UNIVERSIDADE FEDERAL DA PARAÍBA - UFPB CENTRO DE INFORMÁTICA - CI DEPARTAMENTO DE COMPUTAÇÃO CIENTÍFICA - DCC DISCIPLINA: Métodos Matemáticos I

Aluno(a):

Lista de Exercícios. Formas Bilineares e Formas Quadráticas.

Obs. Na resolução de cada exercício indique todos os passos para que o raciocínio desenvolvido fique extremamente claro. Os cálculo em si podem, e devem, ser feitos usando algum *software* e colocando apenas os resultados. Por exemplo, no cálculo dos autovalores e autovetores escreva a matriz e em seguida os seus autovalores e respectivos autovetores associados.

01. Considere a forma quadrática $\mathbf{q}: \mathbb{R}^3 \to \mathbb{R}$ cuja expressão na base canônica do \mathbb{R}^3 para um vetor genérico $\mathbf{v} = (x_1, x_2, x_3)$ é:

(a)
$$\mathbf{q}(\mathbf{v}) = 3x_1^2 + 4x_1x_2 - x_2^2 + 8x_1x_3 - 6x_2x_3 + x_3^2$$
.

(b)
$$\mathbf{q}(\mathbf{v}) = x_1^2 - 2x_2x_3 + x_1x_3$$
.

(c)
$$\mathbf{q}(\mathbf{v}) = x_1^2 - 6x_1x_2 + 4x_1x_3 + 7x_2^2 - 10x_2x_3 + 8x_3^2$$
.

(d)
$$\mathbf{q}(\mathbf{v}) = x_1^2 - 4x_1x_2 + 6x_1x_3 + 6x_2^2 - 18x_2x_3 + 4x_3^2$$
.

Faça o que se pede nos itens (i)-(viii):

- (i) use a identidade de polarização e determine a forma bilinear simétrica associada;
- (ii) determine a matriz **A** da forma quadrática **q** (ou da forma bilinear simétrica associada);
- (iii) determine os autovalores da matriz A;
- (iv) baseando no item (iii) diga quais são o índice e o posto de q (ou de
 A) e diga também se q ou A é positiva definida, negativa definida, não negativa, não positiva ou indefinida (nenhuma delas);
- (v) determine uma base ortonormal $\mathbf{B_2} = \{v_1, v_2, v_3\}$ do \mathbb{R}^3 formada por autovetores de \mathbf{A} ;
- (vi) considerando um vetor genérico \mathbf{v} do \mathbb{R}^3 representado na base ortonormal $\mathbf{B_2}$ por $\mathbf{v} = x_1'v_1 + x_2'v_2 + x_3'v_3$ escreva a expressão de $\mathbf{q}(\mathbf{v})$ nesta base $\mathbf{B_2}$ como $\mathbf{q}(\mathbf{v}) = \lambda_1(x_1')^2 + \lambda_2(x_2')^2 + \lambda_3(x_3')^2$;

- (vii) tome \mathbf{v} , representado na base canônica $\mathbf{B_1}$ do \mathbb{R}^3 , como $\mathbf{v} = (1,1,1)$ e escreva v na base $\mathbf{B_2}$; em seguida calcule $\mathbf{q}(\mathbf{v})$ usando a base canônica e também usando na base $\mathbf{B_2}$ de autovetores e verifique se o valor de $\mathbf{q}(\mathbf{v})$ é o mesmo ao usar as duas representações de \mathbf{v} ;
- (viii) determine como fica a expressão dada pela **lei da inércia de Sylvester** da forma quadrática \mathbf{q} (soma de quadrados com coeficientes -1 ou +1).

Referências.

- [1] J. L. Boldrini, S. R. Costa, V. L. Figueiredo, H. G. Wetzler; Álgebra Linear, 3a edição, editora HARBRA, 1986.
- [2] E. L. Lima; Álgebra Linear, Coleção Matemática Universitária, 6a edição, 2003.
- [3] S. Lipschutz, M. Lipson; Álgebra Linear, tradução da 4a edição norte americana "Schaum's outline of theory and problems of linear algebra", Bookman, 2011.
- [4] G. Strang; Álgebra Linear e suas aplicações, tradução da 4a edição norte-americana "Linear algebra and its application", Cengage Learning, 2014.