Word to Sentence Visual Semantic Similarity for Caption Generation: Lessons Learned

Ahmed Sabir

TALP Research Center, Universitat Politècnica de Catalunya, Barcelona, Spain

MVA 2023

Introduction

Although SoTA models generate human-like captions, they are known to lack lexical diversity due to the absence of the **semantic understanding** of the relation between objects in the image.

BLBeamS: a plate of food on a table

Human: a white plate with some food on it.

BLBeamS: a baby sitting in front of a cake

Human: a woman standing over a sheet cake sitting on top of table.

BL_{BeamS}: a black and white photo of train tracks

Human: long train sitting on a railroad track.

BL_{Greedy}: a green bus parked in front of a building

Human: a passenger bus that is parked in front of a library.

Contribution

We propose a post-process visual re-ranker that intends to **visually** ground the most relevant candidate caption to its related visual context in the image via semantic understanding.

Visual context: food

VRBERT+Glove: a plate of food and a drink on a table

Human: a white plate with some food on it.

Visual context: hassinet

VRRERT+GIOVA: a baby sitting in front of a birthday cake

Human: a woman standing over a sheet cake sitting on top of table

Visual context: chainlink fence

VRRERT_GIOVA: a black and white photo of a train on the tracks Human: long train sitting on a railroad track

Visual context: trollevbus

VRBERT+GloVe: a green double decker bus parked in front of a building X Human: a passenger bus that is parked in front of a library

Architecture Overview

We introduce semantic relations between the visual context in the image and the caption at the word and sentence levels. We propose a joint BERT $^{\tiny [9]}$ with GloVe $^{\tiny [28]}$ to capture visual semantic similarity.

Word-level Model

To enable word-level semantics with GloVe, we extract keyphrases^[24] from the caption, and we employ the confidence of the classifier in the image to convert the similarity into a probability^[30].

^[24] Rui et al. Deep Keyphrase Generation. ACL2017

^[30] Sabir et al. Visual Re-rankeing with Natural Language Understanding for Text Spotting. ACCV201

Sentence-level Model

We fine-tuned BERT on the Caption dataset, incorporating the top-k 3 visual context information extracted from each image^[11], where target is the **semantic relatedness** between the visual and the candidate caption.

Fusion layer

Inspired by Products of Experts^[12], we merged the two experts through a Fusion layer. As this work aims to retrieve the closest candidate caption with the highest probability, the normalization step is unnecessary.

Results

We experiment with two datasets and three models (CNN-LSTM), Vision-and-Language BERT (VilBERT) and Caption Transformer.

Model	B-1	B-2	B -3	B-4	М	R	C	BERTscore
Show and tell (CNN-LSTM) [3	2] 🌲							
Tell _{BeamS}	0.331	0.159	0.071	0.035	0.093	0.270	0.035	0.8871
$Tell+VR_V1_{BERT-Glove}$	0.330	0.158	0.069	0.035	0.095	0.273	0.036	0.8855
$Tell+VR_V 2_{BERT-Glove}$	0.320	0.154	0.073	0.037	0.099	0.277	0.041	0.8850
$Tell+VR_V1_{RoBERTa-Glove}$ (sts)	0.313	0.153	0.072	0.037	0.101	0.273	0.036	0.8839
VilBERT [21] ♣								
Vil _{BeamS}	0.739	0.577	0.440	0.336	0.271	0.543	1.027	0.9363
$ViI+VR_V1_{BERT-Glove}$	0.739	0.576	0.438	0.334	0.273	0.544	1.034	0.9365
$ViI+VR_V2_{BERT-Glove}$	0.740	0.578	0.439	0.334	0.273	0.545	1.034	0.9365
$ViI+VR_V 2_{RoBERTa-Glove}$ (sts)	0.740	0.579	0.442	0.338	0.272	0.545	1.040	0.9366
Transformer based caption gen	erator [8] ♣						
Trans _{BeamS}	0.780	0.631	0.491	0.374	0.278	0.569	1.153	0.9399
Trans+VR $_V1_{BERT-Glove}$	0.780	0.629	0.487	0.371	0.278	0.567	1.149	0.9398
Trans+VR _V 2 _{BERT-Glove}	0.780	0.630	0.488	0.371	0.278	0.568	1.150	0.9399

[♠] Flickr8K dataset: Micahet al. Framing image description as a ranking task. JAIR 2013

COCO-Caption dataset: Linet al. Microsoft coco: Common objects in context. ECCV2014

Our re-ranker yielded mixed result (+) improving model accuracy, (-)struggles when dealing with less diverse captions e.g. Transformer baseline.

Model	B-1	B-2	B -3	B-4	M	R	C	BERTscore
Show and tell (CNN-LSTM) [3	2] 🌲							
Tell _{BeamS}	0.331	0.159	0.071	0.035	0.093	0.270	0.035	0.8871
$Tell+VR_V1_{BERT-Glove}$	0.330	0.158	0.069	0.035	0.095	0.273	0.036	0.8855
$Tell+VR_V 2_{BERT-Glove}$	0.320	0.154	0.073	0.037	0.099	0.277	0.041	0.8850
$Tell+VR_V1_{RoBERTa-Glove}$ (sts)	0.313	0.153	0.072	0.037	0.101	0.273	0.036	0.8839
VilBERT [21] ♣								
Vil _{BeamS}	0.739	0.577	0.440	0.336	0.271	0.543	1.027	0.9363
$ViI+VR_V1_{BERT-Glove}$	0.739	0.576	0.438	0.334	0.273	0.544	1.034	0.9365
$ViI+VR_V2_{BERT-Glove}$	0.740	0.578	0.439	0.334	0.273	0.545	1.034	0.9365
$Vil+VR_V2_{RoBERTa-Glove}$ (sts)	0.740	0.579	0.442	0.338	0.272	0.545	1.040	0.9366
Transformer based caption gen	erator [8] ♣						
Trans _{BeamS}	0.780	0.631	0.491	0.374	0.278	0.569	1.153	0.9399
Trans+VR $_V1_{BERT-Glove}$	0.780	0.629	0.487	0.371	0.278	0.567	1.149	0.9398
Trans+VR _V 2 _{BERT-Glove}	0.780	0.630	0.488	0.371	0.278	0.568	1.150	0.9399

Flickr8K dataset: Micahet al. Framing image description as a ranking task. JAIR 2013

COCO-Caption dataset: Linet al. Microsoft coco: Common objects in context. ECCV2014

Through these heatmap probabilities change after visual re-ranking, we can observe the advantages of incorporating visual re-ranking *e.g.* VilBERT.

Results

Our re-ranker improve the lexical diversity, each selected caption has more Vocabulary, Unique words/total Words Per Caption.

		***		11/0.0
Model	Voc	TTR	Uniq	WPC
Show and Tell [32] 🌲				
$Tell_{BeamS}$	304	0.79	10.4	12.7
$Tell{+}VR_{RoBERTa\text{-Glove}}$	310	0.82	9.42	13.5
VilBERT [21] ♣				
Vil_{BeamS}	894	0.87	8.05	10.5
$Vil{+}VR_{RoBERTa\text{-}Glove}$	953	0.85	8.86	10.8
Transformer [8] 🜲				
Trans _{BeamS}	935	0.86	7.44	9.62
	936	0.86	7.48	8.68

Flickr8K dataset: Micahet al. Framing image description as a ranking task. JAIR 2013

COCO-Caption dataset: Linet al. Microsoft coco: Common objects in context. ECCV2014

Ablation study

We performed an ablation study to investigate the effectiveness of each expert, by evaluating each model as stand-alone.

Ablation study

With our worst model (BERT-GloVe), with less diverse caption (*i.e.* less sentence context), word-level GloVe dominates as the main expert.

Thank You