On a New Signature that quantifies Topological Structure in Biological and Economic networks

Razvan Valentin Marinescu

Department of Computing Imperial College London

23 June 2014

Neighbourhood comparison using the clustering coefficient

Figure: Graph 1

Figure: Graph 2

Neighbourhood comparison using the clustering coefficient

Figure: Clustering coefficient: 0.4

Figure: Clustering coefficient: 0.4

- Problem: the clustering coefficient cannot distinguish between the two graphs . . .
- Solution: generalise the clustering coefficient!

Clustering coefficient generalisation

- **Graphlet Cluster Vector** (GCV) generalises the clustering coefficient.
- $GCV = \{F_1, F_2, \dots, F_{29}\}$

Comparison using the GCV

Figure: $GCV = \{6, 0, 6, 0, 0, 0, 0, 0, \dots\}$

Figure: $GCV = \{0, 4, 0, 0, 0, 0, 0, 1, \dots\}$

Presentation outline

- GCV Implementation
- Applications

• Evaluation on random graphs clustering

Implementation

- programming language: C++
- we leveraged code (ncount.cpp) that was computing a similar signature, called the GDV
- graph was represented by a complex data structure containing both:
 - an adjacency matrix
 - an adjacency list

Parallelisation

• allowed us to run the GCV computation on large networks such as the PPI networks (11,000 nodes)

Parallelisation – speedup

Pearson's GCV correlation matrices - computation

Correlation Matrix Normalisation Process

Presentation outline

- GCV Implementation
- Applications

• Evaluation on random graphs clustering

Pearson's GCV correlation matrix - World Trade network

Correlation matrix change during 1962-2010

• Spearman's correlation: 0.34

• p-value: 0.01

• offset: -1 ⇒ the network topology causes the changes in oil price!

Canonical Correlation Analysis (CCA)

Trading partners sparsity index

• Measures how sparse the neighbourhood of a node is.

•
$$T = \underbrace{w_{12}F_{12} + w_{10}F_{10} + w_{14}F_{14}}_{\text{sparse graphlets}} + \underbrace{w_8F_8 + w_{29}F_{29} + w_2F_2}_{\text{dense graphlets}}$$

• can have both positive or negative values

Trading partners sparsity index – G20

Trading partners sparsity index – Eastern Europe

Trading partners sparsity index – OPEC

Case study - Saudi Arabia

• Spearman's correlation: -0.32

• p-value: 0.026

• offset: -1

Results for other networks

- PPI networks key protein functions:
 - Ribosome translation
 - RNA processing
 - Metabolism
 - Golgi endosome vacuole sorting
- Metabolic networks main results in:
 - Cellular Processes
 - Organismal Systems
 - Human diseases

Presentation outline

- GCV Implementation
- Applications

• Evaluation on random graphs clustering

Evaluation on random graphs clustering

We evaluated the GCV signature at classifying 5 random graphs:

- Erdős-Rényi (ER)
- Erdős-Rényi (with preserved degree distribution) (ER-DD)
- Geometric networks (GEO)
- Scale-free Barabási-Albert preferential attachment (SF)
- Stickiness index-based (STICKY)

Other signatures evaluated

We compared the performance of GCV against 5 other signatures:

- Degree Distribution
- Average clustering coefficient
- Spectral distribution
- Graphlet Frequency Vector (GFV) RGFD distance
- Graphlet Distribution Vector (GDV) GCD73 distance

Multi-dimensional scaling

Figure: GCV MDS

Figure: RGFD MDS

Precision-Recall Curve Analysis

Robustness testing - Noisy data

Robustness testing - Noisy and incomplete data

GCV — Degree Dist. — Clust. coeff. — Spectral dist. — RGFD — GCD73 —

Signature approximation

GCV — Degree Dist. — Clust. coeff. — Spectral dist. — RGFD — GCD73 —

Conclusion

- GCV Implementation
- Applications

• Evaluation on random graphs clustering

Future work

- Research better normalisation procedures
- Redundancy analysis
- Supporting experiments for our current results
- Apply the signature to other networks
 - Social networks
 - Telecommunication networks
 - Gene Regulatory networks
 - Neuronal networks

Questions?

• Thank you very much!

GCV normalisation

normalised GCV:

$$GCV(n) = (F_n^1, F_n^2, ... F_n^{29})$$

where

$$F_n^i = \frac{S_n^i}{\sum_{i=1}^n S_n^i}$$

 \bullet all the World Trade network results presented here use the normalised GCV

Limitations of the GCV signature

- the GCV cannot capture information in nodes that are at a distance of 2 or larger away from the source node
- some of the GCV frequencies might be redundant
- computation of the GCV is slow on very dense networks such as the full WTN

Signatures evaluated – definitions

- Spectral distribution: eigenvalues $(\lambda_1, \lambda_2, \dots, \lambda_n)$ of the Laplacian matrix L = D A where:
 - ▶ D: diagonal degree matrix of G
 - A: adjacency matrix
- Graphlet Frequency vector: $GFV(G) = (F_0(G), F_1(G), ... F_{29}(G))$ where:
 - $F_i(G) = -\log\left(\frac{G_i}{\sum_{i=1}^n G_i}\right)$
 - G_i is the total number of graphlets of type i in G
- Graphlet Distribution Vector of node x: a vector $(F_1, F_2, \dots, F_{72})$, where:
 - f_i measures the number of graphlets that touch node x at automorphism orbit i.

Protein interaction network CCA

Pearson's and Spearman's correlation coefficients

• Pearson's correlation coefficient between X and Y:

- Spearman's correlation coefficient between X and Y:
 - each data point X_i and Y_i is converted to their ranks R_i^X and R_i^Y
 - \blacktriangleright the Pearson's correlation coefficient between R_X and R_Y is computed