CS711: Introduction to Game Theory and Mechanism Design

Jul-Nov 2018

Project: Assignment 2

Question 1:

Part (a)

Lemma 1: Let $|A| \ge 3$, $N = \{1, 2\}$, and f is onto and strategyproof. Let $P: P_1(1) = a \ne b = P_2(1)$ and $P': P'_1(1) = c \ne d = P'_2(1)$. Then

$$f(P) = a \Longrightarrow f(P') = c$$

Also, given c = a and d = b.

Proof: c = a and d = b. Suppose for contradiction f(P') = d = b. We construct preference profiles as follows:

P_1	P_2	P_1'	P_2'	$\hat{P1}$	$\hat{P_2}$
a	$\mid b \mid$	a	b	$\mid a \mid$	b
-	_	_	_	b	a
-	-	_	_	_	_

Consider transition from (P_1, P_2) to (\hat{P}_1, \hat{P}_2) . Preference for a improves for both agents and $f(P_1, P_2) = a$. Thus by monotonicity, $f(\hat{P}_1, \hat{P}_2) = a$. Next consider transition from (P'_1, P'_2) to (\hat{P}_1, \hat{P}_2) . Preference for b improves for both agents and $f(P'_1, P'_2) = b$. Thus by monotonicity, $f(\hat{P}_1, \hat{P}_2) = b$. But, $a \neq b$. This gives us a contradiction. Thus, f(P') = c = a.

Lemma 2: Let $|A| \ge 3$, $N = \{1, 2\}$, and f is onto and strategyproof. Let $P : P_1(1) = a \ne b = P_2(1)$ and $P' : P'_1(1) = c \ne d = P'_2(1)$. Then

$$f(P) = a \Longrightarrow f(P') = c$$

Also, given $c \neq a, b$ and d = b.

Proof: $c \neq a, b$ and d = b. Suppose for contradiction f(P') = d = b. We construct preference profiles as follows:

P_1	P_2	P_1'	P_2'	$\hat{P1}$	$\hat{P_2}$
$\mid a \mid$	$\mid b \mid$	c	$\mid b \mid$	c	b
_	-	_	_	a	_
-	-	_	_	-	-

First we consider transition from (P'_1, P'_2) to (\hat{P}_1, P_2) . Notice that this transition satisfies all constraints of Lemma 1. hence, $f(\hat{P}_1, P_2) = b$.

Consider preference profile (\hat{P}_1, P_2) . At this profile if agent 1 reports P_1 instead of \hat{P}_1 , the outcome is a which she prefers more than the current outcome b, as $f(\hat{P}_1, P_2) = b$ and $f(P_1, P_2) = a$. This is a contradiction to f being strategyproof. Therefore, f(P') = c.

Now, to prove the required result. Consider the following profiles:

P_1	P_2	P_1'	P_2'	$\hat{P1}$	\hat{P}_2
a	c	b	a	b	c
b	$\mid b \mid$	a	b	a	_
c	$\mid a \mid$	c	c	c	_

We know that $: f(P'_1, P'_2) \in \{b, a\}.$

Proof by contradiction: Let us assume $f(P_1', P_2') = a$. Consider transition from (P_1, P_2) to (\hat{P}_1, \hat{P}_2) , then from lemma 2 we have $f(\hat{P}_1, \hat{P}_2) = b$. Also on considering the transition from (P_1', P_2') to (\hat{P}_1, \hat{P}_2) , then from lemma 2 we have $f(\hat{P}_1, \hat{P}_2) = c$. But, $b \neq c$. Thus, we have a contradiction and our assumption was wrong. Thus, $f(P_1', P_2') = b$.

Part (b)

No, the result does not hold true because if we follow the same proof as done in case (a), then we will not get a single peak in lemma 1. Thus, the result does not hold true.

Mechanism that has $f(P_1'.P_2') = a$:

SCF $f: S^3 \to A$, where S is the set of single peak single-peaked preferences w.r.t the common order < as, foe $P \in S^3$

$$f(P) = min_{t \in N} \{ P_t(1) \}$$

where minimum is taken w.r.t the order relation <. Hence, the SCF picks the left most peak among the peaks of the agents.

Question 2:

No, Gibbard-Satterthwaite result does not apply here because the result is not applicable on restricted domains. To prove this we find a preference which is not allowed.

Consider that we have just two alternatives in P_i which are a_1 and a_2 . Now, since on extending the preference the alternatives are from the power set of P_i . Let us have the preference order to be:

$$\{a_1\} \succ \{a_2\} \succ \{a_1, a_2\}$$

Now, this is not possible if P_i has

- (i) $a_1 \succ a_2$: Because in this case $\{a_1, a_2\} \succeq \{a_2\}$. Contradiction with above preference.
- (ii) $a_2 \succ a_1$: Because in this case $\{a_2\} \succ \{a_1\}$. Contradiction with above preference.

So, the above preference is not allowed. Thus the domain is not restricted and the Gibbard-Satterthwaite result does not apply here.

Question 3:

Yes, the median voter SCF is a group strategy-proof.

Proof:

The function f is manipulable if all the agents of a group are becoming strictly better off by changing their profile to P'_{K} .

Let us us consider two exhaustive cases:

(Case I:) The preference P_K is that of one of the members of the group K. Now, since this agent will not become strictly better off on changing his preference, the SCF f is not manipulable in this case.

(Case II:) The preference P_K is not of anyone in the group K. Let $P_1, P_2, ..., P_j$ (let us call this group G_1) have their peaks to the left of P_k and let $P_{j+1}, P_{j+2}, ..., P_k$ (let us call this group G_2) have their peaks to the right of P_k . Now, as seen in the proof of Molin theorem, none of the members in group G_1 will benefit from moving their peaks to the right of P_K and also none of the members of G_2 will benefit from changing their preference peaks to the left of P_K . So, the group cannot change its preference to a P_K' s.t. all of the members of the group become better off. Thus, the SCF f is not manipulable in this case also.

Hence, proved.