

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2008; month=8; day=29; hr=14; min=36; sec=42; ms=293;]

=====

Application No: 10501566 Version No: 4.0

Input Set:

Output Set:

Started: 2008-07-28 16:24:05.950
Finished: 2008-07-28 16:24:09.991
Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 41 ms
Total Warnings: 178
Total Errors: 0
No. of SeqIDs Defined: 178
Actual SeqID Count: 178

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (1)
W 402	Undefined organism found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 402	Undefined organism found in <213> in SEQ ID (11)
W 402	Undefined organism found in <213> in SEQ ID (12)
W 402	Undefined organism found in <213> in SEQ ID (13)
W 402	Undefined organism found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 402	Undefined organism found in <213> in SEQ ID (18)
W 402	Undefined organism found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2008-07-28 16:24:05.950
Finished: 2008-07-28 16:24:09.991
Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 41 ms
Total Warnings: 178
Total Errors: 0
No. of SeqIDs Defined: 178
Actual SeqID Count: 178

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (21)
W 213	Artificial or Unknown found in <213> in SEQ ID (22)
W 213	Artificial or Unknown found in <213> in SEQ ID (23)
W 213	Artificial or Unknown found in <213> in SEQ ID (24)
W 213	Artificial or Unknown found in <213> in SEQ ID (25)
W 213	Artificial or Unknown found in <213> in SEQ ID (26)
W 213	Artificial or Unknown found in <213> in SEQ ID (27)
W 213	Artificial or Unknown found in <213> in SEQ ID (28) This error has occurred more than 20 times, will not be displayed
W 402	Undefined organism found in <213> in SEQ ID (39)
W 402	Undefined organism found in <213> in SEQ ID (40)
W 402	Undefined organism found in <213> in SEQ ID (41)
W 402	Undefined organism found in <213> in SEQ ID (42)
W 402	Undefined organism found in <213> in SEQ ID (43)
W 402	Undefined organism found in <213> in SEQ ID (60)
W 402	Undefined organism found in <213> in SEQ ID (61)
W 402	Undefined organism found in <213> in SEQ ID (62)
W 402	Undefined organism found in <213> in SEQ ID (66)
W 402	Undefined organism found in <213> in SEQ ID (67)
W 402	Undefined organism found in <213> in SEQ ID (97)
W 402	Undefined organism found in <213> in SEQ ID (98) This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> UNO, Yukio
HIKICHI, Yukiko
SAGIYA, Yoji
NAKANISHI, Atsushi

<120> Human Sodium-Dependent Bile Acid Transporter Proteins

<130> P04-068US

<140> 10501566
<141> 2004-07-15

<150> JP 2002-10840

<151> 2002-01-18

<150> JP 2002-15995

<151> 2002-01-24

<150> JP 2002-25662

<151> 2002-02-01

<150> JP 2002-25706

<151> 2002-02-01

<150> JP 2002-30015

<151> 2002-02-06

<150> JP 2002-33111

<151> 2002-02-08

<150> JP 2002-45058

<151> 2002-02-21

<150> JP 2002-46951

<151> 2002-02-22

<160> 178

<170> PatentIn version 3.4

<210> 1

<211> 377

<212> PRT

<213> Human

<400> 1

Met Arg Ala Asn Cys Ser Ser Ser Ser Ala Cys Pro Ala Asn Ser Ser

5

10

15

Glu Glu Glu Leu Pro Val Gly Leu Glu Val His Gly Asn Leu Glu Leu

20

25

30

Val Phe Thr Val Val Ser Thr Val Met Met Gly Leu Leu Met Phe Ser

35

40

45

Leu Gly Cys Ser Val Glu Ile Arg Lys Leu Trp Ser His Ile Arg Arg

50

55

60

Pro Trp Gly Ile Ala Val Gly Leu Leu Cys Gln Phe Gly Leu Met Pro

65	70	75	80
Phe	Thr Ala Tyr Leu Leu Ala Ile Ser Phe Ser Leu Lys Pro Val Gln		
	85	90	95
Ala	Ile Ala Val Leu Ile Met Gly Cys Cys Pro Gly Gly Thr Ile Ser		
	100	105	110
Asn	Ile Phe Thr Phe Trp Val Asp Gly Asp Met Asp Leu Ser Ile Ser		
	115	120	125
Met	Thr Thr Cys Ser Thr Val Ala Ala Leu Gly Met Met Pro Leu Cys		
	130	135	140
Ile	Tyr Leu Tyr Thr Trp Ser Trp Ser Leu Gln Gln Asn Leu Thr Ile		
	145	150	155
Pro	Tyr Gln Asn Ile Gly Ile Thr Leu Val Cys Leu Thr Ile Pro Val		
	165	170	175
Ala	Phe Gly Val Tyr Val Asn Tyr Arg Trp Pro Lys Gln Ser Lys Ile		
	180	185	190
Ile	Leu Lys Ile Gly Ala Val Val Gly Gly Val Leu Leu Leu Val Val		
	195	200	205
Ala	Val Ala Gly Val Val Leu Ala Lys Gly Ser Trp Asn Ser Asp Ile		
	210	215	220
Thr	Leu Leu Thr Ile Ser Phe Ile Phe Pro Leu Ile Gly His Val Thr		
	225	230	235
Gly	Phe Leu Leu Ala Leu Phe Thr His Gln Ser Trp Gln Arg Cys Arg		
	245	250	255
Thr	Ile Ser Leu Glu Thr Gly Ala Gln Asn Ile Gln Met Cys Ile Thr		
	260	265	270
Met	Leu Gln Leu Ser Phe Thr Ala Glu His Leu Val Gln Met Leu Ser		
	275	280	285
Phe	Pro Leu Ala Tyr Gly Leu Phe Gln Leu Ile Asp Gly Phe Leu Ile		
	290	295	300
Val	Ala Ala Tyr Gln Thr Tyr Lys Arg Arg Leu Lys Asn Lys His Gly		
	305	310	315
Lys	Lys Asn Ser Gly Cys Thr Glu Val Cys His Thr Arg Lys Ser Thr		
	325	330	335
Ser	Ser Arg Glu Thr Asn Ala Phe Leu Glu Val Asn Glu Glu Gly Ala		
	340	345	350
Ile	Thr Pro Gly Pro Pro Gly Pro Met Asp Cys His Arg Ala Leu Glu		
	355	360	365
Pro	Val Gly His Ile Thr Ser Cys Glu		
	370	375	

<210> 2

<211> 1131

<212> DNA

<213> Human

<400> 2

atgagagcca	attgttccag	cagctcagcc	tgccttgcca	acagttcaga	ggaggagctg	60
ccagtggac	tggaggtgca	tggaaacctg	gagctcggtt	tcacagtgg	gtccactgtg	120
atgatggggc	tgctcatgtt	ctctttggga	tgttccgtgg	agatccggaa	gctgtggctcg	180
cacatcagga	gaccctgggg	cattgctgtg	ggactgctct	gccagttgg	gctcatgcct	240
tttacagctt	atctctggc	cattagctt	tctctgaagc	cagtccaagc	tattgctgtt	300
ctccatcatgg	gctgctgccc	ggggggcacc	atctctaaca	ttttcacctt	ctgggttgat	360
ggagatatgg	atctcagcat	cagtatgaca	acctgttcca	ccgtggccgc	cctggaaatg	420
atgccactct	gcatttatct	ctacacctgg	tcttgagtc	ttcagcagaa	tctcaccatt	480
ccttatcaga	acataggaat	tacccttgg	tgcctgacca	ttcctgtggc	ctttgggtgtt	540
tatgtgaatt	acagatggcc	aaaacaatcc	aaaatcattc	tcaagattgg	ggccgttgtt	600
ggtgggggtcc	tccttctgg	ggtcgcagtt	gctgggtgtgg	tcctggcgaa	aggatcttgg	660

aattcagaca tcacccttct gaccatcagt ttcatcttc ctttgattgg ccatgtcacg	720
ggtttctgc tggacttt tacccaccag tcttggaaa ggtgcaggac aatttccta	780
gaaactggag ctcagaatat tcagatgtgc atcaccatgc tccagttatc tttcaactgct	840
gagcacttgg tccagatgtt gagtttcca ctggcctatg gactcttcca gctgataaat	900
ggatttctta ttgtgcagc atatcagacg tacaagagga gattgaagaa caaacatgga	960
aaaaagaact caggttgcac agaagtctgc catacgagga aatcgacttc ttccagagag	1020
accaatgcct tcttggaggt gaatgaagaa ggtgccatca ctccctggcc accagggccca	1080
atggattgcc acagggctct cgagccagtt ggccacatca cttcatgtga a	1131

<210> 3
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 3
aatgctgcct taaggagatg agga 24

<210> 4
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 4
cactggccct accaacaaga ttca 24

<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 5
atgagagcca attgtccag cagc 24

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 6
ccagccagct agtccctgct attc 24

<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence

<220>		
<223> Primer		
<400> 7		
atttaggtga cactata	18	
<210> 8		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 8		
aatacgaactc actataagg	19	
<210> 9		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 9		
ttcgccagga ccacaccaggc aact	24	
<210> 10		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 10		
agttgctggt gtggtcctgg cgaa	24	
<210> 11		
<211> 1152		
<212> DNA		
<213> Human		
<400> 11		
atgagagcca attgttccag cagctcagcc tgccctgcca acagttcaga ggaggagctg	60	
ccagtggac tggaggtgca tggaaacctg gagctcggtt tcacagtggt gtccactgtg	120	
atgatggggc tgctcatgtt ctcttggga tggccgtgg agatccggaa gctgtggctcg	180	
cacatcagga gaccctgggg cattgctgtg ggactgctct gccagttgg gctcatgcct	240	
tttacagctt atctcctggc cattagctt tctctgaagc cagtccaaagc tattgctgtt	300	
ctccatcatgg gctgctgccc gggggggcacc atctctaaca ttttcacctt ctgggttgat	360	
ggagatatgg atctcagcat cagtatgaca acctgttcca ccgtggccgc cctggaaatg	420	
atgccactct gcatttatct ctacacctgg tccctggagtc ttccagcagaa tctcaccatt	480	
ccttatcaga acataggaat tacccttgg tgcctgacca ttccctgtggc ctttgggtgtt	540	
tatgtgaatt acagatggcc aaaacaatcc aaaatcattc tcaagattgg ggccgttgg	600	
ggtgggggtcc tccttctggt ggtcgca gtttgggtgttgg tcctggcgaa aggatcttgg	660	

aattcagaca tcacccttct gaccatcagt ttcatcttgc ctttgattgg ccatgtcacg 720
ggtttctgc tggacttt tacccaccag tcttggaaa ggtgcaggac aatttccta 780
gaaactggag ctcagaatat tcagatgtgc atcaccatgc tccagttatc tttcaactgct 840
gagcacttgg tccagatgtt gagtttccca ctggcctatg gactcttcca gctgataat 900
ggatttctta ttgttgcagc atatcagacg tacaagagga gattgaagaa caaacatgga 960
aaaaagaact caggttgcac agaagtctgc catacgagga aatcgacttc ttccagagag 1020
accaatgcct tcttgaggt gaatgaagaa ggtgccatca ctccctggcc accagggcc 1080
atggattgcc acagggtctc cgagccagtt ggccacatca cttcatgtga atagcaggga 1140
ctagctggct gg 1152

<210> 12
<211> 1152
<212> DNA
<213> Human

<400> 12
atgagagcca attgttccag cagctcagcc tgccctgcca acagttcaga ggaggagctg 60
ccagtggac tggaggtgca tggaaacactg gagctcggtt tcacagtggt gtccactgtg 120
atgatggggc tgctcatgtt ctcttggga tggccgtgg agatccggaa gctgtggctg 180
cacatcagga gaccctgggg cattgtgtg ggactgtct gccagttgg gctcatgcct 240
tttacagctt atctcttgc cattagctt tctctgaagc cagtccaaagc tattgtgtt 300
ctcatcatgg gctgtgtccc gggggggcacc atctctaaccg ttttcacctt ctgggttgat 360
ggagatatgg atctcagcat cagtatgaca acctgttcca ccgtggccgc cctggaaatg 420
atgccactct gcatttatct ctacacctgg tccctggagtc ttccagcagaa tctcaccatt 480
ccttatcaga acataggaat tacccttgtt tgcctgacca ttccctgtggc ctttgggtgtc 540
tatgtgaatt acagatggcc aaaacaatcc aaaatcattc tcaagattgg ggccgttgg 600
ggtgggggtcc tccttctggt ggtcgccagg tctgggtgtgg tccctggcgaa aggatcttgg 660
aattcagaca tcacccttct gaccatcagt ttcatcttgc ctttgattgg ccatgtcacg 720
ggtttctgc tggacttt tacccaccag tcttggaaa ggtgcaggac aatttccta 780
gaaactggag ctcagaatat tcagatgtgc atcaccatgc tccagttatc tttcaactgct 840
aaaaagaact caggttgcac agaagtctgc catacgagga aatcgacttc ttccagagag 1020
accaatgcct tcttgaggt gaatgaagaa ggtgccatca ctccctggcc accagggcc 1080
atggattgcc acagggtctc cgagccagtt ggccacatca cttcatgtga atagcaggga 1140
ctagctggct gg 1152

<210> 13
<211> 1131
<212> DNA
<213> Human

<400> 13
atgagagcca attgttccag cagctcagcc tgccctgcca acagttcaga ggaggagctg 60
ccagtggac tggaggtgca tggaaacactg gagctcggtt tcacagtggt gtccactgtg 120
atgatggggc tgctcatgtt ctcttggga tggccgtgg agatccggaa gctgtggctg 180
cacatcagga gaccctgggg cattgtgtg ggactgtct gccagttgg gctcatgcct 240
tttacagctt atctcttgc cattagctt tctctgaagc cagtccaaagc tattgtgtt 300
ctcatcatgg gctgtgtccc gggggggcacc atctctaaccg ttttcacctt ctgggttgat 360
ggagatatgg atctcagcat cagtatgaca acctgttcca ccgtggccgc cctggaaatg 420
atgccactct gcatttatct ctacacctgg tccctggagtc ttccagcagaa tctcaccatt 480
ccttatcaga acataggaat tacccttgtt tgcctgacca ttccctgtggc ctttgggtgtc 540
tatgtgaatt acagatggcc aaaacaatcc aaaatcattc tcaagattgg ggccgttgg 600
ggtgggggtcc tccttctggt ggtcgccagg tctgggtgtgg tccctggcgaa aggatcttgg 660
aattcagaca tcacccttct gaccatcagt ttcatcttgc ctttgattgg ccatgtcacg 720
ggtttctgc tggacttt tacccaccag tcttggaaa ggtgcaggac aatttccta 780
gaaactggag ctcagaatat tcagatgtgc atcaccatgc tccagttatc tttcaactgct 840

gagcaactgg tccagatgtt gagttccca ctggcctatg gactcttcca gctgatagat	900
ggatttcta ttgttgacgc atatcagacg tacaagagga gattgaagaa caaacatgga	960
aaaaagaact cagggtgcac agaagtctgc catacgagga aatcgacttc ttccagagag	1020
accaatgcct tcttggaggt gaatgaagaa ggtgccatca ctctggcc accagggcca	1080
atggattgcc acagggtctt cgagccagtt ggccacatca cttcatgtga a	1131

<210> 14

<211> 377

<212> PRT

<213> Human

<400> 14

355	360	365
Pro Val Gly His Ile Thr Ser Cys Glu		
370	375	
<210> 15		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 15		
tctgccatac gagggaaatcg a		21
<210> 16		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 16		
caggagtgat ggcacccat tc		22
<210> 17		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Probe		
<400> 17		
tcttccagag agaccaatgc cttcttgg		28
<210> 18		
<211> 798		
<212> PRT		
<213> Human		
<400> 18		
Met Ala Leu Gln Met Phe Val Thr Tyr Ser Pro Trp Asn Cys Leu Leu		
5	10	15
Leu Leu Val Ala Leu Glu Cys Ser Glu Ala Ser Ser Asp Leu Asn Glu		
20	25	30
Ser Ala Asn Ser Thr Ala Gln Tyr Ala Ser Asn Ala Trp Phe Ala Ala		
35	40	45
Ala Ser Ser Glu Pro Glu Glu Gly Ile Ser Val Phe Glu Leu Asp Tyr		
50	55	60
Asp Tyr Val Gln Ile Pro Tyr Glu Val Thr Leu Trp Ile Leu Leu Ala		
65	70	75
80		
Ser Leu Ala Lys Ile Gly Phe His Leu Tyr His Arg Leu Pro Gly Leu		
85	90	95
Met Pro Glu Ser Cys Leu Leu Ile Leu Val Gly Ala Leu Val Gly Gly		
100	105	110

Ile Ile Phe Gly Thr Asp His Lys Ser Pro Pro Val Met Asp Ser Ser
115 120 125
Ile Tyr Phe Leu Tyr Leu Leu Pro Pro Ile Val Leu Glu Gly Gly Tyr
130 135 140
Phe Met Pro Thr Arg Pro Phe Phe Glu Asn Ile Gly Ser Ile Leu Trp
145 150 155 160
Trp Ala Val Leu Gly Ala Leu Asn Ala Leu Gly Ile Gly Leu Ser
165 170 175
Leu Tyr Leu Ile Cys Gln Val Lys Ala Phe Gly Leu Gly Asp Val Asn
180 185 190
Leu Leu Gln Asn Leu Leu Phe Gly Ser Leu Ile Ser Ala Val Asp Pro
195 200 205
Val Ala Val Leu Ala Val Phe Glu Glu Ala Arg Val Asn Glu Gln Leu
210 215 220
Tyr Met Met Ile Phe Gly Glu Ala Leu Leu Asn Asp Gly Ile Thr Val
225 230 235 240
Val Leu Tyr Asn Met Leu Ile Ala Phe Thr Lys Met His Lys Phe Glu
245 250 255
Asp Ile Glu Thr Val Asp Ile Leu Ala Gly Cys Ala Arg Phe Ile Val
260 265 270
Val Gly Leu Gly Gly Val Leu Phe Gly Ile Val Phe Gly Phe Ile Ser
275 280 285
Ala Phe Ile Thr Arg Phe Thr Gln Asn Ile Ser Ala Ile Glu Pro Leu
290 295 300
Ile Val Phe Met Phe Ser Tyr Leu Ser Tyr Leu Ala Ala Glu Thr Leu
305 310 315 320
Tyr Leu Ser Gly Ile Leu Ala Ile Thr Ala Cys Ala Val Thr Met Lys
325 330 335
Lys Tyr Val Glu Glu Asn Val Ser Gln Thr Ser Tyr Thr Thr Ile Lys
340 345 350
Tyr Phe Met Lys Met Leu Ser Ser Val Ser Glu Thr Leu Ile Phe Ile
355 360 365
Phe Met Gly Val Ser Thr Val Gly Lys Asn His Glu Trp Asn Trp Ala
370 375 380
Phe Ile Cys Phe Thr Leu Ala Phe Cys Gln Ile Trp Arg Ala Ile Ser
385 390 395 400
Val Phe Ala Leu Phe Tyr Ile Ser Asn Gln Phe Arg Thr Phe Pro Phe
405