Complementos de Análisis

Práctica 1 - Números reales

Ejercicio 1 (Propiedad arquimediana). Sean $x, y \in \mathbb{R}$ con x > 0. Mostrar que existe $n \in \mathbb{N}$ tal que

$$nx > y$$
.

Ejercicio 2 (\mathbb{Q} es denso en \mathbb{R}). Mostrar que si $x, y \in \mathbb{R}$ y x < y, entonces existe $p \in \mathbb{Q}$ tal que

$$x .$$

Ejercicio 3.

- (a) Se consideran los intervalos $[0, \frac{1}{n})$, donde n recorre todos los números naturales. ¿Existe algún número que pertenezca a todos ellos?
- (b) La misma pregunta pero ahora con los intervalos $(0, \frac{1}{n})$.

Ejercicio 4. Sea A un conjunto de números reales no vacío y acotado inferiormente. Definamos $-A := \{-x \mid x \in A\}$. Probar que

$$\inf A = -\sup(-A), \quad \sup A = -\inf(-A).$$

Ejercicio 5. Hallar cotas superiores e inferiores, ínfimo, supremo, máximo y mínimo (si existen) de los siguientes conjuntos de números reales:

(a)
$$A = (-\infty, 1)$$
.
(b) $B = \left\{ 2 - \frac{1}{n} : n \in \mathbb{N} \right\}$.
(c) $C = [-2, 1)$.
(d) $D = \left\{ \frac{1}{x^2} : x \in \mathbb{R} \setminus \{0\} \right\}$.
(e) $E = (-2, -1) \cup \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$.

Ejercicio 6. Sea A un conjunto acotado en $\mathbb R$ que contiene al menos dos puntos. Probar que

- (a) $-\infty < \inf(A) < \sup(A) < \infty$.
- (b) si B es un subconjunto no vacío de A, entonces $\inf(A) \leq \inf(B) \leq \sup(B) \leq \sup(A)$.

Ejercicio 7. Sean $A, B \subset \mathbb{R}$ acotados y no vacíos. Determinar cuáles de los siguientes enunciados son verdaderos y cuáles falsos.

- (a) $\sup(A \cap B) \le \min\{\sup A, \sup B\}.$
- (b) $\sup(A \cap B) = \min\{\sup A, \sup B\}.$
- (c) $\sup(A \cup B) \ge \max\{\sup A, \sup B\}$.

(d) $\sup(A \cup B) = \max\{\sup A, \sup B\}.$

Ejercicio 8. Sean $f:[0,1] \longrightarrow \mathbb{R}$ y $g:[0,1] \longrightarrow \mathbb{R}$ funciones acotadas y sea $h:[0,1] \longrightarrow \mathbb{R}$ dada por h(x) := f(x) + g(x). Probar que

$$\sup_{x \in [0,1]} h(x) \le \sup_{x \in [0,1]} f(x) + \sup_{x \in [0,1]} g(x).$$

Dar un ejemplo donde valga la igualdad y otro donde no.