Midterm Exam, ST5215

AY2020/2021 Semester 1

1 Oct 2020 From 14:00 to 16:00

Instruction

- Write down your name and student ID clearly on the header of Page 1 of your solution papers.
- For each solution, write down its problem number. If a solution spread over multiple pages, also indicates the order of the pages.
- If you need to communicate with the supervisor, raise a hand first.
- At the end of the exam, stop writing. Take photos of your exam papers by a scanner App; make sure the photos are clear enough. Export to a PDF file with name [Your name displayed on Zoom]+[Your ID].pdf, using + for space For example: Zhang+San+A10101010.pdf Upload to LumiNUS at File/Submissions/Midterm, and confirm your submission via private Zoom chat with the supervisor.
- There are 5 problems in this exam. Spend your time wisely.

Problems

- Problem 1. (20 pts) Let (Ω, \mathcal{F}, P) be a probability space. Suppose $A_n \in \mathcal{F}$ (n = 1, 2, ...) are disjoint events such that $\Omega = \cup_n A_n$. Let $\mathcal{G} = \sigma(\{A_n : n = 1, 2, ...\})$. Suppose $B \in \mathcal{F}$ and $X = I_B$.
 - (a) (10 pts) Explain the definition of $E(X \mid \mathcal{G})$ and why it exists.
 - (b) (10 pts) Compute $E(X \mid \mathcal{G})$.
- Problem 2. (15 pts) Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{G} be a sub- σ -field of \mathcal{F} . Suppose X is a r.v. such that $E(X^2) < \infty$. Suppose g is a \mathcal{G} -measurable function with finite second moment. Show that

$$E[(X - g)^2] \ge E[(X - E[X \mid \mathcal{G}])^2].$$

Problem 3. (25 pts) Suppose $X = (X_1, X_2, ..., X_n)$ where X_i 's are i.i.d. observations from some unknown population P_{θ} in the family \mathcal{P} with Lebesgue density functions

$$f_{\theta}(x) = \exp\left[-(x-\theta)^4\right]/c_{\theta}, \quad x \in \mathcal{R},$$
 (1)

where θ lies in $\Theta = \mathcal{R}$ and $c_{\theta} = \int_{\mathcal{R}} \exp\left(-(x-\theta)^4\right) dx$.

- (a) (10 pts) Show that $T(X) = (\sum_i X_i^3, \sum_i X_i^2, \sum_i X_i)$ is sufficient for θ .
- (b) (10 pts) Show that T(X) is minimal sufficient.
- (c) (5 pts) Suppose n > 10. Without knowing the true value of θ , propose a way to generate some fake data $\tilde{X} = (\tilde{X}_1, \dots, \tilde{X}_n)$, such that $\tilde{X} \neq X$ almost surely and the distribution of \tilde{X} is the same as the distribution of X. Briefly explain the steps. You can ignore the details of sampling from any fixed distribution.
- Problem 4. (25 pts) Suppose $\{X_i\}_{i=1}^n$ are i.i.d. observations from $\mathrm{Unif}(a,b)$ where a < b are unknown real numbers.
 - (a) (5 pts) Show that $T(X) = (X_{(1)}, X_{(n)})$ is sufficient for $\theta = (a, b)$.
 - (b) (10 pts) Show that T(X) is complete for θ by using the following results (statements):

(R1). Let f and F be the p.d.f. and c.d.f. of X_1 . The joint p.d.f. of $(X_{(1)}, X_{(n)})$ is

$$f_{X_{(1)},X_{(n)}}(x,y) = n(n-1)\left[F(y) - F(x)\right]^{n-2} f(x)f(y), \text{ where } x \leq y.$$

(R2). If f(x,y) is a Borel function on \mathbb{R}^2 and is integrable on $[c,d]^2$ then

$$F(x,y) = \int_{x}^{y} \int_{x}^{t} f(s,t) \, ds \, dt, \, \forall x < y, \, x, y \in (c,d)$$

is almost everywhere differentiable and $\frac{\partial^2}{\partial x \partial y} F(x,y) = -f(x,y)$, a.e. $x < y, \ x,y \in (c,d)$

- (c) (5 pts) Define $S(X) = (\sum_{i=1}^n X_i nX_{(1)})/(X_2 X_1)$. Prove that $X_{(1)} + X_{(n)}$ and S(X) are independent.
- (d) (5 pts) Find a UMVUE of $g(\theta) := a + b$.

Problem 5. (15 pts) Suppose $\{X_i\}_{i=1}^n$ are i.i.d. observations from P_{θ} , which is an unknown population in \mathcal{P}_{Θ} with Lebesgue density

$$f_{\theta}(x) = \theta^{-1} \exp(-x/\theta), \quad x > 0,$$
 (2)

where $\theta \in \Theta = (0, \infty)$. Note that for f_{θ} , the mean is θ and the variance is θ^2 .

- (a) (10 pts) Find the maximum likelihood estimator $\hat{\theta}_1$. Is it the same as the method of moment estimator?
- (b) (5 pts) Consider the squared error loss. Let \mathfrak{J} be the class of estimators $\hat{\theta}_c := c \cdot \hat{\theta}_1$ for all $c \in (0,1]$. Prove or disprove: $\hat{\theta}_1$ is \mathfrak{J} -admissible.