AMENDMENTS TO THE CLAIMS

Listing Of Claims:

- (Currently Amended) A method of servicing a wellbore in contact with a subterranean
 formation, comprising: displacing a sealant composition comprising a colloidally stabilized latex
 into the wellbore; wherein the sealant composition does not comprise an epoxy resin or zinc
 oxide; and wherein the collodially stabilized latex remains substantially stable in the presence
 of salt.
- 2. (Original) The method of claim 1, wherein the colloidally stabilized latex comprises:
 - (a) an aliphatic conjugated diene monomer;
- (b) an additional monomer comprising a non-aromatic unsaturated mono- or dicarboxylic ester monomer, an aromatic unsaturated monomer, a nitrogen-containing monomer, or combinations thereof; and
 - (c) a protective colloid.
- (Original) The method of claim 2, wherein the protective colloid comprises
 polyvinylalcohol, a cellulose ether, a natural gum, a synthetic gum, polyacrylic acid, an acrylate,
 a poly(vinyl alcohol)co(vinyl amine) copolymer, or combinations thereof.
- 4. (Original) The method of claim 2, wherein the colloidally stabilized latex comprises a surfactant having ethylenic unsaturation to allow the surfactant to copolymerize with the aliphatic conjugated diene monomer and the additional monomer, thereby forming a polymer having the surfactant in its backbone.
- (Original) The method of claim 2, wherein the colloidally stabilized latex comprises an oxyalkylene functional monomer comprising

a monoester of mono- or di- carboxylic acid, a diester of dicarboxylic acid, or combinations thereof, wherein R is hydrogen or a C_1 - C_4 alkyl, R' is hydrogen or a C_1 - C_4 alkyl, and n is in a range of from 1 to 30, and wherein the oxyalkylene functional monomer copolymerizes with the aliphatic conjugated diene monomer and the additional monomer.

 (Original) The method of claim 2, wherein the colloidally stabilized latex comprises a functionalized silane generally represented by:

wherein R" is a C_1 to C_5 alkyl, R' is a C_1 to C_5 alkyl, R is SH, CH_2 =CH-, CH_2 = $C(CH_3)$ -C(O)O-, CH_2 =CH-C(O)O-, or

n is in a range of from 1 to 10, and m is 2 or 3.

- (Canceled)
- (Previously Presented) The method of claim 1, wherein the salt comprises a monovalent ion, a divalent ion, or combinations thereof.
- (Original) The method of claim 1, wherein the sealant composition comprises salt.

- (Original) The method of claim 1, wherein the sealant composition comprises fibers, beads, or combinations thereof.
- (Original) The method of claim 1, wherein the sealant composition comprises a cement slurry.
- (Original) The method of claim 8, wherein the sealant composition is displaced into an annulus of the wellbore and allowed to set.
- 13. (Original) The method of claim 1, wherein the sealant composition is positioned in the wellbore to isolate the subterranean formation from a portion of the wellbore, to support a conduit in the wellbore, to plug a void or crack in the conduit, to plug a void or crack in a cement sheath disposed in an annulus of the wellbore, to plug an opening between the cement sheath and the conduit, or combinations thereof.
- 14. (Original) The method of claim 1, wherein the colloidally stabilized latex comprises a vulcanizable group, a vulcanizing agent, a vulcanization accelerator, a vulcanization retarder, or combinations thereof.
- 15. (Original) The method of claim 1, wherein the colloidally stabilized latex comprises a crosslinkable monomer, an acidic catalyst, a thermosetting resin, or combinations thereof.
- 16. (Original) The method of claim 1, further comprising combining a drilling fluid with the scalant composition near a loss-circulation zone, thereby forming a solid mass in the loss-circulation zone.
- 17-35 (Canceled).
- 36. (New) The method of claim 1, wherein the collodially stabilized latex remains substantially stable in the presence of salt.