Iyad Ashraf Khamis 7392

Introduction to machine learning Assignment 1

1.KNN

Best performance was when 'k' was = 13 with accuracy of 0.81

```
1 knn_cv.best_params_
{'n_neighbors': 13}
```

```
knn_cr=classification_report(y_test, y_knn_pred)
      print(knn_cr)
               precision
                            recall
                                     f1-score
                                                 support
                    0.77
                               0.88
                                         0.82
                                                    2024
                    0.85
           1
                               0.73
                                         0.79
                                                    1989
                                         0.81
                                                    4013
    accuracy
   macro avg
                    0.81
                               0.81
                                         0.80
                                                    4013
weighted avg
                    0.81
                               0.81
                                         0.80
                                                    4013
```

```
1 knn_selected_results = result[["param_n_neighbors", "mean_test_accuracy", "mean_test_precision", "mean_test_f1", "mean_test_recall"]]
  knn_selected_results
param_n_neighbors mean_test_accuracy mean_test_precision mean_test_f1 mean_test_recall
                                                                                0.743989
                              0.797074
                                                  0.833965
                                                                0.786280
                                                                0.790719
                                                                                0.735473
                              0.804763
                                                  0.855198
                                                                0.792409
                                                                0.794159
                              0.810212
                                                  0.871053
                                                                                0.729942
                                                                0.796417
                                                  0.875064
                              0.808181
                                                  0.872447
                                                                0.791007
                              0.809035
                                                  0.874555
                                                                                0.723346
                              0.807861
                                                  0.874289
                                                                0.790027
```

-Confusion Matrix of KNN Model:

The number of true positive '1' is 1467 while number of true negative '0' is 1818. Where '0' is gamma and '1' is hadrons.

2.Logistic regression

Best performance was when 'c' was = 0.01 and penalty ='l2' with accuracy of 0.78

```
1 lg_cv.best_params_
{'C': 0.01, 'penalty': 'l2'}
```

. ~ [6]	• 1 2	lr_cr=c	classificati lr_cr)	on_report(y_test, y_	lr_pred)	
			precision	recall	f1-score	support	
		0	0.75	0.83	0.79	2024	
		1	0.81	0.72	0.76	1989	
	a	ccuracy			0.78	4013	
	mad	cro avg	0.78	0.78	0.78	4013	
	weight	ted avg	0.78	0.78	0.78	4013	

[21]		required_results=resu required_results	required_results=result[['params','param_penalty','param_C', "mean_test_accuracy", "mean_test_precision", "mean_t required_results								
		params	param_penalty	param_C	mean_test_accuracy	mean_test_precision	mean_test_f1	mean_test_recall			
		{'C': 0.01, 'penalty': None}	None	0.01	0.766740	0.796744	0.755560	0.718664			
		{'C': 0.01, 'penalty': 'l2'}		0.01	0.767701	0.801043	0.755356	0.714833			
		{'C': 0.1, 'penalty': None}	None	0.1	0.766740	0.796744	0.755560	0.718664			
		{'C': 0.1, 'penalty': 'l2'}		0.1	0.766634	0.796848	0.755373	0.718239			
	4	{'C': 1, 'penalty': None}	None		0.766740	0.796744	0.755560	0.718664			
		{'C': 1, 'penalty': 'l2'}			0.766740	0.796744	0.755560	0.718664			
		{'C': 10, 'penalty': None}	None	10	0.766740	0.796744	0.755560	0.718664			
		{'C': 10, 'penalty': 'l2'}		10	0.766740	0.796744	0.755560	0.718664			
		{'C': 100, 'penalty': None}	None	100	0.766740	0.796744	0.755560	0.718664			
		{'C': 100, 'penalty': 'l2'}		100	0.766740	0.796744	0.755560	0.718664			
	10	{'C': 1000, 'penalty': None}	None	1000	0.766740	0.796744	0.755560	0.718664			
	11	{'C': 1000, 'penalty': 'l2'}		1000	0.766740	0.796744	0.755560	0.718664			

-Confusion Matrix of KNN Model:

The number of true positive '1' is 1419 while number of true negative '0' is 1693. Where '0' is gamma and '1' is hadrons.

