שתי בעיות שיבוץ

שאלה: מה ההבדל בין הבעיות הבאות:

א. שיבוץ סטודנטים לחדרים במעונות;

ב. שיבוץ סטודנטים למחלקות באוניברסיטה?

תשובה:

בעיה א *חד צדדית* – רק לסטודנטים יש העדפות. בעיה ב *דו צדדית* – גם למחלקות יש העדפות.

שוק דו-צדדי

הגדרה: *שוק דו-צדדי* הוא שוק שבו צריך להתאים בין משתתפים משתי קבוצות, כאשר לכל משתתף מכל אחת מהקבוצות יש העדפות שונות.

שאלה: מה יקרה אם ננסה ליצור שידוך בשוק דו-צדדי, ע"י אלגוריתם "הדיקטטור הסדרתי"?

דוגמה: שני סטודנטים א,ב ושתי מחלקות 1,2 הסטודנטים מדרגים 2>1, המחלקות מדרגות א>ב. סטודנט ב בוחר ראשון. מה ייצא?

שוק דו-צדדי

דוגמה: שני סטודנטים א,ב ושתי מחלקות 1,2 הסטודנטים מדרגים 1>2, המחלקות מדרגות א>ב. סטודנט ב בוחר ראשון. השידוך המתקבל:

 $2-\lambda$ $1-\Delta$

?האם השידוך יעיל פארטו

- C|.

אבל מה יקרה אם מחלקה 1 תפנה לסטודנט א? - השידוך יתפרק! אנשים לא ישתפו פעולה.

השוק ייפרם (unravel).

שידוכים יציבים

הגדרה: זוג מערער:

סטודנט ומחלקה שאינם משודכים, והם מעדיפים
זה את זו על פני ה"שידוכים" הנוכחיים שלהם.

הגדרה: שידוך יציב:

שידוך בלי זוגות מערערים. •

השקפים הבאים מבוססים על מצגת של פרופ' סרג'יו הרט בהרצאת "מדוע" בעיצובה של עינב http://community-youth.huji.ac.il/program1.asp?id=116&cat=117

שידוכים יציבים

הגדרת הבעיה:

- סטודנטים ומחלקות במספר שווה.
- בכל מחלקה יש מקום לסטודנט אחד.
 - כל סטודנט לומד במחלקה אחת.
- לכל מחלקה יש סדר העדפות על הסטודנטים.
 - לכל סטודנט יש סדר העדפות על המחלקות.
 - ?האם תמיד קיים שידוך יציב

הסטודנטים

ראשי המחלקות

העדפות הסטודנטים

העדפות המחלקות

	אביבה	בתיה	גליה
1	רפי	שלמה	שלמה
2	שלמה	רפי	תומר
3	תומר	תומר	רפי

תומר	שלמה	רפי
בתיה	אביבה	אביבה
גליה	בתיה	גליה
אביבה	גליה	בתיה

שידוכים יציבים

?האם תמיד קיים שידוך יציב אחד

!כן, ויש אלגוריתם יעיל שמוצא אותו

- אלגוריתם <u>הקבלה על-תנאי</u> deferred acceptance
- Gale & Shapley (1962) פותח ע"י
 - זכה בפרס נובל בשנת 2012

אלגוריתם "קבלה על-תנאי"

deferred acceptance

- א. כל סטודנט הולך למחלקה שהוא הכי רוצה, מבין המחלקות שעדיין לא דחו אותו.
- ב. כל מחלקה "מקבלת על תנאי" את הסטודנט שהיא הכי רוצה, מבין אלה שנמצאים בה, ודוחה את כל השאר.
 - ג. חוזרים על שלבים א ו-ב עד שכולם משודכים.

בתיה

גליה

גליה

בתיה

2 3

גליה

אביבה

	אביבה	בתיה	גליה
1	רפי	שלמה	שלמה
2	שלמה	רפי	תומר
3	תומר	תומר	רפי

	אביבה	בתיה	גליה
I	רפי	שלמה	שלמה
2	שלמה	רפי	תומר
3	תומר	תומר	רפי
3	תומר	תומר	רפי

	תומר	שלמה	רפי
1	בתיה	אביבה	אביבה
2	גליה	בתיה	גליה
3	אביבה	גליה	בתיה

משפט: האלגוריתם מסתיים בשידוך יציב

מסתיים: כי כל סטודנט מציע לכל מחלקה פעם אחת לכל היותר.

בשידוך: נניח שיש מחלקה לא-משודכת. אז אף סטודנט לא הגיע אליה. כיוון שמספר הסטודנטים והמחלקות שווה, יש גם סטודנט לא משודך. הוא עובר על כל הרשימה שלו מלמעלה למטה, לכן בהכרח הוא יגיע מתישהו למחלקה הלא-משודכת וישתדך איתה. כלומר האלגוריתם עוד לא הסתיים.

יציב: מצבה של כל *מחלקה* הולך ומשתפר.

לעומת זאת, כל *סטודנט* הולך ומתפשר.

מכאן, אם זוג מסויים (ס,מ) לא נוצר אז יש שתי אפשרויות:

א. ס עוד לא היה ב-מ: מכאן ש-ס נמצא במחלקה טובה יותר.

ב. ס כבר היה ב-מ: מכאן של-מ יש סטודנט טוב יותר.

איזה שידוך יציב מתקבל?

באלגוריתם שהצגנו למעלה, הסטודנטים מציעים למחלקות, והמחלקות מחליטות את מי לקבל.

יכולנו גם לנהל את האלגוריתם בסדר הפוך: המחלקות מציעות לסטודנטים, והסטודנטים מחליטים את מי לקבל.

האם לדעתכם יש הבדל בין שתי הגישות? כסטודנטים, איזה אלגוריתם תעדיפו? כמנהלי מחלקות, איזה אלגוריתם תעדיפו?

[המשך יבוא]