

中华人民共和国国家标准

GB/T 29038-2012

薄壁不锈钢管道技术规范

Engineering technical code for light gauge stainless steel pipes

2012-12-31 发布

2013-10-01 实施

目 次

前	言,]	Ι
1			
2	规范性引用文件		1
3	术语和定义		1
4	管子与管件		2
5	设计		3
6	施工		5
7	验收		7
附	录 A (规范性附录) 薄	尊壁不锈钢管的化学成分和力学性能	9
附:	录 B (规范性附录) 不	「锈钢卡压式 D 型承口连接 ······· 1	. 1
附:	录 C (规范性附录) 不	「锈钢卡压式 S 型承口连接 ·············· 1	13
附:	录 D (规范性附录) 不	▽誘钢环压式连接	[4
附:	录 E (规范性附录) 不	· 锈钢可曲挠螺纹连接 ······· 1	Le
附:	录 F (规范性附录) 不	· 锈钢压缩式管件连接 ··············· 1	L 8
附:		「锈钢卡凸式管件连接	
附:	录 H (规范性附录) オ	下锈钢对接氩弧焊连接	3]
附:	录 I (规范性附录) 不	锈钢承插氩弧焊连接2	32
附:	录J(资料性附录) 建	筑给水薄壁不锈钢管管道的沿程水头损失计算 2	33

前 言

本标准按 GB/T 1.1-2009 给出的规则起草

本标准由中国机械工业联合会提出。

本标准由全国管路附件标准化技术委员会(SAC/TC 237)归口。

本标准起草单位:中国建筑设计研究院、中机生产力促进中心、无锡金羊管件有限公司、深圳雅昌管业有限公司、浙江正康实业有限公司、成都共同管业有限公司、广州美亚股份有限公司、宁波福兰特管业有限公司、四川民生管业有限公司、沧州市三庆工贸有限公司、浙江格锐管业有限公司、宁波市华涛不锈钢管材有限公司、江苏道成不锈钢管业有限公司、澳华(沈阳)不锈钢有限公司。

本标准主要起草人:赵锂、李俊英、傅文华、钱江锋、袁雪峰、陈卫东、高胜华、黄建聪、廖仲力、文长宏、 牟海峰、缪德伟、郭艾、贾福庆、陈燕群、巫伟、冯峰、王睿。

薄壁不锈钢管道技术规范

1 范围

本标准规定了薄壁不锈钢管子与管件的材料、设计、施工与验收等。

本标准适用于工业与民用建筑中公称压力不大于 PN16、温度不大于 80 ℃的给水(冷水、热水、饮用净水)薄壁不锈钢管管道工程的设计、施工及验收。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB 5749 生活饮用水卫生标准

GB/T 12771 流体输送用不锈钢焊接钢管

GB/T 19228.1 不锈钢卡压式管件组件 第1部分:卡压式管件

GB/T 19228.2 不锈钢卡压式管件组件 第2部分:连接用薄壁不锈钢管

GB/T 19228.3 不锈钢卡压式管件用橡胶 O 形密封圈

GB/T 21359 食品和供水工业用不锈钢螺纹接头

GB/T 21472 食品工业用不锈钢弯头和三通

GB 50015 建筑给水排水设计规范

3 术语和定义

下列术语和定义适用于本文件。

3. 1

薄壁不锈钢管 light gauge stainless steel pipes

壁厚与外径之比不大于 6%,壁厚为 0.6 mm~4.0 mm 的不锈钢管。

3. 2

覆塑薄壁不锈钢水管 light gauge stainless steel water pipes wrapped in plastic

外壁有塑料包覆层的薄壁不锈钢水管。

3.3

卡压式连接 press jointing

以带有特种密封圈的承口管件连接管道,用专用工具钳压承口部位后断面呈六角型或多边型压缩紧固密封的一种连接方式。根据端部卡压连接方式分为 D 型承口连接和 S 型承口连接。

3. 4

D型承口连接 single-press extrusion jointing

管件承口端部无延伸直段的卡压连接。

3.5

S型承口连接 double-press extrusion jointing

管件承口端部有延伸直段的卡压连接。

GB/T 29038-2012

3.6

环压式连接 ring(annular) compressing jointing

在承插口处设置宽带密封圈,采用专用环压工具钳压承口部位后呈环状压缩紧固密封的挤压式连接方式。

3.7

可曲挠螺纹式连接 threaded coupling jointing

在管材端部用专用工具扩成 90°翻遍平面,两个翻遍平面压接在带限位结构的密封圈上并拧紧的 连接方式。

3.8

压缩式连接 compression jointing

用螺母紧固,使管口部分的套管通过密封圈压缩起密封作用的一种连接方式。

3.9

卡套式连接 clip cover jointing

通过拧紧螺帽,使管件内的鼓形不锈钢圈变形紧固而封堵不锈钢管连接处缝隙的挤压连接方式。

3. 10

对接氩弧焊连接 balanced TIG welding jointing (butt TIG welding jointing)

由钢管与管件对接或钢管与钢管对接,用钨极氩弧焊(TIG)熔焊焊接而成一体的连接方式。

3.11

承插氩弧焊连接 plug-in TIG welding jointing

将钢管插入管件承口,用钨极氩弧焊(TIG)熔焊焊接而成一体的连接方式。

3. 12

扩环式连接方式 expanding ring jointing type

在管材端部用专用工具扩成凸环形,将管材插入管件,再充填密封材料,并用紧固件纵向锁紧固定的一类连接方式。包括凸环式连接、卡凸式连接、锁扩式连接。

3. 13

沟槽式连接 grooved coupling jointing (trench type jointing)

在管材、管件平口端的接头部位加工(滚压加工或切削加工)成环形沟槽后,并由合式卡箍件、C型橡胶密封圈和紧固件组成的快速拼装接头的连接方式。

3. 14

法兰连接 flanged jointing (flange joint)

用紧固件紧固相邻管端上的法兰使其连接牢固的连接方式。

4 管子与管件

- 4.1 建筑给水薄壁不锈钢管管道所选用的管子和管件,应具有国家认可的产品检测机构的产品检测报告和产品出厂质量保证书;生活饮用水用的管子和管件,还应具有卫生部门的认可文件。
- 4.2 建筑给水薄壁不锈钢管子与管件应符合 GB/T 12771、GB/T 19228.1、GB/T 19228.2、GB/T 19228.3、GB/T 21359、GB/T 21472 的要求。
- 4.3 管子、管件的选材可根据其用途按表1的规定执行。

统一数字代号	旧牌号	新牌号	适用条件
S30408	0Cr18Ni9	06Cr19Ni10	生活给水、生活热水、饮用净水等管道用
S30403	00Cr19Ni10	022Cr19Ni10	生活给水、生活热水、饮用净水等管道用
S31608	0Cr17Ni12Mo2	06Cr17Ni12Mo2	耐腐蚀性比 06Cr19Ni10 要求高的场合
S31603	00Cr17Ni14Mo2	022Cr17Ni12Mo2	海水、高氯介质或耐腐蚀性比 06Cr17Ni12Mo2 要求高的场合
S11972	00Cr18Mo2	019Cr19Mo2NbTi	高氯介质、消防给水等

表 1 管子和管件的材料及用途

4.4 薄壁不锈钢管子与管件应根据输送水中允许氯化物含量选材,可按表2的规定选用。

体 粉令40月	1口 城 日	der stehe 🖂	输送水中允许的	氰化物含量/(mg/L)
统一数字代号	旧牌号	新牌号	冷水(温度≪40 ℃)	热水(温度>40 ℃)
S30408	0Cr18Ni9	06Cr19Ni10	€200	€50
S30403	00Cr19Ni10	022Cr19Ni10	€200	€50
S31608	0Cr17Ni12Mo2	. 06Cr17Ni12Mo2	€1000	€250
S31603	00Cr17Ni14Mo2	022Cr17Ni12Mo2	≤1000	€250
S11972	00Cr18Mo2	019Cr19Mo2NbTi	≤1000	€250

表 2 薄壁不锈钢管子、管件输送水中允许氯化物含量

- 4.5 不同连接方式的薄壁不锈钢管道接口应采用与之相配套的不锈钢管件。不同系列牌号不锈钢管 子宜采用与之相同牌号的管件。
- 4.6 采用不同连接方式的管件与管子,其尺寸与公差应分别符合现行国家标准或行业标准的规定。
- 4.7 本标准采用的薄壁不锈钢管管子和管件的牌号、化学成分和力学性能应符合附录 A 的要求。
- 4.8 管件的结构型式有卡压式、环压式、焊接式、卡套式、压缩式、螺纹式、沟槽式和法兰连接等,其承口结构及规格尺寸应符合国家或行业相应产品标准的要求。
- **4.9** 不锈钢管件在成型焊接工艺后,应经保护气体(全氢或 AX 混合气体)保护的光亮固溶处理,固溶处理的温度应为 1000 ℃ ~ 1100 ℃。
- 4.10 不同连接方式的薄壁不锈钢管道接口应采用与之相配套的密封型式。
- 4.11 卡压式连接的密封圈应符合 GB/T 19228.3 的规定。其他连接方式的密封圈,其结构型式、外形尺寸、材质应符合国家或行业相关标准的要求。
- 4.12 密封圈的材质宜采用橡胶,选用时应根据连接方式、介质温度、密封要求、使用寿命等因素确定。

5 设计

5.1 管道布置和敷设

- 5.1.1 建筑给水薄壁不锈钢管道系统应全部采用薄壁不锈钢制管子、管件和附件。当与其他材料的管子、管件和附件相连接时,应采取防止电化学腐蚀的措施。
- 5.1.2 对埋地敷设的薄壁不锈钢管,其管材牌号宜采用 022Cr17Ni12Mo2(S31603),并应对管道外壁

GB/T 29038-2012

采取防腐蚀措施,外壁防腐材料不宜含有氯离子成分。

- 5.1.3 引人管不宜穿越建筑物的基础。当穿越外墙时,应留孔洞,敷设套管,并考虑建筑物沉降等不利因素。
- 5.1.4 管道不得浇注在钢筋混凝土结构层内。
- 5.1.5 管道不宜穿越建筑物的沉降缝、伸缩缝和变形缝。当必须穿越时,应设置补偿管道伸缩和剪切变形的装置。
- 5.1.6 管道不得敷设在配电间、强弱电管道井、烟道、风道和排水沟内。
- 5.1.7 嵌墙敷设的管道宜采用覆塑薄壁不锈钢管。管道不得采用卡套式等螺纹连接方式,管径不宜大于 20 mm。管线应水平或垂直布置在预留或开凿的凹槽内,槽内薄壁不锈钢管应采用管卡固定。
- 5.1.8 需要泄空的管道,其水平管宜设有坡度比为 0.002~0.003 的坡向泄水装置。
- 5.1.9 在引入管、折角进户管件、支管接出和仪表接口处,应采用螺纹转换接头或法兰连接。
- 5.1.10 与卫生器具给水配件或与给水机组、给水设备连接处,应采用螺纹连接或法兰连接。
- 5.1.11 薄壁不锈钢管可采用卡压式、环压式、焊接、螺纹式、卡套式、卡凸式、压缩式、沟槽式、法兰式、转换接头等连接方式。对不同的连接方式,应分别符合相应标准的要求。允许偏差不同的管子与管件使用,但不得互换使用。
- 5.1.12 卡压式、环压式、卡套式、卡凸式、压缩式、螺纹式、焊接连接方式可适用于 DN100 及以下小口 径薄壁不锈钢管,沟槽式、法兰、焊接连接可适用于 DN100 以上大口径薄壁不锈钢管。

5.2 管道补偿、保温

- 5.2.1 当热水薄壁不锈钢管的直线段长度超过 15 m 时,应采取补偿管道的措施。当公称尺寸不小于 40 mm 时,宜设置不锈钢波形膨胀节或线性温度补偿器,其补偿量按 1.21 mm/m 计算(供水温度不大于 60 ℃时)。
- 5.2.2 当热水水平干管与水平支管连接、水平干管与立管连接、立管与每层热水支管连接时,应采取在 管道伸缩时相互不受影响的措施。
- 5.2.3 建筑给水薄壁不锈钢管明敷时,应采取防止结露的措施。保温材料应采用不腐蚀不锈钢管的材料。当嵌墙敷设时或埋设在找平层内时,管材宜采用覆塑薄壁不锈钢管。保温层厚度应经计算确定。对防结露管和供水温度不大于 60 ℃的热水管,保温层厚度可按表 3 确定。

表 3 防结露和 60 ℃热水管的保温层厚度

单位为毫米

但知此氏			I			公	陈尺寸]	DN					
保温性质	10	15	20	25	32	40	50	65	80	100	125	150	200
防结露≥	5	5	5	5	10	10	10	10	10	10	10	10	10
保温管≥	20	20	20	20	20	25	25	25	25	25	25	30	30

5.3 水力计算

- 5.3.1 给水管道设计流量的计算,应按 GB 50015 的规定执行。
- 5.3.2 在给水管道中,水流速度不宜大于 1.8 m/s。当公称尺寸不小于 DN25 时,水流速度宜采用 1.0 m/s~1.5 m/s;当公称尺寸小于 DN 25 时,水流速度宜采用 0.8 m/s~1.0 m/s。
- 5.3.3 给水管道系统的沿程水头损失可按式(1)计算:

式中:

- i ——给水管道单位长度水头损失,单位为千帕每米(kPa/m);
- C ——海曾-威廉公式的流速系数,不锈钢管 C=130:
- d_i ——管道的计算内径,单位为米(m);
- $q_{\rm g}$ ——给水设计流量,单位为立方米每秒(${\rm m}^3/{\rm s}$)。

管道沿程水头损失也可采用表 J.1 中规定的数值。

- 5.3.4 给水管道系统的局部水头损失宜按沿程水头损失的 25%~30%计算。
- 5.3.5 当水温高于 10 ℃时,给水管道系统的沿程水头损失应按表 4 的规定值乘以温度修正系数。

表 4 水头损失的温度修正系数

水温/℃	10	20	30	40	50	60	70	80	90	95
修正系数	1.0	0.94	0.90	0.86	0.82	0.79	0.77	0.75	0.73	0.72

6 施工

6.1 施工准备

- 6.1.1 管道安装工程施工应具备下列条件:
 - a) 施工设计图纸和其他技术文件齐全,并经会审或审查;
 - b) 施工方案或施工组织设计已进行技术交底;
 - c) 材料、施工人员、施工机具等能保证正常施工;
 - d) 施工现场的用水、用电和材料贮放场地条件能满足需要;
 - e) 提供的管子和管件符合国家现行有关产品标准的规定,其实物与资料一致,并附有产品说明书和质量合格证书。
- 6.1.2 施工前应了解建筑物的结构,并根据设计图纸和施工方案制订与土建工程及其他工程的配合措施。安装人员应经专业培训,熟悉薄壁不锈钢管和管件的性能,掌握操作要点。
- 6.1.3 对管子和管件的外观和接头应进行认真检查,管子、管件上的污物和杂质应及时消除。

6.2 通用规定

- 6.2.1 薄壁不锈钢管、管件不宜与水泥浆、水泥、砂浆、拌合混凝土直接接触。
- 6.2.2 管道安装间歇或完成后,管子敞口处应及时封堵。
- 6.2.3 当管道穿墙壁、楼板及嵌墙暗敷时,应配合土建工程预留孔、槽。留孔或开槽的尺寸宜符合下列规定:
 - a) 预留孔洞的尺寸官比管外径大 50 mm~100 mm;
 - b) 嵌墙暗管的墙槽深度宜为管道外径加 20 mm,宽度宜为管道外径加 40 mm~50 mm;
 - c) 架空管道管顶上部的净空不宜小于 100 mm。
- 6.2.4 管道穿过地下室或地下构筑物外墙时,应采取可靠的防水措施。
- 6.2.5 薄壁不锈钢管与阀门、水表、水嘴等的连接应采用转换接头,不得在薄壁不锈钢水管上套丝。
- 6.2.6 安装完毕的干管,不得有明显的起伏、弯曲等现象,管外壁应无损伤。
- 6.2.7 管道系统的坐标、标高的允许偏差应符合表5的规定。

表 5 管道的坐标和标高的允许偏差

<u> </u>	项 目		允许偏差/mm
	الم حد	埋地	50
	室外	架空或地沟	20
坐标	and the	埋地	15
	室内	架空或地沟	10
	L1	埋地	±15
lan aka	室外	架空或地沟	±10
标髙	24.4.	埋地	±10
	室内	架空或地沟	±5

6.2.8 水平管道纵横方向的弯曲,立管的垂直度,平行管道和成排阀门的位置允许偏差应符合表 6 的规定。

序号 项 目 允许偏差/mm 每 1 m ≪5 ≤10 每 10 m 水平管道纵横方向弯曲 ≤15 室外架空、地沟、埋地每 10 m ≪3 每1 m ≪10 2 高度超过5 m 立管垂直度 髙度超过 10 m,每 10 m ≪10 3 平行管道和成排阀门位置 在同一直线上,间距 ≪3

表 6 管道和阀门位置的允许偏差

- 6.2.9 饮用水管道在试压合格后应采用 0.03%高锰酸钾消毒液灌满管道进行消毒。消毒液在管道中应静置 24 h,排空后,再用饮用水冲洗。饮用水的水质应符合 GB 5749 的要求。
- 6.2.10 管子、管件在装卸、搬运时应小心轻放,且避免油污,不得抛、摔、滚、拖。
- 6.2.11 管道不得攀踏、系安全绳、搁搭手架、用作支撑等。

6.3 管道敷设

- 6.3.1 管道明敷时,应在土建工程粉饰完毕后进行安装。安装前,应首先复核预留孔洞的位置是否正确。
- 6.3.2 薄壁不锈钢管固定支架间距不宜大于 15 m,热水管固定支架间距的确定应根据管线热胀量、膨胀节允许补偿量等确定。固定支架宜设置在变径、分支、接口及穿越承重墙、楼板的两侧等处。
- 6.3.3 薄壁不锈钢管活动支架的间距可按表7确定。

表 7 活动支架的最大间距

单位为毫米

公称尺寸 DN	10~15	20~25	32~40	50~65	80~125	150~200
水平管	1 000	1 500	2 000	2 500	3 000	3 500
立管	1 500	2 000	2 500	3 000	3 500	4 000

- 6.3.4 公称尺寸不大于 25 mm 的管道安装时,可采用塑料管卡。采用金属管卡或吊管时,金属管卡或 吊架与管道之间应采用塑料带或橡胶等软物隔垫。
- 6.3.5 在给水栓和配水点处应采用金属管卡或吊架固定;管卡或吊架宜设置在距配件 40 mm~80 mm 处。
- 6.3.6 对明装管道,其外壁距装饰墙面的距离:公称尺寸 $10 \text{ mm} \sim 25 \text{ mm}$ 时,应为 40 mm;公称尺寸 $32 \text{ mm} \sim 65 \text{ mm}$ 时,应为 50 mm。
- 6.3.7 管道穿越承重墙或楼板时,应设套管,采取严格的防水措施,并符合下列规定:
 - a) 卫生间及厨房内的套管,其顶部应高出装饰地面 50 mm;
 - b) 其他楼板内的套管,其顶部应高出装饰地面 20 mm;
 - c) 套管的底部应与楼板底面相平;
 - d) 墙壁内的套管,其两端应与饰面相平;
 - e) 安装在楼板内的套管与管道之间的缝隙应使用密实的阻燃材料和防水油膏填实,且端面应触 摸光滑。
- 6.3.8 管道暗敷时,应在管外壁采取防腐措施。
- 6.3.9 暗敷的管道,应在封蔽前做好试压和隐蔽工程的验收记录。在试压合格后,可采用 M7.5 水泥砂浆填补。
- 6.3.10 管道敷设时,不得有轴向弯曲和扭曲,穿过墙或楼板时不得强制校正。当与其他管道平行时, 应按设计要求预留保护距离,当设计无规定时,其净距不宜小于 100 mm。当管道平行时,管沟内薄壁 不锈钢管宜设在镀锌钢管的内侧。

6.4 管道连接

- 6.4.1 管道系统的配管与连接应按下列步骤进行:
 - a) 按设计图纸规定的坐标和标高线绘制实测施工图;
 - b) 按实测施工图进行配管;
 - c) 制定薄壁不锈钢管和管件的安装顺序,进行预装配。
- 6.4.2 配管应符合下列规定:
 - a) 截管工具宜采用专用的电动切管机或手动切管器;
 - b) 截管的端面应平整,并垂直于管轴线;
 - c) 截管后,管端的内外毛刺宜采用专用工具去除干净。
- 6.4.3 薄壁不锈钢管管道的连接,当采用不锈钢卡压式管件时,其安装应符合附录 B、附录 C 的要求。
- 6.4.4 薄壁不锈钢管管道的连接,当采用不锈钢环压式管件时,其安装应符合附录 D 的要求。
- 6.4.5 薄壁不锈钢管管道的连接,当采用不锈钢可曲挠螺纹连接时,其安装应符合附录 E 的要求。
- 6.4.6 薄壁不锈钢管管道的连接,当采用不锈钢压缩式管件时,其安装应符合附录 F的要求。
- 6.4.7 薄壁不锈钢管管道的连接,当采用不锈钢卡凸式管件时,其安装应符合附录 G 的要求。
- 6.4.8 薄壁不锈钢管管道的连接,当采用不锈钢对接氩弧焊时,其安装应符合附录 H 的要求。
- 6.4.9 薄壁不锈钢管管道的连接,当采用不锈钢承插氩弧焊时,其安装应符合附录 I 的要求。

7 验收

- 7.1 管道系统应根据工程性质和特点进行中间验收和竣工验收。中间验收由施工单位会同工程监理单位进行;竣工验收由建设单位全面负责或委托工程监理单位进行。必要时,设计单位可参与联合验收。中间验收、竣工验收前施工单位应先进行自检。
- 7.2 暗装、嵌装管道隐蔽前的验收,应着重检查管道支撑、套管、管道伸缩补偿措施,并进行通水能力检

GB/T 29038-2012

验和水压试验,水压试验水质应符合 GB 5749 的要求。

- 7.3 管道系统的水压试验应符合下列规定:
 - a) 在暗装和嵌装管道的安装符合安装规定后,方可进行水压试验;
 - b) 水压试验压力为管道系统工作压力的 1.5 倍,且不得小于 0.6 MPa;
 - c) 水压试验前,应检验试压管道是否已采取安全有效的固定和保护措施,供试验的接头部位应明露:
 - d) 水压试验合格后方可进行后续土建施工,水压试验时,工程监理人员应到场观察、做好记录,并 出具验收书面报告;
 - e) 水压试验应按下列步骤进行:
 - ——将试压管段末端封堵,缓慢注水,将管内气体排出;
 - ----管道系统注满水后,进行水密性检查;
 - ——对管道系统加压宜采用手动泵缓慢进行,升压时间不应小于 10 min;
 - 一一升至规定的试验压力后停止加压,观察 10 min,压力降不得超过 0.02 MPa;然后将试验压力降至工作压力,对管道作外观检验,以不漏为合格;
 - ——管道系统加压后发现有渗漏水或压力下降超过规定值时,应检查管道,在排除渗漏水原因 后,再按以上规定重新试压,直至符合要求;
 - ——在温度低于 5 ℃的环境下进行水压试验和通水能力检验时,应采取可靠的防冻措施,试验 结束后,应将存水放尽。
- 7.4 生活饮用水管道在试压合格后,应按 6.2.9 的规定进行消毒并冲洗管道。冲洗前,应对系统内的 仪表加以保护,并将有碍冲洗工作的节流阀、止回阀等管道附件拆除,妥善保管,待冲洗后复位。
- 7.5 管道竣工验收应具备下列文件资料:
 - a) 施工图、竣工图和设计变更文件;
 - b) 管子、管件和主要管道附件的产品质量保证书;
 - c) 隐蔽工程验收和中间试验记录;
 - d) 通水能力和水压试验检验记录;
 - e) 管道清洗和消毒记录;
 - f) 工程质量事故处理记录;
 - g) 工程质量检验评定记录。
- 7.6 工程竣工质量应符合设计要求和本标准的规定。竣工验收应重点检查和检验下列项目:
 - a) 管位、管径、标高、坡度和垂直度等的正确性;
 - b) 连接点或接口的整洁、牢固和密闭性;
 - c) 温度补偿设施、管道支承件和管卡的安装位置和牢固性;
 - d) 给水系统的通水能力检验,检查按设计要求同时开启的最大数量配水点是否全部达到额定流 量,对特殊建筑物,可根据管道布置,分层、分段进行通水能力检验;
 - e) 管道系统阀门的启闭灵活性和仪表指示的灵敏性。

附 录 A (规范性附录) 薄壁不锈钢管的化学成分和力学性能

- A.1 本附录适用于焊制的薄壁不锈钢管。
- A.2 管子、管件的牌号和化学成分应符合表 A.1 的规定。
- A.3 管子、管件的牌号和力学性能应符合表 A.2 的规定。

表 A.1 管子和管件的牌号和化学成分

统一数	4	ņ					化学成分(化学成分(质量百分数)/%	%/0			
字代号	刺体ち	日曜寺	ပ	Š	Mn	Ь	S	ï	Cr	Mo	z	其他元素
830408	06C-10Ni10	OC-10Nio	8					8.00∼	18.00∼			
00#000	0001131110	OCTIBINIS	%n. n%					11.00	20.00	1		
\$30403	099C+10Ni10	00C+10N:10	0.60					8.00∼	18.00 \sim			
0000	071016110770	0001131110			5			12.00	20.00	1		
\$31608	06C+17Ni12Mo2	0C*17N:19Mc9	00	70 75	// 7. 00	3	6	10.00∼	$10.00 \sim 16.00 \sim$	2.00∼		
200100			00.00	C/ •//			0.030	14.00	18.00	3,00		
\$31603	022C+17Ni12Mo2	022C+17Ni12Mc2	0.00					10.00~	16,00∼	2,00∼		
		70111111111000						14.00	18.00	3.00		
\$11972	019C+19M09NkT;	00C+18Mo9	70.025		5			-	17.50~	1.75~	70.07	(Ti+Nb)[0.20+4
	110110110110110		0.040		00 .			T. 00	19, 50	2.50	0.033	(C+N)]~0.80

表 A.2 管子、管件的牌号和力学性能

断后伸长率/%	非热处理状态			L	67		
一—————————————————————————————————————	热处理状态	11_		L	25		20
抗拉强度	/MPa	不小于	520	480	520	480	410
规定非比例	延伸强度/MPa		210	180	210	180	240
	旧牌号		0Cr18Ni9	00Cr19Ni10	0Cr17Ni12Mo2	00Cr17Ni14Mo2	00Cr18Mo2
	新牌号		06Cr19Ni10	022Cr19Ni10	06Cr17Ni12Mo2	022Cr17Ni12Mo2	019Cr19Mo2NbTi

附 录 B (规范性附录)

不锈钢卡压式D型承口连接

B.1 本附录适用于不锈钢卡压式管件 D 型承口连接。不锈钢卡压式管件 D 型承口端口部分有环状 U 形槽,且内装 O 型密封圈。安装时,用专用卡压工具使 U 形槽凸部缩径,且薄壁不锈钢水管、管件承插部位卡成六角形(DN15~DN60)或多边形(DN65~DN100),见图 B.1。

a) 管材与管件连接

b) 管件承口

说明:

- 1----不锈钢管;
- 2---双承短管直通;
- 3---密封圈;
- 4----不锈钢圈;
- 5---管材。

图 B.1 不锈钢卡压式 D型承口连接示意

B.2 安装前应按下列要求进行准备工作:

a) 用专用划线器在管材端部画标记线一周,以确认管材的插入长度。插入长度应不小于表 B.1 的规定,

表 B.1 管材插入长度基准值

单位为毫米

公称尺寸 DN	10	15	20	25	32 -	40	50	65	80	100
管材插入长度基准值	21	21	24	24	39	47	52	53	60	75

- b) 卡压式管件 D 型承口端口部分应加工成环状 U 形槽,槽内应装入 O 型密封圈,并应确认密封圈已安装在正确的位置。
- B.3 D型承口卡压式连接应按下列步骤进行:
 - a) 将管材垂直插入卡压式管件中,不得歪斜、不得使 O 型密封圈割伤或脱落;
 - b) 插入后,应确认管材上所画标记线距端部的距离:公称尺寸 DN10~DN25 时,应为 3 mm;公称尺寸 DN32~DN65 时,应为 5 mm;
 - c) 用专用卡压工具进行卡压连接,卡压时应将卡压工具钳口的凹槽与管件凸部靠紧,并口夹紧管件,工具的钳口还应与管子轴心线垂直;
 - d) 用专用卡压工具使 U 形槽凸部缩径,直到产生轻微振动才可结束卡压连接过程;
 - e) 卡压连接完成后, 管子、管件承压部位应卡成六角形或多边形, 并应采用量规检查卡压连接是

GB/T 29038-2012

否完好;

- f) 卡压时严禁使用润滑油;
- g) 当与转换螺纹接头连接时,应在锁紧螺纹后再进行卡压。
- B.4 卡压式不锈钢管路系统安装前,应仔细阅读卡压式不锈钢管道使用说明书;然后按使用说明书中安装操作顺序及安装方法进行安装。
- B.5 卡压连接后,应进行卡压检查,卡压检查应按下列步骤进行:
 - a) 利用专用的量规进行卡压尺寸的确认,如发现插入不到位的,应将管件部分切除,重新施工;
 - b) 在量规确认后,如没有达到正确的量规尺寸时,应先检查卡压工具是否完好,如工具有损,则应 将工具送检修。在卡压连接不当处,可用正常卡压工具再次进行卡压连接,并应再次用量规进 行检查确认。

附 录 C (规范性附录) 不锈钢卡压式 S 型承口连接

C. 1 本附录适用于不锈钢卡压式管件 S 型承口连接,见图 C. 1。

说明:

- 1----管件;
- 2---管材;
- 3---密封圈;
- 4---挤压部位。

图 C.1 不锈钢卡压式 S 型承口连接示意

- C.2 卡压式管件 S型承口连接应按下列步骤进行:
 - a) 用画线标志器在管端作插入深度标记画线;
 - b) 检查管件中密封圈;
 - c) 将管材插入管件承口深度与画线标志应相吻合,调节量不应大于 3 mm;应保证管材插入长度,不得损伤管件内部密封圈;
 - d) 应用专用工具在 O 型密封环左、右两侧各挤压出一道锁固凹槽;
 - e) 应采用专用量具确认锁固形位。
- C.3 S型承口连接应注意以下事项:
 - a) 采用钢锯锯切管口,应清除毛刺。管口应光滑,管内壁应清洁;
 - b) 管子插入管件承口,可用清水作润滑剂;
 - c) 工作前,应检查工具是否完好,确保工具正常工作;
 - d) 安装操作应按照操作规程顺序进行。

附 录 D (规范性附录) 不锈钢环压式连接

D.1 本附录适用于不锈钢环压式管件连接,见图 D.1。

说明:

- 1----管件;
- 2---管材;
- 3---密封圈;
- 4---密封段;
- 5----稳定段。

图 D.1 不锈钢环压式连接示意

- D.2 环压式连接(包括手动工具和电动工具)应按下列步骤进行:
 - a) 选择与管件对应的液压专用工具;在环压接前应检查环压组件上的滑动块,动作是否灵活,同时应注意保持环压组件的清洁;
 - b) 将管材插入管件承口并到底端,并用划线笔沿管件边缘在管材上划线;
 - c) 将密封圈套在管材上,插入承口底端,使管材深度标记与管件边缘对齐,再把密封圈推入管件 与管子之间的间隙内;
 - d) 管件的压接部位应使管材与钳头色标方向一致,置于钳头的上下压块之间;管件和管子必须与钳头垂直,即可环压操作。在施压时,每次油泵运动应是最大行程。加压直至上、下压块无间隙稳压3s后卸压,环压操作完成。
 - D.3 环压连接时,严禁模块不成组使用和不成组更换;严禁模块色标与滑块的色标方向不一致;严禁 色标与管材方向不一致进行环压。
 - D. 4 环压连接后,应进行环压检查,环压检查应按下列步骤进行:
 - a) 压接部位 360°压痕应凹凸均匀;
 - b) 管件端面与管材结合应紧密无间隙;
 - c) 管件端面与管材压合缝挤出的密封圈的多余部分能自然断掉或简便轻松去除;

互配金属制品 (广东) 有限公司

- d) 如环压不到位,应成对更换压块或将工具送修。在环压不当处可用正常环压工具再做一次环压,并应再次检查压接部位质量;
- e) 当与转换螺纹接头连接时,应在旋紧螺纹后再进行环压一次;
- f) 公称尺寸为 DN80~DN100 的管子与管件的压接,除按上述操作外,还应做二次压接。二次压接时,将压块靠近管件密封带的一根部,加压至上、下压块无间隙。

附 录 E (规范性附录) 不锈钢可曲挠螺纹连接

E.1 本附录适用于不锈钢可曲挠螺纹管件连接。安装时,在管材端部用专用工具扩成 90°翻边平面,两个翻边平面压接在带限位结构密封圈上并拧紧,见图 E.1。

说明:

- 1 活接内螺纹管件;
- 2---O型密封圈;
- 3---不锈钢密封圈;
- 4---活接外螺纹管件;
- 5——翻边不锈钢管材;
- 6——成品翻边短节管件;
- 7---TIG 焊;
- 8----柱螺纹 G。

图 E.1 不锈钢可曲挠螺纹连接示意

- E.2 安装前应按下列要求进行准备工作:
 - a) 用专用划线器在管材画标记线一周,以确认管材的翻边宽度,翻边宽度应按表 E.1 的规定;

表 E.1 管子翻边宽度位置基准值

单位为毫米

公称直径 DN	15	20	25	32	40	50	60	65	80	100
翻边宽度	4.0	4.0	5.2	6.4	6.6	7.1	8.6	9.3	10.6	12.0

- b) 可曲挠螺纹管件端口部分应套入加工成 90°翻边形状,槽内应装入带限位结构密封圈,并应确 认密封圈已安装在正确的位置。
- E.3 可曲挠螺纹式连接应按下列步骤进行:
 - a) 断管:用砂轮切割机将配管切断,切口应垂直,且把切口内外毛刺修净;
 - b) 将管件端口部分螺母拧开,并把螺母套入配管上;
 - c) 用专用工具(液压翻边机)将配管端口进行90°翻边工艺处理;
 - d) 将带限位结构密封圈放入管件端口内;

○ 互配金属制品 (广东) 有限公司

- e) 用扳手拧紧,完成配管与管件一个部分的连接。
- E.4 可曲挠螺纹式不锈钢管路系统安装前,应仔细阅读可曲挠螺纹式不锈钢管道使用说明书;然后按使用说明书中安装操作顺序及安装方法进行安装。
- E.5 可曲挠螺纹式连接后,应进行翻边检查,翻边检查应按下列步骤进行。
 - a) 利用专用的游标卡尺进行翻边宽度的确认,如发现翻边不到位的,应将管件部分切除,重新施工;
 - b) 在测量确认后,如没有达到正确的尺寸时,应先检查液压翻边模具是否完好,如模具有损,则应 将模具送检修。在螺纹连接不当处,可用液压翻边机再次进行翻边连接,并应再次用游标卡尺 进行检查确认。
- E.6 用可曲挠螺纹管件连接时,应符合下列规定:
 - a) 配管翻边前,先将需连接的管件端口部分螺母拧开,并把它套在配管上;
 - b) 液压翻边机按不同管径附有模具,公称直径 15 mm~100 mm;
 - c) 配管翻边过程凭借液压翻边机专用模具调整定位;
 - d) 带限位结构密封圈应平放在管件端口内,严禁使用润滑油;
 - e) 把翻边后的配管压接在螺纹管件内时,切忌损坏密封圈或改变其平整状态;
 - f) 与阀门、水嘴等管路附件连接时,在常规管件丝口处应缠牛料带或用金属密封胶。

附 录 F (规范性附录) 不锈钢压缩式管件连接

F.1 本附录适用于不锈钢压缩式管件连接。不锈钢压缩式管件端口部分拧有螺母,且内装有橡胶密封圈。安装时,应用专用工具把配管与管件的连接端内胀成山形台凸缘或外加一档圈,依次将密封圈放入管件端口内,把配管插入管件内和拧紧螺母,见图 F.1。

说明:

- 1---管材;
- 2----硅橡胶密封圈;
- 3---等径直通;
- 4---开口不锈钢卡环;

5——外螺纹;

6---锁紧螺母;

7---不锈钢内套。

图 F.1 不锈钢压缩式连接示意

- F.2 应按下列顺序进行安装前准备:
 - a) 断管:用砂轮切割机将配管切断,切口应垂直,且把切口内外毛刺修净;
 - b) 将管件端口部分螺母拧开,并把螺母套入配管上;
 - c) 用专用工具(胀形器)将配管内胀成山形台凸缘或外加一档圈;
 - d) 将硅胶密封圈放入管件端口内;
 - e) 将事先套入螺母的配管插入管件内;
 - f) 手拧螺母,并用扳手拧紧,完成配管与管件一个部分的连接。
- F.3 用压缩式管件连接时,应符合下列规定:
 - a) 配管胀形前,先将需连接的管件端口部分螺母拧开,并把它套在配管上;
 - b) 胀形器按不同管径附有模具,公称尺寸 15 mm~50 mm 用胀箍式(内胀成一个山形台),装、卸 合模时可借助木锤轻击;
 - c) 配管胀形过程凭借胀形器专用模具自动定位,上下拉动摇杆至手感力约为 30 kg~50 kg,配管 卡箍或胀箍位置应满足表 F.1 的规定;

表 F.1 管子胀形位置基准值

单位为毫米

公称尺寸 DN	15	20	25	32	40	50
胀形位置外径	16. 85	22. 85	28. 85	37.70	42.80	53.80

- d) 硅胶密封圈应平放在管件端口内,严禁使用润滑油;
- e) 把胀形后的配管插入管件时,切忌损坏密封圈或改变其平整状态;
- f) 与阀门、水嘴等管路附件连接时,在常规管件丝口处应缠麻丝或生料带。

附 录 G (规范性附录) 不锈钢卡凸式管件连接

G.1 本附录适用于不锈钢卡凸式管件连接,见图 G.1。

a) 锁紧螺帽连接

说明:

- 1---管材;
- 2---普通外螺纹;
- 3——普通内螺纹;
- 4——外螺纹直通;
- 5---锥形密封圈;
- 6---锁紧螺母;
- 7---管材凸缘环。

b) 锁紧法兰连接

说明:

- 1----管材;
- 2---锁紧法兰;
- 3---螺纹孔;
- 4----螺栓;
- 5---锥形密封圈;
- 6——法兰管件;
- 7-----凸缘环。

图 G.1 不锈钢卡凸式连接示意

GB/T 29038--2012

- G.2 薄壁不锈钢卡凸式连接前应对管口进行扩圆环,并应符合下列规定:
 - a) 应采用专用工具在管口处扩出圆环;
 - b) 扩圆环时应将推压螺母或活套法兰预先套在法兰上;
 - c) 辊压圆环时速度不应过快,圆环的圆度应均匀;
 - d) 圆环凸起曲面高度应符合规定,且不应辊压过度。
- G.3 卡凸式连接不宜使用断面为三角形的橡胶密封圈,且不得使用润滑油。
- G.4 管材插入管件应到位,然后应使用扳手将推压螺帽或活套法兰紧固螺栓与管件锁紧,锁紧后密封圈与圆环应完全密闭。
- G.5 连接完成后应检查连接处,不得产生裂纹、裂口等现象。

附 录 H (规范性附录) 不锈钢对接氩弧焊连接

H.1 本附录适用于不锈钢对接氩弧焊式连接,见图 H.1。

说明:

1---管材;

2----焊缝;

3---TIG 焊。

图 H.1 不锈钢对接氩弧焊连接示意

- H.2 对接氩弧焊式连接应按下列步骤进行:
 - a) 用钨极氩弧焊(TIG 焊),将坡口部作环状一圈的焊缝。如需作多道施焊时,也应 TIG 焊打底, 其余各层允许采用焊条电弧焊;

 - c) 焊缝应进行抛光处理。
- H.3 钢管或管件坡口时,坡口有关参数推荐值可按表 H.1 和图 H.2 规定,当钢管与管件壁厚小于 3 mm 时,允许以直角或轻微倒角替代坡口。

图 H.2 坡口图

表 H.1 坡口参数

坡口角度 β	60°~70°
间隙 b	0~2 mm
钝边 p	0~1 mm

- H.4 应根据薄壁不锈钢管子、管件的材质和钨极惰性气体保护焊焊接方法,选用相应的焊丝牌号,并满足下列规定:
 - a) 06Cr19Ni10(S30408)不锈钢,可选用奥氏体型 H0Cr21Ni10 焊丝;
 - b) 06Cr17Ni12Mo2(S31608)不锈钢,可选用奥氏体型 H0Cr19Ni12Mo2 焊丝;
 - c) 022Cr17Ni12Mo2(S31603)不锈钢,可选用奥氏体型 H00Cr19Ni12Mo2 焊丝。

附 录 I (规范性附录) 不锈钢承插氩弧焊连接

I.1 本附录适用于不锈钢承插氩弧焊式管件连接,见图 I.1。

说明:

- 1——双承直通;
- 2---不锈钢管;
- 3---TIG 焊。

图 I.1 承插氩弧焊连接示意

- I.2 承插氩弧焊式连接应按下列步骤进行:
 - a) 将不锈钢管材插入管件承口,抵住承口内轴肩后,外拉 0.5 mm~2 mm;
 - b) 用钨极氩弧焊(TIG 焊),将承口端部作环状一圈的焊缝;
 - c) 焊缝应进行抛光处理。
- I.3 当管件端口无延展边,焊接时可添加焊丝;当管件端口有延伸边,焊接连接时可不添加焊丝,以延展边替代。
- I.4 钨极氩弧焊要求小电流、快速度,其焊接工艺参数可参考表 I.1。

表 I.1 承插式管件钨极氩弧焊焊接工艺参数

	*	无脉冲焊护	· · · · · · · · · · · · · · · · · · ·		有脉冲焊接工艺参数					
管壁厚 mm	钨极直径 mm	焊接电流 A	焊接速度 mm/min	气体流量 L/min	钨极直径 mm	焊接电流 A	脉冲频率 Hz	焊接速度 mm/min	气体流量 L/min	
0.6	1.0	8~12	50~85	4~5	1.0~1.5	10~16	8~10	60~130	5~6	
0.8	1.0~1.5	12~18	60~180	4~5	1.5~2.0	18~25	8~10	100~140	5~6	
1.0	1.0~1.5	25~38	150~300	5~6	1.5~2.0	25~42	8~10	130~260	6~8	
1. 2	1.0~1.5	35~48	260~450	6~8	1.5~2.0	38~50	10~12	220~400	8~10	
1.5	1.0~2.0	45~60	400~550	8~10	2.0~2.5	45~60	10~12	360~500	10~12	

- I.5 氩弧焊宜选用手提式逆变氩弧焊/电弧焊两用机。
- I.6 氩弧焊焊接时,不锈钢管内外壁均应采取惰性气体保护。

附录J

(资料性附录)

建筑给水薄壁不锈钢管管道的沿程水头损失计算

- J.1 管道沿程水头损失可采用表 J.1 中规定的数值。
- J.2 表 J.1 中各符号及单位如下:
 - Q ——给水流量,单位为立方米每小时 (m^3/h) 或升每秒(L/s);
 - d_i ——管道的计算内径,单位为米(m);
 - i ——给水管道单位长度水头损失,单位为千帕每米(kPa/m);
 - v ——水流速度,单位为米每秒(m/s);
 - DN ——管道公称尺寸。

表 J. 1 建筑给水薄壁不锈钢管管道的沿程水头损失计算

	- 		DN	V10			Di	N15	
(Q		Ιź	系列			I	 系列	
		$d_{i}0.0$	11 10	$d_{j}0.0$	11 50	$d_{\rm j}$ 0.0	014 00	d_{i} 0.0	014 40
m³/h	L/s	v	i	υ	i	υ	i	v	i
0. 234	0.065	0.672	0.765	0.626	0.644	0.422	0.247	0.399	0.215
0. 252	0.070	0.724	0.877	0.674	0.738	0.455	0.283	0.430	0. 247
0. 272	0.076	0.781	1.010	0.728	0.850	0.491	0.326	0.464	0. 284
0. 288	0.080	0.827	1. 123	0.771	0.945	0.520	0.363	0.491	0.316
0.306	0. 085	0.879	1. 256	0.819	1.057	0.552	0.406	0.522	0.354
0.324	0,090	0.931	1. 396	0.867	1. 175	0.585	0.451	0.553	0.393
0.342	0.095	0.982	1.543	0.915	1. 299	0.617	0.498	0.584	0.434
0.360	0.100	1.034	1. 697	0.963	1. 428	0.650	0.548	0.614	0.478
0.396	0.110	1. 137	2.024	1.060	1.704	0.715	0.654	0.676	0.570
0. 432	0.120	1. 241	2. 378	1. 156	2.001	0.780	0.768	0.737	0.669
0.468	0.130	1. 344	2.757	1. 252	2. 321	0.845	0.890	0.799	0.776
0.504	0.140	1.447	3. 162	1.349	2.662	0.910	1.021	0.860	0.890
0.540	0.150	1. 551	3. 593	1. 445	3.024	0.975	1.160	0.922	1.011
0.576	0.160	1.654	4.048	1.541	3.407	1.040	1.307	0.983	1.140
0.612	0.170	1.758	4. 529	1.638	3.812	1.105	1.462	1.044	1. 275
0.648	0.180	1.861	5.034	1.734	4. 237	1.170	1.626	1.106	1.417
0.684	0.190	1.964	5.564	1.830	4.683	1. 235	1.797	1.167	1.566
0.720	0. 200	2.068	6. 118	1.926	5. 149	1.300	1.975	1. 229	1.722
0.900	0.250			2.408	7.780	1. 625	2. 985	1.536	2.602
1.080	0.300					1.950	4. 182	1.843	3.646
1.260	0.350			_	_	2. 275	5.563	2.150	4.849
1.440	0.400	-		-	_				_
1.620	0.450						_	_	
1.800	0.500			_		_	_	_	
1. 980	0.550			_			_	_	_
2. 160	0.600			_	_		_	_	_
2. 340	0.650		_					_	
2. 520	0.700	_			_			_	
2.700	0.750					_			
2. 880	0.800	_	_		_	_	_	-	_
3.060	0.850		_			_	_	_	_
3. 240	0.900		_	_	_		_		
3. 420	0.950		_		_		_		
3.600	1.000		_			_			
3. 780	1.050		_				_		
3.960	1. 100	_		_		_	_	_	

表 J. 1(续)

			· · · · · · · · · · · ·		Di	N15			
	Q				I	————— 系列			
,		d, 0. 0	15 84	d_{i} 0.0	16 00	$d_{i}0.$	016 4	d_{i} 0.0	017 84
m³/h	L/s	υ	i	υ	i	ש	i	ט	i
0.234	0.065	0.330	0.135	0.323	0.129	0.308	0.114	0.260	0.076
0.252	0.070	0.355	0.155	0.348	0.148	0.332	0.131	0.280	0.087
0. 272	0.076	0.384	0.179	0.376	0.170	0.358	0.151	0.302	0.100
0.288	0.080	0.406	0.199	0.398	0.189	0.379	0.168	0.320	0.111
0.306	0.085	0.432	0. 222	0.423	0. 212	0.403	0.188	0.340	0.125
0.324	0.090	0.457	0.247	0.448	0. 235	0.426	0.209	0.360	0.139
0.342	0.095	0.482	0.273	0.473	0.260	0.450	0. 231	0.380	0.153
0.360	0.100	0.508	0.300	0.498	0. 286	0.474	0. 254	0.400	0.168
0.396	0.110	0.558	0.358	0.547	0.341	0.521	0.302	0.440	0.201
0.432	0.120	0.609	0.421	0.597	0.401	0.568	0.355	0.480	0.236
0.468	/: 0.130	0.660	0.488	0.647	0.465	0.616	0.412	0.520	0.273
0.504	0.140	0.711	0.560	0.697	0.533	0.663	0.473	0.560	0.314
0.540	0.150	0.762	0.636	0.746	0.605	0.710	0.537	0.600	0.356
0.576	0.160	0.812	0.716	0.796	0.682	0.758	0.605	0.640	0.402
0.612	0.170	0.863	0.802	0.846	0.763	0.805	0.677	0.680	0.449
0.648	0.180	0.914	0.891	0.896	0.848	0.853	0.752	0.720	0.499
0.684	0.190	0.965	0.985	0.945	0.938	0.900	0.831	0.760	0.552
0.720	0.200	1.015	1.083	0.995	1.031	0.947	0.914	0.801	0.607
0.900	\\0.250	1. 269	1.636	1. 244	1.558	1. 184	1. 381	1.001	0.917
1.080	0.300	1. 523	2, 292	1. 493	2. 183	1. 421	1.935	1.201	1. 285
1. 260	0.350	1. 777	3.049	1.742	2. 903	1.658	2. 574	1.401	1.709
1.440	0.400	2.031	3.903	1.990	3. 717	1.895	3. 295	1.601	2. 187
1.620	0.450	_	_	2. 239	4. 621	2. 131	4.098	1.801	2.720
1.800	0.500	_					_	2.001	3.305
1.980	0.550							_	_
2.160	0.600	_	_			_			<u> </u>
2, 340	0.650				_	_		_	
2,520	0.700	—						_	_
2.700	0.750					.—	<u>—</u>		
2.880	0.800		_						_
3.060	0.850	_	_						
3. 240	0.900						<u> </u>		_
3. 420	0.950	_			_	_			
3.600	1.000			—	-				_
3. 780	1.050							_	
3,960	1.100								_

表 J. 1(续)

	<u> </u>			DN	V15			Di	N 20
(ર			ПЭ	系列			I 🤅	
		d; 0. 0	13 90	d_{i} 0.0	14 30	$d_{i}0.0$)15 74	d_{i} 0.0	017 60
m³/h	L/s	υ	i	ש	i	υ	i	υ	i
0. 234	0.065	0.429	0.256	0.405	0. 223	0.334	0.140		_
0. 252	0.070	0.462	0.293	0.436	0.255	0.360	0.160	_	_
0. 272	0.076	0.498	0.338	0.471	0.294	0.388	0.184	_	_
0. 288	0.080	0.527	0.376	0.498	0.327	0.411	0. 205	_	
0.306	0.085	0.560	0.420	0.530	0.366	0.437	0. 229	_	
0.324	0.090	0.593	0.467	0.561	0.407	0.463	0. 255	_	_
0.342	0.095	0.626	0.516	0.592	0.449	0.488	0. 282	_	
0.360	0.100	0.659	0.567	0.623	0.494	0.514	0.310		_
0.396	0.110	0.725	0.677	0.685	0.590	0.566	0.369	<u> </u>	_
0.432	0.120	0.791	0.795	0.748	0.692	0.617	0.434	_	
0.468	0, 130	0.857	0.922	0.810	0.803	0.668	0.503	_	
0.504	0.140	0.923	1.057	0.872	0.921	0.720	0.577	_	
0.540	0.150	0.989	1. 201	0.934	1.046	0.771	0.656	_	_
0.576	0.160	1.055	1. 354	0.997	1.179	0,823	0.739	0.658	0.429
0.612	0.170	1. 121	1.514	1.059	1.319	0.874	0.827	0.699	0.480
0.648	0.180	1. 187	1. 683	1. 121	1.466	0.926	0.919	0.740	0.533
0.684	0.190	1. 253	1.860	1. 184	1.620	0.977	1.015	0.781	0.589
0.720	0. 200	1. 319	2.046	1. 246	1. 782	1.028	1. 117	0.822	0.648
0.900	0. 250	1.648	3.091	1.557	2.692	1. 285	1.687	1.028	0.979
1.080	0.300	1.978	4. 331	1.869	3.772	1.543	2. 364	1. 234	1. 372
1.260	0.350	2. 308	5.760	2.180	5.017	1.800	3. 144	1.439	1.825
`1. 440	0.400		_	<u> </u>		2.057	4.025	1.645	2. 336
1.620	0.450			_	_	_		1.851	2. 905
1.800	0.500				_			2.056	3. 531
1.980	0.550					_		_	
2. 160	0.600			<u> </u>	<u> </u>	_		_	_
2. 340	0.650						-		
2. 520	0.700			Marine			_		_
2. 700	0.750					_			
2. 880	0.800					_			
3.060	0.850		_					_	
3. 240	0.900	•				_		_	
3. 420	0.950) mineral				_		_	
3. 600	1.000							-	
3. 780	1.050	-							
3.960	1.100	_	_				_	_	

表 J. 1(续)

					DN	N20			
C	ર				ΙJ	系列			
		$d_{j}0.0$	17 60	$d_{i}0.0$	18 00	$d_{i}0.0$	19 60	d_{i} 0.0	020 00
m³/h	L/s	ע	i	υ	i	υ	i	v	i
0.576	0.160	0.658	0.429	0,629	0.384	0.531	0.254	0.510	0.230
0.612	0.170	0.699	0.480	0.668	0.430	0.564	0. 284	0.541	0. 257
0.648	0.180	0.740	0.533	0.708	0.478	0.597	0.316	0.573	0. 286
0.684	0.190	0.781	0.589	0.747	0.528	0.630	0.349	0.605	0.316
0.720	0.200	0.822	0.648	0.786	0.581	0.663	0.384	0.637	0.348
0.900	0.250	1.028	0.979	0.983	0.878	0.829	0.580	0.796	0.525
1.080	0.300	1. 234	1. 372	1.180	1. 230	0.995	0.812	0.955	0.736
1.260	0.350	1.439	1.825	1. 376	1.636	1. 161	1.081	. 1. 115	0.979
1.440	0.400	1.645	2. 336	1.573,	2.094	1.326	1. 383	1. 274	1.254
1.620	0.450	1.851	2, 905	1.769	2.604	1. 492	1. 720	1.433	1.559
1.800	0.500	2.056	3. 531	1.966	3. 165	1.658	2.090	\\1.592	1.894
1.980	/ 0.550			2. 162	3. 775	1.824	∠ 2. 493	\i\ 752	2.260
2.160	// 0.600	_		_	_	1.990 /	2. 929\\	1,\911	2.654
2.340	0.650		_	_		2. 155	3. 396	2.070	3.078
2.520	0.700				_ `	- \	- 1	1 #	
2.700	0.750	_	-	: —	_	`\ _ \		+	
2.880	0.800						<u> </u>		_
3.060	0.850			· —	_	_ /			
3. 240	0.900						_	-	
3.420	0.950		_	_		<u> </u>	— ·,	<i> </i>	
3.600	\	-	_	_		- '	$\langle -7/$	TH	_
3.780	1.050		_		_		: -/	//-	
3.960	1.100	_	_	_		_	7	7 -	
4.140	1.150			-			5-19	′ –	
4.320	1. 200	_	_	_			/ -/		
4.500	1.250	_	_	_	_	-		_	
4.680	1.300	-					. —	_	
4.860	1.350			-	_	<u></u>		_	_
5.040	1.400	_						_	_
5. 220	1.450		_	. —	_	_		-	_
5.400	1.500					-			
5.580	1.550			_					
5.760	1.600								
5.940	1.650	_			-	_			_
6.120	1.700	_		_		_		_	
6.300	1.750	_	_			_		-	
6.480	1.800		_				-	_	_
6.660	1.850								
6.840	1.900				_				_
7.020	1.950	_	_		_			_	_
7.560	2.100			_		-	_		_

表 J. 1(续)

				DN	120		· · · · · · · · · · · · · · · · · · ·		Di	N 25	
	Q			II	系列				Ιį	系列	
		$d_{i}0.0$	19 80	d, 0.0	20 20	d_{i} 0.0	20 60	d_{i} 0.0	23 00	d_{i} 0.0	23 40
m³/h	L/s	υ	i	ซ	i	υ	i	ซ	i	υ	i
0.576	0.160	0.520	0.242	0.500	0.219	0.480	0.199			_	
0.612	0.170	0.552	0.270	0.531	0.245	0.510	0.223		_		-
0.648	0.180	0.585	0.301	0.562	0. 273	0.540	0.248				
0.684	0.190	0.617	0.332	0.593	0.301	0.570	0.274		_	_	
0.720	0, 200	0.650	0.365	0.624	0.331	0.600	0.301	_		-	
0.900	0.250	0.812	0.552	0.780	0.501	0.750	0.455	0.602	0.266	0.582	0.245
1.080	0.300	0.975	0.773	0.937	0.701	0.901	0.638	0.722	0.373	0.698	0.343
1. 260	0.350	1.137	1.028	1.093	0.933	1.051	0.848	0.843	0.496	0.814	0.456
1.440	0.400	1.300	1.317	1. 249	1.194	1.201	1.086	0.963	0.635	0.931	0.584
1.620	0.450	1.462	1.637	1.405	1. 485	1.351	1.350	1.084	0.789	1.047	0.726
1.800	0.500	1.625	1.989	1.561	1.805	1.501	1.640	1.204	0.959	1, 163	0.882
1.980	0.550	1.787	2.373	1.717	2. 153	1.651	1.957	1.324	1.144	1.280	1.052
2. 160	0.600	1.950	2.787	1.873	2. 529	1.801	2. 298	1.445	1.344	1.396	1.236
2.340	0.650	2.112	3. 232	2.029	2.932	1.951	2.665	1.565	1.558	1.512	1.433
2. 520	0.700	_	_			2. 101	3.057	1.686	1. 787	1.629	1.643
2. 700	0.750		_		_	_	_	1.806	2.031	1.745	1.867
2.880	0.800	L –		_		<u> </u>	_	1.926	2. 288	1.861	2.104
3.060	0.850		_			_	_	2.047	2.560	1.978	2.354
3. 240	0.900	_		_		_				2.094	2.616
3.420	0.950					-			-		
3.600	1.000		_	_	_		_			_	
3.780	1.050	_		_			_	-		_	
3.960	1.100		_			_	_				
4. 140	1.150	_	_	_	_						
4. 320	1. 200						_				
4.500	1. 250	_		_		_	_	_	_		
4.680	1.300				_		_	_			
4.860	1. 350	_				_		_			
5.040	1.400							_	_		
5. 220	1.450		_	_	_	_					
5. 400	1.500	_	_	_	_		_			_	
5. 580	1.550						_			_	
5. 760	1.600						_				
5.940	1.650										
6. 120	1. 700							_			
6. 300	1.750										
6. 480	1. 800						_	_			
6.660	1.850						_				_
6.840	1.900					_	_			_	
7. 020	1. 950		_		_	_	_	_			
7.560	2.100				_	_	_	_			

表 J. 1(续)

					Dì	N25			
(Q		Ιį	 系列			II 3	 系列	**
		d _i 0.	025 6	$d_{j}0.0$	26 00	$d_{j}0.0$	26 20	d_{i} 0.0	26 60
m³/h	L/s	υ	i	υ	i	υ	i	υ	i
0.900	0.250	0.486	0.158	0.471	0.146	0.464	0.141	0.450	0.131
1.080	0.300	0.583	0.221	0.565	0. 205	0.557	0.198	0.540	0.184
1.260	0.350	0.680	0.294	0.660	0.273	0.650	0.263	0.630	0.244
1.440	0.400	0.778	0.377	0.754	0.349	0.742	0.337	0.720	0.313
1.620	0.450	0.875	0.468	0.848	0.434	0.835	0.419	0.810	0.389
1.800	0.500	0.972	0.569	0.942	0,528	0.928	0.509	0.900	0.472
1.980	0.550	1.069	0.679	1.036	0.630	1.021	0.607	0.990	0.563
2.160	0.600	1.166	0.798	1. 131	0.740	1. 113	0.713	1.080	0.662
2.340	0.650	1. 263	0.925	1. 225	0.858	1. 206	0.826	1.170	0.768
2,520	0.700	1.361	1.061	1.319	0.984	1. 299	0.948	1.260	0.880
2.700	0.750	1. 458	1. 205	1. 413	1. 118	1.392	1.077	1.350	1.000
2.880	0.800	1.555	1. 358	1.508	1. 259	1. 485	1. 213	1.440	1.127
3.060	0.850	1.652	1.519	1.602	1. 409	1.577	1. 357	1.530	1.261
3.240	0.900	1.749	1.689	1.696	1.566	1.670	1.509	1.620	1.401
3.420	0.950	1.847	1.867	1.790	1. 731	1.763	1.667	1.710	1.549
3.600	1.000	1.944	2.052	1.884	1.903	1.856	1.833	1,800	1.703
3.780	1.050	2.041	2. 246	1.979	2.083	1.949	2.007	1.890	1.864
3.960	1.100	_		2.073	2. 270	2.041	2. 187	1.980	2.031
4.140	1.150	_	_		_			2.070	2.206
4.320	1.200	_				_	-	_	_
4.500	1.250	_	_		_	_	_		
4.680	1.300	_	_	_		-	_	_	_
4.860	1.350	_	_	_		_	_	_	_
5.040	1.400	_				_			_
5. 220	1.450	_	_	_		-	-	_	_
5.400	1.500	_	_	-					
5,580	1.550	_		_	_			_	_
5.760	1.600					_		_	
5.940	1.650		_	-		_		_	
6.120	1.700		_	_			_	_	
6.300	1.750	_	_			_			
6.480	1.800				_	_	_		_
6.660	1.850			_		_	_		
6.840	1.900	_	_				_	_	_
7.020	1.950			_		_	_		
7.560	2.100	_			_	_			_
7.920	2. 200	_			_				
8. 280	2.300	-				_			
8.640	2.400	_			<u> </u>	_			_

表 J.1(续)

					DN	N32			
(ą				Ιź	系列			
		$d_{i}0.0$	29 00	d_{i} 0.0	29 60	d, 0. 0	32 00	d, 0.0	32 60
m³/h	L/s	υ	i	υ	i	υ	i	υ	i
1.080	0.300	0.454	0.121	0.436	0.109	0.373	0.075	0.360	0.068
1. 260	0.350	0.530	0.160	0.509	0.145	0.435	0.099	0.420	0.091
1.440	0.400	0.606	0.205	0.582	0.186	0.498	0.127	0.479	0.116
1.620	0.450	0.682	0.255	0.654	0.231	0.560	0.158	0.539	0.144
1.800	0.500	0.757	0.310	0.727	0.281	0.622	0.192	0.599	0.175
1.980	0.550	0.833	0.370	0.800	0.335	0.684	0.229	0.659	0.209
2. 160	0.600	0.909	0.435	0.872	0.393	0.746	0.269	0.719	0.246
2. 340	0.650	0.985	0.504	0.945	0.456	0.809	0.312	0.779	0.285
2. 520	0.700	1.060	0.578	1.018	0.523	0.871	0.358	0.839	0.327
2.700	0.750	1.136	0.657	1.090	0.594	0.933	0.407	0.899	0.371
2, 880	0.800	1. 212	0.740	1, 163	0.670	0.995	0.458	0.959	0.419
3.060	0.850	1. 288	0.828	1. 236	0.749	1.057	0.513	1.019	0.468
3. 240	0.900	1. 363	0.920	1.309	0.833	1.120	0.570	1.079	0.520
3.420	0.950	1.439	1.017	1. 381	0.920	1. 182	0.630	1.139	0.575
3.600	1.000	1.515	1. 118	1. 454	1.012	1. 244	0.692	1.199	0.632
3.780	1.050	1.590	1. 224	1.527	1.108	1.306	0.758	1. 259	0.692
3.960	1.100	1.666	1. 334	1. 599	1. 207	1.368	0.826	1.319	0.754
4.140	1.150	1.742	1. 448	1.672	1. 311	1. 431	0.897	1.378	0.819
4. 320	1. 200	1.818	1.567	1.745	1.418	1.493	0.970	1. 438	0.886
4.500	1. 250	1.893	1.690	1.817	1.529	1.555	1.046	1.498	0.956
4. 680	1.300	1.969	1.817	1.890	1.644	1.617	1. 125	1.558	1.028
4.860	1. 350	2.045	1.948	1.963	1.763	1.679	1.206	1.618	1.102
5.040	1.400	-	_	2.036	1.886	1.742	1. 290	1.678	1.179
5. 220	1.450	-	-			1.804	1. 377	1.738	1. 258
5. 400	1.500			_	_	1.866	1.466	1.798	1.339
5. 580	1.550		_		_	1.928	1.557	1.858	1. 423
5.760	1.600	_	_		_	1.990	1.652	1.918	1.509
5.940	1.650	_	_			2,053	1.748	1.978	1.597
6. 120	1. 700			_	_	_		2.038	1.688
6.300	1.750	-	_		_			_	
6.480	1.800						_		
6.660	1.850			_					
6.840	1.900	_	_					_	
7.020	1.950					_			_
7, 560	2.100		_					_	
7. 920	2. 200				_		_	_	
8. 280	2.300		_	_		_	_	_	
8.640	2.400	_	_		-		_	_	
9.000	2.500	_							
9.360	2.600			_	_				_
9. 720	2. 700							_	

表 J. 1(续)

			DN	N32			Di	N40	
(2		ПЭ	系列			I	 系列	
		d_{i} 0.0	31 00	$d_{i}0.0$	31 60	d, 0. 0	37 00	d, 0. 0	37 60
m³/h	L/s	υ	i	υ	i	υ	i	υ	i
1.080	0.300	0.398	0.087	0.383	0.079	_	_	_	
1.260	0.350	0.464	0.116	0.447	0.106		_	_	_
1.440	0.400	0.530	0.148	0.510	0.135	_	_	_	_
1.620	0.450	0.597	0.184	0.574	0.168	_		<u> </u>	
1.800	0.500	0.663	0. 224	0.638	0.204	_	_		_
1.980	0.550	0.729	0.267	0.702	0. 244	0.512	0.113	0.496	0.104
2.160	0.600	0.795	0.314	0.765	0.286	0.558	0.133	0.541	0.123
2.340	0.650	0.862	0.364	0.829	0.332	0.605	0.154	0.586	0.142
2.520	0.700	0.928	0.418	0.893	0.380	0.651	0.176	0.631	0.163
2.700	0.750	0.994	0.475	0.957	0.432	0.698	0. 201	0.676	0.185
2.880	0.800	1.060	0.535	1.021	0.487	0.744	0. 226	0.721	0.209
3.060	0.850	1. 127	0.598	1.084	0.545	0.791	0. 253	0.766	0.234
3. 240	0.900	1. 193	0.665	1. 148	0.606	0.837	0. 281	0.811	0.260
3.420	0.950	1. 259	0.735	1. 212	0.669	0.884	0.310	0.856	0.287
3.600	1.000	1.326	0.808	1. 276	0.736	0.931	0.341	0.901	0.316
3. 780	1.050	1. 392	0.884	1.340	0.806	0.977	0.374	0.946	0.345
3.960	1.100	1.458	0.964	1.403	0.878	1.024	0.407	0.991	0.377
4. 140	1.150	1.524	1.047	1.467	0.953	1.070	0.442	1.036	0.409
4.320	1.200	1.591	1. 132	1.531	1.031	1.117	0.478	1.081	0.442
4.500	1.250	1.657	1. 221	1. 595	1.112	1.163	0.516	1.126	0.477
4.680	1.300	1.723	1.313	1.658	1.196	1.210	0.555	1.171	0.513
4.860	1.350	1.790	1.408	1.722	1. 282	1. 256	0.595	1.216	0.550
5.040	1.400	1.856	1.506	1.786	1.372	1.303	0.636	1. 261	0.588
5. 220	1.450	1.922	1.607	1.850	1.464	1.349	0.679	1.307	0.628
5.400	1.500	1.988	1.711	1.914	1.558	1.396	0.723	1.352	0.668
5.580	1.550	2.055	1. 818	1. 977	1.656	1.442	0.768	1.397	0.710
5.760	1.600	—	_	2.041	1.756	1.489	0.814	1.442	0.753
5.940	1.650		_	_	_	1.535	0.862	1.487	0.797
6, 120	1.700	_		_		1.582	0.911	1.532	0.842
6.300	1.750		_			1.628	0.961	1.577	0.889
6.480	1.800		-	<u> </u>	_	1.675	1.013	1.622	0.936
6.660	1.850		-			1.721	1.065	1.667	0.985
6.840	1.900	_		_		1.768	1.119	1.712	1.035
7. 020	1.950		_	_		1.815	1. 174	1.757	1.086
7.560	2.100	_		_	_	1.954	1.347	1.892	1. 245
7.920	2.200	_	_		_	2.047	1.468	1.982	1.357
8. 280	2.300					_	_	2.072	1.474
8.640	2.400					_	_	_	
9.000	2.500			_		_			_
9.360	2.600			-	-		_	_	
9. 720	2, 700								

表 J. 1(续)

			DN	N40			Dì	N40	
(ર		IJ	系列			ПЭ	系列	
		d_{j} 0.0	39 00	$d_{j}0.0$	39 60	$d_{j}0.03$	39 700	d_{i} 0.0	40 30
m³/h	L/s	υ	i	υ	i	ซ	i	ט	i
1.980	0.550	0.461	0.087	0.447	0.081	0.445	0.080	0.431	0.075
2.160	0.600	0.503	0.103	0.487	0.095	0.485	0.094	0.471	0.088
2. 340	0.650	0.544	0.119	0.528	0.111	0.525	0.109	0.510	0.101
2. 520	0.700	0.586	0.137	0.569	0.127	0.566	0.125	0.549	0.116
2.700	0.750	0.628	0.155	0.609	0.144	0.606	0.142	0.588	0.132
2.880	0.800	0.670	0.175	0.650	0.162	0.647	0.160	0.627	0.149
3.060	0.850	0.712	0.196	0.690	0.182	0.687	0.179	0.667	0.167
3. 240	0.900	0.754	0.217	0.731	0.202	0.727	0.199	0.706	0.185
3. 420	0.950	0.796	0.240	0.772	0. 223	0.768	0.220	0.745	0. 205
3.600	1.000	0.838	0.264	0.812	0. 245	0.808	0.242	0.784	0, 225
3.780	1.050	0.879	0.289	0.853	0.268	0.849	0. 265	0.824	0.246
3,960	1.100	0.921	0.315	0.894	0.293	0.889	0. 289	0.863	0.269
4. 140	1.150	0.963	0.342	0.934	0.318	0.929	0.314	0.902	0.292
4.320	1. 200	1.005	0.370	0.975	0.344	0.970	0.339	0.941	0.316
4.500	1. 250	1.047	0.399	1.015	0.371	1.010	0.366	0.980	0.340
4.680	1.300	1.089	0.429	1.056	0.398	1.051	0.394	1.020	0.366
4.860	1. 350	1.131	0.460	1.097	0.427	1.091	0.422	1.059	0.392
5.040	1.400	1.173	0.492	1. 137	0.457	1.132	0.451	1.098	0.420
5. 220	1.450	1. 214	0.525	1. 178	0.488	1. 172	0.482	1. 137	0.448
5. 400	1.500	1.256	0.559	1. 219	0.519	1. 212	0.513	1. 177	0.477
5. 580	1.550	1. 298	0.594	1. 259	0.552	1. 253	0.545	1. 216	0.507
5.760	1.600	1.340	0.630	1.300	0.585	1. 293	0.578	1. 255	0.537
5. 940	1.650	1. 382	0.667	1.340	0.619	1.334	0.612	1. 294	0.569
6. 120	1.700	1. 424	0.705	1. 381	0.655	1. 374	0.647	1. 333	0.601
6.300	1.750	1.466	0.744	1. 422	0.691	1. 414	0.682	1. 373	0.634
6. 480	1. 800	1.508	0.784	1.462	0.728	1. 455	0.719	1.412	0.668
6.660	1.850	1.549	0.824	1.503	0.765	1. 495	0.756	1. 451	0.703
6.840	1.900	1,591	0.866	1.543	0.804	1.536	0.794	1.490	0.738
7.020	1.950	1. 633	0.909	1.584	0.844	1.576	0.833	1.530	0.775
7.560	2.100	1.759	1.042	1.706	0.968	1.697	0.956	1.647	0.889
7. 920	2. 200	1.843	1. 136	1. 787	1.055	1. 778	1.042	1.726	0.968
8. 280	2.300	1.926	1. 233	1.868	1. 145	1.859	1. 131	1.804	1.051
8.640	2.400	2.010	1.334	1.950	1. 239	1.940	1, 224	1.882	1. 137
9.000	2.500			2. 031	1. 336	2.021	1.320	1.961	1. 227
9.360	2.600	_			-	_	_	2. 039	1.319
9. 720	2.700	_		_					
10.080	2.800	-	_		_	_		_	_
11. 160	3. 100			_			_	_	
11.520	3. 200		_			_			_
11.880	3. 300	_	_			_	_		
12. 240	3.400			_	_		_	_	_

表 J.1(续)

					Dì	N 50				
(Q				I	 系列				
		d_{i} 0.0	047 80	$d_{i}0.0$	48 40	$d_{\rm j}$ 0.0	51 00	d _i 0.051 60		
m³/h	L/s	ש	i	v	i	ט	i	υ	i	
2.880	0.800	0.446	0.065	0.435	0.061	0.392	0.047	0.383	0.045	
3.060	0.850	0.474	0.073	0.462	0.068	0.416	0.053	0.407	0.050	
3. 240	0.900	0.502	0.081	0.489	0.076	0.441	0.059	0.431	0.056	
3.420	0.950	0.530	0.089	0.517	0.084	0.465	0.065	0.455	0.061	
3.600	1.000	0.558	0.098	0.544	0.092	0.490	0.072	0.478	0.068	
3.780	1.050	0.585	0.107	0.571	0.101	0.514	0.078	0.502	0.074	
3.960	1.100	0.613	0.117	0.598	0.110	0.539	0.085	0.526	0.081	
4.140	1.150	0.641	0.127	0.625	0.120	0.563	0.093	0.550	0.088	
4.320	1.200	0.669	0.137	0.653	0.129	0.588	0.100	0.574	0.095	
4.500	1.250	0.697	0.148	0.680	0.139	0.612	0.108	0.598	0.102	
4.680	1.300	0.725	0.159	0.707	0.150	0.637	0.116	0.622	0.110	
4.860	1.350	0.753	0.171	0.734	0.161	0.661	0.125	0.646	0.118	
5.040	1.400	0.781	0. 183	0.761	0.172	0.686	0.133	0.670	0.126	
5.220	1.450	0.808	0.195	0.789	0.184	0.710	0.142	0.694	0.134	
5.400	1.500	0.836	0.208	0.816	0.195	0.735	0.151	0.718	0.143	
5.580	1.550	0.864	0. 221	0.843	0. 208	0.759	0.161	0.742	0.152	
5.760	1.600	0.892	0. 234	0.870	0. 220	0.784	0.171	0.766	0.161	
5.940	1.650	0.920	0.248	0.897	0. 233	0.808	0.181	0.789	0.171	
6.120	1.700	0.948	0.262	0.924	0.246	0.833	0.191	0.813	0.180	
6.300	1.750	0.976	0. 276	0.952	0.260	0.857	0. 201	0.837	0.190	
6.480	1.800	1.004	0. 291	0.979	0. 274	0.882	0.212	0.861	0.200	
6.660	1.850	1.031	0.306	1.006	0. 288	0.906	0. 223	0.885	0.211	
6.840	1.900	1.059	0.322	1.033	0.303	0.931	0.235	0.909	0. 222	
7.020	1.950	1.087	0.337	1.060	0.318	0.955	0.246	0.933	0.232	
7.560	2.100	1. 171	0.387	1.142	0.364	1.029	0. 282	1.005	0.267	
7.920	2. 200	1. 227	0.422	1. 196	0.397	1.077	0.308	1.053	0.291	
8.280	2.300	1. 282	0.458	1, 251	0.431	1. 126	0. 334	1.100	0.315	
8.640	2.400	1. 338	0.495	1.305	0.466	1. 175	0.361	1.148	0.341	
9.000	2.500	1. 394	0.534	1.360	0.503	1. 224	0.390	1. 196	0.368	
9.360	2.600	1. 450	0.574	1. 414	0.541	1. 273	0.419	1. 244	0.396	
9.720	2.700	1.505	0.616	1. 468	0.580	1. 322	0.449	1. 292	0.424	
10.080	2.800	1.561	0.659	1. 523	0.620	1. 371	0.481	1.340	0.454	
11.160	3. 100	1. 728	0. 795	1. 686	0.749	1.518	0.580	1.483	0.548	
11. 520	3. 200	1.784	0.844	1.740	0.794	1, 567	0.615	1.531	0.581	
11.880	3.300	1.840	0.893	1. 795	0.840	1.616	0.651	1.579	0.615	
12. 240	3.400	1.896	0.944	1.849	0.888	1.665	0.688	1.627	0.650	
12.600	3,500	1. 951	0.996	1. 903	0.937	1.714	0.726	1.675	0.686	
12. 960	3.600	2.007	1.049	1. 958	0.987	1.763	0. 765	1.722	0.723	
13. 320	3. 700			2.012	1.038	1.812	0.805	1.770	0.760	
13. 680	3.800		_			1.861	0.846	1.818	0.799	
14.040	3.900	_			-	1. 910	0. 887	1.866	0.838	
14. 760	4, 100		_			2.008	0.973	1.962	0.919	
15. 120	4. 200					2.057	1.018	2.009	0.961	

表 J. 1(续)

DN50						DN65						
Ó	ર		ΠA	系列		I系列				Ⅱ系列		
		d _i 0.045 60		$d_{j}0.0$	d _i 0.046 20		d _j 0.060 30		d, 0. 060 50		d _i 0.057 30	
m³/h	L/s	v	i	v	i	ש	i	υ	i	υ	i	
2.880	0.800	0.490	0.082	0.477	0.077		_			_	_	
3.060	0.850	0.521	0.091	0.507	0.086			_		_	_	
3. 240	0.900	0.551	0.102	0.537	0.095		_	_	_	_	_	
3. 420	0.950	0.582	0.112	0.567	0.105	_	_		_			
3.600	1.000	0.613	0.123	0.597	0.116	_	_	_			_	
3. 780	1.050	0.643	0.135	0.627	0.127	_	_		_	_	_	
3.960	1. 100	0.674	0.147	0.657	0.138	0.385	0.038	0.383	0.037	0.427	0.048	
4. 140	1. 150	0.705	0.160	0.686	0.150	0.403	0.041	0.400	0.040	0.446	0.053	
4. 320	1. 200	0.735	0.173	0.716	0.162	0.420	0.044	0.418	0.044	0.466	0.057	
4.500	1. 250	0.766	0.186	0.746	0.175	0.438	0.048	0.435	0.047	0.485	0.061	
4.680	1. 300	0.796	0.200	0.776	0.188	0.455	0.051	0.452	0.051	0.504	0.066	
4.860	1.350	0.827	0.215	0.806	0. 202	0.473	0.055	0.470	0.054	0.524	0.07	
5.040	1.400	0.858	0.230	0.836	0.216	0.490	0.059	0.487	0.058	0.543	0.076	
5. 220	1.450	0.888	0.245	0.865	0.230	0.508	0.063	0.505	0.062	0.563	0.08	
5. 400	1.500	0.919	0.261	0.895	0.245	0.526	0.067	0.522	0.066	0.582	0.08	
5. 580	1.550	0.950	0.278	0.925	0.260	0.543	0.071	0.539	0.070	0.601	0.09	
5. 760	1.600	0.980	0.294	0.955	0. 276	0.561	0.075	0.557	0.074	0.621	0.097	
5.940	1.650	1.011	0.312	0.985	0.292	0.578	0.080	0.574	0.079	0.640	0.10	
6. 120	1.700	1.041	0.329	1.015	0.309	0.596	0.084	0.592	0.083	0,660	0.10	
6.300	1.750	1.072	0.347	1.044	0.326	0.613	0.089	0.609	0.088	0.679	0.11	
6.480	1.800	1.103	0.366	1.074	0.343	0.631	0.094	0.626	0.092	0.698	0.12	
6.660	1.850	1.133	0.385	1.104	0.361	0.648	0.099	0.644	0.097	0.718	0.12	
6.840	1.900	1.164	0.405	1.134	0.380	0.666	0.104	0.661	0. 102	0.737	0.13	
7. 020	1.950	1.195	0.424	1.164	0.398	0.683	0.109	0.679	0. 107	0.757	0.14	
7.560	2. 100	1. 287	0.487	1. 253	0.457	0.736	0.125	0.731	0.123	0.815	0.16	
7. 920	2, 200	1.348	0.531	1.313	0.498	0.771	0.136	0.766	0.134	0.854	0.17	
8. 280	2. 300	1.409	0.576	1.373	0.540	0.806	0.148	0.800	0.145	0.892	0.18	
8. 640	2. 400	1.470	0.623	1. 432	0.585	0.841	0.160	0.835	0.157	0.931	0. 20	
9. 000	2. 500	1.532	0.672	1. 492	0.631	0.876	0.172	0.870	0.170	0.970	0. 22	
9.360	2. 600	1.593	0.723	1.552	0.678	0.911	0.185	0.905	0. 182	1.009	0. 23	
9.720	2. 700	1.654	0.775	1. 611	0.727	0.946	0.199	0.940	0.196	1.048	0. 25	
10.080	2. 800	1.715	0.829	1. 671	0.778	0. 981	0.213	0.974	0. 209	1.086	0. 27	
11. 160	3. 100	1.899	1.001	1.850	0.939	1.086	0.257	1.079	0. 253	1. 203	0. 32	
11.520	3. 200	1.960	1.061	1. 910	0.996	1. 121	0.272	1.114	0. 268	1. 242	0.34	
11.880	3. 300	2.022	1. 123	1.970	1.054	1. 156	0.288	1.149	0. 283	1. 280	0.36	
12. 240	3. 400			2.029	1. 114	1. 191	0.304	1.183	0.300	1.319	0.390	

表 J. 1(续)

			DN	N 50	· · · · · · · · · · · · · · · · · · ·			Dì	N65		
(ą		ΠĀ	系列		I系列				Ⅱ系列	
		$d_{\rm i}$ 0.045 60 $d_{\rm i}$ 0.046 20			d_{i} 0.0	060 30	d _i 0.060 50		d _i 0.057 30		
m³/h	L/s	υ	i	υ	i	υ	i	υ	i	ש	i
12.600	3.500	_	_	_		1. 226	0.321	1.218	0.316	1.358	0.412
12.960	3.600	_	_	_		1. 261	0.338	1. 253	0.333	1.397	0.434
13.320	3.700	_		_	_	1. 296	0.356	1. 288	0.350	1.436	0.456
13.680	3.800	_		_	-	1.331	0.374	1. 323	0.368	1.474	0.479
14.040	3.900	_		_	_	1.366	0.392	1.357	0.386	1.513	0.503
14.760	4.100				_	1. 436	0.430	1. 427	0.424	1.591	0.552
15. 120	4.200	_				1. 471	0.450	1.462	0.443	1.630	0.577
15. 480	4.300		_			1.506	0.470	1.497	0.463	1.668	0.603
15. 840	4.400				_	1.542	0.490	1.531	0.483	1.707	0.629
16. 200	4.500	_	_			1. 577	0.511	1.566	0.503	1.746	0.656
16.560	4.600	_		_	_	1.612	0.533	1.601	0.524	1.785	0.683
16. 920	4.700	_				1.647	0.554	1.636	0.545	1.824	0.710
17. 280	4.800	_			_	1.682	0.576	1.671	0.567	1.862	0.739
17.640	4.900	_				1.717	0.599	1.705	0.589	1.901	0.767
18.000	5.000	_	_	_		1. 752	0.621	1.740	0.611	1.940	0.797
18.360	5.100					1. 787	0.645	1.775	0.634	1.979	0.826
18. 720	5.200	-		_		1.822	0.668	1.810	0.657	2.018	0.857
19.080	5.300			_	_	1.857	0.692	1.845	0.681	_	
19. 440	√ 5.400		_			1.892	0.716	1.879	0.705	_	
19.800	5.500	· —				1.927	0.741	1.914	0.729		<u>-</u>
20.160	5.600					1.962	0.766	1.949	0.754	_	_
20.520	5.700				_	1.997	0.792	1.984	0.779		
20.880	5.800		_	_		2.032	0.818	2.019	0.805		
	· · · · · · · · · · · · · · · · · · ·			DN	180				DN	1100	
G	Q			Ιź	系列		-		IJ	系列	
:		$d_{i}0.0$	84 90	$d_{i}0.0$	72 10	$d_{i}0.0$	73 10	$d_{j}0.0$	97 60	d_{i} 0. 1	04 00
m³/h	L/s	υ	i	v	i	υ	i	ש	i	υ	i
3.960	1.100	0.371	0.024	0.515	0.052	0.501	0.049		_		_
4.140	1.150	0.389	0.026	0.539	0.057	0.524	0.053	_		_	_
4. 320	1, 200	0.406	0.028	0.564	0.062	0.548	0.058		_	_	_
4.500	1. 250	0.424	0.030	0.588	0.067	0.572	0.063			_	-
4.680	1.300	0.442	0.033	0.613	0.072	0.596	0.068		_		
4.860	1.350	0.460	0.035	0.637	0.078	0.620	0.073	_	_		_
5.040	1.400	0.477	0.038	0, 662	0.083	0. 644	0.078		_		
5. 220	1.450	0.495	0.040	0.686	0.089	0.668	0.083	_			

表 J. 1(续)

				DN	180	· ·			DN	V100		
(Q	I系列						I 系列				
		d_{j} 0.0	84 90	d _i 0.072 10		d _i 0.073 10		d _i 0.097 60		d _i 0.104 00		
m³/h	L/s	υ	i	ซ	i	ט	i	υ	i	ט	i	
5.400	1.500	0.548	0.048	0.760	0.107	0.739	0.100	_	_	_	_	
5.580	1.550	0.566	0.051	0.784	0.114	0.763	0.107	_	_	_		
5.760	1.600	0.583	0.054	0.809	0.121	0.787	0.113		_			
5.940	1.650	0.601	0.058	0.833	0.127	0.811	0.119	_	_	_		
6. 120	1.700	0.619	0.061	0.858	0.135	0.834	0.126	_	_	_		
6.300	1.750	0.636	0.064	0.882	0.142	0.858	0.133		_		_	
6.480	1.800	0.654	0.067	0.907	0.149	0.882	0.139			_	_	
6.660	1.850	0.672	0.071	0.931	0.157	0.906	0.146	_	_	_		
6.840	1.900	0.689	0.074	0.956	0.164	0.930	0.154	_	_			
7.020	1.950	0.725	0.081	1.005	0.180	0.977	0.169			_		
7.560	2. 100	0.742	0.085	1.029	0.188	1.001	0.176	_				
7.920	2. 200	0.760	0.089	1.054	0.197	1.025	0.184	_	_	_		
8. 280	2.300	0.778	0.093	1.078	0. 205	1.049	0.192	_		_	_	
8.640	2. 400	0.795	0.097	1. 103	0.214	1.073	0.200			_	_	
9.000	2.500	0.813	0.101	1. 127	0. 223	1.097	0.209	_	_	_	_	
9.360	2.600	0.831	0.105	1. 152	0. 232	1.120	0.217		· Santonino	_		
9. 720	2. 700	0.848	0.109	1. 176	0.241	1.144	0.226	—		_		
10.080	2.800	0.866	0.251	1. 201	0.251	1.168	0.234					
11.160	3. 100	0.884	0.260	1. 225	0.260	1. 192	0.243	-	_			
11.520	3, 200	0.000	0.000	0.000	0.000	0.000	0.000	_				
11.880	3.300	0.000	0.000	0.000	0.000	0.000	0.000	_		_		
12. 240	3.400	0.000	0.000	0.000	0.000	0.000	0.000	_	_	_		
12.600	3.500	0.000	0.000	0,000	0.000	0.000	0.000	_	_	_		
12.960	3.600	0.000	0.000	0.000	0.000	0.000	0.000			_		
13.320	3. 700	0.000	0.000	0.000	0.000	0.000	0.000	_		_		
13.680	3.800	0.000	0.000	0.000	0.000	0.000	0.000	_		_	_	
14.040	3. 900	0.000	0.000	0.000	0.000	0.000	0.000		_			
14.760	4. 100	0.000	0.000	0.000	0.000	0.000	0.000	_				
15. 120	4. 200	0.000	0.000	0.000	0.000	0.000	0.000	_	_		_	
15.480	4.300	0.000	0.000	0.000	0.000	0.000	0.000	_	_			
15. 840	4. 400	0.000	0.000	0.000	0.000	0.000	0.000	_	_	_	_	
16. 200	4. 500	0.000	0.000	0.000	0.000	0.000	0.000		. —	_		
16.560	4.600	0.000	0.000	0.000	0.000	0.000	0.000		_			
16, 920	4. 700	0.000	0.000	0.000	0.000	0.000	0.000	_		_	_	

表 J. 1(续)

				DN	180				DN	100	
(Q			Ιź	I系列						
		$d_{i}0.0$	84 90	d _i 0.072 10		d _i 0.073 10		d _i 0.097 60		d _i 0. 104 00	
m³/h	L/s	υ	i	ซ	i	ซ	i	v	i	ซ	i
17. 280	4.800	0.000	0.000	0.000	0.000	0.000	0.000		_	_	
17.640	4.900	0.000	0.000	0.000	0.000	0.000	0.000				
18.000	5.000	0.000	0.000	0.000	0.000	0.000	0.000				
18.360	5.100	1. 219	0.472	1.691	0.472	1.645	0.442	_		_	_
18.720	5.200	1. 237	0.485	1. 715	0.485	1.669	0.453		_		_
19.080	5.300	1. 255	0.498	1.740	0.498	1.693	0.466				
19.440	5.400	1. 272	0.511	1.764	0.511	1.716	0.478			_	_
19.800	5.500	1.290	0.524	1.789	0.524	1.740	0.490		_		
20.160	5.600	1.308	0.537	1.813	0.537	1.764	0.503			_	_
20.520	5.700	1. 325	0.551	1.838	0.551	1. 788	0.515				
20.880	5.800	1.343	0.565	1.862	0.565	1.812	0.528				
21. 240	5.900	1.361	0.578	1.887	0.578	1.836	0.541			-	
21.600	6.000	1.379	0.592	1.911	0.592	1.859	0.554	0.802	0.083	0.707	0.061
21.960	6.100	1. 432	0.635	1.985	0.635	1. 931	0.594	0.816	0.086	0.718	0.063
22. 320	6.200	1.449	0.650	2.009	0.650	1.955	0.608	0.829	0.089	0.730	0.065
22. 680	6.300	1.467	0.665	_		1.979	0.621	0.843	0.091	0.742	0.067
23.040	6.400	1. 485	0.679		_	2.003	0.635	0.856	0.094	0.754	0.069
23. 400	6.500	1.502	0.695	_	_	_	_	0.869	0.097	0.766	0.071
23.760	6.600	1.520	0.710	_	_	-	_	0.883	0.100	0.777	0.073
24. 120	6.700	1.538	0.725					0.896	0.102	0.789	0.075
24. 480	6.800	1.555	0.741					0.909	0.105	0.801	0.077
24.840	6.900	1.573	0.756	_		_		0.923	0.108	0.813	0.079
25. 200	7.000	1.591	0.772		_		_	0.936	0.111	0.824	0.081
25.560	7.100					_	_	0.949	0.114	0.836	0.084
25.920	7.200					_	_	0.963	0.117	0.848	0.086
26. 280	7.300	_		_	_	_	_	0.976	0.120	0.860	0.088
26.640	7.400				_	_	_	0.990	0.123	0.872	0.090
27.000	7.500					_		1.003	0.126	0.883	0.093
27.360	7.600	_	_					1.016	0.129	0.895	0.095
27.720	7.700				_	_	_	1.030	0.132	0.907	0.097
28.080	7.800	_	_		_		_	1.043	0.136	0.919	0.099
29. 160	8.100		_					1.083	0. 145	0.954	0.107
29.520	8.200	_	_	_	<u> </u>			1.097	0.149	0.966	0.109
29.880	8.300				_	-	_	1.110	0.152	0.978	0.112
30. 240	8.400						_	1. 123	0. 155	0.989	0.114
30.600	8.500	_	_	_	_	_		1. 137	0.159	1.001	0.117
30.960	8.600	_	_	_	_	_		1. 150	0.162	1.013	0.119
31. 320	8.700	_	_	_	_	_		1.163	0.166	1.025	0.122
31.680	8.800			-	_	_	_	1.177	0.169	1.036	0.124

表 J. 1(续)

			DN	100	-	DN	125	DN150				
(Q		Ι¾	系列		I系列		I系列				
		$d_{\rm j}$ 0.097 60 $d_{\rm j}$ 0.10			.04 00	4 00 d _i 0. 129			. 153	d _i 0. 156		
m³/h	L/s	υ	i	υ	i	υ	i	υ	i	ש	i	
32.040	8. 900	1.190	0.173	1.048	0.127							
32.400	9.000	1.204	0.177	1.060	0.130							
32.760	9. 100	1.217	0.180	1.072	0.132	0.697	0.046	0.495	0.020	0.476	0.018	
33. 120	9. 200	1.230	0.184	1.084	0.135	0.704	0.047	0.501	0.021	0.482	0.019	
33. 480	9. 300	1.244	0.188	1.095	0.138	0.712	0.048	0.506	0.021	0.487	0.019	
33.840	9. 400	1.257	0.191	1. 107	0.141	0.720	0.049	0.512	0.021	0.492	0.020	
34. 200	9. 500	1.270	0.195	1, 119	0.143	0.727	0.050	0.517	0.022	0.497	0.020	
34.560	9.600	1.284	0.199	1. 131	0.146	0.735	0.051	0.522	0.022	0.503	0.020	
34. 920	9. 700	1.297	0.203	1.142	0.149	0.743	0.052	0.528	0.023	0.508	0.021	
35. 280	9. 800	1.311	0.207	1. 154	0.152	0.750	0.053	0.533	0.023	0.513	0.021	
35.640	9. 900	1.324	0.211	1.166	0.155	0.758	0.054	0.539	0.024	0.518	0.021	
36.000	10.000	1.337	0, 215	1, 178	0.158	0.766	0.055	0.544	0.024	0.523	0.022	
36.900	10. 250	1.371	0.225	1. 207	0.165	0.785	0.058	0.558	0.025	0.537	0.023	
37.800	10.500	1.404	0.235	1. 237	0.172	0.804	0.060	0.571	0.026	0.550	0.024	
39.600	11.000	1.471	0.256	1. 296	0.188	0.842	0.066	0.599	0.029	0.576	0.026	
40.500	11. 250	1.504	0.267	1. 325	0.196	0.861	0.069	0.612	0.030	0.589	0.027	
41. 400	11.500	1.538	0.278	1.354	0.204	0.880	0.071	0.626	0.031	0.602	0.028	
42.300	11. 750	1.571	0.289	1. 384	0.212	0.899	0.074	0.639	0.032	0.615	0.029	
43. 200	12.000	1.605	0.301	1.413	0. 221	0.919	0.077	0.653	0.034	0.628	0.031	
44.100	12. 250	1.638	0.312	1.443	0.229	0.938	0.080	0.667	0.035	0.641	0.032	
45.000	12.500	1.672	0.324	1. 472	0. 238	0.957	0.083	0.680	0.036	0.654	0.033	
45.900	12. 750	1.705	0.336	1.502	0.247	0.976	0.086	0.694	0.038	0.667	0.034	
46.800	13,000	1. 738	0.349	1. 531	0. 256	0.995	0.090	0.707	0.039	0.680	0.036	
47.700	13. 250	1.772	0.361	1. 561	0.265	1.014	0.093	0.721	0.040	0.694	0.037	
48.600	13.500	1.805	0.374	1.590	0. 275	1.033	0.096	0.735	0.042	0.707	0.038	
49.500	13. 750	1.839	0.387	1.619	0. 284	1.053	0.099	0.748	0.043	0.720	0.039	
50.400	14. 000	1.872	0.400	1.649	0. 294	1.072	0.103	0.762	0.045	0.733	0.041	
51. 300	14. 250	1.906	0.413	1. 678	0.303	1.091	0.106	0.775	0.046	0.746	0.042	
52, 200	14. 500	1.939	0.427	1. 708	0.313	1.110	0.110	0.789	0.048	0.759	0.043	
53. 100	14.750	1.973	0.441	1. 737	0.323	1. 129	0.113	0.803	0.049	0.772	0.045	
54.000	15.000	2.006	0.455	1. 767	0.334	1.148	0.117	0.816	0.051	0. 785	0.046	
55. 800	15. 500	_		1.826	0.354	1. 187	0.124	0.843	0.054	0.811	0.049	
57.600	16.000		_	1. 884	0.376	1. 225	0.132	0.871	0.057	0.838	0.052	
59.400	16.500	_	_	1.943	0.398	1. 263	0.139	0.898	0.061	0.864	0. 055	
61. 200	17.000	_	_	2.002	0.421	1.301	0.147	0.925	0.064	0.890	0.058	

表 J. 1(续)

11 11		DN	125	DN150					
·	Q	ΙÆ	系列	I系列					
		d_{j} 0.	129	d_{i} 0	. 153	d_{j} 0.	156		
m³/h	L/s	v	i	υ	i	υ	i		
63.000	17.500	1.340	0.155	0.952	0.068	0.916	0.062		
64.800	18.000	1.378	0.164	0.980	0.071	0.942	0.065		
66.600	18.500	1.416	0.172	1.007	0.075	0.968	0.068		
68.400	19.000	1.454	0.181	1.034	0.079	0.995	0.072		
70.200	19.500	1.493	0.190	1.061	0.083	1.021	0.075		
72.000	20.000	1.531	0.199	1.088	0.087	1.047	0.079		
73.800	20.500	1.569	0. 208	1, 116	0.091	1.073	0.083		
75.600	21.000	1.608	0. 218	1.143	0.095	1.099	0.086		
77.400	21.500	1.646	0. 227	1.170	0.099	1. 125	0.090		
79.200	22.000	1.684	0. 237	1. 197	0.103	1. 152	0.094		
81.000	22.500	1.722	0. 247	1. 224	0.108	1. 178	0.098		
82.800	23.000	1.761	0. 258	1. 252	0.112	1. 204	0.102		
84.600	23.500	1.799	0.268	1. 279	0.117	1. 230	0.106		
88. 200	24.500	1.875	0. 290	1.333	0.126	1. 282	0.115		
90.000	25.000	1.914	0.301	1.360	0.131	1.309	0.119		
91.800	25.500	1.952	0.312	1.388	0.136	1. 335	0.124		
93.600	26.000	1.990	0.323	1.415	0.141	1.361	0.128		
95.400	26.500	2.029	0.335	1.442	0.146	1. 387	0.133		
97. 200	27.000		_	1.469	0.151	1. 413	0.137		
99.000	27.500	_	_	1.497	0.156	1.440	0.142		
100.800	28.000	_	_	1.524	0.162	1.466	0.147		
109.800	30.500	_		1.660	0.189	1.597	0.172		
111.600	31.000	_	_	1.687	0.195	1.623	0.177		
113. 400	31.500			1.714	0.201	1, 649	0.183		
115. 200	32.000	-		1.741	0.207	1.675	0.188		
117.000	32.500			1.769	0. 213	1.701	0.194		
118.800	33.000			1.796	0. 219	1.727	0.199		
120.600	33.500		-	1.823	0. 225	1.754	0. 205		
122. 400	34.000		_	1.850	0. 231	1.780	0.210		
124. 200	34.500			1.877	0. 238	1.806	0.216		
126.000	35.000			1.905	0. 244	1. 832	0.222		
127.800	35.500		_	1.932	0. 251	1. 858	0.228		
129.600	36.000	-	_	1.959	0. 257	1. 884	0.234		
131. 400	36.500			1.986	0.264	1. 911	0.240		
133. 200	37.000	—	_	2.013	0. 270	1. 937	0.246		
135.000	37.500	_	_			1.963	0.252		
136.800	38.000		_			1. 989	0.259		
138.600	38.500					2.015	0.265		

中 华 人 民 共 和 国 国 家 标 准 **薄壁不锈钢管道技术规范**

GB/T 29038-2012

中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100013) 北京市西城区三里河北街16号(100045)

网址 www.spc.net.cn 总编室:(010)64275323 发行中心:(010)51780235 读者服务部:(010)68523946 中国标准出版社秦皇岛印刷厂印刷 各地新华书店经销

开本 880×1230 1/16 印张 2.75 字数 71 千字 2013年6月第一版 2013年6月第一次印刷

书号: 155066 • 1-47060 定价 39.00 元

如有印装差错 由本社发行中心调换 版权专有 侵权必究 举报电话:(010)68510107

互配金属制品 (广东) 有限公司