

Bestandsmanagement unter deterministischen Bedingungen ("Bestellmengen- bzw. Losgrößenplanung")

Materialbereitstellungsprinzipien:

- einsatzsynchrone Materialbereitstellung im Bedarfsfall
- Einzelbeschaffung im Bedarfsfall
- Vorratshaltung:
 - Zusammenfassung von (Netto-)Bedarfsmengen zu größeren Produktions- bzw. Beschaffungslosen
 - □ um Rüstvorgänge einzusparen
 - Rüstkosten (direkt zurechenbare Kosten)
 - Rüstzeiten (Opportunitätskosten)
 - unter Inkaufnahme von Lagerkosten durch Vorausproduktion bzw.Vorabbestellung
 - □ auf Grund knapper Kapazitäten

Charakterisierung von Losgrößenplanungsproblemen

	Niveau der Be	edarfsmengen
Grad der Ab-	gleichbleibend	schwankend
hängigkeit		
unabhängig	statische Losgrößenproble-	dynamische Losgrößenpro-
	me mit unabhängigem Be-	bleme mit unabhängigem
	darf	Bedarf
abhängig	statische Losgrößenproble-	dynamische Losgrößenpro-
	me mit abhängigem Bedarf	bleme mit abhängigem Be-
		darf

Gemeinsame Entwicklung des Lagerbestands zweier durch direkte Input-Output-Beziehungen miteinander verbundener Erzeugnisse:

(s. Tempelmeier (2006))

Gemeinsame Entwicklung des Lagerbestands zweier durch direkte Input-Output-Beziehungen miteinander verbundener Erzeugnisse:

(s. Tempelmeier (2006))

Gemeinsame Entwicklung des Lagerbestands zweier durch direkte Input-Output-Beziehungen miteinander verbundener Erzeugnisse:

(s. Tempelmeier (2006))

Dynamische Losgrößenplanung

Das dynamische Einprodukt-Losgrößenproblem

Modell SIULSP

Was muss festgelegt werden:

... Soll für das betrachtete Erzeugnis in Periode t ein Los aufgelegt werden?

... Wieviel soll ggf. produziert werden?

... Wieviel Lagerbestand ist damit verbunden?

Modell SIULSP

Was muss festgelegt werden — Entscheidungsvariable:

 $\gamma_t \in \{0,1\}$... Binärvariable zur Kennzeichnung, ob das betrachtete Erzeugnis in Periode t produziert wird

$$\gamma_t = \left\{ \begin{array}{l} 1 \text{ , wenn ein Los in Periode } t \text{ aufgelegt wird} \\ 0 \text{ sonst} \end{array} \right.$$

 q_t ... Produktionsmenge in Periode t

 y_t ... Lagerbestand am Ende von Periode t

Modell SIULSP

Was ist gegeben — Daten:

 d_t ... Bedarf in Periode t

 $y^{(0)}$... Anfangslagerbestand

s ... Rüstkostensatz

h ... Lagerkostensatz

 p_t ... variable Produktionskosten in Periode t

M ... eine große Zahl, die größer sein muss als die maximal mögliche Losgröße

Modell SIULSP

Minimiere die Summe aus Rüst-, Lager- und variablen Produktionskosten:

$$Z = \sum_{t=1}^{T} (h \cdot y_t + s \cdot \gamma_t + p_t \cdot q_t)$$

u. B. d. R.:

Anfangslagerbestand:

$$y_0 = y^{(0)}$$

Lagerbilanz: Anfangsbestand + Zugänge - Abgänge = Endbestand $y_{t-1} + q_t - d_t = y_t \qquad \qquad \text{für alle } t = 1, 2, \dots, T$

Modell SIULSP

Minimiere die Summe aus Rüst-, Lager- und variablen Produktionskosten:

$$Z = \sum_{t=1}^{T} (h \cdot y_t + s \cdot \gamma_t + p_t \cdot q_t)$$

u. B. d. R.:

Anfangslagerbestand:

$$y_0 = y^{(0)}$$

Lagerbilanz: Anfangsbestand + Zugänge - Endbestand = Abgänge $y_{t-1}+q_t-y_t=d_t$ für alle $t=1,2,\ldots,T$

Modell SIULSP

Minimiere die Summe aus Rüst-, Lager- und variablen Produktionskosten:

$$Z = \sum_{t=1}^{T} (h \cdot y_t + s \cdot \gamma_t)$$

u. B. d. R.:

Anfangslagerbestand:

$$y_0 = y^{(0)}$$

Bedarf in Periode *t*:

$$y_{t-1} + q_t - y_t = d_t$$

für alle $t = 1, 2, \ldots, T$

Es muss gerüstet werden, wenn $q_t > 0$ ist:

$$q_t - M_t \cdot \gamma_t \le 0$$

für alle $t = 1, 2, \ldots, T$

Wertebereich:

$$q_t \ge 0; \ y_t \ge 0; \ \gamma_t \in \{0, 1\}$$

für alle $t = 1, 2, \ldots, T$

$$M_t \stackrel{!}{\geq} \sum_{j=t}^T d_j =: D_{tT}$$

$$(t=1,2,\ldots,T)$$

Modell SIULSP

Minimiere die Summe aus Rüst-, Lager- und variablen Produktionskosten:

$$Z = \sum_{t=1}^{T} (h \cdot y_t + s \cdot \gamma_t + p_t \cdot q_t)$$

u. B. d. R.:

Anfangslagerbestand:

$$y_0 = y^{(0)}$$

Bedarf in Periode *t*:

$$y_{t-1} + q_t - y_t = d_t$$

für alle $t = 1, 2, \dots, T$

Es muss gerüstet werden, wenn $q_t > 0$ ist:

$$q_t - M_t \cdot \gamma_t \le 0$$

für alle $t = 1, 2, \ldots, T$

Wertebereich:

$$q_t \ge 0; \ y_t \ge 0; \ y_T \ge 0; \ \gamma_t \in \{0, 1\}$$

für alle $t = 1, 2, \ldots, T$

Modell SIULSP

Minimiere die Summe aus Rüst-, Lager- und variablen Produktionskosten:

$$Z = \sum_{t=1}^{T} (h \cdot y_t + s \cdot \gamma_t + p_t \cdot q_t)$$

u. B. d. R.:

Anfangslagerbestand:

$$y_0 = y^{(0)}$$

Bedarf in Periode *t*:

$$y_{t-1} + q_t - y_t = d_t$$

für alle $t = 1, 2, \ldots, T$

Es muss gerüstet werden, wenn $q_t > 0$ ist:

$$q_t - D_{tT} \cdot \gamma_t \le 0$$

für alle $t = 1, 2, \ldots, T$

Wertebereich:

$$q_t \ge 0; \ y_t \ge 0; \ y_T \ge 0; \ \gamma_t \in \{0, 1\}$$

für alle $t = 1, 2, \ldots, T$

$$M_t \stackrel{!}{\geq} \sum_{j=t}^T d_j =: D_{tT} \implies q_t - D_{tT} \cdot \gamma_t \leq 0$$
 $(t = 1, 2, \dots, T)$

$$M_t \stackrel{!}{\geq} \sum_{j=t}^T d_j =: D_{tT} \implies q_t - D_{tT} \cdot \gamma_t \leq 0$$
 $(t = 1, 2, \dots, T)$

Wagner-Whitin-Eigenschaft (bei unbeschränkten Kapazitäten)

$$q_t \cdot y_{t-1} = 0 (t = 1, 2, \dots, T)$$

- ▶ Es wird in Periode t nur dann ein neues Los aufgelegt $(q_t > 0)$, wenn der Lagerbestand erschöpft ist $(y_{t-1} = 0)$.
- ▶ Wenn Lagerbestand übernommen wird $(y_{t-1} > 0)$, dann ist der Lagerbestand mindestens so groß, dass er den aktuellen Bedarf decken kann $(y_{t-1} \ge d_t)$. Die noch bereitzustellende Menge ist dann $q_t = 0$.
- ▶ Überflüssige Bestände kann es nicht geben, bei denen man trotz Lagerkosten keine Rüstkosten einspart.
- ⇒ Nur ganze Periodenbedarfsmengen werden zu Losen zusammengefasst!

Lösungsverfahren für das dynamische Einprodukt-Losgrößenproblem

Exakte Lösung mit dynamischer Optimierung

Beispiel SIULSP

- ▶ Rüstkostensatz: s = 500 GE pro Rüstvorgang
- ▶ Lagerkostensatz: h = 1 GE pro ME und Periode
- ► keine entscheidungsrelevanten variablen Produktionskosten

Periode t		1	2	ω	4	5	6
Bedarfsmenge (d_t	20	80	160	85	120	100

Beispiel SIULSP

- ▶ Rüstkostensatz: s = 500 GE pro Rüstvorgang
- ▶ Lagerkostensatz: h = 1 GE pro ME und Periode
- ▶ keine entscheidungsrelevanten variablen Produktionskosten

Periode t		1	2	თ	4	5	6
Bedarfsmenge	d_t	20	80	160	85	120	100

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

Kosten für den Planungszeitraum von 6 Perioden:

$$ightharpoonup C_6 = C_5 + c_{66}$$

$$ightharpoonup C_6 = C_4 + c_{56}$$

$$ightharpoonup C_6 = C_3 + c_{46}$$

$$ightharpoonup C_6 = C_2 + c_{36}$$

$$ightharpoonup C_6 = C_1 + c_{26}$$

$$ightharpoonup C_6 = c_{16}$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

Kosten für den Planungszeitraum von T Perioden:

$$C_T = C_i + c_{i+1,T}$$

$$(i = 1, 2, \dots, T - 1)$$

Minimale Kosten einer Lospolitik für die ersten i Planungsperioden:

$$f_i = \min_{1 < \tau < i} \{ f_{\tau - 1} + c_{\tau i} \}$$

$$(i=1,2,\ldots,T)$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_1 = c_{11} = 500$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_		_	_	500

$$f_1 = c_{11} = 500 \implies P_1^{\text{opt}} = (p_{11})$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_2 = \min\{c_{12}, f_1 + c_{22}\}\$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_2 = \min\{c_{12}, f_1 + c_{22}\} = \min\{580, 500 + 500\}$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_2 = \min\{c_{12}, f_1 + c_{22}\} = \min\{580, 500 + 500\} = 580$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_2 = \min\{c_{12}, f_1 + c_{22}\} = \min\{580, 500 + 500\} = 580 \implies P_2^{\text{opt}} = (p_{12})$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_		_	_	500

$$f_3 = \min\{c_{13}, f_1 + c_{23}, f_2 + c_{33}\}\$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_3 = \min\{c_{13}, f_1 + c_{23}, f_2 + c_{33}\} = \min\{900, 500 + 660, 580 + 500\}$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_3 = \min\{c_{13}, f_1 + c_{23}, f_2 + c_{33}\} = \min\{900, 500 + 660, 580 + 500\} = 900$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_3 = \min\{c_{13}, f_1 + c_{23}, f_2 + c_{33}\} = \min\{900, 500 + 660, 580 + 500\} = 900$$

 $\implies P_3^{\text{opt}} = (p_{13})$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_4 = \min\{c_{14}, f_1 + c_{24}, f_2 + c_{34}, f_3 + c_{44}\}\$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_4 = \min\{1155, 500 + 830, 580 + 585, 900 + 500\}$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_4 = \min\{1155, 500 + 830, 580 + 585, 900 + 500\} = 1155$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_4 = \min\{1155, 500 + 830, 580 + 585, 900 + 500\} = 1155$$

 $\implies P_4^{\text{opt}} = (p_{14})$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_5 = \min\{c_{15}, f_1 + c_{25}, f_2 + c_{35}, f_3 + c_{45}, f_4 + c_{55}\}$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_5 = \min\{1635, 500 + 1190, 580 + 825, 900 + 620, 1155 + 500\}$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_5 = \min\{1635, 500 + 1190, 580 + 825, 900 + 620, 1155 + 500\} = 1405$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_5 = \min\{1635, 500 + 1190, 580 + 825, 900 + 620, 1155 + 500\} = 1405$$

 $\implies P_5^{\text{opt}} = (P_2^{\text{opt}}, p_{35})$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_5 = \min\{1635, 500 + 1190, 580 + 825, 900 + 620, 1155 + 500\} = 1405$$

 $\implies P_5^{\text{opt}} = (P_2^{\text{opt}}, p_{35}) = (p_{12}, p_{35})$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_6 = \min\{c_{16}, f_1 + c_{26}, f_2 + c_{36}, f_3 + c_{46}, f_4 + c_{56}, f_5 + c_{66}\}$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_6 = \min\{2135, 500 + 1590, 580 + 1125, 900 + 820, 1155 + 600, 1405 + 500\}$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_6 = \min\{2135, 500 + 1590, 580 + 1125, 900 + 820, 1155 + 600, 1405 + 500\} = 1705$$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_	_	_	_	_	500

$$f_6 = \min\{2135, 500 + 1590, 580 + 1125, 900 + 820, 1155 + 600, 1405 + 500\} = 1705$$

 $\Longrightarrow P_6^{\text{opt}} = (P_2^{\text{opt}}, p_{36})$

Beispiel SIULSP

Kosten $c_{\tau j}$ einer (ökonomisch sinnvollen) Teilpolitik $p_{\tau j}$ (eines Loses), die die Bedarfsmengen d_{τ} bis d_{j} abdeckt $(\tau = 1, 2, ..., 6, j = \tau, \tau + 1, ..., 6)$

letzte Bedarfsperiode (j)	1	2	3	4	5	6
Bereitstellungsperiode (au)						
1	500	580	900	1155	1635	2135
2	_	500	660	830	1190	1590
3	_	_	500	585	825	1125
4	_	_	_	500	620	820
5	_	_	_	_	500	600
6	_			_	_	500

$$f_6 = \min\{2135, 500 + 1590, 580 + 1125, 900 + 820, 1155 + 600, 1405 + 500\} = 1705$$

 $\Longrightarrow P_6^{\text{opt}} = (P_2^{\text{opt}}, p_{36}) = (p_{12}, p_{36})$

Vom klassischen Losgrößenmodell inspirierte Praxisheuristiken

Heuristische Lösungsverfahren:

Stückkostenverfahren (Least-Unit-Cost-Verfahren)

Vergrößere j, solange die durchschnittlichen Stückkosten sinken!

Heuristische Lösungsverfahren:

Stückkostenverfahren (Least-Unit-Cost-Verfahren)

Vergrößere
$$j$$
, solange $c_{\tau j} = \frac{s + h \cdot \sum\limits_{t=\tau}^{j} (t-\tau) \cdot d_t}{\sum\limits_{t=\tau}^{j} d_t}$ sinkt!

Heuristische Lösungsverfahren:

Stückkostenverfahren (Least-Unit-Cost-Verfahren)

Vergrößere
$$j$$
, solange $c_{\tau j} = \frac{s + h \cdot \sum\limits_{t=\tau}^{j} (t-\tau) \cdot d_t}{\sum\limits_{t=\tau}^{j} d_t}$ sinkt!

Stückperiodenausgleichsverfahren (Part-Period-Verfahren)

Vergrößere j, solange Lagerkosten \leq Rüstkosten!

Heuristische Lösungsverfahren:

Stückkostenverfahren (Least-Unit-Cost-Verfahren)

Vergrößere
$$j$$
, solange $c_{\tau j} = \frac{s + h \cdot \sum\limits_{t=\tau}^{\jmath} (t-\tau) \cdot d_t}{\sum\limits_{t=\tau}^{\jmath} d_t}$ sinkt!

Stückperiodenausgleichsverfahren (Part-Period-Verfahren)

Vergrößere
$$j$$
, solange $\sum\limits_{t= au}^{j}(t- au)\cdot d_t \leq rac{s}{h}$!

Heuristische Lösungsverfahren:

Stückkostenverfahren (Least-Unit-Cost-Verfahren)

Vergrößere
$$j$$
, solange $c_{\tau j} = \frac{s + h \cdot \sum\limits_{t=\tau}^{j} (t-\tau) \cdot d_t}{\sum\limits_{t=\tau}^{j} d_t}$ sinkt!

► Stückperiodenausgleichsverfahren (Part-Period-Verfahren)

Vergrößere
$$j$$
, solange $\sum\limits_{t= au}^{\jmath}(t- au)\cdot d_t \leq rac{s}{h}$!

Silver-Meal-Verfahren

Vergrößere j, solange die durchschnittlichen Kosten pro ZE sinken!

Heuristische Lösungsverfahren:

Stückkostenverfahren (Least-Unit-Cost-Verfahren)

Vergrößere
$$j$$
, solange $c_{\tau j} = \frac{s + h \cdot \sum\limits_{t=\tau}^{\jmath} (t-\tau) \cdot d_t}{\sum\limits_{t=\tau}^{\jmath} d_t}$ sinkt!

Stückperiodenausgleichsverfahren (Part-Period-Verfahren)

Vergrößere
$$j$$
, solange $\sum\limits_{t= au}^{\jmath}(t- au)\cdot d_t \leq rac{s}{h}$!

Silver-Meal-Verfahren

Vergrößere
$$j$$
, solange $c_{\tau j}=\frac{s+h\cdot\sum\limits_{t=\tau}^{j}(t-\tau)\cdot d_t}{j-\tau+1}$ sinkt!

Das dynamische einstufige Mehrprodukt-Losgrößenproblem

Modell SIULSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{t=1}^{T} (h \cdot y_t + s \cdot \gamma_t + p_t \cdot q_t)$$

u. B. d. R.:

Bedarf in Periode *t*:

$$y_{t-1} + q_t - y_t = d_t$$

für alle $t = 1, 2, \ldots, T$

Es muss gerüstet werden, wenn $q_t > 0$ ist:

$$q_t - M \cdot \gamma_t \le 0$$

für alle $t = 1, 2, \ldots, T$

Wertebereich:

$$q_t \ge 0$$
; $y_t \ge 0$; $y_0 = 0$; $y_T = 0$; $\gamma_t \in \{0, 1\}$

für alle $t = 1, 2, \ldots, T$

Modell SIULSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

Bedarf in Periode *t*:

$$y_{k,t-1} + q_{kt} - y_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Es muss gerüstet werden, wenn $q_{kt} > 0$ ist:

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

$$q_{kt} \ge 0$$
; $y_{kt} \ge 0$; $y_{k0} = 0$; $y_{kT} = 0$; $\gamma_{kt} \in \{0, 1\}$ für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Modell SIULSP

Was ist gegeben — **Indexmengen**:

 ${\mathcal K}$... die Menge der betrachteten Produkte

Was ist gegeben — **Daten**:

 d_{kt} ... Bedarf für Produkt k in Periode t

 $y_k^{(0)}$... Anfangslagerbestand für Produkt k

 s_k ... Rüstkostensatz für Produkt k

 h_k ... Lagerkostensatz für Produkt k

 p_{kt} ... variable Produktionskosten für Produkt k in Periode t

Modell SIULSP

Was ist gegeben — **Indexmengen**:

 ${\mathcal K}$... die Menge der betrachteten Produkte

 ${\mathcal J}$... die Menge der gemeinsam genutzten Ressourcen

Was ist gegeben — **Daten**:

 d_{kt} ... Bedarf für Produkt k in Periode t

 $y_k^{(0)}\,\ldots$ Anfangslagerbestand für Produkt k

 $s_k \ \dots$ Rüstkostensatz für Produkt k

 h_k ... Lagerkostensatz für Produkt k

 p_{kt} ... variable Produktionskosten für Produkt k in Periode t

Modell CLSP

Was ist gegeben — **Indexmengen**:

 ${\mathcal K}$... die Menge der betrachteten Produkte

 ${\mathcal J}$... die Menge der gemeinsam genutzten Ressourcen

Was ist gegeben — **Daten**:

 d_{kt} ... Bedarf für Produkt k in Periode t

 $y_k^{(0)}$... Anfangslagerbestand für Produkt k

 s_k ... Rüstkostensatz für Produkt k

 h_k ... Lagerkostensatz für Produkt k

 p_{kt} ... variable Produktionskosten für Produkt k in Periode t

 tb_{ik} ... Stückbearbeitungszeit für Produkt k auf Ressource j

 tr_{jk} ... Rüstzeit für Produkt k auf Ressource j

 b_{jt} ... Kapazität der Ressource j in Periode t

Modell CLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

Bedarf in Periode *t*:

$$y_{k,t-1} + q_{kt} - y_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Es muss gerüstet werden, wenn $q_{kt} > 0$ ist:

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

$$q_{kt} \ge 0$$
; $y_{kt} \ge 0$; $y_{k0} = 0$; $y_{kT} = 0$; $\gamma_{kt} \in \{0, 1\}$ für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Modell CLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

Bedarf in Periode t:

$$y_{k,t-1} + q_{kt} - y_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Es muss gerüstet werden, wenn $q_{kt} > 0$ ist:

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

$$q_{kt} \ge 0$$
; $y_{kt} \ge 0$; $y_{k0} = 0$; $y_{kT} = 0$; $\gamma_{kt} \in \{0, 1\}$ für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Modell CLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

Bedarf in Periode *t*:

$$y_{k,t-1} + q_{kt} - y_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Kapazitäten in Periode t:

$$\sum_{k \in \mathcal{K}} \left(\mathsf{tb}_{jk} \cdot q_{kt} + \mathsf{tr}_{jk} \cdot \gamma_{kt} \right) \le b_{jt}$$

für alle $j \in \mathcal{J}$ und $t = 1, 2, \dots, T$

Es muss gerüstet werden, wenn $q_{kt} > 0$ ist:

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

$$q_{kt} \ge 0$$
; $y_{kt} \ge 0$; $y_{k0} = 0$; $y_{kT} = 0$; $\gamma_{kt} \in \{0, 1\}$ für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Das dynamische einstufige Mehrprodukt-Losgrößenproblem mit Rüstzustandsübernahme

Dynamische Mehrprodukt-Losgrößenplanung (CLSP-L)

Übernahme des Rüstzustands von Periode t nach t+1

- ▶ Ein Erzeugnis wird als letztes in Periode t und als erstes in Periode t+1 produziert.
- ightharpoonup Am Ende der Periode t wird Leerzeit der Maschine genutzt, um für das erste in Periode t+1 zu produzierende Produkt umzurüsten

Falls in der Periode t überhaupt nicht produziert wird,

- ► kann gerüstet und der Rüstzustand in die nächste Periode übertragen werden.
- ► kann der aus der Vorperiode übernommene Rüstzustand in die nächste Periode übertragen werden.