Phil 320

Chapter 11: The Undecidability of First-order logic

Omit: 11.2

0. Introduction

Decision problem for halting: Is there an effective method that, applied to any Turing machine M and any input n, will in a finite amount of time tell us whether M halts on input n?

Answer: NO (assuming Turing's thesis, that effective means a Turing machine can do it)

Decision problem for logical implication: Is there an effective method that, applied to any finite set of sentences Γ and sentence D, will in finite time tell us whether or not Γ implies D?

Answer for sentential logic: YES (truth tables).

Answer for first-order logic: NO (again, assuming Turing's thesis).

Theorem 11.2 (Church's Theorem): The decision problem for logical implication is unsolvable.

To prove it, we "reduce" the decision problem for logic to the halting problem. We show that **if it is solvable, then the halting problem is solvable**. Actually, what we prove is: given any fixed machine M and input n, there are Γ (a set of sentences) and D (a single sentence) such that

M halts on input $n \leftrightarrow \Gamma$ implies D.

So, if there were an effective means of deciding in general whether Γ implies D, we'd have a way to solve the halting problem. But we don't!! So the decision problem is unsolvable. (The technique is reminiscent of chapter 8: represent M and the tape, using Γ and D.)

1. The language and interpretation for the sentences Γ and D.

Start with the machine M and the input n; these remain fixed. The language and interpretation vary somewhat depending on M and n.

The language:

Constant: 0

One-place predicates: $Q_1,...,Q_k$ [M a k-state machine, not counting halted state]

Two-place predicates: S, <

Additional two-place predicates: @, M

The *standard interpretation*, *M*:

- (1) Domain |M|: the integers $\{0, +1, -1, +2, -2, ...\}$
- Steps or *times* in the computation will be numbered by non-negative integers, starting with 0
- Squares on the tape will be numbered by all the integers, with the pointer starting off at square 0
- (2) Denotations

 $0^{M} = 0$

 $\mathbf{Q_i}^M(t) \leftrightarrow \mathbf{M}$ is in state *i* at time *t*.

The denotation of \mathbf{Q}_i is the set of times at which the machine M is in state i.

[Ex: Initial state is state 1, so $\mathbf{Q_1}^M(0)$. If M goes into state 2 at once, then $\mathbf{Q_2}^M(1)$. If M eventually halts, each such denotation will be a finite set of times.]

S denotes the successor relation: $S^{M}(m, n) \leftrightarrow n = m+1$

- < denotes less-than
- @ denotes all pairs (t, x) where $t \ge 0$ and M is at square x at time t. [In particular, $@^M(0,0)$.] Read this predicate as "at".
- **M** denotes all pairs (t, x) where $t \ge 0$ and square x is 'marked' with a 1 (rather than 0) at time t. [In particular, initially we have only squares 0 through n marked.]

When talking about @ and M, we'll always use t for the first argument (to suggest time) and x for the second (for the square).

These denotations depend entirely on the "career" or "history" of machine M when given input *n*. But that career is entirely determined by M and *n*, so they are all well-defined.

2. The sentences in Γ (three kinds).

- (a) Background about S and <.
- (1) $\forall u \forall v \forall w (((Suv \& Suw) \rightarrow v=w) \& ((Svu \& Swu) \rightarrow v=w))$

[unique successor, predecessor]

- (2) $\forall u \forall v (Suv \rightarrow u < v)$ [a number is less than its successor]
- (3) $\forall u \forall v \forall w ((u < v \& v < w) \rightarrow u < w)$ [< is transitive]
- (4) $\forall u \forall v (u < v \rightarrow u \neq v)$ [no number is less than itself]

These sentences imply some other important ones. To state these, it is convenient to introduce the unofficial terms 1, -1, 2, -2, 3, -3, etc. using 0 and S. For example:

$$\begin{array}{lll} x = 1 & \leftrightarrow S0x \\ x = -1 & \leftrightarrow Sx0 \\ x = 2 & \leftrightarrow \exists y(S0y\&Syx) \\ x = -2 & \leftrightarrow \exists y(Sxy\&Sy0), \end{array} \quad \text{etc.}$$

Then write

$$Q_i 2$$
 for $\exists t(t=2\&Q_i t)$
S-2x for $\exists y(y=-2\&Syx)$

We can show that the following are a consequence of (1)-(4):

$$\mathbf{p} \neq \mathbf{q}$$
 if $\mathbf{p} \neq \mathbf{q}$
 $\forall v(\mathbf{Sm}v \rightarrow v = \mathbf{k})$ where $\mathbf{k} = \mathbf{m} + 1$
 $\forall v(\mathbf{S}v\mathbf{m} \rightarrow v = \mathbf{k})$ where $\mathbf{k} = \mathbf{m} - 1$

(b) Description of time 0 (depends on the input, n).

At start, M is in state 1, at square 0, and only squares 0,1,...,n are marked with "1". So here is a description of the configuration at time 0, using @ and M:

(*0) **Q**₁**0** & @**00** & **M00** & **M01** & ... & **M0n** &
$$\forall x((x \neq 0 \& x \neq 1 \& ... \& x \neq n) \rightarrow \sim M0x)$$

(c) Description of M (one sentence for each nonhalting instruction).

Unofficial: Put M_1 for M (marked with 1), M_0 for $\sim M$ (marked with 0).

Each instruction has the form:

If in state i scanning symbol s, then take {one of four actions} and go into new state j. {Here, s can be 0 or 1.}

The corresponding sentence has to be stated using x for the current square, t for the current time. Here it is:

$$\forall t \forall x ((\mathbf{Q}_i t \& @tx \& \mathbf{M}_s tx) \rightarrow \exists u (\mathbf{S} tu \& \{\text{depends on action}\} \& \mathbf{Q}_j u \& \\ \forall y ((y \neq x \& \mathbf{M}_1 ty) \rightarrow \mathbf{M}_1 uy) \& \forall y ((y \neq x \& \mathbf{M}_0 ty) \rightarrow \mathbf{M}_0 uy))$$

[**IF** in state i scanning s at time t, **THEN** at the next moment u it is in state j and no other squares besides possibly x change their contents.]

- If the action is to print s^* , then we fill in the $\{\ \}$ with
- [s*] $@ux \& \mathbf{M}_{s*}ux$
- If the action is to move right, we fill in { } with
- [R] $\mathbf{M}_{\mathbf{s}}ux \& \exists \mathbf{y}(\mathbf{S}xy \& @uy)$
- If the action is to move left, we fill in { } with
- [L] $\mathbf{M}_{\mathbf{s}}ux \& \exists \mathbf{y}(\mathbf{S}yx \& @uy)$

Together, the sentences in Γ completely describe basic facts about < and S, the starting configuration, and the Turing Machine instructions.

3. The sentence D

Each immediate precursor instruction to halting looks like:

If in state i and scanning symbol s, then (do something) and go to (halted state).

Consider the sentence

$$\exists t \ \exists x \ (\mathbf{Q}_i t \ \& \ @tx \ \& \ \mathbf{M}_s t x).$$

This sentence is true if and only if the machine at some point (some time and some square) is in state i and scanning symbol s, in which case it halts.

So let D be the disjunction of all such sentences (over all finitely many pre-halting instructions). Then M halts if and only if one of the disjuncts is true, i.e., if and only if D is true.

4. Γ implies D iff M halts on input n

First, suppose M does not halt on input n. Then D is false on the standard interpretation: none of its disjuncts is true (else M would halt). But every sentence of Γ is true. So there exists an interpretation that makes Γ true and D false; hence, Γ does not imply D.

Next, we want to show that if M ever does halt, then Γ implies D.

• First, we need a sentence that gives the **description of time** a:

If at time a, M is in state i, at square p, and the marked squares are $q_1, ..., q_m$, then the description sentence (analogous to (*0)) is (using **a** denotes a and **p** denotes p):

(*a)
$$\mathbf{Q_{i}a} \& @\mathbf{ap} \& \mathbf{Maq_{1}} \& \dots \& \mathbf{Maq_{m}} \&$$

 $\forall x((x \neq \mathbf{q_{1}} \& \dots \& x \neq \mathbf{q_{m}}) \rightarrow \sim \mathbf{Max})$

This sentence tells us for each square whether it is marked or not – either directly a conjunct of (*a), or a consequence of (*a) and Γ . (In particular, if the currently scanned square, p, is blank, then p will be distinct from each q_i and then $\mathbf{p} \neq \mathbf{q_i}$ and we have $\sim \mathbf{Map}$.)

• Next, suppose M halts at time b = a+1. Then at time a, instruction was one of the pre-halting instructions. So one disjunct of D is implied by (via existential generalization for t and x):

where **s** is the symbol in square p at time a. But this sentence is implied by (*a) and Γ , and hence D is implied by (*a) and Γ .

• **Lemma:** If $a \ge 0$ and b = a + 1 is a time at which the machine has not yet halted, then Γ plus (*a) implies (*b).

This Lemma completes the proof. For (*0) is part of Γ , and Γ plus (*0) imply (*1), so Γ implies (*1). Continuing in this way, Γ implies (*2), ..., (*a) where b=a+1 is the time when M halts. And we just saw that D is implied by (*a) and Γ ; hence D is implied by Γ . So if M halts, D is implied by Γ .

Proof of the Lemma:

Here is (*a):

Q_ia & @ap & Maq₁ & ... Maq_m &
$$\forall x((x \neq q_1 \& x \neq q_2 \& ... \& x \neq q_m) \rightarrow \sim Max)$$

The instruction at time a is to go to state j and perform one of four overt actions: L, R, 0, 1.

• If the instruction is R, then here is (*b):

$$\mathbf{Q_jb} \ \& \ @\mathbf{br} \ \& \ \mathbf{Mbq_1} \ \& \ \dots \ \mathbf{Mbq_m} \ \&$$

$$\forall x((x \neq \mathbf{q_1} \ \& \ x \neq \mathbf{q_2} \ \& \ \dots \ \& \ x \neq \mathbf{q_m}) \rightarrow \sim \mathbf{Mbx}),$$

where r = p+1. Note that no marks on the tape are changed.

The sentence corresponding to the instruction, which is part of Γ , is

$$\forall t \forall x ((\mathbf{Q_i}t \& @tx \& \mathbf{M_s}tx) \rightarrow \exists u (\mathbf{S}tu \& \mathbf{M_s}ux \& \exists y (\mathbf{S}xy \& @uy) \& \mathbf{Q_j}u \& \\ \forall y ((y \neq x \& \mathbf{M_1}ty) \rightarrow \mathbf{M_1}uy) \& \forall y ((y \neq x \& \mathbf{M_0}ty) \rightarrow \mathbf{M_0}uy))$$

Then (*b) follows from this sentence together with (*a) and Γ . To see this:

i) Put closed term **a** for t and **p** for x in the instruction sentence (follows from the instruction by instantiation):

$$((\mathbf{Q_{i}a} \& @\mathbf{ap} \& \mathbf{M_{s}ap}) \rightarrow \exists u(\mathbf{Sau} \& \mathbf{M_{s}up} \& \exists y(\mathbf{Spy} \& @uy) \& \mathbf{Q_{j}} u \& \\ \forall y((y \neq \mathbf{p} \& \mathbf{M_{1}ay}) \rightarrow \mathbf{M_{1}uy}) \& \forall y((y \neq \mathbf{p} \& \mathbf{M_{0}ay}) \rightarrow \mathbf{M_{0}uy}))$$

ii) (*a) and Γ imply the antecedent, so (still an implication) we get the consequent,

$$\exists u (\mathbf{Sau} \& \mathbf{M}_{\mathbf{s}} u \mathbf{p} \& \exists y (\mathbf{Spy} \& @uy) \& \mathbf{Q}_{\mathbf{j}} u \& \\ \forall y ((y \neq \mathbf{p} \& \mathbf{M}_{\mathbf{1}} \mathbf{a}y) \to \mathbf{M}_{\mathbf{1}} uy) \& \forall y ((y \neq \mathbf{p} \& \mathbf{M}_{\mathbf{0}} \mathbf{a}y) \to \mathbf{M}_{\mathbf{0}} uy))$$

iii) From section 2(a), we get $u=\mathbf{b}$, where b=a+1, and $y=\mathbf{r}$, where r=p+1 so that we have

$$\begin{aligned} & \mathbf{M}_s \mathbf{bp} \ \& \ @\mathbf{br} \ \& \ \mathbf{Q_j} \ \mathbf{b} \ \& \\ & \forall y ((y \neq \mathbf{p} \ \& \ \mathbf{M_1} \mathbf{ay}) \to \mathbf{M_1} \mathbf{by}) \ \& \ \forall y ((y \neq \mathbf{p} \ \& \ \mathbf{M_0} \mathbf{ay}) \to \mathbf{M_0} \mathbf{by})) \end{aligned}$$

- iv) From first conjunct, the mark in square p is unchanged; from the last two, the marks in all other squares are unchanged; and the second and third conjuncts give the rest of (*b).
- If the instruction is L, similar argument; the book gives the case where instruction is to write 1, and similar argument is possible if instruction is to write 0.