Line Search Methods

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

January 26, 2024

Line Search Method

- In each iteration of a line search method a search direction $\underline{p_k}$ is computed, and
- then its decided how far to move along that direction.
- An iteration is given by

$$x_{k+1} = x_k + \alpha_k p_k \tag{1}$$

where $\alpha_k > 0$ (scalar) called the <u>step length</u>.

The success of a line search method depends on effective choices of both:

- \bullet the direction p_k
- 2 the step length α_k

- The steepest descent direction $-\nabla f_k$ is the most obvious choice for search direction for a line search method.
- Among all Directions once could from x_k , along $-\nabla f_k$, fdecreases most rapidly.

Justification

• Consider any search direction p and step-length α , we have

$$f(x_k + \alpha p) = f(x_k) + \alpha p^T \nabla f_k + \frac{1}{2} \alpha^2 p^T \nabla^2 f(x_k + tp) p$$
 for some $t \in (0)$

 \bullet Let $\alpha << 1$ (small) and we consider the first-order approximation of f at $x_k + \alpha p$ around x_k as:

$$f(x_k + \alpha p) \approx f(x_k) + \alpha p^T \nabla f_k$$

• Change in f moving from x_k to $x_k + \alpha p$ is

$$f(x_k + \alpha p) - f(x_k)$$

• As the distance moved in the direction is α , therefore, the rate of change of f along the direction p at x_k is

$$\frac{f(x_k + \alpha p) - f(x_k)}{\alpha}$$

• which is coefficient of α , i.e.

$$p^T \nabla f_k$$

- This implies smaller the above value is, more descent can be achieved.
- Hence, the unit direction p of most rapid decrease is the solution to the problem

$$\min_{p} p^T \nabla f_k$$
, subject to $||p|| = 1$.

•

$$p^T \nabla f_k = ||p|| \ ||\nabla f_k|| \ \cos \theta = ||\nabla f_k|| \ \cos \theta$$
 where θ is the angle between p and ∇f_k .

• The minimiser is attained when $\cos \theta = -1$ and

$$p = -\frac{\nabla f_k}{||\nabla f_k||}$$

Figure illustrates this direction is orthogonal to the contours of the function

 At every step (iteration) in the steepest descent method the search direction is chosen along

$$p = -\nabla f_k$$

- α_k can be chosen in a variety of ways.
- One advantage of this method is it requires only the calculation of gradient (∇f_k) , but not second derivatives.
- Line search methods may use search directions other than the steepest descent direction.

Descent Direction

Any direction that makes an angle of strictly less than $\frac{\pi}{2}$ radians with ∇f_k is guaranteed to produce a decrease in f, provided the step length is sufficiently small and is called a descent direction.