Serre-Swan theorem for non-commutative C*-algebras. Revised edition¹

Katsunori Kawamura²

College of Science and Engineering Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan

Abstract

We generalize the Serre-Swan theorem to non-commutative C*-algebras. For a Hilbert C*-module X over a C*-algebra \mathcal{A} , we introduce a hermitian vector bundle \mathcal{E}_X associated to X. We show that there is a linear subspace Γ_X of the space of all holomorphic sections of \mathcal{E}_X and a flat connection D on \mathcal{E}_X with the following properties: (i) Γ_X is a Hilbert \mathcal{A} -module with the action of \mathcal{A} defined by D, (ii) the C*-inner product of Γ_X is induced by the hermitian metric of \mathcal{E}_X , (iii) \mathcal{E}_X is isomorphic to an associated bundle of an infinite dimensional Hopf bundle, (iv) Γ_X is isomorphic to X.

Mathematics Subject Classifications (2000). 46L87, 46L08, 58B34. Key words. Serre-Swan theorem, Hilbert C*-module, non-commutative geometry.

1 Introduction

The Serre-Swan theorem [9, 15, 16] is described as follows:

Theorem 1.1 Let Ω be a connected compact Hausdorff space and let $C(\Omega)$ be the algebra of all complex-valued continuous functions on Ω . Assume that X is a module over $C(\Omega)$. Then X is finitely generated projective iff there is a complex vector bundle E over Ω such that X is isomorphic onto the module of all continuous sections of E.

By Theorem 1.1, finitely generated projective modules over the commutative C*-algebra $C(\Omega)$ and complex vector bundles over Ω are in one-to-one correspondence up to isomorphism. In non-commutative geometry [6, 17], a certain module over a non-commutative C*-algebra \mathcal{A} is treated as a non-commutative vector bundle over the non-commutative space \mathcal{A} , generalizing Theorem 1.1 in a sense of *point-less* geometry. Therefore both a non-commutative space and a non-commutative vector bundle are invisible even if one desires to look hard.

¹Original paper [11]. The essential mathematical statement is same as before.

²e-mail: kawamura@kurims.kyoto-u.ac.jp.

On the other hand, for a unital generally non-commutative C*-algebra \mathcal{A} , the functional representation on a certain geometrical space is studied by [4]. We review it as follows.

Definition 1.2 A triplet (\mathcal{P}, p, B) is the uniform Kähler bundle associated with \mathcal{A} if \mathcal{P} (= Pure \mathcal{A}) is the set of all pure states of \mathcal{A} , endowed with the w^* -uniformity, i.e. the uniformity which induces the w^* -topology, B (= Spec \mathcal{A}) is the spectrum of \mathcal{A} , the set of all equivalence classes of irreducible representations of \mathcal{A} , and p is the natural projection from \mathcal{P} onto B by the GNS representation.

For each $b \in B$, the fiber $\mathcal{P}_b \equiv p^{-1}(b)$ is a Kähler manifold (Appendix D in [4]). Especially, if \mathcal{A} is commutative, then $\mathcal{P} \cong B$ and it is a compact Hausdorff space. In this case, each fiber of (\mathcal{P}, p, B) is a 0-dimensional Kähler manifold. Define $C^{\infty}(\mathcal{P})$ the set of all fiberwise-smooth complex-valued functions on \mathcal{P} . The product * on $C^{\infty}(\mathcal{P})$ is defined by

$$l * m \equiv l \cdot m + \sqrt{-1} X_m l \quad (l, m \in C^{\infty}(\mathcal{P}))$$
(1.1)

where X_l is the holomorphic part of the complex Hamiltonian vector field of l with respect to the Kähler form on \mathcal{P} . Then $C^{\infty}(\mathcal{P})$ is a * algebra with the unit 1 and the involution * by complex conjugation, which is not associative in general. Define the subset $C_u^{\infty}(\mathcal{P})$ of $C^{\infty}(\mathcal{P})$ consisting of uniformly continuous functions on \mathcal{P} .

Theorem 1.3 For a unital non-commutative C^* -algebra A, the Gel'fand representation

$$f_A(\rho) \equiv \rho(A) \quad (A \in \mathcal{A}, \, \rho \in \mathcal{P}),$$
 (1.2)

gives an injective * homomorphism f from \mathcal{A} into $C^{\infty}(\mathcal{P})$ where $C^{\infty}(\mathcal{P})$ is endowed with the *-product in (1.1). The norm $\|\cdot\|$ on $f(\mathcal{A})$ defined by

$$||l|| \equiv \sup_{\rho \in \mathcal{P}} \left| (\bar{l} * l) (\rho) \right|^{\frac{1}{2}} \quad (l \in f(\mathcal{A})), \tag{1.3}$$

is a C^* -norm on the associative * subalgebra f(A).

Furthermore f(A) is precisely the subset $K_u(P)$ of $C_u^{\infty}(P)$ defined by

$$\mathcal{K}_u(\mathcal{P}) \equiv \{ l \in C_u^{\infty}(\mathcal{P}) : \bar{l} * l, l * \bar{l} \in C_u^{\infty}(\mathcal{P}), \ D^2 l = \bar{D}^2 l = 0 \}$$
 (1.4)

where D, \bar{D} are the holomorphic and anti-holomorphic part, respectively, of covariant derivative of Kähler metric defined on each fiber of \mathcal{P} . In consequence, the following equivalence of C^* -algebras holds:

$$\mathcal{A} \cong \mathcal{K}_{u}(\mathcal{P}).$$

By Theorem 1.3, it seems that there exists a geometry consisting of points associated with not only a commutative C^* -algebra but also a non-commutative one. According to Theorem 1.3, we introduce a representation of a Hilbert C^* -module as the sections of a vector bundle over \mathcal{P} .

A vector space X is a *Hilbert C*-module* [7, 13] over a C*-algebra \mathcal{A} if X is a right \mathcal{A} -module with an \mathcal{A} -valued inner product $\langle \cdot | \cdot \rangle$ which satisfies $\langle \eta | \xi a \rangle = \langle \eta | \xi \rangle a$ for each $\eta, \xi \in X$ and $a \in \mathcal{A}$, and X is complete with respect to the norm $\| \cdot \|$ defined by $\| \xi \| \equiv \| \langle \xi | \xi \rangle \|^{1/2}$ for $\xi \in X$.

Definition 1.4 The triplet $(\mathcal{E}_X, \Pi_X, \mathcal{P})$ is the atomic bundle associated with a Hilbert C^* -module X over a unital C^* -algebra \mathcal{A} if it is the fiber bundle with the base space \mathcal{P} and the total space \mathcal{E}_X :

$$\mathcal{E}_X \equiv \bigcup_{
ho \in \mathcal{P}} \mathcal{E}_{X,
ho}$$

where Π_X is the natural projection from \mathcal{E}_X onto \mathcal{P} , and the fiber $\mathcal{E}_{X,\rho}$ for $\rho \in \mathcal{P}$ is the Hilbert space defined as follows: Define the quotient vector space $\mathcal{E}_{X,\rho}^o \equiv X/N_\rho$ where N_ρ is the closed subspace of X defined by $N_\rho \equiv \{\xi \in X : \rho(\|\xi\|^2) = 0\}$. Define the inner product $\langle \cdot | \cdot \rangle_\rho$ on $\mathcal{E}_{X,\rho}^o$ by

$$\langle [\xi]_{\rho} | [\eta]_{\rho} \rangle_{\rho} \equiv \rho(\langle \xi | \eta \rangle) \qquad ([\xi]_{\rho}, [\eta]_{\rho} \in \mathcal{E}_{X, \rho}^{o})$$

$$(1.5)$$

where $[\xi]_{\rho} \equiv \xi + N_{\rho} \in \mathcal{E}_{X,\rho}^{o}$ for $\xi \in X$. Let $\mathcal{E}_{X,\rho}$ denote the completion of $\mathcal{E}_{X,\rho}^{o}$ by the norm $\|\cdot\|_{\rho}$ associated with $\langle\cdot|\cdot\rangle_{\rho}$.

We show the property of \mathcal{E}_X . Let \mathcal{H} denote a complex Hilbert space with $1 \leq \dim \mathcal{H} \leq \infty$. A triplet $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$ is the Hopf (fiber) bundle over \mathcal{H} if the projective Hilbert space $\mathcal{P}(\mathcal{H})$ and the Hilbert sphere $S(\mathcal{H})$ are defined by

$$\mathcal{P}(\mathcal{H}) \equiv (\mathcal{H} \setminus \{0\})/\mathbf{C}^{\times}, \quad S(\mathcal{H}) \equiv \{z \in \mathcal{H} : ||z|| = 1\}$$
 (1.6)

and the projection μ from $S(\mathcal{H})$ onto $\mathcal{P}(\mathcal{H})$ is defined by $\mu(z) \equiv [z]$ for $z \in S(\mathcal{H})$.

Theorem 1.5 For $b \in B$ (= Spec \mathcal{A}), let \mathcal{H}_b be a representative of b, $\mathcal{E}_X^b \equiv \Pi_X^{-1}(\mathcal{P}_b)$ and $\Pi_X^b \equiv \Pi_X|_{\mathcal{E}_X^b}$. Then $(\mathcal{E}_X^b, \Pi_X^b, \mathcal{P}_b)$ is a locally trivial vector bundle which is isomorphic to the associated bundle of $(S(\mathcal{H}_b), \mu, \mathcal{P}(\mathcal{H}_b))$ by a certain Hilbert space F_X^b .

One of our aims is a geometric realization of a Hilbert C*-module. We illustrate the two-step fibration structure of the atomic bundle as follows:

Next, we reconstruct X from \mathcal{E}_X . Define the space of bounded sections

$$\Gamma(\mathcal{E}_X) \equiv \{s : \mathcal{P} \to \mathcal{E}_X \mid \Pi_X \circ s = id_{\mathcal{P}}, \|s\| < \infty \}$$

where the norm $\|\cdot\|$ is defined by

$$||s|| \equiv \sup_{\rho \in \mathcal{P}} ||s(\rho)||_{\rho}. \tag{1.7}$$

By standard operations, $\Gamma(\mathcal{E}_X)$ is a complex linear space. By Theorem 1.5, we can consider the differentiability of $s \in \Gamma(\mathcal{E}_X)$ at each B-fiber in the sense of Fréchet differentiability of Hilbert manifolds. Denote $\Gamma_{\infty}(\mathcal{E}_X)$ the set of all B-fiberwise smooth sections in $\Gamma(\mathcal{E}_X)$. Define the hermitian metric H [12] on $\Gamma_{\infty}(\mathcal{E}_X)$ by

$$H_{\rho}(s,s') \equiv \langle s(\rho) | s'(\rho) \rangle_{\rho} \quad (\rho \in \mathcal{P}, s,s' \in \Gamma_{\infty}(\mathcal{E}_{X})). \tag{1.8}$$

By these preparations, we state the following theorem which is a version of the Serre-Swan theorem generalized to non-commutative C*-algebras.

Theorem 1.6 Let \mathcal{A} be a unital C^* -algebra with (\mathcal{P}, p, B) in Definition 1.2, f in (1.2) and $\mathcal{K}_u(\mathcal{P})$ in (1.4). Let X be a Hilbert \mathcal{A} -module with $(\mathcal{E}_X, \Pi_X, \mathcal{P})$ in Definition 1.4 and H in (1.8). Then the following holds:

(i) Let $X \times \mathcal{P}$ be the trivial bundle over \mathcal{P} and define the linear map $(P_X)_*$ from $\Gamma(X \times \mathcal{P})$ to $\Gamma(\mathcal{E}_X)$ by $\{(P_X)_*(s)\}(\rho) \equiv [s(\rho)]_{\rho}$ for $s \in \Gamma(X \times \mathcal{P})$, $\rho \in \mathcal{P}$. Define the subspace Γ_X of $\Gamma(\mathcal{E}_X)$ by

$$\Gamma_X \equiv (P_X)_* (\Gamma_{const}(X \times \mathcal{P}))$$

where $\Gamma_{const}(X \times \mathcal{P})$ is the set of all constant sections of $X \times \mathcal{P}$. Then any element in Γ_X is holomorphic.

(ii) There is a flat connection D on \mathcal{E}_X such that Γ_X is a Hilbert $\mathcal{K}_u(\mathcal{P})$ module with respect to the following right *-action

$$s * l \equiv s \cdot l + \sqrt{-1}D_{X_l}s \qquad ((s,l) \in \Gamma_X \times \mathcal{K}_u(\mathcal{P}))$$
 (1.9)

and the C^* -inner product $H|_{\Gamma_Y \times \Gamma_Y}$.

(iii) Under the identification $\mathcal{K}_u(\mathcal{P})$ with \mathcal{A} by f, the Hilbert \mathcal{A} -module Γ_X is isomorphic to X.

Here we summarize correspondences between geometry and algebra.

Gel'fand representation

Serre-Swan theorem

	space	algebra
		$C(\Omega)$
CG	Ω	pointwise
		product
NCG	$\mathcal{P} \to B$	$\mathcal{K}_u(\mathcal{P})$
		*-product

	vector bundle	module
		$\Gamma(E)$
CG	$E \to \Omega$	pointwise
		action
NCG	$\mathcal{E}_X o \mathcal{P}$	Γ_X
		*-action

where we call respectively, CG = commutative geometry as a geometry associated with commutative C*-algebras, and NCG = non-commutative geometry as a geometry associated with non-commutative C*-algebras according to [5]. In this way, NCG's are realized as visible geometries with points.

In \S 2, we review the Hopf bundle and the uniform Kähler bundle. In \S 2.3, we review [4] more closely. In \S 3, we show Theorem 1.5. In \S 4, we prove Theorem 1.6.

2 Hopf bundle and uniform Kähler bundle

2.1 The Hopf bundle and its associated bundle

We review the Hopf bundle and its associated bundle. Let $\mathbf{S} \equiv (S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$ be the Hopf (fiber) bundle over a Hilbert space \mathcal{H} in (1.6). The space $S(\mathcal{H})$ is

a real submanifold of \mathcal{H} in the relative topology. We give $\mathcal{P}(\mathcal{H})$ the quotient topology from $\mathcal{H} \setminus \{0\} \subset \mathcal{H}$ by the natural projection. Then μ is continuous and open.

We define local trivial neighborhoods of the Hopf bundle according to Appendix C in [4]. For $h \in S(\mathcal{H})$, define

$$\begin{cases}
\mathcal{V}_h \equiv \{[z] \in \mathcal{P}(\mathcal{H}) : \langle h|z \rangle \neq 0\}, & \mathcal{H}_h \equiv \{z \in \mathcal{H} : \langle h|z \rangle = 0\}, \\
\beta_h : \mathcal{V}_h \to \mathcal{H}_h; & \beta_h([z]) \equiv \langle h|z \rangle^{-1} \cdot z - h \quad ([z] \in \mathcal{V}_h).
\end{cases}$$
(2.1)

On the holomorphic tangent space $T_{\rho}\mathcal{P}(\mathcal{H})$ at the local coordinate $(\mathcal{V}_h, \beta_h, \mathcal{H}_h)$ and $\beta_h(\rho) = z$, we define the Kähler metric g and the Kähler form ω on $\mathcal{P}(\mathcal{H})$ by

$$g_z^h(\bar{v}, u) \equiv w_z \cdot \langle v|u\rangle - w_z^2 \cdot \langle v|z\rangle \langle z|u\rangle, \quad g_z^h(u, \bar{v}) \equiv g_z^h(\bar{v}, u),$$
$$\omega_z^h(\bar{v}, u) \equiv \sqrt{-1} \{-w_z \cdot \langle v|u\rangle + w_z^2 \cdot \langle v|z\rangle \langle z|u\rangle\}, \quad \omega_z^h(u, \bar{v}) \equiv -\omega_z^h(\bar{v}, u)$$

for $v, u \in \mathcal{H}_h$ where $w_z \equiv 1/(1 + ||z||^2)$ and $\bar{x} \in \mathcal{H}_h^*$ means the dual vector of $x \in \mathcal{H}_h$. Then $\mathcal{P}(\mathcal{H})$ is a Kähler manifold with the holomorphic atlas $\{(\mathcal{V}_h, \beta_h, \mathcal{H}_h)\}_{h \in S(\mathcal{H})}$. For $l \in C^{\infty}(\mathcal{P}(\mathcal{H}))$, define the holomorphic Hamiltonian vector field X_l of l by the equation

$$\omega_{\rho}((X_{l})_{\rho}, \overline{Y}_{\rho}) = \bar{\partial}_{\rho} l(\overline{Y}_{\rho}) \quad (\overline{Y}_{\rho} \in \overline{T}_{\rho} \mathcal{P}(\mathcal{H}), \ \rho \in \mathcal{P}(\mathcal{H}))$$
 (2.2)

where $\bar{\partial}$ is the anti-holomorphic differential operator on $C^{\infty}(\mathcal{P}(\mathcal{H}))$ and $\overline{T}_{\rho}\mathcal{P}(\mathcal{H})$ denotes the anti-holomorphic tangent space of $\mathcal{P}(\mathcal{H})$ at $\rho \in \mathcal{P}(\mathcal{H})$.

The family $\{\mathcal{V}_h\}_{h\in S(\mathcal{H})}$ is a system of local trivial neighborhoods for **S** by the family $\{\psi_h\}_{h\in S(\mathcal{H})}$ of maps defined by $\psi_h: \mu^{-1}(\mathcal{V}_h) \to \mathcal{V}_h \times U(1)$;

$$\psi_h(z) \equiv ([z], \phi_h(z)), \quad \phi_h(z) \equiv \langle z|h\rangle \cdot |\langle h|z\rangle|^{-1}.$$
 (2.3)

Furthermore we can verify that **S** is a principal U(1)-bundle.

Assume that F is a complex vector space. The fibration $\mathbf{F} \equiv (S(\mathcal{H}) \times_{U(1)} F, \pi_F, \mathcal{P}(\mathcal{H}))$ is called the associated bundle of \mathbf{S} by F if $S(\mathcal{H}) \times_{U(1)} F$ is the set of all U(1)-orbits in the product space $S(\mathcal{H}) \times F$ where the U(1)-action is defined by

$$(z, f) \cdot c \equiv (\bar{c}z, \bar{c}f)$$
 $(c \in U(1), (z, f) \in S(\mathcal{H}) \times F),$

and the projection π_F from $S(\mathcal{H}) \times_{U(1)} F$ onto $\mathcal{P}(\mathcal{H})$ is defined by $\pi_F([(x,f)]) \equiv \mu(x)$ where we denote [(x,f)] the element in $S(\mathcal{H}) \times_{U(1)} F$ containing (x,f). The topology of $S(\mathcal{H}) \times_{U(1)} F$ is induced from $S(\mathcal{H}) \times F$ by the natural projection.

For $h \in S(\mathcal{H})$, the local trivialization $\psi_{F,h}$ of \mathbf{F} at \mathcal{V}_h is defined as the map $\psi_{F,h}$ from $\pi_F^{-1}(\mathcal{V}_h)$ to $\mathcal{V}_h \times F$ by

$$\psi_{F,h}([(z,f)]) \equiv (\mu(z), \phi_{F,h}([(z,f)])), \quad \phi_{F,h}([(z,f)]) \equiv \phi_h(z)f. \quad (2.4)$$

The definition of $\psi_{F,h}$ is independent of the choice of (z, f).

2.2 Connection

Let $\mathbf{F} = (S(\mathcal{H}) \times_{U(1)} F, \pi_F, \mathcal{P}(\mathcal{H}))$ be the associated bundle of the Hopf bundle \mathbf{S} by F in § 2.1. Let $\Gamma_{\infty}(\mathbf{F})$ be the linear space of all smooth sections of \mathbf{F} . A connection on \mathbf{F} is a \mathbf{C} -bilinear map D from $\mathfrak{X}(\mathcal{P}(\mathcal{H})) \times \Gamma_{\infty}(\mathbf{F})$ to $\Gamma_{\infty}(\mathbf{F})$ which is $C^{\infty}(\mathcal{P}(\mathcal{H}))$ -linear with respect to $\mathfrak{X}(\mathcal{P}(\mathcal{H}))$ and satisfies the Leibniz law with respect to $\Gamma_{\infty}(\mathbf{F})$:

$$D_Y(s \cdot l) = \partial_Y l \cdot s + l \cdot D_Y s \quad (Y \in \mathfrak{X}(\mathcal{P}(\mathcal{H})), \ s \in \Gamma_{\infty}(\mathbf{F}), \ l \in C^{\infty}(\mathcal{P}(\mathcal{H}))).$$

For $Y \in \mathfrak{X}(\mathcal{P}(\mathcal{H}))$, $h \in S(\mathcal{H})$ and $\rho \in \mathcal{V}_h$, we denote Y_{ρ}^h the corresponding tangent vector at ρ in a local chart. Assume that a connection D on \mathbf{F} is written as

$$D = \partial + A$$
.

According to the notation at the local chart, we obtain families $\{A_{Y,\rho}^h: Y \in \mathfrak{X}(\mathcal{P}(\mathcal{H})), h \in S(\mathcal{H}), \rho \in \mathcal{V}_h\}$ of linear maps on F such that $\partial_Y|_{\rho}^h + A_{Y,\rho}^h = (\partial_Y + A_Y)_{\rho}^h = (\partial_Y + A_Y)_{\rho}^h$. Then we can verify that D is a connection on \mathbf{F} if and only if the following holds for each $h, h' \in S(\mathcal{H})$ with $\langle h|h' \rangle \neq 0$:

$$A_{Y,\rho}^{h'} = -\frac{1}{2} \frac{\langle h|Y\rangle}{\langle h|z+h'\rangle} + A_{Y,\rho}^{h} \quad (\rho \in \mathcal{V}_{h'} \cap \mathcal{V}_{h})$$
 (2.5)

where Y is a holomorphic tangent vector of $\mathcal{P}(\mathcal{H})$ at ρ which is realized on $\mathcal{H}_{h'}$ and $z = \beta_{h'}(\rho)$.

A connection D on \mathbf{F} is flat if the curvature R of \mathbf{F} with respect to D defined by $R_{Y,Z} \equiv [D_Y, D_Z] - D_{[Y,Z]}, (Y,Z \in \mathfrak{X}(\mathcal{P}(\mathcal{H})))$, vanishes.

Proposition 2.1 For $h \in S(\mathcal{H})$ and the chart $(\mathcal{V}_h, \beta_h, \mathcal{H}_h)$ at $\rho \in \mathcal{P}(\mathcal{H})$ in (2.1), we consider the trivializing neighborhood \mathcal{V}_h for the Hopf bundle. For $Y \in \mathfrak{X}(\mathcal{P}(\mathcal{H}))$, define the operator D_Y on $\Gamma_{\infty}(\mathbf{F})$ by

$$(D_Y s)(\rho) \equiv (\partial_Y s)(\rho) + (A_{Y,\rho} s)(\rho) \quad (\rho \in \mathcal{P}(\mathcal{H}))$$

where $A_{Y,\rho}$ is defined as the family $\{A_{Y,\rho}^h: h \in S(\mathcal{H}), \rho \in \mathcal{V}_h\}$ of linear operators on F at $(\mathcal{V}_h, \beta_h, \mathcal{H}_h)$, by

$$A_{Y,\rho}^h v \equiv -\frac{1}{2} \frac{\langle \beta_h(\rho) | Y_\rho^h \rangle}{1 + \|\beta_h(\rho)\|^2} \cdot v \quad (v \in F).$$

Then this defines a flat connection D on \mathbf{F} .

Proof. We can verify (2.5) for $\{A_{Y,\rho}^h\}$. Hence D is a connection. Furthermore it is straightforward to show that the curvature of D vanishes.

2.3 Uniform Kähler bundle

We show a geometric characterization of the set of all pure states and the spectrum of a C*-algebra according to [4].

Definition 2.2 A triplet (E, μ, M) is called a uniform Kähler bundle if E and M are topological spaces and μ is an open, continuous surjection from E to M such that (i) the topology of E is induced by a given uniformity, (ii) each fiber $E_m \equiv \mu^{-1}(m)$ is a Kähler manifold.

The local triviality of uniform Kähler bundle is not assumed. In general, the topological space M is neither compact nor Hausdorff.

For uniform spaces, see Chapter 2 in [2]. Two uniform Kähler bundles (E, μ, M) and (E', μ', M') are isomorphic if there is a pair (β, ϕ) of a uniform homeomorphism β from E to E' and a homeomorphism ϕ from M to M', such that $\mu' \circ \beta = \phi \circ \mu$ and any restriction $\beta|_{\mu^{-1}(m)} : \mu^{-1}(m) \to (\mu')^{-1}(\phi(m))$ is a holomorphic Kähler isometry for any $m \in M$. We call (β, ϕ) a uniform Kähler isomorphism from (E, μ, M) to (E', μ', M') .

Let (\mathcal{H}_b, π_b) be an irreducible representation of \mathcal{A} belonging to $b \in \mathcal{B}$. Then $\rho \in \mathcal{P}_b$ corresponds $[x_\rho] \in \mathcal{P}(\mathcal{H}_b)$ where $\rho = \langle x_\rho | \pi_b(\cdot) x_\rho \rangle$. Define the bijection τ^b from \mathcal{P}_b onto $\mathcal{P}(\mathcal{H}_b)$ by

$$\tau^b(\rho) \equiv [x_\rho] \quad (\rho \in \mathcal{P}_b). \tag{2.6}$$

Then \mathcal{P}_b has a Kähler manifold structure induced by τ^b . Furthermore the following holds.

- **Theorem 2.3** (i) For a unital C^* -algebra \mathcal{A} , let (\mathcal{P}, p, B) be as in Definition 1.2 and assume that B is endowed with the Jacobson topology [14]. Then (\mathcal{P}, p, B) is a uniform Kähler bundle.
 - (ii) Let A_i be a C^* -algebra with the associated uniform Kähler bundle $(\mathcal{P}_i, p_i, B_i)$ for i = 1, 2. Then A_1 and A_2 are * isomorphic if and only if $(\mathcal{P}_1, p_1, B_1)$ and $(\mathcal{P}_2, p_2, B_2)$ are isomorphic as uniform Kähler bundle.

Proof. (i) See [1, 4]. (ii) See Corollary 3.3 in [4]. By Theorem 2.3 (ii), the uniform Kähler bundle (\mathcal{P}, p, B) associated with \mathcal{A} is uniquely determined up to uniform Kähler isomorphism.

By the above results, we obtain a fundamental correspondence between algebra and geometry as follows:

unital commutative C^* -algebra \Leftrightarrow compact Hausdorff space

 \cap

unital generally non-commutative \Leftrightarrow uniform Kähler bundle associated with a C*-algebra

The upper correspondence above is just the Gel'fand representation of unital commutative C*-algebras. By these correspondences, we show the infinitesimal version of the Takesaki duality of Hamiltonian vector fields on a symplectic manifold [10].

3 Proof of Theorem 1.5

In this section, we construct the typical fiber F_X^b of \mathcal{E}_X in Theorem 1.5 and show the isomorphism among vector bundles.

In order to construct the typical fiber F_X^b of \mathcal{E}_X , we define the action $T=(t,\chi)$ of the group $G\equiv\mathcal{U}(\mathcal{A})$ of all unitaries in \mathcal{A} on $(\mathcal{E}_X,\Pi_X,\mathcal{P})$ as follows: The action χ of G on the base space \mathcal{P} is defined by

$$\chi_u(\rho) \equiv \rho \circ \mathrm{Ad}u^* \quad (u \in G, \, \rho \in \mathcal{P}).$$

The action t of G on the total space \mathcal{E}_X is defined by

$$t_u([\xi]_\rho) \equiv [\xi u^*]_{\chi_u(\rho)} \quad (u \in G, \, [\xi]_\rho \in \mathcal{E}_{X,\rho}^o).$$

It is well-defined on the whole \mathcal{E}_X . We see that $T=(t,\chi)$ is an action of G on $(\mathcal{E}_X,\Pi_X,\mathcal{P})$ by bundle automorphism. This action also preserves B-fibers $(\mathcal{E}_X^b,\Pi_X^b,\mathcal{P}_b)$ for each $b\in B$.

For $b \in B$, let (\mathcal{H}, π) be a representative of b. We identify \mathcal{P}_b with $\mathcal{P}(\mathcal{H})$ by τ_b in (2.6). Furthermore we identify $\pi(u)$ with u for each $u \in G$. For the atomic bundle $(\mathcal{E}_X^b, \Pi_X^b, \mathcal{P}_b)$ and the Hopf bundle $(S(\mathcal{H}), \mu_b, \mathcal{P}_b)$ in (1.6), define their fiber product $\mathcal{E}_X^b \times_{\mathcal{P}_b} S(\mathcal{H})$ by

$$\mathcal{E}_X^b \times_{\mathcal{P}_b} S(\mathcal{H}) = \{(x,h) \in \mathcal{E}_X^b \times S(\mathcal{H}) : \Pi_X^b(x) = \mu_b(h)\}.$$

Thus the action σ^b of G on $\mathcal{E}_X^b \times_{\mathcal{P}_b} S(\mathcal{H})$ is defined by

$$\sigma_u^b(x,h) \equiv (t_u(x), \pi_b(u)h)$$
 $((x,h) \in \mathcal{E}_X^b \times_{\mathcal{P}_b} S(\mathcal{H}), u \in G).$

Define

$$F_X^b$$
 the set of all orbits of G in $\mathcal{E}_X^b \times_{\mathcal{P}_b} S(\mathcal{H})$

and let $\mathcal{O}(x,h) \in F_X^b$ be the orbit of G containing $(x,h) \in \mathcal{E}_X^b \times_{\mathcal{P}_b} S(\mathcal{H})$. We see that $\mathcal{O}(0,h) = \{(0,h'): h' \in S(\mathcal{H})\}$. We introduce the Hilbert space structure on F_X^b as follows: For $h \in S(\mathcal{H})$, define the sum and the scalar product on F_X^b by

$$a\mathcal{O}(x,h) + b\mathcal{O}(y,h) \equiv \mathcal{O}(ax + by,h) \quad (a,b \in \mathbf{C}, x,y \in \mathcal{E}_X^b).$$

Then this operation is independent in the choice of x, y and h. For $h \in S(\mathcal{H})$, define the inner product $\langle \cdot | \cdot \rangle$ on the vector space F_X^b by

$$\langle \mathcal{O}(x,h)|\mathcal{O}(y,h)\rangle \equiv \langle x|y\rangle_{\rho} \quad (x,y\in\mathcal{E}_X^b)$$

where $\rho = \mu_b(h)$. Then $\langle \mathcal{O}(x,h)|\mathcal{O}(y,h)\rangle$ is independent in the choice of x,y,ρ and h. For $h_0 \in S(\mathcal{H})$ with $\mu_b(h_0) = \rho$, define the map R_ρ from $\mathcal{E}_{X,\rho}$ to F_X^b by $R_\rho(x) \equiv \mathcal{O}(x,h_0)$ for $x \in \mathcal{E}_{X,\rho}$. Then R_ρ is a unitary from $\mathcal{E}_{X,\rho}$ to F_X^b for each $\rho \in \mathcal{P}_b$. In this way, F_X^b is a Hilbert space.

We introduce the Hilbert bundle isomorphism in Theorem 1.5. Let $\mathbf{F}_X^b \equiv (S(\mathcal{H}) \times_{U(1)} F_X^b, \pi_{F_X^b}, \mathcal{P}(\mathcal{H}))$ be the associated bundle of $(S(\mathcal{H}), \mu_b, \mathcal{P}(\mathcal{H}))$ by F_X^b .

Lemma 3.1 Any element of $S(\mathcal{H}) \times_{U(1)} F_X^b$ can be written as $[(h, \mathcal{O}(x, h))]$ where $\mathcal{O}(x, h) \in F_X^b$.

Proof. By definition of the associated bundle in § 2.1, an element of $S(\mathcal{H}) \times_{U(1)} F_X^b$ is the U(1)-orbit $[(h, \mathcal{O}(y, k))]$. Because (\mathcal{H}, π) is an irreducible representation of \mathcal{A} , the action of G on $S(\mathcal{H})$ is transitive. By this and definition of $\mathcal{O}(y, k)$, there is $u \in G$ such that h = uk and $(t_u^b(y), h) \in \mathcal{O}(y, k)$. Denote $x \equiv t_u(y)$. Then $\mathcal{O}(x, h) = \mathcal{O}(y, k)$. Hence $[(h, \mathcal{O}(y, k))] = [(h, \mathcal{O}(x, h))]$.

Proof of Theorem 1.5. By Lemma 3.1, we shall denote

$$[h, x] \equiv [(h, \mathcal{O}(x, h))] \in S(\mathcal{H}) \times_{U(1)} F_X^b \qquad (h \in S(\mathcal{H}), x \in \mathcal{E}_X^b).$$

Define the map Φ^b from \mathcal{E}_X^b to $S(\mathcal{H}) \times_{U(1)} F_X^b$ by

$$\Phi^b(x) \equiv [h_x, x] \quad (x \in \mathcal{E}_X^b)$$

where $h_x \in \mu_b^{-1}(\Pi_X^b(x))$. By definition of F_X^b , the map Φ^b is bijective. We obtain a set-theoretical isomorphism (Φ^b, τ^b) of fibrations between $(\mathcal{E}_X^b, \Pi_X^b, \mathcal{P}_b)$ and \mathbf{F}_X^b such that any restriction $\Phi^b|_{\mathcal{E}_{X,\rho}}$ of Φ^b at a fiber $\mathcal{E}_{X,\rho}$ is a unitary from $\mathcal{E}_{X,\rho}$ to $\pi_{F_X^b}^{-1}(\rho)$ for $\rho \in \mathcal{P}_b$. This unitary induces the Hilbert bundle isomorphism from $(\mathcal{E}_X^b, \Pi_X^b, \mathcal{P}_b)$ to \mathbf{F}_X^b .

4 Proof of Theorem 1.6

Let us summarize our notations. Let \mathcal{A} be a unital C*-algebra with the uniform Kähler bundle (\mathcal{P}, p, B) and let X be a Hilbert C*-module over \mathcal{A} with the atomic bundle $\mathcal{E}_X = (\mathcal{E}_X, \Pi_X, \mathcal{P})$.

Fix $b \in B$ and assume that (\mathcal{H}, π) is a representative of b. For the Hilbert space \mathcal{H} , let $\{(\mathcal{V}_h, \beta_h, \mathcal{H}_h)\}_{h \in S(\mathcal{H})}$ be as in (2.1). For $\rho \in \mathcal{V}_h$, define the vector Ω^h_ρ in \mathcal{H} by

$$\Omega_{\rho}^{h} \equiv \{1 + \|\beta_{h}(\rho)\|^{2}\}^{-1/2} \cdot \{\beta_{h}(\rho) + h\}.$$

Then $\rho = \langle \Omega_{\rho}^{h} | \pi(\cdot) \Omega_{\rho}^{h} \rangle$ and $\langle h | \Omega_{\rho}^{h} \rangle > 0$. We prepare two lemmata to prove Theorem 1.6.

Lemma 4.1 For $s \in \Gamma(\mathcal{E}_X)$, assume that there is a family $\{\xi_{\rho} \in X : \rho \in \mathcal{P}\}$ such that $s(\rho) = [\xi_{\rho}]_{\rho} \in \mathcal{E}_{X,\rho}$ for each $\rho \in \mathcal{P}$ and we identify \mathcal{E}_X^b with $S(\mathcal{H}) \times_{U(1)} F_X^b$ by Theorem 1.5. Let $z = \beta_h(\rho)$ for $h \in S(\mathcal{H})$ such that $\rho \in \mathcal{V}_h$. Define $w_z \equiv 1/(1 + ||z||^2)$ and let $\phi_{F,h}$ be as in (2.4) for $F = F_X^b$. Then the following equations hold:

$$\langle e | \phi_{F,h}(s(\rho)) \rangle = \sqrt{w_z} \cdot \langle \Omega_{\rho'}^h | \pi(\langle \xi' | \xi_\rho \rangle)(z+h) \rangle,$$
 (4.1)

$$\partial_Y \phi_{F,h}(s(\rho)) = \mathcal{O}(\left[\partial_Y \hat{\xi}_\rho + \xi_\rho (K_{Y,\rho}^h - 2^{-1} w_z \langle z|Y\rangle)\right]_\rho, h) \tag{4.2}$$

for $e = \mathcal{O}([\xi']_{\rho'}, h) \in F_X^b$ where $K_{Y,\rho}^h \in \mathcal{A}$ is defined by

$$\pi(K_{Y,\rho}^h)(h+z) = Y \tag{4.3}$$

and $[\partial_Y \hat{\xi}_{\rho}]_{\rho} \in \mathcal{E}_{X,\rho}$ is defined by $\langle [\eta]_{\rho} | [\partial_Y \hat{\xi}_{\rho}]_{\rho} \rangle_{\rho} \equiv \rho(\partial_Y \langle \eta | \xi_{\rho} \rangle)$ for $[\eta]_{\rho} \in \mathcal{E}_{X,\rho}$.

Proof. By definition, we have that $\phi_{F,h}(s(\rho)) = c_{z,h} \cdot \mathcal{O}([\xi_{\rho}]_{\rho}, z)$ where $c_{z,h} \equiv \langle z|h \rangle \cdot |\langle h|z \rangle|^{-1}$. We have

$$\langle e | \phi_{F,h}(s(\rho)) \rangle = c_{z,h} \langle \mathcal{O}([\xi']_{\rho'}, h) | \mathcal{O}([\xi_{\rho}]_{\rho}, z_{\rho}) \rangle.$$

Let $u \in G$ such that $\pi(u^*)z = h = \Omega^h_{\rho'}$. Then $\mathcal{O}([\xi_\rho]_\rho, z) = \mathcal{O}([\xi_\rho u]_{\rho'}, \pi(u^*)z)$. By this,

$$\langle \mathcal{O}([\xi']_{\rho'}, h) | \mathcal{O}([\xi_{\rho}]_{\rho}, z_{\rho}) \rangle = \langle \Omega_{\rho'}^{h} | \pi_{b}(\langle \xi' | \xi_{\rho} \rangle) \pi_{b}(u) \Omega_{\rho'}^{h} \rangle = \langle \Omega_{\rho'}^{h} | \pi_{b}(\langle \xi' | \xi_{\rho} \rangle) z_{\rho} \rangle.$$

Because $z_{\rho} = c_{h,z} \Omega_{\rho}^{h}$, (4.1) is verified. By (4.1), we get

$$\langle e \, | \, \partial_Y \phi_{F,h}(s(\rho)) \, \rangle = \quad \sqrt{w_z} \cdot [\langle \Omega_{\rho'}^h | \pi(\partial_Y \langle \xi' | \xi_\rho \rangle)(z+h) \rangle + \langle \Omega_{\rho'}^h | \pi(\langle \xi' | \xi_\rho \rangle)Y \rangle]$$

$$-2^{-1} w_z^{3/2} \cdot \langle \Omega_{\rho'}^h | \pi(\langle \xi' | \xi_\rho \rangle)(z+h) \rangle \langle z | Y \rangle.$$

Hence we obtain (4.2).

For $\xi \in X$, define the section s_{ξ} of \mathcal{E}_X by $s_{\xi}(\rho) \equiv [\xi]_{\rho}$ for $\rho \in \mathcal{P}$. Then $||s_{\xi}|| = ||\xi||$ for every $\xi \in X$. Define the linear isometry Ψ from X into $\Gamma(\mathcal{E}_X)$ by

$$\Psi(\xi) \equiv s_{\xi} \quad (\xi \in X).$$

Lemma 4.2 (i) For each $\xi \in X$, $\Psi(\xi)$ belongs to $\Gamma_{\infty}(\mathcal{E}_X)$ and is holomorphic.

(ii) According to Theorem 1.5, define the connection D on \mathcal{E}_X by the one in Proposition 2.1 at each fiber. Let * be as in (1.9) with respect to D. Then $\Psi(\xi) * f_A = \Psi(\xi \cdot A)$ for $\xi \in X$ and $A \in \mathcal{A}$.

Proof. Let $\rho \in \mathcal{P}_b$ for $b \in B$. Choose as a representative for b an irreducible representation (\mathcal{H}, π) . Fix $h \in S(\mathcal{H})$ and, using the notations in (2.4), take the local trivialization $\psi_{F,h}$ of the Hopf bundle at $(\mathcal{V}_h, \beta_h, \mathcal{H}_h)$ with $\rho \in \mathcal{V}_h$. Let $z \equiv \beta_h(\rho) \in \mathcal{H}_h$ and $w_z \equiv 1/(1 + ||z||^2)$.

(i) Applying (4.2) for $s = s_{\xi}$, we obtain

$$\partial_Y \phi_{F,h}(s_{\xi}(\rho)) = \mathcal{O}([\partial_Y \hat{\xi} + \xi (K_{Y,\rho}^h - 2^{-1} w_z \cdot \langle z | Y \rangle)]_{\rho}, h). \tag{4.4}$$

Owing to (4.3), the right-hand side of (4.4) is smooth with respect to z. Hence s_{ξ} is smooth at \mathcal{P}_b for each $b \in B$. For $\rho_0 \in \mathcal{P}_b$, we can choose $h_0 \in S(\mathcal{H})$ such that $\rho_0 = \langle h_0 | \pi(\cdot) h_0 \rangle$. Then $\beta_{h_0}(\rho_0) = 0$. According to the proof of Lemma 4.1, we have

$$\langle e \mid \phi_{F,h_0}(\rho)(s_{\xi}(\rho)) \rangle = \sqrt{w_z} \langle \Omega_{\rho'}^{h_0} \mid \pi(\langle \xi' \mid \xi \rangle)(z + h_0) \rangle$$

for $z = \beta_{h_0}(\rho)$, $\rho \in \mathcal{V}_{h_0}$. For an anti-holomorphic tangent vector \bar{Y} of \mathcal{P}_b , we have

$$\bar{\partial}_{\bar{Y}}\phi_{F,h}\left(s_{\xi}(\rho)\right) = \mathcal{O}([-2^{-1}w_{z}\langle Y|z\rangle \cdot \xi]_{\rho}, h)$$

from which follows $\bar{\partial}_{\bar{Y}}\phi_{F,h}(\rho)\left(s_{\xi}(\rho)\right)\big|_{z=0}=0$. We see that the anti-holomorphic derivative of s_{ξ} vanishes at each point in \mathcal{P}_{b} . Hence s_{ξ} is holomorphic.

(ii) For $z \in \mathcal{H}_h$, we have

$$\{f_A \circ \beta_h^{-1}\}(z) = w_z \cdot \langle (z+h)|\pi(A)(z+h)\rangle.$$

Then the representation $X_{f_A}^h$ of the Hamiltonian vector field X_{f_A} of f_A at $(\mathcal{V}_h, \beta_h, \mathcal{H}_h)$ is

$$(X_{f_A}^h)_z = -\sqrt{-1}\{\pi(A)(z+h) - \langle h|\pi(A)(z+h)\rangle(z+h)\} \quad (z \in \mathcal{H}_h).$$

If we take h such that $\beta_h(\rho_0) = 0$, then it holds that

$$(X_{f_A}^h)_0 = -\sqrt{-1}\{\pi(A)h - \langle h|\pi(A)h\rangle h\}.$$

The connection D satisfies $\langle v | (D_{X_{f_A}} s)(\rho_0) \rangle_{\rho_0} = \partial_{\rho_0}(\langle v | s(\cdot) \rangle_{\rho_0})(X_{f_A})$ for $v \in \mathcal{E}_{X,\rho_0}$ and $s \in \Gamma_{\infty}(\mathcal{E}_X)$. Hence we have $(D_{X_{f_A}} s_{\xi})(\rho_0) = [\xi a_{X_{f_A},0}]_{\rho_0}$ where $a_{X_{f_A},0} \in \mathcal{A}$ satisfies that

$$\pi(a_{X_{f_A},0})h = X_{f_A} = -\sqrt{-1}(\pi(A) - \langle h|\pi(A)h\rangle)h.$$

Therefore we have $\sqrt{-1}(D_{X_{f_A}}s_\xi)(\rho_0)=s_{\xi A}(\rho_0)-s_\xi(\rho_0)f_A(\rho_0)$ from which follows

$$(s_{\xi} * f_A)(\rho_0) = s_{\xi}(\rho_0) f_A(\rho_0) + \sqrt{-1}(D_{X_{f_A}} s_{\xi})(\rho_0) = s_{\xi A}(\rho_0).$$

Therefore we obtain the statement.

Finally, we come to prove Theorem 1.6.

Proof of Theorem 1.6. (i) By definition, we see that $\Gamma_X = \Psi(X)$. Therefore the statement follows from Lemma 4.2 (i).

(ii) Because $\Gamma_X = \Psi(X)$, $\mathcal{K}_u(\mathcal{P}) = f(\mathcal{A})$ and Lemma 4.2 (ii) for D, the linear space Γ_X is a right $\mathcal{K}_u(\mathcal{P})$ -module.

Because $\rho(\langle \xi | \xi' \rangle) = f_{\langle \xi | \xi' \rangle}(\rho)$, we see that $H(\Psi(\xi), \Psi(\xi')) = f_{\langle \xi | \xi' \rangle} \in \mathcal{K}_u(\mathcal{P})$. Hence $H(s, s') \in \mathcal{K}_u(\mathcal{P})$ for each $s, s' \in \Gamma_X$. For $\xi, \eta \in X$ and $A \in \mathcal{A}$, we can verify that $H_{\rho}(s_{\eta}, s_{\xi} * f_A) = \{H(s_{\eta}, s_{\xi}) * f_A\}(\rho)$ where we use $H_{\rho}(\Psi(\xi), \Psi(\eta)) = \rho(\langle \xi | \eta \rangle)$ for $\xi, \eta \in X$ and $\rho \in \mathcal{P}$. Hence $H(s, s' * l) = \mathcal{P}$

H(s, s') * l for each $s, s' \in \Gamma_X$ and $l \in \mathcal{K}_u(\mathcal{P})$. From the property of the \mathcal{A} -valued inner product of X and by the proof of Lemma 4.2 (i), we obtain $||H(s,s)||^{1/2} = ||s||$ for each $s \in \Gamma_X$ where the norm of H(s,s) is the one defined in (1.3). Hence the statement holds.

(iii) Because $H(\Psi(\xi), \Psi(\xi')) = f_{\langle \xi | \xi' \rangle}$, the map Ψ is an isometry from X onto Γ_X . Rewrite module actions ϕ and ψ on X and Γ_X , respectively, by

$$\phi(\xi, A) \equiv \xi A, \quad \psi(s, l) \equiv s * l \quad (\xi \in X, A \in \mathcal{A}, s \in \Gamma_X, l \in \mathcal{K}_u(\mathcal{P})).$$

Then we obtain that $\psi \circ (\Psi \times f) = \Psi \circ \phi$ by Lemma 4.2 (ii). Hence the statement holds.

Acknowledgement: The author would like to thank Prof. Izumi Ojima and Takeshi Nozawa for a critical reading of this paper. We are also grateful to Prof. George A. Elliott for his helpful advice.

Appendix

A Example of uniform Kähler bundle

Example A.1 Assume that \mathcal{H} is a separable infinite dimensional Hilbert space.

- (i) Let $\mathcal{A} \equiv \mathcal{L}(\mathcal{H})$ be the C*-algebra of all bounded linear operators on \mathcal{H} . The uniform Kähler bundle of \mathcal{A} is $(\mathcal{P}(\mathcal{H}) \cup \mathcal{P}_{-}, p, 2^{[0,1]} \cup \{b_{0}\})$ where $\mathcal{P}(\mathcal{H})$ is the projective Hilbert space of \mathcal{H} , \mathcal{P}_{-} is the union of a family of projective Hilbert spaces indexed by the power set of the closed interval [0,1] and $\{b_{0}\}$ is the one-point set corresponding to the equivalence class of identity representation $(\mathcal{H}, id_{\mathcal{L}(\mathcal{H})})$ of $\mathcal{L}(\mathcal{H})$ on \mathcal{H} . Since the primitive spectrum of $\mathcal{L}(\mathcal{H})$ is a two-point set, the topology of $2^{[0,1]} \cup \{b_{0}\}$ is equal to $\{\emptyset, 2^{[0,1]}, \{b_{0}\}, 2^{[0,1]} \cup \{b_{0}\}\}$ [8]. In this way, the base space of the uniform Kähler bundle is not always a singleton when the C*-algebra is type I.
- (ii) For the C*-algebra \mathcal{A} generated by the Weyl form of the 1-dimensional canonical commutation relation $U(s)V(t)=e^{\sqrt{-1}st}V(t)U(s)$ for $s,t\in\mathbf{R}$, its uniform Kähler bundle is $(\mathcal{P}(\mathcal{H}),p,\{1pt\})$. The spectrum is a one-point set $\{1pt\}$ from von Neumann uniqueness theorem [3].
- (iii) The CAR algebra \mathcal{A} is a UHF algebra with the nest $\{M_{2^n}(\mathbf{C})\}_{n\in\mathbb{N}}$. The uniform Kähler bundle has the base space $2^{\mathbb{N}}$ and each fiber on

 $2^{\mathbf{N}}$ is a separable infinite dimensional projective Hilbert space where $2^{\mathbf{N}}$ is the power set of the set \mathbf{N} of all natural numbers with trivial topology, that is, the topology of $2^{\mathbf{N}}$ is just $\{\emptyset, 2^{\mathbf{N}}\}$. In general, the Jacobson topology of the spectrum of a simple C*-algebra is trivial [8].

References

- [1] M. C. Abbati, R. Cirelli, P. Lanzavecchia and A. Manià, *Pure states of general quantum-mechanical systems as Kähler bundles*, Nuovo Cimento **B83** (1984) 43–60.
- [2] N. Bourbaki, *Elements of mathematics*, general topology part I, Addison-Wesley Publishing Company (1966).
- [3] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics I, II, Springer, New York, (1979,1981).
- [4] R. Cirelli, A. Manià and L. Pizzocchero, A functional representation of noncommutative C*-algebras, Rev. Math. Phys. 6 5 (1994) 675–697.
- [5] A. Connes, Non commutative differential geometry, Publ. Math. IHES 62 (1986), 257–360.
- [6] —, Non commutative geometry, Academic Press, Orlando (1993).
- [7] K. K. Jensen and K. Thomsen, *Elements of KK-theory*, Birkhäuser (1991).
- [8] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras $I \sim IV$, Academic Press (1983).
- [9] M. Karoubi, K-theory An introduction, Springer-Verlag Berlin Heidelberg New York (1978).
- [10] K. Kawamura, Infinitesimal Takesaki duality of Hamiltonian vector fields on a symplectic manifold, Rev. Math. Phys. 12 12 (2000) 1669– 1688.
- [11] —, Serre-Swan theorem for non-commutative C*-algebras, J. Geom. Phys. 48 (2003), 275–296.
- [12] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol I, Interscience Publishers (1969).

- [13] W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. **182** (1973), 443–468.
- [14] G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press (1979).
- [15] J. P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Sèminaire Dubreil-Pisot 1957/58, **23**, 531–543.
- [16] R. G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. **105** (1962), 264–277.
- [17] J. C. Várilly and J. M. Gracia-Bondía, Connes' noncommutative differential geometry and the standard model, J. Geom. Phys. 12 (1993) 223–301.