Tutorato 1

September 2020

1 Insiemistica

1.1 Esercizio 1

Sia $A =]-2,-1] \cup \{3\}$. Rappresentate nel piano cartesiano l'insieme $A \times IR$.

1.2 Esercizio 2

Rappresentate nel piano cartesiano l'insieme $A=\{(x,y)\in IR\times IR: x^2\leq 1, y\leq |x|\}$

1.3 Esercizio 3

Siano dati gli insiemi $A = [-2, 5[, B =] - \infty, -1[\cup]2, +\infty[$ e $C = \{-1, 2\}$.

- a) Rappresentate graficamente gli insiemi A, B e C sulla retta reale.
- b) Dite quali delle seguenti affermazioni sono vere e quali sono false (scritture scorrette sono da considerarsi affermazioni false):

$$-1 \in B$$
; $\{-1\} \subseteq C$; $A \cap C = C$; $4 \subset A$; $[2, 5[\subset A; C \subseteq \mathbf{R} \setminus B; C \setminus A \neq \emptyset]$.

2 Maggioranti, minoranti, massimi e minimi

2.1 Esercizio 4

Dati gli insiemi

i)
$$A = \{a_n : a_n = [1 + (-1)^n] \frac{n-1}{n}, n \in \mathbf{N}^+\};$$

ii)
$$B = \{x_n : x_n = (\cos n\pi)^3 - \frac{3}{n}, n \in \mathbb{N}^+\};$$

iii)
$$C = \{ \frac{n+n^2}{n-1} : n \in \mathbb{N}, n \ge 2 \},$$

determinate inf A e $\sup A$, determinate inf B e $\sup B$ e $\inf C$ e $\sup C$. Sono minimi e massimi?

2.2 Esercizio 5

- i) Determinate l'insieme $A=\{x\in\mathbf{R}:\left|\frac{x}{x-1}\right|>1\}$. Dite se A è un intervallo. Dite se è limitato.
- ii) Determinate l'insieme $B=\{x\in {\bf R}: \log_2(3-|x|)<1\}$. Dite se B è un intervallo. Dite se è limitato.
- iii) Determinate $\inf A \in \sup B$.

2.3 Esercizio 6

- i) Individuate gli insiemi $A=\{x\in\mathbf{R}: x|x-2|<3\}$ e $B=\{x\in\mathbf{R}: \sqrt{x|x|-2}\leq 1\}$.
- ii) Dite se sono insiemi limitati inferiormente/limitati superiormente/limitati.
- iii) Determinate $A \cup B$, $A \cap B$ e $A \setminus B$.
- iv) Determinate $\inf(A \cap B)$ e $\sup A$.

3 Iniettività e suriettività

3.1 Esercizio 7

Dire per le seguenti funzioni se sono iniettive; inoltre determinare se sono funzioni pari o dispari.

i)
$$f: \mathbf{R} \setminus \{0\} \to \mathbf{R}$$
 $f(x) = x + \frac{1}{x}$;

ii)
$$f: \mathbf{R} \to \mathbf{R}$$
 $f(x) = 2 + \sin x$;

iii)
$$f: \mathbf{R}^+ \to \mathbf{R}$$
 $f(x) = x - \frac{1}{x};$

iv)
$$f: \mathbf{R} \to \mathbf{R}$$
 $f(x) = x^3 - 2$.

3.2 Esercizio 8

Siano date le funzioni $f : \mathbf{R} \to \mathbf{R} \in g :]-\infty, 0[\to \mathbf{R}$

$$f(x) = \begin{cases} x - 1 & \text{se } x > 0 \\ 3x + 1 & \text{se } x \le 0 \end{cases} \qquad g(x) = \begin{cases} 2x + 1 & \text{se } x \le -1 \\ -x - 1 & \text{se } -1 < x < 0 \,. \end{cases}$$

3

- i) Determinate l'immagine di f e l'immagine di g .
- ii) Dite se sono funzioni iniettive, e se sono funzioni suriettive.
- iii) Determinate, dove esiste, la funzione composta $f \circ g$.

4 Induzione

4.1 Esercizio 9

Provate per induzione che

i)
$$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4} \quad \forall n \in \mathbf{N};$$

ii)
$$3^n \ge n2^n \quad \forall n \in \mathbf{N}$$
.