Home Credit Default Risk

Eric Huynh

Data Capstone 2

Problem & Overview:

- Countless numbers of loan/credit applications are refused each day by financial institutions
 - Due to monetary risk of credit defaults by clients
- Financial institutions are stringent on qualifications to request large loans.
 - Limits applicants to only clients that already have a strong credit record.
 - Forces clients with little to non-existent credit history to rely on unreliable lenders to meet their financial needs.

Solution and Objective

- Certain financial institutions have strived to expand the financial inclusion to those with insufficient or non-existing credit histories.
 - Utilize a variety of alternate data to gauge and measure the clients' risk profiles without relying on the conventional methods.

• Objective:

- Draw reliable variables from the alternate data that can reliably gauge a clients' risk profile.
- Develop a predictive model that can accurately classify clients as high-risk or low-risk for credit loans

Potential Clients

Financial Institutions:

- Expand their loans applicant pool by measuring new clients' risk profile with alternate data.
- Higher yields both short-term and long-term as positive financial experience will bring in reoccurring clients.

Loan Applicants:

- Understand alternative attributes that can help them develop towards becoming a low-risk applicant despite insufficient credit histories.
- Also applicable for anyone applying for a larger loan they may not currently qualify for under traditional requirements.

Data from Kaggle Competition

- Training Data:
 - Consists of 307,511 unique client IDs and 122 categories.
- 6 Supplemental Datasets (only 4 used):
 - "bureau.csv" information regarding all previous credits
 - "credit_card_balance.csv" previous credit information with Home Credit
 - "installments_payments.csv" repayment history for approved credit by Home Credit
 - "previous_application.csv" all previous applications made to Home Credit
- 300+ heterogenous mixture of both categorical and quantitative features

Numerical Correlation

Key Points:

- Strong correlation between DAYS_TERMINATION and DAYS_DECISION which indicates multicollinearity.
 - DAYS_DECISION removed
- Strong correlation between AMT_CREDIT, AMT_ANNUITY, and AMT_GOODS_PRICE which indicates multicollinearity.
 - AMT_GOODS_PRICE removed
- There was a total of 12 correlations, only 3 were acted on

Correlation

Key Points:

- Despite the "positive correlations" seen in these two sets of variables, the distribution of the data appears fairly random.
- This is likely due to the extreme values despite the outliers already being scaled downward.

Numerical Variables as Predictors

Key Points:

- Visual representations of the data were obscure and difficult to draw insights from.
- Instead, I chose to utilize inferential statistics to find statistically significant differences between target and non-target groups.

Inferential Statistics

- Two-sided t-test (p-value) and Frequentist bootstrap approach (95% confidence interval)
 - Applied to numerical and binary categorical data.
 - 5 variables failed to show statistically significant differences:
 - OWN_CAR_AGE, ENQUIRIES, SK_DPD, DAYS_TERMINATION, VALID_MOBILE

Total Income

• Non-target:

 The means of the bootstrap samples are tightly fit around a small range

• Target:

 The distribution of the bootstrap samples are right skewed and multipeaked.

External Source Scoring

- External Source Scoring shows the highest magnitude of correlation.
 - In the training data, the target group has a higher population of lower scores than the non-target group.

Numerical Feature Importance

Logistic Regression

Logistic Regression

Logistic Regression with AdaBoost

Decision Tree Classifier

Random Forest Classifier

Pre-Hyperparameter tuning

LinearSVC (Support Vector Classification)

XGBClassifier

Metric Scoring

- Scoring was performed via Area Under the ROC Curve.
- Of the five attempted algorithms, DecisionTreeClassifier performed the worst early on and was no longer tested on.
- LogisticRegression performed slightly better than the LinearSVC, with XGBClassifier outperforming the rest.
- Currently, the highest score is 0.761.