

# OMNIKEY® 5023 SOFTWARE DEVELOPER GUIDE

PLT-03273, Rev. A.1 July 2018



# Copyright

© 2018 HID Global Corporation/ASSA ABLOY AB. All rights reserved.

This document may not be reproduced, disseminated or republished in any form without the prior written permission of HID Global Corporation.

#### **Trademarks**

HID GLOBAL, HID, the HID Brick logo, the Chain Design, ICLASS, ICLASS SE, SEOS and OMNIKEY are trademarks or registered trademarks of HID Global, ASSA ABLOY AB, or its affiliate(s) in the US and other countries and may not be used without permission. All other trademarks, service marks, and product or service names are trademarks or registered trademarks of their respective owners.

MIFARE, MIFARE Classic, MIFARE DESFire, MIFARE DESFire EV1, MIFARE PLUS and MIFARE Ultralight are registered trademarks of NXP B.V. and are used under license.

# **Revision history**

| Date        | Date Description                                                |     |
|-------------|-----------------------------------------------------------------|-----|
| July 2018   | Removed support for MIFARE Ultralight/Ultralight C using PC/SC. | A.1 |
| August 2017 | Initial release.                                                | A.O |

#### **Contacts**

For additional offices around the world, see <a href="https://www.hidglobal.com/contact/corporate-offices">www.hidglobal.com/contact/corporate-offices</a>

| Americas and Corporate                                                                                                      | Asia Pacific                                                                                                                                        |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 611 Center Ridge Drive<br>Austin, TX 78753<br>USA<br>Phone: 866 607 7339<br>Fax: 949 732 2120                               | 19/F 625 King's Road<br>North Point, Island East<br>Hong Kong<br>Phone: 852 3160 9833<br>Fax: 852 3160 4809                                         |  |
| Europe, Middle East and Africa (EMEA)                                                                                       | Brazil                                                                                                                                              |  |
| Haverhill Business Park Phoenix Road Haverhill, Suffolk CB9 7AE England Phone: 44 (0) 1440 711 822 Fax: 44 (0) 1440 714 840 | Condomínio Business Center<br>Av. Ermano Marchetti, 1435<br>Galpão A2 - CEP 05038-001<br>Lapa - São Paulo / SP<br>Brazil<br>Phone: +55 11 5514-7100 |  |
| HID Global Technical Support: www.hidglobal.com/support                                                                     |                                                                                                                                                     |  |

# **Contents**

| Section 1: | Intr | odu   | ction                        | 7  |
|------------|------|-------|------------------------------|----|
|            | 1.1  | Pro   | duct description             | 7  |
|            | 1.2  | Key   | features                     | 7  |
|            | 1.3  | Cor   | mmand execution behavior     | 7  |
|            | 1.4  | Ref   | erence documents             | 8  |
|            | 1.5  | Abl   | oreviations and definitions  | 9  |
| Section 2: | Hos  | t int | erfaces                      | 11 |
|            | 2.1  | USE   | 3                            | 11 |
| Section 3: | Cor  | ntact | less card interface          | 13 |
|            | 3.1  | Pol   | ling mode                    | 13 |
| Section 4: | Cor  | ntact | :less protocol support       | 15 |
|            | 4.1  | ISO   | /IEC 14443 Type A            | 15 |
|            | 4.2  |       | /IEC 14443 Type B            |    |
|            | 4.3  | iCL   | ASS 15693                    | 16 |
|            | 4.4  | Feli  | Ca                           | 16 |
| Section 5: | Cor  | ntact | less card communication      | 17 |
|            | 5.1  | PC/   | /SC commands                 | 17 |
|            | 5.   | 1.1   | Command set                  | 17 |
|            | 5.   | 1.2   | 0xCA - Get Data              | 18 |
|            | 5.   | 1.3   | 0x82 - Load Keys             | 19 |
|            | 5.   | 1.4   | 0x86 - General Authenticate  | 20 |
|            | 5.   | 1.5   | OxBO - Read Binary           | 21 |
|            | 5.   | 1.6   | OxD6 - Update Binary         | 23 |
|            | 5.   | 1.7   | OxC2 - Increment / Decrement | 24 |
|            | 5.2  | Use   | er key locations             | 25 |
|            | 5.3  | ОМ    | NIKEY specific commands      | 27 |
|            | 5.   | 3.1   | Response APDU                | 28 |
|            | 5.   | 3.2   | Error response               | 28 |
|            | 5.   | 3.3   | Reader Information API       | 29 |
|            | 5.4  | Cor   | mmunication examples         | 30 |
|            | 5.   | 4.1   | MIFARE Classic 1K/4K example | 30 |



|            | 5.4.2    | MIFARE DESFire example.                          | . 30 |
|------------|----------|--------------------------------------------------|------|
|            | 5.5 Wra  | apped SE processor commands                      | . 32 |
|            | 5.5.1    | Load Key                                         | . 33 |
|            | 5.5.2    | DESFire Authenticate Native                      | . 34 |
|            | 5.5.3    | DESFire Format Card                              | . 35 |
|            | 5.5.4    | DESFire Create Application                       | . 36 |
|            | 5.5.5    | DESFire Select Application                       | . 37 |
|            | 5.5.6    | DESFire Create Standard Data File                | . 38 |
|            | 5.5.7    | DESFire Write Data                               | . 39 |
|            | 5.5.8    | DESFire Read Data                                | . 40 |
|            | 5.5.9    | Read PACS Data                                   | 41   |
| Section 6: | Secure s | session model                                    | 43   |
|            | 6.1 Usir | ng a secure session                              | . 43 |
|            | 6.1.1    | Establish and manage a secure session            | . 43 |
|            | 6.1.1.   | I Initialize Authentication (AUTH1)              | . 44 |
|            | 6.1.1.   | 2 Continue Authentication (AUTH2)                | . 45 |
|            | 6.1.1.   | 3 Data Exchange in a secure session              | . 46 |
|            | 6.1.1.   | 4 Terminate Secure Session                       | . 47 |
|            | 6.1.1.   | Secure channel return codes                      | . 48 |
|            | 6.2 Sec  | ure session access rights and secure session key | . 48 |
|            | 6.3 Cha  | nging the secure session keys                    | 49   |
| Section 7: | Reader   | configuration                                    | . 51 |
|            | 7.1 APE  | DU commands                                      | . 51 |
|            | 7.2 Acc  | essing configuration                             | . 52 |
|            | 7.2.1    | Example: Get Reader Information                  | . 53 |
|            | 7.3 Rea  | der Capabilities                                 | . 54 |
|            | 7.3.1    | tlvVersion                                       | . 54 |
|            | 7.3.2    | deviceID                                         | . 55 |
|            | 7.3.3    | productName                                      | . 55 |
|            | 7.3.4    | productPlatform                                  | . 55 |
|            | 7.3.5    | enabledCLFeatures                                | . 56 |
|            | 7.3.6    | firmwareVersion                                  | . 57 |
|            | 7.3.7    | hfControllerVersion                              | . 57 |
|            | 7.3.8    | hardwareVersion                                  | . 57 |
|            | 7.3.9    | hostInterfaceFlags                               | . 58 |
|            | 7.3.10   | numberOfContactSlots                             | . 58 |
|            | 7.3.11   | numberOfContactlessSlots                         | . 59 |



|            | 7.3.12  | numberOfAntennas                                     | . 59 |
|------------|---------|------------------------------------------------------|------|
|            | 7.3.13  | vendorName                                           | . 59 |
|            | 7.3.14  | exchangeLevel                                        | . 60 |
|            | 7.3.15  | serialNumber                                         | . 60 |
|            | 7.3.16  | hfControllerType                                     | . 60 |
|            | 7.3.17  | sizeOfUserEEPROM                                     | 61   |
|            | 7.3.18  | firmwareLabel                                        | 61   |
|            | 7.4 Cor | ntactless configuration                              | . 62 |
|            | 7.4.1   | Baud rates                                           | . 62 |
|            | 7.4.1   | l.1 Examples                                         | . 63 |
|            | 7.4.1   | I.2 Default values                                   | . 63 |
|            | 7.4.2   | Common parameters                                    | . 63 |
|            | 7.4.3   | ISO/IEC 14443 Type A                                 | . 64 |
|            | 7.4.4   | ISO/IEC 14443 Type B                                 | . 65 |
|            | 7.4.5   | FeliCa                                               | . 66 |
|            | 7.4.6   | iCLASS                                               | . 67 |
|            | 7.5 Rea | ader EEPROM                                          | . 68 |
|            | 7.5.1   | EEPROM read                                          | . 68 |
|            | 7.5.2   | EEPROM write                                         | . 69 |
|            | 7.6 Rea | ader Configuration Control                           | . 69 |
|            | 7.6.1   | applySettings                                        | . 69 |
|            | 7.6.2   | restoreFactoryDefaults                               | . 70 |
|            | 7.6.3   | rebootDevice                                         | . 70 |
| Section 8: | ICAO te | est commands                                         | . 71 |
|            | 8.1 Cor | mmand set                                            | . 71 |
|            | 8.1.1   | ICAO commands                                        | 71   |
|            | 8.1.2   | 0x92 - ISO/IEC 14443-2: ISO/IEC 14443-2 command APDU | 71   |
|            | 8.1.3   | ISO/IEC 14443-2 P1 coding                            | . 72 |
|            | 8.1.4   | ISO/IEC 14443-2 response                             | . 72 |
|            | 8.1.5   | 0x94 - Transmit Pattern command APDU                 | . 72 |
|            | 8.1.6   | ICAO Transmit Pattern P1 coding                      | . 73 |
|            | 8.1.7   | ICAO Transmit Pattern P2 coding                      | . 73 |
|            | 8.1.8   | ICAO Transmit Pattern SW1SW2 response bytes          | . 73 |
|            | 8.1.9   | 0x96 - ISO/IEC 14443-3 command APDU                  | . 73 |
|            | 8.1.10  | ISO/IEC 14443-3 P1 coding                            | . 74 |
|            | 8.1.11  | ISO/IEC 14443-3 P2 coding                            | . 75 |
|            | 8.1.12  | ISO/IEC 14443-3 SW1SW2 response bytes                | . 75 |
|            |         |                                                      |      |



| 8.1.13            | Cases for which data out is command dependent | 76 |
|-------------------|-----------------------------------------------|----|
| 8.1.14            | 0x98 - ISO/IEC 14443-4 command APDU           | 76 |
| 8.1.15            | ISO/IEC 14443-4 P1 coding                     | 76 |
| 8.1.16            | ISO/IEC 14443-4 P2 coding                     | 77 |
| 8.1.17            | ISO/IEC 14443-4 response bytes                | 77 |
| 8.1.18            | 0x9A: ICAO Miscellaneous command APDU         | 77 |
| 8.1.19            | ICAO Miscellaneous P1 coding                  | 77 |
| 8.1.20            | ICAO Miscellaneous P2 coding                  | 78 |
| 8.1.21            | ICAO Miscellaneous response                   | 78 |
| Appendix A: Using | g PC_to_RDR_Escape command                    | 79 |



# 1 Introduction

## 1.1 Product description

OMNIKEY® 5023 Readers open new market opportunities for system integrators seeking simple reader integration and development using standard interfaces, such as CCID (Circuit Card Interface Device). This reader works without needing to install or maintain drivers, eliminating complex software lifecycle management issues in the field and accelerating introduction into the market. Only an operating system driver is necessary, for example Microsoft CCID driver.

The OMNIKEY 5023 reader features include support for common high frequency card technologies, including ISO/IEC 14443 A/B, iCLASS®, MIFARE® and others.

It is also possible to add support for new card technologies in the future through device firmware upgrades.

## 1.2 Key features

- **CCID Support** Removes the requirement to install drivers on standard operating systems to fully support capabilities of the reader board.
- **High frequency card technologies** Supports common high frequency card technologies, including ISO/IEC 14443 A/B (including MIFARE/MIFARE DESFIRE etc.), iCLASS 15693, Topaz, Sony FeliCa®, and others.
- Rapid and Easy Integration No special driver installation is required.
- iCLASS SE® Processor Provides support for processing of PACS data and secure key exchange and communication. Access of iCLASS Seos® data and HID PACS SIO across multiple technologies.

#### 1.3 Command execution behavior

The OMNIKEY 5023 contains a Secure Element, which controls and manages the cryptographic access to the presented secure credentials. The reader's operational behavior is similar to the OMNIKEY 5427CK in CCID mode rather than the OMNIKEY 5x22 readers.

#### 1.4 Reference documents

Introduction

| Document number                     | Description                                                                                                                                                                                                                                                              |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB 2.0 Specification               | Universal Serial Bus Revision 2.0 specification provides the technical details to understand USB requirements and design USB compatible products. Refer to <a href="http://www.usb.org/developers/docs/usb20_docs/">http://www.usb.org/developers/docs/usb20_docs/</a> . |
| CCID Specification                  | Specification for Integrated Circuit(s) Cards Interface Devices, revision 1.1.                                                                                                                                                                                           |
| PC/SC                               | PC/SC Workgroup Specifications version 2.01.9 April 2010.                                                                                                                                                                                                                |
| PC/SC-3                             | PC/SC - Part 3 - Requirements for PC Connected Interface Devices V2.01.09, June 2007.                                                                                                                                                                                    |
| ISO 7816-4                          | Information technology - Identification cards - Integrated circuit(s) cards with contacts - Part 4: Inter-industry commands for interchange Rev. 2005.                                                                                                                   |
| ISO/IEC 14443                       | Identification cards - Contactless integrated circuit cards - Proximity cards.                                                                                                                                                                                           |
| 5023 Reader Data Sheet              | Provides a summary of the OMNIKEY 5023 Reader's features.                                                                                                                                                                                                                |
| 6700-902                            | iCLASS SE Processor User Guide.                                                                                                                                                                                                                                          |
| NIST Special Publication<br>800-108 | Recommendation for Key Derivation Using Pseudorandom Functions.                                                                                                                                                                                                          |

**Note:** HID Global is not allowed to support proprietary card layer protocols that may be implemented in the host device/application. For example, FeliCa application developers must contact Sony and MIFARE branded products must contact NXP to obtain these card layer protocols. HID Global is constantly expanding credential support in the reader, so, some card technologies support only the chip UID.

Contact HID Global Technical Support for further information: <a href="https://www.hidglobal.com/support">https://www.hidglobal.com/support</a>



# 1.5 Abbreviations and definitions

| Abbreviation | Description                                                                                 |
|--------------|---------------------------------------------------------------------------------------------|
| APDU         | Application Protocol Data Unit.                                                             |
| ATR          | Answer To Reset.                                                                            |
| ATS          | Answer To Select.                                                                           |
| CCID         | Integrated Circuit(s) Cards Interface Device.                                               |
| CE           | Conformité Européenne.                                                                      |
| CSN          | Card Serial Number.                                                                         |
| EMD          | Electromagnetic Disturbance.                                                                |
| FCC          | Federal Communications Commission.                                                          |
| ICAO         | International Civil Aviation Organization.                                                  |
| ICC          | Integrated Circuit Card.                                                                    |
| IDm          | Manufacture ID (FeliCa UID).                                                                |
| IFD          | Interface Device.                                                                           |
| ISO/IEC      | International Organization for Standardization / International Electrotechnical Commission. |
| OID          | Unique Object Identifier.                                                                   |
| PC/SC        | Personal Computer / Smart Card.                                                             |
| PCD          | Proximity Coupling Device.                                                                  |
| PICC         | Proximity Integrated Circuit Card.                                                          |
| RFU          | Reserved for Future Use.                                                                    |
| UID          | Universal ID.                                                                               |
| USB          | Universal Serial Bus.                                                                       |
| VCD          | Vicinity Coupling Device.                                                                   |
| VICC         | Vicinity Integrated Circuit Card.                                                           |







This page is intentionally left blank.

# 2 Host interfaces

The OMNIKEY® 5023 reader supports the following host interface:

■ USB 2.0 Full Speed (12 Mbit/s) Device Port

#### **2.1 USB**

The device enumerates as a single device. The OMNIKEY 5023 USB protocol stack implements the following device class:

CCID (Integrated Circuit Cards Interface Device, v1.1)

The USB CCID interface can be used to send Application Protocol Data Unit (APDU) to the reader. The OMNIKEY 5023 supports the standard PC/SC API (for example, SCardConnect, SCardDisconnect, SCardTransmit). Consequently, any application software using the PC/SC API commands should be able to communicate with the reader.



This page is intentionally left blank.

# 3 Contactless card interface

The OMNIKEY® 5023 reader is compliant with CCID specifications. Data exchange with a host is done via Extended APDUs. Since the CCID specification does not define contactless protocols, T=1 protocol is emulated.

# 3.1 Polling mode

OMNIKEY 5023 supports a single polling mode.

This polling mode operates as follows:

1. The reader polls for cards automatically using a set sequence of card protocols. It is possible to enable or disable each protocol individually and change the sequence.

The factory default sequence is:

- ISO/IEC 14443 Type A and Topaz
- ISO/IEC 14443 Type B
- iCLASS ISO/IEC 15693
- FeliCa
- ISO/IEC 15693
- 2. When a card or cards are found the host application is notified through CCID.
- 3. When the host powers up the card the relevant anti-collision procedure is executed to achieve the selection of a single card. The reader to card airspeed is set to the highest value supported by both reader and card. Where applicable the card is put into the T=CL protocol state. The card details (that is ATR) are sent to the host.
- 4. APDU layer communication is now possible through the CCID interface.
- 5. The reader continues to poll for card removal, whereupon it sends an appropriate CCID message to the host application.
- 6. On card removal, the cycle is repeated.



#### **Polling operation**



# 4 Contactless protocol support

# 4.1 ISO/IEC 14443 Type A

The OMNIKEY® 5023 reader supports all ISO/IEC 14443 Type A compliant cards. Anti-collision is as described in ISO/IEC 14443-3:2001(E) section 6.4. Protocol mode when supported is T=CL as described in ISO/IEC 14443-4. ISO/IEC 14443A cards supported by the reader include, but are not limited to the following:

- MIFARE Classic
- MIFARE Plus
- MIFARE DESFire EV1
- MIFARE Ultralight, Ultralight C
- Topaz

The OMNIKEY 5023 reader allows accessing any T=CL card directly through PC/SC. MIFARE Classic and MIFARE Plus in MIFARE Classic emulation mode are supported by the PC/SC commands.

By default, the card normally is switched to the highest possible speed supported by both the reader and the card. This is as described in the card ATS, but can be limited by the configuration options as described below. The maximum speed supported by the reader is 848Kbit/s. Protocol mode will then be enabled when supported by the card.

#### Configurable ISO14443A parameters:

| Item                  | Description                                                          |
|-----------------------|----------------------------------------------------------------------|
| iso14443aEnable       | Enables or disables support for ISO/IEC 14443 Type A.                |
| iso14443aRxTxBaudRate | Sets the maximum baud rate in the PCD to PICC/PICC to PCD direction. |
| mifareKeyCache        | Enable or disable MIFARE key caching.                                |
| mifarePreferred       | Prefers MIFARE mode of a card.                                       |



# 4.2 ISO/IEC 14443 Type B

The OMNIKEY 5023 reader supports all ISO/IEC 14443 Type B compliant cards. Protocol activation when supported is T=CL according to ISO/IEC 14443-3:2001(E) Section 7.

The card will normally be switched to the highest possible speed supported by both the reader and the card. This is as described in the card ATS, but can be limited by the configuration options as described below. The maximum speed supported by the reader is 848 kbps. Protocol mode will then be enabled when supported by the card.

#### Configurable ISO14443B parameters:

| Item                  | Description                                                          |
|-----------------------|----------------------------------------------------------------------|
| iso14443bEnable       | Enables or disables support for ISO/IEC 14443 Type B.                |
| iso14443bRxTxBaudRate | Sets the maximum baud rate in the PCD to PICC/PICC to PCD direction. |

#### 4.3 iCLASS 15693

Access to the following iCLASS® card data is through the proprietary set of pseudo APDUs:

- iCLASS Legacy
- iCLASS Legacy Elite
- iCLASS SE®
- iCLASS Seos®

#### Configurable iCLASS parameters:

| Item                 | Description                                                |
|----------------------|------------------------------------------------------------|
| iCLASS15693Enable    | Enables or disables support for iCLASS 15693 card polling. |
| iCLASS15693DelayTime | Sets minimum chip response to reader command delay.        |
| iCLASS15693Timeout   | Sets time to wait for response to a command.               |
| iCLASSActallTimeout  | Sets time to wait for response to ACT/ACTALL.              |

#### 4.4 FeliCa

FeliCa support is limited to card selection with only one card present (no anti-collision) and IDm retrieval.

#### **Configurable FeliCa parameters:**

| Item               | Description                                    |
|--------------------|------------------------------------------------|
| felicaEnable       | Enables FeliCa card polling.                   |
| felicaRxTxBaudRate | Sets the maximum baud rate in both directions. |

# 5 Contactless card communication

Before communicating with a contactless card, it will be necessary to select the card and in some cases, authenticate with a known key. For a USB-connected host with an operating system the card selection is done automatically. To enhance the user experience OMNIKEY® 5023 supports so-called key caching that reduces the number of authentication calls required to access certain areas of a card that use the same key. Key caching is disabled by default.

Communication with MIFARE Classic, MIFARE Plus (SL1) and iCLASS® credentials is normally done using the PC/SC APDUs described in the next section. However, MIFARE DESFire cards are only supported using T=CL pass through commands and the user must handle all of these details of the encryption, authentication, reading writing etc., in their application code. The following sections include the PC/SC commands required to communicate with a card. Examples of communication with some specific card types are included in the next chapter.

# 5.1 PC/SC commands

#### 5.1.1 Command set

The PC/SC command set for contactless cards is defined in Section 3.2 of the document "Interoperability Specification for ICCs and Personal Computer Systems - Part 3. Requirements for PC-Connected Interface Devices", and is available from the PC/SC Workgroup website <a href="http://www.pcscworkgroup.com">http://www.pcscworkgroup.com</a>. The commands use the standard APDU syntax and standard SCardTransmit API, but use the reserved value of the CLA byte of "FF".

#### PC/SC commands

| Instruction | Description           | Comments                                   |
|-------------|-----------------------|--------------------------------------------|
| 0xB0        | Read Binary.          | Read data from a credential.               |
| 0xC2        | Increment/Decrement.  | Supported for MIFARE cards.                |
| OxCA        | Get Data.             | Fully supported.                           |
| 0x82        | Load Keys.            | Partially supported.                       |
| 0x86        | General Authenticate. | Supported for HID iCLASS cards and MIFARE. |
| 0x20        | Verify.               | Not supported.                             |
| 0xD6        | Update Binary.        | Write data to credential.                  |



#### Common SW1SW2 return codes

| SW1SW2                   | Definition                  |  |
|--------------------------|-----------------------------|--|
| 0x9000                   | OO Operation successful.    |  |
| 0x6700                   | Wrong length (Lc or Le).    |  |
| 0x6A81                   | Function not supported.     |  |
| 0x6B00                   | Wrong parameter (P1 or P2). |  |
| Ox6F00 Operation failed. |                             |  |

#### 5.1.2 OxCA - Get Data

This command is used to retrieve specific information relating to the card itself, such as card serial number, rather than data on the card itself. The items which can be retrieved are listed in the following table.

#### **Get Data command APDU**

| CLA  | INS  | P1   | P2   | Lc | Data In | Le |
|------|------|------|------|----|---------|----|
| OxFF | 0xCA | 0x00 | 0x00 | -  | -       | XX |
|      |      | 0x01 |      |    |         |    |

General: Works with any type of card, unless P1 = 0x01 (see below)

#### **Get Data command response**

| P1   | Card type                   | Data Out            | SW1SW2 |                         |
|------|-----------------------------|---------------------|--------|-------------------------|
| 0x00 | ISO/IEC 14443 Type A        | 4, 7 or 10-byte UID | 0x9000 | Operation successful.   |
|      | ISO/IEC 14443 Type B        | 4-byte PUPI         |        |                         |
|      | FeliCa                      | 8-byte IDm          |        |                         |
|      | iCLASS 14443 Type B / 15693 | 8-byte CSN          |        |                         |
| 0x01 | ISO/IEC 14443 Type A        | n Historical bytes  |        |                         |
|      | Other                       | -                   | 0x6A81 | Function not supported. |

#### Note:

- For the ISO/IEC 14443 Type A Innovision Jewel card, the data field is 7 bytes of 0x00.
- The number of historical bytes returned is limited to 15.



## 5.1.3 Ox82 - Load Keys

This command allows the application to load keys onto the reader. That includes MIFARE keys, iCLASS keys and secures session keys. All keys except MIFARE keys must be loaded during secure session. MIFARE keys can be loaded when secure session is established or not. All keys are stored in the iCLASS SE processor. For keys other than MIFARE and iCLASS, see *Section: 5.5.1 Load Key*.

#### **Load Keys command APDU**

| CLA  | INS  | P1            | P2         | Lc         | Data In | Le |
|------|------|---------------|------------|------------|---------|----|
| OxFF | 0x82 | Key Structure | Key Number | Key Length | Key     | -  |

General: will work with any card type or can be sent using SCardControl().

#### Load Keys P1 coding (key structure)

| b7 | b6   | b5 | b4               | b3 | b2 | b1 | b0                              | Description                    |             |
|----|------|----|------------------|----|----|----|---------------------------------|--------------------------------|-------------|
| 0  |      |    | RFU              |    |    |    | Card key.                       |                                | Card key.   |
| 1  |      |    |                  |    |    |    | Reader key.                     |                                | Reader key. |
|    | 0    |    |                  |    |    |    | Fixed to 0. Plain transmission. |                                |             |
|    | •    | 0  |                  |    |    |    | Stored in volatile memory.      |                                |             |
|    |      | 1  |                  |    |    |    |                                 | Stored in non-volatile memory. |             |
|    | 0000 |    | Fixed value 000. |    |    |    |                                 |                                |             |

KeyNumber: See Section: 5.2 User key locations

**KeyLength:** 6 or 8 or 16 bytes **Key:** Key in plain text

#### **Load Keys response**

| Data Out     | SW1SW2 |                            |  |
|--------------|--------|----------------------------|--|
| - 0x9000     |        | Operation successful.      |  |
|              | 0x6982 | Card key not supported.    |  |
| 0x6983       |        | Reader key not supported.  |  |
|              | 0x6986 | Invalid key.               |  |
| 0x6988 Key n |        | Key number not valid.      |  |
|              | 0x6989 | Key length is not correct. |  |



#### 5.1.4 Ox86 - General Authenticate

This command allows the user to authenticate a credential. Before using this command the correct keys must have been loaded to the relevant key slot. For iCLASS keys these keys are preloaded onto the reader, so the application must just select the correct key number for the area they are attempting to access.

#### **General Authenticate command APDU**

| CLA  | INS  | P1   | P2   | Lc   | Data field       | Le |
|------|------|------|------|------|------------------|----|
| OxFF | 0x86 | 0x00 | 0x00 | 0x05 | Data, see below. | 1  |

| Byte 1         | Byte 2      | Byte 3      | Byte 4   | Byte 5     |
|----------------|-------------|-------------|----------|------------|
| Version = 0x01 | Address MSB | Address LSB | Key Type | Key Number |

Key Types: 0x00 = PicoPass Debit Key (KD)

0x01 = PicoPass Credit Key (Kc)

0x60 = MIFARE KeyA 0x61 = MIFARE KeyB

For MIFARE cards:

Address MSB = 0, Address LSB = the block number counted from 0 to [19 (MINI), 63 (1K), 127(2K) or 255(4K)].

For iCLASS the following scheme is used:

Address LSB: Page number 0 - 7

Address MSB: Book number 0 or 1, bit 0 - book number, bit 1 select flag.

Select flag 0 - authenticate without implicit select

Select flag 1 - authenticate with implicit select book page according LSB bit3:0

#### **General Authenticate supported card addressing**

| Supported cards | Memory addressing                         |
|-----------------|-------------------------------------------|
| iCLASS          | MSB = Book / LSB = Page.                  |
| MIFARE          | Any block number in the requested sector. |

#### **Response APDU:**

#### **General Authenticate response**

| Data field | SW1SW2               |
|------------|----------------------|
| empty      | See following table. |



#### **General Authenticate return codes**

| Туре                               | SW1SW2 | Description                                        |
|------------------------------------|--------|----------------------------------------------------|
| Normal                             | 0x9000 | Successful.                                        |
| Warning                            |        |                                                    |
| Execution Error                    | 0x6400 | No Response from media (Time Out).                 |
|                                    | 0x6581 | Illegal block number (out of memory space).        |
| Checking Error 0x6700 Wrong APDU I |        | Wrong APDU length.                                 |
|                                    | 0x6982 | Security status not satisfied (not authenticated). |
|                                    | 0x6986 | Wrong key type.                                    |
|                                    | 0x6988 | Wrong key number.                                  |

#### 5.1.5 OxBO - Read Binary

The Read Binary command returns the data on a credential. For MIFARE Classic and Plus cards this requires a prior general authenticate command to succeed. For iCLASS all blocks except blocks 0-5 require the relevant page to be authenticated beforehand, but the correct book and page must be selected to avoid reading the wrong data. See *Section: 7.1 APDU commands* for an APDU command.

#### **Read Binary command APDU**

| CLA  | INS  | P1          | P2          | Lc | Data In | Le |
|------|------|-------------|-------------|----|---------|----|
| OxFF | OxBO | Address MSB | Address LSB | -  | -       | xx |

#### **Read Binary supported cards**

| Supported cards | Memory addressing | Size                                                          |
|-----------------|-------------------|---------------------------------------------------------------|
| iCLASS          | Block number      | Any multiple of a block (8 bytes) less than the page size.    |
| MIFARE 1K/4K    | Block number      | Any multiple of a block (16 bytes) less than the sector size. |

#### **Read Binary P1 coding for iCLASS**

| b7 | b6    | b5:0      |       |                                                      | Description                                          |                            |
|----|-------|-----------|-------|------------------------------------------------------|------------------------------------------------------|----------------------------|
|    |       | b5        | b4    | b3                                                   | b2:0                                                 |                            |
| 0  |       |           | 000   | Read block number (P2) without SELECT.               |                                                      |                            |
|    | 0 R 1 | 원 1 0 xxx |       | xxx                                                  | Read block number (P2) with SELECT book 0, page xxx. |                            |
|    | 1 1   |           | xxx   | Read block number (P2) with SELECT book 1, page xxx. |                                                      |                            |
| 0  | 1     |           |       |                                                      |                                                      | Rread with DES decrypted.  |
| 1  | 0     |           | 00000 |                                                      |                                                      | RFU.                       |
| 1  | 1     |           |       |                                                      |                                                      | Read with 3-DES decrypted. |

Using P1 to indicate the targeted book and page allows reading the addressed block numbers without a dedicated prior authentication command. This is only applicable for free accessible blocks e.g. block 0-2 and 5. The most significant bits 6 and 7 of P1 indicate whether the IFD is forced to either read the data in plain or to decrypt the data using DES or 3DES.



#### **Read Binary response**

| Data field                                                  | SW1SW2                   |
|-------------------------------------------------------------|--------------------------|
| Media Data according Le, dependent on supported block size. | See the following table. |

**Note:** If the media is readable then the IFD always returns the number of data bytes according to the Le value. If Le is less than block size, the data field is cut off the Le position and the return code is 6Cxx, where xx is the real block size. If Le is greater than the available block size, the IFD returns the number of available bytes and the return code 6282 (warning end of data reached before Le bytes). If the application requests a multiple of media block size in the Le field, then the IFD returns all requested bytes and the return code is 9000. This ensures a high performance particularly for media with "Read Multiple Blocks" support.

### Read Binary SW1SW2 values

| Туре                                     | SW1SW2 | Description                                                           |  |  |
|------------------------------------------|--------|-----------------------------------------------------------------------|--|--|
| Normal                                   | 0x9000 | Successful.                                                           |  |  |
| Warning                                  | 0x6282 | End of data reached before Le bytes (Le is greater than data length). |  |  |
| Execution Error                          | 0x6400 | No Response from media (Time Out).                                    |  |  |
|                                          | 0x6F00 | Unknown error.                                                        |  |  |
| Checking Error 0x6700 Wrong APDU length. |        | Wrong APDU length.                                                    |  |  |
| 0x6982                                   |        | Block not authenticated (Security status not satisfied).              |  |  |
|                                          | 0x6A82 | Illegal block number (file not found).                                |  |  |
|                                          | 0x6Cxx | Wrong Le; SW2 encodes the exact number of available data bytes.       |  |  |



#### 5.1.6 OxD6 - Update Binary

This command allows data to be written to a credential. For MIFARE Classic, Plus and iCLASS the relevant block must have been authenticated by a prior general authenticate command.

#### **Update Binary command APDU**

| CLA  | INS  | P1          | P2          | Lc | Data In | Le |
|------|------|-------------|-------------|----|---------|----|
| OxFF | 0xD6 | Address MSB | Address LSB | xx | Data    | -  |

#### **Update Binary supported cards**

| Supported cards | Memory addressing | Size                 |
|-----------------|-------------------|----------------------|
| iCLASS          | Block number      | 1 block of 8 bytes.  |
| MIFARE 1K/4K    | Block number      | 1 block of 16 bytes. |

**Note:** iCLASS update binary - selecting the book and page is not necessary because the write operation requires a prior authentication command. The most significant bits 6 and 7 of P1 indicate whether the IFD is forced to either write data in plain or to encryption the data using DES or 3DES.

#### **Update Binary response**

| Data field | SW1SW2                   |
|------------|--------------------------|
| empty      | See the following table. |

#### **Read Binary SW1SW2 values**

| Туре            | SW1SW2 | Description                                                    |  |  |
|-----------------|--------|----------------------------------------------------------------|--|--|
| Normal          | 0x9000 | Successful.                                                    |  |  |
| Warning         |        |                                                                |  |  |
| Execution Error | 0x6400 | No response from media (Time Out).                             |  |  |
| 0x6581          |        | Not usable block number in the memory area (memory failure).   |  |  |
|                 | 0x6F00 | Unknown error.                                                 |  |  |
| Checking Error  | 0x6700 | Wrong APDU length.                                             |  |  |
| 0x6982          |        | Block not authenticated (security status not satisfied).       |  |  |
|                 | 0x6A82 | Illegal block number (file not found).                         |  |  |
|                 | 0x6Cxx | Wrong Lc; SW2 encodes the exact number of expected data bytes. |  |  |



#### 5.1.7 OxC2 - Increment / Decrement

This command increments or decrements the value of a designated block. This command is currently supported for MIFARE cards only. For further details, refer to Section 5.4.2 MIFARE DESFire example.

#### **Increment/Decrement command APDU**

| CLA  | INS  | P1  | P2   | Lc   | Data In | Le |
|------|------|-----|------|------|---------|----|
| OxFF | 0xC2 | OxO | 0x03 | OxOB | Data    | -  |

Where Data In is in the following format:

| Value   | Description                                                                         |
|---------|-------------------------------------------------------------------------------------|
| OxAx    | Tag = Operation to be performed:                                                    |
|         | A0 = Increment                                                                      |
|         | A1 = Decrement                                                                      |
| 0x09    | Length to end of command = 9.                                                       |
| 0x80    | Tag = Block index.                                                                  |
| 0x01    | Length of value = 1.                                                                |
| Oxxx    | Value = Index of block to be incremented or decremented (1 byte).                   |
| 0x81    | Tag = Value to be added or subtracted.                                              |
| 0x04    | Length of value = 4.                                                                |
| xxxxxxx | Value = Value to be added or subtracted from the source block (4 bytes, LSB first). |

#### **Increment/Decrement supported cards**

| Supported cards | Memory addressing | Size                                                          |
|-----------------|-------------------|---------------------------------------------------------------|
| MIFARE 1K/4K    | Block number      | Any multiple of a block (16 bytes) less than the sector size. |

#### **Increment/Decrement response**

| Data field | SW1SW2                   |
|------------|--------------------------|
| empty      | See the following table. |

#### Increment/Decrement response SW1SW2 bytes

| Туре            | SW1SW2 | Description                                          |
|-----------------|--------|------------------------------------------------------|
| Normal          | 0x9000 | Successful.                                          |
| Warning         |        |                                                      |
| Execution Error | 0x6400 | No response from media (Time Out).                   |
|                 | 0x6581 | Memory failure (unsuccessful increment / decrement). |
|                 | 0x6F00 | Unknown error.                                       |
| Checking Error  | 0x6700 | Wrong APDU length.                                   |



| Туре           | SW1SW2 | Description                                              |
|----------------|--------|----------------------------------------------------------|
| Checking Error | 0x6700 | Wrong APDU length.                                       |
|                | 0x6981 | Incompatible command.                                    |
|                | 0x6982 | Block not authenticated (security status not satisfied). |
|                | 0x6986 | Command not allowed.                                     |
|                | 0x6A81 | Function not supported.                                  |
|                | 0x6A82 | Invalid block number.                                    |

# 5.2 User key locations

There are two sets of user keys; PC/SC and SE processor. The following table lists the default key slots available.

The PC/SC keys can only be used with PC/SC commands and can be changed using the PC/SC Load Keys command.

Likewise, the SE processor keys can only be used with SE processor API commands and can be changed using the samCommandCardApiLoadKey command. Additional keys can be created with new keys reference OIDs.

**Note:** MIFARE DESFIRE credentials are accessed via the iCLASS SE processor and hence refer to the samCommandCardApiLoadKeyAPI.

| PC/SC key number |      | SE processor card API | Size    | Туре   | Description  |
|------------------|------|-----------------------|---------|--------|--------------|
| Decimal          | Hex  | key reference OID     | (bytes) |        |              |
| 0                | 0x00 | 30 00 00              | 6       | MIFARE | Key slot 0.  |
| 1                | 0x01 | 30 00 01              | 6       | MIFARE | Key slot 1.  |
| 2                | 0x02 | 30 00 02              | 6       | MIFARE | Key slot 2.  |
| 3                | 0x03 | 30 00 03              | 6       | MIFARE | Key slot 3.  |
| 4                | 0x04 | 30 00 04              | 6       | MIFARE | Key slot 4.  |
| 5                | 0x05 | 30 00 05              | 6       | MIFARE | Key slot 5.  |
| 6                | 0x06 | 30 00 06              | 6       | MIFARE | Key slot 6.  |
| 7                | 0x07 | 30 00 07              | 6       | MIFARE | Key slot 7.  |
| 8                | 0x08 | 30 00 08              | 6       | MIFARE | Key slot 8.  |
| 9                | 0x09 | 30 00 09              | 6       | MIFARE | Key slot 9.  |
| 10               | 0x0A | 30 00 0A              | 6       | MIFARE | Key slot 10. |
| 11               | 0x0B | 30 00 0B              | 6       | MIFARE | Key slot 11. |
| 12               | 0x0C | 30 00 0C              | 6       | MIFARE | Key slot 12. |
| 13               | 0x0D | 30 00 0D              | 6       | MIFARE | Key slot 13. |
| 14               | 0x0E | 30 00 0E              | 6       | MIFARE | Key slot 14. |
| 15               | 0x0F | 30 00 0F              | 6       | MIFARE | Key slot 15. |
| 16               | 0x10 | 30 00 10              | 6       | MIFARE | Key slot 16. |



| PC/SC key number |      | SE processor card API              | Size                                                  | Size Type                              | Description                                            |
|------------------|------|------------------------------------|-------------------------------------------------------|----------------------------------------|--------------------------------------------------------|
| Decimal          | Hex  | key reference OID                  | (bytes)                                               |                                        |                                                        |
| 17               | Ox11 | 30 00 11                           | 6                                                     | MIFARE                                 | Key slot 17.                                           |
| 18               | 0x12 | 30 00 12                           | 6                                                     | MIFARE                                 | Key slot 18.                                           |
| 19               | 0x13 | 30 00 13                           | 6                                                     | MIFARE                                 | Key slot 19.                                           |
| 20               | 0x14 | 30 00 14                           | 6                                                     | MIFARE                                 | Key slot 20.                                           |
| 21               | 0x15 | 30 00 15                           | 6                                                     | MIFARE                                 | Key slot 21.                                           |
| 22               | 0x16 | 30 00 16                           | 6                                                     | MIFARE                                 | Key slot 22.                                           |
| 23               | 0x17 | 30 00 17                           | 6                                                     | MIFARE                                 | Key slot 23.                                           |
| 24               | 0x18 | 30 00 18                           | 6                                                     | MIFARE                                 | Key slot 24.                                           |
| 25               | 0x19 | 30 00 19                           | 6                                                     | MIFARE                                 | Key slot 25.                                           |
| 26               | 0x1A | 30 00 1A                           | 6                                                     | MIFARE                                 | Key slot 26.                                           |
| 27               | 0x1B | 30 00 1B                           | 6                                                     | MIFARE                                 | Key slot 27.                                           |
| 28               | 0x1C | 30 00 1C                           | 6                                                     | MIFARE                                 | Key slot 28.                                           |
| 29               | 0x1D | 30 00 1D                           | 6                                                     | MIFARE                                 | Key slot 29.                                           |
| 30               | 0x1E | 30 00 1E                           | 6                                                     | MIFARE                                 | Key slot 30.                                           |
| 31               | 0x1F | 30 00 1F                           | 6                                                     | MIFARE                                 | Key slot 31.                                           |
| 32               | 0x20 | 30 00 20                           | 8                                                     | iCLASS                                 | HID Encryption Key for HID<br>Application (Read Only). |
| 33               | 0x21 | 30 00 21                           | 8                                                     | iCLASS                                 | Book O Page O HID Master Key.                          |
| 34               | 0x22 | 30 00 22                           | 30 00 22 8 iCLASS Book 0 F                            |                                        | Book O Page O Elite Key (K <sub>D</sub> ).             |
| 35               | 0x23 | 30 00 23 8 iCLASS Book 0 Page 0    |                                                       | Book O Page O App 2 (K <sub>C</sub> ). |                                                        |
| 36               | 0x24 | 30 00 24 8 iCLASS Book 0 Page 1 Ap |                                                       | Book O Page 1 App 1 (K <sub>D</sub> ). |                                                        |
| 37               | 0x25 | 30 00 25                           | 8 iCLASS Book O Page 1 App2 (K <sub>C</sub> )         |                                        | Book O Page 1 App2 (K <sub>C</sub> ).                  |
| 38               | 0x26 | 30 00 26                           | 8                                                     | iCLASS                                 | Book O Page 2 App 1 (K <sub>D</sub> ).                 |
| 39               | 0x27 | 30 00 27                           | 8                                                     | iCLASS                                 | Book O Page 2 App 2 (K <sub>C</sub> ).                 |
| 40               | 0x28 | 30 00 28                           | 8                                                     | iCLASS                                 | Book O Page 3 App 1 (K <sub>D</sub> ).                 |
| 41               | 0x29 | 30 00 29                           | 8                                                     | iCLASS                                 | Book O Page 3 App 2 (K <sub>C</sub> ).                 |
| 42               | 0x2A | 30 00 2A                           | 8                                                     | iCLASS                                 | Book O Page 4 App 1 (K <sub>D</sub> ).                 |
| 43               | 0x2B | 30 00 2B                           | 8                                                     | iCLASS                                 | Book O Page 4 App 2 (K <sub>C</sub> ).                 |
| 44               | 0x2C | 30 00 2C                           | 8                                                     | iCLASS                                 | Book O Page 5 App 1 (K <sub>D</sub> ).                 |
| 45               | 0x2D | 30 00 2D                           | 8                                                     | iCLASS                                 | Book O Page 5 App 2 (K <sub>C</sub> ).                 |
| 46               | 0x2E | 30 00 2E                           | 8                                                     | iCLASS                                 | Book O Page 6 App 1 (K <sub>D</sub> ).                 |
| 47               | 0x2F | 30 00 2F                           | 30 00 2F 8 iCLASS Book 0 Page 6 App 2 (K <sub>0</sub> |                                        | Book O Page 6 App 2 (K <sub>C</sub> ).                 |
| 48               | 0x30 | 30 00 30                           | 30 00 30 8 iCLASS Book 0 Page 7 App 1 (K <sub>D</sub> |                                        | Book O Page 7 App 1 (K <sub>D</sub> ).                 |
| 49               | 0x31 | 30 00 31                           | 8                                                     | iCLASS                                 | Book O Page 7 App 2 (K <sub>C</sub> ).                 |



| PC/SC key | number |                   |         | Туре   | Description                            |
|-----------|--------|-------------------|---------|--------|----------------------------------------|
| Decimal   | Hex    | key reference OID | (bytes) |        |                                        |
| 50        | 0x32   | 30 00 32          | 8       | iCLASS | Transport App 1 (K <sub>D</sub> ).     |
| 51        | 0x33   | 30 00 33          | 8       | iCLASS | Transport App 2 (K <sub>C</sub> ).     |
| 52        | 0x34   | 30 00 34          | 8       | iCLASS | Book 1 Page O App 1 (K <sub>D</sub> ). |

# 5.3 OMNIKEY specific commands

The card reader supports features outside the specified commands of PC/SC-3; see *Section: 1.4 Reference documents*. Vendor specific proprietary commands allow applications to control device specific features provided by the reader. Use of such a generic command prevents conflicts of reserved INS values used by certain card reader.

#### **OMNIKEY specific command APDU format**

| CLA  | INS  | P1   | P2   | Lc | Data In                             | Le |
|------|------|------|------|----|-------------------------------------|----|
| OxFF | 0x70 | 0x07 | 0x6B | xx | DER TLV coded PDU (Vendor Payload). | xx |

The IFD supports the INS Byte 70 for vendor specific commands.

P1 and P2 constitute the vendor ID. For OMNIKEY products is the VID = 0x076B. The data field is constructed as ASN.1 objects/items.

#### **Response for OMNIKEY specific commands**

| Data field           | SW1SW2         |
|----------------------|----------------|
| DER TLV Response PDU | See ISO 7816-4 |

OIDs are organized as a leaf tree under an invisible root node. The following table shows the first root nodes.

#### Vendor payload command types

| Vendor payload       | Tag value (hex) | Description             |
|----------------------|-----------------|-------------------------|
| readerInformationApi | 0x02            | Reader Information API. |
| response             | 0x1D            | Response.               |
| errorResponse        | 0x1E            | Error Response.         |

The following description explains the DER TLV coded data field.

**Note:** The L field uses the definite form. For the definite form, the length octets consist of one or more octets, short form or long form. For the long form, the IFD uses the version with two subsequent octets.



#### **5.3.1 Response APDU**

For all commands encapsulated in generic 70h APDU, the IFD returns response frame constructed as follows:

| Data field                 | SW1SW2          |
|----------------------------|-----------------|
| DER TLV coded response PDU | See ISO 7816-4. |

Two last bytes of response frame are always the return code, SW1SW2.

In cases of an ISO 7816 violation, the return code is according to ISO 7816-4 and the data field may be empty.

In cases of positive processing or internal errors, the IFD returns SW1SW2 = 9000 and the data field is encapsulated in the response TAG (9Dh or BDh) or error response TAG (9Eh).

The response includes more than one leaf, depending on the request. Each leaf is encapsulated in the leaf tag.

#### **5.3.2 Error response**

The error response TAG caused by the firmware core is 9Eh (Class Context Specific) + (Primitive) + (1Eh). Length is 2 bytes. First byte is the cycle in which the error occurred and the second byte is the exception type.

| 9E 02 xx yy 90 00 | 9E 02 xx yy 90 00                                                                   |  |  |
|-------------------|-------------------------------------------------------------------------------------|--|--|
| Value             | Description                                                                         |  |  |
| 0x9E              | Tag = Error Response. (OxOE) + (Class Context Specific) + (Primitive)               |  |  |
| 0x02              | Len = 2.                                                                            |  |  |
| cycle             | Value byte 1: Cycle in which the error is occurred. See <i>Error Cycle</i> , below. |  |  |
| error             | Value byte 2: Error code. See <i>Error Code</i> , below.                            |  |  |
| SW1               | 0x90                                                                                |  |  |
| SW2               | 0x00                                                                                |  |  |

#### **Error cycle**

| First value byte |                                     |  |
|------------------|-------------------------------------|--|
| Cycle            | Description                         |  |
| 0                | HID Proprietary Command APDU.       |  |
| 1                | HID Proprietary Response APDU.      |  |
| 2                | HID Read or Write EEPROM Structure. |  |
| 3                | RFU.                                |  |
| 4                | RFU.                                |  |
| 5                | RFU.                                |  |



#### **Error code**

| Second    | Second value byte |                                                             |  |  |  |
|-----------|-------------------|-------------------------------------------------------------|--|--|--|
| Exception |                   | Description                                                 |  |  |  |
| 3         | 0x03              | NOT_SUPPORTED.                                              |  |  |  |
| 4         | 0x04              | TLV_NOT_FOUND.                                              |  |  |  |
| 5         | 0x05              | TLV_MALFORMED.                                              |  |  |  |
| 6         | 0x06              | ISO_EXCEPTION.                                              |  |  |  |
| 11        | OxOB              | PERSISTENT_TRANSACTION_ERROR.                               |  |  |  |
| 12        | 0x0C              | PERSISTENT_WRITE_ERROR.                                     |  |  |  |
| 13        | 0x0D              | OUT_OF_PERSISTENT_MEMORY.                                   |  |  |  |
| 15        | 0x0F              | PERSISTENT_MEMORY_OBJECT_NOT_FOUND.                         |  |  |  |
| 17        | 0x11              | INVALID_STORE_OPERATION.                                    |  |  |  |
| 19        | 0x13              | TLV_INVALID_SETLENGTH.                                      |  |  |  |
| 20        | 0x14              | TLV_INSUFFICIENT_BUFFER.                                    |  |  |  |
| 21        | 0x15              | DATA_OBJECT_READONLY.                                       |  |  |  |
| 31        | 0x1F              | APPLICATION_EXCEPTION (Destination Node ID mismatch).       |  |  |  |
| 42        | 0x2A              | MEDIA_TRANSMIT_EXCEPTION (Destination Node ID mismatch).    |  |  |  |
| 43        | 0x2B              | SAM_INSUFFICIENT_MSGHEADER (Secure Channel ID not allowed). |  |  |  |
| 47        | 0x2F              | TLV_INVALID_INDEX.                                          |  |  |  |
| 48        | 0x30              | SECURITY_STATUS_NOT_SATISFIED.                              |  |  |  |
| 49        | 0x31              | TLV_INVALID_VALUE.                                          |  |  |  |
| 50        | 0x32              | TLV_INVALID_TREE.                                           |  |  |  |
| 64        | 0x40              | RANDOM_INVALID.                                             |  |  |  |
| 65        | 0x41              | OBJECT_NOT_FOUND.                                           |  |  |  |

# 5.3.3 Reader Information API

This command group is reserved for GET and SET of reader specific information. See *Section: 7.2 Accessing configuration*.



## 5.4 Communication examples

In the examples below, the following color-coding is used for APDUs:

#### Color coding of examples

| CLA | INS    | P1, P2 | Lc   | Data  | Le     |
|-----|--------|--------|------|-------|--------|
| Red | Orange | Green  | Blue | Black | Purple |

#### 5.4.1 MIFARE Classic 1K/4K example

To read and write to a MIFARE card, first authenticate the card with the correct key, pre-loaded into the reader. The PC/SC Load Keys, General Authenticate, Read Binary and Update Binary APDUs can be used for these functions. An example APDU sequence is as follows:

Load a 6-byte MIFARE key of all FFs to key number 1:

FF 82 00 01 06 FF FF FF FF FF

Authenticate block 1 with key number 1:

FF 86 00 00 05 01 00 01 60 01

Read block1 (16 bytes):

FF BO 00 01 10

Write 16 bytes of data to block 2:

FF D6 00 02 10 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

#### **5.4.2 MIFARE DESFire example**

The example APDU sequence below shows how to read a standard data file, which is not protected by a key from a DESFire or DESFire EV1 (All values are LSB first):

Select application with AID = xx xx xx (that is the application which contains the file to be read):

Command: 90 5A 00 00 03 xx xx xx 00

Response: 91 00

Read 10 bytes of file xx (the file to be read), starting at byte 0: Command: 90 BD 00 00 07 xx 00 00 0A 00 00 00

Response: xx 91 00

The xx bytes in the response are the data from the file.

For full details of all DESFire commands, refer to the NXP data sheets.



#### Example 1: Decrement MIFARE block 5 and restore to block 6 (backup)

#### Example 2: Decrement MIFARE block 5 (value = 100) and increment block 6 (value = 2)



# 5.5 Wrapped SE processor commands

This is a specific type of OMNIKEY or vendor command that wraps an SE processor command. For full details of all the available SE processor commands, see the *iCLASS SE Processor User Guide* (6700-902). The following sections give examples of some commonly used commands for reading and writing MIFARE DESFire credentials.

#### Wrapped SE processor command APDU

|   | CLA  | INS  | P1   | P2   | Lc | Data In            | Le |
|---|------|------|------|------|----|--------------------|----|
| Ī | OxFF | 0x70 | 0x07 | 0x6B | XX | DER TLV coded PDU. | xx |

Where the data is a DER TLV coded SE processor command. See the following sections for example commands.

#### Wrapped SE processor response

| Data field                  | SW1SW2                   |
|-----------------------------|--------------------------|
| DER TLV coded response PDU. | See the following table. |

Where the data is a DER TLV coded SE processor command. See the following sections for example commands.

#### Wrapped SE processor response SW1SW2 bytes

| Туре            | SW1SW2 | Description                        |
|-----------------|--------|------------------------------------|
| Normal          | 0x9000 | Successful.                        |
| Warning         |        |                                    |
| Execution error | 0x6400 | No response from media (Time Out). |
|                 | 0x6F00 | Unknown error.                     |
| Checking error  | 0x6700 | Wrong APDU length.                 |



#### 5.5.1 Load Key

This uses the samCommandCardApiLoadKey command.

| Value | Description                                                  |
|-------|--------------------------------------------------------------|
| 0xA0  | Tag = SE processor command.                                  |
| XX    | Length to end of command.                                    |
| 0xA5  | Tag = Process card API.                                      |
| XX    | Length to end of command.                                    |
| 0xA5  | Tag = Card API Load Key.                                     |
| XX    | Length to end of command.                                    |
| 0x80  | Tag = Is Persistent.                                         |
| 0x01  | Length of value = 1.                                         |
| OxOx  | Value = Persistent or volatile flag:                         |
|       | 00 = Volatile                                                |
|       | 01 = Persistent                                              |
| 0x81  | Tag = Key Reference OID.                                     |
| xxxx  | Value = Key reference (one of the following):                |
|       | User key OID (3 bytes, first byte must be 03).               |
|       | Key reference OID of predefined Secure Channel key (1 byte). |
|       | Full OID of user defined Secure Channel key (x bytes).       |
| 0x82  | Tag = Key Value.                                             |
| XX    | Length of the value = x.                                     |
| xxxx  | Value = Value of the key.                                    |

There are further optional parameters for Secure Session Key loading. See the *iCLASS SE Processor User Guide* (6700-902).

#### **Load Key response**

The normal response is just the SW1SW2 code. There is additional data in some error conditions. See the *iCLASS SE Processor User Guide* (6700-902).

#### Load Key example

Load Key OID 03 01 01:

Successful response:

90 00



#### 5.5.2 DESFire Authenticate Native

This performs an authentication using the backwards compatible Native communication mode, suitable for use with DESFire v 0.6 or EV1 cards. It uses the samCommandCardApiDesfireAuthNative command.

There is an alternative command, samCommandCardApiDesfireAuthIso, using ISO communication mode. See the *iCLASS SE Processor User Guide* (6700-902).

#### **DESFire Authenticate Native command**

| Value  | Description                                                                                                  |
|--------|--------------------------------------------------------------------------------------------------------------|
| 0xA0   | Tag = SE processor command.                                                                                  |
| xx     | Length to end of command.                                                                                    |
| 0xA5   | Tag = Process card API.                                                                                      |
| xx     | Length to end of command.                                                                                    |
| 0xA2   | Tag = Card API DESFire.                                                                                      |
| xx     | Length to end of command.                                                                                    |
| 0xA1   | Tag = DESFire Authenticate Native.                                                                           |
| xx     | Length to end of command.                                                                                    |
| 0x80   | Tag = Key number.                                                                                            |
| 0x01   | Length of value = 1.                                                                                         |
| xx     | Value = Number of the key to be used for authentication (Application Key or Master Key of the DESFire card). |
| 0x81   | Tag = Key reference OID.                                                                                     |
| 0x03   | Length of value = 3.                                                                                         |
| xxxxxx | Value = Reference OID of the Key (3 bytes, first byte must be 03).                                           |

There are further optional parameters for key diversification. For more details refer to the *iCLASS SE Processor User Guide* (6700-902).

#### **DESFire Authenticate Native response**

There is no data in the response to this command, just the SW1SW2 code.

#### **DESFire Authenticate Native example**

DESFire Authenticate Native:

FF 70 07 6B 10 A0 0E A5 0C A2 0A A1 08 80 01 00 81 03 03 01 01

Successful response:

90 00



#### 5.5.3 DESFire Format Card

This uses the samCommandCardApiDesfireFormatPICC command.

#### **DESFire Format Card command**

| Value | Description                   |  |  |
|-------|-------------------------------|--|--|
| 0xA0  | Tag = SE processor command.   |  |  |
| 0x6   | Length to end of command.     |  |  |
| 0xA5  | Tag = Process card API.       |  |  |
| 0x04  | Length to end of command.     |  |  |
| 0xA2  | Tag = Card API DESFire.       |  |  |
| 0x02  | Length to end of command.     |  |  |
| 0x93  | Tag = DESFire Format.         |  |  |
| 0x00  | Length of value = 0.          |  |  |
|       | Value = NULL (no parameters). |  |  |

#### **DESFire Format Card response**

There is no data in the response to this command, just the SW1SW2 code.

#### **DESFire Format Card example**

**DESFire Format Card:** 

FF 70 07 6B 08 A0 06 A5 04 A2 02 93 00

Successful response:

90 00



#### **5.5.4 DESFire Create Application**

This uses the samCommandCardApiDesfireCreateApplication command.

#### **DESFire Create Application command**

| Value | Description                                       |
|-------|---------------------------------------------------|
| 0xA0  | Tag = SE processor command.                       |
| Ox11  | Length to end of command.                         |
| 0xA5  | Tag = Process card API.                           |
| 0x0F  | Length to end of command.                         |
| 0xA2  | Tag = Card API DESFire.                           |
| 0x0D  | Length to end of command.                         |
| 0xA6  | Tag = DESFire Create Application.                 |
| 0x0B  | Length to end of command.                         |
| 0x80  | Tag = Application number.                         |
| 0x03  | Length of value = 3.                              |
| xxxxx | Value = Application number (3 bytes, MSB first).  |
| 0x81  | Tag = Key setting 1.                              |
| 0x01  | Length of value = 1.                              |
| XX    | Value = Application master key settings (1 byte). |
| 0x82  | Tag = Key setting 2.                              |
| 0x01  | Length of value = 1.                              |
| XX    | Value = Number of keys (1 byte).                  |

#### **DESFire Create Application response**

There is no data in the response to this command, just the SW1SW2 code.

#### **DESFire Create Application example**

**DESFire Create Application 1:** 

FF 70 07 6B 13 A0 11 A5 0F A2 0D A6 0B 80 03 00 00 01 81 01 0F 82 01 01

Successful response:

90 00



## **5.5.5 DESFire Select Application**

This uses the samCommandCardApiDesfireSelectApp command.

### **DESFire Select Application command**

| Value  | Description                                      |
|--------|--------------------------------------------------|
| 0xA0   | Tag = SE processor command.                      |
| OxOB   | Length to end of command.                        |
| 0xA5   | Tag = Process card API.                          |
| 0x09   | Length to end of command.                        |
| 0xA2   | Tag = Card API DESFire.                          |
| 0x07   | Length to end of command.                        |
| 0xA0   | Tag = DESFire Select Application.                |
| 0x05   | Length to end of command.                        |
| 0x80   | Tag = Application number.                        |
| 0x03   | Length of value = 3.                             |
| xxxxxx | Value = Application number (3 bytes, MSB first). |

### **DESFire Select Application response**

There is no data in the response to this command, just the SW1SW2 code.

### **DESFire Select Application example**

**DESFire Select Application 1:** 

FF 70 07 6B 0D A0 0B A5 09 A2 07 A0 05 80 03 00 00 01

Successful response:

90 00



### 5.5.6 DESFire Create Standard Data File

This uses the samCommandCardApiDesfireCreateStdDataFile command.

### **DESFire Create Standard Data File command**

| Value | Description                                                                                     |
|-------|-------------------------------------------------------------------------------------------------|
| 0xA0  | Tag = SE processor command.                                                                     |
| XX    | Length to end of command.                                                                       |
| 0xA5  | Tag = Process card API.                                                                         |
| XX    | Length to end of command.                                                                       |
| 0xA2  | Tag = Card API DESFire.                                                                         |
| XX    | Length to end of command.                                                                       |
| 0xA8  | Tag = DESFire Create Standard Data File.                                                        |
| XX    | Length to end of command.                                                                       |
| 0x80  | Tag = File number.                                                                              |
| 0x01  | Length of value = 1.                                                                            |
| xx    | Value = Number of file to be created (1 byte): 00 to 0F (00 to 1F for MIFARE DESFire EV1 cards) |
| 0x82  | Tag = Communication Settings.                                                                   |
| 0x01  | Length of value = 1.                                                                            |
| Ox0x  | Value = Communication mode of the file (1 byte):  00 = Plain  01 = MAC  03 = Encrypt            |
| 0x83  | Tag = Access Rights.                                                                            |
| XX    | Length of value = x.                                                                            |
| xxxx  | Value = Access rights of the file (x bytes).                                                    |
| 0x84  | Tag = File Size.                                                                                |
| 0x03  | Length of value = 3.                                                                            |
| xxxxx | Value = Size of file (3 bytes, MSB first).                                                      |

### **DESFire Create Standard Data File response**

There is no data in the response to this command, just the SW1SW2 code.

### **DESFire Create Standard Data File example**

DESFire Create Standard Data File number 2 with 59 bytes:

FF 70 07 6B 18 A0 16 A5 14 A2 12 A8 10 80 01 00 82 01 02 83 03 00 EE EE 84 03 00 00 3B

Successful response:

90 00



### 5.5.7 DESFire Write Data

This uses the  ${\tt samCommandCardApiDesfireWriteData}$  command.

### **DESFire Write Data command**

| Value | Description                                                                                                                                               |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xA0  | Tag = SE processor command.                                                                                                                               |
| xx    | Length to end of command.                                                                                                                                 |
| 0xA5  | Tag = Process card API.                                                                                                                                   |
| xx    | Length to end of command.                                                                                                                                 |
| 0xA2  | Tag = Card API DESFire.                                                                                                                                   |
| XX    | Length to end of command.                                                                                                                                 |
| 0xA4  | Tag = DESFire Write Data.                                                                                                                                 |
| XX    | Length to end of command.                                                                                                                                 |
| 0x80  | Tag = File number.                                                                                                                                        |
| 0x01  | Length of value = 1.                                                                                                                                      |
| xx    | Value = Number of file to be written (1 byte):  00 to 0F for Standard Data Files  00 to 07 for Backup Data Files  (00 to 1F for MIFARE DESFire EV1 cards) |
| 0x81  | Tag = Offset.                                                                                                                                             |
| 0x0x  | Length of value = x (1 or 2).                                                                                                                             |
| xxxx  | Value = Offset into file to start writing (1 or 2 bytes).                                                                                                 |
| 0x82  | Tag = Data Length.                                                                                                                                        |
| xx    | Length of value = x.                                                                                                                                      |
| xxxx  | Value = File data to be written.                                                                                                                          |
| 0x83  | Tag = Mode.                                                                                                                                               |
| 0x01  | Length of value = 1.                                                                                                                                      |
| xx    | Value = Communication mode of the operation (1 byte):  O0 = Plain  O1 = MAC  O3 = Encrypt                                                                 |
| 0x84  | Tag = Commit.                                                                                                                                             |
| 0x01  | Length of value = 1.                                                                                                                                      |
| xx    | Value = Commit flag (1 byte):  00 = No commit  01 = Commit                                                                                                |

### **DESFire Write Data response**

There is no data in the response to this command, just the SW1SW2 code.



### **DESFire Write Data example**

DESFire Write 59 bytes to file number 2:

FF 70 07 6B 51 A0 4F A5 4D A2 4B A4 49 80 01 02 81 01 00 82 3B 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 83 01 00 84 01 00

Successful response:

90 00

### 5.5.8 DESFire Read Data

This uses the  ${\tt samCommandCardApiDesfireReadData}\ command.$ 

### **DESFire Read Data command**

| Value | Description                                                                                                                                            |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xA0  | Tag = SE processor command.                                                                                                                            |
| XX    | Length to end of command.                                                                                                                              |
| 0xA5  | Tag = Process card API.                                                                                                                                |
| XX    | Length to end of command.                                                                                                                              |
| 0xA2  | Tag = Card API DESFire.                                                                                                                                |
| XX    | Length to end of command.                                                                                                                              |
| 0xA3  | Tag = DESFire Read Data.                                                                                                                               |
| xx    | Length to end of command.                                                                                                                              |
| 0x80  | Tag = File number.                                                                                                                                     |
| 0x01  | Length of value = 1.                                                                                                                                   |
| xx    | Value = Number of file to be read (1 byte):  00 to 0F for Standard Data Files  00 to 07 for Backup Data Files  (00 to 1F for MIFARE DESFire EV1 cards) |
| 0x81  | Tag = Offset.                                                                                                                                          |
| 0x0x  | Length of value = x (1 or 2).                                                                                                                          |
| XXXX  | Value = Offset into file to start reading (1 or 2 bytes).                                                                                              |
| 0x82  | Tag = Data Length.                                                                                                                                     |
| 0x01  | Length of value = 1.                                                                                                                                   |
| xxxx  | Value = File data to be read.                                                                                                                          |
| 0x83  | Tag = Mode.                                                                                                                                            |
| 0x01  | Length of value = 1.                                                                                                                                   |
| xx    | Value = Communication mode of the operation (1 byte):  O0 = Plain  O1 = MAC  O3 = Encrypt                                                              |



### **DESFire Read Data response**

| Value | Description                                  |
|-------|----------------------------------------------|
| xxxx  | Value = File data to be read (255 bytes max) |

### **DESFire Read Data example**

DESFire Read 59 bytes from file number 2:

FF 70 07 6B 51 A0 12 A5 10 A2 0E A3 0C 80 01 02 81 01 00 82 01 3B 83 01 00 00

Successful response:

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 90 00

### 5.5.9 Read PACS Data

This uses the samCommandGetContentElement2 command.

### **Read PACS Data command**

The following table gives the basic use of the samCommandGetContentElement2 command. For more details refer to the *iCLASS SE Processor User Guide* (6700-902).

| Value | Description                   |
|-------|-------------------------------|
| 0xA0  | Tag = SE processor command.   |
| xx    | Length to end of command.     |
| OxBE  | Tag = Get Content Element 2.  |
| XX    | Length to end of command.     |
| 0x80  | Tag = Content Element.        |
| OxO1  | Length of value = 1.          |
| 0x04  | Value = Physical Access Bits. |



### **Read PACS Data response**

| Value | Description                                                                                                                                                   |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0xA0  | Tag = Get Content Element Data.                                                                                                                               |  |
| xx    | Length to end of command.                                                                                                                                     |  |
| 0x80  | Tag = Get Element Data.                                                                                                                                       |  |
| XX    | Length of value = xx.                                                                                                                                         |  |
| xxxx  | Value = Content Element Data (e.g. PACS).                                                                                                                     |  |
| 0x81  | Tag = Secure Object OID.                                                                                                                                      |  |
| XX    | Length of value = xx.                                                                                                                                         |  |
| xxxx  | Value = OID of the Secure Object containing the returned Content Element.                                                                                     |  |
| 0x82  | Tag = Secure Object Media Edge Type.                                                                                                                          |  |
| 0x01  | Length of value = 1.                                                                                                                                          |  |
| xx    | Value = Type of media containing the Secure Object:  0 = Unknown  1 = DESFire  2 = MIFARE  3 = iCLASS (PicoPass)  4 = ISO14443AL4  6 = MIFARE Plus  7 = Seos® |  |

### **Read PACS Data example**

Reading PACS data from a Seos credential:

FF 70 07 6B 07 A0 05 BE 03 80 01 04 00

Successful response:

AO 1C 80 05 06 80 80 0A 40 81 10 2B 06 01 04 01 81 E4 38 01 01 02 04 01 8F 63 13 82 01 07 90 00

Where: PACS data = 06 80 80 0A 40

SO OID = 2B 06 01 04 01 81 E4 38 01 01 02 04 01 8F 63 13

Media type = 07 (Seos)

# 6 Secure session model

The secure session model provides a secure way of communicating with the iCLASS SE® processor for loading keys and reading credentials, etc. As the commands are encrypted, this prevents any snooping of messages between the host application and the reader. In addition to providing a secure way of communicating with the device, the secure session manages access to data objects. The secure session model allows for access to certain objects to be conditional, based on the access rights of the user using the secure session. These access rights are established based on the key used to establish the secure session and on the access conditions for the particular object being accessed. Although at present the access conditions are predefined, it is planned that in future firmware versions the user will change these conditions provided they have administration rights.

Note that the state of the secure session is independent of the CCID state. If a card is removed, powered off or reset, the secure session will not be reset. Similarly when talking to the reader via PC/SC service, the secure session will not be closed when the host application closes the connection to the reader.

## 6.1 Using a secure session

To establish a secure session, the user must use the two OMNIKEY® specific functions to initialize and continue authentication, described in detail in the following sections. Once the secure session has been established, then data is exchanged with the device using the OMNIKEY specific APDU for data exchange described below. This will allow access to the data objects that require a secure session to access. The secure session will terminate following an error in the data exchange or encryption or if the user sends the terminate session commands described below.

### 6.1.1 Establish and manage a secure session

The endpoint of the secure session when using the OMNIKEY 5023 is always the iCLASS SE processor. The system supports a scalable security. The security level (access right) depends on the key used for the secure session authentication. The highest security level session is one that is authenticated using the "HID Admin" key. In this case, the SAM / reader will allow a HID data object to be updated. Access rights are managed for data objects such as the HID application in a MIFARE card or iCLASS card. New data objects can be added without impact to existing data objects.

For a secure channel transmission, SCardConnect should be used with a ShareMode of SCARD\_SHARE\_EXCLUSIVE. The client (host application) must ensure the correct termination of the secure channel after the last transaction.

The procedure to establish a secured channel is achieved in two phases, AUTH1 and AUTH2.

In the following, "Client" is the host application and "Server" is the reader.

### **6.1.1.1 Initialize Authentication (AUTH1)**

To initialize the secured channel, the client must send an 8 byte RND.A and the key number. By the choice of key number, the client can establish a secured session as either read only or read/write.

### **DER TLV PDU:**

Note: Currently iCLASS SE processor ignores the value of version Tag (RFU). Code RFU s as 0.

### **Response APDU:**

### **Initialize Authentication response APDU**

| Data field                       |                                                         | SW1SW2                                                  |
|----------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| 9D 20<br>uu uu uu uu uu uu uu uu | // 8 byte UID                                           | See Section: 6.1.1.5<br>Secure channel return<br>codes. |
| xx    | <pre>// 8 byte RND.B // 16 byte Reader Cryptogram</pre> |                                                         |

The complete APDU is:

FF 70 07 6B 14 A1 12 A0 10 80 01 00 81 01 yy 82 08 xx 00



### **6.1.1.2 Continue Authentication (AUTH2)**

The second authentication stage completes the establishment of the secured channel.

### **DER TLV PDU:**

### **Response APDU:**

### **Continue Authentication response APDU**

| Data field                    |                  | SW1SW2                                        |
|-------------------------------|------------------|-----------------------------------------------|
| 9D 10<br>yy yy yy yy yy yy yy | // 16 byte R-MAC | See Section: 6.1.1.5<br>Secure channel return |
| YY YY YY YY YY YY             | -                | codes.                                        |

The complete APDU is:

### 6.1.1.3 Data Exchange in a secure session

To exchange data during a secure session the complete PC/SC command should be encrypted, except the transport protocol header. The secure message is wrapped in an APDU of the form FF 70 07 6B + Lc + message + Le, because the resource manager and Microsoft CCID driver do not accept messages without CLA INS P1 P2 and Lc. Note that the message should use an Le value of 00. The plain text message body is padded according to ISO 9797-1 padding method 2 to a whole multiple of the block length (multiple of 16 bytes). Next, the client encrypts the padded body of the message according to message encryption algorithm. Finally, the client computes the MAC on the encrypted body and appends the MAC to the encrypted body. The iCLASS SE processor has its own PCSC command handler, and during a secure session commands are sent directly to this with no processing by the reader firmware.

As an example, if the plain message is a READ BINARY command for block 6, it should be padded as follows:

### Data Exchange APDU in a secure session

| APDU           | Padding                    |
|----------------|----------------------------|
| FF B0 00 06 08 | 80 00 00 00 00 00 00 00 00 |

The complete message to send through SCardTransmit is then:

### **Response APDU:**

### Data Exchange response APDU in a secure session

| Data field                                                                                |                                                                                                  | SW1SW2                                                  |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 9D 20<br>xx xx xx xx xx xx xx xx xx<br>xx xx xx xx xx xx xx xx<br>yy yy yy yy yy yy yy yy | <pre>// n x 16 byte encrypted response // Enc(response + padding, S-(ENC) // 16 byte R-MAC</pre> | See Section: 6.1.1.5<br>Secure channel return<br>codes. |
| 90 00                                                                                     |                                                                                                  |                                                         |

PLT-03273, Rev. A.1



### 6.1.1.4 Terminate Secure Session

The session is terminated if an error occurs (bad client cryptogram) or if the client terminates the session. In both cases, the IFD deletes the session keys S-MAC1, S-MAC2 and S-ENC. Following termination of the session, the card will lose its security state. The coding of the Terminate Secure Session command is:

#### **DER TLV PDU:**

```
A1 02 // CHOICE ManageSECS
A2 00 // CHOICE terminateSecuredSession
```

This message is always encrypted in the secure channel and is never sent plain.

#### **Terminate Secure Session APDU**

| APDU                       | Padding           |
|----------------------------|-------------------|
| FF 70 07 6B 04 A1 02 A2 00 | 80 00 00 00 00 00 |

### Encrypted message:

### **Response APDU:**

### **Terminate Secure Session response APDU**

| Data field | SW1SW2                                            |
|------------|---------------------------------------------------|
| 9D 00      | See Section: 6.1.1.5 Secure channel return codes. |

**Note:** Up to version 1.0, the iCLASS SE processor does not support the PC/SC command; it works only with the iCLASS SE processor internal SAM command samCommandSecureChannelTerminate.

### iCLASS SE processor internal secure channel terminate command

| SAM command | Padding                             |
|-------------|-------------------------------------|
| 91 00       | 80 00 00 00 00 00 00 00 00 00 00 00 |

```
xx = Enc(SAM Command + PADDING, S-ENC)
```

### 6.1.1.5 Secure channel return codes

### Return codes for managing the secure channel

| Туре            | SW1SW2 | Description                    |
|-----------------|--------|--------------------------------|
| Normal          | 0x9000 | Successful.                    |
| Execution Error | 0x6400 | No response from endpoint.     |
| Checking Error  | 0x6700 | Wrong APDU length.             |
|                 | 0x6982 | Security status not satisfied. |

## 6.2 Secure session access rights and secure session key

The OMNIKEY 5x27CK supports one secure session key and this key occupies slot 0x80.

For obtaining the pre-configured secure session key, contact HID Tech Support, <a href="https://www.hidglobal.com/support">www.hidglobal.com/support</a>.

The user should change this default value setting. See Section 6.3 Changing the secure session keys. The secure session key has read access to the HID area of HID credentials and reads the PACS data of HID cards. At present, you cannot change the secure session key access rights. The following table summarizes the access rights.

### Secure session access rights

| Object                                                         | Write               | Read                |
|----------------------------------------------------------------|---------------------|---------------------|
| Keys 0x1F to 0x34 and 0x80                                     | Secure Session Key. | Not allowed.        |
| All other keys                                                 | Free access.        | Not allowed.        |
| HID Application Area (MIFARE Classic, DESFire and iCLASS)      | Not allowed.        | Secure Session Key. |
| PACS Data (MIFARE Classic, DESFire and iCLASS)                 | Not allowed.        | Secure Session Key. |
| Non-HID Application Areas (MIFARE Classic, DESFire and iCLASS) | Free access.        | Free access.        |
| Prox PACS data                                                 | Not supported.      | Free access.        |



## 6.3 Changing the secure session keys

You should change the secure session keys default values used by the iCLASS SE processor. The default values are the same for every customer and are therefore insecure. Note that it is the responsibility of the customer to maintain the new keys. If the key values are lost, they cannot be recovered by HID. To change the keys use the following procedure.

- Establish a secure session using the HID Admin Key, as previously described.
- Send each key to the iCLASS SE Processor Card API load key command through the secured session. See the *iCLASS SE Processor User Guide* (6700-902) for details. The full unencrypted iCLASS SE processor command to load key value XXXX XXXX XXXX XXXX to slot NN is:

A0DA0263000028440a44000000A01EA51CA51A80010181030300 NN 8210 XXXX XXXX XXXX XXXX 0000

As the command header is not sent when using a secure session, the part that must be encrypted and sent through the secure session is:

A01EA51CA51A80010181030300 NN 8210 XXXX XXXX XXXX XXXX

Terminate the secure session.

The keys are now loaded.



This page is intentionally left blank.

# 7 Reader configuration

All OMNIKEY® 5023 configurable items are identified by a unique ASN.1 leaf. A full description is given below, including default values and example APDU commands to get and set.

### 7.1 APDU commands

If the attached host implements a PC/SC environment, the OMNIKEY 5023 ASN.1 leafs are accessible using proprietary APDU commands sent through the CCID USB device class. The APDU commands are used to set and get the configuration items and to control the reader – to apply, store or reset the changes.

APDUs supported by the OMNIKEY 5023 reader exist in the following groups:

- Standard inter-industry commands as defined in ISO/IEC 7816-4:2005(E). These commands are passed transparently to the contactless card related to the CCID slot.
- PC/SC commands as defined in "Interoperability Specification for ICCs and Personal Computer Systems Part 3".
- ICAO (International Civil Aviation Organization) test commands as defined in "RF Protocol and Application Test Standard for e-Passport Part 4", Appendix C.
- OMNIKEY 5023 Specific Commands. These include APDUs to manage the reader, to directly access the configuration items.

# 7.2 Accessing configuration

OMNIKEY Specific Commands include the Reader Information API command group that provides access to reader configuration and allows control of the reader.

### **Configuration structure**

| Root                        | Request                  | Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| readerInformationApi (0x02) | Get (0x00)               | readerCapabilities (0x02)     tlvVersion (0x00)     deviceID (0x01)     productName (0x02)     productPlatform (0x03)     enabledCLFeatures (0x04)     firmwareVersion (0x05)     hfControllerVersion (0x08)     hardwareVersion (0x09)     hostInterfacesFlags (0x0A)     numberOfContactSlots (0x0B)     numberOfContactlessSlots (0x0C)     numberOfAntennas (0x01)     vendorName (0x01)     exchangeLevel (0x01)     serialNumber (0x01)     sizeOfUserEEProm (0x01)     firmwareLabel (0x01) |
|                             | Get (0x00)<br>Set (0x01) | contactlessSlotConfiguration (0x04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | Get (0x00)<br>Set (0x01) | readerEEPROM (0x07) eepromOffset (0x01) eepromRead (0x02) eepromWrite (0x03)                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             | Set (0x01)               | readerConfigurationControl (0x09) applySettings (0x00) restoreFactoryDefaults (0x01) rebootDevice (0x03)                                                                                                                                                                                                                                                                                                                                                                                           |



### 7.2.1 Example: Get Reader Information

With Get Reader Information the host application gets specific information about the reader. The following example shows how to read a single item:

DER TLV PDU for retrieve single IFD information (productName):

```
A2 06 // CHOICE ReaderInformationAPI
A0 04 // CHOICE GetReaderInformation
A0 02 // CHOICE ReaderCapabilites
82 00 // SEQUENCE productName
```

The reply of single information is TLV coded:

```
BD OF 82 OD 4F 4D 4E 49 4B 45 59 20 35 30 32 32 00 90 00 // 'OMNIKEY 5023' + return code
```

For a Reader Information GET Request the Response Tag (1D) is always CONSTRUCTED. The response can include more than one leaf, depending on the request.

DER TLV PDU for retrieve single IFD information (productPlatform):

```
A2 06 // CHOICE ReaderInformationAPI
A0 04 // CHOICE GetReaderInformation
A0 02 // CHOICE ReaderCapabilites
83 00 // SEQUENCE productplatform
```

The reply of single information is TLV coded:

```
BD 0A 83 08 41 56 69 61 74 6F 52 00 90 00 // 'AViatoR' + return code success
```



# 7.3 Reader Capabilities

# Reader Capabilities structure:

| Root                      | Branch                          |
|---------------------------|---------------------------------|
| readerCapabilities (0x02) | tlvVersion (0x00)               |
|                           | deviceID (0x01)                 |
|                           | productName (0x02)              |
|                           | productPlatform (0x03)          |
|                           | enabledCLFeatures (0x04)        |
|                           | firmwareVersion (0x05)          |
|                           | hfControllerVersion (0x08)      |
|                           | hardwareVersion (0x09)          |
|                           | hostInterfacesFlags (0x0A)      |
|                           | numberOfContactSlots (0x0B)     |
|                           | numberOfContactlessSlots (0x0C) |
|                           | numberOfAntennas (0x01)         |
|                           | vendorName (0x01)               |
|                           | exchangeLevel (0x01)            |
|                           | serialNumber (0x01)             |
|                           | hfControllerType (0x01)         |
|                           | sizeOfUserEEProm (0x01)         |
|                           | firmwareLabel (0x01)            |

## 7.3.1 tlvVersion

| Tag             | 0x00                                           |
|-----------------|------------------------------------------------|
| Access          | Read-only.                                     |
| Туре            | INTEGER.                                       |
| Length          | 1 byte.                                        |
| Value           | 0x00 - 0xFF                                    |
| Description     | The version of the TLV encoding used by APDUs. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 80 00 00      |
| Sample response | BD 03 80 01 01 90 00                           |



### 7.3.2 deviceID

| Tag             | 0x01                                      |
|-----------------|-------------------------------------------|
| Access          | Read-only.                                |
| Туре            | OCTET STRING.                             |
| Length          | 2 bytes.                                  |
| Value           | 0x0000 - 0xFFFF                           |
| Description     | Product ID, 0x0006 for OMNIKEY 5023.      |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 81 00 00 |
| Sample response | BD 04 81 02 00 06 90 00                   |

# 7.3.3 productName

| Tag             | 0x02                                                     |
|-----------------|----------------------------------------------------------|
| Access          | Read-only.                                               |
| Туре            | OCTET STRING.                                            |
| Length          | Variable.                                                |
| Value           | Null terminated string.                                  |
| Description     | The name of the reader.                                  |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 82 00 00                |
| Sample response | BD 0F 82 0D 4F 4D 4E 49 4B 45 59 20 35 30 32 33 00 90 00 |

# 7.3.4 productPlatform

| Tag             | 0x03                                                                                |
|-----------------|-------------------------------------------------------------------------------------|
| Access          | Read-only.                                                                          |
| Туре            | OCTET STRING.                                                                       |
| Length          | Variable.                                                                           |
| Value           | Null terminated string.                                                             |
| Description     | The name of the platform on which the product is based, "AViatoR" for OMNIKEY 5023. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 83 00 00                                           |
| Sample response | BD 0A 83 08 41 56 69 61 74 6F 52 00 90 00                                           |



### 7.3.5 enabledCLFeatures

| Tag             | 0x04                                                                 |
|-----------------|----------------------------------------------------------------------|
| Access          | Read-only.                                                           |
| Туре            | OCTET STRING.                                                        |
| Length          | 2 bytes.                                                             |
| Value           | Bit mask, 0x0B91 for OMNIKEY 5023.                                   |
| Description     | Provides information about what contactless protocols are supported. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 84 00 00                            |
| Sample response | BD 04 84 02 0B 91 90 00                                              |

### **CL** features:

0x0001 - FeliCa support.

0x0002 - EMVCo support.

0x0004 - Calypso support.

0x0008 - NFC P2P support.

0x0010 - SIO processor available.

0x0020 - SDR (LF processor) available.

0x0040 - Native FW Secure Engine.

0x0080 - T=CL support.

0x0100 - ISO 14443 A support.

0x0200 - ISO 14443 B support.

0x0800 - PicoPass 15693-2 support.

0x1000 - PicoPass 14443B-2 support.

0x2000 - PicoPass 14443A-3 support.

0x4000 - RFU.

0x8000 - RFU.



## 7.3.6 firmwareVersion

| Tag             | 0x05                                                                                                                                                |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Access          | Read-only.                                                                                                                                          |
| Туре            | OCTET STRING.                                                                                                                                       |
| Length          | 3 bytes.                                                                                                                                            |
| Value           | Null terminated string.                                                                                                                             |
| Description     | The version number of the reader's firmware. 1 <sup>st</sup> byte is Major, 2 <sup>nd</sup> byte is Minor, 3 <sup>rd</sup> byte is revision number. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 85 00 00                                                                                                           |
| Sample response | BD 05 85 03 01 00 00 90 00                                                                                                                          |

## 7.3.7 hfControllerVersion

| Tag             | 0x08                                                                             |
|-----------------|----------------------------------------------------------------------------------|
| Access          | Read-only.                                                                       |
| Туре            | OCTET STRING.                                                                    |
| Length          | 1 byte.                                                                          |
| Value           | Version number.                                                                  |
| Description     | The version of the HF front end used for controlling high frequency credentials. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 88 00 00                                        |
| Sample response | BD 03 88 01 18 90 00                                                             |

### 7.3.8 hardwareVersion

| Tag             | 0x09                                                           |
|-----------------|----------------------------------------------------------------|
| Access          | Read-only.                                                     |
| Туре            | OCTET STRING.                                                  |
| Length          | Variable.                                                      |
| Value           | Null terminated string.                                        |
| Description     | The version of the reader hardware used.                       |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 89 00 00                      |
| Sample response | BD 11 89 0F 50 43 42 2D 30 30 30 34 34 20 52 45 56 32 00 90 00 |



## 7.3.9 hostInterfaceFlags

| Tag             | OxOA                                                                                                                          |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------|
| Access          | Read-only.                                                                                                                    |
| Туре            | OCTET STRING.                                                                                                                 |
| Length          | 1 byte.                                                                                                                       |
| Value           | Bit mask.                                                                                                                     |
| Description     | Provides information on the interfaces supported by the reader for communication with the host. Bit 1 (0x02) = USB interface. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 8A 00 00                                                                                     |
| Sample response | BD 03 8A 01 02 90 00                                                                                                          |

Host Interface flags:

0x01 - Ethernet available.

0x02 - USB available.

0x04 - Serial RS232 available.

0x08 - SPI available.

 $0x10 - I^2C$  available.

### 7.3.10 numberOfContactSlots

| Tag             | Ox0B                                                                 |
|-----------------|----------------------------------------------------------------------|
| Access          | Read-only.                                                           |
| Туре            | OCTET STRING.                                                        |
| Length          | 1 byte.                                                              |
| Value           | Number of contact slots.                                             |
| Description     | Number of contact slots supported by the reader. 0 for OMNIKEY 5023. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 8B 00 00                            |
| Sample response | BD 03 8B 01 00 90 00                                                 |



## 7.3.11 numberOfContactlessSlots

| Tag             | 0x0C                                                                              |
|-----------------|-----------------------------------------------------------------------------------|
| Access          | Read-only.                                                                        |
| Туре            | OCTET STRING.                                                                     |
| Length          | 1 byte.                                                                           |
| Value           | Number of contactless slots.                                                      |
| Description     | The number of contactless PCSC slots supported by the reader. 1 for OMNIKEY 5023. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 8C 00 00                                         |
| Sample response | BD 03 8C 01 01 90 00                                                              |

## 7.3.12 numberOfAntennas

| Tag             | OxOD                                                            |
|-----------------|-----------------------------------------------------------------|
| Access          | Read-only.                                                      |
| Туре            | OCTET STRING.                                                   |
| Length          | 1 byte.                                                         |
| Value           | Number of antennas.                                             |
| Description     | The number of antennas the reader contains. 1 for OMNIKEY 5023. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 8D 00 00                       |
| Sample response | BD 03 8D 01 01 90 00                                            |

## 7.3.13 vendorName

| Tag             | Ox0F                                                     |
|-----------------|----------------------------------------------------------|
| Access          | Read-only.                                               |
| Туре            | OCTET STRING.                                            |
| Length          | 1 byte.                                                  |
| Value           | Null terminated string.                                  |
| Description     | The vendor of the reader, "HID Global" for OMNIKEY 5023. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 8F 00 00                |
| Sample response | BD 0D 8F 0B 48 49 44 20 47 6C 6F 62 61 6C 00 90 00       |



## 7.3.14 exchangeLevel

| Tag             | Ox11                                                                                                                 |
|-----------------|----------------------------------------------------------------------------------------------------------------------|
| Access          | Read-only.                                                                                                           |
| Туре            | OCTET STRING.                                                                                                        |
| Length          | 1 byte.                                                                                                              |
| Value           | Bit mask. 0x01 - TPDU, 0x02 - APDU, 0x04 - Extended APDU.                                                            |
| Description     | Provides information about the different APDU levels supported by the reader. 0x04 for OMNIKEY 5023 (Extended APDU). |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 91 00 00                                                                            |
| Sample response | BD 03 91 01 02 90 00                                                                                                 |

### 7.3.15 serialNumber

| Tag             | 0x12                                                                                   |
|-----------------|----------------------------------------------------------------------------------------|
| Access          | Read-only.                                                                             |
| Туре            | OCTET STRING.                                                                          |
| Length          | Variable, max 32 bytes.                                                                |
| Value           | Serial number.                                                                         |
| Description     | The serial number of the reader.                                                       |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 92 00 00                                              |
| Sample response | BD 19 92 17 4B 54 2D 30 38 36 33 30 30 33 30 2D 31 36 31 30 2D 30 30 30 31 31 34 90 00 |

# 7.3.16 hfControllerType

| Tag             | Ox13                                                                 |
|-----------------|----------------------------------------------------------------------|
| Access          | Read-only.                                                           |
| Туре            | OCTET STRING.                                                        |
| Length          | Variable, max 32 bytes.                                              |
| Value           | Null terminated chip name.                                           |
| Description     | The IC used for control of HF credentials. "RC663" for OMNIKEY 5023. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 93 00 00                            |
| Sample response | BD 08 93 06 52 43 36 36 33 00 90 00                                  |



### 7.3.17 sizeOfUserEEPROM

| Tag             | Ox14                                                                     |
|-----------------|--------------------------------------------------------------------------|
| Access          | Read-only.                                                               |
| Туре            | OCTET STRING.                                                            |
| Length          | 2 bytes.                                                                 |
| Value           | Size in bytes.                                                           |
| Description     | The amount of user EEPROM memory available. For OMNIKEY 5023 1024 bytes. |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 94 00 00                                |
| Sample response | BD 04 94 02 04 00 90 00                                                  |

# 7.3.18 firmwareLabel

| Tag             | 0x16                                                                                                                                                                       |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Access          | Read-only.                                                                                                                                                                 |
| Туре            | OCTET STRING.                                                                                                                                                              |
| Length          | Variable.                                                                                                                                                                  |
| Value           | Firmware unique ID as string.                                                                                                                                              |
| Description     | Detailed information about the firmware version.                                                                                                                           |
| Get APDU        | FF 70 07 6B 08 A2 06 A0 04 A0 02 96 00 00                                                                                                                                  |
| Sample response | BD 35 96 33 4F 4B 35 30 32 32 2D 31 2E 30 2E 30 2E 32 37 30 2D 32 30 31 36 30 31 32 36 54 31 35 32 30 32 34 2D 30 36 43 41 35 34 31 46 30 38 32 41 2D 46 4C 41 53 48 90 00 |



# 7.4 Contactless configuration

### **Contactless Slot Configuration structure**

| Root                         | Branch                      |                              |
|------------------------------|-----------------------------|------------------------------|
| contactlessSlotConfiguration | contactlessCommon<br>(0x00) | pollingSearchOrder (0x09)    |
| (0x04)                       |                             | emdSuppresionEnable (0x07)   |
|                              | iso14443aConfig (0x02)      | iso14443aEnable (0x00)       |
|                              |                             | iso14443aRxTxBaudRate (0x01) |
|                              |                             | mifareKeyCache (0x03)        |
|                              |                             | mifarePreferred (0x04)       |
|                              | iso14443bConfig (0x03)      | iso14443bEnable(0x00)        |
|                              |                             | iso14bRxTxBaudRate (0x01)    |
|                              | felicaConfig (0x05)         | felicaEnable (0x00)          |
|                              |                             | felicaRxTxBaudRate (0x01)    |
|                              | iClassConfig (0x06)         | iClass15693Enable (0x03)     |
|                              |                             | iClass15693DelayTime (0x04)  |
|                              |                             | iClass15693Timeout (0x05)    |
|                              |                             | iClassActallTimeout (0x06)   |

### 7.4.1 Baud rates

OMNIKEY 5023 allows setting maximum baud rate to and from a card for ISO/IEC 14443 Type A, ISO/IEC 14443 Type B and FeliCa protocols.

Commands: iso14443aRxTxBaudRate, iso14443bRxTxBaudRate and felicaRxTxBaudRate use the same format. A one-byte argument defines separately the baud rate for receiving (Rx) and transmitting (Tx) data. The first 4 bits are used to set Rx baud rate, the other for Tx baud rate. The resulting value is combination of bits:

Bit 0 (0x01) - 212 kbps Bit 1 (0x02) - 424 kbps Bit 2 (0x04) - 848 kbps

The reader always supports 106 kbps regardless of bit settings. If a card does not support a specific transmission speed the reader would use the other value.

For example. 0x77 means the reader supports 106, 212, 424, 848 kbps for Rx and Tx. If a card supports only 106 kbps and 424 kbps the reader would use 424 kbps or 106 kbps (in case card activation at 424 kbps fails).

**Note:** Doubling baud rate does not double transmission speed. In an extreme example, changing the baud rate from 424 kbps to 848 kbps increases transmission speed by less than 10%. The number may vary depending on the amount of data transmitted. The worst ratio is for short packets. Increasing maximum baud rate may cause transmission problems and shorten maximum effective distance between a card and the reader.



## **7.4.1.1 Examples**

0x00 - 106 kbps for Rx and Tx

0x23 - 106 and 424 kbps for Rx and 106, 212, 424 kbps for Tx

0x71 - 106, 212, 424, 848 kbps for Rx and 106, 212 kbps for Tx

### 7.4.1.2 Default values

ISO/IEC 14443 Type A: 0x33 - 106, 212, 424 kbps for Rx and Tx

ISO/IEC 14443 Type B: 0x33 - 106, 212, 424 kbps for Rx and Tx

FeliCa: 0x11 - 106, 212 kbps for Rx and Tx

### 7.4.2 Common parameters

### pollingSearchOrder

| Tag             | 0x09                                                           |
|-----------------|----------------------------------------------------------------|
| Access          | Read/write.                                                    |
| Туре            | OCTET STRING.                                                  |
| Length          | 5 bytes.                                                       |
| Value           | See description below.                                         |
| Description     | Sets polling order.                                            |
| Set APDU        | FF 70 07 6B 0F A2 0D A1 0B A4 09 A0 07 89 05 xx xx xx xx xx 00 |
| Sample response | BD 00 90 00                                                    |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A0 02 89 00 00                |
| Sample response | BD 07 89 05 xx xx xx xx xx 90 00                               |

The command expects 5 bytes which indicate polling order. Byte position sets priority of the protocol. Protocol on the first byte is checked first and protocol on 5<sup>th</sup> byte as the last one. Values assigned to protocols:

0x00 - none

0x02 - ISO/IEC 14443 Type A

0x03 - ISO/IEC 14443 Type B

0x04 - iCLASS® ISO/IEC 15693

0x06 - FeliCa

For example 02 03 04 06 means order: ISO/IEC 14443 Type A, ISO/IEC 14443 Type B, iCLASS ISO/IEC 15693, FeliCa. To support only ISO/IEC 14443 Type A protocol use: 02 00 00 00 00.

**Note:** If a protocol is not included in the search order table, the card will not be recognized even if the specific protocol is enabled.



### emd Supression Enable

| Tag             | 0x07                                               |
|-----------------|----------------------------------------------------|
| Access          | Read/write.                                        |
| Туре            | INTEGER.                                           |
| Length          | 1 byte.                                            |
| Value           | 0x01 enable, 0x00 disable.                         |
| Description     | Enables or disables EMD suppression.               |
| Set APDU        | FF 70 07 6B 0B A2 09 A1 07 A4 05 A0 03 87 01 xx 00 |
| Sample response | BD 00 90 00                                        |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A0 02 87 00 00    |
| Sample response | BD 03 87 01 xx 90 00                               |

# 7.4.3 ISO/IEC 14443 Type A

### iso14443aEnable

| Tag             | 0x00                                                        |
|-----------------|-------------------------------------------------------------|
| Access          | Read/write.                                                 |
| Туре            | INTEGER.                                                    |
| Length          | 1 byte.                                                     |
| Value           | 0x01 enable, 0x00 disable.                                  |
| Description     | Enables or disables support for ISO/IEC 14443 Type A cards. |
| Set APDU        | FF 70 07 6B 0B A2 09 A1 07 A4 05 A2 03 80 01 xx 00          |
| Sample response | BD 00 90 00                                                 |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A2 02 80 00 00             |
| Sample response | BD 03 80 01 xx 90 00                                        |

### iso14443aRxTxBaudRate

| Tag             | 0x01                                                      |
|-----------------|-----------------------------------------------------------|
| Access          | Read/write.                                               |
| Туре            | INTEGER.                                                  |
| Length          | 1 byte.                                                   |
| Value           | See Section: 7.4.1 Baud rates.                            |
| Description     | Sets supported baud rates for ISO/IEC 14443 Type A cards. |
| Set APDU        | FF 70 07 6B 0B A2 09 A1 07 A4 05 A2 03 81 01 xx 00        |
| Sample response | BD 00 90 00                                               |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A2 02 81 00 00           |
| Sample response | BD 03 81 01 xx 90 00                                      |



## mifare Key Cache

| Tag             | 0x03                                               |
|-----------------|----------------------------------------------------|
| Access          | Read/write.                                        |
| Туре            | INTEGER.                                           |
| Length          | 1 byte.                                            |
| Value           | 0x01 enable, 0x00 disable.                         |
| Description     | Enables or disables key cache for MIFARE cards.    |
| Set APDU        | FF 70 07 6B 0B A2 09 A1 07 A4 05 A2 03 83 01 xx 00 |
| Sample response | BD 00 90 00                                        |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A2 02 83 00 00    |
| Sample response | BD 03 83 01 xx 90 00                               |

### mifare Preferred

| Tag             | 0x04                                               |
|-----------------|----------------------------------------------------|
| Access          | Read/write.                                        |
| Туре            | INTEGER.                                           |
| Length          | 1 byte.                                            |
| Value           | 0x01 enable, 0x00 disable.                         |
| Description     | Enables or disables MIFARE preferred mode.         |
| Set APDU        | FF 70 07 6B 0B A2 09 A1 07 A4 05 A2 03 84 01 xx 00 |
| Sample response | BD 00 90 00                                        |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A2 02 84 00 00    |
| Sample response | BD 03 84 01 xx 90 00                               |

# 7.4.4 ISO/IEC 14443 Type B

### iso14443bEnable

| Tag             | 0x00                                                        |
|-----------------|-------------------------------------------------------------|
| Access          | Read/write.                                                 |
| Туре            | INTEGER.                                                    |
| Length          | 1 byte.                                                     |
| Value           | 0x01 enable, 0x00 disable.                                  |
| Description     | Enables or disables support for ISO/IEC 14443 Type B cards. |
| Set APDU        | FF 70 07 6B 0B A2 09 A1 07 A4 05 A3 03 80 01 xx 00          |
| Sample response | BD 00 90 00                                                 |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A3 02 80 00 00             |
| Sample response | BD 03 80 01 xx 90 00                                        |



### iso14443bRxTxBaudRate

| Tag             | 0x01                                                      |
|-----------------|-----------------------------------------------------------|
| Access          | Read/write.                                               |
| Туре            | INTEGER.                                                  |
| Length          | 1 byte.                                                   |
| Value           | See Section: 7.4 Contactless configuration.               |
| Description     | Sets supported baud rates for ISO/IEC 14443 Type B cards. |
| Set APDU        | FF 70 07 6B 0B A2 09 A1 07 A4 05 A3 03 81 01 xx 00        |
| Sample response | BD 00 90 00                                               |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A3 02 81 00 00           |
| Sample response | BD 03 81 01 xx 90 00                                      |

## 7.4.5 FeliCa

### felicaEnable

| Tag             | 0x00                                               |
|-----------------|----------------------------------------------------|
| Access          | Read/write.                                        |
| Туре            | INTEGER.                                           |
| Length          | 1 byte.                                            |
| Value           | 0x01 enable, 0x00 disable.                         |
| Description     | Enables or disables support for FeliCa cards.      |
| Set APDU        | FF 70 07 6B 0B A2 09 A1 07 A4 05 A5 03 80 01 xx 00 |
| Sample response | BD 00 90 00                                        |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A5 02 80 00 00    |
| Sample response | BD 03 80 01 xx 90 00                               |

### felicaRxTxBaudRate

| Tag             | 0x01                                               |
|-----------------|----------------------------------------------------|
| Access          | Read/write.                                        |
| Туре            | INTEGER.                                           |
| Length          | 1 byte.                                            |
| Value           | See Section: 7.4 Contactless configuration.        |
| Description     | Sets supported baud rates for FeliCa cards.        |
| Set APDU        | FF 70 07 6B 0B A2 09 A1 07 A4 05 A5 03 81 01 xx 00 |
| Sample response | BD 00 90 00                                        |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A5 02 81 00 00    |
| Sample response | BD 03 81 01 xx 90 00                               |



## **7.4.6 iCLASS**

### iCLASS15693Enable

| Tag             | 0x03                                               |
|-----------------|----------------------------------------------------|
| Access          | Read/write.                                        |
| Туре            | INTEGER.                                           |
| Length          | 1 byte.                                            |
| Value           | 0x01 enable, 0x00 disable.                         |
| Description     | Enables or disables support for iCLASS cards.      |
| Set APDU        | FF 70 07 6B 0B A2 09 A1 07 A4 05 A6 03 83 01 xx 00 |
| Sample response | BD 00 90 00                                        |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A6 02 83 00 00    |
| Sample response | BD 03 83 01 xx 90 00                               |

## iCLASS15693DelayTime

| Tag             | 0x04                                                        |  |  |  |
|-----------------|-------------------------------------------------------------|--|--|--|
| Access          | Read/write.                                                 |  |  |  |
| Туре            | INTEGER.                                                    |  |  |  |
| Length          | 4 bytes.                                                    |  |  |  |
| Value           | imeout.                                                     |  |  |  |
| Description     | Sets or gets minimum chip response to reader command delay. |  |  |  |
| Set APDU        | 70 07 6B 0E A2 0C A1 0A A4 08 A6 06 84 04 xx xx xx xx 00    |  |  |  |
| Sample response | BD 00 90 00                                                 |  |  |  |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A6 02 84 00 00             |  |  |  |
| Sample response | BD 06 84 04 xx xx xx xx 90 00                               |  |  |  |

### iCLASS15693Timeout

| Tag             | 0x05                                                     |  |  |  |
|-----------------|----------------------------------------------------------|--|--|--|
| Access          | Read/write.                                              |  |  |  |
| Туре            | INTEGER.                                                 |  |  |  |
| Length          | 4 bytes.                                                 |  |  |  |
| Value           | meout.                                                   |  |  |  |
| Description     | Sets or gets time to wait for response to a command.     |  |  |  |
| Set APDU        | 70 07 6B 0E A2 0C A1 0A A4 08 A6 06 85 04 xx xx xx xx 00 |  |  |  |
| Sample response | BD 00 90 00                                              |  |  |  |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A6 02 85 00 00          |  |  |  |
| Sample response | BD 06 85 04 xx xx xx xx 90 00                            |  |  |  |



### iCLASSActallTimeout

| Tag             | 0x06                                                     |  |  |  |  |
|-----------------|----------------------------------------------------------|--|--|--|--|
| Access          | Read/write.                                              |  |  |  |  |
| Туре            | INTEGER.                                                 |  |  |  |  |
| Length          | 4 bytes.                                                 |  |  |  |  |
| Value           | neout.                                                   |  |  |  |  |
| Description     | Sets or gets time to wait for response to ACT/ACTALL.    |  |  |  |  |
| Set APDU        | 70 07 6B 0E A2 0C A1 0A A4 08 A6 06 86 04 xx xx xx xx 00 |  |  |  |  |
| Sample response | BD 00 90 00                                              |  |  |  |  |
| Get APDU        | FF 70 07 6B 0A A2 08 A0 06 A4 04 A6 02 86 00 00          |  |  |  |  |
| Sample response | BD 06 86 04 xx xx xx xx 90 00                            |  |  |  |  |

## 7.5 Reader EEPROM

OMNIKEY 5023 provides user available area (1024 bytes) in internal EEPROM memory. The content of this memory is preserved even when the power is off.

When specifying command to read or write data offset must be specified (Tag 0x01; 2 bytes).

| Root                | Branch              |
|---------------------|---------------------|
| readerEEPROM (0x07) | eepromOffset (0x01) |
|                     | eepromRead (0x02)   |
|                     | eepromWrite (0x03)  |

### 7.5.1 EEPROM read

| Tag             | 0x02                                                          |  |  |  |
|-----------------|---------------------------------------------------------------|--|--|--|
| Access          | Read-only.                                                    |  |  |  |
| Туре            | OCTET STRING.                                                 |  |  |  |
| Length          | ariable.                                                      |  |  |  |
| Value           | yyyy - address (0x0000-0x03FF), nn - number of bytes to read. |  |  |  |
| Description     | The version of the TLV encoding used by APDUs.                |  |  |  |
| Get APDU        | FF 70 07 6B 0D A2 0B A0 09 A7 07 81 02 yy yy 82 01 nn 00      |  |  |  |
| Sample response | 9D ss xx xx xx xx xx 90 00                                    |  |  |  |



### 7.5.2 EEPROM write

| Tag             | 0x03                                                                              |  |  |  |
|-----------------|-----------------------------------------------------------------------------------|--|--|--|
| Access          | Write-only.                                                                       |  |  |  |
| Туре            | OCTET STRING.                                                                     |  |  |  |
| Length          | Variable.                                                                         |  |  |  |
| Value           | yyyy – address (0x0000–0x03FF), ss – number of bytes to write, xx – data to write |  |  |  |
| Description     | Writes data to user EEPROM area.                                                  |  |  |  |
| Get APDU        | FF 70 07 6B 11 A2 0F A1 0D A7 0B 81 02 yy yy 83 ss xx xx xx xx xx 00              |  |  |  |
| Sample response | 9D 00 90 00                                                                       |  |  |  |

# 7.6 Reader Configuration Control

Commands to apply, reset and store configuration changes.

### **Reader Configuration Control structure**

| Root                              | Branch                        |  |
|-----------------------------------|-------------------------------|--|
| readerConfigurationControl (0x09) | applySettings (0x00)          |  |
|                                   | restoreFactoryDefaults (0x01) |  |
|                                   | rebootDevice (0x03)           |  |

# 7.6.1 applySettings

| Tag             | 0x00                                                                                                                                                                                                                                             |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Access          | Write-only.                                                                                                                                                                                                                                      |  |  |  |  |
| Туре            |                                                                                                                                                                                                                                                  |  |  |  |  |
| Length          |                                                                                                                                                                                                                                                  |  |  |  |  |
| Value           | None.                                                                                                                                                                                                                                            |  |  |  |  |
| Description     | Apply settings. This command must be used to accept changes in the reader configuration. The only settings that takes changes immediately are: iso14443aRxTxBaudRate, iso14443bRxTxBaudRate, felicaRxTxBaudRate. The commands resets the device. |  |  |  |  |
| Get APDU        | FF 70 07 6B 08 A2 06 A1 04 A9 02 80 00 00                                                                                                                                                                                                        |  |  |  |  |
| Sample response | 9D 00 90 00                                                                                                                                                                                                                                      |  |  |  |  |



## 7.6.2 restoreFactoryDefaults

| Tag             | 0x01                                                                          |  |  |  |  |
|-----------------|-------------------------------------------------------------------------------|--|--|--|--|
| Access          | Write-only.                                                                   |  |  |  |  |
| Туре            |                                                                               |  |  |  |  |
| Length          |                                                                               |  |  |  |  |
| Value           | None.                                                                         |  |  |  |  |
| Description     | Sets reader configuration to factory defaults. The command resets the device. |  |  |  |  |
| Get APDU        | FF 70 07 6B 08 A2 06 A1 04 A9 02 81 00 00                                     |  |  |  |  |
| Sample response | 9D 00 90 00                                                                   |  |  |  |  |

# 7.6.3 rebootDevice

| Tag             | 0x03                                      |  |  |  |
|-----------------|-------------------------------------------|--|--|--|
| Access          | Write-only.                               |  |  |  |
| Туре            |                                           |  |  |  |
| Length          |                                           |  |  |  |
| Value           | None.                                     |  |  |  |
| Description     | Reboots the reader.                       |  |  |  |
| Get APDU        | FF 70 07 6B 08 A2 06 A1 04 A9 02 83 00 00 |  |  |  |
| Sample response | 9D 00 90 00                               |  |  |  |

# 8 ICAO test commands

### 8.1 Command set

The International Civil Aviation Organization (ICAO) has defined a set APDUs for testing e-Passport readers. These are defined in Annex C of the technical report "RF Protocol and Application Test Standard for e-Passport - Part 4", available from the ICAO website <a href="https://www.icao.int">www.icao.int</a>. The standard APDU syntax and standard SCardTransmit API are used with the reserved value of the CLA byte of "FF" and the values of the INS byte are also reserved (in the range of 0x9x).

The commands supported by this reader are as follows:

### 8.1.1 ICAO commands

| Instruction | Description      | Comments             |
|-------------|------------------|----------------------|
| 0x92        | ISO/IEC 14443-2  | Partially supported. |
| 0x94        | Transmit Pattern | Partially supported. |
| 0x96        | ISO/IEC 14443-3  | Partially supported. |
| 0x98        | ISO/IEC 14443-4  | Not supported.       |
| 0x9A        | Miscellaneous    | Partially supported. |

All of the ICAO test commands are attempted regardless of card presence or type.

## 8.1.2 0x92 - ISO/IEC 14443-2: ISO/IEC 14443-2 command APDU

| CLA  | INS  | P1 | P2  | Pc | Data In  | Le |
|------|------|----|-----|----|----------|----|
| OxFF | 0x92 | XX | RFU | XX | Lc bytes | -  |

**General:** Any data received back from the card is ignored in this test.



### 8.1.3 ISO/IEC 14443-2 P1 coding

| b7 | b6  | b5 | b4 | b3 b2 b1 b0 |   | bO        | Description                        | Supported                                 |     |
|----|-----|----|----|-------------|---|-----------|------------------------------------|-------------------------------------------|-----|
| 0  | 0   |    |    |             |   |           | •                                  | Turn off RF field FF 92 00 00.            | Yes |
| 0  | 1   |    |    |             |   |           |                                    | Turn on RF field with no sub-carrier.     | Yes |
| 1  | 0   |    |    |             |   |           |                                    | Turn on RF field and transmit Lc bytes.   | No  |
| 1  | 1   |    |    |             |   |           |                                    | RFU.                                      | No  |
|    |     | 0  | 0  |             |   |           | ISO/IEC 14443 Type A transmission. | No                                        |     |
|    |     | 0  | 1  |             |   |           |                                    | ISO/IEC 14443 Type B transmission.        | No  |
|    |     | 1  | 0  |             |   |           |                                    | ISO/IEC 15693 transmission (proprietary). | No  |
|    |     | 1  | 1  |             |   |           |                                    | iCLASS® 15693 transmission (proprietary). | No  |
|    |     |    |    | RFU         |   | 0         | 0                                  | 106 kbps.                                 | No  |
|    | 0 1 |    |    |             |   | 0         | 1                                  | 212 kbps.                                 | No  |
|    | 1 0 |    |    | 1           | 0 | 424 kbps. | No                                 |                                           |     |
|    |     |    |    |             |   | 1         | 1                                  | 848 kbps.                                 | No  |

## 8.1.4 ISO/IEC 14443-2 response

| Data Out | SW1SW2 | W1SW2                                        |  |  |  |  |  |  |  |
|----------|--------|----------------------------------------------|--|--|--|--|--|--|--|
| -        | 0x9000 | Operation successful.                        |  |  |  |  |  |  |  |
|          | 0x6700 | Wrong length (e.g. Lc absent when P1 b7 =1). |  |  |  |  |  |  |  |
|          | 0x6401 | Internal error (e.g. protocol setup failed). |  |  |  |  |  |  |  |

### 8.1.5 0x94 - Transmit Pattern command APDU

| CLA  | INS  | P1 | P2 | Pc | Data In  | Le |
|------|------|----|----|----|----------|----|
| OxFF | 0x94 | XX | XX | XX | Lc bytes | XX |

**General:** This test can be used to transmit and/or receive data to/from the card. No parity bit or CRC bytes are added, but framing (that is, start/stop bits, SOF/EOF) WILL be added. This is NOT fully compliant with the ICAO test standard.



## 8.1.6 ICAO Transmit Pattern P1 coding

| b7  | b6  | b5 | b4 | b3                                             | b2                                 | b1  | bO | Description | Supported |
|-----|-----|----|----|------------------------------------------------|------------------------------------|-----|----|-------------|-----------|
| RFU | RFU |    | 0  | ISO/IEC 14443 Type A transmission.             | Yes                                |     |    |             |           |
|     |     |    |    | 1                                              | ISO/IEC 14443 Type B transmission. | Yes |    |             |           |
|     | xxx |    | -  | Number of bits in last byte to be transmitted. | Yes                                |     |    |             |           |

## 8.1.7 ICAO Transmit Pattern P2 coding

| b7  | b6 | b5      | b4 | b3  | b2 | b1 | bO             | Description    | Supported |
|-----|----|---------|----|-----|----|----|----------------|----------------|-----------|
| RFU |    |         |    | RFU | 0  | 0  | Tx - 106 kbps. | Yes            |           |
|     |    |         |    |     |    | 0  | 1              | Tx - 212 kbps. | Yes       |
|     |    |         |    |     | 1  | 0  | Tx - 424 kbps. | Yes            |           |
|     |    |         |    |     | 1  | 1  | Tx - 848 kbps. | Yes            |           |
|     |    | RFU 0 0 |    |     |    |    | Rx - 106 kbps. | Yes            |           |
|     |    | 0 1     |    |     |    |    | Rx - 212 kbps. | Yes            |           |
|     |    | 1 0     |    |     |    |    | Rx - 242 kbps. | Yes            |           |
|     |    |         | 1  | 1   |    |    |                | Rx - 848 kbps. | Yes       |

# 8.1.8 ICAO Transmit Pattern SW1SW2 response bytes

| Data Out                    | SW1SW2 |                                                                |  |  |  |
|-----------------------------|--------|----------------------------------------------------------------|--|--|--|
| XX bytes<br>(if Le present) | 0x9000 | Operation successful.                                          |  |  |  |
| - 0x6700                    |        | Wrong length (e.g. Lc and Le are both absent).                 |  |  |  |
|                             | 0x6A8A | Modulation index not supported (P1 b7:b4).                     |  |  |  |
|                             | 0x6401 | ernal error (e.g. protocol setup failed or transceive failed). |  |  |  |

# 8.1.9 0x96 - ISO/IEC 14443-3 command APDU

| CLA  | INS  | P1 | P2 | Pc | Data In  | Le |
|------|------|----|----|----|----------|----|
| 0xFF | 0x96 | XX | XX | XX | Lc bytes | XX |



## 8.1.10 ISO/IEC 14443-3 P1 coding

| b7 | b6 | b5 | b4                            | b3     | b2     | b1     | b0   | Description                                                       | Supported |  |
|----|----|----|-------------------------------|--------|--------|--------|------|-------------------------------------------------------------------|-----------|--|
| -  |    |    | ISO/IEC 14443 Type A commands |        |        |        |      |                                                                   |           |  |
|    |    |    | 0                             | 0      | 0      | 0      | 1    | REQA.                                                             | Yes       |  |
|    |    |    | 0                             | 0      | 0      | 1      | 0    | WUPA.                                                             | Yes       |  |
|    |    |    | 0                             | 0      | 0      | 1      | 1    | HLTA.                                                             | No        |  |
|    |    |    | 0                             | 0      | 1      | 0      | 0    | Full ISO-14443A Part 3 (that is, REQA + ANTI-COLLISION + SELECT). | No        |  |
|    |    |    | 0                             | 1      | 0      | 0      | 1    | ANTI-COLLISION CL1.                                               | No        |  |
|    |    |    | 0                             | 1      | 0      | 1      | 0    | ANTI-COLLISION CL2.                                               | No        |  |
|    |    |    | 0                             | 1      | 0      | 1      | 1    | ANTI-COLLISION CL3.                                               | No        |  |
|    |    |    | 0                             | 1      | 1      | 0      | 0    | SELECT (0x70 + UID + BCC in Data In).                             | No        |  |
|    |    |    | ISO/I                         | EC 144 | 43 Тур | е В со | mman | ds                                                                | No        |  |
|    |    |    | 1                             | 0      | 0      | 0      | 1    | REQB (Number of slots in P2).                                     | Yes       |  |
|    |    |    | 1                             | 0      | 0      | 1      | 0    | WUPB (Number of slots in P2).                                     | Yes       |  |
|    |    |    | 1                             | 0      | 0      | 1      | 1    | HLTB (PUPI may be in Data In).                                    | No        |  |
|    |    |    | 1                             | 0      | 1      | 0      | 0    | Slot-MARKER (Slot no in P2).                                      | No        |  |
|    |    |    | 1                             | 0      | 1      | 0      | 1    | ATTRIB (Bit rate in P2 or PUPI + PARAM in Data In)                | No        |  |
| _  |    | xx |                               |        |        |        |      | No of repetitions of the command.                                 | No        |  |
| 0  |    |    |                               |        |        |        |      | P2 has other parameters (all others are defaults).                | No        |  |
| 1  |    |    |                               |        |        |        |      | Data In contains command data, P2 not used.                       | No        |  |



## 8.1.11 ISO/IEC 14443-3 P2 coding

| b7       | b6        | b5       | b4     | b3    | b2     | b1   | bO | Description                                          | Supported |  |
|----------|-----------|----------|--------|-------|--------|------|----|------------------------------------------------------|-----------|--|
| Num      | ber of    | slots fo | r REQE | 3/WUP | B comr | mand |    |                                                      |           |  |
| RFU xxx  |           |          |        |       |        |      |    | $N = 2^{(b2b1b0)}$ (that is, for b2b1b0 = 0, N = 1). | Yes       |  |
| Slot     | no for S  | Slot-MA  | RKER   | comm  | and    |      |    |                                                      |           |  |
| RFU xxxx |           |          |        |       |        |      |    | Slot number (0001 = 2, 1111 = 16).                   | No        |  |
| Bit ra   | ate for . | ATTRIB   | comm   | nand  |        |      |    |                                                      |           |  |
|          |           |          |        |       | RFU    | 0    | 0  | Tx - 106 kbps.                                       | No        |  |
|          |           |          |        |       |        | 0    | 1  | Tx - 212 kbps.                                       | No        |  |
|          |           |          |        |       |        | 1    | 0  | Tx - 424 kbps.                                       | No        |  |
|          |           |          |        |       |        | 1    | 1  | Tx - 848 kbps.                                       | No        |  |
|          |           | RFU      | 0      | 0     |        |      |    | Rx - 106 kbps.                                       | No        |  |
|          |           |          | 0      | 1     |        |      |    | Rx - 212 kbps.                                       | No        |  |
|          |           |          | 1      | 0     |        |      |    | Rx - 424 kbps.                                       | No        |  |
|          |           |          |        | 1     |        |      |    | Rx - 848 kbps.                                       | No        |  |
| CID      |           |          |        |       |        |      |    | Card Identifier.                                     | No        |  |

## 8.1.12 ISO/IEC 14443-3 SW1SW2 response bytes

| Data Out                    | SW1SW2 |                                                                   |  |  |  |  |  |
|-----------------------------|--------|-------------------------------------------------------------------|--|--|--|--|--|
| XX bytes<br>(if Le present) | 0x9000 | Operation successful.                                             |  |  |  |  |  |
| -                           | 0x6700 | Wrong length (e.g. Lc absent when P1 b7 is set).                  |  |  |  |  |  |
|                             | 0x6400 | Execution error (e.g. command timeout).                           |  |  |  |  |  |
| 0x6401 Interna              |        | Internal error (e.g. protocol setup failed or transceive failed). |  |  |  |  |  |
|                             | 0x6A88 | Requested buffer size too big.                                    |  |  |  |  |  |

## 8.1.13 Cases for which data out is command dependent

| Command                        | Data Out                              |
|--------------------------------|---------------------------------------|
| REQA                           | ATQA (2 bytes).                       |
| WUPA                           | ATQA (2 bytes).                       |
| HLTA                           | -                                     |
| REQA + ANTI-COLLISION + SELECT | UID (4,7 or 10 bytes) + SAK (1 byte). |
| ANTI-COLLISION CL1             | Cascade UID (4 bytes) + BCC (1 byte). |
| ANTI-COLLISION CL2             | Cascade UID (4 bytes) + BCC (1 byte). |
| ANTI-COLLISION CL3             | Cascade UID (4 bytes) + BCC (1 byte). |
| SELECT                         | SAK (1 byte).                         |
| REQB                           | ATQB (14 bytes).                      |
| WUPB                           | ATQB (14 bytes).                      |
| HLTB                           | 0x00 + CRCB (2 bytes).                |
| Slot-MARKER                    | ATQB (14 bytes).                      |
| ATTRIB                         | MBLI+CID (1 byte) + CRCB (2 bytes).   |

Note: ATQB comprises: 0x50 + PUPI (4 bytes) + APP (4 bytes) + PROTO (3 bytes) + CRCB (2 bytes).

## 8.1.14 0x98 - ISO/IEC 14443-4 command APDU

| CLA  | INS  | P1 | P2 | Pc | Data In  | Le |
|------|------|----|----|----|----------|----|
| OxFF | 0x98 | XX | XX | XX | Lc bytes | XX |

# 8.1.15 ISO/IEC 14443-4 P1 coding

| b7  | b6 | b5 | b4 | b3 | b2                                                                                 | b1 | bO | Description                                                                                           | Supported |
|-----|----|----|----|----|------------------------------------------------------------------------------------|----|----|-------------------------------------------------------------------------------------------------------|-----------|
| RFU |    |    |    |    |                                                                                    | 0  | 0  | ISO/IEC 14443 Type A RATS (FSDI+CID in P2).                                                           | No        |
|     |    |    |    |    |                                                                                    | 0  | 1  | ISO/IEC 14443 Type A PPS (Bit rate in P2).                                                            | No        |
|     |    |    | 1  | 0  | T=CL transmit - Data In contains data to be sent, including the PCB and CID bytes. | No |    |                                                                                                       |           |
|     |    |    |    |    |                                                                                    | 1  | 1  | T=CL transmit - Data In contains data to be sent (I-Block only), PCB and CID bytes handled by reader. | No        |



## 8.1.16 ISO/IEC 14443-4 P2 coding

| b7     | b6                        | b5      | b4    | b3 | b2      | b1 | bO                                    | Description    | Supported |
|--------|---------------------------|---------|-------|----|---------|----|---------------------------------------|----------------|-----------|
| FSDI-  | FSDI+CID for RATS command |         |       |    |         |    |                                       |                |           |
| FSDI   | FSDI CID                  |         |       |    |         |    | FSDI codes FSD as in ISO/IEC 14443-4. | No             |           |
| Bit ra | ite for F                 | PPS cor | nmanc | d  |         |    |                                       |                |           |
| RFU    | RFU                       |         |       |    | RFU 0 0 |    | 0                                     | Tx - 106 kbps. | No        |
|        |                           |         |       |    |         | 0  | 1                                     | Tx - 212 kbps. | No        |
|        |                           |         |       |    |         | 1  | 0                                     | Tx - 424 kbps. | No        |
|        |                           |         |       |    |         | 1  | 1                                     | Tx - 848 kbps. | No        |
|        |                           | RFU     | 0     | 0  |         |    |                                       | Rx - 106 kbps. | No        |
|        |                           |         | 0     | 1  |         |    |                                       | Rx - 212 kbps. | No        |
|        |                           |         | 1     | 0  |         |    |                                       | Rx - 424 kbps. | No        |
|        |                           |         | 1     | 1  |         |    |                                       | Rx - 848 kbps. | No        |

## 8.1.17 ISO/IEC 14443-4 response bytes

| Data Out                    | SW1SW2 |                                                      |  |  |  |  |  |
|-----------------------------|--------|------------------------------------------------------|--|--|--|--|--|
| XX bytes<br>(if Le present) | 0x9000 | Operation successful.                                |  |  |  |  |  |
| -                           | 0x6700 | Wrong length (e.g. Lc absent for transmit commands). |  |  |  |  |  |
|                             | 0x6400 | Execution error (e.g. command timeout).              |  |  |  |  |  |
|                             | 0x6A88 | Requested buffer size too big.                       |  |  |  |  |  |

Note: Data Out may also contain an SW1SW2 from the card.

### 8.1.18 0x9A: ICAO Miscellaneous command APDU

| CLA  | INS  | P1 | P2 | Рс | Data In  | Le |
|------|------|----|----|----|----------|----|
| OxFF | 0x9A | XX | XX | XX | Lc bytes | XX |

## 8.1.19 ICAO Miscellaneous P1 coding

| b7 | b6 | b5 | b4 | b3 | b2 | b1 | bO | Description                                          | Supported |
|----|----|----|----|----|----|----|----|------------------------------------------------------|-----------|
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | Reader information (coded in P2).                    | No        |
| 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | ISO/IEC 14443 Type A trigger signal - NOT SUPPORTED. | No        |
| 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | ISO/IEC 14443 Type B trigger signal - NOT SUPPORTED. | No        |
| 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | Reader control (coded in P2).                        | Yes       |

Note: All other values of P1 are RFU.

## 8.1.20 ICAO Miscellaneous P2 coding

| b7    | b6                                                    | b5 | b4 | b3 | b2 | b1 | bO | Description                                  | Supported |
|-------|-------------------------------------------------------|----|----|----|----|----|----|----------------------------------------------|-----------|
| Codii | Coding for Reader information (Lc absent, Le present) |    |    |    |    |    |    |                                              |           |
| 0     | 0                                                     | 0  | 0  | 0  | 0  | 0  | 1  | Vendor name.                                 | No        |
| 0     | 0                                                     | 0  | 0  | 0  | 0  | 1  | 0  | Vendor ID.                                   | No        |
| 0     | 0                                                     | 0  | 0  | 0  | 0  | 1  | 1  | Product name.                                | No        |
| 0     | 0                                                     | 0  | 0  | 0  | 1  | 0  | 0  | Product ID.                                  | No        |
| 0     | 0                                                     | 0  | 0  | 0  | 1  | 0  | 1  | Product serial number.                       | No        |
| 0     | 0                                                     | 0  | 0  | 0  | 1  | 1  | 0  | Product firmware version.                    | No        |
| Codii | Coding for Reader control (Lc and Le both absent)     |    |    |    |    |    |    |                                              |           |
| 0     | 0                                                     | 0  | 0  | 0  | 0  | 0  | 0  | Turn off polling for card (enter test mode). | Yes       |
| 0     | 0                                                     | 0  | 0  | 0  | 0  | 0  | 1  | Turn on polling for card (exit text mode).   | Yes       |

Note: All other values of P2 are either RFU or not supported.

# 8.1.21 ICAO Miscellaneous response

| Data Out                    | SW1SW2 |                                                       |  |  |  |  |
|-----------------------------|--------|-------------------------------------------------------|--|--|--|--|
| XX bytes<br>(if Le present) | 0x9000 | Operation successful.                                 |  |  |  |  |
| -                           | 0x6700 | Wrong length (e.g. Le absent for reader information). |  |  |  |  |
|                             | 0x6A82 | Function not supported.                               |  |  |  |  |
|                             | 0x6A89 | Information not available.                            |  |  |  |  |
|                             | 0x6A90 | Trigger signal not available.                         |  |  |  |  |



# A Using PC\_to\_RDR\_Escape command

The PC/SC layer does not allow the use of the SCardTransmit API unless the reader has previously signalled the presence and activation of a card. This prevents the use of commands such as the ICAO test commands or the HID commands without being able to properly recognize and activate a card. In order to be able to use these commands even without a previous card activation, the same functionality of pseudo-APDUs (CLA = 'FF') is provided through the PC\_to\_RDR\_Escape command.

To use the PC\_to\_RDR\_Escape command with the default Microsoft CCID driver, the functionality must be first enabled in the Windows registry.

To issue the PC\_to\_RDR\_Escape command without a card being present, the reader must be first opened with the SCardConnect function with the following settings:

```
dwShareMode = SCARD_SHARE_DIRECT
dwPreferredProtocols = 0
```

Then the vendor IOCTL for the Escape command is defined as follows:

```
#define IOCTL_CCID_ESCAPE SCARD_CTL_CODE(3500)
```

The following is an example of the call:

```
SCardControl(hCard, IOCTL_CCID_ESCAPE, ...)
or:
SCardControl(hCard, SCARD_CTL_CODE(3500), ...)
```

The data in the *lpInBuffer* parameter of the length given in *nInBufferSize* are copied to the abData field of the PC\_to\_RDR\_Escape command and all the data in the response in RDR\_to\_PC\_Escape *abData* field are copied back to the *lpOutBuffer*.

The abData field of the PC\_to\_RDR\_Escape must contain the pseudo-APDU to be executed (typically, an ICAO test command or reader configuration). The maximum allowed size of abData in PC\_to\_RDR\_Escape is currently 262 bytes and the maximum size of the response data in the abData field in the RDR\_to\_PC\_Escape response is 464 bytes. The PC\_to\_RDR\_Escape and RDR\_to\_PC\_Escape do not support any form of chaining to extend the lengths of the supported parameters.



