Codes and Dual Codes; Generator- and Check-matrices

Codes/SKD/2019

	C	C^{\perp}
Generator-matrix	G	H
Check-matrix	H	G

C is an [n, k] code, C^{\perp} is an [n, n - k] code.

 $G \in M_{k,n}(\mathbb{F}_q)$

 $f_G: \mathbb{F}_q^k \to \mathbb{F}_q^n; \qquad f_{G^t}: \mathbb{F}_q^n \to \mathbb{F}_q^k$

 $H \in M_{n-k,n}(\mathbb{F}_q)$ $f_H : \mathbb{F}_q^{(n-k)} \to \mathbb{F}_q^n$ $f_{H^t} : \mathbb{F}_q^n \to \mathbb{F}_q^{(n-k)}$

$$\operatorname{Im}(f_G) = \{ \mathbf{x}G \mid \mathbf{x} \in \mathbb{F}_q^k \} = C = \{ \mathbf{x} \in \mathbb{F}_q^n \mid \mathbf{x}H^t = \mathbf{0} \} = \operatorname{Ker}(f_{H^t})$$

$$\operatorname{Ker}(f_{G^t}) = \{ \mathbf{x} \in \mathbb{F}_q^n \mid \mathbf{x}G^t = \mathbf{0} \} = C^{\perp} = \{ \mathbf{x}H \mid \mathbf{x} \in \mathbb{F}_q^{n-k} \} = \operatorname{Im}(f_H)$$