Yakınsaklık aralığını ve yakınsaklık yarıçapını hesaplayınız. Serinin mutlak yakınsak, şartlı yakınsak ve 6. Aşağıda verilen fonksiyonunun x=5 noktası komşuluğunda (x=5 merkezli) Taylor serisini bulunuz. ıraksak olduğu aralıkları belirleyiniz.

ilei kez türcuin, aldık: = (in (n+3)(h+2)/x-5 m+2/(n+1).5 J him Part! bulanor. 5 (-1)"n.(n-1)(x-5)"-2 -5 (-1) (x-5)

olup n.terim tertinden 1>1 - 12 AKSAK (-0,0] [10,0) 0 L X L 10 they (m+2)(n+1) olup redecale. = [x-5]_L olup L<1 ilean, yani [=1 ilen > X=0 ign seni S (n+2)(n+1) find saide oran test yaponsale 1 X=10 isin sen' S(-1)

TOBB-ETÜ, MATEMATİK BÖLÜMÜ, BAHAR DÖNEMİ 2016-2017 MAT 102, MATEMATİK II, ARASINAV 4 MART 2017

Ad Soyad:

TOBB EKONOMÍ VE TEKNOLC, ÚNÍVERSÍTESÍ

İMZA:

| 4. (12 p.) | 5. (12 p.) | 6. (20 p.) | TOPLAM 3. (20 p.) 2. (16 p.) 1. (20 p. NOT: Tam puan almak için yeterli açıklama yapılması ve tüm hesapların gösterilmesi gereklidir. Sınav süresi 100 dakikadır. Başarılar.

1. $y=x^2$ ve $x=y^2$ eğrileri ile sınırlı kapalı bölgeyi çiziniz. Bu bölgenin y=-2 doğrusu etrafında döndürülmesi ile oluşan cismin hacmini aşağıda belirtilen metodlarla bir integral olarak ifade ediniz:

(a) disk metodunu kullanarak (İntegrali hesaplamanıza gerek yoktur.)

$$R = 2+1/X$$
 $R = 2+1/X$
 $R = 2+1/X$

 $= \int \pi \left(2 + \sqrt{x} \right)^2 - \left(2 + x^2 \right) dx$

Evap

(b) kabuk metodunu kullanarak (İntegrali hesaplamanıza gerek yoktur.)

211 (2+A)(B-B) O/A 11

27 rh dy

(Açıklama yapmanıza gerek yoktur.) 2. Aşağıdaki özellikleri sağlayan birer örnek veriniz.

(a) Monoton azalan ve ıraksak bir dizi	a) Monoton azalan ve ıraksak bir dizi (b) Yakınsak fakat monoton olmayan bir dizi
I olmos gines YAKINSAK	
(c) Şartlı yakınsak olan bir seri	(d) $\{a_n\}$ sınırlı bir dizi olmak üzere, ıraksak olan bir $\sum_{n=0}^{\infty} a_n$ serisi
	1=2
	T I robbet 843 sinch br dizi
141	

- 3. Kutupsal koordinat düzleminde, r=3 eğrisi dışında ve $r=2(1+\sin\theta)$ eğrisi içerisinde kalan bölgeyi C=3 cember > x2+y= 3 ciziniz ve bu bölgenin alanını hesaplayınız.

Sin 8 = 1/2

II Ø

L= 2smg

$$\pi h_2 = \int_{\frac{\pi}{2}} \frac{\pi h_2}{(2(1+5in8))^2 - 9} d9 = 2.7 \int_{2} \int_{2} (4(1+25in8+5in^28) - 9) d9$$

$$\pi h_2 = \int_{2} \frac{\pi h_2}{(8sin^28 - 1 - \cos_28)} = \int_{2} (8sin8 + 4sin^28 - 5) d9$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 5 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 2 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 2 \int_{0}^{\pi} d\alpha$$

$$= \int_{0}^{\pi} 8 \sin \alpha d\alpha + 2 \int_{0}^{\pi} (1 - \cos 2\alpha) d\alpha - 2 \int_{0}^{\pi} d\alpha + 2 \int_$$

· Si = (字-分)-(子-大)+(子-大)+(子-六)+(子-六)+(子-六)

4.
$$\sum_{n=2}^{\infty} (-1)^n \frac{\sin(n)}{n^2}$$
 serisinin karakterini (yakınsaklık/ıraksaklık) belirleyiniz.

$$\left| \frac{(-1)^n \sin(n)}{n^2} \right| = \left| \frac{\sin(n)}{n^2} \right| \leq \frac{1}{n^2} \frac{dir}{n^2} \frac{hynca}{n^2} \frac{2}{n^2} \frac{1}{n^2} \frac{1}{n^2} \frac{p-\text{lesthoden ysknoothr}}{\frac{2}{n^2} \left| \frac{(-1)^n \sin(n)}{n^2} \right|} \frac{1}{yoknoothr} \frac{1}{n^2$$

5. Aşağıda verilen serinin karakterini (yakınsaklık/ıraksaklık) belirleyiniz. Eğer seri yakınsak ise toplamını bulunuz.

bullinus.
$$\sum_{n=1}^{\infty} \left(\frac{\pi}{2^{n+5}} + \frac{4}{n(n+2)} \right)$$
Oron Epitode), $\lim_{n \to \infty} \frac{\pi}{2^{n+6}} \cdot \frac{\pi}{\pi} = \frac{1}{\mu} \angle L$

$$\lim_{n \to \infty} \frac{1}{2^{n+6}} \cdot \frac{\pi}{\pi} = \frac{2^{n+5}}{\pi} = \frac{1}{\mu} \angle L$$

$$\lim_{n \to \infty} \frac{1}{2^{n+6}} \cdot \frac{1}{\pi} = \frac{1}{\mu} - \frac{1}{\mu} - \frac{1}{\mu} = \frac{1}{\mu} - \frac{1}{\mu} = \frac{1}{\mu} - \frac{1}{\mu} = \frac{1}{\mu} - \frac{1}{\mu} = \frac{1}{\mu} - \frac{1}{\mu} = \frac{1}{\mu} - \frac{1}{\mu} = \frac{1}{\mu} - \frac{1}{\mu} = \frac{1}{\mu} - \frac{1}{\mu} = \frac{1}{\mu} - \frac{1}{\mu}$$