Outils mathématiques de gestion

Calculs

Calculs

- Opérations sur les nombres
- 2 Opérations sur les fractions
- Puissances et exposants
- Priorités des opérations
- Développer et réduire
- 6 Factoriser
- Identités remarquables

Addition et soustraction

Si a et b sont deux nombres réels,

- a + b = b + a;
- a b = -b + a = -(b a);
- -a b = -b a = -(a + b).

Addition et soustraction

Si a et b sont deux nombres réels,

- a + b = b + a;
- a b = -b + a = -(b a);
- -a b = -b a = -(a + b).

- 2+2
- 4 − 3
- -9 + 12

- 6 + 1.3
- -8.2 5
- 5.2 − 7

Addition et soustraction

Si a et b sont deux nombres réels,

•
$$a + b = b + a$$
;

•
$$a - b = -b + a = -(b - a)$$
;

•
$$-a - b = -b - a = -(a + b)$$
.

•
$$2 + 2 = 4$$

•
$$-9 + 12$$

•
$$6 + 1.3$$

•
$$-8.2 - 5$$

Addition et soustraction

Si a et b sont deux nombres réels,

- a + b = b + a;
- a b = -b + a = -(b a);
- -a b = -b a = -(a + b).

- 2 + 2 = 4
- 4 3 = 1
- -9 + 12

- 6 + 1.3
- -8.2 5
- 5.2 − 7

Addition et soustraction

Si a et b sont deux nombres réels,

•
$$a + b = b + a$$
;

•
$$a - b = -b + a = -(b - a)$$
;

•
$$-a - b = -b - a = -(a + b)$$
.

•
$$2 + 2 = 4$$

•
$$4 - 3 = 1$$

•
$$-9 + 12 = 3$$

•
$$6 + 1.3$$

•
$$-8.2 - 5$$

Addition et soustraction

Si a et b sont deux nombres réels,

- a + b = b + a;
- a b = -b + a = -(b a);
- -a b = -b a = -(a + b).

- 2 + 2 = 4
- 4 3 = 1
- -9 + 12 = 3

- 6 + 1.3 = 7.3
- -8.2 5
- 5.2 − 7

Addition et soustraction

Si a et b sont deux nombres réels,

- a + b = b + a;
- a b = -b + a = -(b a);
- -a b = -b a = -(a + b).

- 2 + 2 = 4
- 4 3 = 1
- -9 + 12 = 3

- 6 + 1.3 = 7.3
- \bullet -8.2 5 = -13.2
- 5.2 − 7

Addition et soustraction

Si a et b sont deux nombres réels,

- a + b = b + a;
- a b = -b + a = -(b a);
- -a b = -b a = -(a + b).

- 2 + 2 = 4
- 4 3 = 1
- \bullet -9 + 12 = 3

- 6 + 1.3 = 7.3
- \bullet -8.2 5 = -13.2
- 5.2 7 = -1.8

Multiplication et division

- Le produit de deux nombres **positifs** est un nombre **positif**.
- Le produit de deux nombres négatifs est un nombre positif.
- Le produit d'un nombre positif et d'un nombre négatif est un nombre négatif.

Multiplication et division

- Le produit de deux nombres **positifs** est un nombre **positif**.
- Le produit de deux nombres négatifs est un nombre positif.
- Le produit d'un nombre positif et d'un nombre négatif est un nombre négatif.

- $2 \times 2 = 4$;
- $(-2) \times (-2) = 4$;
- $(-2) \times 2 = 2 \times (-2) = -4$.

Addition et soustraction

Pour tout nombre réel a, b et c avec b non nul,

$$\frac{a}{b} + c = \frac{a}{b} + \frac{c \times b}{b} = \frac{a + c \times b}{b}.$$

Addition et soustraction

Pour tout nombre réel a, b et c avec b non nul,

$$\frac{a}{b} + c = \frac{a}{b} + \frac{c \times b}{b} = \frac{a + c \times b}{b}.$$

•
$$1+\frac{2}{3}$$

•
$$\frac{1}{2} + 14$$

$$\bullet \ -2-\frac{5}{6}$$

•
$$\frac{28}{5} + 7$$

Addition et soustraction

Pour tout nombre réel a, b et c avec b non nul,

$$\frac{a}{b} + c = \frac{a}{b} + \frac{c \times b}{b} = \frac{a + c \times b}{b}.$$

•
$$1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3}$$

•
$$\frac{1}{2} + 14$$

•
$$-2 - \frac{5}{6}$$

•
$$\frac{28}{5} + 7$$

Addition et soustraction

Pour tout nombre réel a, b et c avec b non nul,

$$\frac{a}{b} + c = \frac{a}{b} + \frac{c \times b}{b} = \frac{a + c \times b}{b}.$$

•
$$1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3} = \frac{3+2}{3}$$

•
$$\frac{1}{2} + 14$$

•
$$-2 - \frac{5}{6}$$

•
$$\frac{28}{5} + 7$$

Addition et soustraction

Pour tout nombre réel a, b et c avec b non nul,

$$\frac{a}{b} + c = \frac{a}{b} + \frac{c \times b}{b} = \frac{a + c \times b}{b}.$$

•
$$1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3} = \frac{3+2}{3} = \frac{5}{3}$$

•
$$\frac{1}{2} + 14$$

•
$$-2 - \frac{5}{6}$$

•
$$\frac{28}{5} + 7$$

Addition et soustraction

Pour tout nombre réel a, b et c avec b non nul,

$$\frac{a}{b} + c = \frac{a}{b} + \frac{c \times b}{b} = \frac{a + c \times b}{b}.$$

•
$$1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3} = \frac{3+2}{3} = \frac{5}{3}$$

•
$$\frac{1}{2} + 14 = \frac{29}{2}$$

•
$$-2 - \frac{5}{6}$$

•
$$\frac{28}{5} + 7$$

Addition et soustraction

Pour tout nombre réel a, b et c avec b non nul,

$$\frac{a}{b} + c = \frac{a}{b} + \frac{c \times b}{b} = \frac{a + c \times b}{b}.$$

•
$$1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3} = \frac{3+2}{3} = \frac{5}{3}$$

$$-2 - \frac{5}{6} = -\frac{17}{6}$$

•
$$\frac{28}{5} + 7$$

Addition et soustraction

Pour tout nombre réel a, b et c avec b non nul,

$$\frac{a}{b} + c = \frac{a}{b} + \frac{c \times b}{b} = \frac{a + c \times b}{b}.$$

•
$$1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3} = \frac{3+2}{3} = \frac{5}{3}$$

•
$$\frac{1}{2} + 14 = \frac{29}{2}$$

$$-2 - \frac{5}{6} = -\frac{17}{6}$$

$$\bullet \ \frac{28}{5} + 7 = \frac{63}{5}$$

Addition et soustraction

Pour tout nombre réel a, b, c et d avec b et d non nuls,

$$\frac{a}{b} + \frac{c}{d} = \frac{a \times d}{b \times d} + \frac{c \times b}{d \times b} = \frac{a \times d + c \times b}{b \times d}.$$

Addition et soustraction

Pour tout nombre réel a, b, c et d avec b et d non nuls,

$$\frac{a}{b} + \frac{c}{d} = \frac{a \times d}{b \times d} + \frac{c \times b}{d \times b} = \frac{a \times d + c \times b}{b \times d}.$$

$$\frac{2}{5} - \frac{7}{3}$$

Addition et soustraction

Pour tout nombre réel a, b, c et d avec b et d non nuls,

$$\frac{a}{b} + \frac{c}{d} = \frac{a \times d}{b \times d} + \frac{c \times b}{d \times b} = \frac{a \times d + c \times b}{b \times d}.$$

$$\frac{2}{5}-\frac{7}{3}=\frac{2\times3}{5\times3}-\frac{7\times5}{3\times5}$$

Addition et soustraction

Pour tout nombre réel a, b, c et d avec b et d non nuls,

$$\frac{a}{b} + \frac{c}{d} = \frac{a \times d}{b \times d} + \frac{c \times b}{d \times b} = \frac{a \times d + c \times b}{b \times d}.$$

$$\frac{2}{5} - \frac{7}{3} = \frac{2 \times 3}{5 \times 3} - \frac{7 \times 5}{3 \times 5}$$
$$= \frac{6}{15} - \frac{35}{15}$$

Addition et soustraction

Pour tout nombre réel a, b, c et d avec b et d non nuls,

$$\frac{a}{b} + \frac{c}{d} = \frac{a \times d}{b \times d} + \frac{c \times b}{d \times b} = \frac{a \times d + c \times b}{b \times d}.$$

$$\frac{2}{5} - \frac{7}{3} = \frac{2 \times 3}{5 \times 3} - \frac{7 \times 5}{3 \times 5}$$
$$= \frac{6}{15} - \frac{35}{15}$$
$$= \frac{6 - 35}{15}$$

Addition et soustraction

Pour tout nombre réel a, b, c et d avec b et d non nuls,

$$\frac{a}{b} + \frac{c}{d} = \frac{a \times d}{b \times d} + \frac{c \times b}{d \times b} = \frac{a \times d + c \times b}{b \times d}.$$

$$\frac{2}{5} - \frac{7}{3} = \frac{2 \times 3}{5 \times 3} - \frac{7 \times 5}{3 \times 5}$$
$$= \frac{6}{15} - \frac{35}{15}$$
$$= \frac{6 - 35}{15}$$
$$= -\frac{29}{15}$$

Multiplication

Pour tout nombre réel a, b, c et d avec b et d non nuls,

$$\bullet \ \frac{a}{b} \times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$

$$\bullet \ \frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d} = \frac{ac}{bd}$$

Multiplication

Pour tout nombre réel a, b, c et d avec b et d non nuls,

•
$$\frac{a}{b} \times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$

$$\bullet \ \frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d} = \frac{ac}{bd}$$

$$\bullet$$
 $\frac{1}{2} \times 3$

$$\bullet$$
 $\frac{3}{5} \times \left(-\frac{3}{4}\right)$

$$\bullet \ \frac{30}{4} \times \frac{2}{3}$$

$$\bullet \ \ -\frac{7}{25} \times \left(-\frac{5}{3}\right)$$

Multiplication

Pour tout nombre réel a, b, c et d avec b et d non nuls,

•
$$\frac{a}{b} \times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$

$$\bullet \ \frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d} = \frac{ac}{bd}$$

•
$$\frac{1}{2} \times 3 = \frac{3}{2}$$

•
$$\frac{3}{5} \times \left(-\frac{3}{4}\right)$$

$$\bullet \ \frac{30}{4} \times \frac{2}{3}$$

$$\bullet \ \ -\frac{7}{25} \times \left(-\frac{5}{3}\right)$$

Multiplication

Pour tout nombre réel a, b, c et d avec b et d non nuls,

•
$$\frac{a}{b} \times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$

$$\bullet \ \frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d} = \frac{ac}{bd}$$

•
$$\frac{1}{2} \times 3 = \frac{3}{2}$$

$$\bullet \ \frac{3}{5} \times \left(-\frac{3}{4}\right) = -\frac{9}{20}$$

$$\bullet \ \frac{30}{4} \times \frac{2}{3}$$

$$\bullet \ -\frac{7}{25} \times \left(-\frac{5}{3}\right)$$

Multiplication

Pour tout nombre réel a, b, c et d avec b et d non nuls,

•
$$\frac{a}{b} \times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$

$$\bullet \ \frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d} = \frac{ac}{bd}$$

•
$$\frac{1}{2} \times 3 = \frac{3}{2}$$

$$\bullet \ \frac{3}{5} \times \left(-\frac{3}{4}\right) = -\frac{9}{20}$$

$$\bullet \ \frac{30}{4} \times \frac{2}{3} = \frac{10}{2} = 5$$

$$\bullet \ -\frac{7}{25} \times \left(-\frac{5}{3}\right)$$

Multiplication

Pour tout nombre réel a, b, c et d avec b et d non nuls,

•
$$\frac{a}{b} \times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$

$$\bullet \ \frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d} = \frac{ac}{bd}$$

•
$$\frac{1}{2} \times 3 = \frac{3}{2}$$

$$\bullet \ \frac{3}{5} \times \left(-\frac{3}{4}\right) = -\frac{9}{20}$$

$$\bullet \ \frac{30}{4} \times \frac{2}{3} = \frac{10}{2} = 5$$

$$\bullet \ -\frac{7}{25} \times \left(-\frac{5}{3}\right) = \frac{7}{15}$$

Division

Pour tout nombre réel a, b, c et d avec b, c et d non nuls,

$$\bullet \ \ \frac{\overline{b}}{d} = \frac{a}{b} \times \frac{1}{d} = \frac{a}{bd} \ ;$$

$$\bullet \ \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}.$$

Division

Pour tout nombre réel a, b, c et d avec b, c et d non nuls,

$$\bullet \ \frac{\overline{b}}{d} = \frac{a}{b} \times \frac{1}{d} = \frac{a}{bd} \ ;$$

$$\bullet \ \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}.$$

$$\bullet \frac{\frac{7}{5}}{2}$$

$$\bullet \quad \frac{\frac{3}{8}}{\frac{9}{16}}$$

Division

Pour tout nombre réel a, b, c et d avec b, c et d non nuls,

$$\bullet \ \ \frac{\overline{b}}{d} = \frac{a}{b} \times \frac{1}{d} = \frac{a}{bd} \ ;$$

$$\bullet \quad \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}.$$

$$\bullet \ \frac{\frac{7}{5}}{2} = \frac{7}{10}$$

$$\bullet \frac{\frac{3}{8}}{\frac{9}{16}}$$

Division

Pour tout nombre réel a, b, c et d avec b, c et d non nuls,

$$\bullet \ \frac{\overline{b}}{d} = \frac{a}{b} \times \frac{1}{d} = \frac{a}{bd} \ ;$$

$$\bullet \ \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}.$$

$$\bullet \ \frac{\frac{7}{5}}{2} = \frac{7}{10}$$

$$\bullet \quad \frac{\frac{3}{8}}{\frac{9}{16}} = \frac{2}{3}$$

Définition

Pour tout réel a et tout entier n,

- $a^0 = 1$
- \bullet $a^1 = a$
 - $a'' = \underbrace{a \times ... \times a}_{n \text{ fois}}$

Définition

Pour tout réel a et tout entier n,

- $a^0 = 1$
- $a^1 = a$
- $a^n = \underbrace{a \times ... \times a}$ n fois

- 6²
- $(-7)^0$ $(-3)^3$

- 0.5^2
- $(-5)^1$

Définition

Pour tout réel a et tout entier n,

- $a^0 = 1$
- $a^1 = a$
- $a^n = \underbrace{a \times ... \times a}$ n fois

- $6^2 = 6 \times 6$
- $(-7)^0$ $(-3)^3$

- \bullet 0.5²
- $(-5)^1$

Définition

Pour tout réel a et tout entier n,

- $a^0 = 1$
- $a^1 = a$
- $a^n = \underbrace{a \times ... \times a}$ n fois

- $6^2 = 6 \times 6 = 36$
- $(-7)^0$ $(-3)^3$

- \bullet 0.5²
- $(-5)^1$

Définition

Pour tout réel a et tout entier n,

- $a^0 = 1$
- $a^1 = a$
- $a^n = \underbrace{a \times ... \times a}_{n \text{ fois}}$

- $6^2 = 6 \times 6 = 36$
- $(-7)^0 = 1$
- (−3)³

- 0.5^2
- $(-5)^1$
- 1⁰

Définition

Pour tout réel a et tout entier n,

- $a^0 = 1$
- \bullet $a^1 = a$
- $a^n = \underbrace{a \times ... \times a}_{n \text{ fois}}$

•
$$6^2 = 6 \times 6 = 36$$

•
$$(-7)^0 = 1$$

•
$$(-3)^3 = 9 \times (-3)$$

•
$$0.5^2$$

•
$$(-5)^1$$

Définition

Pour tout réel a et tout entier n,

- $a^0 = 1$
- \bullet $a^1 = a$
- $a^n = \underbrace{a \times ... \times a}_{n \text{ fois}}$

•
$$6^2 = 6 \times 6 = 36$$

•
$$(-7)^0 = 1$$

•
$$(-3)^3 = 9 \times (-3) = -27$$

•
$$0.5^2$$

•
$$(-5)^1$$

Définition

Pour tout réel a et tout entier n,

- $a^0 = 1$
- $a^1 = a$
- $a^n = \underbrace{a \times ... \times a}_{n \text{ fois}}$

•
$$6^2 = 6 \times 6 = 36$$

•
$$(-7)^0 = 1$$

•
$$(-3)^3 = 9 \times (-3) = -27$$

•
$$0.5^2 = 0.5 \times 0.5$$

•
$$(-5)^1$$

Définition

Pour tout réel a et tout entier n,

- $a^0 = 1$
- \bullet $a^1 = a$
- $a^n = \underbrace{a \times ... \times a}_{n \text{ fois}}$

•
$$6^2 = 6 \times 6 = 36$$

•
$$(-7)^0 = 1$$

•
$$(-3)^3 = 9 \times (-3) = -27$$

•
$$0.5^2 = 0.5 \times 0.5 = 0.25$$

•
$$(-5)^1$$

Définition

Pour tout réel a et tout entier n,

- $a^0 = 1$
- \bullet $a^1 = a$
- $a^n = \underbrace{a \times ... \times a}_{n \text{ fois}}$

•
$$6^2 = 6 \times 6 = 36$$

•
$$(-7)^0 = 1$$

•
$$(-3)^3 = 9 \times (-3) = -27$$

•
$$0.5^2 = 0.5 \times 0.5 = 0.25$$

•
$$(-5)^1 = -5$$

Définition

Pour tout réel a et tout entier n,

- $a^0 = 1$
- \bullet $a^1 = a$
- $a^n = \underbrace{a \times ... \times a}_{n \text{ fois}}$

•
$$6^2 = 6 \times 6 = 36$$

•
$$(-7)^0 = 1$$

•
$$(-3)^3 = 9 \times (-3) = -27$$

•
$$0.5^2 = 0.5 \times 0.5 = 0.25$$

•
$$(-5)^1 = -5$$

•
$$1^0 = 1$$

Définition

Pour tout réel a, tout réel b non nul, et tout entier n,

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b} \times ... \times \frac{a}{b}}_{n \text{ fois}} = \underbrace{-\frac{a^n}{b^n}}_{n \text{ fois}}$$

Définition

Pour tout réel a, tout réel b non nul, et tout entier n,

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b} \times ... \times \frac{a}{b}}_{n \text{ fois}} = \underbrace{-\frac{a^n}{b^n}}_{n \text{ fois}}$$

$$\bullet \left(\frac{1}{2}\right)^4$$

$$\bullet \left(\frac{-1}{2}\right)^5$$

Définition

Pour tout réel a, tout réel b non nul, et tout entier n,

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b} \times ... \times \frac{a}{b}}_{n \text{ fois}} = \underbrace{-\frac{a^n}{b^n}}_{n \text{ fois}}$$

$$\bullet$$
 $\left(\frac{1}{2}\right)^4 = \frac{1}{2^4} = \frac{1}{16}$

$$\bullet \left(\frac{-1}{2}\right)^5$$

Définition

Pour tout réel a, tout réel b non nul, et tout entier n,

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b} \times ... \times \frac{a}{b}}_{n \text{ fois}} = \underbrace{-\frac{a^n}{b^n}}_{n \text{ fois}}$$

$$\bullet$$
 $\left(\frac{1}{2}\right)^4 = \frac{1}{2^4} = \frac{1}{16}$

$$\bullet \ \left(\frac{-1}{2}\right)^5 = -\frac{1}{2^5} = -\frac{1}{32}$$

Proposition

Pour tout réel a, et tout entier n et p,

•
$$a^n \times a^p = a^{n+p}$$

$$\bullet (a^n)^p = a^{np}$$

$$\bullet \ \frac{1}{a^n} = a^{-n}$$

$$\bullet \ \ \frac{a}{a^p} = a^{n-1}$$

Proposition

Pour tout réel a, et tout entier n et p,

•
$$a^n \times a^p = a^{n+p}$$

$$\bullet (a^n)^p = a^{np}$$

$$\bullet \ \frac{1}{a^n} = a^{-n}$$

$$\bullet \ \frac{a^n}{a^p} = a^{n-1}$$

•
$$10^{-2} \times 10^4$$

•
$$(2^3)^2$$

•
$$\frac{6^{21}}{6^{20}}$$

Proposition

Pour tout réel a, et tout entier n et p,

•
$$a^n \times a^p = a^{n+p}$$

$$\bullet (a^n)^p = a^{np}$$

•
$$\frac{1}{a^n} = a^{-n}$$

$$\bullet \ \frac{a^n}{a^p} = a^{n-1}$$

•
$$1^{569} = 1$$

•
$$10^{-2} \times 10^4$$

•
$$(2^3)^2$$

•
$$\frac{6^{21}}{6^{20}}$$

Proposition

Pour tout réel a, et tout entier n et p,

•
$$a^n \times a^p = a^{n+p}$$

$$\bullet (a^n)^p = a^{np}$$

•
$$\frac{1}{a^n} = a^{-n}$$

$$-\frac{a^n}{a^p} = a^{n-1}$$

•
$$1^{569} = 1$$

•
$$0^{223} = 0$$

•
$$10^{-2} \times 10^4$$

•
$$(2^3)^2$$

•
$$\frac{6^{21}}{6^{20}}$$

Proposition

Pour tout réel a, et tout entier n et p,

•
$$a^n \times a^p = a^{n+p}$$

$$\bullet (a^n)^p = a^{np}$$

•
$$\frac{1}{a^n} = a^{-n}$$

$$\bullet \ \frac{a^{n}}{a^{p}} = a^{n-1}$$

•
$$1^{569} = 1$$

•
$$0^{223} = 0$$

•
$$10^{-2} \times 10^4 = 10^2 = 100$$

•
$$(2^3)^2$$

•
$$\frac{6^{21}}{6^{20}}$$

Proposition

Pour tout réel a, et tout entier n et p,

•
$$a^n \times a^p = a^{n+p}$$

•
$$(a^n)^p = a^{np}$$

$$\bullet \ \frac{1}{a^n} = a^{-n}$$

$$\bullet \ \frac{a^{n}}{a^{p}} = a^{n-}$$

•
$$1^{569} = 1$$

•
$$0^{223} = 0$$

•
$$10^{-2} \times 10^4 = 10^2 = 100$$

•
$$(2^3)^2 = 2^6$$

•
$$\frac{6^{-2}}{6^{20}}$$

Proposition

Pour tout réel a, et tout entier n et p,

•
$$a^n \times a^p = a^{n+p}$$

$$\bullet (a^n)^p = a^{np}$$

•
$$\frac{1}{a^n} = a^{-n}$$

$$\bullet \ \frac{a^{n}}{a^{p}} = a^{n-}$$

•
$$1^{569} = 1$$

•
$$0^{223} = 0$$

•
$$10^{-2} \times 10^4 = 10^2 = 100$$

•
$$(2^3)^2 = 2^6$$

$$\bullet \ \frac{6^{21}}{6^{20}} = 6$$

Priorités des opérations

Règles de priorité

- Les calculs entre parenthèses sont prioritaires sur tout le reste.
- La multiplication et la division sont prioritaires sur l'addition et la soustraction.
- Les puissances sont prioritaires sur les multiplications.

Priorités des opérations

Règles de priorité

- Les calculs entre parenthèses sont prioritaires sur tout le reste.
- La multiplication et la division sont prioritaires sur l'addition et la soustraction.
- Les puissances sont prioritaires sur les multiplications.

#common mistake

MathPedia

95% people will get this the wrong

$$6 \div 2(2+1)=?$$
1 or 9?

Subscribe my channel and stay connected

Développer et réduire

Définition

Développer une expression signifie l'écrire sous la forme d'une somme.

Pour développer une expression, on utilise la distributivité de la multiplication sur l'addition.

Développer et réduire

Définition

Développer une expression signifie l'écrire sous la forme d'une somme.

Pour développer une expression, on utilise la distributivité de la multiplication sur l'addition.

Exemple : Développer et réduire l'expression suivante

$$(2x+4)(6-x)$$

Factoriser

Définition

Factoriser une expression signifie l'écrire sous la forme d'un produit.

Factoriser

Définition

Factoriser une expression signifie l'écrire sous la forme d'un produit.

Exemple: Factoriser l'expression suivante

$$a(x) = -2x^2 + 8x + 24$$

Factoriser

Définition

Factoriser une expression signifie l'écrire sous la forme d'un produit.

Exemple: Factoriser l'expression suivante

$$a(x) = -2x^2 + 8x + 24$$

(2x + 4)(6 - x) est une forme factorisée de a(x). $-2x^2 + 8x + 24$ est la forme développée de a(x).

Identités remarquables

Identités remarquables

Soient a et b deux réels, alors

- $(a+b)^2 = a^2+2ab+b^2$;
- $(a-b)^2 = a^2 2ab + b^2$;
- $(a-b)(a+b) = a^2-b^2$.

On peut les utiliser pour factoriser des expressions.