Lecture 2: Analytic functions

Math 660—Jim Fowler

Tuesday, June 21, 2011

Stereographic projection

Extend \mathbb{C} to $\mathbb{C} \cup \{\infty\}$.

Consider
$$S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : \sum_i x_i^2 = 1\}$$
,

Define $f: S^2 \to \mathbb{C} \cup \{\infty\}$ by

$$z = x + iy = f(x_1, x_2, x_3) = \frac{x_1 + ix_2}{1 - x_3}$$

The points (0, 0, 1), (x, y, 0), and (x_1, x_2, x_3) are collinear.

Today's Goal

§2.1.1 and 2.1.2 of Complex Analysis

Derivatives for \mathbb{C} -valued functions

Review of Calculus

- ▶ Limit
- Derivative
- Integral

Limits

Definition

```
\lim_{x\to a} f(x) = L \text{ if} for all \epsilon>0, there exists \delta>0, such that |f(x)-L|<\epsilon \text{ whenever} |x-a|<\delta.
```

"Absolute value" makes sense in \mathbb{C} .

Limits

Theorem

$$\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x).$$

Theorem
$$\lim_{x \to a} \overline{f(x)} = \overline{\lim_{x \to a} f(x)}$$

Derivative

Definition
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Warning: $h \in \mathbb{C}$. This has deep consequences.

Theorem

Suppose $f: \mathbb{C} \to \mathbb{R}$ is complex differentiable.

Then $f' \equiv 0$.

Terminology

Definition

A complex differentiable function f is called *analytic* or *holomorphic*.

If $f : \mathbb{C} \to \mathbb{C}$ and f is everywhere complex differentiable, we call it *entire*.

Examples of entire functions include polynomials.

Analytic Functions

Analytic Functions

What does "differentiable" even mean? **Locally linear**.

Analytic Functions

What does "differentiable" even mean? **Locally linear.**

Compare linear maps $\mathbb{R}^2 \to \mathbb{R}^2$ to linear maps $\mathbb{C} \to \mathbb{C}$.

The sum of analytic functions is analytic.

The difference of analytic functions is analytic.

The product of analytic functions is analytic.

The product of analytic functions is analytic.

The quotient of analytic functions is analytic,

where the denominator is nonzero.

Cauchy-Riemann equations

Cauchy-Riemann equations

$$f(x + iy) = u(x, y) + i v(x, y)$$
 is analytic iff
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

The Jacobian

$$|f'(z)|^2 = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$$
= Jacobian of *u* and *v* with respect to *x* and *y*
= infinitesimal change in area

Complex Analysis is Amazing

Theorem

The derivative of a analytic function is itself differentiable.

Complex Analysis is Amazing

Theorem

The derivative of a analytic function is itself differentiable.

Theorem

An analytic function is infinitely complex differentiable.

Complex Analysis is Amazing

Theorem

The derivative of a analytic function is itself differentiable.

Theorem

An analytic function is infinitely complex differentiable.

This is incredible. We will prove this later.

Harmonic functions

A function $f: U \to \mathbb{R}$ is harmonic if

$$\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = 0 \text{ on } U \subset \mathbb{R}^n.$$

Harmonic functions

A function $f: U \to \mathbb{R}$ is harmonic if

$$\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = 0 \text{ on } U \subset \mathbb{R}^n.$$

The real and imaginary parts of an analytic function are harmonic.

Cauchy-Riemann equations

If u, v are a harmonic functions $(\Delta u = 0)$ and

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

then v is called a *conjugate harmonic function* for u.

Finding the conjugate harmonic function

 $u(x, y) = x^2 - y^2$ is harmonic.

Finding the conjugate harmonic function

$$u(x,y) = x^2 - y^2$$
 is harmonic.
 $v(x,y)$ must satisfy

$$\frac{\partial v}{\partial x} = 2y$$
 and $\frac{\partial v}{\partial y} = 2x$.

So v(x, y) = 2xy + C for some constant C.

Finding the conjugate harmonic function

$$u(x,y) = x^2 - y^2$$
 is harmonic.
 $v(x,y)$ must satisfy

$$\frac{\partial v}{\partial x} = 2y$$
 and $\frac{\partial v}{\partial y} = 2x$.

So v(x, y) = 2xy + C for some constant C.

Note that $z^2 = u(x, y) + i \cdot 2xy$.

Cauchy-Riemann equations

Theorem

If u(x, y) and v(x, y) have continuous first partials, and u and v satisfy the Cauchy-Riemann equations, then

$$f(a+bi) = u(a,b) + i v(a,b)$$

is analytic.

Cauchy-Riemann equations

Alternatively, the C-R equations can be written as

$$\frac{\partial f}{\partial \overline{z}} = 0$$

where z = x + iy and $\overline{z} = x - iy$.

In some sense, analytic functions are truly functions of z, and not of \overline{z} .

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \qquad \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$