Prof. Dr. Frank Noé Dr. Christoph Wehmeyer

Tutoren:

Katharina Colditz; Anna Dittus; Felix Mann; Christopher Pütz

2. Übung zur Vorlesung Computerorientierte Mathematik I

Abgabe: Freitag, 07.11.2014, 16:00 Uhr, Tutorenfächer Arnimallee 3

http://www.mi.fu-berlin.de/w/CompMolBio/ComaI

Aufgabe 1 (Brüche im Binärsystem, 2T):

Sei $q \in \mathbb{Q}$, $0 \le q < 1$ eine rationale Zahl zwischen 0 und 1.

- a) Wir betrachten das folgende Verfahren zur Berechnung der Binärdarstellung:
 - 1. Initialisierung: Setze p = q und setze eine Zählvariale i = 1.
 - 2. Berechne r = 2p.
 - (a) Wenn $r \ge 1$, setze $q_i = 1$ und p = r 1.
 - (b) Andernfalls, setze $q_i = 0$ und setze p = r.
- 3. Setze i = i + 1 und wiederhole Schritt 2, bis sich p wiederholt oder p = 0.

Berechnen Sie mit diesem Verfahren die Binärdarstellung von $q=\frac{1}{3}$ und $q=\frac{1}{10}$.

b) (Freiwillig, 2 Zusatzpunkte): Begründen Sie, dass dieses Verfahren korrekt ist!

Aufgabe 2 (Endliche q-adische Brüche, 4T):

Beweisen Sie: Die Zahl $\frac{1}{k} \in \mathbb{Q}$ besitzt genau dann eine endliche Darstellung zur Basis q, wenn es ein $n \in \mathbb{N}$ gibt, sodass q^n durch k teilbar ist.

Aufgabe 3 (Rechnen im Zweierkomplement, (3+6)P, 2T):

Wir wollen ein Programm zur binären Addition ganzer Zahlen mit Hilfe der in der Vorlesung behandelten Integer-Darstellung schreiben.

- a) Wandeln Sie ihr Programm zur binären Darstellung aus der ersten Übung in eine Funktion (Befehl **function**) um, welche eine natürliche Zahl n sowie eine Stellenzahl N als Eingabe bekommt und einen Vektor der Länge N mit der Binärdarstellung von n zurückgibt. Die Darstellung soll also jetzt eine vorgegebene Länge bekommen. Die Funktion soll einen Fehler ausgeben (Befehl **error**), wenn die eingegebene Zahl zu groß ist. Sie finden eine Musterlösung der entsprechenden Funktion aus der ersten Übung auf der Webseite.
- b) Zeigen Sie, dass man eine (zulässige) negative Zahl n in ihr Zweierkomplement zur Länge N umrechnen kann, indem man die positive Zahl $p=2^N+n$ berechnet und dann die binäre Darstellung von p bestimmt.
- c) Schreiben Sie eine Funktion **BinaryAdd**, welche zwei ganze Zahlen n_1 , n_2 sowie eine Stellenzahl N als Eingabe erhält und Folgendes tut:
 - Die Zulässigkeit der Eingaben überprüft und falls nötig, einen Fehler ausgibt.
 - Die Zahlen im Zweierkomplement darstellt.
 - Die binäre Addition ausführt und den Ergebnisvektor zurückgibt.

Testen Sie Ihre Funktion für N=5 sowie die Fälle $n_1=10,\,n_2=5$ und $n_1=-12,\,n_2=15.$