An Experiment on Interpersonal Projection Bias

Benjamin Bushong Michigan State Tristan Gagnon-Bartsch Harvard

Motivation

- Forecasting others' preferences widely relevant (e.g., auctions, negotiations, coordination, managing workers, social learning, etc.)
 - Question: How well do we predict others' preferences?
 - Real-effort setting where people have transparently different preferences
- **Finding:** people project own preference state (fatigue) onto others when predicting their willingness to work
 - 1. Subjects have familiarity with various states (advances psych lit on social projection; e.g., false-consensus effect)
 - Measure intra-personal projection in same domain (builds on Conlin et al 2007; Busse et al 2015; Augenblick & Rabin 2019)

Motivation

- Forecasting others' preferences widely relevant (e.g., auctions, negotiations, coordination, managing workers, social learning, etc.)
 - Question: How well do we predict others' preferences?
 - Real-effort setting where people have transparently different preferences
- **Finding:** people project own preference state (fatigue) onto others when predicting their willingness to work
 - 1. Subjects have familiarity with various states (advances psych lit on social projection; e.g., false-consensus effect)
 - 2. Measure intra-personal projection in same domain (builds on Conlin et al 2007; Busse et al 2015; Augenblick & Rabin 2019)

Real-Effort Task

All participants do multiple rounds of counting task

Overview of Experiment

Subjects (MTurk) assigned to one of two roles: worker or predictor

- 1. Workers do $s \in \{5, 20\}$ tasks then state willingness to continue working
 - \Rightarrow Elicit WTW when either Fresh (s = 5) or Tired (s = 20)
- 2. Predictors guesses average WTW in each state
 - Induce variation in predictors' preferences
 - Work on same task as workers
 - Make predictions when Fresh and Tired
 - ⇒ How does predictor's own state influence predictions?

Overview of Experiment

Subjects (MTurk) assigned to one of two roles: worker or predictor

- 1. Workers do $s \in \{5, 20\}$ tasks then state willingness to continue working
 - \Rightarrow Elicit WTW when either Fresh (s = 5) or Tired (s = 20)
- 2. Predictors guesses average WTW in each state
 - Induce variation in predictors' preferences:
 - Work on same task as workers
 - Make predictions when Fresh and Tired
 - ⇒ How does predictor's own state influence predictions?

Design: Workers

- Two groups of workers ($N \approx 600$):
 - Fresh: Do 5 rounds, then state # additional tasks willing to do for \$m (BDM)
 - W(5) denotes average response
 - Tired: Do 20 rounds, then state # additional tasks willing to do for \$m (BDM)
 - W(20) denotes average response

Design: Workers

- Two groups of workers ($N \approx 600$):
 - Fresh: Do 5 rounds, then state # additional tasks willing to do for \$m (BDM)
 - W(5) denotes average response
 - Tired: Do 20 rounds, then state # additional tasks willing to do for \$m (BDM)
 - W(20) denotes average response

- Predictors ($N \approx 670$) also work on the task
 - Incentivized predictions about workers
- 3 groups of Predictors

1. In-Group: guesses about workers in same state

2. Out-Group A: guesses about workers in opposite state

3. Out-Group B: no guess while fresh

1. **In-Group**: guesses about workers in same state

2. Out-Group A: guesses about workers in opposite state

Out-Group B: no guess while fresh

1. In-Group: guesses about workers in same state

2. Out-Group A: guesses about workers in opposite state

3. Out-Group B: no guess while fresh

Hypotheses

 Model: when I'm in state s', I think person in state s has utility function

$$\hat{u}(w|s) = \alpha u(w|s') + (1 - \alpha)u(w|s)$$

- Hypotheses for $\alpha > 0$:
 - 1. Same state as target \Rightarrow unbiased
 - 2. Less tired than target \Rightarrow overestimate WTW
 - 3. More tired than target \Rightarrow underestimate WTW

Workers: Lower WTW when Tired

AVERAGE WILLINGNESS TO WORK

	Worker	s' State	
	Fresh	Tired	Difference
WTW (Tasks/\$)	10.64 (0.692)	6.81 (0.408)	3.83 *** (0.803)
Observations	300	299	

Predictors: Accurate Guesses About Own State

PREDICTIONS OF WTW, SAME STATE (TASKS/\$)

	Prediction	True WTW	Difference
Fresh Predicting Fresh	10.81 (0.605)	10.64 (0.692)	0.17 (0.957)
	n = 223	n = 300	
Tired Predicting Tired	6.65 (0.230)	6.81 (0.408)	-0.17 (0.439)
	n = 666	n = 299	

Predictors: Biased Guesses About Other State

FIRST PREDICTIONS VS WORKERS' WTW (TASKS/\$)

	Prediction	True WTW	Difference
Fresh Predicting Tired	10.22 (0.491)	6.81 (0.408)	3.40 *** (0.639)
	n = 221	n = 299	
Tired Predicting Fresh	8.44 (0.532)	10.64 (0.692)	- 2.20 ** (0.873)
	n = 222	n = 300	

Quantifying Interpersonal Projection Bias

- From previous table:
 - 1. Fresh predictors overestimate WTW of tired workers by 50%
 - 2. Tired predictors underestimate WTW of fresh workers by 21%
- From parametric estimation in paper: $\alpha \geq .23$

Within-Subject Revisions in Predictions

- Within-subject revisions in guesses:
 - In-Group guessed about fresh workers both when fresh and tired
 - When fresh, guesses were accurate
 - Once tired, guesses reduced by 19%
 - ⇒ Changing this guess significantly reduced expected earnings
 - Out-Group A also exhibits significant revisions in guesses about tired workers

Within-Subject Revisions in Predictions

- Within-subject revisions in guesses:
 - In-Group guessed about fresh workers both when fresh and tired
 - When fresh, guesses were accurate
 - Once tired, guesses reduced by 19%
 - ⇒ Changing this guess significantly reduced expected earnings
 - Out-Group A also exhibits significant revisions in guesses about tired workers

Intra-Personal Projection Bias

• New group of workers (while fresh) predicted own WTW once tired

PREDICTING	WODKEDS,	CHESSES	AND	$\mathbf{W}\mathbf{T}\mathbf{W}$
FREDICTING	WORKERS	COLESSES	AND	$VV \perp VV$

	Prediction	Actual	Difference	
WTW (Tasks/\$)	7.37	5.67	1.70***	
	(0.393)	(0.387)	(0.348)	
Observations 298 298 298				
Notes: Difference significant at $p < .001$				

- Overestimate own WTW by 30%
- Recall: fresh predictors overestimate WTW of tired workers by 50%
 - ⇒ Interpersonal bias more severe than *intra*personal bias

Conclusion

- Take away: Difficult to empathize with others' states
 - Even when others' states are known
 - Even when others' states are familiar
- Additional Points:
 - Neither accuracy nor confidence increases over time ⇒ errors in predictions likely not due to limited info
 - Magnitude of intrapersonal projection similar to other studies (Conlin et al 2007; Busse et al 2015; Augenblick & Rabin 2019)
- In Progress:
 - How does projection distort learning from others' behavior?
 - How does it influence strategic behavior (e.g., bidding in auction)?

Thanks!