

IRPL-F 12

REF ID: A34255
RESTRICTED

IONOSPHERIC DATA

ISSUED
AUGUST, 1945

PREPARED BY INTERSERVICE RADIO PROPAGATION LABORATORY
National Bureau of Standards
Washington, D.C.

(Top Secret)

"This document contains information affecting the national defense of the United States within the meaning of the Espionage Act, 50 U.S.C., 31 and 32. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law."

**INTERSERVICE RADIO PROPAGATION LABORATORY
NATIONAL BUREAU OF STANDARDS
WASHINGTON, D.C.**

Issued
20 Aug. 1945

Organized under Joint U.S. Communications Board

IONOSPHERIC DATA

CONTENTS

TERMINOLOGY AND SCALING PRACTICES	Page 5
MONTHLY AVERAGE AND MEDIAN VALUES OF IONOSPHERIC DATA	Page 6

Provisional data (received by telephone or telegraph)

July 1945

Baffin I., Canada (Median values)	Table 1
Fairbanks, Alaska (Median values)	Table 2
Reykjavik, Iceland (Median values)	Table 3
Churchill, Canada (Median values)	Table 4
Prince Rupert, Canada (Median values)	Table 5
Victoria Beach, Canada (Median values)	Table 6
St. John's, Newfoundland (Median values)	Table 7
Ottawa, Canada (Median values)	Table 8
Boston, Massachusetts (Median values)	Table 9
San Francisco, Calif. (Median values)	Table 10
Baton Rouge, Louisiana (Median values)	Table 11
Maui, Hawaii (Median values)	Table 12
Leyte (Median values)	Table 13
Christmas I. (Median values)	Table 14

June 1945

Burghead, Scotland (Average values)	Table 15
Great Baddow, England (Average values)	Table 16
Leyte (Median values)	Table 17
Colombo, Ceylon (Average values)	Table 18
Cape York, Q., Australia (Average values)	Table 19
Rarotonga I. (Average values)	Table 20
Pitcairn I. (Average values)	Table 21
Brisbane, Q., Australia (Average values)	Table 22
Kermadec Is. (Average values)	Table 23
Watheroo, W. Australia (Average values)	Table 24
Mt. Stromlo, N.S.W., Australia (Average values)	Table 25
Christchurch, N.Z. (Average values)	Table 26
Campbell I. (Average values)	Table 27

May 1945

Delhi, India (Average values)	Table 28
---	----------

Final data

July 1945

June 1945

Fairbanks, Alaska (Median values)	Table 30 Figs. 3 and 4
Churchill, Canada (Median values)	Table 31 Figs. 5 and 6
Prince Rupert, Canada (Median values)	Table 32 Figs. 7 and 8
Ottawa, Canada (Median values)	Table 33 Figs. 9 and 10
Boston, Massachusetts (Median values)	Table 34 Figs. 11 and 12
San Francisco, Calif. (Median values)	Table 35 Figs. 13 and 14
Maui, Hawaii (Median values)	Table 36 Figs. 15 and 16
San Juan, Puerto Rico (Median values)	Table 37 Figs. 17 and 18
Christmas I. (Median values)	Table 38 Figs. 19 and 20
Huancayo, Peru (Median values)	Table 39 Figs. 21 and 22

May 1945

Great Baddow, England (Median values)	Table 40 Figs. 23 and 24
Slough, England (Median values)	Table 41 Fig. 25
Watheroo, W. Australia (Median values)	Table 42 Figs. 26 and 27

April 1945

Tykhi Bay, U.S.S.R. (Average values)	Table 43
	Fig. 28
Sverdlovsk, U.S.S.R. (Average values)	Table 44
	Fig. 29
Tomsk, U.S.S.R. (Average values)	Table 45
	Fig. 30
Moscow, U.S.S.R. (Average values)	Table 46
	Fig. 31
Great Baddow, England (Median values)	Table 47
	Figs. 32 and 33
Madras, India (Average values)	Table 48
	Fig. 34
Watheroo, W.Australia (Median values)	Table 49
	Figs. 35 and 36

Final data (continued)March 1945

Tykhi Bay, U.S.S.R. (Average values)	Table 50 Fig. 37
Great Baddow, England (Median values)	Table 51 Figs. 38 and 39
Madras, India (Average values)	Table 48 Fig. 40
Watheroo, W. Australia (Median values)	Table 52 Figs. 41 and 42

February 1945

Leningrad, U.S.S.R. (Average values)	Table 53 Fig. 43
Madras, U.S.S.R. (Average values)	Table 48 Fig. 44

January 1945

Leningrad, U.S.S.R. (Average values)	Table 54 Fig. 45
Alma Ata, U.S.S.R. (Average values)	Table 55 Fig. 46
Madras, India (Average values)	Table 48 Fig. 47

December 1944

Tomsk, U.S.S.R. (Average values)	Table 56 Fig. 48
Madras, India (Average values)	Table 48 Fig. 49

November 1944

Tomsk, U.S.S.R. (Average values)	Table 56 Fig. 50
Madras, India (Average values)	Table 48 Fig. 51

October 1944

Tomsk, U.S.S.R. (Average values)	Table 56 Fig. 52
Madras, India (Average values)	Table 48 Fig. 53

September 1944

Tomsk, U.S.S.R. (Average values)	Table 56 Fig. 54
--	---------------------

IONOSPHERIC DATA FOR EVERY DAY AND HOUR Page 7

July 1945

Washington, D.C.

h'F2	• •	Table 57
f°F2	• •	Tables 58 and 59
h'F1	• •	Table 60
f°F1	• •	Table 61
h'E	• •	Table 62
f°E	• •	Table 63
Es	• •	Table 64
F2-M1500	• •	Table 65
F2-M3000	• •	Table 66
F1-M3000	• •	Table 67
E-M1500	• •	Table 68

IONOSPHERE DISTURBANCES Page 8

Ionospheric Storminess Table 69
 Ionospheric character and principal storms observed
 at Washington, D.C., July 1945.

Sudden Ionosphere Disturbances

None observed at Washington, D.C., during July 1945.

Radio Propagation Quality Figures, Compared with IRPL and ISIB
 Warnings, and IRPL A-Zone Forecasts.

North Atlantic and North Pacific quality figures,
 June 1945, provisional Table 70

NEW STATIONS Page 8

SPORADIC-E VARIATION WITH INTENSITY AND LATITUDE OF SOLAR ACTIVITY. Page 8

Percentage occurrence of fEs in excess of 3 Mc, midnight,
 Washington, D.C. Fig. 55
 Percentage occurrence of fEs in excess of 3 Mc, midnight,
 Brisbane, W.Australia Fig. 56
 Percentage occurrence of fEs in excess of 3 Mc, midnight,
 Mt. Stromlo, N.S.W., Australia Fig. 57
 Percentage occurrence of fEs in excess of 3 Mc, midnight,
 Christchurch, N.Z. Fig. 58

ERRATA Page 10

TERMINOLOGY AND SCALING PRACTICES

The symbols and terminology used in this report are those adopted by the 1944 International Radio Propagation Conference, and given in detail on pages 24 to 26 of the report IRPL-C61, "Report of International Radio Propagation Conference", and in the Section on "Terminology", in reports IRPL-F1, 2, 3, 4, 5.

Before January 1945, ionospheric conditions were summarized on a monthly basis by using average or mean values, for each hour of the day, for each month. However, following the recommendations of the 1944 International Radio Propagation Conference, since 1 Jan. 1945 median values are given for all stations reporting such values to the IRPL and for all other stations for which daily tabulations make possible the counting of medians by the IRPL staff. Average values are given only for those stations for which medians are unobtainable.

Where averages are reported, they are, at any hour, the average for all the days during the month for which data exist.

The monthly median values used here are the values equalled or exceeded on half the days of the month at the given hour. The following conventions are used in determining the medians for hours when no measured values are given, because of equipment limitations and ionospheric irregularities. Symbols used are those given in the report referred to above, IRPL-C61.

a. For all ionospheric characteristics:

Values missing because of A, B, C or F (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values missing because of E are counted as equal to or less than the lower limit of the recorder.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

1. For f^oF_2 , as equal to or less than f^oF_1 .

2. For $h'F_2$, as equal to or greater than the median.

Values missing for any other reason are omitted from the median count.

c. For muf factors (M-factors):

Values missing for any reason are omitted from the median count.

d. For sporadic E (E_s):

Values of fE_s missing because no E_s reflections appeared, the equipment functioning normally otherwise, are counted as equal to or less than the lower limit of the recorder.

Values of fE_s missing for any other reason, and values of hE_s missing for any reason at all, are omitted from the median count.

MONTHLY AVERAGE AND MEDIAN VALUES OF IONOSPHERIC DATA

The ionospheric data given here in graphical and tabular form were assembled by the Interservice Radio Propagation Laboratory for analysis and correlation, incidental to IRPL predictions of radio propagation conditions. The following are the sources of the data:

Australian Council for Scientific and Industrial Research
Radio Research Board, Australia
Brisbane, Q., Australia
Mt. Stromlo, Canberra, NSW, Australia
Cape York, Q., Australia

British National Physical Laboratory, and Inter-Services Ionosphere Bureau
Radio Research Station, Slough, England
Great Baddow, England
Burghead, Scotland
Delhi, India
Madras, India
Simonstown, Union of S. Africa

Canadian Department of National Defence, Naval Service
Churchill, Canada
Ottawa, Canada
St. John's, Canada
Victoria Beach, Canada

New Zealand Radio Research Committee
Kermadec Is.
Christchurch (Canterbury University College Observatory)
Campbell I.
Pitcairn I.
Rarotonga I.

Interdepartment Ionosphere Bureau, U.S.S.R. Scientific Experimental
Institute of Terrestrial Magnetism, Moscow, U.S.S.R.
Tykhi Bay, U.S.S.R.
Tomsk, U.S.S.R.
Sverdlovsk, U.S.S.R.
Moscow, U.S.S.R.

Carnegie Institution of Washington (Department of Terrestrial Magnetism)
Baffin I., Canada
Christmas I.
Fairbanks, Alaska (University of Alaska, College, Alaska)
Reykjavik, Iceland
Maui, Hawaii
Trinidad, Brit. West Indies
Huancayo, Peru
Watheroo, W. Australia

United States Army Signal Corps
Leyte

National Bureau of Standards,
Washington, D.C.

Stanford University,
(San Francisco), California.

Louisiana State University,
Baton Rouge, Louisiana.

University of Puerto Rico,
San Juan, P.R.

Harvard University,
Boston, Mass.

The tables of "provisional data" give values as reported to the IRPL by telephone or telegraph. Any errors in these values will be corrected in later issues of the F-series reports. In final data tabulations, any omission of values previously given in provisional tabulations is indicated by a dash.

The tables and graphs of "final data" are correct for the values reported to the IRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of these errors are due to:

- a. Differences in scaling records where spread echoes are present.
- b. Omission of values where f^oF2 is less than or equal to f^oF1 , leading to erroneously high values of monthly average or median values.
- c. Omission of values where critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series reports, IRPL-F1, 2, 3, 4, and 5. Discrepancies between predicted and observed values are often ascribable to these effects.

IONOSPHERIC DATA FOR EVERY DAY AND HOUR

These data, observed at Washington, D.C., follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given under "Terminology and Scaling Practices" above. Beginning

with the July 1945 issue of this report the table of values of F2-M3500 is omitted, since these values can be readily derived from the values of F2-M3000.

IONOSPHERE DISTURBANCES

Table 69 presents ionospheric character figures for Washington, D.C., during July 1945, as determined by the criteria presented in the report IRPL-R5, "Criteria for Ionospheric Storminess", together with American magnetic K-figures which are usually covariant with them.

Table 70 gives provisional radio propagation quality figures for North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, June 1945, compared with the IRPL daily radio disturbance warnings, and ISIB daily warnings, the IRPL semiweekly radio propagation forecasts for the A-zone, and the half-day American geomagnetic K-figures.

The radio propagation quality figures were prepared from radio traffic data, reported to IRPL, in the manner described in detail in report IRPL-R13, "Ionospheric and Radio Propagation Disturbances, October 1943 through February 1945," issued 24 May 1945.

NEW STATIONS

The new stations for which data appear in this report for the first time are Leyte (11.0°N , 125.0°E), operated by the United States Army, Signal Corps, (see Tables 13 and 17), and Victoria Beach, 50.8°N , 96.5°W , operated by the Canadian Department of National Defence (see Table 6).

SPORADIC-E VARIATION WITH INTENSITY AND LATITUDE OF SOLAR ACTIVITY

The variation of sporadic-E ionization, both with season and with solar cycle, is notably different from that of the regular E, F1, and F2 regions of the ionosphere.

In general, there occur world-wide maxima near both solstice seasons, the higher appearing during local summer, and intervening minima during equinoctial seasons. In auroral regions this seasonal variation is reversed, possibly because of the manifestation of excessive amounts of such ionization as increased absorption, (IRPL "Radio Propagation Conditions", issued August 1944, pp.3, 4, and "Summary Report on College (Alaska)

Observatory, July 1942, through June 1943, issued by the Department of Terrestrial Magnetism, Carnegie Institution of Washington, p.5).

Records of fEs throughout the post solar cycle have only been available for the location of Washington, D.C., where the daily average time percentage of fEs in excess of 3 Mc generally decreases with increasing sunspot number, so that the logarithm of the ratio of its values at any two times is inversely proportional to the difference between the yearly average numbers at these times (IRPL "Radio Propagation Conditions", issued 14 Oct. 1943, pp.3, 4). Although part of this variation may be ascribed to the masking effect of the regular E layer, (IRPL "Radio Propagation Conditions", issued 14 Feb. 1944), values corrected for this masking still show generally pronounced decrease of sporadic-E ionization with increasing sunspot number, as do values for each individual night hour, where there is no possibility of regular E-layer masking.

Fig. 55 shows monthly values of the percentage of time occurrence of fEs in excess of 3 Mc, at midnight, observed at Washington, D.C., during the past solar cycle. The seasonal and solar-cycle variations previously mentioned are readily apparent, although somewhat less regularly than for the average of all hours of the day, notable exceptions being the unusually high maxima during July 1938 and October and December 1944, which are also present for other hours.

Both solar-cycle and seasonal variation suggest solar corpuscular radiation as the chief source of sporadic-E ionization. It has been estimated by Chapman (Monthly Notices of the Royal Astronomical Society, 92, 1931-32, p.415) that neutral corpuscles arriving from the sun may be almost totally ascribed to a central region of the solar disc subtending an angle of about 15° at the sun's center. Night-time occurrence of sporadic-E is scarcely compatible with neutrality of the ionizing particles, but it seems possible that charged particles may also be largely those emanating from a central region. On this assumption, both solar-cycle and seasonal variations are explicable, the former because of the decrease of heliographic latitude of active solar regions with the approach of sunspot-minimum periods, and the latter because of the seasonal change of heliographic latitude of the center of the solar disc.

It would therefore seem probable that increase of sporadic-E ionization would vary directly with intensity of solar activity and inversely with the distance of active solar regions from center of disc (this latter diminishing generally with decreasing solar activity), and thus that a direct correlation might be expected between the intensity of coronal radiation, taken over a limited region corresponding to meridian passage near the center of the solar disc, and sporadic-E ionization. Unfortunately, available coronal data are too fragmentary to give a continuous good correlation of this sort, but seem to agree well during periods when sufficient coronal data are available. Additional evidence for the dependence of sporadic-E upon solar corpuscular radiation is given by the previously noted abnormally high maxima in the Washington fEs data, each of which corresponds to a period of abnormally high solar activity.

Similar seasonal and solar-cycle variations to those for Washington, D.C., have been reported for observations of sporadic-E second-multiple reflections made at Watheroo, W. Australia, between 1938 and 1941, except for the fact, previously noted, that the yearly maximum occurs during December, the month of local summer solstice. ("Sporadic E Ionization at Watheroo Magnetic Observatory," paper presented by H. W. Wells on 31 May, 26th Annual Meeting, American Geophysical Union). Data obtained at Watheroo during the period 1941-44 indicate that a maximum for fEs occurred at about 1941-42. ("Sporadic E Ionization at Watheroo Magnetic Observatory, 1941 to 1944," H. W. Wells, Restricted report, to be issued by the Department of Terrestrial Magnetism, Carnegie Institution of Washington). Figs. 56, 57, and 58 present similar data from Brisbane, Q., Australia, Mt. Stromlo, N.S.W., Australia, and Christchurch, N.Z. In the latter two cases, there also seems to be some evidence for a general decrease of sporadic-E after a maximum attained during 1941-1942. It is of interest in this respect that the latitude variation of the region of high solar activity is advanced by nearly two years for the sun's southern hemisphere over that for the sun's northern hemisphere (Cf. figure presented in "Sunspot Activity During 1944," Elizabeth S. Mulders, Pub. Astronomical Soc. of the Pacific, 57, No. 334, Feb. 1945, p.42).

ERRATA

1. In the May issue (Table 13) and the June issue (Table 43) of these reports the longitude for Brisbane, W. Australia, was reported as 130°E. It should have read 153.00°E.

2. The percentages of occurrence of sporadic E for Washington, D.C., as graphed in Fig. 2 in the July number of this report, were those for May. Those for June appear below:

Table 1 (Provisional data)

Baffin Island, Canada (70°5'W., 66°6'N.)

July 1946

Time	h ^o T2	f ^o F2	h ^o F1	f ^o F1	h ^o E	f ^o E	h ^o S	f ^o S	Time	h ^o T2	f ^o F2	h ^o F1	f ^o F1	h ^o E	f ^o E	h ^o S	f ^o S
00	280	4.6			5.0		5.0		00	290	3.7			1.1	2.9		
01	280	4.5			5.0		5.0		01	300	3.6			1.3	2.9		
02	280	4.4			5.0		5.0		02	300	4.0			1.3	2.9		
03	290	4.3	250	5.2	116	2.4	3.0		03	335	4.2	258	3.0	1.7	2.6		
04	300	4.3	250	5.2	116	2.4	3.0		04	370	4.7	252	3.2	2.0	2.6		
05	410	4.1	250	3.6	117	2.6	2.8		05	394	4.4	240	3.5	2.3	2.7		
06	440	4.4	250	3.7	116	2.6	2.7		06	400	4.7	220	3.6	2.5	2.8		
07	470	4.4	250	3.9	115	2.8	2.7		07	440	4.8	220	3.8	2.7	2.7		
08	470	4.6	250	4.0	114	2.9	2.8		08	425	4.9	210	3.9	2.8	2.6		
09	420	4.9	260	4.1	115	2.9	2.8		09	430	4.7	210	3.9	2.8	2.7		
10	410	5.0	240	4.1	112	2.9	2.8		10	290	5.0	205	3.0	2.6	2.6		
11	430	5.0	240	4.1	112	2.9	2.8		11	318	4.6	210	4.2	3.0	2.8		
12	400	5.2	240	4.2	112	2.9	2.8		12	420	4.9	215	4.2	3.0	2.8		
13	430	5.1	240	4.2	113	2.9	2.6		13	405	5.0	215	4.2	3.0	2.8		
14	440	4.9	240	4.1	113	2.9	2.7		14	485	4.9	212	4.2	3.0	2.7		
15	460	4.8	240	4.0	114	2.8	2.6		15	410	4.9	225	4.1	2.9	2.8		
16	400	4.8	250	4.0	114	2.7	2.6		16	390	5.0	220	4.0	2.8	2.8		
17	380	4.8	250	3.6	115	2.5	2.6		17	350	5.0	228	3.9	2.6	3.0		
18	350	4.9	250	3.7	116	2.4	2.6		18	305	4.8	235	3.6	2.4	3.0		
19	320	5.0	250	3.4	118	2.4	2.9		19	270	4.8	230	3.3	2.1	3.0		
20	290	4.7	270	3.3					20	270	4.7	245	3.0	1.8	3.0		
21	270	4.7							21	270	4.6			1.5	3.1		
22	270	4.5							22	265	4.2			1.2	3.1		
23	280	4.4							23	270	3.8			1.1	3.0		

Time: 75°W.
Length of time sweep: 2 Mc to 16 Mc in one minute.
Median values.

Table 3 (Provisional data)

Reykjavik, Iceland (61°19'W., 21°7'W.)

July 1945

Time	h ^o T2	f ^o F2	h ^o F1	f ^o F1	h ^o E	f ^o E	h ^o S	f ^o S	Time	h ^o T2	f ^o F2	h ^o F1	f ^o F1	h ^o E	f ^o E	h ^o S	f ^o S
00	370	3.0			3.0		3.0		00	48				4.8			
01	380	3.6			3.6		3.6		01	01				4.7			
02	290	4.20			4.20		4.20		02	02				4.5			
03	280	4.10			4.10		4.10		03	03				4.2			
04	240	4.00			4.00		4.00		04	04				4.5			
05	220	4.50	240	3.40	102	2.70	2.60		05	05				4.5			
06	220	4.30	200	3.50	100	2.60	2.60		06	06				4.8			
07	320	4.70	200	4.00	100	2.70	2.70		07	07				4.9			
08	330	4.90	200	4.20	100	2.80	2.80		08	08				5.0			
09	320	5.20	190	4.40	100	3.00	3.00		09	09				5.1			
10	370	5.20	190	4.40	100	3.00	3.00		10	10				5.2			
11	340	5.40	190	4.40	80	3.20	3.20		11	11				5.3			
12	350	5.40	190	4.50	80	3.20	3.20		12	12				5.4			
13	340	5.40	190	4.50	100	3.20	3.20		13	13				5.5			
14	360	5.40	190	4.50	100	3.20	3.20		14	14				5.4			
15	340	5.51	190	4.40	100	3.20	3.20		15	15				5.5			
16	340	5.40	200	4.40	80	3.00	3.00		16	16				5.6			
17	350	5.40	210	4.40	80	2.90	2.90		17	17				5.5			
18	300	5.30	210	4.10	100	2.70	2.70		18	18				5.6			
19	270	4.80	210	4.50	100	2.80	2.80		19	19				5.2			
20	280	4.80	240	3.50					20	20				4.9			
21	240	4.30							21	21				4.6			
22	260	4.80							22	23				4.5			
23	260	3.30							23	25				4.4			

Time: 75°W.
Length of time sweep: 2 Mc to 16 Mc in one minute.
Median values.

Table 3 (Provisional data)

Time	h ^o T2	f ^o F2	h ^o F1	f ^o F1	h ^o E	f ^o E	h ^o S	f ^o S	Time	h ^o T2	f ^o F2	h ^o F1	f ^o F1	h ^o E	f ^o E	h ^o S	f ^o S
00	370	3.0			3.0		3.0		00	00				4.8			
01	380	3.6			3.6		3.6		01	01				4.7			
02	290	4.20			4.20		4.20		02	02				4.5			
03	280	4.10			4.10		4.10		03	03				4.2			
04	240	4.00			4.00		4.00		04	04				4.2			
05	220	4.50	240	3.40	102	2.70	2.60		05	05				4.5			
06	220	4.30	200	3.50	100	2.60	2.60		06	06				4.5			
07	320	4.70	200	4.00	100	2.70	2.70		07	07				4.9			
08	330	4.90	200	4.20	100	2.80	2.80		08	08				5.0			
09	320	5.20	190	4.40	100	3.00	3.00		09	09				5.1			
10	370	5.20	190	4.40	100	3.00	3.00		10	10				5.2			
11	340	5.40	190	4.40	80	3.20	3.20		11	11				5.3			
12	350	5.40	190	4.50	80	3.20	3.20		12	12				5.4			
13	340	5.40	190	4.50	100	3.20	3.20		13	13				5.5			
14	360	5.40	190	4.50	100	3.20	3.20		14	14				5.4			
15	340	5.51	190	4.40	100	3.20	3.20		15	15				5.5			
16	340	5.40	200	4.40	80	3.00	3.00		16	16				5.6			
17	350	5.40	200	4.40	80	2.90	2.90		17	17				5.5			
18	300	5.30	210	4.10	100	2.70	2.70		18	18				5.6			
19	270	4.80	210	4.50	100	2.80	2.80		19	19				5.2			
20	280	4.80	240	3.50					20	20				4.9			
21	240	4.30							21	21				4.6			
22	260	4.80							22	23				4.5			
23	260	3.30							23	25				4.4			

Time: 75°W.
Length of time sweep: 2 Mc to 16 Mc in one minute.
Median values.

Table 3 (Provisional data)

Time	h ^o T2	f ^o F2	h ^o F1	f ^o F1	h ^o E	f ^o E	h ^o S	f ^o S	Time	h ^o T2	f ^o F2	h ^o F1	f ^o F1	h ^o E	f ^o E	h ^o S	f ^o S
00	370	3.0			3.0		3.0		00	00				4.8			
01	380	3.6			3.6		3.6		01	01				4.7			
02	290	4.20			4.20		4.20		02	02							

Table 5 (Provisional data)

Prince Rupert (54°3'N, 130°30'W)

Time	h°F2	f°F2	h°F1	f°F1	h'E	f'E	Time
00	4.1				5.1		July 1945
01	4.0				5.0		
02	3.3				5.0		
03	3.3				5.0		
04	3.1				5.1		
05	3.6				5.3		
06	4.1				5.3		
07	4.4				5.9		
08	4.8				2.9		
09	4.9				2.8		
10	5.2				2.9		
11	5.3				3.0		
12	5.2				5.1		
13	5.4				5.0		
14	5.4				3.0		
15	5.3				3.0		
16	5.1				3.0		
17	4.9				5.1		
18	5.0				5.2		
19	5.2				5.3		
20	5.1				5.3		
21	5.1				3.4		
22	5.0				3.5		
23	4.5				3.2		

Time: 120W.
Length of time sweep: Manual operation.
Median values.

Table 7 (Provisional data)

St. John's, Newfoundland (47°7'N, 52°7'W)

Time	h°F2	f°F2	h°F1	f°F1	h'E	f'E	Time
00	4.4				3.2		July 1945
01	4.1				3.2		
02	3.7				3.1		
03	5.2				3.2		
04	3.6				5.2		
05	3.8				3.3		
06	4.7				3.5		
07	4.9				3.4		
08	6.5				3.2		
09	5.3				3.2		
10	5.5				3.4		
11	5.5				3.4		
12	5.5				3.2		
13	5.4				3.2		
14	5.5				3.0		
15	5.6				3.2		
16	5.7				3.2		
17	5.8				5.2		
18	5.0				5.2		
19	6.5				5.2		
20	6.4				3.2		
21	6.2				3.3		
22	6.6				3.3		
23	4.7				3.2		

Time: 120W.
Length of time sweep: Manual operation.
Median values.

Table 6 (Provisional data)

Victoria Beach, Canada (50°8'N, 96°5'W)

Time	h°F2	f°F2	h°F1	f°F1	h'E	f'E	Time
00	5.1				5.1		July 1946
01	5.0				5.0		
02	5.1				5.0		
03	5.0				5.0		
04	5.1				5.1		
05	5.6				5.3		
06	4.1				5.3		
07	4.4				2.9		
08	4.8				2.8		
09	5.2				2.9		
10	5.0				2.9		
11	5.5				2.9		
12	5.5				2.9		
13	5.4				2.9		
14	5.5				2.9		
15	5.6				2.9		
16	5.7				2.9		
17	5.8				2.9		
18	5.0				2.9		
19	6.5				2.9		
20	6.4				2.9		
21	6.2				2.9		
22	6.6				2.9		
23	4.7				2.9		

Table 6 (Provisional data)

Time	h°F2	f°F2	h°F1	f°F1	h'E	f'E	Time
00	5.6				5.6		July 1946
01	2.9				2.9		
02	2.8				2.8		
03	2.6				2.6		
04	2.6				3.4		
05	3.4				3.4		
06	3.4				3.4		
07	3.7				3.7		
08	3.0				3.0		
09	3.0				3.0		
10	3.1				3.1		
11	3.2				3.2		
12	3.2				3.2		
13	3.2				3.2		
14	3.2				3.2		
15	3.2				3.2		
16	3.2				3.2		
17	3.2				3.2		
18	3.2				3.2		
19	3.2				3.2		
20	3.2				3.2		
21	3.2				3.2		
22	3.2				3.2		
23	3.2				3.2		

Table 6 (Provisional data)

Time	h°F2	f°F2	h°F1	f°F1	h'E	f'E	Time
------	------	------	------	------	-----	-----	------

Time: 62.5W.
Length of time sweep: Manual operation.
Median values.

Time: 75W.
Length of time sweep: 1.93 Mo to 13.5 Mo. Manual operation.
Median values.

Table 9 (Provisional data)

Boston, Massachusetts (42.4°N, 71.2°W)							July 1946								
Time	b°F2	t°F2	h°F1	t°F1	h°E	t°E	h°F2	t°F2	h°F1	t°F1	h°E	t°E	h°F2	t°F2	h°F1
00	-	4.3			2.9		00	-	4.2				2.9		
01	-	3.6			2.9		01	-	4.0				2.8		
02	-	3.1			2.9		02	-	3.9				2.9		
03	-	2.8			2.9		03	-	3.9				2.9		
04	-	2.5			3.0		04	-	3.7				3.0		
05	-	3.6			3.0		05	-	3.6				3.0		
06	-	4.5			3.0		06	-	4.5				3.0		
07	-	4.8			3.0		07	-	5.0				2.9		
08	-	5.3			3.0		08	-	5.5				2.8		
09	-	5.6			3.0		09	-	6.2				2.9		
10	-	5.7			3.0		10	-	6.4				2.9		
11	-	6.6			3.0		11	-	6.0				2.9		
12	-	5.6			2.9		12	-	6.1				2.8		
13	-	5.7			3.0		13	-	6.2				2.8		
14	-	5.7			2.9		14	-	6.2				2.9		
15	-	5.7			2.9		15	-	6.0				2.9		
16	-	6.9			3.0		16	-	6.1				2.9		
17	-	6.0			3.0		17	-	5.8				2.9		
18	-	6.3			3.0		18	-	6.0				3.0		
19	-	6.4			3.1		19	-	6.8				3.1		
20	-	6.3			2.9		20	-	6.0				3.2		
21	-	6.7			3.0		21	-	5.6				3.1		
22	-	4.7			2.9		22	-	4.8				2.9		
23	-	4.6			2.9		23	-	4.5				2.9		

Time: 75°N.
Median values.

Table 11 (Provisional data)

Baton Rouge, Louisiana (30.5°N, 91.2°W)							July 1945								
Time	b°F2	t°F2	h°F1	t°F1	h°E	t°E	h°F2	t°F2	h°F1	t°F1	h°E	t°E	h°F2	t°F2	h°F1
00	-	4.2			2.9		00	-	2.70				2.9		
01	-	4.2			3.0		01	-	2.60				3.0		
02	-	3.8			3.0		02	-	2.50				3.1		
03	-	3.5			3.8		03	-	2.50				3.0		
04	-	3.3			2.9		04	-	2.70				3.0		
05	-	3.3			3.1		05	-	2.70				3.0		
06	-	4.4			3.2		06	-	2.60				3.1		
07	-	6.0			3.0		07	-	2.50				3.2		
08	-	5.6			3.0		08	-	2.60				3.2		
09	-	6.6			2.8		09	-	3.20				3.0		
10	-	6.0			2.9		10	-	4.20				2.7		
11	-	6.0			2.9		11	-	4.30				2.6		
12	-	6.0			2.7		12	-	4.40				2.5		
13	-	6.2			2.8		13	-	4.95				2.6		
14	-	6.6			2.8		14	-	3.90				2.6		
15	-	6.6			2.9		15	-	3.70				2.7		
16	-	6.5			2.9		16	-	3.55				2.8		
17	-	6.6			3.0		17	-	3.00				3.0		
18	-	6.5			3.1		18	-	2.60				3.2		
19	-	6.5			3.1		19	-	2.40				3.2		
20	-	6.3			3.1		20	-	2.40				3.1		
21	-	5.0			3.1		21	-	2.50				3.0		
22	-	4.6			2.9		22	-	2.60				3.0		
23	-	4.5			3.0		23	-	2.75				3.0		

Time: 90%.
Length of time sweep: 1.9 hr to 9.8 hr in three minutes, thirty seconds.
Median values.

Table 10 (Provisional data)

San Francisco, Calif. (37.4°N, 122.2°W)							July 1946								
Time	b°F2	t°F2	h°F1	t°F1	h°E	t°E	h°F2	t°F2	h°F1	t°F1	h°E	t°E	h°F2	t°F2	h°F1
00	-	4.3			2.9		00	-	4.2				2.9		
01	-	3.6			2.9		01	-	4.0				2.8		
02	-	3.1			2.9		02	-	3.9				2.9		
03	-	2.8			2.9		03	-	3.9				3.0		
04	-	2.5			3.0		04	-	3.7				3.0		
05	-	3.6			3.0		05	-	3.6				3.0		
06	-	4.5			3.0		06	-	4.5				3.0		
07	-	4.8			3.0		07	-	5.0				2.9		
08	-	5.3			3.0		08	-	5.5				2.8		
09	-	5.6			3.0		09	-	6.2				2.9		
10	-	5.7			3.0		10	-	6.0				2.9		
11	-	6.6			2.9		11	-	7.0				2.8		
12	-	6.0			2.9		12	-	7.9				2.8		
13	-	6.0			2.7		13	-	8.5				2.8		
14	-	6.2			2.8		14	-	9.1				2.8		
15	-	6.6			2.8		15	-	9.6				2.7		
16	-	6.5			2.9		16	-	10.1				2.8		
17	-	6.6			3.0		17	-	10.6				2.8		
18	-	6.5			3.1		18	-	10.5				2.8		
19	-	6.5			3.1		19	-	11.0				2.8		
20	-	6.3			3.1		20	-	11.0				2.8		
21	-	5.0			3.1		21	-	11.0				2.8		
22	-	4.6			2.9		22	-	11.0				2.8		
23	-	4.5			3.0		23	-	11.0				2.8		

Time: 90%.
Length of time sweep: 1.9 hr to 9.8 hr in one minute.
Median values.

Table 11 (Provisional data)

Maui, Hawaii (20.8°N, 156.6°W)							July 1945								
Time	b°F2	t°F2	h°F1	t°F1	h°E	t°E	h°F2	t°F2	h°F1	t°F1	h°E	t°E	h°F2	t°F2	h°F1
00	-	4.2			2.9		00	-	2.70				2.9		
01	-	4.2			3.0		01	-	2.60				3.0		
02	-	3.8			3.0		02	-	2.50				3.1		
03	-	3.5			3.8		03	-	2.50				3.0		
04	-	3.3			2.9		04	-	2.70				3.0		
05	-	3.3			3.1		05	-	2.70				3.0		
06	-	4.4			3.2		06	-	2.60				3.1		
07	-	6.0			3.0		07	-	2.50				3.2		
08	-	5.6			3.0		08	-	2.60				3.2		
09	-	6.6			2.8		09	-	3.20				3.2		
10	-	6.0			2.9		10	-	4.20				3.2		
11	-	6.0			2.9		11	-	4.30				3.2		
12	-	6.0			2.7		12	-	4.40				3.2		
13	-	6.2			2.8		13	-	4.95				3.2		
14	-	6.6			2.8		14	-	3.90				3.2		
15	-	6.6			2.9		15	-	3.70				3.2		
16	-	6.5			2.9		16	-	3.55				3.2		
17	-	6.6			3.0		17	-	3.00				3.2		
18	-	6.5			3.1		18	-	2.60				3.2		
19	-	6.5			3.1		19	-	2.40				3.2		
20	-	6.3			3.1		20	-	2.40				3.1		
21	-	5.0			3.1		21	-	2.50				3.0		
22	-	4.6			2.9		22	-	2.60				3.0		
23	-	4.5			3.0		23	-	2.75				3.0		

Table 12 (Provisional data)

Maui, Hawaii (20.8°N, 156.6°W)							July 1945						
Time	b°F2	t°F2	h°F1	t°F1	h								

Table 13 (Provisional data)

Leyte (11.0°N, 125.0°E)

Time	h°F2	f°F2	h°F1	f°F1	h°F	f°F	h°F6	f°F6	F2-M5000
00	5.6	2.6	2.3	2.3	0.0	240	7.1	3.2	3.2
01	5.0	4.3	2.8	2.0	0.1	240	6.0	2.8	2.8
02	4.6	2.0	2.9	2.3	0.2	240	5.7	3.0	3.0
03	4.2	3.9	3.0	3.0	0.3	246	5.2	3.3	3.3
04	3.8	2.1	3.0	2.3	0.4	220	5.0	3.2	3.2
05	3.5	2.2	3.3	2.5	0.5	220	4.6	3.3	3.3
06	3.1	2.5	3.2	3.5	0.6	230	3.5	3.5	3.5
07	6.1	2.0	3.8	3.5	0.7	240	5.3	3.5	3.5
08	6.9	2.8	4.2	3.2	0.8	210	6.5	100	2.1
09	7.5	3.7	5.1	2.9	0.9	320	7.1	100	2.8
10	7.7	4.8	5.3	2.9	1.0	355	7.4	200	4.6
11	7.9	4.9	5.7	2.6	11	365	7.3	200	4.7
12	7.9	4.9	6.2	2.5	12	4.0	7.5	200	4.7
13	8.0	4.9	6.4	2.4	13	4.0	7.5	200	4.8
14	7.9	4.2	5.7	2.4	14	4.0	7.3	200	4.6
15	8.1	4.8	3.6	6.0	15	380	7.8	200	4.5
16	8.4	4.6	3.4	5.9	16	350	8.1	200	4.5
17	8.8	4.1	5.0	5.9	17	205	8.6	200	4.0
18	9.1	3.4	5.0	2.6	18	230	8.2	100	2.8
19	8.8	2.3	1.8	3.9	19	250	8.1	100	2.8
20	8.2	7.4	3.7	2.9	20	280	7.4	300	2.7
21	7.4	7.2	3.2	2.8	21	280	7.0	300	2.6
22	6.6	6.6	2.8	2.8	22	260	7.2	260	2.6
23	6.0	2.9	2.8	2.8	23	260	7.2	300	2.6

Time: 135°E.
Length of time sweep: Normal operation.
Median values.

Table 15 (Provisional data)

Time	h°F2	f°F2	h°F1	f°F1	h°F	f°F	h°F6	f°F6	F2-M5000
00	5.8	0.0	5.8	0.0	00	5.5	5.0	2.8	2.8
01	5.5	5.1	4.8	4.9	01	5.0	4.7	2.8	2.8
02	5.1	4.8	4.9	4.9	02	4.4	4.5	2.8	2.8
03	4.8	4.9	4.9	4.9	03	4.5	5.1	2.9	2.9
04	4.9	5.0	5.0	5.0	04	5.1	5.4	2.9	2.9
05	4.9	5.1	5.1	5.1	05	5.0	5.7	2.9	2.9
06	5.1	5.4	5.4	5.4	06	5.4	5.9	2.9	2.9
07	5.4	5.4	5.4	5.4	07	5.7	5.9	2.9	2.9
08	5.6	5.6	5.6	5.6	08	5.9	5.9	2.8	2.8
09	5.7	5.7	5.7	5.7	09	6.1	6.1	3.0	3.0
10	5.7	5.7	5.7	5.7	10	6.1	6.1	3.0	3.0
11	5.7	5.7	5.7	5.7	11	6.0	6.0	2.8	2.8
12	5.7	5.7	5.7	5.7	12	5.7	5.7	2.8	2.8
13	5.6	5.6	5.6	5.6	13	5.9	5.9	2.8	2.8
14	5.6	5.6	5.6	5.6	14	5.8	5.9	2.8	2.8
15	5.7	5.7	5.7	5.7	15	5.9	5.9	2.8	2.8
16	5.8	5.8	5.8	5.8	16	6.1	6.1	2.9	2.9
17	5.9	5.9	5.9	5.9	17	6.2	6.2	2.9	2.9
18	6.0	6.0	6.0	6.0	18	6.4	6.4	2.9	2.9
19	6.1	6.1	6.1	6.1	19	6.6	6.6	3.0	3.0
20	6.0	6.0	6.0	6.0	20	6.7	6.7	3.0	3.0
21	6.1	6.1	6.1	6.1	21	6.7	6.7	2.8	2.8
22	6.1	6.1	6.1	6.1	22	6.2	6.2	2.8	2.8
23	5.9	5.9	5.9	5.9	23	5.7	5.7	2.8	2.8

Time: 0°.
Average values.

Table 14 (Provisional data)

Christmas I. (11.9°N, 157.3°W)

Time	h°F2	f°F2	h°F1	f°F1	h°F	f°F	h°F6	f°F6	F2-M5000
00	2.6	2.6	2.3	2.3	00	240	7.1	3.2	3.2
01	4.3	2.0	2.8	2.0	01	240	6.0	2.8	2.8
02	2.0	3.0	2.9	3.0	02	240	5.7	3.0	3.0
03	2.3	3.0	3.0	3.0	03	246	5.2	3.3	3.3
04	2.1	3.0	3.0	3.0	04	220	5.0	3.2	3.2
05	2.2	3.3	3.2	3.2	05	220	4.6	3.3	3.3
06	2.5	3.2	3.5	3.2	06	230	3.5	3.3	3.3
07	2.0	3.8	3.5	3.2	07	240	5.3	3.5	3.5
08	2.8	4.2	3.2	3.2	08	210	6.5	100	2.1
09	3.1	5.0	2.9	2.9	09	320	7.1	100	2.8
10	4.8	3.5	2.6	2.6	10	355	7.4	200	4.6
11	4.9	3.7	5.4	2.6	11	365	7.3	200	4.7
12	4.9	3.7	6.2	2.5	12	4.0	7.5	200	4.7
13	4.9	3.9	6.4	2.4	13	4.0	7.5	200	4.8
14	4.2	5.7	6.5	2.4	14	4.0	7.3	200	4.6
15	4.8	3.6	3.6	2.4	15	380	7.8	200	4.5
16	4.6	3.4	5.9	2.5	16	350	8.1	200	4.5
17	4.1	5.0	5.9	2.6	17	205	8.6	200	4.0
18	3.4	5.0	5.0	2.7	18	230	8.2	100	2.8
19	2.3	1.8	3.9	2.9	19	250	8.1	100	2.8
20	2.3	3.7	2.9	2.9	20	280	7.4	300	2.6
21	7.4	3.2	2.8	2.8	21	300	6.6	300	3.0
22	6.6	2.8	2.8	2.8	22	280	7.0	300	2.6
23	6.0	2.9	2.8	2.8	23	260	7.2	300	2.6

Time: 160°W.
Length of time sweep: 1.6 °W to 12.5 °W in two minutes.
Median values.

Table 15 (Provisional data)

Time	h°F2	f°F2	h°F1	f°F1	h°F	f°F	h°F6	f°F6	F2-M5000
00	5.8	0.0	5.8	0.0	00	5.5	5.0	2.8	2.8
01	5.5	5.1	4.8	4.9	01	5.0	4.7	2.8	2.8
02	5.1	4.8	4.9	4.9	02	4.4	4.5	2.8	2.8
03	4.8	4.9	4.9	4.9	03	4.5	5.1	2.9	2.9
04	4.9	5.0	5.0	5.0	04	5.1	5.4	2.9	2.9
05	4.9	5.1	5.1	5.1	05	5.0	5.4	2.9	2.9
06	5.1	5.4	5.4	5.4	06	5.4	5.7	2.9	2.9
07	5.4	5.4	5.4	5.4	07	5.7	5.9	2.9	2.9
08	5.6	5.6	5.6	5.6	08	5.9	5.9	2.8	2.8
09	5.7	5.7	5.7	5.7	09	6.1	6.1	3.0	3.0
10	5.7	5.7	5.7	5.7	10	6.1	6.1	3.0	3.0
11	5.7	5.7	5.7	5.7	11	6.0	6.0	2.8	2.8
12	5.7	5.7	5.7	5.7	12	5.7	5.7	2.8	2.8
13	5.6	5.6	5.6	5.6	13	5.9	5.9	2.8	2.8
14	5.6	5.6	5.6	5.6	14	5.8	5.8	2.8	2.8
15	5.7	5.7	5.7	5.7	15	5.9	5.9	2.8	2.8
16	5.8	5.8	5.8	5.8	16	6.1	6.1	2.9	2.9
17	5.9	5.9	5.9	5.9	17	6.2	6.2	2.9	2.9
18	6.0	6.0	6.0	6.0	18	6.4	6.4	2.9	2.9
19	6.1	6.1	6.1	6.1	19	6.6	6.6	3.0	3.0
20	6.0	6.0	6.0	6.0	20	6.7	6.7	3.0	3.0
21	6.1	6.1	6.1	6.1	21	6.7	6.7	2.9	2.9
22	6.1	6.1	6.1	6.1	22	6.2	6.2	2.8	2.8
23	5.9	5.9	5.9	5.9	23	5.7	5.7	2.8	2.8

Time: 0°.
Average values.

Table 16 (Provisional data)

Great Baldwin, England (53.7°N, 0.5°W)

Time	h°F2	f°F2	h°F1	f°F1	h°F	f°F	h°F6	f°F6	F2-M5000
00	5.5	0.1	5.0	0.1	00	5.5	5.0	2.8	2.8
01	5.5	0.1	4.4	0.4	01	5.0	4.7	2.8	2.8
02	4.8	0.4	4.5	0.5	02	4.5	4.5	2.8	2.8
03	4.9	0.5	5.1	0.5	03	5.1	5.4	2.9	2.9
04	4.9	0.5	5.4	0.6	04	5.4	5.7	2.9	2.9
05	5.0	0.6	5.7	0.7	05	5.7	5.9	2.9	2.9
06	5.1	0.6	5.9	0.7	06	5.9	6.1	3.0	3.0
07	5.4	0.7	5.7	0.7	07	5.7	6.0	3.0	3.0
08	5.6	0.8	5.9	0.8	08	5.9	6.1	3.0	3.0
09	5.7	0.8	6.1	0.9	09	6.1	6.1	3.0	3.0
10	5.7	0.7	6.0	1.1	10	6.0	6.1	3.0	3.0
11	5.7	0.7	6.1	1.1	11	6.0	6.1	3.0	3.0
12	5.7	0.7	6.1	1.2	12	6.1	6.1	3.0	3.0
13	5.6	0.6	6.1	1.3	13	6.1	6.1	3.0	3.0
14	5.6	0.6	6.1	1.4	14	6.1	6.1	3.0	3.0
15	5.7	0.6	6.1	1.5	15	6.1	6.1	3.0	3.0
16	5.8	0.6	6.1	1.6	16	6.1	6.1	3.0	3.0
17	5.9	0.6	6.1	1.7	17	6.2	6.2	3.0	3.0
18	6.0	0.6	6.1	1.8	18	6.4	6.4	3.0	3.0
19	6.1	0.6	6.1	1.9	19	6.6	6.6	3.0	3.0
20	6.0	0.6	6.1	2.0	20	6.7	6.7</td		

Table 17 (Provisional data)

Lat ϕ (111.0°N, 125.0°E)

June 1945

Time	$h^{\circ}F2$	$f^{\circ}F2$	$h^{\circ}F1$	$f^{\circ}F1$	$h^{\circ}E$	$f^{\circ}E$	$h^{\circ}S$	$f^{\circ}S$	$h^{\circ}N$	$f^{\circ}N$	$F2-N3000$
00	5.4	3.4	2.8	0.0	5.3	3.5					
01	5.4	3.1	2.9	0.1	4.5	3.5					
02	5.0	2.6	3.1	0.2	4.1	3.4					
03	4.4	1.2	3.1	0.2	3.8	3.3					
04	3.7	0.5	3.2	0.4							
05	3.9	0.5	3.3	0.5							
06	6.5	0.0	3.0	0.6	4.2	3.5					
07	7.0	0.7	3.1	0.8	7.0	3.4					
08	7.2	2.7	3.0	0.8	8.3	3.1					
09	7.4	4.3	2.7	0.9	8.7	2.9					
10	7.3	3.1	5.8	2.5	10	2.8					
11	7.0	4.8	3.4	2.5	11	7.9					
12	7.2	4.9	3.6	2.5	12	7.9					
13	7.4	5.0	3.6	2.5	13	7.9					
14	7.4	5.1	3.7	2.4	14	8.0					
15	7.5	5.6	3.6	2.4	15	8.3					
16	7.9	4.8	3.5	2.5	16	8.7					
17	8.2	4.6	3.3	2.5	17	9.3					
18	8.7	3.9	5.3	2.7	18	9.6					
19	9.2	3.1	5.2	2.8	19	9.4					
20	9.0	5.0	5.0	2.9	20	9.2					
21	8.0	4.2	4.2	2.9	21	8.4					
22	7.0	3.4	3.4	2.8	22	7.3					
23	6.5	3.5	3.5	2.7	23	6.4					
	5.9	3.6	3.6	2.7							

Times: 135°E.
Length of time sweep: Manual operation.
Median values.

Table 19 (Provisional data)

Time	$h^{\circ}F2$	$f^{\circ}F2$	$h^{\circ}F1$	$f^{\circ}F1$	$h^{\circ}E$	$f^{\circ}E$	$h^{\circ}S$	$f^{\circ}S$	$h^{\circ}N$	$f^{\circ}N$	$F2-N3000$
00	3.2	3.3	3.3	0.0	3.2						
01	2.9	3.4	3.4	0.1	3.2						
02	2.6	2.4	3.2	0.2	3.4						
03	2.4	2.3	3.0	0.4	3.4						
04	2.4	2.4	3.1	0.5	2.9						
05	2.5	3.5	3.3	0.6							
06	6.1	7.2	3.4	0.7	4.9						
07	7.2	7.7	3.5	0.8							
08	7.2	7.7	3.4	0.9	7.2						
09	7.7	7.4	3.4	1.0							
10	7.9	7.9	3.4	1.1	7.4						
11	7.8	7.8	3.4	1.2	7.0						
12	7.8	7.8	3.4	1.3	6.9						
13	7.7	7.7	3.3	1.4							
14	7.7	7.7	3.2	1.5	7.6						
15	7.4	7.4	3.2	1.6							
16	7.3	7.2	3.2	1.7	7.4						
17	7.2	7.2	3.2	1.7							
18	6.6	5.5	3.3	1.8	5.8						
19	5.5	4.2	3.1	2.0							
20	4.2	3.6	3.1	2.1	4.2						
21	3.6	3.6	3.1	2.2							
22	3.6	3.4	3.2	2.3							
23	3.4										

Times: Local.
Length of time sweep: 2 Mc to 16 Mc in one minute.
Average values.

Table 20 (Provisional data)

Time	$h^{\circ}F2$	$f^{\circ}F2$	$h^{\circ}F1$	$f^{\circ}F1$	$h^{\circ}E$	$f^{\circ}E$	$h^{\circ}S$	$f^{\circ}S$	$h^{\circ}N$	$f^{\circ}N$	$F2-N3000$
00	0.0	0.1	3.2	3.2							
01	0.2	0.2	3.4	3.4							
02	0.3	0.3	3.2	3.4							
03	0.4	0.4	3.0	3.4							
04	0.5	0.5	3.1	3.6							
05	0.6	0.6	3.4	3.6							
06	0.7	0.7	3.4	3.7							
07	0.8	0.8	3.5	3.8							
08	0.9	0.9	3.5	3.9							
09	0.9	0.9	3.4	4.0							
10	0.9	0.9	3.4	4.0							
11	0.8	0.8	3.4	4.1							
12	0.8	0.8	3.4	4.2							
13	0.7	0.7	3.3	4.3							
14	0.7	0.7	3.2	4.4							
15	0.7	0.7	3.2	4.5							
16	0.7	0.7	3.2	4.6							
17	0.7	0.7	3.2	4.7							
18	0.6	0.6	3.3	4.8							
19	0.5	0.5	3.3	4.9							
20	0.2	0.2	3.2	5.0							
21	0.2	0.2	3.1	5.1							
22	0.2	0.2	3.1	5.2							
23	0.2	0.2	3.2	5.3							

Times: Local.
Length of time sweep: 2.0 Mc to 16.0 Mc. Manual operation.
Median values.Time: 157.5°V
Length of time sweep: 2 Mc to 16 Mc.
Median values.

Table 21 (Provisional data)

Pitcairn I. (25°.0' S., 130°.0' W.)

June 1945

Time	h ¹ P2	f ⁰ P2	h ¹ P1	f ⁰ P1	h ¹ E	f ⁰ E	ME	F2-M3000
0000								
0100	270	3.4						
0200	280	2.6						
0300	290	6.0	200	2.3				
0400	290	6.0	200	2.3				
0500	290	6.0	200	2.3				
0600	290	6.0	200	2.3				
0700	290	6.0	200	2.3				
0800	290	8.2	210	4.2				
0900	290	8.2	210	4.2				
1000	290	7.1	200	4.5				
1100	290	7.1	200	4.5				
1200	290	7.1	200	4.5				
1300	290	7.1	200	4.5				
1400	290	7.1	200	4.5				
1500	290	7.1	200	4.5				
1600	290	7.1	200	4.5				
1700	290	7.1	200	4.5				
1800	290	4.1						
1900	290	4.1						
2000	290	3.3						
2100	270	3.3						
2200	270	3.3						
2300	270	3.3						
2400								

Time: 127°.5' W.
Length of time sweep: 1.0 Mc to 13.0 Mc. Manual operation.
Median values.

Table 23 (Provisional data)

Kermadeo Island (29°.2' S., 177°.9' W.)

June 1945

Time	h ¹ P2	f ⁰ P2	h ¹ P1	f ⁰ P1	h ¹ E	f ⁰ E	ME	F2-M3000
00	220	3.8						
01	230	3.8						
02	275	3.8						
03	270	4.0						
04	250	3.9						
05	250	3.6						
06	250	3.0						
07	225	5.0						
08	215	6.2						
09	225	6.3	230	3.9	125	2.2		
10	270	6.8	240	4.2	115	2.6		
11	265	6.6	230	4.3	115	2.9		
12	275	6.5	225	4.4	115	3.0		
13	270	6.5	215	4.3	115	3.2		
14	270	6.4	225	4.1	115	3.4		
15	275	6.5	235	4.1	115	3.4		
16	215	6.0	240	4.2	120	2.8		
17	235	5.6	225	4.5	120	2.2		
18	225	4.5			120	1.8		
19	210	3.9						
20	250	3.6						
21	270	3.6						
22	275	3.6						
23	275	3.6						

Time: Local.
Length of time sweep: 1.0 Mc to 12.5 Mc in two minutes, thirty seconds.
Average values.

Table 24 (Provisional data)

Watheroo, Q., Australia (30°.3' S., 115°.9' E.)

June 1945

Time	h ¹ P2	f ⁰ P2	h ¹ P1	f ⁰ P1	h ¹ E	f ⁰ E	ME	F2-M3000
00								
01								
02								
03								
04								
05								
06								
07								
08								
09								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								

Time: Local.
Length of time sweep: 1.0 Mc to 12.0 Mc. Manual operation.
Median values.

Table 25 (Provisional data)

Mt. Stromlo, N.S.W., Australia (35.3°S , 149.0°E)

Time	h ⁰ F2	f ⁰ P2	h ¹ F1	f ⁰ P1	h ¹ E	f ⁰ E	f ⁰ S	f ⁰ E	F2-M5000
00	265	3.1				2.9			
01	272	3.5				2.9			
02	273	3.6				3.0			
03	272	3.7				3.0			
04	256	4.0				3.0			
05	265	4.0				3.1			
06	248	3.2				3.1			
07	242	3.8				3.2			
08	235	5.6				3.2			
09	205	6.0				3.3			
10	252	6.4	217	3.9	107	2.9	3.3	0.9	270
11	254	6.6	210	4.1	106	3.0	3.2	0.9	270
12	257	6.7	208	4.2	105	3.0	3.2	0.9	250
13	261	6.9	210	4.1	106	3.0	3.2	0.9	240
14	263	7.0	212	4.0	106	2.9	3.2	0.9	230
15	252	7.2	257	6.4	108	2.7	3.2	0.9	230
16	226	5.8	236	4.5	116	2.2	3.3	1.6	240
17	236	5.7	212	3.7	108	2.7	3.2	1.7	240
18	219	3.7	248	3.5	108	2.7	3.2	1.8	240
19	212	3.5	258	3.4	108	2.7	3.2	1.9	240
20	222	3.5	269	3.5	108	2.7	3.2	2.0	250
21	221	3.5	273	3.5	108	2.7	3.2	2.1	260
22									220
23									270

Time: Local.
Length of time sweep: 1.6 Mc to 12.5 Mc in two minutes.
Average values.

Table 27 (Provisional data)

Time	h ⁰ F2	f ⁰ P2	h ¹ F1	f ⁰ P1	h ¹ E	f ⁰ E	f ⁰ S	f ⁰ E	F2-M5000
00	01								
01	02								
02									
03									
04	360	2.4							
05									
06									
07	350	2.8							
08	230	4.2	190	2.6					
09	220	5.3	205	3.0	128	2.3	3.5	0.8	
10	230	5.9	213	3.4	125	2.5	3.4	0.9	
11	230	6.4	220	3.5	125	2.5	3.4	1.0	
12	240	6.4	220	3.5	125	2.5	3.4	1.1	
13	230	5.9	220	3.1	125	2.5	3.4	1.2	
14	235	6.4	235	2.6	130	2.0	3.4	1.3	
15	225	6.2	205	2.8	130	2.0	3.4	1.4	
16	225	5.4							
17	240	4.6							
18	255	3.9							
19	280	3.4							
20	330	3.0							
21	330	2.5							
22									
23	350	2.5							

Time: 165°E.
Length of time sweep: 1.0 Mc to 15.0 Mc. Manual operation.
Median values.

Time	h ⁰ F2	f ⁰ P2	h ¹ F1	f ⁰ P1	h ¹ E	f ⁰ E	f ⁰ S	f ⁰ E	F2-M5000
00	01								
01	02								
02									
03									
04	360	2.4							
05									
06									
07	350	2.8							
08	230	4.2	190	2.6					
09	220	5.3	205	3.0	128	2.3	3.5	0.8	
10	230	5.9	213	3.4	125	2.5	3.4	0.9	
11	230	6.4	220	3.5	125	2.5	3.4	1.0	
12	240	6.4	220	3.5	125	2.5	3.4	1.1	
13	230	5.9	220	3.1	125	2.5	3.4	1.2	
14	235	6.4	235	2.6	130	2.0	3.4	1.3	
15	225	6.2	205	2.8	130	2.0	3.4	1.4	
16	225	5.4							
17	240	4.6							
18	255	3.9							
19	280	3.4							
20	330	3.0							
21	330	2.5							
22									
23	350	2.5							

Time: Local.
Length of time sweep: 1.0 Mc to 15 Mc. Manual operation.
Median values.

Time	h ⁰ F2	f ⁰ P2	h ¹ F1	f ⁰ P1	h ¹ E	f ⁰ E	f ⁰ S	f ⁰ E	F2-M5000
00	01								
01	02								
02									
03									
04	360	2.4							
05									
06									
07	350	2.8							
08	230	4.2	190	2.6					
09	220	5.3	205	3.0	128	2.3	3.5	0.8	
10	230	5.9	213	3.4	125	2.5	3.4	0.9	
11	230	6.4	220	3.5	125	2.5	3.4	1.0	
12	240	6.4	220	3.5	125	2.5	3.4	1.1	
13	230	5.9	220	3.1	125	2.5	3.4	1.2	
14	235	6.4	235	2.6	130	2.0	3.4	1.3	
15	225	6.2	205	2.8	130	2.0	3.4	1.4	
16	225	5.4							
17	240	4.6							
18	255	3.9							
19	280	3.4							
20	330	3.0							
21	330	2.5							
22									
23	350	2.5							

Time: Local.
Length of time sweep: 1.0 Mc to 15 Mc. Manual operation.
Median values.

Time	h ⁰ F2	f ⁰ P2	h ¹ F1	f ⁰ P1	h ¹ E	f ⁰ E	f ⁰ S	f ⁰ E	F2-M5000
00	01								
01	02								
02									
03									
04	360	2.4							
05									
06									
07	350	2.8							
08	230	4.2	190	2.6					
09	220	5.3	205	3.0	128	2.3	3.5	0.8	
10	230	5.9	213	3.4	125	2.5	3.4	0.9	
11	230	6.4	220	3.5	125	2.5	3.4	1.0	
12	240	6.4	220	3.5	125	2.5	3.4	1.1	
13	230	5.9	220	3.1	125	2.5	3.4	1.2	
14	235	6.4	235	2.6	130	2.0	3.4	1.3	
15	225	6.2	205	2.8	130	2.0	3.4	1.4	
16	225	5.4							
17	240	4.6							
18	255	3.9							
19	280	3.4							
20	330	3.0							
21	330	2.5							
22									
23	350	2.5							

Time: Local.
Length of time sweep: 1.0 Mc to 15 Mc. Manual operation.
Median values.

Time	h ⁰ F2	f ⁰ P2	h ¹ F1	f ⁰ P1	h ¹ E	f ⁰ E	f ⁰ S	f ⁰ E	F2-M5000
00	01								
01	02								
02									
03									
04	360	2.4							
05									
06									
07	350	2.8							
08	230	4.2	190	2.6					
09	220	5.3	205	3.0	128	2.3	3.5	0.8	
10	230	5.9	213	3.4	125	2.5	3.4	0.9	
11	230	6.4	220	3.5	125	2.5	3.4	1.0	
12	240	6.4	220	3.5	125	2.5	3.4	1.1	
13	230	5.9	220	3.1	125	2.5	3.4	1.2	
14	235	6.4	235	2.6	130	2.0	3.4	1.3	
15	225	6.2	205	2.8	130	2.0	3.4	1.4	
16	225	5.4							
17	240	4.6							
18	255	3.9							
19	280	3.4							
20</td									

Table 30

(Corrections and additions to previously published provisional data)

Fairbanks, Alaska (64°9'N, 147°8'W) June 1945

Table 29
Washington, D.C. (39°N, 77.5°W)

Time	h ⁰ F2	f ⁰ F2	h ¹ F1	f ¹ F1	h ² F1	f ² F1	ffs	f ⁰ E	f ¹ E	f ² E	f ⁰ S	f ¹ S	f ² S	f ⁰ N	f ¹ N	f ² N	
00	270	4.1			3.4	3.0		3.0			00				3.0		
01	250	3.9			3.4	3.0		3.0			01				3.0		
02	260	3.5			3.4	3.1		3.0			02				3.0		
03	260	3.3			3.4	3.0		3.0			03				3.0		
04	250	2.8			1.5	3.3		3.0			04				3.0		
05	260	3.4			1.0	2.4		3.2			05				3.0		
06	240	4.0			1.0	2.4		4.5			06				3.0		
07	380	4.6			220	1.9		2.9			07				3.0		
08	340	5.3			220	1.1		2.9			08				3.0		
09	350	5.5			220	1.4		2.1			09				3.0		
10	360	5.4			220	1.1		3.5			09				3.0		
11	360	5.5			200	1.5		3.6			10				3.0		
12	400	5.5			200	1.6		3.6			11				3.0		
13	420	5.6			200	1.1		3.6			12				3.0		
14	380	5.5			210	1.5		4.4			13				3.0		
15	380	5.7			220	1.5		3.5			14				3.0		
16	360	5.7			220	1.5		3.5			15				3.0		
17	330	6.0			240	4.1		4.4			16				3.0		
18	300	6.9			220	3.6		3.3			17				3.0		
19	290	6.1									18				3.0		
20	240	6.0									19				3.0		
21	250	5.5									20				3.0		
22	260	4.8									21				3.0		
23	270	4.5									22				3.0		

Time: 75°W.
Length of time sweep: 0.8 Mc to 14 Mc in two minutes.
Median values.

Table 31

(Corrections and additions to previously published provisional data)

Churchill, Canada (58°8'N, 94°2'W) June 1945

Time	h ⁰ F2	f ⁰ F2	h ¹ F1	f ¹ F1	h ² F1	f ² F1	ffs	f ⁰ E	f ¹ E	f ² E	f ⁰ S	f ¹ S	f ² S	f ⁰ N	f ¹ N	f ² N	
00	290				6.0	3.0		00			00				3.0		
01	275				4.2	3.8		01			01				2.8		
02	260				3.8	2.8		02			02				2.4		
03	290				3.6	2.8		03			03				2.8		
04	290				3.2	3.7		04			04				2.8		
05	335	4.4			260	3.4	120	3.0			05				2.8		
06	370				240	3.9	120	3.3			06				2.8		
07	440				260	4.2	120	2.8			07				2.8		
08	420				230	4.2	120	3.0			08				2.8		
09	410				220	4.4	110	3.1			09				2.8		
10	390				220	4.4	110	3.5			10				2.8		
11	395	5.6			220	4.5	110	3.4			11				2.8		
12	390	5.4			210	4.5	110	3.4			12				2.8		
13	400				210	4.5	120	3.3			13				2.8		
14	390				210	4.5	120	3.3			14				2.8		
15	380				220	4.4	120	3.2			15				2.8		
16	360				230	4.3	120	3.1			16				2.8		
17	360	6.0			230	4.2	120	3.0			17				2.8		
18	340	6.6			240	4.0	125	2.8			18				2.8		
19	310				250	5.7	140	2.8			19				2.8		
20	290	5.0			240	5.2	150	2.7			20				2.8		
21	295										21				2.8		
22	280										22				2.8		
23	290										23				2.8		

Time: 90°W.
Length of time sweep: 2 Mc to 16 Mc in one minute.
Median values.

Table 32

(Corrections and additions to previously published provisional data)

Prince Rupert, Canada (54°3'N, 130°38'W) *June 1945

Time	h ⁰ F2	f ⁰ F2	h ¹ F1	f ¹ F1	h ² F1	f ² F1	ffs	f ⁰ E	f ¹ E	f ² E	f ⁰ S	f ¹ S	f ² S	f ⁰ N	f ¹ N	f ² N	
00	240				6.0	3.0		00			00				3.0		
01	270				4.2	3.8		01			01				2.8		
02	260				3.8	2.8		02			02				2.4		
03	290				3.6	2.8		03			03				2.4		
04	290				3.2	3.7		04			04				2.4		
05	335	4.4			260	3.4	120	3.0			05				2.4		
06	370				240	3.9	120	3.3			06				2.4		
07	440				260	4.2	120	2.8			07				2.4		
08	420				230	4.2	120	3.0			08				2.4		
09	410				220	4.4	110	3.1			09				2.4		
10	390				220	4.4	110	3.5			10				2.4		
11	395	5.6			220	4.5	110	3.4			11				2.4		
12	390	5.4			210	4.5	110	3.4			12				2.4		
13	400				210	4.5	120	3.3			13				2.4		
14	390				210	4.5	120	3.3			14				2.4		
15	380				220	4.4	120	3.2			15				2.4		
16	360				230	4.3	120	3.1			16				2.4		
17	360	6.0			230	4.2	120	3.0			17				2.4		
18	340	6.6			240	4.0	125	2.8			18				2.4		
19	310				250	5.7	140	2.8			19				2.4		
20	290	5.0			240	5.2	150	2.7			20				2.4		
21	295										21				2.4		
22	280										22				2.4		
23	290										23				2.4		

Time: 150°W.
Length of time sweep: 16 Mc to 0.5 Mc in fifteen minutes.
Median values.

Table 33

(Corrections and additions to previously published provisional data)

Time	h ⁰ F2	f ⁰ F2	h ¹ F1	f ¹ F1	h ² F1	f ² F1	ffs	f ⁰ E	f ¹ E	f ² E	f ⁰ S	f ¹ S	f ² S	f ⁰ N	f ¹ N	f ² N	
00	240				6.0	3.0		00			00				3.0		
01	270				4.2	3.8		01			01				2.8		
02	260				3.8	2.8		02			02				2.4		
03	290				3.6	2.8		03			03				2.4		
04	290				3.2	3.7		04			04				2.4		
05	335	4.4			260	3.4	120	3.0			05				2.4		
06	370				240	3.9	120	3.3			06				2.4		
07	440				260	4.2	120	2.8			07				2.4		
08	420				230	4.2	120	3.0			08				2.4		
09	410				220	4.4	110	3.1			09				2.4		
10	390				220	4.4	110	3.5			10				2.4		
11	395	5.6			220	4.5	110	3.4			11				2.4		
12	390	5.4			210	4.5	110	3.4			12						

Table 34

(Additions and corrections previously published provisional data)

(Additions and corrections to previously published provisional data.)

Table 9E

Additions and corrections to previously published provisional data)

Time: 1200W. Length of time sweep: 0.8 sec to 12 kc in six minutes. Record centered on the hour.

卷之三

(Corrections and additions to previous publications made since one date)

Time: 150 μ s.
Length of time sweep: 2 Mc to 16 Mc in one minute.
Median values.

Table 37

San Juan, Puerto Rico ($18^{\circ}40'W$, $66^{\circ}11'N$)

June 1945

Christmas Is. ($1^{\circ}20'S$, $157^{\circ}30'W$)

June 1945

June 1945

Time	$h^{\circ}F2$	$f^{\circ}F2$	$h^{\circ}F1$	$f^{\circ}F1$	$h^{\circ}E$	$f^{\circ}E$	$h^{\circ}S$	$f^{\circ}S$	$F2-M3000$
00	5.9	2.9	0.0	270	7.0	2.1	2.0	2.0	3.0
01	6.0	3.0	0.1	250	6.0	2.1	2.1	2.1	3.0
02	5.4	3.0	0.2	250	5.7	2.1	2.1	2.1	3.1
03	4.9	3.0	0.3	250	5.5	2.0	2.0	2.0	3.1
04	4.5	3.0	0.4	240	5.4	2.1	2.1	2.1	3.2
05	4.0	3.0	0.5	220	5.3	2.1	2.1	2.1	3.3
06	4.6	3.1	0.6	240	3.0	1.8	2.6	2.6	3.1
07	2.60	3.2	4.0	0.7	240	5.4	3.2	4.2	2.6
08	3.10	2.00	3.3	2.8	0.8	220	6.7	105	3.1
09	3.35	6.6	2.00	4.6	0.9	300	7.1	210	4.6
10	3.60	7.0	2.00	4.6	1.0	360	7.5	200	4.7
11	3.70	8.1	2.00	4.7	2.7	11	390	7.4	100
12	3.65	9.0	2.10	4.7	2.7	12	400	7.6	200
13	3.40	9.6	2.20	4.7	2.7	15	400	7.5	200
14	3.40	9.7	2.00	4.7	3.5	14	380	7.4	200
15	3.30	9.9	2.15	4.5	3.3	15	380	7.5	190
16	3.05	10.2	2.00	4.2	3.1	16	355	8.0	200
17	2.90	10.3	2.00	4.0	3.0	17	310	8.1	200
18	2.60	9.4	2.20	3.2	4.2	18	240	8.4	200
19	2.30	7.5	-	-	-	19	260	7.9	200
20	6.6	-	-	-	-	20	300	7.2	200
21	6.4	-	-	-	-	21	300	6.6	200
22	6.1	-	-	-	-	22	300	6.5	200
23	5.7	-	-	-	-	23	300	7.0	200

Time: $60^{\circ}W$.
Length of time sweep: Record centered on the hour.
Median values.

Table 39

(Corrections and additions to previously published provisional data)

Huancayo, Peru ($12.0^{\circ}S$, $75.35^{\circ}W$)

June 1945

May 1945

Time	$h^{\circ}F2$	$f^{\circ}F2$	$h^{\circ}F1$	$f^{\circ}F1$	$h^{\circ}E$	$f^{\circ}E$	$h^{\circ}S$	$f^{\circ}S$	$F2-M3000$
00	2.30	0.0	4.5	4.5	0.9	0.9	0.9	0.9	2.8
01	2.30	0.1	4.2	4.2	0.9	0.9	0.9	0.9	2.8
02	2.40	0.2	3.8	3.8	-	-	-	-	-
03	2.50	0.3	3.7	3.7	-	-	-	-	-
04	2.50	0.4	3.6	3.6	-	-	-	-	-
05	2.60	0.5	5.2	5.2	1.2	1.3	1.2	1.3	2.8
06	2.60	0.6	5.0	5.0	3.1	3.1	3.1	3.1	2.8
07	2.40	0.7	5.0	5.0	3.6	3.6	3.6	3.6	2.8
08	2.90	2.3	3.2	3.2	4.1	4.1	4.1	4.1	2.8
09	3.30	4.4	3.3	5.5	4.2	4.2	4.2	4.2	2.8
10	3.60	4.6	3.3	5.5	4.4	4.4	4.4	4.4	2.8
11	3.70	2.10	4.6	3.5	5.7	5.7	5.7	5.7	2.8
12	3.90	2.10	4.6	3.6	5.8	5.8	5.8	5.8	2.8
13	3.80	2.00	4.6	3.5	5.5	5.5	5.5	5.5	2.8
14	3.60	2.10	4.5	3.4	5.5	5.5	5.5	5.5	2.8
15	3.00	2.10	4.3	3.1	5.5	5.5	5.5	5.5	2.8
16	2.30	2.30	4.2	2.5	5.3	5.3	5.3	5.3	2.8
17	2.50	-	-	2.7	7	7	7	7	2.8
18	2.70	-	-	1.0	-	-	-	-	2.8
19	2.75	-	-	-	-	-	-	-	2.8
20	2.60	-	-	-	-	-	-	-	2.8
21	2.30	-	-	-	-	-	-	-	2.8
22	2.30	-	-	-	-	-	-	-	2.8
23	2.30	-	-	-	-	-	-	-	2.8

Time: $75^{\circ}W$.
Length of time sweep: 16 μ s to 0.5 μ s in fifteen minutes.
Median values.

Time	$h^{\circ}F2$	$f^{\circ}F2$	$h^{\circ}F1$	$f^{\circ}F1$	$h^{\circ}E$	$f^{\circ}E$	$h^{\circ}S$	$f^{\circ}S$	$F2-M3000$
00	0.0	270	7.0	2.1	2.0	2.0	2.0	2.0	3.0
01	0.0	250	6.0	2.1	2.1	2.1	2.1	2.1	3.0
02	0.2	250	5.7	2.0	2.0	2.0	2.0	2.0	3.1
03	0.3	250	5.5	2.0	2.0	2.0	2.0	2.0	3.1
04	0.4	240	5.4	2.0	2.0	2.0	2.0	2.0	3.2
05	0.5	240	5.4	2.0	2.0	2.0	2.0	2.0	3.2
06	0.6	220	5.3	2.0	2.0	2.0	2.0	2.0	3.3
07	0.7	220	5.3	2.0	2.0	2.0	2.0	2.0	3.3
08	0.8	220	5.3	2.0	2.0	2.0	2.0	2.0	3.3
09	0.9	220	5.3	2.0	2.0	2.0	2.0	2.0	3.3
10	1.0	230	5.3	2.0	2.0	2.0	2.0	2.0	3.3
11	1.1	210	5.3	2.0	2.0	2.0	2.0	2.0	3.3
12	1.2	210	5.3	2.0	2.0	2.0	2.0	2.0	3.3
13	1.3	210	5.3	2.0	2.0	2.0	2.0	2.0	3.3
14	1.4	210	5.3	2.0	2.0	2.0	2.0	2.0	3.3
15	1.5	210	5.3	2.0	2.0	2.0	2.0	2.0	3.3
16	1.6	230	5.3	2.0	2.0	2.0	2.0	2.0	3.3
17	1.7	230	5.3	2.0	2.0	2.0	2.0	2.0	3.3
18	1.8	250	5.3	2.0	2.0	2.0	2.0	2.0	3.3
19	1.9	270	5.3	2.0	2.0	2.0	2.0	2.0	3.3
20	2.0	260	5.3	2.0	2.0	2.0	2.0	2.0	3.3
21	2.1	230	5.3	2.0	2.0	2.0	2.0	2.0	3.3
22	2.2	230	5.3	2.0	2.0	2.0	2.0	2.0	3.3
23	2.3	230	5.3	2.0	2.0	2.0	2.0	2.0	3.3

Time: 0° .
Length of time sweep: 1.6 μ s to 12.6 μ s in two minutes.
Median values.

Table 42

(Corrections and additions to previously published provisional data)

Table 41
Slough, England (51.5°N, 0.6°W)

Time	h^1F2	f^0F2	h^1F1	f^0F1	h^1E	f^0E	h^1S	f^0S	h^1F1	f^0F1	h^1F2	f^0F2	h^1E	f^0E	h^1S	f^0S	h^1F1	f^0F1	h^1F2	f^0F2	h^1E	f^0E	h^1S	f^0S		
00	4.5										00	250	3.6													
01	4.1										01	250	3.8													
02	3.9										02	235	3.8													
03	3.7										03	250	4.0													
04	3.7										04	235	4.1													
05	4.1										05	220	3.7													
06	4.6										06	220	3.3													
07	5.2										07	230	4.7													
08	5.2										08	230	6.0													
09	5.5										09	240	6.5													
10	6.6										10	260	7.1													
11	5.6										11	260	7.1													
12	6.6										12	260	220	4.3												
13	5.7										13	272	7.2	220	4.2											
14	6.0										14	265	7.4	220	4.2											
15	5.8										15	250	7.6	220	3.8											
16	6.1										16	230	6.8													
17	6.2										17	220	6.0													
18	6.0										18	212	4.7													
19	6.4										19	220														
20	6.5										20															
21	6.1										21															
22	5.2										22															
23	4.8										23															

Time: 0°
Length of time sweep: 0.5 Mc to 16 Mc in four minutes.
Median values.

Table 43

Tychi Bay, U.S.S.R. (80.3°N, 52.8°E)

Time	h^1F2	f^0F2	h^1F1	f^0F1	h^1E	f^0E	h^1S	f^0S	h^1F1	f^0F1	h^1F2	f^0F2	h^1E	f^0E	h^1S	f^0S	h^1F1	f^0F1	h^1F2	f^0F2	h^1E	f^0E	h^1S	f^0S	
00	250	4.0									00	230	3.5												
01	260	4.1									01	250	3.2												
02											02	260	3.0												
03											03	260	2.8												
04											04	260	2.8												
05											05	230	3.6												
06											06	200	4.2												
07											07	220	4.3												
08											08	250	5.4												
09											09	270	6.1												
10											10	260	6.6												
11											11	200	6.6												
12											12	250	6.8												
13											13	250	6.6												
14											14	230	6.5												
15											15	220	6.4												
16											16	210	6.2												
17											17	200	6.0												
18											18	200	6.0												
19											19	210	5.9												
20											20	210	5.6												
21											21	210	5.2												
22											22	220	4.5												
23											23	230	4.0												

Time: 60°E.
Average values.

Table 44
Sverdlovsk, U.S.S.R. (56.7°N, 61.1°E)

Time	h^1F2	f^0F2	h^1F1	f^0F1	h^1E	f^0E	h^1S	f^0S	h^1F1	f^0F1	h^1F2	f^0F2	h^1E	f^0E	h^1S	f^0S	
00	230	3.5									00	230	3.5				
01	250	3.0									01	250	3.2				
02	260	3.0									02	260	3.0				
03											03	260	2.8				
04											04	260	2.8				
05											05	230	3.6				
06											06	200	4.2				
07											07	220	4.3				
08											08	250	5.4				
09											09	270	6.1				
10											10	260	6.6				
11											11	200	6.6				
12											12	250	6.8				
13											13	250	6.6				
14											14	230	6.5				
15											15	220	6.4				
16											16	210	6.2				
17											17	200	6.0				
18											18	200	6.0				
19											19	210	5.9				
20											20	210	5.6				
21											21	210	5.2				
22											22	220	4.5				
23											23	230	4.0				

Time: 60°E.

Table 44

Time	$b^{\circ}T_2$	$f^{\circ}T_2$	$h^{\circ}T_1$	$f^{\circ}T_1$	$h^{\circ}E$	$f^{\circ}E$	$h^{\circ}N$	$f^{\circ}N$	$F_2-43000$
00	270	4.0							
01	280	3.5							
02	290	3.4							
03	290	3.4							
04	290	3.2							
05	270	3.4							
06	250	4.0							
07	240	4.0							
08	310	5.4	230	3.7	110	2.0			
09	360	5.7	220	3.3	100	2.4			
10	420	6.2	220	4.0	100	2.9			
11	370	6.4	220	4.0	100	3.2			
12.	360	6.3	220	4.4	100	3.4			
13	350	6.3	220	4.6	100	3.3			
14	290	6.8	230	4.0	100	3.1			
15	250	6.6	230	3.9	100	2.9			
16	290	6.4	250	3.7	100	2.7			
17	250	6.3	230	3.6	100	2.5			
18	260	-	230	-	100	2.2			
19	250	6.0	-	-	110	1.3			
20	240	5.9	-	-	110	1.6			
21	250	5.6	-	-	110	1.6			
22	260	5.0	-	-	110	1.6			
23	260	4.4	-	-	110	1.6			

Time: 90°^E.

Average values.

Table 47

(Corrections and additions to previously published provisional data)

Great Budlow, England (51°17'N, 0°5°E)

April 1945

Oct. 1944

Nov. 1944

Dec. 1944

Jan. 1945

Feb. 1945

Mar. 1945

Apr. 1945

May 1945

June 1945

July 1945

Aug. 1945

Sept. 1945

Oct. 1945

Nov. 1945

Dec. 1945

Jan. 1946

Feb. 1946

Mar. 1946

Apr. 1946

May 1946

June 1946

July 1946

Aug. 1946

Sept. 1946

Oct. 1946

Nov. 1946

Dec. 1946

Jan. 1947

Feb. 1947

Mar. 1947

Apr. 1947

Time: 30°E.
Average values.

Table 48

Locality: S.S.S. (55°40'N, 55°30'E) (55°30'N, 37°40'E)
April 1945
Oct. 1944 through Apr. 1945

Time	$b^{\circ}T_2$	$f^{\circ}T_2$	$h^{\circ}T_1$	$f^{\circ}T_1$	$h^{\circ}E$	$f^{\circ}E$	$h^{\circ}N$	$f^{\circ}N$	$F_2-43000$
00	2.7	2.7	3.5	00	0.1	0.1	0.1	0.1	
01	3.2	3.0	3.0	02	2.8	2.8	0.2	0.2	
02	3.0	2.9	2.9	03	2.7	2.7	0.3	0.3	
03	3.0	2.9	2.9	04	2.8	2.8	0.4	0.4	
04	3.0	2.9	2.9	05	2.9	2.9	0.5	0.5	
05	3.2	3.0	3.0	06	2.9	2.9	0.6	0.6	
06	4.0	4.0	3.2	07	2.6	2.6	0.7	0.7	
07	4.7	4.7	3.2	08	2.1	2.1	0.8	0.8	
08	6.1	5.9	3.6	09	1.0	1.0	0.9	0.9	
09	5.4	4.1	2.9	10	1.0	1.0	0.9	0.9	
10	6.8	4.3	3.0	11	1.1	1.1	0.9	0.9	
11	5.8	4.5	3.1	12	1.2	1.2	0.9	0.9	
12	5.6	4.4	3.1	13	1.2	1.2	0.9	0.9	
13	5.9	4.4	3.2	14	1.4	1.4	0.9	0.9	
14	5.9	4.3	3.0	15	1.4	1.4	0.9	0.9	
15	5.9	4.2	2.8	16	1.5	1.5	0.9	0.9	
16	6.1	4.0	2.6	17	1.5	1.5	0.9	0.9	
17	6.1	3.6	2.2	18	1.7	1.7	0.9	0.9	
18	6.1	3.1	1.8	19	1.8	1.8	0.9	0.9	
19	6.5	1.4	3.0	20	1.9	1.9	0.9	0.9	
20	5.9	4.9	3.0	21	2.0	2.0	0.9	0.9	
21	4.9	-	-	22	2.1	2.1	0.9	0.9	
22	-	-	-	23	2.2	2.2	0.9	0.9	
23	3.7	-	-		2.7	2.7	0.9	0.9	

Times: 0°
Length of time sweep: Manual operation.
Median values.

Table 49

Locality: S.S.S. (55°40'N, 55°30'E) (55°30'N, 37°40'E)
April 1945

April 1945

Time	$b^{\circ}T_2$	$f^{\circ}T_2$	$h^{\circ}T_1$	$f^{\circ}T_1$	$h^{\circ}E$	$f^{\circ}E$	$h^{\circ}N$	$f^{\circ}N$	$F_2-43000$
00	3.9	3.7	0.1	0.1	3.5	3.5	3.5	3.5	
01	3.7	3.5	0.2	0.2	3.4	3.4	3.4	3.4	
02	3.5	3.3	0.3	0.3	3.3	3.3	3.3	3.3	
03	3.5	3.3	0.4	0.4	3.3	3.3	3.3	3.3	
04	3.4	3.2	0.5	0.5	3.2	3.2	3.2	3.2	
05	3.4	3.2	0.6	0.6	3.2	3.2	3.2	3.2	
06	3.4	3.2	0.7	0.7	3.2	3.2	3.2	3.2	
07	3.4	3.2	0.8	0.8	3.2	3.2	3.2	3.2	
08	3.4	3.2	0.9	0.9	3.2	3.2	3.2	3.2	
09	3.4	3.2	1.0	1.0	3.2	3.2	3.2	3.2	
10	3.4	3.2	1.1	1.1	3.2	3.2	3.2	3.2	
11	3.4	3.2	1.2	1.2	3.2	3.2	3.2	3.2	
12	3.4	3.2	1.3	1.3	3.2	3.2	3.2	3.2	
13	3.4	3.2	1.4	1.4	3.2	3.2	3.2	3.2	
14	3.4	3.2	1.5	1.5	3.2	3.2	3.2	3.2	
15	3.4	3.2	1.6	1.6	3.2	3.2	3.2	3.2	
16	3.4	3.2	1.7	1.7	3.2	3.2	3.2	3.2	
17	3.4	3.2	1.8	1.8	3.2	3.2	3.2	3.2	
18	3.4	3.2	1.9	1.9	3.2	3.2	3.2	3.2	
19	3.4	3.2	2.0	2.0	3.2	3.2	3.2	3.2	
20	3.4	3.2	2.1	2.1	3.2	3.2	3.2	3.2	
21	3.4	3.2	2.2	2.2	3.2	3.2	3.2	3.2	
22	3.4	3.2	2.3	2.3	3.2	3.2	3.2	3.2	
23	3.4	3.2	2.4	2.4	3.2	3.2	3.2	3.2	

Times: 0°
Average values.

Table 49

(Corrections and additions to previously published provisional data)

Watheroo, W. Australia (30°3'S., 115°9'E.)

April 1945

Time	$h^{\circ}F2$	$F^{\circ}F2$	$h^{\circ}F1$	$f^{\circ}F1$	$h^{\circ}E$	$f^{\circ}E$	$F^{\circ}E$	$F^{\circ}M5000$
00	260				2.9			
01	260	3.7			3.0			
02	250	3.8			2.8			
03	240	3.8			2.6			
04	225	3.4			2.3			
05	240	3.1			2.3			
06	230	3.0			2.3			
07	230	5.1			2.5			
08	240				1.9			
09	255	7.0	225	4.2	2.5	3.0	3.5	0.7
10	265	7.5	220	4.4	2.8	3.2	3.6	0.8
11	270	7.8	220	4.5	3.2	3.5	3.6	0.9
12	275	8.0	210	4.5	3.1	3.6	3.6	1.0
13	285	8.1	210	4.5	3.1	3.5	3.6	1.1
14	270		225	4.3	3.0	3.4	3.2	1.2
15	260	8.0	220	4.2	2.9	3.2	3.2	1.3
16	240	7.4	230	3.6	2.5	3.1	3.2	1.4
17	230	6.6			1.9	2.8	2.8	1.4
18	220	5.5			3.0	2.8	2.8	1.5
19	225	4.1			2.4	1.9	1.9	1.6
20	242	3.7			2.3	2.0	2.0	1.7
21	242	3.7			2.6	2.1	2.1	1.8
22	250				2.4	2.2	2.2	1.9
23	255				2.6	2.0	2.0	1.9

Time: 120°E.
Length of time sweep: 16 Mc to 0.5 Mc in fifteen minutes.
Median values.

Table 51

(Corrections and additions to previously published provisional data)

Great Budlow, England (51°7'N., 0°5"E.)

March 1945

Time	$h^{\circ}F2$	$F^{\circ}F2$	$h^{\circ}F1$	$f^{\circ}F1$	$h^{\circ}E$	$f^{\circ}E$	$F^{\circ}E$	$F^{\circ}M5000$
00	2.8				3.1			
01	=	2.8			3.0			
02		2.6			2.8			
03		2.5			2.5			
04		2.0			2.0			
05		2.7			1.5			
06		3.9			1.9			
07		4.6			3.5			
08		5.0			3.7			
09		5.7			4.0			
10		5.7			4.0			
11		5.7			4.0			
12		5.9			4.1			
13		6.0			4.1			
14		5.9			4.0			
15		6.0			3.8			
16		3.6			2.6			
17		5.7			2.4			
18		5.8			2.0			
19		5.5			1.6			
20					1.6			
21					1.9			
22					2.0			
23					2.3			

Time: 120°E.
Length of time sweep: 16 Mc to 0.5 Mc in fifteen minutes.
Median values.

Table 49

Tyro Bay, U.S.S.R. (80°3'N., 52°8'E.)

March 1945

Time	$h^{\circ}F2$	$F^{\circ}F2$	$h^{\circ}F1$	$f^{\circ}F1$	$h^{\circ}E$	$f^{\circ}E$	$F^{\circ}E$	$F^{\circ}M5000$
00	250				2.9			
01	260	3.7			3.0			
02	250	3.8			2.8			
03	240	3.8			2.6			
04	225	3.4			2.3			
05	240	3.1			2.3			
06	230	3.0			2.3			
07	230	5.1			2.5			
08	240				1.9			
09	255	7.0	225	4.2	2.8	3.2	3.6	0.7
10	265	7.5	220	4.4	3.2	3.5	3.6	0.8
11	270	7.8	220	4.5	3.2	3.6	3.6	1.0
12	275	8.0	210	4.5	3.1	3.6	3.6	1.1
13	285	8.1	210	4.5	3.1	3.5	3.6	1.2
14	270		225	4.3	3.0	3.4	3.2	1.3
15	260	8.0	220	4.2	2.9	3.2	3.0	1.4
16	240	7.4	230	3.6	2.6	3.0	3.0	1.5
17	230	6.6			2.4	2.2	2.0	1.6
18	220	5.5			1.6	1.7	1.7	1.7
19					1.6	2.3	2.3	1.8
20					1.9	2.2	2.2	1.8
21					2.0	2.3	2.3	1.9
22					2.1	2.5	2.5	2.0
23					2.3	2.5	2.5	2.1

Time: 120°E.

Length of time sweep: 16 Mc to 0.5 Mc in fifteen minutes.
Median values.

Table 52

(Corrections and additions to previously published provisional data)
Watheroo, W. Australia (30°3'S., 115°9'E.)

March 1945

Time	$h^{\circ}F2$	$F^{\circ}F2$	$h^{\circ}F1$	$f^{\circ}F1$	$h^{\circ}E$	$f^{\circ}E$	$F^{\circ}E$	$F^{\circ}M5000$
00	265				3.0			
01	260				3.6			
02	250				3.5			
03	250				3.5			
04	250				3.5			
05	240				3.0			
06	245				3.5			
07					3.0			
08					0.7			
09					0.6			
10					0.9			
11					0.8			
12					0.7			
13					0.7			
14					0.7			
15					0.7			
16					0.7			
17					0.7			
18					0.7			
19					0.7			
20					0.6			
21					0.6			
22					0.6			
23					0.6			

(Corrections and additions to previously published provisional data)
Great Budlow, England (51°7'N., 0°5"E.)

March 1945

Time	$h^{\circ}F2$	$F^{\circ}F2$	$h^{\circ}F1$	$f^{\circ}F1$	$h^{\circ}E$	$f^{\circ}E$	$F^{\circ}E$	$F^{\circ}M5000$
00	265				3.0			
01	260				3.6			
02	250				3.5			
03	250				3.5			
04	250				3.5			
05	240				3.0			
06	245				3.5			
07					3.0			
08					0.7			
09					0.6			
10					0.9			
11					0.8			
12					0.7			
13					0.7			
14					0.7			
15					0.7			
16					0.7			
17					0.7			
18					0.7			
19					0.7			
20					0.6			
21					0.6			
22					0.6			
23					0.6			

Time: 0°.

Length of time sweep: 16 Mc to 0.5 Mc in fifteen minutes.
Median values.Time: 60°E.
Length of time sweep: 16 Mc to 0.5 Mc in fifteen minutes.
Median values.Time: 120°E.
Length of time sweep: 16 Mc to 0.5 Mc in fifteen minutes.
Median values.

Table 53
Leningrad, USSR (59°7'N, 30°5'E)

January 1945						February 1945						March 1945						
Time	h°F2	f°F2	h°F1	f°F1	h°E	f°E	h°F2	f°F2	h°F1	f°F1	h°E	f°E	h°F2	f°F2	h°F1	f°F1	h°E	f°E
00	420	2.4					00	360	2.3				00	360	2.3			
01	410	2.3					01	390	2.2				01	390	2.2			
02	410	2.4					02	390	2.2				02	390	2.2			
03	400	2.4					03	380	2.4				03	380	2.4			
04	380	2.5					04	380	2.4				04	380	2.4			
05	380	2.6					05	380	2.4				05	380	2.4			
06	360	2.8					06	360	2.5				06	360	2.5			
07	310	3.4					07	340	2.4				07	340	2.4			
08	290	4.3					08	310	3.2				08	310	3.2			
09	280	5.3					09	270	4.6				09	270	4.6			
10	280	5.9					10	260	5.7				10	260	5.7			
11	270	6.1					11	250	6.0				11	250	6.0			
12	260	6.3					12	270	6.2				12	270	6.2			
13	270	6.4					13	260	6.4				13	260	6.4			
14	280	6.4					14	260	6.1				14	260	6.1			
15	280	6.3					15	260	5.5				15	260	5.5			
16	280	5.5					16	260	5.0				16	260	5.0			
17	280	5.1					17	260	4.4				17	260	4.4			
18	290	4.4					18	260	3.6				18	260	3.6			
19	300	3.6					19	300	2.7				19	300	2.7			
20	340	3.4					20	390	2.2				20	390	2.2			
21	360	3.1					21	420	2.1				21	420	2.1			
22	400	2.8					22	390	2.1				22	390	2.1			
23	420	2.5					23	320	2.2				23	320	2.2			

Time: 30°E.
Average values.
Although these data were given as f°F2, their low values would indicate that they are more probably f°F2.

Table 55

Alma Ata, USSR (43°5'N, 76°5'E)

January 1945						February 1945						March 1945						
Time	h°F2	f°F2	h°F1	f°F1	h°E	f°E	h°F2	f°F2	h°F1	f°F1	h°E	f°E	h°F2	f°F2	h°F1	f°F1	h°E	f°E
00	270	3.8					00	3.1					00	3.1				
01	270	3.8					01	3.1					01	3.1				
02	260	3.7					02	3.0					02	3.0				
03	270	3.7					03	3.0					03	3.0				
04	260	3.7					04	3.0					04	3.0				
05	240	3.7					05	4.5					05	4.5				
06	250	3.6					06	4.9					06	4.9				
07	250	4.8					07	5.2					07	5.2				
08	220	5.5					08	5.7					08	5.7				
09	230	5.5					09	6.8					09	6.8				
10	230	6.2					10	6.3					10	6.3				
11	230	5.9					11	7.1					11	7.1				
12	240	5.8					12	6.2					12	6.2				
13	220	5.5					13	6.2					13	6.2				
14	220	5.9					14	5.9					14	5.9				
15	220	5.4					15	5.6					15	5.6				
16	210	4.9					16	5.4					16	5.4				
17	220	4.6					17	5.2					17	5.2				
18	240	4.2					18	4.9					18	4.9				
19	230	3.7					19	4.5					19	4.5				
20	270	3.6					20	4.1					20	4.1				
21	270	3.7					21	3.9					21	3.9				
22	270	3.6					22	3.5					22	3.5				
23	260	3.6					23	3.5					23	3.5				

Time: 75°E.
Average values.

Time: 75°E.
Average values.

Table 54

January 1945						February 1945						March 1945						
Time	h°F2	f°F2	h°F1	f°F1	h°E	f°E	h°F2	f°F2	h°F1	f°F1	h°E	f°E	h°F2	f°F2	h°F1	f°F1	h°E	f°E
00	360	2.3					00	360	2.3				00	360	2.3			
01	390	2.2					01	390	2.2				01	390	2.2			
02	390	2.2					02	390	2.2				02	390	2.2			
03	380	2.4					03	380	2.4				03	380	2.4			
04	380	2.5					04	380	2.4				04	380	2.4			
05	380	2.6					05	380	2.4				05	380	2.4			
06	360	2.8					06	360	2.5				06	360	2.5			
07	310	3.4					07	340	2.4				07	340	2.4			
08	290	4.3					08	310	3.2				08	310	3.2			
09	280	5.3					09	270	4.6				09	270	4.6			
10	280	5.9					10	260	5.7				10	260	5.7			
11	270	6.1					11	250	6.0				11	250	6.0			
12	260	6.3					12	240	6.1				12	240	6.1			
13	270	6.4					13	250	6.0				13	250	6.0			
14	280	6.4					14	260	5.8				14	260	5.8			
15	280	6.5					15	260	5.7				15	260	5.7			
16	270	6.5					16	250	5.4				16	250	5.4			
17	220	4.6					17	240	4.0				17	240	4.0			
18	240	4.2					18	260	4.4				18	260	4.4			
19	230	3.7					19	250	3.9				19	250	3.9			
20	270	3.6					20	250	3.6				20	250	3.6			
21	270	3.7					21	250	3.5				21	250	3.5			
22	270	3.6					22	250	3.5				22	250	3.5			
23	260	3.6					23	250	3.5				23	250	3.5			

Time: 30°E.
Average values.
Although these data were given as f°F2, their low values would indicate that they are more probably f°F2.

Table 55

January 1945						February 1945						March 1945						
Time	h°F2	f°F2	h°F1	f°F1	h°E	f°E	h°F2	f°F2	h°F1	f°F1	h°E	f°E	h°F2	f°F2	h°F1	f°F1	h°E	f°E
00	3.1						00	3.1					00	3.1				
01	3.1						01	3.1					01	3.1				
02	3.0						02	3.0					02	3.0				
03	3.0						03	3.0					03	3.0				
04	3.0						04	3.0					04	3.0				
05	4.5						05	4.5					05	4.5				
06	4.9						06	4.9					06	4.9			</	

TABLE 58
IONOSPHERE DATA-2
Washington, D.C. Ionosphere station
National Bureau Of Standards

(Institution) Location

TIME: 75° W MERIDIAN
(Month)

Hourly values of F_2 in No. for July - 1945

Records measured by J.M.C.
R.L.S.

RESTRICTED

RECORDED

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
1	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C			
2	C	K	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	K			
3	3.4	3.3	3.3	3.1	(3.2)	[3.0]	3.8	4.5	[5.3]	A	(5.5)	[5.8]	A	(5.7)	A	A	5.4	5.8	5.6	5.8	5.3	5.0	5.2	5.1		
4	3.6	3.7	3.6	3.6	3.3	3.3	4.0	F	(4.2)	4.6	5.2	5.7	5.5	5.0	5.0	5.3	5.1	5.6	6.3	6.4	6.5	5.9	5.2	4.0		
5	3.5	(3.4)	3.4	(3.3)	[2.7]	A	[3.5]	A	3.8	4.7	(5.0)	4.9	(4.8)	5.5	5.2	(5.8)	5.5	5.9	5.7	[5.5]	5.5	5.6	5.0	5.8	4.5	
6	3.7	(3.2)	N	(1.9)	F	(1.9)	F	(3.0)	F	(4.0)	K	<3.9	G	<4.0	G	<4.1	G	<4.2	G	<4.3	K	4.7	K	4.8	K	
7	3.5	F	(3.3)	F	2.3	F	2.0	F	[3.3]	A	3.8	4.5	5.0	5.5	5.7	5.3	(5.3)	5.0	5.2	5.5	5.6	5.8	6.0	6.7	6.7	
8	4.4	F	3.6	F	3.6	F	3.4	F	(3.2)	(3.5)	(4.2)	4.9	5.2	(5.2)	(5.6)	[5.2]	A	(5.1)	5.7	5.5	5.8	6.0	6.4	6.5	6.8	
9	(3.9)	F	3.9	F	3.7	F	2.3	F	(2.1)	F	(2.7)	A	A	A	[5.1]	A	5.5	[5.2]	A	(5.8)	(5.6)	(5.4)	5.4	6.0	5.9	5.5
10	5.0	(4.1)	3.5	3.0	F	2.4	F	3.4	4.0	4.6	5.4	5.5	5.5	5.5	5.7	(5.6)	5.4	(5.5)	5.9	6.2	5.5	5.2	(5.5)	[5.3]	4.8	
11	3.9	F	3.8	F	3.7	F	3.4	2.7	F	3.9	4.2	4.7	(5.3)	5.6	5.4	5.6	5.8	[5.8]	A	6.0	6.2	5.9	6.2	5.5	5.5	4.8
12	4.1	4.1	(3.8)	[3.5]	A	3.3	F	3.7	3.9	(4.4)	4.4	5.4	[5.4]	A	[5.4]	A	5.8	[5.8]	5.7	5.7	6.0	6.6	6.6	6.6	6.6	
13	4.2	4.1	F	3.7	(2.3)	F	A	(3.4)	F	4.7	5.3	(5.9)	[5.4]	A	[6.0]	A	[5.9]	A	5.7	(5.8)	[5.8]	(6.1)	6.0	5.7	5.5	
14	(5.1)	F	4.7	(4.6)	4.6	4.6	3.9	3.9	4.6	4.9	5.7	(5.8)	(6.1)	5.9	6.0	6.4	6.1	6.1	6.3	(6.6)	6.3	[6.9]	(7.2)	(6.1)	4.6	
15	4.7	4.2	3.8	3.8	3.7	F	3.5	3.9	5.0	5.5	6.4	(7.8)	6.0	(5.8)	5.8	6.4	[6.4]	A	6.4	6.3	6.8	6.8	6.6	6.6	6.0	
16	4.3	4.8	4.3	4.4	4.4	3.4	3.5	F	4.7	(5.7)	(5.8)	(6.6)	6.4	6.7	6.5	[6.9]	C	(6.5)	(6.4)	(7.0)	[7.3]	A	7.0	7.2	(6.4)	
17	5.2	4.2	4.0	3.5	(3.3)	3.4	(4.2)	(4.9)	5.5	5.4	5.3	<(4.7)	5.6	5.9	6.2	6.4	(6.1)	6.4	(6.1)	6.5	5.9	(6.6)	(6.4)	5.8	(5.2)	
18	4.7	4.5	3.5	(3.2)	F	2.9	3.3	K	<4.0	G	A	K	<4.4	G	<4.6	G	<4.6	(5.9)	A	5.2	K	5.5	5.2	5.3	5.5	4.9
19	3.9	F	3.7	3.8	(3.5)	(3.4)	3.5	3.6	(4.9)	[5.3]	C	5.6	[5.4]	C	[5.6]	5.2	<4.7	G	5.7	5.6	6.0	5.8	6.0	6.2	5.9	5.1
20	4.5	3.9	3.9	3.5	3.4	3.4	3.6	3.6	5.0	5.7	6.4	5.8	5.8	6.4	6.2	6.8	(6.5)	7.0	6.6	6.3	(6.2)	5.8	(6.0)	6.0	5.7	
21	5.3	4.7	4.4	3.9	3.5	3.5	4.5	(5.5)	5.9	6.2	(6.2)	6.2	6.2	(6.6)	6.6	6.4	6.4	6.4	6.2	6.4	6.4	6.4	6.0	6.3	4.9	
22	5.1	4.8	4.8	4.4	4.2	3.9	3.9	5.2	[5.3]	F	5.7	5.6	(5.6)	A	[5.8]	(5.8)	(5.5)	6.0	5.6	[6.5]	C	6.2	(6.2)	[5.7]	C	5.1
23	4.3	4.3	4.3	4.7	(3.4)	3.3	3.5	4.2	4.8	(5.4)	5.7	(5.6)	5.4	5.8	(5.5)	5.7	5.8	(6.2)	(6.6)	(7.6)	(8.0)	(7.6)	6.0	5.7	4.8	
24	4.3	3.5	[3.4]	C	3.1	2.5	F	(2.9)	3.5	4.2	(4.7)	(4.5)	(4.9)	(5.3)	4.9	<4.5	G	5.2	5.4	(5.0)	(5.2)	5.2	5.7	4.9	4.5	
25	4.2	4.1	F	3.4	3.5	2.9	3.4	4.3	5.2	5.9	5.7	5.2	5.3	(5.4)	5.5	5.5	5.7	5.8	5.7	(6.0)	5.8	5.5	5.5	4.7	4.3	
26	4.0	4.0	3.5	9.3	[3.4]	C	(3.5)	4.2	[4.8]	C	(5.2)	4.8	5.2	5.5	5.5	(5.2)	5.2	5.2	5.8	[5.5]	C	[5.9]	B	6.0	(6.0)	4.3
27	3.8	3.8	(3.2)	(3.4)	(3.0)	4.2	4.7	5.2	(5.9)	(6.1)	5.8	6.0	5.7	5.8	6.0	5.9	6.2	6.0	6.4	5.9	5.2	5.2	4.8	4.2		
28	3.8	3.7	(3.2)	[3.3]	C	3.7	<3.8	4.3	5.1	5.4	(5.1)	(5.2)	5.0	(4.7)	5.2	5.4	5.5	5.5	5.5	5.8	5.7	5.7	5.1	4.5		
29	3.9	3.4	[3.1]	C	(2.8)	2.7	3.2	4.0	4.5	5.2	5.7	5.9	[5.8]	A	(6.1)	6.4	5.9	5.7	[6.2]	C	(7.0)	5.6	(5.0)	4.6	4.4	
30	3.8	F	(3.3)	(3.4)	2.7	2.7	2.9	3.5	K	<4.0	G	4.3	K	<4.3	G	<4.3	G	5.0	K	5.1	K	4.7	K	4.1	K	
31	(3.3)	C	2.2	K	1.4	K	1.6	K	(3.4)	K	3.9	K	<4.1	K	(4.4)	K	(4.7)	K	[5.0]	R	[4.9]	K	[4.7]	K	[3.6]	R
	Mean	4.1	3.9	3.5	3.3	2.6	3.4	4.0	4.6	5.3	5.5	5.4	5.5	5.6	5.7	5.7	5.7	5.7	6.0	5.9	6.1	6.0	5.5	4.8	4.5	

TABLE 59
IONOSPHERE DATA - 3

Washington, D. C. Ionosphere Station

National Bureau Of Standards

stitution)

RESTRICTED

TABLE 60
IONOSPHERE DATA-4

Washington, D. C.
(Location)

National Bureau Of Standards
(Institution)

Ionosphere Station
Hourly values of h_{F_1} in km for July 1945
(Month)

Day	TIME: 75° W MERIDIAN																								R. L. S.	
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
1	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K	A		
2	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		
3	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	A	
4	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	[220] ^A	A		
5	K	(180) ^K	(220) ^K	(240) ^K	(260) ^K	(280) ^K	(300) ^K	(320) ^K	(340) ^K	(360) ^K	(380) ^K	(400) ^K	(420) ^K	(440) ^K	(460) ^K	(480) ^K	(500) ^K	(520) ^K	(540) ^K	(560) ^K	(580) ^K	(600) ^K	(620) ^K	(640) ^K	A	
6	250	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	A	
7	[230] ^H	[240] ^H	[250] ^H	[260] ^H	[270] ^H	[280] ^H	[290] ^H	[300] ^H	[310] ^H	[320] ^H	[330] ^H	[340] ^H	[350] ^H	[360] ^H	[370] ^H	[380] ^H	[390] ^H	[400] ^H	[410] ^H	[420] ^H	[430] ^H	[440] ^H	[450] ^H	[460] ^H	(240)	
8	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		
9	220	[230] ^A	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(240)	
10	240	[220] ^A	220	180 ^H	190	200	210	(240)	[240] ^A	(240)																
11	[270] ^A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		
12	(280)	220	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		
13	A	(230)	210	[220] ^F	(230)	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	A	
14	220	(240)	220	210	220	210	220	180 ^H	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	(240)	
15	(250)	220 ^H	200 ^H	210	210	210	210	190	200	[210] ^C	[210] ^F	A														
16	(240)	230	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	(250)	
17	K	(200) ^K	[210] ^K	260																						
18	220	[220] ^H	240																							
19	(240)	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	240	A	
20	(240)	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	(250)	
21	220	200	200	180 ^H	180 ^H	210	210	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	(240)	
22	240	[220] ^H	220	190	(200)	A	A	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(240)	
23	[220] ^H	220	(210)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	(240)
24	(200)	(220)	(180)	180	200	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(180)	(230)
25	[220] ^H	220	200	200	190	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(200)	(220)
26	(220)	A	200	210	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	(220)
27	240	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	(220)
28	220	240	[240] ^A	220	220	[220] ^F	(240)																			
29	230	[230] ^A	(220)	(240)	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	(220)	
30	X	200 ^H	(220) ^K	(220) ^K	180 ^H	(220) ^K	(220)																			
31	K	220 ^H	220 ^H	200 ^H	(230)																					
Sum		240	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	(240)*

* Median Obtained From Four Values Or Less

Records measured by: J. M. G.

RESTRICTED

TABLE 61
IONOSPHERE DATA - 5Washington, D.C. Ionsphere Station
(Location)National Bureau Of Standards
(Institution)

Ionsphere Station

TIME: 75° W MERIDIAN
Hourly values of $f_0 F_{\text{L}}$ in Mc for July 1945
(Month)

	Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	R. L. S.	
1		C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times	C \times				
2		(3.8)	[4.0] \times	4.3	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		
3		3.8	(4.0)	4.0	4.2	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4		
4		(3.8)	(4.0)	4.2	4.3	4.5	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)		
5		3.5	3.9	4.0	4.1	4.3	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2		
6		3.8	4.1	4.4	4.5	4.5	(4.5)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)		
7		3.8	4.1	4.4	4.5	4.5	4.6 \times	4.6 \times																			
8		A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A			
9		3.5 \times	(4.0) \times	4.3 \times	4.5 \times	4.6 \times	[4.6] \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times	4.7 \times			
10		(4.1)	[4.4] \times	4.5	4.7 \times	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7		
11		(4.2)	[4.4] \times	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A			
12		4.1	(4.2)	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A			
13		(4.2)	4.5	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6		
14		(3.5)	(4.4)	4.6	4.7	(4.8)	4.9	5.0	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		
15		(3.6)	(4.4)	4.4 \times	4.6 \times	4.6 \times	(4.8)	[4.9] \times																			
16		(3.6)	4.1 \times	4.3	4.5	(4.6)	(4.7)	4.7	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6		
17		K	4.0 \times	4.0 \times	[4.2] \times	4.4 \times	4.4 \times	4.6 \times	4.7 \times																		
18		4.1	[4.3] \times	4.5	4.7	[4.7] \times	[4.7] \times	4.7	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6		
19		(3.5)	4.1	4.5	4.7	4.7	4.9	5.0	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)	(4.7)		
20		3.6	4.1	4.4	4.4	4.7	4.7	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9		
21		(3.5)	4.2	4.3	4.5	4.6	(4.6)	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		
22		[3.9] \times	4.2	4.5	4.7	4.5	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7		
23		3.7	(3.9)	4.1	(4.2)	4.5	4.4	4.4	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		
24		[3.9] \times	4.1	4.2	4.4	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7		
25		3.8	[4.0] \times	4.2	4.3	4.4	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		
26		4.0	4.1	4.3	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		
27		3.8	4.0	(4.2)	4.3	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)	(4.4)		
28		3.5	[3.7] \times	4.0	4.2	4.4	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		
29		K	(3.6) \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times	4.0 \times			
30		K	3.5 \times	4.1 \times	4.2 \times	4.3 \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times	[4.3] \times			
31		3.5	3.9	4.1	4.4	4.5	4.5	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6		
		Sum																									
		Median																									

Records measured by J. M. C.

Hourly values of $f_0 F_{\text{L}}$ in Mc for July 1945

(Month)

TIME: 75° W MERIDIAN

R. L. S.

TABLE 62

RESTRICTED

IONOSPHERE DATA- 6
 Ionosphere Station
 National Bureau Of Standards
 (Institution)
 TIME: 75°W MERIDIAN

Hourly values of $\frac{h_E}{\ln \frac{h_E}{h_0}}$ for July 1945
 R. L. S.

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	C	C	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K		
2	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K		
3	120	120	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	
4	120	110	120	110	110	100	100	100	100	100	100	100	100	100	100	100	110	110	120	120	120	120	120	
5	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	120	120	120	120	
6	120	K	110	K	110	K	110	K	120	K														
7	120	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	
8	110	120	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	120	120	120	120	120	
9	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	120	120	120	120	120	120	
10	110	120	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	
11	110	120	120	110	100	100	100	100	100	100	100	100	100	100	100	100	110	110	120	120	120	120	120	
12	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	
13	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	
14	110	110	110	100	100	100	100	100	100	100	100	100	100	100	100	100	110	110	120	120	120	120	120	
15	110	120	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	120	120	120	120	120	120	
16	120	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	
17	(120)	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	120	120	120	120	120	
18	(110)	K	110	K	100	K	110	K	110	K	110	120												
19	120	120	120	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	
20	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	
21	120	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	
22	120	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	(120)	120	120	120	120	120	120	
23	120	120	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	
24	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	120	120	120	120	120	
25	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	
26	120	110	100	100	100	100	100	100	100	100	100	100	100	100	100	100	110	110	110	110	110	110	120	
27	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	120	120	120	120	120	
28	120	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	120	120	120	120	120	
29	K	110	K	110	K	110	K	110	K	100	K	100	K	100	K	100	K	100	K	100	K	100	K	
30	K	110	K	110	K	110	K	110	K	110	K	110	K	110	K	110	K	110	K	110	K	110	K	
31	Sum																							
	Median																							
	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120	

Records measured by J. M. C.

(Month)

July

1945

R. L. S.

TABLE 65

Ionosphere Station
Washington, D.C.

IONOSPHERE DATA - 9

JUNO 3PIHERE DAI A=9

RESTRICTED

TIME: 75°W MERIDIAN

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
1	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
2	C ^K	C ^K	C ^K	C ^K	C ^K	C ^K	C ^K	C ^K	C ^K	C ^K	C ^K	C ^K	C ^K	C ^K											
3	2.3	2.0	2.2	2.2	A	A	(2.5)	1.9	A	(2.2)	A	(2.2)	A	(2.2)	A	A	2.0	2.0	2.1	2.1	2.2	2.2	2.1	2.0	
4	(2.2) ^F	(2.2) ^F	(2.2) ^F	(2.2) ^F	(2.3) ^F	(2.2) ^F	(2.4) ^F	(1.8)	1.7	2.1	2.1	1.9	1.9	1.7	1.7	1.9	2.0	2.0	2.0	2.1	2.2	2.2	2.1	(2.3) ^F	
5	(2.1)	(2.1)	2.1	(2.1)	A	A	2.1	2.2	(2.0)	1.8	(1.4)	1.9	1.9	1.8	(1.9)	2.1	2.1	C	2.0	2.0	1.9	2.0	2.0	2.0	
6	(1.9) ^K	(2.3) ^K	(1.8) ^F	(2.0) ^F	(1.9) ^F	(2.0) ^F	(1.8) ^F	F	(2.7) ^K	(1.4) ^K	G	G	G	G	G	1.8 ^K	2.0 ^K	(1.7) ^K	1.8 ^K	1.8 ^K	A ^K	2.0	1.9	2.1	
7	(2.1) ^F	(1.9) ^F	(1.8) ^F	(2.0) ^F	(1.8) ^F	(2.2) ^F	(2.4) ^F	1.8	2.2	2.1	2.0	1.8	(1.9)	1.6	1.6	1.8	2.0	1.9	1.9	2.0	2.0	2.1	2.0	2.0	
8	1.9 ^F	(2.2) ^F	2.0 ^F	(2.5) ^F	(2.2) ^F	(2.4) ^F	(2.6)	(1.6)	2.1	2.0	(1.8)	(1.9)	A	(1.7)	2.1	1.9	1.9	2.0	2.1	2.1	(2.1)	(2.0)	1.9	(2.0)	
9	(2.2) ^F	(2.0) ^F	(3.3) ^F	(2.0) ^F	(1.8) ^F	A	A	A	A	A	A	A	A	A	A	(2.0)	(2.0)	(2.2)	(2.1)	2.2	2.1	2.0	2.0	1.9	
10	2.1	A	2.2	(2.0) ^F	2.1 ^F	2.3	(2.1)	2.0	2.0	2.1	2.0	1.9	2.1	1.9	1.9	1.8	(1.8)	2.0	2.1	2.1	2.1	A	1.9	2.0	
11	1.9 ^F	1.8 ^F	2.2 ^F	2.0	(2.0) ^F	2.1	2.2	2.1	J	2.0	(1.6)	1.9	1.8	1.8	1.8	A	2.0	2.0	2.1	2.2	2.0	2.0	1.9	1.9	
12	(2.0)	2.0	A	A	(1.9) ^F	2.0	(2.0)	2.1	2.0	A	A	2.0	A	1.9	1.9	2.1	1.9	2.0	2.0	2.0	2.1	2.1	1.9	A	(1.8)
13	2.0	2.0 ^F	A	A	A	J	A	2.1	2.0	(2.8)	A	A	A	(2.0)	A	1.9	(2.1)	2.1	2.1	2.1	2.1	2.2	(2.0)	1.9	
14	(2.0) ^F	2.1	(2.0)	2.1	2.1	(2.6)	2.2	1.9	2.0	(2.4)	(2.2)	2.0	2.0	2.0	1.9	1.9	(2.0)	(2.0)	2.1	A	(2.1)	(2.1)	2.1	2.0	
15	1.9	2.0	2.0 ^F	(2.3)	2.3	2.2	1.8	2.2	(2.1)	2.1	(1.9)	1.8	1.7	A	2.1	2.1	2.0	2.0	2.0	(1.9)	(2.1)	2.0	1.9	A	(1.8)
16	1.9	1.9	2.0	2.0	2.1	J	2.0	(2.0)	(2.2)	(2.0)	1.8	2.1	1.9	C	(2.0)	(1.9)	(2.0)	A	2.0	(2.1)	(2.2)	(1.8)	1.8	(2.0)	1.8
17	2.1	1.9	2.0	2.0	(2.0)	2.1	(1.9)	(1.8)	2.0	1.9	1.9	G	1.8	1.8	1.7	(1.8)	1.8	2.0	(1.9)	(2.0)	1.9	(2.0)	1.8	1.8	
18	1.8	2.0	2.2	(2.1) ^F	1.8	1.7 ^K	(2.6) ^K	G	A	G	G	G	(1.6) ^K	1.7 ^K	1.8 ^K	1.8	1.9	1.9	1.9	2.0	2.1	2.0	1.9	1.9	
19	CJ	1.9	2.0	(2.2)	(2.0)	2.2	2.3	(1.9)	C	2.0	1.8	C	(1.9)	1.4	G	1.9	2.0	1.9	2.1	2.0	1.9	2.1	2.1	2.0	
20	2.0	2.0	(2.0)	2.0	1.9	2.3	1.9	2.1	2.2	2.0	1.9	1.9	1.9	(1.9)	2.0	2.0	2.0	(2.1)	2.1	(2.1)	2.0	2.0	1.9	1.9	
21	1.9	1.9	(2.0)	2.2	(2.1)	2.0	(2.1)	2.1	2.1	(2.1)	2.1	1.9	(1.9)	2.0	1.9	2.0	1.9	2.0	(2.1)	(2.1)	2.0	2.0	2.0	2.0	
22	1.9	1.9	2.0	2.0	2.1	2.0	2.1	C	2.1	2.0	1.9	(2.0)	A	(2.0)	(1.9)	1.9	2.1	C	2.0	2.2	(2.1)	C	2.0	1.9	
23	(1.9) ^F	(2.0) ^F	(2.0)	(2.3)	2.0	2.3	2.2	(2.5)	2.1	2.1	(2.0)	1.9	1.8	(1.7)	1.9	1.8	(1.9)	(2.0)	(2.1)	(2.1)	2.3	2.0	(2.1)	2.0	
24	2.0	2.0	C	1.8	2.0 ^F	(2.1)	(2.4)	1.8	(1.8)	(1.7)	(1.8)	(1.6)	1.7	G	1.8	1.7	1.9	(1.9)	(2.1)	2.0	2.2	2.0	1.9	1.9	
25	1.9	2.0 ^F	2.4	2.2	2.0	2.3	2.2	2.4	2.3	2.0	(2.1)	1.8	(1.9)	2.0	2.0	1.9	2.1	(2.2)	(2.2)	2.2	2.0	2.1	2.0	2.0	
26	2.0	2.0	(2.2)	2.2	C	(2.2)	(2.5)	(1.9)	C	(2.0)	1.6	1.9	1.8	(1.9)	1.8	1.8	1.9	(2.1)	2.1	C	B	2.1	C	(1.8)	
27	2.1	(2.1)	(2.2)	(2.1)	2.2	2.0	(2.1)	2.1	2.2	2.0	(2.1)	(1.9)	2.1	2.2	1.9	2.1	2.0	2.2	2.0	2.1	2.0	2.0	2.0	2.0	
28	2.1	2.1	(2.2)	C	2.3	(2.2)	2.6	G	1.6	1.8	2.0	(1.7)	(2.0)	1.8	(1.8)	1.8	2.1	2.0	2.2	2.0	2.0	2.1	2.0	2.0	
29	2.1	2.3	C	A	2.1	2.1	2.2	1.8	2.0	1.9	2.0	A	(2.1)	(1.9)	2.1	2.0	1.9	C	(2.4)	2.0	(2.1)	1.9	1.9	1.9	
30	CJ	(2.2)	2.0	1.9	2.0 ^K	(1.9) ^K	(2.2) ^K	(2.0) ^K	(2.6) ^K	(1.7) ^K	G	G	G	G	1.8 ^K	1.9 ^K	2.0 ^K	(2.1) ^K	2.0 ^K	2.2	2.2	2.2	(2.2)	(2.2)	
31	(2.3) ^M	(2.1) ^K	2.1 ^K	2.0	1.9	2.0 ^K	(1.9) ^K	(2.2) ^K	(2.7) ^K	(2.0) ^K	G	G	G	G	C	C	C	C	C	C	C	C	C	C	
Sum	Median	2.0	2.0	2.1	2.0	2.0	2.0	2.2	2.2	2.0	2.0	1.9	1.9	1.8	1.9	1.9	2.0	2.0	2.1	2.1	2.0	2.0	2.0	2.0	2.0

TABLE 66
IONOSPHERE DATA-10

Washington, D. C. Ionosphere station
(Location)

National Bureau Of Standards
(Institution)

TIME: 75°W MERIDIAN

Hourly values of F2-M3000 for July 1945
(Month)

Records measured by: J. M. G.
R. L. S.

RESTRICTED

Date	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	C	C	C	C	K	K	K	K	K	K	K	C, K	K	K	G, K	B, K	2.8	A	3.1	3.0	3.1	2.9	3.1	C, K
2	C, K	C	K	K	K	K	K	K	K	K	K	2.4, K	G, K	G, K	G, K	B, K	2.8	A	3.1	3.0	3.1	3.1	3.2	3.0
3	3.1	3.2	3.1	A	A	(3.6)	2.8	A	(3.6)	(3.4) ^F	(3.3) ^F	(3.2) ^F	A	(3.2)	A	3.1	3.0	3.1	3.1	3.1	3.1	3.2	3.0	
4	(3.3) ^F	(3.4) ^F	(2.7)	(2.6)	3.1	3.1	2.9	2.6	2.6	2.9	2.5	2.9	3.0	3.1	3.1	3.1	3.2	3.0						
5	(3.1)	(3.1)	3.1	(3.1)	A	A	3.1	3.3	(3.0)	2.6	(2.2)	2.9	2.8	(2.9)	3.0	3.1	3.0	3.1	3.1	3.1	2.8	3.0	3.0	
6	(2.8) ^K	(3.3) ^F	(2.8) ^F	(2.8) ^F	(3.0) ^F	(2.9) ^F	(2.9) ^F	(2.6)	(2.1) ^K	G, K	G, K	G, K	G, K	G, K	2.8, K	3.0, K	(2.6) ^K	2.6, K	2.8, K	2.9	2.9	3.0	A	
7	(3.0) ^F	(2.8) ^F	(3.5) ^F	(2.7) ^F	(2.9) ^F	A	(3.3)	2.7	3.2	3.1	3.0	2.7	(2.9)	2.4	2.8	3.0	2.9	2.8	2.9	3.0	3.1	2.9	3.1	3.0
8	2.9, F	(3.3) ^F	3.0, F	(3.5) ^F	(3.2) ^F	(3.4)	(3.7)	(2.4)	3.1	3.0	(2.7)	(2.9)	A	(2.6)	3.1	2.8	2.9	2.9	3.1	3.1	(3.1)	(3.0)	2.9	(3.0)
9	(3.2) ^F	(3.0) ^F	(3.3) ^F	(3.0) ^F	(2.8) ^F	A	A	A	A	A	A	2.9	2.9	A	(3.0)	(3.2)	(3.1)	3.1	3.1	3.1	3.0	2.9	2.9	
10	3.1	A	3.2	(2.9) ^F	3.1, F	3.4	(3.1)	3.0	3.0	3.1	2.9	2.9	3.1	(2.8)	(2.7)	3.0	3.1	3.1	3.1	3.1	3.1	A	2.9	3.0
11	2.9, F	(2.8) ^F	3.2, F	3.0	(3.0) ^F	3.0	3.1	J	3.0	(2.5)	2.8	2.7	2.7	2.8	A	3.0	3.0	3.1	3.1	3.1	3.0	2.9	2.8	
12	(2.9)	2.9	A	A	(2.9) ^F	2.9	(3.1)	3.1	2.9	A	A	3.0	A	3.0	A	(2.9)	A	2.9	(3.1)	3.1	3.1	3.0	2.9	
13	3.0	3.0, F	A	AJ	A	J	3.2	3.0	(3.6)	A	A	A	A	A	A	(2.9)	A	2.9	(3.1)	3.1	3.0	3.1	2.9	
14	(3.0) ^F	3.1	(3.0)	3.1	3.1	(3.6)	3.2	2.9	3.0	(3.4)	(3.3)	2.9	2.9	3.0	2.9	2.8	(2.9)	(3.0)	3.0	A	(3.0)	(3.1)	3.0	3.0
15	2.8	2.8	3.0	3.0, F	(3.4)	3.3	3.2	2.7	3.1	(3.1)	3.1	(2.8)	2.9	2.6	A	3.1	2.9	3.0	3.0	(2.9)	(3.0)	2.9	2.8	
16	2.8	2.9	2.9	2.9	3.1	J	2.9	(2.9)	(3.2)	(2.9)	2.8	3.1	2.8	C	C	(2.9)	(2.8)	A	2.9	(3.1)	3.1	2.9	A	(2.8)
17	3.1	2.8	3.0	(2.9)	3.1	(2.8)	(2.7)	3.0	2.9	2.8	G	2.7	2.7	2.7	2.7	(2.8)	(2.9)	(2.9)	3.1	3.1	3.1	3.3	(3.0)	2.9
18	2.8	3.0	3.2	(3.0) ^F	2.6	2.6, K	(3.6) ^K	G, K	A, K	G, K	G, K	G, K	(2.5) ^K	2.7, K	2.8, K	2.8	2.8	2.8	3.0	3.1	3.1	3.0	3.1	3.0
19	C, J	2.9	3.0	(3.2)	3.2	(2.8)	C,	3.0	2.7	C	(2.8)	2.4	G	2.8	2.9	2.9	3.0	3.0	3.0	3.0	2.9	3.1	2.9	
20	3.0	3.0	(3.0)	2.9	3.3	2.9	3.2	3.0	2.9	2.9	2.9	2.7	(2.9)	2.9	3.0	3.0	3.0	3.1	3.1	3.1	3.1	3.1	2.9	
21	2.8	2.9	2.8	(3.0)	3.3	(3.1)	3.3	3.0	3.2	(3.1)	3.1	2.9	(2.8)	2.9	2.9	3.0	2.9	3.0	3.0	(3.1)	(3.2)	3.0	2.9	
22	2.9	2.8	2.9	3.0	3.1	3.0	3.0	C	3.1	3.0	2.8	(3.0)	A	(3.0)	(2.9)	2.9	3.1	C	2.9	3.1	(3.1)	3.0	2.9	
23	(2.9) ^F	(3.0) ^F	(3.0)	3.0	3.3	3.1	(3.5)	3.1	3.0	(2.9)	2.8	2.8	(2.6)	2.8	2.7	(2.9)	(3.0)	(3.1)	(3.1)	3.1	3.1	3.1	2.9	
24	2.9	3.0	C	2.8	2.9, F	(3.1)	(3.4)	2.8	(2.7)	(2.6)	(2.4)	2.5	G	2.7	2.5	2.9	2.9	(2.8)	(3.2)	3.0	3.2	2.9	2.8	
25	2.9	3.0, F	3.4	3.2	3.0	3.3	3.2	3.4	3.3	3.0	(3.1)	(2.7)	2.8	2.9	3.0	3.0	2.9	3.2	(3.2)	3.2	3.0	3.1	3.0	
26	3.0	2.9	(3.2)	(3.3)	C	(3.2)	(3.6)	(2.8)	C	(3.0)	2.4	2.9	2.7	2.7	2.9	(2.9)	2.8	3.1	C	B	3.1	C	(2.7)	
27	3.1	(3.1)	(3.2)	(3.1)	(3.0)	3.2	3.0	3.0	(3.1)	(3.1)	(2.9)	3.1	3.2	2.8	3.1	3.0	3.1	3.1	3.0	3.1	3.0	3.0	3.0	
28	3.0	3.1	(3.2)	C	3.3	(3.2)	3.6	G	2.4	2.8	3.0	(2.5)	(3.0)	2.7	(2.8)	2.8	3.1	2.9	3.2	3.0	3.0	3.1	3.0	
29	3.1	3.3	C	A	3.2	3.1	3.2	2.7	3.0	2.8	A	(3.1)	(2.9)	3.1	3.0	2.9	C	(3.4)	2.9	(3.1)	2.9	2.9	2.9	
30	C, J	(3.0) ^F	(3.2)	3.1	2.8	3.0, K	(3.6) ^K	G, K	(2.5) ^K	G, K	G, K	G, K	G, K	G, K	2.7	2.9	3.0, K	3.0, K	3.0, K	A, K	(3.2) ^K	(3.2)	(3.3)	
31	(3.3) ^K	(3.1) ^F	2.9, K	3.1, K	(Q.9) ^K	3.2, K	(3.7) ^K	(3.0) ^F	G, K	(2.5) ^K	(2.7)	C, K	C, K	C, K	(2.9), K	B, K	3.0, K	3.1, K	3.2	3.2	3.1	(2.2)	(3.2)	
Mean	3.0	3.0	3.1	3.0	3.0	3.2	3.2	3.0	3.0	2.9	2.8	2.9	2.9	2.9	2.8	2.8	2.9	2.9	3.1	3.1	3.0	3.0	3.0	

TABLE 67
IONOSPHERE DATA-II

Ionosphere Station

Washington, D.C.

National Bureau Of Standards
(Institution)

TIME: 75° W MERIDIAN

Hourly values of F1-M3000 for July 1945
(Month)Records measured by J.M.C.
R.L.S.

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
1	-	-	-	-	C	C	K	C	C	K	C	K	C	K	C	K	C	K	C	K	C	K	C	K		
2	-	-	-	-	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A			
3	-	-	-	-	(3.8)	3.9	3.7	3.8	3.9	4.0	4.0	3.9	3.7	3.8	4.1	3.8	3.7	3.5	3.5	A	A	A	A	A		
4	-	-	-	-	A	(4.0)	3.8	3.9	4.0	4.0	3.9	3.7	3.6	3.9	A	A	A	A	A	A	A	A	A	A		
5	-	-	-	-	R	4.1	3.8	3.7	4.1	4.2	4.2	4.2	4.1	3.9	(3.1)	3.9	(3.6)	A	C							
6	-	-	-	-	3.6	3.6	3.6	3.7	3.8	3.8	3.8	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9		
7	-	-	-	-	(3.9)	3.3	3.4	3.5	3.6	3.7	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8		
8	-	-	-	-	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A			
9	-	-	-	-	3.9	A	3.5	3.6	3.7	3.8	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9		
10	-	-	-	-	(3.6)	A	3.7	3.8	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9		
11	-	-	-	-	A	3.9	3.9	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
12	-	-	-	-	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A			
13	-	-	-	-	3.5	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A			
14	-	-	-	-	A	3.3	3.3	3.8	A	(3.8)	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8			
15	-	-	-	-	(3.6)	(3.5)	3.7	4.0	4.0	(3.6)	(3.6)	(3.6)	(3.6)	(3.6)	(3.6)	(3.6)	(3.6)	(3.6)	(3.6)	(3.6)	(3.6)	(3.6)	(3.6)			
16	-	-	-	-	(3.9)	(3.4)	(3.8)	(3.9)	(3.9)	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9			
17	-	-	-	-	(3.7)	3.5	3.7	3.7	3.7	(3.8)	(3.9)	(3.9)	(3.9)	(3.9)	(3.9)	(3.9)	(3.9)	(3.9)	(3.9)	(3.9)	(3.9)	(3.9)	(3.9)			
18	-	-	-	-	R	3.1	4.0	A	3.6	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9			
19	-	-	-	-	(3.6)	C	(3.7)	3.9	C	3.7	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9			
20	-	-	-	-	(3.8)	3.6	3.6	3.6	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9			
21	-	-	-	-	(3.9)	4.0	4.0	4.0	(3.9)	N	3.8	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9			
22	-	-	-	-	(3.8)	3.4	A	3.9	3.8	(3.8)	A	A	A	A	A	A	A	A	A	A	A	A	A			
23	-	-	-	-	A	3.5	3.7	3.8	3.8	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9			
24	-	-	-	-	(3.9)	(3.8)	(4.3)	(4.3)	(4.3)	3.8	(4.0)	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9			
25	-	-	-	-	A	3.6	3.5	3.5	3.8	(3.8)	3.9	(3.9)	3.9	(3.9)	4.0	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9			
26	-	-	-	-	(3.8)	C	A	(4.0)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1				
27	-	-	-	-	3.5	3.5	3.7	3.7	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8			
28	-	-	-	-	(3.7)	3.5	A	3.7	C	(3.7)	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8				
29	-	-	-	-	3.7	A	3.4	3.5	A	A	A	A	A	A	A	(3.6)	3.6	C	3.5	(3.8)	3.5	(3.8)				
30	-	-	-	-	R	(4.1)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5			
31	-	-	-	-	R	3.8	3.5	3.8	3.8	(3.9)	C	C	C	C	C	C	C	C	C	C	C	C				
					Sum	3.8	3.6	3.6	3.7	3.8	3.9	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8		
					Median:																					

1 Median.

TABLE 68
IONOSPHERE DATA-12
Washington, D.C.
(Location)
National Bureau Of Standards
(Institution)
Ionosphere Station

RESTRICTED

Hourly values of E-M1500 for July 1945
(Month) R.L.S.

Records measured by: J.M.C.

C.K.

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1			C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
2			C	C	C	C	C	C	C	C	A	A	A	A	A	A	A	A	A	A	A	A	A	
3			A	A	F	A	(4.1)	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	
4			A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	
5			A	A	A	A	A	A	A	A	A	A	A	A	A	(4.4)	A	A	A	(3.7)	A	A	A	
6			A	A	F	A	A	A	A	A	A	A	A	A	A	4.3	(4.1)	4.1	A	A	A	A	(4.1)	
7			A	A	F	A	A	A	A	A	A	B	A	A	C	(4.3)	4.0	3.9	(4.0)					
8			(3.8)*	(3.7)*	(4.0)	(3.8)	A	A	(4.2)	A	B	(4.1)	A	A	A	A	A	A	A	A	A	A	A	
9			A	A	A	A	A	A	A	A	A	A	A	A	A	A	B	B	B	B	A	(4.2)		
10			A	(4.2)*	A	A	A	A	A	A	A	A	A	A	A	(4.2)	B	(4.4)	B	(4.2)	4.0			
11			A	A	A	A	A	A	A	A	A	A	A	A	A	(4.2)	4.1	(4.4)	A	A	A	A	A	
12			A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	
13			A	A	AF	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	
14			A	A	(3.9)	(4.1)	(4.1)	(4.3)	(4.2)	(4.3)	A	(4.0)	4.3	(4.2)	A	A	A	A	A	(4.1)	A	A	A	
15			A	A	A	A	A	A	A	A	C	A	A	A	A	A	A	A	A	A	A	A	C	
16			A	F	A	A	A	A	A	A	A	A	A	A	C	A	A	B	C	A	A	A	A	
17			(3.7)	A	A	A	A	A	A	A	A	A	A	A	B	A	A	B	C	A	A	A	A	
18			(4.3)*	AF	A	C	(4.2)*	A	A	A	(4.3)*	(4.3)*	(4.0)*	4.3	4.3	A	4.1	(4.1)	(3.8)					
19			A	A	A	A	A	A	A	A	C	A	A	A	A	(4.3)	A	A	A	A	A	A	4.2	
20			(3.7)	A	F	(4.1)	(4.1)	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	
21			A	A	A	A	A	A	(4.4)	(4.5)	A	A	(4.3)	(4.4)	4.2	A	4.0	A						
22			A	AF	(4.1)	A	A	A	A	A	A	C	A	B	B	B	A	A	A	A	A	A	A	
23			A	A	A	A	A	A	A	A	A	A	A	A	A	(4.2)	(4.0)	(3.7)	A					
24			A	A	C	A	A	A	A	(4.3)	A	4.3	B	(4.3)	A	A	A	A	A	A	A	A	AF	
25			A	A	A	A	A	A	A	A	A	A	A	A	B	A	4.4	(4.2)	(3.9)	A				
26			(4.0)	A	A	A	A	A	4.5	4.2	A	(4.4)	B	A	A	B	A	A	B	A	B	A	A	
27			AF	(4.2)	4.3	(4.4)	A	A	A	A	A	A	A	A	A	(4.2)	A	A	3.9	A				
28			A	(3.9)	(4.2)	A	A	C	A	A	4.3	4.1	4.2	4.0	(4.1)	3.9	A							
29			AF	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	(4.1)	(3.5)				
30			* AF	K	A	K	A	K	A	K	A	4.4	K	A	K	4.5	K	B	K	4.1	(4.2)	A	K	A
31			K	A	K	A	K	A	K	A	C	C	C	B	K	(4.3)	(4.2)	A						
Sum			(3.8)*	(4.0)*	4.0	4.1	(4.3)	(4.3)*	4.3	(4.3)*	4.2	4.3	4.3	4.2	4.1	4.0	4.0							
Median																								

* Median Obtained From Four Values Or Less

Table 69

Ionospheric Storminess, July 1945

Day	Ionospheric Character*		Principal Storms		Magnetic Character**	
	00-12 GCT	12-24 GCT	Beginning GCT	End GCT	00-12 GCT	12-24 GCT
July						
1	***	***			4	3
2	***	5		2100	2	2
3	3	2			2	1
4	3	3			2	3
5	2	2			3	2
6	4	4	0500	2400	4	2
7	3	3			2	2
8	2	2			3	2
9	2	2			2	2
10	2	3			1	1
11	3	1			1	1
12	3	2			1	1
13	3	2			1	0
14	1	1			1	1
15	2	1			1	1
16	1	3			1	2
17	1	3			2	3
18	1	4	1000	2100	2	1
19	2	3			2	1
20	1	3			1	1
21	1	3			1	1
22	1	1			1	1
23	1	1			1	3
24	3	3			2	1
25	2	2			1	1
26	2	2			1	1
27	2	2			0	1
28	2	3			3	3
29	2	1			2	3
30	2	5	1000		4	3
31	4	4		2300	2	1

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D.C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of American magnetic K-figure, determined by a number of observatories, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

***No readable record.

Dashes indicate continuance of disturbance.

✓Time of beginning unknown because of loss of record. Storm probably began about 1200, or earlier.

Table 70

Provisional Radio Propagation quality Figures
June 1945
Compared with TRPL and ISIB Warnings and IRRPL A-Zone

Day	North Atlantic		IRPL ISIB		A-Zone		Geo-magnetic K_A		North Pacific		IRPL A-Zone		Forecast		Geo-magnetic K_A				
	Quality Figure	Warning	Figure	Warning	A-Zone	Forecast	Geo-magnetic K_A	A-Zone	Geo-magnetic K_A	Quality Figure	Warning	A-Zone	Forecast	Geo-magnetic K_A	Quality Figure	Warning	A-Zone	Forecast	Geo-magnetic K_A
1	6	7	2	7	5	7	4	6	6	6	7	8	7	6	6	1	1	1	1
2	7	7	3	7	6	7	5	6	6	5	8	8	5	5	0	1	1	1	1
3	6	6	4	6	5	6	4	5	5	5	1	1	8	6	1	2	2	3	3
4	5	6	5	6	6	6	5	6	6	4	2	3	6	5	3	2	2	3	3
5	6	6	6	6	6	6	5	6	6	3	2	3	7	6	2	2	2	3	3
6	6	6	7	7	7	7	6	6	6	4	2	3	8	6	1	1	1	1	1
7	5	6	8	5	6	5	4	5	6	3	2	3	7	5	1	1	1	1	1
8	5	6	9	5	6	6	5	6	6	1	1	1	8	6	1	1	1	1	1
9	5	6	10	5	6	6	5	6	6	1	1	1	8	6	1	1	1	1	1
10	6	6	11	6	6	6	5	6	6	1	1	1	8	6	1	1	1	1	1
11	6	6	12	6	7	7	6	6	6	1	1	1	8	6	1	1	1	1	1
12	6	7	13	6	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
13	6	7	14	7	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
14	7	7	15	7	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
15	7	7	16	7	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
16	7	7	17	7	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
17	7	7	18	7	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
18	7	7	19	7	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
19	7	7	20	7	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
20	7	7	21	7	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
21	7	7	22	6	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
22	6	7	23	7	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
23	7	7	24	6	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
24	6	7	25	6	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
25	6	7	26	6	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
26	6	7	27	5	6	7	6	7	7	1	1	1	8	6	1	1	1	1	1
27	5	6	28	6	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
28	6	7	29	6	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1
29	6	7	30	6	7	7	6	7	7	1	1	1	8	6	1	1	1	1	1

<u>Quality Figure and</u>	<u>Forecast Soale:</u>
1	= Useless.
2	= Very poor
3	= Poor
4	= Fair
5	= Good
6	= Fair to Good
7	= Very Good
8	= Excellent

Symbols:

λ = Welfare given.
 H = Quality 4 or worse

on day or half-day
following warning.

M = Quality 4 or worse
on day or half-day

following no warning.

• Quality is better on day following no warning.

\S) = Quality 6 on day following warning.

S = Quality 6 or better on day

= Quality or forecast following warning.

4 or worse (disturbed)

geomagnetic K_A on the standard scale of 0 to

9, 9 representing the greatest disturbance.

68

11

003000

002406

Fig. 5. CHURCHILL, CANADA
58.8°N, 94.2°W JUNE, 1945

Fig. 6. CHURCHILL, CANADA JUNE, 1945

Fig. 7. PRINCE RUPERT, CANADA
54.3°N, 130.3°W JUNE, 1945

Fig. 8. PRINCE RUPERT, CANADA JUNE, 1945

Fig 9. OTTAWA, CANADA
45.5°N, 75.8°W

JUNE, 1945

Fig 10. OTTAWA, CANADA

JUNE, 1945

Fig 11. BOSTON, MASSACHUSETTS
42.4°N, 71.2°W

JUNE, 1945

Fig 12. BOSTON, MASSACHUSETTS

JUNE, 1945

Fig. 13. SAN FRANCISCO, CALIFORNIA
37.4°N, 122.2°W JUNE, 1945

Fig. 14. SAN FRANCISCO, CALIFORNIA JUNE, 1945

Fig. 15. MAUI, HAWAII
20.8°N, 156.5°W JUNE, 1945

Fig. 16. MAUI, HAWAII JUNE, 1945

Fig. 17. SAN JUAN, PUERTO RICO
18.4°N, 66.1°W JUNE, 1945

Fig. 18. SAN JUAN, PUERTO RICO JUNE, 1945

Fig. 19. CHRISTMAS I
1.9°N, 157.3°W JUNE, 1945

Fig. 20. CHRISTMAS I JUNE, 1945

Fig. 21. HUANCAYO, PERU
12.0°S, 75.3°W JUNE, 1945

Fig. 22. HUANCAYO, PERU JUNE, 1945

Fig. 23. GREAT BADDOCK, ENGLAND
51.7°N, 0.5°E MAY, 1945

Fig. 24. GREAT BADDOCK, ENGLAND MAY, 1945

Fig 25. SLOUGH, ENGLAND
51.5°N, 0.6°W

MAY, 1945

Fig 26. WATHEROO, W AUSTRALIA
30 3°S, 115. 9°E

Fig 27. WATHEROO, W. AUSTRALIA

MAY, 1945

Fig. 28. TYKHI BAY, U.S.S.R.
80.3°N, 52.8°E
APRIL, 1945

Fig. 29. SVERDLOVSK, U.S.S.R.
56.7°N, 61.1°E
APRIL, 1945

Fig. 30. TOMSK, U.S.S.R.
56.4°N, 85.0°E
APRIL, 1945

Fig. 31. MOSCOW, U.S.S.R.
55.8°N, 37.6°E
APRIL, 1945

Fig. 32. GREAT BADDOW, ENGLAND
51.7°N, 0.5°E

APRIL, 1945

Fig. 33. GREAT BADDOW, ENGLAND

APRIL, 1945

Fig. 34. MADRAS, INDIA

13.0°N, 80.2°E

APRIL, 1945

Fig.38. GREAT BADDO, ENGLAND
51.7°N, 0.5°E MARCH,1945

Fig.39. GREAT BADDO, ENGLAND MARCH,1945

Fig.40. MADRAS, INDIA
13.0°N, 80.2°E MARCH,1945

Fig. 41. WATHEROO, W. AUSTRALIA
30.3°S, 115.9°E MARCH, 1945

Fig. 42. WATHEROO, W. AUSTRALIA MARCH, 1945

Fig. 43. LENINGRAD, U.S.S.R.
59 7°N, 30.5°E FEBRUARY, 1945

Fig. 44. MADRAS, INDIA
13.0°N, 80.2°E FEBRUARY, 1945

Fig. 45. LENINGRAD, U.S.S.R
 59.7°N, 30.5°E JANUARY, 1945

Fig. 46. ALMA ATA, U.S.S.R
43.5°N, 76.5°E JANUARY, 1945

Fig. 47. MADRAS, INDIA
 13.0°N, 80.2°E JANUARY, 1945

Fig. 48. TOMSK, U.S.S.R.
 56.4°N, 85.0°E DECEMBER, 1944

Fig. 49. MADRAS, INDIA
13.0°N, 80.2°E DECEMBER, 1944

Fig. 50. TOMSK, U.S.S.R.
56.4°N, 85.0°E NOVEMBER, 1944

Fig. 51. MADRAS, INDIA
13.0°N, 80.2°E NOVEMBER, 1944

Fig. 52. TOMSK, U.S.S.R.
56.4°N, 85.0°E OCTOBER, 1944

Fig. 53. MADRAS, INDIA - OCTOBER, 1944
13.0°N, 80.2°E

Fig. 54. TOMSK, U.S.S.R.
56.4°N, 85.0°E
SEPTEMBER, 1944

Fig. (55). fes at WASHINGTON, D. C.
0000, 75° W TIME.

Fig. 57 f_{Es} at MT. STROMLO, N.S.W.

0000, 150° E TIME.

Fig. 56. f_{Es} at BRISBANE, Q., AUSTRALIA

0000, 150° E TIME.

Fig. 58 fEs at CHRISTCHURCH, N.Z.
0000, 172.5° E TIME.

IRPL REPORTS

Daily:

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data from various places.
Radio disturbance warnings.

Semiweekly:

IRPL-J. Radio Propagation Forecast.

Semimonthly:

IRPL-Ja. Semimonthly Frequency Revision Factors for IRPL Basic Radio Propagation Prediction Reports. (Issued with IRPL-J series from 4 to 7 days in advance).

Monthly:

IRPL-D. Basic Radio Propagation Predictions - Three months in advance. (War Dept. TB 11-499-, monthly supplements to TM 11-499; Navy Dept. DNC-13-1 (), monthly supplements to DNC-13-1).

IRPL-F. Ionospheric Data.

Bimonthly:

IRPL-G. Correlation of D.F. Errors with Ionospheric Conditions.

Quarterly:

*IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.
IRPL-B. Recommended Frequency Bands for Submarines in the Pacific.
*IRPL-H. Frequency Guide for Operating Personnel.
**IRPL-M. Frequency Guide for Merchant Ships.

Special Reports, etc.:

IRPL Radio Propagation Handbook, Part 1. (War Dept. TM 11-499; Navy Dept. DNC-13-1).
IRPL-C1 through C61. Reports and papers of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-R. Unscheduled reports:

R1. Maximum Usable Frequency Graph Paper.
R2 and R3. Obsolete.

R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

R5. Criteria for Ionospheric Storminess.

R6. Experimental studies of ionospheric propagation as applied to a navigation system.

R7. Further studies of ionospheric propagation as applied to a navigation system.

R8. The Prediction of Usable Frequencies Over a Path of Short or Medium Length, Including the Effect of Es.

R9. An automatic Instantaneous Indicator of Skip Distance and MUF.

R10. A method for study of the ionosphere.

R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.

R12. Ionospheric variations.

R13. Ionospheric and Radio Propagation Disturbances, October 1943 through February 1945.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.

R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

R16. Predicted F2-Layer Frequencies Throughout the Solar Cycle, for Summer, Winter, and Equinox Season.

IRPL-T. Reports on Tropospheric Propagation.

T1. Radar Operation and Weather. (Superseded by JANP 101).

T2. Radar coverage and weather. (Superseded by JANP 102).

*Items bearing this symbol are distributed only by U.S. Navy in NONREGISTERED PUBLICATIONS MEMORANDA (NRPM).

**Distributed only by U.S. Navy.

