Video Dubbing with ML-driven Lip Synchronization

Akhil, Ayush Krishna Murthi, Suprit Chafle

Department of Computational and Data Science

Objective

Develop an automated and efficient dubbing solution to eliminate waiting times for bingewatchers eagerly anticipating their favorite movies dubbed in their preferred language.

Introduction

- Global educational and entertainment content faces language barriers.
- Example: India produces over 1500 films in 20+ languages yearly.
- Internet binge-watching worsens dubbed content accessibility.
- Proposed Al solution: precise lip sync, seamless translation.
- ML algorithm like bi-directional LSTM, CNN + bidirectional RNN used for multilingual support.

WorkFlow

Analysis

- BLEU Score of 28% and 30.29% for English to Hindi using unidirectional LSTM and bidirectional LSTM with attention, respectively.
- BLEU Score of **64.25**% for English to Thai using bidirectional LSTM with attention.
- For STT 2 Convolutional layers and 5 bidirectional RNN layers achieved a Word Error Rate (WER) of **7.46**%.

Results, Findings and Future Scope

- Conducted experiments on three videos, achieving accurate translation and lip synchronization.
- Considered context in speech-to-text for disambiguating abbreviations like "Mr." and "Mister."
- Implemented word similarity for consistent translation durations.
- Planning to develop a deep learning model capturing emotions, facial expressions, and atmosphere for accurate expression in translated videos.

Related literature

- Cong et al. Learning to Dub Movies via Hierarchical Prosody Models.
- Prajwal et al. A Lip Sync Expert Is All You Need for Speech to Lip Generation In The Wild.
- Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate.
- Sutskever et al. Sequence to Sequence Learning with Neural Networks.
- Baidu Research Deep Speech 2: End-to End Speech Recognition
- Kurt et al. Perceptual audio features for emotion detection