# PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10335526 A

(43) Date of publication of application: 18 . 12 . 98

(51) Int. CI

H01L 23/12 H05K 1/00 H05K 1/03

(21) Application number: 09141759

(22) Date of filing: 30 . 05 . 97

(71) Applicant:

KYOCERA CORP

(72) Inventor:

TATENO SHUICHI HIRAMATSU KOYO HAYASHI KATSURA NISHIMOTO AKIHIKO FUKUMOTO SHIGEAKI

# (54) CIRCUIT SUBSTRATE AND MANUFACTURE THEREOF

# (57) Abstract:

PROBLEM TO BE SOLVED: To accomplish the state of low resistance and the long-term stability of the via hole conductor in a circuit substrate where the via hole conductor, containing metal powder, is formed on an insulate layer containing organic resin.

SOLUTION: This circuit substrate comprises an insulating layer 1 containing at least thermosetting organic resin, a multiple layer conductive circuit layer 2 formed between the insulating layer 1 and a via hole conductor 3 containing at least metal powder 4 and used to connect the upper and the lower circuit layers 2. In this manufacturing method, the filling rate of the metal powder 4 can be increased by 65% or higher by pressing and heating the conductive paste after it is filled in the via holes. The organic resin contained in the insulating layer 1 is impregnated into the gap between the metal powder 4 formed by removing the junction material and/or the solution contained in the conductive paste, and the resin 5 is filled in the above-mentioned gap.

COPYRIGHT: (C)1998,JPO



(19)日本国特許庁(J P)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平10-335526

(43)公開日 平成10年(1998)12月18日

| (51) Int.Cl. <sup>6</sup> | 識別記号 | FΙ         |      |
|---------------------------|------|------------|------|
| H01L 23/1                 |      | H01L 23/12 | N    |
| H01E 20/                  |      | H05K 1/00  |      |
| 1/0                       |      | 1/03       | 630J |

審査請求 有 請求項の数4 OL (全 8 頁)

| (21)出願番号 | 特願平9-141759     | (71) 出願人 | 000006633<br>京セラ株式会社             |
|----------|-----------------|----------|----------------------------------|
| (22)出願日  | 平成9年(1997)5月30日 |          | 京都府京都市伏見区竹田鳥羽殿町 6番地              |
|          |                 | (72)発明者  | 立野 周一<br>鹿児島県国分市山下町1番4号 京セラ株     |
|          |                 |          | 式会社総合研究所内                        |
|          |                 | (72)発明者  | 平松 幸洋                            |
|          |                 |          | 鹿児島県国分市山下町1番4号 京セラ株<br>式会社総合研究所内 |
|          |                 | (72)発明者  | 林 桂<br>鹿児島県国分市山下町1番4号 京セラ株       |
|          |                 |          | 式会社総合研究所内                        |
|          |                 |          | 最終頁に続く                           |

# (54) 【発明の名称】 回路基板とその製造方法

#### (57)【要約】

【課題】有機樹脂を含む絶縁層に金属粉末を含有するビアホール導体が形成された回路基板において、ビアホール導体の低抵抗化と長期安定性を実現する。

【解決手段】少なくとも熱硬化性有機樹脂を含む絶縁層1と、絶縁層1表面および絶縁層1間に形成された複数層の導体回路層2と、少なくとも金属粉末4を含有し、上下の導体回路層2を接続するためのビアホール導体3を具備する回路基板において、ビアホールに導体ペーストを充填後、加圧加熱して、ビアホール導体3の金属粉末4の充填率を65%以上に高めるとともに、導体ペースト中の結合材および/または溶剤を除去して形成された金属粉末4間の間隙に絶縁層1中に含まれる有機樹脂5を含浸させてその間隙を樹脂5により充填させる。



(2)

10

20

40

### 【特許請求の範囲】

【請求項1】少なくとも熱硬化性有機樹脂を含む絶縁層と、該絶縁層表面および該絶縁層間に形成された複数層の導体回路層と、少なくとも金属粉末を含有し、前記上下の導体回路層を接続するためのビアホール導体を具備する回路基板において、前記ビアホール導体における前記金属粉末の充填率が65%以上であり、前記ビアホール導体中の前記金属粉末間の間隙に前記絶縁層中に含まれる前記有機樹脂が充填されていることを特徴とする回路基板。

【請求項2】少なくとも熱硬化性有機樹脂を含有する非 硬化状態の絶縁層にビアホール形成する工程と、該ビア ホール内に、金属粉末、結合材および溶剤を含む導体ペ ーストを充填してビアホール導体を形成する工程と、前 記ビアホール導体を形成した前記絶縁層の表面に導体回 路層を形成する工程と、前記導体回路および前記ビアホ ール導体を形成した複数の絶縁層を積層する工程と、前 記絶縁層を加熱して少なくとも前記導体ペースト中の前 記結合材および/または前記溶剤を除去する工程と、前 記加熱処理後の積層された絶縁層を加圧しながら加熱し て、前記ビアホール導体における金属粉末の充填率を6 5%以上に高めるとともに前記絶縁層中の前記熱硬化性 有機樹脂を前記ビアホール導体内に含浸させて前記金属 粉末間の間隙に前記有機樹脂を充填した後、前記絶縁層 と前記ビアホール導体内の前記熱硬化性樹脂を完全硬化 させる工程を具備することを特徴とする回路基板の製造 方法。

【請求項3】前記絶縁層中に含まれる有機樹脂の、非硬化状態での100℃以下の粘度が500ポイズ以上であり、最小粘度が100ポイズ以下の粘度を有することを特徴とする請求項2記載の回路基板の製造方法。

【請求項4】前記導体回路層が、転写シートの表面に導体回路を形成し、前記絶縁層に加圧転写して形成したことを特徴とする請求項2記載の回路基板の製造方法。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、有機樹脂を含む絶縁層に金属粉末を含む導体ペーストを充填して形成されたビホアール導体を具備し、半導体収納用パッケージなどに適した回路基板とその製造方法に関するものである。

# [0002]

【従来の技術】従来より、多層配線基板、たとえば、半 導体素子を収納するパッケージに使用される多層配線基 板として、高密度の配線が可能なセラミック多層配線基 板が多用されている。このセラミック多層配線基板は、 アルミナなどの絶縁基板と、その表面および/または内 部にWやMo等の高融点金属を含むペーストを印刷した り、基板に形成したビアホール内にこのペーストを充填 して絶縁基板と同時に焼成して形成された配線導体を具 備するもので、この絶縁基板の一部に半導体素子を収納 する凹部が形成され蓋体によって凹部を気密に封止され るものである。

【0003】ところが、このような絶縁基板を構成する セラミックスは、硬くて脆い性質を有することから、製 造工程又は搬送工程において、セラミックスの欠けや割 れ等が発生しやすく、半導体素子の気密封止が損なわれ たり、製造過程が複雑であるために、製造歩留まりが低 い等の問題があった。

【0004】また、セラミック多層配線基板においては、焼結前のグリーンシートに導体ペーストを印刷して焼結させる時に、焼成収縮が生じるために、得られる基板に反り等の変形や寸法のばらつき等が発生しやすいという問題があり、回路基板の超高密度化やフリップチップ等のような基板の平坦度の厳しい要求に対して、十分に対応できないという問題があった。

【0005】そこで、最近では、銅箔を接着した有機樹脂を含む絶縁基板表面にエッチング法により微細な回路を形成し、しかる後にこの基板を積層して多層化したプリント基板や、銅などの金属粉末を含むペーストを絶縁層に印刷して配線層を形成した後、これを積層し、あるいは積層後に、所望位置にマイクロドリルやパンチング等によりビアホールを形成し、そのホール内壁にメッキ法により金属を付着させて上下の配線層の接続を行う多層プリント配線基板が提案されている。

【0006】また、最近では、プリント配線基板の多層 化、配線の微細化の要求に対応して、有機樹脂を含む絶 縁層の表面に銅などの低抵抗金属を含む導体ペーストで 回路を形成し、高密度に多層化された配線基板を製造す る試みが行われている。

# [0007]

【発明が解決しようとする課題】しかしながら、低抵抗金属を含む導体ペースト中には、絶縁層への印刷性を高めるとともに、金属粉末を互いに結合させるために結合剤及び溶剤が配合されるため、金属粉末の周囲はこの結合剤や溶剤で囲まれており金属粉末同士の接触が悪く、通常の銅箔や銅メッキにより形成された導体回路よりも抵抗値が高いという問題があった。

【0008】そのため、導体ペーストを印刷した後に、結合剤及び溶剤を加熱分解したり、印刷された配線層を加圧して緻密化することが行われている。しかしながら、このようにして得られた導体配線層中においても結合剤や溶剤を完全に除去できず、抵抗率はせいぜい $7\times10^4\Omega\cdot c$  m程度であり、低抵抗化が困難であるという欠点を有していた。また、結合剤及び溶剤を完全に除去できても低抵抗金属粒子間に隙間が形成されるため、この間隙に外部から水分が侵入し、金属粉末が酸化したり、基板の温度が上昇した時に基板が破裂するなどの問題があった。

【0009】そこで、本発明は、有機樹脂を含む絶縁層

..

20

30

50

に金属粉末を含有するビアホール導体が形成された回路 基板において、ビホアール導体の低抵抗化と、長期安定 性に優れた回路基板とその製造方法を提供することを目 的とする。

# [0010]

【課題を解決しようとする手段】本発明者らは、上記の 課題に対して検討を重ねた結果、ビアホール内に金属粉 末と結合材および溶剤を含む導体ペーストを充填した後 に、一旦加熱処理して、ペースト中の結合剤および/ま たは溶剤を除去すると、金属粉末間には必然的に間隙が 形成されるが、その後、最終的に絶縁層の熱硬化性樹脂 を完全硬化させる際に、高圧力を付与することにより、 金属粉末の充填率を高めるとともに、絶縁層中の有機樹 脂をビアホール導体に浸み出させて金属粉末間の間隙を その有機樹脂によって充填させることにより、ビアホー ル導体の低抵抗化と長期安定性に優れた回路基板を提供 できるとを見いだし、本発明に至った。

【0011】即ち、本発明の回路基板は、少なくとも有 機樹脂を含む複数の絶縁層が積層され、該絶縁層表面お よび該絶縁層間に複数層の導体回路層が形成されるとと もに、少なくとも金属粉末を含有し、上下の異なる層の 前記導体回路層を接続するためのビアホール導体を具備 する回路基板において、前記ビアホール導体における前 記金属粉末の充填率が65%以上であり、且つ前記ビア ホール導体中の前記金属粉末間の間隙に前記絶縁層中に 含まれる有機樹脂が充填されてなることを特徴とするも のである。

【0012】また、かかる回路基板の製造方法として、 少なくとも有機樹脂を含有する非硬化状態の絶縁層にビ アホール形成する工程と、該ビアホール内に、金属粉 末、結合材および溶剤を含む導体ペーストを充填してビ アホール導体を形成する工程と、前記ビアホール導体を 形成した前記絶縁層の表面に導体回路層を形成する工程 と、前記導体回路を形成した複数の絶縁層を積層する工 程と、前記ビアホール導体が形成された前記絶縁層を加 熱して少なくとも前記導体ペースト中の前記結合材およ び/または前記溶剤を除去する工程と、前記加熱処理後 の積層された絶縁層を加圧しながら加熱して、前記ビア ホール導体における金属粉末の充填率を65%以上に高 めるとともに前記絶縁層中の有機樹脂を前記ビアホール 40 導体内に含浸させて前記金属粉末間の間隙に前記有機樹 脂を充填した後、前記絶縁層と前記ビアホール導体内の 前記熱硬化性樹脂を完全硬化させる工程を具備すること を特徴とするものである。

【0013】望ましくは、前記非硬化状態の絶縁層中に 含まれる有機樹脂が、100℃以下の温度で500ポイ ズ以上の粘度を有し、最小粘度が100ポイズ以下の粘 度を有すること、前記導体回路層が、転写シートの表面 に導体回路を形成し、前記絶縁層に加圧転写して形成し たことを特徴とするものである。

[0014]

【発明の実施の形態】本発明の回路基板は、図1の概略 断面図に示すように、少なくとも熱硬化性有機樹脂を含 む複数の絶縁層1が積層され、その絶縁層1の表面およ び絶縁層1の層間に導体回路層2が形成され、導体回路 層2が多層にわたり形成されている。

【0015】そして、層の異なる導体回路層2が、ビア ホール導体3によって電気的に接続されている。

【0016】絶縁層1に含まれる熱硬化性有機樹脂とし ては、例えば、エポキシ系樹脂、トリアジン系樹脂、ポ リブタジエン系樹脂、フェノール樹脂、フッ素系樹脂、 ジアリルフタレート系樹脂、ポリイミド系樹脂など一般 に回路基板に使用される樹脂であればなんでもよい。

【0017】また、絶縁層1中には、基板全体の強度を 高めるために、樹脂に対してフィラーを複合させるのが 望ましい。樹脂と複合されるフィラーとしては、SiO 2 、 A 1 2 O3 、 Z r O2 、 A 1 N 、 S i C 、 S i 3 N 4、BaTiO3、SrTiO3、ゼオライト、CaT iO<sub>3</sub>、ほう酸アルミニウム粒子等が挙げられる。ま た、絶縁層として、ガラス繊維に樹脂を含浸させたシー ト (プリプレグ)、アラミド不織布や織布に樹脂を含浸 させたシートなども使用できる。

【0018】また、本発明の回路基板のビアホール導体 3は、導体回路層2間を電気的に接続するための導電路 を形成するもので、少なくとも金属粉末を含むものであ る。

【0019】金属粉末は、例えば、銅、銀、アルミニウ ムおよび金の群から選ばれる少なくとも1種又は2種以 上の合金を主体とする低抵抗金属、特に、銅又は銅を含 む合金が望ましい。また、場合によっては、導体組成物 として回路の抵抗調整のためにNi-Cr合金などの高 抵抗の金属を混合、又は合金化しても良い。更に低抵抗 化のために、前記低抵抗金属よりも低融点の金属、例え ば、半田、錫等の低融点金属を導体組成物中に含んでも よい。

【0020】また、本発明によれば、上記ビアホール導 体は、ビアホール導体内における金属粉末の充填率が6 5%以上、特に70%以上であることも大きな特徴であ

【0021】この充填率は、ビアホール導体の抵抗率を 決める大きな要因であり、この充填率が65%よりも低 いと導体の抵抗率が低下する。

【0022】さらに、本発明におけるビアホール導体 は、図2に示すように、金属粉末4の間に絶縁層1中に 含まれる熱硬化性樹脂 5 が充填されていることが大きな 特徴である。この熱硬化性樹脂5の充填により、外部か ち水分が侵入して金属粉末が酸化することがなく、ま た、基板温度が上昇した場合に間隙の膨張によって基板 が破損することもない。

【0023】次に、本発明の回路基板の製造方法につい

10

て説明する。まず、絶縁層として、前述したような熱硬 化性有機樹脂、または熱硬化性有機樹脂とフィラーから なる組成物を混練機や3本ロールなどの手段によって十 分に混合し、これを圧延法、押し出し法、射出法、ドク ターブレード法などによってシート状に成形した後、熱 硬化性樹脂を半硬化させる。半硬化には、樹脂が完全硬 化するに十分な温度よりもやや低い温度に加熱すればよ い。

【0024】そして、この半硬化状態の絶縁層に対し て、ビアホールを形成する。このビアホールの形成は、 ドリル、パンチング、サンドブラスト、あるいは炭酸ガ スレーザ、YAGレーザ、及びエキシマレーザ等の照射 による加工など公知の方法が採用される。

【0025】その後、そのビアホール内に導体ペースト を充填してビアホール導体を形成する。導体ペースト は、前述したような金属粉末に対して、結合剤および溶 剤を添加混合して調製される。ペースト中に添加される 結合剤としては、セルロース等の有機樹脂が用いられ、 溶剤としては、用いる結合剤が溶解可能な溶剤であれば よく、例えば、イソプロピルアルコール、テルピネオー 20 ル、2-オクタノール、ブチルカルビトールアセテート 等が用いられる。

【0026】次に、ビアホール導体を形成した前記絶縁 層の表面に導体回路層を形成する。

【0027】導体回路層を形成する方法としては、銅等 の金属箔を絶縁層に接着剤で張りつけた後に、回路パタ ーンのレジストを形成して酸等によって非レジスト領域 の金属をエッチング除去しレジストを除去する方法、予 め打ち抜きした金属箔を張りつける方法、絶縁層の表面 に、前記ビアホール中に充填したような導体ペーストを 用いて回路パターンにスクリーン印刷する方法、フィル ム、ガラス、金属板などの転写媒体表面にメッキ法や金 属箔を接着して金属層を形成し、これをエッチングによ り導体回路層を形成し、その後、転写媒体を絶縁層上に 加圧しながら導体回路層を転写する方法、などが採用さ れる。そして、上記のようにしてビアホール導体および 導体回路層が形成された複数の絶縁層を位置合わせして 所望の枚数積層圧着する。

【0028】また、ビアホール導体を形成した絶縁層を 加熱して、ビアホール導体中の結合剤および/または溶 剤を分解除去する。この時の加熱温度は、結合剤および 溶剤の種類によって適宜調整されるが、絶縁層中の熱硬 化性樹脂が硬化しない温度で行われる。この処理によっ て、ビアホール導体中の結合剤および/または溶剤が除 去される結果、ビアホール導体中の金属粉末間には間隙 が必然的に形成されることになる。

【0029】なお、このビアホール導体中の結合剤およ び/または溶剤を分解除去する工程は、導体ペーストを 絶縁層のビアホール内に充填した後、導体回路層を形成 する直前、または導体回路層およびビアホール導体が形 50

成された絶縁層を積層する直前に行ってもよい。

【0030】その後、上記処理後の積層体に対して、圧 力を印加した状態で、絶縁層中の熱硬化性樹脂が硬化す るに十分な温度まで昇温する。この加熱加圧処理によっ て、ビアホール導体における金属粉末の充填率を高める とともに、ビアホール導体の側壁から熱硬化性樹脂をビ アホール導体の金属粉末間の間隙に浸み出させて充填す るとともに、硬化温度にてビアホール導体に充填された 熱硬化性樹脂と、絶縁層中の熱硬化性樹脂を完全硬化す る。

【0031】この時の加熱温度は、用いる有機樹脂によ るが、150~300℃の温度で行われる。また、この 時の積層体を加圧する時の圧力は、ビアホール導体への 金属粉末の充填率を高めるとともに、ビアホール導体内 の間隙へ絶縁層中の有機樹脂が浸み出して充填されるに 十分な圧力が付与され、望ましくは、20~150kg / c m² の圧力が付与される。なお、この加熱加圧処理 によるビアホール導体内の金属粉末の充填率が65%以 上、特に70%以上とすることにより、ビアホール導体 を低抵抗化することができる。

【0032】本発明によれば、この加熱加圧処理により ビアホール導体内の間隙への有機樹脂の充填性を高める 上で、この時の絶縁層中に含まれる熱硬化性樹脂の粘度 が、100℃以下で500ポイズ以上であること、さら には、最小粘度が100ポイズ以下であることが望まし V.

【0033】これは、100℃以下での粘度が500ポ イズよりも小さい場合、導体ペーストに含まれる結合剤 及び溶剤を除去する工程で絶縁層中の樹脂がビアホール 導体中に浸み出し、ビアホール導体中の金属粉末と金属 粉末との間まで侵入してしまう結果、金属粉末同士の接 続性を損ね、さらには、その後の加圧加熱による樹脂硬 化時に、ビアホール導体に間隙が存在しないためにビア ホール導体に高圧力を印加しても、金属粉末の充填率を 高めることができず、抵抗率を下げることができない。 【0034】また、最小粘度が100ポイズよりも高い と、加圧しながら絶縁層中の熱硬化性樹脂の硬化温度ま で昇温する過程で、絶縁層中の熱硬化性樹脂がビアホー ル導体に侵入しにくくなり、金属粉末間の間隙を充填す ることが難しくなるためである。また、加圧することな く、硬化温度にて硬化させた場合においても、絶縁層中 の熱硬化性樹脂がビアホール導体に侵入しにくくなる。 【0035】また、この加熱加圧処理によりビアホール 導体内の間隙への有機樹脂の充填性を高める上で、ビア ホール導体に接続する導体回路層を、金属箔によって形

成すること、とりわけ、転写シートの表面に金属箔から

なる導体回路層を形成し、前記絶縁層に加圧転写して形

成することにより、ビアホール導体周辺への加圧力を高

めることができ、金属粉末同士の接触力を高めるととも

にビアホール導体における金属粉末の充填率を高めビア

7

ホール導体の低抵抗化を図ることができる。

[0036]

【実施例】粘度特性が表1の各種ポリイミド樹脂に、フィラーとしてSiO2粉末を60体積%混合し、ドクターブレード法で厚み100μmのシート状に成形し絶縁層を作製した。なお、試料No.3および10のポリイミド樹脂の粘度と温度との関係を図3に示した。

【0037】この絶縁層へ、ビーム径20μmのYAGレーザ光を照射、走査し直径100μmのビアホールを形成した。そして、形成したビアホールへ、平均粒径5μmのAgとCuの合金粉末に結合剤としてエチルセルロースを1重量%、溶剤として2ーオクタノールを6重量%混合して作製した導体ペーストをスクリーン印刷法にて充填した。

【0038】そして、 $PETフィルムからなる転写シートに厚さ<math>12\mu$ mの銅箔を貼り付けた後、エッチング法により導体回路層を形成し、絶縁層に $100kg/cm^2$ の圧力をかけて導体回路層を絶縁層に転写させた。その後、同様にして作製した4枚の絶縁層を積層した。

【0039】上記のようにして作製した積層体に対して、120℃で3時間、窒素中で加熱処理して、絶縁層中の溶剤、およびビアホール導体中の結合剤と溶剤を除去した。しかる後に、70kg/cm²の圧力を印加し\*

\*ながら各樹脂の硬化温度まで昇温した後、硬化温度で2時間保持し、熱硬化性樹脂を完全硬化させ、回路基板を

得た。

【0040】なお、上記の工程において、120℃での熱処理後に、ビアホール導体中の金属粉末間の間隙の形成の有無についてSEM写真により観察した。また、250℃での完全硬化後のビアホール導体の観察を行い、金属粉末間の間隙への樹脂の充填の有無をSEM観察した。結果は、表1に示した。また、ビアホール導体における金属粉末の充填率を測定した。この充填率は、ビアホール導体の中央部における金属粉末の面積占有率を画像解析して求め、これを充填率とした。また、ビアホール導体の完全硬化後の抵抗率を4端子法により測定した。さらに、ビアホール導体の長期安定性について、85℃、湿度85%の雰囲気に168時間保持した後のビアホール導体の抵抗率を測定しその結果を表1に示した。

【0041】また、比較として、完全硬化時に加圧することなく、250℃で完全硬化する以外は上記と全く同様にして回路基板を作製し、上記と同様に評価を行った。

[0042]

【表1】

| 黎爾介色-最小地 | <b>个件被服</b><br>小粘度 □ | 硬化温度  | 120℃数温温後の       | 最終基板の<br>ビオーレ 単体 | 金属粉末の<br>充填率 | 斑坑                   | 南道多徳子の名が西部の祖子の田本の田舎の田舎の田舎の田舎の田舎の田舎の田舎の田舎の日 | 極    |
|----------|----------------------|-------|-----------------|------------------|--------------|----------------------|--------------------------------------------|------|
| (ボバ      |                      | (၁)   | 5.74-1/ 導体の間際状態 | 中の食品の大様の有無       | (%)          | (M) · CM)            | (no · cn)                                  |      |
| ~        | . 0 8                | 200   | 樹脂充填            | 横胎充填             | 6.2          | 5.3×10-4             | 5, 1×10 <sup>-4</sup>                      | 9    |
| "        | 0 6                  | 200   | 樹脂充填            | 樹脂充填             | 5 5          | 4.1×10-4             | 4,2×10 <sup>-4</sup>                       |      |
| -        | 20                   | 200   | 極腦充填            | 樹脂充填             | 0 9          | $7.0 \times 10^{-4}$ | 6.7×10-4                                   |      |
|          | 9 5                  | 200   | 樹脂充填            | 樹脂充填             | 0 9          | 7.2×10-4             | 7.0×10-4                                   |      |
|          | 5 0                  | 200   | 間線あり            | 做脂充填             | 7.4          | 7.5×10-6             | 7,2×10-6                                   |      |
|          | 0 6                  | 250   | 間隊あり            | 樹脂充填             | 8 2          | 6.2×10-6             | 5.9×10-6                                   |      |
|          | 80                   | 250   | 間隊あり            | 樹脂充填             | 7 1          | 8.3×10-6             | 8, 0×10 <sup>-6</sup>                      |      |
|          | 80                   | 270   | 間類あり            | 樹脂充填             | 7 3          | 7.8×10-6             | 7.7×10-6                                   |      |
|          | 0 6                  | 250   | 間額多り            | 樹脂充填             | 8 0          | 6.7×10 <sup>-6</sup> | 6.8×10-6                                   |      |
|          | 0 9                  | 2 2 0 | 間隊あり            | 樹脂充填             | 8 9          | 9,1×10 <sup>-6</sup> | 8,8×10 <sup>-6</sup>                       |      |
|          | 80                   | 2 5 0 | 間隊あり            | 数脂充填             | 7 8          | 7.1×10-6             | $7.0 \times 10^{-6}$                       |      |
|          | 9 2                  | 250   | 間隔為り            | 樹脂充填             | 8 1          | 6.4×10-6             | 6.3×10 <sup>-6</sup>                       |      |
|          | 3.0                  | 250   | 間隔あり            | 間緊あり             | 7 0          | 8.5×10-6             | 3.7×10-4                                   |      |
|          | 0 6                  | 250   | 間際あり            | 間魔あり             | 6.2          | 5.5×10-4             | $2.5 \times 10^{-3}$                       | 加压せず |

\* 印は本発明の範囲外の試料を示す。

【0043】表1によれば、本発明の請求範囲内の実施 例は、120℃処理後にビアホール導体中の金属粉末間 に間隙が形成されており、また、加圧加熱処理による最 終硬化後に導体金属粉末同士が強固に接触し金属粉末の 充填率が65%であり、また金属粉末間に存在していた 間隙に樹脂が充填されていることが確認された。その結 果、本発明によるビアホール導体は、初期抵抗率がいず れも3×10<sup>5</sup>Ω・c m以下であり、しかも、高温多湿 中に長期間保持されても、ビアホール導体中の金属粉末 50 が酸化することなく、抵抗変化がほとんどなく3×10 <sup>5</sup>Ω・cm以下が達成されており、長期安定性に優れて いることがわかった。

【0044】これに対して、絶縁層を構成する熱硬化性 樹脂として、非硬化状態の絶縁層中に含まれる有機樹脂 の100℃以下での粘度が500ポイズよりも小さい樹 脂を用いた試料No.1、2、3、4は、120℃処理 後、絶縁層中の樹脂がビアホール導体中に浸み出してお り、また加圧加熱処理後においても金属粉末の充填率が 65%未満と小さく、その結果、ビアホール導体の抵抗 が大きいものであった。

【0045】また、最小粘度が100ポイズよりも高い試料No. 13では、加圧加熱処理後、ビアホール導体中の間隙に樹脂の充填が行われず、高温多湿雰囲気での熱処理後に抵抗が増大しビアホール導体の抵抗が初期および高温多湿雰囲気中での処理後において $3\times10^{-5}\Omega$ ・cm以下を達成できなかった。

【0046】 さらに、完全硬化時に全く加圧処理を行わなかった試料No. 14では、金属粉末の充填率が低く、しかも、ビアホール導体内に間隙が残存しており、初期抵抗が $3\times10^5\Omega$ ・c mを越え、しかも高温多湿中での処理により抵抗率はさらに増大した。

# [0047]

【発明の効果】以上詳述したように、本発明によれば、 ビアホール導体における金属粉末の充填率を高めるとと もに、金属粉末間の間隙に絶縁層中の熱硬化性樹脂を充\* \*填することにより、ビアホール導体の低抵抗化を実現するとともに、水分の侵入や基板が高温になったときの破裂等のない信頼性の高い回路基板が提供できる。

12

# 【図面の簡単な説明】

【図1】本発明の回路基板の構造の一例を示した概略断 面図である。

【図2】本発明の回路基板におけるビアホール導体の組 織構造を説明するための図である。

【図3】実施例において絶縁層に使用される熱硬化性樹 10 脂(No.3、No.10)の粘度と温度との関係を湿した 図である。

# 【符号の説明】

- 1 絶縁層
- 2 導体回路層
- 3 ビアホール導体
- 4 金属粉末
- 5 熱硬化性樹脂

【図1】



【図3】



【図2】



フロントページの続き

(72)発明者 西本 昭彦

鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内

(72)発明者 福元 重昭

鹿児島県国分市山下町1番4号 京セラ株

式会社総合研究所内