assignment08

November 21, 2018

1 Binary Classification

Name: ZHU GUANGYU Student ID: 20165953

Github Repo: assignment08

In a *classification problem*, the outcome takes on only a finit number of values. In the simplest case, outcome has only two values, for example TRUE or FALSE. This is called the *binary classification problem*.

As in real-valued data fitting, we assume that an approxomate relation ship of the form $y \approx f(x)$ holds, where $f: \mathbb{R}^n \to -1, +1$. The model \hat{f} is called a *classifier*.

For a given data point x, y with predicted outcome $\hat{y} = \hat{f}(x)$, there are four possibilities:

- True positive: y = +1 and $\hat{y} = +1$.
- True negative: y = -1 and $\hat{y} = -1$.
- False positive: y = -1 and $\hat{y} = +1$.
- False negative: y = +1 and $\hat{y} = -1$.

1.1 Least squares classfier

Least squares is a very sople method for classification.

First, carry out ordinary real-valued least squares fitting of the outcome, ignoring for the moment that the outcome y takes on only the values -1 and +1. We choose basis functions f_1, \dots, f_p , and the perameters $\theta_1, \dots, \theta_p$ so as to minimize the sum squared error

$$(y^1 - \tilde{f}(x^1))^2 + \cdots + (y^N - \tilde{f}(x^N))^2$$
,

where $\tilde{f} = \theta_1 f_1(x) + \cdots + \theta_p f_p(x)$. The function \tilde{f} is the least squares fit over our data set, it is a number.

Our final classifier is

$$\hat{f}(x) = sign(\tilde{f}(x)),$$

We call this classifier the *least squares classifier*.

1.2 Use least squares classifier to do handwritten digit classification

Here, we define our sign function as

$$sign(x) = \begin{cases} +1 & if x \ge 0\\ -1 & if x < 0 \end{cases}$$

and we have basis function(feature function):

$$f_i(x) = x_i$$

The partitioning function is

$$\tilde{f}(x,\theta) = \theta_1 f_1(x) + \theta_2 f_2(x) + \dots + \theta_p f_p(x)$$

Change it to matrix form, we get $f \cdot \theta = y$. By pseudo inverse $(A^T A)^{-1} A$ we can find θ .

1.2.1 Read data sets

First, let import the data set. We have two data sets, one for training, one for testing. Each element is a image that has height 28 and width 28 pixels.

```
In [1]: import matplotlib.pyplot as plt
       import numpy as np
       file_data_train = "mnist_train.csv"
       file_data_test = "mnist_test.csv"
       h_data_train = open(file_data_train, "r")
       h_data_test = open(file_data_test, "r")
       data_train = h_data_train.readlines()
       data_test = h_data_test.readlines()
       h_data_train.close()
       h_data_test.close()
       size_row = 28  # height of the image
       size_col = 28  # width of the image
       num_train = len(data_train) # number of training images
       num_test = len(data_test) # number of testing images
       # number of training images: 60000
       # number of testing images: 10000
```

To reduce the bias, we need to normalize the data.

```
In [2]: #
     # normalize the values of the input data to be [0, 1]
     #
     def normalize(data):
        data_normalized = (data - min(data)) / (max(data) - min(data))
        return(data_normalized)

Normalize each pixel, and put image data into a 764*num_image matrix.
```

```
In [3]: #
       # make a matrix each column of which represents an images in a vector form
       list_image_train
                           = np.empty((size_row * size_col, num_train), dtype=float)
       list_label_train
                           = np.empty(num_train, dtype=int)
       list_image_test
                           = np.empty((size_row * size_col, num_test), dtype=float)
                          = np.empty(num_test, dtype=int)
       list_label_test
       count = 0
       for line in data_train:
           line_data = line.split(',')
           label
                   = line_data[0]
           im_vector = np.asfarray(line_data[1:]) # convert to float type
           im_vector = normalize(im_vector)
           list_label_train[count]
                                      = label
           list_image_train[:, count] = im_vector # each column is a image
           count += 1
       count = 0
       for line in data_test:
           line_data = line.split(',')
                   = line_data[0]
           label
           im_vector = np.asfarray(line_data[1:])
           im_vector = normalize(im_vector)
           list_label_test[count]
                                      = label
           list_image_test[:, count] = im_vector
           count += 1
```

764 *

1.2.2 Define feature function, then apply it on data

```
In [4]: def f_i(x, i):
    return x[i]

def create_A(func, data, num_data, size):
    """Build f(x) matrix

Apply feature function to each data image,
    get a matrix
    """

A = []

for i in range(num_data):
    img = data[:, i] # ith image(column)
    row = [func(img, j) for j in range(size)]
    A.append(row)

return np.array(A)

A = create_A(f_i, list_image_train, num_train, size_row*size_col)
```

1.2.3 Compute θ

We have $A\theta = y$, while A is the matrix of feature function apply on data set, θ is perameters, and y is the label.

Because we just want to separate 0 and other numbers, we need to process label y which gives 0's image +1 and other number's image -1.

Through pseudo inverse $(A^TA)^{-1}A$ we can compute the θ . Here we use np.linalg.pinv to get A^{-1} .

```
In [5]: # process label array
    def process_label(labels):
        result = []
        for label in labels:
            if label == 0:
                result.append(1)
        else:
                result.append(-1)

        return result

def theta(A, y):
        A_inv = np.linalg.pinv(A)
        theta = np.inner(A_inv, y)
```

return theta

```
label_train = process_label(list_label_train)
theta_arr = theta(A, label_train)
```

1.2.4 Plot θ graph

Theta Graph

1.2.5 Define classifier $\hat{f}(x)$

We can define since we have got θ .

Now we can create the classifier $\hat{f}(x) = sign(\tilde{f}(x))$, while

$$sign(x) = \begin{cases} +1 & if x \ge 0 \\ -1 & if x < 0 \end{cases}$$

```
else:
    return -1

def lsf(f_i, data, num_data, size, theta):
    # least squares fit
    A = create_A(f_i, data, num_data, size)
    return np.inner(data.T, theta)

def classifier(f_i, data, num_data, size, theta, sign_func, lsf):
    f_tilde = lsf(f_i, data, num_data, size, theta)
    f_hat = list(map(sign_func, f_tilde))
    return np.array(f_hat)
```

1.2.6 Prediction of testing set

Put testing data set into our classifier we can get the prediction value.

```
In [8]: prediction = classifier(f_i, list_image_test, num_test, size_row*size_col, theta_arr,
```

1.2.7 Count predicted outcome: TP, FP, TN, and FN

We have already got the prediction by our classifier $\hat{f}(x)$, now let's compare it with the label of testing data set to check how it works.

The outcome are

True positive: y = +1 and ŷ = +1.
True negative: y = -1 and ŷ = -1.
False positive: y = -1 and ŷ = +1.
False negative: y = +1 and ŷ = -1.

Here, we still need to process the testing data label.

```
In [9]: def outcomes(label, prediction):
    """count outcomes of prediction

Input:
    label(array): correct labels
    prediction(array): prediction of classifier
Return:
    A dictionary contains the indices of each outcome type
    tp: true positive
    tn: true negative
    fp: false positive
    fn: flase negative
```

```
length = len(label)
            tp = []
            fp = []
            tn = []
            fn = []
            for i in range(length):
                if label[i] == 1 and prediction[i] == 1:
                    tp.append(i)
                elif label[i] == 1 and prediction[i] == -1:
                    fn.append(i)
                elif label[i] == -1 and prediction[i] == -1:
                    tn.append(i)
                else:
                    fp.append(i)
            outcome = {'TP': tp,
                       'FP': fp,
                       'TN': tn,
                       'FN': fn}
            return outcome
        label_test = process_label(list_label_test)
        outcome_dic = outcomes(label_test, prediction)
Print out evaluation table.
In [10]: from prettytable import PrettyTable
         table = PrettyTable()
         for i, j in outcome_dic.items():
             table.add_column(i, [len(j)])
         print(' Evaluation Value Table')
         print(table)
```

Evaluation Value Table
+----+
| TP | FP | TN | FN |
+----+
| 917 | 61 | 8959 | 63 |
+----+

1.2.8 Plot average images

```
In [11]: def average_img(data, indices):
             # compute the average value of one outcome type
             size = 28 * 28
             sum_img = np.zeros(size)
             for index in indices:
                 img = data[:, index]
                 sum_img += img
             num_img = len(indices)
             return sum_img / num_img
         def plot_graph(img, title):
             plt.title(title)
             plt.imshow(img, cmap='gray')
             plt.axis('off')
             plt.show()
True positive
In [12]: # True positive
         tp = average_img(list_image_test, outcome_dic['TP'])
         tp_matrix = tp.reshape((28, 28))
```

plot_graph(tp_matrix, 'Average Image of True Positive')

Average Image of True Positive

False Positive

Average Image of False Positive

True Negative

Average Image of True Negative

False Negative

Average Image of False Negative

From above images we can tell, both *True Positive* and *False Negative*'s images are clear zero images.

True negative mixed number 1 to 9, so the image is blurred.