Module 3b. Hypothesis testing

Sabine De Vreese Lieven Smits Bert Van Vreckem 2023–2024

Contents

Testing procedure

Probability Value

Critical Region

Examples

Student's t-test

Errors in Hypothesis Tests

Learning Goals

- Statistical hypothesis testing concepts
- Hypothesis testing procedure
- Apply the *z* and *t*-test

Testing procedure

Statistical Hypothesis Testing

Hypothesis Idea that has yet to be proven: statement regarding the numeric value of a population parameter

Hypothesis Test verification of a statement about the values of one or multiple population parameters

Null Hypothesis (H_0) Base hypothesis, we start with assuming it is true **Alternative Hypothesis** (H_1 , H_a) Conclusion if the null hypothesis is unlikely to be true

Elements of a testing procedure

Test Statistic The value that is calculated from the sample

Region of Acceptance The region of values supporting the null hypothesis

Critical Region / Region of Rejection The region of values rejecting the null hypothesis

Significance Level The probability of rejecting a true null hypothesis H_0

Testing procedure

- 1. Formulate both hypotheses (H_0 and H_1)
- 2. Determine the significance level (α)
- 3. Calculate the test statistic
- 4. Determine the critical region or the probability value
- 5. Draw conclusions

Hypotheses about superheroes

A superhero rescues 3.3 persons a day

Source: http://www.cracked.com/quick-fixes/ **HO** 4-people-who-saved-day-while-dressed-as-superheroe **GENT**

Assume that, over a period of 30 days, on average 3.483 people were saved each day (\bar{x} = 3.483, n = 30)

- 1. Hypothesis: $H_0: \mu = 3.3$; $H_1: \mu > 3.3$
- 2. Significance level: $\alpha = 0.05$
- 3. Test statistic: $\bar{x} = 3.483$

Standard deviation of the population (assumed to be known): σ = 0.55

Calculate test statistic

Based on the central limit theorem, we know that:

$$M \sim Nor(\mu = 3.3; \sigma = \frac{0.55}{\sqrt{30}} = 0.1)$$

Probability Value

Probability Value

p-value

The p-value is the probability, if the null hypothesis is true, to obtain a value for the test statistic that is at least as extreme as the observed value.

- p-value $< \alpha \Rightarrow$ reject H_0 : the discovered value of \overline{x} is too extreme;
- p-value $\geq \alpha \Rightarrow$ do not reject H_0 : the discovered value of \overline{x} can still be explained by coincidence.

Probability Value

$$P(M > 3.483) = P\left(Z > \frac{3.483 - 3.3}{\frac{\sigma}{\sqrt{n}}}\right) = P(Z > 1.822) = 0.0344$$
 HO

Critical Region

Critical Region

Critical region

The critical region is the collection of all values of the test statistic for which we can reject the null hypothesis.

We look for a critical value g for which:

$$P(M > g) = \alpha$$

Determine z_{α} for which:

$$P(Z>z_{\alpha})=\alpha\Rightarrow g=\mu+z_{\alpha}.\frac{\sigma}{\sqrt{n}}$$

- Left of g: region of acceptance (do not reject H_0)
- Right of g: critical region (reject H_0)

Critical Region

significance level $\alpha = 0.05 \Rightarrow$ critical value $z_{\alpha} = 1.645$ $(z_{\alpha} = \text{stats.norm.isf}(1 - 0.95))$

Left-tailed testing

What would you have to change in the equation in order to calculate the correct critical value?

Left-tailed testing

What would you have to change in the equation in order to calculate the correct critical value? Answer:

$$g = \mu - z \times \frac{\sigma}{\sqrt{n}}$$

because

$$P(M < g) = P\left(Z < \frac{g - \mu}{\frac{\sigma}{\sqrt{n}}}\right) = 0.05$$

Left-tailed testing

Because of symmetry:

$$P\left(Z > -\left(\frac{g-\mu}{\frac{\sigma}{\sqrt{n}}}\right)\right) = 0.05$$

The corresponding z-value is 1.645, and therefore:

$$z = \frac{-g + \mu}{\frac{\sigma}{\sqrt{n}}} \Leftrightarrow -g = \frac{\sigma}{\sqrt{n}} z_{\alpha} - \mu$$
$$\Leftrightarrow g = \mu - z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

Two-tailed testing

Sometimes it can be necessary to perform a two-tailed test. In this case, two critical values need to be calculated, namely the left and right critical value.

$$g = \mu \pm z_{\alpha/2} \times \frac{\sigma}{\sqrt{n}} \tag{1}$$

Summary

Goal	Test regarding the value of the population mean μ using a sample of n independent values		
Prerequisite	De population has a random distribution, n is sufficiently large		
Test Type	Two-tailed	Left-tailed	Right-tailed
H ₀ H ₁ Critical Region Test statistic	$\mu = \mu_0$ $\mu \neq \mu_0$ $ \overline{x} > g$	$\mu = \mu_0$ $\frac{\mu < \mu_0}{\overline{x} < -g}$ $z = \frac{\overline{x} - g}{\sqrt{y}}$	$\mu = \mu_0$ $\mu > \mu_0$ $\overline{x} > g$

Table: Summary of Testing Procedures

Requirements for z-test

- The sample needs to be random
- The sample size needs to be sufficiently large $(n \ge 30)$
- The test statistic needs to have a normal distribution
- ullet The standard deviation of the population, σ , is known

Sometimes these assumptions will not hold and in this case we can *not* use the **Z**-test!

Examples

Example 1

When drawing a random sample consisting of 50 observations from a population with variance $\sigma^2 = 55$ we obtain as sample mean $\overline{x} = 25$. We now want to find out if there is a reason to assume that the population mean is smaller than 27.

Example 1

- 1 Formulate both hypotheses $H_0: \mu = 27$ en $H_1: \mu < 27$.
- 2 Determine significance level α and sample size n $\alpha = 0.05$ en n = 50
- 3 Test statistic & value: sample mean \bar{x} = 25

4a Probability Value
According to the central limit theorem:

$$M \sim Nor(\mu = 27, \frac{\sigma^2}{\sqrt{n}})$$
$$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{25 - 27}{\sqrt{\frac{55}{50}}} \approx -1.91$$

We therefore have a probability value of 0.0281. Using a significance level of 0.05, we can reject H_0 .

4b Calculate and plot the critical region

$$g = \mu - z \times \frac{\sigma}{\sqrt{n}}$$
$$= 27 - 1.645 \times \sqrt{\frac{\sigma}{n}}$$
$$= 25.27470944$$

We have that $\overline{x} < g$ and therefore we can reject H_0 .

5 Conclusion We can conclude, based on the sample, that μ < 27 for a significance level of 0.05

Example 2

In a reseach about the amount of change in the pockets of our superheroes, researchers state that on average a superhero carries \le 25 of cash. We assume that the standard deviation of the population σ = 7. For a random sample of size n = 64, the average amount of money a superhero carries is \overline{x} = \le 23. For the significance level, α = 0.05 is selected.

Example 2

- 1 Formulate both hypotheses $H_0: \mu = 25$ en $H_1: \mu \neq 25$
- 2 Determine significance level α and sample size n $\alpha = 0.05$ en n = 64.
- 3 Test statistic & value: $\bar{x} = 23$

4b Calculate the critical region

$$g_1 = \mu - z \times \frac{\sigma}{\sqrt{n}} = 23.28$$
$$g_2 = \mu + z \times \frac{\sigma}{\sqrt{n}} = 26.72$$

We have that \overline{x} is inside the critical region (because 23 < 23.28) so we can reject H_0 .

5 Based on this sample we can conclude that superheroes carry on average *less* than 25 €, using a significance level of 5%

Student's t-test

Student's t-test

What if the requirements for a z-test are not met? E.g.

- Sample size too small
- ullet Population stdev (σ) unknown

If the variable is normally distributed, you can use the t-test

The t-test

Determine critical value:

$$g = \mu \pm t \times \frac{s}{\sqrt{n}}$$

- t-value is derived from the Student's t-distribution, based on the number of degrees of freedom, n − 1
- Look for value using the function t.isf() in Python
- Apart from this, the procedure is identical to the procedure of the z-test

Errors in Hypothesis Tests

Errors in Hypothesis Tests

	Reality		
Conclusion	H ₀ True	H ₁ True	
H_0 not rejected	Correct inference	Type II error (false negative)	
H_0° rejected	Type I error (false positive)	Correct inference	

P(type I error) = α (= significance level) P(type II error) = β Calculating β is **not** trivial, but if $\alpha \searrow$ then $\beta \nearrow$

