

Evaluating a priori ozone profile information used in TEMPO tropospheric ozone retrievals

Matthew S. Johnson¹, John Sullivan², Xiong Liu³, Mike Newchurch⁴, Shi Kuang⁵, Thomas McGee², Andrew Langford⁶, Chris Senff⁶, Thierry Leblanc⁷, Timothy Berkoff⁸, Guillaume Gronoff⁸, Gao Chen⁸, Kevin Strawbridge⁹

AGU Sessions: [A007. Advances in remote sensing of fires, aerosols, and trace gases for air quality applications](#)

¹ Earth Science Division, NASA Ames Research Center, Moffett Field, CA, USA.

² Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

³ Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA.

⁴ Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, AL, USA.

⁵ Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL, USA.

⁶ Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA.

⁷ Jet Propulsion Laboratory, California Institute of Technology, Wrightwood, CA, USA.

⁸ Atmospheric Composition Branch, NASA Langley Research Center, Hampton VA, USA.

⁹ Air Quality Processes Research Section, Environment Canada, Toronto, ON, Canada.

Ozone (O_3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O_3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O_3 . The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O_3 with high spatial resolution to be used as a near-real-time air quality product.

TEMPO O_3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O_3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O_3 climatology). It has been shown that satellite O_3 retrievals are sensitive to a priori O_3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O_3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O_3 .

algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.