Correctievoorschrift Statistiek KW/MBW#1 dd 08-04-2019

Vraagstuk 1 (27 punten)

Onderdeel a (3 punten):

3 punten: $P(\text{ even }) = P(\underline{k} = 2 \lor \underline{k} = 4 \lor \underline{k} = 6) = 0.25$

Onderdeel b (3 punten):

1 punt: F(2) = 0.33332 punten : F(7) = 1

Onderdeel c (9 punten):

3 punten $E(\underline{k}) = (1+3+5) \cdot \frac{1}{4} + (2+4+6) \cdot \frac{1}{12} = 3,25$

3 punten: $E(\underline{k}^2) = (1^2 + 3^2 + 5^2) \cdot \frac{1}{4} + (2^2 + 4^2 + 6^2) \cdot \frac{1}{12} = \frac{161}{12} = 13,4167$

3 punten: $Var(\underline{k}) = E(\underline{k}^2) - (E(\underline{k}))^2 = \frac{137}{48} = 2,8542$

Onderdeel d (12 punten)

7 punten: $\underline{k}_{som} \approx N(\ \mu = 60*3,25 = 195;\ \sigma = \sqrt{60} \cdot \sqrt{\frac{137}{48}} = \sqrt{171,25} = 13,08625233)$

5 punten: $P(\underline{k}_{som} > 200) = normalcdf(200.5, 10^10, 195, 13.0863) = 0,3371$ c.c. vergeten: - 2 punten

Vraagstuk 2 (27 punten)

Onderdeel a (7 punten):

1 punt: $P(\underline{x} \ge 4,2) = 0,02$ 1 punt: $P(\underline{x} \le 4,2) = 0,98$

2 punten: $z = \frac{4,2-\mu}{0,1}$

2 punten: z = invNorm(.98) = 2,0537

1 punt: $\mu = 3,9946$

Onderdeel b (10 punten):

2 punten: $\underline{x}_{gem} \sim N(\ \mu = 4 = 200; \ \sigma_{gem})$ 5 punten: $\sigma_{gem} = 0.1/\sqrt{25} = 0.02$

3 punten: normalcdf(-10^10 , 3.95, 4, .02) = 0,0062

Onderdeel c (10 punten)

2 punten: $\underline{v} = \underline{x}_1 - \underline{x}_2 \sim N(\ \mu = 4 - 4 = 0; \ \sigma)$ 4 punten: $\sigma = \sqrt{0,1^2 + 0,1^2} = 0,1414$

2 punten: gevraagde kans = $P(-0.1 < \underline{v} < 0.1)$ 2 punten: normalcdf(-.1, .1, 0, .1414) = 0,5205

<u>Vraagstuk 3</u> (20 punten)

Onderdeel a (8 punten):

2 punten: $P(\underline{k} \ge 4)$, met $\underline{k} \sim bin(n = 5; \pi = 0.8)$

4 punten: $P(\underline{k} \ge 4) = P(\underline{k}^* \le 1)$, met $\underline{k}^* \sim bin(n = 5; \pi = 0,2)$

2 punt: $P(\underline{k}^* \le 1) = binomcdf(5, .2, 1) = 0,7373$

Onderdeel b (12 punten):

2 punten: uit $n \ge 20$, $n \cdot \pi = 20 \ge 5$ en $n \cdot (1 - \pi) = 5 \ge 5$ volgt de CLS

3 punten: $\underline{k} \sim bin(n = 25; \pi = 0.8) \approx N(\mu = 25.0.8 = 20; \sigma)$

3 punten: $\sigma = \sqrt{25 \cdot 0.8 \cdot 0.2} = 2$

4 punten: normalcdf(19.5, 10^10, 20, 2) = 0,5987 c.c. vergeten: - 2 punten

Vraagstuk 4 (26 punten)

Onderdeel a (6 punten)

2 punten: $\underline{k} \sim Poi(\mu = 0.5)$ per dag 2 punten: gevraagde kans = $P(\underline{k} > 2)$

2 punten: $P(\underline{k} > 2) = 1 - P(\underline{k} \le 2) = 1 - poissoncdf(.5, 2) = 0.0144$

Onderdeel b (12 punten):

2 punten: $\underline{k} \sim Poi(\mu = 13.3, 5 = 45,5)$

6 punten: $\underline{\mathbf{k}} \approx \mathrm{N}(\ \mu = 45.5 \ ; \ \sigma = \sqrt{45.5} = 6.7454 \)$

4 punten: $P(\underline{k} < 30) \approx \text{normalcdf}(-10^{10}, 29.5, 45.5, 6.7454) = 0,0088$ c.c. vergeten: - 2 punten

Onderdeel c (8 punten)

2 punten: $\underline{t} = tijd$ tussen twee bommeldingen ~ exp($\lambda = 0.5$), met t in dagen

2 punten: gevraagde kans = P($1 < \underline{t} < 1,5$) 4 punten: fnInt($.5 \cdot e^{(-.5x)}$, x, 1, 1.5) = 0,1342