9.71.

Question 2

Determine Q1, Q2, and Q3 of age

```
# Calculate Q1, Q2, Q3
quantile_vector = quantile(autism_data$age, probs = c(0.25, 0.5, 0.75), na.rm = TRUE)

# Store individually
Q1 = quantile_vector[1]
Q2 = quantile_vector[2]
Q3 = quantile_vector[3]

# Print
glue('Q1: {Q1}, Q2: {Q2}, Q3: {Q3}')

## Q1: 21, Q2: 27, Q3: 35
Q2 is the same as the median of the data set but I also recalculated it. Q1 is
```

Question 3

Plot the boxplot of the age feature

21, Q2 is 27, and Q3 is 35.

Distribution of Age

Question 4

Implement min-max rescaling on the age feature. Replace the original age feature with the rescaled result. Provide the rescaled age for the seventh observation in the data.

```
# Find the minimum and maximum age
min_age = min(autism_data$age, na.rm = TRUE)
max_age = max(autism_data$age, na.rm = TRUE)

# Implement min-max rescaling to the [0, 1] interval
# Formula: (x - min) / (max - min)
autism_data$age = (autism_data$age - min_age) / (max_age - min_age)

# Print seventh observation
seventh_obs = autism_data$age[7]
print(seventh_obs)
```

[1] 0

For min-max rescaling I used a minimum value of 0 and max of 1. The seventh observation is now 0. This means that before the data was rescaled it was the minimum age.

Question 5

Determine the mode of the country_of_res feature

```
# Handle NAs
autism_data$country_of_res <- dplyr::na_if(autism_data$country_of_res, '')

# Create a frequency table of unique values
freq_loc <- table(autism_data$country_of_res, useNA = "no")

# Find the most frequent values of a vector
mode_loc <- modeest::mfv(autism_data$country_of_res, na_rm = TRUE)</pre>
```

```
## $frequencies
##
##
              'Costa Rica'
                                    'Czech Republic'
                                                                   'Hong Kong'
##
##
             'New Zealand'
                                      'Saudi Arabia'
                                                                'Sierra Leone'
##
            'South Africa'
                                         'Sri Lanka'
##
                                                       'United Arab Emirates'
##
##
          'United Kingdom'
                                     'United States'
                                                                    'Viet Nam'
##
                                                                              5
##
               Afghanistan
                                       AmericanSamoa
                                                                        Angola
##
                         13
##
                 Argentina
                                             Armenia
                                                                         Aruba
##
                          2
                                                    2
##
                 Australia
                                             Austria
                                                                    Azerbaijan
##
                         27
##
                    Bahamas
                                          Bangladesh
                                                                       Belgium
##
                          2
                                                                              3
                    Bolivia
##
                                              Brazil
                                                                       Burundi
##
                          1
##
                     Canada
                                                Chile
                                                                         China
##
                         15
##
                     Cyprus
                                             Ecuador
                                                                         Egypt
##
                          1
                  Ethiopia
                                             Finland
                                                                        France
                           2
##
                                                                             11
##
                                             Iceland
                                                                         India
                    Germany
##
                                                    2
                                                                            81
##
                 Indonesia
                                                Iran
                                                                          Iraq
##
##
                    Ireland
                                                Italy
                                                                         Japan
##
                                                    5
##
                     Jordan
                                          Kazakhstan
                                                                       Lebanon
                         47
##
##
                   Malaysia
                                              Mexico
                                                                         Nepal
##
                                                    8
##
               Netherlands
                                           Nicaragua
                                                                         Niger
##
##
                       Oman
                                            Pakistan
                                                                  Philippines
##
##
                  Portugal
                                             Romania
                                                                        Russia
##
                                                    3
##
                     Serbia
                                                                        Sweden
                                               Spain
##
                          1
                                                    3
                                                                              2
##
                                                                       {\tt Ukraine}
                      Tonga
                                              Turkey
##
##
                    Uruguay
##
##
## $mode
## [1] "'United States'"
```

The mode of the country of residence column is United States with 113 entries.

Question 6

Review the ethnicity feature. You will notice several missing values in this feature. Determine a reasonable imputation for this feature. Explain what you are going to do and why. Then replace the original ethnicity feature with the imputed result.

```
# Identify all categories used in the ethnicity feature
unique(autism_data$ethnicity)
   [1] "White-European"
##
                             "Latino"
   [4] "Others"
                            "Black"
                                                 "Asian"
## [7] "'Middle Eastern '" "Pasifika"
                                                 "'South Asian'"
## [10] "Hispanic"
                            "Turkish"
                                                 "others"
# Turn missing values into NA
autism_data$ethnicity <- dplyr::na_if(autism_data$ethnicity, '')</pre>
# Change all other values into one other value
autism_data <- autism_data %>%
  mutate(ethnicity = case_when(
    ethnicity == '?' ~ 'Other',
   ethnicity == 'others' ~ 'Other',
   ethnicity == 'Others' ~ 'Other',
    ethnicity == NA ~ 'Other',
   TRUE ~ ethnicity
 ))
```

After looking at all of the unique values for the ethnicity feature, I noticed there were many entries that meant other. I then changed all of them to other. This seemed like the best way to not overinflate one category (as we don't know where these individuals came from).

Question 7

Create a bar graph of your imputed ethnicity feature.

```
barplot(table(autism_data$ethnicity),
    main = "Ethnicity Distribution",
    xlab = "Ethnicity",
    ylab = "Count",
    col = "skyblue",
    cex.names = 0.6,
    las = 2)
```

Ethnicity Distribution

Question 8

Implement dummy coding for the gender feature. Replace the original gender feature with the coded result. Provide the coded gender for the last ten observations in the data.

[1] 1 1 1 0 0 0 1 0 1 0

Question 9

Identify which features in your data set are discrete and which are continuous.

From visual investigation, it seems that the following features are discrete: A1_score - A10_score, gender, ethnicity, jaundice, autism, country of residence, used app before, relation, and class ASD. The only continuous feature is age.

Question 10

Identify which features in your data set are numeric and which are non-numeric. Compare with the discrete/continuous classification you just made and discuss the similarities and/or differences you see.

```
# Convert blank strings to NA
autism_data <- mutate(autism_data, across(where(is.character), ~ dplyr::na_if(.x, '')))
# Identify column classes of the data
col_classes <- sapply(autism_data, class)
# Link classes and names
col_classes_df = data.frame(Column = names(autism_data), Class = col_classes)
print(col_classes_df)</pre>
```

```
##
                            Column
                                        Class
## A1 Score
                          A1 Score
                                      integer
## A2_Score
                          A2_Score
                                      integer
## A3_Score
                          A3_Score
                                      integer
## A4_Score
                          A4_Score
                                      integer
## A5 Score
                          A5_Score
                                      integer
## A6 Score
                          A6 Score
                                     integer
## A7_Score
                         A7_Score
                                     integer
## A8_Score
                         A8_Score
                                      integer
## A9_Score
                          A9_Score
                                      integer
## A10_Score
                         A10_Score
                                      integer
## age
                                      numeric
                               age
## gender
                            gender
                                       factor
## ethnicity
                         ethnicity character
## jaundice
                          jaundice character
## austim
                            austim character
## country_of_res
                    country_of_res character
## used_app_before used_app_before character
## relation
                          relation character
## Class.ASD
                         Class.ASD character
```

The following columns are numeric: A1_Score - A10_Score and age. The non numeric columns are: gender, ethnicity, jaundice, autism, country of residence, used app before, relation, and Class ASD. The only difference between numeric and continuous is that the A score columns are discrete data with numeric classes. This makes them a numeric discrete feature which is unlike any other column.

Question 11

After completing all requested tasks above, print the first 4 observations of the data.

```
head(autism_data, n = 4)
```

```
##
     A1_Score A2_Score A3_Score A4_Score A5_Score A6_Score A7_Score A8_Score
## 1
             1
                                                      0
                                                                0
                       1
                                 1
                                           1
                                                                          1
## 2
             1
                                 0
                                                      0
                                                                0
                                                                          0
                       1
                                           1
                                                                                    1
## 3
             1
                                 0
                                                                0
                                                                                    1
                       1
                                           1
                                                      1
                                                                          1
## 4
             1
                       1
                                 0
                                            1
                                                      0
                                                                0
                                                                          1
     A9_Score A10_Score
                                 age gender
                                                   ethnicity jaundice austim
## 1
             0
                        0 0.1914894
                                           f White-European
                                                                             no
                                                                     no
             0
## 2
                        1 0.1489362
                                                      Latino
                                           \mathbf{m}
                                                                     no
                                                                            yes
```

```
## 3
                    1 0.2127660
                                               Latino
                                                          yes
                                     m
                                                                 yes
                    1 0.3829787
## 4
           0
                                     f White-European
                                                           no
                                                                 yes
##
     country_of_res used_app_before relation Class.ASD
## 1 'United States'
                                       Self
                                no
## 2
             Brazil
                                no
                                       Self
                                                   NO
## 3
              Spain
                               no Parent
                                                  YES
## 4 'United States'
                                       Self
                                                   NO
                                no
```

Problem 2

Question 1

Create a scatterplot of feature A1 vs. feature A5.

`geom_smooth()` using formula = 'y ~ x'

Question 2

Compute the correlation matrix for all five features in the data set.

```
# Create a vector of column names
cols = pasteO("A", 1:5)
# Ensure all columns are numeric
for (v in cols) corr_data[[v]] <- suppressWarnings(as.numeric(corr_data[[v]]))</pre>
# Compute the Pearson correlation matrix
cor_mat <- cor(corr_data[cols], use = "pairwise.complete.obs", method = "pearson")</pre>
\# Print correlation matrix
cor_mat
             A1
                        A2
                                   AЗ
                                              A4
## A1 1.0000000 0.17880899 0.2896419 0.17717981 0.45241040
## A2 0.1788090 1.00000000 0.4645427 0.34013541 0.04235286
## A3 0.2896419 0.46454268 1.0000000 0.29379683 0.19451370
## A4 0.1771798 0.34013541 0.2937968 1.00000000 0.06186254
## A5 0.4524104 0.04235286 0.1945137 0.06186254 1.00000000
```

Question 3

Identify the strongest correlation in the data set. Which factors are involved? Is it a positive correlation or a negative correlation?

```
# Switch diagonal to NA
diag(cor_mat) <- NA</pre>
# Find the max correlation value
max_val = max(cor_mat, na.rm = TRUE)
# Find the position of that max value
which(cor_mat == max_val, arr.ind = TRUE)
##
      row col
## A3
        3
```

A2 2

The strongest correlation is 0.465 which correlates A3 and A2. This is a positive correlation because the number is positive.

Question 4

Implement z-score normalization on all features in the data set

```
corr_data[cols] <- as.data.frame(scale(corr_data[cols], center = TRUE, scale = TRUE))</pre>
```

Question 5

Compute the correlation matrix for all five normalized features in the data set. Compare this correlation matrix with the matrix you obtained earlier and discuss the similarities and/or differences you see.

```
# Create a vector of column names
cols = paste0("A", 1:5)
# Ensure all columns are numeric
for (v in cols) corr_data[[v]] <- suppressWarnings(as.numeric(corr_data[[v]]))</pre>
# Compute the Pearson correlation matrix
cor_mat <- cor(corr_data[cols], use = "pairwise.complete.obs", method = "pearson")</pre>
# Print correlation matrix
cor_mat
```

```
##
             Α1
                        A2
                                  ΑЗ
                                              A4
                                                         A5
## A1 1.0000000 0.17880899 0.2896419 0.17717981 0.45241040
## A2 0.1788090 1.00000000 0.4645427 0.34013541 0.04235286
## A3 0.2896419 0.46454268 1.0000000 0.29379683 0.19451370
## A4 0.1771798 0.34013541 0.2937968 1.00000000 0.06186254
## A5 0.4524104 0.04235286 0.1945137 0.06186254 1.00000000
```

The correlation matricies are identical. This makes sense because when we normalize features we are already removing the affects of mean and standard deviation.