Оптимізація за домінуванням та блокуванням

Визначення, приклади

Оптимізація за бінарним відношенням (БВ) — пошук підмножини альтернатив, які переважають інші альтернативи за цим бінарним відношенням (або не «гірші» за інші альтернативи цієї множини за цим БВ)

Оптимізація за бінарним відношенням (БВ) — пошук підмножини альтернатив, які переважають інші альтернативи за цим бінарним відношенням (або «не гірші» за інші альтернативи цієї множини за даним БВ)

Оптимізація за **домінуванням** — пошук «найкращих», «домінуючих» альтернатив

Оптимізація за **блокуванням** — пошук «ненайгірших», «недомінованих» альтернатив

Оптимізація за бінарним відношенням (БВ) — пошук підмножини альтернатив, які переважають інші альтернативи за цим бінарним відношенням (або «не гірші» за інші альтернативи цієї множини за даним БВ)

Оптимізація за **домінуванням** X* - множина найбільших альтернатив

Оптимізація за **блокуванням** X⁰ - множина максимальних альтернатив

Оптимізація за домінуванням

X^*_P

Елемент $x \in \Omega$ називається найбільшим по P на Ω , якщо $\forall y \in \Omega$, $y \neq x$ виконується $x \cdot Py$

			X		
X	1	1	0	1	1

X^*_R

Елемент $x \in \Omega$ називається найбільшим по R на Ω , якщо $\forall y \in \Omega$, виконується x R y

			X		
X	1	1	1	1	1

X^{**}_R

Елемент $x \in \Omega$ називається строго найбільшим по R на Ω , якщо $\forall y \in \Omega$, виконується $\overset{\circ}{x} R y$, до того ж з $y R \overset{\circ}{x}$ слідує $y = \overset{\circ}{x}$

		X		
		0		
		0		
1	1	1	1	1
		0		
		0		
	1	1 1	0 0 1 1 1 0	0 0 1 1 1 1 0

Оптимізація за блокуванням

X^0_P

Елемент $x \in \Omega$ називається максимальним по P на Ω , якщо $\forall y \in \Omega$, виконується $y\overline{P}x$

		X	
		0	
		0	
X		0	
		0	
		0	

X^0_R

Елемент $x \in \Omega$ називається максимальним по R на Ω , якщо $\forall y \in \Omega$, з yRx слідує xRy

	X	
	I	
	I	
	0	
	0	
	I	

X	
0	
0	
0	
0	
0	

I - це симетрична частина відношення R

X^{00}_R

Елемент $x\in\Omega$ називається строго максимальним по R на Ω , якщо $\forall y\in\Omega$, з yRx слідує y=x

		X	
		0	
		0	
X		1	
		0	
		0	-

		Χ	
		0	
		0	
X		0	
		0	
		0	

	1	2	3	4	5
1	1.	1			-1
2		1			
3	1	:1	1		1
4				1	
5		1			-1

	1	2	3	4	5
1	1	6 4			
2	1	1	\neg		
3	1		1	1	1
4				1	1.
5					1

	1	2	3	4	5
1	1	1			
2		1			
3		1	1	1	1
4		1		1	1
5		1		1	1

	1	2	3	4	5
1	1	1			
2	1	1			
3	1	1	1	1	1
4	-			1	
5					1

	1	2	3	4	5
1	1		1		1
2	1	1	1		1
3	1		1		1
4	1		1		1
5	1		1		1

	1	2	3	4	5	6	7
1	0				0		1
2	0	0	1	0	1	1	0
3	0	0	1	1	0	1	1
4	1	1	1	1	1	0	0
5	1	1	1	1	1	1	1
6	0	1	1	1	1	0	1
7	1	1	0	0	1	0	1

	1	2	3	4	5	6	7
1	N	Ν	Ν			Р	I
2	Ζ	Z	Ρ				
3	Ζ						Р
4		Р					Ζ
5	Р		Ρ	—			
6		I	I	Р		Ν	Р
7		Р		Ν			

К-оптимізація

приклади

D	1	7
17	_	

0	1	0	0	0	0	1	0	0	0
0	1	1	0	0	0	1	1	1	0
0	0	0	0	0	1	1	0	1	1
1	1	1	1	0	1	1	0	1	0
0	0	0	1	1	0	0	0	1	0
1	1	1	1	1	1	1	1	1	1
0	0	1	1	1	0	1	1	1	0
1	1	0	1	0	1	0	1	1	0
0	0	1	0	1	1	1	0	0	0
1	1	1	0	1	1	0	0	0	1

	1	2	3	4	5	6	7	8	9	10	
1	N	Р	N		N		Р		Ν		
2		-	Р		Z		Р		Р		
3	Z		Z		Z			Z			
4	Р	Р	Р	_					Р	Z	
5	Z	Z	2	Р	_			Z			
6	Р	Р	—	—	Р		Р	—			$X^*_R X^0_R$
7			_		Р			Р		Z	
8	Ρ	-	2	Р	Z				Ρ	Z	
9	Z		_						Z	Z	
10	Р	Р		N	Р		Ν	Ν	Ν	I	X^{0}_{R}

1-max	6,10
2-max	
3-max	
4-max	

R	1	7
1 /	_	•

Ν	Р	N		Ν		Р		Z	
		Р		Z		Р	1	Р	
Z		Z		Z			Ν		_
P	Р	Р				ı		Р	Z
Z	Z	Z	Р				Ν		
P	Р			Р		Р	ı		
		—		Р			Р	—	Z
Р		Z	Р	Z				Р	Z
Z					1	I		Z	Z
Р	Р		N	Р		N	N	Ν	

1	s2	1	2	3	4	5	6	7	8	9	10	
	1	1	1	1		1		1		1		
	2			1		1		1		1		
	3	1		1		1			1			
	4	1	1	1						1	1	
	5	1	1	1	1				1			
_	6	1	1			1		1				$X^*_R X^0_R$
	7					1			1		1	
	8	1		1	1	1				1	1	
	9	1								1	1	
	10	1	1		1	1		1	1	1		X^0_R

1-max	6,10
2-max	Ø
3-max	
4-max	

R	1	7
1 /	_	•

Ν	Р	Ν		Ν	Р		Z	
		Р		Z	Р		Р	
Z		Z		Z	1	N		_
Р	Р	Р			ı		Р	Z
Z	Z	Z	Р	—		Ν	—	
Р	Р			Р	Р			_
				Р		Р	—	Z
Р		Z	Р	Z			Р	2
Z					ı		Z	Z
Р	Р		N	Р	N	N	Ν	-

s3	1	2	3	4	5	6	7	8	9	10
1		1					1			
2		1	1				1	1	1	
3						1	1		1	1
4	1	1	1	1		1	1		1	
5				1	1				1	
6	1	1	1	1	1	1	1	1	1	1
7			1	1	1		1	1	1	
8	1	1		1		1		1	1	
9			1		1	1	1			
10	1	1	1		1	1				1

X	* _	X^0_R
//	K	/\ K

 X^0_R

1-max	6,10
2-max	\varnothing
3-max	6
4-max	

R	1	7

N	Р	N		N		Р		Ν	
	ı	Р		Ν		Р		Р	
Z		Ν		Z		1	Z		ı
Р	Р	Р				ı		Р	Ν
Ν	N	N	Р	ı			Ν	1	
Р	Р	ı		Р	1	Р	1		ı
		ı		Р		ı	Р		Ν
Р	1	N	Р	Ν	1		1	Р	Ν
N		1		1	1			N	N
Р	Р	1	Z	Р		N	Z	Z	ı

s4	1	2	3	4	5	6	7	8	9	10	
1		1					1				
2			1				1		1		
3											
4	1	1	1						1		
5				1							
6	1	1			1		1				$X^*_R X^0_R$
7					1			1			
8	1			1					1		
9											
10	1	1			1						X^0_R

1-max	6,10
2-max	Ø
3-max	6
4-max	Ø

1	1	0	0	0	1	1	1	0	0
0	0	0	1	0	0	1	1	1	1
1	0	1	0	1	0	1	1	1	1
0	1	0	0	0	1	1	1	0	0
1	1	1	1	1	1	1	1	0	1
1	1	0	1	0	1	1	1	0	0
1	0	0	0	0	1	0	1	1	1
1	1	0	0	0	0	1	1	0	0
0	1	1	1	0	1	1	0	0	1
1	0	0	1	0	1	1	0	0	0

	1	2	3	4	5	6	7	8	9	10	
1		Р		N		I		I	N		
2		N	N	I			Р	I	I	Р	
3	Р	N	I	Ν		Ν	Р	Р		Р	X^0_R
4	N	I	N	Ν		I	Р	Р			
5	Р	Р	I	Р	I	Р	Р	Р	Ν	Р	X^0_R
6		Р	N	I				Р			
7							Ν				
8		I						I	Z	Ν	
9	N	I		Р	Ν	Р		N	Z	Р	X^0_R
10	Р			Р		Р		N		Ν	

1-max	3,5,9
2-max	
3-max	
4-max	

	1	2	3	4	5	6	7	8	9	10
1		Р		N		I	I	I	N	
2		N	Z				Р			Р
3	Р	N		N		N	Р	Р		Р
4	N		N	N			Р	Р		
5	Р	Р		Р		Р	Р	Р	Z	Р
6		Ρ	Z					Ρ		
7							N			
8	I	I							Z	Ν
9	N			Р	N	Р		N	Ν	Р
10	Р			Р		Ը		Z		Ν

S 2	1	2	3	4	5	6	7	8	9	10
1		1		1					1	
2		1	1				1			1
3	7	1		1		1	1	1		1
4	7		1	1			1	1		
5	1	1		1		1	1	1	1	1
6		1	1					1		
7							7			
8									1	1
9	1			1	1	1		1	1	1
10	1			1		1		1		1

1-max	3,5,9
2-max	Ø
3-max	
4-max	

	1	2	3	4	5	6	7	8	9	10
1		Р		N		I	I	I	N	
2		N	N				Р		I	Р
3	Р	N		N		N	Р	Р		Р
4	N		N	N			Р	Р		
5	Р	Р		Р		Р	Р	Р	N	Р
6		Ρ	Z					Ρ		
7							Z			
8	I	I							Z	Ν
9	N			Р	Ν	Р		N	Ν	Р
10	Р			Р		Р		Z		N

S 3	1	2	3	4	5	6	7	8	9	10
1	1	1				1	1	1		
2				1			1	1	1	1
3	1		1		1		1	1	1	1
4		1				~	τ-	τ-		
5	1	1	۲	1	~	~	τ	τ		1
6	1	~		1		~	Υ-	τ-		
7	1					~		τ-	~	1
8	1	~					τ-	Υ-		
9		1	1	1		1	1			1
10	1			1		1	1			

1-max	3,5,9
2-max	Ø
3-max	Ø
4-max	

	1	2	3	4	5	6	7	8	9	10
1		Р		N		I	I	I	N	
2		N	N				Р			Р
3	Р	N		N		N	Р	Р		Р
4	N		N	N			Р	Р		
5	Р	Р		Р		Р	Р	Р	Z	Р
6		Ρ	Z					Ρ		
7							Z			
8	I								Z	Ν
9	N			Р	Z	Ը		Z	Z	Р
10	Р			Р		Р		N		Ν

S 4	1	2	3	4	5	6	7	8	9	10
1		1								
2							1			1
3	1						1	1		1
4							1	1		
5	1	1		1		~	1	τ-		1
6		1						1		
7										
8										
9				1		1				1
10	1			1		1				

1-max	3,5,9
2-max	Ø
3-max	Ø
4-max	5

Оптимізація за Нейманом- Моргенштерном

приклади

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
3						1		1		1
4					1		1			1
5									1	
6		1					1			
7										
8	1									1
9										
10				_						

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
3						1		1		1
4					1		1			1
5									1	
6		1					1			
7										
8	1									1
9										
10										

S ₀	{3,4}
$S_1 \setminus S_0$	
$S_2 \setminus S_1$	
S ₃ \S ₂	

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
3						1		1		1
4					1		1			1
5									1	
6		1					1			
7										
8	1									1
9										
10										

S ₀	{3,4}	
$S_1 \setminus S_0$	{5,6,8}	$\int J_1$
$S_2 \setminus S_1$		
$S_3 \setminus S_2$		

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
3						1		1		1
4					1		1			1
5									1	
6		1					1			
7										
8	1									1
9										
10										

S ₀	{3,4}	
$S_1 \setminus S_0$	{5,6,8}	$ S_2 $
$S_2 \setminus S_1$	{1,7,9,10}	
$S_3 \setminus S_2$		

	1	2	3	4	5	6	7	8	9	10	
1		1									S ₀ {3,4}
2											
3						1		1		1	$S_1 \setminus S_0 $ {5,6,8}
4					1		1			1	S \ S \ \{1 7 9 10\}
5									1		$S_2 \setminus S_1 \mid \{1,7,9,10\} \mid S_2 \setminus S_1 \mid \{1,7,9,10\} \mid S_2 \mid S_$
6		1					1				$S_3 \setminus S_2 $ {2}
7											$J_3 \setminus J_2 \setminus \{Z\}$
8	1									1	
9											$S_3 = \Omega$
10											- 3 —

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
3						1		7		1
4					1		1			1
5									1	
6		1					7			
7										
8	1									1
9										
10										

S ₀	{3,4}	Q_0
$S_1 \setminus S_0$	{5,6,8}	Кандида-
		ти до Q ₁
$S_2 \setminus S_1$	{1,7,9,10}	Кандида-
		ти до Q_2
$S_3 \setminus S_2$	{2}	Кандида-
		ти до Q ₃

$$R^{+}(5) \cap Q_0 = \{4\} \cap \{3,4\} \neq \emptyset$$

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
3						1		1		1
4					1		7			1
5									~	
6		1					7			
7										
8	1									1
9										
10										

S ₀	{3,4}	Q_0
$S_1 \setminus S_0$	{5,6,8}	Кандида-
		ти до Q ₁
$S_2 \setminus S_1$	{1,7,9,10}	Кандида-
		ти до Q_2
$S_3 \setminus S_2$	{2}	Кандида-
		ти до Q ₃

$$R^{+}(6) \cap Q_0 = \{3\} \cap \{3,4\} \neq \emptyset$$

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
3						1		1		1
4					1		1			1
5									1	
6		1					1			
7										
8	1									1
9										
10										

S ₀	{3,4}	Q_0
$S_1 \setminus S_0$	{5,6,8}	Кандида-
		ти до Q ₁
$S_2 \setminus S_1$	{1,7,9,10}	Кандида-
		ти до Q ₂
$S_3 \setminus S_2$	{2}	Кандида-
		ти до Q ₃

$$R^{+}(8) \cap Q_{0} = \{3\} \cap \{3,4\} \neq \emptyset$$

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
3						1		1		1
4					1		1			1
5									1	
6		1					7			
7										
8	1									1
9										
10										

S ₀	{3,4}	Q_0
$S_1 \setminus S_0$	{5,6,8}	Кандида-
		ти до Q ₁
$S_2 \setminus S_1$	{1,7,9,10}	Кандида-
		ти до Q ₂
$S_3 \setminus S_2$	{2}	Кандида-
		ти до Q ₃

$$Q_1 = Q_0 = \{3,4\}$$

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
3						1		1		1
4					1		1			1
5									Υ_	
6		1					1			
7										
8	1									1
9										
10								_		

S ₀	{3,4}	Q_0
$S_1 \setminus S_0$	{5,6,8}	Кандида-
		ти до Q ₁
$S_2 \setminus S_1$	{1,7,9,10}	Кандида-
		ти до Q ₂
$S_3 \setminus S_2$	{2}	Кандида-
		ти до Q ₃

R⁺(7)
$$\cap$$
 Q₁= {4,6} \cap {3,4} $\neq\emptyset$
R⁺(10) \cap Q₁= {3,4,8} \cap {3,4} $\neq\emptyset$
R⁺(1) \cap Q₁= {8} \cap {3,4} = \emptyset
R⁺(9) \cap Q₁= {5} \cap {3,4} = \emptyset

S ₀	{3,4}	Q_0
$S_1 \setminus S_0$	{5,6,8}	Кандида-
		ти до Q ₁
$S_2 \setminus S_1$	{1,7,9,10}	Кандида-
		ти до Q ₂
$S_3 \setminus S_2$	{2}	Кандида-
		ти до Q ₃

$$R^{+}(7) \cap Q_1 = \{4,6\} \cap \{3,4\} \neq \emptyset$$

$$R^+(10) \cap Q_1 = \{3,4,8\} \cap \{3,4\} \neq \emptyset$$

$$R^{+}(1) \cap Q_1 = \{8\} \cap \{3,4\} = \emptyset$$

$$R^{+}(9) \cap Q_{1} = \{5\} \cap \{3,4\} = \emptyset$$

$$Q_2 = \{3,4\} \cup \{1,9\}$$

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
3						1		Υ-		1
4					1		1			1
5									1	
6		~					1			
7										
8	1									1
9										
10										

S ₀	{3,4}	Q_0
$S_1 \setminus S_0$	{5,6,8}	Кандида-
		ти до Q ₁
$S_2 \setminus S_1$	{1,7,9,10}	Кандида-
		ти до Q ₂
$S_3 \setminus S_2$	{2}	Кандида-
		ти до Q ₃

$$Q_2 = \{1,3,4,9\}$$

$$R^+(2) \cap Q_2 = \{1,6\} \cap \{1,3,4,9\} \neq \emptyset$$

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
3						7		τ		1
4					7		~			1
5									1	
6		τ-					~			
7										
8	~									1
9										
10										

S ₀	{3,4}	Q_0
$S_1 \setminus S_0$	{5,6,8}	Кандида-
		ти до Q ₁
$S_2 \setminus S_1$	{1,7,9,10}	Кандида-
		ти до Q ₂
$S_3 \setminus S_2$	{2}	Кандида-
		ти до Q ₃

$$X^{HM} = Q_3 = Q_2 = \{1,3,4,9\}$$

Перевірка внутрішньої та зовнішньої стійкості множини Х^{НМ}

	1	2	3	4	5	6	7	8	9	10
1		1								
2										
2						1		τ-		1
4					1		1			1
5									7	
6		1					1			
7										
8	1									1
9										
10										

$$X^{HM} = \{1,3,4,9\}$$