Théorème de Riesz:

I Le développement

Le but de ce développement est de démontrer le théorème de Riesz qui est une caractérisation de la dimension finie grâce à la compacité de la boule unité.

Dans tout ce développement, on considère $(E, \|\cdot\|)$ un \mathbb{K} -espace vectoriel normé.

Théorème 1 : [Deschamps, p.301]

Si E est de dimension finie, alors les parties compactes de E sont exactement ses parties fermées bornées.

Preuve:

* Soit A une partie fermée et bornée de $(E, \|\cdot\|)$.

D'après le théorème de Bolzano-Weierstrass, toute suite à valeurs dans A admet au moins une valeur d'adhérence qui appartient à A (car A est fermée). Donc A est une partie compacte.

- * Réciproquement, raisonnons par contraposée :
- Si A n'est pas une partie fermée de $(E, \|\cdot\|)$, alors on peut trouver une suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge mais dont la limite n'appartient pas à A. Or, l'unique valeur d'adhérence d'une suite convergente étant sa limite, la suite $(a_n)_{n\in\mathbb{N}}$ ne possède pas de valeur d'adhérence dans A et ainsi A n'est pas compacte.
- Si A n'est pas bornée, alors :

$$\forall M \in \mathbb{R}, \ \exists a \in A \ \mathrm{tq} \ \|a\| > M$$

En particulier, pour tout $n \in \mathbb{N}$, on peut trouver un élément $a_n \in A$ tel que $||a_n|| \geq n$. On construit ainsi une suite $(a_n)_{n \in \mathbb{N}}$ d'éléments de A vérifiant :

$$\forall n \in \mathbb{N}, \ \|a_n\| \ge n$$

Une telle suite ne peut admettre de sous-suite convergente. En effet, si $(a_{\varphi(n)})_{n\in\mathbb{N}}$ est une sous-suite de $(a_n)_{n\in\mathbb{N}}$, alors :

$$\forall n \in \mathbb{N}, \ \|a_{\varphi(n)}\| \ge \varphi(n) \ge n$$

La sous-suite $(a_{\varphi(n)})_{n\in\mathbb{N}}$ n'est donc pas bornée, elle est donc divergente et ainsi n'admet aucune valeur d'adhérence et donc A n'est pas compact.

Finalement, on a montré par contraposée que si A est compact, alors elle est fermée et bornée.

On a ainsi démontrée l'équivalence voulue.

Remarque 2: [Deschamps, p.292]

Le résultat est faux en dimension infinie!

En effet, dans $(\mathbb{R}[X], \|\cdot\|_{\infty})$, on peut considérer la suite $(X^n)_{n\in\mathbb{N}}$ qui est incluse dans la boule unité fermée mais qui est 1-écartée, donc ne peut pas admettre de sous-suite convergente.

Cependant, l'espace précédent est de dimension infinie mais non complet... Il est possible qu'il y ait une réciproque dans le cas des espaces de Hilbert car ceux-ci possèdent de très bonnes propriétés qui "copient" celles sur les espaces vectoriels normés de dimension finie, mais il n'en est rien... En effet, si l'on considère l'espace de Hilbert $(\ell_{\mathbb{N}}^2, \|\cdot\|_2)$ et la base canonique $(e_n)_{n\in\mathbb{N}}$ alors on a $\|e_n-e_p\|_2=\sqrt{2}$ et donc la boule unité de cet espace n'est pas complète pour les même raisons que précédemment.

On remarque donc qu'il semble y avoir un lien profond entre la dimension finie et la caractérisation des compacts : c'est ce que nous allons essayer de mettre en lumière dans la fin du développement.

Lemme 3 : Lemme de Riesz [Hassan, p.343] :

Soit M un sous-espace vectoriel fermé strict de E.

On a la propriété suivante :

$$\forall \varepsilon > 0, \ \exists u \in E \ \mathrm{tq} \ \|u\| = 1 \ \mathrm{et} \ d(u, M) \ge 1 - \varepsilon$$

Preuve:

Soit M un sous-espace vectoriel fermé strict de E.

Soit $\varepsilon > 0$.

On cherche $u \in E$ tel que ||u|| = 1 et $d(u, M) \ge 1 - \varepsilon$.

Prenons $v \in E \setminus M$ (existe car $M \subsetneq E$). Comme M est fermé, il existe r > 0 tel que $\mathcal{B}_o(v,r) \cap M = \emptyset$ et en particulier, $d(v,M) = d \geq r > 0$.

Il existe $m_0 \in M$ tel que $d \leq ||v - m_0|| \leq \frac{d}{1 - \varepsilon}$ par définition de d.

On a alors
$$u = \frac{1}{\|v - m_0\|} (v - m_0) \in E$$
 et $\|u\| = 1$.

De plus, pour tout $m \in M$, on a :

$$u - m = \frac{1}{\|v - m_0\|} (v - m_0) - m = \frac{1}{\|v - m_0\|} (v - (m_0 + \|v - m_0\| m))$$
$$= \frac{1}{\|v - m_0\|} (v - m_1) \text{ où } m_1 = m_0 + \|v - m_0\| m \in M$$

D'où:

$$||u - m|| = \frac{||v - m_1||}{||v - m_0||} \ge d \times \frac{1 - \varepsilon}{d} \ge 1 - \varepsilon$$

On a donc obtenu le résultat.

Théorème 4 : Théorème de Riesz [Hassan, p.343] :

Les assertions suivantes sont équivalentes :

- *E est de dimension finie.
- * La boule unité fermée $\mathcal{B}_f(0,1)$ de $(E,\|\cdot\|)$ est compacte.

Preuve:

* Si E est de dimension finie, alors la boule unité fermée $\mathcal{B}_f(0,1)$ de $(E, \|\cdot\|)$ est compacte par le théorème précédent.

* Raisonnons par contraposée :

Supposons que E est de dimension infinie.

On peut alors construire des sous-espaces vectoriels stricts E_n de E tels que pour tout $n \in \mathbb{N}, E_n \subsetneq E_{n+1}$.

On peut alors appliquer le lemme de Riesz avec $\varepsilon = \frac{1}{2}$, $E = E_{n+1}$ et $M = E_n$. Pour tout $n \in \mathbb{N}$, on peut donc construire $u_n \in E_{n+1} \setminus E_n$ tel que $||u_n|| = 1$ et $d(u_n, E_n) \ge \frac{1}{2}$.

La suite $(u_n)_{n\in\mathbb{N}}$ est alors $\frac{1}{2}$ -écartée (en effet, pour tous entiers naturels $n\geq m$, on a $||u_n-u_m||\geq d(u_n,E_n)\geq \frac{1}{2}$), donc elle ne peut pas admettre de sous-suite convergente et ainsi $\mathcal{B}_f(0,1)$ n'est pas compacte.

Finalement, on a donc démontré le théorème de Riesz.

II Remarques sur le développement

Le théorème de Riesz est donc une caractérisation de la dimension finie par la compacité de la boule unité. Ce théorème permet également de constater à nouveau que les fermés bornés ne sont compacts en général qu'en dimension finie. En effet, on peut s'en convaincre avec un autre exemple : dans $(c_0, \|\cdot\|_{\infty})$, on peut considérer la base canonique $(e_n)_{n\in\mathbb{N}}$ et voir qu'elle est également incluse dans la boule unité fermée mais qui est 1-écartée, donc ne peut pas admettre de sous-suite convergente.

II.1 Résultat(s) utilisé(s)

Dans ce développement, on a utilisé dans le premier théorème le théorème de Bolzano-Weierstrass :

Théorème 5 : Théorème de Bolzano-Weierstrass [Deschamps, p.301]

Dans un espace vectoriel de dimension finie, toute suite bornée possède au moins une valeur d'adhérence (c'est-à-dire qu'elle admet au moins une sous-suite convergente).

Ce résultat est propre à la dimension finie car repose sur l'utilisation des suites coordonnées et donc de bases.

II.2 Recasages

Recasages: 148 - 203 - 206 - 208.

III Bibliographie

- Claude Deschamps, Tout-en-un MP/MP*.
- Nawfal El Hage Hassan, Topologie générale et espaces normés.