OS – Přehled hardware

Tomáš Hudec

Tomas.Hudec@upce.cz

http://fei-as.upceucebny.cz/usr/hudec/vyuka/os/

Procesory – CPU (1)

- CPU Central Processing Unit
 - zpracovává instrukce
 - RISC Reduced Instruction Set Computer
 - CISC Complete Instruction Set Computer
 - zpracování instrukcí má obvykle tyto fáze
 - fetch načtení instrukce
 - decode dekódování
 - execute provedení
 - write-back zápis výsledků
 - ALU aritmeticko-logické jednotky
 - FPU numerický koprocesor (Floating Point Unit)

Procesory – CPU (2)

- CPU Central Processing Unit
 - registry:
 - program counter, instruction register, stack pointer
 - PSW (program status word) příznaky C, N, Z, V
 - C = carry, N = negative, Z = zero, V = overflow
 - ostatní registry (obecné, datové, adresní, privátní, ...)
 - zvyšování výkonu
 - pipeline, superskalární CPU (instrukční paralelismus)
 - spekulativní provádění instrukcí
 - hyperthreading (sdílení částí CPU mezi vlákny)
 - více jader

Pipeline (obrázek)

1 fetch	decode	exec	mem	write	fetch	decode	exec	mem
2	₂ fetch	decode	exec	mem	write	, fetch	decode	exec
instrukce a fetch		3 fetch	decode	exec	mem	write	8 fetch	decode
			₄ fetch	decode	exec	mem	write	, fetch
1 takt			čas	₅ fetch	decode	exec	mem	write

riscová pipeline:

- fetch načtení
- 2. decode dekódování
- 3. execute provedení
- 4. memory access čtení paměti
- 5. write back zápis výsledků do registrů

Provedení instrukce (obrázek)

Režimy CPU

- obvykle aspoň dva režimy CPU
 - user není povoleno vše
 - kernel privilegovaný režim (např. přístup k HW)
 - architektura x86 má čtyři režimy: ring 0 ring 3
 - Vanderpool (VT) / Pacifica (AMD-V) nový ring –1
- instrukce TRAP
 - skok z režimu user do režimu kernel
 - systémové volání
 - ošetření výjimek

Paměť

- registry procesoru, CPU cache, operační paměť
- disk, páska, CD, DVD, EEPROM, flash RAM
- ochrana operační paměti změny: režim kernel
 - paměti procesů navzájem
 - jádro × procesy

relokace

- zavedení procesu na libovolnou adresu
- virtuální adresa (CPU) × fyzická adresa (RAM)
 - MMU (Memory Management Unit) provádí převod

7 / 14

Cache

- rychlá paměť obvykle drahá
 - cache rychlá mezipaměť (např. mezi CPU a RAM)
 - obecně paměť mezi rychlým a pomalejším zařízením
- využívá principu lokality odkazů v paměti
 - tendence odkazovat se do omezené oblasti paměti
 - činitel úspěšnosti (Hit Ratio) se pak bude blížit jedné i při malé kapacitě paměti cache
- střední přístupová doba: $T_s = T_c + (1 HR) \cdot T_{OP} (T_c << T_{OP})$
 - HR blízko 1 → přístup je blízký přístupu do cache

Vstupně-výstupní zařízení

- zařízení, řadič (řídicí jednotka, controller)
- OS zjednodušuje práci s V/V zařízeními
 - ovladače zařízení pro OS
 - zařazení přímo do jádra OS
 - načtení ovladačů při spuštění systému
 - načtení ovladačů za běhu systému USB, IEEE 1394
- registry na zařízení, V/V porty, přerušení
- přístup pomocí instrukcí CPU
- DMA (Direct Memory Access)

Přístup k V/V zařízení

- přístup pomocí instrukcí CPU
 - zápis na V/V, kontrola stavu, čekání neproduktivní
- přístup s využitím přerušení
 - zápis na V/V, provádění jiných operací produktivní
 - po dokončení: přerušení pokračování zápisu
- DMA (Direct Memory Access) a IRQ
 - zápis adresy a rozsahu dat v RAM do V/V, příkaz
 - provádění jiných operací produktivní
 - po dokončení: přerušení a obsluha

Přerušení (interrupt, IRQ)

- V/V přerušení
 - dokončení operace, chybový stav
- časovač důležitý pro preempci
 - generuje přerušení v daných intervalech
- chyby procesu, výjimky
 - pokus o přístup do zakázané oblasti paměti,
 neplatná instrukce (privilegovaná v režimu user)
- chyby HW
 - chyba parity paměti, výpadek napájení

Průběh zpracování přerušení

- CPU provádí proces a HW vygeneruje IRQ (interrupt request = požadavek na přerušení)
 - CPU: dokončení rozpracované instrukce
 - CPU: skok na obslužnou rutinu přerušení
 - před tím se uloží adresa návratu (na systémový stack)
 - rutina: uloží se kontext (registry z CPU)
 - do tabulky procesů (nebo na systémový stack)
 - rutina: obsluha přerušení (IRQ časovače: plánovač)
 - rutina: vrátí se kontext (do CPU), návrat do procesu
 - plánovač může naplánovat také jiný proces

Sběrnice

- komunikace částí počítače mezi sebou
 - interní, lokální: CPU, FSB paměť
 - interní: ISA, PCI, AGP, PCI-E, SCSI, IDE, EIDE,
 ATAPI, ATA, Ultra ATA, SATA
 - externí: PCMCIA, PC Card, ExpressCard, SCSI,
 eSATA, IEEE 1394, USB, ...
- OS spravuje zařízení připojená na sběrnice
 - plug-and-play
 - BIOS (Basic Input Output System)

Shrnutí – požadavky OS na HW

- přerušovací systém
 - umožní efektivní využití CPU, nutné pro DMA
- časovač pravidelně generované přerušení
 - umožní preempci
- CPU s podporou režimů kernel a user
 - ochrana paměti měnit přístup jen v režimu kernel
 - neprivilegovaná operace v režimu user TRAP
- CPU s podporou virtualizace paměti, MMU
 - logické adresování umožnění relokace