Afinní podprostory vektorových prostorů

Afinní podprostory vektorového prostoru nad daným tělesem jsou jeho neprázdné podmnožiny charakterizované podmínkou, že s každými svými dvěma různými prvky obsahují i celou přímku jimi proloženou. Formálně jsou afinní podprostory vektorových prostorů definovány následovně.

Nechť $(\mathbf{V}, +, \cdot)$ je vektorový prostor nad tělesem $(T, +, \cdot)$. Řekneme, že neprázdná podmnožina $\mathcal{Q} \subseteq \mathbf{V}$ je **afinní podprostor** ve vektorovém prostoru $(\mathbf{V}, +, \cdot)$, splňuje-li podmínku

$$(\forall \mathbf{u}, \mathbf{v} \in \mathcal{Q})(\forall s, t \in T)(s + t = 1 \implies s \cdot \mathbf{u} + t \cdot \mathbf{v} \in \mathcal{Q}).$$

V následujícím textu uvedeme ještě jiný popis afinních podprostorů ve vektorovém prostoru charakterizující je, volně řečeno, jako podprostory daného vektorového prostoru posunuté obecně mimo počátek, tj. posunuté mimo jeho nulový vektor. K tomu budeme potřebovat následující pozorování, snadno odvoditelné z předchozí definice afinních podprostorů.

Je-li \mathcal{Q} afinní podprostor ve vektorovém prostoru $(\mathbf{V}, +, \cdot)$ nad tělesem $(T, +, \cdot)$, pak pro kterékoliv dva vektory $\mathbf{u}, \mathbf{v} \in \mathcal{Q}$ platí

$$\{\mathbf{x} - \mathbf{u} \mid \mathbf{x} \in \mathcal{Q}\} = \{\mathbf{y} - \mathbf{v} \mid \mathbf{y} \in \mathcal{Q}\}$$

a tato množina vektorů je vektorovým podprostorem ve vektorovém prostoru $(\mathbf{V}, +, \cdot)$.

Vektorový podprostor \mathbf{W} vektorového prostoru $(\mathbf{V},+,\cdot)$ zkonstruovaný k danému afinnímu popdprostoru \mathcal{Q} ve $(\mathbf{V},+,\cdot)$ v předchozím odstavci se nazývá **zaměření** afinního podprostoru \mathcal{Q} a užívá se pro něj označení $\mathcal{Z}(\mathcal{Q})$. Pro samotný afinní podprostor \mathcal{Q} pak odtud plyne, že $\mathcal{Q} = \{\mathbf{u} + \mathbf{w} \mid \mathbf{w} \in \mathbf{W}\}$, kde \mathbf{u} je kterýkoliv pevně zvolený vektor z \mathcal{Q} . Stručně tuto rovnost zapisujeme ve tvaru

$$Q = \mathbf{u} + \mathbf{W};$$

tato rovnost platí pro pro kterýkoliv vektor $\mathbf{u} \in \mathcal{Q}$.

Na druhé straně platí následující tvrzení. Nechť $(\mathbf{V},+,\cdot)$ je vektorový prostor nad tělesem $(T,+,\cdot)$. Nechť $\mathbf{W}\subseteq\mathbf{V}$ je libovolný vektorový podprostor vektorového prostoru $(\mathbf{V},+,\cdot)$ a nechť $\mathbf{u}\in\mathbf{V}$ je libovolný vektor. Pak množina $\mathcal{Q}=\{\mathbf{u}+\mathbf{w}\,|\,\mathbf{w}\in\mathbf{W}\}$, tj. množina $\mathcal{Q}=\mathbf{u}+\mathbf{W}$ je afinní podprostor ve vektorovém prostoru $(\mathbf{V},+,\cdot)$, jejímž zaměřením $\mathcal{Z}(\mathcal{Q})$ je vektorový podprostor \mathbf{W} .

Celkem tedy odtud plyne, že afinní podprostory ve vektorovém prostoru $(\mathbf{V},+,\cdot)$ nad tělesem $(T,+,\cdot)$ jsou právě množiny tvaru $\mathcal{Q}=\mathbf{u}+\mathbf{W}$, kde $\mathbf{u}\in\mathbf{V}$ je libovolný vektor a \mathbf{W} je libovolný vektorový podprostor vektorového prostoru $(\mathbf{V},+,\cdot)$. Přitom pro kterýkoliv vektor \mathbf{v} z $\mathbf{u}+\mathbf{W}$ platí rovnost $\mathbf{u}+\mathbf{W}=\mathbf{v}+\mathbf{W}$. Zaměření $\mathcal{Z}(\mathcal{Q})$ takového afinního podprostoru $\mathcal{Q}=\mathbf{u}+\mathbf{W}$ je určeno jednoznačně; pak totiž platí, že $\mathcal{Z}(\mathcal{Q})=\mathbf{W}$.

Dále budeme prvky afinních podprostorů vektorových prostorů značit velkými latinskými písmeny (zpravidla ze začátku abecedy) a budeme o nich mluvit jako o bodech daných vektorových prostorů. Takže afinní podprostory vektorových prostorů budeme zapisovat ve tvaru $Q = C + \mathbf{W}$, kde C je nějaký bod daného vektorového prostoru a $\mathbf{W} = \mathcal{Z}(Q)$ je zaměření dotyčného afinního podprostoru Q.

Buď nyní $(\mathbf{V}, +, \cdot)$ nenulový vektorový prostor konečné dimenze n nad tělesem $(T, +, \cdot)$. Buď dále $\mathcal{Q} = C + \mathbf{W}$ libovolný afinní podprostor ve vektorovém prostoru $(\mathbf{V}, +, \cdot)$, takže $C \in \mathbf{V}$ je libovolný bod a $\mathbf{W} \subseteq \mathbf{V}$ je libovolný vektorový podprostor. Nechť navíc \mathbf{W} je nenulový vektorový podprostor ve $(\mathbf{V}, +, \cdot)$. Buď $\alpha = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m)$ libovolná báze vektorového podprostoru \mathbf{W} , takže $1 \leq m \leq n$. Pak každý bod $X \in \mathcal{Q}$ lze psát ve tvaru

$$X = C + t_1 \mathbf{w}_1 + t_2 \mathbf{w}_2 + \dots + t_m \mathbf{w}_m$$

pro jednoznačně určená $t_1, t_2, \ldots, t_m \in T$. Popis bodů afinního podprostoru \mathcal{Q} v právě uvedeném tvaru se nazývá **parametrický popis** afinního podprostoru \mathcal{Q} . Obecněji obvykle stačí, je-li množina vektorů $\{\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m\}$ pouze množinou generátorů vektorového podprostoru \mathbf{W} . V takovém případě ale nemusí být hodnoty parametrů $t_1, t_2, \ldots, t_m \in T$ pro daný bod $X \in \mathcal{Q}$ ve výše uvedeném popisu určeny jednoznačně.

Buď opět $(\mathbf{V},+,\cdot)$ vektorový prostor nad tělesem $(T,+,\cdot)$. Buď $M\subseteq \mathbf{V}$ libovolná neprázdná podmnožina. Uvažme systém všech afinních podprostorů vektorového prostoru $(\mathbf{V},+,\cdot)$ obsahujících množinu M jako podmnožinu. Jedním z prvků tohoto systému je i prostor \mathbf{V} sám. Označme \mathcal{M} průnik tohoto neprázdného systému afinních podprostorů. Z definice afinních podprostorů plyne, že pak tento průnik \mathcal{M} je opět afinní podprostor vektorového prostoru $(\mathbf{V},+,\cdot)$, a přitom \mathcal{M} též obsahuje množinu M jako podmnožinu. Navíc \mathcal{M} je nejmenší afinní podprostor vektorového prostoru $(\mathbf{V},+,\cdot)$ vzhledem k inkluzi obsahující množinu M. Tento afinní podprostor \mathcal{M} se nazývá **afinní obal** podmnožiny M.

Je-li v předchozím odstavci $M \subseteq \mathbf{V}$ neprázdná konečná podmnožina, takže lze psát $M = \{A_0, A_1, A_2, \dots, A_k\}$, kde $k \geqslant 0$, pak afinní obal \mathcal{M} podmnožiny M v případě k = 0 je roven $\mathcal{M} = \{A_0\}$ a v případě $k \geqslant 1$ jsou $A_1 - A_0, A_2 - A_0, \dots, A_k - A_0$ vektory ze zaměření $\mathcal{Z}(\mathcal{M})$ afinního obalu \mathcal{M} podmnožiny M a samotný afinní obal \mathcal{M} podmnožiny M pak má parametrický popis ve tvaru

$$X = A_0 + t_1(A_1 - A_0) + t_2(A_2 - A_0) + \dots + t_m(A_k - A_0).$$

Nechť ještě jednou $(\mathbf{V}, +, \cdot)$ je nenulový vektorový prostor konečné dimenze n nad tělesem $(T, +, \cdot)$. Nechť $\alpha = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ je některá báze tohoto vektorového prostoru. Připomeňme, že pak zobrazení

$$\mathbf{V} \longrightarrow T^n$$

dané pro každý vektor $\mathbf{u} \in \mathbf{V}$ předpisem

$$\mathbf{u} \mapsto (\mathbf{u})_{\alpha},$$

tj. zobrazení přiřazující každému vektoru $\mathbf{u} \in \mathbf{V}$ uspořádanou n-tici $(\mathbf{u})_{\alpha}$ jeho souřadnic (s_1, s_2, \ldots, s_n) v bázi α (zapsanou jako sloupec), je izomorfismem vektorového prostoru $(\mathbf{V}, +, \cdot)$ na aritmetický vektorový prostor $(T^n, +, \cdot)$. Z tohoto důvodu se kvůli jednoduchosti budeme dále věnovat pouze afinním podprostorům aritmetických vektorových prostorů, tj. vektorových prostorů tvaru $(T^n, +, \cdot)$, kde $(T, +, \cdot)$ je těleso a n je nějaké přirozené číslo.

Buď $(T, +, \cdot)$ těleso. Buď $A = (a_{ij})$ matice typu m/n nad tělesem $(T, +, \cdot)$, buď **b** posloupnost (b_1, b_2, \ldots, b_m) prvků tělesa $(T, +, \cdot)$ zapsaná jako sloupec a buď **x** posloupnost neznámých (x_1, x_2, \ldots, x_n) zapsaná jako sloupec. Pak

$$A \cdot \mathbf{x} = \mathbf{b}$$

je soustava m lineárních rovnic o n neznámých nad tělesem $(T,+,\cdot)$. Je-li tato soustava lineárních rovnic řešitelná, pak množina $\mathcal Q$ všech řešení této soustavy lineárních rovnic tvoří afinní podprostor ve vektorovém prostoru $(T^n,+,\cdot)$. Přitom zaměřením $\mathcal Z(\mathcal Q)$ tohoto afinního podprostoru je vektorový podprostor vektorového prostoru $(T^n,+,\cdot)$ pozůstávající ze všech řešení zhomogenizované soustavy lineárních rovnic $A \cdot \mathbf x = \mathbf o$. Parametrický popis afinního podprostoru $\mathcal Q$ získáme následovně. Je-li $D \in T^n$ libovolný bod, který je řešením soustavy $A \cdot \mathbf x = \mathbf b$, a je-li $\alpha = (\mathbf w_1, \mathbf w_2, \dots, \mathbf w_k)$ libovolná báze vektorového podprostoru $\mathbf W \subseteq T^n$ všech řešení zhomogenizované soustavy lineárních rovnic $A \cdot \mathbf x = \mathbf o$, pak

$$X = D + t_1 \mathbf{w}_1 + t_2 \mathbf{w}_2 + \dots + t_k \mathbf{w}_k$$

je parametrický popis afinního podprostoru Q.

Platí ale i obrácené tvrzení. Buď opět $(T, +, \cdot)$ těleso. Pak pro libovolný afinní podprostor \mathcal{Q} ve vektorovém prostoru $(T^n, +, \cdot)$ existuje soustava lineárních rovnic $A \cdot \mathbf{x} = \mathbf{b}$ o n neznámých nad tělesem $(T, +, \cdot)$ taková, že množinou všech řešení této soustavy rovnic je právě afinní podprostor \mathcal{Q} . Uvedeme postup, jak najít tuto soustavu lineárních rovnic $A \cdot \mathbf{x} = \mathbf{b}$, jejíž množinou všech řešení je právě zadaný afinní podprostor \mathcal{Q} .

Nechť afinní podprostor \mathcal{Q} ve vektorovém prostoru $(T^n,+,\cdot)$ je zadán ve tvaru $\mathcal{Q}=C+\mathbf{W}$, kde $C\in\mathcal{Q}$ je libovolný bod a $\mathbf{W}\subseteq T^n$ je vektorový podprostor v $(T^n,+,\cdot)$, který je zaměřením afinního podprostoru \mathcal{Q} . Pro jednoduchost předpokládejme, že \mathbf{W} je nenulový podprostor a současně že $\mathbf{W}\neq T^n$. Nechť $\gamma=(\mathbf{f}_1,\mathbf{f}_2,\ldots,\mathbf{f}_k)$ je libovolná báze vektorového podprostoru \mathbf{W} . Takže pak máme 0< k< n a přitom

$$X = C + t_1 \mathbf{f}_1 + t_2 \mathbf{f}_2 + \dots + t_k \mathbf{f}_k$$

je parametrický popis takto zadaného afinního podprostoru Q. Vytvořme nyní nejprve matici B tak, že za její řádky vezmeme právě vektory $\mathbf{f}_1, \mathbf{f}_2, \ldots, \mathbf{f}_k$. Uvažujme homogenní soustavu lineárních rovnic

$$B \cdot \mathbf{x} = \mathbf{o}$$
.

Pak množinou všech řešení této homogenní soustavy je nějaký vektorový podprostor \mathbf{U} v $(T^n, +, \cdot)$ dimenze n-k. Vezměme dále libovolnou bázi $\delta = (\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_{n-k})$ podprostoru \mathbf{U} . Sestavme nyní matici A tak, že za její řádky vezmeme tentokrát vektory $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_{n-k}$. Takto vzniká homogenní soustava lineárních rovnic

$$A \cdot \mathbf{x} = \mathbf{o}$$
.

Množinou všech řešení této poslední homogenní soustavy je nějaký vektorový podprostor vektorového prostoru $(T^n, +, \cdot)$ dimenze k. Na základě právě popsané konstrukce není těžké nahlédnout, že tímto vektorovým podprostorem, který je množinou všech řešení posledně uvedené homogenní soustavy, je právě výchozí vektorový podprostor \mathbf{W} . Konečně určeme vektor \mathbf{b} z T^m zapsaný jako sloupec následovně. Vezměme původně zvolený bod C z Q a zapišme ho jako sloupec. Označme symbolem \mathbf{c} takto zapsaný bod C. Pak položme $\mathbf{b} = A \cdot \mathbf{c}$. Je jasné, že pak množinou všech řešení takto pořízené soustavy lineárních rovnic

$$A \cdot \mathbf{x} = \mathbf{b}$$

bude právě zadaný afinnní podprostor \mathcal{Q} . Toto vyjádření afinnního podprostoru \mathcal{Q} jakožto množiny všech řešení posledně uvedené soustavy lineárních rovnic se nazývá **implicitní popis** tohoto afinnního podprostoru \mathcal{Q} .

Buď $(T,+,\cdot)$ těleso a buď n přirozené číslo. Nechť \mathcal{P} a \mathcal{Q} jsou dva afinní podprostory ve vektorovém prostoru $(T^n,+,\cdot)$. Uvažme průnik $\mathcal{P} \cap \mathcal{Q}$ těchto afinních podprostorů. Pak jsou dvě možnosti: buďto $\mathcal{P} \cap \mathcal{Q} = \emptyset$, anebo $\mathcal{P} \cap \mathcal{Q} \neq \emptyset$. Pro nalezení průniku $\mathcal{P} \cap \mathcal{Q}$ je výhodné použití implicitního popisu afinních podprostorů \mathcal{P} a \mathcal{Q} . Jestliže $\mathcal{P} \cap \mathcal{Q} \neq \emptyset$, pak $\mathcal{P} \cap \mathcal{Q}$ je opět afinní podprostor v $(T^n,+,\cdot)$

a pro zaměření uvedených afinních podprostorů v tom případě platí $\mathcal{Z}(\mathcal{P} \cap \mathcal{Q}) = \mathcal{Z}(\mathcal{P}) \cap \mathcal{Z}(\mathcal{Q}).$

V situaci z předchozího odstavce definujme dále spojení $\mathcal{P} \sqcup \mathcal{Q}$ uvedených afinních podprostorů \mathcal{P} a \mathcal{Q} jako nejmenší afinní podprostor ve vektorovém prostoru $(T^n,+,\cdot)$ obsahující sjednocení $\mathcal{P} \cup \mathcal{Q}$ těchto afinních podprostorů. Pro určení tohoto spojení $\mathcal{P} \sqcup \mathcal{Q}$ je výhodné použití parametrického popisu afinních podprostorů \mathcal{P} a \mathcal{Q} . Jsou-li totiž afinní podprostory \mathcal{P} a \mathcal{Q} zadány ve tvaru $\mathcal{P} = C + \mathbf{U}$ a $\mathcal{Q} = D + \mathbf{W}$, kde $C \in \mathcal{P}$ a $D \in \mathcal{Q}$ jsou libovolné body a $\mathbf{U} = \mathcal{Z}(\mathcal{P})$ a $\mathbf{W} = \mathcal{Z}(\mathcal{Q})$, pak pro zaměření $\mathcal{Z}(\mathcal{P} \sqcup \mathcal{Q})$ spojení $\mathcal{P} \sqcup \mathcal{Q}$ uvedených afinních podprostorů platí $\mathcal{Z}(\mathcal{P} \sqcup \mathcal{Q}) = \langle D - C \rangle + \mathbf{U} + \mathbf{W}$, takže pak lze například psát $\mathcal{P} \sqcup \mathcal{Q} = C + \langle D - C \rangle + \mathbf{U} + \mathbf{W}$.