Statistical Efficacy of Distance Matrix Anonymization

Coleman Harris

INTRODUCTION

- •Disease mapping important in revealing spatial distribution of disease outbreak
- Potential privacy issues
- Location anonymization is one solution,
 but knowledge of pairwise distances
 between locations has privacy risks
- Graph theoretic linkage attacks
- •Kroll & Schnell introduce method to anonymize distance matrices using Lipschitz embedding^[1]
 - Suggests reasonable privacy protections while upholding statistical properties
- •Is geographically weighted regression (GWR) robust to using the Lipschitz embedded distance matrix?

DATA

Allegheny County Property Assessment^[2]

- Over 575k observations, 86 features
- •Used sample of n = 5000

METHODS

1.Fit OLS model for COUNTYTOTAL to inform GWR parameters2.Fit GWR model for all locations, generating coefficients for:

- Original dataset
- Lipschitz embedded dataset

3.Compare GWR from two models on:

- R² (e.g. model fit)
- Empirical distribution of model coefficients

Geographically weighted regression is robust to data privacy protections implemented via Lipschitz embedding

Figure 1: Empirical distribution of model coefficients, by data-generating method

Take a picture to view the code & analysis

FULL MODEL

County Total = $\hat{\beta}_0 + \hat{\beta}_1$ (Sale Price) + $\hat{\beta}_2$ (Total Rooms) + $\hat{\beta}_3$ (Half Baths) + $\hat{\beta}_4$ (Fireplaces) + $\hat{\beta}_5$ (Finished Living Area) + $\hat{\beta}_6$ (Prev. Sale Price)

RESULTS

Table 1: Comparison of coefficients by data-generating met

	Intercept	Price	Rooms	Baths	Fireplaces	Area	Price
Original	0.000	0.361	-0.096	0.070	0.093	0.425	0.250
Lipschitz	-0.003	0.335	-0.097	0.074	0.094	0.429	0.249
			Table 2: Cor data-genera		_		
				R^2	Adj. R^2		

DISCUSSION

- Coefficient estimates are similar, but embedded estimates have larger variability in empirical distribution
- GWR model SEs potentially incorrect
- Tradeoff in privacy protections offered by embedding and reduction of $\sim 2.5\%$ in R^2
- Given that the Lipschitz procedure is compatible with GWR, this implies it can be implemented in other spatial techniques
- Moran's I, PCNM
- Lipschitz parameters were set using estimates from Kroll & Schnell – different parameter sets may impact GWR models
- Because GWR relies on bandwidth, dataset size may play a role in its compatibility with the Lipschitz procedure

REFERENCES

- 1. Kroll, M., & Schnell, R. (2016).

 Anonymisation of geographical distance matrices via Lipschitz embedding.

 International journal of health geographics, 15(1), 1.
- 2. https://catalog.data.gov/dataset/ allegheny-county-property-assessments

