Exercise 11.2

- Q.1 Prove that a quadrilateral is a parallelogram if its
 - (a) Opposite angles are congruent
 - (b) Diagonals bisects each other
- (a) Given

In quadrilateral ABCD $m\angle A = m\angle C, m\angle B = m\angle D$

To Prove

ABCD is a parallelogram

ABCD is a parallelogram	A	В
Statements	Reason	ns
$m \angle A = m \angle C \dots (i)$	Given	
$m\angle B = m\angle D(ii)$	Given	
$m\angle A + m\angle B + m\angle C + m\angle D = 360^{\circ}$	Angles of quadrilater	al
$m\angle A + m\angle B = 180^{\circ}$		
$m\angle C + m\angle D = 180^{\circ}$		
$\overline{AD} \parallel \overline{BC}$		
Similarity it can be proved that $\overline{AB} \parallel \overline{DC}$	P	
Hence ABCD is a parallelogram		

(b) Given

In quadrilateral ABCD, diagonals \overline{AC} and \overline{BD} bisect each other.

i.e.
$$\overline{OA} = \overline{OC}, \overline{OB} = \overline{OD}$$

To prove ABCD is a parallelogram

Proof

Statements	Reasons
In $\triangle ABO \leftrightarrow \triangle CDO$	
$\overline{OA} \cong \overline{OC}$	Given
$\overline{OB} \cong \overline{OD}$	Given
∠AOB≅∠COD	Vertical opposite angles
∴ ∠1≅∠2	Corresponding angles of congruent
	triangles
$\Delta ABO \cong \angle CDO$	$S.A.S \cong S.A.S$
Hence, $\overline{AB} \parallel \overline{CD}$ (i)	$\angle 1 \cong \angle 2$
By taking BOC and is $\triangle AOD$ it can be prove	
that	
$\overline{AD} \parallel \overline{BC}$ (ii)	From (i) and (ii)
Hence ABCD is a parallelogram	

Q.2 Prove that a quadrilateral is a parallelogram if its opposite sides are congruent Given

In quadrilateral ABCD

- (i) $\overline{AB} \cong \overline{DC}$
- (ii) $\overline{AD}\cong \overline{BC}$

To prove

ABCD is a parallelogram i.e. $\overline{AD} \parallel \overline{BC}$

Statements	Reasons
$\Delta CDB \leftrightarrow \Delta ABD$	
$\overline{AB} \cong \overline{DC}$	Given
$\overline{AD} \cong \overline{BC}$	Given
$\overline{BD} \cong \overline{BD}$	Common
$\Delta ABD \cong \Delta CDB$	$S.S.S \cong S.S.S$
Thus, $\angle 1 \cong \angle 2$	Corresponding angles of congruent triangles
∠4≅∠3	Corresponding angles of congruent triangles
(i) $\overline{AD} \parallel \overline{BC}$	Alternate angles are congruent
$\overline{AB} \parallel \overline{DC}$	Alternate angles are congruent
:. ABCD is a parallelogram	

Example

The line segments, joining the mid-points of the sides of a quadrilateral, taken in order, form a parallelogram.

D
R
C

Given

A quadrilateral ABCD, in which P is the mid-point of \overline{AB} Q is the mid-point of \overline{BC} R is the mid-point of \overline{CD}

S is the mid-point of \overline{DA}

P is joined to Q, Q is joined to R.

R is joined to S and S is joined to P.

To prove

PQRS is a parallelogram.

Construction

Join A to C.

Proof

Statements	Reasons
$\operatorname{In} \Delta DAC$,	
$ \overline{SR} \overline{AC}$	S is the midpoint of \overline{DA}
$m\overline{SR} = \frac{1}{2}m\overline{AC}$	R is the midpoint of \overline{CD}

$\operatorname{In} \Delta BAC$,	
$\overline{PQ} \ \overline{AC}$	P is the midpoint of \overline{AB}
$m\overline{PQ} = \frac{1}{2}m\overline{AC}$	Q is the midpoint of \overline{BC}
$\overline{SR} \parallel \overline{PQ}$	Each $ \overline{AC} $
$m\overline{SR} = m\overline{PQ}$	Each= $\frac{1}{2}\overline{AC}$
Thus PQRS is a parallelogram	$\overline{SR} \parallel \overline{PQ}, m\overline{SR} = m\overline{PQ} \text{ (proved)}$

Theorem 11.1.3

The line segment, joining the midpoint of two sides of triangle, is parallel to the third side and is equal to one half of its length.

Given

In $\triangle ABC$, the mid-point of \overline{AB} and \overline{AC} are L and M respectively

To prove

$$\overline{LM} \parallel \overline{BC}$$
 and $m\overline{LM} = \frac{1}{2} m\overline{BC}$

Join M to L and produce \overline{ML} to N such that $\overline{ML} \cong LN$

Join N to B and in the figure, name the angles $\angle 1$, $\angle 2$ and $\angle 3$ as shown.

Statements	Reasons
In \triangle BLN \leftrightarrow \triangle ALM	
$\overline{\mathrm{BL}} \cong \overline{\mathrm{AL}}$	Given
∠1≅∠2	Vertical angles
$\overline{NL} \cong \overline{ML}$	Construction
$\therefore \Delta BLN \cong \Delta ALM$	S.A.S postulate
$\therefore \angle A \cong \angle 3(i)$	(Corresponding angles of congruent triangles)
And $\overline{NB} \cong \overline{AM}$ (ii)	(Corresponding sides of congruent triangles)
But $\overline{NB} \parallel \overline{AM}$	from (i), alternative < <i>s</i>
Thus	
$\overline{NB} \parallel \overline{MC}$ (iii)	(M is a point of \overline{AC})

M

$$\overline{MC} \cong AM$$
(iv)

$$\overline{NB} \cong \overline{MC} \dots (v)$$

BCMN is a parallelogram

$$\therefore \overline{BC} \parallel \overline{LM} \text{ or } \overline{BC} \parallel \overline{NL}$$

$$\overline{BC} \cong \overline{NM}$$
(vi)

$$m\overline{LM} = \frac{1}{2}m\overline{NM}$$
(vii)

Hence,
$$m \overline{LM} = \frac{1}{2} m \overline{BC}$$

Given

from (ii) and (iv)

From (iii) and (v)

(Opposite sides of a parallelogram BCMN)

(Opposite sides of a parallelogram)

Construction.

from (vi) and (vii)

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM]

[EMAIL: FREEILM786@GMAIL.COM]

[PAGE: 4 OF 4]