Resumo: Funções de Ativação em Redes Neurais

1 Função Sigmoide

Equação: $f(x) = \frac{1}{1+e^{-x}}$

- \bullet Conceito: Transforma entrada linear em saída não-linear entre 0 e 1
- Aplicações:
 - Classificação binária (probabilidades)
 - Camadas de saída em problemas de decisão sim/não
 - Detecção de fraudes bancárias
- Lógica: Comprime valores em intervalo (0,1), ideal para probabilidades
- Característica: Valores sempre positivos após passagem

2 Função Softmax

Equação: $\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^n e^{z_k}}$

- Conceito: Normaliza vetor de valores para distribuição de probabilidade
- Aplicações:
 - Classificação multiclasse
 - $-\,$ Reconhecimento de imagens (múltiplas categorias)
 - Processamento de linguagem natural
- \bullet Lógica: Soma das saídas = 1, cada saída entre 0 e 1
- Característica: Considera relação entre todas as classes simultaneamente

3 Função TanH

Equação: $tanh(x) = \frac{2}{1 + e^{-2x}} - 1$

- Conceito: Normalização entre -1 e 1
- Aplicações:
 - Análise de sentimentos (positivo/negativo)
 - Controle de sistemas (comandos direcionais)
 - Camadas ocultas de redes neurais
- \bullet Lógica: Razão entre sen
H e cos H, mantém simetria
- Característica: Saturação suave, evita mudanças bruscas

4 Função ReLU

Equação: f(x) = max(0, x)

• Conceito: Retorna 0 para valores negativos, mantém positivos

• Aplicações:

- Detecção de spam em emails

– CNNs para classificação de imagens

- Camadas ocultas em redes profundas

• Lógica: Ativa neurônio apenas com entrada positiva

• Característica: Computacionalmente eficiente, evita vanishing gradient

5 Função LeakyReLU

Equação: $f(x) = \begin{cases} x & \text{se } x > 0 \\ \alpha x & \text{se } x \leq 0 \end{cases}$ onde $\alpha = Angulação$.

• Conceito: ReLU com pequena inclinação para valores negativos

• Aplicações:

- Redes profundas com risco de neurônios mortos

- Processamento de imagens com características negativas relevantes

• Lógica: Evita "dying ReLU" mantendo gradiente pequeno para negativos

• Característica: Permite backpropagation mesmo com valores negativos

6 Função ELU

Equação: $f(x) = \begin{cases} x & \text{se } x > 0 \\ \alpha(e^x - 1) & \text{se } x \le 0 \end{cases}$

• Conceito: Exponencial para valores negativos

• Aplicações:

- Redes muito profundas

- Tarefas com necessidade de convergência rápida

• Lógica: Suaviza transição em zero, mantém média próxima de zero

2

• Característica: Reduz bias shift durante treinamento

7 Tabela Comparativa

Função	Onde Usar	Pontos Positivos	Pontos Negativos
Sigmoide	• Saída binária	• Interpretação proba-	Vanishing gradient
	• Probabilidades	bilística	Computational-
	• Gates LSTM	• Saída limitada (0,1)	mente cara
		• Diferenciável	• Saída não centrada
			em zero
Softmax	Classificação multi-	• Soma = 1	Computacional-
	classe	• Interpretação proba-	mente cara
	• Última camada	bilística	• Sensível a outliers
	• Distribuições de pro-	• Diferencia bem clas-	• Só para camada de
	babilidade	ses	saída
TanH	Camadas ocultas	• Centrada em zero	Vanishing gradient
	• Dados normalizados	• Saída simétrica	Computational-
	• Análise sentimentos	• Convergência mais	mente cara
		rápida	• Saturação em extre-
			mos
ReLU	• Redes profundas	Muito eficiente	• Dying ReLU
	• CNNs	• Sem vanishing gradi-	Não diferenciável em
	• Camadas ocultas	ent	0
		• Esparsidade	• Saída não limitada
LeakyReLU	Alternativa ao ReLU	• Evita dying ReLU	• Parâmetro α ar-
	• Redes muito profun-	• Simples e eficiente	bitrário
	das	• Sempre ativo	• Inconsistência para
			negativos
ELU	• Redes muito profun-	• Suave	Computacional-
	das	• Robusta a ruído	mente cara
	• Convergência rápida	• Média próxima de	• Exponencial custosa
		zero	