

Principios de cuerpo rígido y sistemas de fuerzas

Universidad Politécnica de Guanajuato Mecánica de cuerpo rígido

Pedro Jorge De Los Santos Versión 0.2.1

¿Qué es la mecánica?

La mecánica es una rama de las ciencias físicas que estudia el estado de reposo o movimiento de los cuerpos que están sometidos a la acción de fuerzas.

Clasificación de la mecánica

Cuerpo rígido

Un cuerpo rígido puede considerarse como una combinación de un gran número de partículas donde todas estas permanecen a una distancia fija entre sí, tanto antes como después de la aplicación de una carga.

Fuerzas externas e internas

Las fuerzas que actúan sobre los cuerpos rígidos se pueden dividir en dos grupos:

- Fuerzas externas.
- Fuerzas internas

Fuerzas externas e internas

Principio de transmisibilidad

El **principio de transmisibilidad** establece que las condiciones de equilibrio o de movimiento de un cuerpo rígido permanecerán inalteradas si una fuerza F que actúa en un punto dado de ese cuerpo se reemplaza por una fuerza F' que tiene la misma magnitud y dirección, pero que actúa en punto distinto, siempre y cuando las dos fuerzas tengan la misma línea de acción.

Principio de transmisibilidad

Algunas consideraciones sobre el principio de transmisibilidad:

Producto cruz (producto vectorial)

El producto cruz de dos vectores **A** y **B** da como resultado el vector **C**, el cual se escribe:

$$C = A \times B$$

Y se lee C es igual a A cruz B.

Producto cruz: magnitud y dirección

La magnitud de C se define como el producto de las magnitudes de A y B y el seno del ángulo θ entre sus colas $(0^{\circ} \le \theta \le 180^{\circ})$, es decir:

$$C = AB \operatorname{sen} \theta$$

El vector C tiene una dirección perpendicular al plano que contiene a A y B.

Producto cruz: dirección

Producto cruz: en forma de determinante

Sean A y B dos vectores cartesianos, el producto cruz de estos vectores se puede determinar desarrollando un determinante cuya primera fila de elementos conste de los vectores unitarios i, j, k, y cuyas segunda y tercera filas representen las componentes x, y, z de los vectores A y B, respectivamente:

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_{\chi} & A_{y} & A_{z} \\ B_{\chi} & B_{y} & B_{z} \end{vmatrix}$$

Producto cruz: en forma de determinante

Producto cruz

Sean **u** y **v** los vectores dados por:

$$u = 6i + 4j$$
 ; $v = -5j + 2k$

Calcula

- a) $u \times v$
- b) $\mathbf{v} \times \mathbf{u}$

Cuando una fuerza se aplica a un cuerpo, ésta producirá una tendencia a que el cuerpo gire alrededor de un punto que no está en la línea de acción de la fuerza. Esta tendencia a girar se conoce en ocasiones como par de torsión, pero con mayor frecuencia se denomina el momento de una fuerza o simplemente el momento.

La magnitud del momento es directamente proporcional a la magnitud de **F** y a la distancia perpendicular o *brazo de momento d*. Cuanto más grande sea la fuerza o más grande sea el brazo de momento, mayor será el momento o el efecto de giro.

El momento M_0 con respecto al punto 0, o con respecto a un eje que pase por 0 y sea perpendicular al plano, es una cantidad vectorial puesto que tiene magnitud y dirección específicas.

La magnitud de M_o es:

$$M_O = Fd$$

donde d es el brazo de momento o distancia perpendicular desde el eje en el punto O hasta la línea de acción de la fuerza.

La dirección de M_O está definida por su eje de momento, el cual es perpendicular al plano que contiene la fuerza F, y por su brazo de momento d. Para establecer el sentido de dirección de M_O se utiliza la regla de la mano derecha.

Momento de una fuerza: formulación vectorial

El momento de una fuerza F con respecto al punto O, o realmente con respecto al eje del momento que pasa por O y es perpendicular al plano que contiene a O y a F, puede expresarse por el producto cruz vectorial, a saber:

$$\mathbf{M}_O = \mathbf{r} \times \mathbf{F}$$

Aquí r representa un vector de posición trazado desde *O* hasta cualquier punto que se encuentre sobre la línea de acción de **F**.

Principio de momentos

El principio establece que el momento de una fuerza con respecto a un punto es igual a la suma de los momentos de las componentes de la fuerza con respecto al punto.

F4-2. Determine el momento de la fuerza con respecto al punto *O*.

F4-2

F4-6. Determine el momento de la fuerza con respecto al punto *O*.

F4-11. Determine el momento de la fuerza **F** con respecto al punto *O*. Exprese el resultado como un vector cartesiano.

Momento resultante de un sistema de fuerzas

Si un sistema de fuerzas actúa sobre un cuerpo, el momento resultante de las fuerzas respecto al punto *O* puede ser determinado mediante la adición del momento de cada fuerza. Esta resultante se puede escribir simbólicamente como:

$$\mathbf{M}_{R_O} = \sum (\mathbf{r} \times \mathbf{F})$$

F4-7. Determine el momento resultante producido por las fuerzas con respecto al punto *O*.

4-39. Determine el momento resultante producido por las dos fuerzas respecto al punto *O*. Exprese el resultado como un vector cartesiano.

Un par se define como dos fuerzas paralelas que tienen la misma magnitud, con direcciones opuestas, y están separadas por una distancia perpendicular d.

El momento producido por un par se denomina **momento de par**. Podemos determinar su valor encontrando la suma de los momentos de ambas fuerzas del par con respecto a cualquier punto arbitrario, por ejemplo:

El momento de par tiene una magnitud dada por:

$$M = Fd$$

donde *F* es la magnitud de una de las fuerzas y *d* la distancia perpendicular o brazo de momento entre las fuerzas. La dirección y el sentido del momento de par se determinan mediante la regla de la mano derecha.

En tres dimensiones, el momento de par a menudo se determina por la formulación vectorial:

$$\mathbf{M} = \mathbf{r} \times \mathbf{F}$$

donde r está dirigido desde cualquier punto sobre la línea de acción de una de las fuerzas a cualquier punto sobre la línea de acción de otra fuerza F.

F4-19. Determine el momento de par resultante que actúa sobre la viga.

F4-24. Determine el momento de par que actúa sobre el ensamble de tubos y exprese el resultado como un vector cartesiano.

Producto punto

El producto punto de dos vectores **A** y **B**, que se escribe **A** · **B** y se lee **A** punto B, se define como el producto de las magnitudes de **A** y **B** y el coseno del ángulo θ formado entre ellos:

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$$

Donde $0^{\circ} \le \theta \le 180^{\circ}$.

Producto punto

De la formulación vectorial cartesiana el producto punto se puede calcular mediante la siguiente expresión:

$$\mathbf{A} \cdot \mathbf{B} = A_{\mathcal{X}} B_{\mathcal{X}} + A_{\mathcal{Y}} B_{\mathcal{Y}} + A_{\mathcal{Z}} B_{\mathcal{Z}}$$

Es decir, para determinar el producto punto de dos vectores cartesianos, multiplique sus componentes correspondientes x, y, z, y sume sus productos algebraicamente.

Ángulo entre dos vectores

El ángulo θ formado entre dos vectores **A** y **B** puede determinarse mediante la ecuación del producto punto, es decir:

$$\theta = \cos^{-1} \left(\frac{\mathbf{A} \cdot \mathbf{B}}{AB} \right)$$

Proyección escalar

La proyección escalar del vector \mathbf{A} a lo largo de una línea aa' se determina con el producto punto de \mathbf{A} y el vector unitario \mathbf{u}_a , que define la dirección de la línea:

$$A_a = \mathbf{A} \cdot \mathbf{u}_a$$

Proyección vectorial

La proyección vectorial resulta de multiplicar el escalar anterior por la dirección dada por el vector unitario correspondiente a la línea:

$$\mathbf{A}_a = (\mathbf{A} \cdot \mathbf{u}_a) \, \mathbf{u}_a$$

Momento de una fuerza con respecto a un eje

Momento de una fuerza con respecto a un eje

El momento de una fuerza con respecto a un eje específico *a* se puede calcular como sigue:

$$\mathbf{M}_a = [\mathbf{u}_a \cdot (\mathbf{r} \times \mathbf{F})] \, \mathbf{u}_a$$

Donde \mathbf{u}_a es un vector unitario en la dirección del eje a, \mathbf{r} es un vector de posición trazado desde cualquier punto sobre el eje a hasta cualquier punto sobre la línea de acción de \mathbf{F} .

Momento de una fuerza con respecto a un eje

El triple producto escalar se puede escribir también en la forma de un determinante:

$$M_a = \mathbf{u}_a \cdot (\mathbf{r} \times \mathbf{F}) = \begin{vmatrix} u_{a_x} & u_{a_y} & u_{a_z} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$

Una vez determinado M_a , podemos expresar a \mathbf{M}_a como un vector cartesiano:

$$\mathbf{M}_a = M_a \mathbf{u}_a$$

*4-56. Determine el momento producido por la fuerza \mathbf{F} con respecto al segmento AB del ensamble de tubos AB. Exprese el resultado como un vector cartesiano.

•4-57. Determine la magnitud del momento que ejerce la fuerza **F** con respecto al eje y de la flecha. Resuelva el problema con un método vectorial cartesiano y después con un método escalar.

Ejemplo

Simplificación de un sistema de fuerzas

En ocasiones es conveniente reducir un sistema de fuerzas y momentos de par que actúan sobre un cuerpo a una forma más sencilla, lo cual se puede hacer si se reemplaza con un sistema equivalente, que conste de una sola fuerza resultante la cual actúe en un punto específico y un momento de par resultante.

Simplificación de un sistema de fuerzas

Un sistema de fuerzas y pares se puede simplificar a una fuerza resultante \mathbf{F}_R que actúe en un punto O y un momento de par resultante $(\mathbf{M}_R)_O$, mediante la aplicación de las siguientes ecuaciones:

$$\mathbf{F}_R = \Sigma \mathbf{F}$$

$$(\mathbf{M}_R)_O = \Sigma \mathbf{M}_O + \Sigma \mathbf{M}$$

F4-30. Reemplace el sistema de cargas por una fuerza resultante y un momento de par equivalentes que actúen en el punto *O*.

F4-27. Reemplace el sistema de cargas por una fuerza resultante y un momento de par equivalentes que actúen en el punto A.

Referencias

Toda la información (texto y figuras) en estas diapositivas ha sido obtenida de las referencias listadas enseguida.

- Hibbeler, R.C. (2010). *Ingeniería mecánica Estática*. Pearson Educación.
- Beer, F.P., Johnston, E.R., Mazurek, D.F. y Eisenberg, E.R. (2010). *Mecánica vectorial para ingenieros, estática*. McGraw-Hill.