Analisi di dati su larga scala

Prof. Malchioni dario 5 CFU

Luca Cappelletti

Lectures Notes Year 2017/18

Magistrale Informatica LM-18 Università statale di Milano Italy October 6, 2017

Contents

1	Cha	pter 2		2
	1.1	Analis	ii di complessità di un job map-reduce	2
		1.1.1	Es: moltiplicazione di matrici	2
		1.1.2	Join multi-way	2
		1.1.3	Rilassamento lagrangiano	2
		1.1.4	Es: Join sui nodi di facebook	3
		1.1.5	Es: Google pagerank	3

Chapter 1

Chapter 2

1.1 Analisi di complessità di un job map-reduce

1.1.1 Es: moltiplicazione di matrici

 $A_{m \times n} \times B_{m \times o}(i,j,a_{ij}) \longmapsto M_A((i,j),(A,k,a_{ik})) \ \forall \ j=1,...,o(k,j,b_{kj}) \longmapsto M_B((i,j),(B,k,b_{ik})) \ \forall \ i=1,...,m(i,j)[(A,1,a_{i1}),...,(A,m,a_{im})]$

$$R(A,B) \bowtie S(B,C) \bowtie T(C,D)(a,b) \longmapsto_{M_R} (b,(R,a))(b,c) \longmapsto_{M_S} (b,(S,a))$$

Quale è il costo di questo algoritmo. Indichiamo con r, s, t i rispettivi numeri di tuple delle tabelle R, S, T. Il primo processo M_R riceve tutte e sole le tuple di R, quindi ha costo r. Il secondo, similmente, ha costo s.

Il risultato del costo di complessità sarà quindi un O(r + s). Ma questo è tra due relazioni. Se volessi farlo da 3 relazioni (**join in cascata**) cosa andrei ad ottenere?

$$(R \bowtie S) \bowtie T$$

Ottengo il costo O(r + s + t + r s p), con p rappresentante la probabilità che due valori di R e S hanno un attributo uguale.

1.1.2 Join multi-way

Date due funzioni di hash, una h per l'attributo B ed una g per l'attributo C, con b bucket e c bucket, avendo che bc = k.

Nel caso di una tupla $(u, v) \in R$ viene inviata ad un'unica colonna verticale, riducendo i nodi (**c reducer**).

Nel caso di una tupla $(w, z) \in T$ viene inviata ad un'unica colonna orizzontale, riducendo i nodi (**b reducer**).

Nel caso di una tupla $(v, w) \in S$ viene inviata ad un'unica cella, riducendo i nodi ad uno soltanto (1 reducer). Il costo quindi risulta essere:

r costo quinar risulta coscre.

$$O(r+2s+t+cr+bt)$$

1.1.3 Rilassamento lagrangiano

N.B. Il parametro lambda non può essere negativo.

$$L(b,c) = cr + br - \lambda(bc - k)$$

$$\frac{dL(b,c)}{db} = 0$$

$$\frac{dL(b,c)}{dc} = 0$$

Ottengo quindi un sistema:

$$\begin{cases} t - \lambda c = 0 \\ r - \lambda b = 0 \end{cases} \implies \begin{cases} t = \lambda c \\ r = \lambda b \end{cases}$$

$$\lambda = \sqrt{\frac{rt}{k}}$$

$$c = \sqrt{\frac{kt}{r}}$$

$$b = \sqrt{\frac{kr}{t}}$$

Il costo ottimizzato della join multiway risulta quindi essere:

$$O(r+2s+t+2\sqrt{krt})$$

1.1.4 Es: Join sui nodi di facebook

Prendiamo ad esempio il grafo dei nodi facebook, dotato di 10⁹ nodi.

$$R(U_1, U_2), |R| = r = 3 \times 10^1 1$$
 (dati arbitrari)

$$R \bowtie R \bowtie R$$

Approccio Multi-way: $r + 2r + r + 2r\sqrt{k} = 4r + 2r\sqrt{k} = 1 \times 2 \times 10^{1}2 + 6 \times 10^{1}1\sqrt{k}$ Approccio cascata (nell'ipotesi che *absR* ** R = 30r): $r + r + r + r^{2} \times p = ... = 2r + 60r = 1 \times 2 \times 10^{1}2 + 1 \times 86 \times 10^{1}3$

Ottengo quindi che: $6 \times 10^1 1 \sqrt{k} \le 1 \times 86 \times 10^3 3 \longrightarrow k \le 961$, e risulta quindi migliore utilizzare l'approccio multi way quando si hanno meno di 961 nodi da allocare a dei reducer.

1.1.5 Es: Google pagerank

Come funziona pagerank:

	A	В	С	D
A	0	$\frac{1}{2}$	1	0
В	$\frac{1}{3}$	0	0	$\frac{1}{2}$
С	$\frac{1}{3}$	0	0	$\frac{1}{2}$
D	$\frac{1}{3}$	$\frac{1}{2}$	0	0

 $v_j(t+1) = P(\text{Trovarsi in j al tempo t} + 1) = \sum_i P(\text{trovarsi in i al tempo t}) \bullet P(\text{spostarsi da i a j} \mid \text{trovarsi in i al punto t})$

$$\sum_i v_i(t) m_{ji} = \sum_i m_{ji} v_i(t) = (Mv(t))_j$$

con M_{ij} = PSpostarsi da j a i.

$$\vec{V}(t+1) = M\vec{v}(t)$$