Computación Gráfica

Eduardo Fernández

Iluminación y Sombreado

Basado en: Capítulo 14

Del Libro: Introducción a la Graficación por Computador

Foley – Van Dam – Feiner – Hughes - Phillips

Resumen del capítulo

- Modelos simples de iluminación.
- Modelos de sombreado más comunes.
- Modelos de sombreado aplicados a texturas.
- Efectos de transparencia, refracción, reflexión, sombras.

Modelo de iluminación simple

Sólo influyen la superficie en cuestión, las luces y la posición del observador (cálculos simples).

Modelos de iluminación complejos

Las sombras, las interreflexiones y la difusión de la luz en otros medios se calculan por otros algoritmos

(implican cálculos complejos).

Modelo de iluminación simple

Pero igualmente, con un modelo de iluminación simple + trucos se puede dar "ilusión" de realismo.

Ecuación de Iluminación

Luz reflejada por un objeto en un punto de su superficie hacia una dirección particular (radiancia: (W/sr·m²)).

$$I_{\text{(intensidad)}} = Luz_{ambiental} + Luz_{difusa} + Luz_{especular}$$

luz y superficie coloreada.

$$I_{(intensidad,\lambda)} = Luz_{ambiental,\lambda} + Luz_{difusa,\lambda} + Luz_{especular,\lambda}$$

múltiples fuentes de luz.

$$I_{(\text{intensidad},\lambda)} = Luz_{\text{ambiental},\lambda} + \sum_{L} \left(Luz_{\text{difusa},\lambda,L} + Luz_{\text{especular},\lambda,L} \right)$$

Luz Ambiental

Los objetos no tienen fuente de luz externa.

Cada objeto tiene una silueta monocromática.

 $l=k_i$, valor entre 0 y 1

 $I=I_ak_a$,

*I*_a =Intensidad de la luz ambiental,

 k_a = cantidad de luz ambiental de un objeto.

Luz Ambiental

Reflexión difusa

Reflexión difusa

Fuente luminosa puntual: la luz emana en todas direcciones a partir de un solo punto.

Objetos de brillantez variable: la misma depende de la dirección y la distancia respecto a la fuente luminosa.

$$I = I_p k_d (N \cdot L)$$

 I_p es intensidad de luz difusa.

 k_d es cantidad de luz difusa del objeto.

La luz que cae en dA es directamente proporcional a $cos(\theta)$. Esto se aplica a cualquier superficie.

La intensidad que le llega al observador es directamente proporcional a $cos(\theta)$. Esto es particular de las superficies Lambertianas

Tenemos 2 efectos contrapuestos:

- 1) La intensidad de luz observada es directamente proporcional a $cos(\mu)$.
- 2) La cantidad de área de superficie observada es **inversamente** proporcional a cos(μ).
- =>Ambas cantidades se compensan.

Por tanto, para las superficies lambertianas, la cantidad de luz que ve el observador es independiente de la dirección de éste y sólo es proporcional a $cos(\theta)$, donde θ es el ángulo de incidencia de la luz.

Reflexión ambiental + difusa

$$I = I_a k_a + I_p k_d (N-L)$$

Atenuación de la fuente luminosa

Factor de Atenuación debido a la distancia entre la fuente puntual y la superficie.

Atenuación de la fuente luminosa

Factor de Atenuación debido a la distancia entre la fuente puntual y la superficie.

$$I = I_a k_a + f_{att} I_p k_d (N-L)$$

Fórmulas de f_{att}

 $f_{att} = \frac{1}{d_L^2}$ (donde d_L es la distancia a la fuente luminosa)

$$f_{att} = \min\left(\frac{1}{c_1 + c_2 d_L + c_3 d_L^2}, 1\right)$$

Luces y superficies coloreadas

La intensidad de la luz puntual se descompone (de forma simple) en 3 valores: I_{pR} , I_{pG} , I_{pB}

Idem con la luz ambiente: I_{aR} , I_{aG} , I_{aB}

Idem con el color del objeto: O_{dR} , O_{dG} , O_{dB}

$$I_{R} = I_{aR} K_{a} O_{dR} + f_{att} I_{pR} K_{d} O_{dR} (N \cdot L)$$

$$I_{G} = I_{aG} K_{a} O_{dG} + f_{att} I_{pG} K_{d} O_{dG} (N \cdot L)$$

$$I_{B} = I_{aB} K_{a} O_{dB} + f_{att} I_{pB} K_{d} O_{dB} (N \cdot L)$$

Luces y superficies coloreadas

Modelo más realista, que trabaja directamente con λ .

$$I_{\lambda} = I_{a\lambda} k_a O_{d\lambda} + f_{att} I_{p\lambda} k_d O_{d\lambda} (N-L)$$

Atenuación Atmosférica

Los objetos más lejanos al observador se generan con menor intensidad que los más cercanos.

 s_o = factor de escalamiento del objeto.

 I_{λ} = intensidad inicial del objeto.

 $I_{dc\lambda}$ = intensidad indicadora de profundidad.

Atenuación Atmosférica

$$Si \mathbf{z_o} < Z_b => \mathbf{s_o} = S_b$$

 $Si \mathbf{z_o} > Z_f => \mathbf{s_o} = S_f$

En otros casos:

$$\mathbf{s_o} = \mathbf{s_b} + (\mathbf{z_o} - \mathbf{z_b})(\mathbf{s_f} - \mathbf{s_b})/(\mathbf{z_f} - \mathbf{z_b})$$

Por tanto, la intensidad del objeto es:

$$I'_{\lambda} = s_o I_{\lambda} + (1 - s_o) I_{dc\lambda}$$

Atenuación Atmosférica

Reflexión Especular

Reflexión Especular

A la ecuación de intensidad se le suma el término

$$(\cos \alpha)^n = (R \cdot V)^n$$

Es un modelo para reflectores imperfectos.

Hay un componente n, llamado <u>exponente de reflexión especular</u>.

$$I_{\lambda} = I_{a\lambda} k_a O_{d\lambda} + f_{att} I_{p\lambda} [k_d O_{d\lambda} (N-L) + W(\theta) (R-V)^n]$$

donde $W(\theta)$ es la fracción de luz reflejada especularmente.

Si considero $W(\theta)$ constante = k_s Si $O_{s\lambda}$ es el <u>color especular del objeto</u>

$$I_{\lambda} = I_{a\lambda} k_a O_{d\lambda} + f_{att} I_{p\lambda} [k_d O_{d\lambda} (N \cdot L) + k_s O_{s\lambda} (R \cdot V)^n]$$

Cálculo de R

$$R = 2N(N \cdot L) - L$$

=>

$$R \cdot V = (2N(N \cdot L) - L) \cdot V$$

alternativa: $(N \cdot H)^n$ en lugar de $(R \cdot V)^n$

H = vector intermedio entre L y V

$$H = (L + V) / |L + V|$$

=>

$$(N \cdot H)^n \neq (R \cdot V)^n$$

Todas las esferas tienen $I_a = I_p = 1$, $k_a = 0.1$, $k_d = 0.45$. De izquierda a derecha, n = 3.0, 5.0, 10.0, 27.0, 200.0De arriba a abajo, $k_s = 0.1$, 0.25, 0.5

Modelo de Warn

$$I_{L,\gamma} (\cos \gamma)^p = I_{L,\gamma} (-L \cdot L')^p$$

Modelo de Warn

Utilización de aletas y conos.

Modelo de Warn

Utilización de aletas y conos.

Fuentes luminosas múltiples

$$I_{\lambda} = I_{a\lambda} k_{a} O_{d\lambda} + \sum_{1 \leq i \leq m} f_{att_{i}} I_{p\lambda_{i}} \left[k_{d} O_{d\lambda} \left(\overline{N} \cdot \overline{L}_{i} \right) + k_{s} O_{s\lambda} \left(\overline{R}_{i} \cdot \overline{V} \right)^{n} \right]$$

Se incrementa la posibilidad de problemas

Es probable que I_{λ} supere el máximo permitido (1, o 255).

El control se puede hacer píxel a píxel o considerando toda la imagen.

Modelos de sombreado para polígonos

Modelos de sombreado para polígonos

Sombreado constante:

- aplica una sola vez un modelo de iluminación para todo el polígono.
- Esta simplificación sirve si:
 - La fuente luminosa está en el infinito, por tanto N·L es constante
 - El observador está en el infinito, por tanto N·V es constante en toda la cara del polígono.
 - El polígono representa la superficie real que se modela y no es una aproximación a una superficie curva.
- Si las suposiciones son incorrectas, entonces hay un método para determinar L y V

Sombreado Interpolado

En lugar de evaluar la ecuación de iluminación para cada píxel, esta se interpola linealmente sobre un triángulo a partir de los valores determinados para sus vértices.

Se puede generalizar para otro tipo de polígonos.

A su vez, en lugar de realizar la interpolación para cada píxel, se puede hallar una ecuación de diferencia.

Esta interpolación no evita la apariencia facetada. Según el objeto a modelar, esto es positivo o no.

Sombreado de malla poligonal

Una superficie curva se puede aproximar a otra facetada (malla poligonal) No se logran buenos resultados en la interpolación, aunque se trabaje con una densidad alta de polígonos.

Sombreado de malla poligonal

Los problemas en la visualización de una superficie curva a través de una aproximación facetada, tienen su origen en el efecto de banda de Mach.

Sombreado de malla poligonal

Esquema de las intensidades reales y las percibidas.

Sombreado de Gouraud

1) A cada vértice se le asigna una normal

$$\overline{N}_{v} = \frac{\displaystyle\sum_{1 \leq i \leq n} \overline{N}_{i}}{\left|\displaystyle\sum_{1 \leq i \leq n} \overline{N}_{i}\right|}$$

- 2) Se calculan las intensidades de los vértices usando algún modelo de iluminación ya visto.
- 3) Se interpola la intensidad en cada píxel del polígono.

Sombreado de Gouraud

3) Se interpola la intensidad en cada píxel del polígono.

Modelos de sombreado para polígonos

Sombreado de Gouraud

Sombreado de Phong

En lugar de interpolar la intensidad del vertice (Gouraud), se interpola y normaliza la normal a los vértices.

Si se utiliza sombreado de Phong con *n* alto, la diferencia entre Phong y Gouraud puede llegar a ser notable.

Normalizar un vector es costoso, y aplicar un modelo de iluminación a cada píxel también puede serlo.

Modelos de sombreado para polígonos

Sombreado de Phong

- 1) Silueta poligonal
- 2) **Distorción de perspectiva**. (las interpolaciones se hacen sobre la proyección en pantalla, por tanto no consideran la perspectiva).

Distancias iguales en la **y** no se corresponde con distancias iguales en la **z**.

3) **Dependencia de la orientación.** Las lineas de rastreo son siempre horizontales, pero el polígono interpolado puede cambiar su orientación.

4) Problemas en vértices compartidos.

Se genera discontinuidad entre píxeles adyacentes.

5) Normales a vértices que no son representativas.

Las superficies vistas son planas o bicúbicas. Las mismas son suaves y uniformes, lo cual no se ajusta a la mayoría de las superficies reales.

Hay algunos métodos para salvar estos detalles faltantes.

Polígonos de detalle de superficie Correspondencia de Texturas Correspondencia de Protuberancias Otros métodos

Polígonos de detalle de superficie

- A la casa del capítulo 6, se le pueden agregar objetos, como ser: ventanas, puertas, letras, etc.
- Esto se hace a través de "polígonos de detalle" asociados a los "polígonos base" (paredes, techo, piso).
- Los "polígonos de detalle" son coplanares con los base.
- Las propiedades de los "polígonos de detalle" tienen prioridad sobre las de los "polígonos base".
- Al estar asociados al polígono base, se aplica jerarquía para el cálculo de las superficies visibles.

- Se establece una correspondencia entre una imagen y una superficie.
- Como alternativa, en lugar de imagen se puede utilizar un procedimiento (o algoritmo).
- Con frecuencia un píxel de pantalla puede estar cubierto por varios elementos de textura (píxeles de la imagen). Hay que trabajar con todos para evitar artefactos de discretización.

- El valor de cada píxel se halla haciendo promedio ponderado, según la porción del elemento de textura que está dentro del cuadrilátero del mapa de textura.
- Si las coordenadas (u,v) caen fuera de la imagen, se puede duplicar la imagen.
- Se puede hacer corresponder las 4 esquinas del rectángulo de (s,t) con un cuadrilátero en (u,v).
- Si la superficie es un polígono, se asignan coordenadas (u,v) de mapa de textura directamente a sus vértices. Los valores internos se interpolan de la forma ya vista.
 - Problema: la interpolación causa distorción en caso de perspectiva.

Correspondencia de Protuberancias (bump mapping)

Correspondencia de Protuberancias (bump mapping)

Correspondencia de Protuberancias (bump mapping)

Correspondencia de Protuberancias (bump mapping)

 Se define un array de desplazamientos, usado para simular el desplazamiento de un punto de la superficie un poco encima o debajo de su actual posición.

Dado un punto de la superficie P=[x(u,v), y(u,v), z(u,v)], se cumple que, si P_u y P_v son las derivadas parciales de P:

$$N=P_u\times P_v$$

Desplazo P un valor B a lo largo de la Normal:

$$P' = P + BN/N$$

Una aproximación a la nueva normal N' es:

$$N' = N + (B_u(N \times P_v) - B_v(N \times P_u)) / |N|$$

B_u y B_v son derivadas de B respecto de u y v

Diferencia entre bump mapping y perturbación real de la superficie

Otros métodos

 Texturas tridimensionales permiten mejor simulación de objetos tallados en madera u otros materiales.

Otros métodos

Detalle de superficie

 Correspondencia con otras propiedades de las superficies.
 Por ejemplo, correspondencia de desplazamiento.

Otros métodos

Detalle de superficie

 Correspondencia con otras propiedades de las superficies.
 Por ejemplo, correspondencia de desplazamiento.

Sombras

Si la fuente luminosa es puntual, no hay vistas parciales a ella.

$$I_{\lambda} = I_{a\lambda} k_a O_{d\lambda} + \sum_{1 \leq i \leq m} S_i f_{att_i} I_{p\lambda_i} \left[k_d O_{d\lambda} \left(\overline{N} \cdot \overline{L}_i \right) + k_s O_{s\lambda} \left(\overline{R}_i \cdot \overline{V} \right)^n \right]$$

 $S_i = 0$, si la luz i está bloqueada en este punto.

 $S_i = 1$, si la luz i no está bloqueada en este punto.

Sombras por línea de barrido

Se pueden combinar los procesamientos de sombras y de superficies visibles.

- La fuente luminosa es el centro de proyección.
- Las aristas de los polígonos se proyectan sobre otros polígonos que intersecten la línea de barrido actual.
- Cuando el barrido cruza una arista de sombra, se cambian los colores de los píxeles de la imagen.

Sombras

Sombras por línea de barrido

Observador

Sombras por línea de barrido

Problema: Si hay n polígonos => hay que calcular n(n-1) proyecciones.

Solución parcial:

Proyectar los n polígonos en una esfera de centro la fuente luminosa.

No considerar proyecciones cuyas extensiones no se sobrepongan + otros casos particulares.

Sombras

Volúmenes de sombra

Sombras

Volúmenes de sombra

V = punto de observación.

Se trazan rayos desde V. Por cada rayo, hay un contador que <u>suma 1</u> a cada p. de s. de cara anterior y <u>resta 1</u> a cada p. de s. de cara posterior. Para muchas fuentes luminosas, hay contadores diferentes.

Un punto está bajo sombra si el contador es positivo en él.

Transparencia

No refractiva y refractiva

Transparencia no refractiva

Transparencia interpolada

 k_{ti} (coeficiente de transmisión) mide la transparencia del pol. i

Transparencia no refractiva

Transparencia de mosquitero (screen-door)

Se implanta una malla que genera solo algunos píxeles relacionados con la proyección del objeto transparente.

Transparencia filtrada

$$I_{\lambda} = I_{\lambda 1} + k_{t1} O_{t\lambda} I_{\lambda 2}$$

 $O_{t\lambda}$ es el color de transparencia del polígono 1.

Esta función se puede invocar recursivamente, si hay varios polígonos transparentes superpuestos.

Transparencia

Transparencia refractiva

Transparencia refractiva

Línea de visión refractada (óptica)

Ley de Snell:

sen θ_1 / sen $\theta_2 = \eta_2 / \eta_1$;

 η_1 y η_2 son los índices de refracción de los materiales.

Los η dependen también de la longitud de onda

Línea de visión

Transparencia

Transparencia refractiva

(índices de refracción)

```
Vacuum ..1.00000 (exactly)
                                  • Glass ...1.5
  Air(STP)... 1.00029
                                  • Ice ...1.309
  Acetone ... 1.36
                                     Iodine Crystal ...3.34
  Alcohol ... 1.329
                                  • Lapis Lazuli ...1.61
  Amorphous Selenium ... 2.92
                                  • Light Flint Glass ...1.575
 Calspar1 ...1.66
                                  • Liquid Carbon Dioxide ...1.20
• Calspar2 ...1.486
                                  • Polystyrene ...1.55
 Carbon Disulfide ...1.63
                                  • Quartz 1 ...1.644
• Chromium Oxide ...2.705
                                  • Quartz 2 ...1.553
  Copper Oxide ...2.705
                                  • Ruby ...1.77
 Crown Glass ...1.52
                                     Sapphire ...1.77
 Crystal ...2.00
                                  • Sodium Chloride(Salt)1 . 1.544
  Diamond ...2.417
                                  • Sodium Chloride(Salt)2 . 1.644
  Emerald ...1.57
                                     Sugar Solution (30%)... 1.38
  Ethyl Alcohol ...1.36
                                     Sugar Solution (80%)... 1.49
  Flourite ...1.434
                                     Topaz ...1.61
• Fused Quartz ...1.46

    Water (20 C) ...1.333

    Heaviest Flint Glass... 1.89

                                  • Zinc Crown Glass ...1.517
  Heavy Flint Glass ...1.65
```

Transparencia refractiva

Reflexión interna total:

Ocurre cuando la luz pasa de un medio (1) a otro (2) con menor índice de refracción $(\eta_1 > \eta_2)$.

Si el ángulo de incidencia es mayor que $\theta_c = \arcsin(\eta_2/\eta_1)$, entonces en lugar de refracción ocurre una reflexión.

Transparencia refractiva

Reflexión interna total:

Ocurre cuando la luz pasa de un medio (1) a otro (2) con menor índice de refracción $(\eta_1 > \eta_2)$.

Si el ángulo de incidencia es mayor que $\theta_c = \arcsin(\eta_2/\eta_1)$, entonces en lugar de refracción ocurre una reflexión.

