Multi-model Maintenance Scheduling

Christian Brunbjerg Jespersen

Technical University of Denmark

Introduction

Current Operation Research methods have proven difficult to implement in operational settings. The poster presents a methodology to decompose a large-scale decision process into a series of modules that each represents the decisions taken by each individual stakeholder making up the scheduling process.

Research Questions

- 1. How to implement a scheduling system that can coordinate in real-time?
- 2. How to coordinate multiple stakeholders in real-time that has different mathematical model requirements?
- 3. How to synchronize state across a high number of metaheuristics spread across different CPU threads?
- 4. How to intergrate metaheuristics into the workflow of a working scheduler?
- 5. Can you coordinate metaheuristics based on different mathematical models in real-time?
- 6. Which modern software architecture should be used to create scalabily metaheuristic based scheduling systems
- 7. Which of the latest techniques in modern software development can be utilized to integrate metaheuristics directly into a business' IT infrastructure
- 8. How to create modular algorithm components that can solve well defined decision problems while also integrating into a larger decision making process

9.

Solution Method

Algorithm: Actor based Large Neighborhood Search

Future Work

- Extend the approach to international supply chains.
- Incorporate real-time data analytics for dynamic decision-making.
- Explore applications in other sectors like healthcare and transportation.

Conclusion

Methodology

Tactical	
Meta variables:	/ 4
$s \in S$	(1 (1
$lpha(au)$ $ au \in [0, \infty]$	(1
, , ∈ [0, ∞]	
Minimize:	
$\sum tactical_value_{do}(\tau) \cdot \beta_{do}(\tau) + \sum \sum tactical_penalty \cdot \mu_{rd}(\tau)$	(1
$o \in O(\tau, \alpha(\tau)) \ d \in D(\tau)$ $r \in R(\tau) \ d \in D(\tau)$	
Subject to:	
$\sum work_o(\tau) \cdot \beta_{do}(\tau) \leq tactical_resource_{dr}(\tau) + \mu_{rd}(\tau) \forall d \in D(\tau) \forall r \in R(\tau)$	(2
$o \in O(\tau, \alpha(\tau))$	
$latest_finish_o(au)$	
$\sum_{d=earliest_start_o(\tau)} \sigma_{do}(\tau) = duration_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(1
$\sum_{\sigma_{d^*o}(\tau) = duration_o(\tau) \cdot \eta_{do}(\tau) \forall o \in O(\tau, \alpha(\tau)) \forall d \in D(\tau)$	(2
$d^* \in D_{duration_O(\tau)}(\tau) \qquad \text{and attorion}(\tau) \qquad \eta_{do}(\tau) \qquad \forall a \in D(\tau)$	(-
$\sum_{o} \eta_{do}(\tau) = 1, \forall d \in D(\tau)$	
$o \in O(\tau, \alpha(\tau))$	
$\sum_{i} d \cdot \sigma_{do1}(\tau) + \Delta_o(\tau) = \sum_{i} d \cdot \sigma_{do2}(\tau) \forall (o1, o2) \in finish_start_{o1,o2}$	(1
$d \in D(\tau)$ $d \in D(\tau)$	
$\sum d \cdot \sigma_{do1}(\tau) = \sum d \cdot \sigma_{do2}(\tau) \forall (o1, o2) \in start_start_{o1, o2}$	(1
$d \in D(\tau) \qquad \qquad d \in D(\tau)$	4.
$\beta_{do}(\tau) \leq number_o(\tau) \cdot operating_time_o \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau))$	(2
$\beta_{do}(\tau) \in \mathbb{R}$ $\forall d \in D(\tau)$ $\forall o \in O(\tau, \alpha(\tau))$	(2
$\mu_{rd}(\tau) \in \mathbb{R} \qquad \forall r \in R(\tau) \forall d \in D(\tau)$ $\sigma_{do}(\tau) \in \{0, 1\} \qquad \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau))$	(2
$ \eta_{do}(\tau) \in \{0, 1\} \qquad \forall a \in D(\tau) \forall b \in O(\tau, \alpha(\tau)) \eta_{do}(\tau) \in \{0, 1\} \qquad \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau)) $	(2
$\Delta_o(\tau) \in \{0,1\} \forall \alpha \in D(\tau) \forall \delta \in O(\tau, \alpha(\tau))$ $\Delta_o(\tau) \in \{0,1\} \forall \alpha \in O(\tau, \alpha(\tau))$	(2

Meta variables:	
$z \in Z$	(26
lpha(au)	(27
heta(au)	(28
$ au \in [0, \infty]$	(29
Maximize:	
$\sum supervisor_value_{at}(\tau, \lambda_t(\tau), \Lambda_t(\tau)) \cdot \gamma_{at}(\tau)$	(30
$a \in A(\tau, \alpha(\tau)) \ t \in T(\tau)$	
Subject to:	
$\sum \rho_a(\tau) = work_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(31
$a\in A_o(au,lpha(au))$	(31
$\sum \sum_{at} \gamma_{at}(\tau) = \phi_o(\tau) \cdot number_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(32
$t\in T(au)$ $a\in A_o(au,lpha(au))$	(02
$\sum \phi_o(\tau) = O_w(\tau, \alpha(\tau)) \forall w \in W(\tau, \alpha(\tau))$	(33
$\sum_{o \in O_w(\tau, \alpha(\tau))} \varphi_{o}(\tau, \alpha(\tau)) \qquad \forall \alpha \in \mathcal{W}(\tau, \alpha(\tau))$	(33
$\sum_{a,t} \gamma_{at}(\tau) \leq 1 \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(34
$\sum_{\alpha \in A_o(\tau, \alpha(\tau))} a(\tau) \le 1 \forall \sigma \in \mathcal{O}(\tau, \alpha(\tau)) \forall \tau \in \mathcal{I}(\tau)$	(34
$\gamma_{at}(\tau) \le feasible_{at}(\theta(\tau)) \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(35
$\gamma_{at}(\tau) \in \{0,1\} \forall o \in O(\tau,\alpha(\tau)) \forall t \in T(\tau)$	(36
$o_a(\tau) \in [lower_activity_work_a(\tau), work_a(\tau)] \forall a \in A(\tau, \alpha(\tau))$	(37

Meta variables:	
$\epsilon \in T(au)$	(38
lpha(au)	(39
$\chi(au)$	(40
$T \in [0, \infty]$	(41
Maximize:	
$\sum \qquad \sum \delta_{ak}(au)$	(42
$a \in A(\tau, \gamma_t(\tau)) \ k \in K(\gamma(\tau))$	
Subject to:	
$\sum \delta_{ak}(\tau) \cdot \pi_{ak}(\tau) = activity_work_a(\tau, \rho(\tau)) \cdot \theta (\tau) \forall a \in A(\tau, \gamma_t(\tau))$	(43
$k \in K(\gamma(\tau))$	(1.1.
$\Lambda_{a21}(\tau) \ge \Lambda_{a1last(a1)}(\tau) + preparation_{a1,a2} \forall a1 \in A(\tau, \gamma_t(\tau)) \forall a2 \in A(\tau, \gamma_t(\tau))$	(44
$\begin{aligned} & \Lambda_{ak}(\tau) \geq \Lambda_{ak-1}(\tau) - constraint_limit \cdot (2 - \pi_{ak}(\tau) + \pi_{ak-1}(\tau)) \\ & \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \end{aligned}$	(45
$S_{ak}(\tau) = \Lambda_{ak}(\tau) - \lambda_{ak}(\tau) \forall a \in K(\gamma(\tau)) \forall k \in K(\gamma(\tau))$	(46
$\Lambda_{ak}(\tau) = \Lambda_{ak}(\tau) - \Lambda_{ak}(\tau)$ $\forall a \in \Lambda(\tau, \tau_t(\tau))$ $\forall k \in \Lambda(\tau, \tau_t(\tau))$ $\Lambda_{ak}(\tau) \ge event_{ie} + duration_{ie} - constraint_limit \cdot (1 - \omega_{akie}(\tau))$	(40
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(47
$\Lambda_{ak}(\tau) \leq event_{ie} + constraint_limit \cdot \omega_{akie}(\tau)$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(48
$\lambda_{a1}(\tau) \ge time_window_start_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(49
$\Delta_{alast(a)}(\tau) \leq time_window_finish_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(50
$a_{ak}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(51
$\lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$	(1
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(52
$\Lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$	`
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(53
$S_{ak}(\tau) \in [0, work_{a \ to \ o(a)}(\tau)] \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(54
$\omega_{akie}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(55
$P_{a}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_{t}(\tau))$	(56

Results

Contact Information:

• Email: cbrje@dtu.dk

• Phone: 0045 28 43 39 74

ties.