

NOMBRE DEL ALUMNO: Santos Méndez Ulises Jesús	INSTITUTO POLITÉCNICO NACIONAL	ESCUELA SUPERIOR DE CÓMPUTO
PERIODO PARCIAL: 1	TITULO DE LA TAREA: Bloques principales de un archivo VHDL	FECHA DE ENTREGA: 10/02/2022
GRUPO: 3CM12	ARQUITECTURA DE COMPUTADORAS	PERIODO ESCOLAR 2022-2

Bloques principales de un archivo VHDL

La estructura general de un programa en VHDL está formada por módulos o unidades de diseño, cada uno de ellos compuesto por un conjunto de declaraciones e instrucciones que definen, describen, estructuran, analizan y evalúan el comportamiento de un sistema digital.

Existen cinco tipos de unidades de diseño en VHDL: declaración de entidad (entity), arquitectura (architecture), configuración, declaración del paquete y cuerpo del paquete.

En el desarrollo de programas en VHDL pueden utilizarse o no tres de los cinco módulos, pero dos de ellos (entidad y arquitectura) son indispensables en la estructuración de un programa (Véase fig.1).

Fig.1: Estructura general de una entidad de diseño de VHDL.

Las declaraciones de entidad, paquete y configuración se consideran unidades de diseño primarias, mientras que la arquitectura y el cuerpo del paquete son unidades de diseño secundarias porque dependen de una entidad primaria que se debe analizar antes que ellas.

Tipos STD_LOGIC

El tipo STD_LOGIC se añadió al estándar de VHDL en el IEEE 1164. Para utilizarlo se incluyen las siguientes instrucciones:

Library ieee;
Use ieee.std_logic_1164.all;

Esto proporciona acceso al paquete std_logic_1164, el cual define el tipo STD_LOGIC.

Declaración ENTITY

Las señales de entrada y salida de una entidad se especifican usando la declaración ENTITY. El nombre de la entidad puede ser cualquiera que sea legal en VHDL. Las señales de entrada y salida se especifican por medio de la palabra reservada PORT (Véase Fig.2). Cada puerto, sin importar si es una señal de entrada, salida o bidireccional, se indica por su modo (Véase tabla 1).

Modo	Propósito	
IN	Señal de entrada a una entidad	
OUT	Señal que es una salida desde una entidad	
INOUT	Señal que es una entrada y salida desde la entidad	
BUFFER	Señal que es una salida desde una entidad. El valor de la señal puede usarse dentro de la entidad, lo cual significa que, es una instrucción de asignación.	

Tabla 1. Modos posibles para señales del puerto de entrada.

```
ENTITY entity_name IS
    PORT ( [SIGNAL] signal_name {, signal_name} : [mode] type_name {;
        SIGNAL] signal_name {, signal_name} : [mode] type_name } );
END entity_name;
```

Fig.2: Estructura en código de la entidad en VHDL.

Arquitectura (ARCHITECTURE)

Una arquitectura provee los detalles del circuito para una entidad. La estructura general de una arquitectura consta de dos partes principales: la región declarativa y el cuerpo de arquitectura. La región declarativa precede a la palabra reservada BEGIN. Puede utilizarse para declarar señales, constantes y tipos definidos por el usuario (Véase Fig.3).

```
ARCHITECTURE architecture_name OF entity_name IS

[SIGNAL declarations]

[CONSTANT declarations]

[TYPE declarations]

[COMPONENT declarations]

[ATTRIBUTE specifications]

BEGIN

{COMPONENT instantiation statement;}

{CONCURRENT ASSIGNMENT statement;}

{PROCESS statement;}

{GENERATE statement;}

END [architecture_name];
```

Fig.3: Estructura en código de la arquitectura en VHDL.

Referencias en formato APA

Stephen Brown, Z. V. (2000). Fundamentos de lógica digital con diseño VHDL (2a ed.). McGraw-Hill. https://www.academia.edu/4867365/Fundamentos de logica digital con diseño VHDL Brown 2ed HD

David Maxinez, J. A. (2002). *VHDL: El arte de programar sistemas digitales* (1a ed.). CECSA. https://ladecadence.net/trastero/VHDL%20Maxinez.pdf