Problem 1 (20 points)

You must show your detailed work to get full credit.

For the Wheatstone bridge circuit shown in Fig.1, solve the following problems:

- (a) Express I_a , the reading on the ammeter, as a function of all the circuit elements R_1 , R_2 , R_3 , R_x , R_a and V_0 .
- (b) If $R_1 = 1\Omega$, $R_2 = 2\Omega$, and $R_x = 3\Omega$, to what value should R_3 be adjusted so as to achieve a balanced condition, that is, $I_a = 0$?
- (c) Further, if $V_0 = 6V$, $R_a = 0.1\Omega$, and R_x were then to deviate by a small amount to $R_x = 3.01\Omega$, what would be the reading on the ammeter?

Fig. 1 for Problem 1.

Problem 2 (15 points)

You must show your detailed work to get full credit.

The circuit shown in Fig. 2 contains a variable load R_L .

- (a) Choose R_s so that I_L never exceeds 4mA, regardless of the value of R_L .
- (b) Given that choice, what is the maximum power that R_L can extract from the circuit?

Fig. 2 for Problem 2.

Problem 3 (20 points)

You must show your detailed work to get full credit.

For the circuit shown in Fig. 3, assume the op amp is ideal. Given $v_{\rm in}=A\,u(t),\ A=6{\rm V},\ R_1=10~{\rm k}\Omega,$ $R_2=5~{\rm k}\Omega,\ R_f=50~{\rm k}\Omega,$ and $C_1=C_2=1~\mu F,$ determine $v_{out}(t)$ for $t\geq 0.$

Hint: There is no energy stored in the two capacitors at time t = 0.

Fig. 3 for Problem 3.

Problem 4 (15 points)

You must show your detailed work to get full credit.

Determine the amount of <u>average power</u> delivered to R_L in the circuit shown in Fig. 4. Assume that the op amp is ideal and $v_{\rm in}(t)=0.5\cos2000t$ V, $R_1=1~\rm k\Omega$, $R_2=10~\rm k\Omega$, $C=0.1~\rm \mu F$, $R_L=1~\rm k\Omega$ and $L=0.2~\rm H$.

Fig. 4 for Problem 4.

Problem 5 (15 points)

You must show your detailed work to get full credit.

For the circuit shown in Fig. 5,

- a) Find the steady-state expressions for the currents i_g and i_L when $v_g=168\cos 800t$ V.
- b) Find the coefficient of coupling $k = \frac{M}{\sqrt{L_1 L_2}}$.
- c) Find the total energy stored in the magnetically coupled coils at time $t = 1250\pi \,\mu s$.

Fig. 5 for Problem 5.

Problem 6 (15 points)

You must show your detailed work to get full credit.

For the series RLC circuit of Fig. 6, $R = 5 \Omega$, L = 20 mH, $C = 0.5 \mu\text{F}$.

- (a) Obtain an expression for the transfer function $H(\omega) = V_R/V_s$.
- (b) What are the values of the resonant frequency ω_0 and quality factor Q?
- (c) What are the values of half-power frequencies ω_{c1} and ω_{c2} ?
- (d) Is it possible to double the magnitude of Q by changing the values of L and/or C, while keeping ω_0 and R unchanged? If yes, propose such values, and if no, explain why.

Fig. 6 for Problem 6.