Мера Лебега и Жордана

Пусть S - полукольцо с единицей E, m - σ -аддитивная мера на S, $\mathcal{R}(S)$ - минимальная алгебра, содержащая S, ν - продолжение m на $\mathcal{R}(S)$ (поскольку $\mathcal{R}(S)$ это алгебра $\Rightarrow \mathcal{R}(S)$ это кольцо).

Опр: 1. В рамках условий выше, если $A \subseteq E$, то определим внешнюю меру Лебега:

$$\mu^*(A) = \inf_{I(A)} \sum_{n=1}^{\infty} m(A_n), I(A) = \left\{ A_1, \dots, A_n, \dots \in S : A \subseteq \bigcup_{n=1}^{\infty} A_n \right\}$$

Опр: 2. В рамках условий выше, если $A \subseteq E$, то определим внешнюю меру Жордана:

$$\mu_J^*(A) = \inf_{I(A)} \sum_{i=1}^n m(A_i), \ I(A) = \left\{ A_1, \dots, A_n \in S \colon A \subseteq \bigcup_{i=1}^n A_i \right\}$$

Теорема 1. Если $A, A_1, \ldots, A_n, \ldots \subseteq E$ и кроме того $A \subseteq \bigcup_{n=1}^{\infty} A_n$, то верно:

$$\mu^*(A) \le \sum_{n=1}^{\infty} \mu^*(A_n)$$

справа допускается бесконечное значение. Для внешней меры Жордана, аналогичное неравенство справедливо для случая, когда $A\subseteq\bigcup\limits_{k=1}^{n}A_{k}.$

 \square Установим неравенство для внешней меры Лебега. Если сумма справа равна ∞ , то утверждение очевидно. Пусть сумма конечна и задано некоторое $\varepsilon > 0$, тогда по определению:

$$\forall n, \exists \{C_{n,i}\}_{i=1}^{\infty} \subset S \colon A_n \subseteq \bigcup_{i=1}^{\infty} C_{n,i}, \sum_{i=1}^{\infty} m(C_{n,i}) < \mu^*(A_n) + \frac{\varepsilon}{2^n}$$

Тогда будет верно:

$$A \subseteq \bigcup_{n=1}^{\infty} A_n \subseteq \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{\infty} C_{n,i} \Rightarrow \mu^*(A) \le \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} m(C_{n,i}) < \sum_{n=1}^{\infty} \left(\mu^*(A_n) + \frac{\varepsilon}{2^n}\right) = \varepsilon + \sum_{n=1}^{\infty} \mu^*(A_n)$$

Так как $\varepsilon>0$ - произвольное, то отсюда вытекает утверждение теоремы.

Следствие 1. Если $A, B \subseteq E$, то справедлива следующаяя оценка:

$$|\mu^*(A) - \mu^*(B)| \le \mu^*(A\Delta B)$$

Для μ_J^* - аналогично.

 \square Очевидно, что $A \subseteq (A\Delta B) \cup B \Rightarrow$ по предыдущей теореме будет верно:

$$\mu^*(A) \le \mu^*(A\Delta B) + \mu^*(B) \Leftrightarrow \mu^*(A) - \mu^*(B) \le \mu^*(A\Delta B)$$

Поскольку A и B равноправны, то тоже самое можно было бы написать в варианте $B \subseteq (A\Delta B) \cup A$:

$$\mu^*(B) \le \mu^*(A\Delta B) + \mu^*(A) \Leftrightarrow \mu^*(A) - \mu^*(B) \ge -\mu^*(A\Delta B)$$

Отсюда следует утверждение следствия.

Продолжение мер по Лебегу и Жордану

Опр: 3. Пусть $A \subseteq E$. Тогда скажем, что $A \in \mathcal{M}$ или A измеримо по Лебегу в том и только в том случае, когда:

$$\forall \varepsilon > 0, \exists A_{\varepsilon} \in \mathcal{R}(S) \colon \mu^*(A\Delta A_{\varepsilon}) < \varepsilon$$

Опр: 4. Пусть $A \subseteq E$. Тогда скажем, что $A \in \mathcal{M}_J$ или A измеримо по Жордану в том и только в том случае, когда:

$$\forall \varepsilon > 0, \ \exists A_{\varepsilon} \in \mathcal{R}(S) \colon \mu_J^*(A\Delta A_{\varepsilon}) < \varepsilon$$

Rm: 1. Очевидно, что если $A \in \mathcal{R}(S) \Rightarrow A \in \mathcal{M}$, $A \in \mathcal{M}_J$, поскольку оно само себя и аппроксимирует. Кроме того, так как: $\forall B, \, \mu^*(B) \leq \mu_J^*(B)$, то $\mathcal{M}_J \subseteq \mathcal{M}$.

Теорема 2. \mathcal{M} - алгебра (\mathcal{M}_J - алгебра).

 \square Докажем теорему для \mathcal{M} , поскольку для \mathcal{M}_J оно полностью аналогичное. Пусть $A, B \in \mathcal{M}$. Тогда:

$$\forall \varepsilon > 0, \, \exists \, A_{\varepsilon}, B_{\varepsilon} \in \mathcal{R}(S) \colon \mu^*(A\Delta A_{\varepsilon}) < \frac{\varepsilon}{2} \wedge \mu^*(B\Delta B_{\varepsilon}) < \frac{\varepsilon}{2}$$

Имеет место следующее включение:

$$(A \cap B)\Delta(A_{\varepsilon} \cap B_{\varepsilon}) \subseteq (A\Delta A_{\varepsilon}) \cup (B\Delta B_{\varepsilon})$$

где $(A_{\varepsilon} \cap B_{\varepsilon}) \in \mathcal{R}(S)$ поскольку $\mathcal{R}(S)$ - кольцо и выдерживает такие операции. Включение верно так, как если $a \in (A \cap B)\Delta(A_{\varepsilon} \cap B_{\varepsilon})$, то точка либо принадлежит одновременно и A, и B, и не принадлежит хотя бы одному из A_{ε} или B_{ε} , либо $a \in (A_{\varepsilon} \cap B_{\varepsilon})$ и не принадлежат хотя бы одному из A или B. Аналогично, рассмотрим симметрическую разность:

$$(A\Delta B)\Delta(A_{\varepsilon}\Delta B_{\varepsilon})\subseteq (A\Delta A_{\varepsilon})\cup (B\Delta B_{\varepsilon})$$

где $(A_{\varepsilon}\Delta B_{\varepsilon}) \in \mathcal{R}(S)$ поскольку $\mathcal{R}(S)$ - кольцо и выдерживает такие операции. Включение верно так, как если $a \in (A\Delta B)\Delta(A_{\varepsilon}\Delta B_{\varepsilon})$, то точка либо принадлежит ровно одному из четерых составляющих множеств: $A, B, A_{\varepsilon}, B_{\varepsilon}$, либо ровно трем множествам, например, если $A \cap B \cap A_{\varepsilon} \neq \emptyset$. И тогда точка будет точно принадлежать множеству $(A\Delta A_{\varepsilon}) \cup (B\Delta B_{\varepsilon})$. Следовательно по теореме 1:

$$\mu^*((A \cap B)\Delta(A_{\varepsilon} \cap B_{\varepsilon})) \le \mu^*(A\Delta A_{\varepsilon}) + \mu^*(B\Delta B_{\varepsilon}) < \varepsilon$$

Аналогично, получаем:

$$\mu^*((A\Delta B)\Delta(A_{\varepsilon}\Delta B_{\varepsilon})) \le \mu^*(A\Delta A_{\varepsilon}) + \mu^*(B\Delta B_{\varepsilon}) < \varepsilon$$

Отсюда \mathcal{M} - кольцо, а поскольку $E \in \mathcal{M}$, так как $\mathcal{R}(S)$ - минимальная алгебра, $E \in \mathcal{R}(S)$ и единицей можно аппроксимировать саму себя $\Rightarrow \mathcal{M}$ - алгебра. Аналогично для меры Жордана.

Теорема 3. μ^* - мера на \mathcal{M} (μ_J^* - мера на \mathcal{M}_J).

 \square Пусть $A = B \bigsqcup C, B, C \in \mathcal{M} \Rightarrow A \in \mathcal{M}$ (поскольку \mathcal{M} это алгебра). Тогда по теореме 1:

$$\mu^*(A) \le \mu^*(B) + \mu^*(C)$$

Пусть $\varepsilon > 0$, поскольку $B, C \in \mathcal{M}$, то по определению:

$$\exists B_{\varepsilon}, C_{\varepsilon} \in \mathcal{R}(S) \colon \mu^*(B\Delta B_{\varepsilon}) < \frac{\varepsilon}{6}, \ \mu^*(C\Delta C_{\varepsilon}) < \frac{\varepsilon}{6}$$

Заметим, что $A\Delta(B_{\varepsilon} \cup C_{\varepsilon}) \in \mathcal{R}(S)$ и выполнено:

$$A\Delta(B_{\varepsilon} \cup C_{\varepsilon}) \subseteq (B\Delta B_{\varepsilon}) \cup (C\Delta C_{\varepsilon})$$

поскольку $A = B \bigsqcup C$. Немного сложнее понять про $B_{\varepsilon} \cap C_{\varepsilon} \in \mathcal{R}(S)$:

$$B_{\varepsilon} \cap C_{\varepsilon} \subseteq (B\Delta B_{\varepsilon}) \cup (C\Delta C_{\varepsilon})$$

Если $a \in B_{\varepsilon} \cap C_{\varepsilon}$, то эта точка не могла бы быть одновременно и в B, и в C, иначе они бы пересекались, но $B \cap C = \emptyset$. Тогда, если $a \in B \cap B_{\varepsilon}$, то $a \in C\Delta C_{\varepsilon}$ и аналогично для $a \in C \cap C_{\varepsilon}$. Отсюда, по теореме 1 снова получаем:

$$\mu^*(A\Delta(B_{\varepsilon} \cup C_{\varepsilon})) \le \mu^*(B\Delta B_{\varepsilon}) + \mu^*(C\Delta C_{\varepsilon}) < \frac{\varepsilon}{3}$$
$$\mu^*(B_{\varepsilon} \cap C_{\varepsilon}) = \nu(B_{\varepsilon} \cap C_{\varepsilon}) \le \mu^*(B\Delta B_{\varepsilon}) + \mu^*(C\Delta C_{\varepsilon}) < \frac{\varepsilon}{3}$$

где равенство слева верно в силу того, что $B_{\varepsilon} \cap C_{\varepsilon} \in \mathcal{R}(S)$ и утверждения 5 лекции 2. Используя следствие 1, мы получим:

$$\mu^*(A) \ge \mu^*(B_{\varepsilon} \cup C_{\varepsilon}) - \mu^*(A\Delta(B_{\varepsilon} \cup C_{\varepsilon})) = \nu(B_{\varepsilon} \cup C_{\varepsilon}) - \mu^*(A\Delta(B_{\varepsilon} \cup C_{\varepsilon})) \ge \nu(B_{\varepsilon} \cup C_{\varepsilon}) - \frac{\varepsilon}{3}$$

Поскольку $B_{\varepsilon} \cup C_{\varepsilon} = B_{\varepsilon} \sqcup (C_{\varepsilon} \setminus (B_{\varepsilon} \cap C_{\varepsilon}))$, то можно видеть, что:

$$\nu(B_{\varepsilon} \cup C_{\varepsilon}) = \nu(B_{\varepsilon}) + \nu(C_{\varepsilon} \setminus (B_{\varepsilon} \cap C_{\varepsilon})) = \nu(B_{\varepsilon}) + \nu(C_{\varepsilon}) - \nu(B_{\varepsilon} \cap C_{\varepsilon})$$

где равенство верно по определению меры ν на $\mathcal{R}(S)$. Тогда:

$$\mu^*(A) \ge \nu(B_{\varepsilon} \cup C_{\varepsilon}) - \frac{\varepsilon}{3} = \nu(B_{\varepsilon}) + \nu(C_{\varepsilon}) - \nu(B_{\varepsilon} \cap C_{\varepsilon}) - \frac{\varepsilon}{3} \ge \nu(B_{\varepsilon}) + \nu(C_{\varepsilon}) - \frac{2\varepsilon}{3}$$

Вернемся обратно к внешней мере и воспользуемся следствием 1:

$$\mu^*(A) \ge \nu(B_{\varepsilon}) + \nu(C_{\varepsilon}) - \frac{2\varepsilon}{3} = \mu^*(B_{\varepsilon}) + \mu^*(C_{\varepsilon}) - \frac{2\varepsilon}{3} \ge$$
$$\ge \mu^*(B) - \mu^*(B\Delta B_{\varepsilon}) + \mu^*(C) - \mu^*(C\Delta C_{\varepsilon}) - \frac{2\varepsilon}{3} \ge \mu^*(B) + \mu^*(C) - \varepsilon$$

Поскольку $\varepsilon>0$ - произвольное, отсюда вытекает, что:

$$\mu^*(A) \ge \mu^*(B) + \mu^*(C) \Rightarrow \mu^*(A) = \mu^*(B) + \mu^*(C)$$

Таким образом, для двух множеств доказана аддитивность. Если задано множество A:

$$A = \bigsqcup_{k=1}^{n} A_k, \ A_k \in \mathcal{M} \Rightarrow A = \left(\bigsqcup_{k=2}^{n} A_k\right) \bigsqcup A_1, \ A_1 \in \mathcal{M}, \bigsqcup_{k=2}^{n} A_k \in \mathcal{M} \Rightarrow \mu^*(A) = \mu^*(A_1) + \mu^*\left(\bigsqcup_{k=2}^{n} A_k\right)$$

Продолжая этот процесс, получим в итоге, что:

$$\mu^*(A) = \mu^*(A_1) + \mu^*\left(\bigsqcup_{k=2}^n A_k\right) = \ldots = \sum_{k=1}^n \mu^*(A_k)$$

Обозначение: Для $A \in \mathcal{M}$ положим $\mu(A) = \mu^*(A)$ и назовем μ - мерой Лебега.

Обозначение: Для $A \in \mathcal{M}_J$ положим $\mu_J(A) = \mu_J^*(A)$ и назовем μ_J - мерой Жордана.

Теорема 4. Множество \mathcal{M} - σ -алгебра (для \mathcal{M}_J - не верно).

 \square Пусть $A_1,\ldots,A_n,\ldots\in\mathcal{M}$ и $A=\bigcup_{n=1}^\infty A_n$, надо проверить, что $A\in\mathcal{M}$. Введем множества :

$$B_1 = A_1, \ \forall i > 1, \ B_i = A_i \setminus \bigcup_{j=1}^{i-1} A_j$$

Тогда все элементы $B_i \in \mathcal{M}$, потому что \mathcal{M} - алгебра, при этом $A = \bigsqcup_{n=1}^{\infty} B_n$. Заметим, что тогда:

$$\forall N, \bigsqcup_{n=1}^{N} B_n \subseteq A \Rightarrow \mu^*(A) \ge \mu^* \left(\bigsqcup_{n=1}^{N} B_n \right) = \sum_{n=1}^{N} \mu^*(B_n) \Rightarrow \sum_{n=1}^{\infty} \mu^*(B_n) < \infty$$

где равенство выше верно в силу аддитивности внешней меры (доказали выше, что это мера на \mathcal{M}), а сходимость ряда следует из того, что неравенство верно для любого N. Теперь, если задано $\varepsilon > 0$, то подберем номер N таким образом, что:

$$\sum_{n=N+1}^{\infty} \mu^*(B_n) < \frac{\varepsilon}{2}$$

Поскольку \mathcal{M} - алгебра, то воспользовавшись определнием измеримости по Лебегу получим:

$$\bigsqcup_{n=1}^{N} B_n \in \mathcal{M} \Rightarrow \exists C_{\varepsilon} \in \mathcal{R}(S) \colon \mu^* \left(\left(\bigsqcup_{n=1}^{N} B_n \right) \Delta C_{\varepsilon} \right) < \frac{\varepsilon}{2}$$

Рассмотрим $A\Delta C_{\varepsilon}$, будет верно:

$$A\Delta C_{\varepsilon} \subseteq \left(\left(\bigsqcup_{n=1}^{N} B_{n} \right) \Delta C_{\varepsilon} \right) \bigcup \left(\bigsqcup_{n=N+1}^{\infty} B_{n} \right)$$

Тогда по теореме 1 утверждается, что:

$$\mu^*(A\Delta C_{\varepsilon}) \le \mu^* \left(\left(\bigsqcup_{n=1}^N B_n \right) \Delta C_{\varepsilon} \right) + \sum_{n=N+1}^{\infty} \mu^*(B_n) < \varepsilon$$

Поскольку $\varepsilon>0$ - произвольное, то $A\in\mathcal{M}$ по определению $\Rightarrow\mathcal{M}$ является σ -алгеброй.

Теорема 5. μ это σ -аддитивная мера на \mathcal{M} .

 \square Пусть $A = \bigsqcup_{n=1}^{\infty} A_n, \, \forall n, \, A_n \in \mathcal{M}.$ Тогда, по теореме 1:

$$\mu(A) \le \sum_{n=1}^{\infty} \mu(A_n)$$

С другой стороны, так как μ это просто мера, то согласно следствию 1 из лекции 2 вытекает обратное неравенство:

$$\mu(A) \ge \sum_{n=1}^{\infty} \mu(A_n)$$

Теорема 6. Если $A \in \mathcal{M}_J$, то $\mu(A) = \mu_J(A)$.

Rm: 2. В общем случае, для внешних мерах это не так.

 \square Всегда $\mu^*(A) \leq \mu_J^*(A) \Rightarrow \mu(A) \leq \mu_J(A)$. Подберем для заданного $\varepsilon > 0$ множество $A_{\varepsilon} \in \mathcal{R}(S)$:

$$\mu_J^*(A\Delta A_\varepsilon) = \mu_J(A\Delta A_\varepsilon) < \frac{\varepsilon}{2} \Rightarrow \mu(A\Delta A_\varepsilon) = \mu^*(A\Delta A_\varepsilon) < \frac{\varepsilon}{2}$$

Поэтому $\mu_J(A) \le \mu_J(A_\varepsilon) + \frac{\varepsilon}{2}$ по следствию 1, тогда:

$$\mu_J(A) \le \mu_J(A_{\varepsilon}) + \frac{\varepsilon}{2} = \nu(A_{\varepsilon}) + \frac{\varepsilon}{2} = \mu(A_{\varepsilon}) + \frac{\varepsilon}{2} < \mu(A) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \mu(A) + \varepsilon$$

где равенство верно в силу утверждения 5 лекции 2. Так как $\varepsilon > 0$ - произвольное, то $\mu_J(A) \le \mu(A)$.

Следствие 2. Мера Жордана μ_J σ -аддитивна на \mathcal{M}_J .

 \square Поскольку $\mu = \mu_J$, а мера Лебега σ -аддитивна.

Опр: 5. Если полукольцо и мера равны соответственно:

$$S = \left\{ \{\alpha, \beta\} \colon \{\alpha, \beta\} \subseteq [a, b] = \prod_{j=1}^{m} [a_j, b_j] \right\} \land m(\{\alpha, \beta\}) = \prod_{j=1}^{n} (\beta_j - \alpha_j)$$

то получившиеся продолжением m по Лебегу и по Жордану меры на \mathcal{M} и \mathcal{M}_J будем называть классическими мерами Лебега и Жордана соответственно.

Rm: 3. Классические меры Лебега и Жордана инвариантны относительно сдвигов, точнее:

$$A \subseteq [a,b] \subset \mathbb{R}^n, t \in \mathbb{R}^n \colon A+t = \{x+t \colon x \in A\} \subseteq [a,b] \Rightarrow A \in \mathcal{M} \Leftrightarrow A+t \in \mathcal{M}$$

причем, если \in , то $\mu(A) = \mu(A+t)$. Это вытекает из соответствующего свойства функции m на S.

Меры Лебега-Стильтьеса

Ограничимся случаем \mathbb{R}^1 . Пусть φ - неубывающая, ограниченная, непрерывная слева функция на \mathbb{R} . Формально определим:

$$\varphi(-\infty) = \lim_{x \to -\infty} \varphi(x), \quad \varphi(+\infty) = \lim_{x \to +\infty} \varphi(x)$$

они существуют в силу ограниченности и монотонности. Пусть также:

$$S = \emptyset \sqcup \{[a,b): -\infty \le a \le b \le +\infty \land [-\infty,b) = (-\infty,b)\}$$

Тогда S - полукольцо с единицей: $E=(-\infty,+\infty)$. Определим функцию $m\colon S\to [0,+\infty)$ следующим образом:

$$m([\alpha, \beta)) = \varphi(b) - \varphi(a)$$

Теорема 7. m это σ -аддитивная мера на S.

 \square Проверим,
что m - мера. Если $[a,b)=\bigsqcup\limits_{k=1}^n [a_k,b_k),$ то можно считать, что:

$$a = a_1 < b_1 = a_2 < b_2 = a_3 < \dots < b_n = b \Rightarrow$$

$$\Rightarrow m([a,b)) = \varphi(b) - \varphi(a) = \sum_{k=1}^{n} (\varphi(b_k) - \varphi(a_k)) = \sum_{k=1}^{n} m([a_k, b_k))$$

следовательно m это просто мера.

Пусть $[a,b) = \bigsqcup_{n=1}^{\infty} [a_n,b_n)$. Так как m - мера, то по следствию 1 лекции 2 мы получим:

$$\sum_{n=1}^{\infty} m([a_n, b_n)) \le m([a, b))$$

Докажем обратное неравенство. Пусть вначале $-\infty < a < b < +\infty$ и задан некоторый $\varepsilon > 0$, тогда в силу непрерывности слева функции $\varphi(x)$:

$$\exists\,b'\in[a,b)\colon\varphi(b)<\varphi(b')+\frac{\varepsilon}{2}$$

Аналогично, пользуясь непрерывностью слева:

$$\forall n, \exists a'_n < a_n : \varphi(a_n) < \varphi(a'_n) + \frac{\varepsilon}{2^{n+1}}$$

Заметим:

$$[a,b'] \subseteq [a,b) = \bigsqcup_{n=1}^{\infty} [a_n,b_n) \subseteq \bigcup_{n=1}^{\infty} (a'_n,b_n) \Rightarrow \exists N \colon [a,b') \subseteq [a,b'] \subseteq \bigcup_{n=1}^{N} (a'_n,b_n) \subseteq \bigcup_{n=1}^{N} [a'_n,b_n)$$

где справа верно в силу компактности [a, b']. По утверждению 1 лекции 2 мы имеем следующее:

$$m([a, b')) \le \sum_{n=1}^{N} m([a'_n, b_n))$$

Таким образом:

$$m([a,b)) - \frac{\varepsilon}{2} = \varphi(b) - \varphi(a) - \frac{\varepsilon}{2} < \varphi(b') - \varphi(a) = m([a,b']) \le \sum_{n=1}^{N} m([a'_n, b_n]) =$$

$$= \sum_{n=1}^{N} (\varphi(b_n) - \varphi(a'_n)) < \sum_{n=1}^{N} (\varphi(b_n) - \varphi(a_n) + \frac{\varepsilon}{2^{n+1}}) \le \sum_{n=1}^{N} m([a_n, b_n]) + \frac{\varepsilon}{2} \le \sum_{n=1}^{\infty} m([a_n, b_n]) + \frac{\varepsilon}{2}$$

Следовательно:

$$m([a,b)) < \sum_{n=1}^{\infty} m([a_n,b_n)) + \varepsilon$$

Поскольку $\varepsilon > 0$ - произвольное, то:

$$m([a,b)) \le \sum_{n=1}^{\infty} m([a_n,b_n))$$

Пусть $-\infty = a < b < \infty$ и $(-\infty,b) = \bigsqcup_{n=1}^{\infty} [a_n,b_n)$ тогда:

$$\forall k < b, [k, b) = \bigsqcup_{n=1}^{\infty} ([a_n, b_n) \cap [k, b))$$

По определению $\varphi(-\infty)$ имеем:

$$m((-\infty,b)) = \varphi(b) - \varphi(-\infty) = \lim_{k \to -\infty} (\varphi(b) - \varphi(k)) = \lim_{k \to -\infty} m([k,b)) \le$$

$$\leq \lim_{k \to -\infty} \sum_{n=1}^{\infty} m([a_n, b_n) \cap [k, b)) \leq \lim_{k \to -\infty} \sum_{n=1}^{\infty} m([a_n, b_n)) = \sum_{n=1}^{\infty} m([a_n, b_n))$$

где первое неравенство следует из доказанного выше. Аналогично для $b=+\infty$.

Опр: 6. Мерой Лебега-Стильтьеса, построенной по $\varphi(x)$ называется Лебеговское продолжение меры m.