

Wintersemester 2023/24 Prof. Dr. Stephan Elsenhans 04.12.2023 Benedikt Wolf

Lineare Algebra: Aufgabenblatt 08

8.1 Lineare Abbildungen

/24 Punkte

Entscheiden Sie, welche der folgenden Abbildungen linear sind.

- (a) $f: \mathbb{R}^2 \to \mathbb{R} \ (x, y) \mapsto x \cdot y$
- (b) $g: \mathbb{R}^2 \to \mathbb{R} \ (x,y) \mapsto x+y$
- (c) $h: \mathbb{Q}[t] \to \mathbb{Q}[t] \ p(t) \mapsto p(t^2)$
- (d) $k: \mathbb{Q} \to \mathbb{Q}$ mit k(t) = t + 2
- (e) $l: \mathbb{C} \to \mathbb{C}$ mit $l(z) = \overline{z}$ mit \mathbb{C} als \mathbb{R} -Vektorraum
- (f) l, aber mit \mathbb{C} als \mathbb{C} -Vektorraum

8.2 Eigenschaften linearer Abbildungen

/25 Punkte

Entscheiden Sie, welche der folgenden linearen Abbildungen injektiv, surjektiv bzw. bijektiv sind.

(a) $\mathbb{R}^3 \to \mathbb{R}^2, x \mapsto Ax$ mit

$$A = \begin{pmatrix} 3 & 4 & 5 \\ 0 & 42 & 0 \end{pmatrix}$$

(b) $\mathbb{R}^3 \to \mathbb{R}^3, x \mapsto Ax$ mit

$$A = \begin{pmatrix} 3 & 4 & 5 \\ 0 & 42 & 0 \\ 4 & 3 & 2 \end{pmatrix}$$

- (c) $\mathbb{Q}[t] \to Q[t], p(t) \mapsto p'(t)$
- (d) $\mathbb{C}^2 \mapsto \mathbb{C}^2$ mit $(z, w) \mapsto (z + w, z \overline{w})$, wobei wir \mathbb{C}^2 als \mathbb{R} -Vektorraum auffassen.
- (e) $End_{\mathbb{R}}(\mathbb{C}) \to End(\mathbb{R})$ mit $f \mapsto \operatorname{Re}(f|_{\mathbb{R}}) + \operatorname{Im}(f|_{\mathbb{R}})$, wobei $f|_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$ mit $f|_{\mathbb{R}}(x) := f(x)$ für $x \in \mathbb{R}$, und Re bzw. Im den Real- bzw. Imaginärteil bezeichnen.

8.3 Spezielle lineare Abbildungen

/10 Punkte

Geben Sie je eine lineare Abbildung mit den folgenden Eigenschaften an. Sie müssen Ihre Aussagen ausnahmsweise nicht beweisen.

- (a) $L_1: \mathbb{R}^2 \to \mathbb{R}^2$ mit L(x) = x nur für x = (0,0)
- (b) $L_2: \mathbb{R}^3 \to \mathbb{R}^2$, sodass $L_2((1,1,1)) = L_2((1,1,0))$.
- (c) $L_3: \mathbb{Q}[t] \to \mathbb{Q}[t]$, sodass $\deg(L_3(p(t))) \geq 3 \deg(p(t))$ für alle $p \in \mathbb{Q}[t]$
- (d) $L_4: V \to V$, die injektiv, aber nicht surjektiv ist, für einen \mathbb{Q} –Vektorraum Ihrer Wahl.
- (e) $L_5: (\mathbb{Z}/3\mathbb{Z})^2 \to (\mathbb{Z}/3\mathbb{Z})^2$, sodass es genau drei verschiedene Elemente $x, y, z \in (\mathbb{Z}/3\mathbb{Z})^2$ mit $L_5(x) = L_5(y) = L_5(z) = (\overline{1}, \overline{0})$ gibt.

8.4 Matrizen

/16 Punkte

Die folgenden linearen Abbildungen können jeweils auch in der Form $x \mapsto Ax$ mit einer Matrix A geschrieben werden. Bestimmen Sie für jede der Abbildungen eine geeignete Matrix.

(a) $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto \begin{pmatrix} a+b \\ b-c \end{pmatrix}$$

(b) $g: \mathbb{R}^2 \to \mathbb{R}^3$ mit

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ x-y \\ x+y \end{pmatrix}$$

- (c) $f \circ g$
- (d) $g \circ f$

8.5 Polynomabbildung

/25 Punkte

Wir betrachten die Abbildung $S_n : \mathbb{Q}[t]_{\leq n} \to \mathbb{Q}[t]_{\leq n}$ mit $p(t) \mapsto p'(t) + \tilde{p}(0)t^n$.

- (a) Beweisen Sie: S_n ist für jedes $n \in \mathbb{N}$ linear.
- (b) Untersuchen Sie S_n auf Injektivität, Surjektivität und Bijektivität.
- (c) Beweisen Sie: $S_n^k(t^k) = k!$ und $S_n^{n-k}(t^n) = n!/k!t^k$ für $k = 0, \dots, n$
- (d) Folgern Sie: $S_n^{n+1}(p(t)) = n!p(t)$ für alle $n \in \mathbb{N}, p(t) \in \mathbb{Q}[t]_{\leq n}$.

Lösungshinweise

Aufgabe 1:

Was ist die Definition?

Aufgabe 2:

Die Schreibweise p' bezeichnet hier und in den anderen Aufgaben die "formale Ableitung", d.h. zu einem Polynom $p(t) = \sum_{k=0}^{n} a_k t^k$ ist $p'(t) := \sum_{k=0}^{n-1} (k+1) a_{k+1} t^k = \sum_{k=1}^{n} k a_k t^{k-1}$. Die analytischen Eigenschaften dieses Polynoms interessieren uns dabei aber nicht.

Aufgabe 3:

• • •

Aufgabe 4:

Verwenden Sie nicht die Multiplikation von zwei Matrizen, diese wurde noch nicht eingeführt! Sie müssen nicht begründen, ob das Ergebnis eindeutig ist, das werden wir später zeigen.

Aufgabe 5:

Der Exponent in der letzten Teilaufgabe bezeichnet die Mehrfachausführung wie in Aufgabe 2.3