ADS-505 Technical Presentation

Team 1:

Uyen Pham, Ryan Dunn, Aaron Carr

Technical Problem Statement

- Rising rates environment necessitate an enhanced review process for business lending loan applicants. Current staffing limitations require an automated solution
- Current business process of credit review is a manual Excel worksheet with data points input by a junior level credit analyst
- There is an increase in demand to use AI/ML techniques to aid in credit risk management and the bank wishes to incorporate AI/ML into their business processes
- Business Credit department has requested an AI/ML solution to help aid in identifying high risk business loan applicants that reduce workload, manual review process, and to aid in credit risk management

Exploratory Data Analysis (EDA)

- Our data was downloaded from UCI Machine Learning Repository
- Total data: 43,405 instances with 65 features (such as: net_prof_to_tot_assets_ratio, tot_liab_to_tot_assets_ratio, work_cap_to_tot_assets_ratio, etc.)
- Binary class for target feature
- Data is extreme imbalance:

Still-operating companies: 95.2%

Bankrupted companies: 4.8%

Figure 1. Full Data Set Class Distribution

 A training set of 30,383 instances and 65 features were used for exploring the data

209 row of duplicates was found and dropped from the training set

Figure 2. Observe Features with High Correlation (|r| > 0.95)

Features with r > 0.95 were dropped

Number of features reduced from 65 to 42

Table 1. Summary Statistics for the First Three Columns

	net_prof_to_tot_assets_ratio	tot_liab_to_tot_assets_ratio	work_cap_to_tot_assets_ratio
coun	t 30168.000000	30168.000000	30168.000000
mear	0.027545	0.571545	0.127836
std	3.218895	5.291554	4.639301
min	-463.890000	-430.870000	-479.730000
25%	0.003039	0.271487	0.020666
50%	0.048891	0.472075	0.195640
75%	0.128395	0.689253	0.400930
max	87.459000	480.730000	22.769000

Many features has either very small minimum or large maximum compared to the means which cause highly skewed data.

Table 2. A Sample Showing Outlier Positions in the First Three Columns

	net_prof_to_tot_assets_ratio	tot_liab_to_tot_assets_ratio	work_cap_to_tot_assets_ratio
2397	NaN	NaN	NaN
2398	0.52753	NaN	NaN
2399	-1.94800	25.005	NaN
2400	NaN	NaN	NaN
2401	NaN	NaN	NaN

- There are large numbers of rows with outliers (26,504 out of 30,174 rows total) in the training set.
- All outliers are kept and proceeded with processing

Figure 3. Observing Outliers Using Boxplots for the First Three Columns

Data Wrangling & Preprocessing

- Multiple weka format (.arff) files
 - Import*, combine, rename columns
 - Factorize binary, nominal target to 0/1
- Create 70/30 train/test random stratified split
- Check for features with near zero variance
- Check for features with null values
 - Remove any above 15% of N

Figure 4. Code Sample: Load .arff file and Convert to Pandas Dataframe

```
raw_arff01 = arff.loadarff(folder_path + '/1year.arff')
df01a = pd.DataFrame(raw_arff01[0])
```

Figure 5. Code Sample: Train/Test Split

Missing Value Matrix

Data Wrangling & Preprocessing (cont'd)

- Fill in missing values using KNN Imputer
- Scale all feature values
- Address skew

Figure 8. Illustration of Right Skew

Figure 7. Example of Imputation

From "Gunden Geri Kalanlar - 17," by A. Baryirli, 2020 (see References).

Address Class Imbalance

Positive class is ~4.8%
 of training n

Figure 9. Training Data Set Class Distribution

 Apply class rebalancing techniques: SMOTE, Random Oversampling

Figure 10. Example of Oversampling Process

From "cfa-level-2-oversampling-and-undersampling," by Analyst Prep, 2021 (see References).

Models & Strategies

- Binary classification
- Baseline
 - KNN, LDA
- Robust to outliers
 - Single tree
- Ensemble
 - Random Forests, Gradient Boost, XGBoost
- Complex relationships
 - Neural Network

Models & Strategies (cont'd)

- Use multiple data frames to accommodate needs for different model algorithms
- Hyperparameter tuning
 - Grid searches
- Pickling
 - Saves trained model for ease of deploying
 - Prevents Python from regularly running computationally expensive training

Model Evaluation

- Evaluation metrics assisted in choosing optional model
- There is a business need to select a sufficient number of True Positives, while accounting for not including a large number of False Positives
- Accuracy was the least important metric. Instead,
 a balance between Precision & Recall was needed
- F₁ Score proved to be the most useful metric

Table 3. *Model Performance Summary*

Comparsion between model evaluation measures using test set				
	Accuracy	Precision	Recall	F1_score
boost_1	0.920135	0.298537	0.488038	0.37046
boost_2	0.876363	0.206567	0.551834	0.300608
boost_3	0.822685	0.171997	0.703349	0.276402
boost_4	0.299493	0.0605277	0.933014	0.113681
xgboost_1	0.818691	0.172088	0.725678	0.278202
xgboost_2	0.230303	0.0580433	0.984051	0.109621
NN_tune	0.590002	0.0818246	0.735247	0.147261
dec_tree	0.952235	0.524752	0.0845295	0.145604
rand_for	0.950008	0.360465	0.0494418	0.0869565
knn_1	0.951467	0.142857	0.0015949	0.00315457
knn_2	0.865612	0.124916	0.298246	0.176083
knn_3	0.951928	0.571429	0.00637959	0.0126183
knn_4	0.937106	0.0384615	0.0127592	0.0191617
lda_1	0.951697	0.333333	0.00318979	0.00631912
lda_2	0.581938	0.0642301	0.566188	0.115372
1da_3	0.950315	0.261905	0.0175439	0.0328849
lda_4	0.863308	0.0976971	0.223285	0.135922

Results & Final Model Selection

- The Gradient Boosting Classifier produced the the largest cumulative gains of pos predictions when viewing the data in a Gains Chart
- By binning the predicted probabilities of the Gradient Boosting model, the credit team will be provided with credit risk tiers for each loan that have a corresponding review requirement

Discussion

Table 4. Risk Level Tiers

Credit Risk Tier	Recommended Review Requirement	Predicted Probabilities	Notes
High Risk	Senior Analyst Review + CFO Sign-off	[.90, 1]	"High Risk" tier applicants have an 84% chance of bankruptcy from the test data. Due to high risk, executive level approval is needed to approve a loan in this tier
Moderate Risk 1	Senior Analyst Review + Management Sign-off	[.75, .90)	Moderate Risk 1 tier applicants have a 44% chance of bankruptcy from the test data. Due to the elevated risk, senior management approval is needed to approve a loan in this tier
Moderate Risk 2	Senior Analyst Review	[.60, .75)	Moderate Risk 2 tier applicants have a 28% chance of bankruptcy from the test data. Due to the elevated risk, senior management approval is needed to approve a loan in this tier
Low Risk 1	Additional Review	[.16, .60)	Low Risk 1 tier applicants have a low likelihood of bankruptcy. These applicants are recommended to have a second review by a peer analyst for accuracy
Low Risk 2	Basic Review	[0, .16)	Low Risk 2 tier applicants have the least likelihood of bankruptcy from the test data set. Recommend no change to current business process

Conclusion

- As risk levels increase:
 Precision / confidence in IDing TPs
 Review pool
- Probability thresh. for level 2 decreased to capture more FNs in additional review pool
- Result:
 - Minimized review time/cost increase (incl. less reviews for Sr. Analysts)
 - More at-risk companies receive elevated review

Figure 12.

Bar Graph of Risk Levels 1-5

w/ Gradient Boost Eval Measures Overlay (Precision Values in Orange Bars)

Risk Level

Assessing
Bankruptcy Risk for
Business Loan
Applicants

Uyen Pham, Ryan Dunn, Aaron Carr

Problem Statement

- Budget constraints dictate:
 - Limited # of applications given elevated review by management
 - Need for accurate ID of high-risk applicants
- Business Credit Lending Department + Data Science Team tasked to develop automatic ID of high-risk applicants
- System will aid junior analysts in their initial credit evaluation of business lending applications → Limit the number of reviews required by senior analysts/management

Solutions Explored

- Historical 10K and 10Q. Contains key ratios.
- Ratios were assessed to find the optimal data points that can be modeled to identify future a bankruptcy
- Identify maximum number of bankruptcies, and limit false positive
- Change the current workflow
- Provide a risk score recommendation that will identify the type of review required to approve an application

Data Analysis Conclusion

- A model was developed that has targeted applications to:
 - Reduce missing majority of companies at-risk
 - Assign risk levels based on probability of bankruptcy
 - Pool needing additional review and approval decreases as risk levels increase

Recommendation

- Divide customers into risk groups based on probability of bankruptcy
- A few customers in riskiest tiers require additional reviews
- Increased automation →
 Decreased review for senior analysts + Decreased loss from bad loans

References

- Analyst Prep (2021, April 15). *cfa-level-2-oversampling-and-undersampling*. https://analystprep.com/study-notes/cfa-level-2/quantitative-method/model-training/attachment/cfa-level-2-oversampling-and-undersampling/
- Bayirli, A. (2020, June 29). *Gunden geri kalanlar 17*. https://blog.arifbayirli.com/post/2020-06-29-gunden-geri-kalanlar-17/
- Zięba, M., Tomczak, S. K., & Tomczak, J. M. (2016). Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction [Data set]. *UCI Machine Learning Repository*.

