Monte Carlo Integration: Direct Lighting

Adam Mally CIS 560 Spring 2015 University of Pennsylvania

Monte Carlo Path Tracer vs Ray Tracer

- MCPT attempts to solve the lighting equation for all visible points in the scene
- Cast many, many rays per pixel in order to gather enough lighting information
- Effects like caustics, soft shadows, anti-aliasing, and depth of field are essentially free
- Without parallelization and other optimizations, converges to a useful image incredibly slowly

- RT casts one ray per pixel (excluding anti-aliasing)
- Makes physically incorrect assumptions about light transportation in order to ensure a fast run time
- Must add special computations to support/fake effects like caustics and depth of field
- Produces a usable image in a relatively short time, even if the image is not physically accurate

Light Transport Equation - Integral

$$L_{o}(p,\omega_{o}) = L_{E}(p,\omega_{o}) + \int_{S} f(p,\omega_{o},\omega_{i})L_{i}(p,\omega_{i}) V(p',p) \text{ absdot}(\omega_{i}, N)$$

$$d\omega_{i}$$

- L_0 : radiance from a point p and direction ω_0 .
- L_F: emitted radiance from a point (nonzero only if p is a light source; all other light is *reflected*)
- f: BRDF of surface at p
- L: radiance at some point x in direction ω_i .
- V: visibility between p' and p (1 when unobstructed, 0 otherwise)
- We incorporate the dot product of ω_i and N due to Lambert's law
- S is the sphere of all possible ω, that can reach p

Light Transport Equation - Sum

$$L_{o}(p,\omega_{o}) = L_{E}(p,\omega_{o}) + \Sigma_{o}(f(p,\omega_{o},\omega_{i})L_{i}(p,\omega_{i}) V(p',p) absdot(\omega_{i}, N)$$

$$d\omega_{i}$$

- L_o : radiance from a point p and direction ω_o .
- L_E: emitted radiance from a point (nonzero only if p is a light source; all other light is *reflected*)
- f: BRDF of surface at p
- L: radiance at some point x in direction ω_i .
- V: visibility between p' and p (1 when unobstructed, 0 otherwise)
- We incorporate the dot product of ω_i and N due to Lambert's law
- For some discrete subset of S, choose n ω to sample and average their reflected light energies
 - The more samples taken, the closer the average is to being physically accurate

Expected Value

- We use Monte Carlo integration to estimate the expected value of the Light Transport Equation (which is an integral)
- The expected value of of a function f is the average value of f over some distribution of values p(x) over its domain D
 - $\circ \quad E_p[f(x)] = \int_D f(x)p(x)dx$
 - Note that p(x) must integrate to 1 over the domain D since it is a probability distribution function
 - \circ This means p(x) weights the result of f(x) for any given x while evaluating this integral

Monte Carlo Estimator

- Let's say we want to evaluate some integral $\int_a^b f(x) dx$
- Given a set of uniform random variables X_i in the range [a,b], the Monte Carlo estimator says the expected value of our estimator is equal to the integral of f(x)
- Our estimator is:

$$\circ F_N = (b - a)/N * \sum_{i=1}^N f(X_i)$$

- Whis is this the case?
 - o p(x) must equal 1/(b-a) since it must be a constant and integrate to 1 over the domain [a,b]
 - With algebraic manipulation, we see the following:

$$\circ \quad E[F_{N}] = E[(b - a)/N * \sum_{i=1}^{N} f(X_{i})]$$

$$\circ \quad E[F_N] = (b - a)/N * \sum_{i=1}^N E[f(X_i)]$$

$$\circ \quad E[F_N] = (b - a)/N * \sum_{i=1}^N \int_a^b f(x) p(x) dx$$

$$\circ \quad E[F_N] = 1/N * \sum_{i=1}^N \int_a^b f(x) dx$$

$$\circ \quad E[F_N] = \int_a^b f(x) dx$$

Monte Carlo Estimator

- What if the set of random variables we use to estimate E[f(x)] is **not** uniform?
 - o e.g. if we're using importance sampling
- Our estimator now becomes:
 - $\circ F_N = 1/N \sum_{i=1}^N f(X_i)/p(X_i)$
 - Our only limitation is that $p(X_i)$ be nonzero wherever $f(X_i) > 0$
- Let's prove that this still evaluates to the integral of f(x):
 - $\circ E[F_N] = E[1/N * \sum_{i=1}^{N} f(X_i)/p(X_i)]$
 - $\circ \quad E[F_N] = 1/N * \sum_{i=1}^{N} \int_a^b (f(x)/p(x))p(x)dx$
 - $\circ \quad E[F_N] = 1/N * \sum_{i=1}^N \int_a^b f(x) dx$
 - $\circ \quad E[F_N] = \int_a^b f(x) dx$

What is a BRDF?

- A function that evaluates the energy emitted along ray ω_0 given a point of intersection p and the direction from which the incoming light emits, ω_1
- Entirely dependent on the attributes of the material sampled at point p
- Examples:
 - \circ A Lambertian BRDF simply takes the material's base color and divides it by π
 - Since we integrate over the entire *hemisphere* of visible directions from \mathbf{p} , we need to divide by π so that the integral evaluates to the material's base color
 - \circ A BRDF describing perfect specular reflection would be a discontinuous function that returns 0 (black) for all pairs of ω_0 and ω_1 that are not reflections of one another around the normal at p

Monte Carlo Path Tracer - Naive Method

- For each pixel, cast N rays through N different points within the pixel
- For each camera ray, get the intersection with the scene
- If the surface is a light source, return its emitted light.
- If the surface is **not** a light source, randomly reflect the camera ray within the hemisphere of possible directions around the point of intersection
 - Recursively trace this ray until you reach some depth limit
 - The recursive tracing is necessary to solve for the $L_i(p, \omega_i)$ portion of the LTE
- This method is the least biased solution to the Light Transport Equation, but it will also take the longest to converge to a usable image
 - i.e. you'll need to take so many ray samples per pixel that the cost is too prohibitive to use

Monte Carlo Path Tracer - Importance Sampling

- There are several methods we can employ to reduce the number of samples needed to produce a "converged" image
- **Direct Light Sampling:** Light sources are the most important elements in a rendered scene; with no light, there's no image!
 - \circ For some subset of the rays ω_{i} , select directions such that each ω_{i} intersects a given light source at some point
- BRDF Sampling: Sample ray directions that have a higher contribution to the color reflected along $\omega_{\rm c}$
 - Very useful if you have a BRDF with a very narrow set of contributing rays, e.g. a perfectly specular reflective surface

Estimating Direct Lighting

- One method of importance sampling is to estimate how much light travels from an emissive surface and **directly** reaches a given point in the scene and is reflected back along ω_{n}
- For the purposes of illustration, let's assume there is exactly one light in this scene

$$L_{D}(p, \omega_{o}) = \int_{S} f(p, \omega_{o}, \omega_{i}) L_{d}(p, \omega_{i}) absdot(\omega_{i}, N) d\omega_{i}$$

To write this as an estimate, we need to compute:

```
L_{D}(p,\omega_{o}) = 1/N \sum_{j=1}^{N} (f(p,\omega_{o},\omega_{j})L_{d}(p,\omega_{j})absdot(\omega_{j}, N)/p(\omega_{j}))
```

- \circ $p(\omega_j)$ is the probability that ω_j will contribute light
- \circ **f(p,0,0,0)** is the BRDF of our point
- \circ $L_d(p, \omega_j)$ is the light directly reaching p from direction ω_j
- We want to reduce the variance in our estimates, so we will use importance sampling to choose our various ω_{i}

For clarity: Direct lighting example

Direct lighting ONLY

Direct + indirect lighting

Image source: yiningkarlli.com

Multiple Importance Sampling for DLE

- Since it would be difficult to find a function that matches the PDFs of the light source and the BRDF of our surface point, we will importance sample each PDF separately and weight our results
- Depending on the characteristics of the light and BRDF, one of these sampling methods may be far more effective than the other
- Examples:
 - When a BRDF is more specular, sampling only the light's PDF makes it less likely that a large light will contribute to its color (left image)
 - When a BRDF is more diffuse, sampling only the **BRDF's PDF** makes it less likely that small lights will contribute to its color (right image)

Multiple Importance Sampling for DLE

- Since each sampling method is effective in different scenarios, they will produce a high amount of **variance** in our image if not weighted properly
- Since we are sampling two functions (let's call them f(x) and g(x)) and have a different importance sampling strategy for each, normally we'd have to choose one strategy over the other
 - \circ Choosing a single strategy will often give poor results for f(x) or g(x)
- Simply taking results from our estimator using both sampling methods and averaging the results won't work; variance is *additive*, so it can't be "averaged out"
- So, we need to weight our samples so that they don't contribute too much to our result when the sampling density does not match the shape of our integrand
- Two such weighting methods are known as the balance heuristic and the power heuristic

MIS: The Balance Heuristic

- If two sampling functions p_f and p_g are used to estimate the value of $\int f(x)g(x)dx$, our Monte Carlo estimator becomes:
 - $1/n_f \sum_{j=1}^{n_f} f(X_j) g(X_j) w_f(X_j) / p_f(X_j) + 1/n_g \sum_{j=1}^{n_g} f(Y_j) g(Y_j) w_g(Y_j) / p_g(Y_j)$ $n_f \text{ is the number of samples taken from the distribution method}$
 - n_f is the number of samples taken from the distribution method p_f , and n_g is the number of samples taken from the distribution method n_g
 - w_f and w_g are special weighting functions chosen such that the value of this estimator is the value of the integral $\int f(x)g(x)dx$
- If we use the balance heuristic as w_f and w_g , we get:
 - $w_f = n_f p_f(x) / (n_f p_f(x) + n_q p_q(x))$
 - $o w_{\mathbf{q}} = n_{\mathbf{q}} \mathbf{p}_{\mathbf{q}}(\mathbf{x}) / (n_{\mathbf{p}} \mathbf{p}_{\mathbf{q}}(\mathbf{x}) + n_{\mathbf{q}} \mathbf{p}_{\mathbf{q}}(\mathbf{x}))$
- Why does this work? Let's see on the next slide

MIS: The Balance Heuristic

- $W_f = n_f p_f(x) / (n_f p_f(x) + n_g p_g(x))$ $W_g = n_g p_g(x) / (n_f p_f(x) + n_g p_g(x))$
- Let's consider a case in which the values of p(x) and f(x) are low, but g(x)(x) is high
 - With standard importance sampling, $f(x)g(x)/p_f(x)$ will have a high value because p(x) is low and g(x) is high
 - \circ With the balance heuristic using f(x), our importance sampling formula becomes:
 - $(x)g(x)n_{p_{f}}(x)/(p_{f}(x) * (n_{f}p_{f}(x) + n_{q}p_{q}(x)))$ $= f(x)g(x)n_f/((n_f p_f(x) + n_g p_g(x)))$
- As long as $p_{\sigma}(x)$ has a distribution that roughly matches g(x), then the denominator won't ever be too small when g(x) is large and $p_f(x)$ is small
- The power heuristic is a modification of the balance heuristic that reduces variance even further
- Just square the numerator and both halves of the denominator of the balance heuristic and you've got the power heuristic
- For a proof of why this is more effective, read Eric Veach's thesis

Estimating Direct Lighting: Light PDF Sampling

• Now, back to actually estimating the direct lighting at a point

$$L_{D}(p, \omega_{o}) = 1/N \sum_{j=1}^{N} (w(\omega_{j})f(p, \omega_{o}, \omega_{j})L_{d}(p, \omega_{j})absdot(\omega_{j}, N)/\rho(\omega_{j}))$$

- 1. Take one sample using the light source's sampling distribution
 - a. Ask the light source for a random point on its surface p'
 - b. Create a ray from p to p'. This will be our ω_{\bullet}
 - c. Ask the light for its PDF (we'll cover this shortly)
 - d. Check that the path from p to p' is unobstructed (if it is, our received light will be 0)
 - e. Calculate the light reaching p along ω_i (this is $L_d(p,\omega_i)$)
- 2. If the PDF is nonzero and the light emitted along ω_j is nonzero, then we know we can evaluate this function
- 3. Now evaluate f(p, 0, 0, 0)
 - a. If this BRDF is nonzero, then we can ask **p**'s material for its PDF as well so we can use it in our power heuristic
 - b. We can compute the power heuristic weight now that we have the light_pdf and brdf_pdf
- 4. Our (first) estimated light is equal to the formula at the top of the page for the ω_i computed using a sample on the light source

Estimating Direct Lighting: BRDF PDF Sampling

• Part two of estimating the direct lighting at a point

$$L_{D}(p,\omega_{o}) = 1/N \sum_{j=1}^{N} (w(\omega_{j})f(p,\omega_{o},\omega_{j})L_{d}(p,\omega_{j})absdot(\omega_{j},N)/p(\omega_{j}))$$

- 1. Take one sample using the BRDF's sampling distribution
 - a. Ask p's BRDF to create a ω_i from its PDF given ω_0
 - b. Store ω_{i} and the PDF of ω_{i}
 - c. Sample the BRDF using this ω_{i} and ω_{o}
- 2. If the PDF of the BRDF is nonzero and the light emitted along ω_j is nonzero, then we know we can evaluate this entire function
- 3. Now evaluate $L_d(p, \omega_j)$
 - a. If the PDF of our light is nonzero given ω_j, then we want to compute the power heuristic weight using the brdf_pdf and the light_pdf
- 4. If wj intersects the chosen light source at all, compute the portion of light from the source that travels along ω_i ; this is $L_d(p,\omega_i)$
- 5. Our (second) estimated light is equal to the formula at the top of the page for the ω_i computed using a sample on the BRDF
- 6. Sum the result of the previous slide with this slide's result for the final direct lighting computation

The PDF of a shape relative to a point

- We need to compute the portion of the hemisphere at p that can see the light source (or, more generally, any shape we want to sample directly)
- We begin by computing the PDF relative to the surface area of the shape
 - PDF_{area} = 1/area
- We need to convert this to a PDF relative to the shape's subtended solid angle with respect to p
 - $0 d\omega_{i}/dA = \cos(\theta)/r^{2}$
 - lacktriangle of is the angle between ω_j and the light's surface normal at the point where ω_j intersects it
 - r² is the distance between the point on the shape and p
- We need to divide 1/area by this factor to compute our solid angle PDF:
 - o pdf = $r^2/(cos(\theta)*area)$
- Let's use an intuitive example for why this works:
 - $\circ d\omega_i = dA\cos(\theta)/r^2$
 - o If the surface's normal is parallel to ω_j , then θ is 0. If r = 1, then $d\omega_j = dA$, and the equation holds
 - As the surface rotates away from ω_i , its solid angle decreases with $\cos(\theta)$

BRDFs: World vs Local Space

- In general, most contemporary path tracers evaluate the output of a BRDF using rays in "normal local space"
 - This treats the surface normal at the input intersection as always being <0 0 1>, so the input rays must be transformed accordingly
- Just like when computing the transformation matrix needed to use a normal map, one must calculate the tangent and bitangent at the point of intersection to make a world -> normal space matrix
- Let's review the normal map slides...

Normal maps

- To compute the matrix that transforms from texture space to object space, we need three vectors: a normal, a tangent, and a bitangent
 - These form a local orthonormal space
 - The same concept as creating the orientation matrix for a camera
- We already have our normal, which is the one we'd use if there were no normal map
- The tangent corresponds to our local X axis, so it should align with the U axis of our texture
 - Spherical example: For all points except the very poles of our sphere, we can get the tangent by crossing <0,1,0> with our normal (remember to normalize the result)
- Likewise, the bitangent corresponds to our local Y axis, so it should align with the V axis of our texture
 - Sphere: Get bitangent by crossing our normal with our tangent
- Our transformation matrix can now be created:

Image source: http://www.opengl-tutorial.org/wp-content/uploads/2011/05/NTBFromUVs.png

Normal maps

- Note that this matrix converts from world to local space, so we need to compute its **inverse!**
- Fortunately, because this is an orthogonal matrix (each column is perpendicular to one another) its inverse is equal to its transpose!
- So, the matrix we want is in fact:

T.x	B.x	N.x	0			T.y		
T.y	В.у	N.y	0		B.x	B.y N.z	B.y	0
T.z	B.z	N.z	0	=	N.z	N.z	N.z	0
0	0	0	1		0	0	0	1

Tangents and bitangents based on UVs

- In a general case, such as a triangle, we want to be able to compute our tangent and bitangent regardless of UV mapping technique
- If we know three points of a plane on our object and the UVs at those points (which gives us two changes in positions and UVs), we can solve a system of linear equations to compute our tangent and bitangent:

• B = $(\Delta Pos2 - \Delta UV2.x * T)/\Delta UV2.y$ OR $(\Delta Pos1 - \Delta UV1.x * T)/\Delta UV1.y$

• T = $(\Delta UV2.y\Delta Pos1 - \Delta UV1.y\Delta Pos2)$ / $(\Delta UV2.y\Delta UV1.x - \Delta UV1.y\Delta UV2.x)$

