西南交通大学 2021-2022 学年第(一)学期中期试卷

课程代码__PHYS001212_课程名称_大学物理 BII_考试时间__90 分钟_

西南交通大学大学物理考试答题卡使用说明:

- (1) 同学们在拿到答题卡后,请首先将**条形码**粘贴在答题卡上的**贴条形码区**,再用**黑色笔迹笔**在答题卡信息栏区域**填写**学号、姓名、班级、课程代码。凡答题卡中该栏目填写字迹不清、无法辩认的,成绩无效。
- (2) 必须严格按要求做答题目。单项选择题、判断题必须使用 2B 铅笔在答题卡上相应位置填涂信息点,修改时必须用橡皮擦净。填空题必须用黑色笔迹笔在答题卡指定区域内作答。不按规定要求填涂和做答的,一律无效。
- (3) 填涂技巧:为保证光电阅读器准确无误地识别所涂的信息点,填涂时必须用 2B 铅笔横向涂写数笔,黑度以盖住信息点的区域: □为准。例如:正确填涂: ■■
- - 1. 一质点在x方向上作简谐振动,其速度随时间按正弦规律变化,如图所示,该质点的振动方程为()

(A)
$$x = 4\cos\frac{\pi}{2}t$$
 (cm)

(B)
$$x = 4\cos\left(\frac{\pi}{2}t + \frac{\pi}{2}\right)$$
 (cm)

(C)
$$x = 4\cos\left(\frac{\pi}{2}t + \pi\right)$$
 (cm)

(D)
$$x = 4\cos\left(\frac{\pi}{2}t + \frac{3\pi}{2}\right)$$
 (cm)

- 2. 当弹簧振子作简谐振动的振幅增大为原来的 2 倍时,以下物理量也增大为原来的 2 倍的是 ()
- (1) 周期;
- (2) 最大速度:
- (3) 最大加速度;
- (4) 总的机械能。

- (A) (1) (2)
- (B)(1)(3)
- (C)(2)(3)
- (D)(3)(4)
- 3. 已知两个同方向、同频率的简谐振动曲线如图所示,则其合振动的表达式为()

(A)
$$x = 0.5\sqrt{2}\cos(\pi t - \pi)$$

(B)
$$x = 0.5\cos\left(\pi t + \frac{\pi}{2}\right)$$

(C)
$$x = 1.0\cos(\pi t)$$

(D)
$$x = 0.5\sqrt{2}\cos\left(\pi t + \frac{\pi}{4}\right)$$

- 4. 由图所给的 t=0 时的波形图和 P 处质元的振动曲线,可得该简谐波方程为(
- (A) $y = 0.02 \cos 10\pi \left(t \frac{x}{10}\right)$ (m)
- (B) $y = 0.02 \cos \left[10\pi \left(t + \frac{x}{10} \right) \frac{\pi}{2} \right]$ (m)
- (C) $y = 0.02 \cos \left(10\pi t \frac{\pi}{2} \right)$ (m)
- (D) 条件不足不能确定

选择题4图

- 5. 沿 x 轴正向传播的平面简谐波在 t=0 时刻的波形如图所示。若图中用余弦函数表示介质中各质元的 振动,且各点振动的初相在 - π 到 π 之间取值,则下列说法正确的是()
 - (A) 1点的初相位 $\varphi_1 = 0$;
 - (B) 0 点的初相位 $\varphi_0 = \pi$;
 - (C) 2 点的初相位 $\varphi_2 = 0$;
 - (D) 3 点的初相位 $\varphi_3 = 0$ 。

- 6. 如图所示为一平面简谐波在t时刻的波形曲线,若此时A点处介质质元的振动动能在增大,则(
- (A) A 点处质元的弹性势能在减小;
- (B) 波沿 x 轴负方向传播;
- (C) B 点处质元的振动动能在减小;
- (D) 各点的波的能量都不随时间变化。

- 7. 两列波同时在一条弦线上传播, 波动方程分别为 $y_1 = 3 \times 10^{-2} \cos \pi (0.1x + 10t)$,
- $y_2 = 3 \times 10^{-2} \cos \pi (0.1x 10t)$,其中 x, y 单位为 m,时间 t 的单位为 s。弦线上波节的位置为(

 - (A) x = 5(2k+1) m, $k = 0, \pm 1, \pm 2, \cdots$; (B) x = 5(k+2) m, $k = 0, \pm 1, \pm 2, \cdots$;
 - (C) $x = 0, 5 \text{ m}, 10 \text{ m}, \dots;$

- (D) $x = 0, 10 \text{ m}, 20 \text{ m}, \dots$
- 8. 已知光从玻璃射向空气的全反射临界角为 i,则光从玻璃射向空气时的起偏角 iB满足()
- (A) $tani_{\rm B} = tani$;
- (B) $tani_B = sini$;
- (C) $tani_{R} = cosi$;
- (D) $tani_{R} = coti_{\circ}$

9. 如图所示, 折射率为 no、厚度为 e 的透明介质薄膜的上方和下方的透明介质的折射率分别为 m 和 n_3 ,已知 $n_1 < n_2$, $n_2 > n_3$ 。 λ_1 为反射光在折射率为 n_1 的介质中的波长,则从薄膜上、下两表面反射的光束(用 ①与②示意)的光程差是()

(C) $2n_2e - \frac{n_1\lambda_1}{2}$;

(D) $2n_2e - \frac{n_2\lambda_1}{2}$.

- 10. 如图所示,两玻璃片的一端 O 紧密接触,另一端用金属丝垫起形成空气劈尖,平行单色光垂直照 射时,可看到干涉条纹。若将金属丝向棱边推进,则条纹间距将 ,从 O 到金属丝距离内的干涉条 纹总数将 。
 - (A) 增大, 增大;
- (B) 减小,减小;
- (C) 减小, 不变;
- (D) 增大, 不变。

- 11. 如图所示,在三种透明材料构成的牛顿环装置中,用单色光垂直照射时,反射光中看到了干涉条 纹,则在接触点P处形成的圆斑为()
 - (A) 全明;
 - (B) 全暗;
 - (C) 右半部明, 左半部暗;
 - (D) 右半部暗, 左半部明。

选择题 11 图

12. 一单色平行光束垂直照射在宽为 a 的单缝上, 在缝后放一焦距为 f 的薄凸透镜, 屏置于透镜焦平面 上,已知屏上第 2 级明条纹宽度为 Δx ,则入射光的波长为 ()

- (A) $\frac{a \cdot \Delta x}{f}$; (B) $\frac{\Delta x}{a \cdot f}$; (C) $\frac{f \cdot \Delta x}{a}$; (D) $\frac{a}{\Delta x \cdot f}$

13. 一束平行单色光垂直入射在光栅上, 当光栅常数 a+b (a 为每条缝的宽度, b 为相邻缝间不透光的 宽度)为下列哪种情况时,k=3, 6, 9 等级次的主极大均不出现()

- (A) a + b = 2a;

- (B) a + b = 3a; (C) a + b = 4a; (D) a + b = 6a;

14. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中最好选用()

- (A) 1.0×10^{-1} mm; (B) 5.0×10^{-1} mm; (C) 1.0×10^{-2} mm; (D) 1.0×10^{-3} mm.

15. 在圆孔的夫琅禾费衍射实验中,设圆孔的直径为d,透镜焦距为f,所用单色光的波长为 λ ,则在 透镜焦平面处的屏幕上,显现的艾里斑半径为()

- (A) $\frac{\lambda}{d}f$; (B) $\frac{1.22\lambda}{d}f$; (C) $\frac{2.44\lambda}{d}f$; (D) $\frac{2\lambda}{d}f$

- 二、判断题: (每小题 1 分, 共 15 分。注意: 请在答题卡上用 2B 铅笔将正确的选项按要求填涂。例如: T F 中将 T 涂黑变为 F , 表示本叙述是正确的。其它位置处不得分)
 - 1. 简谐振动系统的角频率由振动系统的初始条件决定。
 - 2. 孤立简谐振动系统的动能与势能同相变化。
 - 3. 一物体作简谐振动,振动方程 $x = A\cos(\omega t + \pi/4)$,在 t = T/4 时刻(T为周期),物体的速度和

加速度分别为 $\frac{\sqrt{2}}{2}A\omega$ 和 $\frac{\sqrt{2}}{2}A\omega^2$ 。

- 4. 已知一平面简谐波的波动方程 $y = A\cos(at bx)$ (SI), 式中a, b为正值,则该波的传播速度为 $\frac{b}{a}$ 。
- 5. 一平面简谐波在弹性介质中传播,在某一瞬时,介质中某质元正好处于平衡位置,此时它的动能为零,势能最大。
- 6. 两相干平面波波源的振幅皆为 2 cm,相位差为 π ,两波源相距 20 m,则在两波源连线的中垂线上任意一点,两列波叠加后合振幅为 0。
- 7. 一列波从波疏介质垂直入射到波密介质,设介质为弹性介质,无吸收能量损失。当它在界面反射时,振幅不变,波速减小,相位跃变 π 。
 - 8. 自然光入射到介质分界面时,如果入射角大于布儒斯特角,则反射光为线偏振光。
- 9. 有两种不同的介质,第一种介质的折射率为 n_1 ,第二种介质的折射率为 n_2 ,设自然光从第一种介质入射到第二种介质时起偏角为 i_B ,从第二种介质入射到第一种介质时起偏角为 i_B' 。如果 $i_B > i_B'$,那么第一种介质为光密介质。
- 10. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过。当将其中一偏振片慢慢转动 360° 时透射光强度发生的变化为光强先增加,然后减小至零,再增加,再减小至零。
- 11. 真空中波长为 λ 的单色光在折射率为n 的介质中,由a 点传到b 点时相位改变了 π ,则由a 到b 的光程和几何路程分别为 $\frac{\lambda}{2}$ 和 $\frac{n\lambda}{2}$ 。
- 12. 一束波长为 λ 的单色光从空气垂直入射到折射率为n的透明薄膜上,置于空气中的这种薄膜使反射光得到干涉加强,则其最小厚度为 $\frac{\lambda}{4n}$ 。
- 13. 劈尖检测工件表面的平整度,若待检查工件表面中央处略有凸起,其余部分很平整,则干涉条纹的形状变化为在不平处对应的条纹,向背离劈尖棱边的方向弯曲。
 - 14. 在单缝夫琅禾费衍射实验中, 若增大缝宽, 其他条件不变, 则中央明条纹宽度变大。
 - 15. 在单色光垂直入射的光栅夫琅禾费衍射实验中,光栅常数为d,每条缝的宽度为a,已知
- $\frac{d}{a} = 3.5$ 。则衍射图样中对应于单缝衍射中央明纹区域内主极大的数目为 6 个。

三、填空题: (10 小题, 共 40 分。注意: 请用黑墨水笔将正确的答案按答题卡上要求正确填出。其它位置处不得分)

1. (本小题 4 分)某质点作简谐振动,其振动曲线如图所示。 质点振动的初相位 φ 为______,角频率 ω 为_____,振动方 程为______(cm)。

2. (本小题 4 分) 一质点在水平 x 轴上作简谐振动,振幅 A=4cm,周期 T=2s,取其平衡位置为坐标原点。若 t=0 时质点第一次通过 x=-2cm 处,且向 x 轴负方向运动,则质点重新回到 x=-2cm 处至少需要经历的时间为______(s)。

3. (本小题 4 分) 一平面简谐波沿 x 轴正向传播,波速为 u,如图所示。已知 A 点处质元的振动方程为 $y_A = A\cos(\omega t + \alpha)$,则距 A 点为 b 的质元 B 的振动方程为_____。

4. (本小题 4 分) 如图所示,有一沿 x 轴正向传播的入射波 $y_{\lambda}(x,t) = A\cos\left(\omega t - \frac{2\pi}{\lambda}x + \frac{2}{3}\pi\right)$ 。M 是垂直于 x 轴的媒质反射

面, P 为反射点,若反射波不衰减, $\overline{OP} = \frac{4}{3}\lambda$,反射点是____ (选

5. (本小题 4 分)两偏振片 A 和 B 平行放置,它们的偏振化方向夹角为 90°,透过 A 以后的偏振光强为 I_0 ,则透过 B 后的偏振光强等于________;若在 A,B 间再插入另一平行放置的偏振片 C,其偏振化方向与 A 的偏振化方向夹角为 30°,则透过 B 后的偏振光强等于______。

6. (本小题 4 分) 在双缝干涉实验中,双缝到屏的距离 D=120cm,两缝中心之间的距离 d=0.50 mm,用波长 $\lambda=500$ nm 的单色平行光垂直照射双缝,如图所示,设原点 O 在零级明条纹处。则零级明条纹上方第五级明条纹中心的坐标 x 等于_____mm。

7. (本小题 4 分) 如图所示,用波长为 λ 的单色光垂直照射折射率为 n_2 的劈尖薄膜 ($n_1 > n_2$, $n_3 > n_2$),观察反射光的干涉。从劈尖顶开始,第 2 级明条纹对应的膜厚度为____。

8. (7	本小题 4 分)	平行单色光垂直	入射到单缝上,	观察夫琅オ	 、费衍射。	若屏上 P 点为	习第2级暗纹	て,则
单缝处的	波阵面相应地	可划分为	_个半波带。若	将单缝宽度组	缩小一半,	则 <i>P</i> 点是	级	_纹。
9. ((本小题4分)	用波长为λ的	平行单色光垂直	入射到一光	·栅上,发现	见在衍射角为	heta处出现缺约	汲,贝
光栅上缝	宽的最小值是	•						

10. (本	小题4分)用波长	$\lambda = 589$ nm	的平行单色光垂	直入射在每毫	米刻有 50	0条缝的光栅」	二,则光
栅常数 d 为	m	,在屏幕上前	^{比观察到的条纹}	的最高级次为	0		