Homework Assignment 6

Matthew Tiger

October 15, 2016

Problem 4.2.1. Prove that every open ball $B_{\varepsilon}(a)$ in a metric space (X, d) is an open set and that every finite subset of X is a closed set.

Solution. Recall that a set $A \subseteq X$ is an open set if for all $a \in A$, there exists an $\varepsilon > 0$ such that $B_{\varepsilon}(a) \subseteq A$. Thus, to show that $B_{\varepsilon}(a)$ is an open set, we will show that for each point in the open ball of radius ε centered at a there exists a neighborhood of that point that is completely contained in the open ball.

So, let $x \in B_{\varepsilon}(a) = \{x \in X \mid d(x, a) < \varepsilon\}$ and suppose that $d(x, a) = \delta < \varepsilon$. We wish to find some $\varepsilon_1 > 0$ such that $B_{\varepsilon_1}(x) \subseteq B_{\varepsilon}(a)$. Consider $B_{\varepsilon_1}(x)$, the open ball centered at x of radius $\varepsilon_1 = \varepsilon - \delta > 0$ and let $y \in B_{\varepsilon_1}(x)$. If $y \in B_{\varepsilon_1}(x)$, then $y \in X$ and $d(y, x) < \varepsilon_1 = \varepsilon - \delta$. Since $a, x, y \in X$ and X is a metric space, we must have that

$$d(y, a) \le d(y, x) + d(x, a) < \varepsilon - \delta + \delta = \varepsilon.$$

Therefore, we have that $d(y, a) < \varepsilon$ and $y \in B_{\varepsilon}(a)$ so that $B_{\varepsilon_1}(x) \subseteq B_{\varepsilon}(a)$ and the set $B_{\varepsilon}(a)$ must be open.

We now wish to show that a finite subset $A = \{a_0, a_1, \ldots, a_n\} \subseteq X$ is a closed set. Recall that a set $A \subseteq X$ is closed if and only if $X \setminus A$ is open. Let $x \in X \setminus A$ and consider $B_{\varepsilon}(x)$, the open ball centered at x of radius $\varepsilon = \min_i \{d(x, a_i)\}$. Since $x \in X$ and $x \neq a_0, \ldots, a_n$, we know that $\varepsilon = \min_i \{d(x, a_i)\} > 0$.

Suppose to the contrary that $y \in B_{\varepsilon}(x)$ and $y = a_i$ for some i = 0, ..., n. Since $y, a_i \in X$ and X is a metric space with $y = a_i$, we have that $d(y, a_i) = 0$. Thus, under the properties of the distance function of this metric space, we must have that

$$d(x, a_i) \le d(x, y) + d(y, a_i) < \varepsilon = \min_{i} \{d(x, a_i)\}.$$

However, this is a contradiction since an element of a set cannot be strictly less than the minimum of that set. Thus, if $y \in B_{\varepsilon}(x)$, then $y \neq a_i$ for any $i = 0, \ldots, n$. Therefore, $B_{\varepsilon}(x) \subseteq X \setminus A$ and $X \setminus A$ is open so that A is closed.

Problem 4.2.2. Show that the closed ball $B_{\varepsilon}[a] = \{x \in X \mid d(a, x) \leq \varepsilon\}$ in a metric space is a closed set, but it need not be equal to the closure of the open ball $B_{\varepsilon}(a)$. (Hint: Consider the two point space $\mathcal{A} = \{0, 1\}$ with metric d(0, 1) = 1).

Solution. \Box

Problem 4.2.5. S	Show that the intersection of a finite number of open sets A_1, A_2, \ldots, A_n
in a metric space ((X,d) is an open set. Show that, by considering the intervals $(-1/n,1/n)$
for all $n \in \mathbb{Z}^+$ in \mathbb{R}	a, the intersection of infinitely many open sets need not be open.

 \Box

Problem 4.2.6. If $\mathcal{A} = \{0,1\}$, then $\mathcal{A}^{\mathbb{N}}$ denotes the metric space of 0's and 1's:

$$\mathcal{A}^{\mathbb{N}} = \{ \omega = (a_0, a_1, a_2, \dots) \mid a_i = 0 \text{ or } a_i = 1 \},$$

with metric:

$$d(\omega_1, \omega_2) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k},$$

where $\omega_1 = (s_0, s_1, s_2, \dots)$ and $\omega_2 = (t_0, t_1, t_2, \dots)$. Show that $\mathcal{A}^{\mathbb{N}}$ is a metric space. Find $d(\omega_1, \omega_2)$ if:

i.
$$\omega_1 = (0, 1, 1, 1, 1, \dots)$$
 and $\omega_2 = (1, 0, 1, 1, 1, \dots)$,

ii.
$$\omega_1 = (0, 1, 0, 1, 0, \dots)$$
 and $\omega_2 = (1, 0, 1, 0, 1, \dots)$.

Solution.

Problem 4.2.7. Let $f: I \to I$ be a continuous function defined on an interval I.

- i. What can you say about the graph of f, if f has a dense set of points with $f^2(x) = x$?
- ii. Show that the inverse of f must exist and that f must have at least one fixed point.
- iii. Deduce that if there exists an $x \in I$ with $f(x) \neq x$, then f must be strictly decreasing.
- iv. If f'(x) exists for all $x \in I$, show that the 2-cycles are non-hyperbolic, and any fixed point x_0 is non-hyperbolic of the type $f'(x_0) = -1$, when f is not the identity map.
- v. Give an example of a function of the type appearing in iv.

Solution.	
Solution.	

Problem 4.3.4. Show that if f :	$[a,b] \rightarrow [a,b]$ is a	homeomorphism,	then either	a and b are
fixed points or $\{a, b\}$ is a 2-cycle.				

 \square

Problem 4.3.8. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous map with fixed point c and basin of attraction $B_f(c) = (a, b)$, an interval. Show that one of the following must hold:

- i. a and b are fixed points.
- ii. a or b is fixed and the other is eventually fixed.
- iii. $\{a, b\}$ is a 2-cycle.

Solution. \Box