



Universidade Federal de Pernambuco Centro de Informática

# Cálculo Numérico (IF215)

Profa. Maíra Santana





# Categorias dos métodos

- 1. Métodos de quebra:
  - Bisseção;
  - Falsa posição (cordas).
- 2. Métodos de ponto fixo:
  - Método Iterativo Linear (MIL);
  - Método de Newton;
  - · Método das secantes.





## Método Iterativo Linear (MIL)

#### Passos do MIL:

- Parte de um intervalo de separação  $I=[a\;;b]$  de uma raiz  $\xi$  da função f(x), com valor inicial  $x_0$  preestabelecido;
- II. Define  $\varphi(x)$  de maneira que  $\varphi(x) = x$  e sua derivada  $\varphi'(x)$ . Verifica se ambas são contínuas em I e se  $|\varphi'(x)| < 1$ ,  $\forall x \in I$ . \*Caso as condições suficientes do item III forem atendidas (Teorema), podemos aplicar o MIL;
- III. Calculamos sucessivos valores de  $x_i$  a partir de  $x_{i+1} = \varphi(x_i)$  até que as condições de parada sejam satisfeitas.

É indispensável avaliar a convergência antes de aplicar o método!





## Método de Newton

- Nem sempre é simples definir uma função de iteração  $\varphi(x)$  que satisfaça as condições de convergência;
- Método de Newton, Newton-Raphson ou Tangentes:
  - Fornece uma função de iteração que satisfaça antecipadamente as condições de convergência.
  - Objetivo: construir  $\varphi$  tal que  $\varphi'(\xi) = 0$ .

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

Processo iterativo:

$$\varphi(x_i) = x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
,  $i = 0, 1, 2, ...$ 





### Método de Newton

(interpretação geométrica)



• No triângulo  $x^{(2)}x^{(1)}A$ :

$$tg(\alpha) = \frac{f(x^{(1)})}{(x^{(1)} - x^{(2)})}$$
$$x^{(2)} = x^{(1)} - \frac{f(x^{(1)})}{f'(x^{(1)})}$$

Método das tangentes:

$$\varphi(x_i) = x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
,  $i = 0, 1, 2, ...$ 





## Método de Newton





#### Exemplo 1.2:

Determinar, usando o Método de Newton, o valor aproximado da menor raiz real positiva da função  $f(x) = x \ln(x) - 1$ .

• Do exemplo anterior (MIL) temos que:

• 
$$\xi \in [1,7;1,8] = I$$

• 
$$x_0 = 1,75$$
.

$$f(x) = x ln(x) - 1$$

$$\frac{df(x)}{dx} = \frac{d}{dx}(xln(x)) - \frac{d}{dx}(1)$$

$$f'(x) = (\ln(x) + 1) - (0)$$

$$f'(x) = \ln(x) + 1$$

| i | $x_i$    |  |
|---|----------|--|
| 0 | 1,75     |  |
| 1 | 1,763255 |  |
| 2 | 1,763223 |  |





## Método das Secantes

- Quando a primeira derivada da função fica muito próxima de zero no intervalo de separação pode haver overflow quando utilizamos o método de Newton:
  - A derivada está no **denominador**:  $\varphi(x) = x \frac{f(x)}{f'(x)}$
- Uma alternativa é **substituir**  $f'(x_i)$  por:

$$\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

• Processo iterativo:

$$\varphi(x_i) = x_{i+1} = \frac{x_{i-1}f(x_i) - x_if(x_{i-1})}{f(x_i) - f(x_{i-1})}$$
,  $i = 1, 2, 3, ...$ 





## Método das Secantes

(interpretação geométrica)



- Na região hachurada:
  - $x^{(3)}$  é a interseção da reta definida pelos pontos  $\left(x^{(1)}, f(x^{(1)})\right)$  e  $\left(x^{(2)}, f(x^{(2)})\right)$ ;
  - Equivale a trocarmos a **tangente** da função f por uma **secante** a essa função.
- Processo iterativo:

$$\varphi(x_i) = x_{i+1} = \frac{x_{i-1}f(x_i) - x_if(x_{i-1})}{f(x_i) - f(x_{i-1})}$$
,  $i = 1, 2, 3, ...$ 





# $\varphi(x_i) = x_{i+1} = \frac{x_{i-1}f(x_i) - x_if(x_{i-1})}{f(x_i) - f(x_{i-1})}$

#### Exemplo 1.3:

Determinar, usando o método das secantes, o valor aproximado da menor raiz real positiva da função  $f(x) = x \ln(x) - 1$ .

#### Método das Secantes

• 
$$\xi \in [1,7;1,8] = I$$

• Como aproximação inicial são utilizados os extremos de I:  $x_{i-1} = 1.8$  e  $x_i = 1.7$ 

| i | $x_{i+1}$ |
|---|-----------|
| 1 | 1,762798  |
| 2 | 1,763228  |
| 3 | 1,763223  |





#### Exercícios

#### Exercícios propostos:

- Determine, usando o MIL, o valor aproximado da menor raiz real positiva da função  $f(x) = x^2 + x 6$ .
  - Dica: lembre-se que assumindo  $\varphi(x) = x = 6 x^2$  a solução **diverge**.
- 2. Dada a função  $f(x) = x^6 x 1$ , determine, pelo método de Newton, o valor aproximado da menor raiz real positiva da função. Considere  $x_0 = 1.5$ . Como critérios de parada, assuma  $|x_{i+1} x_i| \le \zeta$  com  $\zeta = 10^{-4}$  (erro absoluto) e número máximo de iterações igual a 100.
- 3. Dada a função  $f(x) = e^x 2x 1$ , determine, pelo método das secantes, o valor aproximado da menor raiz real positiva da função para o intervalo I = [1; 2]. Assuma  $|x_{i+1} x_i| \le \zeta$  com  $\zeta = 10^{-4}$  (erro absoluto).





#### Referências

• Métodos Numéricos. José Dias dos Santos e Zanoni Carvalho da Silva. (capítulo 2);

Cálculo Numérico – aspectos teóricos e computacionais.
Márcia A. Gomes Ruggiero e Vera Lúcia da Rocha Lopes.
(capítulo 2).