

PROGRAMA DE ASIGNATURA UV DESCRIPCIÓN GENERAL DE LA ASIGNATURA

1. IDENTIFICACIÓN DE LA ASIGNATURA:

Facultad:	CIENCIAS		Carrera:	LIC. FISICA CON MENCIONES	
Nombre:	Mecánica Cuántica I		Código:	LFIS321	
Nivel:	SEXTO SEMESTRE		Duración:	SEMESTRAL	
Requisito(s):	MÉTODOS MAT. I	ÍSICA II (LFIS311)	, FÍSICA CONTEMPORÁNEA (LFIS313)		
Horas cronológicas semanales			N° de	Total de horas	N° de créditos
Docencia	Trabajo	Total	semanas	semestrales	
directa	autónomo				
(A)	(B)	(C=A+B)	(D)	(E=C*D)	(F=E/27)
3	6	9	18	162	6

2. DESCRIPCIÓN DE LA ASIGNATURA:

Es un curso teórico de modalidad presencial, de nivel intermedio, cuya misión es introducir al estudiante a la fenomenología del mundo microscópico (cuántico) y el formalismo matemático necesario para explicarlo. En este curso se presentan soluciones de casos que son de interés en las ciencias puras como también aplicadas y se introduce el paradigma probabilístico del comportamiento de la naturaleza a nivel atómico.

3. Aporte al Perfil de Egreso

La Asignatura aporta al perfil de egreso a través de los desempeños de las siguientes Competencias Genéricas, en su segundo nivel de dominio:

- Identifica y maneja los fenómenos de la física cuántica.
- Aplica conocimientos matemáticos avanzados.
- Colabora en trabajos de investigación científica

PROGRAMA DE LA ASIGNATURA

1. IDENTIFICACIÓN:

Nombre	MECÁNICA CUÁNTICA I
Código	LFIS321
Requisito(s)	LFIS311, LFIS313

2. RESULTADOS DE APRENDIZAJE Y DESEMPEÑOS:

- ✓ Al final de la asignatura los estudiantes serán capaces de demostrar los siguientes resultados de aprendizaje del primer nivel de dominio de las Competencias Específicas del perfil de egreso a las que apunta la asignatura tanto en conocimientos, habilidades y/o actitudes:
 - RA3: Maneja las herramientas de análisis para modelar fenómenos de física contemporánea.
 - RA4: Aplica métodos matemáticos avanzados para el estudio de la física clásica, cuántica, electrodinámica y mecánica estadística.

3. UNIDADES DE APRENDIZAJE Y CONTENIDOS:

Resultados de	Unidades de Aprendizaje y Contenidos
aprendizaje/	
Desempeños	
	Unidad I: Herramientas Matemáticas de la Mecánica Cuántica
	El espacio de Hilbert
	- Dimensión y Base de un espacio vectorial
Maneja las	Notación de Dirac
herramientas de	<u>Operadores</u>
análisis para	- Definiciones generales
modelar fenómenos de	- Adjunto hermitiano
	- Operadores de proyección
física	- Álgebra de conmutadores
contemporánea.	- Relación de incertidumbre entre dos operadores
	- Funciones de los operadores
	- Operadores inversos y unitarios
	- Valores y vectores propios de un operador
	- Transformaciones unitarias infinitesimales y finitas

Representación en Bases Discretas

- Representación matricial de kets, bras y operadores
- Cambio de bases y transformaciones unitarias
- Representación matricial del problema de valores propios

Representación en Bases Continuas

- Representación en espacio de posiciones
- Representación en espacio de momentum
- Conexión de las representaciones de posición y momentum
- Operador de paridad

Matrices y Mecánica Ondulatoria

Unidad II: Postulados de la Mecánica Cuántica

Los postulados básicos de la mecánica cuántica

El estado cuántico de un sistema

- Densidad de probabilidad
- El principio de superposición

Observables y Operadores

Medición en Mecánica Cuántica

- Medición y perturbación de un sistema
- Valores esperados
- Conjuntos completos de operadores compatibles (conmutables)
- Medida y las relaciones de incertidumbre

Evolución temporal del estado del sistema

Operador de evolución temporal

- Estados Estacionarios. Potenciales independientes del tiempo
- Ecuación de Schrödinger y paquetes de ondas
- La Conservación de la probabilidad
- Evolución temporal de los valores esperados

Simetrías y Leyes de Conservación

- Transformaciones unitarias infinitesimales
- Transformaciones unitarias finitas
- Simetrías y leves de conservación
- El teorema de Ehrenfest

Unidad III: Problemas unidimensionales

Propiedades del movimiento unidimensional

- Espectro discreto (Estados ligados)
- Espectro continuo (Estados libres o de dispersión)
- Espectro mixto

Aplica métodos matemáticos avanzados para el estudio de la física clásica, cuántica, electrodinámica y mecánica estadística.

DIVISIÓN ACADÉMICA

- Potenciales simétricos y paridad

La Partícula Libre: Estados Continuos

El potencial escalón

La barrera de potencial

- Caso E >Vo
- Caso E < Vo: Tunelización
- Efecto túnel

El potencial del pozo cuadrado infinito

- Pozo cuadrado asimétrico
- Pozo de potencial simétrico

El potencial de pozo cuadrado finito

- Las soluciones de Dispersión (E>Vo)
- Las soluciones de estado ligado (0 < E<Vo)

El oscilador armónico

- Valores propios del Hamiltoniano
- Estados propios del Hamiltoniano en el espacio de posición
- Representación matricial de operadores
- Valores esperados de varios operadores.

Unidad IV: Momento angular

Momentum angular orbital

- Reglas de conmutación
- Representación diferencial en coordenadas de posición

Formalismo general del momentum angular

- Representación matricial del momentum angular
- Representación geométrica del momentum angular

Momento angular de Spin

- Evidencia experimental del spin
- Teoría General del spin
- Spin 1/2 y matrices de Pauli

Funciones propias del momentum angular orbital

- Funciones propias y valores propios de Lz
- Funciones propias de L^2
- Propiedades de los Armónicos Esféricos

4. METODOLOGÍA O ESTRATEGIA DE ENSEÑANZA - APRENDIZAJE:

Clase expositiva, discusión y resolución de casos.

Clases de resolución de problemas.

DIVISIÓN ACADÉMICA

Trabajo autónomo en resolución de tareas.

5. METODOLOGÍA O ESTRATEGIA DE EVALUACIÓN:

Tipo de evaluación:	Porcentaje (%) que corresponde:	
- 4 evaluaciones al semestre	100%	

6. RECURSOS PARA EL APRENDIZAJE:

6.1. BIBLIOGRAFÍA:

BIBLIOGRAFÍA BÁSICA OBLIGATORIA:						
	Autor	Título	Editorial	Año	ISBN	Nº Ejemplares Disponibles en Biblioteca de la Carrera
1	N.Zettili	Quantum mechanics: Concepts and Applications	Wiley	2009		5
2	D.J.Griffiths	Introduction to quantum mechanics	Pearson	2005		2

BIE	BIBLIOGRAFÍA COMPLEMENTARIA:					
	Autor	Título	Editorial	Año	ISBN	Nº Ejemplares Disponibles en Biblioteca de la Carrera
1	S. Ramamurti	Quantum Mechanics	Springer	1994		2
2	C. Cohen- Tannoudji et al.	Quantum Mechanics	Wiley	1977/2005		6
3	R.Eisberg	Fundamentals of modern physics	Wiley	1961		1

Responsable(s) del programa:	Iván González G.
Docente(s) a cargo:	IGG
Versión / Fecha de Actualización:	2022