데이터과학

L11: Principal Component Analysis

Kookmin University

Principal Component Analysis

- 주 성분 분석
 - 데이터의 분포를 결정하는 핵심 성분 찾기
 - 예) 원래 데이터: 게임별 티어 → 주 성분: 게임DNA

게임 별 티어/랭킹 지수

Principal Component Analysis

- 주 성분 분석
 - 데이터의 분포를 결정하는 핵심 성분 찾기
 - 예) 원래 데이터: 게임별 티어 → 주 성분: 게임DNA
 - 예) 원래 데이터: 카메라별 공의 위치 → 주 성분: 스프링의 힘

Principal Component Analysis

- 주 성분 분석
 - 분산을 최대화 하면서 서로 직교하는 새로운 축을 찾음

• 차원 축소 방법

- 차원 축소 방법
 - 방법1. 아무 차원이나 지운다.

- 차원 축소 방법
 - 방법1. 아무 차원이나 지운다.
 - 어떤 차원을 지우는 것이 더 좋은가?

- 차원 축소 방법
 - 방법2. 새로운 축(선분)을 찾는다. = 주 성분 찾기
 - 분산을 최대로..!
 - 어떻게 찾지...?

주성분 찾기

- 표준 데이터 X
 - 각 차원의 평균 = 0, 분산 = 1, 차원간 공분산 = 0
 - o d = X의 차원
- A = d x d 대칭 행렬
- \bullet Y = XA

3.1	1.0
3.4	4.2
4.6	4.0
3.2	5.7
7.9	6.2
7.8	8.1
4.4	9.3
7.5	9.9

$$A = egin{bmatrix} 10 & 4 \ 4 & 5 \end{bmatrix}$$

주성분 찾기

- (Y = XA) 의 주성분은 A의 고유벡터이다!
 - 행렬 A에 대해 다음 수식을 만족하는 벡터 ν를 고유벡터라함: Av = λv (단, λ는 임의의 상수=고윳값)

질문 1. Y에 대한 행렬 A를 어떻게 구하지?

질문 2. 행렬 A의 고유벡터를 어떻게 구하지?

주성분 찾기

- 질문 1. Y에 대한 행렬 A를 어떻게 구하지?
 - A를 구하기 어렵기 때문에, Y의 공분산 행렬(covariance matrix) Σ를 활용! $\rightarrow \Sigma = A^2$ (증명?)
 - Σ_{ij} = Y의 i번째 차원과 j번째 차원의 공분산
 Σ = (Y^TY)/n (단, Y^T = Y의 전치행렬, n = Y의 행 수)
- 질문 2. 행렬 A의 고유벡터를 어떻게 구하지?
 - A의 고유벡터 = Σ의 고유벡터 (증명?)
 - Σ를 고윳값 분해 (eigen decomposition)
 - Power method를 반복
 - 기타 다양한 고윳값 분해 Solver 활용

주성분으로 데이터 표현

PC1 찾기: 사영했을 때 분산이 가장 커지는 벡터

• PC1의 직교평면에서 PC2 찾기

PC1과 PC2에 모두 직교하는 벡터 = PC3

PC1과 PC2에 모두 직교하는 벡터 = PC3

Questions?