

Introduction: **IoT Networking- Part I**

Dr. Sudip Misra

Professor

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Email: smisra@sit.iitkgp.ernet.in

Website: http://cse.iitkgp.ac.in/~smisra/ Research Lab: cse.iitkgp.ac.in/~smisra/swan/

Introduction

- Characteristics of IoT devices
 - Low processing power
 - > Small in size
 - Energy constraints
- Networks of IoT devices
 - > Low throughput
 - High packet loss
 - > Tiny (useful) payload size
 - Frequent topology change
- Classical Internet is not meant for constrained IoT devices.

Introduction

Introduction

Analogy

- Roots Communication Protocol and device technologies
- Trunk- Architectural Reference Model (ARM)
- ➤ Leaves IoT Applications

Goal

To select a minimal set of **roots** and propose a potential **trunk** that enables the creation of a maximal set of the **leaves**.

Source: FhG, I. M. L., et al. "Internet of things-architecture iot-a deliverable d1. 3-updated reference model for iot v1. 5."

Enabling Classical Internet for IoT Devices

- Proprietary non-IP based solution
 - Vendor specific gateways
 - ➤ Vendor specific APIs
- Internet Engineering Task Force (IETF) IP based solution
 - > Three work groups
 - > IPv6 over Low power Wireless Personal Area Networks (6LoWPAN)
 - Routing Over Low power and Lossy networks (ROLL)
 - Constrained RESTful Environments (CoRE)

Source: I. Ishaq, et al., "IETF standardization in the field of the internet of things (IoT): a survey", J. of Sens. and Act. Netw. 2, vol. 2 (2013): 235-287.

Proprietary non-IP based solution

- Drawbacks
 - Limited flexibility to end users: vendor specific APIs
 - ➤ Interoperability: vendor specific sensors and gateways
 - > Limited last-mile connectivity

Source: I. Ishaq, et al., "IETF standardization in the field of the internet of things (IoT): a survey", J. of Sens. and Act. Netw. 2, vol. 2 (2013): 235-287.

IETF IP based solution

- > Three work groups
 - > IPv6 over Low power Wireless Personal Area Networks (6LoWPAN)
 - > By header compression and encapsulation it allows IPv6 packets to transmit and receive over IEEE 802.15.4 based networks.
 - > Routing Over Low power and Lossy networks (ROLL)
 - New routing protocol optimized for saving storage and energy.
 - Constrained RESTful Environments (CoRE)
 - Extend the Integration of the IoT devices from network to service level.

Constrained RESTful Environments (CoRE)

CoRE

- Provides a platform for applications meant for constrained IoT devices.
- This framework views sensor and actuator resources as web resources.
- > The framework is limited to applications which
 - Monitor basic sensors
 - Supervise actuators
- > CoAP includes a mechanism for service discovery.

CoRE: Service Discovery

- ➤ IoT devices (act as mini web servers) register their resources to Resource Directory (RD) using Registration Interface (RI).
- > RD, a logical network node, stores the information about a specific set of IoT devices.
- ➤ RI supports Representational State Transfer (REST) based protocol such as HTTP (and CoAP- optimized for IoT).
- ➤ IoT client uses **Lookup interface** for discovery of IoT devices.

IoT Network QoS

IoT Network QoS

- Quality-of-service (QoS) of IoT network is the ability to guarantee intended service to IoT applications through controlling the heterogeneous traffic generated by IoT devices.
- QoS policies for IoT Network includes
 - Resource utilization
 - > Data timeliness
 - > Data availability
 - Data delivery

Resource utilization

- ➤ Requires control on the <u>storage</u> and <u>bandwidth</u> for data reception and transmission.
- > QoS policies for resource utilization:
 - > Resource limit policy
 - Controls the amount of message buffering
 - Useful for memory constrained IoT devices
 - > Time filter policy
 - > Controls the data sampling rate (interarrival time) to avoid buffer overflow
 - > Controls network bandwidth, memory, and processing power

Data timeliness

- Measure of the freshness of particular information at the receiver end
- Important in case of healthcare, industrial and military applications
- > Data timeliness policies for IoT network include
 - > Deadline policy
 - > Provides maximum interarrival time of data
 - > Drops the stale data; notify the missed deadline to the application end
 - > Latency budget policy
 - Latency budget is the maximum time difference between the data transmission and reception from source end to the receiver end.
 - > Provides priority to applications having higher urgency

Data availability

- Measure of the amount of valid data provided by the sender/producer to receiver/consumer
- QoS policies for data availability in IoT network include
 - > Durability policy
 - > Controls the degree of data persistence transmitted by the sender
 - ➤ Data persistence ensures the availability of the data to the receiver even after sender is unavailable
 - > Lifespan policy
 - Controls the duration for which transmitted data is valid
 - History policy
 - > Controls the number of previous data instances available for the receiver.

Data delivery

- Measure of successful reception of reliable data from sender to receiver
- QoS policies for data delivery include
 - > Reliability policy
 - Controls the reliability level associated with the data distribution
 - > Transport priority
 - > Allows transmission of data according to its priority level

Thank You!!

