

Tema 5. Introducción a la Lógica Borrosa

Luis Miguel Bergasa, Eduardo Sebastián

1

Introducción a la Lógica Borrosa

Índice

- > Introducción e Historia
- Conjuntos borrosos
- Operadores sobre conjuntos borrosos
- > Principio de extensión
- Relaciones borrosas
 - Proyecciones
 - > Extensión cilíndrica
 - Composiciones
- > Razonamiento aproximado
 - Variables lingüísticas
 - > Proposición borrosa
 - > Inferencia borrosa
 - > Inferencia multi-condicional

2

Introducción e Historia

- Los sistemas digitales y la lógica clásica presentan problemas al abordar problemas de control complejos reales
 - > Información masiva redundante e imprecisa
 - > Ej: control de movimiento de un robot bípedo
- > Surgen los sistemas inteligentes para abordarlos
 - > Redes neuronales
 - > Imitan la capacidad de aprendizaje del cerebro humano
 - > Sistemas borrosos
 - > Emulan el razonamiento aproximado del cerebro
 - > No trabajan con lógica binaria sino con conceptos vagos

3

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Introducción a la Lógica Borrosa

Introducción e Historia

- La lógica borrosa trata con la información de forma imprecisa
 - No trabaja con lógica binaria, o valores numéricos precisos sino con conceptos vagos (alto, bajo, medio, templado)
 - ¿Cuál es la altura del profesor?

> ¿Temperatura del agua de la ducha? Templada (pero no 40°C)

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Introducción e Historia

> Propiedades

- La lógica borrosa es una extensión de la lógica booleana
- > Soluciona problemas no lineales y no muy bien definidos
- Permite usar el conocimiento de expertos (razonamiento humano)
- Cada afirmación es un problema "de grado de verdad"

➤ Simplicidad de cálculos (sumas, productos y comparaciones) que se pueden realizar sobre procesadores sencillos y baratos

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

5

Introducción a la Lógica Borrosa

Introducción e Historia

Historia

- ➤ 1965. Principios formulados por Zadeh (Universidad de Berkeley)
- ▶ 1973. Teoría básica de los controladores → No bien acogida
- ▶ 1974. Mamdani aplica lógica borrosa a un sistema de control de una máquina de vapor
- > 80's. Gran desarrollo en Japón y menos en USA y Europa
- ▶ 90's. Debido a los buenos resultados en Japón, USA y Europa empiezan a interesarse
- 00's. Grandes empresas lo usan en sus productos: NASA, Boeing, Ford, Sony, etc
- Actualidad: se usa muchísimo de forma habitual pero no se destaca
 - > Robots caminantes, vehículos autónomos, lavadoras, cámaras de fotos, buscadores de Internet, etc.

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Conjuntos borrosos

- Conjunto
 - > Clase definida mediante una condición de pertenencia
- > Función de pertenencia
 - Función matemática (μ) que asigna a cada elemento del universo de entrada un valor de pertenencia al conjunto entre [0,1]
- Conjunto clásico, CRISP (todo o nada)
 - > Incluye o excluye totalmente a cada elemento
 - > El grado de pertenencia es binario y su función también, μ∈{0,1}
 - > Ejemplo: Alumnos mayores o menores de 24 años

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Introducción a la Lógica Borrosa

Conjuntos borrosos

- Conjunto borroso
 - Conjunto con una función de pertenencia o condición relajada, μ∈[0,1]

8

Comparación conjuntos Borroso/Crisp

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Conjuntos borrosos

> Definición de conjunto borroso

Ejemplo perro-estaca

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Introducción a la Lógica Borrosa

Conjuntos borrosos

- Clasificación conjuntos borrosos
 - > En función de la forma de la función de pertenencia
 - Ordinarios: Para cada valor de entrada existe un único valor de pertenencia. Los principales son:
 - Triangulares

$$\mu(\mathbf{x}) = \begin{cases} 0 & \mathbf{x} < a \\ \frac{\mathbf{x} - a}{b - a} & a \le \mathbf{x} \le c \\ \frac{c - \mathbf{x}}{c - b} & b \le \mathbf{x} \le c \\ 0 & c \le \mathbf{x} \end{cases}$$

μ 1.0 0.5 0

9

> Trapezoidales

$$\mu(x) = \begin{cases} 0 & \mathbf{x} < a \\ \frac{x - a}{b - a} & a \le \mathbf{x} \le b \end{cases}$$

$$l & b \le \mathbf{x} \le c$$

$$\frac{d - x}{d - c} & c \le \mathbf{x} \le d$$

1.0 0.5 0 a b c d 10

Conjuntos borrosos

Sigmoidales

$$\mu(x) = \frac{1}{1 + \exp(-k(x-b))} \qquad \mu(x) = \begin{cases} \frac{1}{2} \left(\frac{x-a}{b-a}\right)^2 & a \le \mathbf{x} \le 1 \\ \frac{1}{2} \left(\frac{x-b}{c-b}\right)^2 & b \le \mathbf{x} \le 1 \end{cases}$$

Gaussiano

$$\mu(x) = e^{-\frac{(x-c)^2}{2\sigma^2}}$$

μ 1.0 0.5 σ

Singleton

$$\mu(x) = 1 \quad x = a$$

$$\mu(x) = 0 \quad x \neq a$$

11

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Introducción a la Lógica Borrosa

Conjuntos borrosos

Clasificación conjuntos borrosos

Con intervalo de pertenencia: Para cada valor de entrada existe un intervalo de pertenencia. Se usan para modelar casos extraños o raros de incertidumbre.

Propiedades conjuntos borroso

> Igualdad de conjuntos

$$A = B$$
 si $\mu_A(x) = \mu_B(x)$ $\forall x \in X$

Subconjuntos borrosos

$$A \subset B$$
 si $\mu_A(x) \le \mu_B(x)$ $\forall x \in X$

Conjunto vacío

$$A=0 \quad si \quad \mu_{\scriptscriptstyle A}(x)=0 \quad \forall x\in X$$

Conjuntos borrosos

- Definiciones
 - Soporte

Support(A) =
$$\{x/\mu_A(x) > 0\}$$

> α-corte

$$A_{\alpha} = \left\{ x \, / \, \mu_{A}(x) \geq \alpha \right\}$$

Núcleo

$$Core(A) = \{x/\mu_A(x) = 1\}$$

Puntos de cruce

$$Crossover(A) = \{x / \mu_A(x) = \alpha\}$$

Máximo grado de pertenencia de los elementos del universo de discurso $height(A) = \max\{\mu_A(x)/x \in X\}$

25

45

Conjunto convexo

$$\forall x, y \in X \; \exists \; \lambda \in [0,1] / \; \mu_A(\lambda \cdot x + (1-\lambda)y) \ge \min\{\mu_A(x), \mu_A(y)\}\$$

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

13

Conjunto F

Conjunto soportado F

Puntos de

cruce de F

Introducción a la Lógica Borrosa

Conjuntos borrosos

- Definiciones
 - Conjunto convexo
 - > Función Gaussiana es convexa, aunque tiene partes cóncavas
 - > Los conjunto cóncavos no son aplicables a fenómenos físicos

$$\forall x, y \in X \ \exists \ \lambda \in [0,1] / \ \mu_A(\lambda \cdot x + (1-\lambda)y) \ge \min\{\mu_A(x), \mu_A(y)\}\$$

- Conjunto normal
 - Conjunto de altura unidad

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Operaciones sobre conjuntos borrosos

- Las operaciones sobre conjuntos borrosos generan un nuevo conjunto borroso definido sobre los conjuntos de entrada
- **Unión:** $\mu_{A \cup B}(x) = S\{\mu_A(x), \mu_B(x)\}$
 - El operador borroso se denomina S-norma o T-conorma
 - Interpretaciones:
 - ▶ 1) $\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\} \forall x \in X$
 - $2) \mu_{A \cup B}(x) = \mu_A(x) + \mu_B(x) \mu_A(x) \cdot \mu_B(x)$
 - > 3) $\mu_{A \cup B}(x) = \min\{1, \mu_A(x) + \mu_B(x)\}$
 - > Propiedades operador S-norma:
 - Conmutativa
- S(A,B) = S(B,A)
- Asociativa
- S(A, S(B, C)) = S(S(A, B), C)
- ► Monotonicidad $S(A, B) \ge S(C, B)$ si $A \ge C$ y $B \ge D$
- > Elemento neutro
- S(0,A) = A

Mas utilizado. Unión ordinaria o clásica

15

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Introducción a la Lógica Borrosa

Operaciones sobre conjuntos borrosos

- **Intersección:** $\mu_{A \cap B}(x) = T\{\mu_A(x), \mu_B(x)\}$
 - > El operador borroso se denomina T-norma o S-conorma
 - Operador dual de la S-norma
 - > Interpretaciones:

 - \triangleright 2) $\mu_{A \cap B}(x) = \mu_A(x) \cdot \mu_B(x)$
 - > 3) $\mu_{A \cap B}(x) = \max\{0, \mu_A(x) + \mu_B(x) 1\}$
 - Propiedades operador S-norma:
 - > Conmutativa T(A,B) = T(B,A)
 - > Asociativa T(A,T(B,C)) = T(T(A,B),C)
 - Monotonicidad $T(A,B) \ge T(C,B)$ si A > C y $B \ge D$
 - ightharpoonup Elemento neutro T(1,A) = A

Operaciones sobre conjuntos borrosos

- **Negación:** $\mu_{\overline{A}}(x) = N\{\mu_{A}(x)\}$
 - > El operador complementario
 - ► Interpretación: $\mu_{\overline{A}}(x) = 1 \mu_{A}(x) \forall x \in X$
 - > Propiedades del operador negación:
 - Condición de contorno N(0) = 1 N(1) = 0
 - ➤ Ordenación inversa $A \ge B$ $N(A) \le N(B)$
 - Involución

N(N(A)) = A

$$A \cup B = \overline{\overline{A} \cap \overline{B}}$$
$$A \cap B = \overline{\overline{A} \cup \overline{B}}$$

$$S(A,B) = 1 - T(\overline{A}, \overline{B})$$

$$T(A,B) = 1 - S(\overline{A}, \overline{B})$$

Operadores T-norma y Snorma son duales

17

Otros operadores

- Normalización
- Concentración
- Dilatación

$$\mu_{normalización(A)}(x) = \frac{\mu_A(x)}{\max[\mu_A(x)]}$$
$$\mu_{concentación(A)}(x) = (\mu_A(x))^2$$

 $\mu_{\text{dilatación}(A)}(x) = \left(\mu_A(x)\right)^{1/2}$

Luis M. Bergasa, Eduardo Sebastián. Sistemas de

Introducción a la Lógica Borrosa

Principio de extensión

Principio de extensión

- Base del proceso de inferencia en los sistemas borrosos
- > Permite convertir conceptos no-borrosos en borrosos

Enunciado:

- Sean $X, Y \in \Re^n$ e Y = f(X) una función analítica real de variable real
- \triangleright Conocida f, que relaciona la variables X e Y, y el conjunto de partes borrosas (conjuntos) definido sobre la variable X, (F(X)), se puede conocer el conjunto de partes borrosas definido sobre la variable Y, (F(Y)), y al revés mediante f^{I}
- > f es una función analítica de base real que induce una función borrosa de variable borrosa.

Principio de extensión

- Principio de extensión
 - **Matemáticamente:** $\mu_B(y) = \sup_{x \in f^{-1}(y)} \mu_A(x) \quad \forall x \in X, y \in Y$
 - > Ejemplo:

$$y = x^{2} \begin{cases} x = presi\'{o}n \\ y = temperatura \end{cases}$$

Para cada $y_i \in Y$ se calculan los puntos xi a través de f

$$y_i = x_i^2 \rightarrow \begin{cases} x_{i1} = \sqrt{y_i} \\ x_{i1} = -\sqrt{y_i} \end{cases} \rightarrow \mu_B(y_i) = \sup remo(\mu_A(x_{i1}), \mu_A(x_{i2}))$$

Inversa:

$$\mu_{f^{-1}(B)}(x) = \sup_{y=f(x)} \mu_B(y)$$

$$f^{-1}(f(x)) \neq x$$

19

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Introducción a la Lógica Borrosa

Relaciones Borrosas

Relación Borrosa:

- La relación borrosa entre los conjuntos X_1 , X_2 definidos sobre las variables x_1 , x_2 es el conjunto borroso definido sobre el producto cartesiano de los conjuntos borrosos R(X) / $X=X_1\times X_2$
- La función de pertenencia de la relación borrosa da la fuerza con la que la relación une a los conjuntos
- Al conjunto borroso consecuencia de la relación también se le denomina extensión cilíndrica
- > Matemáticamente en términos borrosos es una intersección

$$\mu_R(X) = \min \{ \mu_{X_1}(x_1), \mu_{X_2}(x_2) \}$$

20

Relaciones Borrosas

Composiciones:

- Si se tienen dos conjuntos X, Y relacionados a través de la relación borrosa P(X,Y)
- Si los conjuntos Y, Z están relacionados mediante la relación borrosa Q(Y,Z)
- Se puede saber la relación borrosa entre los conjuntos X y Z

Operador composición

$$R(X,Z) = P(X,Y) \circ Q(Y,Z)$$

$$\mu_{R}(x,z) = \sup remo_{y \in Y} \min \left\{ \mu_{P}(x,y), \mu_{Q}(y,z) \right\}$$

Matemáticamente es equivalente a una sustitución algebraica.

$$\begin{cases} x = 3y \\ z = x^2 \end{cases} \rightarrow z = 9y^2$$

23

Razonamiento aproximado

Definiciones

- Variable lingüística: variable cuyos valores son palabras de un determinado lenguaje (natural o artificial) que expresan una magnitud física
- Termino lingüístico: Los valores que puede tomar una variable lingüística
- Universo o dominio: Conjunto de términos lingüísticos
- Ejemplo:

25

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Introducción a la Lógica Borrosa

Razonamiento aproximado

Proposición borrosa

- Aseveración que asigna a una variable borrosa un término lingüístico
- > Reglas que definen la base de conocimiento del sistema
- Proposición atómica (entrada borrosa):

$$\mathbf{p_i}$$
: $\boldsymbol{\tau es}\,A_i$ Ejemplo: La Temperatura es Alta Variable Término lingüístico

- Proposición condicional (regla borrosa):
 - Relación borrosa entre A_i e B_i
 - Conectivas borrosas: and (conjunción), or (disyunción), not (negación)

$$p_2$$
: $si \tau es A_i$ entonces $v es B_j$

Antecedente Consecuente

Ejemplo: Si τ_1 es A_{11} and τ_2 es A_{12} entonces v es B_1 Si τ_1 es A_{11} or τ_2 es A_{12} and not τ_2 es A_{12} entonces v es B_1 and v es B_2

Razonamiento aproximado

Inferencia borrosa

- Obtiene la salida borrosa (consecuente borroso) a partir de las entradas borrosas (proposición atómica) y las reglas (proposición condicional)
- Cumple el mecanismo "Modus pones generalizado". A partir de una serie de premisas (proposiciones atómicas) se obtiene una serie de consecuentes mediante una lógica de control (reglas)

```
p: si t es A entonces v es B (condición o regla) q: t es A' (dato de entrada)
```

```
entonces: v es B' R (A, B) \qquad \mu_R(t,v) = min\{\mu_B(v), \mu_A(t)\} B' = A' \circ R (A, B) \qquad \mu_{B'}(v) = Supremo_{t \in T} \min\{\mu_{A'}(t), \mu_R(t,v)\} \mu_{B'}(v) = Supremo_{t \in T} \min\{\mu_{A'}(t), \min\{\mu_B(v), \mu_A(t)\}\} Operador Mandani \qquad \mu_{A'}(t) = min\{\mu_{A'}(t), \mu_A(t)\}
```

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Introducción a la Lógica Borrosa

Razonamiento aproximado

Inferencia borrosa

- 1) $Sup_{t \in T} min\{\mu_{A'}(t), \mu_{R}(t, v_1)\} = Sup_{t \in T} min\{\mu_{A'}(t), 0\} = 0$
- $2)\; \mu_B(v_2) \!\! \leq \mu_{A'}(t_1) \; \text{-->} \; \; Sup_{t \in T} \, min\{\mu_{A'}(t), \!\mu_R(t,\!v_2)\} = \mu_B(v_2)$
- 3) $\mu_B(v_2) > \mu_{A'}(t_1) \sum \sup_{t \in T} \min \{ \mu_{A'}(t), \mu_R(t, v_3) \} = \mu_{A'}(t_1)$

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

28

Introducción a la Lógica Borrosa Razonamiento aproximado Inferencia borrosa $2) \ \mu_B(v_2) \leq \mu_{A'}(t_1) \rightarrow \mu_B(v_2) = Sup_{t \in T} \min\{\mu_{A'}(t), \mu_R(t, v_2)\} = \mu_B(v_2)$ $\mu_R(t, v_2) = \min\{\mu_B(v_2), \mu_A(t)\}$ $\mu_B(v_2) = \frac{A}{\mu_A(t_1)} \frac{A}{\mu_A(t_2)} \frac{\mu_A(t_2)}{\mu_A(t_3)} \frac{\mu_A(t_3)}{\mu_A(t_3)} \frac{\mu_A(t_3)}{\mu_A$

Razonamiento aproximado

Razonamiento Multicondicional

```
entonces: v es B' Operador agregación: \textit{max} = \textit{supremo} Una única regla B' = U_{i \in k} \left( A' \ o \ R_i(A_i, B_i) \right) \mu_{B'}(v) = Supremo_{i \in k} (Supremo_{t \in T} \min\{\mu_{A'}(t), \mu_{Ri}(t, v)\})
```

31

Luis M. Bergasa, Eduardo Sebastián. Sistemas de Control Inteligente. GIC. Departamento de Electrónica. UAH

Introducción a la Lógica Borrosa

Razonamiento aproximado

Razonamiento Multicondicional

Principio de Tautología

Lógica clásica

$$P \cup \overline{P} = 1$$

Lógica borrosa

$$\mu_P(x_1) = 0.4$$

$$\mu_{\overline{P}}(x_1) = 1 - 0.4 = 0.6$$

33