決定木アルゴリズム

最適化

川田恵介

ここまでのまとめ

- 母平均関数 $E_P[Y|X]$ が理想的な予測モデル
- 理想的な予測モデルに近づけるには、"適度に"複雑なモデルが必要

数值例: 母平均関数

数値例: データ

数値例: 浅い決定木

数値例: 深い決定木

数值例: 丸暗記

剪定

• 剪定: 一旦非常に深い木を推定した後に、単純化を行う

Step 1. 深い木の推定

- 停止条件を緩めると、一般にどこまでもサブサンプル分割が行われる
 - 平均値が異なるサブグループが見つかる限り止まらない

数値例: サイコロゲーム

- ディーラーは、サイコロを5つふり、4つ $(X_1,..,X_4)$ プレイヤーに見せる
 - プレイヤーは残り一つの出目 Yを予測
- サイコロの出目は、uniform 分布 (完全無相関) に決定
 - 理想の予測モデル $g(X_1,..,X_4)$
- "見"を 200 回行いデータ収集

例

Setp 2. 剪定

- 分割しても、データへの適合が悪化しずらいサブグループから再結合していく
 - 小規模なサブグループを分割している
 - 分割しても予測値があまり変化しない

例: 剪定

例: 剪定

最適化問題の活用

- 残された問題は、どこまで剪定するか?
 - 剪定の水準をどのようにコントロールするか?
- 最適化問題に落とし込む
 - 何をやっているか (慣れれば) わかりやすく、自由度が高く、PC にも優しい枠組み

最適化問題

- "ある指標を最大化/最小化するように、決定する"枠組み
 - 経済学: 効用最大化問題の結果として財の購入、利潤最大化問題として生産計画、社会厚生最大化 として政策

練習問題

• 以下を 最小化 するようにサブグループを再結合できない

データにおける二乗誤差

- 剪定が行われず、複雑になりすぎる
 - 経済学: 公害物質が排出されすぎる、騒音がですぎる

罰則付き最適化

• 以下を 最小化 するようにサブグループを再結合

データにおける二乗誤差
$$+$$
 $\lambda \times |$ サブグループの数|

617

- λ : Hyper Parameter (rpart 関数では cp)
 - 罰則項 = 複雑性への"課税"

まとめ

- 「データへの当てはまり改善」は活用
 - そのままでは複雑になりすぎるので、複雑さへの課税でコントロール

- 経済学でもお馴染みのアイディア
 - "市場"を一切活用していない"都市"は"存在しない"
 - 完全に"市場"任せにすると問題が生じるので、政策介入(課税/補助金など)をする

モデルの試作と評価

- 最適な課税水準をどのように決めるのか
- 社会政策とは異なり
 - 目標が明確 (予測性能の改善)
 - 実験の費用が安い
- 「特定の課税水準のもとでモデルを試作し、中間評価する」を繰り返すことで最適な水準を探り出す

評価

- 現代 PC を使えば、モデルの試作は簡単
- 難しいのは適切な評価
 - モデルの試作に用いたデータは使用できない
 - 理論的指標は色々提案されているが (AIC,BIC など)、使える状況は"限られている"

データ分割法

- 本来やりたいことは、"新しい"事例を予測しやすいモデルを選ぶこと
- 元々のデータをランダムに2分割することで、擬似的に新しいデータを作り出す
 - モデル試作用データ := 訓練データ
 - 検証用データ := 検証データ

数値例: 深い決定木

数値例: 間違った評価法

データ分割法の手順

- 1. サンプルをランダムに 2 分割する
- 2. 検証対象とする λ を設定
 - 訓練データを用いて決定木を推定
 - 検証データでテスト
- 3.2 を異なる λ について繰り返し、最も検証データへの当てはまりが良くなる λ を探す
- 4. 最善の λ と全データを用いて、決定木を推定

まとめ

- 同じデータで、モデル試作と評価はできない!!!
- 資格試験勉強の比喩
 - 過去問を繰り返しとき、答え合わせをすることで、試験対策を学習
 - 学習した方法の有効性を同じ過去問でテスト...?
 - 可能であればもしでテスト、不可能ならば過去問の一部は答えを見ずに残しておく

交差推定

- 訓練/評価 データが、ランダムに分割されていれば OK
 - "役割の固定"は本質ではない

交差推定

- 1. データをいくつか (2,5,10,20 など) に分割
- 2. 第1サブデータ 以外 を用いて予測モデルを試作
- 3. 第1サブデータに予測値を適用
- 4. 全てのサブデータに 2,3 を繰り返す

交差検証

• Cross validation

5. 交差推定で導出した予測値と実現値について、予測誤差を推定

数値例: 単純平均 VS 決定木 (深さ 2)

数値例: 単純平均 VS 決定木 (深さ 2)

A tibble: 6 x 5

	Group	Y	X	${\tt PredMean}$	PredTree
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	6	3	4.25	4
2	1	7	1	4.25	4
3	2	4	3	NA	NA
4	2	5	2	NA	NA
5	3	4	1	NA	NA
6	3	4	1	NA	NA

数值例: 単純平均

A tibble: 6 x 5

	${\tt Group}$	Y	X	${\tt PredMean}$	${\tt PredTree}$
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	6	3	4.25	4
2	1	7	1	4.25	4
3	2	4	3	5.25	6
4	2	5	2	5.25	6
5	3	4	1	NA	NA
6	3	4	1	NA	NA

数值例: 単純平均

A tibble: 6 x 5

	${\tt Group}$	Y	X	${\tt PredMean}$	PredTree
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	6	3	4.25	4
2	1	7	1	4.25	4
3	2	4	3	5.25	6
4	2	5	2	5.25	6
5	3	4	1	5.5	7
6	3	4	1	5.5	7

数值例: 単純平均

A tibble: 6 x 7

	${\tt Group}$	Y	X	${\tt PredMean}$	${\tt PredTree}$	${\tt ErrorMean}$	ErrorTree
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	6	3	4.25	4	3.06	4
2	1	7	1	4.25	4	7.56	9
3	2	4	3	5.25	6	1.56	4
4	2	5	2	5.25	6	0.0625	1
5	3	4	1	5.5	7	2.25	9
6	3	4	1	5.5	7	2.25	9

- 平均二乗誤差 (Mean) 2.79
- 平均二乗誤差 (Tree) 6

トレードオフの緩和

- サンプル分割法では、訓練に多くの事例を割くと、評価に割ける事例が減り、評価の精度が下がる
- 交差検証では、すべての事例について予測値を計算し、その平均を取るので、評価の精度を確保できる

まとめ

- 複雑なモデルの推定は、現代的な PC + アルゴリズムであれば容易
- モデルを適切に単純化することに工夫が必要
- 2度漬け禁止の大原則

- モデルの推定に使ったデータは、評価に原則使わない