Statistics for Social Research

Week 1: Introduction

Wenhao Jiang

Department of Sociology New York University

September 9, 2022

Main Goals ●○

Main Goals

Main Goals

- Introduce R and RStudio
- Answer questions from the textbook
- Recap important concepts in lecture

¹Acknowledgement: The slides of introducing R is largely based on Applied Statistics with R from https://daviddalpiaz.github.io/appliedstats/

Introduction of R and RStudio

- ► Why R
 - 1. If you have used Excel before ${\tt R}$ is more handy and efficient in both data manipulation and statistical analysis

- ► Why R
 - 1. If you have used Excel before R is more handy and efficient in both data manipulation and statistical analysis
 - 2. If you have used Stata, SAS, or SPSS before R is free, with professionals developing open-sourced new packages every day

► Why R

- 1. If you have used Excel before R is more handy and efficient in both data manipulation and statistical analysis
- 2. If you have used Stata, SAS, or SPSS before R is free, with professionals developing open-sourced new packages every day
- 3. If you have used Python before R and its packages are more user-friendly to social scientists who are not professional programmers

► Why R

- 1. If you have used Excel before R is more handy and efficient in both data manipulation and statistical analysis
- 2. If you have used Stata, SAS, or SPSS before R is free, with professionals developing open-sourced new packages every day
- 3. If you have used Python before R and its packages are more user-friendly to social scientists who are not professional programmers
- 4. Support of LATEX in RMarkdown to write academic papers, make academic slides with R codes knitted.

- ► Why R
 - 1. If you have used Excel before R is more handy and efficient in both data manipulation and statistical analysis
 - 2. If you have used Stata, SAS, or SPSS before R is free, with professionals developing open-sourced new packages every day
 - 3. If you have used Python before R and its packages are more user-friendly to social scientists who are not professional programmers
 - 4. Support of LATEX in RMarkdown to write academic papers, make academic slides with R codes knitted.
- R is useful in both academia and in companies that require statistical/data analysis

- ► Why RStudio
 - ► RStudio, like most IDEs, provides a graphical interface to R, making it more user-friendly, and providing dozens of useful features

- ► Install in the following order
 - 1. R: https://www.r-project.org/
 - 2. RStudio: https://www.rstudio.com/
- ► Now open RStudio

Quick tour of RStudio

- ► There are four panels
 - 1. Source: write your own codes
 - 2. Console: view outputs
 - 3. Environment/History: view stored datasets and variables
 - 4. Files/Plots/Packages/Help
- ► In the Source panel
 - Write your own codes
 - ► Save your code in .R file
 - ► Click Run command to run your entire code
- In the console panel
 - ▶ After clicking Run in the source panel, your code is evaluated
 - ► You can directly type your code here to implement

Basic Calculations

To get started, we'll use R like a simple calculator.

Addition, Subtraction, Multiplication and Division

Math	R		Result
3+2	3 +	2	5
3 - 2	3 -	2	1
$3 \cdot 2$	3 *	2	6
3/2	3 /	2	1.5

$$1 + 3$$

Exponents

Math	R	Result
3 ²	3 ^ 2	9
$2^{(-3)}$	2 ^ (-3)	0.125
$100^{1/2}$	100 ^ (1 / 2)	10
$\sqrt{100}$	sqrt(100)	10

Mathematical Constants

Math	R	Result
π	pi	3.1415927
e	exp(1)	2.7182818

Logarithms

- ▶ Note that we will use In and log interchangeably to mean the natural logarithm.
- ▶ There is no ln() in R, instead it uses log() to mean the natural logarithm.

Math	R	Result
$\log(e)$	log(exp(1))	1
$\log_{10}(1000)$	log10(1000)	3
$\log_2(8)$	log2(8)	3
$\log_4(16)$	log(16, base = 4)	2

Trigonometry

$\sin(\pi/2)$ $\sin(pi)$	/ 2)	1
cos(0) $cos(0)$		1

Descriptive Statistic

Math	R
$\frac{\frac{1}{n}\sum_{i=1}^{n}x_{i}}{\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}$	mean(x) var(x)

Getting Help

- In using R as a calculator, we have seen a number of functions: sqrt(), exp(), log() and sin().
- To get documentation about a function in R, simply put a question mark in front of the function name or call function help() and RStudio will display the documentation, for example:

```
?log
?sin
help(log)
help(sin)
```

Installing Packages

- One of the main strengths of R as an open-source project is its package system
- To install a package, use the install.packages() function.
 - Think of this as buying a recipe book from the store, bringing it home, and putting it on your shelf.

install.packages("ggplot2")

- Once a package is installed, it must be loaded into your current R session before being used.
 - ▶ Think of this as taking the book off of the shelf and opening it up to read.

library(ggplot2)

Installing Packages

Packages like ggplot2 are extremely powerful

Figure 1: Residential v. Experienced Segregation in New York City, 2018-2020

- Once you close R, all the packages are closed and put back on the imaginary shelf.
- ▶ The next time you open R, you do not have to install the package again, but you do have to load any packages you intend to use by invoking library().

Helps

- ► The RStudio team has developed a number of "cheatsheets" for working with both R and RStudio.
- ► This particular cheatsheet for Base R will summarize many of the concepts in this document.

Data

Data Types

R has a number of basic data types.

- Numeric
 - Also known as Double. The default type when dealing with numbers.

Data

000

- Examples: 1, 1.0, 42.5
- Store numerical variables.
- Logical
 - ► Two possible values: TRUE and FALSE
 - You can also use T and F
 - ► NA is also considered logical
- Character
 - Examples: "a", "Statistics", "1 plus 2."
 - Usually store categorical variables

Data

000

Data Structures

- R also has a number of basic data structures.
- A data structure is either
 - homogeneous (all elements are of the same data type)
 - ▶ heterogeneous (elements can be of more than one data type).

Dimension	Homogeneous	Heterogeneous
1	Vector	List
2	Matrix	Data Frame
3+	Array	

Vector

Vectors

Basics of vectors

- Many operations in R make heavy use of vectors.
 - ► Vectors in R are indexed starting at 1.
- ► The most common way to create a vector in R is using the c() function, which is short for "combine".

[1] 1 3 5 7 8 9

Basics of vectors

- ► If we would like to store this vector in a **variable** we can do so with the **assignment** operator =
 - ► The variable x now holds the vector we just created, and we can access the vector by typing x

```
x = c(1, 3, 5, 7, 8, 9)
```

```
## [1] 1 3 5 7 8 9
```

```
# The following does the same thing
x <- c(1, 3, 5, 7, 8, 9)
x
```

```
## [1] 1 3 5 7 8 9
```

- ► The operator = and <- work as an assignment operator.
- ▶ In R code the line starting with # is comment, which is ignored when you run the code.

A sequence of numbers as a vector

► The quickest and easiest way to do this is with the : operator, which creates a sequence of integers between two specified integers.

```
y <- 1:10
y
## [1] 1 2 3 4 5 6 7 8 9 10
```

Vector

▶ Use the seq() function for a more general sequence.

```
seq(from = 1.5, to = 2.5, by = 0.1)
```

▶ Here, the input labels from, to, and by are optional.

Vector

▶ The rep() function repeat a single value a number of times.

```
rep("A", times = 10)
```

```
[1] "A" "A" "A" "A" "A" "A" "A" "A" "A"
##
```

► The rep() function can be used to repeat a vector some number of times.

$$rep(x, times = 3)$$

[1] 1 3 5 7 8 9 1 3 5 7 8 9 1 3 5 7 8 9 ##

- ▶ We have now seen four different ways to create vectors:
 - 1. c()
 - 2. :
 - 3. seq()
 - 4. rep()
- ► They are often used together

$$c(x, rep(seq(1, 5, 2), 2), c(1, 2), 2:4)$$

[1] 1 3 5 7 8 9 1 3 5 1 3 5 1 2 2 3 4

Length

▶ The length of a vector can be obtained with the length() function.

length(x)

[1] 6

length(y)

[1] 10

Subsetting

- ▶ Use square brackets, [], to obtain a subset of a vector.
- ▶ We see that x[1] returns the first element.

Х

[1] 1 3 5 7 8 9

x[1]

[1] 1

x[3]

[1] 5

Vector

000000000000000000

▶ We can also exclude certain indexes, in this case the second element.

[1] 1 5 7 8 9

▶ We can subset based on a vector of indices.

[1] 1 3 5

x[c(1,3,4)]

[1] 1 5 7

► We could also use a vector of logical values

```
z <- c(TRUE, TRUE, FALSE, TRUE, TRUE, FALSE)
x[z]</pre>
```

```
## [1] 1 3 7 8
```

- ▶ Note that the length of z must of the same as x
- Combining subset with length could be very useful in summarizing the proportion of e.g. missing values

```
x[z] <- NA
x
```

[1] NA NA 5 NA NA 9

```
length(x[is.na(x)])
```

[1] 4

Vector

Vectorization

- ▶ One of the biggest strengths of R is its use of vectorized operations.
 - Frequently the lack of understanding of this concept leads of a belief that R is slow.
- ▶ When a function like log() is called on a vector x, a vector is returned which has applied the function to each element of the vector x.

```
x = 1:10
x + 1
## [1] 2 3 4 5 6 7 8 9 10 11
2 * x
## [1] 2 4 6 8 10 12 14 16 18 20
```

```
2 ^ x
## [1] 2 4 8 16 32 64 128 256 512 1024
round(sqrt(x), 2)
## [1] 1.00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16
round(log(x), 2)
## [1] 0.00 0.69 1.10 1.39 1.61 1.79 1.95 2.08 2.20 2.30
```

Logical Operators

Operator	Summary	Example	Result
x < y	x less than y	3 < 42	TRUE
x > y	x greater than y	3 > 42	FALSE
x <= y	${f x}$ less than or equal to ${f y}$	3 <= 42	TRUE
x >= y	${f x}$ greater than or equal to ${f y}$	3 >= 42	FALSE
x == y	xequal to y	3 == 42	FALSE
x != y	${f x}$ not equal to ${f y}$	3 != 42	TRUE
! x	not x	!(3 > 42)	TRUE
хІу	x or y	(3 > 42) TRUE	TRUE
х & у	x and y	(3 < 4) & (42 > 13)	TRUE

Vector

000000000000000000

Logical operators are vectorized.

$$x = c(1, 3, 5, 7, 8, 9)$$

x > 3

[1] FALSE FALSE TRUE TRUE TRUE TRUE

x < 3

[1] TRUE FALSE FALSE FALSE FALSE

x == 3

[1] FALSE TRUE FALSE FALSE FALSE

x != 3

[1] TRUE FALSE TRUE TRUE TRUE TRUE

$$x == 3 \& x != 3$$

[1] FALSE FALSE FALSE FALSE FALSE

$$x == 3 | x != 3$$

[1] TRUE TRUE TRUE TRUE TRUE TRUE

is.na(x)

[1] FALSE FALSE FALSE FALSE FALSE

► This is extremely useful for subsetting.

x[x > 3]

[1] 5 7 8 9

x[x != 3]

[1] 1 5 7 8 9

Short exercise

- 1. Create the vector z = (1, 2, 1, 2, 1, 2), which has the same length as x.
- 2. Pick up the elements of x which corresponds to 1 in the vector z, i.e., in position 1, 3, and 5.

$$z \leftarrow c(1,2,1,2,1,2)$$

 $x[z == 1]$

Q & A

▶ Are there any questions from lectures, textbooks, or R?