МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Машинное обучение»

Студенты гр. 6304	Тимофеев А.А.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2020

Цель работы

Ознакомиться с методами предобработки данных из библиотеки Scikit Learn

Ход работы

Загрузка данных

- 1. Был создан датафрейм Pandas на основе загруженного датасета (https://www.kaggle.com/andrewmvd/heart-failure-clinical-data).
- 2. Из датафрейма были исключены следующие признаки: anaemia, diabetes, high blood pressure, sex, smoking, time, DEATH EVENT.

	age	creatinine_phosphokinase	ejection_fraction	platelets	serum_creatinine	serum_sodium
count	299.000000	299.000000	299.000000	299.000000	299.00000	299.000000
mean	60.833893	581.839465	38.083612	263358.029264	1.39388	136.625418
std	11.894809	970.287881	11.834841	97804.236869	1.03451	4.412477
min	40.000000	23.000000	14.000000	25100.000000	0.50000	113.000000
25%	51.000000	116.500000	30.000000	212500.000000	0.90000	134.000000
50%	60.000000	250.000000	38.000000	262000.000000	1.10000	137.000000
75%	70.000000	582.000000	45.000000	303500.000000	1.40000	140.000000
max	95.000000	7861.000000	80.000000	850000.000000	9.40000	148.000000

Рисунок 1 – Описание полученного датафрейма

3. Были построены гистограммы признаков, определены диапазоны значений для каждого признака, а также максимальные значения и промежутки, в которых они наблюдались.

Рисунок 2 – Гистограммы признаков

Стандартизация данных

1. Была произведена стандартизация на 150 значениях, построены гистограммы полученных данных.

Рисунок 3 – Гистограмма данных, стандартизированных на 150 значениях

2. Было выполнено сравнение математического ожидания и СКО для исходных данных, данных, стандартизированных на 150 значений, а также данных, стандартизированных на всей выборке. В сравнении были рассмотрены значения из атрибутов скейлера mean_ и scale_. Результаты сравнения представлены в таблице 1.

Таблица 1 – Сравнение мат. Ожидания и СКО

	age	creatinine_phospho kinase	ejection_fraction	platelets	serum_creatinine	serum_sodium
Среднее	60.83	581.84	38.08	263358.03	1.39	136.63
СКО	11.87	968.66	11.82	97640.55	1.03	4.41
Среднее (ст. 150)	-0.17	-0.02	0.01	-0.04	-0.1 1	0.04
СКО (ст. 150)	0.95	0.81	0.91	1.02	0.89	0.97

Среднее (ст. 150 mean_)	62.95	607.15	37.95	266746.75	1.52	136.45
СКО (ст. 150 scale_)	12.45	1189.7 4	13.04	96191.79	1.17	4.54
Среднее (ст. все)	0.00	0.00	-0.00	0.00	0.00	-0.00
СКО (ст. все)	1.00	1.00	1.00	1.00	1.00	1.00
Среднее (ст. все mean_)	60.83	581.84	38.08	263358.03	1.39	136.63
СКО (ст. все scale_)	11.87	968.66	11.82	97640.55	1.03	4.41

На основании полученных данных можно сделать вывод, что StandardScaler приводит исходную выборку к выборке с нулевым мат. ожиданием и единичной дисперсией, по формуле:

$$X_i = \frac{X_i - M[X]}{\sqrt{D[X]}}$$

где X_i — значения исходной выборки, а X_i — результат. В атрибутах mean_ и scale_ скейлера хранятся значения мат. ожидания и СКО исходной выборки, которые используются при стандартизации.

Приведение к диапазону

1. Было выполнено приведение к диапазону при помощи MinMaxScaler, построены гистограммы признаков.

Рисунок 4 – Гистограммы после использования MinMaxScaler Данные были приведены к диапазону [0, 1] по формуле:

$$X_{i} = \frac{X_{i} - \min(X)}{\max(X) - \min(X)}$$

где X_i — значения исходной выборки, а X_i — результат.

2. Из атрибутов data_min_ и data_max_ были получены минимальные и максимальные значения признаков. Результаты представлены в таблице 2.

Таблица 2 – Минимальные и максимальные значения признаков.

	age	creatinine_phospho kinase	ejection_fraction	platelets	serum_creatinine	serum_sodium
Min	40	23	14	25100	0.50	113
Max	95	7861	80	850000	9.40	148

3. Были выполнены трансформации с помощью MaxAbsScaler и RobustScaler.

Рисунок 5 – Гистограммы после использования MaxAbsScaler

Рисунок 6 – Гистограммы после использования RobustScaler

MaxAbsScaler приводит к диапазону таки образом, чтобы максимальное абсолютное значение выборки было равно единице. RobustScaler приводит медиану выборки к 0, а также масштабирует выборку относительно межквартильного диапазона.

4. Была написана функция, приводящая выборку к диапазону [-5, 10]:

```
def fit_5_10(data):
    scaler = preprocessing.MinMaxScaler(feature_range=(-5, 10)).fit(data)
    return scaler.transform(data)
```

Нелинейные преобразования

1. Было выполнено приведение данных к равномерному и нормальному распределениям при помощи QuantileTransformer.

Рисунок 7 – Гистограммы после использования QuantileTransformer (равн.)

Рисунок 8 – Гистограммы после использования QuantileTransformer (норм.)

Задаваемое количество квантилей определяет их число при дискретизации функции распределения. Чем больше значение, тем распределение результирующей выборки ближе к требуемому.

2. Было выполнено приведение данных к нормальному распределению при помощи PowerTransformer.

Рисунок 9 — Гистограммы после использования PowerTransformer

Дискретизация признаков

1. Была проведена дискретизация признаков при помощи KBinsDiscretizer.

Рисунок 9 – Гистограммы после дискретизации

Через атрибут bin_edges_ были получены диапазоны интервалов для каждого признака. Результаты представлены в таблице 3.

Таблица 3 – Диапазоны интервалов признаков

Признак	Диапазоны
age	40., 55., 65., 95.
creatinine phosphokinase	23., 116.5, 250., 582., 7861.
ejection_fraction	14., 35., 40., 80.
platelets	25100., 153000., 196000., 221000., 2370
	00., 262000., 265000., 285200., 319800.,
	374600., 850000.
serum_creatinine	0.5, 1.1, 9.4
serum_sodium	113., 134., 137., 140., 148.

Выводы

Было выполнено знакомство с методами предобработки данных из библиотеки Scikit Learn.

Полученные результаты показали:

- Количество значений в выборке влияет на качество стандартизации
- Приведение к диапазону не изменяет форму выборки
- Нелинейные преобразования изменяют форму выборки в соответствии с выбранным распределением

Использованный код представлен в приложении А.

ПРИЛОЖЕНИЕ А

Исходный код

```
import pandas as pd
import numpy as np
df = pd.read_csv('heart_failure_clinical_records_dataset.csv')
df = df.drop(columns =
['anaemia','diabetes','high_blood_pressure','sex','smoking','time','DEATH_EVENT'])
#Вывод датафрейма с данными для лаб. работы. Должно быть 299 наблюдений и 6 признаков
df.describe()
import matplotlib.pyplot as plt
def minMaxBinAndPlot(data, bins=20):
    fig, axs = plt.subplots(2,3, figsize=(12, 6))
    hists = []
    hists.append(axs[0, 0].hist(data[:,0], bins = bins))
    axs[0, 0].set_title('age')
    hists.append(axs[0, 1].hist(data[:,1], bins = bins))
    axs[0, 1].set_title('creatinine_phosphokinase')
    hists.append(axs[0, 2].hist(data[:,2], bins = bins))
    axs[0, 2].set_title('ejection_fraction')
    hists.append(axs[1, 0].hist(data[:,3], bins = bins))
    axs[1, 0].set title('platelets')
    hists.append(axs[1, 1].hist(data[:,4], bins = bins))
    axs[1, 1].set_title('serum_creatinine')
    hists.append(axs[1, 2].hist(data[:,5], bins = bins))
    axs[1, 2].set title('serum sodium')
    plt.tight layout()
    plt.show()
    for index in range(len(hists)):
        mostObservations = np.argmax(hists[index][0])
        print('{}. min: {:.2f}, max: {:.2f}, макс. наблюдений на промежутке: {:.2f} -
\{:.2f\}(наблюдений: \{\}\})'.format(index + 1, hists[index][1][0], hists[index][1][bins],
hists[index][1][mostObservations], hists[index][1][mostObservations + 1],
hists[index][0][mostObservations]))
data = df.to numpy(dtype='float')
minMaxBinAndPlot(data)
from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(data[:150,:])
data scaled = scaler.transform(data)
minMaxBinAndPlot(data_scaled)
def meanAndStd(data):
    for col in data.T:
        print('mean: {:.2f}, std: {:.2f}'.format(np.mean(col), np.std(col)))
# стандартизация на всех данных
all_scaler = preprocessing.StandardScaler().fit(data)
```

```
all data scaled = all scaler.transform(data)
print('Исходные данные')
meanAndStd(data)
print('Стандартизация на 150')
meanAndStd(data scaled)
print('Стандартизация на всех')
meanAndStd(all_data_scaled)
print('Значение из mean_ и scale_:')
print('Стандартизация на 150')
for i in range(6):
    print('mean: {:.2f}, std: {:.2f}'.format(scaler.mean_[i], scaler.scale_[i]))
print('Стандартизация на всех')
for i in range(6):
    print('mean: {:.2f}, std: {:.2f}'.format(all scaler.mean [i],
all scaler.scale [i]))
min max scaler = preprocessing.MinMaxScaler().fit(data)
data_min_max_scaled = min_max_scaler.transform(data)
minMaxBinAndPlot(data_min_max_scaled)
for i in range(6):
    print('min: {:.2f}, max: {:.2f}'.format(min_max_scaler.data_min_[i],
min_max_scaler.data_max_[i]))
max abs scaler = preprocessing.MaxAbsScaler().fit(data)
data max abs scaled = max abs scaler.transform(data)
minMaxBinAndPlot(data max abs scaled)
robust scaler = preprocessing.RobustScaler().fit(data)
data robust scaled = robust scaler.transform(data)
minMaxBinAndPlot(data robust scaled)
def fit_5_10(data):
    scaler = preprocessing.MinMaxScaler(feature_range=(-5, 10)).fit(data)
    return scaler.transform(data)
quantile transformer = preprocessing.QuantileTransformer(n quantiles = 100,
random_state=0, output_distribution='normal').fit(data)
data quantile scaled = quantile transformer.transform(data)
minMaxBinAndPlot(data quantile scaled)
power_transformer = preprocessing.PowerTransformer(method='box-cox').fit(data)
data_power_transformed = power_transformer.transform(data)
minMaxBinAndPlot(data_power_transformed)
discretizer = preprocessing.KBinsDiscretizer(n_bins=[3, 4, 3, 10, 2, 4],
encode='ordinal').fit(data)
data_disc = discretizer.transform(data)
print(discretizer.bin edges )
minMaxBinAndPlot(data disc)
```