INFINITY CATEGORIES

LECTURER: PRAMOD ACHAR, TYPESETTER: MICHAŁ MRUGAŁA

§1. SIMPLICIAL SETS

Definition. — The **simplex category** Δ is the category of

- finite non-empty totally ordered sets
- order-preserving maps.

Notation. —
$$[n] = \{0 < 1 < 2 < \cdots < n\} \text{ for } n \in \mathbb{Z}_{>0}.$$

Every object in Δ is (uniquely) isomorphic to some [n].

Definition. — A **simplicial set** is a functor

$$\mathscr{S}: \Delta^{\mathsf{op}} \longrightarrow \mathsf{Sets}$$

Notation. — $\mathcal{S}_n := \mathcal{S}([n])$, call this the **set of** *n***-simplices** of \mathcal{S} . 0-simplices are called **vertices**, 1-simplices are called edges.

Example 1.0.1. — Let *C* be a set. Let $\underline{C} : \Delta^{op} \to \mathsf{Sets}$ be the constant functor:

$$\underline{C}_n = C \quad \forall n,$$

$$\underline{C}(\alpha) = \mathrm{id} \quad \forall \alpha : [m] \longrightarrow [n] \text{ in } \Delta.$$

This is called a **discrete simplicial set**.

Definition. — Let $\mathscr S$ be a simplicial set. Given $\alpha : [n] \to [n-1]$ we get $\mathscr S(\alpha) : \mathscr S_{n-1} \to \mathscr S_n$. The *n*-simplices in the eimage are called **degenerate** simplices, i.e. σ is degenerate if there is an α such that $\sigma \in \operatorname{im}(\mathscr{S}(\alpha))$.

Lemma 1.0.1. — A simplicial set is discrete if and only if for all n > 1 all n-simplices are degenerate.

Exercise. — Prove it.

Example 1.0.2. — Let (P, \geq) be a poset. Define a simplicial set $N(P, \leq)$ called the **nerve** of (P, \leq) by

$$N(P, \leq)_k = \{ \text{chains } p_0 \leq p_1 \leq \cdots \leq p_k : p_i \in P \}$$

where a chain is a totally ordered subset.

Exercise. — Finish the definition. Which simplices are degenerate?

Example 1.0.3 ("Standard n-simplex"). — The standard n-simplex is

$$\Delta^n := N([n]).$$

(Pictures)

Note. — For $j \in [n]$, we get a subsimplicial set

$$N([n] \setminus \{j\}) \subset \Delta^n$$

isomorphic to Δ^{n-1} called the j^{th} **face** of Δ^n . (Picture)

Example 1.0.4 (Horns). — Let $n \ge 0$ and $0 \le j \le n$, define the **horn**

subsimplicial set of
$$\Delta^n = N([n])$$

 $\Lambda^n_j := \text{consisting of chains } p_0 \leq p_1 \leq \cdots \leq p_k \text{ (Pictures)}$
such that $\{p_0, \dots, p_k\} \not\supset [n] \setminus \{j\}.$

Example 1.0.5 ((n-1)**-sphere** $\partial \Delta^n$ **).** — We define the (n-1)**-sphere**

$$\partial \Delta^n := \begin{array}{c} ext{subsimplicial set of } \Delta^n \\ ext{chains } p_0 \leq \cdots \leq p_k \text{ such that } \{p_0 \leq \cdots \leq p_k\} \neq [n] \end{array}$$

Example 1.0.6 (Products). — Let \mathscr{S} , \mathscr{T} be simplicial sets. We define their **product** $\mathscr{S} \times \mathscr{T}$ as

$$(\mathscr{S} \times \mathscr{T})_k = \mathscr{S}_k \times \mathscr{T}_k.$$

(Picture)

Example 1.0.7. — Let C be an ordinary category. We define its **nerve** N(C) as

$$N(\mathsf{C})_k := \left\{ \begin{array}{c} \text{composable sequences of morphisms} \\ X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} X_2 \to \dots \xrightarrow{f_k} X_k \end{array} \right\}.$$

Example 1.0.8. — Let *X* be a topological space. The **singular simplicial set** of *X* is defined as

$$\operatorname{Sing}(X)_k = \{ \operatorname{continuous maps} |\Delta^k| \longrightarrow X \},$$

where $|\Delta^k|$ is the standard k-simplex

$$|\Delta^k| = \left\{ (x_0, \dots, x_k) \in \mathbf{R}^{k+1} \middle| x_i \ge 0, \sum x_i = 1 \right\}.$$

Exercise. — What does this do to the morphisms in Δ ?

Definition. — A **Kan complex** is a simplicial set *X* such that for every diagram

we can fill the dashed arrow. This is called an **extension problem**. If the arrow exists we say that the extension problem **admits a solution**.

Daniel Kan discovered Kan complexes in 1958. The *key fact* is that Sing(X) is a Kan complex. The theme from 1958 to today is that Kan complexes are a "combinatorial model" for algebraic topology which allows us to do homotopy theory.

Definition. — Let X be a Kan complex and $\mathscr S$ be any simplicial set. Two maps $f,g:\mathscr S\to X$ are said to be **homotopic** if there exists a map $H:\mathscr S\times\Delta^1\to X$ such that

$$H|_{\mathcal{S}\times\{0\}}=f,\quad H|_{\mathcal{S}\times\{1\}}=g.$$

Lemma 1.0.2. — This is an equivalence relation.

Proof. Omitted, tricky for an exercise. This requires *X* to be a Kan complex.

Definition. — Let X be a Kan complex and x_0 be a vertex of X. Let

$$\text{Loops}_{x_0} = \{\text{maps } \gamma : \Delta^n \longrightarrow X \text{ such that } \gamma|_{\partial \Delta^n} \text{ is the constant map to } x_0\}.$$

We say $\gamma, \gamma' \in \text{Loops}_{x_0}$ are **relatively homotopic** (**rel. homotopic**) if there exists $H: \Delta^n \times \Delta^1 \to X$ such that

$$H|_{\Delta^n \times \{0\}} = \gamma$$
, $H|_{\Delta^n \times \{1\}} = \gamma'$, $H|_{\partial \Delta^n \times \Delta^1} = \text{const. map to } x_0$.

Define

$$\pi_n(X, x_0) := \frac{\text{Loops}_{x_0}}{\text{rel. homotopy}}.$$

Fact. — For $n \ge 1$, $\pi_n(X, x_0)$ is a group. For $n \ge 2$, $\pi_n(X, x_0)$ is abelian.

Definition. — An ∞ -category (or quasi-category) is a simplicial set $\mathscr C$ such that any extension problem

with 0 < j < n (inner horns) admits a solution. (Picture) An ∞ -category is also called a **weak Kan complex**.

Lemma 1.0.3. — Let C be an ordinary category, then N(C) is an ∞ -category.

Digression: Let I^n be the simplicial set consisting of n consecutive 1-simplices (n-spine) (Picture). A naive alternative definition is: \mathscr{C} is an infinity category if every

has a solution. This is WRONG (but its wrongness is subtle), even though N(ord. cat.) satisfy this. There is a book by Markus Land "Introduction to ∞ -categories" which explores this. The definition of ∞ -categories was introduced by Boardman-Vogt in 1972. Joyal started generalizing results from ordinary category theory to ∞ -categories in 2006. Lurie is largely responsible for how well this notion is developed in modern literature.

Remark. — Having a unique solution to the lifting problem characterizes nerves of ordinary categories.

Definition. — Let \mathscr{C} be an ∞ -category. An **object** is a vertex. A **morphism** is an edge. An **identity morphism** is a degenerate edge. Say that h is a **composition** of g and f if there exists a 2-simplex such that (Picture).

Remark. — Compositions are NOT unique in ∞-categories.

Example 1.0.9 (∞ -categories). —

- 1) Topological spaces Top.
 - Objects are topological spaces.
 - Morphisms are continuous maps.
 - A 2-simplex is a (not necessarily commutative) diagram

and a homotopy $H: X_0 \times [0,1] \to X_2$ from gf to h.

• A 3-simplex is a diagram

with continuous maps $f_{ij}: X_i \to X_j$ for i < j, homotopies $T_{ijk}X_i \times [0,1] \to X_k$ from $f_{jk} \circ f_{ij}$ to f_{ik} , and $H: X_0 \times [0,1]^2 \to X_3$ (**higher homotopy**) such that $H|_{\text{bdry}}$ is

$$\begin{array}{ccc} (0,0) & \xrightarrow{T_{123}f_{01}} & (0,1) \\ f_{23}T_{012} \downarrow & & & \downarrow T_{013} \\ (1,0) & & & & \hline T_{023} & (1,0) \end{array}$$

- 2) The ∞-category of ordinary categories Cat_1 .
 - Objects are ordinary categories.
 - Morphisms are functors.
 - A 2-simplex is a (not necessarily commutative) diagram

and a natural isomorphism $T: g \circ f \xrightarrow{\sim} h$.

• A 3-simplex is a diagram

where f_{ij} are functors and T_{ijk} are natural isomorphism such that

$$\begin{array}{ccc}
& \xrightarrow{T_{123}f_{01}} & \bullet \\
f_{23}T_{012} \downarrow & & \downarrow T_{013} \\
& \xrightarrow{T_{1023}} & \bullet
\end{array}$$

commutes

A source of ∞-categories are

- ordinary categories with an equivalence relation on morphisms,
- ordinary categories with inverting some morphisms.