Surrogate modeling in electronic structure calculations using optimal transport

Virginie Ehrlacher

Ecole des Ponts ParisTech & INRIA

joint work with Maxime Dalery (UFC), Geneviève Dusson (CNRS & Université Franche-Comté), Alexei Lozinski (Université Franche-Comté), Etienne Polack (Ecole des Ponts)

Molecules are composed of :

- ► nuclei, composed of protons and neutrons, that are often modeled as classical point charges; (Born-Oppenheimer approximation);
- ▶ electrons, which are much lighter particles than nuclei and have to be modeled as quantum particles.

Wave- function methods	Density Functional Theory	Tight- binding methods	Interatomic Potentials	Coarse- grained models	Finite Element simulations	
÷						
1	100	1000	1.000.000	le8	∞	# atoms

- ► Costly but high accuracy $O(N^3)$
- ► A large number of models : Schrödinger, Hartree-Fock, Density Functional Theory

- ► Costly but high accuracy $O(N^3)$
- ► A large number of models : Schrödinger, Hartree-Fock, Density Functional Theory

Used for different purposes:

- ► Electric, optical, magnetic properties, prediction of chemical reactions...
- ► Ab initio molecular dynamics
- Building databases to construct interatomic potentials

- ► Costly but high accuracy $O(N^3)$
- ► A large number of models : Schrödinger, Hartree-Fock, Density Functional Theory

Used for different purposes :

- ► Electric, optical, magnetic properties, prediction of chemical reactions...
- ► Ab initio molecular dynamics
- Building databases to construct interatomic potentials

Focus on the **ground state of electrons**, i.e. the state of electrons with the lowest possible energy.

Let us consider a physical system composed of :

Let us consider a physical system composed of :

- ► M nuclei with
 - ▶ positions in \mathbb{R}^3 are denoted by $R_1, \ldots, R_M \in \mathbb{R}^3$;
 - electric charges are denoted by $Z_1, \ldots, Z_M > 0$.

Let us consider a physical system composed of :

- ► *M* nuclei with
 - ▶ positions in \mathbb{R}^3 are denoted by $R_1, \ldots, R_M \in \mathbb{R}^3$;
 - ightharpoonup electric charges are denoted by $Z_1, \ldots, Z_M > 0$.
- N electrons represented by a complex-valued wavefunction $\psi(x_1, \ldots, x_N)$, where for all $1 \le i \le N$, $x_i \in \mathbb{R}^3$. Since electrons are fermionic particles, ψ is antisymmetric with respect to permutation of the order of the variables.

Let us consider a physical system composed of :

- ► M nuclei with
 - ▶ positions in \mathbb{R}^3 are denoted by $R_1, \ldots, R_M \in \mathbb{R}^3$;
 - ightharpoonup electric charges are denoted by $Z_1, \ldots, Z_M > 0$.
- N electrons represented by a complex-valued wavefunction $\psi(x_1, \ldots, x_N)$, where for all $1 \le i \le N$, $x_i \in \mathbb{R}^3$. Since electrons are fermionic particles, ψ is antisymmetric with respect to permutation of the order of the variables.

Physical interpretation : $|\psi(x_1, \dots, x_N)|^2$ represents the probability density of finding the N electrons at positions $(x_1, \dots, x_N) \in \mathbb{R}^{3N}$

$$\|\psi\|_{L^2(\mathbb{R}^{3N})}^2 = \int_{\mathbb{R}^{3N}} |\psi|^2 = 1.$$

Let us consider a physical system composed of :

- ► M nuclei with
 - ▶ positions in \mathbb{R}^3 are denoted by $R_1, \ldots, R_M \in \mathbb{R}^3$;
 - ightharpoonup electric charges are denoted by $Z_1, \ldots, Z_M > 0$.
- N electrons represented by a complex-valued wavefunction $\psi(x_1, \ldots, x_N)$, where for all $1 \le i \le N$, $x_i \in \mathbb{R}^3$. Since electrons are fermionic particles, ψ is antisymmetric with respect to permutation of the order of the variables.

Physical interpretation: $|\psi(x_1, \dots, x_N)|^2$ represents the probability density of finding the N electrons at positions $(x_1, \dots, x_N) \in \mathbb{R}^{3N}$

$$\|\psi\|_{L^2(\mathbb{R}^{3N})}^2 = \int_{\mathbb{R}^{3N}} |\psi|^2 = 1.$$

Electronic (one or two-body) density:

$$\rho(x) = \int_{\mathbb{R}^{3(N-1)}} |\psi(x, x_2, \dots, x_N)|^2 \quad \tau(x, y) = \int_{\mathbb{R}^{3(N-2)}} |\psi(x, y, x_3, \dots, x_N)|^2$$

Electronic Schrödinger model

Let $\mathbf{R} = (R_1, \cdots, R_M) \in \mathbb{R}^{3M}$ the set of positions of the nuclei.

$$V_{\mathbf{R}}(x) = -\sum_{k=1}^{M} \frac{Z_k}{|x - R_k|}, \quad x \in \mathbb{R}^3.$$

Electronic Schrödinger model

Let $\mathbf{R} = (R_1, \cdots, R_M) \in \mathbb{R}^{3M}$ the set of positions of the nuclei.

$$V_{\mathbf{R}}(x) = -\sum_{k=1}^{M} \frac{Z_k}{|x - R_k|}, \quad x \in \mathbb{R}^3.$$

For a given value of R, the corresponding ground state electronic wavefunction ψ_R is solution to the eigenvalue problem (electronic Schrödinger problem)

$$H_{\mathsf{R}}\psi_{\mathsf{R}} = E_{\mathsf{R}}\psi_{\mathsf{R}}$$

with

$$H_{\mathbf{R}} = -\Delta_{x_1,...,x_N} + \sum_{i=1}^{N} V_{\mathbf{R}}(x_i) + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|}$$

and E_R the lowest eigenvalue of H_R .

Electronic Schrödinger model

Let $\mathbf{R} = (R_1, \cdots, R_M) \in \mathbb{R}^{3M}$ the set of positions of the nuclei.

$$V_{\mathbf{R}}(x) = -\sum_{k=1}^{M} \frac{Z_k}{|x - R_k|}, \quad x \in \mathbb{R}^3.$$

For a given value of \mathbf{R} , the corresponding ground state electronic wavefunction $\psi_{\mathbf{R}}$ is solution to the eigenvalue problem (electronic Schrödinger problem)

$$H_{\mathsf{R}}\psi_{\mathsf{R}} = E_{\mathsf{R}}\psi_{\mathsf{R}}$$

with

$$H_{R} = -\Delta_{x_1,...,x_N} + \sum_{i=1}^{N} V_{R}(x_i) + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|}$$

and E_R the lowest eigenvalue of H_R .

Problem : Linear eigenvalue problem for functions defined on the high-dimensional space \mathbb{R}^{3N} .

Model-order reduction : interpolation

Approach : Compute an approximation of $\rho_{\mathbf{R}}$ as an interpolation in a "good sense" from a few well-selected snapshots $\rho_{\mathbf{R}_1},\ldots,\rho_{\mathbf{R}_n}$.

Model-order reduction: interpolation

Approach : Compute an approximation of $\rho_{\mathbf{R}}$ as an interpolation in a "good sense" from a few well-selected snapshots $\rho_{\mathbf{R}_1},\ldots,\rho_{\mathbf{R}_n}$.

Important property : If the set of positions of the nuclei $\mathbf{R} = (R_1, \dots, R_M)$ is shifted by a translation vector \mathbf{b} , $(\mathbf{R}' = (R_1 + b, \dots, R_M + b))$, then the electronic density is also shifted by the same translation vector :

$$\rho_{\mathbf{R}'}(x) = \rho_{\mathbf{R}}(x+b)$$

Model-order reduction: interpolation

Approach : Compute an approximation of $\rho_{\mathbf{R}}$ as an interpolation in a "good sense" from a few well-selected snapshots $\rho_{\mathbf{R}_1},\ldots,\rho_{\mathbf{R}_n}$.

Important property : If the set of positions of the nuclei $\mathbf{R} = (R_1, \dots, R_M)$ is shifted by a translation vector \mathbf{b} , $(\mathbf{R}' = (R_1 + b, \dots, R_M + b))$, then the electronic density is also shifted by the same translation vector :

$$\rho_{\mathbf{R}'}(x) = \rho_{\mathbf{R}}(x+b)$$

Similar issue as in ROMs for transport-dominated problems...

Model-order reduction: interpolation

Approach : Compute an approximation of $\rho_{\mathbf{R}}$ as an interpolation in a "good sense" from a few well-selected snapshots $\rho_{\mathbf{R}_1},\ldots,\rho_{\mathbf{R}_n}$.

Important property : If the set of positions of the nuclei $\mathbf{R} = (R_1, \dots, R_M)$ is shifted by a translation vector \mathbf{b} , $(\mathbf{R}' = (R_1 + b, \dots, R_M + b))$, then the electronic density is also shifted by the same translation vector :

$$\rho_{\mathbf{R}'}(x) = \rho_{\mathbf{R}}(x+b)$$

Similar issue as in ROMs for transport-dominated problems...

Use of **optimal transport theory** to build interpolations which respect this property.

Model-order reduction : interpolation

Approach : Compute an approximation of $\rho_{\mathbf{R}}$ as an interpolation in a "good sense" from a few well-selected snapshots $\rho_{\mathbf{R}_1},\ldots,\rho_{\mathbf{R}_n}$.

Important property : If the set of positions of the nuclei $\mathbf{R} = (R_1, \dots, R_M)$ is shifted by a translation vector \mathbf{b} , $(\mathbf{R}' = (R_1 + b, \dots, R_M + b))$, then the electronic density is also shifted by the same translation vector :

$$\rho_{\mathbf{R}'}(x) = \rho_{\mathbf{R}}(x+b)$$

Similar issue as in ROMs for transport-dominated problems...

Use of **optimal transport theory** to build interpolations which respect this property.

A problem parametrized by the nuclei positions.

Goal: approximate

 $\mathcal{M} := \{ \Psi_{\mathbf{R}} \text{ for } \mathbf{R} \in \mathcal{R} \}, \quad \mathcal{R} \text{ being the set of configurations}$

Optimal transport for model order reduction

Non-exhaustive list...

- ► [Iollo, Lombardi, 2014] : transport maps computed as linear combinations of optimal transport maps
- ► [VE, Lombardi, Mula, Vialard, 2020] : use of Wasserstein barycenters (1d) with greedy algorithms
- ► [Iollo, Taddei, 2022] : use of Gaussian models
- ► [Do, Feydy, Mula,2023] : extension of the Wasserstein barycenter methodology to higher-dimensional settings
- ► [Rim, Peherstorfer, Mandli, 2023] : towards a Galerkin approach combined with optimal transport

Eigenvalue problem :

$$\begin{cases} -\frac{1}{2}\Psi_{\mathbf{R}}'' + \left(-\sum_{m=1}^{M} z_m \delta_{R_m}\right) \Psi_{\mathbf{R}} &= E_{\mathbf{R}} \Psi_{\mathbf{R}} \\ \|\Psi_{\mathbf{R}}\|_{L^2(\mathbb{R})} &= 1. \end{cases}$$

Eigenvalue problem :

$$\begin{cases}
-\frac{1}{2}\Psi_{\mathbf{R}}'' + \left(-\sum_{m=1}^{M} z_m \delta_{R_m}\right) \Psi_{\mathbf{R}} &= E_{\mathbf{R}} \Psi_{\mathbf{R}} \\
\|\Psi_{\mathbf{R}}\|_{L^2(\mathbb{R})} &= 1.
\end{cases}$$

Dirac potential

Eigenvalue problem :

$$\begin{cases}
-\frac{1}{2}\Psi_{\mathbf{R}}'' + \left(-\sum_{m=1}^{M} z_m \delta_{R_m}\right) \Psi_{\mathbf{R}} &= E_{\mathbf{R}} \Psi_{\mathbf{R}} \\
\|\Psi_{\mathbf{R}}\|_{L^2(\mathbb{R})} &= 1.
\end{cases}$$

- Dirac potential
- Similar regularity as in the 3D case with Coulomb

Eigenvalue problem :

$$\begin{cases} -\frac{1}{2}\Psi_{\mathbf{R}}'' + \left(-\sum_{m=1}^{M} z_m \delta_{R_m}\right) \Psi_{\mathbf{R}} &= E_{\mathbf{R}} \Psi_{\mathbf{R}} \\ \|\Psi_{\mathbf{R}}\|_{L^2(\mathbb{R})} &= 1. \end{cases}$$

- Dirac potential
- Similar regularity as in the 3D case with Coulomb
- ► Analytic solutions

$$\Psi_{\mathbf{R}} = \sum_{m=1}^{M} \pi_m^{\mathbf{R}} e^{-\zeta_{\mathbf{R}}|x - R_m|},$$

for some positive weights $\pi^{\mathbf{R}} = \left(\pi_m^{\mathbf{R}}\right)_{m=1}^M \in (\mathbf{R}_+)^M$ and $\zeta_{\mathbf{R}} > 0$.

Plots of a few solutions

 $\pmb{\mathsf{Aim}}$: efficiently approximate all solutions (for varying positions) from the computation of only $\pmb{\mathsf{a}}$ $\pmb{\mathsf{few}}$ solutions

Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

Problem: Parametrized PDE with parameters $R\in\mathcal{R}.$

Needs to be solved for \boldsymbol{many} parameters $\boldsymbol{R}.$

Problem : Parametrized PDE with parameters $\mathbf{R} \in \mathcal{R}$.

Needs to be solved for **many** parameters **R**.

Offline part : Select accurate solutions for a few wisely chosen parameters $R_1, R_2, \dots, R_{\mathcal{K}} \in \mathcal{R}$

Problem : Parametrized PDE with parameters $\mathbf{R} \in \mathcal{R}$.

Needs to be solved for **many** parameters **R**.

Offline part : Select accurate solutions for a few wisely chosen parameters $R_1,R_2,\ldots,R_K\in\mathcal{R}$

lacktriangle Generate a training set of snapshots for parameters $old R \in \mathcal R_{
m train}$

Problem : Parametrized PDE with parameters $R \in \mathcal{R}$.

Needs to be solved for many parameters R.

Offline part : Select accurate solutions for a few wisely chosen parameters $R_1,R_2,\ldots,R_K\in\mathcal{R}$

- lacktriangle Generate a training set of snapshots for parameters $old R \in \mathcal R_{\mathrm{train}}$
- ► Select "good" snapshots for instance with a greedy algorithm (Reduced Basis techniques)
 - ▶ Select one parameter $\mathbf{R}_1 \in \mathcal{R}$
 - ▶ at each iteration $K \ge 2$, select the snapshot that is worse approximated in the basis of the previously selected snapshots $\Psi_{R_1}, \dots, \Psi_{R_{K-1}}$

Problem : Parametrized PDE with parameters $\mathbf{R} \in \mathcal{R}$.

Needs to be solved for many parameters R.

Offline part : Select accurate solutions for a few wisely chosen parameters $R_1, R_2, \dots, R_{\mathcal{K}} \in \mathcal{R}$

- lacktriangle Generate a training set of snapshots for parameters $old R \in \mathcal R_{\mathrm{train}}$
- ► Select "good" snapshots for instance with a greedy algorithm (Reduced Basis techniques)
 - ▶ Select one parameter $\mathbf{R}_1 \in \mathcal{R}$
 - ▶ at each iteration $K \geq 2$, select the snapshot that is worse approximated in the basis of the previously selected snapshots $\Psi_{R_1}, \ldots, \Psi_{R_{K-1}}$

Online part: compute solutions for **many** parameters $R \in \mathcal{R}$ in the reduced space spanned by selected snapshots, i.e. in the basis spanned by the solutions $\Psi_{R_1}, \ldots, \Psi_{R_K}$.

Barrault, Maday, Nguyen, Patera : An empirical interpolation method : application to efficient reduced-basis discretization of partial differential equations. C. R.(2004)

Kolmogorov *n*-width

Definition for a Hilbert space
$$\mathbb{H}: \mathcal{M} := \{\Psi_{\mathbf{R}}, \quad \mathbf{R} \in \mathcal{R}\}$$

$$d_n(\mathcal{M}, \mathbb{H}) := \inf_{\substack{V_n \subset \mathbb{H} \\ \dim V_n = n}} \sup_{\mathbf{R} \in \mathcal{R}} \|\Psi_{\mathbf{R}} - \mathrm{P}_{V_n} \Psi_{\mathbf{R}}\|.$$

Kolmogorov *n*-width

Definition for a Hilbert space
$$\mathbb{H}:\mathcal{M}:=\{\Psi_{\mathbf{R}},\quad \mathbf{R}\in\mathcal{R}\}$$

$$d_n(\mathcal{M},\mathbb{H}):=\inf_{\substack{V_n\subset\mathbb{H}\\\dim V_n=n}}\sup_{\mathbf{R}\in\mathcal{R}}\|\Psi_{\mathbf{R}}-\mathrm{P}_{V_n}\Psi_{\mathbf{R}}\|.$$

- ► Characterizes if the reduced basis method has a chance to work
- ► The faster the decay, the better!

Kolmogorov *n*-width

Definition for a Hilbert space $\mathbb{H}:\mathcal{M}:=\{\Psi_{\textbf{R}},\quad \textbf{R}\in\mathcal{R}\}$

$$\textit{d}_\textit{n}(\mathcal{M}, \mathbb{H}) := \inf_{\substack{V_\textit{n} \subset \mathbb{H} \\ \text{dim}\, V_\textit{n} = \textit{n}}} \sup_{\textbf{R} \in \mathcal{R}} \ \| \Psi_\textbf{R} - \mathrm{P}_{\textit{V}_\textit{n}} \Psi_\textbf{R} \|.$$

- ► Characterizes if the reduced basis method has a chance to work
- ► The faster the decay, the better!

Typical example where it works: elliptic equation

$$A_{\mathbf{R}}\Psi_{\mathbf{R}}=f,$$

with affine representation of $A_{\mathbf{R}}$:

$$A_{\mathbf{R}} = \sum_{q=1}^Q heta_q(\mathbf{R}) A_q, \quad ext{for some } heta_q \in \mathbb{R}, \, A_q ext{ continuous operators}$$

Exponential decay of the Kolmogorov n-width:

$$d_n(\mathcal{M}, \mathbb{H}) \leq C \exp(-cn^{1/Q}).$$

Ohlberger, Rave: Reduced Basis Methods: Success, Limitations and Future Challenges (2015)

Cohen, DeVore : Approximation of high-dimensional parametric PDEs Acta Numerica (2015)

Less successful examples : Transport problems

Simple example : one-dimensional transport equation, $y \in [0,1]$,

$$\begin{cases} \partial_t \Psi_y(t,x) + y \partial_x \Psi_y(t,x) = 0, & x \in \mathbb{R}, t \in \mathbb{R}_+ \\ \Psi_y(0,x) = \mathbf{1}_{[0,1]} \end{cases}$$

At t=1, the solutions are $\Psi_y(t=1,x)=\mathbf{1}_{[y-1,y]}$

Kolmogorov *n*-width for $\mathcal{M} := \{\mathbf{1}_{[v-1,v]}, y \in [0,1]\}$:

$$d_n(\mathcal{M}, L^2(\Omega)) > cn^{-1/2}$$

What about electronic structure?

Similar behavior as the transport problem

Kolmogorov *n*-width for the 1D toy problem

For the problem with one nucleus, $\mathcal{M} = \{\Psi_R, R \in [-\bar{R}, \bar{R}]\}$, there exist positive constant $c_{\bar{R}}$, $C_{\bar{R}}$ such that

$$c_{\bar{R}}n^{-\frac{3}{2}}\leqslant d_n(\mathcal{M},L^2(\mathbb{R}))\leqslant C_{\bar{R}}n^{-\frac{3}{2}}.$$

For the problem with two nuclei, $\mathcal{M} = \{\Psi_{(R_1,R_2)}, R_1, R_2 \in [-\bar{R}, \bar{R}]^2\}$, there exists a positive constant $c_{\bar{R}}$ such that

$$c_{\bar{R}}n^{-\frac{3}{2}} \leqslant d_n(\mathcal{M}, L^2(\mathbb{R})).$$

Dalery, Dusson, Ehrlacher, Lozinski: Nonlinear reduced basis using mixture Wasserstein barycenters: application to an eigenvalue

Alternative : finding a good nonlinear transformation

Use of **optimal transport**: at minima deals with the translations Barycenter between two Slater functions: a translated Slater function

Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

Optimal transport in a nutshell

Let $\mathcal{P}_2(\mathbb{R})$ denotes the set of probability measures on \mathbb{R} with finite second-order moments.

Optimal transport in a nutshell

Let $\mathcal{P}_2(\mathbb{R})$ denotes the set of probability measures on \mathbb{R} with finite second-order moments.

Wasserstein distance : The 2-Wasserstein distance over $\mathcal{P}_2(\mathbb{R})$ is defined for $u, v \in \mathcal{P}_2(\mathbb{R})^2$ as $W_2(u, v)^2 := \inf_{\pi \in \Pi(u, v)} \int_{\mathbb{R}^2} (x - y)^2 \ d\pi(x, y),$

 $\Pi(u,v)$: set of probability measures over \mathbb{R}^2 with marginals u and v.

Wasserstein barycenters

Define

$$\mathcal{T}_Q = \left\{ (t_1, \ldots, t_Q) \in (\mathbb{R}_+)^Q, \quad \sum_{q=1}^Q t_q = 1
ight\}.$$

The Wasserstein barycenter $\mathrm{Bar}^t_{W_2}(u)$ of a collection of Q probability measures $u:=(u_1,\ldots,u_Q)\in\mathcal{P}_2(\mathbb{R})^Q$ associated to a set of barycentric weights $t:=(t_1,\ldots,t_Q)\in\mathcal{T}_Q$: it is the unique solution to the problem

$$\inf_{u\in\mathcal{P}_2(\mathbb{R})}\sum_{q=1}^Q t_q W_2(u,u_q)^2.$$

Wasserstein barycenters

Define

$$\mathcal{T}_Q = \left\{ (t_1, \dots, t_Q) \in (\mathbb{R}_+)^Q, \quad \sum_{q=1}^Q t_q = 1
ight\}.$$

The Wasserstein barycenter $\mathrm{Bar}^t_{W_2}(u)$ of a collection of Q probability measures $u:=(u_1,\ldots,u_Q)\in\mathcal{P}_2(\mathbb{R})^Q$ associated to a set of barycentric weights $t:=(t_1,\ldots,t_Q)\in\mathcal{T}_Q$: it is the unique solution to the problem

$$\inf_{u\in\mathcal{P}_2(\mathbb{R})}\sum_{q=1}^Q t_q W_2(u,u_q)^2.$$

Remark : The L^2 barycenter of a collection of Q probability measures $\mathbf{u} := (u_1, \dots, u_Q) \in \mathcal{P}_2(\mathbb{R})^Q$ associated to a set of barycentric weights $\mathbf{t} := (t_1, \dots, t_Q) \in \mathcal{T}_Q$: it is the unique solution to the problem

$$\inf_{u \in L^{2}(\mathbb{R})} \sum_{q=1}^{Q} t_{q} \|u - u_{q}\|_{L^{2}}^{2}, \quad \text{i.e.} \quad \sum_{q=1}^{Q} t_{q} u_{q}$$

Agueh, Carlier: Barycenters in the Wasserstein Space. SIAM J. Math. Anal. (2011).

A few examples : One-dimensional case

Cumulative distribution function (cdf) of an element $u \in \mathcal{P}_2(\mathbb{R})$ is $\operatorname{cdf}_u : x \in \mathbb{R} \longmapsto \int_{-\infty}^x \operatorname{d}[u],$

A few examples : One-dimensional case

Cumulative distribution function (cdf) of an element $u \in \mathcal{P}_2(\mathbb{R})$ is $\mathrm{cdf}_u : x \in \mathbb{R} \longmapsto \int_{-\infty}^x \mathrm{d}[u],$

Inverse cumulative distribution function (icdf) : generalized inverse of the cdf

$$\operatorname{icdf}_u : s \in [0,1] \longmapsto \operatorname{cdf}_u^{-1} := \inf\{x \in \mathbb{R}, \operatorname{cdf}_u(x) > s\}.$$

Then, for any $(u, v) \in \mathcal{P}_2(\mathbb{R})^2$, there holds

$$W_2(u, v) = \|\operatorname{icdf}_u - \operatorname{icdf}_v\|_{L^2([0,1])},$$

and for any set of barycentric weights $\boldsymbol{t}:=(t_1,\ldots,t_Q)\in \mathcal{T}_Q$ and $\boldsymbol{u}:=(u_1,\ldots,u_Q)\in \mathcal{P}_2(\mathbb{R})^Q$,

A few examples : One-dimensional case

Cumulative distribution function (cdf) of an element $u \in \mathcal{P}_2(\mathbb{R})$ is $\mathrm{cdf}_u : x \in \mathbb{R} \longmapsto \int_{-\infty}^x \mathrm{d}[u],$

Inverse cumulative distribution function (icdf) : generalized inverse of the cdf

$$\operatorname{icdf}_u: s \in [0,1] \longmapsto \operatorname{cdf}_u^{-1} := \inf\{x \in \mathbb{R}, \operatorname{cdf}_u(x) > s\}.$$

Then, for any $(u, v) \in \mathcal{P}_2(\mathbb{R})^2$, there holds

$$W_2(u, v) = \|\operatorname{icdf}_u - \operatorname{icdf}_v\|_{L^2([0,1])},$$

and for any set of barycentric weights $\boldsymbol{t}:=(t_1,\ldots,t_Q)\in T_Q$ and $\boldsymbol{u}:=(u_1,\ldots,u_Q)\in \mathcal{P}_2(\mathbb{R})^Q$,

the icdf of the barycenter $\mathrm{Bar}_{W_2}^{\pmb{t}}(\pmb{u})$ satisfies

$$\operatorname{icdf}_{\operatorname{Bar}^{\boldsymbol{t}}_{W_2}(\boldsymbol{u})} = \sum_{q=1}^{Q} t_n \operatorname{icdf}_{u_q}.$$

Illustration

$$\operatorname{icdf}_{\operatorname{Bar}^{\boldsymbol{t}}_{W_2}(\boldsymbol{u})} = \lambda \operatorname{icdf}_{u_1} + (1-\lambda)\operatorname{icdf}_{u_2}.$$

A few examples: Location-scatter transforms

$$\mathcal{A} := \left\{ T \# \mathsf{a}, \quad T : \mathsf{x} \in \mathbb{R}^d \mapsto \mathsf{A}\mathsf{x} + \mathsf{b}, \; \mathsf{A} \in \mathcal{S}_d, \; \mathsf{b} \in \mathbb{R}^d \right\}.$$

All measures generated with translation and dilations of a single measure

A few examples : Location-scatter transforms

$$\mathcal{A} := \left\{ T \# a, \quad T : x \in \mathbb{R}^d \mapsto Ax + b, \ A \in \mathcal{S}_d, \ b \in \mathbb{R}^d \right\}.$$

All measures generated with translation and dilations of a single measure

Here, a will be given as a Slater distribution $da(x) = \frac{1}{7}e^{-|x|} dx$

A few examples: Location-scatter transforms

$$A := \left\{ T \# a, \quad T : x \in \mathbb{R}^d \mapsto Ax + b, \ A \in \mathcal{S}_d, \ b \in \mathbb{R}^d \right\}.$$

All measures generated with translation and dilations of a single measure

Here, a will be given as a Slater distribution $da(x) = \frac{1}{Z}e^{-|x|} dx$

Wasserstein distance : Let $a_0, a_1 \in A$ havings means m_0, m_1 and covariance matrices Σ_0, Σ_1 . Then

$$W_2^2(a_0, a_1) = \|m_0 - m_1\|^2 + \operatorname{Tr}\left(\Sigma_0 + \Sigma_1 - 2(\Sigma_0^{1/2}\Sigma_1\Sigma_0^{1/2})^{1/2}\right),$$

A few examples: Location-scatter transforms

$$\mathcal{A} := \left\{ T \# a, \quad T : x \in \mathbb{R}^d \mapsto Ax + b, \ A \in \mathcal{S}_d, \ b \in \mathbb{R}^d \right\}.$$

All measures generated with translation and dilations of a single measure

Here, a will be given as a Slater distribution $da(x) = \frac{1}{7}e^{-|x|} dx$

Wasserstein distance : Let $a_0, a_1 \in \mathcal{A}$ havings means m_0, m_1 and covariance matrices Σ_0, Σ_1 . Then

$$W_2^2(a_0,a_1) = \|m_0 - m_1\|^2 + \operatorname{Tr}\left(\Sigma_0 + \Sigma_1 - 2(\Sigma_0^{1/2}\Sigma_1\Sigma_0^{1/2})^{1/2}\right),$$

Wasserstein barycenter: Let $a_1, \ldots, a_Q \in \mathcal{A}$ such that for all $1 \leq q \leq Q$, a_q has mean m_q and covariance matrix Σ_q . For weights $\boldsymbol{t} := (t_1, \ldots, t_Q) \in T_Q$, the Wassertein barycenter belongs to \mathcal{A} with mean m and covariance matrix S given by

$$S = \sum_{q=1}^{Q} t_q (S^{1/2} \Sigma_q S^{1/2})^{1/2}, \quad ext{and} \quad m = \sum_{q=1}^{Q} t_q m_q.$$

Center is the mean of centers, small equation to solve for the covariance.

Illustration

Barycenter between three Slater distributions

Illustration

Barycenter between three Slater distributions

Kolmogorov n-width for the Wasserstein distance

Solution manifold :
$$\mathcal{M} = \{\Psi_{\mathbf{R}}, \mathbf{R} \in [-\bar{R}, \bar{R}]^M\}$$

Since $W_2(u, v) = \|\mathrm{icdf}_u - \mathrm{icdf}_v\|_{L^2(0.1)}$, we consider

$$d_n(\mathcal{M}, W_2) := d_n(\operatorname{icdf}(\mathcal{M}), L^2(0,1))$$

Kolmogorov n-width for the Wasserstein distance

Solution manifold :
$$\mathcal{M} = \{\Psi_{\mathbf{R}}, \mathbf{R} \in [-\bar{R}, \bar{R}]^{M}\}$$

Since $W_2(u, v) = \|\operatorname{icdf}_u - \operatorname{icdf}_v\|_{L^2(0,1)}$, we consider

$$d_n(\mathcal{M}, W_2) := d_n(\operatorname{icdf}(\mathcal{M}), L^2(0,1))$$

Simple one-nucleus problem : $\forall n > 1, d_n(\mathcal{M}, W_2) = 0$

Kolmogorov n-width for the Wasserstein distance

Solution manifold :
$$\mathcal{M} = \{\Psi_{\mathbf{R}}, \mathbf{R} \in [-\bar{R}, \bar{R}]^{M}\}$$

Since $W_2(u, v) = \|\operatorname{icdf}_u - \operatorname{icdf}_v\|_{L^2(0,1)}$, we consider

$$d_n(\mathcal{M}, W_2) := d_n(\operatorname{icdf}(\mathcal{M}), L^2(0,1))$$

Simple one-nucleus problem : $\forall n > 1, d_n(\mathcal{M}, W_2) = 0$

Case of two nuclei in $[-\bar{R}, \bar{R}]^2$: There exists a constant $C_{\bar{R}} > 0$ such that for all $n \ge 1$,

$$d_n(\mathcal{M},W_2)\leq C_{\bar{R}}n^{-5/2}.$$

To compare with the linear Kolmogorov width:

$$c_{\bar{R}}n^{-3/2}\leqslant d_n(\mathcal{M},L^2(\mathbb{R}))$$

Wasserstein barycenter between two solutions

Limitations:

- ► High computational cost
- Smoothing of the barycenter with Sinkhorn algorithm
- Bad scaling with the dimension
- Approximation properties of the solution set not optimal

A modified distance

 $\mathcal{A}\subset\mathcal{P}(\mathbb{R})$: set of location-scatter probability measures (Slater functions, gaussians, etc.)

Modified distance between two mixtures : $\lambda_0^j \geq 0$, $\sum_{j=1}^J \lambda_0^j = 1$, $\lambda_1^k \geq 0$, $\sum_{k=1}^K \lambda_1^k = 1$

$$\mu_0 = \sum_{i=1}^J \lambda_0^i a_0^j$$
 and $\mu_1 = \sum_{k=1}^K \lambda_1^k a_1^k$

A modified distance

 $\mathcal{A}\subset\mathcal{P}(\mathbb{R})$: set of location-scatter probability measures (Slater functions, gaussians, etc.)

Modified distance between two mixtures : $\lambda_0^j \geq 0$, $\sum_{j=1}^J \lambda_0^j = 1$, $\lambda_1^k \geq 0$, $\sum_{k=1}^K \lambda_1^k = 1$

$$\mu_0 = \sum_{i=1}^J \lambda_0^j a_0^j$$
 and $\mu_1 = \sum_{k=1}^K \lambda_1^k a_1^k$

$$\begin{split} mW_2(\mu_0,\mu_1)^2 := \min_{w:=(w_{jk})} & \sum_{1 \leq j \leq J, \ \in \Pi(\Lambda_0,\Lambda_1)} \sum_{j=1}^J \sum_{k=1}^K w_{jk} W_2^2 \big(a_0^j, a_1^k \big), \\ \text{with} \quad & \Pi(\Lambda_0,\Lambda_1) := \Bigg\{ w := (w_{jk})_{1 \leq j \leq J, 1 \leq k \leq K} \in \mathbb{R}_+^{J \times K}, \\ & \forall 1 \leq j \leq J, \ \sum_{k=1}^K w_{jk} = \lambda_0^j, \quad \forall 1 \leq k \leq K, \ \sum_{j=1}^J w_{jk} = \lambda_1^k \Bigg\}. \end{split}$$

A modified distance

M set of mixtures of location-scatter probability measures obtained from the Slater distribution

For the 1D toy model test case for electronic structure calculations,

$$\mathcal{M} \subset \mathbb{M}$$

Aim: Exploit the compact form of the solution as a mixture of Slater functions

Delon, Desolneux : A Wasserstein-Type Distance in the Space of Gaussian Mixture Models. SIAM J. Imaging Sci. (2020). Dusson, Ehrlacher, Nouaime : A Wasserstein-type metric for generic mixture models, including location-scatter and group invariant measures (2023)

Mixture barycenter between two solutions

Mixture Wasserstein barycenter of a collection of Q probability measures $\mathbf{u} := (u_1, \dots, u_Q) \in \mathcal{P}_2(\mathbb{R})^Q$ associated to a set of barycentric weights $\mathbf{t} := (t_1, \dots, t_Q) \in \mathcal{T}_Q$: it is the unique solution to the problem

$$\inf_{u \in \mathcal{M}(\mathcal{A})} \sum_{q=1}^{Q} t_q m W_2^2(u, u_q)^2.$$

Interesting features:

- ► Way better approximation compared to W₂ barycenter
- ► Computational cost independent of the dimension

Formula for the barycenter :

$$\operatorname{Bar}_{\mathrm{MW}_{2}}^{\boldsymbol{t}}(u_{1},\ldots,u_{Q}) = \sum_{k} w_{k}^{*} \operatorname{Bar}_{W_{2}}^{\boldsymbol{t}}\left(u_{1}^{k^{1}},\ldots,u_{Q}^{k^{Q}}\right),$$

A few properties

Valid for a large number of probability distributions

Mathematically:

- ▶ needs a geodesic space for the atoms (space with distance + geodesic)
- ► identifiability

A few properties

Valid for a large number of probability distributions

Mathematically:

- ▶ needs a geodesic space for the atoms (space with distance + geodesic)
- ► identifiability

Computationally : barycenters need to be easily computable (best if explicit!) Examples :

- ► Elliptic distributions (Slater, gaussians, Wigner semicircle)
- ► Location-scatter (dilations+translations)

Dusson, Ehrlacher, Nouaime : A Wasserstein-type metric for generic mixture models, including location-scatter and group invariant measures (2023)

Back to Kolmogorov n-width

Definition of nonlinear Kolmogorov *n*-width :

The Kolmogorov *n*-width of the set $\mathcal{M} \subset \mathbb{M}$ is defined by

$$d_n(\mathcal{M}, \mathbb{M}) = \inf_{\boldsymbol{u} \in \mathbb{M}^n} \sup_{\boldsymbol{R} \in \mathcal{R}} \inf_{\boldsymbol{t} \in \mathcal{T}_n} mW_2(\Psi_{\boldsymbol{R}}, \operatorname{Bar}_{\mathrm{MW}_2}^{\boldsymbol{t}}(\boldsymbol{u})).$$

Theorem : (Dalery, Dusson, E., Lozinski) for a system with two nuclei with identical charges, for $n \ge 2$,

$$d_n(\mathcal{M},\mathbb{M})=0.$$

Exact representation of all solutions in this case

Dalery, Dusson, Ehrlacher, Lozinski: Nonlinear reduced basis using mixture Wasserstein barycenters: application to an eigenvalue problem inspired from quantum chemistry

Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a $1D\ toy\ problem$

Practical strategy

Nonlinear version

Offline part : Select accurate solutions for a few wisely chosen parameters $R_1,R_2,\dots,R_{\mathcal{K}}\in\mathcal{R}$

- lacktriangle Generate a training set of snapshots for parameters $oldsymbol{\mathsf{R}} \in \mathcal{R}_{ ext{train}}$
- ► Select "good" snapshots with a greedy algorithm adapted to the miwture Wasserstein metric
 - \blacktriangleright Select two parameters $\textbf{R}_1,\textbf{R}_2\in\mathcal{R}$ that are as far as possible
 - ▶ at each iteration $K \geq 3$, select the snapshot that is worse approximated as a barycenter in the set of the previously selected snapshots $\Psi_{R_1}, \dots, \Psi_{R_{K-1}}$

Online part : compute solutions for many parameters $R \in \mathcal{R}$ as a barycenter of selected snapshots, i.e. in the set of the solutions $\Psi_{R_1}, \ldots, \Psi_{R_K}$.

Online algorithm : energy minimization

- ► Nonlinear problem, but in low dimension
- ▶ Using quasi-Newton method starting from different initial guesses

Numerical results: greedy algorithm

Charges: (0.8, 1.1).

291 solutions in the training set.

Error decrease with respect to number of selected snapshots

Numerical results: greedy algorithm

First eight selected solutions

Numerical results : greedy algorithm

Projection example

Numerical results : online energy minimization

Energy error

Numerical results

Comparison between projection and energy minimization

Limitations and extensions

Key points:

- ► Independent of the underlying dimension
- ▶ Problem size depends on number of functions in the mixtures

Limitations:

▶ Needs to consider probability distributions with specific structure

Extensions:

- consider orthogonal projectors problems using Quantum Optimal transport
- accelerate calculations via learning of the parameter map

Towards calculations for molecules

Electronic (one or two-body) density:

$$\rho(x) = \int_{\mathbb{R}^{3(N-1)}} |\psi(x, x_2, \dots, x_N)|^2 \quad \tau(x, y) = \int_{\mathbb{R}^{3(N-2)}} |\psi(x, y, x_3, \dots, x_N)|^2$$

Towards calculations for molecules

Electronic (one or two-body) density:

$$\rho(x) = \int_{\mathbb{R}^{3(N-1)}} |\psi(x, x_2, \dots, x_N)|^2 \quad \tau(x, y) = \int_{\mathbb{R}^{3(N-2)}} |\psi(x, y, x_3, \dots, x_N)|^2$$

ELectronic structure models which yield approximations of the **one-body density** ρ are much faster (but less accurate) than models which yield approximations of the **two-body density** τ

Towards calculations for molecules

Electronic (one or two-body) density:

$$\rho(x) = \int_{\mathbb{R}^{3(N-1)}} |\psi(x, x_2, \dots, x_N)|^2 \quad \tau(x, y) = \int_{\mathbb{R}^{3(N-2)}} |\psi(x, y, x_3, \dots, x_N)|^2$$

ELectronic structure models which yield approximations of the **one-body density** ρ are much faster (but less accurate) than models which yield approximations of the **two-body density** τ

Aim: accelerate two-body density calculations

Offline part:

▶ Select accurate solutions $\rho_{\mathbf{R}_1}, \dots, \rho_{\mathbf{R}_k}$ and $\tau_{\mathbf{R}_1}, \dots \tau_{\mathbf{R}_k}$ for a few wisely chosen parameters $\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_K \in \mathcal{R}$

Offline part:

- ▶ Select accurate solutions $\rho_{\mathbf{R}_1}, \dots, \rho_{\mathbf{R}_k}$ and $\tau_{\mathbf{R}_1}, \dots \tau_{\mathbf{R}_k}$ for a few wisely chosen parameters $\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_K \in \mathcal{R}$
- Approximate them as mixtures of Gaussians or Slater distributions

 $\overline{
ho}_{\mathbf{R}_1},\ldots,\overline{
ho}_{\mathbf{R}_k}$ and $\overline{ au}_{\mathbf{R}_1},\ldots\overline{ au}_{\mathbf{R}_k}$

Bachmayr, Chen, Schneider: Error estimates for Hermite and even-tempered Gaussian approximations in quantum chemistry, Numerische Mathematik, (2014).

Online part:

lackbox Compute only an approximation of the one-body density matrix $ho_{\mathbf{R}}$ for $\mathbf{R} \in \mathcal{R}$

Online part:

- ▶ Compute only an approximation of the one-body density matrix $\rho_{\mathbf{R}}$ for $\mathbf{R} \in \mathcal{R}$
- \blacktriangleright Approximate it as mixtures of Gaussians or Slater distributions $\overline{\rho}_{\mathbf{R}}$

Online part:

- ▶ Compute only an approximation of the one-body density matrix $\rho_{\mathbf{R}}$ for $\mathbf{R} \in \mathcal{R}$
- lacktriangle Approximate it as mixtures of Gaussians or Slater distributions $\overline{
 ho}_{\mathbf{R}}$
- ▶ Compute optimal barycentric weights $(t_1, ..., t_K) \in T_K$ such that

$$\overline{\rho}_{\mathbf{R}} pprox \mathrm{Bar}_{\mathrm{MW}_2}^{t} \left(\overline{\rho}_{\mathbf{R}_1}, \dots, \overline{\rho}_{\mathbf{R}_K} \right)$$

Online part:

- ▶ Compute only an approximation of the one-body density matrix $\rho_{\mathbf{R}}$ for $\mathbf{R} \in \mathcal{R}$
- lacktriangle Approximate it as mixtures of Gaussians or Slater distributions $\overline{
 ho}_{\mathbf{R}}$
- lacktriangle Compute optimal barycentric weights $(t_1,\ldots,t_K)\in T_K$ such that

$$\overline{\rho}_{\mathbf{R}} pprox \mathrm{Bar}_{\mathrm{MW}_2}^{t} \left(\overline{\rho}_{\mathbf{R}_1}, \dots, \overline{\rho}_{\mathbf{R}_K} \right)$$

 \blacktriangleright Compute an approximation $\overline{\tau}_{\mathbf{R}}$ of the two-body density matrix $\tau_{\mathbf{R}}$ as

$$\overline{\tau}_{\mathsf{R}} = \mathrm{Bar}_{\mathrm{MW}_2}^{\boldsymbol{t}} (\overline{\tau}_{\mathsf{R}_1}, \dots, \overline{\tau}_{\mathsf{R}_K})$$

Conclusion

Conclusion:

- ► Nonlinear reduced model based for electronic structure calculations on mixture Wasserstein barycenters
- ► So far, theoretical and numerical results on 1D toy model
- Scales with the dimension

Perspectives:

- Extensions to density matrices (quantum optimal transport)
- ► 3D simulations and larger systems
- ▶ Other metrics than Wasserstein?

Bon, Pai, Bellaard, Mula and Duits: Optimal Transport on the Lie group of Roto-Translations, 2024