

Incorporación de métricas difusas en el algoritmo RANSAC

Implementación y análisis de comportamiento

Esaú Ortiz esau.ortiz@uib.es

Directores: Alberto Ortiz, Juan José Miñana y Óscar Valero

Septiembre, 2021

Índice de contenidos

Introducción

Fundamentos teóricos

Fuzzy Metric RANSAC (FM-R)

Análisis de comportamiento de los algoritmos FM-R

Otros problemas de estimación

Conclusiones y trabajo futuro

Introducción

Introducción

- P está sujeto habitualmente a una cierta medida de aleatoriedad.
- El procedimiento de estimación ha de ser capaz de tolerar dicha aleatoriedad.
 - La elección del procedimiento dependerá, entre otros, de la naturaleza de la aleatoriedad presente en las muestras.

La estimación de un modelo \mathcal{M}_{Θ} consiste en estimar el vector de parámetros Θ que lo describen, a partir de un conjunto de muestras P.

■ La ecuación general de una recta 2D es Ax + By + C = 0 y el vector de parámetros puede definirse como $\Theta = (A, B, C)$.

La estimación de un modelo \mathcal{M}_{Θ} consiste en estimar el vector de parámetros Θ que lo describen, a partir de un conjunto de muestras P.

■ Tanto Least Squares
(LS) como Total Least
Squares (TLS)
asumen que la media
de la distribución de
errores de ajuste es
cero.

Estimación robusta de modelos

La **estimación robusta** de modelos tiene como objetivo **tolerar** los valores atípicos (*outliers*).

- Un estimador robusto puede ser clasificado en función del porcentaje de outliers que es capaz de tolerar (breakdown point).
- De la amplia variedad de estimadores robustos, RANSAC puede llegar a tolerar más de un 50% de outliers presente en el conjunto de muestras P.
 - El funcionamiento de RANSAC se basa en la clasificación de P en inliers y outliers en función del error de ajuste asociado a cada muestra.

Métricas difusas en la estimación de modelos

Las metodologías de lógica difusa son utilizadas para tratar datos imprecisos y son de utilidad en el diseño de sistemas que son capaces de hacer frente a la incertidumbre de diversas formas. En el caso de la estimación de modelos:

- Un estimador robusto ha de ser capaz de tolerar muestras que **no** puedan ser **clasificadas** de forma clara como *inliers* o *outliers*.
- El uso de métricas difusas permitirían otorgar un grado de **compatibilidad** entre cada muestra p_i y el modelo \mathcal{M}_{Θ} , en lugar de hacer esta clasificación

Objetivos de este TFM

El **objetivo principal** de este Trabajo Final de Máster (TFM) es **incorporar** y **evaluar** el uso de **métricas difusas** en el algoritmo **RANSAC**.

- Implementación de cuatro variantes del algoritmo original.
 - El uso de métricas difusas en cada una de las variantes es distinto.
- Caracterización de las métricas difusas incorporadas dentro de las variantes.
- Evaluación del resultado para diferentes problemas de estimación

Publicaciones de este trabajo

- A. Ortiz, E. Ortiz, J. J. Miñana, and O. Valero, "On the Use of Fuzzy Metrics for RobustModel Estimation: a RANSAC-based Approach," in Proceedings of the International Work-conference On Artificial Neural Networks, Lecture Notes in Computer Science. Springer, 2021.
- A. Ortiz, E. Ortiz, J. J. Miñana, and O. Valero, "Hypothesis Scoring and Model Refinement Strategies for FM-based RANSAC," in *Proceedings of* the Spanish Conference on Fuzzy Logic and Technologies, Lecture Notes in Artificial Intelligence. Springer, 2021.
- J. J. Miñana, A. Ortiz, E. Ortiz, and O. Valero, "On the standard fuzzy metric: generalizations and application to model estimation," in Proceedings of the Spanish Conference on Fuzzy Logic and Technologies, Lecture Notes in Artificial Intelligence. Springer, 2021, in press.

Fundamentos teóricos

El algoritmo RANSAC selecciona el modelo $\mathcal{M}_{\widehat{\Theta}}$ que minimiza una determinada función de coste C en un proceso iterativo.

Función de coste:

$$C = \sum_{j} \rho(\epsilon_{j}; \tau),$$

donde $\rho(\epsilon_i; \tau)$ se define de la siguiente manera:

$$ho(\epsilon_j; au) = \left\{ egin{array}{ll} 0 & ext{si} & \epsilon_j = \left| \epsilon(p_j; \mathcal{M}_\Theta)
ight| \leq au \ & ext{en otro caso} \end{array}
ight..$$

El algoritmo RANSAC selecciona el modelo $\mathcal{M}_{\widehat{\Theta}}$ que minimiza una determinada función de coste C en un proceso iterativo.

Número máximo de iteraciones k_{max}:

$$N = \frac{\log(1-p)}{\log(1-(1-\omega)^s)},$$

donde p es la probabilidad con la que se encuentra un conjunto mínimo s no contaminado por *outliers* y ω es la proporción de *outliers* en P.

Variantes de RANSAC

Las particularidades de cada aplicación en la que se utiliza RANSAC dan lugar a una amplia cantidad de variantes. Esta variantes mejoran una o varias de las fases del algoritmo.

- Mejoras enfocadas a la selección del conjunto mínimo:
 - NAPSAC: selecciona muestras en la vecindad de una muestra seleccionada de forma aleatoria. Útil si los inliers tienden a ser cercanos (p.e. hiperplanos).
 - PROSAC: selecciona primero las muestras con mayor calidad en base a un criterio determinado (p.e. grado de similitud entre correspondencias de dos imágenes)

Variantes de RANSAC

Las particularidades de cada aplicación en la que se utiliza RANSAC dan lugar a una amplia cantidad de variantes. Esta variantes mejoran una o varias de las fases del algoritmo.

- Mejoras enfocadas a la evaluación de la hipótesis:
 - MLESAC y MSAC: modifican la función de coste dando más importancia al error de ajuste. Mejora la precisión de estimación con respecto de RANSAC.

$$\rho(p_j;\tau) = \left\{ \begin{array}{cc} \left(\epsilon(p_j;\mathcal{M}_{\Theta})\right)^2 & \text{si} & \left|\epsilon(p_j;\mathcal{M}_{\Theta})\right| \leq \tau \\ \text{cte.} & \text{en otro caso} \end{array} \right..$$

■ LO-RANSAC: optimización local cuando se actualiza el mejor modelo encontrado. Si se combina con una estrategia de terminación adaptativa (recalculando k_{max}), permite realizar de forma aproximada N iteraciones teóricas sin especificar ω .

Concepto de métrica y métrica difusa

La clasificación que hace RANSAC se basa en el error de ajuste, una medida de proximidad entre las muestras y el modelo estimado. Es habitual el uso de la métrica Euclídea, una métrica que cumple:

- (d1) d(x, y) = 0 si, y sólo si x = y;
- (d2) d(x,y) = d(y,x);
- $(d3) \ d(x,z) \leq d(x,y) + d(y,z).$

Una alternativa es el uso de una medida de similitud como puede ser una métrica difusa:

- (KM1) M(x, y, 0) = 0;
- (KM2) $M(x, y, \theta) = 1$ para todo $\theta > 0$ si, y sólo si x = y;
- (KM3) $M(x, y, \theta) = M(y, x, \theta)$.

De esta manera, podríamos asignar un grado de compatibilidad entre cada muestra p_i y un determinado modelo \mathcal{M}_{Θ} .

Fuzzy Metric RANSAC (FM-R)

Métricas difusas consideradas

La familia de métricas difusas $M_{i,n}^d$ consideradas emplean una métrica clásica para determinar el grado de compatibilidad entre dos elementos:

$$\begin{split} M^d_{1,n}(x,y,\theta) &= \left\{ \begin{array}{ll} \left(1 - \frac{d(x,y)}{n\theta}\right)^n, & \text{si } d(x,y) \leq n\theta \\ 0, & \text{en otro caso} \end{array} \right., \\ M^d_{2,n}(x,y,\theta) &= \left\{ \begin{array}{ll} 1 - \frac{d^n(x,y)}{\theta^n}, & \text{si } d(x,y) \leq \theta \\ 0, & \text{en otro caso} \end{array} \right., \\ M^d_{3,n}(x,y,\theta) &= e^{-\frac{d^n(x,y)}{\theta^n}}, \\ M^d_{4,n}(x,y,\theta) &= \frac{\theta^n}{\theta^n + d^n(x,y)} \,. \end{split}$$

Consideramos que dicha métrica clásica $d(x,y) = \epsilon(p_j, \mathcal{M}_{\Theta})$. De esta manera, el valor proporcionado por la métrica difusa $M_{i,n}^d$ puede denotarse como $\phi_i(\epsilon; \Phi)$ donde $\Phi = (n, \theta)$. De ahora en adelante nos referiremos a la métrica difusa como M_i .

Métricas difusas consideradas

La familia de métricas difusas $M_{i,n}^d$ consideradas emplean una métrica clásica para determinar el grado de compatibilidad entre dos elementos:

E. Ortiz • Incorporación de métricas difusas en RANSAC • Septiembre, 2021

La variante FM-R1 distingue entre *inliers* y *outliers* e incorpora las métricas difusas M_i únicamente para evaluar la bondad del modelo.

Conjunto de inliers:

$$\mathcal{P}_{\mathit{in}_k} = \left\{ p_j \in P : |\epsilon(p_j; \mathcal{M}_{\widehat{\Theta}_k})| \leq \tau \right\}$$

Bondad del modelo:

$$arphi_k = \sum_{i} \phi_i ig(\epsilon(p_j; \mathcal{M}_{\widehat{\Theta}_k}); \Phi ig), orall p_j \in \mathcal{P}_{\mathit{in}_k}$$

La variante FM-R2 se diferencia de FM-R1 incorporando una etapa final de RP o RPI.

Conjunto de inliers:

$$\mathcal{P}_{\mathit{in}_k} = \left\{ p_j \in P : |\epsilon(p_j; \mathcal{M}_{\widehat{\Theta}_k})| \leq \tau \right\}$$

Bondad del modelo:

$$arphi_k = \sum_{i} \phi_i ig(\epsilon(p_j; \mathcal{M}_{\widehat{\Theta}_k}); \Phi ig), orall p_j \in \mathcal{P}_{\mathit{in}_k}$$

La variante FM-R2 se diferencia de FM-R1 incorporando una etapa final de RP o RPI.

-0.7184x+0.6956y-0.0876=0

La variante FM-R2 se diferencia de FM-R1 incorporando una etapa final de RP o RPI.

E. Ortiz • Incorporación de métricas difusas en RANSAC • Septiembre, 2021

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

Conjunto de inliers:

$$\mathcal{P}_{\mathit{in}_k} = \left\{ p_j \in \mathit{P} : \phi_i \left(\epsilon(p_j; \mathcal{M}_{\widehat{\Theta}_k}); \Phi \right) \geq \sigma_\phi
ight\}$$

Bondad del modelo:

$$arphi_k = \sum_{i} \phi_i ig(\epsilon(p_j; \mathcal{M}_{\widehat{\Theta}_k}); \Phi ig), orall p_j \in \mathcal{P}_{\mathit{in}_k}$$

E. Ortiz • Incorporación de métricas difusas en RANSAC • Septiembre, 2021

E. Ortiz • Incorporación de métricas difusas en RANSAC • Septiembre, 2021

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

-0.9494x+0.3140y-2.0259=0

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

-0.9494x+0.3140y-2.0259=0

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

Conjunto de muestras P Seleccionar un conjunto mínimo Sk Generar una hipótesis $\mathcal{M}_{\widehat{\Theta}}$ Evaluar la hipótesis $(k > k_{\text{max}})$ Refinar el mejor modelo Modelo estimado $\mathcal{M}_{\widehat{\Theta}}$

-0.9459x+0.3244y-1.9448=0

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

-0.9459x+0.3244y-1.9448=0

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

-0.9446x+0.3281y-1.9147=0

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

E. Ortiz • Incorporación de métricas difusas en RANSAC • Septiembre, 2021

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

-0.9442x+0.3294y-1.9034=0

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

-0.9442x+0.3294y-1.9034=0

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

-0.9440x+0.3299y-1.8992=0

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

-0.9440x+0.3299y-1.8992=0

La variante FM-R3 se diferencia de FM-R2 distinguiendo entre *inliers* y *outliers* en base al grado de compatibilidad.

-0.9439x+0.3301y-1.8977=0

La variante FM-R4 se diferencia de FM-R2 al no distinguir entre *inliers* y *outliers*.

Bondad del modelo:

$$\varphi_k = \sum_{j} \phi_j (\epsilon(p_j; \mathcal{M}_{\widehat{\Theta}_k}); \Phi), \forall p_j \in P$$

La variante FM-R4 se diferencia de FM-R2 al no distinguir entre *inliers* y *outliers*.

La variante FM-R4 se diferencia de FM-R2 al no distinguir entre *inliers* y *outliers*.

E. Ortiz • Incorporación de métricas difusas en RANSAC • Septiembre, 2021

Análisis de comportamiento de los algoritmos FM-R

Problema de estimación considerado

Para analizar el comportamiento de las variantes propuestas presentamos estimaciones de rectas 2D donde los *inliers* están afectados por ruido Gaussiano y los *outliers* están distribuidos de forma uniforme.

La medida de error de estimación es el ángulo ε entre modelo original \mathcal{M}_{Θ^*} y estimado $\mathcal{M}_{\widehat{\Theta}}$.

Dependencia del parámetro n.

		$P_{95}[8$	e] (°)	
n		FM	-R1	
"	M_1	M_2	M_3	M_4
4	4.94	5.08	5.08	5.08
3	4.94	5.08	5.08	5.08
2	4.94	4.94	5.06	5.08
1	4.94	4.94	5.06	5.08

Proporción de outliers $\omega=0.40$

		P ₉₅ [8	[°)	
n		FM	-R1	
"	M_1	M_2	M_3	M_4
4	8.79	9.04	9.24	9.99
3	8.46	8.79	9.24	9.39
2	8.40	8.27	9.24	9.92
1	7.75	7.75	8.92	9.99

Proporción de outliers $\omega=0.60$

■ Dependencia del umbral de ruido κ , donde τ , $\theta = \kappa \cdot \sigma$.

		$P_{95}[\epsilon$	[(°)	
к		FM	-R1	
~	M_1	M_2	M_3	M_4
4.00	5.16	5.24	5.24	5.24
3.00	4.94	4.94	5.06	5.08
2.00	6.69	6.69	6.69	6.69
1.00	10.08	10.08	10.08	9.90

■ Dependencia entre del umbral de ruido τ y el parámetro θ .

		P ₉₅ [ε	[°)	
θ		FM	-R1	
0	M_1	M_2	M_3	M_4
4.00	5.06	5.08	5.08	5.08
3.00	4.94	4.94	5.06	5.08
2.00	4.94	5.06	4.94	4.94
1.00	5.13	5.40	5.13	5.06

■ Dependencia del tamaño del conjunto mínimo s.

		$P_{95}[\epsilon$	e] (°)	
s		FM	-R1	
3	M_1	M_2	M_3	M_4
5	2.69	2.68	2.84	3.00
4	2.66	2.66	2.84	3.11
3	3.27	3.25	3.41	3.52
2	4.94	4.94	5.06	5.08

Proporción de outliers $\omega = 0.4$

		P ₉₅ [8		
s		FM	-R1	
0	M_1	M_2	M_3	M_4
5	4.87	5.88	6.52	7.46
4	5.08	6.03	6.66	7.44
3	5.94	5.93	7.00	8.01
2	8.40	8.27	9.27	9.92

Proporción de *outliers* $\omega = 0.6$

Conclusiones de la caracterización de las métricas difusas incorporadas en FM-R1:

- Seleccionando valores de $\tau = 3\sigma$ y s = 3 la calidad de la estimación mejora incorporando cualquier métrica difusa.
- Con valores de n = 2 la calidad de la estimación mejora ligeramente.
- Se ha podido observar que valores de $\theta \neq \tau$ no mejoran ni empeoran la calidad de la estimación.

En adelante, se establecen valores de $\tau = 3\sigma$, s = 3 y $(n, \theta) = (2, \tau)$, si no se indica lo contrario.

Incorporando una etapa de reestimación ponderada (RP).

Incorporando una etapa de reestimación ponderada (RP).

Valor umbral $\sigma_{\phi}=0.50$

Valor umbral $\sigma_{\phi} = 0.75$

		P ₉₅ [e] (°)	
		FM-R3	con RP	
ω	M_1	M_2	M_3	M_4
0.60	10.07	5.41	5.53	5.54
0.50	7.00	5.34	5.35	5.30
0.40	7.78	5.88	5.72	5.67
0.20	7.68	5.83	5.83	5.69

Valor umbral $\sigma_{\phi} = 0.90$

 Incorporando una etapa de reestimación ponderada iterativa (RPI).

 Incorporando una etapa de reestimación ponderada iterativa (RPI).

Conclusiones de la comparación entre los algoritmos FM-R:

- Se ha podido comprobar que las estimaciones con los algoritmos FM-R que incorporan una etapa de RPI son significativamente mejores en términos de precisión.
- A pesar de realizar un mayor número de iteraciones t, FM-R4_{M2} consigue mejorar ligeramente la precisión obtenida con FM-R2_{M2}.
- El hecho de que las estimaciones incorporando las métricas M₁ y M₂ sean mejores en comparación con incorporar M₃ y M₄ indica que, a pesar de que su uso sea conveniente, es necesario atenuar el efecto de los outliers.

Comparación entre RANSAC, MSAC, FM-R2 y FM-R4

Comparación de la precisión de **estimación** de **rectas 2D** con diferentes valores de la **magnitud** del ruido aleatorio σ , **proporción** de *outliers* ω y valores de **umbral** de ruido κ (τ , $\theta = \kappa \cdot \sigma$).

Comparación entre RANSAC, MSAC, FM-R2 y FM-R4

Comparación de la precisión de **estimación** de **rectas 2D** con diferentes valores de la **magnitud** del ruido aleatorio σ , **proporción** de *outliers* ω y valores de **umbral** de ruido κ (τ , $\theta = \kappa \cdot \sigma$).

Comparación entre RANSAC, MSAC, FM-R2 y FM-R4

Comparación de la precisión de **estimación** de **rectas 2D** con diferentes valores de la **magnitud** del ruido aleatorio σ , **proporción** de *outliers* ω y valores de **umbral** de ruido κ (τ , $\theta = \kappa \cdot \sigma$).

Conclusiones:

- FM-R2 y FM-R4 pueden proporcionar una mejor calidad de estimación en comparación con los algoritmos originales RANSAC y MSAC.
- En general, incorporar las métricas M₁ y M₂ tiene como resultado estimaciones más precisas en comparación con incorporar M₃ y M₄.
- **FM-R4 tolera mejor** las variaciones del umbral de ruido θ .

Comparación entre RANSAC, MSAC y FM-R4

Mejor (a) y **peor** (b) estimación de **FM-R4**_{M2} en comparación con **MSAC** entre 500 estimaciones donde $(\sigma, \omega) = (1, 0.4)$.

Otros problemas de estimación

Estimación de hiperplanos

Comparación de la precisión de **estimación** de **hiperplanos 3D** con diferentes valores de la **magnitud** del ruido aleatorio σ , **proporción** de *outliers* ω y valores de **umbral** de ruido κ (τ , $\theta = \kappa \cdot \sigma$).

Comparación de la precisión de **estimación** de **hiperplanos 3D** con diferentes valores de la **magnitud** del ruido aleatorio σ , **proporción** de *outliers* ω y valores de **umbral** de ruido κ (τ , $\theta = \kappa \cdot \sigma$).

Estimación de hiperplanos

Comparación de la precisión de **estimación** de **hiperplanos** con **RANSAC**, **MSAC** y **FM-R4**_{M2} fijando valores de $(\sigma, \omega = 1, 0.4)$.

Estimación de hiperplanos

Conclusiones:

- Las tendencias son similares a las observadas en las estimaciones de rectas 2D.
- Las diferencias entre RANSAC/MSAC y FM-R2/FM-R4 son mayores a medida que aumenta el número de dimensiones del hiperplano.

Comparación de la precisión de estimación de elipses con diferentes valores de la magnitud del ruido aleatorio σ , proporción de outliers ω y valores de umbral de ruido κ (τ , $\theta = \kappa \cdot \sigma$).

- \blacksquare La medida de error ε es el error relativo máximo calculado componente a componente entre vectores de parámetros del modelo original Θ^* y del modelo estimado $\widehat{\Theta}$.
- El vector de parámetros está formado por los coeficientes de la ecuación general de la elipse $\Theta = (a, b, c, d, f, q)$.

 $\varepsilon = 0.86\%$

 $\varepsilon = 20.57\%$

 $\varepsilon = 43.70 \%$

Comparación de la precisión de **estimación** de **elipses** con diferentes valores de la **magnitud** del ruido aleatorio σ , **proporción** de *outliers* ω y valores de **umbral** de ruido κ (τ , $\theta = \kappa \cdot \sigma$).

Comparación de la precisión de **estimación** de **elipses** con diferentes valores de la **magnitud** del ruido aleatorio σ , **proporción** de *outliers* ω y valores de **umbral** de ruido κ (τ , $\theta = \kappa \cdot \sigma$).

Conclusiones:

- FM-R2 y FM-R4 pueden proporcionar una mejor calidad de estimación en comparación con los algoritmos originales RANSAC y MSAC.
- En general, incorporar las métricas M₁ y M₂ tiene como resultado estimaciones más precisas en comparación con incorporar M₃ y M₄.
- **FM-R4 tolera mejor** las variaciones del umbral de ruido θ .

Mejor (a) y **peor** (b) estimación de **FM-R4**_{M2} en comparación con **MSAC** entre 500 estimaciones donde $(\sigma, \omega) = (1, 0.4)$.

E. Ortiz • Incorporación de métricas difusas en RANSAC • Septiembre, 2021

Comparación de la precisión de **estimación** de **homografías de similitud** con diferentes valores de la **magnitud** del ruido aleatorio σ , **proporción** de *outliers* ω y valores de **umbral** de ruido κ (τ , $\theta = \kappa \cdot \sigma$).

Comparación de la precisión de estimación de homografías de similitud con diferentes valores de la magnitud del ruido aleatorio σ , proporción de *outliers* ω y valores de umbral de ruido κ (τ , $\theta = \kappa \cdot \sigma$).

Conclusiones:

- FM-R2 y FM-R4 pueden proporcionar una mejor calidad de estimación en comparación con los algoritmos originales RANSAC y MSAC.
- En general, incorporar las métricas M₁ y M₂ tiene como resultado estimaciones más precisas en comparación con incorporar M₃ y M₄.
- **FM-R4 tolera mejor** las variaciones del umbral de ruido θ .

Mejor (a) y peor (b) estimación de FM-R4_M, en comparación con **MSAC** entre 500 estimaciones donde $(\sigma, \omega) = (1, 0.4)$.

E. Ortiz • Incorporación de métricas difusas en RANSAC • Septiembre, 2021

Conclusiones y trabajo futuro

Conclusiones

Se han propuesto diversas variantes para incorporar métricas difusas en el algoritmo RANSAC.

- Evaluación de hipótesis: pasamos de minimizar una función de coste a maximizar el sumatorio de las compatibilidades entre cada muestra y el modelo.
- Refinamiento del modelo: etapas de RP y RPI.

Se han **implementado** y, posteriormente, se ha **analizado** su comportamiento:

- Se han caracterizado las métricas difusas incorporadas en las variantes propuestas.
- Se ha analizado el comportamiento de las variantes propuestas mediante la estimación de rectas 2D.
- Finalmente, se ha evaluado el resultado para diferentes problemas de estimación.

Conclusiones

Comparando las variantes propuestas entre sí:

- FM-R2 y FM-R4 proporcionan resultados similares.
- El algoritmo FM-R4 consigue una mayor precisión de estimación con M_1 y M_2 a expensas de una mayor coste computacional.
- Es necesario atenuar el efecto de outliers.
- El algoritmo FM-R4 tolera mejor las variaciones del valor del umbral de ruido (τ, θ) .

Conclusiones

Comparando las variantes propuestas con RANSAC/MSAC abordando estimaciones de hiperplanos, elipses y homografías:

- Con los algoritmos FM-R2 y FM-R4 se puede obtener una mayor precisión, en mayor medida cuando la magnitud del ruido σ y/o la proporción de *outliers* ω son elevadas.
- El algoritmo FM-R4 tolera mejor las variaciones del valor del umbral de ruido (τ, θ) .

Trabajo futuro

- Los datasets han sido generados de forma sintética y es necesario evaluar el uso de los algoritmos FM-R con datasets obtenidos en el mundo real.
- El uso de FM-R4 resultaría adecuado en situaciones donde se desconoce las características del ruido (σ, ω) . Recordemos que:
 - FM-R4 tolera variaciones del umbral de ruido θ en torno al valor óptimo $\theta \approx 3\sigma$.
 - El número de iteraciones $N(p, s, \omega)$ podría establecerse de forma dinámica al no tener información de ω de forma previa (cálculo dinámico de ω a partir de φ p.e. $\omega = 1 \frac{\varphi}{n}$).
- Incorporar una estrategia de guiado de la selección del conjunto mínimo (PROSAC, NAPSAC).

Universitat de les Illes Balears