ORGANICS

General Chemistry I, Lecture Series 11

Pengxin Liu

Reading:

OGB8 §7

Outline

- Organic compounds (the nature of bonding)
- Interaction between functional groups (conjugation)
- Resonance structures (1930s)

The organic compounds

- The carbon chain
- The functional groups 官能团

Ascorbic Acid 抗坏血酸 (Vitamin C 维生素C)

Why Carbon?

Electrons	0	1	2	3	4	5	6	7	8
Valence	0	1	2	3	4	3	2	1	0
	H+			C+	N ⁺	O ⁺			
Examples		Н		В	С	N	0	F	Ne
					B-	C-	N-	O ⁻	F-

$$=c$$
 $=N$ $=c$ $=s$ $=c$ $=s$ $=c$ $=s$

Why Carbon?

Organic Chemistry: The study of the compounds of carbon.

Average Bond Dissociation Energies (kJ-mol⁻¹)

н—н	С—Н	C-C	N-N	0-0	F-F	Si—O	Р—О
436	414	347	161	146	153	460	377

Long, Long Chains

Polyethylene 聚乙烯

$$H_3C$$

$$H_3C$$

$$GH_3$$

Adenosine triphosphate 三磷酸腺苷 (ATP)

Long, Long Chains

烃 tīng = 碳 + 氢 hydrocarbon (not carbohydrate)

烷 alkane C_nH_{2n+2} 烯 alkene C_nH_{2n} 炔 alkyne C_nH_{2n-2}

取代烃 Substituted hydrocarbons 卤代烃 Haloalkanes or Halogen substituted hydrocarbons

Alkane

烷 alkane C_nH_{2n+2}

n	Name
1	Methane 甲烷
2	Ethane 乙烷
3	Propane 丙烷
4	Butane 丁烷
5	Pentane 戊烷
6	Hexane 己烷
7	Heptane 庚烷
8	Octane 辛烷
9	Nonane 壬烷
10	Decane 癸烷
11	Undecane 十一烷
12	Dodecane 十二烷
13	Tridecane 十三烷
14	Tetradecane 十四烷
15	Pentadecane 十五烷

Alkane

Distillation of petroleum

Butane C₄ B.p.沸点 ~0°C

Diesel C₁₀–C₂₂ B.p. 180–370°C

Vaseline C_{20} – C_{30} M.p. ~37°C

HDPE C_{~100000} M.p. ~130°C

(b)

Alkane (2)

Chain alkanes (normal alkanes, or n-alkanes) Branched-Chain Alkanes

Different conformations 构象

geometrical isomers

Alkane (3)

Haloalkanes or halides 卤代烷烃

Halogen 卤素

$$\begin{array}{c} CH_4 \\ \text{Methane} \end{array} + \begin{array}{c} Cl_2 \\ \text{Chlorine} \end{array} \xrightarrow{250^{\circ}\text{C}-400^{\circ}\text{C or light}} \begin{array}{c} CH_3\text{Cl} \\ \text{Chloromethane} \end{array} + \begin{array}{c} H\text{Cl} \\ \text{Hydrogen chloride} \end{array}$$

$$Cl \cdot + CH_4 \longrightarrow HCl + \cdot CH_3 \qquad \text{(propagation)}$$

$$\cdot CH_3 + Cl_2 \longrightarrow CH_3\text{Cl} + Cl \cdot \qquad \text{(propagation)}$$

Dichloromethane (CH₂Cl₂, also called methylene chloride) Trichloromethane (CHCl₃, chloroform) Tetrachloromethane (CCl₄, carbon tetrachloride).

$$CH_2 = CH_2 + Cl_2 \longrightarrow ClCH_2CH_2Cl$$

Haloalkane (2)

Average Bond Dissociation Energies (kJ·mol⁻¹)

С—Н	C—F	C—CI	C—Br	C—I
414	485	339	285	213

 $C - sp^3$, X - p

Dichlorodifluoromethane 二氟二氯甲烷 (Freon 氟利昂)

Polytetrafluoroethylene 聚四氟乙烯 (Teflon 特氟龙)

Dichloromethane 二氯甲烷

Alcohol 醇

C - sp^3 , O - sp^3

Ethan<mark>ol</mark>; ethyl alcohol; EtOH 乙醇

Polar solvent 极性溶剂

	B.p. (°C)
	11
∕	20
<u></u>	35
OH	78

High b.p. due to hydrogen bond

Ether 醚

Average Bond Dissociation Energies (kJ·mol⁻¹)

С—Н	C—N	С—О
414	305	358

(Di)ethyl ether (二)乙(基)醚

(Halo)alkane & Ether: Summary

sp³ hybridization

- No lone pairs or empty orbitals on C
- Stable at room temperature
- Reactive at high temperatures

Low polarity 极性

- Lipophilic 亲油性
- Low solubility 溶解度 in H₂O
- Anesthetic

 $2p_z$

Alkene 烯烃

Alkene (2)

Alkene (3)

Average Bond Dissociation Energies (kJ·mol⁻¹)

С—Н	с—с	C=C
414	347	611

加成反应 Addition reaction:

Alkene (4)

Aldehyde 醛 and Ketone 酮 (1)

Formaldehyde Methanal 甲醛

Paraform<mark>aldehyde</mark> 多聚甲醛

Acet<mark>aldehyde</mark> Ethanal 乙醛

Cinnamaldehyde 肉桂醛

Acetone Propanone 丙酮

Citronell<mark>al</mark> 香茅醛

Aldehyde and ketone (2)

羰 tāng = 碳 + 氧

Alkyne 炔 and Nitrile 腈 jīng

 $H-C\equiv C-H$

Acetylene Eth<mark>yne</mark> 乙炔

 $H_3C-C\equiv N$

Acetonitrile Ethanenitrile 乙腈

Double and Triple Bonds: Summary

sp² hybridization

- 1 σ bond, 1 π bond; π bond has higher energy
- π bond cannot rotate
- Addition reaction
- C=C is nonpolar;
 C=O is polar.

sp hybridization

- 1 σ bond, 2 π bond; π bonds have higher energy
- Addition reaction
- C≡C is nonpolar;
 C≡N is polar.

Outline

- Organic compounds (the nature of bonding)
- Interaction between functional groups (conjugation)
- Resonance structures (1930s)

Nodal planes

Interaction between π bonds

1,3-<mark>Butadi</mark>ene 1,3-丁二烯

Benzene

C-H 109 pm

C-C 154 pm

C=C 134 pm

11

Conjugate vs. Non-conjugate

Conjugate Addition

Conjugation between π and Lone Pair

Vinyl chloride Chloroethylene 氯乙烯

Phenol 酚 (1)

Phenol 酚 (2)

OH
$$+ 3 Br_2$$
 \rightarrow $Br \rightarrow$ $Br \rightarrow$ $+ 3 HBr$ Br

Amine, Aniline, and Amide

Carboxylic Acid 羧酸

Formic acid 甲酸 Methanoic acid Formate 甲酸根

Benz<mark>oic</mark> acid 苯甲酸

Benz<mark>oate</mark> 苯甲酸根

Acidic 酸性

Weakly Acidic

Summary: π -conjugation Systems

- 1 Compatible orbital symmetries
- Maximum orbital overlap
- 3 Approximate atomic orbital energies

4 orbital, 4 electrons

3 orbital, 4 electrons

Outline

- Organic compounds (the nature of bonding)
- Interaction between functional groups (conjugation)
- Resonance structures (1930s)

What is Resonance?

- 1. Two separate units
- 2. Identical or very close *E* or *v*
- 3. Moderate coupling 耦合

Resonance in Chemistry

- The Hydrogen Bond
- Attractive force between X-H and Y (X, Y = F, O, N)
- H is unique being light and mobile

$$F \xrightarrow{H} F \xrightarrow{\Theta} F \xrightarrow{H} F$$

$$\equiv (F \xrightarrow{H} F)^{\Theta}$$

$$H_{3}C-C'$$
 $C-CH_{3}$
 $H_{3}C-C$
 $C-CH_{3}$
 $H_{3}C-C$
 $C-CH_{3}$
 $H_{3}C-C$
 $C-CH_{3}$
 $C-CH_{3}$

Resonance Structures of O₃

Resonance in Chemistry

Resonance energy for benzene = 152 kJ·mol⁻¹

Resonance in Chemistry

Rules of Resonance Structures

- Valid Lewis dot structure
- Fixed atomic positions
- Lowest energy
 - Follow the trend of electronegativity
 - The more bonds, the more stable
 - More resonance structures → Better delocalization

Resonance Structure and Bond Order

B.O.(Resonance hybrid) ≈ B.O.(Canonical forms)

O-O bond order = 1.5

C–O bond order ≈ 1.3

Asymmetric Resonance Structures

N–N bond order ≈ 2.5

N-N bond order ≈ 1.5

SCN⁻ thiocyanate 硫氰酸根

C-N bond order ≈ 2.5

Polyatomic Molecules: Bond Lengths

N₂H₄ Hydrazine 肼

Back coordinate bond

HO
$$\stackrel{\text{\tiny HO}}{\text{\tiny OH}}$$
 $\stackrel{\text{\tiny HO}}{\text{\tiny OH}}$ $\stackrel{\text{\tiny OH}}{\text{\tiny OH}}$ $\stackrel{\text{\tiny OH}}{\text{\tiny OH}}$ $\stackrel{\text{\tiny OH}}{\text{\tiny OH}}$ $\stackrel{\text{\tiny OH}}{\text{\tiny OH}}$ $2 < BO(P=O) < 3$

Next lecture Series: Transition Metals

Reading: OGB8 §8, YY §18

