Union $S \cup T$: $\{x : x \in S \lor x \in T\}$ **Difference** $S \setminus T$: $\{x : x \in S \land x \notin T\}$

Intersection $S \cap T$: $\{x : x \in S \land x \in T\}$ Complement S': $\{x : x \notin S \land x \notin T\}$

Total (total %): $\forall x \in A \implies f(x)$ is defined

1 to 1 (injective %): $\forall x, y \in X, \quad f(x) = f(y) \implies x = y$

Onto (surjective %): $f: X \to Y$, $\forall y \in Y$, $\exists x \in X \implies f(x) = y$

Composition: $(g \circ f)(x) = g(f(x))$

Inverse: $f^{-1}(x)$: $f \circ f^{-1} = f^{-1} \circ f = id$

Equivalence $^{\circ}$: \sim , \equiv \iff a relation is reflexive, symmetric (**partial**: antisymmetric), and transitive.

Reflexive $^{\circ}$: $\forall a \in X$, $a \sim a$

Symmetric $^{\circ}$: $\forall a, b \in X$, $a \sim b \iff b \sim a$

Antisymmetric $^{\circ}$: $\forall a, b \in X$, $a \sim b, a \neq b \implies b \nsim a$... equiv... $a \sim b, b \sim a \implies a = b$

Transitive $^{\circ}$: $\forall a, b, c \in X$, : $a \sim b, b \sim c \implies a \sim c$

Direct: using previous theorem or definition

Contradiction: assume false, find contradiction

Contrapositive: $A \implies B = \neg B \implies \neg A$ **Cases**: prove all possible cases.

Generalization: prove $\forall x$ pick arbitrary x. WLOG = swap variables same difference.

Prove set: $A = B \iff A \subseteq B \land B \subseteq A$

$$a, b, c, q, r, x, y \in \mathbb{Z} \downarrow$$

$$b = qa + r \iff \exists q, r : 0 \le r < b$$

 $a|b \iff \exists q \implies b = qa$
 $a\%b = r \iff \frac{a}{b}$ has remainder r

 $a \equiv b \mod n \iff n|b-a$ **Theorem**: $a|b \wedge a|c \implies a|bx + cy$ **Theorem**: $a \equiv a\%n \mod n$, n|qn

Prove $\sqrt[n]{2}$ is irrational for n > 2Proof.

$$\sqrt[n]{2} \in \mathbb{Q} \implies \exists a, b \in \mathbb{Z} : \gcd(a, b) = 1$$

$$\implies \sqrt[n]{2} = \frac{a}{b} \implies a^n = 2b^n$$

$$\implies a^n = b^n + b^n$$

Prove $\forall n, a, b \in \mathbb{Z}$, $n|a-b \iff a\%n = b\%n$ Proof.

$$a\%n = b\%n \iff \exists q \in \mathbb{Z} : \frac{a}{n} = \frac{qb}{n}$$
$$\implies a = qb$$
$$\implies n|qb - b = n|b(q - 1)$$

(a) Let $\delta = \gcd(b, a\%b)$, prove that $\delta|a \wedge \delta|b$ Proof.

$$a\%b = 0 \implies a|b, \gcd(b, 0) = b$$

$$\implies b = \delta, b = ca$$

$$\implies \delta|b, \delta|ca$$

$$\implies \delta|b \wedge \delta|a$$

 $a\%b \neq 0 \implies a\%b = r$ by definition 2 $\implies r|b-a \text{ by definition 3}$ $\implies r|a \wedge r|b \text{ by question 3}$ $\delta|r \implies \delta|a \wedge \delta|b$

Proof by contradiction.

$$a\%n \neq b\%n \implies \exists q \notin \mathbb{Z} : \frac{a}{n} = \frac{qb}{n}$$

 $\implies a \neq qb$

The greatest common divisor of natural numbers a, b; $\gcd(a, b)$, is the largest number δ such that $\delta|a \wedge \delta|b$

(b) Use (a) to show that gcd(a, b) = gcd(b, a%b)Proof.

 $a\%b = 0 \implies a \le b, \delta = \max(a, b) = b$ by (a) $a\%b \ne 0 \implies \delta | r, 0 < r < a \le b$ by (a) $\implies \delta = \max(b, r) = b$