GraphGAN: Graph Representation Learning with Generative Adversarial Nets

Hongwei Wang^{1,2}, Jia Wang³, Jialin Wang⁴, Miao Zhao³, Weinan Zhang¹, Fuzheng Zhang², Xing Xie², Minyi Guo¹

Shanghai Jiao Tong University, ² Microsoft Research Asia,
 The Hong Kong Polytechnic University,
 ⁴ Huazhong University of Science and Technology

February 04, 2018

Background

- ☐ Graph representation learning (GRL) tries to embed each node of a graph into a low-dimensional vector space, while preserving the structural similarities among the nodes in the original graph
- □ a.k.a. graph embedding / network embedding

Generative Model

Graph $G = \{V, \mathcal{E}\}$

Generative Model

Graph $G = \{V, \mathcal{E}\}$

Generative Model

Underlying true connectivity distribution: $p_{true}(v|v_c)$ for $v \in \mathcal{V} \setminus \{v_c\}$

Generative Model

Maximize the likelihood of edges:

$$\max_{\Theta} p(v|v_c; \Theta) \text{ for } (v, v_c) \in \mathcal{E}$$

E.g., DeepWalk (KDD 2014) and node2vec (KDD 2016)

Discriminative Model

Discriminative Model

$$p(edge|v_i, v_j) = 0.8$$
$$p(edge|v_i, v_k) = 0.3$$

.

Discriminative Model

Learn the classifier:

$$p(edge|v_i,v_j)$$

E.g., SDNE (KDD 2016) and PPNE (DASFAA, 2017)

G + D?

- ☐ Generative and discriminative models are two sides of the same coin
- ☐ Generative adversarial nets (GAN):
 - A game-theoretical minimax game to combine G and D
 - GAN applications:
 - ☐ image generation (Denton et al., NIPS 2015)
 - □ sequence generation (Yu et al., AAAI 2017)
 - ☐ dialogue generation (Li et al., arXiv 2017)
 - ☐ information retrieval (Wang et al., SIGIR 2017)
 - □ domain adaption (Zhang, Barzilay, and Jaakkola, arXiv 2017)
- ☐ **GraphGAN**: unifying generative and discriminative thinking for graph representation learning

The Minimax Game

- ☐ The objective of GraphGAN is to learn the following two models:
 - \Box $G(v|v_c;\theta_G)$: to approximate $p_{true}(v_c)$
 - \square $D(v, v_c; \theta_D)$: to judge the probability of edge existing between (v, v_c)

■ The two-player minimax game:

$$\min_{\theta_G} \max_{\theta_D} V(G, D) = \sum_{c=1}^{V} \left(\mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_c)} \left[\log D(v, v_c; \theta_D) \right] + \mathbb{E}_{v \sim G(\cdot | v_c; \theta_G)} \left[\log \left(1 - D(v, v_c; \theta_D) \right) \right] \right)$$

GraphGAN Framework

$$\min_{\theta_G} \max_{\theta_D} V(G, D) = \sum_{c=1}^{V} \left(\mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_c)} \left[\log D(v, v_c; \theta_D) \right] + \mathbb{E}_{v \sim G(\cdot | v_c; \theta_G)} \left[\log \left(1 - D(v, v_c; \theta_D) \right) \right] \right)$$

Implementation & Optimization of D

$$\min_{\theta_G} \max_{\theta_D} V(G, D) = \sum_{c=1}^{V} \left(\mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_c)} \left[\log D(v, v_c; \theta_D) \right] + \mathbb{E}_{v \sim G(\cdot | v_c; \theta_G)} \left[\log \left(1 - D(v, v_c; \theta_D) \right) \right] \right)$$

☐ Implementation of D:

$$D(v, v_c; \theta_D) = \sigma(\mathbf{d}_v^{\mathsf{T}} \mathbf{d}_{v_c}) = \frac{1}{1 + \exp(-\mathbf{d}_v^{\mathsf{T}} \mathbf{d}_{v_c})}$$

where \mathbf{d}_v , $\mathbf{d}_{v_c} \in \mathbb{R}^k$ are the k-dimensional vectors of v and v_c for D

□ Gradient of V(G, D) w.r.t θ_D :

$$\nabla_{\theta_D} V(G, D) = \begin{cases} \nabla_{\mathbf{d}_v, \mathbf{d}_{v_c}} \log D(v, v_c; \theta_D), & if \ v \sim p_{\text{true}}; \\ \nabla_{\mathbf{d}_v, \mathbf{d}_{v_c}} \left(1 - \log D(v, v_c; \theta_D) \right), & if \ v \sim G. \end{cases}$$

Optimization of G

$$\min_{\theta_G} \max_{\theta_D} V(G, D) = \sum_{c=1}^{V} \left(\mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_c)} \left[\log D(v, v_c; \theta_D) \right] + \mathbb{E}_{v \sim G(\cdot | v_c; \theta_G)} \left[\log \left(1 - D(v, v_c; \theta_D) \right) \right] \right)$$

 \square Gradient of V(G,D) w.r.t θ_G (policy gradient):

$$\nabla_{\theta_{G}} V(G, D)$$

$$= \nabla_{\theta_{G}} \sum_{c=1}^{V} \mathbb{E}_{v \sim G(\cdot | v_{c}; \theta_{G})} \left[\log \left(1 - D(v, v_{c}; \theta_{D}) \right) \right]$$

$$= \sum_{c=1}^{V} \sum_{i=1}^{N} \nabla_{\theta_{G}} G(v_{i} | v_{c}; \theta_{G}) \log \left(1 - D(v_{i}, v_{c}; \theta_{D}) \right)$$

$$= \sum_{c=1}^{V} \sum_{i=1}^{N} G(v_{i} | v_{c}; \theta_{G}) \nabla_{\theta_{G}} \log G(v_{i} | v_{c}; \theta_{G}) \log \left(1 - D(v_{i}, v_{c}; \theta_{D}) \right)$$

$$= \sum_{c=1}^{V} \mathbb{E}_{v \sim G(\cdot | v_{c}; \theta_{G})} \left[\nabla_{\theta_{G}} \log G(v | v_{c}; \theta_{G}) \log \left(1 - D(v, v_{c}; \theta_{D}) \right) \right].$$

Implementation of G

■ Softmax?

$$G(v|v_c; \theta_G) = \frac{\exp(\mathbf{g}_v^{\top} \mathbf{g}_{v_c})}{\sum_{v \neq v_c} \exp(\mathbf{g}_v^{\top} \mathbf{g}_{v_c})}$$

where $\mathbf{g}_v, \mathbf{g}_{v_c} \in \mathbb{R}^k$ are the k-dimensional vectors of v and v_c for G

Computationally inefficient Graph-structure-unaware

Hierarchical softmax?

Graph-structure-unaware

■ Negative sampling?

$$\log \sigma(v'_{w_O}^{\top} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v'_{w_i}^{\top} v_{w_I}) \right]$$

Graph-structure-unaware Invalid distribution

Design Objectives

- Normalized
 - □ The generator should produce a valid probability distribution, i.e., $\sum_{v \neq v_c} G(v|v_c; \theta_G) = 1$
- ☐ Graph-structure-aware
 - ☐ The generator should take advantage of the structural information of a graph
- Computationally efficient
 - \Box The computation of $G(v|v_c;\theta_G)$ should only involve a small number of nodes in the graph

Design

Original graph $\mathcal G$

Design

Original graph $\mathcal G$

Design

Construct a BFS-tree T_c rooted at v_c

Design

Find the unique path from v_c to v in tree T_c

Design

$$p_c(v_{r_1}|v_c) = 0.7$$

relevance probability:
$$p_c(v_i|v) = \frac{\exp(\mathbf{g}_{v_i}^{\top} \mathbf{g}_v)}{\sum_{v_j \in \mathcal{N}_c(v)} \exp(\mathbf{g}_{v_j}^{\top} \mathbf{g}_v)}$$

Design

$$p_c(v_{r_1}|v_c) = 0.7$$

$$p_c(v_{r_2}|v_{r_1}) = 0.3$$

Design

$$p_c(v_{r_1}|v_c) = 0.7$$

 $p_c(v_{r_2}|v_{r_1}) = 0.3$

$$p_c(v_{r_1}|v_{r_2}) = 0.6$$

Design

$$G(v_{r_2}|v_c;\theta_G) = 0.7 \times 0.3 \times 0.6 = 0.126$$

Design

☐ Graph softmax

$$G(v|v_c;\theta_G) \triangleq \left(\prod_{j=1}^m p_c(v_{r_j}|v_{r_{j-1}})\right) \cdot p_c(v_{r_{m-1}}|v_{r_m}),$$

given the unique path from v_c to v in tree T_c : $P_{v_c \to v} = (v_{r_0}, v_1, ..., v_{r_m})$, where $v_{r_0} = v_c$ and $v_{r_0} = v$

Properties

- ✓ Normalized: $\sum_{v \neq v_c} G(v|v_c; \theta_G) = 1$
- ✓ **Graph-structure-aware:** $G(v|v_c;\theta_G)$ decreases exponentially with the increase of the shortest distance between v and v_c in original graph g
- ✓ Computationally efficient: Calculation of $G(v|v_c;\theta_G)$ depends on $O(d \log V)$ nodes, where d is average degree of nodes and V is the number of nodes in graph G

Experiments

Datasets

- □ arXiv-AstroPh: 18,772 vertices and 198,110 edges
- □ arXiv-GrQc: 5,242 vertices and 14,496 edges
- □ BlogCatalog: 10,312 vertices, 333,982 edges and 39 labels
- ☐ Wikipedia: 4,777 vertices, 184,812 edges and 40 labels
- MovieLens-1M: 6,040 users and 3,706 movies

Baselines

- ☐ DeepWalk (KDD 2014)
- **□ LINE** (WWW 2015)
- □ Node2vec (KDD 2016)
- ☐ Struc2vec (KDD 2017)

Experiments

Link Prediction

TABLE 1: Accuracy and Macro-F1 on arXiv-AstroPh and arXiv-GrQc in link prediction.

Model	arXiv-AstroPh		arXiv-GrQc	
	Accuracy	Macro-F1	Accuracy	Macro-F1
DeepWalk	0.841	0.839	0.803	0.812
LINE	0.820	0.814	0.764	0.761
Node2vec	0.845	0.854	0.844	0.842
Struc2vec	0.821	0.810	0.780	0.776
GraphGAN	0.855	0.859	0.849	0.853

Node Classification

TABLE 2: Accuracy and Macro-F1 on BlogCatalog and Wikipedia in node classification.

Model	BlogCatalog		Wikipedia	
	Accuracy	Macro-F1	Accuracy	Macro-F1
DeepWalk	0.225	0.214	0.194	0.183
LINE	0.205	0.192	0.175	0.164
Node2vec	0.215	0.206	0.191	0.179
Struc2vec	0.228	0.216	0.211	0.190
GraphGAN	0.232	0.221	0.213	0.194

Experiments

Recommendation

Fig. 5: Precision@K and Recall@K on MovieLens-1M in recommendation.

Summary

- We propose **GraphGAN**, a novel framework that unifies generative and discriminative models for graph representation learning
- ☐ G and D act as two players in a minimax game
- ☐ We propose **graph softmax** as the implementation of G

Q & A

Thanks!