Comparação de Algoritmos de Categorização

Categorizar um veículo a partir das suas informações Comparation of Categorization Algorithms Categorize a vehicle based on its information

Martinho Caeiro - 23917 — Paulo Abade - 23919 Instituto Politécnico de Beja Escola Superior de Tecnologia e Gestão Beja, Portugal 23917@stu.ipbeja.pt — 23919@stu.ipbeja.pt

Resumo—Este artigo apresenta um estudo para a comparação entre algoritmos de categorização de veículos. O objetivo de cada um dos algoritmos é categorizar um veículo a partir das suas informações, sendo que este veículo será categorizado consoante o seu país de origem. Foi escolhido este tema para facilitar a nossa compreensão sobre o assunto e tornar mais agradável o estudo destes algoritmos. O estudo foi realizado no Orange (Orange, 2024) com base em algoritmos de aprendizagem supervisionada, nomeadamente o algoritmo Binary Tree, algoritmo Random Forest, algoritmo Logistic Regression e algoritmo Neural Network. Para fazer a comparação destes, foi utilizado um dataset, com cerca de 400 entradas, onde possui informações de veículos de diferentes países e este foi utilizado nos diferentes algoritmos para treinar e testar os mesmos. Este dataset, já foi alterado no primeiro trabalho da Disciplina de Sistemas de Informação, sendo ligeiramente diferente, por já ter sido tratado. Os resultados obtidos foram comparados e analisados para perceber qual o algoritmo que melhor categoriza um veículo a partir das suas informações. A comparação dos algoritmos foi feita com base na sua precisão, sensibilidade e especificidade. O estudo também abordou as limitações de cada algoritmo. Aplicações práticas incluem sistemas de recomendação de veículos, análise de dados ou apoio à criação de estratégias de marketing em diferentes regiões. A análise detalhada do comportamento dos algoritmos pode ser útil para investigadores e profissionais que desejam otimizar a categorização de grandes volumes de dados automóveis.

Palavras-chave—algoritmos; veículos; categorização; aprendizagem supervisionada; árvore binária; random forest; precisão; sensibilidade; especificidade; orange; datamining; machine learning; kaggle.

I. INTRODUÇÃO

A categorização de veículos é uma área relevante em aplicações práticas, como a otimização de cadeias de fornecimento, a personalização de ofertas comerciais ou o desenvolvimento de sistemas inteligentes de transporte. Estudos recentes demonstram que algoritmos de aprendizagem supervisionada podem oferecer soluções rápidas e eficazes para problemas de classificação, mas a escolha do algoritmo adequado depende de vários fatores, como o tipo de dados e o objetivo final. Este estudo procura preencher essa lacuna, analisando não apenas a precisão dos modelos, mas também os seus comportamentos sob diferentes métricas de avaliação. Para isso, foi utilizado um dataset com informações de veículos de diferentes países, onde o objetivo é determinar o pais de origem dado as informações do veículo. Este dataset foi utilizado para treinar e testar

os diferentes algoritmos de categorização, nomeadamente os algoritmos *Tree*, *Random Forest*, *Logistic Regression* e *Neural Network*.

II. DATASET

O dataset "Car information dataset" (Elmetwally, 2023) utilizado neste estudo foi retirado do site Kaggle e contém informações de veículos de diferentes países. Estas informações incluem a marca/modelo, a economia de combustivel, o número de cilindros, a cilindrada, a potência, o peso, a aceleração, o ano de fabrico e o país de origem. Este dataset possui cerca de 400 entradas em cada uma das colunas. Antes de aplicar os algoritmos, foi realizado um extenso pré-processamento do dataset, que incluiu a normalização de valores numéricos e a codificação de atributos categóricos, como a marca do veículo. A análise exploratória dos dados revelou uma distribuição não uniforme entre os diferentes países de origem, sendo os EUA responsáveis pela maior parte das entradas. Além disso, foi descartado o ano de fabrico e foi utilizada uma validação cruzada de 10 vezes para garantir a consistência dos resultados. Este procedimento foi adotado para reduzir a variabilidade e melhorar a fiabilidade das métricas.

III. METODOLOGIA

A metodologia adotada neste estudo envolveu as seguintes etapas principais:

- Definição do problema: A categorização dos veículos foi definida como uma tarefa de classificação, com o país de origem como variável alvo.
- Seleção dos algoritmos: Foram escolhidos algoritmos representativos de diferentes abordagens, como árvores de decisão, regressão e redes neurais.
- Preparação dos dados: Foi descartado o ano de fabrico, e as variáveis foram normalizadas para melhorar a performance dos algoritmos.
- 4) **Treino dos modelos:** Cada algoritmo foi treinado utilizando um conjunto de treino com validação cruzada.
- 5) **Teste dos modelos:** Os modelos foram testados com um conjunto de teste para avaliar a sua capacidade de generalização, evitando assim bias e outliers.

- 6) Avaliação dos modelos: As métricas de desempenho (precisão, recall, AUC, entre outras) foram calculadas para comparar os algoritmos.
- Análise dos resultados: Os resultados foram analisados de forma qualitativa e quantitativa, destacando os pontos fortes e fracos de cada modelo.

IV. ALGORITMOS DE DECISÃO

Nesta secção, vamos apresentar os diferentes algoritmos de decisão utilizados para a categorização dos veículos. Cada algoritmo foi avaliado numa matriz de confusão, que compara as previsões do modelo com os valores reais. As métricas que podemos retirar diretamente da matriz são:

- Verdadeiros Positivos: Número de observações corretamente classificadas como positivas, podem ser observadas na diagonal principal da matriz.
- Falsos Positivos: Número de observações incorretamente classificadas como positivas, são a soma da coluna exceto a pertencente à diagonal principal.
- Verdadeiros Negativos: Número de observações corretamente classificadas como negativas, são a soma de todas as observações exceto a linha e coluna da classe em questão.
- Falsos Negativos: Número de observações incorretamente classificadas como negativas, são a soma da linha exceto a pertencente à diagonal principal.

A. Tree (Wikipedia, 2025d)

É um modelo baseado numa estrutura hierárquica em forma de árvore, como é possivel ver na tabela I. Cada nó representa uma condição ou regra (geralmente um atributo do conjunto de dados), e os ramos dividem os dados com base nessa regra. O objetivo é chegar a uma decisão ou classificação no final de cada ramo (folha). É simples, interpretável e útil para problemas de classificação e regressão.

Atual/Previsão	Europeu	Japão	EUA	Total
Europeu	29	9	10	48
Japão	16	34	5	55
EŪA	12	6	154	172
Total	57	49	169	275

Tabela I. Matriz de Confusão do Algoritmo Tree

B. Random Forest (Wikipedia, 2025c)

Este algoritmo é um conjunto de árvores, como é possivel ver na tabela II. Cria várias árvores independentes, cada uma treinada com um subconjunto dos dados e dos atributos selecionados aleatoriamente. No final, combina os resultados para melhorar a precisão e reduzir o risco de overfitting, comparado a uma única árvore.

Atual/Previsão	Europeu	Japão	EUA	Total	
Europeu	25	16	7	48	
Japão	12	34	9	55	
EÛA	11	7	154	172	
Total	48	57	170	275	

Tabela II. Matriz de Confusão do Algoritmo Random Forest

C. Logistic Regression (Wikipedia, 2025a)

Apesar do nome, é um método usado principalmente para classificação, como é possivel ver na tabela III. Modela a probabilidade de um resultado pertencente a uma classe específica, usando uma função logística. É simples, rápido e eficaz em problemas de classificação binária, embora também possa ser estendido para múltiplas classes.

Atual/Previsão	Europeu	Japão	EUA	Total
Europeu	25	18	5	48
Japão	12	34	9	55
EÛA	4	14	154	172
Total	41	66	168	275

Tabela III. Matriz de Confusão do Algoritmo Logistic Regression

D. Neural Network (Wikipedia, 2025b)

Inspiradas pelo cérebro humano, consistem em camadas de "neurónios" interligados, como é possivel ver na tabela IV. Cada neurónio recebe entradas, aplica uma ponderação e uma função de ativação, e passa o resultado para os neurónios da camada seguinte. São altamente versáteis e podem lidar com problemas complexos, como reconhecimento de imagens ou processamento de linguagem natural, mas requerem mais dados e poder computacional.

Atual/Previsão	Europeu	Japão	EUA	Total	
Europeu	20	22	6	48	
Japão	12	33	10	55	
EUA	7	11	154	172	
Total	39	66	170	275	

Tabela IV. Matriz de Confusão do Algoritmo Neural Network

V. COMPARAÇÕES FINAIS

Como podemos visualizar na tabela V, o algoritmo Random Forest obteve os melhores resultados avaliando a área sobre a curva do gráfico ROC (AUC), e o algoritmo Tree obteve os melhores resultados em termos de acurácia de classificação (CA), precisão e sensibilidade. O algoritmo Logistic Regression obteve resultados semelhantes ao Random Forest, enquanto o Neural Network apresentou o pior desempenho. Outra observação que é importante destacar é que o algoritmo Logistic Regression obteve um desempenho superior no contexto de F1 Score e MCC, sendo isto mais

importante para problemas de classificação, mostrando no geral um melhor desempenho que os algoritmos de *Random Forest* e *Neural Network*.

Algoritmo	AUC	CA	F1	Precision	Recall	MCC
Tree	0.833	0.789	0.792	0.798	0.789	0.613
Logistic Regression	0.909	0.775	0.777	0.783	0.775	0.587
Random Forest	0.921	0.775	0.776	0.777	0.775	0.584
Neural Network	0.900	0.753	0.753	0.756	0.753	0.544

Tabela V. Comparação de Resultados dos Algoritmos

Estas métricas são importantes para avaliar o desempenho dos algoritmos, e a sua interpretação pode variar consoante o contexto do problema. A aplicação *Orange* forneceu automaticamente estas métricas, porém detalhando cada uma delas, obtemos o seguinte:

A. Acurácia de Classificação (CA)

A CA, como podemos visualizar na equação 1, é a proporção de observações corretamente classificadas pelo modelo. É uma métrica geral de desempenho, mas pode ser enganadora em conjuntos de dados desequilibrados.

$$CA = \frac{TP + TN}{TP + TN + FP + FN} \tag{1}$$

Onde TN é o número de verdadeiros negativos e FN é o número de falsos negativos.

B. Precisão

A precisão, como podemos visualizar na equação 2, é a proporção de observações corretamente classificadas como positivas em relação ao total de observações classificadas como positivas.

$$Precision = \frac{TP}{TP + FP} \tag{2}$$

Onde TP é o número de verdadeiros positivos e FP é o número de falsos positivos.

C. Sensibilidade/Recall

A sensibilidade, como podemos visualizar na equação 3, é a proporção de observações corretamente classificadas como positivas em relação ao total de observações reais positivas.

$$Recall = \frac{TP}{TP + FN} \tag{3}$$

Onde TP é o número de verdadeiros positivos e FN é o número de falsos negativos.

D. F1 Score

O F1 Score, como podemos visualizar na equação 4, é a média harmónica da precisão e da sensibilidade. É útil quando as classes estão desequilibradas, pois penaliza mais os falsos negativos e falsos positivos.

$$F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$
 (4)

Onde Precision é a proporção de observações corretamente classificadas como positivas em relação ao total de observações classificadas como positivas e Recall é a proporção de observações corretamente classificadas como positivas em relação ao total de observações reais positivas.

E. Coeficiente de Correlação de Matthews (MCC)

O MCC, como podemos visualizar na equação 5, é uma métrica que varia entre -1 e 1, onde 1 indica uma previsão perfeita, 0 indica uma previsão aleatória e -1 indica uma previsão inversa.

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$
 (5)

Onde TP é o número de verdadeiros positivos, TN é o número de verdadeiros negativos, FP é o número de falsos positivos e FN é o número de falsos negativos.

F. Área sobre a Curva (AUC)

A AUC, como podemos visualizar na equação 6, é uma métrica que avalia a capacidade do modelo de distinguir entre classes positivas e negativas. Quanto maior o valor, melhor o desempenho do modelo. Esta métrica possuí a seguinte formulação:

$$AUC = \frac{1 + TP - FP}{2} \tag{6}$$

Onde TP é o número de verdadeiros positivos e FP é o número de falsos positivos.

Na figura 1, é possível visualizar a curva ROC dos diferentes algoritmos para os veículos de origem nos EUA.

Figura 1: Curva ROC dos Algoritmos - EUA

Na figura 2, é possível visualizar a curva ROC dos diferentes algoritmos para os veículos de origem na Europa.

Figura 2: Curva ROC dos Algoritmos - Europa

Na figura 3, é possível visualizar a curva ROC dos diferentes algoritmos para os veículos de origem no Japão.

Figura 3: Curva ROC dos Algoritmos - Japão

VI. TRABALHOS RELACIONADOS

Os trabalhos "Automobile EDA" (Aboraida, 2024) e "EDA CAR INFORMATION DATA" (Salodkar, 2023) são exemplos de trabalhos relacionados com este dataset. Estes trabalhos tem uma abordagem e análise ao dataset do ponto de vista de estruturas de dados e algoritmos, que tem como objetivo analisar as diferentes caracteristicas dos veículos, verificando quais os atributos dos automóveis de maior importância e com maiores relações, assim permitindo uma compreensão mais aprofundada do dataset assim garantindo um estudo mais rigoroso.

VII. CONCLUSÕES

Concluimos que embora o algoritmo *Tree* seja fácil de interpretar, apresenta limitações em datasets com alta variabilidade, onde tende a criar divisões muito específicas, resultando em overfitting. Por outro lado, o *Random Forest*, ao agregar várias árvores, resolve esse problema, mas o custo computacional aumenta significativamente. Já a *Logistic Regression*, apesar da simplicidade e robustez, pode apresentar dificuldades em modelar relações complexas entre as variáveis. Finalmente, as *Neural Networks* destacam-se pela capacidade de capturar padrões complexos, mas requerem grandes volumes de dados e longos períodos de treino, podendo ser menos práticas para

problemas pequenos. Em suma, concluimos que a escolha do algoritmo correto é de extrema importância dado que a precisão, sensibilidade e especificidade deve ser garantida e que a sua eficácia em grande escala tem um grande impacto no resultado final. No entanto, é importante também destacar algumas limitações do estudo. Primeiramente, o tamanho do dataset, com apenas 400 entradas por coluna, pode não ser representativo o suficiente para generalizações em larga escala. Além disso, fatores como o viés dos dados (mais veículos de origem norte-americana) podem ter influenciado os resultados.

REFERÊNCIAS

- Aboraida, A. (2024). *Automobile EDA* [Kaggle]. Obtido dezembro 2024, de https://www.kaggle.com/code/ahmedaboraida/automobile-eda
- Elmetwally, T. (2023). *Car information dataset* [Kaggle]. Obtido dezembro 2024, de https://www.kaggle.com/datasets/tawfikelmetwally/automobile-dataset
- Orange. (2024). *Orange* [Orange]. Obtido dezembro 2024, de https://orangedatamining.com
- Salodkar, V. (2023). EDA CAR INFORMATION DATA [Kaggle]. Obtido dezembro 2024, de https://www.kaggle.com/code/vishweshsalodkar/eda-car-information-data
- Wikipedia. (2025a). *Logistic regression* [Wikipedia]. Obtido janeiro 2025, de https://en.wikipedia.org/wiki/Logistic regression
- Wikipedia. (2025b). *Neural network (machine learning)* [Wikipedia]. Obtido janeiro 2025, de https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
- Wikipedia. (2025c). *Random forest* [Wikipedia]. Obtido janeiro 2025, de https://en.wikipedia.org/wiki/Random forest
- Wikipedia. (2025d). *Tree (abstract data type)* [Wikipedia]. Obtido janeiro 2025, de https://en.wikipedia.org/wiki/Tree_(abstract_data_type)