Chapter 2

Homework problems

Problem 2.1 A transmission line of length l connects a load to a sinusoidal voltage source with an oscillation frequency f. Assuming the velocity of wave propagation on the line is c, for which of the following situations is it reasonable to ignore the presence of the transmission line in the solution of the circuit:

```
(a) l = 20 \text{ cm}, f = 20 \text{ kHz},
```

- **(b)** l = 50 km, f = 60 Hz,
- (c) l = 20 cm, f = 600 MHz,
- (d) l = 1 mm, f = 100 GHz.

Problem 2.3 A 1-GHz parallel-plate transmission line consists of 1.2-cm-wide copper strips separated by a 0.15-cm-thick layer of polystyrene. Appendix B gives $\mu_c = \mu_0 = 4\pi \times 10^{-7}$ (H/m) and $\sigma_c = 5.8 \times 10^7$ (S/m) for copper, and $\epsilon_r = 2.6$ for polystyrene. Use Table 2-1 to determine the line parameters of the transmission line. Assume $\mu = \mu_0$ and $\sigma \simeq 0$ for polystyrene.

Problem 2.7 For a distortionless line with $Z_0 = 50 \ \Omega$, $\alpha = 20 \ (\text{mNp/m})$, $u_p = 2.5 \times 10^8 \ (\text{m/s})$, find the line parameters and λ at 100 MHz.

Problem 2.9 A transmission line operating at 125 MHz has $Z_0 = 40 \Omega$, $\alpha = 0.02$ (Np/m), and $\beta = 0.75$ rad/m. Find the line parameters R', L', G', and C'.

Problem 2.11 Polyethylene with $\varepsilon_r = 2.25$ is used as the insulating material in a lossless coaxial line with characteristic impedance of 50 Ω . The radius of the inner conductor is 1.2 mm.

- (a) What is the radius of the outer conductor?
- (b) What is the phase velocity of the line?

Problem 2.13 On a 150- Ω lossless transmission line, the following observations were noted: distance of first voltage minimum from the load = 3 cm; distance of first voltage maximum from the load = 9 cm; S = 3. Find Z_L .

Problem 2.15 A load with impedance $Z_L = (25 - j50) \Omega$ is to be connected to a lossless transmission line with characteristic impedance Z_0 , with Z_0 chosen such that the standing-wave ratio is the smallest possible. What should Z_0 be?

Problem 2.16 A 50- Ω lossless line terminated in a purely resistive load has a voltage standing wave ratio of 3. Find all possible values of $Z_{\rm L}$.

Exercise problems (for exercise only)

Problem 2.4 Show that the transmission line model shown in Fig. 2-37 (P2.4) yields the same telegrapher's equations given by Eqs. (2.14) and (2.16).

Problem 2.6 In addition to not dissipating power, a lossless line has two important features: (1) it is dispertionless (μ_p is independent of frequency) and (2) its characteristic impedance Z_0 is purely real. Sometimes, it is not possible to design a transmission line such that $R' \ll \omega L'$ and $G' \ll \omega C'$, but it is possible to choose the dimensions of the line and its material properties so as to satisfy the condition

$$R'C' = L'G'$$
 (distortionless line).

Such a line is called a *distortionless* line because despite the fact that it is not lossless, it does nonetheless possess the previously mentioned features of the loss line. Show that for a distortionless line,

$$\alpha = \mathit{R}' \sqrt{\frac{\mathit{C}'}{\mathit{L}'}} = \sqrt{\mathit{R}'\mathit{G}'} \,, \qquad \beta = \omega \sqrt{\mathit{L}'\mathit{C}'} \,, \qquad \mathit{Z}_0 = \sqrt{\frac{\mathit{L}'}{\mathit{C}'}} \,.$$

Problem 2.14 Using a slotted line, the following results were obtained: distance of first minimum from the load = 4 cm; distance of second minimum from the load = 14 cm, voltage standing-wave ratio = 1.5. If the line is lossless and $Z_0 = 50 \Omega$, find the load impedance.

Problem 2.15 A load with impedance $Z_L = (25 - j50) \Omega$ is to be connected to a lossless transmission line with characteristic impedance Z_0 , with Z_0 chosen such that the standing-wave ratio is the smallest possible. What should Z_0 be?