PRACA KONTROLNA nr 2

listopad 2002r

- 1. Czy liczby różnych 'słów', jakie można utworzyć zmieniając kolejność liter w 'słowach' TANATAN i AKABARA, są takie same? Uzasadnić odpowiedź. Przez 'słowo' rozumiemy tutaj dowolny ciąg liter.
- 2. Reszta z dzielenia wielomianu $x^3 + px^2 x + q$ przez trójmian $(x+2)^2$ wynosi -x+1. Wyznaczyć pierwiastki tego wielomianu.
- 3. Figura na rysunku poniżej składa się z łuków BC, CA okręgów o promieniu a i środkach odpowiednio w punktach A, B, oraz z odcinka \overline{AB} o długości a. Obliczyć promień okręgu stycznego do obu łuków oraz do odcinka \overline{AB} .
- 4. Podstawą pryzmy przedstawionej na rysunku poniżej jest prostokąt ABCD, którego bok \overline{AB} ma długość a, a bok \overline{BC} długość b, gdzie a > b. Wszystkie ściany boczne pryzmy są nachylone pod kątem α do płaszczyzny podstawy. Obliczyć objętość tej pryzmy.
- 5. Rozwiązać nierówność

$$\frac{2}{x} < \sqrt{5 - x^2}.$$

Rozwiązanie zilustrować wykresami funkcji występujących po obu stronach nierówności. Zaznaczyć na rysunku otrzymany zbiór rozwiązań.

- 6. Ciąg (a_n) jest określony warunkami $a_1 = 4$, $a_{n+1} = 1 + 2\sqrt{a_n}$, $n \ge 1$. Stosując zasadę indukcji matematycznej wykazać, że ciąg (a_n) jest rosnący oraz dla $n \ge 1$ spełniona jest nierówność: $4 \le a_n < 6$.
- 7. Na krzywej o równaniu $y=\sqrt{x}$ znaleźć miejsce, które jest położone najbliżej punktu P(0,3). Sporządzić rysunek.
- 8. Wykazać, że dla każdej wartości parametru $\alpha \in R$ równanie kwadratowe

$$3x^2 + 4x\sin\alpha - \cos2\alpha = 0$$

ma dwa różne pierwiastki rzeczywiste. Wyznaczyć te wartości parametru α , dla których oba pierwiastki leżą w przedziale (0,1).