Homistique

I-Constituants d'un atome:

Atome = constituent fondamental de la matière

neutrons

éléctrons

9e=-1,602.10+3c me = 9,109.1031 kg

Protons q=4602.1019 C

neutres

mp=1,673.10-27 Kg

mn = 1,675.10-27 Kg

{ malome ~ mnoyou}

Représentat de Patome:

A: nbre de masse

Z: nbre de change /d'e-

A = Z + N.

*Isotopes:-mucléides ayant m Zet A +.
- m priés chimiques et pptés plus siques +.

* Masse atomique:

is la masse d'une mole d'atome

is la masse d'un atome gramme

is la marse molaire atomique

La masse de N atomes / N = Nove d'Avogadro = 6,023.1023 mol-1

(1 U.m.a = 1/12 MC 1 U.m.a = 1/N g

NB: le calcul de la marse atomique tient compte de la présence de ses isotopes:

masse atomique = abondance'x A' + abondance x A

1 un élément n'ayant pas d'isotope:

masse atomique = A

I-Modèles atomiques:

Sommerfeld:

La noyau => soleil z modèle électrons => planètes 3 planétaire

La vide entre noyau et e-> structure lacunaire + orbites électroniques stables, differenciées et quantifiées + le ne rayonne oucume E loriqu'il se trouve son une orbite stable.

+ chaque conche électronique contient un nove de sono conches.

Orbitale atomique: La probabilité de présence d'un et autour du noyau d'un atome

+ Etat fondamental: l'état le plus stable de l'atome + la position

dus et sur les niveaux d'E les plus bas.

* Les nombres quantiques:

La ribre quantique principal "n":

* entier non mul: n=1,2,3....

* indique le niveau d'E = la couche

* When max d'e dans une couche: 2 n2

valeur . de "N"	1	2	3	4	5	6	7
Designato de la Couche	K	L	M	7	0	P	Q

Le vibre quantique secondaire/azimutal "l":

* O<f < N-7

* définit la sous couches * Indique la forme et la symétrie de l'orbitale

* where max d'e-dans une sous couche:

오 (오인+시)

1	l	0	1	2	3
	sous coucho	S	P	d	P
	nbre d'e	2	6	10	14
2	Forme de l'orbitale	1	synetii axiale =	Comp	olexe

L's obre quantique magnétique "m":

* - 1 {m < 1

* Indique l'orientate des orbitales

* whe allower : (21+1)

	f	oriental	m	disignate dis
S	0	4	0	ے
P	1	3	-かつ: 4	Px , Py , Pz
d	2,	• 5	-2;-4; O; 1 2	dxe, dxy, dy
f	3	7	-3;-2;-4;0; 4;2;3	pas de désignat

La hore quantique de spin "m," ou "s":

* exprime le sens de rotate d'e sur lui-même

r +1/2 -> 1 Ly -1/2 → V

* Regu de KLECHKOWSKI

→ l'ordre de remplisage successif des orbitales tel que: (n+1) soit proissant.

35 36 35 HA

66 6d

l'ordre raccessif:

15 25 2p353p453d4p554d5p654f5d6p...

tel que:

which and e- nbm d'e-

nous couche

* Regle de Pauli:	13
* Règle de Pauli: -> une case contient le au max avec ms +	
	* · •.
→ orbitale avec 1 € => € célibatione	
* Règle de HUND:	· .
25^{2} $2p^{3}$	
× 11 11	
* Configurat électronique:	١
forme quantique donnant la reportit électronique des ZE de la forme quantique donnant la reportit électronique des ZE de la faire différentes orbitales: exemple: 25E: 15ª 2522p6 352 3p6 3d5	LA 16
differentes orbitales: exemple: 25e: 15ª 25e2p6 35e3p6 45e3	مع ایگ
differentes orbitales: exemple: 25 te: 15° 25° 2p6 35° 3p6 3d5; préférable d'écrire: 26 Fe: 15° 25° 2p6 35° 3p6 3d5;	N
Exception: Cr et a Cu	
l'élément trouve sa stabilité si l'orbitale d'est remplie entire ou à moitié, tel que:	SOMOM
ou à moitié, tel que:	
moins ns^2 $(n-1)d^4 \Rightarrow ns^2$ $(n-1)d^5$ } plus stable.	
stable l_{ns}^{2} $(n-1)d^{3} \Rightarrow ns^{2}$ $(n-1)d$	
	alux A
ent la couche électronique externe = peuprier que) avec	/- m2 /
+ Electrons de valence: e-qui se trouvers sur la couche de valer	Na
* Electrons de valence: e-qui se trouvent sur la couche de valer et sur les sous couches en cours de remplisage.	
* Configurate électronique des ions:	
cation Anions	
on enlère les è les moins respectant les règle de l'Octot	
lies à l'atemie.	
* Représent de de LEWIS: Le on regarde la couche de valence:	
e- célibataire réplésente jui.	
doublet d'e représenté par:	

I Tableau periodique: 1 Horizontalement: - 7 lignes appelées periodes - ayant le m "n" 1 Verticalement: - 18 whomes appelées familles/groupes - ont le m nore ale de la couche de valence. - ont des potés chimiques identiques ou de potés de la couche de valence.

exemple: 30: 150 2502 pt)

couche de valence n=21;

DE 2ème période

Liaisons chimiques

15

Liaisono interatorniques:

7.0.00		
Liaison	Définition	Exemple
Covalente	· entre 2 atomes d'EN égale ou voisine · mise en commun de 2 et célibataires	H •—• H
	par reconvrement de 2 entitales pour former une orbitale moléculaire où les 20 forment un doublet liant les 2 atomés.	ICP - CEI
	NB: - reconverment axial alorbitate > tiansons covalinto	.e- ∗ 100
	simples J. - recourrement lateral d'orbitale » liaisons II. et dus doubles ou triples liaisons.	· ·
Covalente polarisée	entre 2 atremes de nature = et d'EN <u>légèrement</u> = . l'atome le plus EN aura une charge partielle S' et l'autre S'.	$H_{g_{+}} \rightarrow \cdot \overline{C}61_{g_{-}}$
Ionique/ électrovalente	entre 2 atomes d'EN très = non attraction électrostatique et transfert d'e- de l'atome moins EN vers l'atome le plus EN.	Na· · CPI
	se rencontre dans un cristal et maintient les anions et les cations au contact.	Nat ICPT
Semi-polaire/	entre un atome donneur de doublet et un atome présentant une orbitale vide.	\ō। ↑
de coordinance	engrésentée par : donneur du doublet - accepteur	10-10-10-H
		101
complexe de	ligands: liaisons Atome central: semi-polaires cation métallique ayant	
coordination		
	(HO, NH, Cl, OH, Br, (Cr2+, Mh2+, Zn2+)	
pprés magnétique des complexes	· lées à la présence ou non d'e-célibataires de la structure du métal complexé. **paramagnétique: cplx possède des e-célibataires + attiré	Fez++ CHZO → [Fe(HZO]]
	* diamagnétique: cplx sons e- célibatoires (the esont anairés) + resourse nas le champ magnétique.	Fe2+ + P((U)) → [Les, (U)] (C
Métallique	entre atomes d'EN voirines et faibles avancé par un faible nore d'e-sur la couche externe mise en commun de tous les e-de la couche de valence entre tous les atomes du métal.	électrique, thermique
	Value of the Control	maléalilité, declité

liaisons intermoléculaires:

liaison	Définition	Exemple
Hydrogène	110 1	0-H 0-H 0-H
	elles. Intramoléculaire: entre 1 atome d'4 d'une molécule et 1 atome électronégodif de la m molécule.	C= 6
de VAN DER WAALS	· faibles internactions entre dipôles: 3 types: · Keesom: une force d'orientation + ontre 2 molécules polaires. · Debye: une force d'induction + entre 1 molécule polaire · et l'autre mon pofaire. · London: une force de dispersion + ontre 2 molécules apolaire	La -