UNIVERSITY OF OSLO

Master's thesis

-sometitle-

Classifying N-body simulations with and without relativistic corrections using machine learning techniques

Johan Mylius Kroken

Computational Science: Astrophysics 60 ECTS study points

Institute of Theoretical Astrophysics
Faculty of Mathematics and Natural Sciences

Johan Mylius Kroken

-sometitle-

Classifying N-body simulations with and without relativistic corrections using machine learning techniques

Supervisors:

A David Fonseca Mota

B Julian Adamek

C Francisco Antonio Villaescusa Navarro

Abstract

Here come 3–6 sentences describing your thesis.

Sammendrag

Here comes the abstract in a different language.

Contents

1	Introd	luction				1
	1.1	Motivation				1
	1.2	Outline				1
	1.3	Aim				1
	1.4	Nomenclature				1
ı	Cosmo	logical Structure Formation				3
2		ninaries				5
_	2.1	General Relativity				5
		2.1.1 Einstein's Field Equations				5
		2.1.2 Riemann Connection and Covariant Derivative				5
		2.1.3 Geodesic Equation				5
		2.1.4 The Stress-Energy Tensor				5
	2.2	Useful Relations				5
3		ground Cosmology				7
Ŭ	3.1	The Geometry of Spacetime				7
	.	3.1.1 The Cosmological Principle				7
		3.1.2 The Robertson-Walker Metric				7
		3.1.3 The Friedmann Equations				7
	3.2	My Universe is loaded with				7
	3.3	Thermal History of the Universe				7
4		rbation Theory				9
•	4.1	Initial Conditions				9
	4.2	Transfer Functions				9
	4.3	Power Spectra				9
	4.4	Non-linear Evolution				9
	4.5	Bispectra				9
5		ation theory				11
	5.1	N-body simulations				11
		5.1.1 Describing a box of particles				11
		5.1.2 Forces and Fields				11
		5.1.3 Mass Assignment Schemes				11
		5.1.4 Validity of Box				11
	5.2	Newtonian Approach				11
	5.3	General Relativistic Approach				11

Contents

Ш	Machir	ne Lear	ning												13
6	Neura	al Netwo	rks												15
	6.1	Forwar	d pass - Predicti	on .											15
		6.1.1	Activation funct	ions.											15
		6.1.2	Loss functions.												15
	6.2	Backpr	opagation - Train	ning .											15
		6.2.1	Gradient desce	ent .											15
		6.2.2	Optimizers												15
		6.2.3	Regularization												15
7	Conv	olutional	Neural Networks	. .											17
	7.1	Convol	lution												17
	7.2	New La	ayers												17
		7.2.1	Convolutional la	ayers											17
		7.2.2	Pooling layers.												17
		7.2.3	Dropout layers				•	•					•	•	17
Ш	Acqui	ring Da	ta												19
8	Simul	lations.													21
9			on												23
10	Traina	able Data	aset		_					_				_	25

List of Figures

List of Figures

List of Tables

Preface

Here comes your preface, including acknowledgments and thanks. $\,$

Preface

Introduction

This is the introduction that will shortly be written. How fast does things change.

- 1.1 Motivation
- 1.2 Outline
- 1.3 Aim
- 1.4 Nomenclature

Part I Cosmological Structure Formation

Preliminaries

2.1 General Relativity

2.1.1 Einstein's Field Equations

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} \tag{2.1}$$

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R \tag{2.2}$$

$$R = g^{\mu\nu} R_{\mu\nu} \tag{2.3}$$

$$R_{\mu\nu} = \partial_{\rho}\Gamma^{\rho}_{\mu\nu} - \partial_{\nu}\Gamma^{\rho}_{\mu\rho} + \Gamma^{\rho}_{\mu\nu}\Gamma^{\sigma}_{\rho\sigma} - \Gamma^{\rho}_{\mu\sigma}\Gamma^{\sigma}_{\nu\rho}$$
 (2.4)

2.1.2 Riemann Connection and Covariant Derivatives

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} \left(\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\mu\sigma} - \partial_{\sigma} g_{\mu\nu} \right) \tag{2.5}$$

$$\nabla_{\mu}T^{\mu}_{\nu} = \partial_{\mu}T^{\mu}_{\nu} + \Gamma^{\mu}_{\mu\alpha}T^{\alpha}_{\nu} - \Gamma^{\alpha}_{\mu\nu}T^{\mu}_{\alpha}$$
 (2.6)

2.1.3 Geodesic Equation

$$\frac{d^2x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\beta}}{d\tau} = 0 \tag{2.7}$$

2.1.4 The Stress-Energy Tensor

$$T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} + pg_{\mu\nu} \tag{2.8}$$

2.2 Useful Relations

Chapter 2. Preliminaries

Background Cosmology

- 3.1 The Geometry of Spacetime
- 3.1.1 The Cosmological Principle
- 3.1.2 The Robertson-Walker Metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega^{2} \right]$$
(3.1)

- 3.1.3 The Friedmann Equations
- 3.2 My Universe is loaded with...
- 3.3 Thermal History of the Universe

Chapter 3. Background Cosmology

Perturbation Theory

- 4.1 Initial Conditions
- 4.2 Transfer Functions
- 4.3 Power Spectra
- 4.4 Non-linear Evolution

4.5 Bispectra

The bispectra are powerful tools for studying the non-linear evolution of the density field. The bispectrum is defined as the Fourier transform of the three-point correlation function, and is given by:

$$\langle \delta(\mathbf{k}_1)\delta(\mathbf{k}_2)\delta(\mathbf{k}_3)\rangle = (2\pi)^3 \delta_D(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)B(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$$
(4.1)

Well this is rather awkward. Adamek et al. 2016 or (Falck et al. 2017)

Chapter 4. Perturbation Theory

Simulation theory

Some theory and history as to how to conduct N-body simulations.

- 5.1 N-body simulations
- 5.1.1 Describing a box of particles
- 5.1.2 Forces and Fields
- 5.1.3 Mass Assignment Schemes
- 5.1.4 Validity of Box
- 5.2 Newtonian Approach
- 5.3 General Relativistic Approach

Chapter 5. Simulation theory

Part II Machine Learning

Neural Networks

- 6.1 Forward pass Prediction
- 6.1.1 Activation functions
- 6.1.2 Loss functions
- 6.2 Backpropagation Training
- 6.2.1 Gradient descent
- 6.2.2 Optimizers
- 6.2.3 Regularization

Chapter 6. Neural Networks

Convolutional Neural Networks

- 7.1 Convolution
- 7.2 New Layers
- 7.2.1 Convolutional layers
- 7.2.2 Pooling layers
- 7.2.3 Dropout layers

Chapter 7. Convolutional Neural Networks

Part III Acquiring Data

Simulations

Data Verification

Chapter 9. Data Verification

Trainable Dataset

Chapter 10. Trainable Dataset

Bibliography

Adamek, Julian et al. (29th July 2016). 'gevolution: a cosmological N-body code based on General Relativity'. In: *Journal of Cosmology and Astroparticle Physics* 2016.7, pp. 053–053. ISSN: 1475-7516. DOI: 10.1088/1475-7516/2016/07/053. arXiv: 1604. 06065[astro-ph,physics:gr-qc,physics:physics]. URL: http://arxiv.org/abs/1604.06065 (visited on 23/08/2023).

Falck, B. et al. (16th Mar. 2017). 'The Effect of Corner Modes in the Initial Conditions of Cosmological Simulations'. In: *The Astrophysical Journal* 837.2, p. 181. ISSN: 1538-4357. DOI: 10.3847/1538-4357/aa60c7. arXiv: 1610.04862[astro-ph]. URL: http://arxiv.org/abs/1610.04862 (visited on 20/09/2023).