Progress Update

William Clinton Co

The University of British Columbia

2025-02-03

Updates

- 1. Background
- 2. Paper Recommendation (Yuanning Liang, 2021)
- 3. Current Results of Event Study Model
- 4. Next Steps (4 Zoning Types)

Background

Background

- 90,056 local governments
- Inadequate truck parking has led to dangerous or illegal practices (such as **parking on highway shoulders** or in unauthorized areas, which heightens traffic accident risks and imposes economic costs like increased fuel consumption, delivery delays, and inflated goods prices)
- limited empirical research
- traffic accident data as a proxy for truck parking demand
 -> land-use regulations -> truck parking availability.

Zoning regulation welfareenhancing?

No Truck Parking → Trucks will illegally park → **Accidents Occur** (observed)→Truck Parking Demand increases → **Truck Parking Capacity Increase** (observed)

4 Zoning Categories

Map 7. Typology of Land Use Regulations, by metropolitan area (or part)

Data

Event Study Model

$$egin{aligned} \Delta ext{NumTruckStop}_{tj} &= \sum_{i=-n}^{n} eta_{ij} ext{Accident}_{ij} \cdot ext{Severity}_{ij} \ &+ \gamma_{tj} X_{tj} + \epsilon_{tj} \end{aligned}$$

year t , category j , time i

- $\Delta \text{NumTruckStop}_{tj}$ —- change in truck stop
- Accident $_{i,j}$ event dummy indicating the presence of a Accident
- Severity_{ij} fatalities/injuries/vehicle associated

Adjusted Event Model

$$\Delta \text{NumTruckStop}_{j,t=2006-2016} =$$

$$\sum_{i=-2}^{0} eta_{j,t+i} ext{Accident}_{j,t+i} \cdot ext{Severity}_{j,t+i} + \gamma_{tj} X_{tj} + \epsilon_{tj}$$

- ullet year t ,category j, time i
- $\Delta \text{NumTruckStop}_{tj}$ —- change in truck stop
- Accident $_{i,j}$ event dummy: presence of a Accident
- Severity $_{ij}$ fatalities/injuries/vehicle associated

(Yuanning Liang, 2021)

• Useful and highly relevant data description

Adjusted Even Study Model Results

Fatalities Model

we see its mostly noise

		Linear M	Iodel Summary				
) ,	Dependent variable:						
			change_2006_2016				
	Unconditioned Conditional on More Than 2 Truck Stops Created Conditional on More Than 1 Truck Stops Created Conditional on less than 1 Truck						
31	(1)	(2)	(3)	(4)			
interaction_2002_2006	0.122	-0.267	0.075	0.115			
	(0.142)	(0.225)	(0.166)	(0.133)			
interaction_1999_2001	-0.078	-0.437	-0.279	0.126			
	(0.168)	(0.384)	(0.244)	(0.146)			
interaction_1993_1998	0.286*	-0.192	0.078	0.289**			
	(0.162)	(0.339)	(0.227)	(0.141)			
Constant	-0.273	3.361***	1.648***	-1.056***			
	(0.182)	(0.370)	(0.237)	(0.164)			
Observations	366	34	105	261			
R ²	0.016	0.065	0.030	0.016			
Adjusted R ²	0.007	-0.029	0.002	0.005			
Residual Std. Error	1.666 (df = 362)	1.144 (df = 30)	1.134 (df = 101)	1.267 (df = 257)			
F Statistic	1.913 (df = 3; 362	0.692 (df = 3; 30)	1.059 (df = 3; 101)	1.416 (df = 3; 257)			
Note:				*p<0.1; **p<0.05; ***p<0.01			

No truck stop creation is related to higher accidents

high accidents -> less than 1 truck stop made

Injuries Model

mostly noise

		Linear M	Iodel Summary				
	Dependent variable:						
	change_2006_2016						
	Unconditioned Conditional on More Than 2 Truck Stops Created Conditional on More Than 1 Truck Stops Created Conditional on less than 1 Truck Stops Created Conditional						
-	(1)	(2)	(3)	(4)			
interaction_2002_2006	0.072**	0.014	0.007	0.009			
	(0.031)	(0.080)	(0.026)	(0.048)			
interaction_1999_2001	-0.018	0.019	-0.038	0.003			
	(0.048)	(0.161)	(0.083)	(0.043)			
interaction_1993_1998	0.040	0.060	0.053	0.050			
	(0.033)	(0.044)	(0.042)	(0.033)			
Constant	-0.527***	3.017***	1.742***	-1.151***			
	(0.151)	(0.386)	(0.193)	(0.162)			
Observations	379	34	92	287			
R ²	0.020	0.061	0.025	0.011			
Adjusted R ²	0.012	-0.033	-0.008	0.001			
Residual Std. Error	1.768 (df = 375)	1.203 (df = 30)	1.268 (df = 88)	1.303 (df = 283)			
F Statistic	2.545^* (df = 3; 375	0.653 (df = 3; 30)	0.752 (df = 3; 88)	1.065 (df = 3; 283)			
Note:	Agripo (SI)	35		*p<0.1; ***p<0.05; ****p<0.01			

Vehicle Model

Conditioning on places with a high truck stop creation. high accidents -> less truck stop creation

Linear Model Summary								
	Dependent variable:							
	change_2006_2016							
	Unconditioned	d Conditional on less than 1 Truck Stops Created						
	(1)	(2)	(3)	(4)				
interaction_2002_2006	0.026	-0.163	-0.024	0.019				
	(0.031)	(0.114)	(0.021)	(0.059)				
interaction_1999_2001	0.020	-0.308*	-0.163**	0.047				
	(0.063)	(0.165)	(0.069)	(0.073)				
interaction_1993_1998	0.060	-0.023	-0.075	0.059				
	(0.043)	(0.150)	(0.045)	(0.051)				
Constant	-0.670**	4.106***	2.262***	-1.461***				
	(0.259)	(0.774)	(0.273)	(0.365)				
Observations	211	20	56	155				
R ²	0.010	0.273	0.107	0.013				
Adjusted R ²	-0.004	0.137	0.056	-0.007				
Residual Std. Error	1.987 (df = 207)	1.139 (df = 16)	1.229 (df = 52)	1.550 (df = 151)				
F Statistic	0.709 (df = 3; 207)	2.003 (df = 3; 16)	2.087 (df = 3; 52)	0.646 (df = 3; 151)				
Note:				*p<0.1; **p<0.05; ****p<0.01				

Conclusion and Next Steps

- We found evidence supporting that places with high truck stops creation don't/negatively responds to accidents. This supports the idea that places do not respond to the need for truck stops.
- We will start categorizing zoning areas into the 4 types of zoning

Next Steps: 4 Categories

4 Categories (Map)

Map 7. Typology of Land Use Regulations, by metropolitan area (or part)

4 Categories (Summary Statistics)

Table 3. Typology of Land Use Regulations, by Orders and Families, Major U.S. Metropolitan Areas, 2003

Regulatory Orders and Families	Number of Metropolitan (or Sub-metropolitan) areas	Total Population
Traditional	34	75,483,321
Middle America	32	61,459,742
High Density	2	14,023,579
Exclusion	5	14,621,514
Basic Exclusion	3	8,563,688
Exclusion with Restriction	1	5,287,393
Extreme Exclusion	1	770,433
Wild Wild Texas	4	12,733,518
Austin	1	1,249,763
Houston	1	4,669,571
Dallas/San Antonio	2	6,814,184
Reform	19	59,340,464
Containment	5	7,838,637
Containment-Lite	3	7,496,135
Growth Management	9	34,384,824
Growth Control	2	9,620,868

4 Categories (Properties)

Figure 7. Regulatory Orders by Strength of Land Use Tool

4 Categories

Places exhibit properties we expect and are Stable and Consistent

Data Encoding (work in progress)

Zoning types will be incorporated into event study model

Metropolitan		Zoning			Contain-	Infras	Infrastructure		Growth Control		
area or part	Region	Family	Exclusion	No Zoning	Planning	ment	Impact Fee	APFO	Moratoria	Permit Cap	Housing
Atlanta	S	Middle America	0.35 (28)	-0.35 (45)	0.49 (42)	-0.99 (65)	-0.75 (52)	-0.11 (45)	0.29 (43)	-0.39 (59)	-0.78 (57
Austin	S	Austin	-0.57(52)	2.21(3)	-1.82 (71)	-0.66 (49)	0.69 (19)	-1.43 (69)	0.39 (35)	-0.35 (56)	0.93 (13
Boston (MA)	NE Ex	clusion with Restriction	1.19(8)	-0.68 (64)	-1.08 (65)	-0.79 (56)	-1.09 (68)	0.00 (39)	-0.73 (66)	3.17(2)	0.74 (17
Boston (NH)	NE	Extreme Exclusion	2.12(3)	-1.08 (70)	0.67(1)	-0.40 (37)	-0.07 (32)	-0.37 (52)	-0.51 (61)	3.01(3)	-0.48 (46
Buffalo	NE	Middle America	0.65 (18)	-0.51(53)	-0.32 (50)	-0.99 (64)	-0.53 (47)	0.08 (32)	0.35 (41)	0.35 (14)	-0.32 (38
Charlotte (NC)	S	Middle America	-0.55 (51)	-0.3 (42)	0.16 (44)	-0.29 (34)	-0.62 (49)	0.76 (11)	0.07 (56)	-0.02 (20)	0.42 (21
Charlotte (SC)	S	*	-0.41 (41)	0.49 (12)	0.67(1)	-1.05 (66)	0.46 (25)	-2.67 (72)	0.58(1)	-0.27 (29)	-1.25 (69
Chicago (IL)	MW	Middle America	0.42 (25)	0.86 (9)	-1.26 (66)	-0.60 (45)	0.05 (29)	-0.97 (65)	0.55 (17)	-0.19 (24)	-0.47 (44
Chicago (IN)	MW	Middle America	0.38 (26)	-0.34 (44)	0.67(1)	0.07(28)	-1.08 (66)	-0.02 (40)	0.50(21)	-0.05 (21)	-0.47 (45
Chicago (WI)	MW	Middle America	0.38 (27)	-0.17 (31)	-0.18 (45)	0.47 (22)	-0.31 (38)	-1.36 (68)	0.37 (37)	0.12 (18)	-1.02 (61
Cincinnati (IN)	MW	*	0.55 (20)	-0.24 (35)	0.67(1)	-0.89 (62)	-1.09 (67)	0.03 (38)	0.27 (45)	0.61(11)	-1.18 (67
Cincinnati (KY)	S	Middle America	-0.41 (45)	0.27(17)	0.67(1)	0.69 (17)	-0.29 (37)	2.49(2)	0.58(1)	-0.27 (29)	-0.56 (51
Cincinnati (OH)	MW	Middle America	0.87 (12)	0.70(10)	-0.64 (59)	-0.46 (40)	-1.02 (60)	0.31 (22)	0.18 (48)	-0.44 (61)	-0.69 (53
Cleveland	MW	Middle America	0.78 (14)	0.86(8)	-0.60 (57)	-0.74 (50)	-0.79 (55)	0.07 (33)	0.19 (47)	-0.29 (43)	-0.41 (42
Columbus	MW	Middle America	0.90(11)	0.60(11)	-0.95 (62)	-0.78 (54)	-0.98 (59)	0.27 (24)	-0.50 (60)	-0.72 (69)	-0.31 (37
Dallas	S	Dallas-San Antonio	-0.42 (46)	1.57 (6)	0.53 (39)	-0.62 (46)	1.04 (14)	-0.49 (55)	0.36 (39)	-0.37 (58)	-0.13 (33
Denver	W	Growth Control	-1.10 (66)	-0.37 (46)	0.67(1)	2.01(5)	0.72 (18)	-0.65 (57)	-1.33 (68)	3.96(1)	0.27 (27
Detroit	MW	Middle America	0.49 (23)	-0.13 (28)	0.54 (38)	-0.41 (38)	-1.03 (61)	0.16 (30)	0.47 (25)	-0.31 (47)	-0.73 (55
Grand Rapids	MW	Middle America	0.76 (15)	-0.10 (27)	0.49 (41)	-0.53 (42)	-1.05 (62)	0.10(31)	0.39 (34)	-0.35 (55)	-1.04 (62
Greensboro	S	Middle America	-0.40 (40)	-0.21 (33)	-0.23 (48)	0.10(27)	-0.79 (54)	0.64 (13)	0.51 (19)	-0.24 (26)	0.09 (31
Hartford	NE	Middle America	1.51(5)	-0.58 (58)	0.65 (34)	-0.80 (58)	-1.07 (65)	0.39 (19)	0.14 (49)	-0.46 (62)	-0.34 (39
Houston	S	Houston	0.72 (17)	4.71(1)	-2.55 (72)	-1.05 (66)	0.61(21)	0.26 (26)	0.58(1)	-0.27 (29)	0.42 (22
Indianapolis	MW	Middle America	-0.17 (35)	-0.27 (36)	0.67(1)	-0.94 (63)	-1.10 (69)	0.04 (36)	0.21 (46)	0.72 (10)	-0.66 (52
Jacksonville	S	Growth Management	-1.00 (63)	-0.30 (39)	0.67(1)	-0.04 (31)	1.64 (6)	2.75(1)	-0.13 (58)	-0.57 (67)	1.56 (6
Kansas City (KS)	MW	Middle America	-0.50 (49)	-0.68 (65)	0.67(1)	-0.75 (51)	-0.03 (30)	-0.66 (58)	0.58(1)	-0.27 (29)	-1.13 (64
Kansas City (MO)	MW	Middle America	0.02 (33)	0.02 (24)	-0.21 (47)	-0.63 (47)	0.20(27)	0.78 (10)	0.41 (31)	-0.07 (22)	-1.19 (68
Las Vegas (AZ)	W	Containment	-0.69 (54)	0.14(21)	0.67(1)	1.29 (9)	0.60 (22)	2.19(3)	0.58(1)	-0.27 (29)	-1.25 (69
Las Vegas (NV)	W	Containment-Lite	-0.94 (61)	-0.18 (32)	0.67(1)	0.80 (14)	0.12 (28)	-0.11 (44)	-0.54 (62)	1.62 (6)	-0.35 (40
Los Angeles	W	Growth Management	-0.93 (60)	-0.30 (40)	0.60 (37)	-0.27 (33)	0.77 (16)	-0.70 (59)	0.13 (50)	0.79 (9)	1.97 (4
Louisville (IN)	MW	Middle America	0.52 (22)	-0.23 (34)	0.67(1)	-0.65 (48)	-1.06 (63)	-0.04 (41)	0.42 (28)	0.17 (16)	-1.15 (6)

How to Efficiently Fill uncategorized data?

- Our current data set is richer than zoning categories data set.
- What method is best to categorized uncategorized data?
- How do we efficiently find nearest neighbor to match neighboring category?

DiD Model (work in progress)

$$Y_{tj} = \sum_{t=-n}^{n} heta_{tj} H R_{tj} + \sum_{t=-n}^{n} \phi_{tj} Post_{tj} + \sum_{t=-n}^{n} \psi_{tj} (H R_{tj} imes Post_{tj}) \ + \gamma_{tj} X_{tj} + \epsilon_{tj}$$

- ullet category j , time i
- Y_{tj} —- change in truck parking capacity
- HR_{tj} —- high restriction index
- $Post_{tj}$ —- represents the indicator for the post-accident period

End. Thank you for reading

References

