Elementi di Topologia Algebrica - 2024/25 Esercizi - Gruppo 2 - 12/11/2024

da consegnare entro la fine di giovedì 22 novembre 2024

- (1) Sia X un grafo finito connesso. Diciamo che X è un albero se per qualsiasi punto P interno ad un lato di X si ha che $X \setminus \{P\}$ è sconnesso.
 - (a) Mostrare per induzione che ogni grafo connesso X contiene un sottografo T con lo stesso insieme di vertici che è un albero.
 - (b) Mostrare che un albero è contraibile.
 - (c) Mostrare che X/T è un'unione di circonferenze con un punto in comune (un bouquet di S^1) e $H_i(X) \simeq H_i(X/T)$ per ogni i.
 - (d) Calcolare la caratteristica di Eulero di un albero.
 - (e) Calcolare i gruppi di omologia di X/T in funzione della caratteristica di Eulero di X.
- (2) Sia $f_{\sigma}: D_{\sigma}^{n} \to K^{(n)}$ la mappa di incollamento di una n-cella. Definiamo inoltre il quoziente $S_{\sigma}^{n} = K^{(n)}/(K^{(n)} \setminus f_{\sigma}(\mathring{D}_{\sigma}^{n}))$ e sia $p_{\sigma}: K^{(n)} \to S_{\sigma}^{n}$ la mappa di proiezione al quoziente.
 - (a) Mostrare che l'omomorfismo indotto dalla composizione $(p_{\sigma} \circ f_{\sigma})_* : H_n(D_{\sigma}^n, \partial D_{\sigma}^n) \to \widetilde{H}_n(S_{\sigma}^n)$ è un isomorfismo.
 - (b) Mostrare che per due *n*-celle distinte $\tau \neq \sigma$ la composizione $(p_{\sigma} \circ f_{\tau})_*$ è la mappa nulla.
- (3) Sia X un CW-complesso con struttura cellulare $K = \{K^n\}_{n \in \mathbb{N}}$ e sia $Y \subset X$ un sottocomplesso.
 - (a) Mostrare che $H_i(K^n \cup Y, K^{n-1} \cup Y)$ è un gruppo abeliano libero, non banale solo per i = n, di rango pari al numero di n-celle di X che non intersecano Y.
 - (b) Mostrare che $H_i(X, K^n \cup Y)$ è nullo per $i \leq n$ e che $H_i(K^n \cup Y, Y) \to H_i(X, Y)$ è un isomorfismo per i < n (sugg.: usare la successione esatta della tripla $(X, K^n \cup Y, Y)$.)
 - (c) Usare i gruppi $H_n(K^n \cup Y, K^{n-1} \cup Y)$ per definire un complesso cellulare relativo $C_{\bullet}(K, Y)$ analogo al complesso cellulare $C_{\bullet}(K)$ costruito a lezione e mostrare che vale l'isomorfismo

$$H_i(C_{\bullet}(K,Y)) \simeq H_i(X,Y).$$

Definizione: Sia data una mappa continua $f: X \to Y$ tra spazi topologici.

- (a) Consideriamo la relazione di equivalenza \sim in $X \times I \sqcup Y$ che identifica $(x, 1) \sim f(x)$ per ogni $x \in X$. Lo spazio quoziente $M_f := (X \times I \sqcup Y) / \sim$ è detto mapping cylinder di f.
- (b) Consideriamo ora la relazione di equivalenza \sim in $X \times I \sqcup Y$ che identifica $(x,1) \sim f(x)$ per ogni $x \in X$ e $(x,0) \sim (y,0)$ per ogni $x,y \in X$. Lo spazio quoziente $C_f := (X \times I \sqcup Y) / \sim$ è detto mapping cone di f.
- (4) Sia $f: X \to Y$ una mappa continua tra spazi topologici.
 - (a) Sia $\iota:X\to M_f$ l'inclusione $\iota:x\mapsto (x,0)$. Costruire un'equivalenza omotopica $p:M_f\to Y$ tale che $p\circ\iota=f$.
 - (b) Mostrare che esiste una successione esatta lunga di gruppi

$$\cdots \widetilde{H}_n(X) \stackrel{f_*}{\to} \widetilde{H}_n(Y) \to \widetilde{H}_n(C_f) \to \widetilde{H}_{n-1}(X) \to \cdots$$