

七、薛定谔方程的应用三 氢原子的量子理论

1. 氢原子的薛定谔方程

 $\frac{R_{nl}(r)}{R} \left(\frac{1}{R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{8\pi^2 m r^2}{h^2} \left(E + \frac{e^2}{4\pi\varepsilon_0 r} \right) = \lambda$

根据波函数满足单值、有限和连续的条件,可得

七、薛定谔方程的应用三 氢原子的量子理

Table 1.1 Some $\Theta_{\ell m_{\ell}}$ wave functions for hydrogen and hydrogen-like atoms							
ℓ	m_ℓ	$\Theta_{\ell m_\ell}(\theta)$	ℓ	m_ℓ	$\Theta_{\ell m_\ell}(\theta)$		
0	0	$\frac{1}{2^{1/2}}$	2	0	$\frac{10^{1/2}}{4}(3\cos^2\theta - 1)$		
1	0	$\frac{6^{1/2}}{2}\cos\theta$	2	±1	$\frac{15^{1/2}}{2}\sin\theta\cos\theta$		
1	±1	$\frac{3^{1/2}}{2}\sin\theta$	2	± 2	$\frac{15^{1/2}}{4}\sin^2\theta$		

n	ℓ	$R_{n\ell}(r)$
1	0	$\left(\frac{Z}{a_0}\right)^{3/2} 2 \exp(-\rho)$
2	0	$\left(\frac{Z}{a_0}\right)^{3/2} \frac{1}{2^{1/2}} \left(1 - \frac{\rho}{2}\right) \exp\left(-\frac{\rho}{2}\right)$
2	1	$\left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{1}{2}\right) \frac{1}{6^{1/2}} \rho \exp\left(-\frac{\rho}{2}\right)$

七、薛定谔方程的应用三 氢原子的量子理论

2. 量子化结论

(1) 能量量子化 $E_n = -\frac{1}{n^2} \frac{me^4}{8\varepsilon_o^2 h^2}, \quad n = 1, 2, \dots$ (主量子数)

(2) 轨道角动量大小量子化

$$L = \sqrt{l(l+1)} \frac{h}{2\pi}$$
, $l = 0,1,2,\dots(n-1)$ (角量子数) 共有 n 个可能取值

(3) 轨道角动量方向量子化(空间量子化)

$$L_z = m_l \frac{h}{2\pi}, \quad m_l = 0, \pm 1, \pm 2 \cdot \dots \pm l$$
 (磁量子数) 共有(2l+1)个可能取值

七、薛定谔方程的应用三

氢原子的量子理论

3. 空间量子化很好地解释正常塞曼效应

正常塞曼效应: 一条光谱线在强磁场中分裂成三条的现象。 (1896) (钙、水银、镉等元素的原子光谱线)

七、薛定谔方程的应用三

氢原子的量子理论

4. 氢原子的电子分布概率

- (1) 氢原子中电子的稳定状态,可以用一组量子数 (n, l, m_l) 表示其定态波函数为 $\psi_{nlm_l}(r, \theta, \varphi)$
- (2) 电子出现在原子核周围 $r \sim r + dr$, $\theta \sim \theta + d\theta$, $\varphi \sim \varphi + d\varphi$ 的概率

$$\left|\psi_{nlm_l}\right|^2 dV = \left|R_{nl}\right|^2 \left|\Theta_{lm_l}\right|^2 \left|\Phi_{m_l}\right|^2 r^2 \sin\theta dr d\theta d\varphi$$

(3) 电子出现在原子核周围 $r \sim r + dr$ 的概率

$$P dr = |R_{nl}|^2 r^2 dr \int_0^{\pi} |\Theta|^2 \sin \theta d\theta \int_0^{2\pi} |\Phi|^2 d\phi$$
$$= |R_{nl}|^2 r^2 dr$$

七、薛定谔方程的应用三

氢原子的量子理论

4. 氢原子的电子分布概率

(4) 电子概率密度的径向分布 $P = |R_{nl}|^2 r^2$

(a) 径向波函数; (b) 径向概率分布函数; (c) 径向电荷密度函数

七、薛定谔方程的应用三

氢原子的量子理论

4. 氢原子的电子分布概率

(5) 用电子云形象地描绘电子出现在核周围的概率分布

八、电子自旋

1. 施特恩(O.Stern)-格拉赫(W.Gerlach)实验

- 基态银原子轨道角动量和轨道磁矩为零,本应无偏转;
- 射线的偏转表明:银原子具有磁矩。」该磁矩在外磁场中只有两种可能的取向!

八、电子自旋

2. 电子自旋角动量

- 荷兰的<u>乌伦贝克和古兹密特</u>认为电子除了轨道角动量之外,还应有自旋角动量(spin angular momentum)。
- 自旋角动量并无经典对应,是内禀角动量。
- 自旋角动量 $S = \sqrt{s(s+1)} \frac{h}{2\pi}$ 自旋量子数 $s = \frac{1}{2}$ $= \sqrt{3} \frac{h}{4\pi}$
- 自旋角动量在z方向上的分量 $S_z = m_s \frac{h}{2\pi}$ 自旋磁量子数 $m_s = \pm \frac{1}{2}$ $= \pm \frac{h}{4\pi}$

八、电子自旋

2. 电子自旋角动量

能解释: 大多数元素在磁场中出现反常塞曼效应!

The Nobel Prize in Physics 2007

Université Paris Sud; Unité Mixte de Physique CNRS/THALES Orsay, France 1938

Peter Grünberg Forschungszentrum Jülich Jülich Sermany

b. 1939

"for the discovery of Giant Magnetoresistance"

What is GMR?

Simplest type of GMR system consists of a layer of non-magnetic metal sandwiched between two layers of a magnetic metal

Better read-out heads for pocket-size devices

From electronics to **spintronics**

Towards a universal memory----MRAM

九、原子的电子壳层结构

1. 四个量子数

- (1) 主量子数 $n = 1, 2, \dots$ 决定原子的能量。
- (2) 角量子数 $l = 0,1,2,\dots(n-1)$ 决定原子中电子的轨道角动量,部分决定其能量。
- (3) 磁量子数 $m_l = 0,\pm 1,\pm 2 \cdots \pm l$ 决定电子的轨道角动量在外磁场中的取向。
- (4) 自旋磁量子数 $m_s = \pm \frac{1}{3}$ 决定电子的自旋角动量在外磁场中的取向。

九、原子的电子壳层结构

2. 多电子原子的壳层结构

 (n,l,m_l,m_s)

- (1) 原子中的单电子态仍由四个量子数描写:
- (2) 将原子的多个电子逐个填充到四个量子数所描 写的单电子态上,就获得整个原子的电子组态。

电子的填充遵循:

● 泡利不相容原理 (电子是费米子)

同一原子中的任何两个电子不能处于同一组量子数 $(n, \ell, m_{\ell}, m_{s})$ 所确定的量子态上。

◆ 能量最小原理

处于稳定态的原子,其每个电子总是尽可能占有最低 的能量状态,从而使原子体系的能量最低。

九、原子的电子壳层结构

3. 电子的分布规律——电子按壳层分布

(1) 主壳层和支壳层

主壳层和支壳层的符号

n	1	2	3	4	5	6	•••
主壳层符号	K	L	M	N	О	P	
ℓ	0	1	2	3	4	5	•••
支壳层符号	S	p	d	f	g	h	

(2) 由泡利不相容原理

●每个支壳层最多可容纳的电子数为: 2(21+1)

●每个主壳层最多可容纳的电子数为: 2n²

能级n的量子态数

能级n的简并度

	原子壳层中最多可能容纳的电子数									
l n	0 s	1 <i>p</i>	2 d	3 f	4 g	5 h	6 <i>i</i>	Z _n		
1 <i>K</i>	2(1 s)							2		
2L	2(2 s)	6(2p)						8		
3 <i>M</i>	2(3s)	6(3p)	10(3 <i>d</i>)					18		
4 N	2(4s)	6(4p)	10(4 <i>d</i>)	14(4 <i>f</i>)				32		
5 0	2(5s)	6(5p)	10(5d)	14(5 <i>f</i>)	18(5g)			50		
6 P	2(6s)	6(6p)	10(6d)	14(6 <i>f</i>)	18(6g)	22(6h)		72		
7 Q	2(7s)	6(7 <i>p</i>)	10(7 <i>d</i>)	14(7 <i>f</i>)	18(7 <i>g</i>)	22(7h)	26(7 <i>i</i>)	98		

九、原子的电子壳层结构

(3) 由能量最小原理

- 原子中的电子总是从最内层开始向外排;
- 原子能级除由主量子数n决定,还与角量子数1有关;
- 我国徐光宪院士总结:能级能量随 (n+0.7l) 增大。

例1:在主壳层n=3中,最多可填空的电子数是 <u>18</u>, 并写出各量子态。

例2: 对应于n=4 的氢原子的最大角动量为 $\frac{\sqrt{3} \frac{h}{\pi}}{\pi}$? 此时角动量在空间取向如何?

十、关于量子力学的争论

爱因斯坦和波尔都是伟大的物理学家,对量子理论的发展都做出了杰出的贡献,分别因为解决光电效应问题和量子化原子模型而获得1921年、1922年的诺贝尔物理学奖。他们两人的争论主要集中在量子力学的理论基础及哲学思想方面。实际上,也正因为这两位大师的不断论战,量子力学才在辩论中发展成熟起来。

十、关于量子力学的争论

- ♣ 以Bohr为首的哥本哈根学派的观点:
- (1) 波函数的几率诠释;
- (2) 测不准关系;
- (3) 互补性观点。

量子力学是统计理论, 是完备的理论。

爱因斯坦坚持经典的哲学思想和因果观念: 一个完备的物理理论应该具有确定性、实在性和局域性。

- ●"上帝不是掷骰子!"
- ●物质世界的存在不依赖于观察手段
- ●在互相远离的两个地点,不可能有瞬时的超距作用。

十、关于量子力学的争论

量子纠缠态:两个粒子的叠加态"互相纠缠"在一起,使得测量结果互相影响,即使是当两个粒子分开到很远很远的距离之时,这种似乎能瞬间互相影响的"纠缠"照样存在。

十、关于量子力学的争论

EINSTEIN ATTACKS QUANTUM THEORY

Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

1935年5月4日,纽约时报首页的头条新闻标题

十一、后续

量子力学解释了许多物理现象:

- (1) 海森伯关于氦原子的理论;
- (2) 海特勒和伦敦关于连接同种原子的共价键理论:
- (3) 泡令的化学键理论;
- (4) 布洛赫对周期场中 ₩ 波的计算;
- (5) 海森伯的铁磁性理论:
- (6) 伽莫夫用势垒穿透解释 α 衰变。
- (7) 材料学、电子学、化学、生物学等。

十一、后续

量子力学的一些基本概念和诠释难以理解。

Bohr:

"如果谁在第一次学习量子概念时不觉得糊涂, 他就一点也没有懂"

* Feyman:

"我想我可以有把握地说,没有人懂得量子力学。 ……我来告诉你自然界如何行事。如果你接受我地说 法,认为也许她的确这么行事,那么你们会发现她是 令人愉悦而且着迷的。千万不要问:'她为什么会这 样?'如果那样你就会走进一条死胡同。……"

今日作业

15-19, 38, 40