Some parametricity isomorphisms

Paul Blain Levy

September 16, 2010

1 Polymorphic λ -calculus (System F)

Types

$$\begin{array}{lll} A & ::= & \sum_{i \in I} A_i \ | \ \prod_{i \in I} A_i \ | \ A \to A \ | \ \mathtt{X} \\ & & | \ \sum \mathtt{X}.A[\mathtt{X},\mathtt{X}] \ | \ \prod \mathtt{X}.A[\mathtt{X},\mathtt{X}] & \text{where } A[-,+] \\ & & | \ \mu \mathtt{X}.A[\mathtt{X}] \ | \ \nu \mathtt{X}.A[\mathtt{X}] & \text{where } A[+] \end{array}$$

Parametricity isomorphisms			for all		
\prod X. A	\cong	A	A		
$\prod \mathtt{X}.(B[\mathtt{X},\mathtt{X}] \to \mathtt{X}) \to A[\mathtt{X},\mathtt{X}]$	\cong	$\prod \mathtt{X}.A[\mathtt{X},\mu \mathtt{Y}.(\mathtt{X}+B[\mathtt{X},\mathtt{Y}])]$	A[-,+], B[-,+]		
$\prod \mathtt{X}.(\mathtt{X} \to B[\mathtt{X},\mathtt{X}]) \to A[\mathtt{X},\mathtt{X}]$	\cong	$\prod \mathtt{X}.A[\nu \mathtt{Y}.(\mathtt{X} \times B[\mathtt{X},\mathtt{Y}]),\mathtt{X}]$	A[-,+], B[-,+]		
$\prod \mathtt{X}.A[\mathtt{X},C\times \mathtt{X}]$	\cong	$\prod \mathtt{X}.A[C \to \mathtt{X}, \mathtt{X}]$	A[-,+], C		
$\prod \mathtt{X}.A[\mathtt{X},\mathtt{X} \to B]$	\cong	$\prod \mathtt{X}.A[\mathtt{X} \to B, \mathtt{X}]$	A[-,-], B		
We deduce					
$\prod \mathtt{X}.(B[\mathtt{X},\mathtt{X}] \to \mathtt{X}) \to A[\mathtt{X}]$	\cong	A[1]	A[-], B[-, +]		
$\prod \mathtt{X}.(\mathtt{X} \to B[\mathtt{X},\mathtt{X}]) \to A[\mathtt{X}]$	\cong	A[0]	A[+],B[-,+]		
$\prod \mathtt{X}.(B[\mathtt{X}] \to \mathtt{X}) \to A[\mathtt{X}]$	\cong	$A[\mu {\tt Y}.B[{\tt Y}]]$	A[+], B[+]		
$\prod \mathtt{X}.(\mathtt{X} \to B[\mathtt{X}]) \to A[\mathtt{X}]$	\cong	$A[\nu {\tt Y}.B[{\tt Y}]]$	A[-], B[+]		
We also deduce isomorphisms dual to the above ones:					
\sum X. A	\cong	A	A		
$\textstyle\sum \mathtt{X}.(B[\mathtt{X},\mathtt{X}] \to \mathtt{X}) \times A[\mathtt{X},\mathtt{X}]$	\cong	$\textstyle\sum \mathtt{X}.A[\mu \mathtt{Y}.(\mathtt{X}+B[\mathtt{X},\mathtt{Y}]),\mathtt{X}]$	A[-,+], B[-,+]		
$\textstyle\sum \mathtt{X}.(\mathtt{X} \to B[\mathtt{X},\mathtt{X}]) \times A[\mathtt{X},\mathtt{X}]$	\cong	$\textstyle\sum \mathtt{X}.A[\mathtt{X},\nu \mathtt{Y}.(\mathtt{X}\times B[\mathtt{X},\mathtt{Y}])]$	A[-,+], B[-,+]		
$\sum \mathtt{X}.A[\mathtt{X},C o \mathtt{X}]$	\cong	$\textstyle\sum \mathtt{X}.A[C\times \mathtt{X},\mathtt{X}]$	A[-,+], C		
$\sum \mathtt{X}.A[\mathtt{X} o B, \mathtt{X}]$	\cong	$\textstyle\sum \mathtt{X}.A[\mathtt{X},\mathtt{X} \to B]$	A[+,+], B		
$\textstyle\sum \mathtt{X}.(B[\mathtt{X},\mathtt{X}] \to \mathtt{X}) \times A[\mathtt{X}]$	\cong	A[1]	A[+], B[-, +]		
$\textstyle\sum \mathtt{X}.(\mathtt{X} \to B[\mathtt{X},\mathtt{X}]) \times A[\mathtt{X}]$	\cong	A[0]	A[-],B[-,+]		
$\sum \mathtt{X}.(B[\mathtt{X}] o \mathtt{X}) imes A[\mathtt{X}]$	\cong	$A[\mu \mathbf{Y}.B[\mathbf{Y}]]$	A[-], B[+]		
$\sum \mathtt{X}.(\mathtt{X} o B[\mathtt{X}]) imes A[\mathtt{X}]$	\cong	$A[u { m Y}.B[{ m Y}]]$	A[+], B[+]		

2 Polymorphic call-by-push-value

Types

Parametricity isomorphisms	for all
\sum X. A \cong A	A
$\prod \mathtt{X}.\underline{A} \cong \underline{A}$	Δ
$\textstyle \sum \mathtt{X}.\mathtt{X}^n \times A[\mathtt{X},\mathtt{X}^m] \cong \sum \mathtt{X}.A[m \times \mathtt{X} + n,\mathtt{X}]$	A[-,+], m, n
$\prod \mathtt{X}.\mathtt{X}^n \to \underline{A}[\mathtt{X}^m,\mathtt{X}] \cong \prod \mathtt{X}.\underline{A}[\mathtt{X},m\times \mathtt{X}+n]$	A[-,+], m, n
$\textstyle \sum \mathtt{X}.U(\mathtt{X} \to \underline{B}[\mathtt{X},\mathtt{X}]) \times A[\mathtt{X},\mathtt{X}] \cong \sum \mathtt{X}.A[\mathtt{X},\nu \mathtt{Y}.(\mathtt{X} \times U\underline{B}[\mathtt{X},\mathtt{Y}])]$	$A[-,+], \underline{B}[-,+]$
$\prod \mathtt{X}.U(\mathtt{X} \to \underline{B}[\mathtt{X},\mathtt{X}]) \to \underline{A}[\mathtt{X},\mathtt{X}] \cong \prod \mathtt{X}.\underline{A}[\nu \mathtt{Y}.(\mathtt{X} \times U\underline{B}[\mathtt{X},\mathtt{Y}]),\mathtt{X}]$	$\underline{A}[-,+], \underline{B}[-,+]$
$\textstyle \sum \mathtt{X}.A[U(X \to \underline{B}),X] \cong \sum \mathtt{X}.A[X,U(X \to \underline{B})]$	$A[+,+], \underline{B}$
$\prod \mathtt{X}.\underline{A}[X,U(X\to \underline{B})] \cong \prod \mathtt{X}.\underline{A}[U(X\to \underline{B}),X]$	$\underline{A}[-,-], \underline{B}$
$\sum \underline{\mathbf{X}} . A[\underline{\mathbf{X}}] \cong A[1_{\Pi}]$	$\underline{A}[+]$
$\prod \underline{\mathbf{x}} \cdot \underline{A}[\underline{\mathbf{x}}] \cong \underline{A}[1_{\Pi}]$	<u>A[-]</u>
$\sum \underline{\mathbf{X}}.U(B[U(C \to \underline{\mathbf{X}}),\underline{\mathbf{X}}] \to \underline{\mathbf{X}}) \times A[\underline{\mathbf{X}},U(C \to \underline{\mathbf{X}})]$	
$\cong \textstyle \sum \mathtt{X}.A[\mu\underline{\mathtt{Y}}.F(C\times \mathtt{X}+B[\mathtt{X},\underline{\mathtt{Y}}]),\mathtt{X}]$	$A[\underline{-},+], B[-,\underline{+}], C$
$\prod \underline{\mathbf{X}}.U(B[U(C \to \underline{\mathbf{X}}),\underline{\mathbf{X}}] \to \underline{\mathbf{X}}) \to \underline{A}[U(C \to \underline{\mathbf{X}}),\underline{\mathbf{X}}]$	
$\cong \textstyle \prod \mathtt{X}.\underline{A}[\mathtt{X},\mu\underline{\mathtt{Y}}.F(C\times \mathtt{X}+B[\mathtt{X},\underline{\mathtt{Y}}])]$	$\underline{A}[-,\underline{+}], B[-,\underline{+}], C$
We deduce	
$\sum \mathtt{X}.\mathtt{X}^n imes A[\mathtt{X}] \ \cong \ A[n]$	A[-], n
$\prod \mathtt{X}.\mathtt{X}^n o \underline{A}[\mathtt{X}] \ \cong \ \underline{A}[n]$	$\underline{A}[+], n$
$\textstyle \sum \mathtt{X}. U(\mathtt{X} \to \underline{B}[\mathtt{X},\mathtt{X}]) \times A[\mathtt{X}] \ \cong \ A[0]$	$A[-], \underline{B}[-,+]$
$\prod \mathtt{X}.U(\mathtt{X} \to \underline{B}[\mathtt{X},\mathtt{X}]) \to \underline{A}[\mathtt{X}] \cong \underline{A}[0]$	$\underline{A}[+], \underline{B}[-,+]$
$\sum \underline{\mathbf{X}}.U(B[\underline{\mathbf{X}}] \to \underline{\mathbf{X}}) \times A[\underline{\mathbf{X}}] \cong A[\mu\underline{\mathbf{Y}}.FB[\underline{\mathbf{Y}}]]$	$A[\underline{-}], B[\underline{+}]$
$\prod \underline{\mathbf{X}}.U(B[\underline{\mathbf{X}}] \to \underline{\mathbf{X}}) \to \underline{A}[\underline{\mathbf{X}}] \cong \underline{A}[\mu\underline{\mathbf{Y}}.FB[\underline{\mathbf{Y}}]]$	$\underline{A}[+], B[+]$
$\textstyle \sum \mathtt{X}.(U(\mathtt{X} \to \underline{B}[\mathtt{X}]) \times A[\mathtt{X}]) \cong A[\nu \mathtt{Y}.U\underline{B}[\mathtt{Y}]]$	$A[+], \underline{B}[+]$
$\prod \mathtt{X}.U(\mathtt{X} \to \underline{B}[\mathtt{X}]) \to \underline{A}[\mathtt{X}] \cong \underline{A}[\nu \mathtt{Y}.U\underline{B}[\mathtt{Y}]]$	$\underline{A}[-], \underline{B}[+]$

3 Polymorphic calculus of no return

Types

Parametricity isomorphisms			for all
\sum X. A	\cong	A	A
$\textstyle\sum \mathtt{X}.\mathtt{X}^n \times A[\mathtt{X},\mathtt{X}^m]$	\cong	$\textstyle\sum \mathtt{X}.A[m\times \mathtt{X}+n,\mathtt{X}]$	A[-,+], m, n
$\textstyle\sum \mathtt{X}. \lnot (\mathtt{X} \times B[\mathtt{X},\mathtt{X}]) \times A[\mathtt{X},\mathtt{X}]$	\cong	$\textstyle\sum \mathtt{X}.A[\mathtt{X},\nu \mathtt{Y}.(\mathtt{X}\times \neg B[\mathtt{Y},\mathtt{X}])]$	A[-,+], B[-,+]
$\sum \mathtt{X}.A[\neg(X\times B),X]$	\cong	$\textstyle\sum \mathtt{X}.A[X,\neg(X\times B)]$	A[+,+], B
We deduce			
$\sum \mathtt{X}.\mathtt{X}^n imes A[\mathtt{X}]$	\cong	A[n]	A[-], n
$\textstyle\sum \mathtt{X}. \neg (\mathtt{X} \times B[\mathtt{X},\mathtt{X}]) \times A[\mathtt{X}]$	\cong	A[0]	A[-], n A[-], B[-, +] A[+], B[-]
$\sum \mathtt{X}. \lnot (\mathtt{X} imes B[\mathtt{X}]) imes A[\mathtt{X}]$	\cong	$A[\nu \mathtt{Y}. \neg B[\mathtt{Y}]]$	A[+], B[-]

4 Transforms

The following transforms convert each listed parametricity isomorphism into an instance of another one:

- \bullet the trivialization transform from call-by-push-value to $\lambda\text{-calculus}$
- \bullet the state passing transform from call-by-push-value to call-by-push-value, using a value type S
- the exception transform from call-by-push-value to call-by-push-value, using a value type E, and more generally the I/O transform from call-by-push-value to call-by-push-value using P[+]
- the CPS transform from call-by-push-value to calculus of no return
- the result transform from calculus of no return to call-by-push-value, using a computation type \underline{R} .

Acknowledgements

Thanks to Masahito Hasegawa, Soren Lassen and Rasmus Møgelberg for their help.