Week 3

Applications of Representation Theory

3.1 Reducible Representations and Direct Products

10/10: • PSet is due at the beginning of next class. Email or submit in paper. Show your work!

• Since molecules have more than one point, we need to work with the characters of reducible representations. In particular, when applying group theory to chemical problems, we need to find the IRRs whose sum is the reducible representation.

• Reduction formula: The formula which takes a $\Gamma_{\rm red}$ and decomposes it into a sum of $\Gamma_{\rm IRR}$ s. Given by

$$n(\Gamma_A) = \frac{1}{h} \sum_i g(R) \chi_{\text{IRR}}(R) \chi_{\text{RR}}(R)$$

 $-n(\Gamma_A)$ is the number of times the IRR A occurs in $\Gamma_{\rm red}$.

-h is the order of the group.

-g(R) is the order of the class under the symmetry operation R.

 $-\chi_{\rm IRR}(R)$ is the character of the IRR under the symmetry operation R.

 $-\chi_{\rm RR}(R)$ is the character of the reducible representation under the symmetry operation R.

• Recall $\Gamma_{\text{red}} = (3, 0, 1)$ in C_{3v} from Lecture 2.2.

- The number of times each IRR appears is, according to the reduction formula:

$$n(A_1) = \frac{1}{6}(1 \cdot 1 \cdot 3 + 2 \cdot 1 \cdot 0 + 3 \cdot 1 \cdot 1) = 1$$

$$n(A_2) = \frac{1}{6}(1 \cdot 1 \cdot 3 + 2 \cdot 1 \cdot 0 + 3 \cdot -1 \cdot 1) = 0$$

$$n(E) = \frac{1}{6}(1 \cdot 2 \cdot 3 + 2 \cdot -1 \cdot 0 + 3 \cdot 0 \cdot 1) = 1$$

• Simple cases (like this and the next one) we can often do by inspection.

• Example: $\Gamma_{RR} = (6, 0, 0)$.

- Decompose it into $A_1 + A_2 + 2E$.

• **Direct product** (of two representations): The (reducible or irreducible) representation obtained by multiplying the characters of the two representations which correspond under each operation. *Denoted* by $M \times N$, where M, N are Mulliken symbols.

- Examples:
 - $-A_1 \times E = E.$
 - $-A_2 \times E = E.$
 - $-E\times E=A_1+A_2+E.$
 - $-A_2 \times A_2 = A_1.$
- We now dive into how to use the symmetry properties of a collection of orbitals to determine the states that arise by populating them with electrons. To do this for a given basis set of valence atomic orbitals, we need to ask what set of IRRs they fall into.
- Procedure.
 - 1. Generate the characters of this representation by examining the trace of the relevant transform matricies.
 - +1 on the diagonal if a particular basis function is left unchanged during the symmetry operation.
 - 0 on the diagonal if the basis function is transformed to another function.
 - -1 on the diagonal if the function is converted into minus itself.
 - Indeed, only basis set elements that do not move contribute to the trace (i.e., character) of the representation.
 - 2. Check that the dimension is greater than the largest dimension permissible in the point group. If so, we need to reduce to IRRs. This is an important step to construct SALCs.
- \bullet Example: Consider the set of H_{1s} orbitals of NH_3 as the representation.
 - $-\Gamma_{3H_{1s}} = (3,0,1)$ since all 3 orbitals stay under E, all orbitals move under $2C_3$, and 1 orbital stays under $3\sigma_v$.
 - Decompose into $A_1 + E$.
 - Therefore, the 1s orbital of H within C_{3v} of NH₃ transforms in $a_1 + e$ symmetry.
 - Note that we use lowercase Mulliken symbols for atomic/molecular orbitals and vibrational modes and uppercase Mulliken symbols for electronic states.
 - This $a_1 + e$ symmetry for the H_{1s} group orbitals implies that there are 3 SALC orbitals: 1 of a_1 symmetry and 2 of e symmetry.
- Example: H₂O.
 - $-\Gamma = (2,0,0,2) = A_1 + B_2.$

3.2 Projection Operations and SALCs

- 10/12: PSet 2 is posted and due 10/21.
 - Go over questions on the HW in the review classes prior to exams.
 - Symmetry-Adapted Linear Combination: An orthonormal linear combination of one or more sets of orthonormal functions (which are either atomic orbitals or internal coordinates of a molecule) taken in such a way that the combinations form bases for irreducible representations of the symmetry group of the molecule. Also known as SALC.
 - Last time, we investigated the SALCs of NH_3 . We found them by decomposing a reducible representation of the H_{1s} basis set to its irreducible representations and naming them via the character table.

- Goal: What do the SALCs of NH₃ look like?
 - We know that we need 3 SALCs, 1 of a_1 symmetry and 2 of e symmetry.
 - To achieve the goal, we apply the **projection operator** to each irreducible representation.
- **Projection operator** (on an IRR): The operator defined as follows, which acts on IRRs. Denoted by \hat{P} . Given by

$$\hat{P}(\Gamma_i) = \frac{\ell_i}{h} \sum_{R} \chi_i(R) \hat{R}$$

- $-\ell_i$ is the dimension(ality) of the IRR.
- $-\Gamma_i$ is the IRR.
- $-\hat{R}$ is the symmetry operation to be applied to the basis.
- $-\chi_i(R)$ is the character of the given symmetry operation for Γ_i .
- In other words, we need to evaluate what happens to the H_{1s} orbitals under each symmetry operation.
- It follows that we need the character table to evaluate what happens to the H_{1s} orbitals for each symmetry operation.
 - Note that for the projection operator, we do *not* do this by class (i.e., we do need to apply *every* single symmetry operation)^[1].
 - Focus on one orbital in particular, and see to which orbital each symmetry operation takes it.
- NH₃ example.
 - We have

$$E: x_1 \mapsto x_1 \quad C_3: x_1 \mapsto x_2 \quad C_3^2: x_1 \mapsto x_3 \quad \sigma_v: x_1 \mapsto x_1 \quad \sigma_v': x_1 \mapsto x_3 \quad \sigma_v'': x_1 \mapsto x_2$$

- We can do the same for where x_2, x_3 go.
- It follows that

$$\hat{P}(A_1)_{x_1} = 1x_1 + 1x_2 + 1x_3 + 1x_1 + 1x_3 + 1x_2 = 2(x_1 + x_2 + x_3) \approx x_1 + x_2 + x_3$$

- This implies that under the totally symmetric representation, all orbitals are the same, as we might expect. Note that the constant factor of 2 does not affect the functional form and therefore does not affect the symmetry properties.
- We don't carry through ℓ_i/h because it's a constant??
- Note that

$$\hat{P}(A_1)_{x_2} = \hat{P}(A_1)_{x_3} = \hat{P}(A_1)_{x_1}$$

As another example,

$$\hat{P}(E)_{x_1} = 2x_1 - x_2 - x_3 + 0x_1 + 0x_3 + 0x_2 = 2x_1 - x_2 - x_3$$

- Similarly,

$$\hat{P}(E)_{x_2} = 2x_2 - x_3 - x_1$$
$$\hat{P}(E)_{x_2} = 2x_3 - x_1 - x_2$$

- Note that all of these functions must be orthonormal.
 - \blacksquare We have three functions, but we only need 2 in e! Thus, we employ the orthonormal rule to figure it out.

¹Notice that the order of the class is not present in the projection operator!

■ We have that the first and second, and first and third are not orthogonal:

$$\begin{split} (\Psi_{E,x_1},\Psi_{E,x_2}) &= (2)(-1) + (2)(-1) + (-1)(-1) = 3 \neq 0 \\ (\Psi_{E,x_1},\Psi_{E,x_3}) &= (2)(-1) + (-1)(-1) + (-1)(2) = 3 \neq 0 \end{split}$$

- What we can do is take a linear combination of 2 and 3 so that it's orthogonal to 1.
- Let's try

$$\Psi_{E,\text{new}} = \Psi_{E,x_2} - \Psi_{E,x_3} = 3x_2 - 3x_3 \approx x_2 - x_3$$

■ Indeed,

$$(\Psi_{E,x_1}, \Psi_{E,\text{new}}) = (2)(0) + (-1)(1) + (-1)(-1) = 0$$

as desired.

- Note that adding does not get us something orthogonal.
- Normalize the SALCs.
 - At this point, we have that

$$\Psi_{A_1 \text{ SALC}} = x_1 + x_2 + x_3$$
 $\Psi_{E \text{ SALC}} = 2x_1 - x_2 - x_3$ $\Psi_{E \text{ SALC}} = x_2 - x_3$

 \blacksquare Normalization means adjusting the normalization constant N such that

$$\int [N(x_1 + x_2 + x_3)]^2 = 1$$

■ More simply, we multiply each of the above by 1 over the square root of the sum of the squares of the extant coefficients. So

$$\Psi_{A_1 \text{ SALC}} = \frac{1}{\sqrt{1^2 + 1^2 + 1^2}} (x_1 + x_2 + x_3) \quad \Psi_{E \text{ SALC}} = \frac{1}{\sqrt{2^2 + (-1)^2 + (-1)^2}} (2x_1 - x_2 - x_3)$$
$$= \frac{1}{\sqrt{3}} (x_1 + x_2 + x_3) \qquad \qquad = \frac{1}{\sqrt{6}} (2x_1 - x_2 - x_3)$$

$$\Psi_{E \text{ SALC}} = \frac{1}{\sqrt{0^2 + 1^2 + (-1)^2}} (x_2 - x_3)$$
$$= \frac{1}{\sqrt{2}} (x_2 - x_3)$$

- Lastly, we can draw the orbitals.

Figure 3.1: NH₃ SALCs.