Applied Algorithms CSCI-B505 / INFO-I500

Lecture 15.

Selection and Beyond

with

Rank/Select and Wavelet Tree Data Structures

- Predecessor/Successor with R/S
- Range Quantile Queries

Predecessor/Successor

Given a sequence of items,

- Predecessor: Find the largest item less than a queried one
- Successor: Find the smallest item larger than a queried one.

$$S = \{5,7,3,10,9,1,20,8\}$$

 $Pred(3) = 1 \ Succ(3) = 5$
 $Pred(10) = 9 \ Succ(10) = 20$

Predecessor/Successor

- Keeping a sorted copy of the array with some auxiliary data can solve it. Efficient ??
- There are many different data structures for such queries
- We will focus on a bit-vector solution, assuming we have R/S support

$$S = \{5,7,3,10,9,1,20,8\}$$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	1	0	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	1

- If BV[k] is not 1, then Pred(k)=select(rank(k)),
 - else Pred(k)=select(rank(k)-1)
- Succ(k)=select(rank(k)+1)

Range Quantile Queries with WT


```
k=5
\ell=3
r=9

Time Complexity: O(\log n)

k=2
\ell=2
\ell=2
r=5

Space complexity: O(n\log n)

k=2
\ell=2
\ell=2
\ell=2
\ell=3
```

Fig. 1. A wavelet tree T (left) for s = 6, 2, 0, 7, 9, 3, 1, 8, 5, 4, and the values (right) the variables <math>k, ℓ and r take on as we search for the 5th smallest element in s[3..9]. The dashed boxes in T show the ranges from which we recursively select.

See https://arxiv.org/pdf/0903.4726.pdf

k = 1

 $\ell = 1$

r = 1

Compact Integer Codes with R/S Dictionary

$$X = \langle 3, 6, 11, 5, 1, 3, 15, 9, 13 \rangle$$

01100110**0001**0110**0110110001**11110**001**00100**01**101

$$P = 1100110011111001101$$

What is the third integer, given L and P?

select(3,L) = 9
select(2,L) = 5
Bits 4,5,6 on
$$P = 011$$

1	1
3	011
5	00101
6	00110
9	0001001
11	0001011
13	0001101
15	0001111
Eliac	Intogor Codos

Elias Integer Codes $2 \lfloor \log x \rfloor + 1$ bits long

Compact Integer Codes with WT

$$X = \{3,6,0,11,5,1,3,15,9,13\}$$

Labels_EliasW= $\{1,2,0,3,2,0,1,3,3,3\}$ ($\lfloor \log x_i \rfloor$) 0101100111

0	0
1	1
3	11
5	101
6	1 10
9	1001
11	1 011
13	1 101
15	1111

Reading assignment

- Range quantile queries https://arxiv.org/pdf/0903.4726.pdf
- Integer representations with R/S and Wavelet Trees https://
 ieeexplore.ieee.org/abstract/document/6824444