Advanced Microeconomics II Expected Utility Theory

Brett Graham

Wang Yanan Institute for Studies in Economics Xiamen University, China

March 3, 2015

Brett Graham (WISE)

Advanced Microeconomics I

March 3, 2015

1 / 2

Brett Graham (WISE)

Brett Graham (WISE)

Ivanced Microeconomics II

March 3, 2015

2 / 24

Another Gamble

Lottery C

Prize \$2,500,000 \$500,000 \$0 Probability 0 0.11 0.89

Lottery D

Prize \$2,500,000 \$500,000 \$0 Probability 0.1 0 0.90

Which lottery would you prefer?

A Gamble

Lottery A

Prize \$2,500,000 \$500,000 \$0 Probability 0 1 0

Lottery B

Prize \$2,500,000 \$500,000 \$0 Probability 0.1 0.89 0.01

Which lottery would you prefer?

Choice Under Uncertainty

- Many important economic decisions involve risk.
- How do we model choice when it involves uncertainty?
- Standard choice theory works OK but uncertainty has a structure we can use to restrict preferences a "rational" person might hold.

Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 3 / 2

Advanced Microeconomics II

March 3, 2015

Modelling Risk

- C set of all possible consequences (assume finite)
 - ▶ Index consequences by n = 1, ..., N.
- Probabilities of outcomes are objectively known.

Definition

A simple lottery L is a list $L = (p_1, \ldots, p_N)$ with $p_n \ge 0$ for all n and $\sum_n p_n = 1$, where p_n is interpreted as the probability of outcome n occurring.

Brett Graham (WISE

Advanced Microeconomics I

March 3, 2015

5 / 24

Lottery Simplex

Brett Graham (WISE)

Ivanced Microeconomics II

March 3 2015

. . .

Compund Lotteries

Definition

Given K simple lotteries $L_k = (p_1^k, \ldots, p_N^k, k = 1, \ldots, K)$, and probabilities $\alpha_k \geq 0$ with $\sum_k \alpha_k = 1$, the compound lottery $(L_1, \ldots, L_K; \alpha_1, \ldots, \alpha_K)$ is the risky alternative that yields the simple lottery L_k with probability α_k for $k = 1, \ldots, K$.

EXAMPLE $C = \{1, 2, 3\}$

$$L_1 = (\frac{1}{2}, \frac{1}{2}, 0)$$

$$L_2 = (0, \frac{1}{2}, \frac{1}{2})$$
Reduced Lottery $= (\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$

Preferences Over Lotteries

- Assume consequentialism only consequences matter.
- ullet ${\cal L}$ the set of all simple lotteries over the set of outcomes ${\cal C}$.
- \bullet \succeq is a rational preference relation on \mathcal{L} .

Definition

The preference relation \succeq on the space of simple lotteries $\mathcal L$ is continuous if for any $L,L',L''\in\mathcal L$ the sets

$$\{\alpha \in [0,1] : \alpha L + (1-\alpha)L' \succeq L''\} \subset [0,1]$$

and

$$\{\alpha \in [0,1] : L'' \succeq \alpha L + (1-\alpha)L'\} \subset [0,1]$$

are closed.

Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 7 / 24 Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 8 / 24

Independence Axiom

Definition

The preference relation \succeq on the space of simple lotteries $\mathcal L$ satisfies the independence axiom if for any $L, L', L'' \in \mathcal L$ and $\alpha \in (0,1)$ we have

$$L \succeq L'$$
 iff $\alpha L + (1 - \alpha)L'' \succeq \alpha L' + (1 - \alpha)L''$.

EXAMPLE

Brett Graham (WISE)

Advanced Microeconomics

March 3, 2015

9 / 2

Expected Utility Form

Definition

The utility function $U: \mathcal{L} \to \mathbb{R}$ has an expected utility form if there is an assignment of numbers (u_1, \ldots, u_n) to the N outcomes such that for every simple lottery $L = (p_1, \ldots, p_N) \in \mathcal{L}$ we have

$$U(L) = u_1 p_1 + \ldots + u_N p_N$$

- Such a function is called a von Neumann-Morgenstern (v.N-M) expected utility function.
- Linear function in the probabilities.

Brett Graham (WISE

Advanced Microeconomics II

arch 3 2015

0 / 24

Linearity of Expected Utility Form

Proposition

A utility function $U: \mathcal{L} \to \mathbb{R}$ has an expected utility form if and only if it is linear, that is, if and only if

$$U\left(\sum_{k=1}^{K}\alpha_k L_k\right) = \sum_{k=1}^{K}\alpha_k U(L_k)$$

for any K lotteries $L_k \in \mathcal{L}, k = 1..., K$ and probabilities $(\alpha_1, ..., \alpha_K) \geq 0, \sum_k \alpha_k = 1.$

Proof

- Let L be a simple lottery $L = (p_1, \ldots, p_N)$. L can be written as $\sum_n p_n L^n$, where $L^n = (\ldots, 1, \ldots)$. Let (u_1, \ldots, u_N) be numbers such that $U(L^n) = u_n$. Then $U(L) = U(\sum_n p_n L^n) = \sum_n p_n U(L^n) = \sum_n p_n u_n$.
 - Then $U(L) = U(\sum_n p_n L^n) = \sum_n p_n U(L^n) = \sum_n p_n u_n$. So $U(\cdot)$ has expected utility form.
- In the other direction, consider a compound lottery $(L_1,\ldots,L_K;\alpha_1,\ldots,\alpha_K)$, where $L_k=(p_1^k,\ldots,p_N^k)$. Hence $U(\sum_k \alpha_k L_k)=\sum_n u_n(\sum_k \alpha_k p_n^k)=\sum_k \alpha_k(\sum_n u_n p_n^k)=\sum_k \alpha_k U(L_k)$.

Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 11 / 24 Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 12 /

Affine Transformations

Proposition

Suppose that $U: \mathcal{L} \to \mathbb{R}$ is a v.N-M expected utility function for the preference relation \succeq on \mathcal{L} . Then $\tilde{U}: \mathcal{L} \to \mathbb{R}$ is another v.N-M utility function for \succeq if and only if there are scalars $\beta > 0$ and γ such that $\tilde{U}(L) = \beta U(L) + \gamma$ for every $L \in \mathcal{L}$.

Brett Graham (WISE)

Advanced Microeconomics II

March 3, 2015

13 / 24

Proof

W.L.O.G assume $\exists \ \overline{L}$ and \underline{L} , such that $\overline{L} \succeq L \succeq \underline{L}$ and $\overline{L} \succ \underline{L}$ for all $L \in \mathcal{L}$.

• Let $U(\cdot)$ be a v.N-M expected utility function and $\tilde{U}(L) = \beta U(L) + \gamma$, then

$$\tilde{U}\left(\sum_{k} \alpha_{k} L_{k}\right) = \beta U\left(\sum_{k} \alpha_{k} L_{k}\right) + \gamma$$

$$= \beta \left[\sum_{k} \alpha_{k} U(L_{k})\right] + \gamma$$

$$= \sum_{k} \alpha_{k} \left[\beta U(L_{k}) + \gamma\right]$$

$$= \sum_{k} \alpha_{k} \tilde{U}(L_{k})$$

Brett Graham (WISE

Advanced Microeconomics I

erch 3 2015

4 / 04

Proof Cont.

• In the reverse direction, assume $\tilde{U}(\cdot)$ and $U(\cdot)$ have the expected utility form. Let $L \in \mathcal{L}$ and define $\lambda_L \in [0,1]$ by $U(L) = \lambda_L U(\overline{L}) + (1-\lambda_L) U(\underline{L})$. Thus $\lambda_L = \frac{U(L) - U(\underline{L})}{U(\overline{L}) - U(\underline{L})}$. Since $\lambda_L U(\overline{L}) + (1-\lambda_L) U(\underline{L}) = U(\lambda_L \overline{L} + (1-\lambda_L) \underline{L})$, then $L \sim \lambda_L \overline{L} + (1-\lambda_L) \underline{L}$, so

$$\begin{split} \tilde{U}(L) &= \tilde{U}(\lambda_L \overline{L} + (1 - \lambda_L)\underline{L}) \\ &= \lambda_L \tilde{U}(\overline{L}) + (1 - \lambda_L) \tilde{U}(\underline{L}) \\ &= \lambda_L (\tilde{U}(\overline{L}) - \tilde{U}(L)) + \tilde{U}(L) \end{split}$$

Thus
$$\tilde{U}(\underline{L}) = \beta U(\underline{L}) + \gamma$$
, where $\beta = \frac{\tilde{U}(\overline{L}) - \tilde{U}(\underline{L})}{U(\overline{L}) - U(\underline{L})}$ and $\gamma = \tilde{U}(\underline{L}) - U(\underline{L}) \frac{\tilde{U}(\overline{L}) - \tilde{U}(\underline{L})}{U(\overline{L}) - U(L)}$

Implications

- Differences in utilities have meaning.
- Identify ≥ up to affine transformations.

$\underline{\text{Example}}$

There are 4 outcomes. If $u_1-u_2>u_3-u_4$, then we have $\frac{1}{2}(u_1+u_4)>\frac{1}{2}(u_2+u_3)$, thus $L=(\frac{1}{2},0,0,\frac{1}{2})\succ L'(0,\frac{1}{2},\frac{1}{2},0)$

Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 15 / 24 Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 16 /

Expected Utility Theorem

Proposition

Suppose that the rational preference relation \succeq on the space of lotteries $\mathcal L$ satisfies the continuity and independence axioms. Then \succeq admits a utility representation of the expected utility form. That is, we can assign a number u_n to each outcome $n=1,\ldots,N$ in such a manner that for any two lotteries $L=(p_1,\ldots,p_N)$ and $L'=(p'_1,\ldots,p'_N)$ we have

$$L \succeq L$$
 if and only if $\sum_{n=1}^{N} u_n p_n \succeq \sum_{n=1}^{N} u_n p'_n$.

- Advantages technically convenient, a useful guide to action
- Disadvantage Poor descriptive theory.

Brett Graham (WISE)

Advanced Microeconomics I

March 3, 2015

17 / 2

Expected Utility Theorem Proof

Since \mathcal{L} is finite set and \succeq satisfies the independence axiom, $\exists \overline{L}$ and \underline{L} , such that $\overline{L} \succeq L \succeq L$ and $\overline{L} \succ L$, $\forall L \in \mathcal{L}$. W.l.o.g. $\overline{L} \succ L$.

• Step 1. If $L \succ L'$ and $\alpha \in (0,1)$, then $L \succ \alpha L + (1-\alpha)L' \succ L'$ (Why?)

Brett Graham (WISE)

dvanced Microeconomics

March 3, 2015

10 / 24

Expected Utility Theorem Proof Cont.

- Step 2. Let $\alpha, \beta \in [0,1]$. Then $\beta \overline{L} + (1-\beta)\underline{L} \succ \alpha \overline{L} + (1-\alpha)\underline{L}$ if and only if $\beta > \alpha$.
 - (\Leftarrow) If $\beta > \alpha$, then

$$\beta \overline{L} + (1 - \beta)\underline{L} = \gamma \overline{L} + (1 - \gamma)[\alpha \overline{L} + (1 - \alpha)\underline{L}],$$

where $\gamma = rac{\beta - lpha}{1 - lpha} \in (0, 1]$.

$$\overline{L} \succ \alpha \overline{L} + (1 - \alpha)\underline{L}$$

$$\Rightarrow \gamma \overline{L} + (1 - \gamma)[\alpha \overline{L} + (1 - \alpha)\underline{L}] \succ \alpha \overline{L} + (1 - \alpha)\underline{L} \text{ (Why?)}$$

$$\Rightarrow \beta \overline{L} + (1 - \beta)L \succ \alpha \overline{L} + (1 - \alpha)L.$$

▶ (⇒)
If $\beta = \alpha$, then $\beta \overline{L} + (1 - \beta)\underline{L} \sim \alpha \overline{L} + (1 - \alpha)\underline{L}$.
If $\alpha > \beta$,then from above $\alpha \overline{L} + (1 - \alpha)\underline{L} > \beta \overline{L} + (1 - \beta)L$.

Expected Utility Theorem Proof Cont.

- Step 3. For any $L \in \mathcal{L}, \exists \alpha_L$ such that $\alpha_L \overline{L} + (1 \alpha_L)\underline{L} \sim L$.
 - Define

$$B = \{ \alpha \in [0, 1] : \alpha \overline{L} + (1 - \alpha) \underline{L} \succeq L \}$$

$$W = \{ \alpha \in [0, 1] : L \succeq \alpha \overline{L} + (1 - \alpha) \underline{L} \}$$

- ightharpoonup B and W are non-empty, closed and cover [0,1]. (Why?)
- $ightharpoonup \exists \alpha$ belonging to both sets.
- ▶ Uniqueness follows from the result of step 2.

Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 19 / 24 Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 20 / 2

Expected Utility Theorem Proof Cont.

- Step 4. $U: \mathcal{L} \to \mathbb{R}$ that assigns $U(L) = \alpha_L$ for $\forall L \in \mathcal{L}$ represents \succeq .
 - ▶ By step 3, we have $L \succeq L'$ if and only if

$$\alpha_L \overline{L} + (1 - \alpha_L) \underline{L} \succeq \alpha_L' \overline{L} + (1 - \alpha_L') \underline{L}.$$

▶ By step 2,

$$\alpha_L \overline{L} + (1 - \alpha_L)\underline{L} \succeq \alpha'_L \overline{L} + (1 - \alpha'_L)\underline{L}$$

if and only if $\alpha_L \geq \alpha'_L$.

• What's left?

Brett Graham (WISE)

Advanced Microeconomics I

March 3, 2015

March 3, 2015

21 / 2

Allais Paradox

Brett Graham (WISE)

Prize Probability	Lottery A \$2,500,000 0		\$0 0
Prize Probability	Lottery E \$2,500,000 0.1	\$500,000 0.89	\$0 0.01
Prize Probability	Lottery C \$2,500,000 0		\$0 0.89
Prize Probability	Lottery D \$2,500,000 0.1	\$500,000 0	\$0 0.90

Advanced Microeconomics II

Expected Utility Theorem Proof Cont.

- Step 5. $U(\cdot)$ that assigns $U(L) = \alpha_L$ for $\forall L \in \mathcal{L}$ has the expected utility form.
 - By definition

$$L \sim U(L)\overline{L} + (1 - U(L))\underline{L}$$

 $L' \sim U(L')\overline{L} + (1 - U(L'))\underline{L}$

So

$$\beta L + (1 - \beta)L' \sim \beta [U(L)\overline{L} + (1 - U(L))\underline{L}]$$

$$+ (1 - \beta)[U(L')\overline{L} + (1 - U(L'))\underline{L}]$$

$$\sim [\beta U(L) + (1 - \beta)U(L')]\overline{L}$$

$$+ [1 - \beta U(L) - (1 - \beta)U(L')]\underline{L}$$

ightharpoonup By construction of U(.)

$$U(\beta L + (1 - \beta)L') = \beta U(L) + (1 - \beta)U(L')$$

Brett Graham (WISE

dvanced Microeconomics II

March 3 2015

22 / 2

Allais Paradox

• If $A \succeq_i B$ then

$$u_{05} > (.10)u_{25} + (.89)u_{05} + (.01)u_{0}$$

• Add $(.89)u_0 - (.89)u_{05}$ to both sides.

$$(.11)u_{05} + (.89)u_0 > (.10)u_{25} + (.90)u_0.$$

- Any v.N-M utility function must have $C \succeq_i D$.
- Other paradoxes St Petersburg, Ellsberg, Machina
- Alternative theories of choice under uncertainty regret, prospect

Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 24 / 2