ELETTROTECNICA Ingegneria Industriale

METODI DI ANALISI
 TRASFORMATORE IDEALE MUTUE INDUTTANZE -

Stefano Pastore

Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (043IN) a.a. 2013-14

Teorema di Thevenin

 Consideriamo un bipolo LRI collegato al resto del circuito tramite due terminali

$$v(t) = R_{eq}i(t) + v_{eq}(t)$$

Teorema di Thevenin (2)

- Ogni bipolo LRI ben posto e controllato in corrente può essere sostituito con la serie di un generatore ideale di tensione e di una resistenza, calcolati opportunamente, senza influenzare la soluzione di un qualsiasi circuito esterno connesso al bipolo stesso.
- R_{eq} : si calcola spegnendo tutti i generatori indipendenti (di tensione: corto circuito, di corrente: circuito aperto)
- $v_{eq}(t)$: tensione a vuoto ai morsetti con tutti i generatori inseriti

Teorema di Thevenin (3)

• La caratteristica di un bipolo LRI è

• Se la caratteristica deve essere la stessa in entrambi i casi, l'equazione diventa ($R_{\rm eq}$ ruota la retta, $v_{\rm eq}(t)$ la trasla)

$$v(t) = R_{eq}i(t) + v_{eq}(t)$$
$$i(t) = \frac{v(t)}{R_{eq}} - \frac{v_{eq}(t)}{R_{eq}}$$

Teorema di Norton

• Consideriamo un bipolo LRI collegato al resto del circuito tramite due terminali

$$i(t) = G_{eq}v(t) - i_{eq}(t)$$

Teorema di Norton (2)

- Ogni bipolo LRI ben posto e controllato in tensione può essere sostituito con il parallelo di un generatore ideale di corrente e di una conduttanza, calcolati opportunamente, senza influenzare la soluzione di un qualsiasi circuito esterno connesso al bipolo stesso.
- G_{eq} : si calcola spegnendo tutti i generatori indipendenti (tensione: corto circuito, corrente: circuito aperto)
- $i_{eq}(t)$: corrente di corto circuito ai morsetti con tutti i generatori inseriti

Thevenin e Norton

- Tutti i bipoli LRI descritti da una caratteristica obliqua hanno entrambi gli equivalenti
- La relazione tra i parametri delle rappresentazioni (vedi retta nella slide precedente) sono

$$G_{eq} = \frac{1}{R_{eq}}$$

$$i_{eq}(t) = \frac{v_{eq}(t)}{R_{eq}} = v_{eq}(t) G_{eq}$$

Sorgenti indipendenti ideali

• Fanno eccezione i bipoli la cui retta è verticale o orizzontale (sorgenti ideali di tensione con in parallelo una resistenza e sorgenti ideali di corrente con in serie una resistenza)

Thevenin, Norton e fasori

Per i bipoli LDI si ricorre ai fasori; gli
equivalenti di Thevenin e di Norton si trovano
con le stesse regole, sostituendo le impedenze
e le ammettenze alle resistenze e alle
conduttanze, rispettivamente, e i fasori alle
grandezze nel dominio del tempo

$$\overline{V} = Z_{eq}\overline{I} + \overline{V}_{eq}$$

$$\bar{I} = Y_{eq} \overline{V} - \bar{I}_{eq}$$

$$Y_{eq} = rac{1}{Z_{eq}}, \quad ar{I}_{eq} = rac{ar{V}_{eq}}{Z_{eq}} = ar{V}_{eq} Y_{eq}$$

Teorema di Millmann

• È un'applicazione del teorema di Norton

$$v_{u} = \frac{\frac{v_{s1}}{R_{1}} - \frac{v_{s3}}{R_{3}} + i_{s4}}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}}$$

Metodi dei nodi puro

- È un derivato del tableau. Le variabili del sistema sono i potenziali di nodo e_k , k=1...n-1
- È limitato ai circuiti che contengono componenti controllati in tensione
- Nel dominio del tempo (circuiti LRI), si ottiene

$$\mathbf{G}^{nod}\mathbf{e}(t) = \mathbf{h}_{s}(t)$$

- Con $\mathbf{e}(t)$ e $\mathbf{h}_{s}(t)$ vettori colonna $[n-1\times1]$ e \mathbf{G}_{nod} matrice $[n\times n]$
- Se det(G^{nod})≠ 0, il circuito è ben posto, come nel tableau. G^{nod} è simmetrica se nel circuito ci sono solo bipoli.
- Nei circuiti LDI in alternata, utilizzando i fasori si ottiene

$$\mathbf{Y}^{nod} \ \overline{\mathbf{E}} = \overline{\mathbf{H}}_{s}$$

Metodi dei nodi puro - esempio

 Scriviamo le due equazioni ai nodi per il circuito LRI di figura alimentato in continua

• Nodo 1:

IK)
$$i_a + i_b + i_c = 0$$

cost) $i_a = v_a G_1$, $i_b = v_b G_3$, $i_c = v_c G_2$
IIK) $v_a = e_1 - V_s$, $v_b = e_1$, $v_c = e_1 - e_2$
 $(e_1 - V_s)G_1 + e_1G_3 + (e_1 - e_2)G_2 = 0$

Metodi dei nodi puro – esempio (2)

• Nodo 2:

IK)
$$i'_a + i'_b = I_s$$

cost) $i'_a = v'_a G_2$, $i'_b = v'_b G_4$
IIK) $v'_a = e_2 - e_1$, $v'_b = e_2$

$$(e_2 - e_1)G_2 + e_2G_4 = I_s$$

• Raccogliendo i coefficienti si ottiene

$$\begin{cases} e_1(G_1 + G_2 + G_3) - e_2G_2 = V_sG_1 \\ -e_1G_2 + e_2(G_2 + G_4) = I_s \end{cases}$$

In forma matriciale

$$\begin{bmatrix} G_1 + G_2 + G_3 & -G_2 \\ -G_2 & G_2 + G_4 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} V_s G_1 \\ I_s \end{bmatrix}$$

• N.B. matrice **G**^{nod} simmetrica

Trasformatore ideale

• È un componente resistivo a due porte

• *n*: rapporto di trasformazione

$$\begin{cases} v_1 = n \ v_2 \\ i_1 = \frac{1}{n} i_2 \end{cases}$$

• È un componente non-controllato in tensione

Trasformatore ideale (2)

• Proprietà fondamentale: è un componente inerte

$$p(t) = v_1 i_1 - v_2 i_2 = n v_2 \left(\frac{1}{n} i_2\right) - v_2 i_2 = 0$$

• Proprietà di adattamento di impedenza: consideriamo un trasformatore chiuso su una resistenza $R_{\rm u}$

$$R_{ing} = \frac{v_1}{i_1} = \frac{nv_2}{\frac{1}{n}i_2} = n^2 \frac{v_2}{i_2} = n^2 R_u$$

Trasformatore ideale (3)

• Si dimostra che valgono pure le seguenti proprietà di spostamento delle resistenze tra le porte, per cui i seguenti circuiti risultano equivalenti

Metodi dei nodi modificato (MNA)

- È il metodo principe dei programmi di analisi dei circuiti
- La presenza di uno o più trasformatori ideali viene risolta aggiungendo le relative correnti di ramo nelle equazioni di nodo. Le incognite sono quindi i potenziali di nodo e le correnti dei trasformatori. Il numero delle variabili aumenta, ma il metodo modificato risulta essere così assolutamente generale
- Per equilibrare il numero di incognite e di equazioni, si devono aggiungere al sistema puro le relazioni costitutive dei trasformatori ideali

Metodi dei nodi modificato - esempio

 Scriviamo le equazioni ai nodi per il circuito LDI di figura alimentato in alternata

• Il trasformatore ideale è un componente a due porte non-controllato in tensione. Infatti le equazioni sono (con i fasori)

$$\begin{cases} \overline{V_1} = n \, \overline{V_2} \\ \overline{I_1} = \frac{1}{n} \, \overline{I_2} \end{cases}$$

Metodi dei nodi modificato – esempio (2)

Si ottiene

$$\begin{cases} \frac{\left(\overline{E}_{1} - \overline{V}_{s}\right)}{R_{1}} + \overline{E}_{1} j\omega C + \overline{I}_{1} = 0\\ -\overline{I}_{2} + \frac{\left(\overline{E}_{2} - \overline{E}_{3}\right)}{R_{2} + j\omega L} = 0\\ \frac{\left(\overline{E}_{3} - \overline{E}_{2}\right)}{R_{2} + j\omega L} + \frac{\overline{E}_{3}}{R_{3}} = \overline{I}_{s}\\ \overline{E}_{1} - n\overline{E}_{2} = 0\\ \overline{I}_{1} - \frac{1}{n}\overline{I}_{2} = 0 \end{cases}$$

• Sistema di 5 equazioni in 5 variabili (E_1 , E_2 , E_3 , I_1 , I_2). Alle prime 3 equazioni relative ai nodi si aggiungono le equazioni costitutive dei componenti non-controllati in tensione