

Devoir Surveillé, MAP2

L'usage de téléphones portables et ordinateurs est formellement interdit

Exercice 1:

- a) Soit la fonction $g(t) = Sin\left(\underline{x.t}\right)$, calculez la transformée de Fourier de g(t).
- b) Soit w(t) = 1 pour $-\frac{\theta}{2} \le t \le \frac{\theta}{2}$ et w(t) = 0 ailleurs, calculez la transformée de Fourier de w(t).
- c) En déduire la transformée de Fourier de la fonction $h(t) = Sin\left(\frac{\pi t}{\theta}\right)$ pour $-\frac{\theta}{2} \le t \le \frac{\theta}{2}$ et h(t) = 0 ailleurs.
- d) Tracer H(f).

Exercice 2:

Calculez la transformée de Fourier du signal *g(t)*.

Exercice 3:

Soit $g(t) = Ae^{-t/\tau}$ pour $t \ge 0$ et g(t) = 0 ailleurs. A > 0 et $\tau > 0$.

a)

Tracez g(t).

b)

Calculer sa transformée de Fourier : G(f).

c'

Tracez la partie réelle de G(f).

d)

Combien vaut l'amplitude maximale de G(f)?

Donnez l'expression des fréquences à la moitié de cette amplitude.

En déduire la largeur fréquentielle à la moitié de cette amplitude en fonction de τ .

e)

Si tend τ vers zéro, comment évoluent g(t) et G(f)?