Ultra-Low Power PLL for Wake-up Receiver Applications

Specialization Project Progress - 10th Week

Cole Nielsen
Department of Electronic Systems, NTNU
1 November 2019 (Calendar week 44)

Timeline

Week Dates		Tasks	Outcomes	
36	2.9 - 8.9	Review PLL Design	Refreshed Knowledge	
37	9.9 - 15.9	Modeling/simulation (set up)	-	
38	16.9 - 22.9	Modeling/simulation	TDC/DCO Requirements	
39	23.9 - 29.9	Modeling/simulation	Loop Filter/Digital Algorithms	
40	30.9 - 6.10	Modeling/simulation	Loop filter, DCO, TDC, calibration	
41	7.10 - 13.10	Circuit Research	DCO/Divider topologies	
42	14.10 - 20.10	Circuit Research	TDC/other topologies	
43	21.10 - 27.10	Spur analysis, filter automation		
44	28.10 - 3.11	Filter automation, SNR estimation		
45	4.11 - 10.11	Variation analysis, flicker noise	Histograms/yield estimates	
46	11.11 - 17.11 Real DCO sensitivity, TDC/divider jitter		Simlate ring-DCO in Virtuoso	
47	18.11 - 24.11 PLL + Radio simulation		BER estimate	
48	B 25.11 - 1.12 Agglomerate into cohesive fran		(I have an Exam on 30.11)	
49	2.12 - 8.12	Finish framework, report writing		
50	9.12 - 15.12 Report writing		Complete before 15.12	

Legend: Done Current Revised

Timeline Tasks

This week

- Filter design automation:
 - Was very slow, changed gradient-descent optimization approach.
- Baseband SNR estimation:
 - Thought of way to estimate SNR of radio based on PLL phase noise and modulation PSD.
 - Can determine BER based on radio system (modulation, bitrate and thus Eb/No)
 - Utilize SNR estimate in optimization of PLL loop filter.
 - Design to maximize received SNR.
- Variation analysis:
 - Moved to next week due to SNR work.

Filter automation

Gradient descent optimization

- Old approach used stepping method which tried to select optimal step size.
 - Computing optimal step size is computationally expensive
 - This method is actually slow than methods that use sub-optimal step size
- Came across different method for selecting step size based only on the gradient and cost function independent variables for current and previous iterations.

$$\gamma_n = \frac{\left| \left(\mathbf{x}_n - \mathbf{x}_{n-1} \right)^T \left[\nabla F(\mathbf{x}_n) - \nabla F(\mathbf{x}_{n-1}) \right] \right|}{\left\| \nabla F(\mathbf{x}_n) - \nabla F(\mathbf{x}_{n-1}) \right\|^2}$$

- Very fast, despite using sub-optimal step size.
- Ca. 100x speed up in filter optimizer

Filter automation

Gradient descent optimization

 Now can optimize with many more iterations, matched closed loop response now is very close.

(a)
$$\zeta = 0.707$$

(b)
$$\zeta = 0.2$$

SNR estimation of radio with PLL

Theory

— Considering generalized PSK/FSK modulation in the phase domain, the phase of such a signal after direct-to-DC downconversion with local oscillator with phase noise $\phi_n(t)$ is:

$$\phi(t) = \phi_{mod}(t) + \phi_n(t) \tag{1}$$

— Given the mean of the phase noise $\langle \phi_n(t) \rangle = 0$ and $|\phi_n(t)| << 1$, the amplitude of the signal can be approximated as:

$$\Re\{e^{j\phi(t)}\} = \Re\{e^{j\phi_{mod}(t)}e^{j\phi_{n}(t)}\} \approx \Re\{e^{j\phi_{mod}(t)}(1+j\phi_{n}(t))\}$$
 (2)

$$=\cos(\phi_{mod}(t)) - \phi_n(t)\sin(\phi_{mod}(t)) \tag{3}$$

— We can treat the downconverted signal in two parts, the main signal, $\cos(\phi_{mod}(t))$ (which is unchanged), and an orthogonal noise component that is the phase noise signal multiplied with a phase shifted version of the modulated signal $(\sin(\phi_{mod}(t)))$.

SNR estimation of radio with PLL

Application

- In the frequency domain, the noise can be calculated as convolution of the modulated signal with the PLL phase noise
- The in band power then can be calculated for both the signal and noise to yield SNR:

Specification (unchanged)

System Performance Targets

Parameter	Value	Unit	Notes
Frequency	2.4-2.4835	GHz	2.4G ISM Band
Ref. frequency	16	MHz	Yields 6 channels
Power	≤ 100	μW	
FSK BER	≤ 1e-2		2FSK with f_{dev} = \pm 250 KHz
Initial Lock Time	≤ 50	μ S	Upon cold start
Re-lock Time	≤ 5	μS	Coming out of standby
Bandwidth	50	kHz	(nominally), tunable

Additionally: PLL output should support IQ sampling at LO frequency.

Specification (unchanged)

PLL Component Performance Targets

Parameter	Value	Unit	Notes
DCO LSB Resolution	≤ 50	kHz	Determined from quantization noise.
DCO DNL	< 1	LSB	Ensures monotonicity
TDC Resolution	0.95	ns	
TDC Resolution (bits)	6	bits	

Architecture (updated)

Block Diagram

Power Targets

DCO	TDC	Divider	Other	SUM
70 μW	20 μW	10 μW	$<<$ 1 μ W	100 μW

Project Phases

Autumn 2019

- System modeling and simulation.
 - Learn PLL theory in detail
 - Evaluate feasability of PLL architectures (counter, TDC-based)
 - Determine requirements for TDC/DCO/Divider/logic (bits of resolution, accuracy etc) to meet PLL performance specifications.
 - Determine digital logic for loop filter, validate stability and lock time performance.
- Research ultra-low power circuit topologies to implement system components that will meet determined requirements.
- Translate component-level specifications into schematic-level circuit designs.
 - Try, fail, try again until functional at schematic level.
 - I expect the TDC to be difficult.

Project Phases (continued)

Spring 2020

- Finalize schematic-level design.
- Estabilish thorough tests for PLL performance (automated?) to help in layout.
- Layout of PLL.
 - Design iteration until design specs met.
 - · Probably very time consuming.
- Full characterization/validation of design performance.
 - Comprehensive Corners/Monte-Carlo testing (time consuming??)
 - More design iteration if new issues crop up...
- Thesis paper writing.

References

[1] "Ultra-Low Power Wake-Up Receivers for Wireless Sensor Networks", N. Pletcher, J.M Rabaey, 2008.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-59.html