Supplementary File 2 - Supplementary Results

Figure S4: (top) Estimated richness (M) vs. True richness (M_0) under different average genome lengths (L); (bottom) Estimation error vs true richness. Note that estimation error values are plotted in a log2 scale for comparison between the larger errors produced by PHACCS in relation to ENVirT. On average we see that ENVirT performs up to 585% more accurately than PHACCS.

Table S1: CV(RMSE) values for L and M estimates for M = 300 and M = 10000 for different v values. The results are obtained by running the same dataset on ENVirT, ENVirT-FL and PHACCS. N/A - Not Applicable

		CV(RMS	E) of L estima	ite	CV(RMSE) of M estimate		
Scenario	-log(v)	ENVirT	ENVirT-FL	PHACCS	ENVirT	ENVirT-FL	PHACCS
	4	0.00002	N/A	N/A	0.00000	0.00000	0.00000
	3.3	0.00007	N/A	N/A	0.00000	0.00000	0.00000
	3	0.00935	N/A	N/A	0.00913	0.00000	0.00000
M = 300	2.3	0.01828	N/A	N/A	0.01814	0.00000	0.00365
	2	0.02894	N/A	N/A	0.02896	0.00258	0.00548
	1.3	0.13252	N/A	N/A	0.14370	0.00882	0.02098
	1	0.28470	N/A	N/A	0.24046	0.02961	0.06672
	4	0.00018	N/A	N/A	0.00024	0.00000	0.00023
	3.3	0.00105	N/A	N/A	0.00130	0.00021	0.00112
	3	0.01595	N/A	N/A	0.00252	0.00042	0.00266
M=10000	2.3	0.03104	N/A	N/A	0.01363	0.01251	0.01246
	2	0.03581	N/A	N/A	0.01766	0.01468	0.01524
	1.3	0.09553	N/A	N/A	0.12784	0.11198	0.13040
	1	0.20204	N/A	N/A	0.20084	0.20102	0.22287

Figure S5: (a) Root Mean Squared Error (RMSE) between the average contig two consecutive iterations, (b) S(M,L,T,d) corresponding to the estimates, (c) Estimated M and (d) Estimated L (bp): produced by ENVirT under the contig spectrum of Lake Bourget averaged over different numbers of Circonspect iterations.

Figure S6: Estimated richness and average genome length as generated by ENVirT for 20 experimental metavirones.

Figure S7: (top) Comparison of the residual model error as given by S_{min} between ENVirT and PHACCS+GAAS/BLAST; (bottom) The cumulative model error S_{min} for all 20 experimental metaviromes anlaysed by both ENVirT and PHACCS+GAAS/BLAST.

		Table	S2: Per	Table S2: Performance of ENVirT	ENVirT ii	n compar	ison to s	standa	ord GA	in comparison to standard GA algorithm on simulated contig spectra.	n simulat	ed contig	g spec	tra.	
	Input pa	arame	ters (ex	Input parameters (expected result	lt)	Est	Estimated values by ENVirT	value	s by EN	VirT	Estimate	ed values	by G	A with	Estimated values by GA without niching
L_0	M_0	T_0	d_0	Evenness	f_{max}	T	M	L	p	S_{min}	T	M	L	p	S_{min}
12500	300	exp	0.030	0.790	2.956%	12500	300	exp	0.030	$0.00 \mathrm{x} 10^{-0}$	39500	12400	exp	0.095	$3.49 \text{x} 10^{-2}$
12500	1000	\log	0.900	0.995	0.661%	14972	838	\log	0.893	6.56×10^{-3}	310000	100	$\lg n$	1.063	$2.59 \mathrm{x} 10^{-1}$
12500	5000	$\lg n$	2.500	0.655	11.849%	12500	2000	\lg	2.500	$0.00\mathrm{x}10^{\:0}$	12500	5000	$\lg n$	2.500	$0.00\mathrm{x}10^{\:0}$
12500	10000	pl	0.700	0.913	1.997%	12500	10000	$_{\rm pl}$	0.700	$0.00 \mathrm{x} 10^{-0}$	29500	1400	\log	1.911	$6.38\mathrm{x}10^{\:0}$
20000	300	exp	0.030	0.790	2.956%	20000	300	exp	0.030	$0.00 \mathrm{x} 10^{\ 0}$	41000	100	pl	0.378	$1.53 \mathrm{x} 10^{-1}$
50000	1000	\log	0.900	0.995	0.661%	50000	1000	\log	0.900	$0.00\mathrm{x}10^{\:0}$	100500	009	$\lg n$	0.531	3.48×10^{-2}
50000	5000	$\lg n$	2.500	0.655	11.849%	50000	2000	\lg	2.500	$0.00\mathrm{x}10^{\:0}$	50000	5100	$\lg n$	2.506	$1.92 \text{x} 10^{-2}$
50000	10000	pl	0.700	0.913	1.997%	52787	10175	pl	0.707	1.72×10^{-3}	41000	0086	pl	0.677	2.22×10^{-2}
125000	300	exp	0.030	0.790	2.956%	125000	300	exp	0.030	$0.00 \mathrm{x} 10^{-0}$	58500	11000	exp	0.014	2.70×10^{-2}
125000	1000	\log	0.900	0.995	0.661%	125000	1000	\log	0.900	$0.00\mathrm{x}10^{\:0}$	00069	1800	\log	0.943	$3.94 \text{x} 10^{-4}$
125000	2000	$\lg n$	2.500	0.655	11.849%	125000	2000	\lg	2.500	$0.00\mathrm{x}10^{\:0}$	125000	5000	$\lg n$	2.500	$0.00\mathrm{x}10^{\:0}$
125000	10000	$_{\rm pl}$	0.700	0.913	1.997%	116341	9824	pl	0.691	$1.96 \text{x} 10^{-4}$	203000	15000	$\lg n$	1.922	$9.34 \mathrm{x} 10^{-1}$
300000	300	exp	0.030	0.790	2.956%	300000	300	exp	0.030	$0.00 \mathrm{x} 10^{\ 0}$	00029	400	lgn	0.543	$5.36 \text{x} 10^{-2}$
300000	1000	\log	0.900	0.995	0.661%	217303	1373	\log	0.899	1.26×10^{-7}	156000	1900	\log	0.931	$1.93 \mathrm{x} 10^{-5}$
300000	2000	$\lg n$	2.500	0.655	11.849%	300000	2000	\lg	2.500	$0.00\mathrm{x}10^{\:0}$	310000	7400	$\lg n$	2.635	$1.09 \mathrm{x} 10^{-1}$
300000	10000	pl	0.700	0.913	1.997%	277000	0086	pl	0.690	3.00×10^{-5}	77000	5600	log	1.658	$2.97 \text{x} 10^{-2}$

 S_{min} = the value of the cost function corresponding to the estimated values of M, L, T and d. GA = Genetic Algorithm. We chose $M_{LB} = 1, M_{UB} = 15000, L_{LB} = 10000, L_{UB} = 310000, d_{LB} = 0.01$ and $d_{UB} = 5$ for both ENVirT and GA without niching. In order to Contig spectra were generated with parameters: R = 10000, r = 100bp and o = 35bp. pl = power-law distribution, exp = exponentialdistribution, $\log = \log \operatorname{arithmic}$ distribution and $\log = \log \operatorname{normal}$ distribution. $f_{max} = \operatorname{relative}$ abundance of the dominant genotype. apply the second niching strategy of ENVirT, we chose $N_L = 29$.