2 Subgroups and Cyclic Groups

2.1 Review

Last time, we discussed the concept of a group, as well as examples of groups. In particular, a group is a set G with an associative composition law $G \times G \longrightarrow G$ that has an identity as well inverses for each element with respect to the composition law \times .

Our guiding example was that of the group of invertible $n \times n$ matrices, known as the **general linear group** $(GL_n(\mathbb{R}) \text{ or } GL_n(\mathbb{C}), \text{ for matrices over } \mathbb{R} \text{ and } \mathbb{C}, \text{ respectively.})$

Example 2.1

Let $GL_n(\mathbb{R})$ be the group of $n \times n$ invertible real matrices.

- Associativity. Matrix multiplication is associative; that is, (AB)C = A(BC), and so when writing a product consisting of more than two matrices, it is not necessary to put in parentheses.
- Identity. The $n \times n$ identity matrix is $I_n = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$, which is the matrix with 1s along the diagonal and 0s everywhere else. It satisfies the property that AI = IA = A for all $n \times n$ matrices A.
- Inverse. By the invertibility condition of GL_n , every matrix $A \in GL_n(\mathbb{R})$ has an inverse matrix A^{-1} such that $AA^{-1} = A^{-1}A = I_n$.

Furthermore, each of these matrices can be seen as a transformation from $\mathbb{R}^n \longrightarrow \mathbb{R}^n$, taking each vector \vec{v} to $A\vec{v}$. That is, there is a bijective correspondence between matrices A and invertible transformations $T_A: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ taking $T_A(\vec{v}) = A\vec{v}$.

Another example that showed up was the integers under addition.

Example 2.2

The integers \mathbb{Z} with the composition law + form a group. Addition is associative. Also, $0 \in \mathbb{Z}$ is the additive identity, and $-a \in \mathbb{Z}$ is the inverse of any integer a.

On the other hand, the natural numbers \mathbb{N} under addition would *not* form a group, because the invertibility condition would be violated.

Lastly, we looked at the symmetric group S_n .

Example 2.3

The **symmetric group** S_n is the permutation group of $\{1, \dots, n\}$.

2.2 Subgroups

In fact, understanding S_n is important for group theory as a whole because any finite group "sits inside" S_n in a certain way⁹, which we will begin to discuss today.

Guiding Question

What does it mean for a group to "sit inside" another group?

If a subset of a group satisfies certain properties, it is known as a subgroup.

 $^{^9{}m This}$ is known as Cayley's Theorem and is discussed further in section 7.1 of Artin.

Definition 2.4

Given a group (G, \cdot) , a subset $H \subset G$ is called a **subgroup** if it satisfies:

- Closure. If $h_1, h_2 \in H$, then $h_1 \cdot h_2 \in H$.
- **Identity.** The identity element e in G is contained in H.
- Inverse. If $h \in H$, its inverse h^{-1} is also an element of H.

As notation, we write $H \leq G$ to denote that H is a subgroup of G.

Essentially, these properties consists solely of the necessary properties for H to also be a group under the same operation \cdot , so that it can be considered a subgroup and not just some arbitrary subset. In particular, any subgroup H will also be a group with the same operation, independent of the larger group G.

Example 2.5

The integers form a subgroup of the rationals under addition: $(\mathbb{Z}, +) \subset (\mathbb{Q}, +)$.

The rationals are more complicated than the integers, and studying simpler subgroups of a certain group can help with understanding the group structure as a whole.

Example 2.6

The symmetric group S_3 has a three-element subgroup $\{e, (123), (132)\} = \{e, x, x^2\}$.

However, the natural numbers $\mathbb{N} = \{0, 1, 2, \dots\} \subset (\mathbb{Z}, +)$ are **not** a subgroup of the integers, since not every element has an inverse.

Example 2.7

The matrices with determinant 1, called the **special linear group**, form a subgroup of invertible matrices: $SL_n(\mathbb{R}) \subset GL_n(\mathbb{R})$.

The special linear group is closed under matrix multiplication because det(AB) = det(A) det(B).

2.3 Subgroups of the Integers

The integers $(\mathbb{Z}, +)$ have particularly nice subgroups.

```
Theorem 2.8
```

The subgroups of $(\mathbb{Z}, +)$ are $\{0\}, \mathbb{Z}, 2\mathbb{Z}, \cdots$.

^aWhere $n \in \mathbb{Z}$, $n\mathbb{Z}$ consists of the multiples of n, $\{nx : x \in \mathbb{Z}\}$.

This theorem demonstrates that the condition that a subset H of a group be a subgroup is quite strong, and requires quite a bit of structure from H.

Proof. First, $n\mathbb{Z}$ is in fact a subgroup.

- Closure. For $na, nb \in n\mathbb{Z}, na + nb = n(a + b)$.
- **Identity.** The additive identity is in $n\mathbb{Z}$ because $0 = n \cdot 0$.
- Inverse. For $na \in n\mathbb{Z}$, its inverse -na = n(-a) is also in $n\mathbb{Z}$.

Now, suppose $S \subset \mathbb{Z}$ is a subgroup. Then clearly the identity 0 is an element of S. If there are no more elements in S, then $S = \{0\}$ and the proof is complete. Otherwise, pick some nonzero $h \in S$. Without loss of generality, we assume that h > 0 (otherwise, since $-h \in S$ as well by the invertibility condition, take -h instead of h.) Thus, S contains at least one positive integer; let a be the smallest positive integer in S.

Then we claim that $S = a\mathbb{Z}$. If $a \in S$, then $a + a = 2a \in S$ by closure, which implies that $2a + a = 3a \in S$, and so on. Similarly, $-a \in S$ by inverses, and $-a + (-a) = -2a \in S$, and so on, which implies that $a\mathbb{Z} \subset S$.

Now, take any $n \in S$. By the Euclidean algorithm, n = aq + r for some $0 \le r < a$. From the subgroup properties, $n - aq = r \in S$ as well. Since a is the smallest positive integer in S, if r > 0, there would be a contradiction, so r = 0. Thus, n = aq, which is an element of $a\mathbb{Z}$. Therefore, $S \subset a\mathbb{Z}$.

From these two inclusions, $S = a\mathbb{Z}$ and the proof is complete.

Corollary 2.9

Given $a, b \in \mathbb{Z}$, consider $S = \{ai + bj : i, j \in \mathbb{Z}\}$. The subset S satisfies all the subgroup conditions, so by Theorem 2.8, there is some d such that $S = d\mathbb{Z}$. In fact, $d = \gcd(a, b)$.

Proof. Let $e = \gcd(a, b)$. Since $a \in S$, a = dk and $b = d\ell$ for some k, ℓ . Since the d from before divides a and b, it must also divide e, by definition of the greatest common divisor. Also, since $d \in S$, by the definition of S, d = ar + bs for some r and b. Since e divides a and b, e divides both ar and bs and therefore d.

Thus, d divides e, and e divides d, implying that e = d. So $S = \gcd(a, b)\mathbb{Z}$.

In particular, we have showed that gcd(a, b) can always be written in the form ar + bs for some r, s.

2.4 Cyclic Groups

Now, let's discuss a very important type of subgroup that connects back to the work we did with $(\mathbb{Z}, +)$.

Definition 2.10

Let G be a group, and take $g \in G$. Let the cyclic subgroup generated by g be

$$\langle g \rangle := {}^{a} \{ \cdots g^{-2}, g^{-1}, g^{0} = e, g^{1}, g^{2}, \cdots \} \leq G.$$

 a The := symbol is usually used by mathematicians to mean "is defined to be." Other people may use \equiv for the same purpose.

Since $g^a \cdot g^b = g^{a+b}$, the exponents of the elements of a cyclic subgroup will have a related group structure to $(\mathbb{Z}, +)$.

Example 2.11

The identity element generates the trivial subgroup $\{e\} = \langle e \rangle$ of any group G.

There are also nontrivial cyclic subgroups.

Example 2.12

In S_3 , $\langle (123) \rangle = \{e, (123), (132)\}.$

Evidently, a cyclic subgroup of any finite group must also be finite.

Example 2.13

Let \mathbb{C}^{\times} be the group of nonzero complex numbers under multiplication. Then $2 \in \mathbb{C}$ will generate

$$\langle 2 \rangle = \{ \cdots, 1/4, 1/2, 1, 2, 4, \cdots \}$$

On the other hand, $i \in \mathbb{C}$ will generate

$$\langle i \rangle = \{1, i, -1, -i\}.$$

This example shows that a cyclic subgroup of an infinite group can be either infinite or finite.¹⁰

¹⁰Can you work out the cases for which $g \in \mathbb{C}$ the cyclic subgroup of \mathbb{C}^{\times} is finite or infinite?

Guiding Question

What does a cyclic subgroup look like? Can they be classified?

Theorem 2.14

Let $S = \{n \in \mathbb{Z} : g^n = e\}$. Then S is a subgroup of \mathbb{Z} , so $S = d\mathbb{Z}$ or $S = \{0\}$, leading to two cases:

- If $S = \{0\}$, then $\langle g \rangle$ is infinite and all the g^k are distinct.
- If $S = d\mathbb{Z}$, then $\langle g \rangle = \{e, g, g^2, \dots, g^{d-1}\} \subset G$, which is finite.

Proof. First, S must be shown to actually be a subgroup of \mathbb{Z} .

- **Identity.** The identity $0 \in S$ because $g^0 = e$.
- Closure. If $a, b \in S$, then $g^a = g^b = e$, so $g^{a+b} = g^a g^b = e \cdot e = e$, so $a+b \in S$.
- Inverse. If $a \in S$, then $g^{-a} = (g^a)^{-1} = e^{-1} = e$, so $a \in S$.

Now, consider the first case. If $g^a = g^b$ for any a, b, then multiplying on right by g^{-b} gives $g^a \cdot g^{-b} = g^{a-b} = e$. Thus, $a - b \in S$, and if $S = \{0\}$, then a = b. So any two powers of g can only be equal if they have the same exponent, and thus all the g^i are distinct and the cyclic group is infinite.

Consider the second case where $S = d\mathbb{Z}$. Given any $n \in \mathbb{Z}$, n = dq + r for $0 \le r < d$ by the Euclidean algorithm. Then $g^n = g^{dq} \cdot g^r = g^r$, which is in $\{e, g, g^2, \cdots, g^{d-1}\}$.

Definition 2.15

So if d = 0, then $\langle g \rangle$ is infinite; we say that g has **infinite order**. Otherwise, if $d \neq 0$, then $|\langle g \rangle| = d$ and g has **order** d.

It is also possible to consider more than one element g.

Definition 2.16

Given a subset $T \subset G$, the subgroup generated by T is

$$\langle T \rangle := \{ t_1^{e_1} \cdots t_n^{e_n} \mid t_i \in T, e_i \in \mathbb{Z} \}.$$

Essentially, $\langle T \rangle$ consists of all the possible products of elements in T. For example, if $T = \{t, n\}$, then

$$\langle T \rangle = \{ \cdots, t^2 n^{-3} t^4, n^5 t^{-1}, \cdots \}.$$

Definition 2.17

If $\langle T \rangle = G$, then T generates G.

 a Given a group G, what is the smallest set that generates it? Try thinking about this with some of the examples we've seen in class!

Example 2.18

The set $\{(123), (12)\}$ generates S_3 .

Example 2.19

The invertible matrices $GL_n(\mathbb{R})$ are generated by elementary matrices^a.

^aThe matrices giving row-reduction operations.