WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	(11) International Publication Numl	ber: WO 99/05127
C07D 251/70, C08F 20/68 A	(43) International Publication Date:	4 February 1999 (04.02.99)

(21) International Application Number:

PCT/GB98/02104

(22) International Filing Date:

16 July 1998 (16.07.98)

(30) Priority Data:

9715709.3

26 July 1997 (26.07.97)

GB

(81) Designated States: AU, CA, CN, GB, JP, KR, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

- (71) Applicant (for all designated States except US): THE SEC-RETARY OF STATE FOR DEFENCE [GB/GB]; Defence Evaluation & Research Agency, Ively Road, Farmborough, Hampshire GU14 0LX (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): WILLIS, Colin, Robert [GB/GB]; CBD Porton Down, Salisbury, Wiltshire SP4 OJQ (GB). BREWER, Stuart, Anson [GB/GB]; CBD Porton Down, Salisbury, Wiltshire SP4 OJQ (GB). JONES, Brian, George [GB/GB]; CBD Porton Down, Salisbury, Wiltshire SP4 OJQ (GB).
- (74) Agent: BOWDERY, A., O.; D/IPR, Formalities Section, Poplar 2, MOD Abbey Wood #19, Bristol BS34 8JH (GB).
- (54) Title: FLUORINATED TRIAZINE MONOMERS
- (57) Abstract

A compound of formula (I), wherein R^1 and R^2 are independently selected from saturated fluorocarbon substituted side chains, such as $NR^5(CH_2)_nC_mF_{2m+1}$, $O(CH_2)_nC_mF_{2m+1}$, $S(CH_2)_nC_mF_{2m+1}$, or $CR^5[CO_2(CH_2)_nC_mF_{2m+1}]_2$, where R^5 is hydrogen or alkyl, n and m are independently an integer of 1–12, R^3

$$\begin{array}{c|c}
R^1 & N & R^2 \\
N & N \\
X & R^3
\end{array}$$

is an unsaturated moiety which may be polymerised, and X is O, S or NR^4 where R^4 is hydrogen or alkyl, as well as methods for the preparation of these compounds. Compounds of formula (I) are useful monomers in the preparation of oil- and water-repellent polymers.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	ĬĹ	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

FLUORINATED TRIAZINE MONOMERS

The present invention relates to novel monomeric compounds which can be used in the production of polymers which have a high degree of oil and water-repellency and which may be fixed to substrates such as clothing, to processes for their preparation and to polymers produced therefrom.

10 Oil- and water- repellent treatments are in widespread use, in particular for outdoor clothing applications, sportswear, leisurewear and in military applications. These treatments generally require the incorporation of a fluoropolymer into or more particularly, fixed onto the surface of the clothing fabric. The degree of oil and water repellency is a function of the number of fluorocarbon groups or moieties that can be fitted into the available space. The greater the concentration of such moieties, the greater the repellency of the finish.

20

25

30

In addition however, the polymeric compounds must be able to form durable bonds with the substrate. Oil-and water-repellent textile treatments are generally based on fluoropolymers that are applied to fabric in the form of an aqueous emulsion. The fabric remains breathable and permeable to air since the treatment simply coats the fibres with a very thin, liquid-repellent film. In order to make these finishes durable, they are sometimes co-applied with cross-linking resins that bind the fluoropolymer treatment to fibres. Whilst good levels of durability towards laundering and dry-cleaning can be achieved in this way, the cross-linking resins can seriously damage cellulosic fibres and reduce the mechanical strength of the material.

2

WO 97/13024 discloses a group of fibre reactive polymers, which include a functional group such as a triazine group, which binds the polymer to the material substrate.

British patent No 1,102,903 describes certain fluoro alkyl containing compounds which are used in water- and oil-repellent compositions.

The applicants have produced certain novel monomers,
which give rise to polymers which have a high number of
fluorocarbon substituents per monomer unit.

The present invention provides a compound of formula (I)

$$R^1$$
 N
 N
 R^2
 X
 R^3

15

wherein R¹ and R² are independently selected from saturated fluorocarbon substituted side chains;

R³ is an unsaturated moiety which may be polymerised, and X is O, S or NR⁴ where R⁴ is hydrogen or alkyl.

As used herein, the term "alkyl" refers to straight or branched chain alkyl or cycloalkyl groups, in particular those having from 1 to 12 and preferably from 1 to 6 carbon atoms. The term "saturated" refers to groups which do not contain carbon-carbon double bonds. Conversely the term "unsaturated" refers to groups which include carbon-carbon double bonds.

30

Suitable fluorocarbon substituted side chains for R^1 and/or R^2 include groups which are hydrophobic groups

which are able to confer water- and/or oil- repellency on the resultant polymer. In particular R¹ and R² are independently selected from NR⁵(CH₂)_nC_mF_{2m+1}, O(CH₂)_nC_mF_{2m+1}, S(CH₂)_nC_mF_{2m+1}, NR⁵S(O)₂(CH₂)_pC_mF_{2m+1} or CR⁵[CO₂(CH₂)_nC_mF_{2m+1}]₂, where R⁵ is hydrogen or alkyl, and n and m are independently an integer of 1-12, and p is 0 or an integer of from 1-12.

Conveniently R¹ and R² are the same. They are preferably selected from O(CH₂)_nC_mF_{2m+1} or NR⁵S(O)₂(CH₂)_pC_mF_{2m+1}. Suitably R⁵ is methyl, ethyl or n-propyl, in particular ethyl. Preferred integers for n and p are from 1-3, suitably 2, whilst preferred integers for m are from 6 to 10, most preferably 8.

Suitable polymerisable groups R^3 are alkenes or alkynes which may also include a functional group such as an acyloxy group. Particularly preferred groups for R^3 are groups of formula $(CH_2)_qOC(0)$ $C(R^6)CR^7R^8$ where q is an integer of from 1 to 12, suitably from 1 to 4 and especially 2, and R^6 , R^7 and R^8 are independently selected from hydrogen or alkyl such as C_{1-4} alkyl. Preferably R^6 , R^7 and R^8 are all hydrogen.

Compounds of formula (I) are suitably prepared by reacting a compound of formula (II)

30 where R^1 and R^2 are as defined in relation to formula (I) and Y is a leaving group, with a group of formula (III)

4

 $R^{a}-X-R^{3'}$ (III)

where X is as defined in relation to formula (I) and R³ is a group R³ as defined in relation to formula (I) or a precursor group which may be reacted to form a group R³ and R^a is hydrogen or alkyl; and thereafter if necessary converting a precursor group R³ to a group R³.

10 Preferably R^a is hydrogen or a lower alkyl, for example a C_{1-3} alkyl, in particular methyl.

Suitable leaving groups for Y include halogen such as fluorine and chlorine, in particular chlorine, or amine leaving groups such as substituted pyridines for instance nicotinic acid or colladine.

The reaction is suitably effected in an organic solvent such as tetrahydrofuran (THF), acetone, toluene or chloroform. It may be effected at temperatures of from 0 to 200°C, suitably from 25 to 150°C, depending upon the precise nature of the reactants and solvents involved. Conveniently the reaction may be effected at room temperature or under reflux conditions.

25

Preferably the reaction is effected under basic conditions. Weak bases may suffice, and in some instances, the compound of formula (III) may itself act as an acid scavenger and so the use of an excess, particularly a 2 molar excess of the compound of formula (III) will ensure that that the reaction proceeds effectively.

Suitable groups $R^{3'}$ which are precursor groups to R^{3} would be apparent to the skilled person. For example, where R^{3} is a group $(CH_{2})_{q}OC(O)$ $C(R^{6})CR^{7}R^{8}$, a suitable precursor group R^{3} would be $(CH_{2})_{q}OH$, which can be readily converted

to R^3 by reaction with a suitable acid halide for example an acid chloride of formula CIC(0) $C(R^6)CR^7R^8$ in the presence of a base, such as a weak base, for example pyridine or a pyridine derivative such as collidine. This reaction is suitably effected in an organic solvent such as toluene at elevated temperatures, conveniently at the reflux temperature of the solvent.

Certain compounds of formula (II) are known (see for example British Patent No. 1,102,903). These compounds can be prepared by reacting a compound of formula (IV)

15

where R^1 is as defined in relation to formula (I), Y is as defined in relation to formula (II) and Y' is a leaving group,

with a compound of formula (V)

20

$$R^2H$$
 (V)

where R^2 is as defined in relation to formula (I), in the presence of a base.

25

Suitable bases are those which react with a compound of formula (V) so as to produce a nucleophilic moiety of formula (V')

 $(R^2)^- \qquad (V')$

6

Thus the selection of suitable bases will depend upon the precise nature of the group R^2 and will be readily understood or determinable by the skilled person. For example, where R^2 is a group $O(CH_2)_n C_m F_{2m+1}$, strong bases such as alkali metal hydroxides, in particular lithium hydroxide, may be used. Alternatively, where R^2 is a group $NR^5S(O)_2(CH_2)_p C_m F_{2m+1}$, stronger bases such as alkali metal alkoxides, in particular sodium or potassium methoxide or ethoxide may be used.

10

Compounds of formula (IV) are suitably prepared by reacting a compound of formula (VI)

15

(VI)

wherein Y, Y' and Y" are the same or different leaving groups, with a compound of formula (VII)

20

 R^1H (VII)

where R^1 is as defined in relation to formula (I), in the presence of a base.

Reaction conditions will be generally similar to those described above in relation to the reaction between compounds of formula (IV) and formula (V).

30

Where compounds of formula (V) and formula (VII) are the same, compounds of formula (II) may be prepared directly in one pot. If necessary, the reaction can be controlled

in a stepwise manner in order to maximise yield of the target compound by controlling the reaction temperature. For example, where R^1 and R^2 are groups of formula $NR^5S(O)_2(CH_2)_nC_mF_{2m+1}$, the compound of formula (IV) may be prepared at depressed temperatures, for example at about $-78^{\circ}C$. Allowing the reaction mixture to warm up to approximately $0^{\circ}C$ will produce a compound of formula (II) after suitable work-up.

- 10 Compounds of formula (III), (V), (VI) and (VII) are either known compounds or they can be prepared from known compounds using conventional methods. A preferred compound of formula (VI) is cyanuric chloride.
- 15 Compounds of formula (I) may be polymerised or copolymerised using conventional technology, e.g emulsion polymerisation.

Polymers or copolymers including units of formula (VIII)

$$R^1$$
 N
 R^2
 X
 R^3
 X

(VIII)

where R^1 , R^2 and X are as defined in relation to formula (I), t is an integer in excess of 5, and R^9 is a saturated derivative of R^3 as defined in relation to formula (I) form a preferred embodiment of the invention. In particular XR^9 will be a moiety of formula (IX)

8

(IX)

Suitably the monomers of the invention are copolymerised with a monomer which comprises a fibre reactive moiety for example as described in WO 97/13024.

The invention will now be particularly described by way of example.

10 Example 1

30

Step 1

Synthesis of 2-chloro-4,6-bis(N-

ethylperfluorooctylsulphonamido)-1,3,5-triazine

Metallic sodium (4.08g, 177mmols) was reacted with

methanol (150mls). N-Ethyl perfluorooctyl sulphonamide
(93.28g, 177mmols) was added, and the resulting solution
was stirred for 30 minutes. The methanol was removed at
the pump (a vacuum pump was required to remove the final
traces of solvent). The resulting sticky solid was

- dissolved in acetone (300mls) and cooled to -65°C under argon. Recrystalised cyanuric chloride (16.33g, 88.5mmols) dissolved in acetone (100mls) was added to the reaction mixture dropwise such that the temperature did not rise above -50°C (~lhour). After the addition, the
- reaction mixture was allowed to slowly warm to room temperature (1 hour) and then stirred for a further 3 hours. The precipated solid was removed by filtration and dried under vacuum. Purification by soxhlet extraction with acetone afforded 61g (56.9%) of a fine white powder.

 ^{1}H NMR (CDCl₃) δ (ppm) 4.20 (2H, q, $^{3}J_{H-H}$ 6.8 Hz, $\underline{CH}_{2}CH_{3})$, 1.40 (3H, t, $^{3}J_{H-H}$ 6.8 Hz, $CH_{2}\underline{CH}_{3})$.

9

 $^{13}\text{C}\{^1\text{H}\}$ NMR (CDCl₃) δ (ppm) 171.3, 165.0 (triazine), 46.3 (CH₂CH₃), 14.5 (CH₂CH₃).

5 Step 2

Synthesis of 2-N-{4,6-bis(N-

ethylperfluorooctylsulphonamido) - 1,3,5-triazin-2-yl}amino ethanol

A THF solution (85mls) of 2-chloro-4,6-bis(N-ethylperfluorooctylsulphonamido) - 1,3,5-triazine (15g, 12.9mmols) and ethanolamine (1.6g, 26.2mmols) were heated under reflux for 1 hour. The hot solution/suspension was filtered and the product was allowed to crystalise overnight to afford 12.8g (83%) of product.

15

¹H NMR (d₆ acetone) δ (ppm) 4.85 (4H, m, NCH₂CH₃), 4.38 (2H, t, $^3J_{H-H}$ 5 Hz, CH₂O), 4.22 (2H, dt, 5, 5 Hz, OCH₂CH₂N), 2.05 (6H, m NCH₂CH₃).

20 Step 3

Synthesis of 2-N-{(4,6-bis(N-

ethylperfluorooctylsulphonamido) -1,3,5-triazin-2-yl)}aminoethyl propenoate

2-N-[4,6-bis(N-ethylperfluorooctylsulphonamido)-1,3,5triazin-2-yl]amino ethanol (11.58, 9.7mmols) and acryloyl
chloride (1.32g, 14.6mmols) were dissolved in hot toluene
(80mls). Collidine (1.77g, 14.6mmols) was added as a
toluene solution (10mls) down the reflux condenser. The
resulting reaction mixture was heated under reflux for 2
hours and then filtered hot. Toluene was removed at the
pump and the resulting solid dissolved in diethyl ether
(400mls). The etheral solution was washed with 1M HCl
(2x50mls) distilled water (2x40mls) and then dried over
sodium sulphate. Filtration and evaporation of the
solvent at the pump afforded 8.8g (73%) of product.

10

¹H NMR (CDCl₃) δ (ppm) 6.42 (1H, dd, ${}^{3}J_{H-H}$ 17.3, 1.3 Hz, CH=CH_{2 trans}), 6.11 (1H, dd, ³J_{H-H} 17.3, 10.5 Hz, CH=CH₂), 5.88 (2H, m, NH, $CH = CH_{2 cis}$), 4.32 (2H, t, $^{3}J_{H-H}$ 5.3 Hz, CH_2O), 4.13 (4H, m, NCH_2CH_3), 3.72 (2H, m, OCH_2CH_2N), 1.36 (6H, m, NCH_2CH_3).

 $^{13}C\{^{1}H\}$ NMR (CDCl₃) δ (ppm) 166.0, 165.6, 164.6, 164.3, (triazine/C=0), 131.5 (C=C), 127.8 (C=C), 62.5 (CH₂O), 10 45.4 (CH_3CH_2N), 40.5 (CH_2N), 14.9 (CH_3CH_2).

Example 2

Synthesis of 2-[N-methyl-N-{(4,6-bis(Nethylperfluorooctylsulphonamido) -1,3,5-triazin-2-yl) }]-

15 aminoethyl propenoate

2-Chloro-4,6-bis(N-ethylperfluorooctylsulphonamido-) 1,3,5-triazine (20g, 17.2mmols) was held as a solution/suspension in chloroform (150mls). N,N-Dimethylethylamino acrylate (2.45g, 17.2mmols) was added dropwise, over a period of 30 minutes, as a chloroform solution (50mls). The reaction mixture was stirred for 3 hours at room temperature. The chloroform solution was filtered through Celite®, concentrated (to a volume of approximately 30mls) and then passed through a short path 25 column of silica. Product was eluted with chloroform. Evaporation of the solvent afforded 19g (88%) of a sticky oil that crystalised with time (2 days).

¹H NMR (CDCl₃) δ (ppm) 6.37 (1H, dd, ${}^{3}J_{H-H}$ 17.3, 1.5 Hz, $CH=CH_{2 \text{ trans}}$), 6.09 (1H, dd, $^{3}J_{H-H}$ 17.3, 10.5 Hz, $CH=CH_{2}$), 5.83 (1H, dd, ${}^{3}J_{H-H}$ 10.5, 1.5 Hz, $CH=\underline{CH}_{2_{cis}}$), 4.36 (2H, t, $^{3}J_{H-H}$ 5.6 Hz, CH₂O), 4.14 (4H, m, NCH₂CH₃), 3.86 (2H, t, $^{3}J_{H-H}$ 5.6 Hz, OCH₂CH₂N), 3.20 (3H, s, CH₃N), 1.38 (6H, m, NCH_2CH_3).

20

11

¹³C(¹H) NMR (CDCl₃) δ (ppm) 165.8, 164.5, 164.2, 164.0, (triazine/C=O), 131.3 (C=C), 127.9 (C=C), 61.7 (<u>C</u>H₂O), 48.3 (<u>C</u>H₂N), 45.5 (<u>C</u>H₂N), 36.3 (CH₃N), 15.0 (<u>C</u>H₃CH₂).

5 Example 3 Step 1

Synthesis of 2,4-Bis(1H,1H,2H,2H-perfluorooctoxy)-6-chloro-1,3,5-triazine

Lithium hydroxide (0.49g, 11.7mmols) and 1H,1H,2H,2H

perfluorooctanol (5.4g 11.7mmols) were held as a
solution/suspension in tetrahydrofuran (25mls). Cyanuric
chloride (1.08g, 5.8mmols) and distilled water (1ml) were
added and the reaction mixture was stirred at room
temperature overnight. The resulting soluton/suspension

was precipitated into distilled water (200mls) and
extracted with diethyl ether (2x200mls). The organic
extract was dried over sodium sulphate, filtered and the
diethyl ether was removed at the pump. The resulting
white solid was recrystalised form diethyl ether (50mls),
to afford 3.3g (54%) of product.

¹H NMR (CDCl₃) δ (ppm) 4.75 (2H, t, ${}^{3}J_{H-H}$ 6.6 Hz, OCH₂CH₂), 2.63 (2H, tt, ${}^{3}J_{H-F}$ 18.1 Hz, ${}^{3}J_{H-H}$ 6.6 Hz OCH₂CH₂).

25 $^{13}C\{^{1}H\}$ NMR (CDCl₃) δ (ppm) 173.2, 171.7 (triazine), 61.1 (OCH₂CH₂), 30.5 (t, $^{2}J_{C-F}$ 22.0 Hz OCH₂CH₂CF₂).

Step 2

Synthesis of 2-[N-methyl-N-{(4,6-bis(1H,1H,2H,2H-

perfluorooctoxy-)1,3,5-triazin-2-yl)}]-aminoethyl propenoate

2,4-Bis(1H,1H,2H,2H-perfluorooctoxy)-6-chloro-1,3,5-triazine (0.5g, 0.48mmols) was held as a solution/suspension in chloroform (10mls). N,N-Dimethylethyl-amino acrylate (0.076g, 0.53mmols) was

added dropwise as a neat liquid at room temperature and the reaction mixture was stirred for 2 hours. The

12

chloroform solution was extracted with 2M HCl (2x10mls), distilled water (2x10mls), dried over sodium sulphate and filtered. Evaporation of the solvent afforded 0.48g (90%) of product as a waxy solid.

5

10

¹H NMR (CDCl₃) δ (ppm) 6.30 (1H, d, $^{3}J_{H-H}$ 17.2 Hz, CH=CH₂ trans), 6.00 (1H, dd, $^{3}J_{H-H}$ 17.3, 10.4 Hz, CH=CH₂), 5.75 (1H, d, $^{3}J_{H-H}$ 10.4 Hz, CH=CH₂ cis), 4.57 (4H, m, CF₂CH₂CH₂O), 4.31 (2H, t, 5.5 Hz, OCH₂CH₂N), 3.84 (2H, t, $^{3}J_{H-H}$ 5.5 Hz, OCH₂CH₂N), 3.14 (3H, s, CH₃N), 2.56 (4H, m, CF₂CH₂CH₂O).

 $^{13}C\{^{1}H\} \ NMR \ (CDCl_{3}) \ \delta \ (ppm) \ 171.3, \ 171.1, \ 167.3, \ 165.8, \\ (triazine/C=O), \ 131.1 \ (C=C), \ 128.0 \ (C=C), \ 61.8 \ (\underline{C}H_{2}O), \\ 15 \ 59.2 \ (\underline{C}H_{2}N), \ 48.0 \ (\underline{C}H_{2}N), \ 36.1 \ (CH_{3}N), \ 30.2 \ (t, \ 22 \ Hz, \\ \underline{C}H_{2}CF_{2}).$

20

PCT/GB98/02104

13

Claims

1. A compound of formula (I)

$$R^1$$
 N
 R^2
 N
 N
 N
 R^3

(I)

wherein R^1 and R^2 are independently selected from saturated fluorocarbon substituted side chains; R^3 is an unsaturated moiety which may be polymerised, and X is O, S or NR^4 where R^4 is hydrogen or alkyl.

- 2. A compound according to claim 1 wherein R^1 and R^2 are independently selected from $NR^5(CH_2)_nC_mF_{2m+1}$, $O(CH_2)_nC_mF_{2m+1}$, $S(CH_2)_nC_mF_{2m+1}$, $NR^5S(O)_2(CH_2)_pC_mF_{2m+1}$ or $CR^5[CO_2(CH_2)_nC_mF_{2m+1}]_2$, where R^5 is hydrogen or alkyl, n and m are independently an integer of 1-12, and p is 0 or an integer of from 1-12.
- 3. A compound according to claim 1 or claim 2 wherein \mathbb{R}^1 and \mathbb{R}^2 are the same.
- 4. A compound according to any one of the preceding claims wherein R^1 and R^2 are selected from $O(CH_2)_n C_m F_{2m+1}$ or $NR^5S(O)_p(CH_2)_n C_m F_{2m+1}$ where n, m, p and R^5 are as defined in claim 2.
- 5. A compound according to any one of the preceding claims R^3 is a group of formula $-(CH_2)_qOC(0)$ $C(R^6)CR^7R^8$ where q is an integer of from 1 to 12, and R^6 , R^7 and R^8 are independently selected from hydrogen or alkyl such as C_{1-4} alkyl.

- 6. A compound according to claim 5 where R^6 , R^7 and R^8 are all hydrogen.
- 7. A method of preparing a compound of formula (I) as defined in claim 1, which method comprises reacting a compound of formula (II)

where R^1 and R^2 are as defined in claim 1 and Y is a leaving group, with a group of formula (III)

$$R^{a} - X - R^{3}$$
 (III)

where X is as defined in claim 1 and $R^{3'}$ is a group R^{3} as defined in relation to formula (I) or a precursor group which may be reacted to form a group R^{3} and R^{a} is hydrogen or a lower alkyl group; and thereafter if necessary converting a group $R^{3'}$ to a group R^{3} .

8. A method according to claim 7 wherein R^3 is a group of formula $(CH_2)_qOH$, and this is subsequently converted to R^3 by reaction with an acid halide of formula ZC(O) $C(R^6)CR^7R^8$ where Z is a halogen and R^6 , R^7 and R^8 are as defined in claim 5, in the presence of a base.

9. A process for preparing a compound of formula (II) as defined in claim 7 which comprises reacting a compound of formula (IV)

$$\begin{array}{c|c}
R^1 & N & Y \\
N & N & N \\
Y & & & \\
(IV) & & & \\
\end{array}$$

where R^1 is as defined in relation to formula (I), Y is as defined in relation to formula (II) and Y' is a leaving group, with a compound of formula (V)

$$R^2H$$
 (V)

where R^2 is as defined in relation to formula (I), in the presence of a base.

10. A method according to claim 9 wherein the compound of formula (IV) is prepared by reacting a compound of formula (VI)

(VI)

wherein Y, Y' and Y" are the same or different leaving groups, with a compound of formula (VII)

16

 R^1H (VII)

where R^1 is as defined in claim 1, in the presence of a base.

- 11. A method according to claim 10 wherein the compound of formula (IV) is converted to a compound of formula (II) in situ.
- 12. A polymeric compound which has been derived from a compound of formula (I).
- 13. A polymeric compound according to claim 12 which comprises a polymer or copolymer including repeating units of formula (VIII)

$$\begin{array}{c|c}
R^1 & N & R^2 \\
\hline
N & N & \\
\hline
R^9 & t
\end{array}$$

(VIII)

where R^1 , R^2 and X are as defined in relation to formula (I), t is an integer in excess of 5, and R^9 is a saturated derivative of R^3 as defined in relation to formula (I).

14. A polymeric compound according to claim 13 wherein ${\rm XR}^9$ is a moiety of formula (IX)

17

$$-NR^{4}(CH_{2})_{qO} \xrightarrow{O} R^{6}$$

$$R^{7} R^{8}$$
(IX)

- 15. A substrate which is coated with a polymeric compound according to any one of claims 12 to 14.
- 16. A substrate according to claim 15 which is a fabric.

INTERNATIONAL SEARCH REPORT

int tional Application No PCT/GB 98/02104

			191740 307	02101
A. CLASSII IPC 6	FICATION OF SUBJECT MATTER C07D251/70 C08F20/68			
According to	International Patent Classification (IPC) or to both national classificati	on and IPC		
B. FIELDS	SEARCHED			
Minimum do IPC 6	cumentation searched (classification system followed by classification CO7D CO8F	symbols)		
Documentat	ion searched other than minimum documentation to the extent that suc	ch documents are inclu	ded in the fields sea	rched
Electronic d	ata base consulted during the international search (name of data base	and, where practical,	search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the relev	ant passages		Relevant to claim No.
A	EP 0 366 884 A (AMERICAN CYANAMID 9 May 1990 see claims 3,8	CO)		1,12
A	WO 97 13024 A (SECR DEFENCE; WILL: ROBERT (GB); BREWER STUART ANSON (10 April 1997 cited in the application see page 1; claims			1,12,16
Α	GB 1 102 903 A (DAIKIN) 14 February cited in the application see claims 1,8	ary 1968		1,12
Furth	ner documents are listed in the continuation of box C.	V Patent family r	nembers are listed l	n annex.
<u> </u>	ner documents are listed in the continuation of box C.		members are listed li	
"A" docume filing d "E" earlier of filing d "L" docume which citation "O" docume other r "P" docume later th	national filing date the application but tory underlying the laimed invention be considered to cument is taken alone laimed invention rentive step when the re other such docu- is to a person skilled			
	actual completion of theinternational search	_	the international sea	rch report
	6 September 1998	24/09/1	998	
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3018	Authorized officer De Jong	, B	

INTERNATIONAL SEARCH REPORT

Information on patent family members

In dional Application No PCT/GB 98/02104

	ent document in search repor	t	Publication date	I	Patent family member(s)		Publication date
EP	0366884	Α	09-05-1990	US	5175201	A	29-12-1992
				AT	132493	T	15-01-1996
				CA	1339662	Α	10-02-1998
				DE	68925339	D	15-02-1996
				DE	68925339	T	01-08-1996
				JP	2172980	Α	04-07-1990
				MX	169828	В	27-07-1993
				NO	302829	В	27-04-1998
				U\$	5410051	Α	25-04-1995
				US	5359014	Α	25 - 10-1994
WO	9713024	Α	10-04-1997	EP	0854951	Α	29-07-1998
				GB	2318354	Α	22-04-1998
GB	1102903	A		JP	48041152	В	05-12-1973
				CH	253565	Ā	
				CH	443875	В	
				DE	1494430	Ā	09-10-1969
				FR	1438617		29-07-1966