Dataset Overview

HAM10000 ("Human Against Machine with 10000 training images") dataset - a large collection of multi-source dermatoscopic images of pigmented lesions

The dermatoscopic images are collected from different populations, acquired and stored by different modalities. The final dataset consists of 10015 dermatoscopic images.

It has 7 different classes of skin cancer which are listed below:

- Melanocytic nevi
- Melanoma
- Benign keratosis-like lesions
- Basal cell carcinoma
- Actinic keratoses
- Vascular lesions
- Dermatofibroma

Importing libraries

```
In [45]:
```

```
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
from imblearn.over_sampling import RandomOverSampler
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score,KFold

import os, cv2
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Flatten, Dense, MaxPool2D, Activation, Batch
Normalization
from sklearn.metrics import classification_report, accuracy_score
```

Reading the Data

```
In [46]:
```

```
data = pd.read_csv('/kaggle/input/skin-cancer-mnist-ham10000/hmnist_28_28_RGB.csv')
data.head()
```

Out[46]:

	pixel0000	pixel0001	pixel0002	pixel0003	pixel0004	pixel0005	pixel0006	pixel0007	pixel0008	pixel0009	 pixel2343	pix
0	192	153	193	195	155	192	197	154	185	202	 173	
1	25	14	30	68	48	75	123	93	126	158	 60	
2	192	138	153	200	145	163	201	142	160	206	 167	
3	38	19	30	95	59	72	143	103	119	171	 44	
4	158	113	139	194	144	174	215	162	191	225	 209	

5 rows × 2353 columns

Data i ichiocessing

Data Cleaning

```
In [47]:
data['label'].unique()
y = data['label']
x = data.drop(columns = ['label'])
data.isnull().sum().sum() #no null values present
Out[47]:
In [48]:
meta data = pd.read csv('/kaggle/input/skin-cancer-mnist-ham10000/HAM10000 metadata.csv')
meta data.head()
Out[48]:
      lesion_id
                  image_id dx dx_type age
                                          sex localization
0 HAM_0000118 ISIC_0027419 bkl
                                histo 80.0 male
                                                   scalp
1 HAM_0000118 ISIC_0025030 bkl
                                histo 80.0 male
                                                   scalp
2 HAM_0002730 ISIC_0026769 bkl
                                histo 80.0 male
```

```
In [49]:
```

3 HAM_0002730 ISIC_0025661 bkl

4 HAM_0001466 ISIC_0031633 bkl

```
meta data['dx'].unique()
Out[49]:
array(['bkl', 'nv', 'df', 'mel', 'vasc', 'bcc', 'akiec'], dtype=object)
In [50]:
data.isnull().sum().sum() #no null values present
meta data.head()
```

scalp

scalp

ear

histo 80.0 male

histo 75.0 male

Out[50]:

	lesion_id	image_id	dx	dx_type	age	sex	localization
0	HAM_0000118	ISIC_0027419	bkl	histo	80.0	male	scalp
1	HAM_0000118	ISIC_0025030	bkl	histo	80.0	male	scalp
2	HAM_0002730	ISIC_0026769	bkl	histo	80.0	male	scalp
3	HAM_0002730	ISIC_0025661	bkl	histo	80.0	male	scalp
4	HAM_0001466	ISIC_0031633	bkl	histo	75.0	male	ear

Exploratory Data Analysis

```
In [51]:
```

```
sns.countplot(x = 'dx', data = meta data)
plt.xlabel('Disease(Classes)', size=12)
plt.ylabel('Frequency', size=12)
plt.title('Frequency Distribution of Classes')
```

Out[51]:

Text(0.5, 1.0, 'Frequency Distribution of Classes')

In [52]:

```
sns.set_style('whitegrid')
colors = ['#87ace8','#e3784d', 'green']
fig,axes = plt.subplots(figsize=(8,8))

ax = sns.countplot(x='sex',data=meta_data, palette = 'Paired')
for container in ax.containers:
    ax.bar_label(container)
plt.title('Gender-wise Distribution')
plt.xticks(rotation=45)
plt.show()
```

Gender-wise Distribution

In [53]:

```
sns.set_style('whitegrid')
fig,axes = plt.subplots(figsize=(12,8))
ax = sns.countplot(x='dx',data=meta_data, order = meta_data['dx'].value_counts().index,
palette = 'Paired')
for container in ax.containers:
    ax.bar_label(container)
plt.title('Cell Types Skin Cancer Affected patients')
plt.xticks(rotation=45)
plt.show()
```


In [54]:

```
classes = {2:'bkl', 4:'nv', 3:'df', 6:'mel', 5:'vasc', 1:'bcc', 0:'akiec'}

classes_labels=[]
for key in classes.keys():
    classes_labels.append(key)
print(classes_labels)
```

[2, 4, 3, 6, 5, 1, 0]

In [55]:

```
sns.set_style('whitegrid')
fig,axes = plt.subplots(figsize=(12,8))
ax = sns.countplot(x='dx',hue='sex', data=meta_data, order = meta_data['dx'].value_count
s().index, palette = 'Paired')
for container in ax.containers:
    ax.bar_label(container)
plt.title('Cell Types Frequencies')
plt.xticks(rotation=45)
plt.show()
```

Cell Types Frequencies sex male female unknown nel Vasc akjec ACC. 答 dх

In [56]:

```
sns.set_style('whitegrid')
fig,axes = plt.subplots(figsize=(12,8))
ax = sns.countplot(x='localization',data=meta_data, order = meta_data['localization'].val
ue_counts().index, palette = 'crest')
for container in ax.containers:
    ax.bar_label(container)
plt.title('Localization Area Frequencies')
plt.xticks(rotation=45)
plt.show()
```

Localization Area Frequencies

In [57]:

```
sns.set_style('whitegrid')
fig,axes = plt.subplots(figsize=(12,8))
ax = sns.histplot(data=meta_data, x='age')
plt.title('Age Histogram')
plt.show()
```


In [58]:

```
sns.set_style('whitegrid')
fig,axes = plt.subplots(figsize=(12,8))
ax = sns.histplot(data=meta_data, x='age',hue='sex',multiple='stack')
plt.title('Age Histogram Gender Wise')
plt.show()
```


In [59]:

```
print(x.shape, y.shape)
# To overcome class imbalace
oversample = RandomOverSampler()
x,y = oversample.fit_resample(x,y)
print(x.shape, y.shape)

(10015, 2352) (10015,)
```

(46935, 2352) (46935,)

In [60]:

```
# reshaping the data so that it can be taken by convolution neural network(without distur
bing the no. of samples)
x = np.array(x).reshape(-1,28,28,3)
print('Shape of X :',x.shape)
print('Shape of y :',y.shape)
```

Shape of X : (46935, 28, 28, 3)Shape of y : (46935,)

In [61]:

```
# Splitting Data
X_train, X_test, Y_train, Y_test = train_test_split(x,y, test_size=0.2, random_state=1)
print(X_train.shape, Y_train.shape)
print(X_test.shape , Y_test.shape)
```

(37548, 28, 28, 3) (37548,) (9387, 28, 28, 3) (9387,)

In [62]:

```
model_CNN = Sequential()
model_CNN.add(Conv2D(32, kernel_size = (3,3), input_shape = (28, 28, 3), activation = 'r
elu', padding = 'same'))
model_CNN.add(BatchNormalization())
```

```
model CNN.add(MaxPool2D(pool size = (2,2)))
model CNN.add(Conv2D(64, kernel size = (3,3), activation = 'relu', padding = 'same'))
model CNN.add(BatchNormalization())
model CNN.add(MaxPool2D(pool size = (2,2), padding = 'same'))
model CNN.add(Conv2D(128, kernel size = (3,3), activation = 'relu', padding = 'same'))
model CNN.add(BatchNormalization())
model CNN.add(MaxPool2D(pool size = (2,2), padding = 'same'))
model CNN.add(Flatten())
model CNN.add(Dense(64, activation = 'relu'))
model CNN.add(BatchNormalization())
model CNN.add(Dense(32))
model CNN.add(Activation(activation='relu'))
model_CNN.add(BatchNormalization())
model CNN.add(Dense(16))
model CNN.add(Activation(activation='relu'))
model CNN.add(BatchNormalization())
model CNN.add(Dense(7))
model CNN.add(Activation(activation='softmax'))
optimizer = tf.keras.optimizers.Adam(learning rate = 0.001)
model CNN.compile(loss = 'sparse categorical crossentropy',
                 optimizer = optimizer,
                 metrics = ['accuracy'])
print(model CNN.summary())
```

Model: "sequential 1"

Layer (type)	Output Shape	Param #
conv2d_3 (Conv2D)	(None, 28, 28, 32)	896
<pre>batch_normalization_6 (Batc hNormalization)</pre>	(None, 28, 28, 32)	128
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 14, 14, 32)	0
conv2d_4 (Conv2D)	(None, 14, 14, 64)	18496
<pre>batch_normalization_7 (Batc hNormalization)</pre>	(None, 14, 14, 64)	256
<pre>max_pooling2d_4 (MaxPooling 2D)</pre>	(None, 7, 7, 64)	0
conv2d_5 (Conv2D)	(None, 7, 7, 128)	73856
<pre>batch_normalization_8 (Batc hNormalization)</pre>	(None, 7, 7, 128)	512
<pre>max_pooling2d_5 (MaxPooling 2D)</pre>	(None, 4, 4, 128)	0
flatten_1 (Flatten)	(None, 2048)	0
dense_4 (Dense)	(None, 64)	131136
<pre>batch_normalization_9 (Batc hNormalization)</pre>	(None, 64)	256

```
dense 5 (Dense)
                 (None, 32)
                                 2080
activation 3 (Activation) (None, 32)
                                 0
batch normalization 10 (Bat (None, 32)
                                 128
chNormalization)
                                 528
dense 6 (Dense)
                 (None, 16)
activation 4 (Activation) (None, 16)
batch normalization 11 (Bat (None, 16)
                                 64
chNormalization)
dense 7 (Dense)
                (None, 7)
                                 119
activation 5 (Activation) (None, 7)
Total params: 228,455
Trainable params: 227,783
Non-trainable params: 672
None
In [63]:
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
early stop = EarlyStopping(monitor='val loss', patience=10, verbose=1, mode='auto')
reduce lr = ReduceLROnPlateau (monitor='val loss', factor=0.1, patience=3, verbose=1, mod
e='auto')
history = model CNN.fit(X train,
           Y train,
            validation split=0.2,
            batch size = 64,
            epochs = 50,
            callbacks = [reduce_lr, early_stop])
Epoch 1/50
- val loss: 0.7836 - val accuracy: 0.7146 - 1r: 0.0010
Epoch 2/50
- val loss: 0.8779 - val accuracy: 0.6887 - lr: 0.0010
Epoch 3/50
- val loss: 0.5649 - val accuracy: 0.7887 - lr: 0.0010
Epoch 4/50
- val loss: 0.4857 - val accuracy: 0.8025 - lr: 0.0010
- val loss: 0.7313 - val accuracy: 0.7515 - lr: 0.0010
Epoch 6/50
- val loss: 0.3147 - val accuracy: 0.8900 - lr: 0.0010
Epoch 7/50
- val loss: 0.2160 - val accuracy: 0.9202 - lr: 0.0010
Epoch 8/50
- val_loss: 0.2500 - val_accuracy: 0.9186 - lr: 0.0010
Epoch 9/50
- val loss: 0.2706 - val accuracy: 0.9019 - lr: 0.0010
Epoch 10/50
Epoch 10: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513.
```

- val loss: 0.2367 - val accuracy: 0.9200 - lr: 0.0010

Epoch 11/50

```
- val loss: 0.0803 - val accuracy: 0.9790 - lr: 1.0000e-04
Epoch 12/50
- val loss: 0.0699 - val accuracy: 0.9815 - lr: 1.0000e-04
Epoch 13/50
- val loss: 0.0729 - val accuracy: 0.9804 - lr: 1.0000e-04
Epoch 14/50
- val loss: 0.0745 - val accuracy: 0.9799 - lr: 1.0000e-04
Epoch 15/50
Epoch 15: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05.
- val loss: 0.0723 - val accuracy: 0.9810 - lr: 1.0000e-04
Epoch 16/50
- val loss: 0.0743 - val accuracy: 0.9802 - lr: 1.0000e-05
Epoch 17/50
- val loss: 0.0723 - val accuracy: 0.9810 - lr: 1.0000e-05
Epoch 18/50
Epoch 18: ReduceLROnPlateau reducing learning rate to 1.0000000656873453e-06.
- val loss: 0.0705 - val accuracy: 0.9816 - lr: 1.0000e-05
Epoch 19/50
- val loss: 0.0718 - val accuracy: 0.9806 - lr: 1.0000e-06
Epoch 20/50
- val loss: 0.0710 - val accuracy: 0.9810 - lr: 1.0000e-06
Epoch 21/50
Epoch 21: ReduceLROnPlateau reducing learning rate to 1.0000001111620805e-07.
- val loss: 0.0737 - val accuracy: 0.9804 - lr: 1.0000e-06
Epoch 22/50
- val loss: 0.0713 - val accuracy: 0.9814 - lr: 1.0000e-07
Epoch 22: early stopping
In [64]:
results = model CNN.evaluate(X test , Y test, verbose=0)
print("CNN Model Test Results")
print(" Test Loss: {:.5f}".format(results[0]))
print("
     Test Accuracy: {:.2f}%".format(results[1] * 100))
CNN Model Test Results
    Test Loss: 0.07409
  Test Accuracy: 98.02%
In [65]:
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
```


In [66]:

```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper right')
plt.show()
```


In [67]:

```
from sklearn.metrics import confusion_matrix , classification_report

y_true_CNN = list(Y_test)
y_pred_CNN = model_CNN.predict(X_test)
y_pred_CNN = list(map(lambda x: np.argmax(x), y_pred_CNN))
print("Predicting First Ten Rows:")
print('Y Actual Values :' , y_true_CNN[0:10])
print('Y Predicted Values :' , y_pred_CNN[0:10])
```

```
Y Actual Values : [5, 1, 4, 0, 5, 0, 2, 0, 3, 2]
Y Predicted Values : [5, 1, 4, 0, 5, 0, 2, 0, 3, 2]
```

In [68]:

```
cm_CNN = confusion_matrix(y_true_CNN,y_pred_CNN,labels=classes_labels)
print(confusion_matrix(y_true_CNN,y_pred_CNN,labels=classes_labels))
sns.heatmap(cm_CNN, annot = True, fmt='')
```

[[1	253	6	2	1	0	0	0]
[55	1215	4	81	4	11	4]
[0	0	1351	0	0	0	0]
[5	6	0	1354	0	0	0]
[0	0	0	0	1358	0	0]
[0	0	0	0	0	1314	4]
[0	0	3	0	0	0	1356]]

Out[68]:

<AxesSubplot:>

In [69]:

```
#training acc vs testing acc graph
plt.plot(history.history["accuracy"] , 'ro-' , label = "Training Accuracy")
plt.plot(history.history["val_accuracy"] , 'go-' , label = "Testing Accuracy")
plt.legend()
plt.show()
```



```
0.70

Training Accuracy
Testing Accuracy

0.65

0 5 10 15 20
```

In [70]:

```
#predicting
y_pred_CNN = model_CNN.predict(X_test)
target_names = [f"{classes[i]}" for i in range(7)]
y_pred_CNN = list(map(lambda x: np.argmax(x), y_pred_CNN))
print("CNN Model Prediction Results")
print(classification_report(Y_test , y_pred_CNN, target_names=target_names))
```

294/294 [========] - 1s 2ms/step

CNN Model Prediction Results

	precision	recall	f1-score	support
akiec	0.99	1.00	1.00	1359
bcc	0.99	1.00	0.99	1318
bkl	0.95	0.99	0.97	1262
df	0.99	1.00	1.00	1351
nv	0.99	0.88	0.93	1374
vasc	1.00	1.00	1.00	1358
mel	0.94	0.99	0.97	1365
accuracy			0.98	9387
macro avq	0.98	0.98	0.98	9387
weighted avg	0.98	0.98	0.98	9387
2				

In [71]:

```
# Layers definitions
from keras import backend as K
for l in range(len(model_CNN.layers)):
    print(l, model_CNN.layers[1])
```

- 0 <keras.layers.convolutional.conv2d.Conv2D object at 0x7ff194bbf550>
- 1 <keras.layers.normalization.batch_normalization.BatchNormalization object at 0x7ff285e5
 ef90>
- 2 <keras.layers.pooling.max pooling2d.MaxPooling2D object at 0x7ff28631df50>
- 3 <keras.layers.convolutional.conv2d.Conv2D object at 0x7ff2668ddf50>
- 4 < keras.layers.normalization.batch_normalization.BatchNormalization object at 0×7 ff 2862e 6590>
- 5 <keras.layers.pooling.max pooling2d.MaxPooling2D object at 0x7ff25fdaba90>
- 6 <keras.layers.convolutional.conv2d.Conv2D object at 0x7ff194bbf710>
- 7 < keras.layers.normalization.batch_normalization.BatchNormalization object at 0×7 ff25fda 5b50>
- 8 <keras.layers.pooling.max pooling2d.MaxPooling2D object at 0x7ff194d988d0>
- 9 <keras.layers.reshaping.flatten.Flatten object at 0x7ff25ffcd7d0>
- 10 <keras.layers.core.dense.Dense object at 0x7ff25fdbfc10>
- 11 <keras.layers.normalization.batch_normalization.BatchNormalization object at 0x7ff2668 dd710>
- 12 <keras.layers.core.dense.Dense object at 0x7ff25fd60350>
- 13 <keras.layers.core.activation.Activation object at 0x7ff2668db3d0>
- 14 < keras.layers.normalization.batch_normalization.BatchNormalization object at 0x7ff25fd abf50>
- 15 <keras.layers.core.dense.Dense object at 0x7ff25fd46390>
- 16 <keras.layers.core.activation.Activation object at 0x7ff25fd46590>
- 17 <keras.layers.normalization.batch_normalization.BatchNormalization object at 0x7ff2f44 bf8d0>
- 18 <keras.layers.core.dense.Dense object at 0x7ff25fd5a450>
- 19 <keras.layers.core.activation.Activation object at 0x7ff25fd4e250>

In [72]:

```
model_CNN.layers[-2]
```

Out[72]:

```
<keras.layers.core.dense.Dense at 0x7ff25fd5a450>
```

In [73]:

```
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
kerasBKED = os.environ["KERAS_BACKEND"]
print(kerasBKED)
```

tensorflow

Separating Features Layers from the CNN Model

```
In [74]:
```

Extracting Features from CNN Model

```
In [75]:
```

Integrating CNN with SVM Classifier using Grid Search for Best Perameters

```
In [76]:
```

```
import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
clf=SVC(kernel='rbf', C=100, gamma=0.001)
kf=KFold(n splits=5)
scores SVM = cross val score(clf, X train cnn, Y train, cv=kf)
print(scores SVM)
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores SVM.mean(), scores SV
M.std())
clf.fit(X_train_cnn, Y_train)
# Evaluate the combined CNN-SVM model on a test dataset
svm accuracy = clf.score(X test cnn, Y test)
print('SVM Accuracy:', svm_accuracy*100)
y testSVM = clf.predict(X test cnn)
[0.99960053 1.
                                  0.99986683 0.982421091
                       1.
1.00 accuracy with a standard deviation of 0.01
SVM Accuracy: 98.72163630552893
```

```
In [77]:
```

```
svm_accuracy = clf.score(X_test_cnn, Y_test)
print('SVM Accuracy:', svm_accuracy*100)
```

SVM Accuracv: 98.72163630552893

In [78]:

--- ---

```
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
print(classification_report(Y_test, y_testSVM, target_names=target_names))
print("Accuracy: {0}".format(accuracy_score(Y_test, y_testSVM)*100))
```

1359
1318
1262
1351
1374
1358
1365
9387
9387
9387

Accuracy: 98.72163630552893

Integrating CNN with Random Forest Classifier using Grid Search for Best Perameters

```
In [79]:
```

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import GridSearchCV
rgclf = RandomForestClassifier(max depth=3,
               max features=1,
               min samples split=3,
               bootstrap=False,
               criterion= "entropy",
               n estimators=20)
kf=KFold(n splits=5)
scores RF = cross val score(rgclf, X train cnn, Y train, cv=kf)
print(scores_RF)
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores RF.mean(), scores RF.
std()))
rgclf.fit(X train cnn, Y train)
RFC accuracy = rgclf.score(X test cnn, Y test)
print('Random Forest Classifier Accuracy:', RFC accuracy*100)
y test RF = rqclf.predict(X test cnn)
print("Accuracy: {0}".format(accuracy_score(Y_test, y_test_RF)*100))
[0.99494008 0.99121172 0.99747004 0.99467306 0.96723931]
0.99 accuracy with a standard deviation of 0.01
Random Forest Classifier Accuracy: 97.31543624161074
Accuracy: 97.31543624161074
In [80]:
y test RF = rgclf.predict(X test cnn)
print("Accuracy: {0}".format(accuracy score(Y test, y test RF)*100))
```

```
In [81]:
```

Accuracy: 97.31543624161074

1.00 accuracy with a standard deviation of 0.01 KNN Classifier Accuracy: 98.9879620752104

In [82]:

```
y_testKNN = kgclf.predict(X_test_cnn)
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

print(classification_report(Y_test, y_testKNN, target_names=target_names))
print("Accuracy Score: {0}".format(accuracy_score(Y_test, y_testKNN)*100))
```

precision	recall	f1-score	support
1.00	1.00	1.00	1359
0.99	1.00	1.00	1318
0.97	1.00	0.99	1262
1.00	1.00	1.00	1351
1.00	0.93	0.96	1374
1.00	1.00	1.00	1358
0.97	1.00	0.98	1365
		0.99	9387
0.99	0.99	0.99	9387
0.99	0.99	0.99	9387
	1.00 0.99 0.97 1.00 1.00 0.97	1.00 1.00 0.99 1.00 0.97 1.00 1.00 1.00 1.00 0.93 1.00 1.00 0.97 1.00	1.00 1.00 1.00 0.99 1.00 1.00 0.97 1.00 0.99 1.00 1.00 1.00 1.00 0.93 0.96 1.00 1.00 1.00 0.97 1.00 0.98 0.99 0.99 0.99

Accuracy Score: 98.9879620752104

Integrating CNN with Logistic Regression Classifier using Grid Search for Best Perameters

In [83]:

```
from sklearn.linear model import LogisticRegression
from sklearn.model selection import GridSearchCV
from sklearn.metrics import accuracy score
from sklearn.metrics import confusion matrix, classification report, accuracy score
# Create a logistic regression object
grid search LR = LogisticRegression(C=100,
              penalty='12')
kf=KFold(n splits=5)
scores LR = cross val score(grid search LR, X train cnn, Y train, cv=kf)
print(scores_LR)
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores LR.mean(), scores LR.
std()))
# Perform grid search with 5-fold cross-validation
grid search LR.fit(X train cnn, Y train)
# Print the best hyperparameters and the corresponding accuracy score
y test LR = grid search LR.predict(X test cnn)
print(classification report(Y test, y test LR, target names=target names))
print("Accuracy: {0}".format(accuracy score(Y test, y test LR)*100))
/opt/conda/lib/python3.7/site-packages/sklearn/linear model/ logistic.py:818: Convergence
```

```
Warning: Lbigs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
/opt/conda/lib/python3.7/site-packages/sklearn/linear model/ logistic.py:818: Convergence
Warning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
/opt/conda/lib/python3.7/site-packages/sklearn/linear model/ logistic.py:818: Convergence
Warning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
/opt/conda/lib/python3.7/site-packages/sklearn/linear model/ logistic.py:818: Convergence
Warning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
/opt/conda/lib/python3.7/site-packages/sklearn/linear model/ logistic.py:818: Convergence
Warning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
[0.99946738 1.
                                  0.99986683 0.982953791
1.00 accuracy with a standard deviation of 0.01
              precision recall f1-score
```

	precision	recall	II-score	support
akiec	1.00	1.00	1.00	1359
bcc	1.00	1.00	1.00	1318
bkl	0.97	0.99	0.98	1262
df	1.00	1.00	1.00	1351
nv	0.98	0.93	0.95	1374
vasc	1.00	1.00	1.00	1358
mel	0.97	0.99	0.98	1365
accuracy			0.99	9387
macro avg	0.99	0.99	0.99	9387
weighted avg	0.99	0.99	0.99	9387

Accuracy: 98.68967721316714

```
/opt/conda/lib/python3.7/site-packages/sklearn/linear_model/_logistic.py:818: Convergence
Warning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
```

In []:		
In []:		
In []:		