Kapitola 1

Teorie modelů

V této kapitole se trochu vzdálíme typickým aplikacím logiky v informatice¹ a nahlédneme o úroveň abstrakce výše, do oblasti *matematické* logiky. *Teorie modelů* se snaží popsat vztah mezi obecnými vlastnostmi teorií (predikátové logiky) a tříd jejich modelů. Nevyhneme se práci s nekonečnými teoriemi a s nekonečnými strukturami. Jde jen o ukázku několika vybraných výsledků, které jsou pro nás dostupné. Ani se nepokusíme obsáhnout všechny hlavní oblasti teorie modelů, která je velmi bohatá a hluboká. Do této kapitoly jsme také přidali materiál týkající se vlastností modelů, který se nehodil jinam.

1.1 Elementární ekvivalence

Nejprve se podíváme na několik vlastností souvisejících s pojmem elementární ekvivalence. Připomeňme, že L-struktury \mathcal{A} a \mathcal{B} jsou elementárně ekvivalentní ($\mathcal{A} \equiv \mathcal{B}$), pokud v nich platí tytéž L-sentence.

V teorii modelů nás často zajímá, jaké vlastnosti (sentence) platí v dané, konkrétní struktuře:

Definice 1.1.1 (Teorie struktury). Mějme L-strukturu A. Teorie struktury A, značíme Th(A) je množina všech L-sentencí platných v A:

$$Th(A) = \{ \varphi \mid \varphi \text{ je } L\text{-sentence a } A \models \varphi \}$$

 $P\check{r}iklad$ 1.1.2. Jako důležitý příklad vezměme standardní model aritmetiky, strukturu $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$. Teorii $\mathrm{Th}(\underline{\mathbb{N}})$ říkáme aritmetika přirozených čísel. V následující kapitole si ukážeme, že je (algoritmicky) nerozhodnutelná.

Několik jednoduchých vlastností teorie struktury shrneme v následujícím pozorování:

Pozorování 1.1.3. Nechť A je L-struktura a T je L-teorie.

- (i) Teorie Th(A) je kompletní.
- (ii) Je-li $A \in M_L(T)$, potom Th(A) je (kompletní) jednoduchá extenze teorie T.

 $^{^1}$ Například použití rezoluce k řešení otázky, zda v dané konečné teorii T platí daná sentence φ .

²Teorie T je (algoritmicky) rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní sentenci φ doběhne a odpoví, zda $T \models \varphi$.

(iii) Pokud $A \in M_L(T)$ a T je kompletní, potom je Th(A) ekvivalentní s T, v tom případě $Th(A) = Csq_L(T)$.

Pomocí pojmu teorie struktury můžeme také vyjádřit elementární ekvivalenci, pro L-struktury \mathcal{A}, \mathcal{B} platí:

$$\mathcal{A} \equiv \mathcal{B}$$
 právě když $\operatorname{Th}(\mathcal{A}) = \operatorname{Th}(\mathcal{B})$.

 $P\check{r}iklad$ 1.1.4. Podívejme se standardní uspořádání reálných, racionálních, a celých čísel, tj. na struktury $\langle \mathbb{R}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle$, $\langle \mathbb{Z}, \leq \rangle$. Jak jsme již zmínili v Příkladu ??, není těžké ukázat, že $\langle \mathbb{R}, \leq \rangle$ $\equiv \langle \mathbb{Q}, \leq \rangle$ (pomocí hustoty těchto uspořádání). Struktury $\langle \mathbb{Q}, \leq \rangle$ ale elementárně ekvivalentní nejsou: V $\langle \mathbb{Z}, \leq \rangle$ má každý prvek bezprostředního následníka, což v $\langle \mathbb{Q}, \leq \rangle$ neplatí. Pro následující sentenci φ tedy máme $\varphi \in \text{Th}(\langle \mathbb{Z}, \leq \rangle)$ ale $\varphi \notin \text{Th}(\langle \mathbb{Q}, \leq \rangle)$:

$$\varphi = (\forall x)(\exists y)(x \le y \land \neg x = y \land (\forall z)(x \le z \rightarrow z = x \lor y \le z)$$

1.1.1 Kompletní jednoduché extenze

Máme-li teorii T, zajímá nás, jak vypadají její modely. Připomeňme, že:

- Teorie je kompletní, právě když má jediný model až na elementární ekvivalenci.³
- Modely teorie T až na elementární ekvivalenci jednoznačně odpovídají kompletním jednoduchým extenzím T.

Kompletní jednoduché extenze L-teorie T jsou tedy tvaru $\operatorname{Th}(\mathcal{A})$ pro $\mathcal{A} \in \operatorname{M}_L(T)$, a (jak jsme už zmínili výše) $\mathcal{A} \equiv \mathcal{B}$ právě když $\operatorname{Th}(\mathcal{A}) = \operatorname{Th}(\mathcal{B})$. Místo hledání všech modelů tedy stačí najít všechny kompletní jednoduché extenze.

Tvrzení 1.1.5. Pokud lze efektivně (algoritmicky) popsat všechny kompletní jednoduché extenze⁴ efektivně dané teorie T, potom je T (algoritmicky) rozhodnutelná.

 $D\mathring{u}kaz$. Pro danou sentenci φ buď $T \vdash \varphi$, nebo existuje protipříklad $A \not\models \varphi$, tedy kompletní jednoduchá extenze T_i teorie T taková, že $T_i \not\vdash \varphi$. Z kompletnosti ale plyne, že $T_i \vdash \neg \varphi$. Náš algoritmus bude paralelně konstruovat tablo důkaz φ z T a tablo důkaz $\neg \varphi$ ze všech kompletních jednoduchých extenzí T_1, T_2, \ldots teorie T. Víme, že alespoň jedno z paralelně konstruovaných tabel je sporné, a můžeme předpokládat, že konečné (neprodlužujeme-li sporné větve tabla), tedy algoritmus ho po konečně mnoha krocích zkonstruuje.

Schopnost efektivně popsat všechny kompletní jednoduché extenze je poměrně vzácná, a vyžaduje silné předpoklady. Přesto to lze provést u mnoha důležitých teorií. Uveď me jeden příklad: teorii hustého lineárního uspořádání (dense linear order).

 $^{^3{\}rm Tedy}$ všechny její modely jsou elementárně ekvivalentní.

 $^{^4}$ Představte si algoritmus, který pro daná vstupní i,j odpoví j-tý axiom i-té kompletní jednoduché extenze (v nějakém pevném očíslování); takový algoritmus ne vždy existuje!

 $^{^5}T$ může být nekonečná, ale musí existovat algoritmus, který generuje všechny axiomy T.

⁶Nevadí, že je jich nekonečně mnoho, můžeme využít tzv. *dovetailing*: Provedeme 1. krok konstrukce 1. tabla, potom 2. krok 1. tabla a 1. krok 2. tabla, 3. krok 1. tabla, 2. krok 2. tabla, 1. krok 3. tabla, atd.

Příklad: DeLO*

Teorie hustého lineárního uspořádání (DeLO*) je extenze teorie uspořádání o následující axiomy:

• axiom linearity (někdy se mu říká také dichotomie):

$$x \le y \lor y \le x$$

• axiom hustoty

$$x \le y \land \neg x = y \to (\exists z)(x \le z \land z \le y \land \neg z = x \land \neg z = y)$$

Někdy se přidává i axiom netriviality $(\exists x)(\exists y)(\neg x = y)$ zakazující jednoprvkový model. Tato teorie není kompletní, umíme ale popsat všechny její kompletní jednoduché extenze:

Tvrzení 1.1.6. Mějme sentence $\varphi = (\exists x)(\forall y)(x \leq y)$ a $\psi = (\exists x)(\forall y)(y \leq x)$ vyjadřující existenci minimálního resp. maximálního prvku. Následující čtyři teorie jsou právě všechny kompletní jednoduché extenze teorie DeLO*:

- DeLO = DeLO* $\cup \{\neg \varphi, \neg \psi\}$
- $DeLO^+ = DeLO^* \cup \{\neg \varphi, \psi\}$
- $DeLO^- = DeLO^* \cup \{\varphi, \neg \psi\}$
- $DeLO^{\pm} = DeLO^* \cup \{\varphi, \psi\}$

Stačí ukázat, že tyto čtyři teorie jsou kompletní. Potom už je zřejmé, že žádná další kompletní jednoduchá extenze DeLO* nemůže existovat. Jak vysvětlíme v Sekci 1.3, jejich kompletnost plyne z faktu, že jsou ω -kategorické, tj. mají jediný spočetný model až na elementární ekvivalenci.

Z Tvrzení 1.1.5 potom plyne rozhodnutelnost:

Důsledek 1.1.7. Teorie DeLO* je (algoritmicky) rozhodnutelná.

1.1.2 Důsledky Löwenheim-Skolemovy věty

V Sekci ?? jsme dokázali tzv. Löwenheim-Skolemovu větu, konkrétně její variantu pro jazyky bez rovnosti:

Věta (Löwenheim-Skolemova). *Je-li L spočetný jazyk bez rovnosti, potom každá bezesporná L-teorie má spočetně nekonečný model.*

Tato věta má následující jednoduchý důsledek:

Důsledek 1.1.8. Je-li L spočetný jazyk bez rovnosti, potom ke každé L-struktuře existuje elementárně ekvivalentní spočetně nekonečná struktura.

 $D\mathring{u}kaz$. Mějme L-strukturu \mathcal{A} . Teorie Th(\mathcal{A}) je bezesporná (má model \mathcal{A}), tedy dle Löwenheim-Skolemovy má spočetně nekonečný model $\mathcal{B} \models \operatorname{Th}(\mathcal{A})$. To ale znamená, že $\mathcal{B} \equiv \mathcal{A}$.

V jazyce bez rovnosti tedy nemůžeme vyjádřit například 'model má právě 42 prvků'.

V důkazu Löwenheim-Skolemovy věty jsme sestrojený model získali jako kanonický model pro bezespornou větev tabla z T pro položku $F\bot$. Stejným způsobem se dokáže následující verze pro jazyky s rovností, stačí faktorizovat dle relace $=^A$:

Věta (Löwenheim-Skolemova s rovností). *Je-li L spočetný jazyk s rovností, potom každá bezesporná L-teorie má spočetný model (tj. konečný, nebo spočetně nekonečný).*

I tato verze má snadný důsledek pro konkrétní struktury:

Důsledek 1.1.9. Je-li L spočetný jazyk s rovností, potom ke každé nekonečné L-struktuře existuje elementárně ekvivalentní spočetně nekonečná struktura.

 $D\mathring{u}kaz$. Mějme nekonečnou L-strukturu \mathcal{A} . Stejně jako v důkazu Důsledku 1.1.8 najdeme spočetně nekonečnou strukturu $\mathcal{B} \equiv \mathcal{A}$. Protože v \mathcal{A} neplatí pro žádné $n \in \mathbb{N}$ sentence vyjadřující 'existuje nejvýše n prvků' (což lze pomocí rovnosti snadno zapsat), neplatí tato sentence ani v \mathcal{B} , \mathcal{B} tedy nemůže být konečná struktura.

Tento důsledek použijeme, abychom ukázali, že existuje spočetné těleso, které je algebraicky uzavřené:

Spočetné algebraicky uzavřené těleso

Těleso \mathcal{A} je algebraicky uzavřené, pokud každý polynom nenulového stupně v něm má kořen. Těleso reálných čísel \mathbb{R} není algebraicky uzavřené, neboť x^2+1 nemá v \mathbb{R} kořen, stejně tak těleso \mathbb{Q} (v něm nemá kořen ani x^2-2). Těleso komplexních čísel \mathbb{C} algebraicky uzavřené je, je ale nespočetné.

Algebraickou uzavřenost lze vyjádřit pomocí následujících sentencí ψ_n , pro každé n>0:

$$(\forall x_{n-1})\dots(\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$ (kde · je aplikováno (k-1)-krát).

Důsledek 1.1.10. Existuje spočetné algebraicky uzavřené těleso.

 $D\mathring{u}kaz$. Dle Důsledku 1.1.9 existuje spočetně nekonečná struktura \mathcal{A} elementárně ekvivalentní tělesu \mathbb{C} . Protože \mathbb{C} je těleso a splňuje sentence ψ_n pro všechna n > 0, je i \mathcal{A} algebraicky uzavřené těleso.

1.2 Izomorfismus struktur

[TODO]

Izomorfismus struktur

Nechť \mathcal{A} , \mathcal{B} jsou struktury jazyka $L = \langle \mathcal{F}, \mathcal{R} \rangle$.

- Bijekce $h: A \to B$ je izomorfismus struktur \mathcal{A} a \mathcal{B} , pokud platí zároveň
 - (i) $h(f^A(a_1,...,a_n)) = f^B(h(a_1),...,h(a_n))$ pro každý n-ární funkční symbol $f \in \mathcal{F}$ a každé $a_1, \ldots, a_n \in A$,
 - (ii) $R^A(a_1,\ldots,a_n) \Leftrightarrow R^B(h(a_1),\ldots,h(a_n))$ pro každý *n*-ární relační symbol $R \in \mathcal{R}$ a každé $a_1, \ldots, a_n \in A$.
- \mathcal{A} a \mathcal{B} jsou *izomorfní* (via h), psáno $\mathcal{A} \simeq \mathcal{B}$ ($\mathcal{A} \simeq_h \mathcal{B}$), pokud existuje izomorfismus h struktur \mathcal{A} a \mathcal{B} . Říkáme rovněž, že \mathcal{A} je izomorfni s \mathcal{B} .
- Automorfismus struktury \mathcal{A} je izomorfismus \mathcal{A} s \mathcal{A} .

Např. potenční algebra $\mathcal{P}(X) = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ s X = n je izomorfní s Booleovou algebrou $\underline{n2} = \langle n2, -n, \wedge_n, \vee_n, 0_n, 1_n \rangle$ via $h: A \mapsto \chi_A$, $kde \chi_A$ je charakteristická funkce množiny $A \subseteq X$.

Izomorfismus a sémantika

Uvidíme, že izomorfismus zachovává sémantiku.

Tvrzení Nechť \mathcal{A}, \mathcal{B} jsou struktury jazyka $L = \langle \mathcal{F}, \mathcal{R} \rangle$. Bijekce $h \colon A \to B$ je izomorfismus A a B, právě když platí zároveň

- (i) $h(t^A[e]) = t^B[e \circ h]$ pro každý term $t \ a \ e \colon Var \to A$, (ii) $A \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$ pro každou formuli $\varphi \ a \ e \colon Var \to A$.

 $D\mathring{u}kaz \ (\Rightarrow)$ Indukcí dle struktury termu t, respektive formule φ .

 (\Leftarrow) Dosazením termu $f(x_1,\ldots,x_n)$ do (i) či atomické formule $R(x_1,\ldots,x_n)$

do (ii) pro ohodnocení $e(x_i) = a_i$ máme, že h vyhovuje def. izomorfismu. \square

Důsledek Pro každé struktury A, B stejného jazyka,

$$A \simeq B \Rightarrow A \equiv B.$$

Poznámka Obrácená implikace obecně neplatí, např. $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$, ale $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle, \ nebot' \ |\mathbb{Q}| = \omega \ \ a \ |\mathbb{R}| = 2^\omega.$

Konečné modely s rovností

Tvrzení Pro každé konečné struktury A, B stejného jazyka s rovností,

$$\mathcal{A} \equiv \mathcal{B} \quad \Rightarrow \quad \mathcal{A} \simeq \mathcal{B}.$$

Důkaz Je |A| = |B|, neboť lze vyjádřit "existuje právě n prvků".

- Nechť \mathcal{A}' je expanze \mathcal{A} do jazyka $L' = L \cup \{c_a\}_{a \in A}$ o jména prvků z A.
- Ukážeme, že \mathcal{B} lze expandovat na \mathcal{B}' do jazyka L' tak, že $\mathcal{A}' \equiv \mathcal{B}'$. Pak zřejmě $h\colon a\mapsto c_a^{B'}$ je izomorfismus \mathcal{A}' s \mathcal{B}' a tedy i izomorfismus \mathcal{A} s \mathcal{B} .

- Stačí ukázat, že pro každé $c_a^{A'} = a \in A$ existuje $b \in B$ t.ž. $\langle \mathcal{A}, a \rangle \equiv \langle \mathcal{B}, b \rangle$.
- Označme Ω množinu formulí $\varphi(x)$ t.ž. $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, tj. $\mathcal{A} \models \varphi[e(x/a)]$.
- Jelikož je A konečné, existuje konečně formulí $\varphi_0(x), \ldots, \varphi_m(x)$ tak, že pro každé $\varphi \in \Omega$ je $A \models \varphi \leftrightarrow \varphi_i$ pro nějaké i.
- Jelikož $\mathcal{B} \equiv \mathcal{A} \models (\exists x) \bigwedge_{i \le m} \varphi_i$, existuje $b \in B$ t.ž. $\mathcal{B} \models \bigwedge_{i \le m} \varphi_i[e(x/b)]$.
- Tedy pro každou $\varphi \in \Omega$ je $\mathcal{B} \models \varphi[e(x/b)]$, tj. $\langle \mathcal{B}, b \rangle \models \varphi(x/c_a)$. \square

Důsledek Má-li kompletní teorie jazyka s rovností konečný model, jsou všechny její modely izomorfní.

1.2.1 Definovatelnost a automorfismy

[TODO]

Připomeňme si pojem definovatelné množiny, viz Sekce ??.

Definovatelnost a automorfismy

Ukážeme, že definovatelné množiny jsou invariantní na automorfismy.

Tvrzení Nechť $D \subseteq A^n$ je množina definovatelná ve struktuře A z parametrů \bar{b} a h je automorfismus A, který je identický na \bar{b} . Pak h[D] = D.

$$D\mathring{u}kaz\,$$
 Nechť $D=\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}).$ Pak pro každé $\overline{a}\in A^{|\overline{x}|}$

$$\overline{a} \in D \iff \mathcal{A} \models \varphi[e(\overline{x}/\overline{a}, \overline{y}/\overline{b})] \iff \mathcal{A} \models \varphi[(e \circ h)(\overline{x}/\overline{a}, \overline{y}/\overline{b})]$$
$$\iff \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/h(\overline{b}))] \iff \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/\overline{b})] \iff h(\overline{a}) \in D. \quad \Box$$

Např. graf \mathcal{G} má právě jeden netriv. automorfismus h zachovávající vrchol 0.

Navíc množiny $\{0\}$, $\{1,4\}$, $\{2,3\}$ jsou definovatelné z parametru 0. Tedy $\mathrm{Df}^1(\mathcal{G},\{0\}) = \{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\{1,4,2,3\},\{0,1,2,3,4\}\}.$

1.3 Kategorické teorie

[TODO]

- Izomorfní spektrum teorie T je počet $I(\kappa,T)$ navzájem neizomorfních modelů teorie T pro každou kardinalitu κ .
- Teorie T je κ -kategorická, pokud má až na izomorfismus právě jeden model kardinality κ , tj. $I(\kappa,T)=1$.

Tvrzení Teorie DeLO (tj. "bez konců") je ω -kategorická.

 $D\mathring{u}kaz$ Nechť $\mathcal{A}, \mathcal{B} \models DeLO$ s $A = \{a_i\}_{i \in \mathbb{N}}, B = \{b_i\}_{i \in \mathbb{N}}$. Indukcí dle n lze nalézt prosté parciální funkce $h_n \subseteq h_{n+1} \subset A \times B$ zachovávající uspořádání tak, že $\{a_i\}_{i < n} \subseteq \text{dom}(h_n)$ a $\{b_i\}_{i < n} \subseteq \text{rng}(h_n)$. Pak $\mathcal{A} \simeq \mathcal{B}$ via $h = \bigcup h_n$.

Obdobně dostaneme, že např. $\mathcal{A} = \langle \mathbb{Q}, \leq \rangle$, $\mathcal{A} \upharpoonright (0,1]$, $\mathcal{A} \upharpoonright [0,1)$, $\mathcal{A} \upharpoonright [0,1]$ jsou až na izomorfismus všechny spočetné modely teorie DeLO*. Pak

$$I(\kappa, DeLO^*) = \begin{cases} 0 & \text{pro } \kappa \in \mathbb{N}, \\ 4 & \text{pro } \kappa = \omega. \end{cases}$$

1.3.1 ω -kategoricita a úplnost

[TODO]

Věta Nechť jazyk L je spočetný.

- (i) Je-li teorie T jazyka L bez rovnosti ω-kategorická, je kompletní.
- (ii) Je-li teorie T jazyka L s rovností ω-kategorická a bez konečného modelu, je kompletní.

 $D\mathring{u}kaz$ Každý model teorie T je elementárně ekvivalentní s nějakým spočetně nekonečným modelem T, ale ten je až na izomorfismus jediný. Tedy všechny modely T jsou elementárně ekvivalentní, tj. T je kompletní.

Např. teorie DeLO, $DeLO^+$, $DeLO^-$, $DeLO^\pm$ jsou kompletní a jsou to všechny (navzájem neekvivalentní) jednoduché kompletní extenze teorie $DeLO^*$.

Poznámka Obdobné kritérium platí i pro vyšší kardinality než ω .

1.4 Axiomatizovatelnost

[TODO]

1.4.1 Axiomatizovatelnost

Axiomatizovatelnost

Zajímá nás, zda se daná část světa dá "dobře" popsat.

Nechť $K \subseteq M(L)$ je třída struktur jazyka L. Řekneme, že K je

- axiomatizovatelná, pokud existuje teorie T jazyka $L \times M(T) = K$,
- konečně axiomatizovatelná, pokud je axiomatizovatelná konečnou teorií,
- otevřeně axiomatizovatelná, pokud je axiomatizovatelná otevřenou teorií,

• teorie T je konečně (otevřeně) axiomatizovatelná, pokud M(T) je konečně (respektive otevřeně) axiomatizovatelná.

Pozorování Je-li K axiomatizovatelná, je uzavřená na elem. ekvivalenci. Například

- a) lineární uspořádání jsou konečně i otevřeně axiomatizovatelná,
- b) tělesa jsou konečně axiomatizovatelná, ale ne otevřeně,
- c) nekonečné grupy jsou axiomatizovatelné, ale ne konečně.

Důsledek kompaktnosti

Věta Má-li teorie T pro každé $n \in \mathbb{N}$ alespoň n-prvkový model, má i nekonečný model.

Důkaz V jazyce bez rovnosti je to zřejmé, uvažme jazyk s rovností.

- Označme $T' = T \cup \{c_i \neq c_j \mid \text{pro } i \neq j\}$ extenzi teorie T v rozšířeném jazyce o spočetně nekonečně mnoho nových konstantních symbolů c_i .
- Dle předpokladu má každá konečná část teorie T' model.
- Tedy dle věty o kompaktnosti má T' model, ten je nutně nekonečný.
- \bullet Jeho redukt na původní jazyk je hledaný nekonečný model teorie T. \square

Důsledek $M\acute{a}$ -li teorie T pro každé $n \in \mathbb{N}$ alespoň n-prvkový model, není třída všech jejích konečných modelů axiomatizovatelná.

Např. nelze axiomatizovat konečné grupy, konečná tělesa, atd. Avšak třída nekonečných modelů teorie T jazyka s rovností je axiomatizovatelná.

1.4.2 Konečná axiomatizovatelnost

[TODO]

Konečná axiomatizovatelnost

Věta Nechť $K \subseteq M(L)$ a $\overline{K} = M(L) \setminus K$, kde L je jazyk. Pak K je konečně axiomatizovatelná, právě když K i \overline{K} jsou axiomatizovatelné.

 $D\mathring{u}kaz\ (\Rightarrow)$ Je-li T konečná axiomatizace K v uzavřeném tvaru, pak teorie s jediným axiomem $\bigvee_{\varphi\in T}\neg\varphi$ axiomatizuje \overline{K} . Nyní dokažme (\Leftarrow) .

• Nechť T, S jsou teorie jazyka L takové, že $M(T) = K, M(S) = \overline{K}$.

- Pak $M(T \cup S) = M(T) \cap M(S) = \emptyset$ a dle věty o kompaktnosti existují konečné $T' \subseteq T$ a $S' \subseteq S$ takové, že $\emptyset = M(T' \cup S') = M(T') \cap M(S')$.
- Jelikož

$$M(T) \subseteq M(T') \subseteq \overline{M(S')} \subseteq \overline{M(S)} = M(T),$$

je M(T) = M(T'), tj. konečná T' axiomatizuje K. \square

Konečná axiomatizovatelnost - příklad

Nechť T je teorie těles. Řekneme, že těleso $\mathcal{A} = \langle A, +, -, \cdot, 0, 1 \rangle$ je

- charakteristiky 0, neexistuje-li žádné $p \in \mathbb{N}^+$ takové, že $\mathcal{A} \models p1 = 0$, kde p1 značí term $1 + 1 + \cdots + 1$ (+ aplikováno (p-1)-krát).
- charakteristiky p, kde p je prvočíslo, je-li p je nejmenší t.ž. $\mathcal{A} \models p1 = 0$.
- Třída těles charakteristiky p pro p prvočíslo je konečně axiomatizována teorií $T \cup \{p1 = 0\}$.
- Třída těles charakteristiky 0 je axiomatizována (nekonečnou) teorií $T' = T \cup \{p1 \neq 0 \mid p \in \mathbb{N}^+\}.$

Tvrzení Třída K těles charakteristiky 0 není konečně axiomatizovatelná. Důkaz Stačí dokázat, že \overline{K} není axiomatizovatelná. Kdyby $M(S) = \overline{K}$, tak $S' = S \cup T'$ má model \mathcal{B} , neboť každá konečná $S^* \subseteq S'$ má model (těleso prvočíselné charakteristiky větší než jakékoliv p vyskytující se v axiomech S^*). Pak ale $\mathcal{B} \in M(S) = \overline{K}$ a zároveň $\mathcal{B} \in M(T') = K$, což není možné. \square

1.4.3 Otevřená axiomatizovatelnost

[TODO]

Věta Je-li teorie T otevřeně axiomatizovatelná, pak každá podstruktura modelu T je rovněž modelem T.

 $D\mathring{u}kaz$ Nechť T' je otevřená axiomatika M(T), $\mathcal{A} \models T'$ a $\mathcal{B} \subseteq \mathcal{A}$. Víme, že pro každé $\varphi \in T'$ je $\mathcal{B} \models \varphi$, neboť φ je otevřená. Tedy \mathcal{B} je modelem T'.

 $Poznámka\ Platí\ i\ obrácená\ implikace,\ tj.\ je-li\ každá\ podstruktura\ modelu\ teorie\ T\ rovněž\ modelem\ T\ ,\ pak\ T\ je\ otevřeně\ axiomatizovatelná.$

Např. teorie DeLO není otevřeně axiomatizovatelná, neboť např. konečná podstruktura modelu DeLO není modelem DeLO.

 $Např.\ nejvýše\ n$ -prvkové grupy pro pevné n>1 jsou otevřeně axiomatizovány

$$T \cup \{ \bigvee_{\substack{i,j \le n \\ i \ne j}} x_i = x_j \},$$

kde T je (otevřená) teorie grup.