EM Overview

E-step:

- For each data instance $\mathbf{d_i}$ and each family X, parents(X) compute $p(X, parents(X) \mid \mathbf{d_i}, \theta^t)$
- Compute for each $(x, \mathbf{u}) \in dom(X, parents(X))$

$$q_t(x, \mathbf{u}) = \sum_i p(x, \mathbf{u} \mid \mathbf{d_i}, \theta^t)$$

M-Step: Perform maximum likelihood estimation with respect to the "soft completed" data:

$$p^{t+1}(x \mid \mathbf{u}) = \theta_{x|\mathbf{u}}^{t+1} = \frac{q_t(x, \mathbf{u})}{q_t(\mathbf{u})}$$

Exercise

• Learn the parameters $\theta_1 - \theta_6$ (described below) underlying al CPTs using EM

S	С
1	1
0	0
?	1
?	0
1	1
0	0
?	?
	1 0 ? ? 1 0

 Start with priors estimates of 0.5 for all parameters

$$\theta_1 = p(s=1)$$
 $\theta_2 = p(a=1)$
 $\theta_3 = p(c=1|s=1, a=1)$
 $\theta_4 = p(c=1|s=1, a=0)$
 $\theta_5 = p(c=1|s=0, a=1)$
 $\theta_6 = p(c=1|s=0, a=0)$

One detailed E-Step:

$$p(a \mid s, c) = \frac{p(a, s, c)}{p(s, c)} = \frac{p(s)p(a)p(c \mid a, s)}{\sum_{a} p(s)p(a)p(c \mid a, s)}$$

$$= \frac{p(s)p(a)p(c \mid a, s)}{p(s)p(a = 1)p(c \mid a = 1, s) + p(s)p(a = 0)p(c \mid a = 0, s)}$$

$$p(a = 1 | s = 1, c = 1) =$$

$$= \frac{p(s=1)p(a=1)p(c=1 \mid a=1,s=1)}{p(s=1)p(a=1)p(c=1 \mid a=1,s=1) + p(s=1)p(a=0)p(c=1 \mid a=1,s=1)}$$

$$= \frac{\theta_1 \cdot \theta_2 \cdot \theta_3}{\theta_1 \cdot \theta_2 \cdot \theta_3 + \theta_1 \cdot (1 - \theta_2) \cdot \theta_4} = \frac{0.5 \times 0.5 \times 0.5}{0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5}$$

E-step: Using current estimate of parameters calculate probability of each data instance

а	S	С
?	1	1
1	0	0
0	?	1
0	?	0
1	1	1
?	0	0
1	?	?

Incomplete data

	a	S	С		
d1	1	1	1	p(a=1 s=1, c=1,θ†)	= 0.5
	0	1	1	p(a=0 s=1, c=1,θ†)	= 0.5
d2	1	0	0	1	= 1
d3	0	1	1	p(s=1 a=0, c=1,θ†)	= 0.5
	0	0	1	p(s=0 a=0, c=1,θ+)	= 0.5
d4	0	1	0	p(s=1 a=0, c=0,θ†)	= 0.5
	0	0	0	p(s=0 a=0, c=0,θ+)	= 0.5
d5	1	1	1	1	= 1
d6	1	0	0	p(a=1 s=0, c=0,θ†)	= 0.5
	0	0	0	$p(a=0 s=0, c=0,0^{+})$	= 0.5
d7	1	0	1	$p(s=0, c=1 a=1,0^+)$	= 0.25
	1	0	0	$p(s=0, c=0 a=1,0^+)$	=0.25
	1	1	1	$p(s=1, c=1 a=1,0^{+})$	=0.25
	1	1	0	p(s=1, c=0 a=1,θ†)	= 0.25

$$q(a=1) = \sum_{i=1}^{7} p(a=1 | \mathbf{d_i}, \theta^t) = 0.5 + 1 + 0 + 0 + 1 + 0.5 + (2 \times 0.25) = 4$$

$$q(s = 1) = \sum_{i=1}^{7} p(s = 1 | \mathbf{d_i}, \theta^t) = 1 + 0 + 0.5 + 0.5 + 1 + 0 + (4 \times 0.25) = 3.5$$

$$q(c = 1, s = 1, a = 1) = \sum_{i=1}^{7} p(c = 1, s = 1, a = 1 | \mathbf{d_i}, \theta^t) = 0.5 + 0 + 0 + 0 + 1 + 0 + 0.25 = 1.75$$

$$q(c = 1, s = 1, a = 0) = \sum_{i=7}^{7} p(c = 1, s = 1, a = 0 | \mathbf{d_i}, \theta^t) = 0.5 + 0 + 0.5 + 0 + 0 + 0 + 0 = 1$$

$$q(c = 1, s = 0, a = 1) = \sum_{i=1}^{7} p(c = 1, s = 0, a = 1 | \mathbf{d_i}, \theta^t) = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.25 = 0.25$$

$$q(c = 1, s = 0, a = 0) = \sum_{i=1}^{7} p(c = 1, s = 0, a = 0) | \mathbf{d_i}, \theta^t) = 0 + 0 + 0.5 + 0 + 0 + 0 + 0 = 0.5$$

Compute the "soft counts" $q(c=0,_,_) \ {\rm on \ your \ own \ and}$ compare with result on next page

M-step: Perform maximum likelihood estimation with respect to the "soft completed" data:

$$\theta_a^{t+1} = \theta_1^{t+1} = \frac{q(a=1)}{q(a=1) + q(a=0)} = \frac{q(a=1)}{7} = 0.571$$

$$\theta_s^{t+1} = \theta_2^{t+1} = \frac{q(s=1)}{q(s=1) + q(s=0)} = \frac{q(s=1)}{7} = 0.5$$

$$\theta_{c=1|s=1,a=1}^{t+1} = \theta_3^{t+1} = \frac{q(c=1,a=1,s=1)}{q(c=1,a=1,s=1) + q(c=0,a=1,s=1)} = \frac{1.75}{1.75 + 0.25} = 0.875$$

$$\theta_{c=1|s=1,a=0}^{t+1} = \theta_4^{t+1} = \frac{q(c=1,s=1,a=0)}{q(c=1,s=1,a=0) + q(c=0,s=1,a=0)} = \frac{1}{1+0.5} = 0.666$$

$$\theta_{c=1|s=0,a=1}^{t+1} = \theta_5^{t+1} = \frac{q(c=1,s=0,a=1)}{q(c=1,s=0,a=1) + q(c=0,s=0,a=1)} = \frac{0.25}{0.25 + (1+0.5+0.25)} = 0.125$$

$$\theta_{c=1|s=0,a=0}^{t+1} = \theta_6^{t+1} = \frac{q(c=1,s=0,a=0)}{q(c=1,s=0,a=0) + q(c=0,s=0,a=0)} = \frac{0.5}{0.5 + (0.5 + 0.5)} = 0.333$$

M-step: Perform maximum likelihood estimation with respect to the "soft completed" data:

$$\theta_a^{t+1} = \theta_1^{t+1} = \frac{q(a=1)}{q(a=1) + q(a=0)} = \frac{q(a=1)}{7} = 0.571$$

$$\theta_s^{t+1} = \theta_2^{t+1} = \frac{q(s=1)}{q(s=1) + q(s=0)} = \frac{q(s=1)}{7} = 0.5$$

Using the updated parameters $\theta^{t+|1}$, compute the next iteration.

$$\theta_{c=1|s=1,a=1}^{t+1} = \theta_3^{t+1} = \frac{q(c=1,a=1,s=1)}{q(c=1,a=1,s=1) + q(c=0,a=1,s=1)} = \frac{1.75}{1.75 + 0.25} = 0.875$$

$$\theta_{c=1|s=1,a=0}^{t+1} = \theta_4^{t+1} = \frac{q(c=1,s=1,a=0)}{q(c=1,s=1,a=0) + q(c=0,s=1,a=0)} = \frac{1}{1+0.5} = 0.666$$

$$\theta_{c=1|s=0,a=1}^{t+1} = \theta_5^{t+1} = \frac{q(c=1,s=0,a=1)}{q(c=1,s=0,a=1) + q(c=0,s=0,a=1)} = \frac{0.25}{0.25 + (1+0.5+0.25)} = 0.125$$

$$\theta_{c=1|s=0,a=0}^{t+1} = \theta_6^{t+1} = \frac{q(c=1,s=0,a=0)}{q(c=1,s=0,a=0) + q(c=0,s=0,a=0)} = \frac{0.5}{0.5 + (0.5 + 0.5)} = 0.333$$

	a	S	С		
d1	1	1	1	p(a=1 s=1, c=1,θ†)	= 0.56
	0	1	1	p(a=0 s=1, c=1,θ†)	= 0.44
d2	1	0	0	1	=
d3	0	1	1	p(s=1 a=0, c=1,θ†)	=
	0	0	1	p(s=0 a=0, c=1,θ†)	=
d4	0	1	0	p(s=1 a=0, c=0,θ†)	=
	0	0	0	p(s=0 a=0, c=0,θ†)	=
d5	1	1	1	1	=
d6	1	0	0	p(a=1 s=0, c=0,θ†)	=
	0	0	0	$p(a=0 s=0, c=0,0^{+})$	=
	1	0	1	$p(s=0, c=1 a=1,0^{+})$	=
d7	1	0	0	$p(s=0, c=0 a=1,0^{+})$	=
	1	1	1	$p(s=1, c=1 a=1,\theta^{\dagger})$	=
	1	1	0	$p(s=1, c=0 a=1,\theta^{+})$	=