Домашняя работа №2

Шибаев Александр Б05-222

Октябрь 2022

1 Первая задача

Мы умеем находить количество элементов слева, больших данного (такая задача была в контесте), значит и умеем находить количество элементов справа, меньших данного. Для этого мы используем MergeSort. При этом, если $a=x_i$ стоял левее $b=x_j$ и a>b, то мы поменяем их между собой местами нечетное число раз, т.к. в отсортированном массиве a стоит правее b отсортированном массиве. Аналогично если $a=x_i$ стоял правее $b=x_j$ и a< b. Если $a=x_i$ стоял левее $b=x_j$ и a< b, то и в отсортированном массиве a стоит левее a поэтмоу a и a мы будем менять четное число раз. Поэтому если у a0 количесво количество элементов слева, больших a1 количесво количество элементов справа, меньших a2 четное, то ответ - да, иначе ответ - нет.

2 Вторая задача

Пусть $k = \overline{k_1 k_2 k_3 k_4 \dots k_n}$.

Тогда если $a_i=\overline{a_{i_1}a_{i_2}a_{i_3}...a_{i_n}}$ (Первые a_{i_j} могут быть нулями), то мы разбиваем это число на два блока - $x_1=\overline{a_{i_1}a_{i_2}a_{i_3}...a_{i_{n/2}}}$ и $x_2=\overline{a_{i_{n/2+1}}a_{i_{n/2+2}}a_{i_{n/2+3}}...a_{i_n}}$. И теперь сортируем числа "поразрядной" сортировкой.

Т.к. "половинки" чисел a_i не больше, чем $\sqrt{a_i} <= \sqrt{k}$, то ассимптотика такой сортировки $O(n+\sqrt{k})$.

3 Третья задача

Пусть a[n] - массив чисел, а q[m] - массив запросов.

Если $m \ge n$, то просто отсортируем массив чисел за $O(n \log n)$. И $\forall i \le m$ будем выводить a[m[i]].

Если m < n, то отсортируем массив q за $O(n \log n)$ (запомним их первоначальный порядок). Теперь возьмем серединный элемент: p = q[(r+l)/2] (изначально l = 0, r = m). Найдем p-тую порядковую статистику за O(n). Теперь все числа стоящие левее a[p] - меньше или равны a[p], а стоящие правее - больше или равны. Поэтому теперь мы запускаемся рекурсивно от левой и правой половины массива q, но для левой половины нам нужно рассматривать только отрезок массива a - $[l_a, p]$, а для правой половины - $[p+1, r_a]$. Т.к. q отсортирован, то все порядковые статистики из левой половины q будут в отрезке $[l_a, p]$ массива a. (изначально $l_a = 0, r_a = n$). Глубина такого алгоритма - $\log m$, и на каждом слое мы проходим по нескольким непересекающимся отрезкам массива a, причем их суммарная длина - n. Поэтому ассимптотика такого алгоритма - $O(n \log m)$.

4 Четвертая задача

Будем хранить обычную min-кучу и поддерживать максимум в ней. Тогда при удалении минимума, максимум меняться не будет(т.к. у нас min-куча). Если куча становится пустая, то и максимум пустой. При добавлении нового элемента мы просто сравниваем его с максимумом и если нужно, то изменяем максимум, и кладет его в кучу стандартным способом. Удаление минимума из min-кучи - O(logn), добавление тоже за O(logn), получение максимума и минимума за O(1)

5 Пятая задача

В этой задаче будем использовать опять min-heap. В каждой вершине будем хранить тройку чисел - $(i, j, a_i + b_j)$. Тогда если минимум - $(i, j, a_i + b_j)$, то будет класть в кучу элементы $(i+1, j, a_{i+1} + b_j)$ и $(i, j+1, a_i + b_{j+1})$, и удалим минимальный элемент - $(i, j, a_i + b_j)$ и положим его в ans - массив ответов. Т.к. массивы A и B отсортированы, то мы добавляем числа, не меньшие, чем минимальный элемент. После этих операций, количесвто элементов в куче увеличиться на 1, и количество элементов в ans учеличиться на 1. И при этом в ans всегда на один элемент меньше, чем в куче. Поэтому когда в куче оказалось k элементов и минимальный элемент там - $(i, j, a_i + b_j)$, то мы просто кладем его в ans, таким образом в ans ровно k наименьших элементов \Rightarrow мы нашли k порядковую статистику. Каждый раз в куче не более k элементов, и мы делаем 2k добавлений \Rightarrow ассимптотика такого решения $O(k \log k)$.