

Details

Ver. Rel. No.	Release Date	Prepared By	Reviewed By	To Be Approved	Remarks/Revision Details
1.0	18/02/2022	Kavin Vignes J K 40020494	C Programming on Multiple Platforms		
1.0	18/02/2022	Kavin Vignes J K 40020494	Essentials of Embedded System		
1.0	18/02/2022	Kavin Vignes J K 40020494	Applied SDLC and Software Testing		
1.0	18/02/2022	Kavin Vignes J K 40020494	OOPS with Python		
1.0	18/02/2022	Kavin Vignes J K 40020494	Applied Model Based Design Module		
1.0	18/02/2022	Kavin Vignes J K 40020494	Mastering Microcontrollers with Embedded Driver Development		
1.0	18/02/2022	Kavin Vignes J K 40020494	Module Overview of Automotive Systems		
1.0	18/02/2022	Kavin Vignes J K 40020494	Applied Control Systems and Vehicle Dynamics		
1.0	18/02/2022	Kavin Vignes J K 40020494	Classic Autosar Basic to Intermediate		

Contents

List of Figures	5
Miniproject – 1: Bank Management System [Individual]	6
Modules:	
Requirements	6
High Level Requirements	7
Low Level Requirements	7
Design	8
Test Plan	9
High Level Test Plan	9
Low Level Test Plan	9
Implementation and Summary	10
Git Link:	10
Git Dashboard	10
Summary	11
Git Inspector Summary	11
Miniproject 2 – Embedded Basic Calculator [Individual]	12
Modules	12
Requirements	12
High Level Requirements	13
Low Level Requirements	13
Design	14
Test Plan	16
High Level Test Plan	16
Low Level Test Plan	17
Implementation and Summary	17
Git Link:	17
Git Dashboard	17
Miniproject 3 – Chatter Bot [Team]	18
Modules	18
Requirements	18
High Level Requirements	19
Low Level Requirements	19
Design	19
Test Plan	21
High Level Test Plan	21
Low Level Test Plan	21

Implementation and Summary	22
Git Link:	22
Individual Contribution and Highlights	22
Summary	22
Miniproject 4 – Attendance Automation [Team]	23
Modules	23
Requirements	23
High Level Requirements	23
Low Level Requirements	23
Test Plan	24
High Level Test Plan	24
Low Level Test Plan	24
Implementation and Summary	25
Git Link:	25
Git Dashboard	25
Git Inspector Summary	25
Individual Contribution and Highlights	26
Miniproject 5 – Kia Project [Team]	27
Modules	27
Requirements	27
Design	27
Implementation and Summary	28
Git Link:	28
Individual Contribution and Highlights	28
Miniproject 6 – Wiper Control [Team]	29
Modules	29
Requirements	29
High Level Requirements	29
Low Level Requirements	30
Design	30
Test Plan	31
High Level Test Plan	31
Low Level Test Plan	32
Implementation and Summary	32
Git Link:	32
Individual Contribution and Highlights	32
Miniproject 7 – Jeep Compass [Team]	33

Modules	33
Requirements	33
Design	34
Implementation and Summary	35
Git Link:	
Individual Contribution and Highlights	
Miniproject 8 – EV Car [Team]	
Modules	36
Requirements	36
Implementation and Summary	38
Individual Contribution and Highlights	
Miniproject 9 – Power Window [Individual]	
Modules	39
Requirements	
Design	39
Implementation and Summary	40
Git Link:	
Individual Contribution and Highlights	
List of Figures	
List of Figures Figure 1 Behaviour Diagram	Q
Figure 2 Structure Diagram	
Figure 3 Git Dashboard	
Figure 4 Git Inspector Summary	
Figure 5 Behaviour Diagram	
Figure 6 Structure Diagram	
Figure 7 Block Diagram.	
Figure 8 Simulation.	
Figure 9 Git Dashboard	
Figure 10 Behaviour Diagram	
Figure 11 User Flow Diagram	
Figure 12 Structure Diagram	
Figure 13 Git Dashboard	
Figure 14 Git Inspector Summary	
Figure 15 Simulation.	
Figure 16 Structure Diagram	
Figure 17 Behaviour Diagram	
Figure 18 Structure Diagram	
Figure 19 VFR Diagram	39

Miniproject – 1: Bank Management System [Individual]

Modules:

- 1. C Programming
- 2. Git

Requirements

4W's and 1 H's

Why:

- 1. The interface is user-friendly and simple to navigate.
- 2. Customers can perform most banking operations without or with minimal help.

Where:

1. It can be used by a person from anywhere.

Who:

- 1. An individual person only can get access to it.
- 2. Small/Medium size bank can use this application.

When:

- 1. It can be used at any time depend upon the person's preferences.
- 2. This problem emerges when the customer base of bank increased rapidly, and multiple transactions take place simultaneously.

How:

- 1. Entering the credentials, you can get access to the banking system.
- 2. It will help banks to keep their customer account updated and will also enable customer to make a withdrawal.

High Level Requirements

ID	Description	Category	Status
HLR_1	Bank Management System	Technical	Implemented

Low Level Requirements

ID	Description	HLR ID	Status			
LLR_1	Login System Admin	HLR_1	Implemented			
LLR_1.1	Login System Customer	HLR_1	Implemented			
LLR_2	Account Management System	HLR_1	Implemented			
LLR_2.1	Withdrawal mechanism	HLR_1	Implemented			
LLR_2.2	Calculator	HLR_1	Implemented			

Design

Figure 1 Behaviour Diagram

Figure 2 Structure Diagram

Test Plan High Level Test Plan

Test ID	Description	Exp I/P	Exp O/P	Actual Out	Type of Test
HLTP_1	Check the calculator	Two number	One Result	One Result	Requirement Based
HLTP_2	Check the account operations	nil	nil	nil	Requirement Based
HLTP_3	Check the Login credentials	Username & Password	True/False	True/False	Scenario Based

Low Level Test Plan

Test ID	Description	Exp I/P	Exp O/P	Actual Out	Type of Test
LLTP_1	Addition	1,2	3	3	Requirement Based
LLTP_2	Subtraction	5,1	4	4	Requirement Based
LLTP_3	Multiplication	6,3	18	18	Requirement Based
LLTP_4	Division	4,2	2	2	Requirement Based
LLTP_5	Power	2,3	8	8	Requirement Based
LLTP_6	Factorial	5	120	120	Requirement Based
LLTP_7	Create account	Data	create a new account	Success	Requirement Based
LLTP_8	Update account	Data	update the selected data	Success	Requirement Based

Test ID	Description	Exp I/P	Exp O/P	Actual Out	Type of Test
LLTP_9	Delete account	Data	Delete the account	Success	Requirement Based
LLTP_10	Withdrawal Money	Data	Update Balance	Success	Requirement Based
LLTP_11	Login Admin	Username & Password	True/False	True/False	Scenario Based
LLTP_10	Login Customer	Account number	True/False	True/False	Scenario Based

Implementation and Summary

Git Link:

Link: https://github.com/kavinvignes/M1_Application_Bank_Management_System

Git Dashboard

Figure 3 Git Dashboard

Summary

Git Inspector Summary

23					
24	Author	Commits	Insertions	Deletions	% of changes
25	Kavin Vignes J K	188	7472	1649	99.65
26	kavinvignes	2	16	16	0.35
27					
28	Below are the number of m	rows from ea	ich author that	have survived	and are still
29	intact in the current rev	/ision:			
30					
31	Author	Rows	Stability	Age	% in comments
32	Kavin Vignes J K	5217	69.8	12.4	17.23
33	kavinvignes	560	3500.0	11.9	0.00
34					

Figure 4 Git Inspector Summary

Miniproject 2 – Embedded Basic Calculator [Individual]

Modules

- 1. C Programming
- 2. Embedded System
- 3. SimulIDE
- 4. Git

Requirements

4W's and 1 H's

Why:

- 1. To perform the basic numerical operations.
- 2. To reduce the manpower.

Where:

- 1. The calculator can be operated from anywhere.
- 2. It can be used in our daily lives.

Who:

- 1. Can be used by anyone is required to solve a numerical operation.
- 2. Some provisional stores are using calculators for getting the accurate total amount.

When:

- 1. Anyone who have to solve a basic calculation.
- 2. A person needs do a basic calculation in a fraction of second.

How:

- 1. Giving different inputs we can find their desired output.
- 2. The results of the calculators will be accurate than the manual calculations.

High Level Requirements

ID	Description	Status
HLR_1	Control Unit	Implemented
HLR_2	Input Unit	Implemented
HLR_3	Output Unit	Implemented
HLR_4	Software Design	Implemented

Low Level Requirements

ID	Description	HLR ID	Status
LLR_1	AVR Atmega 328 Microcontroller	HLR_1	Implemented
LLR_2	4*4 Keypad Interface	HLR_2	Implemented
LLR_3	16*2 LCD Interface	HLR_3	Implemented
LLR_4	Visual Studio Code & Simulide	HLR_4	Implemented

Design

Figure 5 Behaviour Diagram

Figure 6 Structure Diagram

Figure 7 Block Diagram

Figure 8 Simulation

Test Plan

High Level Test Plan

Test ID	Description	Exp I/P	Ехр О/Р	Actual Out	Type of Test
HLTP_1	Power ON	Power	Display ON	SUCCESS	Requirement Based
HLTP_2	User Input	Input Value	Return Output to the User	SUCCESS	Scenario Based
HLTP_3	Return Output from Input	Inputted Value by User	Shows Output in Display	SUCCESS	Requirement Based

Low Level Test Plan

Test ID	Description	Exp I/P	Exp O/P	Actual Out	Type of Test
LLTP_01	'+' operation	(40, 50)	90	90	Requirement Based
LLTP_02	'-' operation	(70, 20)	50	50	Requirement Based
LLTP_03	'*' operation	(5, 5)	25	25	Requirement Based
LLTP_04	'/' operation	(24, 2)	12	12	Requirement Based

Implementation and Summary

Git Link:

Link: https://github.com/kavinvignes/M2-Embedded-BasicCalculator

Git Dashboard

Figure 9 Git Dashboard

Miniproject 3 – Chatter Bot [Team]

Modules

- 1. SDLC
- 2. Git

Requirements

4W's and 1 H's

Why:

- 1. Software application used to conduct an online chat conversation via text or speech.
- 2. A Computer program which simulates a natural human conversation.

Where:

- 1. Retail and E-Commerce industries.
- 2. Used in Healthcare.

Who

- 1. Clients who need assistance.
- 2. Peoples who need support.

When:

- 1. To Provide faster and cheaper assistance to client.
- 2. To be Increasingly comfortable with Technology.

How:

- 1. Customers who are dealing with their problems late at night, chatbot are blessing as they can work around the clock.
- 2. During conversations with the customers, chat box provides a bridge between sales and customer team.

High Level Requirements

ID	Description	Category	Status
HLR_1	Chatterbot	Technical	Implemented

Low Level Requirements

ID	Description	HLR ID	Status
LLR_1	Process input	HLR_1	Implemented
LLR_2	Logic adapter 1	HLR_1	Implemented
LLR_3	Logic adapter 2	HLR_1	Implemented

Design

Figure 10 Behaviour Diagram

Figure 11 User Flow Diagram

Figure 12 Structure Diagram

Test Plan High Level Test Plan

Test ID	Description	Exp I/P	Exp O/P	Actual Out	Type Of Test
HLTP_1	Get input	User input	Return user input to the Process input	SUCCESS	Requirement Based
HLTP_2	Read input	Process input	Return a response related to the given User input	SUCCESS	Requirement Based
HLTP_3	Get output	Process input	Return the response from the Process input to the user	SUCCESS	Requirement Based

Low Level Test Plan

Test ID	HLTP ID	Descriptio n	Exp IN	Exp OUT	Actual Out	Type Of Test
LLTP_1	HLTP_1	The inputs can be given only by using console, API, speech recognition, etc.	User input	SUCCESS	SUCCESS	Requirement Based
LLTP_2	HLTP_2	Select a known statement that most closely matches the given User input	Process input	SUCCESS	SUCCESS	Requirement Based
LLTP_2.	HLTP_2	Return a known response to	Process input	SUCCESS	SUCCESS	Requirement Based

Test ID	HLTP ID	Descriptio n	Exp IN	Exp OUT	Actual Out	Type Of Test
		the selected match and a confidence value based on the matching				
LLTP_3	HLTP_3	Return the response to the user only by using console, API, speech recognition, etc.	User input	SUCCESS	SUCCESS	Requirement Based

Implementation and Summary

Git Link:

Link: https://github.com/GENESIS2021Q1/Applied_SDLC-Dec_Team_1

Individual Contribution and Highlights

Summary

- 1. Implementation
- 2. Testing

Role in Project Team

- 1. Implementation: Implemented a python code for test file.
- 2. Testing: Tested the Chatter Bot using spell checking.

Miniproject 4 – Attendance Automation [Team]

Modules

- 1. Python
- 2. Git

Requirements

High Level Requirements

ID	Description	Status
HLR_1	Attendance Status	Implemented
HLR_2	User Details	Implemented
HLR_3	User load Sheet	Implemented
HLR_4	Output File Generation	Implemented

Low Level Requirements

ID	Description	HLR ID	Status
LLR_1	User can get the attendance status	HLR_1	Implemented
LLR_2	User can enter status input to get the attendance status	HLR_1	Implemented
LLR_3	User can get the user details	HLR_2	Implemented
LLR_4	User will get the details after the successful attendance	HLR_2	Implemented
LLR_5	User can load different sheets	HLR_3	Implemented
LLR_6	User can modify the existing sheets as it is dynamic	HLR_3	Implemented
LLR_7	Output file gets generated	HLR_4	Implemented

Test Plan High Level Test Plan

ID	Description	Expected I/P	Expected O/P	Actual O/P	Type Of Test
HLTP_1	Attendance Status	User Input	SUCCESS	SUCCESS	Requirement Based
HLTP_2	User details	User Input	SUCCESS	SUCCESS	Requirement Based
HLTP_3	User load sheet	User Input	SUCCESS	SUCCESS	Requirement Based
HLTP_4	Output file generation	User Input	SUCCESS	SUCCESS	Requirement Based

Low Level Test Plan

ID	HLTP ID	Description	Expected I/P	Actual O/P	Type Of Test
LLTP_1	HLTP_1	User can get Attendance Status	SUCCESS	SUCCESS	Requirement Based
LLTP_2	HLTP_1	User can enter Status input to get the Attendance Status	SUCCESS	SUCCESS	Requirement Based
LLTP_3	HLTP_2	User can get the User details	SUCCESS	SUCCESS	Requirement Based
LLTP_4	HLTP_2	User will get the details after the successful attendance	SUCCESS	SUCCESS	Requirement Based
LLTP_5	HLTP_3	User can load different sheets	SUCCESS	SUCCESS	Requirement Based
LLTP_6	HLTP_3	User can also modify the existing sheets as it is dynamic	SUCCESS	SUCCESS	Requirement Based

ID	HLTP ID	Description	Expected I/P	Actual O/P	Type Of Test
LLTP_7	HLTP_4	Output file gets generated	SUCCESS	SUCCESS	Requirement Based

Implementation and Summary

Git Link:

Link: https://github.com/kavinvignes/GENESIS2021-OOPS_Python-Attendance_Automation-Team_13

Git Dashboard

Figure 13 Git Dashboard

Git Inspector Summary

Figure 14 Git Inspector Summary

Individual Contribution and Highlights

- 1. Improved implementation of Python Programming
- 2. Source code management using GitHub

Role in Project Team

- 1. Programmer: Done Programming for Attendance Automation
- 2. Tester: Writing Testcases for the main program.

Miniproject 5 – Kia Project [Team]

Modules

- 1. Matlab
- 2. Git

Requirements

We have implemented following features

- 1. Adaptive Cruise Control System
- 2. Anti-Lock Braking System
- 3. Automatic Transmission Control System
- 4. Door Locking system
- 5. Engine Braking System
- 6. Lane Assist System
- 7. Power Window

Anti Lock Braking System:

Antilock Braking System is employed to prevent slipping and locking of wheels when brake applied. It is a vehicle brake control system, which uses ABS controller to monitor and control the necessary torque to maintain slip ration. Antilock brakes have been introduced to enhance test track braking performance but their effect on crash risk in actual driving stays less. ABS generally offers advanced vehicle control and minimizes the stopping distance in slippery and dry surface.

Design

Figure 15 Simulation

Implementation and Summary

Git Link:

Link: https://github.com/karthikeyans99/Genesis2021_Applied_Mbd-Kia_Project_Team

Individual Contribution and Highlights

- 1. Anti Lock Braking System Case Study
- 2. Designed and implemented using matlab and the file is in github.

Role in Project Team

1. Designer: Done Designing for Anti lock braking system using matlab.

Miniproject 6 – Wiper Control [Team]

Modules

- 1. C Programming
- 2. STM32

Requirements

4W's and 1'H

Who:

A wiper speed control system for an automotive wiper controls the operational speed of a wiper in accordance with rain conditions.

What:

Vehicles are now available with driver-programmable intelligent windscreen wipers that detect the presence and amount of rain using a rain sensor.

When:

Whenever the water hit a dedicated sensor that located on windscreen, it will send a signal to move on the wiper motor. Once water is not detected by sensor, the wiper will automatically stop. This will help the driver to give more concentration and reduce the car accident probability.

Where:

It is located underneath the dashboard, above the brake and accelerator pedal, and is responsible for the complete operation of the windshield wiper system.

How:

Windshield wipers are controlled by the stalk on the right side of your steering wheel. Simply moving the stalk down will turn your windshield wipers on. Moving the stalk down will turn your wipers on.

High Level Requirements

ID	Description	Status
HLR_1	Ignition at ACC - Red LED ON	Pass
HLR_2	Wiper ON - LED'S ON in Blue, Green and Orange	Pass
HLR_3	Wiper OFF - LED'S OFF in Blue, Green and Orange	Pass
HLR_4	Ignition at lock - Red LED OFF	Pass

Low Level Requirements

ID	Description	Status
LLR_1	Pressing button for two seconds - Red LED ON	Pass
LLR_2	Wiping at 1Hz - Blue LED ON	Pass
LLR_3	Wiping at 4Hz - Green LED ON	Pass
LLR_4	Wiping at 8Hz - Orange LED ON	Pass
LLR_5	Pressing button for two seconds - Red LED OFF	Pass

Design

Figure 16 Structure Diagram

Figure 17 Behaviour Diagram

Test Plan High Level Test Plan

ID	Description	Output	Type of Test
HLTP_1	Press and hold the button to put the Ignition key position in ACC mode	System Enters ACC State	Requirement Based
HLTP_2	Different wiper frequencies to be set (1Hz, 4Hz & 8Hz)	Responds Based on Input	Requirement Based
HLTP_3	Hold the button to put the system in Idle state	Enters Idle State	Requirement Based

Low Level Test Plan

ID	Description	Output	HLTP ID	Type of Test
LLTP_1	Hold the button for 2 sec to bring the ignition key position at ACC mode	Red LED- ON	HLTP_1	Requirement Based
LLTP_2	Hold the button for 2 sec to go back to the Idle state	Red LED- OFF	HLTP_1, HLTP_3	Requirement Based
LLTP_3	Press the button one time to set frequency to 1Hz	Blue LED- ON	HLTP_2	Requirement Based
LLTP_4	Press the button second time to set frequency to 4Hz	Green LED-ON	HLTP_2	Requirement Based
LLTP_5	Press the button third time to set frequency to 8Hz	Orange LED-ON	HLTP_2	Requirement Based
LLTP_6	Press the button fourth time to turn OFF the wiper action	All LED OFF except Red	HLTP_2	Requirement Based
LLTP_7	Hold the button for 2 sec to bring ignition key position at Lock state	Red LED- OFF	HLTP_3	Requirement Based

Implementation and Summary

Git Link:

Link: https://github.com/GENESIS-2022/MasteringMCU-Team23

Individual Contribution and Highlights

- 1. Wiper System using C Programming
- 2. Source code management using GitHub

Role in Project Team

- 1. Programmer: Done programming for Wiper System
- 2. Integrator: Integrated all the codes
- 3. Tester: Writing testcases and testing the integrated code

Miniproject 7 – Jeep Compass [Team]

Modules

- 1. Automotive Systems
- 2. Git

Requirements

Door System is a type of door opening, typically hinged on its front edge, but sometimes attached by other mechanisms such as tracks, for entering and exiting a vehicle. Doors most often integrate side windows for visibility from inside the car and can be locked to secure the vehicle. The door system available in this car are,

- 1. Power Door Locks
- 2. Passive Keyless Entry
- 3. Automatic Unlock Doors on Exit
- 4. Power Window System

High Level Requirements

S.No.	Feature	Description
HLR_1	Power Door Lock	Driver or front passenger can lock or unlock the doors.
HLR_2	Passive Keyless Entry	Allows you to unlock and lock the doors to a vehicle without using a key.
HLR_3	Automatic Unlock Door on Exit	The door locks will unlock automatically.
HLR_4	Power Window System	All windows can be accessed by switching on the passenger door trim panel.

Low Level Requirements

S.No.	Feature	Description
LLR_1	Power Door Lock	It automatically locks doors at certain speeds.
LLR_1.1	Power Door Lock	To secure all the doors at the same time.
LLR_2	Passive Keyless Entry	Doors will be lock or unlock by using a radio frequency remote keyless system.
LLR_2.1	Passive Keyless Entry	If the vehicle is unlocked by Passive Entry and no door is opened within 60 seconds, the vehicle will re-lock.
LLR_3	Automatic Unlock Door on Exit	If the vehicle is unlocked by Passive Entry and no door is opened within 60 seconds, the vehicle will re-lock.
LLR_4	Power Window System	The windows will be open and close within 4 seconds.

Figure 18 Structure Diagram

Implementation and Summary

Git Link:

Link: https://github.com/karthikeyans99/Jeep_Compass_Team

Individual Contribution and Highlights

- 1. Power Window Case Study
- 2. Source code management using GitHub

Role in Project Team

1. Designer: Done Designing for Project

2. Researcher: Done case study for Power Window

Miniproject 8 – EV Car [Team]

Modules

- 1. Matlab
- 2. Matlab Script

Requirements

Motor Specifications:

Component	Component Tata Nexon Hyundai Kona	
Top speed 120kmh		165kmh
Acceleration(0- 100kmph)	9.14s	7.9s
Engine type	PMSM	PMSM
Max motor performance 127bhp 245Nm		134 bhp 395 Nm
Driving Range	312 kms	450kms
Battery	30.2 kWh, Lithium-Ion Polymer, 320V Battery Placed Under Floor Pan	39.2 kWh, Lithium-Ion Polymer, 327V Battery Placed Under Floor Pan

Safety Specifications:

Component	Tata Nexon	Hyundai Kona
Overspeed Warning	1 beep over 80kmph, Continuous beeps over 120kmph	1 beep over 80kmph, Continuous beeps over 120kmph
Emergency Brake Light Flashing	No	Yes
NCAP Rating	5 Star (Global NCAP)	5 Star (Euro NCAP)

Component	Tata Nexon	Hyundai Kona
Airbags 2 Airbags (Driver, Passenger)		6 Airbags (Driver, Passenger, 2 Curtain, Driver Side, Front Passenger Side)
Middle Rear Head Rest	No	Yes

Battery Performance:

- 1. Both cars use the same Lithium-ion battery type as it is the industry standard right now.
- 2. Hyundai Kona has a massive 452 km lead in terms of range which is more than double of what the Tata Nexon.
- 3. Battery charging times are longer in the Hyundai Kona due to its larger 39.1 kWh battery compared to the 37.4 kWh.
- 4. Hyundai Kona offer fast charging.

Braking Performance:

- 1. Hyundai Kona has ESP, not in Tata Nexon.
- 2. Huyndai Kona has TCS, not in Tata Nexon.

Suspension Performance:

- Hyundai kona has Independent MacPherson strut with coil spring and Tata nexon has McPherson Strut Type front suspension.
- 2. Hyundai kona has Twist beam with dual path Strut and Tata nexon has multi-Link rear suspension.

Implementation and Summary Git Link:

Link: https://github.com/kavinvignes/Team4_EV_Car

Matlab file Submission: Submitted in GEALearn

Individual Contribution and Highlights

1. Done in Matlab Scripting

Role in Project Team

1. Done Matlab scripting for EV Car

2. Researcher: Done case study for EV Car

Miniproject 9 – Power Window [Individual]

Modules

- 1. Autosar
- 2. Git

Requirements

The window switches on the driver's door control all the door windows. The passenger door windows can also be operated by using the single window switches on the passenger door trim panel. The window switches will operate only when the ignition is in the ON/RUN position.

High Level Requirements:

S.No.	Feature	Description
HLR_1	Power Window System	All windows can be accessed by switching on the passenger door trim panel.

Low Level Requirements:

S.No.	Feature	Description
LLR_1	Power Window System	The windows will be open and close within 4 seconds.

Figure 19 VFB Diagram

Implementation and Summary

Git Link:

Link: https://github.com/kavinvignes/PowerWindow_40020494_DPS

Individual Contribution and Highlights

- 1. Power Window Case Study
- 2. Source code management using GitHub
- 3. AtomicSwComponent
- 4. SWCInternalBehavior
- 5. SWCImplementation