MATH142B Final

Instructions

- 1. You may use any type of calculator, but no other electronic devices during this exam.
- 2. You may use two pages of notes (written on both sides), but no books or other assistance during this exam.
- 3. Write your Name, PID, and Section on the front of your Blue Book.
- 4. Write your solutions clearly in your Blue Book
 - (a) Carefully indicate the number and letter of each question and question part.
 - (b) Present your answers in the same order they appear in the exam.
 - (c) Start each question on a new page.
- 5. Read each question carefully, and answer each question completely.
- 6. Show all of your work; no credit will be given for unsupported answers.
- 7. The long questions require full proofs, the short answer questions only require brief justification.

Long Questions

- 1. Euler's Formula.
 - (a) Using Taylor series expansion, prove Euler's formula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

for any $\theta \in \mathbb{R}$ and where $i^2 = -1$. You may assume that the Taylor series expansions for exp, sin and cos are valid for complex numbers.

- (b) Using polar coordinates, prove that any $x \in \mathbb{R}^2 = \mathbb{C}$ may be written as $x = re^{i\theta}$ for some $r \geq 0$ and $\theta \in [0, 2\pi)$.
- 2. Uniform limits of uniformly continuous functions.
 - (a) Prove that if $\{f_n\}$ is sequence of uniformly continuous functions converging uniformly to f then f is also uniformly continuous.
 - (b) Let $f(x) = \sum_{k=0}^{\infty} c_k x^k$ be a convergent power series for $x \in [-r, r]$. Prove that f is uniformly continuous.
- 3. Let $f:(0,\infty)\to\mathbb{R}$ be an *n*-times continuously differentiable function such that there exists constants $C_k\in\mathbb{R},\ k=0\ldots,n$ with

$$\lim_{x \to 0} f^{(k)}(x) = C_k.$$

Prove that f extends to an n-times continuously differentiable function \tilde{f} on all of \mathbb{R} . That is $\tilde{f}: \mathbb{R} \to \mathbb{R}$ is n-times continuously differentiable and $\tilde{f}(x) = f(x)$ for x > 0.

4. Prove that the series

$$\sum_{k=0}^{\infty} \frac{1}{1+|x|^k}$$

converges if and only if |x| > 1 (this result constrasts with convergence of power series where if the series converges for x_0 it converges for all x with $|x| < |x_0|$).

1

- 5. Differentiating the Geometric Sum Formula
 - (a) Prove that if $0 \le \alpha < 1$, then $\lim_{n \to \infty} n\alpha^n = 0$.
 - (b) Differentiate the Geometric Sum Formula

$$\frac{1}{1-x} = 1 + x + \dots + x^n + \frac{x^{n+1}}{1-x}$$

to obtain

$$\frac{d}{dx}\left(\frac{1}{1-x}\right) = 1 + 2x + \dots + nx^{n-1} + \frac{(n+1)x^n - nx^{n+1}}{(1-x)^2}$$

Now use part (a) to directly (without using our theorems on uniform convergence) give a proof that for |x| < 1,

$$\frac{d}{dx}\sum_{k=0}^{\infty}x^k = \sum_{k=1}^{\infty}kx^{k-1}.$$

6. Let $f:[0,1]\to\mathbb{R}$ be integrable. Prove that for any $a,b,c\in[0,1]$,

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Short Answer

- 1. Give an example of a sequence of continuous functions $\{f_n\}$ such that the limit is not continuous.
- 2. Does there exist a polynomial p(x) so that $|e^x p(x)| < 10^{-1000}$ for every $x \in [0, 1]$? Justify your answer.
- 3. Does there exist a polynomial q(x) so that $|e^x q(x)| < (1/8) * x^4$ for every $x \in [0, 1]$? Justify your answer.
- 4. If f is infinitely differentiable, is f necessarily analytic?
- 5. Suppose $\{f_n\}$ is a sequence of continuous functions converging uniformally to f. We know f is continuous, but need it be uniformly continuous?
- 6. Let $A \subset [0,1]$ be countably infinite and define

$$f(x) = \begin{cases} 0, & x \in A \\ 1, & x \notin A \end{cases}$$

Give an example of an A where f is integrable and one where f is not integrable.