Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Индивидуальное задание

к лабораторной работе №6

Вариант 7

«Сборка ядра под целевую платформу»

Выполнила: Севостьянова Анна Викторовна

Группа: 5130904/30002

Преподаватель: Петров Александр Владимирович

Санкт-Петербург

2024г.

Оглавление

1. Введение	3
1.1 Актуальность	
1.2 Цель	
1.3 Задачи	
2. Основная часть	
2.1 Методы решения задач	4
3. Завершение	
3.1 Выводы по результатам проделанной работы:	

1. Введение

1.1 Актуальность

Сборка ядра Linux под целевую платформу актуальна по следующим причинам:

1. Оптимизация под аппаратное обеспечение

При сборке ядра под конкретную платформу можно оптимизировать его работу и улучшить производительность за счёт использования особенностей и оптимизаций, свойственных данному аппаратному обеспечению.

2. Поддержка новых устройств

3. Уменьшение размеров ядра

При сборке убираются неиспользуемые компоненты, что позволяет сократить размер ядра, экономить ресурсы и повышать эффективность работы системы.

4. Эффективность

Собранное оптимизированное ядро способно эксплуатировать аппаратное обеспечение наиболее эффективным образом, что влияет на стабильность и производительность системы в целом.

1.2 Цель

Целью данной работы является получение сконфигурированного и собранного ядра Linux под целевую платформу.

1.3 Задачи

- 1. Подготовка системы
- 2. Конфигурация ядра
- 3. Сборка ядра

2. Основная часть

В работе используется amd64, т.к. amd64 - это общее название для 64битных микроархитектур, реализующих 64-битную микроархитектуру процессора, таких как микроархитектуры AMD Zen и Intel Core. В моем случае – Intel Core i5.

2.1 Методы решения задач

Получение исходных кодов ядра представлено в лабораторной работе №6.

1. Подготовка системы

По стандарту Debian ядро собирается с включенным форматом отладки DWARF (стандартизованный формат отладочной информации). Отключим его:

scripts/config -d CONFIG_DEBUG_INFO_DWARF_TOOLCHAIN_DEFAULT

2. Конфигурация ядра, настройка включаемых компонентов:

Теперь необходимо настроить сборку под конкретную микроархитектуру. В моем случае это amd64.

make menuconfig

Выбираем свой процессор. В моем случае будет следующая последовательность действий:

3. Сборка ядра

В лабораторной работе №6 было установлено, что оптимальное время достигается при сборке ядра на 8 потоках. Соберем полученное нами ядро на 8 потоках, а затем сравним полученные результаты времени сборки с данными, полученными в лабораторной работе №6:

make -j8

Завершающим этапом является установка сконфигурированного ядра, представленная в лабораторной работе №6.

4. Сравним полученные результаты:

Сборка ядра (лаб. №6) – 441 сек.

Сборка ядра под целевую платформу – 396 сек.

Мы получили, что при отключении графической информации и сборке ядра под целевую платформу время сборки ядра сократилось.

3. Завершение

3.1 Выводы по результатам проделанной работы:

- 1. Поставленная цель была достигнута; Ядро, собранное под данную архитектуру успешно установилось и запустилось.
- 2. Поставленные задачи были решены

3. Сделанные выводы:

Сборка ядра Linux под целевую платформу позволяет настроить ядро под конкретную систему, что обеспечивает эффективную работу устройства.