Searching for Anomalies in the ZTF Catalog of Periodic Variable Stars

Periodic variable stars (PVSs)

- Source: Pulsations, eclipsing, and more ...
- The physics of sources encoded in their light curves
- Search for wild cats → new discoveries

How to tackle the problem? Machine Learning!

20 TB data/night.

LSST – Commence in 2023

- When the candidate number is small scan one by one
- What if the number increase exponentially?

Machine learning would be a reliable and automatic method!

Aim – Use ML to search for anomalous PVSs

Data pre-processing – Feed meaningful info to machine

The Zwicky Transient Facility Catalog of Periodic Variable Stars

Xiaodian Chen¹, Shu Wang¹, Licai Deng¹, Richard de Grijs^{2,3,4}, Ming Yang⁵, and Hao Tian⁶

The Anomalies

- Anomalous periodic variables are
 - Irregular oscillating
 - High variability

Cooler

Illustrations

- Plotted HR-Diagram
- Anomalies are
 - Brighter
 - Cooler
- Corresponds to evolved stars In their late phase of evolution

The Anomalies

- Located in the vicinity of the Galactic disk
- Younger (with respect to the Galactic age)

Image credit: symmetrymagazine.org

Detailed Spectroscopic Follow-Up Is Strongly Recommended!

Classifications Using The SIMBAD Labels

Class labels from the SIMBAD catalogue

Reliable but more expensive

Confusion Matrix

Good accuracy for SOME classes

Conclusion

I showed the application of machine learning in Astronomy for ...

- 1. Detecting anomalous periodic variable stars
- 2. Building classification model for periodic variable stars

Thank You

