Math 254 Vector Calculus I - Theorems and Definitions

Conventions: We will denote vectors in bold print and O shall denote the origin.

Distance Formula in Three Dimensions: Let $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ be two points in three space. The distance between P_1 and P_2 is

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Equation of a Sphere: An equation of a sphere with center C(h, k, l) and radius r is

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2.$$

Rectangular Coordinates: This is the "normal" coordinate system. We shall denote these by (x, y, z).

Cylindrical Coordinates: The cylindrical coordinates are (r, θ, z) , where $x = r \cos \theta$, $y = r \sin \theta$, and z = z. Note that $r^2 = x^2 + y^2$ and $\tan \theta = \frac{y}{x}$.

Spherical Coordinates: The spherical coordinates are (ρ, θ, ϕ) , where $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, and $z = \rho \cos \phi$. Note that $\rho^2 = x^2 + y^2 + z^2$ and $0 \le \phi \le \pi$.

Scalar: A real number.

Vectors: A vector provides information of magnitude and direction. A two-dimensional vector is described by an ordered pair $\mathbf{a} = \langle a_1, a_2 \rangle$ and a three dimensional vector is described by an ordered pair $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$. The numbers a_1, a_2, a_3 are real numbers and are called the components of \mathbf{a} .

Vector Formed by Two Points: Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, we have

$$\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$
.

Position Vector: A position vector is a vector formed by the origin and some other point.

Length or Magnitude of a Vector: The length of the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

Vector Addition: Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$
.

Scalar Multiplication: If c is a scalar and $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, then the vector $c\mathbf{a}$ is defined by $c\mathbf{a} = \langle ca_1, ca_2, ca_3 \rangle$.

Properties of Vectors: If a, b, and c are vectors and c and d are scalars, then

1)
$$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$$
 2) $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$
3) $\mathbf{a} + \mathbf{0} = \mathbf{a}$ 4) $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$

5)
$$c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$$
 6) $(c+d)\mathbf{a} = c\mathbf{a} + d\mathbf{a}$
7) $(cd)\mathbf{a} = c(d\mathbf{a})$ 8) $1\mathbf{a} = \mathbf{a}$

7)
$$(cd)\mathbf{a} = c(d\mathbf{a})$$
 8) $1\mathbf{a} =$

Standard Basis: Let $\mathbf{i} = <1, 0, 0>$, $\mathbf{j} = <0, 1, 0>$, and $\mathbf{k} = <0, 0, 1>$.

Dot product: Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$. Then the dot product of \mathbf{a} and \mathbf{b} is the scalar given by $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$.

Properties of the Dot Product: If a, b, and c are vectors and c is a scalar, then

1)
$$\mathbf{a} \cdot \mathbf{a} = |a|^2$$
 2) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
3) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ 4) $(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$
5) $\mathbf{0} \cdot \mathbf{a} = 0$.

Theorem 13.3.3: If θ is the angle between the vectors \mathbf{a} and \mathbf{b} , then $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$.

Theorem 13.3.7: The vectors **a** and **b** are orthogonal (perpendicular) if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Projections: The vector projection of **b** onto **a** is

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\mathbf{a}.$$

Cross Product: Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$. Then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$
.

We may also formulate the cross product as the determinate of the matrix

$$\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}.$$

Theorem 13.4.5: The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

Theorem 13.4.6: If θ is the angle between \mathbf{a} and \mathbf{b} (so $0 \le \theta \le \pi$), then $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$.

Corollary 13.4.7: Two nonzero vectors \mathbf{a} and \mathbf{b} are parallel if and only if $\mathbf{a} \times \mathbf{b} = \mathbf{0}$.

Properties of the Cross Product: Let a, b, and c be vectors and c be a scalar. Then

1)
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

2)
$$(c\mathbf{a}) \times \mathbf{b} = c(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (c\mathbf{b})$$

3)
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

4)
$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$$

5)
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

$$6)\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

Geometric Properties of the Cross Product: The area of the parallelogram determined by \mathbf{a} and \mathbf{b} is $|\mathbf{a} \times \mathbf{b}|$. The volume of the parallelepiped determined by the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} is $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$.

Vector Equation of a Line: Let L be a line in three space and P(x, y, z) be an arbitrary point on L. Let $P_0(x_0, y_0, z_0)$ and $P_1(x_1, y_1, z_1)$ be any (fixed) points on L. Let $\mathbf{r}_0 = \overrightarrow{OP_0}$, $\mathbf{v} = \overrightarrow{P_0P_1}$, and $\mathbf{r} = \overrightarrow{OP}$. Then there is a scalar t such that $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$.

Parametric Equations: Let L, $\mathbf{v} = \langle a, b, c \rangle$, $\mathbf{r} = \langle x, y, z \rangle$, and $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$ be as above. Then the three scalar equations

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$

are the parametric equations of L. We can also write this in vector notation $\langle x, y, z \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc \rangle$.

Symmetric Equations: The symmetric equations of L (as above) are

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}.$$

Skew Lines: Two lines L_1 and L_2 in three space are skew lines if they are not parallel and do not intersect.

Vector Equation of a Plane: Let S be a plane in three space. Let $P_0(x_0, y_0, z_0)$ be a (fixed) point on the plane and \mathbf{n} be a vector orthogonal to S. Let P(x, y, z) be an arbitrary point in the plane, and let \mathbf{r}_0 and \mathbf{r} be the position vectors of P_0 and P, respectively. Then $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$.

Normal Vector: The orthogonal vector **n** above is called a normal vector to the plane.

Determination of a Normal Vector: Let P_0 , P_1 , and P_2 be distinct points on a plane. Let $\mathbf{a} = \overrightarrow{P_0P_1}$ and $\mathbf{b} = \overrightarrow{P_0P_2}$. Then $\mathbf{n} = \mathbf{a} \times \mathbf{b}$.

Scalar Equation of a Plane: Let $P_0(x_0, y_0, z_0)$ be a point on the plane S and $\mathbf{n} = \langle a, b, c \rangle$ be a normal vector to S. Then an equation of the plane S is

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0.$$

Level Curves: The level curves of a function f of two variables are the curves with equations f(x,y) = k where k is a constant (in the range of f). An example of a graph of the level curves is a topographic map.

Limits: Lets f be a function of two variables whose domain D includes points arbitrarily close to (a,b). Then we say that the limit of f(x,y) as (x,y) approaches (a,b) is L and we write

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if for every number $\varepsilon > 0$ there exists a corresponding number $\delta > 0$ such that $|f(x,y) - L| < \varepsilon$ whenever $(x,y) \in D$ and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$.

Failure Test for Limits: If $f(x,y) \to L_1$ as $(x,y) \to (a,b)$ along a path C_1 and $f(x,y) \to L_2$ as $(x,y) \to (a,b)$ along a path C_2 , where $L_1 \neq L_2$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist. Note that if $L_1 = L_2$ this would not guarantee that the limit exists. We need limits along *every* path to be equal to prove that the limit exists.

Continuity: A function f of two variables is called continuous at (a, b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b).$$

We say f is continuous on D if f is continuous at every point (a, b) in D.

Partial Derivatives: If f is a function of two variables, its partial derivatives are the functions f_x and f_y , defined by

$$\frac{\partial f}{\partial x}(x,y) = f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h},$$

$$\frac{\partial f}{\partial y}(x,y) = f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}.$$

For instance, to find f_x , regard y as a constant and differentiate f(x,y) with respect to x.

Clairaut's Theorem: Suppose f is defined on a disk D that contains the point (a, b). If the functions f_{xy} and f_{yx} are both continuous on D, then $f_{xy}(a, b) = f_{yx}(a, b)$.

Tangent Planes: Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

Theorem 8: If the partial derivatives f_x and f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Differentials: Let z = f(x, y). Then $dz = f_x(x, y)dx + f_y(x, y)dy = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$.

Chain Rule: Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and t. Then

$$\begin{array}{ll} \frac{\partial z}{\partial s} & = & \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}, \\ \frac{\partial z}{\partial t} & = & \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}. \end{array}$$

Implicit Differentiation: If F(x,y) = 0, then $dy/dx = -F_x/F_y$.

Directional Derivative: The directional derivative of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if the limit exists.

Gradient Vector: If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle.$$

The gradient vector evaluated at a certain point gives that direction and magnitude of steepest ascent.

How to Calculate a Directional Derivative (Theorem 3): If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u} = f_x(x,y)a + f_y(x,y)b.$$

Theorem 15: Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}}f(\mathbf{x})$ is $|\nabla f(\mathbf{x})|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{x})$.

Local Extreme Points: A function of two variables has a local maximum at (a,b) if $f(x,y) \leq f(a,b)$ when (x,y) is near (a,b). The number f(a,b) is called a local maximum value. If $f(x,y) \geq f(a,b)$ when (x,y) is near (a,b), then f(a,b) is a local minimum value.

Absolute Extreme Points: If the inequalities above hold for all points (x, y) in the domain of f, then f has an absolute maximum (or absolute minimum) at (a, b).

Theorem 2: If f has a local max or min at (a, b) and the first-order partial derivatives of f exist there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$. In this case we call (a, b) a critical point of f.

Second Derivative Test: Suppose the second partial derivatives of f are continuous on a disk with center (a,b), and suppose that $f_x(a,b) = 0$ and $f_y(a,b) = 0$. Let $D = D(a,b) = f_{xx}(a,b)f_{yy}(x,y) - [f_{xy}(a,b)]^2$. If

- (a) If D(a,b) > 0 and $f_{xx}(a,b) > 0$, then f(a,b) is a local min.
- (b) If D(a,b) > 0 and $f_{xx}(a,b) < 0$, then f(a,b) is a local max.
- (c) If D(a,b) < 0, then f(a,b) is a saddle point.

Extreme Value Theorem: If f is continuous on a closed, bounded set D in \mathbb{R}^2 , then f attains an absolute max value $f(x_1, y_1)$ and an absolute min value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.

Method of Lagrange Multipliers: To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k:

(a) Find all values of x, y, z, and λ such that

$$\nabla f(x, y, z) = \lambda \nabla g(z, y, z)$$
 and $g(x, y, z) = k$.

(b) Evaluate f at all the points (x, y, z) that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Double Integrals: The double integral of f over the rectangle R is

$$\int_{R} \int f(x,y) dA = \lim_{m,n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

if the limit exists.

Fubini's Theorem: If f is continuous on the rectangle $R = \{(x,y) | a \le x \le b, c \le y \le d\}$, then

$$\int_{B} \int f(x,y)dA = \int_{a}^{b} \int_{c}^{d} f(x,y)dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y)dx dy.$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integral exists.

Theorem 11: Let A(D) = area of a region D. If $m \leq f(x,y) \leq M$ for all (x,y) in D, then

$$mA(D) \le \int_D \int f(x,y) dA \le MA(D).$$

Change to Polar Coordinates in a Double Integral: If f is continuous on a polar rectangle (i.e. a piece of a circle) R given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$\int_{B} \int f(x,y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r dr d\theta.$$

Change to Sherical Coordinates in a Triple Integral: If f is continuous on a spherical regoin S, bounded by $0 \le a \le \rho \le b$, $0 \le \alpha \le \theta \le \beta \le 2\pi$, and $0 \le \mu \le \varphi \le \nu$ (see page one for definition of spherical coordinates), then

$$\int \int_{S} \int f(x,y,z) dV = \int_{a}^{b} \int_{\alpha}^{\beta} \int_{\mu}^{\nu} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^{2} \sin \varphi d\rho d\theta d\varphi.$$

Position Vector: The path of an object can be described as $\mathbf{r}(t) = \langle f(t), g(t) \rangle$. Then the velocity of the object is $\mathbf{r}'(t) = \mathbf{v}(t)$ and its acceleration is given by $\mathbf{r}''(t) = \mathbf{v}'(t) = \mathbf{a}(t)$.

Arc Length: Let s(t) = the length of the path traveled by a position vector $\mathbf{r}(t)$ from 0 to t. Then $\frac{ds}{dt}$ is the velocity of the particle. We have that

$$s = \int_0^t |r'(u)| du$$
 and thus $\frac{ds}{dt} = |\mathbf{r}'(t)|$

Unit Tangent Vector: Let $\mathbf{r}(t)$ be a position vector. Then the unit tangent vector of $\mathbf{r}(t)$ is

$$\mathbf{T} = \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}(t)|} = \frac{\mathbf{v}(t)}{|\mathbf{v}(t)|}.$$

Curvature Vector: Let $\mathbf{r}(t)$ be a position vector and s(t) be the length traveled by $\mathbf{r}(t)$. Then the curvature vector of $\mathbf{r}(t)$ is

$$\frac{d\mathbf{T}}{ds} = \frac{d\mathbf{T}}{dt}\frac{dt}{ds} = \frac{\mathbf{T}'(t)}{|\mathbf{v}(t)|}.$$

Define the curvature of $\mathbf{r}(t)$ as the magnitude of the curvature vector, i.e.

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{v}(t)|}.$$

Theorem A: Let $\mathbf{r}(t) = \langle f(t), g(t) \rangle$, x = f(t), and y = g(t). Then

$$\kappa = \frac{|x'y'' - y'x''|}{((x')^2 + (y')^2)^{3/2}}.$$

Unit Normal Vector: The principal unit normal vector N is given by

$$\mathbf{N} = \frac{d\mathbf{T}/ds}{|d\mathbf{T}/ds|} = \frac{1}{\kappa} \frac{d\mathbf{T}}{ds}.$$

Then $\mathbf{T} \cdot \mathbf{N} = 0$.

Components of Acceleration: We can express the acceleration vector $\mathbf{a}(t)$ in terms of \mathbf{T} and \mathbf{N} . We have that

$$\mathbf{a} = \frac{d^2s}{dt^2}\mathbf{T} + \left(\frac{ds}{dt}\right)^2 \kappa \mathbf{N} = a_T \mathbf{T} + a_N \mathbf{N}$$

which can also be written as

$$a_T = \mathbf{T} \cdot \mathbf{a} = \frac{\mathbf{r}' \cdot \mathbf{r}''}{|\mathbf{r}'|}$$
 and $a_N = |\mathbf{T} \times \mathbf{a}| = \frac{|\mathbf{r}' \times \mathbf{r}''|}{|\mathbf{r}'|}$.

Binormal Vector: The unit binormal vector is defined as $\mathbf{B} = \mathbf{T} \times \mathbf{N}$. Clearly \mathbf{B} is perpendicular to both \mathbf{T} and \mathbf{N} .