

Datalink, Error Detection & Correction

Tamsyn Evezard

Agenda

- Introduction to Data Link Layer
- Error Detection Techniques
- Error Correction Techniques
- Conclusion

What is the Data Link Layer?

- 2nd layer in the OSI model
- Bridge between the physical transmission and the network layer
- Ensures reliable data communication between nodes

Key Functions of the Data Link Layer

Framing Example

• E.g. sending an email

Fig. 2 Framing a Message for Transmission Adapted from [2]

Types of Data Link Protocols

Ethernet

• LANs - fast, widely-used

HDLC (High-Level Data Link Control)

Point-to-point communication

PPP (Point-to-Point Protocol)

• direct connections (e.g. dial-up)

Error Detection

Parity Bits, Checksums, CRC

Why Error Detection Matters

- Data can get corrupted by:
 - Noise
 - Interference
 - Timing issues

Error Detection ensures data integrity

Errors

Change of one or more bits in a transmitted block of data.

Single-Bit Errors

- Isolated error (only one bit and no nearby bits)
- White noise

Burst Errors

- Contiguous sequence of bits in which the 1st and last and some between them are received wrong
- Impulse noise

9

Fig. 3 Single-Bit versus Burst Errors Adapted from [4]

1) Parity Bits

- Append a parity bit to the end of the block of data
- Value of parity bit = selected for even or odd parity

e.g. 10110011 > 10110011<u>1</u>

Even Parity

- Even number of 1s
- For synchronous transmission

Odd Parity

- Odd number of 1s
- For asynchronous transmission

1) Parity Bits | 2D Parity Scheme

Fig. 4 A Two-Dimensional Even Parity Scheme Adapted from [4]

- More robust
- Data bits arranged in a 2D array
- Append an even parity bit to each row and column
- Overall parity bit completes the matrix
- Able to locate error at the intersection of the parity bits and correct it

2) Checksums

	0001		
Partial sum	F203		
	F204		
	F204		
Partial sum	F4F5		
	1E6F9		
	E6F9		
Carry	1		
	E6FA		
	E6FA		
Partial sum	F6F7		
	1DDF1		
	DDF1		
Carry	1		
	DDF2		
	220D		
Ones complement of the result			

Partial sum	0001
	F203
	F204
	F204
Partial sum	F4F5
	1E6F9
	E6F9
Carry	1
	E6FA
	E6FA
Partial sum	_F6F7
	1DDF1
	DDF1
Carry	1
	DDF2
	DDF2
Partial sum	220D
	FFFF

(a) Checksum calculation by sender

(b) Checksum verification by receiver

- Adding all data values and sending the result with the transmission data
- Used in TCP/IP
- Ones-complement:
 - o Result = original + complement

3) Cyclic Redundancy Check (CRC)

- Binary division
- Data as a polynomial divided by another predefined polynomial
- Detects burst errors better than parity bits and checksums
- 1) Modulo 2 Arithmetic
- 2) Polynomials
- 3) Digital Logic

Error Correction

ARQ, FEC, Hamming Code

1) Automatic Repeat reQuest (ARQ)

Feedback-based (retransmission if errors detected)

2) Forward Error Correction (FEC)

- Sender adds redundancy so receiver can correct errors
- NO NEED FOR RETRANSMISSION
- Real-time applications
 - Video streaming
 - Satellite communication

Fig. 6 FEC Satellite Communication Adapted from [6]

3) Hamming Code

- Example of FEC
- Adds parity bits to positions that are powers of 2
- Detects and corrects single-bit errors
- Receiver performs a calculation to find corrupted bit

Fig. 7 11-Bit Hamming Code Set-Up Adapted from [3]

3) Hamming Code Example | Encoding

7	6	5	4	3	2	1
1	0	0	P ₃	1	P ₂	P ₁

Data bits: 1001

Parity bits (even parity):

 $P_1 = \text{Check 1, 3, 5, and 7}$

 P_2 = Check 2, 3, 6, and 7

 $P_3 = \text{Check 4, 5, 6, 7}$

3) Hamming Code Example | Encoding

7	6	5	4	3	2	1
1	0	0	1	1	0	0

Data bits: 1001

Parity bits (even parity):

 $P_1 = \text{Check 1, 3, 5, and 7}$

 P_2 = Check 2, 3, 6, and 7

 $P_3 = \text{Check 4, 5, 6, 7}$

7-bit code to be transmitted: 1001100

3) Hamming Code Example | Decoding

7	6	5	4	3	2	1
1	0	0	0	1	0	1

Parity bits (even parity):

 $P_1 = \text{Check 1, 3, 5, and 7}$

 P_2 = Check 2, 3, 6, and 7

 $P_3 = Check 4, 5, 6, 7$

7-bit code received: 1000101

Data bits received: 1001

Actual data bits transmitted: 1011

P ₃	P_2	P ₁
1	0	1

Real-World Applications

Error detection and correction are crucial in:

- Wi-Fi
- Satellite communication
- Video streaming and video calls
- CDs and DVDs
- Texting applications (WhatsApp)

Future Trends

Fig. 8 Future Technology Trends Adapted from [7]

- Al-assisted error correction
- Quantum error correction
- Improved wireless protocols

Thank You

References

- [1] A. Froehlich, "What is Data-Link layer? Definition from WhatIs.com," *SearchNetworking*, 2023. https://www.techtarget.com/searchnetworking/definition/Data-Link-layer (accessed Apr. 06, 2025).
- [2] www.naukri.com, "Code 360 by Coding Ninjas," *Naukri.com*, 2024. https://www.naukri.com/code360/library/framing-in-computer-networking (accessed Apr. 06, 2025).
- [3] H. Pandey, "Hamming Code in Computer Network GeeksforGeeks," *GeeksforGeeks*, Dec. 26, 2017. https://www.geeksforgeeks.org/hamming-code-in-computer-network/ (accessed Apr. 06, 2025).
- [4] A. Salem, Module 10, 11, "Error Detection and Data Link", CSIT548_02, Hood College, Frederick, MD, Apr. 6, 2025.
- [5] W. Stallings, *Data and computer communications*. Boston: Pearson, 2014.
- J. F. Samaniego, "How to create an efficient network between the Internet of Things and satellite constellations," *Techxplore.com*, May 21, 2024. https://techxplore.com/news/2024-05-efficient-network-internet-satellite-constellations.html (accessed Apr. 06, 2025).
- [7] "Designing the future: Tech trends of 2023," *Shortcut.io*, 2023. https://www.shortcut.io/news-events/designing-the-future-tech-trends-of-2023 (accessed Apr. 06, 2025).