Defitnition

Let V be a vector space. A *subspace* of V is a subset $W \subseteq V$ such that

- 1) $0 \in W$
- 2) if $\mathbf{u}, \mathbf{v} \in W$ then $\mathbf{u} + \mathbf{v} \in W$
- 3) if $\mathbf{u} \in W$ and $c \in \mathbb{R}$ then $c\mathbf{u} \in W$.

Example.

Recall: \mathbb{P} = the vector space of all polynomials.

Take
$$\mathbb{P}_n = \{\text{the set af polynomials of degree} \le n \}$$
 $\mathbb{P}_n \text{ is a subspace of } \mathbb{P}.$

Note:

Let $S_3 = \{\text{the set of polynomials of degree equal to } 3\}$
 $S_3 \text{ is not a subspace of } \mathbb{P}.$

E.g.: $p(t) = 7 + t - 2t^2 + 3t^3$ polynomials in S_3 $q(t) = 5 - 4t + 2t^2 - 3t^3$ polynomials in S_3 $p(t) + q(t) = 12 - 3t$ $\{\text{constant} \ \text{polynomial of degree} \ 1, \text{ not in } S_3.$

Proposition

Let V be a vector space and $W \subseteq V$ is a subspace then W is itself a vector space.

Example.

Recall: $\mathcal{F}(\mathbb{R})$ = the vector space of all functions $f: \mathbb{R} \to \mathbb{R}$

Some interesting subspaces of $\mathcal{F}(\mathbb{R})$:

- 1) $C(\mathbb{R})$ = the subspace of all continuous functions $f: \mathbb{R} \to \mathbb{R}$
- 2) $C^n(\mathbb{R}) = \text{the subspace of all functions } f \colon \mathbb{R} \to \mathbb{R} \text{ that are differentiable } n \text{ or more times.}$
- 3) $C^{\infty}(\mathbb{R}) = \text{the subspace of all smooth functions } f: \mathbb{R} \to \mathbb{R}$ (i.e. functions that have derivatives of all orders: f', f'', f''', . . .).

Note:
Let
$$S = \{ \text{the set of all functions } f: \mathbb{R} \to \mathbb{R} \}$$

S is not a subspace of $f(t) \ge 0$ for all $t \in \mathbb{R}$
S is not a subspace of $f(\mathbb{R})$.
E.g.: Take $f(t) = t^2$, then $f(t) \in S$
but $(-2) \cdot f(t) = -2t^2$ is not in S .

Note. If V is a vector space then:

- 1) the biggest subspace of V is V itself;
- 2) the smallest subspace of V is the subspace $\{0\}$ consisting of the zero vector only;
- if a subspace of V contains a non-zero vector, then it contains infinitely many vectors.

Indeed: If W is a subspace of V and $u \in W$, $u \neq 0$ then for any $c \in \mathbb{R}$ we have $cu \in W$ and $c_1u \neq c_2u$ for $c_1 \neq c_2$.