Sincronización P2P mediante eventos y mediante barreras

Jesús Rodríguez Heras

1 de abril de 2019

Índice

- Sincronización
- 2 P2P
- 3 Sincronización P2P mediante eventos
- 4 Sincronización mediante barreras

Sincronización

Definición

Procedimiento por el que se ajusta el valor de un reloj a un tiempo físico de referencia con una precisión preestablecida.

Importante

Es importante asegurar una correcta sincronización entre los computadores de un sistema distribuido para que no se produzcan derivas.

Deriva

Representa el tiempo que un reloj se desvía respecto a la hora real con el paso del tiempo.

P₂P

Definición

Es un sistema auto-organizado de entidades iguales y autónomas cuyo objetivo es el uso compartido de recursos distribuidos en un ambiente de red evitando servicios centralizados.

Ejemplo

BitTorrent, eMule, μ Torrent, etc.

Sincronización P2P mediante eventos

- Para simplificarlo, supondremos que tenemos dos procesadores conectados mediante una red P2P (pont-to-point).
- Para sincronizar dichos procesadores tendremos una estructura de espera activa con una variable (o flag) común en ambos procesadores.
- Cuando uno de ellos realiza un cambio sobre dicha variable compartida (evento) el segundo se sincroniza con el primero.

Sincronización P2P mediante eventos

Ejemplo de dos procesos sincronizados mediante un evento donde inicialmente la variable global turno vale 0 (o un valor distinto de 1).

Procesador 1 //Resto de código inicial while(turno != 1){ //Espera ocupada }

//Código sincronizado

```
Procesador 2
```

```
//Resto de código inicial
turno = 1;
//Código sincronizado
```

En este ejemplo podemos ver cómo el procesador 1 se queda a la espera de que el procesador 2 le pase el turno (estableciendo a 1 la variable turno). Con esto se sincronizan para realizar la sección de Código sincronizado o, simplemente, porque sea necesaria una sincronización en ese punto del programa.

Sincronización mediante barreras

Barrera

Es un punto del código que ninguna entidad concurrente sobrepasa hasta que todas las entidades existentes han llegado a ella.

Sincronización mediante barreras

Ejemplo de código Java para la gestión de una barrera y varios procesos:

```
//Código de Thread:
public Hilo extends Thread{
    public Hilo (CyclicBarrier ba) {...}
    public void run(){
        try{
            int i = bar.await():
        }catch(Exception e){}
        //Código a ejecutar cuando se abre barrera...
//Programa principal:
int numHilos = n; //Número de hilos que abren barrera
CyclicBarrier Barrera = new CyclicBarrier(numHilos);
new Hilo(Barrera).start();
```

Sincronización mediante barreras

En el ejemplo anterior se ve cómo, hasta que no llegan todos los procesos a la barrera, el programa no seguirá ejecutándose. Y, cuando lo haga, lo harán todos los procesos a la vez.

A la derecha tenemos una figura donde se lanzan tres procesos a la vez y son sincronizados de por medio.

