Dynamic Scheduling of Real-Time Tasks

Joakim, Jakob, Fredrik, Mattias

2019-10-23

Introduction

- Scheduling tasks
- Periodic, independent
- Sporadic, unpredictable
- Accept or block task
- Single processor machine.

Task model (periodic aperiodic)

Periodic

- For periodic tasks J a given task is defined by the following. $J = \{T_i(s_i, C_i, R_i, P_i), i = 1 \text{ to } n\}$
- $\sum \frac{C_i}{P_i} \leq 1$

Sporadic

- For sporadic tasks S a given task is defined by the following.
 - $\mathbb{S} = \{S_i(r_i, C_i, d_i), i = 1 \text{ to } n\}$
- $S_i \to S_j$

Scheduling independent tasks

Periodic

$$\sum_{i=1} \frac{C_i}{R_i} \le 1$$

Sporadic

$$\sum_{r_k \le r_1, \, d_k \le d_j} C_k \le d_j - r_i$$

Synchronous tasks

[0, P] where P = least common multiple of $\{P_1, P_2 \dots P_n\}$ ## Asynchronous tasks [0, s+2P] where $s = \max\{s_1, s_2 \dots s_n\}$ ## Sporadic tasks $[\tau, D+P]$ where $\tau = \text{is the current time of the machine and } D = \text{the latest sporadic deadline supported at time } \tau$ # Scheduling dependent tasks

Dependent tasks

- Group of sporadic in partial order
- Timing and precedence constraint

New results about dependent task scheduling

- Dependent and independent tasks
- No discrimination
- Constraints are obeyed
- Proof for all deadlines

New results about dependent task scheduling

Modified deadline

$$f_i \leq f_j \text{ and } f_i \leq d_j - C_j$$
 Set $d_i^* := \min(d_i, \min(d_i^* - C_j; S_i \to S_j))$

Modified release time

$$k_i \ge k_j + C_j \text{ and } k_i \ge r_i$$

Set $r_i^* := \max(r_i, \max(r_i^* + C_j; S_j \to S_i))$

Variables

S	Task

- C Completion time
- f Completion time of S_i
- d Deadline
- k Starting time of S_i
- r Release time

New results about dependent task scheduling

Apply ED

- $r_i^* < r_i^*, d_i^* < d_i^*$ where $S_i < S_j$
- Apply Earliest Deadline
- \mathcal{L}_r so at any time $t, S_i \in \mathcal{L}_r$, if $r_i^* \geq t$

Conclusion of algorithm

- Schedulability of \mathbb{S} implies scheduability of \mathbb{S}^*
- Timing and precedence constraints met according to ED

Decision Algorithm

1. Define global variables.

au current time P period

 \mathbb{S}^{τ} linked list of sporadic tasks at time τ

2. Calculate new timing parameters.

 $\mathbb{S}^{\tau} = \operatorname{calc_readytimes_and_deadlines}(\mathbb{S}^{\tau})$

Decision Algorithm

3. Initialize data structures.

$$d = \min(\mathbb{S}^{\tau}.d^{*})$$

$$D = \max(\mathbb{S}^{\tau}.d^{*})$$

$$\mathcal{L}^{*} = \{ \}$$

$$\mathbb{S}^{*} = \text{sort_deadline}(\text{filter}(D + P, \mathbb{S}^{\tau}))$$

$$q = \text{index of}(d, \mathbb{S}^{*})$$

Same sum as before

$$\sum_{r_k \le r_i, d_k \le d_j} C_k \le d_j - r_i$$

4. Acceptance condition.

$$for j \in [q, sizeof(\mathbb{S}^*)]$$

$$k = index_where(r_j^* < r_k^*, \mathcal{L}^*)$$

$$\mathbb{S}_{k-1}^* = \mathbb{S}_j^*$$

$$\mathcal{L}_q^* = \mathbb{S}_j^*$$

$$N_{k, j} = 0$$

$$for i \in [q, 0] :$$

$$N_{i, j} = N_{i+1, j} + C_i$$
if $N_{i, j} > d_j^* - r_i^*$: Return false

Conclusion

- Calculating r^* and d^* for all S makes all tasks sporadic.
- If an incoming sporadic task group \mathbb{S}^{τ} completes the acceptance condition without breaking the loop, it is accepted and scheduled according to \mathbb{S}^* .
- In essence, this is ED.