

컴퓨터그래픽스 Computer Graphics

Quaternion

This class...

Euler Transforms and Quaternions

- Euler Transforms
- Keyframe Animation
- Quaternion
- 3D rotation through Quaternions
- Interpolation of Quaternions

Euler Transforms

When we successively rotate an object about the principal axes, the object acquires an arbitrary orientation. This method of determining an object's orientation is called *Euler transform*, and the rotations angles, $(\theta_1, \theta_2, \theta_3)$, are called the *Euler angles*.

• Concatenating three matrices produces a single matrix defining an arbitrary orientation. $(\sqrt{2}, \sqrt{2}, 0), (1, 0, \sqrt{3}), (1, 0, 0, 0)$

trary orientation.
$$R_z(-45^\circ)R_y(60^\circ)R_x(45^\circ) = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & \frac{\sqrt{3}}{2}\\ 0 & 1 & 0\\ -\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{\sqrt{2}}{4} & \frac{2+\sqrt{3}}{4} & \frac{-2+\sqrt{3}}{4}\\ -\frac{\sqrt{2}}{4} & \frac{4-\sqrt{3}}{4} & \frac{\sqrt{2}}{4} \end{pmatrix}$$

Euler Transforms (cont'd)

The rotation axes are not necessarily taken in the order of x, y, and z. Shown below is the order of y, x, and z. Observe that the teapot has a different orientation from the previous one.

Keyframe Animation in 2D

- In the traditional hand-drawn cartoon animation, the senior key artist would draw the *keyframes*, and the junior artist would fill the *in-between frames*.
- For a 30-fps computer animation, for example, much fewer than 30 frames are defined per second. They are the keyframes. In real-time computer animation, the in-between frames are automatically filled at run time.
- The key data are assigned to the keyframes, and they are *interpolated* to generate the in-between frames.
- In the example, the center position p and orientation angle θ are interpolated.

$$p(t) = (1 - t)p_0 + tp_1$$

$$\theta(t) = (1 - t)\theta_0 + t\theta_1$$

t=0

t = 1

keyframe 0

keyframe 1

Keyframe Animation in 3D

• Keyframe animation in 3D: Seven teapot instances are defined by sampling the graphs seven times.

Keyframe Animation in 3D (cont'd)

• Smoother animation may often be obtained using a higher-order interpolation.

A Problem of Euler Angles

Euler angles are not always correctly interpolated and so are not suitable for

keyframe animation

(c) Interpolated Euler angles $(\theta_x, \theta_y, \theta_z) = (45^\circ, 67.5^\circ, 45^\circ)$

Quaternion

A quaternion is an extended complex number.

$$\begin{aligned} q_x i + q_y j + q_z k + q_w &= (q_x, q_y, q_z, q_w) = (\mathbf{q}_v, q_w) \\ i^2 &= i^2 = k^2 = -1 \\ ij &= k, ji = -k \\ jk &= i, kj = -i \\ ki &= j, ik = -j \end{aligned}$$

$$\mathbf{p} = (p_x, p_y, p_z, p_w)$$

$$\mathbf{q} = (q_x, q_u, q_z, q_w)$$

$$\mathbf{p} \mathbf{q} = (p_x i + p_y j + p_z k + p_w)(q_x i + q_y j + q_z k + q_w)$$

$$= (p_x q_w + p_y q_z - p_z q_y + p_w q_x) \mathbf{i} + (-p_x q_z + p_y q_w + p_z q_x + p_w q_y) \mathbf{j} + (p_x q_y - p_y q_x + p_z q_w + p_w q_z) \mathbf{k} + (-p_x q_x - p_y q_y - p_z q_z + p_w q_w) \end{aligned}$$

- Conjugate $q^* = (-q_v, q_w)$ $= (-q_x, -q_y, -q_z, q_w)$ $= -q_x i - q_y j - q_z k + q_w$
- It is easy to show that $(pq)^*=q^*p^*$.
- Magnitude: If the magnitude of a quaternion is 1, it's called a *unit quaternion*.

$$\|\mathbf{q}\| = \sqrt{q_x^2 + q_y^2 + q_z^2 + q_w^2}$$

2D Rotation through Complex Numbers

Recall 2D rotation

- Let us represent (x,y) by a complex number x+yi, and denote it by **p**.
- Given the rotation angle θ , let us consider a unit-length complex number, $\cos\theta + \sin\theta i$. We denote it by **q**. Then, we have the following:

$$\mathbf{pq} = (x + yi)(\cos\theta + \sin\theta i)$$
$$= (x\cos\theta - y\sin\theta) + (x\sin\theta + y\cos\theta)i$$

• Surprisingly, the real and imaginary parts of **pq** represent the rotated coordinates.

3D Rotation through Quaternions

- As extended complex numbers, quaternions can be used to describe 3D rotation.
- Consider rotating a 3D vector p about an axis u by an angle θ . Represent both "the vector to be rotated" and "the rotation" in quaternions.
 - Define a quaternion \mathbf{p} using p.

$$\mathbf{p} = (\mathbf{p}_v, p_w) \\ = (p, 0)$$

• Define a *unit quaternion* \mathbf{q} using u and θ . (The axis u is divided by its length to make a unit vector \mathbf{u} .)

$$\mathbf{q} = (\mathbf{q}_v, q_w)$$

= $(\sin \frac{\theta}{2} \mathbf{u}, \cos \frac{\theta}{2})$

• Compute **qpq***. Then, its *imaginary* part represents the rotated vector.

3D Rotation through Quaternions (cont'd)

Quaternions enable rotations about arbitrary axes.

Here as be walked by on the 16th of October 1843 Sir William Rowan 1871 1990 In a flash of genius discovered

https://eater.net/quaternions

3D Rotation through Quaternions (cont'd)

Let $\mathbf{p'}$ denote $\mathbf{qpq^*}$. It represents the rotated vector p'. Consider rotating p' by another quaternion \mathbf{r} . The combined rotation is represented in \mathbf{rq} .

$$\mathbf{rp'r^*} = \mathbf{r}(\mathbf{qpq^*})\mathbf{r^*}$$
$$= (\mathbf{rq})\mathbf{p}(\mathbf{q^*r^*})$$
$$= (\mathbf{rq})\mathbf{p}(\mathbf{rq})^*$$

• "Rotation about **u** by θ " is identical to "rotation about $-\mathbf{u}$ by $-\theta$."

Interpolation of Quaternions

Consider two unit quaternions, \mathbf{p} and \mathbf{q} , which represent rotations. They can be interpolated using parameter t in the range of [0,1]:

$$\begin{split} \frac{\sin(\phi(1-t))}{\sin\phi}\mathbf{p} + \frac{\sin(\phi t)}{\sin\phi}\mathbf{q} \\ \cos\phi &= \mathbf{p}\cdot\mathbf{q} = (p_x, p_y, p_z, p_w)\cdot(q_x, q_y, q_z, q_w) = p_xq_x + p_yq_y + p_zq_z + p_wq_w. \end{split}$$

■ This is called *spherical linear interpolation* (slerp).

Quaternion and Matrix

A quaternion **q** representing a rotation can be converted into a matrix form. If $\mathbf{q} = (q_x, q_y, q_z, q_w)$, the rotation matrix is defined as follows:

$$\begin{pmatrix} 1 - 2(q_y^2 + q_z^2) & 2(q_x q_y - q_w q_z) & 2(q_x q_z + q_w q_y) & 0 \\ 2(q_x q_y + q_w q_z) & 1 - 2(q_x^2 + q_z^2) & 2(q_y q_z - q_w q_x) & 0 \\ 2(q_x q_z - q_w q_y) & 2(q_y q_z + q_w q_x) & 1 - 2(q_x^2 + q_y^2) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Conversely, given a rotation matrix, we can compute its quaternion. It requires us to extract $\{q_x,q_y,q_z,q_w\}$ given the above matrix.
 - Compute the sum of all diagonal elements.

$$4 - 4(q_x^2 + q_y^2 + q_z^2) = 4 - 4(1 - q_w^2) = 4q_w^2$$

- So, we obtain q_w .
- Subtract m_{12} from m_{21} of the above matrix.

$$m_{21} - m_{12} = 2(q_x q_y + q_w q_z) - 2(q_x q_y - q_w q_z) = 4q_w q_z$$

• As we know q_w , we can compute q_z . Similarly, we can compute q_x and q_y .

Quaternion - Summary

- Summary
 - An arbitrary 3D rotation is represented in a quaternion as well as in Euler transform.
 - Quaternions are correctly interpolated through slerp.
 - A quaternion can be converted into a rotation matrix.
- Given quaternions for the keyframes,
 - spherically interpolate them for the in-between frames, and
 - convert each interpolated quaternion into a rotation matrix.
- Unity references
 - https://docs.unity3d.com/2022.3/Documentation/Manual/QuaternionAndEulerRotationsInUnity.html
 - https://docs.unity3d.com/ScriptReference/Quaternion.html
 - https://docs.unity3d.com/ScriptReference/Quaternion.Slerp.html
 - https://docs.unity3d.com/ScriptReference/Matrix4x4.Rotate.html

Gimbal lock

https://youtu.be/kB7iE8Udq5g?si=sc8LX-I8X-AN-UwR

Gimbal lock

Loss of a degree of freedom with Euler angles [edit]

A rotation in 3D space can be represented numerically with matrices in several ways. One of these representations is:

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

An example worth examining happens when $\beta=\frac{\pi}{2}$. Knowing that $\cos\frac{\pi}{2}=0$ and $\sin\frac{\pi}{2}=1$, the above expression becomes equal to:

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Carrying out matrix multiplication:

$$R = \begin{bmatrix} 0 & 0 & 1 \\ \sin \alpha & \cos \alpha & 0 \\ -\cos \alpha & \sin \alpha & 0 \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ \sin \alpha \cos \gamma + \cos \alpha \sin \gamma & -\sin \alpha \sin \gamma + \cos \alpha \cos \gamma & 0 \\ -\cos \alpha \cos \gamma + \sin \alpha \sin \gamma & \cos \alpha \sin \gamma + \sin \alpha \cos \gamma & 0 \end{bmatrix}$$

And finally using the trigonometry formulas:

$$R = egin{bmatrix} 0 & 0 & 1 \ \sin(lpha + \gamma) & \cos(lpha + \gamma) & 0 \ -\cos(lpha + \gamma) & \sin(lpha + \gamma) & 0 \end{bmatrix}$$

Source: https://en.wikipedia.org/wiki/Gimbal_lock

slerp

[Note: Proof of spherical linear interpolation]

Fig. 11.11: Spherical linear interpolation on the 4D unit sphere: (a) Shortest arc between **q** and **r**. (b) Spherical linear interpolation of **q** and **r** returns **s**.

The set of all possible quaternions makes up a 4D unit sphere. Fig. 11.11(a) illustrates **q** and **r** on the sphere. Note that the interpolated quaternion must lie on the shortest arc connecting **q** and **r**. Fig. 11.11-(b) shows the cross section of the unit sphere. It is in fact the great circle defined by **q** and **r**. The

slerp

interpolated quaternion is denoted by ${\bf s}$ and is defined by the parallelogram rule:

$$\mathbf{s} = l_1 \mathbf{q} + l_2 \mathbf{r} \tag{11.23}$$

In Fig. 11.11-(b), $sin\phi = \frac{h_1}{l_1}$, and therefore $l_1 = \frac{h_1}{sin\phi}$. As $h_1 = sin(\phi(1-t))$, we can compute l_1 as follows:

$$l_1 = \frac{\sin(\phi(1-t))}{\sin\phi} \tag{11.24}$$

Similarly, l_2 is computed as follows:

$$l_2 = \frac{\sin(\phi t)}{\sin\phi} \tag{11.25}$$

When we insert Equations (11.24) and (11.25) into Equation (11.23), we obtain the slerp function presented in Equation (11.22).

$$\frac{\sin(\phi(1-t))}{\sin\phi}\mathbf{q} + \frac{\sin(\phi t)}{\sin\phi}\mathbf{r} \tag{11.22}$$

Conversion from a quaternion to a rotation matrix

Consider two quaternions, $\mathbf{p} = (p_x, p_y, p_z, p_w)$ and $\mathbf{q} = (q_x, q_y, q_z, q_w)$. Their multiplication returns another quaternion:

$$\mathbf{pq} = (p_{x}i + p_{y}j + p_{z}k + p_{w})(q_{x}i + q_{y}j + q_{z}k + q_{w})$$

$$= (p_{x}q_{w} + p_{y}q_{z} - p_{z}q_{y} + p_{w}q_{x})i +$$

$$(-p_{x}q_{z} + p_{y}q_{w} + p_{z}q_{x} + p_{w}q_{y})j +$$

$$(p_{x}q_{y} - p_{y}q_{x} + p_{z}q_{w} + p_{w}q_{z})k +$$

$$(-p_{x}q_{x} - p_{y}q_{y} - p_{z}q_{z} + p_{w}q_{w})$$
(11.8)

[Note: Conversion from a quaternion to a rotation matrix]

Notice that each component of \mathbf{pq} presented in Equation (11.8) is a linear combination of p_x , p_y , p_z and p_w . Therefore, \mathbf{pq} can be represented by a matrix-vector multiplication form:

$$\mathbf{pq} = \begin{pmatrix} q_{w} & q_{z} & -q_{y} & q_{x} \\ -q_{z} & q_{w} & q_{x} & q_{y} \\ q_{y} & -q_{x} & q_{w} & q_{z} \\ -q_{x} & -q_{y} & -q_{z} & q_{w} \end{pmatrix} \begin{pmatrix} p_{x} \\ p_{y} \\ p_{z} \\ p_{w} \end{pmatrix} = M_{\mathbf{q}}\mathbf{p}$$
(11.27)

where $M_{\mathbf{q}}$ is a 4×4 matrix built upon the components of \mathbf{q} . Each component of \mathbf{pq} in Equation (11.8) is also a linear combination of q_x , q_y , q_z and q_w , and therefore \mathbf{pq} can be represented by another matrix-vector multiplication

Conversion from a quaternion to a rotation matrix

form:

$$\mathbf{pq} = \begin{pmatrix} p_{w} & -p_{z} & p_{y} & p_{x} \\ p_{z} & p_{w} & -p_{x} & p_{y} \\ -p_{y} & p_{x} & p_{w} & p_{z} \\ -p_{x} & -p_{y} & -p_{z} & p_{w} \end{pmatrix} \begin{pmatrix} q_{x} \\ q_{y} \\ q_{z} \\ q_{w} \end{pmatrix} = N_{\mathbf{p}}\mathbf{q}$$
(11.28)

where $N_{\mathbf{p}}$ is a 4×4 matrix built upon the components of \mathbf{p} . Then, \mathbf{qpq}^* in Equation (11.15) is expanded as follows:

$$\mathbf{qpq}^{*} = (\mathbf{qp})\mathbf{q}^{*}
= M_{\mathbf{q}^{*}}(\mathbf{qp})
= M_{\mathbf{q}^{*}}(N_{\mathbf{q}}\mathbf{p})
= (M_{\mathbf{q}^{*}}N_{\mathbf{q}})\mathbf{p}
= \begin{pmatrix} q_{w} & -q_{z} & q_{y} & -q_{x} \\ q_{z} & q_{w} & -q_{x} & -q_{y} \\ -q_{y} & q_{x} & q_{w} & -q_{z} \\ q_{x} & q_{y} & q_{z} & q_{w} \end{pmatrix} \begin{pmatrix} q_{w} & -q_{z} & q_{y} & q_{x} \\ q_{z} & q_{w} & -q_{x} & q_{y} \\ -q_{y} & q_{x} & q_{w} & q_{z} \\ -q_{x} & -q_{y} & -q_{z} & q_{w} \end{pmatrix} \begin{pmatrix} p_{x} \\ p_{y} \\ p_{z} \\ p_{w} \end{pmatrix}$$
(11.29)

 $M_{\mathbf{q}^*}N_{\mathbf{q}}$ returns a 4×4 matrix. Consider its first element, $(q_w^2-q_z^2-q_y^2+q_x^2)$. As \mathbf{q} is a unit quaternion, $q_x^2+q_y^2+q_z^2+q_w^2=1$. The first element is rewritten as $(1-2(q_y^2+q_z^2))$. When all of the 4×4 elements are processed in similar manners, $M_{\mathbf{q}^*}N_{\mathbf{q}}$ is proven to be \mathbf{M} in Equation (11.26).

Thank You!

Slides are modified from

Introduction to Computer Graphics with OpenGL ES (J. Han)
Copyleft © 2009 by Han JungHyun