第八次习题课

方法提要、习题讲解和内容扩充

助教:邓先涛

2023年11月6日

重点知识提要

重点知识提要

▶ 初等因子与不变因子: $M=\oplus_{i=1}^s\oplus_{j=1}^{r_i}N_{ij_i}$ 为第一标准分解; $M=\oplus_{k=1}^lM_k$ 为第二标准分解.

```
\begin{array}{ccccc} \operatorname{Ann}(N_{11}) & \operatorname{Ann}(N_{12}) & \cdots & \operatorname{Ann}(N_{1r_1}) \\ \operatorname{Ann}(N_{21}) & \operatorname{Ann}(N_{22}) & \cdots & \operatorname{Ann}(N_{2r_2}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Ann}(N_{s1}) & \operatorname{Ann}(N_{12}) & \cdots & \operatorname{Ann}(N_{sr_s}) \end{array}
\begin{array}{cccc} \operatorname{Ann}(N_{11}) & \operatorname{Ann}(M_{11}), \operatorname{Ann}(M_{21}), \cdots, \operatorname{Ann}(M_{11}), \operatorname{Ann}(M_{
```

- ▶ 主理想整环上有限生成模结构应用:有限 Abel 群的结构定理;有理标准型; Jordan 标准型.
- ▶ 域扩张的基本概念:扩张,单扩张,代数扩张.

第六章习题讲解

第六章第 15 题

试定出全部阶为 392 的交换群互不同构的类型.

有限交换群结构定理

思维拓展

试着分类阶为 12 的交换群和阶为 12 的群,以此观察有限生成模结构定理在有限 Able 群分类中的便利. 并由此思考什么叫做完全不变量.

证明

▶ 注意到 392 = 2³ × 7², 初等因子分解

$$(2^3, 7^2), (2^3, 7, 7)$$

$$(2^2, 2, 7^2), (2^2, 2, 7, 7)$$

$$(2,2,2,7^2), (2,2,2,7,7)$$

▶ 不变因子分解

$$(2^3 \times 7^2), \qquad (2^3 \times 7, 7)$$

$$(2^2 \times 7^2, 2), (2^2 \times 7, 2 \times 7)$$

$$(2 \times 7^2, 2, 2), (2 \times 7, 2 \times 7, 2)$$

一般情形的结果

设 $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$, 试分析 n 阶交换群互不同构的类型的数目.

有限交换群结构定理和简单的组合

思维拓展

交换群是简单的,你能否给出 $n=p_1p_2\cdots p_r$ 阶群是交换群的等价条件?

- ▶ 对于不同的素数 p, 交换群不同的 p 子群相 互独立.
- ▶ p^e 阶交换群的互不同构的类型为 e 的整数 分拆数 h(e). 如 4 = 4 + 0 = 3 + 1 =2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1
- ▶ 所有数目就是 $h(e_1) \cdot h(e_2) \cdots h(e_r)$.

第六章第 16 题

不变因子为 $(3,3^2,3^2,3^5,3^7)$ 的交换群中 9 阶子 群的个数.

有限交换群结构定理和简单的组合

- ▶ 将题述条件下的群 G 写作 $\mathbb{Z}/(3) \oplus \mathbb{Z}/(9) \oplus \mathbb{Z}/(9) \oplus \mathbb{Z}/(3^5) \oplus \mathbb{Z}/(3^7)$
- ▶ 阶为 9 的子群有两种类型: Z/(9) 和 $\mathbb{Z}/(3) \oplus \mathbb{Z}/(3)$.

- ▶ 9 阶循环子群个数: G 中每一个 9 阶元均 可以生成一个 9 阶子群。 G 中每一个 9 阶 循环子群中存在6个9阶元。
- ▶ G + 9 阶元个数 = $3 \times 9^4 3^5 = 19440$.
- ▶ G + 9 阶循环子群个数 = 19440/6 = 3240.
- ▶ $\mathbb{Z}/(3) \times \mathbb{Z}/(3)$ 型群个数: G 中该类型群均 由2个3阶循环群直和生成。G中该类型 群可以写成 6 种不同的直和方式。
- ▶ $G \rightarrow 3$ 阶子群数量 = $(3^5 1)/2 = 121$.
- ▶ $G \mapsto 3 \times 3$ 型子群数量 = $C_{191}^2/6 = 1210$.

例题补充

设 p 为素数, $G = \bigoplus_{i=1}^r \mathbb{Z}/(p) (r \ge 2)$,计算 G中 p 阶子群和 p^2 阶子群的个数.

有限交换群结构定理和简单的组合

思维拓展

设 p 为素数, $G = \bigoplus_{i=1}^r \mathbb{Z}/(p^{e_i}) (r \ge 2)$ 中 p^2 阶子群的个数?

- ▶ p 阶子群个数: $A = (p^r 1)/(p 1)$
- ▶ p² 阶循环子群个数: 0
- ▶ $p \times p$ 型群中 p 阶子群个数: $\frac{p^2-1}{p-1} = p+1$
- ▶ $p \times p$ 型子群的个数:

$$\frac{C_A^2}{C_{p+1}^2} = \frac{(p^r - 1)(p^r - p)}{(p+1)p(p-1)^2}$$

第六章第 21 题

设 F 是特征 0 的域, $A \in M_n(F)$,证明:A 幂零当且仅当 $tr(A^i) = 0$, $\forall i = 1, 2, \dots, n$.

代数闭域上的矩阵的 Jordan 标准型

思维拓展

该方法在特征 p 的域上是否有效,本质原因是什么?如何刻画特征 p 域上的幂零矩阵. 如何正确使用范德蒙矩阵解决该问题.

- ▶ A 作 Jordan 分解, A = diag(C₁, · · · , C_m).
 这里 C_i 是标准 Jordan 矩阵, 且可设后 m - t 个特征值均为 0.
- ▶ 若 A 幂零,则 A^i 的特征值均为 0.
- ▶ 若 $\operatorname{tr}(A^i) = 0$,反设 A 非幂零,则 $A = \operatorname{diag}(B, C)$, $B = \operatorname{diag}(C_1, \dots, C_t)$.
- ▶ $tr(B^i) = 0$, 考虑 B 的极小多项式 m(x).
- ▶ tr(m(B)) = 0 与 $m(0) \neq 0$ 矛盾.

补充例题

设 $A \in M_5(\mathbb{C})$ 极小多项式为 $(\lambda - 1)(\lambda - 2)^2$,则 \mathbb{C}^5 在矩阵 A 作用下作为 $\mathbb{C}[\lambda]$ 模的初等因子和不变因子有哪些可能?

初等因子与不变因子

思维拓展

设 $A \in M_5(\mathbb{C})$ 特征多项式为 $(\lambda - 1)^3(\lambda - 2)^2$,则 \mathbb{C}^5 在矩阵 A 作用下作为 $\mathbb{C}[\lambda]$ 模的初等因子和不变因子有哪些可能?

- ▶ 初等因子可能
- \blacktriangleright $\lambda 1, \lambda 1, \lambda 1, (\lambda 2)^2$
- $\rightarrow \lambda 1, \lambda 1, \quad \lambda 2, (\lambda 2)^2$
- $\lambda 1$, $\lambda 2$, $\lambda 2$, $(\lambda 2)^2$
- ► $\lambda 1$, $(\lambda 2)^2$, $(\lambda 2)^2$
- ▶ 不变因子类似

第七章习题讲解

第七章第3题第1问第2问

设 L, M 为域 K 的子域,LM 为 K 中包含 L 和 M 的子域的交,设 $L \cap M = F$, L = F(S), M = F(T), 证明: $LM = F(S \cup T) = M(S)$.

域中添加元素生成大域

思维拓展

两个域的交还是域?任意多个域的交还是域?

- ▶ 注意到 F(T), $F(S) \subset F(S \cup T)$, 因此 $LM \subset F(S \cup T)$.
- ► $S \subset L \subset LM$, $T \subset M \subset LM$, 因此 $F(S \cup T) \subset LM$.
- ▶ 同理证明 $M(S) = F(S \cup T)$.

第七章第3题第3问

设 L, M 为域 K 的子域,LM 为 K 中包含 L 和 M 的子域的交,则 $L \cup M \subset LM$. 请给出 $LM = L \cup M$ 的等价条件.

域扩张中的基本运算

思维拓展

有没有更好的方法刻画 LM,特别的,定义集合 $L\cdot M=\{\sum_{i=1}^n a_i\cdot b_i|a_i\in L,b_i\in M\}$,LM 与 $L\cdot M$ 之间有多大差别?何时相等?

- ▶ 注意到 $M, L \subset LM$, 因此 $L \cup M \subset LM$.
- ▶ 断言 $LM = L \cup M$ 当且仅当 L 与 M 有包含 关系.
- ▶ 后推前:显然
- ▶ 前推后:若不然,则存在 $a \in M \setminus L$ 和 $b \in L \setminus M$. 验证 $ab \in LM$ 但 $ab \notin L \cup M$.

第七章第6题第1问

求扩域 $\mathbb{Q}(\sqrt{2},\sqrt{3})$ 和 $\mathbb{Q}(\sqrt{3},\sqrt{-1},\omega)$ 作为 \mathbb{Q} 线性空间的一组基,其中 $\omega=\frac{-1+\sqrt{-3}}{2}$.

扩域中的元素表达

证明

- ▶ 将 $\mathbb{Q}(\sqrt{2},\sqrt{3})$ 看作 $\mathbb{Q}(\sqrt{2})(\sqrt{3})$,其中元素可以写作 $x+y\sqrt{3}$,这里 $x,y\in\mathbb{Q}(\sqrt{2})$.
- ▶ $\mathbb{Q}(\sqrt{2})$ 中的可以写作 $a+b\sqrt{2}$, 其中 $a,b\in\mathbb{Q}$. $\mathbb{Q}(\sqrt{2},\sqrt{3})$ 中的元素写作 $a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}$.
- ▶ 验证 $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$ 是 $\mathbb Q$ 线性无关. 否则存在整数 a,b,c,d 使得 $a+b\sqrt{3}=c\sqrt{2}+d\sqrt{6}$ 矛盾.
- ▶ 第二个同样方法,只需要注意 $\mathbb{Q}(\sqrt{3}, \sqrt{-1}, \omega) = \mathbb{Q}(\sqrt{3}, \sqrt{-1})$.

思维拓展

扩域的基并不容易找寻,如找到 $\mathbb{Q}\left(\sqrt{\sqrt{5}+\sqrt{3}},\sqrt{\sqrt{5}-\sqrt{3}}\right)$ 和 $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$ 的 \mathbb{Q} 基,并证明.

彭老师课件 14 页 12 题

设 d_1 和 d_2 是两个无平方因子整数,证明 $\mathbb{Q}(\sqrt{d_1})$ 与 $\mathbb{Q}(\sqrt{d_2})$ 之间存在域同构当且仅当 $d_1=d_2$.

扩域中的元素表达

证明

- ▶ 后推前显然,下证前推后,设 $\phi: \mathbb{Q}(\sqrt{d_1}) \to \mathbb{Q}(\sqrt{d_2})$ 为域同构. $\phi(\sqrt{d_1}) = a + b\sqrt{d_2}$.
- ▶ 注意到 $\phi(s) = s, \forall s \in \mathbb{Q}$, 立刻得到 $d_1 = (a + b\sqrt{d_2})^2 = a^2 + d_2b^2 + 2ab\sqrt{d_2}$.
- ▶ ab = 0. 无论 a = 0 还是 b = 0 均可以得到矛盾.

思维拓展

设 $\alpha, \beta \in \mathbb{C}$,那么 $\mathbb{Q}(\alpha)$ 与 $\mathbb{Q}(\beta)$ 之间存在域同构的充要条件是什么?

彭老师课件 14 页 15 题

设 F 是一个域, $G \subset F^{\times}$ 是 F 的有限乘法子群,证明:G 是循环群.

数论函数公式与莫比乌斯反演

证明

- ▶ 设|G| = n,则 G 中元素的阶均为 n 的因子,记 $G_m = \{x \in G \mid \operatorname{ord}(x) = m\}$.
- ▶ G 的每一个元素均是属于某一个 G_m 中,立刻得到 $n = \sum_{m|n} |G_m|$.
- ▶ $|G_m| \leq \psi(m)$, 这里 ψ 为欧拉函数. 且 $\sum_{m|n} \psi(m) = n$.
- ▶ 推出 $G_n \neq 0$, 因此存在 $q \in G_n$ 使得 $G = \langle q \rangle$.

思维拓展

设 R 是一个整环, $G \subset R^{\times} := \{x \in R \mid \exists y, xy = 1\}$ 是 R 的有限乘法子群,那么 G 的结构如何?如

果是一般的交换环呢?

问题补充和方法扩张

问题 1

如何刻画域的自同态数? 如 $\alpha \in \mathbb{C}$, $\mathbb{Q}(\alpha)$ 有多少? 如 \mathbb{R} 有多少域自同态? 如 \mathbb{C} 有多少域同态?

简要说明

- ▶ 对于 $\mathbb{Q}(\alpha)$, 自同态数依赖于 α 有多少可选择的像.
- ▶ 对于 ℝ, 自同态数只有零同态和恒等自同构.
- ▶ 对于 \mathbb{C} ,自同态数是复杂的,分为两类:限制在 \mathbb{R} 上为恒等自同构;限制在 \mathbb{R} 上不是 \mathbb{R} 上的恒等自同构。

问题 2

设 α, β 是 \mathbb{Q} 上的代数元, 是否存在 γ 使得 $\mathbb{Q}(\gamma) = \mathbb{Q}(\alpha, \beta)$.

简要说明

- **▶** 如 $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2},\sqrt{3}).$
- ▶ 设 α 的极小多项式为 f(x), 全部根为 $\alpha=\alpha_1,\cdots,\alpha_n$, β 的极小多项式为 g(x), 全部根为 $\beta=\beta_1,\cdots,\beta_m$,
- ▶ 存在有理数 $b \in \mathbb{Q}$ 使得 $\alpha_i + b\beta_j \neq \alpha_1 + b\beta_1$ 对一切 $j \neq 1$ 成立. 令 $\gamma = \alpha_1 + b\beta_1$.
- ▶ 在 \mathbb{C} 中有 $gcd(f(\gamma bx), g(x)) = x \beta_1$, 均是 $\mathbb{Q}(\gamma)$ 中的多项式.
- ▶ 推出 $\beta_1 \in \mathbb{Q}(\gamma)$, 立刻得到 $\mathbb{Q}(\gamma) = \mathbb{Q}(\alpha, \beta)$.