

Von Mises-Fisher Loss For Training Sequence To Sequence Models With Continuous Outputs

ICLR 2019

Kunmar et al.

Presenter: Jungsoo Park

Data Mining & Information Systems Lab.

Department of Computer Science and Engineering,
College of Informatics, Korea University

Time Matters

As for BERT Pre-Training took 4 days using

- BERT-Base: 4 Cloud TPUs (16 TPU chips total)
- BERT-Large: 16 Cloud TPUs (64 TPU chips total)

If using 8 TESLA P100, it would take one year in training

Seq2Seq

Decoding

Bottleneck in training

$$s_w = W_{hw} \mathbf{h}_t + b_w$$
$$W \in \mathbb{R}^{V \times H}$$
$$b \in \mathbb{R}^v$$

Bottleneck in training

$$\mathbf{p}_t(w) = \frac{e^{s_w}}{\sum_{v \in \mathcal{V}} e^{s_v}}$$

 $\mathrm{NLL}(\mathbf{p_t}, \mathbf{o}(w)) = -\log(\mathbf{p_t}(w))$

Byte Pair Encoding

```
low:5,
lower:2,
newest:6,
widest:3
low:5,
lower:2,
newest:6,
widest:3
low:5,
lower:2,
newest:6,
widest:3
widest:3
```

```
# vocabulary update!
1, o, w, e, r, n, w, s, t, i, d, es, est lo, low, ne, new, newest, wi, wid, widest
```

Method

Decoding

Predicting Embedding Vector

No need for soft-max operation, but predict the word embedding vector itself

Method

Overview

Loss occurs from the target word(label's) embedding vector and our generated one's

Method

Pros

- 1. Big Batch Size
- 2. Unique Approach to Handle Bottleneck in Softmax

Cons

- 1. Beam Search Not Available (KNN)
- 2. Inference Not Efficient
- 3. Lack of Experiments based on Contextualized Representation

Loss Function

But what loss function should we use?

L2 Loss?

Basic assumption behind using L2 loss is that the output space follows Gaussian distribution and is a Distance-based metric

Hypercube

"Most of the volume of a high-dimensional orange is in the skin, not the pulp."

Therefore, it's not the best way to use distance metric, but instead use direction based metric for high dimension data

Von Mises-Fisher

Directional Equivalent of Gaussian Defined on the Support of (p-1) Dimensional Sphere

$$p(\mathbf{e}(w); \boldsymbol{\mu}, \kappa) = C_m(\kappa) e^{\kappa \boldsymbol{\mu}^T \mathbf{e}(w)},$$
$$C_m(\kappa) = \frac{\kappa^{m/2 - 1}}{(2\pi)^{m/2} I_{m/2 - 1}(\kappa)},$$

$$p(\mathbf{e}(w); \hat{\mathbf{e}}) = \text{vMF}(\mathbf{e}(w); \hat{\mathbf{e}}) = C_m(\|\hat{\mathbf{e}}\|)e^{\hat{\mathbf{e}}^T\mathbf{e}(w)}$$

$$NLLvMF(\hat{\mathbf{e}}; \mathbf{e}(w)) = -\log \left(C_m(\|\hat{\mathbf{e}}\|)\right) - \hat{\mathbf{e}}^T \mathbf{e}(w)$$

Experiment

Embedding Model	Tied Emb	Source Type/ Target Type	Loss	BLEU		
				fr–en	de-en	en–fr
-	no	word→word	CE	31.0	24.7	29.3
-	no	$word \rightarrow BPE$	CE	29.1	24.1	29.8
-	no	$BPE \rightarrow BPE$	CE	31.4	25.8	31.0
word2vec	no	word→emb	L2	27.2	19.4	26.4
word2vec	no	word→emb	Cosine	29.1	21.9	26.6
word2vec	no	word→emb	MaxMargin	29.6	21.4	26.7
fasttext	no	word→emb	MaxMargin	31.0	25.0	29.0
fasttext	yes	word→emb	MaxMargin	32.1	25.0	31.0
word2vec	no	word→emb	$\mathrm{NLLvMF}_{\mathrm{reg1}}$	29.5	22.7	26.6
word2vec	no	word→emb	$NLLvMF_{reg1+reg2}$	29.7	21.6	26.7
word2vec	yes	word→emb	$NLLvMF_{reg1+reg2}$	29.7	22.2	27.5
fasttext	no	word→emb	$NLLvMF_{reg1+reg2}$	30.4	23.4	27.6
fasttext	yes	word \rightarrow emb	$NLLvMF_{reg1+reg2}$	32.1	25.1	31.7

- x2.5 times faster than training word -> word (baseline)
 but shows comparable result
- Proposed Loss results in better result than the empirical loss functions(L2, Cosine Loss, Max Margin Loss)

Experiment

Samples processed per second (Proposed method outperforms)

Convergence (NLLvMF Loss outperforms in stability)