گزاش پروژه درس هوش مصنوعی

پروژه میوه فروشی

استاد درس: دکتر اکبری

علیرضا شفائی ۹۸۱۳۰۲۱

امیرمهدی ابوطالبی ۹۸۱۳۰۳۴

1.ObjectDetection

پروژه اول برنامه است ، این برنامه با استفاده از کتابخانه pixellib اشیاع درون یک شی را شناسایی میکند و میوه های آنها را جدا میکند .

برنامه اصلی و مدل اصلی است که با استفاده از الگوریتم cnn پیاده سازی شده است ، با کمک کتابخانه tensorflow و keras مدل cnn ساخته شده و تمامی جزئیات کد و توضیحات در فایل ژوپیتر قابل مشاهده است.

ورودى برنامه : يك آدرس تصوير ، تصوير ذخيره شده در پوشه برنامه و آدرس آن

خروجی :برنامه یک تصویر به عنوان خروجی تحویل میدهد که روی آن تمامی اشیا مشخص شده اند.

الگوریتم و توضیحات: ، این برنامه بسیار کوتاه است زیرا کتابخانه کاملی این کار را به خوبی انجام میدهد ، این کتاب خانه opencv استفاده میکند ، همچنین این برنامه از الگوریتم mask_rcnn برای تشخیص اشیا کمک میگیرد و به کمک آن میتواند ۸۰ نوع شی را شناسایی کند.

مدل mask_cnn_coco برای این برنامه استفاده شده است.

2.FruitDetection

برنامه اصلی و مدل اصلی است که با استفاده از الگوریتم cnn پیاده سازی شده است ، با کمک کتابخانه tensorflow و keras مدل cnn ساخته شده و تمامی جزئیات کد و توضیحات در فایل ژوپیتر قابل مشاهده است.

داده ها :از یک دیتا ست حاوی ۱۳۱ نوع میوه ۳۶۰ درجه مختلف برای ساخت مدل استفاده شده است.

ورودی برنامه : برنامه برای تست داده ورودی میپذیرد و میتوان با آنرا با استفاده از مدل train شده تست کرد

.

File loading:

برای بارگذاری فایل ها از متود های tenserflow استفاده شده است ، فایل ها به صورت بخش بخش وارد برنامه میشوند و داده

نام گذاری لیبل داده ها براساس نام پوشه های آنهاست ، تا استفاده از متود glob مسیر تمامی تصاویر ذخیره میشود و سپس با توجه به shape داده ها و batch_size آنها در حافظه برنامه بارگذاری میشوند. توضیحات بیشتر در مورد لود کردن داده ها و بهینه سازی سرعت برنامه در منابع آورده شده است.

Image preprocessing:

تمامی تصاویر در ابتدا به ماتریس هایی تبدیل میشوند که در هر درایه ۳ عدد در بازه ۰ تا ۲۵۵ وجود دارد ، اندازه ماتریس دقیقا اندازه تصویر است .

سپس تصاویر استاندارد میشوند و تمامی اعداد ذخیره شده بین ۰ تا ۱ قرار میگیرند ، این کار با یک تقسیم و چرخش روی کل داده صورت میگیرد .

Overfitting and accuracy:

اگر با داده های خام ساختن مدل و train آن شروع شود ، ممکن است دقت کافی وجود نداشته باشد ، با نتایج تست شده قبلی و نمودار ها فهمیدیم که این دقت پایین است.

همچنین اگر feature های زیادی استخراج شود و بیش از اندازه از داده های train پی روی کنیم طبیعتا overfit پی میدهد :نتایج تست های قبلی :

برنامه برای جلوگیری از این مشکلات و افزایش دقت برای ساخت مدل ، از data agumtation و dropout استفاده کرده است.

از داده های موجود در دیتاست train دوباره داده های دیگری را تولید کرده ایم که هم به الگوریتم cnn کمک میکند و هم به بهتر شدن دقت مدل ما و بیشتر شدن دیتا ورودی :

که این عملیات شامل چرخش ، بزرگنمایی ، آینه کردن است.

همچنین برای بهتر کردن عملکرد مدل لایه های dropout و flatten اضافه شده اند ، توضیحات مربوط به این دولایه نیز در منابع به صورت کامل وجود دارد.

خروجی :برنامه یک مدل برای تشخیص نوع میوه (۱۳۱نوع میوه مختلف) میسازد ، این مدل از الگوریتم cnn خروجی :برنامه یک مدل برای تشخیص نوع العقاده میکند و با ورود داده تست میتواند نوع label آنرا مشخص کند .

الگوریتم و توضیحات: توضیحات الگوریتم به صورت کامل در ویدیو و پاور گفته شده است ، پارامتر ها و تمامی ویژگی های دیگر توابع ، کتاب خانه های استفاده شده ، توضیحات کد و نتایج خروجی به صورت کامل در فایل موجود است.

3. RottenOrFreshFruitDetection

برنامه سوم برای یکی از چالش های اصلی مسئله است که با استفاده از الگوریتم cnn پیاده سازی شده است ، با کمک کتابخانه tensorflow و keras مدل cnn ساخته شده و تمامی جزئیات کد و توضیحات در فایل ژوپیتر قابل مشاهده است.

داده ها : از یک دیتا ست fresh and rotten fruit برای ساختن مدل استفاده شده است .

ورودی برنامه : اندازه تصاویر ، برنامه برای تست داده ورودی میپذیرد و میتوان با آنرا با استفاده از مدل train شده تست کرد .

خروجی :لیبل داده های مشخص شده پس از طبقه بندی و بررسی داده تست ، به عنوان خروجی نمایش داده میشود .

خروجی برنامه ۶ حالت مختلف است ، آیا موز سالم یا فاسد است ، آیا سیب سالم یا فاسد است و آیا پرتقال سالم یا فاسد است.

الگوریتم و توضیحات: تمامی بخش های این برنامه مانند بخش های برنامه قبلی است ، با این تفاوت که برای ساخت مدل این برنامه ، خودمان از ابتدا مدل را نساختیم و از transfer learning استفاده کرده ایم ، با استفاده از ResNet50 که یک مدل برای پردازش تصویر است از کتابخانه keras توانسته ایم به دقت بسیار

خوبی برای داده هایمان دست یابیم ، توضیحات کامل transfer learning و متود های آن در منابع آورده شده است .

4.Client

یک برنامه کلاینت نهایی باید برای پروژه ساخته شود ، تا به عنوان ورودی آدرس تصویر را دریافت کند ، سپس از تشخیص اشیاه با اجرای برنامه اول روی آن تصاویر میوه ها را استخراج کند ، آنها را در مسیر مشخصی ذخیره میکند و سپس برنامه دوم برای تشخیص نوع میوه ها اجرا میشود ، مدل ساخته شده است و آماده test است ، با خواندن تصاویر در مسیر ذخیره شده انها توسط مدل test میشوند و label آنها مشخص میشود ، سپس این اطلاعات به کاربر نمایش داده میشود ، که از هر میوه چه تعدادی وجود دارد و هر تصویر مربوط به چه میوه ای است ، البته برنامه با اجرای برنامه سوم ، میتواند سالم بودن و یا فاسد بودن میوه را به کاربر اطلاع دهد . مشکل اصلی دیتا ست برنامه آخر است ، که تنها برای ۳ میوه وجود دارد ، برای تشخیص سالم بودن و یا خرابی میوه های دیگر ، به دیتاست دیگر با داده های بیشتر نیاز است .

۵.منابع

pixellib

keras.transferclasification modules

imageloading.keras

imageclassificationtensorflow

transfer_learning

cnntensorflow

<u>cnn</u>

data_augmentation

با تشكر از استاد اكبرى