Flexión

Se va a analizar los esfuerzos y deformaciones en elementos prismáticos sujetos a flexión. Es un concepto muy importante, ya que se utiliza en el diseño de elementos estructurales y de máquinas, como vigas.

Elemento simétrico sometido a flexión pura

Ec. de equilibrio:

Jango 0 Componente x J-4. Jx. dA= M Momentos alrededor del eje y Momentos alrededor del eje z

Fuerza normal

a) Sección longitudinal, vertical (plano de simetría)

Para una flexión la linea AB se comprime, disminuye su longitud

$$\begin{array}{c}
\mathbb{E}_{x} = \frac{8}{2} = -\frac{9}{9} = -\frac{9}{9} \\
\mathbb{E}_{m} = \frac{2}{9} = -\frac{9}{2}
\end{array}$$

$$\begin{array}{c}
\mathbb{E}_{x} = \frac{9}{2} = -\frac{9}{2} \\
\mathbb{E}_{m} = \frac{2}{9} = -\frac{9}{2}
\end{array}$$

Esfuerzos y deformaciones en el rango elástico

Momentos alrededor del eje z

Módulo elástico de la sección = $S = \frac{I}{c}$

$$\sigma_m = \frac{M}{S}$$

La deformación del elemento causada por el momento flector M se mide por la curvatura de la superficie neutra. La curvatura se define como el inverso del radio de curvatura ρ y puede obtenerse resolviendo la ecuación (4.9) entre $1/\rho$:

$$\frac{1}{\rho} = \frac{\epsilon_m}{c} \tag{4.20}$$

Pero, en el rango elástico, se tiene $\epsilon_m = \sigma_m/E$. Sustituyendo por ϵ_m en (4.20), y recordando (4.15):

$$\frac{1}{\rho} = \frac{\sigma_m}{Ec} = \frac{1}{Ec} \frac{Mc}{I}$$

O

$$\frac{1}{\rho} = \frac{M}{EI} \tag{4.21}$$

Problema 01

Si se sabe que el par mostrado en la figura actúa en un plano vertical, determine los esfuerzos en a) el punto A, b) el punto B.

Teorema de Steiner

Para el problema

Para el solido completo sin el agujero

Para el agujero

Para la figura:

$$\frac{T_{8} = -\frac{M.Y_{8}}{T_{xx,c}} = \frac{-15000 \text{ N.m.} (-0.06 \text{ m})}{q.81333 \times 10^{-6} \text{ m}} = q_{1,7\times 70} P_{a}$$

= + 91,7 MPa / Tracción

Problema (

Una viga con la sección transversal que se muestra en la figura se troquela con una aleación de aluminio para la que σ_y = 250 MPa y σ_v = 450 MPa. Utilizando un factor de seguridad de 3.0, determine el par máximo que puede aplicarse a la viga cuando se flexiona alrededor del eje z.

Momento de inercial total

$$I_{1}+I_{2}+I_{3}=682,67\times10^{3}$$
 mm + 43.69×10^{3} mm + $682,67\times10^{3}$ mm

$$I=7.40902\times10^{6}$$
 m = $\frac{1}{C}$ = $\frac{-150\times10^{6}}{C}$ Pa $\times 7.40902\times10^{6}$ m

$$M=5,28\times10^{3}$$
 N.m.

$$M=5,28\times10^{3}$$
 N.m.

Problema 04

Dos fuerzas verticales se aplican a una viga con la sección transversal que se muestra en las figuras. Determine los esfuerzos máximos de tensión y de compresión en la porción BC de la viga.

Problema 07

Un par de 60 N·m se aplica a la barra de acero que se muestra en la figura. a) Suponiendo que el par se aplica alrededor del eje z como se muestra, determine el esfuerzo máximo y el radio de curvatura de la barra. b) Resuelva el inciso a), suponiendo que el par se aplica alrededor del eje y. Utilice E = 200 GPa.

a\ Flexión alrededor de eleje z

ez
$$T_{22} = \frac{1}{12} \cdot 20^{3} \cdot 12 = 8 \times 10^{3} \text{ m/m}^{2} = 8 \times 10^{9} \text{ m}^{4}$$

$$T_{22} = \frac{1}{12} \cdot 20^{3} \cdot 12 = 8 \times 10^{3} \text{ m/m}^{2} = 8 \times 10^{9} \text{ m}^{4}$$

$$T_{22} = \frac{-60 \text{ N.m.} \cdot (-0.01 \text{ m})}{8 \times 10^{9} \text{ m}^{4}} = 75 \times 10^{9} \text{ pa} = 75 \text{ mPa}$$

$$\frac{1}{\beta} = \frac{M}{E.I} = \frac{60 \text{ N.m.}}{200 \times 10^{9} \text{ Pa} \times 8 \times 10^{9} \text{ m}^{4}} = 37.5 \times 10^{3} \text{ m}^{4}$$

b) Flexión con respecto al eje y

$$\frac{1}{9} = \frac{H}{E.I} = \frac{60 \text{ N.m}}{200 \text{ m}^{3} Pa \times 2.88 \times 70^{9} \text{ m}} = 104, 17 \times 10^{3} \text{ m}^{-1}$$

P= 26,7 m