DS 3 : Chimie & Lois du frottement solide & Thermodynamique des systèmes ouvert Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-07	Chimie		
01-03	Structure du silicium		
1	électron de cœur : $1s^22s^22p^6$ électron de valence : $3s^23p^2$	1	
2	n=3 donc 3ieme période, 4 électrons de valence donc colonne IV	1	
	ou $4+10 = 14$		
	Le carbone C qui a 4 électron de valence. C est plus électronégatif		
	car au dessus.		
3	le nombre d'oxydation est à chaque fois $+IV$	1	
04-07	Production du nitrure de silicium		
4	$2N_2(g) + 3 \operatorname{Si}(s) = \operatorname{Si}(s)$	1	
5	Elles sont nulles car il s'agit de corps pur dans leur état standard	1	
	de référence. On utilise la loi de Hess $\Delta_r H^{\circ} = \Delta_f H^{\circ}(Si_3N_4)$ –		
	$2 \times 0 - 3 \times 0 = -744 \text{ kJ.K}^{-1}.\text{mol}^{-1}$		
6	transformation adiabatique et isobare donc $\Delta H = 0$ donc	1	
	$\xi_f \Delta_r H^{\circ}(T_i) + \sum_{\text{especes}} n_f c_p^{\circ}(T_f - T_i) = 0$ on fait un tableau		
	d'avancement aux proportions stœchiométriques donc à l'état ini-		
	$ \text{tial } n_i(N_2) = 2\xi_f, \ n_i(Si) = 3\xi_f \text{ et } n_i(Si_3N_4) = 0, \ \text{à l'état}$		
	final $n_i(N_2)=0,\ n_i(Si)=0$ et $n_i(Si_3N_4)=\xi_f$. On en dé-		
	duit $\xi_f \Delta_r H^{\circ}(T_i) + \xi_f c_p^{\circ}(Si_3N_4)(T_f - T_i) = 0$ donc $T_f = T_i -$		
	$\frac{\Delta_r H^{\circ}}{c_n^{\circ}(Si_3N_4)} = 8130 \text{ K. Cette température ne peut être atteinte}$		
	$\frac{1}{c_p^{\circ}(Si_3N_4)}$ – 3150 K. Cettle temperature ne peut etre attente		
	dans une enceinte car les matériaux fondent.		

7	On refait un tableau d'avancement avec $n_f(N_2) = 0, 9n_i(N_2)$ donc	1	
	$n_i(N_2) - 2\xi_f = 0,9n_i(N_2)$ d'où $n_f(N_2) = 0,9n_i(N_2) = 0,9 \times$		
	$\frac{2}{0.1}\xi_f = 18\xi_f$ et on ajoute le réactif restant à la somme sur les		
	espèces d'où $\xi_f \Delta_r H^{\circ}(T_i) + \xi_f c_p^{\circ}(S_{i3}N_4)(T_f - T_i) + 18\xi_f c_p^{\circ}(N_2)(T_f - T_i)$		
	$T_i) = 0$ d'où $T_f = T_i - \frac{\Delta_r H^{\circ}}{c_p^{\circ}(Si_3N_4) + 18c_p^{\circ}(N_2)} = 1543 \text{ K}$		

08-22	Machine de Wehner et Schulze		
8	Tracer de \vec{N} selon \vec{e}_z et \vec{T} selon $-\vec{e}_{\theta}$	1	
9	lorsqu'il y a glissement $\vec{v}(2/1) \neq 0$ et $T = f_d N$, donc ici $\vec{T} = -f N \vec{e}_{\theta}$	1	
10	On applique le PFD à l'ensemble de la tête $m\vec{a}=3\vec{N}+3\vec{T}+m\vec{g}$ on projette sur l'axe vertical et on obtient $0=3N-mg$ donc $N=\frac{mg}{3}$ donc $T=f_d\frac{mg}{3}$ $\vec{M}_{\vec{T},Oz}=\overrightarrow{OC}\wedge\vec{T}=r_m\vec{e}_r\wedge-T\vec{e}_\theta=-r_mT\vec{e}_z \text{ donc } M_{\vec{T},Oz}=\vec{r}_{od}$	1	
11	$-r_m f_d \frac{mg}{2}$	1	
12	mouvement circulaire donc $v_{C,i} = r_m \omega_i$ donc $\omega_i = \frac{v_{C,i}}{r_m} = 309$ rad.s ⁻¹	1	
13	On applique le théorème du moment cinétique à l'ensemble de la tête $\frac{\vec{L}_O}{dt} = \vec{M}_{O,\vec{p}} + \sum_{patins} \vec{M}_{O,\vec{N}} + \vec{M}_{O,\vec{T}}$ puis on projette sur $\vec{e_z}$ il ne reste plus que le moment des 3 forces de frottement \vec{T} car les autres sont colinéaires à $\vec{e_z}$ d'où $J\frac{\omega_1}{dt} = 0 + 3 \times 0 + 3M_{\vec{T},Oz} = -r_m f_d mg$	1	
14	on résout $\frac{\omega_1}{dt} = -\frac{r_m f_d mg}{J}$ donc $\omega_1(t) = \omega_1(0) - \frac{r_m f_d mg}{J}t = \omega_1 - \frac{2r_m f_d g}{R^2}t$. On trace la droite d'équation donnée ci-dessus.	1	
15	La tête s'arrête quand $\omega_1(\tau) = 0$ donc $\omega_i - \frac{2r_m f_d g}{R^2} \tau = 0$ d'où $\tau = \frac{R^2 \omega_i}{2r_m f_d g}$. On remarque que la masse de la tête se simplifie entre mg et J donc ça n'en dépend pas, de même on remarque que le nombre de patin 3 se simplifie entre l'expression de T et le nombre de $M_{\vec{T},Oz}$. On retrouve un résultat analogue au glissement sur un plan incliné qui ne dépend pas de la masse de l'objet posé ni de la surface de contact.	1	

16	$\tau = \frac{R^2 \omega_i}{2r_m f_d g}$ donc $f_d = \frac{R^2 \omega_i}{2r_m \tau g} = 0, 4$. On obtient une valeur positive sans dimension dans les ordres de grandeur entre 0,1 et 1, donc le calcul est cohérent. De cette valeur est grande devant	1	
	le coefficient de téflon/acier de l'ordre de 0,05, par contre on peut		
	atteindre des adhérence plus élevées de l'ordre 0,9 pour des pneus.		
17	On est dans une situation d'équilibre donc on écrit le théorème des	1	
	moments à l'équilibre $0 = M_0 + 3M_{\vec{T},Oz}$ et $M_{\vec{T},Oz} = -r_m f_s \frac{mg}{3}$		
	$donc f_s = \frac{M_0}{mar_{-}}$		
	mgr_m		
18	$\frac{mgr_m}{\text{si }v < 20 \text{ km.h}^{-1} \text{ décroissance rapide de } f, \text{ on passe de } f_s \text{ à } f_d$	1	
	si 20 km.h ⁻¹ $< v < 95$ km.h ⁻¹ , on a un comportement affine de		
	faible pente, c'est un modèle linéaire un peu plus précis que $f_d =$		
	cte vu en cours si $v > 95$ km.h ⁻¹ , on a des grandes oscillations, à haute vitesse		
	des effets non linéaire de modification de la structure du matériau.		
19		1	
19	si f évolue de façon affine avec v alors avec ω_1 aussi donc on obtient une équation différentielle de la forme $\frac{d\omega_1}{dt} = -a\omega_1 + b$,	1	
	on a une décroissance exponentielle.		
20	$\theta_p = \frac{b}{r_m} = 0.3 \text{ rad} = 19^{\circ}, \text{ et } P_A = \frac{N}{S} = \frac{mg/3}{r_2^2 \theta_p / 2 - r_1^2 \theta_p / 2} = 2$	1	
	bar		
21	On découpe la surface du patin en élément de surface $dS = rdrd\theta$	1	
	puis on exprime $dT = fdN = fP_AdS$ donc $d\vec{T} = -fP_Ardrd\theta\vec{e}_{\theta}$		
	puis $d\vec{M}'_{\vec{T},Oz} = \overrightarrow{OP} \wedge d\vec{T} = r\vec{e}_r \wedge (-fP_A r dr d\theta \vec{e}_\theta) = -fP_A r^2 dr d\theta \vec{e}_z$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$-fP_A\theta_p\left(\frac{r_2^3}{3} - \frac{r_1^3}{3}\right)$		
22	donc $M_{\vec{T},Oz} = J_0 J_{r_1} dM_{\vec{T},Oz} = -JIAJ_0 J_{r_1} dIdo = -fP_A\theta_p \left(\frac{r_2^3}{3} - \frac{r_1^3}{3}\right)$ on calcule $\frac{M'_{\vec{T},Oz} - M_{\vec{T},Oz}}{M'_{\vec{T},Oz}}$ et on en déduit si le modèle d'action ponctuelle est valable ou pas.	1	
	ponctuelle est valable ou pas.		

23-30	Propulsion par un réacteur d'avion		
23-25	Premier principe pour un système ouvert		
23	Σ système fermé donc sa masse se conserve $m_{\Sigma}(t+dt)=m_{\Sigma}(t)$, or	1	
	t on remarque sur le schéma $m_{\Sigma}(t) = m_{pc}(t) + dm_e$ et à $t + dt$ on		ļ
	remarque que $m_{\Sigma}(t+dt) = m_{pc}(t+dt) + dm_s$, donc $m_{pc}(t+dt) + dm_s$		
	$dm_s = m_{pc}(t) + dm_e$. Le régime est permanent donc $m_{pc}(t+dt) = 0$		
	$m_{pc}(t)$ d'où $dm_e = dm_s$, on en déduit que $D_m = \frac{dm_e}{dt} = \frac{dm_s}{dt}$		

24	On applique le premier principe au système fermé Σ entre t et $t+dt$ donc $dE_c+dU=W+Q$ devient $E_{c,\Sigma}(t+dt)-E_{c,\Sigma}(t)+U_{\Sigma}(t+dt)-U_{\Sigma}(t)=\delta W+\delta Q.$ Puis on exprime les différents termes en fonction des entrées et sorties : $E_{c,\Sigma}(t+dt)-E_{c,\Sigma}(t)=E_{c,pc}+\delta E_{c,s}-E_{c,pc}-\delta E_{c,e}=\delta E_{c,s}-\delta E_{c,e}$ puis $U_{\Sigma}(t+dt)-U_{\Sigma}(t)=U_{pc}+\delta U_{s}-U_{pc}-\delta U_{e}=\delta U_{s}-\delta U_{e}$ puis $\delta Q=0$ car les parois sont calorifugés puis $\delta W=\delta W_{p}+\delta W_{fc}+\delta W_{i}$ avec $\delta W_{fc}=-E_{p,\Sigma}(t+dt)+E_{p,\Sigma}(t)=-E_{p,pc}-\delta E_{p,s}+E_{p,pc}+\delta E_{p,e}=-\delta E_{p,s}+\delta E_{p,e}$ puis $\delta W_{p}=-P_{s}S_{s}dl_{s}+P_{e}S_{e}dl_{e}$ enfin $(\delta E_{c,s}+\delta E_{p,s}+\delta U_{s}+P_{s}S_{s}dl_{s})-(\delta E_{c,e}+\delta E_{p,e}+\delta U_{e}+P_{e}S_{e}dl_{e})=\delta W_{i}$	1	
25	On exprime tout en grandeur massique $ (e_{c,s}\delta m_s + e_{p,s}\delta m_s + u_s\delta m_s + P_sv_s\delta m_s) - (e_{c,e}\delta m_e + e_{p,e}\delta m_e + u_e\delta m_e + P_ev_e\delta m_e) = \omega_i\delta m $ on utilise $\delta m = \delta m_e = \delta m_s$ $ (e_{c,s} + e_{p,s} + u_s + P_sv_s) - (e_{c,e} + e_{p,e} + u_e + P_ev_e) = \omega_i $ puis on reconnait $h = u + Pv$, on a $e_c = \frac{1}{2}\frac{\delta m}{\delta m}c^2$, et on a seulement le poids comme énergie potentielle donc $e_p = \frac{\delta m}{\delta m}gz$ d'où $ (\frac{1}{2}c_s^2 + gz_s + h_s) - (\frac{1}{2}c_e^2 + gz_e + h_e) = \omega_i $	1	
26-30	Force de poussée du réacteur - Étude de la tuyère		
26	l'air traversant la tuyère est un gaz parfait subissant une transformation adiabatique et réversible donc on peut utiliser la loi de Laplace $P_s^{1-\Gamma}T_s^{\Gamma}=P_e^{1-\Gamma}T_e^{\Gamma}$ donc $T_s=\left(\frac{P_e}{P_s}\right)^{(1-\Gamma)/\Gamma}\times T_e^{\Gamma}$ d'où $\theta_s=\left(\frac{P_e}{P_s}\right)^{(1-\Gamma)/\Gamma}\times (\theta_e+273)-273=547^{\circ}\mathrm{C}$	1	
27	On applique le premier principe $(\frac{1}{2}c_s^2+gz_s+h_s)-(\frac{1}{2}c_e^2+gz_e+h_e)=\omega_i$, on remarque qu'il n'y a pas de travail $\omega_i=0,\ z_s=z_e,\ \text{et}\ c_e=0$ d'où $\frac{1}{2}c_s^2+h_s-h_e=0$ d'où $c_s=\sqrt{2\left(h_e-h_s\right)}=\sqrt{2c_p\left(T_e-T_s\right)}=\sqrt{2c_p\left(\theta_e-\theta_s\right)}=841\ \text{m.s}^{-1}$	1	

28	On doit calculer une force donc on écrit la seconde loi de Newton	1	
	au système fermé Σ , $\frac{d\vec{p}_{\Sigma}}{dt} = \vec{\Pi}_{\to\Sigma}$, avec \vec{p}_{Σ} la quantité de mou-		
	vement. On fait un bilan de quantité de mouvement avec cette		
	équation comme on l'a fait pour l'énergie.		
	on l'écrit comme un bilan entre t et $t+dt$		
	$\vec{p}_{\Sigma}(t+dt) - \vec{p}_{\Sigma}(t) = \vec{\Pi}_{\to \Sigma}dt$		
	on décompose selon la partie commune et les entrée et sorties		
	$ec{p}_{pc}(t+dt) + \deltaec{p}_s - ec{p}_{pc}(t) - \deltaec{p}_e = ec{\Pi}_{ ightarrow \Sigma} dt$		
	on utilise le caractère permanent de l'écoulement $\vec{p}_{pc}(t+dt)=$		
	$ec{p}_{pc}(t)$ d'où		
	$\delta ec{p}_s - \delta ec{p}_e = ec{\Pi}_{ ightarrow \Sigma} dt$		
	puis on introduit les grandeurs massiques $\delta \vec{p} = \delta m \vec{c}$ et $dt = \frac{\delta m}{D_m}$		
	$\delta m_s \vec{c}_s - \delta m_e \vec{c}_e = \vec{\Pi} \frac{\delta m}{D_m}$		
	puis la conservation de la masse $\delta m_s = \delta m_e = \delta m$ d'où		
	$\vec{\Pi}_{\rightarrow \Sigma} = D_m \left(\vec{c}_s - \vec{c}_e \right)$		
	On vient d'exprimer la force de poussée sur le système fermé de		
	gaz qui s'écoule à travers le réacteur, donc on vient de calculer la		
	force exercée par le réacteur sur l'air. Mais ce qui nous intéresse $\vec{\Pi}$		
	c'est la force de l'air sur le réacteur, donc par principe de l'action		
	et de la réaction (3ième loi de Newton)		
	$\vec{\Pi} = -\vec{\Pi}_{\to\Sigma} = D_m \left(\vec{c}_e - \vec{c}_s \right) \text{ et } \Pi = D_m c_s = 70 \text{ kN}$		
I	12 110 (-0 -0) 110-0	I	I

29	$ma = \Pi \operatorname{donc} \frac{a}{g} = \frac{1}{mg}\Pi = \frac{D_m c_s}{mg} = 6$	1	
30	L'accélération est constante donc $\ddot{x} = a$ donc $x(t) = \frac{a}{2}t^2 + \dot{x}(0)t +$	1	
	$x(0)$, on prend $\dot{x}(0) = 0$ et $x(0) = 0$, donc $x(\tau) = l$ et $\tau = \sqrt{\frac{2l}{a}} = 3$		