(m)	The relation is reflexive. Since for all ca, a, & Zt xZt, ca, a,
	is in R.
	The relation is transitive. Assume that ca, b) and (b, c) are in
	R, then we can have ast, tost. So ast and ca, c) is
	in R.
	The relation is not symmetric. We pick a:2, b=1, (2,1) is in
	R1 since ± ≤ 1, bout (1,2) is not in R, since 17 ±.
	The relation is antisymmetric. Assume that ca, b, and cb, a) are in
	R, that is as to and to sa, since, a, b GZ+, as b and bea,
	so aib.
	Ris neither partial order nor word order.
cb).	R. is reflexive. Since for all ca, a) Et, la-al=022, so ca, c)
	is in Rr.
	Re is not transitive. Assume that a, b, coz that coat4, beat
	(1,5), (h, a) are in R2 since (c-5/222, 1 b-a) = 2 = 2. However,
	C-a =4>2, so (c,a) is not in R2.
	R2 is symmetric. Assume that (a, b) CR2. So there exist kct
	and kciu, 2] that a-b =k. Since b-a =k, cb, a) GRz
	Re is neither partial order nor total order.
CC)	