GROUP THEORY:

A BRIEF INTRODUCTION TO SOME ELEMENTS THEREOF

VANESSA ROBINS, ANU

LECTURES FOR THE CANBERRA INTERNATIONAL PHYSICS SUMMER SCHOOL "FIELDS AND PARTICLES"

JANUARY 2023

LECTURE 3: REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS

DEFINITION OF MATRIX REPRESENTATION

The algebraic pattern of $\mathfrak{su}(2)$ appears in a number of different contexts. Although we started with 2 \times 2 hermitean traceless matrices, this is not essential to its structure.

Representation theory studies how a group can be expressed using matrices from $GL(n, \mathbb{C})$. (why do we work over \mathbb{C} ?)

DEFINITION OF MATRIX REPRESENTATION

The algebraic pattern of $\mathfrak{su}(2)$ appears in a number of different contexts. Although we started with 2 \times 2 hermitean traceless matrices, this is not essential to its structure.

Representation theory studies how a group can be expressed using matrices from $GL(n,\mathbb{C})$. (why do we work over \mathbb{C} ?)

A representation of dimension n defines a matrix $D(g) \in GL(n, \mathbb{C})$ for every $g \in G$ so that the mapping $D: G \to GL(n, \mathbb{C})$ is a homomorphism. In particular:

- · Identity: $D(I) = I_n$.
- · Inverses: $D(g^{-1}) = [D(g)]^{-1}$.
- · Products: D(g * h) = D(g)D(h).

DEFINITION OF MATRIX REPRESENTATION

The algebraic pattern of $\mathfrak{su}(2)$ appears in a number of different contexts. Although we started with 2 \times 2 hermitean traceless matrices, this is not essential to its structure.

Representation theory studies how a group can be expressed using matrices from $GL(n, \mathbb{C})$. (why do we work over \mathbb{C} ?)

A representation of dimension n defines a matrix $D(g) \in GL(n, \mathbb{C})$ for every $g \in G$ so that the mapping $D: G \to GL(n, \mathbb{C})$ is a homomorphism. In particular:

- · Identity: $D(I) = I_n$.
- · Inverses: $D(g^{-1}) = [D(g)]^{-1}$.
- · Products: D(g * h) = D(g)D(h).

Two representations, D_a , D_b are equivalent if there is a single matrix $S \in GL(n, \mathbb{C})$ so that $S^{-1}D_a(g)S = D_b(g)$ for all $g \in G$.

TERMINOLOGY OF MATRIX REPRESENTATIONS

- · A representation is faithful if $D(g) = I_n$ if and only if $g = I \in G$.
- The *trivial* representation (of dimension 1) is the map that sends every element to the identity: D(g) = 1.
- · A subspace $W \subset \mathbb{C}^n$ is invariant if $D(g)\vec{w} \in W$ for all $g \in G$ and $\vec{w} \in W$. (how do you find invariant subspaces?)
- · An *irreducible* representation is one with no non-trivial invariant subspaces.
- A reducible representation is equivalent to one in a fixed block-triangular form: $D_{n+m}(g) = \begin{pmatrix} D_n(g) & R_{nm}(g) \\ o & D_m(g) \end{pmatrix}$. The first n-coordinates of \mathbb{C}^{n+m} are an invariant subspace for D_{n+m} .

TERMINOLOGY OF MATRIX REPRESENTATIONS

· A completely reducible representation is equivalent to a block-diagonal form:

$$D_n(g) = egin{pmatrix} D_{n_1}(g) & \mathrm{O} & \cdots & \mathrm{O} \\ \mathrm{O} & D_{n_2}(g) & \cdots & \mathrm{O} \\ \vdots & \vdots & & \vdots \\ \mathrm{O} & \mathrm{O} & \cdots & D_{n_r}(g) \end{pmatrix}$$

where each D_{n_k} is an *irreducible* representation for the group G. The subscripts here refer to dimension so $\sum_k n_k = n$. This means the coordinates spanning each block form distinct invariant subspaces.

· A completely reducible representation is equivalent to the *direct* sum of the irreducible representations in its diagonal blocks, written as $D_n = D_{n_1} \oplus D_{n_2} \oplus \cdots D_{n_r}$.

REPS OF LIE GROUPS AND ALGEBRAS

Suppose $D:G \to GL(n,\mathbb{C})$ is a representation of a matrix Lie group G. Then there is a unique representation $D':\mathfrak{g}\to\mathfrak{gl}(n,\mathbb{C})$ such that $D(e^{iT})=e^{iD'(T)}$. We compute D'(T) as $D'(T)=\frac{d}{dt}\,D(e^{itT})\big|_{t=0}$.

This definition ensures the matrices $D(e^{iT})$ and D'(T) are expressed with respect to the same basis for \mathbb{C}^n .

Note that $\mathfrak{gl}(n,\mathbb{C})$ is a vector space of matrices with matrix commutation as Lie bracket. In general, a representation of a Lie algebra is a homomorphism that maps the Lie bracket of \mathfrak{g} to matrix commutation in $\mathfrak{gl}(n,\mathbb{C})$.

Suppose $D': \mathfrak{g} \to \mathfrak{gl}(n,\mathbb{C})$ is a Lie algebra representation. Then setting $D(e^{iT}) = e^{iD'(T)}$ will give a representation of the connected and simply-connected covering group G associated with the Lie algebra \mathfrak{g} .

REPS OF LIE GROUPS AND ALGEBRAS

The following theorems tell us that for certain cases a finite-dimensional representation can be built as the direct sum of irreducible representations

If G is a compact matrix Lie group then every finite dimensional representation is completely reducible.

If G is a matrix Lie group and D is a finite-dimensional *unitary* representation, then it is completely reducible.

Symmetries of a quantum Hamiltonian operator

Suppose that H is invariant with respect to a group of unitary transformations $T \in G$: $T^{\dagger}HT = H$. T unitary implies [H, T] = 0.

Take an eigenfunction $H\psi=E\psi$. Then $H(T\psi)=(HT)\psi=(TH)\psi=T(H\psi)=TE\psi=E(T\psi)$, meaning $T\psi$ is another eigenfunction for H with the same eigenvalue E.

Symmetries of a quantum Hamiltonian operator

Suppose that H is invariant with respect to a group of unitary transformations $T \in G$: $T^{\dagger}HT = H$. T unitary implies [H, T] = 0.

Take an eigenfunction $H\psi=E\psi$. Then $H(T\psi)=(HT)\psi=(TH)\psi=T(H\psi)=TE\psi=E(T\psi)$, meaning $T\psi$ is another eigenfunction for H with the same eigenvalue E.

Quantum operators are *linear* and their eigenfunctions span a Hilbert space. Suppose the eigenfunctions with identical eigenvalue E span a d-dimensional space with basis $\{\psi^1,\ldots,\psi^d\}$.

Linearity now tells us that for each a, $T\psi^a = \sum_b \mathsf{t}^{ab}\psi^b$.

The coefficients t^{ab} form a d-dimensional matrix representation for G, with the vector space having basis $\{\psi^1,\ldots,\psi^d\}$. On this subspace, H acts as a multiple of the identity matrix I_d .

SCHUR'S LEMMA

Schur's lemma takes many forms depending on context.

Lie group version

Let $D: G \to GL(n,\mathbb{C})$ be an irreducible representation of a matrix Lie group G. Suppose we have $a \in G$ such that $aga^{-1} = g$ for all $g \in G$. Then $D(a) = \lambda I_n$ for some $\lambda \in \mathbb{C}$.

Lie algebra version

Let $D': \mathfrak{g} \to \mathfrak{gl}(n,\mathbb{C})$ be an irreducible representation of Lie algebra \mathfrak{g} . Suppose $A \in \mathfrak{gl}(n,\mathbb{C})$, that matrices A and D'(T) are given with respect to the same basis for \mathbb{C}^n , and that AD'(T) = D'(T)A. Then $A = \lambda I_n$ for some $\lambda \in \mathbb{C}$.

SCHUR'S LEMMA

Schur's lemma takes many forms depending on context.

Lie group version

Let $D: G \to GL(n,\mathbb{C})$ be an irreducible representation of a matrix Lie group G. Suppose we have $a \in G$ such that $aga^{-1} = g$ for all $g \in G$. Then $D(a) = \lambda I_n$ for some $\lambda \in \mathbb{C}$.

Lie algebra version

Let $D': \mathfrak{g} \to \mathfrak{gl}(n,\mathbb{C})$ be an irreducible representation of Lie algebra \mathfrak{g} . Suppose $A \in \mathfrak{gl}(n,\mathbb{C})$, that matrices A and D'(T) are given with respect to the same basis for \mathbb{C}^n , and that AD'(T) = D'(T)A. Then $A = \lambda I_n$ for some $\lambda \in \mathbb{C}$.

This points to the connection physicists exploit between a Hamiltonian operator *H*, its symmetry group, irreducible representations of that group, and the eigenfunctions for *H*.

IRREDUCIBLE REPS FOR $\mathfrak{su}(2)_{\mathbb{C}}=\mathfrak{sl}(2,\mathbb{C})$

Constructing the irreducible representations for $\mathfrak{su}(2)_{\mathbb{C}}$ follows the same procedure as finding the eigenvalues and their multiplicity for the quantum orbital angular momentum operators.

- 1. The generators and commutators are J^a , $[J^a, J^b] = i\epsilon^{abc}J^c$, with $a, b, c \in \{x, y, z\}$.
- 2. Define $C = (J^x)^2 + (J^y)^2 + (J^z)^2$ as a Casimir element, and $J^{\pm} = J^x \pm iJ^y$.
- 3. Assume $D_n: \mathfrak{su}(2)_{\mathbb{C}} \to \mathfrak{gl}(n,\mathbb{C})$ is irreducible and choose a basis for \mathbb{C}^n to be the eigenvectors of J^z . C commutes with all J^a so $C = \lambda I_n$ for some λ that depends on the dimension n.
- 4. Use the raising and lowering operators to find that the eigenvalues of J^z must be $j, j-1, \ldots, -j+1, -j$, that $\lambda = j(j+1)$ and that $j=(n-1)/2=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$
- 5. We can use this information to write out the n-dimensional matrices for J^a in full for any dimension n.

IRREDUCIBLE REPS FOR $\mathfrak{su}(2)_\mathbb{C}=\mathfrak{sl}(2,\mathbb{C})$

$$j = 0, n = 1$$

This is the trivial representation. $J^x = J^y = J^z = 0$.

$$j = \frac{1}{2}, n = 2$$

This is the standard $\mathfrak{su}(2)$ representation in terms of the Pauli matrices. $J^a = \frac{1}{2}\sigma_a$.

j = 1, n = 3

This is equivalent to the standard representation for $\mathfrak{so}(3)$, but with a basis (Cartesian not "spherical"!) that makes J^z diagonal.

$$J^{X} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & i \\ 0 & -i & 0 \end{pmatrix} \quad J^{Y} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad J^{Z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Representations of SU(2)

- · Since SU(2) is simply connected we know representations for it are in one-to-one correspondence with those of $\mathfrak{su}(2)_{\mathbb{C}}$.
- Since SU(2) is compact we know all its finite-dimensional representations are completely reducible to a direct sum of irreducible ones. This also holds for its (complexified) Lie algebra.
- · Any two irreducible representations of $\mathfrak{su}(2)_\mathbb{C}$ of the same dimensions are equivalent.
- It follows that any representation of SU(2) is equivalent to the direct sum of some combination of irreducible representations constructed as described on the previous slide.

Representations of SO(3)

- · SO(3) is NOT simply connected and only the $\mathfrak{su}(2)_{\mathbb{C}}$ representations with integer $j=0,1,2,\ldots$ (odd dimensional reps) are true representations of SO(3).
- SO(3) is compact so we still have that all its finite-dimensional representations are completely reducible to a direct sum of irreducible ones.
- · (Show that the j=1/2 representation of $\mathfrak{su}(2)_{\mathbb{C}}$ is not a representation of SO(3).)
- · \langle Show that the j=1 representation of $\mathfrak{su}(2)_{\mathbb{C}}$ is not a *faithful* representation of $SU(2)_{\cdot}\rangle$

Recall that the complexified Lorentz Lie algebra $\mathfrak{so}^+(1,3)_{\mathbb{C}}$ splits into the direct sum $\mathfrak{su}(2)_{\mathbb{C}} \oplus \mathfrak{su}(2)_{\mathbb{C}} = \mathfrak{sl}(2;\mathbb{C}) \oplus \mathfrak{sl}(2;\mathbb{C})$.. There are six generators $N_{\pm}^a = \frac{1}{2}(J^a \pm iK^a)$ with commutation relations

$$[N_{+}^{a},N_{+}^{b}]=i\epsilon^{abc}N_{+}^{c},\quad [N_{-}^{a},N_{-}^{b}]=i\epsilon^{abc}N_{-}^{c},\quad [N_{+}^{a},N_{-}^{b}]=0$$

Every $X \in \mathfrak{so}^+(1,3)_{\mathbb{C}}$ can be written uniquely as $X = X_+ + X_-$ with $X_{\pm} = t^a N_{\pm}^a$. The associated Lie group* elements satisfy

$$e^{iX} = e^{iX_{+} + iX_{-}} = (e^{iX_{+}})(e^{iX_{-}})$$
 because $[N_{+}^{a}, N_{-}^{b}] = 0$.

If X_+ and X_- did not commute, we would have to invoke the Baker-Campbell-Hausdorff formula here.

12 | 17

^{*} i.e., the simply connected covering group which happens to be isomorphic to $SL(2,\mathbb{C})$.

We want to combine two representations for $\mathfrak{su}(2)_{\mathbb{C}}$ into one for $\mathfrak{so}^+(1,3)_{\mathbb{C}}$. Even though the algebras are related by a direct sum, the combination of representations is achieved using the *tensor product* of vector spaces.

A tensor product representation $D_m \otimes D_n$ for the group acts on the vector space $\mathbb{C}^m \otimes \mathbb{C}^n$ of dimension mn as

$$(D_m \otimes D_n)(e^{iX})(u \otimes v) = e^{iD'_m(X_+)}(u) \otimes e^{iD'_n(X_-)}(v)$$

At the Lie algebra level this looks like a product rule:

$$(D_m \otimes D_n)'(X)(u \otimes v) = (D'_m(X_+) \otimes I_n)(u \otimes v) + (I_m \otimes D'_n(X_-))(u \otimes v)$$

= $D'_m(X_+)(u) \otimes v + u \otimes D'_n(X_-)(v)$

13 | 17

For the Lorentz group we find that

$$j = 0, j = 0$$

This is again the trivial representation. The vector space of the representation consists of *scalars*.

$$j=\frac{1}{2},\ j=0$$

 $(D_2 \otimes D_1)'(X) = D_2'(X_+) \otimes I_1 + (I_2 \otimes D_1'(X_-)) \simeq D_2'(X_+)$. This becomes the *left-chiral spinor* representation.

$$j=0,\ j=\frac{1}{2}$$

 $(D_1 \otimes D_2)'(X) = D_1'(X_+) \otimes I_2 + (I_1 \otimes D_2'(X_-)) \simeq D_2'(X_-)$. This becomes the right-chiral spinor representation.

$$j=\frac{1}{2},\ j=\frac{1}{2}$$

 $(D_2 \otimes D_2)'(X) = D_2'(X_+) \otimes I_2 + (I_2 \otimes D_2'(X_-))$. The vector space is $\mathbb{C}^2 \otimes \mathbb{C}^2$ but this group representation acts in a way that is isomorphic to the standard 4-vector representation.

A reducible representation

The *Dirac spinor* representation is the direct sum of the left and right-chiral spinor representations:

$$D'_{\mathcal{D}}(X) = (D_2 \otimes D_1)'(X) \oplus (D_1 \otimes D_2)'(X) \simeq D'_2(X_+) \oplus D'_2(X_-)$$

These are just the simplest low-dimensional representations. Many more also have relevance in physical contexts.

1.

ANOTHER WAY TO COMBINE REPRESENTATIONS

- · Given two irreducible representations D_m , D_n for a Lie group G, we use a tensor product to obtain an mn-dimensional representation $D_{mn}(q) = D_m(q) \otimes D_n(q).$
- At the Lie algebra level we have product rule behaviour again with $D'_{mn}(X) = D'_{m}(X) \otimes I_{n} + I_{m} \otimes D'_{n}(X).$
- · This new representation will, in general, be reducible, and if G is compact, or D is unitary, we know that it is completely reducible and would like to find its irreducible parts.
- · This procedure is "finding the Clebsch-Gordan coefficients" or "multiplying ladders". It amounts to finding dimensions of the distinct invariant subspaces $V_{n_r} \subset \mathbb{C}^{mn}$ with $\sum n_r = mn$.

CLEBSCH-GORDAN FOR SU(2)

Given two irreducible representations for SU(2) with j=(m-1)/2 and k=(n-1)/2, assume $j\geq k$. The tensor product space for the representation $D_m\otimes D_n$ decomposes as

$$\mathbb{C}^m \otimes C^n \sim \mathbb{C}^{mn} = V_{j+k} \oplus V_{j+k-1} \oplus \cdots \oplus V_{j-k}$$

where the dimension of $V_{n_r} = 2n_r + 1$.

The representation on each V_{n_r} is the unique irreducible representation for SU(2) of that dimension.

 \langle check the vector space dimensions for the decomposition add up appropriately for some choice of $j,k.\rangle$

BACKUP SLIDE