4 Random Walk + Soft substance

4.1 Fundamentals

Gibbs-Boltzmann distribution The Boltzmann distribution is a probability distribution that gives the probability of a certain state as a function of that state's energy and temperature of the system to which the distribution is applied. It is given as

$$p_i = \frac{\exp(-\beta \varepsilon_i)}{\sum_{j=1}^{M} \exp(-\beta \varepsilon_j)}$$

Langevin equation The original Langevin equation describes Brownian motion, the apparently random movement of a particle in a fluid due to collisions with molecules of the fliud,

$$m\frac{dv}{dt} = -\lambda v + \eta(t)$$

where v is the velocity of the particle, and m is the mass. The force acting on the particle is written as a sum of a viscous force proportional to the particles's velocity, and a noise term $\eta(t)$ representing the effect of the collisions with the molecules of the fluid. The force $\eta(t)$ has a Gaussian probability distribution with correlation function $\langle \eta_i(t)\eta_j(t')\rangle = 2\lambda k_B T \delta_{ij}\delta(t-t')$

There are two common choices of discretization: the Itô and the Stratonovich conventions. Discretization of the Langevin equation:

$$\frac{x_{t+\Delta} - x_t}{\Delta} = -V'(x_t) + \xi_t$$

with an associated discretization of the correlations:

$$\langle f[x(t)] \rangle \to \langle f(x_t) \rangle \quad \langle f[x(t)] \xi(t) \rangle \to \langle f(x_t) \xi_t \rangle \quad \langle f[x(t)] \dot{x}(t) \rangle \to \langle f(x_t) \frac{x_{t+\Delta} - x_t}{\Lambda} \rangle$$

which leads to **Itô's chain rule**:

$$\frac{d}{dt} \langle f[x(t)] \rangle = \left\langle f'[x(t)] \frac{dx}{dt} \right\rangle + T \langle f''[x(t)] \rangle$$

Fokker-Planck equation In one spatial dimension x, for an Itô process driven by the standard Wiener process W_t and described by the stochastic differential equation (SDE)

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dW_t$$

with drift $\mu(X_t, t)$ and diffusion coefficient $D(X_t, t) = \sigma^2(X_t, t)/2$, the Fokker-Planck equation for the probability density p(x, t) of the random variable X_t is

$$\frac{\partial}{\partial t}p(x,t) = -\frac{\partial}{\partial x}\left[\mu(x,t)p(x,t)\right] + \frac{\partial^2}{\partial x^2}\left[D(x,t)p(x,t)\right]$$

Derivation from the over-damped Langevin equation

Let $\mathbb{P}(x,t)$ be the probability density density function to find a particle in [x,x+dx] at time t, and let x satisfy:

$$\dot{x}(t) = -V'(x) + \xi(t)$$

if f is a function, we have:

$$\frac{d}{dt} \left\langle f\left[x(t)\right]\right\rangle = \frac{d}{dt} \int \mathbb{P}(x,t)f(x)dx = \int \frac{\partial \mathbb{P}(x,t)}{\partial t} f(x)dx$$

but using Itô's chain rule:

$$\frac{d}{dt} \langle f[x(t)] \rangle = \left\langle f'[x(t)] \frac{dx}{dt} \right\rangle + T \langle f''[x(t)] \rangle$$

with Langevin's equation

$$\frac{d}{dt} \langle f[x(t)] \rangle = \langle f'[x(t)] \{ -V'[x(t)] + \xi(t) \} \rangle + T \langle f''[x(t)] \rangle$$

since $\langle f'[x(t)]\xi(t)\rangle = 0$, we have

$$\frac{d}{dt} \left\langle f\left[x(t)\right]\right\rangle = \int \left[\frac{df(x)}{dx} \left(-\frac{dV(x)}{dx}\right) + T\frac{d^2f(x)}{dx^2}\right] \mathbb{P}(x,t) dx$$

performing an integration by parts, and using that $\mathbb{P}(x,t)$ is a probability density vanishing at $x \to \infty$:

$$\int \frac{\partial \mathbb{P}(x,t)}{\partial t} f(x) dx = \int \frac{\partial}{\partial x} \left[\frac{dV(x)}{dx} + T \frac{\partial}{\partial x} \right] \mathbb{P}(x,t) f(x) dx$$

this is true for any function f, thus

$$\frac{\partial \mathbb{P}(x,t)}{\partial t} = \frac{\partial}{\partial x} \left[\frac{dV(x)}{dx} + T \frac{\partial}{\partial x} \right] \mathbb{P}(x,t)$$

It could be written as $\partial_t \mathbb{P}(x,t) = -H_{FP}\mathbb{P}(x,t)$ with H_{FP} the Fokker-Planck operator shown above.

4.2 Salez2015: Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall

FIG. 1: Schematic of the system. A negatively buoyant cylinder (green) falls down under the acceleration of gravity \vec{g} , inside a viscous fluid (blue), in the vicinity of a thin soft wall (brown). The ensemble lies atop a tilted, infinitely rigid support (grey).

$$\delta_s(x,t) = -\frac{h_s p(x,t)}{2\mu + \lambda}$$
 (Salez2015.2)

... we non-dimensionalize the problem using the following choices: $z = Zr\varepsilon$, $h = Hr\varepsilon$, $\delta = \Delta r\varepsilon$, $x = Xr\sqrt{2\varepsilon}$, $x_G = X_Gr\sqrt{2\varepsilon}$, $\theta = \Theta\sqrt{2\varepsilon}$, $t = Tr\sqrt{2\varepsilon}/c$, u = Uc, and $p = P\eta c\sqrt{2}/(r\varepsilon^{3/2})$, where we have introduced a free fall velocity scale $c = \sqrt{2gr\rho^*/\rho}$ and the dimensionless parameter:

$$\xi = \frac{3\sqrt{2}\eta}{r^{3/2}\varepsilon\sqrt{\rho\rho^*g}}\kappa = \frac{2h_s\eta\sqrt{g\rho^*}}{r^{3/2}\varepsilon^{5/2}(2\mu+\lambda)\sqrt{\rho}}$$

With perturbation theory in first-order correction, the soft compressible wall gives

$$\ddot{X}_{G} + \frac{2\varepsilon\xi}{3}\frac{\dot{X}_{G}}{\sqrt{\Delta}} + \frac{\kappa\varepsilon\xi}{6}\left[\frac{19}{4}\frac{\dot{\Delta}\dot{X}_{G}}{\Delta^{7/2}} - \frac{\dot{\Delta}\dot{\Theta}}{\Delta^{7/2}} + \frac{1}{2}\frac{\ddot{\Theta} - \ddot{X}_{G}}{\Delta^{5/2}}\right] - \sqrt{\frac{\varepsilon}{2}}\sin\alpha = 0$$
 (Salez2015.50)

$$\ddot{\Delta} + \xi \frac{\dot{\Delta}}{\Delta^{3/2}} + \frac{\kappa \xi}{4} \left[21 \frac{\dot{\Delta}^2}{\Delta^{9/2}} - \frac{(\dot{\Theta} - \dot{X}_G)^2}{\Delta^{7/2}} - \frac{15}{2} \frac{\ddot{\Delta}}{\Delta^{7/2}} \right] + \cos \alpha = 0$$
 (Salez2015.51)

$$\ddot{\Theta} + \frac{4\varepsilon\xi}{3}\frac{\dot{\Theta}}{\sqrt{\Lambda}} + \frac{\kappa\varepsilon\xi}{3}\left[\frac{19}{4}\frac{\dot{\Delta}\dot{\Theta}}{\Delta^{7/2}} - \frac{\dot{\Delta}\dot{X}_G}{\Delta^{7/2}} + \frac{1}{2}\frac{\ddot{X}_G - \ddot{\Theta}}{\Delta^{5/2}}\right] = 0$$
 (Salez2015.52)

where Δ refers to z and X_G refers to x after the scaling.

For the plan case, we set $\alpha = 0$. Also, there would be no rotation, thus $\theta(t) = 0$.

$$\ddot{X}_G + \frac{2\varepsilon\xi}{3}\frac{\dot{X}_G}{\sqrt{\Delta}} + \frac{\kappa\varepsilon\xi}{6}\left[\frac{19}{4}\frac{\dot{\Delta}\dot{X}_G}{\Delta^{7/2}} + \frac{1}{2}\cdot\frac{-\ddot{X}_G}{\Delta^{5/2}}\right] = 0$$

$$\ddot{\Delta} + \xi\frac{\dot{\Delta}}{\Delta^{3/2}} + \frac{\kappa\xi}{4}\left[21\frac{\dot{\Delta}^2}{\Delta^{9/2}} - \frac{(-\dot{X}_G)^2}{\Delta^{7/2}} - \frac{15}{2}\frac{\ddot{\Delta}}{\Delta^{7/2}}\right] + \cos\alpha = 0$$

4.3 David's note: Determining noise from deterministic forces

Consider the following deterministic equations

$$dX_{\alpha} = V_{\alpha}dt \tag{David.1}$$

and

$$dV_{\alpha} = -U_{\alpha}dt - \nabla\phi(\mathbf{X})dt$$
 (David.2)

We assume that U_{α} are generated by hydrohynamic interactions which do not however affect the equilibrium Gibbs-Boltzmann distribution which is

$$P_{eq}(\mathbf{X}, \mathbf{V}) = \frac{1}{\bar{Z}} \exp\left(-\frac{\beta \mathbf{V}^2}{2} - \beta \phi(\mathbf{X})\right)$$
 (David.3)

Exploit the Fokker-Planck operator

$$\frac{\partial P}{\partial t} = -H_{FP}P = \frac{\partial}{\partial x} \left[\frac{dV}{dx} P + T \frac{\partial}{\partial x} P \right] = \frac{\partial}{\partial V_{\alpha}} \left[(U_{\alpha} + \nabla_{\alpha} \phi) P + T \gamma_{\alpha\beta} \frac{\partial P}{\partial V_{\beta}} \right] + \frac{\partial}{\partial X_{\alpha}} \left[\cdots \right]$$

Note $\frac{\partial P}{\partial X_{\alpha}} = P\left(-\beta \frac{\partial \phi}{\partial X_{\alpha}}\right)$ and $\frac{\partial P}{\partial V_{\alpha}} = P\left(-\beta V_{\alpha}\right)$. Consider the gravity $\phi(\mathbf{X}) = -mg\Delta$, and then we could derive the eq. David.4

$$\begin{split} \frac{\partial}{\partial X_{\alpha}} \left[\frac{dV}{dx} P + T \frac{\partial}{\partial x} P \right] &= \frac{\partial}{\partial X_{\alpha}} \left[\frac{dV}{dX_{\alpha}} P + T \frac{\partial}{\partial X_{\alpha}} P + T \frac{\partial}{\partial V_{\alpha}} P \right] \\ &= \frac{\partial}{\partial X_{\alpha}} \left[(\nabla_{\alpha} \phi) P + \mathcal{T} \cdot P \left(- \beta \frac{\partial \phi}{\partial X_{\alpha}} \right) + T \frac{\partial}{\partial V_{\alpha}} P \right] = \frac{\partial}{\partial X_{\alpha}} \left[T \frac{\partial}{\partial V_{\alpha}} P \right] \\ &= \frac{\partial}{\partial X_{\alpha}} \left[\mathcal{T} \cdot P \left(- \beta V_{\alpha} \right) \right] = -\frac{\partial}{\partial X_{\alpha}} V_{\alpha} P \end{split}$$

The Fokker Planck equation at finite temperature which introduces white noise and possibly temperature dependent drifts is $\phi(\mathbf{X})$ is

$$\frac{\partial P}{\partial t} = \frac{\partial}{\partial V_{\alpha}} \left[T \gamma_{\alpha\beta} \frac{\partial P}{\partial V_{\beta}} + U_{\alpha} P + \frac{\partial \phi}{\partial X_{\alpha}} P \right] - \frac{\partial}{\partial X_{\alpha}} V_{\alpha} P$$
 (David.4)

The last two terms would vanish since

$$\frac{\partial}{\partial V_{\alpha}} \left(\frac{\partial \phi}{\partial X_{\alpha}} P \right) = \left(\frac{\partial}{\partial V_{\alpha}} \frac{\partial \phi}{\partial X_{\alpha}} \right) \cdot P + \frac{\partial \phi}{\partial X_{\alpha}} \cdot \frac{\partial P}{\partial V_{\alpha}} = \frac{\partial \phi}{\partial X_{\alpha}} \cdot P(-\beta V_{\alpha})$$

$$\frac{\partial}{\partial X_{\alpha}} V_{\alpha} P = \left(\frac{\partial V_{\alpha}}{\partial X_{\alpha}} \right) P + V_{\alpha} \left(\frac{\partial P}{\partial X_{\alpha}} \right) = V_{\alpha} \cdot P \cdot \left(-\beta \frac{\partial \phi}{\partial X_{\alpha}} \right)$$

Therefore, at equilibrium $\frac{\partial P}{\partial t} = 0$

$$\frac{\partial P}{\partial t} = \frac{\partial}{\partial V_{\alpha}} \left[T \gamma_{\alpha\beta} \frac{\partial P}{\partial V_{\beta}} + U_{\alpha} P \right] = \frac{\partial}{\partial V_{\alpha}} \left[T \gamma_{\alpha\beta} P \cdot (-\beta V_{\beta}) + U_{\alpha} P \right] = \frac{\partial}{\partial V_{\alpha}} \left[(U_{\alpha} - \gamma_{\alpha\beta} V_{\beta}) \cdot P \right] = 0$$

We obtain the GB distribution for the steady state if

$$U_{\alpha} = \gamma_{\alpha\beta} V_{\beta} \tag{David.5}$$

We have for small velocities that

$$U_{\alpha} = \lambda_{\alpha\beta}(\mathbf{X})V_{\beta} + \Lambda_{\alpha\beta\gamma}(\mathbf{X})V_{\beta}V_{\gamma}$$
 (David.6)

and so we find

$$\gamma_{\alpha\beta}V_{\beta} = \lambda_{\alpha\beta}(\mathbf{X})V_{\beta} + \Lambda_{\alpha\beta\gamma}(\mathbf{X})V_{\beta}V_{\gamma}$$
 (David.7)

Written this way the term $\lambda_{\alpha\beta}(\mathbf{X})$ is just the friction tensor in the absence of any elastic effects. We can thus write

$$\gamma_{\alpha\beta} = \lambda_{\alpha\beta} + \gamma_{2\alpha\beta} \tag{David.8}$$

and we write

$$\gamma_{2\alpha\beta} = \Gamma_{\alpha\beta\gamma} V_{\gamma} \tag{David.9}$$

and

$$\Gamma_{\alpha\beta\gamma}(\mathbf{X})V_{\beta}V_{\gamma} = \Lambda_{\alpha\beta\gamma}(\mathbf{X})V_{\beta}V_{\gamma}$$
 (David.10)

where we without loss of generality take $\Lambda_{\alpha\beta\gamma} = \Lambda_{\alpha\gamma\beta}$, which then gives

$$\Gamma_{\alpha\beta\gamma} + \Gamma_{\alpha\gamma\beta} = 2\Lambda_{\alpha\beta\gamma}$$
 (David.11)

We have to solve this system with the constraint that $\Gamma_{\alpha\beta\gamma}V_{\gamma} = \Gamma_{\beta\alpha\gamma}V_{\gamma}$. In Thomas' problem [1412.0162, Journal of Fluid Mechanics, 779 181 (2015)], we have

$$\ddot{\Delta} + \xi \frac{\dot{\Delta}}{\Delta^{3/2}} + \frac{\kappa \xi}{4} \left[21 \frac{\dot{\Delta}^2}{\Delta^{9/2}} - \frac{(\dot{\Theta} - \dot{X}_G)^2}{\Delta^{7/2}} - \frac{15}{2} \frac{\ddot{\Delta}}{\Delta^{7/2}} \right] + \cos\alpha = 0$$

$$\ddot{X}_G + \frac{2\varepsilon\xi}{3}\frac{\dot{X}_G}{\sqrt{\Delta}} + \frac{\kappa\varepsilon\xi}{6}\left[\frac{19}{4}\frac{\dot{\Delta}\dot{X}_G}{\Delta^{7/2}} - \frac{\dot{\Delta}\dot{\Theta}}{\Delta^{7/2}} + \frac{1}{2}\frac{\ddot{\Theta} - \ddot{X}_G}{\Delta^{5/2}}\right] - \sqrt{\frac{\varepsilon}{2}}\sin\alpha = 0$$

where Δ refers to z and X_G refers to x. Note $\dot{\Delta} = -U_z$ and $\dot{X}_G = -U_x$, we write

$$U_z = \xi \frac{V_z}{Z^{3/2}} + \frac{21\kappa\xi}{4} \frac{V_z^2}{Z^{9/2}} - \frac{\kappa\xi}{4} \frac{V_x^2}{Z^{7/2}}$$
 (David.12)

$$U_x = 2\xi \varepsilon \frac{V_x}{3Z^{1/2}} + \frac{19\kappa \xi \varepsilon}{24} \frac{V_z V_x}{Z^{7/2}}$$
 (David.13)

Form this we find that

$$\sum_{\alpha\beta} \Lambda_{z\alpha\beta} V_{\alpha} V_{\beta} = \frac{21\kappa\xi}{4} \frac{V_{z}^{2}}{Z^{9/2}} - \frac{\kappa\xi}{4} \frac{V_{x}^{2}}{Z^{7/2}}$$

$$\sum_{\alpha\beta} \Lambda_{x\alpha\beta} V_{\alpha} V_{\beta} = \frac{19\kappa\xi\varepsilon}{24} \frac{V_{z}V_{x}}{Z^{7/2}}$$
(David.14)

This gives the set of equations

$$\Gamma_{zzz} = \frac{21\kappa\xi}{4Z^{9/2}}$$
 (David.15)

$$\Gamma_{zxx} = -\frac{\kappa \xi}{47^{7/2}}$$
 (David.16)

$$\Gamma_{zxz} + \Gamma_{zzx} = 0$$
 (David.17)

$$\Gamma_{xzz} = 0$$
 (David.18)

$$\Gamma_{xxx} = 0$$
 (David.19)

$$\Gamma_{xxz} + \Gamma_{xzx} = \frac{19\kappa\xi\varepsilon}{247^{7/2}}$$
 (David.20)

The symmetry $\Gamma_{\alpha\beta\gamma} = \Gamma_{\beta\alpha\gamma}$ now gives

$$\Gamma_{xxz} = \frac{19\kappa\xi\varepsilon}{24Z^{7/2}} - \Gamma_{xzx} = \frac{19\kappa\xi\varepsilon}{24Z^{7/2}} - \Gamma_{zxx} = \frac{\kappa\xi}{Z^{7/2}} \left(\frac{19\varepsilon}{24} + \frac{1}{4}\right)$$
 (David.21)

as well as

$$\Gamma_{zxz} = \Gamma_{zzx} = 0$$
(David.22)

The Langevin equation corresponding to this is, using the Ito convention,

$$\frac{dV_{\alpha}}{dt} = -U_{\alpha} - \frac{\partial \phi(\mathbf{X})}{\partial X_{\alpha}} + T \frac{\partial \gamma_{\alpha\beta}}{\partial V_{\beta}} + \eta_{\alpha}(t)$$
 (David.23)

which can be written as

$$\frac{dV_{\alpha}}{dt} = -U_{\alpha} - \frac{\partial \phi(\mathbf{X})}{\partial X_{\alpha}} + T\Gamma_{\alpha\beta\beta} + \eta_{\alpha}(t)$$
 (David.24)

where we use the Einstein summation convention and the noise correlator is given by

$$\langle \eta_{\alpha}(t)\eta_{\beta}(t')\rangle = 2T\gamma_{\alpha\beta}\delta(t-t') = 2T\left[\lambda_{\alpha\beta}(\mathbf{X}) + \Gamma_{\alpha\beta\gamma}(\mathbf{X})V_{\gamma}\right]\delta(t-t')$$
 (David.25)

Putting this together we find (from eq. David.24) with all $\Gamma_{\alpha\beta\beta}$ with y index vanishing.

$$\frac{dV_z}{dt} = -V'(Z) - \xi \frac{V_z}{Z^{3/2}} - \frac{21\kappa\xi}{4} \frac{V_z^2}{Z^{9/2}} + \frac{\kappa\xi V_x^2}{4Z^{7/2}} + T \left[\frac{21\kappa\xi}{4Z^{9/2}} - \frac{\kappa\xi}{4Z^{7/2}} \right] + \eta_z(t)
\frac{dV_x}{dt} = -2\xi\varepsilon \frac{V_x}{3Z^{1/2}} - \frac{19\kappa\xi V_z V_x}{24Z^{7/2}} + \eta_x(t)$$
(David.26)

4.4 Modification in 3D

We re-write the differential equations as

$$-U_{z} = \dot{v}_{\Delta} = \ddot{\Delta} = F_{\Delta}(\Delta, \dot{\Delta}, \dot{X}, \dot{\Theta}, \ddot{\Theta}) + \eta_{\Delta}$$

$$-U_{X} = \dot{v}_{X} = \ddot{X} = F_{X}(\Delta, \dot{\Delta}, \dot{X}, \dot{\Theta}, \ddot{X}_{G}, \ddot{\Theta}) + \eta_{X}$$

$$-U_{\theta} = \dot{v}_{\Theta} = \ddot{\Theta} = F_{\Theta}(\Delta, \dot{\Delta}, \dot{X}, \dot{\Theta}, \ddot{X}_{G}, \ddot{\Theta}) + \eta_{\Theta}$$

In 3D system, we have independent coordinates $\Delta, \dot{\Delta}, \dot{X}, \dot{\Theta}$. Consider the second derivative in the eq. Salez2015.51, we could obtain

$$U_{z} = \frac{8\Delta^{9/2} + 2\xi \left(-\Delta\kappa v_{X}^{2} + 4\Delta^{3}v_{z} + 21\kappa v_{z}^{2} + 2\Delta\kappa v_{X}v_{\theta} - \Delta\kappa v_{\theta}^{2}\right)}{8\Delta^{9/2} - 15\Delta\kappa\xi}$$

Then combine eqs Salez2015.50 and Salez2015.52, we could solve

$$U_{X} = \frac{\epsilon \xi \left(\kappa \left(16\Delta^{3} \epsilon \xi + \left(-24\Delta^{5/2} + 23\epsilon \kappa \xi\right) v_{z}\right) v_{\theta} + v_{X}\left(-4\epsilon \kappa^{2} \xi v_{z} + \left(6\Delta^{5/2} - \epsilon \kappa \xi\right)\left(16\Delta^{3} + 19\kappa v_{\theta}\right)\right)\right)}{36\left(4\Delta^{6} - \Delta^{7/2} \epsilon \kappa \xi\right)}$$

$$U_{\theta} = \frac{\epsilon \xi \left(\left(16\Delta^{3}\left(12\Delta^{5/2} - \epsilon \kappa \xi\right) + \kappa \left(228\Delta^{5/2} - 23\epsilon \kappa \xi\right) v_{z}\right) v_{\theta} + \kappa v_{X}\left(\left(-48\Delta^{5/2} + 4\epsilon \kappa \xi\right) v_{z} + \epsilon \xi \left(16\Delta^{3} + 19\kappa v_{\theta}\right)\right)\right)}{36\left(4\Delta^{6} - \Delta^{7/2} \epsilon \kappa \xi\right)}$$

After some calculations with the help of *Mathematica*, we list all $\lambda_{\alpha\beta}$ and $\Gamma_{\alpha\beta\gamma}$

$$\lambda_{zz} = \frac{8\Delta^{2}\xi}{8\Delta^{7/2} - 15\kappa\xi}$$

$$\lambda_{xx} = -\frac{4\epsilon\xi\left(-6\Delta^{5/2} + \epsilon\kappa\xi\right)}{36\Delta^{3} - 9\sqrt{\Delta}\epsilon\kappa\xi}$$

$$\lambda_{\theta\theta} = -\frac{4\epsilon\xi\left(-12\Delta^{5/2} + \epsilon\kappa\xi\right)}{36\Delta^{3} - 9\sqrt{\Delta}\epsilon\kappa\xi}$$

$$\Gamma_{zzz} = \frac{42\kappa\xi}{8\Delta^{9/2} - 15\Delta\kappa\xi}$$

$$\Gamma_{xzx} = \Gamma_{zxx} = \frac{2\kappa\xi}{-8\Delta^{7/2} + 15\kappa\xi}$$

$$\Gamma_{\theta z\theta} = \Gamma_{z\theta\theta} = \frac{2\kappa\xi}{-8\Delta^{7/2} + 15\kappa\xi}$$

$$\begin{split} \Gamma_{\text{XXZ}} &= \frac{1}{9} \kappa \xi \left(\frac{18}{8\Delta^{7/2} - 15\kappa \xi} + \frac{\epsilon^2 \kappa \xi}{-4\Delta^6 + \Delta^{7/2} \epsilon \kappa \xi} \right) \\ \Gamma_{\text{XX}\theta} &= \frac{19 \epsilon \kappa \xi \left(-6\Delta^{5/2} + \epsilon \kappa \xi \right)}{-144\Delta^6 + 36\Delta^{7/2} \epsilon \kappa \xi} \\ \Gamma_{\theta\theta\text{X}} &= \frac{19 \epsilon^2 \kappa^2 \xi^2}{36 \left(4\Delta^6 - \Delta^{7/2} \epsilon \kappa \xi \right)} \\ \Gamma_{\theta\theta\text{Z}} &= \frac{\epsilon \kappa \xi \left(-228\Delta^{5/2} + 23\epsilon \kappa \xi \right)}{-144\Delta^6 + 36\Delta^{7/2} \epsilon \kappa \xi} \\ \Gamma_{\text{ZX}\theta} &= \Gamma_{\text{XZ}\theta} = -\frac{25}{18\Delta} - \frac{19\epsilon \kappa \xi}{72\Delta^{7/2}} + \frac{2\kappa \xi}{8\Delta^{7/2} - 15\kappa \xi} + \frac{50\Delta^{3/2}}{36\Delta^{5/2} - 9\epsilon \kappa \xi} \\ \Gamma_{\text{Z}\theta\text{X}} &= \Gamma_{\theta\text{ZX}} = \frac{25}{18\Delta} + \frac{19\epsilon \kappa \xi}{72\Delta^{7/2}} + \frac{2\kappa \xi}{8\Delta^{7/2} - 15\kappa \xi} + \frac{50\Delta^{3/2}}{9 \left(-4\Delta^{5/2} + \epsilon \kappa \xi \right)} \\ \Gamma_{\text{X}\theta\text{Z}} &= \Gamma_{\theta\text{XZ}} = \frac{2}{15} - \frac{1}{2\Delta} - \frac{3\epsilon \kappa \xi}{8\Delta^{7/2}} + \frac{16}{15 \left(-8 + \frac{15\kappa \xi}{\Delta^{7/2}} \right)} + \frac{1}{2\Delta - \frac{\epsilon \kappa \xi}{2\Delta^{3/2}}} \end{split}$$