

¹Атворы: maxmartynov08, K-dizzled, SmnTin, muldrik

Оглавление

1	Вве	дение	2
	1	Множества	2
	2	Отношения	3
	3	Аксиомы вещественных чисел	4

Глава 1

Введение

1 Множества

Определение 1. Множество - набор уникальных элементов

Множества - большие буквы A, B, \dots

Элементы множеств - маленькие буквы a, b, \dots

 $x \in A - x$ пренадлежит A

 $x \notin A - x$ не пренадлежит A

 $\mathbb{N} = \{1, 2, 3, \dots\}$

 $\mathbb{Z}, \mathbb{Q} = \{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \}$

 \mathbb{R} - вещественные числа

 \mathbb{R} - комплексные числа

Теорема. Правила Де Моргана

$$A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) = \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

$$A \setminus (\bigcap_{\alpha \in I} B_{\alpha}) = \bigcup_{\alpha \in I} (A \setminus B_{\alpha})$$

Доказательство. Докажем для первой формулы. Вторая доказывается аналогично.

Доказательство. Докажем для первой формулы. Вторая доказывается аналогично.
$$x \in A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) \Longleftrightarrow \begin{cases} x \in A \\ x \notin \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \iff \begin{cases} x \in A \\ x \notin B_{\alpha} \end{cases} \text{ при всех } \alpha \end{cases}$$

$$\alpha \in I \Longleftrightarrow x \in \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

Теорема. Операции над множествами

• $A \cup B = \{x : x \in A \text{ или } x \in B\}$

$$\bullet \ A \cap B = \{x : x \in A, x \in B\}$$

•
$$A \setminus B = \{x : x \in A, x \notin B\}$$

•
$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

Замечание: \triangle, \cup, \cap - комммутативны, ассоциативны

Определение 2. Декартово произведение множеств $A \times B = \{ \langle a, b \rangle : a \in A; b \in B \}$

Теорема.

$$A \cap \bigcup_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} (A \cap B_{\alpha})$$

$$A \cup \bigcap_{\alpha \in I} B_{\alpha} = \bigcap_{\alpha \in I} (A \cup B_{\alpha})$$

Доказательство.
$$x \in A \cap \bigcup_{\alpha \in I} B_{\alpha} \Longleftrightarrow \begin{cases} x \in A \\ x \in \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \iff \begin{cases} x \in A \\ x \in B_{\alpha} \text{ для некоторых } \alpha \in I \end{cases} \Longleftrightarrow$$

$$x \in A \cap B_{\alpha}$$
 для некоторых $\alpha \in I \Longleftrightarrow x \in \bigcup_{\alpha \in I} (A \cap B_{\alpha})$

Определение 3. Упорядоченная пара $\langle a,b \rangle$ - пара "пронумерованных" элементов

$$\langle a,b\rangle = \langle c,d\rangle$$

$$((a == c) && (b == d))$$

2 Отношения

Определение 4. Область определения: $\delta_R = \{x \in A : \exists y \in B, m.ч.\langle x,y \rangle \in \mathbb{Z}\}$

Определение 5. Область значений: $\rho_R = \{y \in B: \exists x \in A, \ m.ч. \langle x,y \rangle \in \mathbb{Z}\}$

$$\delta_{R^{-1}} = \rho_R$$
$$\rho_{R^{-1}} = \delta_R$$

Определение 6. Композиция отношений

$$R_1 \subset A \times B$$
, $R_2 \subset B \times C$, $R_1 \circ R_2 \subset A \times C$

Пример

- $\langle x,y\rangle\in R$, если х отец у
- $\langle x, y \rangle \in R \circ R$, если x дед y
- $\langle x,y\rangle\in R^{-1}\circ R$, если х брат у

• δR — все, у кого есть сыновья

Определение 7. Бинарным отношением R называется подмножество элементов декартова произведения двух множеств $R \subset A \times B$

Элементы $x \in A, y \in B$ находятся в отношении, если $\langle x, y \rangle \in R$ (то же, что xRy)

Обратное отношение $R^{-1} \subset B \times A$

Определение 8. Отношение называется:

- Рефлексивным, если $xRx \ \forall x$
- Симметричным, если $xRy \Longrightarrow yRx$
- Транзитивным, если $xRy, yRz \Longrightarrow xRz$
- Иррефлексивным, если $\neg xRx \forall x$
- Антисимметричным, если $xRy, yRx \Longrightarrow x = y$

Определение 9. *R является отношением*

- 1. Эквивалентности, если оно рефлексивно, симметрично и транзитивно
- 2. Нестрогого частичного порядка, если оно рефлексивно, антисимметрично и транзитивно
- 3. Нестрогого полного порядка, если выполняется п. $2 + \forall x, y$ либо xRy, либо yRx
- 4. Строгого частичного порядка, если оно иррефлексивно и транзитивно
- 5. Строгого полного порядка, если выполняется п. $4 + \forall x, y$ либо xRy, либо yRx

Пример

- $x \equiv y \pmod{m}$ отношение эквивалентности
- X множество, 2^X множество всех его подмножеств
- $\forall x,y \in 2^x: \langle x,y \rangle \in R$, если $x \subsetneq y$ отношение строгого частичного порядка
- Лексикографический порядок на множестве пар натуральных чисел отношение нестрогого полного порядка

Определение 10. Отображение $f: A \longrightarrow B$

- инъективно, если $f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2$
- ullet сюръективно, если $ho_f=B$
- ullet биективно, если f инъективно и сюръективно

3 Аксиомы вещественных чисел

Определение 11. Вещественные числа - алгебраическая структура, над которой определены операции сложения "+" и умножения "·" ($\mathbb{R} * \mathbb{R} \to \mathbb{R}$)

Определение 12. Аксиомы вещественных чисел:

- A_1 Ассоциативность сложения x + (y + z) = (x + y) + z
- A_2 Коммутативность сложения
- A_3 Существование нуля $\exists 0 \in \mathbb{R} : \forall x \in \mathbb{R} \ x + 0 = x$

x + y = y + x

- A_4 Существование обратного элемента по сложению $\forall x \in \mathbb{R} \ \exists (-x) \in \mathbb{R} : x + (-x) = 0$
- M_1 Ассоциативность умножения $x(y \cdot z) = (x \cdot y)z$
- M_2 Коммутативность умножения xy = yx
- M_3 Существование единицы $\exists 1 \in \mathbb{R} : \forall x \in \mathbb{R} \ x \cdot 1 = x$
- M_4 Существование обратного элемента по умножению $\forall x \in \mathbb{R} \ \exists x^{-1} \in \mathbb{R} : x \cdot x^{-1} = 1$
- M_A Дистрибутивность $(x+y) \cdot z = x \cdot z + y \cdot z$

Замечание - Вышеперечисленные аксиомы бразуют поле

Бинарное отношение " "

Аксиомы порядка, задающие отношение порядка на множестве вещественных чисел:

5

$$O_1 \ x \leqslant x \quad \forall x$$

$$O_2 \ x \leqslant y$$
 и $y \leqslant x \Longrightarrow x = y$

$$O_3 \ x \leqslant y$$
 и $y \leqslant z \Longrightarrow x \leqslant z$

$$O_4 \ \forall x,y \in \mathbb{R}: x \leqslant y$$
 или $y \leqslant x$

$$O_4 \ x \leqslant y \Longrightarrow x + z \leqslant y + z \quad \forall z$$

$$O_4 \ 0 \leqslant x$$
 и $0 \leqslant y \Longrightarrow 0 \leqslant xy$

Теорема. Аксиома полноты

$$A, B \subset \mathbb{R} : A \neq \varnothing, B \neq \varnothing, \forall a \in A \ \forall b \in B \ a \leqslant b$$

Тогда
$$\exists c \in \mathbb{R} : a \leqslant c \leqslant b \; \forall a \in A \; \forall b \in B$$

Теорема. Принцип Архимеда

Согласно принципу Архимеда: $\forall x \in \mathbb{R}$ и $\forall y_{>0} \in \mathbb{R} \ \exists n \in \mathbb{N} : x < ny$

Доказательство.

$$A = \{a \in \mathbb{R} : \exists n \in \mathbb{N} : a < ny\}, A \neq \emptyset$$
 т.к. $0 \in A$ $B = \mathbb{R} \ \setminus \ A$

Пусть $A \neq \mathbb{R}$, тогда $B \neq \emptyset$ Покажем, что $a \leqslant b$, если $a \in A, b \in B$

Пойдем от противного. Если $b < a < ny \Longrightarrow b < ny \Longrightarrow b \in A$ - противоречие

Таким образом, по аксиоме полноты $\exists c \in \mathbb{R} : a \leqslant c \leqslant b \quad \forall a \in A, \forall b \in B$

Предположим, что $c \in A$. Тогда c < ny для некоторого $n \in \mathbb{N} \Longrightarrow c + y < (n+1)y \Longrightarrow c + y \in A \Longrightarrow c + y \leqslant c \Longrightarrow y \leqslant 0$. Это противоречит условию.

Пусть $c \in B$. Так как y>0, c-y< c. Так как B - дополненние A и $c-y \neq c, \ c-y \in A \Longrightarrow c-y < ny \Longrightarrow c < (n+1)y \Longrightarrow c \in A$. Снова пришли к противоречию.

Значит
$$c \notin A, c \notin B \Longrightarrow c$$
 не существует $\Longrightarrow B = \varnothing \Longrightarrow A = \mathbb{R}$

Следствие:

1.
$$\forall \varepsilon_{>0} \; \exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$$

Доказательство.

$$x = 1, y = \varepsilon \Longrightarrow \exists n \in N : 1 < n\varepsilon$$

2. Если $x, y \in \mathbb{R}, x < y$, то $\exists r \in \mathbb{Q} : x < r < y$

Доказательство.

Пусть x < 0, y > 0. Тогда $\exists r = 0 \in \mathbb{Q} : x < r < y$

Пусть $x \geqslant 0, y > 0, \varepsilon = x - y$. Тогда $\exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$

По принципу Архимеда найдется такое число m, что $\frac{m-1}{n} \leqslant x < \frac{m}{n}$

Предположим, что $\frac{m-1}{n} \leqslant x < y \leqslant \frac{m}{n}$. Тогда мы получим, что $\frac{1}{n} \geqslant y - x = \varepsilon$. Пришли к противоречию

Следовательно, $\exists m \in \mathbb{N} : x < \frac{m}{n} < y$

Случай $y\leqslant 0$ аналогичен предыдущему

3. Если $x, y \in \mathbb{R}, x < y$, то существует иррациональное число r : x < r < y

Доказательство.

$$x-\sqrt{2} < y-\sqrt{2} \Longrightarrow \exists R \in (x-\sqrt{2},y-\sqrt{2}) \Longrightarrow x < R+\sqrt{2} < y \; (\Pi$$
редыдущий пункт) $\Longrightarrow r$ - иррациональное

4. Если $x \geqslant 1$, то $\exists n \in \mathbb{N} : x - 1 < n \leqslant x$