UNDICESIMA

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max & 7 \ x_1 - 2 \ x_2 \\ -3 \ x_1 + 4 \ x_2 \le 10 \\ -x_1 \le 2 \\ 7 \ x_1 + 2 \ x_2 \le 22 \\ -x_2 \le 3 \\ -3 \ x_1 - 2 \ x_2 \le 6 \\ -x_1 - x_2 \le 5 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere
		(si/no)	(si/no)
$\{4, 6\}$	x =		
$\{1, 2\}$	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
iterazione	$\{1,2\}$					
iterazione						

Esercizio 3. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo é indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacitá).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3)				
(3,5) (3,7) (4,6) (6,7)	(5,7)	x =		
(1,4) (2,5)				
(3,5) $(4,6)$ $(5,7)$ $(6,7)$	(3,7)	$\pi = (0,$		

Esercizio 4. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

	iterazione	iterazione
Archi di T	(1,3) (1,4) (2,5) (3,5) (4,6) (5,7)	
Archi di U	(3,2)	
Trem di C	(3,2)	
x		
_		
π		
Arco entrante		
0+ 0-		
θ^+, θ^-		
Arco uscente		

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6
	π	p										
nodo												
visitato												
nodo 2												
nodo 3												
nodo 4												
nodo 5												
nodo 6												
insieme												
Q												

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacitá minima: $N_s = N_t = N_t$

Esercizio 6. Una banca ha a disposizione 14 milioni di Euro da investire scegliendo in un insieme di 4 possibili investimenti: fondi azionari, bilanciati, monetari e obbligazionari. La seguente tabella riporta le caratteristiche di ogni fondo.

tipo di fondo	rendimento annuo atteso	probabilitá di perdita prevista
azionario	0.3	0.1
bilanciato	0.11	0.08
monetario	0.2	0.15
obbligazionario	0.08	0.02

La banca ha delle limitazioni sulle possibilità di investimento. In particolare, almeno il 35 % del capitale totale (14 milioni) deve essere investito in fondi bilanciati e in fondi obbligazionari. Inoltre, di tutto il capitale investito in fondi azionari e monetari, almeno la metà deve essere investito in fondi azionari. Si vuole massimizzare il rendimento complessivo atteso in modo che la perdita prevista non sia più del 10 % del capitale investito.

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 10 \ x_1 + 14 \ x_2 \\ 9 \ x_1 + 5 \ x_2 \le 48 \\ 8 \ x_1 + 9 \ x_2 \le 52 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in Z \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P) =$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

$$r =$$
 taglio:

Esercizio 8. Si consideri il problema di massimizzare il valore dei beni inseriti in un contenitore avente la capacitá di 7 metri cubi (ogni bene puó essere inserito al massimo una volta).

Beni	1	2	3	4
Valori	16	17	22	21
Volumi	4	5	6	2

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile = $v_I(P) =$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P) =$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2 - x_1^2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 - (x_2 - 1)^2 + 1 \le 0, -x_1 \le 0}.$$

Soluzioni de	Soluzioni del sistema LKT				Minimo		Sella
x	λ	μ	globale	locale	globale	locale	

Esercizio 10. Si consideri il problema di massimizzare la funzione

$$f(x_1, x_2) = 6 x_1^2 - 6 x_2^2 + 4 x_1 + 9 x_2$$

sul poliedro di vertici (2,-2), (-3,-4), (-3,5) e (5,3). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
(-3, -1)						

SOLUZIONI

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max & 7 \ x_1 - 2 \ x_2 \\ -3 \ x_1 + 4 \ x_2 \le 10 \\ -x_1 \le 2 \\ 7 \ x_1 + 2 \ x_2 \le 22 \\ -x_2 \le 3 \\ -3 \ x_1 - 2 \ x_2 \le 6 \\ -x_1 - x_2 \le 5 \end{cases}$$

Base	Soluzione di base	Ammissibile	
		(si/no)	(si/no)
$\{4, 6\}$	x = (-2, -3)	NO	SI
{1, 2}	$y = \left(-\frac{1}{2}, -\frac{11}{2}, 0, 0, 0, 0\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
iterazione	{1, 2}	(-2, 1)	$\left(-\frac{1}{2}, -\frac{11}{2}, 0, 0, 0, 0\right)$	1	16, 4, 16	5
.,	(0.5)	(2 0)	(0 10 0 0 1 0)	9	0 0 0	4
iterazione	$\{2, 5\}$	(-2, 0)	(0, -10, 0, 0, 1, 0)	2	9, 2, 6	4

 $\textbf{Esercizio 3.} \ \ \text{Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete .}$

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3)				
(3,5) (3,7) (4,6) (6,7)	(5,7)	x = (-6, 13, 0, 0, 0, 14, 5, 0, -3, 10, -6)	NO	NO
(1,4) (2,5)				
(3,5) $(4,6)$ $(5,7)$ $(6,7)$	(3,7)	$\pi = (0, 6, 7, 4, 13, 11, 21)$	SI	SI

Esercizio 4. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

	iterazione	iterazione
Archi di T	(1,3) $(1,4)$ $(2,5)$ $(3,5)$ $(4,6)$ $(5,7)$	(1,3) $(1,4)$ $(2,5)$ $(3,5)$ $(4,6)$ $(5,7)$
Archi di U	(3,2)	
x	(0, 1, 6, 11, 5, 2, 0, 0, 3, 9, 0)	(0, 1, 6, 6, 0, 7, 0, 0, 3, 9, 0)
π	(0, 8, 9, 4, 15, 11, 23)	(0, 8, 9, 4, 15, 11, 23)
Arco entrante	(3,2)	(3,7)
θ^+, θ^-	5, 5	10, 7
Arco uscente	(3,2)	(3,5)

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	2	iter	. 3	ite	r 4	ite	r 5	ite	r 6
	π	p	π	p	π	p	π	p	π	p	π	p
nodo												
visitato	1		3		2		4	1	(3	5	5
nodo 2	10	1	6	3	6	3	6	3	6	3	6	3
nodo 3	3	1	3	1	3	1	3	1	3	1	3	1
nodo 4	$+\infty$	-1	$+\infty$	-1	10	2	10	2	10	2	10	2
nodo 5	$+\infty$	-1	$+\infty$	-1	24	2	24	2	20	6	20	6
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	15	4	15	4	15	4
insieme												
Q	2,	3	2		2 4, 5		5,	6	Ę	5	Į ()

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v
cammino aumentante		d.	U
	_		_
1 - 2 - 4 - 6	6	(6,0,6,0,0,6,0,0,0)	6
1 - 3 - 2 - 4 - 6	6	(6, 6, 12, 0, 6, 12, 0, 0, 0)	12
1 - 3 - 2 - 5 - 4 - 6	3	(6, 9, 12, 3, 9, 15, 0, 3, 0)	15

Taglio di capacitá minima: $N_s = \{1,3\}$ $N_t = \{2,4,5,6\}$

Esercizio 6.

variabili decisionali	modello		
$x_1=$ milioni di Euro investiti in fondi azionari $x_2=$ milioni di Euro investiti in fondi bilanciati $x_3=$ milioni di Euro investiti in fondi monetari $x_4=$ milioni di Euro investiti in fondi obbligazionari	$\begin{cases} \max & 0.3 \ x_1 + 0.11 \ x_2 + 0.2 \ x_3 + 0.08 \ x_4 \\ x_1 + x_2 + x_3 + x_4 \le 14 \\ x_2 + x_4 \ge 0.35 * 14 \\ x_1 \ge 0.5 * (x_1 + x_3) \\ 0.1 \ x_1 + 0.08 \ x_2 + 0.15 \ x_3 + 0.02 \ x_4 \le \\ 0.1 \ (x_1 + x_2 + x_3 + x_4) \\ x_i \ge 0, \ i = 1, 2, 3, 4 \end{cases}$		

COMANDI DI MATLAB

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 10 \ x_1 + 14 \ x_2 \\ 9 \ x_1 + 5 \ x_2 \le 48 \\ 8 \ x_1 + 9 \ x_2 \le 52 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in Z \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $\left(0, \frac{52}{9}\right)$ $v_S(P) = 80$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento continuo.

sol. ammissibile =
$$(0,5)$$
 $v_I(P) = 70$

c) Calcolare un taglio di Gomory.

$$r = 2$$
 $x_2 \le 5$ $x = 3$ $3x_1 + 4x_2 \le 23$

Esercizio 8.

Beni	1	2	3	4
Valori	16	17	22	21
Volumi	4	5	6	2

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(1, 0, 0, 1)$$

 $v_I(P) = 37$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(1, 0, \frac{1}{6}, 1\right)$$
 $v_S(P) = 40$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2 - x_1^2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 - (x_2 - 1)^2 + 1 \le 0, -x_1 \le 0}.$$

Soluzioni del sistema LKT			Massimo		Minimo		Sella
x	λ	μ	globale	locale	globale	locale	
$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$	(-1,0)		NO	NO	NO	NO	SI
(0, 0)	$\left(-\frac{1}{2},0\right)$		NO	SI	NO	NO	NO
(0, 2)	$\left(\frac{1}{2},0\right)$		NO	NO	NO	NO	SI

Esercizio 10. Si consideri il problema di massimizzare la funzione

$$f(x_1, x_2) = 6 x_1^2 - 6 x_2^2 + 4 x_1 + 9 x_2$$

sul poliedro di vertici (2,-2), (-3,-4), (-3,5) e (5,3). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
(-3, -1)	(-1,0)	$ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} $	(0,21)	$\frac{2}{7}$	$\frac{1}{12}$	$\left(-3, \frac{3}{4}\right)$