第五节 曲线的凹凸和函数作图

弧 \widehat{ACB} 与弧 \widehat{ADB} 的凹向不同。

1. 凹凸性的定义

设f(x)在区间 I上连续 ,

若 $\forall x_1, x_2 \in I$, 恒有

$$f\left(\frac{x_1+x_2}{2}\right) < \frac{f(x_1)+f(x_2)}{2} \qquad f\left(\frac{x_1+x_2}{2}\right) > \frac{f(x_1)+f(x_2)}{2}$$

设f(x)在区间 I上连续 ,

若 $\forall x_1, x_2, \in I$, 恒有

$$f\left(\frac{x_1+x_2}{2}\right) > \frac{f(x_1)+f(x_2)}{2}$$

则称f(x)在I上的图形是凹的则称f(x)在I上的图形是凸的;

若在某一区间内,函数图像总在曲线上任一点切线的上方,则称曲线在这区间内是凹的;

若在某一区间内,函数图像总在曲线上任一点切线的下方,则称曲线在这区间内是凸的;

在有些教材中,凹的(曲线)又叫"上凹",凸的又叫"下凹"。

 $an \ lpha_1 < an \ lpha_2 < an \ lpha_3$ $f'(x_1) < f'(x_2) < f'(x_3),$ f'(x)单调增加

$$an \ lpha_1 > an \ lpha_2 > an \ lpha_3$$
 $f'(x_1) > f'(x_2) > f'(x_3),$
 $f'(x)$ 单调减少
 $f''(x) < 0$

2. 判定定理:

设f(x)在[a,b]上连续,在 (a,b)内具有一阶和二阶导数

- (1)若在 (a,b)内, f''(x) > 0,则 f(x)在 [a,b]上的图形是凹的;
- (2)若在 (a,b)内, f''(x) < 0,则 f(x)在 [a,b]上的图形是凸的。

3、判定函数曲线凹凸的步骤:

- (1) 确定函数 y = f(x)的定义域;
- (2) 求f"(x),找出使f"(x)=0 和f"(x) 不存在的点 x_i ;
- (3)用 x_i 把定义域划分成为小区间,在每个小区间上判定曲线的凹凸。

例1. 判断 $y = \ln x$ 的凹凸性 .

解 定义域
$$(0, +\infty)$$
, $y' = \frac{1}{x}$, $y'' = -\frac{1}{x^2} < 0$.

:: 曲线是凸的 .

解 定义域: $(-\infty,+\infty)$, 且 $y'=3x^2$, y''=6x, 当x=0时, y''=0.

x < 0 时, y'' < 0,曲线在 $(-\infty,0]$ 上是凸的;

x > 0 时, y'' > 0,曲线在 $[0, +\infty)$ 上是凹的 .

点(0,0)是 $y = x^3$ 的拐点

注意:

- (1) 拐点是曲线上的点,应由两个坐标表示 $(x_0,f(x_0))$.
- (2) 前面讲过的极值点,是取得极值时自变量的值,记为 $x=x_1$ 两者不同。
 - (3) 作业中常见记法的错误: x 0是 $y = x^3$ 的拐点;

x 0是 $y = x^3$ 的拐点; 或(0,0)是 $y = x^4$ 的极值点.

解 定义域: (- ∞,+∞),

$$y' = 12 x^3 - 12 x^2$$
, $y'' = 36 x^2 - 24 x = 36 x \left(x - \frac{2}{3} \right)$
 $\Rightarrow y'' = 0$, $\forall x_1 = 0$, $x_2 = \frac{2}{3}$.

x	$(-\infty, 0)$	0	$\left(0,\frac{2}{3}\right)$	$\frac{2}{3}$	$\left(\frac{2}{3},+\infty\right)$
у "	+	0	_	0	+
曲线 y)	(0,1)		$\left(\frac{2}{3},\frac{11}{27}\right)$	

函数在
$$(-\infty,0)$$
, $\left(\frac{2}{3},+\infty\right)$ 内是凹的; 在 $\left(0,\frac{2}{3}\right)$ 内是凸的。

$$(0, 1), \left(\frac{2}{3}, \frac{11}{27}\right)$$
是拐点 .

例4. 问曲线 $y = x^4$ 是否有拐点?

解 定义域: (- ∞,+∞),

$$y' = 4 x^3, y'' = 12 x^2.$$

显然当 x = 0时, y'' = 0,

但当 $x \neq 0$ 时,总有 y'' > 0.

因此, (0,0) 不是这曲线的拐点。

即 曲线 $y = x^4$ 没有拐点,且它在 $(-\infty, +\infty)$ 内是凹的。

例5 求曲线 $y = \sqrt[3]{x}$ 的拐点。

解 定义域: (- ∞,+∞),

当
$$x \neq 0$$
时, $y' = \frac{1}{3\sqrt[3]{x^2}}, y'' = -\frac{2}{9x\sqrt[3]{x^2}}$,

当x = 0 时,y', y'' 都不存在。

所以,y'' 在 $(-\infty, +\infty)$ 不连续且不具有零点。

Ux = 0 把 $(-\infty, +\infty)$ 分成两个部分区间: $(-\infty, 0]$ 、 $[0, +\infty)$.

$$x \in (-\infty,0), y'' > 0,$$
 曲线在 $(-\infty,0]$ 上是凹的。

 $x \in (0,+\infty), y'' < 0$, 曲线在 $[0,+\infty)$ 上是凸的。

则 (0,0) 点是曲线的拐点。

下面的点可能对应着曲线的拐点:

- (1)使 y'' = 0的点;
- (2) 使 y'' 不存在的点。

例6 设y = f(x)在 $x = x_0$ 的某邻域内具有三阶连续的导数, 如果 $f'(x_0) = 0$, $f''(x_0) = 0$, 而 $f'''(x_0) \neq 0$, 试问 $x = x_0$ 是否为 极值点?为什么?又 $(x_0, f(x_0))$ 是否为拐点?为什么?

解 由于y = f(x)在 $x = x_0$ 的某邻域内具有三阶连续的导数, 则 lim $f'''(x) = f'''(x_0) \neq 0$,不妨设 $f'''(x_0) > 0$, 由保号性定理, $\exists \delta > 0$, 使得当 $x \in U(x_0, \delta)$ 时, f'''(x) > 0. 即在此区域内,f''(x)单调增加。而 $f''(x_0) = 0$,因此 当 $x \in (x_0 - \delta, x_0)$ 时,f''(x) < 0; 当 $x \in (x_0, x_0 + \delta)$ 时,f''(x) > 0. 因此, $(x_0, f(x_0))$ 是拐点。

又当 $x \in (x_0 - \delta, x_0)$ 时, f''(x) < 0, f'(x)单调减少

且 $f'(x_0) = 0$,必有 f'(x) > 0。

当 $x \in (x_0, x_0 + \delta)$ 时, f''(x) > 0, f'(x)单调增加

且 $f'(x_0) = 0$,必有 f'(x) > 0。

因此 $x = x_0$ 不是极值点。

二、曲线的渐近线

⑴、水平渐近线

若
$$\lim_{x \to +\infty} f(x) = C$$
, (或 $\lim_{x \to -\infty} f(x) = C$, $\lim_{x \to \infty} f(x) = C$)

则 y = C 是函数 y = f(x)的一条水平渐近线

(2)、垂直渐近线

若
$$\lim_{x \to x_0 \to 0} f(x) = \infty$$
 (或 $\lim_{x \to x_0} f(x) = \infty$; $\lim_{x \to x_0 + 0} f(x) = \infty$)

则 $x = x_0$ 是函数 y = f(x)的一条铅直渐近线。

(3)、斜渐近线

若
$$\lim_{x \to +\infty} [f(x) - (ax + b)] = 0$$
 (或 $\lim_{x \to -\infty}$, $\lim_{x \to \infty}$)

则 y = ax + b 是函数 y = f(x)的一条斜渐近线。

其中,
$$a = \lim_{x \to +\infty} \frac{f(x)}{x}$$
; $b = \lim_{x \to +\infty} [f(x) - ax]$

1. 求
$$y = 1 + \frac{36x}{(x+3)^2}$$
的 渐 近 线.

$$\left| \begin{array}{c|c} & & & \\ \hline \mathbf{R} & \lim_{x \to \infty} \left| 1 + \frac{36x}{\left(x+3\right)^2} \right| = 1 \\ \hline \end{array} \right| \therefore 曲线有水平渐近线: \qquad \mathbf{y} = \mathbf{1}$$

$$\lim_{x \to -3} \left[1 + \frac{36x}{(x+3)^2} \right] = \infty \quad \therefore$$
 曲线有铅直渐近线: $x = -3$

2.求曲线
$$y = x \ln(e + \frac{1}{x})$$
 $(x > 0)$ 的斜渐近线方程.

 \mathbf{p} 设 y = ax + b为 曲 线 的 渐 近 线

则
$$a = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \ln(e + \frac{1}{x}) = 1$$
,

$$b = \lim_{x \to \infty} [f(x) - ax] = \lim_{x \to \infty} [x \ln(e + \frac{1}{x}) - x]$$

$$= \lim_{t \to 0} \frac{\ln(e+t) - 1}{t} = \frac{1}{e}$$

故渐近线方程为 $y = x + \frac{1}{e}$

三、函数作图

1. 一般步骤:

- (1) 确定 y = f(x)的定义域,考察函数的 奇偶性,求出 f'(x)、 f''(x).
- (2) 求出 f'(x) = 0, f''(x) = 0的全部实根 ,及f'(x), f''(x)不存在的点 . 并用这些点把定义域划 分为几个部分区间 .
- (3) 列表讨论 f(x)的性质 .
- (4)确定水平、铅直渐近线 以及其它变化趋势 .
- (5) 求出分界点 (极值点、拐点)的坐标,为使图形准确 些,还需补充一些点 (与坐标轴的交点、较长 区间加 以下表示不正确
- (6) 描点作图 .

注意,箭头方向是:箭尾在左,箭头在右;

4、应用举例:

例1. 画出 $y = x^3 - x^2 - x + 1$ 的图形 .

$$y' = 3x^{2} - 2x - 1 = (3x + 1)(x - 1)$$

$$y'' = 6x - 2 = 2(3x - 1)$$

(2)
$$\Rightarrow y' = 0$$
, $\# x_1 = -\frac{1}{3}$, $x_2 = 1$, $\Rightarrow y'' = 0$, $\# x_3 = \frac{1}{3}$,

(3)列表讨论

x	$\left(-\infty,-\frac{1}{3}\right)$	$-\frac{1}{3}$	$\left(-\frac{1}{3},\frac{1}{3}\right)$	1 3	$\left(\frac{1}{3},1\right)$	1	(1,+∞)
f'(x)	+	0	_		_	0	+
f "(x)	_		_	0	+	+	+
y = f(x) 的图形		极大值	\	拐点		极小值	1

$$(4)$$
 $x \to +\infty$ $\forall y \to +\infty$; $x \to -\infty$ $\forall y \to -\infty$.

$$\lim_{x \to x_0} \left(x^3 - x^2 - x + 1 \right) = x_0^3 - x_0^2 - x_0 + 1$$

所以该曲线既无水平渐近线,

也无铅直渐近线。

$$(5)f\left(-\frac{1}{3}\right) = \frac{32}{27}, f\left(\frac{1}{3}\right) = \frac{16}{27},$$

$$f(1) = 0$$

得到函数图形上三个点:

$$\left(-\frac{1}{3},\frac{32}{27}\right), \left(\frac{1}{3},\frac{16}{27}\right), \left(1,0\right)$$

另外
$$f(-1) = 0$$
, $f(0) = 1$, $f(\frac{3}{2}) = \frac{5}{8}$,

辅助点:

$$(-1,0),(0,1),(\frac{3}{2},\frac{5}{8})$$

例2. 画出
$$y = \frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}}$$
的图形 .

 $\mathbf{f}(1)$ 定义域 $(-\infty,+\infty)$, f(x)为偶函数, \therefore 只需讨论 $[0,+\infty)$.

$$y' = -\frac{1}{\sqrt{2\pi}} x e^{-\frac{x^2}{2}}, \quad y'' = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} (x^2 - 1),$$

(2)令y'=0,得x=0,令y''=0,得x=1,

x	0	(0,1)	1	(1,+∞)
f'(x)	0			_
f''(x)	_		0	+
y = f(x) 的图形	极大		拐点	

$$(4)$$
lim $\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}=0$ ∴ $y=0$ 为水平渐近线

$$(5)$$
: $f(0) = \frac{1}{\sqrt{2\pi}}, f(1) = \frac{1}{\sqrt{2\pi e}},$

得到曲线上的两个点:
$$(0, \frac{1}{\sqrt{2\pi}})$$
、 $(1, \frac{1}{\sqrt{2\pi e}})$

2

另外
$$f(2) = \frac{1}{\sqrt{2\pi e^2}}$$
,

注:

加辅助点
$$(2, \frac{1}{\sqrt{2\pi}e^2})$$
。

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	e		
x	0	(0,1)	1	(1,+∞)
f'(x) (1) 利用	多		_	_
	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , ,	(2,0)	2)) +
(3) /有水	平新进	5线~	#D F	\
的图形	似人	V	拐点	

例3 画出 $y = 1 + \frac{36 x}{(x+3)^2}$ 的图形 .

解 (1) 定义域
$$(-\infty,-3)\cup(-3,+\infty)$$
. $y'=\frac{36(3-x)}{(x+3)^3}$. $y''=\frac{72(x-6)}{(x+3)^4}$.

$$(2)$$
令 $y' = 0$, 得 $x = 3$; 令 $y'' = 0$, 得 $x = 6$; 在 $x = -3$ 处,函数没有定义。

(3)列表讨论

x	(-∞,-3)	(-3,3)	3	(3,6)	6	(6,+∞)
f'(x)	_	+	0	_	_	
f "(x)	_	_	_	_	0	+
y = f(x) 的图形			极大 值		拐点	