36-789 - High Dimensional Statistsics II

Fall 2015

Lecture 8: Nov 19

Lecturer: Alessandro Rinaldo Scribes: Kirthevasan Kandasamy

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

8.1 Equaliser Rule (Cont'd)

Example 8.1 (Example of Equaliser Rule) $X \sim \text{Bin}(n, \theta)$ where $\theta \sim \text{Beta}(\alpha, \beta)$. The risk is $R(\theta, \hat{\theta}) = \mathbb{E}_{\theta}[(\theta - \hat{\theta})^2]$. Given an observation x, the posterior $\Theta|X = x$ is $\text{Beta}(\alpha + x, \beta + n - x)$. The Bayes' rule in L_2 error is the posterior expectation,

$$\hat{\theta}(\pi) = \frac{\alpha + x}{\alpha + \beta + n} = \frac{\alpha + \beta}{\alpha + \beta + n} \frac{\alpha}{\alpha + \beta} + \frac{n}{\alpha + \beta + n} \frac{x}{n}$$

The risk of $\hat{\theta}(\pi)$ is $R(\hat{\theta}(\pi), \theta) = \alpha^2/(\alpha + \beta + n)^2$. When $\alpha = \beta = \sqrt{n}/2$, then $R(\hat{\theta}(\pi), \theta) = 1/4(1 + \sqrt{n})^2$ is a constant. Therefore,

$$\hat{\theta} = \frac{1}{1 + \sqrt{n}} \frac{1}{2} + \frac{\sqrt{n}}{1 + \sqrt{n}} \frac{x}{n}$$

is minimax.

8.2 Minimax Hypothesis Testing

8.2.1 Parametric Models

Let $\mathcal{P} = \{p_{\theta}; \theta \in \Theta\}$, $\Theta \in \mathbb{R}^d$ and $X = \{X_1, X_2, \dots, X_n\} \in \mathcal{X}$ be drawn i.i.d from $p_{\theta} \in \mathcal{P}$. Let $\Theta_0, \Theta_1 \subset \Theta$. In hypothesis testing, our goal is to determine whether $H_0 : \theta \in \Theta_0$ or $H_1 : \theta \in \Theta_1$ upon observing $X \sim p_{\theta}$.

We say Θ_i is *simple* if it is a singleton and *composite* otherwise.

A test function is a function $\psi : \mathcal{X} \to \{0,1\}$. We accept H_0 if $\psi(X) = 0$ and reject H_0 if $\psi(X) = 1$. If ψ takes values in [0,1] then it is a randomised test and we reject H_0 with probability $\psi(X)$.

If $\theta \in \Theta_0$, then $\mathbb{E}_{\theta}[\psi(X)]$ is the type I error - the probability of false rejection.

If $\theta \in \Theta_1$, then $\mathbb{E}_{\theta}[1-\psi(X)]$ is the type II error - the probability of false acceptance.

8.2.2 Two Definitions of Risk for simple vs simple tests: $\Theta_0 = \{\theta_0\}$ and $\Theta_1 = \{\theta_1\}$

1. We define the risk at $\{\theta_0, \theta_1\}$ as $R(\psi, \theta) = c_0 \mathbb{E}_{\theta}[\psi(X)] \mathbb{1}(\theta = \theta_0) + \mathbb{E}_{\theta}[1 - \psi(X)] \mathbb{1}(\theta = \theta_1)$. The overall risk is then, $R(\psi, \theta) = R(\psi, \theta_0) + R(\psi, \theta_1)$. If $c_0 = 1$ then this is just the sum of the type I and type II errors.

8-2 Lecture 8: Nov 19

2. Let $\Psi_{\alpha} = \{\psi; \mathbb{E}_{\theta_0}[\psi(X)] \leq \alpha\}$ be the set of all tests with type I error at most α . Define the risk of any $\psi \in \Psi_{\alpha}$ as $R_{\alpha}(\psi) = \mathbb{E}_{\theta_1}[1 - \psi(X)]$.

Theorem 8.2 In both cases above, the optimal test is of the form

$$\psi(X) = \begin{cases} 1 & \text{if } \frac{dP_1(x)}{dP_0} \ge c \\ 0 & \text{otherwise} \end{cases}$$

where $\frac{dP_1(x)}{dP_0}$ is the likelihood ratio. For the first definition we set $c=c_0$ and for the latter we set $c=c_\alpha$ such that $\mathbb{E}_{\theta_0}[\psi(X)]=\alpha$.

8.2.3 Two Definitions of Risk for composite vs composite tests

Similar to above, we define

- 1. $R(\psi, \Theta_0, \Theta_1) = \sup_{\theta \in \Theta_0} \mathbb{E}_{\theta}[\psi(X)] + \sup_{\theta \in \Theta_1} \mathbb{E}_{\theta}[1 \psi(X)].$
- 2. $R_{\alpha}(\psi, \Theta_0, \Theta_1) = \sup_{\theta \in \Theta_1} \mathbb{E}_{\theta}[1 \psi(X)] \text{ where } \psi \in \Psi_{\alpha}(\Theta_0) = \{\psi : \sup_{\theta \in \Theta_0} \mathbb{E}_{\theta}[\psi(X)] \le \alpha\}.$

Definition 8.3 (Minimax Test) A test ψ^m is minimax if

- 1. $R(\psi^m, \Theta_0, \Theta_1) = \inf_{\psi} R(\psi, \Theta_0, \Theta_1)$, for the first definition above.
- 2. $R(\psi^m, \Theta_0, \Theta_1) = \inf_{\psi \in \Psi_\alpha(\Theta_0)} R_\alpha(\psi, \Theta_0, \Theta_1)$, for the second definition.

Bayesian Testing: Let $\mathcal{P}_0 = \{p_\theta : \theta \in \Theta_0\}, \mathcal{P}_1 = \{p_\theta : \theta \in \Theta_1\}$. Under minimal regularity conditions,

1. The minimax risk for the first definition above is.

$$\sup\{1 - d_{TV}(p_0, p_1) : p_0 \in \text{conv}(\mathcal{P}_0), p_1 \in \text{conv}(\mathcal{P}_1)\}\$$

where $p \in \text{conv}(\mathcal{P}_i) \implies p = \int_{\Theta_i} p_{\theta} d\pi(\theta)$ where π is some prior on Θ_i (hence the name "Bayesian" testing ??). The supremum is always realised by some pair of priors on Θ_0, Θ_1 .

2. The minimax risk is,

$$\sup \left\{ \inf_{\psi \in \Psi_{\alpha}(\mathcal{P}_0)} \mathbb{E}_{p_1}[1 - \psi(X)]; p_0 \in \operatorname{conv}(\mathcal{P}_0), p_1 \in \operatorname{conv}(P_1) \right\}.$$

This is realised by a pair of least favourable priors on Θ_0, Θ_1 .

To obtain a lower bound on a minimax risk, put priors π_0, π_1 on Θ_0 and Θ_1 and consider the testing problem p_0 vs p_1 ,

$$p_0 = \int_{\Theta_0} p_\theta d\pi_0(\theta), \quad p_1 = \int_{\Theta_1} p_\theta d\pi_1(\theta).$$

For this simplified problem, the Neyman Pearson result tells us that the minimax risk is attained by the test $\psi(X) = 1$ if $dp_1/dp_0 \ge c$ and 0 otherwise. As to how tight the lower bound is depends on how well we choose the priors π_0 and π_1 .

In high dimensional literature, we usually treat $\Theta_0 = \{\theta_0\}$ and take Θ_1 to be composite. The risk is $R(\psi, \Theta_0, \Theta_1) = \mathbb{E}_{\theta_0}[\psi(X)] + \sup_{\theta \in \Theta_1} \mathbb{E}_{\theta}[1 - \psi(X)].$

Let $n, d \to \infty$ and $\Theta_1 = \Theta_1(n, d)$. A test ψ is said to be asymptotically powerful if $\lim_{n \to \infty} R(\psi, \Theta_0(n, d), \Theta_1(n, d)) = 0$ and powerless if $\lim_{n \to \infty} R(\psi, \Theta_0(n, d), \Theta_1(n, d)) \ge 1$

Lecture 8: Nov 19

8.2.3.1 Some Examples

1. $H_0 = \mathcal{N}_n(0,1)$ and $H_1 = \mathcal{N}_n(\theta,I)$, $\theta \neq 0$. We formulate H_1 as $\{\mathcal{N}(\theta,I); \|\theta\| \geq \gamma_{n,d}\}$ for some $\gamma_{n,d}$. Q: At what rate can $\gamma_{n,d}$ go to zero while keeping the test asymptotically powerful.

2. $Y = X\beta + \epsilon$, $\epsilon = \{\epsilon_1, \dots, \epsilon_n\} \sim \mathcal{N}_n(0, I)$ and $X_{n,d}$ is of rank min(n, d). We want to test for $H_0 = (\beta = \mathbf{0})$ vs $H_1 = (\beta \neq \mathbf{0})$.

A natural test in this set up is to compute $||PY||^2$ where P is the column span projection of X. Under the null, $||PY|| \sim \chi^2_{\min(n,d)}$ and centrality parameter $||X\beta||^2$. A test that rejects for large values of $||PY||^2$ is asymptotically powerless if $||X\beta||^2/\sqrt{\min(n,d)} \to 0$.

8.2.4 Lower Bounds for Hypothesis Testing

General Strategy: Put a prior π on Θ_1 . The minimax risk is lower bounded by

$$\inf_{\psi} \left(\mathbb{E}_{\theta_0}[\psi(X)] + \int_{\Theta_1} \mathbb{E}_{\theta_1}[(1 - \psi(X))] d\pi(\theta)] \right)$$

and this infimum is achieved by the likelihood ratio test. Denoting $p_1 = \int_{\Theta_1} p_\theta d\pi$ the test is given by,

$$\psi(X) = \begin{cases} 1 & \text{if } \frac{dp_1}{p_0} > 1\\ 0 & \text{otherwise} \end{cases}$$

Denote the likelihood ratio by $L(x) = dp_1(x)/dp_0$. Then, we know $1 - d_{TV}(p_1, p_0) = 1 - \frac{1}{2}\mathbb{E}_{\theta_0}[|L(x) - 1|] \ge 1 - \frac{1}{2}\sqrt{\mathbb{E}_{\theta_0}[(L(x)^2 - 1)]}$.

For instance, in the regression example above $L(Y) = \mathbb{E}_{\pi}[\exp(Y^{\top}X\beta - \frac{\|X\beta\|^2}{2})]$. If $\mathbb{E}[L(x)^2] \to 1$, then the test is asymptotically powerless.