

Algorithms: Design and Analysis, Part II

Approximation Algorithms for NP-Complete Problems

A Dynamic Programming Heuristic for Knapsack

Arbitrarily Good Approximation

Goal: For a user-specified parameter $\epsilon>0$ (e.g., $\epsilon=0.01$) guarantee a $(1-\epsilon)$ -approximation.

Catch: Running time will increase as ϵ decreases. (i.e., algorithm exports a running time vs. accuracy trade-off).

[Best-case scenario for NP-complete problems]

The Approach: Rounding Item Values

High-level idea: Exactly solve a slightly incorrect, but easier, knapsack instance.

Recall: If the w_i 's and W are integers, can solve the knapsack problem via dynamic programming in O(nW) time.

Alternative: If v_i 's are integers, can solve knapsack via dynamic programming in $O(n^2v_{\text{max}})$ time, where $v_{\text{max}} = \max_i \{v_i\}$. (See separate video)

Upshot: If all v_i 's are small integers (polynomial in n) then we already know a poly-time algorithm.

Plan: Throw out lower-order bits of the v_i 's!

A Dynamic Programming Heuristic

Step 1 of algorithm:

```
Round each v_i down to the nearest multiple of m [larger m \Rightarrow throw out more info \Rightarrow less accuracy] [Where m depends on \epsilon, exact value to be determined later]
```

Divide the results by m to get \hat{v}_i 's (integers). (i.e., $\hat{v}_i = \lfloor \frac{v_i}{m} \rfloor$)

Step 2 of algorithm: Use dynamic programming to solve the knapsack instance with values $\hat{v}_1, \ldots, \hat{v}_n$, sizes w_1, \ldots, w_n , capacity W.

Running time = $O(n^2 \max_i \hat{v}_i)$

Note: Computes a feasible solution to the original Knapsack instance.