10-315 INTRODUCTION TO MACHINE LEARNING (SCS MAJORS) LECTURE 2: THE PERCEPTRON

LEILA WEHBE CARNEGIE MELLON UNIVERSITY MACHINE LEARNING DEPARTMENT

Lecture based on <u>chapter 4</u> from Hal Daumé III, on Kilian Weinberger's <u>lecture 3</u>, on Tom Mitchell's <u>lecture 1</u> and Matt Gormley's <u>lecture 1</u>.

LECTURE OUTCOMES

- Definition of linear separator
- Perceptron algorithm
- Perceptron algorithm guarantees
- Definition of margin

LINKS (USE THE VERSION YOU NEED)

- Notebook
- PDF slides

SUPERVISED LEARNING PROBLEM STATEMENT

The goal is to learn a function c^* that maps input variables X to output variables y, based on a set of labeled training examples.

- ullet classification: y is binary or multiclass
- regression: y is continuous

Training Data: Given a training set of n labeled examples: $\{(X_1,y_1),(X_2,y_2),\ldots,(X_n,y_n)\}$, where $X_i \in \mathcal{X}$ represents the input features and $y_i \in \mathcal{Y}$ represents the corresponding labels, the goal is to estimate the optimal function c^* that best predicts the labels for new, unseen data.

Hypothesis Space: The function c^* is chosen from a family of hypotheses \mathcal{H} . That is, $c^* \in \mathcal{H}$, where \mathcal{H} represents the set of all possible functions that could map inputs to outputs.

Learning Rule: A learning rule is applied to select the optimal function c^* from the hypothesis space \mathcal{H} . The learning rule is typically defined based on an optimization algorithm that seeks to minimize a cost function over the training data.

SUPERVISED LEARNING PROBLEM STATEMENT (CONTINUED)

Loss Function: A loss function $L(y, \hat{y})$ quantifies the error between the predicted value $\hat{y} = c(X)$ and the actual value y for a single data point.

- Examples of Loss Functions
 - **0-1 Loss (for Classification)**: The 0-1 loss function is used in classification tasks and is defined for. single point as:

$$L(y,\hat{y}) = \left\{egin{array}{ll} 0, & ext{if } y = \hat{y} \ 1, & ext{if } y
eq \hat{y} \end{array}
ight.$$

This loss function counts the number of incorrect predictions, and the goal is to minimize the number of errors.

■ The loss over a dataset (also refered to as the error rate): $\frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{y}_i)$

Test Data: A set of m labeled examples: $\{(X_j,y_j), j \in 1 \dots m\}$, which is sampled from the same distribution as the training set.

CLASS OUTLINE:

- Supervised learning:
 - Perceptron

- Introduced by Rosenblatt in 1958
- Inspired by real neurons

- Introduced by Rosenblatt in 1958
- Inspired by real neurons

- Assume data is binary
- Assume data is linearly separable:
 - there exist a hyperplane that perfectly divides the two classes

REFRESHER:

- Recall how to define a hyperplane:
 - a subspace whose dimension is one less than that of its ambient space
 - if x is d-dimensional:
 - $\circ \langle \mathbf{x}, w \rangle + b = 0$
 - \circ (w also d-dimensional)

In [1]:

```
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
plt.rcParams['text.usetex'] = True
import warnings
warnings.filterwarnings('ignore')
```

In [7]:

```
def plot_line(ax,xlims, w, do_norm=True):
    x1 = np.linspace(xlims[0],xlims[1],1000)
    x2_plot = (- w[2] - w[0]*x1)/w[1] # w[0]*x1 + w[1]*x2 + w[2] = 0
    ax.plot(x1,x2_plot)
    origin = x1[np.array(x1.shape[0]/2).astype(int)], x2_plot[int(x1.shape[0]/2)]
    nn = np.linalg.norm(w) if do_norm else 1
    ax.quiver(*origin, w[0]/nn,w[1]/nn, color='k',angles='xy', scale_units='xy', scale=1)
    ax.axis('equal')
    ax.axis([xlims[0],xlims[1],xlims[0],xlims[1]])
    ax.set_xlabel(r'$x_1$',fontsize=30); ax.set_ylabel(r'$x_2$',fontsize=30)
    ax.grid()

w = [4,0.6]
b = 0
f, ax = plt.subplots(figsize=(7,7))
plot_line(ax, [-5,5], [w[0],w[1],b])
```


- Assume data is binary
- Assume data is linearly separable:
 - i.e, there exist a hyperplane that perfectly divides the two classes

$$\exists \mathbf{w}, b \text{ s.t. } \forall (\mathbf{x}_i, y_i) \in D,$$
 (1)

$$y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) > 0 \tag{2}$$

$$\exists \mathbf{w}, b \text{ s.t. } \forall (\mathbf{x}_i, y_i) \in D,$$
 (3)
 $y_i(\mathbf{w}^{\top} \mathbf{x}_i + b) > 0$

source

WHAT IS A SEPARABLE DATASET?

In [25]:

SIMPLIFYING w AND b

• We can write \mathbf{x}_i as:

$$\mathbf{x_i}' = \begin{bmatrix} \mathbf{x_i} \\ 1 \end{bmatrix} \tag{5}$$

• and incorporate b into \mathbf{w} :

$$\mathbf{w}' = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix} \tag{6}$$

- $\bullet~$ The same hyperplane is now defined by $\mathbf{w'}^{\top}\mathbf{x'}=0$
- Why does this work?
- We will use \mathbf{w} and \mathbf{x} to refer to these vectors in the rest of the lecture.

THE PERCEPTRON TRAINING ALGORITHM

- Initialize $\mathbf{w} = \mathbf{0}$
- while TRUE do
 - -m=0
 - $lacksquare ext{for} \left(\mathbf{x}_i, y_i
 ight) \in D ext{ do}$
 - $\circ \ \ ext{if } y_i(\mathbf{w}^ op \mathbf{x}_i) \leq 0 ext{ then} \qquad ext{\% if the tuple } (\mathbf{x}_i,y_i) ext{ is misclassified}$
 - $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$ %update the weight vector \mathbf{w}
 - $\circ m = m+1$ %count number of misclassified examples in this round
 - end if
 - end for %if no examples were misclassified in this round
 - break%break out of the loop
 - end if
- end while

QUESTIONS:

- how does convergence happen?
- what happens if the data is not separable?

In [26]:

```
def perceptron_train(X,y,MaxIter=20):
    w = np.zeros((X.shape[1]))
    for i in range(MaxIter):
        m = 0
        for (xi,yi) in zip(X,y):
             if yi*w.T.dot(xi)<=0:</pre>
                 w = w + yi*xi
                 \mathsf{m} = \mathsf{m} + \mathsf{1}
        if m==0:
             break
    return w
f,ax = plt.subplots(figsize=(6,6))
plot_dataset(ax,X,y)
Xprime = np.hstack([X,np.ones((X.shape[0],1))])
w = perceptron_train(Xprime,y)
plot_line(ax,[-4,4], w)
```


In [20]:

```
def perceptron_train_and_plot(axs,X,y,MaxIter=20):
    w = np.zeros((X.shape[1]))
    plot_dataset(axs[0],X,y)
    plot_line(axs[0],[-4,4], w)
    plt cnt = 0
    for i in range(MaxIter):
        m = 0
        for (xi,yi) in zip(X,y):
             if yi*w.T.dot(xi)<=0:</pre>
                 W = W + yi*xi
                 \mathsf{m} = \mathsf{m} + \mathsf{1}
                 plt_cnt = plt_cnt + 1
                 try:
                     if yi == -1:
                          axs[plt_cnt-1].plot([xi[0]],[xi[1]],'g^',markersize=10)
                     else:
                          axs[plt_cnt-1].plot([xi[0]],[xi[1]],'bs',markersize=10)
                     plot_dataset(axs[plt_cnt],X,y)
                     plot_line(axs[plt_cnt],[-4,4], w, do_norm=False)
                 except:
                     print('not enough subplots')
        if m==0:
             break
    return w
```

In [27]:

```
f,axs = plt.subplots(nrows=2,ncols=4,figsize=(20,10))
w = perceptron_train_and_plot(axs.reshape(-1),Xprime,y)
```


In [68]:

WHY DOES THIS TRAINING ALGORITHM WORK?

- what happens if you missclassify a positive example?
 - this means $y_i(\mathbf{w^k}^{\top}\mathbf{x_i}) \leq 0$, and in other words $\mathbf{w^k}^{\top}\mathbf{x_i} < 0$)
 - the weights get updated:

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \mathbf{x_i}$$

• what happens to the dot product $(\mathbf{w}^{\top}\mathbf{x_i})$?

$$\mathbf{w}^{\mathbf{k}+\mathbf{1}^{\top}}\mathbf{x_i} = (\mathbf{w}^{\mathbf{k}} + \mathbf{x_i})^{\top}\mathbf{x_i}$$
 (7)

$$= \mathbf{w}^{\mathbf{k}^{\top}} \mathbf{x_i} + \mathbf{x_i}^{\top} \mathbf{x_i} \tag{8}$$

$$> \mathbf{w^k}^{\top} \mathbf{x_i}$$
 (9)

- The prediction becomes more positive (vice versa for a negative example).
- Thus the boundary is getting closer to correctly classiying $\mathbf{x_i}$.

HOW MANY ITERATIONS ARE NEEDED WITH A DATASET WITH ONE EXAMPLE?

In [28]:

```
f, ax = plt.subplots(figsize=(5,5))
plot_line(ax, [-5,5], [3,4,0])
ax.plot([-3],[1],'bs')
```

Out[28]:

[<matplotlib.lines.Line2D at 0x1295a6610>]

CONVERGENCE OF THE PERCEPTRON ALGORITHM

- The perceptron algorithm converges in $\frac{1}{\gamma^2}$ updates if the data is linearly separable.
- γ is the margin of the problem instance (defined on next slide).

NOTION OF MARGIN

- Assume there exists \mathbf{w}^* such that $\forall (\mathbf{x_i}, y_i) \in D$, $y_i(\mathbf{x_i}^\top \mathbf{w}^*) > 0$
- Also assume we rescale \mathbf{w}^* and the $\mathbf{x_i}$ s such that:
 - $lacksquare ||\mathbf{w}^*|| = 1$ and $||\mathbf{x_i}|| \leq 1 \ orall \mathbf{x_i}$ (how?)
- The margin γ of the hyperplane \mathbf{w}^* is the minimum distance between one of the points and the hyperplane:
 - $\bullet \ \gamma = \min_{(\mathbf{x_i}, y_i) \in \mathcal{D}} |\mathbf{x_i}^\top \mathbf{w}^*| \quad \text{(since } \mathbf{w}^* \text{ is unit norm)}$

source

THEOREM

- Given:
 - All \mathbf{x}_i s are within the unit sphere
 - \bullet There exists a separating hyperplane \mathbf{w}^* , with $||\mathbf{w}^*||=1$
 - γ is the margin of hyperplane \mathbf{w}^*
- If all of the above holds, then the Perceptron algorithm makes at most $\frac{1}{\gamma^2}$ mistakes.

QUESTIONS:

- Is it easier to train when the margin is small or large?
- What types of datasets will converge quickly?

PROOF

source

Keeping what we defined above, consider the effect of an update (**w** becomes $\mathbf{w} + y\mathbf{x}$) on the two terms $\mathbf{w}^{\top}\mathbf{w}^{*}$ and $\mathbf{w}^{\top}\mathbf{w}$. We will use two facts:

- $y(\mathbf{x}^{ op}\mathbf{w}) \leq 0$: This holds because \mathbf{x} is misclassified by \mathbf{w} otherwise we wouldn't make the update.
- $y(\mathbf{x}^{\top}\mathbf{w}^*) > 0$: This holds because \mathbf{w}^* is a separating hyper-plane and classifies all points correctly.
 - 1. Consider the effect of an update on $\mathbf{w}^{\top}\mathbf{w}^*$:

$$(\mathbf{w} + y\mathbf{x})^{ op}\mathbf{w}^* = \mathbf{w}^{ op}\mathbf{w}^* + y(\mathbf{x}^{ op}\mathbf{w}^*) \geq \mathbf{w}^{ op}\mathbf{w}^* + \gamma$$

The inequality follows from the fact that, for \mathbf{w}^* , the distance from the hyperplane defined by \mathbf{w}^* to \mathbf{x} must be at least γ (i.e. $y(\mathbf{x}^\top \mathbf{w}^*) = |\mathbf{x}^\top \mathbf{w}^*| \ge \gamma$).

This means that for each update, $\mathbf{w}^{\top}\mathbf{w}^{*}$ grows by at least γ .

2. Consider the effect of an update on $\mathbf{w}^{\top}\mathbf{w}$:

$$(\mathbf{w} + y\mathbf{x})^{ op}(\mathbf{w} + y\mathbf{x}) = \mathbf{w}^{ op}\mathbf{w} + \underbrace{2y(\mathbf{w}^{ op}\mathbf{x})}_{<0} + \underbrace{y^2(\mathbf{x}^{ op}\mathbf{x})}_{0 \leq \ \leq 1} \leq \mathbf{w}^{ op}\mathbf{w} + 1$$

The inequality follows from the fact that

- = $2y(\mathbf{w}^{ op}\mathbf{x}) < 0$ as we had to make an update, meaning \mathbf{x} was misclassified
- $ullet 0 \leq y^2(\mathbf{x}^ op \mathbf{x}) \leq 1$ as $y^2 = 1$ and all $\mathbf{x}^ op \mathbf{x} \leq 1$ (because $\|\mathbf{x}\| \leq 1$).

3. Now we know that after M updates the following two inequalities must hold:

(1)
$$\mathbf{w}^ op \mathbf{w}^* \geq M \gamma$$

(2)
$$\mathbf{w}^{\top}\mathbf{w} \leq M$$
.

We can then complete the proof:

$$\begin{split} M\gamma &\leq \mathbf{w}^{\top}\mathbf{w}^{*} & \text{By (1)} \\ &= \|\mathbf{w}\| \cos(\theta) & \text{by definition of inner-product, where θ is the angle between \mathbf{w} and \mathbf{w}^{*}.} \\ &\leq ||\mathbf{w}|| & \text{by definition of } \cos, \text{ we must have } \cos(\theta) \leq 1. \\ &= \sqrt{\mathbf{w}^{\top}\mathbf{w}} & \text{by definition of } \|\mathbf{w}\| \end{split}$$

$$\leq \sqrt{M}$$
 By (2)

$$\Rightarrow M\gamma \le \sqrt{M} \\ \Rightarrow M^2\gamma^2 \le M$$

$$\Rightarrow M \leq rac{1}{\gamma^2}$$
 And hence, the number of updates M is bounded from above by a constant.

QUESTIONS

- What happens if the data is not separable?
- Does the order matter?
- Is the perceptron guaranteed to find an optimal solution?

ANSWERS:

- the algorithm doens't converge
- ullet different orders of points might lead to faster or slower convergence, and to a different ullet and different hyperplane
- no, it is only guaranteed to find a solution if one exists. It does not look for the maximum margin separator.