实验二 温度报警器

一、分工

	学号	班级	姓名	负责任务	
组长	190410102	19 自动化 1 班	方尧	提出整体设计方案,负责温度传感器电路设计、仿真以及 器件选型;整合各部分电路行成总原理图,导出 BOM 清 单	
组	180320107	19 自动化 1 班	罗赫铭	负责 LED、蜂鸣器驱动信号电路以及 LED 工作电路设计、 仿真以及器件选型	
员	190320230	19 自动化 2 班	刘聿尧	负责蜂鸣器工作电路设计、仿真以及器件选型	
	190320211	19 自动化 2 班	邹文星	负责频率发生器电路设计、仿真以及器件选型	

二、方案设计

2.1 频率发生器

2.1.1 电路图

2.1.2 参数计算

计算电阻参数:

根据指导书,我们将所需的周期 T=1.25ms 和 T=1ms 带入近式子中,在假设电容为 0.1u ,即可算出所需的电阻,分别是 R2=95K,R1=100K,1ms; R2=139K,R1=100K,1.25ms。然而由于实际仿真有误差,为使得频率为 1kHz 和 800Hz,故将所需电阻调整为图中所示阻值,分别为 84895 Ω 和 125591 Ω 。

0 - U T t t + U Z 0 - U Z

图 2-3 矩形波发生电路

图 2-4 矩形波发生电路电压波形

工作原理:运算放大器 A_1 作滯回比较使用, D_2 为双向稳压管,使得输出电压的幅度被限制在 $+U_Z$ 或 $-U_Z$: R_1 和 R_2 构成正反馈电路, R_2 上的反馈电压 U_R 是输出电压幅度的一部分,即

$$U_{\rm R} = \pm \frac{R_2}{R_1 + R_2} U_{\rm Z}$$

加在同相端,作为参考电压, R_4 和 C 构成负反馈电路, u_c 加在反向输入端, u_c 和 U_R 相比较后决定 u_c 的极性。

当电路工作稳定后,当 u_o 为+ U_Z 时, U_R 也为正值;这时 u_c < U_R , u_o 通过 R_4 对电容C充电, u_c 增长到等于 U_R 时, u_o 由+ U_Z 变为- U_Z , U_R 也变为负值。电容C开始通过 R_4 放电,而后反向充电。当充电到 u_c 等于- U_R 时, u_o 由- U_Z 变为+ U_Z ,如此周期性循环变化,在输出端得到的是矩形波电压,在电容两端产生的是类似三角波电压。波形周期近似算出为

$$T = 2R_4C\ln(1 + \frac{2R_2}{R_1})$$

2.1.3 波形

800Hz 时:

1kHz 时:

	Period_XRange(V(out_1000Hz),10m,	1.00004m
~	r oned_ratango(r (out_rosonz), rom,	

2.2 LED 及蜂鸣器电路

2.2.1 电路图

2.2.2 参数计算

首先由温度比较器得到电压,当输出为 3.5V 时,左侧电路导通,1000HZ 的方波信号传输 到蜂鸣器上,同时 LED 亮黄灯;当输出为 0.8V 时,右侧电路导通,800HZ 的方波信号传输 到蜂鸣器上,同时 LED 亮红灯;当温度比较器没有输出时,左右侧电路均关闭,蜂鸣器 LED 均关闭。

当幅值为 5V, 频率为 800HZ 和 1000HZ 的方波信号传输至蜂鸣器时,流经蜂鸣器的电流为 170mA~180mA,足以驱动蜂鸣器电路;流经 LED 的电流为 20mA,足以驱动 LED 亮灯。

2.2.3 器件选型

40235: 开启电压为 0.6V 的三极管,当电压大于 0.6V 时导通,小于 0.6V 时关断。在这里起到开关的作用。当窗口比较器电路输出为 3.5V 时,左侧电路的三极管导通,1000HZ 方波信号传到蜂鸣器;当窗口比较电路输出为 0.8V 时,右侧电路的三极管导通,800HZ 方波信号传到蜂鸣器。

D1N5819: 续流二极管,在电路中起到续流保护电路的作用。

2.2.4 关键波形

-10°:

20°:

50°:

分析讨论:

-10°时蜂鸣器上电压的周期为:

	Evaluate	Measurement	Value
		Max(I(D2:1))	
		Period(V(R34:2))	
•		Period(V(R31:2))	999.62157u

得到周期:

$$T = 1ms \leftarrow$$

由此可得到频率:

$$f = \frac{1}{T} = \frac{1}{1ms} = 1000 Hz \leftarrow$$

计算频率相对误差:

$$E = \frac{f - f_0}{f_0} = 0\% < 15\%$$

满足设计需求。

- -20 度时蜂鸣器上为极小电压,无法驱动蜂鸣器。
- 50°时蜂鸣器上电压的周期为:

	Evaluate	Measurement	Value
		Period_XRange(I(D13),10m,20m)	
		Max(I(D2:1))	
•		Period(V(R34:2))	1.24875m

得到周期:

$$T = 1.25ms \leftarrow$$

由此可得到频率:

$$f = \frac{1}{T} = \frac{1}{1.25ms} = 800Hz \Leftrightarrow$$

计算频率相对误差:

$$E = \frac{f - f_0}{f_0} = 0\% < 15\%$$

满足设计需求。

2.3 温度传感器

2.3.1 电路图

2.3.2 参数计算

对于一半单限比较器,阈值电压: $U_{T} = -\frac{R_{2}}{R_{1}}U_{REF}$

由实验指导书要求,在温度为 0 摄氏度和 40 摄氏度时,电压达到阈值电压,已知参考电压,即输入电压为 7.5v,根据热敏电阻得参数并依据数次仿真调试测算出阈值电压分别应为 2.4v和 5.6v,再代入上式计算得电阻比值分别为 1.34 和 3.12,取 R1=75k,可得 R2 分别为 24k和 56k。

三、原理图及处理结果截图

3.1 原理图

3.25个处理文件截图

3.3 BOM 清单

```
10: Bill Of Materials
                                         March 13,2022
                                                                     15:27:31 Page1
12: Item Quantity Reference Part PCB Footprint
15: 1 2 C1,C2 0.lu 0805

16: 2 1 C3 ln 0805

17: 3 4 D1,D9,D11,D13 D1N5819/ON do41-1

18: 4 4 D2,D8,D10,D12 ln5231/ON do35-1
         2 D4,D6 D1N5819 do41-1
2 D5,D7 LED_Y fg
1 J1 HEADER 10 dip20_6
20: 6
21: 7
22: 8 1 NTC1 S867_10000/EPC ntc
23: 9 6 Q1,Q2,Q3,Q4,Q5,Q6 40235 to39
24: 10 2 R1,R15 4.7k 25: 11 2 R2,R18 330 0805
                                      0805
26: 12 2 R3,R5 22 0805
27: 13 2 R4,R7 23 0805
28: 14 2 R6,R21 100k
29: 15 1
                R8 125591 0805
30: 16 2
                R9,R11 50 0805
               R10,R12 20 0805
31: 17 2
32: 18 2 R13,R14 205 0805
33: 19 2
               R16,R17 33 0805
34: 20 2 R19,R20 16 fmq
35: 21 1
               R22 84895
                                 0805
36: 22 2 R23,R27 75k 0805
 37: 23
                R24 56k 0805
38: 24 2 R25,R29 lk 0805

39: 25 1 R26 l0k 0805

40: 26 1 R28 24k 0805

41: 27 1 U1 LM2902/ON soic8

42: 28 2 U2,U3 LM2904/ON soic8
```

四、感想总结

通过实验,我们了解了整个硬件电路的设计流程,学会自己根据需求取对应厂家的官网搜索确定元器件型号,进行仿真验证。同时,通过这次温度报警器的设计实践,提高了我们的团队合作能力,强化了理论知识的实际运用能力。总之,通过本次设计实践,大家硬件设计的综合能力得到了显著提高。