Avtor: Jan Šuntajs Mentor: dr. Janez Bonča Mentor: doc. Lev Vidmar

Ljubljana, 2017

1 Uvod

Nastop večdelčne lokalizacije (ang. many-body localization, v nadaljevanju MBL) v izoliranih neurejenih kvantnomehanskih sistemih s prisotnostjo meddelčnih interakcij vodi do osupljivih lastnosti tovrstnih sistemov. Med njimi je poglavitna in najočitnejša odsotnost termalizacije, sicer značilne za generične večdelčne sisteme z ergodično dinamiko. V termodinamski limiti unitaren dolgočasovni razvoj poljubnih začetnih stanj ergodičnih sistemov vodi do ravnovesja, v katerem pričakovane vrednosti kvantnomehanskih opazljivk podajajo ustrezna kvantnomehanska ansambelska povprečja. Zaradi odsotnosti sklopitve z zunanjim rezervoarjem je tovrstna relaksacija neravnovesnih začetnih stanj proti ravnovesnim termalnim vrednostim v izoliranem sistemu možna le, če sistem sam sebi predstavlja 'efektivno toplotno kopel'. To pomeni, da se mora podsistem z makroskopsko zanemarljivim deležem prostostnih stopenj celotnega sistema s preostankom sistema sklapljati podobno, kot se v običajni formulaciji statističnomehanskih ansamblov sistemi sklapljajo z zunanjim rezervoarjem [1] [9].

Skupaj z integrabilnimi sistemi predstavljajo MBL sistemi pomemben protiprimer zgoraj opisani dinamiki ergodičnih sistemov, kar je shematsko predstavljeno na Prikazan je časovni razvoj ne-Sliki 2. tipičnega začetnega profila kvantnomehanske opazljivke, točneje gostote delcev, v ergodičnem in MBL primeru. Medtem ko pri prvem pričakovane vrednosti lokalnih opazljivk po dolgem času določajo vrednosti ansambelskih povprečij, ki so odvisne le od nekaj dobro definiranih makroskopskih količin, denimo energije in števila delcev, je obnašanje MBL sistemov popolnoma drugačno. 'Spomin' na netipičnost začetne konfiguracije se namreč v pričakovanih vrednostih lokalnih opazljivk ohrani tudi po

Slika 1: a) Pri običajnem kvantnostatističnem opisu sistema privzamemo njegovo sklopitev z zunanjim rezervoarjem, s katerim lahko izmenjuje denimo energijo in delce. b) Tu obravnavamo zaprte oziroma izolirane kvantne sisteme, katerih dinamiko določa unitaren časovni razvoj začetnih stanj. c) Pri obravnavi termalizacije v zaprtih kvantnih sistemih je smiselno sistem razdeliti na podsistema A in B, pri čemer je v A makroskopsko zanemarljiv delež prostostnih stopenj celotnega sistema. V kolikor večji podsistem B manjšemu podsistemu služi kot toplotni rezervoar, je termalizacija možna tudi v zaprtem kvantnem sistemu. Slika je bila vzeta iz Ref. [9].

dolgočasovnem razvoju. Ker termalizacija poteka prek izmenjave delcev in energije med različnimi deli ergodičnega sistema, torej preko različnih transportnih mehanizmov, so, v nasprotju s tipično prevodnimi termalizirajočimi sistemi, lokalizirani sistemi izolatorji. V neurejenih sistemih neinteragirajočih delcev

je tovrstno obnašanje dobro poznano [6] [2] in dolgo preučevano, saj je P.W. Anderson v svojem prelomnem članku [4] že leta 1958 pojasnil vlogo nereda pri prehodu med prevodnim in izolativnim obnašanjem v preprostem modelu tesne vezi ob prisotnosti naključnih potencialov. Omenjeni mehanizem zloma ergodičnosti v neinteragirajočih sistemih danes imenujemo Andersonova lokalizacija, sistemi, v katerih je realiziran, pa so Andersonovi izolatorji. Ob dovolj močnem potencialnem neredu so vse enodelčne valovne funkcije tovrstnih sistemov lokalizirane, pri čemer njihova verjetnostna gostota pojema eksponentno z razadaljo od neke točke v prostoru. V nasprotju s prostorsko razsežnimi valovnimi funkcijami lokalizirane

Slika 2: Shematski prikaz razlike med unitarnim časovnim razvojem netipične začetne konfiguracije interagirajočih delcev v ergodičnem in MBL režimu, kjer je netipičnost dosežena z alternirajočo zasedenostjo mest na kristalni verigi. V prvem primeru sistem sčasoma relaksira proti ravnovesni enakomerni porazdelitvi delcev, medtem ko se tovrstna relaksacija v MBL fazi ne zgodi - tudi po dolgem času sistem ohrani spomin na netipičnost začetnega stanja. Slika je bila vzeta iz Ref. [1].

funkcije ne prispevajo k transportu v sistemu in tako preprečujejo termalizacijo. Kot sta točno pokazala Mott in Twose [8], povzroči v eni dimenziji ob odsotnosti meddelčnih interakcij še tako majhen nered nastop Andersonove lokalizacije in odsotnost prevodnosti. Podobno velja v dveh dimenzijah [3], medtem ko v tridimenzionalnem primeru obstaja kritična vrednost nereda, nad katero imajo sistemi izolativne, pod njo pa prevodne lastnosti [7]. Pri ničelni temperaturi tako spreminjanje nereda vodi do prehoda

med prevodno in lokalizirano fazo.

Čeprav je enodelčna lokalizacija zaradi predhodno omenjene vloge dimenzionalnosti pri nastopu lokalizacijskih pojavov že sama po sebi zapletena in zanimiva, odpira vključitev meddelčnih interakcij nova vprašanja. Pomembnejša med njimi se nanašajo na možnost obstoja MBL pri končnih temperaturah [5] [10] in na zahtevane lastnosti meddelčnih interakcij.

- 1.1 Andersonova lokalizacija
- 1.2 Dodatek interakcij
- 2 Modeli
- 2.1 Heisenbergova veriga
- 2.2 Hubbardov model
- 2.3 Model t-J
- 2.4 Točna diagonalizacija
- 3 Statistične lastnosti hamiltonskih spektrov
- 3.1 Statistika sosednjih energijskih nivojev
- 3.2 Spektralni oblikovni faktor
- 4 Prepletenostna entropija

Literatura

- [1] D. A. Abanin in dr., Ergodicity, entanglement and many-body localization, arXiv preprint arXiv:1804.11065 (2018).
- [2] E. Abrahams, 50 years of Anderson Localization, world scientific, 2010.
- [3] E. Abrahams in dr., Scaling theory of localization: Absence of quantum diffusion in two dimensions, Physical Review Letters **42**(10) (1979) 673.
- [4] P. W. Anderson, Absence of diffusion in certain random lattices, Physical review 109(5) (1958) 1492.
- [5] D. Basko, I. Aleiner in B. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals of physics **321**(5) (2006) 1126–1205.
- [6] A. Lagendijk, B. Van Tiggelen in D. S. Wiersma, Fifty years of anderson localization, Phys. Today 62(8) (2009) 24–29.
- [7] N. Mott, Metal-insulator transitions, CRC Press, 1990.
- [8] N. Mott in W. Twose, The theory of impurity conduction, Advances in Physics 10(38) (1961) 107– 163, doi:10.1080/00018736100101271.
- [9] R. Nandkishore in D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. **6**(1) (2015) 15–38.
- [10] V. Oganesyan in D. A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B **75** (2007) 155111, doi:10.1103/PhysRevB.75.155111.