

Time and space complexity

-> For solving any problem P1 there will be many solutions

-> Before implementing any algorithm as a Program we must have to find out which algorithm is good in terms of time and memory.

>> How to calculate time and space complexity?

> After analysis, we will choose the best algorithm in terms of Time and Space

______ Asymptotic notation

Asymptotic Notation

-> Asymptotic notation describes the <u>berformance</u> of algorithms in terms of input Size(n), particularly for large inputs.

time and space

Complexity.

- → It gives a mathematical way to express the growth rate of an algorithm's resource (Time and Space) Consumption
- -> Types of Asymptotic Notation
 - O Big-0(0) -> worst-case time and space
- @ Omega(SZ) -> Best-Case time and space
- \bigcirc Theta \bigcirc \bigcirc \bigcirc Average-Case time and Space.

Q. Given a list of numbers of size n. Find the best, average and worst Case time Complexity to search for number x.

NOTE-List is not sorted.

Time complexity = T(n)

 \rightarrow Worst case time complexity \Rightarrow $O(n) \leftarrow$ last/donot exists

Average case time complexity \Rightarrow $O(n) \leftarrow$ target at middle

Best case time Complexity \Rightarrow $SL(1) \leftarrow$ first position

L> what about space Complexity?

Big-O Notation (0)

- -> Big-O defines the maximum time/space an algorithm can take
- -> Focus on worst-case Scenario.
- -> Analogy: Going to Airport
- -> we will find another function for a given function Such that after some input no, the value of Cig(n) is always greater than f(n)

-> Big-0 is an upper bound, not necessarily a tighter upper bound.

Example: f(n) = 3n + 2

$$\Rightarrow g(n) = n$$

$$f(n) \leq C \cdot g(n), C > 0$$

$$n_0 > \infty$$

3n+2 & c.n Put C=4

$$2 \le n \Rightarrow n \ge 2$$

$$\therefore f(n) = O(9(n))$$

$$\therefore f(n) = O(g(n)) = O(n)$$

Shortcut

(1) keep the highest order term -> Drop all the lower-order terms — they become insignificant for large input

2 Ignore Constants

size (n → ∞)

→ Coefficients don't affect asymptotic growth

 $T(n) = 100n \longrightarrow O(n)$

Companson of Functions > To find highest DECODE Order term

 \rightarrow when we compare two functions, we are interested in values at $n \rightarrow \infty$ (i.e. when m grows very large, which one wins)

txam	ples	
\bigcirc	n	η5
<u> </u>	3 ⁿ	2 ^m
	~	
3	2"	n
(4)	n'	nologn

6	ηL	(log n) 100	
) - a		
(6)	γ	mologr	า

TRICK

- 1) Take larger n value
- @ Apply log and then 1

9
$$f(n) = \begin{cases} n^3 & 0 < m < 10000 \\ n^2 & m > 10000 \end{cases}$$

$$g(n) = \begin{cases} n & 0 < n < 100 \\ n^3 & n > 100 \end{cases}$$

Function Growtn (Fastest to Slowest)

Like Subscribe