Radical of an Ideal 0.1

Example 0.1. $\sqrt{(X^2Y, XY^2)} = (XY)$

1. Let $x \in \sqrt{(X^2Y, XY^2)}$. Proof.

- 2. Assume $x \notin (XY)$.
- 1. We want to show $XY \in \sqrt{(X^2Y, XY^2)}$.
- $2. \iff (XY)^2 \in (X^2Y, XY^2)$
- 3. And this is true because we have $X^2Y^2 = X^2Y \cdot Y$
- 1. We want to show $X \in \sqrt{(X^2Y, XY^2)}$.
- $2. \iff X^2$

Apparantly there are no easy way to

Maybe another way.

- 1. What are the nilpotent elements of $K[X,Y]/(X^2Y,XY^2)$?
- 2.

This is basically asking the same question \dots

0.2Ideal Quotient

Definition 1. Let I be an ideal in R and J an element in R. The ideal quotient is

$$(I:J)=\{\,r\in R\mid rJ\subset I\,\}$$

Moreover

$$(I:x) = \{ \, r \in R \mid rx \subset I \, \}$$

Theorem 2. The ideal quotient are ideals.

Proof. Let $x \in (I:J)$ and $r \in R$. Then $xJ \subset I$ by definition. We also have $rxJ \subset xJ \subset I$. Let $x, y \in (I:J)$. Then $(x+y)J = xJ + yJ \subset I$.

Example 2.1. 1. $((2):3) = \{ r \in \mathbb{Z} \mid 3r \in (2) \} \Rightarrow ((2):3) = (2).$ 2. $((6):3) = \{ r \in \mathbb{Z} \mid 3r \in (6) \} \Rightarrow ((6):3) = (2).$

- 3. $((8):2) = \{ r \in \mathbb{Z} \mid 2r \in (8) \} \Rightarrow ((8):2) = (4).$

Example 2.2. Let $I = (X^2Y, XY^2)$ be an ideal in the polynomial ring R = K[X, Y] over a field K.

- 1. $((X^2Y, XY^2) : XY) = \{ r \in R \mid r \cdot XY \subset (X^2Y, XY^2) \} = (X, Y) \Rightarrow \sqrt{(X, Y)} = (X, Y).$
- 2. $((X^2Y, XY^2) : (X^2, XY)) = (Y) \Rightarrow \sqrt{(Y)} = (Y)$.
- 3. $((X^2Y, XY^2) : (XY, Y^2)) = (X) \Rightarrow \sqrt{(X)} = (X)$.

It is $\sqrt{(X^2Y, XY^2)} = (XY)$.

Theorem 3.