Automatizační cvičení

A4	308. Dynast1 – Modelování regulátorů a systémů			
Tenk Jakub			1/12	Známka:
17. 3. 2022		23. 3. 2022		Odevzdáno:

Zadání:

Vytvořte modely regulátorů a regulovaných systémů dle zadaných rovnic. Regulátor PID namodelujte složený z jednotlivých regulátorů dle zadaných rovnic. Porovnejte jej s blokovým modelem PID se zadanými koeficienty. Vytvořte modely systémů astatického 2. řádu a statického 3. řádu dle zadaných rovnic. U všech modelů odsimulujte jejich charakteristiky (přechodové, FCHVKR, FCHVLS) a odečtěte z nich konstanty (k₀, k₋₁, k₁, T_U, T_N, s₀). Modely i charakteristiky si uložte na paměť Flash.

P:
$$0.5 \cdot u' + u = 1.0 \cdot e$$
 I: $0.5 \cdot u' + u = 1.0 \cdot fe$ dt D: $0.5 \cdot u' + u = 1.0 \cdot e'$ S1: $9.2 \cdot y'' + 8.5 \cdot y' + 2 \cdot y = 1.2 \cdot u$ S2: $1.8 \cdot y''' + 2.5 \cdot y'' + 4.8 \cdot y' + 1.5 \cdot y = u$

Postup:

- 1. Upravíme si zadané diferenciální rovnice a vypočítáme koeficienty.
 - a) P: $0.5 \cdot u' + u = 1.0 \cdot e$ $0.5 \cdot u' = 1.0 \cdot e - u$

$$0.5 \cdot u' = 1.0 \cdot e - u$$
 /: 0.5
 $u' = 2e - 2u$

- b) I: $0.5 \cdot u' + u = 1.0 \cdot fe dt$ $0.5 \cdot u' = 1.0 \cdot fe dt - u$ /: 0.5 u' = 2fe dt - 2u
- c) D: $0.5 \cdot u' + u = 1.0 \cdot e'$ $0.5 \cdot u' = 1.0 \cdot e' - u$ /: 0.5 u' = 2e' - 2u
- d) S1: $9.2 \cdot y'' + 8.5 \cdot y' + 2 \cdot y = 1.2 \cdot u$ $9.2 \cdot y'' = 1.2 \cdot u - 8.5 \cdot y' - 2 \cdot y$ y'' = 0.13u - 0.924y' - 0.217y
- e) S2: $1.8 \cdot y^{**}+2.5 \cdot y^{**}+4.8 \cdot y^{*}+1.5 \cdot y = u$ $1.8 \cdot y^{**}=u - 2.5 \cdot y^{*}-4.8 \cdot y^{*}-1.5 \cdot y$ /: 1.8 $v^{**}=0.556u - 1.389v^{**}-2.667v^{*}-0.834v$
- 2. Dle rovnic si navrhneme schémata zapojení a postupně je v programu Dynast sestavíme.
- 3. Vykreslíme si výsledné charakteristiky a uložíme si snímky obrazovky.
- 4. Všechny data z měření vhodně vypracujeme do technické zprávy.

Schéma řešení:

(Schéma zapojení pro charakteristiky FCHVKR a FCHVLS se liší jen ve zdroji, kde je místo step zdroje použit zdroj sinusového signálu)

a) P regulátor:

b) I regulátor:

c) D regulátor:

d) PI regulátor:

e) PD regulátor:

f) PID regulátor:

g) Systém 1:

h) Systém 2:

Grafy:

a) P regulátor:

FCHVLS:

b) I regulátor:

FCHVLS:

c) D regulátor:

FCHVLS:

d) PI regulátor:

Přechodová charakteristika:

 $k_{-1} = 0,2$

FCHVLS:

e) PD regulátor:

FCHVLS:

f) PID regulátor:

FCHVLS:

g) Systém 1:

FCHVLS:

h) Systém 2:

FCHVLS:

Závěr:

Tuto úlohu jsem bez problému při cvičení stihnul celou udělat. Výsledkem mé práce jsou přechodové charakteristiky, FCHVKR a FCHVLS grafy zadaných regulátorů (P, I, D), jejich kombinací (PI, PD, PID) a systémy 2. a 3. řádu.