Imperfect Competition and Rents in Labor and Product Markets: The Case of the Construction Industry

Kory Kroft, Yao Luo, Magne Mogstad, Bradley Setzler

Penn State – April 2022

Disclaimer: The opinions expressed here are those of the authors alone and do not reflect the views of the Internal Revenue Service or the U.S. Treasury Department.

Motivation

Our primary goal is to quantify the importance of imperfect competition in the U.S. construction industry by estimating the size and sharing of rents between firms and workers.

Motivation

Our primary goal is to quantify the importance of imperfect competition in the U.S. construction industry by estimating the size and sharing of rents between firms and workers.

To measure rents and understand its sources, we take into account imperfect competition in two markets:

- Labor market: firms may markdown wages below MRPL.
- Product market: firms may markup prices above MC.
- Interactions: impacts of labor market power depend on degree of product market power, and vice versa.

Motivation

Our primary goal is to quantify the importance of imperfect competition in the U.S. construction industry by estimating the size and sharing of rents between firms and workers.

To measure rents and understand its sources, we take into account imperfect competition in two markets:

- Labor market: firms may markdown wages below MRPL.
- Product market: firms may markup prices above MC.
- Interactions: impacts of labor market power depend on degree of product market power, and vice versa.

Empirical context: We link the universe of U.S. **firm** and **worker** tax returns with records we collected from **procurement auctions**.

This Paper (1/2)

Framework for jointly analyzing labor and product market power.

- **Distinguish** supply and demand factors in both markets.
- **Closed-form** identification of all model parameters.
- Measures of rents and incidence of procurement.
- **Counterfactual** changes to power in either market.

This Paper (1/2)

Framework for jointly analyzing labor and product market power.

- **Distinguish** supply and demand factors in both markets.
- **Closed-form** identification of all model parameters.
- Measures of rents and incidence of procurement.
- **Counterfactual** changes to power in either market.

Identify labor supply elasticity:

- Challenge: Firm-specific labor supply shocks.
- **Approach:** Leverage institutional features of the **auction**.
- **Preview:** Labor supply elasticity \approx 4, wage markdown 20%.

This Paper (1/2)

Framework for jointly analyzing labor and product market power.

- **Distinguish** supply and demand factors in both markets.
- **Closed-form** identification of all model parameters.
- Measures of rents and incidence of procurement.
- **Counterfactual** changes to power in either market.

Identify labor supply elasticity:

- Challenge: Firm-specific labor supply shocks.
- **Approach:** Leverage institutional features of the **auction**.
- **Preview:** Labor supply elasticity \approx 4, wage markdown 20%.

Identify returns to labor and product demand elasticities:

- **Challenge:** Firm-specific productivity shocks.
- Approach: Invert the bidding strategy in the auction.
- **Preview:** technology \approx CRS, 16% price markup.

This Paper (2/2)

Model estimates:

- **Double markdown:** the usual wage markdown is 20%, rises to 31% when accounting for product market power.
- Rents: per capita, workers earn \$12k and firms capture \$43k.
- Rent heterogeneity: higher TFP \implies lower rent-share.
- **Incidence:** per capita, **procurement** contract generates rents of \$6k for workers and \$9k for firms \implies **higher rent-share**.
- **Crowd-out:** a **procurement** contract leads to large increase in total output but reduction in private market output.

This Paper (2/2)

Model estimates:

- **Double markdown:** the usual wage markdown is 20%, rises to 31% when accounting for product market power.
- Rents: per capita, workers earn \$12k and firms capture \$43k.
- Rent heterogeneity: higher TFP \implies lower rent-share.
- **Incidence:** per capita, **procurement** contract generates rents of \$6k for workers and \$9k for firms \implies **higher rent-share**.
- **Crowd-out:** a **procurement** contract leads to large increase in total output but reduction in private market output.

Model counterfactuals:

- Theoretical finding: impacts of labor market power are attenuated by existence of product market power.
- Intuition: Cut employment to exploit labor ⇒ less output means higher prices ⇒ mitigates incentive to cut.
- Quantitative finding: Reducing labor supply elasticity in half,
 - if the firm were a **price-taker**: 22% less employment
 - with product market power: 12% less employment

Related Literature

Wage inequality, imperfect competition, compensating differentials

Rosen 1986; Murphy and Topel 1990; Gibbons and Katz 1992; Abowd Lemieux 1993; Abowd et al 1999; Hamermesh 1999; Pierce 2001; Bhaskar et al 2002; Manning 2003, 2011; Mas and Pallais 2017; Wiswall and Zafar 2017; Card et al 2013, 2016, 2018; Maestas et al 2018; Caldwell Oehlsen 2018; Berger et al 2019; Jarosch et al 2019; Chan et al 2020; Bassier et al 2020; Hershbein et al 2020; Azar Berry Marinescu 2020; many more

Inferring monopsony from pass-through of firm-specific shocks

 van Reenen 1996; Kline et al 2019; Howell Brown 2020; Lamadon Mogstad Setzler 2022

Empirical designs for auctions

 Ferraz et al 2015; Lee 2017; Cho 2018; Hvide Meling 2019; Gugler et al 2020

Outline

- 1. Framework with Labor and Product Market Power
- 2. Data Sources
- 3. Recovering Key Model Parameters
- 4. Results from Estimated Model
- 5. Interactions between Labor and Product Market Power

Model

We develop a model with imperfect competition in both labor and product markets.

The model serves several purposes:

- Distinguish supply and demand factors in both markets.
- Closed-form identification of all model parameters.
- Measures of rents and incidence of procurement.
- Counterfactual changes to power in either market.

Model

We develop a model with imperfect competition in both labor and product markets.

The model serves several purposes:

- **Distinguish** supply and demand factors in both markets.
- **Closed-form** identification of all model parameters.
- Measures of rents and incidence of procurement.
- Counterfactual changes to power in either market.

Key equations provided by the model in **blue**, they will be:

- Labor supply curve
- Product demand curve
- Optimal intermediate inputs
- Optimal auction bid
- Rents expression

Labor Market

Preferences If employed by firm j at wage W_{jt} , worker i utility is

$$\mathcal{U}_{it}(j, W_{jt}) = \log W_{jt} + g_{jt} + \eta_{ijt}$$
 (1)

- g_{jt} is common, gives rise to *vertical* differentiation
- η_{iit} is idiosyncratic to worker *i*, gives *horizontal* differentiation
- Parameterize η_{iit} as T1EV with dispersion θ
- ullet Information asymmetry: firms don't see η_{ijt} for a given worker

Labor Market

Preferences If employed by firm j at wage W_{jt} , worker i utility is

$$\mathcal{U}_{it}(j, W_{jt}) = \log W_{jt} + g_{jt} + \eta_{ijt}$$
 (1)

- g_{jt} is common, gives rise to *vertical* differentiation
- η_{iit} is idiosyncratic to worker *i*, gives *horizontal* differentiation
- Parameterize η_{iit} as T1EV with dispersion θ
- ullet Information asymmetry: firms don't see η_{ijt} for a given worker

Firm-specific labor supply curve:

$$W_{jt} = L_{jt}^{\theta} U_{jt} \tag{2}$$

where $1/\theta$ is the LS elasticity and U_{jt} is the firm-specific amenity

• Strategically small: no firm can shift aggregate labor supply

Technology

Production Function Firms produce using labor L, capital K, and intermediate inputs M in the Ackerberg et al (2015) technology,

$$Q_{jt} = \min\{\Omega_{jt} L_{jt}^{\beta_L} K_{jt}^{\beta_K}, \beta_M M_{jt}\} \exp(e_{jt})$$
 (3)

where Ω_{jt} is TFP and e_{jt} is production error in output quantity

Technology

Production Function Firms produce using labor L, capital K, and intermediate inputs M in the Ackerberg et al (2015) technology,

$$Q_{jt} = \min\{\Omega_{jt} L_{jt}^{\beta_L} K_{jt}^{\beta_K}, \beta_M M_{jt}\} \exp(e_{jt})$$
 (3)

where Ω_{it} is TFP and e_{it} is production error in output quantity

Composite Production If capital market is perfect, simplifies to

$$Q_{jt} = \min\{\Phi_{jt} L_{jt}^{\rho}, \beta_M M_{jt}\} \exp(e_{jt})$$
 (4)

where ρ is composite labor returns and Φ_{jt} is composite TFP.

Technology

Production Function Firms produce using labor L, capital K, and intermediate inputs M in the Ackerberg et al (2015) technology,

$$Q_{jt} = \min\{\Omega_{jt} L_{jt}^{\beta_L} K_{jt}^{\beta_K}, \beta_M M_{jt}\} \exp(e_{jt})$$
 (3)

where Ω_{jt} is TFP and e_{jt} is production error in output quantity

Composite Production If capital market is perfect, simplifies to

$$Q_{jt} = \min\{\Phi_{jt}L_{jt}^{\rho}, \beta_M M_{jt}\} \exp(e_{jt})$$
 (4)

where ρ is composite labor returns and Φ_{jt} is composite TFP.

Optimal intermediate inputs Defining $X_{jt} \equiv p_M M_{jt}$, the Leontief FOC and competitive market for intermediate inputs gives,

$$X_{jt} = \frac{p_M}{\beta_M} L_{jt}^{\rho} \Phi_{jt} \tag{5}$$

Firm's Problem

Output Let G denote govt market and H denote private market. Denote output in G by Q_{it}^G and in H by Q_{it}^H

- First-stage: Firms bid to produce \bar{Q}^G , $D_{jt}=1$ if winner
- ullet Second-stage: Choose total output $Q_{jt}=ar{Q}^G D_{jt}+Q_{jt}^H$

Firm's Problem

Output Let G denote govt market and H denote private market. Denote output in G by Q_{it}^G and in H by Q_{it}^H

- First-stage: Firms bid to produce \bar{Q}^G , $D_{jt}=1$ if winner
- ullet Second-stage: Choose total output $Q_{jt}=ar{Q}^G D_{jt}+Q_{jt}^H$

Private Market Firms face downward-sloping demand,

$$P_{jt}^{H} = p_{H} \left(Q_{jt}^{H} \right)^{-\epsilon} \implies R_{jt}^{H} = P_{jt}^{H} Q_{jt}^{H} = p_{H} \left(Q_{jt}^{H} \right)^{1-\epsilon} \tag{6}$$

where $1/\epsilon$ is the price elasticity of demand

Firm's Problem

Output Let G denote govt market and H denote private market. Denote output in G by Q_{jt}^G and in H by Q_{jt}^H

- ullet First-stage: Firms bid to produce $ar{Q}^{G}$, $D_{jt}=1$ if winner
- ullet Second-stage: Choose total output $Q_{jt}=ar{Q}^G D_{jt}+Q_{jt}^H$

Private Market Firms face downward-sloping demand,

$$P_{jt}^{H} = p_{H} \left(Q_{jt}^{H} \right)^{-\epsilon} \implies R_{jt}^{H} = P_{jt}^{H} Q_{jt}^{H} = p_{H} \left(Q_{jt}^{H} \right)^{1-\epsilon} \tag{6}$$

where $1/\epsilon$ is the price elasticity of demand

Firm's Problem Given $Q_j \geq \bar{Q}^G d$ and auction outcome $D_j = d$,

$$\max_{L_{dit}, K_{dit}, M_{dit}} \pi_{djt}^{H} = R_{djt}^{H} - W_{djt} L_{djt} - p_{M} M_{djt} - p_{K} K_{djt}$$
 (7)

subject to the labor supply curve, the product demand curve, and the production function.

Government Market for Procurements

Opportunity Cost Given private market profits π_{djt}^H if $D_{jt} = d$,

$$\sigma_u(\phi_{jt}) = \pi_{0jt}^H - \pi_{1jt}^H > 0,$$
 (8)

Auction problem Firm j chooses optimal bid Z_{jt} that solves,

$$\max_{Z_{jt}} \underbrace{(Z_{jt} - \sigma_u(\phi_{jt}))}_{\text{payoff}} \times \underbrace{\Pr(D_{jt} = 1 | Z_{jt})}_{\text{probability of winning}}$$
(9)

Government Market for Procurements

Opportunity Cost Given private market profits π_{djt}^H if $D_{jt} = d$,

$$\sigma_u(\phi_{jt}) = \pi_{0jt}^H - \pi_{1jt}^H > 0,$$
 (8)

Auction problem Firm j chooses optimal bid Z_{jt} that solves,

$$\max_{Z_{jt}} \underbrace{(Z_{jt} - \sigma_u(\phi_{jt}))}_{\text{payoff}} \times \underbrace{\Pr(D_{jt} = 1 | Z_{jt})}_{\text{probability of winning}}$$
(9)

Optimal bid Unique symmetric equilibrium is defined by,

$$s_{u}\left(\phi_{jt}\right) = \sigma_{u}\left(\phi_{jt}\right) \delta_{u}\left(\phi_{jt}\right), \ \delta_{u}\left(\phi_{jt}\right) \equiv 1 + \frac{\int_{\sigma_{u}\left(\phi_{jt}\right)}^{\bar{\sigma}} [1 - F_{u}(\tilde{\sigma})]^{l-1} d\tilde{\sigma}}{\sigma_{u}\left(\phi_{jt}\right) [1 - F_{u}\left(\sigma_{u}\left(\phi_{jt}\right)\right)]^{l-1}}$$

where I is number of bidders and δ is markup on opportunity cost

Defining Worker Rents

Notation Suppose firm j increases wage from W_{jt} to \widetilde{W}_{jt} , and denote worker i's preferred firm excluding j as j_t^*

Worker Rents The equivalent variation V_{ijt} for the wage change is

$$\max \left\{ \begin{array}{l} \log \widetilde{W}_{jt} + g_{jt} + \eta_{ijt}, \\ \log W_{j_t^*t} + g_{j_t^*t} + \eta_{ij_t^*t} \end{array} \right. = \max \left\{ \begin{array}{l} \log \left(W_{jt} + V_{ijt}\right) + g_{jt} + \eta_{ijt}, \\ \log \left(W_{j_t^*t} + V_{ijt}\right) + g_{j_t^*t} + \eta_{ij_t^*t} \end{array} \right.$$
utility with wage increase at firm j

Intuition: worker rent is willingness to pay to stay in current firm

Defining Worker Rents

Notation Suppose firm j increases wage from W_{jt} to \overline{W}_{jt} , and denote worker i's preferred firm excluding j as j_t^*

Worker Rents The equivalent variation V_{ijt} for the wage change is

$$\underbrace{\max \left\{ \begin{array}{l} \log \widetilde{W}_{jt} + g_{jt} + \eta_{ijt}, \\ \log W_{j_t^*t} + g_{j_t^*t} + \eta_{ij_t^*t} \end{array} \right.}_{ \text{utility with wage increase at firm } j } = \max \left\{ \begin{array}{l} \log \left(W_{jt} + V_{ijt}\right) + g_{jt} + \eta_{ijt}, \\ \log \left(W_{j_t^*t} + V_{ijt}\right) + g_{j_t^*t} + \eta_{ij_t^*t} \end{array} \right.$$

Intuition: worker rent is willingness to pay to stay in current firm

Sum of Worker Rents Using our functional form to simplify,

$$V_{jt} \equiv \sum_{i} V_{ijt} = \frac{B_{jt} - B_{jt}}{1 + 1/\theta} \tag{10}$$

where $\widetilde{B}_{jt} - B_{jt}$ is the change in wage bill and $1/\theta$ is LS elasticity

Rents and Incidence

Incidence of Procurements

$$\underbrace{V_{1jt}}_{\text{Total rents}} = \underbrace{V_{0jt}}_{\text{Baseline rents}} + \underbrace{V_{\Delta jt}}_{\text{Incidence}} = \underbrace{\frac{B_{0jt}}{1+1/\theta}}_{\text{Baseline rents}} + \underbrace{\frac{B_{1jt} - B_{0jt}}{1+1/\theta}}_{\text{Incidence}} \tag{11}$$

Incidence for Incumbents and New Hires

$$\underbrace{V_{\Delta jt}}_{\text{Incidence}} = \underbrace{L_{0jt} \left(W_{1jt} - W_{0jt}\right)}_{\text{Incidence for incumbents}} + \underbrace{W_{1jt} \left(L_{1jt} - L_{0jt}\right) - \frac{B_{1jt} - B_{0jt}}{1 + \theta}}_{\text{Incidence for new hires}}$$

Intuition: wage increase is pure rents for an incumbent

Rents and Incidence

Incidence of Procurements

$$\underbrace{V_{1jt}}_{\text{Total rents}} = \underbrace{V_{0jt}}_{\text{Baseline rents}} + \underbrace{V_{\Delta jt}}_{\text{Incidence}} = \underbrace{\frac{B_{0jt}}{1 + 1/\theta}}_{\text{Baseline rents}} + \underbrace{\frac{B_{1jt} - B_{0jt}}{1 + 1/\theta}}_{\text{Incidence}} \tag{11}$$

Incidence for Incumbents and New Hires

$$V_{\Delta jt} = \underbrace{L_{0jt} \left(W_{1jt} - W_{0jt}\right)}_{ ext{Incidence for incumbents}} + \underbrace{W_{1jt} \left(L_{1jt} - L_{0jt}\right) - \frac{B_{1jt} - B_{0jt}}{1 + \theta}}_{ ext{Incidence for new hires}}.$$

Intuition: wage increase is pure rents for an incumbent

Firm Rents

$$\underline{\pi_{1jt}} = \underline{\pi_{0jt}} + \underline{\pi_{\Delta jt}}$$
Total firm rents Baseline firm rents Incidence on firms

Outline

- 1. Framework with Labor and Product Market Power
- 2. Data Sources
- 3. Recovering Key Model Parameters
- 4. Results from Estimated Model
- 5. Interactions between Labor and Product Market Power

Data Sources (1/2)

US tax data 2001-15 universe of business and worker tax returns

Firms: Business tax returns include balance sheet and other information for C-corps, S-corps, and partnerships

- firm: tax entity (EIN)
- sales: gross receipts from business operations (not dividends)
- profits: EBITD (earnings before interest, taxes, deductions)
- intermediate inputs: COGS (cost of goods sold)
 - includes intermediate goods, transit costs, etc
 - excludes durables, overhead, labor costs, etc

Data Sources (1/2)

US tax data 2001-15 universe of business and worker tax returns

Firms: Business tax returns include balance sheet and other information for C-corps, S-corps, and partnerships

- firm: tax entity (EIN)
- sales: gross receipts from business operations (not dividends)
- profits: EBITD (earnings before interest, taxes, deductions)
- intermediate inputs: COGS (cost of goods sold)
 - includes intermediate goods, transit costs, etc
 - excludes durables, overhead, labor costs, etc

Workers: W-2 records on employment and total earnings

- **labor:** link workers to their highest-paying employer with earnings above FTE threshold, restrict to age 25-60
- contractors: also observe indep. contractors (Form 1099)

Data Sources (2/2)

Auction data Firm-auction records on bids and winners of department of transportation (DOT) procurement contracts

- state DOTs use auctions to procure construction and landscaping work on roads and bridges
- First-price sealed-bid auctions (output price = lowest bid), where we observe bid of each firm, not only the winner
- FOIA or webscraped from BidX.com & state-specific websites
- Cover more than 100,000 auctions by 28 state DOTs, including large states like California, Texas, and Florida
- No evidence of collusion test results

Data Sources (2/2)

Auction data Firm-auction records on bids and winners of department of transportation (DOT) procurement contracts

- state DOTs use auctions to procure construction and landscaping work on roads and bridges
- First-price sealed-bid auctions (output price = lowest bid), where we observe bid of each firm, not only the winner
- FOIA or webscraped from BidX.com & state-specific websites
- Cover more than 100,000 auctions by 28 state DOTs, including large states like California, Texas, and Florida
- No evidence of collusion test results

Final data Link tax returns to auction records by fuzzy matching on firm name and address

- Final data: **8,000** unique firms, **360,000** unique workers
- 6 states provide EIN, used for training algorithm & robustness

Descriptive Statistics for the Linked Sample

	Sample Size		Share of the Construction Sector
Number of Firms Workers per Firm	7,876 46		0.9% 11.7%
	Value Per Firm (\$ millions)	Mean of the Log	Share of the Construction Sector (%)
Sales	19.927	15.061	12.1%
EBITD	9.159	14.075	9.6%
Intermediate Costs	14.661	14.719	12.4%
Wage bill	2.737	13.549	13.4%

- Final sample: 8,000 unique firms, 360,000 unique workers
- Average firm has 46 employees and \$9M in profits

Outline

- 1. Framework with Labor and Product Market Power
- 2. Data Sources
- 3. Recovering Key Model Parameters
- 4. Results from Estimated Model
- 5. Interactions between Labor and Product Market Power

Recovering Key Model Parameters

Using the key equations provided by the model that were in **blue** above, we now identify and estimate:

- Labor supply elasticity (5 slides)
- Firm technology & product demand elasticities (4 slides)

Labor Supply Elasticity (1/5)

Goal: Identify the labor supply elasticity, $1/\theta$.

Model: Log inverse labor supply curve is,

$$w_{jt} = \theta \ell_{jt} + u_{jt} = \theta \ell_{jt} + \psi_j + \xi_t + \nu_{jt}$$
 (13)

Goal: Identify the labor supply elasticity, $1/\theta$.

Model: Log inverse labor supply curve is,

$$w_{jt} = \theta \ell_{jt} + u_{jt} = \theta \ell_{jt} + \psi_j + \xi_t + \nu_{jt}$$
 (13)

Easy to deal with:

- ullet Time-invariant firm-specific amenities ψ_j (take differences)
- Aggregate labor supply shocks $\Delta \xi_t$ (add year fixed effects)

$$\Delta w_{jt} = \theta \Delta \ell_{jt} + \Delta \xi_t + \Delta \nu_{jt} \tag{14}$$

Challenge: Regression of change in log wage on change in log employment biased for θ due to firm-specific amenity shock $\Delta \nu_{it}$

Sequence of Events within Time Period *t*

Assumption 1. $\Delta \nu_{jt}$ not in information set at "First Stage" of t when bid is placed in auction $\implies D_{jt} \perp \nu_{jt} | (\psi_j, \xi_t)$.

- Time delay assumptions are standard for identification in empirical IO (Ackerberg et al 2015; Gandhi et al 2020).
- Delay is between estimating labor cost (bidding at beginning of period t) and actually hiring labor (middle of period t)

Assumption 1. $\Delta \nu_{jt}$ not in information set at "First Stage" of t when bid is placed in auction $\implies D_{jt} \perp \nu_{jt} | (\psi_j, \xi_t)$.

- Time delay assumptions are standard for identification in empirical IO (Ackerberg et al 2015; Gandhi et al 2020).
- Delay is between estimating labor cost (bidding at beginning of period t) and actually hiring labor (middle of period t)

Proposition 1. θ is recovered by the IV estimator,

$$\theta_{\text{IV}} \equiv \frac{\text{Cov}\left[\Delta w_{jt}, D_{jt}\right]}{\text{Cov}\left[\Delta \ell_{jt}, D_{jt}\right]} \tag{15}$$

Important to emphasize what is **not** restricted by Assumption 1:

- no additional restrictions on joint dist of $(Z_{jt}, D_{jt}, \phi_{jt}, \psi_j, \xi_t)$.
- allows $Var(\Delta \nu_{it}) > 0$, clear step forward in this literature.
- allows $\Delta \ell_{jt}$, Δw_{jt} to depend on $\Delta \nu_{jt}$, no time delay here.

Sequence of Events within Time Period *t*

Alternative: Leverage auction structure to relax Assumption 1.

Alternative: Leverage auction structure to relax Assumption 1.

Loss margin: For a firm j that bids in auction ι at time t, define $\tau_{jt} \equiv \frac{Z_{jt} - Z_{\iota}^*}{Z_{\iota}^*}$, where Z_{ι}^* is the winning bid in auction ι .

Alternative: Leverage auction structure to relax Assumption 1.

Loss margin: For a firm j that bids in auction ι at time t, define $\tau_{jt} \equiv \frac{Z_{jt} - Z_{\iota}^*}{Z_{\iota}^*}$, where Z_{ι}^* is the winning bid in auction ι .

Intuition:

- First-price auctions \implies winning fully determined by bids Z_{jt} .
- Restrict sample to $\tau_{jt} \leq \overline{\tau}$. As $\overline{\tau} \to 0^+$, Z_{jt} of winners=losers.
- ullet Therefore, $\mathbb{E}[\Delta
 u_{jt}]$ of winners and losers converges as $\overline{ au}
 ightarrow 0^+$

Alternative: Leverage auction structure to relax Assumption 1.

Loss margin: For a firm j that bids in auction ι at time t, define $\tau_{jt} \equiv \frac{Z_{jt} - Z_{\iota}^*}{Z_{\iota}^*}$, where Z_{ι}^* is the winning bid in auction ι .

Intuition:

- First-price auctions \implies winning fully determined by bids Z_{jt} .
- Restrict sample to $\tau_{jt} \leq \overline{\tau}$. As $\overline{\tau} \to 0^+$, Z_{jt} of winners=losers.
- ullet Therefore, $\mathbb{E}[\Delta
 u_{jt}]$ of winners and losers converges as $\overline{ au} o 0^+$

Proposition 2: Define an IV estimator of the form,

$$\theta_{\overline{\tau}} \equiv \frac{\mathbb{E}\left[\Delta w_{jt} | \tau_{jt} = 0\right] - \mathbb{E}\left[\Delta w_{jt} | 0 < \tau_{jt} \leq \overline{\tau}\right]}{\mathbb{E}\left[\Delta \ell_{jt} | \tau_{jt} = 0\right] - \mathbb{E}\left[\Delta \ell_{jt} | 0 < \tau_{jt} \leq \overline{\tau}\right]}$$
(16)

where $\overline{\tau}$ is a proximity parameter and the conditioning on ι is implicit. Then, $\lim_{\overline{\tau}\to 0^+}\theta_{\overline{\tau}}=\theta$.

Results using multiplicity of approaches:

- Estimator of Proposition 1: $1/\theta = 4.1$, markdown = 0.80
- Estimator of Proposition 2: $1/\theta = 3.5$, markdown = 0.78
- Estimator of Lamadon Mogstad Setzler (2022) panel-IV for full construction sample: $1/\theta = 4.0$, markdown = 0.80

Results using multiplicity of approaches:

- Estimator of Proposition 1: $1/\theta = 4.1$, markdown = 0.80
- Estimator of Proposition 2: $1/\theta = 3.5$, markdown = 0.78
- Estimator of Lamadon Mogstad Setzler (2022) panel-IV for full construction sample: $1/\theta = 4.0$, markdown = 0.80

Sensitivity checks:

- Passes falsification test using IV on the pre-period outcomes
- No evidence of bias from slow adjustments over time
- No evidence of bias from worker composition changes
- No evidence of bias from local aggregate shocks
- Not sensitive to alternative choices of auction loser sample
- Not sensitive to right-to-work or prevailing wage law coverage
- Not sensitive to alternative parameterizations of Proposition 2
- Various checks using this sample and external BLS and Census wage surveys indicate wage effects not due to hours responses
- ... ▶ more

Goal: Identify the product demand elasticity, $1/\epsilon$.

Model: Private market log revenue curve is,

$$r_{jt}^{H} = \log p_{H} + (1 - \epsilon) q_{jt}^{H}$$
 (17)

However, output quantity Q_{it}^H is not observed in our data.

Goal: Identify the product demand elasticity, $1/\epsilon$.

Model: Private market log revenue curve is,

$$r_{jt}^{H} = \log p_H + (1 - \epsilon) q_{jt}^{H}$$

$$\tag{17}$$

However, output quantity Q_{it}^H is not observed in our data.

Leontief assumption: The Leontief production function implies $Q_{jt} \propto X_{jt}$ for intermediate input expenditures X_{jt} , so we can write

$$r_{jt} = \kappa_R + (1 - \epsilon) x_{jt} + (1 - \epsilon) e_{jt} \quad \text{if} \quad D_{jt} = 0$$
 (18)

Goal: Identify the product demand elasticity, $1/\epsilon$.

Model: Private market log revenue curve is,

$$r_{jt}^{H} = \log p_H + (1 - \epsilon) q_{jt}^{H}$$

$$\tag{17}$$

However, output quantity Q_{it}^H is not observed in our data.

Leontief assumption: The Leontief production function implies $Q_{jt} \propto X_{jt}$ for intermediate input expenditures X_{jt} , so we can write

$$r_{jt} = \kappa_R + (1 - \epsilon) x_{jt} + (1 - \epsilon) e_{jt} \quad \text{if} \quad D_{jt} = 0$$
 (18)

Timing of information: Ackerberg et al (2015) restriction that x is chosen before output shock e is realized (timeline on next slide)

Proposition 3:

$$e_{jt} \perp x_{jt} \implies \frac{\operatorname{Cov}\left[r_{jt}, x_{jt} \middle| D_{jt} = 0\right]}{\operatorname{Var}\left[x_{jt} \middle| D_{jt} = 0\right]} = 1 - \epsilon \tag{19}$$

Sequence of Events within Time Period *t*

Goal: Identify the composite returns to labor, ρ .

Model: Optimal intermediate inputs imply,

$$x_{jt} = \kappa_X + \rho \ell_{jt} + \phi_{jt} \tag{20}$$

Challenge: log TFP ϕ is a determinant of both log labor ℓ and log intermediate input expenditures x.

Goal: Identify the composite returns to labor, ρ .

Model: Optimal intermediate inputs imply,

$$x_{jt} = \kappa_X + \rho \ell_{jt} + \phi_{jt} \tag{20}$$

Challenge: log TFP ϕ is a determinant of both log labor ℓ and log intermediate input expenditures x.

"Invert the bidding strategy": Inverse equilibrium bidding strategy is $\phi_{jt} = s_{u_{jt}}^{-1}(Z_{jt})$, so TFP pinned down by (Z_{jt}, u_{jt}) .

Goal: Identify the composite returns to labor, ρ .

Model: Optimal intermediate inputs imply,

$$x_{jt} = \kappa_X + \rho \ell_{jt} + \phi_{jt} \tag{20}$$

Challenge: log TFP ϕ is a determinant of both log labor ℓ and log intermediate input expenditures x.

"Invert the bidding strategy": Inverse equilibrium bidding strategy is $\phi_{jt} = s_{u_{jt}}^{-1}(Z_{jt})$, so TFP pinned down by (Z_{jt}, u_{jt}) .

Recovering amenities: Given the estimate of the labor supply elasticity $\hat{\theta}$, we can recover amenities as $\hat{u}_{jt} = w_{jt} - \hat{\theta}l_{jt}$.

Goal: Identify the composite returns to labor, ρ .

Model: Optimal intermediate inputs imply,

$$x_{jt} = \kappa_X + \rho \ell_{jt} + \phi_{jt} \tag{20}$$

Challenge: log TFP ϕ is a determinant of both log labor ℓ and log intermediate input expenditures x.

"Invert the bidding strategy": Inverse equilibrium bidding strategy is $\phi_{jt} = s_{u_{jt}}^{-1}(Z_{jt})$, so TFP pinned down by (Z_{jt}, u_{jt}) .

Recovering amenities: Given the estimate of the labor supply elasticity $\widehat{\theta}$, we can recover amenities as $\widehat{u}_{jt} = w_{jt} - \widehat{\theta} l_{jt}$.

Proposition 4: Controlling for (Z_{jt}, u_{jt}) controls for ϕ_{jt} :

$$\frac{\operatorname{Cov}\left[x_{jt}, \ell_{jt} | \widehat{u}_{jt}, Z_{jt}\right]}{\operatorname{Var}\left[\ell_{jt} | \widehat{u}_{jt}, Z_{jt}\right]} = \frac{\operatorname{Cov}\left[x_{jt}, \ell_{jt} | \widehat{u}_{jt}, \phi_{jt}\right]}{\operatorname{Var}\left[\ell_{jt} | \widehat{u}_{jt}, \phi_{jt}\right]} = \rho \tag{21}$$

Two additional identifying moments:

• We extend the de Loecker Eeckhout Unger (2020) measure of inverse markups to incorporate labor market power ($\theta > 0$):

$$\underbrace{(1-\epsilon)}^{\text{markup}^{-1}} = \underbrace{\frac{(1+\theta)}{\beta_L}}^{\text{markdown}^{-1}} \underbrace{\frac{B_{jt}}{R_{jt}}} + \underbrace{\frac{X_{jt}}{R_{jt}}}$$
(22)

Two additional identifying moments:

• We extend the de Loecker Eeckhout Unger (2020) measure of inverse markups to incorporate labor market power ($\theta > 0$):

$$\underbrace{(1-\epsilon)}^{\text{markup}^{-1}} = \underbrace{\frac{(1+\theta)}{\beta_L}}^{\text{markdown}^{-1}} \frac{B_{jt}}{R_{jt}} + \frac{X_{jt}}{R_{jt}}$$
(22)

• First-order condition for auction winners: for any candidate parameters (ϵ, ρ, θ) , we can construct the left-hand and right-hand sides of the winner's FOC wrt labor:

$$\Lambda_{jt} = \kappa_{\Lambda} + \rho \ell_{jt} + \phi_{jt} + e_{jt} \quad \text{if} \quad D_{jt} = 1.$$
 (23)

where we can construct log TFP $\phi_{jt} = x_{jt} - \rho \ell_{jt}$ for any candidate ρ and Λ is a term we can construct.

Two additional identifying moments:

• We extend the de Loecker Eeckhout Unger (2020) measure of inverse markups to incorporate labor market power ($\theta > 0$):

$$\underbrace{\overbrace{(1-\epsilon)}^{\mathsf{markup}^{-1}}}_{\mathsf{markup}^{-1}} = \underbrace{\underbrace{(1+\theta)}_{\mathsf{markdown}^{-1}}}_{\mathsf{p}_{L}} \underbrace{B_{jt}}_{\mathsf{R}_{jt}} + \underbrace{X_{jt}}_{\mathsf{R}_{jt}} \tag{22}$$

• First-order condition for auction winners: for any candidate parameters (ϵ, ρ, θ) , we can construct the left-hand and right-hand sides of the winner's FOC wrt labor:

$$\Lambda_{jt} = \kappa_{\Lambda} + \rho \ell_{jt} + \phi_{jt} + e_{jt} \quad \text{if} \quad D_{jt} = 1.$$
 (23)

where we can construct log TFP $\phi_{jt} = x_{jt} - \rho \ell_{jt}$ for any candidate ρ and Λ is a term we can construct.

Over-identification: We combine these two moments with the key identifying moments for ϵ and ρ above, then estimate these 4 equations in 3 unknowns using GMM.

	Baseline Estimates using Over-identified GMM					
	Parameters	Data				
Private demand parameter	$1 - \epsilon$	0.863	(0.015)			
Composite labor scale parameter	ρ	1.089	(0.017)			
Returns to labor parameter	β_L	0.499	(0.192)			
	Alternative Estimates using Exactly-identified OLS					
	Parameters	Data				
Diminishing returns to output	$1-\epsilon$	0.863	(0.008)			
Optimal intermediate inputs	ρ	1.057	(0.015)			
Labor to value added ratio	β_L	0.514	(0.209)			

Product demand elasticity: We estimate $1/\epsilon = 7.3$, which gives a **price markup**, $(1/\epsilon)/(1/\epsilon - 1)$, that is 16% above marginal cost.

Composite returns to labor: We estimate $\rho = 1.09$, just above constant returns to scale (like Levinsohn and Petrin 2003).

	Baseline Estimates using Over-identified GMM					
	Parameters	Data				
Private demand parameter	$1 - \epsilon$	0.863	(0.015)			
Composite labor scale parameter	ρ	1.089	(0.017)			
Returns to labor parameter	β_L	0.499	(0.192)			
	Alternative Estimates using Exactly-identified OLS					
	Parameters	Data				
Diminishing returns to output	$1-\epsilon$	0.863	(0.008)			
Optimal intermediate inputs	ρ	1.057	(0.015)			
Labor to value added ratio	β_L	0.514	(0.209)			

Product demand elasticity: We estimate $1/\epsilon = 7.3$, which gives a **price markup**, $(1/\epsilon)/(1/\epsilon - 1)$, that is 16% above marginal cost.

Composite returns to labor: We estimate $\rho = 1.09$, just above **constant returns to scale** (like Levinsohn and Petrin 2003).

- Robust to using main identifying moments instead of GMM.
- Robust to Cobb-Douglas instead of Leontief prod function.
- Robust to relaxing the auction symmetry assumption.
- Robust to controlling for aggregate price shocks.

Outline

- 1. Framework with Labor and Product Market Power
- 2. Data Sources
- 3. Recovering Key Model Parameters
- 4. Results from Estimated Model
- 5. Interactions between Labor and Product Market Power

Results from Estimated Model (1/5): Double Markdown

$$W_{jt} = \overbrace{\frac{1}{1+ heta}}^{ extstyle extsty$$

A natural measure of monopsony power is the markdown

 We estimate a markdown of 0.80, so workers are paid 20% below the marginal revenue product of labor (MRPL)

Results from Estimated Model (1/5): Double Markdown

$$W_{jt} = \underbrace{\frac{1}{1+\theta}}_{\text{markdown}} \times \text{MRPL}_{jt} = \underbrace{\frac{\theta}{1+\theta}}_{\text{composite markdown}} \times \underbrace{\frac{1/\epsilon}{1/\epsilon-1}}_{\text{VMPL}} \times \underbrace{\frac{P_{jt} \times \text{MPL}_{jt}}{\text{VMPL}}}_{\text{VMPL}}$$

A natural measure of monopsony power is the markdown

- We estimate a markdown of 0.80, so workers are paid 20% below the marginal revenue product of labor (MRPL)
- But MRPL depends on product market power
- Special case w/o intermediate inputs: MRPL equals inverse markup times the value of the marginal product of labor (MPL) at fixed prices, so higher markup ⇒ lower wage
- We estimate a composite markdown of 0.69, so workers are paid 31% below VMPL, versus 20% if ignoring the markup

Results from Estimated Model (2/5): Baseline Rents

		Actual	Counterf.	Difference		
		d = 1	d = 0	Level	Relative	
Labo	Labor market					
L_{jt}	Employment $(\#)$	24.7	12.8	11.9	92.7%	
W_{jt}	Wage (\$1K)	59.1	50.4	8.8	17.4%	
B_{jt}	Wage bill (\$1K)	1,459.6	645.2	814.4	126.2%	
Ren	ts					
V_{jt}	Worker rents $(\$1K/L)$	11.6	5.1	6.5	126.2%	
π_{jt}	Firm profits $(\$1K/L)$	43.1	33.4	9.6	28.7%	

In the actual economy (d=1), per-capita worker rents $\frac{W}{1+1/\theta}$ are about \$12,000 per year, less than 1/4 of all rents.

Results from Estimated Model (3/5): Rents and TFP

Workers' share of rents is smaller at more productive firms.

Results from Estimated Model (4/5): Marginal Rents

		Actual	Counterf.	Difference	
		d = 1	d = 0	Level	Relative
Labor market					
L_{jt}	Employment (#)	24.7	12.8	11.9	92.7%
W_{jt}	Wage (\$1K)	59.1	50.4	8.8	17.4%
B_{jt}	Wage bill (\$1K)	$1,\!459.6$	645.2	814.4	126.2%
Rents					
V_{jt}	Worker rents $(\$1K/L)$	11.6	5.1	6.5	$\boldsymbol{126.2\%}$
π_{jt}	Firm profits $(\$1K/L)$	43.1	33.4	9.6	28.7%

We simulate winning versus losing an auction among winners.

Hiring to fulfill the government contract leads to bidding up wages, running up worker rents, with only a small increase in firm rents.

Results from Estimated Model (5/5): Output/Crowd-out

		Actual	Counterf.	Difference	
		d = 1	d = 0	Level	Relative
Input 1	Expenditures				
B_{it}	Wage bill (\$1K)	1,459.6	645.2	814.4	126.2%
\vec{X}_{it}	Intermediate inputs (\$1K)	4,715.1	2,308.6	$2,\!406.5$	104.2%
$p_K K_{jt}$	Capital rentals (\$1K)	1,724.7	762.4	962.3	126.2%
Total p	oroduction				
Q_{jt}	Output (#)	38.3	18.7	19.5	$\boldsymbol{104.2\%}$
R_{jt}	Revenue (\$1K)	8,962.1	4,541.6	$4,\!420.5$	$\boldsymbol{97.3\%}$
Private	e production				
Q_{it}^H	Output (#)	13.7	18.7	-5.1	-27.0%
$\begin{array}{c} Q_{jt}^H \\ R_{jt}^H \end{array}$	Revenue (\$1K)	3,460.7	4,541.6	-1,080.9	-23.8%

The government contract nearly doubles the firm's revenues.

However, it crowds out about 1/4 of private sector output.

Note that output declines more than revenues due to markups.

Outline

- 1. Framework with Labor and Product Market Power
- 2. Data Sources
- 3. Recovering Key Model Parameters
- 4. Results from Estimated Model
- 5. Interactions between Labor and Product Market Power

Theory: Impacts of Labor Market Power (1/3)

- No price-setting power ⇒ flat MRPL curve
- Labor market power: upward-sloping MCL
 - ullet Firm chooses L such that MRPL = MCL, W < MRPL

Theory: Impacts of Labor Market Power (2/3)

- No price-setting power ⇒ flat MRPL curve
- More labor market power \implies steeper MCL (red) \implies less employment, greater wage markdown

Theory: Impacts of Labor Market Power (3/3)

- Firm has price-setting power ⇒ downward-sloping MRPL
- Cut employment \implies cut output \implies higher output price \implies incentive not to cut employment as much

Model Simulation: Impacts of Labor Market Power (1/2)

Consider reducing LS elasticity $1/\theta$ in half

- ullet Simulate from estimated model, counterfactually set $\epsilon=0$
- Employment \downarrow 22%, wages \downarrow 11%, profits \uparrow 7%

Model Simulation: Impacts of Labor Market Power (2/2)

- ullet Simulate from estimated model, use estimated $1/\epsilon=7.3$
- Employment \downarrow 12%, wages \downarrow 6%, profits \uparrow 3% \Longrightarrow impacts of labor market power mitigated by product market power

Conclusions

- Developed a framework for jointly analyzing labor and product market power
- Leveraged features of procurement auctions to recover labor supply, technology, and product demand
- While the usual markdown is only 20%, we found a double wage markdown of 31% due to product market power
- Firms capture more than 3/4 of rents, high productivity firms share less, but workers capture a high share of marginal rents
- Simulations from estimated model show that impacts of labor market power depend on degree of product market power

Appendix

Visual test of collusion from Chassang et al (2019)

Falsification using Pre-period (1/2)

Effects on employment:

Falsification using Pre-period (2/2)

Effects on wages:

Stayers and Tenure Samples (1/2)

Labor supply elasticity by stayer spell:

Stayers and Tenure Samples (2/2)

Labor supply elasticity by tenure length:

Bandwidths in the Prop 2 estimator (1/1)

Labor supply elasticity for alternative bandwidths ($\bar{\tau}$):

Hours and full-time status (1/2)

Labor supply elasticity by FTE threshold (as % of min. wage):

Other notes:

- US construction industry during 2001-2015 was 4.6% part-time labor vs 13.9% in entire private sector (BLS)
- LMS estimator in Norway: revenue shock pass-through of 0.092 (annual earnings) and 0.091 (hourly wages)

Hours and full-time status (2/2)

Wage effects persist over time (inconsistent with over-time pay):

Other notes:

- US construction industry during 2001-2015 was 4.6% part-time labor vs 13.9% in entire private sector (BLS)
- LMS estimator in Norway: revenue shock pass-through of 0.092 (annual earnings) and 0.091 (hourly wages)

Right-to-Work and Prevailing Wage States (1/2)

Effects on employment:

Right-to-Work and Prevailing Wage States (2/2)

Effects on wage bill:

Measurement Error Orthogonality

The goal is to estimate $1 - \epsilon$ using the relationship:

$$r_{jt} = \kappa_R + (1-\epsilon) x_{jt} + (1-\epsilon) e_{jt}$$

where e_{jt} is the error in the relationship between log revenues r_{jt} and log intermediates x_{jt} . The key identifying restriction is,

$$Cov(x_{jt}, e_{jt}) = 0$$

This orthogonality condition is satisfied under the assumption by Ackerberg et al. (2015) that the firm has no information about e_{jt} at the time inputs are chosen:

"The $[e_{jt}]$ represent shocks to production or productivity that are **not observable** (or predictable) by firms before making their input decisions at t... $[e_{jt}]$ can also represent (potentially serially correlated) measurement error in the output variable." Ackerberg et al. (2015, ECMA)

Indeed, x_{jt} should be uncorrelated with e_{jt} if e_{jt} is completely unpredictable at the time x_{jt} is chosen.