Data analysis and Machine Learning Lectures: Linear Algebra and Handling of Arrays

Morten Hjorth-Jensen^{1,2}

Department of Physics, University of Oslo¹

Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University 2

Dec 7, 2018

© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Introduction

The aim of this set of lectures is to review some central linear algebra algorithms that we will need in our data analysis part and in the construction of Machine Learning algorithms (ML). This will allow us to introduce some central programming features of high-level languages like Python and compiled languages like C++ and/or Fortran.

As discussed in the introductory notes, these series of lectures focuses both on using central Python packages like **tensorflow** and **scikit-learn** as well as writing your own codes for some central ML algorithms. The latter can be written in a language of your choice, be it Python, Julia, R, Rust, C++, Fortran etc. In order to avoid confusion however, in these lectures we will limit our attention to Python, C++ and Fortran.

Important Matrix and vector handling packages
There are several central software packages for linear algebra and eigenvalue problems. Several of the more popular ones have been wrapped into ofter software packages like those from the widely used text Numerical Recipes. The original source codes in many of the available packages are often taken from the widely used software package LAPACK, which follows two other popular packages developed in the 1970s, namely EISPACK and LINPACK. We describe them shortly here.

- ► LINPACK: package for linear equations and least square problems.
- ► LAPACK:package for solving symmetric, unsymmetric and generalized eigenvalue problems. From LAPACK's website http://www.netlib.org it is possible to download for free all source codes from this library. Both C/C++ and Fortran versions are available.
- ▶ BLAS (I, II and III): (Basic Linear Algebra Subprograms) are routines that provide standard building blocks for performing basic vector and matrix operations. Blas I is vector operations,

Matrix properties reminder

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \qquad \mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The inverse of a matrix is defined by

$$\mathbf{A}^{-1} \cdot \mathbf{A} = I$$

Matrix Properties Reminder

Water Toperties Reminder	
Name	matrix elements
symmetric	$a_{ij}=a_{ji}$
real orthogonal	$\sum_k a_{ik} a_{jk} = \sum_k a_{ki} a_{kj} = \delta_{ij}$
real matrix	$a_{ij}=a_{ij}^{st}$
hermitian	$a_{ij}=a_{ji}^st$
unitary	$\sum_{k} a_{ik} a_{jk}^* = \sum_{k} a_{ki}^* a_{kj} = \delta_{ij}$
	symmetric real orthogonal real matrix hermitian

Some famous Matrices

- ▶ Diagonal if $a_{ii} = 0$ for $i \neq j$
- ▶ Upper triangular if $a_{ij} = 0$ for i > j
- ▶ Lower triangular if $a_{ij} = 0$ for i < j
- ▶ Upper Hessenberg if $a_{ii} = 0$ for i > j + 1
- ▶ Lower Hessenberg if $a_{ij} = 0$ for i < j + 1
- ▶ Tridiagonal if $a_{ii} = 0$ for |i j| > 1
- ▶ Lower banded with bandwidth p: $a_{ij} = 0$ for i > j + p
- ▶ Upper banded with bandwidth p: $a_{ij} = 0$ for i < j + p
- Banded, block upper triangular, block lower triangular....

Some Equivalent Statements

For an $N \times N$ matrix **A** the following properties are all equivalent

- ▶ If the inverse of **A** exists, **A** is nonsingular.
- ▶ The equation $\mathbf{A}\mathbf{x} = 0$ implies $\mathbf{x} = 0$.
- ▶ The rows of **A** form a basis of R^N .
- ▶ The columns of **A** form a basis of R^N .
- ► A is a product of elementary matrices.
- ▶ 0 is not eigenvalue of **A**.

Numpy and arrays

Numpy provides an easy way to handle arrays in Python. The standard way to import this library is as

import numpy as np
n = 10
x = np.random.normal(size=n)
print(x)

Here we have defined a vector x with n=10 elements with its values given by the Normal distribution N(0,1). Another alternative is to declare a vector as follows

import numpy as np
x = np.array([1, 2, 3])
print(x)

import numpy as np

x = np.log(np.array([4, 7, 8]))

Here we have defined a vector with three elements, with $x_0 = 1$, $x_1 = 2$ and $x_2 = 3$. Note that both Python and C++ start numbering array elements from 0 and on. This means that a vector with n elements has a sequence of entities $x_0, x_1, x_2, \ldots, x_{n-1}$. We could also let (recommended) Numpy to compute the logarithms of a specific array as

print(x)
Here we have used Numpy's unary function np.log. This function is

Matrices in Python

import numpy as np

Having defined vectors, we are now ready to try out matrices. We can define a 3×3 real matrix \hat{A} as (recall that we user lowercase

```
letters for vectors and uppercase letters for matrices)
import numpy as np
A = np.log(np.array([ [4.0, 7.0, 8.0], [3.0, 10.0, 11.0], [4.0, 5.0, 7 print(A)])
If we use the shape function we would get (3,3) as output, that is
```

verifying that our matrix is a 3×3 matrix. We can slice the matrix and print for example the first column (Python organized matrix elements in a row-major order, see below) as

```
# print the first column, row-major order and elements start with 0 print(A[:,0])
```

We can continue this was by printing out other columns or rows.

The example here prints out the second column import numpy as np
A = np.log(np.array([[4.0, 7.0, 8.0], [3.0, 10.0, 11.0], [4.0, 5.0, 7 # print the first column, row-major order and elements start with 0

A = np.log(np.array([4.0, 7.0, 8.0], [3.0, 10.0, 11.0], [4.0, 5.0, 7.0])

print(A[1,:])
Numpy contains many other functionalities that allow us to slice,
subdivide etc etc arrays. We strongly recommend that you look up

Matrix Handling in C/C++, Static and Dynamical allocation

Static

We have an $N \times N$ matrix A with N = 100 In C/C++ this would be defined as

```
int N = 100;
double A[100][100];
// initialize all elements to zero
for(i=0; i < N; i++) {
   for(j=0; j < N; j++) {
     A[i][j] = 0.0;</pre>
```

Note the way the matrix is organized, row-major order.

Matrix Handling in C/C++

Row Major Order, Addition

We have $N \times N$ matrices A, B and C and we wish to evaluate A = B + C.

$$A = B \pm C \Longrightarrow a_{ij} = b_{ij} \pm c_{ij},$$

In C/C++ this would be coded like

```
\begin{array}{lll} & \text{for}(i=0 \ ; \ i < N \ ; \ i++) \ \{ \\ & \text{for}(j=0 \ ; \ j < N \ ; \ j++) \ \{ \\ & \text{a[i][j]} = \text{b[i][j]+c[i][j]} \end{array}
```

Matrix Handling in C/C++

Row Major Order, Multiplication

We have $N \times N$ matrices A, B and C and we wish to evaluate A = BC.

$$A = BC \Longrightarrow a_{ij} = \sum_{k=1}^{n} b_{ik} c_{kj},$$

In C/C++ this would be coded like

```
\begin{array}{lll} & \text{for}(i=0 \ ; \ i < N \ ; \ i++) \ \{ \\ & \text{for}(j=0 \ ; \ j < N \ ; \ j++) \ \{ \\ & \text{for}(k=0 \ ; \ k < N \ ; \ k++) \ \{ \\ & \text{a[i][j]+=b[i][k]*c[k][j];} \end{array}
```

Dynamic memory allocation in C/C++

At least three possibilities in this course

- ▶ Do it yourself
- Use the functions provided in the library package lib.cpp
- ► Use Armadillo http://arma.sourceforgenet (a C++ linear algebra library, discussion both here and at lab).

Matrix Handling in C/C++, Dynamic Allocation

Do it yourself

```
int N;
double ** A;
A = new double*[N]
for ( i = 0; i < N; i++)
          A[i] = new double[N];</pre>
```

Always free space when you don't need an array anymore.

```
for ( i = 0; i < N; i++)
    delete[] A[i];
delete[] A;</pre>
```

Armadillo, recommended!!

- Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use.
 - The syntax is deliberately similar to Matlab.

 Integer, floating point and complex numbers are supported, as
 - well as a subset of trigonometric and statistics functions.

 Various matrix decompositions are provided through optional integration with LAPACK, or one of its high performance drop-in replacements (such as the multi-threaded MKL or ACML libraries).
 - A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries. This is accomplished through recursive templates and template meta-programming.
 - ▶ Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities.
 - ► The library is open-source software, and is distributed under a license that is useful in both open-source and

```
#include <iostream>
#include <armadillo>

using namespace std;
using namespace arma;

int main(int argc, char** argv)
   {
   mat A = randu<mat>(5,5);
   mat B = randu<mat>(5,5);
   cout << A*B << endl;
   return 0;</pre>
```

Armadillo, how to compile and install

For people using Ubuntu, Debian, Linux Mint, simply go to the synaptic package manager and install armadillo from there. You may have to install Lapack as well. For Mac and Windows users, follow the instructions from the webpage

http://arma.sourceforge.net. To compile, use for example (linux/ubuntu)

where the -1 option indicates the library you wish to link to. For OS X users you may have to declare the paths to the include files and the libraries as

```
c++ -02 -o program.x program.cpp -L/usr/local/lib -I/usr/local/includ
```

```
#include <iostream>
#include "armadillo"
using namespace arma;
using namespace std;
int main(int argc, char** argv)
  // directly specify the matrix size (elements are uninitialised)
  mat A(2,3);
  // .n_rows = number of rows (read only)
  // .n_cols = number of columns (read only)
  cout << "A.n rows = " << A.n rows << endl:
  cout << "A.n_cols = " << A.n_cols << endl;</pre>
  // directly access an element (indexing starts at 0)
  A(1.2) = 456.0:
  A.print("A:");
  // scalars are treated as a 1x1 matrix,
  // hence the code below will set A to have a size of 1x1
  A = 5.0:
  A.print("A:");
  // if you want a matrix with all elements set to a particular value
  // the .fill() member function can be used
  A.set_size(3,3);
  A.fill(5.0); A.print("A:");
```

```
mat B:
// endr indicates "end of row"
B << 0.555950 << 0.274690 << 0.540605 << 0.798938 << endr
  << 0.108929 << 0.830123 << 0.891726 << 0.895283 << endr</pre>
  << 0.948014 << 0.973234 << 0.216504 << 0.883152 << endr
  << 0.023787 << 0.675382 << 0.231751 << 0.450332 << endr:</pre>
// print to the cout stream
// with an optional string before the contents of the matrix
B.print("B:");
// the << operator can also be used to print the matrix
// to an arbitrary stream (cout in this case)
cout << "B:" << endl << B << endl;
// save to disk
B.save("B.txt", raw_ascii);
// load from disk
mat C:
C.load("B.txt");
C += 2.0 * B;
C.print("C:");
```

```
// submatrix types:
// .submat(first_row, first_column, last_row, last_column)
// .row(row_number)
// .col(column number)
// .cols(first_column, last_column)
// .rows(first_row, last_row)
cout << "C.submat(0,0,3,1) =" << endl;
cout << C.submat(0.0.3.1) << endl:</pre>
// generate the identity matrix
mat D = eye < mat > (4,4);
D.submat(0,0,3,1) = C.cols(1,2);
D.print("D:");
// transpose
cout << "trans(B) =" << endl;</pre>
cout << trans(B) << endl:</pre>
// maximum from each column (traverse along rows)
cout << "max(B) =" << endl;
cout << max(B) << endl;</pre>
```

```
// maximum from each row (traverse along columns)
cout << "max(B,1) =" << endl;
cout \ll max(B,1) \ll endl;
// maximum value in B
cout << "max(max(B)) = " << max(max(B)) << endl;
// sum of each column (traverse along rows)
cout << "sum(B) =" << endl:
cout << sum(B) << endl;</pre>
// sum of each row (traverse along columns)
cout << "sum(B,1) =" << endl;
cout << sum(B,1) << endl;</pre>
// sum of all elements
cout << "sum(sum(B)) = " << sum(sum(B)) << endl;
cout << "accu(B) = " << accu(B) << endl;</pre>
// trace = sum along diagonal
cout << "trace(B) = " << trace(B) << endl;</pre>
// random matrix -- values are uniformly distributed in the [0,1] in
mat E = randu < mat > (4,4);
E.print("E:");
```

```
// row vectors are treated like a matrix with one row
rowvec r;
r << 0.59499 << 0.88807 << 0.88532 << 0.19968:
r.print("r:");
// column vectors are treated like a matrix with one column
colvec q;
q << 0.81114 << 0.06256 << 0.95989 << 0.73628;
q.print("q:");
// dot or inner product
cout << "as_scalar(r*q) = " << as_scalar(r*q) << endl;</pre>
 // outer product
cout << "q*r =" << endl;
cout << g*r << endl;
// sum of three matrices (no temporary matrices are created)
mat F = B + C + D:
F.print("F:");
  return 0;
```

```
#include <iostream>
#include "armadillo"
using namespace arma;
using namespace std;
int main(int argc, char** argv)
  cout << "Armadillo version: " << arma_version::as_string() << endl;</pre>
 mat A:
  A << 0.165300 << 0.454037 << 0.995795 << 0.124098 << 0.047084 << end
    << 0.688782 << 0.036549 << 0.552848 << 0.937664 << 0.866401 << end
    << 0.348740 << 0.479388 << 0.506228 << 0.145673 << 0.491547 << end
    << 0.148678 << 0.682258 << 0.571154 << 0.874724 << 0.444632 << end
    << 0.245726 << 0.595218 << 0.409327 << 0.367827 << 0.385736 << end
  A.print("A =");
  // determinant
  cout << "det(A) = " << det(A) << endl;</pre>
```

```
// inverse
cout \ll "inv(A) = " \ll endl \ll inv(A) \ll endl;
double k = 1.23:
mat B = randu < mat > (5.5):
mat C = randu < mat > (5,5);
rowvec r = randu<rowvec>(5):
colvec q = randu<colvec>(5);
// examples of some expressions
// for which optimised implementations exist
// optimised implementation of a trinary expression
// that results in a scalar
cout << "as_scalar( r*inv(diagmat(B))*q ) = ";</pre>
cout << as_scalar( r*inv(diagmat(B))*q ) << endl;</pre>
// example of an expression which is optimised
// as a call to the dgemm() function in BLAS:
cout << "k*trans(B)*C = " << end1 << k*trans(B)*C;
  return 0;
```

We start with the linear set of equations

$$Ax = w$$
.

We assume also that the matrix **A** is non-singular and that the matrix elements along the diagonal satisfy $a_{ii} \neq 0$. Simple 4 × 4 example

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix}.$$

or

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = w_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = w_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = w_3$$

$$a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = w_4.$$

The basic idea of Gaussian elimination is to use the first equation to eliminate the first unknown x_1 from the remaining n-1 equations. Then we use the new second equation to eliminate the second unknown x_2 from the remaining n-2 equations. With n-1 such eliminations we obtain a so-called upper triangular set of equations of the form

$$b_{11}x_1 + b_{12}x_2 + b_{13}x_3 + b_{14}x_4 = y_1$$

$$b_{22}x_2 + b_{23}x_3 + b_{24}x_4 = y_2$$

$$b_{33}x_3 + b_{34}x_4 = y_3$$

$$b_{44}x_4 = y_4.$$

We can solve this system of equations recursively starting from x_n (in our case x_4) and proceed with what is called a backward substitution.

This process can be expressed mathematically as

$$x_m = \frac{1}{b_{mm}} \left(y_m - \sum_{k=m+1}^n b_{mk} x_k \right) \quad m = n-1, n-2, \dots, 1.$$
 (1)

To arrive at such an upper triangular system of equations, we start by eliminating the unknown x_1 for j=2,n. We achieve this by multiplying the first equation by a_{j1}/a_{11} and then subtract the result from the jth equation. We assume obviously that $a_{11} \neq 0$ and that \mathbf{A} is not singular.

Our actual 4×4 example reads after the first operation

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & (a_{22} - \frac{a_{21}a_{12}}{a_{11}}) & (a_{23} - \frac{a_{21}a_{13}}{a_{11}}) & (a_{24} - \frac{a_{21}a_{14}}{a_{11}}) \\ 0 & (a_{32} - \frac{a_{31}a_{12}}{a_{11}}) & (a_{33} - \frac{a_{31}a_{13}}{a_{11}}) & (a_{34} - \frac{a_{31}a_{14}}{a_{11}}) \\ 0 & (a_{42} - \frac{a_{41}a_{12}}{a_{11}}) & (a_{43} - \frac{a_{41}a_{13}}{a_{11}}) & (a_{44} - \frac{a_{41}a_{14}}{a_{11}}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} y_1 \\ w_2^{(2)} \\ w_3^{(2)} \\ w_4^{(2)} \end{bmatrix},$$

or

$$b_{11}x_1 + b_{12}x_2 + b_{13}x_3 + b_{14}x_4 = y_1$$

$$a_{22}^{(2)}x_2 + a_{23}^{(2)}x_3 + a_{24}^{(2)}x_4 = w_2^{(2)}$$

$$a_{32}^{(2)}x_2 + a_{33}^{(2)}x_3 + a_{34}^{(2)}x_4 = w_3^{(2)}$$

$$a_{42}^{(2)}x_2 + a_{43}^{(2)}x_3 + a_{44}^{(2)}x_4 = w_4^{(2)},$$

(2)

The new coefficients are

$$b_{1k} = a_{1k}^{(1)} \quad k = 1, \dots, n,$$
 (3)

where each $a_{1k}^{(1)}$ is equal to the original a_{1k} element. The other coefficients are

$$a_{jk}^{(2)} = a_{jk}^{(1)} - \frac{a_{j1}^{(1)} a_{1k}^{(1)}}{a_{11}^{(1)}} \quad j, k = 2, \dots, n,$$
 (4)

with a new right-hand side given by

$$y_1 = w_1^{(1)}, \quad w_j^{(2)} = w_j^{(1)} - \frac{a_{j1}^{(1)} w_1^{(1)}}{a_{j1}^{(1)}} \quad j = 2, \dots, n.$$
 (5)

We have also set $w_1^{(1)} = w_1$, the original vector element. We see that the system of unknowns x_1, \ldots, x_n is transformed into an $(n-1) \times (n-1)$ problem.

This step is called forward substitution. Proceeding with these substitutions, we obtain the general expressions for the new coefficients

$$a_{jk}^{(m+1)} = a_{jk}^{(m)} - \frac{a_{jm}^{(m)} a_{mk}^{(m)}}{a_{mm}^{(m)}} \quad j, k = m+1, \dots, n,$$
 (6)

with m = 1, ..., n - 1 and a right-hand side given by

$$w_j^{(m+1)} = w_j^{(m)} - \frac{a_{jm}^{(m)} w_m^{(m)}}{a_{jm}^{(m)}} \quad j = m+1, \dots, n.$$
 (7)

This set of n-1 elimations leads us to an equations which is solved by back substitution. If the arithmetics is exact and the matrix **A** is not singular, then the computed answer will be exact. Even though the matrix elements along the diagonal are not zero, numerically small numbers may appear and subsequent divisions may lead to large numbers, which, if added to a small number may yield losses of precision. Suppose for example that our first division in $(a_{22}-a_{21}a_{12}/a_{11})$ results in -10^{-7} and that a_{22} is one one. We

Linear Algebra Methods

- ▶ Gaussian elimination, $O(2/3n^3)$ flops, general matrix
- LU decomposition, upper triangular and lower tridiagonal matrices, $O(2/3n^3)$ flops, general matrix. Get easily the inverse, determinant and can solve linear equations with back-substitution only, $O(n^2)$ flops
- ► Cholesky decomposition. Real symmetric or hermitian positive definite matrix, $O(1/3n^3)$ flops.
- ► Tridiagonal linear systems, important for differential equations. Normally positive definite and non-singular. *O*(8*n*) flops for symmetric. Special case of banded matrices.
- Singular value decomposition
- ▶ the QR method will be discussed in chapter 7 in connection with eigenvalue systems. $O(4/3n^3)$ flops.

LU Decomposition

The LU decomposition method means that we can rewrite this matrix as the product of two matrices ${\bf L}$ and ${\bf U}$ where

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}.$$

LU Decomposition

LU decomposition forms the backbone of other algorithms in linear algebra, such as the solution of linear equations given by

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = w_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = w_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = w_3$
 $a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = w_4$.

The above set of equations is conveniently solved by using LU decomposition as an intermediate step.

The matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has an LU factorization if the determinant is different from zero. If the LU factorization exists and \mathbf{A} is non-singular, then the LU factorization is unique and the determinant is given by

$$det\{\mathbf{A}\} = det\{\mathbf{LU}\} = det\{\mathbf{L}\}det\{\mathbf{U}\} = u_{11}u_{22}\dots u_{nn}.$$

LU Decomposition, why?

There are at least three main advantages with LU decomposition compared with standard Gaussian elimination:

- ▶ It is straightforward to compute the determinant of a matrix
- ▶ If we have to solve sets of linear equations with the same matrix but with different vectors y, the number of FLOPS is of the order n³.
- ► The inverse is such an operation

LU Decomposition, linear equations

With the LU decomposition it is rather simple to solve a system of linear equations

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = w_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = w_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = w_3$
 $a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = w_4$.

This can be written in matrix form as

$$Ax = w$$
.

where ${\bf A}$ and ${\bf w}$ are known and we have to solve for ${\bf x}$. Using the LU dcomposition we write

$$Ax \equiv LUx = w$$
.

LU Decomposition, linear equations

The previous equation can be calculated in two steps

$$Ly=w; \qquad Ux=y.$$

To show that this is correct we use to the LU decomposition to rewrite our system of linear equations as

$$LUx = w$$
,

and since the determinant of L is equal to 1 (by construction since the diagonals of L equal 1) we can use the inverse of L to obtain

$$Ux = L^{-1}w = y,$$

which yields the intermediate step

$$\mathsf{L}^{-1}\mathsf{w}=\mathsf{y}$$

and as soon as we have y we can obtain x through Ux = y.

LU Decomposition, why? For our four-dimentional example this takes the form

$$y_1 = w_1$$

$$l_{21}y_1 + y_2 = w_2$$

$$l_{31}y_1 + l_{32}y_2 + y_3 = w_3$$

$$l_{41}y_1 + l_{42}y_2 + l_{43}y_3 + y_4 = w_4.$$

and

$$u_{11}x_1 + u_{12}x_2 + u_{13}x_3 + u_{14}x_4 = y_1$$

$$u_{22}x_2 + u_{23}x_3 + u_{24}x_4 = y_2$$

$$u_{33}x_3 + u_{34}x_4 = y_3$$

$$u_{44}x_4 = y_4$$

This example shows the basis for the algorithm needed to solve the set of n linear equations.

LU Decomposition, linear equations

The algorithm goes as follows

- ► Set up the matrix **A** and the vector **w** with their correct dimensions. This determines the dimensionality of the unknown vector **x**.
- Then LU decompose the matrix A through a call to the function ludcmp(double a, int n, int indx, double &d). This functions returns the LU decomposed matrix A, its determinant and the vector indx which keeps track of the number of interchanges of rows. If the determinant is zero, the solution is malconditioned.
- Thereafter you call the function lubksb(double a, int n, int indx, double w) which uses the LU decomposed matrix A and the vector w and returns x in the same place as w. Upon exit the original content in w is destroyed. If you wish to keep this information, you should make a backup of it in your calling function.

LU Decomposition, the inverse of a matrix

If the inverse exists then

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{I},$$

the identity matrix. With an LU decomposed matrix we can rewrite the last equation as

$$LUA^{-1} = I.$$

LU Decomposition, the inverse of a matrix

If we assume that the first column (that is column 1) of the inverse matrix can be written as a vector with unknown entries

$$\mathbf{A}_{1}^{-1} = \begin{bmatrix} a_{11}^{-1} \\ a_{21}^{-1} \\ \dots \\ a_{n1}^{-1} \end{bmatrix},$$

then we have a linear set of equations

$$\mathbf{LU} \begin{bmatrix} a_{11}^{-1} \\ a_{21}^{-1} \\ \vdots \\ a_{n1}^{-1} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

LU Decomposition, the inverse

In a similar way we can compute the unknow entries of the second column,

$$LU\begin{bmatrix} a_{12}^{-1} \\ a_{22}^{-1} \\ \vdots \\ a_{n2}^{-1} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix},$$

and continue till we have solved all n sets of linear equations.

Using Armadillo to perform an LU decomposition

```
#include <iostream>
#include "armadillo"
using namespace arma;
using namespace std;
int main()
   mat A = randu < mat > (5,5);
   vec b = randu < vec > (5):
  A.print("A =");
  b.print("b="):
  // solve Ax = b
  vec x = solve(A,b);
  // print x
  x.print("x=");
  // find LU decomp of A, if needed, P is the permutation matrix
  mat L. U:
  lu(L,U,A);
  // print l
  L.print(" L= ");
  // print U
  U.print(" U= ");
  //Check\ that\ A = LU
  (A-L*U).print("Test of LU decomposition");
    return 0:
```