Issue XXVII: Quillen Model Categories

Namdak Tonpa

23 травня 2025 р.

Анотація

Ця стаття є оглядом теорії модельних категорій, започаткованої Деніелом Квілленом у його новаторській праці 1967 року "Гомотопічна алгебра". Ми розглядаємо історичний контекст, основні аксіоми та застосування модельних категорій у топології та суміжних галузях, зокрема у доведенні кон'єктур Мілнора та Блоха-Като Воєводським. Також обговорюються сучасні узагальнення, такі як інфініті-категорії та модельні структури на симпліційних і кубічних множинах, з акцентом на їхню релевантність у математиці та теоретичній інформатиці.

Зміст

1	Mo	Model Categories		
	1.1	Означення модельних категорій	2	
	1.2	Застосування в топології	4	
	1.3	Модельні категорії для множин	٠	
	1.4	Застосування в алгебраїчній геометрії	٠	
	1.5	Інфініті-категорії та сучасні узагальнення	٠	
	1.6	Висновки	4	

1 Model Categories

PhD Деніела Квілена була присвячена диференціальним рівнянням, але відразу після цього він перевівся в МІТ і почав працювати в алгебраїній топології, під впливом Дена Кана. Через три роки він видає Шпрінгеровські лекції з математики "Гомотопічна алгебра"[1], яка назавжди трансформувала алгебраїчну топологію від вивчення топологічних просторів з точністю до гомотопій до загального інструменту, що застосовується в інших галузях математики.

Модельні категорії вперше були успішно застосовані Воєводським на підтвердження кон'юнктури Мілнора [2] (для 2) і потім мотивної кон'юнктури Блоха-Като [3] (для п). Для доказу для 2 була побудована зручна гомотопічна стабільна категорія узагальнених схем. Інфініті категорії Джояля, досить добре досліджені Лур'є [4], є прямим узагальненням модельних категорій.

1.1 Означення модельних категорій

До часу, коли Квіллен написав "Гомотопічну алгебру вже було деяке уявлення про те, як має виглядати теорія гомотопій. Починаємо ми з категорії $\mathfrak C$ та колекції морфізмів W — слабкими еквівалентностями. Завдання вправи інвертувати W морфізму щоб отримати гомотопічну категорію. Хотілося б мати спосіб, щоб можна було конструтувати похідні функтори. Для топологічного простору X, його апроксимації LX і слабкої еквівалентності $LX \to X$ це означає, що ми повинні замінити X на LX. Це аналогічно до заміни модуля або ланцюгового комплексу на проективну резольвенту. Подвійним чином, для симпліційної множини K, Кан комплексу RK, і слабкої еквівалентності $K \to RK$ ми повинні замінити K на K. У цьому випадку це аналогічно до заміни ланцюгового комплексу ін'єктивною резольвентою.

```
modelStructure (C: category): U
= (fibrations: fib C)
* (cofibrations: cofib C)
* (weakEqivalences: weak C)
* unit
```

Таким чином Квілену потрібно було окрім поняття слабкої еквівалентності ще й поняття розшарованого (RK) та корозшарованого (LX) об'єктів. Ключовий інстайт з топології тут наступний, в неабелевих ситуаціях об'єкти не надають достатньої структури поняття точної послідовності. Тому стало зрозуміло, що для відновлення структури необхідно ще два класи морфізмів: розшарування та корозшарування на додаток до слабких еквівалентностей, яким ми повинні інчеттувати для розбудови гомотопічної категорії. Природно ці три колекції морфізом повинні задовольняти набору умов, званих аксіомами модельних категорій: 1) наявність малих лімітів і колимітів; 2) правило 3-для-2; 3) правило ректрактів; 4) правило підйому; 5) правило факторизації.

Definition 1. Модельна категорія — це категорія \mathcal{C} , оснащена трьома класами морфізмів: 1) fib(\mathcal{C}) — розшарування; 2) cof(\mathcal{C}) — корозшарування; 3) $W(\mathcal{C})$ — слабкі еквівалентності, які задовольняють аксіоми, наведені вище.

Цікавою властивістю модельних категорій є те, що дуальні до них категорії перевертають розшарування та корозшарування, таким чином реалізуючи дуальність Екманна-Хілтона. Розшарування та корозшарування пов'язані, тому взаємовизначені. Корозшарування є морфізми, що мають властивість лівого гомотопічного підйому по відношенню до ациклічних розшарування і розшарування є морфизми, що мають властивість правого гомотопічного підйому по відношенню до ациклічних кофібрацій.

1.2 Застосування в топології

Основним застосуванням модельних категорій у роботі Квілена було присвячено категоріям топологічних просторів. Для топологічних просторів існує дві модельні категорії: Квілена (1967) та Строма (1972). Перша як

розшарований використовує розшарування Серра, а як корозшаровування морфізму які мають лівий гомотопічний підйом по відношенню до ациклічних розшарування Серра, еквівалентно це ретракти відповідних СW-комплексів, а як слабка еквівалентність виступає слабка гомотопічна. Друга модель Строма як розшарування використовуються розшарування Гуревича, як корозшарування стандартні корозшаровування, і як слабка еквівалентність — сильна гомотопічна еквівалентність.

1.3 Модельні категорії для множин

Найпростіші модельні категорії можна побудувати для категорії множин, де кількість ізоморфних моделей зростає до дев'яти. Наведемо деякі конфігурації модельних категорій для категорії множин:

```
set0: modelStructure Set = (all, all, bijections)
set1: modelStructure Set = (bijections, all, all)
set2: modelStructure Set = (all, bijections, all)
set3: modelStructure Set = (surjections, injections, all)
set4: modelStructure Set = (injections, surjections, all)
```

1.4 Застосування в алгебраїчній геометрії

Модельні категорії вперше були успішно застосовані Воєводським на підтвердження кон'юнктури Мілнора [2] (для 2) і потім мотивної кон'юнктури Блоха-Като [3] (для n). Для доказу для 2 була побудована зручна гомотопічна стабільна категорія узагальнених схем.

1.5 Інфініті-категорії та сучасні узагальнення

Для переходу від модельних категорій до $(\infty,1)$ -категорій необхідно перейти до категорій де морфізми утворюють не множини, а симпліційні множини. Потім можна переходити до локалізації.

Але для нас, для програмістів найцікавішими є модельні категорії симпліціальних множин та модельні категорії кубічних множин, саме в цьому сеттингу написано ССНМ пейпер 2016 року, де показано модельну структуру категорії кубічних множин [5].

де $cSet = [\Box^{op}, Set]$, а \Box — категорія збагачена структурою алгебри де Моргана.

1.6 Висновки

Модельні категорії, запроваджені Квілленом, стали фундаментальним інструментом у сучасній математиці, забезпечуючи гнучкий фреймворк для роботи з гомотопіями в різних категоріях. Їхні застосування варіюються від топології до алгебраїчної геометрії та теоретичної інформатики, а узагальнення, такі як інфініті-категорії, відкривають нові горизонти для досліджень. Подальший розвиток теорії, ймовірно, буде пов'язаний із застосуванням модельних структур у комп'ютерних науках, зокрема в семантиці мов програмування та гомотопічній теорії типів.

Література

- [1] Д. Квіллен, Гомотопічна алгебра, Springer Lecture Notes in Mathematics, 1967.
- [2] В. Воєводський, The Milnor conjecture, 1996.
- [3] В. Воєводський, Bloch-Kato conjecture for $\mathbb{Z}/2$ coefficients and algebraic Morava K-theories, 2003.
- [4] Дж. Лур'є, Higher Topos Theory, Princeton University Press, 2009.
- [5] Е. Кавалло, А. Мьортберг, А. Сван, Model structure on cubical sets, 2019.
- [6] A. Стром, Note on cofibrations II, Mathematische Zeitschrift, 1972.
- [7] Дж. Джардін, Model structure on cubical sets, 2002.
- [8] К. Капулкін, П. Ламсдейн, В. Воєводський, Univalence in Simplicial Sets, 2012.
- [9] Н. Гамбіно, К. Саттлер, К. Шуміло, The constructive Kan-Quillen model structure: two new proofs, 2019.
- [10] Д. Кан, А. Бусфілд, Homotopy Limits, Completions and Localizations, 1972.

[11] Ф. Морель, В. Воєводський, A1-homotopy theory of schemes, 1999.