Analysis 1

Jiaqi Wang

December 14, 2023

Contents

1	Sets	, Spaces and Function 6				
	1.1	Metric Space				
	1.2	Normed Vector Spaces				
	1.3	The reverse triangle inequality				
2	Rea	Numbers 8				
	2.1	What are the real numbers?				
	2.2	The completeness axiom				
	2.3	Alternative characterizations of suprema and infima				
	2.4	Maxima and minima				
	2.5	The Archimedean property				
	2.6	Computation rules for suprema				
	2.7	Bernoulli's inequality				
3	Sequences 11					
	3.1	Sequence				
	3.2	Terminology around sequences				
	3.3	Convergence of sequences				
	3.4	Examples and limits of simple sequences				
	3.5	Uniqueness of limits				
	3.6	More properties of convergent sequences				
	3.7	Limit theorems for sequences taking values in a normed vector space				
	3.8	Index shift				
4	Real	l-valued sequences 14				
	4.1	Terminology				
	4.2	Monotone, bounded sequences and convergent				
	4.3	Limit theorems				
	4.4	The squeeze theorem				
	4.5	Divergence to ∞ and $-\infty$				
	4.6	Limit theorems for improper limits				
	4.7	Standard sequences				
	4.8	Sequences with values in \mathbb{R}^d				

CONTENTS

5	Serie					
	5.1	Definition				
	5.2	Geometric series				
	5.3	The harmonic series				
	5.4	The hyperharmonic series				
	5.5	Only the tail matters for convergence				
	5.6	Divergence test				
	5.7	Limit laws for series				
6	Serie	es with positive terms 22				
	6.1	Comparison test				
	6.2	Limit comparison test				
	6.3	Ratio test				
	6.4	Limit ratio test				
	6.5	Root test				
	6.6	Limit root test				
7	Serie	es with general terms 25				
	7.1	Series with real terms: the Leibniz test				
	7.2	Series charactersization of completeness in normed vector space				
	7.3	The Cauchy product				
8		equences, lim sup and lim inf				
	8.1	Index sequences and subsequences				
	8.2	(Sequential) accumulation points				
	8.3	Subsequences of a converging sequence				
	8.4	lim sup				
	8.5	liminf				
	8.6	Relations between lim, lim sup and lim inf				
9	Point-set topology of metric spaces 3					
	9.1	Open sets				
	9.2	Closed sets				
	9.3	Cauchy sequences				
	9.4	Completeness				
	9.5	Series characterization of completeness in normed vector spaces				
10	Com	pactness 32				
	10.1	Boundedness and total boundedness				
	10.2	Alternative characterization of compactness				
11	Limi	ts and continuity 33				
		Accumulation points				
		Limit in an accumulation point				
		Uniqueness of limits				
		Sequential characterization of limits				
		Limit laws				
		Continuity				
		Sequential characterization of continuity				
		Rules for continuous functions				
	11.0	1xuivo 101 vonumuvuo 1umvuviio				

CONTENTS

	11.9 Images of compact sets under continuous functions are compact	33 33
12	Real-valued functions	34
	12.1 More limit laws	34
	12.2 Building of standard functions	34
	12.3 Continuity of standard functions	34
	12.4 Limits from the left and from the right	34
	12.5 The extended real line	34
	12.6 Limits to ∞ or $-\infty$	34
	12.7 Limits at ∞ and $-\infty$	34
	12.8 The Intermediate Value Theorem	34
	12.9 The Extreme Value Theorem	34
	12.10Equivalence of norms	34
	12.11Bounded linear maps and operator norms	34
12	Differentiability	35
13	13.1 The derivative as a function	35
	13.2 Constant and linear maps are differentiable	35
	13.3 Bases and coordinates	35
	13.4 The matrix representation	35
	13.5 The chain rule	35
	13.6 Sum, product and quotient rules	35
		35
	13.7 Differentiability of components	35
	13.8 Differentiability implies continuity	
	13.9 Derivative vanishes in local maxima and minima	35
	13.10The Mean Value Theorem	35
14	Differentiability of standard functions	36
	14.1 Global context	36
	14.2 Polynomials and rational functions are differentiable	36
	14.3 Differentiability of the standard functions	36
15	Directional and partial derivatives	37
	15.1 A recurring and very important construction	37
	15.2 Directional derivatives	37
	15.3 Partial derivatives	37
	15.4 The Jacobian of a map	37
	15.5 Linearization and tangent planes	37
	15.6 The gradient of a function	37
16		20
10	The Mean-Value Inequality 16.1. The mean value inequality for functions defined on an interval.	38 38
	16.1 The mean-value inequality for functions defined on an interval	
	16.2 The mean-value inequality for functions on general domains	38
	16.3 Continuous partial derivatives imply differentiability	38

CONTENTS

17	Higher order derivatives	39
	17.1 Multilinear maps	39
	17.2 Relation to <i>n</i> -fold directional derivatives	39
	17.3 A criterion for higher differentiability	39
	17.4 Symmetry of second order derivatives	39
	17.5 Symmetry of higher-order derivatives	39
18	Polynomials and approximation by polynomials	40
	18.1 Homogeneous polynomials	40
	18.2 Taylor's theorem	40
	18.3 Taylor approximations of standard functions	40
19	Banach fixed point theorem	41
20	Implicit function theorem	42
	20.1 The objective	42
	20.2 Notation	42
	20.3 The implicit function theorem	42
	20.4 The inverse function theorem	42
21	Function sequences	43
	21.1 Point-wise convergence	43
	21.2 Uniform convergence	43
	21.3 Preservation of continuity under uniform convergence	43
	21.4 Differentiability theorem	43
	21.5 The normed vector space of bounded functions	43
22	Function series	44
	22.1 The Weierstrass M-test	44
	22.2 Conditions for differentiation of function series	44
23	Power series	45
	23.1 Convergence of power series	45
	23.2 Standard functions defined as power series	45
	23.3 Operations with power series	45
	23.4 Differentiation of power series	45
	23.5 Taylor series	45
24	Riemann integration in one dimension	46
	24.1 Riemann integrable functions and the Riemann integral	46
	24.2 Sums, products of Riemann integrable functions	46
	24.3 Continuous functions are Riemann integrable	46
	24.4 The fundamental theorem of calculus	46
25	Riemann integration in multiple dimensions	47
-	25.1 Partitions in multiple dimensions	47
	25.2 Riemann integral on rectangles in \mathbb{R}^n	47
	25.3 Properties of the multidimensional Riemann integral	47
	25.4 Continuous functions are Riemann integrable	47
	25.5 Fubini's theorem	47
		. /

	001 mm1 m
CONTENTS	CONTENTS
A JIN LEAN LO	CONTEINIS

	25.6 The (topological) boundary of a set	47 47
26	Change-of-variables Theorem	48
26	26.1 Polar coordinates	48 48
		48

1 Sets, Spaces and Function

1.1 Metric Space

Definition 1.1.1 – distance Let X be a set. A function $d: X \times X \to X$ is called a *distance* on X if it satisfies the following properties:

- (i) Positivity: For all $a, b \in X$, it holds that $d(a, b) \ge 0$.
- (ii) Non-degeneracy: For all $a, b \in X$, if d(a, b) = 0, then a = b.
- (iii) Symmetry: For all $a, b \in X$, it holds that d(a, b) = d(b, a).
- (iv) Triangle inequality: For all $a,b,c \in X$, it holds that $d(a,c) \le d(a,b) + d(b,c)$.
- (v) Reflexivity: For all $a \in X$, it holds that d(a, a) = 0.

Usually conditions (ii) and (v) are combined into one condition: For all $a, b \in X, d(a, b) = 0$ if and only if a = b.

Definition 1.1.2 – metric space A metric space is a pair (X, dist), where X is a set and dist is a distance function $dist : X \times X \to \mathbb{R}$ on X.

Example 1.1.3 Let $X = \{ \text{Die Hard, Barbie, Oppenheimer} \}$

d	Die Hard	Barbie	Oppenheimer
Die Hard	0	5	2
Barbie	5	0	3
Oppenheimer	2	3	0

Then d is a distance function on X

Definition 1.1.4 – ball in a metric space Let (X,d) be a metric space. Let $c \in X$ and $r \in \mathbb{R}$. The ball of radius r centered at c is the set

$$B(c,r) = \{x \in X | d(c,x) < r\}$$

Example 1.1.5 If $(X,d) = (\mathbb{R}, d_{\mathbb{R}})$, then $B(1,3) = (-2,4) = \{x \in \mathbb{R} \mid |x-1| < 3\}$

Example 1.1.6 Let $X := \{ \text{Die Hard, Barbie, Oppenheimer} \}$, with distance defined before. Then $B(\text{Barbie, 4}) = \{ \text{Barbie, Oppenheimer} \} = \{ x \in X \mid d(x, \text{Barbie}) < 3 \}.$

1.2 Normed Vector Spaces

Definition 1.2.1 – norm Let V be a vector space over \mathbb{R} . A norm on V is a function $\|\cdot\|: V \to \mathbb{R}$ such that

- Positivity: for all $u, v \in V$ we have $||u|| \ge 0$ and ||u|| = 0 if and only if u = 0.
- Non-degeneracy: for all $u \in V$ if ||u|| = 0 then u = 0.
- Absolute Homogeneity: for all $u \in V$ and for all $\lambda \in \mathbb{R}$ we have $||\lambda u|| = |\lambda|||u||$.
- Triangle inequality: for all $u, v \in V$ we have $||u + v|| \le ||u|| + ||v||$.

Example 1.2.2 Let $V = \mathbb{R}^n$. Then $\|\cdot\|_2 : \mathbb{R}^n \to \mathbb{R}$ defined by $\|x\|_2 = \sqrt{x_1^2 + \dots + x_n^2}$ is a norm on \mathbb{R}^n .

Proposition 1.2.3 – Let $(V, \|\cdot\|)$ be a normed vector space. Then the function $d: V \times V \to \mathbb{R}$ defined by $d(u, v) = \|u - v\|$ is a distance on V. And (V, d) is a metric space.

Remark 1.2.4 (Notation for Euclidean distance on \mathbb{R}^d and \mathbb{R}). We will usually write $\mathrm{dist}_{\mathbb{R}^d}$ instead of $\mathrm{dist}_{\|\cdot\|_2}$ for the standard (Euclidean) distance on \mathbb{R}^d . In particular, if $d \geq 2$, we have

$$\operatorname{dist}_{\mathbb{R}^d}(v, w) = \|v - w\|_2 = \sqrt{\sum_{i=1}^d (v_i - w_i)^2}$$

and if d = 1 we just have

$$dist_{\mathbb{R}} = |v - w|$$

And if there is no room for confusion, we will just leave out the subscript altogether and write dist instead of $\operatorname{dist}_{\mathbb{R}^d}$.

1.3 The reverse triangle inequality

Lemma 1.3.1 – Reverse triangle inequality Let $(V, \|\cdot\|)$ be a normed vector space. Then for all $u, v \in V$ we have,

$$|||v|| - ||w||| \le ||v - w||$$

2 Real Numbers

2.1 What are the real numbers?

Definition 2.1.1 – Real numbers The real numbers are a complete totally ordered field.

2.2 The completeness axiom

Definition 2.2.1 – Upper and Lower bound We say a number $M \in \mathbb{R}$ is an *upper bound* for a set $A \subseteq \mathbb{R}$ if

$$\forall a \in A[a \leq M].$$

We say a number $m \in \mathbb{R}$ is a *lower bound* for a set $A \subseteq \mathbb{R}$ if

$$\forall a \in A[a \ge M].$$

Given the definition of upper and lower bounds, we define what it means for a set to be bounded from above, bounded from below and just bounded.

Definition 2.2.2 – bounded from above, bounded from below, bounded A set $A \subseteq \mathbb{R}$ is *bounded from above* if there exists an upper bound for A.

A set $A \subseteq \mathbb{R}$ is *bounded from below* if there exists a lower bound for A.

A set $A \subseteq \mathbb{R}$ is *bounded* if it is bounded from above and bounded from below.

Definition 2.2.3 – Least upper bound (supremum) Precisely, *M* is a *least upper bound* of a subset *A* if both

- 1. *M* is an upper bound of *A*.
- 2. For every upper bound $L \in \mathbb{R}$ of A, it holds that $M \leq L$.

Proposition 2.2.4 – Suppose both *M* and *W* are a least upper bound of a subset $A \subseteq \mathbb{R}$. Then M = W.

Axiom 2.2.5 – Completeness axiom We say that a totally ordered field \mathbf{R} satisfies the *completeness axiom* if every nonempty subset of \mathbf{R} that is bounded from above has a least upper bound.

Lemma 2.2.6 – Every non-empty subset of the real line that is bounded from below has a *largest lower bound*.

Definition 2.2.7 – infimum We usually call the largest lower bound of a non-empty set $A \subseteq \mathbb{R}$ that is bounded from below the *infimum* of A, and we denote it by $\inf A$.

2.3 Alternative characterizations of suprema and infima

Proposition 2.3.1 – alternative characterizationa of supremum Let $A \subseteq \mathbb{R}$ be non-empty and bounded from above. Let $M \in \mathbb{R}$. Then M is the supremum of A if and only if

- 1. *M* is an upper bound for *A*,
- 2. and

for all
$$\varepsilon > 0$$
,
there exists $a \in A$,
 $a > M - \varepsilon$.

Proposition 2.3.2 – alternative characterizationa of infimum Let $A \subseteq \mathbb{R}$ be non-empty and bounded from below. Let $m \in \mathbb{R}$. Then m is the infimum of A if and only if

- 1. m is a lower bound for A,
- 2. and

for all
$$\varepsilon > 0$$
,
there exists $a \in A$,
 $a < m + \varepsilon$.

These alternative characterizations of the supremum and infimum really provide a standard way to determining the supremum and infimum of subsets of the real line.

2.4 Maxima and minima

Definition 2.4.1 – maximum and minimum Let $A \subseteq \mathbb{R}$ be a subset of the real numbers. We say that $y \in A$ is the *maximum* of A, and write $y = \max A$, if

for all
$$a \in A$$
, $a \le y$.

We say that $x \in A$ is the *minimum* of A, and write $x = \min A$, if

for all
$$a \in A$$
, $a \ge x$.

Remark 2.4.2. Even if a set $A \subseteq \mathbb{R}$ is non-empty and bounded, it may not have a maximum or minimum. For example, the set (0,1) has no maximum or minimum.

Proposition 2.4.3 – Let A be a subset of \mathbb{R} . If A has a maximum, then A is non-empty and bounded from above, and $\sup A = \max A$. If A has a minimum, then A is non-empty and bounded from below, and $\inf A = \min A$.

Proposition 2.4.4 Let A be a subset of \mathbb{R} . Assume that A is non-empty and bounded from above. If $\sup A \in A$ then A has a maximum and $\max A = \sup A$.

Proposition 2.4.5 – Let A be a subset of \mathbb{R} . Assume that A is non-empty and bounded from below. If $\inf A \in A$ then A has a minimum and $\min A = \inf A$.

2.5 The Archimedean property

Proposition 2.5.1 – Archimedeean property For every real number $x \in \mathbb{R}$ there exists a natural number $n \in \mathbb{N}$ such that x < n.

Given this proposition, we can define the ceiling function.

Definition 2.5.2 – ceiling function The *ceiling function* $\lceil \cdot \rceil : \mathbb{R} \to \mathbb{Z}$ is defined as follows. For $x \in \mathbb{R}$, $\lceil x \rceil$ denotes the smallest integer $z \in \mathbb{Z}$ such that $x \leq z$.

Proposition 2.5.3 – For every two real numbers $a, b \in \mathbb{R}$ with a < b there exists a $q \in \mathbb{Q}$ with a < q < b.

2.6 Computation rules for suprema

In the proposition below, we use the defintions

$$A + B = \{a + b \mid a \in A, b \in B\}$$

and

$$\lambda A = \{ \lambda a \mid a \in A \}$$

for subsets $A, B \subseteq \mathbb{R}$ and a scalar $\lambda \in \mathbb{R}$.

Proposition 2.6.1 – Let A, B, C, D be non-empty subsets of \mathbb{R} . Assume that A and B are bounded from above and C and D are bounded from below. Then

- 1. $\sup(A+B) = \sup A + \sup B$.
- 2. $\inf(C+D) = \inf C + \inf D$.
- 3. For all $\lambda \geq 0$, $\sup(\lambda A) = \lambda \sup A$.
- 4. For all $\lambda \leq 0$, $\sup(\lambda A) = \lambda \inf A$.
- 5. $\sup(-C) = -\inf C$.
- 6. $\inf(-C) = -\sup C$.

2.7 Bernoulli's inequality

Proposition 2.7.1 – Bernoulli's inequality Let $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Then

- 1. If $x \ge -1$, then $(1+x)^n \ge 1 + nx$.
- 2. If $x \ge 0$ and $n \ge 2$, then $(1+x)^n \ge 1 + nx$.

3 Sequences

3.1 Sequence

Definition 3.1.1 – Sequence A sequence is a function for which the domain is \mathbb{N} .

$$a: \mathbb{N} \to Y$$

Y can be any set.

Example 3.1.2 Here are some functions that are sequences:

- 1. $a: \mathbb{N} \to \mathbb{Q}$
- 2. $b: \mathbb{N} \to (\mathbb{N} \to Y)$
- 3. $c: \mathbb{N} \to \mathbb{N}$

And some functions that are not sequences:

- 1. $d: (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
- 2. $e: \mathbb{Q} \to \mathbb{N}$

3.2 Terminology around sequences

3.2.1 Bounded sequences

Definition 3.2.2 – bouneded sequence Let (X, dist) be a metric space. We say a sequence $a : \mathbb{N} \to X$ is bounded if

```
there exists q \in X,
there exists M > 0,
for all n \in \mathbb{N},
\operatorname{dist}(a_n, q) \leq M.
```

In a normed linear space, we can use a simpler criterion to check whether a sequence is bounded. That is the content of the following proposition.

Proposition 3.2.3 – Let $(V, \|\cdot\|)$ be a normed vector space. Let $a : \mathbb{N} \to V$ be a sequence. The sequence a is bounded if and only if

there exists
$$M > 0$$
,
for all $n \in \mathbb{N}$,
 $||a_n|| \le M$.

3.3 Convergence of sequences

Definition 3.3.1 – Convergence of sequences Let (X, dist) be a metric space. We say that a sequence $a : \mathbb{N} \to X$ converges to a point $p \in X$ if

```
for all \varepsilon > 0,
there exists N \in \mathbb{N},
for all n \ge N,
\operatorname{dist}(a_n, p) < \varepsilon.
```

We sometimes write

$$\lim_{n\to\infty}a_n=p$$

to express that the sequence (a_n) converges to p.

Definition 3.3.2 – Divergence of sequences Let (X, dist) be a metric space. A sequence $a : \mathbb{N} \to X$ is called *divergent* is it is not convergent.

3.4 Examples and limits of simple sequences

Proposition 3.4.1 – The constant sequence Let (X, dist) be a metric space. Let $p \in X$ and assume that the sequence (a_n) is given by $a_n = p$ for every $n \in \mathbb{N}$. We also say that (a_n) is a constant sequence. Then $\lim_{n\to\infty} = p$.

Example 3.4.2 A standard limit Let $a : \mathbb{N} \to \mathbb{R}$ be a real-valued sequence such that $a_n = 1/n$ for $n \ge 1$. Then $a : \mathbb{N} \to \mathbb{R}$ converges to 0.

Proof. Let $\varepsilon > 0$. Choose $N = \lceil 1/\varepsilon \rceil + 1$. Take $n \ge N$. Then

$$\operatorname{dist}_{\mathbb{R}}(a_n, 0) = |a_n - 0| = |1/n| = 1/n \le 1/N < \varepsilon.$$

3.5 Uniqueness of limits

Proposition 3.5.1 – Uniqueness of limits Let (X, dist) be a metric space and let $a : \mathbb{N} \to \mathbb{R}$ be a sequence in X. Assume that $p, q \in X$ and assume that

$$\lim_{n\to\infty} = p$$
 and $\lim_{n\to\infty} a_n = q$

Then p = q.

3.6 More properties of convergent sequences

Proposition 3.6.1 – Let (X, dist) be a metric space and suppose that $a : \mathbb{N} \to X$ is a sequence. Let $p \in X$. Then the sequence $a : \mathbb{N} \to X$ converges to p if and only if the real-valued sequence

$$n \mapsto \operatorname{dist}(a_n, p)$$

converges to 0 in \mathbb{R} .

Proposition 3.6.2 – Convergent sequences are bounded Let (X, dist) be a metric space. Let $a : \mathbb{N} \to X$ be a sequence in X converging to $p \in X$. Then the sequence $a : \mathbb{N} \to X$ is bounded.

Proposition 3.6.3 – Let (X, dist) be a metric space and let $a : \mathbb{N} \to X$ and $b : \mathbb{N} \to X$ be two sequences. Let $p \in X$ and suppose that $\lim_{n \to \infty} a_n = p$. Then $\lim_{n \to \infty} b_n = p$ if and only if

$$\lim_{n\to\infty} \operatorname{dist}(a_n,b_n) = 0$$

Corollary 3.6.4 – Eventually equal sequences have the same limit Let (X, dist) be a metric space and

let $a : \mathbb{N} \to X$ and $b : \mathbb{N} \to X$ be two sequences such that there exists an $N \in \mathbb{N}$ such that for all $n \ge N$,

$$a_n = b_n$$

Then the sequence $a: \mathbb{N} \to X$ converges if and only if the sequence $b: \mathbb{N} \to X$ converges. If the sequences converge, they have the same limit.

3.7 Limit theorems for sequences taking values in a normed vector space

Theorem 3.7.1 – Let $(V, \|\cdot\|)$ be a normed vector space and let $a: \mathbb{N} \to V$ and $b: \mathbb{N} \to V$ be two sequences. Assume that the $\lim_{n\to\infty} a_n$ exists and is equal to $p\in V$ and that the $\lim_{n\to\infty} b_n$ exists and is equal to $q\in V$. Let $\lambda: \mathbb{N} \to \mathbb{R}$ be a real-valued sequence. Let $\mu\in \mathbb{R}$. Assume that $\lim_{n\to\infty} \lambda_n = \mu$. Then

- 1. The $\lim_{n\to\infty} (a_n+b_n)$ exists and is equal to p+q.
- 2. The $\lim_{n\to\infty}(\lambda_n a_n)$ exists and is equal to μp .

3.8 Index shift

Proposition 3.8.1 – Index shift Let (X, dist) be a metric space and let $a : \mathbb{N} \to X$ be a sequence. Let $k \in \mathbb{N}$ and $p \in X$. Then the sequence $a : \mathbb{N} \to X$ converges to p if and only if the sequence $(a_{n+k})_n$ (i.e. the sequence $n \mapsto a_{n+k}$) converges to p.

4 Real-valued sequences

4.1 Terminology

Definition 4.1.1 – increasing, decreasing and monotone sequences We say a sequence (a_n) is

- 1. *increasing* if for every $n \in \mathbb{N}$, $a_{n+1} \ge a_n$
- 2. *strictly increasing* if for every $n \in \mathbb{N}$, $a_{n+1} > a_n$
- 3. *decreasing* if for every $n \in \mathbb{N}$, $a_{n+1} \leq a_n$
- 4. *strictly decreasing* if for every $n \in \mathbb{N}$, $a_{n+1} < a_n$
- 5. monotone if it is either increasing or decreasing
- 6. strictly monotone if it is either strictly increasing or strictly decreasing

Definition 4.1.2 – upper bound and lower bound for a sequence We say that a number $M \in \mathbb{R}$ is an *upper bound* for a sequence $a : \mathbb{N} \to \mathbb{R}$ if

for all
$$n \in \mathbb{N}$$

$$a_n \leq M$$

We say that a number $m \in \mathbb{R}$ is a *lower bound* for a sequence $a : \mathbb{N} \to \mathbb{R}$ if

for all
$$n \in \mathbb{N}$$

$$a_n \ge m$$

Definition 4.1.3 – bounded sequence We say that a sequence $a : \mathbb{N} \to \mathbb{R}$ is *bounded above* if there exists an $M \in \mathbb{R}$ such that M is an upper bound for a.

We say that a sequence $a : \mathbb{N} \to \mathbb{R}$ is *bounded below* if there exists an $m \in \mathbb{R}$ such that m is a lower bound for a.

Proposition 4.1.4 – Let $a : \mathbb{N} \to \mathbb{R}$ be a sequence. Then $a : \mathbb{N} \to \mathbb{R}$ is bounded if and only if it is both bounded above and bounded below.

4.2 Monotone, bounded sequences and convergent

Theorem 4.2.1 – Let (a_n) be an increasing sequence that is bounded from above. Then (a_n) convergent and

$$\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n \quad (=\sup\{a_n \mid n\in\mathbb{N}\})$$

Theorem 4.2.2 – Let (a_n) be a decreasing sequence that is bounded from below. Then (a_n) is convergent and

$$\lim_{n\to\infty}a_n=\inf_{n\in\mathbb{N}}a_n\quad (=\inf\{a_n\mid n\in\mathbb{N}\})$$

4.3 Limit theorems

Theorem 4.3.1 – Limit theorems for real-valued sequences Let $a : \mathbb{N} \to \mathbb{R}$ and $b : \mathbb{N} \to \mathbb{R}$ be two converging sequences, and let $c, d \in \mathbb{R}$ be real numbers such that

$$\lim_{n\to\infty}a_n=c \text{ and } \lim_{n\to\infty}b_n=d.$$

Then

- 1. The $\lim_{n\to\infty} (a_n+b_n)$ exists and is equal to c+d.
- 2. The $\lim_{n\to\infty} (a_n b_n)$ exists and is equal to $c\cdot d$.
- 3. If $d \neq 0$, then $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right)$ exists and is equal to $\frac{c}{d}$.
- 4. For every non-negative integer $m \in \mathbb{N}$, the limit $\lim_{n \to \infty} (a_n)^m$ exists and is equal to c^m .
- 5. If for every $n \in \mathbb{N}$, the number a_n is non-negative, then for every positive integer $k \in \mathbb{N} \setminus \{0\}$, the limit $\lim_{n \to \infty} (a_n)^{\frac{1}{k}}$ exists and is equal to $c^{\frac{1}{k}}$.

4.4 The squeeze theorem

Theorem 4.4.1 – The squeeze theorem Let $a,b,c: \mathbb{N} \to \mathbb{R}$ be three sequences. Suppose that there exists an $N \in \mathbb{N}$ such that for every $n \ge N$, we have

$$a_n \leq b_n \leq c_n$$

and assume $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n - L$ for some $L \in \mathbb{R}$. Then $\lim_{n\to\infty} b_n$ exists and is equal to L.

4.5 Divergence to ∞ and $-\infty$

Definition 4.5.1 – We say a sequence $a: \mathbb{N} \to \mathbb{R}$ diverges to ∞ and write

$$\lim_{n\to\infty}=\infty$$

if

for all $M \in \mathbb{R}$, there exists $N \in \mathbb{N}$, for all $n \ge N$, $a_n > M$.

Similarly, we say a sequence (a_n) diverges to $-\infty$ and write

$$\lim_{n\to\infty}a_n=-\infty$$

if

for all $M \in \mathbb{R}$, there exists $N \in \mathbb{N}$, for all $n \ge N$, $a_n < M$. **Proposition 4.5.2** – Let $a : \mathbb{N} \to \mathbb{R}$ be a sequence such that

$$\lim_{n\to\infty}a_n=\infty.$$

Then the sequence (a_n) is bounded from below. Similarly, let $b : \mathbb{N} \to \mathbb{R}$ be a sequence such that

$$\lim_{n\to\infty}b_n=-\infty.$$

Then the sequence (b_n) is bounded from above.

4.6 Limit theorems for improper limits

Theorem 4.6.1 – Limit theorems for improper limits Let $a,b,c,d:\mathbb{N}\to\mathbb{R}$ be four sequences such that

$$\lim_{n\to\infty} a_n = \infty$$
 and $\lim_{n\to\infty} c_n = -\infty$

the sequence (b_n) is bounded from below and the sequence (d_n) is bounded from above. Let $\lambda : \mathbb{N} \to \mathbb{R}$ be a sequence bounded below by some $\mu > 0$. Then

- i. $\lim_{n\to\infty}(a_n+b_n)=\infty$
- ii. $\lim_{n\to\infty}(c_n+d_n)=-\infty$
- iii. $\lim_{n\to\infty}(\lambda_n a_n)=\infty$
- iv. $\lim_{n\to\infty}(\lambda_n c_n)=-\infty$

Proposition 4.6.2 – Let $a: \mathbb{N} \to \mathbb{R}$ and $b: \mathbb{N} \to (0, \infty)$ be two sequences. Then

- 1. $\lim_{n\to\infty} a_n = \infty$ if and only if $\lim_{n\to\infty} (-a_n) = -\infty$.
- 2. $\lim_{n\to\infty} b_n = \infty$ if and only if $\lim_{n\to\infty} \frac{1}{b_n} = 0$.

4.7 Standard sequences

4.7.1 Geometric sequence

Proposition 4.7.2 – Standard limit of of geometric sequence Let $q \in \mathbb{R}$. The sequence (a_n) defined by $a_n := q^n$ for $n \in \mathbb{N}$

- converges to 0 if $q \in (-1,1)$
- converges to 1 if q = 1
- diverges to ∞ if q > 1
- diverges, but not to ∞ or $-\infty$ if $q \le -1$

4.7.3 The n^{th} root of n

Proposition 4.7.4 – Standard limit of the n^{th} **root of** n The sequence (a_n) defined by $a_n := \sqrt[n]{n}$ for $n \in \mathbb{N}$ converges to 1.

Corollary 4.7.5 – Let a > 0. Then the sequence (b_n) defined by $b_n := \sqrt[n]{a}$ converges to 1.

4.7.6 The number e

First let's define the sequence (a_n) by

$$a_n := \left(1 + \frac{1}{n}\right)^n$$
.

We show that (a_n) is increasing and bounded from above by 3. Hence (a_n) converges to some $e \in \mathbb{R}$ by the monotone convergence theorem.

Lemma 4.7.7 - The sequence (a_n) defined by $a_n := \left(1 + \frac{1}{n}\right)^n$ for $n \in \mathbb{N} \setminus \{0\}$ and $a_0 = 1$ is increasing.

Lemma 4.7.8 – The sequence (a_n) defined by $a_n := (1 + \frac{1}{n})^n$ for $n \in \mathbb{N} \setminus \{0\}$ and $a_0 = 1$ is bounded from above by 3.

By these two lemmas, the sequence

$$n \mapsto \left(1 + \frac{1}{n}\right)^n$$

converges.

Definition 4.7.9 – (**Standard limit of** e) We define the number e by

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

4.7.10 Exponentials beat powers

Proposition 4.7.11 – Let $a \in (1, \infty)$ and let $p \in (0, \infty)$. Then

$$\lim_{n\to\infty}\frac{n^p}{a^n}=0.$$

4.8 Sequences with values in \mathbb{R}^d

Proposition 4.8.1 – Consider the metric space $(\mathbb{R}^d, \|\cdot\|_2)$. Let $z \in \mathbb{R}^d$ and let $x : \mathbb{N} \to \mathbb{R}^d$ be a sequence. Denote by y_i the *i*th component of a vector $y \in \mathbb{R}^d$. Then the seequence $(x^{(n)})$ converges to z if and only if for all $i \in \{1, \ldots, d\}$, teh sequence $(x_i^{(n)})$ converges to z_i .

5 Series

5.1 Definition

Definition 5.1.1 – Let $(V, \|\cdot\|)$ be a normed vector space and let $a : \mathbb{N} \to V$ be a sequence in V. Let $K \in \mathbb{N}$. We say that a series

$$\sum_{n=K}^{\infty} a_n$$

is *convergent* if the associatedd *sequence of partial sums* $S_k : \mathbb{N} \to V$, i.e. the sequece $(S_K^n)_{n \in \mathbb{N}}$ converges. The term S_K^n is, for $n \in \mathbb{N}$, defined as

$$S_K^n := \sum_{k=K}^n a_k$$

If K = 0, we usually jusst write S^n or even S_n instead of S_0^n .

If the series $\sum_{n=K}^{\infty} a_n$ is convergent, the *value* of the series is by defintion equal to the limit of the sequence of partial sums, i.e.

$$\sum_{k=K}^{\infty} a_k := \lim_{n \to \infty} S_k^n = \lim_{n \to \infty} \sum_{k=K}^{\infty} a_k$$

5.2 Geometric series

Proposition 5.2.1 – Let $a \neq 1$ and $n \in \mathbb{N}$. Then

$$\sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a}.$$

Proof. We consider

$$(1-a)\sum_{k=0}^{n} a^{k} = \sum_{k=0}^{n} a^{k} - a\sum_{k=0}^{n} a^{k}$$
$$= \sum_{k=0}^{n} a^{k} - \sum_{k=0}^{n} a^{k+1}$$
$$= \sum_{k=0}^{n} a^{k} - \sum_{k=1}^{n+1} a^{k}$$
$$= 1 - a^{n+1}$$

Proposition 5.2.2 – Geometric series Let $a \in (-1,1)$. Then the series

$$\sum_{k=0}^{\infty} a^k$$

is convergent and has the value

$$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}.$$

5.3 The harmonic series

Proposition 5.3.1 – Harmonic series The series

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

diverges.

5.4 The hyperharmonic series

Proposition 5.4.1 – Hyperharmonic series Let p > 1. Then the series

$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$

converges.

Example 5.4.2 Here is an example of a series taking values in the normed vector space $(\mathbb{R}^2, \|\cdot\|)$:

$$\sum_{k=1}^{\infty} \left(\frac{1}{k^2}, \left(\frac{1}{2} \right)^k \right)$$

5.5 Only the tail matters for convergence

Lemma 5.5.1 – Let $(V, \|\cdot\|)$ be a normed vector space and let $a : \mathbb{N} \to V$ be a sequence taking values in V. Let $K, L \in \mathbb{N}$. The series

$$\sum_{n=K}^{\infty} a_n$$

is conovergent is and only if the series

$$\sum_{n=L}^{\infty} a_n$$

is convergent. Moreover, if either the series converges, and K < L, then

$$\sum_{n=K}^{\infty} a_n = \sum_{n=K}^{L-1} + \sum_{n=L}^{\infty} a_n.$$

Proposition 5.5.2 – Let $a: \mathbb{N} \to V$ be a sequence, let $M \in \mathbb{N}$ and assume that the series

$$\sum_{k=M}^{\infty} a_k$$

is convergent. Then

$$\lim_{m\to\infty}\sum_{k=m}^{\infty}a_k=0.$$

Proposition 5.5.3 – Index shift for series Let $a : \mathbb{N} \to V$ be a sequence, let $M \in \mathbb{N}$ and let $\ell \in \mathbb{N}$. Then

5 SERIES 5.6 Divergence test

the series

$$\sum_{k=M}^{\infty} a_k$$

converges if and only if the series

$$\sum_{k=M}^{\infty} a_{k+\ell}$$

converges. Moreoever, if either series converges, then

$$\sum_{k=M}^{\infty} a_{k+\ell} = \sum_{k=M+\ell}^{\infty} a_k.$$

5.6 Divergence test

Proposition 5.6.1 – Let $(V, \|\cdot\|)$ be a normed vector space, and let $a : \mathbb{N} \to V$ be a sequence in V. Suppose the series $\sum_{n=0}^{\infty} a_n$ is convergent. Then

$$\lim_{n\to\infty} a_n = 0.$$

Proof. Suppose the series $\sum_{n=0}^{\infty} a_n$ is convergent to $L \in V$. Then

$$a_n = S_n - S_{n-1}$$

where S_n denote the partial sum $\sum_{k=0}^{n} a_k$. Because S_n and S_{n-1} are both convergent to L, the sequence (a_n) is convergent as well and converges to L-L=0.

Theorem 5.6.2 – Divergence test Let $(V, \|\cdot\|)$ be a normed vector space and let $a : \mathbb{N} \to V$ be a sequence in V. Suppose the limit $\lim_{n\to\infty} a_n$ does not exist or is not equal to 0. Then the series

$$\sum_{n=0}^{\infty} a_n$$

is divergent.

5.7 Limit laws for series

Theorem 5.7.1 – Limit laws for series Let $(V, \|\cdot\|)$ be a normed vector space and let $a, b : \mathbb{N} \to V$ be sequences in V. Suppose the series

$$\sum_{n=0}^{\infty} a_n \quad \text{and} \quad \sum_{n=0}^{\infty} b_n$$

are convergent. Suppose $\lambda \in \mathbb{R}$. Then

1. The series

$$\sum_{n=0}^{\infty} (a_n + b_n)$$

is converget and converges to

$$\sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n.$$

$$\sum_{n=0}^{\infty} \lambda a_n$$

$$\lambda \sum_{n=0}^{\infty} a_n.$$

2. The series

$$\sum_{n=0}^{\infty} \lambda a_n$$

is convergent and converges to

$$\lambda \sum_{n=0}^{\infty} a_n$$

6 Series with positive terms

6.1 Comparison test

Theorem 6.1.1 – Comparison test Let $a, b : \mathbb{N} \to [0, \infty)$ be two sequences. Assume that there exists an $N \in \mathbb{N}$ such that for all $n \geq N$ we have $a_n \leq b_n$. Then

- 1. Suppose the series $\sum_{n=1}^{\infty} b_n$ converges. Then the series $\sum_{n=1}^{\infty} a_n$ converges as well.
- 2. Suppose the series $\sum_{n=1}^{\infty} a_n$ diverges. Then the series $\sum_{n=1}^{\infty} b_n$ diverges as well.

Example 6.1.2 Consider the series

$$\sum_{k=2}^{\infty} \frac{k}{k^2 - 1}.$$

We first observe that for all $k \ge 2$ we have

$$\frac{k}{k^2-1} \ge \frac{k}{k^2} = \frac{1}{k}.$$

Because the series

$$\sum_{k=2}^{\infty} \frac{1}{k}$$

diverges, the series

$$\sum_{k=2}^{\infty} \frac{k}{k^2 - 1}$$

diverges as well byt the comparison test.

6.2 Limit comparison test

Theorem 6.2.1 – Limit comparison test Let $a, b : \mathbb{N} \to [0, \infty)$ be two sequences.

1. Assume the series $\sum_{k=1}^{\infty} b_k$ converges and assume the limit

$$\lim_{n\to\infty}\frac{a_n}{b_n}$$

exists. Then the series $\sum_{k=1}^{\infty} a_k$ converges as well.

2. Assume the series $\sum_{k=1}^{\infty} b_k$ diverges and assume the limit

$$\lim_{n\to\infty}\frac{a_n}{b_n}$$

exists and is strictly larger than zero, or that the limit is infinity. Then the series $\sum_{k=1}^{\infty} a_k$ diverges as well.

Example 6.2.2 Consider the series

$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 1}.$$

We use sequences $a, b : \mathbb{N} \to [0, \infty)$ defined for $k \ge 2$ by

$$a_k = \frac{k}{k^2 + 1}$$

and

$$b_k = \frac{1}{k}.$$

Then

$$\frac{a_k}{b_k} = \frac{\frac{k}{k^2 + 1}}{\frac{1}{k}} = \frac{1}{1 + \frac{1}{k^2}}.$$

By limit laws, we find that the limit of the denominator is 1, i.e.

$$\lim_{k\to\infty}\left(1+\frac{1}{k^2}\right)=\lim_{k\to\infty}1+\lim_{k\to\infty}\frac{1}{k^2}=1+0=1.$$

Therefore, we may apply the limit law for the quoteient and conclude that

$$\lim_{k \to \infty} \frac{a_k}{b_k} = \frac{1}{\lim_{k \to \infty} \left(1 + \frac{1}{k^2}\right)} = \frac{1}{1} = 1.$$

The series $\sum_{k=2}^{\infty} \frac{1}{k}$ diverges and therefore it follows from the Limit Comparison Test that the series

$$\sum_{k=2}^{\infty} a_k = \sum_{k=2}^{\infty} \frac{k}{k^2 + 1}$$

diverges as well.

6.3 Ratio test

Theorem 6.3.1 – Ratio Test Let $a : \mathbb{N} \to [0, \infty)$ be a sequence.

1. if there exists an $N \in \mathbb{N}$ and a $q \in (0,1)$ such that for all $n \ge N$, it holds that

$$\frac{a_n+1}{a_n} \le q$$

, then the series $\sum_{k=1}^{\infty} a_k$ converges.

2. if there exists an $N \in \mathbb{N}$ such that for all $n \ge N$, it holls that

$$\frac{a_n+1}{a_n}\geq 1,$$

then the series $\sum_{k=1}^{\infty} a_k$ diverges.

6.4 Limit ratio test

Theorem 6.4.1 – Limit Ratio Test Let $a : \mathbb{N} \to (0, \infty)$ be a sequence.

- 1. If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$ with $q \in [0,1)$, then the series $\sum_{k=1}^{\infty} a_k$ converges.
- 2. If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$ with q > 1, or if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \infty$, then the series $\sum_{k=1}^{\infty} a_k$ diverges.

Remark 6.4.2. We cannot conclude anything about the convergence of a series $\sum_k a_k$ when

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1.$$

6.5 Root test

Theorem 6.5.1 – Root test Let (a_n) be a sequence of non-negative real numbers.

1. If there exists an $N \in \mathbb{N}$ and a $q \in (0,1)$ such that for all $n \ge N$, it holds that

$$\sqrt[n]{a_n} \leq q$$
,

then the series $\sum_{k=1}^{\infty} a_k$ converges.

2. If there exists an $N \in \mathbb{N}$ such that for all $n \ge N$, it holds that

$$\sqrt[n]{a_n} \geq 1$$
,

then the series $\sum_{k=1}^{\infty} a_k$ diverges.

6.6 Limit root test

Theorem 6.6.1 – Limit Root Test Let (a_n) be a sequence of non-negative real numbers.

- 1. If $\lim_{n\to\infty} \sqrt[n]{a_n} = q$ with $q \in [0,1)$, then the series $\sum_{k=1}^{\infty} a_k$ converges.
- 2. If $\lim_{n\to\infty} \sqrt[n]{a_n} = q$ with q > 1, or if $\lim_{n\to\infty} \sqrt[n]{a_n} = \infty$, then the series $\sum_{k=1}^{\infty} a_k$ diverges.

Remark 6.6.2. We cannot conclude anything about the convergence of a series $\sum_k a_k$ when

$$\lim_{n\to\infty}\sqrt[n]{a_n}=1.$$

7 Series with general terms

7.1 Series with real terms: the Leibniz test

Theorem 7.1.1 – Leibniz test, a.k.a Alternating series test Let $a,b : \mathbb{N} \to \mathbb{R}$ be two real-valued sequences such that for all $k \in \mathbb{N}$, $b_k = (-1)^k a_k$. Assume that there exists a $K \in \mathbb{N}$ such that

- 1. $a_k \ge 0$ for every $k \ge K$,
- 2. $a_k \ge a_{k+1}$ for every $k \ge K$,
- 3. $\lim_{k\to\infty} a_k = 0$.

Then, the series

$$\sum_{k=K}^{\infty} b_k = \sum_{k=K}^{\infty} (-1)^k a_k$$

is convergent. In addition, the following esitmate holds for every $N \ge K$,

$$\left| S_N - \sum_{k=K}^{\infty} b_k \right| \le a_{N+1}.$$

where for all $n \in \mathbb{N}$, $S_n := \sum_{k=K}^{\infty} b_k$.

Example 7.1.2 We claim that the series

$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$$

converges.

We would like to apply the Alternating series test. To do so, we need toe check its conditions.

We define the sequence $a : \mathbb{N} \to \mathbb{R}$ by

$$a_k := \frac{1}{k}$$

for $k \ge 1$ (and $a_0 = a_1 = 1$).

We now check the conditions for the Alternating Series Test.

1. We need to show that $a_k \ge 0$ for all $k \in \mathbb{N}$. Let $k \in \mathbb{N}$. Then,

$$a_k = \frac{1}{k} \ge 0.$$

2. We need to show that $a_k \ge a_{k+1}$ for all $k \in \mathbb{N}$. Let $k \in \mathbb{N}$. Then,

$$a_k = \frac{1}{k} \ge \frac{1}{k+1} = a_{k+1}.$$

3. We need to show that

$$\lim_{k\to\infty}a_k=0$$

. This follow as this is a standard limit.

It follows from the Alternating Series Test that the series

$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$$

converges.

7.2 Series charactersization of completeness in normed vector space

Definition 7.2.1 – Let $(V, \|\cdot\|)$ be a normed vector space. Let $a : \mathbb{N} \to V$ be a sequence of vectors in V. We say the series

$$\sum_{k=0}^{\infty} a_k$$

converges absolutely if

$$\sum_{k=0}^{\infty} \|a_k\|$$

converges.

Definition 7.2.2 – Series characterization of completeness We say a normed vector space $(V, \|\cdot\|)$ satisfies the *series characterization of completeness* if every series in V that is absolutely convergent is also convergent.

Proposition 7.2.3 – Every finite-dimensional normed vector space satisfies the series characterization of completeness.

Example 7.2.4 Consider the series

$$\sum_{k=1}^{\infty} \frac{\sin(k)}{k^2}.$$

Since this is not an alternataing series, we cannot apply the Leibniz test.

However, for every k

 $in\mathbb{N}\setminus\{0\}$, we have

$$\left|\frac{\sin(k)}{k^2}\right| \le \frac{1}{k^2}.$$

The series

$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$

is a standard hyperharmonic seris, of which we know that it converges. By the Cmomparison Test, we conclude that the series

$$\sum_{k=1}^{\infty} \left| \frac{\sin(k)}{k^2} \right|$$

converges as well.

Therefore, the series

$$\sum_{k=1}^{\infty} \frac{\sin(k)}{k^2}$$

converges absolutely. Since $(\mathbb{R},|\cdot|)$ is complete, we find that

$$\sum_{k=1}^{\infty} \frac{\sin(k)}{k^2}$$

converges.

Definition 7.2.5 – Let $(V, \|\cdot\|)$ be a normed vector space. Let $a : \mathbb{N} \to V$ be a sequence. We say that a series

$$\sum_{k=0}^{\infty} a_k$$

converges conditionally if it converges but does not converge absolutely.

7.3 The Cauchy product

Theorem 7.3.1 – Cauchy product Let $a,b:\mathbb{N}\to\mathbb{R}$ be two real-valued sequences. Assume that the series

$$\sum_{k=0}^{\infty} a_k$$

and

$$\sum_{k=0}^{\infty}b_k$$

converge absolutely. Then, the series

$$\sum_{k=0}^{\infty} c_k$$

converges absolutely as well, where

$$c_k := \sum_{\ell=0}^k a_\ell b_{k-\ell},$$

and

$$\sum_{k=0}^{\infty} c_k = \left(\sum_{k=0}^{\infty} a_k\right) \left(\sum_{k=0}^{\infty} b_k\right)$$

8 Subsequences, lim sup and liminf

8.1 Index sequences and subsequences

Definition 8.1.1 – Index sequence We say a sequence $n : \mathbb{N} \to \mathbb{N}$ is an *index sequence* if it is strictly increasing.

Example 8.1.2 The sequence $n : \mathbb{N} \to \mathbb{N}$ defined by

$$n_k := 2k$$

is a strictly increasing sequence of natural numbers. In other words, it is an index sequence.

Definition 8.1.3 – Subsequence Let $a : \mathbb{N} \to \mathbb{R}$ be a sequence. A sequence $b : \mathbb{N} \to \mathbb{R}$ is called a *subsequence* of a if there exists an index sequence $n : \mathbb{N} \to \mathbb{N}$ such that $b = a \circ n$

Just as we often write $(a_n)_{n\in\mathbb{N}}$ for a sequence called a, we often write $(a_{n_k})_{k\in\mathbb{N}}$ for the subsequence $a\circ n$

8.2 (Sequential) accumulation points

Definition 8.2.1 – (Sequential accumulation points) Let (X, dist) be a metric space. A point $p \in X$ is called an *accumulation point* of a sequence $a : \mathbb{N} \to X$ if there is a subsequence $a \circ n$ of a such that $a \circ n$ converges to p.

8.3 Subsequences of a converging sequence

Proposition 8.3.1 – Let (X, dist) be a metric space. Let (a_n) be a sequence in X converging to $p \in X$. Then every subsequence of (a_n) is convergent to p.

8.4 lim sup

Consider a real-valued sequence (a_n) that is bounded from above and does not diverge to $-\infty$. We can then define a new sequence

$$k \mapsto \sup_{n \geq k} a_n$$
.

Note that this sequence is decreasing, because for larger k the supremum is taken over a smaller set.

Lemma 8.4.1 – Let $a: \mathbb{N} \to \mathbb{R}$ be a sequence that is bounded from above and does not diverge to $-\infty$. Then, the sequence $k \mapsto \sup_{n > k} a_n$ is bounded from below.

Since the sequence $k \mapsto \sup_{n \ge k} a_n$ is decreasing and bounded from below, it has a limit, and the limit is in fact equal to the infumum of the sequence. This limit is called the limsup

$$\limsup_{n \to \infty} a_n := \inf_{k \in \mathbb{N}} \sup_{n \ge k} a_n$$
$$= \lim_{k \to \infty} \left(\sup_{n \ge k} a_n \right)$$

For every, there exists,

Proposition 8.4.2 – Alternative characterization of \limsup Let (a_n) be a real-valued sequence. Let $M \in \mathbb{R}$. Then, $M = \limsup_{n \to \infty} a_n$ if and only if

i. For every $\varepsilon>0$, there exists $N\in\mathbb{N}$, for all $\ell\geq N$, $a_{\ell}< M+\varepsilon$ For every $\varepsilon>0$, for all $k\in\mathbb{N}$, ii. there exists $m\geq k$, $a_{m}>M-\varepsilon$

Theorem 8.4.3 – Let $a: \mathbb{N} \to \mathbb{R}$ be a real-valued sequence that is bounded from above and does not diverge to $-\infty$. Then $\limsup_{\ell \to \infty} a_{\ell}$ is a (sequential) accumulation point of a, i.e. there exists a subsequences of a that converges to $\limsup_{\ell \to \infty} a_{\ell}$.

Corollary 8.4.4 – Bolzano-Weierstrass Every bounded, real-valued sequence has a subsequence that converges in $(\mathbb{R}, \text{dist}_{\mathbb{R}})$.

Theorem 8.4.5 – Suppose a sequence $a : \mathbb{N} \to \mathbb{R}$ is bounded from above and does not diverge to $-\infty$. Then

$$\limsup_{\ell \to \infty} a_{\ell}$$

is the maximum of the set of sequential accumulation points.

8.5 liminf

Similarly to the limsup, we can define the liminf. In some sense,

$$\liminf_{\ell \to \infty} a_{\ell} = -\limsup_{\ell \to \infty} (-a_{\ell})$$

More precisely,

$$egin{aligned} \liminf_{\ell o \infty} a_\ell &:= \sup_{\ell \in \mathbb{N}} \inf_{k \geq \ell} a_k \ &= \lim_{\ell o \infty} \left(\inf_{k \geq \ell} a_k
ight) \end{aligned}$$

Proposition 8.5.1 – Alternative characterization of liminf Let $a : \mathbb{N} \to \mathbb{R}$ and $M \in \mathbb{R}$. Then M equals $\liminf_{\ell \to \infty} a_{\ell}$ if and only if

1. For every $\varepsilon > 0$, there exists $N \in \mathbb{N}$, for all $\ell \geq N$, $a_{\ell} > M - \varepsilon$

For every $\varepsilon > 0$, for all $K \in \mathbb{N}$,

2. there exists $m \ge K$, $a_m < M + \varepsilon$

Theorem 8.5.2 – Let $a: \mathbb{N} \to \mathbb{R}$ be a real-valued sequence that is bounded below and does not diverge to ∞ . Then $\liminf_{\ell \to \infty} a_{\ell}$ is a sequential accumulation point of the sequence a, i.e. there is a subsequence of a that converges to $\liminf_{\ell \to \infty} a_{\ell}$.

Theorem 8.5.3 – Let $a: \mathbb{N} \to \mathbb{R}$ be a real-valued sequence that is bounded below and does not diverge to ∞ . Then $\liminf_{\ell \to \infty} a_{\ell}$ is the minimum of the set of sequential accumulation points.

8.6 Relations between lim, lim sup and liminf

Proposition 8.6.1 – Let $a: \mathbb{N} \to \mathbb{R}$ be a real-valued sequence and let $L \in \mathbb{R}$. Then $a: \mathbb{N} \to \mathbb{R}$ converges to L if and only if

$$\liminf_{\ell \to \infty} a_{\ell} = \limsup_{\ell \to \infty} = L$$

Proposition 8.6.2 – Let $a,b: \mathbb{N} \to \mathbb{R}$ be two real-valued sequences, such that there exists an $N \in \mathbb{N}$ such that for all $\ell \geq N$, $a_{\ell} \leq b_{\ell}$. Then

$$\limsup_{\ell \to \infty} a_{\ell} \le \limsup_{\ell \to \infty} b_{\ell}$$

and

$$\liminf_{\ell \to \infty} a_\ell \leq \liminf_{\ell \to \infty} b_\ell.$$

9 Point-set topology of metric spaces

- 9.1 Open sets
- 9.2 Closed sets
- 9.3 Cauchy sequences
- 9.4 Completeness
- 9.5 Series characterization of completeness in normed vector spaces

- 10 Compactness
- 10.1 Boundedness and total boundedness
- 10.2 Alternative characterization of compactness

11 Limits and continuity

- 11.1 Accumulation points
- 11.2 Limit in an accumulation point
- 11.3 Uniqueness of limits
- 11.4 Sequential characterization of limits
- 11.5 Limit laws
- 11.6 Continuity
- 11.7 Sequential characterization of continuity
- 11.8 Rules for continuous functions
- 11.9 Images of compact sets under continuous functions are compact
- 11.10 Uniform continuity

12 Real-valued functions

- 12.1 More limit laws
- 12.2 Building of standard functions
- 12.3 Continuity of standard functions
- 12.4 Limits from the left and from the right
- 12.5 The extended real line
- 12.6 Limits to ∞ or $-\infty$
- 12.7 Limits at ∞ and $-\infty$
- 12.8 The Intermediate Value Theorem
- 12.9 The Extreme Value Theorem
- 12.10 Equivalence of norms
- 12.11 Bounded linear maps and operator norms

13 Differentiability

- 13.1 The derivative as a function
- 13.2 Constant and linear maps are differentiable
- 13.3 Bases and coordinates
- 13.4 The matrix representation
- 13.5 The chain rule
- 13.6 Sum, product and quotient rules
- 13.7 Differentiability of components
- 13.8 Differentiability implies continuity
- 13.9 Derivative vanishes in local maxima and minima
- 13.10 The Mean Value Theorem

14 Differentiability of standard functions

- 14.1 Global context
- 14.2 Polynomials and rational functions are differentiable
- 14.3 Differentiability of the standard functions

15 Directional and partial derivatives

- 15.1 A recurring and very important construction
- 15.2 Directional derivatives
- 15.3 Partial derivatives
- 15.4 The Jacobian of a map
- 15.5 Linearization and tangent planes
- 15.6 The gradient of a function

16 The Mean-Value Inequality

- 16.1 The mean-value inequality for functions defined on an interval
- 16.2 The mean-value inequality for functions on general domains
- 16.3 Continuous partial derivatives imply differentiability

17 Higher order derivatives

- 17.1 Multilinear maps
- 17.2 Relation to *n*-fold directional derivatives
- 17.3 A criterion for higher differentiability
- 17.4 Symmetry of second order derivatives
- 17.5 Symmetry of higher-order derivatives

18 Polynomials and approximation by polynomials

- **18.1** Homogeneous polynomials
- 18.2 Taylor's theorem
- 18.3 Taylor approximations of standard functions

19 Banach fixed point theorem

20 Implicit function theorem

- 20.1 The objective
- 20.2 Notation
- 20.3 The implicit function theorem
- **20.4** The inverse function theorem

21 Function sequences

- 21.1 Point-wise convergence
- 21.2 Uniform convergence
- 21.3 Preservation of continuity under uniform convergence
- 21.4 Differentiability theorem
- 21.5 The normed vector space of bounded functions

22 Function series

- 22.1 The Weierstrass M-test
- 22.2 Conditions for differentiation of function series

23 Power series

- 23.1 Convergence of power series
- 23.2 Standard functions defined as power series
- 23.3 Operations with power series
- 23.4 Differentiation of power series
- 23.5 Taylor series

24 Riemann integration in one dimension

- 24.1 Riemann integrable functions and the Riemann integral
- 24.2 Sums, products of Riemann integrable functions
- 24.3 Continuous functions are Riemann integrable
- 24.4 The fundamental theorem of calculus

25 Riemann integration in multiple dimensions

- 25.1 Partitions in multiple dimensions
- **25.2** Riemann integral on rectangles in \mathbb{R}^n
- 25.3 Properties of the multidimensional Riemann integral
- 25.4 Continuous functions are Riemann integrable
- 25.5 Fubini's theorem
- 25.6 The (topological) boundary of a set
- 25.7 Jordan content
- 25.8 Integration over general domains
- 25.9 The volume of bounded sets

26 Change-of-variables Theorem

- **26.1** Polar coordinates
- 26.2 Cylindrical coordinates
- **26.3** Spherical coordinates