Corso di Algebra Lineare e Geometria Strutture Algebriche

Docente Marino Lucia

Università di Catania

email: lucia.marino@unict.it

Sito web: https://www.dmi.unict.it/Imarino/

Testi consigliati

Libri esercizi:

- P. Bonacini, M.G. Cinquegrani, L. Marino, *Algebra Lineare: Esercizi svolti*, Ed. Cavallotto. Catania 2012
- P. Bonacini, M.G. Cinquegrani, L. Marino, *Geometria Analitica: Esercizi svolti*, Ed. Cavallotto, Catania 2012

Concetto di funzione tra due insiemi A e B

Dati due insiemi A e B, si dice *funzione* da A in B una legge che associa a **ogni elemento di A uno e un solo elemento di B^{**} .

Notazione formale:

$$f: A \to B, \quad x \in A \mapsto f(x) \in B$$

Esempio: A = figli, B = madri.

Viceversa:

$$f: B \rightarrow A$$

non è una funzione, poiché a una madre possono corrispondere più figli.

Immagine di f

- A si chiama dominio.
- B si chiama codominio.
- Diremo immagine di f, indicata con Im f, il sottoinsieme di B costituito dalle immagini di tutti gli elementi di A:

$$\operatorname{Im} f = \{ b \in B \mid \exists a \in A \text{ con } f(a) = b \}$$

Operazione binaria interna

Generalizziamo il concetto di operazione elementare su cui abbiamo imparato a fare i calcoli.

Si chiama operazione binaria interna su un insieme A una funzione

$$\phi: A \times A \rightarrow A$$

Esempi:

- Sia A l'insieme dei vettori. La somma tra due vettori è un'operazione binaria interna su A.
- Il prodotto scalare tra due vettori non è un'operazione binaria interna su A.

Proprietà di un'operazione binaria

Un'operazione binaria su un insieme G può avere le seguenti proprietà:

Associativa:

$$\forall a, b, c \in G$$
, $(a*b)*c = a*(b*c)$

Commutativa:

$$\forall a, b \in G, \quad a * b = b * a$$

• **Elemento neutro:** esiste $e \in G$ tale che

$$\forall a \in G$$
, $a * e = e * a = a$

Se esiste, è unico.

• **Invertibilità:** Se G ammette l'elemento neutro e, un elemento $a \in G$ si dice *invertibile* se esiste $a' \in G$ tale che

$$a * a' = a' * a = e$$

In questo caso, a' si dice **elemento inverso** di a.

Gruppo

- Un insieme G su cui è definita un'operazione *, (G, *), è un **gruppo** se valgono le seguenti proprietà rispetto all'operazione assegnata:
 - **1** Associativa: $\forall a, b, c \in G$, (a * b) * c = a * (b * c)
 - 2 Esistenza dell'elemento neutro $e \in G$, tale che $\forall a \in G$, a * e = e * a = a
 - **3** Ogni elemento di G è invertibile, cioè per ogni $a \in G$ esiste $a' \in G$ tale che a*a'=a'*a=e
- Se l'operazione è anche commutativa, il gruppo si dice Abeliano o commutativo.

Anello

- Dato un insieme A con due operazioni (A, +, *), si dice **anello** se valgono le seguenti proprietà:
 - (A, +) è un **gruppo** abeliano.
 - 2 L'operazione * è associativa:

$$\forall a, b, c \in A$$
, $(a*b)*c = a*(b*c)$

Proprietà distributive di * rispetto a +:

$$\forall a, b, c \in A$$
, $a * (b + c) = a * b + a * c$, $(a + b) * c = a * c + b * c$

4 Se * è anche commutativa, l'anello si dice commutativo.

Esempi di Anelli

Esempi di anelli commutativi sono:

$$(\mathbb{Z},+,*), \quad (\mathbb{Q},+,*), \quad (\mathbb{R},+,*)$$

- Non è necessario che esista l'elemento neutro 1 della seconda operazione. Se invece esiste, l'anello si dice unitario.
- Lo zero di un anello non può essere mai invertibile.

$\mathsf{Campo}\ \mathbb{K}$

• Si dice campo $(\mathbb{K},+,\cdot)$ un anello commutativo in cui ogni elemento diverso da zero è *invertibile* rispetto al prodotto.

In altre parole:

$$\forall a \in \mathbb{K} \setminus \{0\}, \quad \exists a^{-1} \in \mathbb{K} \text{ tale che } a \cdot a^{-1} = 1.$$

• Tutti i numeri razionali $\mathbb Q$, reali $\mathbb R$ e complessi $\mathbb C$ sono esempi di campi.

Esempi di campo

• Esempio di un insieme che non è un campo:

$$(\mathbb{Z},+,*)$$

• Esempio di un insieme che è un campo:

$$(\mathbb{Q}, +, *)$$

Campo dei numeri reali ℝ

- L'insieme dei numeri reali con le operazioni di somma e prodotto, $(\mathbb{R},+,\cdot)$, è un **campo**.
- In $\mathbb R$ ogni elemento diverso da zero è **invertibile** rispetto al prodotto:

$$\forall x \in \mathbb{R} \setminus \{0\}, \quad \exists x^{-1} \in \mathbb{R} \text{ tale che } x \cdot x^{-1} = 1.$$

Campo dei numeri complessi $\mathbb C$

- L'insieme dei numeri complessi con le operazioni di somma e prodotto, $(\mathbb{C},+,\cdot)$, è un **campo** che contiene il campo dei numeri reali \mathbb{R} .
- In $\mathbb C$ ogni elemento diverso da zero è **invertibile** rispetto al prodotto. Sia $z = a + ib \neq 0$. Cerchiamo w = c + id tale che:

$$(a+ib)(c+id)=1.$$

Dalla condizione di invertibilità segue che:

$$w = \frac{a - ib}{a^2 + b^2}.$$

Quindi l'elemento $\frac{a-ib}{a^2+b^2}$ è **l'inverso moltiplicativo** di a+ib (verificabile con un semplice calcolo algebrico).

Operazione esterna

Definizione

Sia V un insieme e $\mathbb K$ un campo. Chiamiamo **operazione esterna** una funzione

$$f: \mathbb{K} \times V \longrightarrow V, \qquad (\alpha, v) \longmapsto \alpha * v,$$

dove $\alpha \in \mathbb{K}$ e $v \in V$.

Sottostrutture

Dato un gruppo (G,+), sia $S \subseteq G$. Diremo che (S,+) è un **sottogruppo** di (G,+) se S è un gruppo rispetto alla stessa operazione di G.

In modo analogo si definiscono sottoanello e sottocampo.

Spazio Vettoriale

Sia \mathbb{K} un campo e V un insieme qualsiasi.

Dicesi spazio vettoriale $(V,+,\cdot)$ su un campo \mathbb{K} , oppure \mathbb{K} -spazio vettoriale, una struttura dotata di due operazioni:

$$+: V \times V \to V, \cdot: \mathbb{K} \times V \to V,$$

dette rispettivamente **somma vettoriale** e **prodotto scalare**, tali che valgono le seguenti proprietà:

- (V,+) è un gruppo abeliano.
- **2 Compatibilità tra scalari:** $(ab) \cdot v = a \cdot (b \cdot v)$ per ogni $a, b \in \mathbb{K}$ e $v \in V$.
- **3** Elemento neutro scalare: $1 \cdot v = v$ per ogni $v \in V$.
- **3** Distributività rispetto ai numeri: $(a+b) \cdot v = a \cdot v + b \cdot v$ per ogni $a, b \in \mathbb{K}$ e $v \in V$.
- **3** Distributività rispetto ai vettori: $a \cdot (v + w) = a \cdot v + a \cdot w$ per ogni $a \in \mathbb{K}$ e $v, w \in V$.

Esempi di spazi vettoriali

Sia $(V, +, \cdot)$ uno spazio vettoriale su un campo \mathbb{K} : gli elementi di V si chiamano **vettori**, quelli di \mathbb{K} scalari.

Esempi principali:

- \mathbb{R}^3 con le usuali operazioni di somma e prodotto per scalare è uno spazio vettoriale su \mathbb{R} .
- Più in generale, \mathbb{K}^n con:

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

$$a \cdot (x_1, x_2, \dots, x_n) = (ax_1, ax_2, \dots, ax_n)$$

è uno spazio vettoriale su \mathbb{K} .