Chapter: FFT Twiddle Rotations and Frequency Bins — A Layman's Guide

Objective

To deeply understand **how FFT transforms a time-domain signal into frequency components**, and specifically:

- Why FFT rotates signals using complex exponentials (twiddle factors)
- How frequency bins are assigned and what each one means
- How twiddle angles grow across bins from DC to Nyquist
- How the FFT journey resembles a tree, or divide-and-conquer

FFT is a Journey — Time to Frequency

Imagine holding a signal in your hand — say, 8 points measured over time.

You want to find out **what frequencies are inside** this signal. You could use the DFT directly, but it's slow:

$$O(N^2)$$
 operations for N points

So we use the **Fast Fourier Transform (FFT)** to do the **same job** — much faster:

$$O(N \log N)$$

But how?

☐ Step 1: Go Down — Divide the Signal (Time Domain)

FFT uses a divide-and-conquer strategy:

- Split signal into even and odd samples
- Recursively split until you get single samples (base case)

At this stage, no frequency info — just raw time-domain values

This is like factorial or mergesort:

Break problem down to the simplest pieces first

Step 2: Come Back Up — Merge with Meaning (Frequency Domain)

Here's where magic happens:

- As you start merging upward, you don't just add values.
- You rotate some of them using special complex values:

$$W_N^k = e^{-jrac{2\pi k}{N}}$$
 (twiddle factor)

You're essentially **spinning your input** at different rates to "tune in" to different frequencies.

Imagine listening for one musical note. You spin your ear in sync with that frequency — and only that note sounds loud to you.

What Are These Rotations?

Twiddle factors are complex exponentials that "match" different spinning frequencies:

- $\begin{array}{ll} \bullet & W_N^0 = 1 \to {\rm No\ rotation} \to {\rm DC} \\ \bullet & W_N^1 = e^{-j2\pi/N} \to {\rm Rotation\ per\ bin\ 1} \end{array}$
- ullet $W_N^{N/2}=-1$ o Nyquist frequency

So, for each **bin** k:

Rotation Angle
$$\theta_k = \frac{2\pi k}{N}$$

$lap{l}$ Example: 8-Point FFT, Sampling Rate $f_s=800$ Hz

Bin k	Frequency $f_k = rac{kf_s}{N}$	Twiddle Angle $ heta_k$	Rotation Meaning
0	0 Hz (DC)	0	No rotation
1	100 Hz	$\pi/4$	45° clockwise
2	200 Hz	$\pi/2$	90° clockwise
3	300 Hz	$3\pi/4$	135° clockwise
4	400 Hz (Nyquist)	π	180° (flip)

Each bin isolates that frequency by rotating incoming values at that **specific rate** and summing them.

What's the Butterfly?

Each butterfly operation in the FFT combines two results:

$$a \longrightarrow a + W * b$$

$$\vdash FFT \longrightarrow b \longrightarrow xW^{\perp} \qquad \vdash a - W * b$$

Where:

- a, b: values to merge
- W: twiddle factor for bin k

It's fast, efficient, and preserves both amplitude and phase.

FFT Builds Frequency Bins While Merging Up

As you climb the FFT tree:

- The first bin computed is X[0] DC (0 Hz)
- Twiddle angle is 0 → no rotation

- As you go up:
 - \circ You compute X[1], X[2], ..., X[N/2]
 - $\circ~$ Twiddle angle increases up to π
- By the time you reach X[N/2], you're at **Nyquist frequency**

That's why:

- FFT is not just a fast algorithm it's a guided transition from time to frequency
- Each bin maps to a physical frequency via:

$$f_k = rac{k}{N} f_s$$

☑ Where Do the Rest of the Bins Go?

For real-valued signals:

- ullet FFT produces N complex results
- First half: real frequencies (0 to Nyquist)
- Second half: mirror (negative frequencies), usually discarded

Output $X[k]$	Frequency
X[0]	0 Hz
X[1]	f_s/N
X[N/2]	$f_s/2$ (Nyquist)
X[N/2+1] to $X[N-1]$	mirror of $X[1]$ to $X[N/2-1]$

Key Takeaways for Learners

Concept	Meaning	
Twiddle factor	Complex exponential that rotates signal	

Concept	Meaning
Rotation angle	$2\pi k/N$ — increases with frequency bin
FFT builds up	From DC to Nyquist
X[k]	Bin for frequency $f_k=rac{k}{N}f_s$
Nyquist	Max frequency: $f_s/2$, occurs at $k=N/2$

Optional Exercise (Python, No Plot)

```
import numpy as np

N = 8

fs = 800  # Hz

for k in range(N):
    angle = 2 * np.pi * k / N
    freq = k * fs / N
    print(f"Bin {k}: Frequency = {freq} Hz, Rotation Angle = {np.round(angle, 2)} radians")
```

Try this with different N and fs values to see how bins and twiddle angles change.

Final Word

- FFT is not just a formula it's a frequency lens
- Twiddle factors guide the rotation into frequency space
- Every bin you compute is a **spotlight** on a specific frequency
- Repetition is key revisit this until it becomes second nature