

DS2-6 - Final Presentation

Data Science

Anggota Tim

Kelas	TIM	NAMA			
DS 2	DS2-6	ROBBY SUTIAWAN			
DS 2	D32 0	MUHAMMAD RIZKI FADHILLA			

Business Understanding

Problem Statement

Perkembangan industri telekomunikasi sekarang sangat cepat. Hal ini dapat dilihat dari perilaku masyarakat yang menggunakan internet dalam berkomunikasi. Perilaku ini menyebabkan banyaknya perusahaan telekomunikasi dan meningkatnya internet service provider yang dapat menimbulkan persaingan antar provider.

Pelanggan memiliki hak dalam memilih provider yang sesuai dan dapat beralih dari provider sebelumnya yang diartikan sebagai Customer Churn. Peralihan ini dapat menyebabkan berkurangnya pendapatan bagi perusahaan telekomunikasi sehingga penting untuk ditangani.

Tujuan Analisis

Melakukan analisis klasifikasi data customer dengan bantuan Google Colab dalam memprediksi peluang customer yang akan beralih ke provider lain (churn) dengan memanfaatkan data historis yang berhubungan dengan perilaku customer.

Data Understanding

Deskripsi Data

Dataset yang digunakan adalah data customer churn yang bersumber dari laman <u>Kaqqle</u>. Dataset ini terdiri dari 2 dataset yaitu data training dan data testing. Data training terdiri 4250 sampel. Setiap sampel terdiri 19 features dan 1 variabel boolean "churn" sebagai variabel target. Sedangkan data testing memiliki feature yang sama dengan data training namun tidak memiliki variabel target dan hanya terdiri 750 sampel. Adapun deskripsi feature tersebut yaitu:

Features	Tipe Data	Deskripsi
state	string	Kode 2 huruf negara bagian USA
account_length	numerical	Lama bulan pemakaian
area_code	string	Kode Area
international_plan	(yes/no)	Customer memiliki international plan
voice_mail_plan	(yes/no)	Customer memiliki voice mail plan
number_vmail_messages	numerical	Jumlah pesan voice-mail
total_day_minutes	numerical	Total menit panggilan siang hari
total_day_calls	numerical	Jumlah panggilan siang hari
total_day_charge	numerical	Total biaya panggilan siang hari
total_eve_minutes	numerical	Total menit panggilan sore hari
total_eve_calls	numerical	Jumlah panggilan sore hari
total_eve_charge	numerical	Total biaya panggilan siang hari
total_night_minutes	numerical	Total menit panggilan malam hari
total_night_calls	numerical	Total panggilan malam hari
total_night_charge	numerical	Total biaya panggilan malam hari
total_intl_minutes	numerical	Total menit panggilan internasional
total_intl_calls	numerical	Jumlah panggilan internasional
total_intl_charge	numerical	Total biaya panggilan internasional
number_customer_service_calls	numerical	jumlah panggilan ke customer service
churn	(yes/no)	Target variable

Library yang digunakan

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
sns.set style('whitegrid')
from google.colab import files
from sklearn.model selection import train test split
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear model import LogisticRegression
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy score, precision_score, recall_score, f1_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
```


Import Dataset Training

```
from google.colab import files
uploaded = files.upload()
```

Choose Files Data Train.csv

Data Train.csv(text/csv) - 387621 bytes, last modified: 3/12/2024 - 100% done
 Saving Data Train.csv to Data Train.csv

```
df = pd.read_csv("Data Train.csv")
```

df.head()

	state	account_length	area_code	international_plan	voice_mail_plan	number_vmail_messages	total_day_minutes
0	ОН	107	area_code_415	no	yes	26	161.6
1	NJ	137	area_code_415	no	no	0	243.4
2	ОН	84	area_code_408	yes	no	0	299.4
3	OK	75	area_code_415	yes	no	0	166.7
4	MA	121	area_code_510	no	yes	24	218.2

Cek Tipe Data dan Kolom

df_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4250 entries, 0 to 4249
Data columns (total 20 columns):

memory usage: 664.2+ KB

#	Column	Non-Null Count	Dtype
0	state	4250 non-null	object
1	account_length	4250 non-null	int64
2	area_code	4250 non-null	object
3	international_plan	4250 non-null	object
4	voice mail plan	4250 non-null	object
5	number_vmail_messages	4250 non-null	int64
6	total_day_minutes	4250 non-null	float64
7	total_day_calls	4250 non-null	int64
8	total_day_charge	4250 non-null	float64
9	total_eve_minutes	4250 non-null	float64
10	total_eve_calls	4250 non-null	int64
11	total_eve_charge	4250 non-null	float64
12	total_night_minutes	4250 non-null	float64
13	total_night_calls	4250 non-null	int64
14	total_night_charge	4250 non-null	float64
15	total_intl_minutes	4250 non-null	float64
16	total_intl_calls	4250 non-null	int64
17	total_intl_charge	4250 non-null	float64
18	number_customer_service_calls	4250 non-null	int64
19	churn	4250 non-null	object
dtyp	es: float64(8), int64(7), object	t(5)	000 7 00 - 0

Dari informasi di samping dapat dilihat:

- Ukuran data adalah (4250, 20)
- Seluruh variabel (kolom) tidak memiliki missing value
- Terdapat 5 variabel yang bertipe kategori, dan 15 numerik

Statistik Data Numerik

df_train.describe().T

	count	mean	std	min	25%	50%	75%	max
account_length	4250.0	100.236235	39.698401	1.0	73.0000	100.00	127.0000	243.00
number_vmail_messages	4250.0	7.631765	13.439882	0.0	0.0000	0.00	16.0000	52.00
total_day_minutes	4250.0	180.259600	54.012373	0.0	143.3250	180.45	216.2000	351.50
total_day_calls	4250.0	99.907294	19.850817	0.0	87.0000	100.00	113.0000	165.00
total_day_charge	4250.0	30.644682	9.182096	0.0	24.3650	30.68	36.7500	59.76
total_eve_minutes	4250.0	200.173906	50.249518	0.0	165.9250	200.70	233.7750	359.30
total_eve_calls	4250.0	100.176471	19.908591	0.0	87.0000	100.00	114.0000	170.00
total_eve_charge	4250.0	17.015012	4.271212	0.0	14.1025	17.06	19.8675	30.54
total_night_minutes	4250.0	200.527882	50.353548	0.0	167.2250	200.45	234.7000	395.00
total_night_calls	4250.0	99.839529	20.093220	0.0	86.0000	100.00	113.0000	175.00
total_night_charge	4250.0	9.023892	2.265922	0.0	7.5225	9.02	10.5600	17.77
total_intl_minutes	4250.0	10.256071	2.760102	0.0	8.5000	10.30	12.0000	20.00
total_intl_calls	4250.0	4.426353	2.463069	0.0	3.0000	4.00	6.0000	20.00
total_intl_charge	4250.0	2.769654	0.745204	0.0	2.3000	2.78	3.2400	5.40
umber_customer_service_calls	4250.0	1.559059	1.311434	0.0	1.0000	1.00	2.0000	9.00

Statistik Data Kategorik

[] df_train.describe(include='0').T

	count	unique	top	freq
state	4250	51	wv	139
area_code	4250	3	area_code_415	2108
international_plan	4250	2	no	3854
voice_mail_plan	4250	2	no	3138
churn	4250	2	no	3652

Import Dataset Testing

	id	state	account_length	area_code	international_plan	voice_mail_plan	number_vma
0	1	KS	128	area_code_415	no	yes	
1	2	AL	118	area_code_510	yes	no	
2	3	IA	62	area_code_415	no	no	
3	4	VT	93	area_code_510	no	no	
4	5	NE	174	area_code_415	no	no	


```
[ ] # membuang kolom id karena merupakan index dan tidak memiliki arti
df_test = df_test.drop('id', axis=1)
```

df_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 750 entries, 0 to 749
Data columns (total 19 columns):

memory usage: 111.5+ KB

#	Column	Non-Null Count	Dtype
0	state	750 non-null	object
1	account_length	750 non-null	int64
2	area_code	750 non-null	object
3	international plan	750 non-null	object
4	voice_mail_plan	750 non-null	object
5	number_vmail_messages	750 non-null	int64
6	total_day_minutes	750 non-null	float64
7	total_day_calls	750 non-null	int64
8	total_day_charge	750 non-null	float64
9	total_eve_minutes	750 non-null	float64
10	total_eve_calls	750 non-null	int64
11	total_eve_charge	750 non-null	float64
12	total_night_minutes	750 non-null	float64
13	total_night_calls	750 non-null	int64
14	total_night_charge	750 non-null	float64
15	total_intl_minutes	750 non-null	float64
16	total_intl_calls	750 non-null	int64
17	total_intl_charge	750 non-null	float64
18	number_customer_service_calls	750 non-null	int64
dtyp	es: float64(8), int64(7), object	t(4)	

Dari informasi di samping dapat dilihat:

- Ukuran data testing adalah (750, 19)
- Seluruh variabel (kolom) tidak memiliki missing value
- Terdapat 4 variabel yang bertipe kategori, dan 15 numerik

Exploratory Data Analysis

Pada exploratory data analisis, analisis hanya dilakukan pada data training

Data Categorical

Persebaran Customer berdasar State

Dari distribusi customer berdasarkan State diketahui bahwa customer paling banyak tinggal di State Virginia Barat (WV). Sedangkan State yang paling sedikit ditinggali oleh customer adalah California (CA)

Data Categorical

Persebaran customer berdasar kode area

Hampir separuh customer provider tinggal di area code 415

Data Categorical

customer yang beralih dari provider ini (churn) hampir separuhnya memiliki international plan.

Sebagian besar customer tidak memiliki voice mail plan

voice_mail_plan

Data Categorical

Pada variable target, class customer yang tidak churn jauh lebih banyak dibandingkan dengan customer yang churn. Karena ketimpangan ini, maka data ini disebut data imbalance.

Exploratory Data Analysis

BINAR

Data Numerical

Distribusi total durasi panggilan (menit) di siang hari

Distribusi total biaya panggilan di siang hari

- Terlihat kedua data ini memiliki hubungan, yaitu semakin lama melakukan panggilan maka akan semakin besar biayanya
- Customer yang
 diindikasikan churn
 cenderung memiliki
 durasi panggilan
 yang lebih lama dan
 menghabiskan biaya
 panggilan yang lebih
 tinggi di siang hari

Data Numerical

Distribusi jumlah panggilan ke customer service

Customer yang diindikasikan churn cenderung lebih sering menghubungi customer service dibanding yang tidak churn

Exploratory Data Analysis

-0.25

-0.00

- -0.25

Korelasi

Pada heatmap di samping hanya dilakukan pada variabel yang bertipe numerik (integer dan float). Dapat dilihat nilai korelasi pada masing-masing variabel, terdapat 4 pasang variabel yang memiliki korelasi positif yang sangat kuat yaitu:

- Total durasi (menit) panggilan internasional dengan biaya yang dikeluarkan
- Total durasi (menit) panggilan pada malam hari dengan biaya yang dikeluarkan
- Total durasi (menit) panggilan pada sore hari dengan biaya yang dikeluarkan
- Total durasi (menit) panggilan pada siang hari dengan biaya yang dikeluarkan

Korelasi positif kuat mengindikasikan bahwa pada pasangan variabel tersebut memiliki pengaruh satu sama lain. Semakin lama customer melakukan panggilan maka akan semakin besar biaya yang harus dikeluarkan.

Korelasi antar variabel numerik

account_length	1.00	-0.01	-0.00	0.02	-0.00	-0.01	0.01	-0.01	-0.01	-0.00	-0.01	0.00	0.01	0.00	0.00	
number_vmail_messages	-0.01	1.00	0.00	-0.01	0.00	0.01	0.00	0.01	0.02	0.00	0.02	0.01	0.01	0.01	-0.02	
total_day_minutes	-0.00	0.00	1.00	0.00	1.00	-0.01	0.01	-0.01	0.01	-0.00	0.01	-0.02	0.00	-0.02	-0.00	
total_day_calls	0.02	-0.01	0.00	1.00	0.00	0.01	0.00	0.01	0.00	-0.00	0.00	0.01	0.01	0.01	-0.02	
total_day_charge	-0.00	0.00	1.00	0.00	1.00	-0.01	0.01	-0.01	0.01	-0.00	0.01	-0.02	0.00	-0.02	-0.00	
total_eve_minutes	-0.01	0.01	-0.01	0.01	-0.01	1.00	0.00	1.00	-0.01	0.01	-0.01	-0.00	0.01	-0.00	-0.01	
total_eve_calls	0.01	0.00	0.01	0.00	0.01	0.00	1.00	0.00	0.01	-0.01	0.01	-0.01	0.00	-0.01	0.01	
total_eve_charge	-0.01	0.01	-0.01	0.01	-0.01	1.00	0.00	1.00	-0.01	0.01	-0.01	-0.00	0.01	-0.00	-0.01	
total_night_minutes	-0.01	0.02	0.01	0.00	0.01	-0.01	0.01	-0.01	1.00	0.02	1.00	-0.00	-0.02	-0.00	-0.01	
total_night_calls	-0.00	0.00	-0.00	-0.00	-0.00	0.01	-0.01	0.01	0.02	1.00	0.02	0.00	0.00	0.00	-0.01	
total_night_charge	-0.01	0.02	0.01	0.00	0.01	-0.01	0.01	-0.01	1.00	0.02	1.00	-0.00	-0.02	-0.00	-0.01	
total_intl_minutes	0.00	0.01	-0.02	0.01	-0.02	-0.00	-0.01	-0.00	-0.00	0.00	-0.00	1.00	0.02	1.00	-0.01	
total_intl_calls	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.01	-0.02	0.00	-0.02	0.02	1.00	0.02	-0.02	
total_intl_charge	0.00	0.01	-0.02	0.01	-0.02	-0.00	-0.01	-0.00	-0.00	0.00	-0.00	1.00	0.02	1.00	-0.01	
mber_customer_service_calls	0.00	-0.02	-0.00	-0.02	-0.00	-0.01	0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.02	-0.01	1.00	
	account_length	oer_vmail_messages	total_day_minutes	total_day_calls	total_day_charge	total_eve_minutes	total_eve_calls	total_eve_charge	total_night_minutes	total_night_calls	total_night_charge	total_intl_minutes	total_intl_calls	total_intl_charge	tomer_service_calls	

Data Preparation

Cek Missing Value

0

Data Training

```
df train.isnull().sum()
state
account_length
area code
international plan
voice mail plan
number vmail messages
total day minutes
total day calls
total day charge
total eve minutes
total eve calls
total eve charge
total night minutes
total night calls
total night charge
total intl minutes
total_intl calls
total intl charge
number customer service calls
churn
dtype: int64
```

Data training tidak memiliki missing value

Data Testing

```
df_test.isnull().sum()

state
account_length
area_code
```

international plan voice mail plan number vmail messages total day minutes total day calls total day charge total eve minutes total eve calls total eve charge total night minutes total night calls total night charge total intl minutes total intl calls total intl charge number customer service calls dtype: int64

data testing tidak memiliki missing value

Cek Data Duplikat

Data Training

```
[ ] df_train.duplicated().sum()
0
```

Data tidak memiliki data duplikat, artinya setiap baris memiliki karakteristik yang unik.

Data Testing

```
[ ] df_test.duplicated().sum()
```

Data testing tidak memiliki data duplikat

Untuk dapat dianalisis lebih lanjut data kategori diubah menjadi data numerik dengan treatment yang berbeda.

- state: class terlalu banyak dan tidak begitu berpengaruh, untuk menghindari overfitting maka state dihapus
- area_code: One-hot Encoding
- international_plan: Label Encoding
- voice_mail_plan: Label Encoding
- churn: Label Encoding

Mengubah data kategorik menjadi numerik pada data training

```
# menghapus kolom state
df_clean = df_train.drop('state', axis=1)

# membuat one hot encoding pada kolom area code
area_code = pd.get_dummies(df_train['area_code'], dtype=int, prefix='is')
df_clean = pd.concat([df_clean,area_code], axis=1).drop('area_code', axis=1)

# membuat label encoding pada kolom international_plan, voice_mail_plan, dan churn
label_encoding = {"no" : 0, "yes" : 1}
df_clean['international_plan'] = df_clean['international_plan'].map(label_encoding)
df_clean['voice_mail_plan'] = df_clean['voice_mail_plan'].map(label_encoding)
df_clean['churn'] = df_clean['churn'].map(label_encoding)
```

df_clean.head()

	account_length	international_plan	voice_mail_plan	number_vmail_messages	total_day_minutes	total_day_calls
0	107	0	1	26	161.6	123
1	137	0	0	0	243.4	114
2	84	1	0	0	299.4	71
3	75	1	0	0	166.7	113
4	121	0	1	24	218.2	88

5 rows × 21 columns

Mengubah data kategorik menjadi numerik pada data testing

```
# menghapus kolom state
df_clean_test = df_test.drop('state', axis=1)

# membuat one hot encoding pada kolom area code
area_code = pd.get_dummies(df_test['area_code'], dtype=int, prefix='is')
df_clean_test = pd.concat([df_clean_test,area_code], axis=1).drop('area_code', axis=1)

# membuat label encoding pada kolom international_plan, voice_mail_plan, dan churn
label_encoding = {"no" : 0, "yes" : 1}
df_clean_test['international_plan'] = df_clean_test['international_plan'].map(label_encoding)
df_clean_test['voice_mail_plan'] = df_clean_test['voice_mail_plan'].map(label_encoding)
```

	A NEW YORK STREET	B 97 12 12 12 12 12 12 12 12 12 12 12 12 12	1.000.000.000	155.91 300.92 (TO LOCATE	18 TH 22 ALT
	account_length	international_plan	voice_mail_plan	number_vmail_messages	total_day_
0	128	0	1	25	
1	118	1	0	0	
2	62	0	0	0	
3	93	0	0	0	
4	174	0	0	0	
4					

BINAR

Deteksi outlier

Dalam analisis outlier kita hanya menggunakan data numerik pada data training

Pada boxplot di samping dapat dilihat bahwa semua variabel numerik memiliki nilai outlier.
Outlier akan sangat berdampak ketika akan membuat modeling.
Ada dua treatment yang bisa dilakukan, membuang outlier atau menggantikan outlier dengan upper dan lower bound.

Karena data yang digunakan imbalance, dan kemungkinan besar akan lebih banyak data yang terbuang, maka pada analisis ini kami akan mempertahankannya dengan mengganti menjadi nilai upper bound dan lower bound pada tiap variabel.

Mengganti nilai outlier dengan nilai upper bound dan lower bound

df clean = replace outliers(df clean, numeric column)

```
def replace_outliers(df,columns):
    for col in columns:
        q1 = df[col].quantile(0.25)
        q3 = df[col].quantile(0.75)
        iqr = q3 - q1
        upper_bound = q3 + 1.5 * iqr
        lower_bound = q1 - 1.5 * iqr
        df[col] = df[col].mask(df[col]< lower_bound, lower_bound,axis=0)
        df[col] = df[col].mask(df[col]> upper_bound, upper_bound,axis=0)
    return df
```

Distribusi data setelah mengganti nilai outlier dengan upper dan lower bound

Membagi data train menjadi data train dan data validasi

```
# Train Test Split
X = df_clean.drop('churn',axis=1)
y = df_clean['churn']
# Membagi data train menjadi data train dan data validasi
X_train, X_val , y_train, y_val = train_test_split(X, y , test_size=0.3, random_state=101)
```

Membagi data menjadi 2 yaitu nilai X yang terdiri seluruh feature kecuali feature churn, dan nilai y yaitu variabel churn sebagai targetnya. Kemudian data itu dibagi secara acak, dengan 30% data menjadi data validasi.

Handling Imbalance Data

Kelas dari variabel target Churn yang tidak seimbang

Melakukan over sampling dengan Smote

from imblearn.over_sampling import SMOTE

```
# Minority Over Sampling Technique
sm = SMOTE(sampling_strategy = 1, random_state=1)
X_train_smote, y_train_smote = sm.fit_resample(X_train, y_train.ravel())
```

Kelas dari variabel target Churn setelah dilakukan over sampling

Transformasi pada data training

```
# X_train
scaler = MinMaxScaler()
X_train_transform = scaler.fit_transform(X_train_smote)
X_train_transform = pd.DataFrame(X_train_transform, columns=X_train.columns)

# X_val
scaler = MinMaxScaler()
X_val_transform = scaler.fit_transform(X_val)
X_val_transform = pd.DataFrame(X_val_transform, columns=X_val.columns)
```

X_trai	n_transform.h	nead()				<pre>X_val_transform.head()</pre>					
ac	count_length	international_plan	voice_mail_plan	number_vmail_messages	total_day_minutes		account_length	international_plan	voice_mail_plan	number_vmail_messages	total_day_minutes t
0	0.449275	0.0	0.0	0.000	0.552616	0	0.507246	0.0	0.0	0.0	0.390695
1	0.599034	0.0	0.0	0.000	0.317967	1	0.323671	0.0	0.0	0.0	0.375943
2	0.473430	0.0	1.0	0.525	0.501501	2	0.574879	0.0	0.0	0.0	0.206818
3	0.816425	0.0	0.0	0.000	0.728602	3	0.676329	0.0	0.0	0.0	0.318654
4	0.299517	0.0	0.0	0.000	0.502530	4	0.657005	0.0	1.0	1.0	0.523113

Transformasi pada data testing

```
df_test_transform = scaler.fit_transform(df_clean_test)
df_test_transform = pd.DataFrame(df_test_transform, columns=df_clean_test.columns)

df_test_transform.head()

account_length international_plan voice_mail_plan number_vmail_messages total_day_minutes total_day_calls
```

	account_length	international_plan	voice_mail_plan	number_vmail_messages	total_day_minutes	total_day_calls	5
0	0.535865	0.0	1.0	0.490196	0.746675	0.572581	
1	0.493671	1.0	0.0	0.000000	0.623411	0.475806	
2	0.257384	0.0	0.0	0.000000	0.319834	0.250000	
3	0.388186	0.0	0.0	0.000000	0.526751	0.604839	
4	0.729958	0.0	0.0	0.000000	0.330476	0.298387	

4

Modeling

Regresi Logistik

Melakukan klasifikasi dengan model regresi logistik

logmodel = LogisticRegression() logmodel.fit(X_train_transform, y_train_smote) v LogisticRegression LogisticRegression() log_predict = logmodel.predict(X_val_transform)

Evaluasi hasil klasifikasi model regresi logistik

	Accuracy	Precision	Recall	f1
Regresi Logistik	0.827	0.389	0.486	0.432

Confusion Matrix

Secara general, akurasi model regresi logistik sudah cukup baik yaitu 83%. Namun, nilai recall cukup rendah yaitu hanya 49%.

K Neighbors Classifier

Membuat simulasi error rate untuk mencari nilai k optimal

```
error_rate = []

for i in range(1,40):
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X_train_transform, y_train_smote)
    pred_i = knn.predict(X_val_transform)
    error_rate.append(np.mean(pred_i != y_val))

sns.set_style('whitegrid')
plt.figure(figsize=(10,5))
plt.plot(range(1,40), error_rate, linestyle='dashed', marker='o', markerfacecolor='red', markersize=10);
```


Berdasarkan simulasi didapatkan nilai k=36 dengan error rate paling rendah.

Maka akan digunakan nilai k=36 dalam pembuatan model

K Neighbors Classifier

Melakukan klasifikasi dengan model K Neighbors Classifier (KNN)

```
knn = KNeighborsClassifier(n_neighbors=36)
knn.fit(X_train_transform, y_train_smote)
knn_predict = knn.predict(X_val_transform)
```

Evaluasi hasil klasifikasi model KNN

	Accuracy	Precision	Recall	f1
KNN	0.886	0.591	0.526	0.557

Secara general, akurasi model knn sudah cukup baik yaitu 89% dan nilai recall yaitu 52%.

Confusion Matrix

Decision Tree

Melakukan klasifikasi dengan model decision tree

```
dtc = DecisionTreeClassifier()
dtc.fit(X_train_transform, y_train_smote)
dtc_predict = dtc.predict(X_val_transform)
```

Evaluasi hasil klasifikasi model decision tree

	Accuracy	Precision	Recall	f1
Decision Tree	0.903	0.614	0.763	0.68

Secara general, akurasi model decision tree sudah cukup baik yaitu 90% begitu juga dengan nilai recall mencapai 76%.

Confusion Matrix

Random Forest

Melakukan klasifikasi dengan model Random Forest

```
rf = RandomForestClassifier()
rf.fit(X_train_transform, y_train_smote)
rf_predict = rf.predict(X_val_transform)
```

Evaluasi hasil klasifikasi model random forest

	Accuracy	Precision	Recall	f1
Random Forest	0.942	0.89	0.653	0.753

Secara general, akurasi model random forest sudah sangat baik yaitu 94% dan nilai recall yaitu 65%.

Confusion Matrix

Evaluation

Melakukan Evaluasi pada keempat model

	Accuracy	Precision	Recall	f1
Regresi Logistik	0.827	0.389	0.486	0.432
KNN	0.886	0.591	0.526	0.557
Decision Tree	0.903	0.614	0.763	0.680
Random Forest	0.942	0.890	0.653	0.753

Berdasarkan hasil evaluasi berbagai model, model yang memiliki ketepatan prediksi terbaik adalah model Random Forest. Sehingga model random forest dipilih untuk melakukan prediksi pada data test.

Predictions

Melakukan prediksi data test dengan model random forest sebagai model terbaik

Dari sampel data test, diprediksi bahwa akan ada 12,4% customer yang akan pindah ke provider lain(churn), sedangkan sisanya 87,6% masih menjadi pelanggan setia provider

Kesimpulan dan Saran

Kesimpulan dan Saran

Kesimpulan

- Customer churn cenderung lebih banyak melakukan panggilan ke customer service dibanding yang tidak churn
- Customer churn banyak menghabiskan waktu dan biaya menelepon di siang hari
- Hampir separuh customer churn memiliki international plan
- Dari berbagai model klasifikasi customer churn, model random forest memiliki akurasi yang terbaik yaitu 94,2%
- Dari sampel data testing, diprediksi sebanyak 12,4% customer akan beralih provider (churn)

Saran yang dapat dipertimbangkan untuk perusahaan

- Perusahaan perlu meningkatkan pelayanan mereka agar dapat menyelesaikan masalah kurang dari 3 kali customer service call
- Memberikan promosi harga/paket promosi pada customer yang intens melakukan panggilan di siang hari
- Perusahaan dapat meningkatkan kualitas jaringan terkhusus pada jaringan internasional (Roaming)

Link Google Colab

Thank You