Reagent Name	Reqd. PPE	Critical Safety Hazards	Reactivity	Disposal
Potassium Ferricyanide	Standard	None	None	Hazardous Waste
Potassium Nitrate	Standard	None	None	Hazardous Waste
Ethanol	Standard	Flammable	None	Hazardous Waste
Tartaric Acid	Standard	None	None	Hazardous Waste
Sodium Hydroxide	Standard	Strong base	Acids	Sink once neutralized
Hydrochloric acid	Standard	Strong acid	Bases	Sink once neutralized

There is not any apparent clustering based on countries and the dataset is too small to make conclusions about outliers, but there is a division between red and white wines on the basis of I_{pc} , with higher values corresponding to white wines and lower values corresponding to red wines.

2. Oxidation

Reduction

There is not any apparent pattern from the oxidation dataset which shows numerous wines from different continents and different colors clustered together, but the reduction dataset shows the same pattern of I_{pc} determining white/red.

3. No. All show clustering without regards to country or color. Overall:

Oxidation:

Reduction has only two original features, so it is impossible to derive a third principal component.