(2) Redes Neurais Convolucionais - CNNs Redes Neurais e Arquiteturas Profundas

Moacir Ponti CeMEAI/ICMC, Universidade de São Paulo MBA em Ciência de Dados

www.icmc.usp.br/~moacir — moacir@icmc.usp.br

São Carlos-SP/Brasil - 2020

Agenda

Redes Neurais Convolucionais (CNNs)

Convolução

Camada convolucional para redes neurais

Exemplo

Número de parâmetros

Pooling

Agenda

Redes Neurais Convolucionais (CNNs)

Convolução

Camada convolucional para redes neurais

Exemplo

Número de parâmetros

Pooling

Exemplo de problema: classificação de dígitos

▶ Imagens com $28 \times 28 = 784$ pixels,

1. Valores de entrada (atributos) são considerados independentes

- 1. Valores de entrada (atributos) são considerados independentes
- 2. Não são aproveitadas relações locais entre os dados

1. Grande número de parâmetros: memória e processamento

- 1. Grande número de parâmetros: memória e processamento
 - ightharpoonup Exemplo: entrada imagem de $28 \times 28 = 784$
 - ▶ Uma camada com 100 neurônios teria..

- 1. Grande número de parâmetros: memória e processamento
 - **Exemplo:** entrada imagem de $28 \times 28 = 784$
 - Uma camada com 100 neurônios teria..
 - ► 78400 + 100 = 78500 parâmetros a serem aprendidos e mantidos na memória durante o treinamento

Redes Neurais Convolucionais (CNNs)

(Arquitetura LeNet)

Nova terminologia:

- Camada convolucional (convolutional layer)
- Subamostragem (pooling)
- Mapas de Ativação (activation/feature maps)
- ► Camada densa (dense/fully connected, tipo MLP)

- Operador que visa realizar uma combinação linear de valores locais da entrada
- Centrado em uma posição, e.g. (x, y), gera como saída um único valor de saída

		V	olume	de entr	ada 7	x 7								Volu	me de	saída		
	0	1	2	3	4	5	6		o W (3	,		0	1	2	3	4	5	6
0	2		2	2	3	3	3	-1	0.5	1	0							
1	1	_	1	1	1	1	0	-1	0	0	1							
2	1	1	3	3	0	0	0	0	0	0.5	2							
3	1	1	3	2	0	0	3				3							
4	1	1	3	2	0	0	3				4							
5	1	3	3	2	0	0	3				5							
6	3	3	3	2	0	0	3				6							

		V	olume	de entr	ada 7	x 7								Volu	me de	saída		
	0	1	2	3	4	5	6		o W (3	,		0	1	2	3	4	5	6
0	2	2	2	2	3	3	3	-1	0.5	1	0							
1	1	0	1	1	1	1	0	-1	0	0	1		1.5					
2	1	1	3	3	0	0	0	0	0	0.5	2							
3	1	1	3	2	0	0	3				3							
4	1	1	3	2	0	0	3				4							
5	1	3	3	2	0	0	3				5							
6	3	3	3	2	0	0	3				6							

		V	olume	de entr	ada 7	x 7								Volu	me de	saída		
	0	1	2	3	4	5	6	Filtr	o W (3	x 3)								
0	2	2	2	2	3	3	3	-1	0.5	1			0	1	2	3	4	
1	1	0	1	1	1	1	0	-1	0	0		0	1.5					
2	1	1	3	3	0	0	0	0	0	0.5		1						
3	1	1	3	2	0	0	3					2						
4	1	1	3	2	0	0	3					3						
5	1	3	3	2	0	0	3					4						
6	3	3	3	2	0	0	3											

		V	olume	de entr	ada 7	¢ 7									Volu	me de	saída		
	0	1	2	6		Filtr	o W (3	x 3)											
0	2	2	2	2	3	3	3		-1	0.5	1			0	1	2	3	4	
1	1	0	1	1	1	1	0		-1	0	0		0	1.5	2.5				
2	1	1	3	3	0	0	0		0	0	0.5		1						
3	1	1	3	2	0	0	3						2						
4	1	1	3	2	0	0	3						3						
5	1	3	3	2	0	0	3						4						
6	3	3	3	2	0	0	3												

		V	olume	de entr	ada 7	¢ 7									Volu	me de	saída		
	0	1							Filtr	o W (3	x 3)								
0	2	2	2	2	3	3	3		-1	0.5	1			0	1	2	3	4	
1	1	0	1	1	1	1	0		-1	0	0		0		2.5	1			
2	1	1	3	3	0	0	0		0	0	0.5		1						
3	1	1	3	2	0	0	3						2						
4	1	1	3	2	0	0	3						3						
5	1	3	3	2	0	0	3						4						
6	3	3	3	2	0	0	3												

		V	olume	de entr	ada 7	x 7									Volu	me de	saída		
	0	1					6		Filtr	o W (3	x 3)								
0	2	2	2	2	3	3	3		-1	0.5	1			0	1	2	3	4	
1	1	0	1	1	1	1	0		-1	0	0		0	1.5	2.5	1	1.5		
2	1	1	3	3	0	0	0		0	0	0.5		1						
3	1	1	3	2	0	0	3						2						
4	1	1	3	2	0	0	3						3						
5	1	3	3	2	0	0	3						4						
6	3	3	3	2	0	0	3												

		V	olume	de entr	ada 7	x 7									Volu	me de	saída		
	0	1 2 3 4 5							Filtr	o W (3	x 3)								
0	2	2	2	2	3	3	3		-1	0.5	1			0	1	2	3	4	
1	1	0	1	1	1	1	0		-1	0	0		0	1.5	2.5	1	1.5	0.5	
2	1	1	3	3	0	0	0		0	0	0.5		1						
3	1	1	3	2	0	0	3						2						
4	1	1	3	2	0	0	3						3						
5	1	3	3	2	0	0	3						4						
6	3	3	3	2	0	0	3												

		V	olume	de entr	ada 7 :	x 7									Volu	me de	saída	
	0	1	2	3	4	5	6	F	ltro V	W (3	x 3)							
0	2	2	2	2	3	3	3	-1	. 0	0.5	1			0	1	2	3	4
1	1	0	1	1	1	1	0	-1		0	0		0	1.5	2.5	1	1.5	0.5
2	1	1	3	3	0	0	0	C		0	0.5		1	0.5				
3	1	1	3	2	0	0	3						2					
4	1	1	3	2	0	0	3						3					
5	1	3	3	2	0	0	3						4					
6	3	3	3	2	0	0	3											

		V	olume	de entr	ada 7	x 7								Volu	me de	saída	
	0	1 2 3 4 5						Filt	o W (3	x 3)							
0	2	2	2	2	3	3	3	-1	0.5	1			0	1	2	3	4
1	1	0	1	1	1	1	0	-1	0	0		0	1.5	2.5	1	1.5	0.5
2	1	1	3	3	0	0	0	0	0	0.5		1	0.5	1.5			
3	1	1	3	2	0	0	3					2					
4	1	1	3	2	0	0	3					3					
5	1	3	3	2	0	0	3					4					
6	3	3	3	2	0	0	3										

		V	olume	de entr	ada 7	κ 7								Volu	me de	saída	
	0	1	2	3	4	5	6	Filt	o W (3	x 3)							
0	2	2	2	2	3	3	3	-1	0.5	1			0	1	2	3	4
1	1	0	1	1	1	1	0	-1	0	0		0	1.5	2.5	1	1.5	0.5
2	1	1	3	3	0	0	0	0	0	0.5		1	0.5	1.5	-2.5		
3	1	1	3	2	0	0	3					2					
4	1	1	3	2	0	0	3					3					
5	1	3	3	2	0	0	3					4					
6	3	3	3	2	0	0	3										

		V	olume	de entr	ada 7	x 7									Volu	me de	saída	
	0	1	2	3	4	5	6		Filtr	o W (3	x 3)							
0	2	2	2	2	3	3	3		-1	0.5	1			0	1	2	3	4
1	1	0	1	1	1	1	0		-1	0	0		0	1.5		1	1.5	0.5
2	1	1	3	3	0	0	0		0	0	0.5		1	0.5	1.5	-2.5		
3	1	1	3	2	0	0	3						2					
4	1	1	3	2	0	0	3						3					
5	1	3	3	2	0	0	3						4					
6	3	3	3	2	0	0	3											

		V	olume	de entr	ada 7	x 7									Volu	me de	saída		
	0	1							Filtr	o W (3	x 3)								
0	2	2	2	2	3	3	3		-1	0.5	1			0	1	2	3	4	
1	1	0	1	1	1	1	0		-1	0	0		0	1.5	2.5	1	1.5	0.5	
2	1	1	3	3	0	0	0		0	0	0.5		1	0.5		-2.5	-2.5	1	
3	1	1	3	2	0	0	3						2						
4	1	1	3	2	0	0	3						3						
5	1	3	3	2	0	0	3						4						
6	3	3	3	2	0	0	3												

		V	olume	de entr	ada 7	x 7								Volu	me de	saída	
	0	1	2	3	4	5	6	Filt	ro W (3	x 3)							
0	2	2	2	2	3	3	3	-1	0.5	1			0	1	2	3	4
1	1	0	1	1	1	1	0	-1	0	0		0	1.5	2.5	1	1.5	0.5
2	1	1	3	3	0	0	0	0	0	0.5		1		1.5	-2.5		1
3	1	1	3	2	0	0	3					2	3				
4	1	1	3	2	0	0	3					3					
5	1	3	3	2	0	0	3					4					
6	3	3	3	2	0	0	3										

		V	olume	de entr	ada 7	x 7								Volu	me de	saída	
	0	1	2 2 2 3 3					Filtr	o W (3	3 x 3)							
0	2	2	2	2	3		3	-1	0.5	1			0	1	2	3	4
1	1	0	1	1	1	1	0	-1	0	0		0	1.5	2.5	1	1.5	0.5
2	1	1	3	3	0	0	0	0	0	0.5		1	0.5		-2.5	-2.5	1
3	1	1	3	2	0	0	3					2	3	3.5	-4.5	-5	1.5
4	1	1	3	2	0	0	3					3	3	2.5	-5	-4	4.5
5	1	3	3	2	0	0	3					4	3	0.5	-5	-4	4.5
6	3	3	3	2	0	0	3										

➤ **Zero-padding**: para compensar a impossibilidade de computar todos os valores;

- ➤ **Zero-padding**: para compensar a impossibilidade de computar todos os valores;
 - Amplia-se a entrada de forma que o volume de saída seja igual ao de entrada

		Vol	ume de	entra	da 7 x	7 + ze	ro pad	ding								V	olume	de saí	da			
	0	1	2	3	4	5	6	7	8	Filtr	o W (3	3 x 3)										
0	0	0	0	0	0	0	0	0	0						0	1	2	3	4	5	6	
0	0	2	2	2	2	3	3	3	0	-1	0.5	1		0								
1	0	1	0	1	1	1	1	0	0	-1	0	0		1								
2	0	1	1	3	3	0	0	0	0	0	0	0.5		2								
3	0	1	1	3	2	0	0	3	0					3								
4	0	1	1	3	2	0	0	3	0					4								
5	0	1	3	3	2	0	0	3	0					5								
6	0	3	3	3	2	0	0	3	0					6								
7	0	0	0	0	0	0	0	0	0													

		v	olume	de ent	rada 7	x 7 +	paddii	ng								V	olume	de saí	da 7 x	7			
	0	1	2	3	4	5	6	7	8	1	Filtre	w (3	x 3)										
0	0	0	0	0	0	0	0	0	0							0	1	2	3	4	5	6	
0	0	2	2	2	2	3	3	3	0		-1	0.5	1		9	0							
1	0	1	0	1	1	1	1	0	0		-1	0	0	- 1	1								
2	0	1	1	3	3	0	0	0	0		0	0	0.5		2								
3	0	1	1	3	2	0	0	3	0						3								
4	0	1	1	3	2	0	0	3	0						4								
5	0	1	3	3	2	0	0	3	0						5								
6	0	3	3	3	2	0	0	3	0						5								
7	0	0	0	0	0	0	0	0	0														

		v	olume	de en	trada 7	x 7 +	paddii	ng								Volu	ne de	saída				
	0	1	2	3	4	5	6	7	8	Filtr	o W (3	3 x 3)										
0	0	0	0	0	0	0	0	0	0						0	1	2	3	4	5	6	
0	0	2	2	2	2	3	3	3	0	-1	0.5	1		0	0	-1.5						
1	0	1	0	1	1	1	1	0	0	-1	0	0		1								
2	0	1	1	3	3	0	0	0	0	0	0	0.5		2								
3	0	1	1	3	2	0	0	3	0					3								
4	0	1	1	3	2	0	0	3	0					4								
5	0	1	3	3	2	0	0	3	0					5								
6	0	3	3	3	2	0	0	3	0					6								
7	0	0	0	0	0	0	0	0	0													Г

		v	olume	de en	trada 7	x 7 +	paddii	ng								Volu	me de	saída				
	0	1	2	3	4	5	6	7	8	Filtr	o W (3	3 x 3)										
0	0	0	0	0	0	0	0	0	0						0	1	2	3	4	5	6	
0	0	2	2	2	2	3	3	3	0	-1	0.5	1		0	0	-1.5	-1.5					
1	0	1	0	1	1	1	1	0	0	-1	0	0		1								
2	0	1	1	3	3	0	0	0	0	0	0	0.5		2								
3	0	1	1	3	2	0	0	3	0					3								
4	0	1	1	3	2	0	0	3	0					4								
5	0	1	3	3	2	0	0	3	0					5								
6	0	3	3	3	2	0	0	3	0					6								
7	0	0	0	0	0	0	0	0	0													

		v	olume	de en	rada 7	x 7 +	paddii	ng								Volu	me de	saída				
	0	1	2	3	4	5	6	7	8	Filtr	o W (3	3 x 3)										
0	0	0	0	0	0	0	0	0	0						0	1	2	3	4	5	6	
0	0	2	2	2	2	3	3	3	0	-1	0.5	1		0	0	-1.5	-1.5	-1.5				
1	0	1	0	1	1	1	1	0	0	-1	0	0		1								
2	0	1	1	3	3	0	0	0	0	0	0	0.5		2								
3	0	1	1	3	2	0	0	3	0					3								
4	0	1	1	3	2	0	0	3	0					4								
5	0	1	3	3	2	0	0	3	0					5								
6	0	3	3	3	2	0	0	3	0					6								
7	0	0	0	0	0	0	0	0	0													

		ν	olume	de en	rada 7	x 7 +	paddii	ng							Volu	me de	saída				
	0	1	2	3	4	5	6	7	8	Filtr	o W (3	3 x 3)									
0	0	0	0	0	0	0	0	0	0					0	1	2	3	4	5	6	
0	0	2	2	2	2	3	3	3	0	-1	0.5	1	0	0	-1.5	-1.5	-1.5	-1.5	-3	-3	
1	0	1	0	1	1	1	1	0	0	-1	0	0	1								
2	0	1	1	3	3	0	0	0	0	0	0	0.5	2								
3	0	1	1	3	2	0	0	3	0				3								
4	0	1	1	3	2	0	0	3	0				4								
5	0	1	3	3	2	0	0	3	0				5								
6	0	3	3	3	2	0	0	3	0				6								
7	0	0	0	0	0	0	0	0	0												

		V	olume	de en	rada 7	x 7 +	paddii	ng							Volu	me de	saída				
	0	1	2	3	4	5	6	7	8	Filtr	o W (3	3 x 3)									
0	0	0	0	0	0	0	0	0	0					0	1	2	3	4	5	6	
0	0	2	2	2	2	3	3	3	0	-1	0.5	1	0	0	-1.5	-1.5	-1.5	-1.5	-3	-3	
1	0	1	0	1	1	1	1	0	0	-1	0	0	1	3.5	1.5	2.5	1	1.5	0.5	-2.5	
2	0	1	1	3	3	0	0	0	0	0	0	0.5	2	1	0.5	1.5	-2.5	-2.5	1	-1	
3	0	1	1	3	2	0	0	3	0				3	2	3	3.5	-4.5	-5	1.5	0	
4	0	1	1	3	2	0	0	3	0				4	3	3	2.5	-5	-4	4.5	1.5	
5	0	1	3	3	2	0	0	3	0				5	3	3	0.5	-5	-4	4.5	1.5	
6	0	3	3	3	2	0	0	3	0				6	3.5	0.5	-2.5	-5	-4	3	1.5	
7	0	0	0	0	0	0	0	0	0												Г

► Convolução em profundidade: quando a entrada possui mais do que 1 canal

- ► Convolução em profundidade: quando a entrada possui mais do que 1 canal
 - ▶ O filtro terá $k \times k \times p$, onde p é a quantidade de canais de entrada

Vo	lume d	e entra	ida 6 x	6 x 3	(RGB) + zei	o pado	ling	1	Filtro	W (3	х 3 х	3)					ν	olume	de saí	da 6 x	6	
	0	1	2	3	4	5	6	7		-1	0.5	1											
0	0	0	0	0	0	0	0	0	ľ	-1	0	0						0	1	2	3	4	5
0	0	2	2	2	2	3	3	0		0	0	0.5					0						
1	0	1	0	1	1	1	1	0			1	0	1				1						
2	0	1	1	3	3	0	0	0			-1	1	0				2						
3	0	1	1	3	2	0	0	0			0	0	-0.5				3						
4	0	1	1	3	2	0	0	0				1	0	1			4						
5	0	1	3	3	2	0	0	0				1	0.5	-1			5						
7	0	0	0	0	0	0	0	0				0	1	0									
	0	1	2	3	4	5	6	7			0	1	2	3	4	5	6	7					
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0					
0	0	3	3	1	1	1	1	0		0	0	0	3	2	2	3	2	0					
1	0	3	0	3	1	1	1	0		1	0	1	1	1	1	1	1	0					
2	0	3	3	3	3	0	0	0		2	0	1	2	3	3	0	0	0					
3	0	1	0	3	2	0	0	0		3	0	1	2	0	2	0	0	0					
4	0	0	0	3	2	0	0	0		4	0	1	2	3	1	1	1	0					
5	0	1	2	2	2	0	0	0		5	0	1	3	3	2	1	1	0					
6	0	2	2	2	2	0	0	0		6	0	3	3	0	2	0	2	0					
7	0	0	0	0	0	0	0	0		7	0	0	0	0	0	0	0	0					

200

Vol	lume d	le entra	ada 6 x	6 x 3	(RGB) + zei	o pado	ling	Filtr	o W (3	х 3 х	3)					١	/olume	de sai	ída 6 x	6	
	0	1	2	3	4	5	6	7	-1	0.5	1											
0	0	0	0	0	0	0	0	0	-1	0	0						0	1	2	3	4	5
0	0	2	2	2	2	3	3	0	0	0	0.5					0	1	-2.5				
1	0	1	0	1	1	1	1	0		1	0	1				1						
2	0	1	1	3	3	0	0	0		-1	1	0				2						
3	0	1	1	3	2	0	0	0		0	0	-0.5				3						
4	0	1	1	3	2	0	0	0			1	0	1			4						
5	0	1	3	3	2	0	0	0			1	0.5	-1			5						
7	0	0	0	0	0	0	0	0			0	1	0									
	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
0	0	3	3	1	1	1	1	0	0	0	0	3	2	2	3	2	0					
1	0	3	0	3	1	1	1	0	1	0	1	1	1	1	1	1	0					
2	0	3	3	3	3	0	0	0	2	0	1	2	3	3	0	0	0					
3	0	1	0	3	2	0	0	0	3	0	1	2	0	2	0	0	0					
4	0	0	0	3	2	0	0	0	4	0	1	2	3	1	1	1	0					
5	0	1	2	2	2	0	0	0	5	0	1	3	3	2	1	1	0					
6	0	2	2	2	2	0	0	0	6	0	3	3	0	2	0	2	0					
7	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0					

200

Vo	lume d	e entra	ada 6 x	6 x 3	(RGB) + zei	o pado	ling		Filtro	W (3	х 3 х	3)					ν	olume	de saí	da 6 x	6	
	0	1	2	3	4	5	6	7		-1	0.5	1											
0	0	0	0	0	0	0	0	0		-1	0	0						0	1	2	3	4	5
0	0	2	2	2	2	3	3	0		0	0	0.5					0	1	-2.5	-1	-1	0.5	2
1	0	1	0	1	1	1	1	0			1	0	1				1	11.5	5.5	16.5	9.5	8	3
2	0	1	1	3	3	0	0	0			-1	1	0				2	4.5	8	4	10	1.5	1.5
3	0	1	1	3	2	0	0	0			0	0	-0.5				3	7.5	14.5	19.5	2.5	2	1
4	0	1	1	3	2	0	0	-2				1	0	1			4	3.5	9	16	1.5	-0.5	2.5
5	0	1	3	3	2	0	0	-1				1	0.5	-1			5	4	11	6	7	-0.5	4.5
7	0	0	0	0	0	0	0	0				0	1	0									
	0	1	2	3	4	5	6	7			0	1	2	3	4	5	6	7					
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0					
0	0	3	3	1	1	1	1	0		0	0	0	3	2	2	3	2	0					
1	0	3	0	3	1	1	1	0		1	0	1	1	1	1	1	1	0					
2	0	3	3	3	3	0	0	0		2	0	1	2	3	3	0	0	0					
3	0	1	0	3	2	0	0	0		3	0	1	2	0	2	0	0	0					
4	0	0	0	3	2	0	0	0		4	0	1	2	3	1	1	1	0					
5	0	1	2	2	2	0	0	0		5	0	1	3	3	2	1	1	0					
6	0	2	2	2	2	0	0	0		6	0	3	3	0	2	0	2	0					
7	0	0	0	0	0	0	0	0		7	0	0	0	0	0	0	0	0					

Camada convolucional

Entrada
$$(m \times n \times p)$$

e.g.
$$32 \times 32 \times 3$$

Filtro (kernel ou neurônio convolutional) w com tamanho $k \times k \times p$, e.g. $5 \times 5 \times 3$

 Cada neurônio realiza a convolução da entrada e gera um volume (matriz/tensor) de saída

Centrado em um pixel específico, temos, matematicamente

$$\mathbf{w}^t \mathbf{x} + b$$

- sim, há a soma de bias para além dos pesos da convolução.

Camada convolucional

- Mapas de ativação (ou características) são obtidos após convolução e função de ativação (e.g. ReLU);
- Empilhados formam um tensor que será a entrada da próxima camada.

Camada convolucional: campo receptivo local

Camada convolucional: feature maps

Camada convolucional: entrada, filtro, passo

A camada convolucional tem que levar em conta:

- tamanho da entrada (largura, altura, profundidade)
- tamanho do filtro
 - ▶ a profundidade deve ser igual à da entrada
 - ▶ altura e largura afetam o campo receptivo local

Camada convolucional: entrada, filtro, passo

A camada convolucional tem que levar em conta:

- tamanho da entrada (largura, altura, profundidade)
- ► tamanho do filtro
 - ► a profundidade deve ser igual à da entrada
 - altura e largura afetam o campo receptivo local
- stride (passo)
 - ▶ 1 : todos os pixels são filtrados pelo neurônio
 - > 1 : salta um número de pixels em determinada direção, a cada convolução.
 - nesse caso o volume de saída tem tamanho reduzido, ex. com passo 2

Entra	ıda 6 ɔ	6 x 3	3 (RG	B) + :	zero p	addin	g + st	ride (2,2)	Filtro	W (3	хЗх	3)					V	olume	de sa	ıída 3	х 3
	0	1	2	3	4	5	6	7		-1	0.5	1										
0	0	0	0	0	0	0	0	0		-1	0	0							0	1	2	
0	0	2	2	2	2	3	3	0		0	0	0.5						0				
1	0	1	0	1	1	1	1	0			1	0	1					1				
2	0	1	1	3	3	0	0	0			-1	1	0					2				
3	0	1	1	3	2	0	0	0			0	0	-0.5									
4	0	1	1	3	2	0	0	0				1	0	1								
5	0	1	3	3	2	0	0	0				1	0.5	-1								
7	0	0	0	0	0	0	0	0				0	1	0								
	0	1	2	3	4	5	6	7			0	1	2	3	4	5	6	7				
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0				
0	0	3	3	1	1	1	1	0		0	0	0	3	2	2	3	2	0				
1	0	3	0	3	1	1	1	0		1	0	1	1	1	1	1	1	0				
2	0	3	3	3	3	0	0	0		2	0	1	2	3	3	0	0	0				
3	0	1	0	3	2	0	0	0		3	0	1	2	0	2	0	0	0				
4	0	0	0	3	2	0	0	0		4	0	1	2	3	1	1	1	0				
5	0	1	2	2	2	0	0	0		5	0	1	3	3	2	1	1	0				
6	0	2	2	2	2	0	0	0		6	0	3	3	0	2	0	2	0				
7	0	0	0	0	0	0	0	0		7	0	0	0	0	0	0	0	0				

Entra	ıda 6 ɔ	6 x 3	3 (RG	B) + 2	zero p	addin	g + st	ride (2,2)	Fi	ltro V	W (3	х 3 х 3	3)		В	as		v	olume	de saí	da 3 x	3
	0	1	2	3	4	5	6	7		-	1	0.5	1			0	.5						
0	0	0	0	0	0	0	0	0		-	1	0	0										
0	0	2	2	2	2	3	3	0			0	0	0.5							0	1	2	
1	0	1	0	1	1	1	1	0				1	0	1					0	1.5			
2	0	1	1	3	3	0	0	0				-1	1	0					1				
3	0	1	1	3	2	0	0	0				0	0	-0.5					2				
4	0	1	1	3	2	0	0	0					1	0	1								
5	0	1	3	3	2	0	0	0					1	0.5	-1								
7	0	0	0	0	0	0	0	0					0	1	0								
	0	1	2	3	4	5	6	7				0	1	2	3	4	5	6	7				
0	0	0	0	0	0	0	0	0		-	2	0	0	0	0	0	0	0	0				
0	0	3	3	1	1	1	1	0			2	0	0	3	2	2	3	2	0				
1	0	3	0	3	1	1	1	0			1	0	1	1	1	1	1	1	0				
2	0	3	3	3	3	0	0	0			2	0	1	2	3	3	0	0	0				
3	0	1	0	3	2	0	0	0			3	0	1	2	0	2	0	0	0				
4	0	0	0	3	2	0	0	0			4	0	1	2	3	1	1	1	0				
5	0	1	2	2	2	0	0	0			5	0	1	3	3	2	1	1	0				
6	0	2	2	2	2	0	0	0			6	0	3	3	0	2	0	2	0				
7	0	0	0	0	0	0	0	0			7	0	0	0	0	0	0	0	0				

Vo	lume d	e entra	ada 6 x	6 x 3	(RGB) + zer	o pade	ling		Filtro	W (3	х 3 х 3	3)		Bi	as		١	olume	de saí	da 3 x	3
	0	1	2	3	4	5	6	7		-1	0.5	1			0.	.5						
0	0	0	0	0	0	0	0	0		-1	0	0										
0	0	2	2	2	2	3	3	0		0	0	0.5							0	1	2	
1	0	1	0	1	1	1	1	0			1	0	1					0	1.5	-0.5		
2	0	1	1	3	3	0	0	0			-1	1	0					1				
3	0	1	1	3	2	0	0	0			0	0	-0.5					2				
4	0	1	1	3	2	0	0	0				1	0	1								
5	0	1	3	3	2	0	0	0				1	0.5	-1								
7	0	0	0	0	0	0	0	0				0	1	0								
	0	1	2	3	4	5	6	7			0	1	2	3	4	5	6	7				
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0				
0	0	3	3	1	1	1	1	0		0	0	0	3	2	2	3	2	0				
1	0	3	0	3	1	1	1	0		1	0	1	1	1	1	1	1	0				
2	0	3	3	3	3	0	0	0		2	0	1	2	3	3	0	0	0				
3	0	1	0	3	2	0	0	0		3	0	1	2	0	2	0	0	0				
4	0	0	0	3	2	0	0	0		4	0	1	2	3	1	1	1	0				
5	0	1	2	2	2	0	0	0		5	0	1	3	3	2	1	1	0				
6	0	2	2	2	2	0	0	0		6	0	3	3	0	2	0	2	0				
7	0	0	0	0	0	0	0	0		7	0	0	0	0	0	0	0	0				

Entra	da 6 2	6 x 3	3 (RG	B) + :	zero p	addin	g + st	ride (2,2)	Filtro	W (3	х 3 х 3	3)		Bi	as		٧	olume	de saí	da 3 x	3
	0	1	2	3	4	5	6	7		-1	0.5	1			0.	.5						
0	0	0	0	0	0	0	0	0		-1	0	0										
0	0	2	2	2	2	3	3	0		0	0	0.5							0	1	2	
1	0	1	0	1	1	1	1	0			1	0	1					0	1.5	-0.5	1	
2	0	1	1	3	3	0	0	0			-1	1	0					1				
3	0	1	1	3	2	0	0	0			0	0	-0.5					2				
4	0	1	1	3	2	0	0	0				1	0	1								
5	0	1	3	3	2	0	0	0				1	0.5	-1								
7	0	0	0	0	0	0	0	0				0	1	0								
	0	1	2	3	4	5	6	7			0	1	2	3	4	5	6	7				
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0				
0	0	3	3	1	1	1	1	0		0	0	0	3	2	2	3	2	0				
1	0	3	0	3	1	1	1	0		1	0	1	1	1	1	1	1	0				
2	0	3	3	3	3	0	0	0		2	0	1	2	3	3	0	0	0				
3	0	1	0	3	2	0	0	0		3	0	1	2	0	2	0	0	0				
4	0	0	0	3	2	0	0	0		4	0	1	2	3	1	1	1	0				
5	0	1	2	2	2	0	0	0		5	0	1	3	3	2	1	1	0				
6	0	2	2	2	2	0	0	0		6	0	3	3	0	2	0	2	0				
7	0	0	0	0	0	0	0	0		7	0	0	0	0	0	0	0	0				

Entra	da 6 2	6 x 3	RG	B) + 2	zero p	addin	g + st	ride (2	,2)	Filtro	W (3	х 3 х	3)		В	ias		V	/olume	de saí	da 3 x	3
	0	1	2	3	4	5	6	7		-1	0.5	1			0	.5						
0	0	0	0	0	0	0	0	0		-1	0	0										
0	0	2	2	2	2	3	3	0		0	0	0.5							0	1	2	
1	0	1	0	1	1	1	1	0			1	0	1					0	1.5	-0.5	1	
2	0	1	1	3	3	0	0	0			-1	1	0					1	5			
3	0	1	1	3	2	0	0	0			0	0	-0.5					2				
4	0	1	1	3	2	0	0	0				1	0	1								
5	0	1	3	3	2	0	0	0				1	0.5	-1								
7	0	0	0	0	0	0	0	0				0	1	0								
	0	1	2	3	4	5	6	7			0	1	2	3	4	5	6	7				
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0				
0	0	3	3	1	1	1	1	0		0	0	0	3	2	2	3	2	0				
1	0	3	0	3	1	1	1	0		1	0	1	1	1	1	1	1	0				
2	0	3	3	3	3	0	0	0		2	0	1	2	3	3	0	0	0				
3	0	1	0	3	2	0	0	0		3	0	1	2	0	2	0	0	0				
4	0	0	0	3	2	0	0	0		4	0	1	2	3	1	1	1	0				
5	0	1	2	2	2	0	0	0		5	0	1	3	3	2	1	1	0				
6	0	2	2	2	2	0	0	0		6	0	3	3	0	2	0	2	0				
7	0	0	0	0	0	0	0	0		7	0	0	0	0	0	0	0	0				

Classificação de dígitos com conv.layers

Classificação de dígitos com conv.layers

Número de parâmetros em CNNs

$$[(k \times k \times p) + 1] \times d$$
:

- **P** pesos dos filtros: $k \times k \times p$, p é dado pela profundidade da entrada
- número de filtros/neurônios: d (cada um gera um mapa de ativação)
- ▶ +1 é o termo bias de cada filtro

Ex: entrada $32 \times 32 \times 3$ e 3 camadas:

Número de parâmetros em CNNs

$$[(k \times k \times p) + 1] \times d$$
:

- **>** pesos dos filtros: $k \times k \times p$, p é dado pela profundidade da entrada
- número de filtros/neurônios: d (cada um gera um mapa de ativação)
- ▶ +1 é o termo bias de cada filtro

Ex: entrada $32 \times 32 \times 3$ e 3 camadas:

- ► Conv.Layer 1: k = 5, d = 8
- ► Conv.Layer 2: k = 3, d = 16
- Conv.Layer 3: k = 1, d = 32
- ▶ # parametros Conv.layer 1: $[(5 \times 5 \times 3) + 1] \times 8 = 608$
- \blacktriangleright # parameters Conv.layer 2: $[(3 \times 3 \times 8) + 1] \times 16 = 1168$
- \blacktriangleright # parameters Conv.layer 3: $[(1 \times 1 \times 16) + 1] \times 32 = 544$

Subamostragem: Pooling layer

Opera sobre cada mapa de ativação, reduzindo a dimensão lateral

- max pooling: aplica a operação de máximo local
- average pooling: aplica operação de média local

Ex.: max pooling com tamanho de pool 2 e passo 2.

Usar camadas convolucionais com passo/stride > 1 pode substituir pooling

Pooling layer

Reduzir o tamanho da entrada permite que o filtro opere em regiões maiores da imagem.

Empilhamento de camadas convolucionais aumenta o campo receptivo local não necessitando manter a resolução de entrada

128 x 128

64 x 64 32x32 16x16

(uso de filtro de mesmo tamanho em imagens progressivamente menores)

Global pooling

Obtém um valor por canal, como se o tamanho de pool fosse igual às dimensões laterais

Ex. numa entrada com $40 \times 40 \times 100$, a saída será 100 dimensões.

Voltando à arquitetura

Camadas densas e saída

Dense/fully connected (FC) layer:

- ▶ similar à de uma MLP
- pode ser vista como uma projeção dos dados em uma dimensionalidade arbitrária

Saída: comumente densa (ex: classificação e regressão)

- pode ser vista como um vetor de distribuição de probabilidades
- não é densa em redes completamente convolucionais (Fully Convolutional Networks)

Bibliography I

Rodrigo Mello, Moacir A. Ponti. Machine Learning: a practical approach on the statistical learning theory Springer, 2018.

Bibliography II

Moacir A. Ponti, Gabriel Paranhos da Costa. Como funciona o Deep Learning SBC, 2017. Book chapter.

https://arxiv.org/abs/1806.07908

Moacir A. Ponti, Leo Ribeiro, Tiago Nazaré, Tu Bui, John Collomosse. Everything You Wanted to Know About Deep Learning for Computer Vision but were Afraid to Ask. SIBGRAPI-T, 2017. Tutorial.

Moacir A. Ponti, Introduction to Deep Learning (Code). Github Repository:

https://github.com/maponti/deeplearning_intro_datascience CNN notebook: https://colab.research.google.com/drive/ 1EnNjtzdw8ftI07I9xCUhb-ovq1iNy4pf