import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
import pandas as pd
%matplotlib inline
from sklearn.model_selection import *
from sklearn.preprocessing import *

data_frame = pd.read_csv('winequality-red.csv', parse_dates=True)

data frame.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

data frame.groupby('quality').count().reset index()

qu	ality	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	3	10	10	10	10	10	10	10	10	10	10	10
1	4	53	53	53	53	53	53	53	53	53	53	53
2	5	681	681	681	681	681	681	681	681	681	681	681
3	6	638	638	638	638	638	638	638	638	638	638	638
4	7	199	199	199	199	199	199	199	199	199	199	199
5	8	18	18	18	18	18	18	18	18	18	18	18

data_frame['quality'].replace(to_replace={3: 0, 4: 1, 5: 2, 6: 3, 7: 4, 8: 5}, inplace=True)

X = data_frame[['fixed acidity','volatile acidity','citric acid','residual sugar','chlorides',
'free sulfur dioxide','total sulfur dioxide','density','pH','sulphates','alcohol']]
Y = data frame['quality']

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=24)

Layer (type)	Output Sha	<u> </u>	Param #					
dense_23 (Dense)	(None, 128		1536					
dense_24 (Dense)	(None, 64)		8256					
dense_25 (Dense)	(None, 32)		2080					
dense_26 (Dense)	(None, 6)		198					

Total params: 12,070 Trainable params: 12,070 Non-trainable params: 0

h = model.fit(X_train, y_train, validation_data=(X_test,y_test), epochs=40, batch_size=64)

```
Epoch 7/40
  20/20 [=========================== - 0s 3ms/step - loss: 1.3369 - accuracy: 0.4957 - val loss: 1.3104 - val accuracy: 0.4875
  Epoch 8/40
  20/20 [============] - 0s 3ms/step - loss: 1.2923 - accuracy: 0.5043 - val loss: 1.2719 - val accuracy: 0.4938
  Epoch 9/40
  20/20 [============] - 0s 4ms/step - loss: 1.2559 - accuracy: 0.5129 - val loss: 1.2415 - val accuracy: 0.5031
  Epoch 10/40
  20/20 [============] - 0s 3ms/step - loss: 1.2258 - accuracy: 0.5293 - val loss: 1.2166 - val accuracy: 0.5125
  Epoch 11/40
  20/20 [========] - 0s 4ms/step - loss: 1.2001 - accuracy: 0.5434 - val_loss: 1.1947 - val_accuracy: 0.5219
  Epoch 12/40
  20/20 [========] - 0s 4ms/step - loss: 1.1770 - accuracy: 0.5512 - val_loss: 1.1755 - val_accuracy: 0.5344
  Epoch 13/40
  Epoch 14/40
  Epoch 15/40
  20/20 [============] - 0s 3ms/step - loss: 1.1188 - accuracy: 0.5575 - val loss: 1.1292 - val accuracy: 0.5344
```

```
20/20 [============] - 0s 3ms/step - loss: 1.0313 - accuracy: 0.5731 - val loss: 1.0731 - val accuracy: 0.5469
Epoch 22/40
20/20 [===========] - 0s 3ms/step - loss: 1.0205 - accuracy: 0.5833 - val loss: 1.0676 - val accuracy: 0.5531
Epoch 23/40
20/20 [============] - 0s 3ms/step - loss: 1.0107 - accuracy: 0.5825 - val loss: 1.0638 - val accuracy: 0.5500
Epoch 24/40
20/20 [=========================== - 0s 3ms/step - loss: 1.0022 - accuracy: 0.5880 - val loss: 1.0603 - val accuracy: 0.5656
Epoch 25/40
20/20 [=================== - 0s 3ms/step - loss: 0.9941 - accuracy: 0.5911 - val loss: 1.0578 - val accuracy: 0.5688
Epoch 26/40
Epoch 27/40
20/20 [===========] - 0s 3ms/step - loss: 0.9806 - accuracy: 0.6028 - val loss: 1.0530 - val accuracy: 0.5625
Epoch 28/40
20/20 [===========] - 0s 4ms/step - loss: 0.9744 - accuracy: 0.6020 - val loss: 1.0517 - val accuracy: 0.5625
Epoch 29/40
20/20 [========================== - 0s 3ms/step - loss: 0.9693 - accuracy: 0.6036 - val loss: 1.0505 - val accuracy: 0.5625
Epoch 30/40
Epoch 31/40
20/20 [===========] - 0s 4ms/step - loss: 0.9592 - accuracy: 0.6013 - val loss: 1.0480 - val accuracy: 0.5656
Epoch 32/40
20/20 [===========] - 0s 4ms/step - loss: 0.9544 - accuracy: 0.6059 - val loss: 1.0468 - val accuracy: 0.5688
Epoch 33/40
20/20 [===========] - 0s 4ms/step - loss: 0.9501 - accuracy: 0.6052 - val loss: 1.0461 - val accuracy: 0.5688
Epoch 34/40
20/20 [============] - 0s 3ms/step - loss: 0.9460 - accuracy: 0.6067 - val loss: 1.0455 - val accuracy: 0.5656
```

```
plt.plot(h.history['loss'], label='loss')
plt.plot(h.history['val_loss'], label='val_loss')
plt.legend()
plt.show()
```


ModelLoss, ModelAccuracy = model.evaluate(X test, y test)

✓ 0 s ukończono o 14:29

• ×