Software Project Management

Durga Prasad Mohapatra

Professor

CSE Deptt.

NIT Rourkela

Software quality cont...

SEI Capability Maturity Model (CMM)

- Developed by Software Engineering Institute (SEI) of the Carnegie Mellon University, USA:
 - To assist the U.S. Department of Defence (DoD) in software acquisition.
 - The rationale was to include:
 - Likely contractor performance as a factor in contract awards.

SEI Capability Maturity Model

- Major DoD contractors began CMM-based process improvement initiatives:
 - As they vied for DoD contracts.
- SEI CMM helped organizations:
 - Helped Improve quality of software they developed
 - Realized adoption of SEI CMM model had significant business benefits.
- Other organizations adopted CMM.

- In simple words:
 - CMM is a model for apprising the software process maturity of a contractor into different levels.
 - Can be used to predict the most likely outcome to be expected:
 - from the next project that the organization undertakes.

- Can be used in two ways:
 - Capability evaluation
 - Software process assessment.

Capability Evaluation

- Provides a way to assess the software process capability of an organization:
 - Helps in selecting a contractor
 - Indicates the likely contractor performance.

Software Process Assessment

- Used by an organization to assess its current process:
 - Suggests ways to improve the process capability.
 - This type of assessment is for purely internal use.

SEI Capability Maturity Model

- The SEI CMM classifies software development industries into:
 - Five maturity levels.
 - Stages are ordered so that improvements at one stage provide foundations for the next.
 - Based on the pioneering work of Philip Crosby.

SEI Capability Maturity Model

Optimizing (5)

Managed (4)

Defined (3)

Repeatable (2)

Initial (1)

Level I: (Initial)

- Organization operates
 - Without any formalized process or project plans
- An organization at this level is characterized by
 - Ad hoc and often chaotic activities.

Level I: (Initial)

- Software production processes are not defined,
 - Different engineers follow their own process
 - Development efforts become chaotic.
 - The success of projects depend on individual efforts and heroics.

Level 2: (Repeatable)

- Basic project management practices
 - Tracking cost, schedule, and functionality are followed.
- Size and cost estimation techniques:
 - Function point analysis, COCOMO, etc. used.
- Production process is ad hoc:
 - Not formally defined
 - Also not documented.

Level 2: (Repeatable)

- Process used for different projects might vary between projects:
 - Earlier success on projects with similar applications can be repeated.
 - Opportunity to repeat process exist when a company produces a family of products.

- Management and development activities:
 - Defined and documented.
 - Common organization-wide understanding of activities, roles, and responsibilities.

Level 3: (Defined)

- The process though defined:
 - Process and product qualities are not measured.
- ISO 9001 aims at achieving this level.

Level 4: (Managed)

- Quantitative quality goals for products are set.
- Software process and product quality are measured:
 - The measured values are used to control the product quality.
 - Results of measurement used to evaluate project performance:
 - Rather than improve process.

- Organization sets quantitative quality goals.
- World-wide about 100 organizations assessed at this level.

Level 5: (Optimizing)

- Statistics collected from process and product measurements are analyzed:
 - Continuous process improvement based on the measurements.
 - Known types of defects are prevented from recurring by tuning the process
 - Lessons learned from specific projects incorporated into the process

Level 5: (Optimizing)

- Identify best software engineering practices and innovations:
 - Tools, methods, or process are identified.
 - Transferred throughout the organization.
- World-wide about 500 organizations have been assessed at this level.

Key Process Areas

- Each level is associated with a key process area (KPA) which identifies:
 - Where an organization at the previous level must focus to reach this level.

- Software project planning:
 - Size, cost, schedule.
 - Project monitoring
- Configuration management
- Subcontract management

- Process definition and documentation.
- Reviews
- Training program

- Quantitative measurements.
- Process management.

- Defect prevention.
- Technology change management.
- Process change management.

A repeatable model

Repeatable model KPAs

To move to this level concentrate on:

- Configuration management
- Quality assurance
- Sub-contract management
- Project planning
- Project tracking and oversight
- Measurement and analysis

Repeatable to defined KPAs

Concentrate on

- Requirements development and technical solution
- Verification and validation
- Product integration
- Risk management
- Organizational training
- Organizational process focus (function)
- Decision analysis and resolution
- Process definition
- Integrated project management

Defined to managed KPAs

Concentrate on:

- Organizational process performance
- Quantitative project management

Optimizing

Managing to optimizing: KPAs

concentrate on:

- Causal analysis and resolution
- Organizational innovation and deployment

Comparison Between ISO 9001 and SEI CMM

- ISO 9001 awarded by an international standards body:
 - Can be quoted in official documents and communications.
- SEI CMM assessment is purely for internal use.

Comparison Between ISO 9001 and SEI CMM

- SEI CMM was developed specifically for software industry:
 - Addresses many issues specific to software industry.
- SEI goes beyond quality assurance
 - Aims for TQM.
 - ISO 9001 correspond to SEI level 3.

Comparison Between ISO 9001 and SEI CMM

- SEI CMM provides a list of key areas:
 - On which to focus to take an organization from one level to the other
- Provides a way for gradual quality improvements over several stages.
 - e.g trying to implement a defined process before a repeatable process:
 - Counterproductive as managers are overwhelmed by schedule and budget pressure.

CMMI (CMM Integration)

- CMMI is the successor of the CMM.
- The CMM was developed from 1987 until 1997.
- In 2002, CMMI Version 1.1 was released.
 - Version I.2 followed in August 2006.
- The goal of the CMMI to integrate many different models into one framework.
 - It was created by members of industry, government and the SEI.

Some questions about CMMI

- suitable only for large organizations
 - e.g. need for special quality assurance and process improvement groups
- defining processes may not be easy with new technology
 - how can we plan when we've not used the development method before?
- higher CMM levels easier with maintenance environments
- can you jump levels? (HP level 5 in India)

Remarks on Quality Model Usage

- Highly systematic and measured approach to software development process which suits certain circumstances
 - Negotiated software, safety-critical software, etc.
- What about small organizations?
 - Typically handle applications such as internet, e-comm.
 - · Without an established product range,
 - · Without revenue base, experience on past projects, etc.
 - CMM may be incompatible

Summary

- Discussed the basic concepts of SEI CMM.
- Compared between ISO and SEI CMM.

References:

- I. B. Hughes, M. Cotterell, R. Mall, Software Project Management, Sixth Edition, McGraw Hill Education (India) Pvt. Ltd., 2018.
- 2. R. Mall, Fundamentals of Software Engineering, Fifth Edition, PHI Learning Pvt. Ltd., 2018.

Thank you