EE 575, Fall 2022 Introduction to Control Theory

Midterm Exam

Close book; ONE letter-size double-sided cheat sheet

You will be penalized by 5 points if you do NOT submit the cheat sheet.

Name: Alex Goushins

Student ID: 10445143

Please Sign Pledge to Honor Code here:

Problem #	Maximum Points	Grading
1.1	0.5	/
1.2	0.5	/
1.3	0.5	/
1.4	0.5	0.1
1.5	0.5	7.5
1.6	0.5	
1.7	0.5	<i>y</i>
1.8	0.5	
2.1	1	
2.2	1	1
3	4	3,25
4	5	4.5
5	5	4
6	5	4.25
7	5	4.75
Total	30	

24.25

Section 1: True or False (0.5 points each, 8 questions, 4 points total)

1.1. For a linear time-invariant system with the transfer function H(s), for the input of e^{at} , the corresponding can be proved formuleically system output is $H(a) * e^{at}$.

(a) True

- (b) False
- 1.2. On the root locus plot, the number of separate loci is equal to the number of zeros.

(a) True

- (b) False
- 1.3. For a linear time-invariant system, if the system output is y(t) with the input of u(t), then the system output is y(t-a) with the input of u(t-a).

(a) True

- (b) False
- 1.4. The system with the characteristic equation $s^7 + 8s^6 + 8s^5 s^4 + 100s^3 + 100000s^2 + 9999s +$ 8976 = 0 is stable.

(a)_True (b) False

1.5. Lead compensator approximates the PD control to improve the steady-state accuracy.

True

(b) False

Not for

- 1.6. The transfer function $T(s) = \frac{(s+2)(s-1)}{s^2(s+10)(s^2+6s+25)}$ describes a minimum-phase system.
 - (a) True
 - (b) False
- 1.7. A state-space representation of a system can always be written in a strict diagonal form:

1.7. A state-space representation of a system can always be written in a
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- (a) True
- (b) False
- 1.8. According to the final value theorem $\lim_{t\to\infty} y(t) = \lim_{s\to 0} sY(s)$, for a system with the dynamic output of $Y(s) = \frac{1}{s}$ $\frac{3(s+2)}{s(s+4)(s-3)}$, the final steady-state output of the system is equal to $\frac{3*2}{4*(-3)} = -\frac{1}{2}$.

Section 2: Single Choice (1 point each, 2 questions, 2 points total)

(d) None of the above.

2.1. Consider the system in the below figure with GC(s) = 10, H(s) = 1, and $G(s) = \frac{s+50}{s^2+60s+500}$. With a unit step input, the final output y_{ss} is

2.2 Below figure shows the time domain step responses of the following three transfer functions. Please choose which transfer function could correspond to the red curve (the second to the top).

Section 3: Computations

3. Transfer Function of Analog Circuit (4 points)

Calculate the transfer function T(s)=Y(s)/U(s) of the below system, and determine whether it is a lead or lag compensator.

$$z_i = \frac{R_i}{R_i \cdot SC+1}$$
 $z_i = R_2$

TF = 1

(earl / Cag?

4. Routh's Criteria for Stability Analysis (5 points)

The closed-loop transfer function of a system is

 $T(s) = \frac{10}{s^5 + 2s^4 + 5s^3 + 6s^2 + 11s + 2}$ Use **Routh's Criteria** to determine the stability of the system. If it is unstable, how many closed-loop poles are located in the right half-plane?

T(s) =
$$\frac{1}{s^5 + 2s^4 + 5s^3 + 6s^2 + 11s + 2}{s^5 + 2s^4 + 5s^3 + 6s^2 + 11s + 2}$$

With's Criteria to determine the stability of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system. If it is unstable, how many closed-loop poles are in the right half-plane?

Solution of the system is unstable half-plane?

Solution of the system is unstable half-plane?

Solution of the system is un

First Column is all positive; system is stable.

5. System Type and Stability (5 points)

Given a second-order system $G = \frac{1}{(s+1)(4s+1)}$, we add $D = \frac{K(s+10)}{s+2}$ in series with G(s) in a unity feedback

Determine the system type, and the corresponding finite constant error. a.

What are the limits on K so that the system is stable? (Must be positive) >0

$$\frac{-27K+124}{13}>0$$

Consider the following transfer function
$$\frac{s+z}{(s+p_1)(s+p_2)}$$
.

a. Write down its observer canonical form.

b. If z , p , and p_2 are all negative, and $z\neq p_1$ and $z\neq p_2$, prove that the controllable and observable.

A.) $S+Z$
 $S+P_1J(S+P_2J)$
 $S+P_1$

$$A = \begin{bmatrix} 0 & -P_1P_2 \\ I & [P_1+P_2] \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ I & AB \end{bmatrix}$$

$$\frac{1}{4B} = \begin{array}{c}
0 + 0 + 0 - P_1 P_2 \\
0 + 0 + 1 + P_1 + P_2
\end{array}$$

$$\frac{1}{(1 + P_1 + P_2)} = \begin{bmatrix}
0 - P_1 P_2 \\
1 + P_1 + P_2
\end{bmatrix}$$

$$0 + 0 + 1 + P_1 + P_2$$

$$0 + 0 + 1 + P_1 + P_2$$

$$0 + 0 + 1 + P_1 + P_2$$

$$\mathcal{E} = \begin{bmatrix} C \\ C \\ A \end{bmatrix} \neq 0 \qquad CA = \begin{bmatrix} 0 & -P_1 \\ -P_2 \\ -P_1 \\ -P_2 \end{bmatrix} \times \begin{bmatrix} 0 & -P_1 \\ -P_2 \end{bmatrix} = \begin{bmatrix} -P_1 \\ -P_2 \end{bmatrix} \begin{bmatrix} P_1 \\ -P_2 \end{bmatrix} \begin{bmatrix} P_2 \\ -P_2 \end{bmatrix} \begin{bmatrix} P_1 \\ -P_2 \end{bmatrix} \begin{bmatrix} P_2 \\ -P_2 \end{bmatrix} \begin{bmatrix} P_1 \\ -P_2 \end{bmatrix} \begin{bmatrix} P_2 \\ -P_2 \end{bmatrix} \begin{bmatrix} P$$

Not enough a products and terms to concel out : Observoible

$$CA = C = C = [2] \begin{bmatrix} 0 - P_1 P_2 \\ -P_1 P_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -P_1 P_2 + P_2 \end{bmatrix}$$

$$\begin{bmatrix} P_1 + P_2 - P_1 P_2 \end{bmatrix}$$

$$\begin{bmatrix} C \\ -P_1 P_2 + P_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -P_1 P_2 + P_2 \end{bmatrix}$$

7. State-Space Transfer Function and Tracking Performance (5 points)

Consider the single-input single-output system described via the following dynamic equations (with u as input and y as output)

$$\ddot{x}_1 + 2\dot{x}_1 + 4x_1 = Ku; \ \ y = x_1$$

- Write down the system state-space control canonical form with $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ as state variables, where x_2 is defined as $x_2 = \dot{x}_1$.
- b. Calculate the transfer function.
- c. Determine the value of K resulting in a zero steady-state tracking error with a unit step input. The tracking

error is defined as
$$e(t) = u(t) - y(t)$$
.

A.) $x_2 = x_1$

$$x_2 + 2x_2 + 4x_1 = Ku$$

$$x_2 = -2x_2 - 4x_1 + Ku$$

$$x_2 = x_1$$

$$x_2 = -2x_2 - 4x_1 + Ku$$

$$x_3 = -2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_4 = -2x_1 - 2x_2 - 4x_1 + Ku$$

$$x_5 = -2x_2 - 4x_1 + Ku$$

$$x_5 = -2x_1 + Ku$$

$$x_5 = -2x_2 - 4x_1 +$$

C.)

Lim
$$e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \left[s \frac{s^n}{s^n + P(s)} \frac{1}{s^{n+1}} \right]$$

Lim
$$e(t) = s \rightarrow 0$$
 $t \rightarrow \infty$
 $f(s) = H[J]$
 $f(s) = H[J]$
 $f(s) = S[J]$
 $f(s) = S[J]$

$$\frac{1}{\sqrt{(s^2+2s+4)}-H} = \frac{1}{2} =$$