Théorie des groupes

Table des matières

1.	Introduction.	2			
	1.1. Groupes	2			
	1.2. Sous-groupes.	3			
	1.3. Les sous-groupes de (\mathbb{Z} , +)	5			
2.	Ordre d'un élément.	6			
3.	3. Morphismes de groupes.				

1. Introduction.

1.1. Groupes.

Définition 1.1 (Groupe). Un *groupe* est un couple constitué d'un ensemble non vide G et d'une opération

- $*: GxG \rightarrow G$ qui vérifie les propriétés :
- (1) d'associativité : $\forall a, b, c \in G, (a * b) * c = a * (b * c).$
- (2) d'existence d'un élément neutre: $\exists e \in G, \forall x \in G, x * e = e * x = x$.
- (3) d'existence d'un inverse : $\forall x \in G, \exists y \in G, x * y = y * x = e$. On note $y=x^{(-1)}$

Exemple 1.2.

- 1. $(\mathbb{Z}, +)$ est un groupe. $+ : \mathbb{Z}^2 \to \mathbb{Z}$; $(a, b) \mapsto a + b$ est associatif, l'élément neutre est 0, l'inverse d'un $n \in \mathbb{Z}$, est $n^{-1} := -n$.
- 2. $(\mathbb{R}, +), (\mathbb{Q}, +), (\mathbb{C}, +)...$
- 3. (\mathbb{R}, \cdot) n'est pas un groupe car 0 n'admet pas d'inverse.
- 4. $(\mathbb{N}, +)$ n'est pas un groupe car il n'y a pas d'inverse.
- 5. (GL_n, \cdot) , $GL_n(\mathbb{R}) = \{A \in M_{nxn}(\mathbb{R}) \mid \det A \neq 0\}$ est un groupe : le + est associatif (exo), l'élément neutre est la matrice identité de taille n, et l'inverse de A est A^{-1} et on a bien $AA^{-1} = A^{-1}A$

Définition 1.3 (Commuter). Soit (G, *) un groupe, $a, b \in G$. On dit que a et b commutent si a * b = b * a,

Définition 1.4 (Abélien). Soit (G, *) un groupe. On dit que (G, *) est *abélien* ou *commutatif* si tout élément de (G, *) commute.

Définition 1.5 (Monoïde). On appelle *monoïde* un ensemble non vide G avec une opération $*: GxG \to G$ qui satisfait seulement l'associativité et l'existence d'un élément neutre. (sans inverse).

Remarque 1.6. $\{\text{mono\"ides}\} \subset \{\text{groupes}\} \subset \{\text{groupes ab\'eliens}\}$

Notation 1.7.

- (1) On utilise * ou · pour l'opération d'un groupe et + pour un groupe abélien.
- (2) On utilise $e, e_G, 1, 1_G$ pour l'élément neutre d'un groupe, et 0 lorsqu'il est abélien.
- (3) $x^{-1} := -x$ dans un groupe abélien.
- (4) a * b * c = (a * b * c) = a * (b * c) = abc
- (5) On définit la puissance d'un groupe (G, *) par, $\forall x \in G, n \in \mathbb{Z}, x^n = \begin{cases} e \text{ is } n=0 \\ x*...*x \text{ si } n>0 \\ x^{-1}*...*x^{-1} \text{ si } n<0 \end{cases}$.

Exemples 1.8. Soit *X* un ensemble non-vide,

- 1. $(S_X = \{f : X \to X \mid f \text{ bijective}\}, \circ)$ forme un groupe non abélien de symétrie X.
- 2. $Y \subset X$ ($S_Y := \{f : X \to X \text{ bijective } | f(y) = y\}, \circ$) forme un groupe.

Exemple 1.9. Pour $X = \{1, ..., n\}_{n \in \mathbb{N} \setminus \{0\}}$. On note $S_X = S_n \coloneqq \{f : X \to X \text{ bijectives}\}$ le groupe de permutations de n éléments $e = \operatorname{id}_f, f^{-1} = \operatorname{la}$ réciproque de f. On note $\sigma \coloneqq \begin{pmatrix} 1 & \dots & n \\ \sigma(1) & \dots & \sigma(n) \end{pmatrix}$ Quelques exemples on a $S_2 \coloneqq \left\{\operatorname{id}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}\right\}$, $S_3 \coloneqq \left\{\operatorname{id}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}\right\}$. S_2 est abélien tandis que S_3 ne l'est pas $\operatorname{car}: \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$.

Remarque 1.10. On montrera que (G, *) tel que Card $G \le 5$ est abélien.

Exemple 1.11. $(\mathbb{Z}/_{n\mathbb{Z}}) := \{(\overline{x} = \overline{y}) := n \mid (x - y)\} = \{\overline{0}, ..., \overline{n - 1}\}$ est un groupe abélien fini à n éléments. On a $\overline{a} + \overline{b} = \overline{a + b}$. Le + est associatif dans $\mathbb{Z}/_{n\mathbb{Z}}$ car il l'est dans \mathbb{Z} . L'élement neutre est le $\overline{0}$. l'inverse de \overline{x} est $\overline{x}^{-1} := \overline{n - x} = \overline{-x}$.

Définition 1.12 (Ordre). Soit (G, *) un groupe. On appelle *ordre* de G son cardinal et on peut écrire sa table de multiplication pour *. $G = \{e, g_1, ..., g_n\}$.

*	e	g ₁		g_n
e	e * e	$e*g_1$		$e * g_n$
g_1	$g_1 * e$	$g_1 * g_1$		$g_1 * g_n$
g _i	$g_i * g_j$			

Proposition 1.13. Soit (G, *) un groupe. Alors

- (1) L'élément neutre est unique.
- (2) Pour tout $x \in G$, l'inverse de x est unique.
- (3) En particulier, $(x^{-1})^{-1} = x$.

Démonstration.

- (1) Supposons que $e, e' \in G$ sont des éléments neutres de G alors $\forall x \in G, e * x = x * e = x = e' *$ x = x * e'. On prend x = e'. On a e' = e * e' = e car e et e' sont éléments neutre donc e' = e.
- (2) Soit $x \in G$, $y, y' \in G$ deux inverses de x dans G.

$$(1) := x * y = y * x = e, (2) := x * y' = y' * x = e$$

. On a
$$y' = y' * e = y' * (x * y) = (y' * x) * y = e * y = y$$
.

. On a y' = y' * e = y' * (x * y) = (y' * x) * y = e * y = y. (3) Comme x^{-1} est l'inverse de x, $x^{-1} * x = x * x^{-1} = e$ donc x est l'inverse de x^{-1} par (2).

Définition 1.14 (Groupe produit). Soit (G, *), (H, \cdot) deux groupes. Le *groupe produit* (GxH, \star) est définit par: ★: $(GxH)x(GxH) \rightarrow (GxH)$; $(g_1,h_1,g_2,h_2) \mapsto (g_1,h_1) \star (g_2,h_2) := (g_1 * g_2,h_1 \cdot h_2)$.

Proposition 1.15. Soit $(G, *), (H, \cdot)$ deux groupes. Le *groupe produit* (GxH, \star) est un groupe.

Démonstration.

- (1) L'associativité s'ensuit de l'associativité de * et ·.
- (2) L'élement neutre est (e_G, e_H) : $(g, h) \star (e_G, e_H) = (g * e_G, h \cdot e_H) = (g, h) = (e_G, e_H) \star (g, h)$.
- (3) L'inverse de $(g, h) \in GxH$ est (g^{-1}, h^{-1}) .

1.2. Sous-groupes.

Définition 1.16 (Sous-groupe). Soit (G, *) un groupe. On appelle sous-groupe de (G, *), un sousensemble non vide $H \subseteq G$ tel que :

- (1) $e_G \in H$,
- (2) $\forall x, y \in H, xy \in H$,
- (3) $\forall x \in H, x^{-1} \in H$.

Notation 1.17. On pourra noter pour un sous-groupe de G, H < G

Exemple 1.18.

- 1. $\mathbb{Z} < (\mathbb{R}, +), \mathbb{Q} < (\mathbb{R}, +), (\mathbb{R}, +) < (\mathbb{C}, +).$
- 2. $\mathbb{N} \not < (\mathbb{Z}, +) \operatorname{car} -1 \not \in \mathbb{N}$.
- 3. Soit $H = 2\mathbb{Z} = \{2n \mid n \in \mathbb{Z}\} < \mathbb{Z}$:
 - a. $0 \in 2\mathbb{Z}$.

b.
$$a = 2m, b = 2n \in H \Rightarrow a + b = 2(n + m) \in H$$

c. $a = 2m \in H \Rightarrow -a = 2(-m) \in H$.

Proposition 1.19. Soit (G, *) un groupe et $H \subseteq G$. Alors H est un sous-groupe de G si et seulement si $e \in H$, et $\forall x, y \in H, x * y^{-1} \in H$.

Démonstration.

 \Rightarrow Supposons que H soit un sous groupe. Alors il verifie $e \in H$. Montrons que $x * y^{-1} \in H$ est satisfait.

Soit $(x, y) \in H$, alors $y^{-1} \in H \Rightarrow x * y^{-1} \in H$.

 \Leftarrow Montrons que (H, *) est un sous-groupe. On a $e \in H$ Soit $x \in H$, a = e, b = x. Alors

$$a*b^{-1}=e*x^{-1}=x^{-1}\in H$$

Soit
$$x, y \in H$$
, $a = x, b = y^{-1}$ $a * b^{-1} = x * (y^{-1})^{-1} = x * y \in H$.

Proposition 1.20. Soit (G, *) un groupe, $H \subseteq G$. Alors H < G si et seulement si $(B) := \forall x, y \in H, x * y \in H$ et (E) := (H, *) forme un groupe.

Démonstration.

- \Rightarrow Supposons H < G, alors (B). Montrons que (H, *) forme un groupe.
- (1) * est associatif.
- (2) $H < G \Rightarrow e \in H \text{ et } \forall x \in H, x * e = e * x = x.$
- (3) Soit $x \in H$, H < G alors $x^{-1} \in H$ et $x * x^{-1} = e$.
- \Leftarrow On suppose (B) et (E). Montrons que H < G donc (A) et (C).

A MONTRER (A) (H, *) est un groupe, notons e_H son élément neutre, (G, *) est un groupe, notons e_G son élément neutre.

 $\forall x \in H \subseteq G$, e_G élément neutre de G donc $x * e_G = e_G * x = x$

Preuve de (c) Soit $x \in H$, soit g l'inverse de x dans G, y' l'inverse de x dans H alors x * y' = y' * x = e or l'inverse est unique donc $y = y' \in H$.

Proposition 1.21. Soit (G,*) un groupe et $H_1, H_2 \subseteq G$. On a $H_1 \cap H_2 < G$. Plus généralement, si $(G_i)_{i \in I}$ est une famille de sous-groupes de G, alors $\bigcap_{i \in I} H_i < G$.

Démonstration. $\forall i \in I, e \in G_i, e \in \bigcap H_i$ donc on a (A). De plus, $\forall x, y \in \bigcap_{i \in I}, x, y \in H_i \Rightarrow xy^{-1} \in H_i \forall i \in I \Rightarrow xy^{-1} \in \bigcap_{i \in I} H_i$.

Définition 1.22. Soit (G, *) un groupe, $S \subset G$. On appelle sous-groupe engendré par S, noté $\langle S \rangle$ le plus petit sous-groupe de G contenant S.

Remarque 1.23. equivalent a si H < G et $S \subset H$ alors $\langle S \rangle \subseteq H$

Proposition 1.24. $\langle S \rangle$ est bien définit et on a :

$$\langle S \rangle \coloneqq \bigcap_{(H < G), S \subset H} H = \left\{ g_1, ..., g_n \mid g_i \in S \text{ ou } S^{-1} \in S \right\}$$

Démonstration.

- (1) bien définit : Soit $I = \{H < G \mid S \subset H\} \neq \{\}$ car $G \in I$ Soit $H_I = \cap_{H \in I} H < G$ par la prop précédente. Montrons que H_I est le plus petit ssgpe contenant
 - (a) $S \subset H, \forall H \in I, S \subset H_I$

- (b) Soit H < G tel que $S \subset H \stackrel{?}{\Rightarrow} H_I < H$ Or $H \in I$ donc $I_I = H \cap (\bigcap_{H \in I} H') \subset H$ donc $< S > = H_I$.
- (2) Montrons que $\langle S \rangle = H_S$ par double inclusion.
 - (a) $H_S \subset \langle S \rangle$

 $H_S < G$ car $e = gg^{-1} \in H_S$ pour un $g \in S$ Si $x = (g_1)$ A FAIRE

Définition 1.25 (Engendré). Soit (G, *) un groupe. Si $G = \langle S \rangle$, on dit que G est engendré par S ou que S est un système de générateurs pour G.

Notation 1.26. Si $S = \{g_1, ..., g_n\}$, on note $\langle g_1, ..., g_n \rangle := \langle S \rangle$.

Définition 1.27 (Monogène). Soit (G, *) un groupe. Si il existe $x \in G$ tel que $G = \langle x \rangle$, on dit que G est *monogène*, si de plus G est fini, on dit qu'il est cyclique.

Définition 1.28 (Finiment engendré). On dit que G est finiment engendré si $\exists S \subset G$ fini tel que $G = \langle S \rangle$.

Exemple 1.29.

- 1. $G = \langle G \rangle$
- 2. $(\mathbb{Z}, +) = \langle 1 \rangle = \langle 2, 3 \rangle$ est monogène
- 3. $(\mathbb{Z}^2, +) = \langle (1,0), (0,1) \rangle : 1 = 3 2 \in \langle 2, 3 \rangle \Rightarrow \langle 1 \rangle \subseteq \langle 2, 3 \rangle$
- 4. $(\mathbb{Z}/_{3\mathbb{Z}}x\mathbb{Z}/_{5\mathbb{Z}}, +) = \langle (\overline{1}, \overline{1}) \rangle$. (exo)
- 5. $(\mathbb{Z}/_n\mathbb{Z}, +) = \langle \overline{1} \rangle$ est cyclique.
- 6. (S_n, \circ) n'est pas cyclique pour n>2

Lemme 1.30. Tout groupe monogène est abélien.

Démonstration. G monogène $\Rightarrow \exists x \in G = \langle x \rangle = \{g_1, ..., g_n\}$

1.3. Les sous-groupes de $(\mathbb{Z}, +)$.

Remarque 1.31 (\star). Soit $n \in \mathbb{Z}$, $\langle n \rangle = \{an + b(-n) \mid a, b \in \mathbb{N}\} < (\mathbb{Z}, +)$

Proposition 1.32.

- $(1) < n >= n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\} \forall n \in \mathbb{Z}.$
- (2) Tout sous-groupe de \mathbb{Z} est de la forme $\langle n \rangle$ pour un certain $n \in \mathbb{Z}$.
- (3) Si $a \neq 0, b \neq 0, a, b \in \mathbb{Z}$. On a $a \mid b$ si et seulement si $b\mathbb{Z} \subset a\mathbb{Z}$.
- (4) Soit $a, b \in \mathbb{Z} \setminus \{0\}$, $\langle a, b \rangle = d\mathbb{Z}$, $d = \operatorname{pgcd} \operatorname{de} a$ et $\operatorname{de} b$. et $\langle a \rangle \cap \langle b \rangle = m\mathbb{Z}$, $m = \operatorname{le} \operatorname{ppcm} \operatorname{de} a$ et $\operatorname{de} b$.

Démonstration.

- (1) $\langle n \geq n\mathbb{Z} \text{ provient de } (\star) \operatorname{car} \{a b \mid a, b \in \mathbb{N}\} = \mathbb{Z}$
- (2) Soit $H < \mathbb{Z}$ Si $H = \{0\}$, $H = \langle 0 \rangle$. Sinon $\exists d \in H, d \neq 0$. Comme H est sous-groupe, $-d \in H$ donc H contient un nombre positif (d ou -d). Soit $n \in H$, le nombre positif minimal n > 0. On veut montrer $H = \langle n \rangle$.

Soit $x \in H$. La division euclidienne donne x = an + r, $a \in \mathbb{Z}, r \in \mathbb{N}, 0 \le r < n$. On a $r = x - an \in H$. Comme $0 \le r < n$ et n minimal dans H, r = 0 donc $x = an \in \langle n \rangle$ donc $H \subseteq \langle n \rangle$ D'où $H = \langle n \rangle$

- (3) Soit $a, b \in \mathbb{Z} \setminus \{0\}$ Supposons $a \mid b \Rightarrow \exists m \in \mathbb{Z}$ tel que $b = ma \in \langle a \rangle \Rightarrow \langle b \rangle = b\mathbb{Z} = b\mathbb{Z} \subseteq \langle a \rangle = a\mathbb{Z}$. Réciproquement, si $b \in b\mathbb{Z} \subseteq a\mathbb{Z}$ alors $b \in a\mathbb{Z} \Rightarrow \exists m \in \mathbb{Z}$ tel qeu $b = ma \Leftrightarrow a \mid b$.
- (4) Soit $d = \operatorname{PGCD}(a, b) \in \mathbb{N} \Leftrightarrow \begin{cases} d \mid a, d \mid b \\ d' \mid a \text{ et } d' \mid b \Rightarrow d' \mid d \end{cases}$, $m = \operatorname{PPCM}(a, b) \in \mathbb{N} \Leftrightarrow \begin{cases} a \mid m, b \mid m \\ a \mid m' \text{ et } b \mid m' \Rightarrow m \mid m' \end{cases}$ Par le (2), on sait qu'il existe d', $m' \in \mathbb{N}$ tel que $\langle a, b \rangle = c\mathbb{Z}$

On montre que c est un PGCD de a et de b. $c \in c\mathbb{Z} = \langle a, b \rangle$. $a \in \langle a, b \geq c\mathbb{Z} \Rightarrow a\mathbb{Z} \subset c\mathbb{Z} \Rightarrow c|a$. De même avec b, on obtient $c \mid b$ Si $d' \mid a$ et $d' \mid b$ alors $a\mathbb{Z} \subset d'\mathbb{Z}$ et $b\mathbb{Z} \subset d'\mathbb{Z} \Rightarrow a, b \in d'\mathbb{Z} \Rightarrow \Rightarrow \langle a, b \rangle \subseteq d'\mathbb{Z}$.

On montre que $l = \langle a \rangle \cap \langle b \rangle$ est un PPCM de a et de b. On a $l \in l\mathbb{Z} \subset \langle a \rangle = a\mathbb{Z} \Rightarrow a | l$. et $l \in l\mathbb{Z} \subset \langle b \rangle = b\mathbb{Z} \Rightarrow b | l$ Si $m' \in \mathbb{Z}$ verfiei a | m' et b | m' alors $m'\mathbb{Z} \subset a\mathbb{Z}$ et $m'\mathbb{Z} \subset b\mathbb{Z} \Rightarrow m'\mathbb{Z} \subset a\mathbb{Z} \cap b\mathbb{Z} = l\mathbb{Z} = \langle a, b \rangle \mathbb{Z} \Rightarrow l | m'$ Donc l est le ppcm de a et de b et donc l = m.

Théorème 1.33 (Théorème de Bézout). Soit $a, b \in \mathbb{Z} \setminus \{0\}$, $d = \operatorname{pgcd}(a, b)$. Il existe $u, v \in \mathbb{Z}$ tel que d = ua + bv.

Démonstration. $d\mathbb{Z} = \langle a, b \rangle \Rightarrow d \in \langle a, b \rangle = \{ua + vb \mid u, v \in \mathbb{Z}\}.$

2. Ordre d'un élément.

Remarque 2.1 (Rappel). L'ordre d'un groupe G est son cardinal.

Définition 2.2. Soit (G, \cdot) un groupe, $x \in G$. L'ordre de X est ord $x = \text{Card}(\langle x \rangle)$.

Remarques 2.3.

- (1) Si *G* est fini alors tout élementde *G* est d'ordre fini.
- (2) ord e = 1.

Proposition 2.4. Soit (G, \cdot) un groupe, $x \in G$. On a

ord
$$x = \inf\{d \in \mathbb{N} \setminus \{0\} \mid x^d = e\}.$$

Proposition 2.5. Soit (G, \cdot) un groupe, $x \in G$, $m \in \mathbb{Z}$ tel que $x^m = e$ alors ord $x \mid m$

Remarque 2.6. Par convention, $\inf \emptyset = +\infty$.

Exemple 2.7.

- 1. ord $x = 1 \Leftrightarrow x = e$,
- 2. Dans $(\mathbb{Z}_{/4\mathbb{Z}}, +)$, ord overline (2) = 2,
- 3. Dans $(\mathbb{Z}, +)$, ord $2 = \inf$

Remarque 2.8. Dans un groupe abélien, ord $x = \inf\{k \in \mathbb{N} \setminus \{0\} \mid kx = e\}$

3. Morphismes de groupes.

Définition 3.1. Soit (G, \cdot) , (H, \star) deux groupes, $\varphi : G \to H$. On dit que φ est un *morphisme de groupes* si pour tout $a, b \in G$, on a $\varphi(a \cdot b) = \varphi(a) \star \varphi(b)$

Lemme 3.2. Si $\varphi: G \to H$ est un morphisme alors $\begin{cases} \varphi(e_G) = e_H \\ \varphi(x^{-1}) = \varphi(x)^{-1} \end{cases} \forall x \in G$