

BSC. MATERIALS SCIENCE AND ENGINEERING SECOND SEMESTER

COURSE CODE: COURSE TITLE (Credits)

MTEN402: NON-DESTRUCTIVE EVALUATION & FAILURE ANALYSIS (2 Credits)

EXAMINATIONS: 2014/2015

INSTRUCTION:

ANSWER ALL QUESTIONS

TIME ALLOWED: TWO HOURS

SECTION A

Choose the correct answer from the following objectives.

Question 1

- 1. Liquid penetrant testing is based on the principle of:
 - a) Polarized sound waves in liquid
 - b) Magnetic domains
 - c) Absorption of x-rays
 - d) Capillary action
- 2. How is the size of a liquid penetrant indication usually related to the discontinuity it represents:

Page 1 of 6

- a) Larger than
- b) Smaller than
- c) Equal to
- d) Not related to

Examiner: Prof. K. A. Danso

- 3. Which of the following statements accurately describes the capabilities of liquid penetrant testing?
 - a) Liquid penetrant testing is useful for locating subsurface discontinuities in a test piece
 - b) Liquid penetrant testing is useful for locating discontinuities in porous materials
 - c) Liquid penetrant testing is useful for locating discontinuities which are open to the surface in non-porous materials
 - d) None of the above
- 4. Subsurface discontinuities can be best detected by:
 - a) The post-emulsification penetrant method
 - b) The visible dye penetrant method
 - c) The fluorescent penetrant method
 - d) None of the above will detect subsurface discontinuities
- 5. What is the function of an emulsifier?
 - a) To remove the excess penetrant
 - b) To develop indications with a post emulsifiable penetrant system
 - c) To assist penetration with a post emulsifiable penetrant system
 - d) To make a post emulsifiable penetrant water washable.
- 6. In order to be detectable by magnetic particle testing, a flaw must:
 - a) Be surface breaking
 - b) Be no deeper than 1 mm below the surface
 - c) Produce a leakage field at the test surface
 - d) All of the above
- 7. Which of the following is not an advantage of magnetic particle testing?
 - a) Fast and simple to perform
 - b) Can detect discontinuities filled with foreign material
 - c) Most reliable for finding surface cracks in all types of materials
 - d) Works well through a thin coat of paint
- 8. The reverse magnetizing force necessary to remove a residual magnetic field from a test piece after it has been magnetically saturated is:
 - a) Hysteresis
 - b) Coercive force
 - c) Demagnetizing flux
 - d) Reverse saturation

Examiner: Prof. K. A. Danso Page 2 of 6

- 9. Which of the following produces a circular field?
 - a) Coil
 - b) Headshot
- . c) Yoke.,
 - d) All of the above
- 10. A leakage field is strongest when a discontinuity interrupts the magnetic flux lines at an angle of:
 - a) Zero degrees
 - b) 45 degrees
 - c) 90 degrees
 - d) 180 degrees
- 11. Which of the following is an isotope not artificially produced for industrial radiographic use?
 - a) Ir-192
 - b) Ra-226
 - c) Co-60
 - d) All of the above
- 12. Most of the energy applied to an x-ray tube is converted into:
 - a) X-rays
 - b) Light
 - c) Heat
 - d) Ultraviolet radiations
- 13. An advantage of a gamma ray source is:
 - a) Radiation may be turned on or off at will
 - b) Outside power is normally not required
 - c) Less shielding is required than for x-rays
 - d) All of the above
- 14. X-rays are produced by:
 - a) Radioactive isotopes
 - b) The rapid deceleration of electrons
 - c) Ultraviolet radiation of unstable atoms
 - d) All of the above

15. Expla	nin the difference between x and gamma rays
a)	They are both types of electromagnetic radiation
b)	X-rays are naturally occurring; gamma rays are man made
c)	X- rays are produced electrically; gamma rays are emitted by disintegrating atomic
,	nuclei
d)	There is no difference
16. The s	mallest detectable flaw by the ultrasonic system or technique is:
a)	Resolution
b)	Detectability
c)	Sensitivity
d)	Wavelength
17. In ult	rasonic testing the smallest detectable flaw is:
a)	½f
b)	½V
c)	½ λ
d)	None of the above
18. Whic	h of the following compressional probe has the highest sensitivity?
a)	1 MHz
b)	2 MHz
c)	5 MHz
d)	10 MHz
19. Which	h of the following sound waves is easily dampened by heavy grease or wet finger?
a)	Longitudinal waves
b)	Transverse waves
c)	Surface waves
d)	Lamb waves
20. Which	n of the probes below has the longest near zone?
a)	1 MHz, 10 mm - diameter
b)	5 MHz, 10 mm - diameter
c)	1 MHz, 2 mm - diameter
4)	5 MHz 2 mm – diameter

Examiner: Prof. K. A. Danso Page 4 of 6

(20 marks)

SECTION B

Question 2

a. Why is visible penetrant red and fluorescent penetrant green?

(4 marks)

b. List four properties of a good penetrant.

(4 marks)

- c. Penetrants can be classified by the method of removing the excess penetrant. List the three classifications. (4 marks)
- d. How is the excess penetrant removed when solvent removable penetrant is used?

(4 marks)

Question 3

a. The type of magnetic field established is determined by the method used to magnetize the specimen.

What is:

- 1. Longitudinal magnetic field?
- 2. Circular magnetic field?

(3 marks)

- b. What type of magnetization is produced by:
 - i. Electromagnetic yoke
 - ii. Headshot
 - iii. Central conductor
 - iv. Coil shot
 - v. Prods

(4 marks)

- c. A magnetic particle inspector is inspecting a part which is 15 inches long by 3 inches in outside diameter. If a five-turn 12 inches diameter coil or cable is used, calculate the coil current to be used if:
 - i. The part is positioned towards the side of the coil
 - ii. The part is positioned in the centre of the coil.

(9 marks)

Question 4

- a. Two signals are at 20% and 100% full screen height (FSH). What is the difference between them in decibels (dB's)? (4 marks)
- b. How much sound is transmitted at a steel to perspex interface if the acoustic impedances of steel (Z₁) and perspex (Z₂) are respectively 46.7 x 10⁶ kg/m².s and 3.2 x 10⁶ kg/m².s? (4 marks)

Examiner: Prof. K. A. Danso

Page 5 of 6

c. What is the near zone length of a 5 MHz compression probe with a crystal diameter of 15 mm in steel? [Velocity of sound in steel = 5960 m/s]

(4 marks)

d. What is the beam spread at 6 dB of a 15 mm, 5 MHz compression wave probe in steel? [K= 1.08] (4 marks)

Question 5

a. X-rays and gamma rays are forms of ionizing radiation. What does this statement mean?

(2 marks)

- b. Describe the processes used to produce X-rays for industrial radiography (6 marks)
- c. What are Image Quality Indicators (IQIs) used for? (3 marks)
- d. How are IQIs placed on the test specimen? (2 marks)
- e. What are the three main means of protection to help reduce exposure to radiation?

(3 marks)

Question 6

- a. What is failure analysis and what are the main reasons for performing failure analysis?

 (5 marks)
- b. Outline the major steps that are usually taken when conducting failure analysis.

 (5 marks)
- c. In failure analysis, why are chemical analysis and fractography important?

 (6 marks)

$$Ampere-turns = \frac{45}{L/D} \qquad \qquad dB = 20 \log_{10} \frac{H_0}{H_1}$$

$$Ampere - turns = \frac{43 \times coil_radius}{\left[(6 \times L/D) - 5 \right]} \qquad \left[\frac{Z_1 - Z_2}{Z_1 + Z_2} \right]^2 \times 100 = \% \text{ Reflected}$$

$$NZ = \frac{D^2}{4\lambda} \qquad \qquad \sin\frac{\theta}{2} = \frac{K\lambda}{D}$$