Summary of Halmos' Naive Set Theory

Robin Adams

August 20, 2023

Contents

1	Primitive Terms and Axioms	2
2	The Subset Relation	•
3	Comprehension Notation	4
1	Unordered Pairs	t

Primitive Terms and Axioms

Let there be sets. We assume that everything is a set.

Let there be a binary relation of membership, \in . If $x \in A$ we say that x belongs to A, x is an element of A, or x is contained in A. If this does not hold we write $x \notin A$.

Axiom 1.1 (Axiom of Extensionality). Two sets are equal if and only if they have the same elements.

Axiom 1.2 (Axiom of Specification, Aussonderungsaxiom). To every set A and to every condition S(x) there corresponds a set B whose elements are exactly those elements x of A for which S(x) holds.

Axiom 1.3. A set exists.

The Subset Relation

Definition 2.1 (Subset). Let A and B be sets. We say that A is a *subset* of B, or B includes A, and write $A \subseteq B$ or $B \supseteq A$, iff every element of A is an element of B.

Theorem 2.2. For any set A, we have $A \subseteq A$.

PROOF: Every element of A is an element of A. \square

Theorem 2.3. For any sets A, B and C, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

PROOF: If every element of A is an element of B, and every element of B is an element of C, then every element of A is an element of C. \Box

Theorem 2.4. For any sets A and B, if $A \subseteq B$ and $B \subseteq A$ then A = B.

PROOF: If every element of A is an element of B, and every element of B is an element of A, then A and B have the same elements, and therefore are equal by the Axiom of Extensionality. \square

Definition 2.5 (Proper Subset). Let A and B be sets. We say that A is a proper subset of B, or B properly includes A, and write $A \subseteq B$ or $B \supseteq A$, iff $A \subseteq B$ and $A \neq B$.

Comprehension Notation

Definition 3.1. Given a set A and a condition S(x), we write $\{x \in A : S(x)\}$ for the set whose elements are exactly those elements x of A for which S(x) holds.

PROOF: This exists by the Axiom of Specification and is unique by the Axiom of Extensionality. \Box

Theorem 3.2. There is no set that contains every set.

```
Proof:
```

Unordered Pairs

Theorem 4.1. There exists a set with no elements.

PROOF: Pick a set A by Axiom 1.3. Then the set $\{x \in A : x \neq x\}$ has no elements. \square

Definition 4.2 (Empty Set). The *empty set* \emptyset is the set with no elements.