# Simulação Tinkercad Calculadora - Dispenser - Cofre

\* Sistemas Embarcados: Prof. Marco Reis - marco.reis@ba.docente.senai.brr

João Vitor Silva Mendes

Estudante de Engenharia Elétrica

SENAI - Cimatec

Camaçari, Brazil
joao.mendes@aln.senaicimatec.edu.br

Abstract—In this document, with purpose of learning, was proposing the development of three prototypes in the class of Embebed Systems, it was utilized the Tinkercad for design and test the project and the microcontroller used was Arduino Uno R3. The first one is the Calculator, using a matrix keypad 4x4, the principal function is do simple math operations, and was created a recursion function to continue the operations. The second prototype is a Alcohol Dispenser, and the idea was a simples system that will detect the presence of a hand and dispense alcohol. The Dispenser have a servo motor too, to open a door for the hand, and all of the system will be inside a box. The last one it's a Safe Box, with a keyboard 4x4 for enter the password, the arduino can detect if is correct and then, can open de locke, but if the passworld was not correct the system will keep locked.

Neste documento será retratada a simuçação de 3 protótipos, utilizando o Tinkercad para desenvolver e testar o projeto e como microcontrolador o Arduino Uno R3. O primeiro protótipo a ser desenvolvido foi a calculadora, utilizando um teclado matricial 4x4, em que principal função é resolver operações matemáticas simples, porém, também foi adicionada a função de recursividade onde o usuário pode reutilizar o resultado da operação anterior. O segundo protótipo a ser desenvolvido foi o Dispenser de Álcool, este que tinha como ideia principal ser um simples dispensor de álcool automatizado. O dispenser possue um servo motor que funciona para abrir as portas de uma caixa, onde estava armazenado todo o sistema. Dentro da caixa, há um sensor de proximidade que irá detectar se a mão do usuário está dentro da caixa e então dispensar o álcool, caso não, a porta se fecharia. O último protótipo é um cofre, que possue um teclado matricial 4x4 para a entrada da senha, assim o arduino pode detectar se a sequência está correta e então se verdadeiro abrirá a porta, caso seja falso manterá trancada.

Index Terms—Sistemas Embarcados, Arduino, Microcontroladores, Calculadora, Dispenser de Álcool, Cofre.

# I. Introdução

Ao longo do estudo dos sistemas embarcados surgiu a necessidade de aplicar alguns conceitos utilizados em sala

Identify applicable funding agency here. If none, delete this.

de aula na prática. Afim de desenvolver a criatividade e a capacidade de resolução de problemas dentro dos sistemas embarcados, o Prof. Marco Reis prôpos o desenvolvimento de três protótipos: 1° Calculadora, 2° Dispensor de Álcool e 3° Cofre. O sistema utilizado para elaboração de projetos e simulações foi o Tinkercad, ferramente gratuita pertecente a AutoDesk. Além da utilização da plataforma de desenvolvimento Arduino Uno R3, que foi criado originalmente para ser uma plataforma de prototipagem open source, porém ganhou grande popularidade e atualmente é utilizada tanto por profissionais como amadores. Além da teoria computacional desenvolvida anteriormente em sala de aula, também foi possível desenvolver outros conceitos essenciais para a graduação de Engenharia Elétrica, como as aplicações da Lei de Ohm e principalmente a noção de elaboração de circuitos elétricos.

#### II. MATERIAIS

#### A. Calculadora

1- Arduino Uno R3; 2- Protoboard 400 pontos; 3- Teclado Matricial 4x4; 4- Resistor 200; 5- Resistor 1 K.; 6- Fio Jumper(15).

# B. Dispensor de Álcool

1- Arduino Uno R3; 2- Protoboard 800 pontos; 3- Servo Motor 9g; 4- Sensor Ultrassônico; 5- Motor CC; 6- Piezo; 7- Push Boton; 8- Potenciômetro; 9- Resistor 200 (3u); 10-Capacitor 10nf; 11- Fio jumper(12u)

C. Cofre

4

## III. PREPARE YOUR PAPER BEFORE STYLING

Before you begin to format your paper, first write and save the content as a separate text file. Complete all content and organizational editing before formatting. Please note sections ??—?? below for more information on proofreading, spelling and grammar. Keep your text and graphic files separate until after the text has been formatted and styled. Do not number text heads—LATEX will do that for you.

## A. Abbreviations and Acronyms

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, ac, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

## B. Units

- Use either SI (MKS) or CGS as primary units. (SI units are encouraged.) English units may be used as secondary units (in parentheses). An exception would be the use of English units as identifiers in trade, such as "3.5-inch disk drive".
- Avoid combining SI and CGS units, such as current in amperes and magnetic field in oersteds. This often leads to confusion because equations do not balance dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an equation.
- Do not mix complete spellings and abbreviations of units: "Wb/m²" or "webers per square meter", not "webers/m²".
   Spell out units when they appear in text: ". . . a few henries", not ". . . a few H".
- Use a zero before decimal points: "0.25", not ".25". Use "cm<sup>3</sup>", not "cc".)

## C. Equations

Number equations consecutively. To make your equations more compact, you may use the solidus ( / ), the exp function, or appropriate exponents. Italicize Roman symbols for quantities and variables, but not Greek symbols. Use a long dash rather than a hyphen for a minus sign. Punctuate equations with commas or periods when they are part of a sentence, as in:

$$a + b = \gamma \tag{1}$$

Be sure that the symbols in your equation have been defined before or immediately following the equation. Use "(??)", not "Eq. (??)" or "equation (??)", except at the beginning of a sentence: "Equation (??) is . . ."

# D. ETFX-Specific Advice

Please use "soft" (e.g., \eqref{Eq}) cross references instead of "hard" references (e.g., (1)). That will make it possible to combine sections, add equations, or change the order of figures or citations without having to go through the file line by line.

Please don't use the {eqnarray} equation environment. Use {align} or {IEEEeqnarray} instead. The {eqnarray} environment leaves unsightly spaces around relation symbols.

Please note that the {subequations} environment in LATEX will increment the main equation counter even when there are no equation numbers displayed. If you forget that,

you might write an article in which the equation numbers skip from (17) to (20), causing the copy editors to wonder if you've discovered a new method of counting.

BIBT<sub>E</sub>X does not work by magic. It doesn't get the bibliographic data from thin air but from .bib files. If you use BIBT<sub>E</sub>X to produce a bibliography you must send the .bib files.

LATEX can't read your mind. If you assign the same label to a subsubsection and a table, you might find that Table I has been cross referenced as Table IV-B3.

LATEX does not have precognitive abilities. If you put a \label command before the command that updates the counter it's supposed to be using, the label will pick up the last counter to be cross referenced instead. In particular, a \label command should not go before the caption of a figure or a table.

Do not use \nonumber inside the {array} environment. It will not stop equation numbers inside {array} (there won't be any anyway) and it might stop a wanted equation number in the surrounding equation.

#### E. Some Common Mistakes

- The word "data" is plural, not singular.
- The subscript for the permeability of vacuum  $\mu_0$ , and other common scientific constants, is zero with subscript formatting, not a lowercase letter "o".
- In American English, commas, semicolons, periods, question and exclamation marks are located within quotation marks only when a complete thought or name is cited, such as a title or full quotation. When quotation marks are used, instead of a bold or italic typeface, to highlight a word or phrase, punctuation should appear outside of the quotation marks. A parenthetical phrase or statement at the end of a sentence is punctuated outside of the closing parenthesis (like this). (A parenthetical sentence is punctuated within the parentheses.)
- A graph within a graph is an "inset", not an "insert". The
  word alternatively is preferred to the word "alternately"
  (unless you really mean something that alternates).
- Do not use the word "essentially" to mean "approximately" or "effectively".
- In your paper title, if the words "that uses" can accurately replace the word "using", capitalize the "u"; if not, keep using lower-cased.
- Be aware of the different meanings of the homophones "affect" and "effect", "complement" and "compliment", "discreet" and "discrete", "principal" and "principle".
- Do not confuse "imply" and "infer".
- The prefix "non" is not a word; it should be joined to the word it modifies, usually without a hyphen.
- There is no period after the "et" in the Latin abbreviation "et al.".
- The abbreviation "i.e." means "that is", and the abbreviation "e.g." means "for example".

An excellent style manual for science writers is [?].

## F. Authors and Affiliations

The class file is designed for, but not limited to, six authors. A minimum of one author is required for all conference articles. Author names should be listed starting from left to right and then moving down to the next line. This is the author sequence that will be used in future citations and by indexing services. Names should not be listed in columns nor group by affiliation. Please keep your affiliations as succinct as possible (for example, do not differentiate among departments of the same organization).

# G. Identify the Headings

Headings, or heads, are organizational devices that guide the reader through your paper. There are two types: component heads and text heads.

Component heads identify the different components of your paper and are not topically subordinate to each other. Examples include Acknowledgments and References and, for these, the correct style to use is "Heading 5". Use "figure caption" for your Figure captions, and "table head" for your table title. Run-in heads, such as "Abstract", will require you to apply a style (in this case, italic) in addition to the style provided by the drop down menu to differentiate the head from the text.

Text heads organize the topics on a relational, hierarchical basis. For example, the paper title is the primary text head because all subsequent material relates and elaborates on this one topic. If there are two or more sub-topics, the next level head (uppercase Roman numerals) should be used and, conversely, if there are not at least two sub-topics, then no subheads should be introduced.

# H. Figures and Tables

a) Positioning Figures and Tables: Place figures and tables at the top and bottom of columns. Avoid placing them in the middle of columns. Large figures and tables may span across both columns. Figure captions should be below the figures; table heads should appear above the tables. Insert figures and tables after they are cited in the text. Use the abbreviation "Fig. ??", even at the beginning of a sentence.

TABLE I TABLE TYPE STYLES

| Table            | Table Column Head            |         |         |
|------------------|------------------------------|---------|---------|
| Head             | Table column subhead         | Subhead | Subhead |
| copy             | More table copy <sup>a</sup> |         |         |
| 3.C1f - T-1-1- f |                              |         |         |

<sup>a</sup>Sample of a Table footnote.

Figure Labels: Use 8 point Times New Roman for Figure labels. Use words rather than symbols or abbreviations when writing Figure axis labels to avoid confusing the reader. As an example, write the quantity "Magnetization", or "Magnetization, M", not just "M". If including units in the label, present them within parentheses. Do not label axes only with units. In the example, write "Magnetization (A/m)" or "Magnetization  $\{A[m(1)]\}$ ", not just "A/m". Do not label axes with a ratio of



Fig. 1. Example of a figure caption.

quantities and units. For example, write "Temperature (K)", not "Temperature/K".

#### ACKNOWLEDGMENT

The preferred spelling of the word "acknowledgment" in America is without an "e" after the "g". Avoid the stilted expression "one of us (R. B. G.) thanks ...". Instead, try "R. B. G. thanks...". Put sponsor acknowledgments in the unnumbered footnote on the first page.

### REFERENCES

Please number citations consecutively within brackets [?]. The sentence punctuation follows the bracket [?]. Refer simply to the reference number, as in [?]—do not use "Ref. [?]" or "reference [?]" except at the beginning of a sentence: "Reference [?] was the first ..."

Number footnotes separately in superscripts. Place the actual footnote at the bottom of the column in which it was cited. Do not put footnotes in the abstract or reference list. Use letters for table footnotes.

Unless there are six authors or more give all authors' names; do not use "et al.". Papers that have not been published, even if they have been submitted for publication, should be cited as "unpublished" [?]. Papers that have been accepted for publication should be cited as "in press" [?]. Capitalize only the first word in a paper title, except for proper nouns and element symbols.

For papers published in translation journals, please give the English citation first, followed by the original foreign-language citation [?].

Course templates contain guidance text for composing and formatting Course papers. Please ensure that all template text is removed from your course paper prior to submission to the lecturer. Failure to remove the template text from your paper may result in your paper not being accepted.