HW 5, Math 330

Due Tuesday, November 19

1. Suppose $\{x_n\}, \{y_n\} \subseteq \mathbb{R}$ and suppose $\lim_{n \to \infty} (x_n - y_n) = 0$. Prove that if $\lim_{n \to \infty} x_n = x_0$, then $\lim_{n \to \infty} y_n = x_0$.

Hint: for all n we have $|y_n - x_0| = |y_n - x_n + x_n - x_0|$.

- 2. Suppose $S \subseteq \mathbb{R}$ is bounded above.
 - (a) Prove $\exists \{x_n\} \in S \text{ such that } \lim_{n \to \infty} x_n = \sup S.$
 - (b) Prove that $\sup S$ is a maximum of S or is a limit point of S.
 - (c) Give examples of sets S for each of the following cases:
 - i. $\sup S$ is a maximum of S and a limit point of S
 - ii. $\sup S$ is a limit point of S and not a maximum of S
 - iii. $\sup S$ is a maximum of S and not a limit point of S
- 3. The following statement is false. Negate it and prove the negation. $\forall \{a_n\}, \{b_n\} \subseteq \mathbb{R}$, if $\{a_nb_n\}$ converges, then $\{a_n\}$ converges and $\{b_n\}$ converges.
- 4. Use the $N-\epsilon$ definition of sequence convergence to prove: $\lim_{n\to\infty}\frac{4n^2+n}{n^2+3n}=4$
- 5. Use $\epsilon \delta$ definition arguments to prove:
 - (a) $\lim_{x \to 2} x^2 4x = -4$
 - (b) $\lim_{x \to 3} \frac{2}{x} = \frac{2}{3}$.
- 6. Here is a definition for "converges to $+\infty$." Suppose that $f: D \to \mathbb{R}$ and x_0 is a limit point of D. We write $\lim_{x \to x_0} f(x) = +\infty$ iff $\forall M \in \mathbb{N}^+, \exists \delta > 0$ such that $\forall x \in D$, if $0 < |x x_0| < \delta$, then f(x) > M.

Suppose $f:(-\infty,2)\cup(2,\infty)\to\mathbb{R}$ by $f(x)=\frac{3}{(x-2)^2}$. Prove that $\lim_{x\to 2}f(x)=+\infty$.

1

7. Prove that $f:[1,\infty)\to\mathbb{R}$ by $f(x)=\sqrt{x}$ is uniformly continuous.