1. Wykazać, że dla zbiorów A, B i C mamy: $(A \cap B) \cup C = A \cap (B \cup C)$ wtedy i tylko wtedy, gdy $C \subseteq A$.

2. Alternatywę, koniunkcję oraz spójnik Peirce'a \downarrow (zwany binegacją i oznaczany też symbolem NOR) zdefiniować za pomocą negacji i implikacji.

3. Zbadać, czy schemat $\frac{(p \land \sim q) \Rightarrow (r \land \sim r)}{p \Rightarrow q}$ jest regułą wnioskowania.

4. Przedstawić i udowodnić zasadę maksimum, czyli udowodnić, że każdy niepusty i ograniczony podzbiór zbioru liczb naturalnych ma element największy.

5. Dany jest ciąg (x_n) , w którym $x_0 = 2$, $x_1 = 5$ i $x_n = 5x_{n-1} - 6x_{n-2}$ dla $n \ge 2$. Udowodnić, że $x_n = 2^n + 3^n$ dla $n \ge 0$.

	_
6. Udowodnić, że jeśli $f: X \to Y$ i $g: Y \to Z$ są funkcjami, to prawdziwe są następujące stwierdzenia: (1) Jeśli $g \circ f: X \to Z$ jest injekcją, to f jest injekcją. (2) Jeśli $g \circ f: X \to Z$ jest surjekcją, to g jest surjekcją.	
7. Dana jest funkcja $f: X \to Y$ oraz podzbiory A i B zbioru X . Wykazać, że $f(A \cap B) \subseteq f(A) \cap f(B)$. Przedstawić stosowne przykłady.	
8. Wyznaczyć sumę $\bigcup_{n\in\mathbb{N}}A_n$ i iloczyn $\bigcap_{n\in\mathbb{N}}A_n$ rodziny zbiorów $\{A_n\}_{n\in\mathbb{N}}$, gdzie $A_n=\{x\in\mathbb{R}\colon 0\leqslant x<1/(n+1)\}$ dla $n\in\mathbb{N}$.	
9. Wskazać przykład funkcji ustalającej równoliczność zbiorów (0;1) i (0;1). Uzasadnić swoje stwierdzenia.	
10. Wykazać, że odcinek (0;1) nie jest przeliczalny.	