#### Some classical ML models

Random forest and GBT

### Roadmap

- We shall present some classical parametric ML models
- As in Lecture 2, we shall denote X the  $n \times p$  data matrix or design matrix
- White box models vs black box models
  - Some models are white-box models, meaning that the knowledge of their coefficients brings clear information about the impact of each input variables. Examples: Linear Models, Decision Tress
  - The opposite are black box models. Examples: Ensemble Methods, Neural Networks

## Linear Regression

- $\mathcal{D}_n = \{(x_i, y_i) \in \mathcal{X} \times \mathbb{R}, i = 1, \dots, n\}$
- $\bullet \ f_{\beta}(x) = \beta_j x_j + \beta_0?$
- Least-squares fit (equivalent to MLE under the assumption of Gaussian noise):

$$\widehat{\beta} := \operatorname{Argmin} ||Y - X \cdot \beta||^2 = (X^T X)^{-1} XY$$

Solution uniquely defined when  $X^TX$  invertible

• To ensure uniqueness, one may add a penalty and solve

$$\widehat{\beta} := \operatorname{Argmin} ||Y - X \cdot \beta||^2 + \lambda ||\beta||^2$$

Solution unique and always exists

$$\widehat{\beta} := (X^T X + \lambda I)^{-1} X Y$$

•  $\lambda$  is an hyperparameter. Has to be tuned!

Tuning of  $\lambda$ ?

#### Data splitting strategy: cross-validation:

- Cut the training set in k equally-sized chunks.
- K folds: one chunk to test, the K-1 others for training
- Cross-validation score: perf averaged over the K folds.

Tuning of  $\lambda$ ?



# Ridge regression (Hoerl & Kennard 1970) Tuning of $\lambda$ ?

On each fold we use a grid search on  $\lambda$ 



A practical example

- We study data from D. Card (2001) about the impact of education on labor market earnings<sup>1</sup>
- The dataset can be downloaded on http://fmwww.bc.edu/ec-p/data/wooldridge/card.dta
- We try to explain the variable educ in function of the other ones
- We compare OLS and Ridge without tuning of  $\lambda$

A practical example

|       | OLS      | RIDGE    | RIDGE2   |
|-------|----------|----------|----------|
| Train | 0.536856 | 0.536855 | 0.536854 |
| Test  | 0.524978 | 0.525048 | 0.525118 |

A small improvement with ridge

# Logistic Regression

If  $y \in \{-1, 1\}$ , linear regression makes no sense!



# Logistic Regression

• Model the log-odds ratio as a linear function of x?

$$\log\left(\frac{P[Y=1|x]}{1-P[Y=1|x]}\right) = \sum_j \beta_j x_j + \beta_0 = f_\beta(x)$$

• One can also add a regularization.



How can we find a separating hyperplane between two classes?



#### Linear SVMs for classification problems

- We want to find a decision function of SVM of the form  $f_w(x) = \text{sgn}(w^T x + b)$
- That is
  - $w^T x + b = 0$ : decision boundary
  - if  $w^T x + b > 0$  assign label  $y_i = 1$
  - if  $w^T x + b < 0$  assign label  $y_i = 1$

Linear SVMs for classification problems



How can we find a separating hyperplane between two classes? Solution : we maximize the margin

Linear SVMs for classification problems

 Margin maximization can be reformulated as the non-smooth, penalized convex optimization problem

$$\operatorname{Argmin}_{w} \sum_{i} \min(1 - y_{i}(w^{T}x_{i} + b), 0) + ||w||^{2}$$

- Solved using quadratic programming in the dual domain.
- Observe that predicting the label of a new observation involves only a scalar product  $(f_w(x) = \operatorname{sgn}(w^T x + b))$

Non linear SVMs for classification problems



What can we do in the non linear case?

Non linear SVMs for classification problems

- Transform the non linear problem into a linear one, using a non linear function  $\phi$  and adapt linear SVM
- In the non linear SVM algorithm, the quantity  $K(x_{new}, \cdot) = \langle \phi(x_{new}), \phi(\cdot) \text{ is involved for the prediction of the label of any new observation. It is a kernel$
- In non linear SVM we have only to choose this kernel *K*. It is the kernel trick

Several possible kernels available in sklearn https://scikit-learn.org/stable/modules/svm.htmlsvm-kernels

- An exploratory analysis tool
- Representation of the data in a hierarchical manner by a sequence of test allowing to predict an output variable

#### Who should be saved in Titanic?



- Each node is corresponding to a variable and test it
- One generates several leafs at each iteration corresponding to a partition in the space of input variables







- Inputs: points of the features spaces that are characterized by numerical or categorical variables
- Target : classes (classification) or value (regression)



A two step procedure to define decision trees

- Construction of a maximal tree
- Pruning: construction of a sub-sequence of optimal decision trees to avoid overfitting

#### Construction of the maximal tree

- Creating a binary decision tree is actually a process of dividing up the input space.
- A greedy approach is used to divide the space called recursive binary splitting

#### Construction of the maximal tree

- Splitting rule?
- To simplify, let us assume that the input variables are continuous
- A split is of the form

$${X^{(j)} \le d} \cup {X^{(j)} > d}$$

 Several possible splits? We choose (j, d), minimizing a given cost function

#### Splitting rule in the regression case

- The aim is to minimize the intra-group variance after split of a node t into two nodes t<sub>L</sub> and t<sub>R</sub>
- The variance of a node t is defined as

$$V(t) = \frac{1}{\#t} \sum_{i, x_i \in t} (y_i - \bar{y}_t)^2$$

where  $y_t$  is the mean of the values  $y_i$  associated to the observations of node t

• We have then to minimize

$$V(t) = \frac{\#t_L}{\#t} \sum_{i, x_i \in t_I} (y_i - \overline{y}_{t_L})^2 + \frac{\#t_R}{\#t} \sum_{i, x_i \in t_R} (y_i - \overline{y}_{t_R})^2 = \frac{\#t_L}{\#t} V(t_L) + \frac{\#t_R}{\#t} V(t_R)$$

#### Splitting rule in the classification case

- In the classification case, where the classes belong to  $\{1, \dots, L\}$ , the impurity of each node could be defined by the means of Gini index
- The Gini index of a node t is defined as

$$\Phi(t) = \sum_{c=1}^{L} \widehat{p}_t^c (1 - \widehat{p}_t^c)$$

where  $\widehat{p}_t^c$  is the proportion of observations belonging to class c in node t.

• The aim is then to maximize for each node *t* and each possible split

$$\Phi(t) - \frac{\#t_L}{\#t}\Phi(t_L) - \frac{\#t_R}{\#t}\Phi(t_R)$$

- Second step of the algorithm: pruning
- We search for the best pruned sub-tree (best : lowest generalisation error).
- Maximal tree : low bias and high variance
- We want to decrease the variance

- Pruning: model selection procedure, where the models are all possible subtrees
- This procedure minimises a penalized criterion where the penalty is proportional to the number of leafs of the tree

$$crit_{\alpha}(T) = \overline{err}(T) + \alpha |T|$$

where

$$\overline{err}(T) = \frac{1}{n} \sum_{\substack{\text{t feuille de } T (x_i, y_i) \in t}} (y_i - \overline{y}_t)^2$$

Pro and cons

#### Pro

- Interpretable model
- Few preprocessing
- Numerical cost low
- Inputs can be both qualitative and quantitative

#### Cons: instability

- Few change in the data can lead to very different DT
- High variance estimators

# Ensemble methods

#### Principle

- Ensemble methods are techniques that create multiple models and then combine them to produce improved results
- Assume that we are given  $G_1(\cdot), \dots, G_q(\Theta_q)$  a collection of ML models  $\theta_1, \dots, \Theta_q$  q i.i.d. random variables aléatoires
- We can define a predictor G in several ways
  - Averaging :  $G = \frac{1}{a} \sum G_s(\cdot)$
  - Majoritary vote :  ${}^{4}G = argmax_{k} \sum_{s} 1_{G_{s}(\cdot)=k}$
- In what follows, our building blocks will be decision trees

### Bagging

#### Bagging consists in the following procedure

- We sample by bootstrap from the initial training set q datasets  $\mathcal{D}_n^{\theta_1}, \dots, \mathcal{D}_n^{\Theta_q}$ ,
- Then q decisions trees are fitted  $G(\cdot, \mathcal{D}_n^{\theta_1}), \cdots, G(\cdot, \mathcal{D}_n^{\Theta_q})$
- One aggregates these base predictors

### Bagging

### General principle



### Random Forests-Random Inputs

- Useful when the number of observations and the number of variables are both large
- A first step consists in generating several samples as in bagging
- Thereafter on each sample, we apply a variant of CART
  - To split a node we first draw at random, a given number on tire m of variables
  - One searches at the best split among the *m* selected variables
- One aggregates this family of decision trees

# Random Forests-Random Inputs

- If m = p, we recover Bagging
- If m = 1 we have a procedure very different from Bagging. The choice of split variable is completely random

# Random Forests-Random Inputs

### General principle



# Random Forests-Random Inputs

- In practice, performance of RF are better than Bagging
- Heuristic explanation : added randomness helps to make as different as possible the decision trees

# Random Forests-Random Inputs OOB error

- The RF algorithm also allows to estimate the generalisation error of the model
- This error is the Out-Of-Bag (OOB) error

# Random Forests-Random Inputs OOB error

- Let us fix an  $(x_i, y_i)$  of the training set
- Let us consider the set of all trees defined on bootstrap samples not co,taining this observation
- One agregates only the prediction of these trees to define our prediction  $\widehat{y}$  of  $y_i$
- After computing this quantity for all observations, one calculate the global error
- This quantity is called OOB error of the Forests-RI predictor

# Gradient Boosting Trees

The algorithm of Gradient boosting se fait en différentes étapes

- One fits a decision tree
- One calculates the residuals
- One fits a decision tree on residuals and one adds it to the previous one

One iterates the procedure.

### **Gradient Boosting Trees**



- Linear and Logistic Regressions
- 2 SVM
- 3 Decision Trees
- Random forest and GBT
- (5) Uncertain prediction in ML

# Why quantile regression?

- Classical regression estimate conditional expectation
- How could we estimate the median or the percentiles of the output random variable?

# Why quantile regression?

- Quantile regression models the whole distribution of the output variable whereas classical regression only allows to estimate the conditional expectation
- To perform Quantile Regression, we do not need any assuption on the output random variable. More robust to misspecification and outliers
- Quantile Regression is invariant with respect to monotonous transformation

# Why quantile regression?

When should we use quantile regression?

- To have prediction intervals
- No assumption on the output variable



Figure (A): Household Income vs. Food Expenditure

#### Two situations

- Graphique (A): variance of *Y* is constant whatever *X* may be. Classical regression may be adapted
- Graphique (B): variance of Y increases when X increases.
   Quantile regression may be more adapted than classical one



Figure (B): Homoskedasticity vs. Heteroscedasticity

The Boston Housing Dataset

- Boston Housing dataset: 506 observations and 14 variables.
- Aim: predict the median price of a property in function of some variables

### The Boston Housing Dataset

#### Explicative variables

- CRIM: per capita crime rate by town.
- ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS: proportion of non-retail business acres per town.
- CHAS: Charles River dummy variable (= 1 if tract bounds river).
- NOX: nitrogen oxides concentration (parts per 10 million).
- RM: average number of rooms per dwelling.
- AGE: proportion of owner-occupied units built prior to 1940.
- DIS: weighted mean of distances to five Boston employment centres.
- RAD: index of accessibility to radial highways.
- TAX: full-value property-tax rate per \$10,000.
- PTRATIO: pupil-teacher ratio by town.
- LSTAT: lower status of the population (percent).

#### The Boston Housing Dataset

### Heteroscedasticity?



#### The Boston Housing Dataset

### Classical linear regression



#### The Boston Housing Dataset

### Quantile regression for five percentiles



# Un exemple

How it works?

### Example on $y_i = x_i \beta + \varepsilon_i$

 Classical regression : one minimises the sum of the squares of the errors

$$L(\beta) = \sum_{i} (y_i - x_i \beta)^2$$

 Median regression : one minimises the sum of absolute values of the erros

$$L(\beta) = \sum_{i} |y_i - x_i \beta|$$

• Quantile Regression for an  $\alpha$  quantile

$$L_{\alpha}(\beta) = \sum_{i} \rho_{\alpha}(y_{i} - x_{i}\beta) \text{ avec } \rho_{\alpha}(z) = \begin{cases} z(\alpha - 1) \text{ si } z < 0 \\ \alpha z \text{ si } z > 0 \end{cases}$$

#### The Boston Housing Dataset

### Confidence intervals for prediction



# Quantile Random forest

- As in RF, one generates *k* trees. One keeps in memory all values of the observations associated to this node
- ② For X = x given at each tree t one calculates the quantile minimising the quantile loss

# Quantile Random forest

The main differences between random forest and quantile random forest are the following

- For each node of each tree, random forest keep only the mean of the observations associated to this node
- Quantile Random Forest keep in memory all values of the observations associated to this node
- We can deduce conditional distributions of the output variable and not only its conditional mean

#### The Boston Housing Dataset

### Confidence intervals for prediction

