#### Mixed-Signal IC

Creating a Mixed-Signal World



May, 99

Antrim Design Systems Confidential

FEG. 1A



May, 99

Antrim Design Systems Confidential

FIG. 18

### Major Components of Antrim-MSS

Synthesis Library



- Simulation models in Verilog-A/MS
- represent library functions, parameterized to user, so performance specifications
- Characteristic functions of design parameters
- model circuit performance behavior during optimization
- Test harnesses and characterization plans
  developed with Antrim-ACT
- Netlists of mixed-signal functions
- working circuits, parameterized for sizing to achieve user specifications
- Process technology files models and design rules
- Synthesizable layout cells

### Major Components of Antrim-MSS

#### Synthesis Toolset



- Antrim-MSS Command Interpreter
- extensions to Perl scripting language for synthesis plan execution
- Optimizers
- · toolkit of algorithms for sizing of design parameters
- Antrim-AMS
- for simulation of characteristic functions, behavioral models and sized netlists
- Antrim-ACT
- for development of characteristic functions, analytical models, test harnesses, circuit characterization
- Parasitic calculators
- layout parasitic estimation from process rules and sized netlists
- Layout generators

Antrim Design Systems Confidential

### Major Components of Antrim-MSS

Synthesis Plans

### Blueprints for the successful synthesis of mixed-signal IP



- Developed by expert mixed-signal IC designers using MSS and ACT plan development tools
- Programmed series of steps for circuit partitioning, model selection, sizing and optimization
- Specifications of design parameters to be used as optimization variables
- Specifications of performance characteristics to be used as optimization goals
- Steps for process retargeting
- · Antrim-ACT characterization plan
- Experiments
- Test harnesses
- Stimuli and other controls

#### Plan Author

#### Design Flow

- Design Partitioning
- Characterization
- Model Development
  - circuit
- behavioral
- analytic
- Setup Performance Parameters
- measurements
- tests harnesses
- Set Design Parameters
- Define Optimization Steps

Antrim Design Systems Confidential

#### Plan User Design Flow

Select Function

Specify Process

• Performance Specification

• Execute Plan

Verification of Results

FIG. 1G

### Antrim-MSS Architecture



May, 99

# Development of a Synthesizable VCO

• Circuit features:

• Three cells: bias generator, differential delay cell, level restore

 Eight delay stages for 100 MHz - 200 MHz operation Performance parameters:

power

center frequency

Optimization plan:

 size delay cell and bias circuit to achieve user as specifications



- User-specified performance specs are formulated into a single cost function
- Optimization seeks a zero cost solution



May, 99

Antrim Design Systems Confidential  $\begin{picture}(1,0) \put(0,0){\line(0,0){100}} \put(0,0){\line$ 



FIG 4B



 $\mathcal{FLG}$ .  $\mathcal{FC}$ 



FFG. 42

### Example: Synthesis Plan for a VCO Step One

- Size bias transistor for power specification
- 1st step budget power according to user specification

$$P_{tot} = P_{bias} + 8*P_{delay}$$

- NMOS transistor must remain in triode region with  $V_{ds} = V_{diode}$
- Minimize  $W_{bias} & L_{bias}$  to meet spec



65

### Example: Synthesis Plan for a VCO

Step Two

 Mirror NMOS transistors from bias cell

 Size delay cell transistors for frequency spec

• Use behavioral model of  $F_0$  vs.  $W_{diff}$ ,  $L_{diff}$ 

• Minimize diff. pair for input load in ring oscillator

- Set  $L_{\text{diff}}$  to  $L_{\text{min}}$ 

Optimize W<sub>diff</sub>



Antrim Design Systems Confidential

FIG. 6

#### Example: Synthesis Plan for a VCO Step One

- Size bias transistor for power specification
- Measure current with condition  $V_{ds} = V_{diode}$
- Minimize  $W_{\text{bias}} \, \& \, L_{\text{bias}}$  to meet spec
- · Analysis Setup:
- simulate nbias\_ivdc.v
- test harness for bias current sizing
- analysis = bias.tst
- measurement experiment for current



Antrim Design Systems Confidential

63

FIG. 7

£,99



FIG. 8.



## Example: Synthesis Plan for a VCO Step One



Antrim Design Systems Confidential

### Example: Synthesis Plan for a VCO

Step Two



Antrim Design Systems Confidential

2

アナア 11

### Example: Synthesis Plan for a VCO Finish Steps



lay, 99

Antrim Design Systems Confidential

F56,12

#### 67

#### Synthesis Plan for a VCO Finish Steps

- Size noncritical MOSFETs in current sources
  - doesn
     dt require optimization
- Synthesize level translator
- · Verify complete design
- Could add other performance specifications
- gain
- F<sub>min</sub>
- F. H.

FIG 13