

Genome Editing Timeline

Programmable Nucleases

Zinc Finger Nucleases (ZFNs) TAL Effector Nucleases (TALENs)

CRISPR/Cas-derived RNA-guided endonuclease (RGEN)

Comparison of Programmable Nucleases

	ZFN	TALEN	CRISPR RGEN	
Success rate	~24%	>99%	~90%	
Average mutation rate	<10%	~20%	~20%	
Length of target site	20 to 36 bp	30 to 40 bp	23 bp	
Restriction in target site	Guanine-rich	Start with T and end with A	End with GG (PAM)	
Design density	One per ~100 bp	One per every bp	One per 8 bp	
Off-target effects	High	Low	Variable	
Size	2 x ~2 kbp	2 x ~3 kbp	4.2 kbp + gRNA	

Challenges in Therapeutic Genome Editing

- Delivery
- Immunogenicity
- Mosaicism
- HDR vs. NHEJ
- Specificity: Off-target mutations

Zinc Finger Nucleases (ZFNs)

TAL Effector Nucleases (TALENs)

Genome Surgery

SB-728-T: Zinc Finger Nuclease Driven CCR5 Modified Autologous CD4+ T-cells

- T cells from HIV+ patients are treated with a programmable nuclease.
- CCR5-inactive T cells are delivered back to patients

Stem Cell Therapy: Gene Correction in iPS Cells

Hemophilia: The Royal Disease

With the I Super Prince Obades Prince Philos Philos

Queen Victoria and her royal family

- British Queen Victoria was a carrier of the hemophilia gene.
- Almost half of the severe form of hemophilia A is caused by DNA inversion.

Inversion of the Hemophilia Gene


```
Z10 target site(Homology 1)
                                                                                                                                                                                                                                                                            Z10 target site(Homology 2)
                                                     .. {\tt caagga} {\tt gaccactg} {\tt agttg} {\tt ggcaaaggtg} {\tt ggccgac...} 140 {\tt kbp...} {\tt GTCGGCCCCACCTTTGCCCAACTCAGTG} {\tt GGGTCTCCTTG...} {\tt gccccactg} {\tt ggccactg} {\tt ggccactg
WT
                                                      ..gttcctctgggtgactcaacccgtttccacccggctg..140kbp..CAGCCGGGGTTGAAACGGGTTGAGTCACCCAGAGGAAC ..
                                                                                                                      qttqqqcaaaqqtggggccgac..140kbp..GTCGGCCCCACCTTTGCC
Cleaved
                                     .. caaqqaqacccactqa
                                                                                                                                                                                                                                                                                                                           CAACTCAGTGGGTCTCCTTG..
                                                                                                                                    ccgtttccacccggctg..140kbp..CAGCCGGGGTGGAAACGGGTTG
                                                                                                                                                                                                                                                                                                                                         AGTCACCCAGAGGAAC ...
                                     ..gttcctctgggtgactcaac
Flipped
                                    ..caaggagacccactga
                                                                                                                      GTTGGGCAAAGGTGGGGCCGAC..140kbp..qtcqqccccacctttqcc
                                                                                                                                                                                                                                                                                                                           CAACTCAGTGGGTCTCCTTG..
                                                                                                                                    CCGTTTCCACCCCGGCTG..140kbp..cagccggggtggaaacgggttg
                                                                                                                                                                                                                                                                                                                                         AGTCACCCAGAGGAAC ..
                                    ..gttcctctgggtgactcaac
                                                                                     Breakpoint junction 1
                                                                                                                                                                                                                                                                                       Breakpoint junction 2
                                                                                                                                                                                                     (X6)
..agtcggcccacctttgcccaa---ctcagtgggtctccttg..
..agtcggc-----ccaa----ctcagtgggtctccttg..
                                                                                                                                                                                                     (X1)
..agtcggcccacctttgcccaa----...
                                                                                                                                                                                                     (x1)
..agtcggcccacctttgcccaaccaactcagtgggtctccttg..
                                                                                                                                                                                                     (X2)
```

Hemophilia Mice Treated w/ Gene-Corrected Cells

Park et al. Cell Stem Cell (2015)

- CRISPR-Cas9 can revert large inversions in hemophilia iPSCs.
- Endothelial cells derived from corrected iPSCs rescue F8 deficiency in mice.

CjCas9: mini-Cas9 for AAV package

- CjCas9 is the smallest Cas9 ortholog reported to date
- Digenome-seq reveals that CjCas9 is more specific than SpCas9 or SaCas9

CjCas9 PAM characterization

N_{10} In vitro cleavage NNNNNNNN using Cas9 with its sgRNA NGS library construction Adaptor Index N_{10} NNNNNNNN PAM identification 1 2 3 4 5 6 7 8 9 10 using NGS data S. pyogenes : NGG C. jejuni : NNNNRYAC

CjCas9 sgRNA optimization

Kim et al. Nat. Commun. (2017)

In vivo Genome Editing with CjCas9

- CjCas9 targeted to Hif1a or Vegfa reduced the size of choroidal neovascularization
- Demonstrating the potential for treatment of age-related macular degeneration

Nuclease Off-target Effects

- ZFNs, TALENs, and CRISPR-Cas9 can cleave off-target sites
- Off-target mutations can
 - Inactivate essential genes
 - Activate oncogenes
 - Cause chromosomal rearrangements

Wu et al. Quant. Biol. (2014)

Undetectable CRISPR Off-target Mutations

nature biotechnology

Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease

Seung Woo Cho¹⁻³, Sojung Kim¹⁻³, Jong Min Kim^{1,2} & Jin-Soo Kim^{1,2}

published online 29 January 2013; doi:10.1038/nbt.2507

- No detectable off-target mutations at sites with 2- or 3-nucleotide mismatches
- Confirmed by targeted deep sequencing in Cho et al. Genome Res. 2014

How to Assess Genome-wide Off-target Effects

- Whole genome sequencing: Limited by sequencing depth
- Digenome-seq: Nuclease-digested whole genome seq.
- Cell-based methods: GUIDE-seq, Translocation seq., BLESS

Kim et al. Nat. Methods (2015)

Gabriel et al. Nat. Biotechnol. (2015)

Overview of Digenome-seq

Staggered Alignment vs Straight Alignment

- After WGS, sequence reads were mapped to the reference human genome.
- Straight alignments of sequence reads are observed at the on-target site.

DNA Cleavage Score

		75006253	75006254	75006255	75006256	75006257	75006258	75006259
Count	Reverse	0	0	1	22	0	0	0
	Forward	0	0	0	9	9	1	0
Depth		23	23	23	31	18	19	19

Score at position i =

$$\sum_{a=1}^{5} \frac{100(F_i - 1)}{D_i} X \frac{100(R_{i-4+a} - 1)}{D_{i-4+a}} \times (F_i + R_{i-4+a} - 2)$$

$$+ \sum_{a=1}^{5} \frac{100(R_{i-1} - 1)}{D_{i-1}} X \frac{100(F_{i-3+a} - 1)}{D_{i-3+a}} \times (R_{i-1} + F_{i-3+a} - 2)$$

 F_i : Number of forward sequence reads starting at position i

 \mathcal{R}_i : Number of reverse sequence reads starting at position i

 D_i : Sequencing depth at position i

- Sequence reads with the same 5' end are counted across the genome.
- DNA cleavage scores are assigned to each nucleotide position.

Genome-wide Cleavage Scores

Off-target Sites Validated by Deep Sequencing

- 74 Digenome-captured sites were validated by targeted deep sequencing.
- Only five sites were mutated at frequencies ranging from 0.1 to 87%.

Digenome-seq vs Other Methods

Digenome-seq Advantages

- Highly sensitive; Captures off-target sites w/ <0.1% indel freq.
- Not limited by chromatin accessibility
- Pinpoint off-target sites; no NHEJ-mediated indels in vitro
- Easy to carry out; no PCR steps prior to WGS
- Free form naturally-occurring DSBs in cells and PCR artifacts
- Compatible with RNA-guided programmable deaminases

Programmable Nuclease vs. Deaminase

Komor et al. Nature (2016)

Programmable Deaminases

First-generation base editor (BE1)

APOBEC1-dCas9

Second-generation base editor (BE2) AID UDG ├─UGI error-free resolution (e.g. via BER)

APOBEC-dCas9-UGI

Third-generation base editor (BE3) Mismatch recognition **PCNA** MSH6 MSH2 EXO1 PMS2 Excision EXO1 Resynthesis Ligation DNA polymerases

APOBEC-nCas9-UGI

DNA cleavage at uracil-containing sites

Digenome-seq of BE3-treated genomic DNA

Genome-wide BE3 off-target sites

Untreated (+) Base Editor

Untreated (+) Base Editor (+) Cas9 nuclease

Off-target sites validated in human cells

HBB

Cas9 and BE3 Off-target Sites

Reducing BE3 off-target effects via modified sgRNAs

Unexpected CRISPR Off-target Mutations In Mice?

a		F05 vs F03	F03 vs F05	FVB vs F05	F05 vs FVB	FVB vs F03	F03 vs FVB
	Strelka	1482	745	2759	2078	3251	2330
	Mutect	2749	1957	5817	4026	6375	4348

SNVs

- Schaefer et al. (Nature Methods, 2017) did not validate off-target effects
- Neglected SNVs and indels unique to the "co-housed control" mouse

How to Avoid Off-target Effects

- Choose a unique target site
- Use purified Cas9/Cpf1/BE proteins rather than plasmids
- Use modified guide RNAs
- Attenuated Cas9 proteins: eCas9 or Cas9 HF

Do Off-target Effects Matter?

- No drugs are free from off-target effects, often leading to repositioning
- Etoposide, an anti-cancer drug, cleaves DNA randomly, inducing mutations
- CCR5-targeted ZFN has been proven safe in a clinical test (thus far)
- Biological consequences rather than mutations per se are more relevant

Acknowledgments

Collaborators

Dr. Seokjoong Kim, ToolGen, Inc.

Prof. Cheol-Hee Kim, Chungnam Nat. Univ.

Prof. Dong Wook Kim, Yonsei Univ.

Prof. Han-Woong Lee, Yonsei Univ.

Prof. Narry Kim, Seoul National Unv.

Prof. Xi Jun Yin, Yanbian Univ.

Prof. Hyongbum Kim, Yonsei Univ.

Prof. Emery Bresnick, Univ. of Wisconsin

Prof. Dana Carroll, Univ. of Utah

Prof. Sangsoo Bae, Hanyang Univ.

Genome Engineering Lab

Research Fellow

Sang-Gyu Kim, Ph.D. Soojung Kim, Ph.D.

Jee-Young An, Ph.D. Taeyoung Koo, Ph.D.

Habib, Omer, Ph.D. Seung Hwan Lee, Ph.D.

Hyeran Kim, Ph.D. Youn-Su Lee, Ph.D.

Kyoung-Mi Kim, Ph.D. Jae-Young Yun, Ph.D.

Sang-Tae Kim, Ph.D. Junho Hur, Ph.D.

Graduate students

Annie Kim Seuk-min Ryu

Daesik Kim Da-eun Kim

Jungeun Kim Kayeong Lim

Heon Seok Kim Hyesun Jung

Eunji Kim Kwang-eun Kim

Euihwan Jeong