BLCMs with Covariates

Sonja Hartnack Valerie Hungerbühler Eleftherios Meletis

2022-07-15

Example from Veterinary Epidemiologic research, 2nd ed., Dohoo, p. 111-113

- ► Test are considered conditionally independent if the probability of getting a given test results on one test does not depend on the result from the other test, given the disease status of the individual.
- ▶ If tests are conditionally independent, the formulae for Se and Sp under parallel (Se_p, Sp_p) and series (Se_s, Sp_s) interpretation are:
- $ightharpoonup Se_p = Se_1 + Se_2 (Se_1 * Se_2)$
- $\triangleright Sp_p = Sp_1 * Sp_2$
- $ightharpoonup Sp_s = Sp_1 + Sp_2 (Sp_1 * Sp_2)$

Example from Veterinary Epidemiologic research, 2nd ed., Dohoo, p. 111-113

Example 5.8 Multiple tests—series versus parallel interpretation data = ISA test

Sp of parallel interpretation = 534/574 = 0.930

The data in this example are from the ISA_test dataset. The tests we are using are the indirect fluorescent antibody test (IFAT) and the polymerase chain reaction (PCR) test, with clinical disease status (see dataset description Chapter 31) as the gold standard. The observed joint distributions of test results and virus presence are shown below along with the 4 possible test interpretation criteria.

Number of fish by test-result category

Totale

	Number of listing test-result category				Totals	
IFAT result	+	+	0	0		
PCR result	+	0	+	0		
Diseased fish	134	4	29	9	176	
Non-diseased fish	0	28	12	534	574	
Series interpretation	+	0	0	0		
Parallel interpretation	+	+	+	0		
Se of IFAT only = 138/176 = 0.784			Sp of IFAT only = 546/574 = 0.951			
Se of PCR only = 163/176 =	Sp of PCR	Sp of PCR only = 562/574 = 0.979				
Se of series interpretation =	134/176 = 0.7	61				
Se of parallel interpretation =	(134+4+29)	/176 = 0.949				
Sp of series interpretation =	(28+12+534)/	574 = 1.000				

Example from Veterinary Epidemiologic research, 2nd ed., Dohoo, p. 111-113

	Numb	Totals			
IFAT result	+	+	0	0	
PCR result	+	0	+	0	
Diseased fish	134	4	29	9	176
Non-diseased fish	0	28	12	534	574
Series interpretation	+	0	0	0	
Parallel interpretation	+	+	+	0	
Se of IFAT only = 138/176 =	0.784		Sp of IFAT	only = 546/57	4 = 0.951
Se of PCR only = 163/176 =	Sp of PCR only = 562/574 = 0.979				
Se of series interpretation =	134/176 = 0.7	61			
Se of parallel interpretation =	(134+4+29)	/176 = 0.949			
Sp of series interpretation =	28+12+534)/	574 = 1.000			
Sp of parallel interpretation =	534/574 = 0	.930			

Table 5.3 Expected Se and Sp levels with combined tests for ISA assuming conditional independence (data from Example 5.8)

ndependence (data from Example 5.8)									
	Sensitivity	1	Specificity						
Interpretation	Expected	Observed	Expected	Observed					
Parallel	0.784+0.926 - 0.784*0.926=0.984	0.949	0.951*0.979=0.931	0.930					
Series	0.784*0.926=0.726	0.761	0.951+0.979 - 0.979*0.951=0.999	1.000					

Estimating covariances between test results

- ▶ Using the Se and Sp estimates from the ISA example, the covariances in the D+ and the D− groups are:
 - $ightharpoonup covar(+) = Se_s(obs) (Se_1 * Se_2) = 0.761 0.726 = 0.035$
 - $ightharpoonup covar(-) = Sp_p(obs) (Sp_1 * Sp_2) = 0.930 0.931 = -0.001$

Conditional dependencies

Conditional independence implies that given an animal is diseased (or not) the probability P of positive (or negative) outcomes for T₁, the test results of the first test, is the same regardless of the known outcome for the second test, T₂.

Example of a COVID-19 data set

JOURNAL OF MEDICAL VIROLOGY

Bayesian latent class models to estimate diagnostic test accuracies of COVID-19 tests

Sonja Hartnack , Paolo Eusebi, Polychronis Kostoulas

First published: 08 August 2020 | https://doi.org/10.1002/jmv.26405 🤊

University of Zurich

Example of a COVID-19 data set

- 1. how to prepare the data set in the correct format
 - create data cassaniti.R
- 2. how to describe the model
 - model_final.bug
- 3. how to run the model in JAGS with runjags
 - runjags.version.R
- 4. how to check convergence and how to analyse the data

How to prepare the data set

data from Cassaniti et al. 2020 DOI: 10.1002/jmv.25800 https://github.com/shartn/BLCM-COVID19

Exercises

- ► Ex. 1
 - ► Can you re-run the exercises?
 - Assess what happens if you add other covariances?
 - ► How many could you add and still have "meaningful results"?
 - ► Try different priors
 - Looking at the runjags reference manual, could ou customize the plots (just showing trace plots and histograms)?
- ► Ex. 2 (Bonus)
 - Could you expand the model with a fourth test with simulated data?

Exercise 3 Covariates

- Explore the data set 'echinococcus.csv' PCR for either E. multilocularis or E. granulosus, ELISA for both, eggs found by arecoline purgation, Tawnia co-infection, age and sex
- Run classical 'risk factor analysis': is sex, Taenia co-infection or age a risk factor for echinococcus (PCR-prevalence, seroprevalence or purges)? Obtain p-values and ORs with confidence intervals.

Exercise 4 Covariates

- Prepare the data set in the correct format (dump, add ones) for BLCM
- name it : m.short <- as.matrix(dat)</p>
- Run a model for three tests (assume a very high sensitivity for arecoline purgation)
- Try different priors
- ► Evidence of conditional dependencies
- Is there evidence for a covariate effect on the prevalence?
 - -compare your finding with Ex.3