04: Safety & Contracts

Logical Foundations of Cyber-Physical Systems

André Platzer

- Learning Objectives
- Quantum the Acrophobic Bouncing Ball
- Contracts for CPS
 - Safety of Robots
 - Safety of Bouncing Balls
- Logical Formulas for Hybrid Programs
- Differential Dynamic Logic
 - Syntax
 - Semantics
 - Notational Convention
- Identifying Requirements of a CPS
- Summary

- Learning Objectives
- Quantum the Acrophobic Bouncing Bal
- Contracts for CPS
 - Safety of Robots
 - Safety of Bouncing Balls
- 4 Logical Formulas for Hybrid Programs
- 5 Differential Dynamic Logic
 - Syntax
 - Semantics
 - Notational Convention
- 6 Identifying Requirements of a CPS
- Summary

rigorous specification contracts preconditions postconditions differential dynamic logic

discrete+continuous analytic specification

model semantics reasoning principles

- Learning Objectives
- Quantum the Acrophobic Bouncing Ball
- Contracts for CPS
 - Safety of Robots
 - Safety of Bouncing Balls
- 4 Logical Formulas for Hybrid Programs
- 5 Differential Dynamic Logic
 - Syntax
 - Semantics
 - Notational Convention
- Identifying Requirements of a CPS
- Summary

$$\{x'=v, v'=-g\}$$

$$\{x'=v,v'=-g\}$$

$$\{x' = v, v' = -g \& x \ge 0\}$$

$$\{x' = v, v' = -g \& x \ge 0\};$$

$$if(x=0) v := -cv$$

$$(\{x'=v,v'=-g\&x\ge 0\};$$

$$if(x=0) \ v:=-cv)^*$$

Quantum Discovered a Crack in the Fabric of Time

$$(\{x'=v,v'=-g\&x\ge 0\};$$

$$if(x = 0) \ v := -cv)^*$$

$$(\{x'=v,v'=-g\&x\geq 0\};$$

$$if(x=0) \ v:=-cv)^*$$

$$(\{x'=v,v'=-g\&x\ge 0\};$$

$$if(x=0) \ v:=-cv)^*$$

$$(\{x'=v,v'=-g\&x\geq 0\};$$

$$if(x=0) \ v:=-cv)^*$$

$$\{x'=v, v'=-g\&x\geq 0\};$$

if
$$(x = 0)(v := -cv \cup v := 0)$$

$$(\{x'=v,v'=-g\&x\geq 0\};$$

$$if(x=0) \ v:=-cv)^*$$

- Learning Objectives
- Quantum the Acrophobic Bouncing Bal
- 3 Contracts for CPS
 - Safety of Robots
 - Safety of Bouncing Balls
- 4 Logical Formulas for Hybrid Programs
- 5 Differential Dynamic Logic
 - Syntax
 - Semantics
 - Notational Convention
- 6 Identifying Requirements of a CPS
- Summary

Three Laws of Robotics

Isaac Asimov 1942

- A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- ② A robot must obey the orders given to it by human beings, except where such orders would conflict with the First Law.
- A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

Three Laws of Robotics

Isaac Asimov 1942

- A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- A robot must obey the orders given to it by human beings, except where such orders would conflict with the First Law.
- A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

Three Laws of Robotics are not the answer. They are the inspiration!

$$({x' = v, v' = -g \& x \ge 0};$$

if $(x = 0) v := -cv)^*$

ensures $(0 \le x)$

$$(\{x'=v, v'=-g\&x\ge 0\};$$

if $(x=0)v:=-cv)^*$


```
ensures(0 \le x)
ensures(x \le H)
({x'=v, v'=-g\&x\geq 0};
 if(x = 0) v := -cv)^*
```


$$\mathbf{requires}(x=H)$$

ensures
$$(0 \le x)$$

$$\mathbf{ensures}(x \leq H)$$

$$({x'=v, v'=-g\&x\geq 0};$$

$$if(x=0) v := -cv)^*$$


```
requires(x = H)
requires (0 \le H)
ensures(0 \le x)
ensures(x \le H)
(\{x'=v,v'=-g\&x\geq 0\};
 if(x = 0) v := -cv)^*
```



```
requires(x = H)
```

$$\textbf{requires}(0 \leq H)$$

ensures
$$(0 \le x)$$

ensures(
$$x \le H$$
)

$$\{x' = v, v' = -g \& x \ge 0\};$$

$$if(x=0) v := -cv)^*$$
 @invariant $(x \ge 0)$


```
requires(x = H)
```

$$\textbf{requires}(0 \leq H)$$

ensures
$$(0 \le x)$$

ensures(
$$x \le H$$
)

$$\{x' = v, v' = -g \& x \ge 0\};$$

$$if(x=0) v := -cv)^*$$
 @invariant $(x \ge 0)$

- Learning Objectives
- Quantum the Acrophobic Bouncing Bal
- 3 Contracts for CPS
 - Safety of Robots
 - Safety of Bouncing Balls
- 4 Logical Formulas for Hybrid Programs
- 5 Differential Dynamic Logic
 - Syntax
 - Semantics
 - Notational Convention
- Identifying Requirements of a CPS
- Summary

CPS contracts are crucial for CPS safety.

We need to understand CPS programs and contracts and how we can convince ourselves that a CPS program respects its contract.

Contracts are at a disadvantage compared to full logic.

Logic is for Specification and Reasoning

- Specification of a whole CPS program.
- Analytic inspection of its parts.
- Argumentative relations between contracts and program parts. "Yes, this CPS program meets its contract, and here's why ..."


```
requires(x = H)
```

requires
$$(0 \le H)$$

ensures
$$(0 \le x)$$

ensures(
$$x \le H$$
)

$$({x'=v, v'=-g\&x\geq 0};$$

$$if(x=0) v := -cv)^*$$

$$requires(x = H)$$

requires
$$(0 \le H)$$

ensures
$$(0 \le x)$$

ensures(
$$x \le H$$
)

$$\{x' = v, v' = -g \& x \ge 0\};$$

$$if(x = 0) v := -cv)^*$$

Precondition:

$$x = H \land 0 \le H$$
 in FOL

requires
$$(x = H)$$

requires
$$(0 \le H)$$

ensures
$$(0 \le x)$$

ensures
$$(x \le H)$$

$$({x'=v, v'=-g\&x\geq 0};$$

$$if(x=0) v := -cv)^*$$

Precondition:

$$x = H \land 0 \le H \text{ in FOL}$$

Postcondition:

$$0 \le x \land x \le H$$
 in FOL

Contracts for Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball)

requires
$$(x = H)$$

requires
$$(0 \le H)$$

ensures
$$(0 \le x)$$

$$\mathbf{ensures}(x \leq H)$$

$$\{x'=v, v'=-g\&x\geq 0\};$$

$$if(x=0) v := -cv)^*$$

Precondition:

$$x = H \land 0 \le H \text{ in FOL}$$

Postcondition:

$$0 \le x \land x \le H \text{ in FOL}$$

How to say post is true

after all HP runs?

Contracts for Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball)

$$requires(x = H)$$

$$\textbf{requires}(0 \leq H)$$

ensures
$$(0 \le x)$$

ensures(
$$x \le H$$
)

$$({x'=v, v'=-g\&x\geq 0};$$

$$if(x=0) v := -cv)^*$$

Precondition:

$$x = H \land 0 \le H \text{ in FOL}$$

Postcondition:

$$0 \le x \land x \le H \text{ in FOL}$$

Contracts for Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball)

requires
$$(x = H)$$

requires
$$(0 \le H)$$

ensures
$$(0 \le x)$$

ensures(
$$x \le H$$
)

$$\{x'=v,v'=-g\&x\geq 0\};$$

$$if(x=0) v := -cv)^*$$

Precondition:

$$x = H \land 0 \le H \text{ in FOL}$$

Postcondition:

$$0 \le x \land x \le H \text{ in FOL}$$

Example (Quantum the Bouncing Ball)

$$requires(x = H)$$

$$\textbf{requires}(0 \leq H)$$

ensures
$$(0 \le x)$$

ensures(
$$x \le H$$
)

$$\{x'=v, v'=-g\&x\geq 0\};$$

$$if(x=0) v := -cv)^*$$

Precondition:

$$x = H \land 0 \le H \text{ in FOL}$$

$$0 \le x \land x \le H \text{ in FOL}$$

Example (Quantum the Bouncing Ball)

$$requires(x = H)$$

requires
$$(0 \le H)$$

ensures
$$(0 \le x)$$

ensures(
$$x \le H$$
)

$$\{x'=v, v'=-g\&x\geq 0\};$$

$$if(x=0) v := -cv)^*$$

Precondition:

$$x = H \land 0 \le H \text{ in FOL}$$

$$0 \le x \land x \le H \text{ in FOL}$$

$$[(\{x'=v,v'=-g\&x\ge0\};if(x=0)\,v:=-cv)^*]$$

Example (Quantum the Bouncing Ball)

requires
$$(x = H)$$

requires(0 < H)

ensures $(0 \le x)$

ensures($x \le H$)

$$({x'=v, v'=-g\& x \ge 0};$$

$$if(x=0)v:=-cv)^*$$

 $x = H \land 0 \le H \text{ in FOL}$

Postcondition:

 $0 \le x \land x \le H \text{ in FOL}$

$$[(\{x'=v,v'=-g\&x\ge 0\};if(x=0)v:=-cv)^*](x\le H)$$

Example (Quantum the Bouncing Ball)

requires
$$(x = H)$$

requires
$$(0 \le H)$$

ensures
$$(0 \le x)$$

ensures(
$$x \le H$$
)

$$({x'=v, v'=-g\&x\geq 0};$$

$$if(x=0) v := -cv)^*$$

Precondition:

$$x = H \land 0 \le H \text{ in FOL}$$

$$0 \le x \land x \le H \text{ in FOL}$$

$$[(\{x'=v,v'=-g\&x\ge0\};if(x=0)\ v:=-cv)^*](0\le x)$$

$$[(\{x'=v,v'=-g\&x\ge0\};if(x=0)\ v:=-cv)^*](x\le H)$$

Example (Quantum the Bouncing Ball)

$$requires(x = H)$$

requires $(0 \le H)$

ensures $(0 \le x)$

ensures($x \le H$)

$$({x'=v, v'=-g\& x \ge 0};$$

$$if(x=0) v := -cv)^*$$

$$x = H \land 0 \le H \text{ in FOL}$$

$$0 \le x \land x \le H \text{ in FOL}$$

$$\begin{split} & [(\{x'=v,v'=-g\&x\geq 0\}; \text{if}(x=0)\ v:=-cv)^*](0\leq x) \\ & [(\{x'=v,v'=-g\&x\geq 0\}; \text{if}(x=0)\ v:=-cv)^*](x\leq H) \\ & [(\{x'=v,v'=-g\&x\geq 0\}; \text{if}(x=0)\ v:=-cv)^*](0\leq x\wedge x\leq H) \end{split}$$

Example (Quantum the Bouncing Ball)

requires
$$(x = H)$$

requires $(0 \le H)$
ensures $(0 \le x)$
ensures $(x \le H)$
 $(\{x' = v, v' = -g \& x \ge 0\};$
if $(x = 0) v := -cv)^*$

Precondition:

$$x = H \land 0 \le H \text{ in FOL}$$

$$0 \le x \land x \le H$$
 in FOL

$$[(\{x'=v,v'=-g\&x\geq 0\}; if(x=0) \ v := -cv)^*](0 \leq x)$$

$$\land [(\{x'=v,v'=-g\&x\geq 0\}; if(x=0) \ v := -cv)^*](x \leq H)$$

$$\leftrightarrow [(\{x'=v,v'=-g\&x\geq 0\}; if(x=0) \ v := -cv)^*](0 \leq x \land x \leq H)$$

Example (Quantum the Bouncing Ball)

requires
$$(x = H)$$

requires $(0 \le H)$
ensures $(0 \le x)$
ensures $(x \le H)$
 $(\{x' = v, v' = -g \& x \ge 0\};$
if $(x = 0) v := -cv)^*$

Precondition:

$$x = H \land 0 \le H \text{ in FOL}$$

$$0 \le x \land x \le H \text{ in FOL}$$

$$[(\{x'=v,v'=-g\&x\ge 0\};if(x=0)v:=-cv)^*](0\le x)$$

Example (Quantum the Bouncing Ball)

requires
$$(x = H)$$

requires $(0 \le H)$

ensures $(0 \le x)$

ensures($x \le H$)

$$({x'=v, v'=-g\&x\geq 0};$$

$$if(x=0) v := -cv)^*$$

$$x = H \land 0 \le H \text{ in FOL}$$

$$0 \le x \land x \le H \text{ in FOL}$$

$$x=H \to [(\{x'=v,v'=-g\&x\geq 0\}; if(x=0)v:=-cv)^*](0\leq x)$$

Example (Quantum the Bouncing Ball)

requires
$$(x = H)$$

requires $(0 \le H)$

ensures $(0 \le x)$

ensures($x \le H$)

$$({x'=v, v'=-g\&x\geq 0};$$

$$if(x=0) v := -cv)^*$$

$$x = H \land 0 \le H \text{ in FOL}$$

$$0 \le x \land x \le H \text{ in FOL}$$

$$0 \le x \land x = H \to [(\{x' = v, v' = -g \& x \ge 0\}; if(x=0) \ v := -cv)^*](0 \le x)$$

Example (Quantum the Bouncing Ball)

$$requires(x = H)$$

requires
$$(0 \le H)$$

ensures
$$(0 \le x)$$

ensures(
$$x \le H$$
)

$$({x'=v, v'=-g\&x\geq 0};$$

$$if(x=0) v := -cv)^*$$

Precondition:

$$x = H \land 0 \le H \text{ in FOL}$$

$$0 \le x \land x \le H \text{ in FOL}$$

- - Safety of Robots
 - Safety of Bouncing Balls
- Differential Dynamic Logic
 - Syntax
 - Semantics
 - Notational Convention

Definition (Syntax of differential dynamic logic)

The formulas of differential dynamic logic are defined by the grammar:

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \land Q \mid P \lor Q \mid P \rightarrow Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P$$

Definition (Syntax of differential dynamic logic)

The formulas of differential dynamic logic are defined by the grammar:

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \land Q \mid P \lor Q \mid P \rightarrow Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$All \quad Some \quad \text{real} \quad Some \quad \text{runs} \quad \text{$$

Definition (Syntax of differential dynamic logic)

The formulas of differential dynamic logic are defined by the grammar:

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \land Q \mid P \lor Q \mid P \rightarrow Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P$$

Definition (dL semantics)

 $(\llbracket \cdot \rrbracket : \mathsf{FmI} \to \mathscr{S}(\mathscr{S}))$

```
 \begin{split} \llbracket e \geq \tilde{e} \rrbracket &= \{ \omega : \omega \llbracket e \rrbracket \geq \omega \llbracket \tilde{e} \rrbracket \} \\ \llbracket \neg P \rrbracket &= \llbracket P \rrbracket^{\mathbb{C}} = \mathscr{S} \backslash \llbracket P \rrbracket \\ \llbracket P \wedge Q \rrbracket &= \llbracket P \rrbracket \cap \llbracket Q \rrbracket \\ \llbracket P \vee Q \rrbracket &= \llbracket P \rrbracket \cup \llbracket Q \rrbracket \\ \llbracket P \to Q \rrbracket &= \llbracket P \rrbracket^{\mathbb{C}} \cup \llbracket Q \rrbracket \\ \llbracket \langle \alpha \rangle P \rrbracket &= \llbracket \alpha \rrbracket \circ \llbracket P \rrbracket = \{ \omega : v \in \llbracket P \rrbracket \text{ for some } v : (\omega, v) \in \llbracket \alpha \rrbracket \} \\ \llbracket [\alpha] P \rrbracket &= \llbracket \neg \langle \alpha \rangle \neg P \rrbracket = \{ \omega : v \in \llbracket P \rrbracket \text{ for all } v : (\omega, v) \in \llbracket \alpha \rrbracket \} \\ \llbracket \exists x P \rrbracket &= \{ \omega : \omega_x^r \in \llbracket P \rrbracket \text{ for some } r \in \mathbb{R} \} \\ \llbracket \forall x P \rrbracket &= \{ \omega : \omega_x^r \in \llbracket P \rrbracket \text{ for all } r \in \mathbb{R} \} \\ \end{bmatrix}
```

Differential Dynamic Logic: Syntax & Semantics

```
(\llbracket \cdot \rrbracket : \mathsf{Fml} \to \mathscr{D}(\mathscr{S})
Definition (dL semantics)
     \llbracket e \geq \tilde{e} \rrbracket = \{ \omega : \omega \llbracket e \rrbracket \geq \omega \llbracket \tilde{e} \rrbracket \}
            \llbracket \neg P \rrbracket = \llbracket P \rrbracket^{\complement} = \mathscr{S} \setminus \llbracket P \rrbracket
   \llbracket P \wedge Q \rrbracket = \llbracket P \rrbracket \cap \llbracket Q \rrbracket
   \llbracket P \vee Q \rrbracket = \llbracket P \rrbracket \cup \llbracket Q \rrbracket
\llbracket P 	o Q 
rbracket = \llbracket P 
rbracket^{\complement} \cup \llbracket Q 
rbracket
      \llbracket \langle \alpha \rangle P \rrbracket = \llbracket \alpha \rrbracket \circ \llbracket P \rrbracket = \{ \omega : v \in \llbracket P \rrbracket \text{ for some } v : (\omega, v) \in \llbracket \alpha \rrbracket \}
       \llbracket [\alpha]P \rrbracket = \llbracket \neg \langle \alpha \rangle \neg P \rrbracket = \{ \omega : v \in \llbracket P \rrbracket \text{ for all } v : (\omega, v) \in \llbracket \alpha \rrbracket \}
       \llbracket\exists x P \rrbracket = \{\omega : \omega_x^r \in \llbracket P \rrbracket \text{ for some } r \in \mathbb{R}\}
       \llbracket \forall x P \rrbracket = \{ \omega : \omega_x^r \in \llbracket P \rrbracket \text{ for all } r \in \mathbb{R} \}
```

P Differential Dynamic Logic: Syntax & Semantics

```
[P] the set of states in which formula P is true \omega \in \llbracket P \rrbracket formula P is true in state \omega, alias \omega \models P \models P formula P is valid, i.e., true in all states \omega, i.e., \llbracket P \rrbracket = \mathscr{S} \exists d [x := 1; x' = d]x > 0 and [x := x + 1; x' = d]x > 0 and (x' = d)x > 0
```

Definition (dL semantics)

 $(\llbracket \cdot
rbracket] : \mathsf{Fml} o \mathscr{S}(\mathscr{S})$

```
 \begin{split} \llbracket e \geq \tilde{e} \rrbracket &= \{ \omega : \omega \llbracket e \rrbracket \geq \omega \llbracket \tilde{e} \rrbracket \} \\ \llbracket \neg P \rrbracket &= \llbracket P \rrbracket^{\mathbb{C}} = \mathscr{S} \backslash \llbracket P \rrbracket \\ \llbracket P \wedge Q \rrbracket &= \llbracket P \rrbracket \cap \llbracket Q \rrbracket \\ \llbracket P \vee Q \rrbracket &= \llbracket P \rrbracket \cup \llbracket Q \rrbracket \\ \llbracket P \to Q \rrbracket &= \llbracket P \rrbracket^{\mathbb{C}} \cup \llbracket Q \rrbracket \\ \llbracket (\alpha) P \rrbracket &= \llbracket \alpha \rrbracket \circ \llbracket P \rrbracket = \{ \omega : \nu \in \llbracket P \rrbracket \text{ for some } \nu : (\omega, \nu) \in \llbracket \alpha \rrbracket \} \\ \llbracket [\alpha] P \rrbracket &= \llbracket \neg \langle \alpha \rangle \neg P \rrbracket = \{ \omega : \nu \in \llbracket P \rrbracket \text{ for all } \nu : (\omega, \nu) \in \llbracket \alpha \rrbracket \} \\ \llbracket \exists x P \rrbracket &= \{ \omega : \omega_x^r \in \llbracket P \rrbracket \text{ for some } r \in \mathbb{R} \} \\ \llbracket \forall x P \rrbracket &= \{ \omega : \omega_x^r \in \llbracket P \rrbracket \text{ for all } r \in \mathbb{R} \} \end{aligned}
```

P Differential Dynamic Logic: Syntax & Semantics

```
\llbracket P 
Vert the set of states in which formula P is true \omega \in \llbracket P 
Vert formula P is true in state \omega, alias \omega \models P \vDash P formula P is valid, i.e., true in all states \omega, i.e., \llbracket P 
Vert = \mathscr{S} \vDash \exists d [x := 1; x' = d]x \ge 0 and \nvDash [x := x + 1; x' = d]x \ge 0 and \nvDash \langle x' = d \rangle x \ge 0
```

Definition (dL semantics)

 $(\llbracket \cdot \rrbracket : \mathsf{Fml} \to \mathscr{S}(\mathscr{S}))$

```
 \begin{split} \llbracket e \geq \tilde{e} \rrbracket &= \{ \omega : \omega \llbracket e \rrbracket \geq \omega \llbracket \tilde{e} \rrbracket \} \\ \llbracket \neg P \rrbracket &= \llbracket P \rrbracket^{\mathbb{C}} = \mathscr{S} \backslash \llbracket P \rrbracket \\ \llbracket P \wedge Q \rrbracket &= \llbracket P \rrbracket \cap \llbracket Q \rrbracket \\ \llbracket P \vee Q \rrbracket &= \llbracket P \rrbracket \cup \llbracket Q \rrbracket \\ \llbracket P \rightarrow Q \rrbracket &= \llbracket P \rrbracket^{\mathbb{C}} \cup \llbracket Q \rrbracket \\ \llbracket (\alpha) P \rrbracket &= \llbracket \alpha \rrbracket \circ \llbracket P \rrbracket = \{ \omega : \nu \in \llbracket P \rrbracket \text{ for some } \nu : (\omega, \nu) \in \llbracket \alpha \rrbracket \} \\ \llbracket [\alpha] P \rrbracket &= \llbracket \neg \langle \alpha \rangle \neg P \rrbracket = \{ \omega : \nu \in \llbracket P \rrbracket \text{ for all } \nu : (\omega, \nu) \in \llbracket \alpha \rrbracket \} \\ \llbracket \exists x P \rrbracket &= \{ \omega : \omega_x^r \in \llbracket P \rrbracket \text{ for some } r \in \mathbb{R} \} \\ \llbracket \forall x P \rrbracket &= \{ \omega : \omega_x^r \in \llbracket P \rrbracket \text{ for all } r \in \mathbb{R} \} \\ \end{split}
```

Convention (Operator Precedence)

- Unary operators (e.g., *, \neg , $\forall x, \exists x, [\alpha], \langle \alpha \rangle$) bind stronger than binary
- \bigcirc \land binds stronger than \lor , which binds stronger than \rightarrow , \leftrightarrow
- $oldsymbol{\circ}$; binds stronger than \cup
- lacktriangledown Arithmetic operators $+,-,\cdot$ associate to the left
- Logical and program operators associate to the right

Example (Operator Precedence)

$$\begin{aligned} [\alpha]P \wedge Q &\equiv ([\alpha]P) \wedge Q & \forall x \, P \wedge Q &\equiv (\forall x \, P) \wedge Q & \forall x \, P \rightarrow Q &\equiv (\forall x \, P) \rightarrow Q \\ \alpha; \beta \cup \gamma &\equiv (\alpha; \beta) \cup \gamma & \alpha \cup \beta; \gamma &\equiv \alpha \cup (\beta; \gamma) & \alpha; \beta^* &\equiv \alpha; (\beta^*) \\ P \rightarrow Q \rightarrow R &\equiv P \rightarrow (Q \rightarrow R). \end{aligned}$$

 $\mathsf{But} \to, \leftrightarrow \mathsf{expect} \ \mathsf{explicit} \ \mathsf{parentheses}. \ \mathsf{Illegal:} \ P \to Q \leftrightarrow R \qquad P \leftrightarrow Q \to R$

- - Safety of Robots
 - Safety of Bouncing Balls
- - Syntax

 - Notational Convention
- Identifying Requirements of a CPS

Example (Bouncing Ball)

$$(\{x'=v, v'=-g\&x\geq 0\};$$

if $(x=0)v:=-cv)^*$

Example (Bouncing Ball)

$$H=x\geq 0$$

$$\to \big[\big(\{x'=v,v'=-g\&x\geq 0\};$$

$$if(x=0) v := -cv)^* \boxed{0 \le x \le H}$$

$$H=x\geq 0 \land g>0 \rightarrow [(\{x'=v,v'=-g\&x\geq 0\}; if(x=0)v:=-cv)^*] 0\leq x\leq H$$

Not if c > 1 for anti-damping

Example (Bouncing Ball)
$$H=x\geq 0 \land g> \qquad \qquad \downarrow \{x'=v,v'=-g\&x\geq 0\};$$

$$\text{if } (x=0)v:=-cv)^* \] 0\leq x\leq H$$

1≥c≥0 ∧ H=x≥0 ∧ g>0 →
$$[({x'=v, v'=-g \& x ≥ 0}; f(x=0) v:=-cv)^*] 0 ≤ x ≤ H$$

Not if v > 0 initial climbing

$$1 \ge c \ge 0 \land H = x \ge 0 \land g >$$

$$v \le 0 \land 1 \ge c \ge 0 \land H = x \ge 0 \land g > 0 \rightarrow \left[\left(\{ x' = v, v' = -g \& x \ge 0 \}; \right. \right.$$

if(x = 0) v := -cv)* \right\ 0 \le x \le H

Not if $v \ll 0$ initial dribbling

$$v \le 0 \land 1 \ge c \ge 0 \land H = x \ge 0 \land g >$$

$$v=0 \land 1 \ge c \ge 0 \land H=x \ge 0 \land g > 0 \rightarrow \left[\left(\{ x' = v, v' = -g \& x \ge 0 \}; \right. \right.$$

$$if(x = 0) \ v := -cv)^* \right] 0 \le x \le H$$

Example (Runaround Robot)

$$((\omega := -1 \cup \omega := 1 \cup \omega := 0);$$

 $\{x' = v, y' = w, v' = \omega w, w' = -\omega v\})^*$

Example (Runaround Robot)

$$(x,y) \neq o \rightarrow [((\omega := -1 \cup \omega := 1 \cup \omega := 0);$$

 $\{x' = v, y' = w, v' = \omega w, w' = -\omega v\})^*](x,y) \neq o$

Example (Runaround Robot)

$$(x,y) \neq o \rightarrow \left[\left((?Q_{-1}; \omega := -1 \cup ?Q_{1}; \omega := 1 \cup ?Q_{0}; \omega := 0); \right. \\ \left. \left\{ x' = v, y' = w, v' = \omega w, w' = -\omega v \right\} \right)^{*} \right] (x,y) \neq o$$

- - Safety of Robots
 - Safety of Bouncing Balls
- - Syntax

 - Notational Convention
- Summary

Definition (Hybrid program α)

$$\alpha, \beta ::= x := f(x) \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Definition (dL Formula P)

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P$$

Discrete Assign Test Condition Differential Rondet. Choice Compose Repeat Definition (Nybrid program
$$\alpha$$
)
$$\alpha,\beta ::= x := f(x) \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P$$


```
Definition (Hybrid program semantics)  \begin{aligned} & [x := f(x)] &= \{(\omega, v) : v = \omega \text{ except } v[\![x]\!] = \omega[\![f(x)]\!] \} \\ & [\![?Q]\!] &= \{(\omega, \omega) : \omega \in [\![Q]\!] \} \\ & [\![x' = f(x)]\!] &= \{(\varphi(0), \varphi(r)) : \varphi \models x' = f(x) \text{ for some duration } r \} \\ & [\![\alpha \cup \beta]\!] &= [\![\alpha]\!] \cup [\![\beta]\!] \\ & [\![\alpha;\beta]\!] &= [\![\alpha]\!] \circ [\![\beta]\!] \\ & [\![\alpha^*]\!] &= [\![\alpha]\!]^* = \bigcup_{n \in \mathbb{N}} [\![\alpha^n]\!] \end{aligned}  compositional semantics
```

```
(\llbracket \cdot \rrbracket : \mathsf{Fml} 	o \wp(\mathscr{S}))
Definition (dL semantics)
\llbracket e \geq \tilde{e} \rrbracket = \{\omega : \omega \llbracket e \rrbracket \geq \omega \llbracket \tilde{e} \rrbracket \}
       \llbracket \neg P \rrbracket = \llbracket P \rrbracket^{\complement}
[\![P \land Q]\!] = [\![P]\!] \cap [\![Q]\!]
 \llbracket \langle \alpha \rangle P \rrbracket = \llbracket \alpha \rrbracket \circ \llbracket P \rrbracket = \{ \omega : v \in \llbracket P \rrbracket \text{ for some } v : (\omega, v) \in \llbracket \alpha \rrbracket \}
  \llbracket \llbracket \alpha \rrbracket P \rrbracket = \llbracket \neg \langle \alpha \rangle \neg P \rrbracket = \{ \omega \ : \ v \in \llbracket P \rrbracket \text{ for all } v : \ (\omega, v) \in \llbracket \alpha \rrbracket \}
   \llbracket\exists x P \rrbracket = \{\omega : \omega_x^r \in \llbracket P \rrbracket \text{ for some } r \in \mathbb{R}\}
```

```
André Platzer.
```

Logical Foundations of Cyber-Physical Systems.

Springer, Switzerland, 2018.

URL: http://www.springer.com/978-3-319-63587-3, doi:10.1007/978-3-319-63588-0.

Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer, Heidelberg, 2010.

doi:10.1007/978-3-642-14509-4.

Logics of dynamical systems.

In *LICS*, pages 13–24, Los Alamitos, 2012. IEEE.

doi:10.1109/LICS.2012.13.

Differential dynamic logic for hybrid systems.

J. Autom. Reas., 41(2):143-189, 2008. doi:10.1007/s10817-008-9103-8.

André Platzer.

A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas., 59(2):219–265, 2017.

doi:10.1007/s10817-016-9385-1.