

Sharif University of Technology Department of Computer Engineering

Embedded System Design

Code-size Efficiency

A. Ejlali

Why Code-size efficiency?

- Minimizing the code size is very important for ES, since:
 - HDDs are typically not available
 - Memory (ROM and RAM) and processor on the same chip (Embedded Memory)
 - e.g., SoC, Micro-Controllers

Compression Techniques

- Reduces both the area and the energy necessary for fetching instructions.
- A small and fast decoder is used for the instruction memory to decompress the instructions on the fly.

Compression Techniques (Cont.)

 During decoding, pipelining can be used to keep the run-time penalty low.

Second Instruction Set

- Example: ARM processor family
 - ARM instruction set
 - 32-bit instructions
 - THUMB instructions
 - 16-bit instructions
- THUMB instructions are dynamically converted into ARM instructions.

Dictionary

- Each instruction pattern is stored only once.
- A look-up table provides a pointer to the corresponding instruction in the instruction table (Dictionary).

Example

```
xor ax,ax
2
      add ax,2
3
      mov cx,4
  L1: add bx,ax
5
      add ax,2
6
      sub dx,ax
      add ax,2
8
      loop L1
  L2: xor ax,ax
10
      mov cx,4
11
      add ax,2
12
       loop L2
```

```
xor ax,ax
      add ax,2
      mov cx,4
   L1: add bx,ax
5
      2
      sub dx,ax
      2
      loop L1
  L2: 1
10
      3
11
12
       loop L2
```

```
xor ax,ax
      add ax,2
      mov cx,4
   L1: 2 bx,ax
5
      2 ax,2
      sub dx,ax
      2 ax,2
      loop L1
   L2: 1 ax,ax
10
      3 cx,4
11
      2 ax,2
12
       8 L2
```