

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología I Examen V

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Topología I.

Curso Académico 2021-22.

Grado Doble Grado en Ingeniería Informática y Matemáticas¹.

Grupo Único.

Descripción Convocatoria Ordinaria.

Fecha 19 de enero de 2021.

Duración 3 horas.

¹El examen lo pone el departamento.

Ejercicio 1. Para todo $\alpha \in \mathbb{R}$, sea $R_{\alpha} = \{(x, y) \in \mathbb{R}^2 \mid y = \alpha\}$. Se considera la topología \mathcal{T} en \mathbb{R}^2 con base $\mathcal{B} = \{R_{\alpha} \mid \alpha \in \mathbb{R}\}$.

- 1. (0.25 puntos) Estudiar si $\mathcal{T} \leqslant \mathcal{T}_u$ y si $\mathcal{T}_u \leqslant \mathcal{T}$, donde \mathcal{T}_u es la topología usual en \mathbb{R}^2 .
- 2. (0.25 puntos) ¿Es (\mathbb{R}^2 , \mathcal{T}) un espacio de Hausdorff?
- 3. (0.5 puntos) Calcular el cierre, el interior y la frontera de los ejes coordenados.
- 4. (0.25 puntos) ¿Es cierto que todo conjunto acotado en $(\mathbb{R}^2, \mathcal{T})$ tiene interior vacío?
- 5. (0.5 puntos) Identificar la topología inducida por \mathcal{T} sobre cada R_{α} y sobre $L = \{0\} \times \mathbb{R}$.
- 6. (0.75 puntos) Construir explícitamente un homeomorfismo $f:(\mathbb{R}^2, \mathcal{T}) \to (\mathbb{R}^2, \mathcal{T}')$, donde \mathcal{T}' es la topología en \mathbb{R}^2 con base $\mathcal{B}' = \{R'_{\alpha} \mid \alpha \in \mathbb{R}\}$ (en este caso, $R'_{\alpha} = \{(x, y) \in \mathbb{R}^2 \mid x = \alpha\}$).
- 7. Probar que $A \subset \mathbb{R}^2$ es conexo en $(\mathbb{R}^2, \mathcal{T})$ si y solo si existe $\alpha \in \mathbb{R}$ tal que $A \subset R_{\alpha}$. Determinar las componentes conexas de $(\mathbb{R}^2, \mathcal{T})$.
- 8. Demostrar que A es compacto en $(\mathbb{R}^2, \mathcal{T})$ si y solo si existe $J \subset \mathbb{R}$ finito tal que $A \subset \bigcup_{\alpha \in J} R_{\alpha}$.

Ejercicio 2 (3 puntos). Teoría.

- 1. Definir la topología final asociada a la aplicación $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ entre espacios topológicos, y la noción de identificación entre espacios topológicos.
- 2. Probar que si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es una identificación, entonces existe una relación de equivalencia \mathcal{R} en X tal que el espacio cociente $(X/\mathcal{R},\mathcal{T}/\mathcal{R})$ es homeomorfo a (Y,\mathcal{T}') .

Ejercicio 3 (3 puntos). Estudiar de forma razonada las siguientes cuestiones:

- 1. ¿Es cierto que todo subconjunto finito no vacío de un espacio topológico es discreto? ¿Y si el espacio es metrizable?
- 2. Sea $(\mathbb{R}, \mathcal{T}_S)$ la recta de Sorgenfrey. Definimos la siguiente aplicación:

$$f: (\mathbb{R} \times \mathbb{R}, \mathcal{T}_S \times \mathcal{T}_S) \longrightarrow (\mathbb{R} \times \mathbb{R}, \mathcal{T}_S \times \mathcal{T}_S)$$

 $(x, y) \longmapsto (x, -y^3)$

Analizar si f es continua, abierta o cerrada.

3. Una aplicación $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ entre espacios topológicos se dice que es propia si para cada C' compacto en (Y,\mathcal{T}') , verifica que $f^{-1}(C')$ es compacto en (X,\mathcal{T}) . Probar que si f es propia, (X,\mathcal{T}) es de Haussdorf e Y es compacto, entonces f es continua.