

SEQUENCE LISTING

<110> PITTMAN, DEBRA D.

<120> COMPOSITIONS AND METHODS FOR TREATING RAGE-ASSOCIATED DISORDERS

<130> WYTH-P01-002

<140> 10/643,589

<141> 2003-08-18

<150> 60/404,205

<151> 2002-08-16

<160> 13

<170> PatentIn version 3.5

<210> 1

<211> 2057

<212> DNA

<213> Mus sp.

<220>

<223> Murine Soluble RAGE_FC

<400> 1

atgccagcgg ggacagcagc tagagcctgg gtgctggttc ttgctctatg gggagctgt 60

gctggtggtc agaacatcac agcccgatt ggagagccac ttgtgctaag ctgtaagggg 120

gcccctaaga agccgccccca gcagctagaa tggaaactga acacaggaag aactgaagct 180

tggaagggtcc tctctcccca gggaggcccc tggacagcg tggctcaa at cctcccaat 240

ggttccctcc tccttccagc cactggaatt gtcgatgagg ggacgttccg gtgtcgggca 300

actaacaggc gagggaaagga ggtcaagtcc aactaccgag tccgagtcta ccagattcct 360

gggaagccag aaatttgtga tcctgcctct gaactcacag ccagtgtccc taataagg 420

gggacatgtg tgtctgaggg aagctaccct gcagggaccc ttagctggca cttagatgg 480

aaacttctga ttcccgatgg caaagaaaca ctcgtgaagg aagagaccag gagacaccct 540

gagacgggac tcttacact gcggtcagag ctgacagtga tccccaccca aggaggaacc 600

accatccta ctttcctg cagttcagc ctgggccttc cccggcgcag acccctgaac 660

acagcccta tccaactccg agtcagggag cctgggcctc cagagggcat tcagctgtg 720

gttgagcctg aagggtggat agtcgctcct ggtggactg tgaccttgc ctgtgccatc 780

tctgcccagc cccctcctca ggtccactgg ataaaggatg gtgcaccctt gcccctggct 840

cccaagccctg tgctgctcct ccctgaggtg gggcacgcgg atgagggcac ctatagctgc 900

gtggccaccc accctagcca cggacctcag gaaaggccctc ctgtcagcat cagggtcaca	960
gaaaccggcg atgaggggcc agctgaaggc tctgtgggtg agtctggct gggtacgcta	1020
gccctggccg agccccgcgg accgacaatc aagccctgtc ctccatgcaa atgcccaggt	1080
aagtcactag accagagctc cactccccc agaatggtaa gtgctataaa catccctgca	1140
ctagaggata agccatgtca agatccattt ccattcttc tcattcagcac ctaacctcga	1200
gggtggacca tccgtttca tcttccctcc aaagatcaag gatgtactca tgcgtccct	1260
gagccccata gtcacatgtg tggtggtgga tgtgagcgag gatgacccag atgtccagat	1320
cagctggttt gtgaacaacg tggaagtaca cacagctcag acacaaaccc atagagagga	1380
ttacaacagt actctccggg tggtcagtgc cctccccatc cagcaccagg actggatgag	1440
tggcaaggct ttgcgtcatgcg ccgtcaacaa caaagacctc ccagcgccca tcgagagaac	1500
catctcaaaa cccaaagggtg agagctgcag cctgactgca tgggggctgg gatgggcata	1560
aggataaagg tctgtgtgga cagccttctg cttagccat gacctttgtg tatgtttcta	1620
ccctcacagg gtcagtaaga gctccacagg tatatgttgc ttccatgcct gaagacattt	1680
tgactaagaa acaggtcact ctgacctgca tggtcacaga cttagcctt gaagacattt	1740
acgtggagtg gaccaacaac gggaaaacag agctaaacta caagaacact gaaccagtcc	1800
tggactctga tggttttac ttcatgtaca gcaagctgag agtggaaaag aagaactgg	1860
tggaaagaaa tagctactcc tggtcagtggtt tccacgaggg tctgcacaat caccacacga	1920
ctaagagctt ctcccgact ccgggtaaat gagctcagca cccacaaaac tctcagggtcc	1980
aaagagacac ccacactcat ctccatgttt cccttgtata aataaagcac ccagcaatgc	2040
ctgggaccat gtaatacg	2057

<210> 2
 <211> 343
 <212> PRT
 <213> Mus sp.

<220>
 <223> Murine Soluble RAGE_FC

<400> 2
 Met Pro Ala Gly Thr Ala Ala Arg Ala Trp Val Leu Val Leu Ala Leu
 1 5 10 15

Trp Gly Ala Val Ala Gly Gly Gln Asn Ile Thr Ala Arg Ile Gly Glu
 20 25 30

Pro Leu Val Leu Ser Cys Lys Gly Ala Pro Lys Lys Pro Pro Gln Gln
35 40 45

Leu Glu Trp Lys Leu Asn Thr Gly Arg Thr Glu Ala Trp Lys Val Leu
50 55 60

Ser Pro Gln Gly Gly Pro Trp Asp Ser Val Ala Gln Ile Leu Pro Asn
65 70 75 80

Gly Ser Leu Leu Leu Pro Ala Thr Gly Ile Val Asp Glu Gly Thr Phe
85 90 95

Arg Cys Arg Ala Thr Asn Arg Arg Gly Lys Glu Val Lys Ser Asn Tyr
100 105 110

Arg Val Arg Val Tyr Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Pro
115 120 125

Ala Ser Glu Leu Thr Ala Ser Val Pro Asn Lys Val Gly Thr Cys Val
130 135 140

Ser Glu Gly Ser Tyr Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
145 150 155 160

Lys Leu Leu Ile Pro Asp Gly Lys Glu Thr Leu Val Lys Glu Glu Thr
165 170 175

Arg Arg His Pro Glu Thr Gly Leu Phe Thr Leu Arg Ser Glu Leu Thr
180 185 190

Val Ile Pro Thr Gln Gly Gly Thr Thr His Pro Thr Phe Ser Cys Ser
195 200 205

Phe Ser Leu Gly Leu Pro Arg Arg Arg Pro Leu Asn Thr Ala Pro Ile
210 215 220

Gln Leu Arg Val Arg Glu Pro Gly Pro Pro Glu Gly Ile Gln Leu Leu
225 230 235 240

Val Glu Pro Glu Gly Gly Ile Val Ala Pro Gly Gly Thr Val Thr Leu
245 250 255

Thr Cys Ala Ile Ser Ala Gln Pro Pro Pro Gln Val His Trp Ile Lys
 260 265 270

Asp Gly Ala Pro Leu Pro Leu Ala Pro Ser Pro Val Leu Leu Leu Pro
 275 280 285

Glu Val Gly His Ala Asp Glu Gly Thr Tyr Ser Cys Val Ala Thr His
 290 295 300

Pro Ser His Gly Pro Gln Glu Ser Pro Pro Val Ser Ile Arg Val Thr
 305 310 315 320

Glu Thr Gly Asp Glu Gly Pro Ala Glu Gly Ser Val Gly Glu Ser Gly
 325 330 335

Leu Gly Thr Leu Ala Leu Ala
 340

<210> 3
<211> 1810
<212> DNA
<213> Mus sp.

<220>
<223> Murine solTNFRII_FC

<400> 3		
atggcgcccg ccgcctctg ggtcgcgtg gtcttcgaac tgcagctgtg ggccaccggg	60	
cacacagtgc cggcccaggt tgtcttgaca ccctacaaac cggaacctgg gtacgagtgc	120	
cagatctcac aggaatacta tgacaggaag gctcagatgt gctgtgctaa gtgtcctcct	180	
ggccaatatg tgaaacattt ctgcaacaag acctcggaca ctgtgtgtgc ggactgtgag	240	
gcaaggcatgt ataccaggct ctggaaccag ttctgtacat gttttagctg cagttttcc	300	
tgttagcactg accaggtgga gacccgcgcc tgcactaac acgagaaccg agtgtgtgct	360	
tgcgaagctg gcaggtactg cgccttggaaa acccattctg gcagctgtcg acagtgcatt	420	
aggctgagca agtgcggccc tggcttcgga gtggccagtt caagagcccc aaatggaaat	480	
gtgctatgca aggccatgtgc cccaggacg ttctctgaca ccacatcatc cacagatgt	540	
tgcaggcccc accgcatctg tagcatcctg gctattcccg gaaatgcaag cacagatgca	600	
gtctgtgcgc ccgagcccc aactctaagt gccatccaa ggacactcta cgtatctcag	660	
ccagagcccc caagatcccc acccctggat caagagccag ggcccgccca aactccaagc	720	

atccttacat cgttgggttc aaccccccatt attgaacaaa gtaccaaggg tggcgagccc	780
cgcggaccga caatcaagcc ctgtcctcca tgcaaatgcc caggttaagtc actagaccag	840
agctccactc ccgggagaat ggttaagtgtcataaaacatcc ctgcactaga ggataagcca	900
tgtacagatc catttccatc tctcctcatc agcacctaac ctcgagggtg gaccatccgt	960
cttcatcttc cctccaaaga tcaaggatgt actcatgatc tccctgagcc ccatagtcac	1020
atgtgtggtg gtggatgtga gcgaggatga cccagatgtc cagatcagct ggtttgtgaa	1080
caacgtggaa gtacacacag ctcagacaca aacccataga gaggattaca acagtactct	1140
ccgggtggtc agtgcctcc ccatccagca ccaggactgg atgagtgca aggcttcgc	1200
atgcgccgtc aacaacaaag acctcccagc gcccattcgag agaaccatct caaaacccaa	1260
aggtgagagc tgcagcctga ctgcattggg gctggatgg gcataaggat aaaggtctgt	1320
gtggacagcc ttctgcttca gccatgacct ttgtgtatgt ttctaccctc acagggtcag	1380
taagagctcc acaggtatat gtcttgctc caccagaaga agagatgact aagaaacagg	1440
tcactctgac ctgcattggc acagacttca tgcctgaaga catttacgtg gagtgacca	1500
acaacggaa aacagagcta aactacaaga acactgaacc agtcctggac tctgtatgg	1560
cttacttcat gtacagcaag ctgagagtgg aaaagaagaa ctgggtggaa agaaatagct	1620
actcctgttc agtggccac gagggtctgc acaatcacca cacgactaag agcttctccc	1680
ggactccggg taaatgagct cagcacccac aaaactctca ggtccaaaga gacacccaca	1740
ctcatctcca tgctccctt gtataaataa agcacccagc aatgcctggg accatgtaat	1800
aggaattatc	1810

<210> 4
 <211> 258
 <212> PRT
 <213> Mus sp.

<220>
 <223> Murine solTNFRII_FC

<400> 4
 Met Ala Pro Ala Ala Leu Trp Val Ala Leu Val Phe Glu Leu Gln Leu
 1 5 10 15

Trp Ala Thr Gly His Thr Val Pro Ala Gln Val Val Leu Thr Pro Tyr
 20 25 30

Lys Pro Glu Pro Gly Tyr Glu Cys Gln Ile Ser Gln Glu Tyr Tyr Asp
 35 40 45

Arg Lys Ala Gln Met Cys Cys Ala Lys Cys Pro Pro Gly Gln Tyr Val
 50 55 60

Lys His Phe Cys Asn Lys Thr Ser Asp Thr Val Cys Ala Asp Cys Glu
 65 70 75 80

Ala Ser Met Tyr Thr Gln Val Trp Asn Gln Phe Arg Thr Cys Leu Ser
 85 90 95

Cys Ser Ser Ser Cys Ser Thr Asp Gln Val Glu Thr Arg Ala Cys Thr
 100 105 110

Lys Gln Gln Asn Arg Val Cys Ala Cys Glu Ala Gly Arg Tyr Cys Ala
 115 120 125

Leu Lys Thr His Ser Gly Ser Cys Arg Gln Cys Met Arg Leu Ser Lys
 130 135 140

Cys Gly Pro Gly Phe Gly Val Ala Ser Ser Arg Ala Pro Asn Gly Asn
 145 150 155 160

Val Leu Cys Lys Ala Cys Ala Pro Gly Thr Phe Ser Asp Thr Thr Ser
 165 170 175

Ser Thr Asp Val Cys Arg Pro His Arg Ile Cys Ser Ile Leu Ala Ile
 180 185 190

Pro Gly Asn Ala Ser Thr Asp Ala Val Cys Ala Pro Glu Ser Pro Thr
 195 200 205

Leu Ser Ala Ile Pro Arg Thr Leu Tyr Val Ser Gln Pro Glu Pro Thr
 210 215 220

Arg Ser Gln Pro Leu Asp Gln Glu Pro Gly Pro Ser Gln Thr Pro Ser
 225 230 235 240

Ile Leu Thr Ser Leu Gly Ser Thr Pro Ile Ile Glu Gln Ser Thr Lys
 245 250 255

Gly Gly

<210> 5
<211> 585
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Human RAGE-LBE fused to an Fc element

<220>
<221> MOD_RES
<222> (423)..(423)
<223> Any amino acid

<400> 5
Met Ala Ala Gly Thr Ala Val Gly Ala Trp Val Leu Val Leu Ser Leu
1 5 10 15

Trp Gly Ala Val Val Gly Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu
20 25 30

Pro Leu Val Leu Lys Cys Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg
35 40 45

Leu Glu Trp Lys Leu Asn Thr Gly Arg Thr Glu Ala Trp Lys Val Leu
50 55 60

Ser Pro Gln Gly Gly Pro Trp Asp Ser Val Ala Arg Val Leu Pro
65 70 75 80

Asn Gly Ser Leu Phe Leu Pro Ala Val Gly Ile Gln Asp Glu Gly Ile
85 90 95

Phe Arg Cys Gln Ala Asn Ile Asn Arg Asn Gly Lys Glu Thr Lys Ser
100 105 110

Asn Tyr Arg Val Arg Val Tyr Gln Ile Pro Glu Lys Pro Glu Ile Val
115 120 125

Asp Ser Ala Ser Glu Leu Thr Ala Gly Val Pro Asn Lys Val Gly Thr
130 135 140

Cys Val Ser Glu Gly Ser Tyr Pro Ala Gly Thr Leu Ser Trp His Leu
145 150 155 160

Asp Gly Lys Pro Leu Val Leu Asn Glu Lys Gly Val Ser Val Lys Glu
165 170 175

Gln Thr Arg Arg His Pro Glu Thr Gly Leu Phe Thr Leu Gln Ser Glu
180 185 190

Leu Met Val Thr Pro Ala Arg Gly Gly Asp Pro Arg Pro Thr Phe Ser
195 200 205

Cys Ser Phe Ser Pro Gly Leu Pro Arg His Arg Ala Leu Arg Thr Ala
210 215 220

Pro Ile Gln Pro Arg Val Trp Glu Pro Val Pro Leu Glu Glu Val Gln
225 230 235 240

Leu Val Val Glu Pro Glu Gly Gly Ala Val Ala Pro Gly Gly Thr Val
245 250 255

Thr Leu Thr Cys Glu Val Pro Ala Gln Pro Ser Pro Gln Ile His Trp
260 265 270

Met Lys Asp Gly Val Pro Leu Pro Leu Pro Ser Pro Val Leu Ile
275 280 285

Leu Pro Glu Ile Gly Pro Gln Asp Gln Gly Thr Tyr Ser Cys Val Ala
290 295 300

Thr His Ser Ser His Gly Pro Gln Glu Ser Arg Ala Val Ser Ile Ser
305 310 315 320

Ile Ile Glu Pro Gly Glu Gly Pro Thr Ala Gly Ser Val Gly Gly
325 330 335

Ser Gly Leu Gly Thr Leu Ala Leu Ala Cys Ala Gly Ser Gly Ser Gly
340 345 350

Ser Gly Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
355 360 365

Pro Ala Pro Glu Ala Leu Gly Ala Pro Ser Val Phe Leu Phe Pro Asp
370 375 380

Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
385 390 395 400

Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
405 410 415

Tyr Val Asp Gly Val Glu Xaa Gln Asn Ala Lys Thr Lys Pro Arg Glu
420 425 430

Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
435 440 445

His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
450 455 460

Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
465 470 475 480

Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu
485 490 495

Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
500 505 510

Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
515 520 525

Lys Cys Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
530 535 540

Leu Tyr Ser Lys Leu Thr Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
545 550 555 560

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
565 570 575

Lys Ser Leu Ser Leu Ser Pro Gly Lys
580 585

<210> 6
<211> 1761
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
Human RAGE-LBE fused to an Fc element

<400> 6	
atggcagccg gaacagcagt tggagcctgg gtgctggtcc tcagtctgtg gggggcagta	60
gtaggtgctc aaaacatcac agcccggatt ggcgagccac tggtgctgaa gtgtaagggg	120
gcccccaaga aaccaccca gcggctggaa tggaaactga acacaggccg gacagaagct	180
tggaaggtcc tgtctccccca gggagggagc ccctgggaca gtgtggctcg tgtccttccc	240
aacggctccc ttttccttcc ggctgtcggg atccaggatg aggggatttt ccggtgccag	300
gcaatgaaca ggaatggaaa ggagaccaag tccaaactacc gagtccgtgt ctaccagatt	360
cctgggaagc cagaaattgt agattctgcc tctgaactca cggctggtgt tcccaataag	420
gtggggacat gtgtgtcaga gggagctac cctgcaggga ctcttagctg gcacttggat	480
gggaagcccc tggtgctaa tgagaaggaa gtatctgtga aggaacagac caggagacac	540
cctgagacag ggctttcac actgcagtcg gagctaattgg tgaccccagc ccggggagga	600
gatccccgtc ccaccccttc ctgttagctc agcccaggcc ttcccccaca ccgggccttg	660
cgcacagccc ccatccagcc ccgtgtctgg gagcctgtgc ctctggagga ggtccaattt	720
gtggtgagc cagaagggtgg agcagtagct cctggtgaa ccgttaaccct gacctgtgaa	780
gtccctgccc agccctctcc tcaaattccac tggatgaagg atggtgtgcc cttggccctt	840
ccccccagcc ctgtgctgat cttccctgag atagggcctc aggaccaggg aacctacagc	900
tgtgtggcca cccattccag ccacggggcc cagaaagcc gtgctgtcag catcagcatc	960
atcgaaccag gcgaggaggg gccaactgca ggctctgtgg gaggatcagg gctggaaact	1020
ctagccctgg cctgcgcagg tagcggctcc ggaagtgggg agcccaaatac ttgtgacaaa	1080
actcacacat gcccaccgtg cccagcacct gaagccctgg gggcaccgtc agtcttcctc	1140
ttccccccaa aacccaagga caccctcatg atctcccgga cccctgaggt cacatgcgtg	1200
gtggtgagc tgagccacga agaccctgag gtcaagttca actggtagtgg ggacggcgtg	1260
gaggtgcata atgccaagac aaagccgcgg gaggagcagt acaacagcac gtaccgttg	1320
gtcagcgtcc tcaccgtcct gcaccaggac tggctgaatg gcaaggagta caagtgc当地	1380
gtctccaaca aagccctccc agccccatc gagaaaacca tctccaaagc caaaggccag	1440
ccccgagaac cacaggtgta caccctgccc ccatcccggg aggagatgac caagaaccag	1500
gtcagcctga cctgcctggt caaaggcttc tatcccagcg acatgcgttggag	1560
agcaatgggc agccggagaa caactacaag accacgcctc ccgtgtgaa ctccgacgac	1620

tccttcttcc tctatagcaa gtcaccgtg gacaagagca ggtggcagca ggggaacgtc 1680
 ttctcatgct ccgtgatgca tgaggctctg cacaaccact acacgcagaa gagcctctcc 1740
 ctgtccccgg gtaaaatgagt g 1761

<210> 7
 <211> 404
 <212> PRT
 <213> Homo sapiens

<220>
 <223> HUMAN RAGE

<400> 7
 Met Ala Ala Gly Thr Ala Val Gly Ala Trp Val Leu Val Leu Ser Leu
 1 5 10 15

Trp Gly Ala Val Val Gly Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu
 20 25 30

Pro Leu Val Leu Lys Cys Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg
 35 40 45

Leu Glu Trp Lys Leu Asn Thr Gly Arg Thr Glu Ala Trp Lys Val Leu
 50 55 60

Ser Pro Gln Gly Gly Pro Trp Asp Ser Val Ala Arg Val Leu Pro
 65 70 75 80

Asn Gly Ser Leu Phe Leu Pro Ala Val Gly Ile Gln Asp Glu Gly Ile
 85 90 95

Phe Arg Cys Gln Ala Met Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn
 100 105 110

Tyr Arg Val Arg Val Tyr Gln Ile Pro Gly Lys Pro Glu Ile Val Asp
 115 120 125

Ser Ala Ser Glu Leu Thr Ala Gly Val Pro Asn Lys Val Gly Thr Cys
 130 135 140

Val Ser Glu Gly Ser Tyr Pro Ala Gly Thr Leu Ser Trp His Leu Asp
 145 150 155 160

Gly Lys Pro Leu Val Pro Asn Glu Lys Gly Val Ser Val Lys Glu Gln
165 170 175

Thr Arg Arg His Pro Glu Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu
180 185 190

Met Val Thr Pro Ala Arg Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys
195 200 205

Ser Phe Ser Pro Gly Leu Pro Arg His Arg Ala Leu Arg Thr Ala Pro
210 215 220

Ile Gln Pro Arg Val Trp Glu Pro Val Pro Leu Glu Glu Val Gln Leu
225 230 235 240

Val Val Glu Pro Glu Gly Gly Ala Val Ala Pro Gly Gly Thr Val Thr
245 250 255

Leu Thr Cys Glu Val Pro Ala Gln Pro Ser Pro Gln Ile His Trp Met
260 265 270

Lys Asp Gly Val Pro Leu Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
275 280 285

Pro Glu Ile Gly Pro Gln Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr
290 295 300

His Ser Ser His Gly Pro Gln Glu Ser Arg Ala Val Ser Ile Ser Ile
305 310 315 320

Ile Glu Pro Gly Glu Glu Gly Pro Thr Ala Gly Ser Val Gly Gly Ser
325 330 335

Gly Leu Gly Thr Leu Ala Leu Ala Leu Gly Ile Leu Gly Gly Leu Gly
340 345 350

Thr Ala Ala Leu Leu Ile Gly Val Ile Leu Trp Gln Arg Arg Gln Arg
355 360 365

Arg Gly Glu Glu Arg Lys Ala Pro Glu Asn Gln Glu Glu Glu Glu Glu
370 375 380

Arg Ala Glu Leu Asn Gln Ser Glu Glu Pro Glu Ala Gly Glu Ser Ser
385 390 395 400

Thr Gly Gly Pro

<210> 8
<211> 1436
<212> DNA
<213> Homo sapiens

<220>
<223> HUMAN RAGE

<400> 8		
gtccctggaa ggaagcagga tggcagccgg aacagcagtt ggagcctggg tgctggtcct	60	
cagtctgtgg ggggcagtag taggtgctca aaacatcaca gcccgattt gcgagccact	120	
ggtgctgaag tgtaaggggg cccccaagaa accaccccaag cggctggaat ggaaactgaa	180	
cacaggccgg acagaagctt ggaaggtcct gtctccccag ggaggaggcc cctgggacag	240	
tgtggctcggt gtccttccca acggctccct cttccttccg gctgtcggga tccaggatga	300	
ggggattttc cgggccagg caatgaacag gaatggaaag gagaccaagt ccaactaccg	360	
agtccgtgtc taccagattc ctgggaagcc agaaatttta gattctgcct ctgaactcac	420	
ggctgggtgtt cccataagg tggggacatg tgtgtcagag ggaagctacc ctgcagggac	480	
tcttagctgg cacttggatg ggaagccctt ggtgcctaattt gagaagggag tatctgtgaa	540	
ggaacagacc aggagacacc ctgagacagg gctttcaca ctgcagtcgg agctaatttgt	600	
gaccccaagcc cggggaggag atccccgtcc cactttctcc tgtagcttca gcccaggcct	660	
tccccgacac cgggccttgc gcacagcccc catccagccc cgtgtctggg agcctgtgcc	720	
tctggaggag gtccaaattgg tggtgagcc agaagggtgga gcagtagctc ctggtgaaac	780	
cgttaaccctg acctgtgaag tccctgccc gccctctcctt caaatccact ggatgaaggaa	840	
tgggtgtgccc ttgcccccttc ccccaagccc tgtgctgatc ctccctgaga tagggcctca	900	
ggaccaggga acctacagct gtgtggccac ccattccagc cacggggcccc aggaaagccg	960	
tgctgtcagc atcagcatca tcgaaccagg cgaggagggg ccaactgcag gctctgtggg	1020	
aggatcaggg ctgggaactc tagccctggc cctggggatc ctgggaggcc tggggacagc	1080	
cgcctgctc attggggtca tcttggc aaggcggcaa cgccgaggag aggagagggaa	1140	
ggcccccagaa aaccaggagg aagaggagga gcgtgcagaa ctgaatcagt cggaggaacc	1200	
tgaggcagggc gagagtagta ctggagggcc ttgagggcc cacagacaga tcccatccat	1260	

cagctccctt ttcttttcc cttgaactgt tctggcctca gaccaactct ctcctgtata	1320
atctctctcc tgtataaccc caccttgcca agctttcttc tacaaccaga gcccccacaa	1380
tgatgattaa acacctgaca catctcaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa	1436

<210> 9
<211> 40
<212> PRT
<213> Homo sapiens

<220>
<223> N-Terminal Human RAGE Sequence

<400> 9	
Met Ala Ala Gly Thr Ala Val Gly Ala Trp Val Leu Val Leu Ser Leu	
1	5
	10
	15

Trp Gly Ala Val Val Gly Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu	
20	25
	30

Pro Leu Val Leu Lys Cys Lys Gly	
35	40

<210> 10
<211> 54
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 10	
gactgataat acgactcact atagggcgaa tgccagcggg gacagcagct agag	54

<210> 11
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 11	
agaggcagga tccacaattt ctggcttccc aggaat	36

```
<210> 12
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      primer

<400> 12
gactgataat acgactcact atagggcgaa gaggcaggat ccacaatttc tggctt      56

<210> 13
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      primer

<400> 13
atgccagcgg ggacacgcgc tagagcctgg gtgctggtt      39
```