

T01 - Redes de Computadores e Internet

O que é a Internet?

- Milhões de computadores ligados em rede
 - múltiplos dispositivos (PC,servidor,portavel,telemovel)
- Various tipos de ligações (fibra,cobre,radio,satelite)
- Encaminhadores: encaminham pacotes(router e switches)
- Infraestrutura que fornece serviços as aplicações distribuidas(WEB, email, VoIP jogos...)
- Fornece uma interface de programação para as aplicações o Socket
 - Facilita o processo de crear a aplicação distribuída
 - Permite que eles se liguem

O que e um protocol?

- O formato e ordem das mensagens enviadas e recebidas pelas entidades da rede
- o objetivo dessas mensagens
- as ações que se acontece quando recebemos a mensagem

Estrutura da rede(edge e core)

- Rede edge(borda da rede)→Sistemas terminas: cliente-servidor;
 - Redes de acesso → com fios ou sem fios
- Rede core(nucleo da rede) → Ligações entre redes ; A rede das redes

Rede edge

- (end systems)Sistemas terminais (hosts):
 - Dispositivos que mandam e recebem a mensagem (Laptop,smartphone,data centers)
- Comunicação modelos:
 - Client-server → O cliente manda o pedido para o servidor , e o servidor responde com dados
- Peer-to-peer(P2P):
 - Dispositivos que se tem ligação direta sem precisar de servidor
 - Exemplos → BitTorrent onde os users partilham os ficheiros diretamente

Redes de acesso

- Redes residenciais → (dial-up, ADSL, fibra optica)
- redes institucionais → escolas e empresas → wifi , ethernet
- Redes moveis → 3G,4G
- Redes com fios → Ethernet(usado em redes locais\residencias)
 →Fibra optica (conexão rapida para casas e empresas)
- Redes sem fios → Wifi (comum em casas e empresas)

Differences Between Edge and Core

Feature	Edge	Core
Function	Connects end devices	Transports packets across the network
Devices	PCs, phones, servers, home routers	High-performance routers and switches
Speed	Varies (Mbps to Gbps)	Very high (hundreds of Gbps)
Traffic Type	Initiates and receives communications	Routes packets between networks

EDGE

ADSL

Usa a linha telefónica existente para a central telefónica, equipada com um mux/demux

- Sinais digitais são transmitidos em paralelo com voz
- · Cada utilizador tem a sua linha

• Taxa de transmissão depende de distancia e de qualidade da linha

Rede cabo(HFC) → hybrid fiber coax

- Varias casas partilham o cabo coaxial até à cabeça da rede
- Rede de cavo coaxial seguida de fibra ótica até ao router do ISP

Rede fibra ótica

Ligação por fibra otica entre o ponto de acesso e as casas Maiores taxas de transmissão Maior fiabilidade e maior distancia

Redes empresariais (Ethernet)

Redes de acesso sem fios :

 Redes partilhadas, sem fios, que ligam os sistemas terminais a um ponto de acesso

CORE

- Princípio 1: comutação de pacotes
 - Cada pacote e autonomo
 - o não a reserva de caminhos
 - o não há estado na rede
- Alternativa: comutação de circuitos:

- Recursos são reservados: → Necessário estado na rede
- Recursos são dedicados: não há partilha
 - Desempenho garantido
- Problema : desperdício de recursos (não há partilha)

1. Recursos são reservados (Resources are reserved)

- In circuit switching, when two devices want to communicate (like in a phone call), a dedicated communication path is established.
- This means specific bandwidth and other network resources are allocated exclusively for that connection.

2. Necessário estado na rede (Network state is needed)

- To maintain this dedicated path, the network needs to keep track of the ongoing connection.
- This requires storing information about the connection (such as routing paths and reserved resources) until the communication ends.

3. Recursos são dedicados: não há partilha (Resources are dedicated: no sharing)

- Once the resources are allocated, they are exclusively used by that single communication.
- No other user or data flow can use those resources, even if they are not fully utilized.
- Principio 2: Multiplexagem estatistica
- Principio 3: store and forward
 - os pacotes tem de chegar todos ao router andes de ser transmitidos para seguinte ligação

Um pacot de L bits , demora L/R segundos a ser transmitidos para R

Comutação de pacotes : filas e perdas

- Se a taxa de chega dos pacotes e maior do que a taxa de transmissão →
 - Os pacotes se atrasem
 - o buffer(memoria) de router se enche, e os pacotes são perdidos

Redes best-effort

Comutação pacotes vs comutação circuitos

É a comutação de pacotes a técnica vencedora?

Pros	Cons
promova partilha de recurso → eficiente	complicado dar garantias de desempenho
não necessita de estado na rede → simplicidade	necessidade de protocolos para garantir fiabilidade e controlo de congestão

Principio 4: A complexidade não e na rede, é deixada para os sistemas terminais

Estrutura da Internet: rede das redes

- Os sistemas terminas ligam-se à internet atraves de ISP(Internet service providers)
- O ISP de acesso tem de estar alguma forma interligados → para poder enviar pacotes em todo lado do mundo
- A rede das redes e muito complexa

Porque é que há atrasos e perdas de pacotes?

 Quando os pacotes chegam no routers vão para fila de espera → se a taxa de chegada de pacotes > capacidade da saida → temos atrasos

Perdas de pacotes

 O buffer tem uma capacidade finita → quando chega no buffer cheio o pacote e descartado fora

Taxa de transferencia (throughput)

- A taxa (bits/s) e a volocidade de transferencia entre o emissor e o recetor
- Ligação de estrangulamento (bottleneck): → Ligação no percurso que limita a taxa de transmissão

Latência vs Throughput

- Taxa de transferência (Throughput) mede a quantidade de dados que podem ser transferidos pela rede
- Latência mede o atraso que pacotes sofrem ao percorrer a rede

Lidar com a complexidade

- As redes são complexas e compostas por muitos elementos diferentes
- Princípio 5: Organização em camadas
 - Para lidar com a complexidade
 - Modularização → divisão do problema em sub-problemas

- o Interfaces promovem transparência → alterar a implementação de uma não afeta outra
 - Permite reutilização
 - Permite que cada camada evolua independentemente
- Cada camada concretiza um determinado serviço

Pilha de protocolos da Internet

- aplicação: protocolos das aplicações que usam a rede
 - FTP,SMTP,HTTP
- transport: comunicação entre processos remotos
 - TCP, UDP
- rede: encaminhamento de pacotes origem → destino
 - o IP
- ligação: comunicação entre nós vizinhos
 - Ethernet , 802.11 (Wifi), PPP
- físico: meio de transporte de bits

Princípio 5: Encapsulamento

- O encapsulamento é a materialização da organização em camadas numa rede de pacotes
- O resultado de cada camada é o payload da camada seguinte